

Apprentissage machine 1

Chapitre 4 : Classification supervisée Classificateur naif bayes

Ouadfel Salima

Faculté NTIC/IFA

salima.ouadfel@univ-constantine2.dz

Apprentissage machine 1

Chapitre 3 : Classification supervisée Classificateur naif bayes

Faculté NTIC/IFA

salima.ouadfel@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	IFA	Master1	STIC

Université Constantine 2 2023/2024. Semestre 1

Le classificateur Naif Bayes est une méthode de classification supervisée.

Le classificateur Naif Bayes se base sur le théorème de Bayes fondé sur les probabilités conditionnelles P(Y/X).

Probabilités conditionnelles P(Y/X): Quelle est la probabilité qu'un événement Y se produise sachant qu'un autre événement X s'est déjà produit?

Soit un jeu donnée $X = ((X_1, Y_1), (X_2, Y_2) \dots (X_n, X_n))$ constitué de n paires (X_i, Y_i) , telle que $X_i = (X_{i1}, X_{i2} \dots X_{ip})$ l'ensemble de p attributs (variables explicatives) et Y_i la variable à prédire (l'attribut classe ou label). Si le jeu de donnée X peut être classer en K classes alors $Y_i \in \{1, 2, \dots, K\}$

Le but est de prédire l'étiquette Y_i associée à une nouvelle entrée X_i

On cherche à estimer $p(Y_i = j/X_i = x)$ qui représente la probabilité que la donnée X_i soit affectée à la classe C_j $(Y_i = j)$ si $X_i = x$.

	X_1	X_2	X_3	X_4	Y
Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	chaude	Élevée	faible	non
2	Ensoleillé	Ensoleillé chaude		fort	non
3	Couvert chaude		Élevée	faible	oui
4	pluie	douce	Élevée	faible	oui
5	pluie	fraiche	normale	faible	oui
6	pluie	fraiche	normale	fort	non
7	Couvert	fraiche	normale	fort	oui
8	Ensoleillé	douce	Élevée	faible	non
9	Ensoleillé	fraiche	normale	faible	oui
10	Pluie	douce	normale	faible	Oui
11	Ensoleillé	douce	normale	Fort	Oui
12	Couvert	douce	Élevée	Fort	Oui
13	Couvert	chaude	normale	Faible	Oui
14	pluie	douce	Élevée	fort	Non

2 classes $C_1 = 0ui$ $C_2 = non$

 $si(X_i = x = (Pluie, douce, \'elev\'ee, Faible)$

quelle est la probabilité $p(Y_i = oui / X_i = x)$

Selon la règle de bayes:

$$p(Y_i = j / X_i = x) = \frac{p(X_i = x / Y_i = j) * p(Y_i = j)}{p(X_i = x)}$$

 $p(Y_i = j / X_i = x)$: représente la probabilité conditionnelle de $Y_i = j$ sachant que $X_i = x$ C'est la probabilité a posteriori

 $p(X_i = x/Y_i = j)$: représente la probabilité conditionnelle de $X_i = x$ si l'étiquette de X_i est j ($Y_i = j$) C'est la probabilité de vraisemblance

 $p(X_i = x)$ représente la probabilité que $X_i = x$ C'est la probabilité a priori ou evidence

 $p(Y_i = j)$ représente la probabilité que $Y_i = j$ (c'est la proportion de données qui forment classe C_j) C'est la probabilité a priori

$$p(Y_i = j / X_i = x) = \frac{p(X_i = x / Y_i = j) * p(Y_i = j)}{p(X_i = x)}$$

Le classifieur bayes naif se base sur l'Hypothèse d'indépendance conditionnelle

$$p(X_i = x/Y_i = j) = p(X_i = (X_{i1}, X_{i2} ... X_{ip})/Y_i = j)$$

$$p(X_i = x/Y_i = j) = p(X_i = X_{i1} / Y_i = j) \times p(X_i = X_{i2} / Y_i = j) \times \dots$$

