Quiz 1: Attempt review

Started on Friday, 9 October 2020, 5:36 PM

State Finished

Completed on Friday, 9 October 2020, 6:10 PM

Time taken 33 mins 11 secs

Grade 3.00 out of 7.00 (**43**%)

Question 1

Correct

Mark 1.00 out of 1.00

▼ Flag question

$$A := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} B := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Select one:

- O B is an elementary matrix
- A is a product of elementary matrices
- \bigcirc e₃ is a row matrix with standard notation, then 2.e₃AB = [0 6 0 0]
- A is an elementary matrix

The correct answer is: A is a product of elementary matrices

Question ${\bf 2}$

Correct

Mark 1.00 out of 1.00

 \crewtharpoonsep Flag question

Let A is not invertible matrix, then

Select one:

- O There does not exist any non-zero matrix B such that AB = 0
- None of the other options. \checkmark
- $\, \bigcirc \,$ There exist an elementary matrix EA is invertible.
- Ax = 0 has only zero solution

The correct answer is: None of the other options.

Question $\bf 3$

Incorrect

Mark 0.00 out of 1.00

▼ Flag question

Consider a system of linear equations Ax = b, where

$$A := \begin{bmatrix} 2 & 3 & 4 \\ 2 & 2 & 4 \\ 1 & 2 & 2 \end{bmatrix}, b := \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- (i) The system has only one solution when $2b_1 b_2 2b_3 = 0$.
- (ii) The system has a solution for each non-zero column matrix b.
- (iii) The system does not have any solution for $2b_1$ b_2 b_3 $6 \neq 0.$
- (iv) The system has innitely many solution when b_1 = 1; b_2 = 2; and b_3 = 0.

Select one:

- (ii) and (iv) are true
- (i) and (iv) are true X
- Only (iv) is true.
- Only (iii) is true

The correct answer is: Only (iv) is true.

Question 4

Incorrect

Mark 0.00 out of 1.00

▼ Flag question

$$(S.L.E-I) \begin{cases} x_1 - 2x_2 = 3 \\ 5x_1 + 3x_2 = 11 \\ 4x_1 + 5x_2 = 2 \\ 3x_1 + 7x_2 = 5 \end{cases} (S.L.E-II) \begin{cases} x_1 - 2x_2 = 3 \\ 4x_1 + 5x_2 = 8 \\ 3x_1 + 7x_2 = 5 \end{cases} (S.L.E-III) \begin{cases} 5x_1 + 3x_1 + 5x_2 = 8 \\ 3x_1 + 7x_2 = 5 \end{cases}$$

Select one:

- O (S.L.E-II) and (S.L.E-III) are not equivalent systems
- O (S.L.E-I) and (S.L.E-II) are not equivalent systems
- (S.L.E-I) and (S.L.E-II) are equivalent systems
- O (S.L.E-III) and (S.L.E.-I) are equivalent systems

The correct answer is: (S.L.E-I) and (S.L.E-II) are not equivalent systems

Question 5

Incorrect

Mark 0.00 out of 1.00

♥ Flag question

Let A be a matrix of size 4x3 and B be a matrix of size 3x4, then

Select one:

- None of the other options
- \bigcirc For a non-zero column matrix b, Bx = b may not have a solution.
- \bigcirc Ax = 0 has infinitely may solutions
- AB is a product of elementary matrices X

The correct answer is: For a non-zero column matrix b, Bx = b may not have a solution.

Question 6

2 of 3 09-10-2020, 18:14

Quiz 1: Attempt review

Correct	
Mark 1.00 out of 1.00	
Flag question	
Let A;B;C and D be so	quare matrices of same size and $AB = BC = CD = I$, then
Select one:	
\bullet A = C and B = D	✓
○ A = D	
$\bigcirc (A + B)^2 \neq A^2 +$	$2AB + B^2$
\bigcirc A = C and C = D	
The correct answer is	A = C and B = D
Question 7	
ncorrect	
Mark 0.00 out of 1.00	
Flag question	
Suppose A,B and C a	re square matrices of same size such that $AB = AC$ implies $B = C$, whenever
Select one:	
A is a matrix suc	n that Ae ₁ = e ₂
A is a matrix suc	n that Ae ₁ = e ₁ 🗶
A is any upper-ti	iangular matrix.
$\bigcirc A^3 = I.$	
○ A - I.	
O A - 1.	
The correct answer is	

3 of 3

Finish review