# EEE118: Electronic Devices and Circuits Lecture XVI

James Green

Department of Electronic Engineering University of Sheffield j.e.green@sheffield.ac.uk

29th April 2014

#### Review

- Looked (again) at Feedback for signals and for DC (quiescent) conditions in a one transistor amplifier with and without emitter decoupling
- The situation where  $R_L = R_E$  is called a "phase splitter".
- Looked at the small signal equivalent circuit of a BJT in terms of a one transistor amplifier
- Gave an example of a performance evaluation
- Noted that the value of the small signal circuit is to show which device and circuit affect the gain, not to give a numerical value (although this is possible.)
- Introduced the idea of an "analogue building block" opamp
- presented the opamp as an implementation of a classical feedback system.
- Derived the opamp equation and presented a circuit symbol for an opamp.

### Outline

- 1 Opamp Circuits
  - $\blacksquare A_v \to \infty$ : Non-Inverting
  - $\blacksquare A_{\nu} \to \infty$ : Inverting
  - lacksquare  $A_v 
    eq \infty$  Non-Inverting
  - $A_{\nu} \neq \infty$  Inverting
- 2 Special Case: Unity Gain Buffer
- 3 Circuits with Multiple Inputs
  - Summing Amplifier
  - Subtractor or Difference Amplifier
- 4 A General Multiple Input Circuit
- 5 Review
- 6 Bear

# Opamp Circuits - Non Inverting

The most common opamp circuits are the "non-inverting amplifier" and the "inverting amplifier".

It is usual to assume initially that  $A_v \to \infty$ . This means that the circuit behaviour is completely controlled by the feedback. If  $A_v = \infty$ , for finite  $v_o$  then  $v^+ \approx v^-$  and this makes the calculation quite straightforward.

$$v^{-} = v_o \, \frac{R_1}{R_1 + R_2} \qquad (1)$$

$$v^+ = v_i$$
 and  $v^+ = v^- = v_i$  (2)



$$v_i = v_o \frac{R_1}{R_1 + R_2} \tag{3}$$

$$\frac{v_o}{v_i} = \frac{R_1 + R_2}{R_1} \tag{4}$$

# Opamp Circuits - Inverting

In the inverting amplifier  $v^+$  is grounded and  $v_i$  is applied to  $R_1$ . If  $A_v = \infty$ ,  $v^+ = v^-$  and since  $v^+$  is connected to ground  $v^-$  must be very close to ground. It is often called a virtual earth. The potential is always close to zero but the node is *not* actually connected to zero. To obtain the gain sum currents at the  $v^-$  node.

$$i_i + i_f = 0 (5)$$

$$\frac{v_i - v^-}{R_1} + \frac{v_o - v^-}{R_2} = 0 \quad (6)$$

$$v^{-} = 0$$
 so  $\frac{v_i}{R_i} + \frac{v_o}{R_2} = 0$  (7)

$$\frac{v_o}{v_i} = -\frac{R_2}{R_1}$$
 (8)



- Notice the "-" sign in the inverting gain formula. This means that the signal is *inverted* i.e. phase shifted by 180° as well as being amplified.
- Two inverting amplifiers in series would give rise to an overall non-inverting amplifier. The first stage would invert the signal and the second would invert it back to its original phase.



#### Effects of Finite Gain

Occasionally it is necessary to consider the effect of finite  $A_v$  on the overall gain of the circuit. When considering the effects of finite gain the approximation  $v^+ \approx v^-$  does not hold.

