(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2002 (27.12.2002)

PCT

(10) International Publication Number WO 02/102235 A2

(51) International Patent Classification7:

A61B

(21) International Application Number: PCT/US02/19297

18 June 2002 (18.06.2002) (22) International Filing Date:

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/299,234 18 June 2001 (18.06.2001) US 60/315,287 27 August 2001 (27.08.2001) US 60/317,544 5 September 2001 (05.09.2001) US 60/350,666 13 November 2001 (13.11.2001) US 60/372,246 12 April 2002 (12.04.2002) US

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MACK, David, H. [US/US]; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). GISH, Kurt, C. [US/US]; 40 Perego Terrace #2, San Francisco, CA 94131 (US).

(74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF OVARIAN CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF OVARIAN CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in ovarian cancer. Related methods and compositions that can be used for diagnosis and treatment of ovarian cancer are disclosed. Also described herein are methods that can be used to identify modulators of ovarian cancer.

METHODS OF DIAGNOSIS OF OVARIAN CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF OVARIAN CANCER

CROSS-REFERENCES TO RELATED APPLICATIONS.

This application is related to USSN 60/299,234, filed June 18, 2001; USSN 60/315,287, filed August 27, 2001; USSN 60/317,544, filed September 5, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/372,246, filed April 12, 2002, each of which is incorporated herein by reference for all purposes.

5

10

15

20

25

30

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in ovarian cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis, and therapy of ovarian cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit ovarian cancer.

BACKGROUND OF THE INVENTION

Ovarian cancer is the sixth most common cancer in women, accounting for 6% of all female cancers. It ranks fifth as the cause of cancer death in women. The American Cancer Society predicts that there will be about 23,100 new cases of ovarian cancer in this country in the year 2000 and about 14,000 women will die of the disease. Because many ovarian cancers cannot be detected early in their development, they account for a disproportionate number of fatal cancers, being responsible for almost half the deaths from cancer of the female genital tract; more deaths than any other reproductive organ cancer.

Most patients with epithelial ovarian cancer, the predominant form, are asymptomatic in early-stage disease and usually present with stage III or IV disease. Their five-year survival is less than 25%, with lower survival among African-American women. The minority of patients discovered with early-stage disease have a five-year survival rate of 80%-90%. See, Parker, et. al.. (1997) "Cancer Statistics, 1997" CA Cancer J. Clin. 47:5-27.

In the absence of a family history of ovarian cancer, lifetime risk of ovarian cancer is 1/70. Risk factors include familial cancer syndromes (risk of up to 82% by age 70 in women

with hereditary breast/ovarian syndrome); family history (1.4% lifetime risk with no affected relatives, 5% with one affected relative, 7% with two affected relatives; Kerlikowske, et.al. (1992) Obstet. Gynecol. 80:700-707); nulliparity; advancing age; obesity; personal history of breast, endometrial, or colorectal cancer; fewer pregnancies; or older age (>35 years) at first pregnancy. However, 95% of all ovarian cancers occur in women without risk factors. Use of hormonal contraceptives, oophorectomy, and tubal sterilization reduce risk of ovarian cancer (Kerlikowske, et. al. (1992) Obstet. Gynecol. 80:700-707; Grimes (1992) Am J. Obstet. Gynecol. 166:1950-1954; Hankinson, et. al. (1993) JAMA 270:2813-2818); however, even bilateral oophorectomy may not be completely effective in preventing ovarian cancer.

5

10

15

20

25

30

Treatment of ovarian cancer consists largely of surgical oophorectomy, anti-hormone therapy, and/or chemotherapy. Although many ovarian cancer patients are effectively treated, the current therapies can all induce serious side effects which diminish quality of life. Deciding on a particular course of treatment is typically based on a variety of prognostic parameters and markers (Fitzgibbons, et al. (2000) <u>Arch. Pathol. Lab. Med.</u> 124:966-978; Hamilton and Piccart (2000) <u>Ann. Oncol.</u> 11:647-663), including genetic predisposition markers BRCA-1 and BRCA-2 (Robson (2000) <u>J. Clin. Oncol.</u> 18:113sup-118sup).

The identification of novel therapeutic targets and diagnostic markers is essential for improving the current treatment of ovarian cancer patients. Recent advances in molecular medicine have increased the interest in tumor-specific cell surface antigens that could serve as targets for various immunotherapeutic or small molecule strategies. Antigens suitable for immunotherapeutic strategies should be highly expressed in cancer tissues and ideally not expressed in normal adult tissues. Expression in tissues that are dispensable for life, however, may be tolerated. Examples of such antigens include Her2/neu and the B-cell antigen CD20. Humanized monoclonal antibodies directed to Her2/neu (Herceptin®/trastuzumab) are currently in use for the treatment of metastatic breast cancer. Ross and Fletcher (1998) Stem Cells 16:413-428. Similarly, anti-CD20 monoclonal antibodies (Rituxin®/rituximab) are used to effectively treat non-Hodgkin's lymphoma. Maloney, et al. (1997) Blood 90:2188-2195; Leget and Czuczman (1998) Curr. Opin. Oncol. 10:548-551.

Potential immunotherapeutic targets have been identified for ovarian cancer. One such target is polymorphic epithelial mucin (MUC1). MUC1 is a transmembrane protein, present at the apical surface of glandular epithelial cells. It is often overexpressed in ovarian cancer, and typically exhibits an altered glycosylation pattern, resulting in an antigenically

distinct molecule, and is in early clinical trials as a vaccine target. Gilewski, et al. (2000) Clin. Cancer Res. 6:1693-1701; Scholl, et al. (2000) J. Immunother. 23:570-580. The tumor-expressed protein is often cleaved into the circulation, where it is detectable as the tumor marker, CA 15-3. See, e.g., Bon, et al. (1997) Clin. Chem. 43:585-593. However, many patients have tumors that express neither HER2 nor MUC-1; therefore, it is clear that other targets need to be identified to manage localized and metastatic disease.

5

10

15

20

25

Mutations in both BRCA1 and BRCA2 are associated with increased susceptibility to ovarian cancer. Mutations in BRCA1 occur in approximately 5 percent (95 percent confidence interval, 3 to 8 percent) of women in whom ovarian cancer is diagnosed before the age of 70 years. See Stratton, et al. (1997) N.E.J. Med. 336:1125-1130. And, in BRCA1 gene carriers, the risk for developing ovarian cancer is .63. See Easton (1995) Am. J. Hum. Genet. 56:267-xxx; and Elit (2001) Can. Fam. Physician 47:778-84.

Other biochemical markers such as CA125 have been reported to be associated with ovarian cancer, but they are not absolute indicators of disease. Although roughly 85% of women with clinically apparent ovarian cancer have increased levels of CA125, CA125 is also increased during the first trimester of pregnancy, during menstruation, in the presence of non-cancerous illnesses, and in cancers of other sites.

While industry and academia have identified novel gene sequences, there has not been an equal effort exerted to identify the function of these novel sequences. The elucidation of a role for novel proteins and compounds in disease states for identification of therapeutic targets and diagnostic markers is essential for improving the current treatment of ovarian cancer patients. Accordingly, provided herein are molecular targets for therapeutic intervention in ovarian and other cancers. Additionally, provided herein are methods that can be used in diagnosis and prognosis of ovarian cancer. Further provided are methods that can be used to screen candidate bioactive agents for the ability to modulate ovarian cancer.

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are upand down-regulated in ovarian cancer cells. Such genes are useful for diagnostic purposes,
and also as targets for screening for therapeutic compounds that modulate ovarian cancer,
such as hormones or antibodies. The methods of detecting nucleic acids of the invention or
their encoded proteins can be used for many purposes, e.g., early detection of ovarian
cancers, monitoring and early detection of relapse following treatment, monitoring response
to therapy, selecting patients for postoperative chemotherapy or radiation therapy, selecting
therapy, determining tumor prognosis, treatment, or response to treatment (of primary or
metastatic tumors), and early detection of pre-cancerous lesions. Other aspects of the
invention will become apparent to the skilled artisan by the following description of the
invention.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting an ovarian cancerassociated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26.

In one embodiment, the present invention provides a method of determining the level of an ovarian cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting an ovarian cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-26.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label.

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat ovarian cancer. In another embodiment, the patient is suspected of having metastatic ovarian cancer.

In one embodiment, the patient is a human.

In one embodiment, the ovarian cancer associated transcript is mRNA.

In one embodiment, the method further comprises the step of amplifying nucleic acids

before the step of contacting the biological sample with the polynucleotide.

5

10

15

20

25

30

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of an ovarian cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic ovarian cancer. In a further embodiment, the patient has a drug resistant form of ovarian cancer.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the ovarian cancer-associated transcript to a level of the ovarian cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate ovarian cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1-26.

In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-26.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid. In one aspect, the present invention provides an isolated polypeptide which is encoded

by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-26.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-26.

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting an ovarian cancer cell in a biological sample from a patient, the method comprising contacting the biological

sample with an antibody as described herein.

5

10

20

25

30

In another aspect, the present invention provides a method of detecting antibodies specific to ovarian cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1-26.

In another aspect, the present invention provides a method for identifying a compound that modulates an ovarian cancer-associated polypeptide, the method comprising the steps of:
(i) contacting the compound with an ovarian cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect.

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of an ovarian cancer-associated cell to treat ovarian cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having ovarian cancer or to a cell sample isolated from; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of ovarian cancer.

In one embodiment, the control is a mammal with ovarian cancer or a cell sample that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal, or is non-malignant tissue.

In one embodiment, the test compound is administered in varying amounts or

concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-26 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

5

10

15

20

25

30

In another aspect, the present invention provides a method for treating a mammal having ovarian cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having ovarian cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in an ovarian cancer. In one embodiment, a gene is selected from Tables 1-26. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate, wherein the concentration of the drug candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate ovarian cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the ovarian cancer modulatory, protein, or an animal lacking the ovarian cancer modulatory protein, for example as a result of a gene knockout.

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1-26, wherein the biochip comprises fewer than 1000 nucleic acid probes.

Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

Furthermore, a method of diagnosing a disorder associated with ovarian cancer is

provided. The method comprises determining the expression of a gene of Tables 1-26 in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with ovarian cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in ovarian cancer.

5

10

15

20

25

30

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of an ovarian cancer modulating protein (ovarian cancer modulatory protein) or a fragment thereof and an antibody which binds to said ovarian cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining an ovarian cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said ovarian cancer modulatory protein or fragment thereof. The method further includes determining the binding of said ovarian cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits ovarian cancer.

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an individual a composition comprising an ovarian cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-26.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises an ovarian cancer modulating protein, preferably encoded by a nucleic acid of Table 1-26 or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding an ovarian cancer modulating protein, preferably selected from the nucleic acids of Tables 1-26, and a pharmaceutically acceptable carrier.

Also provided are methods of neutralizing the effect of an ovarian cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-26.

In another aspect of the invention, a method of treating an individual for ovarian cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of an ovarian cancer modulating protein. In another embodiment, the method comprises administering to a patient having ovarian cancer an antibody to an ovarian cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

5

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for ovarian cancer (OC), including metastatic ovarian cancer, as well as methods for screening for compositions which modulate ovarian cancer. Also provided are methods for treating ovarian cancer and related conditions, e.g., ovarian carcinoma (e.g., epithelial (including malignant serous tumors, malignant mucinous tumors, and malignant endometrioid tumors), germ cell (including teratomas, choriocarcinomas, polyembryomas, embryonal carcinoma, endodermal sinus tumor, dysgerminoma, and gonadoblastoma), and stromal carcinomas (e.g., granulosal stromal cell tumors)), fallopian tube carcinoma, and peritoneal carcinoma.

Tables 1-26 provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in ovarian cancer samples. Tables 1-26 also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster.

15

20

25

30

10

5

Definitions

The term "ovarian cancer protein" or "ovarian cancer polynucleotide" or "ovarian cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a gene of Tables 1-26; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1-26, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1-26 and conservatively modified variants thereof; or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50. 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a gene of Tables 1-26. A polynucleotide or polypeptide

sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. An "ovarian cancer polypeptide" and an "ovarian cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" ovarian cancer protein or nucleic acid refers to an ovarian cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type ovarian cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translation processing or splicing, including alternative splicing.

5

10

15

20

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of an ovarian cancer protein, polynucleotide or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish. Livestock and domestic animals are of particular interest.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default

parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

5

10

15

20

25

30

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482-489, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l. Acad. Sci. USA 85:2444-2448, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) Current Protocols in Molecular Biology Lippincott.

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al. (1977) <u>Nuc. Acids Res.</u> 25:3389-3402 and Altschul, et al. (1990)

5

10

15

20

25

30

J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word length of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Nat'l Acad. Sci. USA 89:10915-919) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Nat'l Acad. Sci. USA 90:5873-5887). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

5

10

15

20

25

30

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells in vivo, and the like. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells, such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogenous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymers.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.

5

10

15

20

25

30

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. In certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, a silent variation of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not necessarily with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions, or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds, or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton (1984) Proteins Freeman).

10

15

20

25

30

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts, et al. (2001) Molecular Biology of the Cell (4th ed.) Garland Pub.; and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules Freeman. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the non-covalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50, or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds,

although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or Omethylphosphoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic 5 backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7 of Sanghvi and Cook (eds. 1994) Carbohydrate Modifications in Antisense Research ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of 10 reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

A variety of references disclose such nucleic acid analogs, including, e.g.,

15

phosphoramidate (Beaucage, et al. (1993) Tetrahedron 49:1925-1963 and references therein; Letsinger (1970) J. Org. Chem. 35:3800-3803; Sprinzl, et al. (1977) Eur. J. Biochem. 81:579-589; Letsinger, et al. (1986) Nucl. Acids Res. 14:3487-499; Sawai, et al. (1984) Chem. Lett. 805, Letsinger, et al. (1988) J. Am. Chem. Soc. 110:4470-4471; and Pauwels, et al. (1986), 20 Chemica Scripta 26:141-149), phosphorothioate (Mag, et al. (1991) Nucl. Acids Res. 19:1437-441; and U.S. Patent No. 5,644,048), phosphorodithicate (Brill, et al. (1989) J. Am. Chem. Soc. 111:2321-2322), O-methylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford Univ. Press), and peptide nucleic acid backbones and linkages (see Egholm (1992) J. Am. Chem. Soc. 114:1895-897; Meier, et al. (1992) Angew. Chem. Int. Ed. Engl. 31:1008-1010; Nielsen (1993) Nature, 25 365:566-568; Carlsson, et al. (1996) Nature 380:207, each of which is incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy, et al. (1995) Proc. Nat'l Acad. Sci. USA 92:6097-101; non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi, et al. (1991) Angew. 30 Chem. Intl. Ed. English 30:423-426; Letsinger, et al. (1988) J. Am. Chem. Soc. 110:4470-4471; Jung, et al. (1994) Nucleoside and Nucleotide 13:1597; Chapters 2 and 3, in Sanghvi and Cook (eds. 1994) Carbohydrate Modifications in Antisense Research ASC Symposium Series 580; Mesmaeker, et al. (1994) Bioorganic and Medicinal Chem. Lett. 4:395-398; Jeffs,

et al. (1994) J. Biomolecular NMR 34:17-xx; Horn, et al. (1996) Tetrahedron Lett. 37:743-xxx) and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, in Sanghvi and Cook (eds. 1994) Carbohydrate

Modifications in Antisense Research ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins, et al. (1995) Chem. Soc. Rev. pp 169-176). Several nucleic acid analogs are described in Rawls (p. 35 June 2, 1997) C&E News. Each of these references is hereby expressly incorporated by reference.

5

10

15

20

25

30

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched base pairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

A "label" or a "detectable moiety" is a composition detectable by spectroscopic,

photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the ovarian cancer nucleic acids, proteins and antibodies at any position. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter, et al. (1962) Nature 144:945-xxx; David, et al. (1974) Biochemistry 13:1014-1021; Pain, et al. (1981) J. Immunol. Meth. 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

5

10

15

20

25

30

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or non-covalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or non-covalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (e.g., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the

stringency of the hybridization conditions. The probes are preferably directly labeled, e.g., with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

5

10

15

20

25

30

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, e.g., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, e.g., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, e.g., wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

5

10

15

20

25

30

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) Hybridization with Nucleic Probes (Laboratory Techniques in Biochemistry and Molecular Biology) (vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target

sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32-48° C depending on primer length. For high stringency PCR amplification, a temperature of about 62° C is typical, although high stringency annealing temperatures can range from about 50° C to about 65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90-95° C for 30-120 sec, an annealing phase lasting 30-120 sec, and an extension phase of about 72° C for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are available, e.g., in Innis, et al. (1990) PCR Protocols: A Guide to Methods and Applications Academic Press, N.Y.

10

15

20

25

30

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided, e.g., Ausubel, et al. (ed. 1991 and supplements) Current Protocols in Molecular Biology Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that

modulate activity of an ovarian cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the ovarian cancer protein or nucleic acid, e.g., a functional, physical, physiological, or chemical effect, such as the ability to decrease ovarian cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of ovarian cancer cells. "Functional effects" include in vitro, in vivo, and ex vivo activities.

5

10

15

20

25

30

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of an ovarian cancer protein sequence, e.g., functional, enzymatic, physical, physiological, and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the ovarian cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on ovarian cancer can also be performed using ovarian cancer assays known to those of skill in the art such as an in vitro assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of ovarian cancer cells. The functional effects can be evaluated by means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features. measurement of changes in RNA or protein levels for ovarian cancer-associated sequences, measurement of RNA stability, or identification of downstream or reporter gene expression (CAT, luciferase, β-gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

"Inhibitors", "activators", and "modulators" of ovarian cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of ovarian cancer polynucleotide and

polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of ovarian cancer proteins, e.g., antagonists. Antisense or inhibitory nucleic acids may inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate ovarian cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of ovarian cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules, and the like. Assays for inhibitors and activators include, e.g., expressing the ovarian cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of ovarian cancer can also be identified by incubating ovarian cancer cells with the test compound and determining increases or decreases in the expression of one or more ovarian cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50, or more ovarian cancer proteins, such as ovarian cancer proteins encoded by the sequences set out in Tables 1-26.

5

10

15

20

25

30

Samples or assays comprising ovarian cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25% or less. Activation of an ovarian cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (e.g., 2-5 fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to a change in cell growth and proliferation characteristics in vitro or in vivo, e.g., cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, change in contact inhibition or density limitation of growth, loss of growth factor or serum requirements, change in cell morphology, gain or loss of immortalization, gain or loss of tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., pp. 231-241 in Freshney (1994) <u>Culture of Animal Cells: A Manual of Basic Technique</u> (3d ed.) Wiley-Liss.

"Tumor cell" refers to pre-cancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is typically associated with phenotypic changes, such as immortalization of cells, aberrant growth control, non-morphological changes, and/or malignancy. See, Freshney (1994) Culture of Animal Cells.

5

10

15

20

25

30

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD, and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See, e.g., Paul (ed. 1999) Fundamental Immunology (4th ed.) Raven.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region. See Paul (ed. 1999) <u>Fundamental Immunology</u> (4th ed.) Raven. While various antibody fragments are defined in terms of the digestion of an intact antibody,

one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries. See, e.g., McCafferty, et al. (1990) Nature 348:552-554.

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al., pp. 77-96 in Reisfeld and Sell (1985) Monoclonal Antibodies and Cancer Therapy Liss; Coligan (1991) Current Protocols in Immunology Lippincott; Harlow and Lane (1988) Antibodies: A Laboratory Manual CSH Press; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.) Academic Press. Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Transgenic mice, or other organisms, e.g., other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens. See, e.g., McCafferty, et al. (1990) Nature 348:552-554; and Marks, et al. (1992) Biotechnology 10:779-783.

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

Identification of ovarian cancer-associated sequences

5

20

25

30

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is

characteristic of the state of the cell. That is, normal tissue (e.g., normal ovarian or other tissue) may be distinguished from cancerous or metastatic cancerous tissue of the ovarian, or ovarian cancer tissue or metastatic ovarian cancerous tissue can be compared with tissue samples of ovarian and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different ovarian cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Molecular profiling may distinguish subtypes of a currently collective disease designation, e.g., different forms of a cancer.

5

10

15

20

25

30

The identification of sequences that are differentially expressed in ovarian cancer versus non-ovarian cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate ovarian cancer, and thus tumor growth or recurrence, in a particular patient. Alternatively, does existing treatment induce expression of a target. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of ovarian cancer in the tissue or origin of the primary tumor. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the ovarian cancer expression profile. This may be done by making biochips comprising sets of the important ovarian cancer genes, which can then be used in these screens. These methods can also be based on evaluating protein expression; that is, protein expression levels of the ovarian cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the ovarian cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense or RNAi nucleic acids, or the ovarian cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in ovarian cancer relative to normal tissues and/or non-malignant tissues, herein termed "ovarian cancer sequences." As outlined below, ovarian cancer sequences include those that are up-regulated (e.g., expressed at a higher level) in ovarian cancer, as well as those that are down-regulated (e.g., expressed at a lower level). In a preferred embodiment, the ovarian cancer sequences are from humans; however, as will be appreciated by those in the art, ovarian cancer sequences from other organisms may be useful

in animal models of disease and drug evaluation; thus, other ovarian cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets (e.g., dogs, cats, etc.). Ovarian cancer sequences, e.g., counterpart genes, from other organisms may be obtained using the techniques outlined below.

Ovarian cancer sequences can include both nucleic acid and amino acid sequences. Ovarian cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids. Screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the ovarian cancer sequences, are also provided.

5

10

15

20

25

30

An ovarian cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the ovarian cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying ovarian cancer-associated sequences, the ovarian cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing ovarian cancer samples with metastatic cancer samples from other cancers, such as lung, ovarian, gastrointestinal cancers, etc. Samples of different stages of ovarian cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal ovarian, but also including, and not limited to, lung, heart, brain, liver, ovarian, kidney, muscle, colon, small intestine, large intestine, spleen, bone, and/or placenta. In a preferred embodiment, those genes identified during the ovarian cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, expression in non-essential tissues may be tolerated. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side

effects by interaction with target present in other organs.

In a preferred embodiment, ovarian cancer sequences are those that are up-regulated in ovarian cancer; that is, the expression of these genes is higher in the ovarian cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. Other embodiments are directed to sequences up regulated in non-malignant conditions relative to normal.

Unigene cluster identification numbers and accession numbers herein refer to the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, et al. (1998) Nucl. Acids Res. 26:1-7; and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). In some situations, the sequences may be derived from assembly of available sequences or be predicted from genomic DNA using exon prediction algorithms, e.g., FGENESH. See Salamov and Solovyev (2000) Genome Res. 10:516-522. In other situations, sequences have been derived from cloning and sequencing of isolated nucleic acids.

In another preferred embodiment, ovarian cancer sequences are those that are down-regulated in ovarian cancer; that is, the expression of these genes is lower in ovarian cancer tissue as compared to non-cancerous tissue. "Down-regulation" as used herein often means at least about a two-fold change, preferably at least about a three-fold change, with at least about five-fold or higher being preferred.

Informatics

5

10

15

20

25

30

The ability to identify genes that are over or under expressed in ovarian cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. Expression profiles can be used in diagnostic or prognostic evaluation of patients with ovarian cancer. Subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson (June 11-12, 1998) Pharmaceutical Proteomics: Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA) or in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable

exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database, and can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

5

10

15

20

25

30

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing ovarian cancer, e.g., the identification of ovarian cancer-associated sequences described herein, provide an abundance of information which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, and outcome data, among others. Although data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method

using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multi-dimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

5

10

25

30

Fundamentals of bioinformatics are provided, e.g., in Mount, et al. (2001)

Bioinformatics: Sequence and Genome Analysis CSH Press, NY; Durbin, et al. (eds. 1999)

Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids

Cambridge Univ. Press; Baxevanis and Oeullette (eds. 1998) Bioinformatics: A Practical

Guide to the Analysis of Genes and Proteins (2d ed.) Wiley-Liss; Rashidi and Buehler (1999)

Bioinformatics: Basic Applications in Biological Science and Medicine CRC Press; Setubal, et al. (eds 1997) Introduction to Computational Molecular Biology Brooks/Cole; Misener and Krawetz (eds. 2000) Bioinformatics: Methods and Protocols Humana Press; Higgins and Taylor (eds. 2000) Bioinformatics: Sequence, Structure, and Databanks; A Practical

Approach Oxford Univ. Press; Brown (2001) Bioinformatics: A Biologist's Guide to Biocomputing and the Internet Eaton Pub.; Han and Kamber (2000) Data Mining: Concepts and Techniques Kaufmann Pub.; and Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes Chap and Hall.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for ovarian cancer. In another variation, assay records cross-tabulate one or more of the following parameters for a target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or

characteristic separation coordinate (e.g., electrophoretic or genomic position coordinates); (2) sample source; and (3) absolute and/or relative quantity of target species present in the sample.

5

10

15

20

25

30

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells)

composing a bit pattern encoding data acquired from an assay of the invention.

5

10

15

20

25

30

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, e.g., which typically comprises one or more of: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by methods of the inventions, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

Characteristics of ovarian cancer-associated proteins

5

10

15

20

25

30

Ovarian cancer proteins of the present invention may be categorized as secreted proteins, transmembrane proteins, or intracellular proteins. In one embodiment, the ovarian cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes. See, e.g., Alberts, et al. (eds. 1994) Molecular Biology of the Cell (3d ed.) Garland. For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity, and the like. Intracellular proteins can also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are often involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in proteinprotein interaction. For example, Src-homology-2 (SH2) domains bind tyrosinephosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to prolinerich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden. See, e.g., Bateman, et al. (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-

322.

5

10

30.

In another preferred embodiment, the ovarian cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. 15 However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged 20 amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor 25 receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g., IL-1 receptor, IL-2 receptor, etc.

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their

cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules, or may be processed or shed to the blood stream. In this respect, they can mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

5

10

15

20

25

30

Ovarian cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins. In addition, some membrane proteins can be processed to release a soluble protein, or to expose a residual fragment. Released soluble proteins may be useful diagnostic markers, processed residual protein fragments may be useful ovarian markers of disease.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the ovarian cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to an adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, wax producing glands of the ear, etc.). Thus, secreted molecules often find use in modulating or altering numerous aspects of physiology. Ovarian cancer proteins that are secreted proteins are particularly preferred as good diagnostic markers, e.g., for blood, plasma, serum, or stool tests. Those which are enzymes may be

antibody or small molecule therapeutic targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms, as protein or DNA vaccines.

Use of ovarian cancer nucleic acids

5

10

15

20

25

30

As described above, ovarian cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the ovarian cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The ovarian cancer nucleic acid sequences of the invention, e.g., in Table 1-26, can be fragments of larger genes, e.g., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the ovarian cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., supra. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once the ovarian cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire ovarian cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised as a linear nucleic acid segment, the recombinant ovarian cancer nucleic acid can be further-used as a probe to identify and isolate other ovarian cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant ovarian cancer nucleic acids and proteins.

The ovarian cancer nucleic acids of the present invention are useful in several ways. In a first embodiment, nucleic acid probes to the ovarian cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, RNAi, and/or antisense applications. Alternatively, the ovarian cancer nucleic acids that include coding regions of ovarian cancer proteins can be put into expression vectors for the expression of ovarian cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to ovarian cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the ovarian cancer nucleic acids, e.g., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

5

10

15

20

25

30

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (e.g., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent

attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

5

10

15

20

25

30

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. See, e.g., WO0055627 Reusable Low Fluorescent Plastic Biochip.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxyl groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using

functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

5

10

15

20

25

30

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of ovarian cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, an ovarian cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of ovarian cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are available. See, e.g., Innis, et al.(1990) PCR Protocols: A Guide to Methods and Applications Academic Press.

In some embodiments, a TaqMan based assay is used to measure expression.

TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be

extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR; see Wu and Wallace (1989) Genomics 4:560-569; Landegren, et al. (1988) Science 241:1077-1980; and Barringer, et al. (1990) Gene 89:117-122), transcription amplification (Kwoh, et al. (1989) Proc. Nat'l Acad. Sci. USA 86:1173-1177), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:1874-1878), dot PCR, linker adapter PCR, etc.

Expression of ovarian cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, ovarian cancer nucleic acids, e.g., encoding ovarian cancer proteins are used to make a variety of expression vectors to express ovarian cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known and are used to express proteins. See, e.g., Ausubel, supra; and Fernandez and Hoeffler (eds. 1999) Gene Expression Systems Academic Press. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the ovarian cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a pre-protein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation; and two sequences may be operably linked when they are physically part of the same polymer. Generally,

"operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the ovarian cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

5

10

15

20

25

30

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences typically encode constitutive or inducible promoters. The promoters may be naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are available. See, e.g., Fernandez and Hoeffler, supra.

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

The ovarian cancer proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding an ovarian cancer protein, under the appropriate conditions to induce or cause expression of the ovarian cancer protein. Conditions appropriate for ovarian cancer protein expression will vary with

the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculovirus systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

5

10

15

25

30.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the ovarian cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. One expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor 20 virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter. See, e.g., Fernandez and Hoeffler, supra. Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

In a preferred embodiment, ovarian cancer proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters

are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion

5

10

15

20

25

30

The expression vector may also include a signal peptide sequence that provides for secretion of the ovarian cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin, and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others. See Fernandez and Hoeffler, supra. The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, ovarian cancer proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, an ovarian cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The ovarian cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the ovarian cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the ovarian cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the ovarian cancer protein is an ovarian cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the ovarian cancer protein is purified or isolated after expression. Ovarian cancer proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the ovarian cancer protein may be purified using a standard anti-ovarian cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes (1982) Protein Purification Springer-Verlag. The degree of purification necessary will vary depending on the use of the ovarian cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the ovarian cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

15

20

25

30

10

5

Variants of ovarian cancer proteins

In one embodiment, the ovarian cancer proteins are derivative or variant ovarian cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative ovarian cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion, or deletion may occur at most any residue within the ovarian cancer peptide.

Also included within one embodiment of ovarian cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the ovarian cancer protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant ovarian cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the ovarian cancer protein amino acid sequence. The variants typically exhibit the same

qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed ovarian cancer variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of ovarian cancer protein activities.

5

10

15

20

25

30

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the ovarian cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the ovarian cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the ovarian cancer protein is altered. For example, glycosylation sites may be altered or removed.

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g., serine or threonine is substituted for (or by) a hydrophobic residue, e.g., leucine, isoleucine, phenylalanine,

valine, or alanine; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysine, arginine, or histidine, is substituted for (or by) an electronegative residue, e.g., glutamic or aspartic acid; (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine; or (e) a proline residue is incorporated or substituted, which changes the degree of rotational freedom of the peptidyl bond.

Covalent modifications of ovarian cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of an ovarian cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of an ovarian cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking ovarian cancer polypeptides to a water-insoluble support matrix or surface for use in the method for purifying anti-ovarian cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

10

15

20

25

30

Other modifications include deamidation of glutamine and asparagine residues to the corresponding glutamic and aspartic acid residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serine, threonine, or tyrosine residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (e.g., pp. 79-86, Creighton (1983) <u>Proteins: Structure and Molecular Properties</u> Freeman), acetylation of the N-terminal amine, and amidation of a C-terminal carboxyl group.

Another type of covalent modification of the ovarian cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence ovarian cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence ovarian cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express ovarian cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to ovarian cancer polypeptides may also be

accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence ovarian cancer polypeptide (for O-linked glycosylation sites). The ovarian cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the ovarian cancer polypeptide at pre-selected bases such that codons are generated that will translate into the desired amino acids.

5

10

15

20

25

30

Another means of increasing the number of carbohydrate moieties on the ovarian cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. See, e.g., WO 87/05330, and pp. 259-306 in Aplin and Wriston (1981) <u>CRC Crit. Rev. Biochem.</u> CRC Press.

Removal of carbohydrate moieties present on the ovarian cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are applicable. See, e.g., Sojar and Bahl (1987) <u>Arch. Biochem. Biophys.</u> 259:52-57; and Edge, et al. (1981) <u>Anal. Biochem.</u> 118:131-137. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases. See, e.g., Thotakura, et al. (1987) <u>Meth. Enzymol.</u>, 138:350-359.

Another type of covalent modification of ovarian cancer comprises linking the ovarian cancer polypeptide to one of a variety of non-proteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylene. See, e.g., U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; or 4,179,337.

Ovarian cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules, e.g., comprising an ovarian cancer polypeptide fused to another heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of an ovarian cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the ovarian cancer polypeptide. The presence of such epitope-tagged forms of an ovarian cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the ovarian cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of an ovarian cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of

the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; His6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7, and 9E10 antibodies thereto (Evan, et al. (1985) Mol. Cell. Biol. 5:3610-3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3:547-553). Other tag polypeptides include, e.g., the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other ovarian cancer proteins of the ovarian cancer family, and ovarian cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related ovarian cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the ovarian cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to ovarian cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when the ovarian cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the ovarian cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller ovarian cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow and Lane, supra). Polyclonal antibodies can be raised in a

mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495-497. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-26 or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (e.g., pp. 59-103 in Goding (1986) Monoclonal Antibodies: Principles and Practice Academic Press). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at

least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid Table 1-26 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

5

10

15

20

25

30

In a preferred embodiment, the antibodies to ovarian cancer protein are capable of reducing or eliminating a biological function of an ovarian cancer protein, as is described below. That is, the addition of anti-ovarian cancer protein antibodies (either polyclonal or preferably monoclonal) to ovarian cancer tissue (or cells containing ovarian cancer) may reduce or eliminate the ovarian cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

In a preferred embodiment the antibodies to the ovarian cancer proteins are humanized antibodies (e.g., Xenerex Biosciences; Medarex, Inc.; Abgenix, Inc.; Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. Humanization can be essentially performed following the method of Winter and co-workers, e.g., by substituting rodent CDRs or CDR sequences for the

corresponding sequences of a human antibody. See, e.g., Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-329; Presta (1992) Curr. Op. Struct. Biol. 2:593-596; and Verhoeyen, et al. (1988) Science 239:1534-1536). Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.

5

10

15

20

25

30

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (see, e.g., Hoogenboom and Winter (1991) J. Mol. Biol. 227:381-388; and Marks, et al. (1991) J. Mol. Biol. 222:581-597) or human monoclonal antibodies (see, e.g., p. 77, Cole, et al. in Reisfeld and Sell (1985) Monoclonal Antibodies and Cancer Therapy Liss; and Boerner, et al. (1991) J. Immunol. 147:86-95). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. See, e.g., U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016; Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Neuberger (1996) Nature Biotechnology 14:826 commenting on Fishwild, et al. (1996) Nature Biotechnology 14:845-51; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

By immunotherapy is meant treatment of ovarian cancer, e.g., with an antibody raised against ovarian cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. The antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the ovarian cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby

inactivating the secreted ovarian cancer protein.

25

30

In another preferred embodiment, the ovarian cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the ovarian cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The 5 antibody may cause down-regulation of the transmembrane ovarian cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the ovarian cancer protein. The antibody is also an antagonist of the ovarian cancer protein. Further, the antibody prevents activation of the transmembrane ovarian cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the ovarian cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INFγ, and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, 15 methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, ovarian cancer is treated by administering to a patient antibodies directed against the transmembrane ovarian cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or 20 otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the ovarian cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the ovarian cancer protein. The therapeutic moiety may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with ovarian cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to ovarian cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with ovarian cancer. Cytotoxic agents are numerous and varied and include, but are not limited to,

cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against ovarian cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane ovarian cancer proteins not only serves to increase the local concentration of therapeutic moiety in the ovarian cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the untargeted therapeutic moiety.

5

10

15

20

25

30

In another preferred embodiment, the ovarian cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the ovarian cancer protein can be targeted within a cell, e.g., the nucleus, an antibody thereto contains a signal for that target localization, e.g., a nuclear localization signal.

The ovarian cancer antibodies of the invention specifically bind to ovarian cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of ovarian cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the ovarian cancer phenotype. Expression levels of genes in normal tissue (e.g., not undergoing ovarian cancer) and in ovarian cancer tissue (and in some cases, for varying severities of ovarian cancer that relate to prognosis, as outlined below, or in non-malignant disease are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state of the cell. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states,

information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

5

10

15

20

25

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus ovarian cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is modulated, either up-regulated, resulting in an increased amount of transcript, or down-regulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays. See, e.g., Lockhart (1996) Nature Biotechnology 14:1675-1680. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis, and RNase protection. As outlined above, preferably the change in expression (e.g., up-regulation or down-regulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the ovarian cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to ovarian cancer genes, e.g., those identified as being important in an ovarian cancer or disease phenotype, can be evaluated in an ovarian disease diagnostic test. In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed, or on an individual basis.

In this embodiment, the ovarian cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of ovarian cancer sequences in a particular sample. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

5

10

15

20

25

30

In a preferred embodiment nucleic acids encoding the ovarian cancer protein are detected. Although DNA or RNA encoding the ovarian cancer protein may be detected, of particular interest are methods wherein an mRNA encoding an ovarian cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding an ovarian cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3indoyl phosphate.

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The ovarian cancer proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, ovarian cancer proteins, including intracellular, transmembrane, or secreted proteins, find use as prognostic or diagnostic markers of ovarian disease. Detection of these proteins in putative ovarian cancer tissue allows for detection, diagnosis, or prognosis of ovarian disease, and for selection of therapeutic strategy. In one

embodiment, antibodies are used to detect ovarian cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the ovarian cancer protein is detected, e.g., by immunoblotting with antibodies raised against the ovarian cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

5

10

15

20

25

30

In another preferred method, antibodies to the ovarian cancer protein find use in in situ imaging techniques, e.g., in histology. See, e.g., Asai (ed. 1993) Methods in Cell Biology: Antibodies in Cell Biology (vol. 37) Academic Press. Cells are contacted with from one to many antibodies to the ovarian cancer protein(s). Following washing to remove nonspecific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the ovarian cancer protein(s) contains a detectable label, e.g., an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of ovarian cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing ovarian cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of ovarian cancer proteins. Antibodies can be used to detect an ovarian cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology, and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous ovarian cancer protein.

In a preferred embodiment, in situ hybridization of labeled ovarian cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including ovarian cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It

is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the ovarian cancer proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to ovarian cancer, clinical, pathological, or other information, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of a plurality of genes being preferred. As above, ovarian cancer probes may be attached to biochips for the detection and quantification of ovarian cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Assays for therapeutic compounds

5

10

15

20

25

30

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The ovarian cancer proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent. See, e.g., Zlokarnik, et al. (1998) Science 279:84-88; and Heid (1996) Genome Res. 6:986-994.

In a preferred embodiment, the ovarian cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified ovarian cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the ovarian cancer phenotype or an identified physiological function of an ovarian cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent. See, e.g., Zlokarnik, supra.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in ovarian cancer, test

compounds can be screened for the ability to modulate gene expression or for binding to the ovarian cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing ovarian cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in ovarian cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in ovarian cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

5

10

15

20

25

30

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the ovarian cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, e.g., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the ovarian cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of ovarian cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more ovarian cancer-associated sequences, e.g., a polynucleotide sequence set out inTables 1-26. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate ovarian cancer, modulate ovarian cancer proteins, bind to an ovarian cancer protein, or interfere with the binding of an ovarian cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the ovarian cancer phenotype or the expression of an ovarian cancer sequence,

e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses an ovarian cancer phenotype, e.g., to a normal or non-malignant tissue fingerprint. In another embodiment, a modulator induced an ovarian cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, e.g., at zero concentration or below the level of detection.

5

10

15

20

25

30

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

In one aspect, a modulator will neutralize the effect of an ovarian cancer protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to an ovarian cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that

display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (e.g., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks. See, e.g., Gallop, et al. (1994) J. Med. Chem. 37:1233-1251.

5

10

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to. peptide libraries (see, e.g., U.S. Patent No. 5,010,175; Furka (1991) Pept. Prot. Res. 37:487-493; and Houghton, et al. (1991) Nature 354:84-88), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT 15 Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al. (1993) Proc. Nat'l Acad. Sci. USA 90:6909-913), vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568-570), non-peptidal peptidomimetics with a Beta-D-Glucose scaffolding 20 (Hirschmann, et al. (1992) J. Amer. Chem. Soc. 114:9217-218), analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661-662), oligocarbamates (Cho, et al. (1993) Science 261:1303-305), and/or peptidyl phosphonates (Campbell, et al.(1994) J. Org. Chem. 59:658-xxx). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385-401, nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic 25 acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn, et al.(1996) Nature Biotechnology 14:309-314; and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang, et al. (1996) Science 274:1520-1522; and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, page 33, Baum (Jan. 18, 1993) <u>C&E News</u>; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, 30 U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available.

See, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY; Symphony, Rainin, Woburn, MA; 433A Applied Biosystems, Foster City, CA; 9050 Plus, Millipore, Bedford, MA.

5

10

15

20

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, MA; Orca, Hewlett-Packard, Palo Alto, CA), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J.; Asinex, Moscow, RU; Tripos, Inc., St. Louis, MO; ChemStar, Ltd, Moscow, RU; 3D Pharmaceuticals, Exton, PA; Martek Biosciences, Columbia, MD; etc.).

The assays to identify modulators are amenable to high throughput screening.

Preferred assays thus detect enhancement or inhibition of ovarian cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (e.g., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide

detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

5

10

15

20

25

30

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of ovarian cancer can also be nucleic acids, as defined above.

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids.

For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

5

10

15

20

25

30

After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702; 5,597,909; 5,545,730; 5,594,117; 5,591,584; 5,571,670; 5,580,731; 5,571,670; 5,591,584; 5,624,802; 5,635,352; 5,594,118; 5,359,100; 5,124,246; and 5,681,697, each of which is hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step

parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

5

10

15

20

25

30

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the ovarian cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress an ovarian cancer expression pattern leading to a normal expression pattern, or to modulate a single ovarian cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated ovarian cancer tissue reveals genes that are not expressed in normal tissue

or ovarian cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for ovarian cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated ovarian cancer tissue sample.

5

10

15

20

25

30

Thus, in one embodiment, a test compound is administered to a population of ovarian cancer cells, that have an associated ovarian cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (e.g., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., ovarian cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress the ovarian cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on ovarian cancer activity. By defining such a signature for the ovarian cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "ovarian cancer proteins" or a "ovarian cancer modulatory protein". The ovarian cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of the Tables. Preferably, the ovarian cancer modulatory protein is a fragment. In a preferred embodiment, the ovarian cancer amino acid sequence which is used to determine

sequence identity or similarity is encoded by a nucleic acid of the Tables. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of the Tables. In another embodiment, the sequences are sequence variants as further described herein.

5

10

15

20

25

30

Preferably, the ovarian cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In another embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, e.g., to cysteine. Or, the ovarian cancer proteins are conjugated to an immunogenic agent, e.g., to BSA.

Measurements of ovarian cancer polypeptide activity, or of ovarian cancer or the ovarian cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the ovarian cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of ovarian cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian ovarian cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, an ovarian cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the ovarian cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the ovarian cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or

enzymatically labeled antibodies, and the like, as described herein.

5

10

15

20

25

30

Alternatively, a reporter gene system can be devised using the ovarian cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "ovarian cancer proteins." The ovarian cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present.

Alternatively, cells comprising the ovarian cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining an ovarian cancer protein and a candidate compound, and determining the binding of the compound to the ovarian cancer protein. Preferred embodiments utilize the human ovarian cancer protein, although other mammalian proteins, e.g., counterparts, may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative ovarian cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the ovarian cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be

made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is non-diffusible. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

10

15

20

25

30

In a preferred embodiment, the ovarian cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the ovarian cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the ovarian cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the ovarian cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one

component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

5

10

15

20

25

30

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (e.g., an ovarian cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically 4-40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hr will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the ovarian cancer protein and thus is capable of binding to, and potentially modulating, the activity of the ovarian cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the ovarian cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the ovarian cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the ovarian cancer proteins. In this embodiment, the methods comprise combining an ovarian cancer protein and a competitor in a first sample. A second sample comprises a test compound, an ovarian cancer protein, and a

competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the ovarian cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the ovarian cancer protein.

5

10

15

20

25

30

Alternatively, differential screening is used to identify drug candidates that bind to the native ovarian cancer protein, but cannot bind to modified ovarian cancer proteins. The structure of the ovarian cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of an ovarian cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of an ovarian cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising ovarian cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes an ovarian cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including

chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate ovarian cancer agents are identified.

Compounds with pharmacological activity are able to enhance or interfere with the activity of the ovarian cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting ovarian cancer cell division is provided. The method comprises administration of an ovarian cancer inhibitor. In another embodiment, a method of inhibiting ovarian cancer is provided. The method comprises administration of an ovarian cancer inhibitor. In a further embodiment, methods of treating cells or individuals with ovarian cancer are provided. The method comprises administration of an ovarian cancer inhibitor.

In one embodiment, an ovarian cancer inhibitor is an antibody as discussed above. In another embodiment, the ovarian cancer inhibitor is an antisense or RNAi molecule.

A variety of cell viability, growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

10

15

20

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of ovarian cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells: A Manual of Basic Technique</u> (3d ed.) Wiley-Liss, herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), supra, herein incorporated by reference.

Contact inhibition and density limitation of growth

5

10

15

25

30

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See, e.g., Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with an ovarian cancer-associated sequence and are grown for 24 hr at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, e.g., Freshney (1994), supra.

20 Growth factor or serum dependence

Transformed cells typically have a lower serum dependence than their normal counterparts. See, e.g., Temin (1966) <u>J. Nat'l Cancer Inst.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879; and Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, pp. 178-184 "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer Plenum</u>. Similarly,

tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) <u>Sem Cancer Biol.</u> 3:89-96.

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkeless, et al. (1974) J. Biol. Chem. 249:4295-4305; Strickland and Beers (1976) J. Biol. Chem. 251:5694-5702; Whur, et al. (1980) Br. J. Cancer 42:305-312; Gullino, pp. 178-184 "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) Biological Responses in Cancer Plenum; and Freshney (1985) Anticancer Res. 5:111-130.

10 Invasiveness into Matrigel

5

15

20

25

30

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate ovarian cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Alternatively, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by pre-labeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

Tumor growth in vivo

Effects of ovarian cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the ovarian cancer gene is disrupted or in which an ovarian cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous ovarian cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous ovarian cancer gene with a mutated version of the ovarian cancer gene, or by mutating the endogenous ovarian cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. By breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion. See, e.g., Capecchi, et al. (1989) Science 244:1288-1292. Chimeric targeted mice can be derived according to Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual CSH Press; and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Nat'l Cancer Inst.</u> 52:921-930), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263-272; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52-61) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing an ovarian cancer-associated sequences are injected subcutaneously. After a suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

Polynucleotide modulators of ovarian cancer

Antisense and RNAi Polynucleotides

5

10

15

20

25

30

In certain embodiments, the activity of an ovarian cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, e.g., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., an ovarian cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturallyoccurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-

sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the ovarian cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized in vitro. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for ovarian cancer molecules. A preferred antisense molecule is for an ovarian cancer sequences in Tables 1-26, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. An antisense or a sense oligonucleotide can be developed based upon a cDNA sequence encoding a given protein. See, e.g., Stein and Cohen (1988) Cancer Res. 48:2659-2668; and van der Krol, et al. (1988) BioTechniques 6:958-976.

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) <u>Sciencexpress</u> (21March2002); Sharp (1999) <u>Genes Dev.</u> 13:139-141; and Cathew (2001) <u>Curr. Op. Cell Biol.</u> 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) <u>Nature</u> 411:494-498. The mechanism may be used to down-regulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease.

Ribozymes

5

10

15

20

25

30

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of ovarian cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto, et al. (1994) Adv. Pharmacol. 25: 289-

317 for a general review of the properties of different ribozymes).

5

10

15

20

25

30

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing them are well known to those of skill in the art. See, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Nat'l Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Hum. Gene Ther. 1:39-45; Leavitt, et al. (1995) Proc. Nat'l Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Hum. Gene Ther. 5:1151-120; and Yamada, et al. (1994) Virology 205:121-126.

Polynucleotide modulators of ovarian cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of ovarian cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

Thus, in one embodiment, methods of modulating ovarian cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-ovarian cancer antibody that reduces or eliminates the biological activity of an endogenous ovarian cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding an ovarian cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g., when the ovarian cancer sequence is down-regulated in ovarian cancer, such state may be reversed by increasing the amount of ovarian cancer gene product in the cell. This can be accomplished, e.g., by over-expressing the endogenous ovarian cancer gene or administering a gene encoding the ovarian cancer sequence, using known gene-therapy techniques, e.g.. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, e.g., when

the ovarian cancer sequence is up-regulated in ovarian cancer, the activity of the endogenous ovarian cancer gene is decreased, e.g., by the administration of an ovarian cancer antisense or RNAi nucleic acid.

In one embodiment, the ovarian cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to ovarian cancer proteins. Similarly, the ovarian cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify ovarian cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to an ovarian cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The ovarian cancer antibodies may be coupled to standard affinity chromatography columns and used to purify ovarian cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the ovarian cancer protein.

15 Methods of identifying variant ovarian cancer-associated sequences

5

10

20

25

30

Without being bound by theory, expression of various ovarian cancer sequences is correlated with ovarian cancer. Accordingly, disorders based on mutant or variant ovarian cancer genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant ovarian cancer genes, e.g., determining all or part of the sequence of at least one endogenous ovarian cancer genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the ovarian cancer genotype of an individual, e.g., determining all or part of the sequence of at least one ovarian cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced ovarian cancer gene to a known ovarian cancer gene, e.g., a wild-type gene.

The sequence of all or part of the ovarian cancer gene can then be compared to the sequence of a known ovarian cancer gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the ovarian cancer gene of the patient and the known ovarian cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the ovarian cancer genes are used as probes to determine the number of copies of the ovarian cancer gene in the genome.

In another preferred embodiment, the ovarian cancer genes are used as probes to determine the chromosomal localization of the ovarian cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the ovarian cancer gene locus.

Administration of pharmaceutical and vaccine compositions

25

30

10 In one embodiment, a therapeutically effective dose of an ovarian cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. See, e.g., Ansel, et al. (1999) Pharmaceutical Dosage Forms and Drug Delivery Systems Lippincott; Lieberman (1992) Pharmaceutical Dosage Forms (vols. 1-3) 15 Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding Amer. Pharmaceutical Assn.; and Pickar (1999) Dosage Calculations Thomson. Adjustments for ovarian cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, 20 body weight, general health, sex, diet, time of administration, drug interaction, and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. U.S. Patent Application No. 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in ovarian cancer is hereby expressly incorporated by reference.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the ovarian cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intra-nasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the ovarian cancer

proteins and modulators may be directly applied as a solution or spray.

5

10

15

20

25

30

The pharmaceutical compositions of the present invention comprise an ovarian cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid. propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid, and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules, and lozenges. It is recognized that ovarian cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise an ovarian cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight, and the like in accordance with the particular mode of administration selected and the patient's needs. See, e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman and Limbird (eds. 2001) Goodman and Gillman: The Pharmacological Basis of Therapeutics (10th ed.) McGraw-Hill. Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions are readily available.

10

15

20

25

30

The compositions containing modulators of ovarian cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and/or its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic

treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, e.g., in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

It will be appreciated that the present ovarian cancer protein-modulating compounds can be administered alone or in combination with additional ovarian cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

5

10

15

20

25

30

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1-26, such as RNAi, antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of ovarian cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo or in vivo (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell. See, e.g., Berger and Kimmel (1987) Guide to Molecular Cloning Techniques from Methods in Enzymology (vol. 152) Academic Press; Ausubel, et al. (eds. 1999 and supplements) Current Protocols Lippincott; and Sambrook, et al. (2001) Molecular Cloning: A Laboratory Manual (3d ed., Vol. 1-3) CSH Press.

In a preferred embodiment, ovarian cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, ovarian cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the ovarian cancer coding regions) can be administered in a gene therapy application. These ovarian cancer genes can include antisense applications, either as gene therapy (e.g., for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Ovarian cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, et al. (1995) J. Clin. Invest. 95:341-

349), peptide compositions encapsulated in poly(D.L-lactide-co-glycolide, "PLG") microspheres (see, e.g., Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681), peptide compositions contained in immune stimulating complexes (ISCOMS; see, e.g., Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin. Exp. Immunol. 113:235-243), multiple antigen 5 peptide systems (MAPs; see, e.g., Tam (1988) Proc. Nat'l Acad. Sci. USA 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-32), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., p. 379, in Kaufmann (ed. 1996) Concepts in Vaccine Development de 10 Gruyter; Chakrabarti, et al. (1986) Nature 320:535-537; Hu, et al. (1986) Nature 320:537-540; Kieny, et al. (1986) AIDS Bio/Technology 4:790-795; Top, et al. (1971) J. Infect. Dis. 124:148-154; Chanda, et al. (1990) Virology 175:535-547), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol. Methods 192:25-35; Eldridge, et al. (1993) Sem. Hematol. 30:16-24; Falo, et al. (1995) Nature Med. 7:649-653), adjuvants (Warren, et 15 al. (1986) Ann. Rev. Immunol. 4:369-388; Gupta, et al. (1993) Vaccine 11:293-306), liposomes (Reddy, et al. (1992) J. Immunol. 148:1585-1589; Rock (1996) Immunol. Today 17:131-137), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745-1749; Robinson, et al. (1993) Vaccine 11:957-960; Shiver, et al., p. 423, in Kaufmann (ed. 1996) Concepts in Vaccine Development de Gruyter; Cease and Berzofsky (1994) Ann. Rev. 20 Immunol. 12:923-989; and Eldridge, et al. (1993) Sem. Hematol. 30:16-24). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis, or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be

25

30

used as adjuvants.

25

30

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. See, e.g., Wolff et. al. (1990) Science 247:1465-1468; U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; and WO 98/04720. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptidemediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention 10 can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode ovarian cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. 15 Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the 20 like, will be apparent. See, e.g., Shata, et al. (2000) Mol. Med. Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; and Hipp, et al. (2000) In Vivo 14:571-85.

Methods for the use of genes as DNA vaccines are well known, and include placing an ovarian cancer gene or portion of an ovarian cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in an ovarian cancer patient. The ovarian cancer gene used for DNA vaccines can encode full-length ovarian cancer proteins, but more preferably encodes portions of the ovarian cancer proteins including peptides derived from the ovarian cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from an ovarian cancer gene. For example, ovarian cancer-associated genes or sequence encoding subfragments of an ovarian cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the ovarian cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment ovarian cancer genes find use in generating animal models of ovarian cancer. When the ovarian cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed to the ovarian cancer gene will also diminish or repress expression of the gene. Animal models of ovarian cancer find use in screening for modulators of an ovarian cancer-associated sequence or modulators of ovarian cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the ovarian cancer protein. When desired, tissue-specific expression or knockout of the ovarian cancer protein may be necessary.

It is also possible that the ovarian cancer protein is overexpressed in ovarian cancer. As such, transgenic animals can be generated that overexpress the ovarian cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of ovarian cancer and are additionally useful in screening for modulators to treat ovarian cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

30

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include any or all of the following: assay reagents, buffers, ovarian cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, siRNA or antisense polynucleotides, ribozymes, dominant negative ovarian cancer polypeptides or polynucleotides, small molecules inhibitors of ovarian cancer-associated sequences etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium

capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of ovarian cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: an ovarian cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing ovarian cancer-associated activity. Optionally, the kit contains biologically active ovarian cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

15

10

5

EXAMPLES

Example 1: Gene Chip Analysis

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) <u>Nature</u> 403:672-676; Zhao, et al. (2000) <u>Genes Dev.</u> 14:981-993).

25

20

TABLE 1A lists about 1119 genes up-regulated in ovarian cancer compared to normal adult tissues. These were selected from 59000 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 5.0. The "average" ovarian cancer level was set to the 80th percentile value amongst various ovarian cancer. The "average" normal adult tissue level was set to the 85th percentile amongst various non-mailgnant tissues.

TABLE 1A: ABOUT 1119 UP-REGULATED OVARIAN CANCER GENES Pkey: Primekey
Ex. Accn: Exemplar Accession
UG ID: UniGene ID

Title: UniGene title ratio: ratio tumor vs normal tissues

	Pkey	Ex. Accn	UGID	Tibe	ratio
	423634	AW959908	Hs.1690	heparin-binding growth factor binding protein	65.7
	423017	AW178761	Hs.227948	"serine (or cysteine) proteinase inhibitor, clade 8(ovalbumi	63.6
40	432938	T27013	Hs.3132	steroidogenic acute regulatory protein	58.3
	445810	AW265700	Hs.155660	ESTs	35.9
	431938	AA938471	Hs.115242	developmentally regulated GTP-binding protein 1	32.0
	407112	AA070801	Hs.51615	"ESTs, Weakly similar to ALU7_HUMAN ALU SUBFAM	31.3
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen)	30.0
45	402075			predicted exon	27.9
	400301	X03635	Hs.1657	estrogen receptor 1	26.4
				•	

	400000			and the desired	25.3
	402639 421948	L42583	Hs.111758	predicted exon keratin 6A	25.3 24.7
	414540	BE379050	113.1111.30	*gb:601236655F1 NIH_MGC_44 Homo saplens cDNA clon	24.6
_	418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecule 1)	24.5
5	401575			predicted expn	23.6
	457024	AA397546	Hs.119151	ESTs	23.2
	440684	Al253123	Hs.127356	"ESTs, Highly similar to NEST_HUMAN NESTI [H.sapien	23.1
	459006	AW298631	Hs.27721	hypothetical protein FLJ20353	22.8
10	400964			predicted exon	22.5 20.9
10	402421 437329	AA811977	Hs.291761	predicted exon ESTs	20.8
	417525	BE390440	113.29 1701	gb:601283601F1 NIH_MGC_44 Homo sapiens cDNA clon	20.7
	411004	AW813242		gb:MR3-ST0191-020200-207-g10 ST0191 Homo sapiens	20.4
	401283			predicted exon	20.3
15	440633	AJ140686	Hs.263320	ESTs	19.9
	445603	H08345	Hs.106234	ESTs	19.7
	403786		11- 404404	predicted exon	19.7
	436508	AW604381	Hs.121121	ESTS	19.6 19.2
20	459390 421823	BE385725 N40850	Hs.28625	"gb:601276347F1 NIH_MGC_20 Homo saplens cDNA clon ESTs	19.0
20	417366	BE185289	Hs.1076	small proline-rich protein 18 (comifin)	18.9
	422525	AA758797	Hs.192807	ESTs	18.5
	458121	S42416	Hs.74647	Human T-cell receptor active alpha-chain mRNA from JM c	18.3
~ ~	430520	NM_016190	Hs.242057	chromosome 1 open reading frame 10	18.1
25	450192	AA263143	Hs.24596	RAD51-interacting protein	18.0
	416839	H94900	Hs.17882	ESTs .	17.9
	440788	A1806594	Hs.128577	ESTs	17.9 17.7
	451072 402203	AA013451	Hs.117929	ESTs predicted expn	17.7
30	417611	AW993983		gb:RC1-BN0035-130400-013-a04 BN0035 Homo sapiens	17.3
50	438658	Al222068	Hs.123571	ESTs	17.3
	403747			predicted exon	17.2
	444958	AW292643	Hs.167047	ESTs .	17.2
25	404097			predicted exon	17.1
35	459375	BE251770		*gb:601112470F1 NIH_MGC_16 Homo sapiens cDNA clon	16.9
	443198	A1039813	Hs.270482	gb:ox49d06.x1 Soares_total_fetus_Nb2HF8_9w Homo sapl ESTs	16.9 16.9
	441557 433871	AW452647 W02410	Hs.205555	ESTs	16.8
	429163	AA884766	113.203333	gb:am20a10.s1 Soares_NFL_T_GBC_S1 Homo saplens cD	16.7
40	443406	AI056238	Hs.143316	ESTs	16.7
	400613			predicted exon	16.6
	448372	AW445166	Hs.170802	ESTs	16.5
	410929	H47233	Hs.30643	ESTs	16.5
15	445887	Al263105	Hs.145597	ESTs ·	16.1
45	422036	AA302647	Hs.271891	ESTs	16.0 15.9
	404767 420831	AA280824	Hs.190035	predicted exon ESTs	15.8
	405196	/WZ000Z4	113.130000	predicted exon	15.8
	452947	AW130413		*gb:xf50f04.x1 NCI_CGAP_Gas4 Homo saplens cDNA do	15.8
50	429538	BE182592	Hs.139322	small proline-rich protein 3	15.8
	435313	AI769400	Hs.189729	ESTs	15.7
	449635	Al989942	Hs.232150	ESTs	15.6
	424098	AF077374	Hs.139322	small proline-rich protein 3 *gb:RC1-CT0279-070100-021-a06 CT0279 Homo sapiens c	15.4 15.4
55	411660 442653	AW855718 BE269247	Hs.170226	Homo saplens clone 23579 mRNA sequence	15.4
33	443534	Al076123	113.110220	gb:oy92e04.x1 Soares_fetal_liver_spleen_1NFLS_S1 Homo	15.4
	458012	AI424899	Hs.188211	ESTs	15.3
	441018	Al809587	Hs.148782	ESTs	15.1
60	425972	BE391563	Hs.165433	"ESTs, Highly similar to T17342 hypothetical protein DKFZ	15.1
60	418092	R45154	Hs.106604	ESTs	15.1
	410909	AW898161	Hs.53112	*ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAM	15.1 15.0
	458234	BE551408	Hs.127196	ESTs hypothetical protein PRO2176	15.0
	434208 403177	T92641	Hs.127648	predicted exon	15.0
65	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	14.9
•	425090	AA350552		gb:EST57886 Infant brain Homo sapiens cDNA 5' end, mR	14.7
	409723	AW885757	Hs.257862	ESTs	14.6
	423735	AA330259		*gb:EST33963 Embryo, 12 week II Homo saplens cDNA 5*	14.6
70	444266	A1424984	Hs.125465	ESTs .	14.5
70	443341	AW631480	Hs.8688	ESTs ESTs	14.4 14.4
	457336 440500	AW969657 AA972165	Hs.291029 Hs.150308	ESTs ·	14.4
	446292	AF081497	Hs.279682		14.3
	438086	AA336519	Hs.301167		14.3
75	434715	BE005346	Hs.116410		14.2
	409387	AW384900	Hs.123526	EST8	14.2
	409272	AB014569	Hs.52526	KIAA0669 gene product	14.2
	454913	AW841462	บ. กาดวาก	"gb:RC6-CN0014-080300-012-809 CN0014 Homo saplens "Homo saplens cDNA: FLJ23537 fis, clone LNG07690"	14.0 14.0
80	439846 409695	T63959 AA296961	Hs.228320	"gb:EST112514 Adrenal gland tumor Homo sapiens cDNA	13.9
U	422897	AA679784	Hs.4290	ESTs	13.9
	404664		, = 00	predicted exon	13.9
	458829	Al557388		gb:PT2.1_6_G03.r tumor2 Homo sapiens cDNA 3', mRNA	13.8
	407327	AA487182	Hs.269414	ESTs	13.8

	455435	AW939445		*gb:QV1-DT0072-310100-056-b07 DT0072 Homo sapiens	13.7
	449327	AI638743	Hs.224572	ESTs	13.7
	411693	AW857271		*gb:CM0-CT0307-210100-158-g09 CT0307 Homo saplens	13.7 13.6
5	407463 446767	AJ272034 AJ380107	Hs.158954	gb:Homo sapiens mRNA for putative capacitative calcium c ESTs	13.6
,	433040	H70423	Hs.300511	ESTs	13.5
	435209	AW027809	Hs.187698	"ESTs, Highly similar to cytomegalovirus partial fusion rece	13.5
	441459	A1919142	Hs.214233	ESTs	13.5
10	401269	A1400E7E	Un 152070	predicted exon ESTs	13.4 13.4
10	438663 426698	A)199575 AA394104	Hs.153070 Hs.97489	ESTs	13.4
	423637	AL137279	Hs.130187	Homo sapiens mRNA; cDNA DKFZp434O1214 (from clon	13.2
	448543	AW897741	Hs.21380	Homo sapiens mRNA; cDNA DKFZp586P1124 (from clon	13.2
1.5	456714	AW897265		*gb:CM0-NN0057-150400-335-a04 NN0057 Homo saptens	13.2
15	458356	AI024855	Hs.131575 .		13.2 13.1
	431822 454822	AA516049 AW833793		*gb:ng65d01.s1 NCI_CGAP_Lip2 Homo saplens cDNA clo *gb:QV4-TT0008-130100-080-a06 TT0008 Homo saplens c	13.1
	453358	AI990738	Hs.240066	ESTs	13.1
	435542	AA687376	Hs.269533	ESTs	13.1
20	421286	AA806584	Hs.187895	ESTs	13.0
	452799 444355	A!948829 BE383686	Hs.213786 Hs.191621	ESTs ESTs	13.0 13.0
	444271	AW452569	Hs.149804	ESTs .	12.9
	443860	AW866632		*gb:QV4-SN0024-210400-181-g04 SN0024 Homo sapiens	12,9
25	428719	AA358193	Hs.193128	hypothetical protein FLJ10805	12.9
	418282	AA215535	Hs.98133	EST8	12.8 12.7
	437308 400584	AA749417	Hs.292353	ESTs predicted exon	12.7
	426306	AA447310	Hs.164059	"Homo sapiens cDNA FLJ13338 fis, clone OVARC100188	12.7
30	448466	AI522109	Hs.171066	ESTs	12.7
	402738			predicted exon	12.7
	451531	AA018311	Hs.114762	ESTs	12.6 12.6
	435243 431725	AW292886 X65724	Hs.261373 Hs.2839	adenosine A2b receptor pseudogene Norrie disease (pseudoglioma)	12.6
35	425108	A1000489	Hs.96967	ESTs	12.5
	422330	D30783	Hs.115263	epiregulin	12.5
	432949	AA570749	Hs.298866	ESTs	12.5
	417009	AA191719	Hs.171872	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 8 (RNA ESTs	12.4 12.4
40	456378 432966	AA843387 AA650114	Hs.87279	*gb:ns92h09.s1 NCI_CGAP_Pr3 Homo saplens cDNA don	12.4
	440571	AA904461	Hs.130798	ESTs	12.3
	411178	AW820852		"gb:RC2-ST0301-120200-011-f12 ST0301 Homo sapiens c	12.3
	445934	AF131737	Hs.13475	hypothetical protein	12.3 12.2
45	433917 402018	A1809325	Hs.122814	Human DNA sequence from clone RP5-1028D15 on chrom predicted exon	12.2
43	424101	AA335394		gb:EST39787 Epididymus Homo saplens cDNA 5' end, mR	12.2
	448533	AL119710	Hs.21365	nucleosome assembly protein 1-like 3	12.1
	458154	AW816379		gb:QV4-ST0234-181199-035-g01 ST0234 Homo sapiens c	12.1
50	440919	AW291274	Hs.262826	ESTS Selection of Table 1 Home conings on A.F. a.	12.0 12.0
50	415747 411748	AA381209 AW859920		gb:EST94257 Activated T-cells I Homo sapiens cDNA 5' e gb:QV1-CT0364-260100-052-g05 CT0364 Homo sapiens	12.0
	452975	M85521	Hs.69469	dendritic cell protein	12.0
	427276	AA400269	Hs.49598	ESTs	12.0
55	454315	AW373564	Hs.251928	nuclear pore complex interacting protein	12.0 12.0
55	450786 402578	H86632	Hs.33654	ESTs predicted exon	11.9
	459591	AL037185		gb:DKFZp564A1169_r1 564 (synonym: hfbr2) Homo saple	11.9
	433449	AW772282		gb:hn71b05.x1 NCI_CGAP_Kid11 Homo sapiens cDNA c	11.9
60	429108	AA890521	Hs.126035	ESTs	11:8 11.7
OU	454556	AW807073		"gb:MR4-ST0062-031199-018-d06 ST0062 Homo saplens gb:oz39b09.s1 Soares_NhHMPu_S1 Homo saplens cDNA c	11.7
	443613 400385	A1079356 NM_020389	Hs.283104		11.6
	411725	AW858396		gb:CM0-CT0341-181299-130-c06 CT0341 Homo sapiens	11.5
65	455174	AI694575	Hs.147801		11.5
65	412402	AW984788	U. 202020	*gb:RC1-HN0015-120400-021-c07 HN0015 Homo sapiens	11.5 11.5
	434205 450496	AF119861 AW449251	Hs.283032 Hs.257131		11.5
	411149	N68715	Hs.269128		11,5
70	414210	BE383592		"gb:601297871F1 NIH_MGC_19 Homo sapiens cDNA clon	11.4
70	409994	D86864	Hs.57735	acetyl LDL receptor; SREC	11.3
	453845 404849	AL157568		gb:DKFZp761F0816_r1 761 (synonym: hamy2) Homo sapi predicted exon	11.3 11.3
	442824	BE178065	Hs.144081		11.3
~ -	428548	AA430058	Hs.98649	EST	11.3
75	434804	AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clo	11.3
	430486	BE062109	Hs.241551	*chloride channel, calcium activated, family member 2* predicted exon	11.3 11.2
	400174 424324	AA346316		gb:EST52440 Greater omentum tumor Homo saptens cDN	11.2
	447724	AW298375	Hs.24477	ESTs	11.2
80	457028	AW449838	Hs.97562	ESTs	11.2
	429900	AA460421	Hs.30875	ESTs	11.2 11.2
	452240 458067	AL591147 AA393603	Hs.61232 Hs.36752	ESTs "Homo sapiens cDNA: FLJ22834 fis, clone KAIA4314"	11.1
	402222			predicted exon	11.1

	446745	AW118189	Hs.156400	ESTs	11.1
	453060	AW294092	Hs.21594	ESTs	11.1
	443482	AW188093	Hs.250385	eSTs *gb:oc83d02.s1 NCI_CGAP_GCB1 Homo saptens cDNA c	11.1 11.0
5	436843 416320	AA824588 H47867	Hs.34024	ESTs	11.0
,	435772	AA700019	Hs.132992	*ATP-binding cassette, sub-family G (WHITE), member 5 (11.0
	451542	AA018365	Hs.32713	ESTs	11.0
	408522	AI541214	Hs.46320	*Small proline-rich protein SPRK [human, odontogenic kera	11.0
10	414712	N88858.comp	Hs.77039	ribosomal protein S3A	10.9
10	411940 408733	AW876686 AW264812	Hs.254290	*gb:CM4-PT0031-180200-507-e05-PT0031 Homo sapiens c ESTs	10.9 10.9
	452030	AL137578	Hs.27607	Homo sapiens mRNA; cDNA DKFZp564N2464 (from clon	10.9
	458175	AW296024	Hs.150434	ESTs .	10.9
	400512			predicted exon	10.9
15	440159	AI637599	Hs.126127	ESTs	10.8
	429443	AB028967	Hs.202687	*potassium voltage-gated channel, Shal-related subfamily, m	10.8
	416319	AI815601	Hs.79197	"CD83 antigen (activated B lymphocytes, immunoglobulin s predicted exon	10.8 10.7
	405783 405708			predicted exon	10.7
20	433266	A1863224	Hs.288677	"Homo saplens cDNA FLJ13872 fis, clone THYRO100132	10.6
	456900	AA355442	Hs.169054	ESTs	10.6
	432408	N39127	Hs.76391	"myxovirus (influenza) resistance 1, homolog of murine (int	10.6
	451702	AW665452	Hs.246503	ESTs	10.6
25	4181 79 408987	X51630 H85615	Hs.1145	Wilms turnor 1 gb:yt03f11.r1 Soares retina N2b5HR Homo sapiens cDNA	10.6 10.6
23	405285	100010		predicted exon	10.5
	419276	BE165909	Hs.134682	"Homo sapiens cDNA: FLJ23161 fis, clone LNG09730"	10.5
	407287	AI678812	Hs.201658	*ESTs, Weakly similar to ALU4_HUMAN ALU SUBFAM	10.5
20	403065			predicted exon	10.5
30	414195	BE263293	11- 440070	"gb:601144881F2 NiH_MGC_19 Homo saplens cDNA clon	10.4 10.4
	454258 412951	AI457286 BE018611	Hs.143979 Hs.251946	"ESTs, Weakly simitar to KIAA1276 protein [H.saplens]" "Homo saplens cDNA: FLJ23107 fis, clone LNG07738"	10.4
	428888	AA437010	Hs.266584	ESTs	10.4
	440834	AA907027	Hs.128606	ESTs	10.4
35	437096	AA744406		gb:ny51h02.s1 NCI_CGAP_Pr18 Homo saplens cDNA clo	10.4
	400135	. 1.0004.50		predicted exon	10.4
	447849 400593	Al538147	Hs.164277	ESTs predicted exon	10.3 10.3
	427469	AA403084	Hs.269347	ESTs	10.3
40	402794		110.2000 17	predicted exon	10.2
	452743	AW965082	Hs.61455	ESTs	10.2
	448983	AI611654	Hs.224908	ESTs	10.2
	422696	AF242524	Hs.26323	hypothetical nuclear factor SBBI22	10.2 10.2
45	428949 409191	AA442153 AW818390	Hs.104744	"ESTs, Weakly similar to AF208855 1 BM-013 [H.sapiens] "gb:RC1-ST0278-160200-014-d10 ST0278 Homo sapiens c	10.2
73	428493	AK001745	Hs.184628	hypothetical protein FUJ10883	10.2
	406076	AL390179	Hs.137011	Homo saptens mRNA; cDNA DKFZp547P134 (from clone	10.2
	410626	BE407727		"gb:601299771F1 NIH_MGC_21 Homo sapiens cDNA clon	10.1
50	445835	AW290999	Hs.145534	chromosome 21 open reading frame 23	10.1
50	452507 433297	A1904646	Hs.282633	*gb:QV-BT065-020399-103 BT065 Homo sapiens cDNA, m ESTs	10.1 10.1
	433297	AV658581 AA383623	Hs.293616	ESTs	10.0
	436659	AI217900	Hs.144464	ESTs	10.0
	405675			predicted exon	10.0
55	413466	BE141737	Hs.254105	"enolase 1, (alpha)"	10.0
	447198	D61523	Hs.283435	ESTs	10.0 10.0
	403306 413544	NM_006825 BE147225	Hs.74368	"transmembrane protein (63kD), endoplasmic reticulum/Go "qb:PM2-HT0225-031299-003-f11 HT0225 Homo saplens	9.9
	437094	AW103746	Hs.136907	ESTs	9.9
60	401497			predicted exon	9.9
	416203	H27794	Hs.269055	ESTs	9.9
	426882	AA393108	Hs.97365	ESTs	9.9
	454874 406702	AW836407 Z20656	Hs.278432	"gb:PM3-LT0031-301299-002-b09 LT0031 Homo saplens "myosin, heavy polypeptide 6, cardlac muscle, alpha (cardio	9.9 9.9
65	404752	2,20030	NS.270432	predicted exon	9.9
••	430691	C14187	Hs.103538	ESTs	9.9
	444518	AI160278	Hs.146884	ESTs	9.8
	416665	H72974		gb:yu28a10.s1 Soares fetal liver spleen 1NFLS Homo sapie	9.8
70	438691	AA906288	Hs.212184	ESTs predicted exon	9.8 9.8
70	405636 437242	AA747538	Hs.187942	ESTs	9.8
	425627	AF019612	Hs.297007	ESTs	9.8
	452226	AA024898	Hs.296002	ESTs	9.8
75	418986	Al123555	Hs.81796	ESTs	9.8
75	441139	AW449009	Hs.126647	ESTs ESTs	9.7 9.7
	427244 423756	AA402400 AA828125	Hs.178045	*ab:od71a09.s1 NCL_CGAP_Ov2 Homo sapiens cDNA clo	9,7
	457940	AL360159	Hs.30445	Homo sapiens mRNA full length insert cDNA ctone EURO	9.6
00	443526	AW792804	Hs.134002	ESTs.	9.6
80	440576	AW449775	Hs.126008	ESTs	9.6
	419088	AI538323	Hs.77496	small nuclear ribonucleoprotein potypeptide G	9.6 9.6
	454707 446252	AW814989 Al283125	Hs.150009	*gb:MR1-ST0206-170400-024-g05 ST0206 Homo sapiens ESTs	9.6
	434374	AA631439		gb:np85d02.s1 NCI_CGAP_Thy1 Homo sapiens cDNA cl	9.6
				89	
				6 7	

	403093			predicted exon	9.6
	454633	AW811380		"gb:IL3-ST0143-290999-019-D05 ST0143 Homo sapiens c	9.6
	407291	AA001464		gb:ze45b01.r1 Soares retina N2b4HR Homo sapiens cDNA	9.5
5	455203	AW865450		gb:PM4-SN0020-010400-008-b09 SN0020 Homo septens	9.5
)	403647			predicted exon	9.5
	401530	DESCOTE4	Un 20000E	predicted exon	9.5
	414281 411057	BE269751 AW815098	Hs.288995	hypothetical protein FLJ20813	9.5
	415953	H14425	Hs.27947	*gb:QV4-ST0212-091199-023-f10 ST0212 Homo saplens c ESTs	9.5 9.5
10	450174	T82121	Hs.177285	ESTS	9.5
	422949	AA319435	10.117200	"gb:EST21657 Adrenal gland tumor Homo saptens cDNA 5	9.5
	402112	R58624	Hs.2186	eukaryotic translation elongation factor 1 gamma	9.5
	457886	AA742279	Hs.293346	ESTs	9.4
	458145	A1239457	Hs.130794	ESTs	9.4
15	452332	AW014859	Hs.101657	ESTs	9.4
	434950	AW974892		*gb:EST386997 MAGE resequences, MAGN Homo saplen	9.3
	409601	AF237621	Hs.80828	keratin 1 (epidermolytic hyperkeratosis)	9.3
	419968	X04430	Hs.93913	"interleukin 6 (interferon, beta 2)"	9.3
20	436211	AK001581	Hs.80961	"polymerase (DNA directed), gamma"	9.3
20	428412	AA428240	Hs.126083	ESTs	9.3
	449441	A1656040	Hs.196532	ESTs	9.3
	458771	AW295151	Hs.163612	ESTS	9.3
	458543	AA213403	Hs.257542	ESTS	9.3
25	414257 442826	A1828600 A1018777	Hs.21124 Hs.131241	*ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAM	9.3
23	446740	Al611635	Hs.192605	ESTs C	9.3 9.2
	408938	AA059013	Hs.22607	ESTs	9.2
	434157	AI538316	Hs.158451	ESTs	9.2
	408774	AW270899	Hs.254569	ESTs .	9.2 9.2
30	424268	AA397653	Hs.144339	Human DNA sequence from clone 495010 on chromosome	9.2
	415715	F30364		gb:HSPD20786 HM3 Homo sapiens cDNA clone s400009	9.1
	405277			predicted exon	9.1
	412167	AW897230		gb:CM0-NN0057-150400-335-a11 NN0057 Homo saplens	9.1
	442771	AW409808	Hs.101550	ESTs	9.1
35	404898			predicted exon	9.1
	401230			predicted exon	9.1
	400523			predicted exon	9.1
	418808	AI821836	Hs.10359	ESTs	9.1
40	436396	AI683487	Hs.299112	"Homo saplens cDNA FLJ11441 fis, clone HEMBA100132	9.1
40	440466	AA885871	Hs.135727	ESTs	9.0
	437568	A1954795	Hs.156135	ESTs	9.0
	405382 435673	AE202084	Hs.284200	predicted exon	9.0
	405848	AF202961	NS.204200	"Homo sapiens uncharacterized gastric protein ZG12P mRN predicted exon	9.0 9.0
45	437229	AW976005		gb:EST388114 MAGE resequences, MAGN Homo sapien	9.0
	417728	AW138437	Hs.24790	KIAA1573 protein	9.0
	454597	AW809648	110124100	"gb:MR4-ST0124-261099-015-d01 ST0124 Homo saplens	9.0
	427093	AA398118	Hs.97579	ESTs	9.0
	408000	L11690	Hs.620	butlous pemphigoid antigen 1 (230/240kD)	9.0
50	440556	AW206958	Hs.125968	ESTs	9.0
	400163			predicted exon	8.9
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-like 1	8.9
	417549	AA203651		gb:zx58f10.r1 Soares_fetal_liver_spleen_1NFLS_S1 Homo	8.9
55	406163	A1704.440	11- 404000	predicted exon	8.9
33	437918 449419	Al761449 R34910	Hs.121629	ESTS	8.9
	434683	AW298724	Hs.119172 Hs.202639	ESTs ESTs	8.9 8.9
	418432	M14156	Hs.85112	insulin-like growth factor 1 (somatomedia C)	8.9
	454590	AW809762	Hs.222056	*Homo sapiens cDNA FLJ11572 fis, clone HEMBA100337	8.8
60	454574	AW809109		"gb:MR4-ST0117-070100-027-a04 ST0117 Homo sapiens c	8.8
	441433	AA933809	Hs.42746	ESTs	8.8
	416858	AW979294	Hs.85634	ESTs	8.8
	421978	AJ243662	Hs.110196	NICE-1 protein	8.8
~	451528	AA018297	Hs.35493	ESTs	8.8
65	408751	N91553	Hs.25B343	ESTs	8.7
	401862			predicted exon	8.7
	417344	AW997313		gb:RC2-BN0048-250400-018-f12 BN0048 Homo saplens	8.7
	454455	AW752710		"gb:IL3-CT0219-281099-024-A03 CT0219 Homo sapiens c	8.7
70	455592	BE008002 T05870	Un 400040	"gb:QV0-BN0147-290400-214-h04 BN0147 Homo sapiens	8.7
, 0	417650 456309	AA225423	Hs.100640	ESTs *gb:nc24a12r1 NCI_CGAP_Pr1 Homo sapiens cDNA don	8.7 8.7
	432030	A1908400	Hs.143789	ESTs	8.7
	421492	BE176990	Hs.104916	hypothetical protein FLJ21940	8.7
	402576		10 10	predicted exon	8.7
75	426874	N67325	Hs.247132	ESTs	8.7
	403334			predicted exon	8.7
	408562	AJ436323	Hs.31141	"Homo sapiens mRNA for KIAA1568 protein, partial cds"	8.7
	439443	AF086261	Hs.127892	ESTs	8.7
00	428600	AW863261	Hs.15038	"ESTs, Highly similar to AF161358 1 HSPC095 (H.sapiens	8.7
80	414539	BE379046	11. 400-5	*gb:601236646F1 NIH_MGC_44 Homo sapiens cDNA cton	8.6
	432527	AW975028	Hs.102754	ESTs	8.6
	403273	DE124040		predicted exon "ab-DC2 HT0187-041000-011-d12 HT0187 Home expires	8.6
	452077 444598	BE144949 Al288830	Hs.149924	gb:RC2-HT0187-041099-011-d12 HT0187 Homo sapiens ESTs	8.6 8.6
	TT1030	-020000	166.173327		u.v

	434066 429643	AF116649 AA455889	Hs.283944 Hs.187548	"Homo sepiens PRO0566 mRNA, complete cds" ESTs
	432340	AA534222		gb:nj21d02.s1 NCL_CGAP_AA1 Homo sepiens cDNA clon
5	446142	A1754693	Hs.145968	ESTs
,	417412 416913	X16896 AW934714	Hs.82112	"interleukin 1 receptor, type I" "gb:RC1-DT0001-031299-011-a11 DT0001 Homo sapiens
	451318	AA029888	Hs.95071	ESTs
	405547 423843	AA332652		predicted exon *gb:EST36627 Embryo, 8 week I Horno sapiens cDNA 5' en
1	454145	AA046872	Hs.62798	ESTs
	401200		. 10.02.100	predicted exon
	404166			predicted exon
	412761 412333	AW995092 AW937485		*gb:QV0-BN0041-030300-145-a10 BN0041 Homo sapiens
;	455092	BE152428		*gb:QV3-DT0044-221299-045-b09 DT0044 Homo sapiens *gb:CM0-HT0323-151299-126-b04 HT0323 Homo sapiens
	419281	H96452	Hs.42189	ESTs
	446171	AI374927	11 40100	gb:ta66c04_x1 Soares_total_fetus_Nb2HF8_9w Homo sapie
	437362 402631	AL359561	Hs.16493 ,	hypothetical protein DKFZp762N2316 predicted exon
	458573	AV653838	Hs.295131	ESTs
	439185	AF087976	Hs.233343	ESTs
	445881 449737	A1263029 A1668581	Hs.210689 Hs.246316	ESTs ESTs
	401830	AJ004832	Hs.5038	neuropathy target esterase
	421991	NM_014918	Hs.110488	KIAA0990 protein
	416996	W91892	Hs.59609	ESTs
	443626 407471	A1540644 D55644	Hs.138479	"ESTs, Moderately similar to ALU7_HUMAN ALU SUBF gb:Human spleen PABL (pseudoautosomal boundary-like se
	40/4/1	D00044		go:numan spieen PABL (pseudoautosomai boundary-like se predicted exon
)	417682	W69561		gb:zd47a08.r1 Soares_fetal_heart_NbHH19W Homo saplen
	424983	AI742434	Hs.169911	ESTs
	434353 453448	AA630863 AL036710	Hs.131375 Hs.209527	*ESTs, Weakly similar to ALUB_HUMAN !!!! ALU CLAS ESTs
	455121	BE156459	4 MIEG30E1	gb:QV0-HT0368-040100-082-f06 HT0368 Homo sapiens
	404270			predicted exon
	438297 418122	AW515196	Hs.258238	"ESTs, Moderately similar to ALU1_HUMAN ALU SUBF
	419929	R42778 U90268	Hs.22217 Hs.93810	ESTs cerebral cavernous malformations 1
	400925	000200	110,00010	predicted exon
	403350			predicted exon
	426116	AA868729	Hs.144694	ESTs ESTs
	441518 421888	AW161697 AA299780	Hs.294150 Hs.121036	ESTs
	402745		(10.112.1000	predicted exon
	402071			predicted exon
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated protein homolog
	430372 449867	Al206173 Al672379	Hs.211375 Hs.73919	ESTs "clathrin, light polypeptide (Lcb)"
	422174	AL049325	Hs.112493	Homo sapiens mRNA; cDNA DKFZp564D036 (from clone
)	413382	BE090689	11. 457077	*gb:RC1-BT0720-280300-011-f08 BT0720 Homo sapiens c
	456502 405336	A1798611	Hs.157277	ESTs predicted exon
	405917			predicted exon
-	436007	AI247716	Hs.232168	ESTs
5	439192	AW970536	Hs.105413	ESTs ESTs
	437724 452755	AW444828 AW138937	Hs.184323 Hs.213436	ESTs ESTs
	401781	r 111 100001	10.2.10400	predicted exon
`	406057			predicted exon
)	406289	AW068311	Hs.82582	"integrin, beta-like 1 (with EGF-like repeat domains)"
	421459 448251	AI821539 BE280486	Hs.97249 Hs.84045	ESTs "Homo sapiens cDNA FLJ11979 fis, clone HEMBB100128
	429125	AA446854	Hs.271004	ESTs
	440154	BE077129	Hs.126119	*Homo saplens cDNA FLJ13273 fis, clone OVARC100101
i	413233 438268	AW578713 AA782163	Hs.47534 Hs.293502	"ESTs, Weakly similar to ORF YKL201c [S.cerevisiae]"
	452466	N84635	Hs.29664	ESTs Human DNA sequence from clone 682J15 on chromosome 6
	441194	BE274581		*gb:601120870F1 NIH_MGC_20 Homo sapiens cDNA clon
	425292	NM_005824	Hs.155545	37 kDa leucine-rich repeat (LRR) protein
)	445090 431292	AW205208 AA370141	Hs.147293 Hs.251453	ESTs Human DNA sequence from clone 967N21 on chromosome
	414266	BE267834	113.63 (433	"gb:601124428F1 NIH_MGC_8 Homo sapiens cDNA clone
	407839	AA045144	Hs.161566	ESTs
	456101	AA159478		gb:zo74d06.s1 Stratagene pancreas (937208) Homo sapiens
i	455853 414995	BE147225 C18200		gb:PM2-HT0225-031299-003-f11 HT0225 Homo sapiens gb:C18200 Human placenta cDNA (TFujlwara) Homo sapie
	447247	AW369351	Hs.287955	"Homo sapiens cDNA FLJ13090 fis, clone NT2RP3002142
	416151	T26561		"gb:AB65C7R Infant brain, LLNL array of Dr. M. Soares 1
)	446435	AW206737	Hs.253582	ESTs
,	403698 424914	AA348410	Hs.119065	predicted exon ESTs
	409731	AA125985	Hs.56145	"thymosin, beta, identified in neuroblastoma cells"
	401604			predicted exon
	413025	AA805265	Hs.291646	ESTs
				91

	405896			predicted exon	7.8
	454505	AW801365		"gb:IL5-UM0067-240300-050-a01 UM0067 Homo saplens	7.7
	448283	AI340462	Hs.182979	ribosomal protein L12	7.7
_	434098	AA625499		*gb:af69g08.r1 Soares_NhHMPu_S1 Homo saplens cDNA	7.7
5	431673	AW971302	Hs.293233	ESTs	7.7
	421029 408391	AW057782 AW859276	Hs.293053	ESTs "gb:MR1-CT0352-240200-105-d02 CT0352 Homo sapiens	7.7 7.7
	422529	AW015128	Hs.256703	ESTs	7.7
	454389	AW752571	110.2007 00	*gb:iL3-CT0213-170100-055-F02 CT0213 Homo sapiens c	7.7
10	427821	AA470158	Hs.98202	ESTs	7.7
	434657	AA641876	Hs.191840	ESTs	7.7
	445628	AI344166	Hs.155743	ESTs	7.7
	424872 439232	AA347923 N48590	Hs.46693	"gb:EST54302 Fetal heart II Homo sapiens cDNA 5' end, m ESTs	7.7 7.7
15	433232 441417	A1733297	Hs.144474	ESTs	7.7
	453598	AA441838	Hs.62905	ESTs	7.7
	430440	X52599	Hs.2561	"nerve growth factor, beta polypeptide"	7.7
	413306	AW303544	Hs.118654	ESTs	7.7
20	400968			predicted exon	7.7
20	446726	AW300144	Hs.209209	"Homo sapiens cDNA FLJ11629 fis, done HEMBA100424	7.7
	427504 405621	AA776743	Hs.191589	ESTs predicted exon	7.7 7.6
	414127	A!431863	Hs.135270	ESTs	7.6
	409866	AW502152		gb:UI-HF-BR0p-ajr-f-11-0-UI.r1 NIH_MGC_52 Homo sap	7.6
25	446232	Al281848	Hs.165547	ESTs	7.6
	403568			predicted exon	7.6
	451458	A1797558	Hs.270820	ESTs ESTs	7.6 7.6
	439157 401793	AA912737	Hs.20160	predicted exon	7.6
30	429839	Al190291	Hs.112143	ESTs	7.6
	445672	AI907438	Hs.282862	ESTs	7.6
	449444	AW818436	Hs.23590	"solute carrier family 16 (monocarboxylic acid transporters)	7.6
	447499	AW262580	Hs.147674	KIAA1621 protein	7.6
35	421773	W69233	Hs.112457	ESTs	7.6
33	439706 432189	AW872527 AA527941	Hs.59761	ESTs *gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapiens cDNA clon	7.5 7.5
	402050	AA32/341		predicted exon	7.5
	429687	AI675749	Hs.211608	nucleoporin 153kD	7.5
40	423193	R07299	Hs.254837	"Homo sapiens cDNA FLJ13502 fis, clone PLACE1004836	7.5
40	416548	H62953		gb:yr47f06.r1 Soares fetal liver spleen 1NFLS Homo sapien	7.5
	443236	A1079496	Hs.134169	ESTs	7.5
	436053 437191	A1057224 NM_006846	Hs.15443 Hs.5476	ESTs *serine protease inhibitor, Kazal type, 5*	7.4 7.4
	451829	AW964081	Hs.247377	ESTs	7.4
45	443151	Al827193	Hs.132714	ESTs	7.4
	452055	Al377431	Hs.293772	ESTs	7.4
	445265	Al218295	Hs.144942	ESTs	7.4
	401032	DEE44040	11- 400007	predicted exon	7.4
50	448184 414808	BE541249 T95945	Hs.109697	ESTs gb:ye42e02.r1 Soares fetal liver spleen 1NFLS Homo sapien	7.4 7.4
50	418540	AJ821597	Hs.90877	*ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	7.4
	410449	AW748954	Hs.18192	Ser/Arg-related nuclear matrix protein (plenty of prolines 1	7.4
	435568	AA688048	Hs.294080	ESTs	7.4
	459160	Al904723		gb:CM-BT066-120299-092 BT066 Homo sapiens cDNA,	7.4
55	419753	N42531		gb:yy11c12.r1 Soares melanocyte 2NbHM Homo sapiens cD	7.4
	432383 404893	AK000144	Hs.274449	"Homo saplens cDNA FLJ20137 fis, clone COL07137"	7.4 7.4
	425349	AA425234	Hs.79886	predicted exon ribose 5-phosphate isomerase A (ribose 5-phosphate epimer	7.4
	413864	BE175582	1.0	*gb:RC5-HT0580-100500-022-C01 HT0580 Homo sapiens	7.3
60	426871	AA393041	Hs.216493	ESTs	7.3
	415613	R20233		gb:yg18h11.r1 Soares infant brain 1NIB Homo sapiens cDN	7.3
	427025	AA397589	Hs.97523	ESTs	7.3
	444683	AI375101	Hs.158721	*ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	7.3 7.3
65 ·	447700 412740	AI420183 AW993984	Hs.171077	*ESTs, Weakly similar to similar to serine/threonine kinase *gb:RC1-BN0035-130400-013-a05 BN0035 Homo saplens	7.3
05	416642	T96118	Hs.226313	*ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	7.3
	416506	H59879	Hs.237306	ESTs	7.3
	426130	AA853282		gb:NHTBCae04f07r1 Normal Human Trabecular Bone Cell	7.3
70	407392	AB032369		"gb:Homo sapiens MIST mRNA, partial cds."	7.3
70	432365	AK001106	Hs.274419	hypothetical protein FLJ10244	7.3
	451221 443161	Al949701 Al038316	Hs.210589	ESTs gb:ox48c08.x1 Soares_total_fetus_Nb2HF8_9w Homo sapi	7.3 7.3
	418186	BE541042	Hs.23240	"Homo sapiens cDNA FLJ13495 fis, clone PLACE1004471	7.3
	439152	H65014	1 1016.04.70	gb:yu66f10.r1 Weizmann Oifactory Epithelium Homo saple	7.2
75	459534	BE386808	Hs.147905	ESTs	7.2
	443326	BE156494	Hs.188478	ESTs	7.2
	417351	T90278	Hs.15049	ESTs	7.2
	454182	AW177335		"gb:CM1-CT0129-180899-005-b08 CT0129 Homo sapiens	7.2 7.2
80	402298 458562	N34128	Hs.145268	predicted exon ESTs	7.2
-	407021	U52077	110.170200	gb:Human mariner1 transposase gene, complete consensus	7.2
	449276	AW241510	Hs.252713	ESTs	7.2
	418251	AA832123	Hs.177723	ESTs	7.2
	420788	AA937957	Hs.193367	ESTs	7.2

	401881			predicted exon	7.2
	456436	AA251079	Hs.158386	ESTs	7.2
	413425 448966	F20956 AW372914	Hs.287462	"gb:HSP005390 HM3 Homo sapiens cDNA clone 032-X4- "Homo sapiens cDNA FLJ11875 fis, clone HEMBA100707	7.2 7.2
5	429340	N35938	Hs.199429	Homo saplens mRNA; cDNA DKFZp434M2216 (from clon	7.2
	406053			predicted exon	7.2
	405851 431009	BE149762	Hs.248213	predicted exon "gap junction protein, beta 6 (connexin 30)"	7.2 7.2
	426662	AA879474	Hs.122710	ESTS	7.2
10	408536	AW381532	Hs.135188	ESTS	7.1.
	455013 428910	BE073250 W03667	Hs.193792	*gb:MR0-BT0551-060300-102-e05 BT0551 Homo saptens ESTs	7.1 7.1
	424634	NM_003613	Hs.151407	*cartilage intermediate tayer protein, nucleotide pyrophosph	7.1
15	449794 423410	AW444502	Hs.256982	*ESTs, Highly similar to AF116865 1 hedgehog-interacting	7.1
13	423410 445460	AF058989 Al797473	Hs.128231 Hs.209468	"G antigen, family B, 1 (prostate associated)" ESTs	7.1 7.1
	447285	AJ371849	Hs.200696	"ATPase, Class VI, type 11C"	7.1
	419750 438986	AL079741	Hs.183114	"Homo sapiens cDNA FLJ14236 fis, clone NT2RP4000515 ESTs	7.1 7.1
20	420757	AF085888 X78592	Hs.269307 Hs.99915	androgen receptor (dihydrotestosterone receptor; testicular	7.1
	432479	AL042844	Hs.275675	katanin p80 (WD40-containing) subunit B 1	7.1
	449733	R74546	Hs.29438	"Homo saplens cDNA FLJ 12094 fis, clone HEMBB 100260	7.1 7.1
	437846 454934	AA773866 AW846080	Hs.244569	ESTs *gb:MR3-CT0176-081099-002-b09 CT0176 Homo sapiens	7.1
25	421929	AA300543	Hs.247360	ESTs ,	7.1
	401780	A1000.470	U- 474644	predicted exon	7.0 7.0
	448106 448835	Al800470 BE277929	Hs.171941 Hs.11081	ESTs *ESTs, Wealdy similar to S57447 HPBRII-7 protein [H.sap	7.0
20	400842			predicted exon	7.0
30	429364	AA451797	Hs.201202	*ESTs, Moderately similar to Pro-Pol-dUTPase polyprotein	7.0
	454963 423891	AW847647 AK002042	Hs.134795	gb:IL3-CT0213-280100-056-A06 CT0213 Homo sapiens c "Homo sapiens cDNA FLJ11180 fis, clone PLACE1007452	7.0 7.0
	407506	U71600		gb:Human zinc finger protein zfp31 (zf31) mRNA, partial	7.0
35	413802	AW964490	Hs.32241	ESTS	7.0
33	440051 446283	BE559980 Al948801	Hs.171073	*gb:601345293F1 NIH_MGC_8 Homo sapiens cDNA clone ESTs	7.0 7.0
	419236	AA330447	Hs.135159	*Homo sapiens cDNA FLJ11481 fis, clone HEMBA100180	7.0
	405472	A10000040	11- 407742	predicted exon	7.0
40	435024 453969	AI863518 AW090783	Hs.127743 Hs.301731	*ESTs, Weakly similar to V-ATPase G-subunit like protein *Homo sapiens cDNA FLJ11738 fis, clone HEMBA100547	7.0 7.0
	404992			predicted exon	7.0
	428129	Al244311	Hs.26912	ESTS	7.0
	414315 400491	Z24878 H25530	Hs.50868	gb:HSB65D052 STRATAGENE Human skeletal muscle cD solute carrier family 22 (organic cation transporter), memb	7.0 6.9
45	459275	AI808913	Hs.118321	ESTs	6.9
	450853 457460	AA479629 Al143312	Hs.44243 Hs.164004	ESTs ESTs	6.9 6.9
	437460	A1143312 A1204525	Hs.116156	ESTs	6.9
50	445153	Al214671		gb:qm32d02.x1 NCI_CGAP_Lu5 Homo sapiens cDNA clo	6.9
50	450028 414954	AI912012 D81402	Hs.200737	ESTS shi H (M152A03P Human fatal brain /TEuilmann) Hama sa	6.9 6.9
	459478	AW195566	Hs.253182	gb:HUM162A03B Human fetal brain (TFujiwara) Homo sa ESTs	6.9
	426269	H15302	Hs.168950	Homo sapiens mRNA; cONA DKFZp566A1046 (from clon	6.9
55	401050 447588	Al394154	Un 270050	predicted exon "ESTs. Mostly similar to unknown emists (U socional"	6.9 6.9
55	449002	AI620018	Hs.279659 Hs.117461	"ESTs, Weakly similar to unknown protein [H.sapiens]" ESTs	6.9
	452759	AW590773	Hs.258996	ESTs	6.9
	443220 400749	R85304	Hs.132032	"Homo sapiens cDNA FLJ11683 fis, clone HEMBA100490	6.9 6.8
60	406277			predicted exon predicted exon	6.8
	433785	BE044593	Hs.112704	ESTs	6.8
	434129 453369	AJ807757 BE551550	Hs.221041 Hs.232630	ESTs ESTs	6.8 6.8
	411722	AW875942	115.202000	*gb:CM1-PT0013-131299-067-b10 PT0013 Homo saplens	6.8
65	455152	AW858621		*gb:CM0-CT0342-021299-115-f04 CT0342 Homo sapiens	6.8
	412670 419054	AA115456 N40340	D= 101510	gb:zk89b05.r1 Soares_pregnant_uterus_NbHPU Homo sapi "ESTs, Weakly similar to ORF2 [M.musculus]"	6.8 6.8
	421316	AA287203	Hs.191510 Hs.251397	SMA5	6.8
70	432363	AA534489		gb:nf76g11.s1 NCI_CGAP_Co3 Homo sepiens cDNA done	6.8
70	458603	AW103046	Hs.6162	KIAA0771 protein	6.8
	439527 408920	AW298119 AL120071	Hs.202536 Hs.48998	ESTs fibronectin leucine rich transmembrane protein 2	6.8 6.8
	439127	AW978465	Hs.292368	ESTs	6.8
75	434890 429413	AF161345 NM 014058	Hs.283930	"Homo saplens HSPC082 mRNA, partial cds"	6.8 6.7
, 5	429413 407788	NM_014058 BE514982	Hs.201877 Hs.38991	DESC1 protein S100 calcium-binding protein A2	6.7 6.7
	447252	R90916		gb:yn01e10.r1 Soares adult brain N2b4HB55Y Homo saplen	6.7
	455851 439509	BE146879 AF086332	Hs.58314	*gb:QV4-HT0222-261099-014-c11 HT0222 Homo sapiens ESTs	6.7 6.7
80	438509	AW961605	Hs.21145	"Homo sapiens cDNA: FLJ22489 fis, clone HRC10951"	6.7
	419323	AI092379	Hs.135275	ESTs	6.7
	415317 418654	Z43388 AA226334	Hs.5570 Hs.154291	hypothetical protein FLJ10006 ESTs	6.7 6.7
	407413	AF067801	110.104231	"gb:Homo sapiens HDCGC21P mRNA, complete cds."	6.7

	439694	AA843915	Hs.54707	ESTs	6.7
	451191	N67900	Hs.118446	ESTs	6.7
	454006	U12775	Hs.37006	agouti (mouse)-signaling protein	6.7
5	443657	R14973		gb:y442f10.s1 Soares fetal liver spleen 1NFLS Homo saplen	6.7
,	455879	BE153275	11- 000447	*gb:PMO-HT0335-180400-008-e11 HT0335 Homo sapiens	6.7
	451368 453509	BE242152 AL040021	Hs.288417	protein serine threonine kinase Cik4	6.7 6.7
	420892	AW975076	Hs.172589	gb:DKFZp434N1812_r1 434 (synonym: htes3) Homo saple nuclear phosphoprotein similar to S. cerevisiae PWP1	6.7
	423372	A1246375	Hs.154458	ESTs	6.7
10	450316	W84446	Hs.17850	ESTs	6.7
10	447795	AW295151	Hs.163612	ESTs	6.7
	413252	BE074910	113.100012	gb:RCS-BT0580-170300-021-F12 BT0580 Homo sapiens	6.7
	405771	540,4010		predicted exon	6.6
	411483	AW848115		*gb:IL3-CT0214-301299-048-C09 CT0214 Homo sapiens c	6.6
15	420271	A1954365	Hs.42892	ESTs	6.6
15	431948	AA917706	Hs.194616	ESTs	6.6
	409629	AW449589	Hs.279724	ESTs	6.6
	458841	W28965		gb:54d10 Human retina cDNA randomly primed sublibrary	6.6
	416565	AW000960	Hs.44970	ESTs	6.6
20	409097	AA677927	Hs.144269	ESTs	6.6
	441832	Al018249	Hs.128062	ESTs	6.6
	457285	A1038858	Hs.228780	*ESTs, Highly similar to AF199597 1 A-type potassium cha	6.6
	406504			predicted exon	6.6
0.5	414606	BE387771		*gb:601283251F1 NIH_MGC_44 Homo sapiens cDNA clon	6.6
25	452956	AW003578	Hs.231872	ESTs	6.6
	410743	AA089474	Hs.272153	ESTs	6.6
	404599			predicted exon	6.6
	423575	C18863	Hs.163443	*Homo saplens cDNA FLJ11576 fis, clone HEMBA100354	6.6
20	443027	Al027847	Hs.253550	ESTs	6.6
30	458663	AV658444	Hs.280776	"Homo sapiens cDNA FLJ13684 fis, clone PLACE2000021	6.6
	431277	AA501806	Hs.249965	ESTs .	6.6
	445232	BE294357		"gb:601172878F1 NIH_MGC_17 Homo sapiens cDNA clon	6.6
	459170	AI905518		*gb:RC-BT091-210199-098 BT091 Homo sapiens cDNA, m	6.6
25	437876	AA770151	Hs.126424	ESTs .	6.6
35	406752	Al285598	Hs.217493	annexin A2	6.6
	401245	41414.00007	11- 050050	predicted exon	6.6
	446102	AW168067	Hs.252956	ESTs	6.5
	446989 421160	AK001898	Hs.16740	hypothetical protein FLJ11036	6.5 6.5
40	458831	AL080215 - H71739	Hs.102301 Hs.200227	Homo sapiens mRNA; cDNA DKFZp586J0323 (from clone ESTs	6.5
70	408914	AW450309	113.200227	gb:Ul-H-Bi3-akz-g-08-0-Ul.s1 NCI_CGAP_Sub5 Homo sa	6.5
	411018	AW813428		"gb:MR3-ST0192-010200-210-c05 ST0192 Homo saptens c	6.5
	436562	H71937	Hs.169756	"complement component 1, s subcomponent"	6.5
	457620	AA602711	113.103730	"gb:np03h06.s1 NCI_CGAP_Pr2 Homo sapiens cDNA don	6.5
45	438647	AA813118	Hs.163230	ESTs	6.5
	439570	T79925	Hs.269165	ESTs	6.5
	419273	BE271180	Hs.293490	ESTs	6.5
	443745	AB039670	Hs.9728	ALEX1 protein	6.5
	431029	BE392725	Hs.248571	Homo sapiens PAC clone RP5-1163J12 from 7q21.2-q31.1	6.5
50	458695	AV660159	Hs.282284	ESTs	6.5
	410966	AW812088		"gb:RC4-ST0173-191099-032-a07 ST0173 Homo sapiens c	6.4
	417135	AA422067	Hs.50547	ESTs	6.4
	416441	BE407197		*gb:601301552F1 NIH_MGC_21 Homo saplens cDNA clon	6.4
	413702	BE170313		gb:QV4-HT0536-040500-193-g02 HT0536 Homo sapiens	6.4
55	452563	AI907552		*gb:RC-BT147-120499-044 BT147 Homo saplens cDNA, m	6.4
	408956	AK001868	Hs.295306	*ESTs, Highly similar to unnamed protein product [H.sapien	6.4
	406349			predicted exon	6.4
	425420	BE536911	Hs.234545	*ESTs, Weakly similar to AF155135 1 novel retinal pigmen	6.4
60	459430	AW662886		gb:hi82h11.x1 Soares_NFL_T_GBC_S1 Homo saplens cDN	6.4
UU	425733	F13287	Hs.159388	Homo sapiens clone 23578 mRNA sequence	6.4
	458678	AI306162	Hs.170938	"ES1s, Weakly similar to KIAAU/US protein [H.sapiens]"	6.4
	429695	AA835714	Hs.293556 Hs.112011	ESTs Wooldy similar to value and I'll conices?	6.4
	426872	AA410446	NS.112011	"ESTs, Weakly similar to unknown [H.sapiens]"	6.4
65	437152	AL050027	U= 422246	gb:Homo sapiens mRNA; cDNA DKFZp566C0324 (from c	6.4
05	440517 450877	AW139632	Hs.132246	ESTs ESTs	6.4 6.4
	410664	A1799608: NM_006033	Hs.29178 Hs.65370	Tipase, endothelial	6.4
	405793	1414/2000000	113.03510	predicted exon	6.4
	418709	AA227394		gb:zr17c10.r1 Stratagene NT2 neuronal precursor 937230 H	6.4
70	428684	AA431792	Hs.44784	ESTs	6.4
	448516	AW898595	12.77.01	"gb:RC1-NN0073-260400-011-g09 NN0073 Homo sapiens	6.4
	400983	***************************************		predicted exon	6.3
	422365	AF035537	Hs.115521	*REV3 (yeast homolog)-like, catalytic subunit of DNA poly	6.3
	425612	BE004257		gb:CM0-BN0103-180300-296-c04 BN0103 Homo saplens	6.3
75	401521			predicted exon	6.3
	430290	AI734110	Hs.136355	ESTs	6.3
	414931	AKD00342	Hs.77646	Homo sepiens mRNA; cDNA DKFZp761M0223 (from clon	6.3
	437939	AW298600	Hs.141840	*ESTs, Weakly similar to S59501 interferon receptor JFNA	6.3
0.0	451842	AI820539	Hs.267087	*ESTs, Moderately similar to ALU4_HUMAN ALU SUBF	6.3
80	405810			predicted exon	6.3
	443747	AV646352		gb:AV646352 GLC Homo saplens cDNA clone GLCAME	6.3
	427287	NM_014903	Hs.174188	KIAA0938 protein	6.3
	413521	BE145814	11- 00000	*gb:MR0-HT0208-101299-202-a04 HT0208 Homo sapiens	6.3
	429090	AW820278	Hs.99066	ESTs	6.3

	451488	H22999	Hs.208846	ESTs	6.3
	455713	BE069891		gb:QV4-BT0401-201299-064-b01 BT0401 Homo sapiens	6.3
	452161	R43077	Hs.221747	ESTs	6.3
_	428647	AA830050	Hs.124344	ESTs	6.3
5	445063	AI246275	Hs.149196	ESTs	6.3
_	456671	AB011142	Hs.114293	KIAA0570 gene product	6.3
	401508			predicted exon	6.3
	412677	AW029608	Hs.17384	ESTs	6.3
•	441720	AI346487	Hs.28739	ESTs	6.3
10	418051	AW192535	Hs.19479	ESTs	6.3
10					
	438014	N71183	Hs.121806	"Homo sapiens cDNA FLJ11971 fis, clone HEMBB100120	6.3
	432101	A1918950	Hs.11092	"Homo sapiens cDNA FLJ14290 fis, clone PLACE1006795	6.3
	421032	AW293133	Hs.101340	EST8	6.3
1.5	436532	AA721522		gb:nv54h12.r1 NCt_CGAP_Ew1 Homo sapiens cDNA clo	6.3
15	431318	AA502700	Hs.293147	ESTs	6.3
	413470	N20934		gb:yx54c11.s1 Soares melanocyte 2NbHM Homo saplens c	6.3
	402425			predicted exon	6.3
	455993	BE179085		*gb:RC0-HT0613-140300-021-d06 HT0613 Homo saplens	6.3
	400160			predicted exon	6.3
20	413795	AL040178	Hs.142003	ESTS	6.2
20		ALUTUITU	110.172000	predicted exon	6.2
	405071				
	403741	41004055	11. 007500	predicted exon	6.2
	432489	AI804855	Hs.207530	ESTs	6.2
25	402296			predicted exon	6.2
25	446091	AW022192	Hs.200197	ESTs .	6.2
	444788	AI871122	Hs.202821	ESTs	6.2
	404972			predicted exon	6.2
	400227			predicted exon	6.2
	433804	Al936561	Hs.112740	ESTs	6.2
30	448807	AJ571940	Hs.7549	ESTs	6.2
-	404340		1.0.1.0.10	predicted exon	6.2
	424632	AB014523	Hs.151406	KIAA0623 gene product	6.2
	449547	H93543	Hs.117963		6.2
				EST8	
35	406945	K01383	Hs.203967	metallothionein 1A (functional)	6.2
22	433663	AF083131	Hs.229535	CATX-15 protein	6.2
	407809	AW082279	Hs.244106	ESTs	6.2
	418342	BE002723	Hs.293504	*ESTs, Moderately similar to ALU1_HUMAN ALU SUBF	6.2
	438007	AA133008	Hs.158675	ribosomal protein L14	6.2
	410536	N39533		gb:yv27d04.s1 Soares fetal liver spleen 1NFLS Homo sapie	6.2
40	448005	AW207437	Hs.170378	ESTs	6.2
	414083	AL121282	Hs.257786	ESTs	6.2
	405362		110,501,100	predicted exon	6.2
	410102	AW248508	Hs.279727	*Homo sapiens cDNA FLJ14035 fis, clone HEMBA100463	6.2
			113.213121	gb:EST387239 MAGE resequences, MAGN Homo sapien	6.2
45	457868	AW975133	•		6.2
73	407395	AF005082	H- 12/200	*gb:Homo sapiens skin-specific protein (xp33) mRNA, part	
	443603	BE502601	Hs.134289	"ESTs, Weakly similar to KIAA1063 protein [H.sapiens]"	6.2
	430051	AA464611	Hs.52515	transducin (beta)-like 2	6.1
	434569	Al311295	Hs.58609	ESTs	6.1
50	430481	AA479678	Hs.203269	"ESTs, Moderately similar to ALU8_HUMAN ALU SUBF	6.1
50	402859			predicted exon	6.1
	401260			predicted exon	6.1
	406544			predicted exon	6.1
	428446	Al024600 .	Hs.98612	ESTs	6.1
	412246	Al160873	Hs.69233	"ESTs, Weakly similar to KIAA1064 protein [H.sapiens]"	6.1
55	400420	AJ277247	Hs.287369	interleukin 22	6.1
	455662	BE065387		"gb:RC1-BT0314-030500-016-d03 BT0314 Homo saplens	6.1
			V- 400000		
	428613	AB037749	Hs.186928	KIAA1328 protein	6.1
	443267	AW450630	Hs.133851	ESTs	6.1
60	433405	AW157566	Hs.156892	ESTs	6.1
60	416795	A1497778	Hs.168053	*ESTs, Highly similar to AF227948 1 HBV pX associated p	6.1
	435706	W31254	Hs.7045	GL004 protein	6.1
	450769	AA057418	Hs.33654	ESTs	6.1
	427174	AA398848	Hs.97541	ESTs	6.1
<i>-</i> -	425389	AW974499	Hs.192183	ESTs	6.1
65	416675	H73802	Hs.35381	ESTs	6.1
	432749	NM_014438	Hs.278909	Interleukin-1 Superfamily e	6.1
	401809			predicted exon	6.1
	403041			predicted exon	6.0
	408523	AW833259		"gb:RC2-TT0007-131099-011-c01 TT0007 Homo sapiens c	6.0
70	416515	N91716	Hs.194140		6.0
70				ESTS	6.0
	452591	BE173164	Hs.1516	Insulin-like growth factor-binding protein 4	
	437146	AA730977		"gb:nw55i05.s1 NCL_CGAP_Ew1 Homo sapiens cDNA clo	6.0
	450094	Al174947	Hs.295789	Homo sapiens mRNA; cDNA DKFZp564D1164 (from clon	6.0
75	402529			predicted exon	6.0
75	430706	NM_003540	Hs.247816	"H4 histone family, member C"	6.0
	459186	A1908287		gb:RC-BT168-020499-035 BT168 Homo samens cDNA, m	6.0
	452158	AI699120	Hs.61198	ESTs	6.0
	411237	AW833676		"gb:QV4-TT0008-181199-038-h04 TT0008 Homo saplens	6.0
	400441	M15530	Hs.99879	B-cell growth factor 1 (12kD)	6.0
80	439398	AA284267	Hs.221504	ESTs	. 6.0
-			Hs.127432	ESTs	6.0
	440862	H39048		*ESTs, Moderately similar to ALU1_HUMAN ALU SUBF	6.0
	415451	H19415	Hs.268720		
	459587	AA031956		gb:zk15e04.s1 Soares_pregnant_uterus_NbHPU Homo sapi	6.0
	456072	H54381		gb:yq89a03.s1 Soares fetal liver spleen 1NFLS Homo sapie	6.0

	409954	AMEGOTA	11- 000457	CCT-	6.0
	443488	AW512770 Al073495	Hs.266457 Hs.133912	ESTs *ESTs, Weakly similar to methyl-CpG binding domain-cont	6.0 6.0
	430825	AI734186	Hs.185105	ESTs	6.0
_	454466	AA984138	Hs.279895	"Homo sapiens mRNA for KIAA1578 protein, partial cds"	6.0
5	456506	AA278277	Hs.194212	ESTs	6.0
	449228	AJ403107	Hs.148590	"ESTs, Weakly similar to AF208846 1 BM-004 [H.saplens]	6.0
	457727 442440	AW974687 BE464435	Hs.146180	"gb:EST386776 MAGE resequences, MAGM Homo sapien "ESTs, Weakly similar to non-receptor protein tyrosine kina	6.0 5.9
	455110	BE154505	110.140100	"gb:PM0-HT0343-281299-003-e06 HT0343 Homo saplens	5.9
10	402790			predicted exon	5.9
	409982	BE005839		gb:RC2-BN0120-250400-012-f03 BN0120 Homo sapiens	5.9
	427635	BE397988	Hs.179982	turnor protein p53-binding protein	5.9
	408948 402046	AW296713	Hs.221441	ESTs predicted exon	5.9 5.9
15	415438	R89238	Hs.34262	ESTs	5.9
	403083		10.01202	predicted exon	5.9
	402481			predicted exon	5.9
	409867	AW502161		gb:UI-HF-BR0p-air-g-12-0-UI.r1 NIH_MGC_52 Homo sap	5.9
20	420362	U79734	Hs.97206	huntinglin interacting protein 1	5.9
20	421375 437630	AA489200 AI252782	Hs.100595 Hs.153029	"ESTs, Moderately similar to ALU1_HUMAN ALU SUBF ESTs	5.9 5.9
	443500	AV646388	Hs.137071	ESTs	5.9
	448995	Al613276	Hs.5662	*guarine nucleotide binding protein (G protein), beta polyp	5.9
0.5	438214	H06076	Hs.26320	TRABID protein	5.9
25	428046	AW812795	Hs.155381	*ESTs, Moderately similar to 138022 hypothetical protein (H	5.9
	431941	AK000106	Hs.272227	"Homo sapiens cDNA FLJ20099 fis, clone COL04544" predicted exon	5.9 5.9
	403356 439031	AF075079		gb:Hamo sapiens full length insert cDNA YQ80A08	5.9 5.9
	430032	AW936136	Hs.99610	ESTs	5.9
30	423457	F08208	Hs.155606	paired mesoderm homeo box 1	5.9
	422158	L10343	Hs.112341	"protease inhibitor 3, skin-derived (SKALP)"	5.9
	406592			predicted exon	5.9
	418636	AW749855	Un 10707	"gb:QV4-BT0534-281299-053-c05 BT0534 Homo sapiens	5.8
35	429399 408590	AA452244 AW238162	Hs.16727 Hs.253873	ESTs ESTs	5.8 5.8
23	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psoriasin 1)	5.8
	417421	AL138201	Hs.82120	"nuclear receptor subfamily 4, group A, member 2"	5.8
	401129			predicted exon	5.8
40	434745	AW974445	Hs.185155	"ESTs, Weakly similar to HuEMAP [H.saplens]"	5.8
40	402800	A1477E22200	No 40752	predicted exon	5.8
	436185 419519	AW753380 Al198719	Hs.49753 Hs.176376	"Homo sapiens mRNA for KIAA1561 protein, partial cds" ESTs	5.8 5.8
	452542	AW812256	113.170070	*gb:RC0-ST0174-191099-031-a07 ST0174 Homo saptens c	5.8
	427166	AA431576	Hs.155658	ESTs	5.8
45	416168	H23687		gb:yn72d12.r1 Soares adult brain N2b5HB55Y Homo sapie	5.8
	431467	N71831	Hs.256398	Homo sapiens mRNA; cDNA DKFZp434E0528 (from clon	5.8
	421558 458055	AB011125	Hs.105749 Hs.131375	KIAA0553 protein	5.8 5.8
	418345	AW979121 AJ001696	Hs.241407	"ESTs, Weakly similar to ALUB_HUMAN !!!! ALU CLAS "serine (or cysteine) proteinase inhibitor, clade B (ovalbumi	5.8
50	426544	AA492325	(101211101	gb:ng81b11.s1 NCI_CGAP_Pr6 Homo sapiens cDNA clone	5.8
	433544	Al793211	Hs.165372	"ESTs, Moderately similar to ALU1_HUMAN ALU SUBF	5.8
	442007	AA301116	Hs.142838	"Homo sapiens cDNA: FLJ23444 fis, clone HSI01343"	5.8
	443422	R10288	Hs.301529	ESTS	5.8
55	434311 424966	BE543469 AU077312	Hs.266263 Hs.153985	"Homo saptens cDNA FLJ14115 fts, clone MAMMA10017 "solute carrier family 7 (cationic amino acid transporter, y+	5.8 5.8
33	441744	AA960922	Hs.200938	ESTs	5.8
	413101	BE065215	1.0120000	*gb:RC1-BT0314-310300-015-f01 BT0314 Homo saplens c	5.7
	445687	W80382	Hs.149297	ESTs	5.7
60	441369	AA931535		gb:oo56a04.s1 NCI_CGAP_Lu5 Homo sapiens cDNA clon	5.7
60	414428	BE296906	Hs.182625	VAMP (vesicle-associated membrane protein)-associated pr	5.7
	431211	M86849 W03940	H5.5366	"gap junction protein, beta 2, 26kD (connextn 26)" gb:za62b02.r1 Soares fetal liver spleen 1NFLS Homo sapien	5.7 5.7
	448612	A1696363	Hs.171285	ESTs	5.7
	419118	AA234223	Hs.139204	ESTs	5.7
65	406322			predicted exon	5.7
	454690	AW854639		*gb:MR1-CT0258-140100-203-d10 CT0258 Homo saplens	5.7
	450313	AI038989	Hs.24809	hypothetical protein FLJ10826	5.7
	416292 449309	AA179233 AW589823	Hs.42390 Hs.224189	nasopharyngeal carcinoma susceptibility protein ESTs	5.7 5.7
70	408418	AW963897	Hs.44743	KIAA1435 protein	5.7
	416100	H18700	Hs.268799	ESTs	5.7
	437845	AA769578	Hs.90488	ESTs	5.7
	443345	A1052508	Hs.164482	"ESTs, Weakly similar to contains similarity to TPR domain	5.7
75	418407	AL044818	Hs.84928	"nuclear transcription factor Y, beta" "ESTs, Weakly similar to ALU1, HUMAN ALU SUBFAM	5.7
, ,	434557 431688	AW855466 AA513906	Hs.271866	gb:ng67c08.s1 NCi_CGAP_Lip2 Homo sapiens cDNA clo	5.7 5.7
	437641	AA811452	Hs.291911	ESTs	5.7
	409319	AW752736	Hs.33565	ESTs	5.7
00	403967	AF030107	Hs.17165	regulator of G-protein signalling 13	5.7
80	445189	AI936450	Hs.147482	ESTs	5.7
	414418	H62943	Hs.154188	ESTs ESTs	5.7 5.7
	446563 446075	BE326588 AW451457	Hs.141454 Hs.279179	ESTs ESTs	5.7 5.7
	428068	AW016437	Hs.233462	ESTs	5.7

	438425	AW292922	Hs.293170	ESTs	5.7
	415532	R14780	Hs.12826	ESTs	5.7
	441442	AL043282	Hs.131824	ESTs	5.7
_	443380	AJ792478	Hs.135377	ESTs	5.7
5	445527	W39694	Hs.83286	ESTs	5.7
	414376	8E393856	Hs.66915	"ESTs, Wealdy similar to 16.7Kd protein [Hsaplens]"	5.7
	457960	AA771881	Hs.298149	ESTs	5.6
	453293	AA382267	Hs.10653	ESTs	5.6
	452503	AB000509	Hs.29736		5.6
10		VD000000	F15.23730	TNF receptor-associated factor 5	
IO	405227	********		predicted exon	5.6
	442257	AW503831		gb:UI-HF-BNO-alb-b-05-0-UI.r1 NIH_MGC_50 Homo sap	5.6
	403403			predicted exon	5.6
	454377	AA076811		gb:7803C12 Chromosome 7 Fetal Brain cDNA Library Hom	5.6
	438656	H85310	Hs.209456	"ESTs, Wealdy similar to NG22 [H.saplens]"	• 5.6
15	419936	A1792788		"gb:ol91d05.y5 NCI_CGAP_Kid5 Homo sapiens cDNA clo	5.6
	437267	AW511443	Hs.258110	ESTs	5.6
	430563	AA481269	Hs.178381	ESTs	5.6
	444835	Al198994	Hs.158479	ESTs	5.6
	444902	AJ132099	Hs.12114	vanin 1	5.6
20	451800	AW977435	Hs.31890	ESTs	5.6
20		AW317433	U873 1030		
	405465			predicted exon	5.6
	403891			predicted exon	5.6
	425557	Al694300	Hs.46730	ESTs	5.6
~ -	432162	AA584062	Hs.272798	hypothetical protein FLJ20413	5.6
25	450152	AI138635	Hs.22968	ESTs	5.6
	410053	AW579707	Hs.59332	ESTs	5.6
	421285	NM_000102	Hs.1363	"cytochrome P450, subfamily XVII (steroid 17-alpha-hydro	5.6
	425264	AA353953	Hs.20369	*ESTs, Weakly similar to gonadotropin inducible transcript	5.6
	418844	M62982	Hs.1200	arachidonale 12-lipoxygenase	5.6
30	429616	Al982722	Hs.120845	ESTs	5.6
50				==	
	423528	AB011137	Hs.129740	KIAA0565 gene product	5.6
	403089	4144400000	25000	predicted exon	5.6
	414373	AW162907	Hs.75969	proline-rich protein with nuclear targeting signal	5.6
25	403687			predicted exon	5.6
35	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	5.5
	432501	BE546532	Hs.287329	Fas binding protein 1	5.5
	403691			predicted exon	5.5
	409545	BE296182		gb:601177324F1 NIH_MGC_17 Homo saplens cDNA clon	5.5
	435990	Al015862	Hs.131793	ESTs	5.5
40	444409	Al792140	Hs.49265	ESTs	5.5
. •	435478	AA682622		gb:zj20f09.s1 Soares_fetal_liver_spteen_1NFLS_S1 Homo	5.5
	439981	Al348408	Hs.124675	*ESTs, Weakly similar to unnamed protein product (H.sapie	5.5
	433644	AW342028	Hs.256112		5.5
				ESTs	
45	441541	AA938663	Hs.199828	ESTs	5.5
40	400709	4147750005		predicted exon	5.5
	407615	AW753085		*gb:PM1-CT0247-151299-005-a03 CT0247 Homo sapiens	5.5
	424153	AA451737	Hs.141496	MAGE-like 2	5.5
	452465	AA610211	Hs.34244	ESTs	5.5
	406030			predicted exon	5.5
50	431071	AA491379		"gb:aa65f05.r1 NCI_CGAP_GCB1 Homo sapiens cDNA cl	5.5
	418086	AA211791	Hs.269666	"Homo sapiens cDNA FLJ13415 fis, clone PLACE1001799	5.5
	453034	BE246010	Hs.184109	ribosomal protein L37a	5.5
	412953	Z45794	Hs.238809	ESTs	5.5
	425351	Al206234	Hs.155924	cAMP responsive element modulator	5.5
55	406149			predicted exon	5.5
-	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	5.5
	458378	A1040535	Hs.150524	ESTs	5.5
		へいいい	113.130324		5.5 5.5
	401213			predicted exon	
60	405904	741044		predicted exon	5.5
UU	445132	Z44811		gb:HSC29G031 normalized infant brain cDNA Homo sapie	5.5
	405138	*****		predicted exon	5.5
	442238	AW135374	Hs.270949	ESTs	5.5
	416852	AF283776	Hs.80285	Homo sapiens mRNA; cDNA DKFZp586C1723 (from clon	5.5
ce	448691	AA481119	Hs.283558	hypothetical protein PRO1855	5.5
65	452242	R50956	Hs.59503	"ESTs, Weakly similar to AF157318 1 AD-017 protein [H.s	5.5
	456994	AA383623	Hs.293616	ESTs	5.5
	440913	Al267491	Hs.160593	ESTs	5.5
	435380	AA679001	Hs.192221	ESTs	5.5
	450375	AA009647	Hs.8850	a disintegrin and metalloproteinase domain 12 (metrin alph	5.5
70	414035	Y00630	Hs.75716	"serine (or cysteine) proteinase inhibitor, clade B (ovalbumi	5.4
	459084	H01699	Hs.27289	CGI-125 protein	5.4
	405867	1101033	110.21 200	predicted exon	5.4
		BE544867			5.4
	414093		11- 170000	"gb:601078872F1 NIH_MGC_12 Homo sapiens cDNA clon	
75	447306	Al373163	Hs.170333	ESTS	5.4
13	413083	BE064528		*gb:RC4-BT0311-250200-014-h06 BT0311 Homo sapians	5.4
	404828			predicted exon	5.4
	402543			predicted exon	5.4
	421988	AW450481	Hs.161333	ESTs	5.4
00	413404	BE503463	Hs.297431	ESTs	5.4
80	459043	AI805444	Hs.208113	"ESTs, Weakly similar to N-WASP [H.sapiens]"	5.4
	404410			predicted exon	5.4
	430264	AA470519		"gb:nc71f10.s1 NCI_CGAP_Pr1 Homo saplens cDNA clon	5.4
	431499	NM_001514	Hs.258561	general transcription factor IIB	5.4
	412566	AW962574		gb:EST374647 MAGE resequences, MAGG Homo sapien	5.4
	1,2000			Corners on the same same same of the same	

	454239	BE176420	Hs.8177	ESTs	5.4
	458163	AA884304	Hs.131163	ESTs	5.4
	446205	AW172662	Hs.149479	ESTs	5.4
5	455275	AW977806		gb:EST389810 MAGE resequences, MAGO Homo sapien	5.4
3	415579	AA165232	Hs.222069	ESTs	5.4
	423200	AA323073	Hs.289083	ESTs	5.4
	440052	AI633744	Hs.195648	ESTs	5.4
	424717	H03754	Hs.152213	wingless-type MMTV integration site family, member 5A*	5.4
10	420111	AA255652	U- 27200	gb:zs21h11.r1 NCI_CGAP_GCB1 Homo sapiens cDNA do	5.4 5.4
10	432140	AK0000404	Hs.272688	hypothetical protein FLJ20397	5.4
	414904	AA157881	Hs.143056	ESTs EST-	5.4 5.4
	409479	BE163800	Hs.136912	ESTs	5.4
	404727	AIC22770	Hs.145809	predicted exon	5.4
15	446011 456083	AI623778 U46922		ESTS	5.4 5.4
IJ			Hs.77252	fragile histidine triad gene "Homo sapiens cDNA FLJ10570 fis, clone NT2RP2003117	5.4 5.4
	424834	AK001432	Hs.153408		5.4 5.4
	425071 426065	NM_013989 N32049	Hs.154424	"delodinase, lodothyronine, type II" gb:yw96g08.s1 Soares_placenta_8to9weeks_2NbHP8to9W	5.4 5.4
	415602	F12920	Hs.165575	ESTs	5.4
20	432839	AA579465	Hs.287332	ESTS	5.4
20	416879	H98899	Hs.42599	ESTS	5.4
	456088	BE177320	Hs.156148	*Homo sapiens cDNA: FLJ23082 fis, clone LNG06451*	5.4
	423175	W27595	Hs.18653	ESTs	5.4
	424585	AA464840	110.10000	gb:zx43h11.r1 Soares_total_fetus_Nb2HF8_9w Homo sapie	5.3
25	452281	T93500	Hs.28792	*Homo sapiens cDNA FLJ11041 fis, clone PLACE1004405	5.3
	424323	AA338791	Hs.146763	nascent-polypeptide-associated complex alpha polypeptide	5.3
	426701	AI968103	Hs.209461	*Homo sapiens cDNA FLJ12836 fis, clone NT2RP2003206	5.3
	447645	AW897321	Hs.159699	ESTs	5.3
	402974			predicted exon	5.3
30	436607	AW661783	Hs.211061	ESTs	5.3
-	428873	AI701609	Hs.98908	ESTs	5.3
	405454			predicted exon	5.3
	431867	AA523660	Hs.191727	ESTs	5.3
	442768	AL048534	Hs.48458	"ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAM	5.3
35	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40kD)	5.3
	435098	AF174394	Hs.177461	"Homo sapiens apoptotic-related protein PCAR mRNA, par	5.3
	421284	U62435	Hs.103128	"cholinergic receptor, nicotinic, alpha polypeptide 6"	5.3
	435711	AF226667	Hs.58553	CTP synthase II	5.3
	405292			predicted exon	5.3
40	410123	T16981	Hs.21963	ESTs	5.3
	435435	T89473	Hs.192328	ESTs	5.3
	417071	N58820	Hs.275133	ESTs	5.3
	438958	H50167	Hs.33113	ESTs	5.3
	457405	AA504860		gb:ab03a10.s1 Stratagene fetal retina 937202 Homo sapiens	5.3
45	413642	BE154837		gb:PM1-HT0345-121199-001-c08 HT0345 Homo sapiens	5.3
	433868	AA612960		gb:nq38g06.s1 NCI_CGAP_Co10 Homo saplens cDNA clo	5.3
	444461	R53734	Hs.25978	ESTs	5.3
	427088	AA398085	Hs.142390	ESTs	5.3
c 0	451307	AW293207	Hs.211516	ESTs	5.3
50	403831			predicted exon	5.3
	402892			predicted exon	5.3
	433420	Al674093	Hs.293961	ESTs	5.3
	455759	BE080469		"gb:QV1-BT0630-280200-086-d06 BT0630 Homo sapiens	5.3
FF	411379	A1816344	Hs.12554	"ESTs, Weakly similar to Nucleosome Assembly Protein 1-	5.3
55	428483	AI908539	Hs.184592	KIAA0344 gene product	5.3
	429208	AA447990	Hs.190478	ESTs	5.3
	447572	AI631546	Hs.159732	ESTs	5.3
	434896	AW022054	Hs.136591	ESTs	5.3
60	417616	R07728	Hs.268668	ESTS	5.3
UU	411805	AW864183 T79855) la gencee	*gb:PM0-SN0014-260400-002-d02 SN0014 Homo saplens ESTs	5.3 5.3
	419000		Hs.268592		5.3
	413488 400975	BE144017	Hs.184693	"transcription elongation factor B (SIII), polypeptide 1 (15k	5.3
		A 1422007		predicted exon gb:Homo saplens mRNA for exonemal dynein heavy chain (5.3
65	407453	AJ132087			5.3
UJ	430757	A)458623	U. 07575	"gb:tk04g09.x1 NCI_CGAP_Lu24 Homo saplens cDNA clo	5.2
	417793	AW405434 AB011094	Hs.82575	small nuctear ribonucleoprotein polypeptide 8* KIAA0522 protein	5.2
	401877 457122	AI026157	Hs.129892 Hs.33728	*ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	5.2
		AI732404	Hs.68846	ESTs	5.2
70	410708 435807	AI033299	Hs.113614	ESTs	5.2
, ,	428398	A1249368	Hs.98558	ESTs	5.2
	401088	A1243000	113.30550	predicted exon	5.2
	414501	N43991	Hs.171984	ESTs	5.2
	419083	AJ479560	Hs.98613	"Homo sapiens cDNA FLJ12292 fis, clone MAMMA10018	5.2
75	421107	AA283822	Hs.55606	ESTs, Weakly similar to ZN91_HUMAN ZINC FINGER P	5.2
	411489	AW848346		*gb:IL3-CT0214-150200-076-F03 CT0214 Homo sapiens c	5.2
	419249	X14767	Hs.89768	"gamma-aminobutyric acid (GABA) A receptor, beta 1"	5.2
	430082	AW514083	Hs.190135	ESTs	5.2
	425698	NM_016112	Hs.159241	polycystic kidney disease 2-like 1	5.2
80	451686	AA059246	Hs.110293	EST6	5.2
	453867	AI929383	Hs.108196	HSPC037 protein	5.2
	419985	H66373	Hs.15973	"ESTs, Highly similar to bA393J16.3 [H.saplens]"	5.2
	426650	AA382814		gb:EST96097 Testis I Homo saplens cDNA 5' end, mRNA	5.2
	424115	AA335497	Hs.293965	ESTs	5.2

	405576			predicted exon	5.2
	409584	AA076010		gb:zm89f12.s1 Stratagene ovarian cancer (937219) Homo sa	5.2
	454423	AW603985	Hs.179662	nucleosome assembly protein 1-like 1	5.2
_	417173	U61397	Hs.81424	ubiquitin-like 1 (sentrin)	5.2
5	439155	H81076	Hs.269001	ESTs	5.2
	432267	AK000872	Hs.274227	"Homo saplens cDNA FLJ10010 fis, clone HEMBA100030	5.2
	459024	AA020799	Hs.179825	RAN binding protein 2-like 1	5.2
	404088 403525			predicted exon predicted exon	5.2 5.2
10	445882	A1948717	Hs.225155	"ESTs, Weakly similar to PSF_HUMAN PTB-ASSOCIATE	5.2
	448257	AW772070	Hs.253146	ESTs	5.2
	410500	R09442		gb:yf26c09.r1 Soares fatal liver spleen 1NFLS Homo sapien	5.2
	456084	AA155859	Hs.79708	ESTs	5.2
1.5	410523	BE143839		gb:MR0-HT0164-151299-012-d03 HT0164 Homo saplens	5.2
15	434623	AB023163	Hs.4014	KIAA0946 protein; Huntingtin Interacting protein H	5.2
	454484	AW795196	Hs.215857	ring finger protein 14	5.2
	402131 438913	AI380429	Hs.172445	predicted exon ESTs	5.2 5.2
	402628	MISOUTES	115.172440	predicted exon	5.1
20	415973	R24707	Hs.260201	ESTS	5.1
	455640	BE064059		*gb:QV3-BT0296-010300-111-e04 BT0296 Homo saplens	5.1
	442750	AI016803	Hs.131096	ESTs	5.1
	404638			predicted exon	5.1
25	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	5.1
25	428819	AL135623	Hs.193914	KIAA0575 gene product	5.1
	439519 427335	AA837118 AA448542	Hs.118366 Hs.251677	ESTs	5.1 5.1
	416450	AA180467	Hs.142556	Gantigen 7B ESTs	5.1
	440876	AW613524	Hs.279570	ESTs	5.1
30	414584	BE409585		"gb:601301836F1 NIH_MGC_21 Homo sapiens cDNA don	5.1
	443175	N57863		gb:yv60c02.s1 Soares fetal liver spleen 1NFLS Homo saple	5.1
	408968	Al652236	Hs.49376	hypothetical protein FLJ20644	5.1
	415654	AW968363		*gb:EST380439 MAGE resequences, MAGJ Homo sapiens	5.1
35	440559	AW629054	Hs.125976	*ESTs, Weakly similar to metalloprotease/disintegrin/cystel	5.1
33	421236	A1287622	Hs.151956	ESTs	5.1
	416258 405982	N45661	Hs.275131	ESTs predicted exon	5.1 5.1
	406589			predicted exon	5,1
	412458	AW953229	Hs.169142	ESTs	5.1
40	435693	Al033134	Hs.119887	EST ₅	5.1
_	449182	AW292381	Hs.224150	ESTs	5.1
	403963			predicted exon	5.1
	440830	Al733112	Hs.176101	ESTs	5.1
45	415412	F08049	Hs.52132	ESTs	5.1
43	442832	AW206560	Hs.253569	ESTs	5.1
	445359 412088	A1808725 A1689496	Hs.147783 Hs.108932	ESTs ESTs	5.1 5.1
	428785	AI015953	Hs.125265	ESTs	5.1
	430163	X66610	Hs.234748	"enolase alpha, lung-specific"	5.1
50	455441	AW945964		"gb:QV0-ET0001-050500-228-e09 ET0001 Homo sapiens c	5.1
	400304	AF005082	Hs.113261	"Homo sapiens skin-specific protein (xp33) mRNA, partial	5.1
	403944			predicted exon	5.1
	457069	BE159191	Hs.114318	"ESTs, Weakly similar to ORF1 [H.sapiens]"	5.1
55	414125	BE253197	11- 404574	*gb:601116804F1 NIH_MGC_16 Homo saplens cDNA clon	5.1
55	448566 457948	AW291319 AI498640	Hs.194574 Hs.159354	ESTs ESTs	5.1 5.1
	438240	N92638	Hs.124004	ESTs	5.1
	404070	1132030	113.124004	predicted exon	5.1
	402709			predicted exon	5.1
60	416425	BE077308		gb:RC1-BT0606-060200-012-h12 BT0608 Homo sapiens	5.0
	407173	T64349		gb:yc10d08.s1 Stratagene lung (937210) Homo sapiens cDN	5.0
	452502	AI904296		gb:PM-BT046-220199-286_1 BT046 Homo sapiens cDNA	5.0
	446657 459124	Al335191 AW301478	Hs.260702	*ESTs, Moderately similar to ALU7_HUMAN ALU SUBF ESTs	5.0 5.0
65	409940	BE548143	Hs.299178	gb:601073109F1 NIH MGC 12 Homo saplens cDNA clon	5.0
00	443547	AW271273	Hs.23767	"Homo saptens cDNA FLJ12666 fis, clone NT2RM400225	5.0
	447452	BE618258	Hs.102480	ESTs	5.0
	414327	BE408145	Hs.185254	"ESTs, Moderately similar to NAC-1 protein [R.norvegicus]	5.0
-	416155	A1807264	Hs.205442	"ESTs, Weakly similar to AF117610 1 inner centromere pro	5.0
70	408081	AW451597	Hs.167409	ESTs	5.0
	426834	Al091533	Hs.135167	ESTs	5.0
	433368	AW877277	Un 454440	*gb:MR4-PT0051-150200-001-d03 PT0051 Homo sapiens	5.0
	433098 439721	AW190593 W92142	Hs.151143 Hs.271963	ESTs SECTE WARM SIMILER IN ALLIS HUMAN ALLI SURFAM	5.0 6.0
75	441818	AI630451	Hs.7976	*ESTs, Weakly similar to ALU5_HUMAN ALU SUBFAM KIAA0332 protein	5.0 5.0
	458804	AL157625	14.1310	gb:DKFZp761L2016_r1 761 (synonym: hamy2) Homo sapi	5.0 5.0
	411905	BE265067		gb:601193893F1 NIH_MGC_7 Homo saplens cDNA clone	5.0
	434248	AA628151	Hs.187783	ESTs	5.0
00	423957	AW296756	Hs.11641	"Homo sapiens cDNA: FLJ21432 fis, clone COL04219"	5.0
80	456212	N51636		gb:yy87b01.s1 Soares_multiple_sclerosis_2NbHMSP Homo	5.0
	442914	AW188551	Hs.99519	"Homo sapiens cDNA FL114007 fis, clone Y79AA1002407	5.0
	436084	AK000185	Ne 252247	"gb:Homo sapiens cDNA FLJ20178 fis, clone COL09990"	5.0
	449252 454653	AW594482 AW812227	Hs.253315	ESTs *gb:RC2-ST0173-201099-011-g09 ST0173 Homo saplens c	5.0 5.0
				**	5.0
				99	

```
414699
                                     Hs.76930
Hs.16645
                      AI815523
                                                   "synuclein, alpha (non A4 component of amytoid precursor)
           443335
                                                   ESTs
                                                                                                                     5.0
                       T89697
           448419
                       AL080072
                                                                                                                     5.0
                                     Hs.21195
                                                   Homo saplens mRNA; cDNA DKFZp564M0616 (from clon
           425574
                       AA359663
                                                   gb:EST68717 Fetal lung II Homo sapiens cDNA 5' end, mR
                                                                                                                     5.0
  5
           435174
                       AA687378
                                     Hs.194624
                                                   ESTs
                                                                                                                     5.0
           429548
                       AW138872
                                                   ESTs
                                     Hs.135288
                                                                                                                     5.0
           450613
                       AI702055
                                                   "gb:tq20g10.x1 NCI_CGAP_Ut1 Homo sepiens cDNA clon
                                                                                                                     5.0
           400432
                                     Hs.287767
                                                   Sequence 8 from Patent WO9950285
                                                                                                                     5.0
                       AX015809
           421751
                       AW813731
                                     Hs.159153
                                                   ESŤs
                                                                                                                     5.0
10
                                                   predicted exon .
                                                                                                                     5.0
5.0
           405B00
           429430
                       AL381837
                                     Hs.155335
                                                                                                                     5.0
           439518
                       W76326
                                                   gb:zd60d04.r1 Soares_fetal_heart_NbHH19W Homo sapien
           430884
                       AF053748
                                     Hs.248114
                                                   glial cell derived neurotrophic factor
                                                                                                                     5.0
           452741
                       BE392914
                                     Hs.30503
                                                   "Homo sapiens cDNA FLJ11344 fis, clone PLACE1010870
                                                                                                                     5.0
15
           441001
                       AW137017
                                     Hs.126373
                                                   Human DNA sequence from clone RP5-1184F4 on chromos
                                                                                                                     5.0
           438490
                      AW593272
                                     Hs.26261
                                                                                                                     5.0
                                                   ESTs
                       AW204516
                                     Hs.31835
           408170
                                                                                                                     5.0
           449104
                       R08702
                                                   gb:yf24c06.r1 Soares fetal liver spieen 1NFLS Homo sapien
20
           TABLE 1B:
           Pkey: Unique Eos probeset identifier number
           CAT number: Gene duster number
           Accession: Genbank accession numbers
25
                        CAT Number
           Picey
                                         Accession
                                         AWT53085 AW753082 ÁW054744 AW753107 AW753087
AW859276 AW859274 AW190959 T91463
AW833259 AW833273 AW206846
                         1005404_1
           407615
           408391
                        1055687_1
           40B523
                        1063925 1
           408914
                        1089828 -1
                                         AW450309
30
           408987
                         109306_1
                                         H85615 H86300 H86263 H86282 AA059278 H86304
           409191
                         1107176_1
                                         AW818390 AW818237 AW858911 AW858977 BE072544 W26498
                                         BE296182 AW629821
           409545
                        1138823_1
           409584
                        114165 1
                                         AA076010 AA076009 Al094314
                                         AA296961 AA296889 AA076945 AA077528 AA077497
           409695
                        114876_1
35
           409866
                         1156522_1
                                         AW502152 H41202 H29772
                                         AW502161 AW502587 AW502345
BE548143 AW511659
           409867
                        1156530_1
                        1160994 1
           409940
           409982
                        1165022 1
                                         BE005839 BE005619 AW516815
                         1206323_1
                                         R09442 AW846115 AW846108 AW751967 AW846083 AW846087 AW846090
           410500
40
           410523
                         1207041_1
                                         BE143839 AW752787 AW752795 BE143584 N71805
                                         N39533 AW753094 AW753093
                        1207322_1
1212621_-1
           410536
                                         BE407727
           410626
           410966
                                         AW812088 AW812105 AW812082
                        1228071 1
                         1228975_1
                                         AW813242 BE145089 AW813195 AW813173 AW813206 BE145953 BE146212 AW813196 AW854582 AW813241 BE061582
           411004
45
           411018
                         1229132_1
                                         AW813428 AW813444 AW813367 AW813368 AW813429 AW813424
                                         AW815098 BE154843 BE154831
AW820852 AW820773 AW821088
           411057
                         1230493_1
                        1234752_1
           411178
                                         AW833676 AW833814 AW833798 AW833677 AW833449 AW833630 AW833626 AW833444 AW833366 AW833791 AW833659 AW833432
           411237
                        1236377_1
                                         AW833534 AW833556 AW833553
                                         AWB48115 AW848127 AW887028 AW887117
AW848346 AW848760 AW848340 AW848818 AW849043 AW849061
W03940 T98335 AW850705
50
           411483
                        1247172_1
           411489
                        1247350_1
1249044_1
           411541
           411660
                         1253078_1
                                         AW855718 AW855740 AW855748
                                         AW857271 AW857308 AW857298 AW857258
AW875942 AW858234 AW875938 AW875941 AW858235 AW875958
AW858396 AW858505 AW858476 AW861971 AW858556 AW861908 AW858514 AW858601 AW861909 AW858434 AW858400 AW858405
           411693
                         1254206_1
55
           411722
                         1254914 1
           411725
                         1255047 1
                                         AW858393
           411748
                         1256178_1
                                         AW859920 BE079582 AW997112
           411805
411905
                         1259273_1
                                         AW864183 AW864181 AW864135 AW864198
BE265067 BE264978 AW875420
60
                         1265181 1
                                         AW876686 AW876717 AW877215 AW876691 AW876722 AW877218 AW876694 AW876725
           411940
                         1266262 1
                         1280605_1
                                         AW897230 AW897252 AW897244 AW897231 AW897263
           412167
           412333
                         1289037_1
                                         AW937485 AW937589 AW937658 AW937654 AW937492
                                         AW984788 AW984816 AW984811 AW984807 AW984819 AW984790 AW984782 AW984782 AW984780 AW984814 AW984795 AW984793 AW984789 AW984823 AW948021 AW984802 AW984800 AW984799 AW984825 AW984792 AW984821 AW984820 AW984808 AW984809
           412402
                        1292917_1
65
                                         AW984812 AW984801 AW984813 AW984778 AW984804 AW984798 AW948017 AW984827
                         1306469_1
                                         AW962574 BE073261
           412566
                                         AA115456 AW978117 AA814593
AW993984 AW994001 AW994002
AW995092 AW995095 AW995103
           412670
                         131990_1
           412740
                         1324538 1
70
                         1325424_1
           412761
                                         BE064528 BE064589 BE064561
BE065215 BE155544 BE155541 BE155540 BE155542 BE155543
BE074910 BE074913 BE074911 BE074903 BE074892 BE074935
           413083
                         1348639_1
           413101
                        1349154_1
1355877_1
           413252
           413382
                         1365954_1
                                         BE090689 BE090685 BE090697 BE090680 BE090691 BE090696 BE090698 BE090686
75
           413425
                                         F20956 AA129374 AA133740 AW819878
           413470
                         1371600_1
                                         N20934 BE141875 BE141877
                                         BE145814 BE145830 BE145884 BE145823 BE145905 BE145883 BE145833 BE145889 BE145834
BE147205 BE147205 BE147234
           413521
                         1374612_1
           413544
                         1375671_1
                                         BE154837 BE154879 BE154850 BE154877 BE154835 BE154849 BE154902 BE154905 BE154867 BE154901 BE154904 BE154899
           413642
                         1381386_1
80
            413702
                         1383899_1
                                          BE170313 BE158339 BE158290
            413864
                         1395788_1
                                          BE175582 BE175514 BE175505 BE175591 BE175530
            414093
                         1416417_1
                                          BE544867 BE247720
                                         BE253197 BE259456 BE254462
            414125
                         1419230_1
                                          BE263293
           414195
                         1424854_-3
```

```
414210
                          1426051_1
                                            BE383592 BE261671
                                            BE267834 BE514180 BE514096
Z24878 AA494098 F13654 AA494040 AA143127
            414266
                          1430984_1
143512_1
            414315
            414539
                                            BE379046 BE395459
                          1460320_1
  5
            414540
                          1460324_-1
                                            BE379050
            414584
                           1464068_-1
                                            BE409585
                          1465790_-1
1465801_1
            414605
                                            BE390440
                                            BE387771 BE387954 BE389705
T95945 R98276 BE539541
            414606
            414808
                          1492624_1
10
                                            D81402 C15494 D61078 D61313 D80399 D81520
C18200 D78681 T82025
R20233 F12901 T74740
            414954
                           1509857_1
            414995
                          1511736 1
            415613
                          1540602 1
            415654
                          154135_1
                                            AW968363 AA465492 R34539 AA165411
                                            F30364 F36559 T15435
AA381209 AA381245 AA167683
T26661 Z44135 H23016
            415715
                          1548818_1
15
                          155189_1
            415747
            416151
                          1573926 1
                          1574545_1
                                            H23687 H46460 H40239
            416168
            416425
                           159388_1
                                            BE077308 AL043350 AW962170 AA180251 AA325287
                                            BE407197 AA182474 AA180369 BE275628 BE276131
H62953 N76608 N72413
            416441
                          159480_1
20
                          1600181 1
            416548
                                            H72974 W28967
            416665
                          1607797 1
                          163001_1
            416913
                                            AW934714 BE161007 BE162500 AW749902 AW749884 BE162498 BE161005 AA190449 AW513465 BE161006 BE162499
            417344
                          166827_1
                                            AW997313 AA195805
                                            AA203651 R89136 -
AW993983 AW994798 AW993990 AW993999 AW993989 AA204755
W69561 R08486 R87183
            417549
                           168700_1
25
            417611
                          168900 1
                          1692759 1
            417682
                                            AW749855 AA225995 AW750208 AW750206
            418636
                          177402_1
            418709
                           178363_1
                                             AA227394 AA641866 AW750732
                                            N42531 W25700 AA249574 AA569553
AI792788 BE142230 AA252019
AA255652 AA280911 AW967920 AA262684
            419753
                          187763_1
30
                          189181 1
            419936
                          190755_1
            420111
            422949
                          223184_1
                                            AA319435 N56456 AA319377 AW961532 T48452 AA894424
            423735
423756
                                            AA330259 AA661806 AA502431 AW974633 AA649496
AA828125 AA834883 AA330555
                          231498_1
                          231725 1
35
            423843
                                            AA332652 AA331633 AW999369 AW902993 BE170475 AA378845 AW964175 A)475221
                          232510 1
            424101
                          235398_1
                                             AA335394 AA335535 AA335244 AW966148
            424324
                          238127_1
                                             AA346316 BE160193 AA338802 AW954536
            424585
                          241151_1
                                            AA464840 AA343628
AA347923 AA347928 AW961769
            424872
                          244505 1
40
                                            AA350552 R21667 AW953258
            425090
                          246649_1
            425574
                          253317_1
                                            AA359663 AA359654 AW963124
                                            BE004257 AW811190 AA360576 BE172402 BE181703
N32049 R34821 R78237
AA853282 BE255688 AA370481
            425612
                          253969_1
            426065
426130
                          260276_1
261414_1
45
            426544
                                            AA492325 AA503675 AA381181
                          268987_1
                                            AA382814 AA402411 AA412355
AA884766 AW974271 AA592975 AA447312
AA470519 BE303010 BE302954 BE384120
            426650
                          270283_1
            429163
                          300543_1
            430264
                          315008 1
            430757
                          322947_1
                                            Al458623 AA639708 AA485409 R22065 AA485570
50
            431071
                          327550_1
                                            AA491379 H86020 AW969148
                                            AA513906 AA847734 Al357044
AA516049 AW004922
            431688
                          336609
            431822
                          338082 1
                                            AA527941 AI810608 AI620190 AA635266
AA534222 AA632632 T81234
            432189
                          342819 1
            432340
                          345248_1
55
            432363
                          345469_1
                                            AA534489 AW970240 AW970323
                                            AA650114 AW974148 AA572946
AW877277 AW811294
            432966
                          356839_1
                          364276_1
            433368
            433449
                                            AW772282 AA592974
                          366532 1
            433868
                          375629_1
                                            AA612960 Al934769 T12348
60
                                            AA625499 AA625269 AA625184
AA631439 Al086355 Al082577
AA649530 AA659316 H64973
            434098
                          380006_1
            434374
434804
                          384889_1
                          393481_1
            434950
                                            AW974892 AA654375
                          396061_1
            435478
                                             AA682622 BE141696
65
                                            AK000185 AW841262
AA721522 AW975443 T93070
            436084
436532
                          41437 1
                          421802 1
            436843
                                             AA824588 AA732269 AW977146
                          427748_1
            437096
                           433006_1
                                             AA744406 AA745347 AA745535
                                            AA730977 Al261584 AA334473 Z43283 AW875861 AW938044 BE150701 AW936262 AA306862 BE565575 BE567380 AA728920 AA167612 Al239729 Al251752 AA485791 BE568425 AW962958 AL050027 BE089051
            437146
                           43371_1
70
            437152
                          43386_1
                           434947_1
                                             AW976005 AW419264 AA747275 AA810377
            437229
                                            AF075079 H48601 H48795
H65014 AF086007 H65015
W76326 AF086341 W72300
            439031
                          46798_1
            439152
                          45920 1
75
            439518
                          47334_1
            440051
                                             BE559980 BE397203 BE268207 BE559764 BE267725 BE513654 BE267742 BE268219 BE267665 BE561356
                           48426_2
                                            BE274581 BE275382 AA703515 BE166690
AA931535 Al458601 Z44913
AW503831 AW503317 BE565665
            441194
                           51193_1
            441369
442257
                          515636_1
                          53699_1
561305_1
80
            443161
                                             AI038316 AI344631 AI261653
            443175
                           561882_1
                                             N57863 AI038952 W90167 N64103
                                            Al039813 Al684642 Z40121 Al951414 BE501049
Al076123 Al244834 Al695239
            443198
                          562655_1
                          572957_1
            443534
                                             Al079356 W23287
            443613
                          575391 1
```

PCT/US02/19297 WO 02/102235

```
R14973 R14967 Al081006
AV646352 AV652121 AV652008
AW866632 Al089351 D61942
            443657
                           576685_1
            443747
                           57918_1
583216_1
            443860
            445132
                                              Z44811 R13709 AV652749 AW814906 AA084016
                           63111_1
                                              244817 Z45244 H24136 R25934
BE294357 N35568 AZ17006
AJ374927 AJ278380 AJ301383
R90916 AL120023 R18429 Z42095 AJ369730 R90824
  5
            445153
                           631644_1
            445232
                           633433_1
            446171
                           664826_1
            447252
                           714160_1
            448516
                                              AW898595 AW898588 AW898590 AW898663 AW898592 AI525093
                           766241_1
10
                                              R08702 R09864 Al630313
Al702055 R89204 R86260
            449104
                           798149_1
                           840016_1
            450613
                                              BE144949 BE144991 BE144990 AI832199
            452077
                           897051 1
            452502
                           919733_1
                                              Al904296 BE007223 R30687
                                              AI904646 BE179494 BE179421
AW812256 AW812257 AI906423 AI906422
AI907552 C03707 C02870
            452507
15
                           921410_1
            452542
            452563
                           922265 1
            452947
                           939810_1
                                              AW130413 Al932362
            453509
453845
                           969632_1
                                              AL040021 AL040037
                           983027_-1
1049569 1
                                              AL157568
20
                                              AW177335 AW177352 AW177340 AW177378 AW177339 AW177388 AW177393
            454182
            454377
                                              AA076811 AW814764
                           114761_1
                           115682_1
            454389
                                              AW752571 AW847602 AA077979
                           1206965_1
1219564_1
            454455
                                              AW752710 BE180336 BE180186
AW801365 AW801435 AW801372
            454505
25
            454556
                           1223878_1
                                              AW807073 AW807055 AW807067 AW807276 AW807030 AW807363 AW845892 AW807091 AW807275 AW807284 AW807287 AW845891
            454574
                           1225636_1
                                              AW809109 AW809112 AW809122 AW809126 AW809128 AW809133 AW809131 AW809113 AW809111 AW809132
                                              AW809648 AW809704 AW809643 AW809653 AW809709 AW809949 AW809939 AW810010 AW809705 AW809950 AW809822 AW809667 AW810093 AW810076 AW809673 AW810349 AW809895
            454597
                           1226059 1
30
            454633
                           1227504_1
                                              AW811380 AW811385
                           1228081_1
                                              AW812227 AW812294 AW812092
            454653
            454690
                           1229106_1
                                              AW854639 AW854719 AW854718 BE145880 AW854692 BE145866 AW816154 AW854698 AW854654 AW813335 AW854699
                                              AW814889 AW814852 AW814808
AW833793 AW833799 AW833346 AW833371 AW833795 AW833562 AW833667 AW833377
            454707
454822
                           1230250_1
                           1236369 1
35
            454874
                           1238494_1
                                              AW836407 BE175600 BE175579
            454913
                           1242238_1
                                              AW841462 BE156657 BE156668 BE092475
                                              AW846080 AW846074 AW846118 AW846130
AW847647 AW847659 AW847656 AW847653 AW847717 AW847786
BE073250 BE073378 BE073379 AW850533 AW850529
            454934
                           1245577_1
            454963
                           1246752 1
            455013
                           1248899_1
40
            455092
                           1252971_1
                                              BE152428 AW855572 AW855607
                                              BE154426 AW85307/2 AW85360/
BE154505 BE154454 BE154454 BE154460 BE154489 BE154496 AW856909 BE154497 BE154565 BE154572 BE154500 BE154472
BE156459 BE156469 BE156469 AW857447
AW858621 AW937120
AW865450 AW865119 AW865452 AW865461 AW865325 AW865114 AW865316 AW865321 AW865590 AW865390
            455110
                           1253955_1
            455121
                           1254339_1
                           1255227_1
            455152
                           1259973_1
            455203
45
                                              AW977806 AW887923 AW886321
            455275
                           1272255_1
                                              AW939445 AW939465 AW939604 AW939531 AW939530 AW939993
AW945964 AW946020 AW946034 AW946027 AW946041 AW946044 AW946033 AW946024 AW946021 AW946029 AW946015 AW946016
AW946039 AW946045 AW946028 AW946036
            455435
                           1290546_1
            455441
                           1291505 1
                                               BE008002 BE007997 BE007998 BE008000
            455592
                           1335196_1
50
                                              BE064059 BE063903 BE063838 BE063863 BE064056 BE063974 BE063904 BE063898 BE063896 BE063906 BE063980 BE065387 BE065310 BE065391 BE158893 BE069898 BE158900
             455640
                            1348141_1
                           1349206_1
1352512_1
1359316_1
             455662
            455713
                                               BE080469 BE080474 BE080477 BE080546 BE080545
             455759
                                              BE146729 BE146914 BE146918
BE147725 BE147205 BE147234
BE153275 BE153189 BE153329 BE153022 BE153030 BE152974
BE179085 BE179084 BE179086 BE179264
             455851
                            1375451_1
55
            455853
455879
                            1375671_1
                            1380017 1
             455993
                           1398665_1
             456072
                           1470256_1
                                              H54381 H54463 BE393262
                                              AA159478 AW901089 AA160437 AW593155
N51636 T51874 T51829
AA225423 AA225369 BE144153 AW801549
             456101
                           151654_1
60
             456212
                           1655565_1
            456309
                           177026_1
                                               AW897265 AW897274 AL119504 AW897275 AW897270 AW897312 AW897318 AW897317 AA317240 AW961361 T06241 AA326794
            456714
                           221500_1
                                               AL138130 AW407975 AW999277
             457405
                           333127_1
                                               AA504860 AA504911
                                              AA602711 BE078290
AW974687 AA649656 AA652145
AW975133 AA729943 AA805813
AW816379 AA88282 AA879046 AA879195
65
             457620
                           371514_1
393566_1
             457727
             457868
                            426095_1
             458154
                            491768_1
                                               AL157625 N72696 BE622492
Al557388 BE158936
            458804
458829
                           75803_1
773443_1
70
             458841
                           784186_1
                                               W28965 W28971
             459160
                            920051_1
                                               AI904723 AI904725 AI904729 AI904722 AI904758 AI904736
                                               AI905518 AI905516 AI905457 AI905515 AW176013 AW176037
AI908287 BE064074 BE068820 BE068823 BE068822 BE068826
             459170
                           920646_1
             459186
                           922888 1
75
             Pkey: Unique number corresponding to an Eos probeset
```

Ref. Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495

Strand: Indicates DNA strand from which exons were predicted

80 Nt_position: Indicates nucleotide positions of predicted exons

	~		. .	Ab
	Pkey 400584	Ref	Strand	NL position
	400593	9887612 9887642	Minus Minus	18398-18573 25013-25127
	400612	9929646	Minus	151513-151662
5	400613	9864507	Plus	92278-92472
-	400623	7228177	Plus	74195-74335,74653-74827
	400709	7249204	Plus	153075-154680
	400749	7331445	Minus	9162-9293
10	400842	1927148	Plus	90462-90673
10	400925	7651921	Plus	38183-38391,43900-44086
	400964 400968	7139719 7923967	Minus Plus	155282-155403 19938-20043
	400975	7139779	Minus	108473-108847
	400983	8081198	Plus	107903-108832
15	401032	8117525	Minus	68451-68555
	401050	8117628	Minus	78449-79425
	401088	8492704	Plus	194659-195179
	401129	8699792	Minus	62022-62242,62326-62451,62543-62710,63072-63167
20	401200	9743387	Minus	111586-111806,114791-114916,115419-115583,116351-116446,116847-116907,122853-123067,124982-125407
20	401213 401230	9858408 9929527	Plus Minus	98243-98380,98489-98619 22925-24006-24520-24503-25464-25746-40026-40000-62604-62750
	401245	4827300	Minus	33835-34006,34539-34592,36461-36745,48925-49098,52604-52758 59373-59531
	401260	8076883	Minus	86003-86355
	401269	8954206	Plus	2259-2591 `
25	401283	9800093	Minus	47256-47456 _~
	401497	7381770	Plus	92607-92813
	401508	7534110	Minus	110779-110983
	401521	7705251	Plus	9127-9234
30	401530	7770649 7229804	Plus Minus	41468-42406
50	401575 401604	7689963	Minus	76253-76364 119835-120185
	401780	7249190	Minus	28397-28617, 28920-29045, 29135-29296, 29411-29567, 29705-29787, 30224-30573
	401781	7249190	Minus	83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
	401793	7263888	Minus	102945-103083
35	401809	7342191	Minus	107548-108298
	401862	7770606	Minus	55839-55993,59145-59293
	401881	8122429	Minus	148470-148651, 153418-153618, 154282-154438
	402018 402046	7528100	Plus	168728-168859 166304 166666 169167 169306
40	402046	8072415 8076908	Plus Minus	166394-166556,168167-168395 130105-130227
10	402071	8117361	Plus	85924-86039
	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076
	402131	7704961	Minus	33114-33209,33496-33678
4.5	402203	8576119	Minus	8124-8285
45	402222	9958106	Plus	3261-3834,3939-4269
	402296	6598824	Plus	22587-23723
	402298 402421	6598824 9796341	Plus Minus	36758-37953 46609-46662,46758-46811,86293-86346,89776-89829,90048-90101,102817-102924
	402425	9796347	Minus	50224-50395
50	402481	9797406	Plus	87891-88991
•	402529	7630937	Minus	165-917
	402543	9838066	Minus	89684-90893
	402576	7230225	Minus	1867-2247
55	402578	9884928	Ptus	66350-66496
55	402628	9931216	Plus	31753-31966 145659 146599
	402631 402639	9931231 9958129	Minus Minus	115658-116580 20167-22383
	402659	8077024	Plus	70318-70846
	402709	8901246	Minus	56847-57055
60	402738	7331557	Minus	8725-8859
	402745	9212200	Minus	76516-76690
	402790	4835258	Minus	147744-147861
	402794	6136940	Minus	131034-131794
65	402800 402859	6010175 9588237	Plus Minus	43921-44049,46181-46273 69821-75323
05	402892	8086844	Minus	194384-194645
	402974	9663349	Plus	124035-124321
	403041	3171152	Plus	70527-71019
70	403065	8954197	Minus	71615-71773,73930-74144
70	403083	8954241	Plus	163070-163351
	403089	8954241	Plus	171964-172239
	403093	8954241	Plus	177083-177373,177464-177751
	403177 403273	9838213 8018055	Minus Plus	142560-142726 133809-134099
75	403334	8568877 .	Minus	137205-137350
	403350	8569775	Minus	135374-135523
	403356	8569930	Phrs	92839-93036
	403403	9438460	Plus	21240-21399
0 Λ	403525	7960440	Plus	152431-153243
80	403568	8101145	Minus	85509-85658
	403647 403687	8699843 7387384	Minus Plus	35849-36204 9009 9534
	403691	7387384 7387384	Minus	9009-9534 88280-88463
	403698	4263532	Plus	1.0464-10907

```
403741
                      7630932
                                   Minus
                                                2833-3468
                                                20493-20621
          403747
                       7658395
                                   Minus
          403786
                       8083636
                                                 73028-73217
                                   Minus
          403831
                       7249249
                                   Minus
                                                61468-61575
191508-193220
 5
          403891
                       7331467
                                   Minus
          403944
                       7711864
                                                 129213-129415
                                   Minus
          403963
                       8568150
                                                 149466-149665
                                   Ptus
          404070
404088
                       2996642
                                   Plus
                                                7210-7414.10043-10195
                       9958257
                                                 184131-184295
                                   Plus
10
          404097
                       7770701
                                                55512-55781
                                   Plus
          404166
                                   Plus
                       7596822
                                                86147-86509
          404270
                       9828129
                                   Minus
                                                 3649-3750,4161-4306,5962-6049,6849-6965
                                                10898-11506
49052-49176.56177-56273.59384-59488
          404340
                       7630856
                                   Ptus
          404410
404599
                       7342122
                                   Plus
15
                       8705107
                                                 110443-110733
                                   Plus
          404638
                                                 99433-99528,100035-100161
                       9796751
                                   Minus
          404664
                       9797142
                                   Minus
                                                 104257-105215
          404727
                                                 115534-115747
                       8081050
                                   Plus
                                                 23244-23759
          404767
                       7882827
                                   Minus
20
          404828
                       6580415
                                   Minus
                                                 26291-27253
          404849
                       7706886
                                                 144843-144964,149846-150121
                                   Plus
                      6850447
7331420
          404893
                                                 65083-65223
                                                 177015-177328
          ADARGR
                                   Minus
          404952
                       7382669
                                                 136326-136618
                                    Minus
                                                48711-49524_
106104-106199,111659-111781
11115-11552
90303-90516
25
           404972
                       3213020
                                    Plus
           404992
                       4662677
                                    Minus
           405071
                       7708797
                                    Minus
           405138
                       8576241
                                   Plus
                       7230083
                                                 135716-135851
           405196
                                    Minus
30
                       6731245
                                    Minus
                                                 22550-22802
           405227
           405277
                       3980473
                                    Plus
                                                 23471-23572
                                                 55744-55903,57080-57170,61478-61560
           405285
                       6139075
                                    Minus
                                                 33227-33442
           405292
                       3845420
                                    Ptus
           405336
                       6094635
                                                 33267-33563
                                    Plus
35
           405362
                       2337862
                                    Minus
                                                 105008-105142,105980-106091,140445-140556,142519-142641
           405382
                       6552767
                                    Plus
                                                 31923-32311
                       7656675
7767904
                                                 133807-134053
8935-9073,12242-12367,13364-13506,14965-15493
           405454
405465
                                    Plus
                                    Plus
                                                 106297-106447,108462-108596
           405472
                       8439781
                                    Plus
40
                                                 124361-124520,124914-125050
84000-85009
           405547
                       1054740
                                    Plus
                       40033B2
           405576
                                    Plus
                       5523811
                                                 59362-59607
           405621
                                    Plus
                       5123990
                                                 56384-56587
           405636
                                    Plus
           405675
                       4557087
                                    Plus
                                                 70304-70630
45
           405708
                       4156182
                                    Plus
                                                 55030-55604
                                                 91191-91254,91510-91589
           405771
                       7018349
                                    Plus
                       5738434
                                                 27238-27885
           405783
                                    Minus
           405793
                       1405887
                                    Minus
                                                 89197-89453
           405800
                       2791346
                                    Plus
                                                 19271-19813
50
           405810
                       4938307
                                    Minus
                                                 64543-64966
28135-28244
                       7651809
           405848
                                    Minus
           405851
                       6164995
                                    Minus
                                                 26407-27151
           405867
                       6758731
                                                  74553-75173
                                    Minus
           405896
                       6758795
                                    Plus
                                                 57311-57874
.55
           405904
405917
                       7705118
                                    Minus
                                                 16375-16584
106829-107213
                       7712162
                                    Minus
                                                 36028-36408
           405982
                       8247790
                                    Minus
           406030
                       8312328
                                     Minus
                                                  96123-96547
           406053
                       6758997
                                    Plus
                                                 30921-31532
60
           406057
406149
                       6691254
                                                  20830-21222
                                    Minus
                       7144791
                                                  44464-45164
                                    Minus
                                                  66690-66835
           406163
                       7158901
                                     Plus
                        5686030
                                     Minus
                                                  4759-5490
           406277
           406322
                       9212102
                                     Minus
                                                  130230-130418
65
           406349
                                                  21251-21526
                       9256007
                                     Minus
                                                  107068-107277
           406504
                       7711360
                                     Minus
           406544
                        7711508
                                     Plus
                                                  46576-46757
                                                  38806-38989
           406589
                        8224211
                                     Plus
                                    Plus
           406592
                        4567182
                                                  352560-352963
 70
```

TABLE 2A lists about 187 genes up-regulated in ovarian cancer compared to normal edult tissues that are likely to be extracellular or cell-surface proteins. These were selected as for Table 1A, except that the ratio was greater than or equal to 2.5, and the predicted protein contained a PFAM domain that is indicative of extracellular localization (e.g., ig, fin3, eqf, 7tm domains).

TABLE 2A: ABOUT 187 UP-REGULATED OVARIAN CANCER GENES ENCODING EXTRACELLULAR/CELL SURFACE PROTEINS Pkey: Primekey

Ex. Accn: Exemplar Accession

80 UG ID: UniGene ID Title: Unigene Title PFAM domains

75

ratio: tumor vs. normal tissues

	Pkey	Ex. Acon No.	UGID	Title	PFAM domain	ratio
	423017	AW178761	Hs.227948	serine (or cysteine) proteinase inhibito	serpin	63.6
•	431938	AA938471	Hs.115242	developmentally regulated GTP-bindi	SCP	32.0
5	425650 418994	NM_001944 AA296520	Hs.1925	desmoglein 3 (pemphigus vulgaris ant	cadherin	30.0 24.5
,	452947	AW130413	Hs.89546	selectin E (endothellal adhesion molec gb:xf50f04.x1 NCI_CGAP_Gas4 Hom	EGF;tectin_c;sushi alpha-amylase	15.8
	418092	R45154	Hs.106604	ESTs	pkinase;Activin_recp	15.1
	431725	X65724	Hs.2839	Nome disease (pseudoglioma)	Cys_knot	12.6
10	422330	D30783	Hs.115263	epiregulin	EGF	12.5
10	446745 416319	AW118189 Al815601	Hs.156400 Hs.79197	ESTs CD83 antigen (activated B lymphocyt	vwa !-	11.1 10.8
	432408	N39127	Hs.76391	myxovirus (influenza) resistance 1, ho	tg lon_trans;K_tetra	10.6
	405285			predicted exon	A2M;A2M_N	10.5
16	405636			predicted exon	EGF;ldLrecept_a;ldLrecept_b	9.8
15	403093	AIC44C2E	U- 100000	predicted exon	fn3	9.6
	446740 405547	AI611635	Hs.192605	ESTs predicted exon	RYDR_ITPR ABC_tran;ABC_membrane	9.2 8.5
	412333	AW937485		gb:QV3-DT0044-221299-045-b09 DT	7tm_1	8.4
20	404270			predicted exon	SCP	8.1
20	402745	********	11: 040400	predicted exon	EGF;ldl_recept_b;thyroglobulin_1	8.1
	452755 421459	AW138937 AJ821539	Hs.213436 Hs.97249	ESTs ESTs	cystatin distancia:Boomhola	8.0 7.9
	416151	T26661	Na.37243	gb:AB65C7R Infant brain, LLNL arra	disintegrin;Reprolysin laminin_G;EGF	7.8 7.8
	446232	AI281848	Hs.165547	ESTs	7tm_3	7.6
25	431009	BE149762	Hs.248213	gap junction protein, beta 6 (connexin	connexin	7.2
	424634	NM_003613	Hs.151407	cartilage intermediate layer protein, n	ig;tsp_1	7.1
	400749 419054	N40340	Hs.191510	predicted exon ESTs, Weakly similar to ORF2 (M.m.	fn3;id1_recept_a;id1_recept_b ig;SPRY	6.8 6.8
	459170	Al905518	113.131310	gb:RC-BT091-210199-098 BT091 Ho	ABC_tran;ABC_membrane	6.6
30	416441	BE407197		gb:601301552F1 NIH_MGC_21 Hom	SDF	6.4
	410664	NM_006033	Hs.65370	lipase, endothelial	Ribosomal_L22	6.4
	402425	DADATE	LI- 100720	predicted exon	ion_trans	6.3
	415451 403083	H19415	Hs.268720	ESTs, Moderately similar to ALU1_H predicted exon	Ephrin fn3	6.0 5.9
35	448995	AI613276	Hs.5662	guanine nucleotide binding protein (G	SDF	5.9
	418345	AJ001696	Hs.241407	serine (or cysteine) proteinase inhibito	serpin	5.8
	424966	AU077312	Hs.153985	solute carrier family 7 (cationic amino	aa_permeases	5.8
	431211 430563	M86849	Hs.5566	gap junction protein, beta 2, 26kD (co	connexin	5.7
40	450152	AA481269 AI138635	Hs.178381 Hs.22968	ESTs ESTs	ABC_tran;ABC_membrane ig;pkinase	5.6 5.6
	418844	M62982	Hs.1200	arachidonate 12-lipoxygenase	lipoxygenase;PLAT	5.6
	403089			predicted exon	fn3	5.6
	403687			predicted exon	tsp_1;Reprolysin	5.6
45	403691 414035	Y00630	Hs.75716	predicted exon serine (or cysteine) proteinase inhibito	tsp_1;Reprolysin	5.5 5.4
73	421284	U62435	Hs.103128	cholinergic receptor, nicotinic, alpha p	serpin neur_chan	5.3
	435435	T89473	Hs.192328	ESTs	lipase;PLAT	5.3
	457122	Al026157	Hs.33728	ESTs, Weakly similar to ALU1_HUM	lipoxygenase;PLAT	5.2
50	419249 425698	X14767	Hs.89768 Hs.159241	gamma-aminobutyric acid (GABA) A	neur_chan	5.2
20	431117	NM_016112 AF003522	Hs.250500	polycystic kldney disease 2-like 1 delta (Drosophila)-like 1	lon_trans EGF;DSL	5.2 5.1
	457948	Al498640	Hs.159354	ESTs	G-alpha;arf	5.1
	435174	AA687378	Hs.194624	ESTs	SPRY	5.0
55	408170	AW204516	Hs.31835	ESTS	arf;ras	5.0
))	434351 430708	AW974991 U78308	Hs.191852 Hs.278485	ESTs, Weakly similar to ALU1_HUM olfactory receptor, family 1, subfamily	arf;ras 7tm_1	4.9 4.8
	422597	BE245909	Hs.118634	ATP-binding cassette, sub-family B (M	ABC_tran;ABC_membrane	4.8
	405545			predicted exon	ABC_tran;ABC_membrane	4.8
60	426471	M22440	Hs.170009	transforming growth factor, alpha	EGF	4.7
00	409632 420206	W74001 M91463	Hs.55279 Hs.95958	serine (or cysteine) proteinase inhibito solute carrier family 2 (facilitated gluc	serpin sugar_tr	4.7 4.6
	415138	C18356	Hs.78045	tissue factor pathway inhibitor 2	Kunitz_BPTI;G-gamma	4.6
	424402	M63108	Hs.1769	luteinizing hormone/choriogonadotrop	7tm_1	4.5
65	436480	AJ271643	Hs.87469	putative acid-sensing ion channel	ASC	4.5
65	430226 436126	BE245562 AW449757	Hs.2551 Hs.163036	adrenergic, beta-2-, receptor, surface ESTs	7tm_1 SNF	4.4
	406812	AF000575	Hs.67846	teukocyte Immunoglobulin-like recep	lg	4.4 4.4
	409385	AA071267		gb:zm61g01.r1 Stratagene fibroblast (ŤIMP	4.3
70	449184	AW296295	Hs.196491	ESTs	TNFR_c6	4.3
70	410555	U92649	Hs.64311	a disintegrin and metalloproteinase do	disIntegrin;Reprolysin	4.3
	422389 405281	AF240635	Hs.115897	protocadherin 12 redicted exon	cadherin A2M;A2M_N	4.3 4.3
	413548	BE147555	Hs.288541	Homo saplens mRNA for KIAA1558	EGF;tdl_recept_a;tdl_recapt_b	4.3
75	449535	W15267	Hs.23672	low density lipoprotein receptor-relate	ldl_recept_a;EGF;ldl_recept_b	4.3
75	425864	U56420	Hs.159903	olfactory receptor, family 5, subfamily	7tm_1	4.3
	410611 430686	AW954134	Hs.20924 Hs.2633	KIAA1628 protein desmoglein 1	Peptidase_S9 cadherin;Cadherin_C_term	4.2
	418693	NM_001942 AI750878	Hs.87409	thrombospondin 1	vwc,TSPN	4.1 4.0
00	445924	A1264571	Hs.164166	ESTs	sugar_tr	3.9
80	457148	AF091035	Hs.184627	KIAA0118 protein	erf;res	3.9
	428568 412170	AC004755 D16532	Hs.184922 Hs.73729	one cut domain, family member 3 very low density lipoprotein receptor	E1-E2_ATPase EGF;ldl_recept_a;ldl_recept_b	3.9
	442566	R37337	Hs.12111	ESTs	enkcdeath;RHD;TIG	3.8 3.8
	403763			predicted exon	7tm_1	3.8
					-	

	403074			and debut over	63	20
	413605	BE152644		predicted exon gb:CM1-HT0329-250200-128-09 HT	fn3 alpha-amylase	3.8 3.8
	442295	AI827248	Hs.224398	Homo sapiens cDNA FLJ11459 fis, c	Collagen;COLFI	3.7
_	403661	PROFIT	113.124000	predicted exon	7tm_3;ANF_receptor	3.7
5	407305	AA715284		gb:nv35f03.r1 NCI_CGAP_Br5 Hom	pkinase;Sema;Plexin_repeat;TIG	3.7
	457353	X65633	Hs.248144	melanocortin 2 receptor (adrenocortic	7tm_1	3.7
	431176	A1026984	Hs.293652	ESTs	taminin_EGF;taminin_B	3.6
	436233	A1742878	Hs.124116	ESTs	b	3.6
10	431808	M30703	Hs.270833	amphiregulin (schwannoma-derived g	EGF	3.6
10	445798	NM_012421	Hs.13321	rearranged L-myc fusion sequence	zf-C2H2	3.6
	400380 453893	NM_018485	Hs.283079 Hs.36451	G protein-coupled receptor C5L2 glutamate receptor, ionotropic, N-met	7tm_1	3.6 3.5
	409402	NM_000835 AF208234	Hs.695	cystafin B (stefin B)	lig_chan cystatin	3.5
	421166	AA305407	Hs.102308	potassium inwardly-rectifying channe	IRK	3.5
15	445575	Z25368	Hs.172004	ütin	fn3	3.5
	428957	NM_003881	Hs.194679	WNT1 inducible signaling pathway p	tsp_1;vwc;IGFBP	3.5
	403909	NM_016255	Hs.95260	Homo sapiens mRNA; cDNA DKFZp	Na_H_Exchanger	3.5
	403077			predicted exon	fn3	3.5
20	455612	BE042896	Hs.274848	ESTs .	ABC_tran;ABC_membrane	3.5
20	424091	AF235097	Hs.139263	calcium channel, voltage-dependent, a	ion_trans	3.5
	403956 457470	W28077 AB040973	Hs.79389 Hs.272385	net (chicken)-like 2 G protein-coupled receptor 72	cadherin;Cadherin_C_term 7tm_1	3.4 3.4
	401522	N47812	Hs.81360	CGI-35 protein	disintegrin;Reprolysin	3.4
	404886	1111012		predicted exon	ion_trans	3.4
25	437692	AA176959	Hs.172004	ilin	fn3	3.4
	407944	R34008	Hs.239727	desmocollin 2	cadherin	3.4
	407393	AB038237		gb:Homo sapiens mRNA for G protei	7tm_1	3.3
	436936	AL134451	Hs.197478	ESTs	EGF;laminin_G	3.3
20	423309	BE006775	Hs.126782	sushi-repeat protein	sushi;HYR	3.3
30	402172			predicted exon	ig	3.3
	447420	AI378628	Un annae	gb:tc72g07.x1 Soares_NhHMPu_S1 H	ank;pkinase;death	3.3 3.3
	438901 424362	AF085834 AL137646	Hs.29036 Hs.146001	ESTs Homo sapiens mRNA; cDNA DKFZp	sushi trypsin;sushi;CUB	3.3 3.3
	430453	BE387060	Hs.3903	Cdc42 effector protein 4; binder of Rh	m3	3.3
35	416631	H69466	110.0000	gb:yr88f07.r1 Soares fetal liver spleen	ldl_recept_a;MACPF	3.3
	453174	AI633529	Hs.135238	ESTs	7tm_1	3.3
	433848	AF095719	Hs.93764	carboxypeptidase A3	Zr_carbOpept;Propep_M14	3.2
	408546	W49512	Hs.46348	bradykinin receptor B1	7tm_1	3.2
40	423573	AA328504		gb:EST31993 Embryo, 12 week I Hom	7tm_1	3.2
40	458662	AI823410	Hs.169149	karyopherin alpha 1 (importin alpha 5	7tm_3;ANF_receptor	3.2
	433430	AI863735	Hs.186755	ESTs	thyroglobulin_1;IGFBP	3.2 3.2
	438850 420783	R33727 Al659838	Hs.24688 Hs.99923	EST lectin, galactoside-binding, soluble, 7	ank;pkinase;death Gal-bind_lectin	3.2
	409968	U56102	Hs.57699	adhesion glycoprotein	ig .	3.1
45	430630	AW269920	Hs.2621	cystatin A (stefin A)	7tm_3;ANF_receptor	3.1
	420737	L08096	Hs.99899	tumor necrosis factor (ligand) superfa	TNF	3.1
	422279	H69644	Hs.114231	C-type lectin-like receptor-2	tectin_c	3.1
	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromely	hemopexin;Peptidase_M10	3.1
50	412597	AU077051	Hs.74561	alpha-2-macroglobulin	A2M;A2M_N	3.1
50	453420	AJ003459		gb:AJ003459 Selected chromosome 2	IRK	3.1
	404243 449987	A1A/070740	Hs.184719	predicted exon	zf-C3HC4;SPRY;zf-B_box	3.1 3.1
	422471	AW079749 AA311027	Hs.271894	ESTs, Weakly similar to AF116721 1 ESTs	ABC_tran;ABC_membrane ig	3.0
	400464	74011021	165.271007	predicted exon	Peptidase_S9	3.0
55	458713	BE044496	Hs.282707	ESTs	EGF	3.0
	421340	F07783	Hs.1369	decay accelerating factor for complem	sushi	3.0
	449523	NM_000579	Hs.54443	chemokine (C-C motif) receptor 5	7tm_1	3.0
	400704			predicted exon	lig_chan;ANF_receptor	3.0
60	416239	AL038450	Hs.48948	ESTs	E1-E2_ATPase;Hydrolase	3.0
UU	433664	AW292176	Hs.245834	ESTs interleukin 2 receptor, alpha	Ricin_B_lectin	3.0 2.9
	423994 447726	XU1057 AL137638	Hs.1724 Hs.19368	Homo sapiens mRNA; cDNA DKFZp	tun	2.9
	425483	AF231022	Hs.301273	Homo sapiens protocadherin Fat 2 (FA	EGF;cadherin;laminin_G	2.9
	423513	AF035960	Hs.129719	transglutaminase 5	Transglut_core;Transglutamin_N	2.9
65	401537			predicted exon	ig;pkinase;LRRNT;LRRCT	2.9
	405790			predicted exon	Sema:Plexin_repeat;TIG	2.9
	422669	H12402	Hs.119122	ribosomal protein L13a	arf;ras;Ribosomal_S17	2.9
	430793	M83181	Hs.247940	5-hydroxytryptamine (serotonin) recep	7tm_1	2.9
70	403411	1100447	00	predicted exon	ABC_tran;ABC_membrane	2.8
70	428188	M98447	Hs.22	transglutaminase 1 (K polypeplide ep	Transglutamin_N;Transglut_core	2.8
	414482 427223	S57498 BE208189	Hs.76252 Hs.174031	endothelin receptor type A cytochrome c oxidase subunit VIb	7lm_1 COX68	2.8 2.8
	404187	DC200103	NS.174031	predicted exon	ig	2.8
	443537	D13305	Hs.203	cholecystakinin B receptor	7m_1	2.8
75	428701	NM_013276	Hs.190207	carbohydrate kinase-like	wwa;integrin_A;P2X_receptor	2.7
	411213	AA676939	Hs.69285	neuropilin 1	CUB;MAM;F5_F8_type_C	2.7
	453999	BE328153	Hs.240087	ESTs	kazal	2.7
	401244			predicted exon	ywa;ywd;TIL	2.7
80	458930	NM_003612	Hs.24640	sema domain, Immunoglobulin domai	Sema	2.7
οU	434411	AA632649	Hs.201372	ESTs .	sushi FGF	2.7 2.7
	400421 448999	AF263537 AF179274	Hs.287370 Hs.22791	fibroblast growth factor 23 transmembrane protein with EGF-like	kazal	2.7
	417350	U50928	Hs.82001	polycystic kidney disease 2 (autosoma	ion_trans	2.6
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	pkinase;ig	2.6

					-				
	401657			predicted exon	7tm_1	2.6			
	456711	AA033699	Hs.83938	ESTs, Moderately similar to MASP-2	sushi;trypsin;CUB	2.6			
	432042	AW971345	Hs.292715	ESTs	sugar_tr	2.6 ·			
_	433138	AB029496	Hs.59729	semaphorin sem2	lg;Sema	2.6			
5	452530	Al905518		gb:RC-8T091-210199-098 BT091 Ho	ABC_tran;ABC_membrane	2.6			
	426418	M90464	Hs.169825	collagen, type IV, atpha 5 (Alport syn	Collagen;C4	2.6			
	403796			predicted exon	cadherin	2.6			
	431728	NM_007351	Hs.268107	multimerin	EGF;C1q	2.6			
	441595	AW206035	Hs.192123	ESTs	sugar_tr	2.6			
10	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	EGF;MAM	2.6			
	447197	R36075		gb:yh88b01.s1 Soares placenta Nb2H	SDF	2.5			
	428765	X54150	Hs.193122	Fc fragment of IgA, receptor for	ìg	2.5			
	450245	AA007536	Hs.271767	ESTs, Moderately similar to ALU1_H	ig	2.5			
	416429	H54658	Hs.268942	ESTs	E1-E2_ATPase;Hydrolase	2.5			
15	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneurona	sugar_tr	2.5			
	433182	AB039920	Hs.127821	BWRT protein	ion_trans	2.5			
	403092			predicted exon	fn3	2.5			
	406850	AI624300	Hs.172928	collagen, type I, alpha 1	vwc;Collagen;COLFI	2.5			
	438698	AW297855	Hs.125815	ESTs	lipoxygenase;PLAT	2.5			
20	456815	NM_013348	Hs.144011	potassium inwardly-rectifying channe	IRK	2.5			
		_			•				
	TABLE 28:								
	Pkey; Unique Eos probeset Identifier number								
		er: Gene cluster		•					
25	Accession:	Genbank acces	sion numbers	**					
				•					
	Pkey	CAT Number	Accession						
	409385	112523_1	AA071267	T65940 T64515 AA071334					
	412333	1289037_1	AW937485	AW937589 AW937658 AW937654 AW937492					
30	413605	1379792_1	BE152644	BE152712 BE152668 BE152659 BE152810 BE15281	1 BE152816 BE152643 BE152706 BE15	2656 BE152660 BE152715 BE152662			
				BE152661 BE152672 BE152653 BE152716 BE15265					
•				BE152775 BE152666 BE152768 BE152813 BE15266					
			BE152707	BE152815 BE152678 BE152673 BE152782 BE15267	1 BE152682 BE152760 BE152809 BE15	2778 BE152780 BE152762 BE152776			
~ ~			BE152781	BE152774 BE152763 BE152769					
35	416151	1573926_1	T26661 Z4	4135 H23016					
	416441	159480_1	BE407197	AA182474 AA180369 BE275628 BE276131					
	416631	1605019_1	H69466 H9	3884 N59684					
	423573	229714_1	AA328504	AA327783 AW962370					
40	447197	711623_1		366546 R36167					
40	447420	721207_1	Al378628 h	132350 H85772					
	452530	920646_1		1905516 Al905457 Al905515 AW176013 AW176037					
	452947	939810_1	AW130413						
	453420	966433_1	AJ003459						
AE	459170	920646_1	Al905518 A	1905516 Al905457 Al905515 AW176013 AW176037					
45									
	TABLE 2C								
		dne unuper cou				Para Pund IThe Dalk assured			
				ers in this column are Genbank Identifier (GI) numbers	s. Dunnami. et al. refers to the publical	tion entities. The DIVA sequence of			
50				et al. (1999) Nature 402:489-495 exons were predicted					
50				exons were predicted is of predicted exons					
	ПСРОЗНИИ	i. IIIAIGAGA TIUGI	conne hosinoi	a or predicted exora					
				Vt_position					
	Okou	D _e f	Cloned I						
	Pkey	Ref							
55	400464	9929670	Plus	22074-22214					
55	400464 400704	9929670 8118864	Plus Minus	22074-22214 53110-63241					
55	400464 400704 400749	9929670 8118864 7331445	Plus Minus Minus	22074-22214 53110-63241 9162-9293					
55	400464 400704 400749 401244	9929670 8118864 7331445 4827300	Plus Minus Minus Minus	22074-22214 33110-63241 9162-9293 55359-56376					
55	400464 400704 400749 401244 401537	9929670 8118864 7331445 4827300 7960358	Plus Minus Minus Minus Minus	22074-22214 33110-63241 9162-9293 55359-55376 186786-187029,190607-190779,198218-198348					
	400464 400704 400749 401244 401537 401657	9929670 8118864 7331445 4827300 7960358 9100664	Plus Minus Minus Minus Minus Minus	22074-22214 33110-63241 9162-9293 55359-56376 186786-187029,190507-190779,198218-198348 7312-8163					
55 60	400464 400704 400749 401244 401537 401657 402172	9929670 8118864 7331445 4827300 7960358 9100664 8575911	Plus Minus	22074-22214 53110-63241 9162-9293 55559-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671					
	400464 400704 400749 401244 401537 401657 402172 402425	9929570 8118864 7331445 4827300 7960358 9100664 8575911 9796347	Plus Minus	22074-22214 33110-63241 35130-63243 55359-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-143671 50224-50395					
	400464 400704 400749 401244 401537 401657 402172 402425 402745	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200	Plus Minus	22074-22214 33110-63241 9162-9293 55359-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-143671 50224-50395 76516-76690					
60	400464 400704 400749 401244 401537 401657 402172 402425 402745 403074	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241	Plus Minus	22074-22214 33110-63241 9162-9293 55359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 76516-76690 143375-143561					
60	400464 400704 400749 401244 401537 401657 402172 402425 402745 403074 403077	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241	Plus Minus	22074-22214 33110-63241 33110-63241 35150-56376 186766-187029,190507-190779,198218-198348 7312-8163 143376-143671 50224-50395 6516-76690 143376-143561 146923-147222,147326-147628					
	400464 400704 400749 401244 401537 401657 402172 402425 402745 403074 403077 403083	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9786347 9212200 8954241 8954241	Plus Minus Plus Plus Plus	22074-22214 33110-63241 33110-63241 353159-56376 186786-187029,190607-190779,198218-198348 7312-8163 143376-143671 50224-50395 76516-76690 146375-143561 146923-147222,147326-147628					
60	400464 400704 400749 401244 401537 401657 402172 402425 402745 403074 403083 403089	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9786347 9212200 8954241 8954241 8954241	Plus Minus Plus Plus Plus Plus Plus	22074-22214 33110-63241 33110-63241 35319-63241 35359-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-1435671 50224-50395 765516-76690 143378-143561 146923-147222,147326-147628 163070-163351 171964-172239					
60	400464 400704 400749 401537 401657 402172 402425 402745 403074 403077 403083 403089 403092	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241	Plus Minus Plus Plus Plus Plus Plus Plus	22074-22214 33110-63241 33110-63241 35150-63241 3162-9293 55359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 16516-76690 143375-143561 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813					
60 65	400464 400704 400749 401244 401537 401657 402172 402425 403074 403077 403083 403089 403092 403093	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241	Plus Minus Plus Plus Plus Plus Plus Plus	22074-22214 33110-63241 33110-63241 35359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 1771964-172239 174720-175016,175508-175813					
60 65	400464 400704 400749 401244 401537 401657 402172 402425 402745 403074 403083 403089 403089 403093 403411	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9786347 9212200 8954241 8954241 8954241 8954241 8954241 8954241	Plus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 353159-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-143671 50224-50395 76516-76690 1463923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751					
60	400/464 400704 400704 400704 401244 401537 401657 402475 402475 403074 403073 403083 403083 403083 403083 403083 403086 403086	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9786347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 8954241 8954241 895635 8705027	Plus Minus Minus Minus Minus Minus Minus Minus Minus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 3310-63241 35539-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-1435671 50224-50395 765516-76690 143375-143561 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 1177083-177373,177464-177751 104247-104420 30268-30482					
60 65	400464 400704 400704 401244 401537 401657 402172 402425 4027745 403077 403083 403083 403092 403093 403411 403687	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 8954241 8954241 7367384	Plus Minus Minus Minus Minus Minus Minus Minus Minus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 33110-63241 36529-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 60526-187029,190507-190779,198218-198348 7312-8163 143978-143671 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-104420 30268-30482 9009-9534					
60 65	400/464 4007744 4007749 401244 401537 401537 402172 402475 402745 403077 403083 403089 403099 403093 403093 403093 403093 403093 403093	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 954241 954241 954241 954241 7387384	Plus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 353159-56376 186786-187029,190507-190779,198218-198348 7312-8163 143376-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 171964-172239 171793-177373,177464-177751 104247-104420 3009-9534 88280-88463					
60 65 70	400/464 400704 400704 401244 401537 401575 402175 402475 403077 403083 403089 403099 403093 403411 403661 403661 403661 403661 403661 403661 403763	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9786347 9212200 8954241 8954241 8954241 8954241 9438635 8705027 7387384 732888	Plus Minus Plus Plus Plus Plus Plus Plus Minus	22074-22214 33110-63241 33110-63241 33110-63241 35359-56376 186786-187029,190607-190779,198218-198348 7312-8163 143378-1435671 50224-50395 76516-76690 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 1777083-177373,177464-177751 104247-104420 30268-30482 3099-9534 38280-88463 43575-43887		·			
60 65	400/464 4007744 4007749 401244 401537 401537 402172 402475 402745 403077 403083 403089 403099 403093 403093 403093 403093 403093 403093	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 8954241 7387384 7387384 7229888 8099895	Plus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 353159-56376 186786-187029,190507-190779,198218-198348 7312-8163 143376-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 171964-172239 171793-177373,177464-177751 104247-104420 3009-9534 88280-88463	•				
60 65 70	400464 400749 401244 401537 401657 402172 4024725 402772 403077 403083 403092 403092 403093 403661 403687 403681 403681 403681 4037896	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 9438635 8705027 7387384 7229688 8093896 4481839	Plus Minus Plus Plus Plus Plus Plus Plus Plus Minus Minus Plus Minus Plus Plus Plus Minus Plus	22074-22214 33110-63241 33110-63241 3310-63241 35359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 76516-76690 143975-147222,147326-147628 163070-163351 1771964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-104420 30268-30482 30268-30482 30298-9534 88280-88463 43575-43887 55073-77664 76644-7991					
60 65 70	400464 400704 400704 401244 401537 401657 402172 402425 4027745 403077 403083 403083 403093 403093 403687 403687 403687 403687 403687 403687 403687 403687 403687 403687 403687 403687 403786 403786 403786 404187	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 8954241 7387384 7387384 7229888 8099895	Plus Minus Plus Plus Plus Plus Plus Plus Minus Minus Minus Plus Plus Plus Minus Minus Plus Minus Plus Plus Plus Plus Plus Plus Plus Pl	22074-22214 33110-63241 33110-63241 33110-63241 36529-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 1605076-76890 143375-143561 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-10420 103268-30482 1009-9534 10488280-088463 104573-77664					
60 65 70	400/464 400704 400704 401724 401237 401537 401537 402172 402475 402745 403077 403083 403089 403099 403093 403411 403661 403661 403661 403763 403763 403763 403763 4037864 404187	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 9438635 8705027 7387384 7229888 8099896 4481839 5672609	Plus Minus Plus Plus Plus Plus Plus Plus Plus Minus	22074-22214 33110-63241 33110-63241 36162-9293 55359-56376 186786-187029,190607-190779,198218-198348 3312-8163 143376-143671 50224-50395 76516-76690 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 1777083-177373,177464-177751 104247-104420 30268-30482 909-9534 38575-43887 75073-77664 7644-7991 74695-75123					
60 65 70 75	400464 400749 401244 401537 401657 402172 402475 403077 403087 403092 403093 403491 403661 403687 403687 403687 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 403763 404187 404243 404243	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 8954241 8954241 7387384 7387384 7229888 8099896 4481839 5672609 9828129	Plus Minus Plus Plus Plus Plus Plus Minus Plus Minus Plus Minus Plus Plus	22074-22214 33110-63241 33110-63241 33110-63241 33110-63241 3162-9293 55359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 143378-143561 146923-147222,147326-147628 163070-163351 171964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-104420 30268-30482 9009-9534 38280-88463 43575-43887 75073-77664 7644-7991 74695-75123 3649-3750,4161-4306,5962-6049,6849-6965	3,47296-47457,49549-49658,49790-4990				
60 65 70	400464 400749 401244 401537 401637 401637 402172 402475 403077 403083 403092 403093 403093 403491 403661 403661 403687 403763 403763 403763 403763 403763 403763 403763 404243 404270 404886 405281	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 895424 895	Plus Minus Plus Plus Plus Plus Plus Plus Plus Minus Minus Minus Plus Plus Minus Minus Minus Minus Minus Plus Minus Minus Minus Minus Minus Minus Minus Minus	22074-22214 33110-63241 33110-63241 33110-63241 35359-56376 186766-187029,190507-190779,198218-198348 7312-8163 143376-143671 50224-50395 65516-76690 146923-147222,147326-147628 163070-163351 177964-172239 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-104420 300268-30482 3009-9534 38280-88463 43575-43887 75073-77664 7644-7991 74695-75123 3849-3750,4161-4306,5962-6049,6849-6965 30058-30586	3,47296-47457,49549-49658,49790-4990	.· 14,50231-50342,53583-53667,54111-			
60 65 70 75	400464 400704 400704 401244 401537 401657 402172 402425 4027074 403083 403083 403083 403092 403093 403411 403687 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681 403681	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 895424 895	Plus Minus Plus Plus Plus Plus Plus Minus Plus Minus	22074-22214 33110-63241 33110-63241 33110-63241 35359-56376 186786-187029,190607-190779,198218-198348 731378-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 771964-172223 1771964-172239 1771964-172239 1771964-172739 1771964 17644-7991 174695-75123 3649-3750,4161-4306,5962-6049,6849-6965 30058-30538 34202-34351,35194-35336,45412-45475,45731-45956	3,47296-47457,49549-49658,49790-4990				
60 65 70 75	400464 400704 400704 401244 401537 401657 402172 402425 4027745 403077 403083 403093 403093 403093 403411 403687 403693 403691 403768 404187 404243 404283 404283 404283 404283 404283 404283	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 9438635 8705027 7387384 7229688 8099896 4481839 5672609 9828129 4884062 6139075	Plus Minus Plus Plus Plus Plus Plus Minus Minus Minus Minus Minus Plus Minus Minus Minus Minus Plus Minus Plus Minus Plus Minus Plus Minus Plus Minus Plus Minus Minus Plus	22074-22214 33110-63241 33110-63241 33110-63241 35359-56376 186766-187029,190607-190779,198218-198348 7312-8163 143376-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 177083-177373,177464-177751 104247-104420 30268-30482 30268-30482 3029-9534 88280-88463 43575-43887 756073-77664 7644-7991 74695-75123 3649-3750,4161-4306,5962-6049,6849-6965 30058-30598 34202-34351,35194-35336,45412-45475,45731-45956 54279 55744-55903,57080-57170,61478-61560 118577-118807,119091-119296,121626-121823	3,47296-47457,49549-49658,49790-4990				
60 65 70 75	400464 4007749 401244 401537 401637 401637 402172 402425 403074 403092 403092 403092 403093 403491 403661 403661 403687 403763 403763 403763 404470 404886 404283 405285 405285	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 9438635 8705027 7387384 7229888 809988 4481839 5672609 9828129 4884062 6139075	Plus Minus Plus Plus Plus Plus Plus Minus Minus Minus Minus Minus Minus Minus Minus Minus Plus Minus Minus Plus Minus Minus Plus	22074-22214 33110-63241 33110-63241 33110-63241 33110-63241 3162-9293 55359-56376 186786-187029,190507-190779,198218-198348 7312-8163 143378-143671 50224-50395 143378-143561 146923-147222,147326-147628 146923-147222,147326-147628 146923-1472229 174720-175016,175104-175406,175508-175813 177083-177373,177464-177751 104247-104420 30268-30482 9009-9534 88280-88463 43575-43887 75073-77664 7644-7991 76495-75123 33649-3750,4161-4306,5962-6049,6849-6965 30058-30598 34202-34351,35194-35336,45412-45475,45731-45956 54279 55744-55903,57080-57170,61478-61560 118577-118807,119091-119296,121626-121823 124351-124520,124914-125050	3,47296-47457,49549-49658,49790-4990				
60 65 70 75	400464 400704 400704 401244 401537 401657 402172 402425 4027745 403077 403083 403093 403093 403093 403411 403687 403693 403691 403768 404187 404243 404283 404283 404283 404283 404283 404283	9929670 8118864 7331445 4827300 7960358 9100664 8575911 9796347 9212200 8954241 8954241 8954241 8954241 8954241 8954241 9438635 8705027 7387384 7229688 8099896 4481839 5672609 9828129 4884062 6139075	Plus Minus Plus Plus Plus Plus Plus Minus Minus Minus Minus Minus Minus Minus Minus Minus Plus Minus Minus Plus Minus Minus Plus	22074-22214 33110-63241 33110-63241 33110-63241 35359-56376 186766-187029,190607-190779,198218-198348 7312-8163 143376-143671 50224-50395 76516-76690 143375-143561 146923-147222,147326-147628 163070-163351 177083-177373,177464-177751 104247-104420 30268-30482 30268-30482 3029-9534 88280-88463 43575-43887 756073-77664 7644-7991 74695-75123 3649-3750,4161-4306,5962-6049,6849-6965 30058-30598 34202-34351,35194-35336,45412-45475,45731-45956 54279 55744-55903,57080-57170,61478-61560 118577-118807,119091-119296,121626-121823	3,47296-47457,49549-49658,49790-4990				

PCT/US02/19297 WO 02/102235

405790 1203968 Plus 136364-136509,136579-136699,136805-136941

TABLE 3A lists about 1643 genes up-regulated in ovarian cancer compared to normal ovaries. These were selected as for Table 1A, except that the ratio was greater than or equal to 15, and the denominator was the arithmetic mean value for various non-malignant ovary specimens obtained. 5

TABLE 3A: ABOUT 1643 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL OVARY Pkey: Primekey
Ex. Accr. Exemplar Accession
UG ID: UniGene ID
Title: Unigene Title
PFAM domains

10

ratio: turnor vs. normal tissues

15	Pkey	Ex. Acon No.	UGID	Title	ratio
13	420859	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgranulin A)	219.9
	422166	W72424	Hs.112405	\$100 calclum-binding protein A9 (calgranulin B)	180.2
	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKALP)	165.0
	424799	BE550723	Hs.153179	fatty acid binding protein 5 (psoriasis-associated)	161.5
20	442402	NM_000954	Hs.8272	prostaglandin D2 synthase (21kD, brain)	150.2
	408522	AI541214	Hs.46320	Small proline-rich protein SPRK [human, odonlogenic k	149.5
	431369	BE184455	Hs.251754	secretory leukocyte protease inhibitor (antileukoprotein	144.9
	430520	NM_016190	Hs.242057	chromosome 1 open reading frame 10	. 136.6
25	428471	X57348	Hs.184510	stratifin	129.5
25	421978	AJ243662	Hs.110196	NICE-1 protein	108.7 106.2
	437191 407788	NM_006846 BE514982	Hs.5476 Hs.38991	serine protease inhibitor, Kazal type, 5 S100 calcium-binding protein A2	105.5
	441565	AW953575	Hs.169902	solute carrier family 2 (facilitated glucose transporter),	103.6
	431211	M86849	Hs.5566	gap junction protein, bela 2, 26kD (connexin 26)	102.1
30	419329	AY007220	Hs.288998	S100-type calcium binding protein A14	95.3
	430572	U33114	Hs.245188	tissue inhibitor of metalloproteinase 3 (Sorsby fundus d	87.0
	417079	U65590	Hs.81134	Interleukin 1 receptor antagonist	86.1
	412636	NM_004415	Hs.74316	desmoplakin (DPI, DPII)	85.0
25	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated protein	84.8
35	426295	AW367283	Hs.75839	zinc finger protein 6 (CMPX1)	84.5
	452669	AA216363	Hs.262958	ESTs, Weakly similar to alternatively spliced product u	84.4
	406711	N25514	Hs.77385	myosin, light polypeptide 6, alkali, smooth muscle and n	83.8
	406712	M31212	Hs.77385	myosin, light polypeptide 6, alkali, smooth muscle and n	. 81.0 81.0
40	432680	T47364 AW250318	Hs.278613 Hs.80395	Interferon, alpha-inducible protein 27	77.B
70	416889 409453	AV250516	Hs.95612	mal, T-cell differentiation protein ESTs	75.3
	424670	W61215	Hs.116651	epithelial V-like antigen 1	67.5
	417130	AW276858	Hs.81256	S100 calcium-binding protein A4 (calcium protein, calv	67.0
•	423634	AW959908	Hs.1690	heparin-binding growth factor binding protein	65.7
45	442379	NM_004613	Hs.8265	transglutaminase 2 (C polypeptide, protein-glutamine-g	64.7
	456898	NM_001928	Hs.155597	D component of complement (adipsin)	64.6
	423017	AW178761	Hs.227948	serine (or cysteine) proteinase inhibitor, clade B (ovalbu	63.6
	447990	BE048821	Hs.20144	small inducible cytokine subfamily A (Cys-Cys), memb	60.7
50	424362	AL137646	Hs.146001	Homo saplens mRNA; cDNA DKFZp586F0824 (from	60.3
50	414438	A1879277	Hs.76136	thioredoxin	59.9
	420136	AW801090	Hs.195851	actin, alpha 2, smooth muscle, aorta	58.9
	433336	AF017986	Hs.31386	ESTs, Highly similar to JE0174 frizzled protein-2 [H.sa	58.8 57.0
	403741 430637	BE160081	Hs.256290	predicted exon S100 calcium-binding protein A11 (catgizzarin)	56.1
55	424098	AF077374	Hs.139322	small proline-rich protein 3	55.8
•	441591	AF055992	Hs.183	Duffy blood group	55.6
	426521	AF161445	Hs.170219	hypothetical protein	55.5
	406713	U02629	Hs.77385	myosin, light polypeptide 6, alkali, smooth muscle and n	55.3
	406725	D51245	Hs.288061	actin, beta	54.1
60	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psoriasin 1)	54.1
	406755	N80129	Hs.94360	metallothionein 1L	54.0
	425593	AA278921	Hs.1908	proteoglycan 1, secretory granule	53.3
	442257	AW503831		gb:UI-HF-BNO-alb-b-05-0-UI.r1 NIH_MGC_50 Homo	53.1
65	421957	AW068637	Hs.109857	hypothetical protein DKFZp434H0820	52.3 51.2
05	447526	AL048753	Hs.340 Hs.283305	small inducible cytokine A2 (monocyte chemotactic pro	51.2 51.0
	406722 427223	H27498 BE208189	Hs.174031	Homo sapiens SNC73 protein (SNC73) mRNA, comple cytochrome c oxidase subunit Vib	51.0
	414420	AA043424	Hs.76095	immediate early response 3	50.9
	417259	AW903838	Hs.81800	chondroitin sulfate proteoglycan 2 (versican)	50.3
70	414191	AW250089	Hs.75807	PDZ and LIM domain 1 (elfin)	49.5
	436906	H95990	Hs.181244	major histocompatibility complex, class 1, A	49.0
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	49.0
	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibitor, clade B (ovalbu	48.8
75	432706	NM_013230	Hs.286124	CO24 antigen (small cell lung carcinoma cluster 4 antig	48.8
75	421948	L42583	Hs.111758	keratin 6A	48.7
	414662	AL036058	Hs.76807	major histocompatibility complex, class II, DR alpha	48.5
	425071	NM_013989	Hs.154424	delodinase, lodothyronine, type II	48.5
	404767	1170270	Un 04420	predicted exon paired-like homeodomain transcription factor 1	48.4
80	418327 436729	U70370 8E621807	Hs.84136 Hs.3337	transmembrane 4 superfamily member 1	48.2 47.7
00	414183	AW957446	Hs.301711	ESTs	47.2
	400163	A11001710	10.001711	predicted exon	47.0
	433423	BE407127	Hs.8997	heat shock 70kD protein 1A	46.9
	423457		Hs.155606	paired mesoderm homeo box 1	46.6
				100	

	414085	AA114016	Hs.75746	aldehyde dehydrogenase 6	46.0
	423189	M59371	Hs.171596	EphA2	45.6
	438240	N92638	Hs.124004	ESTs	45.5
_	417366	BE185289	Hs.1076	small proline-rich protein 1B (comifin)	45.3
5	412774	AA120855	Hs.23136	ESTs	45.1
	407242	M18728		gb:Human nonspecific crossreacting antigen mRNA, co	44.8
	431292	AA370141	Hs.251453	Human DNA sequence from clone 967N21 on chromos	44.8
	403695			predicted exon	43.5
10	417365	D50683	Hs.82028	transforming growth factor, beta receptor II (70-80kD)	43.4
10	432331	W37862	Hs.274368	Homo sapiens mRNA; cDNA DKFZp586I1524 (from c	43.4
	424479	AF084238	Hs.149098	smoothelin	43.3
	444726	NM_006147	Hs.11801	Interferon regulatory factor 6	43.2
	432314	AA533447	Hs.285173	ESTs	43.2
	429500	X78565	Hs.289114	hexabrachion (tenascin C, cytotaclin)	43.1
15	441406	Z45957	Hs.7837	Homo saptens cDNA FLJ10457 fis, clone NT2RP1001	42.7
	412969	Al373162	Hs.75103	tyrosine 3-monooxygenase/tryptophan 5-monooxygenas	42.6
	423720	AL044191	Hs.23388	Homo sapiens cDNA: FLJ21310 fis, clone CQL02160	42.5
	400111			predicted exon	42.4
	407207	T03651	Hs.179661	tubulin, beta polypeptide	42.4
20	417164	AA338283	Hs.81361	heterogeneous nuclear ribonucleoprotein A/B	42.2
	424971	AA479005	Hs.154036	turnor suppressing subtransferable candidate 3	41.9
	439394	AA149250	Hs.56105	ESTs, Weakly similar to WDNM RAT WDNM1 PROT	41.9
	406657	Al678644	Hs.277477	major histocompatibility complex, class I, C	41.8
	451092	AI207256	Hs.13766	Homo saplens mRNA for FLJ00074 protein, partial cds	41.6
25	412596	AA161219	Hs.799	diphtherla toxin receptor (heparin-binding epidermal gro	41.6
	422103	AA984330	Hs.111676	protein kinase H11; small stress protein-like protein HS	41.5
	428785	Al015953	Hs.125265	ESTs	41.3
	450988	BE618571	Hs.429	ATP synthase, H+ transporting, mitochondrial F0 comp	41.0
	414622	AI752666	Hs.76669	nicotinamide N-methyltransferase	40.8
30	405022	711102000	110.1 0000	predicted exon	40.8
	408221	AA912183	Hs.47447	ESTs	40.8
	446500	U78093	Hs.15154	sushi-repeat-containing protein, X chromosome	40.7
	421416	BE302950	Hs.104125	adenylyl cyclase-associated protein	40.6
	412247	AF022375	Hs.73793	vascular endothelial growth factor	40.5
35	410541	AA065003	Hs.64179	hypothetical protein	40.5
55	406658	A1920965	Hs.77961		40.0
	420225	AW243046	Hs.94789	major histocompatibility complex, class I, 8 ESTs	40.0
	420225				39.4
		A1982529	Hs.84298	CD74 antigen (invariant polypeptide of major histocom	39.4
40	443623 404201	AA345519	Hs.9641	complement component 1, q subcomponent, alpha poly	39.3
70		AF059566	Hs.103983	solute carrier family 5 (sodium lodide symporter), mem	39.1
	405138	A1412C4012	U= 254200	predicted exon	
	408733	AW264812	Hs.254290	ESTs	39.0
	414044	BE614194	Hs.75721	profilin 1	38.9
45	430152	AB001325	Hs.234642	aquaporin 3	38.8
43	428121	AB006622	Hs.182536	Homo sapiens cDNA: FLJ21370 fis, clone COL03092	38.8
	434311	BE543469	Hs.266263	Homo sapiens cDNA FLJ14115 fis, clone MAMMA10	38.7
	406140			predicted exon	38.5
	432918	AF077200	Hs.279813	hypothetical protein	38.4
50	420107	AL043980	Hs.7886	pellino (Orosophila) homolog 1	38.4
50	427693	BE546832	Hs.180370	cofilin 1 (non-muscle)	38.1
	448835	BE277929	Hs.11081	ESTs, Weakly similar to S57447 HPBRII-7 protein [H.	38.1
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PLACE1010	37.9
	428383	BE616599	Hs.184029	hypothetical protein DKFZp761A052	37.7
	436258	AW867491	Hs.107125	ESTs, Weakly similar to S57447 HPBRII-7 protein (H.	37.7
55	420798	W93774	Hs.99936	keratin 10 (epidermolytic hyperkeratosis; keratosis palm	37.7
	400327	M18679	Hs.247942	Human variant 5S rRNA-like gene and ORF, complete	37.6
	401781			predicted exon	37.6
	448257	AW772070	Hs.253146	ESTs	37.3
60	428415	AA337211	Hs.184222	Down syndrome critical region gene 1	37.2
60	424206	NM_003734 .	Hs.198241	amine oxidase, copper containing 3 (vascular adhesion p	37.2
	406812	AF000575	Hs.67846	leukocyte immunoglobulin-like receptor, subfamily B (37.2
	425882	U83115	Hs.161002	absent in metanoma 1	37.2
	432501	BE546532	Hs.287329	Fas binding protein 1	37.1
65	421786	Al188653	Hs.21351	ESTs	37.1
03	427981	BE275986	Hs.181311	asparaginyl-IRNA synthetase	37.0
	410143	AA188169	Hs.288819	Homo sapiens cDNA: FLJ21022 fis, clone CAE06383	36.8
	451328	AW853606	Hs.109012	ESTs	36.7
	414135	NM_004419	Hs.2128	dual specificity phosphatase 5	36.7
70	414602	AW630088	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (from	36.7
70	401785			predicted exon	36.5
	411469	T09997	Hs.70327	cysteine-rich protein 2	36.2
	419693	AA133749	Hs.92323	FXYD domain-containing ion transport regulator 3	36.1
	417039	AA302180	Hs.80986	ATP synthase, H+ transporting, mitochondrial F0 comp	36.1
75	406718	AA505525	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	36.0
75	402543	*140000	11	predicted exon	36.0
	408669	Al493591	Hs.78146	platelet/endothelial cell adhesion molecule (CO31 antig	35.9
	414987	AA524394	Hs.165544	ESTs	35.9
	445810	AW265700	Hs.155660	ESTs '	35.9
80	406653	AA574074	Hs.77961	major histocompatibility complex, class I, B	35.7
οU	407498	U28131	11- 444==	gb:Human HMGI-C chimeric transcript mRNA, partial	35.6
	412524	AA417813	Hs.11177	ESTs	35.5
	401521	A145000***	11. 00.	predicted exon	35.4
	408948		Hs.221441	ESTs	35.1
	406728	A1986345	Hs.183704	ubiquitin C	34.9

	440000				
	440669	Al206964		gb:qr30g06.x1 NCI_CGAP_GC6 Homo sapiens cDNA	34.8
	422658	AF231981	Hs.250175	homolog of yeast long chain polyunsaturated fally acid	34.8
	452924	AW580939	Hs.97199	complement companent C1q receptor	34.7
_	428600	AW863261	Hs.15036	ESTs, Highly similar to AF161358 1 HSPC095 [H.sapi	34.7
5	409828	AW501137		gb:UI-HF-BP0p-ail-o-12-0-UI.r1 NIH_MGC_51 Homo	34.5
	459390	BE385725		gb:601276347F1 NIH_MGC_20 Homo sapiens cDNA	34.5
	445055	BE512856	Hs.109051	glycoprotein, synaptic 2	34.3
	411789	AF245505	Hs.72157	Homo saptens adlican mRNA, complete cds	34.3
	410626	BE407727		gb:601299771F1 NIH_MGC_21 Homo saplens cDNA	34.2
10	410706	A1732404	Hs.68846	ESTs	34.2
	419273	BE271180	Hs.293490	ESTs	34.2
	407839	AA045144	Hs.161566	ESTs	34.0
	444286	A1625304			34.0
			Hs.190312	ESTs	
15	449226	AB002365	Hs.23311	KIAA0367 protein	34.0
15	414290	AI568801	Hs.71721	ESTs	33.9
	401245			predicted exon	33.9
	425222	M85430	Hs.155191	villin 2 (ezrin)	33.8
	409950	R42678	Hs.301669	KIAA0564 protein	33.8
~~	437201	F29279	Hs.177486	arnyloid beta (A4) precursor protein (protease nexin-il,	33.7
20	406566	AF088886	Hs.11590	cathepsin F	33.7
	405071			predicted exon	33.7
	455426	AW937792		gb:QV3-DT0045-140200-082-b07 DT0045 Homo sapi	33.6
	415160	T82802		gb:yd38a04.r1 Soares fetal liver spieen 1NFLS Homo s	33.5
	424995	Z45023		gb:HSC2FA041 normalized infant brain cDNA Homo s	33.5
25	453870	AW385001	Hs.8042	Homo sapiens cDNA: FLJ23173 fis, clone LNG10019	33.5
	433470	AW960564	Hs.3337	transmembrane 4 superfamily member 1	33.4
	428188	M98447	Hs.22	transglutaminase 1 (K polypeptide epidermal type I, pro	33.3
	417409	BE272506	Hs.82109	syndecan 1	33.3
20	425389	AW974499	Hs.192183	ESTs	33.3
30	434658	Al624436	Hs.194488	ESTs	33.2
	456562	AA306049	Hs.102669	DKFZP434O125 protein	33.1
	447111	A1017574	Hs.17409	cysteine-rich protein 1 (Intestinal)	33.0
	432360	BE045243	Hs.274416	NADH dehydrogenase (ubiquinone) 1 alpha subcomple	32.9
	424125	M31669	Hs.1735	inhibin, beta B (activin AB bata polypeptide)	32.7
35	419968	X04430	Hs.93913	Interleukin 6 (Interferon, beta 2)	32.7
	429415	NM_002593	Hs.202097	procollagen C-endopeptidase enhancer	32.6
	451541	BE279383	Hs.26557	plakophilin 3	32.6
	424499	N90344	Hs.149436	kinesin family member 5B	32.4
	402144	1130317	113.143490	predicted exon	32.4
40		A1107C442	Un 447020		
TU	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	32.4
	400231	140 4400	11 00011	predicted exon	32.3
	437712	X04588	Hs.85844	neurotrophic tyrosine kinase, receptor, type 1	32.3
	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	32.2
40	419659	AB023206	Hs.92186	Leman coiled-coil protein	32.0
45	428582	BE336699	Hs.185055	BENE protein	32.0
	421401	AW410478	Hs.104019	transforming, acidic coiled-coil containing protein 3	32.0
	414064	BE245289	Hs.16165	expressed in activated T/LAK lymphocytes	32.0
	431938	AA938471	Hs.115242	developmentally regulated GTP-binding protein 1	32.0
	411930	F06485		gb:HSC19G051 normalized Infant brain cDNA Homo s	31.9
50	428150	AW950547	Hs.182684	cytochrome c oxidase subunit VIIa polypeptide 2 (liver)	31.8
	401887			predicted exon	31.8
	412570	AA033517	Hs.74047	electron-transfer-flavoprotein, beta polypaptide	31.7
	422738	X80915	Hs.1573	growth differentiation factor 5 (cartilage-derived morph	31.6
	453092	X64838	Hs.31638	restin (Reed-Steinberg ceil-expressed intermediate filam	31.5
55	413924	AL119964	Hs.75616	KIAA0018 gene product	31.4
55					
	420231	R06866	Hs.19813	ESTs	31.3
	434715	BE005346	Hs.116410	ESTs	31.3
	422831	R02504		gb:ye86f06.r1 Soares fetal liver spleen 1NFLS Homo sa	31.2
60	416854	H40164	Hs.80296	Purkinje cell protein 4	31.2
60	422976	AU076657	Hs.1600	sec61 homolog	31.1
	426356	BE536836		gb:601064837F1 NIH_MGC_10 Homo sapiens cDNA	31.0
	433935	AF112208	Hs.44163	13kDa differentiation-associated protein	30.8
	430040	AW503115	Hs.227823	pM5 protein	30.8
	406340	AA299679	Hs.180370	cofilin 1 (non-muscle)	30.8
65	426050	AF017307	Hs.166096	E74-like factor 3 (ets domain transcription factor, epith	30.7
	425105	BE280066	Hs.24956	hypothetical protein FLJ22056	30.7
	402066			predicted exon	30.7
	429538	BE182592	Hs.139322	small proline-rich protein 3	30.6
	418371	M13560	Hs.84298	CD74 antigen (invariant polypeptide of major histocom	30.4
70	421251	Z28913	Hs.102948	enigma (LIM domain protein)	30.3
	456084	AA155859	Hs.79708	ESTs	30.3
	402023	, 41100003	113.13100	predicted exon	30.3
				predicted exon	
	404356	024707	Un nenne		30.2
75	415973	R24707	Hs.260201	ESTs	30.2
13	445983	Al269107	Hs.132219	ESTs	30.1
	450440	AB024334	Hs.25001	tyrosine 3-monooxygenase/tryptophan 5-monooxygenas	30.1
	458789	AL157468	Hs.20157	Homo sapiens cDNA FLJ20848 fis, clone ADKA01732	30.1
	400842			predicted exon	30.1
00	406828	AA419202	Hs.84298	CO74 antigen (invariant polypeptide of major histocom	30.0
80	423267	AL137416	Hs.126177	Homo sapiens mRNA; cDNA DKFZp434O192 (from c	30.0
	451383	AW239364	Hs.20242	hypothetical protein FLJ12788	30.0
	437042	AK000702	Hs.5420	hypothetical protein FLJ 20695	30.0
	459399	BE407712		gb:601299745F1 NIH_MGC_21 Homo sepiens cDNA	30.0
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen)	30.0
	-120000				50.0

	*****				•••
	416511	NM_006762	Hs.79356	Lysosomal-associated multispanning membrane protein	29.9
	431009 436651	BE149762 BE045962	Hs.248213 Hs.275998	gap junction protein, beta 6 (connexin 30)	29.7 29.6
	419766	BE243101	Hs.22391	ESTs chromosome 20open reading frame 3	29.5
5	420747	BE294407	Hs.99910	phosphofructokinase, platelet	29.5
_	436895	AF037335	Hs.5338	carbonic anhydrase XII	29.5
	412765	AK000620	Hs.74571	ADP-ribosytation factor 1	29.4
	419223	X60111	Hs.1244	CD9 antigen (p24)	29.4
10	413796	AW408094	Hs.75545	interleukin 4 receptor	29.4
10	447795	AW295151	Hs.163612	ESTs	29.4
	431103	M57399	Hs.44	pleiotrophin (heparin binding growth factor 8, neurite g	29.4
	415314 428411	N88802 AW291464	Hs.5422 Hs.10338	glycoprolein M6B ESTs	29.3 29.3
	430580	AA806105	Hs.140	immunoglobulin heavy constant gamma 3 (Gm marker)	29.3
15	430451	AA836472	Hs.249982	cathepsin B	29.2
	453949	AU077146	Hs.36927	heat shock 105kD	29.2
	413859	AW992356	Hs.8364	pyruvate dehydrogenase kinase, isoenzyme 4	29.2
	407845	AL036518	Hs.118598	ESTs	29.1
20	453500	AJ478427	Hs.43125	ESTs	29.1
20	456054	BE313241	11- 20000	gb:601151545F1 NIH_MGC_19 Homo sapiens cDNA	29.0
	453467 411794	AI535997	Hs.30089	ESTs	29.0 28.9
	421773	AL118577 W69233	Hs.75658 Hs.112457	phosphorylase, glycogen; brain ESTs	28.9
	423621	BE002904	113.112701	gb:QV4-BN0090-070400-163-c07 BN0090 Homo sapi	28.8
25	408935	BE539706	Hs.285363	ESTs	28.8
	450847	NM_003155	Hs.25590	stanniocalcin 1	28.8
	431243	U46455	Hs.252189	syndecan 4 (amphiglycan, ryudocan)	28.7
	423225	AA852604	Hs.125359	Thy-1 cell surface antigen	28.7
20	433469	F12741		gb:HSC3DG061 normalized infant brain cDNA Homo	28.7
30	405783			predicted exon	28.7
	417308	H60720	Hs.81892	KIAA0101 gene product	28.7
	400749 413442	BE140643		predicted exon gb:RC0-HT0015-310599-016 HT0015 Homo sapiens c	28.7 28.6
	404828	BE140043		predicted exon	28.6
35	407453	AJ132087		gb:Homo saplens mRNA for axonemal dynein heavy ch	28.6
-	418529	AW005695	Hs.250897	TRK-fused gene (NOTE: non-standard symbol and nam	28.6
	413787	A1352558	Hs.75544	tyrosine 3-monooxygenase/tryptophan 5-monooxygenas	28.5
	450690	AA296696	Hs.25334	FXYD domain-containing ion transport regulator 5	28.5
40	402430			predicted exon	28.4
40	413929	BE501689	Hs.75617	collagen, type IV, alpha 2	28.2
	423803	NM_005709	Hs.132945	PDZ-73 protein	28.2
	406086	V64163	Hs.79386	predicted exon	28.2
	416585 417055	X54162 N39489	Hs.7258	leiomodin 1 (smooth muscle) Homo saplens cDNA: FLJ22021 fis, clone HEP08253	28.2 28.1
45	449184	AW296295	Hs.196491	ESTs	28.1
	446542	NM_004281	Hs.15259	BCL2-associated athanogene 3	28.1
	412793	AW997986		gb:RC1-BN0056-230200-021-e11 BN0056 Homo saple	28.0
	452818	W21909	Hs.8372	ubiquinol-cytochrome c reductase (6.4kD) subunit	28.0
5 0	402869		\	predicted exon	27.9
50	436810	AA353044	Hs.5321	ARP3 (actin-related protein 3, yeast) homolog	27.9
	402075	D074C7	11- 00004	predicted exon	27.9
	410480 406690	R97457 M29540	Hs.63984 Hs.220529	cadherin 13, H-cadherin (heart)	27.8 27.8
	439766	AB033492	Hs.301241	carchoembryonic antigen-related cell adhesion molecul Homo sapiens mRNA; cDNA DKFZp586A0424 (from	27.7
55	424482	BE268621	Hs.149155	voltage-dependent anion channel 1	27.6
•-	420737	L08096	Hs.99899	tumor necrosis factor (ligand) superfamily, member 7	27.6
	414663	BE396326		gb:601289258F1 NIH_MGC_8 Homo saptens cDNA c	27.6
	409703	NM_006187	Hs.56009	2'-5'oligoadenylate synthetase 3	27.6
60	446108	AL036596	Hs.102773	ESTs	27.5
ΟU	428144	BE269243	Hs.182625	VAMP (vesicle-associated membrane protein)-associate	27.5
	445688	A1248205	Hs.153244	ESTS	27.5
	410275	U85658	Hs.61796	predicted exon transcription factor AP-2 gamma (activating enhancer-b	27.5
	424675	NM_005512	Hs.151641	glycoprotein A repetitions predominant	27.3
65	450455	AL117424	Hs.25035	chloride intracellular channel 4	27.3
	414855	AA156986	Hs.104640	HIV-1 Inducer of short transcripts binding protein	27.2
	433578	BE336886	Hs.3416	adipose differentiation-related protein	27.2
	401994			predicted exon	27.2
70	445033	AV652402	Hs.155145	ESTs	27.2
70	402277	BEC2004C	Un 400470	predicted exon	27.1
	428106 448625	BE620016 AW970786	Hs.182470 Hs.178470	PTD010 protein Homo saplens cDNA: FLJ22662 fis, clone HSI08080	27.1 27.1
	422587	A1879352	Hs.118625	hexokinase 1	27.0
	457204	BE264152	Hs.221994	ESTs	27.0
75	444094	AI695764	Hs.202394	ESTs	27.0
	414053	BE391635	Hs.75725	transgelin 2	26.9
	430511	BE018156	Hs.2575	calpain 1, (mu/l) large subunit	26.9
	434039	L32977	Hs.3712	ubiquinol-cytochrome c reductase, Rieske iron-sulfur po	26.9
QΛ	424939	AK000059	Hs.153881	Homo sapiens NY-REN-62 antigen mRNA, partial cds	26.9
80	414539	BE379046		gb:601236646F1 NIH_MGC_44 Homo saplens cDNA	26.9
	404675 401597	AA172106	Hs.110950	predicted exon Rag C protein	26.8 26.8
	401405	ANTI 2100	1 100 1 10000	predicted exon	26.8
	411541	W03940		gb:za62b02.r1 Soares fetal liver spleen 1NFLS Homo sa	26.8

	412025	AI827451	Hs.24143	ESTs	26.7
	414276	BE297862		gb:601174780F1 NIH_MGC_17 Homo sapiens cDNA	26.7
	444065	AW449415	Hs.10260	Homo sapiens cDNA FLJ11341 fis, done PLACE1010	26.7
5	447981 410677	R53772 NM_003278	Hs.8929 Hs.65424	hypothetical protein FLJ11382 tetranectin (plasminogen-binding protein)	28.7 26.5
•	400982	1111_000210	18.00121	predicted exon	26.5
	452933	AW391423	Hs.288555	Homo saplens cDNA: FLJ22425 fis, clone HRC08686	26.5
	407233	X16354	Hs.50964 Hs.233952	cardinoembryonic antigen-related cell adhesion molecul proteasome (prosome, macropain) subunit, alpha type, 7	26.4 26.3
10	430127 448218	AA219498 Al188489	HS.233332	gb:qd09b12.x1 Soares_placenta_8to9weeks_2NbHP8to	26.3
	413511	AI627178	Hs.75412	Arginine-rich protein	26.2
	459511	Al142379	11 00100	gb:qg64c01.r1 Soares_testis_NHT Homo saptens cDNA	26.2
	410668 458662	BE379794 AI823410	Hs.65403 Hs.169149	hypothetical protein karyopherin alpha 1 (importin alpha 5)	26.2 26.2
15	451219	AA054209	Hs.167904	ESTs	26.2
	448939	BE267795	Hs.22595	hypothetical protein FLJ10637	26.2
	400800	Y10262	Hs.46925	eyes absent (Drosophila) homolog 3	26.2
	446342 421177	BE298665 AW070211	Hs.14846 Hs.102415	Homo sapiens mRNA; cDNA DKFZp564D016 (from c Homo sapiens mRNA; cDNA DKFZp586N0121 (from	26,2 26,1
20	433848	AF095719	Hs.93764	carboxypeptidase A3	26.1
	448497	BE613269	Hs.21893	ESTs, Weakly similar to glycerol 3-phosphate permease	26.1
	415279	F04237	Hs.1447	glial fibrillary acidic protein	26.0
•	419323 430265	Al092379 L36033	Hs.135275 Hs.237356	ESTs stromal cell-derived factor 1	26.0 25.9
25	437679	NM_014214	Hs.5753	inositol(myo)-1(or 4)-monophosphatase 2	25.9
	425535	AB007937	Hs.158287	KIAA0468 gene product	25.8
	412923	AA179922	Hs.75056	adaptor-related protein complex 3, delta 1 subunit	25.8 25.8
	447980 419118	A1703397 AA234223	Hs.202355 Hs.139204	ESTs ESTs	25.8 25.8
30	421224	AW402154	Hs.125812	ESTs	25.8
	414890	BE281095	Hs.77573	uridine phosphorylase	25.8
	447330	BE279949	Hs.18141	ladinin 1	25.7 25.7
•	405610 447604	AW089933	Hs.293674	predicted exon ESTs	25.7 25.7
35	445677	H96577	Hs.6838	ras homolog gene family, member E	25.7
	456088	BE177320	Hs.156148	Homo sapiens cDNA: FLJ23082 fis, clone LNG06451	25.7
	417120	N79687	Hs.46616	ESTs	25.6 25.6
	405194 410687	U24389	Hs.65436	predicted exon lysyl oxidase-like 1	25.6 25.6
40	421888	AA299780	Hs.121036	ESTs	25.6
	420459	AF016045	Hs.97905	ovo (Drosophila) homolog-like 1	25.5
	416323	N72630	Hs.33981	Homo sapiens genomic DNA, chromosoma 21q, section	25.5 25.5
	446292 416274	AF081497 AW160404	Hs.279682 Hs.79126	Rh type C glycoprotein guanine nucleotide binding protein 10	25.5 25.5
45	430028	BE564110	Hs.227750	NADH dehydrogenase (ubiquinone) 1 beta subcomplex	25.5
	438450	AI050866	Hs.65853	nodal, mouse, homolog	25.5
	400215	1150054	11- 400400	predicted exon	25.4 25.4
	430014 453582	H59354 AW854339	Hs.182485 Hs.33476	actinin, alpha 4 hypothetical protein FLJ11937	25.4 25.4
50	405867	7,1100,1000	110.00 11 0	predicted exon	25.4
	459170	Al905518		gb:RC-BT091-210199-098 BT091 Homo sapiens cDNA	25.4
	407944	R34008	Hs.239727 Hs.979	desmocollin 2 pyruvate dehydrogenase (lipoamide) beta	25.4 25.3
	415748 423287	D90086 H38340	ns.313	gb:yp76h07.r1 Soares adult brain N2b4HB55Y Homo s	25.3
55	450944	AA554989	Hs.209061	sudD (suppressor of bimD6, Aspergillus nidulans) homo	25.3
	432906	BE265489	Hs.3123	lethal giant larvae (Drosophila) homolog 2	25.3
	400104	AIDADODE	Un 67776	predicted exon	25.3 25.3
	449019 406897	AJ949095 M57417	Hs.67776	ESTs, Weakly similar to ALU7_HUMAN ALU SUBFA gb:Homo saplens mucin (mucin) mRNA, partial cds.	25.3
60	402639			predicted exon	25.3
	447147	AA910353	Hs.292815	ESTs	25.3
	453379 414217	AA035261 Al309298	Hs.61753 Hs.279898	ESTs Homo sapiens cDNA: FLJ23165 fis, clone LNG09846	25.3 25.3
 .	430223		Hs.235935	nephroblastoma overexpressed gene	25.3
65	406685			gb:Human nonspecific crossreacting antigen mRNA, co	25.3
	444747		Hs.257291	ESTs, Weakly similar to PSS8_HUMAN PROSTASIN	25.2
	417883 430235		Hs.23398 Hs.236494	ESTs RAB10, member RAS oncogene family	25.2 25.2
	459001		Hs.204605	ESTs	25.2
70	434368	AW519020	Hs.212640	Homo sapiens cDNA FLJ13265 fis, clone OVARC1000	25.2
	415917		Hs.49265	gb:HSC1OA111 normalized infant brain cDNA Homo ESTs	25.2 25.2
,	444409 428578		Hs.82148	hypothetical protein	25.1
- -	433417		Hs.136494	ESTs	25.1
75	426372		Hs.169531	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 21	25.1
	402131	AUAHSEEDS	Un 201707	predicted exon ESTs	25.1 25.0
	450545 434162		Hs.201767 Hs.116136		25.0 25.0
00	406571			predicted exon	24.9
80	427600	AW630918	Hs.179774	proteasome (prosome, macropain) activator subunit 2 (P	24.9
	409402 400135		Hs.695	cystalin B (stefin B) predicted exon	24.9 24.9
	428403		Hs.239894	leucine rich repeat (in FUI) interacting protein 1	24.9
	403223			predicted exon	24.8

	435236	T03890	Hs.157208	ESTs, Highly similar to Arx homeoprotein [M.musculu	24.8
	457439	AW410408	Hs.271167	L-pipecolic acid oxidase	24.8
	448667	Z78394	Hs.4896	Homo sapiens cDNA: FLJ22046 fis, clone HEP09276	24.8
_	440605	Z40094	Hs.185698	ESTs	24.8
5	426724	AA383623	Hs.293616	ESTs	24.8
	403359	41040777		predicted exon	24.7
	442826	AI018777	Hs.131241	ESTs .	24.7
	411503	AW190338	Hs.28029	purinergic receptor P2X, ligand-gated ion channel, 4	24.6
10	414540	BE379050	U- 40E0CO	gb:601236655F1 NIH_MGC_44 Homo saplens cDNA	24.6
10	421595 438802	AB014520 AA825976	Hs.105958 Hs.136954	Homo saplens cDNA: FLJ22735 fis, clone HUV00180	24.5
	400491	H25530	Hs.50868	ESTs	24.5
	418994	AA296520	Hs.89546	solute carrier family 22 (organic cation transporter), me	24.5 24.5
	426383	BE537380	113.03340	selectin E (endothelial adhesion molecule 1) gb:601064570F1 NIH_MGC_10 Homo saplans cDNA	24.5
15	418408	AA219321	Hs.173294	ESTs	24.4
13	416186	W87575	Hs.269177	ESTs	24.4
	416908	AA333990	Hs.80424	coagulation factor XIII, A1 polypeptide	24.4
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	24.4
	439706	AW872527	Hs.59761	ESTs	24.4
20	441619	NM_014056	Hs.7917	DKFZP564K247 protein	24.4
	417198	F11533	Hs.81634	ATP synthase, H+ transporting, mitochondrial F0 comp	24.3
	433662	W07162	Hs.150826	CATX-8 protein	24.3
	453986	M13232	Hs.36989	coagulation factor VII (serum prothrombin conversion a	24.3
	457123	AA770021	Hs.16332	ESTs	24.3
25	433864	AA931550	Hs.192785	ESTs	24.3
	409865	AW502208		gb:UI-HF-BR0p-atu-e-09-0-UI.r1 NIH_MGC_52 Hom	24.3
	448175	BE296174	Hs.225160	Homo sapiens cDNA FLJ13102 fis, clone NT2RP3002	24.3
•	406277			predicted exon	24.3
20	451957	AI796320	Hs.10299	Homo saplens cDNA FLJ13545 fis, clone PLACE1006	24.3
30	408802	AL048269	Hs.288544	Homo sapiens cDNA: FLJ20882 fis, clone ADKA0320	24.2
	401757			predicted exon	24.2
	444751	Al207406	Hs.11866	hypothetical protein PRO1197	24.2
	408647	AW245831		gb:2822937.5prime NIH_MGC_7 Homo sapiens cDNA	24.2
25	418870	AF147204	Hs.89414	chemokine (C-X-C motif), receptor 4 (fusin)	24.2
35	436913	AA789074	Hs.187478	ESTs	24.2
	434745	AW974445	Hs.185155	ESTs, Weakly similar to HuEMAP [H.sapiens]	24.2
	451743	AW074266	Hs.23071	ESTs	24.2
	421853	AL117472	Hs.108924	DKFZP586P1422 protein	24.2
40	407926	AW956382	Hs.59771	ESTs	24.1
40	413973	BE279858	Hs.128417	Homo sapiens cDNA FLJ14009 fis, done Y79AA1002	24.1
	439078	AF085936		gb:Homo sapiens full length insert cDNA clone YR58F	24.1
	401913 435138	BE314734		predicted exon	24.1 24.1
	405311	00014704		gb:601152976F1 NIH_MGC_19 Homo saplens cDNA predicted exon	24.0
45	413127	BE066529	Hs.83484	SRY (sex determining region Y)-box 4	24.0
	430793	M83181	Hs.247940	5-hydroxytryplamine (serotonin) receptor 1A	24.0
	434445	Al349306	Hs.11782	ESTs (SCIOLARIA) (SCIOLARIA) (SCIOLARIA)	24.0
	418166	Al754416	Hs.260024	Cdc42 effector protein 3	24.0
	431971	BE274907	Hs.77385	myosin, light polypeptide 6, alkali, smooth muscle and n	23.9
50	401167			predicted exon	23.9
	454163	AW175997		gb:QV0-BT0078-190899-005-E02 BT0078 Homo sapi	23.9
	403306	NM_006825	Hs.74368	transmembrane protein (63kD), endoplasmic reticulum/	23.9
	410627	AA181339	Hs.929	myosin, heavy polypeptide 7, cardiac muscle, beta	23.9
	450796	NM_001988	Hs.25482	envoplakin	23.8
55	442199	BE277633	Hs.286027	etoposide-induced mRNA	23.8
	402699			predicted exon	23.8
	426143	BE379836	Hs.167106	proteasome (prosome, macropain) subunit, alpha type, 3	23.8
	437592	NM_003851	Hs.5710	cellular repressor of E1A-stimulated genes	23.8
60	433598	A1762836	Hs.271433	ESTs, Moderately similar to ALU2_HUMAN ALU SU	23.8
UU	401088	41004074		predicted exon	23.8
	445924	AI264671	Hs.164166	ESTs	23.8
	420902 426369	AA742277	U= 400407	gb:ny28e09.s1 NCI_CGAP_GCB1 Homo saplens cDN	23.8
	458698	AF134157 AW452189	Hs.169487	Kreisler (mouse) maf-related leucine zipper homolog	23.8
65	422048	NM_012445	Hs.257528 Hs.288126	ESTs spondin 2. extracellular matrix protein	23.7 23.7
05	413460	R61610	Hs.21527	ESTs, Weakly similar to KIAA0918 protein [H.sapiens	
	401575	NOTOTO	NS.21321	predicted exon	23.6 23.6
	431822	AA516049		gb:ng65d01.s1 NCI_CGAP_Lip2 Homo sapiens cDNA	23.6
	427276	AA400269	Hs.49598	ESTs	23.6
70	417069	AA442192	Hs.81097	cytochrome c oxidase subunit VIII	23.5
. •	400161		-10.01031	predicted exon	23.5
	417190	NM_001359	Hs.81548	2,4-dienoyl CoA reductase 1, mitochondrial	23.5
	443667	Al129066	Hs.135457	ESTs	23.5
	413544	BE147225		gb:PM2-HT0225-031299-003-f11 HT0225 Homo saple	23.5
75	400685			predicted exon	23.5
	422090	W05345	Hs.293884	ESTs	23.4
	432517	AF275816	Hs.283096	PR domain containing 9	23.4
	405307			predicted exon	23.4
0Λ	416328	H48389	Hs.268886	ESTs	23.4
80	427174	AA398848	Hs.97541	ESTs	23.4
	426148	AI751071	Hs.167135	Homo sapiens cDNA FLJ10728 fis, done NT2RP3001	23.3
	452544	AW851888		gb:QV0-CT0225-131099-034-d05 CT0225 Homo sapie	23.3
	404890	A A 121520	11- 45000	predicted exon	23.3
	408725	AA131539	Hs.15669	ESTs	23.3

	428362	AA426555	Hs.169333	ESTs .	23.3
	425349 422440	AA425234	Hs.79886	ribose 5-phosphate Isomerase A (ribose 5-phosphate ep	23.3
	410962	NM_004812 BE273749	Hs.116724 Hs.752	aldo-keto reductase family 1, member B11 (aldose redu FK506-binding protein 1A (12kD)	23.3 23.2
5	411796	AA807197	Hs.6918	ESTs	23.2
•	458954	AW379075	Hs.141742	Homo saplens cDNA FLJ12211 fis, clone MAMMA10	23.2
	408896	AI610447	Hs.48778	niban protein	23.2
	457024	AA397546	Hs.119151	ESTs	23.2
10	414591	AI888490	Hs.55902	ESTs	23.2
10	437846	AA773866	Hs.244569	ESTs	23.2
	401220			predicted exon	23.1
	421747	AI816224	Hs.107747	DKFZP566C243 protein	23.1
	452950 414327	AA428123	Hs.7745	17kD fetal brain protein	23.1 23.1
15	405256	BE408145	Hs.185254	ESTs, Moderately similar to NAC-1 protein [R.norvegic predicted exon	23.1
13	452416	AA026115	Hs.114777	ESTs	23.1
	440684	Al253123	Hs.127356	ESTs, Highly similar to NEST_HUMAN NESTI (H.sap	23.1
	445603	H08345	Hs.106234	ESTs	23.1
•	436306	AA805939	Hs.117927	ESTs	23.1
20	434867	AF159442	Hs.103382	phospholipid scramblase 3	23.0
	404727	1100 1000	11 074404	predicted exon	23.0
	407317 405580	Al204033	Hs.271461	ESTs, Weakly similar to ALU5_HUMAN ALU SUBFA	23.0
	437898	W81260	Hs.43410	predicted exon ESTs	23.0 22.9
25	448781	AW243419	Hs.254048	FSTs	22.9
	457297	AW968188	Hs.290999	ESTs	22.9
	405545			predicted exon	22.9
	431562	A1884334	Hs.11637	ESTs	22.9
••	440703	AL137663	Hs.7378	Homo sapiens mRNA; cDNA DKFZp434G227 (from c	22.9
30	439848	AW979249		gb:EST391359 MAGE resequences, MAGP Homo sap	22.9
	418149	AA811473	Hs.291877	ESTs	22.9
	439332	AWB42747	Hs.293314	ESTs, Highly similar to unnamed protein product [H.sa	22.8
	401566	NM 000500	11- 454427	predicted exon	22.8
35	425078 406684	NM_002599 X16354	Hs.154437 Hs.50964	phosphodiesterase 2A, cGMP-stimutated	22.8 22.8
55	421651	AW860612	Hs.283586	carcinoembryonic antigen-related cell adhesion molecul ESTs	22.8
	421064	Al245432	Hs.101382	tumor necrosis factor, alpha-induced protein 2	22.8
	441249	AA971585	Hs.166250	ESTs	22.8
	457624	AA809159	Hs.287581	Homo saplens cDNA FLJ13544 fis, clone PLACE1006	22.8
40	407395	AF005082		gb:Homo sapiens skin-specific protein (xp33) mRNA, p	22.8
	459006	AW298631	Hs.27721	hypothetical protein FLJ20353	22.8
	436827	H72187	Hs.5322	guanine nucleotide binding protein (G protein), gamma	22.7
	418174	L20688	Hs.83656	Rho GDP dissociation inhibitor (GDI) beta	22.7
45	418307	U70867	Hs.83974	solute carrier family 21 (prostaglandin transporter), mem	22.7
43	456035 457867	N54956 AA045767	Hs.271726 Hs.5300	ESTs bladder cancer associated protein	22.7 22.7
	440401	A)126341	Hs.143887	ESTs	22.7
	400126	74120041	113.140007	predicted exon	22.7
	414931	AK000342	Hs.77646	Homo sapiens mRNA; cDNA DKFZp761M0223 (from	22.7
50	406719	AI832962	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	22.6
	439675	W95357	Hs.138860	Rho GTPase activating protein 1	22.6
	456058	N94587	Hs.55063	ESTs	22.6
	441926	Al015051	Hs.130953	ESTs	22.6
55	428423	AU076517	Hs.184276	solute carrier family 9 (sodium/hydrogen exchanger), is	22.6
33	438518 420674	BE561958 NM_000055	Hs.285823 Hs.1327	immunoglobulin heavy constant mu butyrylcholinesterase	22.6 22.6
	422160	AW582898	115.1921	gb:la07e04.y1 Human Pancreatic Islets Homo sapiens c	22.5
	412408	D51103	Hs.73851	ATP synthase, H+ transporting, milochondrial F0 comp	22.5
	400964			predicted exon	22.5
60	434360	AW015415	Hs.127780	ESTs	22.5
	427977	AW630727	Hs.181307	H3 histone, family 3A	22.4
	450339	AI693281	Hs.54547	ESTs	22.4
	424059	AW451266	Hs.107418	ESTS	22.4 22.4
65	414626	BE410589		gb:601303308F1 NIH_MGC_21 Homo sapiens cDNA	22.4
05	401991 419741	NM_007019	Hs.93002	predicted exon ubiquitin carrier protein E2-C	22.3
	457952	U25750	Hs.210783	Human chromosome 17q21 mRNA clone 1046:1-1	22.3
	422597	BE245909	Hs.118634	ATP-binding cassette, sub-family B (MDR/TAP), mem	22.3
	429504	X99133	Hs.204238	lipocatin 2 (oncogene 24p3)	22.3
70	447306	AJ373163	Hs.170333	ESTs	22.3
	424966	AU077312	Hs.153985	solute carrier family 7 (cationic amino acid transporter,	22.3
	422739	H20106	Hs.119591	adaptor-related protein complex 2, sigma 1 subunit	22.2
	432504	AL121015	Hs.277704	oxygen regulated protein (150kD)	22.2
75	423804 404683	AW403448	Hs.1706 Hs.173259	Interferon-stimulated transcription factor 3, gamma (48k	22.2 22.2
, ,	441624	AI924294 AF220191	Hs.173259 Hs.179666	uncharacterized bone marrow protein BM033 uncharacterized hypothalamus protein HSMNP1	22.2
	425751	T19239	Hs.179000	crystallin, alpha B	22.2
	452976	R44214	Hs.101189	ESTs	22.2
0.0	414642			gb:zi03h01.r1 Soares_pregnant_uterus_NbHPU Homo	22.2
80	437452	AL390127	Hs.7104	Homo sapiens mRNA; cDNA DKFZp761P06121 (from	22.2
	417426		Hs.82124	laminin, beta 1	22.2
	414774		Hs.77274	plasminogen activator, urokinase	22.1
	424631	AA688021	Hs.179808	ESTs	22.1 22.1
	413987	AW204431	Hs.117853	ESTs	22.1

	400174	770000		predicted exon	22.1
	431837 401628	T79326	Hs.298262	ESTs, Weakly similar to dJ88J8.1 [H.sapiens]	22.1
	418374	AJ011916	Hs.84359	predicted exon hypothetical protein	22.1 22.0
5	429297	X82494	Hs.198862	fibulin 2	22.0
•	403508	702101	10.150002	predicted exon	22.0
	432638	Al017717	Hs.126525	chromosome 21 open reading frame 15	22.0
	407382	AA503620		gb:ne49b08.s1 NCI_CGAP_Co3 Homo sapiens cDNA	22.0
10	411492	T46848	Hs.70337	immunoglobutin superfamily, member 4	22.0
10	420185	AL044056	Hs.158047	EST8	22.0
	409545	BE296182	11- 400040	gb:601177324F1 NIH_MGC_17 Homo sapiens cONA	22.0
	426562 424247	AA879474 X14008	Hs.122710	EST8	22.0
	443062	N77999	Hs.234734 Hs.8963	lysozyme (renal amyloldosis) Homo sapiens mRNA full length Insert cDNA clone EU	22.0 21.9
15	422447	AA310711	Hs.124340	ESTs	21.9
10	421574	AJ000152	Hs.105924	defensin, beta 2	21.9
	435302	Al076259	Hs.190337	ESTs	21.9
	414527	BE241739	Hs.76359	catalase	21.9
	441436	AW137772	Hs.185980	ESTs	21.9
20	454178	AW177274		gb:CM2-CT0128-230899-005-a02 CT0128 Homo saple	21.8
	448838	BE614761		gb:601281335F1 NIH_MGC_39 Homo sapiens cDNA	21.8
	427889	AI400968	Hs.181046	dual specificity phosphatase 3 (vaccinia virus phosphat	21.8
	441114	AA917466	Hs.126600	ESTs	21.8
25	451831 405600	NM_001674	Hs.460	activating transcription factor 3	21.8
23	446981	AI652743	Hs.197497	predicted exog ESTs	21.8 21.8
	432839	AA579465	Hs.287332	ESTs	21.8
	405208			predicted exon	21.8
••	435025	T08990	Hs.4742	anchor attachment protein 1 (Gaa1p, yeast) homolog	21.7
30	413976	BE295452	Hs.75655	procollagen-proline, 2-oxoglutarate 4-dioxygenase (pro	21.7
	423515	AA327017	Hs.162204	ESTs	21.7
	452329	N36626	Hs.29106	mitogen-activated protein kinase phosphatase x	21.7
	423050	AA320946		gb:EST23529 Adipose tissue, brown Homo sapiens cD	21.7
35	413679	BE156765		gb:RC1-HT0370-120100-012-c09 HT0370 Homo saple	21.7
33	442166	AW845280	Hs.204723	ESTs	21.6
	445585 406160	A1243836	Hs.147066	ESTs	21.6 21.6
		AA374743	Hs.279920	predicted exon tyrosine 3-monooxygenase/tryptophan 5-monooxygenas	21.6
	446598	AW250546	113.21 3320	gb:2821774.5prime NIH_MGC_7 Homo sapiens cDNA	21.6
40	434493	AA635305	Hs.121574	ESTs	21.6
	429582	AI569068	Hs.22247	ESTs	21.6
	403796			predicted exon	21.6
	405028			predicted exon	21.6
15	426597	AA382250	Hs.145601	ESTs	21.6
45	437308	AA749417	Hs.292353	ESTs	21.6
	447384	Al377221	Hs.40528	ESTs	21.6
	429060 437068	AW139155 AA743643	Hs.194995 Hs.291427	hypothetical protein DKFZp43400320 ESTs	21.6 21.6
	418509	AB028624	Hs.85539	ATP synthase, H+ transporting, mitochondrial F0 comp	21.5
50	432999	BE294029	Hs.279903	Ras homolog enriched in brain 2	21.5
-	407663	NM_016429	Hs.37482	COPZ2 for nonclathrin coat protein zeta-COP	21.5
	446627	AI973016	Hs.15725	hypothetical protein SBBI48	21.5
	413605	BE152644		gb:CM1-HT0329-250200-128-09 HT0329 Homo sapie	21.5
	427286	AW732802	Hs.2132	epidermal growth factor receptor pathway substrate 8	21.5
55	405226			predicted exon	21.4
	402570			predicted exon	21.4
	457960	AA771881	Hs.298149	ESTs	21,4
	400684 425943	H46986	Un 24004	predicted exon	21.4
60	434240	AF119912	Hs.31861 Hs.258119	ESTs	21.4 21.4
50	448376	AF119912 Al494332	Hs.196963	hypothetical protein PRO3073 ESTs	21.4
	408089	H59799	Hs.42644	thloredoxin-like	21.4
	400304	AF005082	Hs.113261	Homo sapiens skin-specific protein (xp33) mRNA, part	21.4
<i></i>	412652	AI801777	Hs.6774	ESTs	21.4
65	428373	Al751656	Hs.183986	poliovirus receptor-related 2 (herpesvirus entry mediato	21.3
	416138	C18946	Hs.79026	myeloid leukemia factor 2	21.3
	425184	BE278288	Hs.155048	Lutheran blood group (Auberger b antigen included)	21.3
	411028	AW813703		gb:RC3-ST0197-130100-014-h09 ST0197 Homo sapien	21.3
70	417438	Z43989	Hs.82141	Human ctone 23612 mRNA sequence myosin IC	21.3
70	417534 427767	NM_004998	Hs.82251		21.3
	433300	AI879283 AA582307	Hs.180714	cytochrome c oxidase subunil VIa polypepiide 1 gb:nn49d09.s1 NCI_CGAP_Kid6 Homo sapiens cDNA	21.2 21.2
	452061	AI074259	Hs.469	succinate dehydrogenase complex, subunit A, flavoprot	21.2
	411939	Al365585	Hs.146246	ESTs	21.2
75	435060	AJ422719	Hs.233349	ESTs, Weakly similar to fork head like protein [H.sapie	21.2
	432412	AJ470549	Hs.162201	ESTs	21.2
	407491	S82769		gb:GABAA receptor gamma 3 subunit [human, fetal bra	21.2
	418960	NM_004494	Hs.89525	hepatoma-derived growth factor (high-mobility group p	21.1
80	426254	BE018103	Hs.168541	Homo sapiens mRNA full length insert cDNA clone EU	21.1
ου	458188	AW297226	Hs.137840	ESTs, Moderately similar to SIX1_HUMAN HOMEOB	21.1
	406215 425461	AK000602	Hs.157938	predicted exon hypothetical protein FLJ20595	21.1 21.1
	448296	8E622756	Hs.10949	Homo sapiens cDNA FLJ14162 fis, clone NT2RM4002	21.1
	409415	AA579258	Hs.6083	Homo saplens cDNA: FLJ21028 fis, ctone CAE07155	21.1
				116	

	408546	W49512	Hs.46348	bradykinin receptor B1	21.1
	450008	H52970	Hs.36588	WAP four-disulfide core domain 1	21.1
	430998	AF128847	Hs.204038	indotethylamine N-methyltransferase	21,1
_	438901	AF085834	Hs.29036	ESTs	21.1
5	440500	AA972165	Hs.150308	ESTs .	21.1
	413101	8E065215		gb:RC1-BT0314-310300-015-f01 BT0314 Homo sapie	21.1
	447452	BE618258	Hs.102480	ESTs	21.1
	412446	AI768015	Hs.92127	ESTs ·	21.1
	418975	T75496	Hs.296980	ESTs	21.0
10	454961	AW847807		gb:IL3-CT0213-190200-040-E12 CT0213 Homo sapien	21.0
	401072			predicted exon	21.0
	401204			predicted exon	21.0
	433626	AF078859	Hs.86347	hypothetical protein	21.0
	418047	R37633	Hs.4847	ESTs	21.0
15	443380	AI792478	Hs.135377	ESTs	21.0
	427424	AA402453	Hs.113011	ESTs	21.0
	433412	AV653729	Hs.8185	CGI-44 protein; sulfide dehydrogenase like (yeast)	21.0
	422599	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A) expressed in	20.9
	435656	R93409	Hs.120759	ESTs	20.9
20	413745	AW247252	Hs.75514	nucleoside phosphorylase	20.9
20	418874	T60872	115.75514		20.9
	452574	AF127481	Hs.35093	gb:yb72h11.s1 Stratagene ovary (937217) Homo sapien	
	400332	S56407	Hs.248032	lymphoid blast crisis oncogene FLT4	20.9
		300407	NS.240032	· -· ·	20.9
25	402421	1177CO4	11- 470747	predicted exon	20.9
23	427138	N77624	Hs.173717	phosphatidic acid phosphatase type 2B	20.9
	432038	AA524746	Hs.162110	ESTs .	20.8
	423711	AF059194	Hs.131953	v-maf musculoaponeurotic fibrosarcoma (avian) oncoge	20.8
	402297			predicted exon	20.8
20	405133			predicted exon	20.8
30	436661	AJ125270	Hs.128069	ESTs, Weakly similar to similar to collagen [C.elegans]	20.8
	437836	BE269291	Hs.292458	ESTs	20.8
	437329	AA811977	Hs.291761	ESTs	20.8
	445830	H10451	Hs.42656	Homo sapiens cDNA FLJ12667 fis, clone NT2RM4002	20.8
2.5	406824	AW515961	Hs.84298	CD74 antigen (invariant polypeptide of major histocom	20.7
35	421271	AW170057	Hs.133179	ESTs	20.7
	400256			predicted exon	20.7
	414028	AA782576	Hs.4944	Homo sapiens cDNA FLJ12783 fis, clone NT2RP2001	20.7
	456728	AL120077	Hs.122967	kelch (Drosophila)-like 2 (Mayven)	20.7
	417707	AL035786	Hs.82425	actin related protein 2/3 complex, subunit 5 (16 kD)	20.7
40	438713	H16902	Hs.6749	ESTs	20.7
	450306	AL080080	Hs.24766	DKFZP564E1962 protein	20.7
	438898	AI819863	Hs.106243	ESTs	20.7
	403273			predicted exon	20.7
	414605	BE390440		gb:601283601F1 NIH_MGC_44 Homo sapiens cDNA	20.7
45	401283	0000110		predicted exon	20.7
	403703			predicted exon	20.6
	416969	AI815443	Hs.283404	organic cation transporter	20.6
	442400	AW381148	Hs.3593	ESTs	20.6
	447563	BE536115	Hs.160983	ESTs	20.5
50	419754	H52299	Hs.75243	bromodomain-containing 2	20.5
•	408204	AA454501	Hs.43666	protein tyrosine phosphatase type IVA, member 3	20.5
	450507	AW295603	Hs.250891	ESTs	20.5
	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	20.5
	413758	BE162391	113.202007	gb:PM2-HT0451-090100-002-f04 HT0451 Homo sapie	20.5
55	432140	AK000404	Hs.272688	hypothetical prolein FLJ20397	20.5
-	400642	740000707	113.27 2000	predicted exon	20.4
	431582	F07136	Hs.261828	G protein-coupled receptor kinase 7	20.4
	442724	AA355525			
			Hs.159604	cysteinyl-IRNA synthetase	20.4
60	417861	AA334551	Hs.82767	sperm specific antigen 2	20.4
JV	402948	AW813242		predicted exon	20.4
	411004			gb:MR3-ST0191-020200-207-g10 ST0191 Homo sapie	20.4
	435478	AA682622	Un gongoo	gb:zj20f09.s1 Soares_fetal_liver_spleen_1NFLS_S1 Ho	20.4
	447955	BE544271	Hs.288390	Horno sapiens cDNA: FLJ22795 fis, clone KAIA2543	20.3
65	433592	NM_004642	Hs.3436	deleted in oral cancer (mouse, homolog) 1	20.3
05	420865	N73241	Hs.100001	solute carrier family 17 (sodium phosphate), member 1	20.3
	449482	Al784266	Hs.28774	ESTs	20.3
	400807	1105400		predicted exon	20.3
	419942	U25138	Hs.93841	potassium large conductance calcium-activated channel	20.3
70	420783	AI659838	Hs.99923	tectin, galactoside-binding, soluble, 7 (galectin 7)	20.3
70	402986	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (beta)	20.3
	451375	. AI792066	Hs.283902	Homo sapiens BAC clone RP11-481J13 from 2	20.3
	453586	AA248089	Hs.50841	ESTs, Weakly similar to tuftelin [M.musculus]	20.3
	433090	AI720050	Hs.145362	Immortalization-upregulated protein	20.3
75	425053	AF046024	Hs.154320	ublquitin-activating enzyma E1C (homologous to yeast	20.3
75	412802	U41518	Hs.74602	aquaporin 1 (channel-forming Integral protein, 28kD)	20.3
	409738	BE222975	Hs.56205	insulin induced gene 1	20.3
	428245	AF151048	Hs.183180	hypothetical protein	20.2
	412582	BE270631	Hs.74077	proteasome (prosome, macropain) subunit, alpha type, 6	20.2
00	406207			predicted exon	20.2
80	400931			predicted exon	20.2
	410709	AL122109	Hs.65735	Homo sapiens mRNA; cDNA DKFZp434M1827 (from	20.2
	428438	NM_001955	Hs.2271	endothelin 1	20.2
	446918	AL135125	Hs.13913	KIAA1577 protein	20.2
	417821	BE245149	Hs.82643	protein tyrosine kinase 9	20.2

	429113	D28235	Un 400004	amatantantia andanamida sunthana 2 /tantantia C	20.2
	414511	AA148725	Hs.196384 Hs.12969	prostaglandin-endoperoxide synthase 2 (prostaglandin G hypothetical protein	20.2
	451546	AF051782	Hs.26584	Homo saplans clone CDABP0038 mRNA sequence	20.1
	441899	Al372588	Hs.8022	TU3A protein	20.1
5	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, importin elpha 1)	20.1
•	411014	AW816072	10.10001	gb:MR3-ST0220-070100-021-h07 ST0220 Homo saple	20.1
	451400	BE160479		gb:QV1-HT0413-210200-081-g05 HT0413 Homo sapi	20.1
	459247	N46243	Hs.110373	ESTs	20.1
	441633	AW958544	Hs.112242	ESTs	20.1
10	427466	AA523543	Hs.7678	cellular retinoic acid-binding protein 1	20.0
_	406893	M22406		gb:Human intestinal mucin mRNA, partial cds, clone SM	20.0
	406268			predicted exon	20.0
	403348			predicted exon	20.0
	400970			predicted exon	20.0
15	414045	NM_002951	Hs.75722	ribophorin II	20.0
	427169	AA398823	Hs.97549	EST	20.0
	405586			predicted exon	20.0
	445834	AI913290	Hs.145532	ESTs, Weakly similar to Gag polyprotein [M.musculus	20.0
	422525	AA758797	Hs.192807	ESTs	20.0
20	425383	D83407	Hs.156007	Down syndrome critical region gene 1-like 1	20.0
	454590	AW809762	Hs.222056	Homo saplens cDNA FLJ11572 fis, clone HEMBA100	20.0
	411529	AA430348	Hs.288837	Homo sapiens cDNA FLJ12927 fis, clone NT2RP2004	20.0
	425397	J04088	Hs.156346	topoisomerase (DNA) il alpha (170kD)	20.0
	403234			predicted exon	19.9
25	427267	Al201185	Hs.119164	ESTs	19.9
	400203			predicted exon	19.9
	449296	AL137257	Hs.23458	Homo sapiens mRNA; cDNA DKFZp434C1613 (from	19.9
	405704	M21665	Hs.929	myosin, heavy polypeptide 7, cardiac muscle, beta	19.9
	423083	AA321774	Hs.10941	ESTs, Weakly similar to IPP1_HUMAN PROTEIN PH	19.9
30	422112	BE540240	Hs.111783	Lsm1 protein	19.9
	413282	BE078159		gb:CM0-BT0615-140200-175-e06 BT0615 Homo sapie	19.9
	453702	AA037637	Hs.42128	ESTs	19.9
	403065			predicted exon	19.9
	440633	Al140686	Hs.263320	ESTs	19.9
35	456994	AA383623	Hs.293616	ESTs	19.9
• •	458260	R41782	Hs.22279	ESTs	19.9
	452388	BE019696	Hs.29287	retinoblastoma-binding protein 8	19.9
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	19.9
	441989	AA306207	Hs.286241	Homo sapiens cDNA: FLJ22698 fis, clone HSI12044	19.9
40	418758	AW959311	Hs.87019	ESTs	19.9
	406646	M33600	Hs.180255	major histocompatibility complex, class II, DR beta 1	19.8
	433053	BE301909	Hs.279952	glutathione S-transferase subunit 13 homolog	19.8
	414194	BE175494	Hs.75811	N-acylsphingosine amidohydrolase (acid ceramidase)	19.8
	452321	AW844498	Hs.289052	Homo sapiens LENG8 mRNA, variant C, partial sequen	19.8
45	449713	AW027025	Hs.239262	ESTs	19.8
	458827	AW970786	Hs.178470	Homo saplens cDNA: FLJ22662 fis, clone HSI08080	19.8
	414092	Z14244	Hs.75752	cytochrome c oxidase subunit VIIb	19.8
	441730	AI243276	Hs.149017	ESTs	19.8
	420701	N42919	Hs.88630	ESTs, Weakly similar to AC007228 1 R31665 2 (H.sap	19.8
50	403642			predicted exon	19.8
	408987	H85615		gb:yt03f11.r1 Soares retina N2b5HR Homo sapiens cD	19.8
	446712	AW204789	Hs.209828	ESTs	19.8
	403286			predicted exon	19.8
	434439	AI022360	Hs.190583	ESTs	19.8
55	404067			predicted exon	19.7
	455694	BE067300		gb:PM2-BT0349-161299-001-h10 BT0349 Homo sapie	19.7
	403287			predicted exon	19.7
	434633	AI189587	Hs.120915	ESTs	19.7
~	408199	AA132637	Hs.15396	EST ₆	19.7
60	420080	M94065	Hs.94925	dihydroorotate dehydrogenase	19.7
	408852	AW291435	Hs.254961	ESTs	19.7
	403786	110105		predicted exon	19.7
	416839	H94900	Hs.17882	ESTs	19.7
65	434385	AA631946	Hs.259580	ESTs	19.7
65	446845	AI343645	Hs.156108	ESTS	19.7
	425612	BE004257		gb:CM0-BN0103-180300-296-c04 BN0103 Homo sapi	19.7
	402520	Dearce		predicted exon	19.6
	436098		Hs.9739	ESTs	19.6
70	438974		Hs.6454	chromosome 19 open reading frame 3	19.6
70	447751	AA339541	Hs.24956	hypothetical protein FLJ22056	19.6
	451310	AW250651	Hs.26213	ESTs, Moderately similar to dJ447F3.3 [H.saptens]	19.6
	435961	BE293127	Hs.283722	GTT1 protein	19.6
	452937	BE410390	Hs.288940	five-span transmembrane protein M83	19.6
75	404850	H74140	Un 200402	predicted exon	19.6
13	438360 436508	H74149 AW604381	Hs.288193	hypothetical protein FLJ 10375	19.6
			Hs.121121	ESTs obligated shapped calcium activated family member 2	19.6
	430486	BE062109	Hs.241551	chloride channel, calcium activated, family member 2	19.6
	407824	AA147884	Hs.9812	ESTs	19.6
80	406388 430204	AA618335	Un 146197	predicted exon ESTs, Wealty similar to putative [C.elegans]	19.6 19.5
55	457560		Hs.146137 Hs.163909	ESTs, weakly striker to pulsave (c.esegans)	19.5
	429521		Hs. 103909 Hs. 50949	ESTs	19.5
	429758		Hs.246804	ESTS	19.5
	441473		Hs.184846	ESTs, Weakly similar to R28830 1 [H.sapiens]	19.5
	.,,,,,	· 100g	1 101 101 101		13.3
				117	

	411724	AA770559	Hs.71618	polymerase (RNA) II (DNA directed) polypeptide L (7.	19.5
	450453	AA009883	Hs.50186	ESTs	19.5
	419687	A1638859	Hs.227699	ESTs, Weakly similar to Yhr217cp [S.cerevisiae]	19.5
_	442162	AW294966	Hs.150849	ESTs	19.5
5	435056	AW023337	Hs.5422	glycoprotein MSB	19.5
	417412	X16896	Hs.82112	interleukin 1 receptor, type I	19.5
	413825	BE299181	Hs.75564	CD151 antigen	19.4
	422687	AW068823	Hs.119206	insufin-like growth factor binding protein 7	19.4
	435551	AF212365	Hs.5470	IL-17B receptor	19.4
10	440069	BE617892	Hs.6895	actin related protein 2/3 complex, subunit 3 (21 kD)	19.4
	432277	AI669790	Hs.161825	ESTs	19.4
	428044	AA093322	Hs.182225	RNA binding motif protein 3	19.4
	456064	AA256213	Hs.72010	ESTs	19.4
	424897	D63216	Hs.153684	frizzled-related protein	19.4
15	424673	AA345051	Hs.294092	ESTs	19.4
13	403852	AA343031	NS.234032		19.3
				predicted exon	
	405699	411070000	11- 000035	predicted exon	19.3
	433096	AU076803	Hs.282975	carboxylesterase 2 (intestine, liver)	19.3
20	400344	NM_012368	Hs.258574 .		19.3
20	417501	AL041219	Hs.82222	sema domain, immunoglobulin domain (Ig), short basic	19.3
	400449			predicted exon	19.3
	453801	AL134751	Hs.23450	mRNA for FLJ00023 protein	19.3
	435849	BE305242	Hs.112442	ESTs, Weakly similar to CLDE_HUMAN CLAUDIN-	19.3
	454181	AW177377		gb:CM4-CT0129-190899-007-e09 CT0129 Homo saple	19.3
25	414807	AJ738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(NAD)	19.3
	406326			predicted exon	19.3
	421921	H83363	Hs.109571	translocase of inner mitochondrial membrane 10 (yeast)	19.3
	416700	AW498958	Hs.79572	cathepsin D (lysosomal aspartyl protease)	19.2
	458857	AI627342	Hs.224601	ESTs	19.2
30	405501			predicted exon	19.2
	416601	R08652	Hs.20205	hemoglobin, beta pseudogene 1	19.2
	426600	NM_003378	Hs.171014	VGF nerve growth factor inducible	19.2
	425590	AI954686	Hs.158321	beaded filament structural protein 2, phakinin	19.2
	428151	AA422028	113.100021	gb:zv26g06_r1 Soares_NhHMPu_S1 Homo sapiens cDN	19.2
35	426420	BE383808	Hs.169829	KIAA1180 protein	19.2
55	414428				19.2
		BE296906	Hs.182625	VAMP (vesicle-associated membrane protein)-associate	
	404601			predicted exon	19.2
	403861			predicted exon	. 19.2
40	448363	BE174595	Hs.366	6-pyruvoylletrahydroplerin synthase	19.2
40	406655	M21533	Hs.181244	major histocompatibility complex, class I, A	19.1
	435372	AA809591	Hs.106486	ESTs, Highly similar to CIKG_HUMAN VOLTAGE-G	19.1
	413154	BE067870		gb:RCO-BT0362-021299-031-b06 BT0362 Homo sapie	19.1
	443021	AA368546	Hs.8904	lg superfamily protein	19.1
4.5	412975	T70956	Hs.75106	clusterin (complement lysis inhibitor, SP-40,40, sulfated	19.1
45	412633	AF001691	Hs.74304	periplakin	19.1
	402071			predicted exon	19.1
	410387	Al277367	Hs.47094	ESTs	19.1
	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin I-like)	19.1
	407032	U73799		gb:Human dynactin mRNA, partial cds.	19.0
50	404034			predicted exon	19.0
	456534	X91195	Hs.100623	phospholipase C, beta 3, neighbor pseudogene	19.0
	446599	Z97832	Hs.15476	differentially expressed in FDCP (mouse homolog) 6	19.0
	426410	BE298446	Hs.180372	BCL2-like 1	19.0
	419618	AA528295		gbzhl26e06.s1 NCI_CGAP_Pr3 Homo saplens cDNA c	19.0
55	457632	AW292151	Hs.112689	ESTs	19.0
	417138	AA193646	Hs.65771	Homo sapiens chromosome 19, BAC CIT-HSPC_204F	19.0
	417933	X02308	Hs.82962	thymidylate synthetase	19.0
	458808	AW134832	Hs.246295	ESTs	19.0
		DS6051			18.9
60	415860		Hs.78888	diazepam binding inhibitor (GABA receptor modulator ESTs	18.9
00	440919	AW291274	Hs.262826		
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	18.9
	401747	414470000		predicted exon	18.9
	454209	AW179083	11- 45454	gb:MR4-ST0065-270899-006-A07 ST0065 Homo sapi	18.8
65	417661	T84155	Hs.15464	Homo saplens cDNA: FLJ21351 fis, clone COL02762	18.8
U.J	426499	C14937	Hs.11169	Gene 33/Mig-6	18.8
	404240			predicted exon	18.8
	439718	AA307634	Hs.6650	vacuolar protein sorting 45B (yeast homolog)	18.8
	401789			predicted exon	18.8
70	456952	AW445081	Hs.301469	ESTs	18.8
70	439739	Al199391	Hs.124464	ESTs	18.8
	437974	T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence	18.8
	427490	Z95152	Hs.178695	mitogen-activated protein kinase 13	18.8
	443482	AW188093	Hs.250385	ESTs	18.8
~~	411420	BE390652		gb:601286820F1 NIH_MGC_44 Homo saplens cDNA	18.8
75	435196	F35675	Hs.188128	ESTs, Moderately similar to ALUB_HUMAN !!!! ALU	18.8
	417022	NM_014737	Hs.80905	Ras association (RalGDS/AF-6) domain family 2	18.8
	413531	AL036958	Hs.75416	DAZ associated protein 2	18.7
	428981	BE313077	Hs.93135	ESTs	18.7
	421598	AW630942	Hs.106061	RD RNA-binding protein	18.7
80	443907	AU076484	Hs.9963	TYRO protein tyrosine kinase binding protein	18.7
	406754	AA477223	Hs.75922	brain protein 13	18.7
	400661	· V 111 440		predicted exon .	18.7
	442638	AI088742	Hs.134713	ESTs	18.7
	434169	AA883752	Hs.179724	ESTs	18.7
	404102	74 WOOI OL			

	424126	AA335635	Hs.96917	ESTs	18.7
	408473	BE259039	Hs.129953	Ewing sarcoma breakpoint region 1	18.7
	401962			predicted exon	18.7
5	447326	AW002252	Hs.201395	ESTs	18.7
5	459053	AI807052	Hs.210361	ESTs	18.7
	403362	740007	11- 400000	predicted exon	18.7 18.7
	427697 402061	T18997 HB3363	Hs.180372 Hs.109571	BCL2-like 1 translocase of inner mitochondrial membrane 10 (yeast)	18.7
	433785	BE044593	Hs.112704	ESTs	18.7
10	405423	DECTROSS	115.112704	predicted exon	18.6
- •	429259	AA420450	Hs.292911	EST8	18.6
	444071	AI627808	Hs.110524	ESTs	18.6
	410512	AA085603	Hs.250570	ESTs	18.6
1.5	440376	AI024452	Hs.236816	ESTs	18.6
15	457353	X65633	Hs.248144	melanocortin 2 receptor (adrenocorticotropic hormone)	18.6
	432749	NM_014438	Hs.278909	Interleukin-1 Superfamily e	18.6
	415602	F12920	Hs.165575	ESTs	18.6 18.6
	407891 455910	AA486620 Z43712	Hs.41135	endomucin-2 gb:HSC1JA121 normalized Infant brain cDNA Homo s	18.6
20	426716	NM_006379	Hs.171921	sema domain, immunoglobulin domain (Ig), short basic	18.6
20	444246	H93281	Hs.10710	hypothetical protein FLJ20417	18.6
	428125	AA393071	Hs.182579	leucine aminopeptidase	18.6
	406457			predicted exon	18.5
	446625	Al333070	Hs.156141	ESTs	18.5
25	423334	AK000906	Hs.127273	hypothetical protein FLJ10044	18.5
	423103	AA322029	40	gb:EST24685 Cerebellum II Homo sapiens cDNA 5 en	18.5
	443549	T89608	Hs.16601	ESTs	1B.5
	419299	AI311085	Hs.62406	Homo sepiens cDNA: FLJ22573 fis, clone HSI02387	18.5
30	411942	AW877015	Un 140100	gb:QV2-PT0010-250300-096-f12 PT0010 Homo sapien	18.5 18.5
30	442440 454574	BE464435 AW809109	Hs.146180	ESTs, Weakly similar to non-receptor protein tyrosine k gb:MR4-ST0117-070100-027-a04 ST0117 Homo saple	18.5
	454377	AA076811		gb:7803C12 Chromosome 7 Fetal Brain cDNA Library	18.5
	422365	AF035537	Hs.115521	REV3 (yeast homolog)-like, catalytic subunit of DNA p	18.5
	421733	AL119671	Hs.1420	fibroblast growth factor receptor 3 (achondroplasia, tha	18.5
35	420603	AB042636	Hs.4775	junctophilin 3	18.4
	401373			predicted exon	18.4
	402292			predicted exon	18.4
	444118	AA458542	Hs.10326	coatomer protein complex, subunit epsilon	18.4
40	408310	AW179023		gb:PM3-ST0036-170899-001-e08 ST0036 Homo sapis	18.4
40	411236	AW833752	11- 000074	gb:QV4-TT0008-130100-077-b07 TT0008 Homo saple	18.4 18.4
	431405	A1470895	Hs.252574	ribosomal protein L10a	18.4
	441408 453994	AI733249 BE180964	Hs.126897 Hs.165590	ESTs ribosomal protein S13	18.4
	444518	Al160278	Hs.146884	ESTs	18.4
45	402407	74100270	113.140004	predicted exon	18.4
	404270			predicted exon	18.4
	409103	AF251237	Hs.112208	XAGE-1 protein	18.4
	415198	AW009480	Hs.943	natural killer cell transcript 4	18.3
	430771	BE387244	Hs.2664	flavin containing monooxygenase 4	18.3
50	432636	AA340864	Hs.278562	claudin 7	18.3
	433504	NM_014874	Hs.3363	KIAA0214 gene product	18.3
	415606	W70022	U- 00003	gb:zd51e10.r1 Soares_fetal_hearl_NbHH19W Homo sa	18.3 18.3
	401401 420758	BE047878 AW297536	Hs.99093 Hs.33053	Homo saplens chromosome 19, cosmid R28379 ESTs	18.3
55	457520		Hs.162264	ESTs	18.3
•	432323	AK001409	Hs.274356	hypothetical protein FLJ10547	18.3
	404750			predicted exon	18.3
	450645	AL117441 .	Hs.25264	DKFZP434N126 protein	18.3
C C	445160	Al299144	Hs.150797	ESTs	18.3
60	418461	BE242781	Hs.288037	Homo saplens cDNA FLJ12999 fis, clone NT2RP3000	18.3
	401809	040440	11. 710/7	predicted exon	18.3
	458121	S42416	Hs.74647	Human T-cell receptor active alpha-chain mRNA from	18.3 18.3
	435106	AA100847 AWAAA655	Hs.193380 Hs.170838	ESTs, Highly similar to AF174600 1 F-box protein Fbx ESTs	18.3
65	448398 428145	AW444655 BE243327	Hs.170036	chromosome 22 open reading frame 5	18.2
0.5	445302		Hs.12488	hypothetical protein FLJ10675	18.2
	407352	H47860	110.12400	gb:yp76h12.r1 Soares fetal liver spleen 1NFLS Homo s	18.2
	413190		Hs.40368	adaptor-related protein complex 1, sigma 2 subunit	18.2
	436371	Al821912	Hs.113912	ESTs	18.2
70	400965			predicted exon	18.2
	433427		Hs.171889	cholinephosphotransferase 1	18.2
	427504		Hs.191589	ESTs .	18.2
	426759		Hs.21213	ESTs ESTo	18.2 18.2
75	423792 406826		Hs.245854 Hs.84298	ESTs CO74 antigen (invariant polypeptide of major histocom	18.1
, 5	406659		Hs.277477	major histocompatibility complex, class I, C	18.1
	437453		Hs.181391	hypothetical protein DKFZp761G2113	18.1
	409276		Hs.278429	hepatocellular carcinoma-associated antigen 59	18.1
	449628		Hs.197713	ESTs	18.1
80	421043		Hs.89072	ESTs	18.1
	442344		Hs.301212		18.1
	448744		Hs.9469	phosphoinositol 3-phosphate binding protein-1	18.1
	416062		Hs.74427	p53-induced protein	18.1
	414500	W24087	Hs.76285	DKFZP564B167 protein	18.1

	427272	NM_001098	Hs.174140	ATP citrate lyase	18.1
	403964			predicted exon	18.1
	433217	AB040914	Hs.278628	KIAA1481 protein	18.1
_	427902	AI809202	Hs.208343	ESTs, Wealty similar to cerebroside sulfotransferase [H	18.1
5	449586	Al863918	Hs.195078	ESTs	18.1
	430826	U10061	Hs.248019	POU domain, class 4, transcription factor 3	18.1
	414195	BE263293		gb:601144881F2 NIH_MGC_19 Homo sepiens cDNA	18.1
	416305	AU076628	Hs.79187	coxsackie virus and adenovirus receptor	18.1
	411088	BE247593	Hs.145053	ESTs	18.1
10	419407	AW410377	Hs.41502	Homo sapiens cDNA: FLJ21276 fis, clone COL01829	18.1
10	407938				
		AA905097	Hs.85050	phospholamban	18.1
	449360	Al640623	Hs.252720	ESTs	18.1
	417286	AA122237	Hs.81874	microsomal glutathione S-transferase 2	18.0
1.5	405515			predicted exon	18.0
15	439319	AW016401	Hs.233476	ESTs	18.0
	419387	BE379356	Hs.90107	cell membrane glycoprotein, 110000M(r) (surface antig	18.0
	414015	AA340987	Hs.75693	prolytearboxypeptidase (angiotensinase C)	18.0
	447778	BE620592	Hs.71190	ESTs	18.0
	435523	T62849	Hs.11090	high affinity immunoglobulin epsilon receptor beta sub	18.0
20	429230	AF088991	Hs.198274	NADH dehydrogenase (ubiquinone) 1 beta subcomplex	18.0
	457822	AA970001	Hs.150319	ESTs	18.0
	442424	Al342715	Hs.129569	ESTs, Moderately similar to B34087 hypothetical prote	18.0
	418394	AF132818	Hs.84728	Kruppel-like factor 5 (Intestinal)	18.0
	413477	AI815825	Hs.48756	ESTs, Moderately similar to neuronal-STOP protein [M	18.0
25		AIG 13023	F15.407 JU		
ربد	405277	AA363443	Un DAEDE	predicted exon	18.0
	450192	AA263143	Hs.24596	RAD51-interacting protein	18.0
	442191	W95186	Hs.8136	endothelial PAS domain protein 1	18.0
	429490	AI971131	Hs.293684	ESTs, Weakly similar to alternatively spliced product u	18.0
20	406744	AA554082	Hs.279860	hypothetical protein FLJ20030	17.9
30	425205	NM_005854	Hs.155106	receptor (calcitonin) activity modifying protein 2	17.9
	414387	AL043148	Hs.186257	ESTs	17.9
	411811	AW864370		ab:PM4-SN0016-100500-004-h09 SN0016 Homo saple	17.9
	433882	U90441	Hs.3622	procollagen-proline, 2-oxoglutarate 4-dioxygenase (pro	17.9
	414333	BE274897		gb:601122959F1 NIH_MGC_20 Homo sapiens cDNA	17.9
35	403747			predicted exon	17.9
-	435542	AA687376	Hs.269533	ESTs	17.9
	403093	771001010	113.203333	predicted exon	17.9
	412088	Al689496	Hs.108932	ESTs	17.9
40	450506	NM_004460	Hs.418	fibroblast activation protein, alpha	17.9
40	404763			predicted exon	17.9
	454633	AW811380		gb:lL3-ST0143-290999-019-D05 ST0143 Homo sapien	17.9
	440788	AI806594	Hs.128577	ESTs	17.9
	411800	N39342	Hs.5184	TH1 drosophila homolog	17.9
	441361	BE263308	Hs.7797	TERF1 (TRF1)-interacting nuclear factor 2	17.8
45	422033	AW245805	Hs.110903	claudin 5 (transmembrane protein deleted in velocardiof	17.8
	405333			predicted exon	17.8
	408297	R17710	Hs.113314	ESTs	17.8
	403036			predicted exon	17.8
	417924	AU077231	Hs.82932	cyclin D1 (PRAD1: parathyroid adenomatosis 1)	17.8
50	417091	AA193283	Hs.291990	ESTs	17.8
	440789	AB007857	Hs.7416	KIAA0397 gene product	17.8
	438397	AA806478	Hs.123206	ESTs	17.8
	435948			ESTs	
		AA702675	Hs.114135		17.8
55	450273	AW296454	Hs.24743	hypothetical protein FLJ20171	17.8
55	435969	W85773	Hs.191386	ESTs	17.8
	427031	AA397601	Hs.125147	ESTs	17.8
	454505	AW801365		gb:IL5-UM0067-240300-050-a01 UM0067 Homo sapi	17.8
	403447			predicted exon	17.8
C O	433297	AV658581	Hs.282633	ESTs	17.8
60	443326	8E156494	Hs.188478	ESTs	17.8
	448283	AI340462	Hs.182979	ribosomal protein L12	17.8
	458067	AA393603	Hs.36752	Homo sapiens cDNA: FLJ22834 fis, clone KAIA4314	17.8
	452359	BE167229	Hs.29206	Homo saplens clone 24659 mRNA sequence	17.8
	434098	AA625499		gb:af69g08.r1 Soares_NhHMPu_S1 Homo sapiens cDN	17.8
65	450911	AA011586	Hs.272097	ESTs	17.7
	410342	R31350	Hs.743	Fc fragment of IgE, high affinity I, receptor for; gamma	17.7
	407082	Z47055		gb:Human partial cDNA sequence, famesyl pyrophosph	17.7
	415271	X94232	Hs.78335	microtubule-associated protein, RP/EB family, member	17.7
	417413	AA197072	Hs.86092	Human DNA sequence from clone RP11-243J16 on chr	17.7
70	408937	AA210734	Hs.291386	ESTs	17.7
, 0	433459		1 10.23 (300		
		AA593498	He 14E400	gb:nn27b05.s1 NCI_CGAP_Gas1 Homo saplens cDNA	17.7
	459536	AI254723	Hs.145496	ESTs	17.7
	428500	AI815395	Hs.184641	delta-6 fatty acid desaturase	17.7
75	433463	R41963	Hs.4197	ESTs	17.7
75	406537			predicted exon	17.7
	410003	AA079487		gb:zm97f08.s1 Stratagene colon HT29 (937221) Homo	17.7
	440857	AA907808	Hs.135556	ESTs	17.7
	451072	AA013451	Hs.117929	ESTs	17.7
00	418693	AI750878	Hs.87409	thrombospondin 1	17.7
80	443624	BE616129	Hs.9651	related RAS viral (r-ras) oncogene homolog	17.6
	422626	AA344932	Hs.118786	metallothionein 2A	17.6
	410756	AB037820	Hs.66159	KIAA1399 protein	17.6
	436621	AI266254	12 132424	ESIS	
	436621 453317	A1266254 NM_002277	Hs.132929 Hs.41696	ESTs keratin, hair, acidic,1	17.6 17.6