$$p(X_i = X_{i2} / Y_i = j) \times \dots$$

$$p(X_i = X_{ip} / Y_i = j)$$

Estimée à l'aide des données d'apprentissage

$$p(Y_i = j / X_i = x) = \frac{p(X_i = x / Y_i = j) * p(Y_i = j)}{p(X_i = x)}$$

La probabilité pour que la donnée X_i prenne la valeur x s'écrit:

$$p(X_i = x) = \sum_{k=1}^{K} p(X_i = x \text{ et } Y_i = k)$$

$$p(X_i = x) = \sum_{k=1}^{K} p(X_i = x/Y_i = k) \times p(Y_i = k)$$

$$p(Y_i = j / X_i = x) = \frac{p(X_i = x / Y_i = j) * p(Y_i = j)}{p(X_i = x)}$$

S'écrit:

$$p(Y_{i} = j / X_{i} = x) = \frac{\prod_{p=1}^{P} p(X_{i} = x_{ip} / Y_{i} = j) \times p(Y_{i} = j)}{\sum_{k=1}^{K} p(X_{i} = x / Y_{i} = k) \times p(Y_{i} = k)}$$

On calcule la probabilité $p(Y_i = j / X_i = x)$ à chaque classe C_j j = 1..K pour la donnée $X_i = x$, on décide de la classe d'appartenance de X_i en prenant le maximum de probabilité a posteriori (maximum de vraisemblance):

$$Y_{MAP} = argmax_{j} \{ p(Y_{i} = j/X_{i} = x) \}$$

$$Y_{MAP} = argmax_{j} \{ \frac{p(X_{i} = x/Y_{i} = j) * p(Y_{i} = j)}{p(X_{i} = x)} \}$$

$$Y_{MAP} = argmax_{j} \{ p(X_{i} = x/Y_{i} = j) * p(Y_{i} = j) \}$$

Cas de variables prédictives qualitatives

Exemple

On cherche le modèle de classification supervisée basé sur le classificateur Naif bayesian

Jour	Temps	Température	Humidité	Vent	Jouer
1	Ensoleillé	chaude	Élevée	faible	non
2	Ensoleillé	chaude	Élevée	fort	non
3	Couvert	chaude	Élevée	faible	oui
4	pluie	douce	Élevée	faible	oui
5	pluie	fraiche	normale	faible	oui
6	pluie	fraiche	normale	fort	non
7	Couvert	fraiche	normale	fort	oui
8	Ensoleillé	douce	Élevée	faible	non
9	Ensoleillé	fraiche	normale	faible	oui
10	Pluie	douce	normale	faible	Oui
11	Ensoleillé	douce	normale	Fort	Oui
12	Couvert	douce	Élevée	Fort	Oui
13	Couvert	chaude	normale	Faible	Oui
14	pluie	douce	Élevée	fort	Non

Exemple

X=Attribut	Valeurs de X	Y=Jouer = Oui	Y=Jouer = Non
	Ensoleillé	2	3
Temps	Couvert	4	0
	Pluie	3	2
	Chaude	2	2
Température	Douce	4	2
	Fraiche	3	1
Humidité	Elevée	3	4
	Normale	6	1
Vent	Fort	3	3
	Faible	6	2
Jouer		9	5

Exemple

$$p(Y_{i} = j / X_{i} = x) = \frac{\prod_{p=1}^{P} p(X_{i} = x_{ip} / Y_{i} = j) \times p(Y_{i} = j)}{\sum_{k=1}^{K} p(X_{i} = x / Y_{i} = k) \times p(Y_{i} = k)}$$

X=Attribut	x=Valeurs	P(Y=Jouer = Oui)=9/14	P(Y=Jouer = Non)=5/14
	Ensoleillé	P(Ensoleillé/jouer=oui)=2/9	P(Ensoleillé/jouer)non)=3/5
Temps	Couvert	P(Couvert//jouer=oui)=4/9	P(Couvert//jouer=non)=0/5
	Pluie	P(Pluie/jouer=oui)=3/9	P(Pluie/jouer=non)=2/5
	Chaude	P(Chaude/jouer=oui)=2/9	P(Chaude/jouer=non)=2/5
Température	Tiède	P(Douce/jouer=oui)=4/9	P(Douce/jouer=non)=2/5
	Fraiche	P(Fraiche/jouer=oui)=3/9	P(Fraiche/jouer=non)=1/5
Humidité	Elevée	P(Elevée/jouer=oui)=3/9	P(Elevée/jouer=non)=4/5
	Normale	P(Normale/jouer=oui)=6/9	P(Normale/jouer=non)=1/5
Vent	Fort	P(Fort/jouer=oui)=3/9	P(Fort/jouer=non)=3/5
	Faible	P(Faible/jouer=oui)=6/9	P(Faible/jouer)non)=2/5
Jouer		9	5