As before, using potential division at the output,

$$v^{-} = v_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 (9)  
 $v^{+} = v_{i}$  (10)



But now the opamp equation must be used to relate  $v^+$ ,  $v^-$  and  $v_o$ ,

$$v_o = A_v \left( v^+ - v^- \right) = A_v \left( v_i - v_o \frac{R_1}{R_1 + R_2} \right)$$
 (11)

or, 
$$v_o \left[ \frac{1}{A_v} + \frac{R_1}{R_1 + R_2} \right] = v_i$$
 (12)

or, 
$$\frac{v_o}{v_i} = \frac{1}{\frac{1}{A_V} + \frac{R_1}{R_1 + R_2}}$$
 (13)

- Note if  $A_{\nu} \to \infty$ ,  $\frac{1}{A_{\nu}}$  becomes very small and (13) becomes (4).
- $\blacksquare$   $A_v$  is equivalent to G in the classical feedback system.
- It is between several thousand and several hundred thousand in most opamps.
- $A_{\nu}$  is actually frequency dependent, but the frequency dependence of  $A_{\nu}$  is not covered in this course.

For the inverting case start as before, by summing currents at the  $\nu^-$  node,



$$i_i + i_f = 0 \text{ or } \frac{v_i - v^-}{R_1} + \frac{v_o - v^-}{R_2} = 0$$
 (14)

which can be transposed to yield,

$$v^{-} = v_i \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}$$
 (15)

and 
$$v^+ = 0$$
 (16)

Using the opamp equation

$$v_o = A_v \left( 0 - \left[ v_i \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2} \right] \right) \tag{17}$$

or 
$$v_o \left[ \frac{1}{A_V} + \frac{R_1}{R_1 + R_2} \right] = -v_i \frac{R_2}{R_1 + R_2}$$
 (18)

or 
$$\frac{v_o}{v_i} = \frac{-\frac{R_2}{R_1 + R_2}}{\frac{1}{A_v} + \frac{R_1}{R_1 + R_2}}$$
 (19)

If  $A_v \to \infty$ ,  $\frac{v_o}{v_c}$  reduces to (8).

- Frequency dependent amplifiers (filters) can be produced by using frequency dependent passive components (inductors and, more usually, capacitors) in place of the resistors.
- $R_1$  and  $R_2$  can become  $Z_1$  and  $Z_2$  and may be arbitrarily complex passive circuits.
- Particular arrangements of resistors and capacitors in opamp circuits can be used to produce circuits which perform mathematical functions such as integration and differentiation.

## Input Resistance

- The input to the non inverting circuit goes directly to the opamp so the circuit input resistance is the same as the opamp very large ( $\sim 10^9$ ).
- The inverting circuit is slightly different. Taking the  $A_v \to \infty$  case, an input current,  $i_i$ , of  $\frac{v_i}{R_1}$  flows from the source.
- Input resistance is the ratio of the applied signal voltage to the current drawn, i.e.  $\frac{v_i}{i_i} = R_1$ .
- This is typically a few  $k\Omega$  which makes inverting amplifiers unsuitable as amplifiers of signals derived from sources with a large thévenin resistance.

## Unity Gain Buffer

The unity gain buffer is a special case of the non inverting amplifier, in which  $R_2=0$  and  $R_1=\infty$ . Here  $v^-=v_o$  so the opamp equation becomes,

$$v_{o} = A_{v} (v^{+} - v^{-}) = A_{v} (v_{i} - v_{o})$$

$$\text{or } \frac{v_{o}}{v_{i}} = \frac{1}{\frac{1}{A_{v}} + 1} = \frac{A_{v}}{1 + A_{v}} \quad (21)$$

If  $A_v$  is large,  $\frac{v_o}{v_i}$  is very close to unity. This circuit is used to isolate high impedance sources from low impedance loads; i.e. it has a high power gain.

# **Summing Amplifier**

Assume  $A_{\nu} \to \infty$  so  $\nu^- \to \text{virtual earth (i.e. 0 V)}$ 

Many audio "mixers" use this circuit.

# Subtracting Amplifier

Several avenues of solution are available for this circuit. Assume  $A_v = \infty$  and so  $v^+ = v^-$ .