	455500				
	456828	AF156889	Hs.148427	LIM homeobox protein 3	17.6
	421486	AW408800	Hs.104859	hypothetical protein DKFZp762E1312	17.6
	428834	AW899713	Hs.10338	ESTs	17.6
_	451419	R36309	Hs.174369	EST	17.6
5	448413	Al745379	Hs.42911	ESTs	17.6
	424323	AA338791	Hs.146763	nascent-polypeptide-associated complex alpha polypept	17.6
	423943	AF163570	Hs.135756	polymerase (ONA-directed) kappa	17.6
	439423	BE536678	Hs.147099	ESTs	17.6
	434025	AF114264	Hs.216381	Homo sapiens clone HH409 unknown mRNA	17.6
10	408246	N55669	Hs.43946	L13 protein	17.6
10	441579	AW468847	Hs.127194	ESTs	17.5
	420867				17.5
		NM_014183	Hs.100002	HSPC162 protein	
	453680	AL079647	Hs.14485	ESTs	17.5
1.5	400202			predicted exon	17.5
15	410768	AF038185	Hs.66187	Homo sapiens clone 23700 mRNA sequence	17.5
	409932	Al376750	Hs.57600	adaptor-related protein complex 1, sigma 1 subunit	17.5
	425563	AF084199	Hs.299837	ESTs	17.5
	440475	Al807671	Hs.128343	ESTs	17.5
	452767	AW014195	Hs.61472	ESTs, Weakly similar to unknown [S.cerevisiae]	17.5
20	410570	Al133096	Hs.64593	ATP synthase, H+ transporting, mitochondrial F1F0, su	17.4
20	419600	AA448958	Hs.91481	NEU1 protein	17.4
	419588	Al347205	Hs.91375	Human clone 23614 mRNA sequence	17.4
	428975	NM_004672	Hs.194694	mitogen-activated protein kinase kinase kinase 6	17.4
25	448928	Al350260	Hs.5384	Homo saplens cDNA FLJ11743 fis, clone HEMBA100	17.4
25	403924			predicted exon	17.4
	419889	AA251600		gb:zs10d12.r1NCI_CGAP_GCB1 Homo sapiens cDNA	17.4
	405023	AW408800	Hs.104859	hypothetical protein DKFZp762E1312	17.4
	426065	N32049		gb:yw96g08.s1 Soares_placenta_8to9weeks_2NbHP8to	17.4
	453199	Al336266	Hs.301854	Homo sapiens PRO0412 mRNA, complete cds	17.4
30	455132	AW857955		gb:PM0-CT0325-151299-002-A12 CT0325 Homo sapi	17.4
50	442932	AA457211	Hs.8858	bromodomain adjacent to zinc finger domain, 1A	17.4
	432065	AA401039	Hs.2903	protein phosphatase 4 (formerly X), catalytic subunit	17.3
	444652	BE513613	Hs.11538	actin related protein 2/3 complex, subunit 1A (41 kD)	17.3
26	417935	R53697	Hs.170044	ESTs	17.3
35	430050	AA430993	Hs.227913	API5-like 1	17.3
	446272	BE268912	Hs.14601	hematopoietic cell-specific Lyn substrate 1	17.3
	425996	W67330	Hs.81256	S100 calcium-binding protein A4 (calcium protein, calv	17.3
	416964	D87467	Hs.80620	guanine nucleotide exchange factor for Rap1; M-Ras-re	17.3
	437418	AI478954	Hs.59459	ESTs	17.3
40	447255	AI884908	Hs.158607	ESTs	17.3
40	402203	A1004300	113.130007		17.3
		414/002002		predicted exon	
	417611	AW993983		gb:RC1-BN0035-130400-013-a04 BN0035 Homo sapie	17.3
	426560	AA381661	Hs.119878	ESTs	17.3
4.5	446163	AA026880	Hs.25252	Homo sapiens cDNA FLJ13603 fis, clone PLACE1010	17.3
45	445017	Al205493	Hs.176860	ESTs	17.3
	438658	Al222068	Hs.123571	ESTs	17.3
	442238	AW135374	Hs.270949	ESTs	17.3
	443195	BE148235	Hs.193063	Homo sapiens cDNA FLJ14201 fis, clone NT2RP3002	17.3
	442609	AL020996	Hs.8518	selenoprotein N	17.2
50					17.2
50	416591	AA091976	Hs.79387	proteasome (prosome, macropain) 26S subunit, ATPase	
	403674			predicted exon	17.2
	430514	AA318501	Hs.241587	megakaryocyte-enhanced gene transcript 1 protein	17.2
	411696	AW857404		gb:CM3-CT0313-291199-046-c11 CT0313 Homo saple	17.2
	434560	R13052 *	Hs.3964	Homo saplens clone 24877 mRNA sequence	17.2
55	422627	BE336857	Hs.118787	transforming growth factor, beta-induced, 68kD	17.2
	414364	D38521	Hs.75935	KIAA0077 protein	17.2
	409119	AA531133	Hs.4253	G protein-coupled receptor 44	17.2
	425640	U34051	Hs.299204	ESTs, Highly similar to CD5S_HUMAN CYCLIN-DE	17.2
	436044	BE247571	Hs.15627	Nit protein 2	17.2
60	401657	OCEA1311	113.13027		17.2
55		A1000440	Un 440044	predicted exon	
	449763	AI822112	Hs.118241	ESTs	17.2
	409601	AF237621	Hs.80828	keratin 1 (epidermolytic hyperkeratosis)	17.2
	449636	A1656608	Hs.281328	ESTs	17.2
c 5	444958	AW292643	Hs.167047	ESTs	17.2
65	429978	AA249027	Hs.241507	ribosomal protein S6	17.2
	453043	AW136440	Hs.224277	ESTs	17.2
	458640	Al284935		gb:qk55g09.x1 NCI_CGAP_Co8 Homo sapiens cDNA	17.1
	456329	T41418		gb:ph1h3_19/1TV Outward Alu-primed hncDNA librar	17.1
	414839	X63692	Hs.77462	DNA (cytosine-5-)-methyltransferase 1	17.1
70		,,,,,,,,,,,	18.11402		17.1
, ,	403662	AIARDEESOS		predicted exon	
	411651	AW855392		gb:CM3-CT0275-191099-024-e12 CT0275 Homo saple	17.1
	404097	000040		predicted exon	17.1
	447252	R90916		gb:yn01e10.r1 Soares adult brain N2b4HB55Y Homo s	17.1
75	430024	AI808780	Hs.227730	integrin, alpha 6	17.1
75	412828	AL133396	Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob disease, Gerst	17.1
	444558	AW181975	Hs.165892	ESTs	17.1
	420869	X58964	Hs.123638	regulatory factor X, 1 (influences HLA class II expressi	17.1
	448812	H30775	Hs.22140	BMB8 antigen	17.0
	431777	AA570296	Hs.105470	found in inflammatory zone 1	17.0
80	422007	AI739435	Hs.39168	ESTs	17.0
50		COLOR IN	110.00100	predicted exon	17.0
	403051				
	402427	E43044	11. 00000	predicted exon	17.0
	417408	F17211	Hs.86092	Human DNA sequence from clone RP11-243J16 on chr	17.0
	450598	AF151076	Hs.25199	hypothetical protein	17.0

	421121	AA459028	Hs.86228	TRIAD3 protein	17.0
	458488	AL040565	Hs.209544	ESTs	17.0
	417158	AW965223	Hs.110052	ESTs, Weakly similar to ACR3_HUMAN 30 KD ADIP	17.0
_	439318	AW837046	Hs.6527	G protein-coupled receptor 56	17.0
5	428758	AA433988	Hs.98502	Homo saptens cDNA FLJ14303 fis, clone PLACE2000	17.0
	447572	Al631546	Hs.159732	ESTs	17.0
	434434	AA633516	Hs.157201	ESTs	17.0
	409994	D86864	Hs.57735	acetyl LDL receptor; SREC	17.0
	408927	AW295650	Hs.255453	ESTs	17.0
10	439093	AA534163	Hs.5476	The first contract of the cont	17.0
10				serine protease inhibitor, Kazal type, 5	
	454466	AA984138	Hs.279895	Homo sapiens mRNA for KIAA1578 protein, partial od	17.0
	426996	AW968934	Hs.173108	Homo sapiens cDNA: FLJ21897 fis, clone HEP03447,	17.0
	436659	AI217900	Hs.144464	ESTs	17.0
1.5	422731	AL13B411		gb:DKFZp434A1229_r1 434 (synonym: htes3) Homo s	17.0
15	429294	AA095971	Hs.198793	KIAA0750 gene product	17.0
	432847	BE266941	Hs.279554	proteasome (prosome, macropain) 26S subunit, non-AT	16.9
	416977	AW130242	Hs.293476	ESTs	16.9
	406827	AA971409	Hs.84298	CD74 antigen (invariant polypeptide of major histocom	16.9
~~	453758	U83527		gb:HSU83527 Human fetal brain (M.Lovetl) Homo sap	16.9
20	431314	AI732204	Hs.105423	ESTs	16.9
	423185	BE299590	Hs.125078	omithine decarboxylase antizyme 1	16.9
	435086	AW975243	Hs.122596	ESTs	16.9
	447383	N24231		gb:yx22a11.r1 Soares melanocyte 2NbHM Homo sapie	16.9
	456251	R13326	Hs.21303	ESTs	16.9
25	456327	H68741	Hs.38774	ESTs	16.9
	450594	N31036	, 1,000117	gb:yx51g04.r1 Soares melanocyte 2NbHM Homo saple	16.9
	428177	AA423967	Hs.178113	ESTs, Moderately similar to kinesin like protein 9 [M.m	16.9
					16.9
	453250	AI346520	Hs.121619	chromosome 11 open reading frame 15	16.9
30	418294	AF061739	Hs.83954	protein associated with PRK1	
20	446546	8E167687	Hs.156628	ESTs	16.9
-	421100	AW351839	Hs.124660	Homo saplens cDNA: FLJ21763 fis, clone COLF6967	16.9
	455993	BE179085		gb:RC0-HT0613-140300-021-d06 HT0613 Homo saple	16.9
	459375	BE251770		gb:601112470F1 NIH_MGC_16 Homo sapiens cDNA	16.9
25	454803	AW860148		gb:RC0-CT0379-290100-032-b10 CT0379 Homo saple	16.9
35	445474	Al240014	Hs.259558	ESTs	16.9
	443198	Al039813		gb:ox49d06.x1 Soares_total_fetus_Nb2HF8_9w Homo	16.9
	441557	AW452647	Hs.270462	ESTs	16.9
	420206	M91463	Hs.95958	solute carrier family 2 (facilitated glucose transporter),	16.9
	442202	BE272862	Hs.106534	Homo sapiens cDNA: FLJ22625 fis, clone HSI06009	16.9
40	416913	AW934714		gb:RC1-DT0001-031299-011-a11 DT0001 Homo sapie	16.9
	419355	AA428520	Hs.90061	progesterone binding protein	16.9
	452975	M85521	Hs.69469	dendritic cell protein	16.9
	432525	A1796096	Hs.109414	ESTs	16.8
	453718		Hs.120360		16.8
45		AL119317		phospholipase A2, group VI (cytosolic, calcium-indepe	16.8
43	437270	R18087	Hs.11282	ESTs, Weakly similar to cleft lip and palate transmemb	
	408007	AW135965	Hs.246783	ESTs	16.8
	450954	Al904740	Hs.25691	receptor (calcitonin) activity modifying protein 3	16.8
	402958	14100000	11 04000	predicted exon	16.8
50	445656	W22050	Hs.21299	ESTs, Weakly similar to AF151840 1 CGI-82 protein [H	16.8
50	410684	AA088500	Hs.170298	ESTs	16.8
	437669	Al358105	Hs.123164	ESTs, Wealthy similar to match to ESTs AA667999 [H.	16.8
	447869	AW139113	Hs.164307	ESTs	16.8
	458025	Al275406		gb:qi63c10.x1 Soares_NhHMPu_S1 Homo saplens cDN	. 16.8
	445614	AV660763	Hs.110675	apolipoprotein C-IV	16.8
55	454610	AW810224		gb:MR4-ST0125-021199-017-e07 ST0125 Homo saple	16.8
	449303	AK001495	Hs.23467	hypolhetical protein FLJ10633	16.8
	422105	Al929700	Hs.111680	endosuline alpha	16.8
	444788	AI871122	Hs.202821	ESTs	16.8
	414057	AI815559	Hs.75730	signal recognition particle receptor ("docking protein")	16.8
60	408822	AW500715	Hs.57079	Homo sapiens cDNA FLJ13267 fis, clone OVARC1000	16.8
	433379	AA586368	Hs.190232	EST8	16.8
	441552	AA937975		gb:oc08e12.s1 NCI_CGAP_GCB1 Homo sapiens cDN	16.8
	403582	201010		predicted exon	16.8
	433871	W02410	Hs.205555	ESTs	16.8
65	439509	AF086332	Hs.58314	ESTs	16.8
05			Hs.266175	phosphoprotein associated with GEMs	16.8
	431639	AK000680			
	430129	BE301708	Hs.233955	hypothetical protein FLJ20401	16.8
	401465	A 4 4 D 4 4 O C	(la 0000 /	predicted exon	16.8
70	448913		Hs.22564	myosin VI	16.8
70	410261	AF145713	Hs.61490	schwannomin interacting protein 1	16.8
	421199		Hs.102497	paxilin	16.7
	450489		Hs.224375	EST6	16.7
	410186			gb:RC5-BT0562-260100-011-A02 BT0562 Homo sapi	16.7
76	447224	BE617125		gb:601441664F1 NIH_MGC_65 Homo sapiens cDNA	16.7
75	403010			predicted exon	16.7
	404881			predicted exon	16.7
	445572	Al243445	Hs.189654	ESTs	16.7
	419440	AB020689	Hs.90419	KIAA0882 protein	16.7
	443406	AI056238	Hs.143316	ESTs	16.7
80	457901	AW207023	Hs.250497	ESTs, Highly similar to dJ745C22.1 [H.sapiens]	16.7
	448364		Hs.16561	HSPC141 protein	16.6
	407239		Hs.67846	laukocyta immunoglobulin-lika receptor, subfamily B (16.6
	401847			predicted exon	16.6
	429523	AK000788	Hs.205280	Homo sepiens cDNA FLJ20781 fis, clone COL04235	16.6

	1000.15				40.0
	432845 400246	Al989751	Hs.150378	ESTs predicted exon	16.6 16.6
	404971			predicted exon	16.6
	422954	AW998605	Hs.32399	ESTs, Weakly similar to Similar to Ena-VASP like prot	16.6
5	415042	NM_006759	Hs.77837	UDP-glucose pyrophosphorylese 2	16.6
	432201	AI538613	Hs.135657	ESTs	16.6
	456993	AL134577	Hs.200302	EST8	16.6
	456525	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgranulin A)	16.6
10	444060	AA340277	Hs.10248	Homo saplens cONA FLJ20167 fis, clone COL09512	16.6
10	428928 448199	BE409838 Al953278	Hs.194657 Hs.170557	cadherin 1, type 1, E-cadherin (epithelial) ESTs	16.6 16.6
	443422	R10288	Hs.301529	ESTs	16.6
	401117		1.0.001020	predicted expn	16.6
	400613			predicted exon	16.6
15	431214	AA294921	Hs.250811	v-ral simian leukemia viral oncogene homolog B (ras re	16.6
	431649	AL133077	Hs.266746	Homo saplens cDNA: FLJ22615 fis, clone HSI05118	16.5
	421335	X99977	Hs.103505	ARS component B	16.5
	427154 401010	AL137262	Hs.288991	Homo sapiens cDNA: FLJ22523 fis, clone HRC12507	16.5
20	436678	BE512828	Hs.5273	predicted exon NADH dehydrogenase (ublquinone) Fe-S protein 3 (30k	16.5 16.5
20	401589	DE312020	113.5215	predicted exon	16.5
	402538			predicted exon	16.5
	430478	NM_014349	Hs.241535	TNF-Inducible protein CG12-1	16.5
25	437623	D63880	Hs.5719	chromosome condensation-related SMC-associated pro	16.5
25	401244			predicted exog	16.5
	415167	AA160784	Hs.26410	ESTs	16.5
	438291 405183	BE514605	Hs.289092	Homo sapiens cDNA: FLJ22380 fis, clone HRC07453, predicted exon	16.5 16.5
	436480	AJ271643	Hs.87469	putative acid-sensing lon channet	16.5
30	456691	Al023428	Hs.205696	ESTs	16.5
	418332	R34976	Hs.78293	ESTs	16.5
	446052	AA358760		gb:EST67699 Fetal lung II Homo saplens cDNA 5 end	16.5
	444859	AW449137	Hs.157487	ESTs	16.5
25	437192	AW975786	Hs.75355	ubiquitin-conjugating enzyme E2N (homologous to yea	16.5
35	400891	AW//C400	Un 470000	predicted exon ESTs	16.5
	448372 425798	AW445166 AA364002	Hs.170802	gb:EST74529 Pineal gland II Homo sapiens cDNA 5' en	16.5 16.5
	459253	AL157476	Hs.32913	Homo sapiens mRNA; cDNA DKFZp761C082 (from c	16.5
	420746	AW195932	Hs.197488	ESTs	16.4
40	414717	BE271039	Hs.77060	proteasome (prosome, macropain) subunit, beta type, 6	16.4
	400727			predicted exon	16.4
	422691	NM_003365	Hs.119251	ubiquinol-cytochrome c reductase core protein I	16.4
	405639	0500000		predicted exon	16.4
45	414444	BE298594	Hs.79005	gb:601119754F1 NIH_MGC_17 Homo saplens cDNA	16.4 16.4
72 .	456146 414610	AL034349 BE388044	FIS. / 3003	protein tyrosine phosphatase, receptor type, K gb:601283747F1 NIH_MGC_44 Homo saplens cDNA	16.4
	414267	AL078459	Hs.289109	dimethylarginine dimethylaminohydrolase 1	16.4
	401268	. 2010 100		predicted exon	16.4
	403613			predicted exon	16.4
50	414203	BE262170		gb:601150419F1 NIH_MGC_19 Homo saplens cDNA	16.4
	454315	AW373564	Hs.251928	nuclear pore complex interacting protein	16.4
	452114	N22687	Hs.8236	ESTs	16.4 16.4
	404638 404600	•		predicted exon predicted exon	16.3
55	448855	AF070574	Hs.22316	Homo saplens clone 24819 mRNA sequence	16.3
	406629	AW277078	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	16.3
	450957	BE515202	Hs.21497	Homo sapiens mRNA for FLJ00042 protein, partial cds	16.3
	449966	H60542	Hs.37848	ESTs	16.3
60	402585	A1070 400	Hs.58785	predicted exon	16.3
00	436008	A1078428	MS.30/03	ESTs predicted exon	16.3 16.3
	401492 412288	NM_003005	Hs.73800	selectin P (granule membrane protein 140kD, antigen C	16.3
	405088	Сососос	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	predicted exon	16.3
٠	437345	BE259522	Hs.5556	NADH dehydrogenase (ubiquinone) 1, alpha/beta subco	16.3
65	432280	BE440142	Hs.2943	signal recognition particle 19kD	16.3
	419596	BE379320	Hs.91448	MKP-1 like protein tyrosine phosphatase	16.3
	428801	AW277121	Hs.254881	ESTs	16.3
	431394	AK000692	Hs.252351	HERV-H LTR-associating 2	16.3
70	452998 439938	BE019681 Al147392	Hs.6019 Hs.124607	Homo sapiens cDNA: FLJ21288 fis, clone COL01927 ESTs	16.3 16.3
, ,	418844	M52982	Hs.1200	arachidonate 12-lipoxygenase	16.3
	.446081	AA972412	Hs.13755	f-box and WD-40 domain protein 2	16.3
	443534	Al076123		gb:oy92e04.x1 Soares_fetal_liver_spleen_1NFLS_S1 H	16.3
75	459510	AA076706		gb:7B01B02 Chromosome 7 Fetal Brain cDNA Library	16.3
75	450517	AI523755	Hs.59236	ESTs, Weakly similar to B35049 ankyrin 1, erythrocyte	16.3
	451938 454478		Hs.16697	down-regulator of transcription 1, TBP-binding (negative) gb:QV1-UM0105-180400-162-f10 UM0105 Homo sap	16.3 16.2
	407214	AW805749 AA412048	Hs.279574	CGI-39 protein; cell death-regulatory protein GRIM19	16.2
	406580		,	predicted exon	16.2
80	409452		Hs.289271	cytochrome c-1	16.2
	416841		Hs.249495	heterogeneous nuclear ribonucleoprotein A1	16.2
	458710			gb:AV660856 GLC Homo saplens cDNA done GLCG	16.2
	450657		Hs.25277	hypothetical protein FLJ21065	16.2
	- 404230			predicted exan	16.2

	439471	W69839	Hs.58033	EST8	16.2
	400848			predicted exon	16.2
	428797	AA496205	Hs.193700	Homo saplens mRNA; cDNA DKFZp586i0324 (from c	16.2
	416272	AA178882	110.100700		
5			11- 4 400 40	gb:zp38b09.r1 Stratagene muscle 937209 Homo sapiens	16.2
,	444465	Al206592	Hs.143843	ESTs	16.2
	431257	AF039597		gb:Homo sapiens Ku86 autoantigen related protein 1 (K	16.2
	447775	BE179318		gb:RC1-HT0615-290300-021-g05 HT0615 Homo sapie	16.2
	403833			predicted exon	16.2
	444140	AV648089	Hs.282383	ESTs	16.2
10	446102		Hs.252956	ESTs	
10		AW168067	N3.232330		16.2
	416475	170298		gb:yd26g02.s1 Soares fetal liver spleen 1NFLS Homo s	16.2
	430783	AW971248	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFA	16.2
	414070	AW963783		gb:EST375856 MAGE resequences, MAGH Homo sap	16.2
	444283	Al138971	Hs.154636	ESTs	16.2
15	405599	X92715	Hs.3057	zinc finger protein 74 (Cos52)	16.2
13			160001		
	409427	AW389668		gb:RC2-ST0168-071299-013-f06 ST0168 Homo sapien	16.2
	409417	AA156247	Hs.295908	ESTs, Weakly similar to ALU7_HUMAN ALU SUBFA	16.2
	435380	AA679001	Hs.192221	ESTs	16.2
	406752	AI285598	Hs.217493	annexin A2	16.2
20	406096	F12200	Hs.5811	chromosome 21 open reading frame 59	16.2
	417551	Al816291	Hs.82273	hypothetical protein	16.2
	441252	AW360901 .	Hs.183047	ESTs. Wealdy similar to unnamed protein product [H.s	16.2
	419608	AL037237	Hs.91586	transmembrane 9 superfamily member 1	16.1
~ -	438894	Al630819	Hs.300431	ESTs ·	16.1
25	451287	AK002158	Hs.26194	hypothetical protein FLJ11296	16.1
	412499	AW956916	Hs.11238	KIAA0622 protein; Drosophila "multiple asters" (Mast	16.1
	433355	AI808235			16.1
			Un 204700	gb:wf44e01.x1 Soares_NFL_T_GBC_S1 Homo saplen	
	416818	A1986408	Hs.204766	ESTs, Weakly similar to B48013 proline-rich proteogly	16.1
20	438765	AI031888	Hs.132594	ESTs .	16.1
30	424470	BE244261	Hs.5615	nuclear RNA export factor 1	16.1
	416194	H27114	Hs.301212	ESTs	16.1
	446702	R44518	Hs.143496	ESTs	16.1
	414222	AL135173	Hs.878	sorbitol dehydrogenase	16.1
	443122				
25		AI806656	Hs.209022	ESTs, Weakly similar to Pro-Pol-dUTPase polyprotein	16.1
35	448648	BE614345	Hs.159089	ESTs .	16.1
	456394	W28506		gb:48f1 Human retina cDNA randomly primed sublibra	16.1
	445887	AI263105	Hs.145597	ESTs	16.1
	412332	AW937661	Hs.288324	Homo sapiens cDNA FLJ13283 fis, clone OVARC1001	16.1
	403912			predicted exon	16.1
40		Decaco	Un 20714		
70	441446	R66269	Hs.28714	ESTs	16.1
	403153			predicted exon	16.0
	444907	AW772596	Hs.148586	ESTs	16.0
	421946	R99629	Hs.109773	hypothetical protein FLJ20625	16.0
	437513	AW410681	Hs.5648	proteasome (prosome, macropain) 26S subunit, non-AT	16.0
45	407752	AA573581	Hs.13328	ESTs	16.0
-10					
	447953	Al804218	Hs.209614	Homo saplens cDNA: FLJ22343 fis, clone HRC06043	16.0
	425708	AK001342	Hs.14570	Homo sapiens cDNA: FLJ22530 fis, clone HRC12866	16.0
	421449	AA713491	Hs.291501	ESTs	16.0
	418323	NM_002118	Hs.1162	major histocompatibility complex, class II, DM beta	16.0
50	447787	BE620108		gb:601483015F1 NIH_MGC_69 Homo sapiens cDNA	16.0
	422716	Al702835	Hs.124475	ESTs	16.0
	443958	BE241880	Hs.10029		16.0
			NS. 10023	cathepsin C	
	417908	AA207221		gb:zq55h04.s1 Stratagene neurospithellum (937231) Ho	16.0
	438542	AA810131	Hs.123317	ESTs	16.0
55	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor, alpha polypeptid	16.0
	456825	H67220	Hs.146406	nitrilase 1	16.0
	431360	NM_000427	Hs.251680	koricrin	16.0
	414266	BE267834		gb:601124428F1 NIH_MGC_8 Homo saplens cDNA c	16.0
			Un 420700		
60	440571	AA904461	Hs.130798	ESTS	16.0
00	426075	AW513691	Hs.270149	ESTs	16.0
	413488	BE144017	Hs.184693	transcription elongation factor B (SIII), polypeptide 1 (1	16.0
	446767	Al380107	Hs.158954	ESTs	16.0
	418008	W56044	Hs.211556	Homo sapiens cONA: FLJ23378 ffs, clone HEP16248	16.0
	404239			predicted exon	16.0
65		AMPROCOCO	Un 179164		
95	458401	AW236939	Hs.172154	ESTs	16.0
	412955	BE241849	Hs.75082	ras homolog gene family, member G (rho G)	15.9
	423072	AJ792946	Hs.123116	solute carrier family 12 (sodium/potassium/chloride tran	15.9
	444954	AW247076	Hs.12163	eukaryotic translation initiation factor 2, subunit 2 (beta	15.9
	449023	AI623261	Hs.248875	ESTs	15.9
70	435729	BE048886	Hs.275017	EST	15.9
. •	438575				
		BE304709	Hs.146550	myosin, heavy polypeptide 9, non-muscle	15.9
	413047	H02209		gb:yj38c09.r1 Soares placenta Nb2HP Homo saplens cD	15.9
	425997	AK000086	Hs.165948	hypothetical protein FLJ20079	15.9
	446863	AW614370	Hs.254620	ESTs	15.9
75	448564	AL044962	Hs.21453	Homo sapiens mRNA for inositol 1,4,5-trisphosphate 3	15.9
	455640	BE064059		gb:QV3-BT0296-010300-111-e04 BT0296 Homo sanie	
			11- 450455		15.9
	404345	AA730407	Hs.159156	protocadherin 11	15.9
	418512	AW498974	Hs.89981	diacylglycerol kinase, zeta (104kD)	15.9
00	411551	AW851309		gb:IL3-CT0220-170200-067-C11 CT0220 Homo saplen	15.9
80	446726	AW300144	Hs.209209	Homo sapiens cDNA FLJ11629 fis, clone HEMBA100	15.9
	410748	BE383816	Hs.136005	ESTs, Highly similar to bG115G20.2 [H.sapiens]	15.9
	449618	AI076459	Hs.14366	Homo sapiens cDNA FLJ12819 fis, clone NT2RP2002	
					15.9
	429697	AW296451	Hs.24605	ESTs	15.9
	424012	AW368377	Hs.137569	turnor protein 63 kOa with strong homology to p53	15.9

	403151			ameliated aven	16.0
	452363	AI582743	Hs.94953	predicted exon ESTs, Highly similar to C1QC_HUMAN COMPLEME	15.8 15.8
	425971	AF135024	Hs.165296	kallikrein 13	15.8
_	432826	X75363	Hs.250770	kallikrein 15	15.8
5	431972	AI805145	Hs.191711	ESTs .	15.8
	400269 404703	A1904493	Hs.99890	predicted exon polymerase (DNA directed), delta 1, catalytic subunit (1	15.8 15.8
	449335	AW150717	Hs.296176	STAT induced STAT inhibitor 3	15.8
• •	418443	NM_005239	Hs.85146	v-ets avian erythroblastosis virus E26 oncogene homolo	15.8
10	445773	H73456	Hs.13299	Homo saplens mRNA; cDNA DKFZp761M0111 (from	15.8
	433782	AF090945		gb:Homo saplens clone HQ0670	15.8
	406473 420831	AA280824	Hs.190035	predicted exon ESTs	15.8 15.8
	402939			predicted exon	15.8
15	405196			predicted exon	15.8
	452947	AW130413	11 07/0	gb:xf50f04.x1 NCI_CGAP_Gas4 Homo sapiens cDNA	15.8
	414170 437133	AA335996 AB018319	Hs.3743 Hs.5460	matrix metalloproteinase 24 (membrane-inserted) KIAA0776 protein	15.8 15.8
	458356	AI024855	Hs.131575	ESTs	15.8
20	407857	Al928445	Hs.92254	hypothetical protein FLJ20163	15.8
	405687			predicted exon	15.8
	415189	L34657	Hs.78146	platelet/endothelial cell adhesion molecule (CD31 antig	15.8
	408662 448338	AW247699 Al492857	Hs.105897	ESTs gb:th72h08.x1 Soares_NhHMPu_S1 Homo sapiens cDN	15.7 15.7
25	402694	N1432001		predicted exon	15.7
	430224	AW675175	Hs.235975	hypothetical protein DKFZp434D0412	15.7
	458792	N56666		gb:yw75e02.r1 Soares_placenta_8to9weeks_2NbHP8to	15.7
	402944	05040547	11- 440440	predicted exon	15.7
30	422675 408661	BE018517 AW247625	Hs.119140	eukaryotic translation Initiation factor 5A gb:2820094.5prime NIH_MGC_7 Homo sapiens cDNA	15.7 15.7
30	423238	AA323569	Hs.280482	ESTs	15.7
	421517	AB018352	Hs.105399	KIAA0809 protein	15.7
	429865	AB023217	Hs.225968	KIAA1000 protein	15.7
35	440815	AW071945	Hs.7436	putative acyltransferase	15.7
33	400634 451034	AL050341	Hs.25846	predicted exon zinc metalloproteinase, STE24 (yeast, homolog)	15.7 15.7
	457571	Al375726	Hs.279918	hypothetical protein	15.7
	450105	BE281124	Hs.288013	similar to yeast BET3 (S. cerevisiae)	15.7
40	407464	AJ276396		gb:Homo sapiens mRNA for matrix extracellular phosp	15.7
40	439465	AF086285	U- 16070	gb:Homo sapiens full length insert cDNA clone ZD478	15.7 15.7
	451837 435313	T92157 AJ769400	Hs.16970 Hs.189729	ESTs ESTs	15.7
	402738	74.00 100	110.100720	predicted exon	15.7
46	432966	AA650114		gb:ns92h09.s1 NCI_CGAP_Pr3 Homo sepiens cDNA c	15.7
45	457666	AW470302	Hs.129663	ESTs	15.7
	401269 427509	M62505	Hs.2161	predicted exon complement component 5 receptor 1 (C5a ligand)	15.7 15.7
	418846	AI821602	Hs.115127	ESTs	15.6
	448891	AI587332	Hs.209115	ESTs	15.6
50	445930	AF055009	Hs.13456	Homo sapiens clone 24747 mRNA sequence	15.6
	421254 447073	AK001724 AW204821	Hs.102950 Hs.157726	coat protein gamma-cop	15.6 15.6
	445438	AB014578	Hs.12707	ESTs KIAA0678 protein	15.6
	432126	AA865239	Hs.55144	ESTs	15.6
55	424091	AF235097	Hs.139263	calcium channel, voltage-dependent, alpha 1F subunit	15.6
	440832	AI057548	Hs.128224	ESTS	15.6
	449228 434253	AJ403107 Al393345	Hs.148590 Hs.116215	ESTs, Weakly similar to AF208846 1 BM-004 [H.saple ESTs	15.6 15.6
	459270	AL039604	113.1102.13	gb:DKFZp434E2211_r1 434 (synonym: htes3) Homo s	15.6
60	454425	AW300927	Hs.27192	hypothetical protein dJ1057B20.2	15.6
	412055	AA099907	Hs.271806	ESTs	15.6
	400837	DESTROA	Hs.288042	predicted exon	15.6
	458866 417124	BE616694 BE122762	Hs.25338	Homo sapiens cDNA FLJ14299 fis, clone PLACE1010 ESTs	15.6 15.6
65	414376	BE393856	Hs.66915	ESTs, Weakly similar to 16.7Kd protein [H.sapiens]	15.6
	418636	AW749855		gb:QV4-BT0534-281299-053-c05 BT0534 Homo saple	15.6
	454128	AL031259	Hs.41639	programmed cell death 2	15.6
	441074 451742	AW500001 177609	Hs.4783 Hs.117970	Homo sapiens cDNA: FLJ22035 ffs, clone HEP08838 ankyrin 2, neuronal	15.6 15.6
70	403687		113.111310	predicted exon	15.6
	431838	AI097229	Hs.217484	ESTs	15.6
	402855	A1000040	11- 000400	predicted exon	15.6
	449635 434392	AI989942 AW983709	Hs.232150 Hs.268051	ESTs ESTs	15.6 15.6
75	444301	AK000136	Hs.10760	hypothetical protein FLJ20129	15.6
	414973	C19089		gb:C19089 Human placenta cDNA (TFujiwara) Homo	15.5
	428374	AW405156	Hs.183994	protein phosphatase 1, catalytic subunit, alpha isoform	15.5
	415745	AJ301107	Hs.150790	ESTs ESTe	15.5
80	432532 417112	AW058459 AA193439	Hs.162246	ESTs gb:zr41b09.s1 Soares_NhHMPu_S1 Homo sapiens cDN	15.5 15.5
	418101	AL047476	Hs.98485	gap junction protein, beta 4 (connexin 30.3)	15.5
	453110	AW384928	Hs.225160	Homo sepiens cDNA FLJ13102 fis, clone NT2RP3002	15.5
	458506	AJ239397	Un OCCACO	gb:AJ239397 Uni-ZAP XR retinal pigment epithelium H ESTs	15.5
	436989	AA741028	Hs.256155	Lora	15.5

	407396	AF011757		gb:Homo sapiens RAGE binding protein (P12) mRNA,	15.5
	449684	AI659166	Hs.207144	EST8	15.5
	454666	AW812994		gb:RC3-ST0186-230300-019-g02 ST0186 Homo saplen	15.5
5	430492	U15197	Hs.300803	Human histo-blood group ABO protein mRNA, partial	15.5
)	439460	AA836220	Hs.13774	ESTS	15.5
	449231	BE410360	11- 04504	gb:601302340F1 NIH_MGC_21 Homo saplens cDNA	15.5
	453060	AW294092	Hs.21594	ESTs	15.5
	416961 439988	BE391476	Hs.80617	ribosomal protein S16	15.5
10	400917	AA860119	Hs.255976	ESTs	15.5 15.5
10	424585	AA464840		predicted exon gb:zx43h11.r1 Soares_total_fetus_Nb2HF8_9w Homo	15.5
	431029	BE392725	Hs.248571	Homo sapiens PAC clone RP5-1163J12 from 7q21.2-q3	15.5
	441680	AW444598	Hs.7940	RAP1, GTP-GDP dissociation stimulator 1	15.5
	437830	AB020658	Hs.5867	KIAA0851 protein	15.5
15	409479	BE163800	Hs.136912	ESTs	15.5
10	409885	AW503068	110.100012	gb:UI-HF-BP0p-aje-g-10-0-UI.r1 NIH_MGC_51 Homo	15.4
	459090	AA443323	Hs.107812	ESTs, Weakly similar to SPOP [H.sapiens]	15.4
	429324	AA488101	Hs.199245	Inactivation escape 1	15.4
	403766			predicted exon	15.4
20	413970	U59309	Hs.75653	furnarate hydratase	15.4
	456674	BE266120	Hs.269358	ESTs	15.4
	417931	W95642	Hs.82961	trefoll factor 3 (intestinal)	15.4
	430125	U46418	Hs.233950	serine protease Inhibitor, Kunitz type 1	15.4
25	452154	AW953265	Hs.271277	hypothetical protein from EUROIMAGE 363668	15.4
25	422984	W28614	Hs.75984	chorionic somatomammotropin hormone 2	15.4
	408649	BE242232	Hs.26045	protein tyrosine phosphatase, receptor type, A	15.4
	417497	AW402482	Hs.82212	CD53 antigen	15.4
	404666			predicted exon	15.4
30	456847	A1360456	Hs.37776	ESTs	15.4
30	426995	AA400646	Hs.221988	ESTs	15.4
	445350	AF052112	Hs.12540	lysophospholipase I	15.4
	450214 449733	BE439763 R74546	Hs.227571 Hs.29438	regulator of G-protein signalling 4	15.4 15.4
	411660	AW855718	П5.23400	Homo sapiens cDNA FLJ12094 fis, clone HEMBB100 gb:RC1-CT0279-070100-021-a06 CT0279 Homo sapie	15.4
35	442653	BE269247	Hs.170226	Homo sapiens clone 23579 mRNA sequence	15.4
55	447552	Al394125	Hs.160413	ESTs	15.4
	448712	W01046	Hs.181634	Homo sapiens cDNA: FLJ23602 fis, clone LNG15735	15.4
	420180	AI004035	Hs.25191	ESTs	15.4
	440099	AL080058	Hs.6909	DKFZP564G202 protein	15.4
40	427550	BE242818	Hs.179606	nuclear RNA helicase, DECD variant of DEAD box fam	15.4
	432894	AW167668	Hs.279772	brain specific protein	15.3
	412113	AW161274	Hs.74427	p53-induced protein	15.3
	431614	Al189827		gb:qd19d07.x1 Soares_placenta_8to9weeks_2NbHP8to	15.3
	445870	AW410053	Hs.13406	syntaxin 18	15.3
45	424347	AA723883	Hs.145513	Homo sapiens mRNA; cDNA DKFZp434L0435 (from	15.3
	425132	AW250114		gb:2821134.5prime NIH_MGC_7 Homo sapiens cDNA	15.3
	439756	AL359651	Hs.283852	Homo sapiens mRNA full length insert cDNA clone EU	15.3
	432946	U60899	Hs.279854	mannosidase, alpha, class 28, member 1	15.3
50	406130			predicted exon	15.3
50	453359	AA448787	Hs.24872	ESTs, Wealdy similar to aortic carboxypeptidase-like p	15.3
	405491	A A 070C07	11- 5400	predicted exon	15.3
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-conjugating enzy	15.3
	446826 441211	AK000626 AW946155	Hs.16230 Hs.7750	hypothetical protein FLJ20619	15.3 15.3
55	418711	AW247977	Hs.87595	hypothetical protein AL133206 translocase of inner mitochondrial membrane 22 (yeast)	15.3
55	457301	AA469146	1 2.01030	gb:nc67e03.s1 NCI_CGAP_Pr1 Homo sapiens cDNA c	15.3
	449999	Al679421	Hs.231098	ESTs, Highly similar to ALU4_HUMAN ALU SUBFA	15.3
	439090	H65724	Hs.271663	ESTs	15.3
	416586	D44643	Hs.14144	secreted modular calcium-binding protein 1	15.3
60	411940	AW876686		gb:CM4-PT0031-180200-507-e05 PT0031 Homo saple	15.3
	407639	AW205369	Hs.252936	ESTs	15.3
	458012	Al424899	Hs.188211	ESTs	15.3
	426490	NM_001621	Hs.170087	aryl hydrocarbon receptor	15.3
65	408741	M73720	Hs.646	carboxypeptidase A3 (mast cell)	15.3
65	437371	AK000868	Hs.5570	hypothetical protein FLJ10006	15.3
	437134	AA349944	Hs.42915	ARP2 (actin-related protein 2, yeast) homolog	15.3
	441890	AI809547	Hs.128075	ESTs	15.3
	409442	AA310162	Hs.169248	cytochrome c	15.3
70	407078	Z26256	Un 10110F	gb:H.sapiens isoform 1 gene for L-type calcium channe (mmunoglobulin lambda locus	15.2 15.2
70	436553 443177	AW407157 BE268461	Hs.181125	benzodiazapine receptor (peripheral)	15.2
	448771	8E315511	Hs.202 Hs.296244	SNARE protein	15.2
	436837	Al968248	Hs.187869	ESTs	15.2
	423623	AB011117	Hs.129943	KIAA0545 protein	15.2
75	422651	NM_015670	Hs.118926	DKFZP586K0919 protein	15.2
	403221	AL134878	Hs.119500	karyopherin alpha 4 (importin alpha 3)	15.2
	431620	AA126109	Hs.264981	2'-5'oligoadenylate synthetase 2	15.2
	404794	NM_000078	Hs.89538	cholesteryl ester transfer protein, plasma	15.2
	412944	AA384110	Hs.197143	ESTs	15.2
80	450817	N71597	Hs.29698	ESTs	15.2
	418666	AF001434	Hs.155119	EH domain containing 1	15.2
	451636	AW173270	Hs.140444	ESTs	15.2
	426302	AA459085	Hs.275163	non-metastatic cells 2, protein (NM23B) expressed in	15.2
	454485	AW795322		gb:PM0-UM0018-120400-002-h01 UM0018 Homo sap	15.2
				100	

PCT/US02/19297 WO 02/102235

15.2

15.2 15.2

15.2

15.2 15.2 15.1

15.1

440617 AA894880

AA459480

RF152871

AW068594

AL134275

AW016569

AA732647 Y10129

NM_006289

449718

405227

431006

443476

438828

407634

436R57

431526

447386

5

10

Hs.181181

Hs.23956

Hs.133878

Hs.301280

Hs.258742

Hs.18420

Hs.6434

hypothetical protein FLJ20502

hypothetical protein DKFZp761F2014

myosin-binding protein C, cardiac

gb:CM1-HT0333-101299-064-d12 HT0333 Homo sapi

ESTs, Wealthy similar to AF151889 1 CGI-131 protein

ESTs, Highly similar to AF241831 1 intracellular hyalu gbmz89d01.s1 NCL CGAP_GCB1 Homo sapiens cDN

predicted exon

```
KIAA1027 protein
          436573
                   AA723297
                                    Hs.127138
                                                 ESTs
                                                                                                            15.1
                                                 Homo saplens clone 25056 mRNA sequence
hypothetical protein DKFZp434P0531
Homo saplens cDNA FLJ13152 fis, clone NT2RP3003
          43285B
                   BE618609
                                    Hs.279591
Hs.284181
                                                                                                            15.1
          437352
                   Al 353957
                                                                                                            15.1
                                                                                                            15.1
          413209
                   AW083791
                                    Hs.21263
15
                   AA993138
                                    Hs.142287
                                                 ESTs, Weakly similar to ALUF_HUMAN !!!! ALU CL
                                                                                                            15.1
          407376
                                                 pellin
ESTs
          430475
                    BE387420
                                    Hs.241531
                                                                                                            15.1
          446764
                   AW291276
                                    Hs.285532
                                                                                                            15.1
                                                 Homo sapiens gene for Sepiapterin Reductase, partial c
          425868
                   AR017548
                                    Hs.160100
                                                                                                            15.1
                                                 receptor (calcitonin) activity modifying protein 1
                                                                                                            15.1
          453464
                   Al884911
                                    Hs.32989
20
          447246
                   AW449032
                                    Hs.170257
                                                                                                            15.1
          401780
                                                 predicted exon
                                                                                                            15.1
                   AA018893
                                    Hs.3727
Hs.183868
          434063
                                                                                                            15.1
15.1
                                                 unr-interacting protein
                                                 glucuronidase, beta
ESTs
          416114
                   Al695549
                   AI809587
                                    Hs.148782
                                                                                                            15.1
          441018
25
           425972
                    BE391563
                                    Hs.165433
                                                 ESTs, Highty similar to T17342 hypothetical protein D
                                                                                                             15.1
                                    Hs.44013
Hs.24052
           426062
                   N57014
                                                 ESTs
                                                                                                            15.1
                    AI914901
          451234
                                                 ESTs
                                                                                                            15.1
                                                 KIAA0912 protein
           429565
                    AB020719
                                    Hs.207802
                                                                                                            15.1
                                                 ESTs
           418092
                    R45154
                                    Hs.106604
30
           424550
                    AI650541
                                    Hs.115298
                                                 ESTs
                                                                                                             15.1
                                                 endothelial differentiation, sphingolipid G-protein-coup ESTs
                                    Hs.154210
Hs.170784
           425023
                    AW956889
                                                                                                            15.1
15.1
           445213
                    AW204314
                                     Hs.26608
                                                                                                             15.0
           418102
                    R58958
                                                 ESTs
           450082
                                     Hs.245893
                                                                                                             15.0
35
           446749
                    NM_016069
                                    Hs.16089
                                                 CGI-136 protein
                                                                                                             15.0
           406124
                                                 predicted exon
Homo sapiens mRNA; cDNA DKFZp761P211 (from c
                                                                                                             150
           457408
                    AL137507
                                     Hs.255348
                                                                                                             15.0
           410051
                    U25773
                                                 ESTs, Weakly similar to dJ1042K10.2 [H.sapiens]
                                     Hs.218182
                                                                                                             15.0
           440965
                    Al523646
                                     Hs.169859
                                                 ESTs
                                                                                                             15.0
40
                                                 gb:IL3-CT0214-161299-045-806 CT0214 Homo sapien
                    AW752597
           440190
                                                                                                             150
                                    Hs.82132
                                                 interferon regulatory factor 4
gb:2821048.5prime NIH_MGC_7 Homo septens cDNA
           417437
                    U52682
                                                                                                             15.0
                    AW249008
           454249
                                                                                                             15.0
           432276
                    AF163302
                                     Hs.274255
                                                 somatostatin receptor-interacting protein
                                                                                                             15.0
                                                 predicted exon
           401116
                                                                                                             15.0
45
                    AA164516
                                     Hs.136309
                                                 CGI-61 protein
           423960
                                                                                                             150
           451661
                    AB020650
                                    Hs.26777
                                                 KIAA0843 protein
                                                                                                             15.0
                                    Hs.25740
                                                 ERO1 (S. cerevisiae)-like
           450983
                    AA305384
                                                                                                             15.0
           446187
                    AK001241
                                     Hs.14229
                                                 hypothetical protein FLI 10379
                                                                                                             15.0
                                                 predicted exon
           404122
                                                                                                             15.0
50
           411299
                    BE409857
                                    Hs.69499
                                                 hypothetical protein
                                                                                                             15.0
           403077
                                                 predicted exon
                                                                                                             15.0
           438000
                    A1825880
                                     Hs.5985
                                                 non-kinase Cdc42 effector protein SPEC2
                                                                                                             15.0
           447118
                    AB014599
                                     Hs.17411
                                                 KIAA0699 protein
                                                                                                             15.0
           417878
                    190916
                                     Hs.82845
                                                 Human clone 23815 mRNA sequence
                                                                                                             15.0
55
           444079
                    H09048
                                     Hs.23606
                                                 ESTs
                                                                                                             15.0
           458234
                    BE551408
                                     Hs.127196
                                                 ESTs
                                                                                                             15.0
           434208
                    T92641
                                     Hs.127648
                                                 hypothetical protein PRO2176
                                                                                                             15.0
                    AW375506
           423136
                                    Hs.124147
                                                 ESTs
                                                                                                             15.0
                                                 predicted exon
ESTs
           403177
                                                                                                             15.0
60
           448699
                    AI857269
                                     Hs.227351
                                                                                                             15.0
                    AW957442
                                                 ESTs
           425248
                                     Hs.252766
                                                                                                             15.0
           429430
                    AI381837
                                     Hs.155335
           TABLE 38:
65
           Pkey: Unique Eos probeset Identifier number
           CAT number: Gene cluster number
           Accession: Genbank accession numbers
                      CAT Number
           Pkey
                                       Accession
70 ·
           408310
                      1051011_1
                                        AW179023 AW179010
                                       AW245831 AW273207
AW247625 AW249214
           408647
                      1071855_1
           408661
                      1073036_1
                                        H85615 H86300 H86263 H86282 AA059278 H86304
           408987
                      109306_1
           409427
                      1129667_1
                                        AW389668 AW389657 AW609198 AW389649
75
           409545
                      1138823_1
                                       BE296182 AW629821
AW501137 AW501295 AW501212
           409828
                      1155571_1
                                       AW502208 AW502366 AW502148
           409865
                      1156518 1
                                        AW503068 AW503789
           409885
                      1157385_1
           410003
                                        AA079487 AA128547 AA128291 AA079587 AA079600
                      116761_1
80
           410186
                      1182096_1
                                        AW602528 BE073859 Z38412
                                       RF407727
           410626
                      1212621 -1
                                        AW813242 BE146089 AW813195 AW813173 AW813206 BE145953 BE146212 AW813196 AW854582 AW813241 BE061582
           411004
                      1228975_1
                                        AW816072 AW813375 AW813385 AW813372 AW813436 AW816148 AW813475 AW816107 AW813398 AW813479 AW814475 AW813317
           411014
                      1229091_1
           411028
                      1229404_1
                                        AW813703 AW813839
                                                                                        127
```

PCT/US02/19297 WO 02/102235

```
411236
                        1236374_1
                                           AW833752 AW833633 AW833776 AW833719 AW833362 AW833749
           411420
                        1245222_-1
1249044_1
                                           BE390652
W03940 T98335 AW850705
           411541
           411551
                                           AW851309 AW850888 AW851419 AW851412 AW851299
                        1249196_1
  5
           411651
                        1252835_1
                                           AW855392 AW855559 AW855423
                                           AW855718 AW855740 AW855748
AW857404 AW857401 BE144856
AW864370 AW864319 AW864504
           411660
                        1253078_1
                        1254304_1
1259427_1
           411698
           411811
                        1266070_1
                                           F06485 AW876454
           411930
                                           AW876686 AW876717 AW877215 AW876691 AW876722 AW877218 AW876694 AW876725
AW877015 AW877133 AW876978 AW877071 AW876988 AW877069 AW877053 AW877013
10
           411940
                        1266262_1
           411942
                        1266449 1
                        1327636 -1
           412793
           413047
                        1346806_1
                                            H02209 BE062154 BE062032
                                           BE065215 BE155544 BE155541 BE155540 BE155542 BE155543 BE067870 BE067866 BE165133 BE165334 BE165329 BE165332 BE078159 BE078276 BE078163 BE078277 BE078279 BE078158
            413101
                        1349154_1
15
            413154
                        1351077_1
1358147_1
           413282
                                            BE140643 BE140645 BE140644 BE140657 BE140660 BE140659 BE140661
            413442
                        1370508_1
            413544
                                            BE147225 BE147205 BE147234
                                           BE152648 BE152712 BE152669 BE152659 BE152610 BE152811 BE152816 BE152643 BE152706 BE152656 BE152660 BE152715 BE152662 BE152669 BE152669 BE152669 BE152672 BE152653 BE152767 BE152651 BE152679 BE152679 BE152679 BE152679 BE
            413605
                        1379792_1
20
                                            BE152771 BE152775 BE152666 BE152768 BE152813 BE152664 BE152676 BE152681 BE152709 BE152667 BE152814 BE152808 BE152711
                                            BE152707 BE152815 BE152678 BE152673 BE152782 BE152671 BE152682 BE152760 BE152809 BE152778 BE152780 BE152762 BE152762
                                            BE152781 BE152774 BE152763 BE152769
BE156765 BE156770 BE166767 BE156769 BE156803 BE156802 BE156847 BE156853 BE156780 BE156836 BE156792 BE156834 BE156779
                        1382784_1
            413679
25
                                            BE156789 BE156833 BE156844 BE156831 BE156849 BE156797 BE156784 BE156801 BE156843 BE156793 BE156852
            413758
                        1386900_-1
                                            AW963783 F36521 F30667 AW753177 AW753195 AW853065 AA135150 AA375028
            414070
                        141442_1
            414195
                        1424854_-3
                                            BE262170 BE382553 BE261026 BE273627
            414203
                        1425510 2
30
                        1430984_1
                                            BE267834 BE514180 BE514096
            414266
            414276
                        1432115_-1
                                            BE297862
            414333
                        1436492_1
                                            BE274897 BE408199 BE274723
                                            BE298594
BE379046 BE395459
            414444
                         1446827_-1
                        1460320_1
            414539
35
            414540
                        1460324 -1
                                            BE379050
            414605
                         1465790_-1
                                            BE390440
                                            BE388044 BE391117 BE391530
BE410589 BE390949 BE408297 BE389529
AA150350 AA361174 AW959038
            414610
                         1466027_1
            414626
                         1467232_1
            414642
                        146960_1
1472628_-1
40
            414663
                                            BE396326
                                            C19089 C18814 C16621
            414973
                         1510755_1
                                            T82802 D78670 R08505
W70022 R35201 F12763 T74725 H63485 Z45782 H61126
Z43912 H09194
            415160
                         1525766_1
            415606
                         1540470_1
                         1561575_1
            415917
                                            AA178882 AA179898 AA178897
T70298 H58072 R02750
45
            416272
                         158407 1
            416475
                                            AW934714 BE161007 BE162500 AW749902 AW749864 BE162498 BE161005 AA190449 AW513465 BE161006 BE162499 AA193439 AA193537 AW814128 AW993983 AW994798 AW993999 AW993989 AA204755
            416913
                         163001_1
            417112
                         165068 1
                         168900_1
            417611
50
            417908
                         170764_1
                                             AA207221 BE538271
                                            AW749855 AA225995 AW750208 AW750206
            418636
                         177402_1
                         1799516_1
186533_1
                                             T60872 T60906
            418874
                                            AA528295 AW971284 AA247945
            419618
            419889
                                             AA251600 AA279607
                         188798_1
55
            420902
                         197525_1
                                             AA742277 AW976493 AA281585
            422160
                        212412_1
                                            AW582898 AA305114
AL138411 AL138412 AA315860
                         220507 1
            422731
            422831
                         221879_1
                                             R02504 AA317715 AW961465 AF121172
            423050
                         224288_1
                                             AA320946 H92114 BE144449 BE144438
60
            423103
                         225019_1
                                            AA322029 BE315237
H38340 H39081 AA324112
            423287
                         226793_1
                         230314_1
                                             BE002904 H64880 AA328679
            423621
                                             AA464840 AA343628
            424585
                         241151_1
             424995
                         245794_1
                                             Z45023 AA349514
                                            AW250114 Z43124 AA431421 AI879054 AA351616 AA351035 AL048999
BE004257 AW811190 AA360576 BE172402 BE181703
65
             425132
                         247059_1
            425612
425798
                         253969 1
                                             AA364002 Al522307
                         256586_1
             426065
                         260276_1
                                             N32049 R34821 R78237
                                            BE536836 AA376153
BE537380 BE255215
AA422028 W79191
             426356
                         265381_1
 70
             426383
                         266126_1
             428151
                         287658 1
                                             BE152871 BE152870 AA490552
             431006
                         326833_1
                                             AF039597 BE243938
             431257
                         33049_1
                                            Al189827 AW860554 AW860552 AA508543
AA516049 AW004922
             431614
                         335668_1
 75
                         338082 1
356839 1
             431822
                                             AA650114 AW974148 AA572946
             432966
             433300
                         362452_1
                                             AA582307 BE273018
                                             AI808235 AI024295 AA584528
AA593498 AW749647 AW749630
F12741 T75155 AA594014
             433355
                         364004_1
                         366899_1
367263_1
             433459
 80
             433469
             433782
                         37414_1
                                             AF090945 AW996754 Al064870
             434098
                         380006_1
                                             AA625499 AA625269 AA625184
BE314734 AA666393
             435138
                         401159 1
                                             AA682622 BE141696
```

435478

406683 1

```
436857
                       428068 1
                                         AA732647 BE008970 BE009028
           439078
                       45841_1
                                         AF085936 H64070 H64017
           439465
                       47272_1
                                         AF086285 W69587 W69421
           43984R
                                         AW979249 D63277 AA846968
AW752597 AW848781 AW849062 AW848490 AW752699 AW752604 AW752700
Al206964 Al350890 AA902772 Al768881
                       477806_1
488021_1
  5
           440190
           440669
                       499861_1
           441552
                       520138_1
                                         AA937975 F11215 BE005635
                                         AW503831 AW503317 BE565665
Al039813 Al684642 Z40121 Al951414 BE501049
Al076123 Al244834 Al695239
           442257
                       53699_1
           443198
                       562655 1
10
           443534
                       572957_1
           446052
                       65988_1
                                         AA358760 AA158850 AW062737 AW062738 AV656291
           446598
                       68463_1
                                          AW250546 BE257108 BE251006 BE255957 BE250926 BE513012 AV659318
           447224
                       71279 -1
                                         BE617125
                                         R90916 AL120023 R18429 Z42095 Al369730 R90824
N24231 BE617964 N36313
           447252
                       714160 1
15
           447383
                       71990_1
           447775
                                         BE179318 BE620044
                       73665_1
           447787
                       73719_1
                                         BE620108 BE312062 AW896316 BE262546
           448218
                                         AI188489 BE622201
AI492857 AW070478 AI885157
                       75525 1
           448338
                       758968 1
20
           448838
                       78409_4
                                         BE614761 AA263136 W00335 W00327
           449231
                       80303_1
                                          BE410360 AA442408 AA315540
                       83962_1
868459_1
                                         N31036 N42915 F07753 AA010329
BE160479 BE160478 BE069211 AW861059 AI793147
AW851888 AW851889 AW852147
           450594
           451400
           452544
                       921467_1
25
           452947
                       939810_1
                                          AW130413 Al932362
                                          U83527 AL120938 U83522
           453758
                       980026_1
                                         AW175997 AW176000 AW175999 AW175994 AW176004 AW175989
AW177274 AW177249 AW177223 AW177216 AW177233
           454163
                       1048369 1
           454178
                       1049458 1
           454181
                       1049567_1
                                          AW177377 AW177357 AW177359 AW177385 AW177358 AW177395 AW177394 AW177396 AW177383 AW177333 AW177384 AW177382
30
                                         AW177360 AW177356
           454209
454249
                       1051071 1
                                          AW179083 AW179085 AW179087 AW179081 AW179084 AW179086 AW179082 AW801493 AW801658 AW801714
                       1073933 1
                                          AW249008 BE295653 BE296765
           454377
                       114761_1
                                          AA076811 AW814764
           454478
                       1214744_1
                                          AW805749 AW805872 AW794466 AW798102 AW796921 AW794538 AW794380
35
           454485
454505
                       1215381_1
                                          AW795322 AW795308 AW795311 AW795310 AW795314 AW795321
                                         AW801355 AW801435 AW801372
AW809109 AW809112 AW809126 AW809128 AW809133 AW809131 AW809113 AW809111 AW809132
AW810224 AW810337 AW810295 AW810333 AW810335 AW810296 AW81653
                       1219564_1
           454574
                       1225636 1
           454610
                       1226543_1
           454633
                       1227504_1
                                          AW811380 AW811385
40
                                         AW812934 AW812723 AW812930
AW860148 AW862380 AW821887 AW821863 AW821870 AW821894 AW862351 AW862378
AW847807 AW847935 AW847636
           454666
                       1228600_1
           454803
                       1235520_1
           454961
                       1246745 1
           455132
                                          AW857955 AW861636 AW857967 AW857958 AW857943 AW857945 AW857963 AW857968 AW857959 AW857961 AW857956 BE072135
                       1254686_1
                                          AW857972 BE072137 AW857952 AW857935 AW857940 AW857944 AW857947 AW857934
45
           455426
455640
                       1289303 1
                                          AW937792 BE072250 BE072251 BE072264
                       1348141_1
                                         BE064059 BE063903 BE063838 BE063863 BE064056 BE063974 BE063904 BE063898 BE063896 BE063906 BE063980
           455694
                       1350650 1
                                          BE067300 BE067293 BE067279
           455910
                       1382504_1
                                          Z43712 BE156729 BE156538 BE156731 BE156673 BE156539 BE156674 BE156430 BE156672 BE156675 BE156432 BE156541
           455993
                       1398665_1
                                          BE179085 BE179084 BE179086 BE179264
50
           456054
                       1452761 1
                                         BE313241 BE383148
T41418 T41320 T41379
           456329
                       1789807 1
           456394
                       1843275_-2
                                          W28506
           457301
                       314434_1
                                          AA469146 AA469396 AA469218 AA469395
                       46409_1
                                         Al275406 L23206
AJ239397 AV655764
Al284935 AW409822 BE408182
           458025
55
                       65568_1
670076_1
           458606
           458640
           458710
                                          AV660856 BE167375
                       69727_1
           458792
                       748294 1
                                          N56666 A1460076
                       920646_1
                                          AI905518 AI905516 AI905457 AI905515 AW176013 AW176037
           459170
60
                       969232_1
                                          AL039604 AL039497
           459270
           TABLE 3C:
           Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495
65
           Strand: Indicates DNA strand from which exons were predicted
           Nt_position: Indicates nucleotide positions of predicted exons
           Pkey
400449
                                    Strand
                                                    Nt position
70
                       9887692
                                    Minus
                                                    50889-51188
           400613
400634
                       9864507
                                    Plus
                                                    92278-92472
                       8567750
                                                    101102-101223,101886-102018
10475-10845
                                    Minus
           400642
                       8117693
                                     Plus
           400661
                       8118474
                                                    84912-85187
                                     Plus
75
           400684
                       8118768
                                                    58189-58323
                                     Plus
                                                    72969-73050,73713-73800
106175-107016
           400685
                       8118768
                                     Minus
           400727
                       6705887
                                    Plus
           400749
                       7331445
                                                    9162-9293
                                     Minus
                                                    69375-70295
           400807
                       8567878
                                     Plus
80
           400837
                       9188531
                                                    144778-144838,145582-145670,146656-146751,147255-147419,147682-147807
                                     Plus
                                                    90462-90673
107149-107339.110873-111171
           400842
                       1927148
                                     Plus
           400848
                       1927148
                                    Plus
           400891
                       9958279
                                                     140073-140427
                                     Minus
                                                     173258-173631
           400917
                       7283186
```

```
400931
                    7651921
                                               142145-142353.144311-144721
                                 Minus
          400964
                     7139719
                                               155282-155403
                                Minus
          400965
                    7770576
                                 Minus
                                               173043-173564
                                              92744-92895
119245-119471
          400970
                     7960452
                                 Minus
 5
          400982
                     8078794
                                 Minus
          401010
                     8117391
                                 Minus
                                               83967-84180
          401072
                     3687273
                                               64370-64524
                                 Plus
          401088
                     8492704
                                 Plus
                                               194659-195179
          401116
                     9966559
                                               123579-124447
                                 Plus
10
          401117
                                               28948-29204
                     8570083
                                 Minus
          401167
                     9438381
                                 Plus
                                               18944-19176
          401204
                    9743388
                                 Minus
                                               33694-33872
          401220
                     9929324
                                               48079-48279
                                 Minus
          401244
                     4827300
                                 Minus
                                               55359-56376
15
          401245
                     4827300
                                 Minus
          401268
                    9797154
                                 Plus
                                               152272-152483,157312-157418,158025-158205,158838-158974,160716-160952
          401269
                     8954206
                                 Phis
                                               2259-2591
                     9800093
          401283
                                 Minus
                                               47256-47456
          401373
                     7248205
                                               84211-84336
                                 Minus
20
          401405
                     7768126
                                 Minus
                                               69276-69452,69548-69958
          401465
                     6682292
                                 Plus
                                               25676-25800
                                               171020-171282,171858-172241
          401492
                     7341778
                                 Plus
          401521
                                               9127-9234
                     7705251
                                 Phis
          401566
                                               96277-96420,96979-97160
                     8469090
                                 Minus
25
          401575
                     7229804
                                 Minus
                                               76253-76364
                                               135969-136263
          401589
                     9966292
                                 Plus
                                               210617-210796
          401628
                     8575954
                                 Minus
          401657
                     9100664
                                 Minus
                                               7312-8163
          401747
                     9789672
                                                118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866-
                                 Minus
30
                                                131932,132451-132575,133580-134011
          401757
                     7239630
                                               88641-88751
                                 Plus
                                                28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573
          401780
                     7249190
                                 Minus
          401781
                     7249190
                                                83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814
                                 Minus
          401785
                     7249190
                                 Minus
                                                165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942
35
                                               70399-70629,70941-71055
107548-108298
          401789
                     7249213
                                 Minus
          401809
                     7342191
                                 Minus
          401847
                     7139731
                                                85447-85593
                                 Plus
          401887
                                                93973-94120
                     7229981
                                 Plus
          401913
                     9369520
                                                33753-33904
                                 Minus
40
                                                71433-71648,76711-76833,78677-78845,79585-79763,82349-82485
          401962
                     3176728
                                 Minus
          401991
                     4156128
                                 Phis
                                                2398-2513
          401994
                     4153858
                                                42904-43124,43211-43336,44607-44763,45199-45281,46337-46732
                                 Minus
          402023
                     7528158
                                 Minus
                                                132872-133040
          402066
                     6649269
                                 Plus
                                                135543-136031
45
          402071
                                                85924-86039
                     8117361
                                 Plus
                                                121907-122035,122804-122921,124019-124161,124455-124610,125672-126076
          402075
                     8117407
                                 Plus
          402131
                     7704961
                                                33114-33209,33496-33678
          402144
                     7242326
                                 Pius
                                                115425-115977
                                                8124-8285
          402203
                     8576119
                                 Minus
50
          402277
                                                16980-17152,17933-18018,18170-18306
                     2894631
                                 Plus
          402292
                     2447220
                                                33880-34029,34176-34336,34953-35103
                                 Plus
          402297
                     6598824
                                                35279-35405,35573-35659
                                               115812-116187
46609-46662,46758-46811,86293-86346,89776-89829,90048-90101,102817-102924
          402407
                     3962498
                                 Minus
                     9796341
          402421
                                 Minus
55
                                                16266-16431
          402427
                     9796372
                                 Plus
          402430
                                                62382-62552
                     9796372
                                 Minus
          402520
                     7596899
                                                171761-171996
                                 Minus
                                               96314-96539
89684-90893
          402538
                     9801137
                                 Minus
          402543
                     9838066
                                 Minus
60
                                                12649-12866
                     9884747
          402570
                                  Minus
          402585
                     9908890
                                                174893-175050,183210-183435
                                  Minus
          402639
                     9958129
                                  Minus
                                                20167-22383
                                                2218-2440
          402694
                     8569867
                                 Plus
          402699
                     8570304
                                                182773-182883,184551-184732
                                 Minus
65
          402738
                     7331557
                                  Minus
                                                8725-8859
          402855
                     9662953
6434643
                                  Minus
                                                59763-59909
138639-139335
          402869
                                  Minus
          402939
                     9187334
                                                18329-18535
                                  Minus
          402944
                     9368423
                                                110411-110716,111173-111640
                                  Plus
70
          402948
                     9368458
                                  Minus
                                                143456-143626,143808-143935
                     9368493
3132346
          402958
                                 Plus
                                                13324-13507
                                                78385-79052
          403010
                                 Plus
                     3132360
                                                66545-66712
          403036
                                  Plus
          403051
                                                5269-5411
                     4827080
                                  Minus
75
                                                71615-71773,73930-74144
146923-147222,147326-147628
          403065
                     8954197
                                  Minus
                     8954241
          403077
                                  Plus
          403093
                     8954241
                                                177083-177373,177464-177751
                                  Plus
           403151
                     7407965
                                                14055-14264
                                  Minus
                                                42232-43389
                     9799871
9838213
          403153
                                  Minus
80
                                                142560-142726
          403177
                                  Minus
          403223
                     7630969
                                  Plus
                                                81529-81692
          403234
                     7637801
                                                180641-180822
          403273
                     8018055
                                  Plus
          403286
                     8080320
                                                118369-118872
                                  Phus
```

	403287	0000000		40007 400444
	403287	8080320 7239527	Minus Plus	126097-126411 13809-13968
	403359	8570207	Minus	108939-109229
	403362	8571772	Plus	64099-64260
5	403447	9837821	Minus	159072-159387
	403508	7630896	Plus	5570-5719
	403582	8101186	Ptus	18308-18458
	403613	8493504	Ptus	81290-81465
10	403642	8699671	Ptus Otros	7062-7311
10	403662 403674	5823349 7321642	Plus Plus	58627-59062,59222-59548 104099 105623 107204 107600
	403687	7387384	Plus	104988-105623,107394-107590 9009-9534
	403695	3046276	Plus	168272-168514
	403703	4966380	Plus	83681-84042
15	403741	7630932	Minus	2833-3468
	403747	7658395	Minus	20493-20621
	403766	7229888	Plus	136283-136830
	403786	8083636	Minus	73028-73217
20	403796 403833	8099896 887461	Minus Plus	75073-77664 13522-13664
20	403852	7708872	Minus	124007-124202
	403861	7708966	Plus	58363-58649
	403912	7710730	Minus	72000-72290,72431-72700,72929-73199
0.0	403924	7711688	Minus	89369-89592
25	403964	7596976	Plus	178174-178300
	404034	8567760	Minus	44635-47010
	404067	3282162	Plus	1415-2071
	404097 404122	7770701 9796270	Plus Plus	55512-55781
30	404230	7981448	Minus	90540-92977 92934-93093
50	404239	5002624	Plus	94841-95095
	404240	5002624	Minus	116132-116407,116653-116922
	404270	9828129	Minus	3649-3750,4161-4306,5962-6049,6849-6965
25	404356	7630858	Minus	126433-126623
35	404600	8705107	Ptus	118354-118444,118649-118792
	404601	8705107	Plus Minus	128449-128693,129085-129249,130525-130733
	404638 404666	9796751 7272179	Minus	99433-99528,100035-100161 18677-18993
	404675	9797204	Minus	48532-48645,49808-49975,51088-51369,54944-55063
40	404727	8081050	Plus	115534-115747
	404750	7596836	Plus	181879-182198
	404763	7882612	Plus	50981-51392
	404767	7882827	Minus	23244-23759
45	404828	6580415	Minus	26291-27253
43	404850	5420148	Minus	35145-35413,40635-41062
	404881 404890	5931510 7329390	Minus Pius	36360-36608 101280-101408
	404971	3212939	Minus	74585-75532
	405022	7330304	Plus	217163-217439
50	405028	7533974	Minus	110588-110847,110933-111115
	405071	7708797	Minus	11115-11552
	405088	8072518	Minus	115690-117621
	405133 405138	8516055 8576241	Minus Plus	28127-28288 90303-90516
55	405183	7209940	Plus	12335-12653
	405194	7230072	Plus	190465-190645,193346-193610
	405196	7230083	Minus	135716-135851
	405208	7230142	Plus	8068-8214
60	405226	7248966	Plus	53547-54128
60	405227	6731245	Minus	22550-22802
	405256 405277	7329310 3980473	Plus	26070-26309
	405307	3638954	Plus Plus	23471-23572 39195-39429
	405311	3638954	Plus	46313-46496
65	405333	3165399	Plus	149905-150215
	405411	3451356	Minus	17503-17778,18021-18290
	405423	4753276	Plus	6162-6983
	405491	5801645	Plus	81857-82045
70	405501 405515	9211311	Minus	49085-49400,49565-49679,50117-50262
70	405545	9454624 1054740	Plus Plus	37329-37469 118677-118807,119091-119296,121626-121823
	405580	4512267	Plus	169232-169647
	405586	5002511	Plus	38810-39017 .
7-	405600	5923640	Plus	26662-27225
75	405610	5757553	Minus	71907-72080
	405639	5091650	Plus	211184-211350
	405587	6249668	Minus	54787-54891,55844-55917 100737 100850
	405699 405783	4165331 5738434	Plus Minus	100727-100859 27238-27885
80	405763	6758731	Minus Minus	74553-75173
	406086	7107817	Plus	9418-9573
	406124	9149714	Minus	1331-1774
	406130	9161404	Minus	32394-32498
	406140	9168231	Minus	49887-50219

PCT/US02/19297 WO 02/102235

	406160	7144945	Ptus	55498-56268
	406207	5923650	Minus	162607-162800
	406215	7342161	Ptus	310-432
_	406268	6682695	Minus	6605-7072
5	406277	5686030	Minus	4759-5490
	406326	9212385	Plus	84508-84655
	406388	9256205	Plus	85153-85277
	406457	9755793	Plus	44966-45406
	406473	9795566	Minus	109669-109931
10	406537	7711478	Plus	32904-33017
	406571	7711622	Minus	65634-65912,66116-66596
	406580	7711838	Minus	96654-97640

TABLE 4A lists about 131 genes up-regulated in ovarian cancer compared to normal ovaries that are likely to be extracellular or cell-surface proteins. These were selected as for Table 3A, except that the ratio was greater than or equal to 10, and the predicted protein contained a PFAM domain that is indictive of extracellular localization. 15

TABLE 4A: ABOUT131 UP-REGULATED GENES ENCODING EXTRACELLULAR/CELL SURFACE PROTEINS, OVARIAN CANCER VERSUS NORMAL OVARY

Pkey: Primekey
Pkey: Primekey
Ex. Accn: Exemplar Accession
UG ID: UniGene ID
Title: Unigene Title
PFAM domains 20

25	ratio: tum	or vs. normal ov	Bry	•		
25	Pkey	Ех. Ассп	UGID	Title	PFAM	ratio
	403077			predicted exon	fn3	15.0
	426535	AU077012	Hs.288582	ESTs, Weakly similar to ubiquitous TP	Kunitz_BPTI	14.9
	403089			predicted exon	fn3	14.9
30	457148	AF091035	Hs.184627	KIAA0118 protein	arf;ras	14.8
	431176	AI026984	Hs.293662	ESTs	laminin_EGF;taminin_8;	14.8
	434293	NM_004445	Hs.3796	EphB6	fn3;pklnase;EPH_lbd	14.8
	408482	NM_000676	Hs.45743	adenosine A2b receptor	7tm_1	14.6
2.5	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	7tm_1	14.5
35	426125	X87241	Hs.166994	FAT turnor suppressor (Drosophila) ho	EGF	14.4
	423732	AF058056	Hs.132183	solute carrier family 16 (monocarboxy	sugar_tr;MCT	14.3
	422125	NM_003459	Hs.111967	solute carrier family 30 (zinc transporte	Cation_efflux	14.2
	407483	NM_012368		(NONE)	7tm_1	14.2
40	446689	AW594695	Hs.167046	ESTs	7tm_1	14.1
40	410184	AW503667	Hs.59545	ring finger protein 15	zf-C3HC4;SPRY;zf-B_box	14.0
	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermoly	fn3;vwa	14.0
	405448	AI015709	Hs.172089	Homo saplens mRNA; cDNA DKFZp5	trypsin;sushi;CUB	14.0
	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	ġ	14.0
45	406692	L36607	11 450000	gb:Homo sapiens (clone 22) pregnancy	įg	13.9
43	425549	U64863	Hs.158297	programmed cell death 1	ig	13.8
	452755	AW138937	Hs.213436	ESTs	cystalin	13.8
	427637	AK000816	Hs.179986	flotillin 1	Band_7	13.7
	424591	R55704	Hs.150968	hypocretin (orexin) receptor 1	7(m_1	13.7
50	405024			predicted exon	TGF-beta;TGFb_propeptide	13.7
50	405285 412116	AMMONACO	U- 70 /	predicted exon	A2M;A2M_N	13.7 13.7
	420256	AW402166 U84722	Hs.784	Epstein-Barr virus induced gene 2 (lym	7tm_1	13.7
	420230		Hs.76206	cadherin 5, type 2, VE-cadherin (vascu	cadherin;Cadherin_C_lerm	13.5
	448638	AF052692	Hs.98485	gap junction protein, beta 4 (connexin 3	connexin	13.4
55	431117	R17122 AF003522	Hs.21639 Hs.250500	nuclear protein, marker for differentiat	ig EGF:DSL	13.4
33	439285	AL133916	Hs.298998	delta (Drosophila)-like 1 ESTs	lg;pkinase;LRRNT;LRRCT	13.4
	424283	AA338246	Hs.301678	ESTs	E1-E2_ATPase;Hydrolase	13.3
	436233	AI742878	Hs.124116	ESTS	lg	13.3
	443859	NM_013409	Hs.9914	follistatin	kazal	13.2
60	410016	AA297977	Hs.57907	small inducible cytokine subfamily A (IL8	13.2
•••	414020	NM_002984	Hs.75703	small inducible cytokine A4 (homologo	IL8	13.2
	400242			predicted exon	Ephrin .	13.0
	429057	AF156557	Hs.194816	stomatin-like protein 1	Band_7;SCP2	12.9
	438294	Al693753	Hs.143004	ESTs	E1-E2_ATPase;Hydrolase	12.9
65	458493	AV649408	Hs.282418	ESTs	RYDR_ITPR	12.8
	444181	AB033063	Hs.10491	KIAA1237 protein	fn3;ig;PH;RhoGEF	12.8
	422357	AF016272	Hs.115418	cadherin 16, KSP-cadherin	cadherin	12.7
	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibitor	serpin	12.7
	407000	U12139		gb:Human alpha1(XI) collagen (COL1	TSPN;Collagen;COLFI	12.6
70	417064	W02903	Hs.15440	ESTs	lectin_c	12.6
	439389	AA318940	Hs.56004	ESTs	hemopexin;Peptidase_M10	12.6
	407786	AA687538	Hs.38972	tetraspan 1	transmembrane4	12.5
	410498	AA355749		gb:EST64459 Jurkat T-cells VI Homo	aa_permeases	12.5
7.5	422487	AJ010901	Hs.198267	mucin 4, tracheobronchial	vwd	12.5
75	422330	D30783	Hs.115263	epiregulin	EGF	12.5
	402425			predicted exon	ion_trans	12.4
	414875	H42679	Hs.77522	major histocompatibility complex, clas	lg .	12.2
	424239	M67439	Hs.143526	dopamine receptor D5	7tm_1	12.2
90	442622	NM_000435	Hs.8546	Notch (Orosophila) homolog 3	EGF;ank;notch	12.2
80	405368			predicted exon	7tm_1	12.2
	402408	05046000	11-004455	predicted exon	Gal-bind_lectin	12.1
	426514	BE616633	Hs.301122	bone morphogenetic protein 7 (osteoge	TGF-beta;TGFb_propeptide	12.1
	406811	U82979	Hs.67846	laukocyte immunoglobulin-like recepto	ig one	12.0
	416441	BE407197		. gb:601301552F1 NIH_MGC_21 Homo	\$DF	12.0

	422224	4D040047	11- 07000	MAA4404 amt-t-	6.24-1.000T	11.0
	433221 442915	AB040917 AA852875	Hs.97860 Hs.8850	KIAA1484 protein a disintegrin and metalloproteinase dom	fn3;lg;LRRCT disintegrin;Reprolysin;	11.9 11.9
	423613	AF036035	Hs.129910	hyaturonoglucosaminidase 3	ig;Sema;Acetyltransf	11.9
_	411213	AA676939	Hs.69285	neuropilin 1	CUB;MAM;F5_F8_type_C	11.9
5	425483	AF231022	Hs.301273	Homo saplens protocadherin Fat 2 (FA	EGF;cadherin;laminin_G	11.8
	421258	AA286731		gb:zs53d08.r1 NCL_CGAP_GCB1 Hom	7tm_3	11.8
	423795	AW849759		gb:lL3-CT0216-240200-077-C04 CT0	artras	11.7
	422424	Al 186431	Hs.116577	prostate differentiation factor	TGF-beta	11.7
10	443296	AI765286		gb:wi73b05.x1 NCI_CGAP_Kid12 Ho	ig teams	11.7
10	448999	AF179274	Hs.22791	transmembrane protein with EGF-like	kazal	11.7 11:5
	414878 429344	AA341040 R94038	Hs.77541 Hs.199538	ADP-ribosylation factor 5 inhibin, beta C	arf;ras TGF-beta	11.5
	402114	1134000	115.155550	predicted exon	taminin_EGF;taminin_G	11.5
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (. ILB	11.5
15	430263	D12614	Hs.36	lyphotoxin alpha (TNF superfamily, m	TNF	11.4
	400464			predicted expn	Peptidase_S9	11.4
	456841	AA875863	Hs.152345	poliovirus receptor-related 1 (herpesvir	ig	11.4
•	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kat	laminin_EGF;laminin_B	11.4
00	418043	AW377752	Hs.83341	H.sapiens mRNA for tyrosine kinase re	fn3;lg;pkinase	11.3
20	426523	S68616	Hs.170222	solute carrier family 9 (sodium/hydrog	Na_H_Exchanger	11.3
	446051	BE048061	Hs.153315	ESTs	Reprotysin; disintegrin	11.3
	439710	AF086543		gb:Homo saplens full length insert cDN	Xlink	11.3
	416602	NM_006159	Hs.79389	nel (chicken)-like 2	vwc;TSPN	11.3
25	418299	AA279530	Hs.83968	Integrin, betà 2 (antigen CD18 (p95), ly	integrin_B	11.3 11.2
LJ	425721 409757	AC002115	Hs.159309 Hs.123114	uroplakin 1A,	transmembrane4;COX6B;Ets cystatin	11.2
	430630	NM_001898 AW269920	Hs.2621	cystatin SN cystatin A (stefin A)	7tm_3;ANF_receptor	11.2
	429630	MB5289	Hs.211573	haparan sulfale proteoglycan 2 (perieca	laminin_EGF;ig;idi_recept_a	11.1
	427289	Al097346	Hs.174203	solute carrier family 1 (glutamate/neutr	SDF	11.1
30	401248	AB028989	Hs.88500	mitogen-activated protein kinase 8 inte	vwa;vwd;TIL	11.1
20	412627	BE391959	Hs.74276	chloride intracellular channel 1	G-patch;ig;MutS_C	11.1
	420104	U09825	Hs.1287	zinc finger protein 173	zf-C3HC4;SPRY;zf-B_box	11.1
	405275	AB028989	Hs.88500	mltogen-activated protein kinase 8 inte	vwa;vwd;TIL	11.1
	425864	U56420	Hs.159903	olfactory receptor, family 5, subfamily	7tm_1	11.1
35	446745	AW118189	Hs.156400	ESTs	vwa	11.1
	441834	AL138034	Hs.7979	KIAA0736 gene product	sugar_tr	11.0
	450986	BE241845	Hs.25744	Novel human gene mapping to chomos	PH;RhoGAP;Gal-blnd_lectin	11.0
	416118	N52773	Hs.167721	ESTs	hemopexin;Peptidase_M10	11.0
40	443071	AL080021	Hs.8986	complement component 1, q subcompo	C1q;Collagen	10.9
40	431247	AL021578	Hs.278489	matrilin 4	EGF;vwa	10.9
	431449	M55994	Hs.256278	tumor necrosis factor receptor superfam	TNFR_c6	10.9
	457044	S73899	Hs.2131	arginine vasopressin receptor 1A	7tm_1	10.9
	416319	AIB15601	Hs.79197	CD83 antigen (activated 8 lymphocyte	ig .	10.8
45	402172	45024804	U- 442040	predicted exon	ig ovetetie	10.7 10.6
43	424218	AF031824	Hs.143212	cystatin F (leukocystatin)	cystatin	10.6
	409208	Y00093	Hs.51077	integrin, alpha X (antigen CD11C (p15	vwa lon_trans;1Q	10.6
	426330	M77235	Hs.169331 Hs.124470	sodium channel, voltage-gated, type V, ESTs	transmembrane4	10.6
	439758 412429	AA845235 AV650262	Hs.75765	GRO2 oncogene	LL8	10.6
50	449987	AW079749	Hs.184719	ESTs, Weakly similar to AF116721 11	ABC_tran;ABC_membrane	10.6
50	432408	N39127	Hs.76391	myxovirus (Influenza) resistance 1, hom	lon_trans;K_tetra	10.6
	406672	M26041	Hs.198253	major histocompatibility complex, clas	ig;MHC_II_alpha	10.5
	419749	X73608	Hs.93029	sparc/osteonectin, cwcv and kazal-like	kazal;thyroglobulin_1	10.5
	419086	NM_000216	Hs.89591	Kallmann syndrome 1 sequence	fn3;wap	10.5
55	425009	X58288	Hs.154151	protein tyrosine phosphatase, receptor t	fn3;lg;Y_phosphatase;MAM	10.5
	423869	BE409301	Hs.134012	C1q-related factor	GTP_EFTU;EFG_C	10.4
	430209	AF177941	Hs.235368	Pro-(alpha)3(V) collagen	Collagen; COLFI; TSPN	10.4
	400834			predicted exon	IRK	10.4
60	442941	AU076728	Hs.8867	cysteine-rich, angiogenic inducer, 61	Cys_knot;tsp_1;vwc;IGFBP	10.4
60	403691	A 1044051	11- 643000	predicted exon	tsp_1;Reprolysin;	10.4
	430776	AJ011021	Hs.247905	potassium voltage-gated channel, subfa	ion_trans	10.3
	432342	AL036128	Hs.274404	plasminogen activator, tissue	EGF;fn1;kringle;trypsin	10.3 . 10.3
	413731 423309	BE243845 BE006775	Hs.75511 Hs.126782	connective tissue growth factor sushi-repeat protein	Cys_knot;tsp_1;vwc sushi;HYR	10.3
65	423309 431728	NM_007351	Hs.126762 Hs.268107	susni-repeat protein multimerin	EGF;C1q	10.3
05	450245	AA007536	Hs.271767	ESTs, Moderately similar to ALU1_HU	ig ig	10.3
	446983	AA157484	Hs.97199	complement component C1g receptor	EGF:Xlink	10.2
	414320	U13616	Hs.75893	ankyrin 3, node of Ranvier (ankyrin G)	death;ank;ZU5	10.1
	400253	0.00.0	15.70000	predicted exon	7tm_1	10.0
70	406694	M94891	Hs.225932	pregnancy specific beta-1-glycoprotein	ig	10.0
	418793	AW382987	Hs.88474	prostaglandin-endoperoxide synthase 1	EGF	10.0
	410664	NM_006033	Hs.65370	lipase, endothelial	Ribosomal_L22	10.0
	427274	NM_005211	Hs.174142	colony stimulating factor 1 receptor, fo	pkinase;ig	10.0
75		_				
75	TABLE 4					
		ique Eos probes		nber		
		ber. Gene dust		•		
	Accession	n: Genbank acc	ession numbers	•		
80	Di	CATAL	Anno-1			
υV	Pkay	CAT Number		A085520 AW966333 AA340319 BE170936		
	410498 416441	120611_1 159480_1		A182474 AA180369 BE275628 BE276131		
	421258	200725_1		A287621 AW188228 AW137774		
	421236	232093_1		\W849758 T89549 AA331069		
	120133					

439710 47550_1 AF086543 W96291 W96225 443296 56539_2 Al765286 AW297086 BE568658 TABLE 4C: 5 Pkey: Unique number corresponding to an Eos probeset Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Durnham I, et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Durnham, et al. (1999) Nature 402-489-495 Strand: Indicates DNA strand from which exons were predicted Nt_position: Indicates nucleotide positions of predicted exons 10 Strand Nt position 400464 9929670 Plus 22074-22214 400834 8705192 Plus 121963-122288 402114 8318586 Plus 71578-71715 15 402172 8575911 Minus 143378-143671 402406 3970929 10872-11123,12932-13048 Plus 402425 9796347 Minus 50224-50395 146923-147222,147326-147628 403077 8954241 Plus 171964-172239 8954241 403089 Plus 20 403691 7387384 88280-88463 Minus 405024 7107727 Plus 88500-88697 55744-55903,57080-57170,61478-61560 405285 6139075 Minus 405368 2104517 Plus 46055-47188 25 TABLE 5A lists about 685 genes down-regulated in ovarian cancer compared to normal ovaries. These were selected as for Table 3A, except that the numerator and denominator were switched, and the ratio was greater than or equal to 3.0 (i.e. 3-fold down-regulated in tumor vs. normal ovary). TABLE 5A: 685 DOWN-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL OVARY 30 Pkey: Primekey Ex. Accn: Exemplar Accession UG ID: UniGene ID Title: UniGene Title ratio: ration normal ovary vs tumor 35 ratio Ex. Acon mutated in colorectal cancers ESTs, Weakly similar to Z141_HUMAN ZINC FINGE 421013 M62397 Hs.1345 14.8 AA44R4RR Hs.55346 12.8 439360 nuclear receptor subfamily 1, group D, member 2 Hs.37288 12.6 D16815 407644 40 424851 AA676441 Hs.119059 455056 AW853057 gb:RC1-CT0249-170200-025-h04 CT0249 Homo sapie 11.5 Hs.99886 420727 H75701 complement component 4-binding protein, beta 11.3 Hs.168000 10.0 451617 C01056 **ESTs** 401308 9.9 predicted exon 45 440987 AA911705 Hs.130229 . ESTs 9.7 409725 T40760 Hs.90459 **EST** 9.7 BE314524 Hs.78776 9.7 415752 putative transmembrane protein 437690 AA804362 Hs.180544 ESTs 9.6 437787 AI908263 Hs.291625 9.5 50 459054 AW798466 Hs.82396 2,5'-oligoadenylate synthetase 1 9.2 435330 R16769 Hs.185689 **ESTs** 9.2 436642 AA724430 Hs.127960 9.1 **ESTs** 453752 AL120800 gb:DKFZp762E152_r1 762 (synonym: hmel2) Homo sa 451683 AI808964 Hs.207673 9.1 55 401464 AF039241 Hs.9028 histone deacelylase 5 9.0 gb:UI-H-BW0-ajp-g-09-0-UI.s1 NCI_CGAP_Sub6 Hom gb:601062418F1 NIH_MGC_10 Homo sapiens cDNA 436812 AW298067 8.7 410758 8E535988 8.7 412637 AA115097 Hs.261313 **ESTs** 419166 AA234638 Hs.293584 **ESTs** 8.3 60 AA398155 Hs.97600 423739 **ESTs** 8.1 M96956 413813 Hs.75561 teralocarcinoma-derived growth factor 1 8.1 416211 gb:yg45c03.r1 Soares infant brain 1NIB Homo saplens 8.0 R14625 443131 A1033833 Hs.132689 7.9 7.9 7.9 7.8 KIAA1566 protein 415866 T10115 Hs.92423 65 Hs.163208 AI912097 ESTs 410130 Hs.143135 ESTs, Weakly similar to FAFY_HUMAN PROBABLE 439426 Al131502

ESTs, Moderately similar to neurogenic basic-helix-loop

gb:od17e02.s1 NCI_CGAP_GCB1 Homo saplens cDNA

gb:RC2-BN0033-180200-015-g06 BN0033 Homo saple ESTs

ESTs, Weakly similar to neuronal thread protein AD7cgb:PM3-HT0344-071299-003-c08 HT0344 Homo sapie

gb:601117374F1 NIH_MGC_16 Homo saplens cDNA

gb:ob88g05.s1 NCI_CGAP_GC81 Homo saplens cDN

gb:RC0-CT0201-270999-011-f03 CT0201 Homo saplen

ESTs, Wealdy similar to similar to O-sialoglycoprotein

408141

419015

441573

419386

430562

434738

403283

415R61

412732

441247

442865

409699

420352

421418

413597

454102

445487

457604

70

75

80

U69205

T79262

BE563966

AA236867

AA836265

AW993300

AW118681

N57659

BE154650

BE258835

AA806639

AW302885

AW752363

A1806287

A1004397

D78260

Z43123

Hs.45152

Hs.14463

Hs.6529

Hs.143868 Hs.285097

Hs.144513

Hs.128051

Hs.114541

Hs.117183

Hs.201217

Hs.130558

ESTs

ESTs

ESTs

FSTs

ESTs

ESTs

predicted exon

7.7

7.6 7.5 7.5 7.5 7.4

7.4 7.4 7.4 7.4 7.3

7.3 7.3

7.2 7.2

7.1

7.1

	400040				
	400942 407596	D0004B		predicted exan	6.9
		R86913		gb:yq30f05.r1 Soares fetal liver spleen 1NFLS Homo sa	6.9
	422046	A1638562	H- 400540	gbtts50a10.x1 NCI_CGAP_Ut1 Homo saplens cDNA c	6.9
5	441284	AA927676	Hs.196542	ESTs	6.9
,	446224	AW450551	Hs.13308	ESTs	6.9
	424943	AU077260	Hs.153924	death-associated protein kinase 1	6.9
	453967	AW009077	Hs.232947	ESTs	6.9
	448683	AA167642	Hs.14632	ESTs	6.8
10	431877	AA521204	'Hs.105507	ESTS	6.8
10	411337	AW837349		gb:QV2-LT0038-270300-108-d12 LT0038 Homo sapie	6.8
	410596	AA374186		gb:EST86290 HSC172 cells I Horno sapiens cDNA 5' e	6.8
	417762	AA205976		gb:zq48a10.r1 Stratagene hNT neuron (937233) Homo	6.7
	406364	E01011	11 400004	predicted exon	6.7
15	452238	F01811	Hs.187931	ESTs, Moderately similar to S22703 voltage-gated pota	6.7
13	415288	R15794	Hs.141027	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFA	6.7
	407437	AF220264		gb:Homo saplens MOST-1 mRNA, complete cds.	6.7
	439126	AF085984		gb:Homo sapiens full length insert cDNA clone YT99F	6.6
	452453	Al902519		gb:QV-BT009-101198-051 BT009 Homo sapiens cDNA	6.6
20	431800	AW452768	Hs.162045	ESTs	6.5
20	426380	AI291267	Hs.149990	ESTs, Weakly similar to unnamed protein product [H.sa	6.5
	449529	AI990559	Hs.232033	ESTs	6.4
	437755	AW204256	Hs.291887	ESTs	6.4
	448307	AJ480289	Hs.211026	ESTs	6.4
25	439586	AA922936	Hs.110039	ESTs	6.4
25	420051	N35696	Hs.44745	EST ₆	6.4
	425806	AI522299	Hs.173369	ESTs	6.4
	433923	AI823453	Hs.146625	ESTs .	6.4
	408159	H63977	Hs.118526	EST ₆	6.3
30	434844	AF157116	Hs.301355	hypothetical protein LOC56757	6.3
30	430197	AA468888	Hs.187697	ESTs, Weakly similar to ALU5_HUMAN ALU SUBFA	6.3
	440332	Al218517	Hs.188051	ESTs	6.3
	450061	Al797034	Hs.201115	ESTs	6.3
	454994	AW850176		gb:IL3-CT0219-271099-022-H04 CT0219 Homo sapien	6.3
35	402105			predicted exon	6.3
22	409090	W56067	Hs.103105	ESTs	6.2
	405752			predicted exon	6.2
	408074	R20723	Hs.124764	ESTs	6.2
	459200	Y09306	Hs.30148	homeodomain-interacting protein kinase 3	6.1
40	416310	T81421	Hs.221396	ESTs	6.1
40	421976	AL138443	Hs.23450	mRNA for FLJ00023 protein	6.1
	429755	NM_001364	Hs.215839	discs, large (Drosophila) homolog 2 (chapsyn-110)	6.0
	448732	BE614063		gb:601503993F1 NIH_MGC_71 Homo sapiens cDNA	6.0
	453909	AW004045	Hs.203365	ESTs	6.0
45	431178	AA493884	Hs.218008	Homo sapiens cDNA: FLJ21440 fis, clone COL04389	6.0
43	449671	AW959755	Hs.288896	Homo sapiens cDNA FLJ12977 fis, clone NT2RP20062	6.0
	421349	W01715	Hs.102958	ESTs, Weakly similar to Lpg6p [S.cerevistae]	6.0
	453282	AK000043	Hs.32922	hypothetical protein FLJ20036	5.9
	420618	AA278781	Hs.280698	ESTs	5.9
50	412480	BE142364	U- 40000E	gb:CM0-HT0143-270999-062-d12 HT0143 Homo sapi	5.9
50	449858	AW205979	Hs.196065	ESTs	5.9
	429884	AL049925	Hs.225984	DKFZP547G0910 protein	5.9 5.9
	416453	H56968	Hs.114593	ESTs .	5.9 5.9
	459497	AA825742 AA759293	Hs.87517 Hs.112692	ESTs	5.9 5.9
55	433773 458942	AA009647	Hs.8850	a disintegrin and metalloproteinase domain 12 (meltrin a	5.9
55	436054	AI076262	Hs.119813	ESTs	5.9
		N95428	ns.113013	— 	5.8
	410495	1493420		gb:zb80d09.s1 Soares_senescent_fibroblasts_NbHSF H predicted exon	5.8
	403277 444302	Al140115	Hs.225130	ESTs	5.8
60	439834		Hs.124523	ESTs	5.8
	404020	AI754576	110.124323	predicted exon	5.8
	454338	AW381251	Hs.1050	pleckstrin homology, Sec7 and coiled/coil domains 1(cy	5.7
	430922	AW373747	Hs.183337	ESTs	5.7
	420289	N55394	Hs.96398	8-oxoguanine DNA glycosylase	5.7
65	428498	AA429575	Hs.243032	ESTs	5.7
05	445597	H65649	115.240002	gb:yr72d10.r1 Soares fetal liver spleen 1NFLS Homo sa	5.7
	411543	AW851248		gb:lL3-CT0220-160200-066-F01 CT0220 Homo sapien	5.7
	408354	AI382803	Hs.159235	ESTs	5.7
	444431	AW513324	Hs.42280	ESTs	5.7
70	406605	A11313324	115.42200	predicted exon	5.7
	405541	AF039241	Hs.9028	histone deacetylase 5	5.6
	458090	AI282149	Hs.56213	ESTs, Highly similar to FXD3_HUMAN FORKHEAD	5.6
	454529	Z45439	Hs.270425	ESTs	5.6
	445832	A1261545	1 10.21 0723	gb:qz30a07.x1 NCI_CGAP_Kid11 Homo sapiens cDNA	5.6
75	441223	AI475067	Hs.132499	ESTs	5.6
, 5	432552	AI537170	Hs.173725	ESTs, Wealdy similar to ALUS_HUMAN ALU SUBFA	5.6 5.6
	443650	A1698330	Hs.151444	ESTS	5.6
	403714	M030000	113.13144	predicted exon	5.6
	444165	AL137443	He 10441	hypothetical protein FLJ11236	5.6
80	458914	BE327696	Hs.10441 Hs.280922	ESTs	5.6
50	420620	AA278807	Hs.173343	ESTs	5.5
	458228	AA934995	Hs.184846	ESTs, Weakty similar to R28830 1 [H.sapiens]	5.5
	448067	R6856B	Hs.183373	src homology 3 domain-containing protein HIP-55	5.5
	427000	AI187420	Hs.145221	ESTs	5.5
				,	0.0

	452351	AA025647		gb:ze85d01.r1 Soares_fetal_heart_NbHH19W Homo se	5.5
	459359 408385	N99545	No Agen	gb:za40a05.r1 Soares fetal liver spleen 1NFLS Homo sa	5.5
	450938	AF055634 AW753734	Hs.44553 Hs.277215	unc5 (C.elegans homolog) c	5.5
5	431888	H99557	Hs.2864	ESTs early endosome antigen 1, 162kD	5.5 5.4
•	459418	W96550	Hs.26418	ESTs	5.4
	416718	R83017	Hs.204828	ESTs	5.4
	413236	H16442	Hs.127376	KIAA0266 gene product	5.4
	439063	AF085922	Hs.113968	ESTs	5.4
10	446361	AJ291234	Hs.282241	ESTs	5.4
	458253	AW296952	Hs.196802	ESTs ·	5.4
	433682	AA642418	Hs.17381	ESTs	5.4
	455790	BE090690	11- 000070	gb:RC1-BT0720-280300-011-g02 BT0720 Homo sapie	5.4
15	445755 436513	AW294870 AJ278110	Hs.223672	ESTs	5.3
15	436513	N94087	Hs.125507 Hs.26073	DEAD-box protein ESTs, Moderately similar to HG14_HUMAN NONHIS	· 5.3 5.3
	440231	AW015420	Hs.163323	ESTs	5.3
	429866	AA460104	Hs.99540	ESTs	5.3
	437779	AA345232	Hs.21227	ESTs	5.3
20	424029	AB014594	Hs.137579	KIAA0694 gene product	5.3
	425614	AI334963	Hs.156256	ESTs	5.3
	430653	AW902062	Hs.30280	ESTs	5.2
	408855	T83061	Hs.279604	desmin	5.2
25	410454	AW749041		gb:RC3-BT0319-100100-012-c05 BT0319 Homo saple	5.2
25	438116	AI904105	Hs.122016	ESTs	5.2
	409138	W73159	Hs.58290	ESTs	5.2
	423047	NM_005323	Hs.123064	H1 histone family, member T (testis-specific)	5.2
	440212	AW300959	Hs.126216	ESTs, Weakly similar to good similarity to E. coli hypo	5.2
30	404108 456253	T12198		predicted exon	5.2 5.2
50	409365	AA702376	Hs.226440	gb:A588F Heart Homo saplens cDNA clone A588, mRN Homo saplens clone 24881 mRNA sequence	5.2 5.1
	444013	T08531	Hs.44404	hypothetical protein PRO1488	5.1
	454071	AI041793	Hs.42502	ESTs	5.1
	419761	M17373	Hs.93177	interferon, beta 1, fibroblast	5.1
35	451250	AA491275	Hs.236940	Homo sapiens cDNA FLJ12542 fis, clone NT2RM4000	5.1
	405290			predicted exon	5.1
	454487	AW796342	•	gb:PM2-UM0027-230200-002-h02 UM0027 Homo sap	5.1
	444131	AI806600	Hs.207119	EST, Weakly similar to intrinsic factor-B12 receptor pr	5.1
40	441679	BE502267	Hs.65996	ESTs	5.1
40	450077	AA523752	Hs.120855	ESTs	5.1
	421209 445140	AJ010230 Al650599	Hs.102576	ret finger protein-like 1 antisense	5.1 5.1
	421126	M74587	Hs.197913 Hs.102122	ESTs insulin-like growth factor binding protein 1	5.1
	447037	Al357568	Hs.157612	ESTs	5.1
45	407168	R45175	113,107012	gb:yg40f01.s1 Soares infant brain 1NIB Homo saplens	5.0
	436196	AK001084		gb:Homo sapiens cDNA FLJ10222 fis, clone HEMBB1	5.0
	442772	AW503680	Hs.300513	ESTs, Weakly similar to T15B7.2 [C.elegans]	5.0
	444138	AI701572	Hs.151153	ESTs	5.0
50	458589	AV654623	Hs.288141	Homo sapiens cONA FLJ13016 fis, clone NT2RP30006	5.0
50	451640	AA195601	Hs.26771	Human DNA sequence from clone 747H23 on chromos	5.0
	441318	A1078234	Hs.176130	ESTs	5.0
	407490	\$79281		gb:pancreatic ribonuclease (human, mRNA Recombinan	4.9
	438224	AA933999	U- 0020C	gb:on91f04.s1 Soares_NFL_T_GBC_S1 Homo sapiens	4.9
55	451638 457356	AW798466 AA489621	Hs.82396 Hs.191670	2,5'-oligoadenylate synthetase 1	4.9 4.9
55	430679	R44428	Hs.22801	ESTs ESTs	4.9
	445747	AI820863	Hs.145328	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFA	4.9
	409036	T88693	Hs.226410	ESTs	4.9
	433382	T64293	Hs.291453	ESTs	4.9
60	401287			predicted exon	4.9
	424188	AW954552	Hs.142634	zinc finger protein	4.9
	404868			predicted exon	4.9
	410152	AW593104	Hs.23581	ESTs	4.9
65	444997	AI204451	Hs.146196	ESTs	4.9
05	431075	BE267477	11- 404750	gb:601189542F2 NIH_MGC_7 Homo sapiens cDNA cl	4.8
	429033 414337	NM_007374	Hs.194756	sine oculis homeobox (Drosophila) homolog 6	4.8 4.8
	410336	BE386606 BE391510	Hs.18498	gb:601273980F1 NIH_MGC_20 Homo saplens cDNA Homo sapiens cDNA FLJ12277 fis, clone MAMMA10	4.8
	445283	AW515763	Hs.246872	ESTs	4.8
70	434792	AA649253	Hs.132458	ESTs	4.8
	433403	AF040247		gb:Homo saplens erythroid differentiation-related factor	. 4.8
	454940	AW846202		gb:Qy/0-CT0179-011299-061-f10 CT0179 Homo sapie	4.8
	455534	AW991925		gb:PM3-BN0011-130100-002-b07 BN0011 Homo sapl	4.8
75	416437	N48990	Hs.37204	ESTs	4.8
75	433767	AA609245	11- 0004 45	gb:af13a11.s1 Soares_testis_NHT Horno sapiens cDNA	4.8
	434977	AI734233	Hs.226142	ESTs, Weakly similar to ALU7_HUMAN ALU SUBFA	4.8
	416192 450218	NM_005036	Hs.998	peroxisome proliferative activated receptor, alpha ESTs	4.8 4.8
	459218 402109	AA812633	Hs.10845	predicted exon	4.8
80	444490	Al151080	Hs.146830	ESTs	4.8
	432632	AW973801	Hs.134656	ESTs	4.8
	438683	AA813982	Hs.291842	ESTs	4.8
	404044			predicted exon	4.8
	449862	AI672277	Hs.199475	ESTs	4.8
				4	

	419002	T78625	Hs.268594	ESTs	4.7
	425582	AL157686	Hs.293737	ESTs	4.7
	416086 441133	H18252 AA918191	Hs.227263	ESTs	4.7
5	446323	AI288274	Hs.194457 Hs.149868	ESTs ESTs	4.7 . 4.7
,	440347	AI125590	Hs.142864	ESTs	4.7
	439481	AF086294	Hs.125844	ESTs	4.6
	456388	W28557		gb:48d8 Human retina cDNA randomly primed sublibra	4.6
	441864	R34177	Hs.181315	ESTs, Moderately similar to ALU4_HUMAN ALU SU	4.6
10	445910	R93483	Hs.260273	ESTs	4.6
	403531			predicted exon	4.6
	429773	A1332482	Hs.218791	proteoglycan 4, (megakaryocyte stimulating factor, artic	4.6
	422563	BE299342	Hs.19348	Homo sapiens cDNA FLJ13119 fis, clone NT2RP30026	4.6
1.5	422890	Z43784	Hs.78713	solute carrier family 25 (mitochondrial carrier, phospha	4.6
15	453663	AL048807	Hs.180714	cytochrome c oxidase subunit VIa polypeptide 1	4.6
	447839	N72050	Hs.164144	ESTs	4.5
	415612	F12893	Hs.13301	ESTs	4.5
	433371 410667	T25451 AW936099		gb:PTHI188 HTCDL1 Homo sapiens cDNA 5/3' simila	4.5 4.5
20	410890	AW809575		gb:QV0-DT0020-210100-095-d04 DT0020 Homo sapie	4.5
20	404451	A11003373		gb:MR4-ST0121-060200-002-a12 ST0121 Homo sapia predicted exon	4.5
	441705	AI087052	Hs.55993	ESTs	4.5
	439597	W79579	Hs.58552	ESTs	4.5
	407825	NM_006152	Hs.40202	lymphoid-restricted membrane protein	4.5
25	423073	BE252922	Hs.123119	MAD (mothers against decapentaplegic, Drosophila) ho	4.5
	456278	BE300369	Hs.42643	ESTs, Weakly similar to KIAA1016 protein (H.sapiens	4.5
	424719	H90452		gb:yv01c03.r1 Soares fetal liver spleen 1NFLS Homo sa	4.5
	439542	AW297571	Hs.17646	ESTs	4.5
20	444433	AV649844	Hs.282436	ESTs	. 4.5
30	438831	BE263273	Hs.301128	ESTs	4.5
	410065	AW812744		gb:RC3-ST0186-181099-012-c09 ST0186 Homo saplen	4.5
	453895	AA039843	Hs.61948	ESTs	4.5
	458250	A1807339	Hs.152174	ESTs, Weakly similar to Z140_HUMAN ZINC FINGE	4.5
35	423403	AA325483		gb:EST28475 Cerebellum II Homo sapiens cDNA 5 en	4.5
))	454679 445368	AW813110	Hs.166788	gb:CM4-ST0189-051099-021-f05 ST0189 Homo sapien	4.5 4.5
	445366 401004	Al221631	rts.100/00	ESTs	4.5 4.5
	425837	AF007567	Hs.159609	predicted exon insulin receptor substrate 4	4.5
	420497	AW206285	Hs.253548	ESTs	4.5
40	449438	AA927317	Hs.176719	ESTs	4.5
	429409	Al694817	Hs.155980	ESTs	4.5
	447959	Al452784	Hs.270270	ESTs	4.4
	407340	AA810168	Hs.232119	ESTs	4.4
	424326	NM_014479	Hs.145296	disintegrin protease	4.4
45	443479	AF027219	Hs.9443	zinc finger protein 202	4.4
	443246	T75157	Hs.285516	ESTs, Weakly similar to hypothetical protein [H.sapien	4.4
	414475	BE302955	Hs.119598	ribosomal protein L3	4.4
	432075	AW972934		gb:EST385030 MAGE resequences, MAGM Homo sap	4.4
50	417906	R24769	Hs.23725	ESTs	4.4
50	406518	W28077	Hs.79389	net (chicken)-like 2	4.4
	441460 450549	A1962478 T49427	Hs.226804 Hs.181244	ESTs, Moderately similar to ALUC_HUMAN IIII ALU major histocompatibility complex, class I, A	4.4 4.4
	426528	AA380828	FIS. 10 1244	gb:EST93827 Activated T-cells VII Homo saplens cDN	4.4
	430535	AW968485		gb:EST380561 MAGE resequences, MAGJ Homo sapi	4.4
55	408479	BE047329	Hs.144483	ESTs	4.3
	448636	AI557139	Hs.129179	Homo saplens cDNA FLJ13581 fis, clone PLACE10090	4.3
	411280	N50617		gb:yy89h02.r1 Soares_multiple_sclerosis_2NbHMSP H	4.3
	440790	AW593050	Hs.128580	ESTs	4.3
C 0	458301	AF003834		gb:AF003834 Clontech Hi1149x Homo sapiens cDNA	4.3
60	442277	AW448914	Hs.202391	ESTs	4.3
	449463	AI657038	Hs.196109	ESTs	4.3
	433426	H69125	Hs.133525	ESTS	4.3
	410782	AW504860	Hs.288836	Homo sapiens cDNA FLJ12673 fis, clone NT2RM4002	4.3
65	423040	AA320749	Hs.209464	KIAA1604 protein ESTs	4.3 4.3
05	432430 432072	AW079984 N62937	Hs.262480 Hs.269109	ESTs	4.3
	452213	AL110237	Hs.28425	Homo sapiens mRNA; cDNA DKFZp566D224 (from c	4.3
	403635	ALI IVIDI	113.20723	predicted exon	4.3
	441919	AI553802	Hs.128121	ESTs	4.3
70	416717	H79559	Hs.297726	ESTs	4.3
-	430995	NM_005092	Hs.248197	turnor necrosis factor (ligand) superfamily, member 18	4.2
	429269	AA449013	Hs.99203	ESTs	4.2
	415840	R15955	Hs.21758	ESTs	4.2
75	451300	AA017066	Hs.237686	EST	4.2
75	445366	Al221511	Hs.298662	ESTs	4.2
	424194	BE245833	Hs.169854	hypothetical protein SP192	4.2
	459105	NM_014517	Hs.28423	upstream binding protein 1 (LBP-1a)	4.2
	455387	BE069037	Un 274400	gb:QV3-8T0379-161299-040-e12 BT0379 Homo sapie	4.2
80	410507 453823	AA355288 AL137967	Hs.271408	ESTs gb:DKFZp761D2315_r1 761 (synonym: hamy2) Homo	4.2 4.2
30	450966	AA017245	Hs.32794	ESTs	4.2
	432694	AW991585	Hs.276755	ESTs, Wealty similar to F53B1.2 [C.elegans]	4.2
	455108	AW856866		gb:RC0-CT0299-291199-031-G02 CT0299 Homo sapie	4.2
	443609	AV650231	Hs.282941	ESTs	4.2

	427469	AA403084	Hs.269347	ESTs	4.2
	417178	N51636	11- 50704	gb:yy87b01.s1 Soares_multiple_sclerosis_2NbHMSP H	4.2
	439751 431982	AA196090 AW419296	Hs.50784 Hs.105754	Homo saplens mRNA full length insert cDNA clone EU	4.2
5	442641	AIB90955	Hs.262983	ESTs ESTs	4.1 4.1
-	422128	AW881145	1 13.202303	gb:QV0-OT0033-010400-182-a07 OT0033 Homo saple	4.1
	449156	AF103907	Hs.171353	prostate cancer antigen 3	4.1
	419668	A1033098	Hs.132777	ESTs	4.1
10	418236	AW994005	Hs.172572	hypothetical protein FLJ20093	4.1
10	432663	AI984317	Hs.122589	ESTs	4.1
	448313	BE622486	Hs.121688	Homo sapiens cDNA FLJ13463 fis, clone PLACE10034	4.1
	411279 440652	AW884776	Un 142077	gb:QV4-OT0067-010300-121-d01 OT0057 Homo sapie	4.1
	416608	AI216751 R11499	Hs.143977 Hs.189716	ESTs ESTs	4.1 4.1
15	420405	AA743396	Hs.189023	ESTs	4.1
	405717	/ · · · · · · · · · · · · · · · · · · ·	120.00020	predicted exon	4.1
	435267	N23797	Hs.110114	ESTs	4.1
	412228	AW503785	Hs.73792	complement component (3d/Epstein Barr virus) recepto	4.1
20	403560	Al929721	Hs.5120	dynein, cytoplasmic, light polypeptide	4.1
20	449162	A1632740	Hs.10476	ESTs	4.1
	459157	A1904385		gb:CM-BT054-080399-054 BT054 Homo sapiens cDN	4.1
	432474	AA584042		gb:nn65e09.s1 NCI_CGAP_Ler1 Homo sapiens cDNA	4.1
	455388 426456	AW936234 AA580748	Hs.130658	gb:QV0-DT0020-090200-106-g05 DT0020 Homo sapia ESTs	4.0 4.0
25	438597	AA811662	Hs.171497	ESTs	4.0
	437934	AW880871	Hs.77496	small nuclear ribonucleoprotein polypeptide G	4.0
	459385	BE380047		gb:601159362F2 NiH_MGC_53 Homo sapiens cDNA	4.0
	436404	AW968556	Hs.137240	Homo sapiens mRNA for partial 3'UTR, sequence 2	4.0
20	457740	AW500458		gb:UI-HF-BN0-akb-d-07-0-UI.r1 NIH_MGC_50 Homo	4.0
30	437385	AA757055	Hs.164060	ESTs ,	4.0
	444530	AV650124	Hs.282435	ESTs	4.0
	408066 411256	AA046914		gb:zf47h10.r1 Soares retina N2b4HR Homo sapiens cD	4.0
	433582	AW834039 BE548749	Hs.148016	gb:QV0-TT0010-091199-053-e09 TT0010 Homo sapie ESTs	4.0 4.0
35	438637	BE500941	Hs.126730	ESTs, Weakly similar to KiAA1214 protein [H.saptens	4.0
-	414571	BE410746	Hs.22868	protein tyrosine phosphatase, non-receptor type 11	4.0
	446190	Al279299	Hs.256564	EST8	4.0
	443542	Al927065	Hs.146040	ESTs .	4.0
40	430444	AW296421	Hs.121035	ESTs	4.0
40	454573	BE146471		gb:QV0-HT0216-011199-043-c09 HT0216 Homo sapie	4.0
	409846	AW501748	000744	gb:UI-HF-BR0p-aim-b-12-0-UI.r1 NIH_MGC_52 Hom	4.0
	456141	A1751357	Hs.288741	Homo sapiens cDNA: FLJ22256 fis, clone HRC02860	4.0
	456140 441685	AA169515 Al459261	Hs.6006 Hs.144481	ESTs ESTs	4.0 4.0
45	416677	T83470	113.14401	gb:yd46g06.r1 Soares fetal liver spleen 1NFLS Homo s	4.0
	401740	100.110		predicted exon	4.0
	420122	AA255714	Hs.284153	Fanconi anemia, complementation group A	4.0
	442594	AW272467	Hs.254655	Untitled	3.9
50	426294	AA374185		gb:EST86289 HSC172 cells I Homo sapiens cDNA 5' e	3.9
50	411922	AW876260		gb:PM4-PT0019-131299-006-E04 PT0019 Homo sapie	3.9
	452320	AA042873	Hs.160412	ESTs	3.9
	431644 409892	AW972822 AW956113	Hs.169248	cytochrome c gb:EST368183 MAGE resequences, MAGD Homo sap	3.9 3.9
	418132	T92670	Hs.117421	ESTs	3.9
55	414372	AA143654	10.111421	gb:zo65a02.r1 Stratagene pancreas (937208) Homo sap	3.9
•-	400196			predicted exon	3.9
	416900	M59964	Hs.1048	KIT ligand	3.9
	445444	AA380876	Hs.270	pleckstrin homology, Sec7 and colled/coil domains, bind	3.9
60	435957	N39015	Hs.190368	ESTs	3.9
UU	442299	AW467791	Hs.155561	ESTs	3.9
	419499 438403	AA808136 AA806607	Hs.177698 Hs.292206	ESTs ESTs	3.9 3.9
	449385	AA001308	Hs.193213	ESTs	3.9
	443283	BE568610		gb:601342622F1 NIH_MGC_53 Homo sapiens cDNA	3.9
65	406481			predicted exon	3.9
	453530	AW021633		gb:df26c02.y1 Morton Fetal Cochlea Homo sapiens cDN	3.9
	415558	AA885143	Hs.125719	ESTs	3.9
	416874	H98752	Hs.42568	ESTs	3.9
70	454885	AW836922		gb:QV1-LT0036-150200-074-h06 LT0036 Homo saple	3.9
70	419896 440962	Z99362 Al989961	Hs.233477	gb:HSZ99352 DKFZphamy1 Homo saptens cDNA clon ESTs, Moderately similar to A Chain A, Secypa Compl	3.9 3.9
	419401	AW804663	110.200777	gb:QV4-UM0094-160300-135-d06 UM0094 Homo sap	3.9
	406562			predicted exon	3.8
	405690	BE409855	Hs.808	heterogeneous nuclear ribonucleoprotein F	3.8
75	435282	AA677428	Hs.189731	ESTs	3.8
	402451			predicted exon	3.8
	451577	N69101	Hs.32703	ESTs	3.8
	457141	AA521410	Hs.41371	ESTs EST-	3.8
80	407817 412613	H92553 AA653507	Hs.40400	ESTs Homo sapiens cDNA FLJ13089 fis, clone NT2RP30021	3.8
00	418355	L42563	Hs.285711 Hs.1165	ATPase, H+/K+ transporting, nongestric, stipha polypep	3.8 3.8
	446357	AW161533	Hs.300866	ESTs	3.8
	407448	AJ001865		gb:Homo Saplens mRNA, partial cDNA sequence for h	3.8
	456383	AI148037		gb:qg61e01.r1 Soares_testis_NHT Homo saptens cDNA	3.8
				-	

	444651	W58469	Hs.103120	EST ₆	3.8
	455067 442657	AW854538	11- 400045	gb:RC3-CT0255-200100-024-b02 CT0255 Homo saple	3.8
	42037 429142	BE502631	Hs.130645	ESTs '	3.8
5	429142	AA835639	Hs.104972	ESTs	3.8
,	437774	Al379772 AW978199	Hs.99206	ESTs ESTs	3.8
	427737	AA435988	Hs.291648 Hs.178066	ESTs, Weakly similar to AF068289 5 HDCME31P IH.s	3.8
	405671	AA400000	115.170000	predicted exon	3.8 3.8
	413627	BE182082	Hs.246973	ESTs	3.8
10	438858	R37529	Hs.269924	ESTs	3.8
	416612	H70565	,	gb:yr97c04.r1 Soares fetal liver spleen 1NFLS Homo sa	3.8
	423045	AW967472	Hs.301511	ESTs, Highly similar to KPT2_HUMAN SERINE/THR	3.8
	453361	AA035197	Hs.107375	ESTs	3.7
	437243	AA747549	Hs.259122	ESTs	3.7
15	437987	AW450202	Hs.122963	ESTs	3.7
	408781	BE148621	Hs.254602	ESTs	3.7
	455895	BE154837		gb:PM1-HT0345-121199-001-c08 HT0345 Homo sapie	3.7
	431492	AW612343		gb:hg97c10.x1 NCI_CGAP_Kld11 Homo saplens cDN	3.7
•	413247	AW963969		gb:EST376042 MAGE resequences, MAGH Homo sap	3.7
20	422866	NM_002410	Hs.121502	mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-g	3.7
	431828	AA572994		gb:nm33f12.s1 NCI_CGAP_Lip2 Homo sapiens cDNA	3.7
	438872	R64197	Hs.23589	ESTs	3.7
	438673	AI824717	Hs.123443	ESTs	3.7
25	416624	H69044		gb:yr77h05.s1 Soares fetal liver spleen 1NFLS Homo sa	3.7
25	401963			predicted exon	3.7
	402867	4141470440		predicted exon	3.7
	408315	AW179148	D- DADOA	gb:MR4-ST0067-200899-002-B07 ST0067 Homo sapie	3.7
	418320	D86981	Hs.84084 Hs.160900	amyloid beta precursor protein (cytoplasmic tail)-bindin	3.7 3.7
30	447199 422590	Al939421 AA312758	Hs.193945	ESTs Homo sapiens cDNA FLJ13962 fis, clone Y79AA10012	3.7 3.7
50	422390 451996	AW514021	Hs.245510	ESTs	3.7
	412463	AW953444	Hs.78672	taminin, alpha 4	3.7
	440928	AL046575	Hs.130198	ESTs	3.7
	441951	W31002	Hs.128195	ESTs	3.7
35	440705	AA904244	Hs.153205	ESTs	3.7
	434231	AF119901	Hs.250568	hypothetical protein PRO2831	3.7
	411039	AL135674	Hs.163348	ESTs	3.7
	413137	BE066915		gb:PM0-BT0340-231199-001-b07 BT0340 Homo sapie	3.7
4.0	417970	AA309234	Hs.57760	Homo saplens cDNA: FLJ23119 fis, clone LNG07978	3.7
40	439786	AV652707	Hs.33756	Homo sapiens mRNA full length insert cONA clone EU	3.7
	459595	AL040421		gb:DKFZp434B0714_r1 434 (synonym: htes3) Homo s	3.7
	443601	A1078554	Hs.15682	ESTs	3.7
	404041			predicted exon	3.6
15	406122			predicted exon	3.6
45	404582	0500000		predicted excn	3.6
	455786	8E090077		gb:RC6-BT0710-300300-021-F02 BT0710 Homo saple	3.6
	411899	AA370573	11- 407770	gb:EST82238 Prostate gland I Homo sapiens cDNA 5' e	3.6
	426758 421776	AL036430 AW301994	Hs.197772 Hs.108183	ESTs	3.6 3.6
50	430169	AA468531	Hs.189047	candidate tumor suppressor p33 ING1 homolog ESTs	3.6
50	407695	A1808007	Hs.66450	ESTS	3.6
	454564	AW807573	113.00450	gb:MR1-ST0088-021299-004-g01 ST0088 Homo sapie	3.6
	425902	X52509	Hs.161640	tyrosine aminotransferase	3.6
	439328	W07411	Hs.118212	ESTs, Moderately similar to ALU3_HUMAN ALU SU	3.6
55	429066	AA868555	Hs.178222	ESTs	3.6
	428690	AI948490	Hs.98765	ESTs	3.6
	437302	AA837146	Hs.180275	ESTs	3.6
	443973	A1580083	Hs.176154	ESTs	3.6
60	453993	AW615224	Hs.252839	ESTs	3.6
60	413623	AAB25721	Hs.246973	ESTs	3.6
	409196	NM_001874	Hs.169765	carboxypeptidase M	3.6
	424916	AW867440	Hs.23096	ESTs	3.6
	424769	H06469	Hs.142653	ret finger protein	3.6
65	400080	41000700	11- 454705	predicted exon	3.6
UJ	421521	AI638760	Hs.161795	ESTs	3.6
	405549	A1976716	Ue 145036	predicted exon ESTs	3.6 3.6
	446114 441392	Al275715 AW451831	Hs.145926 Hs.222119	ESTs, Weakly similar to K1CQ_HUMAN KERATIN, T	3.6
	424025	AI701852	Hs.301296	ESTS	3.5
70	448527	AI525606	1200	gb:PT1.3_03_G05.r tumor1 Homo saplens cDNA 5', mR	3.5
. •	437063	AA351109	Hs.5437	Tax1 (human T-cell laukemia virus type I) binding prot	3.5
	449880	A1673006	Hs.231948		3.5
	449311	AI657014		gb:tl49a12.x1 NCL_CGAP_GC6 Homo saplens cDNA c	3.5
~~	442999	AW662889	Hs.132395	ESTs	3.5
75	416238	W90448		gb:zh78c08.s1 Soares_fetal_liver_spleen_1NFLS_S1 H	3.5
	423209	BE278528	Hs.106823	H.sapiens gene from PAC 42616, similar to syntaxin 7	3.5
	409854	AW501833		gb:UI-HF-BR0p-ajo-d-01-0-UI.r1 NIH_MGC_52 Hom	3.5
	414941	C14865	Hs.182159	ESTs	3.5
80	456337	AW751661	Hs.65919	ESTS sh:HSC014011 permatized infant basin cDNA Home s	3.5
30	415296 423338	F05086 AB007961	Hs.127338	gb:HSC01A011 normalized Infant brain cDNA Homo s KIAA0492 protein	3.5 3.5
	423338	F12954	na. 12/330	gb:HSC3GG091 normalized infant brain cDNA Homo s	3.5
	405583	2007		predicted exon	3.5
	435601	AF217509	Hs.283077	centrosomal P4.1-associated protein; uncharacterized bo	3.5
	.5000				

	450867	AA011454	Hs.245122	ESTs	3.5
	431339	AA506294	Hs.257266	ESTs	3.5
	441969	AI733386	Hs.129194	ESTs, Wealthy similar to ALU1_HUMAN ALU SUBFA	3.5
_	431343	AW970603	Hs.300941	Homo sapiens cDNA FLJ11661 fis, clone HEMBA100	3.5
5	434317	A1674095	Hs.116323	ESTs	3.5
	414741	R51321	Hs.25780	Homo saplens cDNA FLJ12252 fis, clone MAMMA10	3.5
	439707	AW297702	Hs.102915	ESTs	3.5
	443178	AI631241	Hs.47312	ESTs	3.5
• •	400397	AJ270770	Hs.154485	transcription factor 7-like 2 (T-cell specific, HMG-box)	3.5
10	455887	BE154173		gb:PM1-HT0340-201299-004-f12 HT0340 Homo saple	3.5
	434362	W27081	Hs.295446	ESTs	3.5
	409211	AA078835		gb:zm94h04.s1 Stratagene colon HT29 (937221) Homo	3.5
	414390	BE281040		gb:601156234F1 NIH_MGC_21 Homo saplans cDNA	3.5
	457142	AI924353	Hs.290969	EST	3.5
15	423006	U29700	Hs.123014	anti-Mullerian hormone receptor, type II	3.5
	453363	A1989776	Hs.232623	ESTs	3.5
	418913	BE046745		gb:hn39b06.x1 NCI_CGAP_RDF2 Homo saplens cDN	3.4
	440016	AW118114	Hs.137057	ESTs	3.4
	405096			predicted exon	3.4
20	435072	AW592176	Hs.116932	ESTs	3.4
	438535	L09078		gb:Homo sapiens mRNA fragment	3.4
	424001	W67883	Hs.137476	KIAA1051 protein	3.4
	428361	NM_015905	Hs.183858	transcriptional intermediary factor 1	3.4
~ ~	410587	AA370706	Hs.11252	ESTs, Weakly similar to Weak similarity with the Ysy6	3.4
25	454543	AW806895		gb:QV4-ST0023-160400-172-c06 ST0023 Homo saplen	3.4
	419515	S81944	Hs.90791	gamma-aminobutyric acid (GABA) A receptor, alpha 6	3.4
	410280	AA083558	Hs.261286	ESTs	3.4
	425714	AW963278		gb:EST375351 MAGE resequences, MAGH Homo sap	3.4
	416895	AW961600		gb:EST373672 MAGE resequences, MAGG Homo sap	3.4
30	427935	AW503687	Hs.119424	ESTs, Weakly similar to unnamed protein product [H.sa	3.4
	411673	BE064863		gb:RC1-BT0313-110300-015-f06 BT0313 Homo sepien	3.4
	453339	AW992599	Hs.252797	ESTs	3.4
	424696	BE439547	Hs.151903	Homo sapiens clone 24706 mRNA sequence	3.4
	436242	AK002187		gb:Homo saplens cDNA FLJ11325 ffs, clone PLACE10	3.4
35	442837	AI022082	Hs.50492	ESTs	3.4
	452807	AA028933	Hs. 162434	ESTs	3.4
	418110	R43523	Hs.217754	Homo saplens cDNA: FLJ22202 fis, clone HRC01333	3.4
	433936	AI208072	Hs.123459	ESTs	3.4
	458177	AJ744995	Hs.267072	ESTs, Moderately similar to ALU4_HUMAN ALU SU	3.4
40	401896			predicted exon	3.4
	406237			predicted exon	3.4
	457688	AL110157	Hs.3843	Homo saplens mRNA; cDNA DKFZp586F2224 (from	3.4
	456914	AW363582	Hs.75323	prohibitin	3.4
	421916	R34441	Hs.101007	Homo saplens cDNA: FLJ23546 ffs, clone LNG08361	3.4
45	419321	N48146	Hs.269069	ESTs	3.4
-	447876	AV654978	Hs.19904	cystathionase (cystathionine gamma-lyase)	3.4
	406197			predicted exon	3.4
	443005	Al027184	Hs.200918	ESTs	3.4
	450078	Al681743		gb:tx38g10.x1 NCI_CGAP_Lu24 Homo saplens cDNA	3.4
-50	431301	AA502384	Hs.151529	ESTs	3.4
	430202	T85775		gb:yd60g02.r1 Soares fetal liver spleen 1NFLS Homo s	3.4
	428559	H24338	Hs.27041	ESTs	3.4
	455731	BE072188		gb:QV4-BT0536-211299-055-b09 BT0536 Homo saple	3.4
	420735	AW297440	Hs.88653	ESTs	3.4
55	430881	NM_000809	Hs.248112	gamma-aminobutyric acid (GABA) A receptor, alpha 4	3.3
	405836			predicted exon	3.3
	449178	A1633748	Hs.197597	ESTs	3.3
	453265	U61232	Hs.32675	tubulin-specific chaperone e	3.3
	430700	AA768902	Hs.247812	H2A histone family, member K, pseudogene	3.3
60	424496	A1733451	Hs.129212	EST8	3.3
	446963	A1862668	Hs.176333	ESTs	3.3
	422879	Al241409	Hs.188092	ESTs	3.3
	419831	AW448930	Hs.5415	ESTs	3.3
	449570	AA001793		gb:zh86c06.r1 Soares_fetal_fiver_spleen_1NFLS_S1 H	3.3
65	406255			predicted exon	3.3
	412319.	AW936903		gb:RC1-DT0029-030200-012-d02 DT0029 Homo sapie	3.3
	401350	•		predicted exon	3.3
	439098	AF085955		gb:Homo sapiens full length insert cDNA clone YR86G	3.3
	450589	AI701505	Hs.202526	ESTs	3.3
70	430749	AJ242956	Hs.25960	v-myc avian myelocytomatosis viral related oncogene, n	3.3
	430689	A1695595	Hs.293219	ESTs	3.3
	454753	AW819212		gb:CM1-ST0283-071299-061-c07 ST0283 Homo saple	3.3
	444479	AA194980	Hs.30818	Homo sapiens cDNA FLJ13681 fis, clone PLACE20000	3.3
~~	413516	BE145907		gb:MR0-HT0208-221299-204-e12 HT0208 Homo sapie	3.3
75	425541	AA359119		gb:EST68172 Fetal lung II Homo sapiens cDNA 5' end,	3.3
	457107	AA418246	Hs.185796	ESTs, Weakly similar to b34l8.1 [H.sapiens]	3.3
	421480	NM_016158	Hs.104671	erythrocyte transmembrane protein	3.3
	444289	BE267060 ·	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine	3.3
0.0	417725	R25257	Hs.21503	ESTs	3.3
80	453631	AL046418		gb:DKFZp434N247_r1 434 (synonym: hlas3) Homo sa	3.3
	450692	H50603	Hs.94037	hypothetical protein FLJ23053	3.3
	413357	W47611		gb:zc35e06.r1 Soares_senescent_fibroblasts_NbHSF H	3.3
	415327	H22769	Hs.1861	membrane protein, palmitoytated 1 (55kD)	3.3
	457569	AW970021	Hs.291120	ESTs, Weakly similar to ALU8_HUMAN ALU SUBFA	• 3.3

			•		
	448601	R61666	Hs.293690	ESTs	3.3
	436526	AW993633	Hs.287681	Homo sapiens cDNA: FLJ21685 fis, clone COL09372	3.3
	440589	BE397763	Hs.194478	Homo saplens mRNA; cDNA DKFZp434O1572 (from	3.3
_	418768	T39310	Hs.1139	cold shock domain protein A	3.3
5	426768	AW303337	Hs.270411	ESTs	3.3
	400394	AF040257	Hs.283818	Homo saplens TNF receptor homolog mRNA, partial cd	3.3
	433565	AA599763	Hs.112520	ESTs	3.3
	424093	AA335025		gb:EST39621 Epididymus Homo sapiens cDNA 5' end,	3.3
10	449552	AA001742	Hs.83722	ESTs	3.3
10	431892	AA521315	Hs.194424	ESTs	3.3
	405512	1105/242		predicted exon	3.3
	446990	AI354717	Hs.223908	ESTS	3.3
	457729	AJ821863	Hs.293467	ESTs, Weakly similar to ALU7_HUMAN ALU SUBFA	3.2 3.2
15	417333	AL157545	Hs.42179	bromodomain and PHD finger containing, 3 protein phosphatase 2 (formerly 2A), catalytic subunit,	3.2
13	456420	AW401361	Hs.91773	protein prospiratase 2 (formerly 2A), catalyst subting predicted exon	3.2
	403497	R52635	Hs.25935	ESTs	3.2
	427145 406454	N32033	rts.20500	predicted exon	3.2
	441033	BE562555		gb:601335867F1 NIH_MGC_44 Homo sapiens cDNA	3.2
20	408444	AW661839	Hs.253204	ESTs	3.2
20	434739	AA804487	Hs.144130	ESTs	3.2
	437060	AA745591	Hs.292063	ESTs	3.2
	423092	BE274837	Hs.123637	putative homeodomain transcription factor	3.2
	424695	U58331	Hs.151899	sarcoglycan, delta (35kD dystrophin-associated glycopr	3.2
25	443362	AI053464	Hs.166505	ESTs -,	3.2
23	437500	AL390150	110.100003	gb:Homo sapiens mRNA; cDNA DKFZp547L156 (from	3.2
	425458	H89317	Hs.182889	ESTs	3.2
	439171	AA831133	Hs.294128	ESTs	3.2
	407647	AW860158	110.634120	gb:RC0-CT0379-290100-032-b04 CT0379 Homo saple	3.2
30	435608	AW183971	Hs.250896	ESTs	3.2
50	426743	AA383833	Hs.245022	ESTs	3.2
	457525	AW973800	13.275022	gb:EST385901 MAGE resequences, MAGM Homo sap	3.2
	413800	Al129238	Hs.192235	ESTs	3.2
	414193	BE260069	110.102200	gb:601150964F1 NIH_MGC_19 Homo saplens cDNA	3.2
35	455565	BE000537		gb:RC3-BN0072-240200-011-d07 BN0072 Homo sapie	3.2
55	410061	T91029	Hs.15069	ESTs	3.2
	450666	T99968	Hs.18799	ESTs	3.2
	458529	AV652120	Hs.213232	ESTs	3.2
	424751	AA769482	Hs.296320	ESTS	3.2
40	442225	AI306597	Hs.129192	ESTs	3.2
70	410990	AW812929	113.123132	gb:RC3-ST0186-250200-018-c05 ST0186 Homo sapien	3.2
	435644	AA700867	Hs.269659	ESTs	3.2
	405347	741100001	10.20000	predicted exon	3.2
	441202	Al632143	Hs.135853	ESTs	3.2
45	446694	AV659942	Hs.258132	ESTS	3.2
	454652	AW812088	1101200102	gb:RC4-ST0173-191099-032-a07 ST0173 Homo sapien	3.2
	418985	AI042330	Hs.87128	ESTs, Weakly similar to similar to YBS4 YEAST [C.el	3.2
	430118	Al377255	Hs.183287	ESTs	3.2
	430691	C14187	Hs.103538	ESTs	3.2
50	416313	H47206	Hs.194109	ESTs, Weakly similar to ALUB_HUMAN IIII ALU CL	3.2
	446122	Al362790	Hs.181801	ESTs	3.2
	453725	W28543		gb:48c5 Human retina cDNA randomly primed sublibra	3.2
	453954	AW118336	Hs.75251	DEAD/H (Asp-Glu-Ala-Asp/His) box binding protein 1	3.2
	428166	AA423849	Hs.79530	M5-14 protein	3.2
55	447506	R78778	Hs.29808	Homo sapiens cDNA: FLJ21122 fis, clone CAS05917	3.2
	401871			predicted exon	3.2
	442160	Al337127	Hs.156325	ESTs	3.2
	404708			predicted exon	3.1
	412588	AW993055	Hs.44024	ESTs	3.1
60	431976	AA719001	Hs.291065	ESTs	3.1
	408884	AW891024	Hs.281172	ESTs	3.1
	433811	AW975015	Hs.123138	ESTs	3.1
	431691	AI208511	Hs.292510	ESTs	3.1
	418719	AW975590	Hs.161707	ESTs	3.1
65	431740	N75450	Hs.183412	ESTs, Moderately similar to AF116721 67 PRO1777 [H	3.1
	435699	AI911488	Hs.213724	ESTs	3.1
	459344	AW499533	Hs.257976	ESTs	3.1
	431729	AW004714	Hs.162033	ESTs	3.1
	436771	AW975687	Hs.292979	ESTs	3.1
70	434480	AW956268	Hs.59395	Homo sapiens clone IMAGE:112574 mRNA sequence	3.1
	459547	AJ400579	Hs.225186	EST	3.1
	427962	AA946582	Hs.133546	Homo sapiens cDNA: FLJ21120 fis, clone CAS05691	3.1
	403743			predicted exon	3.1
~~	413560	BE148411		gb:MR0-HT0241-131299-002-104 HT0241 Homo sapie	3.1
75	454372	H96643	Hs.283565	FOS-like antigen-1	3.1
	450018	AA421642	Hs.24309	hypothetical protein FLJ11106	3.1
	428839	AJ767756	Hs.82302	ESTs	3.1
	407110	AA018042	Hs.95078	ESTs	3.1
00	436133	T77531	Hs.191124	ESTs	3.1
80	418872	R94785	Hs.270263	ESTs	3.1
	404418			predicted exon	3.1
	446877	AI559472	Hs.270720	ESTs	3.1
	429053	AA443967	Hs.194114	ESTs	3.1
	425189	H16622		. gb:ym26c07.r1 Soares Infant brain 1NIB Homo sapiens	3.1

	404134			predicted exan	3.1
	441404	A1638880	Hs.126895	ESTs	3.1
	400076			predicted exon	3.1
_	411876	AW961336	Hs.69705	ESTs, Wealty similar to KIAA0443 [H.sapiens]	3.1
5	451048	AA013349	Hs.60602	ESTs	3.1
	447021	Al356564	Hs.161406	ESTs	3.1
	404083			predicted excn	3.0
	415833	H05175	Hs.107510	ESTs	3.0
	402142			predicted exon	3.0
10	415820	R53720	Hs.189745	ESTs	3.0
	441140	AW016534	Hs.226994	ESTs	3.0
	449376	AA001278	Hs.59905	ESTs	3.0
	457593	Al738815	Hs.117323	ESTs .	3.0
	411542	AW850767	113.111020	gb:lL3-CT0220-031199-025-A05 CT0220 Homo sapien	3.0
15	403375	A11050707		predicted exon	3.0
IJ		A1022240	U- 17024		3.0
	449561	A1022240	Hs.17924	ESTs	3.0
	406241	44000040	11- 040000	predicted exon	3.0
	420306	AA258318	Hs.219226	ESTS	
20	413161	BE068130		gb:CM2-BT0368-171299-056-a01 BT0368 Homo saple	3.0
20	448221	BE622615		gb:601440775T1 NIH_MGC_72 Homo sapiens cDNA	3.0
	415920	Z45684		gb:HSCZRD121 normalized infant brain cDNA Homo	3.0
	459135	Al902802		gb:RC-BT015-311298-026 BT015 Homo saplens cDNA	3.0
	425357	AA355842		gb:EST64303 Jurkat T-cells VI Homo sapiens cDNA 5'	3.0
	454724	AA091228		gb:cchn2152.seq.F Human fetal heart, Lambda ZAP Ex	3.0
25	429395	AK002071	Hs.201624	hypothetical protein FLJ11209	3.0
	427607	AA406119	Hs.270479	ESTs	3.0
	443598	AW499970	Hs.14822	ESTs	3.0
	437948	AA772920		gb:ae73c09.s1 Stratagene schizo brain S11 Homo sapien	3.0
	418105	AW937488	Hs.178000	ESTs	3.0
30	426763	AL042262	Hs.172101	Human DNA sequence from clone RP1-202121 on chro	3.0
50	403473	ALUTZEUZ	115.172101	predicted exon	3.0
		Al369280	Hs.131743	ESTs	3.0
	427501				3.0
	453246	NM_000933	Hs.32539	KIAA1264 prolein	
25	404587	M99587	Hs.104134	homeo box (H6 family) 1	3.0
35	433964	AW241987	Hs.197025	ESTS	3.0
	453472	AL037925		gb:DKFZp564M037_r1 564 (synonym: hfbr2) Homo sa	3.0
	433183	AF231338	Hs.222024	transcription factor BMAL2	3.0
	435899	W89093	Hs.189914	ESTs .	3.0
4.0	425626	AI537536	Hs.173519	ESTs	3.0
40	428931	AA994979	Hs.98967	ATPase, H(+)-transporting, lysosomal, noncatalytic acc	3.0
	426593	AW958560		gb:EST370630 MAGE resequences, MAGE Homo sapl	3.0
	431899	AA521381	Hs.187728	ESTs	3.0
	422406	AF025441	Hs.116206	Opa-Interacting protein 5	3.0
	448178	AI479482	Hs.170789	ESTs	3.0
45	404227			predicted exon .	3.0
	440575	AA889870	Hs.126006	ESTs	3.0
	431198	AL047634	Hs.231913	ESTs	3.0
	434221	AF119885	Hs.283040	hypothetical protein PRO2543	3.0
	459459	AA460445	110,250010	gb:zx66h11.r1 Soares_total_fetus_Nb2HF8_9w Homo	3.0
50	400400	741100110		Aprilemental commercial and a class and a	
50	TABLE 5	3 .			•
			at Idantifiar num	hae	
			et identifier num	Dei	
		ber: Gene clust			
55	Accession	1: Gendank acc	ession numbers		
22					
	Pkey	CAT Number			
	407596	1003489_1	R86913 R	86901 H25352 R01370 H43764 AW044451 W21298	
	407647	1007366_1		8 AW862385 AW860159 AW862386 AW862341 AW821869 AW821	1893 AW062660 AW062656
C O	408066	103649_1		AA057231 H38371	•
60	408315	1051132_1		8 AW179150	
	409211	110906_1		5 AA079319 AA078816 AA079026 AA122167 AA111933 AA068989	AAU84691 AA068999 AA069038 AA069225 AA650522
	409699	1149033_1	BE154650	BE154785 AW468343 BE154816 BE154667	
	409846	1156150_1		8 AW502972 AW502513	
	409854	1156229_1	AW50183	3 AW502145 AW502581	
65	409892	1157859_1	AW95611	3 AW503580	
	410065	1174258_1	AW81274	4 AW581974 AW812725	
	410454	1204154_1	AW74904	1 BE066025 H85202	
	410495	1205826_1		V24040 AW751366 H81987	
	410596	121053_1		3 AW963684 AA086107 AI491986	
70	410667	1214679 1		9 AW936243 AW936097 BE162104 BE162109 AW794263	
, 0	410758	1219899_1		AW801777	• •
	410890	1226008_1		5 BE090626 BE090617 AW936551 AW936552 AW936530 AW936	550 AW936481
	410990	1228649_1		9 AW812779 AW813088	
	411256	1236790_1		9 AW834040 AW834047 AW845410 BE003128 AW852479	
75	411279	1237516_1		6 AW935737 AW835261 AW835247 AW835246 AW835263 AW83	5240 AWR35258
, 5	411279	1237516_1		8 AWS53737 AW6532211 AW653247 AW653240 AW653203 AW655 147321 R54159 AW860545 AW835317	
	411260	1237365_1		9 AW837355 AW882717	
				19 AW857333 AW862717 17 AW851180 AW851359 AW851223 AW851360 AW851222 AW85	1108
	411542	1249095_1		17 AWB51160 AW651359 AW651223 AW651360 AW651222 AY665 18 AW851425 AW850805 AW851021 AW850905	
80	411543	1249127_1		3 BE153698 AW856751 BE153820 BE064737 BE153874 BE06473	U DEUCCUES DE1ESESE VANGECESS DE1EEUS DECCESE!
οU	411673	1253737_1			O DESCRIPTION DE 199999 ATTOOURZE DE 199079 DEUG4991
	444000	125/07 4		5 BE064650 BE064691 2 BE160601 BE160600 BE160408 BE160602 BE160407 N72424 A	ADDRAGO
	411899	126497_1		3 BE160501 BE160500 BE160498 BE160502 BE160497 N72424 A	
	411922	1265825_1		50 AW876269 AW876340 AW876146 AW876323 AW876320 AW87	UIT I MYSS 0921 MYSS 0221 AWS 0243
	412319	1288602_1	PBSCEWA	3 AW936907 AW936908 AW936914	

```
BE142364 BE142341 AA112025
           412480
                         129929_1
           412732
                                             AW993300 N23107 R22345
                        1323951_1
1350383_1
                                             BE066915 BE066942
           413137
                         1351262_1
                                             BE068130 BE068135 BE068134 BE068183 BE068184 BE068094
           413161
  5
            413247
                         135544_1
                                             AW963969 AW963971 AA127651 AA376726
            413357
                         1364165_1
                                             W47611 BE087851
                        1374595_1
1376621_1
                                             BE145907 BE145796 BE145803 BE145851 BE145923 BE145812 BE145809 BE145852 BE145856
           413516
413560
                                             BE148411 BE148415 H59098
            414193
                         1424706_-2
                                             BE260069
                                             BE386606 BE275195 BE274984
AA143654 AW753140 AA213770 AW970865 AA569075 AA492132
10
            414337
                         1436706_1
           414372
414390
                         143909 1
                                             BF281040
                         1441570 -1
            415296
                         1533528_1
                                             F05086 F05091 R17158
                                             F12954 H10624 R11948 R56523 T75190
Z45684 H09361 R53285
R14625 R17952 H29120 R14650
            415618
                         1540651_1
15
            415920
                         1561733_1
1578993_1
            416211
                                             W90448 H30749
            416238
                         1580451_1
                                             W30448 H30/49
H70565 N77403 H67949
H69044 T47567 H75691 T50292
T83470 T84283 H74054
AW961600 AA190217 AA321260
                         1603885_1
            416612
            416624
                         1604694_1
20
                         1608621_1
            416677
                         162874_1
1655565_1
            416895
                                             N51636 T51874 T51829
            417178
            417762
                         169750_1
                                             AA205976 AA205930
                                             BE046745 Al074878 Al817476 AW572513 AA447586 H28330 AA232486 AA365704 BE271167
AW804663 AW805017 AA236969
            418913
                         180520_1
25
            419401
419896
                         184454_1
1888662 1
                                             Z99362 Z99363
            420352
                                             BE258835 AW968316 AA258918 AW843305 R14744 AI580388 BE071923 R36280
                         192979_1
                         202288_1
210744_1
                                             AA806639 AA291008 AA836274 AW978806
AJ638562 T16929 H13401 F07773 R55836
            421418
            422046
30
                         211994_1
                                             AW881145 AA490718 MB5637 AA304575 T06067 AA331991
            422128
            423403
                         227942_1
                                             AA325483 AW962169 AW962660
                                             AA335025 AA335496 AW966145
H90452 AA345767 AW964302 H90399
H16622 R17322 AA351959
            424093
                         235233_1
            424719
                         242889_1
                         247825_1
            425189
35
                         250578_-1
                                             AA355842
            425357
                                             AA359119 AW963014 D79884
            425541
                         252945_1
                                             AW963278 AA362266 AA362267
AA374185 AW956180 H38344
AA380828 AW963760 AA380805 AA380830
            425714
                         255333_1
            426294
                         263994_1
268722_1
            426528
40
                                              AW958560 AA382199 AW444933
                         269748_1
            426593
            430202
                         314322_1
                                              T85775 AW968345 AA468998
                                             AW988485 AW968870 AA480922 BE350425
BE267477 AA491488 AW836723
AW612343 AA922558 AA505925 AA927038 AW972537 Al693564
            430535
                         319643_1
            431075
                         327638_1
333930_1
            431492
45
                                              AA572994 AA516249 AA702595
            431828
                         338201 1
                         341066_1
                                              AW972934 AA525260 AA525266 AA835021 BE000149 BE000148
            432075
                                             AA584042 AW973273 AA548798
T25451 AA585296 AA585305
AF040247
            432474
                         348197_1
            433371
                         364430 1
            433403
                         36534_-1
50
            433767
                         374014_1
                                              AA609245 AA724581 AW241989 AI377274 T47300
                                              AA836265 AA648266 AW974440
AK001084 AA078092 AA829049
             434738
                          392562_1
             436196
                          41562_1
                                              AK002187 R66351
                         41641_1
             436242
                          427323_1
                                              AW298067 AA731645 AA810101 AW194180 AI690673 AW978773
             436812
                                              AM23005 AA251052 AA251061 AW154105 AG
AL390150 AW959182 AA358923
AA772920 D59870 D61151 AI591331
AA933999 AA781181
L09078 L03145 L09094 L09098 L03165 L09102
55
             437500
                          43772_1
             437948
                          445966_1
                          452656_1
            438224
438535
                          45946_1
             439098
                          46859_1
                                              AF085955 H69158 H69081
60
                                              AF085984 H95905 H95906
             439126
                          46887_1
             441033
                          50807_-1
                                              BE562555
                          56492 -1
                                              BE568610
             443283
                                              H65649 AW753545 AI244270
             445597
                          644513_1
                                              AI261545 N59134 AW875371 AW875247
             445832
                          651925_1
 65
             448221
448527
                          75534_-1
                                              RF622615
                                              Al525606 BE549857
                          766707 1
                                              BE614063
             448732
                          77773_-1
                                              Al657014 AW594035 Al657036 Al638390
             449311
                          804513_1
                                              AA001793 AA001871
AI681743 AW897287 AW897205 AW897284
             449570
                          81018_1
 70
             450078
                          823882_1
                                              AA025647 R45716 AW753786
                          91233 1
             452351
             452453
                          918300_1
                                              Al902519 Al902518 Al902516
                                              AL037925 AL037931 AL037957
AW021633 AA036730 AI866854
AL046418 N52738 R33840
             453472
                          968371_1
             453530
                          97021_1
 75
                          975024 1
             453631
453725
                                              W28543 AL119531
                          978760_1
             453752
                          979899_1
                                              AL120800 BE378580
                                              AL137967 BE064160 BE064186
AW752363 BE147120 N22640
AW796342 AW796356 BE161430
             453823
                          982526_1
                          1011603 1
             454102
454487
 80
                          1216101_1
                                              AW806895 AW866476 AW866465 AW866535 AW866623
AW807573 AW807566 AW807572
BE146471 AW833743 AW833609 AW821469 AW821488 AW821541 AW821531 AW821513 AW821549 AW821384 AW821625 AW821577
             454543
                           1223775_1
             454564
                           1224407_1
             454573
                          1225624 1
                                               AW821547 AW834577
```

```
454652
                                        AW812088 AW812105 AW812082
                      1228071_1
          454679
                      1228929_1
                                        AW813110 AW813113
                                        AA091228 H71860 H71073
          454724
                      123128 1
                                        AW819212 AW819170 BE158474 AW819172 AW819213 AW819200 AW819256 AW819254 AW819178 AW819214 AW819215 AW819233
          454753
                      1233576 1
  5
           4548R5
                                        AW836922 AW876719 AW876688 AW836919 AW836997 AW836908 AW836912 AW836993
AW846202 AW846174 AW846532 AW846181 AW846458 AW846206 AW846432 AW846553 AW846533 AW846197 AW846198 AW846189
AW846469 AW846530 AW846560 AW846536 AW846472 AW846470 AW846466 AW846192 AW846479 AW846260 AW846204 AW846139
                      1238874_1
          454940
                      1245640_1
                                        AW846187 AW846353 AW846462 AW846151 AW846549 AW846538 AW846527 AW846567 AW846531
10
          454994
                      1248637_1
                                        AW850176 AW850513 AW850412 AW850451
                                        AW853057 AW853039 AW853042 AW853050 AW853114 AW853105 AW853102 AW853111 AW853121 AW853109 AW853126 AW854338 AW854418 AW854412
           455056
                      1250934_1
          455067
                      1252050_1
                                        AW856866 AW856858 AW856856
          455108
                      1253916_1
                      1287871_1
                                        BE069037 AW936025 BE069178 AW936034
           455387
15
                                        AW936234 AW936074 AW936181 AW936179 AW936217 AW936077 AW936227 AW936191
           455388
                      1287904_1
                                        AW991925 AW991919
BE000537 BE180584 BE180540 BE180542 BE180546
           455534
                      1322942_1
           455565
                      1329591_1
                                        BE072188 BE072299 BE072269 BE072317 BE072238
           455731
                      1353872 1
                      1365510_1
                                        BE090077 BE090079
           455786
20
                                        BE030630 BE030681 BE030681 BE030633 BE030675
BE154173 BE154098 BE154096
BE154873 BE154879 BE154870 BE154877 BE154873 BE154849 BE154902 BE154905 BE154867 BE154901 BE154904 BE154899
                      1365950_1
           455790
                      1380836_1
1381386_1
           455887
           455895
                                        T12198 T19684 T11583 R15526 R15585 R45876 R15562
           456253
                      1699178 1
                      184252_1
                                        AI148037 AA287178 AA236756
           456383
25
           456388
                      1842839_-1
                                        W28557
                                        AW973800 AAS57589 AAS59886
           457525
457740
                      351732_1
                                        AW500458 AW160900 AF161362 AF150327 AW578393 AW360921 AW360920 AW360902 AW360890 AW732529
                      39528_1
                                        AF003834 W36292
           458301
                      543058_1
                      918516_1
                                         AI902802 AI902783 AI902800
           459135
30
           459157
                      919804_2
                                        Al904385 Al904382
           TABLE 5C:
           Pkey: Unique number corresponding to an Eos probeset
           Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of
35
                 human chromosome 22" Dunham, et al. (1999) Nature 402:489-495
           Strand: Indicates DNA strand from which exons were predicted
           Nt_position: Indicates nucleotide positions of predicted exons
           Pkey
400942
                                      Strand
                                                   Nt_position
91593-91757,92720-92843,93962-94079,94824-94997
40
                        7656749
                                     Minus
           401004
                        7229982
                                                   62580-62772
                                     Plus
           401287
                        9801612
                                                   42287-42431
                                      Minus
           401308
                        9212516
                                                   169019-169649
                                      Plus
                        9931226
2982169
                                                   14471-14623
           401350
                                     Plus
45
                                                   148357-148484,148591-148690
           401740
                                     Plus
           401871
                        8079355
                                                   58158-59585
                                      Minus
           401896
                        8569194
                                                   115129-115294
                                      Plus
                                                   51382-51521
22856-24055
           401963
                        3126783
                                      Plus
           402105
                        8131588
                                      Minus
50
            402109
                        8131678
                                                   171722-171859,173197-173303
                                      Minus
            402142
                                                   29932-30698
                        7704985
                                      Minus
                                      Minus
            402451
                        9796677
                                                   48137-48343
                                                   52806-53106,53500-53818
            402867
                        5596716
                                      Ptus
                                                   27494-27642
            403277
                        8072597
                                      Minus
55
            403283
                                                   71124-71996
                         8076905
                                      Minus
            403375
                         9255944
                                                    92554-92795
                                      Minus
                                                   54241-54437
7221-7441
            403473
                         9945095
                                      Minus
                        6067111
            403497
                                      Plus
                                                    75903-76134
            403531
                         8076842
                                      Minus
60
            403635
                         6862664
                                      Minus
                                                    157028-157145,161725-161900
            403714
                         7210030
                                      Minus
                                                    145556-145873
            403743
                         7652003
                                      Minus
                                                   136463-136646
174449-174663
            404020
                         8655966
                                      Minus
                                                    1334-1503,2483-2585,5230-5337,19656-19804
            404041
                         8886967
                                      Minus
65
            404044
                                                    225757-225939
                         9558573
                                      Minus
            404083
                         9944029
                                      Minus
                                                    16650-17082
                                                   63603-64942
40633-40911
                         8247074
            404108
                                      Minus
            404134
                         6981900
                                      Minus
            404227
                                                    93110-93259
                         7838233
                                      Minus
 70
            404418
404451
                         7382420
7638438
                                                    153339-153481,155099-155294
105191-105622
                                      Minus
                                      Minus
            404582
                         9739220
                                                    53230-53424
                                      Plus
                         9800828
                                                    77522-77658
            404708
                                      Plus
                                                   39954-40430
140844-140897,148510-148581
            404868
                         9454593
 75
                         8072599
3900849
            405096
                                      Plus
                                                    79582-79765
            405290
                                      Minus
            405347
                         2979602
                                      Minus
                                                    977-1116
                                                    17802-17966,18573-18697
            405512
                         9454624
                                      Ptus
            405549
                         1552494
                                      Plus
                                                    10878-11048
 80
                                                    56211-56353
            405583
                         4512287
                                      Phis
                                                    25805-26923
            405671
                         2565031
                                      Plus
                         9588573
                                                    11275-11973
            405717
                                       Plus
            405752
                         9212305
                                       Plus
                                                    91392-91528
            405836
                         5686282
                                      Minus
                                                    5031-5217
```

PCT/US02/19297 WO 02/102235

	400122	914408/	MUTUS	30940-31386
	406197	7289992	Minus	47520-47961
	406237	7417725	Plus	30032-30501
_	406241	7417725	Minus	34951-35752
5 ·	406255	7417729	Ptus	2959-3200
	406364	9256114	Minus	50715-50833
	406454	9588380	Minus	91746-91958
	406481	9864741	Minus	91439-91579
	406562	7711584	Plus	37316-37426
10	406605	8272666	Minus	23275-23493,23723-23903

TABLE 6A lists about 68 genes highly down-regulated in ovarian cancer compared to normal ovaries. These were selected as for Table 5A, except the "average" ovarian cancer level was set to the maximum value amongst various ovarian cancers and the "average" normal ovary level was set to the minimum value from various non-malignant ovary specimens, and the ratio was greater than or equal to 2.5 (i.e. 2.5-fold down-regulated in the highest tumor vs. the lowest normal ovary). This has the overall effect of increasing stringency, and reducing the number of false-positives. 15

TABLE 6A: ABOUT 68 HIGHLY DOWN-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL OVARY

Pkey: Primekey Ex. Accn: Exemplar Accession UG ID: UniGene ID 20

Title: UniGene Title

ratio: ration of normal ovary vs. tumor

25					
25	Pkey	Ex. Acon	-UG1D	Title	ratio
	424851	AA676441	Hs.119059	ESTs	7.9
	437690	AA804362	Hs.180544	ESTs	4.7
	433682	AA642418	Hs.17381	ESTs	4.1
20	407437	AF220264	11 004000	gb:Homo sapiens MOST-1 mRNA, complete cds.	4.1
30	437787	Al908263	Hs.291625	ESTs	4.0
	453282	AK000043	Hs.32922	hypothelical protein FLJ20036	4.0
	440987	AA911705	Hs.130229	ESTs	3.8
	443131	A1033833	Hs.132689	ESTs	3.8
25	431075	BE267477		gb:601189542F2 NIH_MGC_7 Homo sapiens cDNA clo	3.6
35	412637	AA115097	Hs.261313	ESTs	3.6
	408141	U69205	Hs.45152	ESTs, Moderately similar to neurogenic basic-helix-loop	3.5
	420122	AA255714	Hs.284153	Fanconi anemia, complementation group A	3.5
	430653	AW902062	Hs.30280	ESTs	3.4
	401308			predicted exon	3.4
40	410758	BE535988		gb:601062418F1 NtH_MGC_10 Homo saplens cDNA c	3.4
	421418	AA806639		gb:ob88g05.s1 NCI_CGAP_GCB1 Homo sapiens cDNA	3.4
	450061	AI797034	Hs.201115	ESTs	3.3
	409725	T40760	Hs.90459	EST	3.3
4.0	434738	AA836265		gb:od17e02.s1 NCt_CGAP_GC81 Homo sapiens cDNA	3.3
45	431644	AW972822	Hs.169248	cytochrome c .	3.3
	450938	AW753734	Hs.277215	ESTs	3.2
	420497	AW206285	Hs.253548	ESTs	3.2
	439426	Al131502	Hs.143135	ESTs, Weakly similar to FAFY_HUMAN PROBABLE C	3.2
~~	407596	R86913		gb:yq30f05.r1 Soares fetal liver spleen 1NFLS Homo sap	3.2
50	448683	AA167642	Hs.14632	ESTs	3.2
	431982	AW419296	Hs.105754	ESTs	3.1
	452320	AA042873	Hs.160412	ESTs	3.1
	419401	AW804663		gb:QV4-UM0094-160300-135-d06 UM0094 Homo sapim	3.1
	402105			predicted exon	3.1
55	444997	AI204451	Hs.146196	ESTs	3.1
	403283		•	predicted exon	3.0
	455388	AW936234		gb:QV0-DT0020-090200-106-g05 DT0020 Homo sapie	3.0
	428559	H24338	Hs.27041	ESTs	2.9
	419002	T78625	Hs.268594	ESTs	2.9
60	404868			predicted exon	2.9
	409090	W56067	Hs.103105	ESTs	2.9
	406605			predicted exon	2.9
	441202	AI632143	Hs.135853	ESTs	2.8
	422046	AI638562		gb:ts50a10.x1 NCI_CGAP_Ut1 Homo saplens cDNA cl	2.8
65	442865	N57659	Hs.114541	ESTs, Weakly similar to neuronal thread protein AD7c-N	2.8
	444431	AW513324	Hs.42280	ESTs	2.8
	426294	AA374185		gb:EST86289,HSC172 cells I Homo sapiens cDNA 5' en	2.8
	412480	BE142364		gb:CM0-HT0143-270999-062-d12 HT0143 Homo sapie	2.8
	449858	AW205979	Hs.196065	ESTs	2.8
70	401464	AF039241	Hs.9028	histone deacetylase 5	2.7
	439126	AF085984		gb:Homo sapiens full length insert cDNA clone YT99F0	2.7
	403277			predicted exon	2.7
	450078	Al681743		gb:bx38g10_x1 NCI_CGAP_Lu24 Homo saplens cDNA	2.7
	458090	Al282149	Hs.56213	ESTs, Highly similar to FXD3_HUMAN FORKHEAD D	2.7
75	420620	AA278807	Hs.173343	ESTs	2.7
	459054	AW798466	Hs.82396	2,5-oligoadenylate synthetase 1	2.6
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cys-X-Cys), mem	2.6
	454338	AW381251	Hs.1050	pleckstrin homology, Sec7 and coiled/coil domains 1(cyt	2.6
	454529	Z45439	Hs.270425	ESTs	2.6
80	446877	A1559472	Hs.270720	ESTs	2.6
	412588	AW993055	Hs.44024	ESTs	2.6
	449862	A1572277	Hs.199475	ESTs	2.6
	446694	AV659942	Hs.258132	ESTs	2.6
	424029	AB014594	Hs.137579	KIAA0694 gene product	2.6

```
454102
                         AW752363
                                                        gb:RC0-CT0201-270999-011-f03 CT0201 Homo sapien
                                                                                                                                      2.6
2.6
2.5
2.5
2.5
           430922
420289
                         AW373747
                                        Hs.183337
                                                        ESTs
                                                        8-oxoguanine DNA glycosylase
gb:zb80d09.s1 Soares_senescent_fibroblasts_NbHSF Ho
                         N55394
                                        Hs.96398
           410495
                         N95428
  5
           412319
                         AW936903
                                                        gb:RC1-DT0029-030200-012-d02 DT0029 Homo sapien
                         BE154650
Al261545
            409699
                                                        gb:PM3-HT0344-071299-003-c08 HT0344 Homo saplen
           445832
                                                        gb:qz30a07.x1 NCL_CGAP_Kid11 Homo saplens cDNA
discs, large (Drosophila) homolog 2 (chapsyn-110)
                                                                                                                                      2.5
2.5
           429755
                         NM_001364
                                        Hs.215839
            445755
                         AW294870
                                        Hs.223672
10
           TARLE 6R-
           Pkey: Unique Eos probeset identifier number
           CAT number. Gene cluster number
           Accession: Genbank accession numbers
15
           Pkey
407596
                                            Accession
R86913 R86901 H25352 R01370 H43764 AW044451 W21298
BE154650 BE154785 AW468343 BE154816 BE154667
                         CAT Number
                         1003489_1
           409699
                         1149033_1
            410495
                         1205826_1
                                            N95428 W24040 AW751366 H81987
20
                                            BE535988 AW801777
AW936903 AW936907 AW936908 AW936914
           410758
                         1219899 1
                         1288602 1
           412319
           412480
                         129929_1
                                            BE142364 BE142341 AA112025
            419401
                          184454_1
                                            AW804663 AW805017 AA236969
                                            AA806639 AA291008 AA836274 AW978806
Al638562 T16929 H13401 F07773 R55836
AA374185 AW956180 H38344
           421418
422046
                         202288 1 210744 1
25
            426294
                         263994_1
            431075
                         327638_1
                                            BE267477 AA491488 AW836723
            434738
                         392562_1
                                            AA836265 AA648266 AW974440
                         46887_1
                                            AF085984 H95905 H95906
Al261545 N59134 AW875371 AW875247
            439126
30
                         651925 1
           445832
           450078
                         823882_1
                                            AI681743 AW897287 AW897205 AW897284
           454102
                         1011603_1
                                            AW752363 BE147120 N22640
           455388
                         1287904_1
                                            AW936234 AW936074 AW936181 AW936179 AW936217 AW936077 AW936227 AW936191
35
           TABLE 6C:
           Pkey: Unique number corresponding to an Eos probeset
           Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et at." refers to the publication entitled "The DNA
                        sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495
           Strand: Indicates DNA strand from which exons were predicted Nt_position: Indicates nucleotide positions of predicted exons
40
           401308
                         9212516
                                       Plus
                                                     169019-169649
                         8131588
           402105
                                                     22856-24055
                                       Minus
           403277
                         8072597
                                       Minus
                                                     27494-27642
45
                         8076905
                                                     71124-71996
           403283
                                       Minus
           404868
                         9454593
                                                     39954-40430
                                       Ptus
           406605
                         8272666
                                                     23275-23493,23723-23903
50
           Table 7A lists about 770 genes up-regulated in ovarian cancer compared to normal adult tissues. These were selected from 35403 probesets on the Affymetrix/Eos-Hu01
           GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult lissues was greater than or equal to 2.5. The "average" ovarian cancer level was set to
           the 2nd highest amongst various ovarian cancers. The "average" normal adult tissue level was set to the 7th highest amongst various non-malignant tissues. In order to remove
           gene-specific background levels of non-specific hybridization, the 15th percentile value amongst the non-malignant tissues was subtracted from both the numerator and the
           denominator before the ratio was evaluated.
55
           TABLE 7A: ABOUT 770 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES
           Pkey: Primekey
           Ex. Accn: Exemplar Accession
           UG ID: UniGene ID
60
           Title: UniGene Title
           ratio: ration tumor vs. normal tissues
                       Ex. Accn
           109680
                       F09255
                                       Hs.4993
65
                       W70242
AA283006
           119743
                                       Hs.58086
                                                        ESTs
            132528
                                       Hs.50758
                                                        chromosome-associated polypeptide C
                                                                                                                      22.0
            129571
                        X51630
                                       Hs.1145
                                                        Wilms turnor 1
                                                                                                                       20.0
            102151
                       U17280
                                       Hs.3132
                                                                                                                       19.6
                                                        steroidogenic acute regulatory protein
            130941
                       D49394
                                       Hs.2142
                                                         5-hydroxytryptamine (serotonin) receptor 3A
70
            132624
                       AA164819
                                       Hs.53631
Hs.30743
                                                        EST<sub>5</sub>
                                                                                                                       15.9
            102610
                        U65011
                                                        preferentially expressed antigen in melanoma
                                                                                                                       15.4
            101249
                        L33881
                                                        protein kinase C; lota
                                       Hs.1904
                                                                                                                       14.5
           122802
                        AA460530
                                       Hs.256579
                                                        ESTs
                       M74093
                                                        cyclin E1
                                       Hs.9700
                                                                                                                       13.8
75
            101804
                        M86699
                                       Hs.169840
                                                         TTK protein kinase
                                                                                                                       12.2
            123005
                        AA479726
                                       Hs.105577
                                                        ESTs
                                                                                                                       12.0
```

10.9

10.9

10.8

10.5

10.3

10.1

114965

115536

132191

121853

115881

119780

104301

132632

80

AA250737

AA347193 AA449431

AA425887

AA435577

W72967

D45332

N59764

Hs.72472

Hs.62180 Hs.158688

Hs.98502

Hs.184942

Hs.191381

Hs.6783

Hs.5398

ESTs

ESTs

ESTs

KIAA0741 gene product

G protein-coupled receptor 64

guanine-monophosphate synthetase

ESTs; Weakly similar to hypothetical protein

	405000				
	105298	AA233459	Hs.26369	ESTs	9.7
	108857	AA133250	Hs.62180	ESTs	9.1
	113168	T53592	Hs.161586	EST	9.0
-	115892	AA435946	Hs.50831	ESTs	8.9
5	125666	AA199856	Hs.118811	ESTs	8.9
	102200	U21551	Hs.157205	branched chain aminotransferase 1; cylosolic	8.8
	108055	AA043562	Hs.62637	ESTs	8.6
	132572	AA448297	Hs.237825	signal recognition particle 72kD	8.6
••	115909	AA436666	Hs.59761	ESTs	8.5
10	109166	AA179845	Hs.73625	RAB6 Interacting; kinesin-like (rabkinesin6)	8.3
	121779	AA422036	Hs.98367	ESTs	8.3
	102915	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin 2)	8.0
	105317	AA233926	Hs.23635	ESTs	7.8
1.5	125250	W87465	Hs.222926	ESTs; Weakly similar to D2092.2 [C.elegans]	7.8
15	126960	AA317900	Hs.161756	ESTs	7.8
	122969	AA478539	Hs.104336	ESTs	7.7
	130376	R40873	Hs.155174	KIAA0432 gene product	7.7
	123339	AA504253	Hs.101515	ESTs	7.7
00	134972	M19720	Hs.169252	Human L-myc protein gene; complete cds	7.6
20	111234	N69287	Hs.21943	ESTs; Weakly similar to ORF YGL221c (S.cerevi	7.5
	123589	AA609556	Hs.256562	ESTs	7.5
	123494	AA599786	Hs.112110	ESTs	7.4
	131985	AA434329	Hs.36563	ESTs	7.4
25	106738	AA470145	Hs.25130	ESTs '	7.4
25	108768	AA127741	Hs.61345	ESTs -,	7.3
	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from cl	7.2
	123308	AA496211	Hs.103538	ESTs	7.2
	106124	AA423987	Hs.7567	ESTs	7.2
20	111345	N89820	Hs.14559	ESTs	7.1
30	105200	AA195399	Hs.24641	ESTs	7.1
	116416	AA609219	Hs.39982	ESTs	7.1
	118846	N80567	Hs.50895	ESTs	7.1
	133434	AA278852 AA251875	Hs.250786 Hs.104472	ESTs	7.1 6.9
35	120472	AA279943	Hs.122579	ESTs; Weakly similar to Gag-Pol polyprotein [6.9
55	115291 111185	N67551	Hs.12844	ESTs ECE like demain; multiple 6	6.9
	108778	AA128548	Hs.90847	EGF-like-domain; multiple 6 general transcription factor IIIC; polypeptid	6.9
	132939	U76189	Hs.61152	exostoses (multiple)-like 2	6.9
	134520	N21407	Hs.257325	ESTs	6.9
40	114724	AA131701	Hs.256287	ESTs; Highly similar to SPERM SURFACE PROTEIN	6.8
10	116296	AA489033	Hs.62601	Homo sapiens mRNA; cDNA DKFZp586K1318 (from c	6.8
	102136	U15552	Hs.85769	acidic 82 kDa protein mRNA	6.7
	132725	L41887	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD	6.5
	109648	F04600	Hs.7154	ESTs	6.4
45	116401	AA599963	Hs.59698	ESTs	6.4
	127563	Al367707	Hs.150587	EST ₅	6.4
	104252	AF002246	Hs.210863	cell adhesion molecule with homology to L1CAM	6.4
	120438	AA243441	Hs.99488	ESTs; Weakly similar to ORF YKR074w (S.cerevi	6.2
CO	131978	80008C	Hs.36232	KIAA0186 gene product	6.2
50	134621	L02547	Hs.172865	cleavage stimulation factor; 3' pre-RNA; subu	6.2
	120571	AA280738	Hs.128679	ESTs	6.2
	102627	U66561	Hs.158174	zinc finger protein 184 (Kruppel-like)	6.1
	100661	HG2874-HT30		Ribosomal Protein L39 Homolog	6.1
<i>5 6</i>	118204	N59859	Hs.48443	ESTs .	6.0
55	131386	AA096412	Hs.173135	dual-specificity tyrosine-(Y)-phosphorylation	6.0
	129097	S50223	11 01400	HKR-T1=KruppeHike zinc finger protein (huma	5.9
	131228	AA279157	Hs.24485	chondroitin sulfate proteoglycan 6 (barnacan)	5.9
	106369	AA443828	Hs.25324	ESTs	5.9
60	108255	AA063157	Hs.172608	ESTs	5.8
UU	125370	AA256743	Hs.151791	KIAA0092 gene product	5.8 5.8
	130010 131945	N52966 M87339	Hs.142838 Hs.35120	replication factor C (activator 1) 4 (37kD)	5.8 5.7
				DKFZP586N0819 protein	5.7
	116238 102221	AA479362 U24576	Hs.47144	LIM domain only 4	5.6
65	130757	R00641	Hs.18925	ESTs; Wealthy similar to cDNA EST yk339a7.5 co	5.6
05	131278	U81523	Hs.25195	endometrial bleeding associated factor (left-	5.6
	101383	M14113	Hs.79345	coagulation factor Ville; procoagulant compon	5.5
	131836	AA610086	Hs.32990	DXFZP566F084 protein	5.5
	129628	U26727	Hs.1174	cyclin-dependent kinase Inhibitor 2A (melanom	5.5
70	106523	AA453441	Hs.31511	ESTs	5.5
	111772	R28287	Hs.237146	ESTs	5.5
	101255	L34600	Hs.149894	mitochondrial translational initiation factor	5.5
	106895	AA489665	Hs.25245	ESTs	5.5
	104943	AA065217	Hs.169674	ESTs	5.5
75	129229	AA211941	Hs.109643	polyadenylate binding protein-interacting pro	5.4
	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)-like	5.4
	106553	AA454967	Hs.5887	ESTs; Highly similar to RNA binding motif pro	5.4
	112305	R54822	Hs.26244	ESTs	5.3
0Λ	123972	C14782	Hs.70337	immunoglobulin superfamily; member 4	5.3
80	102676	U72514	Hs.12045	pulative protein	5.3
	106459	AA449741	Hs.4029	glioma-amplified sequence-41	5.2
	107865 121121	AA025104 AA399371	Hs.61252	ESTs ESTs: Wealthy similar to zinc finger protein S	5.2 5.2
	127162	N76398	Hs.189095	ESTs; Weakly similar to zinc finger protein S ESTs	5.2 5.2
	12/102		Hs.21187		J.2

	121040	44474000	U- 20057	No	6.0
	131646 121770	AA171895 AA421714	Hs.30057 Hs.11469	Homo sapiens clone 24749 and 24750 mRNA seque KIAA0896 protein	5.2 5.2
	122512	AA449311	Hs.98658	budding uninhibited by benzimidazoles 1 (yeas	5.1
	105870	AA399623	Hs.23505	ESTs	5.1
5	100341	D63506	Hs.8813	syntaxin binding protein 3	5.1
	116848	H65187	Hs.39001	ESTs	5.1
	120821	AA347419	Hs.96870	Homo sapiens mRNA full length insert cDNA do	5.1
	130690	AA084286	Hs.139033	paternally expressed gene 3	5.1
10	122661	AA454936	Hs.245541	ESTs	5.1
10	123169 108810	AA488892 AA130596	Hs.104472 Hs.71331	ESTs; Wealdy similar to Gag-Pol potyprotein (ESTs; Wealdy similar to POTENT HEAT-STABLE PR	5.1 5.0
	110799	N26101	Hs.7838	Human ring zinc-finger protein (ZNF127-Xp) ge	5.0
	120619	AA284372	Hs.111471	ESTs	5.0
	122792	AA460225	Hs.99519	ESTs	5.0
15	129912	AA047344	Hs.107213	ESTs; Highly similar to NY-REN-6 antigen (H.s	5.0
	102823	U90914	Hs.5057	carboxypeptidase D	4.9
	129890	M13699	Hs.111461	cerutoplasmin (ferroxidase)	4.9
	101084	L05425	U- 00045	Homo sapiens autoanligen mRNA; complete cds	4.9
20	134859 115955	D87716 AA446121	Hs.90315 Hs.44198	KIAA0007 protein Homo saplens BAC clone RG054D04 from 7q31	4.9 4.9
20	105516	AA257971	Hs.21214	ESTs	4.9
	114932	AA242751	Hs.16218	KIAA0903 protein	4.9
	106672	AA461300	Hs.30643	ESTs	4.8
0.5	106126	AA424006	Hs.22972	ESTs; Moderately similar to H5AR [M.musculus]	4.8
25	110695	H93463	Hs.124777	ESTs	4.8
	102025	U03911	Hs.78934	mutS (E. coli) homolog 2 (colon cancer; nonpo	4.8
	133282	U52960	Hs.250855	SRB7 (suppressor of RNA polymerase B; yeast)	4.8
	119708	W67810	Hs.57904	mago-nashi (Drosophila) homolog; proliferatio ESTs	4.7 4.7
30	120695 128651	AA291468 AA446990	Hs.103135	ESTs	4.7
50	103152	X66533	Hs.77890	guanylate cyclase 1; soluble; beta 3	4.7
	108699	AA121514	Hs.70832	ESTs	4.7
	115094	AA255921	Hs.88095	ESTs	4.7
	121429	AA406293	Hs.193498	ESTs .	4.7
35	123203	AA489671	Hs.89709	glutamate-cysteine ligase (gamma-glutamylcyst	4.7
	126802	AA947601	Hs.97056	ESTs	4.7
	130527	C17384	Hs.184227	F-box protein 21	4.7 4.7
	134470 100449	X54942 D87470	Hs.83758 Hs.75400	CDC28 protein kinase 2 KIAA0280 protein	4.7
40	110970	N51374	Hs.96870	Homo saplens mRNA full length insert cDNA do	4.7
	115901	AA436403	Hs.86909	ESTs; Moderately similar to Frizzled-6 [H.sap	4.7
	109799	F10770	Hs.180378	Homo sapiens clone 669 unknown mRNA; complete	4.6
	116195	AA465148	Hs.72402	ESTs	4.6
15	132122	U65092	Hs.40403	Cbp/p300-interacting transactivator; with Glu	4.6
45	108990	AA152296	Hs.72045	ESTs	4.6
	109055	AA160529	Hs.48524	ESTs	4.6
	115937 133520	AA443269 X74331	Hs.30991 Hs.74519	KIAA0957 protein primase; polypeptide 2A (58kD)	4.6 4.6
	131200	AA609427	Hs.210706	ESTs; Moderately similar to !!!! ALU SUBFAMIL	4.6
50	121369	AA405657	Hs.128791	Human DNA sequence from clone 967N21 on chrom	4.5
	132880	AA444369	Hs.177537	ESTs	4.5
	127386	Al457411	Hs.106728	ESTs	4.5
	120067	W93592	Hs.47343	ESTs	4.5
55	122986	AA479063	Hs.102947	ESTs	4.5 4.5
55	135286 130155	AA401269 L33404	Hs.97849 Hs.151254	ESTs kallikrein 7 (chymotryptic; stratum comeum)	4.5
	106103	AA421104	Hs.12094	ESTs	4.5
	102654	U68494	Hs.24385	Human hbc647 mRNA sequence	4.4
	107876	AA025315	Hs.61184	Novel human gene mapping to chomosome X	4.4
60	109454	AA232255	Hs.46912	ESTs	4.4
	125960	D63307	Hs.145968	ESTs	4.4
	126892	AI160190	Hs.76127	hect (homologous to the E6-AP (UBE3A) carboxy E2F transcription factor 3	4.4 4.4
	100269 134161	D38550 U97188	Hs.1189 Hs.79440	IGF-II mRNA-binding protein 3	4.4
65	100502	HG1496-HT1		Adrenal-Specific Protein Pg2	4.3
•••	105542	AA261858	Hs.8241	ESTs; Weakly similar to heat shock protein hs	4.3
	109787	F10610	Hs.34853	inhibitor of DNA binding 4; dominant negative	4.3
	110759	N21671	Hs.19025	ESTs	4.3
70	129970	AA478975	Hs.200434	ESTs	4.3
70	134666	AA482319	Hs.8752	putative type II membrane protein	4.3
	117693 111008	N40939 N53388	Hs.44162	ESTs; Weakly similar to cDNA EST yk342h12.5 c ESTs	4.3 4.3
	120977	AA398155	Hs.7222 Hs.97600	ESTS	4.3 4.2
_	105808	AA393808	Hs.21490	KIAA0438 gene product	4.2
75	121381	AA405747	Hs.97865	ESTs; Weakly similar to WASP-family protein [4.2
	100893	HG4557-HT4	4962	Small Nuclear Ribonucleoprotein U1, 1snrp	4.2
	107176	AA621762	Hs.7576	ESTs	4.2
	118976	N93629	Hs.93391	ESTs	4.2
80	130703	N63295	Hs.18103	ESTs	4.2
90	106540 119367	AA454607 T78324	Hs.38114 Hs.90905	ESTs; Weakly similar to coded for by C. elega ESTs	4.2 4.2
	133633	D21262	Hs.75337	nucleolar phosphoprotein p130	4.2
	105520	AA258068	Hs.33085	WD repeat domain 3	4.2
	114264	Z40074	Hs.27595	ESTs	4.1
				1.40	

	131046	X02530	Hs.2248	IP10; 'small inducible cytokine subfamily 8 (4.1
	105220	AA210695	Hs.17212	ESTs	4.1
	103111	X63187	Hs.2719	epididymis-specific; whey-acidic protein type	4.1
5	125640	R37700	Hs.208261	ESTs	4.1
5	110561 118092	H59617 N54915	Hs.5199 Hs.82719	ESTs; Wealdy similar to UBIQUITIN-CONJUGATING Homo sapiens mRNA; cDNA DKFZp586F1822 (from c	4.1 4.1
	134891	F03517	Hs.90787	ESTs	4.1
	112364	R59312	Hs.197642	ESTs; Weakly similar to DNA-DIRECTED RNA POLY	4.1
10	120699	AA291716	Hs.97258	ESTs	4.1
10	106272 112041	AA432074 R43300	Hs.32538 H₅.22929	ESTs ESTs	4.1 4.1
	131689	AA599653	Hs.30696	transcription factor-like 5 (basic helix-loop	4.1
	116134	AA460246	Hs.50441	ESTs; Highly similar to CGI-04 protein (H.sap	4.1
15	107638	AA009528	Hs.42743	ESTs; Weakly similar to predicted using Genef	4.0
15	131941 106154	D62657 AA425304	Hs.35086 Hs.6994	ubiquitin-specific protease 1 ESTs	4.0 4.0
	105546	AA262032	Hs.26089	ESTs: Weakly similar to 62D9.a (D.melanogaste	4.0
	106319	AA436606	Hs.7392	ESTs; Wealty similar to Gu protein [H.sapiens	4.0
20	121816	AA424814	Hs.187509	ESTs	4.0
20	122851 123337	AA463627 AA504153	Hs.99598 Hs.132797	ESTs ESTs; Weakly similar to ORF YGL050w [S.cerevi	4.0 4.0
	128643	N40212	Hs.102958	ESTs	4.0
	129011	S72869	Hs.107932	DNA segment; single copy; probe pH4 (transfor	4.0
25	130895	AA609828	Hs.21015	ESTs; Highly similar to tetracycline transpor	4.0
25	132323 134255	AA436102 J05032	Hs.256559 Hs.80758	ESTs aspartyl-IŘNA synthetase	4.0 4.0
	102827	U91327	Hs.6456	chaperonin containing TCP1; subunit 2 (beta)	4.0
	102123	U14518	Hs.1594	centromere protein A (17kD)	4.0
20	102813	U90651	Hs.151461	embryonic ectoderm development protein	3.9
30	113970	W86748	Hs.8109	ESTs	3.9 3.9
	107145 114212	AA621108 Z39338	Hs.173001 Hs.21201	ESTs DKFZP566B0846 protein	3.9
	106614	AA458934	Hs.179912	ESTs	3.9
2.5	132742	AA490862	Hs.55901	ESTs; Weakly similar to C43H8.1 [C.elegans]	3.9
35	120948	AA397822	Hs.104650	ESTs; Highty similar to similar to mago nashi KIAA0990 protein	3.9 3.9
	129337 103835	R63542 AA172215	Hs.110488 Hs.93748	ESTs; Moderately similar to TRANSCRIPTION FAC	3.9
	133330	U42360	Hs.71119	Putative prostate cancer tumor suppressor	3.9
40	133928	N34096	Hs.7766	ubiquitin-conjugating enzyme E2E 1 (homologou	3.9
40	133640	D83004	Hs.75355	ubiquitin-conjugating enzyme E2N (homologous	3.9
	133350 115623	AA135468 AA401475	Hs.71573 Hs.39733	ESTs postsynaptic protein CRIPT	3.9 3.9
	101973	S82597	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	3.9
	102669	U71207	Hs.29279	eyes absent (Drosophila) homotog 2	3.9
45	134248	AA292677	Hs.80624	ESTs	3.9
	102380 116157	U40434 AA461063	Hs.155981 Hs.44298	mesothelin ESTs; Highly similar to HSPC011 [H.sapiens]	3.9 3.8
	108691	AA463453	Hs.23259	ESTs; Weakly similar to ACTIN; CYTOPLASMIC 2	3.8
	115844	AA430124	Hs.234607	ESTs	3.8
50	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.cerevi	3.8
	106498 134405	AA452141 J04177	Hs.7171 Hs.82772	ESTs collagen; type XI; alpha 1	3.8 3.8
	106260	AA431448	Hs.5250	ESTs; Weakly similar to BACR37P7.g [D.melanog	3.8
	109864	H02554	Hs.30323	ESTs	3.8
55	124648	N91948	Hs.125034	ESTs	3.8
	134719 113702	L07515 T97307	Hs.89232 Hs.161720	chromobox homolog 5 (Drosophila HP1 alpha) ESTs; Moderately similar to !!!! ALU SUBFAMIL	3.8 3.8
	128639	N91246	Hs.102897	ESTs	3.8
	111299	N73808	Hs.24936	ESTs	3.7
60	129351	AA167268	Hs.62349	Human ras inhibitor mRNA; 3' end	3.7
	119741 105012	W70205 AA116036	Hs.43670 Hs.9329	kinesin family member 3A chromosome 20 open reading frame 1	3.7 3.7
	128734	AA343629	Hs.104570	kallikrein 8 (neuropsin/ovasin)	3.7
	130567	L07493	Hs.1608	replication protein A3 (14kD)	3.7
65	114253	Z39909	Hs.14831	ESTs	3.7
	103169	X68560 N70711	Hs.44450 Hs.18885	Sp3 transcription factor ESTs; Highly similar to CGI-116 protein (H.sa	3.7 3.7
	111269 112876	T03488	Hs.4842	ESTs	3.7
	118261	N62780	Hs.94122	ESTs	3.7
70	130385	AA126474	Hs.155223	stanniocalcin 2	3.7
	129300	C20976	Hs.110165	ESTs; Highly similar to ribosomal protein L26	3.7
	134388 106968	M15841 AA504631	Hs.82575 Hs.26813	small nuclear ribonucleoprotein polypeptide B ESTs; Wealdy similar to hypothetical 43.2 kDa	3.7 3.7
	100906	HG4716-HT		Guanosine 5'-Monophosphate Synthase	3.7
75	100418	D86978	Hs.84790	KIAA0225 protein	3.7
	101484	M24594	Hs.20315	Interferon-Induced protein 56	3.7
	102547 103587	U57911 Z29083	Hs.46638 Hs.82128	chromosome 11 open reading frame 8 5T4 oncofetal trophoblast glycoprotein	3.7 3.7
	130600	AA478601	Hs.258737	ESTs	3.7
80	128733	AA328993	Hs.104558	ESTs	3.7
	134375	AA412720	Hs.82389	ESTs; Highly similar to CGI-118 protein (H.sa	3.7
	134098 101188	X06323 L20320	Hs.79086 Hs.184298	ribosomal protein; mitochondrial; L3 cyclin-dependent kinase 7 (homolog of Xenopus	3.6 3.6
	132149	T10822	Hs.4095	ESTs	3.6
				-	

	116200	AA465358	Hs.118793	ESTs; Highly similar to p621 [H.sapiens]	3.6
	121920	AA428300	Hs.161841	ESTs	3.6
	128609	AA234365	Hs.102456	survival of motor neuron protein interacting	3.6
5	101078	L04510	Hs.792	ADP-ribosylation factor domain protein 1; 64k	3.6
)	108693	AA121289	Hs.49597	ESTs; Highly similar to retinoic acid-induced	3.6
	109139	AA176121	Hs.59757	zinc finger protein 281	3.6
	111870	R37778	Hs.18685	ESTs; Weakly similar to hypothetical protein	3.6
	113848	W60080	Hs.27099	DKFZP564J0863 protein	3.6
1.0	127947	A1432475	Hs.146327	ESTs	3.6
10	128056	Al379480	Hs.125449	ESTs; Weakly similar to MaxiK channel beta 2	3.6
	129914	U22377	Hs.13321	rearranged L-myc fusion sequence	3.6
	132148	AA283988	Hs.4094	ESTs	3.6
	134644	\$83308	Hs.87224	SRY (sex-determining region Y)-box 5	3.6
1.5	115047	AA252627	Hs.22554	homeo box B5	3.6
15	102398	U42359		Human N33 protein form 1 (N33) gene, exon 1 a	3.6
	127479	AA513722	Hs.179729	collagen; type X; alpha 1 (Schmid metaphyseal	3.6
	105545	AA262030	Hs.5152	ESTs; Weakly similar to katanin p80 subunit [3.6
	101483	M24486	Hs.76768	procollagen-proline; 2-oxoglutarate 4-dioxyge	3.6
20	105709	AA291268	Hs.26761	DKFZP586L0724 protein	3.6
20	122636	AA454103	Hs.110031	ESTs	3.6
	124792	R44357	Hs.132784	ESTs; Weakly similar to cDNA EST EMBL:T01421	3.6
	103621	Z47727	Hs.150675	polymerase (RNA) II (DNA directed) polypeptid	3.5
	105427	AA251330	Hs.28248	ESTs	3.5
25	121553	AA412488	Hs.48820	ESTs	3.5
25	115167	AA258421	Hs.43728	hypothetical protein	3.5
	134570	U66615	Hs.172280	SW/SNF related; matrix associated; actin dep	3.5
	110787	N24716	Hs.12244	ESTs; Weakly similar to C44B9.1 [C.elegans]	3.5
	131621	U77665	Hs.139120	ribonuclease P (30kD)	3.5
20	132813	N72116	Hs.57435	solute carrier family 11 (proton-coupled diva	3.5
30	116370	AA521256	Hs.236204	ESTs; Moderately similar to NUCLEAR PORE COMP	3.5
	131965	W90146	Hs.35962	ESTs	3.5
	115221	AA262942	Hs.79741	ESTs	3.5
	116093	AA456020	Hs.50848	ESTs; Weakly similar to KIAA0862 protein [H.s	3.5
25	123507	AA600176	Hs.112345	ESTs	3.5
35	129801	F11087	Hs.239666	ESTs	3.5
	115084	AA255566	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from cl	3.5
	123442	AA598803	Hs.111496	ESTs	3.5
	115061	AA253217	Hs.41271	ESTs	3.5
40	100146	D13645	Hs.2471	KIAA0020 gene product	3.5
40	115140	AA258030	Hs.55356	ESTs; Weakly similar to supported by GENSCAN	3.5
	115360	AA281950	Hs.5057	carboxypeptidase D	3.5
	130261	D83767	Hs.153678	reproduction 8	3.4
	100824	HG4058-HT4		Oncogene Am11-Evi-1, Fusion Activated	3.4
45	102287	U31814	Hs.3352	histone deacetylase 2	3.4
43	102788	U86602	Hs.74407	nucleolar protein p40	3.4
	118836	N79820	Hs.50854	ESTs .	3.4
	102423	U44754	Hs.179312	small nuclear RNA activating complex; polypep	3.4
	106300	AA435840	Hs.19114	high-mobility group (nonhistone chromosomal)	3.4
50	106156	AA425354	Hs.4210	ESTs	3.4
20	106483	AA451676	Hs.30299	IGF-II mRNA-binding protein 2	3.4
	107868	AA025234	Hs.61260	ESTs	3.4
	108187	AA056538	Hs.27842	ESTs; Weakly similar to similar to 1-acyl-gly	3.4
	116123	AA459282	Hs.43756	ESTs	3.4
55	119501	W37721	Hs.151363	ESTs	3.4
22	129121	AA127459	Hs.108788	ESTs; Weakly similar to zeste [D.melanogaster	3.4
	131638	D87120	Hs.29882	predicted osteoblast protein	3.4
	132962	N34893	Hs.6153	ESTs; Highly similar to CGI-48 protein [H.sap	3.4
	133767	D63875	Hs.173288	KIAA0155 gene product	3.4
60	111823	R35253	Hs.24944	ESTs	3.4
UU	134372	D63877	Hs.82324	KIAA0157 protein	3.4
	130938	AA013250	HS.21398	ESTs; Moderately similar to PUTATIVE GLUCOSAM	3.4
	115169	AA258427	Hs.58427	ESTs	3.4
	123978	C20653	Hs.170278	ESTS	3.4
65	108807	AA129968	Hs.49376	ESTs; Wealdy similar to PROTEIN PHOSPHATASE P	3.4
05	132581	R42266	Hs.52256	ESTs; Wealdy similar to bete-TrCP protein E3R	3.4
	134654	W23625	Hs.8739	ESTs; Wealdy similar to ORF YGR200c (S.cerevi	3.4
	105730	AA292701	Hs.5364	DKFZP5641052 protein	3.4
	111295	N73275	Hs.21275	ESTs; Weakly similar to ubiquitin-conjugating	3.3
70	102009 114161	U02680 Z38904	Hs.82643	protein tyrosine kinase 9 ESTs; Weakly similar to KIAA0970 protein (H.s	3.3 3.3
70			Hs.22385		
	130604	X03635	Hs.1657 Hs.5085	estrogen receptor 1	3.3 3.3
	100103	AF007875		dolichyl-phosphate mannosyltransferase polype	
	121748	AA421171	Hs.234545	ESTS ESTS: Westly closely to PROBABLE ATPLICEDENTIEN	3.3 3.3
75	106698	AA463745	Hs.29403	ESTs; Weakly similar to PROBABLE ATP-DEPENDEN	
, ,	134353	S77154	Hs.82120	nuclear receptor subfamily 4; group A; member	3.3
	134154	AA211320	Hs.79404	neuron-specific protein	3.3
	133142	F03321	Hs.65874	ESTs	3.3
	124461	N50641	Hs.80285	Homo saptens mRNA; cDNA DKFZp586C1723 (from c	3.3
80	104903	AA055534	Hs.124134	ESTs	3.3
ov	106772	AA478106	Hs.12692	ESTs; Weakly similar to protein phosphatase-1	3.3
	109704	F09687	Hs.12876	ESTS	3.3
	111131	N64267	Hs.10177	ESTs	3.3
	115019	AA251906	Hs.48473	ESTs Homo sapiens mRNA; cDNA DKFZp434E102 (from cl	3.3
	116019	AA450312	Hs.237480	. Limito gatheria invitari couta pio standacios filom di	3.3

	118528	N67889	Hs.49397	ESTs	3.3
	124027	F03625	Hs.107537	ESTs	3.3
	131699	R68657	Hs.90421	ESTs; Moderately similar to IIII ALU SUBFAMIL	3.3
~	111044	N55443	Hs.23625	ESTs	3.3
5	103768	AA089997	Hs.180320	ESTs; Weakly similar to GOLGI 4-TRANSMEMBRANE	3.3
	131882	N49091 AA609471	Hs.3385	ESTs; Highly similar to CGI-134 protein [H.sa	3.3
	123673 132936	AA609471 AB002305	Hs.112712 Hs.6111	ESTs	3.3 3.3
	103023	X53793	Hs.117950	KIAA0307 gene product multifunctional potypeptide similar to SAICAR	3.3
10	120572	AA280794	Hs.258787	ESTs	3.3
	132384	AA479933	Hs.46967	Human DNA sequence from clone 167A19 on chrom	3.3
	105658	AA282914	Hs.10176	ESTs	3.2
	105086	AA147719	Hs.159441	EST8	3.2
15	118695 112092	N71781 R44538	Hs.50081 Hs.140889	Homo sapiens mRNA full length insert cDNA clo ESTs	3.2 3.2
13	125154	W38419	Hs.24936	ESTs	3.2
	108040	AA041551	Hs.48644	ESTs	3.2
	133453	M68941	Hs.73826	protein tyrosine phosphatase; non-receptor ty	3.2
20	124006	D60302	Hs.108977	ESTs	3.2
20	116083	AA455653	Hs.44581	ESTs; Weakly similar to HEAT SHOCK 70 KD PROT	3.2
	106753 102621	AA476944 U66075	Hs.7331	ESTs CATA binding peotoin 6	3.2 3.2
	1033330	X85373	Hs.50924 Hs.77496	GATA-binding protein 6 small nuclear ribonucleoprotein polypeptide G	3.2
	128926	AA481403	Hs.107213	ESTs; Highly similar to NY-REN-6 antigen (H.s.	3.2
25	101167	L15309	Hs.193677	zinc finger-protein 141 (clone pHZ-44)	3.2
	104055	AA393755	Hs.117211	ESTs; Highly similar to CGI-62 protein (H.sap	3.2
	112917	T10196	Hs.4263	ESTs; Wealdy similar to /prediction	3.2
	120358 121857	AA213459 AA426017	Hs.100932 Hs.62694	transcription factor 17 ESTs; Highly similar to DNA-REPAIR PROTEIN CO	3.2 3.2
30	122124	AA434257	Hs.186679	ESTs; Moderately similar to IIII ALU SUBFAMIL	3.2
	132231	H99131	Hs.42635	ESTs	3.2
	134272	X76040	Hs.223014	protease; serine; 15	3.2
	115860	AA431719	Hs.61809	ESTs	3.2
35	115278	AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.melano	3.2
33	134125 129160	R38102 AA131252	Hs.50421 Hs.109007	KIAA0203 gene product ESTs	3.2 3.2
	121710	AA419011	Hs.96744	DKFZP586D0823 protein	3.2
	102242	U27185	Hs.32943	retinoic acid receptor responder (lazarotene	3.2
40	104956	AA074880	Hs.120975	ESTs; Weakly similar to hypothetical protein	3.2
40	113047	T25867	Hs.7549	ESTs	3.2
	115017 133780	AA251880 M14219	Hs.179982 Hs.76152	tumor protein p53-binding protein decorin	3.2 3.1
	129453	AA421213	Hs.111632	Lsm3 protein	3.1
	130353	X86018	Hs.172210	MUF1 protein	3.1
45	106036	AA412505	Hs.10653	ESTs	3.1
	102234	U26312	Hs.8123	chromobox homolog 3 (Drosophila HP1 gamma)	3.1
	106133 116803	AA424346 H47357	Hs.107573	siziyitransferase	3.1 3.1
	106721	AA465194	Hs.6670	ESTs; Moderately similar to weak similarity t ESTs	3.1
50	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein [H.sa	3.1
	133228	N90029	Hs.6831	Homo sapiens clone 1400 unknown protein mRNA;	3.1
	104733	AA019498	Hs.23071	ESTs	3.1
	103879	AA228148	Hs.50252	ESTs; Weakly similar to putative [C.elegans]	3.1
55	103038 135154	X54941 AA126433	Hs.77550 Hs.173242	CDC28 protein kinase 1 sorting nexin 4	3.1 3.1
-	114860	AA235112	Hs.106227	ESTs; Moderately similar to similar to murine	3.1
	102437	U46569	Hs.221986	aquaporin 5	3.1
	100352	D64159		Homo sapiens mRNA for 3-7 gene product, parti	3.1
60	103631	Z48570		H.saplens Sp17 gene	3.1
UU	104238	AB002364	Hs.27916	a disintegrin-like and metalloprotease (repro	3.1 3.1
	108613	AA100967 AA436884	Hs.69165 Hs.48926	ESTs ESTs	3.1
	120640	AA286945	Hs.163933	ESTs	3.1
~ =	124068	H03099	Hs.101619	ESTs	3.1
65	130375	U91931	Hs.155172	adaptor-related protein complex 3; beta 1 sub	3.1
	131632	AA443671	Hs.29826	ESTs	3.1
	131523 115827	H88801 AA427890	Hs.201676 Hs.44426	M phase phosphoprotein 10 (U3 small nucleolar ESTs; Weakly similar to PHOSPHOLIPID HYDROPER	3.1 3.1
	108828	AA131584	Hs.71435	OKFZP564O0463 protein	3.1
70	112198	R49483	Hs.22159	ESTs; Weakly similar to ZINC FINGER PROTEIN H	3.1
	123960	AA621785	Hs.170008	methylmalonate-semlaldehyde dehydrogenase	3.1
	131538	Z29331	Hs.28505	ubiquitin-conjugating enzyme E2H (homologous	3.1
	105616	AA280670 L27706	Hs.24968	ESTs chaperonin containing TCP1; subunit 6A (zeta	3.1 3.1
75	101228 100280	D42085	Hs.82916 Hs.155314	KIAA0095 gene product	3.1
	132744	X54326	Hs.55921	glutamyl-prolyl-IRNA synthetase	3.1
	103105	X61970	Hs.76913	proteasome (prosome; macropain) subunit; alph	3.1
	105984	AA521201	Hs.7129	ESTs	3.1
80	105127 102302	AA158132 U33052	Hs.11817 Hs.69171	ESTs; Weakly similar to contains similarity t protein kinase C-like 2	3.1 3.1
50	117708	N45114	Hs.46476	ESTs	3.1
	111314	N74574	Hs.33922	H.sapiens novel gene from PAC 117P20; chromos	3.0
	132902	AA490969	Hs.168147	ESTs	3.0
	130356	X84373	Hs.155017	nuclear receptor interacting protein 1	3.0

	128420	AICODACE	U= 44146	ESTe: Minethy similar to unbound [N expines]	3.0
	108746	AI088155 AA126974	Hs.14146 Hs.43388	ESTs; Weakly stmilar to unknown [H.sapiens] ESTs	3.0
	127236	Al341818	Hs.98658	budding uninhibited by benzimidazoles 1 (yeas	3.0
	114208	Z39301	Hs.7859	ESTs	3.0
5	107071	AA609053	Hs.35198	ESTs	3.0
	104957	AA074919	Hs.10026	ESTs; Weakly similar to ORF YJL063c [S.cerevi	3.0
	124073	H05394	Hs.127376	KIAA0266 gene product	3.0
	130869	AA128100	Hs.2057	uridine monophosphate synthetase (orotate pho	3.0
10	101232	L28997	Hs.242894	ADP-ribosylation factor-like 1	3.0
10	104276 126160	C02193	Hs.85222	ESTs; Weakly similar to R27090_2 [H.saptens]	3.0 3.0
	128584	N90960 M11433	Hs.247277 Hs.101850	ESTs; Weakly similar to transformation-relate retinol-binding protein 1; cellular	3.0
	100405	D86425	Hs.82733	nidogen 2	3.0
	101335	L49054	1 12.02.700	Homo sapiens t(3;5)(q25.1;p34) fusion gene NP	3.0
15	108761	AA127514	Hs.61603	ESTs	3.0
	111346	N89829	Hs.13259	ESTs	3.0
	114988	AA251089	Hs.94576	ESTs; Weakly similar to phosducin; retinal (H	3.0
	116008	AA449338	Hs.48589	ESTs; Wealdy similar to finger protein HZF6;	3.0
20	116545	D20313	Hs.74899	ESTs	3.0
20	117873	N49967	Hs.46624	ESTs	3.0
	121463	AA411745	Hs.239681	ESTs; Weakly similar to KIAA0554 protein (H.s	3.0
	128625 131185	AA242816 M25753	Hs.102652 Hs.23960	ESTs; Weakly similar to KIAA0437 [H.sapiens] cyclin B1	3.0 3.0
	134380	D38073	Hs.179565	minichromosome maintenance deficient (S. cere	3.0
25	105740	AA293206	Hs.10852	ESTs -4	3.0
	130919	AA291710	Hs.21276	collagen; type IV; alpha 3 (Goodpasture antig	3.0
	134423	W96151	Hs.83006	ESTs; Highly similar to CGI-139 protein (H.sa	3.0
	104898	AA054228	Hs.23165	ESTs	3.0
••	134407	X72964	Hs.82794	caltractin (20kD calcium-binding protein)	3.0
30	106378	AA445994	Hs.21331	ESTs	3.0
	112283	R53545	Hs.20952	Homo sapiens clone 24411 mRNA sequence	3.0
	109018	AA156960	Hs.114992	ESTs	3.0
	114239	Z39742	Hs.222478	ESTs	3.0
35	114969 116408	AA250775 AA608752	Hs.87747 Hs.71969	ESTs Homo sapiens mRNA; cDNA DKFZp564P0823 (from c	3.0 3.0
55	115286	AA279803	Hs.82204	ESTs	2.9
	105809	AA393827	Hs.20104	ESTs	2.9
	113811	W44928	Hs.4878	ESTs	2.9
40	107248	D59894	Hs.34782	ESTs	2.9
40	134489	U09284	Hs.112378	LIM and senescent cell antigen-like domains 1	2.9
	134064	D87685	Hs.78893	KIAA0244 protein	2.9
	127370	AI024352	Hs.70337	immunoglobulin superfamily; member 4	2.9
	113277	T65797	Hs.11774	protein (peptidyl-prolyl cis/trans isomerase)	2.9
45	132783	N74897	Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide	2.9 2.9
43	109010	AA156460	Hs.44229 Hs.14838	dual specificity phosphatase 12 ESTs	2.9
	130095 106618	F01831 AA459249	Hs.8715	ESTS; Weakly similar to Similarity with snail	2.9
	103427	X97303	115.0713	H.sapiens mRNA for Ptg-12 protein	2.9
	133980	D00760	Hs.181309	proteasome (prosome; macropain) subunit; alph	2.9
50	111353	N90430	Hs.6616	ESTs	2.9
	105344	AA235303	Hs.8645	ESTs	2.9
	134498	M63180	Hs.84131	threonyl-IRNA synthetase	2.9
	117910	N50828	Hs.12940	zinc-fingers and homeoboxes 1	29
55	118903	N90774	Hs.132207	ESTs; Moderately similar to !!!! ALU SUBFAMIL	2.9
55	121713	AA419198	Hs.105577	ESTs	2.9
	129080 129404	H19307	Hs.108507	ESTs ESTs	29 29
	129457	AA172056 X55330	Hs.111128 Hs.207776	aspartylglucosaminidase	2.9
	130352	D87450	Hs.154978	KIAA0261 protein	2.9
60	133415	X69699	Hs.73149	paired box gene 8	2.9
	120649	AA287115	Hs.99697	ESTs	2.9
	131257	AA256042	Hs.24908	ESTs	2.9
	134480	AA024664	Hs.83916	NADH dehydrogenase (ublquinone) 1 aipha subco	2.9
C 5	116734	F13789	Hs.93796	DKFZP586D2223 protein	2.9
65	105028	AA126719	Hs.25282	ESTs	2.9
	114986	AA251010	Hs.87807	ESTs	2.9
	105651	AA282481 M68874	Hs.18439	ESTs Human phosphatidylcholine 2-acylhydrolase (cP	2.9 2.9
	1017-14 123398	AA521265	Hs. 105514	ESTs	2.9
70	106007	AA411462	Hs.11042	ESTs; Weakly similar to veli 1 [H.saplens]	2.9
. •	109450	AA232183	Hs.173042	ESTs; Weakly similar to !!!! ALU SUBFAMILY J	2.9
	104685	AA010530	Hs.9599	Human BAC clone GS025M02 from 7q21-q22	29
	108677	AA115629	Hs.118531	ESTs	2.9
76	116028	AA452112	Hs.42644	thioredoxin-like	2.9
75	105404	AA243303	Hs.21187	ESTs	2.9
	132365	AA598694	Hs.46541	Homo sapiens PAC clone DJ0894A10 from 7q32-q3	2.9
	119638	W52480	Hs.56148	ESTs; Moderately similar to NY-REN-58 antigen	2.9
	124637	N80716	Hs.75798	Human DNA sequence from clone 1183121 on chro Human DNA sequence from clone 1189824 on chro	2.9 2.9
80	130588 105640	AA287735 AA281623	Hs.16411 Hs.7525	ESTs; Weakly similar to KIAA0742 protein [H.s	2.9
50	131818	Z39297	Hs.7525 Hs.3281	neuronal pentraxin II	2.9
	119298	T23820	Hs.155478	cyclin T2	2.9
	128742	D00763	Hs.251531	proteasome (prosome; macropain) subunit; alph	2.9
	115089	AA255876	Hs.86919	ESTs; Weakly similar to IIII ALU SUBFAMILY J	29

	100460	000000	11- 440700	franchiscofe Otable 14-03 franchisco	
	100468 132920	D89289 L06133	Hs.118722 Hs.606	fucosyltransferase 8 (alpha (1;6) fucosyltran ATPase; Cu++ transporting; alpha polypeptide	2.8 2.8
	113490	T88700	Hs.173374	ESTs	2.8
	133451	Y00764	Hs.73818	ubiquinol-cytochrome c reductase hinge protei	2.8
5	128770	H98645	Hs.143460	prolein kinase C; nu	2.8
	129122	N62515	Hs.108790	ESTs	2.8
	104827	AA035630	Hs.8551	PRP4/STKWD splicing factor	28
	111348	N90041	Hs.9585	ESTs	2.8
10	130987 102139	R45698 U15932	Hs.21893 Hs.2128	ESTs; Weakly similar to cAMP inducible 2 prot	2.8 2.8
10	114902	AA236359	Hs.39504	dual specificity phosphatase 5 ESTs	2.8
	106094	AA419461	Hs.18127	ESTs	2.8
	126438	N93125	Hs.137300	ESTs	2.8
	107129	AA620553	Hs.4756	flap structure-specific endonuclease 1	2.8
15	104491	N71513	Hs.39328	ESTs	2.8
	105043	AA132239	Hs.11810	ESTs; Weakly similar to CD4.2 [C.elegans]	2.8
	106855	AA486182	Hs.17975	ESTs	2.8 -
	109695 120455	F09530 AA251083	Hs.180591 Hs.104347	ESTs; Weakly similar to R06F6.5b [C.elegans] ESTs	2.8 2.8
20	130861	N23393	Hs.20509	ESTs	2.8
20	131649	AA481254	Hs.30120	ESTs	2.8
	128517	AA280617	Hs.100861	ESTs; Weakly similar to p60 katanin [H.sapien	2.8
	100486	HG1112-HT1	112	Ras-Like Protein Tc4	28
25	116729	F13700	Hs.115823	ribonuclease P; 40kD subunit	2.8
25	101851	M94250	Hs.82045	midkine (neurite growth-promoting factor 2)	2.8
	115465 100137	AA286941 D13627	Hs.43691 Hs.15071	ESTs chaperonin containing TCP1; subunit 8 (theta)	2.8 2.8
	125837	H05323	Hs.146401	endothelial monocyte-activating polypeptide	2.8
	131562	U90551	Hs.28777	H2A histone family; member L	2.8
30	129445	AA306121	Hs.111515	ESTs; Weakly similar to predicted using Genef	2.8
	129239	D31544	Hs.109701	ESTs; Moderately similar to weak similarity t	2.8
	106507	AA452584	Hs.91585	protein phosphalase 1; regulatory (inhibitor)	2.8
	101664	M60752	Hs.121017	H2A histone family; member A	2.8
35	129426	AA412087	Hs.168272	EST; Highly similar to protein inhibitor of a M-phase phosphoprotein 11	2.8 2.8
33	103437 129821	X98260 F11019	Hs.82254 Hs.12696	cortactin SH3 domain-binding protein	2.8
	130160	Z39228	Hs.151344	UDP-Gal:betaGlcNAc beta 1;3-galactosyltransfe	2.8
	104257	AF006265	Hs.9222	estrogen receptor-binding fragment-associated	2.8
	116204	AA465701	Hs.108646	ESTs	2.8
40	125914	AA262925	Hs.180034	cleavage stimulation factor; 3' pre-RNA; subu	2.8
	131510	AA207114	Hs.27842	ESTs; Weakly similar to similar to 1-acyl-gly	2.8
	106291	AA435551	Hs.30824	ESTS	2.8
	122761 107056	AA459296 AA600310	Hs.105039 Hs.18720	ESTs; Weakly similar to IIII ALU SUBFAMILY J programmed cell death 8 (apoptosis-inducing f	2.8 2.8
45	108535	AA084505	Hs.226440	Homo sapiens done 24881 mRNA sequence	2.8
	116226	AA478729	Hs.76450	ESTs	2.8
	120266	AA173939	Hs.193902	ESTs; Weakly similar to inner centromere prot	2.8
	128654	H20689	Hs.103180	actin-like 6	2.8
50	116726	F13681	Hs.42309	ESTs	2.7
50	132640	U33821	11- 00400	Tax1 (human T-cell leukemia virus type I) bin	2.7 2.7
	133273 108846	AA147725 AA132983	Hs.69469 Hs.44155	dendritic cell protein DKFZP586G1517 protein	2.7
	105621	AA280865	Hs.6375	Homo sapiens mRNA; cDNA DKFZp564K0222 (from c	2.7
	129164	AA282183	Hs.109045	ESTs	2.7
55	133518	U78524	Hs.75251	DEAD/H (Asp-Glu-Ala-Asp/His) box binding prot	2.7
	120521	AA258785	Hs.107476	ATP synthase; H+ transporting; milochondrial	2.7
	116429	AA609710	Hs.82837	Human chromosome 3p21.1 gene sequence	2.7
	110984	N52006	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	2.7
60	100372 125134	D79997 W19228	Hs.184339 Hs.100748	KIAA0175 gene product ESTs	2.7 2.7
00	129254	AA453624	Hs.1098	deoxynucleotidyltransferase; terminal	2.7
	102339	U37022	Hs.95577	cyclin-dependent kinase 4	2.7
	106589	AA456646	Hs.28661	ESTs	2.7
65	119118	R44122	Hs.42743	ESTs; Weakly similar to predicted using Genef	2.7
03	105973	AA406320	Hs.21201	DKFZP566B0846 protein	2.7
	106317	AA436568 AA365527	Hs.172140	ESTs ESTs; Highly similar to CGI-110 protein [H.sa	2.7 2.7
	115551 103789	AA096178	Hs.177861 Hs.70337	immunoglobulin superfamily; member 4	2.7
	105079	AA143190	Hs.12677	ESTs; Highly similar to CGI-147 protein [H.sa	2.7
70	109299	AA205649	Hs.86371	zinc finger protein 254	2.7
	122089	AA432136	Hs.98682	ESTs	2.7
	129108	L20321	Hs.1087	serine/threonine kinase 2	2.7
	129385	D82675	Hs.110950	Homo sapiens done 25007 mRNA sequence	27
75	131412 104052	U34044 AA393164	Hs.124027 Hs.97644	SELENOPHOSPHATE SYNTHETASE; Human selenium d mammaglobin 2	2.7 2.7
, ,	116254	AA481146	Hs.41086	ESTs; Weakly similar to OXYSTEROL-BINDING PRO	27
	106878	AA488872	Hs.12314	Homo saplens mRNA; cDNA DKFZp586C1019 (from c	27
	114652	AA101416	Hs.107149	ESTs; Weakly similar to PTB-ASSOCIATED SPLICI	2.7
00	106831	AA482014	Hs.29463	centrin; EF-hand protein; 3 (CDC31 yeast homo	2.7
80	101445	M21259	Hs.1066	small nuclear ribonucleoprotein polypeptide E	2.7
	124428	N36881 AA028074	Hs.82202	ribosomal protein L17 ESTs	2.7 2.7
	114471 102051	U07550	Hs.103387 Hs.1197	heat shock 10kD protein 1 (chaperonin 10)	2.7
	106916	AA490814	Hs.24170	ESTs; Weakly similar to ribosomal S1 protein	2.7

	116142	AA460649	Hs.39457	ESTs	2.7
	109912	H05509	Hs.24639	ESTs	2.7
	103193	X70476	Hs.75724	coatomer protein complex; subunit beta 2 (bet	2.7
5	102046 104567	U07151	Hs.182215	ADP-ribosytation factor-like 3 ESTs	2.7
,	112996	R64534 T23539	Hs.101469 Hs.7165	zinc finger protein 259	2.7 2.7
	118138	N57773	Hs.93560	ESTs; Weakly similar to trg [R.norvegicus]	2.7
	123095	AA485724	Hs.192119	ESTs	2.7
10	124315	H94892	Hs.6906	v-rat simian leukemia viral oncogene homolog	2.7
10	124447	N46000	Hs.140945	Homo sapiens mRNA; cDNA DKFZp586L141 (from cl	2.7
	132834	H77546	Hs.57898	ESTs; Highly similar to NY-REN-49 antigen [H.	2.7
	107529 130648	Y12065 AA075427	Hs.5092 Hs.17296	nucleolar protein (KKE/D repeat) ESTs; Weakly similar to /prediction	2.7 2.7
	106685	AA461551	Hs. 16251	ESTs; Highly similar to 73 kDA subunit of cle	2.6
15	133848	AA093287	Hs.76728	ESTs ·	2.6
	134880	AA092376	Hs.90606	15 kDa selenoprotein	2.6
	128871	AA400271	Hs.106778	Homo saplens mRNA for putative Ca2+-transport	2.6
	106846	AA485223	Hs.34892	ESTs	2.6
20	119892	W84548	Hs.94896	ESTs	2.6
20	132309	AA460917	Hs.2780	jun D proto-oncogene	2.6 2.6
	132923 114365	U21858 Z41688	Hs.60679 Hs.18653	TATA box binding protein (TBP)-associated fac ESTs	2.6
	114162	Z38909	Hs.22265	ESTs	2.6
	133370	AA156897	Hs.72157	DKFZP56411922 protein	2.6
25	106818	AA480890	Hs.3542	ESTs	2.6
	133501	W16684	Hs.74284	ESTs; Moderately similar to Similar to S.cere	2.6
	100530	HG1869-HT1		Male Enhanced Antigen	2.6
	130553	AA430032	Hs.252587	pituitary tumor-transforming 1	2.6
30	108917	AA137078	Hs.173648	ESTs	2.6
30	122249 119598	AA436679	Hs.258543	ESTs; Highly similar to CGI-07 protein [H.sap	2.6 2.6
	119902	W45531 W84865	Hs.94642 Hs.40094	ESTs Human DNA sequence from clone 167A19 on chrom	26
	133272	AA465016	Hs.69423	kallikrein 10	2.6
	132575	AA045365	Hs.5188	ESTs; Weakly similar to 60S RIBOSOMAL PROTEIN	2.6
35	130459	AA460264	Hs.155983	KIAA0677 gene product	2.6
	133083	N70633	Hs.6456	chaperonin containing TCP1; subunit 2 (beta)	2.6
	131130	T19399	Hs.23255	nucleoporin 155kD	2.6
	112043	R43317	Hs.26312	glioma amplified on chromosome 1 protein (leu	26
40	116146 122378	AA460701 AA446100	Hs.193200 Hs.103617	ESTs ESTs	2.6 2.6
-10	103134	X65724	Hs.2839	Norrie disease (pseudoglioma)	2.6
	133395	AA491296	Hs.72805	ESTs	2.6
	115652	AA405098	Hs.38178	ESTs	2.6
4 =	104975	AA086071	Hs.50758	chromosome-associated polypeptide C	2.6
45	134691	M59979	Hs.88474	prostaglandin-endoperoxide synthase 1 (prosta	2.6
	112869	T03313	Hs.4747	dyskeratosis congenita 1; dyskerin	2.6
	100092 102635	AF000231 U66838	Hs.75618	RAB11A; member RAS oncogene family	2.6 2.6
	104490	N71503	Hs.79378 Hs.43087	cyclin A1 ESTs; Weakly similar to dysferlin [H.sapiens]	2.6
50	106813	AA479922	Hs.181022	ESTs	2.6
	106872	AA487907	Hs.18282	ESTs; Highly similar to unknown [H.saplens]	2.6
	107022	AA599041	Hs.28866	programmed cell death 10	2.6
	107113	AA610073	Hs.23900	ESTs; Weakly similar to oligophrenin-1 like p	2.6
55	113281	T66300	Hs.112356	Homo sapiens mRNA for lipoyltransferase; comp	2.6
55	115586 115779	AA399218 AA424183	Hs.92423 Hs.70945	ESTs ESTs	2.6 2.6
	122895	AA469946	Hs.105325	ESTs	2.6
	124726	R15740	Hs.104576	carbohydrate (keratan sulfate Gal-6) sulfotra	2.6
	129775	R94659	Hs.12420	ESTs	2.6
60	131991	AA251909	Hs.36708	budding uninhibited by benzimidazoles 1 (yeas	2.6
	132518	D57975	Hs,5064	ESTs	2.6
	134612	AA451712	Hs.171581	ESTs; Highly similar to ubiquitin C-terminal	2.6
	130313	AA620323	Hs.154320	ubiquitin-activating enzyme E1C (homologous t ESTs	2.6 2.6
65	131971 133175	R70167 AA134767	Hs.3611 Hs.66666	ESTS	2.6
05	102083	U10323	Hs.75117	Interleukin enhancer blnding factor 2; 45kD	2.6
	125670	AI432621	Hs.82685	CD47 entigen (Rh-related entigen; Integrin-as	2.6
	121822	AA425107	Hs.97016	ESTs; Moderately similar to SH3 domain-bindin	2.6
70	106719	AA465171	Hs.236844	ESTs	2.6
70	130029	AA236412	Hs.236510	ESTs; Moderately similar to PFT27 [M.musculus	2.6
	124328	H97781	Hs.14415	ESTs; Highly similar to CGI-108 protein [H.sa	2.6
	105387 103073	AA236951 X59417	Hs.108636 Hs.74077	chromosome 1 open reading frame 9 proteasome (prosome; macropain) subunit; alph	2.6 2.6
	116294	AA489000	Hs.93748	ESTs; Moderately similar to TRANSCRIPTION FAC	2.6
75	135339	D59269	Hs.127842	Homo saplens mRNA full length insert cDNA clo	2.6
	125390	H95094	Hs.75187	translocase of outer mitochondrial membrane 2	2.6
	102504	U52077	Hs.247948	Human mariner1 transposase gene; complete con	26
	131076	H44386	Hs.22666	ESTs	2.6
80	114096	Z38342	Hs.27007	chromosome condensation 1-like	2.6
ov	120402 102125	AA234339 U14550	Hs.50282 Hs.107573	GTP-binding protein rag8 slalyttransferase	2.6 2.6
	134653	AA452818	Hs.87385	ESTs	26
	101959	S80343	Hs.180832	arginyHRNA synthetase	26
	116766	H13260	Hs.95097	. ESTs	26

	104954	AA074514	Hs.26213	ESTs; Weakly similar to protein (H.saplens)	2.5
	108771	AA127924	Hs.71034	ESTs	2.5
	116439	AA610058	Hs.43913	PIBF1 gene product	2.5
_	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	2.5
5	132792	AA401903	Hs.242985	hemoglobin; gamma G	2.5
	129620	AA010686	Hs.239720	ESTs; Weakly similar to KIAA0691 protein (H.s	2.5
	120296	AA191353	Hs.22385	ESTs; Weakly similar to KIAA0970 protein (H.s	2.5
	115615	AA401186	Hs.48617	ESTs	2.5
10	102983	X17620	Hs.118638	non-metastatic cells 1; protein (NM23A) expre	2.5
10	106288	AA435536	Hs.24336	ESTs	2.5
	107444	W28391	Hs.5181	proliferation-associated 2G4; 38kD	2.5
	104525	R16007	Hs.75355	ubiquitin-conjugating enzyme E2N (homologous	2.5
	128917	AA204876	Hs.206097	oncogene TC21	2.5
1.5	102299	U32907	Hs.155545	37 kDa teucine-rich repeat (LRR) protein	2.5
15	115363	AA282071	Hs.152759	activator of S phase kinase	2.5
	130399	AA449417	Hs.155356	Homo saplens mRNA for putative glucosyltransf	2.5
	130752	D50927 ·	Hs.18895	tousled-like kinase 1	2.5
	132724	AA417962	Hs.55498	geranylgeranyl diphosphate synthase 1	2.5
20	106743	AA476352	Hs.21938	ESTs; Weakly similar to KIAA0704 protein [H.s	2.5
20	128949	AA190993	Hs.8850	a disintegrin and metalloproteinase domain 12	2.5
	125685	AI040346	Hs.4943	hepatocellular carcinoma associated protein;	2.5
	105826	AA398243	Hs.21806	ESTs; Moderately similar to similar to NEDD-4	2.5
	110841	N31610	Hs.18645	ESTs; Wealthy similar to partial CDS [C.elegan	2.5
25	111987	R42036	Hs.6763	KIAA0942 protein	2.5
25	132669	AA188378	Hs.54602	ESTs; Weakly similar to 60S RIBOSOMAL PROTEIN	2.5
	100398	D84557	Hs.155462	minichromosome maintenance deficient (mis5; S	. 25
	130800	AA223386	Hs.19574	ESTs; Weakly similar to katanin p80 subunit [2.5
	114481	AA033562	Hs.151572	ESTs	2.5
20	113404	T82323	Hs.70337	immunoglobulin superfamily; member 4	2.5
30	100260	D38491	Hs.174135	KIAA0117 protein	2.5
	103563	Z22534	Hs.150402	activin A receptor; type I	2.5
	104573	R68952	Hs.29780	ESTs	2.5
	105025	AA126336	Hs.22744	ESTs; Weakly similar to ZINC FINGER PROTEIN 1	2.5
25	105524	AA258158	Hs.22153	ESTs; Weakly similar to KIAA0352 [H.saplens]	2.5
35	106157	AA425367	Hs.32094	ESTs	2.5
	107243	D59489	Hs.34727	ESTs	2.5
	109920	H05733	Hs.30558	ESTs	2.5
	109981	н09552	Hs.26090	ESTs; Weakly similar to T20B12.1 [C.elegans]	. 2.5
40	114518	AA046407	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like 1	2.5
40	114768	AA149007	Hs.182339	Ets homologous factor	2.5
	118906	N91000	Hs.94433	ESTs	2.5
	119025	N98926	Hs.55209	ESTs; Weakly similar to DMR-N9 PROTEIN [H.sap	2.5
	131712	N29502	Hs.30991	KIAA0957 protein	2.5
15	132233	X04706	Hs.93574	homeo box D3	2.5
45	132740	AA227751	Hs.55896	ESTs	2.5
	115239	AA278650	Hs.73291	ESTs; Weakly similar to similar to the beta t	2.5
	128820	F10338	Hs.106309	Friend of GATA2	2.5
	124049	F10523	Hs.74519	primase; polypeptide 2A (58kD)	2.5
50	128781	X85372	Hs.105465	small nuclear ribonucleoprotein polypeptide F	2.5
50	121361	AA405494	Hs.183052	ESTs	2.5
	134133	X93920	Hs.180383	dual specificity phosphatase 6	2.5
	102502	U51678	Hs.78050	small acidic protein	2.5
	115875	AA433943	Hs.43946	ESTs; Weakly similar to Weak similarity to Ye	2.5
E E	132874	AA425776	Hs.58609	ESTs	2.5
55	109646	F04543	Hs.5028	DKFZP564O0423 protein	2.5
	111197	N68093	Hs.22909	ESTs	2.5
	102968	X16396	Hs.154672	methylene tetrahydrofolate dehydrogenase (NAD	2.5
	124911	R88992	Hs.123645	ESTs	2.5
60	106628	AA459657	Hs.12311	Homo sapiens clone 23570 mRNA sequence	2.5
60	116988	H82527		ys69e12.s1 Soares retina N2b4HR Homo sapiens	2.5
	131075	Y00757	Hs.2265	secretory granule; neuroendocrine protein 1 (2.5
	133578	X78627	Hs.75066	translin	2.5
	100420	D86983	Hs.118893	p53-responsive gene 2	2.5
~	130743	W87710	Hs.18724	Homo sapiens mRNA; cDNA DKFZp564F093 (from cl	2.5
65	122465	AA448164	Hs.99153	ESTs; Highly similar to CGI-73 protein (H.sap	2.5
	115117	AA256492	Hs.49007	poly(A) polymerase	2.5
	124582	N68477	Hs.108408	ESTs; Highly similar to CGI-78 protein [H.sap	2.5
	104771	AA025911	Hs.24994	ESTs; Highly similar to CGI-53 protein (H.sap	2.5
70	108059	AA043944	Hs.62663	ESTs	2.5
70	105628	AA281251	Hs.35696	ESTs: Weakly similar to putative zinc finger	2.5
	109261	AA195255	Hs.61779	EST ₆	2.5
	119789	W73140	Hs.50915	kallikrein 5	2.5
	130512	AA045304	Hs.181271	ESTs; Highly similar to CGI-120 protein [H.sa	2.5
75	134402	U25165	Hs.82712	fragile X mental retardation; autosomal homol	2.5
75	104769	AA025887	Hs.114774	ESTs; Weakly similar to !!!! ALU SUBFAMILY J	2.5
	125787	, AA744748	Hs.29403	ESTs; Weakly similar to PROBABLE ATP-DEPENDEN	2.5
	131775	AA459555	Hs.31921	KIAA0648 protein	2.5

80

TABLE 7B:
Pkey: Unique Eos probeset identifier number
CAT number: Gene cluster number
Accession: Genbank accession numbers

	Pkey 101335	CAT Number 46413_1	Accession L49054 N87447 AA248791 AA452193 Al015525 Al762070 AA781526 AW183498 AA625682 Al268713 AA400391 Al193725 AW590304
5			W56360 AA936067 AI590398 AA405183 AA628888 AA844206 AA621117 AI141092 AI808150 BE379750 AI351482 AA93527 AA405119 AA400562 AW358723 AA463811 AW242927 R50034 W56334 F21257 AA164314 BE074125 AA470924 AI307439 W16738 AA026647 T33999 T19178 AA164313 AI744010 A1015466 A1014921
	100906	4312_1	AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 AI795876 AA644165 T36030 AW392852 AA446421 AW881866 AI469428 BE548103 T96204 R94457 N78225 A1564549 AW004984 AW780423 AW675448 AW087890 AA971454 AA305698 AA879433 AA535069 AI394371 AA928053 AI378367 N59764 AI364000 AI43128 T81049 AW675484 AW674987 AA897396 AW673412 BE063175 AW674408 AI202011 R00723 A1753769 AI460161 AW079585 AW757744 AI873729 D25791 BE537646 T81139
10	102221	3861_1	R00722 NM_006769 U24576 AW161961 AW160473 AW160465 AW160472 AW161069 AI824831 AW162635 AI990356 AW162477 AW162571 AI520836 AW162352 AW162351 AW162752 AI962216 AI537346 AA853902 H17667 BE045346 BE559802 BE255391 AA985217 AA235051
15			A1129757 AW366451 T34489 D56106 D56351 A1936579 AW023219 AW889335 AW889120 AW889232 AW889175 BE093702 AW889349 AA147546 A1952998 AA912579 A1143356 AW902211 R64717 AW157236 A1815242 D45274 AW263891 AA442920 AA129965 AL035713 A1923255 A1949082 A1142826 A1684160 A1701987 A1678954 A1827349 BE463635 AW628092 AW302281 AA493203 BE348856 BE536419
			AW193969 AW673561 AW592609 AI224044 H43943 AA091912 R49532 R48353 AI568409 R48256 A1198046 H27986 H43899 AI678759 AI680310 AI624220 H17052 AA156410 N56062 AI699430 AA664529 T09406 T10459 AA627506 AI379584 N83831 N88633 AW022651 AA971281 AA248036 AI039197 AI914689 AA973825 AL047305 AA129966 AI798369 AW264348 AI445879 AI658759 N67924 AI933507 AI216121 AI333174 T10972 AI375028 AI186756 AI273778 AA610487 AI797946 AA853903 AA903939 AI338587 AI278494 AW627595
20	444-44		AA904019
	101714 116803	30725_1 55078_4	M68874 ALD22147 M72393 AL049797 BE439441 T27650 A1766240 AW150345 AW778943 A1627464 BE439479 AA587049 A1277900 A1588983 A1630935 H47357 W33034 H55976 H55975 R57830 AA527091 F24482 AW841585 R66514
25	116988	185904_1	AW953679 AW953680 AA244436 H82527 AA361046 AA244483 H82526
23	132640	179_1	AW162087 AA224538 AA471218 AA088655 AA375275 BE440052 AF090891 AA324435 AF063549 A110675 AA322223 AW353306 AA233590 AW949864 AW949859 AA383721 AA081878 U33821 NM_006024 AA350900 AA081858 A1148087 AA2686075 AA088185 A142478 AA081824 AI887930 AA070570 BE185248 AI459825 BE257794 AA420459 AA420859 AA571797 AA081219 AW815721 AW854758 AA157932 BE018208 AW378974 AL041212 AI247564 AW581897 AI002897 BE543242 AI811690 AW852076 AW852270
30			AA360969 AA094943 AA090860 AW601554 AA099673 AA662226 AA356814 AA330174 AA187544 C02751 AA315460 BE168358 AW080447 AI813764 AI624222 AW156901 AI954092 AW473780 AI861975 AA173643 AW511541 AI951492 BE301686 AA669760 BE182212 AA0B1009 T69431 AI186207 AA604124 AA707346 AA173953 AI016700 AI125916 AA358962 AI673719 T90593 T90497 T10776 AW513002 AW304292 AA724885 AW474759 AI811621 AW068925 AA666305 AI580161 AI128023 AW471151 AA534849 AA666358 AI078833 AI139223 AI244874 AI381658 AW263441 AI432440 AW802882 N66401 AA224251 AI167469 AI141060 AA099214 AI537130
35			AL120428 AA948655 D53110 AA076099 AA938617 AA826543 Al357914 AA565098 AA807994 Al288812 AA632832 AA157933 AA639802 AA634268 AA282337 AA551431 AA557374 AA256923 AA872943 AA009665 H89626 AA810386 T92925 T36145 AA632190 AA130436
			Al686635 AA130437 AW392904 AW392839 AW392848 AW392836 AA729737 AA070450 AW392890 W04825 AA771848 AA084634 AA481985 Al263840 Al801006 AA235380 Al954229 Al559330 Al208724 AA887638 T25894 AA041269 W44443 Al581770 W46171 AA878485 W46535 AA197336 AA894945 AA394224 Al766834 Al582590 Al033007 AA481889 AW190598 AW392855 R27279 AA398137
40			A1248407 A1241386 A1991753 A1826585 AA865699 A1096806 A1833030 AA041279 AW888745 A1703279 N70572 A1912553 BE549931 A1240422 AW376187 AW591692 AA975905 AW614967 AA009666 W44332 AA664659 T06561 BE468150 A1650695 AA587920 A1473310
			AIG32991 AA256499 AW104241 BE163782 AJ984973 BE163613 AI263906 AA628191 AA282072 BE163769 BE163775 AI492939 AI473315 D56907 AA587930 H89480 AI362373 AA598483 D56595 AI167590 C16223 AI935415 D62555 D62884 D63130 AI760286 AI650286 AW173598 AI499145 AI122566 AW903408 AI810569 AA854936 BE049510 D62065 D61900 D62101 R27475 AI469835 AI669086 N80399 N48922 N48746 AA481381 R22858 H13912 AC004549 AW602500 AW768788
45	103427	43892_1	BE514383 AA071273 AW247987 AW673286 BE312102 AW749824 BE071985 AW577383 BE071945 BE072005 AW577355 BE071965 AW239231 BE072000 BE071960 AW577360 AW749830 AW373020 X97303 AW999522 BE000192 BE562219 BE266555 BE264970
	103631	152_34	R64730 AF214731 T19173 BE258318 AF161446 BE542228 BE383856 BE206748 BE543260 AA640735 AA788907 BE251313 BE221852 AW855357 AA224407 AW855346 BE150454 AW070651 BE326867 AW051698 AI829278 AI470927 AW855345 AI804942 AI971004
50			BE046620 Al863664 AA808492 Al915971 BE046949 AW590711 Al468066 BE409685 AA332653 BE385394 AA852623 BE255591
30			BE254988 AA211871 BE255493 BE257727 BE255389 BE257491 BE262528 BE261296 BE313277 BE261714 BE314316 Z28434 AA315545 BE008562 BE012093 BE161393 T31969 AA305848 AW956528 BE619156 AH191748 AA323396 AW361760 AA216118 BE264939 AA325954 AW580281 AA302597 AW888908 AW888893 BE312970 AA134402 H52679 AA478191 T34490 AW961505 Z24771 AA179552 R57244 BE315207 AW583121 AI372747 T33143 AW377460 T33141 R14922 AW352414 H93249 AW405576 T33102 R89545 N46625 H08434
55			BE165062 AW367891 H93121 H47325 T30931 AW402852 H47410 Z20368 T18928 T30758 H93254 AW389725 R96628 AI372407 R88995 AIB15980 AW157278 AW607664 AW163288 AA133492 AA099328 AA157348 AIB16063 AW449556 AA157252 AW608980 H66576 AW821127 T32030 AW856058 AA032188 Z42120 R18582 AW402392 BE408021 AA280989 AA039427 AA035354 AW328008 T94186 R97481 AA181444 AA774697 BE613141 AW630221 H13066 AI124578 AW754481 BE262112 AW639942 H60108 AW364002 AW363800 BE547161 BE082634 AA642471 BE619719 BE082719 W28879 AW794944 C01685 AU291127 AW166099 A938102 AU478929 R70284
60			AAB72914 W31065 N54216 Al568741 H56262 NM_017425 Z48570 Al831777 T75007 AA354867 AA427988 Al922844 AA733170
00	•		AW821145 BE081547 AW881571 AW881573 AW055249 AA204724 Al417415 Al127303 Al355013 Al039527 AW593259 AA576745 Al457317 AW593236 H93126 BE396072 AL134941 AW629175 Al424011 AA115732 AA179986 Al334944 AW367922 AW152304 AA806752 Al312418 AW935023 BE301136 AA032258 Al829922 Al372406 BE177074 AW513743 Al151526 AA975643 AA478034 Al814920 AW080063 Al032624 BE177107 AA319788 AW935098 Al017620 AA974477 D51441 C14225 AL043883 D80145 Al690771 AW090711 AW981570
65			Al220431 N51090 Al143003 AA961480 AA039351 Al094885 Al096520 AA179553 AA593974 Al373929 AA677262 AA687374 AA886867 AA312863 Al150654 Al138450 AA133209 H99368 Al565632 AW070496 Al539748 H59455 Al811537 H52680 T74907 Al499657 R96670
			AA854796 AA427863 AA224345 AA889899 AI347782 AA931056 AI076059 AI360841 AI797975 AI362268 AI200968 BE350765 R97433 N98499 AA134403 AA035355 AW263162 AI369607 D80144 AI376627 AI520801 AA365942 AI707705 AI123495 T33101 H08716 AA804238 AA922201 AA723522 AW183592 AI445884 F34614 AW022342 AA363998 AA568793 AA152475 D31233 AA852622 AA099862 AI129147
70			AA922699 AA782664 T33142 T30009 T32913 AI676138 AI914657 N34899 AI372746 AI265911 AI352444 AA443158 AA910603 AI420273 AA868050 AI277700 C14224 AW082087 R41447 Z38385 AI911845 AI961888 R91976 F04560 AA661955 AI857675 AA369666 AA424207
			N79953 AA382958 AA894626 Al884964 AA846989 AA215454 A1742580 Al339437 Al806879 Al091373 AA782558 Al026868 AW590904 AW204599 BE348235 Al819318 AA122324 AA939221 AW139711 AA131608 AW613548 AA122286 Al309179 AA437247 AW339322
	129097	25953_1	AI671306 AW439848 AA131701 AI078075 N64624 AA812881 AI140547 BE243933 AA355449 T29766 F08396 N83324 NM_006963 S50223 AI207648 AA258092 AA113952 AI311718 AI128612 AW607449 M77172
75			AI951311 X52346 AA903307 AI569810 N55421 W77876 R37223 R83788 AA031666 H47092 AA133451 AA311095 AA906963 H87667
			N56058 AA393593 W24864 H10710 F06925 F07239 AW386140 AA325018 AA235950 AW373176 N57158 AA258093 N39467 R21609 BE089979 R34173 AW889005 AA745644 AI693852 AA424914 AA74471 W72632 AI291213 AA524318 A472134 AI911230 AA528418
90			AA115745 AA775720 Al671134 AA975044 AW298117 AA321015 N26288 AW952194 AJ743379 AJ204233 AJ801026 AA830690 AJ146980 AW104611 AJ338576 R21507 AJ367623 BE244484 AJ269308 AA031667 AJ884346 AA731989 AA988943 AA235951 AA807887 AA642645
80			Al246489 N29739 Al216718 Al383349 Al038618 Al351476 AA806031 Al914178 H10711 Al095573 H89220 AW470854 AA729015 R83353 AA782239 R34295 H87165 AW419059 Al653689 Z40349 H89114 AW074506 AA397785 AA888377 Al911228 F03193 Al468783 AA702615
	120695	9683_3	Al830829 AA748323 R37224 AA424915 AA731647 H47183 AA976503 Al917802 AA953564 AA404613 AA428771 BE280542 AW194691 Al927301 Al740458 Al796100 Al935603 AW052210 AA970201
			AI633384 AA425910 AI017004 AI241295 AA402816 AA291468

	400000		20170 17170
	100352	37786_1	AL 133887 D64159 AF112218 AI766633 AL 039303 AL 133888 BE620604 AW976259 AW262792 AW591383 AI365413 N36652 AA807027
			Al472041 BE620065
	101084	13883 1	AW409934 AW245855 AU077157 AW163245 AW161434 AW250083 AA316055 BE621134 AA171883 BE272494 L05425 BE250310
	•		NM_013285 BE311494 AA858436 AA308223 AW362598 AA373618 BE394454 AA126101 AA581348 AA303227 AA058438 AA126544
- 5			AL135350 AW996947 AA403201 AA446682 W79685 AW246249 AW577783 AW002316 AA320025 AW753913 AI798554 AW070650
•			
			BE250413 AW250835 BE076336 AI925558 AI907634 AW804193 AW804270 AA902387 AW804232 AW804255 AW607751 AI909114
			AW157242 AA934590 Al628921 Al470650 AW409935 AW172793 AA401208 AW162279 AA888018 BE206452 Al826742 AA857353
			AA483514 AA126418 AA722289 AA780182 AW768894 AW183614 AW156969 Al244083 AA863491 Al376281 AA582490 AA846248
			AI474094 AW246802 AA446557 AA126000 AI699045 AI702310 AI253092 AA171554 AA831455 AW118384 AI954511 AI760439 AI867001
10			AA493881 W81287 AA515590 AA659297 AA635139 AA659293 AA766044 AA196109 N32569 Al907635
10	100502	26409 1	U15979 X17544 W52755 NM_003836 Z12172 AW370136 BE262564 T49116 AA333753 BE262238 BE313737 H38153 AW583056 R28890
	100302	20409_1	
			BE259532 D16897 AA885610 AA911293 AA319627 R94472 R29022 AA443405 R96397 W04904 W01746 W01204 N74203 N58621
			AA701996 AW418723 N53220 AA602813 AA576129 AA593786 AA911577 AA575957 A1149135 AW573058 AA772985 A1188918 AI372065
			AA575838 W60010 Al004576 Al131265 AA319845 T50070 Al335742 AA235245 W32706 AA447372 R96355 N59573 AA904616 Al291224
15			BE467454 T49117 Al268620 AA928248 AA449494 AA318817 T49929 R94473 H38154 Al076649 AW935307 AW605112 AW935433
13			
			AW935342 AW935310 AW935345 AI298308 AW935395 AW935384 AI184857 AA319871 T29465 C21134 Z19785 AA329107 T52079
			AW935346 C06234 Al951555 T49928 AA371745 AA369296 AA346673 R82547 T50006
	102398	entrez_U42359	U42359
		_	

20

Table 8A lists about 54 genes up-regulated in ovarian cancer compared to normal adult tissues. These were selected from 35403 probesets on the Affymetrix/Eos-Hu01 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 4.0. The "average" ovarian cancer lavel was set to the 3rd highest amongst various ovarian cancers. The "average" normal adult tissue level was set to the 4th highest amongst various non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst the non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated. 25

TABLE 8A: ABOUT 54 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES Pkey: Primekey
Ex. Accn: Exemplar Accession
UG ID: UniGene ID
Title: UniGene Title

30

ratio: ration tumor vs. normal tissues

	-				
35	Pkey	Ex. Accn	UG ID	Title	ratio
33	130941	D49394	Hs.2142	5-hydroxytryptamine (serotonin) receptor 3A	12.1
	101249	L33881	Hs.1904	protein kinase C, lota	11.8
	132528	AA283006	Hs.50758	chromosome-associated polypeptide C	11.5
	102610	U65011	Hs.30743	preferentially expressed antigen in melanoma	11.0
40	115536	AA347193	Hs.62180	ESTs	10.0
40	129571	X51630	Hs.1145	Wilms tumor 1	9.3
	105298	AA233459	Hs.26369	ESTs	7.8
	121779	AA422036	Hs.98367	ESTs	7.3
	104301	D45332	Hs.6783	ESTs	6.9
45	132191	AA449431	Hs.158688	KIAA0741 gene product	6.7
47	102136	U15552	Hs.85769	acidic 82 kDa protein mRNA	6.6
	101804	M86699	Hs.169840	TTK protein kinase	6.5
	132572	AA448297	Hs.237825	signal recognition particle 72kD	5.9
	106738	AA470145	Hs.25130	ESTs	5.8
50	108857	AA133250	Hs.62180	ESTs	5.8
50	115291	AA279943	Hs.122579	ESTs	5.8
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	5.8
	116401 132725	AA599963	Hs.59698	ESTs	5.7 5.7
		L41887	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD	5.7 5.6
55	129097	S50223	Un DETODE	HKR-T1=Kruppel-like zinc finger protein (huma ESTs	5.5
55	134520 108778	N21407 AA128548	Hs.257325 Hs.90847		5.4
	131228	AA279157	Hs.24485	general transcription factor IIIC; polypeptid chondroltin sulfate proteoglycan 6 (bamacan)	5.2
	116238	AA479362	Hs.47144	DKFZP586N0B19 protein	5.2
	108055	AA043562	Hs.62637	ESTs	5.1
60	132939	U76189	Hs.61152	exostoses (multiple)-like 2	5.1
00	115909	AA436666	Hs.59761	ESTs	5.0
	120438	AA243441	Hs.99488	ESTs; Weakly similar to ORF YKR074w [S.cerevi	5.0
	123494	AA599786	Hs.112110	ESTs	5.0
	109648	F04600	Hs.7154	ESTs	4.9
65	132624	AA164819	Hs.53631	ESTs	4.9
00	111234	N69287	Hs.21943	ESTs; Weakly similar to ORF YGL221c S.cerevl	4.9
	135242	M74093	Hs.9700	cyclin E1	4.9
	123005	AA479726	Hs.105577	ESTs	4.8
	116296	AA489033	Hs.62601	Homo sapiens mRNA; cDNA DKFZp586K1318 (from c	4.7
70	100661	HG2874-HT3		Ribosomal Protein L39 Homolog	4.6
	111345	N89820	Hs.14559	ESTs	4.6
	102627	U66561	Hs.158174	zinc finger protein 184 (Kruppel-like)	4.5
	106459	AA449741	Hs.4029	glioma-amplified sequence-41	4.5
	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)-like	4.5
75	129229	AA211941	Hs.109643	polyadenylate binding protein-interacting pro	4.5
	130376	R40873	Hs.155174	KIAA0432 gene product	4.4
	120619	AA284372	Hs.111471	ESTs	4.4
	122802	AA460530	Hs.256579	ESTs	4.4
	116416	AA609219	Hs.39982	ESTs	4.3
80	115094	AA255921	Hs.88095	ESTs	4.2
	126802	AA947601	Hs.97056	ESTs	4.2
	126892	AI160190	Hs.76127	hect (homologous to the E6-AP (UBE3A) carboxy	4.2
	105516	AA257971	Hs.21214	ESTs	4.1
	131985	AA434329	Hs.36563	. ESTs	4.1
					-

	114965 120821 134621	AA347419 L02547	Hs.72472 Hs.96870 Hs.172865	ESTs Homo sapiens mRNA full length insert cDNA clo cleavage stimulation factor; 3' pre-RNA; subu	4.0 4.0 4.0 4.0	er.
5				IGF-II mRNA-binding protein 3 ber	4.0	
10	Accession	Genbank access	sion numbers			
10	Pkey 101249	CAT Numbe 2520_1	L18964 No AW087514	A_002740 L33881 AA095249 BE080871 AW605320 ME I A480090 AI873147 T57875 AI217404 AA827196 AI2: I AI032193 AI953695 AI630583 AA062633 BE541355 A	79471 AA969093 AA815168 AA988896	BE467131 AW088338 AW937631 AI754623 T28044 AW950302
15	100661 116401	23182_1 95855_1	BE623001 AW893940 Z21891 A	L05096 AA383604 AW966416 N53295 AA460213 AW) AW978851 AA034240 Al686323 Al767653 AA829515 A835700 AA599953 T20152 AA533167	571519 AA603655 AA053933 AA737691 W92607 AW2611	
	116416	373989_1		5 R11789 AW001886 AA609219 AW780420 Al860557 / 42970 R63752	41280331 A1334300 A1288870 AA66934	3 N29918 BE537790 AA934687
20	132191	54683_4	AA507576 A1189144 A1743979 A1380330	A1610269 A1380079 R40309 A1203932 A1342128 A134 A1016691 W45515 AA551452 AA449431 T10046 AA42 A1283341 AW340338 AA774643 AW104778 A1078020 A1247787 A4770467 A1200154 A1089663 A1089890 A16 A4907692 N21250 AW904736 A1989337 A4987772 A	4059 NG2822 AW197701 AA465242 AI N21487 H97562 AA970063 BE327945 195738 W88524 AI471010 AA700191 A	418989 Al942433 Al891115 BE302316 F03880 F03885 AA970699 Al298468 A778937 BE440182 R79225 AA338236
25			AA465598	AA321185 AW130492 AI824479 AI682992		
	130941 115909	2774_1 47548_1	AW24890 AW87252	59 D49394 BE252349 AW249320 AW249140 AW25053 3 AA731733 AA804189 AA703169 Al435492 Al076288 7 AA453863 AA442475 AF086541 AA365801 Al692575	AA912176 AW248713 AA743457 R081 5 AW131631 AA732993 W96131 AA436	70 C06167 R02351
30	108778	18565_1	AF133123 AA429306 AI126654 AW29514	* AA365503 AI632902 AA659686 AA665087 C00396 A • NM_ 012086 AA128292 S81493 AL 137453 BE614053 • R13465 R55236 AW994182 W00838 AW994417 AW9 • AA626457 AA291327 H67983 H66271 H67976 AW270 3 AI433661 AW608361 AA673402 A1217453 AU53358 • AU001932 A735550 AU951370 AA766807 S81492 AA5	AA307628 BE009521 BE085659 BE08 194404 AW994426 AW994321 AA51614 1955 AA758221 Al023487 Al921811 Al9 AA262143 AA928495 Al475268 Al1672	47 AA345603 AW953009 BE315104 153370 AF085850 R70992 N25129 211 AW385961 AA259045 A1762630
35			AI608833	AI635824 AI186039 AA741312 AI040184 H67656 AA2	58221 AA731316 AI381293 AW298473	R55237 R37375 Al768014 AA128548
	102136	17647_1	AA300576	A1879827 R64193 5 U15552 NM_014597 AA223318 AA171806 BE269461 2 AW117711 AW366303 AW366302 AW366308 AW366	i304 AW366300 AI908432 AW591937 A	A1358420 AW272622 C75067 A1926471
40			A1953413	6 BE064947 BE064722 T10372 AW838681 AI811119 A AI064798 AI420425 AA191324 BE503222 AI632721 A	A180035 AA558329 W44843 T10610 W	/38442 BE542869 AI 125024 BE279566
	108857	61_1	AW74793 AK00146 Al215522 Al475165	6 A1589491 AA559096 A1090265 AA548959 AA223220 3 AA190315 AA374980 AW961179 AA307782 AA31525 A1216389 NB7835 R12261 R57094 A1660045 AA34715 AA300756 R40626 A1122827 AA132250 A1952488 AA	AW515936 AW368395 AW368407 BES IS AA347194 AW953073 AW368190 AV IS R16712 AW119006 N55905 N87768 IS IS AA889845 AW069517 AI524385	540776 A1039762 A1584020 AA171691 N368192 AA280772 AA251247 N85676 AW900167 A1341261 A1818674 D20285
45	102305	18424_1	AL043200 AA20720 AW90233	A1872789 A1919056 A1611216 AK001472 BE568761 A 2 U33286 NM_001316 AF053641 AL048759 N99830 A 7 AA315560 AA113938 AW386317 AW386316 L44546 4 AW993922 BE003403 AA251521 AA382754 AA3391	\263091 AW408174 N90467 R84306 A\ AW386335 AA243317 AA713588 AA19 52 AA382619 H58600 H67810 T70379	2541 AA649035 BE300737 AW752491 T82109 D81644 D60375 H59003
50			AA36586 AA83731 AA23699 AJ754062	2 AAAT1242 H17790 F11801 T84903 R78076 BE61435 6 AW954410 Al539769 T39128 AL121103 AA192466 A 1 AA075484 AA075621 AA778294 AAS87266 T69722 A 7 AA459274 Al150191 AA165156 Al198839 AA789258 6 A1753243 AA934719 AW439362 H02038 C17463 Al40 BE094097 Al826398 H58956 T17222 AW139044 Al271	A213367 A1963800 BE090601 Z20096 VA446118 X85624 A1334209 A1587101 A A1139373 AA236574 A1127770 AA6789 VO951 AA227539 NG6040 R89384 AA87	BE566508 AI969470 BE044090 T65536 AI281280 AA568602 AA946837 C75603 B54 AI140786 AA113939 AI187231 (2668 AI344110 W95420 AA164700
55			Al868711 Al278406 BE39797 AA45950 AW81349	AA582354 AA524392 R01549 R01641 Z21083 AA528 AW692291 AA137249 AA142866 AA639198 AW60927 I AW609285 T65602 T99684 T97378 AW609366 T856 3 N95643 AW821210 AW813461 AW582064 AW60929 S6 AW582079 AW509276 AW609280 AW609290 AW58	463 T39127 AA989472 F09450 AA0844 71 AW149760 AU025112 AA236620 AA9 47 AI572235 T99083 AA199583 AW303 3 AW609320 AW609270 AW582085 AV 12101 AW682102 AW609263 AW60931	185 BE004378 AW974353 AA137250 937248 U90736 AW005487 AW674427 3874 T35523 AA586445 Z39669 W582071 AW609318 AW813451 7 AW609256 AW609305 AW582063
60			F06655 A AA91262 AW02333	(W605343 AA446426 BE090595 AW989578 T79852 AI 4 D60376 T10180 AA705847 AI018123 AA493197 T67 53 H77483 H68082 R42337 H58601 T97267	082505 N63239 A1973168 A1086182 AA 083 R77739 AA953087 R00885 A13706	A846711 Al874213 AA730605 Al927257
	109648 132528	708849_1 11027_8		A1362549 A1671064 T23526 F03426 F04694 F04600 Ali A284422 AA283006	335856 Z38715 F02039 AW022635	
65	101804	26687_1	M86699	NM_003318 AL133475 AA122377 Z21415 R57092 AA8	06569 AA811904 BE538323 R41558 A	A421620 Al337292 AA470077
	132572	31281_1	AI929659 BE25198	71 ĀA543024 A1677941 A1472200 A1215042 AA732384 A AA227827 AF069765 AW408768 NM_006947 AF0770 11 AA355433 AA481126 AW403063 BE542282 A19298	019 AA220974 H07969 C14621 D52294 B AL120605 AW753079 AW391834 BE	BE512960 BE614138 BE258539 :018603 BE395262 W21406 AW663259
70			AW0818 AI92140 N74716 T90801	20 W93905 W96519 A1863832 AA443177 AA730942 TS 19 AA714970 A122630 W04887 AW662427 AA602680 1 AA143770 AA587675 BE302192 AA813080 A1493386 AW9659249 AA68581 AA516399 A1274726 A1131244 A1383246 A1740957 T86758 A1471248 A1864233 AA910 5 T99348 A1924643 AW103910 A1802993 A1080390 T99	W93645 AA582946 AW008812 AA311 AW327435 AW340871 A1143616 AA68 J572604 AJ929236 AW327971 R65637 590 AJ079094 AW805781 AA709025 A	187 AA463631 A1421918 A1400518 87231 AA218961 A1362249 A1378345 N90309 H07877 W96486 A1358806 W196707 AW327436 A1903790
75			AW7692 AF08613 R35393 Al13147	91 94946 A4924643 AW10491 (A1602499) AUGUSUS 1 179 91 9W32639 AAJ636094 N89012 W39751 A1291329 A129 11 AA373679 AA165043 AA355705 A1243507 A1027796 AA448435 AA334659 AW879356 AA436527 AW972042 2 N50381 AA736938 A1089112 AA863053 A1359793 A 16 AA342341 AA355159 T85701 BE162893 T99703	1371 AA829411 A1985219 A1422775 AA AA573461 AA757260 A1370979 AA574 I W25165 AA521219 A1094141 A130209	A918940 AA363108 AA192633 4149 AA558276 N70650 AI478948 96 AW578551 AW578534 AW390535
80	131985	113870_1	AA50302 AA43432	18 AA342341 AA333133 1 83707 1 EE 10 263 1 7 9 7 03 10 A1858190 A1686571 AW615203 AW073686 AW1724 19 AA171844 A1684143 AA953518 AW470108 A187070 AA404225 AA075632 AA172293 H51911		
	132624	42095_1	AA32610	NT4020 AW612698 AI750909 AA487800 AI270695 AA525338 AA526640 H84308 AA278942 AA164818 AA		

			AA961206 N41430 N41439 AW630477 W37595 BE394538 AA365256 N47771 N34873 AA988105 A1242138 AW148523 A1978761 N50882 AA527448 AW086200 A1750910 N50868 AA709437 N51946 A1222179 AA732883 H96742 AW615360 N53720 W37490 R87362 AA613273
			H98999 AI469022 AI368442 AI460122 N20486 N24087 AA164819 N24878 AW471270 AW590458 R68240 AA594434 N20400 AI419626
5	132632	4312_1	AW500664 Al033658 AA593215 AA907408 AA713508 Al422627 H85551 AA923571 D6268D AW627456 H96206 AA016289 AA485896 N25691 AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 Al795876 AA644165 T36030 AW392852
,	132002	4312_1	A0070310 BE238110 XIV233393 AW072700 KM_003073 0 10800 XIV031733 BE237393 CO3800 XI733070 XX094103 130030 XIV032232 AAA46421 AW881866 A1469428 BE548103 T96204 R94457 N78225 A1564549 AW004984 AW780423 AW675448 AW087890 AA971454
			AA305698 AA879433 AA535069 A1394371 AA928053 A1378367 N59764 A1364000 A1431285 T81090 AW674657 AW674987 AA897396
	102610	9336_1	AW673412 BE063175 AW674408 AI202011 R00723 AI753769 AI460161 AW079585 AW275744 AI873729 D25791 BE537646 T81139 R00722 U65011 NM_006115 AW182063 BE383930 BE407839 BE409930 BE408826 AW370292 AA312859 AA136204 AW365852 AW365735
10			BE622732 AW939295 AA781195 AI017284 AW375329 AW375366 AW178384 AW178333 AW178424 AW365726 AF025440 AW172852
			AI570998 AW117792 AI885499 BE465516 BE207427 AW130942 AW513316 AW770892 BE207426 AW173563 AW168292 AW173565 AI810101 AI744983 AI861974 BE207404 AI744982 AI613210 AW591505 AW169285 AI521444 AI745044 AI627904 AI690634 AI289305
			AA861253 Al612799 BE207425 Al149694 AA902662 Al082468 Al014752 AA613844 AA725693 AA136089 Al290092 AA565489 Al689083
15			A1859014 AW051225 AA665758 AA496991 AA564738 T19428 A1567170 AW166726 AW084200 AW188723 AA617626 A1918664 AW381473 AW381543 AA598817 AW088942 AW050423 A1362502 A1680308 A1687500 BE327836 D20455 BE410282 BE254766 BE256014 AA357423
13			BE618208 AA489577 AW182114 BE379147
	102627	25245_1	AL021918 AA160639 U66561 AA321623 U52098 AL119453 AA455712 N80080 N46550 W07223 N75923 W05057 AI811577 AA455657 A1275409 A1139121 A1927568 A1927562 A1139471 AA160473 N78795 A1719983 A1718928 AA723097 A1335776 N39140 N59184 A1587600
			A1864812 AA732097 N74667 AA832398 H89600 D19825 A1554833
20	132725	29101_1	NM_006276 NM_006276 L41887 L22253 BE379909 BE567870 BE274265 BE539518 AW239523 AW239271 AI093618 BE504485 AA580279
			AA494481 BE440161 AW780428 BE543960 D55986 AA852399 Al630020 W77996 AA278193 R10505 Al963201 Al739336 BE174301 AA662222 AA664912 AA244152 AW611553 BE503285 AA211023 AA383016 Al698174 AW195381 AA948229 Al768495 Al690437 N30025
			AI718952 AI953572 BE464509 AA777315 AI337221 AW070910 AI953848 AW674561 H54177 AW510890 AW078699 AI436178 AA630759
25			BE502074 AA278769 Al499038 AW469072 AA778071 AW236753 Al933033 Al690458 Al276691 AW768235 Al952118 AA425156 AA610579 W73953 AA244153 W86034 Al948872 Al952678 AW087811 Al333591 Al869883 Al926911 W48865 AL048024 AA214485 Al972522 Al151368
20			W48738 AA214467 AA334640 Al678170 AA927525 AA581588 W96283 AA365470 Al471919 AW611488 AA211834 Al365198 Al698365
			AW002238 AA507624 W96150 AA446490 AL048025 AA852400 AA362221 Al338376 R35083 AA290812 R10397 AA975988 AW236462 Z43032 H16969 F13487 D19858 AA452207 BE085942 AA344396 AW949533 AA279472 AW902406 AW070440 BE395195 H00835 AA300750
			AA729303 AA420591 AA385025 AA420542 R69155 AA420592 AA281747 N88502 AI458206 AI700996 AW418607 AW341202 AI825692
30			W00640 AA214405 AA044744 Al950617 BE467493 AW474113 AA446310 BE328705 Al911573 AW243968 Al628622 AW173020 AW079958
			A1140387 AW051969 AW299438 A1127170 AW769164 A1422435 A1307116 BE549519 A1371116 AA281748 AA701073 AA679948 BE551197 N50345 AW338776 BE326601 A1142892 AW470687 A1989568 AA911241 AW294822 A1174414 AA804366 A1004725 AW271994 A1559313
			Al270102 Al351542 AW768904 AA765964 Al961708 Al149231 AA995907 Al094280 Al185753 H01219 AW768846 AA747500 AA970106
35			AIG0123B AA513452 AW612802 BE075163 R39171 AI565328 AI375559 F10356 AA284625 BE241509 AI702889 AW193010 AA649847 AW439150 AA721407 AA810333 AA706384 AI049887 BE569015 BE622280 BE566618 AW967342 R69269
23	111234	83711_2	AA902656 Al185915 R43705 H15150 H09794 AA832464 Al697438 Al354538 Al436354 AA948272 AA928143 Al091263 R41658 Al352580
			A1122948 AA946670 A1340088 A1275007 N70255 AA721176 A1934162 AA827098 AA935934 AA827088 A1081207 AA992399 AW130757
			A1805667 AA035556 A1379266 A1093901 A1095234 AA909078 AA516079 A1572357 AA205969 A1432383 AA905290 AW628920 AW182996 A1266084 N49879 AW024457 A1246246 A1934031 A1369270 A1003836 AA010063 AA494361 A1284151 A1919536 N34884 N69287 AW510465
40			AJ358609 AW081421 AA706205 Al085317 Al140633 AJ347104 AA602547 Al686707 AA872686 AA694028 Al094546 Z40832 AJ382838
			AA610132 AA501433 H84120 Al140722 AW674839 BE503822 AW663895 BE327472 AW393494 Al340087 W04189 AW393499 H56506 BE089878 BE301950 Al025475 AA724446 BE275324 H15210 AW957667
	134161	16074_1	AA634543 Al682259 AF117108 BE396917 NM_006547 U97188 U76705 BE560799 BE396918 BE269531 BE560268 BE560346 AA836048
45			AL023775 BE545535 AA427803 C18804 D58801 AA303353 U46218 BE539704 AA187966 AA252545 AA261821 D63197 AI824109 AI088047 AJ424833 AJ807368 AJ250857 AA741476 AJ146832 AA169615 AJ809821 AJ274288 AW136704 AJ206172 AA917039 AA243584 AJ808611
-1.5			AW674709 AA935733 AW450092 AA905172 AA471196 AA302256 AW673348 A3552044 AW511295 AA247134 W81035 AA722962 AW662471
			R64432 AW044616 Al086619 AW628546 AW043682 AA425750 Al743038 Al369723 AA187143 Al376987 Al803976 Al275537 AW471358
			AW104877 AA195464 W81072 AW197351 AA932674 AI393420 AI434998 R63822 AW085083 AI240272 W87006 AA011347 H58428 AI497895 R23223
50	132939	11857_1	AB009284 AF000416 AA022636 BE082610 AW367997 AA491410 AA337477 AA336421 W38526 AA625283 AA773685 AA490078 T66134
			AA847838 AA022647 AW054726 A1918001 AA431966 A1263596 A1804298 AW469314 U76189 AA779001 AA625945 AL042357 A1674730 AA410350 AK001450 AV654353 AA058443 DB1618 AA853665 W31930 AA334445 AW955767 N47777 AA883784 AA428916 A1652062
			AA329703 Al417923 Al435031 AA708791 Al989636 Al220345 Al239913 Al220102 Al435875 Al076731 Al377049 Al039173 AW972638 N90076
55			AW263652 BE440048 BE440013 AA577463 Al038774 AW204992 AA846580 AA501952 AA342058 AA508525 D61670 W31725 Al689499 AJ955969 AA526628 AJ282717 T66198
55	111345	6692_1	AW263155 AA314512 AW408152 AA360413 BE206274 AK001402 AA307665 AW954678 W39078 AW369236 AW369115 AW369096
			AW753235 AW369072 AW361194 AW369125 AW364187 H94225 T79502 AA131908 BE071359 AW368503 AW801517 AW801322 AI674163 AA861077 AI738568 AI830199 AW118577 AI478895 AI688497 H92996 AW083479 AW970625 AW613124 AI632234 AI654210 AI696847
			AI923423 AA131909 AA805630 AA806158 AW592520 R96509 AA813923 AA502823 AW467889 AA960972 AA994566 AI280346 AA884588
60	40.4004	44000 4	AA653563 Al200023 N89820 AW768792 C00145 R96554 T79416
	104301	145380_1	AA768491 AA476251 AA809748 AI186268 AA621244 AI379029 BE550341 AA651915 AI216376 AI215585 AI471760 AA772159 AW181980 AI151169 AA759270 AI675769 AI018776 AA757335 AA148511 AI138378 AA504167 AI420617 AW261930 AW872797 N51769 AW614403
			AI860533 AW573108 N64830 AI693732 AI436159 BE501089 AI436163 AA971485 AI269364 AI935358 AI222050 AW303978 AW573247
65			AIB71154 T16758 AI765893 AW969016 AA744720 BE094085 AA743769 AI476407 AA156619 AI768535 R81435 D45332 N75682 N51177 AW207406 AA425184 R20997 AA504168 Z43298
05	134520	13358_3	BE091005 BE541579 AW387738 AW386083 H13769 AW377820 AW369180 AW753239 AW672695 BE379572 AW021732 AW891450
			AW891416 BE091358 N50375 BE091354 BE091365 BE091361 BE091363 BE091363 AA353863 AA845510 N21407 AW770981 AI361577
			AA526557 AA525443 AW893622 AA630898 Al418983 BE172016 AA550754 AA684574 C16147 AA355902 AW958586 N51590 C20995 BE544186 Al337578 AA090549 Al807374 AW450654 BE067578 AA446781 AA447058 T10807 AA457082 Al267703 Al880220 BE568979
70			AW380506 BE150744 AW380468 AW380546 BE150713 D60029 H88099 BE546301 BE150731 AW368467 BE091348
	135242	5782_1	AIS83187 M73812 AW339829 M74093 BE252510 BE252518 BE536901 U40788 W95578 BE018493 BE544205 N83637 AI671049 AW439693 AW300786 AW374970 AA592960 AI215885 AI215884 BE302101 AI186210 AW771831 T54213 AW452924 AA834019 W95471 AA628312
			AW304866 AA570076 Al559873 T54121
75	134621	27351_1	AA037145 L02547 NM_001324 AW411516 AA314711 AA143605 BE394455 AA325731 AA093227 AA083307 BE299438 BE295669 AA370886
, ,			AA338272 AA166862 BE304837 BE298306 R60507 AW238966 N72750 AW505406 AW994153 AA309742 AA309929 BE090721 AW904189 AW904214 AA363564 R94127 AA352101 R28249 AA206337 AW577208 AA385473 AA355463 AA400696 AA075587 W72815 AA554033
			AA075530 AA620555 AA554034 T27804 AW950014 AI570740 AI268538 AA704423 AW411517 AI278646 AW339924 AI668917 AI796034
			AA994601 R94082 AW027137 AA400652 AW299746 W72816 AA988494 AA146582 AW087489 AA992763 AW516454 AA992759 AW270444 AA227188 Al208929 AA167720 Al052527 AA865660 AA569368 Al888464 Al670003 AA827620 AA507543 Al888385 R88418 AW959083
80		***	Al341077 Al825719 BE552285 AA738076 AW085903 R28242
	126802	116467_4	AW805510 AW805503 AW805500 AW805819 AW517040 AW473670 AW516701 T30141 AA894497 BE349504 AI272007 AI985274 BE501962 AW102975 AI801727 AW197918 T24046 AA947601 AW900958
	126892	38252_1	AF121856 BE242657 U83194 AA226732 A1160190 AA948725 A1079958 AW513369 W39443 AW408479 W06854 AA094683 A1985095
			AA316647 H96313 N78438 R81582 H95034 R79674 AA488552 W25292 W31697 W19918 T30640 R08686 H78637 AA165100 Z41909

5	105298	8689_1	AA165080 R34212 AA150886 T82168 N77082 W56864 R19848 AA888217 AA314539 AW750293 N62714 R58039 AA845453 N63268 W03474 N41923 A1264123 A1808533 AA824288 AW198143 N99916 AA902465 AA775397 AA772387 A1567675 AA227473 A1082614 R58334 N76878 R34329 AW438902 AA164685 AA558790 A1590102 AA863422 BE002625 AA934039 A1298102 W15351 H93997 AA725325-BE180993 W05350 A1510771 W06941 AA488414 R79663 N91264 R76884 AA312948 T71267 AW9596659 A1086695 N90421 A1278098 AA164538 A300271 AA8634381 R81331 AA700449 H06174 AW758427 AA876634 AA150776 N32393 H78685 R6536 B002808 AW663196 N90337 BE252097 T71401 H06438 N40266 N31015 R77046 T99588 T85462 W25298 T59815 H09416 T85403 W32150 N79109 R78812 BE287790 BE276849 BE246825 BE246900 AA380487 AA332995 AW408727 AK000294 A1636887 AW197272 AW590657 AW594006 A1768979
10			A1751632 AA580098 AA313261 AA300475 AA133237 AA233499 BE242126 BE242597 BE242254 AA314374 AW961210 AW939345 AA173535 AA305779 R99373 AA128304 AA447246 AA476365 T34973 BE264878 N25149 Z24939 BE263038 AA128317 Z46082 H23504 AW378551 AA088533 AA442625 H15235 H79172 AA344697 AA344742 AL040280 BE173256 BE173129 T59749 AA088410 BE242311 AA173576 AA455337 AA129715 AA58253 AW612637 AA917038 AW340019 AW006315 AW593024 H059136 AW294592 A1146814 AW195659 AW40271 A1209090 A1288689 H98630 H15174 A1214454 A1569471 AA085808 AW188361 A1751631 AW440477 AW300860 AA516088 A1365108 A1305805 A1264064 A1246276 AA442611 AA807059 AA233459 AA875987 A1374653 AA972665 AA947515 AA436867 A1216423 A4657181 A1680306 AA436854 A1537153 AA883723 Z28659 AA705973 Z40741 AA463884 A1216025 A1564986 AA476316 AV432566 A1571662 AA447126
15	120438	166102_1	AW293675 AI675617 AW009004 H23498 AW016242 AA831493 AI292346 AI076966 AI191561 AA243441 AI183309 AA252613 AI038422 AI306531 AW051480 AI348605 AA195119 AI817119 AI091896 AA738440 AA195013 AA976687 AA459659 AI246250 BE219252 AI703457 AA243291 AA243401 AA989100 AA931640 AA459782
20	105516	9334_1	AK001269 AL354613 AA147472 AA490803 BE207628 AW816113 AA085574 AW503392 AA299910 AW750305 BE079539 BE079484 BE512838 AK001593 AW968772 AW967440 AW206280 AA251270 Al627886 AA303599 AA147473 BE205616 AA490611 AA715039 AW590866 AW590447 Al864512 AA204731 AA894490 BE001136 AA612785 AA237035 AA149960 Z44257 R12986 AA48846 AI734041 AA422167 BE20551 R66041 R32927 R32942 AA258773 AW386142 R63730 N54624 AW880296 AA253485 AW954441 H98989 AW614348 AL654838 AA779793 AW237213 N66635 A1186812 AA947479 BE158011 Al859480 AW805579 N52010 AA806305 Al628445 AW270990 AA778165 AA149949 AL650728 AA749108 AA687257 Al261661 AA747442 AA481351 AA206339 AA9903407 AW473306 Al688830 AA25281
25	100007		AA448310 AA748820 Al347430 BE465692 R32839 AW510564 AA436408 AA257971 AA253362 AA938330 AA513150 AA976840 AA687117 Al281547 AA046243 R32825 Al631554 AW139818 Al244536 R52946 AW235443 R40183 AA299909 AA811958 Al302918 Z40213 BE158047 BE158060 AA767245 AW748159 AW500735 AA094074
30	129097	25953_1	BE243933 AA355449 T29766 F08396 N83324 NM_005663 S50223 AI207648 AA256092 AA113952 AI311718 AI128612 AW607449 M77172 AI951311 X52346 AA903307 AI569810 N55421 W77876 R37223 R83788 AA031666 H47092 AA133451 AA311095 AA906963 H87667 N56058 AA393593 W24864 H10710 F06925 F07239 AW386140 AA325018 AA235950 AW373176 N57158 AA256093 N39467 R21609 BE089979 R34173 AW889005 AA745644 AI693852 AA424914 AA744771 W72632 AI291213 AA524318 AI472134 AI911230 AA528418 AA115745 AA775720 AI671134 AA975044 AW298117 AA321015 N26288 AW952194 AI743379 AI204223 AI801026 AA330690 AI146980 AW104611 AI338576 R21507 AI357623 BE244484 AI269308 AA031667 AI884346 AA731989 AA968943 AA235951 AA807887 AA642645 AI246489 **N29739 AI216718 AI383349 AIQ38618 AI351476 AA806031 AI914178 H10711 AI095573 H89220 AW470854 AA729015 R83353 AA782239
35	120619	169895_1	R34295 H87165 AW419059 AI653689 Z40349 H89114 AW074506 AA397785 AA888377 AI911228 F03193 AI468783 AA702615 AI830829 AA748323 R37224 AA424915 AA731647 H47183 AW985339 AI 045632 AA333229 AI806195 AA284372 AA206108 AA682533 AW449514 AA804785 AI215473 AI357263 AI651208 AI651753
40	129229	20927_1	AF013758 NM_006451 AI538709 AA209236 AA300293 AA367274 AA126598 AA324825 AW955225 F11436 AW374740 AW374714 AW374774 AW751514 W77780 AI909015 AW997079 AW997067 AW378344 AW363397 W38589 AA043823 BE169280 AI909016 AW964851 AI740638 AW148560 AW368339 AI858333 AA314718 AW954872 AW468734 AI681980 AW519045 AW055171 AA579286 AW069164 AW615004 AA345052 AI446735 AI142106 AA662683 AW002813 AI418280 AW613203 AI613333 AI354480 AI929755 AI146977 W774674 AW799610 AI798529 AI589422 AA043957 AI223043 AA157016 AI446739 D56729 AI587471 F30716 AA812125 AI537301 AA653347 D11966 AI434383 AA598533 AI287254 AW139140 AW051033 AA601911 AI702506 AA737460 T30221 AI129081 N90213 AA805225 AI798518 BE001071 T10841
45	•		W20199 AW664594 AW195667 D60123 D61496 AW468018 AI720097 N90553 AA829375 AW513266 H92758 AA585324 C14767 Al922391 D60124 D60666 AW071558 BE044120 AA728821 AA211941
	120821	19274_2	Y19062 NM_014393 AW296801 AK001576 AL079288 W16667 Z45664 A1768561 AL079286 R12736 AW080147 AW136530 A1202958 AW241579 R21013 AA347419 Al929333 AW196689 Al040867 F13437 AA918240 A1869798 A1365176 AW440030 AW440072 N80892 AW242030 Z44807 R12417 AA436784 AA442041 AA045503 AL157526 A1929265 AA055542 AA045462 AA683542 N51374 AW193508 A1873524 AW473151 AW004719 A1810504 A1581093 AA493977 Z40600 F04553 R46130 F09321
50	106459	3897_1	AA789081 AW408328 NM_006530 U61384 AA449641 AW138216 AA448598 AJ245746 AJ365301 N44728 AA255743 AA360783 BE550380 AW593925 AI962309 AA322097 AW96A625 AI695988 AW672827 BE543256 AK001413 AW603395 AA651700 AA449053 AA465540 AW083185 T62128 Z78373 AW673713 AW468061 BE360755 AW673968 AW675504 AA995709 AW574841 AA835883 AI248439 AA548364 T62072 N33193 AA814046 AJ376210 AJ340020 AA449766 AA703407 AA427613 AI470108 AJ298757 AA507602 AJ658941 AA449478 AA633165 AA449741 AA831821 AA903673 AA682588 AW673075
55	115094 129571	190995_1 1726_1	AA255920 Al817197 AA255921 Al612925 AW874669 AA493440 X51630 M80232 X61631 S75264 AA172249 AA134066 AA130278 AA130187 AA130291 AA031554 Al246677 Z21455 Al745434 AW273544 AW088613 AW471307 Al745483 Al399854 Al683952 AA031555 AA298075 Al935945 T29809 AA172099 AA356120
60	121779 106738	287665_1 174703_1	AW513143 AA422036 AI821669 AW514232 AA477828 AW772009 AW439799 AW089884 AW149266 R49246 AW237401 AA538113 AW665871 AI959698 AI950812 AW874276 AI571939 AA741222 AI869822 AW104061 AI569994 AW972559 AA508012 AI553704 AA470145 AI332421 AA218990 AW131361 AI709076 AW392488 AW392477 AI970981 AW392476 D61949
	123005	75629_1	H44981 BE172698 AW369771 AW748174 AA290801 AA419198 AA044331 AA127909 AW995442 AI480343 AA044582 AW956159 AA373451 AA127965
<i>C</i> 5	108055	100690_1	AL134913 AW994956 BE622314 BE006298 BE006312 BE006305 BE006317 BE006303 AA043906 AA234175 AA479726 AJ404672 AJ289819 AW976000 AA043561 AW450885 AW452879 AA043562 AA788832 AJ564338 AJ564330 AJ368875 AA643607 AA994375
65	115291	22325_1	AA810342 AI367704 BE545072 AI540751 AA301103 AI916675 N85422 BE563965 AA327978 AI816094 AK001515 BE501319 AA279943 BE138895 AA343765 AW963051 AW082308 AI823992 AI653752 AI589007 AI816135 AI566535 BE501307 AW272765 AW242239 AA766315 AI014927 AA578848 AI354483 AI476548 AI038579 AA973322 AA992180 AW472921 BE504789 AI392988 AA506076 AA769228 AI370562 AL137710 BE005656 AW965920
70	130376 115536	248274 61_1	R40873 AK001468 AA190315 AA374980 AW961179 AA307782 AA315295 AA347194 AW953073 AW368190 AW368192 AA280772 AA251247 N85676 AI215522 AI218389 N87835 R12261 R57094 AI660045 AA347193 R16712 AW119006 N55906 N87768 AW900167 AI341281 AI818674 D20285 AI475165 AA300756 R40626 A1122827 AA133250 AI952488 AA970372 AA889845 AW069517 AI524385 AA190314 AI673359 AA971105
75	114965 131228	153955_1 8262_1	AI351088 AI872789 AI919056 AI611216 AK001472 BE568761 AA581004 AI733881 AA165164 AI826437 AI972791 AA165165 BE219375 AI732586 AI821571 AA250737 AW136875 AI984273 AI249271 AW207469 AL079814 AA354351 AF020043 AW291396 BE550484 NM_005445 BE046917 AW594249 AI651554 AI631515 AW771344 AIS69758 AI69982 AA247175 AI244576 D44780 AW593978 AI638479 AI373676 AW089547 AL121432 AA554698 AI016991 AI087260 AW449939 AF067163 W40482 AW316558 AI537184 AW381979 W40150 AI810562 AA573151 AI630288 AI675561 AI67420 AW840733
80			AW022653 AA114219 AJ005015 AL046587 AA878141 AW271896 AW085287 AA150465 BE536295 AA463412 BE093222 AA213739 AA485586 AJ825913 AA706307 AJ337348 R31995 AJ819641 R32095 AW976653 AA742375 AA142957 AJ808214 AW468303 AJ205987 AJ206347 AJ769095 BE501640 AA113866 AJ093931 AJ752855 AA612743 AA463411 AA279157 AJ123791 AA213570 AJ207305 AW627814 R31945 R32040
	116238	10772_1	AV660717 NM_015437 AL050285 R95774 Al867094 AA443833 Al367670 AA609046 Al440298 Al613139 Al291826 AW028954 Al123242 Al824715 AW079750 AA479362 AW150151 Al952267 AA814094 Al168431 Al566595 Al521422 Al920793 AW051241 N70051 Al689429

			AI783813 AI769315 AI743691 AI915645 AA479473 C21435 N50944 N50902 AW978102 HZ3837 BE087538 AA316516
	122802	287993_1	AI687303 AW571681 AI554465 AI684252 AI581056 AA604098 AI628160 AI859843 AA424021 AA460530 BE042778 AW273200 AW273223
			AW167288 AW083347 Al654306 AW517496 AW104708 AW273214 BE139512 AW189487 AW130822 AW167419 Al289485 AW150010
_			H88004 AI743745 AW088710
5	123494	21202_1	AW179019 AW179011 AF135160 NM_014050 AF078860 BE018005 AK000285 AF151038 BE245156 AW179007 AA345114 BE619758
			BE619209 W25509 AA314339 AA336674 AA337956 AW954843 AW390412 N46796 AA316235 AA314286 R15686 BE535633 N57134 N46483
			AW368462 AA923517 AA665223 Al418513 AA837523 Al359320 Al309273 Al522278 N40939 AA904977 AA938272 N30240 AA887965
			AI671972 AI028109 AA094652 AA883262 AA887781 AI744447 AW592944 AI077790 AW860883 AW148667 N89861 AA557195 AI191824
			Al433166 Al719760 AA453089 AA630656 AA300976 AA639620 AW675033 AA284393 AW886987 Al476335 Al332939 BE301513 AA452920
10			AW674302 AI925483 AW170412 AI698717 AI375985 BE220535 AI688151 AW514809 AW062346 AA599786 BE350848 AI560848 AI023075
			AA864875 AA166871 AIB07947 AW514579 AI978602 AI860340 AA830886 AI374788 AI283592 AA683152 AA743159 AI379932 AI432056
			Al128904 AW150433 N38909
	116296	11967_2	AW149502 Z43342 AW002826 AL049382 AA442545 AW971471 BE220243 AW968952 AA043607 AW299245 AA659892 Al038768 H26330
			BE463534 AI628252 AAB36139 AI277291 AA489033 AA741239 AI209064 AI300253 AI275761 Z39417 C01835
15			

Table 9A lists about 382 genes up-regulated in ovarian cancer compared to normal ovaries. These were selected from 35403 probesets on the Affymetrix/Eos-Hu01 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult ovaries was greater than or equal to 10. The "average" ovarian cancer level was set to the 2nd highest amongst various ovarian cancers. The "average" normal adult ovaries level was set to the arithmetic mean amongst various non-malignant ovaries. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst the non-malignant tissues (see Table 7A) was subtracted from both the numerator and the denominator before the ratio was evaluated. 20

TABLE 9A: 382 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL OVARY Pkey: Primekey
Ex. Acon: Exemplar Accession
UG ID: UniGene ID
Title: UniGene title
ratio: ratio tumor vs. normal tissues

25

30	Pkey	Ex. Accn	UGID	Title	ratio
	134454	L33930	Hs.173996	CD24 antigen (small cell lung carcinoma clust	86.2
	102927	X12876	Hs.65114	keratin 18	84.7
	115909	AA436666	Hs.59761	ESTs	72.3
	123169	AA488892	Hs.104472	ESTs; Weakly similar to Gag-Pol polyprotein [66.8
35	115674	AA406542	Hs.71520	ESTs	65.4
	102193	U20758	Hs.313	secreted phosphoprotein 1 (osteopontin; bone	63.1
	101839	M93036	Hs.692	membrane component; chromosomal 4; surface ma	56.8
	115221	AA262942	Hs.79741	ESTs	56.1
	108059	AA043944	Hs.62663	ESTs	52.3
40	121853	AA425887	Hs.98502	ESTs	47.8
	133504	W95070	Hs.74316	desmoplakin (DPI; DPII)	47.0
	103546	Z14244	Hs.75752	cytochrome c oxidase subunit VIIb	46.5
	100147	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin I-lik	45.5
	102979	X17042	Hs.1908	proteoglycan 1; secretory granule	44.6
45	130967	AA134138	Hs.182579	Homo sapiens leucine aminopeptidase mRNA; com	44.5
	102009	U02680	Hs.82643	protein tyrosine kinase 9	40.4
	126960	AA317900	Hs.161756	ESTs	39.6
	103111	X63187	Hs.2719	epididymis-specific; whey-acidic protein type	39.1
	133829	AA453783	Hs.76550	Homo saplens mRNA; cDNA DKFZp564B1264 (from c	39.0
50	111223	N68921	Hs.34806	ESTs; Weakly similar to neogenin [H.sapiens]	38.9
	102803	U89916	Hs.26126	claudin 10	38.8
	104943	AA065217	Hs.169674	ESTs	38.7
	106605	AA457718	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (from cl	38.4
	120655	AA287347	Hs.238205	ESTs	38.1
55	102968	X16396	Hs.154672	methylene tetrahydrofolate dehydrogenase (NAD	38.3
	104052	AA393164	Hs.97644	mammaglobin 2	36.0
	109166	AA179845	Hs.73625	RAB6 interacting; kinesin-like (rabkinesin6)	35.9
	101332	L47276		Homo sapiens (cell line HL-6) alpha topoisome	35.0
	106167	AA425906	Hs.7956	ESTs	34.5
60	101042	J05428	Hs.10319	UDP glycosyltransferase 2 family; polypeptide	34.3
	125852	H09290	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (from c	33.7
	101201	L22524	Hs.2256	matrix metalloproteinase 7 (matritysin; uteri	32.3
	126410	R51912	Hs.12409	somatostatin	32.1
	134326	U16306	Hs.81800	chondroitin sulfate proteoglycan 2 (versican)	32.0
65	125739	AA428557	Hs.92137	v-myc avian myelocytomatosis viral oncogene h	31.6
	132254	L20826	Hs.430	plastin 1 (l isoform)	31.4
	112610	R79392	Hs.23643	ESTs	30.9
	101441	M21005	Hs.100000	S100 calcium-binding protein A8 (calgranulin	30.6
	116345	AA496981	Hs.199067	HER3 receptor tyrosine kinase (c-erbB3; ERBB3	30.1
70	108860	AA133334	Hs.129911	ESTs	29.8
	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	29.2
	107295	T34527	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	28.9
	106210	AA428239	Hs.10338	ESTs	28.9
	134711	X04011	Hs.88974	cytochrome b-245; beta polypeptide (chronic g	28.0
75	125769	Al382972	Hs.82128	5T4 oncofetal trophoblast glycoprotein	27.5
	107222	D51235	Hs.82689	tumor rejection antigen (gp96) 1	27.4
	102260	U2B386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; importin a	26.9
	134691	M59979	Hs.88474	prostaglandin-endoperoxide synthase 1 (prosta	26.8
00	105588	AA279215	Hs.10867	ESTs	26.3
80	130718	N70196	Hs.18376	ESTs	26.3
	111185	N67551	Hs.12844	EGF-like-domain; multiple 6	25.6
	131965	W90146	Hs.35962	ESTs	25.6
	132903	AA235404	Hs.5985	Homo sapiens clone 25186 mRNA sequence	25.6
	114359	Z41589	Hs.153483	ESTs; Moderately similar to H1 chloride chann	25.5
				171	

	101185	L19872	Hs.170087	aryl hydrocarbon receptor	25.2
	128742	D00763	Hs.251531	proteasome (prosome; macropain) subunit; alph	25.1
	116724	F13665	Hs.65641	EST ₆	24.9
5	111929	R40057	Hs.112360	prominin (mouse)-like 1	24.9
5	102915 131210	X07820 AA430047	Hs.2258 Hs.24248	matrix metalloproteinase 10 (stromelysin 2) ESTs	24.8 24.7
	101714	M68874	FIS.24240	Human phosphatidylcholine 2-acylhydrolase (cP	24.6
	100154	D14657	Hs.81892	KIAA0101 gene product	24.6
	134656	X14787	Hs.87409	thrombospondin 1	24.3
10	100294	D49396	Hs.75454	antioxidant protein 1	23.9
	104080	AA402971	Hs.57771	kallikrein 11 programmed cell death 8 (apoptosis-inducing f	23.7 23.7
	107056 115697	AA600310 AA411502	Hs.18720 Hs.63325	ESTs; Wealdy similar to airway trypsin-like p	23.7
	130350	U02020	Hs.239138	pre-B-cell colony-enhancing factor	23.7
15	105870	AA399623	Hs.23505	ESTs	23.6
	118528	N67889	Hs.49397	ESTs	23.4
	105309	AA233790 F09255	Hs.4104	ESTs; Wealdy similar to cDNA EST yk386g7.5 co ESTs	23.2 23.2
	109680 131501	AA121127	Hs.4993 Hs.181307	H3 histone; family 3A	23.2
20	100824	HG4058-HT4		Oncogene Ami1-Evi-1, Fusion Activated	23.1
	111890	R38678	Hs.12365	ESTs	23.0
	101543	M31166	Hs.2050	pentaxin-related gene; rapidly induced by IL-	22.8
	102095	U11313	Hs.75760	sterol carrier protein 2	22.8 22.8
25	114988 120695	AA251089 AA291468	Hs.94576	ESTs; Wealdy similar to phosducin; retinal [H ESTs	22.8
25	130941	D49394	Hs.2142	5-hydroxytryptamine (serotonin) receptor 3A	22.8
	106654	AA460449	Hs.3784	ESTs; Highly similar to phosphoserine aminotr	22.7
	109141	AA176428	Hs.193380	ESTs	22.6
30	102345	U37283	Hs.58882	Microfibril-associated glycoprotein-2	22.6 22.4
30	115652 100103	AA405098 AF007875	Hs.38178 Hs.5085	ESTs dolichyl-phosphate mannosyltransferase polype	22.3
	105463	AA253370	Hs.32646	ESTs	22.2
	132624	AA164819	Hs.53631	ESTs	22.2
2.5	119743	W70242	Hs.58086	ESTs	22.0
35	132528	AA283006	Hs.50758	chromosome-associated polypeptide C	22.0 · 21.8
	107174 134495	AA621714 D63477	Hs.25338 Hs.84087	ESTs KIAA0143 protein	21.8
	131985	AA434329	Hs.36563	ESTs	21.5
4.0	105832	AA398346	Hs.21898	ESTs	21.2
40	126160	N90960	Hs.247277	ESTs; Weakly similar to transformation-relate	21.2
	114846	AA234929	Hs.44343	ESTs	20.9 20.9
	109703 135154	F09684 AA126433	Hs.24792 Hs.173242	ESTs; Weakly similar to ORF YOR283w [S.cerevi sorting nexts 4	20.8
	131185	M25753	Hs.23960	cyclin 81	20.7
45	105616	AA280670	Hs.24968	ESTs	20.5
	131148	C00038	Hs.23579	ESTs	20.2
	129337	R63542	Hs.110488	KIAA0990 protein	20.2 20.1
	133640 127479	D83004 AA513722	Hs.75355 Hs.179729	ublquitin-conjugating enzyme E2N (homologous collagen; type X; alpha 1 (Schmid metaphyseal	19.9
50	133711	J04130	Hs.75703	small inducible cytokine A4 (homologous to mo	19.8
	131818	Z39297	Hs.3281	neuronal pentraxin II	19.7
	125303	Z39821	Hs.107295	ESTs	19.6
	109112 105376	AA169379	Hs.72865	ESTS	19.5 19.2
55	103576	AA236559 Z35402	Hs.8768 Hs.194657	ESTs; Weakly similar to IIII ALU SUBFAMILY SQ cadherin 1; E-cadherin (epithelial)	19.1
50	100661	HG2874-HT		Ribosomal Protein L39 Homolog	19.1
	129571	X51630	Hs.1145	Wilms turnor 1	19.0
	115239	AA278650	Hs.73291	ESTs: Wealdy similar to similar to the beta t	18.9
60	131562	U90551	Hs.28777	H2A histone family; member L	18.9 18.9
00	131272 130343	AA423884 AA490262	Hs.139033 Hs.15485	paternally expressed gene 3 ESTs; Weakly similar to APICAL-LIKE PROTEIN [18.8
	103245	X76648	Hs.28988	glutaredoxin (thioltransferase)	18.7
	101809	M86849		Homo sapiens connexin 26 (GJB2) mRNA, complet	18.6
65	105344	AA235303	Hs.8645	ESTs	18.4
05	135225 116786	AA455988 H25836	Hs.9667 Hs.83429	butyrobetaine (gamma); 2-oxoglutarate dioxyge tumor necrosis factor (ligand) superfamily; m	18.4 18.3
	131510	AA207114	Hs.27842	ESTs; Weakly similar to similar to 1-acyl-gly	18.2
	124059	F13673	Hs.99769	ESTs	18.0
70	103352	X89398	Hs.78853	uracil-DNA glycosylase	17.9
70	132742	AA490862	Hs.55901	ESTs; Weakly similar to C43H8.1 [C.elegans]	17.9 17.9
	135242 123494	M74093 AA599786	Hs.9700 Hs.112110	cyclin E1 ESTs	17.8
	129168	T90621	Hs.109052	chromosome 14 open reading frame 2	17.7
	128517	AA280617	Hs.100861	ESTs; Weakly similar to p60 katanin [H.saplen	17.6
75	130160	Z39228	Hs.151344	UDP-Gal:betaGlcNAc beta 1;3-galactosyltransfe	17.6
	103448	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	17.5 17.5
	119708 122946	W67810 AA477445	Hs.57904 Hs.105341	mago-nashi (Drosophila) homolog; proliferatio ESTs	17.5
	125819		Hs.251871	CTP synthase	17.5
80	131689		Hs.30696	transcription factor-like 5 (basic helix-loop	17.5
	115061	AA253217	Hs.41271	ESTs	17.3
	113702		Hs.161720	ESTs; Moderately similar to !!!! ALU SUBFAMIL	17.3 17.3
	115291 102567		Hs.122579 Hs.146847	ESTs TRAF family member-associated NFKB activator	17.2
	102301	000000		, round money and and	,