Exemple

```
\mathbf{x} = (ensoleillé, fraiche, élevée, fort), y \in \{oui, non\}. On voudrait prédire la classe de la donnée X = x
```

$$Y_{MAP} = argmax \quad \{p(Y = oui/X = x), p(Y = non/X = x)\}$$

```
p(Y = oui / X = x) = p(X = x / Y = oui) \times p(Y = oui)
p(Y = oui / X = (ensoleillé, fraiche, élevée, fort)) = p(X = (ensoleillé, fraiche, élevée, fort) / Y = oui) \times p(Y = oui)
p(Y = oui / X = (ensoleillé, fraiche, élevée, fort)) = p(X = ensoleillé / Y = oui) \times p(X = fraiche / Y = oui) \times p(X = élevée / Y = oui) \times p(X = fort / Y = oui)
```

$$p(Y = oui / X = (ensoleillé, fraiche, élevée, fort)) = \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = \frac{2}{243}$$

$$p(Y = oui) = \frac{9}{14}$$

Exemple

```
\mathbf{x} = (ensoleillé, fraiche, élevée, fort), y \in \{oui, non\}.
On voudrait prédire la classe de la donnée X = x
```

```
Y_{MAP} = argmax \{ p(Y = oui/X = x), p(Y = non/X = x) \}
```

```
p(Y = non \ | X = x) = p(X = x/Y = non) \times p(Y = non)

p(Y = non \ | X = (ensoleillé, fraiche, élevée, fort)) = p(X = (ensoleillé, fraiche, élevée, fort) | Y = non) \times p(Y = non)

p(Y = non \ | X = (ensoleillé, fraiche, élevée, fort)) = p(X = ensoleillé \ | Y = non) \times p(X = fraiche \ | Y = non) \times p(X = élevée \ | Y = non) \times p(X = fort \ | Y = non)
```

$$p(Y = non/X = (ensoleillé, fraiche, élevée, fort)) = \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = \frac{36}{625}$$

 $p(Y = non) = \frac{5}{14}$

Exemple

 $\mathbf{x} = (ensoleillé, fraiche, élevée, fort), y \in \{oui, non\}$. On voudrait prédire la classe de la donnée X=x

$$Y_{MAP} = argmax \{ p(Y = oui/X = x), p(Y = non/X = x) \}$$

$$p(Y = oui/X = x) = p(X = x/Y = oui) \times p(Y = oui) = \frac{2}{243} * \frac{9}{14} = 0.0053$$

 $p(Y = non/X = x) = p(X = x/Y = non) \times p(Y = non) = \frac{36}{625} * \frac{5}{14} = 0.020$

$$Y_{MAP} = 0.020$$

la donnée X=x sera classée dans la classe non

Estimateur de Laplace

Dans certains cas, la probabilité d'apparence d'une classe est nulle car il y a un manque d'exemples de cette classe. Afin de résoudre ce problème, on utilise l'estimateur de Laplace qui consiste à ajouter une valeur μ à chaque dénominateur pour un attribut donné,

Estimateur de Laplace

Dans certains cas, la probabilité d'apparence d'une classe est nulle car il y a un manque d'exemples de cette classe. Afin de résoudre ce problème, on utilise l'estimateur de Laplace qui consiste à ajouter une valeur μ à chaque dénominateur pour un attribut donné.

