Check-In 08/21. (*True/False*) The integral $\int x \sqrt[3]{x-2} dx$ can be treated as a 'shifting integral' by using the *u*-substitution u=x-2.

Solution. The statement is *true*. We 'want' to be able to distribute the x across the cube-root but we cannot—this is not a valid operation. However, if we make the u-substitution u=x-2, then we will be able to distribute in a way that makes this integral 'routine.' So, let u=x-2, then du=dx. Moreover, because u=x-2, we know that x=u+2. But then...

$$\int x \sqrt[3]{x-2} \ dx = \int (u+2) \sqrt[3]{u} \ du = \int \left(u^{4/3} + 2u^{1/3} \right) \ du = \frac{3}{7} u^{7/3} + \frac{3}{4} \cdot 2u^{4/3} + C = \frac{3}{7} (x-2)^{7/3} + \frac{3}{2} (x-2)^{4/3} + C$$

Note that a computer algebra system may write the answer (though you will *not* be expected to) like this:

$$\tfrac{3}{7}(x-2)^{7/3} + \tfrac{3}{2}(x-2)^{4/3} + C = (x-2)^{4/3} \left(\tfrac{3}{7}(x-2) + \tfrac{3}{2} \right) + C = (x-2)^{4/3} \left(\tfrac{3}{7}x + \tfrac{9}{14} \right) + C = \tfrac{3}{14}(x-2)^{4/3} \left(2x + 3 \right) + C$$

Check-In 08/26. (*True/False*) Using integration-by-parts to evaluate $\int x \tan^{-1}(x) dx$, one chooses $u = \tan^{-1} x$ and dv = x.

Solution. The statement is *true*. Using LIATE, the first term that appears is 'I' for inverse trig. Therefore, we choose $u = \tan^{-1} x$. But then dv = x. We then fill in our box:

Using the 'rule of 7', we have...

$$\int x \tan^{-1} x \, dx = \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1 + x^2} \, dx$$

We now need only evaluate the integral on the right. Dividing $1+x^2$ into x^2 , we have a remainder of -1, i.e. $\frac{x^2}{1+x^2}=1+\frac{-1}{1+x^2}$. Therefore, we have...

$$\frac{1}{2} \int \frac{x^2}{1+x^2} dx = \frac{1}{2} \int \left(1 + \frac{-1}{1+x^2}\right) dx = \frac{1}{2} \left(x - \tan^{-1} x\right) + C$$

But then...

$$\int x \tan^{-1} x \, dx = \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} \int \frac{x^2}{1+x^2} \, dx$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} (x - \tan^{-1} x) + C$$

$$= \frac{1}{2} x^2 \tan^{-1} x - \frac{1}{2} x + \frac{1}{2} \tan^{-1} x + C$$

$$= \frac{x^2 \tan^{-1} x - x + \tan^{-1} x}{2} + C$$

$$= \frac{(x^2 + 1) \tan^{-1} x - x}{2} + C$$

Check-In 08/28. (*True/False*) The integral $\int e^x \sin(3x) dx$ can be treated as an integration-by-parts 'looping' integral.

Solution. The statement is *true*. Using integration-by-parts for $\int e^x \sin(3x) \, dx$ would result in an integral that would 'loop' back to itself. Generally, an integrand of the form exponential \cdot (sin or cos) or trig \cdot trig will have this property. Using traditional integration-by-parts, by LIATE, we choose $u = \sin(3x)$ and $dv = e^x$. Filling out our box, we have...

Using the 'rule of seven', we then have...

$$\int e^x \sin(3x) \ dx = e^x \sin(3x) - \int 3e^x \cos(3x) \ dx$$

To integrate $\int 3e^x \cos(3x) dx$, we again use integration-by-parts. Using LIATE, we choose u =

 $3\cos(3x)$ and $dv=e^x$. Filling out the box, we have...

Using the 'rule of seven', we then have

$$\int 3e^x \cos(3x) \ dx = 3e^x \cos(3x) - \int -9e^x \sin(3x) \ dx = 3e^x \cos(3x) + 9 \int e^x \sin(3x) \ dx$$

But then we have...

$$\int e^x \sin(3x) \ dx = e^x \sin(3x) - \int 3e^x \cos(3x) \ dx = \int e^x \sin(3x) \ dx = e^x \sin(3x) - \left(3e^x \cos(3x) + 9 \int e^x \sin(3x) \ dx\right) = \int e^x \sin(3x) \ dx = \int e^x$$

Therefore, we have...

$$\int e^x \sin(3x) \, dx = e^x \sin(3x) - \left(3e^x \cos(3x) + 9 \int e^x \sin(3x) \, dx\right)$$

$$\int e^x \sin(3x) \, dx = e^x \sin(3x) - 3e^x \cos(3x) - 9 \int e^x \sin(3x) \, dx$$

$$10 \int e^x \sin(3x) \, dx = e^x \sin(3x) - 3e^x \cos(3x)$$

$$\int e^x \sin(3x) \, dx = \frac{e^x \sin(3x) - 3e^x \cos(3x)}{10} + C$$

$$\int e^x \sin(3x) \, dx = \frac{e^x}{10} \left(\sin(3x) - 3\cos(3x)\right) + C$$

Alternatively, we can use an alternation of the tabular method of integration-by-parts. We choose $u = \sin(3x)$ and $dv = e^x$. We then have...

$$\begin{array}{c|c}
u & dv \\
\hline
\sin(3x) & + e^x \\
3\cos(3x) & - e^x \\
-9\sin(3x) & + e^x
\end{array}$$

Therefore, we have...

$$\int e^x \sin(3x) \, dx = e^x \sin(3x) - 3\cos(3x)e^x - 9 \int e^x \sin(3x) \, dx$$

Solving for our integral, we have...

$$\int e^x \sin(3x) \, dx = e^x \sin(3x) - 3\cos(3x)e^x - 9 \int e^x \sin(3x) \, dx$$

$$10 \int e^x \sin(3x) \, dx = e^x \sin(3x) - 3e^x \cos(3x)$$

$$\int e^x \sin(3x) \, dx = \frac{e^x \sin(3x) - 3e^x \cos(3x)}{10} + C$$

$$\int e^x \sin(3x) \, dx = \frac{e^x}{10} \left(\sin(3x) - 3\cos(3x) \right) + C$$