	129229	AA211941	Hs.109643	achindomidata bindina anabah latamatina pm	17.2
	129351	AA167268	Hs.62349	polyadenylate binding protein-interacting pro Human ras inhibitor mRNA; 3' and	17.2
	110769	N22222	10.02010	yw34b06.s1 Morton Fetal Cochlea Homo saplens	17.1
_	113182	T55234	Hs.9676	Human DNA sequence from clone 30M3 on chromos	17.0
5	115892	AA435946	Hs.50831	ESTs	17.0
	123114	AA486407	Hs.105235	ESTs; Moderately similar to KIAA0454 protein	17.0
	123442 123339	AA598803 AA504253	Hs.111496 Hs.101515	ESTs ESTs	17.0 16.9
	123689	AA609556	Hs.256562	EST8	16.9
10	131941	D62657	Hs.35086	ubiquitin-specific protease 1	16.8
	120649	AA287115	Hs.99697	ESTs	16.8
	102139	U15932	Hs.2128	dual specificity phosphatase 5	16.8
	115522	AA331393	Hs.47378	ESTS	16.7 16.6
15	135243 131257	AA215333 AA256042	Hs.97101 Hs.24908	putative G protein-coupled receptor ESTs	16.5
13	109508	AA233892	Hs.55902	ESTs; Weakly similar to IIII ALU SUBFAMILY SX	16.3
	132701	AA279359	Hs.55220	BCL2-associated athanogene 2	16.3
	134449	L34155	Hs.83450	taminin; alpha 3 (nicein (150kD); kalinin (16	16.3
20	126180	R18070	Hs.3712	ubiquinol-cytochrome c reductase; Rieske iron	16.3
20	106124	AA423987	Hs.7567	ESTs .	16.2 16.2
	115363 117588	AA282071 N34895	Hs.152759 Hs.44648	activator of S phase kinase ESTs	16.1
	131245	AA620599	Hs.24766	OKFZP564E1962 protein	16.1
	101674	M61916	Hs.82124	laminin; beta 1	16.0
25	126819	AA305536	Hs.161489	ESTs	16.0
	134039	S78569	Hs.78672	faminin; alpha 4	16.0
	130648	AA075427	Hs.17296	ESTs; Weakly similar to /prediction	15.9 15.8
	102823 128470	U90914 AA447504	Hs.5057 Hs.100261	carboxypeplidase D Homo sapiens mRNA; cDNA DKFZp564B222 (from cl	15.8
30	115844	AA430124	Hs.234607	ESTs	15.7
-	132543	AA417152	Hs.5101	protein regulator of cytokinesis 1	15.7
	130155	L33404	Hs.151254	kallikrein 7 (chymotryptic; stratum comeum)	15.7
	101008	J04162	Hs.763	Fc fragment of IgG; low affinity Illa; recept	15.7
25	120472	AA251875	Hs.104472	ESTs; Weakly similar to Gag-Pol polyprotein [15.6
35	116844	H64938 AA476944	Hs.38331 Hs.7331	ESTs ESTs	15.6 15.6
	106753 114767	AA148885	Hs.154443	minichromosome maintenance deficient (S. cere	15.5
	114768	AA149007	Hs.182339	Ets homologous factor	15.5
	127370	AI024352	Hs.70337	Immunoglobulin superfamily; member 4	15.5
40	101507	M27492	Hs.82112	Interleukin 1 receptor, type I	15.4
	102519	U52969	Hs.80296	Purkinje cell protein 4	15.4
	102610	U65011	Hs.30743	preferentially expressed antigen in melanoma	15.4 15.4
	111244 120404	N69556 AA234921	Hs.24724 Hs.96427	MFH-amplified sequences with leucine-rich tan KIAA1013 protein	15.3
45	130455	X17059	Hs.155956	N-acetyltransferase 1 (arylamine N-acetyltran	15.2
	129519	AA298786	Hs.112242	ESTs	15.1
	106553	AA454967	Hs.5887	ESTs; Highly similar to RNA binding motif pro	15.0
	109502	AA233837	Hs.44755	ESTs; Weakly similar to membrane glycoprotein	14.9
50	115967	AA446887 AA004415	Hs.42911	ESTs	14.9 14.9
50	104636 134133	X93920	Hs.106106 Hs.180383	ESTs dual specificity phosphatase 6	14.9
	134444	X04470	Hs.251754	secretory leukocyte protease inhibitor (antil	14.8
	132998	Y00062	Hs.170121	protein tyrosine phosphalase; receptor type;	14.8
	131997	D82399	Hs.136644	Homo sapiens clone 23714 mRNA sequence	14.6
55	134056	R27358	Hs.7886	ESTs; Weakly similar to Pelie associated prot	14.6
	101249	L33881	Hs.1904 Hs.26369	protein kinase C; iota	14.5 14.5
	105298 107119	AA233459 AA620307	Hs.27379	ESTs ESTs	14.5
	115839	AA429038	Hs.40541	ESTs	14.5
60	122802	AA460530	Hs.256579	ESTs	14.5
	129896	AA043021	Hs.13225	UDP-Gal:betaGlcNAc beta 1;4- galactosyltransf	14.3
	130269	AA284694	Hs.168352	nucleoportn-like protein 1	14.3
	134374	D62633 AA443841	Hs.8236 Hs.18676	ESTs sprouty (Orosophila) homolog 2	14.3 14.2
65	106370 130919	AA291710	Hs.21276	collagen; type IV; alpha 3 (Goodpasture antig	14.1
•••	132923	U21858	Hs.60679	TATA box binding protein (TBP)-associated fac	14.1
	107968	AA034020	Hs.61539	ESTs	14.1
	125390	H95094	Hs.75187	translocase of outer milochondrial membrane 2	14.1
70	107148	AA621131	Hs.5889	ESTs; Wealdy similar to W01A11.2 gene product	14.1
70	110788	N24730 AA233342	Hs.15420	ESTs ESTs; Weakly similar to WD40 protein Ciao 1 [14.0 13.9
	109481 105646	AA282147	Hs.90680 Hs.5888	ESTs	13.9
	106030	AA412251	Hs.12802	development and differentiation enhancing fac	13.8
75	132618	AA253330	Hs.5344	adaptor-related protein complex 1; gamma 1 su	13.7
75	133230	S82240	Hs.6838	ras homolog gene family; member E	13.7
	124803	R45480	Hs.164866	cyclin K	13.6
	121381	AA405747 AA195399	Hs.97865 Hs.24641	ESTs; Weakly similar to WASP-family protein [ESTs	13.6 13.5
	105200 105627	AA281245	Hs.23317	ESTs	13.5
80	114986	AA251010	Hs.87807	ESTs	13.5
	118036	N52844	Hs.196008	ESTs	13.5
	134672	N79749	Hs.87627	ESTs; Weakly similar to cDNA EST EMBL:T00542	13.5
	110915	N46252	Hs.29724	ESTs	13.3
	· 117984	N51919	Hs.47368	.ESTs	13.3

	132550	AA029597	Hs.170195	bone morphogenetic protein 7 (asteogenic prot	13.3
	124315	H94892	Hs.6906	v-ral stratan teukemia viral oncogene homotog	13.2
	102547	U57911	Hs.46638	chromosome 11 open reading frame 8	13.2
5	125134 111806	W19228 R33468	Hs.100748 Hs.24651	ESTs ESTs	13.2 13.1
,	106983	AA521195	Hs.10887	similar to lysosome-associated membrane glyco	13.0
	106498	AA452141	Hs.7171	ESTs	13.0
	110787	N24716	Hs.12244	ESTs; Weakly similar to C44B9.1 [C.elegans]	13.0 13.0
10	122860 131535	AA464414 AA504642	Hs.112159 Hs.28436	ESTs ESTs; Wealdy similar to coded for by C. elega	13.0
	116188	AA464728	Hs.184598	ESTs	13.0
	107243	D59489	Hs.34727	ESTs .	12.9
	129300	C20976	Hs.110165	ESTs; Highly similar to ribosomal protein L26	12.9 12.8
15	134487 102348	R38185 U37519	Hs.83954 Hs.87539	Homo sapiens unknown mRNA aldehyde dehydrogenase 8	12.8
10	131839	H80622	Hs.33010	KIAA0633 protein	12.8
	119620	W47620	Hs.56009	2'-5'oligoadenylate synthetase 3	12.8
	120802 102250	AA343533 U28014	Hs.128777 Hs.74122	ESTs; Wealdy similar to predicted using Genef caspase 4; apoptosis-related cysteine proteas	12.7 12.7
20	105539	AA258873	Hs.25242	ESTs	12.7
	114965	AA250737	Hs.72472	ESTS	12.7
	118001	N52151	Hs.47447	ESTs .	12.7
	100448 130920	D87469 D50975	Hs.57652 Hs.75525	EGF-like-domain; multiple 2 calreticulin	12.6 12.6
25	131075	Y00757	Hs.2265	secretory granule; neuroendocrine protein 1 (12.6
	105496	AA256323	Hs.25264	DKFZP434N126 protein	12.5
	109235	AA193592	Hs.42300	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ	12.5
	118215 134388	N62195 M15841	Hs.77910 Hs.82575	3-hydroxy-3-methylglutaryl-Coenzyme A synthas small nuclear ribonucleoprotein polypeptide B	12.5 12.5
30	106897	AA489790	Hs.167496	RAN binding protein 6	12.4
	133050	S67325	Hs.63788	propionyl Coenzyme A carboxylase; beta polype	12.4
	109683	F09308	Hs.27607	ESTs	12.3
	121463 102876	AA411745 X03663	Hs.239681 Hs.174142	ESTs; Weakly similar to KIAA0554 protein [H.s colony stimulating factor 1 receptor; former	12.3 12.2
35	101804	M86699	Hs.169840	TTK protein kinase	12.2
	129017	H13108	Hs.107968	ESTs	12.1
	105812	AA394126	Hs.20814	ESTs; Highly similar to CGI-27 protein (H.sap	12.1
	106459 107059	AA449741 AA608545	Hs.4029 Hs.23044	glioma-amplified sequence-41 RAD51 (S. cerevisiae) homolog (E coli RecA ho	12.0 12.0
40	107080	AA609210	Hs. 19221	ESTs	12.0
	110799	N26101	Hs.7838	Human ring zinc-finger protein (ZNF127-Xp) ge	12.0
	112253	R51818	Hs.104222	Homo saplens mRNA; cDNA DKFZp566L034 (from cl	12.0 12.0
	116760 120314	H11054 AA194166	Hs.155342 Hs.221040	protein kinase C; delta KIAA1038 protein	12.0
45	123005	AA479726	Hs.105577	ESTs	12.0
	132572	AA448297	Hs.237825	signal recognition particle 72kD	12.0
	110561 101923	H59617 S75256	Hs.5199	ESTs; Weakly similar to UBIQUITIN-CONJUGATING HNL=neutrophii lipocalin [human, ovarian canc	12.0 11.9
	134992	H05625	Hs.92414	ESTs	11.8
50	105516	AA257971	Hs.21214	ESTs	11.8
	105248	AA226968	Hs.22826	ESTs	11.7
	109130 115955	AA172040 AA446121	Hs.20161 Hs.44198	ESTs; Weakly similar to IgE receptor beta sub Homo sapiens BAC clone RG054D04 from 7q31	11.7 11.7
	116135	AA460314	Hs.94179	ESTs	11.7
55	116284	AA487252	Hs.237809	ESTs; Weakly similar to hypothetical protein	11.7
	132384	AA479933	Hs.46967	Human DNA sequence from clone 167A19 on chrom	11.7 11.7
	134753 125136	Y09216 W31479	Hs.173135 Hs.129051	dual-specificity tyrosine-(Y)-phosphorylation ESTs	11.7
	133928	N34096	Hs.7766	ubiquitin-conjugating enzyme E2E 1 (homologou	11.6
60	117395	N26330	Hs.93701	ESTs	11.5 11.5
	127007 130567	AA299360 L07493	Hs.1608	EST11857 Uterus tumor I Homo saplens cDNA 5 replication protein A3 (14kD)	11.5
	135073	AA452000	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (from c	11.5
~~	115140	AA258030	Hs.55356	ESTs; Weakly similar to supported by GENSCAN	11.4
65	115536	AA347193	Hs.62180	ESTs	11.4
	133240 106521	D31161 AA453431	Hs.68613 Hs.14732	ESTs malic enzyme 1; NADP(+)-dependent; cytosolic	11.3 11.3
	107674	AA011027	Hs.41143	KIAA0581 protein	11.3
70	114149	Z38814	Hs.27196	ESTs .	11.3
70	132478	H20906	Hs.49500	KIAA0746 protein cell adhesion molecule with homology to L1CAM	11.2 11.2
	104252 102436	AF002246 U46499	Hs.210863 Hs.790	microsomal giutathione S-transferase 1	11.2
	106726	AA465339	Hs.7141	ESTs	11.2
75	100116	D00654	Hs.77443	actin; gamma 2; smooth muscle; enteric	11.2
75	110970 130417	N51374 U58522	Hs.96870 Hs.155485	Homo sapiens mRNA full length insert cDNA clo huntingtin-Interacting protein 2	11.2 11.2
	132906	AA142857	Hs.234896	ESTs; Highly similar to germinin (H.sapiens)	11.2
	107853	AA024427	Hs.59461	DKFZP434C245 protein	11.2
80	103467	Y00451	Hs.78712	aminolevutinate; delta-; synthase 1	11.1 11.1
UU	100438 102654	D87448 U68494	Hs.91417 Hs.24385	topolsomerase (DNA) II binding protein Human hbc647 mRNA sequence	11.1
	103172	X68742	Hs.116774	integrin; alpha 1	11.1
	106856	AA486183	Hs.15839	ESTs; Weakly similar to similar to oxysterol-	11.1
	108255	AA063157	Hs.172608	ESTs	11.1

	124308	H93575	Hs.227146	Homo saplens mRNA; cDNA DKFZp564J142 (from cl	11.1
	129057	X62466	Hs.214742	CDW52 antigen (CAMPATH-1 antigen)	11.1
	128845	AA455658	Hs.10649	basement membrane-induced gene	11.1
_	129025	AA420992	Hs.103441	ESTs; Weakly similar to testicular taklin 81-	11.0
5	107638	AA009528	Hs.42743	ESTs; Wealdy similar to predicted using Genef	11.0
	134480	AA024664	Hs.83916	NADH dehydrogenase (ubiquinone) 1 alpha subco	11.0
	115262	AA279112	Hs.88594	ESTs	11.0
	102580	U60808	Hs.152981	CDP-diacylgtycerol synthase (phosphatidate cy	10.9
	106614	AA458934	Hs.179912	ESTs	10.9
10	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein [H.sa	10.9
	115764	AA421562	Hs.91011	anterior gradient 2 (Xenepus laevis) hornolog	10.9
	121770	AA421714	Hs.11469	KIAA0896 protein	10.9
	132191	AA449431	Hs.158688	KIAA0741 gene product	10.9
	133214	Y10659	Hs.250911	interteukin 13 receptor; alpha 1	10.9
15	133914	N32811	Hs.77542	ESTs	10.8
	101973	S82597	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	10.8
	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	10.8
	104147	AA451992	Hs.226799	ESTs; Highly similar to HSPC039 protein (H.sa	10.8
	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from cl	10.8
20	115881	AA435577	Hs.184942	G protein-coupled receptor 64	10.8
~~	129950	M31516	Hs.1369	decay accelerating factor for complement (CD5	10.8
	132783	N74897	Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide	10.8
	133784	AA214305	Hs.76173	ESTs	10.8
	134248	AA292677	Hs.80624	ESTs	10.8
25	105565	AA278302	Hs.18349	ESTs; Weakly similar to partial CDS [C.elegan	10.8
23	127999	AA837495	Hs.69851	ESTs; Weakly similar to Wiskott-Aldrich syndr	10.8
	108040	AA041551	Hs.48644	ESTs	10.7
	130367	Z38501	Hs.8768	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ	10.7
	108539	AA084677	Hs.54558	ESTs; Weakly similar to protein B [H.sapiens]	10.7
30	111345	N89820	Hs.14559	ESTs	10.7
	115583	AA398913	Hs.45231	LDOC1 protein	10.7
	128965	T17440	Hs.107418	ESTs	10,7
	101396	M15796	Hs.78996	proliferating cell nuclear antigen	10.6
	132164	U84573	Hs.41270	procollagen-lysine; 2-oxoglutarate 5-dioxygen	10.6
35	101275	L37936	Hs.3273	Ts translation elongation factor; mitochondri	10.6
	104660	AA007160	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (from cl	10.6
	108609	AA100694	Hs.69499	Human DNA sequence from BAC 15E1 on chromosom	10.6
	112041	R43300	Hs.22929	ESTs	10.6
	114208	Z39301	Hs.7859	ESTs	10.6
40	118537	N67974	Hs.75431	fibrinogen; gamma polypeptide	10.6
	106919	AA490885	Hs.21766	ESTs	10.6
	115984	AA447687	Hs.91109	ESTs	10.6
	105538	AA258860	Hs.32597	ring finger protein (C3H2C3 type) 6	10.6
	102200	U21551	Hs.157205	branched chain aminotransferase 1; cytosolic	10.5
45	116710	F10577	Hs.70312	ESTs	10.5
	119780	W72967	Hs.191381	ESTs: Wealty similar to hypothetical protein	10.5
	112996	T23539	Hs.7165	zinc finger protein 259	10.5
	103029	X54489	Hs.789	GRO1 oncogene (melanoma growth stimulating ac	10.5
~~	101255	L34600	Hs.149894	mitochondrial translational initiation factor	10.4
50	107032	AA599472	Hs.247309	succinate-CoA ligase; GDP-forming; beta subun	10.4
	125617	A1287461	Hs.164950	ESTs	10.4
	131475	Z39053	Hs.27263	ESTs	10.4
	132073	N67408	Hs.38516	ESTs	10.4
	101469	M22877	Hs.169248	Human somatic cytochrome c (HCS) gene; comple	10.3
55	102437	U46569	Hs.221986	aquaporin 5	10.3
	104301	D45332	Hs.6783	ESTs	10.3
	127236	AI341818	Hs.98658	budding uninhibited by benzimidazoles 1 (yeas	10.3
	101465	M22612	Hs.241395	protease; serine; 1 (trypsin 1)	10.3
60	113805	W42957	Hs.250617	ESTs	10.2
60	133536	Y00264	Hs.177486	amytoid beta (A4) precursor protein (protease	10.2
	109799	F10770	Hs.180378	Homo saptens clone 669 unknown mRNA; complete	10.2
	113523	T90037	Hs.16686	ESTS	10.2
	116195	AA465148	Hs.72402	ESTs	10.2
15	134542		Hs.85112	insulin-like growth factor 1 (somatomedin C)	10.2
65	125298	Z39255	Hs.235350	YDD 19 protein	10.2
	119367		Hs.90905	ESTs	10.2
	134470		Hs.83758	CDC28 protein kinase 2	10.2
	134288		Hs.8117	ESTs	10.1
70	105127		Hs.11817	ESTs; Weakly similar to contains similarity t	10.1
70	110627		Hs.35225	ESTs; Weakly similar to MBNL protein [H.sapie	10.1
	115188		Hs.88367	ESTs	10.1
	132632		Hs.5398	guarine-monophosphate synthelase	10.1
	124049		Hs.74519	primase; polypeptide 2A (58kD)	10.1
75	100079		Hs.23311	KIAA0367 protein	10.0
15	113987 117280		Hs.9641	ESTs; Moderately similar to COMPLEMENT C10 SU ESTs	10.0 10.0
	117200	1744.107	Hs.172241	20.0	10.0

TABLE 9B: Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers 80

> Pkøy 100661 CAT Number 23182_1

	101332	25130_1	J04088 NM_001067 AF071747 AJ011741 N85424 AL042407 AA218572 BE296748 BE083981 AL040877 AW499918 AW675045 H17813 BE081283 AA670403 AW504327 BE094229 AA104024 AJ471482 AJ970337 AA737616 AJ827444 AW003286 AJ742333 AJ344044 AJ765634 AJ948838 AVY235336 AW172827 AA095289 BE045383 AJ734240 W16699 AJ660329 AJ289433 AA933778 AW469242 AA468838
5			AA806983 AA625873 W78031 BEZ06307 AA550803 AI743147 AI990075 AA948274 AA129533 AI635399 AA605313 AI624669 AW594319
3			A)221834 A)337434 AA307706 BE550282 A)760467 A)630636 A)221521 AW674314 AW078889 A)933732 A)686969 A)186928 AW074595 A)127486 A)079644 A)910815 H)7814 AA310903 AW137854 T)9279 AA026682 AA306035 AW383390 AW383389 AW383422 AW383427
			AW383395 H09977 AA306247 AA352501 AW403639 F05421 AA224473 AA305321 H93904 AA089612 AW391543 AW402915 AW173382
			AW402701 AW403113 R94438 N73126 H93466 AA090928 AA095051 T29025 AW951071 L47277 L47276 A375913 BE384156 W24652 AA746288 AA568223 BE090591 H93033 N57027 AA504348 AA327653 AW959913 N53767 AA843715 A1453437 AW263710 A1076594
10			AAS83483 AW873194 AW575166 Al128799 Al603319 AL042776 AW074313 Al887722 Al032284 AA447521 Al123885 N29334 Al354911
			AW090687 AA236763 AA435535 AA236910 AA047124 AA236734 AW514610 H93467 AA962007 AI446783 AA127259 AI613495 AI686720 AI587374 AA936731 AA702453 AI859757 AA216786 AI251819 AI469227 AA806022 AI092324 N71868 AA968782 AA236919
			AA809450 AA227220 AA765284 A1192007 AA768810 AA805794 AA729280 AA806238 AW768817 N71879 A050686 AA505822
15			AA668974 Al688160 BE045915 AW466315 AA731314 AA649568 AAB34316 AW591901 AW063876 AW294770 Al300266 Al336094 Al560380 AA721755 H09978 D20305 D29155 AW821790 BE150864 F01675 Al457474 AW466316 AA550969 AA630788
	100824	5_36	Al393237 Al521317 Al761348 AF025841 D43968 AW994987 L34598 AF025841 D89789 D89788 D89790 AW998932 Al971742 Al310238
			X90976 AW139668 AW674280 AI365552 AA877452 AV657554 C75229 AA376077 AI798056 AW609213 W25586 H30149 BE075089 BE07519D AW580858 H99598 AA425238 AA133916 AW363478 BE158121 BE158127 AW467960 BE158135 BE158126 BE168145
20			N92860 AA847246 Al961688 Al361423 AA878154 AA043767 Al863712 Al559226 AW339007 Al371266 Al368901 AA046624 AA134739
20			AW449154 AA130232 Al458720 AA962511 Al700627 R70437 AW004008 AA045229 Al671572 H99599 AA043768 Al685454 Al871685 N29937 X90977 AA524240 Al142114 Al825750 Al567805 Al631365 Al347893 AA134740 F20669 AA046707 AW793216 AW963298
			AW959380 AA363265 AI784593 AI268201 R69451 AV657618 AI695588
	101714	30725_1	M68874 AL022147 M72393 AL049797 BE439441 T27650 Al766240 AW150345 AW778943 Al627464 BE439479 AA587049 Al277900 Al984983 Al630935
25	101809	32963_1	M86849 AA315280 NM_004004 AA315269 BE142653 AA461400 AW802042 BE152893 AW383155 AA490688 AW117930 AW384563
			AW384544 AW384566 AW378307 AW378323 AW839085 AA257102 AW378317 AW276060 AW271245 AW378298 AW384497 AI598114 AW264544 AI018136 AW021810 AA961504 AW086214 AW771489 AW192483 AI290266 AW192488 AW384490 AW007451 AW890895
			AA554460 AA613715 AW020066 AJ783695 AJ589498 AJ917637 AW264471 AW384491 AJ816732 AW368530 AW368521 AW368463
30			AA461087 Al341438 Al970613 Al040737 Al418400 AA947181 AA962716 Al280695 AW769275 AW023591 Al160977 AA055400 N71882 AA490466 AW243772 AW316636 Al076554 AW511702 N69323 H88912 AA257017 Al952506 H88913 Al912481 AA600714 BE465701
			N64149 C00523 N64240 AA677120
	101923	30543_1	X99133 X83006 W38398 AA401137 AA298242 AA366738 AA308126 AW583781 AA298668 AW845024 BE140204 AW845005 U47734 AA837575 NM 005564 AA329732 AA421943 BE171567 S75256 AI750047 AI762213 AA100735 AW612993 AI474120 AW062884
35			A1940001 AW062852 AW062899 BE 182639 AW778875 AA528093 AW517424 A1939989 AA076188 BE 182636 AA169569 AA167439
33			A1283967 AA167783 AA076140 A1749649 AA166792 A1708618 AA400973 AA514773 AA514789 AA164458 AA167440 AA074845 AA421944 AA514874 AA079557 AA102361 AA587027 AA642930 AA878029 AA164459 AW176400 AW475086 AA857522 AA148193
			AA838234 AA593897 Al284506 AW193324 AA148194 AW583341 Al669077 AW264913 AA074902 Al680515 AA169874 AA169614
			AA079651 AW591737 AW190644 AA076565 AA662747 AA075896 AA535642 N27757 Al306666 AA074727 N79823 AA524360 Al826800 AA173827 BE140374 BE004062 AW265060 BE184103 Al199258 AA857853 AA299459 AA837890 Al626104 AA503624 BE183618
40			BE183717 AA573267 AI833071 AW270590 AA506601 BE004010 AA837854 AI675895 AI810491 AI184883 AW664712 AA076046
			AA515574 AW352267 A1797418 AA172395 A1749194 A1559933 AA502597 AA321220 A1866124 A1695633 AA494293 AW085635 AA165649 AA165663
	127007	19921_1	AB037771 BE005079 AA394189 AW959650 AA299360 AA398081 W37627 AW750817 AW630138 AI522058 BE326323 AA374890
45			AW418534 AW997510 AW995214 AW959649 AA504426 D79223 D79621 A1276062 A1973155 AA653470 AA337887 A1382521 AW084427 D57078 W37628 A1610506 Z30230 A1567034 AA766091 H25097 H25078 AW991507 AA319736
	110769	229824_1	BE000931 AA541787 AW173038 AA327931 AW117510 AW664665 Al066624 Al478955 Al863075 Al073744 AA490170 R46651 Al075653
	120695	9683_3	F02865 N22222 AW972956 AA976503 AI917802 AA953664 AA404613 AA428771 BE280542 AW194691 AI927301 AI740458 AI796100 AI935603 AW052210
50		_	AA970201 Al633384 AA425910 Al017004 Al241295 AA402816 AA291468
20			

Table 10A lists about 733 genes up-regulated in ovarian cancer compared to normal adult lissues. These were selected from 59680 probesets on the Affymetrix/Eos-Hu03 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult lissues was greater than or equal to 3.0. The "average" ovarian cancer level was set to the about the 80th percentile amongst various ovarian cancers. The "average" normal adult tissue level was set to the 90th percentile value amongst various non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst the non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

TABLE 10A: ABOUT 733 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES

Pikey: Primekey
Ex. Accr.: Exemplar Accession
UG ID: UniGene ID
Title: UniGene title
ratio: ratio tumor vs normal tissues 60

55

65	Pkey	Ex. Accn	UGID	Title	ratio
	432938	T27013	Hs.3132	steroidogenic acute regulatory protein	56.1
	418179	X51630	Hs.1145	Wilms tumor 1	33.5
	400292	AA250737	Hs.72472 ·	BMPR-lb; bone morphogenetic protein receptor	30.0
	452838	U65011	Hs.30743	Preferentially expressed antigen in melanoma	29.5
70	415511	AJ732617	Hs.182362	ESTs	28.1
	422956	BE545072	Hs.122579	ESTs	28.1
	410929	H47233	Hs.30643	ESTs	27.4
	400289	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin 2)	25.2
	449034	AI624049	Hs.277523	gb:ts41a09.x1 NCI_CGAP_Ut1 Homo sapiens cDNA	23.7
75	427585	D31152	Hs.179729	collagen; type X; alpha 1 (Schmid metaphyseal	22.7
	428392	H10233	Hs.2265	secretory granule, neuroendocrine protein 1	21.9
	448243	AW369771	Hs.77496	ESTs	21.3
	430691	C14187	Hs.103538	ESTs	21.2
	444783	AK001468	Hs.52180	ESTs	20.8
80	407638	AJ404672	Hs.288693	EST	20.1
	423739	AA398155	Hs.97600	ESTs	19.7
	436982	AB018305	Hs.5378	spondin 1. (f-spondin) extracetlular matrix p	19.0
	451110	A1955040	Hs.301584	ESTa	18.8
	426427	MB6699	Hs.169840	. TTK protein kinase	18.7
				•	

	428227	AA321649	Hs.2248	INTERFERON-GAMMA INDUCED	18.3
	419854	AW664873	Hs.87836	Homo sapiens PAC clone RP5-1087M19 from 7q11.	18.3
	439706		Hs.59761	ESTs	18.3
	428579				17.4
5			Hs.184942	G protein-coupled receptor 64	
J	410247		Hs.61345	RU2S	17.0
	428153		Hs.98367	hypothetical protein FLJ22252 similar to SRY-	16.9
	415076	NM_000857	Hs.77890	guanylate cyclase 1, soluble, beta 3	16.6
	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, homolo	16.6
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related kinase	16.2
10	423685	BE350494	Hs.49753	Homo sapiens mRNA for KIAA1561 protein, parti	15.9
	428187		Hs.285529	ESTs	15.9
	438817	AI023799	Hs.163242	ESTs	15.9
	424906	AI566086	Hs.153716	Homo saplens mRNA for Hmob33 protein, 3' untr	15.9
1.5	407721	Y12735	Hs.38018	dual-specificity tyrosine-(Y)-phosphorylation	15.7
15	412723	AA648459	Hs.179912	ESTs	15.3
	424717	H03754	Hs.152213	wingless-type MMTV integration site family, m	15.2
	443646	AI085198	Hs.298699	ESTs	15.1
	424345	AK001380	Hs.145479	Homo sapiens cDNA FLJ10518 fis, clone NT2RP20	14.8
	428976	AL037824	Hs.194695	ras homolog gene family, member I	14.6
20					14.3
20	418738	AW388633	Hs.6682	solute carrier family 7, member 11	
	428479	Y00272	Hs.184572	cell division cycle 2, G1 to S and G2 to M	14.2
	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed protein p	14.1
	427356	AW023482	Hs.97849	ESTs	.13.9
	418601	AA279490	Hs.86368	calmegin `	13.8
25	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	13.7
	428532	AF157326	Hs.184786	TBP-interacting protein	13.6
	402408			0	13.6
		Al375572	Hs.172634	ESTs; HER4 (c-erb-84)	13.4
	447350				
20	451807	W52854	Hs.27099	DKFZP564J0863 protein	13.4
30	423575	C18863	Hs.163443	ESTs	13.2
	443211	AI128388	Hs.143655	ESTs	13.2
	437872	AK002015	Hs.5887	RNA binding motif protein 7	13.0
	451659	BE379761	Hs.14248	ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAM	12.7
	452904	AL157581	Hs.30957	Homo sapiens mRNA; cDNA DKFZp434E0626 (from c	12.7
35	442655	AW027457	Hs.30323	ESTs	12.5
55				ESTs	12.4
	452096	BE394901	Hs.226785		
	414972	BE263782	Hs.77695	KIAA0008 gene product	12.3
	435039	AW043921	Hs.130526	ESTs	12.3
40	447033	Al357412	Hs.157601	EST - not in UniGene	12.3
40	433764	AW753676	Hs.39982	ESTs	12.2
	442611	BE077155	Hs.177537	ESTs	12.0
	408562	AJ436323	Hs.31141	Homo sapiens mRNA for KIAA1568 protein, parti	11.9
	427344	NM_000869	Hs.2142	5-hydroxytryptamine (serotonin) receptor 3A	11.8
	421478	AI683243	Hs.97258	ESTs	11.8
45	426635		Hs.129327	ESTS	11.8
73		BE395109			
	415989	A1267700	Hs.111128	ESTs	11.7
	433159	AB035898	Hs.150587	kinesin-like protein 2	11.5
	452249	BE394412	Hs.61252	ESTs	11.4
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	11.3
50	442353	BE379594	Hs.49136	ESTs	11.3
	447700	Al420183	Hs.171077	ESTs, Weakly similar to similar to serine/thr	11.3
	450480	X82125	Hs.25040	zinc finger protein 239	11.3
	425176	AW015644	Hs.301430	ESTs. Moderately similar to TEF1_HUMAN TRANSC	11.2
					11.2
55	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-relate	
"	433133	AB027249	Hs.104741	PDZ-binding kinase; T-cell originated protein	11.1
	445258	Al635931	Hs.147613	ESTs	11.1
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	11.0
	429782	NM_005754	Hs.220689	Ras-GTP ase-activating protein SH3-domain-bind	10.9
	404567			0	10.8
60	423811	AW299598	Hs.50895	homeo box C4	10.7
	452891	N75582	Hs.212875	ESTs, Weakly similar to KIAA0357 [H.saplens]	10.6
	441627	AA947552	Hs.58086	ESTs	10.3
	443555	N71710	Hs.21398	ESTs, Moderately similar to GNPI_HUMAN GLUCOS	10.3
			Hs.73625	RAB6 interacting, kinesin-like (rabkinesin6)	10.2
65	412140	AA219691			
UJ	427469	AA403084	Hs.269347	ESTs	10.1
	415227	AW821113	Hs.72402	ESTs	10.1
	445413	AA151342	Hs.12677	CGI-147 protein	10.0
	425734	AF056209	Hs.159396	peptidylgfycine alpha-amidating monooxygenase	10.0
	421451	AA291377	Hs.50831	ESTs	10.0
70	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leucine h	9.8
	427878	C05766	Hs.181022	CGI-07 protein	9.7
	408460	AA054726	Hs.285574	ESTs	9.7
	422972	N59319	Hs.145404	ESTs	9.7
		AI583187			9.7
75	443715		Hs.9700	cyclin E1	
75	440901	AA909358	Hs.128612	ESTs	9.6
	453160	AI263307	Hs.146228	ESTs	9.6
	415211	R64730.comp		ESTs; Highly similar to SPERM SURFACE PROTEIN	9.5
	425282	AW163518	Hs.155485	huntingtin interacting protein 2	9.5
	400250			0	9.5
80	410568	AW162948	Hs.64542	pre-mRNA cleavage factor Im (68kD)	9.3
	442957	AI949952	Hs.49397	ESTs	9.3
	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1 (yeas	9.3
	434401	AI864131	Hs.71119	Putative prostate cancer tumor suppressor	9.2
	453628			ESTs	9.1
	*********	AW243307	Hs.170187	, Coro	3.1

	452055	A1277.424	11- 000770	COTA	0.4
	424086	AI377431 AI351010	Hs.293772 Hs.102267	ESTs lysyl oxidase	9.1 9.1
	442875	BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA sequence	9.1
	416208	AW291168	Hs.41295	ESTs	9.0
5	407168	R45175	Hs.117183	gb:yg40f01.s1 Soares Infant brain 1NIB Homo s	9.0
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	8.9
	409269	AA576953	Hs.22972	Homo sapiens cDNA FLJ13352 fis, clone OVARC10	8.9
	433527	AW235613	Hs.133020	ESTs	8.9
10	409928	AL137163	Hs.57549	hypothetical protein dJ47384	8.8
10	423020	AA383092	Hs.1608	replication protein A3 (14kD)	8.7
	425665 443204	AK001050 AW205878	Hs.159066	ESTS	8.6 8.6
	449433	A1672096	Hs.29643 Hs.9012	Homo sapiens cDNA FLJ13103 fis, clone NT2RP30 ESTs	8.6
	453878	AW964440	Hs.19025	ESTs	8.6
15	450505	NM_004572	Hs.25051	plakophilin 2	8.6
	407001	U12471	Hs.247954	Human thrombospondin-1 gene, partial cds	8.5
	414315	Z24878		gb:HSB65D052 STRATAGENE Human skeletal muscle	8.5
	425492	AL021918	Hs.158174	zinc finger protein 184 (Kruppel-like)	8.5
20	435181	AA669339	Hs.28838	KIAA1571 protein	8.5
20	436396	A1683487	Hs.299112	Homo sapiens cDNA FLJ11441 fis, clone HEMBA10	8.5
	418384	AW149266	Hs.25130	ESTs	8.4
	453370	AI470523	Hs.182356	ESTs, Moderately similar to translation initi	8.4
	409041	AB033025	Hs.50081	KIAA1199 protein ESTs	8.4 8.4
25	447078 448674	AW885727 W31178	Hs.301570 Hs.154140	ESTs	8.3
23	433393	AF038564	Hs.98074	atrophin-1 interacting protein 4	8.3
	433496	AF064254	Hs.49765	VERY-LONG-CHAIN ACYL-COA SYNTHETASE	8.3
	421155	H87879	Hs.102267	lysyl oxidase	8.2
	438394	BE379623	Hs.27693	CGI-124 protein	8.2
30	400298	AA032279	Hs.61635	STEAP1	8.1
	409092	A1735283	Hs.172608	ESTs	8.1
	440250	AA876179	Hs.134650	ESTs	8.1
	409143	AW025980	Hs.138965	ESTs	8.1
35	407771	AL138272	Hs.62713	ESTs	8.1
33	419088	AI538323	Hs.77496	ESTs	8.1
	431725	X65724	Hs.2839	Nomie disease (pseudoglioma) ESTs	7.9 7.9
	431750 435635	AA514986 AF220050	Hs.283705 Hs.181385	uncharacterized hematopoietic stem/progenitor	7.9
	441826	AW503603	Hs.129915	phosphotriesterase related	7.9
40	417728	AW138437	Hs.24790	KIAA1573 protein	7.8
	418845	AA852985	Hs.89232	chromobox homolog 5 (Drosophila HP1 alpha)	7.8
	421039	NM_003478	Hs.101299	cullin 5	7.8
	446999	AA151520	Hs.279525	hypothetical protein PRO2605	7.8
40	429609	AF002246	Hs.210863	cell adhesion molecule with homology to L1CAM	7.8
45	415139	AW975942	Hs.48524	ESTa	7.7
	450192	AA263143	Hs.24596	RAD51-interacting protein	7.7
	423992	AW898292	Hs.137206	Homo sapiens mRNA; cDNA DKFZp564H1663 (from c	7.7
	436211	AK001581	Hs.80961	polymerase (DNA directed), gamma	7.7 7.5
50	450101 426921	AV649989 AA037145	Hs.24385 Hs.172865	Human hbc647 mRNA sequence cleavage stimulation factor, 3' pre-RNA, subu	7.5
-	433330	AW207084	Hs.132816	ESTs	7.5
	439759	AL359055	Hs.67709	Homo saplens mRNA full length insert cDNA clo	7.5
	427660	AI741320	Hs.114121	Homo saplens cDNA: FLJ23228 fis, clone CAE066	7.5
	422095	AI868872	Hs.288966	ceruloplasmin (ferroxidase)	7.5
55	436476	AA326108	Hs.53631	ESTs	7.5
	412170	D16532	Hs.73729	very low density lipoprotein receptor	7.4
	428954	AF100781	Hs.194678	WNT1 Inducible signaling pathway protein 3	7.4
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	7.4
60	439262	AA832333	Hs.124399	ESTs	7.4
UU	435420 422892	AI928513 AA988176	Hs.59203	ESTs	7.3 7.3
		AJ301740	Hs.121553 Hs.173381	hypothetical protein FLJ20641 dihydropyrtmidinase-like 2	7.3
	457030 411571	AA122393	Hs.70811	hypothetical protein FLJ20516	7.2
	409916	BE313625	Hs.57435	solute carrier family 11 (proton-coupled diva	7.2
65	418007	M13509	Hs.83169	Matrix metalloprotease 1 (interstitlal collag	7.2
	420900	AL045633	Hs.44269	ESTs .	7.2
	424001	W67883	Hs.137476	KIAA1051 protein	7.2
	400301	X03635	Hs.1657	Estrogen receptor 1	7.1
70	400238			0	7.1
70	413573	AJ733859	Hs.149089	ESTs	7.1
	428071	AF212848	Hs.182339	transcription factor ESE-3B	7.1
	447164 453062	AF026941 AW207538	Hs.17518	Homo saptens cig5 mRNA, partial sequence ESTs	7.1 7.1
	453062 456965	AW207538 AW131888	Hs.61603 Hs.172792	ESTs, Weakly similar to hypothetical protein	7.1
75	442500	A1819068	Hs.209122	ESTs	7.1
	446142	A1754693	Hs.145968	ESTs	7.0
	417791	AW965339	Hs.111471	ESTs	7.0
	418524	AA300576	Hs.85769	acidic 82 kDa protein mRNA	7.0
00	451797	AW663858	Hs.56120	ESTs	7.0
80	452909	NM_015368	Hs.30985	pannexin 1	7.0
	453616	NM_003462	Hs.33846	dynein, exonemal, light intermediate polypept	7.0
	436281	AW411194	Hs.120051	ESTs	7.0
	449897	AW819642	Hs.24135	transmembrane protein vezatin; hypothetical p	6.9 6.9
	414142	AW368397	Hs.150042	ESTs	0.5

PCT/US02/19297 WO 02/102235

10 41 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45	0908 22971 33597 55138 57478 55138 67478 60227 6608 68167 68167 68168 68229 100292 15716 100292 15716 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922 14743 16922	D26488 AL049974 AL949974 AL949974 AL990172 NM_005824 NM_003616 A809284 NT5217 R28363 AL478629 AF015592 AB020641 AA843087 N59294 AA425562 AL3602070 AL360204 AA045648 AK001826 X54942 N73885 AA433988	Hs.90315 Hs.100261 Hs.91789 Hs.117183 Hs.78045 Hs.118811 Hs.155545 Hs.102456 Hs.61152 Hs.257846 Hs.24286 Hs.158465 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.124194 Hs.3768 Hs.124194 Hs.3768 Hs.124194 Hs.3768 Hs.125245 Hs.83768 Hs.124169 Hs.98502	KIAA0007 protein Homo sapiens mRNA; cDNA DKFZp564B222 (from cl ESTs ESTs fissue factor pathway Inhibitor 2 TFP12 ESTs 37 kDa leucine-rich repeat (LRR) protein survival of motor neuron protein interacting exostoses (multiple)-like 2 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	8.98888777766666665555555554444444444444444
5 41 41 43 42 42 42 42 42 42 42 43 43 44 44 41 41 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	22971 33597 55138 877478 15292 11184 10227 166608 18167 16508 18167 16509 16509 1671 1671 1671 1671 1671 1671 1671 167	AB73878 AW302865 C18356 AL390172 NM_005824 NM_005824 N75217 R28363 AU478629 AF015592 AB020641 AA843087 N59294 AA425562 AI620270 AL360204 AA045648 AK001826 X54942 N73885 AA43988	Hs.91789 Hs.117183 Hs.78045 Hs.118811 Hs.155545 Hs.10245 Hs.61152 Hs.257846 Hs.257846 Hs.25853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.378141 Hs.12887 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs ESTs ESTs Tstsue factor pathway inhibitor 2 TFP12 ESTs 37 kDa leucine-rich repeat (LRR) protein survival of motor neuron protein interacting exastoses (multiple)-like 2 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.8887776666666555555554444444666666666666
5 41 41 41 42 42 42 42 43 43 44 44 44 44 44 45 41 41 45 45 45 45 45 45 45 45 45 45 45 45 45	3597 5138 15138 15139 1	AW302885 C18356 AL390172 NM_005824 NM_003616 A8009284 N75217 R28363 AI478629 AF015592 AB020641 AA843087 N59294 AA425562 AI520270 AL360204 AA045548 AK001826 X73885 AA433988 AA243642 N73885 AA433988 AA243642 N73885 AA243642 N73885 AA243642 N73885 AA243642 AA255920 N30256 AI140683 AB002364 HB7648 BE326877 AA678816	Hs.117183 Hs.78045 Hs.78045 Hs.118811 Hs.155545 Hs.102455 Hs.61152 Hs.257846 Hs.257846 Hs.158465 Hs.158465 Hs.128459 Hs.283853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.1817 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.23922	ESTs fissue factor pathway inhibitor 2 TFP12 EST6 37 kDa leucine-rich repeat (LRR) protein survival of motor neuron protein interacting exostoses (multiple)-like 2 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ADAM-TS3; a disintegrin-like and metallopr	6.8 8 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 6 6 5 6
10 41 44 44 45 45 45 45 45 45 45 45 45 45 45	17478 15292 151184 10227 16608 18167 15459 15291 10011 100292 15716 14773 15608 18122 15716 147743 15638 159901 18758 159901 18758 159901 18759 19503 10149 101618	AL390172 NM_005824 NM_005816 ABD09284 NT5217 R28363 A1478629 AF015592 AB020641 AA843087 N59294 AA425562 AI520270 AL3602070 AL360204 AA045648 AK001826 X54942 N73885 AA43988	Hs.118811 Hs.15545 Hs.102456 Hs.61152 Hs.257846 Hs.24286 Hs.158465 Hs.28853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.11817 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.23922	ESTs 37 kDa leuche-rich repeat (LRR) protein survival of motor neuron protein interacting exostoses (multiple)-like 2 ESTs ESTs ESTs CDC7 (cell division cycle 7, S. cerevisiae, h PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 6.6 6.6 6.6 6.5 6.5 6.5 6.5 6.5
10 41 44 43 43 44 45 45 45 45 45 45 45 45 45 45 45 45	15292 11184 100227 16608 18167 15459 152291 10011 100111 10011 10011 10011 10011 10011 10011 100292 15716 14770 18122 15716 14770 18122 15716 14770 18172 18203 18303 18405 185097 13619 1361	NM_005824 NM_003616 AB009284 NT5217 R28363 A1478629 AF015592 AB020641 AA843087 N59294 AA425562 AI620270 AL360204 AA045648 AK001826 XX001826 XX001826 XX001826 AA243642 AA255920 N30256 AI140683 AB002364 H87648 BE326877 AA678816	Hs.155545 Hs.102456 Hs.102456 Hs.61152 Hs.257846 Hs.24286 Hs.158465 Hs.128853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.198502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.23922	37 kDa leucine-rich repeat (LRR) protein survival of motor neuron protein interacting exostoses (multiple)-like 2 ESTs ESTs ESTs ESTs ESTs CDC7 (cell division cycle 7, S. cerevisiae, h PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.rl Soares_total_fetus_Nb2HFB_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothatical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 6.6 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5
10 41 44 43 44 45 41 41 42 20 43 45 40 41 45 41 40 44 45 45 45 45 45 45 45 45 45 45 45 45 4	21184 0227 16608 18167 15459 152291 15716 24770 18122 19820 14743 18122 19820 14743 19820 14743 19901 128758 14552 14599 19503 19014 19108 19203 19414 19108 19203 19486	NM_003616 AB009284 NT5217 R28363 AI478629 AF015592 AB020641 AA843087 N59294 AA425562 AI620270 AL360204 AA045648 AK001826 X54942 NT3885 AA433988 - AA243642 AA255920 AA255920 AA264648 AB002364 AB002364 AB002364 AB002364	Hs.102455 Hs.61152 Hs.61152 Hs.257846 Hs.24286 Hs.158465 Hs.158465 Hs.15856 Hs.124194 Hs.301141 Hs.129837 Hs.283353 Hs.124169 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.23922	survival of motor neuron protein interacting exostoses (multiple)-like 2 ESTs ESTs ESTs ESTs ESTs ESTs ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb;zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb;zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.7 6.6 6.6 6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5
15 41 43 44 45 45 45 45 45 45 45 45 45 45 45 45	16608 18167 18167 16291 10011 100192 15716 14770 18122 15716 14773 150538 189901 18758 189901 18758 19903 10149 19108 15097 15097 15097 15097 15097 15097 15098	N75217 R28363 A1478629 AF015592 AB020641 AA843087 N59294 AA425562 AI360204 AA045648 AK001826 X54942 N73885 AA433988 AA243642 AA255920 N30256 AI140683 AB002364 HB7648 BE326877 AA678816	Hs.257846 Hs.24286 Hs.158465 Hs.158465 Hs.158465 Hs.15853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.18117 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.33922	ESTs ESTs CDC7 (cell division cycle 7, S. cerevisiae, h PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_febus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.6 6.6 6.5 5.5 5.5 5.5 5.6 6.6 6.6 6.6
15 41 41 42 42 42 42 43 43 44 44 44 44 44 45 41 41 45 45 45 45 45 45 45 45 45 45 45 45 45	88167 15459 15459 10011 10292 15716 14770 18122 189820 14743 169820 14743 189820 14743 189820 14743 189820 14743 14859 19503 19108 1910	R28363 Al478629 ALFO15592 AB020641 AA843087 N59294 AA425562 AL620270 AL360204 AA045548 AK001826 XX4942 N73885 AA433988	Hs.24286 Hs.158465 Hs.158465 Hs.28853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.124169 Hs.1817 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.33922	ESTs ESTs CDC7 (cell division cycle 7, S. cerevisiae, h PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.6 6 6 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
15 41 41 41 42 42 42 42 43 43 43 44 44 44 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	15459 15291 10091 10092 15716 24770 18122 19820 14743 19820 14743 19820 14743 19820 14743 19820 14743 19820 14455 14599 19503 19	A1478629 AF015592 AF015592 A8843087 N59294 AA425562 A1620270 AL360204 AA045648 AK001826 X54942 N73885 AA433988 A2243642 AA255920 N30256 A1140683 AB002364 HB7648 BE326877 AA678816	Hs.158465 Hs.28853 Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.33922	ESTs CDC7 (cetl division cycle 7, S. cerevisiae, h PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
15 41 41 42 42 42 42 43 43 44 44 44 45 41 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	10011 10292	AB020641 AA843087 N59294 AA425562 AI3602070 AL360204 AA045648 AK001826 X54942 N73885 AA433988 AA243642 AA255920 N30256 AI140683 AB002364 HB7648 BE326877 AA678816	Hs.57856 Hs.124194 Hs.301141 Hs.129837 Hs.2833853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.27916 Hs.33922	PFTAIRE protein kinase 1 ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HFB_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.6 6.5 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
20 43 44 45 41 25 42 40 41 30 44 45 45 45 45 45 47 40 44 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	10292 15716 14770 181122 19820 14743 19820 14743 19901 18203 19901 19503 20149 19108	AA843087 N59294 AA425562 AI620270 AL360204 AA045548 AK001826 XX4942 N73885 AA433988 AA243642 AA255920 N30256 AI140683 AB002364 HBF648 BE326877 AA678816	Hs.124194 Hs.301141 Hs.129837 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gbtzw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 COC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.5 6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
20 43 44 45 45 41 30 44 45 45 45 40 44 45 45 45 40 44 45 45 41 41 45 45 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	15716 14770 188122 19820 14743 160638 18203 19901 18759 19503 20149 19108 19108 19273 19486 1948	N59294 AA425562 AA425562 AL360204 AA045548 AA045548 AX04584 N73885 AA433988 AA243642 AA255920 N30256 AL140683 AB002364 H87648 B85326877 AA678816	Hs.301141 Hs.129837 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	Homo sapiens cDNA FLJ11689 fis, clone HEMBA10 gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 COC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ESTs	6.5 6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
20 43 44 45 41 25 42 40 40 41 30 44 45 45 45 45 45 40 41 45 41 40 41 41 45 45 45 45 45 45 45 45 45 45 45 45 45	24770 18122 18122 18122 18203 14743 50638 18203 182758 14552 14599 10411 19108 19108 19411 19108 19411 19108	AA425562 Al620270 AL360204 AA045648 AK001826 X54942 N73885 AA433988 AA243642 AA255920 N30256 Al140683 AB002364 HB7648 BE326877 AA678816	Hs.129837 Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.23922	gb:zw46e05.r1 Soares_total_fetus_Nb2HF8_9w Ho ESTs Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs ESTs ADAM-TS3; a disintegrin-like and metallopr	6.5 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
20 43 44 45 41 25 42 40 41 45 45 45 40 41 45 45 45 45 45 45 45 45 45 45 45 45 45	39820 44743 50638 68203 89901 88758 94552 94559 99503 20149 10411 19108 19108 19273 34486 33381 21308	AL360204 AA045648 AK001826 XX4942 N73885 AA433988 AA243642 AA255920 N30256 AI140683 AB002364 HBC488816	Hs.283853 Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.23922	Homo sapiens mRNA full length insert cDNA clo nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo sapiens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
25 42 40 40 41 42 43 45 45 45 45 45 45 45 45 45 45 45 45 45 4	14743 50638 818203 399901 18758 04552 04599 19503 20149 19108 52097 33619 10273 34486 630381 21308	AA045648 AK001826 X54942 N73885 AA433988 AA243642 AA255920 N30256 A1140683 AB002364 H87648 BE326877 AA678816	Hs.11817 Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	nudix (nucleoside diphosphate linked molety X hypothetical protein FLJ11269 COC28 protein kinase 2 ESTs Homo saplens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4
45 41 42 42 42 43 44 45 45 45 40 41 41 44 45 41 45 41 45 41 45 41 45 41 41 42 43 44 44 45 45 46 47 48 48 48 48 48 48 48 48 48 48	50638 18203 39901 28758 24552 24599 19503 20149 19411 19108 19273 14486 1436 13381 11308	AK001826 XS4942 N73885 AA433988 AA243642 AA255920 N30256 AI140683 AB002354 H87648 BE326877 AA678816	Hs.25245 Hs.83758 Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	hypothetical protein FLJ11269 CDC28 protein kinase 2 ESTs Homo saplens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.5 6.5 6.4 6.4 6.4 6.4 6.4 6.4
25 42 40 40 41 30 44 45 45 45 45 40 44 41 45 41 45 45 45 45 46 47 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	39901 28758 34552 34599 19503 20149 10411 19108 52097 33619 10273 34486 34381 21308	N73885 AA433988 - AA243642 AA255920 N30256 AI140683 AB002364 H87648 BE326877 AA678816	Hs.124169 Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs Homo saplens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.5 6.4 6.4 6.4 6.4 6.4
25 42 40 41 30 44 45 45 45 40 44 41 45 41 45 41 45 41 45 42 42 42 43 43 44 44 45 45 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 4	28758 14552 14599 19503 20149 10411 19108 192097 19273 14486 14036 19381 121308	AA243642 AA255920 N30256 A140683 AB002364 HB7648 BE326877 AA678816	Hs.98502 Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	Homo saplens cDNA FLJ14303 fis, clone PLACE20 0 0 ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.4 6.4 6.4 6.4 6.4 6.4
30 44 45 45 40 44 45 45 40 44 40 44 45 41 45 41 45 43 45 45 50 43 42 42 43 43 44 44 45 45 45 45 46 47 47 47 47 47 47 47 47 47 47 47 47 47	04552 04599 19503 20149 10411 19108 52097 53619 10273 34486 54036 03381 21308	AA243642 AA255920 N30256 AI140683 AB002364 H87648 BE326877 AA678816	Hs.137422 Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	0 ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.4 6.4 6.4 6.4 6.4
30 44 42 45 45 45 35 43 40 44 41 41 45 41 45 41 45 43 47 45 48 49 49 49 49 49 49 49 49 49 49 49 49 49 49 4	19503 20149 10411 19108 52097 53619 10273 34486 54036 03381 21308	AA255920 N30256 A1140683 AB002364 H87648 BE326877 AA678816	Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs ESTs ESTs, Weakly similar to Weak similarity with ESTs, ADAM-TS3; a disintegrin-like and metallopr	6.4 6.4 6.4 6.4
30 44 44 45 45 45 35 43 40 44 40 44 41 45 41 45 41 45 43 42 43 44 45 43 45 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	20149 10411 19108 52097 53619 10273 34486 54036 03381 21308	AA255920 N30256 A1140683 AB002364 H87648 BE326877 AA678816	Hs.88095 Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.4 6.4 6.4
30 44 44 45 45 40 44 41 45 41 45 41 45 45 50 43 42 43 44 45 41 45 45 45 46 47 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	10411 19108 52097 53619 10273 34486 54036 03381 21308	N30256 Al140683 AB002364 H87648 BE326877 AA678816	Hs.156971 Hs.98328 Hs.27916 Hs.33922	ESTs, Weakly similar to Weak similarity with ESTs ADAM-TS3; a disintegrin-like and metallopr	6.4 6.4
44 45 45 41 40 41 40 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 41 42 43 44 44 45 46 47 48 48 48 48 48 48 48 48 48 48	19108 52097 53619 10273 34486 54036 03381 21308	Al140683 AB002364 H87648 BE326877 AA678816	Hs.98328 Hs.27916 Hs.33922	ESTs ADAM-TS3; a disintegrin-like and metallopr	6.4
45 41 41 45 41 45 43 42 42 43 43 42 43 43 43 43 43 43 43 43 43 43 43 43 43	53619 10273 34486 54036 03381 21308	H87648 BE326877 AA678B16	Hs.33922		C 4
35 43 43 40 44 41 45 41 45 45 41 45 41 45 45 45 45 45 45 46 47 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48 4	10273 34486 54036 33381 21308	BE326877 AA678816		11	
35 43 45 40 44 41 45 41 45 42 42 45 45 50 43 42 43 43 43	34486 54036 33381 21308	AA678B16	Hs.281523	H.sapiens novel gene from PAC 117P20, chromos ESTs	6.4 6.3
40 41 44 44 45 41 45 41 45 45 50 43 42 45 55 43)3381 21308		Hs.117142	ESTs	6.3
40 44 45 41 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	21308	AA374756	Hs.93560	ESTs, Weakly similar to unnamed protein produ	6.3
40 41 45 41 45 41 45 41 45 41 45 45 40 40 40 40 40 40 40 40 40 40 40 40 40		AA687322	Hs.192843	0 ESTs	6.2 6.2
45 41 42 45 45 45 45 45 45 45 45 45 45 45 45 45		AI830417	15.152015	gb:wh94d12.x1 NCI_CGAP_CLL1 Homo sapiens cDNA	6.2
44 41 45 41 42 42 45 50 43 42 43 43 43 43 43 43 43 43 43 43 44 43 44 44		AA356170	Hs.26750	Homo sapiens cDNA: FLJ21908 fis, clone HEP038	6.2
41 45 41 42 42 45 50 43 42 43 43 44 43 43 43 43 43 43 43 44 44 45 45 45 45 45 45 45 45 45 45 45		AW023798 H93366	Hs.286025 Hs.7567	ESTs Branched chain aminotransferase 1, cytosolic,	6.2 6.1
45 41 42 42 45 45 50 43 42 55 43 43		AW248508	Hs.279727	ESTs;	6.1
42 45 45 50 43 42 43 43 43 43 43 43 43 43 43 43 43 43 43	10004	AI298027	Hs.299115	ESTs	6.1
50 43 42 43 42 43 42 43 43 43 43		AI613318	Hs.48442	ESTs	6.1
50 43 42 43 42 55 43 43		A1221919 Z47542	Hs.173438 Hs.179312	hypothetical protein FLJ10582 small nuclear RNA activating complex, polypep	6.1 6.1
50 43 42 43 42 55 43 43		AW967707	Hs.48473	ESTs	6.1
42 43 42 43 43 43 43		AW952893	Hs.237825	signal recognition particle 72kD	6.1
43 42 43 55 43 43		AB037841 L18964	Hs.102652 Hs.1904	hypothetical protein ASH1 protein kinase C; lota	6.1 6.1
55 43 43		AL049256	Hs.122593	ESTs	6.0
55 43 43		R25234	Hs.143434	contactin 1	6.0
43		AW162916 AB040957	Hs.241576 Hs.151343	hypothetical protein PRO2577 KIAA1524 protein	6.0 6.0
		AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HEMBB10	6.0
		AA740151	Hs.130425	ESTs	5.9
		AA150797 AW966399	Hs.109276 Hs.46821	latexin protein hypothetical protein FLJ20086	5.9 5.9
		8E246919	Hs.10290	U5 snRNP-specific 40 kDa protein (hPrp8-bindi	5.9
	18379	AA218940	Hs.137516	fidgetin-like 1	5.9
		H49546 NM_004272	Hs.298964 Hs.9192	ESTs	5.8 5.9
45		AI697193	Hs.299254	Homer, neuronal immediate early gene, 18 ESTs	5.8 5.8
65 43	33612	AF078164	Hs.61188	Homo sapiens Ku70-binding protein (KUB3) mRNA	5.8
		Z45051	Hs.22920	similar to \$68401 (cattle) glucose induced ge	5.8
		AW015242 AW979104	Hs.99488 Hs.294009	ESTs; Weakly similar to ORF YKR074w [S.cerevi ESTs	5.7 5.7
45		BE141714	, 2010-1003	gb:QV0-HT0101-061099-032-c04 HT0101 Homo sapi	5.7 5.7
70 45	56553	AA721325	Hs.189058	ESTs, Weakly similar to cAMP-regulated guanin	5.7
		D87466 D49441	Hs.240112 Hs.155981	KIAA0276 protein mesothelin	5.7 5.7
		8E385864	Hs.149894	mitochondrial translational initiation factor	5.7 5.6
7 5 43	32015	AL157504	Hs.159115	ESTs	5.6
		Al076621 T97307	Hs.71367	ESTs, Moderately similar to ALU7_HUMAN ALU SU	5.6
		X69208	Hs.199067 Hs.606	v-erb-b2 avian erythroblastic leukemia viral ATPase, Cu↔ transporting, alpha polypeptide	5.6 5.6
		AW000960	Hs.44970	ESTs	5.6
		AW504786	Hs.132808	epithelial cell transforming sequence 2 oncog	5.5
	19752 22093	AA249573 AF151852	Hs.152618 Hs.111449	ESTs CGI-94 protein	5.5 5.5
	24583	AF017445	Hs.150926	fucose-1-phosphate guanylyltransferase	5.5
43	30388	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 20kD	5.5
45	52534	AW083022	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HEMBB10	5.5
				169	

	462220	414/000040		FOT-	
	453279 424188	AW893940 AW954552	Hs.59698	ESTs zinc finger protein	5.5
	453884	AA355925	Hs.142634 Hs.36232	KIAA0186 gene product	5.5 5.5
	424641	AB001106	Hs.151413		5.5
5	444478	W07318	Hs.240	glia maturation factor, beta M-phase phosphoprotein 1	5.5
,	427975	AJ536065	Hs.122460	ESTs	5.5
	424620	AA101043	Hs.151254	kalikrein 7 (chymotryptic; stratum comeum)	5.5
	442914	AW188551	Hs.99519	Homo saplens cDNA FLJ14007 fis, clone Y79AA10	5.5
	417995	AW974175	Hs.188751	ESTs	5.4
10	418946	AI798841	Hs.132103	ESTs	5.4
	419963	AA743276	Hs.301052	ESTs	5.4
	420362	U79734	Hs.97206	huntingtin interacting protein 1	5.4
	422670	AA371612	Hs.115351	ESTs	5.4
	432837	AA310693	Hs.279512	HSPC072 protein	5.4
15	447020	T27308	Hs.16986	hypothetical protein FLJ11046	5.4
	458027	L49054	Hs.85195	ESTs, Highly similar to t(3;5)(q25.1;p34) fus	5.4
	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pomba, homoto	5.4
	422938	NM_001809	Hs.1594	centromere protein A (17kD)	5.4
20	450434	AA166950	Hs.18645	ESTs, Weakly similar to partial CDS (C.elegan	5.4
20	438279	AA805166	Hs.165165	ESTs, Moderately similar to ALU8_HUMAN ALU SU	5.4
	413384	NM_000401	Hs.75334	exostoses (multiple) 2	5.3
	420328	Y19062	Hs.96870	stauten (Drosophila, RNA-binding protein) hom	5.3
	436586	A1308862	Hs.167028	ESTs	5.3
25	435793	AB037734	Hs.4993	ESTs	5.3
25	422306	BE044325	Hs.227280	Homo saplens mRNA for Lsm5 protein	5.3
	425154	NM_001851	Hs.154850	collagen, type IX, aipha 1	5.2
	453293	AA382267	Hs.10653	ESTs	5.2
	429944	R13949	Hs.226440	Homo sapiens clone 24881 mRNA sequence	5.2
30	434891 415263	AA814309	Hs.123583	ESTS ESTS	5.2 5.2
50	409506	AA948033 NM_006153	Hs.130853 Hs.54589		5.2 5.2
	412848	AA121514	Hs.70832	NCK adaptor protein 1 ESTs	5.2 5.2
	421246	AW582962	Hs.300961	ESTs, Highly similar to AF151805 1 CGI-47 pro	5.2
	431548	AI834273	Hs.9711	Homo sapiens cDNA FLJ13018 fis, clone NT2RP30	5.2
35	412719	AW016610	Hs.129911	ESTs	5.2
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncogene h	5.1
	424078	AB006625	Hs.139033	paternally expressed gene 3	5.1
	433558	AA833757	Hs.201769	ESTs	5.1
	434265	AA846811	Hs.130554	Homo sapiens cDNA: FLJ23089 fis, clone LNG070	5.1
40	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.1
	415539	AI733881	Hs.72472	BMPR-lb; bone morphogenetic protein receptor	5.1
	442717	R88362	Hs.180591	ESTs, Weakly similar to R06F6.5b [C.elegans]	5.1
	432358	Al093491	Hs.72830	ESTs	5.0
4.5	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblastoma c	5.0
45	419699	AA248998	Hs.31246	ESTs	5.0
	420313	AB023230	Hs.96427	KIAA1013 protein	5.0
	422505	AL120862	Hs.124165	ESTs: (HSA)PAP protein (programmed cell deat	5.0
	425733	F13287	Hs.159388	Homo sapiens clone 23578 mRNA sequence	5.0
50	434160	BE551196	Hs.114275	ESTs	5.0
50	435094	AI560129	Hs.277523	EST	5.0
	436812 432415	AW298067 T16971	Hs.289014	gb:UI-H-BW0-ajp-g-09-0-UI.s1 NCI_CGAP_Sub6 Ho	5.0 4.9
	406117	1 1097 1	ns.203014	ESTs 0	4.9
	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.9
55	447505	AL049266	Hs.18724	Homo sapiens mRNA; cDNA DXFZp564F093 (from cl	4.9
55	448621	Al097144	Hs.5250	ESTs, Weakly similar to BACR37P7.g [D.melanog	4.9
	453001	AW131636	Hs.191260	ESTs	4.9
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone HEP091	4.9
	418811	AK001407	Hs.88663	hypothetical protein FLJ10545	4.9
60	436754	AI061288	Hs.133437	ESTs, Moderately similar to gonadotropin indu	4.8
	437212	Al765021	Hs.210775	ESTs	4.8
	447312	AI434345	Hs.36908	activating transcription factor 1	4.8
	409732	NM_016122	Hs.56148	NY-REN-58 antigen	4.8
65	434690	Al867679	Hs.148410	ESTs	4.8
65	444172	BE147740	Hs.104558	ESTs	4.8
	424539	L02911	Hs.150402	activin A receptor, type I	4.8
	418677	S83308	Hs.87224	SRY (sex determining region Y)-box 5	4.8
	406076	AL390179	Hs.137011	Homo saplens mRNA; cDNA DKFZp547P134 (from cl	4.8
70	420179	N74530	Hs.21168	ESTs	4.7
, 0	450375 419247	AA009647	Hs.8850	a disintegrin and metalloproteinase domain 12 fragile X mental retardation 1	4.7
	420850	S65791 BE139590	Hs.89764 Hs.122406	ESTs	4.7 4.7
	425420	BE536911	Hs.234545	ESTs	4.7
	428564	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	4.7
75	419131	AA406293	Hs.301622	ESTs	4.7
. •	422278	AF072873	Hs.114218	ESTs	4.7
	451684	AF216751	Hs.26813	CDA14	4.6
	400296	AA305627	Hs.139336	ATP-binding cassette; sub-family C (CFTR/MRP)	4.6
	408425	AW058674	Hs.44787	Homo sapiens mRNA; cDNA DKFZp43400227 (from c	4.6
80	417168	AL133117	Hs.81376	Homo saptens mRNA; cDNA DKFZp586L1121 (from c	4.6
	429486	AF155827	Hs.203963	hypothetical protein FLJ 10339	4.6
	442917	AA314907	Hs.85950	ESTs	4.6
	443268	AI800271	Hs.129445	hypothetical protein FLJ12496	4.6
	452795	AW392555	Hs.18878	hypothetical protein FLJ21620	4.6
				150	

	457700				
	457300 459551	AW297436 AI472808	Hs.158849	Homo sapiens cDNA: FLJ21663 fis, clone COL088	4.6 4.6
	421977	W94197	Hs.110165	gbttj70e07.x1 Soares_NSF_F8_9W_OT_PA_P_S1 Hom ribosomal protein L26 homolog	4.6 4.6
_	429441	AJ224172	Hs.204096	lipophilin B (uteroglobin family member), pro	4.6
5	449722	BE280074	Hs.23960	cyclin B1	4.6
	431689	AA305688	Hs.267695	UDP-GaltbetaGlcNAc beta 1,3-galactosyltransfe	4.5
	425178 429597	H16097 NM_003816	Hs. 161027 Hs. 2442	ESTS	4.5 4.5
	436556	Al364997	Hs.7572	a disintegrin and metalloprotelnase domain 9 ESTs	4.5 4.5
10	400534			0	4.5
	417845	AL117461	Hs.82719	Homo sepiens mRNA; cDNA DKFZp586F1822 (from c	4.5
	423123	NM_012247	Hs.124027	SELENOPHOSPHATE SYNTHETASE; Human selenium d	4.5
	448305 441006	AA625207 AW605267	Hs.264915 Hs.7627	Homo sapiens cDNA FLJ12908 fis, ctone NT2RP20 CGI-60 protein	4.5 4.5
15	414569	AF109298	Hs.118258	Prostate cancer associated protein 1	4.5
	447924	AI817226	Hs.170337	ESTs	4.5
	425506	NM_003666	Hs.158205	basic leuctne zipper nuclear factor 1 (JEM-1)	4.5
	411630	U42349	Hs.71119	Putative prostate cancer tumor suppressor	• 4.4
20	432842 413472	AW674093 BE242870	Hs.279525 Hs.75379	hypothetical protein PRO2605 solute carrier family 1 (glial high affinity	4.4 4.4
20	414699	AI815523	Hs.76930	synuclein, elpha (non A4 component of amyloid	4.4
	412733	AA984472	Hs.74554	KIAA0080 protein	4.4
	419790	U79250	Hs.93201	glycerol-3-phosphate dehydrogenase 2 (mitocho	4.4
25	433377	AI752713	Hs.43845	ESTs	4.4
23	449535 453900	W15267 AW003582	Hs.23672 Hs.226414	low density lipoprotein receptor-related prot ESTs, Wealdy similar to ALUB_HUMAN ALU SUBFAM	4.4 4.4
	443881	R64512	Hs.237146	Homo saplens cDNA FLJ14234 fis, clone NT2RP40	4.4
	423025	AA831267	Hs.12244	Homo sapiens cDNA: FLJ23581 fis, clone LNG136	4.4
20	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8; fetal br	4.3
30	416241	N52639	Hs.32683	ESTs	4.3
	432005 435532	AA524190 AW291488	Hs.120777 Hs.117305	ESTs, Weakly similar to ELL2_HUMAN RNA POLYME ESTs	4.3 4.3
	451813	NM_016117	Hs.27182	phospholipase A2-activating protein	4.3
~ -	454193	BE141183		gb:MR0-HT0071-191199-001-b04 HT0071 Homo sapi	4.3
35	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (melanom	4.3
	406069	414/50000	11- 04407	0	4.3
	419465 418413	AW500239 R95735	Hs.21187 Hs.117753	Homo sapiens cDNA: FLJ23068 fis, clone LNG055 ESTs, Weakly similar to antigen of the monocl	4.3 4.3
	452028	AK001859	Hs.27595	hypothetical protein FLJ10997	4.3
40	418693	AI750878	Hs.87409	thrombospondin 1	4.3
	410361	BE391804	Hs.62661	guanylate binding protein 1, Interferon-induc	4.2
	409763	AL043212	Un 04C	gb:DKFZp434H0623_r1 434 (synonym: hles3) Homo	4.2
	455601 408908	Al368680 BE296227	Hs.816 Hs.48915	SRY (sex determining region Y)-box 2, partial serine/threonine kinase 15	4.2 4.2
45	413582	AW295647	Hs.71331	Homo sapiens cDNA: FLJ21971 fis, clone HEP057	4.2
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	4.2
	425024	R39235	Hs.12407	ESTs	4.2
	447153	AA805202	Hs.173912	eukaryotic translation initiation factor 4A,	4.2
50	447406 449347	BE618060 AV649748	Hs.282882 Hs.295901	ESTs ESTs	4.2 4.2
• •	414279	AW021691	Hs.3804	DKFZP564C1940 protein	4.2
	428856	AA436735	Hs.183171	Homo sapiens cDNA: FLJ22002 fis, clone HEP066	4.2
	407872	AB039723	Hs.40735	frizzled (Drosophila) homolog 3	4.2
55	421502 436406	AF111856 AW105723	Hs.105039 Hs.125346	solute carrier family 34 (sodium phosphate), ESTs	4.2 4.2
55	438209	AL120659	Hs.6111	KIAA0307 gene product	4.2
	443653	AA137043	Hs.9663	programmed cell death 6-interacting protein	4.1
	454556	AW807073		gb:MR4-ST0062-031199-018-d06 ST0062 Homo sapi	4.1
60	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT2RP20	4.1
00	412593 416566	Y07558 NM_003914	Hs.74088 Hs.79378	early growth response 3 cyclin A1	4.1 4.1
	426342	AF093419	Hs.169378	multiple PDZ domain protein	4.1
	428417	AK001699	Hs.184227	F-box only protein 21	4.1
65	429317	AA831552	Hs.268016	solute carrier family 5 (Inositol transporter	4.1
65	446880	AI811807	Hs.108646	Homo sapiens cDNA FLJ12534 fis, clone NT2RM40	4.1
	422988 434657	AW673847 AA641876	Hs.97321 Hs.191840	ESTs ESTs	4.0 4.0
	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1, 64k	4.0
	443271	BE568568	Hs.195704	ESTs	4.0
70	421437	AW821252	Hs.104336	ESTs	4.0
	401644 405095			0 0	4.0
	418417	R77182		gb:yi65e02.r1 Soares placenta Nb2HP Homo sapi	4.0 4.0
	420807	AA280627	Hs.57848	ESTs	4.0
75	429529	AA454190	Hs.193811	ESTs, Moderately similar to reduced expressio	4.0
	457726	AI217477	Hs.194591	ESTs	4.0
	431130 453403	NM_006103 BE466639	Hs.2719 Hs.61779	epididymls-specific; whey-acidic protein type Homo sapiens cDNA FLJ13591 fis, clone PLACE10	4.0 4.0
	442768	AL048534	Hs.48458	ESTs, Weakly similar to ALUS_HUMAN ALU SUBFAM	4.0
80	413430	R22479	Hs.24650	Homo sapiens cDNA FLJ13047 fis, clone NT2RP30	4.0
	424081	NM_006413	Hs.139120	ribonuclease P (30kD)	4.0
	425692	D90041	Hs.155956	NAT1; arylamine N-acetyltransferase	4.0
	407792 408353	AI077715 BE439838	Hs.39384 Hs.44298	putative secreted ligand homologous to fix1 hypothetical protein	4.0 4.0
			. ~ 1200	, in production production	7.0

	421175	Al879099	Hs.102397	GIOT-3 for gonadotropin inducible transcripti	3.9
	420324	AF163474	Hs.96744	DKFZP586D0823 protein, Prostate androgen-regu	3.9
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	3.9
					3.9
_	458924	BE242158	Hs.24427	DKFZP566O1646 protein	
5	400195			0	3.9
	401480			0	3.9
	410360	AW663690		gb:hj21g03.x1 NCI_CGAP_Li8 Homo sapiens cONA	3.9
	410908	AA121686	Hs.10592	ESTs	3.9
	420159	AI572490	Hs.99785	ESTs	3.9
10					
10	422805	AA436989	Hs.121017	H2A histone family; member A	3.9
•	424639	Al917494	Hs.131329	ESTs	3.9
	428555	NM_002214	Hs.184908	Integrin, beta 8	3.9
	431699	NM_001173	Hs.267831	Homo saplens cDNA FLJ12952 fis, clone NT2RP20	3.9
	433703	AA210863	Hs.3532	nerno-like kinase	3.9
15					
15	437144	AL049466	Hs.7859	EST8	3.9
	452728	AI915676	Hs.239708	ESTs .	3.9
	430447	W17064	Hs.241451	SWI/SNF related, matrix associated, actin dep	3.9
	440594	AW445167	Hs.126036	ESTs	3.9
	408938	AA059013	Hs.22607	ESTs	3.9
20					
20	427051	BE178110	Hs.173374	ESTs	3.9
	447568	AF155655	Hs.18885	CGI-116 protein	3.9
	457211	AW972565	Hs.32399	ESTs, Weakly similar to Similar to Ena-VASP I	3.9
	443475	AI066470	Hs.134482	ESTs	3.9
	433447	U29195	Hs.3281	neuronal pentraxin II	3.9
25					
23	428093	AW594506	Hs.104830	ESTs	3.8
	437938	A1950087		ESTs; Weakly similar to Gag-Pol polyprotein [3.8
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-O-sulfotransf	3.8
	429250	H56585	Hs.198308	tryptophan rich basic protein	3.8
	441859	AW194364	Hs.128022	ESTs, Weakly similar to FIG1 MOUSE FIG-1 PROT	3.8
20				7.1	
30	437700	AA766060	Hs.122848	ESTs	3.8
	439560	BE565647	Hs.74899	hypothetical protein FLJ12820	3.8
	409564	AA045857	Hs.54943	fracture callus 1 (ral) homolog	3.8
	429474	AA453441	Hs.31511	ESTs	3.8
	431965	BE175190		gb:QV2-HT0577-010500-165-g04 HT0577 Homo sapl	3.8
35			Un 0440F0		
22	454018	AW016892	Hs.241652	ESTs	3.8
	426320	W47595	Hs.169300	transforming growth factor, beta 2	3.8
	439635	AA477288	Hs.94891	Homo saplens cDNA: FLJ22729 fis, clone HSI156	3.8
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerevisiae	3.8
	446402	Al681145	Hs.160724	ESTs	3.8
40	450236	AW162998	Hs.24684	KIAA1376 protein	3.8
TU					
	410804	U64820	Hs.66521	Machado-Joseph disease (spinocerebellar ataxi	3.8
	400268			0	3.8
	418217	Al910647	Hs.13442	ESTs	3.8
	421928	AF013758	Hs.109643	polyadenylate blinding protein-interacting pro	3.8
45	417300	Al765227	Hs.55610	solute carrier family 30 (zinc transporter),.	3.8
73					
	414136	AAB12434	Hs.178227	ESTs	3.8
	453945	NM_005171	Hs.36908	activating transcription factor 1	3.7
	400240			0	3.7
	407877	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone HSI073	3.7
50	450581	AF081513	Hs.25195	endometrial bleeding associated factor (left-	3.7
-					
	418223	NM_014733	Hs.83790	KIAA0305 gene product	3.7
	411704	AI499220	Hs.71573	hypothetical protein FLJ10074	3.7
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta-5-de	3.7
	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	3.7
55	402820			0	3.7
55	408090	BE173621	Hs.292478	=	3.7
				ESTs	
	416421	AA134006	Hs.79306	eukaryotic translation initiation factor 4E	3.7
	418282	AA215535	Hs.98133	ESTs	3.7
	418454	AA315308		gb:EST187095 Colon carcinoma (HCC) cell line	3.7
60	418668	AW407987	Hs.87150	Human clone A9A2BR11 (CAC)n/(GTG)n repeat-con	3.7
- 0		A A 40 FO F 4			3.7
	422290	AA495854	Hs.48827	hypothetical protein FLJ12085	
	432824	AK001783	Hs.279012	hypothetical protein FLI10921	3.7
	439907	AA853978	Hs.124577	ESTs	3.7
	447479	AB037834	Hs.18685	Homo sapiens mRNA for KIAA1413 protein, parti	3.7
65	451073	AI758905	Hs.206063	ESTs	3.7
-		AB033091	Hs.24936	ESTs	3.7
	450377				
	414343	AL036166	Hs.75914	coated vesicle membrane protein	3.7
	448807	Al571940	Hs.7549	ESTs	3.7
	442821	BE391929	Hs.8752	Putative type II membrane protein	3.7
70	426300	U15979	Hs.169228	delta-like homolog (Drosophila)	3.7
. 🗸	418068		Hs.293902	ESTs, Weakly similar to prolyl 4-hydroxylase	3.7
		AW971155			
	411263	BE297802	Hs.69360	kinesin-like 6 (mitolic centromere-associated	3.7
	443054	A1745185	Hs.8939	yes-associated protein 65 kDa	3.7
	421154	AA284333	Hs.287631	Homo sapiens cDNA FLJ14269 fis, clone PLACE10	3.7
75	411402	BE297855	Hs.69855	NRAS-related gene	. 3.7
	450447	AF212223	Hs.25010	hypothetical protein P15-2	3.6
	414706	AW340125	Hs.76989	KIAA0097 gene product	3.6
	434228	Z42047	Hs.283978	ESTs; KIAA0738 gene product	3.6
	434164	AW207019	Hs.148135	ESTs	3.6
80	409533	AW969543	Hs.21291	mitogen-activated protein kinase kinase kinas	3.6
- •	402222			• 0	-3.6
		•			
	404915			0	3.6
	404996			0	3.6
	411560	AW851186		. gb:IL3-CT0220-150200-071-H05 CT0220 Homo sapi	3.6

	419750	AL079741	Hs.183114	Homo sapiens cDNA FLJ14236 fis, clone NT2RP40	3.6
	426010	AA136563	Hs.1975	Homo sapiens cDNA: FLJ21007 fis, clone CAE038	3.6
	427038	NM_014633	Hs.173288	KIAA0155 gene product	3.6
_	439255	BE164500		gb:RC4-HT0469-230300-014-e10 HT0469 Homo sapi	3.6
5	458242	BE299588	Hs.28465	Homo saplens cDNA: FLJ21869 fis, clone HEP024	3.6
	415115	AA214228	Hs.127751	hypothetical protein	3.6
	453468	W00712	Hs.32990	DXFZP566F084 protein	3.6
	441205	AW137827	Hs.176904	ESTs	3.6
	452693	T79153		zinc finger protein 228 .	3.6
10			Hs.48589		
10	417389	BE260964	Hs.82045	Midkine (neurite growth-promoting factor 2)	3.6
	448105	AW591433	Hs.170675	ESTs, Weakly similar to TMS2_HUMAN TRANSMEMBR	3.6
	451522	BE565817	Hs.26498	hypothetical protein FLJ21657	3.6
	440048	AA897461	Hs.158469	ESTs, Weakly similar to envelope protein (H.s	3.5
• •	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)-tike	3.5
15	452030	AL137578	Hs.27607	Homo sapiens mRNA; cDNA DKFZp564N2464 (from c	3.5
	400566			0	3.5
	422646	H87863	Hs.151380	ESTs	3.5
	407846	AA426202	Hs.40403	Cbp/p300-Interacting transactivator, with Glu	3.5
	408730	AV660717	Hs.47144	DKFZP586N0819 protein	3.5
20	401517	A1000111	110.77 177	0	3.5
20	413775	AW409934	Hs.75528	nucleolar GTPase	3.5
	417177	NM_004458	Hs.81452	fatty-acid-Coenzyme A ligase, long-chain 4	3.5
	427943	AW959075		gb:EST371145 MAGE resequences, MAGE Homo sapi	3.5
25	439107	AL046134	Hs.27895	ESTs	3.5
25	447268	Al370413	Hs.36563	Homo sapiens cDNA: FLJ22418 fis, clone HRC085	3.5
	412604	AW978324	Hs.47144	DKFZP586N0819 protein	3.5
	427134	AA398409	Hs.173561	EST	3.5
	430273	Al311127	Hs.125522	ESTs	3.5
	436671	AW137159	Hs.146151	ESTs	3.5
30	433037	NM_014158	Hs.279938	HSPC067 protein	3.5
-	453745	AA952989	Hs.63908	Homo sapiens HSPC316 mRNA, partial cds	3.5
	400531	AF151064	Hs.36069	hypothetical protein	3.5
				EST cluster (not in UniGene)	
	433345	AI681545	Hs.152982		3.4
35	406400	AA343629	Hs.104570	kallikrein 8 (neuropsin/ovasin)	3.4
22	407596	R86913		gb:yq30f05.r1 Soares fetal liver spleen 1NFLS	3.4
	453779	N35187	Hs.43388	ESTs	3.4
	444858	Al199738	Hs.208275	ESTs, Weakly similar to unnamed protein produ	3.4
	447688	N87079	Hs.19236	NADH dehydrogenase (ubiquinone) 1 beta subcom	3.4
40	424856	AA347746	Hs.9521	ESTs, Weakly similar to KIAA1015 protein [H.s	3.4
40	407864	AF069291	Hs.40539	chromosome 8 open reading frame 1	3.4
	404108			0	3.4
	403729			0	3.4
	404232			Ō	3.4
	423687	AA329633	Hs.133011	ESTs, Highly similar to Z117_HUMAN ZINC FINGE	3.4
45	428372	AK000684	Hs.183887	hypothetical protein FLJ22104	3.4
	439741		Hs.6904		3.4
		BE379646		Homo sapiens mRNA full length insert cDNA clo	
	441447	AA934077	Hs.126980	ESTs	3.4
	448358	R44433	Hs.106614	Human DNA sequence from clone RP4-534K7 on ch	3.4
50	450926	AI744361	Hs.205591	ESTs, Wealthy similar to zinc finger protein P	3.4
50	458477	NM_000314	Hs.10712	phosphatase and tensin homolog (mutated in mu	3.4
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cys-X-C	3.4
	452822	X85689	Hs.288617	Homo sapiens cDNA: FLJ22621 fis, clone HSI056	3.4
	441111	A1806867	Hs.126594	ESTs	3.4
	447519	U46258	Hs.23448	ESTs	3.4
55	446913	AA430650	Hs.16529	transmembrane 4 superfamily member (tetraspan	3.4
-	449581	AI989517	Hs.181605	ESTs	3.4
	456132	BE219771	Hs.237146	Homo saplens cDNA FLJ14234 fis, clone NT2RP40	3.4
	448186	AA262105	Hs.4094		3.4
			Hs.118722	Homo sapiens cDNA FLJ14208 fis, clone NT2RP30	3.4
60	422611	AA158177		fucosyltransferase 8 (alpha (1,6) fucosyltran	
50	441433	AA933809	Hs.42746	ESTs	3.4
	417837	AL079905	Hs.1103	transforming growth factor, beta 1	3.4
	450516	AA902656	Hs.21943	NIF3 (Ngg1 Interacting factor 3, S.pombe homo	3.4
	407798	AA195509	Hs.272239	lymphocyte activation-associated protein	3.3
65	419200	AW966405	Hs.288856	prefoldin 5	3.3
65	423161	AL049227	Hs.124776	Homo sapiens mRNA; cDNA DKFZp564N1116 (from c	3.3
	445679	A1343868	Hs.58800	Homo sapiens cDNA FLJ12488 fis, clone NT2RM20	3.3
	435014	BE560898	Hs.10026 ·	ribosomal protein L17 isolog	3.3
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin, bone	3.3
	439170	AA332365	Hs.165539	ESTs	3.3
70	429830	AI537278	Hs.225841	DKFZP434D193 protein	3.3
	428943	AW086180	Hs.37636	ESTs, Weakly similar to KIAA1392 protein [H.s	3.3
	445817	NM_003642	Hs.13340	histone acetyltransferase 1	3.3
	408805	H69912	Hs.48269	vaccinia related kinase 1	3.3
	441134	W29092	Hs.7678		3.3
75				cellular retinoic acid-binding protein 1	3.3
, ,	408532	AJ453137	Hs.63176	ESTs	
	409517	X90780	Hs.54668	troponin I, cardiac	3.3
	414304	AI621276	Hs.165998	DKFZP564M2423 protein	3.3
	436427	Al344378	Hs.143399	ESTs	3.3
00	436662	AI582393	Hs.126695	ESTs	3.3
80	440304	BE159984	Hs.125395	ESTs	3.3
	447385	F12863		gb:HSC3FE081 normalized infent brain cDNA Hom	3.3
	451177	A1969716	Hs.13034	ESTs	3.3
•	428949	AA442153	Hs.104744	ESTs, Weakly similar to AF208855 1 BM-013 (H.	3.3
	451743	AW074266	Hs.23071	ESTs	3.3

	421515 446351	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, long f	3.3 · 3.3
	435102	AW444551 AW899053	Hs.258532 Hs.76917	ESTs F-box only protein 8	3.3
-	418216	AA662240	Hs.283099	AF15q14 protein	3.3
5	401508	4444064	11- 00004	O Hama agricus - Chile III 199449 5 do o 1451999	3.3
	437108 416530	AA434054 U62801	Hs.80624 Hs.79361	Homo sapiens cDNA: FLJ23442 fis, clone HSi009 kaliikrein 6 (neurosin, zyme)	3.3 3.3
	443171	BE281128	Hs.9030	TONDU	3.3
10	458627	AW088642	Hs.97984	ESTs; Weakly similar to WASP-family protein [3.3
10	412078 414080	X69699 AA135257	Hs.73149 Hs.47783	paired box gene 8	3.3 3.3
	401197	AA 133231	H5.47703	ESTs, Weakly similar to T12540 hypothetical p	3.3
	422134	AW179019	Hs.112110	ESTs	3.3
15	409044	Al129586	Hs.33033	ESTs	3.3
13	416198 436481	H27332 AA379597	Hs.99598 Hs.5199	ESTs HSPC150 protein similar to ubiquitin-conjugat	3.2 3.2
	436525	AA721428	Hs.26145	Homo sapiens cDNA FLJ14127 fis, clone MAMMA10	3.2
	409142	AL136877	Hs.50758	chromosome-associated polypeptide C	3.2
20	428819 428728	AL135623 NM 015626	Hs.193914	KIAA0575 gene product	3.2 3.2
20	421261	NM_016625 AA600853	Hs.191381 Hs.98133	ESTs; Weakly similar to hypothetical protein ESTs	3.2
	446219	AJ287344	Hs.149827	ESTs	3.2
	457574	H88717	Hs.27774	ESTs, Highly similar to AF161349 1 HSPC086 [H	3.2
25	409172 419388	Z99399 T67012	Hs.118145 Hs.75323	ESTs	3.2 3.2
23	434187	AA627098	Hs.99103	prohibitin ESTs, Wealdy similar to 138428 T-complex prot	3.2
	445060	AA830811	Hs.88808	ESTs .	3.2
	448254	AI829900	Hs.22929	ESTs	3.2
30	452943 411393	BE247449 AW797437	Hs.31082 Hs.69771	hypothetical prolein FLJ 10525 B-factor, properdin	3.2 3.2
50	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37kD)	3.2
	408418	AW963897	Hs.44743	KIAA1435 protein	3.2
	442025	AW887434	Hs.11810	ESTs, Weakly similar to CD4.2 [C.elegans]	3.2
35	417006 407881	AW673606 AW072003	Hs.80758 Hs.40968	aspartyl-tRNA synthetase heparan sulfate (glucosamine) 3-O-sulfotransf	3.2 3.2
55	444755	AA431791	Hs.183001	ESTs	3.2
	402829		. /	0	3.2
	451593	AF151879	Hs.26706	CGI-121 protein	3.2
40	419926 434551	AW900992 BE387162	Hs.93796 Hs.280858	DKFZP586D2223 protein ESTs, Highly similar to XPB_HUMAN DNA-REPAIR	3.2 3.2
	445929	A1089660	Hs.7838	makorin, ring finger protein, 1	3,2
	409365	AA702376	Hs.226440	Homo sapiens clone 24881 mRNA sequence	3.2
	418836 441020	A1655499 W79283	Hs.161712 Hs.35962	ESTs ESTs	3.2 3.1
45	422363	T55979	Hs.115474	replication factor C (activator 1) 3 (38kD)	3.1
	413010	AA393273	Hs.75133	transcription factor 6-like 1 (mitochondrial	3.1
	452092	BE245374	Hs.27842	hypothetical protein FLJ11210	3.1
	410486 434540	AW235094 NM_016045	Hs.193424 Hs.5184	ESTs, Weakly similar to KIAA1064 protein [H.s TH1 drosophita homolog	3.1 3.1
50	409178	BE393948	Hs.50915	kallikrein 5	3.1
	439480	AL038511	Hs.125316	ESTs	3.1
	417848	AA206581	Hs.39457	ESTs	3.1
	446293 408108	Al420213 Al580492	Hs.149722 Hs.42743	ESTs hypothetical protein	3.1 3.1
55	415947	U04045	Hs.78934	mutS (E. coli) homolog 2 (colon cancer, nonpo	3.1
	410519	AW612264	Hs.131705	ESTs	3.1
	421987	AI133161	Hs.286131	CGI-101 protein	3.1
	440046 453931	AW402306 AL121278	Hs.6877 Hs.25144	hypothetical protein FLJ10483 ESTs	3.1 3.1
60	454423	AW603985	Hs.179662	nucleosome assembly protein 1-like 1	3:1
	459089	F13036	Hs.27373	Homo saplens mRNA; cDNA DKFZp56401763 (from c	3.1
	418735 414245	N48769 BE148072	Hs.44609	ESTs .	3.1 3.1
	410909	AW898161	Hs.75850 Hs.53112	WAS protein family, member 1 ESTs, Weakly similar to ALUS_HUMAN ALU SUBFAM	3.1
65	434926	BE543269	Hs.50252	Homo sapiens HSPC283 mRNA, partial cds	3.1
	409239	AA740875	Hs.44307	ESTs	3.1
	429017 447072	AA463605 D61594	Hs.238995 Hs.17279	ESTs tyrosylprotein sulfotransferase 1	3.1 3.1
	426514	BE616633	Hs.301122	bane morphogenetic protein 7 (asteogenic prot	3.1
70	448133	AA723157	Hs.73769	folate receptor 1 (adult)	3.1
	418792	AB037805	Hs.88442	KIAA1384 protein	3.1
	427528 402077	AU077143	Hs.179565	minichromosome maintenance deficient (S. cere	3.1
	440671	AW297920	Hs.130054	0 ESTs	3.1 3.1
75	419890	X17360	Hs.278255	homeo box D4	3.1
	406687	M31126	Hs.272620	pregnancy specific bela-1-glycoprotein 9	3.1
	409151 431221	AA306105 AA449015	Hs.50785	SEC22, vesicle trafficking protein (S. cerevi	3.1
	443584	A1807036	Hs.286145 Hs.101619	SRB7 (suppressor of RNA polymerase B; yeast) ESTs	3.1 3.1
80	445525	BE149866	Hs.14831	ESTs	3.1
	410441	BE298210	11- 44000-	gb:601118016F1 NIH_MGC_17 Homo saptens cDNA c	3.1
	422634 420022	NM_016010 AA256253	Hs.118821 Hs.120817	CGI-62 protein ESTs	3.0 3.0
	453912	AL121031	Hs.32556	KIAA0379 protein	3.0
				•	

```
AI264155
           456844
                                      Hs.152981
Hs.182159
                                                       CDP-diacytglycerol synthase (phosphatidate cy
                                                                                                                         3.0
           414941
                       C14865
                                                                                                                         3.0
                                                       ESTs
           407807
                       AL031427
                                                       Human DNA sequence from clone 167A19 on chrom
                                       Hs.40094
           414725
                       AA769791
                                       Hs.120355
                                                       Homo sapiens cDNA FLJ13148 fis, clone NT2RP30
  5
           444420
                       AI148157
                                       Hs.146766
                                                       ESTe
                                                                                                                         3.0
           431742
                       NM 016652
                                                       CGI-201 protein
                                                                                                                         3.0
3.0
                                       Hs.268281
           412519
                       AA198241
                                       Hs.73980
                                                       troponin T1, skeletal, slow
           418348
                                                       Homo sapiens cDNA: FLJ23560 fis, clone LNG098
                       AI537167
                                       Hs.96322
                       AA298958
AW301344
           444261
                                       Hs.10724
                                                       MDS023 protein
                                                                                                                         3,0
10
                                                                                                                         3.0
3.0
3.0
           457465
                                      Hs.195969
Hs.135501
                                                       ESTs
            443933
                       AI091631
                                                       Homo sapiens two pore potassium channel KT3.3
                                       Hs.128864
            442150
                       AI368158
                                                       ESTs
           414883
                       AA926960
                                       Hs.77550
                                                       CDC28 protein kinase 1
                                                                                                                         3.0
                                                                                                                         3.0
3.0
3.0
            442879
                        AF032922
                                       Hs.8813
                                                       syntaxin blnding protein 3
15
            437949
                       U78519
                                       Hs.41654
                                                       FSTs
            403515
                                                                                                                         3.0
            403864
            407785
                       AW207285
                                       Hs.98279
                                                       ESTs
                                                                                                                         3.0
                       AA371865
AW291787
            426199
                                       Hs.97090
Hs.200933
                                                       FSTs
                                                                                                                         3.0
3.0
20
            426324
                                                       ESTs
                                                                                                                         3.0
            427738
                       NM_000318
                                       Hs.180612
                                                       peroxisomal membrane protein 3 (35kD, Zellweg
            427837
                                       Hs.180941
                                                        vacuolar protein sorting 41 (yeast homolog)
                                                                                                                         3.0
3.0
                       AF124250
                                                       breast cancer anti-estrogen resistance 3
ESTs, Weakly similar to p80 [R.norvegicus]
down-regulator of transcription 1, TBP-bindin
            439430
                                       Hs.6564
                        AW276240
                                       Hs.128352
            442039
25
            446978
                        NM_001938
                                       Hs.16697
                                                                                                                         3.0
            452431
                                       Hs.29499
                                                       toll-like receptor 3
                                                                                                                         3.0
            452841
                       T17431
                                       Hs.65412
                                                       DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide
                                                                                                                         3.0
            432114
                        AL036021
                                       Hs.225597
                                                       ESTs
                                                                                                                         3.0
3.0
                       AW969626
                                                       ESTs, Weakly similar to KIAA0227 [H.sapiens]
                                       Hs.31704
            445640
30
                                                       KIAA0741 gene product
                                                                                                                         3.0
            442607
                       AA507576
                                       Hs.288361
            453920
                        AI133148
                                       Hs.36602
                                                       I factor (complement)
            430000
                        AW205931
                                       Hs.99598
                                                       ESTs
                                                                                                                         3.0
                                       Hs.116586
            429164
                       AI688663
                                                       ESTs
                                                                                                                         3.0
                                                                                                                         3.0
                       AI240665
            453331
                                       Hs.8895
                                                       ESTs
35
                        BE614599
                                       Hs.106823
                                                       H.sapiens gene from PAC 42616, similar to syn
            448663
                                                       parathyroid hormone receptor 2
            425776
                       U25128
                                       Hs.159499
                                                                                                                         3.0
            401714
                                                                                                                         3.0
                                                                                                                         3.0
            400903
                       AL037544
                                                                                                                         3.0
            428428
                                       Hs.184298
                                                       cyclin-dependent kinase 7 (homolog of Xenopus
40
            443761
                        AI525743
                                       Hs.160603
                                                                                                                         3.0
            451640
                        AA195601
                                       Hs.26771
                                                       Human DNA sequence from clone 747H23 on chrom
                                                                                                                         3.0
                       A1733682
                                       Hs.130239
                                                                                                                         3.0
            442580
                                                       ESTs
            TABLE 10B:
45
            Pkey: Unique Eos probesel identifier number
            CAT number: Gene cluster number
            Accession: Genhank accession numbers
                        CAT Number
50
            407596
                        1003489_1
                                             R86913 R86901 H25352 R01370 H43764 AW044451 W21298
                        115392 1
                                             AL043212 AA077575 AA077655 R19502 BE545457 Al638421 R14093
            409763
            410360
                        1197225 -2
                                             BE298210 AI672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 AI333584 AI369742 AI039658
            410441
                        120358 1
                                             AI885095 AI476470 AI287650 AI885299 AI985381 AW592624 AW340136 AI266556 AA456390 AI310815 AA484951
AW851186 AW996967 BE143456
55
            411560
                        1249443 1
                                             Z24878 AA494098 F13654 AA494040 AA143127
            414315
                        143512 1
                        1750818_1
                                             R77182 R77197 R80484
            418417
            418454
                        175699_1
                                             AA315308 AA223392 BE538098 BE087173
                                             A1830417 AA236612
AA425562 A1880208 AA346646 N22655 AW811775 AW811786
            419346
                        184129_1
60
            424770
                        243504 1
                        284802_1
                                             AW959075 W06838 AA417863
            427943
            431965
                        33959_2
                                             BE175190 BE003348
                                             AW298067 AA731645 AA810101 AW194180 AI690673 AW978773
AI950087 N70208 R97040 N36809 AI308119 AW967677 N35320 AI251473 H59397 AW971573 R97278 W01059 AW967671 AA908598
AA251875 AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA884444
            436812
                        427323_1
            437938
                        44573 2
65
                                             N92578 F13493 AA927794 AL560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488964 AA283144 AL890387 AL950344
                                             AT741346 A1689062 AA282915 AW102898 A1872193 A1763273 AW173586 AW150329 A1653832 A1762688 AA988777 AA488892 A1356394 AW103813 A1539642 AA642789 AA856975 AW505512 A1961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 A1819225 AW205862 A1683338 A1858509 AW276905 A1633006 AA972584
70
                                             AA908741 AW072629 AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 Al022058 AA780419 AA551005 W80701
                                             AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005
            439255
                        470321_1
                                             BE164500 AA832198 BE164502
F12863 AI377223 T75099
            447385
                        719912_1
1050256_1
                                             BE141183 AW178167 AW178162 AW178166 AW178172 AW845893 AW178159 AW178222 AW178213 AW178215 AW178090 AW178091
            454193
75
                                             AW178161 AW178207 AW178210 AW178214 AW178212 BE140918 BE140917 AW178135 AW178205 AW178209 AW178223 AW178220
                                             AW178206 AW178203 AW178165 AW178168 AW178160 AW178136 AW845878 AW178131 AW178138 AW178105 AW845894 AW178129 AW845810 AW845828 AW178216 AW178112 AW178211 AW178224 BE140915 AW178221 AW178130 AW178134 AW178096 AW178108
                                             AW178133 AW178164 AW178218 AW178171 AW178157 AW178158 AW178103 BE141189 AW178170 AW845816 BE141586 AW178156
                                              AW178104 AW178163 AW178093 AW178208 AW178137 AW178140 AW178219 BE141592 AW845901 BE141580 AW178155 BE141598
80
                                              AW807073 AW807055 AW807067 AW807276 AW807030 AW807363 AW845892 AW807091 AW807275 AW807284 AW807287 AW845891
             454556
                         1223878_1
                                              AW807195 AW807271
                                              BE141714 AW845993 AW845989
            454933
                        1245515 1
```

TABLE 10C:

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495

5 Strand: Indicates DNA strand from which exons were predicted Nt_position: Indicates nucleotide positions of predicted exons

Pkey 400534 Ref Nt_position Strand 6981826 8118496 278637-279292 17982-18115,20297-20456 Minus 10 400666 Plus 400903 2911732 59112-59228 Plus 401197 9719705 Plus 176341-176452 401480 401508 7321503 7534110 166120-166347,166451-166557,169651-169832 110779-110983 Plus Minus 15 401517 7677912 29278-29770 Plus 401644 8576138 Plus 82655-83959 6715702 8117414 96484-96681 65014-65195 401714 Plus Plus 402077 3261-3834,3939-4269 9958106 402222 Plus 20 402408 9796239 Minus 110326-110491 402820 6456853 Minus 82274-82443 101532-101852,102006-102263 402829 8918414 Plus 403381 403515 9438267 7656757 Minus 26009-26178 173358-179553 Minus 25 37662-37909., 51753-51890,79290-79445 403729 7543752 Minus 403864 7709019 Minus 63603-64942 71800-71956 404108 B247074 B218045 Minus 404232 Minus 404552 7243881 19854-20010 Plus 30 404567 7249169 Minus 101320-101501 8705107 7341766 404599 Plus 110443-110733 100915-101087 404915 Minus 6007890 37999-38145,38652-38998,39727-39872,40557-40674,42351-42450 404996 Plus 405095 8072599 Plus 138877-139066 35

68880-69374 54304-54584

Table 11A lists about 222 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to encode extracellular or cell-surface proteins. These were 40 selected as for Table 10A, except that the ratio was greater than or equal to 2.0, and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g. ig, fn3, egf, 7tm domains, signal sequences, transmembrane domains). Predicted protein domains are noted.

TABLE 11A: ABOUT 222 UP-REGULATED GENES ENCODING EXTRACELLULAR/CELL SURFACE PROTEINS, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES

Pkey: Primekey
Ex. Accn: Exemplar Accession
UG ID: UniGene ID 45

9117732

9142932

Plus

Plus

406069

406117

Title: UniGene title

PFAM domains: predicted protein structural domains

ratio: ratio tumor vs normal tissue 50

20						
	Pkey	Ex. Accn	UGID	Title	PFAM domains	ratio
	400292	AA250737	Hs.72472	BMPR-Ib; bone morphogenetic pro	pkinase.Activin_recp	30.0
	400289	X07820	Hs.2258	Matrix Metalloproteinase 10 (Strom	SS.hemopexin,Peptidas	25.2
	427585	D31152	Hs.179729	collagen; type X; alpha 1 (Schmid m	C1g,Collagen	22.7
55	436982	AB018305	Hs.5378	spondin 1, (f-spondin) extracellular m	lsp_1	19.0
	428579	NM_005756	Hs.184942	G protein-coupled receptor 64	TM	17.4
	443646	AI085198	Hs.298699	ESTs	TSPN,vwc,tsp_1,EGF	15.1
	436209	AW850417	Hs.254020	ESTs, Moderately similar to unname	TM	14,1
	418601	AA279490	Hs.86368	calmegin	SS,calreticulin	13.8
60	428532	AF157326	Hs.184786	TBP-interacting protein	TM	13.6
	427344	NM 000869	Hs.2142	5-hydroxytryptamine (serotonin) rec	TM_neur_chan	11.8
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamin	TM,Glycos_transf_2,Ri	11.0
	404567	NM_015902	Hs.278428	progestin induced protein (DD5)	TM,HECT,zf-UBR1	10.8
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	SS,MAM,EGF	8.9
65	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	TM_MSP_domain	8.8
	407001	U12471	Hs.247954	Human thrombospondin-1 gene, par	TSPN,vwc,tsp_1,EGF	8.5
	453370	Al470523	Hs.182356	ESTs, Moderately similar to translat	ABC_tran_ABC_membr	8.4
	400298	AA032279	Hs.61635	STEAP1	TM	8.1
~ ^	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	SS,Cys_knot	7.9
70	429609	AF002246	Hs.210863	cell adhesion molecule with homolo	TM,fn3,ig	7.8
	412170	D16532 .	Hs.73729	very low density lipoprotein recepto	TM,idi_recept_a,idi_rec	7.4
	428954	AF100781	Hs.194678	WNT1 Inducible signaling pathway	SS,IGFBP,Cys_knot,tsp	7.4
	418007	M13509	Hs.83169	Matrix metalloprotease 1 (interstitia	SS,hemopexin,Peptidas	7.2
	424001	W67883	Hs.137476	KIAA1051 protein	Pep_M12B_propep,Rep	7.2
75	456965	AW131888	Hs.172792	ESTs, Wealdy similar to hypothetica	TM	7.1
	446142	A1754693	Hs.145968	ESTs	Cadherin_C_term,cadhe	7.0
	415138	C18356	Hs.78045	tissue factor pathway Inhibitor 2 TFP	Kunitz_BPTI,G-gamma	6.8
	438167	R28363	Hs.24286	ESTs	7tm_1	6.6
00	452097	AB002364	Hs.27916	ADAM-TS3; a disintegrin-like and	Pep_M12B_propep,Rep	6.4
80	449048	Z45051	Hs.22920	similar to S68401 (cattle) glucose in	SS	5.8
	425371	D49441	Hs.155981	mesothelin	SS	5.7
	407945	X69208	Hs.606	ATPese, Cu→ transporting, alpha p	TM,E1-E2_ATPase,Hy	5.6
	424620	AA101043	Hs.151254	kaltikrein 7 (chymotryptic; stratum c	SS,trypsin	5.5
	420362	U79734	Hs.97206	. huntingtin interacting protein 1	TM,ENTH,I_LWEQ	. 5.4

	413384	NM_000401	Hs.75334	exostoses (multiple) 2	TM	5.3
	425154	NM_001851	Hs.154850	collagen, type IX, slpha 1	Collagen,TSPN	5.2
	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral	TGF-beta,TGFb_propep	5.1
5	415539 438018	Al733881 AK001160	Hs.72472 Hs.5999	BMPR-lb; bone morphogenetic pro hypothetical protein FLJ10298	pkinase,Activin_recp TM	5.1 4.9
	424539	L02911	Hs.150402	activin A receptor, type I	Activin_recp,pkinase	4.8
	450375	AA009647	Hs.8850	a disintegrin and metalloproteinase d	disIntegrin, Reprolysin, P	4.7
	451684 400296	AF216751 AA305627	Hs.26813 Hs.139338	CDA14 ATP-binding cassette; sub-family C	TM,ABC_tran,ABC_m	4.6 4.6
10	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase d	TM	4.5
	400534	AP000541		predicted exons	TM,KRAB,zf-C2H2	4.5
	425506	NM_003666	Hs.158205	basic leucine zipper nuclear factor 1	TM,Folate_carrier	4.5
	413472 449535	BE242870 W15267	Hs.75379 Hs.23672	solute carrier family 1 (gilal high aff low density lipoprotein receptor-rela	TM,SDF SS,ldi_recept_b,ldi_rece	4.4 4.4
15	452028	AK001859	Hs.27595	hypothetical protein FLJ10997	Zn_carbOpept,Propep_M	4.3
	418693	AI750878	Hs.87409	thrombospondin 1	EGF,TSPN,tsp_1,tsp_3,	4.3
	410361	BE391804	Hs.62661	guanylate binding protein 1, interfer	TM,GBP Frizzled,Fz,7tm_2	4.2 4.2
	407872 421502	AB039723 AF111856	Hs.40735 Hs.105039	frizzled (Orosophila) homolog 3 solute carrier family 34 (sodium pho	TM,Na_Pi_cotrans	4.2
20	412494	AL133900	Hs.792	ADP-ribosylation factor domain pro	erf,zf-B_box,zf-C3HC4	4.0
	405095	NM_014479	Hs.145296	disintegrin protease	Reprolysin, disintegrin	4.0
	431130 407792	NM_006103 AI077715	Hs.2719 Hs.39384	epididymis-specific; whey-acidic pro putative secreted ligand homologous	SS,wap SS	4.0 4.0
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-0-s	TM	3.8
25	450581	AF081513	Hs.25195	endometrial bleeding associated fact	SS,TGF-beta,TGFb_pro	3.7
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3,	TM,Sterol_desat	3.7
	450447 414706	AF212223 AW340125	Hs.25010 Hs.76989	hypothetical protein P15-2 KIAA0097 gene product	TM,ANF_receptor,guan TM	3.6 3.6
	417389	BE260964	Hs.82045	Midkine (neurite growth-promoting	TM,PTN_MK	3.6
30	400666	X07820	Hs.2258	Matrix Metalloproteinase 10 (Strom	SS,hemopexin,Peptidas	3.5
	406400	AA343629	Hs.104570	kallikrein 8 (neuropsin/ovasin)	SS,trypsin	3.4 3.4
	407864 452822	AF069291 X85689	Hs.40539 Hs.288617	chromosome 8 open reading frame 1 Homo sapiens cDNA: FLJ22621 fis,	TM,FHA,BRCT EGF,fn3,pkinase	3.4
	446913	AA430650	Hs.16529	transmembrane 4 superfamily memb	TM,transmembrane4	3.4
35	422611	AA158177	Hs.118722	fucosyltransferase 8 (alpha (1,6) fuc	SS	3.4
	423161 435102	AL049227 AW899053	Hs.124776 Hs.76917	Homo saptens mRNA; cDNA DKFZ F-box only protein 8	cadherin,Cadherin_C_te TM,Sec7	3.3 3.3
	416530	U62801	Hs.79361	kallikrein 6 (neurosin, zyme)	SS,TM,trypsin	3.3
40	401197			predicted exons	arf,Ets	3.3
40	436525	AA721428	Hs.26145	Homo sapiens cDNA FLJ14127 ffs,	TM	3.2
	452943 411393	BE247449 AW797437	Hs.31082 Hs.69771	hypothetical protein FLJ10525 B-factor, properdin	TM SS,sushi,trypsin,vwa,fib	3.2 3.2
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-0-s	SS	3.2
45	418836	Al655499	Hs.161712	ESTs	pkinase,Activin_recp	3.2
45	409178	BE393948	Hs.50915	kallikrein 5	SS,trypsin	3.1 3.1
	421987 447072	AL133161 D61594	Hs.286131 Hs.17279	CGI-101 protein tyrosylprotein sulfotransferase 1	TM SS	3.1
	426514	BE616633	Hs.301122	bone morphogenetic protein 7 (osteo	SS,TGFb_propeptide,T	3.1
50	448133	AA723157	Hs.73769	folate receptor 1 (adult)	TM	3.1
50	406687 456844	M31126	Hs.272620	pregnancy specific beta-1-glycoprot	SS,Peptidase_M10,hem TM,Cytidylyltrans	3.1 3.0
	414725	Al264155 AA769791	Hs.152981 Hs.120355	CDP-diacylglycerol synthase (phosp Homo sapiens cDNA FLJ13148 fis,	SPRY,7tm_1	3.0
	407785	AW207285	Hs.98279	ESTs	Sema,ig	3.0
55	427738	NM_000318	Hs.180612	peroxisomal membrane protein 3 (35	TM,zf-C3HC4	3.0
55	452431 453920	U88879 Al133148	Hs.29499 Hs.36602	toli-like receptor 3 I factor (complement)	TM,TIR,LRRCT ldl_recept_a,trypsin,SRC	3.0 3.0
	453331	A1240665	Hs.8895	ESTs	disintegrin, Reprolysin, P	3.0
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	TM,7lm_2	3.0
60	428428	AL037544	Hs.184298	cyclin-dependent kinase 7 (homolog	TM,pkinase	3.0 2.9
UU	407910 408380	AA650274 AF123050	Hs.41296 Hs.44532	fibronectin leuclne rich transmembra diubiquitin	TM,LRRCT,LRRNT,LR TM,ubiquilin,7tm_3,AN	2.9
	407783	AW996872	Hs.172028	a disintegrin and metalloproteinase d	disintegrin, Reprofysin	2.9
	420757	X78592	Hs.99915	androgen receptor (dihydrotestostero	TM,Androgen_recep.ho	2.9
65	424406	D54120	Hs.146409	wingless-type MMTV integration sit	cadherin,Cadherin_C_te	2.9 2.9
05	428549 419452	AA430064 U33635	Hs.220929 Hs.90572	ESTs, Moderately similar to ARF-fa PTK7 protein tyrosine kinase 7	arf TM,pkinase,lg	29
	452281	T93500	Hs.28792	ESTs	TGFb_propeptide,TGF-	2.9
	420440	NM_002407	Hs.97644	mammaglobin 2	SS,Uteroglobin	2.9
70	418848 421991	AI820961	Hs.193465	ESTs KIAA0990 protein	pkinase,Activin_recp SS	2.9 2.9
,,	433190	NM_014918 M26901	Hs.110488 Hs.3210	renin	SS.asp	2.9
	424538	NM_005095	Hs.150390	zinc finger protein 262	TM	2.8
	433002	AF048730	Hs.279906	cyclin T1	SS	2.8
75	444342 430598	NM_014398 AK001764	Hs.10887 Hs.247112	similar to lysosome-associated mem hypothetical protein FLJ 10902	TM, Lamp TM	2.8 2.8
, 5	428450	NM_014791	Hs.184339	KIAA0175 gene product	TM,pkinase,KA1	2.8
	450171	AL133661	Hs.24583	hypothetical protein DKFZp434C03	TM	2.8
	423554	M90516	Hs.1674	glutamine-tructose-6-phosphate tran	TM,GATase_2,SIS	2.8
80	430016 417866	NM_004736 AW067903	Hs.227656 Hs.82772	xenotropic and polytropic retrovirus collagen, type XI, alpha 1	TM Collagen,COLFI,TSPN	2.8 2.8
50	424894	H83520	Hs.153678	reproduction 8	SS,UBX	2.8
	430651	AA961694	Hs.105187	kinesin protein 9 gene	SS	2.7
	414853	U31116	Hs.77501	sarcoglycan, beta (43kD dystrophin-	TM	2.7 2.7
	448595	AB014544	Hs.21572	. KIAA0644 gene product	TM,LRRCT,LRR .	21
					177	

177

	452835	AK001269	Hs.30738	ESTs	TM	2.7
	403019 420281	AA834626	Hs.66718	RAD54 (S.cerevisiae)-like	SS,Anti_proliferat	2.7 2.7
	434815	AI623693 AF155582	Hs.191533 Hs.46744	ESTs core1 UDP-galactose:N-acetylgalact	Cation_efflux SS	2.6
5	432201	AI538613	Hs.135657	TMPRSS3a mRNA for serine protea	trefoll,trypsin	2.6
	430450	R23553	Hs.241489	hypothetical protein	SS and and	2.6 2.6
	448402 421802	BE244226 BE261458	Hs.21094 Hs.108408	RAB18, member RAS oncogene fam CGI-78 protein	ras,arf TM	2.6
4.0	452355	N54926	Hs.29202	G protein-coupled receptor 34	TM,7tm_1	2.6
10	417742	R64719		gb:EST22d11 WATM1 Homo seple	ank,death,RHD,TIG	2.6
	451346 433147	NM_006338 AF091434	Hs.26312 Hs.43080	glioma amplified on chromosome 1 platelet derived growth factor C	TMJg,LRR,LRRNT,LR TM,PDGF,CU8	2.6 2.6
	420079	NM_014051	Hs.94896	PTD011 protein	SS,TM,	2.6
	419918	X80700	Hs.93728	pre-B-cell leukemia transcription fac	homeobox,ig,Acyltransf	2.5
15	432350	NM_005865	Hs.274407	protease, serine, 16 (thymus)	SS	2.5
	406671 417412	AA129547 X16896	Hs.285754 Hs.82112	met proto-oncogene (hepatocyte gro interleukin 1 receptor, type I	pkinase,Sema,Plexfr_re SS,TIR.ig	2.5 2.5
	422530	AW972300	Hs.118110	bone marrow stromal cell antigen 2	TM	2.5
20	433929	Al375499	Hs.27379	ESTs	EGF,ldl_recept_a,ldl_re	2.5
20	443562	AF118838	Hs.9599	solute carrier family 25, member 13	TM,mito_carr	2.5
	414386 417576	X00442 AA339449	Hs.75990 Hs.82285	haptoglobin phosphoribosylglycinamide formyltr	sushi,trypsin AIRS,formyl_transf,GA	2.5 2.5
	449207	AL044222	Hs.23255	nucleoporin 155kD	TM	2.5
25	416107	AA173846	Hs.79015	antigen identified by monoclonal ant	TM,ig	2.4
25	421750 414812	AK000768 X72755	Hs.107872 Hs.77367	hypothetical protein FLJ20761	TM,PH SS,IL8	2.4 2.4
	406137	R42764	Hs.3248	monokine induced by gamma interfe mutS (E. coli) homolog 6	TM,MutS_C,MutS_N,P	2.4
	450710	AW953381	Hs.18627	ESTs, Weakly similar to G01447 GP	TM	2.4
30	430291	AV660345	Hs.238126	CGI-49 protein	TM '-	2.4
50	425184 451418	BE278288 BE387790	Hs.155048 Hs.26369	Lutheran blood group (Auberger b a ESTs	ig TM	2.4 2.4
	412277	BE277592	Hs.73799	guanine nucleotide binding protein (TM,G-alpha	2.4
	413719	BE439580	Hs.75498	small inducible cytokine subfamily A	SS,IL8	2.4
35	451806 416224	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	TMRCT SS ofbord	2.3 2.3
55	452268	NM_002902 NM_003512	Hs.79088 Hs.28777	reticutocalbin 2, EF-hand calcium bi H2A histone family, member L	SS,efhand histone,Calc_CGRP_IA4	2.3
	451668	Z43948	Hs.26789	ASPIC (acidic secreted protein in ca	SS,TM,	2.3
	400880	M84349	Hs.119663	CD59 antigen	SS,UPAR_LY6	2.3
40	421340 443986	F07783 Al381750	Hs.1369 Hs.283437	decay accelerating factor for comple HTGN29 protein	SS,sushi TM	2.3 2.3
40	443037	AW500305	Hs.8906	syntaxin 7	TM, Syntaxin	2.3.
	440516	S42303	Hs.161	cadherin 2, type 1, N-cadherin (neur	HNH,cadherin,Cadherin	2.3
	404877	Al394145	Hs.18048	melanoma antigen MAGE-10	TM,MAGE	2.3
45	440704 437952	M69241 D63209	Hs.162 Hs.5944	insulin-like growth factor binding pr solute carrier family 11 (proton-coup	SS,thyroglobulin_1,IGF TM	2.3 2.3
	418624	AI734080	Hs.104211	ESTs	Sema,ig	2.2
	410434	AF051152	Hs.63668	toll-like receptor 2	SS,TIR,LRRCT,LRR	2.2
	424687 431457	J05070 NM_012211	Hs.151738 Hs.256297	matrix metalloproteinase 9 (gelatina integrin, alpha 11	SS,fn2,hemopexin,Pepti TM,FG-GAP,vwa	2.2 2.2
50	407907	AI752235	Hs.41270	proceilagen-lysine, 2-oxoglutarate 5	SS,Lysyl_hydro	2.2
• •	400898	AF220030	Hs.125300	Homo sapiens tripartile motif protein	SPRY,7tm_1	2.2
	400303	AA242758	Hs.79136	Human breast cancer, estrogen regul	SS,TM,	2.2
	411789 414809	AF245505 Al434699	Hs.72157 Hs.77356	Homo sapiens mRNA; cDNA DKFZ transferrin receptor (p90, CD71)	ig,LRRCT TM,PA,Ribosomal_S2	2.2 2.2
55	401131	NM_001651	Hs.298023	Homo sapiens aquaporin 5 (AQP5),	TM,MIP	2,2
	400277	Y00281	Hs.2280	Human mRNA for ribophorin I	TM	2.1
	409317 409956	U20165	Hs.53250	bone morphogenetic protein recepto	TM,pkinase TGF-beta,TGFb_propep	2.1 2.1
	451253	AW103364 H48299	Hs.727 Hs.26126	H.sapiens activin beta-A subunit (ex claudin 10	TM,PMP22_Claudin	2.1
60	429638	AI916662	Hs.211577	Kinectin 1 (kinesin receptor)	TM .	2.1
	409267	NM_012453	Hs.52515	transducin (beta)-like 2	TM,WD40	2.1
	418414 449057	J04977 AB037784	Hs.84981 Hs.22941	X-ray repair complementing defectiv ESTs	SS TM	2.1 2.1
	417666	Al345001	Hs.82380	menage a trois 1 (CAK assembly fac	zf-C3HC4	2.1
65	428485	NM_002950	Hs.2280	ribophorin i	TM	2.1
	445798	NM_012421	Hs.13321	rearranged L-myc fusion sequence	TM,zf-C2H2	2.1
	430057 425189	AW450303 H16622	Hs.2534	bone morphogenetic protein recepto gb:ym26c07.r1 Soares infant brain 1	TM,Activin_recp,pkina RasGEF,PH,fibrinogen_	2.1 2.1
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycopro	SS,Glyco_hydro_18	2.1
70	421343	BE246444	Hs.283685	hypothetical protein FLJ20396	, TM	2.1
	425627	AF019612	Hs.297007	ESTs	TM,Peptidase_M50	21
	426261 431638	AW242243 NM_000916	Hs.168670 Hs.2820	peroxisomal famesylated protein oxytocin receptor	E1-E2_ATPase,Cation_ TM,7tm_1	2.1 2.1
a-	456546	AI690321	Hs.203845	ESTs, Weakly similar to TWIK-rela	TM	2.1
75	421685	AF189723	Hs.106778	calcium transport ATPase ATP2C1	TM,E1-E2_ATPase,Hy	21
	424099	AF071202	Hs.139336	ATP-binding cassette; sub-family C MyoD family inhibitor	TM,ABC_tran,ABC_m	21
	424800 410007	AL035588 AW950887	Hs.153203 Hs.57813	wyou raminy innibitor zinc ribbon domain containing, 1	TM TFIIS	2.1 2.1
00	436135	D85390	Hs.5057	carboxypeptidase D	SS,Zn_carbOpept	2.1
80	420633	NM_014581	Hs.99526	odorant-binding protein 28	TM,lipocalin	2.1
	420162 426156	BE378432 BE244537	Hs.95577 Hs.167382	cyclin-dependent kinase 4 natriuretic peptide receptor Alguany	pkinase,ank,ArfGap,PH TM,ANF_receptor,guan	2.1 2.0
	442711	AF151073	Hs.8645	hypothetical protein	TM	2.0
	411872	AW327356	Hs.90918	. chromosome 11 open reading frame	TM	2.0
					170	

178

	427801	AW979155	Hs.234433	hypothetical protein PRO1068	TM_Aa_trans	2.0			
	430268	AK000737	Hs.237480	hypothetical protein FLJ20730	TM	2.0			
5	431183	NM_006855	Hs.250696	KDEL (Lys-Asp-Glu-Leu) endoplas	TM,ER_lumen_recept,I	2.0			
	431846	BE019924	Hs.271580	Uroplakin 1B	TM,transmembrane4	20			
	404210	U02478	Hs.100469	Human AF-6 mRNA	TM,RA,DIL,PDZ,FHA	2.0			
	435640	AF220053	Hs.54960	uncharacterized hematopoletic stem/	TM,SET,zf-CXXC,PHD	2.0			
	447906	AL050062	Hs.19999	DKFZP566K023 protein	SS .	2.0			
10	412666	AL080116	Hs.74420	origin recognition complex, subunit	TM	2.0			
	417181	L10123	·Hs.1071	surfactant protein A binding protein	TM	2.0			
	423945	AA410943	Hs.72472	BMPR-lb; bone morphogenetic pro	TM,pkinase,Activin_rec	2.0			
	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	SS,trypsin	2.0			
	448350	L14561	Hs.78546	Homo sapiens clone 24411 mRNA s	TM,E1-E2_ATPase,Hy	2.0			
15	401093	AI955244	Hs.121520	HYPOTHETICAL 16.4 kDa PROTE	TMLRRCT	20			
	415664	NM_004939	Hs.78580	DEAD/H (Asp-Glu-Ala-Asp/His) bo	DEAD,helicase_C,SPRY	2.0			
	448165	NM_005591	Hs.202379	meiotic recombination (S. cerevisiae	DNA_repair,Glyco_tran	2.0			
	416391	A1878927	Hs.79284	mesoderm specific transcript (mouse	TM,abhydrolase	20			
	422926	NM_016102	Hs.121748	ring finger protein 16	SPRY,zf-C3HC4,zf-B_	2.0			
20	446849	AU076617	Hs.16251	cleavage and polyadenylation specif	TM	2.0			
	427617	D42063	Hs.179825	RAN binding protein 2-like 1	TM,Ran_BP1,zf-RanBP	20			
	411678	A1907114	Hs.71465	squalene epoxidase	TM,Monooxygenase	20			
	432554	A1479813	Hs.278411	NCK-associated protein 1	TM	2.0			
	TABLE 11	IB:							
	Pkey: Un	Pkey: Unique Eos probeset identifier number							
25		CAT number: Gene cluster number							
	Accession	Accession: Genbank accession numbers							

	Pkey	CAT Number	Accession
	417742	1696282_1	R64719 Z44680 R12451
30	425189	247825_1	H16622 R17322 AA351959

TABLE 11C:

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled 'The DNA sequence of human chromosome 22' Dunham, et al. (1999) Nature 402:489-495

Strand: Indicates DNA strand from which exons were predicted Nt position: Indicates nucleotide positions of predicted exons

40 Pkey Ref Strand Nt_position 40534 6981826 Minus 278637-279292 401197 9719705 Plus 176341-176452

Table 12A lists about 57 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to encode either enzymes or proteins amenable to modulation by small molecules. These were selected as for Table 10A, except that the ratio was greater than or equal to 20, and the predicted protein contained a structural domain that is indicative of enzymatic function or of being modulated by small molecules (e.g., pkinase, peptidase, isomerase, transporters). Predicted protein domains are noted.

TABLE 12A: ABOUT 57 UP-REGULATED GENES ENCODING EXTRACELLULAR/CELL SURFACE PROTEINS, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES Pkey: Primekey

50 Ex. Accn: Exemplar Accession UG ID: UniGene ID
Title: UniGene title

PFAM domains: predicted structural domains

ratio: ratio tumor vs. normal

55 UGID PFAM domains Pkev Ex. Accn 400292 AA250737 Hs.72472 BMPR-lb; bone morphogenetic pro pkinase,Activin_recp 400289 X07820 Hs.2258 Matrix Metalloproteinase 10 (Strom SS, Peptidase_M10 25.2 Hs.169840 18.7 426427 M86699 TTK protein kinase pkinase 60 424905 Hs.153704 NM 002497 NIMA (never in mitosis gene a)-rela 16.2 akinase 433159 AB035898 kinesin-like protein 2 Hs.150587 kinesin 11.5 AI470523 Hs.182356 ESTs, Moderately similar to translat ABC_tran 453370 7.2 6.1 5.2 418007 M13509 Hs.83169 Matrix metalloprotease 1 (interstitia SS, "Peptidase_M10 Ski_Sno,pkinase_C SH2,SH3 protein kinase C; lota 425465 L18964 Hs.1904 65 NM_006153 Hs.54589 409506 NCK adaptor protein 1 415539 Hs.72472 BMPR-lb; bone morphogenetic pro pkinase,Adivin_recp 4.8 424539 L02911 Hs.150402 activin A receptor, type I Activin_recp,pkinase AA305627 NM_001173 Hs.139336 Hs.267831 ATP-binding cassette; sub-family C Homo saplens cDNA FLJ12952 fis, TM,ABC_tran RhoGAP,FF,ras 4.6 3.9 400298 431699 70 439560 BE565647 Hs.74899 hypothetical protein FLJ12820 C2,PI-PLC-Y,PI-PLC-X 3.8 AF212223 X07820 450447 Hs.25010 hypothetical protein P15-2 ANF_receptor ,pkinase 3.6 Matrix Metalloproteinase 10 (Strom Homo sapiens cDNA: FLJ22621 fis. 400666 Hs.2258 SS. Pentidase M10 3.5 3.4 3.3 X85689 Hs.288617 EGF.fn3.pkinase 452822 416530 U62801 Hs.79361 kallikrein 6 (neurosin, zyme) SS,TM,trypsin 75 3.2 3.2 411393 AW797437 Hs.69771 B-factor, properdin SS,sushi,trypsin,vwa,fn3, 444755 AA431791 Hs.183001 **ESTs** AAA 3.2 3.1 AJ655499 Hs.161712 pkinase.Activin reco 418836 **ESTs** Hs.50915 BE393948 SS,trypsin 409178 kallikrein 5 M31126 Hs.272620 pregnancy specific beta-1-glycoprot SS,Peptidase_M10, .jg 3.1 406687 80 453920 AI133148 Hs.36602 I factor (complement) ktl_recept_a,trypsin,SRCR pkinase TM.pkinase,ig pkinase,Activin_recp AA923729 U33635 404653 Hs 26322 2.9 PTK7 protein tyrosine kinase 7 419452 Hs.90572 29 418848 Hs.193465 29 AI820961 **ESTs** NM_014791 Hs.184339 KIAA0175 gene product TM,pkinase,KA1

	401323	AL158037		predicted exon	lactamase_B	2.7
	444798	BE242144	Hs.12013	ATP-binding cassette, sub-family E	SH3.pktnase ABC_tran	2.7
	432201	Al538613	Hs.135657	TMPRSS3a mRNA for serine protea	trefoli,trypsin	26
_	448402	BE244226	Hs.21094	RAB18, member RAS oncogene fam	ras,arf	26
5	406671	AA129547	Hs.285754	met proto-oncogene (hepatocyte gro	pkinase Sema	2.5
	453448	AL036710	Hs.209527	ESTs	CNH,pkinase	2.5
	414386	X00442	Hs.75990	haptoglobin	sushi,trypsin	2.5
	421270	H56037 -	Hs.108146	ESTs	RhoGAP	2.4
	414695	8E439915	Hs.76913	proteasome (prosome, macropain) su	proteasome ·	2.4
10	431341	AA307211	Hs.251531	proteasome (prosome, macropain) su	proteasome	2.4
	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (4	AAA,Viral_helicase1	2.2
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatina	SS,fn2, ,Peptidase_M10	2.2
	416517	AA775987	Hs.79357	proteasome (prosome, macropain) 26	AAA	2.2
	417601	NM_014735	Hs.82292	KIAA0215 gene product	PHD	2.1
15	400509	M97639	Hs.155585	receptor tyrosine kinase-like orphan	pro_lsomerase	2.1
	430057	AW450303	Hs.2534	bane morphogenetic protein recepto	Activir_recp.pkinase	2.1
	421841	AA908197	Hs.108850	KIAA0936 protein	TPR,pkinase	2.1
	453078	AF053551	Hs.31584	metaxin 2	pro_isomerase	2.1
	424099	AF071202	Hs.139336	ATP-binding cassette; sub-family C	TM_ABC_tran	2.1
20	411190	AA306342	Hs.69171	protein kinase C-like 2	pkinase,pkinase_C,HR1	2.1
	407740	AA295547	Hs.62666	ESTs	p450	21
	420162	BE378432	Hs.95577	cyclin-dependent kinase 4	pkinase,ank,ArfGap ,ras	2.1
	420490	H69894	Hs.193041	ESTs	PI3Ka,PI3_PI4_kinase	2.1
	426156	BE244537	Hs.167382	natriuretic peptide receptor A/guany	TM,ANF_receptor ,pkinase	2.0
25	423945	AA410943	Hs.72472	BMPR-lb; bone morphogenetic pro	TM,pkinase,Activin_recp	2.0
	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	SS,trypsin	2.0
	447298	BE617527	Hs.180450	ribosomal protein S24	PI3Ka, PI4_kinase	2.0
	427617	D42063	Hs.179825	RAN binding protein 2-like 1	TPR.pro_isomerase	2.0
	453546	AF042385	Hs.33251	peptidylprotyl isomerase E (cycloph	pro_isomerase,rm	. 2.0
30						

TABLE 12C:

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et at." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495

Strand: Indicates DNA strand from which exons were predicted

35 Nt_position: Indicates nucleotide positions of predicted exons

Strand Nt_position 401323 9212516 .Plus 213509-214450

40

Table 13A lists about 1086 genes up-regulated in ovarian cancer compared to normal ovaries. These were selected as for Table 10A, except that the ratio was greater than or equal to 10, and the denominator was the median value for various non-mallgnant ovary specimens.

45 TABLE 13A: About 1086 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL OVARY

Pkey: Primekey Ex. Accn: Exemplay Accession UG ID: UniGene ID

Title: UniGene title

50 ratio: ration tumor vs. normal ovary

	Pkey	Ex. Acon	UG ID	Title	ratio
	439706	AW872527	Hs.59761	ESTs	109.2
<i>5 5</i>	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin, bone	107.8
55	422095	Al868872	Hs.288966	ceruloplasmin (ferroxidase)	104.4
	447111	Al017574	Hs.17409	cysteine-rich protein 1 (intestinal)	88.3
	431130	NM_006103	Hs.2719	epidldymls-specific; whey-acidic protein type	82.8
	431369	BE184455	Hs.251754	secretory leukocyte protease inhibitor (antil	81.9
C D	413859	AW992356	Hs.8364	ESTs	73.9
60	446291	BE397753	Hs.14623	Interferon, gamma-inducible protein 30	72.7
	426050	AF017307	Hs.166096	E74-like factor 3 (ets domain transcription f	68.1
	411469	T09997	Hs.70327	cysteine-rich protein 2	66.6
	429504	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	65.7
c =	416971	R34657	Hs.80658	uncoupling protein 2 (mitochondrial, proton c	64.9
65	450273	AW296454	Hs.24743	hypothetical protein FLJ20171	62.5
	446441	AK001782	Hs.15093	hypothetical protein	60.7
	428758	AA433988	Hs.98502	Homo saplens cDNA FLJ14303 fis, clone PLACE20	59.7
	441406	Z45957	Hs.7837	Homo sapiens cDNA FLJ10457 fis, clone NT2RP10	57.8
	441859	AW194364	Hs.128022	ESTs, Weakly similar to FIG1 MOUSE FIG-1 PROT	56.7
70	448406	AW772298	Hs.21103	Homo saplens mRNA; cDNA DKFZp5648078	55.7
	414602	AW630088	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264	55.2
	418068	AW971155	Hs.293902	ESTs, Wealdy similar to prolyl 4-hydroxylase	54.8
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin, uteri	53.4
	412636	NM_004415	Hs.74316	desmoplakin (DPI, DPII)	51.4
75	430634	AI860651	Hs.26685	ESTs	50.7
	439318	AW837046	Hs.6527	G protein-coupled receptor 56	50.7
	417259	AW903838	Hs.81800	chondrollin sulfate proteoglycan 2 (versican)	50.6
	407786	AA687538	Hs.38972	tetraspan 1	50.4
	426836	N41720	Hs.172684	vesicle-associated membrane protein 8 (endobr	49.7
80	417308	H60720	Hs.81892	KIAA0101 gene product	48.9
	436876	Al124756	Hs.5337	Isocitrate dehydrogenase 2 (NADP+), mitochond	48.4
	439180	Al393742	Hs.199067	v-erb-b2 avian erythroblastic leukemia viral	47.1
•	428289	M26301	Hs.2253	complement component 2	46.3
	405484			0	46.1

	405074	0.0144		and the Bo	45.3
	425371 403912	D49441	Hs.155981	mesothelin 0	45.7 45.0
	443021	AA368546	Hs.8904	lg superfamily protein	44.6
_	427697	T18997	Hs.180372	BCL2-Eke 1	44.3
5	428227	AA321649	Hs.2248	INTERFERON-GAMMA INDUCED PROTEIN	44.0
	404678	V02000	11- 0000	O	43.9
	400289 451035	X07820 AU076785	Hs.2258 Hs.430	Matrix Metalloproteinase 10 (Stromolysin 2) plastin 1 (I isoform)	43.8 43.8
	440848	BE314650	Hs.7476	ATPase, H+ transporting, lysosomal (vacuolar	42.8
10	436278	BE396290	Hs.5097	synaptogyrin 2	42.4
	413936	AF113676	Hs.75621	serine (or cysteine) proteinase inhibitor, cl	42.1
	420859	AW468397	Hs.100000	S100 calcium-binding protein A8 (calgranulin	42.1
	428411 422166	AW291464 W72424	Hs.10338 Hs.112405	ESTs S100 calcium-binding protein A9 (calgranulin	41.8 41.5
15	412477	AA150864	Hs.790	microsomal glutathione S-transferase 1	40.7
	417130	AW276858	Hs.81256	S100 calcium-binding protein A4 (calcium prot	40.1
	424673	AA345051	Hs.294092	ESTs	39.8
	416530 443162	U62801 T49951	Hs.79361 Hs.9029	kaliikrein 6 (neurosin, zyme) ESTs; Highly similar to KERATIN; TYPE I CYTO	39.7 39.5
20	413719	BE439580	Hs.75498	small inducible cytokine subfamily A (Cys-Cys	39.3
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B, 92k	38.9
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprotein-39	38.5
	429441	AJ224172	Hs.204096	Repopulin B (uteroglobin family member), pro	38.1
25	418526 415511	BE019020 AI732617	Hs.85838 Hs.182362	solute carrier family 16 (monocarboxylic acid ESTs	37.9 37.7
	409453	Al885516	Hs.95612	ESTs	37.7
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	37.3
	442432	BE093589	Hs.38178	Homo sapiens cDNA: FLJ23468 fis, clone HSI116	37.3
30	408243	Y00787	Hs.624	interleukin 8 mucin 1, transmembrane	37.3 36.7
50	419092 444172	J05581 BE147740	Hs.89603 Hs.104558	ESTs	36.0
	412115	AK001763	Hs.73239	hypothetical protein FLJ 10901	35.8
	420440	NM_002407	Hs.97644	mammaglobin 2	35.7
35	414386	X00442	Hs.75990	haptoglobin	35.3
JJ	423225 440596	AA852604 H13032	Hs.125359 Hs.103378	Thy-1 cell surface antigen ESTs, Weakly similar to DRR1 [H.sapiens]	35.1 35.0
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	34.9
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	34.8
40	445919	T53519	Hs.290357	ESTs	34.7
40	416854 414186	H40164 U33446	Hs.80296 Hs.75799	Purkinje cell protein 4	34.4 34.2
	434371	AA631362	F15.75755	protease, serine, 8 (prostasin) gb:np86b01.s1 NCI_CGAP_Thy1 Homo sapiens cDNA	33.9
	421937	Al878857	Hs.109706	HN1 protein	33.9
45	449722	BE280074	Hs.23960	cyclin B1	33.8
45	400965	VETENN	11- 450464	O ATR bladies accepted out family B (MODOTAD)	33.7
	452203 411945	X57522 AL033527	Hs.158164 Hs.92137	ATP-binding cassette, sub-family B (MDR/TAP), v-myc avian myelocytomatosis viral oncogene h	33.5 33.5
	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, importin a	33.4
5 Λ	408901	AK001330	Hs.48855	hypothetical protein FLJ 10468	33.3
50	438461	AW075485	Hs.286049	phosphoserine aminotransferase	33.3
	422963 426158	M79141 NM_001982	Hs.13234 Hs.199067	ESTs v-erb-b2 avian erythroblastic leukemia viral	33.3 33.2
	431836	AF178532	Hs.271411	beta-site APP-cleaving enzyme 2	32.8
<i></i>	421502	AF111B56	Hs.105039	solute carrier family 34 (sodium phosphate),	32.5
55	431211	M86849	Hs.5566	Homo sapiens connexin 26 (GJB2) mRNA, complet	32.5
	436552 442533	NM_014038 AA161224	Hs.5216 Hs.8372	HSPC028 protein ublquinol-cytochrome c reductase (6.4kD) subu	32.5 32.5
	406400	AA343629	Hs.104570	kallikrein 8 (neuropsin/ovasin)	32.4
60	450353	AJ244661	Hs.103296	ESTs	32.4
60	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKALP)	32.4
	433412	AV653729	Hs.8185	CGI-44 protein; sulfide dehydrogenase tike (y	32.3 32.2
	441020 432201	W79283 Al538613	Hs.35962 Hs.135657	ESTs TMPRSS3a mRNA for serine protease (ECHOS1) (T	32.0
	424125	M31669	Hs.1735	inhibin, beta B (activin AB beta polypeptide)	31.9
65	453309	Al791809	Hs.32949	defensin, beta 1	31.8
	408380	AF123050	Hs.44532	diubiquitin	31.7
	419329 409231	AY007220 AA446644	Hs.288998 Hs.692	S100-type calcium binding protein A14 GA733-2; epithelial glycoprotein (EGP) (KSA)	31.6 31.6
	423961	D13666	Hs.135348	Homo saplens mRNA for osteoblast specific fac	31.2
70	413840	Al301558	Hs.290801	ESTs	30.8
•	440943	AW082298	Hs.146161	ESTs, Weakly similar to KIAA0859 protein (H.s	30.8
	419239 410132	AA468183 NM_003480	Hs.184598 Hs.58882	Horno saplens cDNA: FLJ23241 fis, clone COL013 Microfibril-essociated glycoprotein-2	30.4 30.2
	418203	X54942	Hs.83758	CDC28 protein kinase 2	30.1
75	412719	AW016610	Hs.129911	ESTs	30.0
	407862	BE548267	Hs.50724	Homo sapiens cDNA FLJ 10934 fis, clone OVARC10	30.0
	431563 431743	A1027643 AW972642	Hs.120912	ESTs .	29.9 29.8
	431743	A1049783	Hs.293055 Hs.241284	ESTs	29.7
80	413745	AW247252	Hs.75514	nucleoside phosphorylase	29.7
	441028	A1333660	Hs.17558	ESTs	29.6
	442315 452838	AA173992 U65011	Hs.7956 Hs.30743	ESTs Preferentially expressed antigen in metanoma	29.6 29.5
	428479	Y00272	Hs.184572	cell division cycle 2, G1 to S and G2 to M	29.5
	3				- •

	432280	BE440142	Hs.2943	signal recognition particle 19kD	29.4
	420158	AI791905 AV652402	Hs.95549	hypothetical protein	29.3 29.2
	445033 452367	U71207	Hs.155145 Hs.29279	ESTs eyes absent (Drosophila) homolog 2	29.2 29.1
5	432706	NM_013230	Hs.286124	CD24	29.0
•	422163	AF027208	Hs.297332	prominin (mouse)-like 1	28.7
	447035	NM_004753	Hs.17144	short-chain dehydrogenase/reductase 1	28.6
	443958	BE241880	Hs.10029	cathepsin C	28.2
10	422956	BE545072	Hs.122579	ESTs	28.1
10	450377	AB033091	Hs.24936	ESTs	28.0 28.0
	447471 444725	AF039843 AW952022	Hs.18676 Hs.234174	sprouty (Drosophila) homolog 2 Homo sapiens cDNA FLJ13819 fis, clone THYRO10	20.0 27.8
	430250	NM_016929	Hs.283021	chloride intracellular channel 5	27.7
	416305	AU076628	Hs.79187	coxsackie virus and adenovirus receptor	27.6
15	418174	L20688	Hs.83656	Rho GDP dissociation Inhibitor (GDI) beta	27.5
	417233	W25005	Hs.24395	small inducible cytokine subfamily B (Cys-X-C	27.4
	417866	AW067903	Hs.82772	collagen, type XI, alpha 1	27.3
	427344	NM_000869	Hs.2142	5-hydroxytryptamine (serotonin) receptor 3A	27.2
20	442993	BE018682	Hs.44343	ESTS	27.2 27.0
20	407137 419356	T97307 Al656166	Hs.199067 Hs.7331	v-erb-b2 avian erythroblastic leukemia viral ESTs	27.0
•	433662	W07162	Hs.150826	CATX-8 protein	26.7
	422576	BE548555	Hs.118554	CGI-83 protein	26.4
	423271	W47225	Hs.126256	Interleukin 1, beta	26.3
25	443715	Al583187	Hs.9700	cyclin E1	26.1
	420186	NM_015925	Hs.95697	liver-specific bHLH-Zip transcription factor	26.0
	419551	AW582256	Hs.91011	anterior gradient 2 (Xenepus laevis) homolog	25.9 25.8
	443672 416889	AA323362 AW250318	Hs.9667 Hs.80395	butyrobetaine (gamma), 2-oxoglutarate dioxyge mal, T-cell differentiation protein	25.8 25.3
30	408474	AA188823	Hs.83196	Homo sapiens cDNA: FLJ23597 fis, clone LNG152	25.3
50	411825	AK000334	Hs.72289	hypothetical protein FLJ20327	25.3
	400881			0	25.2
	440594	AW445167	Hs.126036	ESTs	25.1
25	414586	AA306160	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin)	25.1
35	411925	AW014588	Hs.72925	chromosome 11 open reading frame 13	25.1
	417869	BE076254	Hs.82793 Hs.3281	proteasome (prosome, macropain) subunit, beta neuronal pentraxin II	25.0 25.0
	433447 450858	U29195 C18458	Hs.25597	elongation of very long chain fatty acids (FE	24.8
	410619	BE512730	Hs.65114	keratin 18	24.8
40	434094	AA305599	Hs.238205	hypothetical protein PRO2013	24.6
	421924	BE514514	Hs.109606	coronin, actin-binding protein, 1A	24.6
	446859	Al494299	Hs.16297	COX17 (yeast) homolog, cytochrome c oxidase a	24.5
	421451	AA291377	Hs.50831	ESTs	24.3
45	433929 438930	Al375499 AW843633	Hs.27379 Hs.81256	ESTs S100 calcium-binding protein A4 (calcium prot	24.3 24.2
73	444212	AW503976	Hs.10649	basement membrane-induced gene	24.2
	441633	AW958544	Hs.112242	ESTs	24.2
	441134	W29092	Hs.7678	cellular retinoic acid-binding protein 1	24.2
50	417715	AW969587	Hs.86366	ESTs	24.1
50	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolog 1	24.1
	416984	H38765	Hs.80706	diaphorase (NADH/NADPH) (cytochrome b-5 reduc	24.1
	430125 434078	U46418	Hs.233950 Hs.283683 *	serine protease inhibitor, Kunitz type 1 EST	23.9 23.8
	408669	AW880709 A1493591	Hs.78146	platelet/endothelial cell adhesion molecule (23.8
55	439413	AI598252	Hs.37810	ESTs	23.7
• -	449034	AI624049	Hs.277523	gb:ts41a09.x1 NCI_CGAP_Ut1 Homo sapiens cDNA	23.7
	420344	BE463721	Hs.97101	Putative G protein-coupled receptor GPCR150	23.6
	431243	U46455	Hs.252189	syndecan 4 (amphiglycan, ryudocan)	23.6
60	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated prot	23.5 23.4
00	451267 450101	A1033894 AV649989	Hs.117865 Hs.24385	solute carrier family 17 (anlon/sugar transpo Human hbc647 mRNA sequence	23.4
	419693	AA133749	Hs.92323	FXYD domain-containing ion transport regulato	23.4
	431103	M57399	Hs.44	pleiotrophin (heparin binding growth factor 8	23.4
	451110	A1955040	Hs.301584	ESTs	23.3
65	426295	AW367283	Hs.75839	zinc finger protein 6 (CMPX1)	23.2
	448517	AA082750	Hs.42194	hypothetical protein FLJ22649 similar to sign	23.1
	424670 417847	W61215 Al521558	Hs.116651 Hs.288312	epithelial V-like antigen 1 Homo sapiens cDNA: FLJ22316 fis, clone HRC052	23.1 23.1
	449027	AJ271216	Hs.22880	dipeptidylpeptidase III	23.1
70	424969	AW950928	Hs.153998	creatine kinase, mitochondrial 1 (ubiquitous)	23.1
	433159	AB035898	Hs.150587	kinesin-like protein 2	23.0
	411393	AW797437	Hs.69771	B-factor, properdin	23.0
	434815	AF155582	Hs.46744	core1 UDP-galactose:N-acetylgalactosamine-alp	22.8
75	427585	D31152	Hs.179729	collagen; type X; alpha 1 (Schmid metaphyseal	22.7 22.6
13	445721 448258	H92136 BE386983	Hs.13144 Hs.85015	HSPC160 protein ESTs, Wealdy similar to A4P_HUMAN INTESTINAL	22.6 22.6
	448258 456844	Al264155	Hs.152981	CDP-diacytglycerol synthase (phosphatidate cy	22.6
	452698	NM_001295	Hs.301921	ESTs	22.5
00	418693	AI750878	Hs.87409	thrombospondin 1	22.4
80	414880	AW247305	Hs.119140	eukaryotic translation initiation factor 5A	22.4
	401519			0	22.3 22.3
	402496 420324	AF163474	Hs.98744	0 DKFZP586D0823 protein, Prostate androgen-regu	22.3
	403022	ru iuoti t	110000177	0	22.2
				• •	

	424042	ALEDOOAA	U- 0054	humalhallant anatain DECORRO	22.1
	434042 419080	A1589941 AW150835	Hs.8254 Hs.18878	hypothetical protein PRO0899 hypothetical protein FLJ21620	22.1
	406545	AB018249	Hs.10458	small inducible cytokine subfamily A (Cys-Cys	22.1
_	447362	AW176120	Hs.9061	ESTs	22.0
5	429547	AW009166	Hs.99376	ESTs	22.0
	427954	J03060	Hs.247551	metaxin 1	22.0
	423161	AL049227	Hs.124776	Homo saplens mRNA; cDNA DKFZp564N1116 (from c	22.0
	428392	H10233	Hs.2265	secretory granule, neuroendocrine protein 1 (21.9 21.7
10	444107 414421-	T46839 Al521130	Hs.10319 Hs.55567	UDP glycosyltransferase 2 family, polypeptide ESTs, Weakly similar to LAK-4p [H.sapiens]	21.7
10	412589	R28660	Hs.24305	ESTs	21.5
	446525	AW967069	Hs.211556	Homo sapiens cDNA: FLJ23378 fis, clone HEP162	21.5
	416847	L43821	Hs.80261	enhancer of filamentation 1 (cas-like docking	21.5
	436972	AA284679	Hs.25640	claudin 3	21.5
15	428698	AA852773	Hs.297939	ESTs; Weakly similar to neogenin [H.sapiens]	21.5
	421340	F07783	Hs.1369	decay accelerating factor for complement (CD5	21.4
	413966	AA133935	Hs.173704	ESTs	21.4 21.3
	448243 421928	AW369771 AF013758	Hs.77496 Hs.109643	ESTs polyadenylate binding protein-interacting pro	21.3
20	403399	A1010100	113.103040	0	21.3
20	435793	AB037734	Hs.4993	ESTs	21.3
	432629	AWB60548	Hs.280658	ESTs	21.2
	449057	AB037784	Hs.22941	ESTs	21.2
25	437575	AW954355	Hs.36529	ESTs	21.2
25	401131			0	21.0
	407207	T03651	Hs.179661	tubulin, beta polypeptide	20.8 20.8
	444783 426230	AK001468 AA367019	Hs.62180 Hs.241395	ESTs protease, serine, 1 (trypsin 1)	20.8
	447343	AA256641	Hs.236894	ESTs; Highly similar to LOW-DENSITY LIPOPROTE	20.7
30	409041	AB033025	Hs.50081	KIAA1199 protein	20.6
	421305	BE397354	Hs.289721	diptheria toxin resistance protein required f	20.6
	411704	AI499220	Hs.71573	hypothetical protein FLJ10074	20.5
	417018	M16038	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related oncog	20.5
35	432827	Z68128	Hs.3109	Rho GTPase activating protein 4	20.4
22	410174	AA306007	Hs.59461	DKFZP434C245 protein	20.4 20.4
	425184 452322	BE278288 BE566343	Hs.155048 Hs.28988	Lutheran blood group (Auberger b antigen incl glutaredoxin (thioltransferase)	20.4
	447526	AL048753	Hs.340	small inducible cytokine A2 (monocyte chemota	20.2
	447335	BE617695	Hs.286192	protein phosphatase 1, regulatory (inhibitor)	20.2
40	424867	AI024860	Hs.153591	Not56 (D. melanogaster)-like protein	20.1
	410275	U85658	Hs.61796	transcription factor AP-2 gamma (activating e	20.1
	429083	Y09397	Hs.227817	BCL2-related protein A1	20.0
	410173	AA706017	Hs.119944	ESTs	19.8
45	433047 419088	M86135	Hs.279946	methionine-tRNA synthelase ESTs	19.8 19.7
73	403381	AI538323	Hs.77496	0	19.6
	409162	H25530	Hs.50868	solute carrier family 22 (organic cation tran	19.5
	426150	NM_003658	Hs.167218	BarH-like homeobox 2	19.4
	449292	AI990292	Hs.225457	ESTs	19.4
50	425207	AB014551	Hs.155120	rho/rac guanine nucleotide exchange factor (G	19.4
	419950	AK001645	Hs.93871	hypothetical protein FLJ10783	19.3
	436481 445930	AA379597 AF055009	Hs.5199 Hs.13456	HSPC150 protein similar to ubiquitin-conjugat Homo sapiens clone 24747 mRNA sequence	19.3 19.2
	446608	N75217	Hs.257846	ESTs	19.1
55	425222	M85430	Hs.155191	villa 2 (ezrin)	19.1
	428309	M97815	Hs.183650	cellular retinoic acid-binding protein 2	19.1
	420005	AW271106	Hs.133294	ESTs	19.1
	436982	AB018305	Hs.5378	spondin 1, (f-spondin) extracellular matrix p	19.0
60	407142	AA412535	Hs.55235	sphingomyelin phosphodiesterase 2, neutral me	19.0
UU	430122 446293	NM_013342 Al420213	Hs.233765 Hs.149722	TCF3 (E2A) fusion partner (in childhood Leuke ESTs	18.9 18.9
	444825	AW167613	Hs.248	mitogen-activated protein kinase kinase kinas	18.9
	407634	AW016569	Hs.301280	UDP-GicNAc:betaGal beta-1,3-N-acetylglucosami	18.9
	445200	AA084460	Hs.12409	somatostatin	18.9
65	418917	X02994	Hs.1217	adenosine dearninase	18.8
	435777	AW419202	Hs.286192	protein phosphatase 1, regulatory (inhibitor)	18.8
	431049	AA846576	Hs.103267	hypothetical protein FLJ22548 similar to gene	18.7
	426427	M86699	Hs.169840	TTK protein kinase	18.7
70	436281 425907	AW411194 AA365752	Hs.120051	ESTs	18.6 18.6
, 0	459720	resourt of	Hs.155965	ESTs ESTs	18.6
	421242	AW161386	Hs.13561	ESTs, Weakly similar to dJ37E16.5 [H.saplens]	18.5
	457715	AA642402	Hs.59142	ESTs	18.5
75	451668	Z43948	Hs.26789	ASPIC (acidic secreted protein in cartilage)A	18.4
75	437142	AI791617	Hs.145068	ESTs	18.4
	418588	BE387040	Hs.182476	ESTs, Weakly similar to similar to alpha/beta	18.3
	433068 419854	NM_006456 AW664873	Hs.288215 Hs.87836	sialyltransferase Homo saplens PAC clone RP5-1087M19 from 7q11.	18.3 18.3
	419854 444726	NM_006147	Hs.11801	interferon regulatory factor 6	18.3
80	423011	NM_000683	Hs.299847	ESTs, Highly similar to A2AD_HUMAN ALPHA-2C-2	18.2
	451428	AW083384	Hs.11067	ESTs, Weakly similar to K02E10.2 [C.elegans]	18.2
	424865	AF011333	Hs.153563	lymphocyte antigen 75	18.2
	418742	AW451197	Hs.113418	ESTs	18.1
	446627	A1973016	Hs.15725	ESTs; hypothetical protein S88I48	18.1

	424885 402926	AI333771	Hs.82204	ESTs 0	18.1 18.0
	405452	44404007	11- 004546	CHIRDS for according to the second se	18.0
5	428641	AA431367	Hs.234546	GMPR2 for guanosine monophosphate reductase i	18.0
,	454390	AB020713	Hs.56966	KIAA0906 protein	18.0 18.0
	441784 418758	AJ522132 AW959311	Hs.28700 Hs.87019	ESTs ESTs	17.9
	408621	A1970672	Hs.46638	chromosome 11 open reading frame 8; fetal br	17.9
	426201	AW182614	Hs.128499	ESTs	17.8
10	410442	X73424	Hs.63788	propionyl Coenzyme A carboxylase, beta polype	17.8
	456423	AW748920	12.007.00	gb:CM2-BT0306-171199-034-g02 BT0306 Homo sapi	17.8
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein	17.8
	448110	AA626937	Hs.181551	ESTs	17.7
	421750	AK000768	Hs.107872	hypothetical protein FLJ20761	17.7
15	405224			0	17.7
	447630	AI660149	Hs.44865	lymphoid enhancer-binding factor 1	17.7
	407663	NM_016429	Hs.37482	COPZ2 for nondalhrin coat protein zeta-COP	17.7
	427490	Z95152	Hs.178695	mitogen-activated protein kinase 13	17.6
20	414812	X72755	Hs.77367	monotkine induced by gamma interferon	17.6
20	427691 420650	AW194426	Hs.20726	ESTs	17.6 17.5
	439841	AA455706 AF038961	Hs.44581 Hs.6710	heat shock protein hsp70-related protein mannose-P-dolichol utilization defect 1	17.5
	425810	AI923627	Hs.31903	ESTs	17.5
	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	17.5
25	456098	AW747800	Hs.55016	hypothetical protein FLJ21935	17.4
	428579	NM_005756	Hs.184942	G protein-coupled receptor 64	17.4
	410361	BE391804	Hs.62661	guanylate binding protein 1, interferon-induc	17.4
	442402	NM_000954	Hs.8272	prostaglandin D2 synthase (21kD, brain)	17.4
20	411734	AW374954	Hs.71779	Homo saplens DNA from chromosome 19, cosmid F	17.3
30	405295	4.0007750	11- 44000	0	17.3
	408340 456068	AB037762	Hs.44268 Hs.76640	myelin gene expression factor 2 RGC32 protein	17.3 17.3
	448571	A1677897 AA486794	Hs.66915	ESTs, Weakly similar to 16.7Kd protein (H.sap	17.2
	441829	AL117482	Hs.7978	DKFZP434C131 protein	17.2
35	418004	U37519	Hs.87539	aldehyde dehydrogenase 8	17.2
	412078	X69699	Hs.73149	paired box gene 8	17.2
	414658	X58528	Hs.76781	ATP-binding cassette, sub-family D (ALD), mem	17.1
	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (melanom	17.0
40	426805	AB032945	Hs.172506	myosin VB	17.0
40	410247	AF181721	Hs.61345	RU2S	17.0 16.9
	434516 428153	AA807814 AW513143	Hs.70582 Hs.98367	ESTs, Moderately similar to AF144056 1 apopto hypothetical protein FLJ22252 similar to SRY-	16.9
	417793	AW405434	Hs.82575	small nuclear ribonucleoprotein polypeptide B	16.9
	454163	AW175997		gb:QV0-BT0078-190899-005-E02 BT0078 Homo sapi	16.9
45	415402	AA164687	Hs.297889	ESTs	16.9
	420309	AW043637	Hs.21766	ESTs	16.9
	419201	M22324	Hs.1239	alanyl (membrane) aminopeptidase (aminopeptid	16.9
	444391	AL137597	Hs.11114	hypothetical protein dJ1181N3.1	16.9
50	457705	AW974668	Un 470040	gb:EST386757 MAGE resequences, MAGM Horno sapi	16.8 16.8
50	412723 435774	AA648459 R88066	Hs.179912 Hs.4992	ESTs tumor suppressing subtransferable candidate 1	16.8
	408753	Al337192	Hs.47438	SH3 domain binding glutamic acid-rich protein	16.8
	447783	AF054178	Hs.19561	NADH dehydrogenase (ubiquinone) 1 alpha subco	16.8
	418085	R40328	Hs.258822	ESTs	16.7
55	452472	AW957300	Hs.294142	ESTs, Weakly similar to SP49_HUMAN SPLICEOSOM	16.7
	409112	BE243971	Hs.50649	quinone oxidoreductase homolog	16.7
	410250	Al082777	Hs.61384	KIAA1445 protein	16.7
	446219	AI287344	Hs.149827	ESTs	16.6
60	428928	BE409838	Hs.194657	cadherin 1, type 1, E-cadherin (epithelial)	16.6
00	425812	AA364128	Hs.245633	ESTs eukaryotic translation initiation factor 4E b	16.6 16.6
	411742 415076	AW247593 NM_000857	Hs.71819 Hs.77890	guanylate cyclase 1, soluble, beta 3	16.6 16.6
	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, homolo	16.6
	440667	BE076969	Hs.7337	hypothetical protein FLJ10936	16.6
65	430375	AW371048	Hs.93758	H4 histone family, member H	16.6
	419607	R52557	Hs.91579	Homo saplens clone 23783 mRNA sequence	16.6
	410328	BE080190	Hs.62275	CGI-141 protein	16.5
	405426			0	16.5
70	432636	AA340864	Hs.278562	claudin 7	16.5
70	434725 414683	AK000796 S78296	Hs.4104 Hs.76888	hypothetical protein internexin neuronal intermediate filament pro	16.5 16.5
	429500	X78565	Hs.289114	hexabrachion (tenascin C, cytotactin)	16.5
	449944	AF290512	Hs.58215	Homo sapiens rhotekin mRNA, partial cds	16.4
	400666	-34-1-3		0	16.4
75	421536	BE250690	Hs.105509	CTL2 gene	16.4
	436032	AA150797	Hs.109276	latexin protein	16.4
	418196	AI745649	Hs.26549	ESTs, Weakly similar to T00066 hypothetical p ESTs, Weakly similar to C43H8.1 [C.elegans]	16.4
	452323 407699	W44356 AA825974	Hs.292812 Hs.32646	Homo sapiens cDNA: FLJ21901 fis, clone HEP034	16.4 16.4
80	414617	AI339520	Hs.20524	ESTs, Moderately similar to hexokinase I [H.s	16.3
	408204	AA454501	Hs.43666	protein tyrosine phosphatase type IVA, member	16.3
	452650	AW270150	Hs.254516	EST ₈	16.3
	432906	BE265489	Hs.3123	lethal giant larvae (Drosophila) homolog 2	16.3
	402408			. 0	16.3

	400000				
	408805	H69912	Hs.48269	vaccinia related kinase 1	16.3
	447155	AA100605	Hs.121557	ESTs, Weakly similar to AF251041 1 SGC32445 p	16.3
	405699	1100100		0	16.2
5	405893	M22406		gb:Human Intestinal mucin mRNA, partial cds,	16.2
,	418629	BE247550	Hs.86859	growth factor receptor-bound protein 7 (GRB7)	16.2
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related kinase	16.2
	424243	A1949359	Hs.301837	ESTs, Highly similar to cis Golgi-localized c	16.2
	418462	BE001596	Hs.85266	integrin, beta 4	16.1
10	457205	AI905780	Hs.198272	NADH dehydrogenase (ubiquinone) 1 beta subcom	16.1
10	428188	M98447	Hs.22	transglutaminase 1 (K polypeptide epidermal t	16.1
	449845	AW971183	Hs.60054	ESTs	16.1
	406429	44004264		0	16.1
	407375	AA091354	11- 474000	gb:fi0815.seq.F Human fetal heart, Lambda ZAP	16.1
15	448377	AI494514	Hs.171380	ESTs	16.1
13	431156	NM_002220	Hs.2722	inosital 1,4,5-trisphosphate 3-kinase A	16.0
	450043	AA885699	Hs.24332	CGI-26 protein	16.0
	403121			0	16.0
	400214	000100	II- 045705	0	. 15.9
20	453252	R02436	Hs.215725	ESTs	15.9
20	451734	NM_006176	Hs.26944	neurogranin (protein kinase C substrate, RC3)	15.9
	416855	AA188763	Hs.36793	Homo sapiens cDNA: FLJ23188 fis, clone LNG120	15.9
	424474	AA308883	Hs.148680	calcyon; D1 dopamine receptor-interacting pro	15.9
	423685	8E350494	Hs.49753	Homo saplens mRNA for KIAA1561 protein, parti	15.9
25	428187	AI687303	Hs.285529	ESTs	15.9
23	438817	Al023799	Hs.163242	ESTs	15.9
	425692	D90041	Hs.155956	NAT1; arylamine N-acetyltransferase	15.9
	421674	T10707	Hs.296355	neuronal PAS domain protein 2	15.9
	439999	AA115811	Hs.6838	ras homolog gene family, member E	15.9
20	411351	W02919	Hs.283476	peroxisomal acyl-CoA thioesterase	15.9
30	413027	NM_002885	Hs.75151	RAP1, GTPase activating protein 1	15.9
	453884	AA355925	Hs.36232	KIAA0186 gene product	15.8
	407894	AJ278313	Hs.41143	phospholnositide-specific phospholipase C-bet	15.8
	422748	AA316266	Hs.129349	ESTs	15.8
25	414591	A1888490	Hs.55902	ESTs .	15.8
35	421877	AW250380	Hs.109059	mitochondrial ribosomal protein L12	15.8
	404780			0	15.8
	401192			0	15.8
	447519	U46258	Hs.23448	ESTs .	15.8
40	434262	AF121858	Hs.12169	sorting nexin 8	15.7
40	451253	H48299	Hs.26126	claudin 10	15.7
	435499	R89344	Hs.14148	ESTs	15.7
	422424	AI186431	Hs.116577	prostate differentiation factor, placental bo	15.7
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT2RP20	15.7
4.5	424562	Al420859	Hs.150557	basic transcription element binding protein 1	15.7
45	443247	BE614387	Hs.47378	ESTs	15.7
	430696	AA531276	Hs.59509	ESTs	15.6
	437044	AL035864	Hs.69517	ESTs, highly similar to differentially expres	15.6
	428237	AF175206	Hs.183125	killer cell lectin-like receptor F1	15.6
	440048	AA897461	Hs.158469	ESTs, Weakly similar to envelope protein [H.s	15.6
50	414922	000723	Hs.77631	glycine cleavage system protein H (aminomethy	15.6
	422030	X51416	Hs.110849	estrogen-related receptor alpha	15.6
	408716	Al567839	Hs.151714	ESTs	15.5
	410258	X52638	Hs.739	6-phosphofructo-2-kinase/fructose-2,6-biphosp	15.5
~ ~	410530	M25809	Hs.64173	ESTs, Highly similar to VAB1_HUMAN VACUOLAR A	15.5
55	447072	D61594	Hs.17279	tyrosylprotein sulfotransferase 1	15.5
	409015	BE389387	Hs.49767	NADH dehydrogenase (ubiquinone) Fe-S protein	15.5
	447549	AIB71120 -	Hs.231265	ESTs ·	15.5
	449704	AK000733	Hs.23900	GTPase activating protein	15.4
C 0	427337	Z46223	Hs.176663	Fc fragment of IgG, low affinity IIIb, recept	15.4
60	421630	NM_001956	Hs.1407	endothelin 2	15.4
	433018	A1669760	Hs.188881	EST8	15.4
	422938	NM_001809	Hs.1594	centromere protein A (17kD)	15.3
	407014	U38268		gb:Human cytochrome b pseudogene, partial cds	15.2
	429311	AF080157	Hs.198998	conserved helix-loop-helix ubiquitous kinase	15.2
65	431842	NM_005764	Hs.271473	epithelial protein up-regulated in carcinoma,	15.2
	406907	Z25427		gb:H.sapiens protein-serine/threonine kinase	15.2
	458495	AJ202029	Hs.148593	ESTs	15.2
	420551	AL137692	Hs.98790	Homo sepiens mRNA; cDNA DKFZp434P182 (from cl	15.1
70	448443	AW167128	Hs.231934	ESTs	15.1
70	443646	Al085198	Hs.298699	ESTs	15.1
	431538	AL137547	Hs.259619	Homo saplens mRNA; cONA DKFZp434B1120 (from c	15.1
	436687	AA868643	Hs.120461	ESTs	15.1
	420917	AW135716	Hs.117330	ESTs	15.0
75	428575	M19684	Hs.184929	serine (or cysteine) proteinase Inhibitor, cl	15.0
75	403482			0	15.0
	421499	A1271438	Hs.105022	Homo sapiens PAC clone RP4-701016 from 7q33-q	15.0
	401047			0	14.9
	417749	U09196	Hs.82520	polymerase (DNA-directed), delta 4	14.9
00	416693	AJ373204	Hs.79531	Homo sapiens TTF-I Interacting peptide 20 mRN	14.9
80	428474	AB023182	Hs.184523	KIAA0965 protein	14.9
	428862	NM_000346	Hs.2316	SRY (sex-determining region Y)-box 9 (campome	14.9
	430271	T06199	Hs.237506	heat shock cognate 40	14.9
	414328	Z21666	Hs.75900	aconitase 2, mitochondrial	14.9
	415314	N88802	Hs.5422	glycoprotein M6B	14.8
				. 105	

	453735	AJ066629	Hs.125073	ESTa	14.8
	424345	AK001380	Hs.145479	Homo saplens cONA FLI10518 fis, clone NT2RP20	14.8
	423575	C18863	Hs.163443	ESTs	14.8
-	438081	H49546	Hs.298964	ESTs	14.8
5	403485			0	14.8
	452114	N22687	Hs.8236	ESTs	14.8
	426559	AB001914	Hs.170414	paired basic amino acid cleaving system 4	14.8
	412869	AA290712	Hs.82407	Homo saplens HSPC296 mRNA, partial cds	14.8
10	452101	T60298		gb:yb87f12.r1 Stratagene liver (937224) Homo	14.7
10	420505	AW967984	Hs.291612	ESTs	14.7
	426125	X87241	Hs.166994	FAT turnor suppressor (Drosophila) homolog	14.7
	433336	AF017986	Hs.31386	ESTs; Highly similar to FRIZZLED PROTEIN PRE	14.7
	428977	AK001404	Hs.194698	cyclin B2	14.7
15	429785	H82114	Hs.301769	ESTs	14.7
15	402424	4.4.770000	11- 454000	0	14.7
	424971	AA479005	Hs.154036	tumor suppressing subtransferable candidate 3	14.7
	433037	NM_014158	Hs.279938	HSPC067 protein	14.6
	421670	BE207318	Hs.106674	BRCA1 associated protein-1 (ubiquitin carboxy	14.6
20	438598	AI805943	Hs.5723	Homo saplens cONA: FLJ23439 fis, clone HSI001	14.6
20	453370	AI470523	Hs.182356	ESTs, Moderately similar to translation Initi	14.6
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone HEP091	14.6
	402287	1114 007040	11. 00000	0	14.6
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	14.6
25	442047	AA974598	Hs.150324	ESTs .	14.5
23	428582	BE336699	Hs.185055	BENE protein	14.5
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	14.5
	406851	AA609784	Hs.180255	major histocompatibility complex, class II, D	14.5
	457316	Al123657	Hs.127264	ESTs	14.5
20	420453	AL157500	Hs.97840	Homo sapiens mRNA; cDNA DKFZp434G015 (from cl	14.5
30	436406	AW105723	Hs.125346	ESTs	14.5
	420736	AJ263022	Hs.82204	ESTs	14.5
	419743	AW408762	Hs.127478	EST8	14.5
	429113	D28235	Hs.196384	Prostaglandin-endoperoxide synthase 2 (COX-2)	14.5
2.5	450256	AA286887	Hs.24724	MFH-amplified sequences with leucine-rich tan	14.5
35	424906	A1566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein, 3' untr	14.5
	. 427414	F11750	Hs.6647	Homo saplens cDNA FLJ13088 fls, clone NT2RP30	14.4
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelel-activat	14.4
	418738	AW388633	Hs.6682	solute carrier family 7, member 11	14.3
40	429414	AI783656	Hs.202095	empty spiracles (Drosophila) homolog 2	14.3
40	424669	AA417181	Hs.120858	Homo saplens cDNA FLJ13945 fis, clone Y79AA10	14.3
	408989	AW361666	Hs.49500	KIAA0746 protein	14.3
	406788	Al911841	Hs.5184	TH1 drosophila homolog	14.3
	417861	AA334551	Hs.82767	sperm specific anligen 2	14.3
45	402104			0	14.3
45	416368	R88849		gb:ym96a06.r1 Soares adult brain N2b4HB55Y Ho	14.2
	405802			0	14.2
	448357	N20169	Hs.108923	ESTs	14.2
	444261	AA298958	Hs.10724	MDS023 protein	14.2
50	407846	AA426202	Hs.40403	Cbp/p300-interacting transactivator, with Glu	14.2
50	425163	D10040	Hs.154890	fatty-acid-Coenzyme A ligase, long-chain 2	14.1
	402520			0	14.1
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase domain 9	14.1
	430044	AA464510	Hs.152812	EST cluster (not in UniGene)	14.1
55	429663	M68874	Hs.211587	Human phosphatidylcholine 2-acylhydrolase (cP	14.1
55	427036	AA397625	Hs.163913	ESTs	14.1
	444381	BE387335	Hs.283713	ESTs	14.1
	432090	AW972855	Hs.292853	ESTs	14.0
	406778	H06273	Hs.101651	Homo sapiens mRNA; cDNA DKFZp434C107 (from cl	14.0
60	404961	AW972195	Hs.284236	aldo-keto reductase family 7, member A3 (afla	14.0
60	452313	Y00486	Hs.28914	adenina phosphoribosyltranslerase	14.0
	452355	N54926	Hs.29202	G protein-coupled receptor 34	14.0
	429942	Al338993	Hs.134535	ESTs	14.0
	403165			0	13.9
65	442150	Al368158	Hs.128864	ESTs	13.9
65 ·	439709	AW401433	Hs.6649	hypothetical protein FLJ20128	13.9
	456799	AC004923	Hs.135187	Homo sapiens clone CDABP0025 mRNA sequence	13.9
	427356	AW023482	Hs.97849	ESTs	13.9
	448982	AI638164	Hs.225520	ESTs	13.9
70	432025	BE407132	Hs.111286	hypothetical protein FLJ22512	13.8
70	427505	AA361562	Hs.178761	26S proteasome-associated pad1 homolog	13.8
	402965			0	13.8
	418601	AA279490	Hs.86368	calmegin	13.8
	436954	AA740151	Hs.130425	ESTs	13.8
75	405024	DE 464444		0	13.8
75	453976	BE463830	Hs.163714	ESTs	13.8
	431921	N46466	Hs.58879	ESTs	13.8
	401735			0	13.8
	445496	AB007860	Hs.12802	development and differentiation enhancing fac	13.8
00	425007	AA456483	Hs.172081	phosphodiesterase 4D, cAMP-specific (dunce (D	13.7
80	409463	AI458165	Hs.17296	EST8	13.7
	430193	AI826653	Hs.102928	Homo sapiens cDNA FLJ13479 fis, clone PLACE10	13.7
	458869	A1637934	Hs.224978	ESTs	13.7
	426769	AA075596	Hs.172153	glutathione peroxidase 3 (plasma)	13.7
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	13.7
				100	

	439901	N73885	Hs.124169	ESTs	13.7
	431374	8E258532	Hs.251871	CTP synthase	13.7
	432861	· AA339526	Hs.279593	HSPC171 protein	13.7
_	441172	A1279652	Hs.132879	ESTs	13.7
5	410001	AB041036	Hs.57771	kallikrein 11; serine protease (TLSP)	13.7
	430315	NM_004293	Hs.239147	guanine dearninase	13.6
	422769	AA938905	Hs.289112	CGI-43 protein	13.6
	402389			0	13.6
	448977	X91809	Hs.22698	regulator of G-protein signatting 19	13.6
10	459648	7.0.000		gb:IL3-CT0220-150200-070-B02 CT0220 Homo sapi	13.6
	452972	M31732	Hs.31210	B-cell CLL/tymphoma 3	13.6
	431441	U81961	Hs.2794	sodium channel, nonvoltage-gated 1 alpha	13.6
	448585		Hs.21543	KIAA0869 protein	13.6
		AB020676	Hs.184062	putative Rab5-interacting protein	13.6
15	428385	AF112213	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HEMBB10	13.6
IJ	434699	AA643687			13.6
	447238	AW451676	Hs.158564	ESTs	13.6
	437108	AA434054	Hs.80624	Homo sapiens cDNA: FLJ23442 fis, clone HSI009	
	425749	AW328587	Hs.159448	surfelt 2	13.5
20	425154	NM_001851	Hs.154850	collagen, type IX, alpha 1	13.5
20	413753	U17760	Hs.301103	Laminin, beta 3 (nicein (125kD), kalinin (140	13.5
	419034	NM_002110	Hs.89555	hemopoletic cell kinase	13.5
	448361	H82028	Hs.238707	Homo saplens cDNA: FLJ22457 fis, clone HRC099	13.5
	412754	AW160375	Hs.74565	amylold beta (A4) precursor-like protein 1	13.5
~ ~	419081	A1798863	Hs.87191	ESTs ·	13.5
25	407732	AW138839	Hs.24210	ESTs .	13.5
	423329	AF054910	Hs.127111	tektin 2 (testicular)	13.5
	422627	BE336857	Hs.118787	transforming growth factor, beta-induced, 68k	13.4
	439636	AF086467		gb:Homo sapiens full length insert cDNA clone	13.4
	417605	AF006609	Hs.82294	regulator of G-protein signalling 3	13.4
30	445861	BE293423	Hs.11809	single ig IL-1R-related molecule	13.4
	447350	AI375572	Hs.172634	ESTs; HER4 (c-erb-84)	13.4
	451807	W52854	Hs.27099	DKFZP564J0863 protein	13.4
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, long f	13.4
	422443	NM_014707	Hs.116753	histone deacetylase 7B	13.4
35	412504	Z44496	Hs.26039	Homo sapiens cDNA FLJ13937 fis, clone Y79AA10	13.4
55	453344	BE349075	Hs.44571	ESTs	13.4
	402885	BE343013	110,44071	0	13.4
	438712	AW978161	Hs.169877	ESTs	13.4
	421774	AL050374	Hs.108169		13.3
40				DKFZP586C1619 protein	13.3
70	425638	NM_012337	Hs.158450	nasopharyngeal epithelium specific protein 1	13.3
	401897		11 555555	0	13.3
	425601	AW629485	Hs.293352	ESTs	
	450779	AW204145	Hs.156044	ESTs	13.3
15	444858	AI199738	Hs.208275	ESTs, Weakly similar to unnamed protein produ	13.3
45	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 protein x	13.3
	434263	N34895	Hs.44648	ESTs	13.3
	426059	BE292842	Hs.166120	interferon regulatory factor 7	13.3
	407467	D55638		gb:Human B-cell PABL (pseudoautosomal boundar	13.3
	412560	R24601	Hs.108300	CCR4-NOT transcription complex, subunit 3	13.2
50	442986	Al025990	Hs.285520	ESTs	13.2
	420317	AB006628	Hs.96485	KIAA0290 protein	13.2
	443211	AI128388	Hs.143655	ESTs	13.2
	434361	AF129755	Hs.117772	ESTs	13.2
	423493	AI815965	Hs.129683	ubiquitin-conjugating enzyma E2D 1 (homologou	13.2
55	414183	AW957446	Hs.301711	ESTs	13.2
	447778	BE620592	Hs.71190	ESTs	13.2
	435106	AA100847	Hs.193380	ESTs, Highly similar to AF174600 1 F-box prot	13.1
	439490	AW249197	Hs.100043	ESTs, Weakly similar to PSF_HUMAN PTB-ASSOCIA	- 13.1
	409606	AW444594	Hs.2387	transglutaminase 4 (prostate)	13.1
60	421308	AA687322	Hs.192843	ESTs	13.1
- •	414950	C15407		gb:C15407 Clontech human aorta polyA+ mRNA (6	13.1
	416783	AA206186	Hs.79889	monocyte to macrophage differentiation-associ	13.1
	415927	AL120168	Hs.78919	Keil blood group precursor (McLeod phenotype)	13.1
	422605	H16646	Hs.118666	Human clone 23759 mRNA, partial cds	13.0
65		AA296701	Hs.241413	opticin	13.0
05	430427			katlikrein 7 (chymotryptic; stratum comeum)	13.0
	424620	AA101043	Hs.151254		
	421693	X71490	Hs.106876	ATPase, H+ transporting, lysosomal (vacuolar	13.0 13.0
	407727	AW411148	Hs.38044	DKFZP564M082 protein	13.0
70	427706	AW971225	Hs.293800	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	
70	406709	AI355761	Hs.242463	keralin 8	13.0 13.0
	405353	414004000	41-04504	0	
	453060	AW294092	Hs.21594	ESTs	13.0
	459299	BE094291	Hs.155651	hepatocyte nuclear factor 3, beta	13.0
75	447843	AW337186	Hs.224891	ESTs	13.0
75	446576	AI659477	Hs.51820	ESTs, Moderately similar to ALU7_HUMAN ALU SU	13.0
	449700	L02867	Hs.78358	ESTs	13.0
	436476	AA326108	Hs.53631	ESTs	13.0
	432532	AW058459	Hs.162246	ESTs	13.0
0.0	408405	AK001332	Hs.44672	hypothetical protein FLJ10470	13.0
80	432673	AB028859	Hs.278605	ER-associated DNAJ; ER-associated Hsp40 co-ch	12.9
	414684	AW630023	Hs.76893	3-hydroxybutyrate dehydrogenase (heart, mitoc	12.9
	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipase A1a	12.9
	427923	AW274357	Hs.268384	Fzr1 protein	129
	437395	AL365408	Hs.10632	hypothetical protein DKFZp762M136	12.9
				•	

	441627	AA947552	Hs.58086	ESTs .	12.9
	419084 423067	AA496539 AA321355	Hs.179902	transporter-like protein	12.9 12.9
	423070	R55677	Hs.285401 Hs.155569	ESTS	12.8
5	441344	BE250144	Hs.41514	ESTs	12.8
•	423527	A1206965	Hs.105861	Homo saplens cDNA FLJ13824 fis, clone THYRO10	12.8
	417006	AW673606	Hs.80758	aspartyl-IRNA synthetase	12.8
	453552	AL041941	Hs.154729	3-phosphoinositide dependent protein kinase-1	12.8
10	453657	W23237	Hs.296162	ESTs	12.8
10	434414	AJ798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens cDNA	12.7
	456051	T85626	Hs.76239	hypothetical protein FLJ20608	12.7
	451659 418216	BE379761 AA662240	Hs.14248 Hs.283099	ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAM AF15q14 protein	12.7 12.7
	423281	AJ271684	Hs.126355	C-type (catcium dependent, carbohydrate-recog	12.7
15	424275	AW673173	Hs.144505	OKFZP566F0546 protein	12.7
	440062	AJ350518	Hs.129692	ESTs	12.7
	444371	BE540274	Hs.239	Forkhead box M1	12.7
	412520	AA442324	Hs.795	H2A histone family, member O	12.7
	413349	BE086692		gb:QV1-BT0678-130400-156-g07 BT0678 Homo sapi	12.7
20	414500	W24087	Hs.76285	DKFZP564B167 protein	12.6
	429261	AW176254	Hs.143475	ESTs	12.6
	402238			0	12.6 12.6
	400280	AMEDOGO	Hs.300961	0 ESTA Minhly cimilar to AE161806 1 CGL 47 are	12.6
25	421246 442029	AW582962 AW956698	Hs.14456	ESTs, Highly similar to AF151805 1 CGI-47 pro neural precursor cell expressed, developmenta	12.6
23	435502	L13266	Hs.105	glutamate receptor, ionotropic, N-methyl D-as	12.6
	409964	AW368226	Hs.67928	ESTs	12.6
	418793	AW382987	Hs.88474	prostaglandin-endoperoxide synthase 1 (prosta	12.5
	452117	AI421760	Hs.77870	Homo sapiens cDNA FLJ12750 fis, clone NT2RP20	12.5
30	448074	BE621355	Hs.27160	ESTs	12.5
	442655	AW027457	Hs.30323	ESTs	12.5
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	12.5
	400240	1400004	11- 75100	0	12.5
35	413048	M93221	Hs.75182 Hs.155223	mannose receptor, C type 1	12.5 12.5
55	426215 430024	AW963419 AI808780	Hs.227730	ESTs integrin, alpha 6	12.5
	445655	AA873830	Hs.167746	B cell linker protein	12.5
	419941	X98654	Hs.93837	phosphatidylinositol transfer protein, membra	12.5
	425280	U31519	Hs.1872	phosphoenolpyruvate carboxykinase 1 (soluble)	12.5
40	427767	AI879283	Hs.180714	cytochrome c oxidase subunit VIa polypeptide	12.4
	450243	AW119084	Hs.201037	ESTs	12.4
	408930	AA146721	Hs.49005	hypothetical protein	12.4
	418783	T41368		gb:ph1d1_19/1TV Outward Alu-primed hncDNA lib	12.4
45	452096	BE394901	Hs.226785	ESTs	12.4
47	424513	BE385864	Hs.149894	mitochondrial translational initiation factor	12.4 12.4
	422306 409031	BE044325 AA376836	Hs.227280 Hs.76728	Homo sapiens mRNA for Lsm5 protein ESTs	12.4
	435515	N40080	Hs.6879	DC13 protein	12.4
	429583	NM_006412	Hs.209119	1-acylglycerol-3-phosphate O-acyltransferase	12.3
50	449643	R05989	Hs.19603	ESTs	12.3
	440313	AL050060	Hs.7158	DKFZP566H073 protein	12.3
	425593	AA278921	Hs.1908	proteoglycan 1, secretory granule	12.3
	447357	Al375922	Hs.159367	ESTs	12.3
55	405089	DE000300	ut- moor	0	12.3
55	414972	BE263782	Hs.77695	KIAA0008 gene product	12.3 12.3
	435039 447033	AW043921 Al357412	Hs.130526 Hs.157601	ESTs EST - not in UniGene	12.3
	427521	AW973352	Hs.299056	ESTs	12.3
	409377	AA300274	Hs.115659	Homo saplens cDNA: FLJ23461 fis, clone HSI077	12.3
60	400116			0	12.3
	445806	AL137516	Hs.13323	hypothetical protein FLJ22059	12.2
	457817	AA247751	Hs.79572	cathepsin D (lysosomal aspartyl protease)	12.2
	442410	AW996503	Hs.197680	ESTs	12.2
65	445404	AJ261687	Hs.145541	ESTs, Weakly similar to JC4974 sodium lodide	12.2
UJ	403372	AW249152	Hs.44017	SIR2 (silent mating type information regulati	12.2 12.2
	427082 433764	AB037858 AW753676	Hs.173484	hypothelical protein FLJ10337 ESTs	12.2
	400268	AW/330/0	Hs.39982	0	12.2
	433190	M26901	Hs.3210	renin	12.2
70	444863	AW384082	Hs.301323	ESTs	12.2
_	434779	AF153815	Hs.50151	potassium inwardly-rectifying channel, subfern	12.2
	451346	NM_006338	Hs.26312	glioma amplified on chromosome 1 protein (leu	12.2
	430262	AA218780	Hs.237323	N-acetylglucosamine-phosphate mutase	12.2
75	421071	Al311238	Hs.104476	EST's	12.2
75	426773	NM_015556	Hs.172180	KIAA0440 protein	12.1
	409178 400250	BE393948	Hs.50915	kallikrein 5 0	12.1 12.1
	428450	NM_014791	Hs.184339	KIAA0175 gene product	12.1
	414531	T69387	Hs.76364	allograft inflammatory factor 1	12.1
80	448210	AW247775	Hs.7393	hypothetical protein from EUROIMAGE 1987170	12.1
-	440081	AA863389	Hs.135643	ESTs	12.1
	413179	N99692	Hs.75227	NADH dehydrogenase (ubiquinone) 1 alpha subco	12.1
	447551	8E066634	Hs.929	myosin, heavy polypeptide 7, cardiac muscle,	12.1
	400517	AF242388	Hs.149585	tengsin	12.1
				100	

	101010			•	40.0
	401610 454381	A IOSEDOS	U- (03439	0 ESTe	12.0 12.0
	443997	Al935093 AW081465	Hs.193428 Hs.299644	ESTs ESTs	12.0
	402944	A11001403	N3.2030**	0	12.0
5	430637	BE160081	Hs.256290	S100 celcium-binding protein A11 (calgizzarin	12.0
	415099	A1492170	Hs.77917	ubiquitin carboxyl-terminal esterase L3 (ubiq	12.0
	445422	AV653731	Hs.282829	ESTs	12.0
	416667	AK000526	Hs.79457	hypothetical protein FLJ20519	12.0
10	442611	BE077155	Hs.177537	ESTs	12.0
10	443271	BE568568	Hs.195704	ESTs EST-	12.0 12.0
	415120 439574	N64464 A1469788	Hs.34950 Hs.165190	ESTs ESTs	12.0
	405804	A1403700	115.105150	0	12.0
	412519	AA196241	Hs.73980	troponin T1, skeletal, slow .	12.0
15	414135	NM_004419	Hs.2128	dual specificity phosphatase 5	12.0
	447075	AV662037	Hs.124740	ESTs	12.0
	416841	N33878	Hs.249495	heterogeneous nuclear ribonucleoprotein A1	12.0
	402943	00004000	11- 00r0c	O	11.9
20	416933	BE551850	Hs.80506 Hs.301272	small nuclear ribonucleoprotein polypeptide A	11.9 11.9
20	439744 405762	AL389994	NS.301212	ESTs, Weakly similar to homologue of Drosphil	11.9
	408983	NM_000492	Hs.663	cystic fibrosis transmembrane conductance reg	11.9
	455102	BE005496	12.500	gb:CM1-BN0117-110400-183-b09 BN0117 Homo sapi	11.9
	402840			Ŏ.	11.9
25	449183	AW445022	Hs.196985	Homo saplens cDNA: FLJ21135 fis, clone CAS072	11.9
	439273	AW139099	Hs.269701	ESTs	11.9
	450484	BE220675	11- 40704	gb:ht98f11.x1 NCL_CGAP_Lu24 Homo sapiens cDNA	11.9
	445431 401888	AF137386	Hs.12701	plasmolipin O	11.9 11.9
30	426037	AW160780	Hs.166071	cyclin-dependent kinase 5	11.9
50	416742	R38644	Hs.248420	ESTs	11.9
	418324	AW246273	Hs.84131	Ihreonyl-IRNA synthetase	11.8
	412870	N22788	Hs.82407	Homo sapiens HSPC296 mRNA, partial cds	11.8
25	432680	T47364	Hs.278613	interferon, elpha-inducible protein 27	11.8
35	421478	AI683243	Hs.97258	ESTs	11.8
	426635	BE395109	Hs.129327	ESTs	11.8
	420523 426227	AA262999 U67058	Hs.42788 Hs.168102	ESTs Human proteinase activated receptor-2 mRNA; 3	11.8 11.8
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural arachnod	11.8
40	441816	AI401807	Hs.149997	ESTs	11.8
• -	424596	AB020639	Hs.151017	estrogen-related receptor gamma	11.8
	400640			0	11.8
	448133	AA723157	Hs.73769	folate receptor 1 (adult)	11.8
15	401532			0	11.8
45	400161	A1 127761	U- 0270	O Name analysis PNA PNA DVE7-5961 2424 /from a	11.8
	442556 451002	AL137761 AA013299	Hs.8379 Hs.8018	Homo sapiens mRNA; cDNA DKFZp586L2424 (from c ESTs, Weakly similar to ALU3_HUMAN ALU SUBFAM	11.7 11.7
	401879	AND 13233	113.0010	0	11.7
	415989	A1267700	Hs.111128	ESTs	11.7
50	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	11.7
	410616	AW873401	Hs.273599	ESTs	11.7
	449239	T24653	Hs.23360	likely ortholog of yeast ARV1	11.7
	447669	AL049985	Hs.19180	Homo sapiens mRNA; cDNA DKFZp564E122 (from cl	11.7
55	436877 434560	AA931484 R13052	Hs.121255	ESTs, Weakly similar to cDNA EST EMBL: D67419	11.7 11.7
55	448105	AW591433	Hs.3964 Hs.170675	Homo sapiens clone 24877 mRNA sequence ESTs, Weakly similar to TMS2_HUMAN TRANSMEMBR	11.7
	400279	A11001400	113.774075	0	11.6
	440497	AA887266	Hs.144979	ESTs	11.6
~	451260	AW750773		gb:CM0-CN0044-260100-164-h03 CN0044 Homo sapi	11.6
60	429175	Al953040	Hs.127714	ESTs, Moderately similar to SOX30 protein [H.	11.6
	408209	NM_004454	Hs.43697	ets variant gene 5 (ets-related molecule)	11.6
	428856	AA436735	Hs.183171	Homo sapiens cDNA: FLJ22002 fis, clone HEP066	11.6
	420153 428760	N22120 Al351459	Hs.75277 Hs.192398	hypothetical protein FLJ13910 ESTs	11.6 11.6
65	421401	AW410478	Hs.104019	transforming, acidic coiled-coil containing p	11.6
••	404502			0	11.6
	430423	AI190548	Hs.143479	ESTs, Weakly similar to hypothetical protein	11.6
	405192			0	11.6
70	439092	AA830149		gb:cc44f08.s1 NCI_CGAP_GCB1 Homo saplens cDNA	11.6
70	401714	A A 7 40007	U- C0400	O ECTs title at the about a CERRES colleges states	11.5
	439335 406082	AA742697 S47833	Hs.62492 Hs.82927	ESTs, Weakly skrillar to S59856 collagen atpha adenosine monophosphate deaminase 2 (isoform	11.5 11.5
	401010	041033	LI3.07271	n acenosine monophosphale dearninase 2 (isolonii	11.5
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkinesin6)	11.5
75	409339	AB020686	Hs.54037	ectonucleotide pyrophosphatase/phosphodiester	11.5
	459684			gb:ao86a08.x1 Schiller meningioma Homo sapien	11.5
	451051	BE254309	Hs.125262	DKFZP586G1624 protein	11.5
	415323	BE269352	Hs.949	neutrophil cytosolic factor 2 (65kD, chronic	11.5
80	412153	R87934	No OTTO	gb:yo47b10.r1 Soares adult brain N2b4HB55Y Ho	11.5
ψV	427256 406708	AL042435 Al282759	Hs.97723 Hs.242463	ESTs keratin 8	11.5 11.4
	457644	AA770080	Hs.144962	ESTs, Moderately similar to 159365 ubliquitin	11.4
	422848	Z25884	Hs.121483	chloride channel 1 , skeletal muscle (Thomsen	11.4
	424134	AF070637	Hs.140950	hypothetical protein	11.4
				4.5	

	454004	41000000	11- 07007	Name against a Data Ct 120201 for place COLE121	11.4
	451931 400438	AK000208 AF185611	Hs.27267 Hs.115352	Homo sepiens cDNA FLJ20201 fis, clone COLF121 growth hormone 1	11.4
	412994	032257	Hs.75113	general transcription factor IIIA	11.4
_	408124	U89337	Hs.42853	cAMP responsive element binding protein-like	11.4
5	452249	BE394412	Hs.61252	ESTs	11.4
	424627	AA344555		gb:EST50715 Gall bladder I Homo sapiens cONA	11.4
	405626	4.4.272070	Un 402000	0 ECTo	11.4 11.4
	436690 415862	AA373970 R51034	Hs.183096 Hs.144513	ESTs ESTs	11.4
10	406755	N80129	Hs.94360	metallothionein 1L	11,4
10	433657	AI244368	Hs.8124	PH domain containing protein in retina 1	11.4
	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	11.4
	423334	AK000906	Hs.127273	hypothetical protein FLJ10044	11,4
1.5	433053	BE301909	Hs.279952	glutathione S-transferase subunit 13 homolog	11.4
15	428423	AU076517	Hs.184276	solute carrier family 9 (sodium/hydrogen exch	11.3 11.3
	442353	BE379594	Hs.49136 Hs.171077	ESTs Months similar to similar to serios/file	11.3
	447700 402077	AI420183	N3.11 1011	ESTs, Weakly similar to similar to semethr	11.3
	409203	AA780473	Hs.687	cytochrome P450, subfamily IVB, polypeptide 1	11.3
20	405145		12.00	0	11.3
	428248	Al126772	Hs.40479	ESTs	11.3
	425508	AA991551	Hs.97013	ESTs	11.3
	428340	AF261088	Hs.154721	aconitase 1, soluble	11.3
25	431452	AI073641	Hs.152372	ESTs .	11.3 11.3
25	446651	AA393907	Hs.97179	ESTB	11.3
	443755 436209	C18397 AW850417	Hs.9730 Hs.254020	tachykinin 3 (neuromedin K, neurokinin beta) ESTs, Moderately similar to unnamed protein p	11.3
	401020	A11030411	113.234020	0	11.3
	456724	AW247388	Hs.301423	calcium binding protein 1 (calbrain)	11.2
30	407227	H94949	Hs.171955	trophinin associated protein (tastin)	11.2
	402066			0	11.2
	442721	AI015892	Hs.101282	Homo sapiens mRNA; cDNA DKFZp434B102 (from cl	11.2
	401025		14- 400525	()	11.2 11.2
35	452423	AA991724	Hs.180535	Homo sapiens cDNA: FLJ22711 fis, clone HSi133	11.2
22	431685 425176	AW296135 AW015644	Hs.267659 Hs.301430	vav 3 encogene ESTs, Moderately similar to TEF1_HUMAN TRANSC	11.2
	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-relate	11.2
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130; oncos	11.2
	456995	T89832	Hs.170278	ESTs	11.2
40	419223	X60111	Hs.1244	CD9 antigen (p24)	11.2
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	11.2
	407604	AW191962	Hs.288061	actin, beta	11.2 11.1
	437929	T09353	Hs.106642	ESTs, Weakly similar to hypothetical protein	11.1
45	415789 424447	H01581 AL137376	Hs.147368	gb:yj33f08.r1 Soares placenta Nb2HP Homo sapi Homo sapiens mRNA; cDNA DKFZp434J0226 (from c	11.1
73	436034	AF282693	Hs.150185	inflammation-related G protein-coupled recept	11.1
	404931	10 202000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	11.1
	445979	AI695047	Hs.202395	ESTs	11.1
~^	446733	AA863360	Hs.26040	ESTs; Highly similar to CYTOCHROME P45 IVA2	11.1
50	433133	AB027249	Hs.104741	PDZ-binding kinase; T-cell originated protein	11.1
	445258	Al635931	Hs.147613	ESTS	11.1 11.1
	417251	AW015242 N36914	Hs.99488 Hs.14691	ESTs; Weakly similar to ORF YKR074w [S.cerevi	11.1
	421041 425537	AB007913	Hs.158291	ESTs KIAA0444 protein	11.1
55	435763	Al243929	Hs.190419	ESTs	11.1
-	444790		Hs.11955	B9 protein	11.1
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	11.1
	433882	U90441	Hs.3622	procollagen-proline, 2-oxoglutarate 4-dioxyge	11.1
6 0	405358			0	11.1
60	435814	AW615179	Hs.152870	ESTs	11.0 11.0
	422809 446772	AK001379 AW294404	Hs.121028 Hs.144515	hypothetical protein FLJ10549 Homo sapiens cDNA FLJ11672 fis, clone HEMBA10	11.0
	456694	AW016382	Hs.105642	Homo sapiens cDNA: FLJ23271 fis, clone HEP001	11.0
	441128	AA570256	Hs.54628	ESTs	11.0
65	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polypeptid	11.0
	412576	AA447718	Hs.107057	ESTs	11.0
	411122	F00809	Hs.143696	coactivator-associated arginine methyltransfe	11.0
	427225	AA432391	Hs.258903	Homo saplens mRNA for KIAA1640 protein, parti	11.0
70	426260	NM_002541	Hs.168669	oxoglutarate dehydrogenase (lipcamide) actin related protein 2/3 complex, subunit 1A	11.0 11.0
70	444652	BE513613	Hs.11538 Hs.49933	hypothetical protein DKFZp762D1011	11.0
	431947 414432	AL359613 BE378174	Hs.26506	Homo sapiens clone CDABP0005 mRNA sequence	11.0
	458627	AW088642	Hs.97984	ESTs; Weakly similar to WASP-family protein [10.9
	409142	AL136877	Hs.50758	chromosome-associated polypeptide C	10.9
75	447627	AF090922	Hs.285902	CGI-113 protein	10.9
	447656	NM_003726		src kinase-associated phosphoprotein of 55 kD	10.9
	454227	AW963897	Hs.44743	KIAA1435 protein	10.9 10.9
	402927 422380	AA309881	Hs.136246	0 ESTs	10.9
80	422360 455986	BE177736	113.130240	gb:RC1-HT0598-140300-021-g06 HT0598 Homo sapl	10.9
50	410962	BE273749	Hs.752	FK506-binding protein 1A (12kD)	10.9
	450361	BE327108	Hs.202512	ESTs	10.9
	457484	H57645		gb:yr21e01.1 Soares fetal liver spieen 1NFLS	10.9
	407903	A1287341	Hs.154029	, bHLH factor Hes4	10.9

				_	
	403398			0	10.9
	401405			0	10.9
	405570			0	10.9
_	421240	R72730	Hs.29283	ESTs, Weakly stmilar to PLK_HUMAN PROTEOGLYCA	10.9
5	403649			0	10.9
	447824	BE620800		gb:601483379T1 NIH_MGC_69 Homo saplens cDNA c	10.9
	450935	BE514743	Hs.25664	turnor suppressor deleted in oral cancer-relat	10.9
	439853	AL119566	Hs.6721	lysophospholipase-like	10.9
	451852	R51928		gb:yj71c05.r1 Soares breast 2NbHBst Homo sapi	10.9
10	431218	NM_002145	Hs.2733	homeo box B2	10.9
10	457794	AA689292	Hs.246850	ESTs .	10.9
					10.9
	444374	AA009841	Hs.11039	Homo saplens cDNA FLJ12798 fis, clone NT2RP20	
	456566	AW235317	Hs.259214	ESTs	10.8
• •	405552			0	10.8
15	439436	BE140845	Hs.57868	ESTs	10.8
	435310	AA705075	Hs.169536	Rhesus blood group-associated glycoprotein	10.8
	411125	AA151647	Hs.68877	cytochrome b-245, alpha polypeptide	10.8
	415807	H03139	Hs.24683	ESTs	10.8
	409430	R21945	Hs.166975	splicing factor, arginine/serine-rich 5	10.8
20	417033	H83784	Hs.40532	ESTs, Weakly similar to PEBP MOUSE PHOSPHATID	10.8
20	418464	R87580	10.40002	gb:ym89h07.r1 Soares adult brain N2b4HB55Y Ho	10.8
		1001000		0	10.8
	404567	41414 40000	U- 05120	-	
	418384	AW149266	Hs.25130	ESTs	10.8
25	421971	U63127	Hs.110121	SEC7 homolog	10.8
25	428769	AW207175	Hs.106771	ESTs .,	10.8
	459104	R19238	Hs.282057	EST8	10.8
	410896	AW809637		gb:MR4-ST0124-261099-015-b07 ST0124 Homo sapi	10.8
	416969	Al815443	Hs.283404	organic cation transporter	10.8
	408796	AA688292	Hs.118553	ESTs	10.8
30	426298	AW965058	Hs.111583	ESTs	10.8
50	421595	AB014520	Hs.105958	Homo sapiens cDNA: FLJ22735 fis, clone HUV001	10.8
	408007	AW135965	Hs.246783	ĖSTs .	10.8
	400167			0	10.7
~ ~	445243	Al217439	Hs.109854	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAM	10.7
35	421733	AL119671	Hs.1420	fibroblast growth factor receptor 3 (achondro	10.7
	412241	AW948343		gb:RC0-MT0015-130400-031-c01 MT0015 Homo sapi	10.7
	425827	W28316		gb:45b6 Human retina cONA randomly primed sub	10.7
	420255	NM_007289	Hs.1298	membrane metallo-endopeptidase (neutral endop	10.7
	430891	U22492	Hs.248118	G protein-coupled receptor 8	10.7
40	402883	022 102	,	0	10.7
	423811	AW299598	Hs.50895	homeo box C4	10.7
	447078		Hs.301570	ESTs	10.7
		AW885727			
	414343	AL036166	Hs.75914	coated vesicle membrane protein	10.7
15	446913	AA430650	Hs.16529	transmembrane 4 superfamily member (tetraspan	10.7
45	452279	AA286844	Hs.61260	hypothetical protein FLJ13164	10.7
	401220			0	10.7
	459259	AJ003294		gb:AJ003294 Selected chromosome 21 cDNA libra	10.7
	414171	AA360328	Hs.865	RAP1A, member of RAS oncogene family	10.7
	448449	BE314567	Hs.211440	ESTs	10,7
50	429670	L01087	Hs.211593	protein kinase C, theta	10.7
50	446759	R61463	Hs.16165	expressed in activated T/LAK lymphocytes	10.7
	400776	101403	113. 10 103	0	10.7
		AVAIENTENC	12- 404920	•	
	428093	AW594506	Hs.104830	ESTs (2017)	10.7
55	412801	AA121055		gb:zm22b01.r1 Stratagene pancreas (937208) Ho	10.6
33	440545	AW183201	Hs.190559	ESTs	10.6
	434540	NM_016045	Hs.5184	TH1 drosophila homolog	10.6
•	414273	BE269057		gb:601184231F1 NIH_MGC_8 Homo sapiens cDNA cl	10.6
	401817			0	10.6
	410423	AW402432	Hs.63489	protein tyrosine phosphalase, non-receptor ty	10.6
60	430590	AW383947	Hs.246381	CD68 antigen	10.6
	426680	AA320160	Hs.171811	adenylate kinase 2	10.6
	445413	AA151342	Hs.12677	CGI-147 protein	10.6
	402947	74101042	110.12011	0	10.6
		4148074440		•	
65	457426	AW971119	11- 4744	gb:EST383206 MAGE resequences, MAGL Homo sapi	10.6
03	424148	BE242274	Hs.1741	integrin, beta 7	10.6
	404944			0	10.6
	405421			0	10.6
	416772	AI733872	Hs.79769	protocadherin 1 (cadherin-like 1)	10.6
	414191	AW250089	Hs.75807	PDZ and LIM domain 1 (elfin)	10.6
70	457588	Al571225	Hs.284171	KIAA1535 protein	10.6
	406038	Y14443	Hs.88219	zinc finger protein 200	10.6
	404790			0	10.6
		VINGEREDU	Hs.42699	=	10.6
	418922	AW956580		Thrombospondin-1 (Hs.87409)	
75	425940	AB023184	Hs.163990	KIAA0967 protein	10.6
13	448749	AW859679	Hs.21902	Homo sapiens clone 25237 mRNA sequence	10.6
	418870	AF147204	Hs.89414	CXCR4; chemokine CXC receptor 4 (fusin)	10.5
	417933	X02308	Hs.82962	thymidylate synthetase	10.5
	450538	AW297396	Hs.227052	ESTs	10.5
	427928	AA417662	Hs.119217	ESTs	10.5
80	432721	AL121478	Hs.3132	steroidogenic acute regulatory protein	10.5
	429267	AA299290	Hs.246857	ESTs, Highly similar to S71100 protein kinase	10.5
	439190	AW978693	Hs.293811	ESTs	10.5
					10.5
	408975 415130	AW958693	Hs.49391	hypothetical protein LOC54149	
	413130	W85893	Hs.249867	, ESTs	10.5

				10	40.5
	425738 440232	H29630	Hs.159408	Homo sapiens clone 24420 mRNA sequence	10.5 10.5
	425065	A1766925 AA371906	Hs.112554 Hs.294151	ESTs Moderately similar to KIAA0544 protein	10.5
	420829	AW665612	Hs.221969	ESTs	10.5
5	430466	AF052573	Hs.241517	polymerase (DNA directed), theta	10.5
•	407771	AL138272	Hs.62713	ESTs	10.5
	444611	AK002180	Hs.11449	DKFZP564O123 protein	10.5
	444665	BE613126	Hs.47783	ESTs, Weakly similar to T12540 hypothetical p	10.5
10	448030	N30714	Hs.20161	HDCME31P protein	10.5
10	438982	AW979101	Hs.291980	ESTs	10.5
	446224 405108	AW450551	Hs.13308	ESTs 0	10.5 10.5
	438233	W52448	Hs.56147	ESTs	10.5
	401799	1132110	113.00147	0	10.5
15	454038	X06374	Hs.37040	platelet-derived growth factor alpha polypept	10.5
	414222	AL135173	Hs.878	sorbitol dehydrogenase	10.5
	421828	AW891965	Hs.289109	dimethylarginine dimethylaminohydrolase 1	10.5
	422626	AA344932	Hs.118786	metallothionein 2A	10.5
•	449261	A1637592	Hs.224958	ESTs	10.4
20	416218	R21499	Hs.23213	ESTs	10.4
	457848	W26524	Hs.125682	ESTs; Weakly similar to D2092.2 [C.elegans]	10.4
	442577	AA292998	Hs.163900	ESTS	10.4 10.4
	406505 412258	AF016272 AA376768	Hs.115418 Hs.288977	cadherin 16, KSP-cadherin Homo sapléns cDNA: FLJ22622 fis, clone HS1056	10.4
25	429224	AJ905780	Hs.198272	NADH dehydrogenase (ubiquinone) 1 beta subcom	10.4
23	447774	BE018118	Hs.19554	chromosome 1 open reading frame 2	10.4
	403914	02010110		0	10.4
	406329			Ö	10.4
٠.	402423			0	10.4
30	431986	AA536130	Hs.149018	ESTs	10.4
	423145	BE264548	Hs.222190	ESTs, Weakly similar to secretory carrier mem	10.4
	414402	BE294186		gb:601172959F1 NIH_MGC_17 Homo sapiens cDNA c	10.4
	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	10.4 10.4
35	426095	Al278023	Hs.89986	ESTS Home suplems cONA: EL 122497 fe, clone UPC100	10.4
55	434577 442415	R37316 Al005101	Hs.179769 Hs.129550	Homo saplens cDNA: FLJ22487 fis, clone HRC109 ESTs	10.3
	421506	BE302796	Hs.105097	thymidine kinase 1, soluble	10.3
	435084	D17516	Hs.301607	adenylate cyclase activating polypeptide 1 (p	10.3
	431724	AA514535	Hs.283704	ESTs	10.3
40	456798	AJ006422	Hs.135183	centaurin-alpha	10.3
	417370	T28651	Hs.82030	tryptophanyl-IRNA synthetase	10.3
	422596	AF063611	Hs.118633	2-Soligoadenylate synthetase-like	10.3
	435226	AI248938	Hs.270106	ESTs	10.3
15	433192	AB040880	Hs.225594	ESTs, Moderately similar to KIAA1447 protein	10.3
45	419879	Z17805	Hs.93564	Homer, neuronal Immediate early gene, 2	10.3
	416228	AW505190	Hs.79089	sema domain, immunoglobulin domain (ig), tran	10.3 10.3
	453403 447906	BE466639 AL050062	Hs.61779 Hs.19999	Homo saplens cDNA FU13591 fis, clone PLACE10 DKFZP566K023 protein	10.3
	401782	NM_012434	Hs.117865	solute carrier family 17 (anion/sugar transpo	10.3
50	453927	AA082465	Hs.301751	ESTs, Weakly similar to /prediction	10.3
• •	450737	AW007152	Hs.203330	ESTs	10.3
	421633	AF121860	Hs.106260	sorting nextn 10	10.3
	409881	AF139799	Hs.202830	ESTs	10.3
~ ~	432883	U48936	Hs.3112	sodium channel, nonvoltage-gated 1, gamma	10.3
55	440099	AL08005B	Hs.6909	DKFZP564G202 protein	10.3
	419024	X56411	Hs.1219	alcohol dehydrogenase 4 (class II), pi polype	10.3
	401835	41040447	11- 10770	O ather and the	10.3 10.3
	408896 443120	AI610447 AW402677	Hs.48778 Hs.290801	niban protein ESTs	10.3
60	400208	AV1102077	118.230001	0	10.2
00	416908	AA333990	Hs.80424	coagulation factor XIII, A1 polypeptide	10.2
	400166			0	10.2
	434642	W25739	Hs.135287	ESTs	10.2
	424837	BE276113	Hs.153436	N-acetyltransferase, homolog of S. cerevisiae	10.2
65	435075	R51094	Hs.12400	ESTs	10.2
	425912	AL137629	Hs.162189	serine/threonine kinase with Obl- and pleckst	10.2
	435080	A1831760	Hs.155111	ESTs	10.2 10.2
	414998	NM_002543	Hs.77729	oxidised low density lipoprotein (lectin-like ribonuclease, RNase A family, 2 (liver, eosin	10.2
70	410020 411410	T86315 R20693	Hs.728 Hs.69954	laminin, gamma 3	10.2
70	450294	H42587	Hs.238730	ESTs	10.2
	421154	AA284333	Hs.287631	Homo saplens cDNA FLJ14269 fis, clone PLACE10	10.2
	414271	AK000275	Hs.75871	protein kinase C binding protein 1	10.2
	400812			0	10.2
75	425843	BE313280	Hs.159627	death associated protein 3	10.2
	449392	Z41698	Hs.26039	Homo sapiens cDNA FLJ13937 fis, clone Y79AA10	10.2
	409089	NM_014781	Hs.50421	KIAA0203 gene product	10.2
	401383			0	10.2
QΛ	456855	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Drosoph	10.2
80	442912	A1088060 D25969	Hs.131450	ESTs Homo sapiens cDNA: FLJ23125 fis, clone LNG082	10.2 10.2
	400954 401029	BE382701	Hs.76325 Hs.25960	v-myc avian myelocytomatosis viral related on	10.2
	416602	NM_006159		nel (chicken)-like 2	10.2
	421905	A1660247	Hs.32699	. ESTs, Wealty similar to LIV-1 protein (H.sapi	10.2

```
405094
                                                                                                                             10.2
           450832
                        AW970602
                                        Hs.105421
                                                        ESTs
                                                                                                                             10.2
           440076
                        R32052
                                        Hs.178617
                                                         ESTs, Wealty similar to AF151840 1 CGI-82 pro
                                                                                                                             10.2
                       BE536115
           447563
                                        Hs.160983
                                                                                                                             10.2
  5
                                                                                                                             10.2
                       AB033101
                                                        KIAA1275 protein
           421238
                                        Hs.102796
                                                                                                                             10.2
           400882
                        BE539367
                                                        ESTs, Wealdy similar to AF220049 1 uncharacte
                                                                                                                             10.1
           415738
                                        Hs.295953
           445464
                        AW172389
                                        Hs.249999
                                                                                                                             10.1
           459042
                        AW272058
                                        Hs. 210338
                                                        ESTs
                                                                                                                             10.1
10
                                                        steriod receptor RNA activator 1 (complexes w
           414469
                                                                                                                             10.1
                        R51952
                                        Hs.32587
            434732
                        AI078443
                                                         gb:oz05g05.x1 Soares_fetal_liver_spleen_1NFLS
                                                                                                                             10.1
           441030
                        AW204139
                                        Hs.174424
                                                         ESTs, Weakly similar to p140mDia (M.musculus)
                                                                                                                             10.1
           446855
                        RF616767
                                        Hs.16269
                                                         B-cell CLL/lymphoma 7B
                                                                                                                             10.1
                                                        hypothetical protein
                                                                                                                             10.1
                        AF151074
                                        Hs.132744
           456785
15
           404182
                                                                                                                             10.1
            410358
                        AW975168
                                        Hs.13337
                                                         ESTs. Weakly similar to unnamed protein produ
                                                                                                                             10.1
                                        Hs.239818
Hs.239666
                                                         phosphoinosifide-3-kinase, catalytic, beta po
Homo sapiens cDNA FLJ 13495 fis, clone PLACE10
            430355
                        NM_006219
                                                                                                                             10.1
           442152
                        R39246
                                                                                                                             10.1
                        AI879252
                                                         Homo saplens mRNA: cDNA DKFZp564C2163 (from c
           436354
                                        Hs.5151
                                                                                                                             10.1
20
           426711
                        AA383471
                                        Hs.180669
                                                         conserved gene amplified in osteosarcoma
                                                                                                                             10.1
            450599
                        AA460865
                                        Hs.48516
                                                                                                                              10.1
                                                         gb:PM0-HT0335-180400-008-c08 HT0335 Homo sapi
           454393
                        BE153288
                                                                                                                             10.1
           403383
                                                                                                                             10.1
                                                                                                                             10.1
                        U04045
                                        Hs.78934
                                                         mutS (E. coli) homolog 2 (colon cancer, nonpo
           415947
                                                         protease, serine, 21 (lestisin)
Epstein-Barr virus Induced gene 2 (lymphocyte
25
           411773
                        NM_006799
                                        Hs.72026
                                                                                                                              10.1
                        AW402166
            412116
                                        Hs.784
                                                                                                                              10.1
           413808
                        J00287
                                        Hs.182183
                                                         caldesmon 1
                                                                                                                             10.0
                                                                                                                             10.0
           458572
                        AJ223423
                                        Hs.292794
                                                         ESTs
                                                                                                                              10.0
           403295
30
                                                                                                                              10.0
            403910
            453400
                        AI991901
                                        Hs.82590
                                                         ESTs, Moderately similar to ALU7_HUMAN ALU SU
                                                                                                                             10.0
                                                                                                                             10.0
            406502
                                                                                                                              10.0
            404743
                        BE271584
                                                         gb:601141065F1 NIH_MGC_9 Homo sepiens cDNA cl
                                                                                                                              10.0
            412517
35
            402679
                                                                                                                             10.0
                                                         gb:CM0-HT0245-031199-085-h05 HT0245 Homo sapi
                        RF148970
                                                                                                                             10.0
            455864
                                                         peptidylglycine alpha-amldating monooxygenase
Homo sapiens cDNA FLJ12627 fis, clone NT2RM40
                        AF056209
                                        Hs.159396
                                                                                                                             10.0
            425734
                        W07506
                                        Hs.283725
                                                                                                                              10.0
           419280
                        AV645438
                                        Hs.282927
                                                                                                                              10.0
            443503
40
                                                                                                                             10.0
            423165
                        AI937547
                                        Hs.124915
                                                         Human DNA sequence from clone 380A1 on chromo
            450206
                        A1796450
                                        Hs.201600
                                                         ESTs
                                                                                                                              10.0
                        AA298812
                                        Hs.98539
                                                         ESTs
            459052
                                        Hs.82425
            456248
                        AL035786
                                                         actin related protein 2/3 complex, subunit 5
                                                                                                                              10.0
                        NM_001955
                                        Hs.2271
                                                         Endothelin 1
                                                                                                                              10.0
            428438
45
                                                         S100 calcium-binding protein A8 (calgranulin
            456525
                        AW468397
                                        Hs.100000
                                                                                                                              10.0
            426127
                        L36983
                                        Hs.167013
                                                         dynamin 2
                                                                                                                             10.0
            TABLE 13B:
            Pkey: Unique Eos probeset identifier number
50
           CAT number: Gene cluster number
Accession: Genbank accession numbers
                         CAT Number
                                            AW809637 AW809697 AW810554 AW809707 AW809885 AW810000 AW810088 AW809742 AW809816 AW809749 AW809839 AW809722 AW809838 AW809774 AW810023 AW81013 AW809813 AW809660 AW809728 AW809768 AW809951 AW809657 AW809954 R87934 AW898205 AW896020 AW896035
            410896
                        1226053_1
55
            412153
                        1279701_1
                         1284681_1
                                            AW948343 AW948341 AW902855 AW984737
            412241
                                            BE271584 AA112511
AA121055 AA330917
BE086692 BE087077 BE087072
            412517
                         130281_1
                        132825_1
1363558_1
            412801
60
            413349
                                            BE269057 BE513434 BE396654
            41A273
                         1431911 1
                                            BE294186 BE298975
            414402
                         1443240_1
                                            C15407 D81769 D61133
H01581 H12850 R65905 H13053
            414950
                         1509777_1
            415789
                         1555357 1
65
                                            R88849 R84573 H50890
                         1591066 1
            416368
                                             R87580
            418464
                         1759038_-2
                         1789791_1
            418783
                                            T41368 T41369 T41294
                                            AA344555 AA344312 AW963070
W28316 W26507 AA364334
            424627
                         241724 1
            425827
                         256834_1
70
            434371
                         384839_1
                                            AA631362 AA631438
                                            A1798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW850362 AA232351 AA218567 AA055556 AW858231 AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174 T61139 AA149776 AA699829 AW879188 AW813567 AW813538 A1267168 AA157718 AA157719 AA100472 AA100774 AA130756 AA157705
            434414
                         38585_1
                                             AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824
75
                                             AJ829309 AW991957 N66951 AA527374 H66215 AA045564 AJ694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662
                                            AW817705 AW817703 AW817659 BE081531 H59570
AI078443 AA648102 AI765577 AW974381
AA830149 AW978407 M85983 AW503637
            434732
                         392447_1
                         468554 1
            439092
                                             AF086467 W81444 W81445
            439636
                         47467_1
80
                         73861_-1
                                             BE620800
            447824
                         83645_1
863912_1
                                            BE220675 AA345621 AA009992
AW750773 AJ768154
            450484
            451260
                                             R51928 AI820698 R48360 AI820694
            451852
                                             T60298 AI858257 T69667 T67634 T61224 T71537 T68933
```

```
AW175997 AW176000 AW175999 AW175994 AW176004 AW175989
                    1048369 1
          454163
          454393
                    115888_1
                                     BE153288 BE153151 BE152925 AA078302
          455102
                     1253524_1
                                      BE005496 BE005494 AW856324 AW900199
          455864
                     1377038_1
                                     BE148970 BE148975 BE148957 BE148937
BE177736 BE177735 BE177734
  5
          455986
                    1397521_1
                    187241_1
336189_1
                                     AW748920 AA487506 AA248914 AA780494
          456423
                                     AW971119 AA574265 AA513268
          457426
          457484
                    342113_1
                                      H57645 T19302 AA527038 Z24851 H93171
                    389383_1
966269_1
                                     AW974668 AA661959 AA649572 AA640401 AA640402
          457705
10
                                     AJ003294 AJ003315 AJ003293
          459259
```

TABLE 13C:

80

403912

403914

404182

404502

404567

7710730

7417588 4775644

7229863

7249169

Minus

Minus

Plus

Minus

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402-489-495 15

Strand: Indicates DNA strand from which exons were predicted Nt_position: Indicates nucleotide positions of predicted exons

NL position Pkey 400640 Strand 20 8117686 144324-144429 Plus 400666 8118496 17982-18115,20297-20456 Plus 400776 8131651 Plus 103576-103720 71708-72153 400812 8568711 Plus 400881 2842777 91446-91603,92123-92265 Minus 25 400882 2842777 Minus 110431-110708 400965 7770576 Minus 173043-173564 401010 8117391 Minus 83967-84180 401020 8117458 Minus 59085-60227 179287-179483,181044-181166,181844-182039 401025 8117518 Minus 30 401047 4804-5035,5133-5314 6705887 Minus 94802-94987,95804-95887,96323-96487,97596-97826 401131 8699812 Minus 9719502 9929324 401192 Minus 69559-70101 48079-48279 401220 Minus 401383 6721135 Minus 155543-157381 35 401405 7768126 Minus 69276-69452,69548-69958 157315-157950 124414-124950,125050-125418 401519 6649315 Plus 401532 7798785 Plus 401610 7705041 18921-19505 Minus 401714 6715702 96484-96681 40 217235-217356,217621-217873 147802-148251 3252819 7331447 401735 Plus 401799 Plus 401817 7417850 45888-46535 Minus 7139700 142257-142742 401835 Plus 401879 8099914 Minus 101064-102827 45 8516069 8569218 189498-190514 401888 Minus 604-767 401897 Plus 135543-136031 6649269 Plus 402066 402077 8117414 Plus 65014-65195 402104 8119072 Plus 122409-122600 24726-24880,26791-27021 40811-42447 50 402238 7690126 4559317 Plus 402287 Plus 771-972,1571-1683 402389 9885999 Minus 402408 9796239 110326-110491 Minus 402423 9796344 9796344 Minus 62487-62664 55 64925-65073 Minus 402496 9797769 8615-9103 Minus 402520 7596899 171761-171996 Minus 402679 8113438 Plus 132079-132216 9369121 9926562 57118-57306 402840 Minus 60 38666-38803,38885-39019,39097-39231,39308-39445 402883 Plus 71919-72049 402885 9926751 Plus 41261-41443 47247-47396 402926 8217647 Minus 402927 8217647 Minus 38467-39068 402943 6456831 Plus 65 402944 9368423 110411-110716,111173-111640 Plus 402947 101629-101991 9368458 Minus 402965 9581599 Minus 46865-46941,47032-47148 403022 403121 3132351 9180223 Plus 92097-92864 4059-4258 Phrs 70 403165 9838098 Minus 90595-91848 403295 8096528 Plus 22386-22708 403381 9438267 Minus 26009-26178 119837-121197 403383 9438267 Minus 403398 6862689 13685-14699 Minus 75 403399 6684178 61841-62145,62367-62756 Plus 403482 403485 9966050 Plus 196964-197135 2888-3001,3198-3532,3655-4117 9966528 Plus 403649 8705159 Minus 27141-27247 Minus 403910 7710710 5761-6188

72000-72290,72431-72700,72929-73199

7431-8472 18163-18444

56277-56819

101320-101501

PCT/US02/19297 WO 02/102235

	404678	9797204	Plus	115196-115448
	404743	8894169	Minus	120556-120999
	404780	9887810	Minus	175708-175871
_	404790	7230958	Plus	38611-38761
5	404931	7342203	Plus	44226-44382
	404944	6899705	Ptus	4256-4581
	405024	7107727	Plus	88500-88697
	405089	8072523	Plus	103182-103973
	405094	8072579	Plus	135587-135758
10	405108	7107890	Minus	135020-135472
	405145	9438278	Plus	37883-38052,38138-38332
	405192	7230070	Plus	115629-116071
	405224	6731245	Minus	14413-15979
	405295	3818412	Plus	56933-57099
15	405353	2811095	Plus	118525-118892
	405358	2341017	Minus	18016-18315
	405421	7243869	Minus	97411-97687
	405426	7243900	Minus	37640-37817
	405452	7656638	Minus	93876-94275
20	405484	5922025	Plus	199214-199579,199672-199920,200262-200495
	405552	1552506	Plus	45199-45647
	405570	2808656	Plus ·	98208-98331
	405626	4508116	Minus	89275-89384,92450-92629,97091-97279,98546-98666
	405699	4165331	Plus	100727-100859
25	405762	5931935	Plus	160502-161110
	405802	5924004	Minus	27743-28264
	405804	7274891	Minus	122557-123551
	406329	6982072	Minus	.607903-608271
	406429	9256476	Minus	83206-83365,94051-94193
30	406502	7711350	Minus	63430-63602

Table 14A lists about 695 genes up-regulated in ovarian cancer compared to normal adult tissues. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 4.0. The "average" ovarian cancer level was set to the 90th percentile amongst various non-matignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst various non-matignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated. 35

TABLE 14A: ABOUT 695 UP-REGULATED GENES, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES Pkey: Primekey
Ex. Acon: Exemplar Accession
U.G. ID: UniGene ID
Title: UniGene ID

40 Title: UniGene title

45

ratio: ratio of tumor vs. normal tissues

	Pkey	Ex. Accn	UGID	Title	ratio
	452838	U65011	Hs.30743	Preferentially expressed antigen in melanoma	70.4
	438817	AI023799	Hs.163242	ESTs	62.8
	432938	T27013	Hs.3132	steroidogenic acute regulatory protein	57.8
50	421478	AI683243	Hs.97258	ESTs	45.7
	415989	Al267700	Hs.111128	ESTs	42.7
	418179	X51630	Hs.1145	Wilms turnor 1	36.0
	449034	A1624049		gb:ts41a09.x1 NCI_CGAP_Ut1 Homo sapiens cDNA clone	34.0
	428579	NM_005756	Hs.184942	G protein-coupled receptor 64	30.5
55	428153	AW513143	Hs.98367	hypothetical protein FLJ22252 similar to SRY-box c	30.1
	436982	AB018305	Hs.5378	spondin 1, (f-spondin) extracellular matrix protei	29.4
	427585	D31152	Hs.179729	collagen; type X; alpha 1 (Schmid metaphyseal chon	27.0
	435094	Al560129	Hs.277523	EST	26.2
	430691	C14187	Hs.103538	EST8	26.2
60	430491	AL109791	Hs.241559	Homo saplens mRNA full length insert cDNA clone EU	26.1
	415511	Al732617	Hs.182362	ESTs	24.8
	448243	AW369771	Hs.77496	ESTs	24.7
	428187	AI687303	Hs.285529	ESTs	23.9
	408081	AW451597	Hs.167409	ESTs	21.9
65	418007	M13509	Hs.83169	Matrix metalloprotease 1 (interstitial collagenase	20.6
	400292	AA250737	Hs.72472	BMPR-lb; bone morphogenetic protein receptor; typ	20.6
	422956	BE545072	Hs.122579	ESTs	20.0
	413335	Al613318	Hs.48442	ESTs	19.9
	423739	AA398155	Hs.97600	ESTs	18.9
70	410929	H47233	Hs.30643	ESTs	18.5
	424086	Al351010	Hs.102267	lysyl oxidase	17.7
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related kinase 2	17.4
	427356	AW023482	Hs.97849	ESTs	17.4
	407168	R45175		gb:yg40f01.s1 Soares infant brain 1NIB Homo saplen	17.1
75	407638	AJ404672	Hs.288693	EST	17.1
	427469	AA403084	Hs.269347	ESTs	17.0
	438993	AA828995		Integrin; beta 8	16.7
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	16.5
00	439820	AL360204	Hs.283853	Homo sapiens mRNA full length insert cDNA clone EU	16.5
80	421155	H87879	Hs.102267	lysyl oxidase	16.1
•	426635	BE395109	Hs.129327	ESTs	15.9
	431989	AW972870	Hs.291069	ESTs	15.9
	422805	AA436989	Hs.121017	H2A histone family; member A	15.9
	444783	AK001468	Hs.62180	. ESTs	15.8

	424581	M62062	Hs.150917	catenin (cadherin-associated protein), alpha 2	15.7
	453197	AI916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU SUBFAMIL	15.7
	459325	AW088369	Hs.282184	ESTs	15.6
5	428976	AL037824	Hs.194695	ras homolog gene family, member 1	15.1
,	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, homolog)-li	15.0
	408660	AA525775	Hs.292523	ESTs	15.0 15.0
	410247	AF181721	Hs.61345	RU2S	15.0
	418738	AW388633	Hs.6682	solute carrier family 7, member 11	14.8
10	459583	AI907673	U- 040073	gb:IL-BT152-080399-004 BT152 Homo sapiens cDNA, mR	14.8
10	413623	AA825721	Hs.246973	ESTs	14.7
	439706	AW872527	Hs.59761	ESTs	
	409041	AB033025	Hs.50081	KIAA1199 protein	14.6
	451110	Al955040	Hs.301584	ESTs	14.5
15	436775	AA731111	Hs.291891	ESTS	14.3
15	443211	AI128388	Hs.143655	ESTs	14.3
	445258	Al635931	Hs.147613	ESTs	14.2
	447350	AI375572	Hs.172634	ESTs; HER4 (c-erb-B4)	14.2
	428227	AA321649	Hs.2248	INTERFERON-GAMMA INDUCED PROTEIN PRECURS	14.1 13.9
20	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	13.7
20	447033 423811	Al357412 AW299598	Hs.157601 Hs.50895	EST - not in UniGene homeo box C4	13.7
	452461		Hs.108106	transcription factor	13.7
	451106	N78223 BE382701	Hs.25960	N-myc	13.6
	416208	AW291168	Hs.41295	ESTs	13.5
25	452249	BE394412	Hs.61252	COTA	13.4
25	452055	Al377431	Hs.293772	ESTs	13.2
	439243	AA593254	Hs.191349	ESTs	13.1
	420149	AA255920	Hs.88095	ESTs	12.9
	429125	AA446854	Hs.271004	ESTs	12.9
30	413597	AW302885	Hs.117183	ESTs	12.8
50	416566	NM_003914	Hs.79378	cyclin A1	12.8
	442438	AA995998	115.7 537 0	gb:os26b03.s1 NCI_CGAP_Kid5 Homo sapiens cDNA clon	12.7
	407710	AW022727	Hs.23616	ESTs	12.6
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	12.6
35	428392	H10233	Hs.2265	secretory granule, neuroendocrine protein 1 (7B2 p	12.4
"	431725	X65724	Hs.2839	Nome disease (pseudoglioma)	12.3
	447700	Al420183	Hs.171077	ESTs, Weakly similar to similar to serine/threonin	12.2
	458027	L49054	Hs.85195	ESTs, Highly similar to t(3;5)(q25.1;p34) fusion g	12.2
	408460	AA054726	Hs.285574	ESTs	12.2
40	424735	U31875	Hs.152677	short-chain alcohol dehydrogenase family member	12.0
70	415263	AA948033	Hs.130853	ESTs	11.9
	400298	AA032279	Hs.61635	STEAP1	11.8
	452096	BE394901	Hs.226785	ESTs	11.7
	421451	AA291377	Hs.50831	ESTs	11.6
45	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-related pro	11.6
73	443715	Al583187	Hs.9700	cyclin E1	11.5
	402606	#(NOCAT)	115.5700	Cyclin C1	11.5
	436954	AA740151	Hs.130425	ESTs	11.5
	413472	BE242870	Hs.75379	solute carrier family 1 (glial high affinity gluta	11.5
50	410102	AW248508	Hs.279727	ESTs;	11.4
50	408562	AM36323	Hs.31141	Homo sapiens mRNA for KIAA1568 protein, partial cd	11.4
	452030	AL137578	Hs.27607	Homo sapiens mRNA; cDNA DKFZp564N2464 (from clon	11.4
	442353	BE379594	Hs.49136	ESTs	11.3
	427344	NM_000869	Hs.2142	5-hydroxytryptamine (serotonin) receptor 3A	11.2
55	453160	Al263307	Hs.146228	ESTs	11.2
55	426427	M86699	Hs.169840	TTK protein kinase	11.1
	449433	AI672098	Hs.9012	ESTs	11.1
	412723	AA648459	Hs.179912	ESTs	11.1
	400250	74010103	110.170012	0	11.1
60	419752	AA249573	Hs.152618	ESTs	11.1
	438167	R28363	Hs.24286	ESTs	11.1
	434539	AW748078	Hs.214410	ESTs	10.9
	429918	AW873986	Hs.119383	ESTs	10.8
	450375	AA009647	Hs.8850	a disintegrin and metalloproteinase domain 12 (mel	10.8
65	400289	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin 2)	10.8
••	420900	AL045633	Hs.44269	ESTs	10.8
	428758	AA433988	Hs.98502	Homo sepiens cDNA FLJ14303 fis, clone PLACE2000132	10.8
	446142	AI754693	Hs.145968	ESTs	10.7
	421285	NM_000102	Hs.1363	cytochrome P450, subfamily XVII (steroid 17-alpha-	10.6
70	433496	AF064254	Hs.49765	VERY-LONG-CHAIN ACYL-COA SYNTHETASE	10.6
. •	418506	AA084248	Hs.85339	G protein-coupled receptor 39	10.5
	433447	U29195	Hs.3281	neuronal pentraxin II	10.4
	424188	AW954552	Hs.142634	zinc finger protein	10.4
	414245	BE148072	Hs.75850	WAS protein family, member 1	10.3
75	426462	U59111	Hs.169993	dermatan sulphate proteoglycan 3	10.3
	418601	AA279490	Hs.86368	caimegin	10.3
	444170	AW613879	Hs.102408	ESTs	10.3
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate polypeptide	10.3
	407378	AA299264		gb:EST11752 Uterus Homo saplens cDNA 5' end simila	10.2
80	440901	AA909358	Hs.128612	ESTs	10.2
-	407366	AF026942		gb:Homo sapiens cig33 mRNA, partial sequence.	10.2
	415227	AW821113	Hs.72402	ESTs	10.2
	409269	AA576953	Hs.22972	Homo sapiens cDNA FLJ13352 fis, clone OVARC1002165	10.1
	450480	X82125	Hs.25040	zinc finger protein 239	10.1
				106	

	419088	AI538323	Hs.77496	ESTs	10.0
	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1 (yeast hom	9.9
	428253 426471	AL133640 M22440	Hs.183357 Hs.170009	Homo sapiens mRNA; cDNA DKFZp586C1021 (from clone	9.8 9.8
, 5	407881	AW072003	Hs.40968	transforming growth factor, at the heparan sulfate (glucosamine) 3-O-sulfotransferase	9.7
. •	452291	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisiae, homolo	9.7
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	9.7
	442875	BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA sequence	9.6
• •	423992	AW898292	Hs.137206	Homo sapiens mRNA; cDNA DKFZp564H1663 (from clon	9.6
10	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkinesin6)	9.6
	407721	Y12735	Hs.38018	dual-specificity tyrosine-(Y)-phosphorylation regu	9.6
	438209	AL120659	Hs.6111	KIAA0307 gene product	9.5
	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain-binding p	9.5 9.5
15	424945 414972	Al221919 BE263782	Hs.173438 Hs.77695	hypothetical protein FLJ10582 KIAA0008 gene product	9.4
13	439262	AA832333	Hs.124399	ESTs	9.4
	403381	#(NOCAT)	113.124000	0	9.3
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, done NT2RP2003117	9.3
	435509	AI458679	Hs.181915	ESTs	9.3
20	445413	AA151342	Hs.12677	CGI-147 protein	9.2
	414083	AL121282	Hs.257786	ESTs	9.2
	421373	AA808229	Hs.167771	ESTs	9.2
	430510	AW162916	Hs.241576	hypothetical protein PRO2577	9.1
25	446999	AA151520	Hs.279525	hypothetical protein PRO2605	9.1
25	459587	AA031956	11- 440050	gb:zk15e04.s1 Soares_pregnant_uterus_NbHPU Homo sa	9.1
	414569	AF109298	Hs.118258	Prostate cancer associated protein 1	9.1 9.0
	406687 428479	M31126 Y00272	Hs.272620 Hs.184572	pregnancy specific beta-1-glycoprotein 9 cell division cycle 2, G1 to S and G2 to M	9.0
	408908	BE296227	Hs.48915	serine/threonine kinase 15	9.0
30	431548	AI834273	Hs.9711	Homo sapiens cDNA FLJ13018 fis, clone NT2RP3000685	9.0
50	433764	AW753676	Hs.39982	ESTs	9.0
	434636	AA083764	Hs.241334	ESTs .	8.9
	451807	W52854	Hs.27099	DKFZP564J0863 protein	8.8
~ -	437872	AK002015	Hs.5887	RNA binding motif protein 7	8.8
35	443054	AI745185	Hs.8939	yes-associated protein 65 kDa	8.8
	420092	AA814043	Hs.88045	ESTs	8.8
	420159	AI572490	Hs.99785	ESTs	8.8
	447164	AF026941	Hs.17518	Homo sapiens cig5 mRNA, partial sequence	8.8
40	451254	AI571016	Hs.172967	ESTs UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-a	8.8 8.7
70	432677 450434	NM_004482 AA166950	Hs.278611 Hs.18645	ESTs, Weakly similar to partial CDS [C.elegans]	8.7
	400301	X03635	Hs.1657	Estrogen receptor 1	8.7
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-0-sulfotransferase	8.7
	434891	AA814309	Hs.123583	ESTs	8.7
45	436812	AW298067		gb:UI-H-BW0-ajp-g-09-0-UI.s1 NCI_CGAP_Sub6 Homo s	8.7
	438885	AI886558	Hs.184987	ESTs	8.7
	449765	N92293	Hs.206832	EST, Moderately similar to ALUB_HUMAN ALU SUBFAM	8.7
	447342	Al199268	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMILY J WARNI	8.6
50 \	434424	AI811202	Hs.125365	Homo sapiens cDNA: FLJ23523 fis, clone LNG05548	8.6
50	438078 437212	AI016377	Hs.131693	ESTS	8.6 8.5
	437212	AI765021 AW138437	Hs.210775 Hs.24790	ESTs KIAA1573 protein	8.5
	438081	H49546	Hs.298964	ESTs	8.5
	411571	AA122393	Hs.70811	hypothetical protein FLJ20516	8.4
55	435663	AI023707	Hs.134273	ESTs	8.4
	424717	H03754	Hs.152213	wingless-type MMTV integration site family, member	8.4
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxygenase COOH	8.4
	450505	NM_004572	Hs.25051	plakophilin 2	8.4
60	436211	AK001581	Hs.80961	polymerase (DNA directed), gamma	8.3
60	436396	A1683487	Hs.299112	Homo saplens cDNA FLJ11441 fis, clone HEMBA1001323	8.3
	425695	NM_005401	Hs.159238	protein tyrosine phosphatase, non-receptor type 14	8.3
	438180	AA808189	Hs.272151	ESTS	8.2 8.2
	447268 433159	Al370413 AB035898	Hs.36563 Hs.150587	Homo sapiens cDNA: FLJ22418 fis, clone HRC08590 kinesin-like protein 2	8.1
65	400195	VD(Y)020	D9: 100007	ninosii-ano protesi a N	8.1
00	424906	A1566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein, 3' untransta	8.1
	438202		Hs.22588	ESTs	8.1
	438915		Hs.23282	ESTs	8.1
=-	448776		Hs.30057	transporter similar to yeast MRS2	8.1
70	453884		Hs.36232	KIAA0186 gene product	8.0
	420757		Hs.99915	androgen receptor (dihydrotestosterone receptor, t	8.0
	439759		Hs.67709	Homo sapiens mRNA full length insert cDNA clone EU	8.0
	453102		Hs.31664	frizzled (Drosophila) homolog 10	8.0
75	424001		Hs.137476	KIAA1051 protein gb:RC6-HT0596-270300-011-C05 HT0596 Homo saptens c	8.0 8.0
15	434415		Hs.82285	phosphoribosylglycinamide formyltransferase, phosp	7.9
	417576 438966		FIS.02200	gb:EST391184 MAGE resequences, MAGP Homo sapiens c	7.9
	436966		Hs.27252	ESTs	7.9
	422352		Hs.99200	ESTs	7.9
80	425492		Hs.158174	zinc finger protein 184 (Kruppel-like)	7.8
	442655		Hs.30323	ESTs	7.8
	445657		Hs.279575	ESTs	7.8
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	7.8
	426320	W47595	Hs.169300	transforming growth factor, beta 2	7.8

	414142	AW368397	Hs.150042	ESTs	7.7
	412170 410011	D16532 AB020641	Hs.73729	very low density lipoprotein receptor	7.6 7.6
	436476	AA326108	Hs.57856 Hs.53631	PFTAIRE protein kinese 1 ESTs	7.6
5	414132	AI801235	Hs.48480	ESTs	7.6
_	437789	AI581344	Hs.127812	ESTs, Weakly similar to AF141326 1 RNA helicase HD	7.6
	450192	AA263143	Hs.24596	RAD51-interacting protein	7.6
	449328	AI962493	Hs.197647	ESTs .	7.5
10	440238	AW451970	Hs.155644	paired box gene 2	7.5
10	403657	#(NOCAT)		0	7.5
	408826	AF216077	Hs.48376	Homo sapiens clone HB-2 mRNA sequence	7.5
	418735	N48769	Hs.44609	ESTS	7.5 7.4
	413627 446293	BE182082 AI420213	Hs.246973 Hs.149722	ESTs ESTs	7.4
15	441627	AA947552	Hs.58086	ESTS	7.4
13	425465	L18964	Hs.1904	protein kinase C; iota	7.3
	409242	AL080170	Hs.51692	DKFZP434C091 protein	7.3
	450262	AW409872	Hs.271166	ESTs, Moderately similar to ALU7_HUMAN ALU SUBFA	7.3
••	440250	AA876179	Hs.134650	ESTs	7.3
20	451659	BE379761	Hs.14248	ESTs, Wealty similar to ALUS_HUMAN ALU SUBFAMIL	7.3
	458861	A1630223		gb:ad06g08.r1 Proliferating Erythroid Cells (LCB:a	7.3
•	436032	AA150797	Hs.109276	latexin protein	7.2
	407771	AL138272	Hs.62713	ESTs	7.2
25	435039	AW043921	Hs.130526	ESTS	7.2 7.2
23	444342 407829	NM_014398 AA045084	Hs.10887 Hs.29725	similar to lysosome-associated membrane glycoprote Homo saplens cDNA FLJ13197 fis, clone NT2RP3004451	7.2
	407025	AA125985	Hs.56145	thymosin, beta, identified in neuroblastoma cells	7.2
	404253	#(NOCAT)	113.00140	0	7.1
	424120	T80579	Hs.290270	ESTs	7.1
30	429126	AW172356	Hs.99083	ESTs	7.1
	413573	AI733859	Hs.149089	ESTs	7.1
	421464	AA291553	Hs.190086	ESTs	7.0
	430388	AA356923	Hs.240770	nuclear cap blinding protein subunit 2, 20kD	7.0
25	437938	A1950087		ESTs; Weakly similar to Gag-Pol polyprotein [M.mus	7.0
35	420362	U79734	Hs.97206	huntingtin interacting protein 1	7.0
	444743	AA045648	Hs.11817	nudix (nucleoside diphosphate linked moiety X)-typ	7.0 6.9
	415138 410568	C18356	Hs.78045 Hs.64542	tissue factor pathway inhibitor 2 TFPI2	6.9
	429418	AW162948 Al381028	Hs.99283	pre-mRNA cleavage factor Im (68kD) ESTs	6.9
40	409178	BE393948	Hs.50915	kalikrein 5	6.9
	446608	N75217	Hs.257846	ESTs	6.9
	425905	AB032959	Hs.161700	KIAA1133 protein	6.9
	428532	AF157326	Hs.184786	TBP-interacting protein	6.9
	433426	H69125	Hs.133525	ESTs	6.9
45	431322	AW970622		gb:EST382704 MAGE resequences, MAGK Horno sapiens	6.8
	437960	A1669586	Hs.222194	ESTs	6.8
	423244	AL039379	Hs.209602	ESTs, Weakly similar to ubiquitous TPR motif, Y is	6.8
	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40kD)	6.8
50	448674	W31178	Hs.154140	ESTs	6.8 6.8
50	438122 440048	AI620270 AA897461	Hs.129837 Hs.158469	ESTs ESTs, Wealdy similar to envelope protein [H.saplen	6.7
	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (melanoma, p1	6.7
	407162	N63855	Hs.142634	zinc finger protein	6.7
	410804	U64820	Hs.66521	Machado-Joseph disease (spinocerebellar ataxia 3,	6.7
55	424639	AI917494	Hs.131329	ESTs	6.7
	432415	T16971	Hs.289014	ESTs	6.7
	421470	R27496	Hs.1378	annexin A3	6.7
	445459	AI478629	Hs.158465	ESTs	6.7
60 °	418203	X54942	Hs.83758	CDC28 protein kinase 2	6.6
60	432809	AA565509	Hs.131703	ESTs EST-	6.6
	409234	AI879419	Hs.27206	ESIS CCI 124 amilia	6.6
	438394 452097	BE379623 AB002364	Hs.27693 Hs.27916	CGI-124 protein ADAM-TS3; a disintegrin-like and metalloproteas	6.6
	453745	AA952989	Hs.63908	Homo saplens HSPC316 mRNA, partial cds	6.6
65	414136	AA812434	Hs.178227	ESTs	6.6
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	6.6
	454018	AW016892	Hs.241652	ESTs	6.6
	452281	T93500	Hs.28792	ESTs	6.5
70	424620	AA101043	Hs.151254	kallikrein 7 (chymotryptic; stretum comeum)	6.5
70	452594	AU076405	Hs.29981	solute carrier family 26 (sulfate transporter), me	6.5
	434149	Z43829	Hs.19574	ESTs, Weakly similar to katanin p80 subunit [H.sap	6.5
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	6.4
	418677	\$83308	Hs.87224	SRY (sex determining region Y)-box 5	6.4
75	409517	X90780 AW204060	Hs.54668 He 120250	troponin I, cardiac ESTs, Wealdy similar to unnamed protein product (H	6.4 6.4
13	432666 448706	AW204069 AW291095	Hs.129250 Hs.21814	class II cytokine receptor ZCYTOR7	6.4
	429163		16.21014	gb:am20a10.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDN	6.4
	413582		Hs.71331	Homo sapiens cDNA: FLJ21971 fis, clone HEP05790	6.4
	419917	AA320068	Hs.93701	Homo sapiens mRNA; cDNA DKFZp434E232 (from clone	6.4
80	424153	AA451737	Hs.141495	MAGE-like 2	6.4
	434265	AA846811	Hs.130554	Homo sapiens cDNA: FLJ23089 fis, clone LNG07051	6.4
	435082		Hs.186104	Homo saplans cDNA FLJ13803 fis, clone THYRO1000187	6.4
	441081	AI584019	Hs.169006	ESTs, Moderately similar to plakuphilin 2b [H.sapi	6.4
	443539	AI076182	Hs.134074	ESTs	6.4

	443830	AJ142095	Hs.143273	ESTs	6.4
	452606 418384	N45202 AW149266	Hs.90012 Hs.25130	Homo sapiens cDNA: FLJ23441 fis, clone HSi00612 ESTs	6.4 6.3
	425371	D49441	Hs.155981	mesolhefin	6.3
5	429441	AJ224172	Hs.204096	lipophilin B (uteroglobin family member), prostate	6.3
-	449048	Z45051	Hs.22920	similar to \$68401 (cattle) glucose induced gene	6.3
	437117	AL049256	Hs.122593	ESTs	6.3
	449579	AW207260	Hs.134014	prostate cancer associated protein 6	6.3
10	453370	AI470523	Hs.182356	ESTs, Moderately similar to translation initiation	6.3
10	426514	BE616633	Hs.301122	bone morphogenetic protein 7 (osteogenic protein 1	6.3 6.3
	415076 408155	NM_000857 AB014528	Hs.77890 Hs.43133	guanylate cyclase 1, soluble, beta 3 KIAA062B gene product	6.2
	452904	AL157581	Hs.30957	Homo sapiens mRNA; cDNA DKFZp434E0626 (from clone	6.2
	439138	Al742605	Hs.193696	ESTs	6.2
15	457030	Al301740	Hs.173381	dihydropyrimklinase-like 2	6.2
	436281	AW411194	Hs.120051	ESTs	6.1
	407385	AA610150	Hs.272072	ESTs, Moderately similar to ALU7_HUMAN ALU SUBFA	6.1
	406815	AA833930	Hs.288036	tRNA isopentenylpyrophosphale transferase	6.1
20	430437 428743	Al768801 AL080060	Hs.169943 Hs.301549	Homo sapiens cDNA FLJ13569 fis, clone PLACE1008369 Homo sapiens mRNA; cDNA DKFZp564H172 (from clone	6.1 6.1
20	415139	AW975942	Hs.48524	ESTs	6.1
	417404	NM_007350	Hs.82101	.pleckstrin homology-like domain, family A, member	6.1
	433527	AW235613	Hs.133020	ESTs	6.1
0.5	449448	D60730	Hs.57471	ESTs ·	6.1
25	457733	AW974812	Hs.291971	ESTs	6.1
	457979	AA776655	Hs.270942	ESTs	6.1
	422867 423554	L32137 M90516	Hs.1584 Hs.1674	cartilage oligomeric matrix protein glutamine-fructose-6-phosphate transaminase 1	6.0 6.0
	421502	AF111856	Hs.105039	solute carrier family 34 (sodium phosphate), membe	6.0
30	412733	AA984472	Hs.74554	KIAA0080 protein	6.0
	422095	A1868872	Hs.288966	ceruloplasmin (ferroxidase)	6.0
	449347	AV649748	Hs.295901	ESTs	6.0
	440870	A1687284	Hs.150539	Homo saplens cDNA FLJ13793 fis, clone THYRO1000085	6.0
25	437478	AL390172	Hs.118811	ESTs	6.0
35	411598	BE336654	Hs.70937	H3 histone family, member K	6.0
	418134 418845	AA397769 AA852985	Hs.86617 Hs.89232	ESTs chromobox homolog 5 (Drosophila HP1 alpha)	6.0 6.0
	452039	A1922988	Hs.172510	ESTs	6.0
	410555	U92649	Hs.64311	a disintegrin and metalloproteinase domain 17 (turn	5.9
40	412719	AW016610	Hs.129911	ESTs	5.9
	410566	AA373210	Hs.43047	Homo sapiens cDNA FLJ13585 fis, clone PLACE1009150	5.9
	437099	N77793	Hs.48659	ESTs, Highly similar to LMA1_HUMAN LAMININ ALPH	5.9
	453431	AF094754	Hs.32973	glycine receptor, bela	5.9
45	408920 417866	AL120071	Hs.48998 Hs.82772	fibronectin leucine rich transmembrane protein 2	5.9 5.9
73	420440	AW067903 NM_002407	Hs.97644	"collagen, type XI, aipha 1" mammaglobin 2	5.9
	430291	AV660345	Hs.238126	CGI-49 protein	5.9
	405547	#(NOCAT)	110.2001.20	0	5.9
~ 0	427510	Z47542	Hs.179312	small nuclear RNA activating complex, polypeptide	5.9
50	435793	AB037734	Hs.4993	ESTs	5.8
	427975	AI536065	Hs.122460	ESTs	5.8
	428949 452693	AA442153 T79153	Hs.104744 Hs.48589	ESTs, Weakly similar to AF208855 1 BM-013 [H.sapie	5.8 5.8
	440138	AB033023	Hs.6982	zinc finger protein 228 hypothetical protein FLJ10201	5.8
55	421246	AW582962	Hs.300961	ESTs, Highly similar to AF151805 1 CGI-47 protein	5.8
	445424	AB028945	Hs.12696	cortactin SH3 domain-binding protein	5.8
	448186	AA262105	Hs.4094	Homo sapiens cDNA FLJ 14208 fis, clone NT2RP3003264	5.8
	425154	NM_001851	Hs.154850	collagen, type IX, alpha 1	5.7
60	419335	AW960146	Hs.284137	Homo sapiens cDNA FLJ 12888 fis, clone NT2RP2004081	5.7 5.7
00	420637	AW976153 AK000860	He 272203	gb:EST388262 MAGE resequences, MAGN Homo sapiens	5.7
	431924 446868	AK000850 AV660737	Hs.272203 Hs.135100	Homo sapiens cDNA FLJ20843 fis, clone ADKA01954 ESTs	5.7
	452971	A1873878	Hs.91789	ESTs	5.7
	428927	AA441837	Hs.90250	ESTs .	5.7
65	425282	AW163518	Hs.155485	huntingtin interacting protein 2	5.7
	419247	S65791	Hs.89764	fragile X mental retardation 1	5.7
	445640	AW969626	Hs.31704	ESTs, Weakly similar to KIAA0227 [H.sapiens]	5.7
	422938 447078	NM_001809 AW885727	Hs.1594 Hs.301570	centromere protein A (17kD) ESTs	5.6 5.6
70	421247	BE391727	Hs.102910	general transcription factor IIH, polypeptide 4 (5	5.6
. •	407896		Hs.41154	Zic family member 1 (odd-paired Drosophila homolog	5.6
	436556	A1364997	Hs.7572	ESTs	5.6
	417830	AW504786	Hs.132808	epithelial cell transforming sequence 2 oncogene	5.6
75	429826		Hs.40747	ESTs	5.6
75	432030		Hs.143789	ESTs	5.6 5.5
	443270 453900		Hs.9192 Hs.226414	Homer, neuronal immediale early gene, 18 ESTs, Weakly similar to ALU8_HUMAN ALU SUBFAMIL	5.5 5.5
	411096		Hs.68583	mitochondrial intermediate peptidase	5.5
	419558		Hs.278394	ESTs	5.5
80	427386		Hs.177486	amyloid beta (A4) precursor protein (protease nexi	5.5
	427961		Hs.143134	ESTs	5.5
	404561		11- 84/000		5.5
	429682		Hs.211602	SMC1 (structural maintenance of chromosomes 1, yea lysyl oxidase	5.5
	407216	N91773	Hs.102267	, ijeji wilase	5.5

	440000	*******	II- 400005	FOT.	
	410658	AW105231	Hs.192035	ESTs	5.5
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	5.5
	414315	Z24878	11- 404000	gb:HSB65D052 STRATAGENE Human skeletal muscle cD	5.5
5	427878	C05766	Hs.181022	CGI-07 protein	5.5
J	431041	AA490967	Hs.105276	ESTs	5.5
	441645	AI222279	Hs.201555	ESTs	5.5
	428071	AF212848	Hs.182339	transcription factor ESE-38	5.4
	435405	AW105723	Hs.125346	EST ₆	5.4
10	429181	AW979104	Hs.294009	ESTS	5.4
10	410909	AW898161	Hs.53112	ESTs, Weakly similar to ALUB_HUMAN ALU SUBFAMIL	5.4
	424345	AK001380	Hs.145479	Homo sapiens cDNA FLJ10518 fis, clone NT2RP2000814	5.4
	451996	AW514021	Hs.245510	ESTs	5.4
	449318	AW236021	Hs.108788	ESTs, Weakly similar to zeste [D.melanogaster]	5.4
1.5	441433	AA933809	Hs.42746	ESTs	5.4
15	445495	BE622641	Hs.38489	ESTs	5.4
	410153	BE311926	Hs.15830	Homo sapiens cDNA FLJ12691 fis, clone NT2RM4002571	5.4
	442611	BE077155	Hs.177537	ESTs	5.4
	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced protein 6	5.4
	453161	AA628608	Hs.61656	ESTs	5.4
20 .	419948	AB041035	Hs.93847	NADPH oxidase 4	5.3
	42771B	AI798680	Hs.25933	ESTs	5.3
	453867	Al929383	Hs.108196	HSPC037 protein	5.3
	422634	NM_016010	Hs.118821	CGI-62 protein	5.3
	444478	W07318	Hs.240	M-phase phesphoprolein 1	5.3
25 ·	428002	AA418703		gbtzv98c03.ş1 Soares_NhHMPu_S1 Homo sapiens cDNA c	5.3
	443486	NM_003428	Hs.9450	zinc finger protein 84 (HPF2)	5.3
	451177	Al969716	Hs.13034	ESTs	5.3
	408298	Al745325	Hs.271923	ESTs; Moderately similar to IIII ALU SUBFAMILY SB2	5.3
	435867	AA954229	Hs.114052	ESTs	5.3
30	423698	AA329796	Hs.1098	DKFZp434J1813 protein	5.3
	448543	AW897741	Hs.21380	Homo sapiens mRNA; cDNA DKFZp586P1124 (from clone	5.3
	427660	Al741320	Hs.114121	Homo sapiens cDNA: FLJ23228 fis, clone CAE06654	5.3
	430345	AK000282	Hs.239681	hypothelical protein FLJ20275	5.3
	433222	AW514472	Hs.238415	ESTs, Moderately similar to ALU8_HUMAN ALU SUBFA	5.3
35	449532	W74653	Hs.271593	ESTs	5.3
55	452822	X85689	Hs.288617	Homo saplens cDNA: FLJ22621 fis, clone HSI05658	5.3
	437641	AA811452	Hs.291911	ESTs	5.2
	418379	AA218940	Hs.137516	fidgetin-like 1	5.2
	416530	U62801	Hs.79361	kallikrein 6 (neurosin, zyme)	5.2
40			Hs.188912	ESTs	5.2
70	433589 409143	AA886530 AW025980	Hs.138965	ESTs .	5.2
	410303		Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT2RP2004321	5.2
		AA324597			5.2
	413384	NM_000401	Hs.75334	exostoses (multiple) 2	5.2
45	424698	AA164366	Hs.151973	hypothelical protein FLJ10378	5.2
45	431229	AA496479	U- 12015	gb:zv37h05.r1 Soares ovary tumor NbHOT Homo saplen	
	433377	AI752713	Hs.43845	ESTs	5.2
	445236	AK001676	Hs.12457	hypothetical protein FLJ10814	5.2
	406367	#(NOCAT)	11. 000400	0	5.2
50	442500	AI819068	Hs.209122	ESTs	5.2
30	450101	AV649989	Hs.24385	Human hbc647 mRNA sequence	5.2
	419140	AI982647	Hs.215725	ESTs	5.2
	411078	Al222020	Hs.182364	ESTs, Wealty similar to 25 kDa trypsin Inhibitor [5.2
	423020	AA383092	Hs.1608	replication protein A3 (14kD)	5.2
55	427061	AB032971	Hs.173392	KIAA1145 protein	5.2
33	439042	AW979172		gb:EST391282 MAGE resequences, MAGP Homo sapiens c	5.2
	452930	AW195285	Hs.194097	ESTS	5.2
	417791	AW965339	Hs.111471	ESTs	5.1
	433277	W27266	Hs.151010	ESTs	5.1
60	447835	AW591623	Hs.164129	ESTs	5.1
JU	434401	AI864131	Hs.71119	Putative prostate cancer tumor suppressor	5.1
	437496	AA452378	Hs.170144	Homo sapiens mRNA; cDNA DKFZp547J125 (from clone D	5.1
	418849	AW474547	Hs.53565	ESTs, Wealty similar to B0491.1 [C.elegans]	5.1
	428093	AW594506	Hs.104830	ESTS	5.1
65	408621	AI970672	Hs.46638	chromosome 11 open reading frame 8; fetal brain (5.1
65	453096	AW294631	Hs.11325	ESTs	5.1
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.1
	436787	AA908554	Hs.192756	EST8	5.1
	446577	AB040933	Hs.15420	KIAA1500 protein	5.1
70	437267	AW511443	Hs.258110	ESTs	5.0
70	419423	D26488	Hs.90315	KIAA0007 protein	5.0
	404939			0	5.0
	439052	AF085917	Hs.37921	ESTs	5.0
	447020	T27308	Hs.16986	hypothetical protein FLJ11046	5.0
75	453878	AW964440	Hs.19025	ESTs	5.0
75	410824	AW994813	Hs.33264	ESTs	5.0
	427701	AA411101	Hs.221750	ESTs	5.0
	424602		Hs.301129	Homo sapiens clone 23859 mRNA sequence	5.0
	430044		Hs.152812	EST cluster (not in UniGene)	5.0
οΛ	417423		Hs.111164	ESTs	5.0
80	421477		Hs.104650	hypothetical protein FLJ10292	5.0
	433384		Hs.124244	ESTs	5.0
	434160		Hs.114275	ESTs	5.0
	443555		Hs.21398	ESTs, Moderately similar to GNPI_HUMAN GLUCOSAM	5.0
	416198	H27332	Hs.99598	ESTs	4.9

	424539	L02911	Hs.150402	activin A receptor, type I	4.9
	436645	AW023424	Hs.156520	ESTs	4.9
	417251	AW015242	Hs.99488	ESTs; Weakly similar to ORF YKR074w [S.cerevisiae]	4.9
5	447207	AA442233	Hs.17731	hypothetical protein FLJ 12892	4.9 4.9
,	416565	AW000960	Hs.44970	EST8	4.9
	425292 435420	NM_005824 Al928513	Hs.155545	37 kDa leuclne-rich repeat (LRR) protein ESTs	4.9
	435532	AW291488	Hs.59203 Hs.117305	ESTs	4.9
	443268	AIB00271	Hs.129445	hypothetical protein FLJ12496	4.9
10	446140	AA356170	Hs.26750	Homo saplans cONA: FLJ21908 fis, clone HEP03830	4.9
10	452891	N75582	Hs.212875	ESTs, Weakly similar to KIAA0357 [H.sapiens]	4.9
	431130	NM_006103	Hs.2719	epididymis-specific; whey-acidic protein type; fou	4.9
	408938	AA059013	Hs.22607	ESTs	4.9
	432842	AW674093	Hs.279525	hypothetical protein PRO2605	4.9
15	436754	Al061288	Hs.133437	ESTs, Moderately similar to gonadotropin inducible	4.9
10	442573	H93366	Hs.7567	Branched chain aminotransferase 1, cytosolic, U215	4.9
	409049	Al423132	Hs.146343	ESTs	4.9
	422475	AL359938	Hs.117313	Meis (mouse) homolog 3	4.9
	447112	H17800	Hs.7154	ESTs	4.9
20	458627	AW088642	Hs.97984	ESTs; Weakly similar to WASP-family protein [H.sap	4.8
	431689	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase,	4.8
	410530	M25809	Hs.64173	ESTs, Highly similar to VAB1_HUMAN VACUOLAR AT	4.8
	429414	AI783656	Hs.202095	empty spiracles (Orosophila) homolog 2	4.8
^-	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR/MRP), mem	4.8
25	422505	AL120862	Hs.124165	ESTs; (HSA)PAP protein (programmed cell death 9;	4.8
	425977	R15138	Hs.165570	Homo sapiens clone 25052 mRNA sequence	4.8
	428555	NM_002214	Hs.184908	Integrin, beta 8	4.8
	452909	NM_015368	Hs.30985	pannexin 1	4.8
20	449535	W15267	Hs.23672	low density lipoprotein receptor-related protein 6	4.8
30	452232	AW020603	Hs.271698	ESTs	4.8
	409732	NM_016122	Hs.56148	NY-REN-58 antigen	4.8
	415115	AA214228	Hs.127751	hypothetical protein	4.7
	423161	AL049227	Hs.124776	Homo sapiens mRNA; cDNA DKFZp564N1116 (from clon	4.7
35	441085	AW136551	Hs.181245	Homo sapiens cDNA FLJ12532 fis, clone NT2RM4000200	4.7
33	423575 415211	C18863	Hs.163443	ESTs ESTs; Highly similar to SPERM SURFACE PROTEIN SP1	4.7 4.7
	418804	R64730.comp AA809632	Hs.155986	gb:nz17h04.s1 NCI_CGAP_GCB1 Homo saplens cDNA clo	4.7
	428405	Y00762	Hs.2266	cholinergic receptor, nicotinic, alpha polypeptide	4.7
	432865	AJ753709	Hs.152484	ESTs	4.7
40	433330	AW207084	Hs.132816	ESTs	4.7
	453047	AW023798	Hs.286025	ESTs	4.7
	421308	AA687322	Hs.192843	ESTs	4.7
	456273	AF154846	Hs.1148	zinc finger protein	4.7
	443933	AI091631	Hs.135501	Homo saplens two pore potassium channel KT3.3	4.7
45	434551	BE387162	Hs.280858	ESTs, Highly similar to XPB_HUMAN DNA-REPAIR PRO	4.7
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	4.7
	426300	U15979	Hs.169228	delta-like homolog (Drosophila)	4.7
	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37kD)	4.7
	446102	AW168067	Hs.252956	ESTs	4.7
50	420547	AF155140	Hs.98738	gonadotropin-regulated testicular RNA helicase	4.7
	429486	AF155827	Hs.203963	hypothetical protein FLJ10339	4.7
	429944	R13949	Hs.226440	Homo saplens clone 24881 mRNA sequence	4.7
	433042	AW193534	Hs.281895	Homo sapiens cDNA FLJ11660 fis, clone HEMBA1004610	4.7
55	434988	AJ418055	Hs.161160	ESTs	4.6
22	452571	W31518	Hs.34665	ESTs	4.6
	434361	AF129755	Hs.117772	ESTs	4.6
	406400	#(NOCAT)	11- 01150	O	4.6
	410227 419945	AB009284 AW290975	Hs.61152 Hs.118923	exostoses (muttiple)-like 2 ESTs	4.6 4.6
60	428301				4.6
50	430153	AW628666 AW968128	Hs.98440	ESTs gb:EST380338 MAGE resequences, MAGJ Homo sapiens c	4.6
	431349	AA503653	Hs.156942	ESTs, Moderately similar to ALU2_HUMAN ALU SUBFA	4.6
		BE179829	Hs.179852	Homo sapiens cDNA FLJ12832 fis, clone NT2RP2003137	4.6
	446254 447505	AL049266	Hs.18724	Homo sapiens mRNA; cDNA DKFZp564F093 (from clone	4.6
65	448027	AI458437	Hs.177224	ESTs	4.6
05	449611	AI970394	Hs.197075	ESTs	4.6
	459574	Al741122	Hs.101810	Homo sapiens cDNA FLJ14232 fis, clone NT2RP4000035	4.6
	409928	AL137163	Hs.57549	hypothetical protein dJ47384	4.6
=	409387	AW384900	Hs.123526	ESTs	4.6
70	424078	AB006625	Hs.139033	paternally expressed gene 3	4.6
	435244	N77221	Hs.187824	EST8	4.6
	404996	#(NOCAT)		0	4.6
	407905	AW103655	Hs.252905	ESTs	4.6
75	411560	AW851186		gb:IL3-CT0220-150200-071-H05 CT0220 Homo sepiens c	4.6
75	424341	AA385074		gb:EST98873 Thyroid Homo sapiens cDNA 5 end simil	4.6
	441675	Al914329	Hs.5461	ESTs	4.6
	452172	H00797	Hs.133207	Homo sapiens mRNA for KIAA1230 protein, partial od	4.6
	420276	AA290938	Hs.190561	ESTs, Highly similar to mosaic protein LR11 [H.sap	4.5
90	402820	#(NOCAT)	11.04040	0	4.5
80	419699	AA248998	Hs.31246	ESTs	4.5
	422529	AW015128	Hs.256703	ESTs	4.5
	438018	AK001160	Hs.5999	hypothetical protein FLJ 10298	4.5
	441826		Hs.129915	phosphotriesterase related	4.5 4.5
	453931	AL121278	Hs.25144	ESTs	4.0

	435538	AB011540	Un 4020	low density lipoprotein receptor-related protein 4	4.5
	457465	AW301344	Hs.4930 Hs.195969	ESTs	4.5
	418848	AI820961	Hs.193465	ESTs	4.5
_	408321	AW405882	Hs.44205	cortistatin	4.5
5	447499	AW262580	Hs.147674	KIAA1621 protein	4.5
	424513 432731	BE385864 R31178	Hs.149894 Hs.287820	mitochondrial translational initiation factor 2 fibronectin 1	4.5 4.5
	448275	BE514434	Hs.20830	synaptic Ras GTPase activating protein 1 (homolog	4.5
	430371	D87466	Hs.240112	KIAA0276 protein	4.5
10	448693	AW004854	Hs.228320	Homo sapiens cDNA: FLJ23537 fis, clone LNG07690	4.5
	407289 448141	AA135159	Hs.203349 Hs.197531	Homo sapiens cDNA FLJ12149 fis, clone MAMMA100042 ESTs	4.4 4.4
	434699	AI471598 AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HEMBB1001304	4.4
	417718	T86540	Hs.193981	ESTs	4.4
15	436464	AI016176	Hs.269783	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMIL	4.4
	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S. cerevisia	4.4
	409092 416241	A1735283 N52639	Hs.172608 Hs.32683	ESTs ESTs	4.4 4.4
	432005	AA524190	Hs.120777	ESTs, Weakly similar to ELL2_HUMAN RNA POLYMER	4.4
20	440234	AW117264	Hs.126252	ESTs	4.4
	448743	AB032962	Hs.21896	KIAA1136 protein	4.4
	451389	N73222	Hs.21738	KIAA1008 protein	4.4 4.4
	453331 454036	Al240665 AA374756	Hs.8895 Hs.93560	ESTs ESTs, Weakly similar to unnamed protein product (H	4.4
25	448133	AA723157	Hs.73769	folate receptor 1 (adult)	4.4
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase domain 9 (met	4.4
	453279	AW893940	Hs.59698	ESTs	4.4
	409459 431708	D86407 Al698136	Hs.54481 Hs.108873	low density lipoprotein receptor-related protein 8 ESTs	4.4 4.4
30	433906	Al167816	Hs.43355	ESTs	4.4
	437958	BE139550	Hs.121668	ESTS	4.4
	441423	Al793299	Hs.126877	ESTs	4.4
	429876	AB028977	Hs.225974	KIAA1054 protein ESTs, Weakly similar to AF137386 1 plasmolipin [H.	4.3 4.3
35	446770 412078	AV660309 X69699	Hs.154986 Hs.73149	paired box gene 8	4.3
55	422093	AF151852	Hs.111449	CGI-94 protein	4.3
	423123	NM_012247	Hs.124027	SELENOPHOSPHATE SYNTHETASE; Human selenium	4.3
	448390	AL035414	Hs.21068	hypothetical protein	4.3
40	453628 449722	AW243307 BE280074	Hs.170187 Hs.23960	ESTs cyclin B1	4.3 4.3
70	436679	Al127483	Hs.120451	ESTs, Weakly similar to unnamed protein product (H	4.3
	431592	R69016	Hs.293871	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMIL	4.3
	432383	AK000144	Hs.274449	Homo sapiens cDNA FLJ20137 fis, clone COL07137	4.3
45	419926	AW900992	Hs.93798	DKFZP586D2223 protein	4.3 4.3
40	452367 401644	U71207 #(NOCAT)	Hs.29279	eyes absent (Drosophila) homolog 2 0	4.3
	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leucine heptad	4.3
	413775	AW409934	Hs.75528	nucleolar GTPase	4.3
50	424296	AI631874	Hs.169391	ESTs	4.3 4.3
50	431118 432201	BE264901 Al538613	Hs.250502 Hs.135657	carbonic anhydrase VIII TMPRSS3a mRNA for serine protease (ECHOS1) (TADG-1	4.3
	451073	Al758905	Hs.206063	ESTs	4.3
	451592	AJ805416	Hs.213897	ESTs	4.3
55	452453	Al902519	11. 05000	gb:QV-BT009-101198-051 BT009 Homo sapiens cDNA, m	4.3
55	441020 439024	W79283 R96696	Hs.35962 Hs.35598	ESTs ESTs	4.2 4.2
	453619	H87648	Hs.33922	H.sapiens novel gene from PAC 117P20, chromosome 1	4.2
	453459	BE047032	Hs.257789	ESTs	4.2
60	408427	AW194270	Hs.177236	ESTs	4.2
60	419311 426460	AA689591 D79721	Hs.183702	gb:nv66a12.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clo Homo sapiens cDNA FLJ11752 fis, clone HEMBA1005582	4.2 4.2
	444540	Al693927	Hs.265165	ESTs	4.2
	452943		Hs.31082	hypothetical protein FLJ 10525	4.2
65	453913	AW004683	Hs.233502	ESTs	4.2
65	417847 428856	AI521558 AA436735	Hs.288312 Hs.183171	Homo sapiens cDNA: FLJ22316 fis, clone HRC05262 Homo sapiens cDNA: FLJ22002 fis, clone HEP06638	4.2 4.2
	428679		113.103171	gbzw80c03.s1 Soares_testis_NHT Homo sapiens cDNA	4.2
	441006		Hs.7627	CGI-60 protein	4.2
70	436209		Hs.254020	ESTs, Moderately similar to unnamed protein produc	4.2
70	446936		Hs.47314	ESTs Homo sapiens mRNA; cDNA DKFZp547P134 (from clone	4.2 4.2
	406076 428819		Hs.137011 Hs.193914	KIAA0575 gene product	4.2
	406671		Hs.285754	met proto-oncogene (hepatocyte growth factor recep	4.2
75	418432	M14156	Hs.85112	insulin-like growth factor 1 (somatomedia C)	4.2
75	417048		Hs.55498	geranylgeranyl diphosphate synthase 1	4.2
	431750 439314		Hs.283705 Hs.178144	ESTs ESTs	4.2 4.2
	448582		Hs.94812	ESTs	4.2
00	449554	AA682382	Hs.59982	ESTs .	4.2
80	455700			gb:CM1-BT0368-061299-060-g07 BT0368 Homo sapiens c	4.2
	409073 433929		Hs.27379	gb:xf71a07.s1 Soares_pineal_gland_N3HPG Homo sapie ESTs	4.1 4.1
	415457		Hs.7369	ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMIL	4.1
	444381		Hs.283713	ESTs	4.1
				000	

	451024	A A 442476		about 2000 of Course total fator MASUCO Ou Homo on	4.1
	451024 415539	AA442176 AI733881	Hs.72472	gb:zw63b08.r1 Soares_total_fetus_Nb2HF8_9w Homo sa BMPR-lb; bone morphogenetic protein receptor; typ	4.1
	421515	Y11339	Hs. 105352	GalNAc alpha-2, 6-sialyltransferase I, long form	4.1
_	420736	Al263022	Hs.82204	ESTs	4.1
5	453293	AA382267	Hs.10653	ESTs	4.1
	409564 418378	AA045857	Hs.54943	tracture callus 1 (rat) homolog	4.1 4.1
	429628	AW962081 H09604	Hs.13268	gb:EST374154 MAGE resequences, MAGG Homo saplens ESTs	4.1
	439635	AA477288	Hs.94891	Homo sapiens cDNA: FLJ22729 fis, clone HSI15685	4.1
10	440452	Al925136	Hs.55150	ESTs, Weakly similar to CAYP_HUMAN CALCYPHOSIN	4.1
	443695	AW204099	Hs.112759	ESTs, Weakly similar to AF126780 1 retinal short-c	4.1
	448816	AB033052	Hs.22151	KIAA1226 protein	4.1
	452795	AW392555	Hs.18878	hypothetical protein FLJ21620 TONDU	4.1 4.1
15	443171 425322	BE281128 U63630	Hs.9030 Hs.155637	protein kinase; DNA-activated; catalytic polypepti	4.1
13	442717	R88362	Hs.180591	ESTs, Weakly similar to R06F6.5b [C.elegans]	4.1
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin)	4.1
	417300	Al765227	Hs.55610	solute carrier family 30 (zinc transporter), membe	4.1
20	417389	BE260964	Hs.82045	Midkine (neurite growth-promoting factor 2)	4.1
20	448105	AW591433	Hs.170675	ESTs, Weakly similar to TMS2_HUMAN TRANSMEMBR	4.1 4.1
	419131 406348	AA406293 #(NOCAT)	Hs.301622	ESTs 0	4.1
	419750	AL079741	Hs.183114	Homo sapiens cDNA FLJ14236 fis, clone NT2RP4000515	4.1
	419790	U79250	Hs.93201	glycerol-3-phosphate dehydrogenase 2 (mitochondria	4.1
25	420908	AL049974	Hs.100261	Homo sapiens mRNA; cDNA DKFZp564B222 (from clone	4.1
	421039	NM_003478	Hs.101299	cullin 5	4.1
	426890	AA393167	Hs.41294 Hs.2291	ESTs Probe hTg737 (polycystic kidney disease, autosomal	4.1 4.1
	428571 452834	NM_006531 Al638627	Hs.105685	ESTs	4.1
30	428771	AB028992	Hs.193143	KIAA1069 protein	4.0
	437949	U78519	Hs.41654	ESTs	4:0
	450568	AL050078	Hs.25159	Homo sapiens cDNA FLJ10784 fis, clone NT2RP4000448	4.0
	424081	NM_006413	Hs.139120	ribonuclease P (30kD)	4.0
35	418375 447204	NM_003081 Al366881	Hs.84389 Hs.157897	synaptosomal-associated protein, 25kD ESTs, Moderately similar to ALUC_HUMAN !!!! ALU CL	4.0 4.0
55	407910	AA650274	Hs.41296	fibronectin taucine rich transmembrane protein 3	4.0
	412314	AA825247	Hs.250899	heat shock factor binding protein 1	4.0
	436291	BE568452	Hs.5101	ESTs; Highly similar to protein regulating cytokin	4.0
40	450654	AJ245587	Hs.25275	Kruppel-type zinc finger protein	4.0
40	426991	AK001536	Hs.285803	Homo sapiens cDNA FLJ12852 fis, clone NT2RP2003445	4.0 4.0
	409365 410784	AA702376 AW803201	Hs.226440	Homo sapiens clone 24881 mRNA sequence gb:IL2-UM0077-070500-080-E06 UM0077 Homo sapiens c	4.0
	413374	NM_001034	Hs.75319	ribonucleotide reductase M2 polypeptide	4.0
	413425	F20956		gb:HSPD05390 HM3 Homo saplens cDNA clone 032-X4-1	4.0
45	417655	AA780791	Hs.14014	ESTs, Weakly similar to KIAA0973 protein [H.sapien	4.0
	424783	AA913909	Hs.153088	TATA box binding protein (TBP)-associated factor,	4.0
	425024	R39235	Hs.12407	ESTs ESTs	4.0 4.0
	445941 448595	A1267371 AB014544	Hs.172636 Hs.21572	KIAA0644 gene product	4.0
50	453448	AL036710	Hs.209527	ESTs	4.0
	458944	N93227	Hs.98403	ESTs	4.0
	400284			Estrogen receptor 1	4.0
	441134	W29092	Hs.7678	cellular retinoic acid-binding protein 1	4.0
55	408796 408296	AA688292 AL117452	Hs.118553 Hs.44155	ESTs DVE7DEREC1617 aminin	4.0 4.0
55	438913	AI380429	Hs.172445	DKFZP586G1517 protein ESTs	4.0
	402408	711000 120	110,172440	0	4.0
	411630	U42349	Hs.71119	Putative prostate cancer tumor suppressor	4.0
CO	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MAMMA100174	4.0
60	439780	AL109688		gb:Homo saplens mRNA full length insert cDNA clone	4.0
	418301	AW976201 AW512260	Hs.187618	ESIS	4.0 4.0
	420077 426572		Hs.87767 Hs.170623	ESTs hypothetical protein FLJ11183	4.0
	403721	AB001100	13.170020	0	4.0
65	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncogene homolo	4.0
	408684	R61377	Hs.12727	hypothetical protein FLJ21610	4.0
	414869	AA157291	Hs.72163	ESTs	4.0
	·437980 451050	R50393 AW937420	Hs.278436 Hs.69662	KIAA1474 protein ESTs	4.0 4.0
70	45 1050	A11301420	113.03002	2013	****
. •	TABLE 1	14B:			
		nique Eos probes		ber	
		nber: Gene cluste			
75	Accessio	on: Genbank acce	ession numbers	•	
75	Pkey	CAT Number	Accession		
	409073	109851_1		3 AA063018 Al444822	
	410784	1221005_1		1 BE079700 BE062940	
0.0	411560	1249443_1	AW85118	6 AW996967 BE143456	
80	413425	136885_1		A129374 AA133740 AW819878	
	414315	143512_1		A494098 F13654 AA494040 AA143127	
	418378 418804	174656_1 179138_1		.1 AA218925 AA354237 2 AI917245 AI701732 AA228406	•
	419311	183793_1		1 AW974261 AA236240 AI077451 AA631399 AW974262	
			,		

```
420637
                                           AW976153 AA278945 AA747691
                        195241 1
            424341
                                           AA385074 AA339054 AA339115 AW956359
                        238294_1
            428002
                        285602_1
                                           AA418703 AA418711 BE071915 BE071920 BE071912
            428679
                        294049_1
                                           AA431765 AA432015
  5
            429163
                       300543 1
                                           AA884766 AW974271 AA592975 AA447312
                        313709_1
                                           AW968128 AA468102 AA468165
            430153
                        330060_1
                                           AA496479 T89859 AW020056 AW135251 AI221100 AA628705 AI263148 T79074
            431229
            431322
                        331543_1
                                           AW970622 AA503009 AA502998 AA502989 AA502805 T92188
                                           BE177494 AW276909 AA632849
AW298067 AA731645 AA810101 AW194180 Al690673 AW978773
AI950087 N70208 R97040 N36809 AI308119 AW967677 N35320 AI251473 H59397 AW971573 R97278 W01059 AW967671 AA908598
            434415
                        385931 1
10
            436812
                        427323 1
            437938
                                           AA251875 AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA88444 N92578 F13493 AA927794 AI560251 AW874068 AL134043 AW235383 AA663345 AW008282 AA488964 AA283144 AI890387 AI950344 AI741346
                                           AI689062 AA282915 AW102898 AJ872193 AJ763273 AW173586 AW150329 AI653832 AJ762688 AA988777 AA488892 AJ356394 AW103813
15
                                           Al539642 AA642789 AA856975 AW505512 Al961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538
                                           AA180009 AA337499 AW961101 AA251669 AA251874 AI819225 AW205862 AI683338 AI858509 AW276905 AI633006 AA972584 AA908741 AW072629 AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005
                        467436 1
                                           AW979074 AA834841 AA828650
            438966
20
            438993
                        467651_1
                                           AA828995 AA834879 AI926361
                                           AW979172 AA829595 R96050
AL109688 R23665 R26578
AA995998 AI916584 R61781 T77332 F07756 F08149 F07647
            439042
                        468079_1
            439780
                        47673_1
                       542469 1
            442438
                                           Al624049 AW117770 Al858360
            449034
                        794817_1
25
            451024
                        85565_1
                                           AA442176 AA259181
                                           AI902519 AI902518 AI902516
                        918300_1
            452453
                                           BE068115 BE068104 BE068102 BE068096 BE068103 BE068154 BE068198
            455700
                        1351264 1
                                           Al630223 Al630470
            458861
                        798085 1
30
           TABLE 14C:
            Pkey: Unique number corresponding to an Eos probeset
           Ref. Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402:489-495
            Strand: Indicates DNA strand from which exons were predicted
35
            Nt_position: Indicates nucleotide positions of predicted exons
                                        Strand
                                                      Nt position
            401644
                         8576138
                                                      82655-83959
                                        Plus
            402408
                          9796239
                                                      110326-110491
                                        Minus
40
                                                     81747-82094
82274-82443
            402606
                         9909429
                                        Minus
            402820
                          6456853
                                        Minus
            403381
                          9438267
                                                      26009-26178
                                        Minus
                          8843996
                                                      156223-156370
            403657
                                        Minus
            403721
                          7528046
                                        Minus
                                                      156647-157368
45
                                                      55675-56055
            404253
                          9367202
                                        Minus
            404561
                          9795980
                                        Minus
                                                      69039-70100
                          6862697
            404939
                                        Plus
                                                      175318-175476
            404996
                          6007890
                                                      37999-38145,38652-38998,39727-39872,40557-40674,42351-42450
            405547
                          1054740
                                        Plus
                                                      124361-124520,124914-125050
50
                          9255985
                                                      71754-71944
            406348
                                        Minus
                                                      58313-58489
            406367
                          9256126
                                        Minus
            406400
                          9256298
                                                      1553-1712,1878-2140,4252-4385,5922-6077
55
            Table 15A lists about 499 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to be extracellular or cell-surface proteins. These were selected
            as for Table 14A, except that the ratio was greater than or equal to 3.0, and the predicted protein contained a structural domain that is Indicative of extracellular localization (e.g.,
            ig, fn3, egf, 7tm domains). Predicted protein domains are noted.
            TABLE 15A: ABOUT 499 UP-REGULATED GENES ENCODING EXTRACELLULAR/CELL SURFACE PROTEINS, OVARIAN CANCER VERSUS NORMAL ADULT TISSUES
60
            Pkey: Primekey
            UG ID: UniGene ID
            Title: UniGene title
            Prot. Dom.: Predicted protein structural domains
            ratio: ration tumor vs normal tissues
65
                                                                                                              Prot. Dom.
            415989
                                          Hs.111128
                        A1267700
                                                          ESTs
                                                                                                              TM
                                                                                                                                              42.7
            428579
                        NM 005756
                                                          G protein-coupled receptor 64
                                                                                                              TM
                                                                                                                                              30.5
                                          Hs.184942
                        AW513143
                                          Hs.98367
                                                          similar to SRY-box containing gene 17
                                                                                                                                              30.1
            428153
                                                                                                              TM
70
            436982
                        AB018305
                                          Hs.5378
                                                          spondin 1, (f-spondin) extracellular matrix
                                                                                                              SS
            427585
                        D31152
                                          Hs.179729
                                                          collagen; type X; alpha 1 (Schmid metaphy
                                                                                                              C1q, Collagen
                                                                                                                                              27.0
            430691
                        C14187
                                          Hs.103538
                                                          FST<sub>8</sub>
                                                                                                              ти
                                                                                                                                              26.2
                        M13509
                                          Hs.83169
                                                          Matrix metalloprotease 1 (interstitial collac
            418007
                                                                                                              SS..Peptidase M10
                                                                                                                                              20.6
                        AA250737
                                          Hs.72472
                                                          BMPR-lb; bone morphogenetic protein rec
             400292
                                                                                                              ТМ
                                                                                                                                              20.6
 75
                                                          lysyl oxidase
             424086
                        AJ351010
                                          Hs.102267
                                                                                                              Lysyl_oxidase
                                                                                                                                              17.7
                        NM_002497
AW023482
                                                                                                              pkise,pkinase
TM
            424905
                                          Hs.153704
                                                          NIMA (never in mitosis gene a)-related kin
                                                                                                                                              17.4
                                          Hs.97849
                                                          ESTs
                                                                                                                                              17.4
            427356
                        AJ404672
                                          Hs.288693
             407638
                                                                                                              ТМ
                                                                                                                                              17.1
                                                          EST
             427469
                        AA403084
                                          Hs.269347
                                                          ESTs
                                                                                                              TM
                                                                                                                                              17.0
80
                        AAR28995
             VABOOS
                                                          integrin; beta 8
                                                                                                              SS,integrin_B
                                                                                                                                              16.7
                        H87879
                                          Hs.102267
            421155
                                                          ivsvi oxidase
                                                                                                              SS
                                                                                                                                              16.1
             431989
                                          Hs.291069
                                                          ESTs
                        AW972870
                                                                                                              SS
                                                                                                                                              15.9
                         AL037824
                                          Hs.194695
             428976
                                                          ras homolog gene family, member I
             416209
                         AA236776
                                          Hs.79078
                                                          MAD2 (mitotic arrest deficient, yeast, hom
                                                                                                                                              15.0
```

	413623	AA825721	Hs.246973	ESTs	TM	14.8
	447350	AI375572	Hs.172634	ESTs; HER4 (c-erb-84)	SS,TM,Furin-like,pkinase	14.2
	428227	AA321649	Hs.2248	INTERFERON-GAMMA INDUCED PRO	IL8	14.1
~	452461	N78223	Hs.108106	transcription factor	G9a,PHD	13.7
5	451106	BE382701	Hs.25960	N-myc	Myc_N_term TM	13.6 13.5
	416208 452249	AW291168 BE394412	Hs.41295 Hs.61252	ESTs ESTs	homeobox	13.4
•	416566	NM_003914	Hs.79378	cyclin A1	cyclin	12.8
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	TM	12.6
10	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	SS,Cys_knot	12.3
	458027	L49054	Hs.85195	ESTs, Highly similar to t(3;5)(q25.1;p34) f	TM	12.2
	408460	AA054726	Hs.285574	ESTs	TM histogra	12.2 11.9
	415263 400298	AA948033 AA032279	Hs.130853 Hs.61635	ESTs STEAP1	histone TM	11.8
15	421451	AA291377	Hs.50831	ESTs	TM	11.6
15	443715	AJ583187	Hs.9700	cyclin E1	cyclin	11.5
	413472	BE242870	Hs.75379	solute carrier family 1 (glial high affinity gl	TM,SDF	11.5
	410102	AW248508	Hs.279727	ESTs;	SS	11.4
20	408562	A1436323	Hs.31141	Homo sapiens mRNA for KIAA1568 prote	TM	11.4 11.3
20	442353 427344	BE379594 NM_000869	Hs.49136 Hs.2142	ESTs 5-hydroxytryptamine (serotonin) receptor 3	TM TM,neur_chan	11.2
	453160	AI263307	Hs.146228	ESTs	histone	11.2
	412723	AA648459	Hs.179912	ESTs	TM	11.1
	400250			0 ,	Hist_deacetyl+F105	11.1
25	438167	R28363	Hs.24286	ESTs .,	7tm_1	11.1
	434539	AW748078	Hs.214410	ESTs	TM	10.9
	450375	AA009647	Hs.8850	a disintegrin and metalloproteinase domain	TM SS,hemopexin	10.8 10.8
	400289	X07820	Hs.2258 Hs.145968	Matrix Metalloprotelnase 10 (Stromolysin 2 ESTs	Cadherin_C_term	10.7
30	446142 421285	A)754693 NM 000102	Hs.1363	cytochrome P450, subfamily XVII (steroid	TM,p450	10.6
50	433496	AF064254	Hs.49765	VERY-LONG-CHAIN ACYL-COA SYNT	SS,TM	10.6
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	TM	10.5
	433447	U29195	Hs.3281	neuronal pentraxin II	SS	10.4
25	414245	BE148072	Hs.75850	WAS protein family, member 1	TM	10.3
35	426462	U59111	Hs.169993	dermalan sulphate proteoglycan 3	SS,LRRNT	10.3
	418601	AA279490	Hs.86368	calmegin ESTs	SS TM	10.3 10.2
	415227 409269	AW821113 AA576953	Hs.72402 Hs.22972	Нотто sagiens cDNA FLJ13352 fis, clone O	TM	10.1
	426471	M22440	Hs.170009	transforming growth factor, alpha	SS,EGF	9.8
40	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-O-sulfotran	SS	9.7
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	SS,EGF	9.7
	414972	BE263782	Hs.77695	KIAA0008 gene product	TM	9.4
	435509	AI458679	Hs.181915	ESTs	TM	9.3
45	445413	AA151342	Hs.12677	CGI-147 protein	UPF0099 TM	9.2 9.1
43	446999 414569	AA151520 AF109298	Hs.279525 Hs.118258	hypothetical protein PRO2605 Prostate cancer associated protein 1	TM	9.1
	406687	M31126	Hs.272620	pregnancy specific beta-1-glycoprotein 9	hemopexin	9.0
	408908	BE296227	Hs.48915	serine/threonine kinase 15	pkise,TM	9.0
	451807	W52854	Hs.27099	DKFZP564J0863 protein	TM	8.8
50	420159	AI572490	Hs.99785	ESTs	TM	8.8
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:poly	TM,Ricin_B_lectin TM	8.7 8.7
	408829 438885	NM_006042 AI886558	Hs.48384 Hs.184987	heparan sulfate (glucosamine) 3-O-sulfotran ESTs	TM	8.7
	447342	Al199268	Hs.19322	ESTs; Wealdy similar to IIII ALU SUBFAM	TM	8.6
55	437212	Al765021	Hs.210775	ESTs	UDPGT	8.5
	424717	H03754	Hs.152213	wingless-type MMTV integration site famil	wnt	8.4
	450505	NM_004572	Hs.25051	plakophilin 2	TM	8.4 8.3
	436396	A1683487	Hs.299112	Homo sapiens cDNA FLJ11441 fis, clone H	wnt Y_phosphalase	8.3
60	425695 447268	NM_005401 Al370413	Hs.159238 Hs.36563	protein tyrosine phosphatase, non-receptor Homo sapiens cDNA: FLJ22418 fis, clone	Ribosomal_S8	8.2
00	400195	Alstoris	113.30303	0	TM	8.1
	424906	AI566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein,	TM	8.1
	438202	AW169287	Hs.22588	ESTs	TM	8.1
65	439759	AL359055	Hs.67709	Homo sapiens mRNA full length insert cDN	TM	8.0
65	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	TM,Fz,Frizzled TM	8.0 8.0
	424001 442655	W67883 AW027457	Hs.137476 Hs.30323	KIAA1051 protein ESTs	TM	7.8
	445657	AW612141	Hs.279575	ESTS	7tm_1	7.8
	426320	W47595	Hs.169300	transforming growth factor, beta 2	SS,TGF-beta	7.8
70	412170	D16532	Hs.73729	very low density lipoprotein receptor	TM,ldl_recept_b,EGF	7.6
	436476	AA326108	Hs.53631	ESTs	TM	7.6
	414132	Al801235	Hs.48480	ESTS	TM	7.6 7.6
	437789	Al581344	Hs.127812	ESTs, Wealdy similar to AF141326 1 RNA	TM TM	7.6
75	450192 408826	AA263143 AF216077	Hs.24596 Hs.48376	RAD51-Interacting protein Homo sapiens clone HB-2 mRNA sequence	TM	7.5
, ,	413627	BE182082	Hs.246973	ESTs	TM	7.4
	446293	Al420213	Hs.149722	ESTs	ШМ, homeobox	7.4
	409242	AL080170	Hs.51692	DKFZP434C091 protein	TM,7tm_1	7.3
00	450262	AW409872	Hs.271166	ESTs, Moderately similar to ALU7_HUMA	TM	7.3
80	451659	BE379761	Hs.14248	ESTs, Weakly similar to ALU8_HUMAN A	TM TM	7.3 7.2
	444342	NM_014398 AW172356	Hs.10887	similar to lysosome-associated membrane g ESTs	TM 7tm_1	7.1
	429126 421464	AA291553	Hs.99083 Hs.190086	ESTS	TM	7.0
•	420362	U79734	Hs.97206	huntingtin interacting protein 1	TM	7.0

	444743	AA045648	U- 14047	and in terral and de dishagahala linkad malak	The	7.0
	415138	C18356	Hs.11817 Hs.78045	nudix (nucleoside diphosphale linked molet fissue factor pathway inhibitor 2 TFP12	TM Kunitz_BPTI,G-gamma	6.9
	429418	AJ381028	Hs.99283	ESTs	AAA	6.9
	409178	BE393948	Hs.50915	kellikrein 5	SS,trypsin	6.9
5	425905	AB032959	Hs.161700	KIAA1133 protein	TM	6.9
	428532	AF157326	Hs.184786	TBP-interacting protein	TM	6.9
	433426	H69125	Hs.133525	ESTs	TM	6.9
	448674	W31178	Hs.154140	ESTs	TM	6.8
10	432415	T16971	Hs.289014	ESTs	TM	6.7
10	418203 438394	X54942 BE379623	Hs.83758	CDC28 protein kinase 2	TM om iromomeo	6.6 6.6
	452097	AB002364	Hs.27693 Hs.27916	CGI-124 protein ADAM-TS3; a disintegrin-like and metal	pro_isomerase Reprolysin	6.6
	453745	AA952989	Hs.63908	Homo saplens HSPC316 mRNA, partial cd	TGFb_propeptide	6.6
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	filament	6.6
15	452281	T93500	Hs.28792	ESTs	TGF-beta	6.5
	424620	AA101043	Hs.151254	kallikrein 7 (chymotryptic; stratum comeum	SS,trypsin	6.5
	452594	AU076405	Hs.29981	solute carrier family 26 (sulfate transporter)	TM,Sulfate_transp	6.5
	434149	Z43829	Hs.19574	ESTs, Weakly similar to katanin p80 subun	pkinase,fn3	6.5
~~	425776	U25128	Hs.159499	parathyrold hormone receptor 2	TM,7tm_2	6.4
20	409517	X90780	Hs.54668	troponin I, cardiac	Y_phosphatase	6.4
	432666	AW204069	Hs.129250	ESTs, Weakly similar to unnamed protein p	TM	6.4
	448706	AW291095	Hs.21814	class II cytokine receptor ZCYTOR7	SS	6.4
	413582 424153	AW295647 AA451737	Hs.71331	Homo sapiens cDNA: FLJ21971 fis, clone	TM TM	6.4 6.4
25	441081	Al584019	Hs.141496 Hs.169006	MAGE-like 2 ESTs, Moderately similar to plakophilin 2b	PAX	6.4
23	443539	AI076182	Hs.134074	ESTs	TM	6.4
	418384	AW149266	Hs.25130	ESTs	TM	6.3
	425371	D49441	Hs.155981	mesothelin	SS	6.3
	449048	Z45051	Hs.22920	similar to \$68401 (cattle) glucose induced g	SS	6.3
30	437117	AL049256	Hs.122593	ESTs	TM	6.3
	453370	Al470523	Hs.182356	ESTs, Moderately similar to translation init	ABC_tran	6.3
	426514	BE616633	Hs.301122	bone morphogenetic protein 7 (osteogenic p	SS,TGF-beta	6.3
	452904	AL157581	Hs.30957	Homo sapiens mRNA; cDNA DKFZp434E	TM	6.2
35	457030	Al301740	Hs.173381	dihydropyrimidinase-like 2	TM	6.2
22	436281	AW411194	Hs.120051	ESTs	TM	6.1
	415139 449448	AW975942 D60730	Hs.48524 Hs.57471	ESTs ESTs	TM TM	6.1 6.1
	457979	AA776655	Hs.270942	ESTs	TM	6.1
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein	SS,EGF,tsp_3	6.0
40	421502	AF111856	Hs.105039	solute carrier family 34 (sodium phosphate)	TM	6.0
	412733	AA984472	Hs.74554	KIAA0080 protein	C2	6.0
	422095	AI868872	Hs.288966	ceruloplasmin (ferroxidase)	SS	6.0
	418845	AA852985	Hs.89232	chromobox homolog 5 (Drosophila HP1 alp	Chromo_shadow	6.0
45	410555	U92649	Hs.64311	a disintegrin and metalloproteinase domain	TM, disintegrin, Reprolysin	5.9
45	437099	N77793	Hs.48659	ESTs, Highly similar to LMA1_HUMAN L	laminin_EGF	5.9
	453431	AF094754	Hs.32973	glycine receptor, beta	TM,neur_chan	5.9
	417866	AW067903	Hs.82772	"collagen, type XI, atpha 1"	TSPN,Collagen,COLFI	5.9 5.9
	430291 405547	AV660345	Hs.238126	CGI-49 protein 0	TM APC mombrons	5.9
50	435793	#(NOCAT) AB037734	Hs.4993	ESTs	TM,ABC_membrane TM	5.8
50	440138	AB033023	Hs.6982	hypothetical protein FLJ10201	TM	5.8
	425154	NM_001851	Hs.154850	collagen, type IX, alpha 1	SS,Collagen,TSPN	5.7
	419335	AW960146	Hs.284137	Homo sapiens cDNA FLJ12888 fis, clone N	TM	5.7
	452971	A1873878	Hs.91789	ESTs	тм	5.7
55	428927	AA441837	Hs.90250	ESTs ·	TM	5.7
	419247	S65791	Hs.89764	fregile X mental retardation 1	TM	5.7
	445640	AW969626	Hs.31704	ESTs, Weakly similar to KIAA0227 [H.sap	TM .	5.7
	447078	AW885727	Hs.301570	ESTs	kazal	5.6
60	421247 432030	BE391727	Hs.102910	general transcription factor IIH, polypeptid	TM SS	5.6 5.6
OU	432030	Al908400 NM 004272	Hs.143789 Hs.9192	ESTs Homer, nauronal immediate early gene, 18	TM	5.5
	41 1096	U80034	Hs.68583	mitochondrial intermediate peptidase	Peptidase_M3	5.5
	419558	AW953679	Hs.278394	ESTs	SS SS	5.5
	427386	AW836261	Hs.177486	amyloid beta (A4) precursor protein (protea	TM	5.5
65	427961	AW293165	Hs.143134	ESTs	TM	5.5
	407216	N91773	Hs.102267	lysyl oxidase	TM	5.5
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	ras,TM	5.5
	414315	Z24878		gb:HSB65D052 STRATAGENE Human sk	TM	5.5
70	441645	AI222279	Hs.201555	ESTs	SS	5.5
70	449318	AW236021	Hs.108788	ESTs, Weakly similar to zeste [D.melanoga	TM	5.4
	441433	AA933809	Hs.42746	ESTs	TM	5.4
	445495	BE622641	Hs.38489	ESTS	LLWEQ,ENTH	5.4
	410153 442611	BE311926 BE077155	Hs.15830 Hs.177537	Homo sapiens cDNA FLJ12691 fis, clone N ESTs	Glycos_transf_2 TM	5.4 5.4
75	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced protein	XInk,CUB	5.4
, 5	419948	AB041035	Hs.93847	NADPH oxidase 4	TM	5.3
	427718	AI798680	Hs.25933	ESTs	histone	5.3
	453867	AI929383	Hs.108196		TM	5.3
00	408298	A1745325	Hs.271923	ESTs; Moderately similar to IIII ALU SUB	Glycos_transf_2,DSPc	5.3
80	448543	AW897741	Hs.21380	Homo saptens mRNA; cDNA DKFZp586P	TM	5.3
	433222	AW514472	Hs.238415	ESTs, Moderately similar to ALU8_HUMA	TM	5.3
	449532	W74653	Hs.271593	ESTS	TM	5.3
	452822	XB5689 AA218940	Hs.288817	Homo saplens cDNA: FLJ22621 fis, clone .	TM,EGF,fn3 AAA	5.3 5.2
	418379	AA218940	Hs.137516 .	fidgetin-like 1	rv~	3.2

	416530	U62801	Hs.79361	kallikrein 6 (neurosin, zyme)	TM,trypsin	5.2
	413384	NM_000401	Hs.75334	exostoses (multiple) 2	TM	5.2
	445236 406367	AK001676 #(NOCAT)	Hs.12457	hypothetical protein FLJ10814	TM	5.2 5.2
5	442500	AI819068	Hs.209122	ESTs	proteasome,trypsin SS	5.2
•	450101	AV649989	Hs.24385	Human hbc647 mRNA sequence	TM	5.2
	419140	Al982647	Hs.215725	ESTs	TM	5.2
	417791	AW965339	Hs.111471	ESTs	Ald_Xan_dh_C	5.1
10	437496	AA452378	Hs.170144	Homo sapiens mRNA; cDNA DXFZp547J1	TSPN,Folate_carrier	5.1
10	418849	AW474547	Hs.53565	ESTs, Weakly similar to B0491.1 [C.elegan	TM	5.1
	428093	AW594506	Hs.104830	ESTs	TM .	5.1
	408621	AI970672	Hs.46538	chromosome 11 open reading frame 8; feta	TM	5.1
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	TM	5.1
15	404939 447020	T27308	Hs.16986	hypothetical protein FLJ11046	TM TM	5.0 5.0
13	410824	AW994813	Hs.33264	ESTs	TM	5.0
	417423	AA197341	Hs.111164	ESTs	TM	5.0
	421477	AI904743	Hs.104650	hypothetical protein FLJ10292	TM	5.0
	443555	N71710	Hs.21398	ESTs, Moderately similar to GNPI_HUMA	Glucosamine_iso	5.0
20⋅	424539	L02911	Hs.150402	activin A receptor, type I	SS,Activin_recp,pkinase	4.9
	416565	AW000960	Hs.44970	ESTs	TM	4.9
	431130	NM_006103	Hs.2719	epididymis-specific; whey-acidic protein ty	SS	4.9
	408938	AA059013	Hs.22607	ESTs	TM	4.9
25	436754	A1061288	Hs.133437	ESTs, Moderately similar to gonadotropin i	TM	4.9
43	409049	AJ423132	Hs.146343	ESTs	TM	4.9
	458627	AW088642	Hs.97984	ESTs; Weakly similar to WASP-family pro ATP-binding cassette, sub-family C (CFTR	TM TM.ABC_membrane	4.8 4.8
	418882 422505	NM_004996 AL120862	Hs.89433 Hs.124165	ESTs; (HSA)PAP protein (programmed ce	TM	4.8
	428555	NM_002214	Hs. 184908	integrin, beta 8	SS,Integrin_B	4.8
30	452909	NM_015368	Hs.30985	pannexin 1	TM	4.8
	449535	W15267	Hs.23672	low density lipoprotein receptor-related pro	SS,ldl_recept_a,EGF	4.8
	452232	AW020603	Hs.271698	ESTs	TM	4.8
	423161	AL049227	Hs.124776	Homo saplens mRNA; cDNA DKFZp564N	Cadherin_C_term	4.7
2.5	428405	Y00762	Hs.2266	cholinergic receptor, nicotinic, alpha polype	TM,neur_chan	4.7
35	433330	AW207084	Hs.132816	ESTs	TM	4.7
	443933	Al091631	Hs.135501	Homo saplens two pore potassium channel	TM	4.7
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	TM	4.7
	426300	U15979	Hs.169228	delta-like homolog (Drosophila)	TM,EGF	4.7
40	453775 429944	NM_002916 R13949	Hs.35120 Hs.226440	replication factor C (activator 1) 4 (37kD) Homo sapiens clone 24881 mRNA sequenc	AAA,DEAD,helicase_C TM	4.7 4.7
70	434988	Al418055	Hs.161160	ESTs	TM	4.6
	406400	#(NOCAT)	113.101100	0	trypsin,TM	4.6
•	428301	AW628666	Hs.98440	ESTs	TM	4.6
	446254	BE179829	Hs.179852	Homo sapiens cDNA FLJ12832 fis, clone N	TM	4.6
45	459574	AI741122	Hs.101810	Homo sapiens cDNA FLJ14232 fis, clone N	TM	4.6
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	TM	4.6
	435244	N77221	Hs.187824	ESTs	pkinase,fn3	4.6
	404996	#(NOCAT)		0	Peptidase_C1	4.6
50	407905	AW103655	Hs.252905	ESTs	SS,Ephrin	4.6
20	441675	AI914329	Hs.5461	ESTs	TM	4.6
	420276 422529	AA290938 AW015128	Hs.190561 Hs.256703	ESTs, Highly similar to mosaic protein LR1 ESTs	TM,fn3,ldi_recept_a TM	4.5 4.5
	438018	AK001160	Hs.5999	hypothetical protein FLJ 10298	TM	4.5
	457465	AW301344	Hs.195969	ESTs	Pribosyltran	4.5
55	418848	AI820961	Hs.193465	ESTs	TM,pkise	4.5
	447499	AW262580	Hs.147674	KIAA1621 protein	TM	4.5
	432731	R31178	Hs.287820	fibronectin 1	SS	4.5
	434699	AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone H	Nucleoside_tra2	4.4
C O	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	TM	4.4
60	409092	A1735283	Hs.172608	ESTs	TM	4.4
	451389	N73222	Hs.21738	KIAA1008 protein	TM	4.4
	453331	AI240665	Hs.8895	ESTs	TM	4.4
	448133	AA723157	Hs.73769	folate receptor 1 (adult)	TM TM	4.4
65	429597 453279	NM_003816 AW893940	Hs.2442 Hs.59698	a disintegrin and metalloproteinase domain	TM	4.4 4.4
03	409459	D86407	Hs.54481	ESTs low density lipoprotein receptor-related pro	TM,EGF,ldl_recept_a	4.4
	431708	Al698136	Hs.108873	ESTs	TM	4.4
	433906	Al167816	Hs.43355	ESTs	TM	4.4
	441423	AJ793299	Hs.126877	ESTs	TM	4.4
70	446770	AV660309	Hs.154986	ESTs, Weakly similar to AF137386 1 plasm	TM	4.3
	412078	X69699	Hs.73149	paired box gene 8	TM	4.3
	423123	NM_012247	Hs.124027	SELENOPHOSPHATE SYNTHETASE; H	AIRS	4.3
	448390	AL035414	Hs.21068	hypothetical protein	TM	4.3
75	453628	AW243307	Hs.170187	ESTs	TM	4.3
75	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	TM	4.3
	413775	AW409934	Hs.75528	nucleolar GTPase	MMR_HSR1	4.3
	451592	AI805416	Hs.213897	ESTs	TM	4.3
	419311	AA689591	Un 31003	gb:nv66a12.s1 NCL_CGAP_GC81 Homo s hypothetical protein FLJ10525	TM TM	4.2 4.2
80	452943 428679	BE247449 AA431765	Hs.31082	gb:zw80c03.s1 Soares_testis_NHT Homo s	TM.	4.2
55	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prote	TM	4.2
	406076	AL390179	Hs.137011	Homo sapiens mRNA; cDNA DKFZp547P	TM	4.2
	428819	AL135623	Hs.193914	KIAA0575 gene product	TM	4.2
	406671	AA129547	Hs.285754		F-actin_cap_A	4.2

	431750	AA514986	Hs.283705	ESTs	TM	4.2
	449554	AA682382	Hs.59982	ESTs	TM	4.2
	409073 433929	AA063458 A1375499	Hs.27379	gb:zf71a07.s1 Soares_pineal_gland_N3HP ESTs	SEA TM	4.1 4.1
5	415457	AW081710	Hs.7369	ESTs, Weakly similar to ALU1_HUMAN A	TM	4.1
	444381	BE387335	Hs.283713	ESTs	TM	4.1
	415539 421515	AI733881 Y11339	Hs.72472 Hs.105352	BMPR-ib; bone morphogenetic protein rec GaiNAc alpha-2, 6-slatyltransferase I, long	TM TM	4.1 4.1
	453293	AA382267	Hs.10653	ESTs	TM	4.1
10	409564	AA045857	Hs.54943	fracture callus 1 (rat) homolog	TM	4.1
	429628 440452	H09604 Al925136	Hs.13268 Hs.55150	ESTs ESTs, Weakly similar to CAYP_HUMAN	TM TM	4.1 4.1
	443695	AW204099	Hs.112759	ESTs, Weakly similar to CATP_HOMAN ESTs, Weakly similar to AF126780 1 retina	TM	4.1
1.5	425322	U63630	Hs.155637	protein kinase; DNA-activated; catalytic po	TM	4.1
15	417300	AI765227	Hs.55610	solute carrier family 30 (zinc transporter), m	TM SS.TM	4.1 4.1
	417389 452834	BE260954 AI638627	Hs.82045 Hs.105685	Midkine (neurite growth-promotling factor 2 ESTs	kinesin	4.1
	428771	AB028992	Hs. 193143	KIAA1069 protein	PI-PLC-X,PI-PLC-Y	4.0
20	412314	AA825247	Hs.250899	heat shock factor binding protein 1	TM	4.0
20	436291 450654	BE568452 AJ245587	Hs.5101 Hs.25275	ESTs; Highly similar to protein regulating c Kruppel-type zinc finger protein	TM KRAB	4.0 4.0
	409365	AA702376	Hs.226440	Homo sagiens clone 24881 mRNA sequenc	TM	4.0
	413374	NM_001034	Hs.75319	ribonucleotide reductase M2 polypeptide	ben_cunodin	4.0
25	417655 445941	AA780791 Al267371	Hs.14014 Hs.172636	ESTs, Weakly similar to KIAA0973 protein ESTs	TM TM lection o	4.0 4.0
23	441134	W29092	Hs.7678	cellular retinoic acid-binding protein 1	TM,lectin_c lipocalin	4.0
	411630	U42349	Hs.71119	Putative prostate cancer turnor suppressor	TM	4.0
	418301	AW976201 AL033527	Hs.187618	ESTs	TM TCC hoto Mue N. torm	4.0
30	411945 408684	R61377	Hs.92137 Hs.12727	v-myc avian myelocytomatosis viral oncog hypothetical protein FLJ21610	TGF-beta,Myc_N_term TM	4.0 4.0
	414869	AA157291	Hs.72163	ESTs	TM	4.0
	420281	Al623693	Hs.191533	ESTs	Cation_efflux	3.9
	416658 411274	·U03272 NM_002776	Hs.79432 Hs.69423	fibrillin 2 (congenital contractural arachnod kallikrein 10	EGF,TB trypsin,TM	3.9 3.9
35	437222	AL117588	Hs.299963	ESTs	TM	3.9
	431958	X63629	Hs.2877	Cadherin 3, P-cadherin (placental)	TM,cadherin,	3.9
	430634 415716	AI860651 N59294	Hs.26685 Hs.301141	ESTS	TM NAP_family	3.9 3.9
	420179	N74530	Hs.21168	Homo sapiens cDNA FLJ11689 fis, clone H ESTs	TM	3.8
40	451250	AA491275	Hs.236940	Homo sapiens cDNA FLJ12542 fis, clone N	TM	3.8
	429496	AA453800	Hs.192793	ESTS	TM TM	3.8
	421764 447197	Al681535 R36075	Hs.99342	ESTs, Weakly similar to KCC1_HUMAN C gb:yh88b01.s1 Soares placenta Nb2HP Hom	TM,SDF	3.8 3.8
4 ~	422939	AW394055	Hs.98427	ESTs	TM	3.8
45	414737	Al160386	Hs.125087	ESTs	TM CO toursin	3.8
	411773 425247	NM_006799 NM_005940	Hs.72026 Hs.155324	protease, serine, 21 (testisin) matrix metalloprotelnase 11 (stromelysin 3)	SS,trypsin SS,Peptidase_M10	3.8 3.7
	424433	H04607	Hs.9218	ESTs	TM	3.7
50	431846	BE019924	Hs.271580	Uroplakin 18	TM,transmembrane4	3.7
30	407792 417531	Al077715 NM_003157	Hs.39384 Hs.1087	putative secreted ligand homologous to fix1 serine/threonine kinase 2	SS pkise,pkinase	3.7 3.7
	434836	AA651629	Hs.118088	ESTs	TM	3.7
	439810	AL109710	Hs.85568	EST	TM	3.7
55	418693 407864	Al750878 AF069291	Hs.87409 Hs.40539	thrombospondin 1 chromosome 8 open reading frame 1	ss.egf,tspn Tm	3.7 3.7
J J	436304	AA339622	Hs.108887	ESTs	TM	3.7
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (transioco	TM	3.7
	453468 428943	W00712	Hs.32990	DKFZP566F084 protein ESTs, Weakly similar to KIAA1392 protein	TM TM	3.6 3.6
60	411402	AW086180 BE297855	Hs.37636 Hs.69855	NRAS-related gene	CSD,ras,CSD	3.6
	425176	AW015644	Hs.301430	ESTs, Moderately similar to TEF1_HUMA	TM	3.6
	400296	AA305627	Hs.139336	ATP-binding cassette; sub-family C (CFTR	ABC_tran	3.6
	407340 418524	AA810168 AA300576	Hs.232119 Hs.85769	ESTs acidic 82 kDa protein mRNA	TM TM	3.6 3.6
65	438279	AA805166	Hs.165165	ESTs, Moderately similar to ALU8_HUMA	TM	3.6
	439453	BE264974	Hs.6566	thyroid hormone receptor interactor 13	AAAAAA	3.6
	441111 451806	AI806867 NM_003729	Hs.126594 Hs.27076	ESTs RNA 3'-terminal phosphate cyclase	· TM TM	3.6 3.6
	409542	AA503020	Hs.36563	ESTs	Ribosomal_S8	3.6
70	425441	AA449644	Hs.193063	Homo saplens cDNA FLJ14201 fis, clone N	Aa_trans	3.6
	428137 433692	AA421792 Al805860	Hs.170999	ESTs ESTs, Weakly similar to neuronal thread pr	AAA TM	3.6 3.6
	438689	AW129261	Hs.208675 Hs.250565	ESTs	TM	3.6
75	443341	AW631480	Hs.8688	ESTs	TM	3.6
75	446261	AA313893	Hs.13399	hypothetical protein FLJ12615 similar to m	ATP-synt_D,PH	3.6
	414343 414812	AL036166 X72755	Hs.75914 Hs.77367	coated vesicle membrane protein monokine induced by gamma interferon	TM SS,IL8	3.5 3.5
	410361	BE391804	Hs.62661	guanylate binding protein 1, Interferon-Indu	· TM	3.5
80	415786	AW419196	Hs.257924	ESTs	TM	3.5
OU	427177 427687	AB006537 AW003867	Hs.173880 Hs.112403	Interleukin 1 receptor accessory protein ESTs	TM,ig 7tm_1	3.5 3.5
	444619	BE538082	Hs.8172	ESTs	TM	3.5
	447336	AW139383	Hs.245437	ESTs	AhpC-TSA	3.5
	412519	AA196241	Hs.73980 .	troponin T1, skeletzl, slow	ТМ	3.5

	418792	AB037805	U= 00/43	134 A 1294 aminin	TM	25
	408031	AA081395	Hs.88442 Hs.42173	KIAA1384 protein Homo sapiens cDNA FLJ10366 fis, clone N	TM	3.5 3.5
	416892	L24498	Hs.80409	growth arrest and DNA-damage-inducible,	TM	3.5
_	418793	AW382987	Hs.88474	prostaglandin-endoperoxide synthase 1 (pro	EGF	3.5
5	448089	A1467945	Hs.173696	ESTs	SS	3.5
	422278	AF072873	Hs.114218	ESTs	TM,Fz,Frizzled	3.5
	442133	AW874138	Hs.129017	ESTs	TM	3.5
	410908	AA121686	Hs.10592	ESTs	GTP_EFTU	3.5
10	452198	A1097560	Hs.61210	ESTS	TM	3.5
10	408730	AV660717	Hs.47144	DKFZP586N0819 protein	pkinase	3.4
	436488 409745	BE620909 AA077391	Hs.261023	hypothetical protein FLJ20958 gb:7B14E12 Chromosome 7 Fetal Brain cD	TM TM	3.4 3.4
	445870	AW410053	Hs.13406	syntaxin 18	TM	3.4
	451743	AW074266	Hs.23071	ESTs	TM	3.4
15	407846	AA426202	Hs.40403	Cbp/p300-interacting transactivator, with G	TM	3.4
	432350	NM_005865	Hs.274407	protease, serine, 16 (thyrnus)	SS	3.4
	412848	AA121514	Hs.70832	ESTs	TM	3.4
	413625	AW451103	Hs.71371	ESTs	filament	3.4
20	417801	AA417383	Hs.82582	integrin, beta-like 1 (with EGF-like repeat d	SS	3.4
20	422972	N59319	Hs.145404	ESTs	TM	3.4
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4; MAP kinas	DSPc,Rhodanese	3.4
	450377	AB033091	Hs.24936	ESTs	TM	3.4
	443475	A1066470	Hs.134482	ESTS	TM objects CDE TE	3.4
25	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	TM.pkise,ig,SRF-TF	3.4
23	409744 422789	AW675258 AK001113	Hs.56265 Hs.120842	Homo sagiens mRNA; cDNA DKFZp586P hypothetical protein FLJ10251	TM TM	3.4 3.4
	404440	#(NOCAT)	NS. 120042	nyponeuca protein PLS (025)	TM,neur_chan	3.4
	417412	X16896	Hs.82112	interleukin 1 receptor, type i	SS,TIR,ig	3.4
	411828	AW161449	Hs.72290	wingless-type MMTV integration site fami	wnt	3.4
30	417177	NM_004458	Hs.81452	fatty-acid-Coenzyme A ligase, long-chain 4	SS	3.4
	421013	M62397	Hs.1345	mutated in colorectal cancers	TM '	3.4
	427072	H38046		gb:yp58c10.r1 Soares fetal liver spleen 1NF	Ribosomal_L22e	3.4
	433703	AA210863	Hs.3532	namo-lika kinase	pkinase	3.4
	434294	AJ271379	Hs.21175	ESTs	TM	3.4
35	444188	Al393165	Hs.19175	ESTs	TM	3.4
	446109	N67953	Hs.145920	ESTs	TM	3.4
	400881			0	Asparaginase_2	3.3
	450236	AW162998	Hs.24684	KIAA1376 protein	TM	3.3
40	418836	AI655499	Hs.161712	ESTs	TM	3.3
40	437951	T34530	Hs.4210	Homo sapiens cDNA FLJ13069 fis, clone N	TM TM	3.3
	446896 430687	T15767 BE274217	Hs.22452 Hs.249247	Homo sapiens cDNA: FLJ21084 fis, clone heterogeneous nuclear protein similar to rat	m	3.3 3.3
	410060	NM_001448	Hs.58367	glypican-4	SS	3.3
	419546	AA244199	113.50507	gb:nc06c05.s1 NCI_CGAP_Pr1 Homo sapi	TM	3.3
45	429609	AF002246	Hs.210863	cell adhesion molecule with homology to L	TM,fn3,ig	3.3
	413289	AA128061	Hs.114992	ESTs	TM	3.3
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	TM	3.3
	401435	#(NOCAT)-		0	TM	3.3
50	420072	AW961196	Hs.207725	EST8	TM	3.3
50	421426	AA291101	Hs.33020	Homo sapiens cDNA FLI20434 fis, clone K	TM	3.3
	425851	NM_001490	Hs.159642	glucosaminyi (N-acetyl) transferase 1, core	SS	3.3
	443295	Al049783	Hs.241284	ESTs	TM	3.2
	453116	AI276680	Hs.146086	ESTs	Ribosomal_L5_C	3.2
55	456546 430016	A1690321	Hs.203845 Hs.227656	ESTs, Weakly similar to TWIK-related acid	TM	3.2
33	418281	NM_004736 U09550	Hs.1154	xenotropic and polytropic retrovirus recepto	TM asp,Glyco_hydro_18	3.2 3.2
	433800	AI034361	Hs.135150	oviductal glycoprotein 1, 120kD (mucin 9, lung type-I cell membrane-associated glyco	TM	3.2
	425159	NM_004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspartat	TM	3.2
	428882	AA436915	Hs.131748	ESTs, Moderately similar to ALU7_HUMA	carb_anhydrase	3.2
60	409533	AW969543	Hs.21291	mitogen-activated protein kinase kinase kin	TM	3.2
	411248	AA551538	Hs.69321	KIAA1359 protein	TM	3.2
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cys-	SS,IL8	3.2
	430259	BE550182	Hs.127826	RalGEF-like protein 3, mouse homolog	TM	3.2
65	414945	BE076358	Hs.77667	lymphocyte antigen 6 complex, locus E	SS	3.2
05	444471	AB020684	Hs.11217	KIAA0877 protein	TM	3.2
	421674 434163	T10707	Hs.296355	neuronal PAS domain protein 2	Ribosomal_L31e	3.2
	434163	AW974720 NM_014918	Hs.25206 Hs.110488	ESTs KIAA0990 protein	TM SS	3.2 3.2
	409589	AW439900	Hs.256914	ESTs .	TM	3.2
70	414147	BE091634	18.200014	gb:lL2-BT0731-240400-069-C03 BT0731	TM	3.2
	414661	T97401	Hs.21929	ESTs	TM	3.2
	437537	AA758974	Hs.121417	ESTs, Weakly similar to unnamed protein p	TM	3.2
	439702	AW085525	Hs.134182	ESTs	A2M	3.1
75	420552	AK000492	Hs.98806	hypothetical protein	TM	3.1
75	441028	AI333660	Hs.17558	ESTs	ICE_p20,CARD	3.1
	425264	AA353953	Hs.20369	ESTs, Weakly similar to gonadotropin indu	TM	3.1
	422109	S73265	Hs.1473	gastrin-releasing peptide	SS,Bombesin	3.1
	441859	AW194364	Hs.128022	ESTs, Weakly similar to FIG1 MOUSE FIG	TM CC Cabrin	3.1
80	415451	H19415 AW444754	Hs.268720	ESTs, Moderately similar to ALU1_HUMA ESTs	SS,Ephrin	3.1
30	447866 419978	NM_001454	Hs.211517 Hs.93974	forkhead box J1	homeobox Fork_head	3.1 3.1
	446219	Al287344	Hs.149827	ESTs	MIP	3.1
	448428	AF282874	Hs.21201	nectin 3; DXFZP56680846 protein	TM,ig	3.1
	407615	AW753085		gb:PM1-CT0247-151299-005-a03 CT0247	TM	3.1
			•	-		

	410518	AW976443	Hs.285655	ESTs	RasGEF,PH,RhoGEF	3.1
	418396	AI765805	Hs.26691	ESTs	TM	3.1
	427855	R61253	Hs.98265	ESTs	TM	3.1
_	429272	W25140	Hs.110667	ESTs	TM	3.1
5	450171	AL133661	Hs.24583	hypothetical protein OKFZp434C0328	TM	3.1
	414774	X02419	Hs.77274	plasminogen activator, urokinase	SS,kringle,trypsin	31
	422363	T55979 AW411096	Hs.115474	replication factor C (activator 1) 3 (38kD)	TM TM	31 31
	420062 428698	AA852773	Hs.94785 Hs.297939	hypothetical protein LOC57163	TM TM	3.1
10	427051	BE178110	Hs.173374	ESTs; Wealdy similar to neogenin (H.sapie ESTs	TM	3.1
10	428242	H55709	Hs.2250	leukemia Inhibitory factor (cholinergic diffe	SS	3.1
	452906	BE207039	Hs.75621	serine (or cysteine) proteinase inhibitor, cla	TM	3.1
	429419	AB023226	Hs.202276	KIAA1009 protein	TM	3.1
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerevisia	TM	3.1
15	406137	#(NOCAT)		0	TM	3.1
	424800	AL035588	Hs.153203	MyoD family inhibitor	TM	3.1
	410252	AW821182	Hs.61418	microfibrillar-associated protein 1	ŢΜ	3.1
	420392	Al242930	Hs.97393	KIAA0328 protein	SS	3.1
20	423629	AW021173	Hs.18612	Homo sapiens cDNA: FLJ21909 fis, clone	voltage_CLC,CBS	3.1
20	429334	D63078	Hs.186180	Homo sapiens cDNA: FLJ23038 fis, clone	Glyco_hydro_2	3.1
	449802	AW901804	Hs.23984	hypothetical protein FLJ20147	TM CC Dealidean CO	3.1
	450506	NM_004460	Hs.418	fibroblast activation protein; alpha	SS,Peptidase_S9 TM	3.0 3.0
	433849 411984	BE465884 NM_005419	Hs.280728 Hs.72988	ESTs signal transducer and activator of transcript	SH2,STAT	3.0
25	422530	AW972300	Hs.118110	bone marrow stromal cell antigen 2	TM	3.0
23	422128	AW881145	110.110110	gb:QV0-OT0033-010400-182-807 OT0033	TM	3.0
	409757	NM_001898	Hs.123114	cystalin SN	SS,cystatin	3.0
	418727	AA227609	Hs.94834	ESTs	TM	3.0
	422244	Y08890	Hs.113503	karyopherin (Importin) beta 3	TM	3.0
30	456844	AI264155	Hs.152981	CDP-diacylglycerol synthase (phosphatidat	TM	3.0
50	432358	AI093491	Hs.72830	ESTs	SS	3.0
	416896	Al752862	Hs.5638	KIAA1572 protein	втв	3.0
	447312	AI434345	Hs.36908	activating transcription factor 1	TM	3.0
	445021	AK002025	Hs.12251	Homo sapiens cDNA FLJ11163 fis, clone P	TM	3.0
35	422611	AA158177	Hs.118722	fucosyltransferase 8 (alpha (1,6) fucosyltran	SS	3.0
	453597	BE281130	Hs.33713	myo-inositol 1-phosphate synthase A1	ŤM	3.0
	401197	#(NOCAT)		0	arf,Ets	3.0
	403000	BE247275	Hs.151787	U5 snRNP-specific protein, 116 kD	TM	3.0
4.0	410008	AA079552		gb:zm20h12.s1 Stratagene pancreas (93720	TM,FG-GAP	3.0
40	413268	AL039079	Hs.75256	regulator of G-protein signalling 1	RGS	3.0
	414080	AA135257	Hs.47783	ESTs, Weakly similar to T12540 hypotheti	TM	3.0
	426882	AA393108	Hs.97365	ESTs	TM	3.0
	427651	AW405731	Hs.18498	Homo sapiens cDNA FLJ12277 fis, clone M	TM	3.0
15	439444	A1277652	Hs.54578	ESTs	TM	3.0
45	433001	AF217513	Hs.279905	done HQ0310 PRO0310p1	TM	3.0
	444895	AI674383	Hs.301192	EST cluster (not in UniGene)	TMASC	3.0
	441962	AW972542	Hs.289008	Horno sapiens cDNA: FLJ21814 fis, clone	TM	3.0
	414725	AA769791	Hs.120355	Homo sapiens cDNA FLJ13148 fis, clone N	TM,7tm_1	3.0
50	434241	AF119913	Hs.283607	hypothetical protein PRO3077	SS	3.0
50	424962	NM_012288	Hs.153954	TRAM-like protein	TM	3.0 3.0
	411987 421977	AA375975	Hs.183380	ESTs, Moderately similar to ALU7_HUMA	TM TM	3.0
	436481	W94197 AA379597	Hs.110165 Hs.5199	ribosomal protein L26 homolog HSPC150 protein similar to ubiquitin-conju	TM	3.0
	407872	AB039723	Hs.40735	frizzled (Drosophila) homolog 3	TM,7tm_2,Fz,Frizzled	3.0
55	442577	AA292998	Hs.163900	ESTs	TM	3.0
55	416120	H46739	113.100300	gb:yo14h02.s1 Soares adult brain N2b5HB5	TM	3.0
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	TM,Peptidase_M10,7tm_1	3.0
	414664	AA587775	Hs.66295	Homo sapiens HSPC311 mRNA, partial cd	TM	3.0
	457590	Al612809	Hs.5378	spondin 1, (f-spondin) extracellular matrix	SS	3.0
60	418946	AI798841	Hs.132103	ESTs	TM	3.0
	457940	AL360159	Hs.30445	Homo sepiens mRNA full length insert cON	TM,SPRY,7tm_1	3.0
				•	· · ·	
	TABLE 18	īB:				
	Pkey: Un	ique Eos probeset	l identifier numb	er		
65	CAT num	ber: Gene duster	number			
	Accession	n: Genbank acces	sion numbers			
	Pkey	CAT Number	Accession			
	407615	1005404_1	AW753085	AW753082 AW054744 AW753107 AW753087		
70	409073	109851_1		AA063018 Al444822		
	409745	115237_1		Al347618 Al361453 Al088754 AW207491 AW9609	112 AA921874 AA286833 AA1507	22 BE152353 AW188822 BE152450
	410008	116812_1		BE142525 BE142527		
	414147	1421271	BE091634			
75	414315	143512_1		494098 F13654 AA494040 AA143127		
75	416120	1571266_1		1513 H19779		
	419311	183793_1		AW974261 AA236240 Al077451 AA631399 AW97	4262	
	419546	185766_1		AA244272 H57440		
	422128	211994_1		AA490718 M85637 AA304575 T06067 AA331991		
80	427072	274884_1		9645 AA397968 H38047		
οU	428679	294049_1	AA431765			
	438993	467651_1 711623_1		AA834879 Al926361		
	447197	711623_1	K30075 Al-	366546 R36167		

PCT/US02/19297 WO 02/102235

TABLE 15C:

TABLE 15C:
Pkey: Unique number corresponding to an Eos probeset
Pkey: Unique number c

	Pkey	Ref	Strand	Nt_position
	400881	2842777	Minus	91446-91603,92123-92265
10	401197	9719705	Plus	176341-176452
	401435	8217934	Minus '	54508-55233
	404440	7528051	Plus	80430-81581
	404939	6862697	Plus	175318-175476
	404996	6007890	Ptus	37999-38145,38652-38998,39727-39872,40557-40674,42351-42450
15	405547	1054740	Ptus	124361-124520,124914-125050
	406137	9166422	Minus	30487-31058
	406367	9256126	Minus	58313-58489
	406400	9256298	Plus	1553-1712,1878-2140,4252-4385,5922-6077

Table 16A lists about 92 genes up-regulated in mucinous-type ovarian cancer compared to normal adult tissues. These were selected as for Table 14A, except that the "average" ovarian cancer level was set to the 75th percentile amongst various mucinous-type ovarian cancers, and the tumor/normal tissue ratio was greater than or equal to 2.5.