X=Attribut	x=Valeurs	P(Y=Jouer = Oui)=9/14	P(Y=Jouer = Non)=5/14
	Ensoleillé	P(Ensoleillé/jouer=oui)=2/9	P(Ensoleillé/jouer)non)=3/5
Temps	Couvert	P(Couvert//jouer=oui)=4/9	P(Couvert//jouer=non)=0/5
	Pluie	P(Pluie/jouer=oui)=3/9	P(Pluie/jouer=non)=2/5

Avec l'Estimateur de Laplace

X=Attribut	x=Valeurs	P(Y=Jouer = Oui)=9/14	P(Y=Jouer = Non)=5/14
	Ensoleillé	P(Ensoleillé/jouer=oui)=2/9	P(Ensoleillé/jouer)non)=(3+1/(5+3)=4/8
Temps	Couvert	P(Couvert//jouer=oui)=4/9	P(Couvert//jouer=non)=(0+1)/(5+3)=1/8
	Pluie	P(Pluie/jouer=oui)=3/9	P(Pluie/jouer=non)=(2+1)/(5+3)=3/8

L'Estimateur de Laplace

X=Attribut	x=Valeurs	P(Y=Jouer = Oui)=9/14	P(Y=Jouer = Non)=5/14
	Ensoleillé	P(Ensoleillé/jouer=oui)=2/9	P(Ensoleillé/jouer)non)=4/8
Temps	Couvert	P(Couvert//jouer=oui)=4/9	P(Couvert//jouer=non)=1/8
	Pluie	P(Pluie/jouer=oui)=3/9	P(Pluie/jouer=non)=3/8
	Chaude	P(Chaude/jouer=oui)=2/9	P(Chaude/jouer=non)=2/5
Température	Tiède	P(Tiède/jouer=oui)=4/9	P(Tiède/jouer=non)=2/5
	Fraiche	P(fraiche/jouer=oui)=3/9	P(Fraiche/jouer=non)=1/5
Humidité	Elevée	P(Elevée/jouer=oui)=3/9	P(Elevée/jouer=non)=4/5
	Normale	P(Normale/jouer=oui)=6/9	P(Normale/jouer=non)=1/5
Vent	Fort	P(Fort/jouer=oui)=3/9	P(Fort/jouer=non)=3/5
	Faible	P(Faible/jouer=oui)=6/9	P(Faible/jouer)non)=2/5
Jouer		9	5

Estimateur de Laplace

```
x = (Couvert, fraiche, élevée, fort)
On voudrait prédire la classe de la donnée X = x
```

$$Y_{MAP} = argmax \{p(Y = oui/X = x), p(Y = non/X = x)\}$$

$$p(Y = oui \mid X = x) = p(X = x \mid Y = oui) \times p(Y = oui)$$
 $p(Y = oui \mid X = (couvert, fraiche, élevée, fort)) = p(X = (couvert, fraiche, élevée, fort) \mid X = p(Y = oui)$
 $p(Y = oui \mid X = (couvert, fraiche, élevée, fort)) = p(X = couvert \mid Y = oui) \times p(X = fraiche \mid Y = oui) \times p(X = élevée \mid Y = oui) \times p(X = fort \mid Y = oui)$

$$p(Y = oui / X = (couvert, fraiche, élevée, fort)) = \frac{4}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = \frac{4}{243}$$
$$p(Y = oui) = \frac{9}{14}$$

Estimateur de Laplace

```
x = (couvert, fraiche, élevée, fort)
On voudrait prédire la classe de la donnée X = x
```

$$Y_{MAP} = argmax \{p(Y = oui/X = x), p(Y = non/X = x)\}$$

```
p(Y = non \ / X = x) = p(X = x/Y = non) \times p(Y = non)
p(Y = non \ / X = (couvert, fraiche, élevée, fort)) = p(X = (couvert, fraiche, élevée, fort)/Y = non) \times p(Y = non)
p(Y = non/X = (ensoleillé, fraiche, élevée, fort)) = p(X = couvert/Y = non) \times p(X = fraiche/Y = non) \times p(X = élevée/Y = non) \times p(X = fort/Y = non)
```

$$p(Y = non/X = (couvert, fraiche, élevée, fort)) = \frac{1}{8} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = \frac{36}{625}$$
$$p(Y = non) = \frac{5}{14}$$

