CMPUT 275 — Tangible Computing II Big-Oh!

Winter 2018

1. Let $f(n) = 5n^2 + 2n + 3$, $g(n) = n^2$, $n \in \mathbb{N}$. Show that f = O(g). What are a suitable values for c and N that we can use in the big-Oh definition?

Pick c = 10 (the sum of the coefficients) and N = 1. Then for $n \ge N$:

$$5n^2 + 2n + 3 < 5n^2 + 2n^2 + 3n^2 = 10n^2 = c \cdot n^2$$
.

2. For the same f, g, show that g = O(f). Again, specify suitable values of c and N (and show your work).

Pick c=1 and $N\geq 0$. Then for $n\geq N$:

$$5n^2 + 2n + 3 > n^2 = c \cdot n^2.$$

3. Show $2^n = o(3^n)$.

Let c>0. We must show $2^n \le c \cdot 3^n$ for sufficiently large n. This is equivalent to

$$\frac{1}{c} \le (3/2)^n$$

or

$$\log_{3/2} c^{-1} \le n.$$

So pick $N = \log_{2/3} c^{-1}$: for $n \ge N$ we then have $2^n \le c \cdot 3^n$.

4. Use the definition of O() to show that if f = O(g) and h = o(g) then f + h = O(g).

In fact, it holds even if h = O(g), but let's prove this one.

By definition, there are constants c_1, N_1 such that $f(n) \leq c_1 \cdot g(n)$ for $n \geq N_1$.

Also, for $c_2 = 1$ there is some N_2 such that $h(n) \le c_2 \cdot g(n)$ for $n \ge N_2$.

Thus, for $c = c_1 + 1$ and $N = \max(N_1, N_2)$ we have $(f + h)(n) \le (c_1 + 1) \cdot g(n)$ for all $n \ge N$.

5. Show that if $f(n) = a_0 + a_1 n + \cdots + a_d n^d$ is a d-degree polynomial wth non-negative coefficients (and $a_d > 0$), then $f = O(n^d)$. Also show $f = O(n^d)$ (so you are really showing $f = O(n^d)$).

For one side, pick $c = \sum_i a_i$ and N = 1. Then for $n \ge N$:

$$f(n) \le n^d \sum_{i=0}^d a_i = c \cdot n^d.$$

Conversely, let $c' = a_d$ and N' = 0. Then for $n \ge N$:

$$f(n) \ge a_d \cdot n^d = c' \cdot n^d$$
.

- 6. **Optional**: Let $f, g : \mathbb{N} \to \mathbb{R}$ be arbitrary functions that are eventually positive and increasing. That is, $f(x) \ge f(y)$ if $x \ge y$ when y is large enough (and the same for g).
 - Show that if $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ is some constant (perhaps 0) then f=O(g).
 - Show that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$ if and only if f = o(g).
 - Show that if the limit is some strictly positive value then $f = \Theta(g)$.