TABLE 16A: ABOUT 92 UP-REGULATED GENES, MUCINOUS OVARIAN CANCER VERSUS NORMAL ADULT TISSUES Pkey: Primekey
Ex. Accn: Exemplar Accession
UG ID: UniGene ID

25 .

20

Title: UniGene title
Prot. Dom.: Predicted protein domain structure

30 ratio: ratio tumor vs. normal tissues

	Pkey	Ex. Acon	UGID	Title	Prot. Dom.	ratio
	430691	C14187	Hs.103538	ESTs		34.9
25	432938	T27013	Hs.3132	steroidogenic acute regulatory protein	START	28.0
35	418007	M13509	Hs.83169	Matrix metalloprotease 1 (interstitial collag	SS,Peptidase_M10	22.3
	451181	AI796330	Hs.207461	ESTs		10.8
	452838	U65011	Hs.30743	Preferentially expressed antigen in malanom		10.0
	407638	AJ404672	Hs.288693	EST		9.3
40	450159	AI702416	Hs.200771	ESTs, Weakly similar to CAN2_HUMAN		9.2
40	426890	AA393167	Hs.41294	ESTs		9.1
	421155	H87879	Hs.102267-	lysyl oxidase	SS,Lysyl_oxidase	8.9
	437099	N77793	Hs.48659	ESTs, Highly similar to LMA1_HUMAN L	laminin_EGF	7.6
	453866	AW291498	Hs.250557	ESTs		7.6
15	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-rel		7.4
45	418738	AW388633	Hs.6682	solute carrier family 7, member 11		7.2
	431956	AK002032	Hs.272245	Homo sepiens cDNA FLJ11170 fis, clone P	RA	7.0
	449579	AW207260	Hs.134014	prostate cancer associated protein 6		6.7
	424586	NM_003401	Hs.150930	X-ray repair complementing defective repa		6.7
50	445891	AW391342	Hs.199460	ESTs		6.2
30	424717	H03754	Hs.152213	wingless-type MMTV integration site fami	wnt	6.1
	452705	H49805	Hs.246005	ESTs		6.1
	421285	NM_000102		cytochrome P450, subfamily XVII (sterold	TM,p450	5.5
	408562	A1436323	Hs.31141	Horno sapiens mRNA for KIAA1568 prote		5.3
55	420159	AI572490	Hs.99785	ESTs		5.3
33	451105	A1761324		gb:wi60b11.x1 NCI_CGAP_Co16 Homo s		5.2
	409049	Al423132	Hs.146343	ESTs		5.0
	448674	W31178	Hs.154140	ESTs	TM	5.0
	423811	AW299598	Hs.50895	homeo box C4		4.9
60	427469	AA403084	Hs.269347	ESTs	51)	4.9
UU	447033	Al357412	Hs.157601	EST - not in UniGene	PH	4.9
	424433	H04607	Hs.9218	ESTs	704	4.9
	448811	AI590371	Hs.174759	ESTs	TM	4.8
	444330	AI597655	Hs.49265	ESTs		4.8 4.7
65	409041	AB033025	Hs.50081	KIAA1199 protein		
05	418735	N48769	Hs.44609	ESTs	KH-domain	4.5 4.5
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3		4.5 4.4
	430073	U86136	Hs.232070	telomerase-associated protein 1	WD40	
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-0-sulfotran	SS	4.4
70	422260	AA315993	Hs.105484	ESTs; Wealty similar to LITHOSTATHIN	CD	4.4
70	421110	AJ250717	Hs.1355	cathepsin E	SS,asp	4.3
	445676	A1247763	Hs.16928	ESTS	Falmana.	4.2 3.8
	430704	AW813091	11-440000	gb:RC3-ST0186-240400-111-d07 ST0186	Epimerase	
	414569	AF109298	Hs.118258	Prostate cancer associated protein 1	TM	3.8
75	438078	AI016377	Hs.131693	ESTs		3.7
13	434032	AW009951	Hs.206892	ESTs	71 4	3.7
	445657	AW612141	Hs.279575	ESTs	7tm_1	3.6
	439759	AL359055	Hs.67709	Homo sapiens mRNA full length insert cDN		3.5
	455666	BE065813	11- 477401	gb:RC2-BT0318-110100-012-a08 BT0318		3.5
80	448844	AI581519	Hs.177164	ESTs	ee.	3.5
ου	449048	Z45051	Hs.22920	similar to \$68401 (cattle) glucose induced g	SS	3.5
	438018	AK001160 AW892676	Hs.5999	hypothetical protein FLI10298	TM ·	3.4
	458123		Un 373039	gb:CM3-NN0004-280300-131-c12 NN0004		3.4
	407385	AA610150	Hs.272072	ESTs, Moderately similar to ALU7_HUMA	CC LIDY	3.4
	424894	H83520	Hs.153678	reproduction 8	SS,UBX	3.3

PCT/US02/19297 WO 02/102235

						••
	424639 414083	Al917494 AL121282	Hs.131329 Hs.257786	ESTs ESTs		3.3 3.2
	426471	M22440	Hs.170009	transforming growth factor, alpha	SS,EGF	3.2
5	428927 406129	AA441837 #(NOCAT)	Hs.90250	ESTs 0	TM,cNMP_binding	3.1 3.1
,	452699	AW295390	Hs.213062	ESTs	THISTER _CHANG	3.1
	425842	A1587490	Hs.159623	NK-2 (Drosophila) homolog B	homeobox	3.1 3.1
	428976 436396	AL037824 A1683487	Hs.194695 Hs.299112	ras homolog gene family, member I Homo sapiens cDNA FLJ11441 fis, clone H	ras wnt	3.0
10	454077	AC005952	Hs.37062	Insulin-like 3 (Leydig cell)	SS,Insulin,pkinase	3.0
	404253	#(NOCAT)	11. 400400	0	histone G9a,PHD	2.9 2.9
	452461 429597	N78223 NM 003816	Hs.108106	transcription factor a disintegrin and metalloproteinase domain	TM	2.9
	413289	AA128061	Hs.114992	ESTs		2.9
15	429703	T93154	Hs.28705	ESTs		2.9 2.8
	407829 424796	AA045084 AW298244	Hs.29725 Hs.293507	Homo sapiens cDNA FLJ13197 fis, clone N ESTs		2.8
•	424086	Al351010	Hs.102267	lysyl oxidase	Lysyl_oxidase	2.8
20	408427	AW194270	Hs.177236	ESTs		2.7 2.7
20	450375 446999	AA009647 AA151520	Hs.8850 Hs.279525	a disintegrin and metalloproteinase domain hypothetical protein PRO2605		2.7
	428819	AL135623	Hs.193914	KIAA0575 gene product		2.7
	422956	BE545072	Hs.122579	ESTs		2.7 2.7
25	428949 426300	AA442153 U15979	Hs.104744 Hs.169228	ESTs, Wealdy similar to AF208855 1 BM-0 delta-like homolog (Drosophila)	TM,EGF	26
	420380	AA640891	Hs.102406	ESTs		2.6
	428651	AF196478 AW291587	Hs.188401 Hs.82733	annexin A10 Nidogen 2	TM,annexin EGF,kil_recept_b	2.6 2.6
	417849 453700	AB009426	Hs.560	apolipoprotein B mRNA editing enzyme, ca	TM .	2.6
30	417975	AA641836	Hs.30085	Homo saplens cDNA: FLJ23186 fis, clone		2.6
	448756	Al739241 R62424	Hs.171480 Hs.126059	ESTs ESTs		2.6 2.5
	425087 444153	AK001610	Hs.10414	hypothetical protein FLJ10748	Kelch	2.5
2.5	443211	Al128388	Hs.143655	ESTs		2.5
35	415263 432867	AA948033 AW016936	Hs.130853 Hs.233364	ESTs ESTs	histone GSHPx	2.5 2.5
	438639	A1278360	Hs.31409	ESTs	00.0 A	2.5
	455386	AW935875		gb:QV3-DT0019-120100-055-d06 DT0019	711051	2.5
40	419092 452055	J05581 AJ377431	Hs.89603 Hs.293772	mucin 1, transmembrane ESTs	TM,SEA	2.5 2.5
45	CAT numb Accession	que Eos probes er: Gene cluste : Genbank acce	er number ession number			
50	Pkey 430704 451105 455386 455666 458123	322217_1 859083_1	AI761324 A AW935875 I BE065813 B	AW206655 AA484440 W880941 AW880937 BE069116 BE160251 3E065788 BE065889 BE065832 AA853877 D44747		
55	TABLE 16 Pkey: Uni	aue aumher cor	responding to	an Eos probeset	(Dunbary Lab of Forfare by 1)	he multipolitical and the DNA according of
	hur Strand: In	nan chromosom idicates DNA str	ne 22" Dunhan rand from whic	ibers in this column are Genbank Identifier (GI) n n, et al. (1999) <u>Nature</u> 402:489-495 h exons were predicted ans of predicted exons	unidars. Odinarri, et al. 161615 D u	He provided the provided of
60		II. IIIOMEROS IIO	acoudo poolo	or products distrib		
	Pkey	Ref	Strand	Nt_position		
	404253 406129	9367202 9160131	Minus Plus	55675-56055 2567-3056		
	100120	0.00.0.				•
65	Table 174	lists should 102		ulated in endometrioid-type ovarian cancer compa	read to normal study liceups. These	vere selected as for Table 14A except that the
	average"	ovarian cancer	level was set i	to the 75th percentile amonost various endometri	oid-type ovarian cancers, and the turn	nor/normal tissue ratio was greater than or equal to
	2.5.				,	•
70	TABLE 43	A. ADOUT 192	LID DECTIL AT	TED GENES, ENDOMETRIOID OVARIAN CANC	ER VERSIES NORMAL ADULT TISS	HIES
70	Pkey: Pri		UF-REGULA	ED GENES, ENDOMETRIOID OFFICE CAND	CIT VEROUS HOTHING ADOLT 1100	
		Exemplar Acce	ession			
	UGID: U Title: Uni	niGene ID Gene title				
75		.: Predicted pro	otein domains			
•		o tumor vs. nom				
	Pkey	Ex. Acon	UGID	Tille	Prot. Dam.	ratio
00	452838	U65011	Hs.30743	Preferentially expressed antigen in mel		38.9
80	435094 428153	AI560129 AW513143	Hs.277523 Hs.98367	EST hypothetical protein FLJ22252 sImilar t	n SR	28.8 24.1
	428187	AI687303	Hs.285529	ESTs		23.9
	449034	AI624049	7 Un 94004	gbts41a09.x1 NCI_CGAP_Ut1 Home:	sapi TM,Fz,Frizzled	19.9 15.7
	453102	MW_00/19	7 Hs.31664	frizzled (Drosophila) homolog 10		to.r
				2	12	

	412925		Hs.179243	ESTs		15.7
	438817		Hs.163242	ESTs	~.	13.6
	447033	AI357412	Hs.157601	EST - not in UniGene	PH	13.5 13.1
5	433222 422956		Hs.238415	ESTs, Moderately similar to ALU8_HUMA ESTs		12.9
,	450451		Hs.122579 Hs.202072	EST8		11.9
	453964	AIS61486	Hs.12744	ESTs	homeobox	11.5
	442438	AA995998	18.12141	gb:os26b03.s1 NCI_CGAP_Kld5 Homo sa		11.4
	431989		Hs.291069	ESTs	SS	10.3
10	413623	AA825721	Hs.246973	ESTs		9.7
	440901	AA909358	Hs.128612	ESTs		9.6
	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	KH-domain	9.6
	421478	AI683243	Hs.97258	ESTs .		9.3
1.5	448706	AW291095	Hs.21814	class II cytokine receptor ZCYTOR7	SS,Tissue_fac	9.2
15	410566	AA373210	Hs.43047	Homo saplens cDNA FLJ13585 fis, clone P		8.7
	438993	AA828995	11. 470000	Integrin; beta 8	SS,integrin_B	8.7
	427121	AI272815	Hs.173656	KIAA0941 protein	C2,	8.4 8.1
	420610	AI683183	Hs.99348	distal-less homeo box 5	homeobox	8.0
20	427356 446577	AW023482 AB040933	Hs.97849 Hs.15420	ESTs KIAA1500 protein		8.0
20	431118	BE264901	Hs.250502	carbonic anhydrase VIII	carb_enhydrase	7.5
	448112		Hs.301018	ESTs, Weakly similar to ALUB_HUMAN	cao_caryarcoc	6.9
	451106	BE382701	Hs.25960	N-myc	HLH,Myc_N_term	6.6
	449433	AI672096	Hs.9012	ESTs .	1.5. 1) 0_1	6.3
25	453922	AF053306	Hs.36708	budding uninhibited by benzlmidazoles 1 (y		6.3
	434636	AA083764	Hs.241334	ESTs		6.1
	453688	AW381270	Hs.194110	Homo sapiens mRNA; cDNA DKFZp434C		5.9
	422805	AA436989	Hs.121017	H2A histone family; member A	histone	5.8
	400292	AA250737	Hs.72472	BMPR-lb: bone morphogenetic protein rec		5.7
30	443179	AI928402	Hs.6933	Homo sapiens cDNA FLJ 12684 fis, clone N		5.6
	418134	AA397769	Hs.86617	ESTs		5.5
	452249	BE394412	Hs.61252	ESTs	homeobox	5.5
	409269	AA576953	Hs.22972	Homo sapiens cDNA FLJ13352 fis, clone O	TM,UPF0016	5.5
35	413335	AI613318	Hs.48442	ESTs	D4V	5.4
33	441081	AI584019	Hs.169006	ESTs, Moderately similar to plakophilin 2b	PAX	5.4 5.3
	428029	H05840	Hs.293071	ESTs	p450	5.3
	419183 409094	U60669 AW337237	Hs.89663	cytochrome P450, subfamily XXIV (vitami gb:xw82f01.x1 NCI_CGAP_Pan1 Homo sa	p450	5.2
	432938	T27013	Hs.3132	steroldogenic acute regulatory protein	START	5.1
40	410102	AW248508	Hs.279727	ESTs;	SS	5.1
	447835	AW591623	Hs.164129	ESTs		5.1
	438202	AW169287	Hs.22588	ESTs		5.0
	423992	AW898292	Hs.137206	Homo sapiens mRNA; cDNA DKFZp564H		5.0
	425905	AB032959	Hs.161700	KIAA1133 protein	TM	5.0
45	452461	N78223	Hs.108106	transcription factor	G9a,PHD	4.9
	430691	C14187	Hs.103538	ESTs		4.8
	441675	Al914329	Hs.5461	ESTs		4.7
	425695	NM_005401		protein tyrosine phosphatase, non-receptor	Band_41,Y_phosphalase	4.6
50	440340	AW895503	Hs.125276	ESTs	The	4.5
50	428579	NM_005756		G protein-coupled receptor 64	TM PH	4.5 4.4
	444783 451459	AK001468 Al797515	Hs.62180 Hs.270560	ESTS ESTS Madacataly similar to ALLIZ HILMA	гп	4.4
	413395	A1266507	Hs.145689	ESTs, Moderately similar to ALU7_HUMA ESTs		4.3
	415263	AA948033	Hs.130853	ESTs	histone	4.2
55	413988	M81883	Hs.75668	glutamate decarboxylase 1 (brain, 67kD)	pyridoxal_deC	4.2
-	452030	AL137578	Hs.27607	Homo sapiens mRNA; cDNA DKFZp564N	M	4.1
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069		4.1
	446431	R45652	Hs.153486	ESTs		4.1
	434891	AA814309	Hs.123583	ESTs		4.0
60	415139	AW975942	Hs.48524	ESTs	G-patch	4.0
	453197	AI916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN A		4.0
	447112	H17800	Hs.7154	ESTs	****	3.9
	420633	NM_014581		odorant-binding protein 28	TM, lipocalin	3.9
65	459574	Al741122	Hs.101810	Homo sapiens cDNA FLJ14232 fis, clone N	Kurib BOTI C	3.9
UJ	415138	C18356	Hs.78045	tissue factor pathway Inhibitor 2 TFP12	Kunitz_BPTI,G-gamma	3.9 3.7
	414083 442006	AL121282 AW975183	Hs.257786 Hs.292663	ESTs ESTs		3.7
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblastoma	Thymosin	3.7
	424906	AI566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein,	111/110021	3.7
70	456662	NM_002448		msh (Drosophila) homeo box homolog 1 (fo	homeobox	3.7
. •	429125	AA446854	Hs.271004	ESTs		3.6
	435538	AB011540	Hs.4930	low density lipoprotein receptor-related pro		3.6
	458861	AI630223		gb:ad06g08.r1 Proliferating Erythrold Cells	PHD	3.5
	418506	AA084248	Hs.85339	G protein-coupled receptor 39		3.5
75	423123	NM_012247	Hs.124027	SELENOPHOSPHATE SYNTHETASE; H	AIRS,AIRS	3.4
	437960	A1669586	Hs.222194	ESTs .		3.4
	400298	AA032279	Hs.61635	STEAP1	TM	3.4
	407162	N63855	Hs.142634	zinc finger protein		3.4
80	408621	A1970872 A1452457	Hs.46638	chromosome 11 open reading frame 8; feta ESTs		3.3 3.3
30	445829 450262	AW409872	Hs.145526 Hs.271166	ESTs, Moderately similar to ALU7_HUMA		3.3
	457979	AA776655	Hs.270942	ESTS	TM	3.3
	402606	#(NOCAT)				3.2
	426471	M22440	Hs.170009 .	transforming growth factor, alpha	SS,EGF	3.2
	-					

	430294	AI538226	Hs.135184	ESTs	polyprenyl_synt	3.2
	448027	Al458437	Hs.177224	ESTs		3.2
	432619	AW291722	Hs.278526	related to the N terminus of tre	TBC	3.2
-	413627	BE182082	Hs.246973	ESTs		3.2
5	441377	BE218239	Hs.202656	ESTs		3.2
	441085	AW136551	Hs.181245	Homo sapiens cONA FLJ12532 fis, clone N		3.2
	433527	AW235613	Hs.133020	ESTs		3.2
	450171	AL133661	Hs.24583	hypothetical protein DKFZp434C0328	TM	3.2
10	419807	R77402		gb:yl75f11.s1 Soares placenta Nb2HP Hom		3.1
10	418867	D31771	Hs.89404	msh (Drosophila) homeo box homolog 2	homeobox	3.1
	419335	AW960146	Hs.284137	Homo sapiens cDNA FLJ12888 fis, clone N	- (001)0	3.1
	450480	X82125	Hs.25040	zinc finger protein 239	zf-C2H2	3.1
	420149	AA255920	Hs.88095	ESTs		3.1
15	413415	AAB29282 AW979074	Hs.34969	ESTs gb:EST391184 MAGE resequences, MAGP	•	3.1 3.1
IJ	438966 431041	AA490967	Hs.105276	ESTs	Oxysterol_BP	3.1
	415245	N59650	Hs.27252	ESTS	Oxysteru_or	3.0
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkinesin6	kinesin	3.0
	431707	R21326	Hs.267905	hypothetical protein FLJ10422	NATIOON 1	3.0
20	448816	AB033052	Hs.22151	KIAA1226 protein		3.0
	447866	AW444754	Hs.211517	ESTs	homeobox	3.0
	450221	AA328102	Hs.24641	cytoskelaton associated protein 2		3.0
	406997	U07807	Hs.194762	Human metaliothionein IV (MTIV) gene, c		3.0
~~	433426	H69125	Hs.133525	ESTs	TM	3.0
25	420440	NM_002407	Hs.97644	mammaglobin 2	Uteroglobin	3.0
	420181	Al380089	Hs.158951	ESTs		3.0
	458627	AW088642	Hs.97984	ESTs; Weakly similar to WASP-family pro		2.9
	452055	Al377431	Hs.293772	ESTs	****	2.9
20	429663	M68874	Hs.211587	Human phosphatidylcholine 2-acylhydrolas	C2,PLA2_B	2.9
30	415125	AF061198	Hs.301941	Homo sapiens mRNA for norepinephrine tr	TM,SNF	2.9
	412708	R26830	Hs.106137	ESTs	TM,7tm_2,Rho_GDI	2.9
	451389	N73222	Hs.21738	KIAA1008 protein	NIV DCC	2.9
	423337	NM_004655		axin 2 (conductin, axil)	DIX,RGS	2.9 2.9
35	435185	AA669490 AI948688	Hs.289109	dimethylarginine dimethylaminohydrolase		2.9
55	428054 448243	AW369771	Hs.266619 Hs.77496	ESTs ESTs		2.9
	425723	NM_014420		dickkopf (Xenopus laevis) homolog 4	SS	2.9
	432415	T16971	Hs.289014	ESTs	00	2.9
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin)		2.9
40	400195	000012	170.77207	0		2.9
	449874	AA135688	Hs.10083	ESTs		2.8
	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	Hydrolase	2.8
	428093	AW594506	Hs.104830	ESTs	·	2.8
4.5	409640	U78722	Hs.55481	zinc finger protein 165	TM,zf-C2H2,SCAN	2.8
45	424169	AA336399	Hs.153797	ESTs	mito_carr	2.8
	409638	AW450420	Hs.21335	ESTs		2.8
	440048	AA897461	Hs.158469	ESTs, Weakly similar to envelope protein (2.8
	426890	AA393167	Hs.41294	ESTs		2.8
50	452771	T05477		gb:EST03366 Fetal brain, Stratagene (cat93		2.8
30	422505	AL120862	Hs.124165	ESTs; (HSA)PAP protein (programmed ce	4.001104	2.8
	416624	H69044	11- 42400	gb:yr77h05.s1 Soares fetal liver spleen 1NF	zf-C3HC4	2.8
	445870	AW410053	Hs.13406	syntaxin 18	TM	2.7 2.7
	441962 447342	AW972542 AI199268	Hs.289008 Hs.19322	Homo sapiens cDNA: FLJ21814 fis, clone ESTs; Weakly similar to IIII ALU SUBFAM		2.7
55	421247	BE391727	Hs.102910	general transcription factor (IH, polypeptid		2.7
-	419752	AA249573	Hs.152618	ESTs		2.7
	410658	AW105231	Hs.192035	ESTs		27
	437698	R61837	Hs.7990	ESTs		2.7
	458027	L49054	Hs.85195	ESTs, Highly similar to t(3;5)(q25.1;p34) f		2.7
60	438689	AW129261	Hs.250565	ESTs	•	2.7
	439876	AI376278	Hs.100921	ESTs, Weakly similar to ALU7_HUMAN A	SCAN	2.7
	428479	Y00272	Hs.184572	cell division cycle 2, G1 to S and G2 to M	pkinase	2.7
	436406	AW105723	Hs.125346	ESTs		2.7
<i>C</i> E	437938	A1950087		ESTs; Weakly similar to Gag-Pol polyprote		2.7
65	419917	AA320068	Hs.93701 .	Homo sapiens mRNA; cDNA DKFZp434E		2.7
	434836	AA651629	Hs.118088	ESTs		2.7
	448404	BE089973	11. 40000	gb:RC6-BT0709-310300-021-G07 BT0709	MID 40	2.7
	444078	BE246919	Hs.10290	US snRNP-specific 40 kDa protein (hPrp8-	WD40	2.7
70	409757		Hs.123114	cystatin SN	SS,cystatin	2.6
, 0	443775 427961	AF291664	Hs.204732	matrix metalloproteinase 26	TM,Peptidase_M10,7tm_1	2.6 2.6
	426668	AW293165 AW136934	Hs.143134 Hs.97162	ESTs ESTs		2.6
	420000 424717	H03754	Hs.152213	wingless-type MMTV Integration site fami	wnt	2.6
	434669	AF151534	Hs.92023	core histone macroH2A2.2	histone,A1pp,DUF27	2.6
75	417389	BE260964	Hs.82045	Midkine (neurite growth-promoting factor 2	SS,TM,PTN_MK	2.6
	451009	AA013140	Hs.115707	ESTs	==1- mbr	2.6
	429774	AI522215	Hs.50883	ESTs	pkinase	2.6
	439951	AI347067	Hs.124636	ESTs	ŤМ	2.6
00	417576	AA339449	Hs.82285	phosphoribosylgtycinamide formyltransfera	AIRS,formyl_transf	2.5
80	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	WD40	25
	420900	AL045633	Hs.44269	ESTs	Ald_Xan_dh_C	2.5
	457030	Al301740	Hs.173381	dihydropyrimidinase-like 2	Dihydroorolase	2.5
	459583	AI907673		gb:IL-BT152-080399-004 BT152 Homo sa		2.5
	440870	A1687264	Hs.150539 .	Homo saplens cDNA FLJ13793 fis, clone T	PAX	2.5

	446693 407289	AW750373 AA135159	Hs.42315 Hs.203349	Homo sapiens cDNA FLJ 13036 fis, clone N Homo sapiens cDNA FLJ 12149 fis, clone M	TM	2.5 2.5
	400882		13.200	0		2.5
5	431322 424081	AW970622 NM_006413	Hs.139120	gb:EST382704 MAGE resequences, MAGK ribonuclease P (30kD)		2.5 2.5
	451996	AW514021		ESTs		2.5
	403381 419488	#(NOCAT) AA316241	Hs.90691	0 nucleophosmin/nucleoplasmin 3	SS	25 25
10	418882	NM_004996		ATP-binding cassette, sub-family C (CFTR	TM,ABC_membrane	2.5
10	TABLE 178:					
		e Eos probese : Gene duster	t identifier numl	ber		
1.5		Senbank acces				
15	Pkey	CAT Number	Accession			
	409094	1099611_1	AW337237 AV	V861642 AW861655 AW858008 AW857990 AW85800	07	
	416624 419807	1604694_1 188252_1		57 H75691 T50292 2462 AA250988 R06794		
20	431322	331543_1	AW970622 AA	A503009 AA502998 AA502989 AA502805 T92188	0004 472 \$ 100007 \$184074672 007070 18404	NCO A1400C7C74 A A 000CC00 A 40C407C
	437938	44573_2		1208 R97040 N36809 Al308119 AW967677 N35320 A 20532 W87891 T85904 U71456 T82391 BE328571 T7		
			AA927794 AIS	560251 AW874068 AL134043 AW235363 AA663345 A V102898 A1872193 A1763273 AW173586 AW150329 A	\W008282 AA488964 AA283144 A1890387	AI950344 AI741346 AI689062
25				.856975 AW505512 Al961530 AW629970 BE612881		
				\251669 AA251874 AI819225 AW205862 AI683338 A .969759 N75628 N22388 H84729 H60052 T92487 AI0		
			H83488 W371	181 W78802 R66056 Al002839 R67840 AA300207 AV		71010071000271001203700001
30	438966 438993	467436_1 ⁻ 467651_1		A834841 AA828650 .834879 Al926361		
	442438	542469_1	AA995998 AI	916584 R61781 T77332 F07756 F08149 F07647		
	448404 449034	761515_1 794817_1		498612 AW805032 117770 Al858360		
35	452771	930983_1	T05477 T078			
33	458861	798085_1	Al630223 Al6	30470		
	TABLE 17C:		esponding to a	r Fos ambeset		
40	Ref: Sequer	ice source. Th	ne 7 digit numb	ers in this column are Genbank Identifier (GI) numbers	. "Dunham I, et al." refers to the publication	n entitled "The DNA sequence of
40				et al. (1999) <u>Nature</u> 402:489-495 exons were predicted		
				of predicted exons		
	Pkey	Ref	Strand	Nt_position		
45	400882 402606	2842777 9909429	Minus Minus	110431-110708 81747-82094		
	403381	9438267	Minus	26009-26178		
50				in ovarian cancer compared to normal adult tissues the		
	59680 probe	sets on the Af	fymetrb/Eos Hu	otein products, in combination or alone, are ideal cand i03 GeneChip array such that the ratio of "average" ov	arian cancer to "average" normal adult tisso	ues was greater than or equal to 2.4,
	and that are	likely to encod	e secreted or e	xtracellularly-shed proteins. The "average" ovarian ca ue level was set to the 90th percentile amongst various	ncer level was set to the 90th percentile an	nongst various ovarian cancer
55	non-specific	hybridization,	the 15th percer	itile vatue amongst various 149 non-malignant tissues	was subtracted from both the numerator an	d the denominator before the ratio
	was evaluate	ed.				
			-REGULATED	GENES ENCODING SECRETED PROTEINS, OVAR	IAN CANCER VERSUS NORMAL ADULT	TISSUES
60	Pkey: Prime Ex. Accn: E	ekey xemplar Acces	sion			
	UGID: Unio					
	Title: UniGe ratio: ratio to	ne uue umor vs. norm	al tissues			
65	Pkey	Ex. Acon	UG ID	Title	ratio	
00	428579	NM_005756	Hs.184942	G protein-coupled receptor 64	30.5	
		APR11270E	Hs.5378	spondin 1, (f-spondin) extracellular mat		
	436982	AB018305 D31152			29.4 27.0	
70	436982 427585 423739	D31152 AA398155	Hs.179729 Hs.97600	collagen; type X; alpha 1 (Schmid metaph ESTs	27.0 22.7	
70	436982 427585	D31152	Hs.179729	collagen; type X; alpha 1 (Schmid metaph	27.0	
70	436982 427585 423739 418007 438993 428664	D31152 AA398155 M13509 M73780 AK001666	Hs.179729 Hs.97600 Hs.83169 Hs.52620 Hs.189095	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metalloprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like	27.0 22.7 20.6 16.7 16.5	
	436982 427585 423739 418007 438993 428664 439820 400289	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820	Hs.179729 Hs.97600 Hs.83169 Hs.52620 Hs.189095 Hs.283853 Hs.2258	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Homo saplens mRNA full length insert cDN Matrix Metalloproteinase 10 (Stromolysin	27.0 22.7 20.6 16.7 16.5 16.5 16.2	
70 75	436982 427585 423739 418007 438993 428664 439820 400289 421155	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879	Hs.179729 Hs.97600 Hs.83169 Hs.52620 Hs.189095 Hs.283853 Hs.2258 Hs.102267	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (intersitial c Integrin; beta 8 similar to SALL1 (sat (Drosophila)-like Horno saptens mRNA full length insert cDN Matrix Metallioproteinase 10 (Stromolysin lysyl oxidase	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1	
	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109	Hs.179729 Hs.97600 Hs.83169 Hs.52620 Hs.189095 Hs.283853 Hs.2258 Hs.102267 Hs.291069 Hs.129327	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metalloprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Homo sapiens mRNA full length insert cDN Matrix Metalloproteinase 10 (Stromotysin lysyl oxidase ESTs ESTs	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1 15.9	
75	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635 424581	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109 M62062	Hs.179729 Hs.97600 Hs.83169 Hs.52620 Hs.189095 Hs.283853 Hs.2258 Hs.102267 Hs.291069 Hs.129327 Hs.150917	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c Integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Homo sapiens mRNA full length insert cDN Matrix Metalloproteinase 10 (Stromolysin lysyl oxidase ESTs ESTs catenin (cadherin-associated protein), a	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1 15.9	
	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635 424581 428976 416209	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109 M62062 AL037824 AA236776	Hs. 179729 Hs. 97600 Hs. 83169 Hs. 52620 Hs. 189095 Hs. 283853 Hs. 102267 Hs. 129327 Hs. 150917 Hs. 150917 Hs. 194695 Hs. 79078	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Homo sapiens mRNA full length insert cDN Matrix Metallioproteinese 10 (Stromolysin lysyl oxidase ESTs ESTs catenin (cadherin-associated protein), a ras homolog gene family, member I MAD2 (mitotic arrest deficient, yeast, h	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1 15.9 15.9 15.7 15.1	
75	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635 424581 428976	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109 M62062 AL037824	Hs. 179729 Hs. 97600 Hs. 83169 Hs. 52620 Hs. 189095 Hs. 283853 Hs. 2258 Hs. 102267 Hs. 291069 Hs. 129327 Hs. 150917 Hs. 194695	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Horno saptens mRNA full length insert cDN Matrix Metallioproteinase 10 (Stromolysin lysyl oxidase ESTs ESTs Catenin (cadherin-associated protein), a ras hornolog gene family, member I	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1 15.9 15.9 15.7 15.7 15.1	
75	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635 424581 426976 416209 439706 452055 410102	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109 M62062 AL037824 AA236776 AW872527 AW872527	Hs. 179729 Hs. 97600 Hs. 83169 Hs. 52620 Hs. 189095 Hs. 2258 Hs. 102267 Hs. 291069 Hs. 150917 Hs. 150917 Hs. 194695 Hs. 79078 Hs. 593772 Hs. 293772 Hs. 279727	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c integrin; beta 8 similar to SALL1 (sal (Drosophila)-like Horno saptens mRNA full length insert cDN Matrix Metallioproteinese 10 (Stromolysin lysyl oxidase ESTs ESTs catenin (catherin-associated protein), a ras hornolog gene family, member 1 MAD2 (mitotic arrest deficient, yeast, h ESTs ESTs	27.0 22.7 20.6 16.7 16.5 16.2 16.1 15.9 15.9 15.7 15.7 15.1 15.0 14.7	
75	436982 427585 423739 418007 438993 428664 439820 400289 421155 431989 426635 424581 428976 416209 439706 452055	D31152 AA398155 M13509 M73780 AK001666 AL360204 X07820 H87879 AW972870 BE395109 M62062 AL037824 AA236776 AW872527 AW377431	Hs. 179729 Hs. 97600 Hs. 83169 Hs. 52620 Hs. 189095 Hs. 189095 Hs. 102267 Hs. 291069 Hs. 129327 Hs. 150917 Hs. 194695 Hs. 79078 Hs. 593772	collagen; type X; alpha 1 (Schmid metaph ESTs Matrix metallioprotease 1 (interstitial c Integrin; beta 8 similar to SALL1 (saf (Drosophila)-like Homo saptens mRNA full length insert cDN Matrix Metalloproteinase 10 (Stromolysin lysyl oxidase ESTs ESTs Catenin (cadherin-associated protein), a ras homolog gene family, member I MADZ (mitotic arrest deficient, yeast, h ESTs ESTs	27.0 22.7 20.6 16.7 16.5 16.5 16.2 16.1 15.9 15.9 15.7 15.7 15.1	

	402606 443715	AA434329 Al583187	Hs.36563	hypothetical protein FLJ22418 cyclin E1	11.5 10.7
	433496	AF064254	Hs.9700 Hs.49765	VLCS-H1 protein	10.6
_	418601	AA279490	Hs.86368	calmegin	10.3
5	409269	AA576953	Hs.22972	Homo saplens cDNA FLJ13352 fis,	10.1
	445537	AJ245671	Hs.12844	EGF-like-domain; multiple 6	9.9
	427344 428479	NM_000869 Y00272	Hs.2142	5-hydroxytryptamine (serotonin) receptor	9.7 9.7
	429782	NM_005754	Hs.184572 Hs.220689	cell division cycle 2, G1 to S and G2 to Ras-GTPase-activating protein SH3-domain	9.5
10	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	9.4
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-O-sulfot	9.4
	435509	AI458679	Hs.181915	EST ₈	9.3
	408908	BE296227	Hs.48915	serine/threonine kinase 15	9.0
15	433764 445413	AW753676 AA151342	Hs.39982 Hs.12677	ESTs CGI-147 protein	9.0 8.7
13	438078	AI016377	Hs.131693	ESTs	8.6
	447342	Al199268	Hs.19322	ESTs; Weakly similar to IIII ALU SUBFA	8.1
	415138	C18356	Hs.78045	tissue factor pathway inhibitor 2 TFP12	7.7
20	418478	U38945	Hs.1174	cyclin-dependent kinase Inhibitor 2A (me	7.5
20	426320 424001	W47595 W67883	Hs.169300 Hs.137476	transforming growth factor, beta 2	7.5 7.4
	458861	NM_007358	Hs.31016	KIAA1051 protein DNA-BINDING PROTEIN M96	7.3
	425465	L18964	Hs.1904	protein kinase C; lota	7.2
٥.	425776	U25128	Hs.159499	parathyroid hormone receptor 2	7.1
25	424620	AA101043	Hs.151254	kallikrein 7 (chymotryptic; stratum com	7.0
	409178	BE393948	Hs.50915	kallikrein 5	6.8 6.6
	433159 410530	AB035898 M25809	Hs.150587 Hs.64173	kinesin-like protein 2 ESTs, Highly similar to VAB1	6.5
	449048	Z45051	Hs.22920	similar to \$68401 (cattle) glucose induc	6.5
30	422095	AI868872	Hs.288966	ceruloplasmin (ferroxidase)	6.4
	425371	D49441	Hs.155981	mesothelin	6.4
	448706	AW291095	Hs.21814	class II cytokine receptor ZCYTOR7	6.4
	441081	AI584019 AA442233	Hs.169006 Hs.17731	ESTs, Moderately similar to plakophilin	6.4 6.3
35	447207 420440	NM_002407	Hs.97644	hypothetical protein FLJ12892 mammaglobin 2	6.2
-	457030	Al301740	Hs.173381	dihydropyrimidinase-like 2	6.2
	415139	AW975942	Hs.48524	ESTs	6.1
	440870	AI687284	Hs.150539	Homo sapiens cDNA FLJ13793 fis, clone TH	6.0
40	417866	AW067903	Hs.82772	"collagen, type XI, alpha 1"	6.0
TV	437960 410555	A1669586 U92649	Hs.222194 Hs.64311	ESTs a disintegrin and metalloproteinase doma	6.0 5.9
	433447	U29195	Hs.3281	neuronal pentraxin II	5.9
	437099	N77793	Hs.48659	ESTs, Highly similar to LMA1	5.9
15	427510	Z47542	Hs.179312	small nuclear RNA activating complex, po	5.9
45	422867	L32137	Hs.1584	cartilage oligomeric matrix protein	5.8 5.7
	444478 445640	W07318 AW969626	Hs.240 Hs.31704	M-phase phosphoprotein 1 ESTs, Weakly similar to KIAA0227 [H.sapi	5.7
	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	5.6
	419917	AA320068	Hs.93701	Homo sapiens mRNA; cDNA DKFZp434E232	5.6
50	424539	L02911	Hs.150402	activin A receptor, type I	5.5
	441645	AI222279 ·	Hs.201555	ESTS	5.5
	424345 426514	AK001380 BE616633	Hs.145479 Hs.301122	Homo sapiens cDNA FLJ10518 fis, clone NT bone morphogenetic protein 7 (osteogenic	5.4 5.4
	425154	NM_001851		collagen, type IX, alpha 1	5.4
55	416530	U62801	Hs.79361	kallikrein 6 (neurosin, zyme)	5.3
	445236	AK001676	Hs.12457	hypothetical protein FLJ10814	5.2
	452930	AW195285	Hs.194097	ESTs	5.2
	431130 411571	NM_006103 AA122393	Hs.2719 Hs.70811	epididymis-specific; whey-acidic protein hypothetical protein FLJ20516	5.1 5.1
60	432158	W33165	Hs.55548	ESTs, Weakly similar to unknown protein	5.0
	447020	T27308	Hs.16986	hypothetical protein FLJ11046	5.0
	443268	Al800271	Hs.129445	hypothetical protein FLJ12496	4.9
	448133	AA723157	Hs.73769	folate receptor 1 (adult)	4.9
65	418882	NM_004996		ATP-binding cassette, sub-family C (CFTR integrin, beta 8	4.8 4.8
03	428555 427528	NM_002214 AU077143	Hs.184908 Hs.179565	minichromosome maintenance deficient (S.	4.7
	406400	AA343629	Hs.104570	kallikrein 8 (neuropsin/ovasin)	4.7
	439024	R96696	Hs.35598	ESTs	4.6
70	426300	U15979	Hs.169228	delta-like homolog (Orosophila)	4.6
70	448027	AI458437	Hs.177224	ESTs Cathonsin 1.2	4.6 4.6
	404996 443933	NM_001333 AI091631	Hs.135501	Cathepsin L2 ESTs	4.5
	409459	D86407	Hs.54481	low density tipoprotein receptor-related	4.4
7.	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin	4.3
75	423123	NM_012247		SELENOPHOSPHATE SYNTHETASE	4.3
	448275	BE514434	Hs.20830	synaptic Ras GTPase activating protein 1	4.2
	419926 420736	AW900992 Al263022	Hs.93796 Hs.82204	DKFZP586D2223 protein ESTs	4.1 4.1
	419790	U79250	Hs.93201	glycerol-3-phosphate dehydrogenase 2 (mi	4.1
80	414343	AL036166	Hs.75914	coated vesicle membrane protein	4.0
	450654	AJ245587	Hs.25275	Kruppel-type zinc finger protein	4.0
	445808	AV655234	Hs.298083	ESTs	3.9
	417389 425247	BE260964 NM 005940	Hs.82045 Hs.155324	Midkine (neurite growth-promoting factor matrix metalloproteinase 11 (stromelysin	3.9 3.8
	723271	000340	. 10.10024	more moranda arangement in fan amaliam	5.0

	400004				
	430634 431846	Al860651	Hs.26685	ESTs Uroplakin 1B	3.8 3.7
	416658	BE019924 U03272	Hs.271580 Hs.79432	fibrillin 2 (congenital contractural ara	3.7
_	407792	AI077715	Hs.39384	putative secreted ligand homologous to f	3.7
5	420585	AW505139	Hs.279844	hypothetical protein FLJ10033	3.7
	407756	AA116021	Hs.38260	ubiquitin specific protease 18	3.6
	411773	NM_006799		protease, serine, 21 (lestisin)	3.6
	421928 431958	AF013758 X63629	Hs.109643 Hs.2877	polyadenylate binding protein-interactin Cadherin 3, P-cadherin (placental)	3.5 3.5
10	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.5
	418793	AW382987	Hs.88474	prostaglandin-endoperoxide synthase 1 (p	3.5
	422278	AF072873	Hs.114218	ESTs	3.5
	431840	AA534908	Hs.2860	POU domain, class 5, transcription facto	3.4
15	408730	AV660717 U33635	Hs.47144	DKFZP586N0819 protein	3.4 3.3
13	419452 421841	AA908197	Hs.90572 Hs.108850	PTK7 protein tyrosine kinase 7 KIAA0936 protein	3.3
	439864	AI720078	Hs.291997	ESTs	3.3
	456546	AI690321	Hs.203845	ESTs, Wealty similar to TWIK-related aci	3.2
20	410687	U24389	Hs.65436	lysyl oxidase-like 1	3.2
20	414774	X02419	Hs.77274	plasminogen activator, urokinase	3.2
	420552 421991	AK000492 NM_014918	Hs.98806 Hs.110488	hypothetical protein KIAA0990 protein	3.1 3.1
	418140	BE613836	Hs.83551	microfibrillar-associated protein 2	3.1
~-	458924	BE242158	Hs.24427	DKFZP56601646 protein	3.1
25	411789	AF245505	Hs.72157	Homo saplens-mRNA; cDNA DKFZp564I19	3.1
	434241	AF119913	Hs.283607	hypothetical protein PRO3077	3.1 3.1
	422611 409533	AA158177 AW969543	Hs.118722 Hs.21291	fucosyltransferase 8 (alpha (1,6) fucosy mitogen-activated protein kinase kinase	3.1
	416391	AI878927	Hs.79284	mesoderm specific transcript (mouse) hom	3.1
30	412604	AW978324	Hs.47144	DKFZP586N0819 protein	3.1
	425851	NM_001490		glucosaminyl (N-acetyl) transferase 1, c	3.0
	431259	NM_006580		claudin 16	3.0 3.0
	418557 428242	BE140602 H55709	Hs.246645 Hs.2250	ESTs leukemia inhibitory factor (cholinergic	3.0
35	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)	3.0
-	457590	AI612809	Hs.5378	spondin 1, (f-spondin) extracellular mat	2.9
	419741	NM_007019		ubiquitin carrier protein E2-C	2.9
	428330	1.22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	2.9 2.9
40	417315 438777	A1080042 AA825487	Hs.180450 Hs.142179	ribosomal protein S24 ESTs, Weakly similar to ORF2 [M.musculus	2.9
	442295	AI827248	Hs.224398	ESTs	2.9
	428248	Al126772	Hs.40479	ESTs	2.9
	403019	AA834626	Hs.66718	RAD54 (S.cerevisiae)-like	2.8
45	436252	AI539519	Hs.120969	Homo sapiens cDNA FLJ11562 fis	2.8 2.8
70	419488 434288	AA316241 AW189075	Hs.90691 Hs.116265	nucleophosmin/nucleoplasmin 3 ESTs	2.7
	407872	AB039723	Hs.40735	frizzled (Drosophila) homolog 3	2.7
	431611	U58766	Hs.264428	tissue specific transplantation antigen	2.7
50	443881	R64512	Hs.237146	Homo sapiens cDNA FLJ14234 fis, clone NT	2.7
50	453779	N35187	Hs.43388	ESTs	2.7 2.7
	433068 426841	NM_006456 AI052358	Hs.193726	sialyitransferase ESTs	2.7
	428778	AK000530	Hs.193326	fibroblast growth factor receptor-like 1	2.7
	451346	NM_006338	Hs.26312	glioma amplified on chromosome 1 protein	2.6
55	443883	AA114212	Hs.9930	serine (or cysteine) proteinase inhibito	2.6
	420162	BE378432	Hs.95577	cyclin-dependent kinase 4	2.6
	447149 433656	BE299857 AW974941	Hs.326 Hs.292385	TAR (HIV) RNA-binding protein 2 ESTs	2.6 2.6
	408210	N81189	Hs.43104	ESTs	2.6
60	430651	AA961694	Hs.105187	kinesin protein 9 gene	2.5
	422599	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)	2.5
	421802 446211	BE261458 Al021993	Hs.108408 Hs.14331	CGI-78 protein S100 calcium-binding protein A13	2.5 2.5
	404029	W72881	Hs.266470	protocadherin beta 2	2.5
65	453012	T95804	Hs.31334	putative milochondrial outer membrane pr	2.5
	419981	AA897581	Hs.128773	ESTs	2.5
	448153	Y10805	Hs.20521	HMT1 (hnRNP methyltransferase, S. cerevi	2.5
	419220	AA811938	Hs.291759	ESTS Pure (F cell bemoles) like 1	2.5 2.4
70	432180 406850	Y18418 Al624300	Hs.272822 Hs.172928	RuvB (E coll homolog)-like 1 collagen, type I, alpha 1	2.4
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.	2.4
	421654	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	2.4
	409956	AW103364	Hs.727	H.sapiens activin beta-A subunit (exon 2	2.4
75	407584 448796	W25945 AA147829	Hs.18745 Hs.33193	ESTs ESTs, Highly similar to AC007228 3 BC372	2.4 2.4
, ,	T701 DU	CONTRIBES	· 10.00 (30	COTO, raginy on man to Account to a pool (£.7

80

Table 19 lists about 17 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to encode proteins that are secreted into blood, lymph, or other bodily fluids. These genes, and/or their protein products, in combination or alone, are ideal candidates for the early diagnosts of ovarian cancer. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 2.4, and that are likely to encode secreted or extracellutarly-shed proteins. The "average" ovarian cancer level was set to the 90th percentile amongst various non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst various non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

Į

TABLE 19: ABOUT 17 GENES, AND COMBINATIONS THEREOF, USEFUL FOR DIAGNOSIS OF OVARIAN CANCER UG ID: UniGene ID
Title: UniGene Title

5 % tumors: percent of tumors detected expressing gene

	Single genes	S	
	UGID	Title	% tumors
	Hs.5378	spondin 1, (f-spondin) extracellular matrix protein	77
10	Hs.12844	EGF-like-domain 6	86
	Hs.151254	kallikrein 7 (chymotryptic; stratum comeum)	66
	Hs.97644	mammaglobin 2	73
	Hs.155981	mesothelin (cytokine)	57
_	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin 2)	21
15	Hs.50915	kallikrein 5	27
	Hs.301122	bone morphogenetic protein 7 (osteogenic protein 1) (BMP7)	54
	Hs.79361	kallikrein 6 (neurosin, zyme)	38
	Hs.83169	MMP 1 (interstifial collagenase)	23
	Hs.72026	protease, serine, 21 (testisin)	16
20	Hs.39384	putative secreted ligand homologous to fix1	46
	Hs.2719	epididymis-specific; whey-acidic protein type; four-disulfide core	91
	Hs.155324	matrix metalloproteinase 11 (stromelysin 3)	11
	Hs.1584	cartilage oligomeric matrix protein	25
	Hs.169300	TGF beta 2	21
25	Hs.2250	leukemia inhibitory factor (cholinergic differentiation factor)	23
	Exemplary (Combinations:	
		EGF-like-domain 6 + mammaglobin 2	93
		kallikrein 7 + mesothelin	71
30		mammaglobin 2 + bone morphogenic protein 7	88
		EGF-like-domain 6 + bone morphogenic protein 7	91
		kallikrein 7 + bone morphogenic protein 7 + testisin	75
		kallikrein 7 + mammaglobin 2 + mesothelin	84
		mammaglobin 2 + bone morphogenic protein 7 + TGF beta 2	91
35		EGF-like-domain 6 + bone morphogenic protein 7 + MMP 1	95

Table 20A lists about 1025 genes up-regulated in ovarian cancer compared to normal adult tissues. Genes associated with ovarian cancer were selected from the 53462 probesets such that lite ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 5.0. The "average" ovarian cancer level was set to the 33rd percentile value amongst various ovarian cancer specimens; the "average" normal adult tissue level was set to the 96th percentile value amongst various non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 15th percentile value amongst various non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

Tables 208-24B list accession numbers for Pkey's lacking UnigenelD's for tables 20A-24A. For each probeset is listed a gene cluster number from which oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Tables 20C-24C list genomic positioning for Pkey's tacking Unigene ID's and accession numbers in tables 20A-24A. For each predicted exon is listed genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

TABLE 20A:
Pksy: Unique Eos probeset identifier number
ExAcor. Exemplar Accession number, Genbank accession number
Unigene IIIe: UniGene itite
Pred. Protein Dom.: Predicted protein domain
R1: Ratio of tumor to normal body tissue

50

55

26.3 22.6 22.3 21.3
21.2 APEG 20.7 20.7 20.2 2_Claudin 20.1
nin 19.4 19.3 Glyco_hydro 18.5
18.5 18.4 18.1 2.bd_re 17.5 .PH.C2 17.2 IM.PDZ.WD 16.9 16.8
2 Doi:

	410418	D31382	Hs.63325	transmembrane protease, serine	SS,TM,ldl_recept_a,trypsi	16.8
	438424	Al912498	Hs.25895	hypothetical protein FLJ14996	SS,TM	16.7
	409435	AIB10721	Hs.95424	ESTs	SS .	16.4
-	418969	W33191	Hs.28907	hypothetical protein FLJ20258	SH3,SH3	16.2
5	421612	AF161254	Hs.106196	BD6,antigen	kdi_recept_a,SS,TM	16.0
	456177	NM_012391		prostate epithelium-specific E	Ets,SAM_PNT	. 15.7
	414837	U24266	Hs.77448	aldehyde dehydrogenase 4 famil	aldedh	15.6
	432631	H08379	Hs.165563	hypothetical protein DKFZp434N	TM,DnaJ,UBA,ArfGap,homeob	15.5
10	454017	AW023617	Hs.347130	hypothetical protein FLJ22709	SS,TM,myosin_head,RA,DAG_	15.5
10	401278	11001450	11- 00450	Target Exon	Band_41	15.4 15.4
	444804	AI084452	Hs.22158	hypothetical protein FLJ21988	SS CEO IDU Mara CEO IDU Mara	15.4
	410259	AK000337 MB1105	Hs.61485 Hs.146550	hypothetical protein myosin, heavy polypeptide 9, n	GFO_IDH_MocA,GFO_IDH_MocA myosin_head,Myosin_tail,I	15.1
	406620 423081	AF262992	Hs.123159	sperm associated antigen 4	TM	14.9
15	421495	AI583067	Hs.149152	ESTs, Weakly similar to RHOP M	***	14.7
1.5	416893	AA455588	Hs.62406	hypothetical protein FLJ22573	SS,rm,SS	14.7
	413244	AW955951	Hs.159265	kruppel-related zinc finger pr	SS,TM,BTB,Pep_M12B_propep	14.6
	406901	M14624		gb:Human 4-beta-galactosyltran		14.6
	416006	AA324251	Hs.78950	branched chain keto acid dehyd	E1_dehydrog	14.6
20	436186	BE390717	Hs.5074	similar to S. pombe dim1	DIM1,SS	14.5
	455557	AW995839		gb:QV4-BN0044-110200-108-h07 B	Metallophos	14.4
	434518	H56995	Hs.37372	Homo sapiens DNA binding pepti	SS	14.2
	421489	AJ922821	Hs.32433	ESTs	SS,PI-PLC-X,PI-PLC-Y,C2	14.1
0.5	444441	AW613841	Hs.301394	hypothetical protein MGC3101		14.0
25	435017	AA336522	Hs.12854	angiotensin II, type I recepto		14.0
	446572	AV659151	Hs.282961	ESTs		13.9
	434068	AA977935	Hs.127274	ESTs	SS	13.7
	432481	AW451645	Hs.151504	Homo saplens cDNA FLJ11973 fis	SS,Cotlagen,COLFI,TSPN	13.7
20	447304	Z98883	Hs.18079	phosphatidylinositol glycan, c	SS,Peptidase_C2	13.6
30	421182	AA284855	Hs.104480	ESTs	SS,Topoisomerase_I,Topois	13.3
	407767	W15398	Hs.38628	hypothetical protein	SS,zf-CCCH	13.3
	456642	AW451623	Hs.109752	putative c-Myc-responsive	COC DOV	13.3 13.2
	437457	AA757900 AW449612	Hs.270823	ESTs, Weakly similar to \$65657	SQS_PSY SS	13.1
35	430178		Hs.152475	ESTs ESTs		12.9
55	430399 436725	AI916284 BE045223	Hs.199671 Hs.136912	hypothetical protein MGC10796	Sec7,PH	12.9
	410219	T98226	Hs.171952	occludin -	SS,TM,Occludin,BIR	12.7
	442620	C00138	Hs.8535	Homo sapiens mRNA for KIAA1668	SS,RNA_pol_K	12.7
	439233	AA831893	Hs.292767	hypothetical protein FLJ23109	zf-C3HC4,TM,Sulfate_trans	12.7
40	425018	BE245277	Hs.154196	E4F transcription factor 1	zf-C2H2,LIM,SS,Exo_endo_p	12.6
	423801	NM_015071	Hs.132942	GTPase regulator associated wi	RhoGAP,SH3,PH	12.6
	417826	T85105	Hs.15471	ESTs	SS,cadherin,Cadherin_C_te	12.6
	409261	BE315042	Hs.19210	hypothetical protein MGC11308		12.6
	420568	F09247	Hs.247735	protocadherin alpha 10	cadherin,SS,TM,cadherin	12.6
45	411570	BE144584	Hs.314341	ESTs		12.5
	430397	AI924533	Hs. 105607	bicarbonate transporter relate	HCO3_cotransp,SS,TM	12.5
	423767	H18283	Hs.132753	F-box only protein 2	F-box,SS,F-box,HORMA	12.4
	441805	AA285136	Hs.301914	neuronal specific transcriptio	UM,SS,UM	12.3
50	402365			Target Exon	SS,SS,TM,ig	12.2
50	414371	AI905865		thymosin, beta 4, X chromosome	Thymosin	12.2
	446780	R31107	11- 400 400	gb:yh61g01.s1 Soares placenta	00 744 01- 00 744	12.1
	428782	X12830	Hs.193400	interleukin 6 receptor	SS,TM,fn3,ig,SS,TM	12.1
	427695	R88483	Hs.172862	intron of Bicaudal D homolog 1 C11002253*:gi[129091]sp[P23267	CC TM CCAN -4 COUR MDAD	12.1 12.0
55	400460 407341	AA918886	Hs.204918		SS,TM,SCAN,zf-C2H2,KRAB SS,TM	12.0
33	424049	AB014524	Hs.138380	ESTs, Weakly similar to ALU8_H KIAA0624 protein	SS	11.9
	422872	BE326786	Hs.187646	ESTs	TM	11.9
	450800	BE395161	Hs.1390	proteasome (prosome, macropain	SS	11.8
	428648	AF052728	Hs.188021	potassium voltage-gated channe	cNMP_binding	11.7
60	432329	NM_002962		S100 calcium-binding protein A	S_100,efhand,SS,efhand,S_	11.7
	417061	AI675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis	CTF_NFI	11.6
	451195	U10492	Hs.438	mesenchyme homeo box 1	homeobox,SS	11.5
	417595	AA424317	Hs.6259	KIAA1698 protein	SS,TM,Glyco_hydro_31,Glyc	11.5
	426500	NM_014638	Hs.170156	KIAA0450 gene product	SS	11.4
65	433124	U51712	Hs.13775	hypothetical protein SMAP31		11.4
	444001	AI095087	Hs.152299	ESTs, Moderately similar to S6		11.4
	419298	AA853479	Hs.89890	pyruvate carboxylase	CPSase_L_chain,PYC_OADA,H	11.4
	428593	AW207440	Hs.185973	degenerative spermatocyte (hom	SS	11.3
70	411408	U76666	Hs.69949	calcium channel, voltage-depen	ion_trans,SS,TM	11.2
70	404438			Target Exon		11.2
	427448	BE246449	Hs.2157	Wiskott-Aldrich syndrome (ecze	WH1,PBD,WH2,SS	11.2
	406230	A14672000-	II. (00000	Target Exon	Deed 44 EDM	11.2
	432125	AW972667	Hs.183006	Homo sapiens cDNA FLJ12300 fis	Band_41,ERM	11.2
75	408832	AW085690	Hs.63428	ESTs, Wealthy similar to Z195_H	TO DO Chara trans 42 COLD	11.1
, 5	400206	D35017	Hs.301338	Eos Control hamalhatical arolain El 112587	SS,SS,Glyco_tranf_43,COLF SS	11.1 11.0
	450503 407605	R35917 W03512	HS.6479	hypothetical protein FLJ 12587 hypothetical protein MGC13272	SS,Sema,pkinase,TIG,PSI,e	11.0
	432143	AL040183	Hs.123484	Homo sapiens, done IMAGE:4178	SS,TM,cys_rich_FGFR	10.9
	446839	BE091926	Hs.16244	mitotic spindle coiled-coil re	Troponin,SS,glycolytic_en	10.8
80	443559	AI076765	Hs.269899	ESTs, Moderately similar to AL	SS,TM,BIR,UQ_con	10.8
	411298	AW835858		gb:PM0-LT0017-031299-001-h07 L	- 21d-n. do	10.8
	409557	BE182896	Hs.211193	ESTs		10.8
	435158	AW663317	Hs.65588	DAZ associated protein 1	rm,SS,rm	10.8
	444410	BE387360	Hs.33719	ESTs, Moderately similar to S6	SS	10.6
					219	

219

	428948	BE514362		FK506-binding protein 3 (25kD)	FKBP,PIP5K	10.6
	424707	BE061914	Hs.10844	Homo sapiens cDNA FLJ14476 fis	SS,SS,TM,Sema	10.6 10.5
	416819	U77735	Hs.80205 Hs.118888	ptm-2 encogene ESTs, Weakly similar to ALU1_H	pkinase,SS,TM,OTU,K_tetra SS,TM,UPF0016	10.5
5	419341 444359	N71463 Al697160	Hs.143594	ESTs, Weakly similar to HS4L_H	20,111,011,0010	10.5
,	404333	74037 100	15.14004	C7001735*:gi 7768636 db BAA95	vwd	10.5
	401210			C12000519:pi[7710046 ref]NP_05		10.5
	457941	AI004525	Hs.14587	ESTs, Weakly similar to AF1518	SS,TM,SS,TM	10.4
10	401594		11 400000	NM_024817:Homo saplens hypothe		10.3 10.3
10	441790	AW294909	Hs.132208	ESTs	SS,SS,SAC3_GANP	10.3
	444008 438185	BE544855 Y19188	Hs.236572 Hs.320461	ESTs, Wealthy similar to SFR4_H ESTs	SS	10.2
	432031	AF039196	Hs.272367	hairless protein (putative sin	jmjC	10.2
	410471	T88872	TIOLET BOO.	gb:yd31a12s1 Soares fetal liv	7.10	10.1
15	433573	AF234887	Hs.57652	cadherin, EGF LAG seven-pass G	SS,TM,7tm_2,EGF,cadherin,	10.1
	417371	N74613	Hs.269149	ESTs		10.0
	428167	AA770021	Hs.16332	ESTs .	SS,ig,fn3	10.0
	419563	AA526235	Hs.193162	Homo sapiens cDNA FLJ11983 fis	-band SC CAR CIV	10.0 10.0
20	412674	X04106 U43604	Hs.74451 Hs.159901	calpain 4, small subunit (30K) Human unidentified mRNA, parti	efhand,SS,CAP_GLY	9.9
20	425863 442739	NM_007274		cytosolic acyl coenzyme A thio	Acyl-CoA_hydro,SS,TM	9.9
	429469	M64590	Hs.27	glycine dehydrogenase (decarbo -	GDC-P,GDC-P	9.9
	420029	BE258876	Hs.94446	polyamine-modulated factor 1	aldo_ket_red,SS,TM,gla	9.8
0.5	445625	BE246743		hypothetical protein FLJ22635	SS,TM .	9.8
25	435339	A1358300	11- 400407	ESTs -,	SS,ras SS,TM,Ribosomal_S13,Galac	9.8 '9.8
	407235 428758	D20569 AA433988	Hs.169407 Hs.98502	SAC2 (suppressor of actin muta CA125 antigen; mucin 16	SS 1M, PODOSOITES_3 13, October	9.8
	401349	AA400300	115.50502	inositol polyphosphale-1-phosp	50	9.7
	437915	Al637993	Hs.202312	Homo sapiens clone N11 NTera2D		9.7
30	424511	BE300512	Hs.193557	ESTs, Moderately similar to AL		9.7
	423366	Z80345	Hs.127610	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	9.7
	405143			NM_013432*:Homo sapiens nuclea	ank,SS,TM,CPSF_A	9.6 9.6
	427497	AW139476	Hs.31240	ESTs	SS	9.6 9.6
35	420423 431512	AA827718 BE270734	Hs.88218 Hs.2795	ESTs lactate dehydrogenase A	ldh,ldh_C,SS,ldh	• 9.6
55	450052	Al681298	Hs.236524	ESTs	zf-C3HC4.zf-B_box	9.5
	412738	N34731	Hs.74562	slah binding protein 1; FBP in	homeobox	9.5
	444202	AL031685	Hs.12785	KIAA0939 protein	SS,TM,Na_H_Exchanger,ABC2	9.5
40	451165	Al340575	Hs.286084	MRIP-1 protein	00-11	9.5
40	411450	H49619	Hs.127301	ESTS	SS,pkinase pkinase,UM,PDZ	9.5 9.5
	405371 435782	N49433	Hs.285737	NM_005569°:Homo sapiens LIM do Homo sapiens cDNA; FLJ20895 fi	SS,G6PD,Glucosamine_iso,G	9.5
	416865	AA297356	Hs.80324	serine/threonine protein phosp	Metallophos, Metallophos	9.4
	405474	77.257.000	7.0.0002.1	NM_001093*:Homo sapiens acetyl	CPSase_L_chain,biolin_lip	9.4
45	412837	AI922293	Hs.58389	hypothetical protein MGC4090		9.3
	448133	AA723157	Hs.73769	folate receptor 1 (adult)	Folate_rec,SS	9.3
	431081	AA491594	Hs.75813	polycystic kidney disease 1 (a	SS,TM	9.3 9.2
	427640	AF058293 AW938739	Hs.180015 Hs.115412	D-dopachrome tautomerase hypothetical protein FLJ 13881	MIF,late_protein_L2,SS,GS SS	9.2
50	427435 407688	W25317	Hs.37616	Human D9 splice variant B mRNA	30	9.2
-	407507	U73799	110.01010	gb:Human dynactin mRNA, partia	SS,TM,HCO3_cotransp,CAP_G	9.2
	400833			C11000890:gi[3746443 gb AAC639	SS,TM,7tm_1	9.2
	422064	AW452589	Hs.335742	ESTs	TM	9.2
55	452434	D30934	Hs.29549	C-type lectin-like receptor-1	lectin_c,SS,TM	9.2 9.2
22	451752 432931	AB032997 AF174487	Hs.293753	KIAA1171 protein Bd-2-related ovarian killer p	TBC,SS,TM,pkinase,laminin	9.1
	407893	BE408359	Hs.43621	Homo sapiens, Similar to hypot	SS,SS,arf,ras,fn3,ras	9.1
	427397	AI929685	Hs.177656	calmodulin 1 (phosphorylase ki	efhand,RmaAD,SS,efhand	9.1
	405159			ENSP00000243337*:CONA FLJ13984		9.1
60	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45,	CDC45	9.1
	407058	X94563	U- 204CC	gb:H.saplens dbi/acbp gene exo	SS SS,TM,UPAR_LY6,toxin,SS,T	9.0 9.0
	448045 400772	AJ297436	Hs.20166	prostate stem cell antigen NM_003105":Homo sapiens sortil	idi_recept_a,fn3,ldi_rece	9.0
	427315	AA179949	Hs.175563	Homo sapiens mRNA; cDNA DKFZp5	spectrin,SH3,PH,CH	9.0
65	414391	BE409872		gb:601299655F1 NIH_MGC_21 Homo	•	9.0
	447867	AI525268	Hs.164303	ESTs	TM .	9.0
	422639	AI929377	Hs.173724	creatine kinase, brain	ATP-gua_Ptrans,ATP-gua_Pt	9.0
	454319	AW247736	Hs.101617	ESTs, Weakly similar to T32527	SS	8.9 8.9
70	428781 408645	AF164799 AW245738	Hs.193384 Hs.109274	putatalive 28 kDa protein hypothetical protein MGC4365	SS,TM	8.9
, 0	429527	AA454184	Hs.289014	ESTs		8.9
	406651	A1559224		gb:tq32c02.x1 NCI_CGAP_Ut1 Hom		8.9
	430893	BE502068	Hs.282067	ESTs	••	8.8
75	414413	BE294877	11- 7-045	gb:601174162F1 NIH_MGC_17 Homo	SS consuin CC consuin	8.8 8.8
75	413726	AJ278465	Hs.75510	annexin A11	annexin,SS,annexin	. 8.8
	432211 421694	BE274530 BE387430	Hs.273333 Hs.106880			. 8.8
	453683	AL079854	Hs.118598		SS	8.8
	456741	W37608	Hs.184492		SS,pkinase	8.7
80	442995	AA532511	Hs.288455	Homo saplens cDNA: FLJ23270 fi		8.7
	415898	Z43379	Hs.177193			8.7
	456977	AK000252	Hs.169758		Accompany March March	8.7 8.7
	439632 431462	AW410714 AW583672			SS,TM,transmembrane4 SS	8.7
	701702	ATT-00012	1.0.200011	Grant and references and help		 -
					220	

	400128			Eas Control	TM,E1-E2_ATPase, HMA, Hydro	8.7
	438582	AJ521310	Hs.283365	ESTs, Weakly similar to ALU5_H	SS	8.7
	450958	AL137669	Hs.348012	Homo saplens mRNA; cDNA DKFZp4		8.7
5	410855	X97795	Hs.66718	RAD54 (S.cerevislae)-like	SNF2_N,helicase_C,SS	8.7
,	415126 418736	D60945 T18979	Hs.87908	gb:HUM141D04B Clontech human f Snt2-related CBP activator pro	SS,TM SS,helicase_C,AT_hook,SS,	8.7 8.6
	431157	AI823969	Hs.132678	ESTs	SS,MAPEG,SS,MAPEG	8.6
	418843	AJ251016	Hs.89230	potassium intermediate/small c	TM,CaMBD,SK_channel,TM	8.6
10	419167	A1589535	Hs.94875	ESTs, Weakly similar to A35363	SS	8.6
10	432343 458440	NM_002960 Al095468		S100 calcium-binding protein A Homo sapiens clone 1 thrombosp	S_100,SS,efhand,S_100,efh	8.6 8.6
	407065	Y10141	Hs.135254	gb:H.sapiens DAT1 gene, partia	SNF,SS,TM	8.6
	452851	AW173191	Hs.213117	ESTs	SS,Sema	8.6
1.5	422418	AK001383	Hs.116385	hypothetical protein FLJ10521	RhoGEF	8.6
15	420836	AW958453	Hs.204959	hypothetical protein FLJ14886	SS,ras	8.6 8.5
	455588 431974	AI129903 AW972689	Hs.74669 Hs.200934	vesicle-associated membrane pr ESTs	synaptobrevin,SS,TM bZIP	8.5
	410720	AF035154	Hs.65756	regulator of G-protein signall	RGS,G-gamma,DEP,SS,RGS,DI	8.5
00	449751	AW207115	Hs.25555	ESTs	• • •	8.5
20	434030	AW162336	Hs.3709	low molecular mass ubiquinone-	SS SALE DUT	8.5
	405557 443780	NM_012068	We 0764	Target Exon activating transcription facto	Ets,SAM_PNT bZIP,NTP_transf_2,SS,TBC	8.5 8.5
	428860	U38291	Hs.194301	microtubule-associated protein	M	8.5
	421901	A8014554	Hs.109299	protein tyrosine phosphatase,	SAM,SS,TM,mm,PDZ	8.4
25	401885			Target Exon -	kinesin,SS,TM	8.4
	449382	A1650407	Hs.197875	ESTs .	SS,mm,zf-RanBP	8.4 8.4
	432862 441363	AW004958 AW450211	Hs.236720 Hs.126825	amnionless protein ESTs, Weakly similar to A46302	SS,MATH,zf-TRAF,zf-C3HC4 SS,TM,HSP20,7tm_1	8.4
	407363	AF035032	Hs.181125	gb:Homo sapiens clone MCA1L my	SS,lg,SS,G_glu_transpept	8.4
30	425380	AA356389	Hs.32148	AD-015 protein	SS,TM,LRR,P,Peptidase_S8	8.4
•	424893	AW295112	Hs.153648	Homo sapiens cDNA FLJ13303 fis	SS,SAM,SS,TM,7tm_1	8.4
	424080 439772	AW189983 AL365406	Hs.139119 Hs.10268	Homo sapiens cDNA FLJ10967 fis Homo sapiens mRNA full length		8.3 8.3
	431765	AF124249	Hs.268541	novel SH2-containing protein 1	SH2,SS,TM	8.3
35	404365			Target Exon	SS	8.3
	424310	AA338648	Hs.50334	lestes development-related NYD	SS,TM	8.3
	401935	A A D 1 70/6		Target Exon ESTs	PH SS much DNA binding much DN	8.3 8.3
	434796 423098	AA812046 AA321980	Hs.204682	ESTs	SS,myb_DNA-binding,myb_DN	8.3
40	434552	AA639618	Hs.325116	Homo sapiens, clone MGC:2962,	SS	8.2
	457082	AA470687	Hs.104772	ESTs	SS	8.2
	432603	AA554920	Hs.105794	UDP-glucose:glycoprotein gluco	SS,TM	8.2 8.2
	402445 422078	AW872378	Hs.120170	Target Exon hypothetical protein FLJ21415	fn3,SS,TM,BNR SS	8.2
45	418361	AW505368	Hs.12460	gb:Ul-HF-BN0-alu-d-03-0-Ul.r1	•	8.2
	431354	BE046956	Hs.251673	DNA (cytosine-5-)-methyltransf	SS,PWWP,PHD	8.2
	403885	414/0722200	N= 007000	Target Exon	TM,Sulfate_transp,STAS,HM	8.2
	450029 452512	AW073380 AW363486	Hs.267963 Hs.337635	hypothetical protein FLJ 10535 ESTs	SS,Pyridox_oxidase,zf-C2H SS	8.2 8.2
50	420138	8E268854	Hs.177729	ESTs	SS	8.2
	439788	N71241	Hs.119275	EST ₈	UQ_con	8.2
	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc	SS	8.2
	449656 452295	AA002008 BE379936	Hs.188633 Hs.28866	ESTs programmed cell death 10	PIP5K SS,serpin	8.1 8.1
55	448650	AW769385	Hs.204891	ESTs	SS,IL8	8.1
	446035	NM_006558		Sam68-like phosphotyrosine pro .	KH-domain	8.1
	444408	Al147237		immunoglobulin heavy constant	SS	8.1
	437215	AL117488 NM_006577	Un 204204	Human clone 23564 mRNA sequenc	SS SS,TM,DIX,PDZ,DEP,Disheve	8.1 8.1
60	408891 400409	AF153341	NS.204204	ESTs, Highly similar to beta-1 Homo saplens winged helix/fork	SS	8.0
	443801	AW206942	Hs.253594	Intron of: trichorhinophalang	GATA	8.0
	425281	AA444390	Hs.155482	hydroxyacyl glutathlone hydrol	lactamase_B,SS	8.0
	458216	AW024282	Hs.104938	hypothetical protein MGC15906		8.0 8.0
65	401507 401180			C15000810*:gi 11131272 sp[P793 eukaryolic translation elongat	SS,TM,lon_trans,IQ	8.0
	454291	AW384847	Hs.213534	ESTs, Wealthy similar to MUC2_H	SS,XRCC1_N,BRCT,lactamase	8.0
	444014	AI095718	Hs.135015	ESTs		8.0
	412128	AW894709	11- A400C	gb:CM1-NN0032-020500-212-d05 N	SCAN,zf-C2H2,KRAB WD40	7.9
70	408363 425694	NM_003389 U51333	Hs.159237	coronin, actin-binding protein hexoldnase 3 (white cell)	hexokinase.hexokinase2.he	7.9 7.9
, ,	425263		Hs.155419	8CL2-interacting killer (apopt	SS,TM,TspO_MBR	7.9
	447045	AW392394		sorting nextin 17	SS,IF-2B,PP2C	7.9
	457613	AA598869	Hs.173770	ESTs	akinasa	7.9 7.9
75	410338 402545	W03445	Hs.38205	gb:za05g11.r1 Soares melanocyt Target Exon	pkinase	7.9 7.9
	454246	AW245185	Hs.6996	ESTs		7.9
	410079	U94362	Hs.58589	glycogenin 2	Glyco_transf_8	7.9 .
	443678	AW009605	Hs.231923	ESTs	SS	7.9 7.9
80	404676 406649	AI569392		Target Exon gb:tn86a02_x1 NCI_CGAP_Ut2 Hom		7.5 7.9
	420230	AL034344	Hs.284186	forkhead box C1	Fork_head,SS,Fork_head	7.9
	413534	BE146961	11- 0/2	gb:QV4-HT0222-011199-019-b12 H	SS,TM	7.8
	444628 410839	U01120 NM_006849	Hs.242	glucose-6-phosphatase, catalyt protein disulfide isomerase	P.AP2,SS,TM thlored,Rho_GDI,gntR,SS,T	7.8 7.8
	410003	1411_000043	110,00001	Promit distillor constituto		1.0
					221	

221

	444046 439501	AI360834	Hs.135094	ESTS	SS,GTP_EFTU,EFG_C,GTP_EFT	7.8 7.8
	435301	AF086321 R13977	Hs.287452 Hs.9634	Homo saplens cDNA FLJ11760 fis ESTs	TM	7.8 7.8
	450461	BE408081	Hs.46736	hypothetical protein FLJ23476	SS	7.8
5	448993	Al471630	. 10. 10.00	KIAA0144 gene product		7.8
	400923			Target Exon	SS,TM,DUF289	7.8
	440546	AJ491994		gb:to07g09.x1 NCI_CGAP_Ui2 Hom	SS,HATPase_c	7.8
	419757	AA773820	Hs.63970	ESTs	SS,TM	7.8
10	451721 458834	NM_006946 A)566883	Hs.196446	spectrin, beta, non-erythrocyt ESTs	spectrin,PH,CH,SS,Peptida	7.8 7.8
10	422633	X56832	Hs.118804	enolase 3, (beta, muscle)	enolase,SS,TM,kinesIn,FHA	7.7
	438452	AJ220911	Hs.288959	hypothetical protein FLJ20920	SS	7.7
	421445	AA913059	Hs.104433	Homo sapiens, done IMAGE:4054	asp,SS,TM,ion_trans,K_tet	7.7
	434743	AI363410		ribosomal protein S18	SS,TM	7.7
15	450635	AW403954	Hs.25237	mesenchymal stem cell protein	4HBT	7.7
	442394	R62926	Hs.285193	ESTs		7.7
	434333 427221	AA186733 L15409	Hs.292154 Hs.174007	stromal cell protein	VHLTM	7.7 7.7
	429099	BE439952	Hs.196177	von Hippel-Lindau syndrome phosphorylase kinase, gamma 2	pkinase,SS,SNF2_N,helicas	7.7
20	444670	H58373	Hs.332938	hypothetical protein MGC5370	SS,zf-RanBP,MDM2	7.7
	449495	AI652833		gb:wb22c11.x1 NCI_CGAP_GC6 Hom	SS	7.7
	444607	AW405635	Hs.293687	ESTs	SS,PI-PLC-X,PH,PI-PLC-Y,C	. 7.7
	449125	Al671439	Hs.196029	Homo sapiens mRNA for KIAA1657	TIMP	7.7
25	447151	Al022813	Hs.92679	Homo sapiens ctone CDABP0014 m	SS,TM,LRR,aminotran_1_2	. 7.6 7.6
23	448626 430432	W27670 AB037758	Hs.55613 Hs.241419	hypothetical protein FLJ22531 KIAA1337 protein	TM,Patched,TM	7.6 7.6
	401822	AD007750	113.241415	C17001422:gi 2695866 emb CAA75	THIS BUSINESS, THE	7.6
	428909	Al190714	Hs.98945	ESTs		7.6
••	414534	BE257293	Hs.76366	BCL2-antagonist of cell death	SS,hormone_rec,zf-C4	7.6
30	421620	AA446183	Hs.91885	ESTs, Weakly similar to 155214		7.6
	441650	Al261960	Hs.132545	ESTs	SS,TM,KOW	7.6
	442232	Al357813	Hs.337460	ESTs, Weakly similar to A47582	SS_TM_TGFb_propeptide_TGF	7.6
	439539 400286	BE348395	Hs.121589	ESTs	SS,Fork_head TM,ABC_tran,ABC_membrane	7.5 7.5
35	452833	8E559681	Hs.30736	C16000922:gi[7499103[pir][T209 KIAA0124 protein	WD40	7.5 7.5
55	417390	AA196552	Hs.85852	hypothetical protein MGC3169	11010	7.5
	427721	Al582843	Hs.180455	RAD23 (S. cerevisiae) homolog	ubiquifin,UBA,integrin_8,	7.5
	450716	T57758	Hs.10255	ESTs		7.5
40	407435	AF211976		gb:Homo sapiens LENG9 mRNA, pa		7.5
40	413956	AI821351	Hs.193133	ESTs, Weakly similar to ALU7_H	22 244	7.5
	427899 406495	AA829286	Hs.332053	serum amyloid A1 Target Exon	SS,SAA_proteins,SS,SAA_pr SRCR,TM,Acetyltransf	7.5 7.5
	430387	AW372884	Hs.240770	nuclear cap binding protein su	mn,SS,TM,rrm	7.5 7.5
	408601	U47928	Hs.86122	protein A	SS,7tm_1,SS,ig,WD40,zf-UB	7.5
45	424364	AW383226	Hs.163834	ESTs, Weakly similar to G01763	SS,ras	7.4
	409832	AW963293		gb:EST375366 MAGE resequences,	SS	7.4
	448043	Al458653	Hs.201881	ESTs	PHD	7.4
	421148	AF008936	Hs.102178	syntaxin 16	Syntaxin,SS,Peptidase_M17	7.4
50	420970 419295	AA305079 BE397712	Hs.1342 Hs.144027	cytochrome c oxidase subunit V ESTs	COX5B	7.4 7.4
50	448330	AL036449	rts. 144027	ESTs	myb_DNA-binding,myb_DNA-b	7.4 7.4
	419639	AK001502	Hs.91753	hypothelical protein		7.4
	431488	AB037785	Hs.257594	KIAA1364 protein	SS,CH,LIM,SS	7.4
<i></i>	456487	AF064804		suppressor of Ty (S.cerevisiae		7.4
55	448615	Al910868	Hs.212957	ESTs	SS	7.4
	427433	D82070	Hs.177972	chromosome 4 open reading fram	SS,pkinase	7.4
	441076 452554	N49809 AW452434	Hs.11197 Hs.58006	Horno saplens, clone IMAGE:3343 ESTs, Weakly similar to ALU5_H	SS.PAS.HLH	7.4 7.4
	41144B	AA178955	Hs.271439	ESTs, Weakly similar to 138022	rm,PDZ	7.4
60	442318	Al792199		ESTs	SS,zf-C2H2	7.4
	425055	AW981959	Hs.96940	ESTs		7.4
	412935	BE 267045	Hs.75064	tubulin-specific chaperone c	SS,TM,transmembrane4	7.4
	403748			Target Exon	TM	7.4
65	447282	Al989963 Al928242	Hs.197505	ESTs ESTs, Highly similar to AF1984	TM SS	7.3 7.3
05	422305 416472	AA180758	Hs.293438 Hs.340316	ESTs, Moderately similar to AL	zi-C2H2	7.3
	427273	AW139032	Hs.107376	hypothetical protein DKFZp434N	SS.SS.TM	7.3
	412265	AA101325	Hs.86154	hypothetical protein FLJ12457	UPP_synthetase,HMG14_17	7.3
70	447859	AK002194	Hs.19851	peroxisomal biogenesis factor		7.3
70	432747		Hs.278907	calcium channel, voltage-depen	PMP22_Claudin,SS,TM,PMP22	7.3
	406727	AJ219282	Hs.2186	eukaryolic translation elongat	SS,G-gamma	7.3
	404199 445434	BE391690	Hs.9265	ENSP0000211797*:Helicase SKI2 hypothetical protein FLJ20917	SS,RasGAP,PH,SS,PHD SS,PWWP,Exonuclease,lipoc	7.3 7.2
	428550	AW297880	Hs.98661	ESTs	SS,homeobox,homeobox	7.2 7.2
75	454718	AW815144		gb:QV4-ST0212-120100-075-d10 S	SS,ATP-synt_ab,ATP-synt_a	7.2
	407686	AW901268	Hs.126043	chromosome 21 open reading fra	SS,TM,ISK_Channel	7.2
	418304	AA215702		gb:zr97g10.r1 NCI_CGAP_GCB1 Ho	serpin	7.2
	424263	M77640	Hs.1757	L1 cell adhesion molecule (hyd	fn3,ig,lRK,SS,TM,fn3,ig,R	7.2
80	407581 430746	R48402 AW977370	Hs.173508	P3ECSL	SS,TM,7tm_1	7.2 7.2
00	430746 402651	V4431121A	Hs.222012	ESTs NM_000721*:Homo sapiens calciu	SS ion_trans	7.2 7.2
	407323	AA181183	Hs.143504	gb:zp57c02.s1 Stratagene endot	SS,Ribosomal_S4e,ubiquiti	7.2
	407619	AL050341	Hs.37165	collagen, type IX, alpha 2	SS,Collagen,SS,Collagen	7.2
	434035	AI762074	Hs.204769	ESTs, Weakly similar to T28770	SS,TM	7.2
					222	

222

	400419	AF084545		Target	EGF,ig,lectin_c,sushi,Xli	7.2
	424241	AW995948	Hs.182339	Homo sapiens pyruvate dehydrog	SAM_PNT	7.2
	445837	Al261700		ESTs		7.2
5	427725	U66839	Hs.180533	mitogen-activated protein kina	pkinase	7.1
)	421879	AW959607	U. 2027EC	gb:EST371677 MAGE resequences,	CC EMDA CD3EI	7.1 7.1
	418285 442893	H68616 H78133	Hs.293756	ESTs gb:yu86c11.s1 Soares fetal liv	SS,EMP24_GP25L	7.1
	437829	Al358522	Hs.103834	ESTs		7.1
	450873	BE464016	Hs.238956	ESTs	SS,zf-C2H2,rrm	7.1
10	433396	AI742071	Hs.133205	ESTs	SS,TM	7.1
	415595	R54144	Hs.278707	chromosome 21 open reading fra	SS .	7.1
	436629	AAB61011	Hs.249795	ESTs	TM	7.1
	414593	BE386764	11 4500	gb:601273249F1 NIH_MGC_20 Homo	DID 71/ 00 71/	7.1 7.1
15	422765 419823	AW409701	Hs.1578 Hs.116918	baculoviral IAP repeat-contain ESTs, Wealthy similar to M2OM_H	BIR,TK,SS,TM SS,TM	7.1 7.1
13	405247	AW271708	ns. 1 10310	Target Exon	SS	7.1
	455778	BE088746		gb:CM2-BT0693-210300-123-d09 B	•	7.1
	431005	AA490544	Hs.127269	ESTs, Weakly similar to T02345	WD40	7.1
	435717	AF227905	Hs.105794	UDP-glucose:glycoprotein gluco	Glyco_transf_8	7.1
20	405113			Target Exon	SS	7.1
	428070	T63918	Hs.182313	retinol-binding protein 2, cel	lipocalin,lipocalin,WD40	7.1
	429029	AA443443	Hs.85524	for muscle specific ring finge	SS TALL	7.1
	430354	AA954810	Hs.239784	human homolog of Drosophila Sc	SS,TM,ig Phodosoco DSPc SS DSPc	7.0 7.0
25	412970 438701	AB026436 AA937112	Hs.177534 Hs.207788	dual specificity phosphatase 1 ESTs	Rhodanese, DSPc, SS, DSPc TM, sushi	7.0
23	454756	AW819273	110.201100	gb:CM2-ST0284-061299-046-a12 S	***************************************	7.0
	401264			C18000090*:gl[6678656 ref[NP_0	SS,laminin_Nterm,laminin_	7.0
	408080	AW149754	Hs.248652	ESTs, Wealdy similar to T00273	SS	7.0
20	418641	BE243136	Hs.86947	a disintegrin and metalloprote	disintegrin,Reprolysin,Pe	7.0
30	431402	AA743534	Hs.250861	ESTs	00	7.0
	423790	BE152393	U- C0450	gb:CM2-HT0323-171199-033-a08 H	SS	7.0 7.0
	450688 405928	AW272352	Hs.60450	ESTs Target Exon	TM SS,cyslatin,Coprogen_oxid	7.0
	454438	AA224053		cell division cycle 27	SS,TM,SPRY,7tm_3,ANF_rece	7.0
35	407281	Al307226	Hs.164421	ESTs	SS	6.9
-	423386	AW136098	Hs.314081	ESTs	SS,WD40,EPO_TPO	6.9
	459360	BE384526	Hs.25734	gb:601277913F1 NIH_MGC_20 Homo		6.9
	420187	AK001714	Hs.95744	hypothetical protein similar t	ank,TM	6.9
40	431549	AA507036	Hs.170673	ESTs		6.9
40	423384	AL133632	Hs.127808	Homo sapiens mRNA; cDNA DKFZp4		6.9
	454577	AW809272		gb:MR4-ST0118-040100-034-c08_1	SS,lipocalin	6.9 6.9
	438118 416233	AW753311 AA176633		ESTs gb:zp13g01.s1 Stratagene fetal	55,upocaun	6.9
	417012	N38970	Hs.194214	ESTs		6.9
45	452399	8E513301	Hs.29344	hypothetical protein, clone 24	SS,perilipin	6.9
	439963	AW247529	Hs.6793	platelet-activating factor ace	PAF-AH_lb,Lipase_GDSL,SS,	6.9
	418416	U11700	Hs.84999	ATPase, Cu transporting, beta	E1-E2_ATPase,HMA,Hydrolas	6.9
	404956			C1003210*:gi 6912582 ref NP_03	PI3_PI4_kinase,PI3K_C2,PI	6.9
50	451606	AA018791	Hs.7945	AIE-75 binding protein protein	SS	6.9
50	438525	AW368528	Hs.100855	ESTs	SS	6.9 6.9
	400906	44245241	Nº EEUEU	C18000324:gi 12229928 sp Q9PTW ESTs, Weakly similar to KIAA13	SS	6.8
	411411 406834	AA345241 Al318680	Hs.55950	gb:ta49g09.x1 NCI_CGAP_Lu25 Ho	33	6.8
	414629	AA345824	Hs.76688	carboxylesterase 1 (monocyte/m	SS,COesterase,SS,COestera	6.8
55	424198	AB029010	Hs.143026	KIAA1087 protein	SS,TM,Na_Ca_Ex,Calx-beta,	6.8
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytop	SS,PABP,rrm,pkinase,14-3-	6.8
	439605	AF086431	Hs.22380	ESTs	SS,TM	6.8
	432284	AA532807	Hs.105822	ESTs	SS,TM,pkinase	6.8
60	421904	BE143533	Hs.109309	hypothetical protein FLJ20035	Frank-in SC XM	6.8
UU	443136 421758	NM_001440 BE397336	Hs.9018 Hs.1422	exostoses (multiple)-like 3 Gardner-Rasheed feline sarcoma	Exostosin,SS,TM SH2,SH3,pkinase	6.8 6.8
	448148	NM_016578		HBV pX associated protein-8	PHD, Virus_HS, SS, ICIn_chan	6.8
	400205	141/_010070	110.20000	NM_006265*:Homo sapiens RAD21	SS	6.8
	434315	AW196608		ESTs	•	6.8
65	418184	AA367375		Homo sapiens cDNA FLJ14015 fis		6.8
	431898	AK000020	Hs.272018	hypothetical protein FLJ20013		6.7
	438627	AI087335	Hs.123473	ESTs	TM,Reticulon	6.7
	409649	AA159216	Hs.55505	hypothetical protein FLJ20442	Y_phosphatase,DSPc,TM	6.7 6.7
70	429712	AW245825	Hs.211914	ENSP00000233627*:NADH-ublquino ESTs, Weakly similar to 138022	oxidored_q6,SS,TM,rrm	6.7 6.7
70	456886 427461	AW089093 AA531527	Hs.144996 Hs.332040	hypothetical protein MGC13010	SS,TM,ACAT,LRR	6.7
	434000	BE002846	Hs.112964	ESTs		6.7
	432530	AF131786	Hs.278303	Homo sapiens clone 25220 mRNA	SS,proteasome	6.7
	436141	AA970001	Hs.150319	Homo sapiens, clone IMAGE:3610	SS,TM	6.7
75	441794	AW197794		ESTs		6.7
	450287	AW291483	Hs.255909	ESTS	00	6.7
	441523	AW514263	11- 60	ESTs, Weakly similar to ALUF_H	SS CC TH THER ~C	6.7
	452798	AI918771	Hs.257170	ESTS	SS,TM,TNFR_c6	6.7 6.7
80	451937 421417	AF119664 AA291004	Hs.27299 Hs.326088	transcriptional regulator prot ESTs	SS,integrin_B,fn3,Calx-ba	6.7 6.7
50	440317	BE561888	N3-J20000	gb:601346093F1 NIH_MGC_8 Homo		6.7
	421321	NM_005309	Hs.103502		aminotran_1_2,SS,TM,LRR	6.7
	444904	AW452054		ESTs		6.7
	449730	R72290	Hs.117557	ESTs, Weakly similar to 138022	RasGAP,thyroglobulin_1,Ri	6.7
					223	

	450622	AI660285	Hs.58210	ESTs, Highly similar to ITH4_H	SS,TM,vwa	6.7
	425424	NM_004954		ELKL motif kinase	pkinase,KA1,UBA,SS	6.7
	435864	AL036499	Hs.188491	ESTs		6.7
_	410397	AF217517	Hs.63042	DKFZp564J157 protein	SS,homeobox,UPF0160,DUF23	6.7
5	454262	AW612232	Hs.254835	ESTs	SS,TM,vollage_CLC,CBS	6.7
	453023	AW028733	Hs.31439	serine protease inhibitor, Kun	Kunitz_BPTI,SS,TM,ion_tra	6.6
	419157	AA234540	Hs.23871	ESTs	pkinase SS andhorin comtall	6.6 6.6
	412464 407332	T78141 AJ801565	Hs.22826	ESTs, Weakly similar to 155214 Homo saptens cDNA FLJ11379 fis	SS,cadherin,crystall SS,adh_short,Transglutami	6.6
10	456643	AW751497	Hs.200113 Hs.98370	cytochrome P450, subfamily IIS	55,adit_anoit, it alsignizaris	6.6
10	411490	R39474	15.50570	gb:yh95b09.r1 Soares placenta	SS	6.6
	455885	BE153524		gb:PM0-HT0339-241199-002-C03 H	SS,pkinase	6.6
	438857	Al627912	Hs.130783	Forssman synthetase	SS,RA,RasGEF,RasGEFN	6.6
	420307	AW502869	Hs.66219	ESTs	SS,TM	6.6
15	453496	AA442103	Hs.33084	solute carrier family 2 (facil	sugar_tr,SS,TM	6.6
	419182	AA234822	Hs.66147	ESTs	SS,TM,ion_trans,ion_trans	6.6
	406301			Target Exon	TM	6.6
	433938	AF161536	Hs.284292	ubiquinol-cytochrome c reducta	TM	6.6
	448980	AL137527	Hs.289038	hypothetical protein MGC4126		6.6
20	454095	AW178110	Hs.191705	gb:lL3-HT0061-010999-013-H04 H	SS,TM,homeobox,trypsin,PD	6.6
	459702	A1204995		gb:an03c03.x1 Stratagene schiz		6.6
	422201	NM_001505		G protein-coupled receptor 30	7tm_1,SS,TM	6.6
	406779	AA412048	Hs.279574	CGI-39 protein; cell death-reg	SS,SS	6.6
25	404149			C6002509*:gi[5031885[ref]NP_00	SS,TM,kringle	6.6
25	418576	AW968159	Hs.302740	Epithelial calcium channel 2,	SS,TM	6.6
	421363	NM_001381		docking protein 1, 62kD (downs	PH,IRS,TM,PH,IRS,trypsin,	6.6
	458919	AI681567	Hs.13349	KIAA0756 protein	TM SS TM ABC tree Chara tree	6.6 6.5
	427502	AI811865	Hs.7133	Homo saplens, clone IMAGE:3161	SS,TM,ABC_tran,Glyco_tran SS	6.5
30	412289	AW935967	Hs.170162	KIAA1357 protein	SS,TM	6.5
50	447105 444672	AW377610 295636	Hs.11123 Hs.11669	DKFZP564G092 protein taminin, alpha 5	laminin_EGF,laminin_G,EGF	6.5
	429299	AI620463	Hs.347408	hypothetical protein MGC13102	SS,TM,gla	6.5
	420003	AA256906	Hs.111364	ESTs, Weakly similar to ubiqui	SS,TM	6.5
	431849	AI670823	Hs.85573	hypothetical protein MGC10911	SS.TM	6.5
35	430396	D49742	Hs.241363	hyaluronan-binding protein 2	trypsin,kringle,EGF,SS	6.5
55	437662	AA765387	1.0.2 11000	ESTs	WD40,RCC1,SPRY	6.5
	436543	NM_002212	Hs.5215	integrin beta 4 binding protei	elF6	6.5
	405375			CX000741*:gi 4885461 ref NP_00	SS,TM	6.5
	430116	AA465350	Hs.119400	ESTs	SS,TM,adh_short	6.5
40	406109			Target Exon		6.5
	414871 ·	BE549179	Hs.29008	gb:601078714F1 NIH_MGC_12 Homo		6.5
	440656	A1979248	Hs.148221	ESTs		6.5
	438951	U51336	Hs.6453	Inositol 1,3,4-triphosphate 5/	SS,oxidored_nitro,SS	6.5
45	405376			Target Exon	SS,TM	6.5
45	426925	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fi	SS	6.5
	400500			Target Exon		6.5
	408294	BE141732		gb:QV0-HT0101-061099-032-e07 H	Ammonlum_transp	6.5
	447904	AW206303	H- 974099	ESTS	SS	6.4 6.4
50	439211	AI890347	Hs.271923	Homo saplens cDNA: FLJ22785 fi	pkinase,Activin_recp,SS,T	6.4
50	426828 446100	NM_000020 AW967109	Hs.172670 Hs.13804	activin A receptor type II-lik hypothetical protein dJ462O23.	SS,TM	6.4
	442146	R52599	NS. 13004	gb:yg81g01.r1 Soares infant br	TM	6.4
	425041	Al377150	Hs.150914	ESTs	SS	6.4
	457584	AA147979	Hs.285005	mitochondrial Import receptor	Josephin	6.4
55	435449	AA682379	Hs.303460	EST	-	6.4
	406284			Homo sapiens mRNA full length		6.4
	425944	AK000664	Hs.164256	hypothetical protein FLJ20657		6.4
	453367	AW732847	Hs.70573	PKCI-1-related HIT protein	SS,TM	6.4
	419725	U66048	Hs.92683	Homo sapiens clone 161455 brea		6.4
60	412452	AA215731		suppression of tumorigenicity	SS	6.4
	421273	AJ245416	Hs.103106	U6 snRNA-associated Sm-like pr	Sm,SS,IRNA-synt_1,GST_C,G	6.4
	432746	AA564512	Hs.24301	polymerase (RNA) II (DNA direc	SS,TM,EF1BD	6.4
	429398	AA452239		KIAA0970 protein		6.4
65	404430			C8000066*:gi 10432395 emb CAC1	SS	6.4
65	427339	A1734109	Hs.97984	SRY (sex determining region Y)		6.4
	436389	AI811706	11- 000000	CHMP1.5 protein		6.4 6.4
	428890	AA525226	Hs.303293	ESTs, Moderately similar to 15 hypothetical protein FLJ12538	SS	6.4
	445333 414756	BE537641 AW451101	Hs.44278 Hs.159489	ESTs, Moderately similar to JC	hexokinase2,hexokinase	6.4
70	423847	U16997	Hs.133314	RAR-related orphan receptor C	hormone_rec.zf-C4.SS.TM.h	6.4
, ,	408493	8E206854	Hs.46039	phosphoglycerate mutase 2 (mus	PGAM,BRCT,RNA_pol_L	6.4
	439569	AW602166	Hs.222399	CEGP1 protein	CUB,EGF,SS	6.4
	457274	AW674193	Hs.227152	mannan-binding lectin serine p	SS,TM,SS,TM,Clathrin_lg_c	6.4
	444550	BE250716	Hs.87614	ESTs	SS	6.4
75	407198	H91679		gb:yv04a07.s1 Soares fetal liv	BIR	6.4
-	423228	AL137491	Hs.125511	Homo sapiens mRNA; cDNA DKFZp4	SS,TM,sushi	6.4
	422682	W05238	Hs.94316	ESTs, Weakly similar to T31613	SS,TM,DEAD,helicase_C,Lam	6.3
	447887	AA114050	Hs.19949	caspase 8, apoptosis-related c	ICE_p20,DED,ICE_p10	6.3
00	400137			Eos Control		6.3
80	408784	AW971350	Hs.63386	ESTs	SS	6.3
	435028	AW193035	Hs.187370	ESTs	PO 714 71 4	6.3
	438113	AI467908	Hs.8882	ESTs	SS,TM,7tm_1	6.3
	417810	D28419 A1057205	Hs.82609 Hs.14584	hydroxymethylbilane synthase	Porphobil_deam	6.3 6.3
	436050	A.W. 203	110.17304	ESTs	004	0.3

	403672 448269	DECOME	11: 04000	C4001244:gij539933 pir jA61275	tubulin,TM	6.3 6.3
	440209	BE622358 N47863	Hs.61260 Hs.180450	hypothetical protein FLJ13164 ribosomal protein S24	Ribosomal_S24e	6.3
_	426675	AW084791	Hs.133122	hypothetical protein FLJ14524	SS,TM,aminotran_1_2	6.3
5	423510	AB000824	Hs.129712	trehalase (brush-border membra	Trehalase	6.3
	428573	AA430651	Hs.209249	ESTS	SS	6.3 6.3
	457052 445099	BE167242 BE163341	Hs.47099	hypothetical protein FLJ21212 gb:QV3-HT0458-230200-099-b01 H	33	6.3
	450334	AF035959	Hs.24879	phosphalidic acid phosphatase	PAP2,SS	6.3
10	416000	R82342	Hs.79856	ESTs, Wealtly similar to S65657	SS,TM,sugar_tr	6.3
	427880	AA436011	Hs.98187	ESTs	Controlin CC TM DID	6.3 6.3
	426722 452072	U53823 BE258857	Hs.171952 Hs.27744	occludin RAB3A, member RAS oncogene fam	Occludin,SS,TM,BIR ras,arf,SS,PDEase	6.2
	431161	AA493591	110.27144	gb:nh01a12.s1 NCI_CGAP_Thy1 Ho	SS	6.2
15	413055	AV655701	Hs.75183	cytochrome P450, subfamily IIE	p450	6.2
	431250	BE264649	Hs.251377	taxol resistance associated ge	SC TM sum EC CAB intends	6.2 6.2
	406373 403003			Target Exon NM_024944*:Homo saplens hypoth	SS,TM,vwa,FG-GAP,integrin TM	6.2
	437834	AA769294		gb:nz36g03.s1 NCI_CGAP_GC81 Ho	SS	6.2
20	406299			Target Exon		6.2
	439327	AF086141	Hs.50760	ESTs, Highly similar to BimL (SS	6.2 6.2
	414246 427812	BE391090 AA770424	Hs.280278 Hs.98162	EST ESTs	SS	6.2
	420926	AA830402	Hs.221216	ESTs ·	UQ_con	6.2
25	443766	N91071	Hs.109650	ESTs	_	6.2
	431082	AA491600		gb:ne80a11.s1 NCI_CGAP_Ew1 Hom		6.2 6.2
	420530 407360	AJ218431 X13075		coagulation factor VIII-associ gb:Human 2a12 mRNA for kappa-i		6.2 6.2
	449008	AW578003	Hs.22826	tropomodulin 3 (ubiquitous)		6.2
30	409946	AW162263	Hs.312468	ESTs, Wealthy similar to ALUC_H	RasGAP,C2,PH,BTK	6.2
	413272	AA127923		ESTs	SS	6.2
	445050 458130	AW205483 AA115811	Hs.147260 Hs.6838	ESTs ras homolog gene family, membe	SS,trypsin,kringle,fn2,EG ras.arf	6.2 6.2
	449940	AW291126	Hs.187520	Homo saplens, clone IMAGE:3834	SS.zf-C2H2	6.2
35	440390	AW207385	Hs.36475	KIAA0493 protein		6.2
	423106	N52572	Hs.13702	ESTs, Moderately similar to AL		6.2
	402501 431470	44022447	Un 1200E0	sperm specific antigen 2 ESTs	ig,MHC_I,SS SS,ig,pkinase,LRR,LRRCT	6.1 6.1
	416597	AA832417 H66891	Hs.139650	gb:yr71c03.r1 Soares fetal liv	33,ig.pxiiiasa,Ltxix.cri	6.1
40	412122	AW852707		G-rich RNA sequence binding to	SS,WD40	6.1
	415056	AB004662	Hs.77867	adenosine A1 receptor	7tm_1,SS,TM	6.1
	400358	AF181286		Homo sapiens mutant dystrophin	CPSase_L_chain,btotin_lip	6.1 6.1
	405473 422625	AW504698	Hs.155976	NM_001093*:Homo saplens acetyl cullin 4B	SS,SS,Cullin,Cullin	6.1
45	422262	AL022315	Hs.113987	fectin, galactoside-binding, s	Gal-bind_lectin	6.1
	401121			C12001638*:gij7291960lgbjAAF47		6.1
	425188 457216	AK002052 AA452554	Hs.155071 Hs.283697	hypothetical protein FLJ11190	TM bzip_maf,ss,p5cr,ef1bd	6.1 6.1
	45/216	BE246628	Hs.250726	ESTs, Weakly similar to A41796 gb:TCBAP1D5030 Pediatric pre-B	SS,TM,SS	6.1
50	420319	AW406289	Hs.96593	hypothetical protein	ras,arf	6.1
	410082	AA081594	Hs.158311	Musashi (Drosophila) homolog 1	SS,HECT,phoslip	6.1 6.1
	450593 437050	AF129085 AA766420	Hs.25197	STIP1 homology and U-Box conta ESTs	TPR,SS,TM,Rhomboid,lactam SS	6.1
	457030	AI868753	Hs.76372	ESTs	SS	6.1
55	412777	Al335773		ESTs		6.1
	454364	BE263928	Hs.323806	gb:601191272F1 NIH_MGC_7 Homo	SS,TM	6.1
	448877 413045	AI583696 X92121	Hs.253313 Hs.75180	ESTs protein phosphatase 5, catalyt	Metallophos, TPR	6.1 6.1
	408054	AW816490	Hs.8102	ESTs	Metallophos, 11 17	6.1
60	417852	AJ250562	Hs.82749	transmembrane 4 superfamily me	transmembrane4,SS,TM	6.1
	410445	AA199830		gb:zq75h01.r1 Stratagene hNT n		6.1
	415870 438723	H15578 M34429	Hs.21017	ESTs gb:Human PVT-IGLC fusion prote		6.1 6.1
	441307	AW071696	Hs.209065	hypothetical protein FLJ14225	SS,TM	6.0
65	406575			Target Exon	SS,pkinase,pkinase_C,RFX_	6.0
	401488			Target Exon	Gtyco_hydro_1	6.0
	437650 439827	AA814338 AA846538	Hs.292297	ESTs ESTs	pkinase,DAG_PE-bind,PH	6.0 6.0
	456373	BE247706	Hs.187389 Hs.89751	membrane-spanning 4-domains, s	SS,TM	6.0
70	454513	BE159271	Hs.109731	gb:MR0-HT0407-180100-004-h05 H		6.0
•	414944	C15044		gb:C15044 Clontech human aorta	SS,TM	6.0
	451277	AK001123	Hs.26176	hypothetical protein FLJ10261 mucin 5, subtype B, tracheobro	TM,SS,TM,death,DED Cys_knot,vwc	6.0 6.0
	421190 401215	U95031	Hs.102482	C12000457*:gi[7512178[pirl]T30	trypsin,SS,TM	6.0
75	408117	AL138255		ESTs, Weakly similar to 138022	SS,zf-C3HC4,BIR	6.0
	426357	AW753757	Hs.12396	gb:RC3-CT0283-271099-021-a08 C	CC aliana	6.0
	418630 400389	Al351311 AL135841	Hs.251946	poty(A)-binding protein, cytop olfactory receptor, family 2,	SS,pkinase 7tm_1,SS,TM,CSD	6.0 6.0
	447128	AL133641 Al271898		cyclin K	· niCitadi intaco	6.0
80	431297	AA651771	Hs.3076	ESTs		6.0
	431857	W19144	Hs.271742		PARP,PARP_reg,SS,TM,Pepti	6.0
	430023 453101	AA158243 AW952776	Hs.227729 Hs.94943	FK506-binding protein 2 (13kD) ESTs	SS,FKBP,SS,PDGF,C2,PI-PLC TM	6.0 6.0
	407383	AA532576	110,54540	ESTs, Moderately similar to AL	SS,Patatin,ank	6.0
					225	
					<i></i>	

	100100				00.00 7111	
	430132	AA204686	Hs.234149	hypothetical protein FLJ20647	SS,SS,TM,ig	6.0
	459111	AU077013	Hs.28757	transmembrane 9 superfamily me	EMP70	6.0
	405770	TOCOTC		NM_002362:Homo sapiens melanom	MAGE	6.0
5	415611	T26376		gb:AB123C11R Infant brain, LLN	SS,TM,mm,sushi	6.0 6.0
,	453413	AJ003294	Un 440000	gb:AJ003294 Selected chromosom	SS,Folate_carrier	5.9
	424415 426048	NM_001975 AI768853	Hs.134478	enolase 2, (gamma, neuronal) ESTs	enolase, SS, Alrophin-1, Atr TM	5.9
	435750	AB029012	Hs.4990		SS,TM	5.9
	439469	W69836	ns.4330	KIAA1089 protein gb:zd48a02r1 Soares_fetat_hea	SS,pkinase,C2,pkinase_C,D	5.9
10			He 227601		20-huusselosthuusse_o'n	5.9
10	445664	AW968638	Hs.237691	ESTs, Weakly similar to KIAA06	TM,CDP-OH_P_transf	5.9
	418830	BE513731	Hs.88959	hypothelical protein MGC4816	actin	5.9
	452113	AI859393 AA205847	U- 22016	gb:wm11s02.x1 NCI_CGAP_Ut4 Hom		5.9
	449101	AA764893	Hs.23016	G protein-coupled receptor	7tm_1,SS,TM	5.9
15	437640	AA104033	Hs.272155	ESTs, Wealdy similar to 138022	SS,Peptidase_M10,hemopexi	5.9
13	400748 442370	Al143593	Hs.129419	NM_022122:Horno sapiens matrix	20'Lehnoose In Lo'tierilohevi	5.9
	442419	AI749893	Hs.270532	ESTs Weakly similar to 139022	Adaptin_N,Alpha_edaptinC2	5.9
	439986	AW750272	Hs.128608	ESTs, Weakly similar to 138022 ESTs	SS,TM,ISK_Channel	5.9
	407553	Z11168	113.120000	gb:H.sapiens 5HT1A receptor re	SS,TM	5.9
20	431424	Al222969		ESTs	SS	5.9
20	442297	NM_006202	He 89901	phosphodiesterase 4A, cAMP-spe	PDEase	5.9
	457845	H93040	Hs.297729	ESTs	SS,TM,WD40	5.9
	446912	Al347650	Hs.128521	ESTs, Moderately similar to AL	SS	5.9
	451381	BE241831	Hs.172330	hypothetical protein MGC2705	SS,Ribosomal_L28e	5.9
25	416024	AW886484	Hs.343522	ATPase, Ca transporting, plasm	E1-E2_ATPase,Hydrolase,Ca	5.9
	446329	NM_013272		solute carrier family 21 (orga	kazal,OATP_N,OATP_C	5.9
	431321	AW136372		acid phosphatase, prostate	SS,TM,ackd_phosphat	5.9
	420039	NM_004605		sulfotransferase family, cytos	Sulfotransfer, SS, DAGKc	5.9
	428223	AA424313	Hs.98402	ESTs	HECT	5.9
30	433333	AI016521	Hs.71816	v-akt murine thymoma viral onc	homeobox,pkinase,PH,pkina	5.9
50	450251	BE080483	113.7 1010	gb:QV1-BT0630-280200-086-a05 B	SS S	5.9
	408511	AW206404	Hs.27268	ESTs	•	5.9
	414348	AF041430	Hs.75922	brain protein 13	SS,SH3	5.9
	456950	AF111170	Hs.306165	Homo sapiens 14q32 Jagged2 gen	SS,TM,OSL	5.9
35	412173	T71071	113.000100	gb:yc50b05.r1 Stratagene liver	CPSase_L_chain	5.8
55	404001	111011		Target Exon	O 000_0_0	5.8
	445263	H57646	Hs.42586	KIAA1560 protein	SS	5.8
	441583	AI791499	Hs.205742	ESTs, Weakly similar to ALUA_H		5.8
	430168	AW968343	110.2001 12	DKFZP434I1735 protein	SS,TM,efhand,efhand	5.8
40	454682	AW816029		gb:MR3-ST0220-151299-027-b10 S	filament	5.8
	453829	AL138200		gb:DKFZp547N052_r1 547 (synony	SS,TM,ATP-synt_C,Galactos	5.8
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G	SS	5.8
	421726	AK001237	Hs.319088	hypothetical protein FLJ10375	TM	5.8
	451045	AA215672	113.013000	gb:zr96e09.s1 NCI_CGAP_GCB1 Ho	SS,Peptidase_C1,zf-C2H2	5.8
45	439616	BE018635	Hs.58582	Homo sapiens cDNA FLJ12789 fis	SS,TM	5.8
10	455679	BE066529	113.00002	gb:RC3-BT0333-300300-017-a12 B	UBX	5.8
	457125	AW444451	Hs.134812	ESTs	SS	5.8
	430600	AW950967	Hs.274348	HLA-B associated transcript-3	ubiquitin,SS,TM,G-patch,a	5.8
	421707	NM_014921		lectomedin-2	Latrophilin, OLF, 7tm_2, Gal	5.8
50	436127	W94824	Hs.11565	RIKEN cDNA 2010100012 gene	Corona_7,SS,TM	5.8
	414347	BE275835	110.11000	gb:601121639F1 NIH_MGC_20 Homo	SS	5.8
	439910	H66765	Hs.339397	ESTs	SS	5.8
	410382	AW664971	Hs.259546	ESTs	LIM	5.8
	426391	AW161050	Hs.169611	second milochondria-derived ac	SS	5.8
55	423358	Al815474	Hs.343866	gb:au47f10.y1 Schneider fetal	SS	5.8
	440146	AW014231	Hs.90790	Homo sapiens cDNA: FLJ22930 fi	Peptidase_M1	5.8
	402189			ENSP00000247423*:D-siglec prec		5.8
	439949	AW979197	Hs.292073	ESTs, Weakly similar to ALU7_H		5.8
	457978	AA776638		gb:ae78g04.s1 Stratagene schiz	SS,PH.IQ,RasGEF,RasGEFN,R	5.8
60	436685	W28661	Hs.5288	Homo sapiens mRNA; cDNA DKFZp4	SS,TM,pkinase,Activin_rec	5.8
	411602	L01406	Hs.767	growth hormone releasing hormo	7tm_2,HRM	5.8
	433357	T05639		gb:EST03528 Fetal brain, Strat	SS	5.8
	404311			Target Exon	TM	5.8
	428092	AW879141		ESTs	SS,TM	5.8
65	452620	AA436504	Hs.119285	ESTs	SS	5.8
	401938			Target Exon	SS,PHD,proteasome	5.7
	407202	N58172	Hs.109370	ESTs	SS,F5_F8_type_C,pkinase,E	5.7
	458882	R34993	Hs.226666	ESTs, Moderately similar to 15	SS,CRAL_TRIO.PKI	5.7
	452357	AI638176	Hs.283865		SS,TM,SS,TM	5.7
70	452625	AA724771	Hs.61425	ESTs		5.7
	430281	AI878842	Hs.237924	CGI-69 protein	mito_carr,SS,TM	5.7
	430490	AW902951	Hs.301723	Homo sapiens cDNA FLJ12974 fis	TM	5.7
	450122	BE313765	Hs.343443	ESTs, Wealdy similar to 138022	SS,TM,Y_phosphatase,LON,A	5.7
	450801	AI739013	Hs.203348	ESTs	SS,TM,Hint,HH_signal	5.7
75	413413	D82520	Hs.132390	zinc finger protein 36 (KOX 18	SS,mm,DUF185	5.7
	445631	AK001822		Homo sapiens cDNA FLJ10960 fis		5.7
	419390	AI701162	Hs.90207	hypothetical protein MGC11138	SS,TM,PMP22_Claudin,PMP22	5.7
	423139	AW402725	Hs.288560	hypothetical protein FLJ21106		5.7
00	426221	AB007881		KIAA0421 protein	PI3_PI4_kinase,FATC,SS,TM	5.7
80	443785	AW449952	Hs.190125	basic-helix-loop-helix-PAS pro		5.7
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20,	WD40,SS,TM,fn3,EGF,fn3,ig	5.7
	446596	AW204515		ESTs, Wealthy similar to G01025	•	5.7
	432353	NM_016558	Hs.274411	SCAN domain-containing 1	SCAN	5.7
	427625	AF008216	Hs.285013	putative human HLA class II as		5.7
					006	

	421543	AK000519	Hs.105606	hypothetical protein FLJ20512	TM	5.7
	418087	AA961613	Hs.127838	ESTs	••	5.7
	432751	AF152099	Hs.278911	interleukin 17C	SS	5.7 5.7
5	433943 414274	AA992805 AW300961	Hs.44865 Hs.334684	lymphoid enhancer-binding fact Homo sapiens, clone IMAGE:4127	SS,Vps26,Acyl-CoA_dh	5.7 5.7
,	431328	AA502999	Hs.291591	ESTs	22'AbsaveAcon_on	5.7
	451481	AA300228	Hs.295866	hypothetical protein DKFZp434N		5.7
	430344	AA476827	Hs.171012	hypothetical protein FLJ22349	HLH	5.6
10	419516	H82550		ATP-binding cassette, sub-fami	SS,TM,ABC_tran,ABC_membra	5.6
10	413564	BE260120	•	gb:601146990F1 NIH_MGC_19 Homo		5.6
	415958	H10942		gb:ym06c11.r1 Soares infant br	SS,TM	5.6
	401402	DE000103	11-04440	Target Exon	00 DIV 503 DCD 01-1	5.6
	456145	BE299427	Hs.21446	KIAA1716 protein	SS,DIX,POZ,DEP,Dishevelle	5.6 5.6
15	431536 456266	AL133066 L29073	Hs.341906 Hs.198726	ESTS	TM,SAM_decarbox,SS,pkinas	5.6 5.6
13	435800	AI248285	Hs.118348	cold shock domain protein A ESTs	CSD,homeobox,SS,TM,7tm_2, TM,ECH,chromo	5.6
	449285	AI912702	Hs.139135	ESTs	ringeon gallotto	5.6
	418256	AW845318	Hs.12271	f-box and leucine-rich repeat	SS,SS,TM,HSF_DNA-bind	5.6
	417442	AA199940	Hs.124039	ESTs		5.6
20	405931			Target Exon		5.6
	455286	BE144384		gb:MR0-HT0166-191199-004-c11 H	SS	5.6
	446931	Al348856	Hs.21627	gb:tb05a05.x2 NCI_CGAP_Lu26 Ho		5.6
	446548	AI769392	Hs.200215	ESTs	SS,TM,Ribosomal_S25,sugar	5.6
25	401984			C17000146*:gij2143629[pir][A57	pkinase,SS,TM,P2X_recepto	5.6
23	404066 418363	AA218628	Hs.202977	Target Exon ., ESTs	SS,IRNA-synt_2b,HGTP_anti	5.6 5.6
	458198	Al286100	NS.202977	ESTS .		5.6
	432278	AL137506	Hs.274256	hypothetical protein FLJ23563	SS,TM,GNS1_SUR4,SS,TM,Rho	5.6
	432328	AI572739	Hs.195471	6-phosphofructo-2-kinase/fruct	PGAM,6PF2K	5.6
30	421871	AK001416	Hs.306122	glycoprotein, synaptic 2	TM, Steroid_dh, SS	5.6
	415514	F11301 .	Hs.138329	ESTs	SS,TM	5.6
	426208	Al370379	Hs.132216	ESTs	SS,TM	5.6
	429367	AB007867	Hs.278311	plexin B1	Sema,PSI,TIG,SS,TM,TIG,Se	5.6
25	405939			Target Exon		5.6
35	457331	AV647405	Hs.18443	aldehyde dehydrogenase 8 famil	GTP_EFTU	5.6
	438705	AI049624	Hs.283390	ESTs, Weakly similar to 210926	SS,E2F_TDP,E2F_TDP	5.6
	428624	Al125222	Hs.98712	hypothetical protein DKFZp434H	SS,TM;ras,MSP_domain	5.6
	419389 447595	A1074951 AW379130	Hs.319095 Hs.18953	ESTs phosphodiesterase 9A	SS,DPPIV_N_term PDEase	5.6 5.6
40	408015		·Hs.244349	epidermal differentiation comp	rocase	5.6
	413041	BE061580	Hs.61622	gb:MR0-BT0249-091299-201-c07 B	SS	5.5
	452849	AF044924	Hs.30792	hook2 protein	bZIP,SS,AhpC-TSA	5.5
	434357	AW732284		mevalonate (diphospho) decarbo	GHMP_kinases,SS,TM	5.5
	455274	BE151622		gb:PM0-HT0302-271099-001-a08 H	SS,TM,RNA_pol_L	5.5
45	453904	AW003821		ESTs		5.5
	424624	AB032947	Hs.151301	Ca2+dependent activator protei	Fork_head	5.5
	426576	AA381720	11- 07404	gb:EST94853 Activated T-cells	vwa,Integrin_A,FG-GAP	5.5
	440682	AW362152	Hs.27181	nuclear receptor binding facto	ce	5.5 5.5
50	419125 450207	AA642452 T87615	Hs.130881 Hs.14716	B-cell CLL/lymphoma 11A (zinc ESTs	SS	5.5 5.5
50	405211	107013	NS.14710	C7000900:gi]4508027 ref]NP_003	SS	5.5
	413937	H65775	Hs.207915	ESTs	00	5.5
	426793	X89887	Hs.172350	HIR (histone cell cycle regula	WD40, Clathrin, Clathrin_pr	5.5
	412091	R06185		gb:ye94d03.r1 Soares fetal liv	SS,TM,IBR,IBR	5.5
55	446536	W74413	Hs.15251	hypothetical protein	SS	5.5
	451117	AA015752	Hs.205173	ESTs		5.5
	409547	AW409885	Hs.335877	Homo sapiens, clone MGC:4558,	TM	5.5
	412673	AL042957	Hs.31845	ESTs		5.5
60	426440	BE382756	Hs.169902	solute carrier family 2 (facil	sugar_tr,SS,TM,sugar_tr SS,TM,Na_sulph_symp	5.5 5.5
00	449225 403038	R39108	Hs.6777	ESTs Target Exon		
	403938 441197	BE244638	Hs.166	sterol regulatory element bind	Ephrin HLH	5.5 5.5
	455604	BE011183	. 10.1.50	gb:PM3-BN0218-100500-003-d09 B	· -	5.5
	457468	AW971345	Hs.292715	ESTs		5.5
65	447677	Al419235	Hs.344456	gb:tf21d02.x1 NCI_CGAP_Brn23 H	SS,zf-C2H2,SCAN,SCAN,zf-C	5.5
	415473	R39986	Hs.12778	ESTs	TM,lon_trans	5.5
	408422	AW977031	Hs.143554	ESTs, Highly similar to B45036		5.5
	442780	AI017521		ESTs	SS,TM,7tm_1	5.5
70	451558		Hs.26630	ATP-binding cassette, sub-fami	ABC_tran,SRP54,SS,TM,ECH	5.5
70	439422	AW452791	Hs.249625	ESTS	SS,TM	5.5
	423479		Hs.129208	death-associated protein kinas	pkinase	5.5
	459558 441187	AI539821 AW195237	Hs.298799 Hs.7734	ESTs, Weakly similar to 210926 hypothetical protein FLJ22174	SS SS,TM,tubulin	5.5 5.5
	420894	AA744597	Hs.88854	ESTs	SS, ank	5.5 5.5
75	404710		. 19.00007	C9001584:gij7499208[pirljT2099		5.5
-	447827	U73727	Hs.19718	protein tyrosine phosphatase,	Y_phosphatase,fn3,ig,MAM,	5.5
	448387	AI874402	Hs.292590	ESTs		5.5
	419541	AW749617	Hs.280776	tankyrase, TRF1-interacting an		5.5
00	449686	AW072813		ESTs, Moderately similar to AL		5.5
80	426315	AA854219	Hs.348137	Homo saplens, clone IMAGE:3542	SS,crystall	5.5
	451312	AJ769831	Hs.337054	ESTs	SS SS TM AAA Bibaramal 1.2	5.5
	432538 446790	BE258332 AW452105	Hs.278362	mate-enhanced antigen ESTs	SS,TM,AAA,Ribosomal_L2 SS,zf-C2H2	5.5 5.5
	448682	T09471	Hs.250820	hypothetical protein FLJ14827	COUNTY IN	5.5 5.5
	+1000E	** *		12 kantonen kanntti en i sent	227	3.5

227

	425234	AW152225	Hs.165909	ESTs, Weakly similar to 138022	SS	5.5
	411219	AW832917	11. 00.4000	gb:QV2-TT0003-161199-013-h06 T	00	5.5
	439742 432004	AI827721 BE018302	Hs.284298 Hs.2894	Homo sapiens mRNA full length placental growth factor, vascu	SS PDGF,SS	5.5 5.5
5	402916	525.0002	1 13.2.007	ENSP00000202587*:Bicarbonate t	HCO3_cotransp,SS	5.5
	405346			Rag C protein	RCC1	5.5
	415976 435064	R43144	Hs.21919	ESTs	TM ec vidya	5.4 5.4
	440024	T70740 AA969333	Hs.31433 Hs.160098	ESTs ESTs	SS,MDM2	5.4 5.4
10	431525	AA506656	Hs.6185	KIAA1557 protein		5.4
	458644	AW270149		ESTs, Moderately similar to GG		5.4
	410895 441350	AW809679 AB020690	Hs.7782	gb:MR4-ST0124-261099-015-f05 S		5.4 5.4
	413034	BE392896	Hs.129126	paraneoplastic antigen MA2 Homo sapiens, clone MGC:10992,	SS	5.4
15	444664	N26362	Hs.11615	map kinase phosphatase-like pr	DSPc,Rhodanese,SS,TM	5.4
	443887	NM_004729		Ac-like transposable element	zf-BED	5.4
	445871 411992	Al702901 AW816214	Hs.145582 Hs.143055	ESTs, Weakly similar to FOR4 M ESTs	SS,TM,efhand,efhand SS,TM	5.4 5.4
	458341	AW373583	Hs.221994	gb:QV4-BT0534-281299-053-e08 B	00,1111	5.4
20	451677	AA059222	Hs.33538	ESTs, Wealtly similar to oxygen		5.4
	432656	NM_000246	Hs.3076	MHC class II transactivator	LRR	5.4
	417739 424618	Z43995 L29472	Hs.1802	gb:HSC1QB121 normalized infant major histocompatibility compl	SS,ArfGap,vwa,TSPN,fn3,Co TM,ig,MHC_II_beta,SS,TM,A	5.4 5.4
	446847	T51454	Hs.82845	Homo saplens cDNA: FLJ21930 fi	SS,TM,BNR,fn3,ld1_recept_	5.4
25	436094	Al798701		ESTs	•	5.4
	433168 417359	AI085436	Un 101117	gb:ow84g06.s1 Soares_fetal_liv	SS,TM,PID	5.4 5.4
	436014	T99264 AF281134	Hs.191117 Hs.283741	ESTs exosome component Rrp46	RNase_PH,RNase_PH_C,SS,TG	5.4 5.4
	435154	AA668764	Hs.301637	ESTs	SS,TM	5.4
30	431630	NM_002204		Integrin, alpha 3 (antigen CD4	integrin_A,FG-GAP,Rhabd_g	5.4
	444064 415970	W85970 H23333	Hs.16292 Hs.29002	ESTs	SS,TM,Dihydroorotase	5.4 5.4
	445303	AW362198	Hs.12503	KIAA1706 protein Interleukin 15 receptor, alpha	SS,sushi,SS	5.4
2.5	421542	AA411607	Hs.118964	ESTs, Weakly similar to KIAA11	SS,SS	5.4
35	459704	AA719572	Hs.274441	Homo sapiens mRNA; cDNA DKFZp4		5.4
	402285 431543	AW969619	Hs.259768	sclerostin adenylate cyclase 1 (brain)	SS,TM TM	5.4 5.4
	431534	AL137531	Hs.258890	Homo sapiens mRNA; cDNA DKFZp4	SS,TM,ras	5.4
40	417516	AA203473	Hs.81529	ESTs	TM	5.4
40	423233	BE048021	Hs.11067	ESTs, Highly similar to T46395	00	5.4
	420733 404807	AW291446	Hs.88651	ESTs Target Exon	SS UPF0027	5.4 5.4
	436483	AJ272063	Hs.283010	vanilloid receptor subtype 1	SS,TM,ank,ion_trans,SS,TM	5.4
15	425316	AA354977	Hs.99010	ESTs, Moderately similar to T1	SS,pkinase,ig	5.4
45	425565 413341	AA359485	Hs.173084	gb:EST68511 Fetal lung II Homo		5.4 5.4
	401203	H78472	Hs.191325	ESTs, Weakly similar to T18967 Target Exon	filament	5.4
	422452	AL110255	Hs.116808	Homo saplens mRNA; cDNA DKFZp5	SS,asp,PGAM	5.4
50	436718	AW015227	Hs.289053	hypothetical protein FU14733	SS.TM	5.4
50	428501 439695	AL041162 W28548	Hs.98587 Hs.285050	ESTs ESTs	TM TM,ion_trans,K_tetra,Kv2c	5.4 5.3
	417514	AA203445	Hs.325819	ESTs	Tripon_ballon (codd, cree	5.3
	441358	AW173212		ESTs	7117177	5.3
55	401722 408905	AV655783	Hs.661	Target Exon Target CAT	TM,PLAT,SS	5.3 5.3
55	454453	AW752781	113.001	hypothetical protein FLJ12614		5.3
	410312	AW850953	Hs.75350	gb:IL3-CT0220-150200-068-A11 C	Vinculin	5.3
	437926	BE383605	Hs.300816	small GTP-binding protein	SS,TM,TPR	5.3 5.3
60	458682 411605	AV659151 AW006831	Hs.202961	ESTs ESTs	TM,synaptobrevin	5.3 5.3
	409164	AA706639		gb:ag90e09.r1 Stratagene hNT n	SS,TM,Hint,HH_signal,tubu	5.3
	438868	AW246243	Hs.334800	hypothetical protein FLJ20974		5.3
	439034 411426	AF075083 BE141714		gb:Homo sapiens full length in gb:QV0-HT0101-061099-032-c04 H	filament, filament SS	5.3 5.3
65	428186	AW504300	Hs.295605	mannosidase, alpha, class 2A,	Glyco_hydro_38,SS,TM,Pept	5.3
	438470	AW936329	Hs.227823	pM5 protein	SS,TM	5.3
	427789	AA412428	Hs.48642	hypothetical protein FLJ23093	om CC 2 Harid DU WD40	5.3 5.3
	430230 434314	BE257724 BE392921	Hs.236361 Hs.3797	seb40 RAB26, member RAS oncogene fam	rm,SS,2-Hacid_DH,WD40 ras,arf,SS	5.3
70	428539	AW410063	Hs.184877	solute carrier family 25 (mito	mito_carr,SS,TM,profilin,	5.3
	414927	T83587	Hs.186476	ESTs	SS,Sulfatase	5.3
	404596 454151	AA047169	Hs.154088	Target Exon hypothetical protein FLJ22756	SS SS,TM,Glycos_transf_4	5.3 5.3
	431627	AW609720	110.104000	HSPC042 protein	ool sustaileed a menta	5.3
75	422379	AA932860	Hs.133864	ESTs		5.3
	426765	AA743603	Hs.172108	nucleoporin 88kD	MAM33	5.3
	433325 403128	AW206986	Hs.143905	ESTs KIAA1033 protein	SS SS,TM,tubulin,EGF,F5_F8_1	5.3 5.3
	447730	AJ421251	Hs.114085	Homo sapiens mRNA for KIAA1755	SS,Transglutamin_C,Transg	5.3
80	405085			Target Exon	SS,SS,SNF2_N,helicase_C	5.3
	438080 439091	AA777381 AA830144	Hs.291530	ESTs, Wealdy similar to ALUC_H ESTs, Moderately similar to 13	KH-domain	5.3 5.3
	427326	A1287878	Hs.135613	gb:qv23f06.x1 NCI_CGAP_Lym6 Ho	SS,TM,7tm_1,SS,TM	5.3
	427859	AA416856	Hs.98170	ESTs	SS,TM,DUF60,trypsin,CUB,u	5.3
					228	

	421779	AI879159	Hs.108219	wingless-type MMTV integration	SS,wnt,SS	5.3
	408270	AW177805		gb:IL3-HT0059-180899-007-806 H		5.3
	418437	AA771738	Hs.348000	ESTs, Moderately similar to AL		5.3
-	409879	BE083422	Hs.56851	hypothetical protein MGC2668	SS,TM	5.3
5	428304	AI743177		ESTs	SS,TM	5.3
	418678	NM_001327		cancer/testis antigen (NY-ESO-	SS,TM,zf-C2H2	5.3
	436540	BE397032	Hs.14468	hypothetical protein MGC14226	SS,TM	5.2 5.2
	437161	AA054477	Hs.25391	ESTS	SS,TM SS pertograms	5.2 5.2
10	400171 431461	BE299671	Hs.256310	ENSP00000211797:Helicase SKI2W likely ortholog of mouse ZFP28	SS,proteasome	5.2
10	402197	DE233011	ns.250510	Target Exon	SS,TM,ATP1G1_PLM_MAT8,ig,	5.2
	449514	AW970440	Hs.23642	protein predicted by clone 236	SS,PX,arf,lipocatin,PHD,z	5.2
	442472	AW806859		gb:MR0-ST0020-081199-004-c03 S	SS,TM,Inos-1-P_synth,Occl	5.2
	409679	BE250521		ras homolog gene family, membe	SS,homeobox,CUT	5.2
15	439150	AF086006		gb:Homo sapiens full length in	SS	5.2
	412934	BE011437		gb:CM4-BN0220-080500-170-f03 B		5.2
	435186	AL119470		ESTs	SS	5.2
	400668			Target Exon	CARD,ICE_p20,SS,ICE_p20,1	5.2
00	409125	R17268	Hs.343567	axonal transport of synaptic v	SS,kinesin,PH,FHA,kinesin	5.2
20	445904	AW449920	Hs.248855	ESTs	SS,homeobox	5.2
	414567	BE281057	Hs.184519	hypothetical protein FLJ12949	SS,TM,ank,Adap_comp_sub	5.2
	414551	AI815639	Hs.76394	encyl Coenzyme A hydratase, sh	ECH,Peptidase_U7,SS,TM	5.2 5.2
	432872	A1908984	Hs.279623	selenoprotein X, 1	DUF25,SS,Ribosomal_L3,PDZ	5.2 5.2
25	419492 407478	AA243547 L77559	Hs.19447	PDZ-LIM protein mystique gb:Homo saplens DGS-B partial	LIM,SS,SH3,Sorb,Metalloph	5.2 5.2
23	457892	AA744389		gb:ny51e10.s1 NCI_CGAP_Pr18 Ho		5.2
	457228	U15177	Hs.206984	Human cosmid CRI-JC2015 at D10	6PF2K,PGAM	5.2
	437536	X91221	Hs.144465	ESTs	SS,TM,Na_Ca_Ex	5.2
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN		5.2
30	431275	T56571	Hs.10041	ESTs	SS,HLH	5.2
	428021	Al022287	Hs.111991	ESTs, Wealdy similar to T33900	SS	5.2
	422400	AA974434	Hs.128353	ESTs		5.2
	446442	BE221533	Hs.257858	ESTs		5.2
2.5	415585	R59946	Hs.184852	KIAA1553 protein	SS	5.2
35	438429	D16918	Hs.12547	Homo sapiens cDNA: FLJ23388 fi	TM	5.2
	401677			BAI1-associated protein 3	SS,TM,zf-C2H2,kinesin,Vau	5.2
	405637	W40050	** ****	Target Exon		5.2
	450437	X13956	Hs.24998	hypothetical protein MGC10471	SS SC SS TM VI V TOM -4 CCCU	5.2 5.2
40	408215 452666	BE614290	Un 12210	syntaxin 10 ESTs	SS,SS,TM,HLH,TRM,zf-CCCH PI-PLC-X,PI-PLC-Y,C2,PH	5.2 5.2
70	401553	AW194601	Hs.13219	Target Exon	PITEON, PITEO 1, OZ, PII	5.2
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	zf-CCHC	5.2
	453434	AJ271378	Hs.333243	ESTs	2.00110	5.2
	450351	BE547267	Hs.59791	hypothetical protein MGC13183	SS,TM	5.2
45	411456	AW847588		gb:IL3-CT0213-161299-038-G09 C	SS,TM	5.2
	445634	AI624849	Hs.344612	ESTs, Weakly similar to NEL1_H	vwd	5.2
	453740	AL120295	Hs.311809	ESTs, Moderately similar to PC		5.2
	426318	AA375125	Hs.147112	Homo sapiens cDNA; FLJ22322 fi	SS,TM,EPH_lbd,pkinase,fn3	5.1
50	416470	N90464	Hs.303023	beta tubulin 1, class VI	SS,tubulin,SS	5.1
50	432022	AL162042	Hs.272348	Homo sapiens mRNA; cDNA DKFZp7		5.1
	457579	AB030816	Hs.36761	HRAS-like suppressor	ТМ	5.1
	438484	AW021671		ESTs, Weakly similar to p40 [H	D) 15150 and	5.1
	422802 401724	NM_004278	HS.270U8	phosphatidylinositol glycan, c	DUF158,ank	5.1 5.1
55	438670	A1275803	Hs.123428	C16001374:gij6755086 refjNP_03 ESTs	TM,PLAT,SS	5.1
55	414757	U46922	Hs.77252	fragile histidine triad gene	HIT	5.1
	425098	AW295349	Hs.8038	ESTs	SS,TM	5.1
	431896	AW297844	Hs.101428	ESTs	SS	5.1
	416732	H81066	Hs.285017	hypothetical protein FLJ21799	SS	5.1
60	404571			NM_015902*:Homo saplens proges	HECT,zf-UBR1,PABP	5.1
•	433675	AW977653	Hs.75319	ribonucleolide reductase M2 po	SS	5.1
	426358	AA376438	11- 40000	gb:EST88856 HSC172 cells II Ho	TM	5.1
	456767	AI086412	Hs.129064	Homo sapiens chromosome 19, co	SS,TM,trypsin,kringle,UPA	5.1
65	412915	AW087727	Hs.74823	NM_004541:Homo sapiens NADH de	APC tran CC	5.1 5.1
05	443553	AL040535	Hs.9573	ATP-binding cassette, sub-fami gb:HSC0SE081 normalized infant	ABC_tran,SS SS	5.1
	415886 401674	Z42737		C16001417*:gi[7500345[pir][T21	FAD-oxidase_C,FAD_binding	5.1
	424266	AA337810	Hs.149152	ESTs, Weakly similar to RHOP M	TAP-average_oft up_entering	5.1
	455035	AW851734	113.143102	gb:MR2-CT0222-011199-007-e10 C		5.1
70	408567	S72921		cliary neurotrophic factor	CNTF	5.1
. •	436616	AW799109	Hs.226755	ESTs	14-3-3	5.1
	409078	AW327515		ESTs		5.1
	447976	AW972653	Hs.293691	ESTs, Highly similar to CR2_HU		5.1
7.	457720	AA992835	Hs.186776	ESTs		5.1
75	400528			NM_020975°:Homo sapiens ret pr	cadherin,pkinase,SS	5.1
	407757	BE048414	Hs.165215	hypothetical protein MGC5395	SS,EF1G_domain,GST_C,GST_	5.1
	452446	AA086123	Hs.297856	EST8	mm,NTF2	5.1
	450807	A1739262	Un sococo	gb:wl17b08.x1 NCI_CGAP_Co16 Ho	ec TM	5.1
80	432540	AI821517 AI638706	Hs.105856	ESTs ESTs Weathy similar to A47582	SS,TM	5.1 5.1
00	449324 426434	A1638706 M17755	Hs.2041	ESTs, Weakly similar to A47582 thyroid peroxidase	EGF,sushi,An_peroxidase,p	5.1
	420434	W27953	Hs.292911	ESTs, Highly similar to S60712	Troponin	5.1
	443952	AI149106	, 184506311	ESTs	SS,pkinase	5.1
	448869	AI792798	Hs.12496	ESTs, Weathy similar to ALU4_H	SS,TM	5.1
					229	

	422837 407143	U25441	Hs.121478	dopamine receptor 03	7tm_1,SS,TM,7tm_1	5.1 5.1
	442296	C14076 NM_007275	Hs.332329 Hs 8186	EST lung cancer candidate	SS,TM SS,TM,Glyco_hydro_56,Glyc	5.1
_	407722	BE252241	Hs.38041	pyridoxal (pyridoxine, vilamin	pfkB,SS	5.1
5	427336	NM_005658	Hs.2134	TNF receptor-associated factor	MATH, SS, MATH, A2M_N, A2M, NT	5.1
	447960	AW954377	Hs.26412	ring finger protein 26	SS,TM,Cbl_N,Cbl_N2,Cbl_N3	5.1
	400863 409034	A1684149	Hs.172035	C11002295:gij11692557 gb AAG39 hypothetical protein similar t	SS,TM SS	5.1 5.1
	421696	AF035306	Hs.106890	Homo saplens clone 23771 mRNA	33	5.1
10	427587	BE348244	Hs.284239	ESTs, Weakly similar to 178885	SS,UDPGT	5.1
	407204	R41933	Hs.140237	ESTs, Weakly similar to ALU1_H	SS,histone,histone	5.1
	454219	X75042	Hs.44313	v-rel avian reticuloendothelio	RHD,TIG	5.1
	430513 435902	AJ012008 AA701867	Hs.241586 Hs.297726	G6C protein	SS,TM,GST_C,abhydrolase	5.1 5.1
15	442743	AI801351	Hs.302110	ESTs ESTs, Weakly similar to MUC2_H	SS,fibrinogen_C,Rhodanese	5.1
	454923	AW897236	1.0.002110	gb:CM0-NN0057-150400-335-c06 N	SS, Caldesmon	5.1
	440518	AA888046	Hs.233235	ESTs	SS,TM	5.1
	448237	AI471790	Hs.309386	ESTs	TM,Ribosomal_S7	5.1
20	428924 412081	Al016405 Z24895	Hs.98959 Hs.293818	ESTs, Weakly similar to JC5314 gb:HS867F122 STRATAGENE Human	SS,TM,lectin_c SS,TM,SQS_PSY,GATA	5.1 5.1
20	437141	BE304917	Hs.31097	hypothetical protein FLJ21478	SS,TM,Glycos_transf_4	5.1
	421658	X84048	Hs.301760	frequenin (Drosophila) homolog	efhand	5.1
	423467	AK000214	Hs.129014	hypothetical protein FLJ20207	SS,TM,GDPD,SS,TM,SH3,PDZ,	5.0
25	417151	AA194055	Hs.293858	ESTs	PH	5.0
25	408307	AI761786	Hs.204674	ESTs NM_024778:Homo saplens hypothe	Armadillo_seg	5.0 5.0
	404752 453126	AA032155	Hs.61622	ESTs		5.0
	413983	BE348384	Hs.279194	ESTs		5.0
	405366			NM_003371*:Homo saplens vav 2	SS	5.0
30	412425	AW949156		gb:QV4-FT0005-110500-205-b08 F		5.0
	437036	AI571514	Hs.133022	ESTs	SS,TM,Glycos_transf_2	5.0
	448455 411413	AI252625 BE379438	Hs.269860 Hs.211573	ESTs, Moderately similar to S6 heparan sulfate proteoglycan 2	SS,TM ig,laminin_B,laminin_EGF,	5.0 5.0
	432579	AF043244	Hs.278439	nucleolar protein 3 (apoptosis	CARD,SS,HSF_DNA-bind,E2F_	5.0
35	424874	AA347951		Homo sapiens cDNA FLJ20812 fis	SS .	5.0
	408023	BE018269	Hs.279688	ESTs		5.0
	411758	AW860667	11- 05000	gb:QV0-CT0383-210400-204-d03 C	homeobox,homeobox	5.0
	410660 427411	AI061118 AA402242	Hs.65328	Fanconi anemia, complementatio ESTs		5.0 5.0
40	437018	AA889078		ESTs	SS,TM,ERG4_ERG24	5.0
	427029	AA397596		ESTs	SS,ras	5.0
	452047	N35953	Hs.43510	ESTs, Weakly similar to BOX B	SS	5.0
	432093	H28383		gb:yl52c03.r1 Soares breast 3N	Band_41,ERM	5.0
45	453099 441456	H62087 Al458911	Hs.31659 Hs.127765	thyroid hormone receptor-essoc ESTs	SS	5.0 5.0
73	414356	AW505085	Hs.335147	gb:UI-HF-8N0-als-a-10-0-UI.r1	SS,TM	5.0
	434067	H18913	Hs.124023	Homo sapiens cDNA FLJ14218 fis		5.0
	436393	AW022213		ESTs	Galactosyl_T_2	5.0
50	409227	AA806165	Hs.130323	Homo sapiens, clone IMAGE:3960	1470 40 00 This 400 Hills II	5.0
50	448680 439343	AW245890 AF086161	Hs.21753 Hs.114611	JM5 protein hypothetical protein FLJ11808	WD40,SS,TM,KOW,HLH	5.0 5.0
	428079	AA421020	Hs.208919	ESTs	SS,TM,trypsin	5.0
	421951	BE327432	Hs.109804	H1 histone family, member X		5.0
5.5	427204	AA405404	Hs.215725	ESTs	SS,SS	5.0
55	409690	W45393 AW293527	Hs.55888	activating transcription facto		5.0 5.0
	436574 457761	AW401809	Hs.126465 Hs.4779	ESTs KIAA1150 protein	SS,LIM,SS	5.0
	435294	T84084	Hs.196008	Homo sapiens cDNA FLJ11723 fis	HMG_box	5.0
	445372	N36417	Hs.144928	ESTs	SS,PID,PDZ	5.0
60	440511	AF132959	Hs.7236	eNOS Interacting protein	SS,TM,MAGE,Ribosomal_S17,	5.0
	424437	BE244700	Hs.147049	cut (Drosophila)-like 1 (CCAAT	CUT,homeobox,beta-lactama	5.0
	401539 417903	NM_002342	Un 1116	NM_002675:Homo sapiens promyel lymphotoxin beta receptor (TNF	zf-B_box,zf-C3HC4,SS TNFR_c6,SS	5.0 5.0
	442451	AI498080	Hs.129616	ESTs	SS	5.0
65	450536	AI699529	113.123010	gb:tt17a02.x1 NCI_CGAP_GC6 Hom	SS,G-alpha,arf	5.0
	425169	AW292500	Hs.128514	ESTs	SS	5.0
	435262	AA677088	11. 4865 1	ESTs	OTO CETH 010 CETH 010	5.0
	444855 433507	8E409261	Hs.12084	Tu translation elongation fact	GTP_EFTU,GTP_EFTU_D3,GTP_	5.0 5.0
70	433507	AI817336 AW295956	Hs.191791 Hs.11900	ESTs hypothetical protein FLJ14972	pkinase SS	5.0
. •	438395	AA017514	Hs.6211	methyl-CpG binding domain prot	MBD,zf-CXXC,SS,zf-CXXC	5.0
	446603	NM_014835		oxysterol-binding protein-rela	Oxysterol_BP,SS	5.0
	400762	41050000		Target Exon		5.0
75	440133 445903	AI056255 AI347487	Hs.133349 Hs.132781	ESTs class I cytokine receptor	SS,TM,EF18D	5.0 5.0
, 5	412940	BE295701	Hs.819	homeo box 87	homeobox,SS,homeobox,home	5.0
	419269	AA235838		gb:zs41b04.s1 Soares_NhHMPu_S1	TM	5.0
	TARLE 208					

TABLE 20B:
Pkey: Unique Eos probeset identifier number
CAT number: Gene cluster number
Accession: Genbank accession numbers

	Ot	CAT N.—.	
	Pkey 408117	CAT Number	
	408215	104000_1 10478_1	AL 138255 BE380045 AA047314 D82381 T18585 H64978 T10798 BE614290 AA307674 N35629 AA338538 A1193603 AA781096 Al680061 Al613258 AW276647 BE221263 Al348910 Al985031 Al090078 Al359617
	400213	10470_1	AA666391 A160210 A446461 A335345 A1343638 A1343640 A1275091 M78746 AW262795 AW250002 AA503756 A1934519 AW272086 N26520
5			AA626639
	408270	1049980_1	AW177805 AW177895 AW177816 AW177901 BE141597 BE141584 AW177822 AW177818 AW177899
	408294	1050553_1	BE141732 U75823 BE141331 AW178416 AW178430 BE141343 BE141298 BE141702 BE141285
	408567	10663_1	S72921 NM_000614 X55889 X60542 X60477
10	409078	1098756_1	
10	409164 409679	110421_1 114787_1	AA706639 AA064707 AL036920 Al651598 BE250521 AA076837 BE249870 AA984291 AW502442 AW501551 Al221491 AA194239 D63046 AA193426 AA773243 AA193293
	409832	115564_1	AW952293 AI856310 AA077791 AA362540
	410445	120374_2	AA199830 A1143895 AW961629 AA322482
	410471		T88872 AW749857
15	410895	1226051_1	
			AW810372 AW809681 AW809792 AW809806 AW810452 AW809675 AW809964 AW810033 AW810111 AW809846 AW809847 AW809717
	411219	1236055_1	
	411298	1237955_1	AW835858 AW835836 AW835823 AW835834 AW835831 AW835832 AW835843 AW835816 AW835833 AW835815 AW835849 AW835835 AW835848 AW835848 AW835852 AW835855 AW835825 AW835827 AW835838
20	411426	1245515 1	BE141714 AW845993 AW845989 .
20	411456		AW847588 AW847716 AW847664 AW847592
	411490		R39474 AW848420 R76943
	411605	125123_2	AW006831 AA678298 R12579 W86152 A1123683 AA699780 Al672156 BE092587 AA094230 Al633815 AA526153 W86151
25	411758		AW860667 AW860665
25	412091		R06185 AW891805 AW901892 AW901895
	412122 412128	127838_2	AW852707 N57282 AA725075 AI703492 AW612137 AI696372 AI879394 AI653605 W26914 AW894709 N78140
	412128		T71071 AW902279 AW897608
	412425		AW949156 AW949003 AW949008
30	412452	129707_1	AA215731 N48523 AA307559 AA130794 BE296746 BE378396 AA190411 Al904194 AA311805 Al356291 AA446714 Al818924 Al609152
			AW771476 BE298184 AA295023 AA130708 Al078381 AA114156 Al198283 AA215665 Al201085 Al694848 Al077572 AA102778 AW016425
			AI923123 AA577072 AI671
	412777	132672_1	AI335773 AI288496 AA120880
35	412934	1337389_1	BE011437 BE011402 BE011395 BE011428 BE011407 BE011421 BE011406 AA437032 AA437046 AA63434 NE3266 AA63260 ANE3260 ANE34344 AA437076 AIGSE003 AA437013 NT3636 ANT770396 NG0010 AND770332
33	413272	135718_1	AA127923 AA127846 AA534131 N53566 AA533669 AW511251 AI174441 AA127875 AI685293 AA127913 N72525 AW770386 N69010 AW070312 H80275 H80289 AA972923
	413534	1375357_1	BE146961 BE146780 BE146788 BE146967 BE146774 BE146963 BE146907
	413564	1376722 1	
	414347	1437406_1	BE275835 BE390063 BE388764 BE409101
40	414371	14388_8	AI905865 BE294801 BE562308 BE297957 AW157051 AI815883 AW162529 BE439610 AW157225 AW157210 AW162675 AW161998 AI816168
			AW162599 AI816004 AI815820 AW162158 AW162339 M17733 AW157639 AI879416 BE258811 AW157436 AW162433 AW161633 AW162155
	414201	4441024 4	AW157410 AW157269 AW162
	414391 414413	1443696_1	BE409872 BE281460 BE294877 BE294759
45	414593		BE386764 BE387560
	414944		C15044 D80943 C15696
	415126		D60945 D61346 D81568 D80539 .
	415611		T26376 F12852 T75058
50	415886		Z42737 T08986 H07956
50	415958 416233	158010_1	H10942 Z42911 R60453 AA176633 AW961842 AA309418
	416597		H66891 R99149 H68467
	417739	1696198 1	
	418184	172744_1	AA367375 AA486701 BE152479 BE152800 AW816961 AA214097
55	418304	173658_2	AA215702 AA368006 AA215703 BE066555 BE006876
	419269	183444_1	AA235838 BE180775
	419516	185533_1	H82550 N43802 AA243820 AL040762 N24315 U66692 Al218431 AA432232 AW183040 X86012 AA868831 Al191788 AA912999 Al204297 Al205744 Al218259 AA428596 AA993742 AA703660 Al018569
	420530	19446_1	AA879431
60	421879	208649_1	AV959507 AA299654 AA579966
	423790	232031_1	BE152393 AA330984 BE073904
	424874	244523_1	AA347951 AI688463 AA883123
	426221	26281_1	AB007881 U32581 AW131202 AW995994 W31964 N24261 Al033045 H98694 AW364848 Al222031 AA907216 Al215730 AA776981 AW473826
65	426358	265504_1	W31373 AA376438 AA376324 AW963848 AW834782
05	426576	269378_1	AA381720 AA382040 AW963564
	427029	274544_1	AA397596 A1198827 AA435832
	427326	277229_1	A1287878 AIB04160 AA400787
70	427411	278474_1	AA402242 AA813659 AI150316 AA412054
70	428092	286920_1	AW879141 AA421182 AI734104 AI733923 AA430600
	428304	289603_1	AI743177 AA425743 AI804283 AI743189 BE514362 AI879343 BE272870 BE616390 AW163444 AW161588 AW378754 AW238803 BE267205 BE047746 BE207213 BE312782 BE266301
	428948	29737_1	BE266413 BE278348 BE280885 BE278B33 BE281417 BE407786 BE378176 BE392818 AW377597 BE395951 BE393978 AW327483 BE394175
			BE385795 BE275563 BE3
75	429398	303954_1	AA452239 A1262173 A1925886 A1469041 H96628 A1768463 A1671422 A1915624 AA766891 AA521087 AA814103 AW993151 AW005927
	430168	313927_1	AW968343 AA468507 AI478223 AW513008 AI762122 AI554512 AA862642 AA468976
	431082	327710_1	AA491600 AA491645 AI920996
	431161 431424	328713_1 333110_1	AA493591 AA829120 AA533792 AI222969 AA806560 AA504839 AA805261
80	431627	33581_1	AV609720 AW609735 AA082767 N88831 R23418 N55837 BE549484 AW816584 AW816947 AW816897
- 0	432093	341283_1	H28383 AW972670 H28339 AA525808
	432945	356589_1	AL043683 AA570698 AA907496 AL043682 AW362288
	433168	360235_1	ADB5435 AA579438 AA579002
	433357	36402_1	T05639 AF024702
			001

	434315 434743	383402_1 3925_1	AW196508 AA884617 AA758108 A1126321 AA629291 AW196549 A1208031 A1363410 A1356019 H00141 T78748 ALD49365 ALD79911 A1750972 Z42602 AW452523 A1223826 AA215407 A1633829 AA292122 N42783 AW505595 AF086096 N90340 N63271 AA131836 AW607273 AA527132 T32315 AA421961 T34951 AW966080 M78807 N31947 AA521151
			ANYSUSSIS ANGODUS ANGOLUS ANGO
5	434796	393400_1	AA812046 AW974514 AA764999 AA649302
•	435186	402143_1	AL119470 AA669492 Al628351 Al263835 AL119498
	435262	403605 1	AA677088 A1022246 AA677107
	435339	404485_1	Al358300 Al762981 AA678073 AA988621
	436094	414444_1	AJ798701 AW008826 AA704731
10	436389	41894_1	AI811706 AW297940 AJ227887 AA875850 AA228803 AI610234 AI921618 AI768606 N37039 AA081104 BE172693 D56503 Z28585 T95651
			AA292389 AA293502 N28751
	436393	41903_1	AW022213 Al274032 AJ227898 Al160412 Al084451
	437018	431333_1	AA889078 AA907263 AA742199
15	437050	432210_1	AA766420 AA743319 AW976442
15	437215	43473_1	AL 117488 AL 004479
	437662 437834	440374_1 443674_1	AA765387 AA832241 AI222134 AI216405 AI685043 AA769294 AW749299 AW749302 AW749295 AW749304 AW749293 AW749298 AW749294 AW749288 AW749291 AW749297 AW749292
	437034	443014_1	AW749296 AW749289 AW749287 BE535498
	438118	450293_1	AW753311 AW663081 AA778411
20	438723	46392_1	M34429 M34431 M34432 M25802 AW938720
	439034	46802_1	AF075083 H52291 H52528
	439150	46919 1	AF086006 H64722 H65212 H66282
	439469	47274_1	W69836 AF086287 W69657
	440317	49187_1	BE561888 BE560615 BE562102
25	440546	496976_2	Al491994 AW139809 AA889258 Al700895
	441358	515468_1	AW173212 AA983948 A1080705 AA931334
	441523	519049_1	AW514263 Al567908 Al299828 Al299043 N51706 AA936483
	441794	526289_1	AW197794 AW195867 AW197787 AA968466
30	442146	533972_1	R52599 T65201 F11984 F13186 AA977679 T77028 H12167
30	442318	538584_1	AI792199 AI733491 AA991378
	442472 442780	543371_1 551405_1	AW806859 AW806852 AF049582 AI017521 AI017613 AW511133
	442893	553987_1	H78133 H90849 A0023482
	443952	586524_1	A1149106 A1500318 A334156 A1093029 A1765679 A1769652 A1167308 A1128885
35	444406	605004_1	A1147237 A1800517
	445099	629785_1	BE163341 Al207756 BE171477
	445625	64558_1	BE246743 AAA36942 AW024744 AW242177 AA975476 AW385185 R07536 R73462 AV654529 T57442 Al399986 R50073 R48743 Al769689
			AI863005 AA317806 AI678000 AW189963 AI986207 AW471273 R73463 AI335104 AI590161 AI469257 AI954604 H21954 T25141 AA856793
40			R50074 A1708253 A12
40	445631	6457_1	AK001822 AW860325 AA335296 AW965531 AW130957 AW193951 AI347975 AW081323 AW662527 AI343924 AI380749 AA938153 T66966
			AIG55000 AW418837 AI380485 AA410698 AI520726 BE501355 AIG37925 AW779200 AI524755 AW593995 AI336927 AI336928 AI357036 R60592
	445027	cennen 1	H19058 R11124 T1
	445837 446780	652068_1 692897_1	Al261700 Al793196 Al469160 Al793007 R31107 Al341136 Al653198 H04953
45	446790	693032_1	AW452105 Al341280 Al917445
1.5	447045	70510_1	AW392394 AW579531 AW382131 AA010316 BE146145 AW579562 AW579577 BE146152 BE146040 BE145972 BE146099 AW003280 AA668470
			BE146306 T85009 Al087294 BE146299 BE146319 BE146307 W44912 Al703134 AW026017 BE382873 AA903733 Al655933 BE551223 AA847664
			AW173582 AW57240
50	447128	70934_1	A1271898 BE048502 A1452509 A1244810 X84721 A1858001 A1553937 AA149853 H00719 A1765259 AW973696 F25787 F35749 A1568815
50			AW015380 AA554539 C00201 AA961610 AW059637 R77127
	447904	741913_1	AW206303 AW207644 AI765705
	448330	758690_1	AL036449 AW016705 Al492482 Al471630 BE540637 BE265481 AW407710 BE513882 BE546739 AA053597 BE140503 BE218514 AW956702 Al656234 Al636283 Al567265
	448993	79225_1	AW34085B BE207794 AA053085 R69173 AA292343 AA454908 AA293504 Al659741 Al927478 AA399460 Al760441 AA346416 BE047245
55			ANONIOSO BEZUTTS ANOSIOS ROSTO ANIZEZAS ANASASO ANZESSO ANOSE (A NOSE A TO ANOSES O ALI COMPLANA DE CONTRA DE
55	449324	804806_1	Al638706 BE550292 R11026
	449495	808345_1	AI652B33 AI695904 AW888916 :
	450251	829987 1	BE080483 BE080416 A1689298
	450536	837848_1	Al699529 BE 161564 BE077251
60	450807	847591_1	AI739262 R28418
	451045	85673_1	AA215672 Al696628 AA013335 H86334 AA017006
	451752	8835_1	AB032997 N74056 BE467119 AW237035 Al141678 AA934774 AW978722 Al761408 H09497 Al934521 AA716567 H62600 Al479668 Z40632
			AA832081 Z44858 H09496 BE395335 AW295901 BE465977 AI621269 BE465983 M79058 H62533 AA325444
65	452113	899664_1	A1859393 BE177742 A 1932904 A 1932915 A 193293
05	453413 453829	966269_1 982731_1	AJ003294 AJ003315 AJ003293 AL138200 T71830 T71828
	453904	986581_1	AW003821 AW027475 AW025661
	454438	120132_1	AA224053 AA114150 AA214275 AA224027 T58431 AA211908 AA669657 AA199744 AA630511 AA164864 T58463 AA214394 AA161378
			AA161386 AA205211 AA167824 AA084940 AA223625 AA191190 AA309486 AW961804
70	454453	1206827_1	AW752781 BE143749 AW752727 AW752559 AW752578 AW752584 R45742
	454577	1225673_1	
			AW809250 AW809199 AW809259 AW809239 AW809273 AW809270 AW809147 AW809188 AW809245
	454682		AW816029 AW813292 AW816156 AW813333 AW816159 AW813302 AW813344 AW813172
75	454718		AW815144 AW815150 AW861007
75	454756		AW819273 AW819283 AW819287 AW819281 AW819274 AW819282 AW819277 AW819286
	454923		AW897236 AW845406 AW841724 AW841476 AW841403 AW841713 AW841722 AW841731 AW841731 AW84144 AW841748 AW847214
	455035 455274		AW851734 AW851676 AW851693 AW851713 AW851722 AW851616 AW851731 AW851618 AW851648 AW852215 BE151622 BE151636 AW885648
	455286	1273576_1	
80	455557		AW995839 AW995907
	455604	1337197_1	BE011183 BE011170 BE011333 BE011188 BE011181 BE011324 BE011161 BE011169
	455679		8E066529 BE066274 BE066390 BE066356 BE066419 BE066345 BE066298 BE066292 BE066359
	455778		BE088746 BE088802 BE088755 BE088876 BE088947 BE088881 BE088952
	455885	1300303_1	BE153524 BE153576 BE153583
			727

```
AF064804 AA320309 N89343 AA564588 AF069734 AA349248 AW964366 T98541 AW511100 T98542 AW070452 AA013172 AI767005 T32140
          456487
                       19270_1
                                    W05727 T30969 T30970 N74883 AA903211 Al392796 Al434622 AA829283
          457892
                       432926_1
                                   AA744389 AA744270 AA744284 AA744299 AA745380 AA744337 AA846905 AA847698
                                   AA776638 BE439540
          457978
                       448900_1
  5
                                   AI286100 AA952934 AA918305
                      504834_1
670856_1
          458198
                                   AW270149 AW664628 AJ285912
          458644
          TABLE 20C:
          Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham L et al." refers to the publication entitled The DNA sequence of
10
                human chromosome 22° Dunham, et al. (1999) Nature 402:489-495
          Strand: Indicates DNA strand from which exons were predicted
          Nt_position: Indicates nucleotide positions of predicted exons
15
          Pkey
                                    Strand
                                                35559-36295
120238-120495
          400460
                       8389428
                                   Plus
          400500
                       9796136
                                   Minus
                                                 472381-472528,474170-474277,475328-475542,475878-476000
                       6981824
                                   Pius
          400528
          400668
                       8118719
                                                 121756-122043
                                   Plus
20
          400748
                       8119063
                                    Plus
                                                 84237-84398
          400762
                       8131616
                                   Plus
                                                 7235-7605
                                                 34896-35021,41078-41197
          400772
                       8131629
                                   Minus
          400833
                                                 187599-188138
                       8705148
                                   Minus
          400863
                       9798616
                                    Plus
                                                 21575-22330
25
                                                 112863-112989,120162-120286
          400906
                       9966290
                                   Plus
                       7637836
                                                 94518-94659
          400923
                                   Minus
                                                 57211-57525
          401121
                       8570296
                                   Phis
          401180
                       9438648
                                                 150981-152128
                                    Minus
                                                 172961-173056,173868-173928
166969-167133,169760-169877,171563-171733
          401203
                       9743387
                                    Minus
30
          401210
                       7712287
                                   Plus
                                                 103739-103919
          401215
                       9858408
                                   Plus
          401264
                       9797154
                                                 130810-130927,133367-133504
                                    Plus
          401278
                       9799936
                                                 98428-98573
                                    Plus
          401349
                       9930791
                                    Plus
                                                 72440-73030
35
          401402
401488
                                                 75730-76077
                       7710964
                                   Phis
                       7341775
                                                 54523-54686,55364-55451,55737-55846,58047-58175,58261-58356
                                    Plus
                                                 71055-71259
          401507
                       7534110
                                    Plus
           401539
                       8072433
                                    Minus
                                                 62028-62608
          401553
                       8099284
                                    Minus
                                                 83990-84161
40
          401594
                       7230963
                                    Plus
                                                 7997-8170
          401674
                       7689903
                                    Plus
                                                 138786-138927.139157-139298.139440-139599.139960-140159
           401677
                       9965537
                                    Minus
                                                 62856-63086,63603-63884
           401722
                       7656694
                                    Plus
                                                 143861-144054
           401724
                       7656694
                                    Plus
                                                 150063-150241
45
                                                 88400-89959
          401822
                       6730824
                                    Plus
                       8140731
                                                 148234-148321,150365-150559
           401885
                                    Plus
           401935
                       3808091
                                                 46329-46473
                                    Plus
                                                 151891-152032
103825-104024
                       6102666
4454511
           401938
                                    Plus
          401984
                                    Plus
50
                       8576043
                                                 128318-129601
           402189
                                    Minus
           402197
                       8576113
                                                 199466-199585
                                    Plus
           402285
                       2689079
                                    Minus
                                                 92386-92634
           402365
                       9454515
                                    Minus
                                                 70928-71185
                                                 90925-91064,91172-91331
           402445
                       9796614
                                    Plus
55
                       9797862
                                                 8601-8876
           402501
                                    Plus
           402545
                       9838114
                                                 48547-48678,50604-50737,51384-51467
174215-174380
                                    Minus
           402651
                       7960391
                                    Plus
                                                 361-474.541-687
           402916
                       7406502
                                    Minus
           403003
                       5441423
                                                 79403-79560,79712-80021
                                    Minus
60
           403128
                       7331426
                                                 122884-123018,123134-123283,123372-123695,123779-123940,124059-124256
                                    Plus
                                                 96600-96881,96951-97280,97393-97594
           403672
                       7283286
                                    Minus
                                                 129503-130344
53259-53524
           403748
                       7658423
                                    Minus
                       7710403
           403885
                                    Minus
           403938
                       7711795
                                                 48636-48822
                                    Plus
65
           404001
                       8655948
                                    Minus
                                                 137995-138317
           404066
                       3367505
                                    Minus
                                                 71040-71288
           404149
                       7534008
                                                 121831-121951,124044-124150
                                    Plus
           404199
                       6010176
                                    Minus
                                                 1669-2740
           404311
                                                 149189-149303
                       8570412
                                    Minus
70
                                                 137948-138024,138111-138300
50151-50319,50859-51098
42921-43109
           404333
                       9802821
                                    Minus
           404365
                       9964977
                                    Plus
           404430
                       7407979
                                    Phrs
                       6984205
           404438
                                                 63413-63553
                                    Plus
           404571
                       7249169
                                                 112450-112648
                                    Minus
75
           404596
                       9958262
                                    Minus
                                                 104807-105043
                                                 56167-56342,58066-58189,58891-59048,60452-60628
           404676
                       9797204
                                    Minus
           404710
                       9801097
                                                 45190-45339,47509-47622,48137-48264,48805-48946,50073-50345,51467-51588
                                    Minus
                        7109522
           404752
                                                 120168-120326
                                    Minus
           404807
                        4165210
                                                 124246-124422
                                     Minus
80
                       7387343
           404956
                                    Plus
                                                 55883_56203
                        8072509
                                                 44045-44230
           405085
                                    Minus
                        8096927
           405113
                                                 170073-170894
                                    Plus
                        9438278
                                                 5894-5983,7355-7427
           405143
                                    Plus
           405159
                        9966252
                                                 79659-79804
```

	405211	6692345	Minus	31340-32609
	405247	7249301	Minus	65578-6577B,68088-68234
•	405346	2981263	Plus	101982-102171
_	405366	2182280	Phis	22478-22632
5	405371	2078469	Minus	47657-4776 <u>B</u> ,48461-48596
	405375	1552539	Plus	11646-12050, 12207-12485
	405376	1552533	Plus	28875-29099
	405473	8439781	Plus	153074-153343, 154501-154598, 156879-156999, 158863-159051, 159910-160053, 161109-161229, 163035-163131, 165163-
				165259,165868-166003,167375-167552,169252-169364,171127-171281
10	405474	8439781	Plus	172005-172175
	405557	1621108	Plus	39883-40047
	405637	6289229	Plus	189852-189978
	405770	2735037	Plus	61057-62075
	405928	7717155	Minus	2923-3209
15	405931	6758795	Minus	148233-148705
	405939	6758795	Plus	170500-170654
	406109	9127147	Minus	58328-58485
	406230	4760409	Plus	71716-72515
	406284	7549620	Plus	74002-74199
20	406299	5686278	Minus	35655-36119
	406301	8575868	Plus	57291-57494
	406373	9256130	Plus	188922-189152
	406495	7711328	Minus	174661-174978
	406575	7711679	Plus	142034-142473
25				**

Table 21A lists about 933 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to encode extracellular or cell-surface proteins. These were selected as for Table 20A, except that the ratio of "average" ovarian cancer to "average" normal adult tissues was greater than or equal to 3.0, the "average" ovarian cancer level was set to the 96th percentile value amongst various ovarian cancer specimens, the "average" normal adult tissue level was set to the 75th percentile value amongst variou normalignant tissues, the "average" ovarian cancer value was greater than or equal to 400 units (this selects for the most abundant of the up-regulated genes), and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g., Ig, fn3, efg, 7tm domains, signal sequences, transmembrane domains). The predicted protein domains are noted.

TABLE 21A:
Pkey: Unique Eos probeset identifier number
EXAcon: Exemplar Accession number, Genbank accession number
UG ID: Unigene number
Title: UniGene gene title

Pred. Protein Dom.: Predicted protein domain R1: Ratio of tumor to normal body tissue

	Pkey	ExAcon	UGID	Title	Pred. Protein Dorn.	R1
	407223	H96850		gb:yw03b12.s1 Soares melanocyt	SS,TM,SS,TM,DDOST_48kD	58.9
	421296	NM_002666	Hs.103253	perilipin	perilipìn,SS	47.6
45	430281	AI878842	Hs.237924	CGI-69 protein	mito_carr,SS,TM	46.7
	410418	D31382	Hs.63325	transmembrane protease, serine	SS,TM,ldl_recept_a,trypsi	41.0
	431773	BE409442	Hs.268557	pleckstrin homology-like domai	PH,SS,LIM,Troponin	37.1
	428758	AA433988	Hs.98502	CA125 antigen; mucin 16	SS	35.6
	438424	Al912498	Hs.25895	hypothetical protein FLJ14996	SS,TM	35.3
50	450461	BE408081	Hs.46736	hypothetical protein FLJ23476	SS	34.4
	437897	AA770561	Hs.146170	hypothetical protein FLJ22969	SS,TM,zf-DHHC	33.9
	452554	AW452434	Hs.58006	ESTs, Weakly similar to ALU5_H	SS,PAS,HLH	32.5
	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS	SS,TM,pkinase,fn3,ig	30.5
	452849	AF044924	Hs.30792	hook2 protein	bZIP,SS,AhpC-TSA	29.6
55	407722	BE252241	Hs.38041	pyridoxal (pyridoxine, vitamin	pfkB,SS	28.2
	416819	U77735	Hs.80205	pim-2 oncogene	pkinase,SS,TM,OTU,K_tetra	27.9
	430397	AI924533	Hs.105607	bicarbonate transporter relate	HCO3_cotransp,SS,TM	27.7
	427725	U66839	Hs.180533	mitogen-activated protein kina	okinase	27.5
	454017	AW023617	Hs.347130	hypothetical protein FLJ22709	SS,TM,myosin_head,RA,DAG_	27.2
60	445434	BE391690	Hs.9265	hypothetical protein FLJ20917	SS.PWWP.Exonuclease.lipoc	26.8
-	452399	BE513301	Hs.29344	hypothetical protein, clone 24	SS.perilipin	26.5
	419451	Al907117	Hs.90535	syntaxin binding protein 2	Sec1,SS,TM	25.1
	424420	BE614743	Hs.146688	prostaglandin E synthase	MAPEG,SS,TM,MAPEG	25.1
	407893	BE408359	Hs.43621	Homo saplens, Similar to hypot	SS,SS,arf,ras,fn3,ras	25.0
65	412674	X04106	Hs.74451	catpain 4, small subunit (30K)	efhand,SS,CAP_GLY	24.4
00	430023	AA158243	Hs.227729	FK506-binding protein 2 (13kD)	SS,FKBP,SS,PDGF,C2,PI-PLC	24.3
	444672	Z95636	Hs.11669	laminin, alpha 5	laminin_EGF,laminin_G,EGF	24.0
	413726	AJ278465	Hs.75510	annexin A11	annexin,SS,annexin	23.1
	438951	U51336	Hs.6453	Inositol 1,3,4-triphosphate 5/	SS,oxidored_nitro,SS	23.0
70	429099	BE439952	Hs.196177	phosphorylase kinase, gamma 2	pkinase,SS,SNF2_N,helicas	23.0
,,	422645	L40027	Hs.118890	glycogen synthase kinase 3 alp	pkinase.SS.Ets	22.4
	427899	AA829286	Hs.332053	serum amyloid A1	SS,SAA_proteins,SS,SAA_pr	22.2
	407117	AA146625	113.332033	gb:zo71c07.s1 Stratagene pancr	SS	21.3
	402916	AA140020		ENSP00000202587*:Bicarbonate t	HCO3_cotransp,SS	20.8
75	425760	D17629	Hs.159479	galactosamine (N-acetyl)-6-sut	Sulfatase.SS.TM	20.7
15	422098	H03117	Hs.111497	similar to mouse neuronal prot	TM	20.7
	442232					20.0
		AI357813	Hs.337460	ESTs, Weakly similar to A47582	SS,TM,TGFb_propeptide,TGF	
	453157	AF077036	Hs.31989	DKFZP586G1722 protein	SS,Tropomyosin	20.0
80	422179	AF091619	Hs.112667	dynein, axonemal, intermediate	WD40,SS	20.0
٥U	419444	NM_002496	Hs.90443	Target CAT	fer4,SS,TM,V_ATPase_sub_a	19.5
	416893	AA455588	Hs.62406	hypothetical protein FLJ22573	SS,rm,SS	19.2
	434030	AW162336	Hs.3709	low molecular mass ubiquinone-	SS	19.1
	411813	NM_014931	Hs.72172	KIAA1115 protein	SS,TM,Y_phosphatase	18.9
	422305	A1928242	Hs.293438	ESTs, Highly similar to AF1984	SS	18.8

	440467	41500505		FOT W. A. 1 Hards 400000	00	40.6
	419167 406663	AI589535 U24683	Hs.94875	ESTs, Weakly similar to A35363 Immunoglobulin heavy constant	SS SS	18.6 18.5
	429712	AW245825	Hs.211914	ENSP00000233627*:NADH-ubiquino	oxtdored_q6,SS,TM,rrm	18.5
	425848	BE242709	Hs.159637	valyl-tRNA synthetase 2	GST_C,GST_N,Tropomyosin,S	18.4
5	447151	AI022813	Hs.92679	Homo sapiens clone CDABP0014 m	SS,TM,LRR,aminotran_1_2	18.4
	413343	BE392026	Hs.334346	hypothetical protein MGC13045	SS,DnaJ	18.2
	450029	AW073380	Hs.267963	hypothetical protein FLJ 10535	SS,Pyridox_oxidase,zf-C2H	17.7
	427721	AI582843	Hs.180455	RAD23 (S. cerevisiae) homolog	ubiquitin,UBA,integrin_B,	17.6
10	443780 421612	NM_012068	Hs.9754	activating transcription facto	bZIP,NTP_transf_2,SS,TBC	17.2 17.1
10	444607	AF161254 AW405635	Hs.106196 Hs.293687	8D6 antigen ESTs	ldl_recept_a,SS,TM SS,PI-PLC-X,PH,PI-PLC-Y,C	16.7
	406621	X57809	Hs.181125	immunoglobulin lambda locus	SS	16.6
	443496	AJ006973	Hs.9482	target of myb1 (chicken) homol	VHS,GAT,TM,Heme_oxygenase	16.6
	440104	AA13283B	Hs.239894	hypothetical protein MGC2803	SS,DS	16.3
15	427640	AF058293	Hs.180015	D-dopachrome tautomerase	MIF,late_protein_L2,SS,GS	16.2
	445625	BE246743		hypothelical protein FLJ22635	SS,TM	16.1
	427461	AA531527	Hs.332040	hypothetical protein MGC13010	SS,TM,ACAT,LRR	15.9
	423366	Z80345	Hs.127610	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	15.7
20	409017 428167	T86957 AA770021	Hs.272299 Hs.16332	hypothetical protein RP4-622L5 ESTs	SS,TM SS,ig,fn3	15.6 15.5
20	420029	BE258876	Hs.94446	polyamine-modulated factor 1	aldo_ket_red,SS,TM,gla	15.5
	400460	DEEDOOTO	113.37770	C11002253*:gi[129091 sp[P23267	SS,TM,SCAN,zf-C2H2,KRAB	15.4
	407767	W15398	Hs.38628	hypothetical protein	SS,zf-CCCH	15.4
^-	406918	M88357		gb:Homo sapiens DNA-binding pr	zf-C2H2,SS	15.4
25	435158	AW663317	Hs.65588	_DAZ associated protein 1	rm,SS,rm	15.3
	407619	AL050341	Hs.37165	collagen, type IX, alpha 2	SS,Collagen,SS,Collagen	15.3
	421273	AJ245416	Hs.103106	U6 snRNA-associated Sm-like pr	Sm,SS,tRNA-synt_1,GST_C,G	15.1
	402365	R35917	U- 204220	Target Exon	SS,SS,TM,ig SS	14.9 14.8
30	450503 427502	AI811865	Hs.301338 Hs.7133	hypothetical protein FLJ 12587 Homo saplens, clone IMAGE:3161	SS,TM,ABC_tran,Glyco_tran	14.6
50	432872	A1908984	Hs.279623	selenoprotein X, 1	DUF25,SS,Ribosomal_L3,PDZ	14.5
	439233	AA831893	Hs.292767	hypothetical protein FLJ23109	zf-C3HC4,TM,Sulfate_trans	14.5
	416897	M78146	Hs.324700	hypothetical protein MGC2663	SS	14.3
~ ~	447304	Z98883	Hs.18079	phosphatidylinositol glycan, c	SS,Peptidase_C2	14.2
35	431543	AW969619	Hs.259768	adenylate cyclase 1 (brain)	TM	14.0
	447544	AA401573	Hs.288284	hypothetical protein FLJ22378	SS,TM	14.0
	417595	AA424317	Hs.6259	KIAA1698 protein	SS,TM,Glyco_hydro_31,Glyc	13.8
	436127 412623	W94824 R28898	Hs.11565 Hs.74170	RIKEN cDNA 2010100012 gene metallothionein 1E (functional	Corona_7,SS,TM SS,TM,metalthio,DEAD,meta	13.8 13.7
40	448133	AA723157	Hs.73769	folate receptor 1 (adult)	Folate_rec,SS	13.5
	453367	AW732847	Hs.70573	PKCI-1-related HIT protein	SS,TM	13.5
	431462	AW583672	Hs.256311	granin-like neuroendocrine pep	SS	13.2
	408724	AI685842	Hs.294143	ESTs, Weakly similar to T22914	SS,pkinase,tubulin	13.2
15	423464	NM_016240	Hs.128856	CSR1 protein	Collagen, SS	13.1
45	428539	AW410063	Hs.184877	solute carrier family 25 (mito	mito_carr,SS,TM,profilin,	13.0
	436014	AF281134	Hs.283741	exosome component Rrp46	RNase_PH,RNase_PH_C,SS,TG	12.9 12.8
	438857 444410	A1627912 BE387360	Hs.130783 Hs.33719	Forssman synthetase ESTs, Moderately similar to S6	SS,RA,RasGEF,RasGEFN SS	12.8
	427527	AI809057	Hs.153261	immunoglobulin heavy constant	SS,TM,ig	12.6
50	430168	AW968343	110.100201	DKFZP434I1735 protein	SS,TM,efhand,efhand	12.5
	437543	H16443	Hs.7117	glutamate receptor, lonotropic	SS,TM,lig_chan,ANF_recept	12.4
	413711	AW291765	Hs.75486	heat shock transcription facto	NA,SS,E2F_TDP	12.3
	422625	AW504698	Hs.155976	cutlin 4B	SS,SS,Cullin,Cullin	12.2
55	443136	NM_001440	Hs.9018	exostoses (multiple)-like 3	Exostosin,SS,TM	12.1
"	407143 424707	C14076 BE061914	Hs.332329	EST Homo saplens cDNA FLJ14476 fis	SS,TM SS,SS,TM,Sema	12.1 12.1
	425251	Z22521	Hs.10844 Hs.155342	protein kinase C, delta	pkinase,DAG_PE-bind,pkina	12.0
	427336	NM_005658	Hs.2134	TNF receptor-associated factor	MATH,SS,MATH,A2M_N,A2M,NT	12.0
	421572	- AA531607		hypothetical protein FLJ22678	SS,TM,TGF-beta,ASC	12.0
60	447946	Al566164	Hs.165827	ESTs	SS,PTN_MK,7tm_1,DAGKc,DAG	11.9
	425954	AK000633	Hs.164476	hypothetical protein FLJ20626	SCAN,zf-C2H2,KRAB,SS,KRAB	11.7
	427273	AW139032	Hs.107376	hypothetical protein DKFZp434N	SS,SS,TM	11.7
	427397	AI929685	Hs.177656	calmodulin 1 (phosphorylase ki	efhand,RrnaAD,SS,efhand	11.7 11.7
65	424415 417852	NM_001975 AJ250562	Hs.146580 Hs.82749	enolase 2, (gamma, neuronal) transmembrane 4 superfamily me	enolase,SS,Atrophin-1,Atr transmembrane4,SS,TM	11.6
03	447451	AI379925	Hs.207525	ESTs	SS,pkinase,PH,pkinase_C	11.5
	410397	AF217517	Hs.63042	DKFZp564J157 protein	SS,homeobox,UPF0160,DUF23	11.4
	430354	AA954810	Hs.239784	human homolog of Drosophila Sc	SS,TM,ig	11.3
	419390	AJ701162	Hs.90207	hypothetical protein MGC11138	SS,TM,PMP22_Claudin,PMP22	11.3
70	422682	W05238	Hs.94316	ESTs, Wealtry similar to T31613	SS,TM,DEAD,helicase_C,Lam	11.3
	422178	AL122083	Hs.112645	Homo sapiens mRNA; cONA DKFZp4	SS,TM	11.2
	450122	BE313765	Hs.343443	ESTs, Weakly similar to 138022	SS,TM,Y_phosphatase,LON,A	11.1
	453968 444744	AA847843 BE394732	Hs.62711 Hs.147562	High mobility group (nonhiston ESTs	SS,HMG_box SS	11.1 10.9
75	423220	BE394920	Hs.125262	aladin	WD40,TM,Activin_recp,pkin	10.9
. •	417116	Z43916	Hs.7634	hypothetical protein FLJ12287	SS,TM,filament,IF_tail	10.9
	406779	AA412048	Hs.279574	CGI-39 protein; cell death-reg	SS,SS	10.8
	450593	AF129085	Hs.25197	STIP1 homology and U-Box conta	TPR,SS,TM,Rhomboid,lactam	10.7
οΛ	406837	R70292	Hs.156110	immunoglobulin kappa constant	SS	10.7
80	452434	D30934	Hs.29549	C-type lectin-like receptor-1	lectin_c,SS,TM	10.7
	440150	AW975738	Hs.7001	Homo sapiens, clone IMAGE:3940 a disintegrin and metalloprote	SS,TM,SS,TM,Peptidase_M22	. 10.6 10.6
	418641 414313	BE243136 NM_004371	Hs.86947 Hs.75887	coatomer protein complex, subu	disIntegrin,Reprolysin,Pe WD40,SS,WD40,Ribosomal_S2	10.6
	420307	AW502869	Hs.66219	ESTs	SS,TM	10.6
				. 225		

			•			
	414918	AI219207	Hs.72222	hypothetical protein FLJ13459	SS,TM,efhand	10.6
	446562	BE272686	Hs.15356	hypothetical protein FLJ20254	hormone,SS,pfkB	10.5
	419846					10.4
		NM_015977	Hs.285681	Williams-Beuren syndrome chrom	SS,HLH,SS,TM,WD40	
5	453023	AW028733	Hs.31439	serine protease inhibitor, Kun	Kunitz_BPTI,SS,TM,ion_tra	10.4
)	438800	AB037108	Hs.6418	seven transmembrane domain orp	SS,TM	10.3
	431275	T56571	Hs.10041	ESTs	ss,hilh	10.3
	407241	M34516		gb:Human omega light chain pro	SS,ig,PH,ig,PK	10.3
	441238	Al372555	Hs.322456	hypothetical protein DKFZp761D	homeobox,SS,TM,Rho_GDI,th	10.3
	436325	AL390088	Hs.7393	hypothetical protein from EURO	SS,Synapsin_C,SS	10.3
10	435605	AF151815	Hs.4973		SS,TM,SS,TM,ABC_tran,ABC_	10.3
10				hypothetical protein		
	444202	AL031685	Hs.12785	KIAA0939 protein	SS,TM,Na_H_Exchanger,ABC2	10.3
	425597	U28694	Hs.158324	chemoldne (C-C motif) receptor	7tm_1	10.3
	415200	AL040328	Hs.78202	SWI/SNF related, matrix associ	SNF2_N,helicase_C,bromodo	10.2
	446528	AU076640	Hs.15243	nucleolar protein 1 (120kD)	Nol1_Nop2_Sun,SS,SNF2_N,h	10.2
15	414874	D26351	Hs.77515	inositol 1,4,5-triphosphate re	TM,RYDR_ITPR,ion_trans,MI	10.2
	423524	AF055989	Hs.129738	potassium voltage-gated channe	 lon_trans,K_tetra,thaumat 	10.2
	434552	AA639618	Hs.325116	Homo sapiens, clone MGC:2962,	SS	10.2
	406836	AW514501	Hs.156110	immunoglobulin kappa constant	SS	10.1
	420233	AA256714	Hs.194864	hypothetical protein FLJ22578	SS	10.1
20	427458	BE208364	Hs.29283	ESTs, Weakly similar to LKHU p	SS,F5_F8_type_C,EGF,TGT	10.1
20	427672					
		AA356615	Hs.336916	death-associated protein 6	SS,BTB,abhydrolase_2,RasG	10.0
	423218	NM_015896	Hs.167380	BLu protein	zf-MYND,SS,TM,Glyco_hydro	10.0
	403028			Target Exon	SS,trefoli	10.0
~ ~	412790	NM_014767	Hs.74583	KIAA0275 gene product	kazal,thyroglobulin_1,zf-	10.0
25	419823	AW271708	Hs.118918	-ESTs, Weakly similar to M2OM_H	SS,TM	10.0
	433886	AA613596	Hs.28412	ESTs	SS	9.9
	428092	AW879141		ESTs	SS,TM	9.8
	450493	M93718	Hs.166373	nitric oxide synthase 3 (endot	flavodoxin,FAD_binding,NO	9.7
	420423	AA827718	Hs.88218	ESTs	SS	9.7
30						
30	452302	AF173867	Hs.28906	glucocorticold modulatory etem	SAND,SS	9.7
	444681	AJ243937	Hs.288316	chromosome 6 open reading fram	notch,EGF,ank,GoLoco,SS,T	9.7
	414249	AJ797994	Hs.279929	gp25L2 protein	SS,TM,EMP24_GP25L,SS,TM,G	9.6
	424263	M77640	Hs.1757	L1 cell adhesion molecule (hyd	fn3,ig,IRK,SS,TM,fn3,ig,R	9.6
	438627	Al087335	Hs.123473	ESTs	TM, Reticulon	9.6
35 ·	407065	Y10141		gb:H.sapiens DAT1 gene, partia	SNF,SS,TM	9.6
	441307	AW071696	Hs.209065	hypothetical protein FLJ14225	SS.TM	9.6
	409649	AA159216	Hs.55505	hypothetical protein FLJ20442	Y_phosphatase,DSPc,TM	9.6
	424487	T08754	Hs.6259			9.5
				KIAA1698 protein	SS,SS,TM,Glyco_hydro_31,G	
40	444633	AF111713	Hs.286218	junctional adhesion molecule 1	ig,SS,TM,HLH	9.4
40	427747	AW411425	Hs.180655	serine/threonine kinase 12	pkinase,SS,TM,synaptobrev	9.4
	450437	X13956	Hs.24998	hypothetical protein MGC10471	SS	9.4
	415169	W42913	Hs.78089	ATPase, vacuolar, 14 kD	ATP-synt_F,SS,TM,CH,Filam	9.4
	400201			NM_006156*:Homo sapiens neural	ubiquitin, SS, TM, Transglut	9.4
	454319	AW247736	Hs.101617	ESTs, Weakly similar to T32527	SS	9.4
45	421680	AL031186	Hs.289106	Human DNA sequence from clone	SS,SS,mm,zf-RanBP,mm,GA	9.4
	445143	U29171	Hs.75852	casein kinase 1, delta	pkinase,SS	9.4
	407507		115.70002			9.4
		U73799	11.00040	gb:Human dynactin mRNA, partia	SS,TM,HCO3_cotransp,CAP_G	
	450883	NM_001348	Hs.25619	death-associated protein kinas	pkinase,GTP_EFTU,EFG_C,GT	9.4
50	411674	AW861123		gb:RC3-CT0297-120200-014-a05 C	SS	9.3
30	414625	AA335738	Hs.76686	glutathione peroxidase 1	GSHPx,SS,ras,HLH	9.3
	456950	AF111170	Hs.306165	Homo sapiens 14q32 Jagged2 gen	SS,TM,DSL	9.3
	445333	BE537641	Hs.44278	hypothetical protein FLJ12538	SS	9.2
	407204	R41933	Hs.140237	ESTs, Weakly similar to ALU1_H	SS,histone,histone	9.1
	412338	AA151527	Hs.69485	hypothetical protein FLJ12436	SS,TM,TIG,Sema,PSI	9.1
55	439963	AW247529	Hs.6793	platelet-activating factor ace	PAF-AH_lb,Lipase_GDSL,SS,	9.1
	412104	AW205197	Hs.240951	Homo saplens, Similar to RIKEN	SS,TM	9.1
	443553	AL040535	Hs.9573	ATP-binding cassette, sub-fami	ABC_tran,SS	9.1
	448984	AW751955	Hs.22753	hypothetical protein FLJ22318	SS	9.0
60	418776	A1401004	Hs.88411	lymphocyte antigen 117	SS,TNF,TNF	9.0
UU	418843	AJ251016	Hs.89230	potassium intermediale/small c	TM,CaMBD,SK_channel,TM	9.0
	419244	A1436567	Hs.89761	ATP synthase, H transporting,	ATP-synt_DE,SS,mm,Ephrin	8.9
	451855	R54913	Hs.175804	EST6	SS,TM,vwa	8.9
	424825	AF207069	Hs.153357	procottagen-lysine, 2-oxogluta ·	2OG-Fell_Oxy,Glycos_trans	8.9
	447374	AF263462	Hs.18376	KIAA1319 protein	SS,Myosin_tail,M	8.9
65	430167	Y08976	Hs.234759	FEV protein	Ets, SS, crystall	8.8
	409936	AK001691	Hs.57655	hypothetical protein FLJ10829	SS.TM	8.7
	437926	BE383605	Hs.300816	small GTP-binding protein	SS,TM,TPR	8.7
	430037	BE409649	Hs.227789	mitogen-activated protein kina	pkinase	8.7
70	424919	BE314461	Hs.153768	U3 snoRNP-associated 55-kDa pr	WD40,SS,KH-domain	8.7
70	414534	BE257293	Hs.76366	BCL2-antagonist of cell death	SS,hormone_rec,zf-C4	8.7
	433333	Al016521	Hs.71816	v-akt murine thymoma viral onc	homeobox,pkinase,PH,pkina	8.7
	423228	AL137491	Hs.125511	Homo saplens mRNA; cDNA DKFZp4	SS,TM,sushi	8.7
	419493	AF001212	Hs.90744	proteasome (prosome, macropain	PCI,SS,CDK5_activator	8.7
	420160	AJ492840		ESTs	SS,TM	8.6
75	421871	AK001416	Hs.306122	glycoprotein, synaptic 2	TM,Steroid_dh,SS	8.6
	447827	U73727	Hs.19718	protein tyrosine phosphalase,	Y_phosphatase,fn3,lg,MAM,	8.6
	417193	AI922189	Hs.288390	hypothetical protein FLJ22795	SS	8.6
	418678	NM_001327	Hs.167379	cancertestis antigen (NY-ESO-	SS,TM,zf-C2H2	8.5
80	458963	AI701393	Hs.278728	Rad and Gem-related 2 (rat hom	ras,SS,Peptidase_M10,hemo	8.5
οU	406868	AA505445	Hs.300697	Immunoglobulin heavy constant	SS,TMJg	8.3
	434105	AW952124	Hs.13094	presenilins associated rhombol	TM,Rhombold,SS,TM	8.3
	421726	AK001237	Hs.319088	hypothetical prolein FLJ10375	TM	8.3
	421707	NM_014921	Hs.107054	lectomedin-2	Latrophilin, OLF, 7tm_2, Gal	8.2
	453898	AW003512	Hs.232770	arachidonate lipoxygenase 3	SS,TM,Ilpoxygenase,PLAT,s	8.2
				226		

	450000			Managed to the same same	CC DV DV C musch hand Dh	8.2
	456672	AK002016 ·	Hs.114727	Homo saplens, clone MGC:16327,	SS,PK,PK_C,myosln_head,Rh homeobox,SS	8.2
	421592 409829	AF009801 M33552	Hs.105941 Hs.56729	bagpipe homeobox (Orosophila) lymphocyte-specific protein 1	Caldesmon, SS, Ribosomal_S2	8 <u>-</u> 1 ·
	444341	Al142027	Hs.146650	ESTs	SS,TM,Reprolysin,Pep_M12B	8.0
5	413762	AW411479 -	Hs.848	FK506-binding protein 4 (59kD)	FKBP,TPR,SS	8.0
-	436685	W28561	Hs.5288	Homo saplens mRNA; cDNA DKFZp4	SS,TM,pkinase,Activin_rec	8.0
	420932	AW374605	Hs.11607	ESTs, Weakly similar to T21697	SS,bZIP_Maf	8.0
	431493	AI791493	Hs.129873	ESTs, novel cytochrome P450	SS,p450,SS	7.9
10	447598	Al799968	Hs.199630	ESTs	SS,TM	7.9
10	415758	BE270465	Hs.78793	protein kinase C, zeta	pkinase,DAG_PE-bind,pkina	7.8 7.8
	457022	AW377258	15-160000	gb:MR2-CT0222-261099-003-a10 C	SS,Ribosomat_L7Ae	7.8
	426440	BE382756	Hs.169902 Hs.278907	solute carrier family 2 (facil	sugar_tr,SS,TM,sugar_tr PMP22_Claudin,SS,TM,PMP22	7.8
	432747 441084	NM_014404 W24563	Hs.9911	calcium channel, voltage-depen hypothetical protein FLJ11773	SS,TM,hormone_rec,zf-C4	7.8
15	424443	AI751281	Hs.284161	hypothetical protein from EURO	SS,TM,SS,TM	7.7
13	424198	AB029010	Hs,143026	KIAA1087 protein	SS,TM,Na_Ca_Ex,Calx-beta,	7.6
	430513	AJ012008	Hs.241586	G6C protein	SS,TM,GST_C,abhydrolase	7.6
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20,	WD40,SS,TM,fn3,EGF,fn3,ig	7.6
	432891	AF161483	Hs.279761	HSPC134 protein	SS,TM,ubiquitin,Transglut	7.5
20	432234	AA531128	Hs.115803	ESTs	SS	7.5
	453485	BE620712	Hs.33026	hypothetical protein PP2447	SS,TM	7.5
	441327	AK001706	Hs.7778	hypothetical protein FLJ10751	SS,TM,7tm_1	7.5
	436540	BE397032	Hs.14468	hypothetical protein MGC14226	SS,TM	7.5
25	418256	AW845318	Hs.12271	f-box and leucine-rich repeat	SS,SS,TM,HSF_DNA-bind	7.5 7.5
23	457274	AW674193	Hs.227152 Hs.31097	-mannan-binding lectin serine p hypothetical protein FLJ21478	SS,TM,SS,TM,Clathrin_lg_c SS,TM,Glycos_transf_4	7.5 7.5
	437141 425428	BE304917 AL110261	Hs.157211	DKFZP586B0621 protein	C1q,Collagen,SS	7.4
	431934	AB031481	Hs.272214	STG protein	SS	7.4
	418349	NM_001383	Hs.84183	diptheria toxin resistance pro	Dlphthamide_syn,SS	7.4
30	430600	AW950967	Hs.274348	HLA-B associated transcript-3	ubiquitin,SS,TM,G-patch,a	7.3
	421758	BE397336	Hs.1422	Gardner-Rasheed feline sarcoma	SH2,SH3,pkinase	7.3
	412841	A1751157	Hs.101395	hypothetical protein MGC11352	SS,TM	7.3
	418313	BE244231	Hs.84038	. CGI-06 protein	SS,wap	7.3
2.5	429367	AB007867	Hs.278311	plexin 81	Sema,PSI,TIG,SS,TM,TIG,Se	7.3
35	418837	U48263	Hs.89040	prepronociceptin	Opiods_neuropep,SS	7.2
	423015	U18548	Hs.123034	G protein-coupled receptor 12	TM	7.2
	440188	AK001812	Hs.7036	N-Acetylglucosamine kinase	ROK,SS,TM	7.2 7.2
	421975	AW961017	Hs.6459	hypothetical protein FLJ11856 Homo sapiens mRNA; cDNA DKFZp4	SS,TM,ACAT SS,TM	7.2
40	423858 446143	AL137326 BE245342	Hs.133483 Hs.306079	sec61 homolog	secY,SS,TM	7.2
70	417704	NM_001747	Hs.82422	capping protein (actin filamen	Gelsolin, SS, Gelsolin	7.2
	440869	NM_014297	Hs.7486	protein expressed in thyroid	lactamase_B,SS,XRCC1_N,BR	7.1
	435099	AC004770	Hs.4756	flap structure-specific endonu	XPG_N,XPG_I,5_3_exonuclea	7.1
	438856	N40027	Hs.7473	ESTs	SS,TM,connexin	7.1
45	426268	AF083420	Hs.168913	serine/threonine kinase 24 (St	pkinase,pkinase	7.1
	418373	AW750770	Hs.84344	CGI-135 protein	SS,TM,PMP22_Claudin,2OG-F	7.1
	445087	AW893449	Hs.12303	suppressor of Ty (S.cerevisiae	S1,SH2,Ribosomal_L23,pkin	7.1
	421748	NM_014718	Hs.107809	KIAA0726 gene product	cadherin,TM,TPR	7.1
50	413837	AW163525	11- 474024	titin-cap (telethonin)	SS,Methyltransf_3	7.0 7.0
50	426691	NM_006201	Hs.171834	PCTAIRE protein kinase 1	pkinase,SS,UCH-2,UCH-1,rr SS,kinesin,PH,FHA,kinesin	7.0
	409125 424251	R17268 AA677466	Hs.343567 Hs.143696	exenal transport of synaptic v coactivator-associated arginin	SS,SNF2_N,helicase_C,brom	7.0
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD4	Integrin_A,FG-GAP,Rhabd_g	7.0
	428156	BE269388	Hs.182698	mitochondrial ribosomal protei	SS SS	7.0
55	459255	AI493244	Hs.239500	hypothetical protein MGC13114	SS	7.0
	441323	AA928413	Hs.159089	ESTs, Weakly similar to ALU7_H	SS,Peptidase_C1,zf-C2H2	6.9
	455928	BE170313		gb:QV4-HT0536-040500-193-g02 H	SS	6.9
	420856	BE513294	Hs.205736	HLA class II region expressed	kazal,SS,TM,ig,pkinase	6.9
60	421543	AK000519	Hs.105606	hypothetical protein FLJ20512	TM	6.9
60	442296	NM_007275	Hs.8186	tung cancer candidate	SS,TM,Glyco_hydro_56,Glyc	6.9
•	445937	AI452943	Hs.321231	UDP-Gal:betaGlcNAc beta 1,4- g	Galactosyl_T_2,SS,TM,tsp_	6.9
	439732	AW629604	Hs.167641 Hs.206713	hypothetical protein from EURO UDP-Gat:belaGlcNAc beta 1,4- g	SS,TM,SS,TM,A2M,A2M_N,NTR Galactosyl_T_2,ig,SS,TM,A	6.8 6.8
	429542 420190	AF038660 Al816209	Hs.95867	hypothetical protein EST00098	SS,dynamin_2,dynamin,PH,G	6.8
65	408215	BE614290	HS.30007	syntaxin 10	SS,SS,TM,HLH,TRM,z/-CCCH	6.7
03	410277	R88621	Hs.26249	ESTs, Weakly similar to T2D3_H	SS,TM,SS	6.7
	419667	AU077005	Hs.92208	a disintegrin and metalloprote	disintegrin,Reprolysin,Pe	6.7
	448677	Al560769		ESTs	SS,TM	6.7
	425228	NM_005253	Hs.301612	FOS-like antigen 2	bZIP,SS	6.6
70	432538	BE258332	Hs.278362	male-enhanced antigen	SS,TM,AAA,Ribosomal_L2	6.6
	421864	BE387198	Hs.108973	dolichyl-phosphate mannosyltra	SS,TM,SS,TM	6.6
	429962	M69113	Hs.226795	glutathlone S-transferase pl	GST_C,GST_N,SS,efhand	6.6
	406867	AA157857	Hs.182265	keratin 19	filament,bZIP,SS,filament	6.6
75	426068	AF029778	Hs.166154	jagged 2	DSL,EGF,vwc,granulin,SS,T	6.5 6.5
13	419344 424681	U94905	Hs.277445 He 151706	diacylgiycerol kinase, zeta (1 KIAA0134 gene product	ank,DAGKa,DAGKc,DAG_PE-bi helicase_C,PRK,SS,TM,7tm_	6.5
	424681 417903	AA054400 NM_002342	Hs.151706 Hs.1116	lymphotoxin beta receptor (TNF	TNFR_c6,SS	6.5
	423876	BE502835	Hs.15463	Homo saziens, clone IMAGE:2959	SS,efhand	6.4
	433439	AA431176	Hs.133230	ribosomal protein S15	TM,SS,TM,TPR,ras	6.4
80	441379	AW175787	Hs.334841	selenium binding protein 1	SS,RFX_DNA_binding	6.4
_ •	432968	BE614192	Hs.279869	melanoma-associated antigen re	SS,TM,RGS,DIX	6.4
	456863	T16837	Hs.4241	ESTs	fusion_gly,homeobox,TM	6.4
	432269	NM_002447	Hs.2942	macrophage stimulating 1 recep	pkinase,Sema,PSI,TIG,A4_E	6.4
	425676	AW410656	Hs.159161	Rho GDP dissociation inhibitor	Rho_GDI,homeobox,SS,Cytid	6.4

	443420	R06846	Hs.191208	ESTs .	SS	6.4
	436322	AL355092	Hs.120243	parvin, gamma	CH,SS,TM,CTF_NFI	6.4
	440088	BE559877	Hs.183232	hypothetical protein FLJ22638	SS,zf-C3HC4,SPRY,zf-B_box	6.4
_	447665	BE044245	Hs.30011	hypothetical protein MGC2963	SS,TM	6.3
5	431785	AA292385	Hs.268763	Breakpoint cluster region prot	BAF,kazal,TM	6.3
	422714	AB018335	Hs.119387	KIAA0792 gene product	DUF221,SS,TM,TGFb_propept	6.3
	434916	AF161383	Hs.284207	Homo sapiens, Similar to RIKEN	TM	6.3
	414551	AI815639	Hs.76394	encyl Coenzyme A hydratase, sh	ECH.Peptidase_U7.SS,TM	6.3
	413254	U40272	Hs.75253	isocitrate dehydrogenase 3 (NA	isodh, SS	6.3
10	458367	AA088470	Hs.83135	Homo sapiens, Similar to RIKEN	SS,IRNA-synt_2d	6.3
10	415010	NM_004203	Hs.77783	membrane-associated tyrosina-	pkinase,SS,PMP22_Claudin	6.3
	410076	T05387	Hs.7991	ESTs	SS S	6.3
	412940	BE295701	Hs.819	homeo box B7	harneobox,SS,homeobox,home	6.2
	440042	A1073387	Hs.133898	ESTs	SS	6.2
15	414023	BE243628	113.130030	gb:TCBAP1D1053 Pediatric pre-B	SS	6.2
13	414513	AW239400	Hs.76297		pkinase,RGS,pkinase_C,SS,	6.2
				G protein-coupled receptor kin		6.2
	446662	NM_013323 AJ243191	Hs.15827	sorting nexts 11	PX,SS	6.2
	409882		Hs.56874	heat shock 27kD protein family	HSP20,SS,TM,zf-C2H2,BTB,E	
20	414576	AK000405	Hs.76480	ublqufiin-like 4	ubiquitin,SS,TM,G6PD,G6PD	6.2
20	447507	H59696	Hs.18747	POP7 (processing of precursor,	SS,TM,WD40,vwd,MAM,EPO_TP	6.2
	453447	AW771318	Hs.326586	hypothetical protein MGC11134	SS,TPR	6.1
	435968	AW161481	Hs.111577	integral membrane protein 3	TM	6.1
	424441	X14850	Hs.147097	H2A histone family, member X	histone,CBFD_NFYB_HMF,SS,	6.1
05	434558	AW264102	Hs.39168	`ESTs	SS,TM,LRRCT,LRR	6.1
25	434202	BE382411	Hs.3764	.guanylate kinase 1	Guanylate_kin,CoaE,Virat_	6.1
	432183	AW151952	Hs.46679	hypothetical protein FLJ20739	SS	6.0
	444416	AW288085	Hs.11156	hypothetical protein	zf-C3HC4,SpoA,PHD,TM,syna	6.0
	447205	BE617015	Hs.11006	ESTs, Moderately similar to T1	SS,TM,LRRCT,Sema	6.0
	407704	BE315072	Hs.78768	malignant cell expression-enha	TM,MBOAT,SS,TM	6.0
30	453190	AB002354	Hs.32312	KIAA0356 gene product	PH,PHD,RUN,SS	6.0
	439975	AW328081	Hs.6817	inosine triphosphatase (nucleo	Ham1p_like,SS	6.0
	449514	AW970440	Hs.23642	protein predicted by clone 236	SS,PX,arf,lipocalin,PHD,z	6.0
	432805	X94630	Hs.3107	CD97 antigen	SS,TM,7tm_2,GPS,EGF,SS,TM	6.0
	414362	Al347934	Hs.75932	N-ethylmatelmide-sensitive fac	NSF,SS,TM	6.0
35	417483	BE549343	Hs.82208	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	6.0
	427988	AA789333	Hs.181349	hypothetical protein 628	SS,SS	6.0
	423473	H49104	Hs.129888	hypothetical protein FLJ14768	zf-C2H2,SS,rm,ENTH	6.0
	406773	AA812424	Hs.76067	heat shock 27kD protein 1	HSP20,SS	5.9
	409938	AW974648	110.7 0007	gb:EST386752 MAGE resequences,	SS,Adap_comp_sub,GYF	5.9
40	424959	NM_005781	Hs.153937	activated p21cdc42Hs kinase	pkinase,SH3	5.9
-10	453082	H18835	Hs.31608	hypothetical protein FLJ20041	SS,TM,ion_trans	5.9
	452094	AF049105	Hs.27910	centrosomal protein 2	bZIP,5_3_exonuclease,M,SS	5.9
	451524	AK001466	Hs.26516	hypothetical protein FLJ 10604	SS,SS,TM,pkinase,pkinase_	5.9
					SS,TM	5.9
45	427438 439685	AW328515	Hs.178011	hypothetical protein FLJ20257	SS,PWWP,TSC22	5.9
73		AW956781	Hs.293937	ESTs, Weakly similar to FXD2_H	SS,TM,MAGE,Ribosomal_S17,	5.9
	440511	AF132959	Hs.7236	eNOS interacting protein		5.9
	417334	AA337572	Hs.157240	hypothetical protein MGC4737	SS,TM,ion_trans SS,TM,pkinase,SH2,SH3,BNR	5.8
	425976	C75094	Hs.334514	NG22 protein		5.8
50	433173	Z35093	Hs.3196	surfeit 1	SURF1,SS,TM,SURF1,SURF4	5.8
50	437891	AW006969	Hs.6311	hypothetical protein FLJ20859	TM,SET	5.8
	410239	AI568350	Hs.61273	hypothetical protein MGC2650	SS,ART,TM	5.8
	458060	R95860	Hs.293629	hypothetical protein MGC3121	SS SS TM I III hamaahay	
	409591	AA532963	Hs.9100	Homo sapiens cDNA FLJ13100 fis	SS,TM,LIM,homeobox	5.8
55	409686	AK000002	Hs.55879	Homo sapiens mRNA; cDNA DKFZp4	SS,ABC_tran,SS,TM	5.8
22	450778	U81375	Hs.25450	solute carrier family 29 (nucl	Nucleoside_tran,SS,TM,HSP	5.8
	423612	NM_002067	Hs.1686	guanine nucleotide binding pro	G-alpha,arf,SS,G-alpha	5.8
	422701	NM_014699	Hs.119273	KIAA0296 gene product	zf-C2H2,GST_C,PHD,SS,TM,H	5.8
	412958	BE391579	Hs.75087	Fas-activated serine/threonine	SS,pkinase	5.8
60	436957	AA902488	Hs.122952	ESTs	SS,DAGKc,DAGKa,RA,DAG_PE-	5.8
.60	423158	H97991	Hs.193313	Target CAT	MoaA_NifB_PqqE,SS,TM	5.8
	414788	X78342	Hs.77313	cyclin-dependent kinase (COC2-	pkinase	5.8
	420904	AL035964	Hs.100221	nuclear receptor subfamily 1,	hormone_rec,zf-C4,SS,DNA_	5.7
	410431	BE261320	Hs.158196	transcriptional adaptor 3 (ADA	pkinase	5.7
~~	420508	AJ270993	Hs.98428	homeo box 86	homeobox,SS,homeobox,home	5.7
65	435593	R88872	Hs.4964	DKFZP586J1624 protein	Herpes_HEPA,SS	5.7
	433064	D79991	Hs.30002	SH3-containing protein SH3GLB2	TM	5.7
	451920	AA224483	Hs.27239	DKFZP586K0524 protein	SS,TM,SS,TM	5.7
	453054	A1878908	Hs.31547	Target CAT	SS	5.7
	415117	AF120499	Hs.78016	polynucleolide kinase 3'-phosp	Viral_helicase1,SS,Amino_	5.7
70	413163	Y00815	Hs.75216	protein tyrosine phosphatase,	fn3.ig,Y_phosphatase,SS,T	5.7
	425246	AI085561	Hs.155321	serum response factor (c-fos s	SRF-TF,flavodoxin,SS,TM,p	5.7
	433271	BE621697	Hs.14317	nucleolar protein family A, me	SS,TM	5.7
	448484	BE613340	Hs.334725	Homo saptens, Similar to RIKEN	TM,SS,TM,Kunitz_BPTI	5.7
	449139	BE268315	Hs.23111	phenylalanine-tRNA synthetase-	neur,SS,zf-C2H2,DNase_J1	5.7
75	449181	X96783	Hs.23179	synaptotagmin V	C2,SS,TM,Y_phosphatase,Tr	5.6
	414457	AW514320	Hs.76159	ATPase, H transporting, lysoso	ATP-synt_C,SS,TM,pkinase	5.6
	424964	AW161271	Hs.153961	ARP1 (actin-related protein 1,	actin,SS	5.6
	415193	AL048891	Hs.12185	hypothetical protein MGC14333	SS,TM,aminotran_1_2,LRR	5.6
	407754	AA527348	Hs.288967	Homo saplens cDNA FLJ14105 fis	SS,TM,SS,TM,TSPN,tsp_3,SE	5.6
80	413049	NM_002151	Hs.823	hepsin (transmembrane protease	trypsin, SS, TM, ATP1G1_PLM_	5.6
	454252	H50256	Hs.63236	ribosomal protein S15a	SS	5.6
	431787	AW972024	Hs.343661	ret finger protein	SS,WD40,pkinase	5.6
	431607	AB033097	Hs.183669	KIAA1271 protein	SS,TM .	5.6
	406782	AA430373		gb:zw20f11.s1 Soares ovary tum	SS	5.6
			•			

	444004	44.400004		h	00 714 - 11	
	444364 427834	AL137294	Hs.10964	hypothetical protein FLJ22351	SS,TM,pkinase SS,TM	5.6 5.5
	443759	AA506101 BE390832	Hs.285813 Hs.134729	hypothetical protein FLJ11807 FXYD domain-containing lon tra	SS,TM,ATP1G1_PLM_MAT8,ATP	5.5 ·
	416322	BE019494	Hs.79217	pyrroline-5-carboxylate reduct	P5CR,Octopine_DH_N,SS,thi	5.5
5	406673	M34996	Hs.198253	major histocompatibility compl	SS,TM,MHC_IL_alpha,lg,SS,	5.5
-	415351	U44755	Hs.78403	small nuclear RNA activating c	SS,TM,pkinase	5.5
	411030	BE387193	Hs.67896	7-60 protein	SS,Collagen,Collagen	5.5
	410653	BE383768	Hs.65238	95 kDa retinoblastoma protein	zf-C3HC4,SS,SNF2_N,helica	5.5
10	433012	NM_004045	Hs.279910	ATX1 (antioxidant protein 1, y	HMA,SS,TM	5.5
10	437741	BE561610	Hs.5809	putative transmembrane protein	SS,TM,SS,TM,RA,VPS9,SH2	5.5
	421883	X55079	Hs.1437	glucosidase, alpha; acid (Pomp	trefoil,Glyco_hydro_31,SS	5.4 5.4
	427361 411574	AW732480 BE242842	Hs.7678	cellular retinoic acid-binding	SS,TM,aminotran_1_2,LRR	5.4 5.4
	457313	AF047002	Hs.6780 Hs.241520	protein tyrosine kinase 9-like transcriptional coactivator	cofilin_ADF,SS,TM SS,rrm,SS,Cytidytytransf	5.4
15	428345	AI242431	Hs.118282	PAP-1 binding protein	SS,TM	5.4
1.5	434845	BE267057	Hs.325321	hypothetical protein R32184_1	SS,TM,CH,calponin,ARID	5.4
	427162	AB011133	Hs.173864	KIAA0561 protein	SS,pkinase,PDZ,SS,SH2,Rho	5.4
	447402	H54520	Hs.18490	hypothetical protein FLJ20452	SS,TM	5.4
••	433676	AW371389	Hs.250173	hypothetical protein FLJ13158	SS	5.4
20	424373	AJ133798	Hs.146219	copine VII	C2,SS	5.4
	423402	BE167615	Hs.141556	Homo sapiens cDNA FLJ12976 fis	SS	5.4
	409983	D50922	Hs.57729	Kelch-like ECH-associated prot	BTB,Kelch,SS,TM	5.4
	450184	W31096	Hs.237617	Homo sapiens, clone IMAGE:3447	SS No CH2 CH2	5.3
25	431629	AU077025	Hs.265827	Interferon, alpha-inducible pr	pklnase,SH2,SH3 IL8,SS	5.3 5.3
25	430413 440333	AWB42182 Al378424	Hs.241392 Hs.288761	.şmail inducible cytokine A5 (R hypothetical protein FLJ21749	SS,TM,IP_trans,pkinase,pk	5.3
	424927	AW973666	Hs.153850	hypothetical protein C321D2.4	SS.TM	5.3
	412276	BE262621	Hs.73798	macrophage migration inhibitor	MIF,SS,TM,MIF,sugar_tr	5.3
	416181	AA174126	Hs.332163	ESTs	SS,TM,GalP_UDP_transf,Gal	5.3
30	440609	Al287585	Hs.7301	G protein pathway suppressor 2	SS,Acyl-CoA_dh,Acyl-CoA_d	5.3
-	435327	BE301871	Hs.4867	mannosyl (alpha-1,3-)-glycopro	SS,HLH,Myc_N_term,Myc-LZ,	5.2
	421139	AW953933	Hs.301372	KIAA1552 protein	SS,TM	5.2
	453449	W16752	Hs.32981	sema domain, Immunoglobulin do	SS,Sema,ig,PSI,SS,TM,G-al	5.2
25	414411	X54079	Hs.76067	heat shock 27kD protein 1	HSP20,SS	5.2
35	440906	AW161556	Hs.240170	hypothetical protein MGC2731	SS,TM,Furin-like,pkinase,	5.2
	421899	AJ011895	Hs.109281	Nef-associated factor 1	Virus_HS,bZIP,G-gamma,Myo	5.2
	439473	Al215529	Hs.144787	ESTs	SS SS,Metallophos	5.2 5.2
	451585 407191	AK001171 AA608751	Hs.326422	hypothetical protein MGC4549 gb:ae56h07,s1 Stratagene lung	SS,Peptidase_C1	5.2 5.2
40	427515	T79526	. Hs.179516	integral type I protein	EMP24_GP25L,SS	5.2
	405325	175525	. 113.175010	C14000786*:gi[7023514 dbj BAA9	SS .	5.2
	434119	AF193844	Hs.3758	COP9 complex subunit 7a	SS	5.1
	413052	BE249841		gb:600942857F2 NIH_MGC_15 Homo	TM,SS,TM	5.1
	445109	AF039916	Hs.12330	ectonucleoside triphosphate di	SS,TM,GDA1_CD39,SS,TM,pho	5.1
45	409323	H28855	Hs.53447	Homo sapiens mRNA; cDNA DKFZp7	TPR,SS,TM,pkinase,ig	5.1
	438707	L08239		amino acid system N transporte	SS,TM,ACAT,MBOAT,SS,TM,TB	5.1
	442599	AF078037	Hs.324051	RelA-associated inhibitor	SH3,ank,SS,TM,HHH,ig	5.1
	420372	AW960049	Hs.293660	Homo sapiens, clone IMAGE:3535	SS .	5.1
50	436576	AI458213	Hs.77542	ESTs	SS,TM,7tm_1,DnaJ	5.1
50	439012 418910	BE383814	Hs.6455	RuvB (E coli homolog)-like 2	AAA,DnaB,UPF0079,SS,Cys_k	5.1 5.1
	414849	Z25821 AW372721	Hs.89466 Hs.291623	Homo saplens, Similar to dodec ESTs, Weakly similar to unname	ECH,SS,TM,aminotran_3,ABC TM,pkinase	5.1
	425743	BE396495	Hs.159428	BCL2-associated X protein	Bcl-2,SS,ferritin,Bcl-2,e	5.1
	418231	AA326895	Hs.83848	triosephosphate isomerase 1	TIM,SS,TM,zf-UBP,UCH-2,UB	5.0
55	419238	AW959538	Hs.321214	hypothetical protein DKFZp564D	SS,TM,WH2	5.0
	441917	A1989925	Hs.24891	ESTs, Highly similar to unknow	SS,TM,Ammonium_transp	5.0
	437617	AI026701	Hs.5716	KIAA0310 gene product	SS,zf-C3HC4,Peptidase_M16	5.0
	412867	AU076861	Hs.74637	testis enhanced gene transcrip	UPF0005,SS,TM	5.0
60	419579	W49529	Hs.296200	hypothetical protein AF053356_	MSP_domain,SS,TM,CUB,NTR,	5.0
UU	425824	A1939563	Hs.159589	ESTs, Moderately similar to RE	SS,PHD SS,SS,TM,GDI,Sema,TIG,PSI	5.0
	439414 436042	NM_001183 AF284422	Hs.6551	ATPase, H transporting, lysoso	SS,TM,aa_permeases,SS,TM,	5.0 5.0
	430042	AB014460	Hs.119178 Hs.66196	cation-chloride cotransporter- nth (E.coli endonuclease III)-	HhH-GPD,SS,TM,REJ,PLAT,PK	5.0
	453350	Al917771	Hs.61790	hypothetical protein FLJ23338	SS,SS,TM,EMP70,PA28_alpha	4.9
65	400300	X03363	16.01700	HER2 receptor tyrosine kinase	pkinase	4.9
0.5	426811	BE259228	Hs.172609	nucleobindin 1	efhand,SS,TM,GFO_IDH_MocA	4.9
	421179	U72664	Hs.148495	proteasome (prosome, macropain	UIM,SS,TM,PMP22_Claudin,P	4.9
	429762	Al346255	Hs.216354	ring finger protein 5	SS,zf-C3HC4,Palm_thioest	4.9
	419250	AW770185		U5 snRNP-specific protein, 116	SS,TM,7tm_1,BAH,zf-CXXC,D	4.9
70	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrola	AdoHcyase, SS	4.9
	442103	AA333367	Hs.8088	similar to S. cerevisiae Sec6p	SS	4.9
	414820	AA371931	Hs.77422	proteolipid protein 2 (colonic	SS SS DevOSE DA DevOSENIA	4.9
	426347	AA454912	Hs.169407	SAC2 (suppressor of actin muta	SS,RasGEF,RA,RasGEFN,horm	4.9
75	423880	BE278111	Hs.134200	DKFZP564C186 protein	UPF0120,SS,TM	4.9 4.0
15	429545 443044	A1824164 N28522	Hs.8935	lymphocyte antigen 6 complex, quinolinate phosphoribosytran	SS,TM QRPTase,QRPTase_N,SS,TM	4.9 4.9
	417080	BE392846	Hs.1063	small nuclear ribonucleoprotei	SS,S10_plectin	4.8
	441455	AJ271671	Hs.7854	zinc/iron regulated transporte	Zip,SS,TM,Cytidylyltransf	4.8
	410182	NM_001983	Hs.59544	excision repair cross-compleme	HHH,SS,SH3,ank	4.8
80	456062	AI866286	Hs.71962	ESTs, Weakly similar to B36298	SS	4.8
-	439270	BE268278	Hs.28393	hypothetical protein MGC2592	SS,TM,HCO3_cotransp	4.8
	408985	BE267317	Hs.332040	hypothetical protein MGC13010	SS,TM,ACAT,LRR	4.8
	416976	BE243985	Hs.80580	major vault protein	Vault,SS,TM,kinesin,zf-C2	4.8
	436057	AJ004832	Hs.5038	neuropathy target esterase	cNMP_binding,SS,TM,cNMP_b	4.8

	424501	Al470163	Hs.323342	actin related protein 2/3 comp	SS,HhH-GPD	4.8
	409214	AW405967	Hs.333388	Homo saplens, clone IMAGE:3957	SS,EF1BD,P5CR	4.8
	432716	AI762964	Hs.205180	ESTs .	SS,TM	4.8
	414460	L00727	Hs.898	dystrophia myotonica-protein k	pkinase, SS, WD40	4.8
5	443329	BE262943	Hs.9234	hypothetical protein MGC1936	SS,TM,SS,TM,gpdh,gpdh_C	4.7
-	426120	AA325243	Hs.166887	copine I	C2,SS,aminotran_5	4.7
	405356	74100000	115,100001	ENSP00000247029*:SEBOX.	SS,TM,hemopexin,Somatomed	4.7
		AD027957	U- 2005D1			4.7
	437118	AB037857	Hs.300591	CD9 partner 1	TM,lg,SS,TM	4.7
10	430609	AA302921	Hs.247362	dimethylarginine dimethylamino	SS,TM,GST_C,abhydrolase	
10	447131	NM_004585	Hs.17466	retinote acid receptor respond	SS,TM,pklnase	4.7
	428469	BE549205	Hs.184488	flotillin 2	Band_7,Flotillin,TM	4.7
	405189			Target Exon	SS	4.7
	404256			NM_024018*:Homo sapiens butyro	SS,TM,SPRY,SPRY,Ig	4.7
	457955	Al208986	Hs.121647	ESTs	SS,zf-8_box,SPRY,SS,NoI1_	4.7
15	413201	BE275378	Hs.13972	hypothetical protein MGC12972	SS,SH2,RhoGAP,SH3,GILT	4.7
	431115	AB015427	Hs.250493	zinc finger protein 219	zl-C2H2,SS	4.7
	442414	BE408758	Hs.8297	ribonuclease 6 precursor	ribonuclease_T2,SS,ribonu	4.7
	418289	AW403103	Hs.83951	Hermansky-Pudlak syndrome	SS	4.6
	436730	AA045767	Hs.5300	bladder cancer associated prot	SS	4.6
20	444596	BE560662			SS,TM,lig_chan,ANF_recept	4.6
20			Hs.11417	Rab acceptor 1 (prenylated)		
	433019	AI208513	Hs.279915	translocase of inner mitochond	zf-Tim10_DDP,SS	4.6
	431522	AI625859	Hs.258609	protein tyrosine phosphatase,	fn3,Y_phosphatase,SS,TM	4.6
	400846			sortilin-related receptor, L(D	ldi_recept_a,fn3,ldi_rece	4.6
0.5	422154	179045	Hs.168812	`ESTs	SS	4.6
25	420321	D78761	Hs.96657	_hyothetical protein	SS,tsp_1,SS	4.6
	439921	AL110209	Hs.6770	LCAT-like tysophospholipase	SS,LACT,SS,TM,aa_permease	4.6
	427122	AW057736	Hs.323910	HER2 receptor tyrosine kinase	pkinase,Furin-like,Recep_	4.6
	426899	AL043221	Hs.172825	KIAA1037 protein	WD40,TPR,SS,TM	4.6
	408116	AA251393	Hs.289052	Homo saplens, Similar to RIKEN	SS,TM	4.6
30	412974	R18978	Hs.75105	emopamil-binding protein (ster	SS,TM,SS,TM,TBC,rrm,FtsJ	4.6
50	426510	AW861225	Hs.110613	BANP homolog, SMAR1 homolog	TM	4.6
						4.6
	414702	L22005	Hs.76932	cell division cycle 34	UQ_con,SS,trypsin,ig	
	408135	AA317248	Hs.42957	methyltransferase-like 1	Methyltransf_4,SS,p450,Ge	4.6
25	445637	W58459	Hs.8949	hypothetical protein MGC4172	SS	4.6
35	452190	H26735	Hs.91668	Horno sapiens clone PP1498 unkn	SS	4.6
	409680	W31092	Hs.55847	mitochondrial ribosomal protei	SS,TM,synaptobrevin	4.6
	421140	AA298741	Hs.102135	signal sequence receptor, delt	Herpes_UL3,SS,TM,Sema,pki	4.6
	413407	AJ356293	Hs.75339	Inositol polyphosphate phospha	SH2,SAM,SS,Folate_rec	4.6
	402463			NM_014624:Homo saplens S100 ca	efhand,S_100,SS,efhand,S_	4.5
40	426402	BE387327	Hs.80475	polymerase (RNA) II (DNA direc	SS,PGAM	4.5
	406939	M34515		gb:Human omega light chain pro	SS,lg,PH	4.5
	417891	W79410	Hs.82887	protein phosphatase 1, regulat	SS,TFIIS	4.5
	426207	BE390657	Hs.30026	HSPC182 protein	SS	4.5
	423664				pkinase,SS,Fibrillarin,CK	4.5
45		NM_004714	Hs.130988	dual-specificity tyrosine-(Y)-		4.5
43	432562	BE531048	Hs.278422	DKFZP586G1122 protein	zf-C2H2,SS,TM,FG-GAP,inte	
	427391	W60675		hypothetical prolein FLJ10350	SS,SS	4.5
	432893	NM_016154	Hs.279771	Homo sapiens clone PP1596 unkn	ras,arf,SS,2OG-Fell_Oxy,2	4.5
	424954	NM_000546	Hs.1846	tumor protein p53 (LI-Fraumeni	P53,SS	4.5
5 0	413815	AL046341	Hs.75562	discoldin domain receptor fami	F5_F8_type_C,pkinase,SS,T	4.5
50	448963	AA459796	Hs.331247	Homo sapiens, clone IMAGE:3610	SS,TM	4.5
	416297	AA157634	Hs.79172	solute carrier family 25 (mito	mito_carr,SS	4.5
	421962	D82061	Hs.288354	FabG (beta-ketoacyl-[acyl-carr	SS,adh_short,SS,TM,zf-C3H	4.5
	426726	AA488915	Hs.171955	trophinin associated protein (SS	4.5
	414427	L19711	Hs.76111	dystroglycan 1 (dystrophin-ass	SS,TM	4.5
55	435891	AW249394	Hs.5002	copper chaperone for superoxid	sodcu,HMA,SS,TM,spectrin,	4.5
• •	453997	AW247615	Hs,37003	v-Ha-ras Harvey rat sarcoma vi	ras,SS	4.5
	449029	N28989	Hs.22891	solute carrier family 7 (catio	aa_permeases,SS,TM,bZIP	4.5
	432078	BE314877	Hs.24553	hypothetical protein FLJ12541	. SS,TM	4.5
60	409650 412833	T08490 AW960547	Hs.288969 Hs.298262	HSCARG protein	SS,SS,WD40	4.5 4.4
UU				ribosomat protein S19	SS,TM,lg,ITAM,Ribosomat_S	
	424133	AA335721	Hs.213628	ESTs .	SS,TM	4.4
	414787	AL049332	Hs.77311	8TG family, member 3	SS,Antl_proliferat	4.4
	433046	AA229553	Hs.279945	HSPC023 protein	SS	4.4
	417068	AA451910	Hs.85852	hypothetical protein MGC3169	SS,TM	4.4
65	414814	D14697	Hs.77393	farnesyl diphosphate synthase	polyprenyl_synt,SS,TM	4.4
	418267	BE389537	Hs.83919	glucosidase I	Glyco_hydro_63,SS,PH	4.4
	439902	AF174499	Hs.6764	histone deacetylase 6	Hist_deacetyl,zf-UBP,SS,G	4.4
	448847	AL587180	Hs.110906	Homo sapiens, Similar to RIKEN	TM,SS	4.4
	452160	BE378541	***************************************	cysteine sulfinic acid decarbo	SS	4.4
70	416121	X92762	Hs.79021	tafazzin (cardiomyopathy, dila	Acyltransferase, SS, TM, GDI	4.4
, ,	449717	AB040935		cerebral cell adhesion molecul	SS.SS	4.4
			Hs.23954		SS,aldo_ket_red	4.4
	425069	AA687465	Hs.298184	potassium voltage-gated channe		
	413380	AI904232	Hs.75323	prohibilin	Band_7,SS,Band_7,SH3	4.4
75	452911	AA541537	Hs.112619	metallothionein 1E (functional	SS,SS,TM,Sec1	4.4
75	436415	BE265254	Hs.343258	proliferation-associated 2G4,	Peptidase_M24,SS,TM,Pepti	4.4
	429218	AA225065	Hs.198269	Target CAT	SS,Nop	4.4
	447987	BE621544	Hs.157160	hypothetical protein MGC2616	SS,NDK,LRRNT,LRRCT,LRR	4.4
	407230	AA157857	Hs.182265	keratin 19	filament,bZIP,SS,filament	4.3
	448886	AL137291	Hs.22451	hypothetical protein FLJ10357	SS,PH,RhoGEF,SS,maseA	4.3
80	421178	BE267994	Hs.102419	zinc finger protein	zf-C2H2,SS,TM	4.3
50	454031	R36772	Hs.71941	hypothetical protein MGC15677	TM	4.3
				sigma receptor (SR31747 bindin	SS,ig,fn3	4.3
	450126	BE018138	Hs.24447			
	446557	U68568	Hs. 15318	HS1 binding protein	SS,TM,MIP,UBA	4.3
	413781	J05272	Hs.850	IMP (inosine monophosphate) de	IMPDH_C,IMPDH_N,CBS,NPD,S	4.3
				240		

	433251	AB040955	Hs.322735	KIAA1522 protein	SS,SS,zf-C3HC4,SPRY	4.3
	420531	Al652069	Hs.98614	ribosome binding protein 1 (do	bzip,ss	4.3
	432179	X75208	Hs.2913	EphB3	EPH_ibd,fn3,pktnase,SAM	4.3
_	448988	Y09763	Hs.22785	gamma-aminobutyric acid (GABA)	Neur_chan_LBD,Neur_chan_m	4.3
5	426626	Al124572	Hs.323879	Inhibitor of kappa light polyp	zf-C2H2,SS	4.3
	432956	AL037895	Hs.279861	CGI-31 protein	thiored,SS,TM	4.3
	428970	8E276891	Hs.194691	retingic acid induced 3	7tm_3,SS,TM	4.3
	428953	AA306610	Hs.348183	turnor necrosis factor receptor	TNFR_c6,SS	4.2
	401128			C12000644:gf[5729785[ref]NP_00	SS	4.2
10	446899	NM_005397	Hs.16426	podocalyxin-like	SS,TM,SS,TM	4.2
	407151	H25836	Hs.301527	ESTs, Moderately similar to un	SS,TNF	4.2
	426613	U96132	Hs.171280	hydroxyacyi-Coenzyme A dehydro	adh_short,SS	4.2
	408616	R51604	Hs.300842	KIAA1608 protein	SS,DENN,DENN	4.2
	446616	R65964	Hs.334873	ESTs, Weakly similar to ALU8_H	SS,Zn_carbOpept	4.2
15	414467	AW903820	Hs.85752	copine II	SS SS	4.2
13	455857	T70192	113.00752	gb:yc18d03.s1 Stratagene lung	SS,TM,isodh	4.2
	401751	170132		RAN binding protein 3	SS, Orexin, SH2, STAT	4.2
	400563					4.2
	430237	Al272144	Hs.236522	Target Exon	SS,Pep_M12B_propep	4.2
20		A1212144	NS.230322	DKFZP434P106 protein	abhydrolase,TM	
20	406101	0004000	11- 000440	C11000273*:gi 12656107 gb AAK0	SS,TM,7tm_1	4.2
	421661	BE281303	Hs.299148	hypothetical protein FLJ21801	SS,VHP	4.2
	444590	AA457456	11- 10-00	hypothetical protein FLJ20435	SS	4.2
	408187	AF034373	Hs.43509	ataxin 2 related protein	SS .	4.2
25	437696	ZB3B44	Hs.5790	hypothetical protein dJ37E16.5	SS, Hydrolase, SS, Gal-bind_	4.2
25	400278			ENSP00000243264:Dolichyl-dipho	SS,TM	4.2
	407394	AF005081		gb:Homo sapiens skin-specific	SS	4.2
	447407	BE387301	Hs.18528	Sjogren's syndrome nuclear aut	SS,HLH,ras,GSHPx	4.2
	410237	AJ750589	Hs.61258	argininosuccinate lyase	lyase_1,SS	4.1
• •	415410	AF037332	Hs.278569	sorting nexin 17	PX,fn3,pkinase,SAM,EPH_lb	4.1
30	457757	AA434109	Hs.12271	f-box and leucine-rich repeat	SS,F-box,SS,TM,HSF_DNA-bi	4.1
	446388	AA292979	Hs.7788	NPD007 protein	SS,TM	4.1
	412825	AW167439	Hs.190651	Homo sapiens cDNA FLJ13625 fis	SS	4.1
	439737	AI751438	Hs.41271	Homo sapiens mRNA full length	SS,C1q,Collagen	4.1
	422256	M64673	Hs.1499	heat shock transcription facto	NA,SS,TM,F-box	4.1
35	441164	AB023180	Hs.7724	KIAA0963 protein	helicase_C,SS,RNA_pol_H	4.1
	401727			Target Exon	A_deamin,SS	4.1
	411142	NM_014256	Hs.69009	transmembrane protein 3	Galactosyl_T,SS,Ribosomal	4.1
	458176	Al961519	Hs.140309	Homo sapiens, clone IMAGE:3677	SS,pkinase,pkinase_C	4.1
	432178	BE265369	Hs.272814	hypothetical protein DKFZp434E	SS,serine_carbpept	4.1
40	421537	BE383488	Hs.105547	neural proliferation, differen	SS,TM,Glyco_hydro_47	4.1
10	421380	D31833	Hs.1372	arginine vasopressin receptor	7tm_1	4.1
	422702	AJ011373	Hs.119285	chromosome 9 open reading fram	SS,TM,SS,TM	4.1
	434142	U47927	Hs.3759			4.1
			H2.37 33	ubiquitin specific protease 5	zf-UBP,UCH-2,UBA,UCH-1,SS	4.1
45	423696	Z92546	11- 4777CC	Sushi domain (SCR repeat) cont	SS,TPR,vwd,sushi,Somatome	
45	427407	BE268649	Hs.177766	ADP-ribosyltransferase (NAD; p	BRCT,PARP,zf-PARP,PARP_re	4.1
	413749	Al929320	Hs.75516	tyrosine kinase 2	pkinase,SS,TM,ig	4.1
	411927	BE274009	Hs.772	glycogen synthase 1 (muscle)	Glycos_transf_1,SS	4.1
	433320	D60647	Hs.250879	ESTs, Highly similar to CTXN R	SS,TM,rm	4.1
50	433890	AF103801	Hs.16361	hypothetical protein	DAO,SS .	4.1
20	452603	AW410601	Hs.30026	HSPC182 protein	SS	4.1
	444496	BE302472	Hs.11314	DKFZP564N1363 protein	SS,GKAP,Band_41	4.1
	422556	NM_006245	Hs.118244	protein phosphatase 2, regulat	B56,SS,TM,Atrophin-1,Exo_	4.1
	447347	AA570056	Hs.122730	ESTs, Moderately similar to KI	TM,SS	4.1
	428284	AA535762	Hs.183435	NM_004545:Homo sapiens NADH de	SS,TM,Josephin,UIM,Joseph	4.1
55	426551	AA381268	Hs.323947	ESTs	SS,sushi	4.0
	417782	T10149	Hs.4243	hypothetical protein FLJ12650	SS,TM	4.0
	443639	BE269042	Hs.9661	proteasome (prosome, macropain	proteasome,SS,TM,LACT,try	4.0
	410039	AF207989	Hs.58014	Homo sapiens, Similar to G pro	SS,TM,7tm_3,SS,TM	4.0
C O	452715	Z21093	Hs.30352	ribosomal protein S6 kinase, 5	pkinase	4.0
60	442549	AI751601	Hs.8375	TNF receptor-associated factor	zf-C3HC4,MATH,zf-TRAF,SS,	4.0
	430603	AA148164	Hs.247280	HBV associated factor	SS,zf-C3HC4,zf-RanBP,pkin	4.0
	427239	BE270447		ubiquitin carrier protein	UQ_con,SS,TM	4.0
	402665			Target Exon	SS,TM,lg,DSPc	4.0
~ **	413818	BE161405	Hs.79	hypothetical protein MGC15429	SS,KH-domain,WD40,Ribosom	4.0
65	406919	M88359		gb:Homo sapiens DNA-binding pr	SS,rm	4.0
	412656	AF006011	Hs.74375	dishevelled 1 (homologous to D	SS,PDZ,DEP,DIX,Dishevelle	4.0
	437546	AW074836	Hs.173984	T-box 1	SS,TM,T-box,GTP_CDC,LRRCT	4.0
	419489	AW411280	Hs.90693	replication initiation region	zf-C2H2,LIM,TM	4.0
	410043	D30612	Hs.58167	zinc finger protein 282	zf-C2H2,KRAB,SS,zf-C2H2,K	4.0
70	430067	U79458	Hs.231840	WW domain blinding protein 2	GRAMISS	4.0
. •	408449	NM_004408	Hs.166161	dynamin 1	PH,GED,dynamin,dynamin_2,	4.0
	448099	BE621839	Hs.61976	Homo sapiens cDNA FLJ12947 fis	SS	4.0
	436656	N35568	Hs.5245	hypothetical protein FLJ20643	SS,TM,sugar_tr,PID	4.0
	424512	X53002	Hs.149846	Integrin, beta 5	Integrin_B,EGF,SS,TM	4.0
75	440346	Al923985	Hs.59621	ESTs, Weakly similar to A40815	SS,TM,ig,pkinase	3.9
	420065	AW140093	Hs.129926	ESTs	SS,TM	3.9
	426636	BE242634	Hs.2055	ubiquitin-activating enzyme E1	ThiF,UBACT,SS,pkinase,UCH	3.9
	420030	NM_002975	Hs.105927	slem cell growth factor, lymph		3.9
	427498	NM_003926	Hs.178728	methyl-CpG binding domain prot	lectin_c,SS,TM	3.9
80		AA341497		RAR (RAS like GTPASE)	SS,HLH SS TM Bhambaid	3.9
JU	457820	8E559554	Hs.31408	hypothetical protein FLJ23338	SS,TM,Rhomboid	3.9 3.9
	439998	AA223599	Hs.61790		SS,SS,TM,EMP70,PA28_alpha	
	438662		Hs.6351	cleavage and polyadenylation s early development regulator 2	zf-CCHC,zf-CCCH,thaumatin	3.9
	414303	NM_004427	Hs.165263		SAM,SS	3.9
	435406	F26698	Hs.4884	calcium/calmodulin-dependent p	pkinase, SS, hexokinase, hex	3.9
				241		

	414168	AW793296	Hs.103845	ESTs, Moderately similar to 15	SS .	3.9
	451982	F13036	Hs.27373	Homo saplens mRNA; cDNA DKFZp5	SS .	3.9
	418181	U37012	Hs.83727	cleavage and polyadenylation s	CPSF_ASS,TM	3:9
5	402793			Target Exon	SS,TM,cyclin,cyclin_C	3.9
)	418681	AA287786	Hs.23449	insulin receptor tyrosine kina	SS,SH3	3.9
	412621	L40397	Hs.74137	transmembrane trafficking prot	EMP24_GP25L,SS,TM	3.9
	420631	AW976530	Hs.28355	hypothetical protein FLJ22402	SS,TM	3.9
	438483	AW966735	Hs.321635	ESTs, Wealty similar to A46302	SS,TM,IP_trans	3.9
10	431472	AK001023	Hs.256549	nucleotide binding protein 2 (fer4_NifH_ParA_APS_kinase	3.9
IU	447800	AL080092	Hs.19610	OKFZP564N1362 protein	SS,TM,SS,TM	3.8
	436686	AW450205	Hs.305890	BCL2-like 1	TM,8cl-2,8H4	3.8
	408815	AW957974	Hs.25485	hypothetical protein FLJ22341	SS,TM Complex1_51K,SNF2_N,helic	3.8 3.8
	441196	BE397802	Hs.7744	NM_007103°:Homo sapiens NADH d	SS,TM,EMP24_GP25L,SS,TM,G	3.8
15	433030 408721	AW068857 BE515274	Hs.279929 Hs.47062	gp25L2 protein polymerase (RNA) II (DNA direc	RNA_POL_M_15KD,SS,COX7a	3.8
13	435049	AL122067	Hs.4746	hypothetical protein FLJ21324	SS,pfkB	3.8
	433043	AL122007 AL133461	Hs.251664	insulin-like growth factor 2 (SS.Insulin.Insulin	3.8
	450835	BE262773	Hs.25584	hypothetical protein FLJ 10767	ArfGap,SS,vwa,TSPN,fn3,Co	3.8
	414134	X60188	Hs.861	mitogen-activated protein kina	pkinase, SS, pkinase, T-box	3.8
20	418090	U57059	Hs.83429	tumor necrosis factor (ligand)	TNF,SS	3.8
20	448832	AW245212	Hs.22199	ECSIT	SS,rm	3.8
	447256	AW593008	Hs.6126	hypothetical protein dJ1141E15	SS,TM,SS,TM	3.8
	448107	D45853	Hs.20313	protein tyrosine kinase 2 beta	Focal_AT,pkinase,SS,Pepti	3.8
	426433	L38969	Hs.169875	thrombospondin 3	TSPN,tsp_3,SS,TM,SEA,TSPN	3.8
25	431626	AL035681	Hs.265327	-hypothetical protein DKFZp761I	SS	3.8
	430956	Al183529	Hs.2706	glutathlone peroxidase 4 (phos	GSHPx,SS,TM,ABC_tran	3.8
	450998	BE387614	Hs.25797	splicing factor 3b, subunit 4,	SS.TM.sugar_tr,histone	3.8
	434899	BE613631	Hs.283565	FOS-like antigen-1	bZIP,SS,bZIP,cofilin_ADF,	3.8
	444734	NM_001360	Hs.11806	7-dehydrocholesterol reductase	ERG4_ERG24,SS,TM	3.8
30	411090	BE165650	Hs.339697	VPS28 protein	SS,TM,CPSF_A	3.8
-	452135	AI492175	Hs.21446	KIAA1716 protein	SS,DIX,PDZ,DEP,Dishevelle	3.8
	421339	AA070224	Hs.103561	SRp25 nuclear protein	SS	3.7
	406535			Target Exon	SS,TM,Ribosomal_S19e,ig,I	3.7
	447281	AA017018	Hs.18021	hypothetical protein FLJ20446	SS,SS,Teklin,Piwi,PAZ	3.7
35	433126	AB021262	Hs.99816	beta-catenin-interacting prote	SS.TM	3.7
- •	425215	AF030291	Hs.155165	zinc finger protein-like 1	PHD,SS,TM,DnaJ,ERG4_ERG24	3.7
	420536	AL117455	Hs.275438	histone deacetylase 7A	Hist_deacetyl,SS,Hist_dea	3.7
	417998	AW957420		qb:EST379495 MAGE resequences,	SS.TM	3.7
	430890	X54232	Hs.2699	glypican 1	Glypican, SS	3.7
40	427863	AF189712	Hs.181002	MLL septin-like fusion	SS,GTP_CDC,SS,TM	3.7
	448606	BE613362	************	Homo saplens ubiquitin conjuga	SS,TM	3.7
	421961	AB032993	Hs.109929	likely homolog of rat GRIP-ass	TM,K_tetra,ion_trans,HLH,	3.7
	410293	AK000047	Hs.61960	hypothetical protein	K_tetra,SS	3.7
	425233	Z17861	Hs.155218	E1B-55kDa-associated protein 5	SPRY,SAP,SS,TM,SPRY,SAP,p	3.7
45	423683	BE388699	Hs.4188	hypothetical protein MGC10812	SS,Peptidase_C15,TGF-beta	3.7
	415697	AI365603	Hs.78605	DKFZP566I1024 protein	SS.cpn60_TCP1	3.7
	415825	Y18024	Hs.78877	inositol 1,4,5-trisphosphate 3	SS	3.7
	418052	AA350659	Hs.83347	angio-associated, migratory ce	WD40,Bacterial_PQQ,TM,UPF	3.7
	444706	AK000398	Hs.11747	hypothetical protein FLJ20391	SS,SS,TM	3.7
50	407381	AA420659	Hs.183110	ESTs, Weakly similar to ALUC_H	SS,TM	3.7
	423432	8E252996	Hs.44067	ESTs	TM	3.7
	444982	AK002182	Hs.12211	GDP-fucose transporter 1	SS,TM,DUF6,SS,TM	3.7
	407777	AA161071	Hs.71465	squalene epoxidase	SS,TM,Monooxygenase	3.7
~ ~	422715	AA332178	Hs.119403	hexosaminidase A (alpha polype	Glyco_hydro_20,Glyco_hydr	3.7
55	422609	Z46023	Hs.118721	sialidase 1 (lysosomal sialida	SS,TM,BNR,SS,TM,SET,HSP70	3.7
	414732	AW410976	Hs.77152	minichromosome maintenance def	MCM,RIP,SS,zf-C2H2,KRAB	3.7
	452579	AA131657	Hs.23830	ESTs	SS,CN_hydrolase	3.7
	419032	WB1330	Hs.58643	ESTs, Highly similar to JAK3B	SS,pkinase,SH2,Insulin,pk	3.6
C 0	411165	NM_000169	Hs.69089	galactosidase, alpha	Meliblase, Ribosomal_L44, z	3.6
60	444000	AI095034	Hs.135528	ESTs	SS,HLH	3.6
	441174	BE312775	Hs.294005	Homo saplens, clone IMAGE:3050	SS,TM	3.6
	429491	NM_012111	Hs.204041	chromosome 14 open reading fra	SS	3.6
	438433	AB018274	Hs.6214	KIAA0731 protein	SS	3.6
65	425162	BE514851	Hs.154886	choline kinase-like	Carn_acyltransf,Choline_k	3.6
65	429671	BE379335	Hs.211594	proteasome (prosome, macropain	AAA,NB-ARC,TM	3.6
	421018	AI569028	Hs.129888	hypothetical protein FLJ14768	zf-C2H2,SS,rm,ENTH	3.6
	433604	NM_013442	Hs.3439	stomatin-like 2	Band_7,SS,TM,AAA,cdc48_N,	3.6
	451544	AK000429	Hs.26570	hypothetical protein FLJ20422	SS,TM,COX3,SS,TM,SRF-TF	3.6
70	444369	AV649296	Hs.282793	ESTs .	SS	3.6
70	406660	X65371	Hs.172550	polypyrimidine tract binding p	mm,beta-lactamase,SS,try	3.6
	456503	AW977779	Hs.194613	ESTs	SS,TM,bromodomain,abhydro	3.6
	451711	AK000461	Hs.26890	cat eye syndrome chromosome re	SS,SS,TM,A_dearninase	3.6
	425394	AA356730	Hs.323949	kangai 1 (suppression of tumor	SS,TM,transmembrane4	3.6
75	428011	BE387514	Hs.181418	KIAA0152 gene product	Acyl-CoA_dh,SS,efhand	3.6
75	407627	AI419020	Hs.62620	chromosome 6 open reading fram	SS	3.6
	436437	F12200	Hs.5811	chromosome 21 open reading fra	SS,Syja_N,Exo_endo_phos	3.6
	419418	X75621	Hs.90303	tuberous scienosis 2	Rap_GAP,Tuberin,Peptidase	3.6
	440300	N39760	Hs.8859	Homo sapiens, Similar to RIKEN	SS	3.6
80	448136	AA036680	Hs.20447	protein kinase related to S. c	pkinase,PBD	3.6
ου	435977	AL138079	Hs.5012	brain-specific membrane-anchor ESTs	SS,TM,SS,TM,ubiquitin,Rib	3.6
	419095	AA234009 A1 360143	Hs.188715	DKFZP434H132 protein	pkinase,PH,pkinase_C SS	3.6 3.6
	447267 418054	AL360143 NM_002318	Hs.17936 He 83354	lysyl oxidase-like 2		3.6 3.6
	444354	AA847582	Hs.83354 Hs.10927	hypothetical protein R33729_1	SRCR,Lysyl_oxidase,SS,TM, SS	3.6 3.6
	***4334	WHI-1905	NS. 10321	rrypouloused protein reserve_1	33	3.0

	429098	AF030249	Hs.196176	enoy! Coenzyme A hydratase 1,	ECH, Herpes_V23, SS, Gal-bin	3.6
	430622	BE616971	Hs.247478	Homo sapiens, Similar to DNA s	G-patch, SS, TM, ubiquitin, a	3.6
	440675	AW005054	Hs.47883	ESTs, Weakly similar to KCC1_H	pkinase	3.6 ·
	409678	NM_005632	Hs.55836	small optic lobes (Drosophila)	TM,Peptidase_C2	3.6
5	413097	BE383876	Hs.75196	ankyrin repeat-containing prot	ank,SET,SS,TM,pkinase,SH2	3.6
_	427579	AA366143	Hs.179669	hypothetical protein FLJ20637	HECT, SS, HECT	3.6
	409154	U72882			SS,ras,Ribosomal_L27e,KOW	3.5
	448528		Hs.50842	interferon-Induced protein 35		3.5
		BE613248	Hs.172084	Homo sapiens, clone IMAGE:3627	SS,PID,SH2	
10	444426	AL121105	Hs.11170	RNA binding motif protein 14	rm,SS,spectrin,PH,rrm,so	3.5
10	409297	R34662	Hs.53066	hsp70-Interacting protein	SS	3.5
	441138	T56785	Hs.10101	hypothetical protein FLJ12875	SS	3.5
	435169	AF148509	Hs.279881	mannosidase, alpha, class 1B,	TM,Glyco_hydro_47	3.5
	422575	AK000546	Hs.118552	hypothetical protein FLJ20539	TM,SS,TM,SRCR,Glyco_trans	3.5
	403325			C2000428*:gi[7705383[ref]NP_05	SS	3.5
15	437895	AB014568	Hs.5898	KIAA0668 protein	TM,UL21,Lipoprotein_6,GBP	3.5
	449030	Al365582	Hs.57100	Homo sapiens mRNA for FLJ00016	SS,Synuclein	3.5
	426542	AF190746	Hs.170310	cat eye syndrome chromosome re	A_deaminase,SS,TM,Hydrola	3.5
	439873	BE159253		ESTs		3.5
			Hs.300638		SS SS SS THE COLORS OF THE COL	
20	428950	BE311879	Hs.194673	phosphoprotein enriched in ast	DED,SS,TM,Calsequestrin	3.5
20	421564	AB007864	Hs.105850	KIAA0404 protein	SS	3.5
	441094	U33819	Hs.7647	MYC-associated zinc finger pro	SS,zf-C2H2,LIM,PHD,TFIIS,	3.5
	450007	BE270693	Hs.24301	polymerase (RNA) II (DNA direc	NA,SS	3.5
	422898	AL043101	Hs.127401	DKFZP434A163 protein; selectiv	SS,TM	3.5
	444914	AAD46947	Hs.12142	'WD repeat domain 13	WD40,SS,TBC,rrm	3.5
25	420178	D50550	Hs.95659	Jethal glant larvae (Drosophil	WD40,SS,TM	3.5
	418984	AA421401		ribosomal protein L18	SS,TM	3.5
	414166	AW888941	Hs.75789	N-myc downstream regulated	Ndr,abhydrolase,SS	3.5
	409944	BE297925				3.5
			Hs.57687	four and a half UM domains 3	UM,SS	
20	421458	NM_003654	Hs.104576	carbohydrate (keratan sulfate	SS	3.5
30	423599	A1805664	Hs.31731	peroxiredoxin 5	AhpC-TSA,SS,hormone_rec,z	3.5
	427715	BE245274	Hs.180428	KIAA1181 protein	TM,SS,TM,KOW	3.5
	405496			Target Exon	SS,tubulin,SS	3.5
	417911	AA333387	Hs.82916	chaperonin containing TCP1, su	cpn60_TCP1,SS,cpn60_TCP1	3.5
	433620	AA604520	Hs.269468	ESTs, Moderately similar to AL	SS,UCH-2,UCH-1	3.5
35	430053	AF052155	Hs.227949	SEC13 (S. cerevisiae)-like 1	WD40,SS,TM,E1-E2_ATPase,C	3.5
55	458687			GLUT4 enhancer factor	SS SS	3.5
		AW024815	Hs.170088			
	424679	AL117477	Hs.119960	DKFZP727G051 protein	chromo,SS	3.5
	417360	AW651703	Hs.82023	hypothetical protein similar t	SS,TM,GDA1_CD39,GDA1_CD39	3.5
40	439641	Al251317	Hs.33184	ESTs	SS,TM,GYF,actin,PA	3.5
40	426437	BE076537	Hs.169895	ubiquitin-conjugating enzyme E	UQ_con,SS,TM,Armadillo_se	3.5
	427117	BE258946	Hs.173611	Target CAT	complex1_49Kd,SS,TM,ITAM,	3.4
	422051	AW327546	Hs.111024	solute carrier family 25 (mito	SS;mito_carr,SS,mito_carr	3.4
	422759	AA316582	Hs.224571	ESTs	SS	3.4
	417230	U40998	Hs.81728	unc119 (C.elegans) homolog	SS,glycolytic_enzy	3.4
45	450158	AK001999	Hs.24545	hypothetical protein FLJ11137	SS,zf-C2H2,SCAN,TFIIS,SS	3.4
	425421	L11669	Hs.157145	tetracycline transporter-like	SS,TM,SS,TM	3.4
	415515	F11327	Hs.167406	gb:HSC2VD101 normalized infant	SS	3.4
						3.4
	427868	Al360119.comp	Hs.181013	phosphoglycerate mutase 1 (bra	PGAM,SS,TM,Idh	
50	413503	BE410228	Hs.75410	heat shock 70kD protein 5 (glu	SS,HSP70,homeobox,Hydanto	3.4
50	413014	AW250533	Hs.75139	partner of RAC1 (arfaptin 2)	SS,hemopexin,Filamin,NHL,	3.4
	457655	AA622968	Hs.71574	hypothetical protein FLJ14926	SS,P5CR,EF1BD	3.4
	419432	AK001459	Hs.90375	hypothetical protein FLJ10597	PEP-utilizers,PEP-utilize	3.4
	421066	AU076725	Hs.101408	branched chain aminotransferas	aminotran_4,TM	3.4
	428038	AW134756	Hs.192477	ESTs	SS,Exonuclease,zf-C2H2	3.4
55	430352	AW750535	Hs.50742	Homo saplens cDNA: FLJ23331 fi	TM	3.4
	432647	Al807481	Hs.278581	fibroblast growth factor recep	ig,pkinase,SS,TM,ig,pkina	3.4
	421310	AW630087	Hs.103315	trinucleotide repeat containin	TM,zf-C2H2,SS,PHD	3.4
	420999	AA338903	Hs.100915	peroxisomal biogenesis factor	SS	3.4
	409561	U58048			SS,TM	3.4
60	419727	AW160796	Hs.183138 Hs.92700	procollagen (type III) N-endop	Herpes_env,SS,TM,Peptidas	3.4
00	4-4			DKFZP564O243 protein		
	421267	BE314724	Hs.103081	ribosomal protein S6 kinase, 7	pkinase,pkinase_C,SS	3.4
	411501	AB002368	Hs.70500	KIAA0370 protein	SS,TM,SS,TM	3.4
	448741	BE614567	Hs.19574	hypothetical protein MGC5469	SS	3.4
	407103	AA424881	Hs.256301	hypothetical protein MGC13170	SS,TM,trypsin	3.4
65	422808	AA449014	Hs.121025	chromosome 11 open reading fra	SS,TM,trypsin,CUB,ubiquit	3.4
	448173	N95657	Hs.6820	ESTs, Moderately similar to YO	SS	3.4
	416535	H61851		gb:yr80e10.r1 Soares fetal liv	SS,TM,homeobox,LIM	3.4
	406656	M16714	Hs.181392	major histocompatibility compl	MHC_I,ig,SS,TM	3.4
	435669	AI867781	Hs.31819	HT014	SS,abhydrolase_2	3.4
70	411077	AW977263	Hs.68257	general transcription factor I	SS.TM.TGF-beta	3.4
. •	427062	AW327785	Hs.173421	KIAA1564 protein	SS,Peptidase_M24	3.4
	421890			ESTs	SS,zf-C3HC4,SPRY	3.4
		AW959486	Hs.21732			3.4
	412968	AW500508	Hs.75102	alanyi-tRNA synthetase	DHHA1,SS,tRNA-synt_2c,DHH	
75	439496	BE616501	Hs.32343	Homo sapiens, Similar to RIKEN	SS	3.4
75	433659	AK001301	Hs.3487	hypothetical protein FLJ10439	WD40,SS,TM,Syntaxin,Synta	3.3
	44757B	AA912347	Hs.136585	ESTs, Wealdy similar to JC5314	SS	3.3
	441722	AW960504	Hs.173103	FE65-LIKE 2	SS,TM	3.3
	452345	AA293279	Hs.29173	hypothetical protein FLJ20515	DSPc,SS,jmjC,F-box	3.3
• -	451714	AK000344	Hs.26898	hypothetical protein FLJ20337	SS,TBC,FHA,zf-C3HC4	3.3
80	410633	BE546789	Hs.346742	hypothetical protein MGC3260	SS,TM	3.3
- •	410609	BE298441	Hs.287361	ADP-ribosylation factor relate	erf,ras,SS,erf,Stathmin	3.3
	414775	AA992036	Hs.172702	ESTs, Weakly similar to (defii	SS.PCI	3.3
		NM_013279	Hs.184640	hypothetical protein MGC10781	SS,TM,XPG_N,XPG_J,5_3_exo	3.3
	428495	NM_005341	Hs.2364			3.3 3.3
	429215	11111_003041	113.6004	GLI-Kruppel family member HKR3	zf-C2H2,BTB,TP2,K_tetra,S	2.3
				2.42		

	446618	AL110307	Hs.15591	COP9 subunit 6 (MOV34 hornolog,	Mov34,SS,zf-C2H2,SCAN	3.3
	44486B	BE560471	Hs.12101	hypothetical protein	SS,PCI	3.3
	430041	AW247237	Hs.227835	KIAA1049 protein	SS,TM,7tm_1,tubulin	3.3
_	416950	AL049798	Hs.80552	dermatopontin	SS	3.3
5	431203	AW248421	Hs.250758	proteasome (prosome, macropain	AAA,Sigma54_activaLSS,TP	3.3
	432714	Y12059	Hs.278675	bromodomain-containing 4	bromodomain,SS,TM,SNF2_N,	3.3
	415674	BE394784	Hs.78596	proteasome (prosome, macropain	SS,proteasome,SS,TM,Cadhe	3.3
	426152	BE299190	Hs.167246	P450 (cytochrome) oxidoreducta	flavodoxin,FAD_binding,SS	3.3
	418440	NM_006936	Hs.85119	SMT3 (suppressor of mif two 3,	ubiquitin,SS,UQ_con	3.3
10	410545	U32324	Hs.64310	interteukin 11 receptor, alpha	ig,fn3,SS,TM,GalP_UDP_tra	3.3
	409428	M33680	Hs.54457	CD81 antigen (target of antipr	transmembrane4,cyclin,SS,	3.3
	443121	Z19267	Hs.9006	VAMP (vesicle-associated membr	TM,MSP_domain	3.3
	453856	AA804789	Hs.19447	PDZ-LIM protein mystique	LIM,SS,SH3,Sorb	3.3
	430137	NM_005456	Hs.234249	mitogen-activated protein kina	SS,SH3,PID,SS,PID	3.3
15	446427	AW295863	Hs.119632	ESTs	SS	3.3
	400747	7720000		Target Exon	fn3,lg	3.3
	445580	AF167572	Hs.12912	skb1 (S. pombe) homolog	SS,SS	3.3
	452568	AA805634	Hs.300870	Homo sapiens mRNA; cDNA DKFZp5	SS,rm,Ephrin,pkinase,ATP	3.3
	418558	AW082266	Hs.86131	Fas (TNFRSF6)-associated via d	death,DED,SS,TM	3.3
20	401655	ATTOUZESU	16.00101	Target Exon	SS SS	3.3
20	429460	D56263	Hs.203238		PDEase, SS, PDEase	3.3
	416448	L13210	Hs.79339	phosphodiesterase 18, calmodul		3.3
				lectin, galactoside-binding, s	SRCR,SS,TM	3.3
	433038	AF192559	Hs.279939	mitochondrial carrier homolog	TM,mito_carr,TM	
25	440251	AW796016	Hs.332012	Homo sapiens, clone IMAGE:3687	SS,TM,SS,TM,IRK	3.3
23	412922	M60721	Hs.74870	.H2.0 (Drosophila)-like homeo b	SS,homeobox,SS	3.3
	432941	W04803	Hs.279851	hypothetical protein FLJ10241	SS,RNase_PH,RNase_PH_C	3.3
	441244	8E612935	Hs.184052	PP1201 protein	SS,TM,WD40	3.3
	438175	Al376727	Hs.122110	ESTs	SS,TM,trypsin,kringle,fn2	3.3
20	423024	AA593731	Hs.325823	ESTs, Moderately similar to AL	SS,TM,CD36,CD36	3.3
30	430120	AW675298	Hs.233694	hypothetical protein FLJ11350	88	3.3
	419571	AW674962	Hs.91146	protein kinase D2	pkinase,DAG_PE-bind,PH,DC	3.3
	413019	BE281604	Hs.75140	low density lipoprotein-relate	SS	3.3
	400299	X07730	Hs.171995	kallikrein 3, (prostate specif	trypsin,SS,trypsin,trypsi	3.3
	433519	BE263901		ESTs, Weakly similar to S37431	SS,TM	3.2
35	434702	AL039734	Hs.4099	nardilysin (N-arginine dibasic	Peptidase_M16,HCO3_cotran	3.2
	422242	AJ251760	Hs.273385	guanine nucleotide binding pro	G-alpha,arf,SS,G-alpha	3.2
	430480	AL079399	Hs.241543	DKFZP586F1524 protein	SS,TM,hemopexin,Somatomed	3.2
	452438	BE514230	Hs.29595	JM4 protein	SS,TM,KOW,HLH	3.2
	456939	AA431633	Hs.163867	NM_002488*:Homo sapiens NADH d	SS,tRNA-synt_2b,WHEP-TRS,	3.2
40	421009	AL049709	Hs.343357	Human DNA sequence from clone	TM	3.2
. •	411969	X12458	Hs.72980	Protein P3	SBF,SS,TM,G6PD,G6PD_C,hex	3.2
	409197	N54706	Hs.303025	chromosome 11 open reading fra	SS	3.2
	417896	AA379770	Hs.82890	defender against cell death 1	DAD,SS,TM	3.2
	418026	BE379727	Hs.83213	fatty acid binding protein 4,	lipocalin, SS, lipocalin	3.2
45	409057	AA702305	Hs.180060	ESTs	SS,TGFb_propeptide,TGF-be	3.2
1.5	437869	W91976	Hs.290834	ESTs	SS,TM,SH3,zf-C3HC4	3.2
	413211	AW967107	Hs.109274	hypothetical protein MGC4365	SS,TM	3.2
	425080	Al393498	113.103274	Inositol 1,4,5-triphosphate re	SS,CTF_NFI	3.2
	445363	NM_005993	Hs.12570	tubulin-specific chaperone d	ATP-synt_B,HEAT_PBS,SS,TM	3.2
50	421943	BE616520	Hs.343912	Homo sapiens, Similar to RIKEN	SS,TM,SS,TM	3.2
20	443337		Hs.9235			3.2
	418885	Y07604		non-metastatic cells 4, protel	NDK,SS,adh_short,NDK	3.2
		D17530	Hs.89434	drebrin 1	cofilin_ADF,SS,cofilin_AD	3.2
	411817	BE302900	Hs.72241	mitogen-activated protein kina	pkinase,SS	
55	413891	BE271020	11- 070400	tumor suppressor deleted in or	SS,TM	3.2
<i>.</i>	449455	T60748	Hs.278408	hypothetical protein	TM	3.2
	419193	D29643	Hs.34789	dolichyl-diphosphooligosacchar	SS,TM,DDOST_48kD,VP7,SS,T	3.2
	406701	AA780613	Hs.62954	ferritin, heavy polypeptide 1	SS,TM,UDPGT	3.2
	436467	AW450278	Hs.91681	ESTs, Weakly similar to DCHUO	SS,tRNA-synt_1b,tRNA_bind	3.2
<i>(</i> 0	446334	U52427	Hs.14839	polymerase (RNA) II (DNA direc	S1,SS	3.2
60	410270	AF279142	Hs.195727	tumor endothelial marker 1 pre	SS,TM,EGF,lectin_c,sushi,	3.2
	445411	AL137255	Hs.12646	hypothetical protein FLJ22693	SS,hormone_rec,zf-CCCH	3.2
	458018	Al199575	Hs.37716	ESTs	SS,TM,Oxysterol_BP	3.2
	426530	U2457B	Hs.278625	complement component 4A	SS,A2M,NTR,A2M_N,prenyltr	3.2
	445604	T08566	Hs.12956	Tax Interaction protein 1	PDZ,SS,TM,P2X_receptor,FG	3.2
65	443402	U77846		elastin (supravalvular aorlic	SS,PDZ,UM,pkinase	3.2
•	432416	BE410937	Hs.2985	emerin (Ernery-Dreifuss muscula	LEM, SS, Ribosomal_L10e, Acy	3.2
	429662	AI929701	Hs.211586	phospholnositide-3-kinase, reg	SH2,SH3,RhoGAP,SS,GILT,SH	3.2
	429150	AF120103	Hs.197366	smoothened (Drosophila) homolo	SS,TM,Fz,Frizzled,7tm_2,S	3.2
~ ^	427729	AB033100	Hs.300646	KIAA1274 protein (similar to m	SS	3.2
70	418151	AA864238.comp	Hs.83583	actin related protein 2/3 comp	RhoGEF,REV,PH,SS,TM,Ribos	3.2
	448250	NM_016034	Hs.20776	mitochondrial ribosomal protei	Ribosomal_\$2,\$\$,lipocalin	3.2
	431158	AW859138	Hs.136280	Homo sapiens cDNA: FLJ22288 fi	SS,Exonuclease	3.2
	414292	BE388407	Hs.75875	ubiquitin-conjugating enzyme E	UQ_con,SS,TM,SAM_PNT	3.2
	406307			Target Exon	SS,TM,7tm_2,SS,TM,7tm_2,G	3.2
75	423325	R55565	Hs.347286	hypothetical protein FLJ22427	SS,TM,Surp,ubiquitin,TBC	3.2
-	427584	BE410293	Hs.179718	v-myb avian myeloblastosis vir	NASS	3.1
	419069	AA233801		ESTs, Weakly similar to CA13_H	SS	3.1
	431717	BE396150	Hs.6945	mitochondrial ribosomal protei	SS,TM	3.1
	448381	D61580	Hs.21036	Homo sapiens mRNA; cDNA DKFZp4	RhoGAP,SS,TM,SET,zI-CXXC,	3.1
80	419394	AB011124	Hs.90232	KIAA0552 gene product	SS.ig	3.1
	436240	BE388673	Hs.5086	hypothetical protein MGC10433	SS,TM,Ets,COX6B,transmemb	3.1
	413900	AW409747	Hs.75612	stress-induced-phosphoprotein	TPR,SS,TM,DnaJ	3.1
	417920	S47833	Hs.82927	adenosine monophosphate deamin	A_deaminase,SS,G-alpha,GS	3.1
	421819	NM_013403	Hs.108665	zinedin	WD40,pkinase,pkinase	3.1
						٠.

