$$\frac{1}{n}$$
. 若 $\sum_{n=1}^{\infty} u_n^2$ 收敛,证明 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 收敛.

证明
$$\left| \frac{u_n}{n} \right| \leq \frac{1}{2} \left(u_n^2 + \frac{1}{n^2} \right), \quad \text{所以} \sum_{n=1}^{\infty} \frac{u_n}{n} \text{ 收敛.}$$

2. 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 是否收敛? 并说明理由.

$$\mathbf{M}$$
 $\lim_{n\to\infty} a_n = a > 0$,

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{1}{a_n + 1}\right)^n} = \frac{1}{a + 1} < 1$$
,由根值判别法知,

$$\sum_{n=1}^{\infty} \left(\frac{1}{a_n + 1} \right)^n$$
 收敛.

3. 设级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} c_n$ 都收敛,且 $a_n \leq b_n \leq c_n$ $(n=1,2,\cdots)$,试证级数 $\sum_{n=1}^{\infty} b_n$ 收敛.

证明 因为
$$0 \le b_n - a_n \le c_n - a_n$$
, 所以 $\sum_{n=1}^{\infty} (b_n - a_n)$ 收敛,

由
$$b_n = (b_n - a_n) + a_n$$
,可知 $\sum_{n=1}^{\infty} b_n$ 收敛.

4. 下列数项级数中收敛的个数为_____

$$(1) \sum_{n=1}^{\infty} \int_{0}^{\frac{1}{n}} \frac{\sqrt{x}}{1+x} dx;$$

(2)
$$\sum_{n=1}^{\infty} (-1)^n \ln \frac{n+1}{n}$$
;

$$(3)\sum_{n=1}^{\infty}(-1)^{n}(1-\cos\frac{2}{n})$$

(3)
$$\sum_{n=1}^{\infty} (-1)^n (1-\cos\frac{2}{n});$$
 (4) $\sum_{n=1}^{\infty} \frac{n^3 [\sqrt{2} + (-1)^n]^n}{3^n}.$

A. 1

B. 2

C. 3

D. 4

解答案D

(1)
$$\int_0^{\frac{1}{n}} \frac{\sqrt{x}}{1+x} dx < \int_0^{\frac{1}{n}} \sqrt{x} dx = \frac{2}{3} \frac{1}{n^{\frac{3}{2}}} \text{ where }$$

(4)
$$\frac{n^3[\sqrt{2}+(-1)^n]^n}{3^n} < \left(\frac{5}{2}\right)^n \frac{n^3}{3^n} = \left(\frac{5}{6}\right)^n n^3$$
, $\lim_{n \to \infty} \frac{\left(\frac{5}{6}\right)^{n+1} (n+1)^3}{\left(\frac{5}{6}\right)^n (n)^3} = \frac{5}{6}$ \mathbb{Z}

- 5. 若级数 $\sum_{n=1}^{\infty} \frac{(-1)^n + \alpha}{n}$ 收敛,则 α 的取值范围是 $\underline{0}$;
- 6. 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{a_{2n}}}{\sqrt[3]{n^2+1}}$ (
 - (A) 条件收敛:

(B) 绝对收敛:

(C) 发散;

(D) 敛散性不能确定。

解 正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} a_{2n}$, $\sum_{n=1}^{\infty} a_{2n-1}$ 收敛

$$\frac{\sqrt{a_{2n}}}{\sqrt[3]{n^2+1}} \le \frac{1}{2} \left(a_{2n} + \frac{1}{(n^2+1)^{\frac{2}{3}}} \right), \qquad \frac{1}{(n^2+1)^{\frac{2}{3}}} < \frac{1}{n^{\frac{4}{3}}} \qquad 绝对收敛$$

7. 已知
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{\alpha}}$$
 收敛,则 α 应满足_____.

解
$$\lim_{n\to\infty} \frac{\frac{\sqrt{n+1}}{n^{\alpha}}}{\frac{1}{n^{\alpha-\frac{1}{2}}}} = 1$$
, $\alpha - \frac{1}{2} > 1 \Rightarrow \alpha > \frac{3}{2}$

- 8. 设有两个数列 $\{a_n\}$, $\{b_n\}$,若 $\lim_{n\to\infty} a_n = 0$,则()
- (A) 当 $\sum_{n=1}^{\infty} b_n$ 收敛时, $\sum_{n=1}^{\infty} a_n b_n$ 收敛 (B) 当 $\sum_{n=1}^{\infty} b_n$ 发散时, $\sum_{n=1}^{\infty} a_n b_n$ 发散.
- (C) 当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛(D)当 $\sum_{n=1}^{\infty} |b_n|$ 发散时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 发散

解 证明 (C) 对.

当 $\sum_{n=1}^{\infty} |b_n|$ 收敛时, $\Rightarrow |b_n| \to 0 \Rightarrow$ 由保号性,n 充分大时, $|b_n| < 1 \Rightarrow n$ 充分大时, $b_n^2 < |b_n|$. 又由 $\lim_{n \to \infty} a_n = 0 \Rightarrow$ 由保号性,n 充分大时, $a_n^2 < 1$ 从而n 充分大时, $a_n^2 b_n^2 < |b_n|$,由比较判别法,级数 $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛.

(A)
$$a_n = b_n = \frac{(-1)^{n-1}}{\sqrt{n}}$$
 (B) $a_n = b_n = \frac{1}{n}$ **(D)** $a_n = b_n = \frac{1}{\sqrt{n}}$

<mark>9</mark>. 以下四个数项级数中,发散的是______.

A.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.001}}$$
;

B.
$$\sum_{n=1}^{\infty} (-1)^n \ln(1+\frac{1}{n})$$
;

C.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \sin \frac{1}{n} \right);$$

D.
$$\sum_{n=1}^{\infty} (1-\frac{1}{n})^n$$
.

$$\mathbf{P} \quad \underline{\mathbf{D}} \quad \lim_{n \to \infty} (1 - \frac{1}{n})^n = \frac{1}{e}$$

<mark>10</mark>. 以下命题中正确的是_____.

A. 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_n^2$ 收敛.

B. 若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛.

C. 若
$$u_n > 0$$
, 且 $u_n = o(\frac{1}{n})$ $(n \to \infty)$, 则 $\sum_{n=1}^{\infty} u_n$ 收敛.

D. 若
$$u_n > 0$$
,且 $\lim_{n \to \infty} u_n \sqrt{n} = 1$,则交错级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 收敛.

解 证明 B 对.

若
$$\sum_{n=1}^{\infty} u_n$$
 收敛,则 $\sum_{n=1}^{\infty} u_{n+1}$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} (u_n + u_{n+1})$ 收敛

A.
$$u_n = \frac{(-1)^{n-1}}{\sqrt{n}}$$
 C. $u_1 = 1$, $u_n = \frac{1}{n \ln n}$, $n = 2, 3, \dots$ **D.** $u_n = \frac{1}{\sqrt{n}} + (-1)^n \frac{1}{n^{\frac{2}{3}}}$