BAB VIB

METODE BELAJAR Delta rule, ADALINE (WIDROW-HOFF), MADALINE

6B.1 Pelatihan ADALINE

- Model ADALINE (Adaptive Linear Neuron) ditemukan oleh Widrow & Hoff (1960)
- Arsitekturnya mirip dengan perseptron
- Perbedaan dengan perseptron adalah dalam cara modifikasi bobotnya.
- Bobot dimodifikasi dengan ATURAN DELTA (sering disebut least mean square)
- Selama pelatihan, fungsi aktivasi yang digunakan fungsi identitas (f(x)= x)

$$net = \sum_{i} x_i w_i + b$$

y= f(net) = net =
$$\sum_{i} x_i w_i + b$$

Kuadrat selisih antara target t dan keluaran y =f(net) merupakan *error* yang terjadi. Dalam aturan delta, bobot dimodifikasi sedemikian sehingga errornya minimum

$$E = (t - f(net))^2 = (t - (\sum_i x_i w_i + b))^2$$

Error merupakan fungsi bobot w_i.

Penurunan E tercepat terjadi pada arah

$$\partial E/\partial w_i = -2 (t - (\sum_i x_i w_i + b)) x_i = -2 (t - y) x_i.$$

Maka perubahan bobot adalah:

$$\triangle w_i = \alpha (t - y) x_i$$
,

dengan α merupakan positif kecil (umumnya $\alpha = 0.1$)

Algoritma pelatihan ADALINE sbb:

- 0. Inisialisasi semua bobot dan bias (umumnya w_i = b =0) Set laju pembelajaran α (untuk penyederhanaan set α = 0,1) Tentukan toleransi kesalahan yang diijinkan
- 1. Selama $\max_{i} \triangle w_{i}$ > batas toleransi, lakukan :
 - a. Set aktivasi unit masukan $x_i = s_i$ (i = 1, ..., n)
 - b. Hitung respon unit keluaran: net = $\sum_{i} x_i w_i + b$

$$y = f(net) = net = \sum_{i} x_i w_i + b$$

 c. Perbaiki bobot pola yang mengandung kesalahan (y ≠ t) menurut persamaan

$$w_i$$
 (baru) = w_i (lama) + α (t - y) x_i
b (baru) = b (lama) + α (t - y)

Setelah proses pelatihan selesai, ADALINE dapat dipakai untuk pengenalan pola. Untuk itu, umumunya dipakai fungsi *threshold* bipolar (meskipun tidak menutup kemungkinan digunakan bentuk lainnya)

Caranya adalah sbb:

- 0. Inisialisasi semua bobot dan bias dengan bobot dan bias hasil pelatihan
- 1. Untuk setiap input masukan bipolar x_i , lakukan:
 - a. Set aktivasi unit masukan $x_i = s_i$ (i = 1, ..., n)
 - b. Hitung net vektor keluaran: net = $\sum_{i} x_i w_i + b$
 - c. Kenakan fungsi aktivasi

$$\mathbf{y} = f(net) = \begin{cases} 1 & jika & net > 0 \\ -1 & jika & net < 0 \end{cases}$$

Gunakan model ADALINE untuk mengenali pola fungsi logika "AND" dengan masukan dan target bipolar:

Masukan			Target	
X ₁	X ₂	1	t	
1	1	1	1	
1	-1	1	-1	
-1	1	1	-1	
-1	-1	1	-1	

Gunakan batas toleransi = 0.05 dan α = 0.1

Penyelesaian

Dengan α = 0,1, maka perubahan bobotnya = $\triangle w_i$ = 0,1 (t - y) x_i . Tabel berikut menunjukan hasil pada <u>epoch pertama.</u> Dalam tabel f(net) = net

Masukan	target				Perubahan bobot	Bobot Baru
(x ₁ x ₂ 1)	t	net	y =	t - y	$(\Delta w_1 \ \Delta w_2 \ \Delta b)$	(w ₁ w ₂ b)
			f(net)			
	Inisialisasi					(0 0 0)
(1 1 1)	1	0	0	1	(0,1 0,1 0,1)	(0,1 0,1 0,1)
(1 -1 1)	-1	0,1	-1,1	-1,1	(-0,11 0,11 -0,11)	(-0,11 0,11 -0,11)
(-1 1 1)	-1	0,21	0,21	-1,21	(0,11 -0,12 -0,12)	(0,11 0,09 -0,13)
(-1 -1 1)	-1	-0,33	-0,33	-0,67	(0,07 0,07 -0,07)	(0,18 0,16 -0,2)