	426362	BE267158	Hs.169474	OKFZP586J0119 protein	IF-2B,SS,PP2C	3.1
	408917	AW249025	Hs.7768	fibroblast growth factor (acid	SS,bZIP,cofilin_ADF,EGF	3.1
	443099	AI372836	Hs.9003	hypothetical protein FLJ13868	TM	3.1 ·
	427022	AW245839	Hs. 173255	small nuclear ribonucleoprotei	rm, SS,rm, SH3,ras, 20G-Fe	3.1
5	452711	AW967047	Hs.293224	ESTs, Weakly similar to T00375	SS	3.1
-	407236	W79485	Hs.173980	nuclear matrix protein NMP200	WD40,SS,TM,PTR2,7tm_1	3.1
	452537	AW247390				3.1
			Hs.77735	hypothetical protein FLJ11618	SS,SNF2_N,helicase_C	
	452139	AA099969	Hs.16331	Homo sapiens cDNA: FLJ21482 fi	SS	3.1
10	447629	AF034790	Hs.19105	translocase of inner mitochond	Tim17,SS,TM,pkinase,OTU	. 3.1
10	401097			C12000858*:gi[7363437 ref]NP_0	SS,TM,7tm_1,SS	3.1
	452736	C01164	Hs.4232	Homo sapiens PAC clone RP1-130	SS,SS,TM,TBC,Surp,ubiquit	3.1
	435507	A1143579	Hs.26510	vacuolar protein sorting 338 (SS,Sec1,Sec1	3.1
	424934	U75370	Hs.153880	polymerase (RNA) mitochondrial	PPR,SS,TM,cNMP_binding,RN	3.1
	413245	BE244334	Hs.75249	ADP-ribosylation factor-like 6	SS,TM,kazal,Ribosomal_S8,	3.1
15	409858	NM_006586	Hs.56828	trinucleotide repeat containin	SS,SS,TM,B56	3,1
	424582	AF026849	Hs.150922	BCS1 (yeast homolog)-like	AAA,SS,PI-PLC-X,PH,PI-PLC	3.1
	431677	AK000496	Hs.306989	hypothetical protein FLJ20489	SS	3.1
	417947	AA323563	Hs.325309	hypothetical protein FLJ14596	SS,TM,PTPA	3.1
	409283	NM_004860				
20			Hs.52788	fragile X mental retardation,	KH-domain,SS,TM,HMG_box	3.1
20	412813	AF086947	Hs.74617	dynactin 1 (p150, Glued (Droso	CAP_GLY,SS	3.1
	456535	AA305079	Hs.1342	cytochrome c oxidase subunit V	COX5B,SS,p450,actin	3.1
	432482	L19267	Hs.275924	dystrophia myotonica-containin	WD40,SS,pkinase,pkinase	3.1
	437256	AL137404	Hs.97871	Homo sapiens, clone IMAGE:3845	TM,SS	3.1
26	440191	AI990417		tubulin, beta 5	SS,formiminotr,prenyltran	3.0
25	407972	AA827639	Hs.18587	- KIAA1588 protein	SS,TM	3.0
	420890	AA434058	Hs.100071	6-phosphogluconolactonase	Glucosamine_iso,SS	3.0
	440060	AI696387	Hs.126451	ESTs, Weakly similar to A46302	SS	3.0
	452222	AWB06287	Hs.21432	SEX gene	SS,TM,Sema,TIG,PSI,GDI	3.0
	401772			NM_014520:Homo sapiens MYB bin	SS	3.0
30	453754	AW972580	Hs.172753	ESTs	SS,TM,ras,Ribosomal_S19,T	3.0
50	423865	H05202	Hs.133968	FGF receptor activating protei	SS,TM	3.0
	450962	BE535647	Hs.25723	Sjogren's syndrome/scleroderma	SS,TM	3.0
	441954	AI744935	Hs.8047	Fanconi anemia, complementatio	TPR,SS,TM,AAA,cdc48_N,Ban	3.0
35	412787	D87452	Hs.74579	KIAA0263 gene product	zf-CCCH,SS,TM,NTP_transfe	3.0
22	422034	AC006486	Hs.333069	Ets2 repressor factor	Ets,SS,pkinase,PAF-AH_lb	3.0
	450788	Al738410		ESTs	SS,TM	3.0
	452511	BE408178	Hs.285165	Homo sapiens cDNA FLJ20845 fis	SS,thlored,P5CR	3.0
	414380	BE391815	Hs.75981	ubiquitin specific protease 14	UCH-2,UCH-1,ubiquitin,SS	3.0
40	407597	AA043925	Hs.339352	Homo sapiens brother of CDO (B	SS,TM,SS,TM	3.0
40	434955	BE276128	Hs.284286	mitochondrial ribosomal protei	SS	3.0
	435632	AF220049	Hs.43549	uncharacterized hematopoletic	SS,UQ_con	3.0
	432465	D56165	Hs.275163	non-metastatic cells 2, protei	NDK,SS,NDK	3.0
	430526	AF181862	Hs.242407	G protein-coupled receptor, fa	7tm_3,homeobox,SS,TM	3.0
	453412	AJ003290		gb:AJ003290 Selected chromosom	pkinase	3.0
45	446456	BE613933	Hs.15106	chromosome 14 open reading fra	UPF0143,SS	3.0
	433180	AB038651	Hs.31854	K562 cell-derived leucine-zipp	TM,Acetyltransf,TM,Acetyl	3.0
	447322	BE617649	Hs.77690	RAB5B, member RAS oncogene fam	SS,oxidored_molyb,heme_1,	3.0
	422268	N25485	Hs.330310	maternal G10 transcript	G10,5S,WD40	3.0
	419578	AF064853	Hs.91299	guanine nucleotide binding pro	WD40,SS,EPO_TPO	3.0
50	446929	AA076132	Hs.9460	Homo sapiens mRNA; cDNA DKFZp5	SS,TM,WD40	3.0
	TABLE 21B:		Idonifies sumbos			
			l identifier number			
55		r. Gene cluster				
55	Accession;	Genbank acces	sion numbers			
	Pkey	CAT Number				
	408215	10478_1	BE614290 AA307674 N	35629 AA338538 Al193603 AA781096 Al680061 A	Al613258 AW276647 BE221263 Al348910 Al	985031 Al090078 Al359617
CO			AA666391 AI160210 AI	446461 A1355345 A1343638 A1343640 A1275091 M	178746 AW262795 AW250002 AA503756 AI9	34519 AW272086 N26520
60			AA626639			
	409938	116091_1	AW974648 AA652153 A	A649671 AA078582		
	411674	1253746_1		AW856717 AW861116 AW856706 AW856788 AW	856774 AW856787 AW856780 AW856782 A	N856789 AW856772
		_	AW856784 AW856786	AW856776 AW856635 AW856767		
	413052	1347214 1		E062771 BE062636 BE062813 BE062699 BE0628	895 BE062747 BE062719 BE293541	
65	413837	139363_1		AW163385 Al929359 BE279279 AA132590 AW15		3514 T24436 AI765658
				659582 Al969924 Al929284 Al340993 Al349083 A		
		•	Al341293 Al650609 AA			, 40 1000 ; 700 12000
	413891	139759_1		925430 AI806151 AW003726 T15590 AA649945 A	W129911 AI570748 T57492 AA828002 AW2	37602 AW003539 AI139045
				V778973 AI287859 AI983931 AW515101 AW1500		
70			AW513748 AI04058	TOUR MEDICON MEDICON MINISTER ATTIONS	25 74050430 74021113 741040010 7441 05211	ATT 1037 40 7433 1000
, ,	414023	1410860_1		E247016 BE241984 BE241534 BE246091 BE2450	670 DE9/3690 DE9/6000 DE9/9390 DE9/4/	17 DE241467 DE242622
	414023	1410000_1	BE241989 BE241464	C247010 DE241304 DE241304 DE240031 BE2430	013 00243020 00243330 00242323 002414	11 66241431 66242322
	416535	1599332_1	H61851 H74099 T6709			
75	417998	171375_1	AW967420 AA210915 /		150054 4 4033403 05003304 411/004504 410/	
15	418984	181094_1		30666 AA328941 W63573 AA758023 AA976306 H		
				9866 T49327 AA233722 AA631138 AA910314 AI3	1/9416 A1129321 AA8615/4 AA635649 A1339	443 AW009533 AA677036
	440000	101050 0	AA948287 AA62	*************************	A 1000074	
	419069	181650_3		A913939 Al632681 Al813277 Al373652 AW13480	72 A1863574 AW305364 A1858557 A1670746 A	NO15036 AI935384 AI935317
00	****	400000		AI765223 AA884146 AA973341 AA234062		
80	419250	183289_2		H11254 AW403510 Al032786 AA767046 Al37611		
		40/07/		59578 AA815039 AW292253 R05714 AA815462 A	4A235654 AA461274 W24933 AA300091 H00	515
	420160	191054_1		255989 AI698206 AI468558		
	421572	204022_1		376907 AIB11618 AW138145 AW139465 AA42165	58 AAZ93069 AW118141 AI214980 AW66350	2 A1343486 A1553789
			AA650416 AI498947	•		

PCT/US02/19297 WO 02/102235

	423696	23112_1	Z92546 AA330586 AI570568 AW341487 AI827050 AW298668 AI792189 AI015693 AI733599 AI572251 AI672488 AW193262 AI244716 AI864375
	425080	246559 1	Al206100 AA912444 Al269365 Al640254 AW772466 Al867336 AA627604 H16914 AA358477 AA338009 Al393498 R42314 Al088818 Al696468 Al418641 AA573152 F08817 Al910796 AW338984 R39024 AA729145 BE245956 Al093722 AA541730
_			F09835 Al242755 AA350447 AA865667 T93903 AW081029 AA493711 AA650030 N35995 N21491 T57002 Z25379 Al906851
5	427239	27647_1	BEZ70447 AW409921 BEZ97288 BEZ07170 D56355 BEZ63223 BE408171 BEZ62243 BE392439 BE292738 BE261776 BE314300 BE267719 BE268715 BE513876 BE295291 BE297066 AA210923 BE407519 H51344 BE622905 AW248281 AW250313 T19021 AA355115 AA316879 BE259533 BE621936 AA290774
	427391	27815_1	W60675 AK001212 AA155752 AA878366 AA090872 AB033013 AW249107 AA031890 AA112820 AW366388 N55156 AA326756 AW952294
			AA180820 C03570 C04358 W60676 AW248674 AA034989 AA044781 AA074274 H26212 Al800572 Al127583 Al951785 AA856557 Al571746
10			H23835 Al589543 Al215670
	428092	286920_1	AW879141 AA421182 AI734104 AI733923 AA430600
	429545	305902_1	A1824164 A1676005 AW129612 A1825903 AA773987 A1823645 A1823860 AA456229 A1824295 AA454622 A1264049 A1090237 A1669787 A1804012 A306153 W96164 A1298273 AW884073 AW883986
	430168	313927_1	AW958343 AA468507 Al478223 AW513008 Al762122 Al554512 AA862642 AA468976
15	433519	368801_2	BE263901 AA596086 Al190276 Al094806 Al831250 Al572668 AW204652 Al660600 Al922941 R49621
	438707	46360_1	L08239 BE618914 AW385394 AW385398 AW385401 AI922683 AA907337 AA160504 AA928142 AA601969 AA010594 BE618528 AA160591
	440191	48804_3	A1990417 A1304400 A1193071 A1742483 AW003408 AW131566 A1400201 A1656740 A1309186 AW665173 AW204722 A1215122 A1200785
			BE467373 AI147599 AI215120 AI076110 AI803429 AI262491 AI808243 AI281007 AW135212 AW205103 AI754349 AI004801 AI051273 AW768918 AW103289 AI4
20	443402	5681_1	U77846 AA479373 AA346348 AA348194 M26867 AA728901 AA715367 AA377787 R64236 Al752721 R77311 AA339685 BE074254 AW938712 AW068444 AA330624 AA347098 AA327507 AW391973 AA495763 AA479278 AW605018 T19644 Al204484 AW834745 AW081309 AW090002
			Al095659 Al131556 Al56
	444590	6116_1	AA457456 AA907921 Al567715 AA579472 T64216 AA373128 F35533 AA722113 T64403 AA653738 F28806 AA595689 AA047537 AA022499 AW440532 F36782 Al554180 A183767 Al806052 AA160379 AA481678 A1185031 A1148988 A1174482 AA868833 A1674395 AA481440 A1914985
25			AI698771 AA44
	445625	64558_1	BE246743 AA436942 AW024744 AW242177 AA975476 AW385185 R07536 R73462 AV654529 T57442 Al399986 R50073 R48743 Al769689
			AI863005 AA317806 AI678000 AW189963 AI986207 AW471273 R73463 AI335104 AI590161 AI469257 AI954604 H21954 T25141 AA856793 R50074 AI708253 AI2
	448606	77159_1	BEE13362 AA447862 H72036 AA393664 AI681334 AW139128 AA932579 AI302241 AI936800 AW960628 AI492148 C06192 AA336107 AA808008
30			AW615212 BE297403 BE29897B Al187207 AA928695 Al620631 AA938128 Al346527 Al040261 AA808401 AW130326 Al440313 AA868693
			Al653329 Al33246 .
	448677	775217_1	AI560769 AI857497 AW151454
	450788	846840_1	AI738410 AW016905 AI971725
25	452160	901991_1	BE378541 Al863051
35	453412	966264_1	AJ003290 AJ003288 AW276947
	455857	1376021_1	T70192 BE147696
	455928	1383899_1	BE170313 BE158339 BE158290
	457022	274445_1	AW377258 BE067468 BE067511 BE067515 BE067467 BE067514 AA397442
40			

40 TABLE 21C:

Pkey: Unique number corresponding to an Eos probeset

Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22" Dunham, et al. (1999) Nature 402-489-495

Strand: Indicates DNA strand from which exons were predicted

Nt_position: Indicates nucleotide positions of predicted exons

45

	Pkey	Ref	Strand	Nt_position
	400460	8389428	Plus	35559-36295
	400563	9844011	Plus	81941-82434
50	400747	7329330	Minus	71249-71441
	400846	9188605	Plus	39310-39474
	401097	9965518	Minus	60356-61096
•	401128	8699792	Plus	37349-37885
	401655	9099093	Plus	79556-80132
55	401727	8134856	Plus	54342-54482
	401751	9828651	Plus	139165-139322
	401772	9966243	Plus	183917-184042
	402365	9454515	Minus	70928-71185
	402463	9796896	Minus	8818-8952
60	402665	8077033	Minus	11824-12090,14290-14544
	402793	6136940	Minus	69012-69165
	402916	7406502	Minus	361-474,541-687
	403028	7670577	Minus	114150-114272
	403325	8440025	Minus	109763-109926
65	404256	9367203	Pius	146931-147796
	405189	7229907	Minus	168236-168795
	405325	6094661	Minus	25818-26380
	405356	2155224	Plus	36116-36276
~^	405496	8468968	Plus	147706-148062
70	406101	9124019	Ptus	125325-125831
	406307	8576099	Ptus	95473-95585,98900-99180
	406535	7711477	Ptus	83135-83362

75 Table 22A lists about 811 genes up-regulated in ovarian cancer compared to normal adult tissues that are likely to encode extracellular or cell-surface proteins. These were selected as for Table 20A, except that the ratio of "everage" ovarian cancer to "everage" normal adult tissues was greater than or equal to 4.0, the "everage" ovarian cancer level was set to the 96th percentile value amongst various ovarian cancer spectmens, the "everage" normal adult tissue level was set to the 75th percentile value amongst various non-malignant tissues, the "everage" ovarian cancer value was greater than or equal to 80 units, and the predicted protein contained a structural domain that is indicative of enzymatic function or of transducing an intracellular signal, or of being modulatable by small molecules (e.g., pkinase, peptidase, phosphatase, or ion_transporter). Predicted protein 80 domains are noted.

TABLE 22A:

Pkey: Unique Eos probeset identifier number ExAccn: Exemplar Accession number, Genbank accession number

<u>.</u>- ·

Unigene D: Unigene number Unigene Title: Unigene gene title Protein Dorn.: Predicted protein dornain R1: Ratio of tumor to normal body tissue

5	111. 14660 01	WINDS WORKE	a 000) 03300			
•	Pkey	ExAcon	UniGene ID	Unigene Title	Protein Dom.	R1
	407223	H96850		gb:yw03b12.s1 Soares melanocyt		58.9
	430281	AI878842	Hs.237924	CGI-69 protein	mito_car	46.7
1.0	410418	D31382	Hs.63325	transmembrane protease, serine	kdl_recept_a,trypsin	41.0
10	431773		Hs.268557	pleckstrin homology-like domal	PH	37.1
	438424	Al912498	Hs.25895	hypothetical protein FLJ 14996		35.3
	418969	W33191	Hs.28907	hypothetical protein FLJ20258	SH3	35.2
	453028		Hs.31442	RecQ protein-like 4	DEAD,helicase_C	28.2
15	407722	BE252241	Hs.38041	pyridoxal (pyridoxine, vitamin	pfkB	28.2
15	451721	NM_006946		spectrin, beta, non-erythrocyt	spectrin,PH,CH	27.9 27.9
	416819	U77735	Hs.80205	pirn-2 encogene	pkinase HCO3_cotransp	27.7
	430397 450334	AI924533	Hs.105607 Hs.24879	bicarbonate transporter relate	PAP2	26.7
	418945	AF035959 BE246762	Hs.89499	phosphatidic acid phosphatase arachidonate 5-lipoxygenase	lipoxygenase,PLAT	25.3
20	424420		Hs.146688	prostaglandin E synthase	MAPEG	25.1
20	412674	X04106	Hs.74451	calpain 4, small subunit (30K)	efhand	24.4
	430023	AA158243	Hs.227729	FK506-binding protein 2 (13kD)	FKBP	24.3
	444672	Z95636	Hs.11669	laminin, alpha 5	laminin_EGF,laminin_G,EGF	24.0
	413726	AJ278465	Hs.75510	annexin A11	annexin	23.1
25	438951	U51336	Hs.6453	inositol 1,3,4-triphosphate 5/	oxidored_nitro	23.0
	429099	BE439952	Hs.196177	phosphorylase kinase, gamma 2	pkinase	23.0
	431765	AF124249	Hs.268541	novel SH2-containing protein 1	SH2	22.4
	422645	L40027	Hs.118890	glycogen synthase kinase 3 alp	pkinase	22.4
20	413436	AF238083	Hs.68061	sphingosine kinase 1	DAGK¢	22.3
30	422639	AI929377	Hs.173724	creatine kinase, brain	ATP-gua_Ptrans,ATP-gua_Pt	21.5
	429869	AJ907018	Hs.15977	Target CAT		21.3
	418891	NM_002419		mitogen-activated protein kina	SH3,pkinase,pyridoxal_deC	21.1
	419138	U48508	Hs.89631	ryanodine receptor 1 (skeletal	RYDR_ITPR,RyR,SPRY,ion_tr	21.0
35	432866	BE395875	Hs.279609	mitochondrial carrier homolog	mito_carr	20.9
22	452875 426997	BE275760	Hs.30928	DNA segment on chromosome 19 (Euk_porin	20.8
	420997 402916	BE620738	Hs.173125	peptidylprolyl isomerase F (cy ENSP00000202587*:Bicarbonate t	pro_isomerase HCO3_cotransp	20.8 20.8
	425760	D17629	Hs.159479	galactosamine (N-acetyl)-6-sul	Sulfatase	20.7
	400419	AF084545	110,100410	Target	EGF,ig,lectin_c,sushi,Xti	20.0
40	419444	NM_002496	Hs 90443	Target CAT	fer4	19.5
• •	459133	U40343	Hs.29656	cyclin-dependent kinase inhibi	enk	19.2
	447595	AW379130	Hs.18953	phosphodiesterase 9A	PDEase	19.2
	422708	AB017430	Hs.119324	kinesin-like 4	kinesin,homeobox	19.0
	414837	U24266	Hs.77448	aldehyde dehydrogenase 4 famil	aldedh	18.8
45	429712	AW245825	Hs.211914	ENSP00000233627*:NADH-ubiquino	oxidored_q6	18.5
	425848	BE242709	Hs.159637	valyl-tRNA synthetase 2	GST_C,GST_N,Tropomyosin	18.4
	451643	M64437	Hs.234799	breakpoint cluster region	RhoGEF,RhoGAP,PH,C2	18.1
	447859	AK002194	Hs.19851	peroxisomal biogenesis factor		17.5
50	426457	AW894667	Hs.169965	chimerin (chimaerin) 1	DAG_PE-bind,RhoGAP	17.3
50	421612	AF161254	Hs.106196	8D6 antigen	ldl_recept_a	17.1
	421363	NM_001381		docking protein 1, 62kD (downs	PH,IRS	16.9
	442739	NM_007274		cytosolic acyl coenzyme A thio	Acyl-CoA_hydro	16.8
	420568	F09247	Hs.247735	protocadherin alpha 10	cadherin	16.8
55	421445	AA913059	Hs.104433	Homo sapiens, clone IMAGE:4054	asp skinger KA1 LIBA	16.8 16.7
23	425424 446329	NM_004954 NM_013272		ELKL motif kinase solute carrier family 21 (orga	pkinase,KA1,UBA kazal,OATP_N,OATP_C	16.5
	406620	M81105	Hs.146550	myosin, heavy polypeptide 9, n	myosin_head,Myosin_tail,I	16.4
	429109	AL008637	Hs.196352	neutrophil cytosolic factor 4	PX,SH3,OPR	16.3
	429183	AB014604	Hs.197955	KIAA0704 protein	PH,Oxysterol_BP	16.2
60	444664	N26362	Hs.11615	map kinase phosphatase-like pr	DSPc,Rhodanese	16.2
- •	427640	AF058293	Hs.180015	D-dopachrome tautomerase	MIF,late_protein_L2	16.2
	425123	AW205274	Hs.154695	phosphomannomutase 2	PMM	16.0
	416008	AA324251	Hs.78950	branched chain keto acid dehyd	E1_dehydrog	15.8
	412942	AL120344	Hs.75074	mitogen-activated protein kina	pkinase	15.8
65	423366	Z80345	Hs.127610	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	15.7
	426391	AW161050	Hs.169611	second mitochondria-derived ac		15.7
	424568	AF005418	Hs.150595	cytochrome P450, subfamily XXV	p450	15.5
	420029	BE258876	Hs.94446	polyamine-modulated factor 1	aldo_ket_red	15.5
70	433573	AF234887	Hs.57652	cadherin, EGF LAG seven-pass G	7tm_2,EGF,cadherin,lamini	15.4
70	407619	AL050341	Hs.37165	collagen, type IX, alpha 2	Collagen	15.3
	427326 442620	A1287878 C00138	Hs.8535	gb:qv23f06.x1 NCI_CGAP_Lym6 Ho Homo sapiens mRNA for KIAA1668	7tm_1 !	15.2 15.1
	458130	AA115811	Hs.6838	ras homolog gene family, membe	rae arf	15.0
	430130 449936	AA938293	Hs.60088	hypothetical protein MGC11314	ras,arf	15.0
75	409230	AA852431	Hs.51299	NM_021074:Homo sapiens NADH de	complex1_24kD	14.7
	423801		Hs.132942	GTPase regulator associated wi	RhoGAP,SH3,PH	14.0
	419639	AK001502	Hs.91753	hypothetical protein		13.6
	419298	AA853479	Hs.89890	pyruvate carboxylase	CPSase_t_chain,PYC_OADA,H	13.6
	426108	AA622037	Hs.166468	programmed cell death 5	DUF122	13.5
80	448133	AA723157	Hs.73769	folate receptor 1 (adult)	Folate_rec	13.5
	418736	T18979	Hs.87908	Snf2-related CBP activator pro	helicase_C,AT_hook	13.5
	436543	NM_002212		integrin beta 4 binding protei	elF6	13.3
	431515	NM_012152	Hs.258583	endothelial differentiation, I	7tm_1	13.3
	429469	M64590	Hs.27 .	glycine dehydrogenase (decarbo	GDC-P	13.2
				0.4	a	

	154 105					40.0
	431462		Hs.256311	granin-like neuroendocrine pep	OTT OTT	13.2
	444855		Hs.12084	Tu translation elongation fact	GTP_EFTU,GTP_EFTU_D3,GTP_	13.2
	423464	NM_016240		CSR1 protein	Collagen	13.1 13.0
5	450787		Hs.25475	aquaporin 7	MIP	13.0
,	428539 436014		Hs.184877 Hs.283741	solute carrier family 25 (mito	milo_cam RNase_PH,RNase_PH_C	12.9
	416866		Hs.80324	exosome component Rrp46 serine/threonine protein phosp	Metaliophos	12.9
	433867		Hs.3618	hippocatcin-like 1	efhand	12.9
	411408	U76666	Hs.69949	calclum channel, voltage-depen	lon_trans	12.8
10	432329	NM_002962		S100 calcium-binding protein A	S_100,efhand	12.7
10	447887	AA114050	Hs.19949	caspase 8, apoptosis-related c	ICE_p20,DED,ICE_p10	12.7
	427448		Hs.2157	Wiskott-Aldrich syndrome (ecze	WH1,PBD,WH2	12.7
	428820	AA436187	Hs.172631	integrin, alpha M (complement	FG-GAP	12.7
	446603	NM_014835		oxysterol-binding protein-rela	Oxysterol_8P	12.6
15	422633	X56832	Hs.118804	enolase 3, (beta, muscle)	enolase	12.6
	446839	BE091926	Hs.16244	mitalic spindle called-call re	Troponin	12.6
	414757	U46922	Hs.77252	fragile histidine triad gene	HIT	12.5
	428593	AW207440	Hs.185973	degenerative spermatocyte (hom		12.5
	432370	AA308334	Hs.274424	N-acetylneuraminic acid phosph	Antifreeze, NeuB	12.5
20	401542			C15001413*:gi]10645199[ref]NP_		12.4
	428782	X12830	Hs.193400	interleukin 6 receptor	fn3,lg	12.3
	425999	AW513051	Hs.332981	ESTs, Weakly similar to 138022	FAD_binding_2	12.3
	. 422301	Al752163	Hs.114599	collagen, type VIII, alpha 1	C1q,Collagan	12.2
25	410720	AF035154	Hs.65756	regulator of G-protein signall	RGS,G-gamma,DEP	12.2
25	407143	C14076	Hs.332329	EST		12.1
	421321	NM_005309		glutamic-pyruvate transaminase	aminotran_1_2	12.1
	425251	Z22521	Hs.155342	protein kinase C, delta	pkinase,DAG_PE-bind,pkina	12.0
	431354	BE046956	Hs.251673	DNA (cytosine-5-)-methyltransf	PWWP,PHD	12.0
30	420421	AF281133	Hs.343589	exosome component Rrp41	RNase_PH,RNase_PH_C	12.0 12.0
50	416714	AF283770 NM_005658	Hs.79630	CD79A anligen (immunoglobulin-	ig,ITAM,Zn_clus	12.0
	427336			TNF receptor-associated factor	MATH Hydrolase	11.9
	409799 436319	D11928 H90727	Hs.76845 Hs.5123	phosphoserine phosphatase-like inorganic pyrophosphatase	Pyrophosphatase	11.9
	400748	1150727	115.0123	NM_022122:Homo saplens matrix	r yrophosphatase	11.9
35	428948	BE514362		FK506-binding protein 3 (25kD)	FKBP,PIP5K	11.8
55	401215	BE314302		C12000457*:gi[7512178[pirl[T30	trypsin	11.7
	401281			DKFZP586N2124 protein	2)	11.7
	427397	A1929685	Hs.177656	calmodulin 1 (phosphorylase ki	efhand,RmaAD	11.7
	453496	AA442103	Hs.33084	solute carrier family 2 (facil	sugar tr	11.7
40	409608	AF231023	Hs.55173	cadherin, EGF LAG seven-pass G	7tm_2,cadherin,GPS,lamini	11.7
. •	424415	NM_001975		enolase 2, (gamma, neuronal)	enolase	11.7
	447495	AW401864	Hs.18720	programmed cell death 8 (apopt	pyr_redox	11.6
	426928	AF037062	Hs.172914	retinol dehydrogenase 5 (11-cl	adh_short	11.6
	405371			NM_005569*:Homo sapiens LIM do	pkinase,LIM,PDZ	11.5
45	416282	R86664	Hs.167257	brain link protein-1	XIInk	11.4
	452295	BE379936	Hs.28866	programmed cell death 10		11.4
	430390	AB023186	Hs.241161	KIAA0969 protein	PH	11.4
	430594	AK000790	Hs.246885	hypothetical protein FLJ20783	PH	11.2
50	443814	BE281240	Hs.9857	carbonyl reductase		11.2
50	440242	AW295871		glucose transporter protein 10	0110 011 01 055	11.1
	447365	BE383676	Hs.334	Rho guanine nucleotide exchang	SH3,PH,RhoGEF	11.1
	400843		11 440000	NM_003105*:Horno sapiens sortil	ldl_recept_a,fn3,ld1_rece	11.1
	422418	AK001383	Hs.116385	hypothetical protein FLJ10521	RhoGEF	11.0 10.9
55	400232	NIL4 000000	II- 470070	NM_001895*:Homo saplens caseln	pkinase	10.9
22	426828 431157	NM_000020 AI823969		activin A receptor type II-lik	pkinase,Activin_recp MAPEG	10.8
			Hs.132678	ESTs	AIRS,AIRS_C	10.8
	422616 406770	BE300330 AA412048	Hs.118725 Hs.279574	selenophosphate synthetase 2 CGI-39 protein; cell death-reg	VII/O'VIVO_C	10.8
	406779 400389	AL135841	113.213314	olfactory receptor, family 2,	7tm_1	10.8
60	402207	nc 1900+1		Target Exon	A2M_N,A2M	10.8
	435615	Y15065	Hs.4975	potassium voltage-gated channe	lon_trans,KCNQ1_channel	10.8
	452434	D30934	Hs.29549	C-type lectin-like receptor-1	lectin_c	10.7
	402053			C11001722*:gi 11436283 ref XP_	_	10.7
	418641	BE243136	Hs.86947	a disintegrin and metalloprote	disintegrin,Reprotysin,Pe	10.6
65	431512	BE270734	Hs.2795	lactate dehydrogenase A	ldh,ldh_C	10.6
	403213			NM_019595:Homo sapiens Interse	SH3,efhand,C2,PH,RhoGEF	10.6
	412158	BE241740	Hs.785	integrin, alpha 2b (platelet g	FG-GAP,integrin_A	10.6
	423573	BE003054	Hs.1695	matrix metalloproteinase 12 (m	Peplidase_M10,hemopexin	10.6
7 0	403949		•	C10000813*:gl[5453992 ref[NP_0		10.6
70	457670	AF119666	Hs.23449	insulin receptor tyrosine kina	SH3	10.5
	418416	U11700	Hs.84999	ATPase, Cu transporting, beta	E1-E2_ATPase,HMA,Hydrolas	10.4
	419594	AA013051	Hs.91417	topoisomerase (DNA) II binding	BRCT	10.4
	422765	AW409701	Hs.1578	bacutoviral IAP repeat-contain	BIRTK	10.4
75	453023	AW028733	Hs.31439	serine protease inhibitor, Kun	Kunitz_BPTi	10.4
13	425694	U51333	Hs.159237	hexokinase 3 (white cell) seven transmembrane domain orp	hexokinase,hexokinase2	10.4
	438800	AB037108	Hs.6418		Corp. codimari	10.3 10.3
	402478 444202	AL031685	Hs.12785	Target Exon KIAA0939 protein	Carn_acyltransl Na_H_Exchanger,ABC2_membr	10.3
	425597	U28694	Hs.158324	chemokine (C-C motif) receptor	7tm_1	10.3
80	413431	AW246428	Hs.75355	ubiquitin-conjugating enzyme E	UQ_con	10.2
30	415200	AL040328	Hs.78202	SWI/SNF related, matrix associ	SNF2_N,helicase_C,bromodo	10.2
	414874	D26351	Hs.77515	inositol 1,4,5-triphosphate re	RYDR_ITPR.lon_trans,MIR	10.2
	423524	AF055989	Hs.129738	potassium voltage-gated channe	ion_trans,K_tetra,thaumat	10.2
	457558	AF083955	Hs.279852	G protein-coupled receptor	7tm_1,globin	10.2
			,	•	18	

	445629	AJ245701	Hs.193326	fibroblast growth factor recep		10.1
	434314	BE392921	Hs.3797	RAB26, member RAS oncogene fam	ras,ari	10.1
	402497			C1001261*aji 2695979 emb CAA70		10.1
-	449853	AF006823	Hs.24040	potassium channel, subfamily K	ion_trans	10.0
5	427672	AA356615	Hs.336916	death-associated protein 6		10.0
	412048	AW866863	Hs.73090	nuclear factor of kappa light	RHD,TIG,ank,death	10.0
	410079	U94362	Hs.58589	glycogenin 2	Glyco_transf_8	10.0
	420319	AW406289	Hs.96593	hypothetical protein	ras,arf	10.0
	420332	NM_001756		serine (or cysteine) proteinas	serpin	9.9
10	405474	_		NM_001093*:Homo saplens acelyl	CPSase_t_chain,blotin_lip	9.9
	401507			C15000810*:gi 11131272 sp P793		9.9
	431434	BE267696	Hs.254105	enolase 1, (alpha)	enolase	9.9
	447232	AW499834	Hs.327	Interleukin 10 receptor, alpha		9.8
	432343	NM_002960		S100 calcium-binding protein A	S_100	9.8
15	408931	AA251995	Hs.334648	poly(A) polymerase alpha	NTP_transf_2	9.8
1.5	421542	AA411607	Hs.118964	ESTs, Weakly similar to KIAA11	ca.a	9.8
	430323	U40714	Hs.239307	lyrosyl-tRNA synthetase	DUF101	9.8
	412270	AC005262	Hs.73797	guanine nucleotide binding pro	G-alpha,arf	9.7
	424649	BE242035	Hs.151461	embryonic ectodem development	WD40	9.7
20	400772	DE242033	IIS. 13 1401			9.7
20	450493	M93718	Un 400070	NM_003105*:Homo sapiens sortil	ldf_recept_a,fn3,ldf_rece flavodoxin,FAD_binding,NO	9.7
		M22110	Hs.166373	nitric oxide synthase 3 (endot		9.7
	401510			NM_017434:Homo sapiens dual ox	efhand,Ferric_reduct	
	404596	4 4 000700	11- 00000	Target Exon	aldana	9.7
25	451367	AA923729	Hs.26322	cell cycle related kinase	pkinase	9.7
25	417810	D28419	Hs.82609	hydroxymethylbilane synthase	Porphobil_deam	9.6
	432855	AF017988	Hs.279565	secreted frizzled-related prot	FZNTR	9.6
	424263	M77640	Hs.1757	L1 cell adhesion molecule (hyd	fn3,ig,IRK	9.6
	430398	AF105202	Hs.241376	potassium voltage-gated channe	lon_trans,KCNQ1_channel	9.6
••	424339	BE257148		endoglycan	MCM	9.6
30	429257	AW163799	Hs.198365	2,3-blsphosphoglycerate mutase	PGAM	9.6
	407065	Y10141		gb:H.sapiens DAT1 gene, partia	SNF	9.6
	433938	AF161536	Hs.284292	ubiquinol-cytochroma c reducta		9.6
	409649	AA159216	Hs.55505	hypothetical protein FLJ20442	Y_phosphatase,DSPc	9.6
_	404968			C4001170:gij6863176jgbjAAF3040		9.5
35	400833			C11000890:gi]3746443 gb]AAC639	7tm_1	9.5
	410191	AI609645		NM_021075":Homo sapiens NADH d		9.5
	444633	AF111713	Hs.286218	junctional adhesion molecule 1	lg .	9.4
	427747	AW411425	Hs.180655	serine/threonine kinase 12	pkinase	9.4
	415169	W42913	Hs.78089	ATPase, vacuolar, 14 kD	ATP-synt_F	9.4
40	432579	AF043244	Hs.278439	nucleolar protein 3 (apoptosis	CARD	9.4
	422328	X60459	Hs.1513	interferon (alpha, beta and om	0.0	9.4
	445143	U29171	Hs.75852	casein kinase 1, della	pkinase	9.4
	450883			death-associated protein kinas	pkinase	9.4
		NM_001348				9.3
45	414625	AA335738	Hs.76686	glutathione peroxidase 1	GSHPx	9.3
73	401935	A1450 /7 (00	11- 04450	Target Exon	PH PAGE	
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	PALP,CBS	9.3
	425242	D13635	Hs.155287	KIAA0010 gene product	neci,iu	9.3
	400404	AF161221		kallikrein 14	trypsin	9.2
50	442332	AI693251	Hs.8248	Target CAT	fer2,molybdopterin,bac_dn	9.2
50	431534	AL137531	Hs.258890	Homo sapiens mRNA; cDNA DKFZp4		9.2
	402823			C1002456*:gi[9930918]emb[CAC05		9.1
	404527			peptide YY, 2 (seminalplasmin)	GDA1_CD39	9.1
	439963	AW247529	Hs.6793	platelet-activating factor ace	PAF-AH_jb,Lipase_GDSL	9.1
	412970	AB026436	Hs.177534	dual specificity phosphatase 1	Rhodanese, DSPc	9.1
55	443553	AL040535	Hs.9573	ATP-binding cassette, sub-fami	ABC_tran	9.1
	400933			NM_004347:Homo sapiens caspase	ICE_p20,ICE_p10,CARD	9.0
	403268			NM_002210°:Homo sapiens integr	FG-GAP	9.0
	446673	NM_016361	Hs.15871	LPAP for lysophosphatidic acid	acid_phosphat	9.0
	422531	AW967280	Hs.293894	ESTs, Weakly similar to HERC2	pkinase	9.0
60	421658	X84048	Hs.301760	frequenin (Drosophila) homolog	efhand	9.0
	401885			Target Exon	kinesin	9.0
	402651		•	NM_000721*:Homo sapiens calciu	ion_trans	9.0
	457432	NM_005136	Hs.268538	potassium voltage-gated channe	ISK_Channel	9.0
	433146	AB033002	Hs.21413	solute carrier family 12, (pot	-	9.0
65	420090	AA220238	Hs.94986	ribonuclease P (38kD)	Ribosomal_L7Ae	9.0
	425281	AA444390	Hs.155482	hydroxyacyl glutathione hydrol	lactamase_B	9.0
	410855	X97795	Hs.66718	RAD54 (S.cerevisiae)-like	SNF2_N,helicase_C	9.0
	407986	U32659	Hs.41724	interleukin 17 (cytotoxic T-ly	0/11 2_0 tp. 0.1100_0	9.0
	431131	N84730	Hs.250616	isocitrate dehydrogenase 3 (NA	isodh .	9.0
70	422802	NM_004278		phosphatidylinositol glycan, c	OUF158	9.0
	447958	AW796524	Hs.68644	Homo sapiens microsomal signal		9.0
	438080	AA777381	Hs.291530	ESTs, Weakly similar to ALUC_H		9.0
	418843	AJ251016	Hs.89230	potassium intermediate/small c	CaMBD,SK_channel	9.0
	419244	AJ251010 AJ436567	Hs.89761	ATP synthase, H transporting,	ATP-synt_DE	8.9
75	404676	-1-000001	12.03101	Target Exon	ATT-SYNCOL	8.9
, 5		BEGETAGO	He 102052	ubiquilin-conjugating enzyme E	UQ con	8.9
	428744	BE267033 U76362	Hs.192853		SDF	
	421474		Hs.104637	solute carrier family 1 (gluta		8.9
	419056	M89957	Hs.89575	CD798 antigen (immunoglobulin-	ig,ITAM	8.9
80	424825	AF207069	Hs.153357	procollagen-lysine, 2-oxogluta	20G-Fell_Oxy,Glycos_trans	8.9
80	444628	U01120	Hs.242	glucose-6-phosphatase, catalyt	PAP2	8.9
	404199	41.0400.0	11. 4040.5	ENSP00000211797*:Helicase SKI2	RasGAP,PH	8.9
	428826	AL048842	Hs.194019	attractin	lectin_c,CUB,Kelch,PSI,EG	8.9
	410681	AW246890	Hs.65425	calbindin 1, (28kD)	efhand	8.8
	415056	AB004662	Hs.77867	adenosina A1 receptor	7tm_1	8.8
				2.4	0	

	400474			Tomal Evan		8.8
	400471 406591			Target Exon NM_003888*:Homo saplens retina	aldedh	8.8
	425427	AI652662	Hs.157205	branched chain aminotransferas	aminotran_4	8.8
	410839	NM_006849		protein disuffide Isomerase	ihiored.Rho_GDI.antR	8.7
5	430037	BE409649	Hs.227789	mitogen-ectivated protein kina	pkinase	8.7
_	450848	AI677994	Hs.428	fms-related tyrosine kinase 3	fig_lig	8.7
	414534	BE257293	Hs.76366	BCL2-antagonist of cell death		8.7
	401454			NM_014226*:Homo sapiens renal	pkinase	8.7
10	408493	BE206854	Hs.46039	phosphoglycerate mutase 2 (mus	PGAM	8.7
10	433333	AI016521	Hs.71816	v-akt murine thymoma viral onc	homeobox,pkinase,PH,pkina	8.7 8.7
	430432 406128	AB037758	Hs.241419	KIAA1337 protein	Patched Oest_recep,zf-C4,hormone_	8.7
	419493	AF001212	Hs.90744	NM_002920*:Homo sapiens regula proteasome (prosome, macropain	PCI	8.7
	439569	AW602166	Hs.222399	CEGP1 protein	CUB,EGF	8.6
15	401134	***************************************	T IO. EEEEOOO	C12001198:gij3183183jspjQ92142	biopterin_H	8.6
	442286	W31B47	Hs.50335	cytochrome P450 monooxygenase		8.6
	428376	AF119665	Hs.184011	pyrophosphatase (inorganic)	Pyrophosphatase	8.6
	433494	AB029396		beta-1,3-glucuronyttransferase	Glyco_tranf_43	8.6
	427001	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-	pkinase	8.6
20	437278	AA748017	Hs.290145	ESTs	cNMP_binding	8.6
	414463	T69078	Hs.76177	atpha-1-microglobulin/bikunin	Ilpocalin,Kunitz_BPTI	8.6
	421871	AK001416	Hs.306122	gtycoprotein, synaptic 2	Steroid_dh	8.6
	447827	U73727	Hs.19718	protein tyrosine phosphatase,	Y_phosphatase,fn3,ig,MAM	8.6
25	403379			Target Exon	DNA_pol_A	8.6
25	445872	X97058	Hs.16362	pyrimidinergic receptor P2Y, G	7tm_1	8.6 8.5
	432857	NM_016103		GTP-binding protein Sara cytochrome c oxidase subunit V	arf, ras COX5B	8.5
	420970	AA305079 L15409	Hs.1342 Hs.174007	von Hippel-Lindau syndrome	VHL	8.5
	427221 402209	L13403	115.114001	Target Exon	A2M_N,A2M	8.5
30	400518			C10002057*:gi[3211705 gb AAC21	MEIICH PEII	8.5
50	425606	U52112	Hs.158331	renin-binding protein		8.5
	437965	AA843222	Hs.193534	ESTs, Moderately similar to AL	RasGEF	8.5
	433392	AF038535	Hs.127588	synaptotagmin VII	C2	8.5
	402191			NM_021733*:Homo sapiens testis		8.5
35	458963	Al701393	Hs.278728	Rad and Gem-related 2 (rat hom	ras	8.5
	431857	W19144	Hs.271742	ADP-ribosyltransferase (NAD; p	PARP,PARP_reg	8.5
	457579	AB030816	Hs.36761	HRAS-like suppressor		8.5
	409656	NM_005133	Hs.288626	RCE1, prenyl protein protease	Abi	8.5
40	456373	BE247706	Hs.89751	membrane-spanning 4-domains, s	A _	8.4
40	432499	BE276533		RAB6B, member RAS oncogene fam	ras,arf	B.4
	400565			Target Exon		8.4
	401960	VEO 100	11. 2044	Target Exon	Branch	8.3
	432545	X52486	Hs.3041	uracii-DNA glycosylase 2	cyclin	8.3 8.3
45	445303	AW362198	Hs.12503	Interleukin 15 receptor, alpha	sushi GDA1_CD39	8.3
73	404528 428542	D79989		peptide YY, 2 (seminalplasmin)	ank,PH,ArfGap,ras	8.3
	426342 406868	AA505445	Hs.300697	KIAA0167 gene product immunoglobulin heavy constant	alik, r i paroap, ras	8.3
	405473	~~~~~	115.500037	NM_001093*:Homo saplens acetyl	CPSase_L_chain,blotin_lip	8.3
	408601	U47928	Hs.86122	protein A	7tm_1	8.3
50	415008	NM_002777		proteinase 3 (serine proteinas	trypsin	8.3
	430258	AU076644	Hs.236963	protein phosphatase 2A, regula	•	8.3
	436483	AJ272063	Hs.283010	vanilloid receptor subtype 1	ank,lon_trans	8.3
	459302	NM_002314	Hs.36566	LIM domain kinase 1		8.3
	437644	AA748575	Hs.136748	lectin-like NK cell receptor	lectin_c	8.3
55	421707	NM_014921		lectomedin-2	Latrophilin,OLF,7tm_2,Gal	8.2
	414629	AA345824	Hs.76688	carboxylesterase 1 (monocyte/m	COesterase	8.2
	453898	AW003512	Hs,232770	arachidonate lipoxygenase 3		8.2
	424053	AF057036	Hs.138520	collagen-like tall subunit (si	Collagen	8.2 8.2
60	457398	BE258532	Hs.251871	CTP synthase	GATase	8.1
UU	421504	AW402997	Hs.105052	adaptor protein with pleckstri Target Exon	SH2,PH SRCR	B.1
	406495 453610	AW368882	Hs.33818	RecQ protein-like 5	DEAD,helicase_C	8.1
	424880		Hs.153614	retinitis pigmentosa GTPase re	RCC1	8.1
	423847	U16997	Hs.133314	RAR-related crphan receptor C	hormone_rec,zf-C4	8.1
65	409829	M33552	Hs.56729	lymphocyte-specific protein 1	Caldesmon	8.1
•	401180			eukaryotic translation elongat	lon_trans,IQ	8.1
	452072	BE258857	Hs.27744	RAB3A, member RAS oncogene fam	ras,arf	8.1
	426484	AA379658	Hs.272759	KIAA1457 protein	IP_trans	8.1
	402453			C1002496:gi 7363439 ref NP_039	7tm_1	8.1
70	457310	W28363	Hs.239752	nuclear receptor subfamily 2,		8.1
	422069	AJ010063	Hs.343603	titin-cap (telethonin)	globin,cNMP_binding,pkina	8.1
	400275			NM_006513*:Homo saplens seryl-	NA CHAIR LE	8.0
	434357	AW732284	Hs.3828	mevalonate (diphospho) decarbo	GHMP_kinases	8.0
75	430299	W28673	Hs.106747	serine carboxypeptidase 1 prec	EVDD TOO	8.0
13	413762	AW411479	Hs.848	FK506-binding protein 4 (59kD)	FKBP,TPR	8.0 8.0
	402393	NIM MARCO	Un 100212	ENSP00000085284*:CDNA FLJ20404	Rhogef,PH C2,PH,RasGAP,BTK	8.0 8.0
	429252	NM_004658 L36463	Hs.198312 Hs.1030	RAS protein activator like 1 (ras inhibitor	RA,SH2,VPS9	7.9
	456181 431493	Al791493	Hs.129873	ESTs, novel cylochrome P450	p450	7.9
80	451558		Hs.26630	ATP-binding cassette, sub-fami	ABC_tran,SRP54	7.8
-0	415758	BE270465	Hs.78793	protein kinase C, zeta	pkinase,DAG_PE-bind,pkina	7.8
	419270		Hs.89839	EphA1	EPH_lbd,pkinase,SAM,fn3	7.8
	422837	U25441	Hs.121478	dopamine receptor 03	7tm_1	7.8
	401118			Target Exon	pkinase	7.8
				26	· 0	

	426440	BE382756	Hs.169902	solute carrier family 2 (facil	sugar_tr	7.8
	418635	L11329	Hs.1183	dual specificity phosphatase 2	DSPc,Rhodanese,Y_phosphat	7.8
	432747	NM_014404	Hs.278907	calcium channel, voltage-depen	PMP22_Claudin	7.8
~	403672			C4001244:gi]539933[pir A61275	tubulin	7.8
5	437806	AJ424921	Hs.122487	ESTs, Weakly similar to A54854	RasGAP	7.7
	456890	U48213	Hs.155402	O site of albumin promoter (al	DAGKcbZIP	7.7
	424107	AB014606	Hs.139648	kinesin family member 1C	kinesin,FHA	7.7
	452695 433262	AW780199 AI571225	Hs.30327 Hs.284171	mitogen-activated protein kina KIAA1535 protein	cNMP_binding,ion_trans	7.7 7.7
10	424198	AB029010	Hs.143026	KIAA1087 protein	Na_Ca_Ex,Calx-beta	7.6
10	406496	70025010	113.140020	Target Exon	SRCR	7.6
	425423	NM_005897	Hs.157180	intracistemal A particle-prom	BTB,Kelch	7.6
	402211	_		KIAA0430 gene product	ion_trans,K_tetra	7.6
	408710	Y10256	Hs.47007	mitogen-activated protein kina	pkinase,SAM_decarbox	7.5
15	457615	W56321	Hs.111460	calcium/calmodulin-dependent p	pkinase	7.5
	402760			NM_021797*:Homo sapiens eosino	Glyco_hydro_18,CBM_14	7.5
	425428	AL110261	Hs.157211	DKFZP586B0621 protein	C1q,Collagen	7.4
	423579 413104	NM_004121 L42374	Hs.1675 Hs.75199	gamma-glutamyltransferase-like protein phosphatase 2, regulat	G_glu_transpept B56	7.4 7.4
20	419660	BE280337	Hs.194693	solute carrier family 7 (catio	aa_permeases	7.4
	424774	BE244179	Hs.153022	TATA box binding protein (TBP)	шотранистор	7.4
	402632			Target Exon	Fz,kringle,ig	7.4
	444159	AF116846	Hs.10431	dead ringer (Drosophila)-like	ARID,SNF	7.4
25	405714			ENSP00000221137:Offactory rece	7tm_1	7.3
25	442732	AA257161	Hs.8658	hypothetical protein DKFZp434E	EGF,laminin_EGF,Xink,S_m	7.3
	421758	BE397336	Hs.1422	Gardner-Rasheed feline sarcoma	SH2,SH3,pkinase	7.3
	415995	NM_004573		phospholipase C, beta 2	PI-PLC-X,PI-PLC-Y,C2	7.3
	405137 402460			Target Exon		7.3 7.3
30	431398	BE616547	Hs.2785	C1001261*:gi 2695979 emb CAA70 keratin 17	filament	7.3
50	429592	AB029041	Hs.209646	KIAA1118 protein	Troponin	7.3
	429225	BE250337	Hs.198273	Target CAT	Пороли	7.2
	423015	U18548	Hs.123034	G protein-coupled receptor 12		7.2
	454373	NM_005133		RCE1, prenyl protein protease	Abi	7.2
35	440188	AK001812	Hs.7036	N-Acetylglucosamine kinase	ROK	7.2
	432920	U37689	Hs.3128	polymerase (RNA) II (DNA direc		7.2
	446143	BE245342	Hs.306079	sec61 homolog	secY	7.2
	422201	NM_001505		G protein-coupled receptor 30	7tm_1	7.2 7.1
40	440869 435099	NM_014297 AC004770	Hs.4756	protein expressed in thyroid flap structure-specific endonu	lactamase_B XPG_N,XPG_I,5_3_exonuclea	7.1
-10	437161	AA054477	Hs.25391	ESTs	V. G_U'V. G_U'2_2_evolucies	7.1
	429683	AF148213	Hs.211604	a disintegrin-like and metallo	tsp_1,Reprolysin,Pep_M12B	7.1
	426268	AF083420	Hs.168913	serine/threonine kinase 24 (St	pkinase	7.1
	445087	AW893449	Hs.12303	suppressor of Ty (S.cerevisiae	S1,SH2,Ribosomal_L23,pkin	7.1
45	416377	AA179930	Hs.293867	caspase recruitment domain pro		7.1
	421748	NM_014718		KIAA0726 gene product	cadherin	7.1
	426691	NM_006201	Hs.171834	PCTAIRE protein kinase 1	pkinase	7.0
	428599	AB033078	Hs.186613	sphingosine-1-phosphate lyase	pyridoxat_deC	7.0
50	411898 427010	BE409714 AW138332	Hs.44856	hypothetical protein FLJ12116	ras	7.0 7.0
20	457305	BE268048	Hs.235494	muscle RAS oncogene homolog RAB10, member RAS oncogene fam	ras,arf	7.0
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD4	integrin_A,FG-GAP,Rhabd_g	7.0
	457764	AW028284	Hs.4815	nudix (nucleoside diphosphate	NUDIX	6.9
	435575	AF213457	Hs.44234	triggering receptor expressed	ig	6.9
55	456488	AW015098	Hs.301946	ESTs, Weakly similar to T30867		6.9
	428761	AF236119	Hs.193076	GRB2-related adaptor protein 2	SH2,SH3	6.9
	430396	D49742	Hs.241363	hyaluronan-blinding protein 2	trypsin,kringle,EGF	6.9
	422066 445937	AW249275 AI452943	Hs.343521 Hs.321231	malate dehydrogenase 2, NAD (m UDP-Gal:betaGlcNAc beta 1,4- g	ldh,ldh_C,adh_short,Semia Galactosyl_T_2	6.9 6.9
60	457499	AA953015	Hs.274370	hypothetical protein FLJ20260	PH	6.8
- 0	400845		- MILT TOTA	NM_003105*:Homo sapiens sortil	ldl_recept_a.fn3,ldl_rece	6.8
	416931	D45371	Hs.80485	adipose most abundant gene tra	C1q,Collagen	6.8
	414915	NM_002462		myxovirus (influenza) resistan	dynamin_2,dynamin,GED	6.8
c c	432990	AL036071	Hs.279899	tumor necrosis factor receptor	TNFR_c6	6.8
65	458128	W32474	Hs.301746	RAP2A, member of RAS oncogene	ras,arf,ldh	6.8
	429542	AF038660	Hs.206713	UDP-Gal:betaGlcNAc beta 1,4- g	Galactosyl_T_2,ig	6.8
	401488	A1245004	11- 00000	Target Exon	Glyco_hydro_1	6.7
	456243 424321	AI345001 W74048	Hs.82380 Hs.1765	menage a trois 1 (CAK assembly	zf-C3HC4	6.7
70	405187	*********	113.1703	lymphocyte-specific protein ty NM_014272:Homo sapiens a disin	SH2,SH3,pkinase Reprolysin,tsp_1,Pep_M12B	6.7 6.7
. •	413055	AV655701	Hs.75183	cytochrome P450, subfamily IIE	p450	6.7
	448496	BE379077	Hs.130849	ESTs, Weakly similar to 138022	NADHdh_2	6.7
	419667	AU077005	Hs.92208	a disintegrin and metalloprote	disintegrin, Reprolysin, Pe	6.7
75	417103	Z33905	Hs.81218	hypothetical protein MGC3597	TPR,zf-C3HC4,PHD	6.7
75	407687	AK002011	Hs.37558	hypothetical protein FLJ11149	FAD_Synth	6.7
	456469	NM_005109		oxidative-stress responsive 1	zf-C2H2.pkinase	6.7
	449546	W86248	Hs.58819	ESTs	hexokinase	6.6
	428926	NM_001702	rts.194054	brain-specific anglogenesis in C1002000*:gij 12735712 ref XP_0	7tm_2,tsp_1,GPS,HRM	6.6 6.6
80	404953 449401	AL135401	Hs.23557	serologically defined colon ca	pro_isomerase	6.6
50	429962	M69113	Hs.226795	glutathione S-transferase pi	GST_C,GST_N	6.6
	421547	AA489908	Hs.1390	proteasome (prosome, macropain	Clathrin_lg_ch,proteasome	6.6
	430035	NM_003463		protein tyrosine phosphatase t	Y_phosphatase,DSPc	6.6
	406867	AA157857	Hs.182265	keratin 19	filament,bZIP	6.6
				0.5	•	

	404946	4.4000540	11. 5005	Target Exon	3Beta_HSD	6.5
	435213 411201	AA092510 T74588	Hs.5985 Hs.8509	non-kinase Cdc42 effector prot ESTs, Weakly similar to C3HU c	A2M_N,A2M	6.5 6.5
	419344	U94905	Hs.277445	diacylglycerol kinase, zeta (1	ank DAGKa DAGKc DAG_PE-bi	6.5
5	426194	150872	Hs.2001	thromboxane A synthase 1 (plat	p450	6.5
	424681	AA054400	Hs.151706	KIAA0134 gene product	helicase_C,PRK	6.5
	417903	NM_002342	Hs.1116	lymphotoxin beta receptor (TNF	TNFR_c6	6.5
	408905	AV655783	Hs.661	Target CAT		6.5
10	438646	Al973076	Hs.231958	matrix metalloproteinase 28	43	6.5
10	431530 428883	X61615 AA436959	Hs.2798 Hs.258802	leukemia inhibitory factor rec ATPase, (Na)/K transporting, b	fn3 Na_K-ATPase	6.5 6.5
	420003	AA420223	NS.230002	Target Exon	Na_N-ATT 656	6.4
	406370			interteutdin 11	trypsin	6.4
	443611	NM_014397	Hs.9625	NIMA (never in mitosts gene a)	pkinase	6.4
15	424008	R02740	Hs.137555	putative chemokine receptor, G	7tm_1	6.4
	444912	AW247380	Hs.12124	putative prostate cancer susce	lactamase_B	6.4
	454460	X66945	Hs.748	fibroblast growth factor recep	ig.pkinase	6.4
	432269 458718	NM_002447 AI359476	Hs.157699	macrophage stimulating 1 recep ESTs	pkinase,Sema,PSI,TIG,A4_E	6.4 6.4
20	405282	MISSAID	135.131033	Target Exon	Cache	6.4
20	447245	AK001713	Hs.17860	hypothetical protein FLJ10851	E1_dehydrog	6.3
	442297	NM_006202		phosphodiesterase 4A, cAMP-spe	PDEase	6.3
	400894	_		C11000129:gij9938014 ref NP_06	7tm_1	6.3
25	440446	NM_013385		pleckstrin homology, Sec7 and	PH,Sec7	6.3
25	430886	L36149	Hs.248116	chemokine (C motif) XC recepto	7tm_1	6.3
	451394 436523	NM_003595 BE612990	Hs.5212	tyrosylprotein sulfotransferas single-strand selective monofu	Sulfotransfer	6.3 6.3
	422714	AB018335	Hs.119387	KIAA0792 gene product	DUF221	6.3
	408924	AW295606	Hs.236131	homeodomain-interacting protei	50.2.	6.3
30	414551	Al815639	Hs.76394	encyl Coenzyme A hydratase, sh	ECH,Peptidase_U7	6.3
	413254	U40272	Hs.75253	isocitrate dehydrogenase 3 (NA	isodh	6.3
	415010	NM_004203		membrane-associated tyrosine-	pkinase	6.3
	449761	AB009698	Hs.23965	solute carrier family 22 (orga	sugar_tr	6.3
35	432221 414513	M21191 AW239400	Hs.273415 Hs.76297	aldolase A, fructose-bisphosph G protein-coupled receptor kin	glycolytic_enzy,Adeno_E3_ pkinase,RGS,pkinase_C	6.3 6.2
55	458516	BE010749	Hs.255097	ESTs	paraso,reo,paraso_o	6.2
	417985	AA187545	Hs.83114	crystallin, zeta (quinone redu	adh_zinc	6.2
	447507	H59696	Hs.18747	POP7 (processing of precursor,		6.2
40	418322	AA284166	Hs.84113	cyclin-dependent kinase inhibi	Y_phosphatase,DSPc	6.2
40	428443	BE618106	Hs.184326	CDC10 (cell division cycle 10,	GTP_CDC.M	6.2
	423229	AC003965	Hs.125532	protease, serine, 26	trypsin	6.2 6.2
	408903 426176	BE244377 AB000462	Hs.48876 Hs.167679	famesyl-diphosphate famesylt SH3-domain binding protein 2	SQS_PSY,dsrm,z-alpha PH,SH2	6.1
	421395	D90084	Hs.1023	pyruvate dehydrogenase (lipoam	E1_dehydrog	6.1
45	430517	S80071	Hs.241597	solute carrier family 6 (neuro	SNF	6.1
	435906	AI686379	Hs.110796	SAR1 protein	arf,ras	6.1
	402758			C1001899*:gi 12722636 ref XP_0	Glyco_hydro_18	6.1
	434202	BE382411	Hs.3764	guanylate kinase 1	Guanylate_kin,CoaE,Viral_	6.1
50	402115 407601	AC002300	Hs.37129	NM_021624:Homo sapiens histami sodium channel, nonvoltage-gat	7tm_1 ASC	6.1 6.1
50	404679	ACC02300	115.37 125	Target Exon	NOC .	6.0
	450739	AI732707		ESTs, Weakly similar to ALU7_H	VIR	6.0
	439888	AB040949	Hs.6733	pancreas-enriched phospholipas	C2,PI-PLC-Y,PI-PLC-X,RasG	6.0
c	415742	BE410243	Hs.78769	thimet oligopeptidase 1	Peptidase_M3	6.0
55	453190	AB002354	Hs.32312	KIAA0356 gene product	PH,PHD,RUN	6.0
	439975	AW328081	Hs.6817	inosine triphosphatase (nucleo	Ham1p_like	6.0
	412800 432805	AW950852 X94630	Hs.74598 Hs.3107	polymerase (DNA directed), del CD97 antigen	homeobox 7tm_2,GPS,EGF	6.0 6.0
	418964	174640	113.3107	gb:yc57c12.r1 Stratagene liver	A2M_N,A2M	6.0
60	417483	BE549343	Hs.82208	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	6.0
	419755	H18444	Hs.134846	BAI1-associated protein 3	C2	6.0
	457276	AF235097	Hs.227583	Homo saplens chromosome X map	DILA M.	6.0
	423908	AJ006422	Hs.135183	centaurin-aipha	PH,ArfGap	6.0
65	432118 427334	N98718 · R44789	Hs.33191	gb:yy65g02.r1 Soares_multiple_ Homo sapiens, Similar to trans		5.9 5.9
UJ	424959	NM_005781		activated p21cdc42Hs kinase	pkinase,SH3	5.9
	453082	H18835	Hs.31608	hypothetical protein FLJ20041	ion_trans	5.9
	421168	AF182277	Hs.330780	cylochrome P450, subfamily IIB	p450	5.9
70	422287	F16365	Hs.114346	cytochrome c oxidase subunit V	COX7a,Phage_G	5.9
70	401736	AA648502		C16000492*:gi 3127193 gb AAD05	AMP-binding	5.9 5.9
	434755 414962	AF273304	Hs.235376	ESTs XPMC2 protein	Exonuclease	5.8
	407338	AA773213	. 10.200010	gb:ab66f10.s1 Stratagene lung	ig	5.8
	448426	BE018315	Hs.280776	tankyrase, TRF1-interacting an	•	5.8
75	409686	AK000002	Hs.55879	Homo sapiens mRNA; cDNA DKFZp4	ABC_tran	5.8
	450778	U81375	Hs.25450	solute carrier family 29 (nucl	Nucleoside_tran	5.8
	423612	NM_002067		guarine nucleotide binding pro	G-alpha,arf	5.8
	430845	AF024690 AF051941	Hs.248056 He 343824	G protein-coupled receptor 43 nucleoside diphosphate kinase	7tm_1 NDK	5.8 5.8
80	424741 412958	BE391579	Hs.343824 Hs.75087	Fas-activated serine/threonine	NUA	5.8
50	415701	NM_003878		gamma-giutamyi hydrolase (conj	GATase	5.8
	423158	H97991	Hs.193313	Target CAT	MoaA_NifB_PqqE	5.8
	414788	X78342	Hs.77313	cyclin-dependent kinase (COC2-	pkinase	5.8
	412915	AW087727	Hs.74823	NM_004541:Homo saplens NADH de		5.7
				25	2	

<u>.</u>-

	420004	AL035964	Un 400004	audam ar a training	ha	E 7
	420904 415503	U36601	Hs.100221 Hs.78473	nuclear receptor subfamily 1, N-deacetylase/N-sulfotransfera	hormone_rec,zf-C4 Sulfotransfer	5.7 5.7
	433074	AL045019	Hs.323462	Homo sapiens cDNA FLJ11214 fis	DEAD,helicase_C,dsrm,Vira	5.7
_	409124	AW292809	Hs.50727	N-acetylglucosaminidase, alpha	00-0,10,0000_0,0011,110	5.7
5	428270	BE501549	Hs.107040	ESTs		5.7
	435114	AA775483	Hs.288936	mitochondrial ribosomal protel	ODC_AZ	5.7
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	asp	5.7
	453054	AI878908	Hs.31547	Target CAT	104	5.7
10	420730	NM_002691		polymerase (DNA directed), del	ICL	5.7
10	415117 400985	AF120499	Hs.78016	polynucleotide kinase 3'-phosp	Viral_helicase1	5.7 5.7
	413163	Y00815	Hs.75216	Target Exon protein tyrosine phosphatase,	fn3,lg,Y_phosphatase	5.7 5.7
	413858	NM_001610		acid phosphatase 2, lysosomal	acid_phosphat	5.7
	457308	AI416988	Hs.238272	inositol 1,4,5-triphosphate re	ion_trans,RYDR_ITPR,MIR	5.7
15	400551			C10001991*:gi[6624920]emb]CAB6	SRCR	5.7
	433472	Al541246	Hs.3343	phosphoglycerate dehydrogenase	2-Hacid_DH,2-Hacid_DH_C,M	5.7
	409531	BE384319	Hs.54702	xytosylprotein beta1,4-galacto	Galactosyl_T_2	5.7
	449139	BE268315	Hs.23111	phenylalanine-tRNA synthetase-	neur	5.7
20	450207	T87615	Hs.14716	ESTs		5.7
20	400266			NM_002858*:Homo sapiens ATP-bi	ABC_tran	5.6
	430713	AA351647	Hs.2642	eukaryotic translation elongat	GTP_EFTU,GTP_EFTU_D3,GTP_	5.6
	420911 405683	U77413	Hs.100293	O-linked N-acetylglucosamine (Target Exon	TPR	5.6 5.6
	449181	X96783	Hs.23179	synaptolagmin V	C2	5.6
25	414457	AW514320	Hs.76159	ATPase, H transporting, lysoso	ATP-synt_C	5.6
	415193	AL048891	Hs.12185	hypothetical protein MGC14333	Title Gymes	5.6
	434883	AW381538	Hs.19807	hypothetical protein MGC12959		5.6
	433135	AA443873	Hs.110477	dolichyl-phosphate mannosyltra	•	5.6
20	413049	NM_002151	Hs.823	hepsin (transmembrane protease	trypsin	5.6
30	420899	NM_001629	Hs.100194	arachidonate 5-lipoxygenase-ac	MAPEG	5.6
	423397	NM_001838		chemokine (C-C motif) receptor	7tm_1	5.5
	443759	BE390832	Hs.134729	FXYD domain-containing ion tra		5.5
	454112	NM_000885	Hs.40034	integrin, alpha 4 (antigen CD4	integrin_A.FG-GAP	5.5
35	405594	00010404	11- 20047	NM_021949:Homo sapiens ATPase,	E1-E2_ATPase,Hydrolase	5.5
55	416322 446755	BE019494 AW451473	Hs.79217 Hs.16134	pyrroline-5-carboxylate reduct serine/threonine kinase 10	P5CR,Octopine_DH_N	5.5 5.5
	411030	BE387193	Hs.67896	7-60 protein	pkinase,TYA	5.5
	431498	AK001777	Hs.258551	aspartyl aminopepildase	Peptidase_M18	5.5
	433012	NM_004045		ATX1 (antioxidant protein 1, y	HMA	5.5
40	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	pkinase,POLO_box	5.5
	424572	M19650	Hs.92909	2',3'-cyclic nucleotide 3' pho		5.5
	406617			Target Exon	efhand,Ferric_reduct	5.5
	421883	X55079	Hs.1437	glucosidase, alpha; acid (Pomp	trefoil,Glyco_hydro_31	5.4
45	419525	179257	Hs.1259	asialoglycoprotein receptor 2	tectin_c	5.4
43	448093	AW977382	Hs.15898	2.4-dlenoyl CoA reductase 2, p	adh_short	5.4
	411574	BE242842	Hs.6780	protein tyrosine kinase 9-like	cofilin_ADF	5.4
	406432 428921	Z43809	Un 104620	CD1E antigen, e polypeptide	Sulfotransfer	5.4
	430337	M36707	Hs.194638 Hs.239600	potymerase (RNA) II (DNA direc calmodulin-like 3	efhand	5.4 5.4
50	427162	AB011133	Hs.173864	KIAA0561 protein	pkinase,POZ	5.4
• •	414216	D86970	Hs.75822	TGFB1-induced anti-apoptotic f	oxidored_q4,myosin_head,b	5.4
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase,	lipoxygenase,PLAT	5.4
	424373	AJ133798	Hs.146219	copine VII	C2	5.4
	449405	AA001350		gb:zh83h05.r1 Soares_fetat_liv	mito_car .	5.4
55	409983	D50922	Hs.57729	Kelch-like ECH-associated prot	BTB,Kelch	5.4
	455818	A1733747	Hs.71174	interleukin 21 receptor		5.4
	424357	AW961058	Hs.44856	hypothetical protein FLJ12116		5.4
	423606	AB011094	Hs.129892	KIAA0522 protein	PH,bZIP,IQ,Sec7	5.3
60	432311 450080	BE083080 AB037831	Hs.274323 Hs.24372	similar to sialyltransferase 7	Glyco_transf_29 DEAD,GSPII_E	5.3 5.3
00	423778	Y09267		ESTs, Weakly similar to dJ207H	EMO like nor reday	5.3
	402338	. 40201	Hs.132821	flavin containing monooxygenas Target Exon	FMO-like,pyr_redox p450	5.3
	412276	BE262621	Hs.73798	macrophage migration inhibitor	MIF	5.3
	437967	BE277414	Hs.5947	mel transforming oncogene (der	ras,arf	5.3
65	424766	BE388855	Hs.152978	proteaseome (prosome, macropai	PA28_alpha,PA28_beta	5.3
	447766	NM_016011	Hs.19513	CGI-63 protein	adh_zinc	5.3
	453660	X98507	Hs.286226	myosin IC	myosin_head,IQ	5.2
	435327	BE301871	Hs.4867	mannosyl (alpha-1,3-)-glycopro	HLH,Myc_N_term,Myc-LZ	5.2
70	432336	NM_002759		protein kinase, interferon-ind	dsm,pkinase	5.2
70	445139	AB037848	Hs.12365	synaptotagmin XIII	C2	5.2
	429214 432462	AB012722 AK000013	Hs.198256	ktnestn-like 3 thymidine kinase 2, mitochondr	kinesin	5.2
	432462 42 43 87	AR000013 Al739312	Hs.274701 Hs.284163	ANKHZN protein	dNK	5.2
	424367	MIDDUIE	19.504100	gb:Human homeobox-like mRNA		5.2 5.2
75	450321	Y16521	Hs.24812	CDP-diacylglycerol synthase (p	Cytidyfyltrans,Adeno_VII	5.1
	412939	AW411491	Hs.75069	eukaryotic translation elongat	SHMT	5.1
	445109	AF039916	Hs.12330	ectonucleoside triphosphale di	GDA1_CD39	5.1
	419073	AW372170	Hs.183918	Homo sapiens cDNA FLJ12797 fis	ig,tsp_1,ZU5	5.1
0.0	409958	NM_001523		hyaturonan synthase 1	Glycos_transf_2	5.1
80	442599	AF078037	Hs.324051	RelA-associated inhibitor	SH3,ank	5.1
	424305	BE386095	Hs.112272	histone deacetylase 8	Hist_deacetyl	5.1
	427247	AW504221	Hs.174103	integrin, alpha L (antigen CO1	wwa.integrin_A.F.G.GAP	5.1
	429061	Y14039 X52221	Hs.195175	CASP8 and FADD-like apoptosis	DED,ICE_p20	5.1
	420849	MEEEI	Hs.99987 .	excision repair cross-compleme	_	5.1

	453337	R73417	Hs.25391	gb:yi92g12_r1 Soares breast 2N	GSPIL_III	5.1
	418910	Z25821	Hs.89466	Homo sapiens, Similar to dodec	ECH	5.1
	425771	BE561776	Hs.159494	Bruton agammaglobulinemia tyro	SH2,SH3,pkinase,PH,BTK	5.1
_	405202			NM_021734*:Homo saplens deoxyn	mito_carr	5.1
5	451452	BE560065	Hs.26433	dolichyl-phosphate (UDP-N-acet	Glycos_transt_4	5.0
	418231	AA326895	Hs.83848	triosephosphate isomerase 1	TIM	5.0
	425165	NM_014434		Target CAT		5.0
	407876	NM_004519		potassium voltage-gated channe	ion_trans,KCNQ1_channel	5.0
10	417831	H16423	Hs.82685	CD47 antigen (Rh-related antig	g	5.0 5.0
10	404716 405020			NM_007313*:Homo saptens v-abl Target Exon	SH2,SH3,pkinase 7tm_1	5.0
	426236	NM_004798	He 168212	kinesin family member 38	kinesin	5.0
	433178	AB038269	Hs.253706	cysteinyl leukotriene CysLT2 r	7tm_1	5.0
	422340	AW296219	Hs.115325	RAB7, member RAS oncogene fami	arf,ras	5.0
15	439414	NM_001183		ATPase, H transporting, lysoso		5.0
	425846	AA102174	Hs.159629	myosin IXB	myosin_head,DAG_PE-bind,I	5.0
	413599	AJ005239	Hs.75438	quinoid dihydropteridine reduc	adh_short	5.0
	424168	L29277	Hs.321677	signal transducer and activato	SH2,STAT,STAT_bind,STAT_p	5.0
20	436042	AF284422	Hs.119178	cation-chloride cotransporter-	aa_permeases	5.0
20	410775 428734	AB014460 BE303044	Hs.66196 Hs.192023	nth (E.coli endonuclease III)- eukaryotic translation initiat	HhH-GPD WD40	5.0 5.0
	420340	NM_000734		CD3Z antigen, zeta polypeptide	ITAM	4.9
	433075	NM_002959	113.01001	sortilin 1	BNR	4.9
	400300	X03363		HER2 receptor tyrosine kinase	pkinase	4.9
25	426811	BE259228	Hs.172609	nucleobindin 1	efhand	4.9
	401577			NM_000761:Homo sapiens cytochr	p450	4.9
	409637	AA323948	Hs.55407	Homo sapiens mRNA; cDNA DKFZp4	Collagen	4.9
	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrola	AdoHcyase	4.9
30	430904	U65402	Hs.248124	G protein-coupled receptor 31	7tm_1	4.9
30	423552	AF107028	Hs.129783	sodium channel, voltage-gated,	lg,Adeno_E3_CR2	4.9
	421487 402183	AF027406	Hs.104865	serine/threonine kinase 23	pkinase FF	4.9 4.9
	456748	AW137749	Hs.125902	NM_004491*:Homo sapiens glucoc ubiquitin specific protease 2	UCH-1,UCH-2	4.9
	424771	BE397151	Hs.153003	serine/threonine kinase 16	pkinase	4.9
35	406441	02007101	110.100000	Target Exon	Aa trans	4.9
	437053	AU077018	Hs.3235	keratin 4	filament,bZIP,Tropomyosin	4.9
	443044	N28522	Hs.8935	quinolinate phosphoribosyltran	QRPTase QRPTase_N	4.9
	431204	F28841	Hs.250760	cytochrome c oxidase subunit V	dUTPase,COX6A,ras,ATP-syn	4.9
40	456417	L36531	Hs.91296	integrin, alpha 8	integrin_A,FG-GAP	4.8
40	436735	L48489		mannosyl (beta-1,4-)-glycoprol	_	4.8
	441455	AJ271671	Hs.7854	zincfiron regulated transporte	Zip	4.8
	446948	BE409053	Hs.299629	peroxisomal long-chain acyl-co	nunce in Condessation	4.8
	451564	AU076698	Hs.132760	hypothetical protein MGC15729	sugar_tr,Condensation	4.8
45	403771 403248			NM_003061:Homo sapiens slit (D ESTs, Weakly similar to 178885	EGF,laminin_G,LRR,LRRNT,L SLT	4.8 4.8
••	410214	L29555	Hs.301698	sialyitransferase 4A (beta-gal	Glyco_transf_29	4.8
	407047	X65965	110.001000	gb:H.sapiens SOD-2 gene for ma	sodie	4.8
	422668	AF199364	Hs.119120	E3 ubiquitin ligase SMURF1	C2,WW,HECT	4.8
50	436057	AJ004832	Hs.5038	neuropathy target esterase	cNMP_blnding	4.8
50	431262	NM_006672	Hs.251395	solute carrier family 22 (orga	endar_p.	4.8
	406625	Y13647	Hs.119597	stearoyl-CoA desaturase (delta	FA_desalurase	4.8
	428659	U66579	Hs.188859	G protein-coupled receptor 20		4.8
	432716	AI762964	Hs.205180	ESTS		4.8
55	414460 400287	L00727 S39329	Hs.898	dystrophia myotonica-protein k	pkinase	4.8
55	428946	D42046	Hs.181350 Hs.194665	kalikrein 2, prostatic DNA2 (DNA replication helicase	trypsin UvrD-hellcase, Viral_helic	4.8 4.7
	420028	AB014680	Hs.8786	carbohydrate (N-acetylglucosam	Sulfotransfer	4.7
	402912			Target Exon	pkinase	4.7
	443329	BE262943	Hs.9234	hypothetical protein MGC1936	•	4.7
60	426120	AA325243	Hs.166887	copine I	C2	4.7
	430609	AA302921	Hs.247362	dimethylarginine dimethylamino		4.7
	451320	AW118072		diacylglycerol kinase, zeta (1	zf-C2H2,BAR,SH3	4.7
	447131	NM_004585		retinoic acid receptor respond	unna nelleusida	4.7
65	431222	X56777	Hs.273790	zona pellucida glycoprotein 3A	zona_pellucida	4.7
05	406458 427804	AL049654	Un 100071	C14000133*:gi]1082739[pir] C44 protein kinase C, alpha bindin	proteasome PDZ	4.7 4.7
	450748	A1733093	Hs.180871 Hs.247686	ESTs	7tm_1	4.7
	422937	U03270	Hs.122511	centrin, EF-hand protein, 1	efhand	4.7
	407978	AW385129	Hs.41717	phosphodiesterase 1A, calmodul	PDEase	4.7
70	428773	BE256238	Hs.193163	bridging Integrator 1	SH3.BAR	4.7
•	456444	AA884517	Hs.31856	ESTs, Weakly similar to KIAA14	•	4.7
	405574			Target Exon	pkinase	4.7
	442414	BE408758	Hs.8297	ribonuclease 6 precursor	ribonuclease_T2	4.7
75	418289	AW403103	Hs.83951	Hermansky-Pudlak syndrome		4.6
75	421601	AI660190	Hs.106070	cyclin-dependent kinase inhibi	CDI	4.6
	422795	AB033109	Hs.120866	KIAA1283 protein	kazal,A2M,A2M_N	4.6
	433019 431522	AI208513 AI625859	Hs.279915	translocase of inner mitochond	zf-Tlm10_DDP fn3,Y_phosphatase	4.6
	400846	AUCJ003	Hs.258609	protein tyrosine phosphatase, sortiin-related receptor, UD	ins, r_prospriatase idi_recept_a,fn3,idi_rece	4.6 4.6
80	456881	AW028302	Hs.155079	protein phosphatase 2, regulat	B56	4.6 4.6
- 0	418172	X61157	Hs.83636	adrenergic, beta, receptor kin	pkinase,PH,RGS	4.6
	408433	AW162931	Hs.45002	ras-related C3 botufinum toxin	ras	4.6
	439921	AL110209	Hs.6770	LCAT-like lysophospholipase	LACT	4.6
	427122	AW057736	Hs.323910	HER2 receptor tyrosine kinase	pkinase,Furin-like,Recep_	4.6
					L	

					•	
	427945	AW137156	Hs.181202	hypothetical protein FLJ10038	Collagen	46
	451777	U09210	Hs.459	solute carrier family 18 (vesi	sugar_tr	4.6
	429938	BE296804	Hs.226377	phosphate cylidylytransferase	Cytidylytranst,COX6C	4.6
	412974	R18978	Hs.75105	emopamil-binding protein (ster	0,00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.6
5					110	
,	414702	L22005	Hs.76932	cell division cycle 34	UQ_con	4.6
	425795	AJ000479	Hs.159543	endothelial differentiation, G	7tm_1	4.6
	422454	U49070	Hs.161362	protein (peptidyl-prolyl cis/t	Rotamase,WW	4.6
	408135	AA317248	Hs.42957	methyltransferase-like 1	Methyltransf_4	4.6
	457388	AF035300	Hs.264157	cadherin-like 22	cadherin_Cadherin_C_term	4.6
10	421140	AA298741	Hs.102135		Herpes_UL3	4.6
10				signal sequence receptor, delt		
	434834	AF156774	Hs.324020	1-acylglycerol-3-phosphate 0-a	Acyltransferase	4.6
	413407	Al356293	Hs.75339	inositol polyphosphate phospha	SH2,SAM	4.6
	402463			NM_014624:Homo sapiens \$100 ca	efhand,S_100	4.5
	417891	W79410	Hs.82887	protein phosphatase 1, regulat		4.5
15	421681	AA384922	Hs.195175	CASP8 and FADD-like apoptosis	ICE_p20,DED	4.5
13						
	426516	BE262660	Hs.170197	glutamic-oxaloacetic transamin	aminotran_1_2	4.5
	418963	BE304571	Hs.89529	aldo-keto reductase family 1,	aldo_ket_red	4.5
	423664	NM_004714	Hs.130988	dual-specificity tyrosine-(Y)-	pkinase	4.5
	427681	AB018263	Hs.180338	tumor necrosis factor receptor	TNFR_c6,death,PH,Xlink,Rh	4.5
20	432893	NM_016154		Homo sapiens clone PP1596 unkn	ras,arf	4.5
20						
	413815	AL046341	Hs.75562	discoldin domain receptor fami	F5_F8_type_C,pkinase	4.5
•	405546			NM_018833*:Homo saplens transp	ABC_membrane,ABC_tran	4.5
	416297	AA157634	Hs.79172	solute carrier family 25 (mito	mito_carr	4.5
	421962	D82061	Hs.288354	FabG (beta-ketoacyl-[acyl-carr	adh_short	4.5
25	415341	R00602		gb:ye74c04.r1 Soares fetal liv	pkinase	4.5
			Un 440220			4.5
	456668	W81526	Hs.118329	ESTs, Moderately similar to GA	Neur_chan_LBD,Neur_chan_m	
	456652	AW327546	Hs.111024	solute carrier family 25 (mito	mito_carr	4.5
	407863	AA317089	Hs.597	glutamic-oxaloacetic transamin	aminotran_1_2	4.5
	435891	AW249394	Hs.5002	copper chaperone for superoxid	sodcu,HMA	4.5
30	453997	AW247615	Hs.37003	v-Ha-ras Harvey rat sarcoma vi	ras	4.5
50						
	449029	N28989	Hs.22891	solute carrier family 7 (catlo	aa_permeases	4.5
	42482 9	NM_002507	Hs.1827	nerve growth factor receptor (death,TNFR_c6	4.5
	429362	T25833	Hs.200478	ubiquitin-conjugating enzyme E	UQ_con	4.5
	429133	N31854	Hs.197116	solute carrier family 7 (catio	aa_permeases	4.5
35	426079	D31220	Hs.166168	peter pan (Drosophila) homolog	7tm_1	4:4
55						4.4
	414814	D14697	Hs.77393	famesyl diphosphate synthase	polyprenyl_synt	
	433261	AB040967	Hs.112034	KIAA1534 protein	PH,Oxysterol_BP	4.4
	402915			ENSP00000202587*:Bicarbonate t	HCO3_cotransp	4.4
	418267	BE389537	Hs.83919	glucosidase I	Glyco_hydro_63	4.4
40	430716	BE387257	Hs.247831	Homo sapiens, Similar to myosi	efhand	4.4
	420874	X66357	Hs.336478	cyclin-dependent kinase 3	pkinase	4.4
	439902	AF174499	Hs.6764	histone deacetylase 6	Hist_deacetyl,zf-UBP	4.4
	400223			Eas Control	Skp1	4.4
	450611	NM_004405	Hs.419	distal-less homeo box 2	homeobox	4.4
45	412965	L06419	Hs.75093	procollagen-lysine, 2-oxogluta	2OG-Fell_Oxy	4.4
	435564	AF210652	Hs.16614			4.4
				5(3)-deoxyribonucleotidase (dN	Andhardona	
	416121	X92762	Hs.79021	tafazzin (cardiomyopathy, dila	Acyltransferase	4.4
	423323	AI951628	Hs.127007	potassium channel, subfamily K	lon_trans	4.4
	448191	NM_005881	Hs.20644	branched chain alpha-ketoacid	HATPase_c	4.4
50	456217	BE253181	Hs.81687	non-metastatic cells 3, protei	NDK_Arteri_glycop	4.4
	436415	BE265254	Hs.343258	proliferation-associated 2G4,	Peptidase_M24	4.4
					1 cpadaso_mz+	4.4
	429218	AA225065	Hs. 198269	Target CAT	w. A	
	407433	AF209923		gb:Horno sapiens orphan G-prote	7tm_3	4.4
	425955	T96509	Hs.248549	ESTs, Moderately similar to S6		4.4
55	407230	AA157857	Hs.182265	keratin 19	filament,bZiP	4.3
	410197	NM_005518		3-hydroxy-3-methylglutaryl-Coe	HMG_CoA_synt	4.3
	416409					4.3
		R61573	Hs.79300	ubiquitin-conjugating enzyme E	UQ_con	
	447957	NM_014821	Hs.20126	KIAA0317 gene product	Filamin, HECT	4.3
~~	421771	NM_001224	Hs.108131	caspase 2, apoptosis-related c	ICE_p20,CARD,ICE_p10	4.3
60	448886	AL137291	Hs.22451	hypothetical protein FLJ10357	PH,RhoGEF	4.3
	414821	M53835	Hs.77424	Fc fragment of IgG, high affin	ig	4.3
		AA324358	Hs.249227	Homo saplens DNA, cosmid clone	·	4.3
	431096				I- 62	
	429892	NM_003803		myomesin 1 (skelemin) (185kD)	ig,fn3	4.3
	450126	BE018138	Hs.24447	sigma receptor (SR31747 bindin		4.3
65	413781	J05272	Hs.850	IMP (inosine monophosphate) de	IMPDH_C,IMPDH_N,CBS,NPD	4.3
	406530			NM_005546*:Homo saplens IL2-in	SH2,SH3,pkinase,PH,BTK	4.3
	428363	AK000284	Hs.183860	hypothetical protein FLJ20277	GNT-I	4.3
	413954	AL037111	Hs.75641	galactose-1-phosphate uridylyl	GalP_UDP_transf,GalP_UDP_	4.3
70	432179	X75208	Hs.2913	EphB3	EPH_lbd,fn3,pkinase,SAM	4.3
70	456529	AF014643	Hs.100072	connexin46.6	connexin	4.3
	448988	Y09763	Hs.22785	gamma-aminobutyric acid (GABA)	Neur_chan_LBD,Neur_chan_m	4.3
	426626	Al124572	Hs.323879	Inhibitor of kappa light polyp	zf-C2H2	4.3
	432956	AL037895	Hs.279861	CGI-31 protein	thlored	4.3
75	428970	BE276891	Hs.194691	retinoic acid induced 3	7tm_3	4.3
75	428953	AA306610	Hs.348183	tumor necrosis factor receptor	TNFR_c6	4.2
	423922	AK001663	Hs.135458	muscle-specific beta 1 integri		4.2
	426613	U96132	Hs.171280	hydroxyacyl-Coenzyme A dehydro	edh_short	4.2
					Tropomodulin,pkinase	4.2
	426566	AF131836	Hs.170453	tropomodulin	, reportion and houses	
00	425179	AJ224442	Hs.155020	putative methyltransferase		4.2
80	412715	NM_000947	Hs.74519	primase, polypeptida 2A (58kD)		4.2
	459298	R86701		gb:ym86d09.r1 Soares adult bra		4.2
	404879			NM_030807:Homo sapiens glucose		4.2
	400836			Target Exon	Apolipoprotein	4.2
		775 470	11- 240445		- gradograma	
	430940	Z25470	Hs.248145 .	melanocortin 5 receptor		4.2
				25	c	

	400563			Target Exon	Pep_M12B_propep	4.2
	430237	Al272144	Hs.236522	DKFZP434P106 protein	abhydrolase	4.2
	425175		Hs.155001	UNC13 (C. elegans)-like	DAG_PE-bind,C2	4.2
5	409067		Hs.50267	putative GTP-binding protein s	res	4.2
,	419982 428394	AA252544 AU076472	Hs.55610 Hs.184141	solute carrier family 30 (zinc glutaryl-Coenzyme A dehydrogen	Acyl-CoA_dh_Acyl-CoA_dh_M	4.2 4.2
	437696	Z83844	Hs.5790	hypothetical protein dJ37E16.5	Hydrolase	4.2
	454034	NM 000691		aldehyde dehydrogenase 3 famil	aldedh	4.2
	410237	AI750589	Hs.61258	argininosuccinate lyase	lyase_1 .	4.1
10	451478	NM_012331		methionine sulfoxide reductase	PMSR	4.1
	415410	AF037332	Hs.278569	sorting nextn 17	PX,fn3,pkinase,SAM,EPH_lb	4.1
	406538			Target Exon	trypsin	4.1
	424349	AF141289	Hs.145550	solute carrier family 7 (catlo	aa_permeases	4.1
15	441164 421318	AB023180 U63973	Hs.7724	KIAA0963 protein	helicase_C	4.1 4.1
13	439340	AB032436	Hs.103501 Hs.6535	rhodopsin kinase	pkinase,pkinase_C,RGS sugar_tr,BT1	4.1
	433340	N73703	Hs.293267	brain-specific Na-dependent in ESTs		4.1
	409693		Hs.55921	glutamyl-prolyl-IRNA synthetas	Glyco_hydro_31 WHEP-TRS,GST_C,HGTP_antic	4.1
	403655	7000 10233	113.33321	NM_003071:Homo sapiens SWI/SNF	SNF2_N,helicase_C,zf-C3HC	4.1
20	411142	NM_014256	Hs 69009	transmembrane protein 3	GalactosyLT	4.1
	437016	AU076916	Hs.5398	guanine monphosphate synthetas	- GMP_synt_C,GATase	4.1
	422699	BE410590	Hs.119257	ems1 sequence (mammary tumor a	SH3,HS1_rep	4.1
	427202		Hs.173936	interleukin 10 receptor, beta	Tissue_fac	4.1
	421380	D31833	Hs.1372	arginine vasopressin receptor	7tm_1	4.1
25	434142	U47927	Hs.3759	ubiquitin specific protease 5	zf-UBP,UCH-2,UBA,UCH-1	4.1
	427407	BE268649	Hs.177766	ADP-ribosyltransferase (NAD; p	BRCT,PARP,zf-PARP,PARP_re	4.1
	413749	Al929320	Hs.75516	tyrosine kinase 2	pkinase	4.1
	41 1927	BE274009	Hs.772	glycogen synthase 1 (muscle)	Glycos_transf_1	4.1
20	419726	U50330	Hs.1274	bone morphogenetic protein 1	EGF,CUB,Astacin	4.1
30	423814	AF105020	Hs.132989	putative protein O-mannosyltra	PMT,MIR	4.1
	451355	NM_004197		serine/threonine kinase 19		4.1
	422556	NM_006245		protein phosphatase 2, regulat	856	4.1
	428284	AA535762	Hs.183435	NM_004545:Homo sapiens NADH de	0-111-7	4.1
35	431968	AF117222	Hs.272261	UDP-Gal:betaGlcNAc beta 1,3-ga	Galactosyl_T	4.0
33	443639 410039	8E269042	Hs.9661	proteasome (prosome, macropain	proteasome	4.0
	431066	AF207989 AF026273	Hs.58014 Hs.249175	Homo saplens, Similar to G pro	7tm_3	4.0 4.0
	452715	Z21093	Hs.30352	interleukin-1 receptor-associa ribosomal protein S6 kinase, 5	pkinase,death pkinase	4.0
	403692	221050	115.30332	NM_007037*:Homo sapiens a disi	Reprolysin,tsp_1,Pep_M12B	4.0
40	442549	AI751601	Hs.8375	TNF receptor-associated factor	zf-C3HC4,MATH,zf-TRAF	4.0
. •	427239	BE270447	110.0010	ubiquitin carrier protein	UQ_con	4.0
	451125	AA015779	Hs.226923	ESTs	Y_phosphatase	4.0
	425081	X74794	Hs.154443	minichromosome maintenance def	MCM	4.0
	402171			Target Exon	C2	4.0
45	402665			Target Exon		4.0
	420148	U34227	Hs.95361	myosin VIIA (Usher syndrome 18	myosin_head,IQ,MyTH4,SH3,	4.0
	412187	U68487	Hs.73739	5-hydroxytryptamine (serotonin	7tm_1	4.0
	412656	AF006011	Hs.74375	dishevelted 1 (homologous to D	PDZ,DEP,DIX,Dishevelled	4.0
50	425786	. U35234	Hs.159534	protein tyrosine phosphatase,	fn3,lg,Y_phosphatase,DSPc	4.0
50	424288	AW137198	Hs.278682	Phosphatidylglycerophosphale S		4.0
	452230	AW135360	Hs.224170	ESTs	pkinase	4.0
	408449	NM_004408		dynamin 1	PH,GED,dynamin,dynamin_2	4.0 4.0
	423883 422676	AF250238 D28481	Hs.134514 Hs.1570	ATP-binding cassette, sub-fami	ABC_tran,photoRC,SRP54,Ca	4.0
55	458639	BE247683		histamine receptor H1	7tm_1 DSPc	4.0
33	400726	BE241000	Hs.14611	dual specificity phosphatase 1 C13000717*:gi[129376]sp[P26196	DEAD,helicase_C	4.0
	405370			NM_005569°:Homo saplens LIM do	pkinase,LIM.PDZ	4.0
	413654	AA331881	Hs.75454	peroxiredoxin 3	AhpC-TSA	4.0
	432917	NM_014125		PRO0327 protein	raipo tort	4.0
60	448362	AA641767	Hs.21015	hypothetical protein DKFZp564L	sugar_tr	4.0
	424512	X53002	Hs.149846	Integrin, beta 5	Integrin_B,EGF	4.0
					•	
	TABLE 22B:					
<i>(5</i>			t identifier number			
65		: Gene cluster				
	Accession: (Genbank acces	ssion numbers			
	Pkey	CAT Number			70 F0/076 HMF0 10 AND 200 14 MAG706	
70	410191	11824_1				AA431579 AA970887 AI885085 AI767835
70			AA776726 AI040976	4 AJ000871 AW242322 AW007204 W682	289 AA43145U AW466973 BE222544 AV	483454 A1968050 W95975 A1381017
	415341	1534442_1	R00602 Z42921 F06			
	415995	1564_1			02000 AA774970 AW(220060 A1420022	AI933994 AW751282 AW374413 AA578823
	710000	1304_1				98 AJ416986 AW769231 AJ767111 AA293723
75			Al422290 AA46503		130000 AA312021 AI324004 ATT 1030	30 AA 10300 AW 103231 AU 07 111 AA233123
,,,	418964	1809680_1	T74640 T74649	, n		
	424339	23827_1		1 AF219137 NM 015720 RF313658 RF3	82652 BE252205 RE251553 F12128 T6	6208 BE255806 BE254484 AA324163 H07952
				AI204971 AI282924 AW192547 AI65276		
	427010	27436_1				9 BE551105 AA450260 Al080368 AA324154
80		_	AF022080 BE00990	11 AL118847 W44458 AI765270 AA45312	1 Al148638 Al373696 AA324153 BE174	1809 AA350765
	427239	27647_1	BE270447 AW4099	21 BE207288 BE207170 D56355 BE2632	23 BE408171 BE262243 BE392439 BE	292738 BE261776 BE314300 BE267719
				6 BE295291 BE297066 AA210923 BE40	7519 H51344 BE622905 AW248281 AW	/250313 T19021 AA355115 AA316879
			BE269633 BE62193			
	427326	277229_1	Al287878 Al804160	AA400787		

	428542	29266_1		L 014770 U81031 AA352392 AA384512 H38328 AL120358 AL134787 AL134589 AI637763 AI671506 AA526909 AI651627 AW243560
	428948	29737_1	AA939069 BE514362	AIB79343 BE272870 BE616390 AW163444 AW161588 AW378754 AW238803 BE267205 BE047746 BE207213 BE312782 BE266301
_	1200 10		BE266413	BE278348 BE280885 BE278833 BE281417 BE407786 BE378176 BE392818 AW377597 BE395951 BE393978 AW327483 BE394175
5	432118	3417021	BE385795 N98718	BE275663 BE3
	432499	34857_1	BE276633	NM_016577 AF166492 BE276152 AF091031 AA908607 U66623 AI570393 AA682567 AW593957 AI148105 AW002431 AI637463
	433075	35820_1		A339439 R13005 R23431 AW961068 AA233819 AA224118 R19618 A1890314 Z46184 9 X98248 AA233278 AA846376 A1470560 A1470533 BE327147 AW291971 AA017125 A1198417 A1365213 A1168442 A1337018
10	400010	WW.0_1		185459 AA969895 AA888000 AA418326 AA418378 N71981 AL043634 AA426361 AA418275 AA232975 AL036861 BE277220 BE387505
	433494	3679_1	N99710 AV	V375004 A T04934 R21715 R19005 H11563 H14256 R46605 Z40857 BE218899 Al457785 BE550988 Al693847 AA961017 H40944 M78617
	400434	00/3_1		10090 BE549719 BE550952 AW005546 Al332686 Al928848 N49234 R44075 Al694943 Al858538 Al290722 BE550759 R43116 H40212
15	434755	392764_1	H40089 AA	Ø18091 AA814365 AW976711 AA746117
13	436735	425_1		022312 D13789 Al761974 AW173260 AW271715 AAB37437 Al075278 Al367012 Al953032 Al571173 H44868 AA743691 H47026
				AA829826 AA713585 AW502618 AW500856 AW501353 AW499765 AA339125 H19141 H29645 R18883 AW450375 AA326081 BE263659 N52684 A
20	440242	489536_1	AW295871	AI005144 AA909877 T52634 AI239684 AA875959 BE171353 AI767633 AW510907 AI742007
20	449405 450739	80651_1 844917_1	AA001350 AI732707	AA203114 H83070 R00660
	451320	86576_1	AW118072	AI631982 T15734 AA224195 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 AI124088
			AA224388 T33623	Aloba316 Al354686 T33652 Al140719 Al720211 T03490 Al372637 T15415 AW205836 AA630384 T03515 T33230 AA017131 AA443303
25	459298	983107_1		4600 AL157655.,
	TABLE 220	>		
	Pkey: Unio	ine unwper cor		an Eos probeset
30				nbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of m, et al. (1999) Nature 402:489-495
	Strand: Inc	dicates DNA str	and from whi	ch exons were predicted
	NL_position	: Indicates nuc	cleolide positi	ons of predicted exons
35	Pkey 400471	Ref	Strand	Nt_position 105629-105760
	400518	9931670 9796703	Minus Plus	37240-37774
	400551	9801071		40629-40934
	400563 400565	9844011 9863505	Plus Minus	81941-82434 93178-93429
40	400726	8118950	Plus	51524-51786
	400748	8119063	Plus	84237-84398
	400772	8131629	Minus	34896-35021,41078-41197
	400833 400836	8705148 8954179	Minus Plus	187599-188138 677-1188
45	400843	9188605	Plus	5863-5970,7653-7784,8892-9023,9673-9807,10634-10789,15254-15403,23827-23958
	400845	9188605	Plus	34428-34612
	400846 400894	9188605 9958307	Plus Minus	39310-39474 84607-85554
50	400933	7651935	Minus	105330-105503 .
50	400985 401118	8085497 9966714	Minus	5856-6006,6236-6402
	401134	7210005	Minus Plus	111939-112126 51210-51406
	401180	9438648	Minus	150981-152128
55	401215 401281	9858408	Plus	103739-103919
33	401261	9800073 9186923	Minus Minus	13622-15130 114659-114832
	401488	7341775	Plus	54523-54686,55384-55451,55737-55846,58047-58175,58261-58356
	401507 401510	7534110 7622346	Plus Minus	71055-71259 46835-47126
60	401542	8072607	Minus	· 87695-87840
	401577	9280797	Minus	139377-139674,141195-141281,142217-142340
	401736 401885	3219338 8140731	Plus Plus	1771-1894 148234-148321,150365-150559
	401935	3808091	Plus	46329-46473
65	401960	3249127	Minus	87589-88081
	402053 402115	8083229 8547592	Plus Minus	62703-63179 101750-102018
	402171	8575908	Minus	79357-79514,83258-83476
70	402183	7658390	Minus	100618-104298
70	402191 402207	8576073 8576119	Minus Pius	69410-69583 41683-41851
	402209	8576119	Minus	53315-53472
	402211	7689783	Minus	67414-68229 2004-6-27200
75	402338 402393	6957691 9929688	Minus Plus	36915-37250 19813-20084,20163-20263
	402453	7534025	Plus	41-631
	402460	9796884	Minus	108901-109254,110246-110581,113613-113960 8818-8952
	402463 402478	9796896 9797301	Minus Minus	106204-106535
80	402497	9797775	Plus	98984-99452
	402632 402651	9931268 7960391	Plus	101166-101419 174215-174380
	402665	8077033	Plus Minus	11824-12090,14290-14544
	402758	9213869	Plus	87638-87924
				257

PCT/US02/19297 WO 02/102235

	402760	9213869	Plus	136829-136952,137336-137521
	402823	8217451	Plus	57916-58170,58475-58759,59580-59867
	402912	7263904	Plus	145965-146257,150876-151368
5	402915	7406502	Minus	140-276
)	402916	7406502	Minus	361-474,541-687
	403213	7630897	Minus	162572-162739,164442-164540
	403248	7656833	Minus	167439-167606
	403268 403379	7230852	Minus	73832-73962
10		9438244	Minus	117348-117560
10	403655 403672	8736093 7283286	Plus Minus	65658-65859 96600-96881,96951-97280,97393-97594
	403692	7387384	Minus	93803-93938
	403771	7770492	Plus	112901-113045
	403949	7711972	Minus	1731-1941
15	404199	6010176	Minus	1669-2740
13	404527	8152087	Plus	127737-127796,128080-128210,129888-130054,132545-132869
	404528	8152087	Plus	135325-135486
	404596	9958262	Minus	104807-105043
	404676	9797204	Minus	56167-56342,58066-58189,58891-59048,60452-60628
20	404679	9797204	Plus	125964-126092,126691-127011,127774-127893
20	404716	9838068	Minus	123145-123417
	404757	7706327	Plus	100933-101083.101580-101782
	404879	5103013	Plus	78346-78473,78693-78893
	404946	7382189	Plus	134445-134750
25	404953	7387324	Plus	16588-17031,
	404968	6899755	Plus	39287-39606
	405020	7137674	Plus	106506-107309
	405137	8570507	Plus	158969-159423
	405187	7229826	Plus	117025-117170,118567-118736
30	405202	7230116	Plus	40209-40429
	405282	3810573	Minus ·	10482-10689
	405370	2078469	Minus	38980-39111
	405371	2078469	Minus	47657-47766,48461-48596
2.5	405473	8439781	Plus	153074-153343,154501-154598,156879-156999,158863-159051,159910-160053,161109-161229,163035-163131,165163-
35				165259,165868-166003,167375-167552,169252-169364,171127-171281
	405474	8439781	Plus	172005-172175
	405546	1054740	Plus	124010-124183
	405574	3820491	Minus	33200-33646
40	405594	6960456	Plus	161628-161734,162823-163014,164439-164652
40	405683	4508157	Minus	21701-21844
	405697	4309923	Minus	56765-57010,57696-58016
	405714	4156179	Minus	42789-43553
	406128	9159110	Plus	50425-50876
15	406370	9256130	Plus	125320-125482
45	406432	9256504	Plus	3804-3930,4026-4120,4929-5109
	406441	9280715	Plus	26200-26458
	406458	9756020	Plus	145874-146911
	406495	7711328	Minus	174661-174978
50	406496 406530	7711328	Minus	178947-179264,181779-182087
20		7711474	Minus	11703-11860,14711-14829,14920-14984,16232-16448,16916-17087
	406538 406591	7711478 8224230	Plus Minus	35196-35367,38229-38476,40080-40216,43522-43840 2117-2257,2436-2540
	406591	8439858	Plus	36430-36552
	400017	0403000	rius	ananama
55				
55	Table 224	Sale about 77		and standing control of the standard of the St

Table 23A lists about 779 genes up-regulated in ovarian cancer compared to non-malignant adult ovaries. These were selected as for Table 20A, except that the ratio of "average" ovarian cancer to "average" normal ovaries was greater than or equal to 4.0, the "average" ovarian cancer seed was set to the 93rd percentile value amongst various ovarian cancer specimens, the "average" normal adult tissue level was set to the 93rd percentile value amongst various non-malignant adult ovaries, the "average" ovarian cancer value was greater than or equal to 200 units.

60

65

TABLE 23A:
Play: Unique Eos probeset identifier number
Ex. Accn: Exemplar Accession number, Genbank accession number
UG ID: UniGene number
Title: UniGene gene title
Protein Dom.: Predicted protein domain
R1: Ratio of tumor to normal ovaries

70	Pkey 421296 437897	Ex. Accn NM_002666 AA770561	UG ID Hs.103253 Hs.146170	Title perilipin hypothelical protein FLJ22969	Protein Dorn. perilipin,SS SS.TM.zf-DHHC	R1 37.8 29.2
	457697 453028	AB006532	Hs.31442	RecQ protein-like 4	DEAD,helicase_C,Fork_head	27.6
	441021	AW578716	Hs.7644	H1 histone family, member 2		27.2
	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS	SS,TM,pkinase,fn3,ig	26.5
75	454017	AW023617	Hs.347130	hypothetical protein FLJ22709	SS,TM,myosin_head,RA,DAG_	25.9
	438424	AI912498	Hs.25895	hypothetical protein FLJ14996	SS,TM	25.8
	435017	AA336522	Hs.12854	anglotensin II, type I recepto		25.0
	409518	BE384836	Hs.3454	KIAA1821 protein	SS	23.3
	410418	D31382	Hs.63325	transmembrane protease, serine	SS,TM,ldl_recept_a,trypsi	22.8
80	439924	A1985897	Hs.125293	ESTs	SS	22.7
	446374	AA329256	Hs.24756	ESTs, Moderately similar to al		22.6
	431773	BE409442	Hs.268557	pleckstrin homology-like domai	PH,SS,LIM,Troponin	21.4
	420839	AI792682	Hs.282960	hypothetical protein MGC10870	SS.DS.UPF0139,Glyco_hydro	21.4
	413436	AF238083	Hs.68061	sphingosine kinase 1	DAGKC	21.2

258

	424420 422645	BE614743	Hs.146688	prostaglandin E synthase	MAPEG,SS,TM,MAPEG pkinase,SS,Ets	20.7 20.7
	436725	L40027 BE045223	Hs.118890 Hs.136912	glycogen synthase kinase 3 alp hypothetical protein MGC10796	pidiase,55,Ets	20.4
	422098	H03117	Hs.111497	similar to mouse neuronal prot	ТМ	20.2
5	429556	AW139399	Hs.98988	ESTs	SS,pkinase,PMP22_Claudin	20.1
	434068	AA977935	Hs.127274	ESTs	SS	20.0
	423767	H18283	Hs.132753	F-box only protein 2	F-box,SS,F-box,HORMA	19.9
	423652	AF052122	Hs.130712	Homo saplans clone 23929 mRNA	ABC1,SS,PID,PID	19.8
10	422179 441356	AF091619 BE384361	Hs.112667 Hs.182885	dynein, axonemai, intermediate	WD40,SS SS,TM,ank	19.3 18.5
10	418969	W33191	Hs.28907	ESTs, Weakly similar to JC5024 hypothetical protein FLJ20258	SH3,SH3	17.2
	432631	H08379	Hs.165563	hypothetical protein DKFZp434N	TM,DnaJ,UBA,ArfGap,homeob	17.2
	439108	AW163034	Hs.6467	synaptogynn 3	Synaptogyrin, SS, TM, PDZ, WD	17.2
	451643	M64437	Hs.234799	breakpoint cluster region	RhoGEF, RhoGAP, PH, C2	17.2
15	434518	H56995	Hs.37372	Homo sapiens DNA binding pepti	SS	16.9
	413244	AW955951	Hs.159265	kruppel-related zinc finger pr	SS,TM,BTB,Pep_M12B_propep	16.3 16.2
	456642 421612	AW451623 AF161254	Hs.109752 Hs.106196	putative c-Myc-responsive 8D6 antigen	ldLrecept_a,SS,TM	16.0
	456177	NM_012391		prostate epithelium-specific E	Ets.SAM_PNT	15.7
20	409261	BE315042	Hs.19210	hypothetical protein MGC11308		15.6
	414837	U24266	Hs.77448	aldehyde dehydrogenase 4 famil	aldedh	15.6
	401278			Target Exon	Band_41	15.4
	444804	AI084452	Hs.22158	hypothetical protein FLJ21988	SS	15.4 15.1
25	406620	M81105 Al583067	Hs.146550 Hs.149152	myosin, heavy polypeptide 9, n ESTs, Weakly similar to RHOP M	myosin_head,Myosin_tail,I	15.0
23	421495 416893	AA455588	Hs.62406	hypothetical protein FLJ22573	SS,rm,SS	15.0
	442620	C00138	Hs.8535	Homo sapiens mRNA for KIAA1668	SS,RNA_pol_K	14.9
	406901	M14624		gb:Human 4-beta-galactosyltran		14.6
20	416006	AA324251	Hs.78950	branched chain keto acid dehyd	E1_dehydrog	14.6
30	455557	AW995839		gb:QV4-BN0044-110200-108-h07 B	Metallophos	14.4
	416819	U77735	Hs.80205	plm-2 oncogene	pkinase,SS,TM,OTU,K_tetra	14.3
	444441 406918	AW613841 M88357	Hs.301394	hypothetical protein MGC3101 gb:Homo saplens DNA-binding pr	zf-C2H2,SS	14.0 14.0
	400516	W03512	Hs.6479	hypothetical protein MGC13272	SS,Sema,pkinase,TIG,PSI,e	13.6
35	447304	Z98883	Hs. 18079	phosphatidylinositol glycan, c	SS,Peptidase_C2	13.6
	402365			Target Exon	SS,SS,TM,ig	13.4
	407767	W15398	Hs.38628	hypothetical protein	SS,zf-CCCH	13.3
	432931	AF174487	Hs.293753	Bcl-2-related ovarian killer p	4 001 04 TM 04 4-1-	12.7
40	439233 423801	AA831893 NM_015071	Hs.292767 Hs.132942	hypothetical protein FLJ23109 GTPase regulator associated wi	zf-C3HC4,TM,Sulfate_trans RhoGAP,SH3,PH	12.7 12.6
40	430397	Al924533	Hs.105607	bicarbonate transporter relate	HCO3_cotransp,SS,TM	12.6
	411570	BE144584	Hs.314341	ESTs	11000_000000000000000000000000000000000	12.5
	400206			Eos Control	SS,SS,Glyco_tranf_43,COLF	12.3
	457941	Al004525	Hs.14587	ESTs, Weakly similar to AF1518	SS,TM,SS,TM	12.2
45	412674	X04106	Hs.74451	calpain 4, small subunit (30K)	efhand,SS,CAP_GLY	12.0
	400460			C11002253*:gi 129091 sp P23267	SS,TM,SCAN,zf-C2H2,KRAB	12.0
	417595 428758	AA424317 AA433988	Hs.6259 Hs.98502	KIAA1698 protein CA125 antigen; mucin 16	SS,TM,Glyco_hydro_31,Glyc SS	11.6 11.5
	424707	BE061914	Hs.10844	Homo sapiens cDNA FLJ14476 fis	SS,SS,TM,Sema	11.5
50	444359	AI697160	Hs.143594	ESTs, Weakly similar to HS4L_H	25,05,111,051112	11.5
	435158 -	AW663317	Hs.65588	DAZ associated protein 1	rrm,SS,rm	11.3
	407688	W25317	Hs.37616	Human D9 splice variant B mRNA		11.3
	450503	R35917	Hs.301338	hypothetical protein FLJ12587	SS	11.2
55	427448 406230	BE246449	Hs.2157	Wiskott-Aldrich syndrome (ecze Target Exon	WH1,PBD,WH2,SS	11.2 11.2
55	432143	AL040183	Hs.123484	Homo sapiens, clone IMAGE:4178	SS,TM,cys_rich_FGFR	11.2
	433573	AF234887	Hs.57652	cadherin, EGF LAG seven-pass G	SS,TM,7tm_2,EGF,cadherin,	11.1
	413726	AJ278465	Hs.75510	annexin A11	annexin,SS,annexin	11.1
C O	431974	AW972689	Hs.200934	ESTs	bZIP	11.0
60	428167	AA770021	Hs.16332	ESTs	SS,lg,fn3	11.0
	450461	BE408081 N34731	Hs.46736	hypothetical protein FLJ23476	SS · homeobox	10.9 10.9
	412738 445434	BE391690	Hs.74562 Hs.9265	siah binding protein 1; FBP in hypothetical protein FLJ20917	SS,PWWP,Exonuclease,lipoc	10.9
	444008	BE544855	Hs.236572	ESTs, Weakly similar to SFR4_H	SS,SS,SAC3_GANP	10.7
65	444410	BE387360	Hs.33719	ESTs, Moderately similar to S6	SS	10.6
	444607	AW405635	Hs.293687	ESTs	SS,PI-PLC-X,PH,PI-PLC-Y,C	10.6
	404333			C7001735*:gi]7768636[db]]BAA95	vwd	10.5
	401210	Al363410		C12000519:gi[7710046jref]NP_05	CC TM	10.5 10.4
70	434743 434030	AW162336	Hs.3709	ribosomal protein \$18 low molecular mass ubiquinone-	SS,TM SS	10.4
	450029	AW073380	Hs.267963	hypothetical protein FLJ10535	SS,Pyridox_oxidase,zf-C2H	10.4
	439632	AW410714	Hs.334437	hypothetical protein MGC4248	SS,TM,transmembrane4	10.3
	438185	Y19188	Hs.320461	ESTs	SS	10.2
75	432031	AF039195	Hs.272367	hairless protein (putative sin	jmjC	10.2
75	405371	Wazeno	He 19/402	NM_005569°:Homo saplens LIM do ESTs	pkinase,UM,PDZ SS,pkinase	10.1
	456741 458130	W37608 AA115811	Hs.184492 Hs.6838	ras homolog gene family, membe	os,pranase ras,arf	10.1 10.0
	456977	AK000252	Hs.169758	hypothetical protein FLJ20245	· managem 1	10.0
	420029	BE258876	Hs.94446	polyamine-modulated factor 1	aldo_ket_red,SS,TM,gla	10.0
80	445625	BE246743		hypothetical protein FLJ22635	SS,TM	9.9
	423366	Z80345	Hs.127610	acyl-Coenzyme A dehydrogenase,	Acyl-CoA_dh,Acyl-CoA_dh_M	9.8
	458216	AW024282	Hs.104938	hypothetical protein MGC15906	constring DM CM CC Passide	9.8
	451721 421445	AA913059	Hs.26915 Hs.104433	spectrin, beta, non-erythrocyt Homo sapiens, clone IMAGE:4054	spectrin,PH,CH,SS,Peptida asp,SS,TM,lon_trans,K_tet	9.7 9.7
	4E 1 470		197700		·	3.1
					259	

	431354	BE046956	Hs.251673	DNA (cytosine-5-)-methyltransf	SS,PWWP,PHD	9.7
	443780 448133	NM_012068 AA723157	Hs.9754 Hs.73769	activating transcription facto folate receptor 1 (adult)	bZiP,NTP_transf_2,SS,TBC Folate_rec,SS	9.7 9.7
	444202	AL031685	Hs.12785	KIAA0939 protein	SS,TM,Na_H_Exchanger,ABC2	9.7
5	427640	AF058293	Hs.180015	D-dopactirome tautomerase	MIF,late_protein_L2,SS,GS	9.6
	419167	AI589535	Hs.94875	ESTs, Weakly similar to A35363	SS	9.6
	424618	L29472	Hs.1802	major histocompatibility compl	TM,ig,MHC_II_beta,SS,TM,A	9.6
	427497 · 420423	AW139476 AA827718	Hs.31240 Hs.88218	ESTs ESTs	SS	9.6 9.6
10	414756	AW451101	Hs.159489	ESTs, Moderately similar to JC	hexokinase2,hexokinase	9.6
	407893	BE408359	Hs.43621	Homo sapiens, Similar to hypot	SS,SS,arf,ras,fn3,ras	9.5
	408294	BE141732		gb:QV0-HT0101-061099-032-e07 H	Ammonium_transp	9.5
	442232	Al357813	Hs.337460	ESTs, Weakly similar to A475B2	SS,TM,TGFb_propeptide,TGF	9.4
15	416866	AA297356 AW271708	Hs.80324 Hs.118918	serine/threonine protein phosp ESTs, Weakly similar to M2OM_H	Metallophos, Metallophos SS, TM	9.4 9.4
13	419823 422625	AW504698	Hs.155976	cuilin 4B	SS,SS,Cullin,Cullin	9.3
	401264	***************************************	1	C18000090*:gi]6678656[ref]NP_0	SS.Jaminin_Nterm.Jaminin_	9.3
	407507	U73799		gb:Human dynactin mRNA, partia	SS,TM,HCO3_cotransp,CAP_G	9.2
20	400833			C11000890:gi 3746443[gb AAC639	SS,TM,7tm_1	9.2
20	422064	AW452589	Hs.335742 Hs.29549	ESTS	TM lectin_c,SS,TM	9.2 9.2
	452434 421363	D30934 NM_001381		C-type lectin-like receptor-1 docking protein 1, 62kD (downs	PH,IRS,TM,PH,IRS,trypsin,	9.1
	427397	AI929685	Hs.177656	calmodulin 1 (phosphorylase ki	efhand,RmaAD,SS,efhand	9.1
~ -	431462	AW583672	Hs.256311	granin-like neuroendocrine pep	SS	9.0
25	434796	AA812046		ESTs	SS,myb_DNA-blnding,myb_DN	9.0
	422639	AI929377	Hs.173724	creatine kinase, brain	ATP-gua_P(rans,ATP-gua_P(TM	9.0 9.0
	447867 442472	A1525268 AW806859	Hs.164303	ESTs gb:MR0-ST0020-081199-004-c03 S	SS,TM,Inos-1-P_synth,Occl	8.9
	455588	Al129903	Hs.74669	vesicle-associated membrane pr	synaptobrevin,SS,TM	8.9
30	454319	AW247736	Hs.101617	ESTs, Weakly similar to T32527	SS	8.9
	429527	AA454184	Hs.289014	ESTs		8.9
	432603	AA554920	Hs.105794	UDP-glucose:glycoprotein gluco	SS,TM	8.9 8.9
	410338 452833	W03445 BE559681	Hs.38205 Hs.30736	gb:za05g11.r1 Soares melanocyt KIAA0124 protein	pkinase WD40	8.9
35	407363	AF035032	Hs.181125	gb:Homo sapiens clone MCA1L my	SS,ig,SS,G_glu_transpept	8.8
-	414413	BE294877		gb:601174162F1 NIH_MGC_17 Homo	SS	8.8
	431765	AF124249	Hs.268541	novel SH2-containing protein 1	SH2,SS,TM	8.8
	421694	BE387430	Hs.106880	bystin-like	cc	8.8 8.8
40	453683 418736	AL079854 T18979	Hs.118598 Hs.87908	Homo sapiens mRNA for KIAA1878 Snf2-related CBP activator pro	SS SS,helicase_C,AT_hook,SS,	8.7
70	450958	AL137669	Hs.348012	Homo sapiens mRNA; cDNA DKFZp4	00,10,100000000001	8.7
	419725	U66048	Hs.92683	Homo sapiens clone 161455 brea	·	8.7
	415126	D60945		gb:HUM141D04B Clontech human f	SS,TM	8.7
45	406301	A 1054046	U= 00220	Target Exon	TM, CaMBD, SK_channel, TM	8.6 8.6
45	418843 433396	AJ251016 Al742071	Hs.89230 Hs.133205	potassium intermediate/small c ESTs	SS,TM	8.6
	434333	AA186733	Hs.292154	stromai cell protein	00,1	8.6
	407065	Y10141		gb:H.sapiens DAT1 gene, partia	SNF,SS,TM	8.6
50	452851	AW173191	Hs.213117	ESTs	SS,Sema	8.6
50	422418	AK001383	Hs.116385	hypothetical protein FLJ10521	RhoGEF	8.6 8.6
	447859 420836	AK002194 AW958453	Hs.19851 Hs.204959	peroxisomal biogenesis factor hypothetical protein FLJ 14886	SS,ras	8.6
	429099	BE439952	Hs.196177	phosphorylase kinase, gamma 2	pkinase, SS, SNF2_N, helicas	8.6
	419639	AK001502	Hs.91753	hypothetical protein	•	8.6
55	429712	AW245825	Hs.211914	ENSP00000233627*:NADH-ubiquino	oxidored_q6,SS,TM,rrm	8.5
	452554	AW452434	Hs.58006 Hs.11197	ESTs, Weakly similar to ALU5_H	SS,PAS,HLH	8.5 8.5
	441076 428860	N49809 U38291	Hs.194301	Homo sapiens, clone IMAGE:3343 microtubule-associated protein	М	8.5
	421901	AB014554	Hs.109299	protein tyrosine phosphatase,	SAM, SS,TM, rmn, PDZ	8.4
60	441363	AW450211	Hs.126825	ESTs, Weakly similar to A46302	SS,TM,HSP20,7tm_1	8.4
	443801	AW206942	Hs.253594	intron of: trichorhinophalang	GATA	8.4
	432862 431849	AW004958 AJ670823	Hs.236720 Hs.85573	amnionless protein hypothetical protein MGC10911	SS,MATH,zf-TRAF,zf-C3HC4 SS.TM	8.4 8.4
	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc	SS	8.3
65	404365			Target Exon	SS	8.3
	425694	U51333	Hs.159237	hexokinase 3 (white cell)	hexokinase,hexokinase2,he	8.3
	423098	AA321980	Hs.204682	ESTs		8.3
	434552	AA639618	Hs.325116	Homo sapiens, clone MGC:2962,	SS	8.2 8.2
70	418361 - 427433	AW505368 D82070	Hs.12460 Hs.177972	gb:UI-HF-BN0-atu-d-03-0-UI.r1 chromosome 4 open reading fram	SS,pkinase	8.2
70	420138	BE268854	Hs.177729	EST8	SS	8.2
	426391	AW161050	Hs.169611	second mitochondrla-derived ac	SS	8.1
	457613	AA598869	Hs.173770	ESTs		8.1
75	427502	Al811865	Hs.7133	Homo saplens, clone IMAGE:3161	SS,TM,ABC_tran,Glyco_tran SS	8.1 8.1
15	437215 423384	AL117488 AL133632	Hs.127808	Human clone 23564 mRNA sequenc Homo sapiens mRNA; cDNA DKFZp4	55	8.1
	447151	AI022813	Hs.92679	Homo sapiens clone CDABP0014 m	SS,TM,LRR,aminotran_1_2	8.0
	431898	AK000020	Hs.272018	hypothetical protein FLJ20013		8.0
00	454291	AW384847			SS,XRCC1_N,BRCT,lactamase	8.0
80	430354	AA954810	Hs.239784	human homolog of Drosophila Sc LIM domain kinase 1	SS,TM,ig	8.0 8.0
	459302 422765	NM_002314 AW409701		baculoviral IAP repeat-contain	BIRTKSS,TM	8.0
	425944	AK000664	Hs.164256			7.9
	450873	BE464016	Hs.238956		SS,zf-C2H2,rm	7.9
					260	
					200	

	454040					
	454246 450635	AW245185 AW403954	Hs.6996 Hs.25237	ESTs mesenchymal stem cell protein	4HBT	7.9 7.9
	422305	AI928242	Hs.293438	ESTs, Highly similar to AF1984	SS	7.9
_	425760	D17629	Hs.159479	galactosamine (N-acetyl)-6-sul	Sulfatase, SS, TM	7.9
5	413534 446931	BE146961 Al348856	Hs.21627	gb:QV4-HT0222-011199-019-b12 H	SS,TM	7.8 7.8
	421726	AK001237	Hs.319088	gb:tb05a05.x2 NCI_CGAP_Lu26 Ho hypothetical protein FLJ10375	TM	7.8
	427461	AA531527	Hs.332040	hypothetical protein MGC13010	SS,TM,ACAT,LRR	7.8
10	448993	AI471630		KIAA0144 gene product		7.8
10	443136	NM_001440		exostoses (multiple)-like 3	Exostosin,SS,TM	7.8 7.8
	427725 400923	U66839	Hs.180533	mitogen-activated protein kina Target Exon	pkinase SS,TM,DUF289	7.8
	419757	AA773820	Hs.63970	ESTs	SS,TM	7.8
	458834	AI566883	Hs.196446	ESTs		7.8
15	427899	AA829286	Hs.332053	serum amyloid A1	SS,SAA_proteins,SS,SAA_pr	7.7 7.7
	452399 436543	BE513301 NM_002212	Hs.29344 Hs.5215	hypothetical protein, clone 24 Integrin beta 4 binding protei	SS,perilipin elF6	7.7
	431811	AB040972	Hs.301696	hypothetical protein FLJ11560	SS,TM,Band_7,AAA,cdc48_N,	7.7
20	414534	BE257293	Hs.76366	BCL2-antagonist of cell death	SS.hormone_rec,zf-C4	7.7
20	455885	BE153524	Un 4004CE	gb:PM0-HT0339-241199-002-C03 H	SS,pkinase	7.7 7.6
	427721 430432	AI582843 AB037758	Hs.180455 Hs.241419	RAD23 (S. cerevisiae) homolog KIAA1337 protein	ubiquitin,UBA,integrin_B, TM,Patched,TM	7.6
	427273	AW139032	Hs.107376	hypothetical protein DKFZp434N	SS,SS,TM	7.6
25	450334	AF035959	Hs.24879	phosphatidic acid phosphatase	PAP2,SS	7.6
25	413564	BE260120	Lie Conto	gb:601146990F1 NIH_MGC_19 Homo	SS,homeobox,UPF0160,DUF23	7.6 7.6
	410397 439539	AF217517 BE348395	Hs.63042 Hs.121589	DKFZp564J157 protein ESTs	SS,Fork_head	7.5
	400286	520,000		C16000922:gij7499103;pirjjT209	TM_ABC_tran_ABC_membrane	7.5
20	416472	AA180756	Hs.340316	ESTs, Moderately similar to AL	zf-C2H2	7.5
30	418641	BE243136 AA243547	Hs.86947 Hs.19447	a disintegrin and metalloprote	disintegrin,Reprolysin,Pe LIM,SS,SH3,Sorb,Metalloph	7.5 7.5
	419492 420970	AA305079	Hs.1342	PDZ-LIM protein mystique cytochrome c oxidase subunit V	COX5B	7.5
	406495			Target Exon	SRCR,TM,Acetyltransf	7.5
25	448043	A1458653	Hs.201881	ESTs	PHD	7.4
35	401724 424263	M77640	Hs.1757	C16001374:gij6755086 ref NP_03 L1 cell adhesion molecule (hyd	TM,PLAT,SS fn3,ig,IRK,SS,TM,fn3,ig,R	7.4 7.4
	428092	AW879141	115.1757	ESTs	SS.TM	7.3
	453023	AW028733	Hs.31439	serine protease inhibitor, Kun	Kunitz_BPTI,SS,TM,ion_tra	7.3
40	400137	11001001	U- 44505	Eos Control	Compa 7 CC TM	7.3
40	436127 412265	W94824 AA101325	Hs.11565 Hs.86154	RIKEN cDNA 2010100012 gene hypothetical protein FLJ12457	Corona_7,SS,TM UPP_synthetase,HMG14_17	7.3 7.3
	432747	NM_014404		calcium channel, voltage-depen	PMP22_Claudin,SS,TM,PMP22	7.3
	448859	BE272446	Hs.265317	hypothetical protein MGC2562	SS,TPR	7.3
45	407619	AL050341	Hs.37165	collagen, type IX, alpha 2	SS,Collagen,SS,Collagen	7.3
43	429299 401674	A1620463	Hs.347408	hypothetical protein MGC13102 C16001417*:gi[7500345[ptr][T21	SS,TM,gla FAD-oxldase_C,FAD_binding	7.3 7.2
	412289	AW935967	Hs.170162	KIAA1357 protein	SS	7.2
	424198	AB029010	Hs.143026	KIAA 1087 protein	SS,TM,Na_Ca_Ex,Catx-beta,	7.2
50	412173	T71071	LIA 0000	gb:yc50b05.r1 Stratagene liver	CPSase_L_chain	7.2 7.2
30	438113 429869	AI467908 AI907018	Hs.8882 Hs.15977	ESTs Target CAT	SS,TM,7tm_1 rm	7.2
	439963	AW247529	Hs.6793	platelet-activating factor ace	PAF-AH_lb,Lipase_GDSL,SS,	7.2
	425041	Al377150	Hs.150914	ESTs	SS	7.2
55	448340 406779	A1492910 AA412048	Hs.32362 Hs.279574	ESTs CGI-39 protein; cell death-reg	SS,SS	7.1 7.1
<i></i>	431005	AA490544	Hs.127269	ESTs, Weakly similar to T02345	WD40	7.1
	421273	AJ245416	Hs.103106	U6 snRNA-associated Sm-like pr	Sm,SS,IRNA-synt_1,GST_C,G	7.1
	409649	AA159216	Hs.55505	hypothetical protein FLJ20442	Y_phosphatase,DSPc,TM	7.0
60	430281 444672	A1878842 Z95636	Hs.237924 Hs.11669	CGI-69 protein taminin, atpha 5	mito_carr,SS,TM laminin_EGF,laminin_G,EGF	7.0 7.0
•	405928	20000	113.11003	Target Exon	SS,cystatin,Coprogen_oxid	7.0
	421321		Hs.103502	glutamic-pyruvate transaminase	aminotran_1_2,SS,TM,LRR	6.9
	439905 451937	AW799755 AF119664	Hs.110953 Hs.27299	retinoic actd induced 1 transcriptional regulator prot	HLH SS,integrin_B,fn3,Catx-be	6.9 6.9
65	426675	AW084791	Hs.133122	hypothetical protein FLJ14524	SS,TM,aminotran_1_2	6.9
	438627	AI087335	Hs.123473	ESTs	TM,Reticulon	6.9
	438951	U51336	Hs.6453	inositol 1,3,4-triphosphate 5/	SS,oxidored_nitro,SS	6.8
	421758 423228	BE397336 AL137491	Hs.1422 Hs.125511	Gardner-Rasheed feline sarcoma Homo sapiens mRNA; cDNA DKFZp4	SH2,SH3,pkinase SS,TM,sushi	6.8 6.8
70	405346	712107401	16.120011	Rag C protein	RCC1	6.8
	432746	AA564512	Hs.24301	polymerase (RNA) II (DNA direc	SS,TM,EF1BD	6.8
	452798	AI918771	Hs.257170	ESTs Homo sapiens, clone IMAGE:3542	SS,TM,TNFR_c6	6.7
	426315 440317	AA854219 BE561888	Hs.348137	gb:601346093F1 NIH_MGC_8 Homo	SS,crystall	6.7 6.7
75	438857	AI627912	Hs.130783	Forssman synthetase	SS,RA,RasGEF,RasGEFN	6.7
	452072	BE258857	Hs.27744	RAB3A, member RAS oncogene fam	ras,arf,SS,PDEase	6.7
	433938 423106	AF161536 N52572	Hs.284292 Hs.13702	ubiquinol-cytochrome c reducta ESTs, Moderately similar to AL	TM	6.7 6.7
	423106 453101	AW952776	Hs.13702 Hs.94943	ESTs Moderately similar to AL	TM	6.7
80	420307	AW502869	Hs.66219	ESTs	SS,TM	6.7
	415056	AB004662	Hs.77867	adenosine A1 receptor	7tm_1,SS,TM	6.7
	454262 409227	AW612232 AA806165	Hs.254835 Hs.130323	ESTs Homo sapiens, clone IMAGE:3960	SS,TM,vollage_CLC,CBS	6.7 6.6
	413908	BE409966	Hs.323813	Homo sapiens, clone MGC:2867,	SS,zf-C2H2	6.6
				•	261	
					201	

	4					
	457274 419157	AW674193 AA234540	Hs.227152 Hs.23871	mannan-binding lectin serine p ESTs	SS,TM,SS,TM,Ctathrin_lg_c pkinase	6.6 6.6
	431424	AI222969	rts.23071	ESTs	SS	6.6
-	412464	T78141	Hs.22826	ESTs, Wealty similar to 155214	SS,cadherin,crystall	6.6
5	430168	AW968343		DKFZP434I1735 protein	SS,TM,efhand,efhand	6.6
	455035	AW851734	U- 04940	gb:MR2-CT0222-011199-007-e10 C	0071405401-5	6.6
	422682 453367	W05238 AW732847	Hs.94316 Hs.70573	ESTs, Weakly similar to T31613 PKCI-1-related HIT protein	SS,TM,DEAD,helicase_C,Lam SS,TM	6.6 6.6
	450593	AF129085	Hs.25197	STIP1 homology and U-Box conta	TPR,SS,TM,Rhombold,lactam	6.6
10	420319	AW406289	Hs.96593	hypothetical protein .	ras,arf	6.6
	431131	N84730	Hs.250616	isocitrate dehydrogenase 3 (NA	isodh,isodh	6.6
	431297 410082	AA651771 AA081594	Hs.3076	ESTs	CC UECT abania	6.6
	441307	AW071696	Hs.158311 Hs.209065	Musashi (Drosophila) homolog 1 hypothetical protein FLJ14225	SS,HECT,phoslip SS,TM	6.5 6.5
15	454682	AW816029		gb:MR3-ST0220-151299-027-b10 S	filament	6.5
	407299	AA460205	Hs.289770	ESTs, Weakly similar to 138022		6.5
	422837	U25441	Hs.121478	dopamine receptor D3	7tm_1,SS,TM,7tm_1	6.5
	407722 417810	BE252241 D28419	Hs.38041 Hs.82609	pyridoxal (pyridoxine, vitamin hydroxymethylbilane synthase	pfk8,SS . Porphobil_deam	6.4 6.4
20	445333	BE537641	Hs.44278	hypothetical protein FLJ12538	SS S	6.4
	402197			Target Exon	SS,TM,ATP1G1_PLM_MAT8,ig,	6.3
	419390	AI701162	Hs.90207	hypothetical protein MGC11138	SS,TM,PMP22_Claudin,PMP22	6.3
	447754	AW073310	Hs.163533	intron of HER4	DOD 01-3 00 711	6.3
25	444664 421190	N26362 U95031	Hs.11615 Hs.102482	map kinase phosphatase-like pr mucin 5, subtype B, tracheobro	DSPc,Rhodanese,SS,TM Cys_knot,vwc	6.3 6.3
23	432872	AI908984	Hs.279623	selenoprotein X. 1	DUF25,SS,Ribosomal_L3,PDZ	6.3
	430023	AA158243	Hs.227729	FK506-binding protein 2 (13kD)	SS,FKBP,SS,PDGF,C2,PI-PLC	6.3
	413343	BE392026	Hs.334346	hypothelical protein MGC13045	SS,DnaJ	6.2
30	417852	AJ250562	Hs.82749	transmembrane 4 superfamily me	transmembrane4,SS,TM	6.2
50	403128 413055	AV655701	Hs.75183	KIAA1033 protein cytochrome P450, subfamily IIE	SS,TM,tubulin,EGF,F5_F8_t p450	6.2 6.2
	427812	AA770424	Hs.98162	ESTs	SS	6.2
	457761	AW401809	Hs.4779	KIAA1150 protein	SS,LIM,SS	6.2
25	453099	H62087	Hs.31659	thyroid hormone receptor-assoc	SS	6.2
35	426048	A1768853	Hs.134478	ESTs	TM	6.2
	407223 445634	H96850 Al624849	Hs.344612	gb:yw03b12.s1 Soares melanocyt ESTs, Weakly similar to NEL1_H	SS,TM,SS,TM,DDOST_48kD vwd	6.2 6.2
	441197	BE244638	Hs.166	sterol regulatory element bind	HLH	6.1
40	421707	NM_014921	Hs.107054	lectomedin-2	Latrophilin,OLF,7tm_2,Gal	6.1
40	435750	AB029012	Hs.4990	KIAA1089 protein	SS,TM	6.1
	432353 427326	NM_016558 AJ287878	Hs.274411	SCAN domain-containing 1 gb:qv23f06.x1 NCI_CGAP_Lym6 Ho	SCAN	6.1
	447128	Al271898		cyclin K	SS,TM,7tm_1,SS,TM	6.1 6.1
	419444	NM_002496	Hs.90443	Target CAT	fer4,SS,TM,V_ATPase_sub_a	6.1
45	457978	AA776638		gb:ae78g04.s1 Stratagene schiz	SS,PH,IQ,RasGEF,RasGEFN,R	6.1
ļ	410445	AA199830	14- 074740	gb:zq75h01,r1 Stratagene hNT n	D100 0400 - 00 740 - 0	6.1
	431857 407143	W19144 C14076	Hs.271742 Hs.332329	ADP-ribosyltransferase (NAD; p EST	PARP,PARP_reg,SS,TM,Pepti SS,TM	6.1 6.0
	408724	AI685842	Hs.294143	ESTs, Weakly similar to T22914	SS,pkinase,tubulin	6.0
50	436685	W28661	Hs.5288	Homo sapiens mRNA; cDNA DKFZp4	SS,TM,pkinase,Activin_rec	6.0
	441583	Al791499	Hs.205742	ESTs, Weakly similar to ALUA_H		6.0
	418802 414927	AB028989	Hs.88500	mitogen-activated protein kina	WD40,Pico_P2A,M,SS	6.0
	434314	T83587 BE392921	Hs.186476 Hs.3797	ESTs RAB26, member RAS oncogene fam	SS,Sulfatase ras,arf,SS	6.0 6.0
55	414157	BE297801	Hs.103845	ESTs, Moderately similar to I5	SS	6.0
	424415	NM_001975	Hs.146580	enolase 2, (gamma, neuronal)	enolase,SS,Atrophin-1,Atr	6.0
	406487	DC000070	11- 204	Target Exon	SS,TM	6.0
	447365 417900	BE383676 BE250127	Hs.334 Hs.82906	Rho guanine nucleotide exchang CDC20 (cell division cycle 20,	SH3,PH,RhoGEF	6.0 6.0
60	442297	NM_006202		phosphodiesterase 4A, cAMP-spe	WD40,SS,TM,fn3,EGF,fn3,lg PDEase	5.9
	426440	BE382756	Hs.169902	solute carrier family 2 (facil	sugar_tr,SS,TM,sugar_tr	5.9
	418256	AW845318	Hs.12271	f-box and leucine-rich repeat	SS,SS,TM,HSF_DNA-bind	5.9
	431543	AW969619	Hs.259768	adenylate cyclase 1 (brain)	TM	5.9
65	430344 428539	AA476827 AW410063	Hs.171012 Hs.184877	hypothetical protein FLJ22349 solute carrier family 25 (mito	HLH mito_carr,SS,TM,profilin,	5.9 5.9
00	403938	711410000	110.104077	Target Exon	Ephrin	5.9
	456950	AF111170	Hs.306165	Homo sapiens 14q32 Jagged2 gen	SS,TM,DSL	5.9
	451481	AA300228	Hs.295866	hypothetical protein DKFZp434N		5.9
70	434357	AW732284 AL040535	Hs.3828	mevalonate (diphospho) decarbo	GHMP_kinases,SS,TM	5.9
70	443553 433333	AI016521	Hs.9573 Hs.71816	ATP-binding cassette, sub-family- v-akt murine thymoma viral onc	ABC_tran,SS homeobox,pkinase,PH,pkina	5.9 5.9
	430600	AW950967	Hs.274348	HLA-B associated transcript-3	ubiquitin,SS,TM,G-patch,a	5.9
	409034	AI684149	Hs.172035	hypothetical protein similar t	SS	5.9
75	421542	AA411607	Hs.118964	ESTs, Weakly similar to KIAA11	SS,SS CS,TM	5.9
13	431534 409608	AL137531 AF231023	Hs.258890 Hs.55173	Homo sapiens mRNA; cDNA DKFZp4 cadherin, EGF LAG seven-pass G	SS,TM,ras SS,TM,7tm_2,cadherin,GPS,	5.9 5.9
	423464	NM_016240		CSR1 protein	Collagen,SS	5.9
	422379	AA932860	Hs.133864	ESTs		5.8
0۸	443887	NM_004729		Ac-like transposable element	zf-BED	5.8
80	450122	BE313765	Hs.343443	ESTs, Weakly similar to 138022	SS,TM,Y_phosphatase,LON,A	5.8
	404807 445303	AW362198	Hs.12503	Target Exon Interleukin 15 receptor, alpha	UPF0027 SS,sushi,SS	5.8 5.8
	445631	AK001822		Homo sapiens cONA FLJ 10960 fis		5.8
	412091	R06185		gb:ye94d03.r1 Soares fetal liv	SS,TM,IBR,IBR	5.8
				•	262	
					-	

	AAGE2G	14174449	11- 15751	humathalinat and to	SS	5.8
	446536 432866	W74413 BE395875	Hs.15251 Hs.279609	hypothetical protein milochondrial carrier homolog	milo_can	5.8
	402393	52555075	1,0.2.10000	ENSP00000085284*:CDNA FLJ20404	RhoGEF,PH,SS,zf-CCCH,vwd	5.8
_	413041	BE061580	Hs.61622	gb:MR0-BT0249-091299-201-c07 B	SS	5.8
5	414356	AW505085	Hs.335147	gb:UI-HF-BNO-els-a-10-0-UI.r1	SS,TM	5.8
	402916 459133	U40343	Hs.29656	ENSP00000202587*:Bicarbonate t	HCO3_cotransp,SS ank,SS,Adap_comp_sub	5.7 5.7
	404757	040343	N3.23000	cyclin-dependent kinase inhibi Target Exon	TM_zf-C2H2	5.7
	409879	8E083422	Hs.56851	hypothetical protein MGC2668	SS,TM	5.7
10	411219	AW832917		gb:QV2-TT0003-161199-013-h06 T		5.7
	421871	AK001416	Hs.306122	glycoprotein, synaptic 2	TM,Steroid_dh,SS	5.7
	434067	H18913	Hs.124023	Homo saplens cDNA FLJ14218 fis		5.7 5.7
	416759 446562	AK000978 BE272686	Hs.79741 Hs.15356	hypothetical protein FLJ10116 hypothetical protein FLJ20254	hormone,SS,pfkB	5.7
15	407117	AA146625	113.13000	gb:zo71c07.s1 Stratagene pancr	SS	5.7
	444855		Hs.12084	Tu translation elongation fact	GTP_EFTU,GTP_EFTU_D3,GTP_	5.7
	421543	AK000519	Hs.105606	hypothetical protein FLJ20512	TM	5.7
	407757	BE048414	Hs.165215	hypothetical protein MGC5395	SS,EF1G_domain,GST_C,GST_	5.7
20	419125 437141	AA642452 BE304917	Hs.130881 Hs.31097	B-cell CLL/lymphoma 11A (zinc hypothetical protein FLJ21478	SS SS,TM,Glycos_transf_4	5.7 5.7
20	408905	AV655783	Hs.661	Target CAT	30,1 M, GIJ 003_08161_4	5.7
	450787	AB006190	Hs.25475	aquaporin 7	MIP,SS,TM	5.7
	432496	D45576	Hs.187959	ESTs		5.7
25	429367	AB007867	Hs.278311	plexin B1	Sema,PSI,TIG,SS,TM,TIG,Se	5.7
25	422708	AB017430	Hs.119324 Hs.124039	kinesin-like 4., ESTs	kinesin,homeobox,SS,TM,zf	5.7 5.7
	417442 432751	AA199940 AF152099	Hs.278911	interleukin 17C	SS	5.7
	432004	BE018302	Hs.2894	placental growth factor, vascu	PDGF,SS	5.7
	454151	AA047169	Hs.154088	hypothetical protein FLJ22756	SS,TM,Gtycos_transf_4	5.7
30	456145	BE299427	Hs.21446	KIAA1716 protein	SS,DIX,PDZ,DEP,Dishevelle	5.6
	417677	NM_016055		CGI-118 protein	ADC Man CODEA CO THECH	5.6 5.6
	451558 408795	NM_001089 AW749126	Hs.170345	ATP-binding cassette, sub-fami hypothetical protein FLJ13710	ABC_tran,SRP54,SS,TM,ECH hormone_rec,zf-C4	5.6
	407204	R41933	Hs.140237	ESTs, Weakly similar to ALU1_H	SS,histone,histone	5.6
35	452849	AF044924	Hs.30792	hook2 protein	bZIP,SS,AhpC-TSA	5.6
	439343	AF086161	Hs.114611	hypothetical protein FLJ11808		5.6
	459271	AL045934		gb:DKFZp434M116_r1 434 (synony	SS,Pi3_Pi4_kinase,Pi3Ka	5.6
	401609	1179797	Hs.19718	C16001614:gi 7801278 emb CAB91	Y_phosphatase,fn3,ig,MAM,	5.6 5.6
40	447827 409125	U73727 R17268	Hs.343567	protein tyrosine phosphatase, axonal transport of synaptic v	SS,kinesin,PH,FHA,kinesin	5.6
	450437	X13956	Hs.24998	hypothetical protein MGC10471	SS	5.6
	415514	F11301	Hs.138329	ESTs	SS,TM	5.6
	437926	BE383605	Hs.300816	small GTP-binding protein	SS,TM,TPR	5.6
45	406663	U24683	VI- 400300	immunoglobulin heavy constant	SS SS THURS Brankid SS TM	5.6 5.6
43	421678 422472	AA419008 R59096	Hs.106730 Hs.279939	chromosome 22 open reading fra mitochondrial carrier homolog	SS,TM,UBA,Rhomboid,SS,TM mito_carr	5.6
	414918	AI219207	Hs.72222	hypothetical protein FLJ 13459	SS,TM,efhand	5.6
	434906	BE410573	Hs.283636	Homo sapiens, clone IMAGE:4053	SS,TM,Exo_endo_phos,BNR,A	5.6
50	414757	U46922	Hs.77252	fragile histidine triad gene	HIT	5.6
50	436014	AF281134	Hs.283741	exosome component Rrp46	RNase_PH,RNase_PH_C,SS,TG	5.6 5.6
	421696 408015	AF035306 AW136771	Hs.106890 Hs.244349	Homo saplens clone 23771 mRNA epidermal differentiation comp		5.6
	445871	AI702901	Hs.145582	ESTs, Weakly similar to FOR4 M	SS,TM,efhand,efhand	5.5
	411813	NM_014931		KIAA1115 protein	SS,TM,Y_phosphatase	5.5
55 .	425098	AW295349	Hs.8038	ESTs	SS,TM	5.5
	429720	M79091	11- 000770	gb:EST01239 Subtracted Hippoca	CC TM linearing DI AT a	5.5
	453898 449225	AW003512 R39108	Hs.232770 Hs.6777	arachidonate lipoxygenase 3 ESTs	SS,TM,lipoxygenase,PLAT,s SS,TM,Na_sulph_symp	5.5 5.5
	423233	BE048021	Hs.11067	ESTs, Highly similar to T46395	00,111,10_00pii_0jii.p	5.5
60	432538	BE258332	Hs.278362	male-enhanced antigen	SS,TM,AAA,Ribosomal_L2	5.5
	408215	BE614290		syntaxin 10	SS,SS,TM,HLH,TRM,zf-CCCH	5.5
	406244	A1000C4C	11- 077004	Target Exon	CC offered TCE hote TCEh n	5.5 5.5
	436041 422013	AI803516 N92696	Hs.272891 Hs.293354	hippocalcin-like protein 4 ESTs	SS,efhand,TGF-beta,TGFb_p SS,TM	5.5
65	442451	AI498080	Hs.129616	ESTs	SS	5.5
	427859	AA416856	Hs.98170	ESTs	SS,TM,DUF60,trypsin,CUB,u	5.5
	436540	BE397032	Hs.14468	hypothetical protein MGC14226	SS,TM	5.5
	427747	AW411425	Hs.180655	serine/threonine kinase 12	pkinase, SS, TM, synaptobrev	5.4 5.4
70	441456 431630	AM58911	Hs.127765 Hs.265829	ESTs integrin, alpha 3 (antigen CD4	integrin_A,FG-GAP,Rhabd_g	5.4
,,	415976	R43144	Hs.21919	ESTs	TM	5.4
	447374	AF263462	Hs.18376	KIAA1319 protein	SS,Myosin_tail,M	5.4
	431275	T56571	Hs.10041	ESTs	SS,HLH	5.4
75	404343	DEGGESS.	11. 0500/-	C7002191* gi 5053028 gb AAD388	SS_ABC_tran	5.4
13	431461	BE299671	Hs.256310 Hs.108219	likely ortholog of mouse ZFP28	SS,wnt,SS	5.4 5.4
	421779 418678	Al879159 NM 001327	Hs.167379		SS,TM,zf-C2H2	5.4
	457310	W28363	Hs.239752			5.3
00	417193	AJ922189	Hs.288390	hypothetical protein FLJ22795	SS	5.3
80	432545	X52486	Hs.3041	uracil-DNA glycosylase 2	cyclin,SS,cyclin	5.3
	456573	A1279811		Homo sapiens, clone IMAGE:3953 gb:ag90e09.r1 Stratagene hNT n	SS,TM,Hint,HH_signal,tubu	5.3 5.3
	409164 442296	AA706639 NM_007275	5 Hs.8186	fung cancer candidate	SS,TM,Glyco_hydro_56,Glyc	5.3
	438670	Al275803	Hs.123428			5.3

	4000			F31000000000000000000000000000000000000	201	
	400257	414070440	11, 22042	ENSP00000000452:BAD protein (B	SS,hormone_rec,zf-C4	5.3
	449514	AW970440	Hs.23642	protein predicted by clone 236	SS,PX,arf,lipocalin,PHD,z	5.3
	427336	NM_005658		TNF receptor-associated factor	MATH,SS,MATH,A2M_N,A2M,NT	5.3
5	414551	AI815539	Hs.76394	enoyl Coenzyme A hydratase, sh	ECH,Peptidase_U7,SS,TM	5.3
,	447960 430605	AW954377	Hs.26412	ring finger protein 26	SS,TM,Cbl_N,Cbl_N2,Cbl_N3	5.3 5.3
	456849	AJ245433	Hs.247323	G4 protein	SS,TM,G-patch,ubiquitin,a	5.2
	430513	AA622394 AJ012008	Hs.153177 Hs.241586	ribosomal protein S28	SS,TM	
	424437			G6C protein	SS,TM,GST_C,abhydrolase	5.2
10	427815	BE244700 BE072019	Hs.147049 Hs.12851	cut (Drosophila)-like 1 (CCAAT	CUT,homeobox,beta-lactama	5.2 5.2
10	417903	NM_002342		phosphatidylserine synthase 2	SS,TM,7Im_1	5.2
				lymphotoxin beta receptor (TNF	TNFR_c6,SS	
	420476	AW575863	Hs.136232	ESTs	SS,HUH	5.2
	409960	BE261944	11- 7202	hexokinase 1	SS,TM	5.2
15	436325	AL390088	Hs.7393	hypothetical protein from EURO	SS,Synapsin_C,SS	5.2
15	444439	AI458883	Hs.143545	hypothetical protein MGC11303	SS,TM,PAF-AH_p_II	5.2
	412915	AW087727	Hs.74823	NM_004541:Homo sapiens NADH de	0100-11	5.2
	418891	NM_002419		mitogen-activated protein kina	SH3,pkinase,pyridoxal_deC	5.2
	430323	U40714	Hs.239307	tyrosyl-tRNA synthetase	DUF101,SS,tRNA-synt_1b,tR	5.2
20	432396	AW295956	Hs.11900	hypothetical protein FLJ14972	SS	5.2
20	457843	AW138211	Hs.128746	ESTs		5.2
	429252	NM_004658		RAS protein activator like 1 (C2,PH,RasGAP,BTK,SS,C2,PH	5.1
	429225	BE250337	Hs.198273	Target CAT	WD40	5.1
	412104	AW205197	Hs.240951	Homo saptens, Similar to RIKEN	SS,TM	5.1
25	449750	H28586	Hs.32325	ESTs	SS,ras	5.1
25	442725	Al935786	Hs.131035	ESTs, Weakly, similar to CA24_H	SS,SS,TM,PX,PH,PLDc,arres	5.1
	430390	AB023186	Hs.241161	KIAA0969 protein	PH,SS,TM	5.1
	421658	X84048	Hs.301760	frequenin (Drosophila) homolog	efhand	5.1
	426928	AF037062	Hs.172914	relinol dehydrogenase 5 (11-ci	adh_short,SS,adh_short,TG	5.1
20	428924	A1016405	Hs.98959	ESTs, Weakly similar to JC5314	SS,TM,lectin_c	5.1
30	458876	A1650896	Hs.195347	ESTs		5.1
	402632			Target Exon	Fz,kringle,ig	5.1
	413762	AW411479	Hs.848	FK506-binding protein 4 (59kD)	FKBP,TPR,SS	5.1
	419451	AJ907117	Hs.90535	syntaxin binding protein 2	Sec1,SS,TM	5.1
~ -	456155	R85182	Hs.7175	ESTs, Weakly similar to AF1568	SS	5.1
35	422396	W21872	Hs.7907	ESTs, Weakly similar to T19486		5.1
	413983	BE348384	Hs.279194	ESTs		5.0
	447598	Al799968	Hs.199630	ESTs	SS,TM	5.0
	425858	AA364923		gb:EST75602 Pineal gland II Ho	SS,TM,Peptidase_M10,fn2,h	5.0
	440511	AF132959	Hs.7236	eNOS interacting protein	SS,TM,MAGE,Ribosomal_S17,	5.0
40	452661	AW449413	Hs.257152	ESTs		5.0
	412800	AW950852	Hs.74598	polymerase (DNA directed), del	homeobox,SS,efhand,hexoki	5.0
	446603	NM_014835	Hs.15519	oxysterol-binding protein-rela	Oxysterol_BP,SS	5.0
	402884	_		ENSP00000164597:PRO0566.	laminin_Nterm,laminin_Nte	5.0
	448680	AW245890	Hs.21753	JM5 protein	WD40,SS,TM,KOW,HLH	5.0
45	431515	NM_012152		endothelial differentiation, I	7tm_1	5.0
	427204	AA405404	Hs.215725	ESTs	SS,SS	5.0
	425169	AW292500	Hs.128514	ESTs	SS	5.0
	412940	BE295701	Hs.819	homeo box B7	homeobox, SS, homeobox, home	5.0
	440839	Al142078	Hs.135562	ESTs	SS	5.0
50	443814	BE281240	Hs.9857	carbonyl reductase		5.0
	434243	AA628062	Hs.200358	ESTs, Moderately similar to AL	SS,TM	5.0
	435605	AF151815	Hs.4973	hypothetical protein	SS,TM,SS,TM,ABC_tran,ABC_	5.0
	417116	Z43916	Hs.7634	hypothetical protein FLJ12287	SS,TM,filament,IF_tail	5.0
	403055			C2002219*;gi]12737280 ref XP_0		5.0
55	420856	BE513294	Hs.205736	HLA class II region expressed	kazal,SS,TM,lg,pkinase	4.9
	405594			NM_021949:Homo sagiens ATPase,	E1-E2_ATPase, Hydrolase, SS	4.9
	405334			Target Exon	SS.TM,MIP	4.9
	419493	AF001212	Hs.90744	proteasome (prosome, macropain	PCI,SS,CDK5_activator	4.9
	413764	BE162704		gb:PM1-HT0454-301299-001-d08 H	SS	4.9
60	409169	F00991	Hs.50889	(clone PWHLC2-24) myosin light		4.9
	446933	AL137659	Hs.297214	HSPC141 protein	SS,TM,ank,EGF,notch,MATH,	4.9
	409139	AI681917	Hs.3321	ESTs, Highly similar to IRX1_H	SS,homeobox	4.9
	456672	AK002016	Hs.114727	Homo sapiens, clone MGC:16327,	SS,PK,PK_C,myosin_head,Rh	4.9
	420842	A1083668	Hs.50601	hypothetical protein MGC10986	SS	4.9
65	421909	NM_013375	Hs.109428	TATA-blinding protein-binding p		4.9
	419667	AU077005	Hs.92208	a disintegrin and metalloprote	disintegrin,Reprolysin,Pe	4.9
	443496	AJ006973	Hs.9482	target of myb1 (chicken) homol	VHS,GAT,TM,Heme_oxygenase	4.9
	400933			NM_004347:Homo saplens caspase	ICE_p20,ICE_p10,CARD,SS,I	4.9
	456143	H11097	Hs.61960	hypothetical protein	SS,pkinase	4.9
70	427527	AI809057	Hs.153261	immunoglobulin heavy constant	SS,TM,ig	4.9
	414265	BE410411	Hs.75864	endoplasmic reticulum glycopro		4.9
	433933	Al754389		Homo sapiens clone TCCCIA00164	SS,TM,SS,TM,SH2,Y_phospha	4.9
	452302	AF173867	Hs.28906	glucocorticoid modulatory elem	SAND,SS	4.9
	409938	AW974648		gb:EST386752 MAGE resequences,	SS_Adap_comp_sub,GYF	4.8
75	400845			NM_003105*:Homo sapiens sortil	ldl_recept_a,fn3,ldl_rece	4.8
-	425976	C75094	Hs.334514	NG22 protein	SS,TM,pkinase,SH2,SH3,BNR	4.8
	452969	W92792	Hs.77575	hypothetical protein MGC3136		4.8
	413163	Y00815	Hs.75216	protein tyrosine phosphatase,	fn3,ig,Y_phosphatase,SS,T	4.8
	434962	AK001574	Hs.4291	golgi perepheral membrane prot	······································	4.8
80	418572	AI751740	Hs.86172	paired related homeobox protei	homeobox	4.8
	440869	NM_014297		protein expressed in thyroid	lactamase_B,SS,XRCC1_N,BR	4.8
	453446	BE299996		gb:600944574F1 NIH_MGC_17 Harno		4.8
	412159	AF286598	Hs.9271	KIAA1071 protein	bZIP	4.8
	438999	AW276811		gbxp66c02x1 NCI_CGAP_Ov39 Ho		4.8
					264	
					/D/I	

	400000			•		
	420233 414576	AA256714 AK000405	Hs.194864	hypothetical protein FLJ22578	SS	4.8
	433569	AL047879	Hs.76480 Hs.80475	ubiquitin-like 4	ubiquitin,SS,TM,G6PD,G6PD	4.8
	448984	AW751955	Hs.22753	ESTs, Wealdy similar to ALU2_H hypothetical protein FLJ22318	SS,TM,RNA_pol_L,RasGAP,C2 SS	4.8 4.8
5	426912	AL043054	Hs.256657	ESTs, Weakly similar to A46302	SS	4.8
	418945	BE246762	Hs.89499	arachidonate 5-lipoxygenase	lipoxygenase,PLAT,SS	4.8
	440333	A1378424	Hs.288761	hypothetical protein FLJ21749	SS,TM,IP_trans,pktnase,pk	4.8
	425615	AF023614	Hs.158341	transmembrane activator and CA	TM	4.8
10	458040	BE280562	Hs.287711	hypothetical protein FLJ22692		4.8
10	458367	AA088470	Hs.83135	Homo sapiens, Similar to RIKEN	SS,tRNA-synt_2d	4.8
	433294 437671	AA582082 AA536047	Hs.199410	ESTs		4.8
	425338	H16716	Hs.9850 Hs.182648	hypothetical protein MGC1842 Homo sapiens cDNA FL114444 fis		4.8
	447946	Al566164	Hs.165827	ESTs	SS,PTN_MK,7tm_1,DAGKc,DAG	4.8 4.7
15	447205	BE617015	Hs.11006	ESTs, Moderately similar to T1	SS,TM,LRRCT,Sema	4.7
	416880	H99640	Hs.53687	EST		4.7
	440150	AW975738	Hs.7001	Homo sapiens, clone IMAGE:3940	SS,TM,SS,TM,Peptidase_M22	4.7
	426268	AF083420	Hs.168913	serine/threonine kinase 24 (St	pkinase, pkinase	4.7
20	429253	Y11739	Hs.198313	winged-helix nude	Fork_head,SS,TM,glycolyti	4.7
20	450261	AA788727	Hs.34068	ESTs, Weakly similar to A43932	SS	4.7
	439246 419120	AI498072 BE271922		membrane-associated tyrosine-	SS,SS,TM	4.7
	416487	AW190458	Hs.79347	ESTs, Weakly similar to zinc f KIAA0211 gene product	SS,TM,DENN,Cytidylyltrans	4.7
	413837	AW163525	113.73047	titin-cap (telethonin)	SS,zf-C2H2 SS,Methyltransf_3	4.7 4.7
25	419887	AW292562	Hs.187628	ESTs	· TM	4.7
	410277	R88621	Hs.26249	ESTs, Weakly similar to T2D3_H	SS,TM,SS	4.7
	415169	W42913	Hs.78089	ATPase, vacuolar, 14 kD	ATP-synt_F,SS,TM,CH,Filam	4.7
	410892	AW809762	Hs.222056	Homo sapiens cDNA FLJ11572 fis	•	4.7
20	407754	AA527348	Hs.288967	Homo saplens cDNA FLJ14105 fis	SS,TM,SS,TM,TSPN,tsp_3,SE	4.7
30	409877	AW502498	Hs.15220	zinc finger protein 106		4.7
	431629 438800	AU077025 AB037108	Hs.265827 Hs.6418	interferon, alpha-inducible pr	pkinase,SH2,SH3	4.7
	420823	R96881	Hs.63609	seven transmembrane domain orp	SS,TM TM	4.7
	418900	BE207357	Hs.3454	Hpall tiny fragments tocus 9C KIAA1821 protein	SS	4.7 4.7
35	402400	0220.00.	1.0.0 10 1	Target Exon	SS.TM.RNase HII.bZIP.DUF2	4.7
	419625	U91616	Hs.91640	nuclear factor of kappa light	ank,SS,TM	4.7
	433319	AA583232		ESTs	SS	4.7
	424959	NM_005781		activated p21cdc42Hs kinase	pkinase,SH3	4.7
40	432750	NM_014440		interleukin 1, epsilon	IL1	. 4.7
40	425954	AK000633	Hs.164476	hypothetical protein FLJ20626	SCAN,zf-C2H2,KRAB,SS,KRAB	4.7
	447245	AK001713	Hs.17860	hypothetical protein FLJ 10851	E1_dehydrog	4.7
	427101 447544	R87591	Hs.172884	ESTs	SS,TM	4.6
	400266	AA401573	Hs.288284	hypothetical protein FLJ22378 NM_002858*:Homo sapiens ATP-bi	SS,TM	4.6
45	412841	AJ751157	Hs.101395	hypothetical protein MGC11352	ABC_tran SS,TM	4.6 4.6
	422066	AW249275	Hs.343521	malate dehydrogenase 2, NAD (m	ldh,ldh_C,adh_short,Semia	4.6
	414874	D26351	Hs.77515	inositol 1,4,5-triphosphate re	TM,RYDR_ITPR,ion_trans,MI	4.6
	418373	AW750770	Hs.84344	CGI-135 protein	SS,TM,PMP22_Claudin,20G-F	4.6
50	424487	T08754	Hs.6259	KIAA1698 protein	SS,SS,TM,Glyco_hydro_31,G	4.6
50	426571	AA381642		gb:EST94816 Activated T-cells		4.6
	433941	AA620612	U- 407407	ESTs	SS,TM,TNFR_c6	4.6
	421717 450883	AF230924 NM_001348	Hs.107187	divatent cation tolerant prote	-W OTO FETULESO O OT	4.6
	427361	AW732480	Hs.7678	death-associated protein kinas cellular retinoic acid-binding	pkinase,GTP_EFTU,EFG_C,GT	4.6
55	420421	AF281133	Hs.343589	exosome component Rrp41	SS,TM,aminotran_1_2,LRR RNase_PH,RNase_PH_C	4.6 4.6
	414513	AW239400	Hs.76297	G protein-coupled receptor kin	pkinase,RGS,pkinase_C,SS,	4.6
	431498	AK001777	Hs.258551	aspartyl aminopeptidase	SS,Peptidase_M18,SS,TM,Y_	4.6
	432593	AW301003	Hs.51483	ESTs, Weakly similar to hypoth	SS,TM,adh_short	4.6
60	404661			C9000306*:gi[12737280 ref XP_0		4.6
60	412790	NM_014767		KIAA0275 gene product	kazal,thyroglobulin_1,zf-	4.6
	456243 426222	AI345001	Hs.82380	menage a trois 1 (CAK assembly	zf-C3HC4	4.6
	420222 439594	BE391706	Hs.168073	DKFZP727M231 protein	GSH_synthase	4.6
	409114	AI245026 AA070021	Hs.111099	hypothetical protein MGC10974 gb:zm67h03.r1 Stratagene neuro	CLP_protease	4.6
65	429049	AW452125	Hs.119273	KIAA0296 gene product	SS,TM,trypsin	4.6 4:6
	424271	AI991887	Hs.305882	5-oxoprolinase (ATP-hydrolysin	co, may pon	4.6
	418741	H83265	Hs.8881	ESTs, Weakly similar to \$41044	SS,TM,pkinase,Activin_rec	4.6
	450493	M93718	Hs.166373	nitric oxide synthase 3 (endot	flavodoxin,FAD_binding,NO	4.6
70	433074	AL045019	Hs.323462	Homo sapiens cDNA FLJ11214 fis	DEAD,helicase_C,dsrm,Vira	4.6
70	444893	AW249312	Hs.12109	WD40 protein Clao1	WD40	4.6
	420508	AJ270993	Hs.98428	homeo box B6	homeobox,SS,homeobox,home	4.6
	409591	AA532963	Hs.9100	Homo saplens cDNA FLJ13100 fis	SS,TM,LIM,homeobox	4.6
	456181 439270	L36463 BE268278	Hs.1030	ras inhibitor hypothetical protein MGC2592	RA,SH2,VPS9,SS,TM,Nucleos	4.6
75	440104	AA132838	Hs.28393 Hs.239894	hypothetical protein MGC2803	SS,TM,HCO3_cotransp SS,DS	4.6 4.5
	423279	AW959861	Hs.290943	ESTs	SS SS	4.5 4.5
	445087	AW893449	Hs.12303	suppressor of Ty (S.cerevisiae	S1,SH2,Ribosomal_L23,pkin	4.5
	404036			Target Exon	SS,TM,cadherin,cadherin	4.5
00	431832	AW276866	Hs.192715	ESŤs	Els,SAM_PNT	4.5
80	433886	AA613596	Hs.28412	ESTs	SS	4.5
	426735	T78716	Hs.120446	ESTs	Oxysterol_BP,PH	4.5
	417825	AW838994	Hs.6363	heparan sulfate 6-O-sulfotrans	SS,TM	4.5
	455600 423858	BE061053 AL137326	Hs.133483	gb:QV0-BT0041-271099-037-d09 8 Homo sapiens mRNA; cDNA DKFZp4	C4 SS TM	4.5
	72.0000	W.1313EU	. 13. 130703	1 suprins in the Color Die 204	SS,TM	4.5
					265	

265

	101500				****	
	421680 408157	AL031186	Hs.289106	Human DNA sequence from clone ESTs	SS,SS,rrm,zf-RanBP,rrm,GA	4.5
	434303	AA047685 AW204058	Hs.62946	transforming growth factor bet	pkinase SS,TM,SSF,FG-GAP,vwa.inte	4.5 4.5
	440745	AW303627	Hs.143301	ESTs	35, THOO I, TOOKE, THE SAME	4.5
5	419344	U94905	Hs.277445	diacylgiyoerol kinase, zeta (1	ank,DAGKa,DAGKc,DAG_PE-bi	4.5
	447208	BE315291	Hs.237971	hypothetical protein MGC5627		4.5
	436163	R84938		gb:yt65f04.r1 Soares retina N2		4.5
	456856	AK001528	Hs.347285	Homo sapiens, Similar to DiGeo		4.5
10	410817	AJ262789	Hs.93659	protein disulfide isomerase re	SS,thiored	4.5
10	434558	AW264102	Hs.39168	ESTs	SS,TM,LRRCT,LRR	4.5
	440548 450200	AL117408	Hs.7274	DKFZP434P1750 protein	~ 1100 -t C3UC4	4.5
	432434	AW975625 AL161977	Hs.173088 Hs.2994	ESTs PCTAIRE protein kinase 3	zf-UBP,zf-C3HC4 SS,pkinase	4.5 4.5
	440042	A1073387	Hs.133898	ESTs	SS	4.5
15	454328	AW372097	Hs.278429	hepatocellular carcinoma-assoc	00	4.5
10	458196	AI80240B	14.210420	ubiquitin A-52 residue ribosom	SS,TM,fn3,FKBP,TPR	4.5
	433472	AI541246	Hs.3343	phosphoglycerate dehydrogenase	2-Hacid_DH,2-Hacid_DH_C,M	4.5
	408928	AW295827	Hs.255479	hypothetical protein MGC5566	A_deaminase,A_deaminase	4.5
00	448093	AW977382	Hs.15898	2,4-dienoyl CoA reductase 2, p	adh_short,NDK	4.5
20	426272	AW450671	Hs.189284	ESTs		4.5
	453610	AW368882	Hs.33818	RecQ protein-like 5	SS,DEAD,helicase_C,SS,DEA	4.5
	441327	AK001706	Hs.7778	hypothetical protein FLJ10751	SS,TM,7tm_1	4.5
	424681	AA054400	Hs.151706	KIAA0134 gene product	helicase_C,PRK,SS,TM,7tm_	4.5
25	443443 426677	AI344042 AW949856	Hs.9347 Hs.97165	regulator of G-protein signall ESTs	TM,Na_Pi_cotrans SS	4.5 4.5
	412482	AJ499930	Hs.334885	mitochondrial GTP binding prot	SS	4.4
	425236	AW067800	Hs.155223	stanniocatcin 2	Stanniocalcin, SS	4.4
	423229	AC003965	Hs.125532	protease, serine, 26	trypsin,SS	4.4
	412338	AA151527	Hs.69485	hypothetical protein FLJ12436	SS,TM,TIG,Sema,PSI	4.4
30	419395	BE268326	Hs.90280	5-aminolmidazole-4-carboxamide	AICARFT_IMPCHas,MGS,AICAR	4.4
	442462	AF031405		gb:AF031405 Soares fetal liver		4.4
	439975	AW328081	Hs.6817	inosine triphosphatase (nucleo	Ham1p_like,SS	4.4
	423876	BE502835	Hs.15463	Homo sapiens, clone IMAGE:2959	SS,efhand	4.4
35	423220	BE394920	Hs.125262	aladin	WD40,TM,Activin_recp,pkin	4.4
33	411574	BE242842	Hs.6780	protein tyrosine kinase 9-like	cofilin_ADF,SS,TM	4.4
	448947 407755	BE615408 AJ151353	Hs.337228 Hs.29742	ESTs, Weakly similar to AXHU a Homo sapiens serine palmitoyl	SS,TM,lg,pkinase SS,TM,aminotran_1_2	4.4 4.4
	414849	AW372721	Hs.291623	ESTs, Weakly similar to unname	TM,pkinase	4.4
	458171	A1420016	Hs.192090	ESTs	SS,TM	4.4
40	424443	Al751281	Hs.284161	hypothetical protein from EURO	SS,TM,SS,TM	4.4
-	427002	AA524093	Hs.23158	ESTs	SS,zf-C2H2	4.4
	404344			C7002191*:gi[5053028]gb[AAD388	SS,ABC_tran	4.4
	427458	BE208364	Hs.29283	ESTs, Weakly similar to LKHU p	SS,F5_F8_lype_C,EGF,TGT	4.4
15	419764	BE262524	Hs.93183	vasodilator-stimulated phospho	WH1	4.4
45	446872	X97058	Hs.16362	pyrimidinergic receptor P2Y, G	7tm_1,SS,TM	4.4
	435615	Y15065	Hs.4975	potassium voltage-gated channe	ion_trans,KCNQ1_channel	4.4
	403945	R88872	U- 40C4	Target Exon	U UEBA CC	4.3
	435593 421899	AJ011895	Hs.4964 Hs.109281	DKFZP586J1624 protein Nef-associated factor 1	Herpes_HEPA,SS Virus_HS,bZIP,G-gamma,Myo	4.3 4.3
50	425245	AI751768	Hs.155314	KIAA0095 gene product	SS,TM	4.3
	423348	AA324687	18.100014	gb:EST27558 Cerebellum II Homo	SS,TM	4.3
	452105	AA022838	Hs.6570	ESTs, Weakly similar to \$10889	SS,TM,TBC,rm	4.3
	431934	AB031481	Hs.272214	STG protein	SS	4.3
	429499	AA453809	Hs.99350	ESTS		4.3
55	453485	BE620712	Hs.33026	hypothetical protein PP2447	SS,TM	4.3
	459393	BE409283	Hs.193264	hypothetical protein MGC3234		4.3
	405364			ENSP00000239138*:Guanine nucle		4.3
	428345	AI242431	Hs.118282	PAP-1 binding protein	SS,TM	4.3
60	435327 413053	BE301871	Hs.4867 Hs.65377	mannosyl (alpha-1,3-)-glycopro	SS,HLH,Myc_N_term,Myc-LZ,	4.3
55	409983	AW963263 D50922	Hs.57729	ESTs, Moderately similar to KI Kelch-like ECH-associated prot	TM,SS,TM,EF_TS,U8A,transm BT8,Kelch,SS,TM	4.3 4.3
	409936	AK001691	Hs.57655	hypothetical protein FLJ10829	SS,TM	4.3
	421592	AF009801	Hs.105941	baggipe homeobox (Drosophila)	homeobox,SS	4.3
	424251	AA677466	Hs.143696	coactivator-associated arginin	SS,SNF2_N,helicase_C,brom	4.3
65	414788	X78342	Hs.77313	cyclin-dependent kinase (CDC2-	pkinase	4.3
	432805	X94630	Hs.3107	CD97 antigen	SS,TM,7tm_2,GPS,EGF,SS,TM	4.3
	424927	AW973666	Hs.153850	hypothetical protein C321D2.4	SS,TM	4.3
	456863	T16837	Hs.4241	ESTs	fusion_gly,homeobox,TM	4.3
70	417823	R88869	Hs.102447	TSC-22-like	PWWP	4.3
70	406621	X57809	Hs.181125	immunoglobulin lambda locus	SS SS -450 CS	4.3
	431493 412958	Al791493 DE201570	Hs.129873	ESTs, novel cytochrome P450 Fas-activated serine/threonine	SS,p450,SS	4.3
	431658	BE391579 BE409917	Hs.75087 Hs.266935	tRNA selenocysteine associated	SS,pkinase rm,SS,RCC1	4.3 4.3
	419579	W49529	Hs.296200	hypothetical protein AF053356_	MSP_domain,SS,TM,CUB,NTR,	4.3
75	410076	T05387	Hs.7991	ESTs	SS	4.2
-	406773	AA812424	Hs.76067	heat shock 27kD protein 1	HSP20,SS	4.2
	424709	AL137589	Hs.152149	hypothetical protein DKFZp434K		4.2
	418419	X55039	Hs.85004	centromere protein 8 (80kD)	CENP-8,HTH_5	4.2
00	447377	X77343	Hs.334334	transcription factor AP-2 alph	TF_AP-2,TF_AP-2	4.2
80	416931	D45371	Hs.80485	adipose most abundant gene tra	C1q,Collagen,SS	4.2
	411674	AW861123	11- 400040	gb:RC3-CT0297-120200-014-805 C	SS	4.2
	419073	AW372170	Hs.183918	Homo sapiens cDNA FLJ12797 fis	SS,ig,tsp_1,ZU5,SS,TM,Nuc	4.2
	406867	AA157857	Hs.182265	keratin 19 hyanthaliani amtain El 120739	filament,bZIP,SS,filament	4.2
	432183	AW151952	Hs.46679	hypothetical protein FLJ20739	SS	4.2
					266	

	440040	705004	11-00400	Maria de de la compania del compania de la compania della compania de la compania de la compania de la compania della compania de la compania della compania	COLOO THE 2 APC	42
	418910 437300	Z25821 AL040504	Hs.89466 Hs.25063	Homo sapiens, Similar to dodec PRO0461 protein	ECH,SS,TM,aminotran_3,ABC SS,TM,pkinase,cyclin,F-bo	4.2 4.2
	426615	AA400678	Hs.6473	gbzu70a11.r1 Soares_testis_NH	33, Hitcheniage Phone 1.	4.2
_	421453	AA234652	Hs.104555	neuropeptide FF-amide peptide	SS,bZIP,zf-C2H2,bZIP,zf-C	4.2
5	409616	AA076248		gb:zm18c10.r1 Stratagene pancr		4.2
	444744	BE394732	Hs.147562	ESTs	SS man man	4.2
	412575 429542	AA113177 AF038660	Hs.206713	gb:zm29e05.s1 Stratagene pancr UDP-Gat:betaGicNAc beta 1,4- g	TM,ER_lumen_recept Galactosyt_T_2,ig,SS,TM,A	4.2 4.2
	435995	BE260415	Hs.348198	hypothetical protein FLJ20262	CBSCUS/C1_L,B,OO,111O1	4.2
10	451585	AK001171	Hs.326422	hypothetical protein MGC4549	SS, Metallophos	4.2
	456153	AW972270	Hs.144054	ESTs	SS,TM	4.2
	455340	AW901435		gb:RC0-NN1012-270300-031-a10 N		4.2
	457268	AW272279	U- 07/000	ESTs, Moderately similar to AL	Characterist 20	4.2 4.2
15	432311 409656	8E083080 NM_005133	Hs.274323	similar to sialytransferase 7 RCE1, prenyt protein protease	Glyco_transf_29 Abl,SS,CPSase_L_chain,HMG	4.2
15	424919	BE314461	Hs.153768	U3 snoRNP-associated 55-kDa pr	WD40,SS,KH-domain	4.2
	416528	H65052	Hs.337621	ESTs		4.2
	415137	A1634834	Hs.72451	Homo saplens PAC clone RP5-108		4.2
20	417334	AA337572	Hs.157240	hypothetical protein MGC4737	SS,TM,ion_trans	4.2
20	451920	AA224483	Hs.27239	DKFZP586K0524 protein	SS,TM,SS,TM	4.2 4.2
	413049 458988	NM_002151 AW410431	Hs.283670	hepsin (transmembrane protease CGI-119 protein	trypsin,SS,TM,ATP1G1_PLM_	4.2
	406964	M21305	115.205010	FGENES predicted novel secrete		4.2
	451595	AW965569	Hs.20996	ESTs	SS,WD40	4.2
25	449728	AI820751	Hs.107635	ESTs -	SS ·	4.1
	453245	T99801	Hs.339751	ESTs	TM,ABC_tran	4.1
	432238	AL133057	Hs.274135	Homo sapiens mRNA; cDNA DKFZp4	WD40,LRR	4.1
	430037	BE409649 Al902646	Hs.227789 Hs.31844	mitogen-activated protein kina hypothetical protein FLJ 12586	pkinase SS.SCAN	4.1 4.1
30	442196 425251	Z22521	Hs.155342	protein kinase C. delta	pkinase,DAG_PE-bind,pkina	4.1
20	415014	AW954064	Hs.24951	ESTs	Printing a small	4.1
	440088	BE559877	Hs.183232	hypothetical protein FLJ22638	SS,zf-C3HC4,SPRY,zf-B_box	4.1
	418837	U48263	Hs.89040	prepronociceptin	Opiods_neuropep,SS	4.1
35 ·	410239	AI568350	Hs.61273	hypothetical prolein MGC2650	SS,ART,TM	4.1
33	446975	BE246446	Hs.16695	ubiquitin-activating enzyme E1 High mobility group (nonhiston	ThiF,UBACT SS,HMG_box	4.1 4.1
	453968 448241	AA847843 AW811064	Hs.62711	gb:MR2-ST0131-211099-008-c06 S	SS	4.1
	441455	AJ271671	Hs.7854	zinc/iron regulated transporte	Zip,SS,TM,Cytidylyltransf	4.1
4.0	450848	AI677994	Hs.428	fms-related tyrosine kinase 3	flt3_lig,SS,Ribosomal_L13	4.1
40	429218	AA225065	Hs.198269	Target CAT	SS,Nop	4.1
	425437	AK000482	Hs.181780	hypothetical protein FLJ20241	00 -11 LDD LDD07 Bibs	4.1
	406613	A1 020074	U- 251216	Target Exon	SS,pkinase,LRR,LRRCT,Ribo ank,WH2	4.1 4.1
	431239 436057	AL039971 AJ004832	Hs.251216 Hs.5038	hypothetical protein DKFZp434A neuropathy target esterase	cNMP_binding,SS,TM,cNMP_b	4.1
45	415193	AL048891	Hs.12185	hypothetical protein MGC14333	SS,TM,aminotran_1_2,LRR	4.1
	424619	BE387282	Hs.207443	hypothetical protein MGC10848		4.1
	432968	BE614192	Hs.279869	melanoma-associated antigen re	SS,TM,RGS,DIX	4.1
	428156	BE269388	Hs.182698	mitochondrial ribosomal protei	SS SS DECD FEIRD	4.1 4.1
50	414084 424964	AW168771 AW161271	Hs.71574 Hs.153961	hypothetical protein FLJ14926 ARP1 (actin-related protein 1,	SS,P5CR,EF1BD actin,SS	4.1
20	431410	AW299534	Hs.105739	ESTs	Builtoo	4.1
	435968	AW161481	Hs.111577	Integral membrane protein 3	TM .	4.1
	432351	Al270313	Hs.127762	hypothetical protein MGC12982	•	4.1
5.5	426120	AA325243	Hs.166887	copine I	C2,SS,aminotran_5	4.1
55	416877	BE386266	Hs.85658	hypothetical protein FLJ23436	CC DECD Enimemon of COUR	4.1 4.1
	425970 434848	AK001500 BE256304	Hs.165186 Hs.32148	hypothetical protein FLJ13852 AD-015 protein	SS,P5CR,Epimerase,zf-C2H2 SS,TM,SS,TM,LRR,P,Pepiida	4.1
	458715	AK000973	Hs.16725	hypothetical protein FLJ 10111	IBR.zf-C3HC4,SS,TM,IRF,CK	4.1
	435851	AA700946	1.0.10120	ESTs		4.1
60	425538	BE270918	Hs.164026	Homo sapiens, clone IMAGE:3534	SS,SNF2_N,helicase_C,brom	4.1
	444416	AW288085	Hs.11156	hypothetical protein	zf-C3HC4,SpoA,PHD,TM,syna	4.0
	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrola	AdoHcyase,SS SS,TM,lig_chan,ANF_recept	4.0 4.0
	444596 439685	BE560662 AW956781	Hs.11417 Hs.293937	Rab acceptor 1 (prenylated) ESTs, Weakly similar to FXD2_H	SS,PWWP,TSC22	4.0
65	447402	H54520	Hs.18490	hypothetical protein FLJ20452	SS,TM	4.0
	450184	W31096	Hs.237617	Homo sapiens, clone IMAGE:3447	SS	4.0
	426068	AF029778	Hs.166154	jagged 2	DSL,EGF,vwc,granulin,SS,T	4.0
	459255	A1493244	Hs.239500	hypothetical protein MGC13114	SS SS	4.0 4.0
70	403182 432078	BE314877	Hs.24553	Target Exon hypothetical protein FLJ12541	SS,TM	4.0
70	459167	BE504370	115.24555	ESTs. Weakly similar to CA13_H	SS	4.0
	452747	BE153855	Hs.61460	Ig superfamily receptor LNIR	SS,TM,ig,HLH	4.0
	444633	AF111713	Hs.286218	junctional adhesion molecule 1	lg,SS,TM,HLH	4.0
75	434171	BE247688	Hs.347349	KIAA0948 protein	CIDALII MAARAN AN ARRANA	4.0
75	422155	AW249152	De 294174	sirtuin (slient mating type In KIAA1535 protein	SIR2,HLH,Myc_N_term,Myc-L SS,TM,cNMP_binding,lon_tr	4.0 4.0
	433262 442599	AI571225 AF078037	Hs.284171 Hs.324051	RelA-associated Inhibitor	SH3, ank, SS, TM, HHHLig	4.0
	452500	AW373011	Hs.54558	hypothetical protein FLJ22222	- contact of a second of a	4.0
~~	437563	A1217204	Hs.144968	ESTs		4.0
80	432234	AA531128	Hs.115803	ESTs	SS	4.0
	433135	AA443873	Hs.110477	dolichyl-phosphate mannosyltra	pyr_redox,SS,Ets	4.0 4.0
	447495 452857	AW401864 BE072814	Hs.18720 Hs.258519	programmed cell death 8 (apopt ESTs, Moderately similar to S6	pyr_recox,55,Ets	4.0
	427834	AA506101	Hs.285813	hypothetical protein FLJ11807	SS,TM	4.0
	. == .			•		
					267	

	418963 437340 455928	BE304571 AL353935 BE170313	Hs.89529 Hs.135917	aldo-keto reductase family 1, hypothetical protein DKFZp761D gb:QV4-HT0536-040500-193-g02 H	aldo_ket_red TBC,bZIP,WD40,WD40 SS	4.0 4.0 4.0
•	400607			Target Exon	SS,homeobox	4.0
5	424825 438143	AF207069 BE500981	Hs.153357 Hs.269652	procollagen-lysine, 2-oxogluta ESTs	20G-Fell_Oxy,Glycos_trans	4.0
	433173	Z35093	Hs.3196	surfei) 1	SURF1,SS,TM,SURF1,SURF4	4.0 4.0
	412550	R52452	Hs.26370	gb:yg80g07.r1 Soares infant br		4.0
10	TABLE 23B:					
		e Eos probes		mber		
		 Gene cluste Genbank acce 		5		
16						-
15	Pkey 408215	CAT Numbe 10478_1		A 207674 A126200 A A 220620 A1402602 A A	701006 A1600061 A1612260 A141276647 D	E221263 Al348910 Al985031 Al090078 Al359617
	400213	10470_1				250002 AA503756 AI934519 AW272086 N26520
	400004	4050550 4	AA626639			
20	408294 409114	1050553_1 110088_1			BE141343 BE141298 BE141702 BE14128) AA082183 AA115915 AA085147 AA1259	
	409164	110421_1		A064707 AL036920 A1651598	7740210074110313741003147741203	30 AA00000 AA07 3200
	409616	114348_1		A120958 AA122152 AA076249		
	409938 409960	116091_1 116270_1		AA652153 AA649671 AA078582 AA715461 AA318136 AA134972 AA319849	W04622 Al291655 AWR79092 AA130778	BE314003 AA908246 AW960808 AA385346
25			AA205977 C	XX2043 AA135057 AA078870 AA377395 A		AW370250 AW370244 T85930 AA759250
	410445	120374_2		A932839 A1056920 J143895 AW961629 AA322482		
	411219	1236055_1		AW832913 AW832906 AW832788 AW832	915 AW832776	
20	411674	1253746_1	AW861123 /	AW861125 AW856717 AW861116 AW856	706 AW856788 AW856774 AW856787 AW	VB56780 AW856782 AW856789 AW856772
30	412091	1276564_1		AW856786 AW856776 AW856635 AW856 891805 AW901892 AW901895	767	
	412173	1280870_1		902279 AW897608		
	412575	130769_1		W894515 AA113847		
35	413534 413564	1375357_1 1376722_1	BE146961 B BE260120 B	8E146780 BE146788 BE146967 BE146774	BE146963 BE146907	
55	413764	1387163_1		BE162705 BE162732 BE162702 BE162694		
	413837	139363_1	AW163525	AW163255 AW163385 AI929359 BE27927	9 AA132590 AW157329 AA584408 AW15	7252 Al692198 AW003514 T24436 Al765658
				AI810740 AI659582 AI969924 AI929284 AI I650609 AA279	1340993 Al349083 AW299522 AW664650 A	AW299513 AA132529 Al340991 Al912836
40	414413.	1443696_1	BE294877 E			
	415126	1523506_1		1346 D81568 D80539	4050400 44470440 4 4004007 1104470 44	1/74 /7 1/2 / 0.00 1 / 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	419120	182026_1				W504757 N51688 Al400700 AA578548 AA714130 26817 AA593859 AW952245 AW341739 AA805093
15			AA779455 A	W016655		
45	422155	21235_1				237 BE258447 BE253088 AA297721 H68948 597 AA297787 Z42780 AA297072 T81280 T83544
				126063 AA26	3331 M231004 M231032 F 11000 M3123	331 AA231101 242100 AA231012 101200 103344
	423348	227276_1		A325155 AW962038		
50	425858 426571	257265_1 269283_1		\W963483 BE182774 C21461 \A381664 AW963560 AW949848 AA38172	PR AA38160R	
	427326	277229_1		804160 AA400787		
	428092	286920_1		AA421182 AI734104 AI733923 AA430600		
	429720 430168	308153_1 313927_1		773950 AA586573 AA457225 AA468507 AI478223 AW513008 AI762122	AI554512 AA862642 AA468976	
55	431424	333110_1	Al222969 A	A806560 AA504839 AA805261		
	433319 433933	363095_1 377703_1	AA583232 A		1863355 AW131720 A1674922 A1949042 A	1000000 A1622179 ANACOAO7 AA62026A
•	433941	377883_1		M293190 M030038 M030039 M083304 M M294983 MA994990	1000000 ANY 10 11 20 A1014322 A1545042 A	1330000 A1023 [16 A1140343 [AA020334
60	434303	383224_1		Al424379 Al669663 AA629077 AW613033		
00	434743	3925_1				26 AA215407 A1633829 AA292122 N42783 951 AW966080 M78807 N31947 AA521151
			AA278866 A	A044784 AA700		
	434796 435851	393400_1 411522_1		NW974514 AA764999 AA649302 NA702712 AA947620		
65	436163	41515_6		M7151 AA310309 AW063200 Al569528 Al	307823 N49975	
	437215	43473_1	AL117488 A	L044479		
	438999 439246	467686_1 47021_3		AA829050 AA829190 W251083 AA885226 AA852887 A1302800	A A 200600Q AW100187 A A 655262 A 508604	57 F35814 AW516382 AA377885 N50847 F27148
5 0	103210	41021_3		VA417728 Al003145		37 F33614 AW310302 AA377003 N30047 F27146
70	440317	49187_1		3E560615 BE562102		
	442462 442472	543232_1 543371 1	AF031405 H AW806859	1/3415 AW806852 AF049582		
	445625	64558_1	BE246743 A	VA436942 AW024744 AW242177 AA97547		T57442 Al399986 R50073 R48743 Al769689
75					AW471273 R73463 AI335104 AI590161 AI	469257 A1954604 H21954 T25141 AA856793
, ,	445631	6457_1	R50074 AI79 AK001822 A		57 AW193951 AI347975 AW081323 AW66	62527 Al343924 Al380749 AA938153 T66966
		-	A1655000 A	W418837 AI380485 AA410698 AI520726 E		AW593995 Al336927 Al336928 Al357036 R60592
	447128	70934_1	H19058 R11		58001 ALSS3937 AA149853 WOOZ10 AIZES	259 AW973696 F25787 F35749 Al568815
80		_	AW015380	AA554539 C00201 AA961610 AW059537		
	448241 448993	756181_1 79225_1		AW811160 Al478413 E540627 DE366401 AW407710 DE613003	DEEXETTO AARETERT DELLARAS DECALOR	14 AMMECTOS AICECOSA AISSOSSOS AIGESTOS
	********	19223_1				14 AW956702 Al656234 Al636283 Al567265 AA399460 Al760441 AA346416 BE047245
				VA394063 AA454		

```
453446
                          967533 1
                                         BE299996 BE297115 BE270415 BE295214 BE296526
            454682
                                         AW816029 AW813292 AW816156 AW813333 AW816159 AW813302 AW813344 AW813172
                          1228976_1
            455035
                           1249762_1
                                         AW851734 AW851676 AW851693 AW851713 AW851722 AW851616 AW851731 AW851618 AW851648 AW852215
            455340
                          1283604_1
                                         AW901435 BE094527
AW995839 AW995907
  5
            455557
                          1325974 1
                          1335877_1
                                         BE061053 BE008959 BE008957 BE091618
            455600
            455885
                           1380385_1
                                         BE153524 BE153576 BE153583
            455928
                           1383899_1
                                         BE170313 BE158339 BE158290
                                         AI279811 AI301071 AI214696 AI279813 AA588460 AA287256 BE171665
AW272279 AA461542 AA460615
            456573
                          201205_1
10
            457268
                          310453 1
                          448900_1
                                         AA776638 BE439540
            457978
                          503719_1
                                          AI802408 AA907424 AI279233 AI302762 N33153 BE045678 AI863332 AW173558 AI302328 Z20793 D25594 BE326823
            458196
                                         BES04370 Al243453 Al809556 Al702878 Al702163 Al300626 AW072219 Al369492 Al349587 AW779061 W78149 A055693 AA974162 Al394380 Al830098 AW054857 Al870008 AW207658 AW665508 AW300595 Al192992 AW628019 Al274365 AA906922 N92547 AW054727 AW206667
            459167
                          92053_1
15
                                         AW136707 AW13761
            459271
                          969257_1
                                         AL045934 AL039532 H55631
            TABLE 23C:
           Pkey: Unique number corresponding to an Eos probeset
Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of
20
                   human chromosome 22° Dunham, et al. (1999) Nature 402:489-495
            Strand: Indicates DNA strand from which exons were predicted
            Nt_position: Indicates nucleotide positions of predicted exons
25
            Pkey
                           Ref
                                          Strand
                                                        Nt_position
                                                        35559-36295
            400460
                          8389428
                                          Plus
            400607
                          9887666
                                         Plus
                                                        3112-4159
                                                        187599-188138
            400833
                          8705148
                                          Minus
                          9188605
                                                        34428-34612
            400845
                                          Plus
30
            400923
                           7637836
                                                        94518-94659
                                          Minus
                                                        105330-105503
166969-167133,169760-169877,171563-171733
            400933
                           7651935
                                          Minus
            401210
                          7712287
                                          Plus
                          9797154
                                                        130810-130927,133367-133504
                                          Plus
            401264
            401278
                           9799936
                                          Plus
35
            401609
                           7705041
                                          Minus
                                                        9877-11997
                                                        138786-138927,139157-139298,139440-139599,139960-140159
            401674
                          7689903
                                         Plus
                                                        150063-150241
            401724
                           7656694
                                         Ptus
                                                        199466-199585
            402197
                           8576113
                                          Plus
                           9454515
                                                        70928-71185
            402365
                                          Minus
40
            402393
                           9929688
                                          Plus
                                                        19813-20084,20163-20263
                           9945145
                                                        80123-80322
            402400
                                          Minus
                                                        101166-101419
                           9931268
            402632
                                          Plus
                                                        47980-48191
            402884
                           9926562
                                          Plus
                           7406502
                                                        361-474,541-687
             402916
                                          Minus
45
            403055
                           8748904
                                          Minus
                                                        109532-110225
                                                        122884-123018,123134-123283,123372-123695,123779-123940,124059-124256 102163-102345,102545-102725
            403128
                           7331426
                                          Pius
                           9838273
            403182
                                          Plus
            403938
                           7711795
                                          Plus
                                                         48636-48822
             403945
                           7711869
                                                        32141-32263
50
                                                        65247-67529,112537-114863
137948-138024,138111-138300
            404036
404333
                           8567760
9802821
                                          Minus
                                          Minus
                                                         122664-122931
            404343
                           9838093
                                          Plus
             404344
                           9838093
                                          Plus
                                                         127865-128384
                                                        50151-50319,50859-51098
33374-33675,33769-34008
100933-101083,101580-101782
             404365
                           9964977
                                          Plus
55
            404661
                           9797073
                                          Plus
                           7706327
             404757
                                          Plus
             404807
                           4165210
                                                         124246-124422
                                          Minus
             405334
                           3135285
                                                         139386-139856
                                                         101982-102171
             405346
                           2981263
                                          Plus
 60
                                                         48325-48491,49136-49252
             405364
                           2281075
                                          Minus
                           2078469
                                                         47657-47766,48461-48596
             405371
                                          Minus
             405594
                           6960456
                                                         161628-161734,162823-163014,164439-164652
                                          Plus
                                                        2923-3209
71716-72515
             405928
                           7717155
                                          Minus
             406230
                           4760409
                                          Plus
 65
                           7417725
                                                         39422-39595
             406244
                                          Ptus
                                                         57291-57494
             406301
                           6575868
                                          Ptus
             406487
                           7711306
                                          Plus
                                                         82039-82902
             406495
                           7711328
                                          Minus
                                                         174661-17497R
                                                         5029-5147
             406613
                           2957168
                                          Plus
70
            Table 24A lists about 117 ganes down-regulated in ovarian cancer compared to non-malignant adult ovaries. These were selected as for Table 23A, except that the numerator was set to the 75th percentile amongst various non-malignant ovary specimens, the denominator was set to the 96th percentile value amongst various ovarian cancers, the numerator was greater than or equal to 75 units, and the ratio was greater than or equal to 2.0 (i.e., 2-fold downregulation in tumor vs. normal ovaries).
 75
             TABLE 24A
```

Pkey: Unique Eos probeset Identifier number Ex. Accn: Exemplar Accession number, Genbank accession number

UG ID: UniGene number 80 Title: UniGene gene title

Protein Dom.: Predicted protein domain

R1: Ratio of normal ovaries to tumor

## 1822 SEPTING ## 1821 SEPTING ## 182		Die	F		Tine	Protoin Dam	R1
## 433533 A772527 18.277801 ESTs ## 52750		Pkey 428232	Ex. Acon	UG ID	Title	Protein Dom. Amino extrase over redex F	
44931							
5 451973 AM190301 ES242256 Hz.24141 CMA0022 gene product				113.411001		SS, Glypican	8.7
#35510 A499942 Ib.42151 ESTs	5						
410255			BE242256	Hs.2441	KIAA0022 gene product		
10 47569 BE358501 Na.21856 14541 BE259116 H1.76392 debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard debthyde delydrogeniaes I stard deb				Hs.42151			
407989				04050			
414541 BE253116 In.76392 debtytic delytrigenases 1 tamb debtern 5.0	10						
Helical Street Heli	10						
His						and di	
13991 430922 239868 14,573535 59 prions antificinems ferrase (L.*) 23986 14,57858 14,57858 14,57859 24,52844 24,57851 24,57859 24,57854 24,57851 24,57854 2						SS.TM	
15 428022 298686 16.27865 15.27865 16.27865							
42004 AJ20029 hts.07805 problemblar in 8 and problemblar in 8 and problemblar in 8 and problemblar in 9 and proble	15						
452854 435767 AM975868 hs. 14050 problemblich j procursor services of the control							
August A		416039	AA376989	Hs.78989	alcohol dehydrogenase 5 (class	adh_zinc,HCV_NS4a,TM,adh_	
A15162			AA437061	Hs.14060			
427794	20						
433072 May M	20						
18316							
100599 Mil. (200703 Hs. 58324 a dishinsgin-like and metallo Reprolyvin.tsp. (1-Pep_M128 2-9							
Add							
420303 A256282 Hs.279436 (843474 protein glot-from spilers refindic acid-glot-from spilers ref	25						
438780	23					,	
Add							2.8
48328				Hs.104761		SS,wnt	2.8
418444 43902899 4.8.35951 4.300289 5.8.5155 4019729 4.3004 4.300281 4.3005		437342	AW903297	Hs.236438	hypothetical protein DKFZp761K	Sec7,PH	
433167	30	453828	AW970960	Hs.293821	ESTs		
413024 e177019 https://doi.org/10.1002/49.1150309 https://doi.org/10.1002/49.							
413305							
A49597							
439897 NM_015310 Is.6763 KIA.00942 protein Sect.PH 2.7	25						
Add	33						
143,498							
410, 43598 A383939 Bt. 680527 ESTs SS 2.6 435819 A203507 Hs. 253499 ESTs hypothetical protein FL11539 SS 2.5 433519 A218950 Hs. 125461 hypothetical protein FL11539 SS 2.5 433519 A373549 Hs. 278610 hypothetical protein FL11639 SS 2.5 424319 AW981026 Hs. 98752 ESTs Weadly similar to ALUB_H 2.5 421709 AA159394 Hs. 107056 CED-6 protein PL11639 SS 2.5 42709 A41522 AW981027 Hs. 28318 WAS protein family, member 3 WH2 2.4 421709 AA159394 Hs. 107056 CED-6 protein PL11639 WH2 2.4 421709 AA159394 Hs. 107056 CED-6 protein PL11639 WH2 2.4 421709 AA159394 Hs. 107056 CED-6 protein PL11639 WH2 2.4 421709 AA159394 Hs. 107056 CED-6 protein PL11639 WH2 2.4 408488 A999712 The ST 2000 Protein family, member 3 WH2 2.4 409488 A999717 Hs. 5884 Homo sapters CDNA: FL122855 SS, TM, CS, TM, CD, PL, PL, Dc, PX 2.4 427662 AW978107 Hs. 5884 Homo sapters CDNA: FL122826 1 42746 MM, 00489 Hs. 31182 hs. 46783 Homo sapters CDNA: FL122826 1 41916 AA993571 ESTS SS, TM, CS,							
404 452958 AA883929 Hs.40527 ESTs SS 2.6 435519 A218550 Hs.125461 hypothelical protein FL11539 SS 2.5 435619 A218550 Hs.125461 hypothelical protein FL11539 SS 2.5 421731 AW861026 Hs.59752 ESTs, Weakly similar to ALUB_H 2.5 421719 AA153934 Hs.199749 ESTs 2.5 421719 AA153934 Hs.199749 ESTs 2.5 417622 AW299163 Hs.62318 WAS protein family, member 3 WH2 2.4 409468 AJ909712 C1000244;g1110505031eptNp-0 SS,PX,PH,PLD,P,PX 2.4 50 400829 453125 AW779544 Hs.118497 hypothelical protein FL11539 SS 2.3 425462 AA991807 Hs.5894 Homo saplens CDNA FL1223626 Hs.46783 Homo saplens CDNA FL1223626 Hs.47784 NM_004484 Hs.119551 dyptomatical protein FL22655 MS, FL122362 Hs.46783 Homo saplens CDNA FL1223626 ST 41916 AA993571 Farget Exon ESTs 2.3 410704 NM_004484 Hs.119551 dyptomatical protein FL11546 SS 2.3 410704 NM_004484 Hs.119551 dyptomatical protein FL122655 ras 2.3 410705 AA393571 Farget Exon ESTs 2.3 60 419956 AA234831 dyptomatical protein FL10493 SS, prinase 2.2 419667 Hs.47706 NS.77806 SS 2.3 419668 AA39481 Hs.58689 distribution 2.3 419661 AA452601 Hs.288690 ms.28680 catenia (catherin-associated p vincular, statistical protein FL10493 SS, prinase 2.2 419667 NM_00343 Hs.34274 transforming growth factor, be river and protein FL1049 SS, prinase 2.2 419667 NM_00343 Hs.34274 transforming growth factor, be river and protein FL1049 SS, prinase 2.2 419680 AN998044 Hs.52601 Hs.28869 phospholipase C, epsilon 2 C, Pt-Pt-Pt-CY, Pt-Pt-CY 2.2 419690 AN998044 Hs.52601 Hs.26050 SS, prinase 2.2 419690 AN998044 Hs.52606 SS, prinase 2.2 419690 AN998044 Hs.52606 SS, prinase							
M9848	40						2.6
AUT							
45 420174 Al824144 Hs. 199749 ESTs		435519	A1218950	Hs.125461			
455 420174 AIB234144 Hs. 199749 EST6 421709 AA159394 Hs. 107058 CED-6 protein WAS protein family, member 3 transforming growth factor, be protein sapiens mRNA; cDIAA DKFZp5 HILH 234 AV978107 Hs. 5884 Hs. 115497 hypothetical protein FLI22555 ras 2.3 AV978107 Hs. 5884 Home sapiens mRNA; cDIAA DKFZp5 HLH 2.3 ACPT AF 146760 Hs. 79844 Hs. 119851 glyptcan 3 Chyplcan, SS Capt AV903						SS	
421709	45						
117622	45					DID II III C	
\$3555							
AB468							
\$\frac{400829}{453125}				NS.342014			
453125	50		M303712				
437862 AW978107 Hs.5884 Homo saplens mRNA: cDNA DKFZp5 HLH 2.3	50		AW779544	Hs 115497			
A25462							
17094							2.3
441916 AA993571 ESTs Glypican,SS 2.3				Hs.81182		Acyl-CoA_dh	
422746	55						
A16777							
A09403							
Algorithms							
A10073	60			MS.0034			
419461	OU			Lle E0/00	esteels (eadherin speedslad s		
ALD23754					nuclear recentor subfamily 2		
ASS							
Associate							
18157 NM_003243 Hs.342874 transforming growth factor, be zona_pellucida_SS,TM_zona 2.2	65						
406637						zona_pellucida,SS,TM,zona	2.2
14466						Ribosomal_L18p	2.2
70		414466		Hs.76205	cytochrome P450, subfamily XIA		
456972	~^	408915	NM_016651	Hs.48950			
409549 AB029015 Hs.54886 phospholipase C, epsllon 2 C2,PH,PI-PLC-X, PI-PLC-X 2.2 H10209 AIS83661 Hs.60548 hypothetical protein PR01635 SS,TM,Fork_head 2.2 444500 AW956345 Hs.12926 ESTs SS,TM 2.2 447806 W03616 Hs.10432 ESTs, Weakly similar to I38022 2.1 441712 AW391927 Hs.7946 KIAA1288 protein 2.1 445025 AI768895 Hs.299727 ESTs, Weakly similar to ALUB_H SS,BAG,UPF0001 2.1 444161 N52543 Hs.142940 ESTs SS,TM,TBC 2.1 427156 BE621719 Hs.173802 KIAA0603 gene product SS,TM,TBC 2.1 436995 AI160015 Hs.125489 ESTs SS,TM,TBC 2.1 408443 N33937 Hs.10336 ESTs SS,TM,RasGEF,actin,RasGEF 2.1 408443 N33937 Hs.10336 ESTs SS,TM,RasGEF,actin,RasGEF 2.1 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1	70						
10209							
75 449500 AW956345 Hs.12926 ESTs SS,TM 22 447806 W03616 Hs.10432 ESTs, Weathly similar to 138022 21 441712 AW391927 Hs.7946 KIAA1288 protein 21 445025 A1768895 Hs.295727 ESTs, Weathly similar to ALUB_H SS,BAG,UPF0001 21 444161 N52543 Hs.142940 ESTs SS,BAG,UPF0001 21 427156 BE621719 Hs.173802 KIAA0603 gene product SS,TM,TBC 21 439995 A166015 Hs.125489 ESTS SS,TM,RasGEF,actin,RasGEF 21 40843 N33937 Hs.10336 ESTs SS,TM,RasGEF,actin,RasGEF 21 448274 A1268097 Hs.67317 Homo saplens cDNA FLJ11775 fis 21 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1							
75							
441712	75						
445025 A1768895 Hs.295727 ESTs, Weakly similar to ALUB_H SS,BAG,UPF0001 2.1 444161 N52543 Hs.142940 ESTs SS 2.1 427156 BE621719 Hs.173802 KJAA0603 gene product SS,TM,TBC 2.1 436995 A160015 Hs.125489 ESTs SS,TM,RasGEF,actin,RasGEF 2.1 408443 N33937 Hs.10336 ESTs SS 2.1 448274 A1268097 Hs.67317 Homo sapiens cDNA FLJ11775 fis 2.1 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1	, 5					•	
444161 N52543 Hs.142940 ESTs SS 2.1 427156 BE621719 Hs.173802 KIAA0603 gene product SS,TM,TBC 2.1 436995 A1160015 Hs.125489 ESTs SS,TM,RasGEF,actin,RasGEF 2.1 40843 N33937 Hs.10336 ESTs SS 2.1 448274 A1268097 Hs.67317 Horno sapiens cDNA FLJ11775 fis 2.1 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1						SS,BAG,UPF0001	
80 427156 BE621719 Hs.173802 KIAA0603 gene product SS,TM,TBC 2.1 439995 A160015 Hs.125489 EST8 SS,TM,RasGEF,actin,RasGEF 2.1 40843 N33937 Hs.10336 ESTs SS 448274 A1268097 Hs.67317 Homo saplens cDNA FLJ11775 fis 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1							
80 436995 A160015 Hs.125489 ESTs SS,TM,RasGEF,actin,RasGEF 2.1 408443 N33937 Hs.10336 ESTs SS 2.1 448274 A1268097 Hs.67317 Homo sapiens cDNA FLJ11775 fis 2.1 426354 NM_004010 Hs.165470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1							2.1
448274 Al268097 Hs.67317 Homo saplens cDNA FLJ11775 fis 2.1 426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1	80	436995			ESTs		
426354 NM_004010 Hs.169470 dystrophin (muscular dystrophy ZZ,CH,WW,spectrin,bZIP,SS 2.1						SS	
4439Ub AA348U31 Hs.7913 ESTs . 2.1						ZZ,CH,WW,spectrin,bZIP,SS	
		443906	AA348031	Hs.7913	ESIS ,		2.1

	444815	AA151539	Hs.1227	aminolevulinate, delta-, dehyd	SS,ALAD	2.1
	420728	AA767718	Hs.93581	hypothetical protein FLJ10512	SS,TM,Sema,PSI,ig	2.1
	404245			NM_007116*:	fibrinogen_C,fn3,SS	21
5	436420	AA443966	Hs.31595	ESTs	SS,TM,PMP22_Claudin,SS,TM	21
J	410066	AL117664	Hs.58419	DKFZP586L2024 protein	COCTU CO	2.0 2.0
	414476 424137	AA301867 AA335769	Hs.76224 Hs.16262	EGF-containing fibulin-like ex ESTs	egf,til,ss	2.0
	447659	AA017472	Hs.107260	hypothetical protein DKFZp586H	SS	2.0
	444862	AJ209158	Hs.143929	ESTs	SS,TM	2.0
10	426085	T94907	Hs.188572	ESTs	PH,CH,spectrin	2.0
	436080	AI684710	Hs.201645	ESTs	SS,ATP-synt_C	2.0
	424651	AJ493206		ESTs	SS	2.0
	432939	AL038924	Hs.279849	KIAA0438 gene product	zf-C3HC4,myosin_head,DIL,	2.0
15	449088	AI654048 NM_014899	Hs.196556	ESTs	SS,MACPF,sushi,ldl_recept 8TB,ras	2.0
IJ	428642 419577	L36531	Hs.91296	KIAA0878 protein integrin, alpha 8	TM,integrin_A,FG-GAP	2.0 2.0
	450435	AI695975	Hs.201805	ESTs	taminin_B,laminin_EGF.lam	2.0
	450696	AI654223	Hs.16026	hypothetical protein FLJ23191	SS	2.0
	421255	BE326214	Hs.93813	ESTs	TM	2.0
20	432467	T03667	Hs.239388	Human DNA sequence from clone	SS	2.0
	408654	BE018882	Hs.46721	UCC1 protein	SS,Ependymin,SS	2.0
	412611	AA732036	Hs.164478	hypothetical protein FLJ21939		2.0
	453355	AW295374	Hs.31412	myopodin	CO The Complia Countin	2.0
25	424665 458147	AW368576 AW752597	Hs.139851	cavedin 2	SS,TM,Caveolin,Caveolin	2.0 2.0
23	447566	N50432	Hs.102648	gb:IL3-CT0214-161299-045-806 C ESTs	SS,TM,PMM	2.0
	414496	W73853	115.102040	ESTs	SS,TM,pkinase,F5_F8_type_	2.0
	425618	AW119112	Hs.9052	Homo saplens cDNA: FLJ22042 fi	SS,TM	2.0
	415166	NM_003652		carboxypeptidase Z	Zn_carbOpept,Fz,Dioxygena	2.0
30	422157		Hs.112318	6.2 kd protein	SS	2.0
	450253	AL133047	Hs.24715	Homo saplens mRNA; cDNA DKFZp4	SH3	2.0
	418919	AA232635		ESTs	SS,DUF25	2.0
	444846	A1871055	Hs.148477	ESTs	SS,TM	2.0
35	418781	T41160	Hs.8404	ESTs		2.0
55	TABLE 24B:					
		e Eos probese	t identifier number			
		: Gene cluster				
40	Accession: (Genbank acces	sion numbers			
40						
	Pkey	CAT Number			*************	1074770 A1070707 A1000000 A1700000
	408468	106033_1		52 BE000369 AA376876 N75269 AA345398 A		
			AW297099	A1474112 AW450680 AA668668 R76114 AW2	242020 N30033 AVU0U3 13 A131049 1 A10	007 TUZ AA4 T7043 AI303444 AVVZ03200
45	410295	11922_2		00 W75997 H50726 AV658709 A1498817 ALO:	37804 W67847 RE018553 Al033256 N76	8810 N31548 AI032084 N36278 AW075272
	110400			W93372 AA700780 Al903697 N52985 R8246		
			W69374 AA15			
	414496	145392_1		2 W77887 AW889237 AA148524 AI749182 AI		
50				3 A1051402 A1188071 A1335900 N21488 AW77	0478 W92522 A1691028 A1913512 A1144	1448 W73819 AA604358 N28900 W95221
50	440040	400000 4	AI868132 H98	02 4 4 02 2 2 2 2		
	418919 418956	180623_1 180862_1	AA232635 AI3737	03 AA233330 02 AA906216 AA776957 R49415 AI420777 AA	ACCESON A1020C10 AA770ACO A1072300	NACCON AIRCAAES AARSESOT AAESEOOA
	410330	100002_1		02 AA897791 AA232893 Al348680 Al356232 A		1140300 M034433 M020331 M033334
	424651	241981_1		15 AA344619 AA904035 AW952967 AA48888		1874 H28767 AA910081 AA837086
55				5 AJ521825 AA746092 AA743152 AJ478562 H		
	436772	426854_1	AW975688 AA731	063 N67084		
	438780	46501_1		Al382987 BE061777 AA089966 BE169930 T4		AI269283 T40311 AI684569 AA257011
				8 BE327710 AW975215 AW896268 AA88499	0 BE327514	
60	441916	528799_1	AA993571 AA971			EEEEE DOOGO ANNO 14450 AAO 10650
UU	444931	62567_1		880 T58512 T58561 AI651255 N49838 H8792)3 AI871252 AI376942 AI740496 AA452836 AI		
			AI268985 AI38	Mai 1232 Mi310342 Mi140430 MA432030 Mi	211311 M143141 MW30141 M1043007	41003575 A1243074 A1433703 A1200200
		075500 4	AW130351 AW33	8699 AIR03973		
	4515/3	8/5588 1				
65	451573 458147	875588_1 488021_1			52604 AW752700	
U.J	458147	488021_1		8781 AW849062 AW848490 AW752699 AW75	52604 AW752700	
05	458147 TABLE 24C:	488021_1	AW752597 AW84	8781 AW849062 AW848490 AW752699 AW75	52604 AW752700	
03	458147 TABLE 24C: Pkey: Uniqu	488021_1 e number corr	AW752597 AW84 esponding to an Eo	8781 AW849062 AW848490 AW752699 AW75 s probeset		
03	458147 TABLE 24C: Pkey: Uniqu Ref: Sequer	488021_1 e number corr nce source. Ti	AW752597 AW84 esponding to an Eo e 7 digit numbers is	8781 AW849062 AW848490 AW752699 AW75 s probeset n Unis column are Genbank Identifier (GI) numb		cation entitled "The DNA sequence of
	TABLE 24C: Pkey: Uniqu Ref: Sequer huma	488021_1 ne number com nce source. Ti n chromosom	AW752597 AW84 esponding to an Eo te 7 digit numbers in 22" Dunharn, et al	8781 AW849062 AW848490 AW752699 AW75 s probeset n Uhis column are Genbank klenlifier (GI) numb . (1999) <u>Nature</u> 402:489-495		cation entitled "The DNA sequence of
70	TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India	488021_1 se number com nce source. The chromosome cates DNA stra	AW752597 AW84 esponding to an Eo ne 7 digit numbers in a 22" Dunham, et al and from which exor	8781 AW849062 AW848490 AW752699 AW75 s probeset n this column are Genbank Identifier (GI) numb . (1999) <u>Nature</u> 402:489-495 is ware predicted		cation entitled "The DNA sequence of
	TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India	488021_1 se number com nce source. The chromosome cates DNA stra	AW752597 AW84 esponding to an Eo te 7 digit numbers in 22" Dunharn, et al	8781 AW849062 AW848490 AW752699 AW75 s probeset n this column are Genbank Identifier (GI) numb . (1999) <u>Nature</u> 402:489-495 is ware predicted		cation entitled "The DNA sequence of
	TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India	488021_1 se number com nce source. The chromosome cates DNA stra	AW752597 AW84 esponding to an Eo ne 7 digit numbers it out 22" Dunharn, et al and from which exon eotide positions of	8781 AW849062 AW848490 AW752699 AW75 s probeset n this column are Genbank Identifier (GI) numb . (1999) <u>Nature</u> 402:489-495 is ware predicted		cation entitled "The DNA sequence of
70	TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India Nt_position: Pkey 400829	488021_1 ne number corr nce source. The chromosome cates DNA stra Indicates nucl Ref 8570385	esponding to an Eo to 7 digit numbers it 22" Dunham, et al and from which exor eofide positions of Strand Nt_ Plus 152	s probeset In this column are Genbank Identifier (GI) numb (1999) Nature 402:489-495 Is were predicted predicted exons position 176-152616		cation entitled "The DNA sequence of
	458147 TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India Nt_position: Pkey 400829 403247	488021_1 e number com nce source. The nchromosome cates DNA stra Indicates nucl Ref 8570385 7656833	esponding to an Eo ee 7 digit numbers it ee 22" Dunharn, et al nuf from which exor eotide positions of Strand Nt. Plus 152 Minus 766	s probeset In this column are Genbank Identifier (GI) numb (1999) Nature 402:489-495 Is were predicted predicted exons position 176-152618 26-77140	ers. "Dunham I. et al." refers to the publi	
70	TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India Nt_position: Pkey 400829	488021_1 ne number corr nce source. The chromosome cates DNA stra Indicates nucl Ref 8570385	aw752597 AW84 esponding to an Eo te 7 digit numbers it 22" Dunharn, et al und from which exor eofide positions of p Strand Nt_ Plus 152 Minus 766 Plus 360	8781 AW849062 AW848490 AW752699 AW75 s probeset n this column are Genbank Identifier (GI) numb (1999) Nature 402:489-495 is were predicted predicted exons position 176-152616 26-77140 19-36282,37073-37813,38946-39314,40355-4	ers. "Dunham I. et al." refers to the publi	46030,51110-51415,52779-53072,54648-
70	458147 TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India Nt_position: Pkey 400829 403247	488021_1 e number com nce source. The nchromosome cates DNA stra Indicates nucl Ref 8570385 7656833	aW752597 AW84 esponding to an Eo to 7 digit numbers is of 22" Dunham, et al and from which exor solide positions of p Strand Nt_ Plus 152 Minus 766 Plus 360 549	s probeset In this column are Genbank Identifier (GI) numb. (1999) Nature 402:489-495 Is were predicted predicted exons position 176-152616 26-77140 193-36282,37073-37813,38946-39314,40355-46 35,55201-55509,55926-56240,56355-56672,5	ers. "Dunham I. et al." refers to the publi	46030,51110-51415,52779-53072,54648-
70	458147 TABLE 24C: Pkey: Uniqu Ref: Sequer huma Strand: India Nt_position: Pkey 400829 403247	488021_1 e number com nce source. The nchromosome cates DNA stra Indicates nucl Ref 8570385 7656833	aW752597 AW84 esponding to an Eo to 7 digit numbers is of 22" Dunham, et al and from which exor solide positions of p Strand Nt_ Plus 152 Minus 766 Plus 360 549	8781 AW849062 AW848490 AW752699 AW75 s probeset n this column are Genbank Identifier (GI) numb (1999) Nature 402:489-495 is were predicted predicted exons position 176-152616 26-77140 19-36282,37073-37813,38946-39314,40355-4	ers. "Dunham I. et al." refers to the publi	46030,51110-51415,52779-53072,54648-

Table 25A provides UnigeneID, UnigeneTitle, Pkey, and Exemplar Accession for sequences in Table 26. The Information in Table 25A is linked by SEQ ID NO: to Table 26.

80

Table 25A: Pkey: Unique Eos probeset identifier number

PCT/US02/19297 WO 02/102235

Ex. Accn: Exemplar Accession number, Genbank accession number UG ID: UniGene number Title: UniGene title SEQ ID NO: Sequence Identification number for sequences in Table 26

5	SEQ ID NO:	Sequence Ident	ification number for seq	uences in Table 26	
5	Olean	F., A.,	ucto	Title	SEQ ID NO
	Pkey 452838	Ex. Accn U65011	UG 1D Hs.30743	Title preferentially expressed antigen in mela	SEQID NO: 1-2
	421478	AI683243	Hs.97258	ESTs, Moderately similar to S29539 ribos	SEQ ID NO: 3-4
	436982	AB018305	Hs.5378	spondin 1, (f-spondin) extracellular mat	SEQ ID NO: 5-6
10	458627	AW088642	Hs.97984	SRY (sex determining region Y)-box 17 (S	SEQID NO: 7-8
	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	SEQ ID NO: 9-10
	410102	AW248508	Hs.279727	ESTs; homologue of PEM-3 [Ciona savignyi	SEQ ID NO: 11-12
	428579	NM_005756	Hs.184942	G protein-coupled receptor 64	SEQ ID NO: 13-22
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	SEQ ID NO: 23-24
15	451110	A1955040	Hs.265398	PAR-6 beta (partitioning defective 6 h	SEQ ID NO: 25-26
	428187	A1687303	Hs.285529	G protein-coupled receptor 49	SEQ ID NO: 27-28
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	SEQ ID NO: 29-30
	433159	AB035898	Hs.150587	kinesin-like protein 2	SEQ ID NO: 31-32 SEQ ID NO: 33-34
20	426427	M86699	Hs.169840	TTK protein kinase	SEQ ID NO: 35-38
20	425371	D49441 AA084248	Hs.155981 Hs.85339	mesothefin G protein-coupled receptor 39	SEQ ID NO: 39-40
	418506 456546	AI690321	Hs.203845	KCNK15 potassium channel, subfamily K, m	SEQ ID NO: 41-42
	427344	NM_000869	Hs.2142	5-hydroxytryptamine (serotonin) receptor	SEQ ID NO: 43-44
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	SEQ ID NO: 45-46
25	424620	AA101043	Hs.151254	kallikrein 7 (chymotryptic, stratum com	SEQ ID NO: 47-48
	412078	X69699	Hs.73149	paired box gene 8	SEQ ID NO: 49-52
	409178	BE393948	Hs.50915	kallikrein 5	SEQ ID NO: 53-54
	448243	AW369771		integrin, bela 8	SEQ ID NO: 55-56
20	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	SEQ ID NO: 57-58
30	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	SEQ ID NO: 59-60 SEQ ID NO: 61-62
	431130	NM_006103	Hs.2719	HE4; epididymis-specific, whey-acidic pr BMP-R1B	SEQ ID NO: 61-62 SEQ ID NO: 63-64
	415539	AI733881	Hs.72472 Hs.136348	periostin (OSF-2os)	SEQ ID NO: 65-66
	423961 417433	D13666 BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	SEQ ID NO: 67-68
35	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	SEQ ID NO: 69-70
55	409542	AA503020	Hs.36563	hypothetical protein FLJ22418	SEQ ID NO: 71-72
	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	SEQ ID NO: 73-74
	452747	BE153855	Hs.61460	lg superfamily receptor LNIR	SEQ ID NO: 75-76
40	450375	AA009647		a disinlegrin and metalloproteinase doma	SEQ ID NO: 77-78
40	426215	AW963419	Hs.155223	stanniocalcin 2	SEQ ID NO: 79-80
	430044	AA464510	Hs.152812	ESTs	SEQ ID NO: 81
	447033	AI357412	Hs.157601	ESTS	SEQ ID NO: 82-87 SEQ ID NO: 88-89
	410418	D31382	Hs.63325	transmembrane protease, serine 4	SEQ ID NO: 90-91
45	411274 422260	NM_002776 AA315993	Hs.69423 Hs.105484	kallikrein 10 regenerating gene type IV	SEQ ID NO: 92-93
45	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	SEQ ID NO: 94-95
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	SEQ ID NO: 96-97
	404977	74.007.000	12.100000	Insulin-like growth factor 2 (somatomedi	SEQ ID NO: 98-99
	427747	AW411425	Hs.180655	serine/threonine kinase 12	SEQ ID NO: 100-101
50	412140	AA219691	Hs.73625	RAB6 Interacting, kinesin-like (rabkines	SEQ ID NO: 102-103
	431846	BE019924	Hs.271580	uroplakin 1B ,	SEQ ID NO: 104-105
	425465	L18964	Hs.1904	protein kinase C, lota	SEQ ID NO: 106-107
	432938	T27013	Hs.3132	steroidogenic acute regulatory protein	SEQ ID NO: 108-109
55	421451	AA291377	Hs.50831	ESTS	SEQ ID NO: 110-117 SEQ ID NO: 118-119
55	437478	AL390172 AL033527	Hs.317432	branched chain aminotransferase 1, cytos L-myc-2 protein (MYCL2)	SEQ ID NO: 120-121
	411945 424078	AB006625	Hs.92137 Hs.139033	paternally expressed 3	SEQ ID NO: 122-123
	406400	70000020	110.10000	kallikrein 8 (neuropsin/ovasin) (KLK8)	SEQ ID NO: 124-125
	428450	NM_014791	Hs.184339	KIAA0175 gene product	SEQ ID NO: 126-127
60	438167	R28363	Hs.24286	chemokine binding protein 2 (CCBP2), mRN	SEQ ID NO: 128-129
	416530	U62801	Hs.79361	kallikrein 6 (neurosin, zyme)	SEQ ID NO: 130-131
	430691	C14187	Hs.157208	aristaless-related homeobox protein ARX	SEQ ID NO: 132-133
	408081	AW451597	Hs.167409	intron of basic-helix-loop-helix-PAS pro	SEQ ID NO: 134
65	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	SEQ ID NO: 135-138
65	407792	AI077715	Hs.39384	putative secreted ligand homologous to f	SEQ ID NO: 139-140 SEQ ID NO: 141 -144
	428093	AW594506	Hs.104830	ESTs Integrin, atpha 3 (antigen CD49C, alpha	SEQ ID NO: 145-148
	431630 421502	NM_002204 AF111856	Hs.265829 Hs.105039	solute carrier family 34 (sodium phospha	SEQ ID NO: 149-150
	431441	UB1961	Hs.2794	sodium channel, nonvoltage-gated 1 alpha	SEQ ID NO: 151-152
70	431369	BE184455	Hs.251754	secretory teukocyte protease inhibitor (SEQ ID NO: 153-154
. •	436972	AA284679	Hs.25640	claudin 3	SEQ ID NO: 155-156
	429504	X99133	Hs.204238	tipocatin 2 (oncogene 24p3) (NGAL)	SEQ ID NO: 157-158
	410001	AB041036	Hs.57771	kallikrein 11	SEQ ID NO: 159-160
75		_			
75	TABLE 25				
			l identifier number		
		er: Gene cluster Genbank acces			•
	ACCESSION:	Gendank acces	SSION NUMBERS		
80	Pkey	CAT Number	Accession		
55	448243	75629_1	AW359771 AW74817	4 AA290801 AA419198 AA044331 AA127909 AW99	5442 Al480343 AA044582 AW956159 AA373451 AA127965 AL134913
			AW994956 BE622314	BE006298 BE006312 BE006305 BE006317 BE006	303 AA043906 AA234175 AA479726
	450375	83327_1	AA009647 AA131254	AA374293 AW954405 H04410 AW606284 AA15116	66 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532
		_	AA190993 HQ3231 H	59605 H01642 AA852876 AA113758 AA626915 AA7	46952 AI161014 AA099554 R69067
				272	
				- ,	

```
TABLE 25C:
         Pkey: Unique number corresponding to an Eos probeset
         Ref. Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of
              human chromosome 22" Dunham, et al. (1999) Nature 402:489-495
         Strand: Indicates DNA strand from which exons were predicted
         Nt_position: Indicates nucleotide positions of predicted exons
                                Strand
10
         404977
                    3738341
                                            43081-43229
                               Minus
                                            1553-1712,1878-2140,4252-4385,5922-6077
         406400
                     9256298
                               Plus
         Table 26
15
         Seq ID NO: 1 DNA sequence
         Nucleic Acid Accession #: NM_006115.1
         Coding sequence: 236..1765
                                                                                    51
20
         GCTTCAGGGT ACAGCTCCCC CGCAGCCAGA AGCCGGGCCT GCAGCCCCTC AGCACCGCTC
         CGGGACACCC CACCCGCTTC CCAGGCGTGA CCTGTCAACA GCAACTTCGC GGTGTGGTGA
ACTCTCTGAG GAAAAACCAT TTTGATTATT ACTCTCAGAC GTGCGTGGCA ACAAGTGACT
                                                                                                      120
         GAGACCTAGA AATCCAAGCG TTGGAGGTCC TGAGGCCAGC CTAAGTCGCT TCAAAATGGA
                                                                                                      240
25
         ACGAAGGCGT TTGTGGGGTT CCATTCAGAG CCGATACATC AGCATGAGTG TGTGGACAAG CCCACGGAGA CTTGTGGAGC TGGCAGGGCA GĂGCCTGCTG AAGGATGAGG CCCTGGCCAT
                                                                                                      300
                                                                                                      360
         TGCCGCCCTG GAGTTGCTGC CCAGGGAGCT CTTCCCGCCA CTCTTCATGG CAGCCTTTGA
         CGGGAGACAC AGCCAGACCC TGAAGGCAAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC
                                                                                                      480
         TCTGGGAGTG CTGATGAAGG GACAACATCT TCACCTGGAG ACCTTCAAAG CTGTGCTTGA
TGGACTTGAT GTGCTCCTTG CCCAGGAGGT TCGCCCCAGG AGGTGGAAAC TTCAAGTGCT
GGATTTACGG AAGAACTCTC ATCAGGACTT CTGGACTGTA TGGTCTGGAA ACAGGGCCAG
                                                                                                      540
30
                                                                                                      600
                                                                                                      660
         TCTGTACTCA TTTCCAGAGC CAGAAGCAGC TCAGCCCATG ACAAAGAAGC GAAAAGTAGA
                                                                                                      720
         TGGTTTGAGC ACAGAGGCAG AGCAGCCCTT CATTCCAGTA GAGGTGCTCG TAGACCTGTT CCTCAAGGAA GGTGCCTGTG ATGAATTGTT CTCCTACCTC ATTGAGAAAG TGAAGCGAAA
                                                                                                      780
                                                                                                      840
35
         GAAAAATGTA CTACGCCTGT GCTGTAAGAA GCTGAAGATT TTTGCAATGC CCATGCAGGA
         TATCAAGATG ATCCTGAAAA TGGTGCAGCT GGACTCTATT GAAGATTTGG AAGGACTTG
TACCTGGAAG CTACCCACCT TGGCGAAATT TTCTCCTTAC CTGGGCCAGA TGATTAATCT
                                                                                                      960
                                                                                                     1020
         GCGTAGACTC CTCCTCTCCC ACATCCATGC ATCTTCCTAC ATTTCCCCGG AGAAGGAAGA
                                                                                                     1080
         GCAGTATATC GCCCAGTTCA CCTCTCAGTT CCTCAGTCTG CAGTGCCTGC AGGCTCTCTA
40
          TGTGGACTCT TTATTTTTCC TTAGAGGCCG CCTGGATCAG TTGCTCAGGC ACGTGATGAA
                                                                                                     1200
         CCCCTTGGAA ACCCTCTCAA TAACTAACTG CCGGCTTTCG GAAGGGGATG TGATGCATCT
GTCCCAGAGT CCCAGCGTCA GTCAGCTAAG TGTCCTGAGT CTAAGTGGGG TCATGCTGAC
CGATGTAAGT CCCGAGCCCC TCCAAGCTCT GCTGGAGAGA GCCTCTGCCA CCCTCCAGGA
                                                                                                     1260
                                                                                                     1320
          CCTGGTCTTT GATGAGTGTG GGATCACGGA TGATCAGCTC CTTGCCCTCC TGCCTTCCCT
                                                                                                     1440
45
         GAGCCACTGC TCCCAGCTTA CAACCTTAAG CTTCTACGGG AATTCCATCT CCATATCTGC CTTGCAGAGT CTCCTGCAGC ACCTCATCGG GCTGAGCAAT CTGACCCACG TGCTGTATCC
                                                                                                     1500
                                                                                                     1560
          TGTCCCCCTG GAGAGTTATG AGGACATCCA TGGTACCCTC CACCTGGAGA GGCTTGCCTA
          TCTGCATGCC AGGCTCAGGG AGTTGCTGTG TGAGTTGGGG CGGCCCAGCA TGGTCTGGCT
                                                                                                     1680
         TAGTGCCAAC CCCTGTCCTC ACTGTGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT GTGCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC
                                                                                                     1740
50
                                                                                                     1800
          TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGCC ACAGTTTCAG
                                                                                                     1920
          ACAAATGTTC AGTGTGAGTG AGGAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT
         GTTCAGTGAG GAAAAAAAGG GGAAGTTGAG GATAGGCAGA TGTTGACTTG AGGAGTTAAT
GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA
                                                                                                     1980
                                                                                                     2040
55
          GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC
          TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA
          Seg ID NO: 2 Protein sequence
          Protein Accession #: NP_006106.1
60
                                     21
                                                                      41
                                                                                     51
          MERRILWGSI QSRYISMSVW TSPRRIVELA GQSLIKDBAL AIAALELLPR BLFPPLFMAA
          FDGRHSQTLK AMVQAWPFTC LPLGVLMKGQ HLHLETFKAV LDGLDVLLAQ EVRPRRWKLQ
          VLDLRKNSHQ DFWTVWSGNR ASLYSFPEPE AAQPMTKKRK VDGLSTEAEQ PFIPVEVLVD
                                                                                                      180
65
         LFLKEGACDE LFSYLIEKVK RKKNVLRLCC KKLKIFAMPM QDIKMILKMV QLDSIEDLEV
TCTWKLPTLA KFSPYLGQMI NLRRLLLSHI HASSYISPEK EEQYIAQFTS QPLSLQCLQA
                                                                                                       240
                                                                                                       300
          LYVDSLFFLR GRLDQLLRHV MNPLETLSIT NCRLSEGDVM HLSQSPSVSQ LSVLSLSGVM
          LTDVSPEPLQ ALLERASATL QDLVFDECGI TDDQLLALLP SLSHCSQLTT LSFYGNSISI
                                                                                                       420
          SALOSLIOHL IGLSNLTHVL YPVPLESYED IHGTLHLERL AYLHARLREL LCELGRPSMV
70
          WLSANPCPHC GDRTFYDPEP ILCPCFMPN
          Seq ID NO: 3 DNA sequence
          Nucleic Acid Accession #: Eos sequence
          Coding sequence: 264..782
75
                                       21
                                                                                     51
          CCCTGCTCCA GTCACACCCG GAAGCTGACT GGTCCACGCA CAGCTGAAGC ATGAGGAAAC
          TCATCGCGGG ACTAATTTTC CTTAAAATTT AGACTTGCAC AGTAAGGACT TCAACTGACC
          TTCCTCAGAC TGAGAACTGT TTCCAGTATA TACATCAAGT CACTGAGATC TCCAGCACCC TGCCGGTGGC ACTACTGAGA GACGAGGTGC CAGGGTGGTT CCTGAAAGTG CCTGAGCCCC AACTTATCAG CAAGGAGCTC ATCATGCTGA CAGAAGTCAT GGAGGTCTGG CATGGCTTAG
                                                                                                       180
80
                                                                                                       240
                                                                                                       300
          TGATCGCGGT GGTGTCCCTC TTCCTGCAGG CCTGCTTCCT CACCGCCATC AACTACCTGC
                                                                                                       360
          TCAGCAGGCA CATGGCCCAC AAGAGTGAAC AGATACTGAA AGCGGCCAGT CTCCAGGTTC CCAGGCCCAG CCCTGGCCAC CATCATCCAC CTGCTGTCAA AGAGATGAAG GAGACTCAGA
                                                                                                       420
                                                                                                       480
85
```

CAGAGAGAGA CATCCCAATG TCTGATTCCC TTTACAGGCA TGACAGCGAC ACACCCTCAG

5 10 15	ACACACAGT AGAACATAAA TCTGGTATT GAATTCCAAA GGAAATGCCA CAAAAAGAAT CCTGGTCTGT AAAACAGCC TAAAGTATGA AAATTTTAAA TGACTTCCCT AAAATAGCAA Seq ID NO:	TTGAGCTCTT	GACCCTGGAG GATTATOTCA GCTCTGTCTG GGGGTCCAGT TTAAACAAGG AAACTGATAA GCTGTTCGTT CAAGAAAGGT GTCCATCAGC CAGCTGTTGT TAATTATTGG	AACTAAAAA ATGTCAATCC AGCCAGCAGA TCTCTATGGA CATAGGGCCTC ATACACAGAG CCTCAAAAAC TGAGATACAGA AGAGATACTA CAATAAACAA	TGACTCCCG AGAAAGACAC ATATGATCAA TTOTTACATT ACAAGTCTAT GTCCTCAAGA AAAAACAAGG TGTTAGGAAG GTGAAAGTCTC TTGGCAATCT	CTGGACTATG AAGCCCAGTT GTGGCCATGT TAATTTGTAG GGAGACAGGC CCCATGGACT CTTGGCTGGG AACTTTCAGG TCCCCAGGGA CATGGTTAAA	600 660 720 780 840 900 960 1020 1080 1140 1200 1260
	1	11	21	31	41	51	
20	HPPAVKEMKE	GLVIAVVSLF TQTERDIPMS DYENIKEITD	DSLYRHDSDT	PSDSLDSSCS	SPPACQATED		60 120
۰.		5 DNA seque Ld Accession		9 0.			
25	Coding sequ	uence: 342 11	2457 21	32	41	51	
	i		1]	Ĭ.	ĵ.	
		GCACAAAGTT					60 120
30		CCCTGGACAA					180
		CGCGGCGCGA					240
		AGCCGGGAAC TCACATTAAT					300 360
25	CATGCTGGGA	CCTTCCAGAT	CATAGACGAA	GAAGAAACTC	AGTTTATGAG	CAATTGCCCT	420
35		CTGAAAGCAC GAACAGGCTG					480 540
		ATGAGGGCTC					600
		ACAAACCCAT					660 720
40		GGAATTGGTC CGATCATCGG					780
	GGATATGCCA	GCGAAGGCGT	CAAACAAGTT	GCAGAATTGG	GCTCACCCGT	GAAAATGGAG	840
		GACAACAGAG AGCCTCTCAA					900 960
	ACGCGCCATT	TAATGTCCTT	CCTGACCATG	ATGGGCCCTA	GTCCCGACTG	GAACGTAGGC	1020
45	TTATCTGCAG	AAGATCTGTG	CACCAAGGAA	TGTGGCTGGG	TCCAGAAGGT	GGTGCAAGAC	1080 1140
	ACCATTCCCC	GGGACGCTGG AGGAGAAAAT	CCGGCCCCTG	ACCAGCCTGG	ACCATCCTCA	GAGTCCTTTC	1200
	TATGACCCAG	AGGGTGGGTC	CATCACTCAA	GTAGCCAGAG	TTGTCATCGA	GAGAATCGCA	1260
50						AGCTGACCTG CAACTGGTCC	1320 1380
50	CCATGGTCCG	CCTGCAGCTC	CTCCACCTGT	GACAAAGGCA	AGAGGATGCG	ACAGCGCATG	1440
						CCAGCCCTGC	1500
		GCTGCAGTGA				GTGGATCACC GTATGTGAAG	1560 1620
55	CAGTTCCCGG	AGGACGGCTC	CGTGTGCACG	CTGCCCACTG	AGGAAACGGA	GAAGTGCACG	1680
	GTCAACGAGG	AGTGCTCTCC	CAGCAGCTGC	CTGATGACCG	AGTGGGGCGA	GTGGGACGAG GATGAACCCC	1740 1800
	GCAGATGGCT	CCATGTGCAA	AGCCGAGACA	TCACAGGCAG	AGAAGTGCAT	GATGCCAGAG	1860
60						CAGCGTGACC	1920
00		GCATGCGAAC ATCTGGAGCA				CATTGACTGT	1980 2040
	GAGCTCACCG	AGTGGTCCCA	GTGGTCGGAA	TGTAACAAGT	CATGTGGGAA	AGGCCACGTG	2100
	ATTCGAACCC	GGATGATCCA	AATGGAGCCT	CAGTTTGGAG	GTGCACCCTG	CCCAGAGACT	2160 2220
65	CGCTGGAGGG	AGGCCCGAGA	GAGCCGGCGG	AGTGAGCAGC	TGAAGGAAGA	GTCTGAAGGG	2280
	GAGCAGTTCC	CAGGTTGTAG	GATGCGCCCA	TGGACGGCCT	GGTCAGAATG	CACCAAACTG	2340
	TTTACCAGCT	GAATTCAGGA	GAAGGAGATC	ACIGIAAAGA	AGAGATICAA	AAGCTCCCAG TTGTTAGCAA	2400 2460
70	GGGTACGAGT	TCCCCAGGGC	TGCACTCTAG	ATTCCAGAGT	CACCAATGGC	TGGATTATTT	2520
70	GCTTGTTTAA	GACAATTTAA	ATTGTGTACG	CTAGTTTTCA	TTTTTGCAGT	GTGGTTCGCC GTACAGGCTG	2580
						CAGCCACCTT	
						CGGAGACTTT	
75	GCGGCAGGTA	CGAAACATTC	ACAGATGAAG	ACAGCAGATT	CCCCACATTC	GTCCCAGGGT TCATCTTTGG	2820 2880
	CCTGTTCAAT	GAAACCATTG	TTTGCCCATC	TCTTCTTAGT	GGAACTTTAG	GTCTCTTTTC	2940
						TTGAAGAGGA TTTGTCTCAC	
	CCCTGATATT	GGTTCCTGAT	GCCCCCCAA	CAAAAATAAA	TAAATAAAT	ATGGCTGCTT	3120
80	TATTTAAATA	TAAGGTAGCT	AGTTTTTACA	CCTGAGATAA	ATAATAAGCT	TAGAGTGTAT	3180
						AGCCAGCCTT AATTGGTCTC	
	TTTAGAGACC	AATTTGCCTA	AATTTTAAA	TCTTCCTACE	CACATCTAGA	CGTTCAAGTT	3360
05	TGCAAATCAG	TTTTTAGCAA	GAAAACATTI	TTGCTATAC	AACATTTTG	TAAGTCTGCC	3420
85	CAAAGCCCCC	CCAATGCATI	CCITCAACAI	AATACAATCI	CIGTACTITA	AAGTTATTTT	1480

```
AGTCATGAAA TTTTATATGC AGAGAGAAAA AGTTACCGAG ACAGAAAACA AATCTAAGGG
                                                                                        3540
        AAAGGAATAT TATGGGATTA AGCTGAGCAA GCAATTCTGG TGGAAAGTCA AACCTGTCAG
                                                                                         3600
        TGCTCCACAC CAGGGCTGTG GTCCTCCCAG ACATGCATAG GAATGGCCAC AGGTTTACAC
        TGCCTTCCCA GCAATTATAA GCACACCAGA TTCAGGGAGA CTGACCACCA AGGGATAGTG
                                                                                         3720
        TAAAAGGACA TITTCTCAGT TGGGTCCATC AGCAGTTTTT CTTCCTGCAT TTATTGTTGA
                                                                                         3780
        AAACTATTGT TTCATTTCTT CTTTTATAGG CCTTATTACT GCTTAATCCA AATGTGTACC
                                                                                         3840
        ATTGGTGAGA CACATACAAT GCTCTGAATA CACTACGAAT TTGTATTAAA CACATCAGAA
                                                                                         3960
        TATTTCCAAA TACAACATAG TATAGTCCTG AATATGTACT TTTAACACAA GAGAGACTAT
        TCAATAAAAA CTCACTGGGT CTTTCATGTC TTTAAGCTAA GTAAGTGTTC AGAAGGTTCT
TTTTTATATT GTCCTCCACC TCCATCATTT TCAATAAAAG ATAGGGCTTT TGCTCCCTTG
                                                                                         4020
10
                                                                                         4080
        TTCTTGGAGG GACCATTATT ACATCTCTGA ACTACCTTTG TATCCAACAT GTTTTAAATC
        CTTAAATGAA TTGCTTTCTC CCAAAAAAAG CACAATATAA AGAAACACAA GATTTAATTA
                                                                                         4200
        TITITCTACT TGGGGGAAA AAAGTCCTCA TGTAGAAGCA CCCACTTTG CAATGTTGTT
CTAAGCTATC TATCTAACTC TCAGCCCATG ATAAAGTTCC TTAAGCTGGT GATTCCTAAT
                                                                                         4260
15
        CAAGGACAAG CCACCCTAGT GTCTCATGTT TGTATTTGGT CCCAGTTGGG TACATTTTAA
                                                                                         4380
        AATCCTGATT TTGGAGACTT AAAACCAGGT TAATGGCTAA GAATGGGTAA CATGACTCTT
                                                                                         4440
        GTTGGATTGT TATTTTTTGT TTGCAATGGG GAATTTATAA GAAGCATCAA GTCTCTTTCT TACCAAAGTC TTGTTAGGTG GTTTATAGTT CTTTTGGCTA ACAAATCATT TTGGAAATAA
                                                                                         4500
        AGATTTTTTA CTACAAAAAT G
20
         Seg ID NO: 6 Protein seguence
        Protein Accession #: BAB18461
                                  21
                                                31
                     11
25
        MRLSPAPLKL SRTPALLALA LPLAAALAFS DETLDKVPKS EGYCSRILRA QGTRREGYTE
FSLRVEGDPD FYKPGTSYRV TLSAAPPSYF RĞFTLIALRE NREGDKEEDH AGTFQIIDEE
                                                                                           60
                                                                                          120
         ETOFMSNCPV AVTESTPRRR TRIQVFWIAP PAGTGCVILK ASIVQKRIIY FQDEGSLTKK
                                                                                          180
         LCEQDSTFDG VTDKPILDCC ACGTAKYRLT FYGNWSEKTH PKDYPRRANH WSAIIGGSHS
                                                                                          240
         KNYVLWEYGG YASEGVKQVA ELGSPVKMEE EIRQGSDEVL TVIKAKAQWP AWQPLNVRAA
PSAEFSVDRT RHLMSFLTMM GPSPDWNVGL SAEDLCTKEC GWVQKVVQDL IPWDAGTDSG
                                                                                          300
30
                                                                                          360
         VTYESPNKPT IPQEKIRPLT SLDHPQSPPY DPEGGSITQV ARVVIERIAR KGEQCNIVPD
                                                                                           420
         NVDDIVADLA PEEKDEDDTP ETCIYSNWSP WSACSSSTCD KGKRMRQRML KAQLDLSVPC
                                                                                           480
         PDTQDFQPCM GPGCSDEDGS TCTMSEWITW SPCSISCGMG MRSRERYVKQ FPEDGSVCTL
                                                                                           540
         PTEETEKCTV NEECSPSSCL MTEWGEWDEC SATCGMGMKK RHRMIKMNPA DGSMCKAETS
35
         QAEKCMMPEC HTIPCLLSPW SEWSDCSVTC GKGMRTRQRM LKSLAELGDC NEDLEQVEKC
                                                                                           660
         MLPECPIDCE LTEWSQWSEC NKSCGKGHVI RTRMIQMEPQ FGGAPCPETV QRKKCRIRKC
                                                                                           720
         LRNPSIQKLR WREARESRRS EQLKEESEGE QFPGCRMRPW TAWSECTKLC GGGIQERYMT
                                                                                           780
         VKKRFKSSOF TSCKDKKEIR ACNVHPC
40
         Seg ID NO: 7 DNA sequence
         Nucleic Acid Accession #: NM_022454
         Coding sequence: 205..1449
                                   21
                     11
45
         60
         AGAACACGGG CGGCGGCTTC GGGCCGGGAG ACCCGCGCAG CCCTCGGGGC ATCTCAGTGC
         CTCATTCCCC ACCCCTCCC CCGGGTCGGG GGAGGCGGCG CGTCCGGCGG AGGGTTGAGG
                                                                                           180
         GGAGCGGGGC AGGCCTGGAG CGCCATGAGC AGCCCGGATG CGGGATACGC CAGTGACGAC
CAGAGCCAGA CCCAGAGCGC GCTGCCCGCG GTGATGGCCG GGCTGGGCCC CTGCCCCTGG
GCCGAGTCGC TGAGCCCCAT CGGGGACATG AAGGTGAAGG GCGAGGCGCC GGCGAACAGC
                                                                                           240
                                                                                           300
50
         GGAGCACCGG CCGGGGCCGC GGGCCGAGCC AAGGGCGAGT CCCGTATCCG GCGGCCGATG
                                                                                           420
         AACGCTTTCA TGGTGTGGGC TAAGGACGAG CGCAAGCGGC TGGCGCAGCA GAATCCAGAC
CTGCACAACG CCGAGTTGAG CAAGATGCTG GGCAAGTCGT GGAAGGCGCT GACGCTGGCG
                                                                                           480
                                                                                           540
         GAGAAGCGGC CCTTCGTGGA GGAGGCAGAG CGGCTGCGCG TGCAGCACAT GCAGGACCAC
55
         CCCAACTACA AGTACCGGCC GCGGCGGCGC AAGCAGGTGA AGCGGCTGAA GCGGGTGGAG
                                                                                           660
         GGCGGCTTCC TGCACGGCCT GGCTGAGCCG CAGGCGGCCG CGCTGGGCCC CGAGGGCGGC
                                                                                           720
         CGCGTGCCCA TGGACGGCCT GGGCCTCCAG TTCCCCGAGC AGGGCTTCCC CGCCGGCCCG
CCGCTGCTGC CTCCGCACAT GGGCGGCCAC TACCGCGACT GCCAGAGTCT GGGCGCGCCCT
                                                                                           780
         CCGCTCGACG GCTACCCGTT GCCCACGCCC GACACGTCCC CGCTGGACGG CGTGGACCCC
                                                                                           900
60
         GACCCGGCTT TCTTCGCCGC CCCGATGCCC GGGGACTGCC CGGCGGCCGG CACCTACAGC
TACGCGCAGG TCTCGGACTA CGCTGGCCCC CCGGAGCCTC CCGCCGGTCC CATGCACCCC
CGACTCGGCC CAGAGCCCGC GGGTCCCTCG ATTCCGGCCC TCCTGGCGCC ACCCAGCGCC
                                                                                           960
                                                                                          1020
         CTTCACGTGT ACTACGGCGC GATGGGCTCG CCCGGGGGGG GCGGCGGGG CGGCTTCCAG
                                                                                          1140
         ATGCAGCCGC AACACCAGCA CCAGCACCAG CACCAGCACC ACCCCCGGG CCCCGGACAG
CCGTCGCCCC CTCCGGAGGC ACTGCCCTGC CGGGACGGCA CGGACCCCAG TCAGCCCGCC
                                                                                         1200
65
                                                                                          1260
         GAGCTCCTCG GGGAGGTGGA CCGCACGGAA TTTGAACAGT ATCTGCACTT CGTGTGCAAG
         CCTGAGATGG GCCTCCCCTA CCAGGGGCAT GACTCCGGTG TGAATCTCCC CGACAGCCAC
                                                                                         1380
         GGGGCCATTT CCTCGGTGGT GTCCGACGCC AGCTCCGCGG TATATTACTG CAACTATCCT
GACGTGTGAC AGGTCCCTGA TCCGCCCCAG CCTGCAGGCC AGAAGCAGTG TTACACACTT
                                                                                          1440
                                                                                          1500
70
         CCTGGAGGAG CTAAGGAAAT CCTCAGACTC CTGGGTTTTT GTTGTTGCTG TTGTTGTTTT
                                                                                          1560
         TTAAAAGGTG TGTTGGCATA TAATTTATGG TAATTTATTT TGTCTGCCAC TTGAACAGTT
                                                                                          1620
         TGGGGGGGTG AGGTTTCATT TAAAATTTGT TCAGAGATTT GTTTCCCACA GTTGGATTGT
                                                                                          1680
         CAAAACCCTA TITCCAAGTT CAAGTTAACT AGCTTTGAAT GTGTCCCAAA ACAGCTTCCT
                                                                                          1740
         CCATTTCCTG AAAGTTTATT GATCAAAGAA ATGTTGTCCT GGGTGTGTTT TTTCAATCTT
 75
         Sea ID NO: 8 Protein sequence
         Protein Accession #: NP_071899
                                    21
                                                 31
                                                              41
 80
         MSSPDAGYAS DDQSQTQSAL PAVMAGLGPC PWAESLSPIG DMKVKGEAPA NSGAPAGAAG
         RAKGESRIRR PMNAPMVWAK DERKRLAQQN PDLENAELSK MLGKSWKALT LAEKRPPVEE
AERLRVOHMQ DHPNYKYRPR RRKQVKRLKR VEGGFLEGLA EPQAAALGPE GGRVAMDGLG
                                                                                           120
                                                                                           180
         LOFPEOGFPA GPPLLPPHMG GHYRDCOSLG APPLDGYPLP TPDTSPLDGV DPDPAFFAAP
 85
          MPGDCPAAGT YSYAQVSDYA GPPEPPAGPM HPRLGPEPAG PSIPGLLAPP SALHVYYGAM
```

GSPGAGGGRG FOMOPOHOHO HOHOHHPPGP GOPSPPPBAL PCRDGTDPSQ PAELLGEVDR 360

TEFEQYLHPV CKPEMGLPYQ GHDSGVNLPD SHGAISSVVS DASSAVYYCN YPDV Seq ID NO: 9 DNA sequence 5 Nucleic Acid Accession #: NM_018098 Coding sequence: 112..2856 21 31 51 11 AAGCTTGCGG CCGCCGGCGA GGAATGGCGG TATTTGTGAG AGGAGTCGGC GTTTGAAGAG 10 GTGGAACTCC TAGGGCTTTT TTGAGAGTGC TGATTTAGAA GAATACAAAT CATGGCTGAA 120 ARTAGTGTAT TAACATCCAC TACTGGGAGG ACTAGCTTGG CAGACTCTTC CATTTTTGAT 180 TCTAAAGTTA CTGAGATTTC CAAGGAAAAC TTACTTATTG GATCTACTTC ATATGTAGAA 240 GAAGAGATGC CTCAGATTGA AACAAGAGTG ATATTGGTTC AAGAAGCTGG AAAACAAGAA GAACTTATAA AAGCCTTAAA GACTATTAAA ATAATGGAAG TCCCTGTTAT AAAGATAAAA 360 15 GAAAGTTGTC CTGGAAAATC GGATGARAAA TTAATAAAAA GTGTTATTAA TATGGACATT AAAGTGGGCT CTGTAAAGAT GGAGTCAGTG GAAGAATTTG AAGGTTTGGA TTCTYCGGAA 420 480 TTKGAAAATG TATTTKKAGK CACGGACTTT CAGGATTCTG TCTTTAATGA CCTCTACAAG 540 GCTGATTGTA GAGTTATTGG ACCACCAGTT GTATTAAATT GTTCACAAAA AGGAGAGCCT 600 TTGCCATTTT CATGTCGCCC GTTGTATTGT ACAAGTATGA TGAATCTAGT ACTATGCTTT 660 20 ACTGGATTTA GGAAAAAGA AGAACTAGTC AGGTTGGTGA CATTGGTCCA TCACATGGGT 720 GGAGTTATTC GAAAAGACTT TAATTCAAAA GTTACACATT TGGTGGCAAA TTGTACACAA GGAGAAAAT TCAGGGTTGC TGTGAGTCTA GGTACTCCAA TTATGAAGCC AGAATGGATT TATAAAGCTT GGGAAAGGCG GAATGAACAG GATTTCTATG CAGCAGTTGA TGACTTTAGA 840 900 AATGAATTTA AAGTTCCTCC ATTTCAAGAT TGTATTTTAA GTTTCCTGGG ATTTTCAGAT 960 25 GAAGAGAAAA CCAATATGGA AGAAATGACT GAAATGCAAG GAGGTAAATA TTTACCGCTT 1020 GGAGATGAAA GATGCACTCA CCTTGTAGTT GAAGAGAATA TAGTAAAAGA TCTTCCCTTT 1080 GAACCTTCAA AGAAACTTTA TGTTGTCAAG CAAGAGTGGT TCTGGGGAAG CATTCAAATG 1140 GATGCCCGAG CTGGAGAAAC TATGTATTTA TATGAAAAGG CAAATACTCC TGAGCTCAAG 1200 AAATCAGTGT CAATGCTTTC TCTAAATACC CCTAACAGCA ATCGCAAACG ACGTCGTTTA 30 AAAGAAACAC TTGCTCAGCT TTCAAGAGAG ACAGACGTGT CACCATTTCC ACCCCGTAAG 1320 CGCCCATCAG CTGAGCATTC CCTTTCCATA GGGTCACTCC TAGATATCTC CAACACACCA 1380 GAGTCTAGCA TTAACTATGG AGACACCCCA AAGTCTTGTA CTAAGTCTTC TAAAAGCTCC 1440 ACTCCAGTTC CTTCAAAGCA GTCAGCAAGG TGGCAAGTTG CAAAAGAGCT TTATCAAACT 1500 GAAAGTAATT ATGTTAATAT ATTGGCAACA ATTATTCAGT TATTTCAAGT ACCATTGGAA 1560 35 GAGGAAGGAC AACGTGGTGG ACCTATCCTT GCACCAGAGG AGATTAAGAC TATTTTTGGT AGCATCCCAG ATATCTTTGA TGTACACACT AAGATAAAGG ATGATCTTGA AGACCTTATA 1620 1680 GTTAATTGGG ATGAGAGCAA AAGCATTGGT GACATTTTTC TGAAATATTC AAAAGATTTG GTAAAAACCT ACCCTCCCTT TGTAAACTTC TTTGAAATGA GCAAGGAAAC AATTATTAAA 1800 TOTGAAAAAC AGAAACCAAG ATTTCATGCT TTTCTCAAGA TAAACCAAGC AAAACCAGAA 1860 40 TGTGGACGGC AGAGCCTTGT TGAACTTCTT ATCCGACCAG TACAGAGGTT ACCCAGTGTT 1920 GCATTACTTT TAAATGATCT TAAGAAGCAT ACAGCTGATG AAAATCCAGA CAAAAGCACT 1980 TTAGAAAAAG CTATTGGATC ACTGAAGGAA GTAATGACGC ATATTAATGA GGATAAGAGA 2040 AAAACAGAAG CTCAAAAGCA AATTTTTGAT GTTGTTTATG AAGTAGATGG ATGCCCAGCT 2100 AATCTTTTAT CTTCTCACCG AAGCTTAGTA CAGCGGGTTG AAACAATTTC TCTAGGTGAG 2160 45 CACCCCTGTG ACAGAGGAGA ACAAGTAACT CTCTTCCTCT TCAATGATTG CCTAGAGATA GCAAGAAAAC GGCACAAGGT TATTGGCACT TTTAGGAGTC CTCATGGCCA AACCCGACCC 2280 CCAGCTTCTC TTAAGCATAT TCACCTAATG CCTCTTTCTC AGATTAAGAA GGTATTGGAC ATAAGAGAGA CAGAAGATTG CCATAATGCT TTTGCCTTGC TTGTGAGGCC ACCAACAGAG 2340 2400 CAGGCAAATG TGCTACTCAG TTTCCAGATG ACATCAGATG AACTTCCAAA AGAAAACTGG 50 CTAAAGATGC TGTGTCGÁCA TGTAGCTAAC ACCATTTGTA AAGCAGATGC TGAGAATCTT 2520 ATTTATACTG CTGATCCAGA ATCCTTTGAA GTAAATACAA AAGATATGGA CAGTACATTG 2580 AGTAGAGCAT CAAGAGCAAT AAAAAAGACT TCAAAAAAGG TTACAAGAGC ATTCTCTTTC 2640 TCCAAAACTC CAAAAAGAGC TCTTCGAAGG GCTCTTATGA CATCCCACGG CTCAGTGGAG 2700 GGAAGAGTC CTTCCAGCAA TGATAAGCAT GTAATGAGTC GTCTTTCTAG CACATCATCA 2760 55 TTAGCAGGTA TCCCTTCTCC CTCCCTTGTC AGCCTTCCTT CCTTCTTTGA AAGGAGAAGT 2820 CATACGTTAA GTAGATCTAC AACTCATTTG ATATGAAGCG TTACCAAAAT CTTAAATTAT AGAAATGTAT AGACACCTCA TACTCAAATA AGAAACTGAC TTAAATGGTA CTTGTAATTA 2940 GCACTTGGTG AAAGCTGGAA GGAAGATAAA TAACACTAAA CTATGCTATT TGATTTTCT TCTTGAAAGA GTAAGGTTTA CCTGTTACAT TTTCAAGTTA ATTCATGTAA AAAATGATAG 3000 3060 60 TGATTTTGAT GTAATTTATC TCTTGTTTGA ATCTGTCATT CAAAGGCCAA TAATTTAAGT TGCTATCAGC TGATATTAGT AGCTTTGCAA CCCTGATAGA GTAAATAAAT TTTATGGGCG 3180 GGTGCCAAAT ACTGCTGTGA ATCTATTTGT ATAGTATCCA TGAATGAATT TATGGAAATA 3240 GATATTTGTG CAGCTCAATT TATGCAGAGA TTAAATGACA TCATAATACT GGATGAAAAC TTGCATAGAA TTCTGATTAA ATAGTGGGTC TGTTTCACAT GTGCAGTTTG AAGTATTTAA 3300 3360 65 ATAACCACTC CTTTCACAGT TTATTTTCTT CTCAAGCGTT TTCAAGATCT AGCATGTGGA TTTTAAAAGA TTTGCCCTCA TTAACAAGAA TAACATTTAA AGGAGATTGT TTCAAAATAT 3480 TTTTGCAAAT TGAGATAAGG ACAGAAAGAT TGAGAAACAT TGTATATTTT GCAAAAACAA 3540 GATGTTTGTA GCTGTTTCAG AGAGAGTACG GTATATTTAT GGTAATTTTA TCCACTAGCA 3600 AATCTTGATT TAGTTTGATA GTGTGTGGAA TTTTATTTTG AAGGATAAGA CCATGGGAAA 70 ATTGTGGTAA AGACTGTTTG TACCCTTCAT GAAATAATTC TGAAGTTGCC ATCAGTTTTA CTAATCTTCT GTGAAATGCA TAGATATGCG CATGTTCAAC TTTTTATTGT GGTCTTATAA TTAAATGTAA AATTGAAAAT TCATTTGCTG TTTCAAAGTG TGATATCTTT CACAATAGCC 3720 3780 3840 TTTTTATAGT CAGTAATTCA GAATAATCAA GTTCATATGG ATAAATGCAT TTTTATTTCC 3900 TATTTCTTTA GGGAGTGCTA CAAATGTTTG TCACTTAAAT TTCAAGTTTC TGTTTTAATA GTTAACTGAC TATAGATTGT TTTCTATGCC ATGTATGTGC CACTTCTGAG AGTAGTAAAT 3960 75 4020 GACTCTTTGC TACATTTTAA AAGCAATTGT ATTAGTAAGA ACTTTGTAAA TAAATACCTA AAACCCAAAA AAAAAAAAAA AAAAA Seg ID NO: 10 Protein seguence 80 Protein Accession #: Q9H8V3 11 21 31 41 51 MAENSVLTST TGRTSLADSS IFDSKVTBIS KENLLIGSTS YVEEEMPQIE TRVILVQEAG KQEELTKALK DIKVGFVKME SVEEFEGLDS PEFENVFVVT DFQDSVFNDL YKADCRVIGP 85 PVVLNCSQKG EPLPFSCRPL YCTSMONLVL CFTGFRKKEE LVRLVTLVHH MGGVIRKDFN

```
SKYTHLVANC TOGEKFRVAV SLGTPIMKPE WIYKAWERRN EQDFYAAVDD FRNEFKVPPF
       QDCIFSFLGF SDEEKTNMEE MTEMQGGKYL PLGDERCTHL VVEENIVKOL PFEPSKKLYV
       vkqewfwgsi qmdaragetm ylyekantpe lkksvsmlsl ntpnsnrkrr rlketlaqls
                                                                                 360
       RDTDVSPFPP RKRPSAEHSL SIGSLLDISN TPESSINYGD TPKSCTKSSK SSTPVPSKQS
ARWQVAKELY OTESNYVNIL ATIIQLFOVP LEEEGORGGP ILAPEEIKTI FGSIPDIPDV
                                                                                  420
                                                                                  480
       HTKIKDDLED LIVNWDESKS IGDIPLKYSK DLVKTYPPFV NFFEMSKETI IKCEKQKPRF
       HAFLKINGAK PECGRQSLVE LLIRPVQRLP SVALLLNDLK KHTADENPDK STLEKAIGSL
                                                                                  600
       KEVMTHINED KRKTEAQKQI FDVVYEVDGC PANLLSSHRS LVQRVETISL GEHPCDRGEQ
                                                                                 660
       VTLFLFNDCL EIARKRHKVI GTFRSPHGQT RPPASLKHIH LMPLSQIKKV LDIRETEDCH
                                                                                  720
10
       NAFALLVRPP TEQANVLLSF QMTSDELPKE NWLKMLCRHV ANTICKADAE NLIYTADPES
       FEVNTKDMDS TLSRASRAIK KTSKKVTRAF SPSKTPKRAL RRALMTSHGS VEGRSPSSND
                                                                                  840
       KHVMSRLSST SSLAGIPSPS LVSLPSPFER RSHTLSRSTT HLI
       Seg ID NO: 11 DNA seguence
15
       Nucleic Acid Accession #: XM_044166
       Coding sequence: 1..1576
                   11
                                                                   51
       CTTTTGTTTC GCCATGCCTA GTCTAGTGGT ATCTGGAATA ATGGAAAGAA ATGGGGGCTT
TGGAGAACTA GGATGTTTCG GGGGAAGCGC TAAGGACCGA GGGCTGCTGG AAGACGAGCG
                                                                                  60
20
                                                                                  120
       CGCCCTTCAG CTGGCTCTCG ATCAACTCTG CCTCCTGGGT TTGGGGGAGC CCCCCGCCCC
       CAGGGCGGC GAGGACGGGG GAGGTGGGGG GGGCGCGCC CCCGCGCAGC CGACAGCCCC
                                                                                  240
       300
                                                                                  360
25
       CGCTCTCTAC AAAGAGGCCG AGCTGCGCCT GAAGGGCAGC AGCAACACCA CGGAGTGTGT
       TCCCGTGCCC ACCTCCGAGC ACGTGGCCGA GATCGTGGGC AGGCAAGGCT GCAAGATTAA
                                                                                  480
       GGCCTTGAGG GCCAAGACCA ACACCTACAT CAAGACACCG GTGAGGGGCG AGGAACCAGT
GTTCATGGTG ACAGGGCGAC GGGAGGACGT GGCCACAGCC CGGCGGGAAA TCATCTCAGC
                                                                                  540
                                                                                  600
       AGCGGAGCAC TTCTCCATGA TCCGTGCCTC CCGCAACAAG TCAGGCGCCG CCTTTGGTGT
30
       GGCTCCTGCT CTGCCCGGCC AGGTGACCAT CCGTGTGCGG GTGCCCTACC GCGTGGTGGG
                                                                                  720
       GCTGGTGGTG GGCCCCAAAG GGGCAACCAT CAAGCGCATC CAGCAGCAAA CCAACACATA CATTATCACA CCAAGCCGTG ACCGCGACCC CGTGTTCGAG ATCACGGGTG CCCCAGGCAA
                                                                                  780
                                                                                  840
       CGTGGAGCGT GCGCGCGAGG AGATCGAGAC GCACATCGCG GTGCGCACTG GCAAGATCCT
       CGAGTACAAC AATGAAAACG ACTTCCTGGC GGGGAGCCCC GACGCAGCAA TCGATAGCCG
                                                                                  960
35
       CTACTCCGAC GCCTGCGGG TGCACCAGCC CGGCTGCAAG CCCCTCTCCA CCTTCCGGCA
                                                                                1020
       GAACAGCCTG GGCTGCATCG GCGAGTGCGG AGTGGACTCT GGCTTTGAGG CCCCACGCCT
                                                                                1080
       GGGTGAGCAG GGCGGGGACT TTGGCTACGG CGGGTACCTC TTTCCGGGCT ATGGCGTGGG
       CAAGCAGGAT GTGTACTACG GCGTGGCCGA GACTAGCCCC CCGCTGTGGG CGGGCCAGGA
                                                                                1200
       GAACGCCACG CCCACCTCCG TGCTCTTCTC CTCTGCCTCC TCCTCCTCCT CCTCTTCCGC CAAGGCCCGC GCTGGGCCCC CGGGCGCACA CCGCTCCCCT GCCACTTCCG CGGGACCCGA
                                                                                1260
40
                                                                                1320
       GCTGGCCGGA CTCCCGAGGC GCCCCCCGGG AGAGCCGCTC CAGGGCTTCT CTAAACTTGG
                                                                                1380
       TGGGGGCGGC CTGCGGAGCC CCGGCGGCGG GCGGGATTGC ATGGTCTGCT TTGAGAGCGA
       AGTGACTGCC GCCCTTGTGC CCTGCGGACA CAACCTGTTC TGCATGGAGT GTGCAGTACG
CATCTGCGAG AGGACGGACC CAGAGTGTCC CGTCTGCCAC ATCACAGCCA CGCAAGCCAT
                                                                                1500
                                                                                1560
45
       CCGAATATTC TCCTAAGCCC CGTGCCCCAT GCCTCCGGGG CCCACTCCAC TGGGCCCACC
                                                                                1620
       CTGGACCTGT TTTCCACTAA AGCCTTTTGG AAAGCGGTGA TTTGAGGGGC AAGGTGCTTA
       GAGATACTCG CTCGCTGGGG AAGGGGGGAG GGAGGCAGTG GTGGCTGGAG GGTGCGCCAC
                                                                                1740
       TTTCAGAGCC TCTGGTCACC CTGTCCTGGA AAGATTGGGA GGGGGCCAGA CTGAAAATTT
                                                                                1800
       TACTAGAGTT ACAACTCTGA TACCTCAACA CACCCTTAAA TCTGGAAGCA GCTAAGAGAA
50
       ACTITIGITI TGCCAGAGGI GGCCACTAAG GCATTCTGAC GCCCTCTGCC CACCTCCCCC
                                                                                1920
       GCTGTGTGTC ACTCCACCCC TTCTTCCGAG GAGGGGGTGG GTAAAAGGGA GAGGGAGAAT
                                                                                1980
       TACCACCTGT ATCTAGAGGT GCTCTTTGCA ATCCCTAAGC CCTCTGGTCC TGACCTCCGA
       CCTCCCAGCT CTGTCTTGTT CCTTGTCTTT GTCTTTCTTC CCTTCCCCCT GCCCCTGCCC
                                                                                2100
       CTACCAGCCC AGCTTTGGGG ACACCATCCT TCTGGGGAGA AGTAGGGGGA GGAATATTTG
                                                                                2160
55
       GATGGTCCCT CCATTCCTCT TCAGGCATCT GGAGGCCCTC TCCCCCACTC CTCCAAAGAA
                                                                                2220
       ACATCTCAAA TTATTGATGG AATGTATCCC CATTCTCAGT GAAAATGTGA GGAGGGGACT
                                                                                 2280
       AATACTGGGG TAAAGGGTCA AACCCCCACC TTCATCACTA TGGGCATTAT ATTTAGGGAG
        TAGTTCTTGG GCTGGATTTT CTGGTTGTGG AAGTGGGGGC GCCAGAGTAG TGTGTCTGCT
                                                                                 2400
       ATTTAAAGGA GCAGGAAAGG GCGTGAGGCA GGAGGAGAGA CTGGTGGAGG GAAGAGCTGC
                                                                                 2460
60
       TCCTCCCATG CAGTGCCCGA CTCCCTGCAC CCCTCTCAAC CTGACCTGAA CCTTTATTGA
                                                                                2520
       ATCCTTATTA GCTTGAATCC TTATTAGCTT GAATCCTCCA TGCAAATCAT GGAGTCTGTG
        TCCCACCTGA TGTGGTTGAG GAGAAGCCAG GTCTTCAAAG AGGGGTCAGC CTGGGGCAAA
                                                                                2640
       GCAGGACTGG GGGGAGGTGG GCAGCAGGGC CTATTCTGAG AATCACATAT TGTTACAGGC CTTGCACCCC CTTTGCTGCT TCCCTCCTGC TCATTTGGGG CTGCCACCAG CTCTCCCACCC
                                                                                 2700
65
        TCCTGGTTCC GCTGGCCGGG CCAAGAGAGG ATGGAGGGAT GGGAGTCCCA GGAGATCCTT
       GTANATAGTG GGGTGGGACT GTTCTGAGTG ATCACCCGAG CACTTANAGC TCCAGAGTCC CATTCTTCCT GGATGGAGCA GGTGGAGGTG CAGAGGGGAT TTCCTCCTCT CCTTCCTCCT
                                                                                2880
                                                                                 2940
        GTCGAGAATT AACACCTCTC CACAGCCTTC CCCTCCAGAA CACCAGCCAG GGAGGGGTGG
        GGAAGGAGGT CACAGCCAAG AAAACTGCCC TGTGACGACT TCCCTCCTTC CCGCCTATGT
                                                                                 3060
70
        3120
        GGGGCAGGT GGGGAGGGG GTGGGAAGAA GGGATGTCTG TCTGTCGTCC CCCTCCCCCT
                                                                                 3180
        CTCCACTCTT TACCCACAAA GGCAGAAGAC TGTTACACTA GGGGGCTCAG CAAATTCAAT
                                                                                 3240
        CCCACCCTTA CCAATTGAGC CAAACCTAGA AACAAACACA AAACACGAAT AGTGAGAGAC
        AAAATAGAGG AGAGAAAGAG AGCATGAGAG GGAGCGAGAC AGGCGACCAA CACAGAGGAG
                                                                                 3360
75
        AGAAAACAAA AATAGCAAAA AAAAAAAAAA AAAGCAGTTC TTTATAATTT AATATTCTAT
                                                                                3420
        TTTAATAAAG GCGTTTATTA CCATATAAAT GTAGCAAAGA ACCTGGGCTA ATATGAA
        Seg ID NO: 12 Protein seguence
        Protein Accession #: XP 044166
80
                   11
                               21
                                            31
                                                        41
        FCFAMPSLVV SGIMERNGGF GELGCFGGSA KDRGLLEDER ALQLALDQLC LLGLGEPPAP
                                                                                   60
        RAGEDGGGG GGAPAQPTAP PQPAPPPPPA APPAAPTTAP AAQTPQPPTA PKGASDAKLC
                                                                                  120
        ALYKEAELRL KGSSNTTECV PVPTSEHVAB IVGRQGCKIK ALRAKTNTYI KTPVRGEEPV
85
        FMVTGRREDV ATARREIISA AEHFSMIRAS RNKSGAAFGV APALPGQVTI RVRVPYRVVG
```

PCT/US02/19297 WO 02/102235

```
LVVGPKGATI KRIQQQTNTY IITPSRDRDP VPEITGAPGN VERAREEIET HIAVRTGKIL
                                                                                            300
        EYNNENDFLA GSPDAAIDSR YSDAWRVHQP GCKPLSTFRQ NSLGCIGECG VDSGPEAPRL
                                                                                            360
        GEQGGDFGYG GYLPPGYGVG KQDVYYGVAE TSPPLWAGQE NATPTSVLFS SASSSSSSA
                                                                                            420
        KARAGPPGAH RSPATSAGPE LAGLPRRPPG EPLQGFSKLG GGGLRSPGGG RDCMVCFESE
VTAALVPCGH NLFCMECAVR ICERTDPECP VCHITATQAI RIFS
                                                                                            480
        Seq ID NO: 13 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 1..2982
10
        ATGGTTTTCT CTGTCAGGCA GTGTGGCCAT GTTGGCAGAA CTGAAGAAGT TTTACTGACG
                                                                                             60
        TTCAAGATAT TCCTTGTCAT CATTTGTCTT CATGTCGTTC TGGTAACATC CCTGGAAGAA
        GATACTGATA ATTCCAGTTT GTCACCACCA CCTGATGTTA CTTTAAGCTT ACTCCCTTCA
                                                                                            180
15
        AACGAAACAG AAAAAACTAA AATCACTATA GTAAAAACCT TCAATGCTTC AGGCGTCAAA
                                                                                            240
        CCCCAGAGAA ATATCTGCAA TTTGTCATCT ATTTGCAATG ACTCAGCATT TTTTAGAGGT
GAGATCATGT TTCAATATGA TAAAGAAAGC ACTGTTCCCC AGAATCAACA TATAACGAAT
                                                                                            300
        GGCACCTTAA CTGGAGTCCT GTCTCTAAGT GAATTAAAAC GCTCAGAGCT CAACAAAACC
                                                                                            420
        CTGCAAACCC TAAGTGAGAC TTACTTTATA ATGTGTGCTA CAGCAGAGGC CCAAAGCACA
                                                                                            480
        TTARATTGTA CATTCACAAT AARACTGAAT AATACAATGA ATGCATGTGC TGTAATAGCT GCTTTGGAAA GAGTAAAGAT TCGACCAATG GAACACTGCT GCTGTTCTGT CAGGATACCC
20
                                                                                            540
                                                                                            600
        TGCCCTTCCT CCCCAGAAGA GTTGGAAAAG CTTCAGTGTG ACCTGCAGGA TCCCATTGTC
                                                                                            660
        TGTCTTGCTG ACCATCCACG TGGCCCACCA TTTTCTTCCA GCCAATCCAT CCCAGTGGTG CCTCGGGCCA CTGTGCTTTC CCAGGTCCCC AAAGCTACCT CTTTTGCTGA GCCTCCAGAT
                                                                                            720
                                                                                            780
25
        TATTCACCTG TGACCCACAA TGTTCCCTCT CCAATAGGGG AGATTCAACC CCTTTCACCC
        CAGCCTTCAG CTCCCATAGC TTCCAGCCCT GECATTGACA TGCCCCCACA GTCTGAAACG
                                                                                            900
        ATCTCTTCCC CTATGCCCCA AACCCATGTC TCCGGCACCC CACCTCCTGT GAAAGCCTCA
                                                                                            960
        ATTITICTUTE CARCECTAR RECOGNING ANTIFICARCA CTACCAGGE ACCTICITIES CAGACAGACA TOGTCAACAC CAGCAGTATT TOTGATOTTE AGAACCAAGT GTTGCAGAT
                                                                                           1020
30
         GAGAAGGCTC TGTCCTTGGG CAGCCTGGAG CCTAACCTCG CAGGAGAAAT GATCAACCAA
                                                                                           1140
        GTCAGCAGAC TCCTTCATTC CCCGCCTGAC ATGCTGGCCC CTCTGGCTCA AAGATTGCTG
                                                                                           1200
        ARAGTAGTGG ATGACATTGG CCTACAGCTG AACTTTTCAA ACACGACTAT AAGTCTAACC
                                                                                           1260
         TCCCCTTCTT TGGCTCTGGC TGTGATCAGA GTGAATGCCA GTAGTTTCAA CACAACTACC
         TTTGTGGCCC AAGACCCTGC AAATCTTCAG GTTTCTCTGG AAACCCAAGC TCCTGAGAAC
                                                                                           1380
35
         AGTATTGGCA CAATTACTCT TCCTTCATCG CTGATGAATA ATTTACCAGC TCATGACATG
                                                                                           1440
        GAGCTAGCTT CCAGGGTTCA GTTCAATTTT TTTGAAACAC CTGCTTTGTT TCAGGATCCT
TCCCTGGAGA ACCTCTCTCT GATCAGCTAC GTCATATCAT CGAGTGTTGC AAACCTGACC
                                                                                           1500
         GTCAGGAACT TGACAAGAAA CGTGACAGTC ACATTAAAGC ACATCAACCC GAGCCAGGAT
                                                                                           1620
        GAGTTAACAG TGAGATGTGT ATTTTGGGAC TTGGGCAGAA ATGGTGGCAG AGGAGGCTGG
TCAGACAATG GCTGCTCTGT CAAAGACAGG AGATTGAATG AAACCATCTG TACCTGTAGC
                                                                                           1680
40
                                                                                           1740
         CATCTAACAA GCTTCGGCGT TCTGCTGGAC CTATCTAGGA CATCTGTGCT GCCTGCTCAA
                                                                                           1800
         ATGATGGCTC TGACGTTCAT TACATATATT GGTTGTGGGC TTTCATCAAT TTTTCTGTCA
                                                                                           1860
         GTGACTCTTG TAACCTACAT AGCTTTTGAA AAGATCCGGA GGGATTACCC TTCCAAAATC
                                                                                           1920
         CTCATCCAGC TGTGTGCTGC TCTGCTTCTG CTGAACCTGG TCTTCCTCCT GGACTCGTGG
45
         ATTGCTCTGT ATAAGATGCA AGGCCTCTGC ATCTCAGTGG CTGTATTTCT TCATTATTTT
                                                                                           2040
         CTCTTGGTCT CATTCACATG GATGGGCCTA GAAGCATTCC ATATGTACCT GGCCCTTGTC
                                                                                           2100
        ANAGTATTTA ATACTTACAT CCGAAAATAC ATCCTTAAAT TCTGCATTGT CGGTTGGGGGGTACCAGCTG TGGTTGTGAC CATCATCCTG ACTATATCCC CAGATAACTA TGGGCTTGGA
                                                                                           2160
         TCCTATGGGA AATTCCCCAA TGGTTCACCG GATGACTTCT GCTGGATCAA CAACAATGCA
                                                                                           2280
50
         GTATTCTACA TTACGGTGGT GGGATATTTC TGTGTGATAT TTTTGCTGAA CGTCAGCATG
                                                                                           2340
         TTCATTGTGG TCCTGGTTCA GCTCTGTCGA ATTAAAAAGA AGAAGCAACT GGGAGCCCAG
                                                                                           2400
        CGAAAAACCA GTATCAAGA CCTCAGGAGT ATCGCTGGCC TTACATTTT ACTGGGAATA
ACTTGGGGCT TTGCCTTCTT TGCCTGGGGA CCAGTTAACG TGACCTTCAT GTATCTGTTT
                                                                                           2460
                                                                                           2520
         GCCATCTTTA ATACCTTACA AGGATTTTTC ATATTCATCT TTTACTGTGT GGCCAAAGAA
                                                                                           2580
         AATGTCAGGA AGCAATGGAG GCGGTATCTT TGTTGTGGAA AGTTACGGCT GGCTGAAAAT
TCTGACTGGA GTAAAACTGC TACTAATGGT TTAAAGAAGC AGACTGTAAA CCAAGGAGTG
55
                                                                                           2640
                                                                                           2700
         TCCAGCTCTT CAAATTCCTT ACAGTCAAGC AGTAACTCCA CTAACTCCAC CACACTGCTA
                                                                                           2760
         GTGAATAATG ATTGCTCAGT ACACGCAAGC GGGAATGGAA ATGCTTCTAC AGAGAGGAAT
GGGGTCTCTT TTAGTGTTCA GAATGGAGAT GTGTGCCTTC ACGATTTCAC TGGAAAACAG
                                                                                           2820
                                                                                           2880
60
         CACATGTTTA ACGAGAAGGA AGATTCCTGC AATGGGAAAG GCCGTATGGC TCTCAGAAGG
         ACTTCAAAGC GGGGAAGCTT ACACTTTATT GAGCAAATGT GA
         Seg ID NO: 14 Protein seguence
         Protein Accession #: Eos sequence
65
                                    21
                                                 31
                      11
         MVFSVRQCGH VGRTEEVLLT FKIFLVIICL HVVLVTSLEE DTDNSSLSPP PDVTLSLLPS
         NETEKTKITI VKTFNASGVK PQRNICNLSS ICNDSAFFRG EIMPQYDKES TVPQNQHITN
         GTLTGVLSLS ELKRSELNKT LQTLSETYFI MCATAEAQST LNCTFTIKLN NTMNACAVIA
                                                                                            180
70
         ALERVKIRPM EHCCCSVRIP CPSSPEELEK LQCDLQDPIV CLADHPRGPP FSSSQSIPVV
PRATVLSQVP KATSFAEPPD YSPVTHNVPS PIGEIQPLSP QPSAPIASSP AIDMPPQSET
                                                                                            240
                                                                                             300
         ISSPMPQTHV SGTPPPVKAS FSSPTVSAPA NVNTTSAPPV QTDIVNTSSI SDLENQVLQM
         EKALSLGSLE PNLAGEMINQ VSRLLHSPPD MLAPLAQRLL KVVDDIGLQL NFSNTTISLT
                                                                                             420
         SPSLALAVIR VNASSPNTTT FVAQDPANLQ VSLETQAPEN SIGTITLESS LMNNLPAHDM
ELASRVQFNF FETPALFQDP SLENLSLISY VISSSVANLT VRNLTRNVTV TLKHINPSQD
                                                                                             480
75
                                                                                             540
         ELTVRCVFWD LGRNGGRGGW SDNGCSVKDR RLNETICTCS HLTSFGVLLD LSRTSVLPAQ
         MMALTFITYI GCGLSSIFLS VTLVTYIAFE KIRRDYPSKI LIQLCAALLL LNLVFLLDSW
IALYKMQGLC ISVAVPLHYP LLVSFTWMGL EAFHMYLALV KVFNTYIRKY ILKFCIVGWG
                                                                                             660
                                                                                             720
         VPAVVVTIIL TISPDNYGLG SYGKPPNGSP DDFCWINNNA VFYITVVGYF CVIFLLNVSM
                                                                                             780
80
         FIVVLVQLCR IKKKKQLGAQ RKTSIQDLRS IAGLTFLLGI TWGFAFFAWG PVNVTFNYLF
                                                                                             840
         AIFNTLOGFF IFIFYCVAKE NVRKOWRRYL CCGKLRLAEN SDWSKTATNG LKKOTVNOGV
                                                                                             900
         SSSENSLQSS SNSTNSTTLL VNNDCSVHAS GNGNASTERN GVSFSVQNGD VCLHDFTGKQ
         HMFNEKEDSC NGKGRMALRR TSKRGSLHFI EQM
85
```