Cas de Données manquante

```
x = (?, fraiche, élevée, fort)
  On voudrait prédire la classe de la donnée X = x
p(Y = oui / X) = \frac{p(X/Y = oui) \times p(Y = oui)}{p(X)} \quad et \quad p(Y = non / X) = \frac{p(X/Y = non) \times p(Y = non)}{p(X)}
p(Y = oui/X = (?, fraiche, élevée, fort)) = p(X = (?, fraiche, élevée, fort)/Y = oui) ×
                                                                                                                                                                                                                                                                                                                                                                                                        p(Y = oui)
p(Y = oui/X = (?, fraiche, élevée, fort)) = p(temps = ?/Y = oui) \times
                                                                                                                                                                                                                                                                                                                                                                        p(temperature=fraiche/Y = oui) \times
                                                                                                                                                                                                                                                                                                                                                                        p(\text{humidité} = elevée/Y = oui) \times
                                                                                                                                                                                                                                                                                                                                                                         p(\text{vent} = fort/Y = oui) \times p(Y = oui)
p(Y = oui/X = \{?, \text{ fraiche, \'elev\'ee, fort})\} = 1 \times \frac{3}{9} \times
```


Cas de Données manquante

```
x = (?, fraiche, élevée, fort)
On voudrait prédire la classe de la donnée X = x
p(Y = oui / X) = \frac{p(X/Y = oui) \times p(Y = oui)}{p(X)} \quad et \quad p(Y = non / X) = \frac{p(X/Y = non) \times p(Y = non)}{p(X)}
p(Y = non/X = (?, fraiche, élevée, fort)) = p(X = (?, fraiche, élevée, fort)/Y = non) \times
                                                         p(Y = non)
p(Y = non/X = (?, fraiche, élevée, fort)) = p(temps = ?/Y = non) \times
                                                    p(temperature=fraiche/Y = non) \times
                                                    p(\text{humidité} = elevée/Y = non) \times
                                                    p(\text{vent} = fort/Y = non) \times p(Y = non)
p(Y = non/X = \{?, fraiche, élevée, fort\}) = 1 \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14}
```


Cas d'Attribut numérique

Attribut numériques

Si l'attribut est numérique, on suppose que la distribution de la valeur de l'attribut x_d est normale moyenne μ_d et l'écart-type σ_d : $N(\mu_d, \sigma_d)$

$$p(\mathbf{x}_d = x_d | \mu_d, \sigma_d) = \frac{1}{\sigma_d \sqrt{2\pi}} \exp\left(-\frac{(x_d - \mu_d)^2}{2\sigma_d^2}\right)$$

Attribut numériques

Exemple

										Tempe	érature
Jour		Température	humidité	vent	Jouer au	ennis 1	?			oui	non
1	Ensoleillé	27,5	Élevée	Faible	Non						
2	Ensoleillé	25	Élevée	Fort	Non					26, 5	27, 5
3	Couvert	26,5	Élevée	Faible	Oui					20	25
4	Pluie	20	Élevée	Faible	Oui					20	20
5	Pluie	19	Normale	Faible	Oui					19	17, 5
6	Pluie	17,5	Normale	Fort	Non						
7	Couvert	17	Normale	Fort	Oui					17	21
8	Ensoleillé	21	Élevée	Faible	Non					19, 5	20, 5
9	Ensoleillé	19,5	Normale	Faible	Oui					,	20,0
10	Pluie	22,5	Normale	Faible	Oui					22, 5	
11	Ensoleillé	22,5	Normale	Fort	Oui					22, 5	
12	Couvert	21	Élevée	Fort	Oui					22, 0	
13	Couvert	25, 5	Normale	Faible	Oui					21	
14	Pluie	20,5	Élevée	Fort	Non		N			25 5	
		^					1∇			25, 5	
						μ -	$= \frac{1}{N} \sum_{i=1}^{N} x_i$		moyenne	21, 5	22, 3
								_	écart-type	2,91	3,53
						$\sigma = \sqrt{}$	$\frac{1}{N}\sum_{i=1}^{N}(x_i-\mu)$)2			