Maksimum $\triangle w_i = 0.07$ > toleransi, maka iterasi dilanjutkan untuk epoch kedua, seperti tampak pada tabel berikut

Masukan	target				Perubahan bobot	Bobot Baru
(x ₁ x ₂ 1)	t	net	y =	t - y	$(\Delta w_1 \ \Delta w_2 \ \Delta b)$	(w ₁ w ₂ b)
			f(net)			
		In	isialisa	si		(0,18 0,16 -0,2)
(1 1 1)	1	0,14	0,14	0,86	(0,09 0,09 0,09)	(0,26 0,24 -0,11)
(1 -1 1)	-1	-0,09	-0,09	-0,91	(-0,09 0,09 -0,09)	(0,17 0,33 -0,2)
(-1 1 1)	-1	-0,04	-0,04	-0,96	(0,1 -0,1 -0,1)	(0,27 0,24 -0,3)
(-1 -1 1)	-1	-0,8	-0,8	-0,2	(0,02 0,02 -0,02)	(0,29 0,26 -0,32)

Maksimum $\triangle w_i = 0.02$ < toleransi, maka iterasi dihentikan dan bobot terakhir yang diperoleh ($w_1 = 0.29$, $w_2 = 0.26$ dan b = -0.32) merupakan bobot yang digunakan dalam pengenalan polanya.

Tabel berikut merupakan pengenalan pola fungsi AND menggunakan bobot hasil pelatihan.

Masukan		net	$\mathbf{V} = f(net) = \begin{cases} 1 & jika & net \ge 0 \end{cases}$
			$\mathbf{y} = f(net) = \begin{cases} -1 & jika & net < 0 \end{cases}$
X ₁	X ₂		
1	1	0,23	1
1	-1	-0,29	-1
-1	1	-0,35	-1
-1	-1	-0,87	-1

Latihan:

1. Ulangi contoh di atas, tapi dengan $\alpha = 0,1$

Catatan: setelah latihan di atas dikerjakan, tampak bahwa penggunaan α yang lebih besar akan menyebabkan iterasi menjadi lebih cepat. Akan tetapi penggunaan α yang terlalu besar akan menyebabkan iterasi melompat jauh sehingga melewati bobot optimalnya

6B.2 MADALINE

Beberapa ADALINE dapat digabungkan untuk membentuk suatu jaringan baru yang disebut MADALINE (man ADALINE).

Dalam MADALINE terdapat sebuah layar tersembunyi.

Gambar berikut contoh MADALINE untuk 2 buah masukan x_1 dan x_2 , sebuah layer tersembunyi yang terdiri dari 2 unit neuron tersembunyi z_1 dan z_2 dan sebuah keluaran Y.

Keluaran dari unit tersembunyi z_1 dan z_2 adalah nilai fungsi aktivasi (dan threshold) yang diterima dari x_1 dan x_2 .

Unit keluaran Y merupakan nilai fungsi aktivasi dari z₁ dan z₂.

Meskipun keluaran z_1 dan z_2 masing-2 merupakan fungsi linier, tetapi keluaran Y bukanlah fungsi linier x_1 dan x_2 karena adanya unit tersembunyi.

Adanya unit tersembunyi dalam MADALINE akan meningkatkan kapabilitas komputasi dibandingkan ADALINE, meskipun pelatihannya lebih kompleks.

Pada awal ditemukannya MADALINE (Widrow-Hoff 1960), hanya bobot ke unit tersembunyi saja yang dimodifikasi selama proses pelatihan. Bobot ke unit keluaran dibuat TETAP.

Modifikasi MADALINE (Widrow dkk 1987) dilakukan dengan memodifikasi semua bobotnya.

Dalam algoritma MADALINE "mula-mula", bobot v_1 dan v_2 dan bias b_3 diatur sedemikian sehingga Y akan = 1, jika salah satu keluaran dari z_1 dan z_2 (atau keduanya) = 1.

Keluaran Y = 1 jika keluaran z_1 maupun z_2 = -1.