Seq ID NO: 15 DNA sequence

```
Nucleic Acid Accession #: Eos sequence
         Coding sequence: 1..2904
                      11
                                                  31
                                                                 41
 5
        ATGGTTTTCT CTGTCAGGCA GTGTGGCCAT GTTGGCAGAA CTGAAGAAGT TTTACTGACG
         TTCAAGATAT TCCTTGTCAT CATTTGTCTT CATGTCGTTC TGGTAACATC CCTGGAAGAA
                                                                                               120
         GATACTGATA ATTCCAGTTT GTCACCACCA CCTGATGTTA CTTTAAGCTT ACTCCCTTCA
                                                                                               180
         AACGAAACAG AAAAAACTAA AATCACTATA GTAAAAACCT TCAATGCTTC AGGCGTCAAA
                                                                                               240
         CCCCAGAGAA ATATCTGCAA TITGTCATCT ATTTGCAATG ACTCAGCATT TITTAGAGGT
10
         GAGATCATGT TTCAATATGA TAAAGAAAGC ACTGTTCCCC AGAATCAACA TATAACGAAT
                                                                                               360
         GGCACCTTAA CTGGAGTCCT GTCTCTAAGT GAATTAAACA CATTAAATTG TACATTCACA
ATAAAACTGA ATAATACAAT GAATGCATGT GCTGTAATAG CTGCTTTGGA AAGAGTAAAG
                                                                                               420
                                                                                               480
         ATTOGACCAA TEGAACACTG CTGCTGTTCT GTCAGGATAC CCTGCCCTTC CTCCCCAGAA
         GAGTTGGAAA AGCTTCAGTG TGACCTGCAG GATCCCATTG TCTGTCTTGC TGACCATCCA
                                                                                               600
         CGTGGCCCAC CATTITCTIC CAGCCAATGC ATCCCAGTGG TGCCTCGGGC CACTGTGCTT
TCCCAGGTCC CCAAAGCTAC CTCTTTTGCT GAGCCTCCAG ATTATTCACC TGTGACCCAC
15
                                                                                               660
         AATGITCCCT CTCCAATAGG GGAGATTCAA CCCCTTTCAC CCCAGCCTTC AGCTCCCATA
                                                                                               780
        GCTTCCAGCC CTGCCATTGA CATGCCCCCA CAGTCTGAAA CGATCTCTTC CCCTATGCCC
CAAACCCATG TCTCCGGCAC CCCACCTCCT GTGAAAGCCT CATTTTCCTC TCCCACCGTG
                                                                                               R40
                                                                                               900
20
         TCTGCCCCTG CGAATGTCAA CACTACCAGC GCACCTCCTG TCCAGACAGA CATCGTCAAC
         ACCAGCAGTA TITCTGATCT TGAGAACCAA GTGTTGCAGA TGGAGAAGGC TCTGTCCTTG
                                                                                              1020
         GGCAGCCTGG AGCCTAACCT CGCAGGAGAA ATGATCAACC AAGTCAGCAG ACTCCTTCAT
                                                                                              1080
         GGCAGCCTG ACATGCTGGC CCCTCTGGCT CAAAGATTGC TGAAAGATGC AGATGACATT
TCCCCCGCCTG ACATGCTGGC CCCTCTGGCT CAAAGATTGC TGAAAGATGAT GAAGAAATTG
GGCCTACAGC TGAACCTTTTC AAACACGACT ATAAGTCTAA CCTCCCCTTC TTTGGCTCTG
                                                                                              1140
25
         GCTGTGATCA GAGTGAATGC CAGTAGTTTC AACACAACTA CCTTTGTGGC CCAAGACCCT
                                                                                              1260
         GCAAATCTC AGGITTCTCT GGAAACCCAA GCTCCTGAGA ACAGTATTGG CACAATTACT
CTTCCTTCAT CGCTGATGAA TAATTTACCA GCTCATGACA TGGAGCTAGC TTCCAGGGTT
CAGTTCAATT TTTTTGAAAC ACCTGCTTTG TTTCAGGATC CTTCCCTGGA GAACCTCTCT
                                                                                              1320
                                                                                              1380
                                                                                              1500
         CTGATCAGCT ACGTCATATC ATCGAGTGTT GCAAACCTGA CCGTCAGGAA CTTGACAAGA
30
         AACGTGACAG TCACATTAAA GCACATCAAC CCGAGCCAGG ATGAGTTAAC AGTGAGATGT
GTATTTTGGG ACTTGGGCAG AAATGGTGGC AGAGGAGGCT GGTCAGACAA TGGCTGCTCT
GTCAAAGACA GGAGATTGAA TGAAACCATC TGTACCTGTA GCCATCTAAC AAGCTTCGGC
                                                                                              1560
                                                                                              1620
         GTTCTGCTGG ACCTATCTAG GACATCTGTG CTGCCTGCTC AAATGATGGC TCTGACGTTC
                                                                                              1740
         ATTACATATA TIGGITOTIGG GCTITCATCA ATTITICTGT CAGIGACTCT TGTAACCTAC ATAGCTITTG AAAAGATCCG GAGGGATTAC CCTTCCAAAA TCCTCATCCA GCTGTGTGCT
                                                                                              1800
35
                                                                                              1860
         GCTCTGCTTC TGCTGAACCT GGTCTTCCTC CTGGACTCGT GGATTGCTCT GTATAAGATG
                                                                                              1920
         CAAGGCCTCT GCATCTCAGT GGCTGTATTT CTTCATTATT TTCTCTTGGT CTCATTCACA
                                                                                              1980
         TGGATGGGCC TAGAAGCATT CCATATGTAC CTGGCCCTTG TCAAAGTATT TAATACTTAC
                                                                                              2040
         ATCCGAAAAT ACATCCTTAA ATTCTGCATT GTCGGTTGGG GGGTACCAGC TGTGGTTGTG
                                                                                              2100
40
         ACCATCATCC TGACTATATC CCCAGATAAC TATGGGCTTG GATCCTATGG GAAATTCCCC
         AATGGTTCAC CGGATGACTT CTGCTGGATC AACAACAATG CAGTATTCTA CATTACGGTG
                                                                                              2220
         GTGGGATATT TCTGTGTGAT ATTTTTGCTG AACGTCAGCA TGTTCATTGT GGTCCTGGTT CAGCTCTGTC GAATTAAAAA GAAGAAGCAA CTGGGAGCCC AGCGAAAAAC CAGTATTCAA
                                                                                              2280
         GACCTCAGGA GTATCGCTGG CCTTACATTT TTACTGGGAA TAACTTGGGG CTTTGCCTTC
                                                                                              2400
45
         TTTGCCTGGG GACCAGTTAA CGTGACCTTC ATGTATCTGT TTGCCATCTT TAATACCTTA
                                                                                              2460
         CAAGGATTTT TCATATTCAT CTTTTACTGT GTGGCCAAAG AAAATGTCAG GAAGCAATGG
                                                                                              2520
         AGGCGGTATC TTTGTTGTGG AAAGTTACGG CTGGCTGAAA ATTCTGACTG GAGTAAAACT
         GCTACTAATG GTTTAAAGAA GCAGACTGTA AACCAAGGAG TGTCCAGCTC TTCAAATTCC
         TTACAGTCAA GCAGTAACTC CACTAACTCC ACCACACTGC TAGTGAATAA TGATTGCTCA
                                                                                              2700
50
         GTACACGCAA GCGGGAATGG AAATGCTTCT ACAGAGAGGA ATGGGGTCTC TTTTAGTGTT CAGAATGGAG ATGTGTGCCT TCACGATTTC ACTGGAAAAC AGCACATGTT TAACGAGAAG
                                                                                              2760
         GAAGATTCCT GCAATGGGAA AGGCCGTATG GCTCTCAGAA GGACTTCAAA GCGGGGAAGC
         TTACACTTTA TTGAGCAAAT GTGA
55
         Seq ID NO: 16 Protein sequence
         Protein Accession #: Eos sequence
                                     21
                                                                               51
                       11
         MVFSVROCGH VGRTEEVLLT FKIFLVIICL HVVLVTSLEE DTDNSSLSPP PDVTLSLLPS
60
         NETEKTKITI VKTFNASGVK PQRNICNLSS ICNDSAFFRG EIMFQYDKES TVPQNQHITN
                                                                                                120
         GTLTGVLSLS ELNTLNCTFT IKLNNTMNAC AVIAALERVK IRPMEHCCCS VRIPCPSSPE
                                                                                                180
          ELEKLQCDLQ DPIVCLADHP RGPPFSSSQS IPVVPRATVL SQVPKATSFA EPPDYSPVTH
                                                                                                240
          NVPSPIGEIQ PLSPQPSAPI ASSPAIDMPP QSETISSPMP QTHVSGTPPP VKASFSSPTV
          SAPANVNTTS APPVQTDIVN TSSISDLENQ VLQMEKALSL GSLEPNLAGE MINQVSRLLH
                                                                                                360
65
          SPPDMLAPLA QRLLKVVDDI GLQLNFSNTT ISLTSPSLAL AVIRVNASSF NTTTFVAQDP
                                                                                                420
         APRINCAPING APRISIGITIT LPSSLMONLP AHDMELASRV QFNFFETFAL FQDPSLENLS
LISYVISSSV ANLTVRNLTR NVTVTLKHIN PSQDELTVRC VFWDLGRNGG RGGWSDNGCS
                                                                                                480
          VKDRRLNETI CTCSHLTSFG VLLDLSRTSV LPAQMMALTF ITYIGCGLSS IFLSVTLVTY
                                                                                                600
          IAPEKTRRDY PSKILIQLCA ALLLLNLVFL LDSWIALYKM QGLCISVAVF LHYFLLVSFT WMGLEAFHMY LALVKVPNTY IRKYILKPCI VGWGVPAVVV TIILTISPDN YGLGSYGKPP
                                                                                                660
 70
                                                                                                720
          NGSPDDPCWI NNNAVFYITV VGYPCVIPLL NVSMFIVVLV QLCRIKKKKQ LGAQRKTSIQ
                                                                                                780
          DLRSIAGLTF LLGITWGFAF PAWGPVNVTF MYLFAIFNTL QGFFIPIFYC VAKENVRKQW
                                                                                                840
          RRYLCCGKLR LAENSDWSKT ATNGLKKQTV NQGVSSSSNS LQSSSNSTNS TTLLVNNDCS
VHASGNGNAS TERNGVSFSV QNGDVCLHDF TGKQHMFNEK EDSCNGKGRM ALRRTSKRGS
                                                                                                900
 75
          Sec ID NO: 17 DNA secuence
          Nucleic Acid Accession #: Eos sequence
          Coding sequence: 1..2811
 80
                                     21
                                                    31
                                                                                51
                       11
          ATGGTTTTCT CTGTCAGGCA GTGTGGCCAT GTTGGCAGAA CTGAAGAAGT TTTACTGACG
          TTCAAGATAT TCCTTGTCAT CATTTGTCTT CATGTCGTTC TGGTAACATC CCTGGAAGAA
GATACTGATA ATTCCAGTTT GTCACCACCA CCTGAGGTTG AAACAACAAG CCTCAATGAT
                                                                                                120
                                                                                                180
 85
          GTTACTTTAA GCTTACTCCC TTCAAACGAA ACAGGCGTCA AACCCCAGAG AAATATCTGC
```

```
AATTTGTCAT CTATTTGCAA TGACTCAGCA TTTTTTTAGAG GTGAGATCAT GTTTCAATAT
         GATAAAGAAA GCACTGTTCC CCAGAATCAA CATATAACGA ATGGCACCTT AACTGGAGTC
                                                                                            360
        CTGTCTCTAA GTGAATTAAA ACGCTCAGAG CTCAACAAAA CCCTGCAAAC CCTAAGTGAG
                                                                                             420
        ACTTACTTTA TAATGTGTGC TACAGCAGAG GCCCAAAGCA CATTAAATTG TACATTCACA
 5
         ATAAAACTGA ATAATACAAT GAATGCATGT GCTGTAATAG CTGCTTTGGA AAGAGTAAAG
                                                                                             540
        ATTCGACCAA TGGAACACTG CTGCTGTTCT GTCAGGATAC CCTGCCCTTC CTCCCCAGAA
GAGTTGGAAA AGCTTCAGTG TGACCTGCAG GATCCCATTG TCTGTCTTGC TGACCATCA
                                                                                             600
                                                                                             660
         CGTGGCCCAC CATTITCTTC CAGCCAATCC ATCCCAGTGG TGCCTCGGGC CACTGTGCTT
                                                                                             720
         TCCCAGGTCC CCAAAGCTAC CTCTTTTGCT GAGCCTCCAG ATTATTCACC TGTGACCCAC
                                                                                             780
10
         AATGITCCCT CTCCAATAGG GGAGATTCAA CCCCTTTCAC CCCAGCCTTC AGCTCCCATA
                                                                                             840
        GCTTCCAGCC CTGCCATTGA CATGCCCCCA CAGTCTGAAA CGATCTCTTC CCCTATGCCC
CAAACCCATG TCTCCGGCAC CCCACCTCCT GTGAAAGCCT CATTTTCCTC TCCCACCGTG
                                                                                             900
         TCTGCCCCTG CGAATGTCAA CACTACCAGC GCACCTCCTG TCCAGACAGA CATCGTCAAC
                                                                                           1020
        ACCAGCAGTA TTTCTGATCT TGAGAACCAA GTGTTGCAGA TGGAGAAGGC TCTGTCCTTG
GGCAGCCTGG AGCCTAACCT CGCAGGAGAA ATGATCAACC AAGTCAGCAG ACTCCTTCAT
                                                                                           1080
15
         TCCCCGCCTG ACATGCTGGC CCCTCTGGCT CAAAGATTGC TGAAAGTAGT GGATGACATT
         GGCCTACAGC TGAACTTTTC AAACACGACT ATAAGTCTAA CCTCCCCTTC TTTGGCTCTG
                                                                                           1260
         GCTGTGATCA GAGTGAATGC CAGTAGTTTC AACACAACTA CCTTTGTGGC CCAAGACCCT
                                                                                           1320
         GCARATCTTC AGGTTTCTCT GGAAACCCAA GCTCCTGAGA ACAGTATTGG CACAATTACT
                                                                                           1380
20
         CTTCCTTCAT CGCTGATGAA TAATTTACCA GCTCATGACA TGGAGCTAGC TTCCAGGGTT
         CAGTICAATT TITTIGAAAC ACCIGCTITG TITCAGGATC CITCCCIGGA GAACCICTCI
                                                                                           1500
         CTGATCAGCT ACGTCATATC ATCGAGTGTT GCAAACCTGA CCGTCAGGAA CTTGACAAGA AACGTGACAG TCACATTAAA GCACATCAAC CCGAGCCAGG ATGAGTTAAC AGTGAGATGT
                                                                                           1560
         GTATTTTGGG ACTTGGGCAG AAATGGTGGC AGAGGAGGCT GGTCAGACAA TGGCTGCTCT
                                                                                            1680
25
         GTCRAAGACA GGAGATTGAA TGAAACCATC TGTACCTGTA GCCATCTAAC AAGCTTCGGC
GTTCTGCTGG ACCTATCTAG GACATCTGTG CTGCCTGCTC AAATGATGGC TCTGACGTTC
                                                                                           1740
                                                                                            1800
         ATTACATATA TTGGTTGTGG GCTTTCATCA ATTTTTCTGT CAGTGACTCT TGTAACCTAC
         ATAGCTTTTG AAAAGATCCG GAGGGATTAC CCTTCCAAAA TCCTCATCCA GCTGTGTGCT
                                                                                           1920
         GCTCTGCTTC TGCTGAACCT GGTCTTCCTC CTGGACTCGT GGATTGCTCT GTATAAGATG
CAAGGCCTCT GCATCTCAGT GGCTGTATTT CTTCATTATT TTCTCTTGGT CTCATTCACA
TGGATGGGCC TAGAAGCATT CCATATGTAC CTGGCCCTTG TCAAAGTATT TAATACTTAC
                                                                                           1980
30
                                                                                           2040
         ATCCGAAAAT ACATCCTTAA ATTCTGCATT GTCGGTTGGG GGGTACCAGC TGTGGTTGTG
                                                                                            2160
         ACCATCATCC TGACTATATC CCCAGATAAC TATGGGCTTG GATCCTATGG GAAATTCCCC
AATGGTTCAC CGGATGACTT CTGCTGGATC AACAACAATG CAGTATTCTA CATTACGGTG
                                                                                            2220
                                                                                            2280
35
         GTGGGATATT TCTGTGTGAT ATTTTTGCTG AACGTCAGCA TGTTCATTGT GGTCCTGGTT
         CAGCTCTGTC GAATTAAAAA GAAGAAGCAA CTGGGAGCCC AGCGAAAAAC CAGTATTCAA
                                                                                           2400
         GACCTCAGGA GTATCGCTGG CCTTACATTT TTACTGGGAA TAACTTGGGG CTTTGCCTTC
                                                                                           2460
         TTTGCCTGGG GACCAGTTAA CGTGACCTTC ATGTATCTGT TTGCCATCTT TAATACCTTA
         CAAGGATTTT TCATATTCAT CTTTTACTGT GTGGCCAAAG AAAATGTCAG GAAGCAATGG
                                                                                            2580
40
         AGGCGGTATC TTTGTTGTGG AAAGTTACGG CTGGCTGAAA ATTCTGGAAA TGCTTCTACA
                                                                                            2640
         GAGAGGAATG GGGTCTCTTT TAGTGTTCAG AATGGAGATG TGTGCCTTCA CGATTTCACT
                                                                                            2700
         GGAAAACAGC ACATGTTTAA CGAGAAGGAA GATTCCTGCA ATGGGAAAGG CCGTATGGCT
         CTCAGAAGGA CTTCAAAGCG GGGAAGCTTA CACTTTATTG AGCAAATGTG A
45
         Seq ID NO: 18 Protein sequence
         Protein Accession #: Eos sequence
                                   21
                      11
         NVFSVRQCGH VGRTEEVLLT FKIFLVIICL HVVLVTSLEE DTDNSSLSPP PEVETTSLND
VTLSLLPSNE TGVKPQRNIC NLSSICNDSA FFRGEIMPQY DKESTVPQNQ HITNGTLTGV
                                                                                              60
50
                                                                                             120
         LSLSELKRSE LNKTLQTLSE TYPIMCATAE AQSTLNCTFT IKLNNTMNAC AVIAALERVK
         IRPMEHCCCS VRIPCPSSPE ELBKLQCDLQ DPIVCLADHP RGPPFSSQS IPVVPRATVL SQVPKATSFA EPPDYSPVTH NVPSPIGEIQ PLSPQPSAPI ASSPAIDMPP QSETISSPMP
                                                                                             240
                                                                                             300
         OTHYSGTPPP VKASPSSPTV SAPANVNTTS APPYQTDIVN TSSISDLENQ VLQMEKALSL
55
         GSLEPNLAGE MINQVSRLLH SPPDMLAPLA QRLLKVVDDI GLQLNFSNTT ISLTSPSLAL
                                                                                              420
         AVIRVNASSF NTTTFVAQDP ANLQVSLETQ APENSIGTIT LPSSLMNNLP AHDMELASRV
                                                                                              480
         QFMFPETPAL FQDPSLENLS LISYVISSSV ANLTVRNLTR NVTVTLKHIN PSQDELTVRC
                                                                                              540
         VFWDLGRNGG RGGWSDNGCS VKDRRLNETI CTCSHLTSFG VLLDLSRTSV LPAQMMALTF
         ITYIGCGLSS IFLSVTLVTY IAFEKIRRDY PSKILIQLCA ALLLLNLVFL LDSWIALYKM
                                                                                              660
60
         QGLCISVAVF LHYFLLVSFT WMGLEAFHMY LALVKVFNTY IRKYLLKPCI VGWGVPAVVV
TILLTISPDN YGLGSYGKFP NGSPDDFCWI NNNAVFYITV VGYFCVIFLL NVSMFIVVLV
                                                                                              720
                                                                                              780
         QLCRIKKKKQ LGAQRKTSIQ DLRSIAGLTF LLGITWGFAF FAWGPVNVTF MYLFAIFNTL
         OGFFIFIFYC VAKENVRKOW RRYLCCGKLR LAENSGNAST ERNGVSFSVQ NGDVCLHDFT
                                                                                              900
         GKQHMFNEKE DSCNGKGRMA LRRTSKRGSL HFIEQM
65
         Seg ID NO: 19 DNA sequence
         Nucleic Acid Accession #: Bos sequence
         Coding sequence: 1..3045
                                  21
                      11
 70
         ATGGTTTTCT CTGTCAGGCA GTGTGGCCAT GTTGGCAGAA CTGAAGAAGT TTTACTGACG
TTCAAGATAT TCCTTGTCAT CATTTGTCTT CATGTCGTTC TGGTAACATC CCTGGAAGAA
                                                                                               60
                                                                                              120
         GATACTGATA ATTCCAGTTT GTCACCACCA CCTGCTAAAT TATCTGTTGT CAGTTTTGCC
         CCCTCCTCCA ATGAGGTTGA AACAACAAGC CTCAATGATG TTACTTTAAG CTTACTCCCT
                                                                                              240
 75
         TCANACGANA CAGANANANC TANANTCACT ATAGTANANA CCTTCANTGC TTCAGGCGTC ANACCCCAGA GANATATCTG CANTTTGTCA TCTATTTGCA ATGACTCAGC ATTTTTTAGA
                                                                                              300
         GGTGAGATCA TGTTTCAATA TGATAAAGAA AGCACTGTTC CCCAGAATCA ACATATAACG
          AATGGCACCT TAACTGGAGT CCTGTCTCTA AGTGAATTAA AACGCTCAGA GCTCAACAAA
                                                                                              480
         ACCCTGCAAA CCCTAAGTGA GACTTACTTT ATAATGTGTG CTACAGCAGA GGCCCAAAGC
ACATTAAATT GTACATTCAC AATAAAACTG AATAATACAA TGAATGCATG TGCTGCAATA
                                                                                              540
 80
                                                                                              600
          GCCGCTTTGG AAAGAGTAAA GATTCGACCA ATGGAACACT GCTGCTGTTC TGTCAGGATA
          CCCTGCCCTT CCTCCCCAGA AGAGTTGGGA AAGCTTCAGT GTGACCTGCA GGATCCCATT
                                                                                              720
         GTCTGTCTTG CTGACCATCC ACGTGGCCCA CCATTTTCTT CCAGCCAATC CATCCAGTG
GTGCCTCGGG CCACTGTGCT TTCCCAGGTC CCCAAAGCTA CCTCTTTTGC TGAGCCTCCA
                                                                                              780
                                                                                              840
 85
          GATTATTCAC CTGTGACCCA CAATGTTCCC TCTCCAATAG GGGAGATTCA ACCCCTTTCA
```

	CCCCAGCCTT	CAGCTCCCAT	AGCTTCCAGC	CCTGCCATTG	ACATGCCCCC	ACAGTCTGAA	960
			CCAAACCCAT				1020
	ACGAICICIT	CCCCTATGCC	CCAMACCCAI	GICICCGGCA	CCCCACCTCC	TOTOMANCE	
	TCATTTTCCT	CTCCCACCGT	GTCTGCCCCCT	GCGAATGTCA	ACACTACCAG	CGCACCTCCT	1080
			CACCAGCAGT				1140
5							
J	ATGGAGAAGG	CTCTGTCCTT	GGGCAGCCTG	GAGCCTAACC	TCGCAGGAGA	AATGATCAAC	1200
	CARGTCAGCA	CACTOCTTCA	TTCCCCCCCCT	GACATGCTGG	CCCCTCTGGC	TCAAAGATTG	1260
							1320
	CIGAAAGTAG	TGGATGACAT	TGGCCTACAG	CIGAACITIT	CAAACACGAC	TATAAGTCTA	
	ACCTCCCCTT	CTTTGGCTCT	GGCTGTGATC	AGAGTGAATG	CCAGTAGTTT	CAACACAACT	1380
			TGCAAATCTT				1440
1.0							
10	AACAGTATTG	GCACAATTAC	TCTTCCTTCA	TCCCTGATGA	ATAATTTACC	AGCTCATGAC	1500
	ATCCACCTAC	CUTCUDACCOT	TCAGTTCAAT	AAADTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	CACCTGCTTT	GTTTCAGGAT	1560
			TCTGATCAGC				1620
	ACCGTCAGGA	ACTIGACAAG	AAACGTGACA	GTCACATTAA	AGCACATCAA	CCCGAGCCAG	1680
			TGTATTTTGG				
1 -							1740
15	TGGTCAGACA	ATGGCTGCTC	TGTCAAAGAC	AGGAGATTGA	ATGAAACCAT	CTGTACCTGT	1800
			CCTTCTGCTG				1860
	CAAATGATGG	CTCTGACGTT	CATTACATAT	ATTGGTTGTG	GGCTTTCATC	AATTTTTCTG	1920
	MOR COOR COO	THE PARTY IN COURT	CATAGCTTTT	CARRACATOO	CCACCCATTA	CCCTTCCAAA	1980
	ATCCTCATCC	AGCTGTGTGC	TGCTCTGCTT	CTGCTGAACC	TGGTCTTCCT	CCTGGACTCG	2040
20	TYCCATTCCTC	TYTATABOAT	GCAAGGCCTC	TOPATOTOAG	TCCCTCTATT	TCTTCATTAT	2100
20	IGOVITIONIC	IGINIMONI	GCAMOGCCIC				
	TTTCTCTTGG	TCTCATTCAC	ATGGATGGGC	CTAGAAGCAT	TCCATATGTA	CCTGGCCCTT	2160
	CTCAAACTAT	TTAATACTTA	CATCCGAAAA	TACATCCTTA	AATTCTGCAT	TGTCGGTTGG	2220
							2280
			GACCATCATC				
	GGATCCTATG	GGAAATTCCC	CAATGGTTCA	CCGGATGACT	TCTGCTGGAT	CAACAACAAT	2340
25			GGTGGGATAT				2400
23							
	ATGTTCATTG	TGGTCCTGGT	TCAGCTCTGT	CGAATTAAAA	AGAAGAAGCA	ACTGGGAGCC	2460
			AGACCTCAGG				2520
			CTTTGCCTGG				2580
			ACAAGGATTT				2640
30							
30			GAGGCGGTAT				2700
	AATTYTTAA	GGAGTAAAAC	TGCTACTAAT	GGTTTAAAGA	AGCAGACTGT	AAACCAAGGA	2760
					0010011000	G1 GG1 G1 GEG	2820
			CTTACAGTCA				
	CTAGTGAATA	ATGATTGCTC	AGTACACGCA	AGCGGGAATG	GAAATGCTTC	TACAGAGAGG	2880
			TCAGAATGGA				2940
25							-
35	CAGCACATGT	TTAACGAGAA	GGAAGATTCC	TGCAATGGGA	AAGGCCGTAT	GGCTCTCAGA	3000
			CTTACACTTT				
	AGGACTICAA	HOCOGGANG	CIIACACIII	ATTUNGCAAA	IGIGA		
	Seg ID NO:	20 Protein	secuence:				
				_			
40	Protein Acc	ession #: I	gos sednauce				
40	1	11	21	31	41	51	
					i -	•	
	1	1	1	1			
	1	1	}	1	1	1	
	 MVFSVRQCGH	 VGRTEEVLLT	FKIFLVIICL	 HVVLVTSLEE	DTDNSSLSPP	 PAKLSVVSFA	60
	PSSNEVETTS	LNDVTLSLLP	SNETEKTKIT	IVKTFNASGV	KPQRNICNLS	SICNDSAFFR	120
	PSSNEVETTS GEIMFQYDKE	LNDVTLSLLP STVPQNQHIT	SNETEKTKIT NGTLTGVLSL	IVKTFNASGV SELKRSELNK	KPQRNICNLS TLQTLSETYP	SICNDSAFFR IMCATAEAQS	
45	PSSNEVETTS GEIMFQYDKE	LNDVTLSLLP STVPQNQHIT	SNETEKTKIT NGTLTGVLSL	IVKTFNASGV SELKRSELNK	KPQRNICNLS TLQTLSETYP	SICNDSAFFR IMCATAEAQS	120 180
45	PSSNEVETTS GEIMFQYDKE TLNCTPTIKL	LNDVTLSLLP STVPQNQHIT NNTMNACAAI	SNETEKTKIT NGTLTGVLSL AALERVKIRP	IVKTFNASGV SELKRSELNK MEHCCCSVRI	KPORNICNLS TLOTLSETYP PCPSSPEELG	SICNDSAFFR IMCATAEAQS KLQCDLQDPI	120 180 240
45	PSSNEVETTS GEIMFQYDKE TLNCTPTIKL	LNDVTLSLLP STVPQNQHIT NNTMNACAAI	SNETEKTKIT NGTLTGVLSL	IVKTFNASGV SELKRSELNK MEHCCCSVRI	KPORNICNLS TLOTLSETYP PCPSSPEELG	SICNDSAFFR IMCATAEAQS KLQCDLQDPI	120 180 240 300
45	PSSNEVETTS GEIMFQYDKE TLNCTFTIKL VCLADHPRGP	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP	KPORNICNLS TLOTLSETYP PCPSSPEELG DYSPVTHNVP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS	120 180 240 300
45	PSSNEVETTS GEIMPQYDKE TLNCTPTIKL VCLADHPRGP PQPSAPIASS	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP	120 180 240 300 360
45	PSSNEVETTS GEIMFQYDKE TLNCTPTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SF6SPTVSAP QVSRLLHSPP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL	120 180 240 300 360 420
	PSSNEVETTS GEIMFQYDKE TLNCTPTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SF6SPTVSAP QVSRLLHSPP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL	120 180 240 300 360
	PSSNEVETTS GEIMFQYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE	120 180 240 300 360 420 480
45 50	PSSNEVETTS GEIMFQYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL	120 180 240 300 360 420 480 540
	PSSNEVETTS GEIMFQYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL	120 180 240 300 360 420 480
	PSSNEVETTS GEIMPQYDKE TLNCTPTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNPSNTTISL SLMNNLPAHD VTLKHINPSQ	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTE MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TPVAQDPANL PSLENLSLIS WSDNGCSVKD	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC	120 180 240 300 360 420 480 540
	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPAHD VTLKHINPSQ DLSRTSVLPA	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAFTICTC EKIRRDYPSK	120 180 240 300 360 420 480 540 600 660
	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPAHD VTLKHINPSQ DLSRTSVLPA	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTE MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAFTICTC EKIRRDYPSK	120 180 240 300 360 420 480 540
	PSSNEVETTS GEIMPOYDKE TLNCTPTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SPSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG	SICNDSAFFR IMCATARAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL	120 180 240 300 360 420 480 540 600 660 720
50	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP TVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTWMG GSYGKFPNGS	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETOAPE YVISSSVANL RRLHETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN	120 180 240 300 360 420 480 540 600 660 720 780
	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP TVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTWMG GSYGKFPNGS	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETOAPE YVISSSVANL RRLHETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN	120 180 240 300 360 420 480 540 600 660 720
50	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLI NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY	LNDVTLSLLP STVPQNQHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLHLVFLLDS YILKFCIVGM FCVIFLLNVS	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSIGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPPILAGEMIN RVNASSPNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKKQLGA	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVIENVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL FVAQDPANL WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKPPMGS QRKTSIQDLR	SICNDSAFFR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSYUANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG	120 180 240 300 360 420 480 540 600 660 720 780 840
50	PSSNEVETTS GEIMPOYDKE TINCTFTIKL VCLADHPRGP POPSAPIASS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVPYITVVGY ITWGFAFFAW	LNDVTLSLLP STVPQNGHIT NNTHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMLPAHD VTLKHIMPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW FCVIFLLNVS GPVNVTFMYL	SNETEKTKIT NGTLTGVLSI AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW OMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRIGGRIGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL RIKKKQLGA PIFIFYCVAK	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQWRRY	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIPLLG LCCGKLRLAE	120 180 240 300 360 420 480 540 660 720 780 840 900
50	PSSNEVETTS GEIMPOYDKE TINCTFTIKL VCLADHPRGP POPSAPIASS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVPYITVVGY ITWGFAFFAW	LNDVTLSLLP STVPQNGHIT NNTHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMLPAHD VTLKHIMPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW FCVIFLLNVS GPVNVTFMYL	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSIGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRIGGRIGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL RIKKKQLGA PIFIFYCVAK	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQWRRY	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIPLLG LCCGKLRLAE	120 180 240 300 360 420 480 540 600 660 720 780 840
50	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWBKTATN	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLHLVPLLDS YILKFCIVGM FCVIPLLNVS GPVNVTEMYL GLKKQTVNQG	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGF VSSSNSLQS	IVKTFNASGV SELKRSELNK MEHCCCSVIP PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVELHY LTISPDNYGL RIKKKQLGA PIFIFYCKAS SSNSTNSTTL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWBKTATN	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLHLVPLLDS YILKFCIVGM FCVIPLLNVS GPVNVTEMYL GLKKQTVNQG	SNETEKTKIT NGTLTGVLSI AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW OMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF	IVKTFNASGV SELKRSELNK MEHCCCSVIP PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVELHY LTISPDNYGL RIKKKQLGA PIFIFYCKAS SSNSTNSTTL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGPAFFAW NSDWEKTATN NGVSPSVQNG	LNDVTLSLLP STVPQNGHIT NNTHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFLLNVS GPVNVTPMYL GLKKQTVMQG DVCLHDPTGK	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTI MFIVVLVI PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS	IVKTFNASGV SELKRSELNK MEHCCCSVIP PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVELHY LTISPDNYGL RIKKKQLGA PIFIFYCKAS SSNSTNSTTL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGPAFFAW NSDWEKTATN NGVSPSVQNG	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLHLVPLLDS YILKFCIVGM FCVIPLLNVS GPVNVTEMYL GLKKQTVNQG	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTI MFIVVLVI PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS	IVKTFNASGV SELKRSELNK MEHCCCSVIP PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVELHY LTISPDNYGL RIKKKQLGA PIFIFYCKAS SSNSTNSTTL	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO:	LNDVTLSLLP STVPQNOHIT NINTHNACAAI PFSSSGIPV PAIDMPPQSE LINENTIISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKPCIVGM FCVIFLLNVS GPVNVTENYL GLKKQTVNQG DVCLHDFTGK 21 DNA 8eQ	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WTALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS	IVKTFNASGV SELKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW PCVIPLLNVS GPVNVTPMYL GLKRQTVNQG DVCLHDPTGK 21 DNA seq id Accessio	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITLY WITALYKMOGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGP VSSSSNSLQS QHMFNEKEDS uence n #: NM_005	IVKTFNASGV SELKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac	LNDVTLSLLP STVPQNOHIT NINTHNACAAI PFSSSGIPV PAIDMPPQSE LINENTIISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKPCIVGM FCVIFLLNVS GPVNVTENYL GLKKQTVNQG DVCLHDFTGK 21 DNA 8eQ	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITLY WITALYKMOGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGP VSSSSNSLQS QHMFNEKEDS uence n #: NM_005	IVKTFNASGV SELKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS GRKTSIQDLR ENVRKQWRRY LVNNDCSVHA RTSKRGSLHP	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNI SIAGLIFLLG LCCGKLRLAE SGNGNASTER IEQM	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGW PCVIPLLNVS GPVNVTPMYL GLKRQTVNQG DVCLHDPTGK 21 DNA seq id Accessio	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITLY WITALYKMOGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGP VSSSSNSLQS QHMFNEKEDS uence n #: NM_005	IVKTFNASGV SELKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQWRRY LVNNDCSVHA	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVPLLDS YILKPCIVGM FCVIFLLNVS GPVNVTFMYL GLKKQTVNQG DVCHDFTGK 21 DNA seq id Accessio Lence: 37	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLQG QUMFNEKEDS UBENCE n #: NM_005	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPPILAGEMIN RVNASSPNTT FFETPALPQD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDHYGL RIKKKQLGA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS GRKTSIQDLR ENVRKQWRRY LVNNDCSVHA RTSKRGSLHP	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNI SIAGLIFLLG LCCGKLRLAE SGNGNASTER IEQM	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55 60	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac Coding seq	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFLLMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio. Lence: 37	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LUENCE 1 #: NM_005 3117 21	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVELHY LTISPDNYGL RIKKKQLGA PIFIFFVALFQD SSNSTNSTTL CNGKGRMALR 756.1	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIAETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTFLLGE LCCGKLRLAE SGNGNASTER IEQM	120 180 240 300 360 420 540 660 720 780 840 900 960
50 55	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSKTSVLPA LLNLVFLLSV YILKFCIVGW FCVIVTPMYL GEVNVTPMYL GLKKQTVNQG DVCLHDPTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITV GVPAVVVTII MFIVVLVQLC PAIFNTLQGP VSSSSNSLQS QHMFNEKEDS LEENCE M #: NM_005 3117 21 CGGGCAGGTGT	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSPMTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL LTISPDNYGL RIKKKQLGA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSEVITAVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVHKQWRRY LVNNDCSVHA RTSKRGSLHF	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA	120 180 240 300 360 420 600 660 720 780 840 900 960
50 55 60	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP PQPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSPSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG	LNDVTLSLLP STVPQNOHIT NNTMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHINPSQ DLSKTSVLPA LLNLVFLLSV YILKFCIVGW FCVIVTPMYL GEVNVTPMYL GLKKQTVNQG DVCLHDPTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITV GVPAVVVTII MFIVVLVQLC PAIFNTLQGP VSSSSNSLQS QHMFNEKEDS LEENCE M #: NM_005 3117 21 CGGGCAGGTGT	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSPMTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL LTISPDNYGL RIKKKQLGA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSEVITAVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVHKQWRRY LVNNDCSVHA RTSKRGSLHF	SICNDSAFPR IMCATAEAQS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA	120 180 240 300 360 420 600 660 720 780 840 900 960
50 55 60	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA	LNDVTLSLLP STVPQNGHIT NNTHNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DLSKTSVLPA LLNLVFLLDS YILKFCIVGW FCVIFILMVS GPVNVTFMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11] AGGACGCGAG GGATGGTTTT	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LEENCE M#: NM_005 3117 21 CGGGCAGGTGT CCGGCAGGTGT	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 756.1 31	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA	120 180 240 300 360 420 540 660 720 780 840 900 960
50 55 60	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ MSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCCGGGTCA GTTTTACTGA	LNDVTLSLLP STVPQNOHIT NNTHNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA DLSRTSVLPA CHEVICTUGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC PAIFNTLOGF VSSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGGCAGGTGT CTCTGTCAGG ATTCCTTGTCAGG ATTCCTTGTC	IVKTFNASGV SELKRSELMK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGAGGT CAGTGTGGCC ATCATTTGTC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP QVSRLHSPP SVTLVTYIAP SVTLVTYIAP FLLVSFTMMG GSYGKPPMGS QRKTSIQDLR ENVEKOMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTTT ATGTTGGCAG TTCATGTGGT	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SCNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA	120 180 240 300 360 420 540 660 720 780 840 900 960
50 55 60	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ MSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCCGGGTCA GTTTTACTGA	LNDVTLSLLP STVPQNOHIT NNTHNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA DLSRTSVLPA CHEVICTUGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC PAIFNTLOGF VSSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGGCAGGTGT CTCTGTCAGG ATTCCTTGTCAGG ATTCCTTGTC	IVKTFNASGV SELKRSELMK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGAGGT CAGTGTGGCC ATCATTTGTC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP QVSRLHSPP SVTLVTYIAP SVTLVTYIAP FLLVSFTMMG GSYGKPPMGS QRKTSIQDLR ENVEKOMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTTT ATGTTGGCAG TTCATGTGGT	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SCNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA	120 180 240 300 360 420 540 660 720 780 840 900 960
50 55 60	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP PQPSAPIASS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG CTCGCGGTCAAG TCCCTGGAAG	LNDVTLSLLP STVPQNGHIT NITMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ USTLKTVLPA LLHLVFLLDS YILKFCIVGM FCVIPLLNVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGGCAGGTGT CTCTGTCAGG ATTCCTGTCTGT	IVKTFNASGV SELKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL CNGKGRMALR 756.1 31 GCACAGAGGT CATCATTGCC ATCATTGCC TTGTCACCAC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSPP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS GRKTSIQDLR ENVRKQWRRY LVNNDCSVHA RTSKRGSLHP 41 I TCTCCACTIT ATGTTGGCAG TTCATGTTGTCACTTA	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA ATCTGGTAACA ATTATCTGTT	120 180 240 300 360 420 660 660 720 780 840 900 960
50556065	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVPYITVNGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGAA TCCCTGGAAG GTCAGTTTTG	LNDVTLSLLP STVPQNGHIT NITMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIPLIAVS GFVNVTFMYL GLKQTVNQG DVCLHDFTGK 21 DNA seq did Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA AAGATACTGA CCCCCTCCTC	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVVQLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE H#: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTGTCAGG CTAATTCCAGT CAATGAGGTT	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGLA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTGTC GAAACAACAA	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKFPNGS QKKTSIQDLR ENVEKQWRRY LVNNDCSVHA RTSKRGSLHP 41 TCTCCACTIT ATGTTGGCAG TTCATGTCGTTAA GCCTCAATGA	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFPLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA	120 180 240 300 360 420 480 540 660 720 780 960 960
50 55 60	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVPYITVNGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGAA TCCCTGGAAG GTCAGTTTTG	LNDVTLSLLP STVPQNGHIT NITMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIPLIAVS GFVNVTFMYL GLKQTVNQG DVCLHDFTGK 21 DNA seq did Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA AAGATACTGA CCCCCTCCTC	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVVQLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE H#: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTGTCAGG CTAATTCCAGT CAATGAGGTT	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGLA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTGTC GAAACAACAA	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKFPNGS QKKTSIQDLR ENVEKQWRRY LVNNDCSVHA RTSKRGSLHP 41 TCTCCACTIT ATGTTGGCAG TTCATGTCGTTAA GCCTCAATGA	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRLNETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA ATCTGGTAACA ATTATCTGTT	120 180 240 300 360 420 660 660 720 780 840 900 960
50556065	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCCAGTTTTG AGCTTACTCC	LNDVTLSLLP STVPQNOHIT NITHNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DUSRTSVLPA LLNLVFLLDS YILKPCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio ence: 37 11 aggaragaragaragaragaragaragaragaragarag	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WTALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS UEECE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT CAATGAGGTT AACAGAAAAA	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTTGTC TTGTCACCAC AACAACAA AACAACAA AACTAAAATCA	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCCACTIT ATGTTGGCAG TTCATGTGGT CACCTCAATGA	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA	120 180 240 300 360 420 540 660 720 780 840 900 960
50556065	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA TCCCTGGAAG GTCAGTTTG AGCTTACTGC AGCTTACTGC AGCTTACTGC	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCCTCCTCC CTTCAAACGA TCAAACCCCA	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT CAATGAGGTT AACAGAAAAA GAGAAAATATC	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA PIFIFFVALFQD GCACAGAGGT GCACAGAGGT TGCACATTGTC TTGTCACCAC GAAACAACAA TGCAATTGTT TGCAATTGT	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TVVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQMENY LVNNDCSVHA RTSKRGSLHP 41 TCTCCACTIT TCTCCACTIT ATGTTGGCAG TTCATGTCGT CACCTGCTAA CCTCATTAGAA CATCTATTTG	SICNDSAFPR IMCATAEAQS IMCATAEAQS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAGAAA TCTGGTAACA ATTATCTGTT TGTTACTTTA TGAATGACTCA	120 180 240 300 360 420 660 720 780 840 900 960
50556065	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA TCCCTGGAAG GTCAGTTTG AGCTTACTGC AGCTTACTGC AGCTTACTGC	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKFCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCCTCCTCC CTTCAAACGA TCAAACCCCA	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT CAATGAGGTT AACAGAAAAA GAGAAAATATC	IVKTFNASGV SELKRSELNK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA PIFIFFVALFQD GCACAGAGGT GCACAGAGGT TGCACATTGTC TTGTCACCAC GAAACAACAA TGCAATTGTT TGCAATTGT	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP TVVAQDPANL PSLENLSLIS WSDMGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPMGS QRKTSIQDLR ENVEKQMENY LVNNDCSVHA RTSKRGSLHP 41 TCTCCACTIT TCTCCACTIT ATGTTGGCAG TTCATGTCGT CACCTGCTAA CCTCATTAGAA CATCTATTTG	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA	120 180 240 300 360 420 540 660 720 780 840 900 960
50556065	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVPYITVNGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGAA TCCCTGGAAG GTCAGTTTTG AGCTTACTCC GCTTCAGCG GCATTTTTA	LNDVTLSLLP STVPQNGHIT NITMNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPAHD VTLKHINPSQ DUSRTSVLPA LLNLVFLLDS YILKFCIVGM FCVIPLLNVS GFVNVTFMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio ence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGTA ACCCCTCCTC CTCCAACCGA GGAGGTAGGT TCAAACCG GAGGTAGAT	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE 1 #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTGTC TAATTCCAGT CAATGAGAAAAA GAGAAAAATC CATGTTCAA	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGLA PIFIFYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTGTC GAACAACAA ATGAAATTGA TGTAAAATTGA TATGATAAAG	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKPPMGS QKYTSIQDLR ENVEKQWRRY LVNNDCSVHA ATSKRGSLHP 41 TCTCCACTIT ATGTTGGCAG TTCATGTCGTTAA GCCTCAATGA CCTCTAATGAC CTATATTATAA CATCTATTTGT	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFPLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA AACCTTCAAT TGCTCAAT TCCCCAGAAT	120 180 240 300 360 420 480 540 660 720 780 900 960
50556065	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCCAGTTTTG AGCTTACTCC GCTTCAGGCG GCATTTTTTA CAACATATAA	LNDVTLSLLP STVPQNOHIT NITHNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMNNLPAHD VTLKHIMPSQ DUSKTSVLPA LLHLVFLLDS YILKFCIVGM FCVIFILMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio elence: 37 11 aggaragatatatatatatatatatatatatatatatata	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WTALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LUCCE M#: NM_00S 3117 21 CGGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT TAATTCCAGT TAACTGAGAAAA GAGAAATATC CATGTTTCAA CTTAACTGGA	IVKTFNASGV SELKRSELMK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 31 GCACAGAGGT CAGTGTGGCC ATCATTTGTC TTGTCACCAC ACTANANTCA ACTANANTCA ACTANANTCA TGCAATTTGT TATGATANAG GTCCTGTCTC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSONGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TTCATGTGGT CACCTGCTAAT AGCCTGATTAA CATCTATTGG AAAGCACTGT TAAGTGAAAT CATCTATTGG AAAGCACTGT TAAGTGAAAT CATCTATTGG AAAGCACTGT TAAGTGAAAT TAAGTGAAT TAAGTGAAAT TAAGTGAAAT TAAGTGAAAT TAAGTGAAAT TAAGTGAAAT TAAGTGAATT	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT AAAACGCTCA	120 180 240 300 360 420 540 660 720 780 840 900 960 120 180 240 300 360 420 480 540
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGA TCCCTGGAAG GTCAGTTTTG AGCTTACTCC GCTTCAGGCG GCATTTTTAC CACATATAA CAACATATAA CAGCTCAACA	LNDVTLSLLP STVPQNOHIT STVPQNOHIT NITNNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQULQ LINFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVPLLDS YILKFCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTT CGTTCAAGAT AAGATACTGA CCCCTCCTC CTTCAACGA TCAACCCCA GGGTGGGAT CTCAACCCA GGGTGGGAT CAGATGGCAC CAACCCCTGCA CACCCTGCA CACCCTGCA CCCTCCTCCAC CCCTCCTCC CCCTCCTCCAC CCCTCCTCC CCCTCCTCC CCCTCCTCC CCCTCCTC	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLOGF VSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGGCAGGTGT CTCTCTGTCAGG ATTCCTTGTCAGG ATTCCTTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCAGGAAAAA GAGAAATAC GAGAAAAA GAGAAATAC CATGTTTCAA GAGAAAAA ACTTAACTGGA AACCCTAAGT	IVKTFNASGV SELKRSELMK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQIGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGAGT TATGACCAC GAAACAACAA ACTAAAATCA TGCAATTGT TATGATAAAG GAGACTTACT GAGAGTTACT	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP QVSRLHSPP STVAQPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS QRKTSIQDLR ENVEKOWERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCGACTTA GCCTCAATGA GCCTCAATGA CATCTATTTG AAAGCACTGT TAAGTAAA CATCTATTTT AAAGCACTGT TAAGTGAATT TTATAAATGTG	SICNDSAFPR IMCATAEAQS IMCATAEAQS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTITCTGAA AACTGAGAAA TCTGGTAACA ATTATCTGTT TGTTACTTTA TGAATGACTCA TCCCCAGAAT TCAATGACTCA TGCTACAGCA	120 180 240 300 360 420 480 540 660 720 780 900 960
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL LILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGA TCCCTGGAAG GTCAGTTTTG AGCTTACTCC GCTTCAGGCG GCATTTTTAC CACATATAA CAACATATAA CAGCTCAACA	LNDVTLSLLP STVPQNOHIT STVPQNOHIT NITNNACAAI PFSSSGSIPV PAIDMPPQSE ISDLENQULQ LINFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVPLLDS YILKFCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTT CGTTCAAGAT AAGATACTGA CCCCTCCTC CTTCAACGA TCAACCCCA GGGTGGGAT CTCAACCCA GGGTGGGAT CAGATGGCAC CAACCCCTGCA CACCCTGCA CACCCTGCA CCCTCCTCCAC CCCTCCTCC CCCTCCTCCAC CCCTCCTCC CCCTCCTCC CCCTCCTCC CCCTCCTC	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLOGF VSSSNSLQS QHMFNEKEDS LEENCE n #: NM_005 3117 21 CGGGCAGGTGT CTCTCTGTCAGG ATTCCTTGTCAGG ATTCCTTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCAGGAAAAA GAGAAATAC GAGAAAAA GAGAAATAC CATGTTTCAA GAGAAAAA ACTTAACTGGA AACCCTAAGT	IVKTFNASGV SELKRSELMK MEHCCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQIGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGAGT TATGACCAC GAAACAACAA ACTAAAATCA TGCAATTGT TATGATAAAG GAGACTTACT GAGAGTTACT	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTINVP SFSSPTVSAP QVSRLHSPP QVSRLHSPP STVAQPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS QRKTSIQDLR ENVEKOWERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCGACTTA GCCTCAATGA GCCTCAATGA CATCTATTTG AAAGCACTGT TAAGTAAA CATCTATTTT AAAGCACTGT TAAGTGAATT TTATAAATGTG	SICNDSAFPR IMCATAEAQS IMCATAEAQS KLQCDLQDPI SPIGELQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTITCTGAA AACTGAGAAA TCTGGTAACA ATTATCTGTT TGTTACTTTA TGAATGACTCA TCCCCAGAAT TCAATGACTCA TGCTACAGCA	120 180 240 300 360 420 540 660 720 780 840 900 960 120 180 240 300 420 480 540 600
50556065	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGA TCCCTGGAAG GTCAGTTTTG AGCTTACTCC GCTTCAGGCG GCATTTTTA GAGCTAACA GAGGCCCAAA	LNDVTLSLLP STYPQNGHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFLINVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA Beq GAGAGGGGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCTCCTC CTTCAACGAG CCAATGAGAC GAAGTGAGAT CGAAGCCCAG GAGGTGAGAT CGAAGCCCAG GAGGTGAGAT CGAACCCCCAC CGAGGTGAGAT CGAACCCCCAC CGAGGTGAGAT CGAACCCCCAC CGAGCTGAGAT CGAACCCCCAC CGACTTAAA	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGP VSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTCAGG CATTGAGGTT AACAGAAAAA GGGAAATATC CATGTTTCAA CTTAACTGGA AACCCTAAGT TTGTACATTC	IVKTFNASGV SELKRSEINK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL ATGARATA 756.1 31 GCACAGAGGT CAGTGGGCC GAAACACA ACTAAAATCA TGCAATTTGT TATGATAAAG GTCCTGTCTC GACACTACT ACAATAAAAA	KPQRNICNLS TLOTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSSPP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKFPNGS GKYSIODLR ENVRKQWRRY LVNNDCSVHA ATSKRGSLHF 1 TCTCCACTTT ATGTTGGCAG TTCATGTGTAT GCCTCAATGA CTATAGTAAAA GCCTCAATGA CTATAGTAAAT AGCACTGTT AAGGCACTGT TAAGGGAAT TAAGGGAATT TAAGGGAATT TAATAATGTG TGAATAATAGT	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNI SIAGLIFILIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA ATTATCTGTT TGTTACTTTA AACCTTCAAT CAATGACTCA TCACCAGAAT AAAACGCTCA TCCCCAGAAT AAAACGCTCA ACTGACACA AATGAATGCA AATGAATGCA	120 180 240 300 360 420 480 540 660 720 780 900 960 120 180 240 300 360 480 540 660
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCTCACGGGTCA GTTTTACTGA GCTTCAGGCG GCATTTTTA AGCTTACTCC GCTTCAGGCG GCATTTTTA CAGCATATAA GAGCCCAAC GAGCCCAAC GAGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCACAC AGGCCCAAC AGGCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCCAAC AGGCCAAC AGG	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DUSKTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFILMVS GPVNVTFMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio ence: 37 11 aggacgcaga ggarggtttt CGTTCAAGAT AAGATACTGA CCCCCTCCTC CTTCAAACCCA GGAGGTGAGAT CGAATGGCAC AAACCCTGCA GCACATTAAA GCACATTAAA GCACCTTCA	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPOTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUCIC M#: NM_005 3117 21 CGGGCAGGTGT CTGTCTGGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG TAATTCCAGT CAATGAGGTT AACAGAAAAA GAGAAAAAA CGTAACTGGA AACCCTAAGT TTGTACATTG GGAAAGAGTA	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FVNASSPNTT FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT GCACAGAGGT TGTCACCAC ATCATTTGTC TTGTCACCAC ATCATTTGTC TGTAAAATCA TGCAATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTACT AACATTACT AACATTACACAC AACATTACACACA AAGATTCGAC AAGATTACACACA AAGATTCGAC AAGATTACACACA AAGATTCGAC	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR CHYNICOSVKA RTSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TTCATGTCGT CACCTGCTTAA GCCTCAATGA CATCTATTGG CACTGTTAATGTGT TAAGGAATT TTAAATGTG TAAGGAATT TTAAATGTG TGAATGAA	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACAA ATTATCTGTT TGTTACTTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT ARAACGCTCA AATGAATCA CTGCTGCTGTT	120 180 240 300 360 420 540 660 720 780 900 960 120 180 240 300 360 420 420 660 660 660 660 720
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCTCACGGGTCA GTTTTACTGA GCTTCAGGCG GCATTTTTA AGCTTACTCC GCTTCAGGCG GCATTTTTA CAGCATATAA GAGCCCAAC GAGCCCAAC GAGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCCAAC AGGCCCAAC AGGCCCACAC AGGCCCAAC AGGCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCAAC AGGCCCAAC AGGCCAAC AGG	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DUSKTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFILMVS GPVNVTFMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio ence: 37 11 aggacgcaga ggarggtttt CGTTCAAGAT AAGATACTGA CCCCCTCCTC CTTCAAACCCA GGAGGTGAGAT CGAATGGCAC AAACCCTGCA GCACATTAAA GCACATTAAA GCACCTTCA	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPOTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUCIC M#: NM_005 3117 21 CGGGCAGGTGT CTGTCTGGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG TAATTCCAGT CAATGAGGTT AACAGAAAAA GAGAAAAAA CGTAACTGGA AACCCTAAGT TTGTACATTG GGAAAGAGTA	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FVNASSPNTT FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT GCACAGAGGT TGTCACCAC ATCATTTGTC TTGTCACCAC ATCATTTGTC TGTAAAATCA TGCAATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTTGT TGTACACAC AACATTACT AACATTACT AACATTACACAC AACATTACACACA AAGATTCGAC AAGATTACACACA AAGATTCGAC AAGATTACACACA AAGATTCGAC	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR CHYNICOSVKA RTSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TTCATGTCGT CACCTGCTTAA GCCTCAATGA CATCTATTGG CACTGTTAATGTGT TAAGGAATT TTAAATGTG TAAGGAATT TTAAATGTG TGAATGAA	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACAA ATTATCTGTT TGTTACTTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT ARAACGCTCA AATGAATCA CTGCTGCTGTT	120 180 240 300 360 420 480 540 660 720 780 900 960 120 180 240 300 360 480 540 660
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGPAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq I AGCCAGCCCG GCTCCAGGGGTCA GTTTTACTGA TCCCTGGAGG GTCAGTTTTG AGCTTACTCC GCTTCAGGCG GCATTTTTTA CAACATTATA GAGGCCCAAC TCGCGCCAAC GAGGCCCAAC TCGCTGCAAC GAGGCCCAAC TCGCTGCAAC GAGGCCCAAC TCTGCTGCAA TCTGTCAGGAA TCTGTCAGGAA	LNDVTLSLLP STVPQNOHIT NTMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFENTTISL SLMNNLPAHD VTLKHINPSQ DLSRTSVLPA LLNLVFLLDS YILKPCIVGM PCVIFLLNVS GLKKQTVNQG DVCLHDPTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCCTCCTC CTTCAAACGA TCAAACCCCA GAGTGGGTATT TCAGATCTAA GAACCCCC CACCTCCTCC CACCCCCCCCCC	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS LUCIC AFT SNM_005 3117 21 CGGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT TAACTGAGAAAAA GAGAAATATC CATGTTTCAA CTTAACTGGA ATCCCTAAGT TTGTACATTC GGAAAGAGTA TTGTACATTC GGGAAAGGTT TGTACATTC GGAAAAGGTT TTGTACATTC GGAAAAGGTT TTGTACATTC GGAAAAGGTT TTGTACATTC GGAAAAGGTT TTGTACATTC GGAAAGGTT TTCTCCCCCA	IVKTFNASGV SELKRSELMK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SINSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTTGTC TGACACAC ACAAAATCA TGCAATTTGT TATGATAAAGC GAGAGTTCGT GAGACTTACT ACAATAAAAC AAGATTGGC AAGAGTTGGC ACAATAAAAC AAGAATTCGT ACAATAAAAC AAGAATTCGT ACAATAAAAC AAGAATTGGC AAGAATTGGC AAGAATTGGC ACAATAAAAC AAGAATTGGC AAGAATTGCC AAGAATTGGC AAG	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TVVAQDPANL PSLENLSLIS WSONGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCCACTIT AGGIACT CACTGCTAA GCCTCAATGA CCTCAATGA AAGCACTGT TAAGTGAAAA CATCTATTG AAAGCACTGT TTAAGTGAATT TTAAGTGAATT TTAAGTGAATT CCAATGGAACT GAATGATAC GAAAGCTTCA GAAAGCTTCA	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SCNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA TGTTACTTTA TAAACGCTCA TCCCCAGAAT TCAATGAATGA TCCCCAGAAT AAAACGCTCA TGCTACAGCA AATGAATGCA AATGAATGCA CTGCTGCTGT GTGTGACCTG	120 180 240 300 360 420 540 660 720 780 840 960 960 120 180 240 300 420 480 540 660 720 780
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGC GCTTCAGGAG GTCAGTTTTG AGCTTATTCA GCGTTACTCC GCTTCAGGAG GCATTTTTA AGACATATAA GAGCCAACA TGTGCTCAACA TGTGCTCAAG TGTGTCAGGAG CAGGATCCCA	LNDVTLSLLP STYPQNGHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFLINVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA Beq GAGAGGGGAG GGATGGTTTT CGTTCAAGAT AGGACGCCAG GGATGGTTTT CGTTCAAGAT CCCCTCTC CTCAACGAA CCCTCCTC CTCAACGAA CCCTCCTC CTCAACGAA CCAATGGCAC GAGGTGAGAT TAGCCCAC GACCTGCCC CCTCCTCTC CTCAACGAA CCAATTAAA TAGCCCAC CGACTGAGAT TAGCCCTCTC TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVKSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTCAGG CAATGAGGTT AACAGAAAAA GGGAAATATC CATGTTTCAA CTTAACTGGA AACCTAAGT TTGTTAACTGGG AATCCTCACT GGAAAGAGTT TTGTTACTTGT GGAAAGAGTT TTGTTACTCCCCA TTGCTCACCAT	IVKTFNASGV SELKRSEINK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL ATTICK CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGGCC GAAACACA ACTATAGTC GAACTACAA ACTAAATTCA TATGATAAAG GTCCTGTCTC GACACTACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC CACATGGCC CACGTGGCC CCCCTGGCC CCCTGGCC CCCCTGGCC CCCCTGTCT CCCCTGTCT CCCCTCTCT CCCCTCT CCCCT	KPQRNICNLS TLOTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP UVSRLHSSP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKFPNGS GKYSIODLR ENVRKQWRRY LVNNDCSVHA ATSKRGSLHF 1 TCTCCACTIT ATGTGGCAG TTCATGTGGTA GCCTCAATGA CTATAGTAAAA CACTATATTG AAAGCACTGT TAAGGAATGA CATTAGTAATAC CAATGGAATGA CATTAGTAATAC CAATGGAATGA CATTAGTAAAA CATTATTTG CAAAGGATTT TGAATAATAC CAAAGGATTC CAAAGGATTT CAAAAGCTTTA CAAAGGTTCA CACCATTTTC CAAAAGCTTTA CAAAGGTTCA CACCATTTTC CAACGCTTTTC CAAAAGCTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CACCACTTTTC CAACAGCTTTTC CAACAGCTTTTC CACCACTTTTC CACCACTTTC CACCACTTTTC CACCACTTTC CACCACTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCAC	SICNDSAFPR IMCATARAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFILIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA AATGATCAAT TGGTAACA ATTATCTGTT TGTTACTTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT AAAACGCTCA TGCTACAGCA AATGATGCA TGCTACGCAC TGCTGCTGTTT TGTTGCTGTTT TGTTGCTGTTT TGTTGCTGCTGTTT TGTTGCTGCCTGC	120 180 240 300 360 420 660 720 780 960 120 180 300 360 480 540 660 720 780 840
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWEKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGC GCTTCAGGAG GTCAGTTTTG AGCTTATTCA GCGTTACTCC GCTTCAGGAG GCATTTTTA AGACATATAA GAGCCAACA TGTGCTCAACA TGTGCTCAAG TGTGTCAGGAG CAGGATCCCA	LNDVTLSLLP STYPQNGHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPAHD VTLKHINPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIFLINVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA Beq GAGAGGGGAG GGATGGTTTT CGTTCAAGAT AGGACGCCAG GGATGGTTTT CGTTCAAGAT CCCCTCTC CTCAACGAA CCCTCCTC CTCAACGAA CCCTCCTC CTCAACGAA CCAATGGCAC GAGGTGAGAT TAGCCCAC GACCTGCCC CCTCCTCTC CTCAACGAA CCAATTAAA TAGCCCAC CGACTGAGAT TAGCCCTCTC TCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVKSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTCAGG CAATGAGGTT AACAGAAAAA GGGAAATATC CATGTTTCAA CTTAACTGGA AACCTAAGT TTGTTAACTGGG AATCCTCACT GGAAAGAGTT TTGTTACTTGT GGAAAGAGTT TTGTTACTCCCCA TTGCTCACCAT	IVKTFNASGV SELKRSEINK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPPNLAGEMIN RVNASSFNTT FFETPALFOD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL ATTICK CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGGCC GAAACACA ACTATAGTC GAACTACAA ACTAAATTCA TATGATAAAG GTCCTGTCTC GACACTACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC ACAATACAC CACATGGCC CACGTGGCC CCCCTGGCC CCCTGGCC CCCCTGGCC CCCCTGTCT CCCCTGTCT CCCCTCTCT CCCCTCT CCCCT	KPQRNICNLS TLOTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTV3AP UVSRLHSSP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSPTWMG GSYGKFPNGS GKYSIODLR ENVRKQWRRY LVNNDCSVHA ATSKRGSLHF 1 TCTCCACTIT ATGTGGCAG TTCATGTGGTA GCCTCAATGA CTATAGTAAAA CACTATATTG AAAGCACTGT TAAGGAATGA CATTAGTAATAC CAATGGAATGA CATTAGTAATAC CAATGGAATGA CATTAGTAAAA CATTATTTG CAAAGGATTT TGAATAATAC CAAAGGATTC CAAAGGATTT CAAAAGCTTTA CAAAGGTTCA CACCATTTTC CAAAAGCTTTA CAAAGGTTCA CACCATTTTC CAACGCTTTTC CAAAAGCTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CAACAGCTTTTC CACCACTTTTC CAACAGCTTTTC CAACAGCTTTTC CACCACTTTTC CACCACTTTC CACCACTTTTC CACCACTTTC CACCACTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCACTTTTC CACCAC	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIABTICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SCNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA TGTTACTTTA TAAACGCTCA TCCCCAGAAT TCAATGAATGA TCCCCAGAAT AAAACGCTCA TGCTACAGCA AATGAATGCA AATGAATGCA CTGCTGCTGT GTGTGACCTG	120 180 240 300 360 420 660 720 780 960 120 180 300 360 480 540 660 720 780 840
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TINCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVPYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GTTTTACTGA GTCTTCAGCCG GCATTTTG AGCTTACTCC GCTTCAGCCG GCATTTTTTT CAACATATAA GAGCTCAACA AGGGCCCAA TCTGTCAGCA CTGGCTGCAA TCTGTCAGCA CAGGATCCCA TCTGTCAGCA CAGGATCCCAA TCTGTCAGCA CAGGATCCCAA	LNDVTLSLLP STYPQNOHIT NITHNACAAI PFSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPAHD VTLKHIMPSQ DUSHTSVLPA LLNLVFLLDS YILKFCIVGM FCVIPLLNVS GPVNVTFMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio ence: 37 11 AGGACGCGAG AGGATGCTTT CGTTCAAGAT AAGATACTGA AAGATACTGA AAGACCCA CGAATGCCAC CGAATGCCAC TCGACCTTCAACTT TACCCTGCCC TTGGTGCCTT TGGTGCCTCG	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPOTHE MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFN WIALYKMQGL GVPAVVVTII MFIVVLVQLC FATFNTLQGF VSSSSNSLQS QHMFNEKEDS LUCIC CGGCAGGTGT CTGTCAGG ATTCCTGTC TAATTCCAGT CAATTGAGGTT AACAGAAAAA GAGAAATATC CATGTTTCAA CTTAACTGGA AACCCTAAGT TTGTACATT GGCAATGGTT TTGTACATT GGGAAAGAGTA TTCCTCCCCA TGTCCCCCA TGTCCCCCA TGTCGCCCAT	IVKTFNASGV SELKRSELNK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSPNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL RIKKKQLGA RIKKKQLGA RIKKKQLGA RIKKKQLGA GACAGAGGT CAGTGTGCC GAACAALA TGCAATTTGC TTGTCACCAC GAACAACAA ACTAAAATCA TGCAATTTGC TATGATAAAG GTCCTGTCTC GAGAATTGT AAGATTAAAA CAGAATTGAC CAGAGATTGC CAGAGAGTTGGC CAGAGATTGC CAGAGTTGAC CACGGCC CCTTCCCAGG CCACTGGCC CTTCCCAGG CCACTGGCC CTTTCCCAGG CCACTGCCC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGG CCC CTTCCCCAGC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGG CCC CTTTCCCCAGG CCC CTTTCCCAGG CCC CTTTCCCAGC CTTTCCCAGC CTCC CTC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHISPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD WSDNGCSVKD GSYGKFPNGS GRYGKFPNGS GRYGKFPNGS CHVEKQWRRY LVNNDCSVHA ATSKRGSLHP 41 TCTCCACTIT ATGTTGGCAG TTCATGTCST CACCTGCTAA CATCTATTTG CACTGCTAATGA CATCTATTTG TAAGTGAAT CATCTATTTG TAAGTGAAT TTAAGTGAAT CAATGAAAC CACCATTTT TGAATATTG CAATGGAACA GAAGGCTTCA CACCTTTTAAGTGAAT CAATGGAACA GAAGGTTCA CAATGGAACA GAAGGTTCA CACCTTTTC TCCCCAAAGCT TCCCCCAAAGC	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA AACCTTCAAT AAACGCTCA TGCTACAGCA CTGCTGCTGT GTGTGACCTG TTCCAGCCAA TTCCCCCAGATT AAAACGCTCA TGCTGCTGT TTCCAGCCAA TTCCCCCCAG	120 180 240 360 420 540 660 720 780 960 120 180 240 360 420 360 420 780 660 720 780 660 720 780 840 900 960
50 55 60 65 70	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq I AGCCAGCCCG GCTCCAGCAGC GTTTACTGA TCCCTGGAAG GTCAGTTTT AGGTTACTCC GCTTCAGGCG GCATTTTTTA GAGCTCAACA GAGGCCCAAC CAGCATCACA CAGCATTACA GAGGCCCAAC TCCATCCCAG CCAGCCCCA CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCAC CCATCCAC CCATCCCAC CCATCCCAC CCATCCAC CCATCCCAC CCATCCAC CCATCCAC CCATCCCAC CCATCCAC CCAT	LNDVTLSLLP STVPQNOHIT NITHNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFSNTTISL SLMNNLPAHD VTLKHIMPSQ DUSRTSVLPA LLNLVFLLDS YILKFCIVGM PCVIFILMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCTCCTC CTTCAAACGA TCAAACCCCA GAGTGGGATTTT CGTTCAAGTT TACCCTGCC TTGTCTGTCT TGTCTGTCT TGTGCCCCC CAGATTATTC CGAGTTATTC CGAGATTATTC CAGATTATTC CGAGTTATTT	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS USBROOK TCTCTGTCAGG ATTCCTTGTC TAATTCCAGT TAACAGAAAAA GAGAAATATC CATGTTTCAA CATGTTTCAA TTCATTCAGT TACAGAAAAA GAGAAATATC CATGTTTCAA TTGTACATTC GGAAAGAGTA TTGTACATTC TGGAACAT TGGTGACCAT TGGTGACCAT TGGCGACCTT GGCCACTGT ACCTGTGACC	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SIFIFTYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTTOTC TGACACACA ACAACAACAA GCAATTOTT TATGATAAAG GTCCTGTCTC GAGACTTCT ACAATTAACA GAAGATTCGA CAAGAGTTGG CCACCTGGCC CTTTCCCAGG CCACATGTTCC CAGACTTCC CAGAGGTTGGCC CACATGTCGC CCACATGTCC CACATTCGCC CCTTTCCCAGG CCACATGTCC CACATGTCC CACAT	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVERQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCCACTIT AGGGCAG TTCATGGGT CACCTGCTAA GCCTCAATGA CATCTATTGG AAAGCACTGT TTAAGTGAAT CATCTATTGG TGAATGAATA CATCTATTG CAATGGAAT TTATAGTGAT GAATGATAC GAAAGCTTCA CACCATTTC CCCCAAAGC CCCTCTCCAATGC CCCCTCCCAAAGC CCCTCTCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAACAC CCCTCTCCCCAACC CCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCTCTCCCCAACAC CCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCCCCC	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTTTT TGTTACTTTA TGTTACTTTA TGTACTTA TAGAGCAA TAGAGCAC AATGAATGCA TCCCAGCAA AATGAATGCA TCCCAGCAA TAGACTCTTTTT TGTGTGCTGT TTCCAGCCAA TACCTCTTTT TGGGGGAGATT	120 180 240 300 360 420 540 660 720 780 840 960 120 180 240 300 420 480 540 660 720 780 840 960
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq I AGCCAGCCCG GCTCCAGCAGC GTTTACTGA TCCCTGGAAG GTCAGTTTT AGGTTACTCC GCTTCAGGCG GCATTTTTTA GAGCTCAACA GAGGCCCAAC CAGCATCACA CAGCATTACA GAGGCCCAAC TCCATCCCAG CCAGCCCCA CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCAG CCAGCCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCCAC CCATCCCAC CCATCCCCAC CCATCCCAC CCATCCAC CCATCCCAC CCATCCCAC CCATCCAC CCATCCCAC CCATCCAC CCATCCAC CCATCCCAC CCATCCAC CCAT	LNDVTLSLLP STVPQNOHIT NITHNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQULQ LNFSNTTISL SLMNNLPAHD VTLKHIMPSQ DUSRTSVLPA LLNLVFLLDS YILKFCIVGM PCVIFILMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio Lence: 37 11 AGGACGCGAG GGATGGTTTT CGTTCAAGAT AAGATACTGA CCCCTCCTC CTTCAAACGA TCAAACCCCA GAGTGGGATTTT CGTTCAAGTT TACCCTGCC TTGTCTGTCT TGTCTGTCT TGTGCCCCC CAGATTATTC CGAGTTATTC CGAGATTATTC CAGATTATTC CGAGTTATTT	SNETEKTKIT NGTLTGVLSL NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSNSLQS QHMFNEKEDS USBROOK TCTCTGTCAGG ATTCCTTGTC TAATTCCAGT TAACAGAAAAA GAGAAATATC CATGTTTCAA CATGTTTCAA TTCATTCAGT TACAGAAAAA GAGAAATATC CATGTTTCAA TTGTACATTC GGAAAGAGTA TTGTACATTC TGGAACAT TGGTGACCAT TGGTGACCAT TGGCGACCTT GGCCACTGT ACCTGTGACC	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGCGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SIFIFTYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATCATTTOTC TGACACACA ACAACAACAA GCAATTOTT TATGATAAAG GTCCTGTCTC GAGACTTCT ACAATTAACA GAAGATTCGA CAAGAGTTGG CCACCTGGCC CTTTCCCAGG CCACATGTTCC CAGACTTCC CAGAGGTTGGCC CACATGTCGC CCACATGTCC CACATTCGCC CCTTTCCCAGG CCACATGTCC CACATGTCC CACAT	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVERQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT TCTCCACTIT AGGGCAG TTCATGGGT CACCTGCTAA GCCTCAATGA CATCTATTGG AAAGCACTGT TTAAGTGAAT CATCTATTGG TGAATGAATA CATCTATTG CAATGGAAT TTATAGTGAT GAATGATAC GAAAGCTTCA CACCATTTC CCCCAAAGC CCCTCTCCAATGC CCCCTCCCAAAGC CCCTCTCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCCAAAGC CCCTCTCCCCAAAGC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAAACC CCCTCTCCCCAACAC CCCTCTCCCCAACC CCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCTCTCCCCAACAC CCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCCTCTCCCCAACAC CCCCTCTCCCCAACAC CCCCCCCC	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATTATCTGTT TGTTACTTTA AACCTTCAAT AAACGCTCA TGCTACAGCA CTGCTGCTGT GTGTGACCTG TTCCAGCCAA TTCCCCCAGATT AAAACGCTCA TGCTGCTGT TTCCAGCCAA TTCCCCCCAG	120 180 240 300 360 420 540 660 720 780 840 960 120 180 240 300 420 480 540 660 720 780 840 960
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGC GCTTCAGCG GCTTTTACTGC GCTTTACTGC GCTTCAGGG GCATTTTTA AGCTTACTA AGGCTAACA GAGGCCCAAA TGTGCTGAGA TGTGCTGAGA CAGGATCCCA CCATCCCAG CCAGCCCTC CCACCCCTTT	LNDVTLSLLP STYPQNORHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPARD VTLKHINPSQ DUSHTSVLPA LLHLVFLLDS YILKFCIVGM FCVIPLLNVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq GGATGGTTTT CGTTCAAGGA CCCCTCCTC CTTCAAGGA CCCCTCCTC CTTCAAGGA CCCCTCCTC CTTCAAGGA TCAAACCCCA GAGGTGAGAT TAGCCGCT TGTCTGTCT TGGTGCCTCC TGGTCCTCC TGGTCCTCC TGGTCCTCC TGGTCCTCC CAGCTCAGCC CAGATTATAC CAACCCCAGCC CAGATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CACCCCAGCC CACCTCCTC CCACCCCAGCC CAGATTATTC CACCCCAGCC CACATTATTC CACCCAGCC CACATTATTC CACCCCAGCC CACATTATTC CACCCAGCC CACACT CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCCACATTATTC CACCC	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT CAATGAGGTT AACAGAAAAA ACCTTAAGT AACCTAAGT TTGTACATTC GGAAAGAGTA ATCCTCCCCA TTGTCCCCCA TGCTGACCG TCCGCCACCTGTG CACTGTGCCCC TTCAGCTCCCC	IVKTFNASGV SELKRSEINK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN RVNASSFNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL LTISPDNYGL LTISPDNYGL AGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGGCC ATGATATAGA ACTAAAATCA AGAATTGT ACAATAAAA AGAATTGT ACAATAAAAC AGAATTGT CCACGTGGCC CTTTCCCAGGC CCACGTGGCC CACAGTGTC ATAGCTTCC ATAGCTTCC	KPQRNICNLS TLQTLSETYP FCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSSP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS GRKTSIQDLR ENVEKQWRRY LVNNDCSVHA TSKRGSLHF 41 I TCTCCACTIT ATGTTGGCAG TTCATGTGGTAG GCCTCAATGA CTATATTGAAAG CTATATTTG AAAGCACTGT TAAGGAAAT TAATGAAAAG CAATGAACTTC CACCAATGTCCATT CACCAAGGAATT CCCCAAAGG CCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCAATG CCCTCCCCAATG CCCTCCCAATG CCCTCCCCAATG CCCTCCCCCCCCCC	SICNDSAFPR IMCATAEAGS KAQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA ATCTGATACA ATTATCTGTT TGTTACTTTA CAATGACTCA TCCCCAGAAT AAAACGCTCA TACTGATACA ATGATCACT TGTTACGTACA ATGATCACT TGTTACTTTA CAATGACTCA TCCCCAGAAT AAAACGCTCA TGCTACAGCA ATGATCCCTCTTTT TGTTCAGCCAA TACCTCTTTT TGTTCAGCCAA TACCTCTTTT TGGTGAGCCTC TTCCAGCCAA TACCTCTTTT TGGGGGAGTT TGGCATGCCCC	120 180 240 300 360 420 660 720 780 840 960 120 180 240 300 420 480 540 660 720 780 660 720 780 840 960
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVENTYIRK AVPYITVNGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GTTTACTGA GCTTACTCC GCTTCAGGCA GCTTTACTCC GCTTCAGGCA TCTGTCAGGA TCTGTCAGGA TGTGCTCAGA TGTGCTGCAA TGTGCTGCAA TCTGTCAGGA CAGGATCCCA CAGGCCCC CACCCTTT CCACAGTCCTG CCTGAAGCCTTT CCACAGTCTCG CCTGAAGCCTTT CCACAGTCTTT CCACAGTCTT CCACAGTCTT CCACAGTCTT CCACAGTCTT CCACAGTCTT CCACAGTCTT CCACAGTCTT CCACAGTCT CCACAGT	LNDVTLSLLP STYPQNORHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMNLPARD VTLKHINPSQ DUSKTSVLPA LLNLVFLLDS YILKFCIVGM FCVIPLLNVS GPVNVTFMYL GLKKQTVNQG DVCLHDPTGK 21 DNA seq did Accessio ence: 37 11 AGGACGCGAG GGATGGTTT CGTTCAAGGA AGGATACTGA AGGATACTGA CGAATGGCAC CTCAAACCGA CGAATGGCAC CGAATGGCAC TACCCGCCC CTCCTCCTCTCTCTCAACCGA TCAACCCCTGCC CTCAACCCCAC CAACCTCCTC CTCAACCCCAC CCACCCAGCC CAGCCCAGCC	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW OMMALTFITY WIALYKMQGL GVPAVVVTII MFIVVLVQLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS UENCE n #: NM_005 33117 21 CGGCAGGTGT CTGTCAGG ATTCCTTGTC TAATTCCAGT CAATTAAGTGT AACAGAAAAA GAGAAAAAA GAGAAAAAA CGTAGAGTT TGTACAGT TTGTACAGT TTGTACAGT TTGTACAGT GGAAAGAGTA TTCCTCCCCA TGCAGCACTGTG ACCTGTGACCA TGCTGACCAT GGCCACTGTG ACCTGTGACCAT TTCAGCTCCCC TTCAGCTCCCC TTCAGCTCCCC TTCACCCTATGT	IVKTFNASGV SELIKRSELIK MEHCCSYRI PKATSFAEPP VSGTPPPVKA EPPILAGEMIN RVNASSPNTT FFETPALFOD DLGRNGGRGG GIGGLSSIFL CISVAVPLHY LTISPDNYGL HIFLYCVAK SSNSTNSTTL CNGKGRMALR 756.1 31 GCACAGAGGT CAGTGTGCC GAAACATATGT TATGATAAAG TTGTCATTTTC TATGATAAAG GTCCTGTCTC GAGAATTGT TATGATAAAG CAAGAGTTGGC CACAGAGGTT CAGAATTGTC TATGATAAAC AAGATTGGC CACAGAGGTT CAGAATTGTC TATGATAAAC AAGATTGGC CACAGAGGTT CAGAATTGTC TATGATAAAC AAGATTGGC CACAGAGGTT CAGAATTGTC AAGATTGGC CACAGAGGTT CAGAATTGTC AAGATTGGC CACAGAGGTT CAGAATGTC AAGATTGCAC CACAAGCTC CACAAACCC CCCCAAACCC CCCCAACCC CCCCAACC CCCCAACCC CCCCAACCC CCCCAACCC CCCAACCC CCCCAACCC CCCCAACCC CCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCACACC CCCCAACCC CCCCACACC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCAACCC CCCCACC CCCACACC CCCCACC CCCCACC CCCCACC CCCCACC CCCACC CCCCACC	KPQRNICNLS TLQTLSETYP PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLLHSPP TPVAQDPANL PSLENLSLIS SVTLVTYIAF FLLVSPTWMG GSYGKPPMGS QKYSIQDLR ENVEKQWRRY LVNNDCSVHA ATSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TTCATGTGTAT ACCTGCTAA GCCTCAATGA CATTATTAG CAATGAATAT TAAATATAA CATTATTATT TAAATATAAATAA	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATGATCATT TGTTACTTTA AACCTTCAT TGATACGCT ATGCTGCTGCTGT GTGTGACCTG TTCCAGGCCAA TCCCCAGGAT TACATCTTT AGGGGAGGAT TCCACGCCACCT TGCACCCCC	120 180 240 300 360 420 660 720 780 960 120 180 240 300 360 420 780 660 720 780 960 960 1080
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCTCGCGGTCA GTTTTACTGA GCTTCAGCG GCATTTTTA CAACATATAA GAGCTCAACA GAGGCCCAAC TCCTGCAGGA TCTGTCAGGA TCTGTCAGGA GCAGTTCCC GCTTCAGCC GCATTTTTA CAACATATAA GAGCTCAACA TCTGTCAGA TCGTGCAACA TCGTCAGAA TCGTCCCAACCCCTTT CCACAGTTCC CAACCCCTTT CCACAGTTCTC CCACGTCTGAAAG	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DUSKTSVLPA LLNEVFLLDS YILKFCIVGM FCVIFILMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio elence: 37 11 aggacgcaga ggaragtttt CGTTCAAGAT AAGATACTGA GCACTTATA CGAATGGCAC TCAAACCCC TTGTAGCGTTT TACCCTGCC CTTGAACCCCA CAACCCCGCA CGAATGGCAT TACCCTGCC CTGGTCCCTT TGGTGCCTT TGGTGCCTCT CAGATTATTC CACCCCAGCC AAACCATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CAAACCATTTTC CCCCCAGCC CAGATTATTC CCCCCAGCC CAAACCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCATTTTC CCCCCATTTTC CCCCATTTTC CCCATTTTC CCCCATTTTC CCCCATTTC CCCCATTTTC CCCCATTTTC CCCCATTTTC CCCCCATTTC CCCCATTTC CCCCCATTTC CCCCCATTTC CCCCCATTTC CCCCATTTC CCCCATTC CCCCATTTC CCCCATTTC CCCCATTTC CCCCCATTTC CCCCATTTC CCCCATTTC CCCCATTTC CCCCCATTTC CCCCCATTC CCCCCATTTC CCCCATTTC CCCCCATTTC CCCCATTTC CCCCCATTC CCCCCCATTC CCCCCATTC CCCCCCATTC CCCCCCATTC CCCCCCCC	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUCIC ATTOTTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG TAATTCCAGT CAATGAGAAAAA GAGAAATATC CATGTTTCAA CATGTTACAGT TAACTGGA AACCCTAAGT TTGTACATTC GGCAACAGTT TGTACATTC GGAAAGAGTA TTCCTCCCCA TCCCCCC TTCCCCTATG CTTCCCCTATG CTTCCCCTATG CTTCCCCTATG CTTCCCCCACC TTCCCCTATG CTCTCCCCACC	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGGGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SIFIFTYCVAK SSNSTNSTTL CNGKGRMALR 31 GCACAGAGGT GCACAGAGGT TGTCACCAC ACTATATOT TGTCACCAC ACTATATOT TGTGACACA ACTATATOT TGTGACACA ACTATATOT TGTGACACA ACTATATOT TGTGACACA CACAATGTTC GAGACTTACT ACAATTACT ACAATTACT ACAATTACT CACATGGCC CTTTCCCAGG CACAATGTTC ATAGCTTCCA	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TCATGTCAT CACTGCTAA CATCTATTGG CACTGCTAA CATCTATTG TAAGTGAAT TTATATGTG TGAATAATAC CAATGTAAT CAATGAAT TAAGTGAAT TCCCCCAAAGC CCCTCCCAAA GCCCTGCCAT TTCCCCCAAAGC CCTCTCCAAT GCCCTGCCAAT TTGCTCCCCC CTGCCAAATC CTGCGAATGT CTGCAATGT CTGC	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACAA TCTGGTAACAA TCATTCATTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT AAAACGCTCA TGCTACAGCA AATGAATGCA CTGCTGCTTT GTGTGACCTG TTCCAGCCAA AATGACTCA TGCCAGCAT TAGCGGCAA TACCTCTTTT AGGGGAGATT TGACATGCCC CACCCCACCT CAACACTACC	120 180 240 300 360 420 540 660 720 780 840 960 120 180 240 420 480 540 660 6720 780 840 960 1020 1080 1080
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TLNCTFTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSFGVLL ILIQLCAALL VKVFNTYIRK AVFYITVVGY ITWGFAFFAW NSDWSKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq I AGCCAGCCCG CTCGCGGTCA GTTTTACTGA GCTCGCGGTCA GTTTTACTGA GCTTCAGCG GCATTTTTA CAACATATAA GAGCTCAACA GAGGCCCAAC TCCTGCAGGA TCTGTCAGGA TCTGTCAGGA GCAGTTCCC GCTTCAGCC GCATTTTTA CAACATATAA GAGCTCAACA TCTGTCAGA TCGTGCAACA TCGTCAGAA TCGTCCCAACCCCTTT CCACAGTTCC CAACCCCTTT CCACAGTTCTC CCACGTCTGAAAG	LNDVTLSLLP STVPQNOHIT NITMNACAAI PFSSSGIPV PAIDMPPQSE ISDLENQVLQ LNFENTTISL SLMNNLPAHD VTLKHIMPSQ DUSKTSVLPA LLNEVFLLDS YILKFCIVGM FCVIFILMVS GLKKQTVNQG DVCLHDFTGK 21 DNA seq id Accessio elence: 37 11 aggacgcaga ggaragtttt CGTTCAAGAT AAGATACTGA GCACTTATA CGAATGGCAC TCAAACCCC TTGTAGCGTTT TACCCTGCC CTTGAACCCCA CAACCCCGCA CGAATGGCAT TACCCTGCC CTGGTCCCTT TGGTGCCTT TGGTGCCTCT CAGATTATTC CACCCCAGCC AAACCATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CAGATTATTC CACCCCAGCC CAAACCATTTTC CCCCCAGCC CAGATTATTC CCCCCAGCC CAAACCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCCATTTTC CCCCATTTTC CCCCCATTTTC CCCCATTTTC CCCATTTTC CCCCATTTTC CCCCATTTC CCCCATTTTC CCCCATTTTC CCCCATTTTC CCCCCATTTC CCCCATTTC CCCCCATTTC CCCCCATTTC CCCCCATTTC CCCCATTTC CCCCATTC CCCCATTTC CCCCATTTC CCCCATTTC CCCCCATTTC CCCCATTTC CCCCATTTC CCCCATTTC CCCCCATTTC CCCCCATTC CCCCCATTTC CCCCATTTC CCCCCATTTC CCCCATTTC CCCCCATTC CCCCCCATTC CCCCCATTC CCCCCCATTC CCCCCCATTC CCCCCCCC	SNETEKTKIT NGTLTGVLSL AALERVKIRP VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVVTII MPIVVLVQLC FAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUCIC ATTOTTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG ATTCCTGTCAGG TAATTCCAGT CAATGAGAAAAA GAGAAATATC CATGTTTCAA CATGTTACAGT TAACTGGA AACCCTAAGT TTGTACATTC GGCAACAGTT TGTACATTC GGAAAGAGTA TTCCTCCCCA TCCCCCC TTCCCCTATG CTTCCCCTATG CTTCCCCTATG CTTCCCCTATG CTTCCCCCACC TTCCCCTATG CTCTCCCCACC	IVKTFNASGV SELIKRSELIK MEHCCSVRI PKATSFAEPP VSGTPPPVKA EPNLAGEMIN FFETPALFQD DLGRINGGRGG IGGGLSSIFL CISVAVFLHY LTISPDNYGL RIKKKQLGA SIFIFTYCVAK SSNSTNSTTL CNGKGRMALR 31 GCACAGAGGT GCACAGAGGT TGTCACCAC ACTATATOT TGTCACCAC ACTATATOT TGTGACACA ACTATATOT TGTGACACA ACTATATOT TGTGACACA ACTATATOT TGTGACACA CACAATGTTC GAGACTTACT ACAATTACT ACAATTACT ACAATTACT CACATGGCC CTTTCCCAGG CACAATGTTC ATAGCTTCCA	KPQRNICNLS TLQTLSETYF PCPSSPEELG DYSPVTHNVP SFSSPTVSAP QVSRLHSPP TFVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAF FLLVSFTWMG GSYGKFPNGS QRKTSIQDLR ENVEKQMERY LVNNDCSVHA RTSKRGSLHF 41 TCTCCACTIT ATGTTGGCAG TCATGTCAT CACTGCTAA CATCTATTGG CACTGCTAA CATCTATTG TAAGTGAAT TTATATGTG TGAATAATAC CAATGTAAT CAATGAAT TAAGTGAAT TCCCCCAAAGC CCCTCCCAAA GCCCTGCCAT TTCCCCCAAAGC CCTCTCCAAT GCCCTGCCAAT TTGCTCCCCC CTGCCAAATC CTGCGAATGT CTGCAATGT CTGC	SICNDSAFPR IMCATAEAGS IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRINETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLTPLLG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACAA TCTGGTAACAA TCATTCATTTA AACCTTCAAT CAATGACTCA TCCCCAGAAT AAAACGCTCA TGCTACAGCA AATGAATGCA CTGCTGCTTT GTGTGACCTG TTCCAGCCAA AATGACTCA TGCCAGCAT TAGCGGCAA TACCTCTTTT AGGGGAGATT TGACATGCCC CACCCCACCT CAACACTACC	120 180 240 300 360 420 540 660 720 780 840 960 120 180 240 420 480 540 660 6720 780 840 960 1020 1080 1080
50 55 60 65 70 75	PSSNEVETTS GEIMPOYDKE TINCTPTIKL VCLADHPRGP POPSAPIASS VQTDIVNTSS LKVVDDIGLQ NSIGTITLPS TVRNLTRNVT SHLTSPGVLL ILIQLCAALL VKVFNTYIRK AVFYITVNGY ITWGFAFFAW NSDWBKTATN NGVSFSVQNG Seq ID NO: Nucleic Ac. Coding seq 1 AGCCAGCCCG CTCGCGGTCA GTTTTACTGC GCTTTCAGGC GCTTTTACTGC GCTTTCAGGC GCATTTTTA AGCTTACTC GCTTCAGGG GCATTTTTA AGGTTACTC AGGGTCAACA GAGGCCCAAA TGTGCTGAGA CAGGATCCCA CCATCCAGG GCTGAGCCC CCACCCTTT CCACAGTCTC CCACCCTTT CCACAGTCTC CCTGTGAAAA AGGGCCCTC CCACCCCTTT CCACAGTCTC CCTGTGAAAA AGGGCCCTC CCACCCCTTT CCACAGTCTC CCTGTGAAAAA AGGGCCCCTCT CCACAGTCTC CCTGTGAAAAA AGGGCCCCCC CCACCCCTTT CCACAGTCTC CCTGTGAAAAA AGGGCCCCCC CCACCCCTTT CCACAGTCTC CCTGTGAAAAA AGGGCCCCCCC CCACCCCCTTT CCACAGTCTC CCTGTGAAAAA AGGGCCCCCCC	LNDVTLSLLP STYPQNORHIT NITHNACAAI PFSSSQSIPV PAIDMPPQSE ISDLENQVLQ LNFSNTTISL SLMMIPARD VTLKHINPSQ DUSHTSVLPA LLHLVFLLDS YILKFCIVGM FCVIPLLNVS GPVNVTPMYL GLKKQTVNQG DVCLHDFTGK 21 DNA seq GGATGGTTTT CGTCAAGCA AGGATGGTTTT CGTTCAAGCA CCCCTCCTC CTTCAACGA CCACTCAACGA CCACTCAACGA CCACTCAACGA CCACTCAACGA CCACTCAACGA CCACTCACC CTTGTCTGTCT TGGTGCCTCG CACCATTAAA CCCCAGCC AAACCCCAC CAACCTCACC CACCATTAAA CCCCTCTCC CTCCTCCTCC CTCCTCCTCC CTCCTCC	SNETEKTKIT NGTLTGVLSI NGTLTGVLSI NGTLTGVLSI VPRATVLSQV TISSPMPQTH MEKALSLGSL TSPSLALAVI MELASRVQFN DELTVRCVFW QMMALTFITY WIALYKMQGL GVPAVVTII MFIVVLVOLC PAIFNTLQGF VSSSSNSLQS QHMFNEKEDS LUENCE n #: NM_005 3117 21 CGGCAGGTGT CTCTGTCAGG ATTCCTTGTC TAATTCCAGT CAATGAGGTT AACAGAAAAA ACCTTAAGT AACCTAAGT TTGTACATC GGAAAGATAA TTCCTCCCCA TTCCCCCA TTCCCCCACC TTCCCCCACC TTCCACCCC AGACATGTCCCC AGACATGTCCCCC AGACATGTCCCCCACC AGACATGTCCCCC AGACATGTCCCCC AGACATGTCCCCC AGACATCGTCCCCC AGACATCGTCCCCC AGACATCGTCCCCCACCC AGACATCGTCCCCCCACCC AGACATCGTCCCCCACCC AGACATCGTCCCCCACCC AGACATCGTCCCCCACCC AGACATCGTCCCCCCACCCCCCCCCC	IVKTFNASGV SELKRSEINK MEHCCCSVRI PKATSPAEPP VSGTPPPVKA EPNLAGEMIN RVNASSPNTT FFETPALFQD DLGRNGGRGG IGCGLSSIFL CISVAVPLHY LTISPDNYGL LTISPDNYGL LTISPDNYGL LTISPDNYGL ATICKER GKGRMALR 756.1 31 GCACAGAGGT CATCATTGTCC GAAACACAA ACTAAAATCA TGCAATTTTT TATGATAAAG GTCCTGTCTC ACAGTGGCC CTTTCCCAGG CCACAGTGGCC CACAGTGGCC CACAGTGTCC ATAGCTTCCA CCCCAAACCC GTGTCTCCC CCCCAACCC CGTGTCTCCC CCCCAACCC CACACCC CGTGTCTCCC CCCCAACCC CGTGTCCC CCCCAACCC CCCCCAACCC CGTGTCCC CCCCAACCC CCCCCAACCC CGTGTCCC CCCCAACCC CCCCAACCC CCCCCAACCC CCCCCACC CCCCCACC CCCCCACC CCCCCACC CCCCCACC CCCCCC	KPQRNICNLS TLOTLSETYP FCPSSPEELG DYSPVTHNVP SFSSPTV3AP OVSRLHSSP TPVAQDPANL PSLENLSLIS WSDNGCSVKD SVTLVTYIAP FLLVSPTMMG GSYGKPPNGS GRKTSIQDLR ENVEKQWRRY LVNNDCSVHA ATSKRGSLHF 1 TCTCCACTIT ATGTTGGCAG TTCATGTGAT GCCTCAATGA CTATATGTAAAA GCTCAATGA CTATATTTG AAAGCACTGT TAAGGAATT TAATGTAATAA GCATATTTC CACCAAGTC CACTGCTTA GCCTCCAATGA CTATTTCTCCAAGC CCTCTCCCAATGC CCTCTCCCAATGC CCTCTCCCAATGC CCTCTCCCAATGC CCTCTCCCAATGC CTCTCCCAATGC CTGCCGAATGT CTGCGAATGT CTGC	SICNDSAFPR IMCATAEAGS KLQCDLQDPI SPIGEIQPLS ANVNTTSAPP DMLAPLAQRL QVSLETQAPE YVISSSVANL RRIMETICTC EKIRRDYPSK LEAFHMYLAL PDDFCWINNN SIAGLIFLIG LCCGKLRLAE SGNGNASTER IEQM 51 GTTTTCTGAA AACTGAAGAA TCTGGTAACA ATGATCATT TGTTACTTTA AACCTTCAT TGATACGCT ATGCTGCTGCTGT GTGTGACCTG TTCCAGGCCAA TCCCCAGGAT TACATCTTT AGGGGAGGAT TCCACGCCACCT TGCACCCCC	120 180 240 300 360 420 660 720 780 840 960 120 180 240 300 480 540 660 720 780 840 960 1020 1080 1080 1080 1080

```
GARATGATCA ACCAAGTCAG CAGACTCCTT CATTCCCCGC CTGACATGCT GGCCCCTCTG
GCTCAAAGAT TGCTGAAAGT AGTGGATGAC ATTGGCCTAC AGCTGAACTT TTCAAACACG
                                                                                    1320
                                                                                    1380
        ACTATAAGTC TAACCTCCCC TTCTTTGGCT CTGGCTGTGA TCAGAGTGAA TGCCAGTAGT
                                                                                    1440
        TTCAACACAA CTACCTTTGT GGCCCAAGAC CCTGCAAATC TTCAGGTTTC TCTGGAAACC
                                                                                    1500
        CAAGCTCCTG AGAACAGTAT TGGCACAATT ACTCTTCCTT CATCGCTGAT GAATAATTTA
                                                                                    1560
        TTGTTTCAGG ATCCTTCCCT GGAGAACCTC TCTCTGATCA GCTACGTCAT ATCATCGAGT
                                                                                    1680
        GTTGCAAACC TGACCGTCAG GAACTTGACA AGAAACGTGA CAGTCACATT AAAGCACATC
                                                                                    1740
        AACCCGAGCC AGGATGAGTT AACAGTGAGA TGTGTATTTT GGGACTTGGG CAGAAATGGT
GGCAGAGGAG GCTGGTCAGA CAATGGCTGC TCTGTCAAAG ACAGGAGATT GAATGAAACC
                                                                                    1800
10
        ATCTGTACCT GTAGCCATCT AACAAGCTTC GGCGTTCTGC TGGACCTATC TAGGACATCT
                                                                                    1920
        GTGCTGCCTG CTCAAATGAT GGCTCTGACG TTCATTACAT ATATTGGTTG TGGGCTTTCA
                                                                                    1980
        TCAATTTTC TGTCAGTGAC TCTTGTAACC TACATAGCTT TTGAAAAGAT CCGGAGGGAT
                                                                                    2040
        TACCCTTCCA AAATCCTCAT CCAGCTGTGT GCTGCTCTGC TTCTGCTGAA CCTGGTCTTC
                                                                                    2100
15
        CTCCTGGACT CGTGGATTGC TCTGTATAAG ATGCAAGGCC TCTGCATCTC AGTGGCTGTA
                                                                                    2160
        TITCTTCATT ATTITCTCTT GGTCTCATTC ACATGGATGG GCCTAGAAGC ATTCCATATG
TACCTGGCCC TTGTCAAAGT ATTTAATACT TACATCCGAA AATACATCCT TAAATTCTGC
                                                                                    2220
                                                                                    2280
        ATTGTCGGTT GGGGGGTACC AGCTGTGGTT GTGACCATCA TCCTGACTAT ATCCCCAGAT
        AACTATGGGC TTGGATCCTA TGGGAAATTC CCCAATGGTT CACCGGATGA CTTCTGCTGG
                                                                                    2400
20
        ATCAACAACA ATGCAGTATT CTACATTACG GTGGTGGGAT ATTTCTGTGT GATATTTTTG
CTGAACGTCA GCATGTTCAT TGTGGTCCTG GTTCAGCTCT GTCGAATTAA AAAGAAGAAG
                                                                                    2460
                                                                                    2520
        CAACTGGGAG CCCAGCGAAA AACCAGTATT CAAGACCTCA GGAGTATCGC TGGCCTTACA
                                                                                    2580
        TTTTTACTGG GAATAACTTG GGGCTTTGCC TTCTTTGCCT GGGGACCAGT TAACGTGACC
                                                                                    2640
        TTCATGTATC TGTTTGCCAT CTTTAATACC TTACAAGGAT TTTTCATATT CATCTTTTAC
                                                                                    2700
        TGTGTGGCCA AAGAAAATGT CAGGAAGCAA TGGAGGCGGT ATCTTTGTTG TGGAAAGTTA
25
                                                                                    2760
        CGGCTGGCTG AAAATTCTGA CTGGAGTAAA ACTGCTACTA ATGGTTTAAA GAAGCAGACT
                                                                                    2820
        GTAAACCAAG GAGTGTCCAG CTCTTCAAAT TCCTTACAGT CAAGCAGTAA CTCCACTAAC
                                                                                    2880
        TCCACCACAC TGCTAGTGAA TAATGATTGC TCAGTACACG CAAGCGGGAA TGGAAATGCT TCTACAGAGA GGAATGGGGT CTCTTTTAGT GTTCAGAATG GAGATGTGTG CCTTCACGAT
                                                                                    2940
                                                                                    3000
30
        TTCACTGGAA AACAGCACAT GTTTAACGAG AAGGAAGATT CCTGCAATGG GAAAGGCCGT
                                                                                    3060
        ATGGCTCTCA GAAGGACTTC AAAGCGGGGA AGCTTACACT TTATTGAGCA AATGTGATTC
                                                                                    3120
        CTTTCTTCTA AAATCAAAGC ATGATGCTTG ACAGTGTGAA ATGTCCAATT TTACCTTTTA
                                                                                    3180
        CACAATGTGA GATGTATGAA AATCAACTCA TTTTATTCTC GGCAACATCT GGAGAAGCAT AAGCTAATTA AGGGCGATGA TTATTATTAC AAGAAGAAAC CAAGACATTA CACCATGGTT
                                                                                    3240
35
        TTTAGACATT TCTGATTTGG TTTCTTATCT TTCATTTTAT AAGAAGGTTG GTTTTAAACA
                                                                                    3360
        ATACACTAAG AATGACTCCT ATAAAGAAAA CAAAAAAAGG TAGTGAACTT TCAGCTACCT
TTTAAAGAGG CTAAGTTATC TTTGATAACA TCATATAAAG CAACTGTTGA CTTCAGCCTG
TTGGTGAGTT TAGTTGTGCA TGCCTTTGTT GTATATAAGC TAAATTCTAG TGACCCATGT
                                                                                    3420
                                                                                    3480
                                                                                    3540
        GTCAAAAATC TTACTTCTAC ATTTTTTTGT ATTTATTTTC TACTGTGTAA ATGTATTCCT
                                                                                    3600
40
        TTGTAGAATC ATGGTTGTTT TGTCTCACGT GATAATTCAG AAAATCCTTG CTCGTTCCGC
                                                                                    3660
        AAATCCTAAA GCTCCTTTTG GAGATGATAT AGGATGTGAA ATACAGAAAC CTCAGTGAAA
        TCARGAAATA ATGATCCCAG CCAGACTGAG AAAATGTAAG CAGACAGTGC CACAGTTAGC
                                                                                    3780
        TCATACAGTG CCTTTGAGCA AGTTAGGAAA AGATGCCCCC ACTGGGCAGA CACAGCCCTA
                                                                                    3840
        TGGGTCATGG TTTGACAAAC AGAGTGAGAG ACCATATTTT AGCCCCACTC ACCCTCTTGG
                                                                                    3900
45
        GTGCACGACC TGTACAGCCA AACACAGCAT CCAATATGAA TACCCATCCC CTGACCGCAT
                                                                                    3960
        CCCCAGTAGT CAGATTATAG AATCTGCACC AAGATGTTTA GCTTTATACC TTGGCCACAG
                                                                                    4020
        AGAGGGATGA ACTGTCATCC AGACCATGTG TCAGGAAAAT TGTGAACGTA GATGAGGTAC
                                                                                    4080
        ATACACTGCC GCTTCTCAAA TCCCCAGAGC CTTTAGGAAC AGGAGAGTAG ACTAGGATTC
                                                                                    4140
        CTTCTCTTAA AAAGGTACAT ATATATGGAA AAAAATCATA TTGCCGTTCT TTAAAAAGGCA
                                                                                    4200
50
        ACTGCATGGT ACATTGTTGA TTGTTATGAC TGGTACACTC TGGCCCAGCC AGAGCTATAA
                                                                                    4260
         TTGTTTTTTA AATGTGTCTT GAAGAATGCA CAGTGACAAG GGGAGTAGCT ATTGGGAACA
                                                                                    4320
        GGGAACTGTC CTACACTGCT ATTGTTGCTA CATGTATCGA GCCTTGATTG CTCCTAGTTA
TATACAGGGT CTATCTTGCT TCCTACCTAC ATCTGCTTGA GCAGTGCCTC AAGTACATCC
                                                                                    4380
                                                                                     4440
        TTATTAGGAA CATTTCAAAC CCCTTTTAGT TAAGTCTTTC ACTAAGGTTC TCTTGCATAT
                                                                                    4500
55
        ATTTCAAGTG AATGTTGGAT CTCAGACTAA CCATAGTAAT AATACACATT TCTGTGAGTG
CTGACTTGTC TTTGCAATAT TTCTTTTCTG ATTTATTTAA TTTTCTTGTA TTTATATGTT
                                                                                    4560
        AAAATCAAAA ATGTTAAAAT CAATGAAATA AATTTGCAGT TAAGA
        Seq ID NO: 22 Protein sequence
60
        Protein Accession #: NP_005747.1
1 11 21
         MVFSVRQCGH VGRTEEVLLT FKIPLVIICL HVVLVTSLEE DTDNSSLSPP PAKLSVVSFA
                                                                                       60
         PSSNEVETTS LNDVTLSLLP SNETGVKPOR NICNLSSICN DSAFFRGEIM FQYDKESTVP
                                                                                      120
65
         QNQHITNGTL TGVLSLSELK RSELNKTLQT LSETYFINCA TAEAQSTLNC TFTIKLNNTM
                                                                                      180
         NACAVIAALE RVKIRPMEHC CCSVRIPCPS SPEELEKLQC DLQDPIVCLA DHPRGPPFSS
                                                                                      240
         SQSIPVVPRA TVLSQVPKAT SFAEPPDYSP VTHNVPSPIG EIQPLSPQPS APIASSPAID
                                                                                      300
         MPPOSETISS PMPOTHVSGT PPPVKASPSS PTVSAPANVN TTSAPPVQTD IVNTSSISDL
                                                                                      360
         ENQVIQMEKA LSLGSLEPNL AGEMINQVSR LLHSPPDMLA PLAQRLLKVV DDIGLQLNFS
 70
         NTTISLTSPS LALAVIRVNA SSFNTTTFVA QDPANLQVSL ETQAPENSIG TITLPSSLMN
                                                                                      480
         NLPAHDMELA SRVQFNFFET PALFQDPSLE NLSLISYVIS SSVANLTVRN LTRNVTVTLK
                                                                                      540
         HINPSODELT VRCVFWDLGR NGGRGGWSDN GCSVKDRRLN ETICTCSHLT SFGVLLDLSR
                                                                                      600
         TSVLPAQMMA LTFITYIGCG LSSIPLSVTL VTYIAFEKIR RDYPSKILIQ LCAALLLLNL
         VFLLDSWIAL YKMQGLCISV AVFLHYFLLV SPTWMGLEAF HMYLALVKVF NTYIRKYILK
                                                                                      720
 75
         FCIVGWGVPA VVVTIILTIS PDNYGLGSYG KFPNGSPDDF CWINNNAVFY ITVVGYFCVI
                                                                                      780
         FLLNVSMFIV VLVQLCRIKK KKQLGAQRKT SIQDLRSIAG LTFLLGITWG PAPPAWGPVN
                                                                                      840
         VTFMYLFAIF NTLQGFFIFI FYCVAKENVR KQWRRYLCCG KLRLAENSDW SKTATNGLKK
         QTVNQGVSSS SNSLQSSSNS TNSTTLLVNN DCSVHASGNG NASTERNGVS PSVQNGDVCL
                                                                                      960
         HDPTGKOHMF NEKEDSONGK GRMALRRTSK RGSLHFIEQM
 80
         Seg ID NO: 23 DNA seguence
         Nucleic Acid Accession #: NM_001565.1
         Coding sequence: 67..363
                                                                        51
                                  21
                     11
 85
                                                                    282
```

	GAGACATTCC	TCAATTGCTT	AGACATATTC	TGAGCCTACA	GCAGAGGAAC	CTCCAGTCTC	60
		ATCAAACTGC					120
		TACCTCTCTC					180
		CAAGGTCTTT					240
5							
5		TCATTGCTAC					300
		TCAAGAATTT					360
	TAAAACCAGA	GGGGAGCAAA	ATCGATGCAG	TGCTTCCAAG	GATGGACCAC	ACAGAGGCTG	420
	CCTCTCCCAT	CACTTCCCTA	CATGGAGTAT	ATGTCAAGCC	ATAATTGTTC	TTAGTTTGCA	480
		AAGGTGACCA					540
10		CATCATCCTA					600
10							
		GGTGCTATGT					660
	ACCTTTCCCA	TCTTCCAAGG	GTACTAAGGA	ATCTTTCTGC	TTTGGGGTTT	ATCAGAATTC	720
	TCAGAATCTC	AAATAACTAA	AAGGTATGCA	ATCAAATCTG	CTTTTTAAAG	AATGCTCTTT	780
		CTTCCACTGC					840
15	CLETCHIOON	CAAACACATA	CICCI I COM	CRRATATOTO	22222222	ጥርሞስ እርሞስ ሞሞ	900
13							
		GAAAGACTGT					960
	TTTCAGTGTA	CATGGAATAA	CATGTAATTA	AGTACTATGT	ATCAATGAGT	AACAGGAAAA	1020
	TTTTAAAAAT	ACAGATAGAT	ATATGCTCTG	CATGTTACAT	AAGATAAATG	TGCTGAATGG	1080
	TTTTCAAATA	AAAATGAGGT	ACTUTOUTEG	AAATATTAAG			
20		70001101001					
20							
		24 Protein					
	Protein Acc	ession #: N	IP_001556.1				
	1	11	21	31	41	51	
	1	1		1	1	1	
25	MNOTATITOC	LIFLTLSGIQ	GVPT.SRTVRC	TCISISNOPV	NPRSLEKLEI	IPASOFCPRV	60
		EKRCLNPESK				227.08. 003.	•••
	PITATMENTE	PUNCTUALERY	WI WUTTHWAS	KENSKKSF			
	Seq ID NO:	25 DNA sequ	ence				
	Nucleic Aci	ld Accession	#: XM 0309	559			
30		ience: 111	_				
	1		21	31	41	51	
	†	11	1	1	1	1	
	1 .	i	I	I	<u> </u>	1	
		GCCACCGGCA					60
	AGCAAGTTTG	GAGCTGAATT	TCGTCGGTTT	TCGCTGGAAA	GATCAAAACC	TGGAAAATTT	120
35		ATGGATTACT					180
-		ACATCCATGG					240
		CGGCCAATCC					300
		TTGGTACAGA					360
	CGTCCTGACA	ACCATAGAAA	AAAGCCACAT	ATAGTCATTA	GTATGCCCCA	AGACTTTAGA	420
40		CTATTATAGA					480
		GCACGGAGAA					540
		ATGGCTTAGA					600
		AAAGTACAGG					660
	ATAGAAGTTT	CAGGGAAGAG	CCTTGATCAA	GTAACAGACA	TGATGATTGC	AAATAGCCGT	720
45		TAACAGTGAG					780
		GTTCCGGTCA					840
		TTGAGCCAGA					900
	AATGGAGTGC	CACAGCAGAT	TCCAAAAGCT	GTTCCTAATA	CTGAGAGCCT	GGAGTCATTA	960
	ACACAGATAG	AGCTAAGCTT	TGAGTCTGGA	CAGAATGGCT	TTATTCCCTC	TAATGAAGTG	1020
50	AGCTTAGCAG	CCATAGCAAG	CAGCTCAAAC	ACGGAATTTG	AAACACATGC	TCCAGATCAA	1080
		AAGAAGATGG					
	MANCICITAG	MMMM	MUNICAIN	ACATIAIGA			
	-	26 Protein	-				
	Protein Ac	cession #: 2	KP_030559				
55	1	11	21	31	41	51	
	1	1	1	1	1	1	
	MATERIA CARDACA C	SGCLGTMEVK	CAECVEEDE	OLED ONDONE	PPPVCTTOUV	UNIDARA	60
		PINNDDNYHK					120
CO		IVISMPQDFR					180
60	VTPHGLEKVP	GIFISRLVPG	GLAQSTGLLA	VNDEVLEVNG	IEVSGKSLDQ	VTDMMIANSR	240
	NLIITVRPAN	QRNNVVRNSR	TSGSSGOSTD	NSLLGYPOOI	EPSFEPEDED	SEEDDIIIED	300
		VPNTESLESL					360
			.4	Q.101 11 01.D1	0220121100011		•••
	KLLEEDGTII	10					
65							
65	Seq ID NO:	27 DNA seq	uence				
	Nucleic Ac	id Accession	E00 MM :# m	667.1			
		uence: 12					
			21	2.1	41	51	
	1	11		31			
70	1	1	1	1	<u> </u>	<u> </u>	
70						GCTGGCGACC	60
	GGGGGCAGCT	CTCCCAGGTC	TGGTGTGTTG	CTGAGGGGCT	GCCCCACACA	CIGTCATTGC	120
						CTCGGAGCTG	
						CATCAGTCAG	
75						TGCGGGAAAC	
75						AGTTCTTATG	
						GCGAAGCCTT	
	CAATCCCTGC	GTCTGGATGC	TAACCACATC	AGCTATGTGC	CCCCAAGCTG	TTTCAGTGGC	480
						CCCCGTCCAG	
						AATACACCAC	
80							
OU						CCATAACAAT	
						GACTTTAGAT	
	TTAAATTACA	ATAACCTTGA	TGAATTCCCC	ACTGCAATTA	GGACACTCTC	CAACCTTAAA	780
						TCAACATTTA	
06						TCCTGATTTA	
85	ACTGGAACTG	CARACUTGGA	GAGTCTGACT	TTAACTGGAG	CACAGATCTC	ATCTCTTCCT	960

```
CAARCCGTCT GCAATCAGTT ACCTAATCTC CAAGTGCTAG ATCTGTCTTA CAACCTATTA
       GAAGATTTAC CCAGITTITC AGTCTGCCAA AAGCTTCAGA AAATTGACCT AAGACATAAT
                                                                                  1080
       GAAATCTACG AAATTAAAGT TGACACTTTC CAGCAGTTGC TTAGCCTCCG ATCGCTGAAT
                                                                                   1140
       TTGGCTTGGA ACAAAATTGC TATTATTCAC CCCAATGCAT TTTCCACTTT GCCATCCCTA
 5
       ATAAAGCTGG ACCTATCGTC CAACCTCCTG TCGTCTTTTC CTATAACTGG GTTACATGGT
                                                                                   1260
        TTAACTCACT TAAAATTAAC AGGAAATCAT GCCTTACAGA GCTTGATATC ATCTGAAAAC
                                                                                   1320
       TTTCCAGAAC TCAAGGTTAT AGAAATGCCT TATGCTTACC AGTGCTGTGC ATTTGGAGTG
TGTGAGAATG CCTATAAGAT TTCTAATCAA TGGAATAAAG GTGACAACAG CAGTATGGAC
                                                                                   1380
                                                                                   1440
       GACCTTCATA AGAAAGATGC TGGAATGTTT CAGGCTCAAG ATGAACGTGA CCTTGAAGAT
                                                                                   1500
10
        1560
        CCAGGCCCCT TCAAACCCTG TGAACACCTG CTTGATGGCT GGCTGATCAG AATTGGAGTG
                                                                                   1620
        TGGACCATAG CAGTTCTGGC ACTTACTTGT AATGCTTTGG TGACTTCAAC AGTTTTCAGA
                                                                                   1680
        TCCCCTCTGT ACATTTCCCC CATTAAACTG TTAATTGGGG TCATCGCAGC AGTGAACATG
                                                                                   1740
        CTCACGGGAG TCTCCAGTGC CGTGCTGGCT GGTGTGGATG CGTTCACTTT TGGCAGCTTT
                                                                                   1800
15
       GCACGACATG GTGCCTGGTG GGAGAATGGG GTTGGTTGCC ATGTCATTGG TTTTTTGTCC ATTTTTGCTT CAGAATCATC TGTTTTCCTG CTTACTCTGG CAGCCCTGGA GCGTGGGTTC
                                                                                   1860
        TCTGTGAAAT ATTCTGCAAA ATTTGAAACG AAAGCTCCAT TTTCTAGCCT GAAAGTAATC
                                                                                   1980
        ATTTTGCTCT GTGCCCTGCT GGCCTTGACC ATGGCCGCAG TTCCCCTGCT GGGTGGCAGC
                                                                                   2040
        AAGTATGGCG CCTCCCCTCT CTGCCTGCCT TTGCCTTTTG GGGAGCCCAG CACCATGGGC
                                                                                   2100
20
        TACATGGTCG CTCTCATCTT GCTCAATTCC CTTTGCTTCC TCATGATGAC CATTGCCTAC
        ACCAAGCTCT ACTGCAATTT GGACAAGGGA GACCTGGAGA ATATTTGGGA CTGCTCTATG
                                                                                   2220
        GTAAAACACA TTGCCCTGTT GCTCTTCACC AACTGCATCC TAAACTGCCC TGTGGCTTTC
                                                                                   2280
        TTGTCCTTCT CCTCTTTAAT AAACCTTACA TTTATCAGTC CTGAAGTAAT TAAGTTTATC
CTTCTGGTGG TAGTCCCACT TCCTGCATGT CTCAATCCCC TTCTCTACAT CTTGTTCAAT
                                                                                   2340
                                                                                   2400
25
        CCTCACTTTA AGGAGGATCT GGTGAGCCTG AGAAAGCAAA CCTACGTCTG GACAAGATCA
                                                                                   2460
        AAACACCCAA GCTTGATGTC AATTAACTCT GATGATGTCG AAAAACAGTC CTGTGACTCA
                                                                                   2520
        ACTCAAGCCT TGGTAACCTT TACCAGCTCC AGCATCACTT ATGACCTGCC TCCCAGTTCC
                                                                                   2580
        GTGCCATCAC CAGCTTATCC AGTGACTGAG AGCTGCCATC TTTCCTCTGT GGCATTTGTC
        CCATGTCTTA A
30
        Seq ID NO: 28 Protein sequence
        Protein Accession #: NP_003658.1
                                21
                                             31
                    11
        MOTSRLGVIL SLEVILQLAT GGSSPRSGVL LRGCPTHCHC PDGRMLLRV DCSDLGLSEL
PSNLSVFTSY LDLSMNNISQ LLPNPLPSLR PLEELRLAGN ALTYIPKGAP TGLYSLKVLM
35
        LONNOLRHVP TEALONLRSL QSLRLDANHI SYVPPSCFSG LHSLRHLWLD DNALTEIPVQ
                                                                                    180
        APRSLSALQA MTLALNKIHH IPDYAFGNLS SLVVLHLHNN RIHSLGKKCF DGLHSLETLD
                                                                                    240
        LNYNNLDEFP TAIRTLSNLK ELHFYDNEIQ FVGRSAFQHL PELRTLTING ASQITEFPDL
TGTANLESLT LTGAQISSLP QTVCNQLPNL QVLDLSYNLL EDLPSFSVCQ KLQKIDLRHN
                                                                                    300
40
        EIYEIKVDTF QQLLSLRSLN LAWNKIAIIH PNAFSTLPSL IKLDLSSNLL SSFPITGLHG
                                                                                     420
        LTHLKLTGNH ALQSLISSEN FPELKVIEMP YAYQCCAFGV CENAYKISNQ WNKGDNSSMD
                                                                                    480
        DLHKKDAGMF QAQDERDLED FLLDFEEDLK ALHSVQCSPS PGPFKPCEHL LDGWLIRIGV
                                                                                    540
        WTIAVLALTC NALVISTVFR SPLYISPIKL LIGVIAAVNM LIGVSSAVLA GVDAFTFGSF
                                                                                     600
45
        ARHGAWWENG VGCHVIGFLS IPASESSVFL LTLAALERGF SVKYSAKFET KAPFSSLKVI
                                                                                     660
        ILLCALLALT MAAVPLIGGS KYGASPLCLP LPFGEPSTMG YMVALILLNS LCFLMMTIAY
                                                                                    720
        TKLYCNLDKG DLENIWDCSM VKHIALLLFT NCILNCPVAF LSFSSLINLT FISPEVIKFI
LLVVVPLPAC LNPLLYILPN PHFKEDLVSL RKQTYVWTRS KHPSLMSINS DDVEKQSCDS
                                                                                     780
        TOALVTFTSS SITYDLPPSS VPSPAYPVTE SCHLSSVAFV PCL
50
        Seq ID NO: 29 DNA sequence
        Nucleic Acid Accession #: NM 002497.1
        Coding sequence: 135..1472
                                 21
                                                         41
                                                                      51
                    11
55
        GGCACGAGTA GGGGTGGCGG GTCAGTGCTG CTCGGGGGCT TCTCCATCCA GGTCCCTGGA
        GTTCCTGGTC CCTGGAGCTC CGCACTTGGC GCGCAACCTG CGTGAGGCAG CGCGACTCTG
                                                                                    120
        GCGACTGGCC GGCCATGCCT TCCCGGGCTG AGGACTATGA AGTGTTGTAC ACCATTGGCA
                                                                                    180
                                                                                     240
        CAGGCTCCTA CGGCCGCTGC CAGAAGATCC GGAGGAAGAG TGATGGCAAG ATATTAGTTT
60
        GGAAAGAACT TGACTATGGC TCCATGACAG AAGCTGAGAA ACAGATGCTT GTTTCTGAAG
                                                                                     300
        TGAATTTGCT TCGTGAACTG AAACATCCAA ACATCGTTCG TTACTATGAT CGGATTATTG
        ACCGGACCAA TACAACACTG TACATTGTAA TGGAATATTG TGAAGGAGGG GATCTGGCTA
                                                                                     420
        GTGTAATTAC AAAGGGAACC AAGGAAAGGC AATACTTAGA TGAAGAGTTT GTTCTTCGAG
                                                                                     480
        TGATGACTCA GTTGACTCTG GCCCTGAAGG AATGCCACAG ACGAAGTGAT GGTGGTCATA
                                                                                     540
65
        CCGTATTGCA TCGGGATCTT AAACCAGCCA ATGTTTTCCT GGATGGCAAG CAAAACGTCA
        AGCTTGGAGA CTTTGGGCTA GCTAGAATAT TAAACCATGA CACGAGTTTT GCAAAAACAT
TTGTTGGCAC ACCTTATTAC ATGTCTCCTG AACAAATGAA TCGCATGTCC TACAATGAGA
                                                                                     660
                                                                                     720
         AATCAGATAT CTGGTCATTG GGCTGCTTGC TGTATGAGTT ATGTGCATTA ATGCCTCCAT
        TTACAGCTTT TAGCCAGAAA GAACTCGCTG GGAAAATCAG AGAAGGCAAA TTCAGGCGAA
70
         TTCCATACCO TTACTCTGAT GAATTGAATG AAATTATTAC GAGGATGTTA AACTTAAAGG
                                                                                     900
        ATTACCATCG ACCTTCTGTT GAAGAAATTC TTGAGAACCC TTTAATAGCA GATTTGGTTG
                                                                                     960
        CAGACGAGCA AAGAAGAAAT CTTGAGAGAA GAGGGCGACA ATTAGGAGAG CCAGAAAAAT
         CGCAGGATTC CAGCCCTGTA TTGAGTGAGC TGAAACTGAA GGAAATTCAG TTACAGGAGC
                                                                                    1080
        GAGAGCGAGC TCTCAAAGCA AGAGAAGAAA GATTGGAGCA GAAAGAACAG GAGCTTTGTG
TTCGTGAGAG ACTAGCAGAG GACAAACTGG CTAGAGCAGA AAATCTGTTG AAGAACTACA
                                                                                    1140
75
                                                                                    1200
        GCTTGCTAAA GGAACGGAAG TTCCTGTCTC TGGCAAGTAA TCCAGAACTT CTTAATCTTC
                                                                                    1260
         CATCCTCAGT AATTAAGAAG AAAGTTCATT TCAGTGGGGA AAGTAAAGAG AACATCATGA
                                                                                    1320
         GGAGTGAGAA TTCTGAGAGT CAGCTCACAT CTAAGTCCAA GTGCAAGGAC CTGAAGAAAA
                                                                                    1380
         GGCTTCACGC TGCCCAGCTG CGGGCTCAAG CCCTGTCAGA TATTGAGAAA AATTACCAAC
                                                                                    1440
 80
         TGAAAAGCAG ACAGATCCTG GGCATGCGCT AGCCAGGTAG AGAGACACAG AGCTGTGTAC
                                                                                    1500
         AGGATGTAAT ATTACCAACC TTTAAAGACT GATATTCAAA TGCTGTAGTG TTGAATACTT
                                                                                    1560
         GGCCCCATGA GCCATGCCTT TCTGTATAGT ACACATGATA TTTCGGAATT GGTTTTACTG
TTCTTCAGCA ACTATTGTAC AAAATGTTCA CATTTAATTT TTCTTTCTTC TTTTAAGAAC
                                                                                    1620
                                                                                    1680
         ATATTATAAA AAGAATACTT TCTTGGTTGG GCTTTTAATC CTGTGTGTGA TTACTAGTAG
                                                                                   1740
 85
         GAACATGAGA TGTGACATTC TAAATCTTGG GAGAAAAAAT AATATTAGGA AAAAAAATATT 1800
```

				ADTAAATTTT			1860			
	TGTCATGTCT	AGATTTAAAT	TTTAAGTCTG	AGATTTTAAA	TGTTTTTGAG	CTTAGAAAAC	1920			
	CCAGTTAGAT	GCAATTTGGT	CATTAATACC	ATGACATCTT	GCTTATAAAT	ATTCCATTGC	1980			
_	TCTGTAGTTC	AAATCTGTTA	GCTTTGTGAA	AATTCATCAC	TGTGATGTTT	GTATTCTTTT	2040			
5	TTTTTTTCTG	TTTAACAGAA	TATGAGCTGT	CTGTCATTTA	CCTACTTCTT	TCCCACTAAA	2100			
	TAAAAGAATT	CTTCAGTTA								
	Seg ID NO:	30 Protein	sequence							
		ession #: N								
10	1	11	21	31	41	51				
	ī	ī -	ī	ī	Ĭ	Ĭ				
	MDCDAEDVEV	LVTTGTGSVG	POOKTPPKSD	GKILVWKELD	VESMTEARKO	MIJUSEVNIJE	60			
				GGDLASVITK			120			
				GKONVKLGDP			180			
15				ALMPPPTAFS			240			
13				IADLVADEQR			300			
				EQBLCVRERL			360			
				KENIMRSENS	ESOUTSKSKC	KDLKKKLHAA	420			
20	QURAQALSDI	EKNYQLKSRQ	LLGMR							
20										
	Seq ID NO: 31 DNA sequence									
	Nucleic Acid Accession #: NM_020242									
	Coding sequ	uence: 72	1240							
25	1	11	21	31	41	51				
25	1	Į.,	1 '	1	1	<u> </u>				
				GGCACCGGCT			60			
				AACTGAGTTA			120			
				CATCAAAGTT			180			
20				GCAGAACTTA			240			
30				GCCCAAGACC			300			
	AGATGTGGAT	ACCACTCAGG	AATCTGTATT	TGCAACTGTG	GCTAAAAGCA	TTGTGGAGTC	360			
				TGCATATGGA			420			
	ATTTACTATG	ATGGGACCAT	CTGAATCTGA	TAATTTTTCT	CATAACCTGA	GAGGAGTAAT	480			
	CCCACGAAGT	TTTGAATATT	TGTTTTCCTT	AATTGATCGT	GAAAAAGAAA	AGGCTGGAGC	540			
35				TATTGAAATC			600			
				CTTAAGGGAG			660			
				CTCAGCTGCT			720			
				AACATCAATG			780			
				AATGGAGAAA			840			
40				AGCAGGATCT			900			
10				TAACATAAAT			960			
						TTTGCTACAG	1020			
				TTCCCTTGGA			1080			
						CACTTAACTT	1140			
45						CCCAAGGAAA	1200			
73				GCTCAAAGAA			1260			
						ACTATATGGA	1320			
							1380			
				GAAATCTGAA						
50						TTCAATCTAA	1440			
50						TCCACAAGGA	1500			
						TAAGGAATGA	1560			
						ATGCTATGGA	1620			
						TGAAAAGAGC	1680			
55						AAATAAGTGG	1740			
55						AAGAGCCATG	1800			
						CAGAGCTGAA	1860			
				AGAACTTACT			1920			
						TTTTGGAAGC	1980			
60						CTGAAACACT	2040			
60				CCAACTTCAT			2100			
						TATTAGATAA	2160			
	TGATATATTA	AATGAGCCAG	TTCCTCCTGA	GATGAATGAA	CAAGCTTTTG	AGGCCATTTC	2220			
	TGAAGAGCTT	AGAACAGTGC	AGGAACAAAT	GAGTGCTCTT	CAAGCCAAAC	TGGATGAAGA				
65	AGAGCATAAA	AACCTAAAGC	TTCAGCAGCA	TGTTGACAAA	CTGGAACATC	ATTCTACCCA				
65						AAGAGCTTCT	2400			
						ATGACTTTTT	2460			
						AGCTTTCTTC	2520			
						ACAAACTTTC				
70						ACGAAAAGCT	2640			
70						TAATGAAATT	2700			
						AAACTCTGAA	2760			
						ATAACAAATT	2820			
	ATCATTACAG	TTTGAAGAAG	ATAAAGAAAA	CAGTTCTAAA	GAAATCTTAA	AAGTTCTTGA	2880			
~~						TGGCAAAAGT	2940			
75	ACAGAAACTA	GAAGAGAGCT	TGCTTGCTAC	TGAAAAAGTG	ATCAGTTCCC	TGGAAAAGTC	3000			
	TAGAGATTCT	GATAAGAAAG	TTGTAGCTGA	CCTCATGAAC	CAGATCCAGG	AGCTAAGAAC	3060			
	ATCGGTCTGT	GAGAAAACAG	AAACTATAGA	CACCCTGAAA	CAAGAACTGA	AGGACATAAA	3120			
	TTGCAAATAC	AACTCTGCTT	TGGTTGACAG	AGAAGAGAGC	AGAGTGTTGA	TCAAGAAGCA				
00	GGAAGTGGAT	ATTCTGGATC	TGAAAGAAAC	CCTTAGGCTG	AGAATACTTI	CTGAGGACAT	3240			
80	AGAGAGGGAT	ATGCTCTGTG	AGGACCTGGC	TCATGCCACT	GAGCAGCTGA	ACATGCTCAC	3300			
						TGACCAAGAA				
						AAGTAGAACA	3420			
						ATTCTGCTGC	3480			
						CAAAACTCCT				
85						TGGAACACCT	3600			

	TGTAACAAAG	CTAAATGAAG	ACAGAGAAGT	CAAAAATGCT	GAAATCCTCA	GAATGAAGGA	3660
	GCAGTTGCCT						3720
	GCTCCTGCAA						3780 3840
5	TCCAGATAAT AAGTAAAATA						3900
•	CCTTTACAAC						3960
	TTTGGAGTCT						4020
	TGAAGAAAGA						4080
10	TGCTGAGGAA . AGTGCGACTA .						4140 4200
10	AAATGTATTT						4260
	GGCATCACCT						4320
	TTAGGAGAGC	TGAATTTATG	GACCTTAATT	ATTAAATGTT	TATAAGGTGG	TGGTAACCAC	4380
1.5	CTCAAGTTTC						4440
15	ATTAAGTGGC						4500 4560
	AAATAAAAGC					GGTTCCAACA	
						TGTTAATATA	4680
00	GATTATTTTT	GTATTCTTAC	TTTAGGTATT	TTACTTGAGC	ATTTTCCATG	ACTGTAAATA	4740
20	AAGCCATTTT	TTAAGATAAA	аалаалаа	AAAA			
	000 TD NO.	32 Dwetain					
	Seq ID NO: Protein Acc						
	1	11	21	31	41	51	
25	1	1	1	1	1	1	
	MAPGCKTELR	SVTNGQSNQP	SNEGDAIKVF	Vrirppaers	GSADGEQNLC	LSVLSSTSLR	60
	LHSNPEPKTF	TFDHVADVDT	TQESVFATVA	KSIVESCMSG	YNGTIFAYGQ	TGSGKTFTMM	120
			EYLFSLIDRE VEQVVTSAAE				180 240
30			LNLVDLAGSE				300
-			TFLLRDSLGG				360
	KLIKNKAVVN	EDTQGNVSQL	QAEVKRLKEQ	LAELASGQTP	PESFLTRDKK	KTNYMEYFQE	420
			QLEDLTLKKE				480
35			REQIEHHPRV DKNQQGFSPK				540 600
55			OSLOKANINI				660
	TPTKAYOLHS	RPVPKLSPEM	GSFGSLYTON	SSILDNDILN	EPVPPEMNEQ	APEAISEELR	720
	TVQEQMSALQ	AKLDEEEHKN	PKTŐĞHADKT	EHHSTQMQEL	FSSERIDWTK	QQEELLSQLN	780
40			HDLRVVLHSA				840
40			ACLQDSYDNL				900 960
			EEDKENSSKE			ELKDINCKYN	1020
						QLNMLTEASK	1080
						VMDSAAEDPQ	1140
45						ILRMKEQLRE	1200
						KERLAKSKIV	1260
						KLEEMYEERE	1320 1380
	KEKKRSES	KOVECLAEEN	GKLVGHQNLH	OKIQIVVKLK	KENVKLAEET	EKLRAENVFL	1300
50	14100000						
		33 DNA seq					
			n #: BC0006	33.1			
	Coding sequ	lence: 12:	21	31	41	51	
55	i	i	î	i	ī	ĭ	
	ATGGAATCCG	AGGATTTAAG	TGGCAGAGAA		ATTCCATAAT	GAACAAAGTG	60
	AGAGACATTA	AAAATAAGTT	TAAAAATGAA	GACCTTACTG	ATGAACTAAG	CTTGAATAAA	120
	ATTTCTGCTG	ATACTACAGA	TAACTCGGGA	ACTOTTAACC	AAATTATGAT	GATGGCAAAC	180
60						TCCGCTAAGT	240 300
UU						GCTTCCCCCA TGAATTAAAA	360
	GCTATTCAAG	AGCCAGATGA	TGCACGTGAC	TACTTTCAAA	TGGCCAGAGC	AAACTGCAAG	420
	AAATTTGCTT	TTGTTCATAT	ATCTTTTGCA	CAATTTGAAC	TGTCACAAGG	TAATGTCAAA	480
CE	AAAAGTAAAC	AACTTCTTCA	AAAAGCTGTA	GAACGTGGAG	CAGTACCACT	AGAAATGCTG	540
65	GAAATTGCCC	TGCGGAATTT	AAACCTCCAA	AAAAAGCAGC	TGCTTTCAGA	GGAGGAAAAG	600 660
	CATTTACACA	ATAGGAACAA	CACTTCTCAT	TCCAGAGGAC	AGACTACTAA	TTCACTTGGG AGCCAGGTTT	720
	TTATATGGAG	AGAACATGCC	ACCACAAGAT	GCAGAAATAG	GTTACCGGAA	TTCATTGAGA	780
	CAAACTAACA	AAACTAAACA	GTCATGCCCA	TTTGGAAGAG	TCCCAGTTAA	CCTTCTAAAT	840
70						GAAAAGACAA	900
	ACCTCTAGAT	CAGAATGCCG	AGATTTGGTT	GTGCCTGGAT	CTAAACCAAG	TGGAAATGAT	960
	TCCTGTGAAT	TAAGAAATTT	AAAGTCTGTT	CAAAATAGIC	TABCCCTGAB	ACCTCTGGTG GAATAAAAGG	1020
						AGAGGTTCCA	
75	GAGAGTAACC	AGAAACAGTG	GCAATCTAAG	AGAAAGTCAG	AGTGTATTAA	CCAGAATCCT	1200
	GCTGCATCTT	CAAATCACTG	GCAGATTCCG	GAGTTAGCCC	GAAAAGTTAA	TACAGAGCAG	1260
	AAACATACCA	CTTTTGAGCA	ACCTGTCTT	TCAGTTTCAP	AACAGTCACC	ACCAATATCA	1320
	ACATCTAAAT	GGTTTGACCC	AAAATCTATT	TGTAAGACAC	CAAGCAGCA	TACCTTGGAT	1380
80	GATTACATGA	GCTGTTTTAG	AACTCCAGTT	TTCCACCAC	ALTITUACE	TGCTTGTCAG AATACTTGCC	1440 1500
50	ACTCCACTTC	CITATOGCCA	GGTTTTAGC	TCTTCTTCAC	CAAATGAATG	CATTTOGGTT	1560
	AAAGGAAGAA	TTTATTCCAT	TTTAAAGCAG	ATAGGAAGTO	GAGGTTCAAC	CAAGGTATTT	1620
	CAGGTGTTAA	ATGAAAAGAA	ACAGATATAT	GCTATAAAA1	TOKAĐIĐIA 1	* AGAAGAAGCA	1680
85	GATAACCAAA	CTCTTGATAG	TTACCGGAAC	GAAATAGCTT	ATTIGAATA	ACTACAACAA	1740
03	CACAGTGATA	AGATCATCCC	ACTITATGAT	TATGAAATC		CATCTACATG	1800
					2	06	

```
GTAATGGAGT GTGGAAATAT TGATCTTAAT AGTTGGCTTA AAAAGAAAAA ATCCATTGAT 1860
                                                                                            1920
        CCATGGGAAC GCAAGAGTTA CTGGAAAAAT ATGTTAGAGG CAGTTCACAC AATCCATCAA
        CATGGCATTG TICACAGTGA TCTTAAACCA GCTAACTTC TGATAGTTGA TGGAATGCTA AAGCTAATTG ATTTTGGGAT TGCAAACCAA ATGCAACCAG ATACAACAAG TGTTGTTAAA
                                                                                            2040
 5
        GATTCTCAGG TTGGCACAGT TAATTATATG CCACCAGAAG CAATCAAAGA TATGTCTTCC
                                                                                            2100
        TCCAGAGAGA ATGGGAAATC TAAGTCAAAG ATAAGCCCCA AAAGTGATGT TTGGTCCTTA
GGATGTATTT TGTACTATAT GACTTACGGG AAAACACCAT TTCAGCAGAT AATTAATCAG
                                                                                            2160
        ATTTCTAAAT TACATGCCAT AATTGATCCT AATCATGAAA TTGAATTTCC CGATATTCCA
                                                                                            2280
        GAGAAAGATC TTCAAGATGT GTTAAAGTGT TGTTTAAAAA GGGACCCAAA ACAGAGGATA
TCCATTCCTG AGCTCCTGGC TCATCCCTAT GTTCAAATTC AAACTCATCC AGTTAACCAA
                                                                                            2340
10
                                                                                            2400
        ATGGCCAAGG GAACCACTGA AGAAATGAAA TATGTTCTGG GCCAACTTGT TGGTCTGAAT
        TCTCCTAACT CCATTTGAA AGCTGCTAAA ACTTTATATG AACACTATAG TGGTGGTGAA
        AGTCATAATT CTTCATCCTC CAAGACTTTT GAAAAAAAA GGGGAAAAAA ATGA
15
        Seg ID NO: 34 Protein seguence:
        Protein Accession #: AAH00633.1
                    11
                                  21
                                                  31
                                                                41
                                                                             51
        MESEDLSGRE LTIDSIMNKV RDIKNKPKNE DLTDELSLNK ISADTTONSG TVNQIMMAN
20
        NPEDWLSLLL KLEKNSVPLS DALLNKLIGR YSQAIEALPP DKYGQNESFA RIQVRFAELK
                                                                                             120
        AIQEPDDARD YFQMARANCK KFAFVHISFA QFELSQGNVK KSKQLLQKAV ERGAVPLEML
                                                                                              180
        EIALRNINIQ KKQLISEEEK KNISASTVIT AQESPSGSIG HIQNRNNSCD SRGQTTKARF
LYGENMPPQD AEIGYRNSIR QTNKTKQSCP FGRVPVNILN SPDCDVKTDD SVVPCPMKRQ
                                                                                              240
         TSRSECRDLY VPGSKPSGND SCELRNLKSV QNSHPKEPLV SDEKSSELII TDSITLKNKT
                                                                                              360
25
         ESSLLAKLEE TKEYQEPEVP ESNQKQWQSK RKSECINQNP AASSNHWQIP ELARKVNTEQ
KHTTFEQPVF SVSKQSPPIS TSKWFDPKSI CKTPSSNTLD DYMSCFRTPV VKNDFPPACQ
                                                                                              420
                                                                                              480
         LSTPYGQPAC FQQQQHQILA TPLQNLQVLA SSSANECISV KGRIYSILKQ IGSGGSSKVP
         QVLNEKKQIY AIKYVNLEEA DNQTLDSYRN EIAYLNKLQQ HSDKIIRLYD YEITDQYIYM
                                                                                              600
         VMECGNIDLN SWLKKKKSID PWERKSYWKN MLEAVHTIHO HGIVHSDLKP ANFLIVDGML
                                                                                              660
         VMECABILDEM MODDITESVK DSQUGTVNYM PDEAIKOMSS SRENGKSKSK ISPKSDVWSL
GCILYYMYYG KTPFQQIINQ ISKLHAIIDP NHBIEFPDIP EKDLQDVLKC CLKRDPKQRI
30
                                                                                              780
         SIPELLAHPY VQIQTHPVNQ MAKGTTEEMK YVLGQLVGLN SPNSILKAAK TLYEHYSGGE
                                                                                              840
         SHNSSSSKTF EKKRGKK
35
         Seg ID NO: 35 DNA seguence
         Nucleic Acid Accession #: NM_005823.2
         Coding sequence: 85..1953
                      11
                                    21
                                                  31
                                                                41
40
         TGGCCACTCC CGTCTGCTGT GACGCGCGGA CAGAGAGCTA CCGGTGGACC CACGGTGCCT
         CCCTCCCTGG GATCTACACA GACCATGGCC TTGCCAACGG CTCGACCCCT GTTGGGGTCC TGTGGGACCC CCGCCCTCGG CAGCCTCCTG TTCCTGCTCT TCAGCCTCGG ATGGGTGCAG
                                                                                              120
         CCCTCGAGGA CCCTGGCTGG AGAGACAGGG CAGGAGGCTG CACCCCTGGA CGGAGTCCTG
                                                                                              240
         GCCAACCCAC CTAACATTC CAGCCTCTCC CCTCGCCAAC TCCTTGGCTT CCCGTGTGCG
GAGGTGTCCG GCCTGAGCAC GGAGCGTGTC CGGGAGCTGG CTGTGGCCTT GGCACAGAAG
AATGTCAAGC TCTCAACAGA GCAGCTGCGC TGTCTGGCTC ACCGGCTCTC TGAGCCCCCC
                                                                                              300
45
                                                                                              360
         GAGGACCTGG ACGCCCTCCC ATTGGACCTG CTGCTATTCC TCAACCCAGA TGCGTTCTCG
                                                                                              480
         GGGCCCCAGG CCTGCACCCG TTTCTTCTCC CGCATCACGA AGGCCAATGT GGACCTGCTC
                                                                                              540
         CCGAGGGGG CTCCCGAGCG ACAGCGGCTG CTGCCTGCGG CTCTGGCCTG CTGGGGTGTG
50
         CGGGGGTCTC TGCTGAGCGA GGCTGATGTG CGGGCTCTGG GAGGCCTGGC TTGCGACCTG
                                                                                              660
         CCTGGGCGCT TTGTGGCCGA GTCGGCCGAA GTGCTGCTAC CCCGGCTGGT GAGCTGCCCG
                                                                                              720
         GGACCCCTGG ACCAGGACCA GCAGGAGGCA GCCAGGGCGG CTCTGCAGGG CGGGGGACCC
                                                                                              780
         CCCTACGGCC CCCCGTCGAC ATGGTCTGTC TCCACGATGG ACGCTCTGCG GGGCCTGCTG
                                                                                              840
         CCCGTGCTGG GCCAGCCCAT CATCCGCAGC ATCCCGCAGG GCATCGTGGC CGCGTGGCGG
                                                                                              900
55
         CAACGCTCCT CTCGGGACCC ATCCTGGCGG CAGCCTGAAC GGACCATCCT CCGGCCGCGG
                                                                                              960
         TTCCGGCGGG AAGTGGAGAA GACAGCCTGT CCTTCAGGCA AGAAGGCCCG CGAGATAGAC
                                                                                             1020
         GAGAGCCTCA TCTTCTACAA GAAGTGGGAG CTGGAAGCCT GCGTGGATGC GGCCCTGCTG
                                                                                             1080
         GCCACCCAGA TGGACCGCGT GAACGCCATC CCCTTCACCT ACGAGCAGCT GGACGTCCTA
         AAGCATAAAC TGGATGAGCT CTACCCACAA GGTTACCCCG AGTCTGTGAT CCAGCACCTG
                                                                                             1200
60
         GGCTACCTCT TCCTCAAGAT GAGCCCTGAG GACATTCGCA AGTGGAATGT GACGTCCCTG
                                                                                             1260
         GGLAGCCEGA AGGCTTTGCT GAAGTCAAC AAAGGGAG AAATAGTCC CAGGTGGCC
ACCCTGATCG ACCCTTTGT GAAGGGAAG GGCAGCTAG ACAAAGACAC CCTAGACACC
                                                                                             1320
          CTGACCGCCT TCTACCCTGG GTACCTGTGC TCCCTCAGCC CCGAGGAGCT GAGCTCCGTG
                                                                                             1440
          CCCCCCAGCA GCATCTGGGC GGTCAGGCCC CAGGACCTGG ACACGTGTGA CCCAAGGCAG
                                                                                             1500
         CTGGACGTCC TCTATCCCAA GGCCCGCCTT GCTTTCCAGA ACATGAACGG GTCCGAATAC
TTCGTGAAGA TCCAGTCCTT CCTGGGTGGG GCCCCACGG AGGATTTGAA GGCGCTCAGT
65
                                                                                             1560
                                                                                             1620
          CAGCAGAATG TGAGCATGGA CTTGGCCACG TTCATGAAGC TGCGGACGGA TGCGGTGCTG
                                                                                             1680
          CCGTTGACTG TGGCTGAGGT GCAGAAACTT CTGGGACCCC ACGTGGAGGG CCTGAAGGCG
GAGGAGCGGC ACCGCCCGGT GCGGGACTGG ATCCTACGGC AGCGGCAGGA CGACCTGGAC
                                                                                             1740
                                                                                             1800
         ACGCTGGGGC TGGGGCTACA GGGCGGCATC CCCAACGGCT ACCTGGTCCT AGACCTCAGC
GTGCAAGAGG CCCTCTCGGG GACGCCCTGC CTCCTAGGAC CTGGACCTGT TCTCACCGTC
 70
                                                                                             1860
                                                                                             1920
          CTGGCACTGC TCCTAGCCTC CACCCTGGCC TGAGGGCCCC ACTCCCTTGC TGGCCCCAGC 1980
CCTGCTGGGG ATCCCCGCCT GGCCAGGAGC AGGCACGGGT GATCCCCGTT CCACCCCAAG 2040
          AGAACTCGCG CTCAGTAAAC GGGAACATGC CCCCTGCAGA CACGT
 75
          Seg ID NO: 36 Protein seguence
          Protein Accession #: NP 005814.1
                                     21
                       11
          80
          LSPROLLGYP CAEVSGLSTE RVRELAVALA QKNVKLSTEQ LRCLAHRLSE PPEDLDALPL
                                                                                               120
          DLLLFINPDA FSOPQACTRF FSRITKANVD LLPRGAPERQ RLLPAALACW GVRGSLLSBA
DVRALGGLAC DLPGRFVAES AEVILPRLVS CPGPLDQDQQ EARAALQGG GPPYGPPSTW
SVSTMDALRG LLPVLGQPII RSIPQGIVAA WRQRSSRDPS WRQPERTILR PRFRREVEKT
                                                                                               180
                                                                                               240
 85
          ACPSGKKARE IDESLIFYKK WELEACVDAA LLATOMDRVN AIPFTYEOLD VLKHKLDELY
```

5	GRGQLDKDTL RLAFQNMNGS KLLGPHVEGL	HLGYLPLKMS DTLTAFYPGY EYFVKIQSFL KAEERHRPVR TVLALLLAST	LCSLSPEELS GGAPTEDLKA DWILRQRQDD	SVPPSSIWAV LSQQNVSMDL	RPODLDTCDP ATFMKLRTDA	RQLDVLYPKA VLPLTVAEVQ	420 480 540 600
	Nucleic Aci	37 DNA sequidad Accession tence: 891	#: NM_0134	.04.1			
10	1	11	21	31	41	51	
	Ī	1	Ī	1	Ī	I	
		CTCCCGTCTG					60
		CTGGGATCTA					120
1 5		CGCCCTGGCA					180
15		CTGGCTGGAG					240
		AACATTTCCA CTGAGCACGG					300 360
		TCAACAGAGC					420
		GCCCTCCCAT					480
20		TGCACCCGTT					540
	GAGGGGGGCT	CCCGAGCGAC	AGCGGCTGCT	GCCTGCGGCT	CTGGCCTGCT	GGGGTGTGCG	600
		CTGAGCGAGG					660
		GTGGCCGAGT					720
25		CAGGACCAGC					780 840
23		CAGCCCATCA					900
		CGGGACCCAT					960
		GTGGAGAAGA					1020
20		TTCTACAAGA					1080
30		GACCGCGTGA					1140
		GATGAGCTCT CTCAAGATGA					1200 1260
		GCTTTGCTTG					1320
		CCACAGGTGG					1380
35		ACCCTAGACA					1440
	CCCCGAGGAG	CTGAGCTCCG	TGCCCCCCAG	CAGCATCTGG	GCGGTCAGGC	CCCAGGACCT	1500
		GACCCAAGGC					1560
		GGGTCCGAAT					1620
40		AAGGCGCTCA GATGCGGTGC					1680 1740
70		GGCCTGAAGG					1800
		GACGACCTGG					1860
		CTAGACCTCA					1920
		GTTCTCACCG					1980
45		GCTGGCCCCA					2040
		TTCCACCCCA	AGAGAACTCG	CGCTCAGTAA	ACGGGAACAT	GCCCCCTGCA	2100
	GACACGT						
	Seg ID NO:	38 Protein	sequence				
50		cession #: 1					
	1	11	21	31	41	51	
		 		DADEL ACERC	MBCARI COM	TTDIDITECT O	60
		SCGDRPGSLL EVSGLSTERV					60 120
55		GPQACTRFFS					180
		PGRFVAESAE					240
	STMDALRGLL	PVLGQPIIRS	IPQGIVAAWR	QRSSRDPSWR	QPERTILRPR	FRREVEKTAC	300
		ESLI PYKKWE					360
60		GYLFLKMSPE					420
00		LDKDTLDTLT QNMNGSEYFV					480 540
						GATATDT2A6	600
		GPGPVLTVLA					
65							
65		39 DNA seq		500 3			
		id Accessio uence: 11		300.1			
	1	11	21	31	41	51	
	Ī	i	Ī	1	1		
70						CAGTCATGTC	60
						CCTGATCATC	120
	TTCGTGATGG	GCCTTCTGGG	GAACAGCGTC	ACCATTCGGG	TCACCCAGGT	GCTGCAGAAG CTCGGACATC	180 240
	AAAGGATACT	АБЫААЫАЛЫ Филосотист	GCCCATCAGAC	TTCTACAGCA	TCATCTGGAL	TCCCCTGACC	300
75	ACGTCCAGCT	ACACCCTGTC	CTGCAAGCTG	CACACTTTCC	TCTTCGAGGC	CTGCAGCTAC	
	GCTACGCTGC	TGCACGTGCT	GACGCTCAGC	TTTGAGCGCT	ACATOGCCAT	CTGTCACCCC	420
	TTCAGGTACA	AGGCTGTGTC	GGGACCTTGC	CAGGTGAAGC	TGCTGATTGG	CTTCGTCTGG	480
	GTCACCTCCG	CCCTGGTGGC	ACTGCCCTTG	CTGTTTGCCA	TGGGTACTGA	GTACCCCCTG	540
80	GTGAACGTGC	CTAGCCACCG	GGGTCTCACT	ACCAACCGCI	CONGCACCO	CCACCACGAG GACCGTGTTC	600 660
UU.						CGTAGCCTTC	720
						GGCCGGGGGC	
	ACGOGGCCTC	CGCAGCTGAG	GAAGTCCGAG	AGCGAAGAGA	GCAGGACCGC	CAGGAGGCAG	840
05	ACCATCATCT	TCCTGAGGCT	GATTGTTGTG	ACATTGGCCG	TATGCTGGAT	GCCCAACCAG	900
85	ATTCGGAGGA	TCATGGCTGC	GGCCAAACCC	AAGCACGACT		CTACTTCCGG	960

5	CCGCTCCTGT TGCCGCCTGT ACCACCGACA	ACACGGTGTC CGCTGCAGCA GCGCCCGCTT	CTTCTCGGAG CTCGCAGCAG CGCCAACCAC TGTGCAGCGC GATTTTCTTA	TTTCGGCGGG GAGAAGCGCC CCGTTGCTCT	TGTTCGTGCA TGCGCGTACA TCGCGTCCCG	GGTGCTGTGC TGCGCACTCC GCGCCAGTCC	1020 1080 1140 1200 1260
	TCTAAGTCCC AATTCTGCTG	AGTCATTGAG CAGAGAATGG	TCTCGAGTCA TTTTCAGGAG	CTAGAGCCCA	ACTCAGGCGC		1320
10		40 Protein cession #: N 11		31	41	51	
			PEFEVATWIK LVFLIGNPME				60 120
15	VNVPSHRGLT MCWNMMQVLM IRRIMAAAKP	CNRSSTRHHE KSQKGSLAGG KHDWTRSYFR	FRYKAVSGPC QPETSNMSIC TRPPQLRKSE AYMILLPFSE	TNLSSRWTVF SEESRTARRQ TFFYLSSVIN	QSSIPGAPVV TIIPLRLIVV PLLYTVSSQQ	YLVVLLSVAF TLAVCWMPNQ FRRVFVQVLC	180 240 300 360
20	SKEQSLELES	LEPNSGAKPA	TTDSARFVQR NSAAENGFQE		SARRTEKIFL	Stfqseaepq	420
		41 DNA sequid Accession	1ence 1 #: NM_022	358			
25		uence: 65	L057				
25	1	11 	21 	31 [*	41 	51 	
			ACGGAGCAGG	TTGGGACCGC			60
			TGCGCGCGGC TCGACGCGCT				120 180
30			GOGCTCTCCG				240
			CGCTCCAGGC				300
	GTTCCCCGGC	ACCGACTOCG	TCGCCATCAC GCAAGGTCTT	CTCCATCACT	ACCATCGGGT	TGGGCATCCC	360 420
			AGAGCCTGGG				480
35	CCTGTTGGCG	GCCAAGTGCT	GCCTGGGCCT	GCGGTGGACG	TGCGTGTCCA	CGGAGAACCT	540
			CGTGTGCCGC				600 660
	CATCGGCTTC	GGCGACTTCG	TGGCACTGCA	GAGCGGCGAG	GCGCTGCAGA	GGAAGCTCCC	720
40	CTACGTGGCC	TTCAGCTTCC	TCTACATCCT	CCTGGGGCTC	ACGGTCATTG	GCGCCTTCCT	780
40			TCCTCGTTGC				840 900
	CCCGGCCCGC	TCCGTGGGCT	CCGCCTCTGT	CTTCTGCCAC	GTGCACAAGC	TGGAGAGGTG	960
			TTTCGCCCCC				1020 1080
45			GGCTTCAGCT				1140
	GGATGACGGG	CCTCTAGGCG	GTCTTCTGCC	ACGAGCAGTT	TCTCATTACT	GTCTGTGGCT	1200
		CCTCCTTTCC	AAAAATATAT AAAAAA	TACAGTCACA	CCATAAAAAA	AAAAAAAAA	1260
50						•	
50		42 Protein cession #: 3					
	1	11	21	31	41 .	51	
	1	<u> </u>	1				
55			VGAAVFDALE PGSFYFAITV				60 120
	TLVTFQSLGE	RLNAVVRRLL	LAAKCCLGLR	WTCVSTENLY	VAGLLACAAT	LALGAVAFSH	180
			GFGDFVALQS				240 300
			PSPRPPGAPE PRPGARWKSI		AKSVGSASVE	CHVIRDERCA	300
60							
	Seq ID NO:	43 DNA seq	uence n #: NM_000	869.1			
		uence: 220.					
65	1	11		31 1	41 	51	
05	GGAAACATGA	TCCAGCTGAA	 GGACTGATTG	CAGGAAAACT	TGGCAGCTCC	CCAACCTTGG	60
	TGGCCCAGGG	AGTGTGAGGC	TGCAGCCTCA	GAAGGTGTGA	GCAGTGGCCA	CGAGAGGCAG	
						GGCCTCGCCC	
70						GAGGAGCCGA	
	AACACCACCA	GCCCCCTCT	GCTGAGGCTG	TCGGATTACC	TTTTGACCAA	CTACAGGAAG	360
						CTGGTACCGG	
						CATCACCAAG	
75	TTGTCCATCC	CCACGGACAG	CATCTGGGTC	CCGGACATTO	TCATCAATGA	GTTCGTGGAT	600
						AGTTCAGAAC	
	GTCCAGAACT	GCTCGCTGAC	CTTCACCAGI	TEGETECACA	CCATCCAGGA	CATCAACATC	780
0Λ	TCTTTGTGGG	GCTTGCCAGA	AAAGGTGAAA	TCCGACAGG	GTGTCTTCAT	GAACCAGGGA	840
80	TACTATICAL	TGCTGGGGGT AAATGAACTT	CTATGTCCCTAG	TTTCGGGAGT	GGCCCCTCTT	AAGCAGTAAC CTATGTGGTC	900 960
	AGCCTGCTAG	TGCCCAGCAT	CITCCTCATC	GTCATGGAC	TOGTGGGCTT	CTACCTGCCC	1020
	CCCAACAGTO	GCGAGAGGGT	CTCTTTCAAC	ATTACACTCO	TCCTGGGCTA	CTCGGTCTTC	1080
85	CTGATCATC	TGTGCATCC	: GCTGCCGGC(ACTGCCATC	GCACTCCTCT GCCGAGACCAT	CATTGGTGTC CTTCATTGTG	1140
0,5	11010100						

	CCCCTCCTGC .	AÇAAGCAAGA	CCTGCAGCAG	CCCGTGCCTG	CTTGGCTGCG	TCACCTGGTT	1260
	CTGGAGAGAA	TOGCCTGGCT	ACTTTGCCTG	AGGGAGCAGT	CAACTTCCCA	GAGGCCCCCA	1320
	GCCACCTCCC .						1380
	ATGGGAGGAC						1440
5	CCTCGGGAGG						1500
3							
	TTCCTGGAAA						1560
	GTGCTGGACA						1620
	CTGGTTATGC	TCTGGTCCAT	CTGGCAGTAC	GCTTGAGTGG	GTACAGCCCA	GTGGAGGAGG	1680
	GGGTACAGTC	CTCCTTAGGT	GGGGACAGAG	GATTTCTGCT	TAGGCCCCTC	AGGACCCAGG	1740
10	GAATGCCAGG						1800
							1860
	TCATCTCAGC						
	CCCTTACACC						1920
	ATCAGGAGAA	ACTCGGGCAC	TCCCTAAGTC	CACTCTAGTT	GTGGACTTTT	CCCCATTGAC	1980
	CCTCACCTGA	ATAAGGGACT	TTGGAATTCT	GCTTCTCTTT	CACAACTTTG	CTTTTAGGTT	2040
15	GAAGGCAAAA						2100
13	CCCTAGTGTC						2160
						CICAICCCC	2100
	ATCAGATGAT	GGGAGTGGGA	AGAATAAAAT	GCAGTGAAAC	CC		
	Seq ID NO:	44 Protein	sequence				
20	Protein Acc	ession #: N	P 000860.1				
			21	31	41	51	
	1	11		31	41	1	
	1	1	1	1	1	1	
	MLLWVQQALL	ALLLPTLLAQ	GEARRSRNTT	RPALLRLSDY	LLTNYRKGVR	PVRDWRKPTT	60
	VSIDVIVYAI	LNVDEKNOVL	TTYIWYROYW	TDEFLOWNPE	DFDNITKLSI	PTDSIWVPDI	120
25	LINEFVDVGK						180
	TIODINISLW						240
	RPLFYVVSLL						300
	GTPLIGVYFV	VCMALLVISL	AETIFIVELV	HKQDLQQPVP	AWLRHLVLER	IAWLLCLREQ	360
	STSQRPPATS	OATKTDDCSA	MGNHCSHMGG	PODFEKSPRD	RCSPPPPPRE	ASLAVCGLLQ	420
30	ELSSIROFLE						
-	nnoorwa. nn						
	0 VD VO	45 5373					
	Seq ID NO:						
	Nucleic Aci			507			
2.5	Coding sequ	ence: 241	1902				
35	1	11	21	31	41	51	
	Ī	ī ·	ī	Ĭ.	1	1	
	COCCACACCA	GCCTCGGCCA	CCCTACCCAG	CCCCCCCC	decemente.	VGGCCGCGVG	60
		GCGGTGCCTG					120
4.0	CGAGTGGAGC	GGAGGACCCG	AGCGGCTGAG	GAGAGAGGAG	GCGGCGCTT	AGCTGCTACG	180
40	GGGTCCGGCC	GGCGCCCTCC	CGAGGGGGGC	TCAGGAGGAG	GAAGGAGGAC	CCGTGCGAGA	240
		CCTGGAGCCT					300
		CCAGTGCAAG					360
		GAACTAAACT					420
	TGTGAAGCTA	CATGCGAACC	TGGATGTAAG	TTTGGTGAGT	GCGTGGGACC	AAACAAATGC	480
45	AGATGCTTTC	CAGGATACAC	CGGGAAAACC	TGCAGTCAAG	ATGTGAATGA	GTGTGGAATG	540
		CATGCCAACA					600
		ACATGCTCAT					660
		AGTACAGCTG					720
~^		GCCTGGCCCC					780
50	GGTAAAGTCA	TCTGTCCCTA	CAATCGAAGA	TGTGTGAACA	CATTTGGAAG	CTACTACTGC	840
	AAATGTCACA	TTGGTTTCGA	ACTGCAATAT	ATCAGTGGAC	GATATGACTG	TATAGATATA	900
		CTATGGATAG					960
		AGTGTAAATG					1020
EE		ATTCTGTGAA					1080
55	AAGAAGTTGC	TTGCTCACAA	AAACAGCATG	AAAAAGAAGG	CAAAAATTAA	AAATGTTACC	1140
	CCAGAACCCA	CCAGGACTCC	TACCCCTAAG	GTGAACTTGC	AGCCCTTCAA	CTATGAAGAG	1200
		GAGGCGGGAA					1260
						AGAGGAGCGA	1320
60		GAGATGTGTT					1380
60		GGAAAGCGCT					1440
	GACTGCAGCT	TCAATCATGG	GATCTGTGAC	TGGAAACAGG	ATAGAGAAGA	TGATTTTGAC	1500
							1560
						ACCCCAAAGC	
							1680
65						ACTTCGAGTG	
UJ						GGATGAAAAG	
						CATCATTTTT	1800
	GAAGCAGAAC	GTGGCAAGGG	CAAAACCGGC	GAAATCGCAG	TGGATGGCGT	CITGCTTGTT	1860
						ATCTTTATAT	
						CTCTGGCATT	
70							
70						AAGATGCCTT	
						TTCTCAGTCA	2100
						CTCCCCTCCT	2160
	CACTATATOT	CATTTOTATA	AGTAAGTTOA	TGAGCTTCTC	TCTACAACAT	TTCTAGAAAA	2220
75						TCTTGGAAAC	
75						TAGCCAAACT	2340
	TGTATATTTA	AATTCTTTGT	ATAATAATA	TCCAAATCAT	CAAAAAAAAA	AAAAAAA	
	Sea ID NO.	46 Protein	secuence				
	•	cession #:	-				
80	_				41	67	
90	1	11	21	31	41	51	
	1	1	1	1	1	1	
	MPLPWSLALP	LLLSWVAGGP	GNAASARHHG	LLASARQPGV	CHYGTKLACC	YGWRRNSKGV	60
						NTHGSYKCFC	120
						DCLDIDECAS	180
85							
٠ رن	GKVICPYNRR	CANTAGRAAC	venigarnox	ISGRIDCIDI	MECIADSHIC	SHHANCFNTQ	240
					20	10	

```
GSFKCKCKQG YKGNGLRCSA IPENSVKEVL RAPGTIKDRI KKLLAHKNSM KKKAKIKNVT
         PEPTRIPIPK VALQPFNYEE IVSRGGNSHG GKKGNEEKMK EGLEDEKREE KALKADIEER
                                                                                                    360
         SLRGDVFFPK VNEAGEFGLI LVQRKALTSK LEHKDLNISV DCSFNHGICD WKQDREDDFD
                                                                                                    420
        WNPADRDNAI GFYMAVPALA GHKKDIGRLK LLLPDLQPQS NFCLLPDYRL AGDKVGKLRV
                                                                                                    480
         FVKNSNNALA WEKTTSEDEK WKTGKIQLYQ GTDATKSIIF EAERGKGKTG EIAVDGVLLV
                                                                                                    540
         SGLCPDSLLS VDD
         Seg ID NO: 47 DNA sequence
         Nucleic Acid Accession #: NM_005046
10
         Coding sequence: 16..777
                       11
                                     21
                                                                                   51
         GGATTTCCGG GCTCCATGGC AAGATCCCTT CTCCTGCCCC TGCAGATCCT ACTGCTATCC
         TTAGCCTTGG AAACTGCAGG AGAAGAAGCC CAGGGTGACA AGATTATTGA TGGCGCCCCA
TGTGCAAGAG GCTCCCACCC ATGGCAGGTG GCCCTGCTCA GTGGCAATCA GCTCCACTGC
                                                                                                    120
15
                                                                                                    180
         GGAGGCGTCC TGGTCAATGA GCGCTGGGTG CTCACTGCCG CCCACTGCAA GATGAATGAG
         TACACCGTGC ACCTGGGCAG TGATACGCTG GGCGACAGGA GAGCTCAGAG GATCAAGGCC
                                                                                                    300
         TCGAAGTCAT TCCGCCACCC CGGCTACTCC ACACAGACCC ATGTTAATGA CCTCATGCTC GTGAAGCTCA ATAGCCAGGC CAGGCTGTCA TCCATGGTGA AGAAAGTCAG GCTGCCCTCC CGCTGCGAAC CCCCTGGAAC CACCTGTACT GTCTCCGGCT GGGGCACTAC CACGAGCCCA
                                                                                                    360
                                                                                                    420
20
                                                                                                    480
         GATGTGACCT TTCCCTCTGA CCTCATGTGC GTGGATGTCA AGCTCATCTC CCCCCAGGAC
                                                                                                    540
         TGCACGAAGG TTTACAAGGA CTTACTGGAA AATTCCATGC TGTGCGCTGG CATCCCCGAC TCCAAGAAAA ACGCCTGCAA TGGTGACTCA GGGGGACCGT TGGTGTGCAG AGGTACCCTG
                                                                                                    600
                                                                                                    660
         CAAGGTCTGG TGTCCTGGGG AACTTTCCCT TGCGGCCAAC CCAATGACCC AGGAGTCTAC
                                                                                                    720
25
         ACTCAAGTGT GCAAGTTCAC CAAGTGGATA AATGACACCA TGAAAAAGCA TCGCTAACGC CACACTGAGT TAATTAACTG TGTGCTTCCA AČAGAAAATG CACAGGAGTG AGGACGCCGA TGACCTATGA AGTCAAATTT GACTTTACCT TTCCTCAAAG ATATATTTAA ACCTCATGCC
                                                                                                    780
                                                                                                    840
         CTGTTGATAA ACCAATCAAA TTGGTAAAGA CCTAAAACCA AAACAAATAA AGAAACACAA
30
         Seg ID NO: 48 Protein seguence
         Protein Accession #: NP 005037
                       11
35
         MARSLLIPLO ILLISLALET AGEEAOGDKI IDGAPCARGS HPWQVALLSG NQLHCGGVLV
                                                                                                      60
         NERWYLTAAH CKMNEYTVHL GSDTLGDRRA QRIKASKSFR HEGYSTQTHV NDLMLVKLNS
QARLSSMVKK VRLPSRCEPP GTTCTVSGWG TTTSPDVTFP SDLMCVDVKL ISPQDCTKVY
                                                                                                    120
                                                                                                    180
         KDLLENSMLC AGIPDSKKNA CNGDSGGPLV CRGTLQGLVS WGTFPCGQPN DPGVYTQVCK
                                                                                                    240
         PTKWINDTMK KHR
40
         Seq ID NO: 49 DNA sequence
         Nucleic Acid Accession #: NM_003466.1
         Coding sequence: 11..1363
                                                                                   51
45
         GAATTCGGCG ATGCCTCACA ACTCCATCAG ATCTGGCCAT GGAGGGCTGA ACCAGCTGGG
AGGGGCCTTT GTGAATGGCA GACCTCTGCC GGAAGTGGTC CGCCAGCGCA TCGTAGACCT
                                                                                                      60
         GGCCCACCAG GGTGTAAGGC CCTGCGACAT CTCTCGCCAG CTCCGCGTCA GCCATGGTTG
                                                                                                     180
         CGTCAGCAAG ATCCTTGGCA GGTACTACGA GACTGGCAGC ATCCGGCCTG GAGTGATAGG
GGGCTCCAAG CCCAAGGTGG CCACCCCCAA GGTGGTGGAG AAGATTGGGG ACTACAAACG
                                                                                                     240
50
                                                                                                     300
          CCAGAACCCT ACCATGTTTG CCTGGGAGAT CCGAGACCGG CTCCTGGCTG AGGGCGTCTG
         TGACAATGAC ACTGTGCCCA GTGTCAGCTC CATTAATAGA ATCATCCGGA CCAAAGTGCA
                                                                                                     420
          GCAACCATTC AACCTCCCTA TGGACAGCTG CGTGGCCACC AAGTCCCTGA GTCCCGGACA
                                                                                                     4BO
         CACGCTGATC CCCAGCTCAG CTGTAACTCC CCCGGAGTCA CCCCAGTCGG ATTCCCTGGG
CTCCACCTAC TCCATCAATG GGCTCCTGGG CATCGCTCAG CCTGGCAGCG ACAAGAGGAA
                                                                                                     540
55
          AATGGATGAC AGTGATCAGG ATAGCTGCCG ACTAAGCATT GACTCACAGA GCAGCAGCAG
                                                                                                     660
         CGGACCCCGA AAGCACCTTC GCACGGATGC CTTCAGCCAG CACCACCTCG AGCCGCTCGA
GTGCCCATTT GAGCGGCAGC ACTACCCAGA GGCCTATGCC TCCCCCAGCC ACACCAAAGG
CGAGCAGGGC CTCTACCCGC TGCCCTTGCT CAACAGCACC CTGGACGACG GGAAGGCCAC
                                                                                                     720
                                                                                                     780
                                                                                                     840
60
          CCTGACCCCT TCCAACACGC CACTGGGGCG CAACCTCTCG ACTCACCAGA CCTACCCCGT
                                                                                                     900
          GGTGGCAGAT CCTCACTCAC CCTTCGCCAT AAAGCAGGAA ACCCCCGAGG TGTCCAGTTC
TAGCTCCACC CCTTCCTCTT TATCTAGCTC CGCCTTTTTG GATCTGCAGC AAGTCGGCTC
                                                                                                     960
          CGGGGTCCCG CCCTTCAATG CCTTTCCCCA TGCTGCCTCC GTGTACGGGC AGTTCACGGG
                                                                                                    1080
          CCAGGCCCTC CTCTCAGGGC GAGAGATGGT GGGGCCCACG CTGCCCGGAT ACCCACCCCA
                                                                                                   1140
65
          CATCCCCACC AGGGACAGG GCAGCTATGC CTCCTCTGCC ATCGCAGGCA TGGTGGCAGG AAGTGAATAC TCTGGCAATG CCTATGGCCA CACCCCCTAC TCCTCCTACA GCGAGGCCTG GCGCTTCCCC AACTCCAGCT TGCTGAGTTC CCCATATTAT TACAGTTCCA CATCAAGGCC
                                                                                                   1200
          GAGTGCACCG CCCACCACTG CCACGGCCTT TGACCATCTG TAGTTGAAGC TT
70
          Seg ID NO: 50 Protein seguence
          Protein Accession #: NP 003457
                        11
                                       21
                                                                     41
                                                                                    51
          MPHNSIRSGH GGLNQLGGAF VNGRPLPEVV RQRIVDLAHQ GVRPCDISRQ LRVSHGCVSK
75
          ILGRYYETGS IRPGVIGGSK PKVATPKVVE KIGDYKRONP TMFAWEIRDR LLAEGVCDND
                                                                                                     120
          TVPSVSSINR IIRTKVQQPP NLPMDSCVAT KSLSPGHTLI PSSAVTPPES PQSDSLGSTY
SINGLLGIAQ PGSDKRKMDD SDQDSCRLSI DSQSSSSGPR KHLRTDAFSQ HHLEPLECPF
                                                                                                     180
          ERQHYPEAYA SPSHTKGEOG LYPLPLLNST LDDGKATLTP SNTPLGRNLS THQTYPVVAD
                                                                                                     300
          PHSPFAIKQE TPEVSSSSST PSSLSSSAFL DLQQVGSGVP PFNAFPHAAS VYGQFTGQAL
                                                                                                     360
80
          LSGREMVGPT LPGYPPHIPT SGQGSYASSA IAGNVAGSEY SGNAYGHTPY SSYSEAWRFP
                                                                                                     420
          NSSLLSSPYY YSSTSRPSAP PTTATAFDHL
           Seq ID NO: 51 DNA sequence
```

85

```
TTCAGAAGGA GGAGAGACAC CGGGCCCAGG GCACCCTCGC GGGCGGGCGG ACCCAAGCAG
       TGAGGGCCTG CAGCCGGCCG GCCAGGGCAG CGGCAGGCGC GGCCCGGACC TACGGGAGGA
       AGCCCCGAGC CCTCGGCGGG CTGCGAGCGA CTCCCCGGCG ATGCCTCACA ACTCCATCAG
                                                                                     180
       ATCTGGCCAT GGAGGGCTGA ACCAGCTGGG AGGGGCCTTT GTGAATGGCA GACCTCTGCC
                                                                                     240
       GGAAGTGGTC CGCCAGCGCA TCGTAGACCT GGCCCACCAG GGTGTAAGGC CCTGCGACAT
                                                                                     300
       CTCTCGCCAG CTCCGCGTCA GCCATGGCTG CGTCAGCAAG ATCCTTGGCA GGTACTACGA
       GACTGGCAGC ATCCGGCCTG GAGTGATAGG GGGCTCCAAG CCCAAGGTGG CCACCCCCAA
                                                                                     420
10
       GGTGGTGGAG AAGATTGGGG ACTACAAACG CCAGAACCCT ACCATGTTTG CCTGGGAGAT
CCGAGACCGG CTCCTGGCTG AGGGCGTCTG TGACAATGAC ACTGTGCCCA GTGTCAGCTC
                                                                                     480
                                                                                     540
       CATTAATAGA ATCATCCGGA CCAAAGTGCA GCAACCATTC AACCTCCCTA TGGACAGCTG
       CGTGGCCACC AAGTCCCTGA GTCCCGGACA CACGCTGATC CCCAGCTCAG CTGTAACTCC
                                                                                     660
       CCCGGAGTCA CCCCAGTCGG ATTCCCTGGG CTCCACCTAC TCCATCAATG GGCTCCTGGG
CATCGCTCAG CCTGGCAGCG ACAAGAGGAA AATGGATGAC AGTGATCAGG ATAGCTGCCG
                                                                                     720
15
                                                                                     780
        ACTARGCATT GACTCACAGA GCAGCAGCAG CGGACCCCGA AAGCACCTTC GCACGGATGC
       CTTCAGCCAG CACCACCTOG AGCCGCTCGA GTGCCCATTT GAGCGGCAGC ACTACCCAGA GGCCTATGCC TCCCCCAGCC ACACCAAAGG CGAGCAGGGC CTCTACCCGC TGCCCTTGCT
                                                                                     900
                                                                                     960
       CAACAGCACC CTGGACGACG GGAAGGCCAC CCTGACCCCT TCCAACACGC CACTGGGGCG
20
       CAACCTCTOG ACTCACCAGA CCTACCCCGT GGTGGCAGCT CCGCCCTTTT GGATCTGCAG
        CAAGTCGGCT CCGGGGTCCC GCCCTTCAAT GCCTTTCCCC ATGCTGCCTC CGTGTACGGG
                                                                                    1140
       CAGTTCACGG GCCAGGCCCT CCTCTCAGGG CGAGAGATGG TGGGGCCCAC GCTGCCCGGA
TACCCACCCC ACATCCCCAC CAGCGGACAG GGCAGCTATG CCTCCTCTGC CATCGCAGGC
                                                                                    1200
                                                                                    1260
       ARGORGEAG GAAGTGAATA CTCTGGCAAT GCCTATGGCC ACACCCCTA CTCCTCTAC AGCGAGGCCT GGGCTTCCC CAACTCCAGC TTGCTGAGTT CCCCATATTA TTACAGTTCC
25
                                                                                    1380
        ACATCAAGGC CGAGTGCACC GCCCACCACT GCCACGGCCT TTGACCATCT GTAGTTGCCA 1440
        TGGGGACAGT G
        Seq ID NO: 52 Protein sequence
30
        Protein Accession #: NP_039246
                                                                       51
                               21
                                                          41
                   11
        MPHNSIRSGH GGLNQLGGAF VNGRPLPEVV RQRIVDLAHQ GVRPCDISRQ LRVSHGCVSK
                                                                                       60
        ILGRYYETGS IRPGVIGGSK PKVATPKVVE KIGDYKRONP TMFAWEIRDR LLAEGVCDND
                                                                                     120
35
        TVPSVSSINR IIRTKVQQPF NLPMDSCVAT KSLSPGHTLI PSSAVTPPES PQSDSLGSTY
        SINGLIGIAQ PGSDKRKMDD SDQDSCRLSI DSQSSSSGPR KHLRTDAFSQ HHLEPLECPF
                                                                                      240
        ERQHYPEAYA SPSHTKGEQG LYPLPLLNST LDDGKATLTP SNTPLGRNLS THQTYPVVAA
                                                                                      300
        PPFWICSKSA PGSRPSMPPP MLPPCTGSSR ARPSSOGERW WGPRCPDTHP TSPPADRAAM
        PPLPSQAWWQ EVNTLAMPMA TPPTPPTARP GASPTPAC
40
        Seq ID NO: 53 DNA sequence
        Nucleic Acid Accession #: NM_012427
        Coding sequence: 43..924
45
        CTTGTGGTTC CTCTCTACTT GGGGAAATCA GGTGCAGCGG CCATGGCTAC AGCAAGACCC CCCTGGATGT GGGTGCTCTG TGCTCTGATC ACAGCCTTGC TTCTGGGGGT CACAGAGCAT
                                                                                       60
        GTTCTCGCCA ACASTGSTGT TTCCTGTGSC CACCCCTCTS ACACCGTGCC CTCTGGGSGC
                                                                                      180
        AACCAGGACC TGGGAGCTGG GGCCGGGGAA GACGCCCGGT CGGATGACAG CAGCAGCCGC
                                                                                      240
50
        ATCATCAATG GATCCGACTG CGATATGCAC ACCCAGCCGT GGCAGGCCGC GCTGTTGCTA
                                                                                      300
        AGGCCCAACC AGCTCTACTG CGGGGCGGTG TTGGTGCATC CACAGTGGCT GCTCACGGCC
        GCCCACTGCA GGAAGAAAGT TTTCAGAGTC CGTCTCGGCC ACTACTCCCT GTCACCAGTT
                                                                                      420
        TATGAATCTG GGCAGCAGAT GTTCCAGGGG GTCAAATCCA TCCCCCACCC TGGCTACTCC
                                                                                      480
        CACCCTGGCC ACTCTAACGA CCTCATGCTC ATCAAACTGA ACAGAAGAAT TOGTCCCACT
                                                                                      540
55
        AAAGATGTCA GACCCATCAA CGTCTCCTCT CATTGTCCCT CTGCTGGGAC AAAGTGCTTG
        GTGTCTGGCT GGGGGACAAC CAAGAGCCCC CAAGTGCACT TCCCTAAGGT CCTCCAGTGC
                                                                                      660
        TTGAATATCA GCGTGCTAAG TCAGAAAAGG TGCGAGGATG CTTACCCGAG ACAGATAGAT
                                                                                      720
        GACACCATGT TCTGCGCCGG TGACAAAGCA GGTAGAGACT CCTGCCAGGG TGATTCTGGG
                                                                                      780
        GGGCCTGTGG TCTGCAATGG CTCCCTGCAG GGACTCGTGT CCTGGGGAGA TTACCCTTGT
60
        GCCCGGCCCA ACAGACCGGG TGTCTACACG AACCTCTGCA AGTTCACCAA GTGGATCCAG
        GARACCATCC AGGCCAACTC CTGAGTCATC CCAGGACTCA GCACACCGGC ATCCCCACCT
                                                                                      960
        GCTGCAGGGA CAGCCCTGAC ACTCCTTTCA GACCCTCATT CCTTCCCAGA GATGTTGAGA ATGTTCATCT CTGCAGCCCC TGACCCCATG TCTCCTGGAC TCAGGGTCTG CTTCCCCCAC
                                                                                     1020
        ATTGGGCTGA CCGTGTCTCT CTAGTTGAAC CCTGGGAACA ATTTCCAAAA CTGTCCAGGG
65
        Seq ID NO: 54 Protein sequence
        Protein Accession #: NP 036559
70
                                              31
                    11
                                 21
                                                           41
        MATARPPWMW VLCALITALL LGVTEHVLAN NDVSCDHPSN TVPSGSNQDL GAGAGEDARS
                                                                                       60
        DDSSSRIING SDCDMHTQPW QAALLLRPNQ LYCGAVLVHP QWLLTAAHCR KKVFRVRLGH
YSLSPVYESG QQMFQGVKSI PHPGYSHPGH SNDLMLIKLN RRIRPTKDVR PINVSSHCPS
                                                                                      120
75
        AGTKCLVSGW GTTKSPQVHF PKVLQCLNIS VLSQKRCEDA YPRQIDDTMF CAGDKAGRDS
        CQGDSGGPVV CNGSLQGLVS WGDYPCARPN RPGVYTNLCK PTKWIQETIQ ANS
        Seg ID NO: 55 DNA seguence
        Nucleic Acid Accession #: NM_002214
80
        Coding sequence: 681..2990
                    11
                                 21
                                              31
                                                                       51
         CCCAGAGCCG CCTCCCCCTG TTGCTGGCAT CCCGAGCTTC CTCCCTTGCC AGCCAGGACG
                                                                                       60
        CTGCCGACTT GTCTTTGCCC GCTGCTCCGC AGACGGGGCT GCAAAGCTGC AACTAATGGT
GTTGGCCTCC CTGCCCACCT GTGGAAGCAA CTGCGCTGAT TGATGCGCCA CAGACTTTTT
                                                                                      120
85
```

```
TCCCCTCGAC CTCGCCGGCG TACCCTCCCA CAGATCCAGC ATCACCCAGT GAATGTACAT
        TAGGGTGGTT TCCCCCCCAG CTTCGGGCTT TGTTTGGGTT TGATTGTGTT TGGCTCTTCG
CTAAGCTGAT TTATGCAGCA GAAGCCCCAC CGGCTGGAGA GAAACAAAAG CTCTTTTCTT
                                                                                           300
                                                                                            360
        TOTOCCGGAG CAGGOTGOGG AGCCCTTGCA GAGCCCTCTC TCCAGTCGCC GCCGGGCCCT
        TGGCCGTCGA AGGAGGTGCT TCTCGCGGAG ACCGCGGGAC CCGCCGTGCC GAGCCGGGAG
                                                                                            480
        GGCCGTAGGG GCCCTGAGAT GCCGAGCGGT GCCCGGGCCC GCTTACCTGC ACCGCTTGCT
CCGAGCCGCG GGGTCCGCCT GCTAGGCCTG CGGAAAACGT CCTAGCGACA CTCGCCCGCG
                                                                                            540
                                                                                            600
        GGCCCGGAGG TCGCCCGGGA GGCCGAGCCC GCGTCCGGAA GGCAGCCAGG CGGCGGGCGC
                                                                                            660
        GGGGGGGCT GTTTTGCATT ATGTGCGGCT CGGCCCTGGC TTTTTTTACC GCTGCATTTG
TCTGCCTGCA AAACGACCGG CGAGGTCCCG CCTCGTTCCT CTGGGCAGCC TGGGTGTTTT
                                                                                            720
10
                                                                                            780
        CACTTGTTCT TGGACTGGGC CAAGGTGAAG ACAATAGATG TGCATCTTCA AATGCAGCAT
        CCTGTGCCAG GTGCCTTGCG CTGGGTCCAG AATGTGGATG GTGTGTTCAA GAGGATTTCA
                                                                                            900
        TTTCAGGTGG ATCAAGAAGT GAACGITGTG ATATTGTTTC CAATTTAATA AGCAAAGGCT GCTCAGTTGA TTCAATAGAA TACCCATCTG TGCATGTTAT AATACCCACT GAAAATGAAA
                                                                                            960
                                                                                          1020
15
       TTAATACCCA GGTGACACCA GGAGAAGTGT CTATCCAGCT GCGTCCAGGA GCCGAAGCTA
        ATTTTATGCT GAAAGTTCAT CCTCTGAAGA AATATCCTGT GGATCTTTAT TATCTTGTTG
                                                                                          1140
        ATGTCTCAGC ATCAATGCAC AATAATATAG AAAAATTAAA TTCCGTTGGA AACGATTTAT
CTAGAAAAAT GGCATTTTC TCCCGTGACT TTCGTCTTGG ATTTGGCTCA TACGTTGATA
                                                                                           1200
                                                                                           1260
        AAACAGTTTC ACCATACATT AGCATCCACC CCGAAAGGAT TCATAATCAA TGCAGTGACT
                                                                                           1320
20
        ACAATTTAGA CTGCATGCCT CCCCATGGAT ACATCCATGT GCTGTCTTTG ACAGAGAACA
                                                                                           1380
        TCACTGAGTT TGAGAAAGCA GTTCATAGAC AGAAGATCTC TGGAAACATA GATACACCAG
                                                                                          1440
        AAGGAGGTTT TGACGCCATG CTTCAGGCAG CTGTCTGTGA AAGTCATATC GGATGGCGAA
                                                                                           1500
        AAGAGGCTAA AAGATTGCTG CTGGTGATGA CAGATCAGAC GTCTCATCTC GCTCTTGATA
                                                                                           1560
        GCAAATTGGC AGGCATAGTG GTGCCCAATG ACGGAAACTG TCATCTGAAA AACAACGTCT
                                                                                           1620
25
        ACGTCAAATC GACAACCATG GAACACCCCT CACTAGGCCA ACTTTCAGAG AAATTAATAG ACAACAACAT TAATGTCATC TTTGCAGTTC AÄGGAAAACA ATTTCATTGG TATAAGGATC
                                                                                           1680
                                                                                           1740
        TTCTACCCCT CTTGCCAGGC ACCATTGCTG GTGAAATAGA ATCAAAGGCT GCAAACCTCA
        ATAATTTGGT AGTGGAAGCC TATCAGAAGC TCATTTCAGA AGTGAAAGTT CAGGTGGAAA
                                                                                           1860
        ACCAGGTACA AGGCATCTAT TTTAACATTA CCGCCATCTG TCCAGATGGG TCCAGAAAGC
                                                                                           1920
30
        CAGGCATGGA AGGATGCAGA AACGTGACGA GCAATGATGA AGTTCTTTTC AATGTAACAG
                                                                                           1980
        TTACAATGAA AAAATGTGAT GTCACAGGAG GAAAAAACTA TGCAATAATC AAACCTATTG
        GTTTTAATGA AACCGCTAAA ATTCATATAC ACAGAAACTG CAGCTGTCAG TGTGAGGACA
                                                                                           2100
        ACAGAGGACC TAAAGGAAAG TOTGTAGATG AAACTTTTCT AGATTCCAAG TGTTTCCAGT
GTGATGAGAA TAAATGTCAT TTTGATGAAG ATCAGTTTTC TTCTGAGAGT TGCAAGTCAC
                                                                                           2160
                                                                                           2220
35
        ACAAGGATCA GCCTGTTTGC AGTGGTCGAG GAGTTTGTGT TTGTGGGAAA TGTTCATGTC
        ACAAAATTAA GCTTGGAAAA GTGTATGGAA AATACTGTGA AAAGGATGAC TTTTCTTGTC
                                                                                           2340
        CATATCACCA TGGAAATCTG TGTGCTGGGC ATGGAGAGTG TGAAGCAGGC AGATGCCAAT
GCTTCAGTGG CTGGGAAGGT GATCGATGCC AGTGCCCTTC AGCAGCAGCC CAGCACTGTG
                                                                                           2400
                                                                                           2460
        TCAATTCAAA GGGCCAAGTG TGCAGTGGAA GAGGCACGTG TGTGTGTGGA AGGTGTGAGT
40
        GCACCGATCC CAGGAGCATC GGCCGCTTCT GTGAACACTG CCCCACCTGT TATACAGCCT
                                                                                           2580
        GCAAGGAAAA CTGGAATTGT ATGCAATGCC TTCACCCTCA CAATTTGTCT CAGGCTATAC
TTGATCAGTG CAAAACCTCA TGTGCTCTCA TGGAACAACA GCATTATGTC GACCAAACTT
                                                                                           2640
        CAGAATGTTT CTCCAGCCCA AGCTACTTGA GAATATTTTT CATCATTTTC ATAGTTACAT
        TCTTGATTGG GTTGCTTAAA GTCCTGATCA TTAGACAGGT GATACTACAA TGGAATAGTA
                                                                                           2820
45
        ATAAAATTAA GTCCTCATCA GATTACAGAG TGTCAGCCTC AAAAAAGGAT AAGTTGATTC
                                                                                           2880
         TGCAAAGTGT TTGCACAAGA GCAGTCACCT ACCGACGTGA GAAGCCTGAA GAAATAAAAA
        TGGATATCAG CAAATTAAAT GCTCATGAAA CTTTCAGGTG CAACTTCTAA AAAAAGATTT
                                                                                           3000
         TTAAACACTT AATGGGAAAC TGGAATTGTT AATAATTGCT CCTAAAGATT ATAATTTTAA
                                                                                           3060
        AAGTCACAGG AGGAGACAAA TTGCTCACGG TCATGCCAGT TGCTGGTTGT ACACTCGAAC GAAGACTGAC AAGTATCCTC ATCATGATGT GACTCACATA GCTGCTGACT TTTTCAGAGA
                                                                                           3120
50
        AAAATGTGTC TTACTACTGT TTGAGACTAG TGTCGTTGTA GCACTTTACT GTAATATATA
                                                                                           3240
        ACTTATTTAG ATCAGCATAG AATGTAGATC CTCTGAAGAG CACTGATTAC ACTTTACAGG
                                                                                           3300
         TACCTGTTAT CCCTACGCTT CCCAGAGAGA ACAATGCTGT GAGAGAGTTT AGCATTGTGT
                                                                                           3360
         CACTACAAGG GTACAGTAAT CCCTGCACTG GACATGTGAG GAAAAAAATA ATCTGGCAAG
55
        TATATTCTAA GGTTGCCAAA CACTTCAACA GTTGGTGGTT GAATAGACAA GAACAGCTAG
         ATGAATAAAT GATTCGTGTT TCACTCTTTC AAGAGGTGAA CAGATACAAC CTTAATCTTA
                                                                                           3540
        AAAGATTATT GCTTTTTAAA GTGTGTAGTT TTATGCATGT GTGTTTATGG TTTGCTTATT
TTTGCAAGAT GGATACTAAT TCCAGCATTC TCTCCTCTTT GCCTTTATGT TTTGTTTTCT
                                                                                           3600
                                                                                           3660
         TTTTTACAGG ATAAGTTTAT GTATGTCACA GATGACTGGA TTAATTAAGT GCTAAGTTAC
60
         TACTGCCATA AAAAACTAAT AATACAATGT CACTTTATCA GAATACTAGT TTTAAAAGCT
         GAATGTTAA
         Seg ID NO: 56 Protein seguence
         Protein Accession #: NP 002205
65
                                                 31
         1 11 21
         MCGSALAFFT AAFVCLONDR RGPASFLWAA WVFSLVLGLG OGEDNRCASS NAASCARCLA
         LGPECGWCVQ EDFISGGSRS ERCDIVSNLI SKGCSVDSIE YPSVHVIIPT ENEINTQVTP
                                                                                             120
         GEVSIQLRPG AEANFMLKVH PLKKYPVDLY YLVDVSASMH NNIEKLNSVG NDLSRKMAFF
                                                                                             180
         SRDFRLOFGS YVDKTVSPYI SIHPERINNO CSDYNLDOMP PHGYIHVUSL TENITEFEKA
VHRQKISGNI DTPEGGFDAM LQAAVCESHI GWRKEAKRLL LVMTDQTSHL ALDSKLAGIV
70
                                                                                             300
         VPNDGNCHLK NNVYVKSTTM EHPSLGQLSE KLIDNNINVI FAVQGKQFHW YKDLLPLLPG
                                                                                             360
         TIAGEIESKA ANLANLVVEA YQKLISEVKV QVENQVQQIY FNITAICPDG SRKFGMEGCR
NVTSNDEVLF NVTVTMKKCD VTGGKNYAII KPIGFNETAK IHIHRNCSCQ CEDNRGPKGK
                                                                                             420
75
         CVDETPLDSK CFQCDENKCH FDEDQFSSES CKSHKDQFVC SGRGVCVCGK CSCHKIKLGK
                                                                                             540
         VYGKYCEKDD PSCPYHHGNL CAGHGECEAG RCQCFSGWBG DRCQCPSAAA QHCVNSKGQV
CSGRGTCVCG RCECTDPRSI GRPCEHCPTC YTACKENWNC MQCLHPHNLS QAILDQCKTS
CALMEQQHYV DQTSECFSSP SYLRIFFIIF IVTFLIGLLK VLIIRQVILQ WNSNKIKSSS
                                                                                             600
                                                                                             660
         DYRVSASKKD KLILQSVCTR AVTYRREKPE EIKMDISKLN AHETFRONF
80
         Seg ID NO: 57 DNA seguence
         Nucleic Acid Accession #: NM_001719
         Coding sequence: 123..1418
                      11
                                    21
85
                                    ī
                                                                             1
                                                                         293
```

		GGGCCCGTCT					60
	CTGCCACCTG	GGGCGGTGCG	GGCCCGGAGC	CCGGAGCCCG	GGTAGCGCGT	AGAGCCGGCG	120
	CGATGCACGT	GCGCTCACTG	CGAGCTGCGG	CGCCGCACAG	CTTCGTGGCG	CTCTGGGCAC	180
_	CCCTGTTCCT	GCTGCGCTCC	GCCCTGGCCG	ACTTCAGCCT	GGACAACGAG	GTGCACTCGA	240
5	GCTTCATCCA	CCGGCGCCTC	CGCAGCCAGG	AGCGGCGGGA	GATGCAGOGC	GAGATCCTCT	300
		CTTGCCCCAC					360
		GCTGGACCTG					420
		CTCCTACCCC					480
		TAGCCATTTC					540
10		CAAGGAATTC					600
10							660
		CCCAGAAGGG					
		ACGCTTCGAC					720
		CAGGGAATCG					780
1.5		GCTGGTGTTT					840
15	GGCACAACCT	GGGCCTGCAG	CTCTCGGTGG	AGACGCTGGA	TGGGCAGAGC	ATCAACCCCA	900
	AGTTGGCGGG	CCTGATTGGG	CGGCACGGGC	CCCAGAACAA	GCAGCCCTTC	ATGGTGGCTT	960
	TCTTCAAGGC	CACGGAGGTC	CACTTCCGCA	GCATCCGGTC	CACGGGGAGC	AAACAGCGCA	1020
•	GCCAGAACCG	CTCCAAGACG	CCCAAGAACC	AGGAAGCCCT	GCGGATGGCC	AACGTGGCAG	1080
		CAGCGACCAG					1140
20	GAGACCTGGG	CTGGCAGGAC	TGGATCATCG	CGCCTGAAGG	CTACGCCGCC	TACTACTGTG	1200
		TGCCTTCCCT					1260
		CCACTTCATC					1320
		CATCTCCGTC					1380
		GGTGGTCCGG					1440
25	MCAGAGACA1	GTTTTTCTGG	ACCIGIOGCI	GCCVCIVGCI	CCCCCCAACC	ACCACACCAA	1500
23	TIGGGGCCAA	GITIIICIGG	AICCICCAII	CÓCCA A CTION	AAACCTCTCA	CACTATTACC	1560
	CIGCCITITG	TGAGACCTTC	CCCTCCCTAT	CCCCAACITI	AAAGGIGIGA	DAGIATIAGG	
	AAACATGAGC	AGCATATGGC	TTTTGATCAG	TTTTTCAGTG	GCAGCATCCA	AIGAACAAGA	1620
		TGTGCAGGCA					1680
20		GTCATTGGCT					1740
30		CTACCAGCCA					1800
	GGGCACATTG	GTGTCTGTGC	GAAAGGAAAA	TTGACCCGGA	AGTTCCTGTA	ATAAATGTCA	1860
	CAATAAAACG	AATGAATG					
	Sea ID NO:	58 Protein	secuence				
35		cession #: A					
	1	11	21	31	41	51	
	î	î*	ī	ĭ	ī	ĭ	
	AGEIDOLDE DE PE	PHSFVALWAP	I	POI DMENUOO	PTUDDI DOOP	DDDWADDTI.G	60
							120
40		HLQGKHNSAP					
40		DMVMSFVNLV					180
		RISVYQVLQE					240
	HNLGLQLSVE	TLDGOSINPK	LAGLIGRHGP	ONKOPFMVAF	FKATEVHFRS	IRSTGSKQRS	300
	QNRSKTPKNQ	EALRMANVAE					360
4.5			NSSSDQRQAC	KKHELYVSFR	DLGWQDWIIA	PEGYAAYYCE	360 420
45		EALRMANVAE MNATNHAIVQ	NSSSDQRQAC	KKHELYVSFR	DLGWQDWIIA	PEGYAAYYCE	
45	GECAFPLNSY	EALRMANVAE MNATNHAIVQ	NSSSDQRQAC	KKHELYVSFR	DLGWQDWIIA	PEGYAAYYCE	
45	GECAFPLNSY RNMVVRACGC	EALRMANVAE MNATNHAIVQ	NSSSDQRQAC TLVHFINPET	KKHELYVSFR	DLGWQDWIIA	PEGYAAYYCE	
45	GECAFPLNSY RNMVVRACGC Seq ID NO:	EALRMANVAE MNATNHAIVQ H	NSSSDQRQAC TLVHFINPET	KKHELYVSFR VPKPCCAPTQ	DLGWQDWIIA	PEGYAAYYCE	
	GECAFPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac:	EALRMANVAE MNATNHAIVQ H 59 DNA sequ	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002	KKHELYVSFR VPKPCCAPTQ	DLGWQDWIIA	PEGYAAYYCE	
45 50	GECAFPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac:	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002	KKHELYVSFR VPKPCCAPTQ	DLGWQDWIIA	PEGYAAYYCE	
	GECAFPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac Coding seq	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150.	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002	KKHELYVSFR VPKPCCAPTQ 821	DLGWQDWIIA LNAISVLYPD	PEGYAAYYCE DSSNVILKKY	
	GECAFPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac Coding sequent	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21	KKHELYVSFR VPKPCCAPTQ 821 31	DLGWQDWIIA LNAISVLYPD 41	PEGYAAYYCE DSSNVILKKY 51	420
	GECAFPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequents	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 1 TCGGGGTCGG	KKHELYVSFR VPKPCCAPTO 821 31 GCTCCGGCTG	DLGWQDWIIA LNAISVLYPD 41 CGGCTGCTGC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC	420
	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT	NSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 TCGGGGTCGG CCTGTGCCCG	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA	DLGWQDWIIA LNAISVLYPD 41 CGGCTGCTGC GTCTGCGGCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC	60 120
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession Mence: 150. 11 TCGGGACGCC TCGCGCT TTTTCCTGAG	NSSDQRQAC TLVHFINPET dence 1 #: NM_002 .3362 21 1 TCGGGGTCGG CCTGTGCCGG CCCGCCGGGA	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC	DLGWQDWIIA LNAISVLYFD 41 CGGCTGCTGC GCCGGGATCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC CCGGCCAGAC	60 120 180
	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC	NSSSDQRQAC TLVHFINPET Lence a #: NM_002 .3362 21 TCGGGGTCGG CCTGTGCCGG CCCGCCGGGA AGCGTCCTGC	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT	DLGWQDWIIA LNAISVLYFD 41 GGGTGCTGC GCGGGGATCC GCTGGGCGGT	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCGTGCGC CCGGCCAGAC ACCCAGACAG	60 120 180 240
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCCCGCGTT CCATTGTCTT	EALRMANVAE MNATNHAIVQ H 59 DNA sequidance: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 1 TCGGGGTCGG CCTGTGCCGG CCGGCGCAA AGCGTCCTGC CCGTCCTCCC	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGACCTG	DLGWQDWIIA LNAISVLYFD 41 GGCTGCTGC GTCTGCGGCC GCGGGGATCC GCTGGGCGGT GCAGGGGGCGC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCTGCGC CCGGCCAGACAC ACCCAGACAG CGGGCGTGC	60 120 180 240 300
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TCCGTTGTA	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accessio. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCC GGTTGAGGCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TCGGGGTCGG CCTGTGCCG CCGCCGGA AGCGTCTGC CCGTCCTCCC	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGCCGCT TGCTGCCGCT TACATGTGTA	DLGMQDWIIA LNAISVLYFD 41	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC CCGCCAGAC ACCCAGACA CCGGCCAGC CGGCCTGC	60 120 180 240 300 360
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT CCATTGTCTT TTCGCTGTGA CTGTCCAGGA	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCGGCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGAGCGG CACGAGCGGG	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCTGTGCCGG CCGCGCGGA AGCGTCTCGC CCGGCCCGGA GCGTCCTCCC CCGGGCCCGGA GCGTTCCCCC CGGGCCCGG	KKHELYVSFR VPKPCCAPTO 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCACT AACATGTTA AGGGCAGCAG	DLGNQDWIIA LNAISVLYPD 41 CGGCTGCTGC GCCGGGATCC GCTGGGCGGT GCAGGGCGC CCTGGCTGCTC CCTGAGCTTT	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCTGCGC CCGGCCAGAC ACCCAGACAG CGGGCGCTGCG GATGGGGCCC GCAGCTGTGG	60 120 180 240 360 420
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT CCATTGTCTT TTCGCTTGTA ACCGGCTGCA ACCGGCTGCA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGGAGCGG GGACTCTGGC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 1 TCGGGGTCGG CCCGCGGAA AGCGTCCTCCC CCGGGCCCGG ACCTTCCAGT	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCTG TGCTGCCGCT AGGATGCACT AGGATGCACCAC AGGATCACCAC AGGATGCACCAC AGGATCACCAC AGGATGCACCAC AGGATGCACCAC AGGATCACCAC AGGATCACACCAC AGGATGCACCACCAC AGGATCACCAC AGGATCACCAC AGGATCACCAC AGGATCACCAC	DLGMQDMIIA LNAISVLYFD 41 CGGCTGCTGC GTCTGCGGCC GCGGGATCC GCAGGGGGGCGC GCAGGGGGGGGGG	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC GCCGTGCGC CCGGCCAGAC ACCCAGACAG CGGGCGCTGC GATGGGGCC GCAGCTGTGG ACTGGAGAAG	60 120 180 240 300 360 420 480
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TCCATTGCTT TTCGCTGTGA ACCGGCTGCA AAGCCCGCAG	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession tence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGAGGCGG GGACTCTGGC TGCCAACGCC TGCCAACGCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 TCGGGGTCGG CCGGCGCAA AGGGTCCTGC CCGGGCCCCA AGGTCTTCCACT TCCTTCAACA	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT TACATGTA AGGCAGCAG GTGTGGCTGCT TCAATGGAT TCAATGGAT	DLGWQDWIIA LNAISVLYFD 41 CGGCTGCTGC GCGGGGATCC GCGGGGATCC GCAGGGGGCC CTGGCTGCTC CCTGAGCTTT TGAGCAGGT	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCTGCGC CCGGCCAGAC ACCCAGACAG CCGGCGCTGC GATGGGGCCC GCAGCTGTGG ACTGGAAG ACTGGAGAAG CCTGTGGTCC	60 120 180 240 300 360 420 480 540
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACCCGCCGGA ACCCGCCGGA TGAAGCATCC	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession unce: 150. 11 TCGGGACGCC TCTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTCAGCAG GGACTCTGGG TGCCAACGCG AGCCTGGGAACTCTGGG AGCCTCGGAACGCAACGC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TCGGGGTCGG CCGCCGGA AGCGTCTGC CCGGCCCGG AGCTTCCCG CCGGCCCGG ACCTTCAACA GCTGAGATCC	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTG TGCTGCCGCT TACATGTGTA AGGATCACT TACATGTGTA AGGATGACTAG TCAAATGGAT AGCCACAGAC	DLGWQDWIIA LNAISVLYPD 41	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCAGAC ACCCAGACA CCGGCCAGAC GATGGGCCC GATGGGCCC GATGGGCCC CCTCGTTGGC CCTTCGTTGCC	60 120 180 240 300 420 480 540 600
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGCT CCTCAGCTCC CCCGCCGGTT CCATTGTCTT TTCGCTGTGA ACCGGCTGCA AAGCCCCCAG TGAAGCATCC ACATTGATCG	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGGAGGGG GGACTCTGGC TGCCAACGCC AGCCTCGGAA	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 TCGGGGTCGG CCGCGCGA AGCGTCCTCC CCGGCCCGC ACCTTCCAGT TCCTTCACA GCTTACACA GCTAGAATCC CCCACCTACC	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTG TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCACT AGGATGCACT AGGATGCACAGAC AATGGTTAGCACAGAC AATGGTTCCG	A1 CGGCTGCTGC GCCGGGGCCCCGGGGCCCCCGGGGCTCCCGGGCTCCCTGGGCGGGTCCCCTGGGCTGCT	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCGTGCGC ACCCAGACAG CGGGCGCAGAC CGAGCTGTGGAC CGCAGCTGTGGACCC CCTTGGTGGCCC CTTCGTTGCC CCCCTTTCTG	60 120 180 240 300 360 420 480 540 660
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCCGCCGCT CCACGCTCT TCCACTGCT TTCCCAGGA ACCGGCTGCA AAGCCCGCAG TGAAGCATCC ACATTGATGG ATGGTCAGGA AGGCTCAGAGA AGGCTCAGAGATCAAGAGATCAAGAAGATCAAGAAGATCAAGAAGATCAAGAGATCAAGAGATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGATCAAGAGAAGAAGAACATCAAGAGAAGATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGAACATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGAACAACAACAACAAGAAGAACAACAACAACA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGGAGCGG TGCCACGGGC TGCCACGGG TGCCACGGG AGCCTCGGG CAACCACACACACACACACACACACACACACACAC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TGGGGGTCGG CCGGCGCGA AGCGTCCTCC CGGGGCCCGA AGCGTCTCCC TCGTCCCC CGGGCCCGA ACCTTCCAGT TCCTTCAACA GCTGAGATCC CCCACCTACC GTCAGCAGCA GTCAGCAGCA	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCTG CCGCGGACTGC TGCTGCCGCT AGGATGCACT AGGATGCACT TACATGTTA AGGCAGCAG TGTGGCTGCT TCAATGGAT AGCACAGAC AGGACCAGAC AGGACCAGAC AGGACCGGAA	A1 GGCTGCTGC GCGGGGATCC CCTGAGCTT TGAGCAGT TGAGCAGT TGAGCAGT CAGGTGACA TGAGCAGT TGAGCAGT CCAGGTCAC CCTGAGCTG CCAGCTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGCTC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGACAG CCGGCCAGACAG CCGGCCGCC GCAGCTGCG GCAGCTGCG CCTTGGTCC CTTCGTTGCC CCCCTTTCTG CCGCCAGCTG	60 120 180 240 300 420 480 540 600 720
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCCGCCGCT CCACGCTCT TCCACTGCT TTCCCAGGA ACCGGCTGCA AAGCCCGCAG TGAAGCATCC ACATTGATGG ATGGTCAGGA AGGCTCAGAGA AGGCTCAGAGATCAAGAGATCAAGAAGATCAAGAAGATCAAGAAGATCAAGAGATCAAGAGATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGATCAAGAGAAGAAGAACATCAAGAGAAGATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGAACATCAAGAGAAGATCAAGAGAAGAACATCAAGAGAAGAACAACAACAACAAGAAGAACAACAACAACA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGGAGCGG TGCCACGGGC TGCCACGGG TGCCACGGG AGCCTCGGG CAACCACACACACACACACACACACACACACACAC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TGGGGGTCGG CCGGCGCGA AGCGTCCTCC CGGGGCCCGA AGCGTCTCCC TCGTCCCC CGGGCCCGA ACCTTCCAGT TCCTTCAACA GCTGAGATCC CCCACCTACC GTCAGCAGCA GTCAGCAGCA	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCTG CCGCGGACTGC TGCTGCCGCT AGGATGCACT AGGATGCACT TACATGTTA AGGCAGCAG TGTGGCTGCT TCAATGGAT AGCACAGAC AGGACCAGAC AGGACCAGAC AGGACCGGAA	A1 GGCTGCTGC GCGGGGATCC CCTGAGCTT TGAGCAGT TGAGCAGT TGAGCAGT CAGGTGACA TGAGCAGT TGAGCAGT CCAGGTCAC CCTGAGCTG CCAGCTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGTCAC CCTGACGCTC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCGTGCGC ACCCAGACAG CGGGCGCAGAC CGAGCTGTGGAC CGCAGCTGTGGACCC CCTTGGTGGCCC CTTCGTTGCC CCCCTTTCTG	60 120 180 240 300 360 420 480 540 660
50	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCTGCA ACGCCGCAG TGAAGCATCC ACATTGATGA GCTCAGGA GTCCTGAGGA GTCCTGAGGA GTCCTGAGGA GTCCTGAGGA GTCCTGAGGA	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGATTGAGGCT CACCGAGGGG GGACTCTGGC TGCCAACGCC AGCCTCGGA GCACCACCACAC TAGTGGGCTGGA	NSSSDQRQAC TLVHFINPET # NM_002 .3362 21 TCGGGGTCGG CCGCGCGCA AGCGTCTGCCC CCGGGCCCCA AGCTTCACT TCCTTCAACA GCTGAGATCC CCACCTACC GTCAGCAGCA GTCAGCAGCA GTCAGCAGCA	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT TACATGTGTA AGGATGACT TCAAATGGAT AGCACAGAC AATGGTTCAGACGGAA AGCGCACAGAC AATGGTTCAA	DLGWQDWIIA LNAISVLYFD 41 CGGCTGCTGC GCGGGGATCC GCGGGGATCC CCTGAGCTTT GGATGATGTC TGAGGCAGT CCAGGTCACA AGATGGACC CCTGAGCTT TGAGCAGGT CCAGGTCACA TGAGCAGGT CCTGAGCTT TGAGCAGGT TGAGCAGGT TGCTTTTGGC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGACAG CCGGCCAGACAG CCGGCCGCC GCAGCTGCG GCAGCTGCG CCTTGGTCC CTTCGTTGCC CCCCTTTCTG CCGCCAGCTG	60 120 180 240 300 420 480 540 600 720
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac. Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGGTCC CCGCCGGT TTCGCTGGA ACCGGTGGA ACCGGTGCA AAGCCCCCAA AAGCCCCCAA AAGCCCCCAA AGGCCCAAA ACGTGAAA ACGGTGAA ACGGTGCAA ACGTGAAAA ACGGTGCAA	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGCGG GGACTCTGGC TACCAAGCAG AGCCTCGGAA GCACCACAA TAGTGGGCTG CTTCACCTTGG TCTCACCTTGG TCTTGGCT	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 TCGGGGTCGG CCCGCGGA AGCGTCCTCC CGGCCCGG ACCTTCACAG TCCTTCACAG CCTACAGATCC CCACCTACC GTCACAGATCC TATTCCTGCT TATTCCTGCT TATTCCTGCT AGCATTGCTG	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT TACATGTGTA AGGGCGCAG ATGTGCCCACAGAC AATGGTTCCG AGGACCGCAA AGGCCCACAG ATGATGACCACAC ATGATAAGCAT	A1	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	60 120 180 240 300 360 420 480 600 660 720 780
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCTCCCGCT CCTCAGCTCC CCCCCCGCTT TTCGCTGTGA ACCGGCTGCA AAGCCCGCAG TGAAGCATCC ACATTGATGG ATGGTCAGGA GCCGCAGG GCAGCAGGA GCAGCAGGA GCCAGGAGA CCCAGGAAGT	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGATCAGGC TGCCACGGG TGCCACGCC AGCCTCGGC AGCCTCGGC AGCCTCGGC AGCCTCGGC AGCCTCGGC CAACCACAC TAGTGGGCT GCTACCTTG GGTAGTAGCG GGTAGTAGCGC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGCGCGA AGCGTCCTCC CGGGCCCGA AGCGTCTCCCC CGTTCCCCC CGTTCCCCC CGGGCCCGA TCCTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT AGCATTCCTGCT AGCATTCCTGCT AGCATTGCTGA	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA	A1 GGCTGCTGC GCGGGGATCC GCGGGGATCC GCGGGGATCC GCGGGCC GCGGGCC GCGGGCC GCGGCCC CCGGCTGCC CCGCTGCCC CCGCTGCCC CCGCTGCCC CCGCTCCC CCGCTCCC CCGCTCCC CCGCCCC CCGCCCC CCGCCCC CCGCCCC CCGCCCC CCCCCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGACAG CCGGCCAGACAG CCGGCGCCC GCAGCTGCG GATGGGGCCC CTCTGTTCCC CCCCTTTCTG CCGCCAGCTG CAGGCTTGCA CCCCCTTTCTG CAGGCTTGCA CTCCTCGCAGACT CAGGCTTGCA CTCTCGCAGCACT CAGGCTTCCACCC CTTCTCAGCCC CTTCTCAGCCC CTTCTCAGCCC CTTCTCAGCCC CTTCTCAGCCC	60 120 180 240 300 420 480 540 600 720 780 840 900
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequil AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCCGCA TGAAGCATCC ACATTGATGA GCAGCCGAG AGGCCGAG AGGCCAGA AGGCCCAGACC ACATGAGAG AGGCCAGAA AGCCCCAGACCT AGCACCCCC	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC TCTTCTGAG GCCTCTGCTC CATCAAGCAG GGATCAGCAG GGATCTGGC TGCCAACGCC AGCCTCGGA GCACCACACA TAGTGGCTG CATCAGCTGGC GCACCACACACA TAGTGGGCTG CATCACTTGGC GGACCTTCACCTGG GGACCTTCACCTGGC GGAGCCTGCAG GGACCTGCAG GGAGCCTGCAG	NSSSDQRQAC TLVHFINPET Ince In #: NM_002 .3362 21 TCGGGGTCGG CCGGCGCAA AGGGTCTGC CCGGCCCCAC AGCTTCACAC ACCTTCACAC GCTGAGATCC CCACCTACC CCACCTACC TATTCCTGCT AGGATTCCTGCT AGGATTCCTTGCT AGGATTCCTTGCT AGGATTCCTTCTTTG	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGAGCTGC TGCTGCCGCT TACATGTTA AGGATGACTG TCAAATGGAT AGCACAGAC AATGGTTCACATGTTCACATGGAT AGCACAGAC AATGGTTCACATGTTCACATGTTCACATGTTCACATGTTCACATGACACACAC	DLGMQDWIIA LNAISVLYFD 41 GGGCTGCTGC GCGGGGATCC GCGGGGATCC CCTGAGCTTT GGATGATGTC CCTGAGCTGC CCTGAGCTGC TGGTTGTC TGAGCAGGT CCTGAGCTGC TGCTTTTGGC TGCTTTTGGC TGCTTTTTGGC TGCTTTTTGGC TGCTTTTTGGC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC CCGCCAGAC ACCCAGACAG CGGGCGCTGCG GATGGGGCCC CCTGTGTGC CCTTTCTGTTCC CCCCTTTCTG CAGCCTTGCAGAC CAGCCTTGCAGAC CAGCCTTGCAGCC CTTCCTCAGCCC AACCGCAGTTC AACCGCAGTTC	60 120 180 240 420 480 600 660 720 780 840 900
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac. Coding seqi 1 AACTCCCGCC GCGCTCCGGT CCTCAGGTCC CCGCCGGT TTCGCTGTGA ACCGGCTGCA AACCCCGCAG ACCGCTGCA AAGCCCCCAG ACTGATAC ACATTGATGA CCCAGGAGA ACCCCCAGGAGA ACCCGCAGAGA ACCCAGCAGAA CCCAGGACGA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGGG GCCTCTGCTC CATCAAGCAG GGTTGAGGCG GGACTCTGGC TGCCAACGCC AGCCTCGGCA AGCACCACACA TAGTGGGCTG GTAGTGGCTG GTAGTAGCTG GTTAGTGGCTG GTAGTAGCCTCGG GACCCTCGG AGCCTCGGA CCTCCGCAGA CCTCCGCAGAG CCTCCGCAGAG CCTCCGCAGAG CCTCCGCAGAG CCTCCGCAGA	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGGCCGGA AGCGTCCTCC CGGCCCGG ACCTTCACA GCTTCACA GCTACACGCA TATTCCTGCT AGCATACAGCA AGCATTCTGCC AGCTATGCGCA TATTCTGCT TGGCCCACAGCA TGGCTCTTCACAGCA TATTCTGCT TGGCCCACAGCT TGGCTCTTCTCACAGCACAG	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCATG TGCTGCCGCT AGGATGCACT AGGATGCACT TACATGTGTA AGGGCAGCA GTGTGGCTCG GTGTGGCTCG GTGTGGCTCG AGGACGCAA AATGGTTCCG AGGACCGCAA AATGGTTCCG AGGACCGCAA AATGGTTCCG AGGACCGCAA ATGGATCAACA TGAATGATT TGCCAACAA	A1 CGGCTGCTGC GCTGGGGGGGGGGGGGGGGGGGGGGGGG	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC CCGGCCAGAC ACCCAGACAG ACCCAGACAG CGGGCGTGCG CATGGGGCCC CTTCGTTGCC CCTTTCTG CGGCAGCTG CAGGCTTGCA CTGCTTGCA CTGCTTGCA CTGCAGCAG CTGCAGCTG CAGCTTGCA CTGCAGCAGCTG CAGCTTGCA CTGCAGCAGCTG CTGCAGCAGCTG CTGCAGCACGCAGCTC CTCAACCGCAGCT CTGACCCAGG	60 120 180 240 300 420 480 540 660 720 840 900 900 1020
50 55 60 65	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TCGCTGTGA ACCGCTGCA AAGCCCCAA AAGCCCCAA AAGCCCCAA AAGCCAGAA CCCAGCAGAA CCCAGCAGAA CCCAGCAGAA CCCAGCAGAA TCCAGCACAA TCCGGCCACA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGCG TACCAACGCC AGCCTCGGAG GGACTCTGGC TGCCAACGCC AGCCTCGGAG CAACCACACA TAGTGGGCT GCTACTGGC GTACTAGCC GGAGCCTCGGAG CTTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCATCCGCAGA CCATCCGCAGA CCATCCGCAGA	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TCGGGGTCGG CCGGCGCGG AGCTCTCCC CCGGCCCGG ACCTTCAGT TCCTTCAGT TCCTAGATCC GTCAGCAGCAG TATTCCTGCT AGGATTCGCG AGGTATGCGG AGGTATGAGG TGGCTCTTTG AGGTATGAGG TGGCACAGTGT ATCTACCGCT	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCACT AGGATGCACT AGGATGCACAGAC AATGGTTCCG AGGACGGAA AGCCCACAG AGCCCACAG ATGAATGCAT AGGATGAC TGAAAGGCT AGGACGGAA GCGCCACAG ATGAAAGGT AGGACAAGAC TTGCCAACGG CCATTGCCA	A1 CGGCTGCTGC GCGGGGCGC GCGGGCGC GCGGGCGC GCGGGCGC GCGGCG	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGACAG CGGGCCAGAC ACCCAGACAG CGAGCTGTGG CCTTCGTTGCC CCCCTTTCTG CGGCCAGCTG CAGGCTTGCA CTTCTGCAGCAC TTCTCAGCC AACCCAGCTG AACCCAGGCT CTGACCCAGGCG GGCCACCCA	60 120 180 240 300 480 540 660 720 780 960 960 1020
50 55 60	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGGA ACCGGCTGA ACCGGCTGA ACGGCTGCA ACATTCATGG ATGGTCAGGA GTCCTGAGCA GCAGCCAGA CCCGCGCGCG GCCCCCCACA TCATCCTGG	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGACTCTGCC AGCACGCC AGCCTCGGCA AGCCTCGGAA GCACCCTCGG CAACCACACAC TAGTGGGCTG CTTCACCTGG GGAACTGCG GGACTGCAG CCTCCGCAGA AGCACACACAC AGCTGGGCTG CCAACCACACAC AGCTGGGCTG CAACCACACAC AGCTGCGGAGA AGCACACACAC AGGGGGAGACACACTGCAGGG AGCCACACTT	NSSSDQRQAC TLVHFINPET Lence	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGCCGCT AGGATGACACT TACATGTTA AGGCAGCAGA AGCACAGAC AATGATGTTA AGCACAGAC ATGAAAGCTT AGGCACAGAC ATGAAAGCTT AGGCATGTTCAATGGCAATGGCAATGGCAAGAC ATGAAAGCTT AGGCATGTTCAACA	ALGNODMITA LINAISVLYFD 41 GGGCTGCTGC GCGGGGATGC GCTGGCGGC GCAGGGGGCGC CTGGCTGCT GCAGGTGCT TGAGCTGCT TGAGTATATT TGAGGCAGT TCAGGTCACA TCCAGGTTG TGCAGGTCACA TCCATTGCAG TCCATTGCAG TCCATTGCAG TCCATCACT GCTTCTTGCTG GCGGCAAGGG CATGCCGCTA	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCTGCGC CCGCCAGAC ACCCAGACAG CCGGCCGCCC GCAGCTGCG GATGGGCCC GCAGCTGCG CATGGGCCCC CCCTTTCTG CGGCCAGCC CTTCTTCAGCCC AACCGCAGTC AACCGCAGTC CTGACCCAG GGCCCACCCA TTTGACCCCA	60 120 180 240 420 420 480 660 660 720 780 840 900 960 1020 1080
50 55 60 65	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding sequit AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCTGCA ACGCCTGCA ACGCCTGCA ACGCCTGCA ACGCCTGCA ACGCCTGCA ACGCCTGCA ACGCCCCAGACGT AGCCAGACGT AGCCACCCC GCCCCCACA TCCGGCCACG TCATCCTGG	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession Lence: 150. 11 TCGGGACGCC TCTTCCGAG GCCTCTGCTC CATCAAGCAG GGATCTGGC TGCCAACGCC AGCTTCGCC AGCCTCGGAA GCACCACACA TAGTGGCTG CTACCTTGG CATCAGTAGCAG GCACCACACA TAGTGGCTG CATCAGTAGCAG CAACCACACA TAGTGGCTG CAACACACA TAGTGGCTG CAACCACACA CAATGCAGAG CAACCACACA CAATGCAGAG CAACCACACA CAATGCAGAG CAACCACACA AGCTGCAGA AGCCACACTT AGCTGGCAGC	NSSSDQRQAC TLVHFINPET Ince In #: NM_002 .3362 21 TCGGGGTCGG CCGGCGCAA AGGGTCTGC CCGGCCCCAC ACTTCCAGT TCCTTCAACA GCTGAGATCC CCACCTACC GTCAGCAGCA TATTCCTGCT AGGATTGCTG AGGTTGGCG TGGCCCTTTG GCACAGTGT ATCTACGGT ACCTACCG	KKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGAGCTGC TGCTGCCGCT TACATGTTA AGGATGACTG TCAAATGGAT AGCACAGAC AATGGTTCGCTCG AGGAGCGGAA GCGCCACAG AGGAGCGGAA GCGCCACAG AGGATGGCTC TGCTAATGGAT AGGATGAGAC TTGCCAACGG CATTTGCCA TGCCAACGG CAGTTGGCCA TGCCAACGG TGACCACGCT TGCCACCGCT	ALIGNODMITA LINAISVLYFD 41 GGGCTGCTGC GCGGGGATCC GCGGGGATCC GCTGGCGGCT GCTGGCTGCT GCAGGTGAT GGATGATGTC TGAGCAGGT CCTGAGCTTT TGAGCAGGT TCCCAGGTTA TCCCAGGTTA GCATTTTGGC TGCTTTTGGC TGCCAGGTTA TCCCACAGGTT GCATGCCAG TCCCATCACT GCTTTTGCT GCGCCAAGGTT TCCCCCCAAG	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCC CGCCGTGCGC CGCCGTGCGC ACCCAGACAG CGGGCGCTGCG GATGGGGCCC CCTTTCTGTGCC CCCCTTTCTG CAGCCTTCCAG CAGCCTTGCA TTCTCAGCCC AACCGCAGTTC CTGCCCCCTTCCAGCCC TTCTCAGCCCAGTTCCAGCCCACGCAGTTC CTGCCCCCCTTCCAGCCCAGTTCCCCCCCCCC	60 120 180 240 300 350 420 480 660 660 720 780 840 900 1020 1020 1140 1200
50 55 60 65	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac. Coding seqi 1 AACTCCCGCC GCGCTCCGGT CCTCAGGTCC CCGCCGGT TTCGCTGGA ACCGGTGGA ACCGCTGAGA ACCGCTGCA AAGCCCCCAG ACATTGATGG GTCCTGAGCA CCCAGGACGT CCAGGACGT AGCCACCACA TCCGGCCACA TCCGGCCACA TCCGGCCACA TCCGGCCACG GGGTGTTAACA GCGCCCCCACA AGCCACCACA TCCGGCCACG AGCACCCCACA TCCGGCCACG	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCT TTTTCCTGGC GCCTCTGCTC CATCAGCAG GGTTGAGGCT TCACGGAGGGG GGACTCTGGC AGCCTCGGC AGCCTCGGC AGCCTCGGA AGCACACA TAGTGGGCT GTTACCTTG GGTAGTAGCG GAGCCTGCAG CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCTCCGCAGA CCACCTT AGCTGCCAGGG AGCCACACTT AGCTGCGAGA GGTGGTGGGAG	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGCCGGA AGCGTCCTGCCC CCGTCCTCCAGT TCCTTCAACA GCTTCCAGT TCCTTCAACA GCTAGAACA GCTAGAGACC GCACCTACC GCACCTACC GCACCTACC GCACCTACC GCACCTACC AGCATTGCTG AGGATTGCTG ACCTACCGCT CACCTAGCAG	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCAC TGGGAGCTGC AGGATGCACC ATGGGAGCAC ATGGGAGCAC ATGGGACTCC AGGATGCCACAC ACCACACAC ACCACACAC CCGCCACAG CCGCCACAG CCGCCACAG CCGCCACAGAC ATGATTCAACA AGGCTACCACAC ACATTGAACA TTGCCAACAG CCACTGCT TCCGCTGCC TCCGCTGCC TCCCGCTGCC	A1 CGGCTGCTGC GCCGGGGCC GCGGGGGCC GCGGGGGCC GCGGGGCGC GCGGGGCGC GCGGGGCGC GCGGGGCGC GCGGGGCGC GCGGGGCGC GCGGGGCC GCGGGGCC GCGGGCGCC GCGGGCC GCGGGCC GCGCGCC GCGCGCC GCCACGCC GCCATCACC GCATCACC GCCATCACC GCCATCACC GCCCCAAG	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCGTGCGC CACGCCAGACAG CGGGCGCAGAC CGCAGCTGTGG CCTTCGTTGGC CCTTTCTG CGGCCAGCTG CAGGCTTGCA CTTCTCAGCC CTTCTGCAGCAC TTCTCAGCCC AACCGCAGT CTGACCACGAGTAG GGCCCACCCA TTTGAGCCAC AACGCAGT	60 120 180 240 300 420 480 540 660 720 900 900 900 1020 1080 1140 1260
50 55 60 65	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCC CCCCCCGCT TCAGCTCC CCCCCCGCGT TTTCCCAGGA ACCGGCTGA ACCGGCTGA ACCGGCTGA ACCGGCTGA ACCGGCTGA AGGCATCA AGGCATCA AGGCATCA CCAGGAAGT AGCACCCCCACA TCCGGCCAGG TCATCCTGA AGCCACCCCACA TCCGGCCACG GCGCCCCCACA TCCGGCCACG GCGCCACG AGCCACGA TCCGGCACG GCGCACG AGCCACG AGCCACGA AGCCACGCA AGCCACGCA AGCCACGCA AGCCACCACA AGCCACCCCACA AGCCACCACA AGCCACCACA AGCCACCACA AGCCACCCCACA AGCCACCACA AGCCACCCCACA AGCCACCCCACA AGCCACCCCACA AGCCACCCCACA AGCCCACCA AGCCCACCACA AGCCCACCACA AGCCCACCACA AGCCCACCACA AGCCCACCACA AGCCCACCCC AGCACACACA	EALRMANVAE MNATNHAIVQ H 59 DNA BEQT id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGATCAGCG TGCACACAC AGCACCACAC TAGTGGGCT GCAACACAC TAGTGGGCT GCTACCTTG GGTAGTAGCG AGCCTCGGAA ACCACACAC TAGTGGGCT GGTAGTAGCG CTCCCCACA CATCACCTTG GGTAGTAGCG GAGCCTCGCAGA CAATCACAGG AGCCCACACT AGCTGCAGA CAATCACGGG AGCCACACT AGCTGCAGG CGTGCTGCAGC CGTGCTGCAGA CCACCACT AGCTGCAGC CGTGCTGCAGC CGTGCTGCAGC CGTGCTGCAGC CGTGCTGCAGC CGTGCTGCAGC CGTGCTGCAGC CGTGCTGCGAGA CCACCACTT AGCTGCCAGC CGTGCTGCGAGC CGTGCTGCGGAG CGACCTGCTGCGCAGC CGTGCTGCGAGG CGACCTGCTGCGCAGC CGTGCTGCGAGC CGACCTGCTGCGCAGC CGTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCGAGC CGACCTGCTGCCACC CGCCTGCTGCCC CGCCCCCC CCCCCCCCCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TGGGGGTCGG CCGGCGGAA AGCGTCCTCC CGGGCCGGA AGCGTCTCCAC ACTTCCACT TCCTTCAACA GCTAGATCC GTCAGCATCC GTCAGCATCC GTCAGCATCC GTCAGCATCC CGCACCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT AGCATTGCTG AGGTATGCTG AGGTATGCG GCACCAGTGT ATCTACCGCT CACCAGGGGCGGAG GAGGAGGTG CACCGGGGAG TTGGCCAATA	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCAG CCGCGGAGCAGCAG TGCTGCCGCTG AGGATGCACT AGGATGCACT TACATGTTA AGCCACAGA ATGGTTCC AGGACGGAG CGGCCACAG ATGATGCCA AGGATGAGA CGGCCACAG ATGATGCA AGGATGAGA CGGCCACAG TTGCCACAG AGATGACA AGATTGACA TTGCCACAG TTGCCACGCTTCC TCCGGCTGCC TCCGCTGCCT	ALI GGGCTGCTGC GCGGGGATCC GCGGGGATCC GCGGGCC GCGGGGCC GCGGGCC GCGGGCC GCGGGCC GCGGGCC GCGGGCC GCGGCC GCGCGCC GCGCGCC GCGCGCC GCAGCGCC GCAGCCC GCCTGCCC GCTTTTGGC GCCATCACC GCCTCTCCCC GCCTCTCCCCCAC GCGCCCCCACAC CCCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC CCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCACAC GCACCCCCCACAC GCACCCCCACAC GCACCCCCCACAC GCACCCCCCCACAC GCACCCCCCCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGACA CCGGCCAGACA CCGGCCGCGC GATGGGGCCC GATGGGGCCC CTCTGTTGCC CCCCTTTCTG CCGCCAGCTG CAGGCTTGCA GTCTGCAG GTCTGCAC TTCTAGCCCA TTCTAGCCC AACGCAGTC TTGAGCACA TTTGAGCCAC TTTGAGCCAC GGTCTGCCA AGGGTCTACC GTCTACCC TTTCAGCCAC GGTCTACC GTCTACCCT	60 120 180 240 300 360 420 780 840 900 960 1020 1140 1260 1260 1320
50 55 60 65 70	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGGA ACGCTGCAGA ACGCTGCAGA ACGCTGCAGA ACGCTGAGA ACGCTGAGA ACGCTGAGA ACGCTGAGA ACGCTGAGA ACGCTCAGAC ACATTCATGG ATGCTCAGA ACCCCCC GCCCCACA TCCGGCCAC TCCGGCCAC TCCGGCCAC ACGCTTTAC AGCCAGACGT AGCACGCGTA AGAGGGCT AGAAGGGCT AGCCACGCGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCTCTCGCCA CACCAAGCAG GGATCAGCC AGCCTCGGCA AGCCTCGGCA AGCCCCTCGG CAACCACACAC TAGTGGGCTG CCTCCGCAGA GCACCACACAC TAGTGGGCTG CCTCCGCAGA CAATGCAGGG AGCCTGCAG CATCCAGGGG AGCCTGCAG CCTCCGCAGA CATGCAGGG CGAGCTGCGG AGCCTGCAG CCTCCGCAGA CATGCAGGG CGAGCTGCGG AGCCACACTT AGCTGGCAGC AGCCTGCAGC AGCCTGCAGC CCTCCGCAGA CATGCAGGG CCTCCGCAGA CATGCAGGG CCTCCGCAGA CAGCCTGCGC AGCCCACCTT AGCTGGCAGC CCACCTGCC CCACCACCT CCACCAGGC CCACCTGCC CCACCACCT CCACCACCC CCACCACCC CCACCACCC CCACCACCC CCACCA	NSSSDQRQAC TLVHFINPET Lence Lence	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTG TCGCGCTT AGGATGACACT TACATGTA AGGCAGCAG AGGAGCTGC AGGAGCTGCT TCAATGGTT AGGCACAGAC AGGAGCGGA GCGCCACAG ATGAAAGCTT AGGCATGGCC AGGTTGCCA AGGATTGACA TGGCCACGG AGATTGACA TGACCTGCT TCGCTAAAG GACAGATTAACA GACAGATTAACA GACAGATTA	ALGNODMITA LINAISVLYFD 41 GGGCTGCTGC GCGGGGATCC GCGGGGATCC GCAGGCTGCT GCAGGCTGCT TGAGCAGGTC TGAGCTGCT TGAGCAGGTC TGCTGCAGCTT TTTTGGC TGCCAGGTTGC TGCCAGGTCACA TCCCACAGGTC TCCATCACT TCCCCCAAGCTC TCCTCTGCTG CATGCCGCT TCCCCCAAGCTC TCCCCCAAGCATCC CAACATCACT CAACATCACT CAACATCACT CAACATCACT	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCTGCGC CGCCTGCGC CGCCAGAC ACCCAGACAG ACTGCAGAGAG ACTGCAGAGAG CCTTTGTTGCC CCTTTCTG CGGCCAGCTG CAGCCTTGCA GTGCTGCCC AACCGCAGTC ATTGACCCC ATTGACCCAG ACGCAGTC CTTGCCAG ACGCTACCC ACCGCAGTC CTGACCCAG ACGCTACCC GTCTACACCT GTGCCACG AGGCTTACC GGTCTACCCAG AGGGTCTACC GTCTACACCT GTGGCCACTG	60 120 180 240 300 360 420 480 540 600 660 780 960 1020 1080 1140 1200 1230 1320
50 55 60 65	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seqi 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCTGCA AAGCCCGCCAG AAGCCAGCAA AGCCCCCCAA AGCCAGCAGA ATGCTCAGAA CCCAGGACGT CCAGGACGT AGCACCCCC GCCCCCACA TCCGGCCACA TCCGGCCACA TCATCCTGA AGGCCACAGA AGCCCCCCACA TCAGCCACAGA CCCACACAC TCAGCCACAGACGT TAATCCTGACA GGGTGTTTAC AGCCCACAG	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCT TTTTCCTGGG GCTCTGCTC CATCAGCAG GGTTGAGGCT CACCAGGCG GGACTCTGGC TGCCAACGAC AGCCTCGGC AGCCTCGGC AGCCTCGGC AGCCTCGGC CAACCACCA CAGCTGGGA CCTCCGCAGA CCTCCGCAGA CCATCGGGA CCTCGGGA CCTCGGCAGC CCTCGGCAGA CCATCGGGA CGAGCTGGTG GGGGTGGGG GGGCTGGTG GGGGGTGGGG CGACCTGGGGA CGAGCTGGTG GGGGTGGGGA CCACCTGGCT CCACCAGCTGGCT CCACCTGGCT CCACCTGCT CCACCTCC CCACCT CCACCTCC CCACCTC CCACCTCC CCACCTCC CCACCTCC CCACCTC CCACCTCC CCACCTC CCACCTC CCACCT CCACCTC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGTGCCCG CGGCCCGG ACCTTCACAG ACCTTCACAG TCCTACAGAT TCCTACAGAT TATTCTGCT AGGTATGAG GCCACAGTT ATCTACAG AGCATCTT ATCTACAGAT ATCTACAGC CACCTAGCAG AGGAGAGGT ATCTACAGAT ACCAGAGAT ATCTACAGAGAC CACAGAGAGAC CCCCAAGACAG	RKHELYVSFR VPKPCCAPTQ 821 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCACA TGGGAGCTGCA GTGTGGCCACA AGGATGCACA AATGGTTCCG AGGACGCAG ATGGACAGAC AATGGTTCCG AGGACGCAAG ATGATGATA AGGCCACAGAC AGATTGACA AGTTGACACG CCATTGACACG CCATTGACACG CCATTGACAG GCATTGACAA GCATTGAAAG GCATTGAAAG GCATTGAAAG GCACGGCT TCCGCTGCC TTGCTGAAAG GCACGGCTGCC CCCACGCTGCC CCCACGCTGCC CCCACGCTGCC CCCACGCTGCC CCCACCTGCA	ALIMODMITA LINAISVLYPD 41	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGGCCAGAC ACCCAGACAG ACCCAGACAG CGGGCGTGCGC CATGGGGCCC CTTCGTGGTCC CCTTTCTG CGGCAGCTGCAG CTGCAGCAG TTCTCAGCCC AACCGCAGTC TTTTAGCCCCAG GGCCACCCA TTTTAGCCCCAG GGCCCACCCA AGGGTCTACC GTTTACCCAG CGTCTTACC CTTCTACCCCC GTCTACACT CCCGGCTACT CCCGGCTACT CCCGGCTACT CCCGGCTACT	60 120 180 240 300 420 480 540 660 720 1020 1020 1080 1140 1260 1380 1440
50 55 60 65 70	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCT CCTCAGCTCC CCCCCCGTT TTCGCTGTGA AAGCCCCAGG AAGCCTGCA AAGCCTGCA GCAGCTGCA GCAGCAGGA TGAAGCATCC ACATTGATGG ATCGTCAGGA ATCGTCAGGA GTCCTGAGCA GCAGCAGGA TCCTGGCACG TCATCCTGGA AGCCACGGAC TCATCCTGGA AGCCACGGAC TCATCCTGGA GGGTGTTTAC AGCCACGGCGGC GCCCCCCACA TCATCCTGGA AGCCACGCGGC TCATCCTGGA AGCCACGCGGC TCATCCTGGA TCATCCTGGA TCATCCTGGA TCATCCTGGA TCATCCTGGA TGGATTTACC TTGGATTGCCTT	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTAGG GCCTCTGCTC CATCAAGCAG GGTTGAGCG TACTAAGCAG GGACTCTGGC TACTCAGCGAG GGACTCTGGC TACTCAGCGAG CAACCACACA TAGTGGGCT GCTAACTAGCG GAGCCTCGGAG CATCAGCGG CAACCACTC GGAGCCTGCAG CCTCCGCAGA CAATGCAGGG AGCCACACTT AGCTGGCAGC CCTCGGCAGA CAATGCAGGG CCTCGCAGA CCACCACTT AGCTGGCAGC CGTGGTGGGAG CGAGCTGGTG CGAACTGGCT CCAACTGGCT CCAACTGGCT CCAACTGAGAGAG GACCCAGGCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TCGGGGTCGG CCGGCGCGA AGCGTCCTCCC CGGGCCCGG ACCTTCAGC ACCTTCCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTAGCAG GCCACCTACC GTCAGCAGCA AGCATCT AGCATGCT AGCATGCT AGCATGCT ACCTAGCAG TGGCCAAGTAG ACCCAAGAC TTGGCCAAGAC ACACCAAGAC ACACCAAAAAC ACACCAAAAAC	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA CCGCGGAGCACA TGGGAGCTGC TACATGTTA AGGCACAGAC TGCACAGAG TGGGAGCAG TGGAGCAGCAG TGAGAGCTGC AGGATGCACAGAC AGGCTCCACAG AGGATGCACAGAC TGCACAGAC TGCACAGAC TGCCACAGA TGACCACAGAC TTGCCAACAG TTGCCAACAG TTGCCAACAG CCATTGCCA AGATTGAACA TGACCTGCCT TCCGGCTGCC TTGCTGAAAAG TGACCTGCT TCCGGCTGCC TTGCTGAAAAG TGACCTGCT TCCGGCTGCC TTGCTGAAAAG TGACAGTTGT	ALL GROUNTIA LINAISVLYPD 41 CGGCTGCTGC GTCTGCGGCC GCGGGATCC GCGGGGATCC GCTGAGCTGT GGATGATGTC GAGTGATGT GGATGATGT GCAGGTCAC CCTGAGCTC TGCTTTTTGGC TGCCAGCGC TGCATCAC GCATCAC TGCTTTCTGCTG GGGCAGAGG CACCATCAC TCCCCCAAG CACCCCCAAG CACCCCCAGC TGATGCTGGT TCCCCCAAG CACCATGCC TGATGCTGGT GAGGCAAAG CACCATGCG TGATGCTGGT CACCATCAC TGATGCTGGT CACCATCAC TGATGCTGGT CACCATCAC TGGAGGGCAAAA CTGGTACACAC	PEGYAAYYCE DSSNVILKKY 51 1 TGCGGCGCCCC CGCGTGCGC CCGGCCAGCC ACCCAGACAG CGGGCGCCACC GATGGGGCC GATGGGGCC GCAGCTGTGG CCTTCGTTGC CCCCTTTCTG CGGCCAGCT CTGGCAGATG CTGCACCAGC AACCGCAGTC AACCAGGCTGC AACCACCC TTTGAGCCAC TTTGAGCCAC GGTCTGCAC GGTCTGCAC GGTCTGCAC GGTCTGCAC AGGGTTTCAC GTCTACACCT GTGGCACT ACCAGGTTCACAC ACCAGGTTCAC ACCAGGTTCACAC ACCAGGTTCACAC ACCAGGTTCACAC AACCAGATGC	60 120 180 240 300 360 420 780 840 960 1020 1140 1260 1320 1380 1440 1500
50 55 60 65 70	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCT CCTCAGCTCC CCCCCCGTT TTCGCTGTGA AAGCCCCAGG AAGCCTGCA AAGCCTGCA GCAGCTGCA GCAGCAGGA TGAAGCATCC ACATTGATGG ATCGTCAGGA ATCGTCAGGA GTCCTGAGCA GCAGCAGGA TCCTGGCACG TCATCCTGGA AGCCACGGAC TCATCCTGGA AGCCACGGAC TCATCCTGGA GGGTGTTTAC AGCCACGGCGGC GCCCCCCACA TCATCCTGGA AGCCACGCGGC TCATCCTGGA AGCCACGCGGC TCATCCTGGA TCATCCTGGA TCATCCTGGA TCATCCTGGA TCATCCTGGA TGGATTTACC TTGGATTGCCTT	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTAGG GCCTCTGCTC CATCAAGCAG GGTTGAGCG TACTAAGCAG GGACTCTGGC TACTCAGCGAG GGACTCTGGC TACTCAGCGAG CAACCACACA TAGTGGGCT GCTAACTAGCG GAGCCTCGGAG CATCAGCGG CAACCACTC GGAGCCTGCAG CCTCCGCAGA CAATGCAGGG AGCCACACTT AGCTGGCAGC CCTCGGCAGA CAATGCAGGG CCTCGCAGA CCACCACTT AGCTGGCAGC CGTGGTGGGAG CGAGCTGGTG CGAACTGGCT CCAACTGGCT CCAACTGGCT CCAACTGAGAGAG GACCCAGGCC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 1 TCGGGGTCGG CCGGCGCGA AGCGTCCTCCC CGGGCCCGG ACCTTCAGT TCCTTCAGT TCCTCAGT TGCCTAGCAG TGGCAGTGT ATCTACGGC CACCGGGAG TTGGCCAAGA CCCAAGACA ACACCAAAAAC	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA CCGCGGAGCACA TGGGAGCTGC TACATGTTA AGGCACAGAC TGCACAGAG TGGGAGCAG TGGAGCAGCAG TGAGAGCTGC AGGATGCACAGAC AGGCTCCACAG AGGATGCACAGAC TGCACAGAC TGCACAGAC TGCCACAGA TGACCACAGAC TTGCCAACAG TTGCCAACAG TTGCCAACAG CCATTGCCA AGATTGAACA TGACCTGCCT TCCGGCTGCC TTGCTGAAAAG TGACCTGCT TCCGGCTGCC TTGCTGAAAAG TGACCTGCT TCCGGCTGCC TTGCTGAAAAG TGACAGTTGT	ALL GROUNTIA LINAISVLYPD 41 CGGCTGCTGC GTCTGCGGCC GCGGGATCC GCGGGGATCC GCTGAGCTGT GGATGATGTC GAGTGATGT GGATGATGT GCAGGTCAC CCTGAGCTC TGCTTTTTGGC TGCCAGCGC TGCATCAC GCATCAC TGCTTTCTGCTG GGGCAGAGG CACCATCAC TCCCCCAAG CACCCCCAAG CACCCCCAGC TGATGCTGGT TCCCCCAAG CACCATGCC TGATGCTGGT GAGGCAAAG CACCATGCG TGATGCTGGT CACCATCAC TGATGCTGGT CACCATCAC TGATGCTGGT CACCATCAC TGGAGGGCAAAA CTGGTACACAC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCCGCCAGAC ACCCAGACAG ACCCAGACAG CGGGCGTGCGC CATGGGGCCC CTTCGTGGTCC CCTTTCTG CGGCAGCTGCAG CTGCAGCAG TTCTCAGCCC AACCGCAGTC TTTTAGCCCCAG GGCCACCCA TTTTAGCCCCAG GGCCCACCCA AGGGTCTACC GTTTACCCAG CGTCTTACC CTTCTACCCCC GTCTACACT CCCGGCTACT CCCGGCTACT CCCGGCTACT CCCGGCTACT CCCGGCTACT	60 120 180 240 300 360 420 780 840 960 1020 1140 1260 1320 1380 1440 1500
50 55 60 65 70	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCCCCGAGA ACGCCCCCAGAGA ACGCCCCAGAGA CCCAGCAGAGA CCCAGCAGAGA CCCAGCAGAGA CCCAGCAGA TCCAGCCCC GCCCCCACA TCCGCCCAGAGAGACGT TCATCCTGG AGAGGCCACG TCATCCTGG AGAGGCCACG TCATCCTGG AGAGGCCACG TCATCCTGG TCATCCTGG TCATCTCAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGAT TC	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGGG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACCAAGCAC AGCTCCGGCAAGCAC AGCCTCCGG GAACCACACA AGCACCACACA CAGCCTGGGA CCTCCGGAA CCATCAGGG GGACCTGCGG GGACCTGCGG AGCCTGCGG AGCCTGCGG AGCCTGCTG CCTCCGCAGA CCATCGGGA CCATCAGGG GGACCTGCTG GGACCTGCTG GGAGCTGGTG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GACCTGGCG GACCTGGCG GACCTGGCG GACCCAGGCC GGACCCAGGCC GGACCCAGGCC GGACCCAGGCC GGACCCAGGCC GGACCCAGGCC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGTGGGCC TGCTGAGGAC TGGTGGGCC TGGTGGGAC TGGGCC TGGCGC TGGTGGGAC TGGGAC TGGGAC TGGAC TG	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGGCGGA AGCGTCCTGCCC CGGGCCCGG ACCTTCACAG ACCTTCACAG TCCTACAGAT TCCTACAGAT TCCTACAGAT ATTCTGCT AGCATAGAG AGCATCAT ATTCACGCT CACCTAGCAG AGGAGGGGGGGGGG	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCAGCA TGGGAGCAGCA TGGGAGCAGCA GAGGATGCACA AGGATGCACA AGGATGCACA AGGATGCACAGAC AGATGATTA AGGCACAGAC AGATTGACAGAC TTGCCAACGG GCATTGGCCA AGATTGAAAG GCACAGCC TTGCTGAAAG GCACAGCC TTGCTGAAAG GCACAGCAC TTCCGCTGCC TTGCTGAAAG GCACAGCTGGCA TTGCTGAAAG TCACAGTTGT TCAGAGATTGT TCAGAGATTGG TTATGAGCAG GTATGAGCAG TTATGAGCAG TTCAGAGATTGT TCAGAGATTGT TCAGAGATTGT TCAGAGATTGT TCAGAGATTGG TCAGAGATTGT TCAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGAGAGATTGG TCAGAGAGAGAGATTGG TCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	ALIMODMITA LINAISVLYPD 41 CGGCTGCTGC GCTGGGGCG GCGGGGATCC GCTGGGCGGC GCTGGGCGGC GCTGGGCGGC GCAGGGCGC GCTGGCTGCT GGATGATTC GGATGATTC GGATGATC GCAGGTCACA AGATGGACC TGCTTTTGGC TGCCAGGTC TGCATCACT TGCCAGGTC GCATCACT TGCCATCACT GCATCACT GCACCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCACC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGCCGAAC ACCCAGACAG ACCCAGACAG CGGGCGCTGCG CATGGGGCCC CTTCGTGGCC CTTCGTGGCC CTTCGTGGCC CTTCTCAG CGGCAGCTG CAGGCTGCA ACCGCAGT CTGACCCAG GGCCACCCA ACCGCAGT TTTAGCCAC GGTCTGCCAG AGGGTTACC GGTCTACACT CTGACCAGG CGCCACTAC ACCAGATGC ATCAACAGG GGCAGCATCC ATCAACAGG GGCAGCATCC ACCAGAGCATCC ATCAACAGG	60 120 180 240 360 420 480 540 660 780 960 1020 1140 1200 1240 1250 1380 1440 1500 1560
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCCCCGAGA ACGCCCCCAGAGA ACGCCCCAGAGA CCCAGCAGAGA CCCAGCAGAGA CCCAGCAGAGA CCCAGCAGA TCCAGCCCC GCCCCCACA TCCGCCCAGAGAGACGT TCATCCTGG AGAGGCCACG TCATCCTGG AGAGGCCACG TCATCCTGG AGAGGCCACG TCATCCTGG TCATCCTGG TCATCTCAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGA TCATCTAGAT TC	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGGG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACCAAGCAC AGCTCCGGCAAGCAC AGCCTCCGG GAACCACACA AGCACCACACA CAGCCTGGGA CCTCCGGAA CCATCAGGG GGACCTGCGG GGACCTGCGG AGCCTGCGG AGCCTGCGG AGCCTGCTG CCTCCGCAGA CCATCGGGA CCATCAGGG GGACCTGCTG GGACCTGCTG GGAGCTGGTG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GGACCTGGCG GACCTGGCG GACCTGGCG GACCTGGCG GACCCAGGCC GGACCCAGGCC GGACCCAGGCC GGACCCAGGCC GGACCCAGGCC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGTGGGCC TGCTGAGGACA TGGTGGGCC TGCTGAGGACA TGGTGGGCC TGCTGAGGACA TGGTGGGCC TGGTGGGAC TGGTGGGCC TGGTGGGAC TGGGAC TGGTGGGAC TGGGGCC TGGTGGGAC TGGGAC TGGTGGGAC TGGTGGGAC TGGGCC TGGTGGGAC TGGTGGGAC TGGTGGGAC TGGGAC TGGAC TGGGAC TGGAC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGGCGGA AGCGTCCTCC CCGGCCCGG ACCTTCACAG ACCTTCACAG TCCTACAGAT TCTTCACAG TCACAGAC TATTCCTGCT AGCATAGAG AGCATCATGCG CACCTAGCAG AGCACAGTAT ATCTACCGCT CACCTAGCAG AGCACAGTAT ATCTACCGCT CACCTAGCAG AGCACAGTAT ATCTACAGCT TACTACAGAG CCACAGTAG AGCACAGAG ACACCAAAAC TTGGGCAATAT TGGTAGCGGGAA ACACCAAAAC TTGGAGGTCT TGGTACCGTT TGGTACCGTT	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCAGCA TGGGAGCAGCA TGGGAGCAGCA GAGGATGCACA AGGATGCACA AGGATGCACA AGGATGCACAGAC AGATGATTA AGGCACAGAC AGATTGACAGAC TTGCCAACGG GCATTGGCCA AGATTGAAAG GCACAGCC TTGCTGAAAG GCACAGCC TTGCTGAAAG GCACAGCAC TTCCGCTGCC TTGCTGAAAG GCACAGCTGGCA TTGCTGAAAG TCACAGTTGT TCAGAGATTGT TCAGAGATTGG TTATGAGCAG GTATGAGCAG TTATGAGCAG TTCAGAGATTGT TCAGAGATTGT TCAGAGATTGT TCAGAGATTGT TCAGAGATTGG TCAGAGATTGT TCAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGATTGG TCAGAGAGAGAGATTGG TCAGAGAGAGAGATTGG TCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	ALIMODMITA LINAISVLYPD 41 CGGCTGCTGC GCTGGGGCG GCGGGGATCC GCTGGGCGGC GCTGGGCGGC GCTGGGCGGC GCAGGGCGC GCTGGCTGCT GGATGATTC GGATGATTC GGATGATC GCAGGTCACA AGATGGACC TGCTTTTGGC TGCCAGGTC TGCATCACT TGCCAGGTC GCATCACT TGCCATCACT GCATCACT GCACCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCCCAGC GCACCCCAGC GCACCCACC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGCCAGACA ACCCAGACAG ACTGGGGCCC GATGGGGCCC CTTCGTGGTCC CCTTCTTCTG CGGCAGCTGCC CCCTTTCTG CGGCAGCTGCAC ACCGCAGCAC ACCGCAGCAC ACCGCAGCTGCAC ACCGCAGTCC AACCGCAGTC CTGACCCAG GGCCACCCA TTTGAGCCCA GGTCTGCCAG AGGGTCTACC GTCTACACCT CCCGGCTACT AACCAGATGC ATCAACAGCG GGCAGCACCG ATCAACAGCG GGCAGCACCG ATCAACAGCG GGCAGCACCG ATCAACAGCG GGCAGCACCG GGCAGCACCG GCAGCACCG GCAGCACCG ACCAACAGCG GGCAGCACCG ACCAACAGCG GGCAGCACCG GCAGCACCCG GCAGCACCCC GCAGCACCCC ACCACACACGCG GCAGCACCCC GCAGCACCCC GCAGCACCCC GCAGCACCCC ACCACACACCC GCAGCACCCC GCACCCC GCAGCACCCC GCACCCC GCAGCACCCC GCAGCACCC GCACCC	60 120 180 240 360 420 480 540 660 780 960 1020 1140 1200 1240 1250 1380 1440 1500 1560
50 55 60 65 70	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCT CCTCAGGTC CCTCAGGTC CCTCAGGTC TTCGCTGTA AAGCCCCAG AAGCCCCAA AAGCCCCAA AAGCCCCAA AAGCCCCAA AAGCCCCAA ACTGTCAGGA GTCATGAGA GTCCTGAGCA TCAGGAAGT AGCACCCCC GCCCCCCACA TCAGGACGT AGACACCCC GCCCCCCACA TCAGGACGT TCATCCTGA AGCCACGCG TCATCCTGA TCAGCCACG TCATCCTCGA TCATCCTCGT TCATCTCAGA TCAGCCCCC TCATCTCAGA TCAGCCGTGC TCATCTCAGA TCAGCGTGTTAA	EALRMANVAE MNATNHAIVQ H 59 DNA seq id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTAGG GCCTCTGCTC CATCAGCAG GGTTGAGCG TACCACACAC AGCCTCGGA GGACTCTGGC CACCACACAC AGCCTCGGA GCACCCTCGG CAACCACCAC AGCCTCGGAG CAACCACT TAGTGGGCT GGTAGTAGCG GAGCCTGCAG CCTCCGCAGA CCATCGCAGA CCATCGCAGA CCATCGCAGA CCATCGCAGA GGACCACACT AGCTGGCAG GGACTACGG GGGCTGGAG GGACCACCAC GGACTCGCAG GGACCACCT GCTGAAGAG GACCCAGGCC GGACTCACGG TGATGGGACA CCGTCTCCCAA	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGTGCCCG CCGTCCTCCC CCGGCCCGGA AGCGTCCTCC CCGTCCTCCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT AGCATGCT AGGATCCT AGGATCCT AGGATCCT AGGATCCT AGGATCCT AGGATCCT AGGATCCT AGGATCCT ACCTAGCAG AGGACGTAC AGCATAGCAG AGGAGCGTA ATCTACGCT CACCTAGCAG AGGAGCGTA ATCTACGCT CACCTAGCAG AGGAGCGTA ATCTACGCT CACCTAGCAG AGGACGTAC ACCAAAAA ACCCAAAAA TTCGAGGTCT TGGTACCGTT TGGTACCGTT TGGTACCGTT TGGTACCGTT TGGTACCGTT TGGTACGGAA	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCACT AGGATGCAC ATGGTTCCACAGAC ATGGTTCCACAGAC ATGGTTCCACAGAC AGGATGCACAAGAC TGCCACAGAC AGATTCAAGATTGCA AGGATGAAAG TTGCCAACAGAC TGCCTGCC TTGCTGAAAG GCATTGACA GCACGTGCA TGACGTGCC TCAGGTTGT TCAAGATTGT TCAAGATTGT TCAAGATTGC CTACAGTTGT TCAAGATTGACAC CTACAGTTGT TCAAGATTGACAC AGCTCAAGTT	ALI LINAISVLYPD 41 CGGCTGCTGC GTCTGCGGCC GCGGGATCC GCGGGGGCTGCTGCGGCGCTGCTGCGTGCTC GGATGATGTC GAGTGATGTC GAGTCATC GCAGGTCC CCGAGGCC GCCTGAGGCT GCCTTTTTGGC GCCATCACC GCCATCACC GCCATCACC GCATCACC GCCCCAAG CACCCCCAAG CACCCCAGCC CACCCCCACCC CACCCCCAGCC CACCCCACCC CACCCCCACCC CACCCCACCC CACCCCACCC CACCCCACCC CACCCCACCC CACCCCACCC CACCCCACCC CACCCCACCC CACCCACCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGCCGAAC ACCCAGACAG ACCCAGACAG CGGGCGCTGCG CATGGGGCCC CTTCGTGGCC CTTCGTGGCC CTTCGTGGCC CTTCTCAG CGGCAGCTG CAGGCTGCA ACCGCAGT CTGACCCAG GGCCACCCA ACCGCAGT TTTAGCCAC GGTCTGCCAG AGGGTTACC GGTCTACACT CTGACCAGG CGCCACTAC ACCAGATGC ATCAACAGG GGCAGCATCC ATCAACAGG GGCAGCATCC ACCAGAGCATCC ATCAACAGG	60 120 180 240 300 360 420 780 960 1020 1140 1260 1320 1320 1340 1560 1560 1680
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTTCCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGGA ACCCCCGGGGG TGAAGCATCC ACATTGATGA GTCCTGAGCA GCAGCCCACA AGCCACCCC GCCCCCCACA TCCGGCCCCCACA AGCCACCCC GCCCCCACA AGCCCCCCGGGGGTTTAC AGCCACCCC GCCCCCCACA AGCCCCCCGGCCCCCCC TCAGCCACA TCAGGCTGAGGGGTGTTAC AGCCACCGC TCATCTCAGA TCGGCCACGGCC TCATCTCAGA TCGGCCTCCTG TGGATTCCTAGA TGGAGGTGTA AGGGGCAAGC AGCAGCGCAAGC AGCAGTGCAA	EALRMANVAE MNATNHAIVQ H 59 DNA BEQT id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACCAAGCAC AGCCTCGGGA AGCCTCGGGA AGCACACAC TAGTGGGCT GGTAGTAGCG GAGCCTCGGAGA CATCACCTTG GGTAGTAGCG GAGCCTGCAG CACCACAC TAGTGGGCTG CTCCGCAGA CATCACCTTG GGTAGTAGCG GGACCACACT AGCTGCGAGA CAGTGCAGG CGACCACACT AGCTGCAGG CGACCACACT AGCTGCAGG CGACCACGGCC GCTGAAGAAG GGACCCAGGCC GGACTCACAG CGGGTCCCAA CGGGTTCCAA	NSSSDQRQAC TLVHFINPET Lence	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCAGC TGCGGCGCAGCAGGAGCTGC TGCTGCCGCTT AGGATGCACT AGGATGCACT TACATGTA AGGCACAGGC AGGAGCAGCAG AGGAGCAGCAG AGGAGCAGCAG AGGAGCAGCAG AGGATGAGC AGGATGAGC AGGATGAGAGCT TCCGCTGCC TCCGGCTGCC TCCGGCTGCC TCCAGGATGAAAGAGATT TCCAGCAGG GCATGAAAAGATT TCCAGCTGCC TCCGCTGCC TCCCGCTGCC TCCTGAAAG GCACGCAGA GCACCAGATGAAAGAC TACACATGTT TCAAGAATGG CCACACATGAAAGAC CCACACATGAAAGAC CCACACATGAAAGAC CCACACATGAAAGAC CCACACATGAAACC CCACACACACAC CCACACACACACACACACAC	ALIGNODMITA LINATSVLYPD 41 GGGCTGCTGC GCGGGGATCC GCGGGGATCC GCTGGCGCT GCTGGCGCT GCTGGCTGCT CTGAGCTTT TGAGCTGCT TGAGCTTCT TGAGTCATC TGAGCTCATGCT TGCTTTTGGC TGCATGCAC TCCATGACGT TCCATGCAC TCCATGACGT TCCCCAAG CACCACCAC GAGCGCAAGAC GACCTTCACCT GGAGGCAAA TCCCCCAAG CACCACCAC CACACCACCA CACACCACCA TTCAGCCACACCACCA TTCAGCACACCACCA TTCAGCCACACCACCA TTCAGCCACACCACCA TTCAGCCCCA	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCGTGCGC CCGGCCAGACAG CGGGCCAGAC ACCCAGACAG CGGGCGCCC CTTCGTTGCC CCCCTTTCTG CGGCCAGCTG CAGGCTTGCA CTTCTCAGCCC AACCGCAGTC TTCTCAGCCC AACCGCAGT CTGACCAC GTTTGCC CTTCAGCCC AACCGCAGT CTGACCACC ATTAGACCAC GTCTACACCT GTGCCACT ACCAGATGC ACCAGATGC ATCAACAGCG GGCAGCATC ACCAGATGC ATCAACAGCG GGCAGCATCG CCCCAGCCAC CCCAGCCAC CCCCAGCCAC CCCCAGCAC CCCCAGCCAC CCCCAGCAC CCCCCCAC CCCCAGCAC CCCCAGCAC CCCCAGCAC CCCCAGCAC CCCCAGCAC CCCCACCAC CCCCAGCAC CCCCAGCAC CCCCACCAC CCCCACCAC CCCCACCAC CCCCCACC CCC	60 120 180 240 300 360 420 480 540 660 780 900 960 1020 1140 1200 1320 1380 1440 1560 1560 1620 1620
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: NUCleic Ac: Coding seqi 1 AACTCCCGCC GCGCTCTCAGCTCC CCCGCCGGTT TTCGCTGTGA ACGCCTCAGATCC ACATTGTTT TTCGCTGTGA AGCCCGCAGA AGGCCGCAGA AGGCCCCAGA AGGCCCCAGA GCAGCCAGAA CCCAGGACGT AGCACCCC GCCCCCACA TCCGGCCAGC TCAGCCCC GCCCCCACA TCCGGCCAGC TCAGCCCC TCAGCCCC TCAGCCCT TCAGCAGCAGA AGCCCCCTCAGA AGCCCCCCACA AGAGGGCTATA AGCCCACTAT AGCCCACTAT	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTTCCTGG GCCTCTGCTC CATCAAGCAG GGTTGAGGGG GGACTCTGGC TGCCAACGCC AGCCTCGGCA AGCACCACACA AGCACCACACA CAACCACACA CAACCACACA CAACCACC	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG AGCTCGGAA AGCGTCCTCC CCGGCCCGGA AGCTTCCAGT TCCTTCACAGT TCCTTCACAGT TCCTTCACAGT TCCTACAGT TCCTACAGT TATTCTGCT AGCTATGCGC AGCTAGCAGCAGAGT ATCTACAGGT TATTCTGCT TGGCCACAGT TATTCACGCT TACCAGT TACCAGCT TGGCCACAGT TTGGCCACT TGGTACAGGAA ACACCAAAA CACCAAAGT TTGGTAGAGT TTGGTAGAGT TTGGTAGAGT TTGGTAGAGT TTGGTAGAGT TTGGTAGAGT TTGGTACAGT TGGTACCGT TGGTACCGT TGGTACCGT TGGTACCGT TGGTACCGT TGGTACAGT TGGTACAGT TGGTACAGT TGGTACAGT TGGTACAGT TGGTACCGT TGGTACCGT TGGTACAGT	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCAGCA TGGGAGCAGCA TGGAGCGCAG GTGTGGCTCG GTGTGCCCACAG AATGGTTCCG AGGACGCACAGAC AATGGTTCCG AGGACCACAGAC AATGGTTCCG AGGACCACAG ATGATGAGCACAGAC TTGCCAACGG CTATGACCAC GCATTGACCA GCATTGACCA GCACTGCCT TCCGCTGCC TTGCTGAAAG GCACGGATGT TCCAGATGT TCCAGATGT TCCAGATGT TCCAGATGT TCCAGATTGCCCA GATCAGTTCCGCT TCCAGTTGCCCACG GAGCCGGACGCGCT TCCAGTTGCCCCCC GGAGCAGGCT	A1 CGGCTGCTGC GCGGGGACC GCGGGGACC GCGGGGACC GCTGGGCGC GCTGGGCGC GCTGGCGCT GCAGCTC GCAGCTC GCATGCCG GCGGGACC GCGGGACC CCCGAGGCC GCCCCAAG CCCCCAAG CACCACCAC CACCACCAC CACCACCAC CACCACCAC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC GCCGTGCGC CCGCCGACCA ACCCAGACA ACCCAGACAG ACTGGGGCC CCTTGTGGTCC CCTTGTTGCC CCCTTTCTG CGGCAGCTG ATGCAGCAC ACCGCAGTTGCA GTGCTGCCAACCGCAGCTG TTTCAGCCC AACCGCAGTC TTTTCAGCCC AACCGCAGTC TTTTAGCCCAG GGCCACCCA TTTGAGCCAC GTTTACACCT GTGCCACT CCCGGCTACT AACCAGATGC ATCAACAGCG GGCAGCACC ATCAACAGCG GGCAGCACC ATCAACAGCG GGCAGCACC GCCCAGCACC GCCCAGCACC GGCCAGCACC	60 120 180 240 300 420 480 540 660 660 720 780 840 900 1020 1140 1260 1380 1440 1560 1620 1680 1740 1680
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: Nucleic Ac: Coding seq 1 AACTCCCGCC GCGCTCT CCTCAGGTCC CCCCCCGTT TCGCTGTGA AAGCCCCCAG AAGCCCCAA AAGCCCCAG GCTCTAGAGA CCAGGAGTCAGAG ACCAGGAGAT GCAGGAGAT AGCCACCAG GCCACCAGAGAGT TCAGGAGAGT TCAGGAGAGT TCAGGAGAGT TCAGGAGAGT TCATCTCGA AGCCACAGAGAGT TCATCTCGA AGCCACAGAGAGT TCATCTCGAA AGCCACAGAGAGT TCATCTCAGA AGCCACGGAGAGC TCATCTCAGAAGAGT TCAGGAGTGTAA AGCCACTAT AGGAGTGTAA AGCCACTAT AGCCTGGAGAGCAAGCAAGCCACTAT AGCCTGGAGAGCAAGCAAGCCACTAT AGCCTGGAGAGCAAGCAAGCCACTAT AGCCTGGAGCAGACCACTAT AGCCTGGGACCTAT AGCCTGGGACCTAT AGCCTGGGACCTAT AGCCTGGGACCTAT AGCCTGGGACCTAT AGCCTGGGACCTAT AGCCTGGGACCTAT ACCCTGGGACCTAT ACCCTGGACCTAT ACCCTAT ACCC	EALRMANVAE MNATNHAIVQ H 59 DNA SEQI Id Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAGCAG GGTTGAGCT TATCAGCAG GGATTGAGGCT CACCACACAC AGCCTCGGA GCACTCTGGC CACCACACAC AGCCTCGGA GCACCCTCGG CAACCACACA TAGTGGGCT GGTAGTAGCG GGACCACACT AGCTGGCAG CCTCCGCAGA CCATCGGAG CCTCGCAGA CCATCGCAGA CCACCACT AGCTGGCAG GGACCACCT GGTGGTGGGAG CCACCACT GGTGGTGGGAG CCACCACT AGCTGGCAG GGACCACCT GCTGAGCAG GCACCACCT GCTGAGCAG CCACCTGGCAG CCACCTGGCAG CCACCTGGCAG CCACCTGGCAG CCACCTGGCAG CCACCTGGCAG CCACCTGGCAC CCGTGTTCCAA GGACTCACGG CCACCTCCAC CCGCCTCCCAA CCCTCCCAA CCGCCTCCCAA CCCTCCCCAA CCCTCCCCAT CCCTCCCAT CCCTCCCCAT CCCTCCCCAT CCCTCCCCT CCCTCCCCT CCCTCCCCT CCCTCCCCT CCCTCCCT CCCTCCCCT CCCTCCCT CCCTCCT	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 3362 21 TCGGGGTCGG CCGGCGGA AGCGTCCTCC CCGGCCCGG AGCTTCGCC CCGTCTCCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTTCAGT TCCTAGAGTCC GCAACCTACC GTCAGCAGCA AGCATCT AGCATTGCTG AGGTATTCCTGCT AGCATTGCTG AGGTATTCCTGCT CACCTAGCAG AGCACGAGA ACACCAAAA TTCGAGGTCT TGGTACGGTA ACACCAAAA ACGCAAAAA CTCGAGGCC CCGGCAGAT CTGGTACCGTT TGGTACCGTT TGGTACGGTA AAGGAGCCC CCGGCAGAAA CCCCAGGAA AAGGAGCCC CCGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCGGGCAGAT CCCGGGCAGAT CCCGGGCAGAT CCCGGGCAGAT CCGGGCAGAT CCCGGGCAGAT CCCGGGCAGAT CCCGGGCAGAT CCCGGGCAGAT CCGGCCAGGCC CCGGCCAGT CCGGCCAGT CCCGGCCAGT CCCGGGCAGAT CCCGGCCAGT CCCGGGCAGAT CCCGGCCAGGCC CCGGCCAGAGC CCCGGGCAGAT CCCGGCCAGGC CCCGGGCAGAT CCCGGCCAGAC CCCGGGCAGAT CCCGGCCAGGC CCCGGGCAGAT CCCGGCCAGGC CCCGGGCAGAT CCCGGCCAGGC CCCGGGCAGAT CCCGGCCAGGC CCCGGGCAGAT CCCCGGGCAGAT CCCGGCCAGC CCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCGGGCAGAT CCCCCGGGCAGAT CCCCGGCCAGC CCCCGGGCAGAT CCCCCGGGCAGAT CCCCCGGGCAGAT CCCCCGGGCAGAT CCCCCGGGCAGAT CCCCCGGCCAGC CCCCGGCCAC CCCCCGCGCACAC CCCCCGCGCACAC CCCCCGCGCACAC CCCCCGCGCACAC CCCCCCGCCAC CCCCCGCCCAC CCCCCCCC	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCAC ATGGTAGCAC AATGGTTA AGGACACAC AATGGTTCC AGGAGCAGCAC AGATTCAC AGGATGACC TGCCACAG GCATTGCCA AGGATGAC TGCCACAGG CCATTGCCA AGATTGACA TGACCTGCCT TCCAGGTTGC TCAGGATGA CGACTGCC TTCAGGTTGC CTACAGTTGT CCAGGTTGC CTACAGTTGT CCAGGTTGC CTACAGTTGT CGGAGCAGCCT CTACAGTTGT CGGAGCAGCCT CTCAGAGTTGC CGGAGCACCCT CTCAGAGTCC CTCGAGATCA CGCACCCCC CTCCAGACTCC CTCCAGACTCC CTCCAGACTCC CTCCAGACTCC CTCCAGACTCC CTCCAGACTCC CTCCAGACCCC CTCCAGACTCC CTCCAGCC CTCCACACTCC CTCCAGCC CTCCACC CT	ALIMODMITA LINAISVLYPD 41 CGGCTGCTGC GTCTGCGGCC GCGGGATCC CCTGAGCTGT GGATGATGTC GGATGATGCAGT CCACATCACT GCATGCGCTA AGATGGGCGAA GGCCATAGCC GGGCAGAGG CACCCCCAAG GACCTTGCAG GACCTTGCAG GACCTTGCAG CACCCAGCC CACACCAGCC CACACCAGCC CCCAGAGTGG CCCCAGGCGCAACCCCAGCC CCCAGAGTGG CCCCAGAGTGG CCCCAGAGTGG CCCCAGAGTGG CCCCGAGCGCAACCCCCAGAGTGG CCCCGAGCGCAACCCCAGAGTGG CCCCGAGCGCAACCCCCAGAGTGG CCCCGAGCGCAACCCCCAGAGTGG CCCCGCAGCCCCCCAGCCCCCCAGCCCCCCCCCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC GGCGTGCGC CCGGCCAGCCGC CCGGCCAGCCG GATGGGGCCC GATGGGGCCC CTTCGTTGCC CCTTCTTG CGGCCAGCTGC AACCGCAGTCA TTCTCAGCCC AACCGCAGTCA GTCTCCC GTTGGCAC TTCTCAGCCC AACCGCAGT CTGACCCAG GGCCCACCCA TTTGAGCCAC GTTTAACCCAG GGCCCACCCA TTTAACCAGC GGCTTACAC GTCTACACCC GTCTACACCC ATTAACAGCG ATCAACAGC GGCAGCATC CCCCAGCCAC CCCCAGCCAC GGCCGAGCAC GGCCGAGCAC TCCCAGCCAC TTCCCACCTCC TCCCAGCCAC TCCCAGCCAC TTCCCACCTCC TCCCACCTCC TCCCACCTCC TCCCACCTCC TCCCACCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCC TCCCCC TCCCC TCCCC TCCCCC TCCCC TCCCC TCCCC TCCCCC TCCCC TCCC TCCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCC TCCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCCC TCCCCC TCCCC TCCCC TCCCCC TCCCC TCCCCC TCCCC TCCCC TCCCC TCCCC TCCCC T	60 120 180 240 300 360 420 780 960 1020 1140 1260 1320 1320 1440 1500 1560 1680 1740 1860
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: NUCleic Ac: Coding seq 1 AACTCCCGCC GCGCTCTC CCTCAGCTCC CCCGCCGTT TTCGCTGTGA ACCCGCTGGA ACCGGCTGCA TGAAGCATCC ACATTGATGA GTCCTGAGCA GCAGCCCACA ACCCCCCCACA TCCGGCTGCA GCCCCCCACA AGCCACCCC GCCCCCACA TCCGGCCACA AGCCACCCC GCCCCCACA AGCCACCCC GCCCCCACA AGCCACCCC ACATTGATGC TCATCCTGGA TCGGCTCCTG TGATCTCAGA TCGGCCACACA AGCCACCCC AGCACCCCC AGCCCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACCCCCC AGCACTCCCT AGCCCCCCCAC ACCCCCCCCAC ACCCCCCCCC AGCACCCCCCC AGCACCCCCCC AGCACCCCCCC AGCACCCCCCC AGCACCCCCCC AGCACCCCCCC AGCACCCCCCCC	EALRMANVAE MNATNHAIVQ H 59 DNA BEQT id Accession Lence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACCAAGCAC AGCCTCGGAA GGACTCTGGC TGCCAACACC AGCCTCGGAA GCACCTGGC CATCACCTGG CAACCACAC TAGTGGGCT GGTAGTAGCG GGACTCCGCAGA CATCACCTTG GGTAGTAGCG AGCCTCGGAG CCTCCGCAGA CCACCACT AGCTGCCGGAG AGCCACACT AGCTGCGGGC GTGAGGAGG CGACCTGGGCT GCTGAGGAGAG GGACCCAGGCC GGTGTCCAA CGGGTTTTTC CGGCCCGCAG CCTGCATTTTC	NSSSDQRQAC TLVHFINPET Lence	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCAG CTGCGGCAGCAGCAGGAGCTGC TACATGTATA AGGCACAGAG ATGGTGCCAAGGAGCAGCAG AGGATGACCACAGAGCAGCAGAGCAG	ALL GROUP IIA LINAISVLYPD 41 GGGCTGCTGC GCGGGGATCC GCGGGGATCC GCGGGGATCC TGGTGCGCT GCAGGTCAC GCAGGTCAC GCAGGTCAC GCAGGCCC GCAGGCCC GCCGGCAC GCAGGCCC GCCACAC TCCCCAAG GAGCCAC GCACCCAC GCACCCAC TCACCCCAC TCACCCCAC GCACCCAC CCACACCC TCACCCCAC CCACACCCC TCCCCACAC CCACACCCC CCACACCCC TCCACACCC TCCACACCC CCACACCCC CCCACACCC CCCACACCC CCCACACCC CCCACACCC CCCACACCC CCCACACCC CCCACACCC CCCACACCC CCCACCCC CCCACCCC CCCCACCC CCCCCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC CGCCGTGCGC CCGCCGTGCGC CGCGCCAGACA CCGGCCAGACA CCGGCGCCAGAC ACTGCAGACAG CCTTCGTTGCC CCCCTTTCTT CCGCCAGCTGCA GTGCTGCAC GTTCTGCCCA ACGCTGCAC TTTCAGCCCC ATCACCACG GGCCACCCA TTTGAGCAC GGTCTGCCAG AGGGTTTACC CTGACCACG GGCCACCCA TTGAGCACAC GGTCTACC GTCTACACCT GTGGCACT ACCAGATGC CCCCAGCAC ACGGCACT CCCCAGCAC CCCCAGCAC ACCAGCAC ATCAACAGCG GGCAGCAC CCCCAGCCAC CCCCAGCCAC CCCCAGCCAC CCCCAGCCAC GGCCACTGC ATCAACAGCA ATCAACTTGCA GTGACAGCAC TTGCACACTTGCA TTGCACTTGCA TTGCACTTGCA CCCCAGCCAC CCCCAGCCAC CCCCAGCCAC CCCCAGCCAC CGCCGAGAGA TTCAACTTGCA TTCACCTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACCACTTTTCCA TTGCACTTTCCA TTGCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTCTCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTGCACCACTTTCCA TTCTCACCACTTCCA TTCTCACCACTTCCAC TTCTCACCACTTCCA TTCTCACCACTTCCAC TTCTCACCACTTCCA TTCTCACCACTTCCAC TTCTCACCACTTCCAC TTCTCACCACCAC TTCTCACCAC TTCTCACCACAC TTCTCACCAC TTCT	60 120 180 240 420 420 420 660 660 780 900 960 1020 1140 1200 1320 1380 1440 1560 1620 1680 1740 1800 1800 1800
50 55 60 65 70 75	GECAPPLNSY RNMVVRACGC Seq ID NO: NUCleic Ac: Coding seq 1 AACTCCCGCC GCGCTCTCGGT CCTCAGCTCC CCCGCCGGTT TTCGCTGGA AGCCCGCGG TGAGCACCA AGGCCGGGG ATGGTCCAGGA ACCCCCCAGACA TCCAGGACGC GCCCCACA TCCGGCCAG TCAGCCCCC GCCCCCACA TCCGGCCAG TCATCCTGGA AGCCACAGCAG TCATCCTGGA AGCCACAGCAG TCATCCTGGA AGCCACAGCAG TCATCCTGGA AGCCACAGCAG TCATCCTGGA AGCCACAGCAG TCATCTCAGA AGCCACAGCAG TCATCTCAGA TGAGGTGTA AGCCACAGCAG TCATCTCAGA TGAGGTGCAA AGCCACACTAT AGCCCACTAT AGCCCACCATAT ACCCTGCCAA TTATCACCTT	EALRMANVAE MNATNHAIVQ H 59 DNA sequid Accession uence: 150. 11 TCGGGACGCC GCGTCCGCCT TTTTCCTGAG GCCTCTGCTC CATCAAGCAG GGTTGAGGCT CACGAGGCG GGACTCTGGC AGCCTCGGA GCACCCTCGG AGCCTCGGAA GCACCCTCGG AGCCTGGGAA CAACACACA CATCAGGCT GGTAGTAGCG CCTCCGCAGA CCTCGGCAG CCTCGGCAG CCTCGGCAGA CCTCGGCAGA CCTCGGCAGA CCTCGGCAGA CCTCGCAGA CCACTGCT CGGACTCGGCAG CCACCTCCAA CGGACTCACGC TGATGGGAA CCTCCAAGGCC TGATGGGAA CCGGCCTCCAA CCGGCCTCCAA CCAGCCC TAAGTGGGAA CCTCGCATTTT CCGGCCCAGA CCAAATTGGAA	NSSSDQRQAC TLVHFINPET Lence 1 #: NM_002 .3362 21 TCGGGGTCGG CCCGCGGA AGCATCCTGC CGGTCCTCC CGGGCCCGG ACCTTCACAG TCCTTCACAG TCCTTCACAG TCACTACAG GCTAGAGCA AGGATATGGC CACAGAGTAT ACCTAGCAG AGGAGAGGGC CACAGAGT ATCCTGCT AGCATAGCAG AGCAGAGT TGGCCAAAA AGGAGGGGAGAT CGGCAGAGT TGGTCCGAGAGC CCCAAGAGT ACCCAAGAGC ACCCAAGAGC ACCCAAGAGC ACCCAAGAGC ACCCAAGAGC CCCCAGGGGAG CCCCAAGAGC CCCCAGGGGAG CCCCAAGAGC CCCCAGGGGAG CCCCAAGAC ACCCAAGAC ACCCAAGAC ACCCAAGAC CCCCAGGGGAG CCCCAGGGGC CCCCAGGGC CCCCAGGGC CCCCAGGGC CCCCAGGGCC CCCCGGGTGC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGCC CCCCCCC CCCCCC CCCCCC CCCCCC CCCCCC	RKHELYVSFR VPKPCCAPTQ 31 GCTCCGGCTG CCGCGGAGCA TGGGAGCTGC TGCTGCCGCT AGGATGCACT AGGATGCACT AGGATGCACA ATGGTTCCG AGGATGCACA ATGGTTCCG AGGACGCAGA ATGATGATA AGGCCACAGA ATGATGATA AGGCCATGTT CCGGCTGCC TTGCCAACGG GCATTGACCA AGATTGACCA AGATTGACCA AGATTGACCA AGATTGACCA CTACAGTTGT TCAGGATGA GCACTCAGTT TCAGGATGCC GCACTCAGTTC CCGGCTCCC TCGGAGTGC GGACCCCCT CCGGAGTGC CTCCGAGTTGC CGGCCCCCT CCGGAGTGC CTCCGAGTTGC CGGCCCCCT CCGGAGTGC CTCCGAGTTGC CGGCCCCCT CCGGAGTGC CCCCACGC CCCGAGTGCC CCCGACTGCC CCCGACTGCC CCCGAGTGCC CCCCACGC CCCCCCC CCCCCCCC	A1 CGGCTGCTGC GCGGGGATCC GCTGGCGC GCTGGCGGC GCTGGCGC GCTGGCGC GCTGGCGC GCTGGCGC GCTGGCGC GCTGGCGC GCTGGCCC GCTGGCCC GCTGGCC GCTGGCCC GCTGGCCC GCTGGCCC GCTGGCCC GCTGGCCC GCTGGCCC GCTGCCC GCTGCCC GCTGCCC GCTGCCC GCTGCCC GCTGCCC GCGCC GCTGCCC GCCCCAG GCCCCAGC CCACCCC GCCCCAGC CCACCCC GCCCCAGC CCCCAGCC CCCCCAGCC CCCCCAGCC CCCCCAGCC CCCCCAGCC CCCCCCCC	PEGYAAYYCE DSSNVILKKY 51 TGCGGCGCCCC GGCGTGCGC CCGGCCAGCCGC CCGGCCAGCCG GATGGGGCCC GATGGGGCCC CTTCGTTGCC CCTTCTTG CGGCCAGCTGC AACCGCAGTCA TTCTCAGCCC AACCGCAGTCA GTCTCCC GTTGGCAC TTCTCAGCCC AACCGCAGT CTGACCCAG GGCCCACCCA TTTGAGCCAC GTTTAACCCAG GGCCCACCCA TTTAACCAGC GGCTTACAC GTCTACACCC GTCTACACCC ATTAACAGCG ATCAACAGC GGCAGCATC CCCCAGCCAC CCCCAGCCAC GGCCGAGCAC GGCCGAGCAC TCCCAGCCAC TTCCCACCTCC TCCCAGCCAC TCCCAGCCAC TTCCCACCTCC TCCCACCTCC TCCCACCTCC TCCCACCTCC TCCCACCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCCC TCCCC TCCCCC TCCCC TCCCC TCCCCC TCCCC TCCCC TCCCC TCCCCC TCCCC TCCC TCCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCC TCCCC TCCCC TCCC TCCCC TCCC TCCCC TCCC TCCCC TCCCCC TCCCC TCCCC TCCCCC TCCCC TCCCCC TCCCC TCCCC TCCCC TCCCC TCCCC T	60 120 180 240 420 480 660 660 720 780 840 900 1020 1140 1200 1140 1560 1620 1680 1680 1680 1800 1800 1980

