Prof.: A. Gajardo 22 de marzo de 2006

Tarea 3

Fecha de entrega: Jueves 30 de marzo

Escoja uno de los siguientes problemas:

- 1. a) Demuestre que si $f, g : \mathbb{N} \to \mathbb{N}$, entonces $\max\{f(n), g(n)\} = \Theta(f(n) + g(n))$.
 - b) Considere $p(n) = a_0 + a_1 n + ... + a_m n^m$, demuestre que $p(n) = \Theta(n^m)$.
- 2. Demustre que dadas $f, g: \mathbb{N} \to \mathbb{N}$, si $f(n) = \Omega(g(n))$, entonces si $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ existe, es mayor que 0.
- 3. Demuestre que la siguiente relación \mathcal{R} definida en el conjunto de las funciones de \mathbb{N} en \mathbb{N} : $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} : f \text{ es función } \}$ es de equivalencia:

$$f\mathcal{R}g \Leftrightarrow f(n) = \Theta(g(n))$$

- 4. Demuestre que si k < m, entonces no es cierto que $n^m = O(n^k)$.
- 5. Demuestre que para cualquier $a \in \mathbb{R}$ y cualquier $b \in \mathbb{N}$, se tiene $(n+a)^b = \Theta(n^b)$.
- 6. Decida si:
 - a) $2^{n+1} = O(2^n)$,
 - b) $2^{2n} = O(2^n)$,
 - c) $b^n = \Theta(2^n)$, con b > 0.
- 7. Demustre que no es cierto que $n^n = O(2^n)$.
- 8. Demuestre que no es cierto que $n^m = O(\log(n))$.