Выпуклые множества.

Основная часть

Задача 1. Проверьте, являются ли выпуклыми множества

- 1) (1 балл) $S = \{x_1 \in \mathbb{R}, x_2 \in \mathbb{R} \mid x_1 > 0, x_2 > 0, x_1 x_2 \ge 1\}.$
- 2) (1 балл) $S = \{x \in \mathbb{R}^d \mid x_1 \le x_2 \le \ldots \le x_d\}.$
- 3) (2 балла) $S = \{x \in \mathbb{R}^d \mid \|x a\|_2 \leq \|x b\|_2\}$, где $a \neq b \in \mathbb{R}^d$.

Задача 2. Пусть $S \subseteq \mathbb{R}^d$ и пусть $\|\cdot\|$ – норма на \mathbb{R}^d .

1) (2 балла) Для $a \ge 0$ определим множество S_a как:

$$S_a = \{x \mid \operatorname{dist}(x, S) \le a\},\$$

где

$$dist(x, S) = \inf_{y \in S} ||x - y||.$$

Множество S_a называется расширенным на a относительно S. Докажите, что если S выпукло, то S_a также выпукло.

2) (2 балла) Для $a \ge 0$ определим множество S_{-a} как:

$$S_{-a} = \{ x \mid B(x, a) \subset S \},\$$

где B(x,a) - открытый шар (в норме $\|\cdot\|$) с центром в x и радиусом a. Множество S_{-a} называется суженным на a относительно S. Докажите, что если S выпукло, то S_{-a} также выпукло.

Задача 3. (2 балла) Пусть дано множество $X\subseteq \mathbb{R}^d$ и $x^0\in X$. Докажите, что множество

$$K(X, x^0) = \{ y \in \mathbb{R}^d \mid y^T x^0 \ge y^T x \text{ for all } x \in X \}$$

является выпуклым конусом.

Выпуклые множества. Дополнительная часть

- **Задача 1.** (2 балла) Назовем множество $X \subseteq \mathbb{R}^d$ "средневыпуклым", если для любых его элементов x и y их середина также принадлежит X, т.е. $\frac{x+y}{2} \in X$. Докажите, что для замкнутых множеств "средневыпуклость" равносильна выпуклости.
- **Задача 2.** (1.5 балла) Пусть $X = \{x_1, \dots, x_{d+2}\}$ множество из d+2 точек в \mathbb{R}^d . Покажите, что X можно разбить на два подмножества S и $T = X \setminus S$ таким образом, что пересечение их выпуклых оболочек (см. определение в Пособии на странице 160) не пусто.
- Задача 3. Проверьте, верны ли следующие утверждения. Свою точку зрения объясните.
 - 1) (1.5 балла) Проекция выпуклого множества на любое подпространство тоже выпукла.

 Π ояснение. Проекцией на множество $\mathcal X$ называется $\Pi_{\mathcal X}(x):=\arg\min_{y\in\mathcal X}\frac12\|x-y\|_2.$

2) (3 балла) Если проекция на любое *собственное* (не совпадающее со всем пространством) подпространство выпукла, то и изначальное множество выпукло?