A Job Ready Bootcamp in c++,DSA and IOT unordered multiset

1. Write a C++ program to initialize the unordered multiset and print it on the screen.

```
#include <bits/stdc++.h>
using namespace std;
typedef unordered multiset<int>::iterator umit;
void printUset(unordered multiset<int> ums)
    umit it = ums.begin();
   cout << endl;</pre>
int main()
    unordered multiset<int> ums2 ({1, 3, 1, 7, 2, 3, 4, 1, 6});
    if (ums1.empty())
       cout << "unordered multiset 1 is empty\n";</pre>
        cout << "unordered multiset 1 is not empty\n";</pre>
    cout << "The size of unordered multiset 2 is : " << ums2.size() << endl;</pre>
   printUset(ums1);
   ums1.insert(7);
   printUset(ums1);
    int val = 3;
    if (ums1.find(val) != ums1.end())
       cout << "unordered multiset 1 contains " << val << endl;</pre>
        cout << "unordered multiset 1 does not contains " << val << endl;</pre>
    val = 5;
    int cnt = ums1.count(val);
    cout << val << " appears " << cnt << " times in unordered multiset 1 \n";</pre>
```

```
val = 9;
    if (ums1.count(val))
           << val << endl;
   val = 1;
   pair<umit, umit> erange it = ums2.equal range(val);
   if (erange it.first != erange it.second)
       cout << val << " appeared atleast once in unoredered multiset \n";</pre>
   printUset(ums2);
   ums2.erase(val);
   printUset(ums2);
   ums1.clear();
   ums2.clear();
   if (ums1.empty())
       cout << "unordered multiset 1 is empty\n";</pre>
       cout << "unordered multiset 1 is not empty\n";</pre>
_______
Output:
unordered multiset 1 is not empty
The size of unordered multiset 2 is : 9
3 0 5 5 7 7 7 2 2
unordered multiset 1 contains 3
5 appears 2 times in unordered multiset 1
unordered multiset 1 does not contains 9
1 appeared atleast once in unoredered multiset
6 4 2 7 3 3 1 1 1
6 4 2 7 3 3
unordered multiset 1 is empty
```

2. Write a C++ program to delete all copies from an unordered multiset.

Example:

Input - 6 4 2 7 3 3 1 1 1

```
Output - 6 4 2 7 3 1
#include <bits/stdc++.h>
using namespace std;
int main()
{
    unordered_multiset<int> ums;
    unordered_multiset<int>::iterator it;
```

3. Given an array arr[] of N integer elements, the task is to change the minimum number of elements of this array such that it contains first N terms of the Catalan Sequence. Thus, find the minimum changes required using unordered multiset.

First few Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,

Examples:

Input: $arr[] = \{4, 1, 2, 33, 213, 5\}$

Output: 3

We have to replace 4, 33, 213 with 1, 14, 42 to make the first 6 terms of Catalan sequence.

Input: $arr[] = \{1, 1, 2, 5, 41\}$

Output: 1

Simply change 41 with 14

```
catalanDP(n);
    s.insert(a);
        s.insert(b);
        s.insert(catalan[i]);
        if (it != s.end())
            s.erase(it);
    return s.size();
int main()
    int n = sizeof(arr) / sizeof(arr[0]);
   cout << CatalanSequence(arr, n);</pre>
Output:
```

4. Write a C++ program to illustrate the swapping of data between two unordered multiset.

```
#include <bits/stdc++.h>
using namespace std;
int main()
{
    unordered_multiset<int> ums1;
    unordered_multiset<int> ums2;
    unordered_multiset<int>::iterator it;

    // Initialization by assignment
    ums1 = {6, 4, 2, 7, 3, 3, 1, 1, 1};
    ums2 = {8, 2, 7, 4, 45, 69, 27, 33};
    cout << "Before swapping" << endl;</pre>
```

```
for ( it = ums1.begin(); it != ums1.end(); it++)
    cout << endl;</pre>
    for ( it = ums2.begin(); it != ums2.end(); it++)
        cout << *it << " ";
    ums1.swap(ums2);
    for ( it = ums1.begin(); it != ums1.end(); it++)
    cout << endl;</pre>
    for ( it = ums2.begin(); it != ums2.end(); it++)
        cout << *it << " ";
Output:
Before swapping
1 1 3 3 7 2 4 6
33 27 69 45 4 7 2 8
After swapping
33 27 69 45 4 7 2 8
1 1 1 3 3 7 2 4 6
```

5. Write a C++ program to count the frequency of elements in unordered multiset.

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    unordered_multiset<int> ums;
    unordered_multiset<int>::iterator it;
    int no;
    // Initialization by assignment
    ums = {6, 4, 2, 7, 3, 3, 1, 1, 1};
    for ( it = ums.begin(); it != ums.end(); it++)
        cout << *it << " ";
    cout << endl << "Enter a number from the above list: ";
    cin >> no;
    cout << "Frequency: " << count(ums.begin(), ums.end(), no) << endl;
    return 0;
}

Output:
1 1 1 3 3 7 2 4 6
Enter a number from the above list: 1
Frequency: 3</pre>
```

6. Write a C++ program to illustrate the emplace() function in unordered multiset.

```
#include <bits/stdc++.h>
using namespace std;
int main()
{
    // declaration
    unordered_multiset<int> sample;
    // inserts element using emplace()
    sample.emplace(11);
```

7. Write a C++ program to illustrate the find() function in unordered multiset.

8. Write a C++ program to illustrate the bucket_count() function in unordered_multiset.

```
#include <bits/stdc++.h>
using namespace std;

int main()
{

    // declaration
    unordered_multiset<int> sample;

    // inserts element
    sample.insert(5);
    sample.insert(25);
    sample.insert(14);
    sample.insert(50);
```

```
sample.insert(10);
    cout << "The total count of buckets: " << sample.bucket count();</pre>
    for (int i = 0; i < sample.bucket count(); i++)</pre>
        if (sample.bucket size(i) == 0)
            cout << "empty";
        for (auto it = sample.cbegin(i); it != sample.cend(i); it++)
           cout << *it << " ";
Output:
The total count of buckets: 7
Bucket 0: 14
Bucket 1: 50
Bucket 2: empty
Bucket 3: 10
Bucket 4: 25
Bucket 5: 5
Bucket 6: empty
```

9. Write a C++ program to illustrate the load factor() function in unordered multiset.

```
#include <bits/stdc++.h>
using namespace std;
int main()
    unordered multiset<int> sample;
    sample.insert(1);
    sample.insert(1);
    cout << "The size is: " << sample.size();</pre>
    cout << "\nThe bucket count is: " << sample.bucket count();</pre>
    cout << "\nThe load factor is: " << sample.load factor();</pre>
    sample.insert(1);
    sample.insert(2);
    cout << "\n\nThe size is: " << sample.size();</pre>
    cout << "\nThe load factor is: " << sample.load factor();</pre>
    sample.insert(2);
    cout << "\n\nThe size is: " << sample.size();</pre>
    cout << "\nThe bucket count is: " << sample.bucket count();</pre>
    cout << "\nThe load_factor is: " << sample.load_factor();</pre>
```

```
Output:
The size is: 2
The bucket_count is: 3
The load_factor is: 0.666667

The size is: 4
The bucket_count is: 7
The load_factor is: 0.571429

The size is: 5
The bucket_count is: 7
The load_factor is: 0.714286
```

10. Write a C++ program to illustrate the reverse() function in unordered multiset.