PCT/US02/19297 WO 02/102235

```
TCCTGGACCC CACCAAGCTG GGACCCAGGA TGCACATCTT CCAGAATGGC TCCCTGGTGA 2100
TCCATGACGT GGCCCCTGAG GACTCAGGCC GCTACACCTG CATTGCAGGC AACAGCTGCA 2160
         ACATCAAGCA CACGGAGGCC CCCCTCTATG TCGTGGACAA GCCTGTGCCG GAGGAGTCGG
         AGGGCCCTGG CAGCCCTCCC CCCTACAAGA TGATCCAGAC CATTGGGTTG TCGGTGGGTG CCGCTGTGGG CTACATCATT GCCGTGCTGG GCCTCATGTT CTACTGCAAG AAGCGCTGCA
                                                                                                 2280
  5
                                                                                                 2340
         AAGCCAAGCG GCTGCAGAAG CAGCCCGAGG GCGAGGAGCC AGAGATGGAA TGCCTCAACG
                                                                                                  2400
         GAGGGCCTTT GCAGAACGGG CAGCCCTCAG CAGAGATCCA AGAAGAAGTG GCCTTGACCA
                                                                                                  2460
         GCTTGGGCTC CGGCCCCGCG GCCACCAACA AACGCCACAG CACAAGTGAT AAGATGCACT
                                                                                                  2520
         TCCCACGGTC TAGCCTCCAG CCCATCACCA CGCTGGGGAA GAGTGAGTTT GGGGAGGTGT TCCTGGCAAA GGCTCAGGGC TTGGAGGAGG GAGTGGCAGA GACCCTGGTA CTTGTGAAGA
                                                                                                  2580
10
         GCCTGCAGAC GAAGGATGAG CAGCAGCAGC TGGACTTCCG GAGGGAGTTG GAGATGTTTG
                                                                                                  2700
         GGAAGCTGAA CCACGCCAAC GTGGTGCGGC TCCTGGGGCT GTGCCGGGAG GCTGAGCCCC
                                                                                                  2760
         ACTACATGGT GCTGGAATAT GTGGATCTGG GAGACCTCAA GCAGTTCCTG AGGATTTCCA
AGAGCAAGGA TGAAAAATTG AAGTCACAGC CCCTCAGCAC CAAGCAGAAG GTGGCCCTAT
GCACCCAGGT AGCCCTGGGC ATGGAGCACC TGTCCAACAA CCGCTTTGTG CATAAGGACT
                                                                                                  2820
                                                                                                  2880
15
                                                                                                  2940
         TGGCTGCGCG TAACTGCCTG GTCAGTGCCC AGAGACAAGT GAAGGTGTCT GCCCTGGGCC
                                                                                                  3000
         TCAGCAAGGA TGTGTACAAC AGTGAGTACT ACCACTTCCG CCAGGCCTGG GTGCCGCTGC
GCTGGATGTC CCCGAGGCC ATCCTGGAGG GTGACTTCTC TACCAAGTCT GATGTCTGGG
                                                                                                  3060
         CCTTCGGTGT GCTGATGTGG GAAGTGTTTA CACATGGAGA GATGCCCCAT GGTGGGCAGG
                                                                                                  3180
         CAGATGATGA AGTACTGGCA GATTTGCAGG CTGGGAAGGC TAGACTTCCT CAGCCCCAGG
GCTGCCCTTC CAAACTCTAT CGGCTGATGC AGCGCTGCTG GGCCCTCAGC CCCAAGGACC
20
                                                                                                  3240
                                                                                                  3300
         GGCCCTCCTT CAGTGAGATT GCCAGCGCCC TGGGAGACAG CACCGTGGAC AGCAAGCCGT
         GAGGAGGGAG CCCGCTCAGG ATGGCCTGGG CAGGGGAGGA CATCTCTAGA GGGAAGCTCA
                                                                                                  3420
          CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA
                                                                                                  3480
         TTGCTGAGGT CTGAGCAGGG CCTGGCCTTT CCTCCTCTTC CTCACCCTCA TCCTTTGGGA
GGCTGACTTG GACCCAAACT GGGCGACTAG GGCTTTGAGC TGGGCAGTTT CCCCTGCCAC
25
                                                                                                  3540
          CTCTTCCTCT ATCAGGGACA GTGTGGGTGC CACAGGTAAC CCCAATTTCT GGCCTTCAAC
                                                                                                  3660
         TTCTCCCCTT GACCGGGTCC AACTCTGCCA CTCATCTGCC AACTTTGCCT GGGGAGGGCT
AGGCTTGGGA TGAGCTGGGT TTGTGGGGAG TTCCTTAATA TTCTCAAGTT CTGGGCACAC
                                                                                                  3720
                                                                                                  3780
30
          AGGGTTAATG AGTCTCTTGC CCACTGGTCC ACTTGGGGGT CTAGACCAGG ATTATAGAGG
          ACACAGCAAG TGAGTCCTCC CCACTCTGGG CTTGTGCACA CTGACCCAGA CCCACGTCTT
                                                                                                  3900
         CCCCACCCTT CTCTCCTTTC CTCATCCTAA GTGCCTGGCA GATGAAGGAG TTTTCAGGAG
CTTTTGACAC TATATAAACC GCCCTTTTTG TATGCACCAC GGGCGGCTTT TATATGTAAT
TGCAGCGTGG GGTGGGTGGG CATGGGAGGT AGGGGTGGGC CCTGGAGATG AGGAGGGTGG
                                                                                                  3960
                                                                                                  4020
35
          4140
          TGTTTTTGTT TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA
          Seg ID NO: 60 Protein sequence
          Protein Accession #: NP_002812
40
                                      21
                                                                                  51
                                                     31
                                                                    41
                       11
          MGAARGSPAR PRRLPLLSVL LLPLLGGTQT AIVFIKQPSS QDALQGRRAL LRCEVEAPGP
          VHVYWLLDGA PVQDTERRFA QGSSLSFAAV DRLQDSGTFQ CVARDDVTGE EARSANASFN
                                                                                                   120
          IKWIEAGPVV LKHPASEAEI QPQTQVTLRC HIDGHPRPTY QWFRDGTPLS DGQSNHTVSS
KERNLTLRPA GPEHSGLYSC CAHSAFGQAC SSQNFTLSIA DESFARVVLA PQDVVVARYE
                                                                                                    180
45
                                                                                                    240
          EAMFHCQFSA QPPPSLQWLF EDETPITNRS RPPHLRRATV FANGSLLLTQ VRPRNAGIYR
          CIGOGORGPP IILEATLHLA EIEDMPLFEP RVFTAGSEER VTCLPPKGLP EPSVWWEHAG
                                                                                                    360
          VRLPTHGRVY QKGHELVLAN IAESDAGVYT CHAANLAGQR RQDVNITVAT VPSWLKKPQD
                                                                                                    420
          SQLEEGKPGY LDCLTQATPK PTVVWYRNQM LISEDSRPEV FKNGTLRINS VEVYDGTWYR
CMSSTPAGSI EAQARVQVLE KLKFTPPPQP QQCMEFDKEA TVPCSATGRE KPTIKWERAD
GSSLPEWVTD NAGTLHFARV TRDDAGNYTC IAENGPQGQI RAHVQLTVAV FITFKVEPER
                                                                                                    480
 50
                                                                                                    600
          TTVYQGHTAL LQCEAQGDPK PLIQWKGKDR ILDPTKLGPR MHIFQNGSLV IHDVAPEDSG
RYTCIAGNSC NIKHTEAPLY VVDKPVPEES EGPGSPPPYK MIQTIGLSVG AAVAYIIAVL
                                                                                                    660
                                                                                                    720
          GLMPYCKKRC KAKRLOKOPE GEEPEMECLN GGPLONGOPS AEIQEEVALT SLGSGPAATN
                                                                                                    780
 55
          KRHSTSDKMH PPRSSLQPIT TLGKSEPGEV PLAKAQGLEE GVAETLVLVK SLQTKDEQQQ
                                                                                                    840
          LDFRRELEMF GKLNHANVVR LLGLCREAEP HYMVLEYVDL GDLKQFLRIS KSKDEKLKSQ
                                                                                                    900
          PLSTKQKVAL CTQVALGMEH LSNNRFVHKD LARNCLVSA QRQVKVSALG LSKUVYNSEY 960
YHFRQANVPL RWMSPEAILE GDFSTKSDVW AFGVLMWEVF THGEMPHGGQ ADDEVLADLQ 1020
          AGKARLPQPE GCPSKLYRLM QRCWALSPKD RPSFSEIASA LGDSTVDSKP
 60
          Seg ID NO: 61 DNA seguence
          Nucleic Acid Accession #: NM_006103
          Coding sequence: 29..406
                        11
                                      21
                                                                     41
 65
          CACCTGCACC CCGCCCGGGC ATAGCACCAT GCCTGCTTGT CGCCTAGGCC CGCTAGCCGC
                                                                                                     60
          CGCCCTCCTC CTCAGCCTGC TGCTGTTCGG CTTCACCCTA GTCTCAGGCA CAGGAGCAGA
GAAGACTGGC GTGTGCCCCG AGCTCCAGGC TGACCAGAAC TGCACGCAAG AGTGCGTCTC
GGACAGCGAA TGCGCCGACA ACCTCAAGTG CTGCAGCGCG GGCTGTGCCA CCTTCTGCCT
                                                                                                    120
                                                                                                    180
 70
          TCTCTGCCCA AATGATAAGG AGGGTTCCTG CCCCCAGGTG AACATTAACT TTCCCCAGCT
                                                                                                    300
           CGGCCTCTGT CGGGACCAGT GCCAGGTGGA CAGCCAGTGT CCTGGCCAGA TGAAATGCTG
CCGCAATGGC TGTGGGAAGG TGTCCTGTGT CACTCCCAAT TTCTGAGGTC CAGCCACCAC
                                                                                                    360
                                                                                                     420
           CAGGCTGAGC AGTGAGGAGA GAAAGTTTCT GCCTGGCCCT GCATCTGGTT CCAGCCCACC
           TGCCCTCCCC TTTTTCGGGA CTCTGTATTC CCTCTTGGGC TGACCACAGC TTCTCCCTTT
                                                                                                     540
 75
           Seq ID NO: 62 Protein sequence
           Protein Accession #: NP_006094
                                31
           1 11
                                                      31
                                                                     41
                                                                                   51
 80
           MPACREGPLA AALLESLEEF GFTEVSGTGA EKTGVCPELQ ADQNCTQECV SDSBCADNEK
                                                                                                      60
           CCSAGCATEC LLCPNDKEGS CPQVNINFPQ LGLCRDQCQV DSQCPGQMKC CRNGCGKVSC
 85
```

Seg ID NO: 63 DNA sequence

		id Accession	1782	103			
	1	11	21	31	41	51	
5	~~~~~	601620000			1		
,				GGACGCGGGC GGGTGGAGTT			60 120
				TGTTGATAAA			180
				AGAGGAAACA			240
• •				AACATGCTTT			300
10				AGTACAGCCC			360
				GAAGACTCAG			420
				GATGACTCTG CAGTGTCGGG			480
				AACGAATGTA			540 600
15				GATGGACCTA			660
				GTCCTTATCA			720
				AGCATTGGGT			780
				ATTGAGCAGT			840
20				ATAGCTAAGC			900
20				ATGGGAAAGT			960
				AGCTGGTTCA GGTTTCATTG			1020 1080
				GACTATCATG			1140
				TCAATGCTGA			1200
25	AGTGGCTTAT	GTCATTTACA	CACAGAAATC	TTTAGTACTC	AAGGCAAACC	AGCAATTGCC	1260
				GÍGAAGAAAA			1320
				GATACAAATG			1380
				CCAGAAGTGT			1440
30				ATGTATAGTT GTGGAAGAAT			1500 1560
-				ATGAGGGAGA			1620
				GATGAGTGTC			1680
	ATGACAGAAT	GCTGGGCTCA	CAATCCTGCA	TCAAGGCTGA	CAGCCCTGCG	GGTTAAGAAA	1740
25				ATTAAACTCT			1800
35				CTGTTTGTGG			1860
				GTCCTGCTTC GAAGCTCCCA			1920 1980
				ACTTGTTCAA			1300
	10.0111017	GGCGGAGAGA	CCGIIGGGIA	ACTIOITEM	OHIMIGRIOC	~ .	
40	Seg ID NO:	64 Protein	sequence				
	Protein Acc	cession #: 1	VP_001194				
	ļ	11	21	31	41	51	
45				RCKCHHHCPE RSIECCTERN			60 120
15				KRQETRPRYS			180
				GKGRYGEVWM			240
	WFRETEIYQT	VLMRHENILG	FIAADIKGTG	SWTQLYLITD	YHENGSLYDY	LKSTTLDAKS	300
50				RDLKSKNILV			360
30				HFQSYIMADM			420
				PSFPNRWSSD	ECLROMGKLM	TECWAHNPAS	480
	RETALRVIKE	LAKMSESQDI	KL.				
	Sea ID NO:	65 DNA sequ	lence				
55		id Accession		175.1			
		uence: 28					
	1	11	21	31	41	51	
	1	1	1	1	1	1	
60				AACAATCATT			60 120
00				AATGTCTGTG			180
				AACTGGTATA			240
	AAAACGACTG	TTTTATATGA	ATGTTGCCCT	GGTTATATGA	GAATGGAAGG	AATGAAAGGC	300
65				TATGGCACTC			360
U.S				CTGAGGGAGG			420
				CTGAATGCTT		TATCCGTAGA	480 540
				GGCATGATTA			600
				GGGGTTGTCA			660
70						TGTGCTTACA	720
	CAAATTGGTA	CCTCAATTCA	AGACTTCATT	GAAGCAGAAG	ATGACCTTTC	ATCTTTTAGA	780
				GCCCTTGGAA			840
				CTTCCACGAG			900
75				AAGTACCACA			960
, ,						AATTGAGATA AAAGGATATT	
						TTCTGCCAAA	1140
						GGCCCAATTA	1200
0.0	GGCTTGGCAT	CTGCTCTGAG	GCCAGATGGA	GAATACACTT	TGCTGGCACC	TGTGAATAAT	1260
80						TCTGCAGAAT	
						ACTGGAAACC	1380
						TGAAAATTCA	1440 1500
						CTTTAGCACC	1560
85						TGGAGACTGG	
						_	

			TGATGCTTTT				1680
	CTGATACGGG	ACAAAAATGC	TCTTCAAAAC	ATCATTCTTT	ATCACCTGAC	ACCAGGAGTT	1740
	TTCATTGGAA	AAGGATTTGA	ACCTGGTGTT	ACTAACATTT	TAAAGACCAC	ACAAGGAAGC	1800
_	AAAATCTTTC	TGAAAGAAGT	AAATGATACA	CTTCTGGTGA	ATGAATTGAA	ATCAAAAGAA	1860
5	TCTGACATCA	TGACAACAAA	TGGTGTAATT	CATGTTGTAG	ATAAACTCCT	CTATCCAGCA	1920
	GACACACCTG	TTGGAAATGA	TCAACTGCTG	GAAATACTTA	TAATTAATA	CAAATACATC	1980
	CAAATTAAGT	TTGTTCGTGG	TAGCACCTTC	AAAGAAATCC	CCGTGACTGT	CTATACAACT	2040
			GGAACCAAAA				2100
			CACACTAACA				2160
10			AACAATAACT				2220
			TGGAGTGCCT				2280
			TGAAATAAAA				2340
			ATTGTTACAA				2400
			ATTTGAAGAT				2460
15			AGCCAACAAA				2520
15			ATCCAAAAAC				2580
			TTGTGAGAGC				2640
							2700
			TAATTCTGAA				
20			GAGTTAGCCT				2760
20			CTTGACATTA				2820
			ATTCATTACA				2880
			TGTATGTATG				2940
			AGTTATAAAA				3000
0.5	TCAAAAGGCT	TTGCACATTT	CTATATGAGT	GGGTTTACTG	GTAAATTATG	TTATTTTTTA	3060
25	CAACTAATTT	TGTACTCTCA	GAATGTTTGT	CATATGCTTC	TTGCAATGCA	TATTTTTTAA	3120
	TCTCAAACGT	TTCAATAAAA	CCATTTTTCA	GÁTATAAAGA	GAATTACTTC	AAATTGAGTA	3180
	ATTCAGAAAA	ACTCAAGATT	TAAGTTAAAA	AGTGGTTTGG	ACTTGGGAA		
						•	4
	Sea ID NO:	66 protein	sequence				
30		cession #: 1			•		
50	1	11	21	31	41	51	
		i	î	1	7	ĩ	
	.		ANNHYDKILA	I CD TDCDDGG	DITIONALOCAL		60
25			PGYMRMEGMK				120
35			AWDNLDSDIR				180
	NGMIIPSMYN	NLGLPINHYP	NGVVTVNCAR	IIHGNQIATN	GVVHVIDRVL	TQIGTSIQDF	240
	IEAEDDLSSF	RAAAITSDIL	EALGRDGHFT	LFAPTNEAFE	KLPRGVLERF	MGDKVASEAL	300
	MKYHILNTLQ	CSESIMGGAV	PETLEGNTIE	IGCDGDSITV	NGIKMVNKKO	IVTNNGVIHL	360
	TOOVLIPDSA	KOVIELAGKO	QTTFTDLVAQ	LGLASALRPD	GEYTLLAPVN	NAFSDDTLSM	420
40			NELYNGQILE				480
			EKLKODKRFS				540
			NIILYHLTPG				600
						IQIKFVRGST	660
15	FKEI PVTVYT	TKIITKVVEP	KIKVIEGSLQ	PIIKTEGPTL	TKVKI EGEPE	FRLIKEGETI	720
45	FKEIPVTVYT TEVIHGEPII	TKIITKVVEP KKYTKIIDGV	KIKVIEGSLQ PVEITEKETR	PIIKTEGPTL EERIITGPEI	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	
45	FKEIPVTVYT TEVIHGEPII	TKIITKVVEP KKYTKIIDGV	KIKVIEGSLQ	PIIKTEGPTL EERIITGPEI	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
45	FKEIPVTVYT TEVIHGEPII	TKIITKVVEP KKYTKIIDGV	KIKVIEGSLQ PVEITEKETR	PIIKTEGPTL EERIITGPEI	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
45	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF	TKIITKVVEP KKYTKIIDGV	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG	PIIKTEGPTL EERIITGPEI	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO:	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG	PIIKTEGPTL EERIITGPEI DTPVRKLQAN	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
45 50	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS se	PIIKTEGPTL EERIITGPEI DTPVRKLQAN	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence	TKVKIEGEPE KYTRISTGGG	FRLIKEGETI ETEETLKKLL	720
	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS se	PIIKTEGPTL EERIITGPEI DTPVRKLQAN	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL	FRLIKEGETI ETEETLKKLL REGRSQ	720
	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequ 1	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL 41	FRLIKEGETI ETEETLKKLL REGRSQ 51	720 780
	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS see 7 21 GGGCCCCGCC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL 41 GGCGTCTGCG	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA	720 780
50	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCGCTGG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCCGCC CTGGGTCTCC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC	720 780 60 120
	FKEIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 } ATGCCTGGG CTAGCGCTGG TTCTCCTCT	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CCTGGCTTCC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL 41 GGCGTCTGGG CCACCTCCTC CCCAGCCCCC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GCCTGCCGGAC	720 780 60 120 180
50	FREIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCSCTGG TTCTCCTCCT CAGTGCCCCG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG TGGCGCCGTT CGCTGTGCGA	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCTC GTGCTTCC GTGCTCCGAG	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGGCCA	TKVKIEGEPE KYTRISTGGG KKVQGSRRRL 41	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC GCTGCCGGAC CGTTAACCGC	720 780 60 120 180 240
50	FKEIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCG TACTCCTGGG CGGGCCGTT CGCTGTGCGA AGGTGCCCAC	KIKVIEGSLQ FVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCGCC CTGGGTCTCC CTGGGTCTCC GTGCTCCGAG GGACCTGCCC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGGGCA GCCTAGGTGC	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACCTCTT	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC GCTGCCGGAC CCTTAACCGC CCTTACCGGC	720 780 60 120 180 240 300
50	FKEIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGG CTAGCGCTGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AACCAGCTGG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS ser 7 21 GGGCCCCGCC CTGGGTCTCC CCTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGGCGCA GCCTAGGTGC CTGCCGCGGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGGGTCTGCG CCACCTCCTC CCCAGCCCCC CAGTCAACTG GCAACCTCATT ATGTGCTGGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGC CCTACCGCC CCAACTGCCC	720 780 60 120 180 240 300 360
50 55	FKEIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCGCTGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCGA ACGTGCCCAC ACCAGCAACCA ACCTGGACTT	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS ser 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTCCAC AAGTAATAATA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGCTGTCCG GCAGCGCGA GCCTACGTGC CTGCCGCGGG TCGCTGGTGA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCCAGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGGC GCCTGACCTA	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GCTGCCGGAC CCTTACCGC CCTACCGC CCAACTGCCC CCAACTGCCC CCTGCCCCACCCC	720 780 60 120 180 240 300 360 420
50	FKEIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AGCCTCAG AGCCTCAGGC CGCAACCTGA	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession Lence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTCTC GCCGTGTCCG GCAGGGCGCA GCCTACGTGC TCGCGCGGGG TCGCTGGGGACGCA TCGCGCGGGGACGCA TCGCGCGGGGACGCA TCGCGGGGACACA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CGTTAACCGC CCTTACCGGC CCAACTGCCC CGTGCCTTC GGTCCTTC	720 780 60 120 180 240 300 360
50 55	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TCTCTCCTCT CAGTGCCCCG AATCTGACCG AGCCTCAGGC CCGCAACCTGA AATGGCACCCG AATGGCACCTGA	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCGG TACTCCTGGG CGGGCCGTT TCGCTGTGGGA AGGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGGCTGAGTT	KIKVIEGSLQ FVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCGCC CTGGGTCTCC CTGGGTCTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA GCTTAGTGC CTGCGGGGG TCGCTGGTGA CTGGAGGACA CCCCACATTA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGCG GCTGACCTA ATGTGCTGCG GCTGACCTA ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTA ATGCCTCACCTA ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTACCTACCTAC ATGCCTCACCTACCTACCTACCTACCTACCTACCTACCTA	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCAACTGCCC CGTGTCCTTCAC GGTCCTTCAC GGTCCTTCAC GGACAACAAT	720 780 60 120 180 240 300 360 420
50 55	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TCTCTCCTCT CAGTGCCCCG AATCTGACCG AGCCTCAGGC CCGCAACCTGA AATGGCACCCG AATGGCACCTGA	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCGG TACTCCTGGG CGGGCCGTT TCGCTGTGGGA AGGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGGCTGAGTT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA GCTTAGTGC CTGCGGGGG TCGCTGGTGA CTGGAGGACA CCCCACATTA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGCG GCTGACCTA ATGTGCTGCG GCTGACCTA ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTA ATGCCTCACCTA ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTA ATGCCTCACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTAC ATGCCTCACCTACCTACCTACCTACCTAC ATGCCTCACCTACCTACCTACCTACCTACCTACCTACCTA	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCAACTGCCC CGTGTCCTTCAC GGTCCTTCAC GGTCCTTCAC GGACAACAAT	720 780 60 120 180 240 300 360 420 480
50 55	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CGCAACCTGA AATGGCACCC CCCTGGGTCCC CCCTGGGTCCC	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA sequid Accession uence: 1-92* 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT CGCTGTGCGA ACGTGCCCAC ACCTGGACTT CACATCTAGA TGGCTGAGTT GCGACTGCCA TGGGTGAGTT GCGACTGCCA TGGGTGAGTT GCGACTGCCA	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS Ber 7 21 GGGCCCCGCC CCTGGCTCCC CCTGGCTCCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTCAC CGAAGTCTAC CATGGCAGAC CATGGCAGAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCAGGGCGCA GCCTAGTGCC GCAGGGGGC TCGCTGGTGA CTGGAGGACA ATGGTGACCT ATGGTGACCT ATGGTGACCC	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCCAGCCCCC CAGTCAACTC ATGTCCTGC GCCTGACCTA ATGTCCTCAC ATGCCCTCA ATGCCTCAC AGGGTTTTCCT GGCTCAAGGA	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCAACTGCCC CGTGTCCTTC GGTCCTTCC GGTCCTTCC GGACAACAAT AACAGAGGTA	720 780 60 120 240 300 360 420 480 540
50 55 60	FREIPVTVYT TEVINGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCSCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CGCAACCTGA AATGGCACCT GTGCAGGCC GTGGGCCCT GTGCAGGCCC GTGAGCCCC GTGAGCCCC	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCAGCAACCA TCACATCTAGA TGGCTGAGTT GCGACTGCCA AAGACCGGCT AAGACCGGCT	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC CTGGCTTCC CTTCCTTAC GGACCTGCCC CTTCCTTAC GAAGGATCTCAC GCAAGGTCTA AAGCAAGAC CACCTGTGCA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTCC GCAGGGCC GCAGCGCGCAC GCCTACGTGC CTGCCGCGGGA CTGCCGCGGGA CTGCCGCGGGA CCCCACATTA ATGGTGACCT TATCCGGAAA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC GCTGCCGGC CCTTACCGGC CCAACTGCCC COTGTCCTTC GGTCCTTCAC GGACAACAAT AACAGAGGTA TCGGGTCCTC	720 780 60 120 180 240 300 420 480 540 600
50 55 60	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCTT CAGTGCCCCG AATCTGACCGG AGCCTCAGG AGCCTCAGG AGCCTCAGG AGCCTCAGG TGGACCCC CCCTGGGTCT TTGGAAGCTCA	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACGTGCCAC ACCTGGACT TACACTTGACT TACACTTGACT TACACTTGACT AGGCTGAGTT AGACCGCT ACAGCACCA ACGCACTGACTA AGACCGCT ACAGTGCCTA ACAGCTGCCAA ACACCGCTTGCCAA ACACCGCTTGCCAA ACACTGCCTGA	KIKVIEGSLQ FVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCCGCC CTGGCTTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGAC CCTCGACTGC CACCTGTCAC CACCTGTCAC CACCTGTCAC CCTGGCTGAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCACGCGCGC TCGCCGCGGG TCGCTGGGCCACTTACGTGACACACTCCCACATTA ATGGTGACAT TATCCGGATTC	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGGC GCCTGACCTA ATGCCCTCAAGACAGACTCTCT ATGCTGACTA ATGCCCTCAAGACATCC GGCTTTTCCT GGCTCAAGGA ATTCCCCCATC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCAACTGCCC CGTGTCCTTC GGTCCTTCAC GGACAACAAT AACAGAGGTA AACAGAGGTA TCGGGTCCTC CCTGCAAACC CCTGCAAACC	720 780 60 120 180 240 300 360 420 540 600 720
50 55	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGGCCTGG AATCTGACCG AACCAGCTGG AGCTCAGGC CGCAACCTGA AATGGCACCC CCCTGGGTCT GTGCAGGGCA TTGGAACTCA TTGGAACTCA TTGGAACTCA TTGTATGTCT	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession unce: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCGA CCAGCAACCA ACCTGGACTT CACATCTAGA TGGCTGAGTT GCGACTGCGAT TGCTGAGGTT ACAGTGCGA TCCTGGGTA TCCTGGGTAT TCCTGGGTAT TCCTGGGTAT	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG uence n #: EOS Bei 7 21 GGGCCCGGCC CTGGGTCTCC CTGGCTCCC GTGCTCCGA GGACCTGCCC GGAAGTATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGAC CACCTGTGCA CACCTGTGCA TGTTTTAGCC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGGCGCA TCGCTGGGGACA CTGCAGGGCA CTGCAGGACA TATCGGAGACA CCCACATTA ATGGTGACCT TATCCGGAATC CTGATGACCT TATCCGGAATC CTGATGACCT TATCCGGAATC CTGATGACCT TATCCGGAATC CTGATAGGCG CTGATAGGCG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGGC GCTGACCTA ATGCCTCAG AGGTTTTCCT GGCTCAAGGA AAATGAGGAA AATGAGGAA AATTAGGCATC CTATTTTCCT	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GCATCCTCC GCTGCCGGA CCTTACCGGC CCAACTGCCC CGTGCCTTCC GGTCCTTCAC GGACAACAAT AACAGAGGTA TCGGGTCCTT CCTGCAAACC CCTGGTTTTG	720 780 60 120 180 240 360 420 480 660 720 780
50 55 60	FREIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CGCAACCTGA AATGGCACCC GTGCAGCGCC GTGCAGGGCC TTGGAACTCA TTTATGTACCT TATTTGAACC	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCACCA ACCTGAGAT TGCGTAGAGT TGCGTAGAGT TGCAGTAGT TGCAGTGCCA AAGACCGGCT ACAGTGCTA TCCTGGGTA TCCTGGGTAT TGCAAGTGCTGA TCCTGGGTAT TGCAAGTGCTGA TCCTGGGTAT TGCAAGGGGAT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGTTCCC GTGTCCGAG GGACCTGCCC CTTCCTTTAC GAAAGTATAAT AAGCCTCAC GCAAGGTCTA CACCTGGCAG CCTTGGACTGT TGTTTTTAGCC AAAAAAGTGG	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTTTCTC GCAGGGCC GCCTACGTGC GCAGGGCACA TCAGTGC CTGCAGGGAC CTGCAGGGAC CTGCAGGAC TCGGTGAGAC CCCCACATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGCG ATGCATAACA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGC TGTGAGGCACCC CCTTGGGTCA TTGTATCT TTTTTATCT TTTTTATACC CACATGAAAG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession Lence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCGA ACGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGGCTGAGTT GCGACTGCCAC TCCTGGGTAGTT GCGACTGCCAC TCCTGGGTAT TCCTGGGTAGTT GCGACTGCCAC ACAGCGGAT TCCTGGGTAT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC CTGGCTTCCAAGTATAAA AAGCCTCCAC GCAAGGTATAAC CACTGTCAC CACTGTGCAC CCTCGGACTGT TGTTTTAGCC CTTGGACTGT TGTTTTTAGCC CAGAAAAAAGTGG CAGAAAAAAGTGA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTTTCTC GCAGGGCC GCCTACGTGC GCAGGGCACA TCAGTGC CTGCAGGGAC CTGCAGGGAC CTGCAGGAC TCGGTGAGAC CCCCACATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGCG ATGCATAACA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 60 120 180 240 360 420 480 660 720 780
50 55 60	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGC TGTGAGGCACCC CCTTGGGTCA TTGTATCT TTTTTATCT TTTTTATACC CACATGAAAG	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCACCA ACCTGAGAT TGCGTAGAGT TGCGTAGAGT TGCAGTAGT TGCAGTGCCA AAGACCGGCT ACAGTGCTA TCCTGGGTA TCCTGGGTAT TGCAAGTGCTGA TCCTGGGTAT TGCAAGTGCTGA TCCTGGGTAT TGCAAGGGGAT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC CTGGCTTCCAAGTATAAA AAGCCTCCAC GCAAGGTATAAC CACTGTCAC CACTGTGCAC CCTCGGACTGT TGTTTTAGCC CACTGTGCAC CACTGTGCAC CACTGTGCAC CACTGTACAC CACTGTAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTTTCTC GCAGGGCC GCCTACGTGC GCAGGGCACA TCAGTGC CTGCAGGGAC CTGCAGGGAC CTGCAGGAC TCGGTGAGAC CCCCACATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGCG ATGCATAACA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60 65	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGGGCTGG AATCTGACCG AACCAGCTGG AGCTCAGGC CGCAACCTGA AATGGCACCG CCCTGGGTCT GTGCAGGGCA TTGGAACTCA TTGGAACTCA TCTTATGTCT TATTTGAACC CACATGGAAG AGTTCTAACT	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCGA CCAGCAACCA ACCTGGACTT CACATCTAGA TGCTGAGTT GCGACTGACTA ACGTGCTGAGTT ACAGTGCTGA TCCTGGGTAT ACAGTGCTGA TCCTGGGTAT CACATGGATT CACATGCTGA ACGTGCTGA ACGTGCTGA ACGTGCTGA TCCTGGGTAT GCAAGGGGAT GCGATGTCCT	KIKVIEGSLQ PVEITEKETR DEEIKRLLQG "#: EOS Bei T GGGCCCCGCC CTGGGTTCC CTGGCTTCC CTGGCTTCC GTGCTCCAC GGAAGGTCTA CATGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA TGTTTTAGCC AAAAAAGTGG CAGATATGAA CGAGTGA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTTTCTC GCAGGGCC GCCTACGTGC GCAGGGCACA TCAGTGC CTGCAGGGAC CTGCAGGGAC CTGCAGGAC TCGGTGAGAC CCCCACATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGCG ATGCATAACA	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60	FREIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGGCCTGG TTCTCCTCTC AATCTGACCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGC CCCTGGGTCT TGTGAACTCA TCTTATGTCT TATTTGAACC CACATGGAAG AGTTCTAACT Seq ID NO:	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCTT CGCTGTGCGA AGGTGCCCA ACCAACAA ACCTGGACT CACATCTAGA TGCTGAGTT GCAAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA CGCATATCATA CGCATTCCT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGC CACCTGTGCA CCTGGACTGT TGTTTTTAGC CAAGAAAAGTGG CAGATATGAA CGAGTGA sequence	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGC GCCTACGTC GCCACGATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGC ATGATAGCC ATGATACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60 65	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequit ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAFTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGG AGCCTCAGG TGGCACCTGA TTGAGACTCA TCTTATGTCT TATTTGACC CACATGGAAC AGTTTAGACT Seq ID NO: Protein AC	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACCTGGACTA ACGTGACTA TGCTGGAT TGCTGGAT TGCTGGGT ACACTGGACT ACAGCACCGC ACCTGGACT CCAGCATCCCA TCCTGGGTT CCACATCTAGA TGCTGGGTA TCCTGGGTA TCCTGGGTAT CCACATCTAGA TCCTGGGTAT CCACATCTAGA TCCTGGGTAT CCACATCTAGA TCCTGGGTAT CCACATCTCTGGTAT CCACATCTCTGGTAT CCACATCTCCTGGTAT CCACATCTCCTGGTAT CCACATCTCCTGGTAT CCGGATGTCCT 68 Protein Cession #:	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCCGCC CTGGGTTCCC CTGGCTTCCC GTGCTCCGAG GGACCTGCCC CTTCCTTAAC AAGTAATAAT AAGCCTCAAC GCAAGGTCTA CATGGCAGAC CCTGGACTGT TGTTTTAGCC AAAAAAGTGA CAGATGATAAAAAC CAGATGAAAAAC CAGGTGA Sequence EOS sequenc	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCACGGCGCA GCTACGTGC TCGCGCGGGG TCGCTGCGGGG TCGCTGCGGACA TCGCGAGACA CCCCACATTA ATGGTGACCA GACCCGGATTC CTGATAGGCG ATGCATAACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCACCTCTT ATGTGCTGGC GCCTGACCTA ATGCCTCAAGAA ATGCCCTCAAGAA ATGCCCTCAAGAA ATTCCCCTCAAGAA ATTCCCCATC CTATTTTCCT TCAGAGATGA ACCCCAGATT	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGC CGTGCCTTACCGC CGTCCTTCAC GGACACAAT AACAAGAGGTA AACAACACCTC CCTGCAAACC CCTGGTTTTG CTGCAGGAT AACAAACCTC	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60 65	FREIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGGCCTGG TTCTCCTCTC AATCTGACCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGC CCCTGGGTCT TGTGAACTCA TCTTATGTCT TATTTGAACC CACATGGAAG AGTTCTAACT Seq ID NO:	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCTT CGCTGTGCGA AGGTGCCCA ACCAACAA ACCTGGACT CACATCTAGA TGCTGAGTT GCAAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA CGCATATCATA CGCATTCCT	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGC CACCTGTGCA CCTGGACTGT TGTTTTTAGC CAAGAAAAGTGG CAGATATGAA CGAGTGA sequence	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGC GCCTACGTC GCCACGATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGC ATGATAGCC ATGATACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCACCT ATGTCCTGCG GCCTAACTG GCAACCTCTA ATGCCCTCAA ATGCCCTCAA GGGTTTTCCTA GGCTCAACGAAATGCCAACCTCTA ATGCCCCCAAC CTCATCAGGAAATTCCCCCCATC CTCATCAGGATTCCTTCAGAGATGC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGA GGCATCCTCC GCTGCCGGA CGCTAACCGCC CCTTACCGG CCAACTGCCC CGTGCCTTC GGTCCTTC GGTCCTTC GGTCCTTC CGGCACACAAT TCGGGTCCTC CCTGGAACC CCTGGAACC CCTGGTTTTG CTGCAGGGAT	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60 65	FREIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGGCCTGG TTCTCCTCCT AATCTGACCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGCC CCTTGGTCT TTTTTGACC CACATGGAACTCA TCTTATGTCT TATTTGACC CACATGGAAG AGTTCTAACT Seq ID NO: Protein Ac 1	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGCTGAGTT GCAAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA CGGATGCTCA GGATGCTCA 68 Protein cession #: 11	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CACGGAGGC CACCTGTGCA CCTGGACTGT TGTTTTTAGC CACCTGTGCA CAGATATGAA CGAGTGA sequence EOS sequenc 21	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGC GCAGCGCACATTA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGGCG ATGATAACA ATCAATGCGG ATGATAACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCCC CAGTCAAGTA ATGCCTCAA ATGCCCTCAA GGCTTTCCT GGCTCAAGGA TTCCCCCATC CTATTTTCCT TCAAGAGATG ACCCCAGATT	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTAACCGC CCTACCGGC CCTACCGGC CCAACTGCCT CGGTCCTTC GGTCCTTCAC GGACAACAAT ACAGAGGTA TCGGGTCCTC CCTGCAAACC CCTGGTTTTC CTGCAGGGAT AACAAACCTC	720 780 120 180 300 360 420 480 540 600 720 780 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AACCAGCTGG AGCCTCAGC CCCCTGGGTCT TGTGCAGCCC TTATTGACCT TATTGACCT TATTTGACCT TATTGACT Seq ID NO: Protein Ac I	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACCTGGACTA ACGTGCCAA ACCTGGACTA TGCCTGGGT TACTCTGGG TACTCTGGG ACGTGTCCAA ACCTGGACTT CACATCTAGA TGCTGAGTT CACATCTAGA TGCTGGGTA TCCTGGGTAT CCGATGTCTG ACAGTGCTGA TCCTGGGTAT CCGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sei 7 21 GGGCCCCGCC CTGGCTTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCACA GCAAGGTCTA CATGGCAGGAC CCTGGCTGCAGACTGT TGTTTTAGCC AAAAAAGTGA CACTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA CACTGTCAC CACTGTCA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCACGCGGACG TCGCTCGTGCC TCGCGCGGGAC TCGCTGGGGAC TCGCGCGGGAC TCGCGGGGAC TCGCGGGGAC TCGCGGGGAC ATCGATAGCC ATGATAGGCG ATGCATAACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGCCTGACTA ATGCCCTCAAGAGTC GCTCAACGA TTCCCCCATC CTATTTTCCT TCAGAGATC ACCCCAGATT 41 FSSSAPFLAS	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCGAAC GGTCCTTC CGGACAACAAT AACAGAGGTCT CCTGCAAACC CCTGGTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD	720 780 120 180 240 300 420 480 540 660 720 780 840
50 55 60 65	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AACCAGCTGG AGCCTCAGC CCCCTGGGTCT TGTGCAGCCC TTATTGACCT TATTGACCT TATTTGACCT TATTTGACCT Seq ID NO: Protein Ac 1 MPGGCSRGPA	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACCTGGACTA ACGTGCCAA ACCTGGACTA TGCCTGGGT TACTCTGGG TACTCTGGG ACGTGTCCAA ACCTGGACTT CACATCTAGA TGCTGAGTT CACATCTAGA TGCTGGGTA TCCTGGGTAT CCGATGTCTG ACAGTGCTGA TCCTGGGTAT CCGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CACGGAGGC CACCTGTGCA CCTGGACTGT TGTTTTTAGC CACCTGTGCA CAGATATGAA CGAGTGA sequence EOS sequenc 21	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCACGCGGACG TCGCTCGTGCC TCGCGCGGGAC TCGCTGGGGAC TCGCGCGGGAC TCGCGGGGAC TCGCGGGGAC TCGCGGGGAC ATCGATAGCC ATGATAGGCG ATGCATAACA ATCAATGCGG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGCCTGACTA ATGCCCTCAAGAGTC GCTCAACGA TTCCCCCATC CTATTTTCCT TCAGAGATC ACCCCAGATT 41 FSSSAPFLAS	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCGAAC GGTCCTTC CGGACAACAAT AACAGAGGTCT CCTGCAAACC CCTGGTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD	720 780 120 180 300 360 420 480 540 600 720 780 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCG AACTGAACCTGA ACCAGCTGG AGCCTCAGGC CCCACAGGCT CTGAGGCACCC CCCTGGGTCT TATTGAACC CACATGGAAC TCTTATGTCT TATTGAACC CACATGGAAC Seq ID NO: Protein Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA sequid Accession id Accession ence: 1-92' 11 GGTGCTCCGG TACTCCTGGG CGGGCCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCTGAGTT CACATCTAGA TGGCTGAGTT GCGACTGCAA AGACCGGCT ACAGTGCTGA TCCTGGGTAT CCGATGTCTGA TCCTGGGTAT CGCATGTCCT 68 Protein cession #: 11 AGDGRLRLAR AARTVKCVNR	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence ##: EOS Bei 7 21 GGGCCCCGCC CTGGGTCTCC CTGGGTCTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGC CACCTGTGCT CATGGCAGGC CACCTGTGCA GCAGGTGT TGTTTTAGCC AAAAAAGTGG CAGATATGAA GCAGTGA Bequence EOS sequenc 21 LALVLLGWVS MLTEVPTDLP	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA GCTACGTGC CTGCCGGGG TCGCTGGTGC TAGTGC CTGCAGGACA CCCCACATTA ATGGTGACATA ATGGTGACAT ATCGGAAA ATCAATGCG ATGCATAACA ATCAATGCGG **GCATAACA ATCAATGCGG **SSSPTSSASS AYVRNLFLTG	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGCC GCCTGACCTA ATGTGCTGCC GCTTAACTG GCTCAAGGA AATGCCCTCA CTATTTCCT TCAGAGGATG ACCCCATC TCAGAGTT 41 FSSSAPFLAS NQLASNHFLY	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCGAAC GGTCCTTC CGGACAACAAT AACAGAGGTCT CCTGCAAACC CCTGGTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD	720 780 60 120 180 240 360 420 540 660 660 720 780 840 900
50 55 60 65 70	FREIPVTVYT TEVIRGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGGSCTGG TTCTCCTCT CAGTGGCCCGG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCAGGGTCT GTGCAGGCC CCCTGGGTCT GTGCAGGCACCT GTGCAGGCAC TTTATGTCT TATTTGAACC CACATGGAAG AGTTCTAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLENN	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCCTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCAGCAACCA ACCTGGGT TGCTGGGA TGGCTGAGTT CACATCTAGA TGGCTGAGTT CACATCTAGA TCCTGGGTA TGCAGTGCTA AGACCGGCT ACAGTGCTA AGACCGGCT ACAGTGCTA CGGATGTCCT 68 Protein cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCAC GCAAGGTCTA CACCGGAGGC CACCTGTGCA CTTGGATGCA CACCTGTGCA CTTGGATGT TGTTTTAGC CAGATATGAA CGAGTGA sequence EOS sequenc 21 LALVLLGWVS NLTEVPTDLP RNLTHLESLH	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGCGGG GCAGCGCCACTTA ATGGTGACC TCGCAGTGC CTGAGGACA ATGATAGCA ATGATAGCA ATCAATGCGG ATGCATAACA ATCAATGCGG e 31 SSSPTSSASS AYVRNLFLTG LEDNALKVLH	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCT CCAGCCACCT CAGTCAAGTG GCAACCTCTA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTCA ATGCCCTAAGTA ATGCCCTCAA ATGCCCTCAAGA TTCCCCCATC CTATTTTCCT TCAGAGGATG ACCCCAGATT 41 FSSSAPFLAS NQLASNHFLY NGTLAELQGL	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC GCTGCCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCTCTC GGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CCTGCAAACC CCTGGTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN	720 780 60 120 180 240 360 420 540 660 660 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCCTGGGTCT GTGCAGGCC CCCTGGGTCT TATTGACC TATTGAACT TATTTGAACT TATTTGAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWYDDCHMAD	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 7 DNA sequid Accession Lence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGTGTA AGGTGCCCAC CCAGCAACCA ACCTGGACTT ACATCTAGA TGCTGAGTT TGCTGGTGTA TGCTGAGTT CGCAGTGTCTA AGGTGCTGA TCCTGGGTA TCCTGGGTAT CCAGATGCCAC ACAGTGCTGA TCCTGGGTAT CCAGATGCTGA TCCTGGGTAT TCCTGGGTAT TCCTGGGTAT TCACATCTAGA AGGTGTCCT 68 Protein Cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MYTMLKETEV	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGCTTCC CTGGTTTCC AGAGTATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGCC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACTGTGCA CACCTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA LALVILGWVS NLTEVPTDLP RNLTHLESLH VQGKORLTCA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCCG GCAGGGCGCA GCTACGTGC TCGCGCGGGG TCGCTGCGGG TCGCTGCGGGG ACCCACATTA ATGGTGACA ATCGTGACA ATCATAGCG ATGCATAACA ATCATAGCG ATGCATAACA ATCATAGCG LEDNALKULH YPEKNENVL	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCCTGACCTA ATGCCCTCAAGGA TTCCCTCAAGGA TTCCCCCATC CTATTTTCCT TCAGAGATG ACCCCAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASNHFLY NGTLAELQGL LELMSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CATTCACTGACCCG AATCTGACCG AACCAGCTGG AGCCTCAGG ACCAGCTGA AATGCACCC CCCTGGGTCT TATTGAACC TCATATGATCT TATTTGAACT Seq ID NO: Protein Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 7 DNA sequid Accession Lence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGTGT AGGTGCCCAC CCAGCAACCA ACCTGGACTT ACATCTAGA TGCTGAGTT TGCTGGTGT ACAGTGCTGA TCCTGGGTAT TCACATCTAGA TGCTGAGTT CGCAGTGCTGA TCCTGGGTAT CCAGATGCTGA TCCTGGGTAT TCCTGGGTAT CGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MYTMLKETEV	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGCTTCC CTGGTTTCC AGAGTATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGCC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACTGTGCA CACCTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA LALVILGWVS NLTEVPTDLP RNLTHLESLH VQGKORLTCA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCCG GCAGGGCGCA GCTACGTGC TCGCGCGGGG TCGCTGCGGG TCGCTGCGGGG ACCCACATTA ATGGTGACA ATCGTGACA ATCATAGCG ATGCATAACA ATCATAGCG ATGCATAACA ATCATAGCG LEDNALKULH YPEKNENVL	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCCTGACCTA ATGCCCTCAAGGA TTCCCTCAAGGA TTCCCCCATC CTATTTTCCT TCAGAGATG ACCCCAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASNHFLY NGTLAELQGL LELMSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGCGA GGCATCCTCC GCTGCCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCTCTC GGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CCTGCAAACC CCTGGTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCCTGGGTCT GTGCAGGCC CCCTGGGTCT TATTGACC TATTGAACT TATTTGAACT TATTTGAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWYDDCHMAD	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 7 DNA sequid Accession Lence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGTGT AGGTGCCCAC CCAGCAACCA ACCTGGACTT ACATCTAGA TGCTGAGTT TGCTGGTGT ACAGTGCTGA TCCTGGGTAT TCACATCTAGA TGCTGAGTT CGCAGTGCTGA TCCTGGGTAT CCAGATGCTGA TCCTGGGTAT TCCTGGGTAT CGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MYTMLKETEV	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGCTTCC CTGGTTTCC AGAGTATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGCC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACTGTGCA CACCTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA LALVILGWVS NLTEVPTDLP RNLTHLESLH VQGKORLTCA	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCCG GCAGGGCGCA GCTACGTGC TCGCGCGGGG TCGCTGCGGG TCGCTGCGGGG ACCCACATTA ATGGTGACA ATCGTGACA ATCATAGCG ATGCATAACA ATCATAGCG ATGCATAACA ATCATAGCG LEDNALKULH YPEKNENVL	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCCTGACCTA ATGCCCTCAAGGA TTCCCTCAAGGA TTCCCCCATC CTATTTTCCT TCAGAGATG ACCCCAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASNHFLY NGTLAELQGL LELMSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FREIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCGCTGG TTCTCCTCCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGC CCCTGGGTCT GTGCAGGCCCC CCTTGGTCT TTTATTGACC CACATGGAAC TCTTATGTCT TATTTGACC CACATGGAAC Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVCDCHMAD SYVFLGIVLA SSNSDVLE	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCGA AGGTGCCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGGCTGAGTT CACATCTAGA TGGCTGAGTT CACATCTAGA TGCTGAGTT CACATCTAGA TGCTGAGTT CCAGGGAT TCCTGGGTA TCCTGGTA	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS Bei 7 21 GGGCCCCGCC CTGGGTCTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC CATGATAATAA AAGCCTCCAC GCAAGGTCTA CATGGCAGAC CCTGGACTGT CACTGTGCA CACCTGTGCA CACCTGTACA CACCTGTGCA CACCTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGCA CACCTGTGCA CACCTGCAC CACCTGTGCA CACCTGCA CACCTGCA CACCTGCA CACCTGCA CACCTGCA CACC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCCG GCAGGGCGCA GCTACGTGC TCGCGCGGGG TCGCTGCGGG TCGCTGCGGGG ACCCACATTA ATGGTGACA ATCGTGACA ATCATAGCG ATGCATAACA ATCATAGCG ATGCATAACA ATCATAGCG LEDNALKULH YPEKNENVL	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCCTGACCTA ATGCCCTCAAGGA TTCCCTCAAGGA TTCCCCCATC CTATTTTCCT TCAGAGATG ACCCCAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASNHFLY NGTLAELQGL LELMSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding sequil ATGCCTGGGG CTAGCGCTGG TTCTCCTCT TAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGG AGCCTCAGG AGCTCAGG TTGGAACCTGA ATGGCACCC CCCTGGGTCT TATTGAACT TATTTGAACT TATTTGAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHDLENN PWVDCCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO:	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 7 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACCTGGACTA ACGTGCCAA ACCTGGACTT CACATCTAGA TGCTGAGTT GCAGCTGCCA ACGCGACTGCCA ACGCGACTGCCA ACGCGACTGCCA ACGCGATTCCTGGGTAT CCGGATGTCTG ACAGTGCTGA TCCTGGGTAT CCGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR ARTVKCVNF MYTHIKETEV LIGAIFLLVL 69 DNA seq	KIKVIEGSLQ FVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGCTTCC CTGGTTCCA AGTATAAT AAGCCTCCAC GCAAGTATAAT AAGCCTCAC CACTGGACTGT TGTTTTAGCC CACTGGACTGT TGTTTTAGCC CAAAAAAGTGG CAGATATGAA CGAGTGA sequence EOS sequenc 21 LALVLLGWVS NLTEVPTDLP RNLTHLESLH VQGKORLTCA YLNRKGIKKW	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA TCGCTGCGGGG TCGCTGGGGACA CCCCACATTA ATGGTGACA CTGATAGGCG ATGCATACA ATCAATGCGG ATGCATACA ATCAATGCGG ATGCATACA ATCAATGCGG B SSSPTSSASS AYVRNLFLTG LEDNALKULG HENIKDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCTGACCTA ATGCCCTCAAGTA TTCCTTCAAGAATTC TCAGAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASHFLY NGTLAELQGL LELNSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGG AGCCTCAGGG AGCCTCAGGG ATGGAACCTG CTGAGGGAACTCA TCTTATGTCT TATTTGAACC CACATGGAACTCA TCTTATGTCT TATTTGAACC CACATGAAC AGTTCTAACT Seq ID NO: Protein Ac I MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVCDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCCA ACGTGCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGCCTGAGT TGCAGTGCTA AGACCGGCT ACAGTGCTGA TCCTGGGTAT CGCATGCTA AGACCGGCT ACAGTGCTGA TCCTGGGTAT CGCATGCTGA TCCTGGGTAT CGCATGCCT 68 Protein cession #: 11 AGDGRLRLAR ARTVKCVNR SLVSTTYVSF MVTWLKETEV LIGAIFLLVL 69 DNA seq id Accessio	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS Bei 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC CTGGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGAC CACCTGTGCT CATAGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA TCGCTGCGGGG TCGCTGGGGACA CCCCACATTA ATGGTGACA CTGATAGGCG ATGCATACA ATCAATGCGG ATGCATACA ATCAATGCGG 1 SSSPTSSASS AYVRNLFLTG LEDNALKULG HENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCTGACCTA ATGCCCTCAAGTA TTCCTTCAAGAATTC TCAGAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASHFLY NGTLAELQGL LELNSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGG AGCCTCAGGG AGCCTCAGGG ATGGAACCTG CTGAGGGAACTCA TCTTATGTCT TATTTGAACC CACATGGAACTCA TCTTATGTCT TATTTGAACC CACATGAAC AGTTCTAACT Seq ID NO: Protein Ac I MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVCDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 7 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCCA ACCTGGACTA ACGTGCCAA ACCTGGACTA TGCTGGGT TACTCTGGG TACTCTGGG AGGTGCCAA ACCTGGACTT CGCTGGGTAT CGCATGCTAA TGCTGGGTA TCCTGGGTAT CCGATGTCTA ACACTGGACT ACAGTGCTA ACACTGGACT ACAGTGCTA ACAGTGCTA ACAGTGCTA CGGATGTCCT 68 Protein Cession #: 11 AGDGRLRLAR ARTVKCVNF MYTHIKETEV LIGAIFLLVL 69 DNA seq	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS Bei 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC CTGGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGAC CACCTGTGCT CATAGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGAC GCCTACGTGAC GCCACATTA ATGGTGACC TATCCGGAAA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGCC ATGATAGCC ATGATACA ATCAATGCGG e 1 SSSPTSSASS AYVRNLFLTG LEDNALKVLH YPEKHRNVL MENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCT CCAGCCCCC CAGTCAAGTA ATGCCTCAA ATGCCTCAA GGTTTTCCT GGCTAAGGA TTCCCCATC CTATTTTCCT TCAGAGATGC ACCCCAGT 41 FSSSAPFLAS NQLASHFLLY NGTLAELQGL LELNSADLDC HMEGYHYRYE	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTGCTCTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CCTGCAAACC CCTGGTCTTC CTGCAAACC CCTGGTTCTC CTGCAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT INADPRLTNL	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70 75	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGG AGCCTCAGGG AGCCTCAGGG ATGGAACCTG CTGAGGGAACTCA TCTTATGTCT TATTTGAACC CACATGGAACTCA TCTTATGTCT TATTTGAACC CACATGAAC AGTTCTAACT Seq ID NO: Protein Ac I MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVCDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 57 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCGCGTT CGCTGTGCCA ACGTGCCAC CCAGCAACCA ACCTGGACTT CACATCTAGA TGCCTGAGT TGCAGTGCTA AGACCGGCT ACAGTGCTGA TCCTGGGTAT CGCATGCTA AGACCGGCT ACAGTGCTGA TCCTGGGTAT CGCATGCTGA TCCTGGGTAT CGCATGCCT 68 Protein cession #: 11 AGDGRLRLAR ARTVKCVNR SLVSTTYVSF MVTWLKETEV LIGAIFLLVL 69 DNA seq id Accessio	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS Bei 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC CTGGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGGAC CACCTGTGCT CATAGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGCA CACCTGTGCA CACCTGTGCA LCACCTGTGCA LCACCTGTGC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG TCGTCTTCTC GCCGTGTCCG GCAGGCGCA TCGCTGCGGGG TCGCTGGGGACA CCCCACATTA ATGGTGACA CTGATAGGCG ATGCATACA ATCAATGCGG ATGCATACA ATCAATGCGG 1 SSSPTSSASS AYVRNLFLTG LEDNALKULG HENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACTTA ATGTGCTGGC GCTGACCTA ATGCCCTCAAGTA TTCCTTCAAGAATTC TCAGAGATT 41 FSSSAPFLAS NQLASNHFLY NGLASHFLY NGTLAELQGL LELNSADLDC	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTACCGGC CCTACCGGC CCTACCGCC CCTGCCTTC CCTGCCAACT CCTGCAAACC CCTGGTTTTC CCTGCAAACC CCTGGTTTTTC CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq I ATGCCTGGGG CTAGCGCTGG TTCTCCTCT CAGTGCCCCG AATCTGACCG AACCAGCTGG AGCCTCAGGG AGCCTCAGGG AGCCTCAGGG ATGGAACCTG CTGAGGGAACTCA TCTTATGTCT TATTTGAACC CACATGGAACTCA TCTTATGTCT TATTTGAACC CACATGAAC AGTTCTAACT Seq ID NO: Protein Ac I MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVCDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGCCGTT CACATCTAGA AGGTGCCCAC ACAACCA AACACCAA ACCTGGGT TCACATCTAGA TGGCTGAGTT CACATCTAGA TGGCTGAGTT CACATCTAGA TCCTGGGTA TCCTGGGTA TCCAGTGCTA AGACCGGCT ACAGTGCTA ACAGTGCTGA TCCTGGGTAT CGAAGTGCTA CGGATGTCCT 68 Protein cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MYTWLKETEV LIGAIPLLVL 69 DNA seq id Accession uence: 26.	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGGTTCCC CTGGGTTCCC CTGGCTTCC CTGGCTTCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTATAAT AAGCCTCCAC GCAAGGTCTA CACCGGAGGCCAC CTTGGACTGT TGTTTTTAGCC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGGACTGT TGTTTTTAGCC CACAAAAAAGTGG CAGATATGAA CGAGTGA sequence EOS sequenc 21 LALVLLGWVS NLTEVPTDLP RNLTHLESLH VQGKRLTCA YLNRKGIKKW QUENCE un #: NM_0000 2299	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGAC GCCTACGTGAC GCCACATTA ATGGTGACC TATCCGGAAA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGCC ATGATAGCC ATGATACA ATCAATGCGG e 1 SSSPTSSASS AYVRNLFLTG LEDNALKVLH YPEKHRNVL MENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCT CCAGCCCCC CAGTCAAGTA ATGCCTCAA ATGCCTCAA GGTTTTCCT GGCTAAGGA TTCCCCATC CTATTTTCCT TCAGAGATGC ACCCCAGT 41 FSSSAPFLAS NQLASHFLLY NGTLAELQGL LELNSADLDC HMEGYHYRYE	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTACCGGC CCTACCGGC CCTGCTCTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CGTCCTTC CCTGCAAACC CCTGGTCTTC CTGCAAACC CCTGGTTCTC CTGCAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT INADPRLTNL	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70 75	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCGCTGG TTCTCCTCT TCAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGG AGCCTCAGG AGCTCAGGC CCCTGGGTCT GTGCAGGCC CCCTGGGTCT TTTTTGAACT ATTGGAACTCA TCTTATGTCT TATTTGAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVDDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac Coding seq 1	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCGA ACGTGCCAC ACAGCAACCA ACCTGGACTT ACAGCATGCACA ACCTGGACTT GCAACTGAGT TCACATCTAGA TGGCTGAGTT CGCAGTAGTA CGGATGCCCA ACAGTGCTGA TCCTGGGTAT CCTGGGTAT CCGATGTCCT 68 Protein cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MVTWLKETEV LIGAIFLLVL 69 DNA seq id Accessio uence: 26 11	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGTTCCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA CACCTGTGCA CACTGTGCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGCAC CACTGTCCA CAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGAC GCCTACGTGAC GCCACATTA ATGGTGACC TATCCGGAAA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGCC ATGATAGCC ATGATACA ATCAATGCGG e 1 SSSPTSSASS AYVRNLFLTG LEDNALKVLH YPEKHRNVL MENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCTC CCAGCCCCC CAGTCAAGTG GCAACCTCTT ATGTGCTGGC GCCTGACTA ATGCCCTCAAGTA ATGCCCTCAAGTA ATGCCCTCAAGTA ATTCCCTCAAGTA ATTCCCCATC CTATTTTCCT TAGAGATT 41 PSSSAPPLAS NQLASNHFLYA NGLASNHFLYA NGLASNHFLYA NGLASNHFLYA LELNSADLDC LELNSADLDC LMEGYHYRYE 41	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTAACCGC CCTTACCGGC CCTTACCGGC CCTTCTC GGACAACAAT AACAGAGGTA AACAGAGGTA TCGGGTCCTTC CCTGCAAACC CCTGGTTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT INADPRLTNL 51	720 780 120 180 240 300 360 420 540 600 720 780 840 900
50 55 60 65 70 75	FKEIPVTVYT TEVIHGEPII QEEVTKVTKF Seq ID NO: Nucleic Ac Coding seq 1 ATGCCTGGGG CTAGCGCTGG TTCTCCTCT TCAGTGCCCG AATCTGACCG AACCAGCTGG AGCCTCAGG AGCCTCAGG AGCTCAGGC CCCTGGGTCT GTGCAGGCC CCCTGGGTCT TTTTTGAACT ATTGGAACTCA TCTTATGTCT TATTTGAACT Seq ID NO: Protein Ac 1 MPGGCSRGPA QCPALCECSE SLRHLDLSNN PWVDDCHMAD SYVFLGIVLA SSNSDVLE Seq ID NO: Nucleic Ac Coding seq 1	TKIITKVVEP KKYTKIIDGV IEGGDGHLFE 67 DNA seq id Accession uence: 1-92' 11 GGTGCTCCCG TACTCCTGGG CGGGCCGTT CGCTGTGCGA ACGTGCCAC ACAGCAACCA ACCTGGACTT ACAGCATGCACA ACCTGGACTT GCAACTGAGT TCACATCTAGA TGGCTGAGTT CGCAGTAGTA CGGATGCCCA ACAGTGCTGA TCCTGGGTAT CCTGGGTAT CCGATGTCCT 68 Protein cession #: 11 AGDGRLRLAR AARTVKCVNR SLVSLTYVSF MVTWLKETEV LIGAIFLLVL 69 DNA seq id Accessio uence: 26 11	KIKVIEGSLO PVEITEKETR DEEIKRLLQG uence n #: EOS sec 7 21 GGGCCCCGCC CTGGTTCCC CTGGTTCCC GTGCTCCGAG GGACCTGCCC CTTCCTTTAC AAGTAATAAT AAGCCTCCAC GCAAGGTCTA CATGGCAGAC CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACCTGTGCA CACTGTGCA CACTGTGCA CACTGTGCA CACCTGTGCA CACTGTGCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGTCCA CACTGCAC CACTGTCCA CAC	PIIKTEGPTL EERIITGPEI DTPVRKLQAN Quence 31 GCCGGGGACG GCCTTCTC GCCGTGTCC GCAGGGAC GCCTACGTGAC GCCACATTA ATGGTGACC TATCCGGAAA ATGGTGACCT TATCCGGAAA GACCCGATTC CTGATAGCC ATGATAGCC ATGATACA ATCAATGCGG e 1 SSSPTSSASS AYVRNLFLTG LEDNALKVLH YPEKHRNVL MENIRDACRD	TKVKIEGEPE KYTRISTGG KKVQGSRRRL 41 GGCGTCTGCG CCACCTCCT CCAGCCCCC CAGTCAAGTA ATGCCTCAA ATGCCTCAA GGTTTTCCT GGCTAAGGA TTCCCCATC CTATTTTCCT TCAGAGATGC ACCCCAGT 41 FSSSAPFLAS NQLASHFLLY NGTLAELQGL LELNSADLDC HMEGYHYRYE	FRLIKEGETI ETEETLKKLL REGRSQ 51 GCTGGCGGGA GGCATCCTCC GCTGCCGGAC CCTTAACCGC CCTTACCGGC CCTTACCGGC CCTTCTC GGACAACAAT AACAGAGGTA AACAGAGGTA TCGGGTCCTTC CCTGCAAACC CCTGGTTTTTG CTGCAGGGAT AACAAACCTC 51 AVSAQPPLPD LPRDVLAQLP PHIRVFLDNN DPILPPSLQT INADPRLTNL 51	720 780 120 180 240 300 360 420 540 600 720 780 840 900

```
CAGCACCCAG CTCCCCGCCA CCGCCATGGT CCCCGACACC GCCTGCGTTC TTCTGCTCAC
        CCTGGCTGCC CTCGGCGGT CCGGACAGGG CCAGAGCCCG TTGGGCTCAG ACCTGGGCCC
                                                                                      120
        GCAGATGCTT COGGAACTGC AGGAAACCAA CGCGGCGCTG CAGGACGTGC GGGACTGGCT
        GOGGCAGCAG GTCAGGGAGA TCACGTTCCT GAAAAACACG GTGATGGAGT GTGACGCGTG
                                                                                      240
        CGGGATGCAG CAGTCAGTAC GCACCGGCCT ACCCAGCGTG CGGCCCCTGC TCCACTGCGC
                                                                                      300
        GCCCGGCTTC TGCTTCCCCG GCGTGGCCTG CATCCAGACG GAGAGCGGCG GCCGCTGCGG
                                                                                      360
        CCCCTGCCCC GCGGGCTTCA CGGGCAACGG CTCGCACTGC ACCGACGTCA ACGAGTGCAA
        CGCCCACCC TGCTTCCCCC GAGTCCGCTG TATCAACACC AGCCCGGGGT TCCGCTGCGA
                                                                                      480
        GGCTTGCCCG CCGGGGTACA GCGGCCCCAC CCACCAGGGC GTGGGGCTGG CTTTCGCCAA
                                                                                      540
10
        GGCCAACAAG CAGGTTTGCA CGGACATCAA CGAGTGTGAG ACCGGGCAAC ATAACTGCGT
                                                                                      600
        CCCCAACTCC GTGTGCATCA ACACCCGGGG CTCCTTCCAG TGCGGCCCGT GCCAGCCCGG
                                                                                      660
        CTTOGTGGGC GACCAGGCGT CCGGCTGCCA GCGCGGCGCA CAGCGCTTCT GCCCCGACGG
                                                                                      720
        CTCGCCCAGC GAGTGCCACG AGCATGCAGA CTGCGTCCTA GAGCGCGATG GCTCGCGGTC
                                                                                      780
        GTGCGTGTGT CGCGTTGGCT GGGCCGGCAA CGGGATCCTC TGTGGTCGCG ACACTGACCT
                                                                                      840
15
        AGACGGCTTC CCGGACGAGA AGCTGCGCTG CCCGGAGCCG CAGTGCCGTA AGGACAACTG
                                                                                      900
        OGTGACTOTG CCCAACTCAG GGCAGGAGGA TGTGGACCGC GATGGCATCG GAGACGCCTG
CGATCCGGAT GCCGACGGGG ACGGGGTCCC CAATGAAAAG GACAACTGCC CGCTGGTGCG
                                                                                      960
                                                                                     1020
        GAACCCAGAC CAGCGCAACA CGGACGAGGA CAAGTGGGGC GATGCGTGCG ACAACTGCCG
        GTCCCAGAAG AACGACGACC AAAAGGACAC AGACCAGGAC GGCCGGGGCG ATGCGTGCGA
                                                                                     1140
20
        CGACGACATC GACGGCGACC GGATCCGCAA CCAGGCCGAC AACTGCCCTA GGGTACCCAA CTCAGACCAG AAGGACAGTG ATGGCGATGG TATAGGGGAT GCCTGTGACA ACTGTCCCCA
                                                                                     1200
                                                                                     1260
        GAAGAGCAAC CCGGATCAGG CGGATGTGGA CCACGACTTT GTGGGAGATG CTTGTGACAG
                                                                                     1320
        CGATCAAGAC CAGGATGGAG ACGGACATCA GGACTCTCGG GACAACTGTC CCACGGTGCC
        TAACAGTGCC CAGGAGGACT CAGACCACGA TGGCCAGGGT GATGCCTGCG ACGACGACGA
                                                                                     1440
25
        CGACAATGAC GGAGTCCCTG ACAGTCGGGA CAACTGCCGC CTGGTGCCTA ACCCCGGCCA
                                                                                     1500
        GGAGGACGCG GACAGGGACG GCGTGGGCGA CGTGTGCCAG GACGACTTTG ATGCAGACAA
                                                                                     1560
        GGTGGTAGAC AAGATCGACG TGTGTCCGGA GAACGCTGAA GTCACGCTCA CCGACTTCAG
        GGCCTTCCAG ACAGTCGTGC TGGACCCGGA GGGTGACGCG CAGATTGACC CCAACTGGGT
                                                                                     1680
        GGTGCTCAAC CAGGGAAGGG AGATCGTGCA GACAATGAAC AGCGACCCAG GCCTGGCTGT
                                                                                     1740
30
        GGGTTACACT GCCTTCAATG GCGTGGACTT CGAGGGCACG TTCCATGTGA ACACGGTCAC
        GGATGACGAC TATGCGGGCT TCATCTTTGG CTACCAGGAC AGCTCCAGCT TCTACGTGGT
                                                                                     1860
        CATGTGGAAG CAGATGGAGC AAACGTATTG GCAGGCGAAC CCCTTCCGTG CTGTGGCCGA
GCCTGGCATC CAACTCAAGG CTGTGAAGTC TTCCACAGGC CCCGGGGAAC AGCTGCGGAA
                                                                                     1920
                                                                                     1980
        CGCTCTGTGG CATACAGGAG ACACAGAGTC CCAGGTGCGG CTGCTGTGGA AGGACCCGCG
35
        AAACGTGGGT TGGAAGGACA AGAAGTCCTA TCGTTGGTTC CTGCAGCACC GGCCCCAAGT
                                                                                     2100
        GGGCTACATC AGGGTGCGAT TCTATGAGGG CCCTGAGCTG GTGGCCGACA GCAACGTGGT
CTTGGACACA ACCATGCGGG GTGGCCGCCT GGGGGTCTTC TGCTTCTCCC AGGAGAACAT
                                                                                     2160
                                                                                     2220
        CATCTGGGCC AACCTGCGTT ACCGCTGCAA TGACACCATC CCAGAGGACT ATGAGACCCA
                                                                                     2280
        TCAGCTGCGG CAAGCCTAGG GACCAGGGTG AGGACCCGCC GGATGACAGC CACCCTCACC
                                                                                     2340
40
        GCGGCTGGAT GGGGGCTCTG CACCCAGCCC AAGGGGTGGC CGTCCTGAGG GGGAAGTGAG
                                                                                    2400
        AAGGGCTCAG AGAGGACAAA ATAAAGTGTG TGTGCAGGG
        Seg ID NO: 70 Protein seguence
        Protein Accession #: NP_000086.1
45
                                 21
                    11
        MVPDTACVLL LTLAALGASG QGQSPLGSDL GPQMLRELQE TNAALQDVRD WLRQQVREIT
FLKNTVMECD ACGMQQSVRT GLPSVRPLLH CAPGPCFPGV ACIQTESGGR CGPCPAGFTG
                                                                                      120
        NGSHCTDVNE CNAHPCFPRV RCINTSPGFR CEACPPGYSG PTHQGVGLAP AKANKQVCTD
                                                                                       180
50
        INECETGQHN CVPNSVCINT RGSFQCGPCQ PGFVGDQASG CQRGAQRFCP DGSPSECHEH
                                                                                       240
        ADCVLERDGS RSCVCRVGWA GNGILCGRDT DLDGFPDEKL RCPEPQCRKD NCVTVPNSGQ
                                                                                      300
        EDVDRDGIGD ACDPDADGDG VPNEKDNCPL VRNPDQRNTD EDKWGDACDN CRSQKNDDQK
DTDQDGRGDA CDDDIDGDRI RNQADNCPRV PNSDQKDSDG DGIGDACDNC PQKSNPDQAD
                                                                                       360
                                                                                       420
        VDHDFVGDAC DSDQDQDGDG HQDSRDNCPT VPNSAQEDSD HDGQGDACDD DDDNDGVPDS
                                                                                       480
55
        RDNCRLVPNP GQEDADRDGV GDVCQDDFDA DKVVDKIDVC PENAEVTLTD FRAFQTVVLD
                                                                                       540
        PEGDAQIDPN WVVLNQGREI VQTMNSDPGL AVGYTAFNGV DFEGTFHVNT VTDDDYAGFI
                                                                                       600
        FGYQDSSSFY VVMWKQMEQT YWQANPFRAV AEPGIQLKAV KSSTGPGEQL RNALWHTGDT
                                                                                       660
        ESQVRLLWKD PRNVGWKDKK SYRWFLQHRP QVGYIRVRFY EGPELVADSN VVLDTTMRGG
        RLGVFCFSOE NIIWANLRYR CNDTIPEDYE THQLRQA
60
        Seg ID NO: 71 DNA sequence
        Nucleic Acid Accession #: NM_024626
        Coding sequence: 71..919
                     11
                                21
65
        GAGTCACCAA GGAAGGCAGC GGCAGCTCCA CTCAGCCAGT ACCCAGATAC GCTGGGAACC
        TTCCCCAGCC ATGGCTTCCC TGGGGCAGAT CCTCTTCTGG AGCATAATTA GCATCATCAT TATTCTGGCT GGAGCAATTG CACTCATCAT TGGCTTTGGT ATTTCAGGGA GACACTCCAT CACAGTCACT ACTGTCGCCT CAGCTGGGAA CATTGGGGAG GATGGAATCC TGAGCTGCAC
                                                                                       120
                                                                                       180
70
        TTTTGAACCT GACATCAAAC TTTCTGATAT CGTGATACAA TGGCTGAAGG AAGGTGTTTT
                                                                                       300
        AGGCTTGGTC CATGAGTTCA AAGAAGGCAA AGATGAGCTG TCGGAGCAGG ATGAAATGTT
                                                                                       360
        CAGAGGCCGG ACAGCAGTGT TTGCTGATCA AGTGATAGTT GGCAATGCCT CTTTGCGGCT
GAAAAACGTG CAACTCACAG ATGCTGGCAC CTACAAATGT TATATCATCA CTTCTAAAGG
                                                                                       420
                                                                                       480
        CAAGGGGAAT GCTAACCTTG AGTATAAAAC TGGAGCCTTC AGCATGCCGG AAGTGAATGT
75
        GGACTATAAT GCCAGCTCAG AGACCTTGCG GTGTGAGGCT CCCCGATGGT TCCCCCAGCC
                                                                                       600
        CACAGTGGTC TGGGCATCCC AAGTTGACCA GGGAGCCAAC TTCTCGGAAG TCTCCAATAC CAGCTTTGAG CTGAACTCTG AGAATGTGAC CATGAAGGTT GTGTCTGTGC TCTACAATGT
                                                                                       660
         TACGATCAAC AACACATACT CCTGTATGAT TGAAAATGAC ATTGCCAAAG CAACAGGGGA
                                                                                       780
         TATCARAGTG ACAGARTCGG AGATCARARG GCGGAGTCAC CTACAGCTGC TARACTCARA
                                                                                       840
80
        GGCTTCTCTG TGTGTCTCTT CTTTCTTTGC CATCAGCTGG GCACTTCTGC CTCTCAGCCC
                                                                                       900
         TTACCTGATG CTAAAATAAT GTGCCTCGGC CACAAAAAAG CATGCAAAGT CATTGTTACA
         ACAGGGATCT ACAGAACTAT TTCACCACCA GATATGACCT AGTTTTATAT TTCTGGGAGG
                                                                                     1020
         AAATGAATTC ATATCTAGAA GTCTGGAGTG AGCAAACAAG AGCAAGAAAC AAAAAGAAGC
                                                                                     1080
         CARAAGCAGA AGGCTCCAAT ATGAACAAGA TAAATCTATC TTCAAAGACA TATTAGAAGT
85
         TGGGAAAATA ATTCATGTGA ACTAGAGTCA ACTGTGTCAG GGCTAAGAAA CCCTGGTTTT
```

```
GAGTAGAAAA GGGCCTGGAA AGAGGGGAGC CAACAAATCT GTCTGCTTCC TCACATTAGT CATTGGCAAA TAAGCATTCT GTCTCTTTGG CTGCTGCCTC AGCACAGAGA GCCAGAACTC
         TATCGGGCAC CAGGATAACA TCTCTCAGTG AACAGAGTTG ACAAGGCCTA TGGGAAATGC
                                                                                                   1380
         CTGATGGGAT TATCTTCAGC TTGTTGAGCT TCTAAGTTTC TTTCCCTTCA TTCTACCCTG
                                                                                                   1440
 5
         CAAGCCAAGT TCTGTAAGAG AAATGCCTGA GTTCTAGCTC AGGTTTTCTT ACTCTGAATT
         TAGATCTCCA GACCCTGCCT GGCCACAATT CAAATTAAGG CAACAAACAT ATACCTTCCA
                                                                                                   1560
         TGRAGCACAC ACAGACTITI GARAGCARGG ACARTGACTG CITGAATTGA GGCCTTGAGG
ANTGRAGCIT TGRAGGARAR GRATACTITG TITCCAGCCC CCTTCCCACA CICTTCATGT
GTTRACCACT GCCTTCCTGG ACCTTGGAGC CACGTGACT GTATTACATG TTGTTATAGA
                                                                                                   1620
10
         AAACTGATTT TAGAGTTCTG ATCGTTCAAG AGAATGATTA AATATACATT TCCTAAAAAA
                                                                                                   1800
         A AAAAAAAA A
         Seq ID NO: 72 Protein sequence
         Protein Accession #: NP_078902
15
                       11
                                      21
                                                     31
                                                                    41
                                                                                   51
         MASLGQILFW SIISIIIILA GAIALIIGFG ISGRHSITVT TVASAGNIGE DGILSCTFEP
         DIKLSDIVIQ WLKEGVLGLV HEFKEGKDEL SEQDEMFRGR TAVFADQVIV GNASLRLKNV
                                                                                                    120
         QLTDAGTYKC YIITSKGKGN ANLEYKTGAF SMPEVNVDYN ASSETLRCEA PRWFPQPTVV
WASQVDQGAN FSEVSNTSFE LNSENVTMKV VSVLYNVTIN NTYSCMIEND IAKATGDIKV
                                                                                                    180
20
         TESEIKRRSH LQLLNSKASL CVSSFFAISW ALLPLSPYLM LK
         Secr ID NO: 73 DNA secruence
         Nucleic Acid Accession #: XM_057014
25
         Coding sequence: 143..874
                       11
                                      21
                                                                     41
         GGGAGGGAGA GAGGCGCGCG GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG
         CGCGGCGGAG CCAGACGCTG ACCACGTTCC TCTCCTCGGT CTCCTCCGCC TCCAGCTCCG
                                                                                                    120
30
          CGCTGCCCGG CAGCCGGGAG CCATGCGACC CCAGGGCCCC GCCGCCTCCC CGCAGCGGCT
                                                                                                    180
          CCGCGGCCTC CTGCTGCTCC TGCTGCTGCA GCTGCCCGCG CCGTCGAGCG CCTCTGAGAT
                                                                                                    240
          CCCCAAGGGG AAGCAAAAGG CGCAGCTCCG GCAGAGGGAG GTGGTGGACC TGTATAATGG
                                                                                                     300
         AATGTGCTTA CAAGGGCCAG CAGGAGTGCC TGGTCGAGAC GGGAGCCCTG GGGCCAATGG
                                                                                                     360
          CATTCOGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG
                                                                                                     420
35
         TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC
ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC
                                                                                                     480
                                                                                                     540
          AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG
         CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG CACTTCTTCT GTGGAAGGAC TTTGTGAAGG AATTGGTGCT GGATTAGTGG ATGTTGCTAT
                                                                                                     660
                                                                                                     720
40
          CTGGGTTGGC ACTTGTTCAG ATTACCCAAA AGGAGATGCT TCTACTGGAT GGAATTCAGT
                                                                                                     840
         TTCTCGCATC ATTATTGAAG AACTACCAAA ATAAATGCTT TAATTTTCAT TTGCTACCTC
TTTTTTTATT ATGCCTTGGA ATGGTTCACT TAAATGACAT TTTAAATAAG TTTATGTATA
CATCTGAATG AAAAGCAAAG CTAAATATGT TTACAGACCA AAGTGTGATT TCACACTGTT
                                                                                                     900
                                                                                                     960
                                                                                                   1020
45
                                                                                                   1080
          TTTAAATCTA GCATTATTCA TTTTGCTTCA ATCAAAAGTG GTTTCAATAT TTTTTTTAGT
         TGGTTAGAAT ACTITCTTCA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT
GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT
                                                                                                   1140
          TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA
          CAACCTTAAA AAAAAAAAAA AAAA
50
          Seq ID NO: 74 Protein seguence
          Protein Accession #: XP 057014
                                       21
                        11
55
          MRPQGPAASP QRLRGLLLLL LLQLPAPSSA SEIPKGKQKA QLRQREVVDL YNGMCLQGPA
                                                                                                      60
          GVPGRDGSPG ANGIPGTPGI PGRDGPKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL
                                                                                                     120
          GKIAECTFTK MRSNSALRVL PSGSLRLKCR NACCQRWYFT FNGAECSGPL PIEAIIYLDQ
                                                                                                     180
          GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIIIEB
                                                                                                     240
60
          Seq ID NO: 75 DNA sequence
          Núcleic Acid Accession #: BC010423
          Coding sequence: 248..1780
                        11
                                       21
65
          CACAGCGTGG GAAGCAGCTC TGGGGGAGCT CGGAGCTCCC GATCACGGCT TCTTGGGGGT
                                                                                                      60
          AGCTACGGCT GGGTGTGTAG AACGGGGCCG GGGCTGGGGC TGGGTCCCCT AGTGGAGACC
CAAGTGCGAG AGCAAGAAC TCTGCAGCTT CCTGCCTTCT GGGTCAGTTC CTTATTCAAG
                                                                                                     120
          TCTGCAGCCG GCTCCCAGGG AGATCTCGGT GGAACTTCAG AAACGCTGGG CAGTCTGCCT
                                                                                                     240
70
          TTCAACCATG CCCCTGTCCC TGGGAGCCGA GATGTGGGGG CCTGAGGCCT GGCTGCTGCT
GCTGCTACTG CTGGCATCAT TTACAGGCCG GTGCCCCGCG GGTGAGCTGG AGACCTCAGA
                                                                                                     300
                                                                                                     360
          CGTGGTAACT GTGGTGCTGG GCCAGGACGC AAAACTGCCC TGCTTCTACC GAGGGGACTC
          CGGCGAGCAA GTGGGGCAAG TGGCATGGGC TCGGGTGGAC GCGGGCGAAG GCGCCCAGGA
                                                                                                     480
          ACTAGOGOTA CTGCACTCCA AATACGGGCT TCATGTGAGC CCGGCTTACG AGGGCCGCGT
GGAGCAGCCG CCGCCCCAC GCAACCCCCT GGACGGCTCA GTGCTCCTGC GCAACGCAGT
                                                                                                     540
75
                                                                                                      600
          GCAGGCGGAT GAGGGCGAGT ACGAGTGCCG GGTCAGCACC TTCCCCGCCG GCAGCTTCCA
                                                                                                     660
          GGCGCGGCTG CGGCTCCGAG TGCTGGTGCC TCCCCTGCCC TCACTGAATC CTGGTCCAGC
ACTAGAAGAG GGCCAGGGCC TGACCCTGGC AGCCTCCTGC ACAGCTGAGG GCAGCCCAGC
                                                                                                     720
                                                                                                      780
          CCCCAGCGTG ACCTGGGACA CGGAGGTCAA AGGCACAACG TCCAGCCGTT CCTTCAAGCA
80
          CTCCCGCTCT GCTGCCGTCA CCTCAGAGTT CCACTTGGTG CCTAGCCGCA GCATGAATGG
GCAGCCACTG ACTTGTGTGG TGTCCCATCC TGGCCTGCTC CAGGACCAAA GGATCACCCA
CATCCTCCAC GTGTCCTTCC TTGCTGAGGC CTCTGTGAGG GGCCTTGAAG ACCAAAATCT
                                                                                                     900
                                                                                                     960
                                                                                                    1020
          GTGGCACATT GGCAGAGAAG GAGCTATGCT CAAGTGCCTG AGTGAAGGGC AGCCCCCTCC
                                                                                                    1080
          CTCATACAAC TGGACACGGC TGGATGGGCC TCTGCCCAGT GGGGTACGAG TGGATGGGGA
CACTTTGGGC TTTCCCCCAC TGACCACTGA GCACAGCGGC ATCTACGTCT GCCATGTCAG
85
                                                                                                   1200
```

	CAATCACTTC	######################################	* ***************************	Chemenana	connection and a	CCCACCAAGA	1260
			ATTCTCAGGT				
	CTCTGGGAAG	CAGGTGGACC	TAGTGTCAGC	CTCGGTGGTG	GTGGTGGGTG	TGATCGCCGC	1320
	ACTCTTGTTC	TGCCTTCTGG	TGGTGGTGGT	GGTGCTCATG	TCCCGATACC	ATCGGCGCAA	1380
_	GGCCCAGCAG	ATGACCCAGA	AATATGAGGA	GGAGCTGACC	CTGACCAGGG	AGAACTCCAT	1440
5			ACACGGACCC				1500
•			ATAGTCTCAA				1560
			ACTCCACGCT				1620
	TGAACTGCTG	TCTCCAGGCT	CTGGGGGGC	CGAGGAGGAG	GAAGATCAGG	ATGAAGGCAT	1680
			TTGTTCAGGA				1740
10			GGCGGGGACA				1800
10							
			TGACATGGGA				1860
	ACACCCCCAT	TTCTTGCGGA	AGATGCTCCC	CATCCCACTG	ACTGCTTGAC	CTTTACCTCC	1920
	AACCCTTCTG	TTCATCGGGA	GGGCTCCACC	AATTGAGTCT	CTCCCACCAT	GCATGCAGGT	1980
			GCCTGTGTGA				2040
15							
13			ACTGTGTCCG				2100
			GCCACGGGAT				2160
	GTTTGGCGTG	TGTGTCATGT	GGCTGTGTGT	GACCTCTGCC	TGAAAAAGCA	GGTATTTTCT	2220
			ATGATGCAGA				2280
							2340
20			TAGCTGGAGC				
20			ATGGGGGCAA				2400
	GAGGCTTGAA	CTGTTACAGA	AGCCCTCTGC	CCTCTGGTGG	CCTCTGGGCC	TGCTGCATGT	2460
			CATGCGCCGG				2520
			TTTTTTCTTG				2580
~ ~	TTTTATTTT	ATTTTTTTTTA	AGAGTTTGAG	TCCAGCCTGG	ACGATATAGC	CAGACCCTGT	2640
25	CTGTAAAAAA	ACCAAAACCC	ааааааааа	AAAAAAAAA			
-				7			
	C TD 110	ac a					
		76 Protein					
	Protein Acc	ession #: /	AH10423				
	1	11	21	31	41	51	
30	1	ī	1	1	1	ì	
50	Vot of ormer	ODDA METERS		A COT DOCUME	man contra	I CENTRADOCE	60
			LLASFTGRCP				
	QVGQVAWARV	DAGEGAQELA	LLHSKYGLHV	SPAYEGRVEQ	PPPPRNPLDG	SVLLRNAVQA	120
	DEGEYECRVS	TFPAGSFQAR	LRLRVLVPPL	PSLNPGPALE	EGQGLTLAAS	CTAEGSPAPS	180
			SAAVTSEPHL				240
35							
55			IGREGAMLKC				300
	GFPPLTTEHS	GIYVCHVSNE	FSSRDSQVTV	DVLDPQEDSG	KQVDLVSASV	VVVGVIAALL	360
	FCLLVVVVVL	MSRYHRRKAO	QMTQKYEEEL	TLTRENSIRR	LHSHHTDPRS	QPEESVGLRA	420
			EGRSYSTLTT				480
40	AMNHFVQENG	TERARPIGNG	IYINGRGHLV				
40							
	Seq ID NO:	77 DNA sequ	ence				
	Nucleic Act	d Accession	n. #: NM_0034	474.2			
	Coding com	37	2026				
		ence: 37		••	44		
15	Coding sequ	ience: 37	3036 21	31	41	51	
45	1	11	21 	1	ı	1	
45	1	11		1	ı	1	60
45	1 CACTAACGCT	11 CTTCCTAGTC	21 CCCGGGCCAA	 CTCGGACAGT	 TTGCTCATTT	 ATTGCAACGG	
45	1 CACTAACGCT TCAAGGCTGG	11 CTTCCTAGTC CTTGTGCCAG	21 CCCGGGCCAA AACGGCGCGC	CTCGGACAGT GCGCGACGCA	 TTGCTCATTT CGCACACACA	 ATTGCAACGG CGGGGGAAA	120
45	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT	CTCGGACAGT GCGCGACGCA CAGCGGCGGC	TTGCTCATTT CGCACACACA GCGGGCCGTG	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT	120 180
	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGAGG	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC	ATTGCAACGG CGGGGGAAA CGCGAGGGCT CCCGCTCGGC	120 180 240
45 50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCCGCGTGG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTCGCCGC	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC AGCTGCTGCA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG	120 180
	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCCGCGTGG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTCGCCGC	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC AGCTGCTGCA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG	120 180 240
	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCCGCGTGG GCGACGATGG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG CAGCGCGCCC	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTCGCCGC GCTGCCCGTG	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG TCCCCCGCCC	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC AGCTGCTGCA GCGCCCTCCT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG	120 180 240 300 360
	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCCGCGTGG GCGACGATGG GCCGGTGCTCC	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG CAGCGCGCCC TGCTCGCGCC	21 CCCGGGCCAA AACGGCGCC TAGAAGAGCC CAGGAAATCC CGCTGGCGGC GCTGCCGTG CTGCGAGGCC	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG TCCCCCGCCC CGAGGGGGTGA	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC AGCTGCTGCA GCGCCCTCCT GCTTATGGAA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA	120 180 240 300 360 420
	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCCGCGTGG GCCACGATGG GCCGGTGCTCC GCTGATGAAG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCCGAGG GATGGTGCAG CAGCGCGCCC TGCTCGCGGCC TTGTCAGTGC	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTGCCGGTG CTGCCAGGC CTGCCAGGCC CTCTGTTCGG	CTCGGACAGT GCGCGACGCA CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG TCCCCGCCC CGAGGGGTGA AGTGGGGACC	TTGCTCATTT CGCACACACA GCGGGCGTG GACGCCCGGCA AGCTGCTGCA GCGCCCTCCT GCTTATGGAA TCTGGATCCC	ATTGCAACGG CGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGCAGGCCTG CGAAGGAAGA AGTGAAGACC	120 180 240 300 360 420 480
50	1 CACTAACGCT TCAAGGCTGG CTITTITIAAA CCGGAGCTGA GCCCGGTGG GCCGACGATGG GCCGGTGCTC GCTGATGAAG TTCGACTCCA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGCGC CAGCGCGCC TGCTCGCCC TGCTCAGTGC AGAATCATCC	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTGGCGGG CTTGCCGTG CTGCGAGGCC CTCTGTTCGG AGAAGTGCTG	CTCGGACAGT GCGCGACGAC CAGCGGGGGC CTCCGGTCGC CGGGCCCGAG TCCCCCGCCC CGAGGGGGGA AGTGGGGAC AATATTCGAC	TTGCTCATTT CGCACACACA GCGGGCGTG GACGCCGGC AGCTGCTGCT GCTTATGGAA TCTGGATCCC TACAACGGGA	ATTGCAACGG CGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAACA AAGCAAAGAA	120 180 240 300 360 420 480 540
	1 CACTAACGCT TCAAGGCTGG CTITTITIAAA CCGGAGCTGA GCCCGGTGG GCCGACGATGG GCCGGTGCTC GCTGATGAAG TTCGACTCCA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGCGC CAGCGCGCC TGCTCGCCC TGCTCAGTGC AGAATCATCC	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTGCCGGTG CTGCCAGGC CTGCCAGGCC CTCTGTTCGG	CTCGGACAGT GCGCGACGAC CAGCGGGGGC CTCCGGTCGC CGGGCCCGAG TCCCCCGCCC CGAGGGGGGA AGTGGGGAC AATATTCGAC	TTGCTCATTT CGCACACACA GCGGGCGTG GACGCCGGC AGCTGCTGCT GCTTATGGAA TCTGGATCCC TACAACGGGA	ATTGCAACGG CGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAACA AAGCAAAGAA	120 180 240 300 360 420 480
50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGGTGG GCGACGATGG GCCGTGCTC GCTGATGAAG TTCGACTCCA CTGATCATAA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCAGG GATGGTGCAG CAGCGCCCC TGCTCGCGCC TGCTCGCGCC AGAATCATCC ATCTGGAAAG	21 CCCGGGCCAA AACGGCGCC TAGAAGACCT CAGGAAATCC CGCTCGCCGTG CTGCGAGGCC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT	CTCGGACAGT GCGCGCGGC CAGCGCCGAG TCCCCGCCC CGAGGGGGGA AGTGGGGACC AATATTCGAC CTCATTGCCA	TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGGC AGCTGCTGCA GCGCCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGGA GCAGTTTCAC	ATTGCAACGG CGGGGGAAA CGCGAGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAGA AGTGAAGAGA GGAAACCCAC	120 180 240 300 360 420 480 540
50	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCCGCGTGG GCCGACGATGG GCCGATGGACGATGG TCGACTCCA CTGATCATAA TTCGACTCAAA TATCTGCAAG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCCGAGG GATGGTGCAG TGCTCGCGCC TGCTCGCGCC TGTCAGTGC AGAATCATCC ATCTGGAAAG ACGGTACTGA	21 CCCGGGCCAA AACGCGCGC TAGAAATCC CGCTCGCCGC GCTGCCGTG CTGCGAGGCC CTCTGTTCGG AAAAGTGCTG AAATGAAGGT TGTCTCCCTC	CTCGGACAGT GCGCGACGC CAGCGCGGC CTCCGGTCGC CGAGGGGGGACC CGAGGGGGACC AATATTCGAC CTCATTGCA GCTCGAAATT	TTGCTCATTT CGCACACACA GCGGGCGTG GACGCCCGGC AGCTGCTGCA GCGCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGA GCAGTTTCAC ACACGGTAAT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAGA AGTGAAGAGC AAGCAAACCCAC TCTGGGTCAC	120 180 240 300 360 420 480 540 600 660
50	1 CACTAACGCT TCAAGGCTGG CTITTITIAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGGACTGATGAAG TTCGACTCAAA TATCTGCAAG TGTTACTACA	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG CAGCGCCC TGCTCGCCCC ATGTAGTGC AGAATCATCC ATCTGGAAAG ACGGTACTGA ATGGACATGT	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT CAGGAAATCC CGCTCGCGGG CTGCCAGGCC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT	CTCGGACAGT GCGGACGGC CAGCGGCGGC CTCCGGTCGC CGGGCCCAGG TCCCCGCCC CGAGGGGTGA AGTGGGGACC AATATTCGAC CTCATTGCCA GCTCGAAATT TCTGAATTCAC	TTGCTCATTT CGCACACAC GCGCGCCGGG AGCTGCTGCA GCGCCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGGA GCACTTTCAC ACACGGTAAT CAGTCAGTCA	ATTGCAACGG CGGGGGGAAA CGCGGGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG GCAAGGAAGA AGTGAAGAAGA AGTGAAGAAC TCTGGGTCAC CAGCACGTGT CCAGCACGTGT	120 180 240 300 360 420 480 540 600 660 720
50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGAAG TTCGACTCCA CTGATCATAA TATCTGCAAG TGTTACTACC TCTGGTCTCA	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTGCCGAGGG CAGCGCGCC TGCTGCTGCCC AGGATCAGTGC ATCTGGAAAG ACGGTACTGA ACGGTACTGA ATGGACATGT GGGGACTTAT	21 CCCGGGCCAA AACGCGCGC TAGAAGACT CAGGAAATC CGCTGGCGG GCTGCCGTG CTGCTGTCGG AGAAGGCC AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT TGTGTTTGAA	CTCGGACAGT CGGCCGGCC CGGGCCGCC CGAGGGGGTGA AGTGGGACA AGTGGGACC CTCATTGCA CTCATTGCA ATTATCAAC CTCATATCAA AATATTCAAC AATATTCAAC AATATATCAAC AATATATCAAC AATATATCAAC AATATATCAAC	I TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCTCCT GCTTATGGAA TCTGGATCCC GCAGTTTCACACACGGTAAT ACACGGTAAT ACACTGATCATCATAGTATACATTAGATAGA	I ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGCTTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGAAGA GGAAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA	120 180 240 300 360 420 480 540 600 660 720 780
50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGG GCGATGATGAGAG TTCGACTACA CTGATTACTACA TATCTGCAAG TGTTACTACC TCTGGTCTCA AGTGCAACCA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCCCGAGG GATGGTGCAG CAGCGCCC TGCTCAGTGC ATGAAACAC ATCTGGAAAG ACGGTACTGA ATGGACATGT ATGGACATGT ACGGACTTAT ACAGATACAA	21 CCCGGGCCAA AACGGCGCGC TAGAAGAGCT CAGGAAATCC CGCTCGCCGTG CTCCGTGGCCCTTGTTCGG AGAATGCGG AAATGAAGGT TGTCTCCCTC ACGGGGATA TGTGTTTGAA ACTCTTCCCA	CTCGGACAGT CGGGCGGC CGGGCCCGAG CGGGCCCGAG CGGGGGGGA AGTGGGGAC CTCATTGCCA CCTCATTGCCA CCTCATAGCA CCTCAAAACCT CGCAAGAAGC CGCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC	I TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCGGG GGCCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGGA GCAGTTTCAC ACACGGTAAT CAGTCAGTCT TAGAACGGT ATGTCTATAT TGAAAAGGT TGAAAAGGGT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCCT CGAAGGAGA AGTGAAGACC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGGGGATCA	120 180 240 300 360 420 480 540 600 660 720 780 840
50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGG GCGATGATGAGAG TTCGACTACA CTGATTACTACA TATCTGCAAG TGTTACTACC TCTGGTCTCA AGTGCAACCA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCCCGAGG GATGGTGCAG CAGCGCCC TGCTCAGTGC ATGAAACAC ATCTGGAAAG ACGGTACTGA ATGGACATGT ATGGACATGT ACGGACTTAT ACAGATACAA	21 CCCGGGCCAA AACGCGCGC TAGAAGACT CAGGAAATC CGCTGGCGG GCTGCCGTG CTGCTGTCGG AGAAGGCC AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT TGTGTTTGAA	CTCGGACAGT CGGGCGGC CGGGCCCGAG CGGGCCCGAG CGGGGGGGA AGTGGGGAC CTCATTGCCA CCTCATTGCCA CCTCATAGCA CCTCAAAACCT CGCAAGAAGC CGCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC CCCAAGAAGC	I TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCGGG GGCCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGGA GCAGTTTCAC ACACGGTAAT CAGTCAGTCT TAGAACGGT ATGTCTATAT TGAAAAGGT TGAAAAGGGT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCCT CGAAGGAGA AGTGAAGACC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGGGGATCA	120 180 240 300 360 420 480 540 600 660 720 780
50	1 CACTAACGCT TCAAGGCTGG CTITTITIAAA CCGGAGCTGG GCCGCGTGG GCCGACGATGG GCCGGTGCTC GCTGATGAAG TTCGACTCCA TGTTCTCAAG TGTTACTACC TCTGGTTCTCA AGTGCAACCA TGTGGATCACA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGG CTCGCCGCGC CAGGGGCCCC TGCTCGCCCC ATCTGGAAGG ACGGTACTGA ACGGTACTGA ATGGACATGT GGGACTTAT ACGGATACTAA ATCACAACAC	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT TAGAAATCC CGCTGCCGG GCTGCCGGG CTGCTGTTCGG AGAAGTGCT AAATGAAGGT TGTCTCCCT ACGGGGATAT TGTCTTTGAA ACTCATCCCAA	CTCGGACAGT CTCGGACGA CAGCGGCGGA CAGCGGCCGAG TCCCCCCCC CGAGGGGTGA AGTGGGACC AATATTCGAC CTCATTGCC GCTGAAATT TCTGATTCAG AATGAAAGCT GCGAAGAAG GCTGCAAAGA	TTGCTCATTT CGCACACAC GCGGGCCGGG GACGCCCGGG GGCGCCTCCT GCTTATGGAA TCTGGATCCC TACAACGGGA ACACGGTAAT CAGTCAGTCT ACGTCTTAGAA TCTGGATCCA ACACGGTAAT CAGTCAGTCT ATGTCTTAGA ATGTGTTTCC ATGTCTTAGA ATGTGTTTCC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTAGGAGAAGA AGTGAAGAAGA AGTGAAGAAC AGGAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA ACCAACCTCT ACCAACCCTCT	120 180 240 300 360 420 480 540 600 660 720 780 840
50	1 CACTAACGCT TCAAGGCTGG CTITTITIAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGGA GTCTGATGAAG TTCGACTCAAA TATCTGCAAA TGTTACTACCA TCTGGTCTCA AGTGCAACCA AGTGCAACCA CCAGACCATGGG	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTGCTGCAGCG GATGGTGCAG CAGCGCCCC TGCTCGCACC AGCAGTACTAC ATCTGAAAG ACGGTACTGA ATCGACATTAC ACAGATACAA ATCACAACAC CAAGAAGGCA	21 CCCGGGCCAA AACGCCGCC TAGAAGACT CAGGAAATCC CGCTCGCGGC GCTGCCGTG CTGCAGGCC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCT ACGGGGATAT TGTGTTTGAA ACTCATCCCAACCAAACCTC TAAAAGAGAG	CTCGGACAGT CGGACAGA CAGCGGCGC CAGCGGCCCCAG CAGCGGGCTGA AGTGGGACA AATATTCGAC CTCAATTGCA AATGAAAGCT CGGAAGAAGA CGCTGAAAGAA CCCTCAAAGA CACCCCAAGA	I TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCTCCT GCTTATGGAA TCTGGATCCC GCTTATGGATCCC ACACGGTAAT ATGTCTTAGA TGAAAAGCGT ATGTCTTAGA TGAAAAGCGT ATGTCTTAGA TGAACACGTAAT ATGTCTTAGA TGAACACGTAAT ATGTCTTAGA TGAACACAAGTAATAATA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTGACGCCTG CGAAGGAAGA AGTGAAGAGC AAGCAAAGAA CGGAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGGGGATCA ACCACCCTCT TGTGGGGCTG	120 180 240 300 420 480 540 600 660 720 780 840 900 960
50	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGGAGCTGA GCCGGTGCTC GCTGATGAAC GTTAGAAC CTGATCATAA TATCTGCAAG TGTTACTAAC TCTGGTCTCA AGTGCAACCA TGTGGATCAC CAGACATGGG GTGATCGGG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCCCAAGG CAGGCGCCC TGCTCAGTGC ATGTAATGA AGAATCATCC ATCTGGAAAG ACGTACTGA ATCACACTAC ATCACAACAC ATCACAACAC CAAGAAAGCA AGAAACCA CAGAAACCA	21 CCCGGGCCAA AACGCGCGC TAGAAGAGCT CAGGAAATCC GCTGCCGTG CTGCCAGGCC CTCTGTCCG AAATGAAGGT TGTCTCCCTC ACGGGATAT TGTGTTTGAA ACTCTTCCA ACCAAACCTC TAAAAGAGG AGAGTTTCAGA AGAGTTTCAGA	CTCGGACAGT CTCGGACGGC CAGCGGCGGC CTCCGGTCGC CGGGCCCGAG AGTGGGGAC CTCATTGCCA CTCATTGCCA GCTCAAAAT TCTGAATCAG GCTGAAAAT AATGCAAAGGCA ACCCTCAAAGA ACCCTCAAAGA ACCCTCAAAGA ACCCTCAAAGA ACCCTCAAAGA ACCCTCAAAGA AGCAAAGGAA	I TTGCTCATTT CGCACACACA GCGGCCCTGG GACGCCCGGC GCTCATGGAATCCC TACAACGGGA GCAGTTTCAC ACACGGTAAT CAGTCAGTCTTAGA TGAAAAGCGT ATGTCTTTAGA ACACGTAATTCCC CAACTAAGTA AGATCTGAACTC AACACGTAATTCCC CAACTAAGTA AGATCTGGAAAAAAAAATCTGAAAAAAAAAA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCT CGAAGGAGA AGTGAAGACC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CCAGCACGTCA ACCAATGAAA CCGGGGATCA ACCACCCTCT TGTGGAGCT AAAAGTTAAG	120 180 240 300 360 480 540 600 720 780 840 900 960 1020
50	1 CACTAACGCT TCAAGGCTGG CTITTTTAAA CCGGAGCTGA GCCCGCGTGG GCGACCATGG GCCACTATGAAG TTCGACTCCA CTGATCATAA TATCTGCAAG TGTTACTACC TCTGGTTCTCA AGTGCAACCA TGTGGATCAC GGACATGGG GTGATCATGG	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTCGCCGCAGG GATGGTGCAG CAGGGCCCC TGTCTAGTGC AGAATCATCC AATCTGAAAG ACGGTACTGA ACGGTACTGA ATCGACATGT ACGGACTTAT ACGGACATTAT ACAGAAGCC CAGGAAGCCA TAGAAATTAC CAGGAACACCC TAGAGATTGC	21 CCCGGGCCAA AACGCCGCCAA AACGCCGCCCCCCCCCC	CTCGGACAGT CTCGGACGGC CAGCGGCGCC CGGGCCCGAG AGTGGGGACC AATATTCGAC CTCATTGCCA GCTCGAAATT TCTGATCAG AATGAAAGCT GCGAAGAAGA ACCTCAAAGA ACCTCAAAGA ACCACACAGAAGA GCCAAGAAGA GCCAAGAAGA GCCAAGAAGA	I TTGCTCATTT CGCACACACA GCGGGCCGTG GACGCCCGG AGCTGCTCCA GCTTATGGAA TCTGGATCCC TACAACGGGA ACACGGTAAT CAGTCAGTCT ATGTCTTAGA TGTGTTCAC ACACGGTAAT CAGTCAGTCT ATGTCTTAGA ATGTCTTAGA AGAATCGTTCC CAACTAAGTA AAGATCTGGA ACAGACCACT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGGAC AAGCAAGGA CGAACCCAC TCTGGGTCAC CAGCACGTAT ACCAACGAATAAA ACCACCTCT TGTGGAGCTC TGTGGAGTCA ACCACCCTCT TGTGGAGCTC AAAAAGTTAAG GAACATTAGG	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
50 55 60	CACTAACGCT TCAAGGCTGG CTTTTTTAAA GCCGGGGCGTGG GCGACGATGG GCGACGATGG GCGATGATAAA TATCTGCAAG TGTTACTACA TGTGATCAAC AGTGCAACCA AGTGCAACCA CGGACATGGG GTGATCATGGACCA AGTGCAACCA AGTGCAACCA AGTGCAACCA AGTGCAACCA AGTGCAACTA AGTGCATCATGG	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTGCCGAGG GAGGGGCCC TGCTCGCCCC ATCTGGAAG ACGGATCATC AGCACATCT GGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGGCA CAGACAACCG TAGGAATCAT TAGGACATCT TAGGATACT CAAGAAGCA CAGAAAGCA CAGAAAGCA CAGAAACCG TAGGGATTGT	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT CAGGAAATCC CGCTCGCGGC GCTGCCGTG CTGCGAGGC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT TGTGTTTGAA ACTCATCTCCCC TAAAAGAGAG AGAGTTTCAG TAAATCACGT TAGTTTGAA TAGTTTCAGT TAGTTTGAAT	CTCGGACAGT CTCGGACAGT CGGCCCGAC CAGCGGCCCGAC CGGGCCCGAC CTCCCCCCCC CGAGGGGTGA AGTATTCGAC CTCATTGCA CTCGAAATT CTGAATTCAGA AATGAAAGCT GCGAAAGAAGAAG ACCCTCAAGG AGCAAGAA ACCCTCAAGG AGCAAGATTT GACATGGACA	I TTGCTCATTT CGCACACACA GCGGCCCTGG AGCTCCTGCA GCTCCTCCA GCTTATGGAA TCTGGATCCC ACACGGTAAT AGGTCTTAGA TGAAAAGGGT ATGTCTTAGA TGATCTTAGA TGAAAAAGGT AATGTCTTAGA AGATCTGGA ACACACACAAAACACAT AAAGCTCTGA AAGACAAT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGTA AAGATCTGGA ACAGACCACT AATGCTCTGT	I ATTGCAACGG CGGGGGGAAA CGCGCCCTG CCTGAGGCCT CGAAGGAAGA AGTGAAGAC CAGCACGTT ACCAATGAAA CCGGGGATCA ACGACCCCTT TGTGGAGCT AAAAGTTAAG AAAGTTAAG AAAGTTAAG AAAAGTTAAG AAAAGTTAAG AAAAGTTAAG AAAAGTTAAG AAAATTCAGAAACTCAGCACCACTA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
50	CACTAACGCT TCAAGGCTGG CTTTTTTAAA GCCGGGGCGTGG GCGACGATGG GCGACGATGG GCGATGATAAA TATCTGCAAG TGTTACTACA TGTGATCAAC AGTGCAACCA AGTGCAACCA CGGACATGGG GTGATCATGGACCA AGTGCAACCA AGTGCAACCA AGTGCAACCA AGTGCAACCA AGTGCAACTA AGTGCATCATGG	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTGCCGAGG GATGGTGCAG CAGGGGCCC TGCTCGCCCC ATCTGGAAAG ACGGTACTGA ATGGACATCT GGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGGCA CAGACAACCG TAGGACTTAT TAGGGATTGT	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT CAGGAAATCC CGCTCGCGGC GCTGCCGTG CTGCGAGGC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT TGTGTTTGAA ACTCATCTCCCC TAAAAGAGAG AGAGTTTCAG TAAATCACGT TAGTTTGAA TAGTTTCAGT TAGTTTGAAT	CTCGGACAGT CTCGGACAGT CGGCCCGAC CAGCGGCCCGAC CGGGCCCGAC CTCCCCCCCC CGAGGGGTGA AGTATTCGAC CTCATTGCA CTCGAAATT CTGAATTCAGA AATGAAAGCT GCGAAAGAAGAAG ACCCTCAAGG AGCAAGAA ACCCTCAAGG AGCAAGATTT GACATGGACA	I TTGCTCATTT CGCACACACA GCGGCCCTGG AGCTCCTGCA GCTCCTCCA GCTTATGGAA TCTGGATCCC ACACGGTAAT AGGTCTTAGA TGAAAAGGGT ATGTCTTAGA TGATCTTAGA TGAAAAAGGT AATGTCTTAGA AGATCTGGA ACACACACAAAACACAT AAAGCTCTGA AAGACAAT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGA AAGACCACT AATGCTCTGTA AAGATCTGGA ACAGACCACT AATGCTCTGT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGGAC AAGCAAGGA CGAACCCAC TCTGGGTCAC CAGCACGTAT ACCAACGAATAAA ACCACCTCT TGTGGAGCTC TGTGGAGTCA ACCACCCTCT TGTGGAGCTC AAAAAGTTAAG GAACATTAGG	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
50 55 60	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGT GCCGGTGCTC GCTGATGAAG TTCGACTCCA CTGATCATAA TATCTGCAAG TGTTACTACCA AGTGCAACCA TGTGGATCAC CAGACATGGG GTGATCAC AGTGCATCAC AGTGCATCA CAGACATGGG GTGATCGTGC CAGCGATTAA ATCCTGTTGG CCATTCACCA	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTGCCGAGGG CAGCGCCCC TGCTCGCGCC TTGTCAGTGC AGGATCATCA ACGGATCATCA ACGGATCATA ACAGATACAA ACAGATACAA CAGAAAGGCA CAGACAACT CAAGAAGCCA CAGAAAGGCA CAGACAACCG TAGAGATTCC TAGGCGTGGA TAGGCGT	21 CCCGGGCCAA AACGCGCGC TAGAAGACT CAGGAAATCC CGCTGGCGGG GCTGCCGTG CTGTTCGG AGAAGGCC AGAAGTGCTG AAATGAAGGT TGTCTCCCAA ACCAAACCTC TAAAAGAGAG AGAGTTCAG AGAGTTCAG AGAGTTCAG ACCAAACCTC TAAAAGAGAG AGAGTTCAG TAATCACGTT AGTGTGAAA	CTCGGACAGT CGGGCGGC CAGCGGCGGC CGGGCCCGAG CGGGCCCGAG CTCCGGCCC CGAGGGGTGA AGTGGGGACC CTCATTGCCA CTCATTGCCA CTCGAAATT TCTGATCAG CGCGAAGAAG ACCCTCAAGGA ACCCTCAAGGA AGCGAAGGAA GACAGTTTT GACAAGTTTT GACAGGAAGA	I TTGCTCATTT CGCACCACACA GCGGCCCTGG ACGCCCTGC GCTTATGGAA TCTGGATCCC GCAGTTTCAC ACACGGTAAT CAGTCAGTCATCAGTATTAGAAAAGCGT ATGTCTTAGA ACACCAGTAAT AAGATCTGGA ACACCACTAAGTAA AAGATCTGGA ACACCACTAAGTAA AAGATCTGGA ACACCACTTAGAA ACACCACT AATGTCTTCC TGGAACCACTT TGAAGCTTT TGAAGCTTTT TGAAGCTTTTAGAGTA AAGATCTGGA ACACCACT AATGTCTTTCT TGAAGCTTCTT TGAAGCTTCTT TGAAGCTTCTT TGAAGCTTCTT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAGA AGTGAAGAGA AGTGAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGGGGATCA ACCACCCTCT TCTGGGGCTG AAAGTTAAG GAACATTCAG GAACATTCAG GAACTTCAG AACTTCAG AACTTCAGAAA ACCTCGCAAA	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1080 1140
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCCCGTGGG GCGACGATGG GCCGATGAAA TTCGAATCAAA TTTGAATCAAA TGTTACTAAC TGTTACTAAC TGTGCTCAC AGTGCAACA TGTGGATCAC TCCCATGACA TCCCATGACA	11 CTTCCTAGTC CTTGTGCCAG AATAAAAGGC CTCGCCGAGG GATGGTGCAG CAGCGCCCC TGTCTAGTGC AGAATCATTC ATCTGAAAG ACGGTACTGA ACGGTACTGA ACGGAATGT GGGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGCCA TAGAGATGCA TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGA ATCCCATGA ATGCGCAGCA ATGCGCAGCA	21 CCCGGGCCAA AACGCCGCC TAGAAATCC CGCTCGCCGC GCTGCCGTG CTGCTGCCGTG CTGTTCCG AAATGAAGGT TGTCTCCCTC ACGGGATAT TGTTTTCCCAA ACTCTTCCCAA ACTCTTCCCAACCAACCTC TAAAAGAGAG TAATCAAGGT TAATCACGTT AGTGTTGAAT ATTCTCGGAC TGTCTGGAC TTTCTGGAC TTTCTGGAC TGTCTGGAC TGTCTGGAC TGTCAGTGGG	CTCGGACAGT CTCGGACGG CGGGCCCGAG CGGGCCCGAG CGGGCCCGAG AGTGGGGAC CTCATTGCCA CTCATTGCCA GCTCAAAAT TCTGAATAG AATCATCAG CCTCAAAGA AACCATCAAAGA ACCATCAAGA ACCATCAAGA ACCATCAAGA CGAAGATTT GACAATGACA GACAAGTTTT GACATGACA CGGAAGAAGA GTTAATTTCCC	I TTGCTCATTT CGCACACACA GCGGCCCTGG AGCTCCTCCA GCTTATGGAA TCTGGATCCC TACAACGGAA GCAGTTTCAC ACACGGTAAT CAGTCAGTCTTAGA TGAAAAGCGT AATGTCTTAGA ACAGCAC AAGGACACT AATGCTCTGA ACAGCACAT AATGCTCTGA AAGGATCTGAAGCTTAAAGTA AAGATCTGGA ACAGACCACT AATGCTCTTA AAGGACCACT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGACCACCT AAGGGACCACC ACACCACCACCACCACCACCACCACCACCACCA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CGAAGGCAGA AGTGAAGACA AGTGAAGACC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TACCAATGAAA CCGGGGATCA ACCACCCTCT TGTGGAGCTG AAAAGTTAAG GAACATTCGG AAGTCAAGAA CATCGGCAAT	120 180 240 300 360 420 660 720 840 900 1020 1080 1140 1260
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCGCGTGGG GCGACCATGG GCGACCATGG GCTGATCATAA TTCTGACTCCA TGTTACTACC TCTGGTCTCA AGTGCAACCA TGTGATCACC CAGACATGG GTGATCACCA CAGACATGGG CAGCGATTAA ATCCTGTTGG CAGCATTAA ATCCTGTTGG CCATTCACCA GCCCCAATCACA GCCCCAATCA	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTGGCGCGC CGGGGCC TGGTCGGCCC TGGTCGGCCC ATCTGGAAG AAGAATCATCC AATGACATGT GGGACTTAT ACAGATACTAA ATCACAACAC CAAGAAGGCA CAGCACACCC CAAGAAGCAC CAGCACACCC TAGGACATCT TAGGCGTGGA GCCTCCATGA	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT TAGAAATCC CGCTCGCCGC GCTGCCCGTG CTGCCAGGC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTTCCAC ACGGGATAT TGTCTTTCAA ACTCTTCCCA TAAAAGAGAG ACAATCTC TAAAAGAGAG TAATCACGTT AGTGTGAAT ATTTCTGGAA TGTCAGTGGG CACGGCAGAC CACGGCAGAC	CTCGGACAGT CTCGGACGGC CAGCGGCCCAG CGGGCCCAG CGGGCCCAG AGTGGGACC AATATTCAC CTCATTGCCA GCTCGAAATT TCTGATCAG GCTGAAAGA ACCTCAAGG ACGCAAGAA ACGCAAGGA AGCAAGGAA GACAAGTTT GACATGGCA CGTTCGGAC CTGATTGCC CGGAGGAGGAAG ACCTCAAGG ACGCAAGGAA CCTCAAGG ACGCAAGGAA CCTCAAGG ACGCAAGGAA CCCTCAAGG ACCAAGTTT CACATGGCAC CGTTCATTCC CAGTCTGGGG CTCCGGGG CTCCAGGGAC CTCAAGGAC CCCC CCC	TTGCTCATTT CGCACACAC GCGGGCCGGG GACGCCCGGC GCTTATGGAA TCTGGATCCC TACAACGGGA ACGTCATTTCAC ACACGGTAAT CAGTCAGTCT ATGTATTCAC ATGTATTCAC ACACGGTAAT CAGTCAGTCT ATGTCTTAGA ATGTCTTAGA ATGTATTCCC CACTAAGTA AAGATCTGGA ACAGCACC AATGTCTTT AAGGGACCAC GAATTGTCAT CGAATGTCATA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CTGAAGGAAGA AGTGAAGAAGA AGTGAAGACCAC TCTGGGTCAC CAGCACGTGT ACCAACGAATAAA ACCACCTCT TGTGGAGCTC TGTGGAGCTC AAAAGTTAAG AAAAGTTAAG AAAATTCGG AAGTCAGGAC ACCTCGCATG AAGTCAGGAC ACCTCGCATG AAGTCAGGAC ACCTCGCATG AAGTCAGGAC ACCTCGCATG AAGTCAGGAC ACCTCGCATG AAGTCAGGAC ACCTCGCATG AGGACCATTCA	120 180 240 300 360 480 540 660 720 780 960 1020 1080 1140 1260 1320
50 55 60	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGT GCCGCTGCTCCA GTGATCATAA TATCTGCAAA TATCTGCAAA TGTGATCACA AGTGCAACCA AGTGCAACCA CGAGCATTAA AGTGCAACCA CAGACATGGG GTGATCAC CAGACATGAG CCGATTAA ATCCTGTTGG CCATTCACCA GCCCAATCA GCCCAATCA GCCCAATCA	11 CTTCCTAGTC CTTGTGCCAG AATGAAAGGC CTGCTGCGCCC TGCTGGCGCC TGTTGGGCCC AGCAGTACTAC ACGATACTAC ATCTGGAAAG ATGGACATTT GGGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGGCA CAGACATCT TAGGGOTGGA GCCTCCATGA ATGGCAGTT TGGGCAGCT TTGGCACC TTGGCCACC TTGGCACC TTGCACC TTGGCACC TTGCACC	21 CCCGGGCCAA AACGCCGCC CCCGGGCCAC AACGCCCCCCGCGCCCCCCCC	CTCGGACAGT CGGCCCGAG CGGCCCGAG CGGCCCGAG CTCCGCCC CGAGGGGTGA AGTGGGACT CTCATTGCA CTCATTGCA CTCATTGCA CTCAAAGA AGCCTCAAAGA ACCCTCAAGG AGCAAGAAGTTT GACAGGAAGAT TCTGATCAAGG CCTGCAAAGA CCTTCAAGG AGCAAGAAGTTT CACATTTATTCCC CCAGTCAAGGA CCCTCAAGGA CCACATGACC CAGTCTGAGG CCACATGAGC CCACATGAGC CCACATGAGC CCACATGAGC CCACATGAGC CCCACATGAGC CCACATGAGC CCACATGACC CCGCCCC CCGCCCC CCGCCCC CCGCCCC CCCCCC	TTGCTCATTT CGCACACA GCGGCCGTG GACGCCGGC GCTCTCTCA GCTCATGGAA TCTGGATCCC GCATTTCAC ACACGGTAAT CAGTCAGTCT AAGTCAGTCT AAGTCAGTCT AAGACCACT TGAAACCACT TGAAGCCACT TGAAGCCACT TGAAGCACCACT TGAAGCCACT TGAAGCACCACT TGAGCACCACA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGACA AGTGAAGACA AGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTCT ACCAATGAAA ACCACCCTCT TGTGGGGTCA GAACATTCAG AAACATTCAG AAACATTCAG CACCCCTCT TTTGGAGCTG AAAACATTCAG CACCCCTCT TTTTCGGAGCTG AACATTCAGCAAA CATCGGCATG CGGCACTCC CTCCCCAAA CATCGGCATG CGGACCATTCA CTTTCGGGATC	120 180 240 300 360 420 540 600 660 720 780 840 900 1020 1140 1200 1260 1320
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCCCGTGGG GCGACCATGG GCTGATGAAG TTCGACTCCA CTGATCATAA TATCTGCAAC TGTGCATCA TGTGGATCAC AGTGCAACAA GGCGATTAA ATTCGATCTCA CCAGACATGGG CTGATCATGA CTGGATCAC CAGCATTGA CAGCATTAA ATTCGTTTGG CCATTACAC TCCCATGAC GCCCAATCA GACAATCCC GACAATCCC GACAATCCC CAATCAACAA	11 CTTCCTAGTC CTTGTGCCAG AATAAAAGGC CTCGCCGAGG GATGGTGCAG GATGGTGCAG AGAATCATCC ATCTGGAAAG ACGGTACTGA ATGCACATGT AGGACATGT GGGACTTAT ACAGATACAC CAAGAAGCCA CAGACAACCG TAGAGATGT AGGGATTGT AGGGATGGA ATCCCATGA ATCCCATGA ATCCCATGA ATCCACACCC TAGAGATCCT TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGCATGTG TTGGTGCACC CACTGGACAC	21 CCCGGGCCAA AACGCCGCCAC AACGCCGCGCCCCCGCGCCCCCCCC	CTCGGACAGT CGGGCGGC CGGGCCCGAG CGGGCCCGAG CGGGCCCGAG CCCAGGGGGGA CCCAGGGGGGAG CCCAAGGGGGAC CTCATTGCCA GCTCAAATT CCGAAATT CCGAAATT CCGAAATT CCGAAATT CCGAAGAAG ACCCTCAAGA ACCCTCAAGA ACCATCAAGA ACCATCAAGA CACAAGTTTT GACAAGGAA GCAAGGAA GCAAGGAA GTTATTTCC CAGTCTGAGG CGCAAGGAG CTTCAAGGC CTCAAAGGA CTTCAAGGC CGTCAAAGGA CTTCAAGGC CGCAAAGGAA CTTCATGACG CGCAAAGGAA CTTCAAGGC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAAGGAC CGCAAAAGGAC CGCACATGAGC CGCACATGAGAC CGCACATGAGC CGCACATGAGAC CGCACATGAGC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CCCACATGAC CCCACA	TTGCTCATTT CGCACACACA GCGGGCCGGC GACGCCGGC AGCTGCTCCA GCTCTCTCCA GCTTATGGAA TCTGGATCCC TACAACGGTAAT CAGTCAGTCTCAC ACACGGTAAT CAGTCAGTCTTAGA TGAAAAGCGT ATGTCTTTCC CAACTAAGTA ACACTCTGA ACACCACT AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCACACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACAC CAATTGCACAC CAGTTGAGAC CGGTTGAGAC CGGCAC CGGCAC CGGCAC CGGCAC CGGCAC CGGCCAC CGGCCAC CGGCCAC CGGCCAC CGGCCAC CGCCAC CGCCCAC CGCCCCC CGCCCCC CGCCCCCCC CGCCCCCCC CGCCCCCC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGCTCGGC CTGAAGGCCT CGAAGGAGA AGTGAAGACA AGGAACACCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC ACCACCTCT TGTGGAGCTG AAAAGTTAAG GAACATTCGG AAGTCAGAC ACTCGCAAA CATCGGCATG GGACCATTCT GGACCTCT TTTTGGAGCTG AAAAGTTAAG AACATTCGG AAGTCAGGAC TTTCGGGATG AAGTCAGGAC TTTCGGCATG AAGCACTTCA AGGACCATTCA AGGACCATTCA AGGACCATTCA AGGACCATCCA AGGAGGCTGC	120 180 240 300 360 420 540 600 660 780 840 900 1020 1080 1140 1260 1380 1440
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCCCGTGGG GCGACCATGG GCTGATGAAG TTCGACTCCA CTGATCATAA TATCTGCAAC TGTGCATCA TGTGGATCAC AGTGCAACAA GGCGATTAA ATTCGATCTCA CCAGACATGGG CTGATCATGA CTGGATCAC CAGCATTGA CAGCATTAA ATTCGTTTGG CCATTACAC TCCCATGAC GCCCAATCA GACAATCCC GACAATCCC GACAATCCC CAATCAACAA	11 CTTCCTAGTC CTTGTGCCAG AATAAAAGGC CTCGCCGAGG GATGGTGCAG GATGGTGCAG AGAATCATCC ATCTGGAAAG ACGGTACTGA ATGCACATGT AGGACATGT GGGACTTAT ACAGATACAC CAAGAAGCCA CAGACAACCG TAGAGATGT AGGGATTGT AGGGATGGA ATCCCATGA ATCCCATGA ATCCCATGA ATCCACACCC TAGAGATCCT TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGCATGTG TTGGTGCACC CACTGGACAC	21 CCCGGGCCAA AACGCCGCCAC AACGCCGCGCCCCCGCGCCCCCCCC	CTCGGACAGT CGGGCGGC CGGGCCCGAG CGGGCCCGAG CGGGCCCGAG CCCAGGGGGGA CCCAGGGGGGAG CCCAAGGGGGAC CTCATTGCCA GCTCAAATT CCGAAATT CCGAAATT CCGAAATT CCGAAATT CCGAAGAAG ACCCTCAAGA ACCCTCAAGA ACCATCAAGA ACCATCAAGA CACAAGTTTT GACAAGGAA GCAAGGAA GCAAGGAA GTTATTTCC CAGTCTGAGG CGCAAGGAG CTTCAAGGC CTCAAAGGA CTTCAAGGC CGTCAAAGGA CTTCAAGGC CGCAAAGGAA CTTCATGACG CGCAAAGGAA CTTCAAGGC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAGGAC CGCAAAAGGAC CGCAAAAGGAC CGCACATGAGC CGCACATGAGAC CGCACATGAGC CGCACATGAGAC CGCACATGAGC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CGCACATGAC CCCACATGAC CCCACA	TTGCTCATTT CGCACACACA GCGGGCCGGC GACGCCGGC AGCTGCTCCA GCTCTCTCCA GCTTATGGAA TCTGGATCCC TACAACGGTAAT CAGTCAGTCTCAC ACACGGTAAT CAGTCAGTCTTAGA TGAAAAGCGT ATGTCTTTCC CAACTAAGTA ACACTCTGA ACACCACT AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCAC AATGCTCTTCACACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACCAC CAATTGCACAC CAATTGCACAC CAGTTGAGAC CGGTTGAGAC CGGCAC CGGCAC CGGCAC CGGCAC CGGCAC CGGCCAC CGGCCAC CGGCCAC CGGCCAC CGGCCAC CGCCAC CGCCCAC CGCCCCC CGCCCCC CGCCCCCCC CGCCCCCCC CGCCCCCC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGACA AGTGAAGACA AGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTCT ACCAATGAAA ACCACCCTCT TGTGGGGTCA GAACATTCAG AAACATTCAG AAACATTCAG CACCCCTCT TTTGGAGCTG AAAACATTCAG CACCCCTCT TTTTCGGAGCTG AACATTCAGCAAA CATCGGCATG CGGCACTCC CTCCCCAAA CATCGGCATG CGGACCATTCA CTTTCGGGATC	120 180 240 300 360 420 540 600 660 780 840 900 1020 1080 1140 1260 1380 1440
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGG GCCGCGTGG GCCGACGTGG GCCGATCGA TTCGACTCCA TGTGATCATAA TATCTGCAAG TGTTACTACC TCTGGTTCTCA AGTGCAACCA TGTGGATCACA AGTGCATCACA AGTGCATCACA ATCCTGTTGG CAGCATTGACA ATCCTGACA GCCCAATCA GCCCAATCA GACAATCACC AATCATGACA ATCATGACA ATCATGACA ATCATGACA	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGG CATGGTGCAG GAGGGGCCC TGGCCGC TGGTCAGTGC AGAATCATC AATGGAAAT ATGGACATGT AATGGACATGT AATGACATGT CAGAACACC CAGAACACC CAGACAACCC TAGAGAGGCA TAGAGATTGC TAGGGCTGAA ATCCCATGAA ATCCCATGAACAC CAGACAACCC CAGACAACCC TGAGAGTTGC TGAGGCTTGA TGGCCAGCT TGAGCATGT TTGGTGCAGC CACTGGACAG CCTTCCACCGG CACTCGACAG CCTTCCACCGG CACTCGACAG CCTTCCACCGG CACTCGACAG CCTTCCACCGG CACTCGACAG CCTTCCACCGG CTTCCACCGG CTTCCACCACGG CTCCACCACCACCACCACCACCACCACCACCACCACCACC	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT TAGAAGACC CGCTGCCGG GCTGCCGGG GCTGCCGTG AGAAGTGCT AGAAGTGCT AAATGAAGGT TGTCTCCCT ACGGGGATAT TGTCTTCCAA ACTCTTCCCA ACCAAACCTC TAAAAGAGAG AGAGTTCAG TAATCACGTT AGTGTGAAT ATTTCTGGA CTGCCATGGG CACGCCAGC GGGCTGACCCTG GGGCTGACCCTT GTTACCCATTT	CTCGGACAGT CTCGGACGGC CAGCGGCGCC CGGGCCCGAG CGGGCCCGAG CTCCGGTGC CGAGGGGTGA AGTGGGGAC CTCATTGCCA CTCATTGCCA GCTCGAAATT CCTGAAAAGC CTGCAAAGA ACCTCAAAGA ACCTCAAGGA ACCTCAAGG GCAAGGAAG GCAAGGAAG GTTTATTTCC CAGTCTGGGG CCACATGGCC CTGCAAATG CACATGGCC CTGCAAAGC CTGCAAAGC CTGCAAAGC CTGCAAAGC CTGCAAAGC CCATGGTGT CCAGTGTGCC CCATGGTGT	TTGCTCATTT CGCACACAC GCGGCCGGC AGCTGCTCCA GCTTATGGAA TCTGGATCCC TACAACGGGA ACTCATTTCAC ACACGGTAAT CAGTCAGTCT ATGCATTCAC ACACGTAAT ATGCATTCAC ACACGTAAT ATGCATTCAC ACACGCAC ATGCTCTC AATGCTCTC AATGCTCTGT TGAAGCTCT TAGAGCACC GAATTGTCAT TGAGGCCACA GGGTCAGTTG CGGCCACAA TCGCGCCACA CGGTTAGTAA TCAGCAGTTG TAGAGCACTT	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGAGA AGTGAAGAAGA AGGAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGAGGATCA ACCACCTCT TGTGGAGCTC TGTGGAGCTC AAAAGTTAAG GAACATTCGG AAGTCAGGAC ACTCGCAAA CCACGCATGT TTTCGGGATC ACTCGCAAA CACCACCTCT TGTGAGCTCT TGTGAGCTCT TGTGAGCTCT TGTGAGCTCT TGTGAGCTCT TGTGAGCTCT AAAAGTTAAG GAACATTCGG AAGTCAGGAC ACTCGCAAA CATCGGCATG GGACCATTCA TTTCGGGATG CGGCAGGAGG CAGCAGGAAG	120 180 240 300 360 420 540 660 720 780 960 1080 1140 1260 1320 1380 1380
50 55 60	1 CACTAACGCT TCAAGGCTGG CTITITITAAA CCGGAGCTGA GCCGCGTGGT GCTGATGAAG TTCGACTCA TATCTGCAAG TATCTGCAAG TGTTACTACA TGTGATCACA AGTGCAACCA AGTGCAACCA CCGGATCATGA CAGACATGGG GTGATCATGG CAGCATTAA ATCCTGTTGG CAGCATTAA ATCATGAAC GCCCCAATCA GCCCCAATCA GACAATCCC AATCATGACA ATCATGACA ATCATGACA GACTTGGAGA ATCATGACA GACTTGGAGA	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTCGCCGAGG GAGGGCGCC TGCTGGCCCC AGCTGGCCC AGCTGGCCC AGCTGGCCC ATCTGGAAG ACGGTACTGA ATGGACATCT GGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGGCA CAGACAACCG TAGGGATTGT TAGGGCTGGA GCTCCATGA ATGCCACGT TGGGCAGCT TTGGTGCACC CATTGACAC CATTGACAC CATTGACAC CCCCTGACAG CCTCCACCG CCCCCTGGACAG CCTCCACCG CCCACCCTGGACAG CCTCCACCG	21 CCCGGGCCAA AACGCCGCC TAGAAGACT CAGGAATCC CGCTCGCGGC GCTGCCGTG CTGCGAGGC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCT AAATGAAGGT TGTCTTCACG TAAAAGAGAG TAATCACGT TAGTTTGAA ACTCATTCAG TAATCACGT TAGTTTGAATCACGT TAGTTTGAATCACGT CACGGCAGAC CGTGACCCTG GGGCTGTAGC GTACCCATTT GAAAGGAATG	CTCGGACAGT CGGGCCCAG CAGCGGCGCC CAGCGGCCCAG CGGGCCCAG CTCCCCCCC CGAGGGGTGA AGTGGGACC CTCATTGCA CTCATTGCA CATCATCCAAGG AATATTCAAC CCTCAAAGAAGCT CCGAAAGAAGC CCCCAAGGAAGAAG AGCAAGGAA CACATTTTATTTCAC CAGTCTGGGC CAGTTTGGGC CCATGGTGT CGGGGGGGCCC CGGGTGGCC CGGGGTGGCC	I TTGCTCATTT CGCACACACA GCGGGCCTCT GCTCAACACACA GCGCCCTCCT GCTTATGGAA TCTGGATCCC GCTTATGGATCCC GCTTATGGATCCC GCTTATGGATCCC GCTTATGGATCCC CAACTAAGTA AAGATCTGAA ACAGCACTT TGAAGCCATT TGAAGCACTC TGAAGCACACT TGGGGACCACT TGGGCACACACACACACACACACT TGGACCACTT TGGGCACACACGGTTAGCACACTC TGGACCACTT TGAAGCTTCT TGAAGCTCTT TGAAGCTCTT TGAAGCTCTT TGAAGCTCTT TGAAGCACACTT TGGGCCACAA CGGTTGAAGATTCCACACACACACACACACACACTTTAACCTTTTAAACCTTTTAACCTTTTAAACCTTTAAACCTTTAAACCTTTAAACCTTTAAACCACTTTAAACTTTAAACCTTTAAACTTTAAACCTTTAAACCACTTTAAACTTTAAACCTTTAAACCACTTTAAACTTTAAACCTTTAAACCTTTAAACCACTTTAAACCACTTAAACTTAAACTTAAACTTAAACTTAAACTTAAAACAAAAAA	I ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTGACCTG CGAAGGAAGA AGTGAAGAGC AAGCAAAGAA AGGAACCCAC TCTGGGTCAC CAGCACTGT ACCAATGAAA CCGGGGATCA ACCACCCTCT TGTGGAGCTG AAAAGTTAAG GAACATTCAG AAGTCAGGAC ACTCGCAAA CATCGGCATG ATTCGGGATG AGGACGATCA TTTCGGGATG AGGACGATTCA CTTCGGGATG AGGACGATGAA CCAGCAGGAGGCTGC CAGCAGGAAG CCCGGAAGTC	120 180 240 300 360 420 540 600 720 780 840 900 960 1020 1140 1200 1240 1320 1380 1440 1560
50 55 60	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGGA GCCGGTGCTCCA CTGATCATAA TATCTGCAAG TGTTACTACA AGTGCAACCA AGTGCAACCA AGTGCAACCA TGTGGATCAC CAGACATGAG GCGATTAA ATCCTGTTGG CCATTCACCA TCCCATGACA GCCCAATCA GCCCAATCA GACAATCAC GACACTGACA ATCATGACA ATCATGACA ATCATGACA ACCTTGAGAA AGGGAGTCTT	11 CTTCCTAGTC CTTGTGCAG AATGAAAGG GATGGTGCAG GAGGGGCCC TGCTCGCCCC AGCAGGAACAACAC ATCTGGAAAG ACGATACTAA ACGATACAA ATCACAACAC CAAGAAGGCA CGAGAACAGC TAGAGATCAA TGGCAGCT TAGGGCTGA CCTCCATGA ATGGCAGCT TGAGCATCT TCACCGG CCACCTGGACAG TCGGGGCCA	21 CCCGGGCCAA AACGCCGC CCGGGCCAA AACGCCGC CAGAAATCC CCGTCGCGGC CTGCCGGGC CTGCCGTG CTGCAGGCC CTGCTTCGG AAATGAAGGT TGTCTCCCA ACCAAACCTC TAAAAGAGA ACCAAACCTC TAAATCAAGT TAGTTTGAA ACTCATCAG CCGGAGAC CCGTGACCTG GGGCTGTAGC GTACCCTT GAAAGGAATG GAAGGAATG GAAGGAATG GAAGGAATG GAAGGAATG GAAGTTTGGG	CCCATGGACAGT CTCGGACAGT CTCGGTCGC CGGGCCCCAG CGGGCCCCAG CTCCGCCC CGAGGGGTGA AGTGGGACAT CTCATTGCA CTCATTGCA CTCATTGCA CTCAAAAAAC CTCAAAAAC ACCCTCAAAGA AGCAAGAAAC CACCTCAAAGA CCCTCAAGGA CACCTCAAGGA CACCATCAAGGA CACATGTTC CAGAGAAGA CACATGTTC CAGAGAAGA CTTATTTCC CAGTCTGGAC CAGTCTGGAC CAGTCTGGAC CCCATGGTGT CCCATGGTGT CCCATGGTGT CCGGGGTGTGCC CAGCACTTG	TTGGTCATTT TGGCACACA GCGGCCGTG GACGCCGGG AGCTGCTCCA GCTTATGGAA TCTGGATCCC GCTTATGGAA CACGGTAAT CAGTCAGTTCAC ACACGGTAAT CAGTCAGTCTTAGA ACACGGTAAT CAGTCAGTCTTAGA ACACCGTAAT AAGATCTGGA ACACCACT AAGGCACTC TGAAGCACT AAGGCACTC GAATTAGCA CGGTTTGAGA CCCC CAATTAGTA AAGATCTCGA ACACCACT AAGGCACTC TGAAGCACTT TGAGCACTTG TGGGCCACAA CGGTTGAGAA CCGCACTTG TGGGACGATTG TGTTTAACCT TGGGAAGAAG CGTTGGAAGAAG CGGTTGAGAA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCGC CTGAAGGCGC CGAAGGAAGA AGTGAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTC ACCACCTCT TGTGAGCTG AAAGTAAA CCGGGGATCA ACCACCTCT AAAAGTAAGAA CATCGGCAG CATCGGAAA CATCGGCAT GAACATTCAG GAACATTCAG CATCGGATC AGAGGACTC CAGCAGGATC AGAGGACTC CAGCAGGATC AGAGGAGTC AGAGGAAGT AGGAGGAAGT AGAGGAAGT AGAGGAGGATT AGAGGAGGATT AGAGGAGGATT AGAGGAGGATT AGAGGAGTT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGGAT AGAGGAGGAT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGGAAGT AGAGGAGGAGT AGAGGAGGAGT AGAGGAGGAAGT AGAGGAGGAGT AGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	120 180 240 300 360 420 600 6600 720 780 840 960 1020 1140 1200 1260 1380 1440 1560 1620
50 55 60	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTTTAAA CCGGAGCTGA GCCCCGTGG GCGACCATGG GCCGATGGG GCCGATGAAGA TTCGACTCCA TGTGATCATAA TGTTACTACC TCTGGTTCTCA TGTGAACCA TGTGGATCAC GGACATGGG GTGATCGTGG CAGCGATTAA ATCGTGTGG CAGCCATTAC GCCCAATCA GCCCAATCA GACAATCAC AATCATGACA ATCATGACA ACATTGACA ACATGACA GACTTGGAGA AGGGAGTCTT GACTGTGGGG AGGGAGTCTT	11 CTTCCTAGTC CTTGTGCAG AATAAAGGC CTGGCGCG CGGGCCC TGGTCAGTC TGTCAGTGC AGAATCATCC ATCTGAAAG ATCAGTAC AGGAATCATAC AATGACATTAC AAGAAACAC CAGAAACAC CAGAAACAC CAGAAACTT TAGGCTGGA CCTCCATGA ATGCCAGGC TGGGCAGG CCTTCCATGA TTGGCAGGC CACTGGACAG CTTCCACGA CTTCCACGA CTTCCACGA CTTCCACGA CTTCCACGA CAGCAGAGAAC CTTCCACGA CAGCAGAGAA ATCGGCAGAGAA CTTCCACGA CAGCAGAGAGAA AGCCAGAGAGAA	21 CCCGGGCCAA AACGCCGCAA AACGCCGCCCAA CAGCAAATCC CGCTGCCGGC GCTGCCCGTG CTGCCGGGC CTCTGTTCGG AGAAGTGCT ACGAGGC TGTCTCCCT ACGGGGATAT TGTCTTCCCA ACCAAACCTC TAAAAGAGAG AGAGTTCAG TAATCACGTT AGTGTGGAA ACTCTCAGTGAC CGTCACCTGG CACGCCAGC CGTCACCTGACCCTG GGGCTTAGC GTACCCATTT GAAAGGAATG GTACCCATTT GAAAGGAATG GAAGTGTGGA ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGGG ATGTATGAAT	CTCGGACAGT CTCGGACGGC CAGCGGCGGC CGGGCCCGAG CGGGCCCGAG CTCCCGCCC CGAGGGGTGA AGTGGGGAC CTCATTGCCA CTCATTGCCA GCTCGAAATT TCTGAATCAG CCTCAAAGA AACCATCAAGA ACCATCAAGA CACAAGATTT CACAAGGAAGA CGCAAGAGAAG CGCAAGAGAGA CGCAAGAGAGA CGCAAGAGAGA CGCAATGGAC CACATGGCC CAGTGTTC CGGTGTCC CGGTGTTC CGGTGTTC CGCTCCTCCA CCCTCCTCCA CCCCCTCCTCCA CCCCCCTCCC CCCCCCCC	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGCTCGGC CTGAAGGCCT CGAAGGAGA AGTGAAGACC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTGT TGTGGAGTCA ACCATGAAA CCGGGGATCA ACCACCTCT TGTGGAGCT AACATTCAG AAGTCAGGAA CATCGGCATG AATTCAGGAA CATCGGCATG CATCGGCATG CATCGGCATG CACCCCTCT TGTGAGCTC AAAGTCAGGAA CATCGGCATG CACCCCCATC CACCCCCATC CACCCCACCC	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1140 1260 1320 1340 1500 1500 1620
50 55 60 65	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTTTAAA CCGGAGCTGA GCCCCGTGG GCGACCATGG GCCGATGGG GCCGATGAAGA TTCGACTCCA TGTGATCATAA TGTTACTACC TCTGGTTCTCA TGTGAACCA TGTGGATCAC GGACATGGG GTGATCGTGG CAGCGATTAA ATCGTGTGG CAGCCATTAC GCCCAATCA GCCCAATCA GACAATCAC AATCATGACA ATCATGACA ACATTGACA ACATGACA GACTTGGAGA AGGGAGTCTT GACTGTGGGG AGGGAGTCTT	11 CTTCCTAGTC CTTGTGCAG AATAAAGGC CTGGCGCG CGGGCCC TGGTCAGTC TGTCAGTGC AGAATCATCC ATCTGAAAG ATCAGTAC AGGAATCATAC AATGACATTAC AAGAAACAC CAGAAACAC CAGAAACAC CAGAAACTT TAGGCTGGA CCTCCATGA ATGCCAGGC TGGGCAGG CCTTCCATGA TTGGCAGGC CACTGGACAG CTTCCACGA CTTCCACGA CTTCCACGA CTTCCACGA CTTCCACGA CAGCAGAGAAC CTTCCACGA CAGCAGAGAA ATCGGCAGAGAA CTTCCACGA CAGCAGAGAGAA AGCCAGAGAGAA	21 CCCGGGCCAA AACGCCGCAA AACGCCGCCCAA CAGCAAATCC CGCTGCCGGC GCTGCCCGTG CTGCCGGGC CTCTGTTCGG AGAAGTGCT ACGAGGC TGTCTCCCT ACGGGGATAT TGTCTTCCCA ACCAAACCTC TAAAAGAGAG AGAGTTCAG TAATCACGTT AGTGTGGAA ACTCTCAGTGAC CGTCACCTGG CACGCCAGC CGTCACCTGACCCTG GGGCTTAGC GTACCCATTT GAAAGGAATG GTACCCATTT GAAAGGAATG GAAGTGTGGA ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGAG ATGTATGGG ATGTATGAAT	CTCGGACAGT CTCGGACGGC CAGCGGCGGC CGGGCCCGAG CGGGCCCGAG CTCCCGCCC CGAGGGGTGA AGTGGGGAC CTCATTGCCA CTCATTGCCA GCTCGAAATT TCTGAATCAG CCTCAAAGA AACCATCAAGA ACCATCAAGA CACAAGATTT CACAAGGAAGA CGCAAGAGAAG CGCAAGAGAGA CGCAAGAGAGA CGCAAGAGAGA CGCAATGGAC CACATGGCC CAGTGTTC CGGTGTCC CGGTGTTC CGGTGTTC CGCTCCTCCA CCCTCCTCCA CCCCCTCCTCCA CCCCCCTCCC CCCCCCCC	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCGC CTGAAGGCGC CGAAGGAAGA AGTGAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTC ACCACCTCT TGTGAGCTG AAAGTAAA CCGGGGATCA ACCACCTCT AAAAGTAAGAA CATCGGCAG CATCGGAAA CATCGGCAT GAACATTCAG GAACATTCAG CATCGGATC AGAGGACTC CAGCAGGATC AGAGGACTC CAGCAGGATC AGAGGAGTC AGAGGAAGT AGGAGGAAGT AGAGGAAGT AGAGGAGGATT AGAGGAGGATT AGAGGAGGATT AGAGGAGGATT AGAGGAGTT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGGAT AGAGGAGGAT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGT AGAGGAGGAAGT AGAGGAGGAGT AGAGGAGGAGT AGAGGAGGAAGT AGAGGAGGAGT AGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	120 180 240 300 360 420 600 6600 720 780 840 960 1020 1140 1200 1260 1380 1440 1560 1620
50 55 60 65	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITITITAAA CCGGAGCTGGG GCCGCGTGGG GCCGGTGCT GCTGATGAAG TTCGACTCCA TGTTACTACC TCTGGTCTCA AGTGCAACCA AGTGCAACCA CAGACATGG CAGCATTAA ATCCTGTTGG CAGCATTAA ATCCTGTTGG CAATCACA GCCCCAATCA GACAATCACC AATCATGACA GCCCCAATCA GACATCACGA GACATCACGA ATCATGAACG GACTTGGAGA AGCCTGCGGG AAGCCCGACG AAGCCCGACG AAGCCCGACG	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTCGCCGCC CGGCGCC TGCTCGCCC ATCTGGAAG AAGAATCATCC AATCTGAAAG AAGAACATT ACGACATTA ATCACAACAC CAAGAAGCA CTCACACAC CAAGAAGCAC CAAGAACACC TAGGCACTG TAGGCATGT TAGGCATGT TAGGCATGT TTGGCACGC CACTGGACAC CACTGGACAC CACTGGACAC CACTGGACAC CACTGGACAC CTTCCACGG CCACTGGACAC CTTCCACGG CCACGACACAC CACGACACAC CACGACACAC CACGACACAC CACGACACAC CACGACACAC CACGACACACAC	21 CCCGGGCCAA AACGCCGCC AACGGAATCC CGCTCGCCGC GCTGCCCGTG CTGCCGGGC CTCTGTTCGG AGAAGTGCT ACGGGGATAT TGTCTTCCCA ACGGGGATAT TGTCTTTCAG ACCAAACCTC TAAAAGAGA ACTCTTCCCA TAAAAGAGAG TAATCAGGT TAGTGTGGAAT ATTTCTGGAC TGTCAGTGGG CACGGCAGAC CGTGACCTG GGGCTGTACCTG GGACTGTTGGAA ACTCCATT GAAAGAATC GTACCATT GAAAGAATC GTACCATT GAAAGAATC GAAAGTTTGGA ATTTCTGGAC ATTTCTGAC ATTTCTGGAC ATTTTCTGGAC ATTTTCTGAC ATTTTCTGGAC ATTTTCTGGAC ATTTTCTGGAC ATTTTCTGGCTG ACTTTTGGAC ACTTTTTGGAC ACTTTTTTGGAC ACTTTTTTTGAC ACTTTTTTTTTT	CTCGGACAGT CTCGGACAGT CGCGCCCAGAGGGGGGACAGA CTCCCCCGCCC CGAGGGGGTGA AGTGGGACC AATATTCGAC CTCATTGCA ATTCGAC CTCATTGCA AATATCAAAGCT GCTAAAAGA ACCCTCAAGGA ACCCTCAAGGA AGCAGGAAGA CCATCAAGGA CGCAAGATATT CGACATGGCA CAGTTTT CGCATTGCCAAGGA CTTATTTCTC CAGTTTGGGG CCATCGACG CCATCGGCG CCATCGGCG CCCATCGGTGT CGCGCTCCAACAGATTTT CGCGTTCCAACTGGCC AACAGATTTT CGCGTTCCAACTGGCC CCATCGGTGCC CCATCGTGTCC CACCGTTCTGAAGCC TGCTTCCAACTGGCC TGCTTCCAACTGCC TGCTTCCAACTCC TGCTTCCAACTCC TGCTTCCAACTCC TGCTTCCAACTCC TGCTTCCAACTC TGCTTCCAACTCC TGCTTC	I TTGCTCATTT CGCACACACA GCGGGCCCTCT GCTTCAA GCGCCCTCCT GCTTATGGAA TCTGGATCTCA ACACGGTAAT ATGTCTTAGA ATGTCTTAGA ATGTCTTAGA ACACACGTAAT ATGTCTTAGA ACAGCACT AATGTCTTAGA ACAGCACACACACACACACACACACACACACACACA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCTG CGAAGGAAGA AGTGAAGAC AGTGAAGAC AGTGAAGAC CAGCACGTCT ACCACTGGTTCA ACCACCCTCT TGTGGAGTCA AAGTAAAA CCAGCACTTT ACCAATGAAA CATCAGGATCA AACATCAGCACT TATTGGAGTCA AACTTCAGAA CATCGCATT ACCACTCT TTTCGGATCA ACTTCGCAAA CATCGCATT AGGAAGTCTCA CAGCAGGATCA ACTTCGGATCA CATCGGCATC AGGAGGTTCA CAGCAGGAAG GCCGGAAGTC AAAGCTCCCTC GAAGCCTCCC	120 180 240 300 360 420 540 600 720 780 840 960 1020 1140 1260 1320 1380 1440 1560 1560 1680 1740
50 55 60	1	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTCGCCGAGG GATGGTGCAG CAGCGCCCC TGCTCGCCCC ATCTGGCACC ATCTGGAAAG ACGATACTAC ATCTGAAAG ATCGACATCT GGGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGCA CAGACAACCG TAGGGGTGGA GCCTCCATGA ATGGCAGCT TTGGTGCAGC CACTGGACAG CTTCCACCGG CTTCCACCGG CTAGCAGAGCA TCGGGGGCCAGAGGACCC GCAGGGGCCC GCAGGGGCCC CCTCGACGGGCCC CCTCGACGGGCCC CCACGGGGCCC CCCCCGGACCC CCACCGGGACCC CCCCCCGGACCC CCCCCCGGACCC CCCCCCGGACCCC CCCCCCGGACCCC CCCCCCCC	21 CCCGGGCCAA AACGCCGCC CCCGGGCCAA AACGCCGCC CAGAAATCC CCGTCGCGGC GCTGCCGGG CTGCCAGGCC CTCTGTTCGG AGAATGAGGT TGTCTCCCA ACGGGATAT TGTGTTTGAA ACTCTTCCCA TAAAAGATTCA TAATCAAGT TAGTTTGAA TATCACGT AAGTGTGGA TATTCAGGC GCAGAC CCTGACCCTG GGGCTGTAGC GTACCCATT GAAAGGAAT GTATCAGTT GAAAGGAAT ACTTGGGC ATGTTTAGAA ACTCCCTG GGGCTGTAGC CTGACCTG GAAGTTTGAA ACTCCCTG CAGCAACTCC CACCAACTCC CACCAACTCC CACCAACTCC CACCAACTCC	CTCGGACAGT CTCGGACAGT CGGCCGCC CGAGGGGTGA AGTGGGACAT ACCCCGACC CGAGGGGTGA AGTGGGACAT CTCATTGCA CTCATTGCA CTCATTGCA CTCAAAAAGCT CGAAAAAAC ACCCTCAAGG AGCAAGAAGA AGCATCAAGGA AGCATCAAGGA CGCACAAGATTT CGACAAGAAT TTATTTCCC CAGTCTGAGG CACATGGAC CCAGTCTGAGG CCACATGGAC TGCAAAGATTTC CCCTGCTGCA	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCCG CGAAGGAGA AGTGAAGACA AGTGAAGACA AGGAACCCAC TCTGGGTCAC CAGCACGTGT AACAATGAAA CCAGCACGTCT TGTGGGTCAC ACCACCTCT TGTGAGGCTG AAAAGTTAAG GAACATTCAG CACCACCTCT TTTGGAGCTG AAAACTTCAG CATCGCAAA CATCGGCATG AGCACGTCT AGGAGGACGACGAGGAG CGGCAGGAGTC CAGCAGGAGTC CAGCAGGAGT AGCAGGAGT ACGAGGAGTT AGGAGGAGTT AGGAGGAGTT CTGTACCCTG GAAGCCTGC CACAGGGGCC CACAGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGGCC CACAGGCC CACAGCAC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGCAC CACAGCC CA	120 180 240 300 360 420 540 660 720 780 840 960 1020 1140 1200 1320 1380 1440 1560 1620 1680 1680
50 55 60 65	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTITIAAA GCCGGGGGGGG GCGGCGTGG GCGACGATGG GCCGATGGG GCCGATGAAGA TTCGACTCCA TGTTACTACC TCTGGTCTCA TGTTACTACC TGTGATCATA ATGTGAACA TGTGGATCAC GTGAACAA TCCCATGACA GCCCAATCA GCCCAATCA GACATTCACCA ATCATGACA ATCATGACA ATCATGACA ATCATGACA AGCCGGACG GAACAGCG AAGCCGGACG GAACACGG AAGCCGACG AGCCCGACG AGCCCGACC AGCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCGACG AGCCCCACT	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTGGCGCG GGAGGGCCCC TGGTCAGTGC TGTCAGTGC TGTCAGTGC AGAATCATCC AATCAGACA ACGATACTAC AACGATACTA ATCACAACAC CAGAAAGGCA CAGACAACCG CAGACAACCG CAGACAACCG CACTGGAAAG CCTCCATGA ATGGCAGGC CTTCCACGA CTTCCACGG CCACGGACACCG CACTGGACAG CTTCCACCGG CCACGGACAC CTTCCACCGG CCACGGACAC CCCAGGACA CCCAGGACAC CTTCCACCGG CCAGGACAC CCCAGGACA CCCAGGACA CCCAGGACA CCCAGACAC CCCAGGACA CCCAGGACAC CCCAGGACAC CCCAGGACAC CCCAGGACAC CCCAGGACAC CCCACGCCACC CCCCAGCCAC CCCCACCCA	21 CCCGGGCCAA AACGCCGCAA AACGCCGCCCAAACCCCTCGCCGG GCTGCCCGTG CTGCCAGGCC CTCTGTTCGG AGAAGTGCTG AAATGAAGGT TGTCTCCCTC ACGGGGATAT TGTTTTGAA ACTCATTCACA ACCAAACCTC TAAAAGAGAG AGAGTTTCAG TAATCACGTT AGTGTGGAAT ATTCTCGCA CGTGACCCTG GGGCTGTAGC GGGCTGTAGC GTACCCTG GAAAGGAAT ACACTGTGAAACGAAT CATCGGAATCCC CGTATATGAAA ACACTGGGAACTCC CAGCAAACCCC CGGCAACCC CGTGACCCTG CACCGCAACC CGTGTACCCTG CACCGCAACTCC CCGTGTACCTG CCGCTTACCTG	CTCGGACAGT CTCGGACAGT CGGGCCCAA CAGCGGCGCC CGGGCCCAA CAGCGGGGCA CACCGCCC CGAGGGGTGA AGTGGGGACC CTCATTGCCA GCTCAAATT TCTGATCAG ACCCTCAAAGA ACCCTCAAGA ACCCTCAAGA CCCTCAAGA CCCTCAAGA CCCTCAAGA CCCTCAAGA CCCTCAAGA CCCTCAAGA CCCTCAAGA CCCATGGACA CCCATGGACC CCCATGGACC CCCATGGACC CCCATGGGCC CCCATGGGCC CCCATGGGCC CCCATGGGCC CCCATGGACC CCCATGGGCC CCCATGGACC CCCCC CCCATGGACC CCCCATGGCC CCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGGACC CCCCATGCAC CCCCATGGACC CCCCATGCAC CCCCATGCAC CCCCATGCAC CCCCATGCAC CCCCATGCAC CCCCCATGCAC CCCCCC CCCCCCC CCCCCC CCCCCC CCCCCC CCCC	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGCTCGGC CTGAAGGCCT CGAAGGAGA AGTGAAGACA AGTGAAGACA AGCAACACC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC ACCACCCTCT TGTGGAGCT AAAGTTAAG AACATTCGG AAGTCAGAC TTTCGGCATG GAACATTCA TTTCGGCATG GGACCATTCA TTTCGGGATC CAGCAGGAG CCTGGAAA CATCGCCAT TTTCGGGATC CAGCAGGAGC CCTGGAAGT CAGCAGGAGC CCTGGAAGT CAGCAGGAGC CCAGGAGGC CAAGGGGCC CAAGGGGCC CAAGGGGCC CAATGGGAC	120 180 240 300 360 420 480 540 660 720 780 900 9620 1080 1140 1260 1320 1320 1440 1500 1620 1680 1740 1860
50 55 60 65	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITITITAAA GCCGGAGCTGG GCGACCATGG GCGACCATGG GCGACCATGG GCTGATCAAA TTCGACTCCA TGTTACTACC TCTGGTCTCA AGTGCAACCA TGTGCATCAC AGCATGGG CAGCGATTGA ATCCTGTCCA ATCATGACA ATCATGACA GCCCCAATCA GACAATCCCC AATCATGACA GCCCCAATCA GACAATCCCC AATCATGACA GACAATCCCC AATCATGACA GCCCTCATTGACA GACAATCCCC AATCATGACA GACAATCCCC AATCATGACA GACAATCCCC AATCATGACA GACAATCCCC AATCATGACA GACAATCCCC AATCATGACA GACTATGACA GACTTGGACA GACTTGGACA GACTTGGACA GACTTGGACA GACTCCCACT GACTGCCCCACT GACTGCCCCACT GGCTACTGCT GCCACTGCT GCCACTCT GCCTACTGCT GCCACTCT GCCTACTGCT GCCACTCT GCCACTCT GCCTACTGCT TCAATCACCA TCAACCACTC TCAATCACCA TCAACCAC TCAACA	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTTGTGCAGGC CAGGGGCCC TGCTCGCCCC ATCTGGAAG AAGAATCATCC AAGAATCATCC AAGAACACCA CAGGACTTAT ACAGATACAA ATCACAACAC CAAGAAGCA CAGCACACCA CAGCACACC CAGGGGCCCC CACTGGACAG CCTCCATGA ATGGCATGGA TGGGCACTT TGGGGACAT TGGGCACT TGGGGGCCA CAGCACACA CAGCACACA CAGCAGGAC CCGGGGGCCCC CCAGCCAA ACAATGCGACAC ACAATGGCAT ACAATGGCACAC CAGCACAA ACAATGGCACAC CAGCACAA ACAATGGCACAC CAGCACAA ACAATGGCACAC ACAATGGCACAC ACAATGGCACAC ACAATGGCACACAA ACAATGGCACAA	21 CCCGGGCCAA AACGCCGCC TAGAAGAGCT TAGAAGACT CAGGAAATCC CGCTCGCCGC GCTGCCCGTG CTGCCGGG AGAAGTGCTG AAATGAAGGT TGTCTTCGA ACCCATT TGTCTTCCA ACCGAGACTCT TAAAAGAGAG ACTCTTCCCA ACGAGCTTTTCGAA CTCTTCCCA TAAAAGAGAG TAATCACGTT AGTGTGGAAT ATTTCTGGAC CGTGACCCTG GGGCTGTACC GTACCCATTT GAAAGGAAT CGTACCCATTT GAAAGGAAT ACTTGGGC GTACCCATTT CGAAACTCCC CGTGCACCTC CCGCCAGACTCC CCGCCAGACTCC CCGCCACCTC CCGCCAGACTCC CCTGCCCAGACTCC CCTGCCCAGACTCC CCTGCCCAGACTCC CCCCCAGACTCC CCCCCAGACTCC CCCCCCAGCCC CCCCCCCCC CCCCCCCCCC	CTCGGACAGT CTCGGACAGT CGCGCCCAGAGGGGGGACAGA CAGCGGGGGGACAAAAAAATATTCGAC CTCAAAAGAATATATTCTCAATATATATCCAC CCAGAGGAGAAAAAAAAAA	I TTGCTCATTT TGGCACACA GCGGCCGTG GACGCCCTCCT GCTTATGGAA TCTGGATCCC GCTTATGGAA TCTGGATCCC GCTTATGGAA TCTGGATCCC ACACGGTAAT ATGTCTTAGA TGAGTCTTAA AGATCTTAGA AGATCTGAA ACAGCACT TGAACACGT AATGTCTTAGA TGAACACACT TGAAGCACT TGAAGCACACT TGAAGCACACT TGAAGCACACT TGAAGCACACA TCAGCAGAGAAGAGCA TCAGCAGAGAAGAGCA TCAGCAGATTCAGAAGAAGAGACACT TGAAGAGACACACT TGAAGAAGAGCAC ACTGCAACAACACT TGAAGAAGAGAG ATGCCACCAC ACTGCCACCAC ACTGCCACCA ACTGCCACCA ACTGCCACCA ACTGCCACA ACTGCCACCA ACTGCCACT AGTGTCTCA AGTGTCTCA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAGA AGTGAAGAGA AGGAACCCAC TCTGGGTCCT ACCACTGGTTCA ACCACCTCT TGTGGAGCTG AAAGTTAAG GAACATTAAG GAACATTCAG AACTCAGCACT TTTGGAGTCT ACCACTCT TTTGGAGCTG AAAGTTAAG CATCGCATA CATCGGCATC ACTCGGAAG CATCGGCATC TTTCGGAAG CATCGGCATC AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT CTGTACCCTG GAAGCCTCCA CACAGGGGCC CACAGGGGCC CGATGTGGA ACTCTGGCGA ACTCTGGGCA ACTCTGGGCG CACTGGGAC ACTCTGGGCC CGATGTGGA ACTCTGGGCG ACTCTGGGCC ACTCTGGGCG ACTCTGGGCC ACTCTGGGCG ACTCTGGGCG ACTCTGGGCG ACTCTGGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGCC ACTCTCC ACTCTGCC ACTCTC ACTCTGCC ACTCTC ACTCT ACTCTC ACTCT AC	120 180 240 300 360 420 540 600 720 780 960 1020 1140 1260 1320 1450 1450 1560 1680 1740 1880 1740 1880
50 55 60 65	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGG GCGACGATGG GCGACGATGA TATCTGCAAC TGTTACTACA TGTTGATCAC TCTGGTTCA AGTGCAACCA AGTGCAACCA AGTGCAACCA ATCATGAG GCACCAATCA GCCCCAATCA GACAATCCC AATCATGACA ATCATGACG GACTTGGAGA AGCCGGACGATCA CGACTTGGAGA AGCGGACGACC CGACTCACCA CGCCCCAACCA CGCCCCAACCA CCCCAGCACCA CCCCCAGCACCA CCCCCAGCACCA CCCCCAGCACCA CCCCCACCA CCCCCCACCA CCCCCCCC	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTCGCCGAGG GAGGGGCCC TGCTGGCGCC TGGTGGGGC AGCAGGGAATACAACA ATGGAAATACACA ATGGACATAT GGGACTTAT ACAGATACAA ATGACAACAC CAAGAAGGCA CTAGACACC TAGGGACTGT TAGGGTGGA GCTCCATGA ATGGCAGT TTGGCAGC CTTCACCGG CTTCACCGG CTTCACCGG CTTCCACCGG CTTCACCGG CTTCACCGG CTTCCACGG CCAGCCGAAGGA TCGGGGGCCA AGCCAGAGGA TCGGGGGCCA AGCCAGACGA AACATGCCAT AACCTGCCCC	21 CCCGGGCCAA AACGCCGCC TAGAAGACT CAGGAATCC CGCTCGCGGC GCTGCCGGG GCTGCCGTG AAATGAAGGT TGTCTCCCT AAATGAAGGT TGTCTCCTC ACGGGGATAT TGTGTTTGAA ACTCATCTCCCT TAAAGAGAG TAATCACGT TAGTTTGAA TATTCAGGAC TAGTTAGAAT ATTTCTGGAC CGTGACCCTG GGGCTGTAGC GTACCATTT GAAAGGAATG GAAGTTTGGA TGTTATGAAT ATTTCTGGAC CGTGACCCTC CGTGACCCTC CGGCAGTCCCCCCCTC CGGCACTCCCCCCTCCCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGGCCCAG CGGGCCCAG CGGGCCCAG CGGGCCCAG CTCCGCCC CGAGGGGTGA AGTGGGACC CTCATTGCA CTCATTGCA CTCATTGCA AATATTCGAC CTCATACAG AATATTCGAC CTCATACAG AATATTCGAC CCTCAAAGAAG ACCCTCAAGG AGCAAGGAA AGCATTATTCC CAGTGGAAGAAG TTTATTTCC CAGTCGGCAATTGCC CCAGTCGGCC AACAGTTTT CCCCCCCAG AGCAGCC CCCCAGCAGGC TGTGAAGT TGTGAAGTTGC CCCAGTGGGGC TGCTGCAGCAG TGTTGAAGC TGCTGGAAG TGCTGTGAAG TGCTGGAAG TGCTGGAAG TGTTGAAGC CCACAGTGGGC CACAGTGGGC TTTGAAGACAG TTTGAAGCAC TTTGAAGACAG TTTGAACT TTCAAGACAG TTTGAACT TTCAAGACAG TTTGAACT TTCAAGACAG TTTGAACC TTTGAACC TTTGAACC TTTGAACT TTCAACT TTCA	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCCG CGAAGGAAGA AGTGAAGACA AGTGAAGACA AGTGAAGACA CAGCACGTCT TGTGGGTCAC AAAAGTAAA CCACCCTCT TGTGAGCTG AAAAGTTAAG GAACATTCAG AACTTCAGGAA ACTCGCAAA CATCGGCAT ATTCGGCAT ATTCGGCAT AGGAGGCTGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CAGCAGGAGC CACAGGGGCC CAAAGGGCCC CACAGGGGCC CACAGGGCC CACAGGGGCC CACAGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGCC CACAGGCC CACAGGGCC CACAGGGCC CACAGGGCC CACAGGGCC CACAGGGCC CACAGGGCC CACAGGCC CACAGGCC CACAGGGCC CACAGGCC CACAGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGGCC CACAGC	120 180 240 300 360 420 540 660 720 780 840 960 1020 1140 1200 1320 1380 1440 1560 1620 1620 1680 1860 1860 1860 1980
50 55 60 65 70	1 CACTAACGCT TCAAGGCTGG CTTTTTTAAA CCGGAGCTGA GCCGCGTGGG GCGACGATGG GCGACGATGG GCGACGATGG GCGACGATGA TATCTGCAAC TGTTACTACA TGTTGATCAC TCTGGTTCA AGTGCAACCA AGTGCAACCA AGTGCAACCA ATCATGAG GCACCAATCA GCCCCAATCA GACAATCCC AATCATGACA ATCATGACG GACTTGGAGA AGCCGGACGATCA CGACTTGGAGA AGCGGACGACC CGACTCACCA CGCCCCAACCA CGCCCCAACCA CCCCAGCACCA CCCCCAGCACCA CCCCCAGCACCA CCCCCAGCACCA CCCCCACCA CCCCCCACCA CCCCCCCC	11 CTTCCTAGTC CTTGTGCAG AATGAAAGGC CTCGCCGAGG GAGGGGCCC TGCTGGCGCC TGGTGGGGC AGCAGGGAATACAACA ATGGAAATACACA ATGGACATAT GGGACTTAT ACAGATACAA ATGACAACAC CAAGAAGGCA CTAGACACC TAGGGACTGT TAGGGTGGA GCTCCATGA ATGGCAGT TTGGCAGC CTTCACCGG CTTCACCGG CTTCACCGG CTTCCACCGG CTTCACCGG CTTCACCGG CTTCCACGG CCAGCCGAAGGA TCGGGGGCCA AGCCAGAGGA TCGGGGGCCA AGCCAGACGA AACATGCCAT AACCTGCCCC	21 CCCGGGCCAA AACGCCGCC TAGAAGACT CAGGAATCC CGCTCGCGGC GCTGCCGGG GCTGCCGTG AAATGAAGGT TGTCTCCCT AAATGAAGGT TGTCTCCTC ACGGGGATAT TGTGTTTGAA ACTCATCTCCCT TAAAGAGAG TAATCACGT TAGTTTGAA TATTCAGGAC TAGTTAGAAT ATTTCTGGAC CGTGACCCTG GGGCTGTAGC GTACCATTT GAAAGGAATG GAAGTTTGGA TGTTATGAAT ATTTCTGGAC CGTGACCCTC CGTGACCCTC CGGCAGTCCCCCCCTC CGGCACTCCCCCCTCCCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGGCCCAG CGGGCCCAG CGGGCCCAG CGGGCCCAG CTCCGCCC CGAGGGGTGA AGTGGGACC CTCATTGCA CTCATTGCA CTCATTGCA AATATTCGAC CTCATACAG AATATTCGAC CTCATACAG AATATTCGAC CCTCAAAGAAG ACCCTCAAGG AGCAAGGAA AGCATTATTCC CAGTGGAAGAAG TTTATTTCC CAGTCGGCAATTGCC CCAGTCGGCC AACAGTTTT CCCCCCCAG AGCAGCC CCCCAGCAGGC TGTGAAGT TGTGAAGTTGC CCCAGTGGGGC TGCTGCAGCAG TGTTGAAGC TGCTGGAAG TGCTGTGAAG TGCTGGAAG TGCTGGAAG TGTTGAAGC CCACAGTGGGC CACAGTGGGC TTTGAAGACAG TTTGAAGCAC TTTGAAGACAG TTTGAACT TTCAAGACAG TTTGAACT TTCAAGACAG TTTGAACT TTCAAGACAG TTTGAACC TTTGAACC TTTGAACC TTTGAACT TTCAACT TTCA	I TTGCTCATTT CGCACACACACACACACACACACACACACACACACACAC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAGA AGTGAAGAGA AGGAACCCAC TCTGGGTCCT ACCACTGGTTCA ACCACCTCT TGTGGAGCTG AAAGTTAAG GAACATTAAG GAACATTCAG AACTCAGCACT TTTGGAGTCT ACCACTCT TTTGGAGCTG AAAGTTAAG CATCGCATA CATCGGCATC ACTCGGAAG CATCGGCATC TTTCGGAAG CATCGGCATC AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT AGAGGAGTCT CTGTACCCTG GAAGCCTCCA CACAGGGGCC CACAGGGGCC CGATGTGGA ACTCTGGCGA ACTCTGGGCA ACTCTGGGCG CACTGGGAC ACTCTGGGCC CGATGTGGA ACTCTGGGCG ACTCTGGGCC ACTCTGGGCG ACTCTGGGCC ACTCTGGGCG ACTCTGGGCG ACTCTGGGCG ACTCTGGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGGCC ACTCTGCC ACTCTCC ACTCTGCC ACTCTC ACTCTGCC ACTCTC ACTCT ACTCTC ACTCT AC	120 180 240 300 360 420 540 660 720 780 840 960 1020 1140 1200 1320 1380 1440 1560 1620 1620 1680 1860 1860 1860 1980
50 55 60 65 70	CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTTTAAA CCGGAGCTGA GCCCCGTGG GCACCATGG GCCGATGCA TCGACTCCA TGTGATCATA TATCTCCAAG TGTTACTACC TCTGGTTCTCA TGTGATCATA ATGTGAACCA TGTGGATCAC ATCATGAACA ATCGTGTTGG CCACTATGACA GCCCAATCA GCCCCAATCA ATCATGAACA ATCATGAACA ATCATGAACA ATCATGAACA ATCATGAACA ATCATGAACA AGGAGATCTT GACTTGGGG AAGCCGGACG GGAACAGCGT AGCCCTCACT GCCTACTCACT TGCAGGTCCTA TTTGGGCAACT CCAGGTCCTA TATGGCAACT TATGGCAACT	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTGGCGAG GATGGTGCAG GAGGGCCCC TGTCAGTGC TGTCAGTGC AGAATCATAC ACGATACTAC ACGACATCT ACGACACT CAGACACT ACAGACACC CAGACACACC CAGACACCC CAGACACCC CAGCACACC CCAGGCAC CTTCCACCG CCACGACC CCACGCC CCACGCC CCACGCC CCACGCC CCACGCC CCACGCC CCACGCC CCCACGCC CCCACGCC CCCACGCC CCCCCC CCCCCC CCCCCC CCCCCC CCCCCC CCCC	21 CCCGGGCCAA AACGCCGCCAA AACGCCGCCCCCGGCCCCCCGGCCCCCCGCCGCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGGCCCAA CAGCGGCGCC CGAGGGGTGA CATCGCCCCCC CGAGGGGTGA AGTGGGGACC CTCATTGCCA GCTCGAAATT TCTGATTCAG GCTGAAATT CGAGGACGC GCTCAAAGA ACCCTCAAGGA AGCAAGATTT CGAGGAAGA GCAAAGTTTT GCAAGGAA GCAATTTCCAAGGA AGCATTGGCA GCAATTTCCC CAGTTGGAGA GTTAATTCC CAGTTTGGAG TGTCAAGT TCTGAAGT TCTGAAGT TCTGAAGT TCTGAAGT TCTGAAGT TCTTGAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTCAAGT TCTTGAAGT TCTTTGAAGT TCTTTGCCA	I TTGCTCATTT TGGCACACAC GCGCACCACACACACACACACACACACACA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCCG CGAAGGAGA AGTGAAGACA AGTGAAGACA AGGAAACCCAC TCTGGGTCAC CAGCACGTGT ACCAATGAAA CCGGGGATCA ACCACCCTCT TGTGAGGCTG AAAGTTAAG GAACATTCAG GAACATTCAG CAGCACGTGT ACCACCCTCT ACAACGCACT ACTGCGCAAA CATCGGCATG AAGTCAGGAC ACTCGGCAAG CATCGGCATG GGACCATTCCGGAAA CATCGGCATG CAGCAGGAGTC CAGCAGGAGTC CAGCAGGAGT CTGTACCCTG CAAGGGGCC CGATGTGGAC ACTCTGGGAA AGGTTGGAC ACTCTGGGAA AGGTTGGAC ACTCTGGGAA AGGTGATCCT	120 180 240 300 360 420 480 540 660 720 780 960 960 1080 1140 1260 1320 1440 1500 1620 1740 1680 1740 1860 1980
50 55 60 65	CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTITIAAA CCGGAGCTGG GCCGCGTGGG GCCGGTGCT GCTGATCATAA TTCTGACTCCA TGTTACTACC TCTGGTTCTCA AGTGCAACCA TGTGCATCACA AGTGCATCACA AGTGCATCACA ATCATGACA ATCATGACA GCCCAATCA GACATTGGGA ATCATGACA ATCATGACA GCCCTACTGGACA AGGGAGTTT GACTGTGGGG AAGCAGGGT AGCCTCACT GACTGCTGCG AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTCACT AGCCTACT CCAGGTGCTA TATGGCAACT TAATGGCAACT	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTGGCAGG GATGGTGCAG CAGGGGCCC TGGTCAGTCC TGTCAGTGC AGAATCATCC AATGTGAAAG ACGGTACTAA ATGACATGT AGAGATTAT ACGACATGT AGAGATACAA ATCACAACAC CAGAAAGCC CAGACAACCG CTGTCCATGA ATGGCATGGA CCTCCATGA ATGGCATGGA CCTCCATGA ATGGCAGCA CAGACACCG CAGCAAGAG CTTCCACGG CACGGGACAC CTGCCAGGA CAGCAGGAA CCAGCAAGAA ACATGGCAAGA ACATGGCAAAGT AAACTCCCCTG CTGCCAAGCA ACAATGGCAAAGT AAACTCCAGTG	21 CCCGGGCCAA AACGCCGCCAA AACGCCGCCCAAAACCCCGCTCGCCGC GCTGCCCGTG GCTGCCCGTG CTGCCGGCG CTGCCGTG AGAAGTGCTG AGAAGTGCTG ACGGGGATAT TGTCTTCCCA ACCCAAACCTC TAAAAGAGAG AGAGTTCAG AGAGTTCAG TAATCAGGTT AGTGTGGAAT ATTTCTGGAA ACTCTACCAAACCCTC GGGCTGACCCTG GGGCTGACCCTG GGACTGACCCTC GAAAGGAAT ACTCCCATTT GAAAGGAAT CCGTGTACCATTT GAAAGGAAT CCGTGTACCATTT CGAAACTCC CCTGCAAACCTC CTGCCAGACT CCGCTGCCAGACT CCGCTGACCTG CTGCCAGACT TCGAAGGT TCAAGGAGTT TCAAGGAGGT TCAAGGAGT TCAAGGAGGT TCAAGGAGT TCAAGGAGGT TCAAGGAGGT TCAAGGAGGT TCAAGGAGGT TCAAGGAGGT TCAAGGAGT TCAAGGAGGT TCAAGGAGT TCAAGGAGT TCAAGGAGGT TCAAGGAGGT TCAAGGAGT TCAAGGAGT TCAAGGAGT TCAAGGAGT TCAAGGAGT TCAAGG	CTCGGACAGT CTCGGACAGT CGGGCCGAC CAGCGGCGCC CGAGGGGGGAC AATATTCGAC CTCATTGCA AATATTCGAC CTCATACCA AATATTCGAC AATATTCGAC AATATTCGAC AATATTCAAC CTCAAAGA ACCCTCAAGG AAGCAGCAAGAAC ACCCTCAAGG AGCAAGAAGA CCCTCAAGG AGCAAGAAGA CCCTCAAGG CTGCAAAGAAC CTAATTCGAC CTCAAGG AGCAAGAAGA CCCTCAAGG CACATTTTGAAATGG CCCATGGTGC CACAGGTTTC GGGGTGTCC AACAGATTTG GGGTGTGCC AACAGATTTC CCCATGGTGCC CCCATGGACCCCC CACGAGCAGCCCCC CCCAGCCCGCC CCCACGCCCGCC	I TTGCTCATTT TGCACACA GCGGCCGTG GACGCCCTCCT GCTTATGGAA GCGCCCTCCT GCTTATGGAA GCGCCTCCT TCTGGATCCC TACAACAGGGA GCAGTTTCAC ACACGGTAAT ATGTCTTAGA TGAAAAGCGT ATGTCTTAGA ACAGTCAGT AAGATCTGGA ACAGTCAGT AAGGCACAC ACAGGCACAC ACAGGCACAC ACAGGCACAC ACAGGCACAC ACAGGCACAC ACTGCAGCT AAGGTTCCAC ACTGCAGCT AAGGTTCCAC ACTGCAGCT AAGGTTCCAC ACTGCAGCT ACTGCAGCT CAGATTCTCAC ACTGCAGCT CAATTCTCC CAATTCTC CAATTCTCC CAATTCTCC CAATTCTCC CAATTCTCC CAATTCTCC CAATTCTCC C	I ATTGCAACGG ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG GCTCGCCCTG CGAAGGAAGA AGTGAAGAGA AGGAACCCAC TCTGGGTCAC ACCACCTCT TGTGGAGCTG AAAAGTTAAG CACACCCTCT TGTGGAGCTG AAAAGTTAAG CAACTCAGCACTTACGGATAC ACCACCTCT TGTGGAGCTG AAAAGTTAAG CATCGCAAA CATCGCAAA CATCGCAAA CATCGCAAGAGAC CACCAGGGACC ACCACCTCT TTCGGGATG AAGAGAGTGT CAGCAGGAAG CACCAGGGAC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACAGGGGCC CACTCGGAA AGGTGATCCT GAAGAGTGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT GAGAGAGTGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT GAGAGATGCT CACAATGCC	120 180 240 300 360 420 540 660 720 780 960 1080 1140 1260 1320 1320 1440 1500 1620 1680 1740 1860 1920 1920 1920 1920
50 55 60 65 70	1 CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITITITAAA GCCGGGGCTGGC GCGGTGCTG GCGACCATGG GCGACCATGG GCGACCATGA TTCGACTCA ATTCTGCAAG TGTTACTACA TGTGGATCAC AGGACATGG GTGATCAGG CAGCATTGA AGTGCAACCA ATCATGAAC GCCCCAATCA GCCCCAATCA GACATGACG GACTTGGAGA ATCATGAACG GACTTGGAGA ATCATGACG AGCCTTGAGGA AGGCGGACT GACTTGGGG AGCCTCACT GACTTGGGG GAACAGCGT AGCCCGACG GGAACAGCGT CCAGGTCCT CCAGGTCCT CCAGGTCCT AATGTGGGA AGCCTCACT CCAGGTCCT CCAGGTCCT AATGTGGAACT AATGTGCAACT AATGTGGAACT AAATGTGGAACT AATGTGGAACT AATGTAT AATGTGGAACT AATGTGAACT AATGTAATT AATGTG	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTTGTGCAGC GAGGGGCCC TGCTCGCCCC ATCTGGAAAG ACGAATCATC AAGAACACTAT GGGACTTAT ACAGATACAC CAAGAAGCA CAAGAACAC CAAGAACAC TTGGCAGC CAGCCTGGA CTCCATGA TCGCACC TGGGACTTAT TGGGACTTCAT TGGGACTTCAT TGGGCACTTGT TGGGGACTTGT TGGGGGCCA CAGCCAGGAA CTTGCCCG CCAGCCAG ACCAGCCAGCAA ACAATGGCAT AACAACTC CTGGCAAACT AACAAACTT AAACAAACTT AAACAAACAT AAACAAAC	21 CCCGGGGCAA AACGCGCGC TAGAAGAGCT CAGGAAATCC CGCTCGCGGG GTGCCCGTG AGAAGTGCT AAATGAAGGT TGTCTCCCT AAATGAAGGT TGTCTCCCA ACGGGGATAT TGTGTTTGAA ACTCTTCCCA ACCAAACCTC TAAAAGAGAG TAATCAAGTT AGTGTTGAAT ACTTTCAGA CGTACCCTG GGGCTGTAGC GTACCCATT GAAAGAATG GAAGTTTGGA ATGTATGAAT ATTTCTGGAC CGTGCCATT GAAAGAATC CGTACCCATT GAAAGAATC CGTACCATT GAAAGAATC CGTACCATT GAAAGAATC CGTACCATT GAAAGAATC CGTACCATT GAAAGAATC CGTACCATT CAAGGAACT CCGCAGACT CCGCAGACT CCGCAGACT CCGCAGACT CCGCAGACT CCGCAGACT CCGCAGACT CCCCTGCAGG CCCCCTGCAGG CCCCTGCCAGG CCCCTGCAGG CCCCCTGCAGG CCCCTGCCAGG CCCCTGCAGG CCCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGC CCCCTGCCAGG CCCCCTGCCAGC CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGG CCCCTGCCAGC CCCCCTGCCAGC CCCCCTGCCAGC CCCCCTGCCAGC CCCCCTGCCAGC CCCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGGCCCAG CAGCGGCGCC CGAGGGGTGA AGTGGGACAGT CTCATTGCA CTCATTGCA CTCATTGCA CTCATTCAAA AATAATCAAC CTCAAAGA AGCAAGAAA AGCAGGAAGAAC CGCAGCAGC CAGTTGGGAAT TTTATTTCCA CTCAATGGCA TGCAAAGATTTT CGACTCAAAGA TTTTATTTCGC CAGTTTGGGA CCATCAAGGC TGTCAAATGG CCAATGGGC CCATCTGCGC AACAGATTTG CGCTCTCAA TGCATTGGAG TGTTAAATGG CCAATGGGC CACATGGGC TTTGAAGAGA TTTTGAAGACA TGCTTTGCAA TGCTTTGCAA TGCTTTGAAG TGTTTGAAG TGTTTGAAG TGTTTGAAG TGTTTGAAG TGCTTTGAAG TCCACAGGCGC CACGAGCAGC CAAGAGGCCC CAAGAGGGCC CAAGAGGGCC CAAGAGGGCC CAAGAGGGCC	I TTGCTCATTT TGGCACACA GCGGGCCGTG GACGCCGGC GCTCATGGATCCC GCTTATGGAA TCTGGATCCC GCAGTTTCAC ACACGGTAAT ACGGTACT ATGTCTTAGA TGGAGTCT ATGTCTTAGA TGAGTCTC CAACTAAGTA AAGATCTGAA ACAGCACT TGAAGCACT TGAAGCACACT TGAGCACCACT TGGAGCACAC AGGTTAGAA TCAGCAGTTC TGAGCACACA CGGTTAGAA TCAGCAGTTC TGAGCACTC TCAGTTCAGC ACTCCAGCC CACAGTTCTG ACTCATCTC ACTCAGTC TCAATTCTGC AATGCCACAC TCAATTCTGC AATGCGAGAT TCACCACCC TCAATTCTGC AATGCCAGCAC TCAATTCTGC AATGCGAGAT CAGCTCTCTC TCAATTCTGC AATGCGAGAT CAGCTCTCTGC GGATTCTTGC GGATTCTTTC GCGACCTC CACCAC CCC CCCC C	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CTGAAGGCG GCAAGGAAGA AGTGAAGAGC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACTGGGTCAC ACCACTCT TGTGGAGCTG AAAAGTTAAG GAACATTCAG AAAGTTAAG CACACCTCT TTTGGAGCTG AAAAGTTAAG CAACACCTCT TTTCGGAGCTG AAAAGTTAAG CACCCCTCT TTTCGGAAC CACCCGCATTCA TTTCGGGATG AGGAGGATGCA CACAGGGGCTGC CAGCAGGAGG CCAGCAGAGAG CCCGGAAGTC CACAGGGGCC CGATGTGGAC CACAGGGGCC CGATGTGGAC ACTCTGGGGA AGGTGATCCT GAGAGATGCT CCCAGGGGCC CCCAATGCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGGCC CCCGGCGCC CCCGGGGGCC CCCGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGCC CCCGGGGGCC CCCGGGGCC CCCGGGGCC CCCGGGGCC CCCGCGCGCC CCCGCGCC CCCGCGCC CCCGCGCC CCCCCC	120 180 240 300 360 420 540 600 720 780 840 960 1020 1140 1200 1320 1380 1450 1560 1680 1680 1680 1740 1800 1920 1980 2040 2160
50 55 60 65 70	1	11 CTTCCTAGTC CTTGTGCCAG AATAAAAGGC CTCGCCGAGG GATGGTGCAG GAGGGCCCC TGTCAGTGC TGTCAGTGC AGAATCATCC ATCTGGAAAG ACGGTACTGA ATGCACATGT GGGGACTTAT ATGCACATGT AGAGATCATA ATCACAACAC CAAGAAGCCA ATCACAACAC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC CCACTGGAAG ACCTCCATGA ATGCCACAG CTTCCACCGG CCACCTGGAAG CTTGTGCGCC CAGCCAGACGA ACAATGGCAT AAACTACCACCG TGGCAAAGT AAACTACCACCAT AAACTACCACCAT AAACTACCACCAT AAACTACAACACT TGGGCAAACT TGGGCAAACT TAGGGCATAA	21 CCCGGGCCAA AACGCCGCCAA AACGCCGCGCCAA AACGCCGCGCGCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGCCCGAC CGGGCCCGAC CGGGCGCCCAC CGAGGGGTGA AGTGGGACAT TCTGATTCGAC CTCATTGCA CTCATTGCA GCTGGAAATA TCTGATCAGC GCTGAAAGAC ACCCTCAAGG AGCGACAGACAGC CCAGTGGGAAGAA GCTTATTTCC CAGTGAAGAAG ACCCTCAAGG ACCATCAAGG CCAAGATTTC CGCAAGATT CGAAGAAGA TTTATTTCC CAGTGTGAA TGGAGGAAGA TGTCAAGG TGCAGAGAGC CCAGAGCAGC CCAGGCGGC CAAGGAGGC CCAGGGGGCT CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC	I TTGCTCATTT TGGCACACA GCGGCCCTG GCACACACA GCGGCCCTG GACGCCCGG AGCTGCTCCA GCTCATGGAA TCTGGATCCC GCATTATGGAA TCTGGATCCC GCAGTTATCAC ACACGGTAAT CAGTCAGTCT AAGTCAGTCT AAGTCTTAGA AAGATCTGGA ACACCACT TGAAGCCACT TGAAGCCACT TGAAGCATTT TGAAGCTTC TGGAAGAAG CAGTTTAGA CAGTTAGAA ATGCTTCT TGGAAGACCACT TGGAAGACCACT TGGAAGAAG CAGTTGAAG CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA ATGCCACCAC ACTGCAAGCACT CAGAGTTCTG ACTCCATGCAA CAGTTCTCAATTCACT CAGAGTTCTC AATGCAGCAC CAGAGTTCTCAATTCACT CAGAGTTCTCAATTCACT CAGAGTTCTCACGACT CCAATTCTCACG CAGAGTTCTTCACGACT CCAATTCTCACG CGATTCTTCACG CGATTCTTCACG CGATTCTCACG CGATTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGATTCTCACC CAGATTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCACC CACATCAC CACACC CACA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCGC CTGAAGGCGC CGAAGGAAGA AGTGAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTT ACCAATGAAA CCGGGGATCA ACCACCTCT TGTGGGTCAC AAAGTTAAG GAACATTCAG GAACATTCAG GAACATTCAG CATCGGCAT ACCACCTCT AAAGTTAAG GAACATTCAG CATCGGCAT AGCAGGATCA ACCACGTCT AAAGTTAAG GAACATTCAG CATCGGCAT GGACGATTCA TTTCGGGATT AGGAGGATGT CAGCAGGAGT CAGCAGGAGT CAGCAGGAGT CAGCAGGAGT CACAGGGCC GAATGTGGA ACTCTGCGCA ACTCTGCGCA ACCTCTCCCTC GAAGCCTCC CACAAAGTGT CACCAAAGTGT CACCAAAGTGT CACCAAAGTGT CACCAGGGCC CACAAAGTGT	120 180 240 300 360 420 540 600 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1620 1680 1740 1860 19980 2040 2160 220
50 55 60 65 70	1	11 CTTCCTAGTC CTTGTGCCAG AATAAAAGGC CTCGCCGAGG GATGGTGCAG GAGGGCCCC TGTCAGTGC TGTCAGTGC AGAATCATCC ATCTGGAAAG ACGGTACTGA ATGCACATGT GGGGACTTAT ATGCACATGT AGAGATCATA ATCACAACAC CAAGAAGCCA ATCACAACAC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC TAGAGATTGC CCACTGGAAG ACCTCCATGA ATGCCACAG CTTCCACCGG CCACCTGGAAG CTTGTGCGCC CAGCCAGACGA ACAATGGCAT AAACTACCACCG TGGCAAAGT AAACTACCACCAT AAACTACCACCAT AAACTACCACCAT AAACTACAACACT TGGGCAAACT TGGGCAAACT TAGGGCATAA	21 CCCGGGCCAA AACGCCGCCAA AACGCCGCGCCAA AACGCCGCGCGCCCCCCCC	CTCGGACAGT CTCGGACAGT CGGCCCGAC CGGGCCCGAC CGGGCGCCCAC CGAGGGGTGA AGTGGGACAT TCTGATTCGAC CTCATTGCA CTCATTGCA GCTGGAAATA TCTGATCAGC GCTGAAAGAC ACCCTCAAGG AGCGACAGACAGC CCAGTGGGAAGAA GCTTATTTCC CAGTGAAGAAG ACCCTCAAGG ACCATCAAGG CCAAGATTTC CGCAAGATT CGAAGAAGA TTTATTTCC CAGTGTGAA TGGAGGAAGA TGTCAAGG TGCAGAGAGC CCAGAGCAGC CCAGGCGGC CAAGGAGGC CCAGGGGGCT CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC CCAGGGGCTCC	I TTGCTCATTT TGGCACACA GCGGCCCTG GCACACACA GCGGCCCTG GACGCCCGG AGCTGCTCCA GCTCATGGAA TCTGGATCCC GCATTATGGAA TCTGGATCCC GCAGTTATCAC ACACGGTAAT CAGTCAGTCT AAGTCAGTCT AAGTCTTAGA AAGATCTGGA ACACCACT TGAAGCCACT TGAAGCCACT TGAAGCATTT TGAAGCTTC TGGAAGAAG CAGTTTAGA CAGTTAGAA ATGCTTCT TGGAAGACCACT TGGAAGACCACT TGGAAGAAG CAGTTGAAG CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA CAGTTGAAGA ATGCCACCAC ACTGCAAGCACT CAGAGTTCTG ACTCCATGCAA CAGTTCTCAATTCACT CAGAGTTCTC AATGCAGCAC CAGAGTTCTCAATTCACT CAGAGTTCTCAATTCACT CAGAGTTCTCACGACT CCAATTCTCACG CAGAGTTCTTCACGACT CCAATTCTCACG CGATTCTTCACG CGATTCTTCACG CGATTCTCACG CGATTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGAGTTCTCACC CAGATTCTCACC CAGATTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCTCACC CAGATTCACC CACATCAC CACACC CACA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CTGAAGGCG GCAAGGAAGA AGTGAAGAGC AAGCAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACTGGGTCAC ACCACTCT TGTGGAGCTG AAAAGTTAAG GAACATTCAG AAAGTTAAG CACACCTCT TTTGGAGCTG AAAAGTTAAG CAACACCTCT TTTCGGAGCTG AAAAGTTAAG CACCCCTCT TTTCGGAAC CACCCGCATTCA TTTCGGGATG AGGAGGATGCA CACAGGGGCTGC CAGCAGGAGG CCAGCAGAGAG CCCGGAAGTC CACAGGGGCC CGATGTGGAC CACAGGGGCC CGATGTGGAC ACTCTGGGGA AGGTGATCCT GAGAGATGCT CCCAGGGGCC CCCAATGCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGACCC CCCGGGGGCC CCCGGCGCC CCCGGGGGCC CCCGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGGCC CCCGGGGCC CCCGGGGGCC CCCGGGGCC CCCGGGGCC CCCGGGGCC CCCGCGCGCC CCCGCGCC CCCGCGCC CCCGCGCC CCCCCC	120 180 240 300 360 420 540 600 720 780 840 960 1020 1140 1200 1320 1380 1450 1560 1680 1680 1680 1740 1800 1920 1980 2040 2160
50 55 60 65 70 75	CACTAACGCT TCAAGGCTGG TCAAGGCTGG CTITTTTAAA CCGGAGCTGG GCCGCGTGG GCCGCGTGG GCCGATCGG GCCGATCGA TTCGACTCCA TGTGATCATA ATGTTACTACC CGGACATGG GTGATCATA ATGTGCAACA ATGTGGATCAC AGGCAATGGG GTGATCATGA ATCGTGTTGG CAGCCATTAACA GCCCCAATCA GCACATCACC AATCATGACA GCCCAATCAC GACATTCACC AATCATGACA GCCCCATGACA GCCCCATGACA GCCCCATGACG GAACAGCGT AGCCCTCACT GACTGTGGGG AAGCCGGACG GGAACAGCGT TACCCCAGGTCCTA TATGGCAACT AAATGTGGAA TATGGCAACT AAATGTGGAA GCCCCATGACA GCTTCACTAGACA GCTTCACTAGACA GCTTCACTAGACA GCTTCACTAGACA GCTTCACTAGACA GCTTCACTAGACA GCCCCACTAGACACT CCAGGTCACT CCAGGTGCTA CACGTGTACT CCAGGTGCTA CACGTGTACT CCAGGTGACA CCCGTGTACT CCAGGTGACA CCCGAATGGAAC CACGTGTACT CCAGGTGACA CCACGTGTACT CCAGGTGACA CCACGTGTACT CCAGGTGACA CCACGTGTACT CCAGGTGACA CCACGTGTACT CCAGGTGACA CCACGTGACACT CCACGATGGAAC CCACGTGTACT CCACGTACT CCACGTACT CCACGTGTACT CCACGTGTACT CCACGTACT CCACGTGTACT CCACGT	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTGGCCGC CTGGCCGCC TGGTCGGCCC TGTCTAGTGC AGAATCATCC ATCTGAAAG AGGAATCATCA ATCAGAACA ATCACACAC CAGAACACC CAGACACAC CAGCCAGACA CACTGGCACA CACTGGCACA CACAGCACA ACATGGCAT AACTGCCC CTGGCAAACT AAATCCACTG AAACAACAT TGGGCAACAC AAATCCACTG AAACAACAT TGGGCAACAT AAATCCACTG AAATCCACTG AAACAACAT TGGGCAACAT AAATCCACTG AAATCCA	21 CCCGGGCCAA AACGCCGCAA AACGCCGCCCAAAACCCCGCTGCCAGC AGAAGTCCTCAGCAGGCCCTCGAGGGAAATCACCTC ACGGGGATAT TGTCTTCACA ACCAAACCTC TAAAAGAGAGT TAATCACGTT AGTGTGGAATTCACGTAACCCTG GAAAGGTTCAGGAACCCTCGACCCTGCAGCCCTGCAGCCTGCAGCCTGCACCTGCAGACCTCTGAAGGAATTCAGGAACCCTCGTAACCATTT GAAAGGAAGTTCAGCAACCCCTGGAAGACCTCTGCAGACCTGCAGACCTTGCAGACCTGCTACCCTGCAGACCTGACCCTGCAGACCTGCAGACCTGCAGACCTGCAGACCTGCAGACCTGCAGACCTGCAAGACGACCTGCAAGACGCAACCCTCCAAGAGGTTCAAGAGGAGTTCAAGGAGGTTCAAGGAGGTTCAAGGAGGTCCCCCTCGAAGAGGTCCCCCTCGAAGAGGTCCAACCCGGAACCACCCAGAACCACACCACACCACACCAC	CTCGGACAGT CTCGGACAGT CTCGGTCGC CGGGCCCGAG CGGGCCCGAG CGGGCCCAGG CTCCCGCCC CGAGGGGTGA AGTGGGGACC CTCATTGCCA GCTCGAAATT TCTGAATCAG CGAAGAAGC ACCCTCAATGCCA AGTGCAAAGA ACCCTCAAGGA AGCAAGAAGA GCAAAGGAGAGCA CCATGGACA CCATGGCCA CGAGCAGC CACAGGAGACC CTTTGAAGAGA CCCATGGACA CCCATGGACA CCCATGGACA CCCATGGACA CCCATGGACA CCCATGGACA CCCATGGACA CCCATGGACA CCCAGGACAC CCAGGACAC CCCAGGACAC CCCAGGACAC CCCAGGACAC CCCAGGACGC CCAGGACGC CCCAGGCGCC CCCAGGCCGC CCCAGGCCGC CCCAGGCCTC CCCAGGCCCC CCCAGGCCTC CCCAGGCCTC CCCAGGCCTC CCCAGGCCTC CCAGGCCTC CCAGGCCCC CCAGGCCTC CCAGGCACAC CCAGCACAC CCAAGACAC CCAGCACAC CCAGCACAC CCAGCACAC CCAGCACAC CCAGCACAC CCACACAC CCACACAC CCACAC CCACACAC CCACACAC CCACACAC CCACAC CCACACAC CCACACAC CCACACAC CCACAC CCACACAC CCACACAC CCACAC CCAC	TTGCTCATTT CGCACACAC GCGCACACAC GCGCCCGGC AGCTGCTCCA AGCTGCTCCA AGCTGCTCCA ACTCGATCCC GCTTATGGAA TCTGGATCCC TACAACGG ACACTTTCAC ACACGGTAAT TCAGCAGTCT TGAAACGT ATGTCTTTCAC ACACGGTAAT TGAAACGT ATGTCTTTCAC AAGACCACT AATGTCTTGAA ACACCACT AATGTCTTCAC GAATTGTCAT AGGGACCAC GAATTGTCAT TGAAGACTT TGAAGACTT TGAAGACTT TGTATGAGAA TCAGCAGTT TGTATGAGAA TCAGCAGTT TGTATGAGAA ACTCATGCA ACTGCAGCT ACTGCAGCT CAATTCTCAC ACTCATGCAG ACTCATGCAG ACTCATGCAG ACTCATGCAG ACTCATGCAG ACTCATGCAG ACTCATGCAG CAGCTCATTCAG GGATTCTGCAG GGATTCTGCAG GGATTCTGCAG TCAGTCATCAG TCATTCCAG TCATTCCAG TCATTCCAG TTAGTGTCTT TCATTCCAG TTAGTGTCTT TCATTCCAG TTAGTGTCTT TCATTCCAG TTAGTGTCTT TCATTCTAG TC	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCCGCTCGGC CTGAAGGCCG CGAAGGAGA AGTGAAGACA AGTGAAGACA AGCAACACC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC TCTGGGTCAC ACCACCCTCT TGTGGAGCT AACATGAAA CACCACCCTCT TGTGGAGCT AAAAGTTAAG GAACATTCAG CACTCTCGCAAA CATCGGCATG GAACATTCAC TTTCGGGATC AGCAGGGCTC CAGCAGGAGC CCAGGAGGCTCC CAGCAGGGCC CCACAAGTGAA AGTTACCCTG GAAGCCTTCT TCTGCGCAA ACTCTCGGGAA CACTCTGCAAA CACTCTGCAAA CACTCTGCAAA CACTCTGCAAA CACAGGGCC CCACAAGGGCC CCACAAGTGCT TACCAATGCC CCCACAAAGTGT TCGGGGACC CCCACAAAGTGT TCGGGTTCAC CCCACAAAGTGT TCGGGTTCAC CCCACAAAGTGT TCGGGTTCAC CCCACAAAGTGT TCGGGTTCAC CCCACAAAGTGT TCGGGTTCAC CCCACAAAGTGT TCGGGTTCAC	120 180 240 300 360 420 540 600 720 780 900 1080 1140 1200 1320 1380 1560 1680 1740 1860 1920 1980 2160 2280
50 55 60 65 70	1	11 CTTCCTAGTC CTTGTGCAG AATAAAAGGC CTTGTGCAG CAGGGGCCC TGCTCGCCCC TGCTCGCCCC ATCTGGAAG AAGAATCATCC AAGAACACTAT ACGACATTAT ACGACATCACACAC CAAGAAGCAC CAAGAAGCAC CAAGAAGCAC CAGCCAGC	21 CCCGGGCCAA AACGCCGCC AACGCCGCCCCCCGGGCCCAA AACGCCGCCCCCCCGGGCCCAACCCCCCCC	CTCGGACAGT CTCGGACAGT CGCGCCCCA CAGCGGCGCC CAGGGGGTGA AATATTCGAC CTCATTGCA AATATTCGAC CTCATTGCA AATATTCGAC CTCATTGCAA AATATTCAAC CTCATTGCAAATAT CGAGCAGGAAGAAG ACCCTCAAGGA ACCCTCAAGGA ACCCTCAAGGA ACCATCAAGGA CACATGGACA CAGATTTT CGCAAATAT CGAGCAGGA CCATCAAGGA TGTTATTTCCC CAGTCTGGGG CCAATGGGC TGTCAAATAG TGTTGCAAGA TGCTTGCAA CCCTCCAAGGA CCCATCAGGC CAGACGGCC CAGGGCTGC CACGGGCTCC CAGGCACGC CCAGGGCTCC CCAGGGCTCC CCAGGGCTCC CCAGGGCTCC CCAGGGCTCC CCAGGGCCCC CCAGGGCTCC CCAGGGCTCC CCAGGGCCCC CCAGGGCTCC CTCACACAC CTCTCCACAC	I TTGCTCATTT TGCACACACA GCGGGCCGTG GACGCCGTG GCGCCCTCCT GCTTATGGAA TCTGGATCCC GCTTATGGAA TCTGGATCCC ACACGGTAAT ATGTCTTAGA TGAGTCTCTAAGAAAAGCGT ATGTCTTAGA AGATCTGAAAAACACT TGAAACACT TGAAGCACTC TGAAGATCC ACTCCAGC ACTCCAGC ACTCCAGC ACTCCAGC TCAATTCTGC AATGCCACAC TCAATTCTGC AATGCGAAGA CAGTTCTGCAG TGCTTTCAAGG GGATTCTTG TGCTTTCAGG TTACTGTCT TGAAGCACTT TGATTCTTCACT TGATTCTTCACT TGATTCTTCACT TGATTCTTCACT TGATTCTTTCACT TGCATTCTTTCACT TGCATTCTTTCACT TTACAGCAAAAAAA TCAGCAAAAAA TCAGCAAAAAAA TCAGCAAAAAA TCAGCAAAAAA TCAGCAAAAAA TCAGCAAAAAAA TCAGCAAAAAAA TCAGCAAAAAAA TCAGCAAAAAAA TCAGCAAAAAAAA TCAGCAAAAAAA TCAGCAAAAAAAA TCAGCAAAAAAA TCAGCAAAAAAAA TCAGCAAAAAAAAAA	ATTGCAACGG CGGGGGGAAA CGCGAGGGCT CCGGTCGGC CTGAAGGCGC CTGAAGGCGC CGAAGGAAGA AGTGAAAGAA GGAAACCCAC TCTGGGTCAC CAGCACGTT ACCAATGAAA CCGGGGATCA ACCACCTCT TGTGGGTCAC AAAGTTAAG GAACATTCAG GAACATTCAG GAACATTCAG CATCGGCAT ACCACCTCT AAAGTTAAG GAACATTCAG CATCGGCAT AGCAGGATCA ACCACGTCT AAAGTTAAG GAACATTCAG CATCGGCAT GGACGATTCA TTTCGGGATT AGGAGGATGT CAGCAGGAGT CAGCAGGAGT CAGCAGGAGT CAGCAGGAGT CACAGGGCC GAATGTGGA ACTCTGCGCA ACTCTGCGCA ACCTCTCCCTC GAAGCCTCC CACAAAGTGT CACCAAAGTGT CACCAAAGTGT CACCAAAGTGT CACCAGGGCC CACAAAGTGT	120 180 240 300 360 420 540 600 720 780 900 1080 1140 1200 1320 1380 1560 1680 1740 1860 1920 1980 2160 2280

```
GGCCCCATCC GGCAAGCAGA TAACCAAGGT TTAACCATAG GAATTCTGGT GACCATCCTG 2460
        TGTCTTCTTG CTGCCGGATT TGTGGTTTAT CTCAAAAGGA AGACCTTGAT ACGACTGCTG
        TITACAAATA AGAAGACCAC CATTGAAAAA CTAAGGTGTG TGCGCCCTTC CCGGCCACCC
                                                                                          2580
        COTGCCTTCC AACCCTCTCA GGCTCACCTC GGCCACCTTG GAAAAGGCCT GATGAGGAAG
CCGCCAGATT CCTACCCACC GAAGGACAAT CCCAGGAGAT TGCTGCAGTG TCAGAATGTT
                                                                                          2640
                                                                                          2700
        GACATCAGCA GACCCCTCAA OGGCCTGAAT GTCCCTCAGC CCCAGTCAAC TCAGCGAGTG
                                                                                          2760
        CTTCCTCCCC TCCACCGGGC CCCACGTGCA CCTAGCGTCC CTGCCAGACC CCTGCCAGCC
AAGCCTGCAC TTAGGCAGGC CCAGGGGACC TGTAAGCCAA ACCCCCCTCA GAAGCCTCTG
                                                                                          2820
                                                                                          2880
        CCTGCAGATC CTCTGGCCAG AACAACTCGG CTCACTCATG CCTTGGCCAG GACCCCAGGA
10
        CAATGGGAGA CTGGGCTCCG CCTGGCACCC CTCAGACCTG CTCCACAATA TCCACACAA
                                                                                          3000
        GTGCCCAGAT CCACCCACAC CGCCTATATT AAGTGAGAAG CCGACACCTT TTTTCAACAG
                                                                                          3060
        TGAAGACAGA AGTTTGCACT ATCTTTCAGC TCCAGTTGGA GTTTTTTGTA CCAACTTTTA
                                                                                          3120
        GGATTITITI TAATGITTAA AACATCATTA CTATAAGAAC TITGAGCTAC TGCCGTCAGT
        GCTGTGCTGT GCTATGGTGC TCTGTCTACT TGCACAGGTA CTTGTAAATT ATTAATTTAT
                                                                                          3240
15
        GCAGAATGTT GATTACAGTG CAGTGCGCTG TAGTAGGCAT TTTTACCATC ACTGAGTTTT
                                                                                          3300
        CCATGGCAGG AAGGCTTGTT GTGCTTTTAG TATTTTAGTG AACTTGAAAT ATCCTGCTTG
                                                                                          3360
        ATGGGATTCT GGACAGGATG TGTTTGCTTT CTGATCAAGG CCTTATTGGA AAGCAGTCCC
                                                                                          3420
        CCAACTACCC CCAGCTGTGC TTATGGTACC AGATGCAGCT CAAGAGATCC CAAGTAGAAT
                                                                                          3480
        CTCAGTTGAT TTTCTGGATT CCCCATCTCA GGCCAGAGCC AAGGGGCTTC AGGTCCAGGC
                                                                                          3540
        TETOTTTGGC TITCAGGGAG GCCCTGTGCC CCTTGACAAC TGGCAGGCAG GCTCCCAGGG
ACACCTGGGA GAAATCTGGC TTCTGGCCAG GAAGCTTTGG TGAGAACCTG GGTTGCAGAC
20
                                                                                          3600
                                                                                          3660
        AGGAATCTTA AGGTGTAGCC ACACCAGGAT AGAGACTGGA ACACTAGACA AGCCAGAACT
                                                                                          3720
        TGACCCTGAG CTGACCAGCC GTGAGCATGT TTGGAAGGGG TCTGTAGTGT CACTCAAGGC
GGTGCTTGAT AGAAATGCCA AGCACTTCTT TTTCTCGCTG TCCTTTCTAG AGCACTGCCA
                                                                                          3780
                                                                                          3840
25
        CCAGTAGGTT ATTTAGCTTG GGAAAGGTGG TGTTTCTGTA AGAAACCTAC TGCCCAGGCA
        CTGCAAACCG CCACCTCCCT ATACTGCTTG GAGCTGAGCA AATCACCACA AACTGTAATA
                                                                                          3960
        CAATGATCCT GTATTCAGAC AGATGAGGAC TTTCCATGGG ACCACAACTA TTTTCAGATG TGAACCATTA ACCAGATCTA GTCAATCAAG TCTGTTTACT GCAAGGTTCA ACTTATTAAC
                                                                                          4020
                                                                                          4080
        AATTAGGCAG ACTCTTTATG CTTGCAAAAA CTACAACCAA TGGAATGTGA TGTTCATGGG
30
        TATAGTTCAT GTCTGCTATC ATTATTCGTA GATATTGGAC AAAGAACCTT CTCTATGGGG
                                                                                           4200
        CATCCTCTTT TTCCAACTTG GCTGCAGGAA TCTTTAAAAG ATGCTTTTAA CAGAGTCTGA
ACCTATTTCT TAAACACTTG CAACCTACCT GTTGAGCATC ACAGAATGTG ATAAGGAAAT
                                                                                          4260
                                                                                          4320
        CAACTTGCTT ATCAACTTCC TAAATATTAT GAGATGTGGC TTGGGCAGCA TCCCCTTGAA
        CTCTTCACTC TTCAAATGCC TGACTAGGGA GCCATGTTTC ACAAGGTCTT TAAAGTGACT
                                                                                           4440
35
        ANTIGICATIGA GARATACARA ANTACTICAGA TARGGITARAN TGCCATGATG CCTCTGTCTT
CTGGACTGGT TTTCACATTA GARGACARTT GACAACAGTT ACATARTTCA CTCTGAGTGT
TTTATGAGAR AGCCTTCTTT TGGGGTCARC AGTTTTCCTA TGCTTTGARA CAGAARARA
                                                                                           4500
                                                                                          4560
         TGTACCAAGA ATCTTGGTTT GCCTTCCAGA AAACAAAACT GCATTTCACT TTCCCGGTGT
                                                                                           4680
        TCCCCACTGT ATCTAGGCAA CATAGTATTC ATGACTATGG ATAAACTAAA CACGTGAĆAC AAACACACA AAAAGGGAAC CCAGCTCTAA TACATTCCAA CTCGTATAGC ATGCATCTGT
                                                                                           4740
40
                                                                                           4800
         TTATTCTATA GTTATTAAGT TCTTTAAAAT GTAAAGCCAT GCTGGAAAAT AATACTGCTG
                                                                                           4860
        AGATACATAC AGAATTACTG TAACTGATTA CACTTGGTAA TTGTACTAAA GCCAAACATA
                                                                                          4920
        TATATACTAT TAAAAAGGTT TACAGAATTT TATGGTGCAT TACGTGGGCA TTGTCTTTTT
                                                                                          4980
        AGATGCCCAA ATCCTTAGAT CTGGCATGTT AGCCCTTCCT CCAATTATAA GAGGATATGA 5040
45
        ACCARARAR ARRARARA AR
        Seg ID NO: 78 Protein seguence
        Protein Accession #: NP 003465
                                   21
                                                                            51
                     11
                                                 31
50
        MAARPLEVSE ARALLIALAG ALLAPCEARG VSLWNEGRAD EVVSASVRSG DLWIFVKSFD
SKNHPEVLNI RLQRESKELI INLERNEGLI ASSPTETHYL QDGTDVSLAR NYTVILGHCY
                                                                                             60
                                                                                           120
         YHGHVRGYSD SAVSLSTCSG LRGLIVFENE SYVLEPMKSA TNRYKLFPAK KLKSVRGSCG
         SHHNTPNLAA KNVFPPPSQT WARRHKRETL KATKYVELVI VADNREFQRQ GKDLEKVKQR
                                                                                           240
55
        LIEIANHVDK FYRPLNIRIV LVGVEVWNDM DKCSVSQDPP TSLHEFIDWR KMKLLPRKSH
DNAQLVSGVY FQGTTIGMAP IMSMCTADQS GGIVMDHSDN PLGAAVTLAH ELGHNFGMNH
                                                                                            300
                                                                                            360
         DTLDRGCSCQ MAVEKGGCIM NASTGYPFPM VFSSCSRKDL ETSLEKGMGV CLFNLPEVRE
         SFGGQKCGNR FVEEGEECDC GEPEECMNRC CNATTCTLKP DAVCAHGLCC BDCQLKPAGT
                                                                                            480
         ACRESSISCE LEFECTGASE HCPANUYLHE GHSCODVEGY CYNGICOTHE OCCUTINGEG
                                                                                            540
60
         AKPAPGICFE RVNSAGDPYG NCGKVSKSSF AKCEMRDAKC GKIQCQGGAS RPVIGTNAVS
                                                                                            600
         IETNIPLQQG GRILCRGTHV YLGDDMPDPG LVLAGTKCAD GKICLNRQCQ NISVFGVHEC
         AMOCHGRGVC NNRKNCHCEA HWAPPPCDKF GFGGSTDSGP IRQADNQGLT IGILVTILCL
                                                                                            720
        LAAGFVVYLK RKTLIRLLFT NKKTTIEKLR CVRPSRPPRG FQPCQAHLGH LGKGLMRKPP
DSYPPKDNPR RLLCCONVDI SRPLNGLNVP OPOSTORVLP PLHRAPRAPS VPARPLPAKP
                                                                                            780
                                                                                            840
65
         ALROAGGICK PNPPOKPLPA DPLARITRLI HALARIPGOW ETGLRLAPLR PAPOYPHOVP
         Seg ID NO: 79 DNA seguence
         Nucleic Acid Accession #: NM_003714
70
         Coding sequence: 135..1043
                                                 31
                      11
                                   21
                                                               41
                                                                            51
         GAGGAGGAGG GAAAAGGCGA GCAAAAAGGA AGAGTGGGAG GAGGAGGGGA AGCGGCGAAG
         GAGGAAGAGG AGGAGGAGGA AGAGGGGAGC ACAAAGGATC CAGGTCTCCC GACGGAGGGT
TAATACCAAG AACCATGTGT GCCGAGCGGC TGGGCCAGTT CATGACCCTG GCTTTGGTGT
                                                                                            120
75
                                                                                            180
         TGGCCACCTT TGACCCGGCG CGGGGGACCG ACGCCACCAA CCCACCCGAG GGTCCCCAAG
         ACAGGAGCTC CCAGCAGAAA GGCCGCCTGT CCCTGCAGAA TACAGCGGAG ATCCAGCACT
                                                                                            300
         GTTTGGTCAA CGCTGGCGAT GTGGGGTGTG GCGTGTTTGA ATGTTTCGAG AACAACTCTT
                                                                                            360
         GTGAGATTCG GGGCTTACAT GGGATTTGCA TGACTTTTCT GCACAACGCT GGAAAATTTG
80
         ATGCCCAGGG CAAGTCATTC ATCAAAGACG CCTTGAAATG TAAGGCCCAC GCTCTGCGGC
         ACAGGTTCGG CTGCATAAGC CGGAAGTGCC CGGCCATCAG GGAAATGGTG TCCCAGTTGC
                                                                                            540
         AGCGGGAATG CTACCTCAAG CACGACCTGT GCGCGGCTGC CCAGGAGAAC ACCCGGGTGA
TAGTGGAGAT GATCCATTTC AAGGACTTGC TGCTGCACGA ACCCTACGTG GACCTCGTGA
                                                                                            600
                                                                                            660
         ACTTGCTGCT GACCTGTGGG GAGGAGGTGA AGGAGGCCAT CACCCACAGC GTGCAGGTTC
85
         AGTGTGAGCA GAACTGGGGA AGCCTGTGCT CCATCTTGAG CTTCTGCACC TCGGCCATCC
```

			CCCGAGCGCC				840
	GGGCCCACCA	CGGGGAAGCA	GGACATCACC	TCCCAGAGCC	CAGCAGTAGG	GAGACTGGCC	900
			GGTAGCAAGA				960
			GGACCTTCCG				1020
5							1080
)			TGAAATGAAA				
	GTCCATTTTC	TTATCTATGG	ACATTCCAAA	ACATTTACCA	TTAGAGAGGG	GGGATGTCAC	1140
	ACGCAGGATT	CTGTGGGGAC	TGTGGACTTC	ATCGAGGTGT	GTGTTCGCGG	AACGGACAGG	1200
			CCGTGGGGTC				1260
			CCGCGTTATC				1320
10							1380
10			TCTGTTGTGG				
			CCACACAGTG				1440
	GCAGCAGCCT	CTGGTGCTGT	CTCCGCGGAA	GTCAGGGCGG	CTGGATTCCA	GGACAGGAGT	1500
	GAATGTAAAA	ATAAATATCG	CTTAGAATGC	AGGAGAAGGG	TGGAGAGGAG	GCAGGGGCCG	1560
	AGGGGGGTGCT	TGGTGCCAAA	CTGAAATTCA	GTTTCTTGTG	TGGGGCCTTG	CGGTTCAGAG	1620
15			AGGAGTGTCA				1680
13							
	TGTCTGGGCT	GGGGGGGACA	CTGTCCAAGG	GAGTGGCCCC	TATGAGITIA	TATTTTAACC	1740
			CACTTTTTTT				1800
	TCTAAATAAA	TGGCTTTCAA	ACAAAGCAAC	TGGGTCATTA	AAACCAGCTC	AAAGGGGGTT	1860
	TAAAAAAAAA	AAAACCAGCC	CATCCTTTGA	GGCTGATTTT	TCTTTTTTT	AAGTTCTATT	1920
20			ACATAGCCAT				1980
20			CCCAGAGGAA				2040
			TCTCACCTTG				2100
	CTGGCGATTC	CAGGAGACCC	AGCTGGAAAC	CTGGCTTCTC	CATGTGAGGG	GATGGGAAAG	2160
	GAAAGAAGAG	AATGAAGACT	ACTTAGTAAT	TCCCATCAGG	AAATGCTGAC	CTTTTACATA	2220
25			AATCTCTAAG				2280
23			TCCAAGGGGA				2340
					CHUMUMUM	MUNUNUNUN	2310
	GGGAGAGGAA	GAAAAGAGAG	AGAGAAAAGA	GCCTCGTGCC			
	Seq ID NO:	80 Protein	sequence				
30		ession #: N					
50			21	31	41	51	
	1	11	41	31	1	1	
	1	1	ļ.		1	i	
			PARGTDATNP				60
	GDVGCGVFEC	FENNSCEIRG	LHGICMTFLH	NAGKFDAQGK	SFIKDALKCK	AHALRHRFGC	120
35			LKHDLCAAAQ				180
-			WGSLCSILSP				240
		SRETGRGAKG	ERGSKSHPNA	HARGRVGGLG	AUGPSGSSEW	EDECARIANT	300
	RR						
4.0							
40	Seg ID NO:	81 DNA sequ	lence				
			#: CAT cl	ister			
				31	41	51	
	1	11	21	31	1	31	
		1	1				
		•	1	1	1	1	
4.5	AATCATGTTT	TTGGAATAAA	AATGGTAAAT	GTTTTTTTT	TTTTTTTTT	GTTAGTAATG	60
45			AATGGTAAAT ATTTTATGTA				60 120
45	GAAGTATTCT	ATTATTTTA	ATTTTATGTA	TGTACAGACA	AGAGCTATAT	GGGAAAGTAG	120
45	GAAGTATTCT CTATTACAGA	ATTATTTTTA CCCATTATAG	ATTTTATGTA TTTCATCATT	TGTACAGACA TATAACCAGG	AGAGCTATAT GTTGGTAGTA	GGGAAAGTAG AAGCAACAGA	120 180
45	GAAGTATTCT CTATTACAGA AATACATCTT	ATTATTTTTA CCCATTATAG CAATGCAGAC	ATTTTATGTA TTTCATCATT TTGCTCCCAG	TGTACAGACA TATAACCAGG CATCTCTTTC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT	GGGAAAGTAG AAGCAACAGA TGACCATATT	120 180 240
45	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT	120 180 240 300
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG	120 180 240 300 360
45 50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG	120 180 240 300
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TCAAATTCCA	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCTCC TTGCTTTGTT CTTCAGGATT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC	120 180 240 300 360
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TCAAATTCCA TTAGCCACTC	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT	120 180 240 300 360 420 480
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT GGCATTGTGT	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG	120 180 240 300 360 420 480 540
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT ACAAGTATTT	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT GGCATTGTGT ACACCTTGTT	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG ACAGTGCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC AACAGCAGTG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCCGGT	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG	120 180 240 300 360 420 480 540 600
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA ACAGTATTT ACAAGTATTT CATGGCAGAA	ATTATTTTA CCCATTATAG CAATGCAGAC CAAGGAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TCAAATTCCA TTAGCCACTC TGGGACGTC TGGACGTCG TTCCTCCTTC	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGGT ACCAAATTTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACCGTC GGAAAACTCC TGGATGGAAT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATTGG AAACATGTAG	120 180 240 300 360 420 480 540 600 660
_	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA ACAGTATTT ACAAGTATTT CATGGCAGAA	ATTATTTTA CCCATTATAG CAATGCAGAC CAAGGAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG ACAGTGCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC AACAGCAGTG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGGT ACCAAATTTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACCGTC GGAAAACTCC TGGATGGAAT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATTGG AAACATGTAG	120 180 240 300 360 420 480 540 600 660 720
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT	ATTATTTTA CCCATTATAG CAATGCAGA CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT GGCATTGTT ACACCTTGTT TTGTAAACAT TATTGGCTTC	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGGT ACCAGATTTG CCACTGCGGG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACCGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT	120 180 240 300 360 420 480 540 600 660
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA TITTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC	ATTTATGTA TTTCATCATC TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TTAACCACTC TTGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCGGT ACCAAATTTG CCACTGCGGG TGGAAGAAAG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGGTG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA ATTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGGGTGCAGT	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT TTGTAAACAT TATTGGCTTC TGGCATCTGGCATCAGCACCTAGACCTA	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TTAACCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCCGGT ACCAAATTTG CCACTGCGG TGGAAGAAAG TTCCAGCTGC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA ATTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGGGTGCAGT	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC AAGAAGACCT TTGTAAACAT TATTGGCTTC TGGCATCTGGCATCAGCACCTAGACCTA	ATTTATGTA TTTCATCATC TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TTAACCACTC TTGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCCGGT ACCAAATTTG CCACTGCGG TGGAAGAAAG TTCCAGCTGC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50 55	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT ACAAGTATTTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGGCTGCAGT TGACCCCTGG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAGAG CCAGCACAGCC GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTAGCTTC TGGCATCTGC ACCAGACTA ACGTGGTTCT	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAT TTACGAAATG CCTATTCAG	TGTACAGACA TATAACCAGG CATCTCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCCGGT ACCAAATTTG CCACTGCGG TGGAAGAAAG TTCCAGCTGC	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGGATGTGA TTTTGCATCT ACAAGTATTT CATGCAGAA CCTTAAACTT AGGAATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO:	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGACTAGC ACCAGGACTA ACGTGGTTCT 82 DNA sequ	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG AGCAGTGCAG TTAACACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCCGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGAACCTTGC ATTCAGCAGTA TACACCGGT ACCACACTTT CCACTGCGGG TGGAAGAAAT TTCCAGCTGC TCACCCTGTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50 55	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGGATGTGA TTTTGCATCT ACAAGTATTT CATGCAGAA CCTTAAACTT AGGAATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO:	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGACTAGC ACCAGGACTA ACGTGGTTCT 82 DNA sequ	ATTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAT TTACGAAATG CCTATTCAG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGAACCTTGC ATTCAGCAGTA TACACCGGT ACCACACTTT CCACTGCGGG TGGAAGAAAT TTCCAGCTGC TCACCCTGTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50 55	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGGATGTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTT AGGAATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO: Nucleic Ac	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG CAGGAAGAAG CCAGGCAACC AAGAAGACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGAACTA ACGTGGTTCT 82 DNA sequid Accession	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: XM_061	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGAACCTTGC ATTCAGCAGTA TACACCGGT ACCACACTTT CCACTGCGGG TGGAAGAAAT TTCCAGCTGC TCACCCTGTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50 55	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGGATGTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTT AGGAATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO: Nucleic Ac	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG TCAACTGATA GGGCACAGCC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGACTAGC ACCAGGACTA ACGTGGTTCT 82 DNA sequ	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: XM_061	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGAACCTTGC ATTCAGCAGTA TACACCGGT ACCACACTTT CCACTGCGGG TGGAAGAAAT TTCCAGCTGC TCACCCTGTG	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAA GCCCAAAAAC AGTAGAGTG GATTCAGAG GATTCAGAG	GGGAAGTAG AAGCACATAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA	120 180 240 300 360 420 480 540 600 660 720 780
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO: Nucleic Ac Coding seq	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG CAGGACAGCC AAGAAGACCTGATA GGGCACCTGGT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACCAGGACTA ACGTGGTTCT 82 DNA sequid Accession uence: 12	ATTTTATGTA TTTCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TTAGCCACTC TGGGACGTCC ACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG Uence n #: XM_061 481	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTATCA ATCAGCAGTA TACACCGGT TACCAGATTTG CCAATTTG CCACTGCGGG TGGAGAGAAG TTCCAGCTGC TCACCCTGTG	AGAGCTATAT GTTGGTAGTIA CTTTCATCAT CTTTCATCAT CTTCCCTTC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTC TGGATGGAAT GCCCAAAAAC AGTAGAGTG GATTTCAGAG CCG	GGGAAGTAG AAGCACAGA TGACCATATT AATGTGGACT GGTGCCTTGG GTAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC	120 180 240 300 360 420 480 540 600 660 720 780
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGGGTGCAGT TGACCCCTGG Seq ID NO: Nucleic Ac. Coding seq 1	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG CAGGAAGAAG TCAACTGATA GGGCACAGCC AGGAAGAAC ACACTTGTT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT 82 DNA seq id Accession sence: 12 11	ATTTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: xM_061 481 21	TGTACAGACA TATAACCAGG CATCTCTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCAGGT ACCAGATTG CCACTGCGG TGCAGAGAAG TTCCAGCTGC TCCACCTGTG 091.1	AGAGCTATAT GTTGGTAGTAG CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGAT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGGTG CCG 41	GGGAAAGTAG AAGCAACAG TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC	120 180 240 360 420 480 600 660 720 780 840
50 55	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA TTTTGCATCT ACAAGTATTT AGGATCCTGG TGAGCAGAA CCTTAAACTT AGGATCCTG Seq ID NO: Nucleic Ac Coding seq 1 ATGCCAAATA	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG CAGGACAGCC AAGAAGACCTGATA GGGCACCTGGT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACCAGGACTA ACGTGGTTCT 82 DNA sequid Accession Lence: 12 11 CTTCAGGAACTA	ATTTTATGTA TTTCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTC TGGGACGTC TCCGGTCTTG TCCGGTCTTG TAATGGTAAT TTACGAAATG CCTATTTCAG Uence n #: XM_061 481 21 AACCAGGATT	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTCATTATCA ATCAGCAGTA TACACCGGT TACCAAATTTG CCACTGCGGG TTCCAGCTGC TCACCCTGTG 091.1 31 GAAATTTGGC	AGAGCTATAT GTTGGTAGTIA CTTTCATCAT CTTTCATCAT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC TGGATTGAAAC AGTAGAGTT GCCCAAAAAC AGTAGAGTT CCG 41 1 TTCTCCCAAGA	GGGAAAGTAG AAGCACATAT AATGTGGACT GGTGCCTTGG GTAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTTA ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG	120 180 240 300 360 420 480 540 660 720 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGCAGAA CCTTAAACTT AGGAATCCTG GAGTCCTGG Seq ID NO: Nucleic Ac. Coding seqt ATGCCAAATA ATGCCAAATA CACCAGAGCGC	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAGAG CAGGACAGCC GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT 82 DNA sequid Accession Lence: 12 11 CTTCAGGAAC TGGTCGCCCCC TGGTCGCCCCC	ATTTTATGTA TTTCATCATT TTGCTCCCAG ACATCCTCAG ACACTCCTCAG ACACTCCTCAG ACACCACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG LLENCE LLENCE LLENCE AACCAGGATT AACCAGGATT TCTCCTTCCG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTCAGCAGTA TACACCCGGT TACCACATTGC TGCAAAATTGC CCACTGCGGG TGCAAGATAGC TCACCCTGTG 091.1 31 GAAATTTGGC GAAAATTTGGC GTGAGTCCCA	AGAGCTATAT GTTGGTAGTAG CTTTCACCTC CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC CTGGATGGATT ACTCAGAAT ACTAGAGGTG GATTCAGAG CCCAAAAAC ACTAGAGGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT	GGGAAAGTAG AAGCACCAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC	120 180 240 300 360 420 540 600 660 780 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGAATGTTA ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac. Coding seqt 1 ATGCCAAATA CACCGAGGGC CCCGGGTACC	ATTATTTTA CCCATTATAG CAATGCAGA CAGGAAGAAG CAGGAAGAAG CAGGACAGC AAGAAGACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA sequid Accession uence: 12 11 CTTCAGGAAC TGGTCGCCGC CGCCAGTGCC CGCCAGTGCC	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTC TTCCCGTCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGGT ACCAAATTTG CCACTGCGG TGGAAGAAAG TTCCAGCTGC TCACCCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCAGTTCA	AGAGCTATAT GTTGGTAGTAG CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGAT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGGTC CCG 41 TTCTCCCAAGA GCCCGAGTT CGCTCCCGAT CTTCCCCAAGT CCGCTCCCGAT	GGGAAGTAG AAGCACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC	120 180 240 360 420 540 600 660 780 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGAATGTTA ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac. Coding seqt 1 ATGCCAAATA CACCGAGGGC CCCGGGTACC	ATTATTTTA CCCATTATAG CAATGCAGA CAGGAAGAAG CAGGAAGAAG CAGGACAGC AAGAAGACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA sequid Accession uence: 12 11 CTTCAGGAAC TGGTCGCCGC CGCCAGTGCC CGCCAGTGCC	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTC TTCCCGTCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGGT ACCAAATTTG CCACTGCGG TGGAAGAAAG TTCCAGCTGC TCACCCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCAGTTCA	AGAGCTATAT GTTGGTAGTAG CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGAT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGGTC CCG 41 TTCTCCCAAGA GCCCGAGTT CGCTCCCGAT CTTCCCCAAGT CCGCTCCCGAT	GGGAAAGTAG AAGCACCAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC	120 180 240 300 360 420 540 600 660 780 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seqt 1 ATGCCAAATA ATGCCAAATA CACCGAGGGC CCCGGGTACC CAGATGCATG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAAG CAGGAACAGCC AGGAAGACC AGGATGGGT ACACTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT 82 DNA seq id Accession Lence: 12 11 CTTCAGGAAC TGGTTGCCGC CGCCAGTCCCC GTGAGAACGT	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC ACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAAT CCTATTCAG Leence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCT GGGCTGCCGAT AGATCTCTGG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTATCA ATCAGCAGTA TACACCAGGT ACCAGATTTG CCACTGCGGG TGCAGAGAAAG TTCCAGCTGG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCCGATTCA AGCCCTTGTG AGCCCGATTCA AGCCTTGTG	AGAGCTATAT GTTGGTAGTAC CTTTCATCAC CTTTCACTCC CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGTC GGAATGGAAT	GGGAAAGTAG AAGCAACAAT TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA	120 180 240 300 360 420 540 600 720 780 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA ATGCCAAATA CACCGAGGC CCCGGGTACC CAGATGCACC GGTTGGCAAGCC CAGATGCACC CAGATGCACC GGTTGGGAAGCC	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGAAGAGA CAGGACAGCC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGACTA ACGTGGTTCT B2 DNA sequid Accession Lence: 12: 11 CTTCAGGAACTA TGTCAGGAACTA TGTCAGGAACTA CTTCAGGAACTA CTTCAGGAACTA TGTCAGGAACTA TGTCAGGAACTA TGTCAGGAACTA TGGTCGCCGC CGCAGTGCC CTCCTTTTGA	ATTTATGTA TTTCATCATAT TTTCATCATCAT TTTGCTCCAG ACATCCTCAG ACATCCTCAG ACACAGTCG TCACAGTCG TTAGCCACTC TCGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAT TTACGAAATG CCTATTTCAG LLENCE LL	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCAGGT ACCAGCAGTA TACACCAGGT CCCACTGCGGG TGCAGAGAAATTG CCACTGCGGG TCACCCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCGATCCA GACCGATCCA AGCCTTGTGGG GTCACCTTGTG	AGAGCTATAT GTTGGTAGTIA CTTTCATCAT CTTTCATCAT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC AGTTGGAT GCCCAAAAAC AGTTAGAGGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT CGCTCCCGAT TTCTTTGTATA	GGGAAGTAG AAGCACAGA TGACCATATT AATGTGGACT GGTGCCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGTT CGAATTTTA CATCGGGAAG	120 180 240 300 360 420 540 600 720 780 840
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTGA ATTTTGCATCT ACAAGTATTT CATGGCAGGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Acc Coding seq 1 ATGCCAAATA CACCAGAGGC CCCGGGTACC CAGATCCATG ATTCAGCTG ATTCAGCTG ATTCAGCTG ATTCAGCTG	ATTATTTTA CCCATTATAG CAATGCAGAC CAGGACAGAC CAGGACAGCC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT ### ACCAGAACTA CTTCAGGAAC ### CTTCAGGAAC CTTCAGGAAC CTTCAGGAAC CTTCAGGAAC CTGCTGCCGC CGCAGTGCC CGCAGTGCC CTCCTTTTGA CCAGCAAAAT CCAGCAAAAT	ATTTATGTA TTTCATCATCATT TTGCTCCCAG ACATCCTCAG ACACTCCTCAG ACACTCCTCAG ACACCCTC TGGGACGTCC AACAGCAGTG TTCCCTCTTC TAATGGTGAT TTACGAAATG CCTATTTCAG uence n #: xM_061 481 21 AACCAGGATT TCTCCTTCCG GGCTGCCGAT AGATCTCTGG GGCAAACGAA	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCGGT ACCAAATTTG CCACTGCGG TGGAAGAAG TTCCAGCTGC 091.1 31 GAAATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGGGG GTCCATGTGGATCCCA TCACCCTGTG GTGAGTCCCA TCACCCTGTG TCACCCTGTG TCACCCTGTG TCACCCTGTG TCACCCTGTG TCACCCTGTG TCACCCTGTG TCACCCTGTGATCACCCATGTAA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGAT CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGTG GATTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT CGCTCCCGAT TTCTTTGCTA GCAAGAAAC TGGACATCAT	GGGAAAGTAG AAGCACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTTA	120 180 240 300 420 540 600 660 780 840 120 180 240 300
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTTA CATGCAGAA CCTTAAACTT ACGAATCCTTG ACGAATCCTG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA CACCAAGGGG CCCCGGGTACC CCCGGGTACC CCAGGTACC CAGATGCATC GTTGGGAAGC ATTTCAGCTG GATGGGTCTA	ATTATTTTA CCCATTATAG CCAGGAGAA CAGGAAGAAG CAGGAAGAAG CAGGACACACC AGAATGATA GGGCACACTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA seq dd Accession Lence: 12 11 CTTCAGGAAC TGGTTGCCGC CGCCAGTGCC GTGAGAAGAG CTCCTTTTAA CACGCTCTTTAA CACGCAAAAT ACACGTCCAAAAT ACACGTCGCAAAAT ACACGTCGCCA	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC ACAGCAGTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG Lence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCTACCGGAT AGATCTCTGG GGCTACCGGAT AGATCTCTGG GGCAAACGAAA GATGTGGTGC GAAAGGGAGG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACAGCAGTA TACACCAGGT TACCAGATTGG TCCACTGCGGG TTCCACTGTG 091.1 31 GAAATTTGGC GTGAGTACCA AGCCTGTG GAGACTACA AGCCTGTG GAGATCCA AGCCTGTGGGG GTCCATGTGAG AGCCTGTGTG AGCCTTGTG	AGAGCTATAT GTTGGTAGTIA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT GCCCAAAAAC AGTAGAGGTC CCG 41 TTCTCCCAAGA GCCCGAGGTT CGCTCCCGAT TTCTTTGCTA GCAAAGAAC CTGGAAGAAC CTGGACATCA CCAAGAAC CCGAGTT CGCTCCCGAT TTCTTTGCTA GCAAAGAAAC CCGAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCCAAGCACTT CCAAGCACTT CCAAGCACTT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA TGCCATCACA	120 180 240 300 360 420 540 660 720 780 840 60 120 240 300 420
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGGCAGAA CCTTAAACTT AGGAATCCTG TGAGCCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA ATGCCAAATA CACCGAGGC CCCGGGTACC CAGGATGCATG GTTGGGAAGC ATTTCAGCTG GATGGGTCTA GTCTGTGACG	ATTATTTTA CCCATTATAG CCAGGAGAGA CAGGAAGAGA CCAGGAAGAGA GGGCACAGCC AGGATGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT 82 DNA sequid Accession Lence: 12 11 CTTCAGGAACTA CTTCAGGAAC TGGTGCCGC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CTCCTTTTGA CCAGCAAAAT ACAGCGTCGG GTCTGGACAC TCGTCTGGACAT CCGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CTCCTTTTGA CCAGCAAAAT ACAGCGTCGG GTCTGGACAC TCTCTGAGACT	ATTTATGTA TTTCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC ACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAAT TTACGAAATG CCTATTCAG Uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCG GGCTGCCGAT AGATCTCTGG GGCAAACGAA GATGTGGTGC GAAAGGAGG CAGCCCCGAG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTCATTA TACACCGGT ACCAGGGAGAAAATTG CCACTGCGG TTCACCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGTG GTCACCTTGTG GTCACTTGTG GTCATGTG TTCACCTTGTG GTCATTCA AGCCTTGTG GTCATGTAA	AGAGCTATAT GTTGGTAGTAG CTTTCATCCT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC GGATTGAGGTG GCCCAAAAC AGTAGAGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT TCGTCCGAT TTCTTTGCTA GCAAAGAAC TGGACATCAT TCGACACCTT TGGGAGCATT	GGGAAAGTAG AAGCACCAGA TGACCATATT AATGTGGACT GGTGCCTTGG GTGGCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA CATCGGGAAG GTTTCTGTTA CATCCACA CCAGTTCAGT	120 180 240 300 360 420 540 660 720 780 840 120 120 120 120 300 360 420 480
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGGCAGAA CCTTAAACTT AGGAATCCTG TGAGCCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA ATGCCAAATA CACCGAGGC CCCGGGTACC CAGGATGCATG GTTGGGAAGC ATTTCAGCTG GATGGGTCTA GTCTGTGACG	ATTATTTTA CCCATTATAG CCAGGAGAGA CAGGAAGAGA CCAGGAAGAGA GGGCACAGCC AGGATGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGAACTA ACGTGGTTCT 82 DNA sequid Accession Lence: 12 11 CTTCAGGAACTA CTTCAGGAAC TGGTGCCGC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CTCCTTTTGA CCAGCAAAAT ACAGCGTCGG GTCTGGACAC TCGTCTGGACAT CCGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CTCCTTTTGA CCAGCAAAAT ACAGCGTCGG GTCTGGACAC TCTCTGAGACT	ATTTATGTA TTTCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC ACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAAT TTACGAAATG CCTATTCAG Uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCG GGCTGCCGAT AGATCTCTGG GGCAAACGAA GATGTGGTGC GAAAGGAGG CAGCCCCGAG	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCATCAT TACACCGGT ACCAGGGAGAAAATTG CCACTGCGG TTCACCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGTG GTCACCTTGTG GTCACTTGTG GTCATGTG TTCACCTTGTG GTCATTCA AGCCTTGTG GTCATGTAA	AGAGCTATAT GTTGGTAGTAG CTTTCATCCT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC GGATTGAGGTG GCCCAAAAC AGTAGAGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT TCGTCCGAT TTCTTTGCTA GCAAAGAAC TGGACATCAT TCGACACCTT TGGGAGCATT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA TGCCATCACA	120 180 240 300 360 420 540 660 720 780 840 120 120 120 120 300 360 420 480
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA ATGCCAAATA CCCGGGTACC CCGGGTACC CAGATGCATG GTTGGGAAGC ATTTCAGCTG GATGGCTCTA GTCGCAACC TCCACTCCTC	ATTATTTTA CCCATTATAG CCATTATAG CAATGCAGAC CAGGAACAGC CAGGAACAGC GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC TGCATCAGC ACCAGACTA ACGTGGTTC 82 DNA sequid ACACCBSion Lence: 12 11 CTTCAGGAAC TGGTCGCCGC GGCAGTGCC GTGAGAACT ACAGGTCGC GTCAGAACT ACAGGTCGC GTCAGAACT ACAGGTCGC GTCAGAACT ACAGGTCGC GTCAGAACT ACAGGTCGC GTCTGCACAT ACTCGGAACT ATCTGGAACT	ATTTTATGTA TTTCATCATT TTTGCTCCCAG ACATCCTCAG ACATCCTCAG ACATCCAT TTAGCCACTC TGGGACGTCC AACAGCAGTG TTACCACTTC TCCGGTCTTG TAATGGAATT TTACGAAATT CCTATTTCAG LLENCE LLE	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCGGT TACCACGGT TGCAGAGAGAG TCCACCTGTG 091.1 31 GAAATTTGGC GAGAGTCCCA GACCATCCA AGCCTTGTG GAGACCTGGG GTGAGTCCCA AGCCTTGTG TTGAAAGTT TCGGCTGCA TCGCTTGCAGCTCCA TCGCTGCAGCTCCATTCA AGCCTTGTGAGTCCCA TCGCTGCAGCTTCAAGTTCAAGTTCAAGTTCAAGTTCAAGTTTTCAAAGTT TCGCTGCAGAGCTCCAAGCCTTCAAAGTTCAAGTTCAAGTTCAAGTTCAAGTTCAATTTCAA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGAT CAAGACACTCA CCGTACGGTC GGAAAACTCC CGGAGAGACTCA AGTIGGAGT GCCCAAAAAC AGTIGGAGT GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT CGCTCCCGAT TTCTTTGCTA TTCTTTTGCT TTGGAGACACTCAT CCCAACAGGA	GGGAAAGTAG AAGCACCAGA TGACCATATT AATGTGGACT GGTGCCTTGG GTGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATAG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCCGGG GGCTCTGGCG GATTGGAGGT TGAAATTTTA CACCGGGAAG GTTTCTGTTA TGCCATCACA ACCAGTTCAGT AGTGAAGGCA	120 180 240 300 360 420 540 660 720 780 840 120 120 120 120 300 360 420 480
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA CACCAAGCGC CCCGGGTACC CAGATGCATG GTTGGGAAGA ATTTCAGCTG GATGGGTCTA GTCGTGCACC TCACTCCTC AGAATCAAGA	ATTATTTTA CCCATTATAG CCATTATAG CAATGCAGA CAGGAAGAAG CAGGAAGAAG CAGGACATGATA GGGCACACTGATA ACACTTGTT ACACCTTGTT TTGTAAACAT TATTGGCTTC 82 DNA seq id Accession ence: 12 11 CTTCAGGAAC TGGTCGCGCC GTGAGAGAGCA CTGGTCGCCGC GTCAGAACT ACAGGTTGCCGGC GTCAGAACT ACAGGTTCGGACT TCTGGAACT TCTGGAACT TCTGGACT TCTGGACT TCTGGACT TCTGGACT TCTGGACT TCTGGACTT TCTGGACTT GGATGCTTT	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCACATCCTC TGGGACGTCC ACAGCAGTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG Lence n #: xM_061 481 21 AACCAGGATT TCTCCTTCC GGCAAACGAAG AGATCTCTGG GGCAAACGAAA GATGTGGTGC GAAAGGAGG GAAAGGAGAGCCCCGAG CCCCTTGGAT CAAAGGAGGG	TGTACAGACA TATAACCAGA TATAACCAGA CATCTTCTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCAGTT ACCAGATTG CCACTGCGG TGGAGAAGA TTCCAGCTGC TCACCCTGTG 31 GAAATTTGGC GTGAGTCCA AGCCTAGTG GACCCATTCA AGCCTTGGTG GTCCATTGAA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC CTTCCCTTGTT CTTCAGGAT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGAT GCCCAAAAAC AGTAGAGGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT CGCTCCCGAT TTCTTTGCTA GCAAAGAAC CTGGACATCAT CCAAGCACTT TGGGAGCATT TGGGAGCATT TGGGAGCATT CCCAACAGG CCGAACTGC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTTAG TATCTAATGG AAACATGTTAG GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGAAG GTTTCTGTTA TGCCATCACA CCAGTTCAGT AGTGAAGTA TCTGAAATAC	120 180 240 300 360 420 660 720 780 840 60 120 240 306 420 480 540
50 55 60 ·	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA CACCGAGGGC CCCGGGTACC CCAGGTACC CAGATCCATG GTTGGGAAGC ATTTCAGCTG GATGGGTACC AGAATCATG GTTGCGAACA CAGCGTCACC CAGATCCATC GCACTCCTC AGAATCAAGA CTTCTGCACA	ATTATTTTA CCCATTATAG CCAGGAGAA CCAGGAAGAAG CCAGGAAGAAG CCAGGAAGACG ACACTGAT TGGAACTGAT TATTGGCTTC TGGCATCTGC ACACGAGACTA ACGTGGTTCT 82 DNA seq id Accession Lence: 12 11 CTTCAGGAAC TGGTCGCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CTCCTTTGA ACACGTCGTCT CCCTTTTGA ACACGTCGCAGAACT ACTCGCAAAAT ACTCGCAAAT ACTCGCAAAT ACTCGGAAAT GGTCGCCGC GTCTGGACAT ACTCGGAAAT ACTCGGAAAT ACGGGTCGG CTCTGGACAT ACTCGGATTCC GGATGGTTGGC GTCTGGACAT ACTCGGATTTGC GGATGGTTGGC GTCTGGACAT ACTCGGATTGCC GGATGGTTGGACGTTTGC	ATTTATGTA TITCATCATT TTTGTTCCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTC TCCGGTCTTG TAATGGTAT TTACGAAATG CCTATTTCAG LUENCE M #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAA GATGTGTGCG GAAAGGAGC CCCTTGAG TCAAGGAGGC TGGAGGCAGA	TGTACAGACA TATAACCAGG CATCTTTCC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA ATCAGCAGTA TACACCGGT ACCAGATTGC CCACTGCGGG TGCAGAGAAATTG CCACTGCGGG TTACCCCTGTG 091.1 31 GAAATTTGGC GTGATCCCA AGCCTTGCTG GTCCATGTGG GTCCATGTGG TTTGAAAGGT TTTGAAAGGT AGGGTCAGAG AGGCTCAGAGAGAA AGGCTCAGAGAGAAAATTCCAGCTGCGG AGCCAGAGAAAATTCAAAGCTTCACAGAGAGAAAATGCTTCTGGAGAGAAAATGCTTCTGAAAGGT AAGGCTCAGAGAGAAAATGCTTCTGAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAAGGT AAGGCTCAGAGAAAATGCTTCTGGAACACCAAAAAATGCTTCTGAAAGGT AAGGCTCAGAGAAAATGCTTCTGAAAGGT AAGGCTCCTGAAAAATGCTTCTGAAAAGGT	AGAGCTATAT GTTGGTAGTA CTTTCATCAT CTTTCATCAT CTTTCATCAT CTTTCATCAT CTTTCATCAT TAGAGAT AAAGCAATCA CCGTACGGTC GGAAAACTCA GCCCAAAAAC AGTAGAGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCGAGTT TCGTCCGAT TTCTTTGCTA GCAAAGAAAC TCGACATCAT CCAACAGGA CCGAACTTCC TGGGACATTGC TGCCCAGAT TCCTACAGGA CGGAACTTGC TGCCCCAGAT TCCCAACAGGA CGGAACTTGC TGCCCCAGAT TGCCCCAGAT TGCCCCAGAT TCCCCAACAGGA CGGAACTTGC TGCCCCAGAT TGCCCCAGAT TGCCCCAGAT	GGGAAAGTAG AAGCAACAA TGACCATATT AATGTGGACT GGTGCCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGAAG GTTTCTGTTA CATCGGAAG TCTGAATAC CCAGTTCAGT ACTGAAATAC CCTCATCATC	120 180 240 300 360 420 540 660 720 780 840 120 180 300 340 420 480 540 660
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA ATGCCAAATA CCCGGGTACC CCGGGTACC CAGATGCATG GATGGATG TTCAGCTG GATGGATCTT GATGGAAGC TCCACTCCTC AGAATCAGA CTTCTGCACA CTTCTGCACA GTCACTGATG CTTTTGACACA CTTCTGCACA CTTCTGCACA CTTCTGCACA	ATTATTTTA CCCATTATAG CCATTATAG CAATGCAGA CAGGAAGAGA CAGGACAGCC GGCATTGTG ACACCTTGTT TGTAAACAT TATTAGACTT TATTAACAT TATTAGACTT ACGGGATCTG 82 DNA seq idd Accession Lence: 12 11 CTTCAGGAACTA TGTCAGGAACTA CTTCAGGAACTA CTTCAGGAACTA ACAGGTCGG GCAGTGCC GCAGTGCC GCAGTGCC GCAGAATT ACAGGTCGG GTCTGAACT ACAGGTCGG GTCTGAACT ACAGGTCGG GTCTGAACT ACAGGTCGG GTCTGGACT ACTCGGAATT GGATGGTTTTT GAAGGTTGGG GGAAGTCCCA GGGAAGTCCCA GGGAAGTC	ATTTATGTA TTTCATCATT TTTCATCCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACACACTC TGGGACGTCC AACAGCAGTG TTCCTCCTTC TCCGGTCTTG TAATGGTAAT TTACGAAAT CCTATTTCAG LLENCE L	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCAGTA TACACCAGTT CCCACTGCGG TGGAGAGAAG TTCCAGCTGC 091.1 31 GARATTTGGC GTGAGTCCCA GACCATTCA AGCCTTGCGG GTCACCTGTG GTGAGTCCCA AGCCTTGTG TTCGACGTGC TTTGAAAGGT TTGAAAGGT TTGAAGGT TCATTTCAA CCGCACGAGAA AATGCTTCTG GCACTGCGGG GCACTGCAGA	AGAGCTATAT GTTGGTAGTAGT CTTTCACCTC CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC GGATTCAGGAT GCCCAAAAAC AGTIAGAGTG GATTTCAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT CGCTCCCGAT TTCTTTGGTA GCAAAGAACT CCAAGCACT CCGAACTAGC CGGACTTGC CGGACTTGC CGGACTTGC CCGACTGGACCTGC CCGACTGCC TGCCCCAGGT CCCACAGGA CCGCACAGGACTTCC TGCCCCAGGT CCCACAGGACTTCC TGCCCCAGGT CCCACAGGACTTCC TGCCCCAGGT CCCACGGACTCCC	GGGAAAGTAG AAGCACCATAT AATGTGGACT GGTGCCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATAG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51	120 180 240 300 360 420 540 600 720 780 840 120 180 240 360 420 420 540 600 600 600 600 720 720 720 720 720 720 720 720 720 7
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGAATGTT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA CACCAAGCGC CCCGGGTACC CAGATGCATG GATGGTACA GTTGGAAGA CTTCTGCACA GTCACTCCTC AGAATCAAGA CTTCTGCACA GTCACTCACG GTCACTCTC	ATTATTTTA CCCATTATAG CCAGGAGAAA CCAGGAGAAAA TCAACTGATA GGGCACACCC AGGAAGAAC AGGACACCT GGCATTGTGT ACACCTTGTT TTGTAAACAT TATTGGCTTC 82 DNA seq id Accession sence: 12 11 CTTCAGGAAC TGGTCGCGC GTGAGAGAGC GTGAGAGAGC TCCCTTTTGA ACACCTTGTT ACACGTCGC GTGAGAACT ACACGTCGG TTGGACAT ACACGTCGG TTTGGACT GGATGCT GGGAGTTCC GGGAGTTCC GGGAGTTCC GGGAGTTCC GGGAGTTCC GGGAGTTCC GGGAGTCCC GTTTTGCTTT	ATTTATGTA TITCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC ACAGCAGTC TCCGGTCTTG TTATGCTCATT TCCGGTCTTG TAATGGTGAT CCTATTTCAG LEENE #: XM_061 481 21 AACCAGGATT TCTCCTTCCGGGCAAACGAAA GATCTCCGGTCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCCTTGGAT CAAAGGAGGGCCCCTTGGAT CAAAGGAGGGCAGAAGGAAA GATCTCTGGGCCCCTTGGAT CAAAGGAGGGCAGAAGGAAA GATCTCTGGGCCCCTTGGAT CAAAGGAGGGCAGAAGGAAA CCCCTTGGAT CAAAGGAGGGCAGAAGGAAA GGGGGGAAACGAAA GGGGGGAAACGAAA GATCTCTGGGAGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCGAGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGCCCCAGGCCCCAGGGCCCCAGGCCCCAGGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCAGCCAGGAGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGAGG	TGTACAGACA TATAACCAGA TATAACCAGA CATCTTCTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA TACACCAGTT ACCAGATTG CCACTGCGG TGGAAGAAG TTCCAGCTGC TCACCCTGTG 31 GAAATTTGGC GTGAGTCCA GACCGATTCA AGCCTTGGTG GTCCATGTGAG TTTGAAAGGT AGGCTTCGAG TTTGAAAGGT AGGCTTAGAA TCGCTGCAG TCATTTTAAA CCGCACGAGAA AATGCTTCTGAG GCACTGCAG AATGCTTCTAAA	AGAGCTATAT GTTGGTAGTIA CTTTCATCCT CTTCCCCTCC CTTCCCTTCGTTTGTT TAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGAT GCCCAAAAAC AGTAGAGGTG GATTCCAAGA CCG 41 TTCTCCCAAGA GCCCGAGTT CGCTCCCGAT TTCTTTGCTA GCAAAGAAC TGGACATCAT CCCAACAGG CCGAACTTCCCAAGA CCGAACTTGC TGGACATGCA CGGAACTTGC TGCCCAAGT CCCAAGACCACT TCCCCAAGT CCGAACAGGAC CGGAACTTGC GGGAGGAGCT CGTTCCCCAGAT TCCAAGCACCT GGGAGGAGCT GGGAGGAGCT GCTTCCCCAGAT CCAAGCACCT GGGAGGAGCACT GGGAGGAGCT GCTTCCCCAGAT CCAAGCACCT GGGAGGAGCAGCT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCAGAT CCAAGCACCT GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCCAGAT CCAAGCAGCACCT GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCCAGAT CCAAGCAGCACCT GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCCAGAT CCAAGCAGCACC GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCAGAT CCAAGCAGCACC GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GCTTCCCCCAGAT CCAAGCAGCACC GGGAGGAGCACT GGGAGGAGCACT GGGAGGAGCACT GGGAGAGCACC GGGAGGAGCACT GGGAGAGCACC GGGAGGAGCACT GGGAGAGCACT GGGAGAGCACT GGGAGAGCACT GCTTCCCCAGAT CCAAGCACCT GGGAGGAGCACT GCGAGACT GGGAGAGCACT GCTTCCCCAGAT CCAAGCACCT GGGAGAGCACT GCGAGACT GCGAGCACT GGGAGAGCACT GCGAGACT GCGAGACT GCGAGCACT GCGAGCACT GCGAGCACT GCGAGACT GCGAGACT GCGAGCACT GCGAGCACT GCGAGACT GCCCCAGAT CCCAACACC GGGAGGAGCACT GCGAGCACT GCCCCAGAT CCCAACCACC GGGAGACT GCCCCAACCACC GCGAGCACT GCCCCAACCACC GCGAGCACT GCCCCAACCACC GCGACCT GCCCCAACCACC GCGAGCACT GCCCCAACCACC GCGACCT GCCCCAACCACC GCGACCT GCCCCAACCACC GCCACC GCCCACC GCCCCCACCC GCCCCCCC GCCCCCCC GCCCCCCC GCCCCCCCC	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAGT ACAGTATCTA GAATCCCCCC 51	120 180 240 300 360 420 660 720 780 840 60 120 300 420 480 540 600 720 780
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATCGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA CCCCAGGTACC CAGATGCAGA GTTGGGAAGCG CCCAGGTACC CAGATGCATG GTTGGGAAGC ATTTCAGCTG GATGGGTACC AGATCATG GTTGGGAAGC CTCTCTCC AGAATCAAGA CTTCTGCACA GTCACTGATG GGTGCACTG GGTGCACTG GGTGCACTG GGTGCACTG	ATTATTTTA CCCATTATAG CCAGGAGAA CCAGGAAGAAG CAGGAAGAAG CCAGGAAGACC AGGAAGACTGATA GGGCACCTGGT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA seq id Accession Lence: 12 11 CTTCAGGAAC CTTCAGGAAC TGGTCGCCGC CGCAGTGCGC CGCAGTAGGGT CTCCTTTTGA ACCGGCAGAGCG CTCGGACAC GTCTGGACAT TCGGATTGCT GAGGGTTGCC GGAGTTGCC GGAGTTGCC GGAGTTGCAC TGGTTGCACT GGAGGTTGCC TGGAGTTCC TGGAGTCC TGGAGTTCC TGGAGTTCC TGGAGTTCC TGGAGTTCC TGGAGGGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAC TCTGGAGC TCTGGAC TCTGGAGC TCTGGAC TCTGGAC TCTGGAGC TCTGGAC TCTGC TCTGGAC TCTGC TCTGGAC TCTGC TCTGCAC TCTGC TCTGC TCTGCAC TCTCC TCT	ATTTATGTA TITCATCATT TTTGTTCCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC TCCGGTCTTG TAATGGTAT TTACCAAATG CCTATTTCAG Luence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAA GATTCTTCAG GGCAAACGAA GATTGTGTG GGAAACGAA GATTGTGTG GAAAGGAGG CCCCTTGAAT CAAAGGAGG TGGAGGCAAAGA GGGGGTCAGG GGCGGGTCAGG GGCACGTGCCCGAG	TGTACAGACA TATAACCAGG CATCTTTCC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA ATCAGCAGTA TACACCAGGT ACCAGATTGC CCACTGCGGG TGGAGAGAAAG TTCCAGCTGG GAAATTTGGC GTGATCCCA AGCCTTGGG GTGATCCCA AGCCTTGGG TTTGAAAGGT AGGCTGCAG TTTTCAAAGGT AGGCTCAGG TTTTCAAAGGT TTTCCAGGT TTTCCCAGGT TTTCCCAGT TTTCCACAGT TTTCCCAGT TTTCCC	AGAGCTATAT GTTGGTAGTAC CTTTCATCC CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGTC GGAATGGAAT	GGGAAAGTAG AAGCAACAG TGACCATATT AATGTGGACT GGTGCCTTGG GTAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG AAACATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GGTTCTGGCG GATTGGAGGT TGAATTTTA CATCGGAAG GTTTCTGTTA TGCCATCACA CCAGTTCAGT AGTGAAGGAAAGG CCTCATCACC CCTCATCACC GGAGGAAAGG GATGCACGG GGCTCTGCCG TCTGACAT CCTCATCACC CCAGTTCACT GAAGGAAAGG GATTGCACGC GACACCACCACC	120 180 240 300 360 420 540 660 720 780 840 120 240 300 340 480 540 660 720 780 840
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATCGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA CCCCAGGTACC CAGATGCAGA GTTGGGAAGCG CCCAGGTACC CAGATGCATG GTTGGGAAGC ATTTCAGCTG GATGGGTACC AGATCATG GTTGGGAAGC CTCTCTCC AGAATCAAGA CTTCTGCACA GTCACTGATG GGTGCACTG GGTGCACTG GGTGCACTG GGTGCACTG	ATTATTTTA CCCATTATAG CCAGGAGAA CCAGGAAGAAG CAGGAAGAAG CCAGGAAGACC AGGAAGACTGATA GGGCACCTGGT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA seq id Accession Lence: 12 11 CTTCAGGAAC CTTCAGGAAC TGGTCGCCGC CGCAGTGCGC CGCAGTAGGGT CTCCTTTTGA ACCGGCAGAGCG CTCGGACAC GTCTGGACAT TCGGATTGCT GAGGGTTGCC GGAGTTGCC GGAGTTGCC GGAGTTGCAC TGGTTGCACT GGAGGTTGCC TGGAGTTCC TGGAGTCC TGGAGTTCC TGGAGTTCC TGGAGTTCC TGGAGTTCC TGGAGGGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAGC TCTGGAC TCTGGAGC TCTGGAC TCTGGAGC TCTGGAC TCTGGAC TCTGGAGC TCTGGAC TCTGC TCTGGAC TCTGC TCTGGAC TCTGC TCTGCAC TCTGC TCTGC TCTGCAC TCTCC TCT	ATTTATGTA TITCATCATT TTTGTTCCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAAATTCCA TTAGCCACTC TGGGACGTCC TCCGGTCTTG TAATGGTAT TTACCAAATG CCTATTTCAG Luence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAA GATTCTTCAG GGCAAACGAA GATTGTGTG GGAAACGAA GATTGTGTG GAAAGGAGG CCCCTTGAAT CAAAGGAGG TGGAGGCAAAGA GGGGGTCAGG GGCGGGTCAGG GGCACGTGCCCGAG	TGTACAGACA TATAACCAGG CATCTTTCC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCAGTA ATCAGCAGTA TACACCAGGT ACCAGATTGC CCACTGCGGG TGGAGAGAAAG TTCCAGCTGG GAAATTTGGC GTGATCCCA AGCCTTGGG GTGATCCCA AGCCTTGGG TTTGAAAGGT AGGCTGCAG TTTTCAAAGGT AGGCTCAGG TTTTCAAAGGT TTTCCAGGT TTTCCCAGGT TTTCCCAGT TTTCCACAGT TTTCCCAGT TTTCCC	AGAGCTATAT GTTGGTAGTAC CTTTCATCC CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGTC GGAATGGAAT	GGGAAAGTAG AAGCAACAGA TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAGT ACAGTATCTA GAATCCCCCC 51	120 180 240 300 420 540 600 720 780 840 120 1240 300 360 420 480 540 660 720 720 720 720 780
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGATGTTA CATGCAGAA CCTTAAACTT AGGATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding sequil ATGCCAAATA ATGCCAAATA CCCGGGTACC CCGGGTACC CAGATGCATG GTTGGGAAG ATTTCAGCTG GATGGGTTACT GATGGATACG TCCACTCCTC AGAATCAAGA CTCTGTGACG GTTCACTGACG GTGTCACTG GGCGGCGGG CGCCAGGGGG CGCCTCTCA	ATTATTTTA CCCATTATAG CCATTATAG CAATGCAGA CAGGAAGAGA CAGGAAGAGA GGGCACTGTG GCATTGTG ACACCTTGT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACAGGACTA ACGTGGTTCT 82 DNA sequid ACCESSIO LEGACTAGTC CTTCAGGAACTA CTTCAGGAACTA CTTCAGGAACTA CTTCAGGAACTA ACAGCGTCGC GCCAGTGCC GCCAGTGCC GCCAGTGCC GCCAGTGCC TGTTGGAATT ACAGCGTCGG GTCTGGAAAT ACAGCGTCGG GTCTGGAATT GGATGGTTTGCTT GAGGGTTGCC GGAAGTTCCCA TGTTTGCTT CTAGAGAGCCA GCACCTCAG GCACCTCAC GCACCTCAG CACCTCAG	ATTTATGTA TTTCATCATT TTTCATCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACACTCCTCAG ACACTCCTCAG ACACTCCTCAG TTAGCCACTC TCGGACGTCC TCCGGTCTTG TAATGGTAT TTACGAAATG CCTATTTCAG LUENCE I #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCTGCCGAG GGCAAACGAA GATGTGGTGC GGCAAACGAA GATGTGGTGC CAGCCCCAGG CCACCTCGAG CCAGCCCCAGG CCAGCCCCAGG CCAGCGCAGC CGACGTCCAGC CGACGTCCAGC CGACGTGCAG CGACGTGCAGC CGACGTGCAGC CGACGTGCAGC CCAGCTCCACC CCACCTCCACC C	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCATCATCA ATCAGCAGTA TACACCAGGT CCCACTGCGGG TGGAGAAAATTG CCACTGCGGG TTCACCCTGTG 091.1 31 GARATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGCTG GTCATTGAAGGT TTTGAAAGGT AGGGTCAGAG TCATTTTCAA CGCACGAGAGA AATGCTTCTG GCACTGCAGG AATCTTCTAA CTTTCACAGGT TTTTCCAGGT TTTCCCAGGT TTCCCAGGT TTTCCCAGGT TTCCCAGGT TTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTCCCAGGT TTCCAGGT TTCCCAGGT TTCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCCAGGT TTCCAGGT TTCCAGGT TTCCCAGGT TTCCAGGT TTCCAGGT TTCCCAGGT TTCCAGGT	AGAGCTATAT GTTGGTAGTAGT CTTTCATCCT CTTCCCCTCC TTGCTTTGTT CTTCAGGATT AAAGCAATCA CCGTACGGTC GGAAAACCA GCCCAAAAAC AGTAGAGGTG GATTCAGAG CCG 41 TTCTCCAAGA GCCCCGAGTT CGCAACAGCACTT TGGACATCAT CCAACAGGA CCGAACTGCCAGAT CCAACAGGA CCGAACTGCCAGAT CCAACAGGA CCGAACTTGC GGGAGGACTTGC GGGAGGACT AGGTGGAGGT AGGTGGAGGT AGGTGGAGGT AGGTGGAGGCT AGGTGGAGGCT	GGGAAAGTAG AAGCACAGAT TGACCATATT AATGTGGACT GGTGCCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA TGCATCACA CCAGTACACA CCAGTACACA CCTCATCACT GAAGGAAAGG GCATGCACAC GAAGGAAAGG GCATGCACAC AGCTAGGAGG TGCCCACCAC AGCTAGGAGG TGCCCCACC AGCTAGGAGG TGCCCCACC AGCTAGGAGG TGCCCCCACC AGCTAGGAGG TGCCCCCACC AGCTAGGAGG TGCCCCCACC AGCTAGGAGG TGCCCCCCACC AGCTAGGAGG TGCCCCCCAC AGCTAGGAGG TGCCCCCCAC AGCTAGGAGG TGCCCCCCAC TGCCCCCCAC TGCCCCCCCAC TGCCCCCCCC TGCCCCCCCC TCTCATCCCCCCC TCTCATCCCCCCCC	120 180 240 300 420 540 600 720 780 840 120 180 240 300 360 420 540 600 720 780 840
50 55 60 65 70	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGAATGTT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac. Coding seqt 1 ATGCCAAATA CACCAGGGC CCCGGGTACC CAGATGCATG GATGGGTACC CAGATGCATG GATGGGTCAG GTCACTCTC AGAATCAAGA CTTCTGCAAGA GTCACTGATG GCCAGCGGC CCAGGCAGCC CCAGGCAGCC CCAGGCAGCC CCAGCTTCACC CCAGAGCTTCACC CCAGAGCTTCACC CCAGAGCTTCACC CCCAGCCAGCC CCCAGCCAGCC CCCAGCCTTCACC CCCAGCCTTCACC CCCAGCCTTCACC CCCAGCCTTCACC CCCAGCCTTCACC CCCAGCCTTCACC CCCAGCCTTCACC	ATTATTTTA CCCATTATAG CCAGGAGAAA CAGGAGAGAA CAGGAAGAAC CAGGAAGAAC CAGGAAGACC AGGACTGATA CCCTTGTT ACACCTTGTT ACACCTTGTT ACACCTTGTA ACACTTGTA ACACTTGTA ACACTTGTA ACGTGGTTCT 82 DNA seq id Accession uence: 12 1 1 CTTCAGGAAC TGGTTGCCGC CGCCAGTGCC GTGAGAAGT ACAGCGTTGGCCGT CTCTTTTGA ACTTGGACAT ACAGCGTCGG GTCTGGACAT ACAGCGTCGG GTCTGGACAT ACAGCGTTGGC GTGAGATTT GGAGGTTGCC GGGAGTTGCC GTGTTGTACAT CTGAGAGGC TCTTTTGACAT TCTGGAATT CGAGGGTTGCC GGGAGTTGCC GGGAGTTGCC TGAGAGGC TCTTCTGACAT TCTGACAT TCTGACAT TCTGACAT TCTGACAT TCTGACAT TCTGAGGGC TCTCATGGA TCTTCATGGA TCTTCATGA TCTTCATGGA TCTTCATGA TCTTCATGGA TCTTCATGA TCTTCATGA TCTTCATGA T	ATTTATGTA TITCATCATT TTTGTTCCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTC TTAGCTCCTTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG LEENCE I #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCTGCCGAT AGATCTCTGG GGCAAACGA GATGTTGCGG CAACCGAC CCCTTGGAT CAAAGGAGG CCCCTTGGAT CAAAGGACG GGGGGTTAGG GGGGGTTAGG GGCGGTTAATG CAGGTTGGGC GGCGGTTAATG CAGGTCCGGC GCGGTTAATG	TGTACAGACA TATRACCAGA TATRACCAGA CATCTTCTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGT TACACAGTT CCACTGCGG TGGAAGAAA TTCCAGCTGC TCACCCTGTG 31 GAAATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGGTG TTTGAAAGGT AGGCTCAGGAG TCATTTGAAAGGT AGGGTCAGAG TCATTTTCAA CGCACGGAGA AATGCTTTCTA GGCACTGCTG TTTGCCAGGT TTTCCAGGT TTTTCCAGGT TTTTCCAGGT TTTTCCAGGT TTTTCCAGGT TTTTCCAGGT TTTCCAGGT TTTCCCAGGT	AGAGCTATATA GTTGGTAGTA CTTTCATCCT CTTTCATCCT CTTCCCTCC CTTCCCTCC CTTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCC TGGATGGAAT ACCCAAAAAC AGTAGAGGT CCG 41 TTCTCCCAAGA GCCCGAGTT CCTTTGCTA GCAAGAAC CCGAACACT TCTTTGCTA GCAACACT TCGGACATT TCGGACATT TCGGACATT TCGCAACAGC CGGACTT TCCCAACGC CGGACTT CCCAACAGC CGGACATT CCAACAGGA CGGACATCC TCGCCCAGAT CCAAGCACT TCGCACAGC CGGACACT TCGCACAGC CGGACACT TCGCACAGC CGGACACT TCGCACAGC CGGACACC TCATAGGCC TGGACAGC TGGACGC TGGACGCC TGGTACGCC TGTATAGGCCC TGTATAGGCCC TTGTTAGGCCC TTGTTAGGCCC TTGTTAGGCCCC TTGTTAGCCCC TTGTTAGGCCCC TTGTTAGCCCC TTGTTAGCCCC TTGTTAGCCCC TTGTTAGCCCC TTGTTAGCCCC TTGTTAGCCCC TTGTTAGGCCCC TTGT	GGGAAGTAG AAGCACAGA TGACCATAT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT TCTCAGAAGT ACAGTATCTA GAATCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA TGCATCAGT ACAGTTCAGT AGTGTAAGC TCTGAAGTA TCTGAAATAC CCTCATCAGT AGTGAAGGC TCTGAAATAC CCTCATCAGT TGGAAGGC GCATGCACTAC TGCACCACAC CAAGGAAAGG GCATGCACTAC TGCCACCACAC CGAGGGAAGG GCATGCACTC TGCCACCACC ACCTGGAGGAC CTGTGACTCC	120 180 240 300 420 600 660 780 840 120 180 240 420 420 420 420 420 420 420 420 42
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA ATGCCAAGAG CCCAGGGTAC CAGATGCAT GATGGATGAAG GTTGGAAGA CTTCTGCACA GTCACTCTG GAGATCATA GTCTGTAAC GTCACTCTG GGCAGCAC CCGAGCTTCAC CCGAGCTTCC CCGGGCTTCC CCGGCTTCC CCGGCCTCCC CCGCCCCCCCC	ATTATTTTA CCCATTATAG CCATTATAG CAATGCATA CAGGAAGAAG CAGGAAGAAG CAGGAAGAAC GAGCATGGT ACACTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACAGAACTA ACGTGGTTCT 82 DNA seq tid Accession Lence: 12 11 CTTCAGGAACTA TGGTTGCCGC CGCAGTGCC GTGAGAAGAG ACAGGAACTA ACAGGTTGCCGG CTCGGACAT ACAGGTTGC GGCAGTAGC GTTGGAACTT CAGGAACT ACAGGTTGC GGCAGTAGC GTCTGGAACT CTCTTTGAA TCTTCGAATT CAGGGTTGC GGATTTCCTAT CTAGAGGCA ACACCTCAG AGAATTGCCAG CCACCTCAG CTCTCATGGA AGAATGGCA AGAATGAGGA AGAATGAGGA AGAATGAGGA AGAATGAGGA AGAATGAGAG AGAATGAGGA AGAATGAGAG AGAATGAGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAG AGAATGAGAAG AGAATGAGAAGAAG AGAATGAGAAGAAGAAAAAAAA	ATTTATGTA TITCATCATT TTTGTTCCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCACATCTCAG TCACATCTCTCGGACGTCTC TCCGGTCTTG TAATGGTAGT TTACCGAATG CCTATTTCAG LUCIC CACAGGATT TCTCCTTCCGGGCAAACGAATG ACACAGGATT TCTCCTTCCGGGCAAACGAAA GATCTCTGGGGCAAACGAAA GATGTGTGTGCGAC GGAAACGAAG CCCCTTGGAG CCCCTTGGAGCCCCAGGCCCCAGGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGCGCGCGAGCCCCCTGGAACGAAACGAAGCGAGGCCCCCTTGGACCCCCTTGGACCCCCTTGGACCCCCTTGGACCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCGCGCGAGTCTCGCCCCGCGCGCTAAATCCGCCCGC	TGTACAGACA TATAACCAGG CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATTCAGCAGT ATCAGCAGT ACCAGGT ACCAGATTG CCACTGCGG TGCAGAGAAA TTCAGCTGC TCACCCTGTG 091.1 31 GAAATTTGGC GTGATCCCA AGCCTAGTGC GTCCATGTGAG TTCTAGTGCAGC TTTTAAAAGGT AGGCTCAGAG TCATTTTCAG TCACTTCTCG GCACCGAGA ATGCTTCTG GCACCCAGAG TTTTTTCGC TTTTTCAGC TTTTTCAGC TTTTTTCAGC TTTTTTCGC GCACTGCAGC TTTTTTCGC GCACTGCAGC TTTTTTCGC GCACTGCAGC TTTTTCGC TTTTCCGGT TTTTCCGGT TTTCCGGT TTTTCCGGT TTTCCGGT TTTCCGGT TTTCCGGT TTTCCCGGT TTTCCCGGT TTTCCCGGT TTTCCCGGT TTTCCCGGT TTTCCCGGT TTTCCCGGT TTTCCCCGGT TTCCCCGGT TTTCCCCGGT TTCCCCCGGT TTCCCCCGGT TTCCCCCCCC	AGAGCTATAT GTTGGTAGTIA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT TAGGATT AAAGCAATCA CCGTACGGTC GGAAAACC AGTAGGAT GCCCAAAAAC AGTAGAGGTC CCG 41 TTCTCCAAGA CCGGTCCCGAT TTCTTGGTA TCGCTCCCGAT TCGTTCCTT TGGAACATCA CCAACAGGA TCCAACAGG TCCACAGGA TCCAACAGG TCGACAGCACT TGGGAGCATT CCAACAGGA TCGACAGCACT TGGGAGGACT CCAACAGGA TCGACAGCACT TGGGAGGACT CCAACAGGA TCGACAGCACT TGGGAGGACT AGGTGAGGA TCGGAAGCACT TGGAAGCACT TGGGAGGACT TGGAAGCACT TGGAAGCACC TGGAACCGCC TGGAACCGCC TGGACCGCC TGGACCGCC TGGACCGCC TGGACCGCCT	GGGAAAGTAG AAGCAACAG TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTCTGTTA TGCATCACA CCAGTTCAGT ACTGAAGGAACG GTTCTGTAA TCTGAAATAC CCTCATCACA CAGTGCGGG TGCACCAAC AGCTGGGAAC AGCTGGGAAC CCTGTGAACTC CCAGTGCCTC CCAGTGCCTC CCAGTGCCTC	120 180 240 300 360 420 660 720 780 840 120 300 360 420 480 540 660 720 780 840 900 900 900 900 900
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA CACCGAGGC CCGGGTACC CAGATGCATG GTTGGGAAG GTTCATCT AGATCATG GTTGGGAAG GTTCATCT AGATCATG GTTGGGAAG GTTCATCACAG GTCACTCATC AGAATCAAG GTTCACTCACAG GTCACTCACAG GCCAGGCAGC GCCAGGCAGC GCCAGGCAGC GCCAGGCAGC GCCAGCCTGC CCGAGCTTCA	ATTATTTTA CCCATTATAG CCAGGAGAGA CAGGAAGAGA CAGGAAGAGA CAGGAAGACC AGGAAGAGAC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGAACTA ACGTGGTTCT 82 DNA sequit ACCAGGACTA ACGTGGTTCT 11 CTTCAGGAAC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CTCTTTGA CTCTTTGATGATT CGAGGTTGCC GGAGTTCCC GGAGTTCCC GGAGTTCCC GGAGTTCCC CGCAGAATT CTTCGGATTCCT TGTTGCTGT TTTGAGGGCA CCTTTGAGGG CCTTTGAGGC CCTTTGAGGG CCTTTGAGG CCTTTGAGGG CCTTTGAGGG CCTTTGAGG CCTTTTGAGG CCTTTTGAGG CCTTTTGAGG	ATTTATGTA TITCATCATT TTTCATCATAT TTTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACACAGCAGTC TGGGACGTCC AACAGCAGTC TCCGGTCTTG TAATGGTAAT TTACGAAATG CCTATTTCAG Uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAA GATGTGTGG GGCAAACGAA GATGTGTGG GAAAGGAGG CCCCTTGGAT CAAAGGAGG CCCCTTGGAT CAAAGGAGG TGGAGGCAGA GGGGGTTAATG GCACTGGTG CACATGTGT GGAGGTTAATG GCACTGGTT GGAGGTTAATG CCACATGTGT GGAGGCTAACGAA GCACTGGTT GGAGGCTAACGAA GCACTGGTT GGAGGTTAATG CCACATGTGT	TGTACAGACA TATAACCAGG CATCTTTCC CCCACCACCC ACTCTTCATT GAGACCTTGC ACTCTTGAT TACACCGGT ACCAGGGA TCCAGCTGGG TGCAGAGAAA TCAGCTGGG TCACCCTGTG 091.1 31 GAAATTTGGC GTGATCCCA AGCCTTGCGG TTCACCTTGTG 071.1 31 GAAATTTGGC GTGATTCCA AGCCTTGCTG GTCCATGTGAGC TTTGAAAGGT TTTGCAGAGA TTTTCCAAGGT TTTTCCAAGGT TTTTCCAGGTG TTTTCCAGGTG AGGCTCGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTGCAGGG TTTTCCAGGTG TTTGCAGGGAGA AATGCTTCTG CCAGGAGAA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTGCAGGGAGA TTGCCCTGAGGGAG TTGTGCCCTGAGGGAG TTGTGCCCTGAGGGAG TTGTGCCCTGAGGGAGGAGGAGGAGGAC TGTGCCCTGA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCA GCCCAAAAAC AGTTAGAGTG GATTCAGGAT GCCCAAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT TCGTCTGTT TGGACATCA TCGACACAGCA CCGAACATCA CCAAGCAGCT CCAAGCAGCT GGGAGGAGCT GGGAGGAGCT GGGAGGAGC GGGAGGAGC TGGACGGCC TGGACGGCCC	GGGAAAGTAG AAGCACCATAT AATGTGGACT GGTGCCTTGG GTGGCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA CATCGGGAAG TCTGAAATAC CCAGTTCAGT AGTGAAGGCA TCTGAAATAC CCTCATCATC GAAGGAAAGG GCATGCACTG AGCTGGAGG CCTGTGACTC GCAGTGCCTC GGATTGCATC CCCAGTTCACT CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC GAAGGAAAGG CCTGGGAGC CCTGTGACTC GGAATGCACTG CCAGTGCCTC GGAATGCACTG	120 180 240 300 360 420 540 660 720 780 840 120 120 120 120 120 120 120 120 120 12
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAAGAATGTT CATGGCAGAA CCTTAAACTT AGGAATCCTG TGACCCCTGG Seq ID NO: Nucleic Ac: Coding seq 1 ATGCCAAATA CACCGAGGC CCGGGTACC CAGATGCATG GTTGGGAAG GTTCATCT AGATCATG GTTGGGAAG GTTCATCT AGATCATG GTTGGGAAG GTTCATCACAG GTCACTCATC AGAATCAAG GTTCACTCACAG GTCACTCACAG GCCAGGCAGC GCCAGGCAGC GCCAGGCAGC GCCAGGCAGC GCCAGCCTGC CCGAGCTTCA	ATTATTTTA CCCATTATAG CCAGGAGAGA CAGGAAGAGA CAGGAAGAGA CAGGAAGACC AGGAAGAGAC GGCATTGTG ACACCTTGTT TTGTAAACAT TATTGGCTTC TGGCATCTGC ACCAGGAACTA ACGTGGTTCT 82 DNA sequit ACCAGGACTA ACGTGGTTCT 11 CTTCAGGAAC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CGCAGTCCC CTCTTTGA CTCTTTGATGATT CGAGGTTGCC GGAGTTCCC GGAGTTCCC GGAGTTCCC GGAGTTCCC CGCAGAATT CTTCGGATTCCT TGTTGCTGT TTTGAGGGCA CCTTTGAGGG CCTTTGAGGC CCTTTGAGGG CCTTTGAGG CCTTTGAGGG CCTTTGAGGG CCTTTGAGG CCTTTTGAGG CCTTTTGAGG CCTTTTGAGG	ATTTATGTA TITCATCATT TTTCATCATAT TTTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG ACACAGCAGTC TGGGACGTCC AACAGCAGTC TCCGGTCTTG TAATGGTAAT TTACGAAATG CCTATTTCAG Uence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAA GATGTGTGG GGCAAACGAA GATGTGTGG GAAAGGAGG CCCCTTGGAT CAAAGGAGG CCCCTTGGAT CAAAGGAGG TGGAGGCAGA GGGGGTTAATG GCACTGGTG CACATGTGT GGAGGTTAATG GCACTGGTT GGAGGTTAATG CCACATGTGT GGAGGCTAACGAA GCACTGGTT GGAGGCTAACGAA GCACTGGTT GGAGGTTAATG CCACATGTGT	TGTACAGACA TATAACCAGG CATCTTTCC CCCACCACCC ACTCTTCATT GAGACCTTGC ACTCTTGAT TACACCGGT ACCAGGGA TCCAGCTGGG TGCAGAGAAA TCAGCTGGG TCACCCTGTG 091.1 31 GAAATTTGGC GTGATCCCA AGCCTTGCGG TTCACCTTGTG 071.1 31 GAAATTTGGC GTGATTCCA AGCCTTGCTG GTCCATGTGAGC TTTGAAAGGT TTTGCAGAGA TTTTCCAAGGT TTTTCCAAGGT TTTTCCAGGTG TTTTCCAGGTG AGGCTCGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTTCCAGGTG TTTGCAGGG TTTTCCAGGTG TTTGCAGGGAGA AATGCTTCTG CCAGGAGAA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTTGCCAGGT TTGCCAGGGAGA TTGCAGGGAGA TTGCCCTGAGGGAG TTGTGCCCTGAGGGAG TTGTGCCCTGAGGGAG TTGTGCCCTGAGGGAGGAGGAGGAGGAC TGTGCCCTGA	AGAGCTATAT GTTGGTAGTA CTTTCATCCT CTTCCCCTCC TTGCTTTGTT AAAGCAATCA CCGTACGGTC GGAAAACTCA GCCCAAAAAC AGTTAGAGTG GATTCAGGAT GCCCAAGAG CCG 41 TTCTCCCAAGA GCCCCGAGTT TCGTCTGTT TGGACATCA TCGACACAGCA CCGAACATCA CCAAGCAGCT CCAAGCAGCT GGGAGGAGCT GGGAGGAGCT GGGAGGAGC GGGAGGAGC TGGACGGCC TGGACGGCCC	GGGAAAGTAG AAGCAACAG TGACCATATT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TATCTAATGG AAACATGTAG TATCAAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTCTGTTA TGCATCACA CCAGTTCAGT ACTGAAGGAACG GTTCTGTAA TCTGAAATAC CCTCATCACA CAGTGCGGG TGCACCAAC AGCTGGGAAC AGCTGGGAAC CCTGTGAACTC CCAGTGCCTC CCAGTGCCTC CCAGTGCCTC	120 180 240 300 360 420 540 600 720 780 840 120 180 300 360 420 540 600 720 780 840 960 960 1020 960 1080
50 55 60 · 65 70 75 80	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGGATGTTGA TTTTGCATCT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac. Coding seq I ATGCCAAATA CACCGAGGGC CCCGGGTACC CAGATGCATG GTTGGGAAGC TCCACTCTC AGAATCAAGA CTTCTGCACA GTCACTCATC AGAATCAAGA CTTCTGCACA GTCACTGATGC GCCGCGGGCCCC GGCCTCTCA CCCGAGCTTGC CCGGCTTGC CCGGCTGCC CCGGCTGCC CCGGCTGCC CCGGCTGCC CCGGCTGCC CCGCCTGCC CCCCCCTGCC CCCCCCTGCC CCCCCCTGCC CTCCCCCCCTCCC CCCCCCTCCC CCCCCCCC	ATTATTTTA CCCATTATAG CCATTATAG CAATGCAGA CAGGAAGAAG CAGGAAGAAG CAGGAAGACC AGGACTGATT TTGTAAACAT TATTGGCTTC TGGCATCTGC 82 DNA seq id Accession uence: 12 1 1 CTTCAGGAAC TGGTTGCC CGCCAGTGCC GTGAGAAGGT CTCTTTTGA ACAGCGTTGGC TCTCTTTTGA ACAGCGTTCGC TGGAGATCT CCAGGAAAT ACAGCGTCGG TCTCTTTGACAT TCTGGACAT TCTGGACAT TCTGGACAT TCTGGACT TCTCATGGAC TCTTTGCAGA TCTTGCAGA TCTTCATGGA TCTTCATGGA AGAATGAGGC TCTCATGGA AGAATGAGGC TCTCATGGA AGAATGAGGC TCTCATGGA ACACCCTCAG TCTTCATGGA AGAATGAGGC TCTTCATGGA AGAATGAGGC TCTTCATGGA AGAATGAGGC TCTTCATGGA AGAATGAGGC TCTTCATGGA AGAATGAGGC TCTTCCTGCT TCTTCTTGAGG TCTTCCTGCT TCTTCTTGGACT TCTTCCTGCT TCTTCTTGGACT TCTTCCTGCT	ATTTATGTA TITCATCATT TITCATCATAT TITGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCACTC TGGGACGTCC AACAGCAGTC TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG LEENCE I #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCTGCCGAT AGATCTCTGG GGCAAACGAG GATGTTGGG CAGCCCGAG GAAAGGAGG CCCCTTGGAT CAAAGGAGG CCCCTTGGAT CAAAGGAGG GGGGTCAGG GGGGGTCAGG GGGGGTCAGG GGGGGTTAATG CAGCTCGGCC GGGGTTAATG CAGCTCGGCC GGGGTTAATG CAGCTCGGCC GGGGGTTAATG CAGCTCGGCC GGGGGTTAATG CAGCTCGGCC GGGGTTAATG CAGCTCGGCC GGGGGTTAATG CAGCTCGGCC GGGGTTAATG CAGCTCGGCC GGGGGTTAATG CAGCTCGACC GGACAGCTCT GGAGGCTAAC CGGACAGCTCT CGGACAGCTCT CGGACAGCTCT CGCACAGCTCT CGCA	TGTACAGACA TATAACCAGA TATAACCAGA CATCTTTC CCCACCACCC ACTCTTCATT GAGACCTTGC AGTGTTATCA ATCAGCAGTA TACACCAGT TACACAGTG TGCAAGTATG CCACTGCGG TGGAAGAAA TTCCAGCTGC TCACCCTGTG 091.1 31 GAAATTTGGC GTGAGTCCCA GACCGATTCA AGCCTTGGTG TTTGAAAGGT CAGCTGCAGG TATTGAAAGGT CGCACGGAGA AATGCTTCTCA GCACGGAGA AATGCTTCTCC CCAGAAGGAC ATCTGCTCAGG TTTTCCAGGT TTTCCCAGGT TTTCCCCGGT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCAGGT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCCCT TTTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTTCCCAGGT TTTCCCCCT TTTCCCCT TTTCCCCCT TTTCCCCT TTTCCCCCT TTTCCCCT TTTCCCCCT TTTCCCCT TTTCCCCT TTTCCCCCT TTTCCCCT TTTCCCCCT TTTCCCCT TTTCCCCT TTCCCCT TTTCCCCT	AGAGCTATATA GTTGGTAGTA GTTTGGTAGTA CTTTCATCCT CTTCCCCTCC CTTCCCTCC CTTCCCTTGGTAGTA AAAGCAATCA CCGTACGGTC GGAAAACTCC GGAAAACTCC CGGAAAACTCC CGGACGGTC 41 TTCTCCCAAGA GCCCGAGTT CGGTCCCGAT TCTTTGGTA GCAACACTC TGGACACTC TGGACACTC TGGACACT TCGCACAGGA CGGACATTCC CCAACAGGA CGGACATTCC CCAACAGGA CGGACATCC TGGACGACT TCAGGAGCACT TCGACAGGA CGGACAGCC TGGACGACT CCAACAGGA CGGACAGCC TGGACGGCT AGGTGGAGGA TGGACGGCT TGGACGGCT TGGACGGCT TGGACGGCT TGGACGGCT TGGACGGCT TGGACGGCT TGGACGGCT CCTCTGGACGGCT CCTCTGGACGGCT CCTCTGGACGCCT CTCTCTGGACGCCT CTCTCTCTGGACGCCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTGGACGCT CTCTCTCTCTCTCTCTCT CTCTCTCTCTCTCTCT	GGGAAGTAG AAGCACAGA TGACCATTAT AATGTGGACT GGTGCCTTGG TGAGGTGGGC CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG TTTCAGAAGT TCTCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAA CCAGTTCAGT ACTGAAGTA TCTGAAATAC CCTCATCATC TGAAGAAGG GCATGCACG GATGCACG GATGCACG GCATGCACG CCAGTGCCT CGGAATGCACG CCTGTGACTC CCAGTGCCT CGGAATGCACG CCTGTGACTC CGGAATGCACG CCAGTGCCTC CGGAATGCACG CCAGTGCCTC CGGAATGCACG CCTTCCTCCGG	120 180 240 300 360 420 600 720 780 840 120 180 240 420 420 420 420 420 420 420 420 42
50 55 60 65 70 75	GAAGTATTCT CTATTACAGA AATACATCTT GCATCCTGGA GAGTGTTGGG AGGCATGTGA AAGAATGTT ACAAGTATTT CATGGCAGAA CCTTAAACTT AGGAATCCTG Seq ID NO: Nucleic Ac: Coding seq I ATGCCAAATA CACCAAGCGC CCCGGGTACC CAGATGCATG GATGGTTCA GTTGGCAGAA CTTCTGCACA GTCACTCCTC AGAATCATG GCCACTCCTC AGAATCATG GCTGCACACA GTCACTCCTC AGAATCACG GCCACCTCT CAGCCCC GCCAGCGCG GCCACCTCCC CCCGGCTGCC CCCGGCTGCC CCCGCCTGCC CCCCCCCC	ATTATTTTA CCCATTATAG CCATTATAG CCAGGAGAAA CCAGGAAGAAG CAGGAAGAAG CAGGAAGAAG CAGGACTGAT ACACCTTGTT TTGTAAACAT TATTGGCTTC GCATTGGT ACACCTGTT ACACGTGTTCT 82 DNA seq id Accession nence: 12 11 CTTCAGGAAC TGGTCGCGCC GTGAGAAGAGAAAT ACAGGTTGCCGCC GTCAGAAAT ACAGGTTGGAATT TATTGGATT GAGAGTTGCAGAT TCTTGAACAT TCTTGAATT CTAGAGAGCT CGGCAGTTCCTGACTT CTAGAGGCAAAAT CAGGTTGCCAGC CGCAGTTCCTGACTT CTAGAGGCAAAAT CAGGTTCCTAGAATT CTAGAGGCAAAAT CTAGTTCCTGT CTAGAGGCA AGAATGGAGC TCTTCTTGAGG TCTTCTTGAGGC TCTTTGAGGC TCTTTGAGGC TCTTCTGCT TCTGAAAGCT TCTTCATGCT TCTGAAAGCT TCTTCATGCT	ATTTATGTA TITCATCATT TITCATCATCATT TTGCTCCAG ACATCCTCAG ACATCCTCAG ACATCCTCAG TCAGCAGTCC ACAGCAGTCC ACAGCAGTC TCCGGTCTTG TCAGCAGTCT TCCGGTCTTG TAATGGTGAT TTACGAAATG CCTATTTCAG Leence n #: XM_061 481 21 AACCAGGATT TCTCCTTCCG GGCAAACGAAA GATCTCTGG GGCAAACGAAA GATCTCTGG GGCAAACGAAA GATCTCTGG GGCAAACGAAA GATCTCTGGG CCCCTTGGAT CAAACGAGGG TCAAACGAGGG CCCCTTGGAT CAAACGAGGG CCCCTTTGGAT CAAACGAGGG CCCCTTTGGAT CAAACGAGGG CCCCTTTGGAG CCCCTTTGGAT CAAACGAGGG CCCCTTTGGAT CAAACGAGG CCCCTTTGGAT C	TGTACAGACA TATAACCAGA TATAACCAGA CATCTTCTTC CCCACCACCC ACTCTTCATT GAGACCTTGC ATCAGCATA TACACCAGT ACCAGATTG CCACTGCGG TCGAAGAAG TTCCAGCTGC TCACCCTGTG 31 GAAATTTGGC GTGACTCCA AGCCTAGTG GTGATCCA AGCCTTGGTG GTCCATGTAAAGGT AGCCTTGGTG TTTGAAAGGT AGCCTTCGAG TTTTCAAAGGT AGCTTCCAGGT TTTCCCAGGT TTTCCCTGAA	AGAGCTATAT GTTGGTAGTIA CTTTCATCCT CTTCCCCTCC CTTCCCTTCGTTTGTT TAGGATT AAAGCAATCA CCGTACGGTC GGAAAACTCA CCGTACGGTC GGATGGAAT GCCCAAAAAC AGTAGAGGTG 41 TTCTCCCAAGA GCCCGAGTT CGCTCCCGAT TTCTTTGCTA GCAAAGAAC CGGAACATCA CCAACAGCA CTGGACATCAT CCCAAGCACCT TGGGAGGACTTGC TGGCCCAGGT CGGAGGACTGC TGGACGACT AGGTGAGGAGA GCGCCACGCC TGGACGGCTA AGCTCACCT TGGACGGCTA AGCTCACCT CTCTGGACGCCT CTGGACGGCTA AGCTGACCT CTCTCGACGAC GCGACGCCT CTCTCTGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CTCTCGACGAC GCGACGACT CCTCTCGACGAC CCTCTCCGACGAC CCTCTCGACGAC CCTCTCCGACGAC CCTCTCCGACGAC CCTCTCCGACGAC CCTCTCCGACGAC CCTCTCCGACGAC CCTCTCCCACAC CCTCTCCCCACAC CCTCTCCCACAC CCTCTCCCACAC CCTCTCCCACAC CCTCTCCCACAC CCTCTCCCACAC CCTCTCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCCACAC CCTCTCCCCCACAC CCTCTCCCCACAC CCTCTCCCCCACAC CCTCTCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCTCCCCCACAC CCTCCCCCCCC	GGGAAAGTAG AAGCACCATAT AATGTGGACT GGTGCCTTGG GTGGCTTGG GTGGCTTGG CCAAAGAAGT TCTTTACTGG TATCTAATGG AAACATGTAG AAACATGTAG TTTCAGAAGT ACAGTATCTA GAATCCCCCC 51 GCCGCCCGGG GGCTCTGGCG GATTGGAGGT TGAATTTTA CATCGGGAAG GTTTCTGTTA CATCGGGAAG TCTGAAATAC CCAGTTCAGT AGTGAAGGCA TCTGAAATAC CCTCATCATC GAAGGAAAGG GCATGCACTG AGCTGGAGG CCTGTGACTC GCAGTGCCTC GGATTGCATC CCCAGTTCACT CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC CCTCATCATC GAAGGAAAGG CCTGGGAGC CCTGTGACTC GGAATGCACTG CCAGTGCCTC GGAATGCACTG	120 180 240 300 360 420 660 720 780 840 120 300 480 540 660 720 780 840 900 1080 1080 1080 1080 1080

```
GATGTGCCTG ACCTGGTCTG GAGCCTCGAT GGCATTCCCT TCCGTGGTGG CCCCACCCTG 1320
        ACGGGCAGTG CCTTGCGGCA GGCGGCAGAG CGTGGCTTCG GGAGCGCCAC CAGGACAGGC
                                                                                         1380
        CAGGACCGGC CACGTAGAGT GGTGGTTTTG CTCACTGAGT CACACTCCGA GGATGAGGTT
        GOGGGCCCAG CGCGTCACGC AAGGGCGCGA GAGCTGCTCC TGCTGGGTGT AGGCAGTGAG
                                                                                         1500
 5
        GCCGTGCGGG CAGAGCTGGA GGAGATCACA GGCAGCCCAA AGCATGTGAT GGTCTACTCG
                                                                                         1560
        GATCCTCAGG ATCTGTTCAA CCAAATCCCT GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG
CGGCCAGGGT GCCGGACACA AGCCCTGGAC CTCGTCTTCA TGTTGGACAC CTCTGCCTCA
                                                                                         1620
        GTAGGGCCCG AGAATTTTGC TCAGATGCAG AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT
                                                                                         1740
        1800
10
                                                                                         1860
        ATGACCGTCC AGAGGGGTGC CCGGCCTGGT GTCCCCAAAG CTGTGGTGGT GCTCACAGGC
                                                                                         1980
        GGGAGAGGCG CAGAGGATGC AGCCGTTCCT GCCCAGAAGC TGAGGAACAA TGGCATCTCT
GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC
CGGGATTCCC TGATCCACGT GGCAGCTTAC GCCGACCTGC GGTACCACCA GGACGTGCTC
                                                                                         2040
                                                                                         2100
15
                                                                                         2160
        ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG CCAGTCAACC TCTGCAAACC CAGCCCGTGC
                                                                                         2220
        ATGARTGAGG GCAGCTGCGT CCTGCAGART GGGAGCTACC GCTGCAAGTG TCGGGATGGC TGGGAGGGCC CCCACTGCGA GAACCGTGAG TGGAGCTCTT GCTCTGTATG TGTGAGCCAG GGATGGATTC TTGAGACGCC CCTGAGGCAC ATGGCTCCCG TGCAGGAGGG CAGCAGCCGT
                                                                                         2280
                                                                                         2400
        ACCCCTCCCA GCAACTACAG AGAAGGCCTG GGCACTGAAA TGGTGCCTAC CTTCTGGAAT
20
                                                                                         2460
        GTCTGTGCCC CAGGTCCTTA G
        Sea ID NO: 83 Protein sequence
         Protein Accession #: XP_061091.1
25
                             21
                                                                           51
         1 11
                                                              41
        MPNTSGTTRI EIWLLQEPPG HRALVAALLP VSPSPELALA PGYPPVPAAD DRFTLPMIGG
                                                                                            60
        QMHGEKVDLW SLGVLCYEFL VGKPPFEANE VHVSKETIGK ISAASKMMWC SAAVDIMPLL
                                                                                          120
         DGSNSVGKGS FERSKHFAIT VCDGLDISPE RVRVGAFQFS STPHLEFPLD SFSTQQEVKA
                                                                                          180
30
        RIKRMVFKGG RTETELALKY LLHRGLPGGR NASVPQILII VTDGKSQGDV ALPSKQLKER
        GVTVFAVGVR FPRWEELHAL ASEPRGQHVL LAEQVEDATN GLFSTLSSSA ICSSATPAGS
        PELVFMERLM GISLIGPCDS OPCONGGTCV PEGLDGYQCL CPLAFGGEAN CALKLSLECR VDLLFLLDSS AGTTLDGFLR AKVFVKRFVR AVLSEDSRAR VGVATYSREL LVAVPVGBYQ DVPDLVWSLD GIPFRGGPTL TGSALRQAAE RGFGSATRTG QDRPRRVVVL LTESHSEDEV
                                                                                          360
                                                                                           420
        AGPARHARAR ELLLLGVGSE AVRAELEEIT GSPKHVMVYS DPQDLFNQIP ELQGKLCSRQ
                                                                                           540
         RPGCRTQALD LVFMLDTSAS VGPENFAQMQ SFVRSCALQF EVNFDVTQVG LVVYGSQVQT
AFGLDTKPTR AAMLRAISQA PYLGGVGSAG TALLHIYDKV MTVQRGARPG VPKAVVVLTG
                                                                                           600
                                                                                           660
         GRGAEDAAVP AQKLRNNGIS VLVVGVGPVL SEGLRRLAGP RDSLIHVAAY ADLRYHQDVL
         IEWLCGEAKQ PVNLCKPSPC MNEGSCVLQN GSYRCKCRDG WEGPHCENRE WSSCSVCVSQ
40
         GWILETPLRH MAPVQEGSSR TPPSNYREGL GTEMVPTFWN VCAFGP
         Seg ID NO: 84 DNA sequence
         Nucleic Acid Accession #: Eos sequence
         Coding sequence: 1..2424
45
                                                 31
                                                              41
                                                                           51
                                   21
         ATGCCCCCTT TCCTGTTGCT GGAGGCCGTC TGTGTTTTCC TGTTTTCCAG AGTGCCCCCA
         TCTCTCCCTC TCCAGGAAGT CCATGTAAGC AAAGAAACCA TCGGGAAGAT TTCAGCTGCC
                                                                                           120
         AGCARANTGA TOTGGTGCTC GGCTGCAGTG GACATCATGT TTCTGTTAGA TGGGTCTAAC AGCGTCGGGA AAGGGAGCTT TGAAAGGTCC AAGCACTTTG CCATCACAGT CTGTGACGGT
                                                                                           180
50
         300
         CTGGAATTCC CCTTGGATTC ATTTTCAACC CAACAGGAAG TGAAGGCAAG AATCAAGAGG ATGGTTTTCA AAGGAGGCG CACGGAGACG GAACTTGCTC TGAAATACCT TCTGCACAGA
                                                                                           360
                                                                                           420
         GGGTTGCCTG GAGGCAGAAA TGCTTCTTGTG CCCCAGATCC TCATCATCGT CACTGATGGG
AAGTCCCAGG GGGATGTGGC ACTGCCATCC AAGCAGCTGA AGGAAAGGGG TGTCACTGTG
                                                                                           480
55
                                                                                           540
         TTTGCTGTGG GGGTCAGGTT TCCCAGGTGG GAGGAGCTGC ATGCACTGGC CAGCGAGCCT
                                                                                           600
         AGAGGGCAGC ACGTGCTGTT GGCTGAGCAG GTGGAGGATG CCACCAACGG CCTCTTCAGC
         ACCCTCAGCA GCTCGGCCAT CTGCTCCAGC GCCACGCCAG ACTGCAGGGT CGAGGCTCAC
                                                                                           720
         CCCTGTGAGC ACAGGACGCT GGAGATGGTC CGGGAGTTCG CTGGCAATGC CCCATGCTGG
                                                                                           780
60
         AGAGGATCGC GGCGGACCCT TGCGGTGCTG GCTGCACACT GTCCCTTCTA CAGCTGGAAG
                                                                                           840
         AGAGTGTTCC TAACCCACCC TGCCACCTGC TACAGGACCA CCTGCCCAGG CCCCTGTGAC
                                                                                           900
         TCGCAGCCCT GCCAGAATGG AGGCACATGT GTTCCAGAAG GACTGGACGG CTACCAGTGC
         CTCTGCCCGC TGGCCTTTGG AGGGGAGGCT AACTGTGCCC TGAAGCTGAG CCTGGAATGC
                                                                                          1020
         AGGGTCGACC TCCTCTTCCT GCTGGACAGC TCTGCGGGCA CCACTCTGGA CGGCTTCCTG
                                                                                          1080
65
         CGGGCCAAAG TCTTCGTGAA GCGGTTTGTG CGGGCCGTGC TGAGCGAGGA CTCTCGGGCC
         CGAGTGGGTG TGGCCACATA CAGCAGGGAG CTGCTGGTGG CGGTGCCTGT GGGGGAGTAC
         CAGGATGTGC CTGACCTGGT CTGGAGCCTC GATGGCATTC CCTTCCGTGG TGGCCCCACC
                                                                                          1260
         CTCACGGCA GTGCCTTGCG GCAGGCGCA GAGCGTGGCT TCGGGAGCGC CACCAGGACA
GGCCAGGACC GGCCACGTAG AGTGGTGGTT TTGCTCACTG AGTCACACTC CGAGGATGAG
                                                                                          1320
                                                                                          1380
 70
         GTTGCGGGCC CAGCGCGTCA CGCAAGGGCG CGAGAGCTGC TCCTGCTGGG TGTAGGCAGT
         GAGGCCGTGC GGGCAGAGCT GGAGGAGATC ACAGGCAGCC CAAAGCATGT GATGGTCTAC
                                                                                          1500
         TOGGATOCTO AGGATOTGTT CAACCAAATO COTGAGOTGC AGGGGAAGOT GTGCAGOOGG
                                                                                          1560
         CAGCGCCAG GGTGCCGGAC ACAAGCCCTG GACCTCGTCT TCATGTTTGGA CACCTCTGCC
TCAGTAGGGC CCGAGAATTT TGCTCAGATG CAGAGCTTTG TGAGAAGCTG TGCCCTCCAG
                                                                                          1620
 75
         TTTGAGGTGA ACCCTGACGT GACACAGGTC GGCCTGGTGG TGTATGGCAG CCAGGTGCAG
                                                                                          1740
         ACTGCCTTCG GGCTGGACAC CAAACCCACC CGGGCTGGGA TGCTGCGGGC CATTAGCCAG GCCCCCTACC TAGGTGGGGT GGGCTCAGCC GGCACCGCCC TGCTGCACAT CTATGACAAA
                                                                                          1800
                                                                                          1860
         GTGATGACCG TCCAGAGGGG TGCCCGGCCT GGTGTCCCCA AAGCTGTGGT GGTGCTCACA
         GGCGGGAGAG GCGCAGAGGA TGCAGCCGTT CCTGCCCAGA AGCTGAGGAA CAATGGCATC
                                                                                          1980
          TETGTETTEG TEGTGGGCGT GGGGCETTE CTAAGTGAGG GTETGCGGAG GETTGCAGGT CCCCGGGATT CCCTGATCCA CGTGGCAGCT TACGCCGACC TGCGGTACCA CCAGGACGTG
 80
                                                                                          2040
                                                                                          2100
          CTCATTGAGT GGCTGTGTGG AGAAGCCAAG CAGCCAGTCA ACCTCTGCAA ACCCAGCCCG
          TGCATGAATG AGGGCAGCTG CGTCCTGCAG AATGGGAGCT ACCGCTGCAA GTGTCGGGAT
                                                                                          2220
          CGCTGGGAGG GCCCCCACTG CGAGAACCGT GAGTGGAGCT CTTGCTCTGT ATGTGTGAGC
                                                                                          2280
          CAGGGATGGA TTCTTGAGAC GCCCCTGAGG CACATGGCTC CCGTGCAGGA GGGCAGCAGC 2340
 85
```