Dengan kata lain, unit Y membentuk logika ATAU dengan masukan dari z_1 dan z_2 .

Maka diambil nilai $v_1 = v_2 = 1/2$ dan $b_3 = \frac{1}{2}$

Algoritma pelatihan MADALINE "mula-mula" untuk pola masukan dan target bipolar) adalah sbb:

- Inisialisasi semua bobot dan bias dengan bilangan acak kecil.
 Insialisasi laju pembelajaran α dengan bilangan kecil
- 2. Selama perubahan bobot lebih besar dari toleransi (atau jumlah epoch belum melebihi batas yang ditentukan), lakukan langkah a e:
 - 2a. Set aktivasi unit masukan x_i = s_i untuk semua i
 - 2b. Hitung net input untuk setiap unit tersembunyi ADALINE (z₁z_n)

$$z_{\text{in}_{j}} = \sum_{i} x_{i} w_{ij} + b_{j}$$

2c. Hitung keluaran setiap unit tersembunyi dengan menggunakan fungsi aktivasi bipolar:

$$z_{j} = f(z_{in_{j}}) = \begin{cases} 1 & jika \quad z_{in_{j}} \ge 0 \\ -1 & jika \quad z_{in_{j}} < 0 \end{cases}$$

2d. Tentukan keluaran jaringan

$$\mathbf{y}_{in} = \sum_{i} x_{i} w_{i} + b_{k}$$

$$\mathbf{y} = \mathbf{f}(\mathbf{y}_{in}) = \begin{cases} 1 & jika \quad y_{in} \ge 0 \\ -1 & jika \quad y_{in} < 0 \end{cases}$$

2e. Hitung error dan tentukan perubahan bobot.

Jika y = target, maka TIDAK dilakukan perubahan bobot Jika y ≠ target:

Untuk t = 1, ubah bobot ke unit z_j yang z_{in} nya terdekat dengan 0 (misal ke unit z_p) sbb:

$$b_p (baru) = b_p (lama) + \alpha (1 - z_{in_p})$$

$$w_{pi}(baru) = w_{pi}(lama) + \alpha (1 - z_{in_p}) x_i$$

Untuk t = -1, ubah semua bobot ke unit z_k yang z_{in} nya positif sbb:

$$b_p (baru) = b_p (lama) + \alpha (-1-z_{in_k})$$

$$w_{ki}(baru) = w_{ki}(lama) + \alpha (-1-z_{in_k}) x_i$$

Logika modifikasi bobot pada langkah 2.e adalah sbb:

Perhatikan gambar MADALINE di atas.

Jika y \neq t dan t = 1 (karena y bipolar bearti y = -1), maka f(net) di z₁ = z₂ = -1.

Untuk mengenali pola, paling sedikit salah satu dari z tersebut harus dijadikan = 1.

Bobot yang dimodifikasi adalah bobot ke unit z yang net-nya paling dekat dengan 0. Misalkan unit z yang keluarannya terdekat dengan 0 adalah z_p .

Maka bobot dan bias dimodifikasi menurut persamaan:

$$b_p (baru) = b_p (lama) + \alpha (1 - z_{in_p})$$

$$w_{pi}(baru) = w_{pi}(lama) + \alpha (1 - z_{in_p}) x_i$$

Sebaliknya,

Jika y \neq t dan t = -1 (dengan kata lain y = 1), bearti minimal salah satu z memiliki f(net) = 1 (atau ada z yang net-nya positif). Padahal semua z harus memiliki f(net) = -1.

Maka bobot yang dimodifikasi adalah bobot yang net-nya positif (misal unit z_k) menurut persamaan:

$$b_p (baru) = b_p (lama) + \alpha (-1-z_{in_k})$$

$$w_{ki}(baru) = w_{ki}(lama) + \alpha (-1-z_{in_k}) x_i$$

Contoh 2:

Gunakan MADALINE "mula-mula" untuk mengenali pola fungsi logika "XOR" dengan 2 masukan x_1 dan x_2 . Gunakan α = 0,5 dan toleransi = 0,1

Penyelesaian

Fungsi logika XOR memiliki pasangan masukan-target seperti table berikut

Masukan			Target	
X ₁	X ₂	1	t	
1	1	1	-1	
1	-1	1	1	
-1	1	1	1	
-1	-1	1	-1	

Inisialisasi dilakukan pada semua bobot ke unit tersembunyi dengan suatu bilangan acak kecil. Misalkan didapat hasil seperti table berikut:

Ke unit tersembunyi				
Dari unit	z ₁	Z ₂		
X ₁	$w_{11} = 0.05$	$w_{12} = 0,1$		
X ₂	$W_{21} = 0,2$	$W_{22} = 0.2$		
bias	$b_1 = 0.3$	b ₂ = 0,15		

Bobot ke unit keluaran Y adalah $v_1 = v_2 = b_3 = 0.5$

Proses iterasi untuk masukan pola pertama saja (pola lainnya silahkan di coba sendiri) sbb:

Pola – 1: masukan
$$x_1 = 1$$
, $x_2 = 1$, $t = -1$

2.b. Hitung net untuk unit tersembunyi z_1 dan z_2 :

$$z_{in_{1}} = b_{1} + x_{1} w_{11} + x_{2} w_{21} = 0.3 + 1 (0.05) + 1 (0.2) = 0.55$$

 $z_{in_{2}} = b_{2} + x_{1} w_{12} + x_{2} w_{22} = 0.15 + 1 (0.1) + 1 (0.2) = 0.45$

2.c. Hitung keluaran unit tersembunyi z_1 dan z_2 menggunakan fungsi aktivasi bipolar

$$z_1 = f(z_{in_1}) = 1$$

 $z_2 = f(z_{in_2}) = 1$

2.d. Tentukan keluaran jaringan Y:

$$y_{in} = b_3 + z_1v_1 + z_2v_2 = 0.5 + 1(0.5) + 1(0.5) = 1.5$$

 $y = f(y_{in}) = 1$

2.e. Error = $t - y = -1 - 1 = -2 \neq 0$ dan t = -1

Maka semua bobot yang menghasilkan z_{in} yang posistif dimodifikasi.

Karena $z_{in_1} > 0$ dan $z_{in_2} > 0$, maka semua bobot dimodifikasi sbb :

Perubahan bobot ke unit tersembunyi z₁:

$$\begin{aligned} &b_1(\text{baru}) = b_1(\text{lama}) + \alpha \; (\; \text{-1} - z_{\text{in_1}}) = 0.3 \; + \; 0.5(\text{-1} - 0.55) = - \; 0.475 \\ &w_{11} \; (\text{baru}) = w_{11}(\text{lama}) \; + \; \alpha \; (\; \text{-1} - z_{\text{in_1}}) \; x_1 = 0.05 \; + \; 0.5(\text{-1-0.55})1 = -0.725 \\ &w_{21} \; (\text{baru}) = w_{21}(\text{lama}) \; + \; \alpha \; (\; \text{-1} - z_{\text{in_1}}) \; x_2 = 0.2 \; + \; 0.5(\text{-1-0.55})1 = -0.575 \end{aligned}$$

Perubahan bobot ke unit tersembunyi z₂:

$$b_2(\text{baru}) = b_2(\text{lama}) + \alpha (-1 - z_{\text{in_1}}) = 0.15 + 0.5(-1 - 0.45) = -0.575$$

$$w_{12}(\text{baru}) = w_{12}(\text{lama}) + \alpha (-1 - z_{\text{in_1}}) x_1 = 0.1 + 0.5(-1 - 0.45)1 = -0.625$$

$$w_{22}(\text{baru}) = w_{22}(\text{lama}) + \alpha (-1 - z_{\text{in_1}}) x_2 = 0.2 + 0.5(-1 - 0.45)1 = -0.525$$

Tabel berikut pengecekan perubahan nilai bobot:

	Bobot mula-	Bobot stlh	∆w
	Mula	iterasi	
b ₁	0,30	- 0,475	0,775
W ₁₁	0,05	- 0,725	0,730
W ₂₁	0,20	- 0,575	0,775
b ₂	0,15	- 0,575	0,725
W ₁₂	0,10	- 0,625	0,725
W ₂₂	0,20	- 0,525	0,725

Karena masih ada (bahkan semua) perubahan bobot > toleransi yang ditetapkan, maka iterasi dilanjutkan untuk pola 2.

Iterasi dilakukan untuk semua pola. Jika ada perubahan bobot yang masih lebih besar dari batas toleransi, maka iterasi dilanjutkan untuk epoch 2 dan seterusnya