Exemple

$$p(Y = oui / X) = \frac{p(X/Y = oui) \times p(Y = oui)}{p(X)}$$
$$(Y = non / X) = \frac{p(X/Y = non) \times p(Y = non)}{p(X)}$$

	Température			
	oui	non		
	26, 5	27,5		
	20	25		
	19	17,5		
	17	21		
	19, 5	20, 5		
	22, 5			
	22, 5			
	21			
	25, 5			
moyenne	21, 5	22,3		
écart-type	2,91	3,53		

$$p(Y = oui/X = (\text{pluie, 18, \'elev\'ee, fort})) = p(X = (\text{pluie, 18, \'elev\'ee, fort})/Y = oui) \times p(Y = oui)$$

$$p(Y = oui/X = (\text{pluie, 18, \'elev\'ee, fort})) = p(temps = \text{pluie}/Y = oui) \times p(temperature=18/Y = oui) \times p(\text{humidit\'e}=elev\'ee/Y = oui) \times p(\text{vent}=fort/Y = oui) \times p(Y = oui)$$

$$p(\text{temperature}=18/Y = oui) = \frac{1}{2.91*\sqrt{2\pi}}e^{-\frac{(18-21.5)^2}{2*(21.5)^2}}$$

$$p(Y = oui/X = \text{(pluie, 18, \'elev\'ee, fort)}) = \frac{3}{9} \times \frac{0,066}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{14}$$

Exemple

$$x = (pluie, 18, élevée, fort)$$

$$p(Y = oui / X) = \frac{p(X/Y = oui) \times p(Y = oui)}{p(X)}$$
$$(Y = non / X) = \frac{p(X/Y = non) \times p(Y = non)}{p(X)}$$

	Température			
	oui	non		
	26, 5	27,5		
	20	25		
	19	17,5		
	17	21		
	19, 5	20, 5		
	22, 5			
	22, 5			
	21			
	25, 5			
moyenne	21, 5	22, 3		
écart-type	2,91	3,53		

$$p(Y = non/X = (\text{pluie, } 18, \text{\'elev\'ee, } fort)) = p(X = (\text{pluie, } 18, \text{\'elev\'ee, } fort)/Y = non) \times \\ p(Y = non) \\ p(Y = non/X = (\text{pluie, } 18, \text{\'elev\'ee, } fort)) = p(temps = \text{pluie}/Y = non) \times \\ p(temperature=18/Y = non) \times \\ p(\text{humidit\'e=elev\'ee}/Y = non) \times \\ p(\text{vent=}fort/Y = non) \times p(Y = non) \\ p(\text{temperature=}18/Y = non) = \frac{1}{3.53*\sqrt{2\pi}}e^{-\frac{(18-22.3)^2}{2*(22.3)^2}}$$

$$p(Y = non/X = \text{(pluie, 18, \'elev\'ee, fort)}) = \frac{3}{5} \times 0,053 \times \frac{4}{5} \times \frac{3}{5} \times \frac{5}{14}$$

Evaluation

VP : le nombre de données de la classe positive qui ont correctement classées dans la classe positive

VN : le nombre de données de la classe négative qui ont correctement classées dans la classe négative

FP: le nombre de données de la classe négative qui ont classées dans la classe positive

FN: le nombre de données de la classe positive qui ont classées dans la classe négative

Evaluation

Evaluation

Taux de bonne classification (accuracy)

C'est le nombre de données qui ont été mal classés

$$\frac{VP + VN}{VP + VN + FP + FN}$$

Erreur de classification = 1-accuracy

Evaluation

• **précision:** le nombre de données correctement classées dans la classe positive (resp. négative) sur le nombre total de données prédits positives (resp. négatives).

-précision (classe positive)=
$$\frac{VP}{VP+FP}$$

- **précision**(classe négative) =
$$\frac{VN}{VN+FN}$$

Evaluation

 rappel: le nombre de données correctement classées positives (resp. négative) sur le nombre total de données réellement positives (resp. négative)

Rappel (classe positive) =
$$\frac{VP}{VP+FN}$$

Rappel (classe négative) =
$$\frac{VN}{FP+VN}$$