	CGTACCCCTC AATGTCTGTG		CAGAGAAGGC TTAG	CTGGGCACTG	AAATGGTGCC	TACCTTCTGG	2400
5	Seq ID NO:						
)		ession #: E 11	os sequence 21	31	41	51	
	Ī	ī ·	Ĩ .	ĩ	i ⁻	ĭ	
			SLPLQEVHVS				60
10			LDISPERVRV GLPGGRNASV				120 180
			RGQHVLLAEQ				240
			RGSRRTLAVL				300
			LCPLAFGGEA RVGVATYSRE				360 420
15			GQDRPRRVVV				480
			SDPQDLFNQI				540
			PEVNPDVTQV VMTVQRGARP				600 660
			PRDSLIHVAA				720
20	CMNEGSCVLQ	NGSYRCKCRD	GWEGPHCENR				780
	RTPPSNYREG	LGTEMVPTFW	NVCAPGP				
	Seq ID NO:	86 DNA sequ	ence				
25	Nucleic Aci	d Accession	#: Eos sec	Ineuce			
25	Coding sequ	ence: 892	2356 21	31	41	51	
	1	ī	1	1	Ī	1	
			CCCGGGTCTG				60
30			ATATCAACAT TGCCCCCATC				120 180
50			CAGCTGCCAG				240
	CATCATGTTT	CTGTTAGATG	GGTCTAACAG	CGTCGGGAAA	GGGAGCTTTG	AAAGGTCCAA	300
			GTGACGGTCT				360
35			CTCCTCATCT TCAAGAGGAT				420 480
-			TGCACAGAGG				540
			CTGATGGGAA				600
			TCACTGTGTT GCGAGCCTAG				660 720
40	GGAGGATGCC	ACCAACGGCC	TCTTCAGCAC	CCTCAGCAGC	TCGGCCATCT	GCTCCAGCGC	780
			AGGCTCACCC				840.
			CATGCTGGAG GCTGGAAGAG				900 960
			CCTGTGACTC				1020
45			ACCAGTGCCT				1080
			TGGAATGCAG				1140 1200
			CTCGGGCCCG				1260
50			GGGAGTACCA				1320
50			GCCCCACCCT				1380 1440
			AGGATGAGGT				1500
	AGAGCTGCTC	CTGCTGGGTG	TAGGCAGTGA	GGCCGTGCGG	GCAGAGCTGG	AGGAGATCAC	1560
55			TGGTCTACTC				1620 1680
55			CCTCTGCCTC				1740
			CCCTCCAGTT				1800
			AGGTGCAGAC TTAGCCAGGC				1860 1920
60			ATGACAAAGT				1980
	TGTCCCCAAA	GCTGTGGTGG	TGCTCACAGG	CGGGAGAGGC	GCAGAGGATG	CAGCCGTTCC	2040
			ATGGCATCTC			TGGCAGCTTA	2100 2160
						AAGCCAAGCA	2220
65	GCCAGTCAAC	CTCTGCAAAC	CCAGCCCGTG	CATGAATGAG	GGCAGCTGCG	TCCTGCAGAA	2280
						AGAACCGATT	2340 2400
						TGTCTGTGCC	2460
70						ACTGAGGGAG	2520
70						TACCTGCTGT	2580 2640
						GGGTCCTGAA	
						AGAATGTTGT	2760
75	TGACACAGTA	ATGCCCAGCA	GAGGCCTTTA	CTAGAGCATC	CTTTGGACGG	i	
	Seq ID NO:	87 Protein	sequence				
		cession #:	Eos sequenc				
	1 	11 	21 	31 	41 	51 	
80						DIMFLLDGSN	60
						QQEVKARIKR	120
						KQLKERGVTV ATPDCRVEAH	180 240
0.5	PCEHRTLEMV	REPAGNAPCH	RGSRRTLAVL	AAHCPFYSWK	RVPLTHPATC	YRTTCPGPCD	300
85						SAGTTLDGFL	360

```
RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT
        LTGSALRQAA ERGFGSATRT GODRPRRVVV LLTESHSEDE VAGPARHARA RELLLLAVGS
EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA
                                                                                             480
                                                                                             540
        SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
 5
        APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
                                                                                             660
        SVLVVGVGPV LSEGLERLAG PRDSLIHVAA YADLRYHQDV LIEWLGGEAK QPVNLCKPSP CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR FLRRP
                                                                                             720
        Seq ID NO: 88 DNA sequence
10
        Nucleic Acid Accession #: NM 019894
        Coding sequence: 1..1314
        ATGTTACAGG ATCCTGACAG TGATCAACCT CTGAACAGCC TCGATGTCAA ACCCCTGCGC
                                                                                              60
15
        AAACCCCGTA TCCCCATGGA GACCTTCAGA AAGGTGGGGA TCCCCATCAT CATAGCACTA
        CTGAGCCTGG CGAGTATCAT CATTGTGGTT GTCCTCATCA AGGTGATTCT GGATAAATAC
                                                                                             180
        TACTICCTCT GCGGCAGCC TCTCCACTTC ATCCCGAGGA AGCAGCTGTG TGACGGAGAG
CTGGACTGTC CCTTGGGGGA GGACGAGGAG CACTGTGTCA AGAGCTTCCC CGAAGGGCCT
                                                                                             240
                                                                                             300
        GCAGTGGCAG TCCGCCTCTC CAAGGACCGA TCCACACTGC AGGTGCTGGA CTCGGCCACA
        GGGAACTGGT TCTCTGCCTG TTTCGACAAC TTCACAGAAG CTCTCGCTGA GACACCCTGT
AGGCAGATGG GCTACAGCAG CAAACCCACT TTCAGAGCTG TGGAGATTGG CCCAGACCAG
20
                                                                                             420
                                                                                             480
        GATCTGGATG TTGTTGAAAT CACAGAAAAC AGCCAGGAGC TTCGCATGCG GAACTCAAGT
                                                                                             540
        GGGCCCTGTC TCTCAGGCTC CCTGGTCTCC CTGCACTGTC TTGCCTGTGG GAAGAGCCTG
        AAGACCCCCC GTGTGGTGGG TGGGGAGGAG GCCTCTGTGG ATTCTTGGCC TTGGCAGGTC
                                                                                             660
25
        AGCATCCAGT ACGACAACA GCACGTCTGT GGAGGGAGCA TCCTGGACCC CCACTGGGTC
CTCACGGCAG CCCACTGCTT CAGGAAACAT ÁCCGATGTGT TCAACTGGAA GGTGCGGGCA
                                                                                             720
                                                                                             780
        GGCTCAGACA AACTGGGCAG CTTCCCATCC CTGGCTGTGG CCAAGATCAT CATCATTGAA
        TTCAACCCCA TGTACCCCAA AGACAATGAC ATCGCCCTCA TGAAGCTGCA GTTCCCACTC
                                                                                             900
        ACTTTCTCAG GCACAGTCAG GCCCATCTGT CTGCCCTTCT TTGATGAGGA GCTCACTCCA
GCCACCCCAC TCTGGATCAT TGGATGGGC TTTACGAAGC AGAATGGAGG GAAGATGTT
GACATACTGC TGCAGGCGTC AGTCCAGGTC ATTGACAGCA CACGGTGCAA TGCAGACGAT
                                                                                             960
30
                                                                                            1020
        GCGTACCAGG GGGAAGTCAC CGAGAAGATG ATGTGTGCAG GCATCCCGGA AGGGGGTGTG
                                                                                            1140
        GACACCTGCC AGGGTGACAG TGGTGGGCCC CTGATGTACC AATCTGACCA GTGGCATGTG
GTGGGCATCG TTAGCTGGGG CTATGGCTGC GGGGGCCCGA GCACCCCAGG AGTATACACC
                                                                                            1200
                                                                                            1260
35
        AAGGTCTCAG CCTATCTCAA CTGGATCTAC AATGTCTGGA AGGCTGAGCT GTAA
         Seq ID NO: 89 Protein sequence
         Protein Accession #: NP_063947.1
                                  21
                     11
40
         MIODPDSDOP INSLOVEDLE KPRIPMETER KVGIPIIIAL LSLASIIIVV VLIKVILDKY
                                                                                              60
         YFLCGOPLHF IPRKOLCDGE LDCPLGEDEE HCVKSFPEGP AVAVRLSKOR STLQVLDSAT
                                                                                             120
         GNWFSACFDN PTEALAETAC ROMGYSSKPT FRAVEIGPDO DLDVVEITEN SQELRMRNSS
         GPCLSGSLVS LHCLACGKSL KTPRVVGGEE ASVDSWPWQV SIQYDKQHVC GGSILDPHWV
                                                                                             240
45
        LTAAHCFRKH TDVFNWKVRA GSDKLGSFPS LAVAKIIIIE FNPMYPKDND IALMKLQFPL
TFSGTVRPIC LPFFDEELTP ATPLWIIGWG FTKQNGGKMS DILLQASVQV IDSTRCNADD
                                                                                             300
                                                                                             360
         AYQGEVTEKM MCAGIPEGGV DTCQGDSGGP LMYQSDQWHV VGIVSWGYGC GGPSTPGVYT
         KVSAYLNWIY NVWKAEL
50
         Seg ID NO: 90 DNA seguence
         Nucleic Acid Accession #: NM_002776.1
         Coding sequence: 82..912
                      11
                                   21
55
         ACCAGOGGCA GACCACAGGC AGGGCAGAGG CACGTCTGGG TCCCCTCCCT CCTTCCTATC
                                                                                               60
         GGCGACTCCC AGATCCTGGC CATGAGAGCT CCGCACCTCC ACCTCTCCGC CGCCTCTGGC
                                                                                             120
         GCCCGGGCTC TGGCGAAGCT GCTGCCGCTG CTGATGGCGC AACTCTGGGC CGCAGAGGCG
                                                                                              180
         GCGCTGCTCC CCCAAAACGA CACGCGCTTG GACCCCGAAG CCTATGGCGC CCCGTGCGCG
         CGCGGCTCGC AGCCCTGGCA GGTCTCGCTC TTCAACGGCC TCTCGTTCCA CTGCGCGGGT
                                                                                              300
60
         GTCCTGGTGG ACCAGACTTG GGTGCTGACG GCCGCGCACT GCGGAAACAA GCCACTGTGG
GCTCGAGTAG GGGATGATCA CCTGCTGCTT CTTCAGGGCG AGCAGCTCCG CCGGACGACT
                                                                                              360
                                                                                              420
         CGCTCTGTTG TCCATCCCAA GTACCACCAG GGCTCAGGCC CCATCCTGCC AAGGCGAACG
         GATGAGCACG ATCTCATGTT GCTAAAGCTG GCCAGGCCCG TAGTGCCGGG GCCCCGCGTC
         CGGGCCCTGC AGCTTCCCTA CCGCTGTGCT CAGCCCGGAG ACCAGTGCCA GGTTGCTGGC
TGGGGCACCA CGGCCGCCCG GAGAGTGAAG TACRACAAGG GCCTGACCTG CTCCAGCATC
ACTATCCTGA GCCCTAAAGA GTGTGAGGTC TTCTACCCTG GCGTGGTCAC CAACAACATG
                                                                                              600
65
                                                                                              660
         ATATGTGCTG GACTGGACCG GGGCCAGGAC CCTTGCCAGA GTGACTCTGG AGGCCCCCTG
                                                                                              780
         GTCTGTGACG AGACCCTCCA AGGCATCCTC TCGTGGGGTG TTTACCCCTG TGGCTCTGCC CAGCATCCAG CTGTCTACAC CCAGATCTGC AAATACATGT CCTGGATCAA TAAAGTCATA
                                                                                              840
                                                                                              900
70
         CGCTCCAACT GATCCAGATG CTACGCTCCA GCTGATCCAG ATGTTATGCT CCTGCTGATC
         CAGATGCCCA GAGGCTCCAT CGTCCATCCT CTTCCTCCCC AGTCGGCTGA ACTCTCCCCT
                                                                                            1020
         TGTCTGCACT GTTCAAACCT CTGCCGCCCT CCACACCTCT AAACATCTCC CCTCTCACCT
                                                                                            1080
         CATTCCCCCA CCTATCCCCA TTCTCTGCCT GTACTGAAGC TGAAATGCAG GAAGTGGTGG
                                                                                            1140
         CAAAGGTTTA TTCCAGAGAA GCCAGGAAGC CGGTCATCAC CCAGCCTCTG AGAGCAGTTA
75
         CTGGGGTCAC CCAACCTGAC TTCCTCTGCC ACTCCCCGCT GTGTGACTTT GGGCAAGCCA
                                                                                            1260
         AGTICCCTCT CTGAACCTCA GTTTCCTCAT CTGCAAAATG GGAACAATGA CGTGCCTACC
TCTTAGACAT GTTGTGAGGA GACTATGATA TAACATGTGT ATGTAAATCT TCATGTGATT
                                                                                            1320
                                                                                             1380
         GTCATGTAAG GCTTAACACA GTGGGTGGTG AGTTCTGACT AAAGGTTACC TGTTGTCGTG 1440
         AAAA AAAAAAAA
80.
         Seq ID NO: 91 Protein sequence
         Protein Accession #: NP_002767.1
                                    21
                                                                              51
                                                                41
85
         MRAPHLHLSA ASGARALAKL LPLLMAQLWA AEAALLPOND TRLDPRAYGA PCARGSQPWQ
```

PCT/US02/19297 WO 02/102235

5	YHQGSGPILP RVKYNKGLTC	rrtdehdlml Ssitilspke	VLTAAHCGNK LKLARPVVPG CEVFYPGVVT QICKYMSWIN	PRVRALQLPY NNMI CAGLDR	RCAQPGDQCQ	VAGWGTTAAR	120 180 240
•	Coding sequ	d Accession ence: 182-6	1 #: NM_0320 558			51	
10	1	11 	21	31 	41 	j.	
			ACGTTGACTG				60
			CAAACAGATT				120
			TGAGATCCTT				180
15			GGCTGCTCCT				240 300
13			AGCTGAGGAA				360
			TGGCATCTAT				420
			AGAGAAGCCA				480
~ ~	GAAGAGGCAG	CAGTGGCAGT	GGATTGATGG	GGCCATGTAT	CTGTACAGAT	CCTGGTCTGG	540
20			AGCACTGTGC				600
			ACAAGCGCCA				660
			ACTCCTGCAC CAGAGGGGAA				720 780
			CAGAGGGGAA				840
25			CGCCATCCCT				900
			GTCTAGAAGA				960
			GATTTGAAGA				1020
			CCCTTCTGCC				1080
30			TTCCTTTGGC				1140
30	TAGGTTGATG	TGGGCCATAC	ATTCCTTTAA	TAAACCATTG	TGTACATAAG	AAAAAAAAA	
	Sea ID NO.	93 Protein	semience				
	-	ession #: 1	-				
	1	11	21	31	41	51	
35	1	1	1	1	1		
			LGDIIMRPSC				60
			EYISGYQRSQ		KRQQWQWIDG	AMYLYRSWSG	120
	KSMGGNKHCA	EWS2NNN P.D.I.	WSSNECNKRQ	HELCKIKP			
40							
	Seq ID NO:	94 DNA seq	uence				
			n #: XM_051	860			
	Coding sequ	uence: 14					
45	1	11	21	31	41	51	
43	 	TChacasca	CCCAGCGCGG	TCCTNTCCCN	Character	CCACCCAAG	60
			GCTGAGCGCG				120
			ACGCCCCGGG				180
			CCTGGCCCGC				240
50			ATGGGAGCTG				300
			ACTCTGACCT				360
			CCTGAGTTGC				420 480
			GGCAAGACAC GGCAAGCTGG				540
55			ATTGACAACG				600
	GCCCTTTCCA	GGGCAATTTC	ACCATCATTT	TGTATGGAAG	GGCTGATGAA	GGTATTCAGC	660
	CGGATCCTTA	CTATGGTCTG	AAGTACATTG	GGGTTGGTAA	AGGAGGCGCT	CTTGAGTTGC	720
			TGGACATTTC				780
60	CAGAAGGAGG	CTATTTTTT	GAAAGGAGCT	GGGGCCACCG	TGGAGTTATT	GTTCATGTCA	840 900
UU	TCGACCCCAA	ATCAGGCACA	GTCATCCATT CAGTATTTGA	ACCCCCCTCCC	CONTROCTAL	ATCCTTTCTG	960
							1020
	AATTGGGAAG	CAAACACTTC	CTGCACCTTG	GATTTAGACA	CCCTTGGAGT	TTTCTAACTG	1080
65	TGAAAGGAAA	TCCATCATCT	TCAGTGGAAG	ACCATATTGA	ATATCATGGA	CATCGAGGCT	1140
65	CTGCTGCTGC	CCGGGTATTC	AAATTGTTCC	AGACAGAGCA	TGGCGAATAT	TTCAATGTTT	1200
	CTTTGTCCAG	TGAGTGGGTT	CAAGACGTGG	AGTGGACGGA	GIGGIICGAT	CATGATAAAG CCAGGAAAAA	1260
						CTCAGCACCG	
						GGCAGAGCCT	1440
70						CTCACAGTCA	
	CCATTGACAC	CAATGTGAAC	AGCACCATTO	TGAACTTGGA	GGATAATGTA	CAGTCATGGA	1560
						GCAGAAGAGT	1620
	TCCAGGTGCT	TCCCTGCAGA	TCCTGCGCCC	CCAACCAGGT	CAAAGTGGCA	GGGAAACCAA	1680
75	TGTACCTGCA	CATCGGGGAG	GAGATAGACG	GCGTGGACAT	GCGGGCGGAG	GTTGGGCTTC	1740
13	makaaaa		a itaa aa aa (ib	AAJADUU			1800 1860
	TGAGCCGGAA			THECHICAN	האווידי אים עם אים		
	ACATCTGCAA	TTTCTTTGAC	TTCGATACCT				
	ACATCTGCAA TTAAGGCAGC	TTTCTTTGAC	TTCGATACCT	TGAAGCATAT	GGGACAGCAG	CTGGTGGGTC	1920 1980
00	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC	TTCGATACCT GGCACGGAGG CTGGCCGGTG TCCATCCATC	TGAAGCATAT ATGTAGACGA ATACATTCTC	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC	TATGACCCAC ACAGTCCATG	1920 1980 2040
80	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATGG	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC	TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC	TATGACCCAC ACAGTCCATG CACTGCTTCT	1920 1980 2040 2100
80	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATGG TCACGGAAGA	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG	: TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC CTGTCTTGGC	CTGGTGGGTC TATGACCCAC ACAGTCCATG CACTGCTTCT CTCCTTGTCA	1920 1980 2040 2100 2160
80	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATGG TCACGGAAGA AGTCTGGAAGA	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG CCTCCTCCCCC	TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA ACAGCAAGAT	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC CTGTCTTGGGC	TATGACCCAC ACAGTCCATG CACTGCTTCT CTCCTTGTCA ATCACAGAGG	1920 1980 2040 2100 2160 2220
80	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATAGG TCACGGAAGA AGTCTGGAACA ACTCCTACCC	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG CCTCCTCCCC	TTCGATACCT GGCACGGAG CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA TCGGACCGTG CCCAAGCCCCC	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA ACAGCAAGAT GGCAAGACTG	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC CTGTCTTGGGC GTGCAAGATG	TOTAL	1920 1980 2040 2100 2160 2220 2280
80 85 .	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATG TCACGGAAGA AGTCTGGAAC ACTCCTACCC GGATGGCCAA	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG CCTCCTCCCC GGGGTACATC TCCCAACAAC	TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA TCGGACCGTG CCCAAGCCCC AACCTCATCATCATCATCATCATCATCATCATCATCATCA	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA ACAGCAAGAT GGCAAGACTG ACTGTGCCGC	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC CTGTCTTGGC GTGCAAGATG CAATGCTGTG	CTGGTGGGTC TATGACCCAC ACAGTCCATG CACTGCTTCT CTCCTTGTCA ATCACAGAGG TCCACCTTCT GAGGAAACTG	1920 1980 2040 2100 2160 2220 2280 2340
	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATG TCACGGAAGA AGTCTGGAAC ACTCCTACCC GGATGGCCAA	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG CCTCCTCCCC GGGGTACATC TCCCAACAAC	TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA TCGGACCGTG CCCAAGCCCC AACCTCATCATCATCATCATCATCATCATCATCATCATCA	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA ACAGCAAGAT GGCAAGACTG ACTGTGCCGC	GGGACAGCAG AAGGGGAGGT TCGCTGCTT CTTTTGGGG CTGTCTTTGGG GTGCAAGATG CAATGCTGTG TGCAGGATCT CGTGGGAATGT	CTGGTGGGTC TATGACCCAC ACAGTCCAT CACTGCTTCT CTCCTTGTCA ATCACAGAGG TCCACCTTCT GAGGAAACTG TACTCCCCAG	1920 1980 2040 2100 2160 2220 2280 2340
	ACATCTGCAA TTAAGGCAGC AGTACCCGAT CCACATACAT GCTCCAATG TCACGGAAGA AGTCTGGAAC ACTCCTACCC GGATGGCCAA	TTTCTTTGAC ACACTTGGAG TCACTTCCAC CAGGGACCTC CTTGTTGATC TGGGCCGGAG CCTCCTCCCC GGGGTACATC TCCCAACAAC	TTCGATACCT GGCACGGAGC CTGGCCGGTG TCCATCCATC AAGGACGTTG GAACGCAACA TCGGACCGTG CCCAAGCCCC AACCTCATCATCATCATCATCATCATCATCATCATCATCA	TGAAGCATAT ATGTAGACGA ATACATTCTC TGGGCTATAA CTTTTGACCA ACAGCAAGAT GGCAAGACTG ACTGTGCCGC	GGGACAGCAG AAGGGGAGGT TCGCTGCGTC CTCTTTGGGC CTGTCTTGGC GTGCAAGATG CAATGCTGTG	CTGGTGGGTC TATGACCCAC ACAGTCCAT CACTGCTTCT CTCCTTGTCA ATCACAGAGG TCCACCTTCT GAGGAAACTG TACTCCCCAG	1920 1980 2040 2100 2160 2220 2280 2340

```
GITATTCAGA GCACATTCCA CTGGGAAAAT TCTATAACAA CCGAGCACAT TCCAACTACC 2460
        GGGCTGGCAT GATCATAGAC AACGGAGTCA AAACCACCGA GGCCTCTGCC AAGGACAAGC
                                                                                       2520
        GGCCGTTCCT CTCAATCATC TCTGCCAGAT ACAGCCCTCA CCAGGACGCC GACCCGCTGA
                                                                                       2580
        AGCCCCGGGA GCCGGCCATC ATCAGACACT TCATTGCCTA CAAGAACCAG GACCACGGGG
        CCTGGCTGCG CGGCGGGGAT GTGTGGCTGG ACAGCTGCCG GTTTGCTGAC AATGGCATTG
                                                                                       2700
       GCCTGACCCT GGCCAGTGGT GGAACCTTCC CGTATGACGA CGGCTCCAAG CAAGAGATAA AGAACAGCTT GTTTGTTGGC GAGAGTGGCA ACGTGGGGAC GGAAATGATG GACAATAGGA
                                                                                       2760
        TCTGGGGCCC TGGCGGCTTG GACCATAGCG GAAGGACCCT CCCTATAGGC CAGAATTTTC
                                                                                       2880
        CAATTAGAGG AATTCAGTTA TATGATGGCC CCATCAACAT CCAAAACTGC ACTTTCCGAA
                                                                                       2940
        AGTTTGTGGC CCTGGAGGGC CGGCACACCA GCGCCCTGGC CTTCCGCCTG AATAATGCCT
10
                                                                                       3000
        GGCAGAGCTG CCCCCATAAC AACGTGACCG GCATTGCCTT TGAGGACGTT CCGATTACTT
                                                                                       3060
        CCAGAGTGTT CTTCGGAGAG CCTGGGCCCT GGTTCAACCA GCTGGACATG GATGGGGATA
                                                                                       3120
        AGACATCTGT GTTCCATGAC GTCGACGGCT CCGTGTCCGA GTACCCTGGC TCCTACCTCA
                                                                                       3180
       CGAAGAATGA CAACTGGCTG GTCCGGCACC CAGACTGCAT CAATGTTCCC GACTGGAGAG
GGGCCATTTG CAGTGGGTGC TATGCACAGA TGTACATTCA AGCCTACAAG ACCAGTAACC
                                                                                       3240
15
        TGCGAATGAA GATCATCAAG AATGACTTCC CCAGCCACCC TCTTTACCTG GAGGGGGCGC
                                                                                       3360
        TCACCAGGAG CACCCATTAC CAGCAATACC AACCGGTTGT CACCCTGCAG AAGGGCTACA
CCATCCACTG GGACCAGACG GCCCCCGCCG AACTCGCCAT CTGGCTCATC AACTTCAACA
                                                                                       3420
                                                                                       3480
        AGGGCGACTG GATCCGAGTG GGGCTCTGCT ACCCGCGAGG CACCACATTC TCCATCCTCT
                                                                                       3600
20
        CGGATGTTCA CAATCGCCTG CTGAAGCAAA CGTCCAAGAC GGGCGTCTTC GTGAGGACCT
        TGCAGATGGA CAAAGTGGAG CAGAGCTACC CTGGCAGGAG CCACTACTAC TGGGACGAGG
ACTCAGGGCT GTTGTTCCTG AAGCTGAAAG CTCAGAACGA GAGAGAGAAG TTTGCTTTCT
                                                                                       3660
                                                                                       3720
        GCTCCATGAA AGGCTGTGAG AGGATAAAGA TTAAAGCTCT GATTCCAAAG AACGCAGGCG
        TCAGTGACTG CACAGCCACA GCTTACCCCA AGTTCACCGA GAGGGCTGTC GTAGACGTGC
                                                                                       3840
25
        CGATGCCCAA GAAGCTCTTT GGTTCTCAGC TGAAAACAAA GGACCATTTC TTGGAGGTGA
                                                                                       3900
        AGATGGAGAG TTCCAAGCAG CACTTCTTCC ACCTCTGGAA CGACTTCGCT TACATTGAAG
                                                                                       3960
        TGGATGGGAA GAAGTACCCC AGTTCGGAGG ATGGCATCCA GGTGGTGGTG ATTGACGGGA
        ACCAAGGGCG CGTGGTGAGC CACACGAGCT TCAGGAACTC CATTCTGCAA GGCATACCAT
                                                                                        4080
        GGCAGCTTTT CAACTATGTG GCGACCATCC CTGACAATTC CATAGTGCTT ATGGCATCAA
                                                                                        4140
30
        AGGGAAGATA CGTCTCCAGA GGCCCATGGA CCAGAGTGCT GGAAAAGCTT GGGGCAGACA
GGGGTCTCAA GTTGAAAGAG CAAATGGCAT TCGTTGGCTT CAAAGGCAGC TTCCGGCCCA
                                                                                       4200
                                                                                        4260
        TCTGGGTGAC ACTGGACACT GAGGATCACA AAGCCAAAAT CTTCCAAGTT GTGCCCATCC
                                                                                        4320
        CTGTGGTGAA GAAGAAGAAG TTGTGAGGAC AGCTGCCGCC CGGTGCCACC TCGTGGTAGA
                                                                                        4380
        CTATGACGGT GACTCTTGGC AGCAGACCAG TGGGGGATGG CTGGGTCCCC CAGCCCCTGC CAGCAGCTGC CTGGGAAGGC CGTGTTTCAG CCCTGATGGG CCAAGGGAAG GCTATCAGAG
                                                                                        4440
35
                                                                                        4500
        ACCCTGGTGC TGCCACCTGC CCCTACTCAA GTGTCTACCT GGAGCCCCTG GGGCGGTGCT
                                                                                        4560
        GGCCAATGCT GGAAACATTC ACTITCCTGC AGCCTCTTGG GTGCTTCTCT CCTATCTGTG
CCTCTTCAGT GGGGGTTTGG GGACCATATC AGGAGACCTG GGTTGTGCTG ACAGCAAAGA
                                                                                        4620
                                                                                        4680
        TCCACTTTGG CAGGAGCCCT GACCCAGCTA GGAGGTAGTC TGGAGGGCTG GTCATTCACA
                                                                                        4740
40
        GATCCCCATG GTCTTCAGCA GACAAGTGAG GGTGGTAAAT GTAGGAGAAA GAGCCTTGGC
                                                                                        4 R O O
        CTTAAGGAAA TCTTTACTCC TGTAAGCAAG AGCCAACCTC ACAGGATTAG GAGCTGGGGT
                                                                                        4860
        AGAACTGGCT ATCCTTGGGG AAGAGGCAAG CCCTGCCTCT GGCCGTGTCC ACCTTTCAGG
        AGACTITIGAG TOGCAGGITT GGACTTGGAC TAGATGACTC TCAAAGGCCC TTTTAGTTCT
                                                                                        4980
        GAGATTCCAG AAATCTGCTG CATTTCACAT GGTACCTGGA ACCCAACAGT TCATGGATAT
                                                                                        5040
45
                                                                                        5100
        CCACTGATAT CCATGATGCT GGGTGCCCCA GCGCACACGG GATGGAGAGG TGAGAACTAA
        TGCCTAGCTT GAGGGGTCTG CAGTCCAGTA GGGCAGGCAG TCAGGTCCAT GTGCACTGCA
                                                                                        5160
        ATGCCAGGTG GAGAAATCAC AGAGAGGTAA AATGGAGGCC AGTGCCATTT CAGAGGGGAG
                                                                                        5220
        GCTCAGGAAG GCTTCTTGCT TACAGGAATG AAGGCTGGGG GCATTTTGCT GGGGGGAGAT
                                                                                        5280
        GAGGCAGCCT CTGGAATGGC TCAGGGATTC AGCCCTCCCT GCCGCTGCCT GCTGAAGCTG
GTGACTACGG GGTCGCCCTT TGCTCACGTC TCTCTGGCCC ACTCATGATG GAGAAGTGTG
                                                                                        5340
50
                                                                                        5400
        GTCAGAGGGG AGCAATGGGC TTTGCTGCTT ATGAGCACAG AGGAATTCAG TCCCCAGGCA
                                                                                        5460
        GCCCTGCCTC TGACTCCAAG AGGGTGAAGT CCACAGAAGT GAGCTCCTGC CTTAGGGCCT
CATTTGCTCT TCATCCAGGG AACTGAGCAC AGGGGGCCTC CAGGAGACCC TAGATGTGCT
                                                                                        5520
                                                                                        5580
         CGTACTCCCT CGGCCTGGGA TTTCAGAGCT GGAAATATAG AAAATATCTA GCCCAAAGCC
                                                                                        5640
55
        TTCATTTTAA CAGATGGGGA AAGTGAGCCC CCAAGATGGG AAAGAACCAC ACAGCTAAGG
                                                                                        5700
         GAGGGCCTGG GGAGCCCCAC CCTAGCCCTT GCTGCCACAC CACATTGCCT CAACAACCGG
                                                                                        5760
        CCCCAGAGTG CCCAGGCACT CCTGAGGTAG CTTCTGGAAA TGGGGACAAG TCCCCTCGAA
GGAAAGGAAA TGACTAGAGT AGAATGACAG CTAGCAGATC TCTTCCCTCC TGCTCCCAGC
                                                                                        5820
                                                                                        5880
         GCACACAAAC CCGCCCTCCC CTTGGTGTTG GCGGTCCCTG TGGCCTTCAC TTTGTTCACT
                                                                                        5940
60
         ACCTGTCAGC CCAGCCTGGG TGCACAGTAG CTGCAACTCC CCATTGGTGC TACCTGGCTC
                                                                                        6000
         TCCTGTCTCT GCAGCTCTAC AGGTGAGGCC CAGCAGAGGG AGTAGGGCTC GCCATGTTTC
                                                                                        6060
         TEGTICACCIA ATTIGGCTGA TCTTGGGTGT CTGAACAGCT ATTIGGTTCA CCCCAGTCCC
TTTCAGCTGC TGCTTAATGC CCTGCTCTCT CCCTGGCCCA CCTTATAGAG AGCCCAAAGA
                                                                                        6120
                                                                                        6180
         GCTCCTGTAA GAGGGAGAAC TCTATCTGTG GTTTATAATC TTGCACGAGG CACCAGAGTC
                                                                                        6240
65
         TCCCTGGGTC TTGTGATGAA CTACATTTAT CCCCTTTCCT GCCCCAACCA CAAACTCTTT CCTTCAAAGA GGGCCTGCCT GGCTCCCTCC ACCCAACTGC ACCCATGAGA CTCGGTCCAA
                                                                                        6300
                                                                                        6360
         GAGTCCATTC CCCAGGTGGG AGCCAACTGT CAGGGAGGTC TTTCCCACCA AACATCTTTC
                                                                                        6420
         AGCTGCTGGG AGGTGACCAT AGGGCTCTGC TTTTAAAGAT ATGGCTGCTT CAAAGGCCAG
                                                                                        6480
         6540
70
         CCTCATGTCC TTCTTGTCCA CGGTTTTGTT GAGTTTTCAC TCTTCTAATG CAAGGGTCTC
                                                                                        6600
         ACACTGTGAA CCACTTAGGA TGTGATCACT TTCAGGTGGC CAGGAATGTT GAATGTCTTT
                                                                                        6660
         GGCTCAGTTC ATTTAAAAAA GATATCTATT TGAAAGTTCT CAGAGTTGTA CATATGTTTC
                                                                                        6720
         ACAGTACAGG ATCTGTACAT AAAAGTTTCT TTCCTAAACC ATTCACCAAG AGCCAATATC
TAGGCATTTT CTTGGTAGCA CAAATTTTCT TATTGCTTAG AAAATTGTCC TCCTTGTTAT
                                                                                        6780
75
         TTCTGTTTGT AAGACTTAAG TGAGTTAGGT CTTTAAGGAA AGCAACGCTC CTCTGAAATG
                                                                                        6900
         CTTGTCTTTT TTCTGTTGCC GAAATAGCTG GTCCTTTTTC GGGAGTTAGA TGTATAGAGT
                                                                                        6960
         GTTTGTATGT AAACATTTCT TGTAGGCATC ACCATGAACA AAGATATATT TTCTATTTAT
         TTATTATATG TGCACTTCAA GAAGTCACTG TCAGAGAAAT AAAGAATTGT CTTAAATGTC
80
         Seg ID NO: 95 Protein seguence
         Protein Accession #: XP 051860.2
                                21
                     11
         MGAAGRODFL FKAMLTISWL TLTCFPGATS TVAAGCPDQS PELQFWNPGH DODHHVHIGQ
GKTLLLTSSA TVYSIHISEG GKLVIKDHDE PIVLRTRHIL IDNGGELHAG SALCFFQGNF
85
```

	TIILYGRADE	GIQPDPYYGL	KYIGVGKGGA	LELHGQKKLS	WTFLNKTLHP	GGMAEGGYPP	180
	ERSWGHRGVI	VHVIDPKSGT	VIHSDRFDTY	RSKKESERLV	QYLNAVPDGR	ILSVAVNDEG	240
	SRNLDDMARK	AMTKLGSKHP	LHLGFRHPWS	PLTVKGNPSS	SVEDHIEYHG	HRGSAAARVP	300
_		FNVSLSSEWV					360
5		LSTEVVYKKG					420
_		QSWKPGDTLV					480
		VGLLSRNIIV					540
		LVGQYPIHFH					600
		HCFFTEDGPE					660
10		STEWMANPHN					720
10		SNYRAGMIID					780
							840
		DHGAWLRGGD					
		DNRIWGPGGL					900
16		NNAWQSCPHN					960
15		SYLTKNDNWL					1020
		EGALTRSTHY					1080
	GLCYPRGTTF	SILSDVHNRL	LKQTSKTGVF	VRTLQNDKVE	QSYPGRSHYY	WDEDSGLLFL	1140
	KLKAQNEREK	PAFCSMKGCE	RIKIKALIPK	NAGVSDCTAT	AYPKFTERAV	VDVPMPKKLP	1200
	GSQLKTKDHF	LEVKMESSKQ	HFFHLWNDFA	YIEVDGKKYP	SSEDGIQVVV	IDGNQGRVVS	1260
20	HTSFRNSILQ	GIPWQLFNYV	ATIPDNSIVL	MASKGRYVSR	GPWTRVLEKL	GADRGLKLKE	1320
		PRPIWVTLDT					
	Sea ID NO:	96 DNA sequ	ience				
		id Accession		136 and AKO	11666		
25		uence: 63-32					
	1	11	21	3°	41	51	
	Ť	1	1	1	1	1	
	0.00	maaaaaa aa a	000000000000000000000000000000000000000	magazaamama	000000000	()	60
		TGGCGGAGAG					60
30		GCGCAAGCAG					120
20		GCAGCAGCAG					180
		GGGTGCTCCA					240
		AAAGCGGCTT					300
	AGTTCTTCAG	CATCTCTGAG	TTCCTGGAAC	ATAAGAAAAA	TTGCACTAAA	AATCCACCTG	360
~ =	TCCTCATCAT	GAATGACAGC	GAGGGGCCTG	TGCCTTCAGA	AGACTTCTCC	GGAGCTGTAC	420
35	TGAGCCACCA	GCCCACCAGT	CCCGGCAGTA	AGGACTGTCA	CAGGGAGAAT	GGCGGCAGCT	480
	CAGAGGACAT	GAAGGAGAAG	CCGGATGCGG	AGTCTGTGGT	GTACCTAAAG	ACAGAGACAG	540
		CACCCCCCAG					600
		GCAGGCACTA					660
		CCCCGTGCCT					720
40		GCAGCAGCTA					780
40							840
		CTCCCACGCC					
		CATGTCTCAG					900
		TCTGTCTCTG					960
15		CAGCTCCCTG					1020
45		CCCGAACGTC					1080
		CTTCCAGAGC					1140
		ACCGAACATC					1200
	ACAAGCACAA	GTGTAAGTAC	TGTAGCAAGG	TTTTTGGGAC	TGATAGCTCC	TTGCAGATCC	1260
	ACCTCCGCTC	CCACACTGGA	GAGAGACCCT	TCGTGTGCTC	TGTCTGTGGT	CATCGCTTCA	1320
50	CCACCAAGGG	CAACCTCAAG	GTGCACTTTC	ACCGACATCC	CCAGGTGAAG	GCAAACCCCC	1380
	AGCTGTTTGC	CGAGTTCCAG	GACAAAGTGG	CGGCCGGCAA	TGGCATCCCC	TATGCACTCT	1440
	CTGTACCTGA	CCCCATAGAT	GAACCGAGTC	TTTCTTTAGA	CAGCAAACCT	GTCCTTGTAA	1500
		AGGGCTACCT					1560
		GCCCGGTGAC					1620
55		GGTGGGACCA					1680
J J							1740
		GCCAGGGTCA					
		TGATCCCAAC					1800
		GCATTATCGC					1860
60		TTCTACCAAA					1920
60		GACGCAGCAT					1980
		ACATATTCGG					2040
						GGCAGCACCG	
	GCGCTATCTG	CCATGATGAT	GTCATCGAAA	GCATCGATGT	AGAGGAAGTC	AGCTCCCAGG	2160
	AGGCTCCCAG	CAGCTCCTCC	AAGGTCCCCA	CGCCTCTTCC	CAGCATCCAC	TCGGCATCAC	2220
65						GGTCCTGCCC,	
						GATGGCTTGA	
						CCAGATATCC	
						AGCATCAAGT	
						ACTGAGATGG	
70						GTCAAGGTTG	
70							
						CCTTTGTTAG	
						AAGAACTTCT	
						CCTTTTGTGT	
75						TACATGACAC	
75						AACACCATGG	
						ATCCTGGCCC	
						AATGGCGGTC	3000
						ACCCTCCCGG	
						GATGGCTCCC	3120
80						CCCAAACACC	
						ACTTGCGTGG	
						AGAACTCATC	
						GGTTGTGACC	
							3300
85	ACAACCICAG	GCAAGTGCTA	CAATCACGAT	1G1 IGCTATG	CIGCITICCA	WWW.	
0.0			•				

	Seq ID NO:	97 Protein	sequence:				
	Protein Acc	ession #: N	P_065169.1 21	31	41	51	
_	i	1	1	1	i	Ì	
5		HINSEEDQGB THVCEKCCAE					60 120
		DCHRENGGSS					180
		VAVNORSADA					240
10		GAGADTLKTL APFTLKPDGT					300 360
	GKPPNISAVD	VKPKDEAALY	KHKCKYCSKV	FGTDSSLOTH	LRSHTGERPF	VCSVCGHRFT	420
		RHPQVKANPQ SGTNPKDLTG					480 540
1.5	TPEPGSETLK	LQQLVENIDK	ATTDPNECLI	CHRVLSCQSS	LKMHYRTHTG	ERPFQCKICG	600
15		THLGVHRTNT					660 720
		DAPGKVGPAP					780
		ANSQAESIKS					840 900
20		LSPGMTPLLA GNLKVHYMTH					960
		QYTSMLNGGL			SLGATSVVNN	ATVSKMDGSQ	1020
	SGISADVERP	SATDGVPKHQ	PPHPLEENKI	AVS			
25		98 DNA sequid Accession					
23		uence: 553.		212.2			
	1	11	21	31	41	51 I	
	TTCTCCCGCA	ACCTTCCCTT	CGCTCCCTCC	CGTCCCCCCC	AGCTCCTAGC	CTCCGACTCC	60
30		CACGCCCGCC					120
		CTCCGTGCTG					180 240
	CTCTGCCCCC	CTCTATCCTT	GATACAACAG	CTGACCTCAT	TTCCCGATAC	CTTTTCCCCC	300
35		CAACATCTGG					360 420
-	ACATTCGGCC	CCCGCGACTC	GGCCAGAGCG	GCGCTGGCAG	AGGAGTGTCC	GGCAGGAGGG	480
		CTGTTCGGTT CAATGGGAAT					540 600
40	GCCTTCGCCT	CGTGCTGCAT	TGCTGCTTAC	CGCCCCAGTG	AGACCCTGTG	CGGCGGGGAG	660
40		CCCTCCAGTT					720 780
		TGGAGACGTA					840
		TGCTTCCGGA					900
45		AGCAGTCCAC ACGTGCTCGC					960 1020
	CCCCTGATTG	CTCTACCCAC	CCAAGACCCC	GCCCACGGGG	GCGCCCCCC	AGAGATGGCC	1080
		AGTGAGCAAA CCACGGACGT					1140 1200
50	CCCCCTGGGG	CTTCTCCTGA	CCCAGTCCCC	GTGCCCCGCC	TCCCCGAAAC	AGGCTACTCT	1260
50		CTCCATCGGG AAACACCCTT			CTTCAAACAT	GTACAAAATC	1320
				••••			
•		99 Protein cession #: 1					
55	1	11	21	31	41	51	
	 MGTPMGKSMT	 VLLTFLAFAS	CTAAVEDSE	TLOGGELVOT	TOPYCODRGP	 YPSRPASRVS	60
	RRSRGIVEEC	CFRSCDLALL	ETYCATPAKS	ERDVSTPPTV	LPONPPRYPV	GKFFQYDTWK	120
60	QSTQRLRRGL	PALLRARRGH	VLAKELEAFR	EAKRHRPLIA	LPTQDPAHGG	APPEMASNRK	
•	Seq ID NO:	100 DNA se	quence				
		id Accessio uence: 58		217.1			
65	1	11	21	31	41	51	
65				 DECTCTC	 	 TCTAAGGATG	60
						ATCTGGCCTG	120
						ACTTGTCCTC GGAGAATAGC	180 240
70						GATTGGGCGT	300
						AAGCCATTTC	360
						GGAGCATCAG	420 480
75	AACTATTTT	ATGACCGGAG	GAGGATCTAC	TTGATTCTAG	AGTATGCCCC	CCGCGGGGAG	540
13						CACGATCATG	600 660
	AAGCCAGAAA	ATCTGCTCTT	AGGGCTCAAG	GGAGAGCTGA	AGATTGCTGA	CTTCGGCTGG	720
						CTACCTGCCC	780 840
80	CTTTGCTATO	AGCTGCTGGT	GGGGAACCCA	CCCTTTGAGA	GTGCATCACA	CAACGAGACC	900
						GGGAGCCCAG GGCCCAGGTC	960 1020
	TCAGCCCACC	CTTGGGTCCG	GGCCAACTCT	CGGAGGGTGC	TGCCTCCCTC	TGCCCTTCAA	1080
85						CCTCCTTTGT	1140 1200
0,5	INIMGGGGAF	JINDOUNDU .	LINACIGITI	CCLIMICIG	LILICIACCI	CCICCIIIGI	1200

TTAATAAAGG CTGAAGCTTT TTGT

	Seq ID NO: Protein Acc						
5		11	21	31 	41 	51 	
	MAQKENSYPW			KEPVTPSALV VYLAREKKSH			60 120
10	QLRREIEIQA	HLHHPNILRL	YNYFYDRRRI	YLILEYAPRG	ELYKELQKSC	TFDEQRTATI	180
10				KGELKIADFG PPPESASHNE			240 300
	QDLISKLLRH	NPSERLPLAQ	VSAHPWVRAN	SRRVLPPSAL	QSVA		
15	Seq ID NO: Nucleic Aci						
	Coding sequ	ence: 561	642		43	E1	
	}	11	21 	31 	41	51 	
20				TCGGACCTAG GCTGTCCGAT			60 120
	CATGTTTGAG	TCCACAGCTG	CAGATTTGGG	GTCTGTGGTA	CGCAAGAACC	TGCTATCAGA	180
				CAAGCAGCAG GCCCTTGTTA			240 300
				TGTGGAGACC			360
25				GGGAATTGGC			420
				AČAGGCATCC GAACTGGCTC			480 540
•	TAACTCAGGG	AAAACCCACA	CGATTCAAGG	TACCATCAAG	GATGGAGGGA	TTCTCCCCCG	600
30				AGGCCAACTT AGACAGCAAG			660 720
50				CCAAGAGGAG			780
				TACCAGCACC			840
				CAGTAGCCAG TGTCCCGGCA			900 960
35	GATCTCATTC	TTTGAGATCT	ACAACGAACT	GCTTTATGAC	CTATTAGAAC	CGCCTAGCCA	1020
				CGAGGATCAA TGAGGAGGCC			1080 1140
	TCGTAAGAAC	CAGAGCTTTG	CCAGCACCCA	CCTCAACCAG	AACTCCAGCC	GCAGTCACAG	1200
40				GGGGGAAGGA			1260
70				AGAGCGCTGC CTCTCTACAC			1320 1380
	TGCCCTTCGT	CAAAACCAGC	AGAACCGGTC	AAAGCAGAAC	CTGGTTCCCT	TCCGTGACAG	1440
				CACAGGCCGA TGAAACTCTT			1500 1560
45	CATTGCTAGC	CAGGTGACTT	GTGCATGCCC	CACCTATGCA	ACTGGGATTC	CCATCCCTGC	1620
				TATCCCCCAG ATGAAGCTGA			1680 1740
				AGACACTGCT			1800
50				AAATTTGCAA			1860
50				TGGACACCCA AGTCACTGAC			1920 1980
	TTCAGGAGCG	GGATGAAAAG	ATTGAAGAGC	TAGAAGCTCT	CTTGCAGGAA	GCCAGACAAC	2040
				AATTGGCCCT AGGTTAAAGC			2100 2160
55				ATAAGTATCA			2220
				ACAAGAAGTT			2280
				TTGGTGAGTC			2340 2400
60	TCTTAATCAA	ACAGGACCAG	ACTCTGGCTG	AACTGCAGAA	CAACATGGTG	CTAGTGAAAC	2460
UU				CTGAGCAGTA GTACCAACCA			2520 2580
				GAAATTTACT			2640
				GGATCCTACG AAGGCTGTGG			2700 2760
65				AGAAATAGGT			2820
				CAGACACTAG			2860
				ATTGTTCACA		AATTCCAAAT	2940 3000
70				GGGACAGAAA			
70	Sea TD NO:	103 Protein	n semience				
	•		NP_005724.1				
	1	11	21	31	41	51 	
75	 MSQGILSPPA	GLLSDDDVVV	SPMFESTAAD	I LGSVVRKNLL	SDCSVVSTSL	EDKQQVPSED	60
				ENVETLVLQA			120
				GQNWLIYTYG WLDSKQIRQE			180 240
90	LKRSVYIESR	IGTSTSFDSG	IAGLSSISQC	TSSSQLDETS	HRWAQPDTAP	LPVPANIRFS	300
80				LCEDQNGNPY LQGEGDIVPK			360 420
				RSKQNLVPFR			480
				CPTYATGIPI			
85	Seg ID NO:	104 DNA se	quence				
			- 1	•		_	

	Nucleic Aci Coding sequ		_	952.1			
			21	31	41	51	
5	AATCCCGACA	ATGGGGAAAG	ACAACTCAAC	TGTTCGTTGC	TTCCAGGGCC	TGCTGATTT	60
	TGGAAATGTG	ATTATTGGTT	GTTGCGGCAT	TGCCCTGACT	GCGGAGTGCA	TCTTCTTTGT	120
				TGAAGCCACC CTGCCTCTTC			180 240
				TCTTCTGGCG			300
10				CACAGCAGCA			360
				GAGGTACCAA CAAAACCTGG			420 480
	CAATTGCTGT	GGCGTAAATG	GTCCATCAGA	CTGGCAAAAA	TACACATCTG	CCTTCCGGAC	540
15				TCGTCAATGC AGGCGTGCCT			600 660
	CTGCTATGAA	CTGATCTCTG	GTCCAATGAA	CCGACACGCC	TGGGGGGTTG	CCTGGTTTGG	720
	ATTTGCCATT		CTTTTTGGGT	TCTCCTGGGT	ACCATGTTCT	ACTGGAGCAG	780
20	Seq ID NO:	105 Proteir	sequence				
	Protein Acc	ession #: N	IP_008883.1				
	ì	11 	21 	31 	41	51 	
25				AECIFFVSDQ			60
25				YFILMFIVYA DRLMLQDNCC			120 180
				GFYHNQGCYE			240
	LCWTFWVLLG	TMFYWSRIEY					
30	Seq ID NO:						
	Nucleic Aci Coding sequ		_	740.1			
		11	21	31	41	și	
35	CCCCCCTTCC	 -	GCGAGGCGAC	CCTTGGGTCG	eccreces	CGACGTGGGC	60
55				GGCAAGCGCA			120
				CCAGCGTTGA			180
				CACACGGTCG TACCGCGGGG			240 300
40				AATGAGGTTC			360
				GATGAGGAAG			420
				CTTTATGAGC CGTCCTGGGA			480 540
				TGGAGAAAGC			600
45				GCTCACTGTG			660
				ATCAACTGCA CGGCATTCTT			720 780
	CCCATGGATC	AGTCATCCAT	GCATTCTGAC	CATGCACAGA	CAGTAATTCC	ATATAATCCT	840
50				GAAGAAAAAG CAGGATTTTG			900 960
•				CGATTAAAAA			1020
				GATGATGAGG			1080
				CATCCTTTCC			1140 1200
55	TTTCATATGC	AGCGACAAAG	AAAACTTCCT	GAAGAACATG	CCAGATTTTA	CTCTGCAGAA	1260
				CGAGGGATAA ATTAAACTCA			1320 1380
				ACTITCTGTG			1440
60	CCTGAAATTT	TAAGAGGAGA	AGATTATGGT	TTCAGTGTTG	ACTGGTGGGC	TCTTGGAGTG	1500
60				CCATTTGATA CAAGTTATTT			1560 1620
	CCACGTTCTC	TGTCTGTAAA	AGCTGCAAGT	GTTCTGAAGA	GTTTTCTTAA	TAAGGACCCT	1680
				GGATTTGCTG			1740
65				CAAAAACAGG			1800 1860
••				AGGAAGATTG			1920
						CTCATTTTTC	1980
				CAAAAAAAACA		CAAGCCTGGA TCTCTTGTAG	2040 2100
70	ACTATATGAA	TCAATTATTA	CATCTGTTTT	ACTATGAAAA	AAAAATTAAT	ACTACTAGCT	2160
				CTGGTTTTTC AAAAAAAAA		AGGCCTACAG	2220
	Sea In Mr.	107 Protest					
75		107 Protei: cession #: 1	NP_002731.1				
	1	11	21	31	41	51	
	MSHTVAGGGS	GDHSHOVRVK	AYYRGDIMIT	HFEPSISFEG	LONEVRDNOS	(FDNEQLFTMK	60
٥٥	WIDEEGDPCT	VSSQLELEEA	PRLYELNKDS	BLLIHVFPCV	PERPGMPCPG	EDKSIYRRGA	120
80	RRWRKLYCAN	GHTPQAKRFN	RRAHCAICTD	RIWGLGRQGY NPSSHESLDQ	KCINCKLLVH	RESCHARGE	180 240
						QTEKHVFEQA	300
	SNHPFLVGLH	SCFQTESRLP	FVIEYVNGGD	LMPHMQRQRK	LPEEHARFYS	AEISLALNYL	360
85						iapeilrged Riprslsvka	420 480
-							

```
ASVLKSFLNK DPKERLGCHP QTGPADIQGH PFFRNVDWDM NEOKOVVPPF KPNISGEFGL
       DNFDSQFTNE PVQLTPDDDD IVRKIDQSEF EGFEYINPLL MSAEECV
       Seq ID NO: 108 DNA sequence
 5
       Nucleic Acid Accession #: NM_000349.1
       Coding sequence: 127..984
                                                                      51
                   11
                                21
       GGGACTCAGA GGCGAAGCTT GAGGGGCTCA GGAAGGACGA AGAACCACCC TTGAGAGAAG
10
       AGGCAGCAGC AGCGGCGGCA GCAGCAGCGG CAGCGACCCC ACCACTGCCA CATTTGCCAG
        GAAACAATGC TGCTAGCGAC ATTCAAGCTG TGCGCTGGGA GCTCCTACAG ACACATGCGC
                                                                                    180
       AACATGAAGG GGCTGAGGCA ACAGGCTGTG ATGGCCATCA GCCAGGAGCT GAACCGGAGG
GCCCTGGGGG GCCCCACCCC TAGCACGTGG ATTAACCAGG TTCGGCGGGG GAGCTCTCTA
                                                                                    240
                                                                                    300
       CTCGGTTCTC GGCTGGAAGA GACTCTCTAC AGTGACCAGG AGCTGGCCTA TCTCCAGCAG
15
        GGGGAGGAGG CCATGCAGAA GGCCTTGGGC ATCCTTAGCA ACCAAGAGGG CTGGAAGAAG
                                                                                     420
       GAGAGTCAGC AGGACAATGG GGACAAAGTG ATGAGTAAAG TGGTCCCAGA TGTGGGCAAG
GTGTTCCGGC TGGAGGTCGT GGTGGACCAG CCCATGGAGA GGCTCTATGA AGAGCTCGTG
                                                                                    480
                                                                                    540
        GAGCGCATGG AAGCAATGGG GGAGTGGAAC CCCAATGTCA AGGAGATCAA GGTCCTGCAG
        AAGATCGGAA AAGATACATT CATTACTCAC GAGCTGGCTG CCGAGGCAGC AGGAAACCTG
                                                                                    660
20
        GTGGGGCCCC GTGACTTTGT GAGCGTGCGC TGTGCCAAGC GCCGAGGCTC CACCTGTGTG
                                                                                    720
        CTGGCTGGCA TGGACACAGA CTTCGGGAAC ATGCCTGAGC AGAAGGGTGT CATCAGGGCG
                                                                                     780
        GAGCACGGTC CCACTTGCAT GGTGCTTCAC CCGTTGGCTG GAAGTCCCTC TAAGACCAAA
                                                                                     840
       CTTACGTGGC TACTCAGCAT CGACCTCAAG GGGTGGCTGC CCAAGAGCAT CATCAACCAG
GTCCTGTCCC AGACCCAGGT GGATTTTGCC AACCACCTGC GCAAGCGCCT GGAGTCCCAC
                                                                                    900
                                                                                    960
25
        CCTGCCTCTG AAGCCAGGTG TTGAAGACCA GCCTGCTGTT CCCAACTGTG CCCAGCTGCA
        CTGGTACACA CGCTCATCAG GAGAATCCCT ACTGGAAGCC TGCAAGTCTA AGATCTCCAT
                                                                                   1080
        CTGGTGACAG TGGGATGGGT GGGGTTCGTG TTTAGAGTAT GACACTAGGA TTCAGATTGG
                                                                                   1140
        TGAAGTTTTT AGTACCAAGA AAACAGGGAT GAGGCTCTTG GATTAAAAGG TAACTTCATT
                                                                                   1200
        CACTGATTAG CTATGACATG AGGGTTCAGG CCCCTAAAAT AATTGTAAAA CTTTTTTCT
30
        GGGCCCTTAT GTACCCACCT AAAACCATCT TTAAAATGCT AGTGGCTGAT ATGGGTGTGG
                                                                                   1320
        GGGATGCTAA CCACAGGGCC TGAGAAGTCT TGCTTTATGG GCTCAAGAAT GCCATGCGCT
                                                                                   1380
        GGCAGTACAT GTGCACAAAG CAGAATCTCA GAGGGTCTCC TGCAGCCCTC TGCTCCTCCC
                                                                                   1440
        GGCCGCTGCA CAGCAACACC ACAGAACAAG CAGCACCCCA CAGTGGGTGC CTTCCAGAAA
        TATAGTCCAA GCTTTCTCTG TGGAAAAAGA CAAAACTCAT TAGTAGACAT GTTTCCCTAT
35
        TGCTTTCATA GGCACCAGTC AGAATAAAGA ATCATAATTC ACACC
        Seq ID NO: 109 Protein sequence
        Protein Accession #: NP_000340.1
                    11
                                21
                                             31
                                                          41
                                                                      51
40
        MLLATFKLCA GSSYRHMRNM KGLRQQAVMA ISQELNRRAL GGPTPSTWIN QVRRRSSLLG
        SRLEETLYSD QELAYLQQGE EAMQKALGIL SNQEGWKKES QQDNGDKVMS KVVPDVGKVF
                                                                                    120
        RLEVVVDQPM ERLYEELVER MEAMGEWNPN VKEIKVLQKI GKDTFITHEL AAEAAGNLVG
                                                                                     180
        PRDFVSVRCA KRRGSTCVLA GMDTDFGNMP EOKGVIRAEH GPTCMVLHPL AGSPSKTKLT
                                                                                     240
45
        WLLSIDLKGW LPKSIINQVL SQTQVDFANH LRKRLESHPA SEARC
        Seq ID NO: 110 DNA sequence
        Nucleic Acid Accession #: EOS sequence
        Coding seguence: 131-682
50
                    11
        GCTGGGAGCC TGGGCCGGGA GCCGGGTGAG GGCGCCGAGA GGCTCGGTGG GCGCGGGCGG
CGAGATATGC CACACTTCTG CCTGCTGTTG GCAACCCTCC TGGACTAGGC TGCTCTTGTT
        AATCACATGG ATGTTATATA AGAGTTCGGA CCGCCCAGCA CACAAGGTCA GCATGCTGCT
                                                                                     180
55
        CCTCTGTCAC GCTCTCGCTA TAGCTGTTGT CCAGATCGTT ATCTTCTCAG AAAGCTGGGC
ATTTGCCAAG AACATCAACT TCTATAATGT GAGGCCTCT CTCGACCCTA CACCATTTCC
                                                                                     240
                                                                                     300
        AAATAGCTTC AAGTGCTTTA CTTGTGAAAA CGCAGGGGAT AATTATAACT GCAATCGATG
        GGCAGAAGAC AAATGGTGTC CACAAAATAC ACAGTACTGT TTGACAGTTC ATCACTTCAC
CAGCCACGGA AGAAGCACAT CCATCACCAA AAAGTGTGCC TCCAGAAGTG AATGTCATTT
                                                                                     420
                                                                                     480
60
        TOTOGGTTGC CACCACAGCC GAGATTCTGA ACATACGGAG TGTAGGTCTT GCTGTGAAGG
                                                                                     540
        AATGATCTGC AATGTAGAAT TACCCACCAA TCACACTAAT GCAGTGTTTG CCGTAATGCA
                                                                                     600
         CGCTCAGAGA ACATCTGGCA GCAGTGCCCC CACACTCTAC CTACCAGTGC TTGCCTGGGT
                                                                                     660
        CTTTGTGCTT CCATTGCTGT GATGCCACCA TTCCTAGGAG AGGCAGAGAC CAGCCTCTAA AGCACAAGCC AAAAACTGTG TGAACGGTGA ACTTTGGAGT GAAGATCAAT CTTGCACTTG
                                                                                     720
                                                                                     780
65
         GTGAAGAGTG CACATTGGAC CTCAAGGCGA AAGCCAGTGG TTTGCTTGGA TAAAATGTTC
                                                                                     840
         COGCATGAGG CCACAGGACT GAGGATGGGA ATTTGGCAGG GCCTGAGAAG ATGGTCTGAC
                                                                                     900
        TTCCAGGCTT CCTGGTCAAA GAGAGCTACG TTTGGGCAGT TCTGCAGAGA GGATCCTGGC
                                                                                     960
        AACTAGTCCC ACCTGACTAG GCCTTTAGCT GAAAGGATTT CTTGACCTCC TTGACTGCCT
                                                                                    1020
         CAGAGGCTGC CAGGTCAAAC CCTCTTGTTT ATGTGATTAG CTCAGAGCAT CTCTATGAAA
                                                                                    1080
70
        TCTAACCCTT CCCCTCATGA GAAAGCAGTT TTCCCCACCA ACAGCATAGT CAATGAGAAA
                                                                                    1140
         GGCAACTGTA CGAAGAAAAC TTCCAGTGGA ACTAATATGA AATCTATTTG CAAATTATGG
                                                                                    1200
         GGGGAAATAA AGCTTTTAAA TTATACAATG T
         Seg ID NO: 111 Protein sequence
75
         Protein Accession #: AAM20908.1
                                 21
                     11
         MLYKSSDRPA HKVSMLLICH ALAIAVVQIV IPSESWAFAK NINPYNVRPP LDPTPPPNSF
                                                                                      60
         KCPTCENAGD NYNCHRWAED KWCPONTQYC LTVHHFTSHG RSTSITKKCA SRSECHFVGC
                                                                                     120
 80
         HHSRDSEHTE CRSCCEGMIC NVELPTNHTN AVFAVMHAQR TSGSSAPTLY LPVLAWVFVL
         Seg ID NO: 112 DNA seguence
         Nucleic Acid Accession #: Eos sequence
 85
         Coding sequence: 228-884
```

```
21
         OGCCOGCOGG CCCCAGGCGG GTGCGCTGGG AGCCTGGGCC GGGAGCCGGG TGAGGGCGCC
        GAGAGGCTCG GTGGGCGCGG GCGCCGAGGA CTCTGCTGGA GCAGGACTTC AGAGTGTTTG
        TTTTCAGCCT GCTTTTAAAG TGATTTGAAG AGAGCCCCTT TGAAGATATG CCACACTTCT
                                                                                          180
        GCCTGCTGTT GGCAACCCTC CTGGACTAGG CTGCTCTTGT TAATCACATG GATGTTGCTG
                                                                                           240
        ATTACTCTGA GTGCAAACCT TTTCACTGTT CCAGAGAGGA GCCTGACAAC CACATTCTCC
        TTCTCAAGGT GTGGTGCTTA CTGCGCAGGC TGACCAGATA TAAGAGTTCG GACCGCCCAG
                                                                                           360
         CACACAAGGT CAGCATGCTG CTCCTCTGTC ACGCTCTCGC TATAGCTGTT GTCCAGATCG
                                                                                           420
10
         TTATCTTCTC AGAAAGCTGG GCATTTGCCA AGAACATCAA CTTCTATAAT GTGAGGCCTC
                                                                                           480
         CTCTCGACCC TACACCATTT CCAAATAGCT TCAAGTGCTT TACTTGTGAA AACGCAGGGG
        ATAATTATAA CTGCAATCGA TGGGCAGAAG ACAAATGGTG TCCACAAAAT ACACAGTACT
GTTTGACAGT TCATCACTTC ACCAGCCACG GAAGAAGCAC ATCCATCACC AAAAAGTGTG
                                                                                           600
                                                                                           660
         CCTCCAGAAG TGAATGTCAT TTTGTCGGTT GCCACCACAG CCGAGATTCT GAACATACGG
                                                                                           720
15
        AGTGTAGGTC TTGCTGTGAA GGAATGATCT GCAATGTAGA ATTACCCACC AATCACACTA
        ATGCAGTGTT TGCCGTAATG CACGCTCAGA GAACATCTGG CAGCAGTGCC CCCACACTCT ACCTACCAGT GCTTGCCTGG GTCTTTGTGC TTCCATTGCT GTGATGCCAC CATTCCTAGG
                                                                                           840
                                                                                           900
        AGAGGCAGAG ACCAGCCTCT AAAGCACAAG CCAAAAACTG TGTGAACGGT GAACTTTGGA
                                                                                           960
         GTGAAGATCA ATCTTGCACT TGGTGAAGAG TGCACATTGG ACCTCAAGGC GAAAGCCAGT
20
        GGTTTGCTTG GATAAAATGT TCCCGCATGA GGCCACAGGA CTGAGGATGG GAATTTGGCA
GGGCCTGAGA AGATGGTCTG ACTTCCAGGC TTCCTGGTCA AAGAGAGCTA CGTTTGGGCA
GTTCTGCAGA GAGGATCCTG GCAACTAGTC CCACCTGACT AGGCCTTTAG CTGAAAGGAT
                                                                                         1080
                                                                                         1140
                                                                                         1200
         TTCTTGACCT CCTTGACTGC CTCAGAGGCT GCCAGGTCAA ACCCTCTTGT TTATGTGATT
         AGCTCAGAGC ATCTCTATGA AATCTAACCC TTCCCCTCAT GAGAAAGCAG TTTTCCCCAC
25
         CAACAGCATA GTCAATGAGA AAGGCAACTG TACGAAGAAA ACTTCCAGTG GAACTAATAT
         GAAATCTATT TGCAAATTAT GGGGGGAAAT AAAGCTTTTA AATTATAAA
         Seq ID NO: 113 Protein sequence
         Protein Accession #: Eos sequence
30
                                   21
                                                31
                     11
         MDVADYSECK PFHCSREEPD NHILLLKVWC LLRRLTRYKS SDRPAHKVSM LLLCHALAIA
VVQIVIFSES WAPAKNINFY NVRPPLDPTP FPNSFKCFTC ENAGDNYNCN RWAEDKWCPQ
NTQYCLTVHH FTSHGRSTSI TKKCASRSEC HFVGCHHSRD SEHTECRSCC EGMICNVELP
                                                                                           120
35
         TNHTNAVFAV MHAQRTSGSS APTLYLPVLA WVFVLPLL
         Seq ID NO: 114 DNA sequence
         Nucleic Acid Accession #: EOS sequence
         Coding sequence: 402-1025
40
                     11
                                  21
         ACTICCIGAG CCGGGCTGGC TGGGTGGGAA CAGGCTCCTT GCCGCCTCCC CAGCGCTGGC
         CACTACCACA CTGCCGCCCG CCTGGGCCTC CTTTCAACCT CGTGGTGGAG CCCTGCGGTT
         TCCCAGCGGA GCCGGGCCCG GGGCTGCTCC CTCGCGGGCG AGGCTCACCT GTCCCGGCCC GGCCCCCTCC CGCGCCCCAG GTGGTTCAGG GCAGGAGGA GCCGCGCCCC GCCCCGCGCG
                                                                                           180
45
                                                                                           240
         GTAGCAGCCA ACGCCGGCCC CAGGCGGGTG CGCTGGGAGC CTGGGCCGGG AGCCGGGTGA
         GGGCGCCGAG AGGCTCGGTG GGCGCGGGCG GCGAGATATG CCACACTTCT GCCTGCTGTT
                                                                                           360
         GGCAACCCTC CTGGACTAGG CTGCTCTTGT TAATCACATG GATGTTGCTG ATTACTCTGA
                                                                                           420
         GTGCAAACCT TTTCACTGTT CCAGAGAGGA GCCTGACAAC CACATTCTCC TTCTCAAGAT
                                                                                           480
50
         ATAAGAGTTC GGACCGCCCA GCACACAAGG TCAGCATGCT GCTCCTCTGT CACGCTCTCG
         CTATAGCTGT TGTCCAGATC GTTATCTTCT CAGAAAGCTG GGCATTTGCC AAGAACATCA
                                                                                           600
         ACTTCTATAA TGTGAGGCCT CCTCTCGACC CTACACCATT TCCAAATAGC TTCAAGTGCT
TTACTTGTGA AAACGCAGGG GATAATTATA ACTGCAATCG ATGGGCAGAA GACAAATGGT
                                                                                           660
                                                                                           720
         GTCCACAAAA TACACAGTAC TGTTTGACAG TTCATCACTT CACCAGCCAC GGAAGAAGCA
                                                                                           780
55
         CATCCATCAC CAAAAAGTGT GCCTCCAGAA GTGAATGTCA TTTTGTCGGT TGCCACCACA
         GCCGAGATTC TGAACATACG GAGTGTAGGT CTTGCTGTGA AGGAATGATC TGCAATGTAG
                                                                                           900
         AATTACCCAC CAATCACACT AATGCAGTGT TTGCCGTAAT GCACGCTCAG AGAACATCTG
GCAGCAGTGC CCCCACACTC TACCTACCAG TGCTTGCCTG GGTCTTTGTG CTTCCATTGC
                                                                                           960
                                                                                          1020
         TGTGATGCCA CCATTCCTAG GAGAGGCAGA GACCAGCCTC TAAAGCACAA GCCAAAAACT
60
         GTOTGAACGG TGAACTTTGG AGTGAAGATC AATCTTGCAC TTGGTGAAGA GTGCACATTG
GACCTCAAGG CGAAAGCCAG TGGTTTGCTT GGATAAAATG TTCCCGCATG AGGCCACAGG
                                                                                          1140
                                                                                          1200
         ACTGAGGATG GGAATTTGGC AGGGCCTGAG AAGATGGTCT GACTTCCAGG CTTCCTGGTC
                                                                                          1260
         AAAGAGAGCT ACGTTTGGGC AGTTCTGCAG AGAGGATCCT GGCAACTAGT CCCACCTGAC
         TAGGCCTTTA GCTGAAAGGA TTTCTTGACC TCCTTGACTG CCTCAGAGGC TGCCAGGTCA AACCCTCTTG TTTATGTGAT TAGCTCAGAG CATCTCTATG AAATCTAACC CTTCCCCTCA TGAGAAAGCA GTTTTCCCCA CCAACAGCAT AGTCAATGAG AAAGGCAACT GTACGAAGAA
                                                                                          1380
65
                                                                                          1440
         AACTTCCAGT GGAACTAATA TGAAATCTAT TTGCAAATTA TGGGGGGAAA TAAAGCTTTT
         AAATTATACA ATGT
70
         Seq ID NO: 115 Protein sequence
         Protein Accession #: EOS sequence
                                 21
                                                                           51
                     11
         60
75
         APAKNINFYN VRPPLDPTPP PNSFKCFTCE NAGDNYNCNR WAEDKWCPQN TQYCLTVHHF
         TSHGRSTSIT KKCASRSECH FVGCHHSRDS EHTECRSCCE GMICNVELPT NHTNAVFAVM
         HAORTSGSSA PTLYLPVLAW VFVLP
         Seq ID NO: 116 DNA sequence
80
         Nucleic Acid Accession #: Eos sequence
         Coding sequence: 1-1059
                                   21
         ATGGTATGGC AGCAAGATTA TGGAACCAGG AGAGAGCACC ATGGCTGCCG TCTGGAATTC
85
         TGCCGTGTAT CTGCAGGGTG CCCTTGCCTA AGCCCCTTGA CCTCTTTGGT TATAGTTTCC
```

				GAAGAAGACT			180
				CATAACATAA			240
				CCAGAAGATC			300
_	GATGTGAAAG	GCATTGTACA	GAAGAAGATG	AGAATCACAG	TAAACCAAAC	AAAGGAAATG	360
5				AATGTAAAAT			420
				ATGCTTCTGG			4B0
				TTGGATAATG			540
				GAAACTGAAC			600
10				AGAATAAAAC			660
10				TGCTTTACTT			720
				TGGTGTCCAC			780
	ACAGTTCATC	ACTTCACCAG	CCACGGAAGA	AGCACATCCA	TCACCAAAAA	GTGTGCCTCC	840
				CACAGCCGAG			900
1.5				GTAGAATTAC			960
15				TCTGGCAGCA			1020
				TTGCTGTGAT			1080
	CAGAGACCAG	CCTCTAAAGC	ACAAGCCAAA	AACTGTGTGA	ACGGTGAACT	TTGGAGTGAA	1140
				ATTGGACCTC			1200
.00				CAGGACTGAG			1260
20				GGTCAAAGAG			1320
				TGACTAGGCC			1380
				GTCAAACCCT			1440
						CCCACCAACA	1500
25				AGAAAACTTC			1560
25	CTATTTGCAA	ATTATGGGGG	GAAATAAAGC	TTTTAAATTA	TACAATGTAA	A	
				~,			
		117 Protein					
		cession #: I	-				
20	i	11	21	31	41	51	
30	1	1	1		1	1	
				SPLTSLVIVS			60
				PEDLAKIIDE			120
				MLLDQVPGPG			180
25				RIKQKVSITS			240
35				STSITKKCAS			300
	RSCCEGMICN	VELPTNHTNA	VFAVMHAQRT	SGSSAPTLYL	PVLAWVPVLP	LL	
		118 DNA sec					
40		id Accession	_	559.6			
40		ience: 528-1					
	1	11	21	31	41	51	
	1	TOCCOT COTO	1	CGGAATGGCA	A THOR CA TOTAL)	60
				ATAAATGTTA			120
45				TAACCGTGTC			180
73				GAGTGAGGCT			240
				CTGGGGGCGG			300
				CGAGTCTCCG			360
				CCTCGGGCAC			420
50				GTCCACACGG			480
50				TOGTGGCCGA			540
				AAGGAGGATC			600
				CTACCATTTT			660
				ATCATATGCT			720
55				CTCTTCAGAA			780
				TTGAAGGATT			840
				TCAACATGGA			900
				AAGAGCTCTT			960
				CAACATCTGC			1020
60				TCAAGAAGCC			1080
				CAAGTGGAAC			1140
						AAGATGGGAG	1200
						TGTCAGCAGG	
						AATCTTTTTC	
65							1380
						GGTGAATTTA	1440
						GGGAACAGAG	
	TGAGAGAGAT	GTTTGGCTCT	GGTACAGCCT	GTGTTGTTTG	CCCAGTTTCT	GATATACTGT	1560
	ACAAAGGCGA	GACAATACAC	ATTCCAACTA	TGGAGAATGG	TCCTAAGCTG	GCAAGCCGCA	1620
70	TCTTGAGCAA	ATTAACTGAT	ATCCAGTATG	GAAGAGAAGA	GAGCGACTGG	ACAATTGTGC	1680
	TATCCTGAAT	GGAAAATAGA	GGATACAATG	GAAAATAGAG	GATACCAACT	GTATGCTACT	1740
	GGGACAGACT	GTTGCATTTG	AATTGTGATA	GATTTCTTTG	GCTACCTGTG	CATAATGTAG	1800
						AATGAATTGC	
76						ACCTAGAAAA	
75	ACATTAATGT	AAGCCATATA	ACATGGGATT	TTCCTCAATG	ATTTTAGTGC	CTCCTTTTGT	1980
						CTGCTCCTCA	
						ATAGGTTACA	
						CAAGACTTTT	
00						GTTAAGGTAA	
80						GAAGACCTGA	
						GTCAGGCGAC	
	GIGCATTICC	CHCCHIIGIC					
	TACAAGACTG	AGGGTCTTGT	GCCTTATAGA			GACATATAGT	
	TACAAGACTG AGGTACTCAG	AGGGTCTTGT TAAATGGTTT	GCCTTATAGA TATAATGAAT	CAGTGAACAT	TTTGCTTCTA	TAGAAGTGTA	2460
0.5	TACAAGACTG AGGTACTCAG CCTTCTTTGT	AGGGTCTTGT TAAATGGTTT TTCTATATTA	GCCTTATAGA TATAATGAAT TGAAACCTCT	CAGTGAACAT TTATTAGAAT	TTTGCTTCTA TTGTGATTGA	TAGAAGTGTA TTCTGACAGT	2460 2520
85	TACAAGACTG AGGTACTCAG CCTTCTTTGT	AGGGTCTTGT TAAATGGTTT TTCTATATTA	GCCTTATAGA TATAATGAAT TGAAACCTCT	CAGTGAACAT TTATTAGAAT	TTTGCTTCTA TTGTGATTGA	TAGAAGTGTA	2460 2520

	-						
		GTTAGTTTAG					2640
		ATOCCTAGAG					2700
		TGGTGGGCCA					2760
c		ACCTGAACTC					2820
5	GAGCACAAAT	CCTATTGTGA	ACTCTGCATG	CAAGGGATCT	AGGCTATGCG	CTCCTTATGA	2880
	GAATCTAATG	CTTGATGACC	TGAGGTGTAA	CAGTTTCATC	CTGAAACCAC	CCTTCACCCT	2940
	GCAGTCTGTG	GAAAAATTGT	CTTCCACAAA	ACTGGTCCCT	GGTGCCAAAA	ATGTTGGGGA	3000
		AGAGAGAGGT					3060
		TTAATTGCAG					3120
10 -		GATTTTTATA					3180
10		TGGTTAGGAT					3240
		TAAAATTGTA					3300
		CCTTGGAAGG					3360
1.5		TCTTGCTGAA					3420
15	TTCTAAAAGT	TTGATGCATT	GGAAAAATTT	CCTTGAGGCA	TTTAGCAACA	CATAGAAAAT	3480
	GGGCTTTGAT	TCTTTTCCAA	AACTTTTAGC	CATAGGGTCT	TTTATAGACA	GGGATAGTAA	3540
		GAGAAATATA					3600
		TCTGAAATCT					3660
		GCACTGTGTA					3720
20		CCTCATTCTT					
20							3780
		ACATAGTAAC					3840
	CCATCAACAC	ATTTTATACT	TTGCATCTCC	AAATTTATTG	TGGCGAGACT	TGTCCATTGT	3900
	GAAAGTTAGA	GAACATTATG	TTTGTATCAT	TTCTTTCATA	AAACCTCAAG	AGCATTTTTA	3960
	AGCCCTTTTC	ATCAGACCCA	GTGAAAACTA	AGGATAGATG	TTTAAAAACT	GGAGGTCTCC	4020
25		AACACAATCC					4080
		GTTAAATAGA					4140
		TTGCAGTGGA					4200
		AGACTTAGTT					4260
20		ACATGTGAAG					4320
30		TAATTGGCTG					4380
	AGCAATTCAC	AAGTGCATTA	ATATAAACAG	AACTGGTGGC	ACTTAAAATG	ATAATGATTA	4440
	ACTTATATTG	CATGTTCTCT	TCCTTTCACT	TTTTTCAGTT	TCTACATTTC	AGACCGAGCT	4500
	TGTCAGCTTT	TTTGAAAACA	CATCAGTAGA	AACCAAGATT	TTAAAATGAA	GTGTCAAGAC	4560
		CCTGAGCAGT					4620
35		AGGATTCAAC					4680
55		CTAGCACAGG					4740
		AGGAAAAGTG					4800
		TTTTCTACCT	GGTAAACATT	CTCTATTCTT	TTCTCAAAAG	ATTGCTGTAA	4860
40	GAAAAAATGT	AAGAC					
40							
	Seg ID NO:	119 Protein	sequence				
		cession #: >					
	1	11	21	31	43	51	
	1	11	21	31	41	51	
45	l	l	l	1	l		60
45	(MKDCSNGCSA	 ECTGEGGSKE	(VVGTFKAKDL	 IVTPATILKE	(KPDPNNLVFG	 TVFTDHMLTV	60
45	(MKDCSNGCSA EWSSEFGWEK	 ECTGEGGSKE PHIKPLQNLS	 VVGTFKAKDL LHPGSSALHY	 IVTPATILKE AVELFEGLKA	(KPDPNNLVFG FRGVDNKIRL	 TVFTDHMLTV FQPNLNMDRM	120
45	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP	 ECTGEGGSKE PHIKPLQNLS VFDKEELLEC	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE	 IVTPATILKE AVELFEGLKA WVPYSTSASL	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK	120 180
45	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV	 ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN	120
	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV	 ECTGEGGSKE PHIKPLQNLS VFDKEELLEC	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN	120 180
45 50	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG	 ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEEELATPP	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240
	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMPG	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEEELATPP	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMPG	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEEELATPP	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTM EDHQITEVGT LTMDDLTTAL DIQYGREESD	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMPG WTIVLS	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEEELATPP	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
50	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO:	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA 886	UVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMPG WTIVLS	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEESLATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
50	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEESLATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GWGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq	ECTGEGGSKE PHIKPLQNLS VPDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession uence: 121.	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005	IVTPATILKE AVELPEGLKA WVPYSTSASL VRAWKGGTGD DGEEELATPP SGTACVVCPV	 KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK	120 180 240 300
50	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEESLATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT	 TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ	120 180 240 300
50	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEPFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNEVREMFO WTIVLS Quence n #: NM_005 .1194 21	IVTPATILKE AVELPEGLKA WVPYSTSASL VRAMKGGTGD DGEBLATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI	TVFTDHMLTV FQPMLNMERM PSLGVKKPTK LPAQCEAVDN RRCILDLAHQ HIPTMENGPK	120 180 240 300 360
50	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEPFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq	ECTGEGGSKE PHIKPLQNLS VPDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession uence: 121.	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNEVREMFO WTIVLS Quence n #: NM_005 .1194 21	IVTPATILKE AVELPEGLKA WVPYSTSASL VRAMKGGTGD DGEBLATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI	TVFTDHMLTV FQPMLNMERM PSLGVKKPTK LPAQCEAVDN RRCILDLAHQ HIPTMENGPK	120 180 240 300
50 55	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYS GCGQVLWLYS GWGEFKVLSET LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGCG	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAMKGGTGD DGEELATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK	120 180 240 300 360
50	 MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LIMDDLTTAL DIQYGREESD 120 DNA secid Accession uence: 121. 11 GGTCGCGCGCC	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG	IVTPATILKE AVELFEGLKA WVPYSTSASL VRAWKGGTGD DGEELATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC	120 180 240 300 360
50 55	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPY GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ATGGACCGCG	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGCGC GGGGAACTAG ACTCGTACCA	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUNEVREMFO WTIVLS Quence n #: NM_005 .1194 21 1 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG	IVTPATILKE AVELPEGLKA WVPYSTSASL VRANKGGTGD DGEBLATPP SGTACVVCPV 377 31 TTGTGCGCGT GTGGCAAGCT TACGACTATG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMCGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCCTGAGCAA ACGGCGGGA	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC	120 180 240 300 360
50 55	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ATGGACCGCG CGCTCCACGA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGCGC GGGGAACTAG ACTCGTACCA CGCCCAGCGA	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGGTCCAG TCACTATTTC GGACATCTGG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRAMKGGTGD DGEBELATPP SGTACVVCPV	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGCC	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTCTAC GCCGCCCTGG	120 180 240 300 360 60 120 180 240
50 55	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GWGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ATGGACCGCG ACTCCACGA ACTTGGGTCC	ECTGEGGSKE PHIKPLQNLS VPDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession Lence: 121. 11 GGTCGCGGGG GGGGAACTAG ACTCGTACCA CGCCCAGGGA GCAGCCGGGG	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS QUENCE n #: NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG TCACTATTIC GGACATCTGG ACCCAGCCCT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEELATPP SGTACVVCPV 377 31 TTGTGCGCGT GTGGCAAGCT TACGACTATG AAGAAATTCG CAGCTTTGCT CAGCTTTGCT CAGCTTTGCT CAGCTTTGCT CAGCTTTGCT CAGCTTTTGT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGGA ACTGGTGCC CTCCTGGAAC	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCCTGG GCGCCCCTGG GTGGCCGGTA	120 180 240 300 360 60 120 240 300
50 55	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCACGA ATGGACCGCG CGCTCCACGA ACTTGGGTCC GGGTGCCTG	ECTGEGGSKE ECTGEGGSKE EHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGG GGGGAACTAG ACTCGTACCA ACTCGTACCA GCCCCAGGGA GCAGCGGGA GCAGCGGGA	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCACTATTIC GGACATCTGG ACCCAGCCCT	IVTPATILKE AVELPEGLKA WVPYSTSASL VRANKGGTGD DGEBLATPP SGTACVVCPV 377 31 TTGTGCGCGT TTGTGCGCAAGCT TACGACTATG AAGAAATTCG CAGCTTTGGT GAGCTATGGACTATGTGACTATGGACTATGGACTATGGACTACTGGACTACTGGACTACTGGA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMCGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGGAC AAGGTTGGGAC AAGGTTGGGAC AAGGTTGGGAC	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCGGCCCTGG GTGGCCCGGTA CGCGAACTAC	120 180 240 300 360 60 120 180 240 360
50 55 60	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ATGGACCGCG CGCTCCACAGA ACTTGGGTCCC GGCTCCCCCAC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGGGGGG GGGAACTAG ACTGGTACCA CGCCAGCGA CGCAGCAGCA GCAGCCGGGA TCCGCGGGA TCCGCGGGA	VVOTFKARDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 l TCGGTGGCCG TCTGCTCCAG GACATCTCG ACCCAGCCCT GGAATCCCAG CTGCATGTGG	IVTPATILKE AVELPEGLKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITTGGGGGT GTGGGAGCTTCGTAGGACTATG AAGAAATTCG CAGCTTTGGT GACTACTGGA AGCGGCTTCTT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGGA AGTTGGTGCC CTCCTGGAAC CACCCAGGA CCACCCAGGA	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GTGGCCGGTA CGCGAACTAC GCCGCTGAG GCCCTGGAG GCCCTGGAG	120 180 240 300 360 60 120 180 240 300 360 420
50 55	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYD GCQQVLWLYD GCQVLWLYD GCQVLWLYD GCQVLWLYD GCQVLWLYD GCQVLWLYD GCQVLWLYD GCQTUCAG ACAGAGGGCG GCCTCCACGA ACTTGGGTCC GGGTGCGCTG GCCTCCCCCA ACAGCGCGTG ACAGCGCGCG GCCTCCCCCCA ACAGCGCGCG GCCTCCCCCCA ACAGCGCGCG ACAGCGCGCG ACTTGGGTCC ACAGCGCGCG GCCTCCCCCA ACAGCGCGTGAA ACAGCGGTGAA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LIMDDLTTAL DIQYGREESD 120 DNA sec id Accession Lence: 121. 11 GGTCGCGCGC GGGGAACTAG ACTCGTACCA CGCCCAGCGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCCGTGA GCACCTGCT	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRWREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG TCACTATTIC GGACATCCTAG ACCCAGCCCT GGAATCCCAG CTGCATGTGG TGCCGTTGGC	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT GTGGCAAGCT TACGACTATG AAGAAATTCG CAGCTTTCGT GACTACTGGT AGGCTTCTTGT GCGCCCTCGG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGCC CTCCTGGAAC AAGCTTGGAA CCACCAGGA GATACTCGCC	TVFTDHMLTV FQPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCCTGG GTGGCCCGTA CGCGAACTAC GCCGCTGGAG CAAGGAGTTC	120 180 240 300 360 60 120 240 300 360 420 480
50 55 60	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GWGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1	ECTGEGGSKE PHIKPLQNLS VPDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGC GGGGAACTAG ACTCGTACCA GCAGCCGGGA GCAGCCGGGA GCAGCCGGGA GCAGCCGGGA GGGACGAGAC GCGCGTGA ACTACACTCC ACTACACTCC	UVOTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS QUENCE n #: NM_005 .1194 21 ITCGGTGGCCG TCTGCTCCAG TCACTATTTC GGAATCCCAG CTGCATGGC GGAATCCCAG CTGCATGGC CGGACTTGGC CGAGCTTGAC	IVTPATILKE AVELFEGIKA WVPYSTSASL VRAWKGGTGD DGEELATPP SGTACVVCPV 377 31 TTGTGCGCGT GTGGCAAGCT TACGACTATG AAGAAATTCG CAGCTTTGGT GACTACTGGA AGCGGCTTCT GGCCCCTCGG GCCCCCCGGCCAACC	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGGA AGTTGGTGC CTCCTGGAAC AAGCTTGGA CCACCCAGGA AGATACTGCC TAGCGCCCAT	TVFTDHMLTV FOPNLNMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCCTGGG GTGGCCGGTA CGCGAACTAC GCCGCTGGA CCAGGAGTTC CTTCCCCTGT	120 180 240 300 360 120 180 240 300 360 420 540
50 55 60	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGCG CCCAGCTGGA ACTGGACCGCG CGCTCCACGA ACTTGGGTCC GGGTGCCCTCA AGAGCGGTGA AGCAGCGTGA AGCACCCCCG TTGTTGGGCC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGGGGGG GGGAACTAG ACTCGTACCA CGCCAGCAG GCAGCGGGA TCCGCCGTGA GGGAACTGGT TCCGCCGTGA GTACCTCC AGCCCAAGAT	VVOTFKARDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE m #: NM_005 .1194 21 1 TOGGTGGCCG TCTGCTCCAG GACTCTCCAG CCTGCATOTGG CGGATCCCAG CCTGCATOTGG CGGGCTCGAA CCAGGCCTTGC	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT GTGGGAAGCT TACGACTATG AAGAATTCG CAGCTTTGGT GACTACTGAA AGCGCTTCGT GCGCCCTCGG GCCGCACC TCCAGGTCTG CTCCAGGTCTG CTCCAGGTCTG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGTGAGCAA ACGTTGGGA CCACCAGGA GATACTCGCC TAGCGCCCAT AGAGCCCCAAG AGAGCCCAAG AGAGCCCAAAG	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LPAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCCTGG GTGGCCCGTGGCC GTGGCCGTGAC CAGGACTAC GCCGTGGAG CAAGGAGTTC CTTCCCCTGT CGACTCCCAG	120 180 240 300 360 60 120 180 240 300 420 480 540 600
50 55 60	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGCG CCCAGCTGGA ACTGGACCGCG CGCTCCACGA ACTTGGGTCC GGGTGCCCTCA AGAGCGGTGA AGCAGCGTGA AGCACCCCCG TTGTTGGGCC	ECTGEGGSKE PHIKPLQNLS VPDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGC GGGGAACTAG ACTCGTACCA GCAGCCGGGA GCAGCCGGGA GCAGCCGGGA GCAGCCGGGA GGGACGAGAC GCGCGTGA ACTACACTCC ACTACACTCC	VVOTFKARDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE m #: NM_005 .1194 21 1 TOGGTGGCCG TCTGCTCCAG GACTCTCCAG CCTGCATOTGG CGGATCCCAG CCTGCATOTGG CGGGCTCGAA CCAGGCCTTGC	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT GTGGGAAGCT TACGACTATG AAGAATTCG CAGCTTTGGT GACTACTGAA AGCGCTTCGT GCGCCCTCGG GCCGCACC TCCAGGTCTG CTCCAGGTCTG CTCCAGGTCTG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGTGAGCAA ACGTTGGGA CCACCAGGA GATACTCGCC TAGCGCCCAT AGAGCCCCAAG AGAGCCCAAG AGAGCCCAAAG	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LPAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCCTGG GTGGCCCGTGGCC GTGGCCGTGAC CAGGACTAC GCCGTGGAG CAAGGAGTTC CTTCCCCTGT CGACTCCCAG	120 180 240 300 360 120 180 240 300 360 420 540
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFEVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ATTGGACCGC GGGTTCCACGA ACTTGGGTCC GGGTGCGCTG AGAGGGGTGACGTGA AGAGGGGTGACTGA TTGTGGTCC TTGTTGGGGCG TTGTTGGGGGG TTGTTGGGGGG TTGTTGGGGAAAAAAA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGGGGGG GGGAACTAG ACTCGTACCA CGCCAGCAG GCAGCGGGA TCCGCCGTGA GGGAACTGGT TCCGCCGTGA GTACCTCC AGCCCAAGAT	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGGTCCAG ACCAGCCTT GGACATCCTAG ACCAGCCTT GGACATCCTAG TGCATGTGGC CGGCTTGGC CGGACTCGGA TGCGTTGGC CGAGCTCGAA CGAGCCTGGA AGGAGCTGGA AGGAGAGAGAGAAGAAG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT GTGGCAAGCT TACGACTATG AAGAAATTCG CAGCTTTGGT GACTACTGGA AGCGGCTTCT CCGCCCTCGG CCGGCAACC TCCAGGTCTG AGGCAGTCTT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGCC CTCCTGGAC CAACCTTGGGA CAACCTTGGGA GATACTCGCC TAGCGCCCAG TAGCGCCCAG TGAGTACGCG TAGTTACGCG TAGTTACGCGC	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GCGGCACTAC GCCGCTGGAG CAAGGAGTT CTTCCCCTGT COACTCCGAG GAAGCCAGC	120 180 240 300 360 60 120 180 240 300 420 480 540 600
50 55 60	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GWGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq ACAGAGGGGG CCCAGCTGGA ATTGGACCGCG GGGTCCCTCA AGAGCGGTGG GCCTCCCTCA AGAGCGGTGGA GCCACCCCG TTGTTGGGC TTGTTGGGC GGTTGAAGAAA ATCATCGCGG	ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession Lence: 121. 11 GGTCGCGGCG GGGAACTAG ACTCGTACCA GCCCAGGA GCAGCAGGA GCAGCCGGGA TCCGCCGTGA GTGACCTGCT ACTACACTCC AGCCCAAGA TCGGCCCAAGA TCGGCCCAAGA TCGCCCAAGCA TCGCCCAAGCA TCGCCCAAGCA TCGCCCAAGCA TCGCCCAAGCA TCGCCCAAGCA TCGCTGCAGAC TCGCTGCAGAC TCGCTGCAGAC	VVGTFKAKDL VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLELYWINE EGNRVREMFG WTIVLS QUENCE n #: NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG TCACTATTIC GGACATCTGG ACCCAGCCCT GGAATCCAG CTGCATGTGC CTGCATGTGG CGAGCTTGGA CCAGCCTTC GGAGTTGGA CCAGCCTTGC CGAGCTTGGA CCAGCCTTGC CGAGTTGGAC CCAGCCTTGC CGAGTTGGAC CCAGCCTTGC CGAGTTGGAC CCAGCCTTGC CGAGTTGGAC CCAGCCTTGC CGAGTTGGAC CCTTCTGGAT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEELATPP SGTACVVCPV 377 31 ITGTGCGCGT GTGGCAACGT TACGACTATG AAGAAATTCG CAGCTTTGGT GACTACTGGA AGGCACTCTG GCCCCTCGG GCCGCAACC TCCAGGTCTG CCCGCCAGA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA ACGTTGGGAC CTCCTGGAAC AAGCTTGGGA GATACTCGCC TAGCGCCCAT AGAGCCCCAG ATGAGCCCCAG ATGAGCCCCAG ATGAGCCCCAG ATCACTCTCCA	TVFTDHMLTV FOPNLMMDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GCGCCCTGG GCGCCCTGG GCGCCTGG GCGCCTGG CCAGGAGTTC CCAGGAGTTC CTTCCCCTGT CGACTCCCAGG GAAGCCAGTC CATCTCCATC CATCTCCATC	120 180 240 300 360 60 120 180 240 360 420 540 660 720
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPY GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTTGGGTC GGGTGCGCTG GGCTCCCTCA AGAGCGGTGG GCCTCCCTCA AGAGCGGTGG GCTCCCTCA AGAGCGGTGA ACTTGGGTC GCCTCCTCA AGAGCGGTGA ACTACGCG GGTGAAGAAA ATCATCGGCG CACCAGCAAC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGG GGGAACTAG ACTCGTACCA GCCCAGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA TCCGCCGTGA GTGACCTGCT ACTACACTCC AGCCCAAGAT TCGACGTGAC TCGACGTGAC AGCCCAAGAT TCGACGTGAC AGCCCAAGAT ACTACACTCA AGCCCAAGAT ACTACACTCA AGCACAACTA	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE #! NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG TCACTATTC GGAATCCCAG CTGCATGTGG CTGCATGTGG CTGCATGTGG CGAGCTCGA CCAGCCTT GCATGTGG CTGCATGTGG TGCCTTCTGGAT TGCTGCCCCT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT TACGACTATG AAGAAATTCG CAGCTTTGGT GCGCCTTCGG GCCCCTCGG GCCGCAACC TCCAGGTCTG AGGCAGTCTT CTCAGGTCTG AGGCAGTCTT CTCCCGCATCA TTCCTCCAG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGAC CTCCTGGAAC CAACCCAGGA CAACCTTGGCA CTAGCGCCAT AGAGCCCAAG TGAGCTACGCC AAGACTACGCC AAGACTACGCC AAAGCTGCTT	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GTGGCCGTTAC GCGGCCTGGA CCAGGAGTTC CTTCCCCTGT CGACTCCGAG GAAGCCATC CCACCTCGAG GAAGCCAGT CCACCTCCTCCCTCCCATC CCAAGAAGGG	120 180 240 300 360 120 180 240 360 420 480 660 660 720 780
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQVLWLYG GCQVLWLYG GCGVLWLYG LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTTGGGTCC GGGTGCGCTG GGCTCCCCCA AGAGGGGTGA TTGTTGGGG GCTCCCCCCA GGTGAGAAAA ATCATCGCGG GCTGAAGAAAA ATCATCGCGG CACCACCACCAC CGCTCCAAAGA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession Lence: 121. 11 GGTCGCGGGG GGGAACTAG ACTCGTACCA CGCCCAGCGA GGACGAGAC GGACGAGAC GGACGAGAC GGACGAGAC TCGCCGTGA GTGACCTGCT ACTACACTCC AGCCCAAGAT TCGACGTGAC AGCACAAGAT TCGACGTGAC AGCACAAGAT AGGATGCCCCC	VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGGTCCAG GACATCTGG ACCCAGCCTT GGACATCTGG CGAGTCCAG CCTGCATGTGG CGAGTCCAG CCTGCATGTGG CGAGTCCAG CCTGCATGTGG CGAGTCCAG CCTGCATGTGG CGAGTCCAG TGCATGTGG CGAGTCCAG TGCATGTGG TGCATGTGAT TGCTGCCCT AAAAGAGGG TAAAAGAGG TAAAAGAGG TAAAAGAGG TAAAAGAGG TGCATGCCCT AAAAAGAGG TAAAAGAGG TGCAGAGG TAAAAGAGG TGCAGAGG TAAAAAGAGG TGCAGAGG TAAAAGAGG TGCAGAGG TAAAAGAGG TGCAGAGAGG TGCAGAGAGG TGCAGAGAGAGG TGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 I TTGTGCGCGT GTGGCAGCT TACGACTATG AAGAAATTCG CAGCTTTGGT GACTATGGAACGGCTTCGT GCCCCTCGG GCCGCAACC TCCAGGTCTT ACGCAGTT TCCACGTATAT ATTCCTCCAG TTCCACGTATAT TTCCTCCAG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGCC CTCCTGGAAC AAGCTTGGGA CCACCCAGGA GATACTCGC TAGGCCCCAT TAGAGCCCAAG TGAGTACGC ATCTCTTCCA AAAGCTGCTT AAGAGCTCAGGT AAAGCTGCTT AAGCTCCAGG	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGAATCTAC GCCGCCTGG GTGGCCGGTA CGCGAACTAC GCCGCTGGG GCAAGTAC CCTCCCCTGT COCTGCTGC CTTCCCCTGT CAAGAAGGAGTC CATCTCCATC CCAAGAAGGAG GGGAAAGGAT	120 180 240 300 360 120 180 240 300 480 540 660 720 780 840
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GCQQVLWLYG GCGVLWLYG LASRILSKLT Seq ID NO: Nucleic Ac Coding seq ACAGAGGGCG ACAGCAGGA ACTTGGACCGCG GCGTCCCACGA ACTTGGGTCC GGGTGCCTCA AGAGCGGTGGA GCCACCCCCG TTGTTGGGC TTGTTGGGC CGCTCCAAGA ATCATCGCGG CACCACCAGCAAC ACTCCAAAGA ATCATCGCGG CACCACCAAGCAAGC GCTCCAAAGA GCTCCAAAGAAG GCTCCAAAGAAG GCTCCAAAGAAG GCTCCCAAAGA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession Lence: 121. 11 GGTCGCGCGC GGGGAACTAG ACTCGTACCA CGCCCAGCGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCAGCGGGA GCACGAGA TCGCCCAGGA TCCACGTGA TCGACGTGAC TGGGTGCAGA AGCACAACTA AGGATGCCCCC ATGAAGAGAT	VVGTFKAKDL VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRWREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGGTCCAG TCACTATTIC GGACATCTAG ACCAGCCTT GGACATCTAG TCTGCATGTAGAG TGCGTTGGC CGAGTTGGC CGAGTTAGAGAGAGCT TGTGAGAGGCTT TGTGAGCCTT TGTGAGCCTT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT GTGGCAAGCT TACGACTATG GACTATCTGGA AGGAATTCTG GCCCCTCGG GCCGCAACC TCCAGGTCTG CCGCCAGGTCTG CCCCCCAGGTCTG CCCCCCAGGTCTG CCCCCCAGGTCTG CCCCCCAGGTCTG CCCCCCAGGTCTG CCCCCCAGGACC TCCCCCCAGGACC TCCCCCCAGGACC TCCCCCCAGGACC CCCCTTGGG CCACCTGTAG CCACCTGTAG CCACCTGTAG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTA ACGCGGGA ACGTGAGCAA ACGCCCAGGA CCACCAGGA GATACTCGCC TAGCGCCCAAG TGAGTACGCG ATCTCTTCCA AAAGCTCATCA AAAGCTCATCA AAAGCTCATCA AAAGCTCATCA	TVFTDHMLTV FOPNLIMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTTGG GTGGCCGGTA CGCGAACTAC GCCGCTTGGAG CAAGGAGTTC CTTCCCCTGT CGAACTCCGAG GAAGCCAGTC CATCTCCATC CCAAGAAGGAT TGCCCAGTCC	120 180 240 300 360 120 180 240 360 420 540 600 720 780 840
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq: ACAGAGGGGG CCCAGCTGGA ACTGGACCGCG GGTCCCACGA ACTTGGGTCC GGGTGCGCTG GCCTCCTCA AGAGCGGTGG ACTTGGGTCC GGGTGCGCTG GCTCCCTCA AGAGCGGTGC GCTCCCTCA AGAGCGGTGC GCTCCCTCA AGAGCGGTGC GCTCCACAA ACTATCGGG CACCAGCAAC GCTCCAAGAA GTTCAAGAA GTTCAAGAA GTTCAAGCAAC	ECTGEGGSKE ECTGEGGSKE EHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGC GGGAACTAG ACTCGTACCA GCCCAGCGA GGGAACTAG ACTCGTACCA TCCGCGGGA GGGACGGGA TCCGCGGGA GGGACGGGA TCGCCGGGA TCGACGTGAC TCGACGTGAC TCGACGTGAC AGCCCAAGAT TCGACGTGAC AGCCCAAGAT ACCCATCAA AGCACACCA ATGAAGAGAT AACCCATCCA	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE MNLFLYWINE Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGCTCCAG TCACTATTC GGACATCTCG ACCATCTCG GGAGTCCCAG CCTGCATGTCG GGAGTCCCAG CCTGCATGTCG GGAGTCCCAG CCTGCATGTCG TGCATGTCG TTTCGATTCG TTTTCGATTCT TTTTATCATACT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT TACGACTATG AAGAAATTCG AAGCTTTGGT GCGCCTTGGG GCCGCCATGA TCCACGTCTG TCCACGTCTG AGGAGTCT TCCACGTCTG AGGAGAGCT TCCAGGTCTG AGGAGAGGG CCACCTGTAG CTACAGAGAGAG CCACCTGTAG CACCTGTAG CACCTCTAG CACCTCT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGC CTCCTGGAAC AAGCTTGGGA CCACCAGGA GATACTCGC TAGCGCCCAT AGAGCCCAAG TGAGTACGCG ATCTCTTCCA AAAGCTGCTT AAGCTCCAGG AAAGTGAGGC CCAAGAAGAAAAAAAAAA	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGGA GTGGCCGTTAC GCCGCTGGAG CAAGGAGTAC CCCATGCAGA GAAGCAACT CTTCCCCTGT CGACTCCATC CCAAGAAGGG GGGAAAGGAG TGCCCAGTC CCAAGAAGGG GGGAAAGGAT TGCCCAGCC GTACCAACAC GTACCAACAC	120 180 240 300 360 120 180 240 480 600 650 780 840 900 960
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTTGGGTCC GGGTGCGCTG GGCTCCCTCA AGAGCGGTGA GCCCCCG TTGTTGGGCG GGTGAAGAAA ATCATCGCGG CACCAGCAG GCTCCAAAGA GTAAGGAAG GTTCAAAGA GTCCAAGCAAC TGCTTGGAGCCCA TGCTTGGAGCCCA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGCGGGG GGGAACTAG ACTCGTACA CGCCAGCGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGGGA TCGGCGTGA GGAGCGGGA TCGGCGGGA AGCACACTA GGAGGAGA GGATGCCCC ATGAGAGAACTA ACCCATCCA AGCACACTA GGATGCCCC ATGAGAGGAC	VVOTFKARDL LHPGSSALHY IQQUVKLDQE PVSLWANPKY MNLFLYWINE GUENCE # ! NM_005 .1194 21 1 TOGGTGGCCG TCTGCTCCAG GGACATCTGG ACCAGCCCT GGACATCCCAG CCTGCATGTGC CGACTCGAG CCTGCATGGC CGACTCGA TGCTCGAG TGCTCGAG TGCTCGAG TGCTCGAG TGCTGGC TGCATGGC TGCATGGC TGCATGGC TGTGAGCCTC AAAGAGGGCT TGTGAGCCTC TATGAGCTC TATGAGTACT GAATGATCCAG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 I TTGTGCGCGT GTGCAACT TACGACTATG AAGAAATTCG CAGCTTTGGT AGCTTTCGGT CCCGCATCGA GCCGCACCC TCCAGGTCT CCCCGCATGA CTCCCGCATGA CTCCCGCATGA CTCCCGCATGA CTAGAGAGAG CCACCTGTAG GAGAATTCGA CTAGAGAGAG CCACCTGTAG GAGAATTCGA CTAGAGAGAG CCACCTGTAG GAGAATTCGCGGT CTTCCCCGCGTTAG GAGAATTCGC	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGTGGGA AGTTGGTGC CTCCTGGAAC CACCCAGGA GATACTCGCC TAGAGCCCAT AGAGCCCAT AGAGCTCAGG ATCTTCTTCA AAAGCTGCTT AAGCTCCAGG AAAGTGAGGA CCAAGAAGAA TCTTGGCCCT	TVFTDHMLTV FQPNLNMERM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GTAGCCCGTAC CAGGACTAC GCCGTGGAG CAAGGAGTTC CTTCCCCTGT CCACTCCAGG GAAGCCAGTC CATCCCAGC GAAGCAGTAC CATCCCAGC GAAGCAGTAC CATCCCAGC GAAGCAGTAC CATCCCAGC GAAGCAGTAC CAACACAGC GGAAAGGAT TGCCCAGTCC GTACCAAGC GTACCAACAG GAAGGACTAC	120 180 240 300 360 120 180 240 300 480 540 660 720 840 900 900 1020
50556065	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GCQQVLWLYG GCGCVLWLYG HASRILSKLT Seq ID NO: Nucleic Ac Coding seq I ACAGAGGGGG ACTGGAA ATGGACGGG GCGTCCACGA ACTTGGGTCC GGGTGGCACTGA AGAGGGGTGA ACTTGGGTCC GGTGAAGAAA ATCATCGCGG CACCCCCG TTGTTGGGGC CCTCCAAAGA ATCATCACGA GCTCCAAAGA ATCATCAGA GTTGCAAGCAAC GGTCCAAGAA GGTAAGAAG GATAAGGAAG GATAAGGAAG GATAAGCAAC GGTCCAGCAC CGTACCAGCAC CGTACCCGCCC GTACCCGCCC GTACCCCCC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession uence: 121. 11 GGTCGCGGGG GGGAACTAG ACTCGTACCA CGCCCAGCGA GGAACGAGA GTGACCTGCT ACTACACTCC AGCCCAGGA AGCACGAGA AGCACAACTA GGATGCCCC ATGAAGAGAT AACCCATCCA GCAAGAGAC TGGCAGCTG TGGCCAGCTG TGGCGCAGCT TGCCCACCC ATGAAGAGAC TGCCAGCTGC TGGCCAGCTG	VVGTFKAKDL VVGTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCOGTGGCCG TCTGGTCCAG TCACTATTIC GGACATCTAG ACCCAGCCTT GGAATCCAG CGTGGCTGGC CGGCATGGC CGGCTGGC AGGAAAGAAG CCTTCTGGAT TGCTGCCCCT TGTGAGCCTC TGTGAGCTC TGTGAGCCTC TGTGAGCCTC TGTGAGCCTC TGTGAGCCTC TGTGAGCCTC TGTGAGCTC TGTGAGGTT TGTGAGGT TG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT GTGGCAAGCT TACGACTATG GACTATGG GACTATGG GACTATGG GACTATGG GACGCTTCG GCCGCAACC TCCAGGTCTG AGGCAGTCTT CCCCCGCATGA TTTCCTCCAG GCGGAACC CTAGAGAGAG CCACCTGTAG GAGAATTCG CTCAAGAGTA TCCAAAGTAA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGTGGGGGA AGGTTGGGCC TAGCCCAGGA GATACTCGCC TAGCCCCAGGA TGAGTACGCG ATCTCTTCCA AAAGCTGGTT AAGCTCCAGG AAAGTAGCC CCAAGAAGAA TCTTGGCCCT TGATCCAGG TGAGTCCAGG TGAGTCCAGG TGAGTCCAGG TGAGTCCAGG TGAGTCCAGG TCTCTTCCA TGAGTCCAGG TCTCTCAGT TAGCCCCTT TAGCTCCAGG TCTCTCAGT TAGCTCCAGG TCTCAGT TGATCCTAGT TGATCCTAGT	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GCGCCCTGG GCGCACTTA CCCGAG CAAGGCAAC CAAGGAGTT CTTCCCCTGT CATCTCCCATC CATCTCCATC CAAGAAGGG GAAGCCAGT CAAGAAGGA GGAAAGGAT TGCCCAGTC CAAGAAGGA GGAAAAGGAT TGCCCAGTC GTACCACAGC GAAGGCAACA CAAGGAGGACAAC CAAGGAAGG	120 180 240 300 360 120 180 240 360 420 780 900 960 1080
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq: ACAGAGGGGG CCCAGCTGGA ACTGGACCGCG GGTCCCACGA ACTTGGGTCC GGGTGCGCTG GCCTCCTCA AGAGCGGTGA ACTTGGGTCC GGGTGAGCAGCA GCACCCCCG TTGTTGGGC GGTGAAGAAA ATCATCGGG CACCAGCAAC GCTCCAAGGA GTTCCAAGGA GTTCCAAGGA GTTCCAGGCCC GATACCTGAGC GTACCGCCC GATACCTCC GATACCTCCC GATACCTCC	ECTGEGGSKE ECTGEGGSKE EHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 11 11 GGTCGCGGGC GGGAACTAG ACTCGTACCA ACTCGTACCA GCCCAGGGA GGGACGAGAC GGGACGAGAC TCCGCCGGGA GGGACGAGAC TCCGCCGTGA GGGACGAGAC TCCGCCGTGA ACTCACTCC AGCCCAGCA AGCACACTA GGATGCCC ATGAAGAGAT TCGAGTAGA TCGCGCAGCA TGCGTGAGA AGCACACTA GGAAGAGAC TGCCGCAGCAT TGCGCAGCTG TGGCCAGCTT TGCCCACCCA TGCAGTAGAC TGCCCATCCA TGCCCACCCA TGCAGGAGAC TGCCCACCCA TGCAGCAGC TGCCCACCCA TGCAGCACC TGCCCACCCA TGCAGCACC TGCCCACCC TGCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCACC TGCACCC TGCACC TGCACCC TGCACC TCCACC T	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG TCACTATTIC GGACATCTGG ACCAGCCTT GGACTCGCAG CCTGCAGGCTGC GGAGTCGCA CCAGGCTTGGC CTGCATGTGG CCTTCTGGAT TGCTGCCCCT AAAGAAGGC TTGTGAGCCT TTGTGAGCCT TTTTGATACT GAATGATCAA CCAGGCTTGG CTTTTGGAT TGCTGCCCCT TATGATACT GAATGATCAA CCAGGCTTGGA CCAGGCTTGGAGCTC TGGAGCCCTG GAATGATCAA CCTAGGGTT GGAAGCCCAG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT TACGACTATG AAGAAATTCG CAGCTTCGGT GCGCCCTCGG GCCGCAACC TCCAGGTCTG AGGAGATCT TCCCCGCATAA TTTCTCCAG CTAGAGAGAG CCACCTGTAG GAGAATTCG CAGCTTGGCGT TCCAGGTTGG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGGC CTCCTGGAAC AAGCTTGGGA GATACTCGC TAGCGCCCAT AGAGCCCAG AAGCTCAGGA AAGCTGCTT AAGCTCCAGG AAAGTAGCC CCAAGAAGAA TCTTGGCCT TGATCCTAGT CCTAGGCCCT TGATCCTAGT CCTAGGAAGAAGAA TCTTGGCCT TGATCCTAGT CTACCGAGAA	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTCTAC GCGCCTGGG GTGGCCGTGAG GCAAGCCAAC CCGCTGGAG CAAGGAGTTC CTTCCCCTGT CGACTCCGAG GAAGCCAGC GAAGCCAGC GAAGCAGC GAGGAAGGA	120 180 240 300 360 120 180 240 300 480 540 660 720 840 900 900 1020
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq: ACAGAGGGGG CCCAGCTGGA ACTGGACCGCG GGTCCCACGA ACTTGGGTCC GGGTGCGCTG GCCTCCTCA AGAGCGGTGA ACTTGGGTCC GGGTGAGCAGCA GCACCCCCG TTGTTGGGC GGTGAAGAAA ATCATCGGG CACCAGCAAC GCTCCAAGGA GTTCCAAGGA GTTCCAAGGA GTTCCAGGCCC GATACCTGAGC GTACCGCCC GATACCTCC GATACCTCCC GATACCTCC	ECTGEGGSKE ECTGEGGSKE EHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 11 11 GGTCGCGGGC GGGAACTAG ACTCGTACCA ACTCGTACCA GCCCAGGGA GGGACGAGAC GGGACGAGAC TCCGCCGGGA GGGACGAGAC TCCGCCGTGA GGGACGAGAC TCCGCCGTGA ACTCACTCC AGCCCAGCA AGCACACTA GGATGCCC ATGAAGAGAT TCGAGTAGA TCGCGCAGCA TGCGTGAGA AGCACACTA GGAAGAGAC TGCCGCAGCAT TGCGCAGCTG TGGCCAGCTT TGCCCACCCA TGCAGTAGAC TGCCCATCCA TGCCCACCCA TGCAGGAGAC TGCCCACCCA TGCAGCAGC TGCCCACCCA TGCAGCACC TGCCCACCCA TGCAGCACC TGCCCACCC TGCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCCCACCC TGCACCC TGCACC TGCACCC TGCACC TGCACCC TGCACC TCCACC T	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG TCACTATTIC GGACATCTGG ACCAGCCTT GGACTCGCAG CCTGCAGGCTGC GGAGTCGCA CCAGGCTTGGC CTGCATGTGG CCTTCTGGAT TGCTGCCCCT AAAGAAGGC TTGTGAGCCT TTGTGAGCCT TTTTGATACT GAATGATCAA CCAGGCTTGG CTTTTGGAT TGCTGCCCCT TATGATACT GAATGATCAA CCAGGCTTGGA CCAGGCTTGGAGCTC TGGAGCCCTG GAATGATCAA CCTAGGGTT GGAAGCCCAG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT TACGACTATG AAGAAATTCG CAGCTTCGGT GCGCCCTCGG GCCGCAACC TCCAGGTCTG AGGAGATCT TCCCCGCATAA TTTCTCCAG CTAGAGAGAG CCACCTGTAG GAGAATTCG CAGCTTGGCGT TCCAGGTTGG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGGC CTCCTGGAAC AAGCTTGGGA GATACTCGC TAGCGCCCAT AGAGCCCAG AAGCTCAGGA AAGCTGCTT AAGCTCCAGG AAAGTAGCC CCAAGAAGAA TCTTGGCCT TGATCCTAGT CCTAGGCCCT TGATCCTAGT CCTAGGAAGAAGAA TCTTGGCCT TGATCCTAGT CTACCGAGAA	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTTCTAC GCCGCCTGG GCGCCCTGG GCGCACTTA CCCGAG CAAGGCAAC CAAGGAGTT CTTCCCCTGT CATCTCCCATC CATCTCCATC CAAGAAGGG GAAGCCAGT CAAGAAGGA GGAAAGGAT TGCCCAGTC CAAGAAGGA GGAAAAGGAT TGCCCAGTC GTACCACAGC GAAGGCAACA CAAGGAGGACAAC CAAGGAAGG	120 180 240 300 360 120 180 240 360 420 780 900 960 1080
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTGGACCGGG GGCTCCACGA ACTTGGGTCC GGGTGCOCTG GGCTCCCTCA AGAGCGGTGA ACTATCGGGC GGTGAAGAAA ATCATCGCGG CACCACCCG GTTCCAAGA ATCATCGGGG GATAAGGAAG GATAAGGAAG GATAAGGAAG GGTCCAAAGA GGATAGGAGG GATACCGGCCA GAATACTTAC GAATGCCAGC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGCGGGG GGGAACTAG ACTCGTACCA CGCCAGCGA TCCGCCGTGA GTGACCTGCT ACTACACTCC AGCCCAAGAT TCGACGTGAC TGGTGCAGA AGCACAACTA GGATGCCCC ATGAGAGAC GGAGGAGAC GGAGGAGAC GGAGGAGAC TGGGTGCAG AGCACAACTA GGATGCCCC ATGAGAGAC GCAGGAGAC TGGGCAGCTG ATGAACTAC GCAGGAGAC TGGGCAGCTG ATGAACTAC GCAGGAGACC TGGGCAGCTG ATGAACTGC GCAGGAGACC ATGAGGACC ATGAGGACC GCAGGAGACC ATGAGCACT GGCCATCC ATGAGCACT AACCCATCCA GCAGGAGACC GCAGGCAATT	VVOTFKARDL LHPGSSALHY IQQUVKLDQE FVSLWANPKY MNLFLYWINE GUENCE ##: NM_005 .1194 21 1 TOGGTGGCCG TCTGCTCCAG CTTCTCCAG CTGCATOTGG CGACCTCCAGCCCT AGAAGAAGA CCTTCTGGAT TGCTCCCAG CCTTCTGGAT TGCTCCCCT AAAGAGGCTTC AAAGAGGCTTC AAAGAGGCTTC GAATCATATTC GGACTCTCGAT TGCTGCCCCT TGCTAGGCTTC GAATGATACT TGCTAGGCTTC GAATGATCAT CTTAGGATTCAGATCAT TGCTAGGCTTC GAATGATCAT CTCTAGGGTT GGAATCAAACAA CCCTAGGGTT GGAAGCCCAG CCAGAAAAAAA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 TGTGGGGGTG GTGGGAAGCTTGGG AGCATTGGA AGGAGTATG AGGAGTATG CACCTTGGA GCCGCACCC CCCGCATGA GCCGCACCC CCCGCATGA GGCAGCTTTGCTCCCAGGTCTGCAGGAGAGATTTGCAGGTATGA AGGAGAGTATGA AGGAGAGGATGTTTCCTCCAG CTAGAGAGAG CCACCTGTAG AGGAGATTGGA ATTGAGATAA GAGAGGATGA AGAGAGATAA AGAGAGGATGA ATTGAGTACC ATTGAGATACCATTAGAGAGAGA CCACTGTAG AGGATGAGAGATAA AGAGAGGATGA ATTGAGATACCATTAGATACTATTAGATACTATTAGATACCATTAGAGATGAA AGAGAGATACATTAGATACCATTAGATACCATTAGATACATTAGATACCATTAGATACTATAGATACATTAGATACCATTAGATACTAGATACTATAGATACTATAGATACTATAGATACTATAGATACTATAGATACTATAGATACTATAGATACTATAGATACTATAGATACTAGATACTAGATACTAGATACTATAGATACTATAGATACTATAGATACTATAGATACTAGATAGA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGTGAGCAA ACGTGGGACAA AGGTTGGGA CCACCAGGA GATACTCGC TAGAGCCCAT AGAGCCCAT AGAGCTCAGG ATCTCTCCA AAAGTTAGGC CCAAGAAGAA TCTTGGCCCT TGATCCTAGT TGACTCCAGG AAAGTTAGCGC CCAAGAAGAA TCTTGGCCCT TGATCCTAGT TGATCCTAGT TGATCCTAGT TCTAGGAAA TCTTGGCACA TCAGTAGCTA	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTCTAC GCGCCTGGG GTGGCCGTGAG GCAAGCCAAC CCGCTGGAG CAAGGAGTTC CTTCCCCTGT CGACTCCGAG GAAGCCAGC GAAGCCAGC GAAGCAGC GAGGAAGGA	120 180 240 300 360 120 180 240 360 420 780 600 600 600 780 900 900 1020 1140
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG GCQQVLWLYG GCGCVLWLYG LASRILSKLT Seq ID NO: Nucleic Ac Coding seq I ACAGAGGGGG ACAGCAGA ACTTGGGTCC GGGTGCACTGA AGAGGGGTGA ACTTGGGTCC GGTTGAAGAAAA ATCATCAGGG GCTCCACAGA ATCATCAGG GCTCCAAGAG GCTCCAGAAC GGTCCAGCAAC GGTCCAGCAC GGTCCAGCAC GGTCCAGCAC GGTCCAGCAC GATACTAGA GATACGGAGC GTACCGGCCC GAATACTTAC GAATGCCAGC AGCCTGACCA GAATGCCAGC AGCCTGACCA AGCCTGACCAAC GAATGCCAGCAAC GACTGACCAGCAAC GACTGACCACA	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession Lence: 121. 11 GGTCGCGGGG GGGAACTAG ACTCGTACCA CGCCCAGCGA GGAACCAGGA GGAACCAGCA TCGACGTGAC TCGACGTGAC TCGACGTGAC AGCACAAGAT TCGACGTGAC AGCAAGAT TCGACGTGAC AGCACAAGAT TCGACGAGC ATGAAGAGAC TAGAAGAGAC TAGCAGCCA TGGAGGAC TGGAGGAC TGGAGGAC TGGAGGAC TGGAGGAC TGGAGGAC TGGACGACC TGAAGAGAC TGGAGGAC TGGAGGAC TGGCAGCT TGAACTGGC GCACGGCAATT TTCTTCTTTA	VVGTFKARDL LHPGSSALHY IQQLVKLDQE PVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCTGGTCCAG GAATCCTAG GACATCTAG CCTGCATGTGG CGAGTCCAG CCTGCATGTGG CGAGTCCAG TGCATGTGG TGCAGCCTC AAAAGAGG TTATGATACT TATTGATACT TGATGATCAA CTCTAGGGTT GGAACCCAG GCAGAAAAGA AAAAGACACA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 TTGTGCGCGT GTGGCAACCT TACGACTATG AAGAAATTCG CACCTTTGGT GCCCTCGG GCCGCAACC TCCAGGTCTT ACGCACTT TCCACGTCT AGGCAGTTT CCCGCATACT TTCCTCCAG GCTAGACT TTCCTCCAG GAGAATTCGC AGGCAGTCT TCCAGGTCT AGGCAGTCT TCCAGGTCT AGGCAGTCT TCCAGGTCT AGGCAGTCT TCCAGGTCT AGGCAGTCT TCCAGGTCT AGGCAGTCT TCCAGGTCT AGGCAGTCT AGGCAGTCT TCCAAGTAA AGAGAATGCA AGTTTCCTCAA AGTTTCCTCT AGGCAGTCA AGTTTCTTT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGJILPGGTI SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGCC CTCCTGGAAC AAGCTTGGGC CCACCAGGA GATACTCGCC ATCTCTTCCA AAAGCTGCTT AAGCTCCAGG AAAGTTGGGC CCAAGAAGAA TCTCTTCCAG TCAGCACCAGG AAAGTTGGCC CTAGGCCCAGG AAAGTTGGCC TAGCCCCAGG AAAGTTGGCC TGATCCTAGT CTACCGAGAAA TCAGTAGCTA TCAGTAGCTA TCAGTAGCTA TCAGTAGCTA TTGATCTCCC	TVFTDHMLTV FOPNLINEDRM PSLGVKKPTK LPAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGATTCTAC GCCGCCTGG GTGGCCGGTA CGCAACTAC GCCGCTGGG GAAGCCAAC CTTCCCCTGT CAAGAAGGA GAAGCAGTC CAAGAAGGA GGAAGCAGT CCAAGAAGGA GGAAGCAGT CCAAGAAGGA GAAGCCAGT CAAGAAGGA GAAGCAGT CCAAGAAGGA GAAGCAGT CTCACCACC AAGAAGGA CAAGACCAAA TTCCCCTTT	120 180 240 300 360 120 180 240 300 360 420 780 900 900 900 1080 1140 1260
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFYLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq: 1 ACAGAGGGGG ACCAGCAGGA ACTTGGGTCC GGGTCCACGA ACAGAGGGGG GCTCCACGA AGAGCGGTG GCCTCCTCA AGAGCGGTG GCTCCACGA ATGATGGACC GGTTAAGGAAC GCTCCACGA ATCATCGGG CACCAGCAAC GCTCCAAGA GGTAACGAAC GCTCCAAGA GGTAACGAAC GATACCTGGAGC GTACCGGCC GAATACTTAC GAATGCCAGC AGCCTGACCA AGCCTGACCA AGCCTGACCA AGCATCCAGCA AGCATACTTAC GAATGCCAGC AGCCTGACCA AGCACACA AGTAACTTGT	ECTGEGGSKE ECTGEGGSKE EHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGGGGG GGGAACTAG ACTCGTACCA GCCCAGGGA ACTCGTACCA GCGCCAGGGA GGAACTAG GGACGGGA GGACGGGA GGACGGGA GTGACCTGCT AGCCCAGGAT TCGACGTGCA AGCACACTA GGATGCCCCC GCAAGAT TCGACGTGCA AGCACACTA GGATGCCCCC GCAAGAGACT ACCACTCCA GCAAGAGACT ACCCCTCCA GCAAGAGACT TTGGCCAGCTG ATGAACTGGC GACGCCAATT TTCTTTTTTTTTT	UVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE EGNRVREMFG WTIVLS Quence n #: NM_005 .1194 21 TCGGTGGCCG TCACTATTIC GGACATCTGG ACCCAGCCTT GGAATCCCAG CCGCTGCAGCTT GGACTCCAG CCGCTTGGAT CCAGCCTT GGAGCTCGA CCAGCCTT TGTGAGCTG CTGCATGTGG CCAGGATAAGAAG CCTTATGATACT GAATGATCAA ACTCTAGGGTT GGAAGCCGAG CCAGAAAAGA AAAAGACACA TACAGCAGAA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT TACGACTATG AAGAAATTCG CAGCTTTGCGGT GCCCCCAACA TCCAGGTCTG CCCCCCAATA TTCCTCCAG CTACAGACAG CTACTGAGACAG CTACTGAGACAG CTACTGAGACAG CACCTGTAG GAGAATTCG CACCTGTAG GAGAATTCG CACCTGTAG CACCTGTAG AGAGATTCAC CACTGTAG AGAGATTCAC CACTGTAG CACT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKNGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGCCGGGA AGTTGGTCCTCCAGAA CAACCTAGGA CCACCCAGGA TGAGCCCAGT TGAGCCCAGT AAGCTCCTCTAAC AAGCTCCTCT AAGCTCCTGC AAAGCTGCTT TGATCCTCTTCAA TGATCCTGTCT CTACGGAGAA TCTTGCCCT TGATCCTAGT TGATCTCTAGT TGATCTCTAGT TGATCTCCAGT TGATCTCAGT TGATCTCAGT TGATCTCAGT TGATCTCCCAGT TGATCTCCCAGT TGATCTCCCAGT TGATCTCCCAGT TGATCTCCCAGT TGATCTCCCAGT TGATCTCCCAGT	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGCCAAC GGATTTCTAC GCCGCCTTGC GCAGCCAAC GGATTCTAC GCCGCTTGGAG GCAGCAAC CACGCATC CCAGACTAC GCAGACTAC CATCTCCATC CCAAGAAGGG GAGGAAAGGAT TGCCCAGTC GTACCAACA AAGGCACC AAGGCACC AAGGCACC AAGGCACC TTGACCAACAT TCTCCCTTT AGAATCGATT	120 180 240 300 360 120 180 240 360 420 780 840 660 720 780 840 960 1020 1140 1260 1320
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTGGACCGGG GGTCCACGA ACTTGGGTCC GGGTGCCTCACAGA ACTAGCGGGT GCACCCCGG TTGTTGGGC GCTCCAAGA ATCATCGGG CACCAGCAAC GCTCCAAGAA GTAACGAAC GAATACCAGC GAATACTCAC GAATGCCAGC AGCTGACCA AGTAACTGAC GAATGCCAGC GAATACTCAC GAATGCCAGC AGCCTGACCA AGTAACTGGT GCAGCCAGTG GAGCCAGCAC GAATACTCAC GAATGCCAGC AGCCCAGCAG AGTAACTGGT GCAGCCAGTG GCAGCCAGTG GCAGCCAGTG GCAGCCAGTG GCAGCCAGTG GCAGCCAGTG AGCCCAGTG GCAGCCAGTG GCAGCCAGCAGC AGCAGCAGCAGC AGCAGCAGCAGC AGCAGCAGCAGC AGCAGCAGCAGC AGCAGCAGC AGCAGC AGCAGCAGC AGCAGC AGCAGCAGC AGCAGC AGCAGCAGC AGCAGC A	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LIMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTCGCGGGG GGGAACTAG ACTCGTACCA CGCCAGGGA CTGCGTGACTGCT ACTACACTCC AGCCAGGAC TCGACGTGAC TCGACGTGAC TCGACGTGAC TGCGTGCAGA AGCACACTA GGATGCCCA AGCCAAGAT TCGACGTGAC TGCGTGCAGA TCGACGTGAC TGCGTGCAGA TCGACGTGAC TGCGTGCAGA TCGACGTGAC TTCGTGCAGA TCGACGTGAC ATGAAGAGAT TTCTGTCTTA ACCATTCTTTA ACATTTTTTTTTT	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE ##: NM_005 .1194 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG TCTGCTCCAG CCTGCATTTC GGACATCTGG ACCAGCCCT GGATCCCAG CCTTGGAC CTGCATGTGG CCTGCATGTGG CCTGCATGTGG CCTGCATGTGG CCTTCTGGAT TGCTGCCCT AAAGAGG CCTTTGGAC TGCTGCCCCT AAAGAGGCT TGCTGCCCT TGTAGGCTT GGAACCCAG CCTTATGATATA GAATGATCAA TACAGCAGGA AAAAGAACA ATAAAGAGG ATAAAGGGCT AAAGAGGCT ACAGCAGGA ATAAAGGCTAA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT GTGGCAAGCT TACGACTATG AAGAAATTCG CAGCTTCGT CCCGCATGA AGCGGTTCT CCCCGCATGA CCACCTGTAG CAGAAGTTAA CGTTCGCGGT TCCAGGTTCG TCCAGGTTCG CACCTGTAG CAGTTTCTTCCAG CCACCTGTAG CCACCTGTAG CAGTTTCTTCG AGGAGGATGG ATTGAGTACC AGTTTTCTTTG CACTCTGGAC GCATTCTTGG	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTC CTCCGAAC CACCCAGGA GATACTCGCC TAGCGCCCAT AGAGCCCAAG TGAGTACGCG AAAGTTACGCT AAGCTCCAGG ACTCTTCCA AAAGCTACTCT CCAAGAAGAA TCTTGGCCCT TGATCCTAGT TCTACGAGGA TCTACGAGGA TCTACGAGGAA TCTTGGCCCT TGATCCTAGT TCTACGAGGAA TCAGTAGCTA CAGTAGGTA CAGTAGGTA CAGTAGGTA AAACTTTGACTAGT AGATTGCC AGTAGATTGCA AAACTTTGACTAGT	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGGCCAAC GGAATTTCTAC GCGCCCTGG GTGGCCGTAC GCGCCTGGA CCAGGAACTAC GCGCTGGAG CAAGGAGTTC CTTCCCCTGT CGACTCCAGC GAAGCCAGC GAAGCAGC GAAGCAGC GAGGGAACGAC CTACCCAGCC GTACCAACAC GTACCAACAC GAGGGAACGAC CAAGGCAACAC CAAGCACCC GTACCAACAC CAAGCACCC GTACCAACAC CAAGCACCC CTGACCAAAA TCTCCCCTTT AGAATCGATT ACCCAGCTCT	120 180 240 360 360 120 180 240 360 420 480 960 1020 1020 1140 1200 1200 1380
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTTGGGTCC GGGTGCAGCTG GGCTCCCCCA AGAGCGGTGA ACTTGGGTCG GGCTCCCCCA AGAGCGGTGA ACTTGGGGG GCTCCACAGA ACTAGCAGG GCTCCAAAGA GATAAGGAAG GATAAGGAAG GATAAGGAG GAATACTTGG AGATACTTGG AGCTGACCA AGTACTGGGC AGCTGACCA AGTACTGGGGC AGCTGACCA AGTACTTGT GCAGCCA AGTACTTGT GCAGCCA AGTACTTGT GCAGCCAG AGCTGACCA AGTACTTGT GCAGCCAG AGCTGACCA AGTACTTGT GCAGCCAG AGCAGTG CCTCTTTCCCC CCTTTTCCCC CCTTTTCCCC CCTTTTCCCC CCTTTCTCCCC CCTTTCTCCCC CCTTTCTCCCC CCTTTCTTC	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession uence: 121. 11 GGTCGCGGCGC GGGGAACTAG ACTCGTACCA CGCCCAGCGA GCAGCCGGGA CTGGCCGCGGGA CTGGCGCGGGA TCGGCCGGGA TCGGCCGGGA TCGACGTGA TCGACGTGAC AGCCCAAGGA TCGACGAGAT TCGACGTGAC AGCACAACTA ACCATCCA GGATGCCCC ATGAAGAGAC TGGCAGCGG TGGCAGCAG TGGCAGCAG TGGCAGCAG TGGCAGCAG TGGCAGCTG ATGAACTAC CGACGGCAATT TTCTGTCTTA ACATTTTGT CACAAACAAT TGACTTATGG	VVOTFKARDL LHPGSSALHY IQQUVKLDQE PVSLWANPKY MNLFLYWINE GUENCE ##: NM_005 1194 21 TCGGTGGCCG TCTGGTCCAG GAATCCCAG CCTTGGACTCGG CGACTCTGG CGACTCTGG CGACTCTGG CGACTCTGG CGACTCTGG CGACTCTGGC TGCATGGC TGCATGGC TGCATGGC TGCATGGC TGCATGGC TGCATGGC TGCATGGC TGATAAGAAG CCTTGAGCCTG AAAGAGAGC TGCAGCTGGA CCTGCATGGC TGTGAGCCTG AAAGAGAGC TGCAGAGCAGA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 TTGTGCGCGT GTGGCAGCT TACGACTATG AAGAAATTCG CACTTTGGT GACTACTGGA GCCGCACCC TCCAGGTCTG AGGAGTTCT CCCCGCATGA GAGAATTCGA GAGAATTCGA GAGAATTCGA GAGAATTCGA GAGAATTCGA GAGAATTCGCGGT TCCAAGTAA GAGAGGATGG ATTGCTGCGGT TCCAAGTAA GAGAGGATGG GATTCTTTCCGGCGCATCT TCCACGGGACCC TTCAGAGGAGAGAGATTGCAGGATTCTTCCGGGCATCCAGGATTCTTTCACTCGGAC GCATTCTTTCTGGAC GCATTCTTCTTTCACTGGAC GCATTCTTCTTTCTGGACTATCTTTCTTTCTGGACTATCTTTCTGGACTATCTTTCTT	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGTTGGGA CCACCAGGA AGCTTGGGA GATACTGCC TAGCCCCAT TGAGCCCAT AGAGCCCAAG TGAGTACGCG AAAGTTAGCC CCAAGAAGAA TCTTCTCCA AAAGTTAGCT TGATCCTAGT TGATCCTAGT TGATCCTAGT TGATCTCCC AGTAGATTGC AAACTTTGGC AAACTTTGC AAACTTTTGC ACCTTTTGC ACCTTTTCC ACCTTTTGC ACCTTTTCC ACCTTTCC ACCTTTCC ACCTTTCC ACCTTTTCC ACCTTTCC ACCTTTTCC ACCTTTCC ACCTTT	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAAGCCAAC GGAATTCAC GCCGCCTGG GTAGCCGTGAG CAAGCAAT CCTCCCATC CATCCCATC CCATCCCAGG GAAGCCAGT CCAAGAAGGA TGCCCAGTC CATCCCAGC GGAACTAC GCGACTGG GAAGCCAGTC CATCCCAGC GAAGCCAGTC CATCCCAGC GAAGCCAGTC CCAGCAGAAGGAT TCCCCAGTC CTACCCAGC GAGGGACAAG CAAGGCAGTC CTACCCAGC CTACCCAGC CTACCCAGC CTACCCAGC CTACCCAGC CTACCCAGC CTACCCAGC TCTCACCAGA TCTCCCCTTT AGAATCGATT ACCCAGCTCT TTCTCAGCAG	120 180 240 300 360 120 180 240 360 420 780 900 900 900 1080 1140 1260 1380 1440
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq ACAGAGGGGG ACTGGAA ATTGGGTCC GGGTGGACGGAC ACTTGGGTCC GGTTGCACGAC AGACGGGGC TGTTTGGGC GGTTGAAGAAAA ATCATCGGGC GGTTCAAGAA ATCATCGGGC GGTTCAAGAA GATAAGGAAG GATAAGCAAG GATACTGGG GTACCGCC GAATGCTAGC AGCCTGAC AGCTTGACC AGCTTGACCAC AGCTTGACC GCAGCCAC AGCTTGACC GCAGCCAC AGCTTGACC GCAGCTGAC CCCCGCC GCAGCTGAC CCCCCCC GCAGCTGAC CCCCCCC CCCCCCCC CGATTCCCCCC CGCAGCTGAC CCCCCCCCC CCCCCCCCCC	ECTGEGGSKE ECTGEGGSKE PHIKPLONLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA sec id Accession uence: 121. 11 GGTCGCGGCG GGGGAACTAG ACTCGTACCA GCAGCAGGA GCAGCAGGA GTGACCTGCT ACTACACTCC AGCCCAGGA TGGCTGCAGA AGCACAACTA GGATGCCCC ATGAAGAGAT TGGCTGCAGC TGGCTGCAGA TGGCTGCAGA TTCGTACCCC ATGAAGAGACT TGGCTGCAGA TTCGCTGCAGA ACCCATCCA ACCCAAGAT TTCTTTTTTTTTT	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE PVSLMANPKY MNLFLYWINE EGNRVREMFG WTIVLS QUENCE n #: NM_005 .1194 21 TCOGTGGCCG TCTGGTCCAG ACCAGCCTT GGACATCCTGG ACCCAGCCCT GGAATCCTGG ACCAGCCTG CTGCATGTGG CGAGTTGGC CGAGTATTGC CGAGTTGGC CGAGTAGAGAGAGA AAAAGAGCT TGTGAGCCTG TGTGAGCCTG TGTGAGCCTG TGTGAGCCTG TGTGAGCCTG TGTGAGCCTG TGTGAGCTGC TATTGATACT TGAATGATCAA CTCTAGGGTT GGAAGAGGA AAAAAGCTCA TACAGCAGGA ATAAAGGCTTG GGGGTCTTC GGGGTCTTG GGGGTCTTC GGGGTTTG GGGGTCTTC GGGGTTTG GGGGTTTG GGGGTTTG GGGGTTTTG GGGGTTTTG GGGGTTTTG GGGGTTTTG GGGGTTTTC GGGGTTTTC GGGGTTTTC GGGGTTTTC GGGGTTTTC GGGGTTTC GGGGTCTTCC GGGTCTTCC GGGTCTTCC GGGTCTTCC GGGTCTTCC GGGTCTTCC GGGTCTCC GGGTCC GGGTCTCC GGCTCC GGGTCTCC G	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGCGCGT TACGACTATG AAGAAATTCG CAGCTTGGT GACTACTGAA AGCAGTTCTT CCCCGCATGA TTCCTCCAG CTACAGACTAG AGAAATTCGA CACTTGGT GAGAATTCT CCCGCATGA TTTCCTCCAG TTACAGACAG GAGATTCTT CCAAGTTCG GAGAATTCTCCAG GAGAATTCTCCAG GAGAATTCTCCCGT TCCAAGTAA GAGAGGATGG AGGAGTTCTTCCAG TCCAAGTAA GAGAGGATGG ATTGAGTACC GATTCTTGCT TCCAAGTTAA GAGAGGATGG ATTGAGTACC GCATTCTTGG TCCACAGTTCTTCC TCCACACTAGTACC TCCACACTACT TCCACACTACT TCCACACTACT TCCACACTACT TCCACACTACT TCCACACTACT TCCACACTACT TCCACACTACT TCCACACT TCCAC	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKNGGNYGSS LDGI ILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGCCGGGGA AGTTGGTCGAC CACCCAGGA AGATACTCGC TAGCGCCCAT AGAGCCCAG TGAGCCCAG TGAGTCAGCC AAAGTTGGC CCAAGAAGAA TCTTGCCT TGATCCTTCTCA ATTGATCTTCTCA TGATCCTAGT CTACGAGAA TCATTGGCT TGATCTAGT TGATCTAGT AGTAGTT AGTAGTAGCT AGTAGATAGCT AGTAGATAGCT AGTAGATAGCT AGTAGATAGCT AGTAGATTGC AGTAGATTGC AGTAGATTGC CTCCAAGAA CCCTTTGGC TCTCCAAGA	TVFTDHMLTV FQPNLINHDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGCCACC GGATTCTAC GCCGCCTGGC GTGGCCGGTAC GCGAACTAC GCGAACTAC GCAGCACTC GCAGCCTGG GAAGCAAC CATCTCCATC CAAGAAGGG GGAAAGGAT TCCCCTGT TCCACCAGC GAGGAACGAC AAGGCACC GTACCACACC GTACCACACC GAGGACCAC AAGGCACC AAGGCACC AAGGCACC AAGGCACC AAGCCACC TTCCCCTTT AGAATCGATT ACCCACTT TTCTCACCAA AAGGCTCAC AAGGCACA AAGGCACTA TTCTCACCAA AAGGCTCAC AAAGGCTCAC	120 180 240 300 360 120 180 240 300 360 420 780 960 1020 1140 1260 1320 1380 1440 1500
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTGGGACCGCG GGTCCACGA ACTTGGGTCG GGTGCGCTG GCTCCCTCA AGAGCGGTGGA ACTTGGGTCG GCTCCACGA ACTTGGGTCG GCTCCACGA ACTTGGGGCGCTG GCTCCACGA ACTTGGGGCGGTGAACAAC GCTCACAGCAAC GCTCAAGAA ATCATCGGGG CACCAGCAAC GCTCAAGAA ATCATCGGAGA GATAACGTAC GAATACTTAC GAATGCCAGC AGCTGACT ACCTGCCC GCAGCTAACT ACTCGAGCC CGAATACTTAC GAATGCCAGC CGAATACTTAC GAATGCCAGC CCCCCC CCAGCTAACT ACTTCCCC CCAGCTAACT AGATGGTATT ACTGAGCAC AGCTGACT AGATGGTATT AGATGGTATC ACTCGACT AGATGGTATT AGATGTATT AGATGTAT AGATT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGT	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LIMDDLTTAL DIQYGREESD 120 DNA 8ee id Accession uence: 121. 11 GGTCGCGGGG GGGGAACTAG ACTCGTACCA GCCCAGGGA GCAGCAGGA TCGACGTGAC ATGAAGAGAT TCGACGAGACT TCTGTCTTA ACATATTGG GACGACATT TCTGTCTTA ACATTTTTGT CACAAACAAT TGACTTATGG GACGAGACTT CACAAGGTGG GACGAGACTT CACAAGGTGG	VVOTFKAKDL LLPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE ##: NM_005 .1194 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG TCACTATTC GGACATCTGG ACCAGCCT GGATCCCAG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG TGCATGTGG TGCATGTGG AGTAAAGAAG CCAGGCCTGC AAAGAGGCT TGTGGCCCCT TGTGAGCTTC GGAACCCAG AAAGAGGCT TATGATATAT GAAGCCCAG CAGGAAAGAA AAAAGACACA AAAAGACCCAG CAGGAAAAGA AAAAGACCT TGCACCCG GGAGTCTTCC GGGGTCTTCC GGGGTCTTCC TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTT TGGATGTT TGGATGTT TGGATGTT TGGATGTT TGGATGT	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT TACGACTATG AAGAAATTCG CAGCTTTGGT GCGCCTTCGG GCCGCAACC TCCAGGTCTG TCCACCATGA TTTCCTCCAG CTACAAGTAA CTACAAGTAAG CAACTGTAG CAACTTTGCT CCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTTGCT CCCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTTGCT CCCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTCGCGGT CCACTGGAC GCATTCTTCG GCGTTTCTTCT TCCCCCCCATGA TTCCTCCAG TCCACTAAGTAAA TTCCTCCAG TCCACTAGAAGTAAA TCCACTCTGGAC GCATTCTTCG GCATTCTTCG TGTTTTCTCG TGGCTCACTA TGGGGGCTCC TGGGGCCTCC TGGGCCCCCCACTA TGGGGGCTCC TGGCTCACTA TGGGGGCTCC TGGGCGCTCC TGGCTCACTA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGC CTCCTGGAAC AAGCTTGGAC CAACCCAGGA GATACTCCC TAGCGCCAT AGAGCCCAAG TGAGTACGCG AAAGCTGCTT AAGCTCCAGG ACTCTTCCA AAAGCTGCTT TGATCTCAGT CTACCGAGAA TCTTGGAC TCTACCAGT TGATCTCCC AGTAGATTGCC AGTAGATTGC AGTAGCTA TCTACTCTGAC CACCTTTGGAC CACCTTTGGAC CACCTTTGGAC CTCCCAAGAA	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGCCTGC GCGCCTGAG GCAGCCTGC GCAGCCTGC GCAGCCTGC GAGCCAGC GAGGCACTC CTTCCCCTT CCCAGCCCTGC GAGGGACGAC CAGGGACGAC CAGGGACGC GAGGGACGAC TCTCCCCTT AGAATCGAT AGCACACAC AAAGCCACC TTCTCAGCAC AAAGCTACAC AAATCTCACAC AAATCTCACAC AAATCTCACAC	120 180 240 300 360 120 180 240 420 480 660 6720 780 840 960 1020 1140 1200 1140 1210 1320 1440 1560
50 55 60 65 70 75 80	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVILISPV GCQQVLWLYG WGEFKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTGGGACCGCG GGTCCACGA ACTTGGGTCG GGTGCGCTG GCTCCCTCA AGAGCGGTGGA ACTTGGGTCG GCTCCACGA ACTTGGGTCG GCTCCACGA ACTTGGGGCGCTG GCTCCACGA ACTTGGGGCGGTGAACAAC GCTCACAGCAAC GCTCAAGAA ATCATCGGGG CACCAGCAAC GCTCAAGAA ATCATCGGAGA GATAACGTAC GAATACTTAC GAATGCCAGC AGCTGACT ACCTGCCC GCAGCTAACT ACTCGAGCC CGAATACTTAC GAATGCCAGC CGAATACTTAC GAATGCCAGC CCCCCC CCAGCTAACT ACTTCCCC CCAGCTAACT AGATGGTATT ACTGAGCAC AGCTGACT AGATGGTATT AGATGGTATC ACTCGACT AGATGGTATT AGATGTATT AGATGTAT AGATT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGTAT AGATGT	ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYPSSGTFN EDHQITEVGT LIMDDLTTAL DIQYGREESD 120 DNA 8ee id Accession uence: 121. 11 GGTCGCGGGG GGGGAACTAG ACTCGTACCA GCCCAGGGA GCAGCAGGA TCGACGTGAC ATGAAGAGAT TCGACGAGACT TCTGTCTTA ACATATTGG GACGACATT TCTGTCTTA ACATTTTTGT CACAAACAAT TGACTTATGG GACGAGACTT CACAAGGTGG GACGAGACTT CACAAGGTGG	VVOTFKAKDL LHPGSSALHY IQQLVKLDQE FVSLWANPKY MNLFLYWINE GUENCE ##: NM_005 .1194 TCGGTGGCCG TCTGCTCCAG TCTGCTCCAG TCACTATTC GGACATCTGG ACCAGCCT GGATCCCAG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG CTGCATGTGG TGCATGTGG CTGCATGTGG AGAAAGAA CCTTAGGGTT TGTAGGCTT GGAACCCGAG AAAAGAACA AAAAGACACA ATAAAGGCTT GGAGCTTTC GGGGTCTTCC GGGGTCTTCC GGGGTCTTCC TGGATGTTGT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTT TGGATGTTT TGGATGTTT TGGATGTTT TGGATGTT TGT TG	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31 ITGTGGGGGT TACGACTATG AAGAAATTCG CAGCTTTGGT GCGCCTTCGG GCCGCAACC TCCAGGTCTG TCCACCATGA TTTCCTCCAG CTACAAGTAA CTACAAGTAAG CAACTGTAG CAACTTTGCT CCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTTGCT CCCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTTGCT CCCCCCATGA TTTCCTCCAG CTACAAGTAAA CATTCGCGGT CCACTGGAC GCATTCTTCG GCGTTTCTTCT TCCCCCCCATGA TTCCTCCAG TCCACTAAGTAAA TTCCTCCAG TCCACTAGAAGTAAA TCCACTCTGGAC GCATTCTTCG GCATTCTTCG TGTTTTCTCG TGGCTCACTA TGGGGGCTCC TGGGGCCTCC TGGGCCCCCCACTA TGGGGGCTCC TGGCTCACTA TGGGGGCTCC TGGGCGCTCC TGGCTCACTA	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGCGGGA AGTTGGTGC CTCCTGGAAC AAGCTTGGAC CAACCCAGGA GATACTCCC TAGCGCCAT AGAGCCCAAG TGAGTACGCG AAAGCTGCTT AAGCTCCAGG ACTCTTCCA AAAGCTGCTT TGATCTCAGT CTACCGAGAA TCTTGGAC TCTACCAGT TGATCTCCC AGTAGATTGCC AGTAGATTGC AGTAGCTA TCTACTCTGAC CACCTTTGGAC CACCTTTGGAC CACCTTTGGAC CTCCCAAGAA	TVFTDHMLTV FQPNLINHDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGCCACC GGATTCTAC GCCGCCTGGC GTGGCCGGTAC GCGAACTAC GCGAACTAC GCAGCACTC GCAGCCTGG GAAGCAAC CATCTCCATC CAAGAAGGG GGAAAGGAT TCCCCTGT TCCACCAGC GAGGAACGAC AAGGCACC GTACCACACC GTACCACACC GAGGACCAC AAGGCACC AAGGCACC AAGGCACC AAGGCACC AAGCCACC TTCCCCTTT AGAATCGATT ACCCACTT TTCTCACCAA AAGGCTCAC AAGGCACA AAGGCACTA TTCTCACCAA AAGGCTCAC AAAGGCTCAC	120 180 240 300 360 120 180 240 420 480 660 6720 780 840 960 1020 1140 1200 1140 1210 1320 1440 1560
50 55 60 65 70	MKDCSNGCSA EWSSEFGWEK YRSAVRATLP ALLFVLLSPV GCQQVLWLYG WGEPKVSERY LASRILSKLT Seq ID NO: Nucleic Ac Coding seq 1 ACAGAGGGGG CCCAGCTGGA ACTGGACCGGG GGCTCCACAG ACTTGGGTCC GGGTGCOCTG GGCTCCCTCA AGAGGGGTGA ACTAGCAGG GCACCACCCG TTGTTGGGCG GGTAAGAAA ATCATCGCGG CACCAGCAAG GATAAGAAG GATAACTGG GAACTGGAC GATACTGGGC GATACCGCCA GATACTGGGC GATACCGCCA GATACTGGAC AGCTGACCA AGCTGACCA AGCTGACCA AGGTAACTTGC AGATGCTACT AGATGGTATG CTCTACATGA	ECTGEGGSKE ECTGEGGSKE ECTGEGGSKE PHIKPLQNLS VFDKEELLEC GPYFSSGTFN EDHQITEVGT LTMDDLTTAL DIQYGREESD 120 DNA see id Accession uence: 121. 11 GGTGCGGGG GGGAACTAG ACTGGTACCA CGCCAGCGA CGCCAGCGA CGCCAGCGA TCGGCCGGGA TCGGCCGGGA TCGGCCGGGA TCGACTGCT ACTACACTCC AGCCCAAGAT TCGACGTGAC GGAGGAGAC TGGGTGAGA GGATGCCCC ATGAGAGAC TGGGCAGGTG ATGAACAGT AACCCATCCA GCAAGAGAC TGGCCAGCTG ATGAACTAT TTCTGTTTA ACATTTTGT TCACAACAAT TGACTTATGG GAGGAGACTT TCACAACAAT TGACTTATGG GAGGAGACTT TCACAACAAT TGACTTATGG GAGGAGACTT TCACAACAGTGC CACAAACAAT TGACTTATGG GAGGAGACTT CACAAGAGTGC ACTTTATGG ACTTATGG ACTTTATGG ACTTTTAGGCT	VVOTFKARDL VVOTFKARDL LHPGSSALHY IQQUVKLDQE PVSLWANPKY MNLFLYWINE GUENCE # #: NM_005 .1194 21 1 TOGGTGGCCG TCTGCTCCAG CTTCTCCAG CTGCATGTTG GGACTCCAG CCTTCTGGAT TGCTCCCAG CCTTCTGAT TGCTCCCCT AAAGAGAG CCTTCTGAT TGCTGCCCT AAAGAGAG CCTTCTGAT TGCTGCCCT TATGATCT TGATACTC TATGATCT TGATACTC TATGATCT TGATGATCT TGATGATCT TGATGATCAT TCTAGGCTT GGAAGCCAG CCAGAAAAAA AAAAGACAC TACAGCAGGA AAAAGACAC TACAGCAGGA ATAAAGGCTTC GGAGTTTTC GGGGTCTTCC TGGATGTTTTT GGGGTTTTTT GGGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAGGATGTTTTT AGGAAAAGGATGTTTTT AGGAAAAGGA	IVTPATILKE AVELPEGIKA WVPYSTSASL VRANKGGTGD DGEBELATPP SGTACVVCPV 377 31	KPDPNNLVFG FRGVDNKIRL YIRPTFIGTE CKMGGNYGSS LDGIILPGVT SDILYKGETI 41 GTGTGGAGTG GCGTGAGCAA ACGGTGAGCAA ACGGTGAGCAA AAGGTTGGGA CCACCAGGA GATACTCGC TAGAGCCCAT AAAGCTGCTT AAGCTCCAG AAAGTAGGGC CCAAGAAGAA TCTTGCC CCAAGAAGAA TCTTGGCCCT TGATCCTAGT CTACGAGGA TCATTGGCCT TGATCTAGT CTACGAGGA TCATTGGCAC AGTAGATTAGCT AACTTTGACTAGT TTGATCTCC AGTAGATTAGCT AAACTTTGAC CACCTTTGGC TCTCCAAAGA ACCCTTTGGC TCTCCAAAGA AGCCTGGAGG TGATCCAAGG AGCCTGGAGG TGATCCAAGG TGATCCAAGA TGATCCAAGG TCAAGAT TTTGATCAAGC TCAAGAT TTTGATCAAGA TCAAGAT TTTGATCAAGA TCAAGAT TTTGATCAAG TCAAGAT TTTGATCAAGA TCAAGAT TTTGATCAAGA TCAAGAT TTTGATCAAG TCAAGAT TTTTGATCAAG TCAAGAT TTTTTTTTTT	TVFTDHMLTV FQPNLINEDRM PSLGVKKPTK LFAQCEAVDN RRCILDLAHQ HIPTMENGPK 51 CCCTGCTGCC GCAGCCTGC GCGCCTGAG GCAGCCTGC GCAGCCTGC GCAGCCTGC GAGCCAGC GAGGCACTC CTTCCCCTT CCCAGCCCTGC GAGGGACGAC CAGGGACGAC CAGGGACGC GAGGGACGAC TCTCCCCTT AGAATCGAT AGCACACAC AAAGCCACC TTCTCAGCAC AAAGCTACAC AAATCTCACAC AAATCTCACAC AAATCTCACAC	120 180 240 300 360 120 180 240 300 420 480 560 720 780 840 900 1020 1140 1260 1320 1440 1500 1500 1620

	AACAAGCTCA	GAGACTTGAT	CAACGTGGAC	CATTACCTCA	CTGTCAGACA	CTACAGCTAG	1740
				TATATATATG			1800
	TATATATATA	TGTATGTATA	TATGTATATA	TGTATATATA	TATGTATGTA	TATATGTATA	1860
	TATCTATATA	TATATYTTATY	TATATATCTA	TATATTATGA	TOTTOCCTOA	COCCUPATION	1920
5							
)	CCCACTCTCA	ATGCTGTGAC	TCAGAACATT	TAAGAGAACT	TCGTCTGTAA	GTAATTTGTC	1980
	TTABAGCCT	CHECKICHCAC	THEORYTHMEN	GAGGGAACTT	TCTYCTYCTYCA ACPTENDED	CARGGGACTT	2040
				TTCTACAGCA			2100
	ATATTTCCCT	AAGACACAGG	GAAATGGGTC	TTAGCCTGGG	GCCTGGGGAA	AGTTCCCAAG	2160
10	CCCTGGCTCA	TGAACTCAAT	CCCTGCCCAG	GTGTTTTCTG	AGGGGCCCTT	GAGGCCAATC	2220
10	TTTTCTCAAG	ACAGTGTGAG	GCACCTTAGA	AGGGAGAACT	GTAACACTTT	CTCTTTCGCA	2280
				AATTTGAAGT			2340
	TTGTTCCTTT	CGTGCATCTC	CAAGGAGCTT	GCTGGCTCTG	CAGCCACGCT	TGGGCCCTCG	2400
				ACAGAATCTG			2460
	GAGAGCTGTT	GGGACTCATC	CAGTGCTCCA	CAACGTGGAC	TTGCCTCCTG	GTGTGTTTTA	2520
15							
IJ	AAGGATCCTC	CAGGAGCTCT	GCTTAGCCAA	TCATCATGAT	GGATTTTTT	TITTTTTT	2580
	GAGACGGAGT	CTCAACTCTT	GTCGCCCAGG	CTGGAGGTTA	ATGGCATGAT	CTCGGCTCAC	2640
	TGCAACCTCT	GCCTCCCGGG	TTCAAGCGAT	TCTCCTGCCT	GAGCCTTCCG	AGTAGCTGGG	2700
	ATCGCAGGCG	CCTGCCACCA	CCCCTACCTA	ATTTCTGTAT	TTTTAGTAGA	GATGGGGGTTT	2760
00				CTGACCTAGG			2820
20	AGATTTTGCC	CCAGCTGGAC	TCTGCAGCTC	CACGTGGAAT	CCAGGTGCCT	GCCTCCAGTC	2880
	TGGGAAAGTC	ACCAACCCGC	AGCTTGTCAT	GTGGGTAACT	TCTGAACCCT	AAGCC	
	CON TO NO.	121 Protein					
0.5	Protein Acc	cession #: 1	NP_005368	•			
25	1	11	21	31	41	51	
	÷			1.	7.		
	ł	1	1	1	1	1	
	MUSDEARHAS	VDVDCCEDEV	DOTTOORNTW	KKPELVPPPW	TWOCDEDGD	OT-WEDGTWDV	60
	GCAGDETESQ	DYWKAWDANY	ASLIRRDCMW	SGFSTQEPLE	RAVSDLLAVG	apsgyspkef	120
				SRSESPSDSE			180
20							
30	IIAVRADLLD	PRMNLPHISI	HQQQHNYAAP	FPPESCFQEG	APKRMPPKEA	LEREAPGGKD	240
				ENWTKKKYHS			300
							300
	VPALASCSRV	SKVMILVKAT	EYLHELAEAE	ERMATEKROL	ECORROLOKR	IEYLSSY	
				_			
	Seq ID NO:	122 DNA sec	quence				
35	Nucleic Act	id Accession	#: AB0066	25 2			
-							
	Coding sequ	uence: 356.	.4750				
	1	11	21	31	41	51	
	7	7-		7-	7.	7-	
	1			1	1	1	
	CACCTTTCCC	ACCCCCCCCCCA	CATCTCCACC	CTGGGCTGGT	dananaca	GGCGCCGGGC	60
40							
40	GCCATGAGGG	TGCGCTAGGC	GGCTGTTCGT	GCCCGAGGCT	GCGCAGCACT	GAGGTGAGCT	120
	TTGCCTTCTT	GATCTTCCGT	CCTTCTTCGA	GACGACTGGC	GAGAGGAAGA	GGGACTAGGT	180
	CCAAACGCTA	GGTGGCTGGG	TCCAGCCGGA	GACCCGCACC	AAGGAGGAGA	TCATCGAGCT	240
	CTTGGTCCTT	GAGCAGTACC	TGACCATCAT	CCCTGAAAAG	CTCAAGCCTT	GGGTGCGAGC	300
4.5	AAAAAAGCCG	GAGAACTGTG	AGAAGCTCCT	CACTCTGCTG	GAGAATTACA	AGGAGATGTA	360
45	CCAACCAGAA	GACGACAACA	ACAGTGACGT	GACCAGCGAC	GACGACATGA	CCCGGAACAG	420
	AAGAGAGTCC	TCACCACCTC	ACTCAGTCCA	TTCTTTCAGT	GGTGACCGGG	ACTGGGACCG	480
	GAGGGGCAGA	AGCAGAGACA	TGGAGCCACG	AGACCGCTGG	TCCCACACCA	GGAACCCAAG	540
				TCCTGTGGTG			600
	GGACAGAGAG	GACGACAGGG	ACTCCAGGGC	TTATGAGTCC	CGATCTCAGG	ATGCTGAATC	660
50							
30				CAGGAAACCT			720
	CATGGAAAAC	TACAGGAAGC	TECTCTCCCT	CGGAGTGCAG	CTTGCTGAAG	ACGATGGCCA	780
				ATCCAAGAGA			840
	TCGAGGTCTA	AAAACTATGC	CTGAAGCCAA	AAAATCAACC	CACCGGCGGG	GGATTTGTGA	900
~ ~				AAAATTCATC			960
55	CAAATCGGGA	AGAGCAAGGG	AGTCAAGCGA	CCGGTCACAG	AGATTCCCCA	GAATGTCAGA	1020
				GAGGGAGTCA			1080
	TGAAGGGAAT	GCATTTAGGG	GAGGCTTTAG	GTTTAATTCA	ACCCTTGTTT	CCAGAAAGAG	1140
				TGACACAGAT			1200
	TCAAAAAGGC	TGTCCCAGGA	AGAAGCCCTT	TGAATGTGGT	AGTGAGATGA	GAAAAGCCAT	1260
60				CCCCTCCTTT			1320
50							
	TTTTGGGGCA	ATGCCATATG	TATGTGATGA	GTGTGGGAGG	TCGTTCAGTG	TCATCTCAGA	1380
				AGAGAACCTC			1440
	TATCCACAGT	GTGGCTGTCA	GTGAAGTTCA	GAAAAGTCAG	GTTGGAGGGA	AACGTTTTGA	1500
						ATCGGAAGAT	
65							1560
65	TCATGCTAGA	GGTTATCTTG	TGGAATGTAA	GAATCAGGAA	TGTGAGGAAG	CCTTCATGCC	1620
						ACGAGTGCAG	
							1680
	GGTGTGTAAG	GAAACCTTCC	TTCATAGTTC	TGCCCTGATT	GAGCACCAGA	AAATCCACTT	1740
						AGCGCGGGGA	1800
70	AACCTTTAGG	CCCAGCCCAG	CCCTTAATGA	GTTTCAGAAA	ATGTATGGTA	AAGAGAAAAT	1860
70							
, ,						AAGAACATCA	1920
	GAAAATCCAT	ACTAGAGGGA	ACCCATTTGA	AAACAAGGGT	AAAGTGTGTG	AGGAAACCTT	1980
						AGCTCTGTGA	2040
	CTTTACAGAT	GCCCGGGATG	CCTTCATGCA	AAGCTCAGAG	CTCAGTGAGC	ATCAGAAAAT	2100
75						TTCATAGTGG	
75	GCCATTCACT	GAATCTCAGA	AGAGTCATAC	TATAACAAGA	CCTCTTGAAA	GTGATGAGGA	2220
-							
						CCACTAAGGA	2280
	AAATGTCTAC	GAGGCAAAAT	CATATGAGAG	GTCTGTTATT	CATAGCTTAG	CCTCTGTGGA	2340
				CAGTAAACCA			
							2400
0.0	CATTCAGAGC	TTCGATGCTA	TCAACCATCA	GAGAGTTCGT	GCTGGAGGGA	ACACCTCTGA	2460
80						CTCCAAGAAG	2520
90							
	TCACAATGGA	AATGAATTGG	TGGAATCTAA	TGAGAAGGGA	GAATCCTCCA	TTTATATCTC	2580
							2640
						AAGGGGGCAG	
	TAAGAATCGC	AACTATGAAG	ACTCTGTCAT	ACAGAGTGTA	TTCCGTGCCA	AACCTCAGAA	2700
						CTGTTCCCAG	
85							
	COTTON A DOMESTIC	COTTON ATACC	AGAAGGCTCG	TGCTAAAAAG	AAATACATTG	AGCATAGGAG	2820
0.5	CICMMIGIC						

	CAATGAGACC	TCTGTAATTC	ACTOTOTOCO	TTTTGGTGAA	CAAACATTTC	GCCCTCGAGG	2880
		GAATGTCAGG					2940
		ATTCATGATA					3000
5		TTGGCCCCTA					3060
)		CGGAACAAAT					3120
		CAGAAAATCT GGGGAGGAGA					3180 3240
		CAAGGCTCAG					3300
		GAGGACTGTG					3360
10		AGCAGGAAGT					3420
	CACCCATTCC	ATCAGCGAGT	ATCAGAGAGA	TTACACTGGA	GAGCAGCTGT	ATGAATGTCC	3480
		GAATCTTTTA					3540
		TTGTATTCCA					3600
15		AGGAATCGTG TGTGGACAAG					3660 3720
13		GATGATTTAC					3780
		ACTGAGTTTC					3840
		TCTTTCGTCA					3900
	TGAGCCCTAT	GAGTACGGGT	CCTCCTATAC	TCACACCTCA	TTTCTTACTG	AGCCCCTCAA	3960
20		CCATTCTATG					4020
		CATAAGGAGC					4080
		GCAGCCCAGG					4140
		TTAAACGTAG					4200
25		GAGCCAGAAG GCAGAGCCCA					4260 4320
23		GCTGATGAGC					4320
		GGAAAAGCTG					4440
		CCAGAAGAAG					4500
~ ~	CTGCCATGAA	TGCACAGAAA	CCTTCACTTC	CAGCACAGCA	TTCAGTGAAC	ACCTGAAAAC	4560
30		ATGATCATAT					4620
		AGCACCAGCA					4680
		GGGCAGCTCT					4740.
		GGGCATGGGG GAATCCAAAC					4800 4860
35		TGACTTAACA					4920
		AAGCTTTCCC					4980
		TTTCCAAGTA					5040
	GTTTGCCCAA	ATCAACTGTA	AATGACACTT	GTGTAACGTA	TATATAGTGT	TTCATGAGGT	5100
40		TAGCAAATTA					5160
40		GTTTACTCTG					5220
		GAAGAGAGCA					5280
	AAGATTTATT	GTGCATTATT ATAGTCTTGT	TGAACCCTGT	CAATATCTTT	TIGAGTAATT	GTTTTGTTTC	5340 5400
		AAGATAAGTA					5460
45		AATACTGTGT					5520
		GCCACATGTT					5580
		GGTTTTTTTT					5640
		CGAAGCTTTT					5700
50		TAGATCACAG					5760
50		TAATGTTGCA					5820
		AAGTAGCAAC TGCACCCTAG					5880 5940
		TTCGTTATTT					3940
	01170111010		nicionecci	CIMCICOII	J.C.III.C.I.O	U	
55	Seq ID NO:	123 Protein	n sequence				
	Protein Ac	cession #: 1	BAA22956.2				
	1	11	21	31	41	51	
	1		1	1.		l	
60		ETRTKEEIIE					60
00		VTSDDDMTRN LPVVAKTSFE					120 180
		LGVQLAEDDG					240
		EKPIKOVSRS					300
<i>C</i> =	YEGNAFRGGF	RFNSTLVSRK	RVLERKRRYH	POTDGKGSIH	DQKGCPRKKP	PECGSEMRKA	360
65		SPSFTESQPI					420
		QKSQVGGKRF					480
		IYGKDKPYEC					540
	ETFRESPALN	EFQKMYGKEK QKTYNKEKLC	WAECKACGEI.	VEHSSSPKEH	QKIHTRGNPF	POVENCUTUS	600
70		TITRPLESDE					660 720
. •		PSKPKVMAES					780
		NEKGESSIYI					840
	KSVPGEGSGE	FKKDGEPSVP	SSNVREYQKA	RAKKKYIEHR	SNETSVIHSL	PFGEQTPRPR	900
75		ECFAHSSDLT					960
75		PROFFATSED					1020
		DPQKDDPDDK					1080
		DYTGEQLYEC RNPALAGSAI					1140 1200
		QTEERLFECA					1260
80		DCGKSFIHST					1320
	RIQGLNVEAA	EPEVEAAEPE	VEAAEPEVEA	ABPNGEAEGP	DGEAAEPIGE	AGQPNGBAEQ	1380
		AGIEDPEERA					1440
		SSTAFSEHLK		ANAFGECSGY	IERASTSTGG	ANQADEKYFK	1500
85	CDVCGQLFND	RLSLARHQNT	нТG				
05							

	Seq ID NO: Nucleic Aci Coding sequ	d Accession	#: NM_0071	96			
_	1	11	21	31	41	51	
5	1	I	1	1	1	1	
			CTCTAGTGCA				60
			CAGAATCGTG				120
			AGTAGGTGAC				180
10 ·			GOGGCCAAGA				240
10	CCTGGGCAGG		GCGGCCTTGT				300 360
			GTCCTTACAG				420
			CTACAGAATA				480
			TGCTACAACA				540
15			GACCAGGCAT				600
			CCTGGCCAGA				660
			CCTGACACTC				720
	AGAAGAAGTG	TGAGGATGCT	TACCCGGGGC	AGATCACAGA	TGGCATGGTC	TGTGCAGGCA	780
•	GCAGCAAAGG	GGCTGACACG	TGCCAGGGCG	ATTCTGGAGG	CCCCCTGGTG	TGTGATGGTG	840
20			TGGGGCTCAG				900
			TACCTGGACT			AGCAAGGGCT	960
	GATTCTAGGA	TAAGCACTAG	ATCTCCCTTA	ATAAACTCAC	AACTCTC		
	C TD 170	105 0					
25	• .	125 Protei: ession #: !	-	•			
23	1	11	21	31	41	51	
	î	î	ī	ĩ	ĩ	ĭ	
	MGRPRPRAAK	TWMFLLLLGG	AWAGHSRAQE	DKVLGGHECO	PHSOPWOAAL	FOGOOLLCGG	60
			VRLGDHSLQN				120
30						LNCAEVKIFP	180
	QKKCEDAYPG	QITDGMVCAG	SSKGADTCQG	DSGGPLVCDG	ALQGITSWGS	DPCGRSDKPG	240
	VYTNICRYLD	WIKKIIGSKG					
35		126 DNA se		701 1			
55		ence: 171.	n #: NM_014	/91.1			
	1	11	21	31	41	51	
	î	î	ī	1	i	ĭ	
	TTGGCGGGCG	GAAGCGGCCA	CAACCCGGCG	ATCGAAAAGA	TTCTTAGGAA	CGCCGTACCA	60
40			AGGCCCCTGT				120
	TCCGCCCCTC	AGGTTCTTTT	TCTAATTCCA	AATAAACTTG	CAAGAGGACT	ATGAAAGATT	180
						GGCTTTGCAA	240
			ATCCTTACTG				300
15			TTGCCCCGGA				360
45			CAACTCTACC				420
			GGAGGAGAGC				480
			GTTGTCTTCC				540
			AGGGACCTCA TTTGGTCTCT				600 660
50			AGTCTGGCTT				720
-			GATGTTTGGA				780
						ATTATGAGAG	840
						CAACAAATGC	900
						CCCTGGATCA	960
55	TGCAAGATTA	CAACTATCCT	GTTGAGTGGC	AAAGCAAGAA	TCCTTTTATT	CACCTCGATG	1020
						ATGGAGGATT	1080
						CTAGCCAAGA	1140
						CAAGCCAGTG	1200
60						ACCGCAAGTG	1260
00						TTATCAACAG	1320
						AATGGGGTGG	1380 1440
						TTTCCTGAGC	1500
						CCAAATCGTT	1560
65						AAAATACCAG	1620
						AGGCGGTGCC	1680
	GCTCAGTGGA	ATTGGATCTC	AACCAAGCAC	ATATGGAGGA	GACTCCAAAA	AGAAAGGGAG	1740
						CTCACCAGGA	1800
70						TATAATGTGA	1860
70						ATTCTTCCAA	1920
						CAGTCAGATT	1980
						CCCGATGTGG	2040 2100
						GATGAGTGTG	2160
75						TTCATTGGAA	2220
						TTAAACAAAA	2280
						CTGTCTTTTT	2340
	TAATCATGTG	GTTTTGTATA	TTAATAATTG	TTGACTTTCT	TAGATTCACT	TCCATATGTG	2400
00						ATAAAACCAT	2460
80	TTGTGAATAT	•					
	0						
		127 Protei	.n веquence NP_055606.1				
	1	11	21	31	41	51	
85	Ĩ	ī	ī.	ĭ	i -	1	
	•	•		•	. 21	0	

				ILTGEMVAIK			60
	LKNLRHQHIC	QLYHVLETAN PDI.KPENT.I.P	KIEMATEACE	GGELFDYIIS FGLCAKPKGN	QDRLSEEETR KDVHLOTCOG	VVFRQIVSAV SLAVAAPELT	120 180
-				DDNVMALYKK			240
5				VEWQSKNPFI			300
	MEDLISLWQY	DHLTATYLLL	LAKKARGKPV	RLRLSSFSCG SQFTKYWTES	QASATPFTDI	KSNNWSLEDV	360 420
				NOHKREILTT			480
10				NQAHMEETPK			540
10				PDQLLNEIMS			600
	QSDFGKVTMQ	FELEVCOLOR	PDVVGIKKQK	LKGDAWVYKR	PARDITISSEK	V	
		128 DNA sec					
15		d Accession ence: 169-1		Ineuce			
13	1	11	21	31	41	51	
	1	1	1	1	1]	
				GCTGCTATTG ACTGATTGAA			60 120
20				TGGGCATTTC			180
				GCCGATTCTG			240
				CTCTGCAGGA CTGATTTTTG			300 360
				GTGCCTCGCA			420
25	CTGCTGAATC	TGGCCATCTC	CAACCTTCTG	TTTCTGGTGA	CACTGCCCTT	CTGGGGCATC	480
				TİCTTGTGCA ATTAGCTGCA			540 600
				CTGAGGACCC			660
20	GCTACCATAG	TATGGGCTGT	GTCCCTGGCC	GTCTCCATCC	CTGATATGGT	CTTTGTACAG	720
30				TGCCACGCAG AACCTCCTAG			780 840
				TGTGTCTTGG			900
	CAGGGCCGGG	CTTTAAAAAT	AGCTGCAGCC	TTGGTGGTGG	CCTTCTTCGT	GCTATGGTTC	960
35				CTGTTGGACC			1020
33				CAGGTAACAG		GTACCTGAAG	1080 1140
	GCTTTCCTGG	CTGCCGTGCT	TGGATGGCAC	CTGGCACCTG	GCACTGCCCA	GGCCTCATTA	1200
				GCCCAAGAGG			1260
40				AACAAGGAGG AGATGGGAAC			1320 1380
	TCAAAGTGCT	CTCTCCAGGG	GCCTCAGTGA	CTGTGTTGCT	AAACCCAGTG	GTCAGTTCTC	1440
						TCTTCACTTG	1500
				TTGCTACAAT			1560 1620
45				TTCTGACAGG			1680
				CCGCTCACTG			1740
				TAGCCAGGAC TTTCTTTCTT			1800 1860
				GGACAACAAT			1920
50				TCCTGCCTCA			1980
				GACCTTGGGA		TGGGGTTTCA	2040 2100
	AAAGTGCTGG	GATTACAGGT	GTGAGCCACC	ATGCCTGGCC	CTAATTTTTG	TGTTTTTATT	2160
55				TGGAGAATTG			2220 2280
33				CCCATCTCAT			2340
	CAGATTACAA	CAAATTTAGT	TTAAAGGTCT	CAATTAGCGT	TATTGGCAAT	TCTAGAATCA	2400
						AGTGCTGCAA	2460 2520
60						GCAGAAAGAA ACTCTGTCAT	2580
	CCAGGCTGAA	GTCCAATCCC	ACAATCATGG	CTCACTGCAG	CCACCACCTC	CTGAGCTCAA	2640
				TAGGACTACA		ACCACACCTG TTGGACTGGA	2700 2760
						TTACAGGCGT	
65	GAGCCACTGC	ACAGGGCCAG	ATTCATCATT	TCAAAGTTAC	TTTCTATATG	CGGCCGGAAC	2880
						ACGGGGAACT GTCATGTTTG	
						ACTTAGTTTT	
70	GGTTTGAGGA	CATGGAACTT	TAATACGACA	GATTCCATTT	TGGTTTGGTC	TGGTCAGCTG	3120
70						CTTAACAAGC GGCTACACTC	
						AATACTCCTG	
	ACACATCCCC	CTGGGGATTC	CTCTTCCTGG	ATTGCTCTCC	TCTCAGCTGT	CTGCTTGGCT	3360
75						TATTTTTAAA	
. 5						TTGTGATGTT	
	CAGTGGCTAC	TGTCCCCACC	CACATTGTCC	CAGGTGAATT	CCACAAGGTA	GGGATCTTGG	3600
	TTAGGCTCAC	TGCTGTACCC	AACCCCCTAA	CACAGGGCCT	GGTGTGTAGG	TTTTCAGAAA GCTGGGGAAA	3660
80	AAGAACCTAA	GGCCCTCCAC	TCACCAGGGT	TCCACATTCT	CTGTAGTCCA	GCTGGGAAAT	3780
	GCTATTAAAA	GGACCATTCT	CGTAGCCTTG	ATGGTGGACC	CAGCATCTGG	CAATCAGGAG	3840
						CAGAAGGAGG TGGGACCTGC	
0.5	ACAATCAAGT	CCAAAATCTT	TGTCTGATGT	CAAGGCTAGG	GCTTTTGCAA	ATAGGATCCC	4020
85						ATTCCAACTT	
						_	

5	CTATGCCTTT CCTCACCCTT TGCCCTGTGC ACATTTCCCT GAAGTGCAAT TGAGATCTGG GTGAGTGAGC AGTCCCAATC	GTTTTACAAC TTTGAGAGGA GGTCACGGTG ATCACTAGAA AGCTACTCCT AGATCCCGAG	TGAATCCCAC GGTTGGGTGG ATTTTTTTAG CATGTGAGAA TCCTCCACCC GGCACTGTTT	TTTCTCTGG AGCATGGGAC GGGTGGGCAC GAGAGGCATG AAACTTCAGA GAGCCTCAGA	ACTCCACTGC ATGGGCCATT ATGACCTAGG AAACCGAAGC AGGTGAAGGA ATCAAAGCAC	TTGGTCACTC TACTGCCTTC TAGAGCCAAT TGAGAGGGTT GATAGTGCAT TTCTGAAGCT	4140 4200 4260 4320 4380 4440 4500
10	Seq ID NO: Protein Acc 1	ession #: N		31 	41	51 	
15	MAATASPOPL LSGNLLLLMV STLYTINFYS VFVQTHENPK RPAGOGRALK AFLHCCFSPI	LLRYVPRRRM GIFPISCMSL GVWNCHADFG IAAALVVAFF	VEIYLLNLAI DKYLBIVHAQ GHGTIWKLPL VLWFPYNLTL	SNLLFLVTLP PYHRLRTRAK RFQQNLLGFL FLHTLLDLQV	FWGISVAWHW SLLLATIVWA LPLLAMIFFY FGNCEVSQHL	VFGSFLCKMV VSLAVSIPDM SRIGCVLVRL DYALQVTESI	60 120 180 240 300 360
20	GMNDLGERQS Seq ID NO:	ENYPNKEDVG 130 DNA seq	nksa ruence				
	Nucleic Aci Coding sequ						
25			21	31	41	51	
	1	1	1	٦	1	1	
	AGGCGGACAA						60
	AGCCCGGGGC GCTGGCTCGC						120 180
30	GGCAGCTGTT						240
				GTCTGATTGC			300
	AGAATAAGTT						360
				GGGTCCTTAT			420
35				AGGTCTTCCT			480 540
55				TGTTGCGCCT			600
				GGGACTGCTC			660
				GTGATTTCCC			720
40				AGCATGCCTA			780
40				GGAAGGATTC			840
				GCCTTGTGTC			900 960
				ACGTCTGCAG TGACATCTAC			1020
				CCTTGCCTCC			1080
45				TGAGGGTCCT			1140
				GTGATGAGTG			1200
				TCCCTTCTAG			1260
				CCCAGCCACG ACCTTTCTTC			1320 1380
50				TCAGGCAGTG			1440
				CCTGGGCCGC			1500
	TATTTT			•			
	Sec ID NO.	131 Protein	Semience				
55	-	ession #: 1	-				
	1	11	21	31	41	51	
	1	i	I _	1	1	<u> </u>	
				TSHPYQAALY			60
60				RAVIHPDYDA PPDTIQCAYI			120 180
• •				VEWGNIPCGS			240
	IQAK	•					
	0 TD 1/0	120 000					
65		132 DNA sec	ı #: WA0380. İneuce	71 1			
00		ence: 11					
	1	11	21	31	41	51	
	1	1	1		1	1	
70				TCCGAGAGGC			60
70						CCCGTGCAAA CGCCGACCCG	120 180
						CGAGCTGCAC	240
						TCAGGGTGCG	
~~						CACGGCGGGT	360
75						ACGGCCGGAC	
						CACGCTCAAG	
						GAACGGGGCG CGTCACGCAC	
						GGGTGGTGGC	
80						GGACGAGGAA	
-						CGCGCTGCTC	
						AGCTGCCGCT	840
						GCACCCGGAA	
85						CGACTCGGAG	
0,5	OMOGGGC 1GC	. ORANGO CAN		ACCOUNTCA		CTACCAGCTG	1020

```
GAGGAACTGG AGCGGGCCTT CCAGAAGACG CACTACCCGG ACGTCTTCAC CAGGGAGGAA 1080
CTGGCCATGA GGCTGGACTT GACCGAGGCC CGAGTCCAGG TCTGGTTCCA GAACCGTCGG 1140
         GCCAAGTGGC GCAAGCGGGA GAAGGCAGGC GCGCAGACCC ACCCCCCTGG GCTGCCCTTC
         CCGGGGCCGC TCTCCGCCAC CCACCCGCTC AGCCCCTACC TGGACGCCAG CCCCTTCCCT CCGCACCACC CGGCGCTGGA CTCCGGCTTGG ACTGCCGCTG CCGCCGCCGC CGCCGCCGCC TCCCGGACCC TACCTCCGCC TCCGGGCTCG GCCAGCCTG CGCCAGCCGG GGCGCCGCTG
                                                                                                  1260
                                                                                                  1320
         GGCCTGAGCA CTTTCCTCGG AGCGGCAGTG TTCCGACACC CAGCTTTCAT CAGCCCGGCA
         TTCGGCAGGC TCTTTTCCAC AATGGCCCCC CTGACCAGCG CGTCGACCGC GGCCGCGCTC CTGAGACAGC CCACACCCGC CGTGGAGGGC GCAGTGGCAT CGGGCGCCCCT GGCCGACCCG
                                                                                                  1500
                                                                                                  1560
10
         GCCACGGCGG CCGCAGACAG ACGCGCCTCT AGCATAGCCG CGCTGAGGCT CAAGGCCAAG
         GAGCACGCGG CGCAGCTCAC GCAGCTCAAC ATCCTGCCGG GCACCAGCAC GGGCAAGGAG
        GTGTGC
         Seq ID NO: 133 Protein sequence
15
         Protein Accession #: AAK93901.1
                       11
                                      21
                                                     31
         MSNQYQEEGC SERPECKSKS PTLLSSYCID SILGRRSPCK MRLLGAAQSL PAPLTSRADP
         EKAVQGSPKS SSAPFEAELH LPPKLRRLYG PGGGRLLQGA AAAAAAAAA AAAAATATAG
                                                                                                    120
20
         PRGEAPPPPP PTARPGERPD GAGAAAAAA AAAAAWDTLK ISQAPQVSIS RSKSYRENGA
PFVPPPPALD ELGGPGGVTH PEERLGVAGG PGSAPAAGGG TGTEDDEEEL LEDEEDEDEE
                                                                                                    180
                                                                                                    240
         BELLEDDEEE LLEDDARALL KEPRRCPVAA TGAVAAAAAA AVATEGGELS PKEELLLHPB
         DAEGKDGEDS VCLSAGSDSE EGLLKRKQRR YRTTFTSYQL EBLERAFQKT HYPDVFTREB
LAMRLDLTEA RVQVWFQNRR AKWRKREKAG AQTHPPGLPF PGPLSATHPL SPYLDASPFP
                                                                                                    360
                                                                                                    420
25
         PHHPALDSAW TAAAAAAAA FPSLPPPPGS ASLPPSGAPL GLSTFLGAAV FRHPAPISPA
         FGRLFSTMAP LTSASTAAAL LRQPTPAVEG ÄVASGALADP ATAAADRRAS SIAALRLKAK
         EHAAOLTOLN ILPGTSTGKE VC
         Seq ID NO: 134 DNA sequence
30
         Nucleic Acid Accession #: CAT cluster
                      11
                                 21
|
                                                                    41
                                                                                   51
         TTTTTTTTT TTTTTTAAA GCAGATCATC TCTCCAAATC ATCACTTCTA TCAAGCCTAT
         TGCTTGAGCA GTGTTATAGC ACTCAGCCCT CAGGGCAAAG ATAAGTCTTC ACCATTGTCA
                                                                                                    120
35
         CACGTAGCAC ACACATATTC AGCCATATCA TGCTGAATGG GAATACAGGA CTTTGTAGAA
                                                                                                    180
         ACAGAACTGA TICCTGCAGA ATATCCTGAGA ATATCTTATCA AGCTGTTAAA GGAGACATCA GTCTTTTGTC TGTATTGCCC TTGACACCTC CTCAAGGAAA GTATCTAGAA ATTCTTTGTC
                                                                                                    240
                                                                                                    300
         TTCTGAAGAA CCCTCAGACC TCTTAGGTCT AATGTAGGTT AAGTGCCCTG CAGATCTCCC
         TAGAATAGAA AAGCACCTTG AAAACTGTAG TCTGACTTAA TAGACACAAA TATAATGAAA
GCACTAATTC ATAAGATCCT GTTATTTGAA GGAAAAAGCA GCAAAAGGCA CAAGCTTCAG
                                                                                                    420
40
                                                                                                    480
         ATATTGGTCT TGCACAGGAA AAAGCTGGAA TTCTACC
         Seq ID NO: 135 DNA sequence
         Nucleic Acid Accession #: NM_006799
45
         Coding sequence: 19..963
                       11
                                     21
         CGGGCTGGAC TCAGGAAGCC GGAGTCGCAG GAGGCGGCGC CGTTATCAGG ACCATGCGGC
50
          CGACGGGTCA TCACGTCGCG CATCGTGGGT GGAGAGGACG CCGAACTCGG GCGTTGGCCG
         TGGCAGGGGA GCCTGCGCCT GTGGGATTCC CACGTATGCG GAGTGAGCCT GCTCAGCCAC CGCTGGGCAC TCACGGCGGC GCACTGCTTT GAAACCTATA GTGACCTTAG TGATCCCTCC GGGTGGATGG TCCAGTTTGG CCAGCTGACT TCCATGCCAT CCTTCTGGAG CCTGCAGGCC
                                                                                                    240
                                                                                                    300
          TACTACACCC GTTACTTCGT ATCGAATATC TATCTGAGCC CTCGCTACCT GGGGAATTCA
55
         CCCTATGACA TTGCCTTGGT GAAGCTGTCT GCACCTGTCA CCTACACTAA ACACATCCAG
CCCATCTGTC TCCAGGCCTC CACATTTGAG TTTGAGAACC GGACAGACTG CTGGGTGACT
GGCTGGGGGT ACATCAAAGA GGATGAGGCA CTGCCATCTC CCCACACCCT CCAGGAAGTT
                                                                                                    480
                                                                                                    540
          CAGGTCGCCA TCATAAACAA CTCTATGTGC AACCACCTCT TCCTCAAGTA CAGTTTCCGC
          AAGGACATCT TTGGAGACAT GGTTTGTGCT GGCAATGCCC AAGGCGGGAA GGATGCCTGC
TTCGGTGACT CAGGTGGACC CTTGGCCTGT AACAAGAATG GACTGTGGTA TCAGATTGGA
                                                                                                    720
60
                                                                                                     780
          GTOSTGAGCT GGGGAGTGGG CTGTGGTCGG CCCAATCGGC CCGGTGTCTA CACCAATATC
          AGCCACCACT TTGAGTGGAT CCAGAAGCTG ATGGCCCAGA GTGGCATGTC CCAGCCAGAC CCCTCCTGGC CGCTACTCTT TTTCCCTCTT CTCTGGGCTC TCCCACTCCT GGGGCCGGTC TGAGCCTACC TGAGCCCATG CAGCCTGGGG CCACTGCCAA GTCAGGCCCT GGTTCTCTTC
                                                                                                    900
                                                                                                    960
65
          TGTCTTGTTT GGTAATAAAC ACATTCCAGT TGATGCCTTG CAGGGCATTC TTCAAAA
          Seg ID NO: 136 Protein sequence
          Protein Accession #: NP 006790
70
          MGARGALLLA LLLARAGLRK PESQEAAPLS GPCGRRVITS RIVGGEDAEL GRWPWQGSLR
LWDSHVCGVS LLSHRWALTA AHCFETYSDL SDPSGWMVQF GQLTSMPSFW SLQAYYTRYP
                                                                                                      60
                                                                                                    120
          VSNIYLSPRY LGNSPYDIAL VKLSAPVTYT KHIQPICLQA STFEFENRTD CWVTGWGYIK
          EDEALPSPHT LQEVQVAIIN NSMCNHLFLK YSFRKDIFGD MVCAGNAQGG KDACFGDSGG
PLACNKNGLW YQIGVVSWGV GCGRPNRPGV YTNISHHFEW IQKLMAQSGM SQPDPSWPLL
                                                                                                    240
75
          PFPLLWALPL LGPV
          Sed ID NO: 137 DNA sequence
          Nucleic Acid Accession #: Eos sequence
80
          Coding sequence: 1..939
                        11
                                     21
                                                      31
                                                                                   51
                                                                     41
          ATGGGCGCGC GCGGGGGCT GCTGCTGCCG CTGCTGCTGG CTCGGGCTGG ACTCAGGAAG
          CCGGAGTCGC AGGAGGCGGC GCCCTTATCA GGACCATGCG GCCGACGGGT CATCACGTCG
85
          CGCATCGTGG GTGGAGAGGA CGCCGAACTC GGGCGTTGGC CGTGGCAGGG GAGCCTGCGC
```

```
CTGTGGGATT CCCACGTATG CGGAGTGAGC CTGCTCAGCC ACCGCTGGGC ACTCACGGCG
        GOGCACTGCT TTGAAACTGA CCTTAGTGAT CCCTCCGGGT GGATGGTCCA GTTTGGCCAG
        CTGACTICCA TGCCATCCTT CTGGAGCCTG CAGGCCTACT ACACCCGTTA CTTCGTATCG
                                                                                          360
        AATATCTATC TGAGCCCTCG CTACCTGGGG AATTCACCCT ATGACATTGC CTTGGTGAAG
                                                                                          420
        CIGICIGCAC CIGICACCIA CACTAAACAC ATCCAGCCCA ICIGICICCA GGCCTCCACA
                                                                                          480
        TTTGAGTTTG AGAACCGGAC AGACTGCTGG GTGACTGGCT GGGGGTACAT CAAAGAGGAT
GAGGCACTGC CATCTCCCCA CACCCTCCAG GAAGTTCAGG TCGCCATCAT AAACAACTCT
                                                                                          600
        ATGTGCAACC ACCTCTTCCT CAAGTACAGT TTCCGCAAGG ACATCTTTGG AGACATGGTT
                                                                                          660
        TGTGCTGGCA ATGCCCAAGG CGGGAAGGAT GCCTGCTTCG GTGACTCAGG TGGACCCTTG
                                                                                          720
10
        GCCTGTAACA AGAATGGACT GTGGTATCAG ATTGGAGTCG TGAGCTGGGG AGTGGGCTGT
GGTCGGCCCA ATCGGCCCGG TGTCTACACC AATATCAGCC ACCACTTTGA GTGGATCCAG
AAGCTGATGG CCCAGAGTGG CATGTCCCAG CCAGACCCCT CCTGGCCACT ACTCTTTTTC
                                                                                          780
                                                                                          840
        CCTCTTCTCT GGGCTCTCCC ACTCCTGGGG CCGGTCTGA
15
        Seg ID NO: 138 Protein seguence
         Protein Accession #: Eos sequence
                     11
                                  21
        MGARGALLLA LLLARAGLRK PESQEAAPLS GPOGRRVITS RIVGGEDAEL GRWPWQGSLR
                                                                                           60
20
        LWDSHVCGVS LLSHRWALTA AHCFETDLSD PSGWMVQFGQ LTSMPSFWSL QAYYTRYFVS
                                                                                          120
        NIYLSPRYLG NSPYDIALVK LSAPVTYTKH IQPICLQAST FEFENRTDCW VTGWGYIKED
                                                                                          180
        EALPSPHILO EVOVAIINNS MCNHLFLKYS FRKDIFGDMV CAGNAGGKD ACFGDSGGPL
                                                                                          240
        ACNKNGLWYQ IGVVSWGVGC GRPNRPGVYT NISHHFEWIQ KLMAQSGMSQ PDPSWPLLFF
                                                                                          300
25
        Seq ID NO: 139 DNA sequence
        Nucleic Acid Accession #: NM_014344
        Coding sequence: 131..1444
                     11
                                  21
30
        GOGGOOGGA TGGGGCOGAA GOGCOCGAAG COCOGGAGCO CACAAACTGC CGGGCCOGCC
                                                                                           60
        TCGCCGCCGG GACCCGGGTG CCTGGGCTCG GCTTGAAGCG GCGGCGGCGC ACCGGCACAG
                                                                                          120
        CCGCGGGAGC ATGGGCAGGA GGATGCGGGG CGCCGCCGCC ACCGCGGGC TCTGGCTGCT
        GGCGCTGGGC TCGCTGCTGG CGCTGTGGGG AGGGCTCCTG CCGCCGCGGA CCGAGCTGCC
                                                                                          240
35
        CGCCTCCCGG CCGCCCGAAG ACCGACTCCC ACGGCGCCCG GCCCGGAGCG GCGGCCCCGC
                                                                                          300
        GCCCGCGCCT CGCTTCCCTC TGCCCCCGCC CCTGGCGTGG GACGCCCGCG GCGGCTCCCT
                                                                                          360
        GAAAACTTTC CGGGCGCTGC TCACCCTGGC GGCCGGCGG GACGGCCCGC CCCGGCAGTC CCGGAGCGAG CCCAGGTGGC ACGTGTCAGC CAGGCAGCCC CGGCCGGAGG AGAGCGCCGC GGTGCACGGG GGCGTCTTCT GGAGCCGCGG CCTGGAGGAG CAGGTGCCCC CGGGCTTTTC
                                                                                          480
                                                                                          540
40
        GGAGGCCCAG GCGGCGCGT GGCTGGAGGC GGCTCGCGGC GCCCGGATGG TGGCCCTGGA
                                                                                          600
        GCGCGGGGGT TGCGGGCGCA GCTCCAACCG ACTGGCCCGT TTTGCCGACG GCACCCGCGC
        CTGCGTGCGC TACGGCATCA ACCCGGAGCA GATTCAGGGC GAGGCCCTGT CTTACTATCT GGCGCGCCTG CTGGGCCTCC AGCGCCACGT GCCGCCGCTG GCACTGGCTC GGGTGGAGGC
                                                                                          720
                                                                                          780
        TCGGGGCGCG CAGTGGGCGC AGGTGCAGGA GGAGCTGCGC GCTGCGCACT GGACCGAGGG
                                                                                          840
45
        CAGCGTGGTG AGCCTGACAC GCTGGCTGCC CAACCTCACG GACGTGGTGG TGCCCGCGCC
        CTGGCGCTCG GAGGACGGCC GTCTGCGCCC CCTCCGGGAT GCCGGGGGTG AGCTGGCCAA
CCTCAGCCAG GCGGAGCTGG TGGACCTAGT ACAATGGACC GACTTAATCC TTTTCGACTA
                                                                                          960
                                                                                         1020
         CCTGACGGCC AACTTCGACC GGCTCGTAAG CAACCTCTTC AGCCTGCAGT GGGACCCGCG
                                                                                         1080
        CGTCATGCAG CGTGCCACCA GCAACCTGCA CCGCGGTCCG GGCGGGGCGC TGGTCTTTCT GGACAATGAG GCGGCTTGG TGCACGGCTA CCGGGTAGCA GGCATGTGGG ACAAGTATAA
                                                                                         1140
50
                                                                                         1200
        CGAGCCGCTG TTGCAGTCAG TGTGCGTGTT CCGCGAGCGG ACCGCGCGCG GCGTCCTGGA
                                                                                         1260
        GCTGCACCGC GGACAGGACG CCGCGGCCCG GCTGCTGCGC CTCTACCGGC GCCACGAGCC
        TEGETTECCE GAGETGGCG CECTTGCAGA CECECACGET CAGETGCTAC AGEGCCGCEC CGAETTECTE GECAAGCACA TITTGCACTG TAAGGCCAAG TACGGCCGCE GGTETGGGAC
                                                                                         1380
                                                                                         1440
55
        TTAGTGTCAC CGGGAGGAAA AGAGAGAGAT CTGGGGCTGG GGTATGGATG ATGGGGGGAA
                                                                                         1500
        GGGCGGTCGC CTCTGCCACT GTCAGGGACC AGCCGGCCAA CGCCCACCCG CAAAGGTGTC
        TAAAAACTTC AGCTTTTCAC CCACCTGCCC CTTTCTTTCA ATCCCACGCT GTTTCCTTTC
                                                                                         1620
        AAAGTTCTGG GAGGACGAAC TCACCGAGGC GAGAAGTGTA ACATTCTCTC CACCCAGCTT
                                                                                         1680
        ATAAAAGGAT TCTTTACTGT GCCAGCACGG GGATTGGATC CGAAGAAACT GGCTACTGGG
                                                                                         1740
60
        GTTTGGCCCC CGAGTGGCCG TCCCTGTGGG AGATGCACCC CATTCTTGGG CCCCCCTCAT
                                                                                         1800
        TCCCTTTCCG AAAAAGGAAA ACTTGCGTTT GAGCCGTTGA GCTAATTCTG CAATTTTCTA
                                                                                         1860
        CCAAACAGAG CGCTGGTGGC CCCGGAGCAG GGCTGTGACA TTGGCTGGTG GAGCCCCTTC
CTGTGTTCTC CCTTTGTTCC AGCGCGCGCA TGGTGAGATC ACTGTTCCAA GCAGGGGGAC
GGCTCGCGAT AGGACAAAGA GAGCAGGACC TCCAGACTCT GGGGAGCCCT GCAGACCTTG
                                                                                         1920
                                                                                         1980
65
        ACAATTIGCC TGACTCATTC CTGACCTCTT GTCATTTTGG CCTGAAGGCT ACAAATTCAG
                                                                                         2100
        GGTCAGCTGT ATGCACTAAG TCAAATAATG AATTTCTTCC TCCCTCTCGC AACCGACCAA
                                                                                         2160
        AATTTTGACA ACGATGATGT TCACCAGAAG GAAAAAAAA TCAGTTTTAT GCACTTTATT
                                                                                         2220
         TTGTTTTGAT TTTCATTTTT TATTAAGAAA AAATTTTATT TTACAGAATT TACCTTCTCT
        GTATATATGT GCATAAAGTG TGGTGTAAAT ATACTAAACA AACTTATATT TCAATAAAAG 2340
70
        GGAGTTTAAA ATTTAAAAAA AAAAAAA
         Seq ID NO: 140 Protein sequence
        Protein Accession #: NP_055159
                     11
                                 21
                                                31
                                                                          51
75
         MGRRMRGAAA TAGLWLLALG SLLALWGGLL PPRTELPASR PPEDRLPRRP ARSGGPAPAP
        RFFLPPPLAW DARGGSLKTF RALLTLAAGA DGPPRQSRSE PRWHYSARQP RPEESAAVHG
GVFWSRGLEE QVPPGPSEAQ AAAWLEAARG ARMVALERGG CGRSSNRLAR FADGTRACVR
                                                                                          120
                                                                                          180
         YGINPEQIQG EALSYYLARL LGLQRHVPPL ALARVEARGA QWAQVQEBLR AAHWTEGSVV
                                                                                          240
80
         SLTRWLPNLT DVVVPAPWRS EDGRLRPLRD AGGELANLSQ ARLVDLVQWT DLILFDYLTA
        NFDRLVSNLF SLQWDPRVMQ RATSNLHRGP GGALVPLDNE AGLVHGYRVA GMWDKYNEPL
        LQSVCVFRER TARRVLELHR GODAAARLLR LYRRHEPRFP ELAALADPHA OLLORRLDPL
         AKHILHCKAK YGRRSGT
```

85

Seg ID NO: 141 DNA sequence

	Nucleic Aci	d Accession	#: Eos seq	puence			
	Coding sequ	ence: 115	74 21	31	41	51	
_	Ī	i	1	1	1	1	
5				GCTGTCTGCA ATGGCTGTAT			60 120
				GCCTCTTCTG			180
				CCCACCCCCC			240 300
10				TGTAGATACC			360
	TTCCAAGGGA	AGAAGGTGGG	CTGCAAGAGC	ACCAAGCACC	AGAATCACAT	ATGGGACTAT	420
				CCAGACTATC			480 540
1.5				TTAAGTAATT			
15	Sea ID NO:	142 Proteir	sequence				
		ession #: E			•		
	1	11	21 1	31	41	51 1	
20	MPAPVPLLSA	AQPSPSCMGK	SSTDFCPWLY	VRTDRASNDP	AGRYDRKPLL	SQDSPPDNDP	60
				NOKPLOWPEA			120
	ENKSLFG	RITIGITIKE	KDYCAEDQI'I	ESWREEGPPV	GERLAVIGIF	IIVVPVILIV	180
25				•			
23		143 DNA sec d Accession		.8 4 .6			
	Coding sequ	ience: 393	365				
	1	11	21 1	31	41	51 I	
30	GATTCTACCA	TCAGAAAAGA	GGCCAAACTT	CTATCATCAT	GGTGGATGTG	AAGTGTCTGA	60
				AGCTTGGATT			120
				TAGTACAGTT TGGATGGAGC			180 240
25				AATCACATAT			300
35				GAGCTGGAGA			360
				CATTGTGGTG GGAGCAAAGC			420 480
	CTGCTTCAGG	AAAGAACCAA	AACACTACCC	TGAAGGGCCA	GCCTAGCCTG	CAGCCCTCCC	540
40				CTCTCACAGA GTGTTAAGAG			600 660
40				TTCCATATTT			860
	C TD MO	144 D					
		144 Protein cession #: 2					
45				31	41	51	
45	Protein Acc	cession #: 2 11 	KP_050184.1	31	1	1	60
45	Protein Acc	ession #: 2 11 KLQNQLEKLG	KP_050184.1 21 FSPGPILPST	1	 LLVSPPCAPP	1	60
45	Protein Acc 1 MVDVKCLSDC AQDSDDSEGG	ession #: 2 11 KLQNQLEKLG	KP_050184.1 21 FSPGPILPST MGLSPKRETT	KKTAEKKTAÖ 	 LLVSPPCAPP	1	60
	Protein Acc 1 MVDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac:	cession #: 2 11	KP_050184.1 21 	 RKLYEKKLVQ ARKTRLSRAG	 LLVSPPCAPP	1	60
	Protein Acc 1 MVDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequ	cession #: 2 11 	KP_050184.1 21 FSPGPILPST MGLSPKRETT Quence n #: NM_002:	RKLYEKKLVQ ARKTRLSRAG	LLVSPPCAPP EKKVSQWA	VMNGPRELDG	60
50	Protein Acc 1 MVDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac:	cession #: 2 11	KP_050184.1 21 	 RKLYEKKLVQ ARKTRLSRAG	 LLVSPPCAPP	1	60
	Protein Acci 1 	cession #: 2 11	KP_050184.1 21 i FSPGPILPST MGLSPKRETT Quence n #: NM_002: 3229 21 CCAGCTCCGC	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC	LLVSPPCAPP EKKVSQWA . 41 GCTCTCGCCG	 VMNGPRELDG 51 GGACCCCGCT	60
50	Protein Acci 1 	cession #: 2 11	XP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGGCCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG CGCGCCCCAC	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT	
50	Protein Acci 1 MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequility of the coding	cession #: 2 11	KP_050184.1 21 FSPGPILPST MGLSPKRETT Quence n #: NM_002: 3229 21 CCAGCTCCGC CCGGCCCCAG AGGAGGCCGG	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCC CGGCTGCGTC GAACCCGGGC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG CGCGCCCAC GTCTCCGCCT AGCCTCTTCG	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT	60 120 180 240
50	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequ AGGTGAACAG TCCGCTGGCA CTGTGCGCTC TACCCGATTC CGCCTCCAT	cession #: 2 11	XP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGTC GAACCCGGGC GCGCTACCTG	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG CTCCTGGCT CTCCTGGCT	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCCG	60 120 180 240 300
50	Protein Acc 1 MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequing 1 AGGTGAACAG TCCGGTGGCA CTGTGCGCTC TACCCGATTC CGCCCTCCAT GGAGCTCGCT	cession #: 2 11	XP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCC CGGCTGCGTC GAACCCGGGC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCTT AGCCTCTTCG CTCCTGGCTG GCTCTTGGTACC	VMNGPRELDG 51 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT	60 120 180 240
50	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequ AGGTGAACAG TCCGCTGGCA TTCCGCTGCCAT GGAGCTGGCT CACTGCCAT TCACTGCCAC TCACATTATT	cession #: 2 11	XP_050184.1 21 FSPGPILPST MGLSPKRETT Quence n #: NM_002: 3229 21 CCAGCTCCGC CCGGCCCCAG AGGAGGCCGA AGCGCAGCA GCTACACCAA GGGCGGGAGGA GGGGGGGGGG	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGACTGCGT CGAACCCGGC GCGCTACCTG GCGCACTGGT GAACATCACA GACTGTGGCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG CTCCTGGCTG GCTGTAAAATG GTGAAAAATG AGCCAGGGCC	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCA CTGCAGGCAG CTGCAGGCAG	60 120 180 240 300 360 420 480
50 55 60	Protein Acc 1 MVDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequ 1 AGGTGAACAG TCCGGCTC TACCCGATTC CGCCCTCCAT GGAGCTCGCT CACTGCCAC TCACATTATT AGTTCTGGTC	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGCT GAACCCGGGC GCGCTACCTG CCGGACTGCT CCGGACTGCT GAACATCACA GACTGTGGCC GGTGCTGTGG	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG GCTGTTACC GTGAAAAATG AGCCAGGGCC TCAGGGTCAG	VMNGPRELDG 51 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA ACGCGAGCAG AAGACCAGCG	60 120 180 240 300 420 480 540
50	Protein Acci 1 MVDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequi AGGTGAACAG TCCGCTGGCT TACCCGATTC CGCCTCCAT GGAGCTCGCT CACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACTGCCAC TCACATTATT AGTTCTGGTC GCGCATGGTG CTGCCAGACC	cession #: 2 11	KP_050184.1 21 FSPGPILPST MGLSPKRETT Quence n #: NM_002: 3229 21 CCAGCTCCGC CCGGCCCCAG AGGAGGCCGG AGGAGGCCGG AGCGCAGCA GCTACACCAA GTGAGCGGAG GCTACACCAA GCTGGAGG AGCTGGAGA AGCTGGAGG AGCTGGAGA AGCTGCGAG AGGTGGAGA AGGTGCGAG	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGTC GAACCCGGGC GCGCTACCTG GACCTGGT GAACACGGC GGTGCTTGTG GACTGTGGCC GGTGCTTGTGG CAATGACCTA TAGCAACACA	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG CGCGCCCCAC GTCTCCGCCT CTCTCGCCT GCTCTTTG CTCTGGCTG GCTGTATAC CTCAGGGTCAG GAGAGGCCC TCAGGGTCAG GAGCTGACT GAGGTCAG GAGCTGACT GACTACCTGG	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTCGA GCTACTCCGGT GTGCCCACT ACCCTGGCCA CTGCAGGCA ACGACCAGCA ACGACCAGCA ACGACCAGCA ACGACGCAA AGACCAGCA AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACCAC AGACC AGACCAC	60 120 180 240 300 420 480 540 600
50 55 60	Protein Acci	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCCCC GGACCGGCTGCTG GAACACCAGG GACATCAGT GAACATCAC GATGTTGGC GATGTTGGC CATGTTGGC CATGTTGGC CATGCACACAC CCAGAACACT CCCAGAACACT	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG GCTGAAAATG GCCAGGGCC TCAGGGTCA GAGCACGACT GAGCACTGGACT GACTACCTGG GTGTACCTGG GTGTACTTCG	S1 GGACCCGGT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCGA AGACCAGCG CCAGTGATGA AGACGGGCAT GCGCCCCGG	60 120 180 240 300 420 480 540 600 720
50 55 60	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequi AGGTGAACAG TCCGGTGGCA CGGCCTCCAT GGAGCTCGCT CACTGCTAC TCACATTATT AGTTCTGGTC GCGCATGCT GCGCAGCCT CTGCCAGCT CTGCCAGCT GCGCAGCT GCGCAGCT TCACATATATT TAGTTCTGGTC TGCCAGCT TGCCAGCT TGCCAGCT TGCCTACAAAC	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGTC GAACCCGGGC GCGCTACCTG GCGCTACCTG GCGGACTGGT CCGGACTGGT GAACATCACA GACTGTGGCC CGGTCTGTGG CAATGACCTA TAGCAACACT GATTCAGCGC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCGCCCAC GTCTCGGCT AGCCTCTTCG GCTGTTACC GTGAAAAATG AGCAGGGCC TCAGGGTCA GACTACCTGG GACTACCTGG GACTACCTGG AAGAATTCTCG AAGGAGTCGA	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA CTGCAGGCAG AAGACCAGCG CCAGTGATGA AGACCAGCG ACTATCTGA AGACCGGCAT AGACCAGCAG AGACCAGCAG AGACCAGCAG ACTATCTGA	60 120 180 240 300 420 480 540 600 720
50 55 60 65	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequility AGGTGAACAG TCCGCTGGCA TACCCGATTC CGCCTCCAT GGAGCTCGCT CACTGCCAC TCACTATATT AGTTCTGGTC CGCCAGATC CGCATGGTG CTGCAGACC GTGCAGACC GTGCCAGACC GTGCCAGACC GTGCCAGACC GTATAGTTAC AGGCAGCTTC	cession #: 2 11	KP_050184.1 21 FSPGPILPST MGLSPKRETT Quence n #: NM_002: 1229 21 CCAGCTCCGC CCGGCCCCAG AGCAGCCCCAG GCTACACCAA GCTACACCAA GCTACACCAA ACGTGCGGAG AGCTGCAGG AGCTGCAGG AGCTGCAGG AGCTTGCAGG AGCTTGCAGG AGGATGCAG AGGACTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC ACAGCTACAC CCAAAAACAT	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCTC CGGACTGGT GAACATCACA GACTGTGGCC GGTGCTGTG CAACATCACA GACTGTGGCC AACATCACA CCAGAACACT CACATCATTCACACA CCAGAACACT CACATTGTG	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT GCTCTGGCTG GCTGTAAAATG GCTGAGACC GAGGCCC CAGGGCCC AGCAGGCC AGCAGGCC AGCAGGCC AGCAGGCC AAGCAGTGGACT AAGCAGTGGACA ACAGGTGACA ACAGGTGCC	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCACT ACCCTGGCCA CTGCCACT ACCCTGGCCA CAGGCAG AGACCAGCG CAGTGATGA AGACGAGCA CCAGTGATGA GCGCCCCCGG ACTTATCTGA CGATGCAGGT CACGGCACCG CACGGCACCG CACGGCACCG	60 120 240 300 360 480 540 660 720 780 840 900
50 55 60	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequit AGGTGAACAG TCCGCTGCT TACCCGATTC CGCCCTCCAT GGAGCTCGCT CACTGCTGCT CACTGCTGCT CCCATGCTGCT CCCATGCTGCT CCCATGCTC TCACATTATT AGTTCTGGTC GGCAGACC GTGCCAGCTG TGCCTACAAC GTGCTACAAC GTATAGTTAC AGGCAGCTTC ACATTATGGGC	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCCT GAACCCGGGC GCGCTACCTG CCGGACTGCT CCGGACTGCT GAACATCACA GACTGTGGC CATGCTGGC CAATGACCTA TAGCAACAC GATTCAGGC GATTCAGGC AAACCTCTAT CACCATTGT CGGGGCAGGC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCGCCCAC GTCTCTCGGCT AGCCTCTTCG GCTGTTACC GTGAAAAATG AGCCTGGACT GACTACCTG GACTACCTG GACTACCTG AAGAGTCAC ATGGGTACA ATGGGTACA ATGGGTACA ATGGGTACA GACTACCTGG GAGACCTGC GGGAGACCTGC GGGAGACCTGC	VMNGPRELDG 51 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT ACCCTGGCCA ACCCTGGCCA ACGCCAC ACGCAGCA AGACCAGCG CCAGTGATGA AGACCGCCA CCAGTGATGA AGACCGCCA CCAGTGATGA AGACCGCCCCG GCAGGACGCA CGAGGACGCA CGAGGACGCA CGAGGACGCA GGAGGACGCA GGAGGACGCA GGAGGACGCA	60 120 180 240 300 360 420 540 600 600 720 780 840 900
50 55 60 65	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Accoding sequitary accorded a recorded	dession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGC GAACCCGGGC GAACCCGGGC GAACATCACA GACTGTGGC GGTGCTGTG GAACATCACA CCAGAACACT CAGAACACT CAGAACACT CAGAACACT GATTCAGCGG GATTCAGGGC GATTCAGGGC TTTTGGCAGC TTTTGGCAGC GGGGCCCCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT GCTGTGTAC CTCTGGTG GCTGTGTACC CTGGAAAATG AGCCAGGCC GAGGGCC CAGGGTCAG GAGTGGACT AAGGGTCAG ATTGGGTACA ACAGGTGACC GGAGACTGC GCAATTGCC GCAATTGCC GCAATTGCC TACTACTTCG	VMNGPRELDG 51 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCACT ACCCTGGCCA CTGCAGGCAG AGACCAGCA AGACCGGCA AGACCAGCA AGACGAGAC ACTTATCTGA CAATGCAGGT CACGCACCC GGAGGAGGCA AGGCAGACCT AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA AGACGAAACA	60 120 240 300 360 420 480 540 660 720 780 900 900 900 1080
50 55 60 65	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequit AGGTGAACAG TCCGCGTCT TACCCGATTC CGCCCTCCAT GGAGCTCGCT CACTGCCAC TCACATTATT AGTTCTGGTC GCGCATGGTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG CGCCTGCAGTG CGTGCCAGCTG CGTGCCAGCTG GGACACTGTACACAC GTATAGTTAC ACATATGGGC GGTGCTGGAG GGACAATGGT GGAACAATGGGC GGACAATGGGA GGAACAATGGGC GGACAATGGGG GGACAATGGGG GGACAATGGGG GGACAATGGGG	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCCCC GGACCGGCTGCTG GAACACTGGT GAACATCACA AGACTGTGGC GGTGCTGTGG CAATGACTA TAGCAACAC GATTCAGGC AAACCTCTAT CACCATTGTG GGAGGCAGGC TTTTGGCAGG GGGCCCCC GGACCCCC GAACCACGC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG CTCAGAAAATG AGCCAGGCC TCAGGGTCAC GAGCACAC GACTACCTG AACACTG AATGGGTCA ACAGGTCGAC ATGGGTCGC CGAGACCTGC CCAATGCCC GCAATTGCCC TACTACTTCG GAACCTCCT GGAACCTCCT GGAACCTCCT	S1 GGACCCGGT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCAG AAGACCAGCG CAGTGATGA AGACGGGATGATGA GCAGCACCG GAGTGATGA CGATGATGA CGATGATGA CGATGATGA CGATGATGA CGATGATGA CGATGAGGA TGAGGGAACT TGAGGGAACT TGAGGGAACT TGAGGGAACT TGAGGGAACT TGAGGAAAGA TCCCTGCTCA	60 120 180 300 360 420 480 540 660 720 780 840 960 1020 1080 1140
50 55 60 65	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequil AGGTGAACAG TCCGCTGGCA CTGTGCGCTC CACTGCCTC CACTGCCTC CACTGCTGCT CACTGCTGTC GCGCATTCT GGCAGACT GTGCCAGCTG TGCCTACAAC GTATAGTTAC AGGCAGCTG TGCCTACAAC GTATAGTTAC AGGCAGCTG TGCCTACAAC GTATAGTTAC AGGCAGCTG GGCAGCTG GGCAGCTG TGCCTACAAC GTATAGTTAC AGGCAGCTG GGAGCAGCTG GGAGCAGCAC GCACCTCACCT	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCGTC GGACCTGGT GAACCCGGGC GGTGCTGG GAACATCACA GATTGTGGC CAATGACATA CACAATGAC GATTCAGCG TACCATTGT GGAGCAGGC TTTTGGCAGC CGGACCCCC CGACCAGC CGACCAGGC CTCTGCCTTT	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCGCCCAC GTCTCGGCT AGCCTCTTCG GCTGTTACC GTGAAAAATG AGCAGGCC TCAGGGTCAG GAGTACCTGG GAGTACCTGG AAGAGTGGA ATGGGTACA ATGGGTACA ATGGGTACA GAGTGCCC GGAGACCTCC GGAGACCTCC GGAGACCTCC GGAACCTCC GGTTATCTCG GGAACCTCC GGTTATCTCG GGAACCTCCT GGTTATCTG GGAACCTCCT GGTTATCTG GGAACCTCCT GGTTATCTG GGAACCTCCT GGTTATCTG GGAACCTCCT	VMNGPRELDG 51 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA CTGCAGCAG AGACCAGCG CAGTGATAA AGACCAGCG CAGTGATAA AGACGGCACT ACCCGGCACC ACTTATCTGA CGATGCAGCA TGCAGGACCT AGAGGAAAGA TGCAGGACCT AGAGGAAAGA TCCCTGCTCA TCGCCACCAT	60 120 180 240 300 420 480 540 660 720 840 900 1020 1080 1180 1200
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequil AGGTGAACAG TCCGCGTCT TACCCGATTC CGCCTCCAT GGAGCTCGCT CACTGCCAC TCACATTATT AGTTCTGGTC GCGCATGGTG GTGCCAGCTG GTGCCAGCTG GTGCCAGCTG GTGCCAGCTG GGACAACATGATAC ACATTATGGC GGTCTGGAG GGACAATGTGC GGACAAGTGTGC GGACAAGTAGGC GGACAAGTGCCCCCTCACTC TGGTGACAC CCCTCACTC TGGTGACACT TGGTGACATC GGGCAAAGTG	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCCCC CGGCTGCCTC GAACCCGGC GAACATCAC GATTCAGGC CAATGACTA TAGCAACAC CAGAACACT GATTCAGGC AAACTCTAT CACCATTGTG GGAGGCAGGC TITTGCAGC CGGACCCCC GAACACGC TCTTCCCTTT TATGCTGT TATAGCGCC TTAGGCGC TTTTGCTGT TATAGCGCT TATAGCGCT TATAGCGCT TATAGCGCT TATAGCGCT TATAGCGGCT TAGGGGCTCT	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG GCTGAAAAATG AGCCAGGGCC TCAGGGTCAG GACTACTGG GACTACTGG AAGAGTGGA ATTGGGTAA ACAGGTGGCC GGAGACCTGC GCAGACTGC GGAACTGCC GGAGACCTCCT GGTTATTCTG GGAACCTCCT GGTACTCCT GGTACTCCT GGTACTCCT GGTACTCCT GTACTCCT GGTACTCCT GTACTCCT GGTACCTCCT GCTTACTCCT GCGACCTCCT GCTTACTCCT GCGACCTCCT GCTTACTCCT GCGACCTCCT GCTTACTCCT GCGACCTCCT GCTACACACC CTTAGACAGC	S1 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCAG AAGACCAGCG CAGTGATGAA AGACGGCAT GCGCCCCCG ACTTATCTGA AGACGGCAT GCGCCCCCG ACTATCTGA TGCAGACCT TGCAGACCT TGCAGAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCAGGCAGCAT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGGT	60 120 180 360 360 420 480 540 660 720 780 960 1020 1140 1260 1260 1320
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequil AGGTGAACAG TCCGCTGCTC TACCGGATTC CGCCCTCCAT GGAGCTGGTA TCGGCTGGTA TCGGCTGGTA TCGGCTGGTA TCGGCAGATG TCGCAGTTAT TAGTTCTGGTC GGCAGACC GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GTGCCAGCAG GAACAATGAT TGGAACATGAT TGGAACATGAT TGGGCAACATG TGGCAACATG AATCCATGACATGA	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCCC GGCTGCCT GAACCCGGG GCGTACCTG CCGGACTGGT GAACATCACA GATTGTGGC CAATGACCTA TAGCAACAC GATTCAGGC AAACCTCTAT CACCATTGT CGGAGCAGGC TTTTGGCAGC GAACCACGGC CTCTCCTTT TATTGCTGTG TAAGGGCCTC GTTTGGCACC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCGCCCAC GTCTCGGCT AGCCTCTTCG CTCTGGCTG GCTGTTACC GTGAAAATG AGCCTGGACT GACTACCTGG AGCTGGACT GACTACCTGG AGTGTACT AAGAGTCGC ATAGGTCAC GGAGACTAC GGAGACTAC GGAGACTAC GGAGACTCC GGAGACTCC GGAGACTCC TACTACTTCG GGAGCTCCC TACTACTTCG GCACTCCC TCTTAACAGC CTTAACAGC CTTAACAGC CTTCGCTATT	S1 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA ACACCGGCA AGACCAGCG CAGTGATGA AGACCAGCG CAGTGATGA AGACCGGCAT ACCCTGCCA ACTCCTGCCA TGCAGCAC TGCAGCAC TGCAGCAC GGAGGACCT AGAGGACCT AGAGGACCT TGCAGCAC TCCCTGCTCA TCCCAGCAGGT CCCTCAGTGG CCCTCAGTGG TCCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCTCAGTGG CCCCCCCTCAGTGC CCCTCAGTGC CCCCCCCCCC	60 120 180 240 306 420 480 540 660 720 900 1020 1020 1140 1200 1260 1380
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequil AGGTGAACAG TCCGCGTCT TACCCGATTC CGCCTCCAT GGAGCTCCATTATT AGTTCTGGTC GCGCATGGTG CTGCCAGCTG CTGCCAGCTG CTGCCAGCTG GGACCAGCTG GGCCAGCTG GGCCAGCTG GGCCAGCTG TGCCTACACAC ACATTATTACTAGCCAGCTT CGTGCAGACC GTGCCAGCTG TGCCTACTACAC GGAAGATGGG GAACAATGGAC CCCTCACTC TGGTGACACT CGGCAAAGTG AATCCATGGA ACATTGGAC CAGGATGGAC CAGGATGGAT CAGGAAGGTG AATCCATGGA CCAGTGGAC CATTGTGCTG	dession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCTC GAACCCGGCT GAACATCAC CCGAATGACTA GATTCAGGC CAATGACTA CCAGAACACA CCAGAACACT GATTCAGGGC AAACCTCTAT CACCATTGTG GGGGCCCCC GAACCACGC CTCTCCCTTT TATTGCAGC CTTTGCCACC CTTTGCTGC CGACCAGCC CTCTCCTTT TATTGCTGT TATTGCTGT GTTGGCCACC AGACCTTCTA CACACTCTCT AGACCTCTCA CACACTCTCT AGACCTCTCT AGACCTCTCT AGACCTTCTA CACACTCGTC AGACCTTCTA CACACTCGTC ACACCTCTCT ACACCTCTCT ACACCTCTCT ACACCTCCTCT ACACCTCCTCT ACACCTCCTCT ACACCTCCTCT ACACCTCCTCT ACACCTCCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCT ACACCTCCTCACCTCC ACACCTCCTCACCTCT ACACCTCCTCACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCC ACACCTCCTCACCTCCTCACCTCC ACACCTCCTCACCTCCTCACCTCC ACACCTCCTCACCTCCCCCCCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG CGCGCCCCAC GTCTCCGCCT AGCCTCTTCG GCTGTAAAATG AGCCAGGGCC TCAGGGTCAG GACTACCTG GACTACCTG GACTACCTG GACTACCTG GACTACTG GCAGACTGC CGAGACCTCC GGAGACCTCC GGAGACCTCC GGTTATACTCG GTACTTCG GTACTTCG GTACTTCG GTACTTCC GCAGACCTCC GGTTTACTCG GCACACTCC TCGGCTATT TCGGCTATT TCGGCTATT TCGGCTATT TCGGCTATT TCGGCTAAC CACAAGACCT CACAAAGACCT CACAAACACAACAC	S1 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA AGACCAGCA AGACCAGCA AGACCAGCA CAGTGATGA AGACGGCAT GCGCCCCCG GAGGAGGA CGATGCAGGCA TGGCAGCAT TGCAGACCT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCCT TGCCAGCAT TGCAGCCT TGCCAGCAT TCCCAGCAGGT TGCTCAGACCA TGGTGCCCAG	60 120 180 300 300 480 540 660 720 780 960 1020 1140 1260 1320 1380 1480 1500
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequit AGGTGAACAG TCCGCTGCTC TACCCGATTC CGCCCTCCAT GGAGCTCGCT CACTGCTGCT TCACATTATT AGTTCTGGTC GCGCAGCT GTGCCAGCT GTGCAGCT GTGCCAGCT GTGCCAGCT GTGCCAGCT TGCCAGCT TGCCAGCT TGCCAGCT TGCAGAGCT TGCCAGCT TGCCAGCT TGCCAGCT TGCCAGCT TGCCAGCT TGCCAGCT TGCAGACT TGCAGCAGCT TGCAGAGT TGCAGCAGCT TGCAGAGT TGCAGCAGCT TGGCAAGT TGGACAATGGA TGGACATGGA TGGACATGGA TGGCAGCTGT TGGCAAGT TGGCAGCTGT TGGCAAGT TGGCAGCTGT TGGCAAGT TGGCAGCTGT TGCCAGCTGT TGCCAGCTCT TGCCAGCTGT TGCCAGCT TCCAGCT	cession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCCTC GAACCCGGGC GCGTACCTG CCGGACTGCT CGACCATGC CATCACAC CATCACAC GATCACAC GATCACAC GATCACAC GATCACAC GATCACAC GATCACAC GATCAGC CAGAACACT TATCACAGC CGACCACT TATTGCAGC GACCACT TATTGCAGC GACCACT TATTGCAGC CTCTCCCTT TATTGCAGC CTCTCCCTT TATTGCAGC CTCTCCCTT TATTGCAGC CGACCACGC CTCTCCCTT CACACACC CGACCACCC CGACCACCC CGGCCACCC CGGCCACCTCT CGCCACCTCT CGCCACCTCT CGCCACCTCT CCCCTCT CCCCTCT CACACCCC CGGCCACCTCT CCCCCCC CGCCACCCC CGCCACCCCC CGCCACCCCC CGCCCCCC CGCCACCCCC CCCCCCCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCCCCCAC GTCTCCGCCT AGCCTCTTCG GCTGTGTACC GTGAAAAATG AGCCTGGGTG AGCCTGGGCG AGCTGGACT GACTACCTGG AGCTGGACT ACACTGG GCAATTGCCC GGAGACTGC GGAACTTCC GGTTATCTG GGAACTCCT GGTTATCT GGAACTCCT TTAGCAAGACT TTGGGAAGCC TCTAGAAAACCT TGTGTGCAAG	S1 GGACCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCACT ACCCTGGCCA AGACCGGCA AAGACCAGCG CAGTGATGA AAGACGGCAT ACAGCAGCA CAGTGATGA AGACGGCAT AGACGGCAT AGACGGCAT AGAGGAACT TGGAGAACT TGGAGAACT TGGAGGACT TGGAGGACT TTGAAGGCT TCCCAGCAGGT CCCTCAGTGG TCCCAGTGGT TCCCAGCAGT TTGAAGCTT TCGAGCCCAG TGGTAGCCCAG TGGTAGCCCAG TGGTAGCCCAG TGGAGCCTTG	60 120 180 240 306 420 480 540 660 720 840 900 1020 1140 1200 1260 1380 1440 1560
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequilated AGGTGAACAG TCCGCTGGCA CTGTGCGCTC TACCGGATTC CGCCTCCAT CGACTTGTC GGCATGTG CTGGCAGCC GTGCCAGCT CACTGTGTC GGCAGCT CACTTATTAT AGTTCTGGCAGCT CACTACATATT GGTGCAGCT CACTACAGC GTGCCAGCT CACTACAGC GTGCCAGCT CACTACTAGG GAACAATGAT GGAAGTAGG GAACAATGAT GGAAGTAGG GCACAGTG GAATGGAC GCAGCTGG GAATGGAC CCTTCACTC TGGTGACATC TGGTGACATC GGGCAAGTGGA GCAGATGGAT CATTGTGCTG GCCAGCTGG GCCAGCTGG CCTTTGCTTAC	Hession #: 2 11 KLQNQLEKLG LQEHQAPESH 145 DNA secid Accession lence: 74 11 GTCCTCACGC GCCATGGGCC GCCATGGACGC GCCATGGACA AGGACATGT TAGTACCACAC GGCACAGACA AGGACATGT TACCACAACG GGCACCAGC GGCACAGCA ATCCTGCACC GGCACAGCA ATCCTGCACC GGGTGGCAG ATCCTGCACC GGGTGCCAC GGGTGCCAT ACCAGGAT TACACAGG GTTCTTCATG AACCAGGAT TACACAGG GTGCCATCT CTTCTTCATG AACCAGGATC CTGGACCTC AACCAGGACT AACCAGAGTG CTGGACCCTC AACCAGAGTG AACCAGAGT	KP_050184.1 21 PSPGPILPST MGLSPKRETT Quence DESCRIPTION CCAGCTCCGC CCGGCCCCAG AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGGCCGA AGGAGCCCAA ACGTCCAGC AGGAGCCCAA ACGTCCAGC ACGTCCAGC ACGTCCAGC ACGTCCAGG ACAGGCCAA ACGTCCAGG ACAGGCCAA ACGTCCAGG ACTCCAGG ACTCCAGG ACTCCAGC ACTCCAGG ACTCCAGC ACCCCAGGCC ACCCCAGGCC ACCCCAGGCC ACCCCAGGCC ACCCCAGGCC ACCCCAGGCC ACCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCAGGCC ACCCCCCAGGCC ACCCCCAGGCC ACCCCCCAGCC ACCCCCAGCC CCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGCC ACCCCCAGC ACCCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCCAGC ACCCCAGC ACCCCAGC ACCCCAGC ACCCCAGC ACCCCCAGC ACCCCAGC ACCCCCAGC ACCCCCAGC ACCCCACACC ACCCCACAC ACCCCCACACC ACCCCACAC ACCCCCACAC ACCCCACAC ACCCCACACC ACCCCACCC ACCCCACACC ACCCCACACC ACCCCACCCCCC	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCCTC GAACCCGGGC GCGCTGCTG GACTGGT GACTGGT GACTGTGGC GGTGCTTGGC GGTGCTTGTG GACTGTTGGCC GATTGACTA TAGCAACACA CCAGAACACT CATTGAGGC GAACCTCTTT TATTGCAGG GGGCGCCCC GAACCAGGCG GCTCTCCTT TATTGCTGTG TAAGGGCTAGC TTTTGGCACC AGACCTTCTA CACATTGTC GGGCACCTCT CAACTACAGG GGCCACCTCT CAACTACAGG GGCCACCTCT CAACTACAGG	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG CGCGCCCCAC GTCTCCGCCT CTCTCGCCT CTCTGGCTG CTCTGGCTG CTCTGGCTG CTCTGGCTG AGCTCTTCG AGCTCTTCG AAGCAGCTCAC GAGTCACG GAGTACTTCG GAATTCGCC GGAACCTCC TACTACTTCG GGAACCTCCT TACTACTCG GGAACCTCCT TACTACTACT GGAGCTCCGT CTTAGACAGC CTTCGGCTATT GTGGGAAGCC TCCGAAGACCT TTCGGCAAT CTTGGCAAG CGAAACATCA CGAAACATCA CGAAACATCA	S1 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCA AGACCAGCA AGACCAGCA AGACCAGCA CAGTGATGA AGACGGCAT GCGCCCCCG GAGGAGGA CGATGCAGGCA TGGCAGCAT TGCAGACCT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCAGCAT TGCAGCCT TGCCAGCAT TGCAGCCT TGCCAGCAT TCCCAGCAGGT TGCTCAGACCA TGGTGCCCAG	60 120 180 240 300 480 540 660 720 840 900 900 1080 11200 1260 1380 1440 1500 1500 1620
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Mucleic Ac: Coding sequit AGGTGAACAG TCCGCTGGCA CTGTGCGCT CACTGCCAT CGCCTCCAT GGAGCTCGCT CACTGCTGC TCACATTATT AGTTCTGGTC GCGCATGCTG CTGCCAGCTGCT CTGCAGACC GTGCCAGCTG GGCAGCTGT TGCTACAAC GTATAGTTAC AGGCAGCTTC ACATTATGGCC GGCAGAGTG GGACAGTGT TGCTACAAC GTATAGTTAC AGGCAGCTTC ACATTATGGCC GGCAAATGGA CACATGGAT AATCCATGGA GCACATGGAT CACTTGGCT CGCCACACTC CGGCAAATGG AATCCATGGA CCCTCACTC CGCCACTCTGGAC CCCTCACTC CGCCACTCTGGAC CCCTCACTC CGCCACTCTGGAC CCCTCACTC CGCCACTCTGGAC CCCTCACTC CGCCACTCTGGAC CCCTCACTC CCCTCACTC CGCCACTCTGCACC CCCTCACTC CGCCACTCTGCAC CCCTCACTC CCCTCACTC CCCTCACTC CCCTCACTC CGCCACTCTGCAC CCCTCACTC CCCTCC CCCTCACTC CCCTCC CCCTCC CCCTCACTC CCCTCC CCCTCC CCCTCC CCCTCC CCCTCC CCCTCC CCCTCC CCCTC CCCTC CCCTC CCCTC CCCTC CCCTC CCCCTC CCCTC CCCTC CCTC CCCCTC CCCC CCCTC CCCTC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CC	dession #: 2 11	KP_050184.1 21	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCCCC GGCTGCCTC GAACCCGGC GGCTACCTG CCGACTGGT GAACACACA CCAGAACACT GATTCAGGC AAACTCCTAT CACCATTGTG GGAGCAGCC TTTTGCAGC CGACCCCC GAACCACCT TATTGCTGC GGCCCCCC GAACCACCT CGACCTCT CACATTGCTG CGGCCCCC CCCCTT CACATTGCTGC CGCCCCC CCCCCTT CACATTGCTGC CGCCCCC CCCCCCC CCCCCCCC CCCCCCCC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGGCCCCAC GTCTCCGCCT AGCCTCTTCG CTCCTGGCT GCTGAAAAAT GACCACCT GACTACCTG GACTGCACT AAGGGTCAC AAGGGTCGAC ATTGGGTAAC ACAGGTGGCC GGAGACCTG GCTATACTG GGAACCTC GGTTATCTG GGAACCTC TTGTGCAAG CCACAAGACCT TCTGGGAAGCC TCTGGAAGCC TCTGGAAGCC TCTGGAAGCC TCTGGAAGCC TCTGGAAGCC TCGGAAACAT TCGGAAACC TCGCTAGAAGCC TCGCAGAAGC TCGCAGAAGCC TCGCAGAAGCC TCGCAGAAGCC TCGCAGAAGCC TCGCAGAAGCC TCGCAGAAGCC TCGCAGAAGCC	S1 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GTGCCCCCG TGTGCCCACT ACCCTGGCCAC ACTATCTGA AGACGAGCA AGACGAGCA AGACGAGCA AGACGAGCA TGCAGGCAC ACTATCTGA CGATGATGA TGCAGCCCC GGAGGAGACA TGCAGCAC TGCAGCAC TGCAGCAC TTTCAACCC TCCAGCGCT TTCAACCC TGCCAGCGT TCCAGCGT TCCAGCGCT TGGAGCTGT TCGAGCTGT TCGAGCTGCT TCGAGCTGCT TCGAGCTGCT TCGAGCTGCT TCGAGCTGCT	60 120 180 240 300 420 480 540 660 720 780 840 900 1020 1140 1200 1140 1560 1560 1620 1620 1740
50 55 60 65 70	Protein Acci MYDVKCLSDC AQDSDDSEGG Seq ID NO: Nucleic Ac: Coding sequil AGGTGAACAG TCCGCTGGCA CTGTGCGCTC CACTGCCAC CACTGCCAC CACTGCTGGCA GGAGCTGGTG TGCCTACAAC GTGTACAGTTAC TGGCAGAGTG TGCCTACAAC GTATAGTTAC GGACAGTGTG TGCCTACAAC GTATAGTTAC GGACAGTGGA GAACAATGAT TGGAAAC GGACAGTGGA GAACAATGAT TGGAAAC GCAATGGAC CCTCACTC TGGGCAAAGTG GCAAGTGGA CCCTCACTC TGGTGCACTC TGCTTGCATGGAC TCCTTGCAGAG TCCTTTGCTTAC CCTCTTTCCTTTC	111 KLQNQLEKLG LQEHQAPESH 145 DNA secid Accession lence: 74 11 GTCCTCACGC GCCATGGGCC GCCATGGATGA CGGCAGACAG GTGCCOGATG AAGGACATG TAGGACATG TAGGACATG GAGACAGG GTGCCACC GGCAAGTGCT TACCACACG GGCACAGAG ATCCTGACC GGCACAGGG TTGAAAGGAA AAGGACCAGG TTGAAAGGAA AAGGACCAGG TTGAAAGGAA CTCTGACC GCGGTGCCACC GCGGTGCCACC GCGGTGCCACC GCGGTGCCACC GCGTGCACGG GGTGCCATCT CTTCTTCATG AACCAGGATG CTGGAGCCTG AACCAGAGTG GCTGCACGG CTGGACCTG AACCAGAGTG GCTGCACGGG CTGGACCTG AACCAGGGTT AACCTCCGTG AACCACGGTTCT AACCTCCGTG	KP_050184.1 21 21 31 FSPGPILPST MGLSPKRETT TUENCE 11 #: NM_002: 3229 CCAGCTCCGC CCGGCCCCAG TGGCGGCCCAG TGGCGGCCCAG GCTACACCAA ACGTGCGAG GCTACACCAA ACGTGCGAG AGAGCCGAG AGAGCCGAG AGAGCCAGAG ACGTGCAGAG ACGTGCAGAG ACGTCACAC ACAGCTTCAC ACGTCCAGG ACAGCTTCAC TGGCGCCTA ACTTCTGAT ACCTCTGTT ACTTCTAT ACCCCAGGACCAA ACGTGCCAGG ACAGCTTCAC CCGGCAGTCAT ACGCCAGTCG ACTTCTACC ACCCCGGCC ACACCCAGCC ACACCCCGGCC ACACACTCCATCC ACACACCCAGCC ACACACTCCATCC ACACACCCAGCC ACACACCCAGCC ACACACTCCATCC ACACACCCAGCC ACACACTCCATCC ACACACCCAGCC ACACACTCCATCC ACACACCCCAGCC ACACACTCCATCC ACACACTCCATCC ACACACCCCACCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACTCCATCC ACACACAC	RKLYEKKLVQ ARKTRLSRAG 204.1 31 CCCCTCACGC CCGCGCGCCC CGGCTGCCCC GGCTACCTG GAACACCGG GCGTACCTG GAACATCACA GATTGTGGCC CAGGACACT TAGCAACAC GATTCAGGC TTTTGGCAG CGACCTCTT TATTGCTTG TAGGGCCC GAACCACTCT TATTGCTGC CACACTCT CACATCTC CACATCTC CACATCTC CACATCTC CACATCTC CACATCTC CACATCTC CACATCTC CGCCCCCC CGGCCCC CGCCCCC CGACCTCTC CACATCATC CCCCATCATC	LLVSPPCAPP EKKVSQWA 41 GCTCTCGCCG GGCGCCCAC GTCTCGGCT AGCCTCTTCG GCTGTTACC GTGAAAATG AGCCTGGCT AGCTGGCT AAGGATCGC ATTACTTCG AAGAGTGCC CTACTACTTCG GGAACCTCC GGTTATCTG GGAACCTCC TGTTACTTG GGAACTCC TTGGGAAGC CCACAAGACT TTGTTGCAAG CGAACTCA GCTTTGCCAG ATCTCCATGA ATCTCCATGA	S1 GGACCCCGCT GCCTGATGCT TCAACCTGGA GCTACTCGGT GCTGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGGCCACT ACCCTGCCAG AGAGAGGAAAA TCCCTGCCCG GGAGGAGGCCT AGAGGAAAAA TCCCTGCTCA TCGCCAGCAT TCGCAGCACT TCGCCAGCAT TCGCAGCACT TCGCCAGCAT TCCCAGCAGGT TCCCAGCAGGT TCCCAGCAGT TCGCAGCACT TCGCCAGCAT TCGCAGCACT TCGCCAGCAT TCGCAGCACT TCGCCAGCT TCGCCCAG TCGAGCCT TCGCCCAG TCGAGCCT TCGCCCAG TCGAGCCT TCGCCCAG TCGAGCCT TCCCAGCCT TCGCCCAG TCGAGCCT TCCCAGCCT TCGCCCAG TCGAGCCT TCCCAGCCT TCGCCCAG TCGAGCCT TCCCAGCCT TCCCAGCCT TCGCCCAG TCGAGCCT TCCCAGCCT TCCAGCCCT TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACC TC	60 120 180 240 300 420 480 540 560 720 840 900 1020 1140 1260 1320 1440 1560 1620 1680 1680 1680

```
CCTCAACCAG GCACAGGCTC TGGAGAACCA CACTGAGGTC CAGTTCCAGA AGGAGTGCGG 1920
        GCCTGACAAC AAGTGTGAGA GCAACTTGCA GATGCGGGCA GCCTTCGTGT CAGAGCAGCA
                                                                                        1980
        GCAGAAGCTG AGCAGGCTCC AGTACAGCAG AGACGTCCGG AAATTGCTCC TGAGCATCAA
        CGTGACGAAC ACCCGGACCT CGGAGCGCTC CGGGGAGGAC GCCCACGAGG CGCTGCTCAC
        CCTGGTGGTG CCTCCCGCCC TGCTGCTGTC CTCAGTGCGC CCCCCGGGG CCTGCCAAGC
                                                                                        2160
        TAATGAGACC ATCTTTTGCG AGCTGGGGAA CCCCTTCAAA CGGAACCAGA GGATGGAGCT
                                                                                        2220
        GCTCATCGCC TITGAGGTCA TCGGGGTGAC CCTGCACACA AGGGACCTTC AGGTGCAGCT
        GCAGCTCTCC ACGTCGAGTC ACCAGGACAA CCTGTGGCCC ATGATCCTCA CTCTGCTGGT
        GGACTATACA CTCCAGACCT CGCTTAGCAT GGTAAATCAC CGGCTACAAA GCTTCTTTGG
                                                                                        2400
10
        GGGGACAGTG ATGGGTGAGT CTGGCATGAA AACTGTGGAG GATGTAGGAA GCCCCCTCAA
                                                                                        2460
        GTATGAATTC CAGGTGGGCC CAATGGGGGA GGGGCTGGTG GGCCTGGGGA CCCTGGTCCT
                                                                                        2520
        AGGTCTGGAG TGGCCCTACG AAGTCAGCAA TGGCAAGTGG CTGCTGTATC CCACGGAGAT
        CACCGTCCAT GGCAATGGGT CCTGGCCCTG CCGACCACCT GGAGACCTTA TCAACCCTCT
                                                                                        2640
        CAACCTCACT CTTTCTGACC CTGGGGGACAG GCCATCATCC CCACAGCGCA GGCGCCGACA
GCTGGATCCA GGGGGAGGCC AGGGCCCCCC ACCTGTCACT CTGGCTGCTG CCAAAAAAGC
                                                                                        2700
15
                                                                                        2760
        CAAGTCTGAG ACTGTGCTGA CCTGTGCCAC AGGGCGTGCC CACTGTGTGT GGCTAGAGTG
        CCCCATCCCT GATGCCCCCG TTGTCACCAA CGTGACTGTG AAGGCACGAG TGTGGAACAG
                                                                                        2880
        CACCITCATC GAGGATTACA GAGACITTGA CCGAGTCCGG GTAAATGGCT GGGCTACCCT
                                                                                        2940
        ATTCCTCCGA ACCAGCATCC CCACCATCAA CATGGAGAAC AAGACCACGT GGTTCTCTGT
                                                                                        3000
20
        GGACATTGAC TCGGAGCTGG TGGAGGAGCT GCCGGCCGAA ATCGAGCTGT GGCTGGTGCT
        GGTGGCCGTG GGTGCAGGGC TGCTGCTGCT GGGGCTGATC ATCCTCCTGC TGTGGAAGTG
CGGCTTCTTC AAGCGAGCCC GCACTCGCGC CCTGTATGAA GCTAAGAGGC AGAAGGCGGA
                                                                                        3120
                                                                                        3180
        GATGAAGAGC CAGCCGTCAG AGACAGAGAG GCTGACCGAC GACTACTGAG GGGGCAGCCC
                                                                                        3240
        CCCGCCCCC GCCCACCTGG TGTGACTTCT TTAAGCGGAC CCGCTATTAT CAGATCATGC
25
        CCAAGTACCA CGCAGTGCGG ATCCGGGAGG AGGAGCGCTA CCCACCTCCA GGGAGCACCC TGCCCACCAA GAAGCACTGG GTGACCAGCT GGCAGACTCG GGACCAATAC TACTGACGTC
                                                                                        3360
                                                                                        3420
        CTCCCTGATC CCACCCCCTC CTCCCCCAGT GTCCCCTTTC TTCCTATTTA TCATAAGTTA
                                                                                        3480
        TGCCTCTGAC AGTCCACAGG GGCCACCACC TTTGGCTGGT AGCAGCAGGC TCAGGCACAT
                                                                                        3540
        ACACCTCGTC AAGAGCATGC ACATGCTGTC TGGCCCTGGG GATCTTCCCA CAGGAGGGCC AGCGCTGTGG ACCTTACAAC GCCGAGTGCA CTGCATTCCT GTGCCCTAGA TGCACGTGGG GCCCACTGCT CGTGGACTGT GCTGGTGCAT CACGGATGGT GCATGGGCTC GCCGTGTCTC
                                                                                        3600
30
                                                                                        3660
                                                                                        3720
        AGCCTCTGCC AGCGCCAGCG CCAAAACAAG CCAAAGAGCC TCCCACCAGA GCCGGGAGGA
                                                                                        3780
        AAAGGCCCCT GCAATGTGGT GACACCTCCC CTTTCACACC TGGATCCATC TTGAGAGCCA
CAGTCACTGG ATTGACTTTG CTGTCAAAAC TACTGACAGG GAGCAGCCCC CGGGCCGCTG
                                                                                        3840
                                                                                        3900
35
        GCTGGTGGGC CCCCAATTGA CACCCATGCC AGAGAGGTGG GGATCCTGCC TAAGGTTGTC
        TACGGGGGCA CTTGGAGGAC CTGGCGTGCT CAGACCCAAC AGCAAAGGAA CTAGAAAGAA
GGACCCAGAA GGCTTGCTTT CCTGCATCTC TGTGAAGCCT CTCTCCTTGG CCACAGACTG
                                                                                        4020
                                                                                        4080
        AACTCGCAGG GAGTGCAGCA GGAAGGAACA AAGACAGGCA AACGGCAACG TAGCCTGGGC
                                                                                        4140
        TCACTGTGCT GGGGCATGGC GGGATCCTCC ACAGAGAGGA GGGGACCAAT TCTGGACAGA
40
        CAGATGTTGG GAGGATACAG AGGAGATGCC ACTTCTCACT CACCACTACC AGCCAGCCTC
                                                                                        4260
        CAGAAGGCCC CAGAGAGACC CTGCAAGACC ACGGAGGGAG CCGACACTTG AATGTAGTAA
                                                                                        4320
        TAGGCAGGGG GCCCTGCCAC CCCATCCAGC CAGACCCCAG CTGAACCATG CGTCAGGGGC
                                                                                        4380
        CTAGAGGTGG AGTTCTTAGC TATCCTTGGC TTTCTGTGCC AGCCTGGCTC TGCCCCTCCC
                                                                                        4500
        CCATGGGCTG TGTCCTAAGG CCCATTTGAG AAGCTGAGGC TAGTTCCAAA AACCTCTCCT
45
        GACCCCTGCC TGTTGGCAGC CCACTCCCCA GCCCCAGCCC CTTCCATGGT ACTGTAGCAG
                                                                                        4560
        GGGAATTCCC TCCCCCTCCT TGTGCCTTCT TTGTATATAG GCTTCTCACC GCGACCAATA
        AACAGCTCCC AGTTTGT
        Seq ID NO: 146 Protein sequence
50
        Protein Accession #: NP_002195.1
                                  21
                                                                         51
        MGPGPSRAPR APRIMICALA LMVAAGGCVV SAFNLDTRFL VVKEAGNPGS LFGYSVALHR
        QTERQQRYLL LAGAPRELAV PDGYTNRTGA VYLCPLTAHK DDCERMNITV KNDPGHHIIE
                                                                                         120
55
        DMWLGVTVAS QGPAGRVLVC AHRYTQVLWS GSEDQRRMVG KCYVRGNDLE LDSSDDWQTY
        HNEMCNSNTD YLETGMCQLG TSGGFTQNTV YFGAPGAYNW KGNSYMIQRK EWDLSEYSYK
                                                                                         240
        DPEDGGNLYI GYTMQVGSFI LHPKNITIVT GAPRHRHMGA VFLLSQEAGG DLRRRQVLEG
SQVGAYFGSA IALADLNNDG WQDLLVGAPY YFERKEEVGG AIYVFMNQAG TSFPAHPSLL
                                                                                         300
                                                                                         360
        LHGPSGSAFG LSVASIGDIN QDGFQDIAVG APPEGLGKVY IYHSSSKGLL RQPQQVIHGE
60
        KLGLPGLATF GYSLSGOMDV DENFYPDLLV GSLSDHIVLL RARPVINIVH KTLVPRPAVL
                                                                                         480
        DPALCTATSC VQVELCPAYN QSAGNPNYRR NITLAYTLEA DRDRRPPRLR FAGSESAVFH
GFFSMPEMRC QKLELLLMDN LRDKLRPIII SMNYSLPLRM PDRPRLGLRS LDAYPILNQA
                                                                                         540
                                                                                         600
        QALENHTEVQ FQKECGPDNK CESNLOMRAA FVSEQQQKLS RLQYSRDVRK LLLSINVTNT
        RTSERSGEDA HEALLTLVVP PALLLSSVRP PGACQANETI FCELGNPPKR NQRMELLIAF
EVIGVTLHTR DLQVQLQLST SSHQDNLWPM ILTLLVDYTL QTSLSMVNHR LQSPFGGTVM
                                                                                         720
65
                                                                                         780
        GESGMKTVED VGSPLKYEFQ VGPMGEGLVG LGTLVLGLEW PYEVSNGKWL LYPTEITVHG
                                                                                         840
         NGSWPCRPPG DLINPLNLTL SDPGDRPSSP QRRRRQLDPG GGQGPPPVTL AAAKKAKSET
                                                                                         900
        VLTCATGRAH CVWLECPIPD APVVTNVTVK ARVWNSTFIE DYRDFDRVRV NGWATLFLRT 960
SIPTINMENK TTWFSVDIDS ELVEELPAEI ELWLVLVAVG AGLLLLGLII LLLWKCGFFK 1020
70
        RARTRALYEA KRQKAEMKSQ PSETERLTDD Y
        Seq ID NO: 147 DNA sequence
        Nucleic Acid Accession #: NM_005501.1
        Coding sequence: 74..3274
75
                     11
                                 21
        AGGTGAACAG GTCCTCACGC CCAGCTCCGC CCCCTCACGC GCTCTCGCCG GGACCCCGCT
         TCCGCTGGCA GCCATGGGCC CCGGCCCCAG CCGCGCGCCC CGCGCCCCAC GCCTGATGCT
        CTGTGCGCTC GCCTTGATGG TGGCGGCCGG CGGCTGCGTC GTCTCCGCCT TCAACCTGGA
TACCCGATTC CTGGTAGTGA AGGAGGCCGG GAACCCGGGC AGCCTCTTCG GCTACTCGGT
                                                                                         180
80
                                                                                         240
         CGCCCTCCAT CGGCAGACAG AGCGGCAGCA GCGCTACCTG CTCCTGGCTG GTGCCCCCCG
         GGAGCTCGCT GTGCCCGATG GCTACACCAA CCGGACTGGT GCTGTGTACC TGTGCCCACT
         CACTGCCCAC AAGGATGACT GTGAGCGGAT GAACATCACA GTGAAAAATG ACCCTGGCCA
                                                                                         420
         TCACATTATT GAGGACATOT GGCTTGGAGT GACTGTGGCC AGCCAGGGCC CTGCAGGCAG
                                                                                         480
85
         AGTTCTGGTC TGTGCCCACC GCTACACCCA GGTGCTGTGG TCAGGGTCAG AAGACCAGCG
```

```
GCGCATGGTG GGCAAGTGCT ACGTGCGAGG CAATGACCTA GAGCTGGACT CCAGTGATGA
       CTGGCAGACC TACCACAACG AGATGTGCAA TAGCAACACA GACTACCTGG AGACGGGCAT
                                                                                    660
       GTGCCAGCTG GGCACCAGCG GTGGCTTCAC CCAGAACACT GTGTACTTCG GCGCCCCCGG
                                                                                    720
       TGCCTACAAC TGGAAAGGAA ACAGCTACAT GATTCAGCGC AAGGAGTGGG ACTTATCTGA
                                                                                    780
        GTATAGTTAC AAGGACCCAG AGGACCAAGG AAACCTCTAT ATTGGGTACA CGATGCAGGT
                                                                                    840
        AGGCAGCTTC ATCCTGCACC CCAAAAACAT CACCATTGTG ACAGGTGCCC CACGGCACCG
                                                                                    900
        ACATATGGGC GCGGTGTTCT TGCTGAGCCA GGAGGCAGGC GGAGACCTGC GGAGGAGGCA
                                                                                    960
        GGTGCTGGAG GGCTCGCAGG TGGGCGCCTA TTTTGGCAGC GCAATTGCCC TGGCAGACCT
                                                                                   1020
        GAACAATGAT GGGTGGCAGG ACCTCCTGGT GGGCGCCCCC TACTACTTCG AGAGGAAAGA
10
        GGAAGTAGGG GGTGCCATCT ATGTCTTCAT GAACCAGGCG GGAACCTCCT TCCCTGCTCA
                                                                                   1140
        CCCCTCACTC CTTCTTCATG GCCCCAGTGG CTCTGCCTTT GGTTTATCTG TGGCCAGCAT
                                                                                   1200
        TGGTGACATC AACCAGGATG GATTTCAGGA TATTGCTGTG GGAGCTCCGT TTGAAGGCTT
        GGGCAAAGTG TACATCTATC ACAGTAGCTC TAAGGGGCTC CTTAGACAGC CCCAGCAGGT
                                                                                   1320
       AATCCATGGA GAGAGCTGG GACTGCCTGG GTTGGCCACC TTCGGCTATT CCCTCAGTGG
GCAGATGGAT GTGGATGAGA ACTTCTACCC AGACCTTCTA GTGGGAAGCC TGTCAGACCA
                                                                                   1380
15
                                                                                   1440
        CATTGTGCTG CTGCGGGCCC GGCCAGTCAT CAACATCGTC CACAAGACCT TGGTGCCCAG
        GCCAGCTGTG CTGGACCCTG CACTTTGCAC GGCCACCTCT TGTGTGCAAG TGGAGCTGTG
                                                                                   1560
       CTTTGCTTAC AACCAGAGTG CCGGGAACCC CAACTACAGG CGAAACATCA CCCTGGCCTA CACTCTGGAG GCTGACAGGG ACCGCCGGCC GCCCCGGCTC CGCTTTGCCG GCAGTGAGTC
                                                                                   1620
                                                                                   1680
20
       CGCTGTCTTC CACGGCTTCT TCTCCATGCC CGAGATGCGC TGCCAGAAGC TGGAGCTGCT
        CCTGATGGAC AACCTCCGTG ACAAACTCCG CCCCATCATC ATCTCCATGA ACTACTCTTT
                                                                                   1800
       ACCTTTGCGG ATGCCCGATC GCCCCCGGCT GGGGCTGCGG TCCCTGGACG CCTACCCGAT CCTCAACCAG GCACAGGCTC TGGAGAACCA CACTGAGGTC CAGTTCCAGA AGGAGTGCGG
                                                                                   1860
                                                                                   1920
        GCCTGACAAC AAGTGTGAGA GCAACTTGCA GATGCGGGCA GCCTTCGTGT CAGAGCAGCA
25
        GCAGAAGCTG AGCAGGCTCC AGTACAGCAG AGACGTCCGG AAATTGCTCC TGAGCATCAA
                                                                                   2040
        CETGACGAAC ACCCGGACCT CEGAGCGCTC CÉGGGAGGAC GCCCACGAGG CGCTGCTCAC
                                                                                   2100
        CCTGGTGGTG CCTCCCGCCC TGCTGCTGTC CTCAGTGCGC CCCCCCGGGG CCTGCCAAGC
                                                                                   2160
        TAATGAGACC ATCTTTTGCG AGCTGGGGAA CCCCTTCAAA CGGAACCAGA GGATGGAGCT
                                                                                   2220
        GCTCATCGCC TTTGAGGTCA TCGGGGTGAC CCTGCACACA AGGGACCTTC AGGTGCAGCT
                                                                                   2280
30
       GCAGCTCTCC ACGTCGAGTC ACCAGGACAA CCTGTGGCCC ATGATCCTCA CTCTGCTGGT
GGACTATACA CTCCAGACCT CGCTTAGCAT GGTAAATCAC CGGCTACAAA GCTTCTTTGG
                                                                                   2340
                                                                                   2400
        GGGGACAGTG ATGGGTGAGT CTGGCATGAA AACTGTGGAG GATGTAGGAA GCCCCCTCAA
                                                                                   2460
        GTATGAATTC CAGGTGGGCC CAATGGGGGA GGGGCTGGTG GGCCTGGGGA CCCTGGTCCT
                                                                                   2520
        AGGTCTGGAG TGGCCCTACG AAGTCAGCAA TGGCAAGTGG CTGCTGTATC CCACGGAGAT
                                                                                   2580
35
        CACCGTCCAT GGCAATGGGT CCTGGCCCTG CCGACCACCT GGAGACCTTA TCAACCCTCT
                                                                                   2640
        CAACCTCACT CTTTCTGACC CTGGGGACAG GCCATCATCC CCACAGCGCA GGCGCCGACA
        GCTGGATCCA GGGGGAGGCC AGGGCCCCCC ACCTGTCACT CTGGCTGCTG CCAAAAAAGC
                                                                                   2760
        CAAGTCTGAG ACTGTGCTGA CCTGTGCCAC AGGGCGTGCC CACTGTGTGT GGCTAGAGTG
                                                                                   2820
        CCCCATCCCT GATGCCCCCG TTGTCACCAA CGTGACTGTG AAGGCACGAG TGTGGAACAG
                                                                                   2880
40
        CACCTTCATC GAGGATTACA GAGACTTTGA COGAGTCOGG GTAAATGGCT GGGCTACCCT
        ATTCCTCCGA ACCAGCATCC CCACCATCAA CATGGAGAAC AAGACCACGT GGTTCTCTGT
                                                                                   3000
        GGACATTGAC TCGGAGCTGG TGGAGGAGCT GCCGGCCGAA ATCGAGCTGT GGCTGGTGCT
                                                                                   3060
        GGTGGCCGTG GGTGCAGGGC TGCTGCTGCT GGGGCTGATC ATCCTCCTGC TGTGGAAGTG
        TGACTTCTTT AAGCGGACCC GCTATTATCA GATCATGCCC AAGTACCACG CAGTGCGGAT
                                                                                   3180
45
        CCGGGAGGAG GAGCGCTACC CACCTCCAGG GAGCACCCTG CCCACCAAGA AGCACTGGGT
                                                                                   3240
        GACCAGCTGG CAGACTCGGG ACCAATACTA CTGACGTCCT CCCTGATCCC ACCCCCTCCT
                                                                                   3300
        CCCCCAGTGT CCCCTTTCTT CCTATTTATC ATAAGTTATG CCTCTGACAG TCCACAGGGG
        CCACCACCTT TGGCTGGTAG CAGCAGGCTC AGGCACATAC ACCTCGTCAA GAGCATGCAC
                                                                                   3420
        ATGCTGTCTG GCCCTGGGGA TCTTCCCACA GGAGGGCCAG CGCTGTGGAC CTTACAACGC CGAGTGCACT GCATTCCTGT GCCCTAGATG CACGTGGGGC CCACTGCTCG TGGACTGTGC
                                                                                   3480
50
                                                                                   3540
        TGGTGCATCA CGGATGGTGC ATGGGCTCGC CGTGTCTCAG CCTCTGCCAG CGCCAGCGCC
        AAAACAAGCC AAAGAGCCTC CCACCAGAGC CGGGAGGAAA AGGCCCCTGC AATGTGGTGA
                                                                                   3660
        CACCTCCCCT TTCACACCTG GATCCATCTT GAGAGCCACA GTCACTGGAT TGACTTTGCT
                                                                                   3720
        GTCAAAACTA CTGACAGGGA GCAGCCCCCG GGCCGCTGGC TGGTGGGCCC CCAATTGACA
                                                                                    3780
55
        CCCATGCCAG AGAGGTGGGG ATCCTGCCTA AGGTTGTCTA CGGGGGCACT TGGAGGACCT
        GGCGTGCTCA GACCCAACAG CAAAGGAACT AGAAAGAAGG ACCCAGAAGG CTTGCTTTCC
                                                                                   3900
        TGCATCTCTG TGAAGCCTCT CTCCTTGGCC ACAGACTGAA CTCGCAGGGA GTGCAGCAGG
                                                                                   3960
        AAGGAACAAA GACAGGCAAA CGGCAACGTA GCCTGGGCTC ACTGTGCTGG GGCATGGCGG
                                                                                   4020
        GATCCTCCAC AGAGAGGAGG GGACCAATTC TOGACAGACA GATGTTGGGA GGATACAGAG
                                                                                    4080
60
        GAGATGCCAC TTCTCACTCA CCACTACCAG CCAGCCTCCA GAAGGCCCCA GAGAGACCCT
                                                                                    4140
        GCAAGACCAC GGAGGGAGCC GACACTTGAA TGTAGTAATA GGCAGGGGGC CCTGCCACCC
CATCCAGCCA GACCCCAGCT GAACCATGCG TCAGGGGCCT AGAGGTGGAG TTCTTAGCTA
                                                                                   4200
                                                                                    4260
        TCCTTGGCTT TCTGTGCCAG CCTGGCTCTG CCCCTCCCCC ATGGGCTGTG TCCTAAGGCC
                                                                                    4320
        CATTTGAGAA GCTGAGGCTA GTTCCAAAAA CCTCTCCTGA CCCCTGCCTG TTGGCAGCCC
                                                                                    4380
65
        ACTCCCCAGC CCCAGCCCCT TCCATGGTAC TGTAGCAGGG GAATTCCCTC CCCCTCCTTG
TGCCTTCTTT GTATATAGGC TTCTCACCGC GACCAATAAA CAGCTCCCAG TTTGT
                                                                                    4440
        Seq ID NO: 148 Protein sequence
        Protein Accession #: NP_005492.1
70
                                 21
                                             31
                    11
                                                          41
        MGPGPSRAPR APRIMICALA LMVAAGGCVV SAFNLDTRPL VVKEAGNPGS LFGYSVALHR
        QTERQQRYLL LAGAPRELAV PDGYTNRTGA VYLCPLTAHK DDCERMVITV KNDPGHHIIE
DMWLGVTVAS QGPAGRVLVC AHRYTQVLWS GSEDQRRWVG KCYVRGNDLE LDSSDDWQTY
                                                                                     120
                                                                                     180
75
        HNEMONSHID YLETGMOOLG ISGGFIONIV YFGAPGAYNW KGNSYMIQRK EWDLSEYSYK
        DPEDGGNLYI GYTMQVGSFI LHPKNITIVT GAPRHRHMGA VFLLSQEAGG DLRRRQVLEG
SQVGAYFGSA IALADLNNDG WODLLVGAPY YFERKEEVGG AIYVFMNQAG TSPPAHPSLL
                                                                                     300
                                                                                     360
        LHGPSGSAFG LSVASIGDIN QDGFQDIAVG APPEGLGKVY IYHSSSKGLL RQPQQVIHGE
        KLGLPGLATF GYSLSGQMDV DENFYPDLLV GSLSDHIVLL RARPVINIVH KTLVPRPAVL
                                                                                     480
80
        DPALCTATSC VOVELCPAYN OSAGNPNYRR NITLAYTLEA DRDRRPPRLR FAGSESAVFH
                                                                                     540
        GPPSMPEMRC QKLELLLMON LRDKLRPIII SMNYSLPLRM PDRPRLGLRS LDAYPILNQA
                                                                                     600
        QALENHTEVQ FQKECGPDNK CESNLQMRAA FVSEQQQKLS RLQYSRDVRK LLLSINVTNT
                                                                                     660
        RTSERSGEDA HEALLTLVVP PALLLSSVRP PGACQANETI FCELGNPFKR NQRMELLIAP
                                                                                     720
        GESGMKTVED VGSPLKYEFQ VGPMGEGLVG LGTLVLGLEW PYEVSNGKWL LYPTEITVHG
                                                                                     780
85
```

PCT/US02/19297 WO 02/102235

5	VLTCATGRAH SIPTINMENK	CVWLECPIPD TTWFSVDIDS	apvvtnvtvk Elveelpabi	QRRRRQLDPG ARVWNSTFIE ELWLVLVAVG TKKHWVTSWQ	DYRDFDRVRV AGLLLLGLII		900 960 1020	
	Nucleic Act		#: 1714_0064					
10	1	11	21 I	31	41	51 		
10	CGGGCCAGGT	TTCCAGGCTC	GCCGCCGCC	TCCATCCCAG	CACCTGCGGA	GGGAGCGCTG	60	
				GCCCAGCCCA			120	
				GATAAAAGCA			180	
15				CTTCTGCCGT			240 300	
10				AAGATTCTCT			360	
	AGATTGATTT	TACTTCTCGG	ATTTCTCTAC	TTTTTCGTGT	GCTCCCTGGA	TATTCTTAGT	420	
				GCAGGACAGT			480	
20				GGGGTGCTGG ATGGTGTCCT			540 600	
20				ATTGGAACGT			660	
				TTCAGAAGAG			720	
				GTGCTCTTGC			780	
25				GAGAGCTTCC CCCTTCACAA			840 900	
23				GATGAAAAAG			960	
						TCCCTCGACT	1020	
						GACCATGAAG		
30						TTTCCACCTC		
50						CTGTGGTTGC CACTGTCATC	1200 1260	
						CTACCTGGCC		
						CACGTCGGCC	1380	
35						ACTCACGCTG		
33						CCCTGGCAAT	1500 1560	
						GGGGCTGGGC		
	AACATCTCTG	CCAAGTATCG	CTGGTTCGCC	GTCTTCTACC	TGATCATCTT	CTTCTTCCTG	1680	
40						TGGTGTCGGG		
40						GTCTCGCTGC GATGCGCTCG	1800 1860	
						GCGCTGCTGC		
						CAAGTGCTGC		
45						TGTCCCTGTC		
43						TGTCAGGGAT	2100	
						CCCTTTCACC	2160 2220	
				ATGAAATTGA				
50	Sea ID NO.	150 Protein						
50		cession #: 1			•			
	1	11	21	31	41	51		
		1		1				
55				KSKETNKTDN ILCFFQGIGR			60 120	
••				VLVTVLVQSS			180	
	AIPIIMGANI	GTSITNTIVA	LMQVGDRSEF	RRAFAGATVH	DPFNWLSVLV	LLPVEVATHY	240	
				FTKLIVQLDK			300	
60				DGIQNWTMKN LKGQVATVIK			360 420	
00				IERAYPLTLG			480	
						PYLIIFPFLI	540	
						NFLPLWMRSL	600	
65		TGCFQMRCCY SREAQGEVPA			CSKCCEDLEB	AQEGQDVPVK	660	
•	ALDITONIII	SKERNOSEFFA	CDSICIDOTAD					
	-	151 DNA se	•					
		id Accession						
70	1	uence: 11	21	31 .	41	51		
•	1	1		Ĭ	i	1		
				AGCGGCTGCC			60	
				TCGCTGGAAA			120 180	
75				CCTATAAATA		CGTTTTGGTA	240	
•				ATATTTATAC			300	
						CAACGTATTG	360	
						AGACTTTAGA	420 480	
80						CAGTGTCAGG	480 540	
						TGTCCCAGGA	600	
						AGTTAATGGC	660	
						AAATAGCCGT GAACAGTCGG	720 780	
85						ACAGCAGATT	840	
- '								
					32	. σ		

```
GAACCAAGCT TTGAGCCAGA GGATGAAGAC AGCGAAGAAG ATGACATTAT CATTGAAGAC
                                                                                             900
        AATGGAGTGC CACAGCAGAT TCCAAAAGCT GTTCCTAATA CTGAGAGCCT GGAGTCATTA
ACACAGATAG AGCTAAGCTT TGAGTCTGGA CAGAATGGCT TTATTCCCTC TAATGAAGTG
                                                                                             960
        AGCTTAGCAG CCATAGCAAG CAGCTCAAAC ACGGAATTTG AAACACATGC TCCAGATCAA 1080
 5
         AAACTCTTAG AAGAAGATGG AACAATCATA ACATTATGA
        Seg ID NO: 152 Protein sequence
         Protein Accession #: XP_030559
                      11
                                   21
                                                 31
                                                               41
                                                                             51
10
         MNRSHRHGAG SGCLGTMEVK SKFGAEFRRF SLERSKPGKF EEFYGLLQHV HKIPNVDVLV
         GYADIHGDLL PINNDDNYHK AVSTANPLLR IFIQKKEEAD YSAFGTDTLI KKKNVLTNVL
                                                                                             120
        RPDNHRKRPH IVISMPQDFR PVSSIIDVDI LPETHRRVRL YKYGTEKPLG FYIRDGSSVR
                                                                                             180
         VTPHGLEKVP GIFISRLVPG GLAQSTGLLA VNDEVLEVNG IEVSGKSLDQ VTDMMIANSR
15
        NLIITVRPAN QRNNVVRNSR TSGSSGQSTD NSLLGYPQQI EPSPEPEDED SEEDDIIIED
         NGVPQQIPKA VPNTESLESL TQIELSFESG QNGFIPSNEV SLAAIASSSN TEFETHAPDQ
                                                                                             360
         KLLEEDGTII TL
        Seq ID NO: 153 DNA sequence
20
         Nucleic Acid Accession #: NM_003064.2
         Coding sequence: 23..421
                                                                             51
                      11
                                   21
                                                  31
                                                               41
         CAGAGTCACT CCTGCCTTCA CCATGAAGTC CAGCGGCCTC TTCCCCTTCC TGGTGCTGCT
25
         TGCCCTGGGA ACTCTGGCAC CTTGGGCTGT GGAAGGCTCT GGAAAGTCCT TCAAAGCTGG
AGTCTGTCCT CCTAAGAAAT CTGCCCAGTG CCTTAGATAC AAGAAACCTG AGTGCCAGAG
                                                                                             120
         TGACTGGCAG TGTCCAGGGA AGAAGAGATG TTGTCCTGAC ACTTGTGGCA TCAAATGCCT
         GGATCCTGTT GACACCCCAA ACCCAACAAG GAGGAAGCCT GGGAAGTGCC CAGTGACTTA
TGGCCAATGT TTGATGCTTA ACCCCCCCAA TTTCTGTGAG ATGGATGGCC AGTGCAAGCG
                                                                                             300
                                                                                             360
30
         TGACTTGAAG TGTTGCATGG GCATGTGTGG GAAATCCTGC GTTTCCCCTG TGAAAGCTTG
         ATTCCTGCCA TATGGAGGAG GCTCTGGAGT CCTGCTCTGT GTGGTCCAGG TCCTTTCCAC
                                                                                             480
         CCTGAGACTT GGCTCCACCA CTGATATCCT CCTTTGGGGA AAGGCTTGGC ACACAGCAGG
CTTTCAAGAA GTGCCAGTTG ATCAATGAAT AAATAAACGA GCCTATTTCT CTTTGCAC
                                                                                             540
35
         Seq ID NO: 154 Protein sequence
         Protein Accession #: NP_003055.1
                                                                             51
                     11
                                   21
                                                               41
         MKSSGLFPFL VLLALGTLAP WAVEGSGKSF KAGVCPPKKS AQCLRYKKPE CQSDWQCPGK
40
         KRCCPDTCGI KCLDPVDTPN PTRRKPGKCP VTYGQCLMLN PPNFCEMDGQ CKRDLKCCMG
                                                                                             120
         MCGKSCVSPV KA
         Seq ID NO: 155 DNA sequence
         Nucleic Acid Accession #: NM_001306.1
45
         Coding sequence: 199..861
                      11
                                   21
         AATTCGGCAC GAGGGCAGGT GCAGGCGCAC GCGGCGAGAG CGTATGGAGC CGAGCCGTTA
GCGCGCGCCG TCGGTGAGTC AGTCCGTCCG TCCGTCCGTC CGTCGGGGCG CCGCAGCTCC
CGCAGGCCC AGCGGCCCCG GCCCCTCGTC TCCCCGCACC CGGAGCCACC CGGTGGAGCG
                                                                                             120
50
         GGCCTTGCCG CGGCAGCCAT GTCCATGGGC CTGGAGATCA CGGGCACCGC GCTGGCCGTG
                                                                                             240
         CTGGGCTGGC TGGGCACCAT CGTGTGCTGC GCGTTGCCCA TGTGGCGCGT GTCGGCCTTC
ATCGGCAGCA ACATCATCAC GTCGCAGAAC ATCTGGGAGG GCCTGTGGAT GAACTGCGTG
                                                                                             300
                                                                                             360
         GTGCAGAGCA CCGGCCAGAT GCAGTGCAAG GTGTACGACT CGCTGCTGGC ACTGCCACAG
55
         GACCTTCAGG CGGCCCGCGC CCTCATCGTG GTGGCCATCC TGCTGGCCGC CTTCGGGCTG
                                                                                             480
         CTAGTGGCGC TGGTGGCGC CCAGTGCACC AACTGCGTGC AGGACGACAC GGCCAAGGCC AAGATCACCA TCGTGGCAGG CGTGCTGTTC CTTCTCGCCG CCCTGCTCAC CCTCGTGCCG
                                                                                             540
                                                                                             600
         GTGTCCTGGT CGGCCAACAC CATTATCCGG GACTTCTACA ACCCCGTGGT GCCCGAGGCG
         CAGAAGCGCG AGATGGGCGC GGGCCTGTAC GTGGGCTGGG CGGCCGCGGC GCTGCAGCTG
                                                                                             720
60
         CTGGGGGGC CGCTGCTCTG CTGCTCGTGT CCCCCACGC AGAAGAAGTA CACGGCCACC AAGGTCGTCT ACTCCGCGCC GCGCTCCACC GGCCCGGGAG CCAGCCTGGG CACAGGCTAC
                                                                                             780
                                                                                             840
         GACCGCAAGG ACTACGTCTA AGGGACAGAC GCAGGGAGAC CCCACCACCA CCACCACCAC
         CAACACCACC ACCACCACC CGAGCTGGAG CGCGCACCAG GCCATCCAGC GTGCAGCCTT
GCCTCGGAGG CCAGCCCACC CCCAGAAGCC AGGAAGCCCC CGCGCTGGAC TGGGGCAGCT
                                                                                             960
                                                                                            1020
65
         TCCCCAGCAG CCACGGCTTT GCGGGCCGGG CAGTCGACTT CGGGGCCCAG GGACCAACCT
                                                                                            1080
         GCATGGACTG TGAAACCTCA CCCTTCTGGA GCACGGGGCC TGGGTGACCG CCAATACTTG
         ACCACCCCGT CGAGCCCCAT CGGGCCGCTG CCCCCATGTC GCGCTGGGCA GGGACCGGCA
                                                                                            1200
         GCCCTGGAAG GGGCACTTGA TATTTTTCAA TAAAAGCCTC TCGTTTTAGC
70
         Seq ID NO: 156 Protein sequence
         Protein Accession #: NP_001297.1
                                                                             51
                                                                41
                      11
                                   21
         MSMGLEITGT ALAVLGWLGT IVCCALPMWR VBAFIGSNII TSQNIWEGLW MNCVVQSTGQ
                                                                                               60
75
         MQCKVYDSLL ALPQDLQAAR ALIVVAILLA AFGLLVALVG AQCTNCVQDD TAKAKITIVA
GVLFLLAALL TLVPVSWSAN TIIRDFYNPV VPEAQKREMG AGLYVGWAAA ALQLLGGALL
CCSCPPREKK YTATKVVYSA PRSTGPGASL GTGYDRKDYV
                                                                                             120
         Seg ID NO: 157 DNA sequence
80
         Nucleic Acid Accession #: NM_005564
         Coding sequence: 1..597
                                   21
                                                                             51
                                                                41
          ATGCCCCTAG GTCTCCTGTG GCTGGGCCTA GCCCTGTTGG GGGCTCTGCA TGCCCAGGCC
                                                                                               60
85
          CAGGACTICA CCTCAGACCT GATCCCAGCC CCACCTCTGA GCAAGGTCCC TCTGCAGCAG
```

5	ATTCTCAGAG GACAAGAGCT AGGACTTTTG CCTGGATTAA GTGTTCTTCA ACCAAGGAGC	AAGACAAAGA ACAATGTCAC TTCCAGGTTG CGAGTTACCT AGAAAGTTTC TGACTTCGGA	CCAGGGGAAG CCCGCAAAAG CTCCGTCCTG CCAGCCCGGC CGTCCGAGTG TCAAAACAGG ACTAAAGGAG CTTCCCTGTC	ATGTATGCCA TTTAGGAAAA GAGTTCACGC GTGAGCACCA GAGTACTTCA AACTTCATCC	CCATCTATGA AGAAGTGTGA TGGGCAACAT ACTACAACCA AGATCACCCT GCTTCTCCAA	GCTGAAAGAA CTACTGGATC TAAGAGTTAC GCATGCTATG CTACGGGAGA ATATCTGGGC	180 240 300 360 420 480 540
10		158 Protein cession #: 1 11		31	41	51	
15	ILREDKDPQK	MYATIYELKE VSTNYNQHAM	QDSTSDLIPA DKSYNVTSVL VPPKKVSQNR	PRKKKCDYWI	RTFVPGCQPG	EFTLGNIKSY	60 120 180
20		159 DNA sec id Accession	quence	353.1			
		ence: 268	374				
	1	11	21	31 	41 	51 }	
0.5			CGCAGATGCA				60
25	ATCGGGCAGA	GGTCTCACAG	CAGCCAAGGA	ACCTGGGGCC	CGCTCCTCCC	CCCTCCAGGC	120
	CATGAGGATT	CTGCAGTTAA	TCCTGCTTGC	TĊTGGCAACA	GGGCTTGTAG	GGGGAGAGAC	180
	CAGGATCATC	AAGGGGTTCG	AGTGCAAGCC	TCACTCCCAG	CCCTGGCAGG	CAGCCCTGTT	240
	CGAGAAGACG	CGGCTACTCT	GTGGGGCGAC	GCTCATCGCC	CCCAGATGGC	TCCTGACAGC	300
20			GCTACATAGT				360
30	GGAGGGCTGT	GAGCAGACCC	GGACAGCCAC	TGAGTCCTTC	CCCCACCCCG	GCTTCAACAA	420
			ACCGCAATGA				480
			GACCCCTCAC				540
			GGGGCAGCAC				600
35			CCATCATTGA				660
22			TGTGTGCCAG				720
			TGGTCTGTAA				780
			CCCGAAAGCC				840
			TGAAGAACAA GTTTGGTTCC				900
40			CTTTGGGCCT				960 1020
10			TCAGTGAGAC				1020
			CTGGTTTGTT				1140
			TTCAATAAAT			Guidiana	
45	Sec ID VO	160 Protein					
73		cession #: 1					
	1	11	21	31	41	51	
	î	i	1	1	1	31	
	MRILOLILIA	LATGLVGCRT	RIIKGFECKP	HSOPWOAATAP	EKTRILCGAT	I.TAPRWI.I.TA	60
50			EGCEOTRTAT				120
			SCLISGWGST				180
			GDSGGPLVCN				240
	DWIQETMKNN					,	-

60

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

1 1. A method of detecting an ovarian cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26.

- 1 2. The method of claim 1, wherein the biological sample comprises 2 isolated nucleic acids.
- 1 3. The method of claim 2, wherein the nucleic acids are mRNA.
- 1 4. The method of claim 2, further comprising the step of amplifying 2 nucleic acids before the step of contacting the biological sample with the polynucleotide.
- 5. The method of claim 1, wherein the polynucleotide comprises a sequence as shown in Tables 1-26.
- 1 6. The method of claim 1, wherein the polynucleotide is immobilized on 2 a solid surface.
- The method of claim 1, wherein the patient is undergoing a therapeutic regimen to treat ovarian cancer.
- 1 8. The method of claim 1, wherein the patient is suspected of having 2 ovarian cancer.
- 1 9. An isolated nucleic acid molecule consisting of a polynucleotide 2 sequence as shown in Tables 1-26.
- 1 10. The nucleic acid molecule of claim 9, which is labeled.
- 1 11. An expression vector comprising the nucleic acid of claim 9.
- 1 12. A host cell comprising the expression vector of claim 11.
- 1 13. An isolated polypeptide which is encoded by a nucleic acid molecule 2 having polynucleotide sequence as shown in Tables 1-26.

1	14.	An antibody that specifically binds a polypeptide of claim 13.
1	15	The antibody of claim 14, further conjugated to an effector component.
1	16.	The antibody of claim 15, wherein the effector component is a
2	fluorescent label.	•
1	17.	The antibody of claim 15, wherein the effector component is a
2	radioisotope or a cytotoxic chemical.	
1	18.	The antibody of claim 15, which is an antibody fragment.
1	. 19.	The antibody of claim 15, which is a humanized antibody
1	20.	A method of detecting an ovarian cancer cell in a biological sample
2	from a patient, the method comprising contacting the biological sample with an antibody of	
3	claim 14.	
1	21.	The method of claim 20, wherein the antibody is further conjugated to
2	an effector component.	
1	22.	The method of claim 21, wherein the effector component is a
2	fluorescent label.	
1	23.	A method for identifying a compound that modulates an ovarian
2	cancer-associated polypeptide, the method comprising the steps of:	
3	(i) contacting the compound with an ovarian cancer-associated polypeptide,	
4	the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least	
5	80% identical to a sequence as shown in Tables 1-26; and	
6	(ii) de	etermining the functional effect of the compound upon the polypeptide.
1	24.	A drug screening assay comprising the steps of
2	(i) administering a test compound to a mammal having ovarian cancer or a ce	
3	isolated therefrom;	
4	(ii) co	omparing the level of gene expression of a polynucleotide that selectively
5	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-26 in a	

6 treated cell or mammal with the level of gene expression of the polynucleotide in a control

- 7 cell or mammal, wherein a test compound that modulates the level of expression of the
- 8 polynucleotide is a candidate for the treatment of ovarian cancer.