One approach is to work out  $v^+$  and  $v^-$  and then equate them to get  $v_o$  in terms of  $v_1$  and  $v_2$ . Summing currents at the  $v^-$  node,

$$i_i + i_f = 0 \text{ or } \frac{v_2 - v^-}{R_1} + \frac{v_o - v^-}{R_2} = 0$$
 (22)

This can be transposed to give,

$$v^{-} = v_2 \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2}$$
 (23)

 $v^+$  is a potentially divided version of  $v_1$ 

$$v^+ = v_1 \frac{R_2}{R_1 + R_2} \tag{24}$$

equating  $v^+$  and  $v^-$ ,

$$v_2 \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2} = v_1 \frac{R_2}{R_1 + R_2}$$
 (25)

or 
$$v_0 \frac{R_1}{R_1 + R_2} = v_1 \frac{R_2}{R_1 + R_2} - v_2 \frac{R_2}{R_1 + R_2}$$
 (26)

or 
$$v_o = \frac{R_2}{R_1} (v_1 - v_2)$$
 (27)

Note that the accuracy of the subtraction depends upon matching the two  $R_1$ 's and  $R_2$ 's.

## A General Multiple Input Circuit

The subtractor circuit can be generalised to allow more than two inputs. Such a circuit could be analysed by find  $v^+$  and  $v^-$  and equating them, or by using the principle of superposition.

Superposition has the advantage that at each stage the circuit is reduced to a much simpler single input circuit. For example,



Consider first the output due to  $v_1$ .  $v_2$ ,  $v_3$  and  $v_4$  are grounded. The circuit becomes an inverting amplifier.





Since both  $v_3$  and  $v_4$  are zero  $v^+$  is zero and  $v^-$  is a virtual earth. No current flows through  $R_2$  so it has no effect on the circuit.

$$v_o|_{v_1} = v_1 \left(\frac{-R_f}{R_1}\right) \tag{28}$$

By changing the variable names the output voltage due to  $v_2$  can be found,

$$v_o|_{v_2} = v_2 \left(\frac{-R_f}{R_2}\right) \tag{29}$$

The output due to  $v_3$  leads to a more complex circuit however.



Here  $v_1$  and  $v_2$  are grounded so  $R_1$  is effectively in parallel with  $R_2$ .  $v^+$  is a potentially divided version of  $v_3$ . So,

$$\frac{v_o}{v^+} = \frac{R_f + R_1//R_2}{R_1//R_2} \quad (30)$$

$$\frac{v_o}{v_3} = \frac{R_4}{R_3 + R_4} \tag{31}$$

$$\therefore \frac{v_o}{v_3} = \frac{v_o}{v^+} \cdot \frac{v^+}{v_3} = \frac{R_4}{R_3 + R_4} \cdot \frac{R_f + R_1//R_2}{R_1//R_2}$$
(32)

or 
$$v_{+}|_{v_{3}} = v_{3} \frac{R_{4}}{R_{3} + R_{4}} \cdot \frac{R_{f} + R_{1}//R_{2}}{R_{1}//R_{2}}$$
 (33)

By a similar argument,

$$|v_o|_{v_4} = v_4 \frac{R_3}{R_3 + R_4} \cdot \frac{R_f + R_1//R_2}{R_1//R_2}$$
 (34)

$$v_{o_{\text{total}}} = \frac{v_o}{v_1} + \frac{v_o}{v_2} + \frac{v_o}{v_3} + \frac{v_o}{v_4}$$
 (35)

Note: if any of the inputs have both a DC and AC component, superposition allows them to be treated separately.

#### Review

- Non inverting amplifier with  $A_v = \infty$
- Inverting amplifier with  $A_v = \infty$
- Non inverting amplifier with  $A_v \neq \infty$
- Inverting amplifier with  $A_v \neq \infty$
- Unity gain buffer
- Multiple input circuits
  - Summing Amplifier
  - Difference Amplifier (Subtractor)
- General multiple input opamp circuit



