MAST30027: Modern Applied Statistics

Assignment 4, Solution, 2021

Problem 1: Posterior inference using Gibbs sampling

(a) **Solution** Let n = 100 and m = 150, we have

$$p(\mu_{1}|\mu_{2}, x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m})$$

$$\propto p(x_{1}, \cdots, x_{n}|\mu_{1})p(y_{1}, \cdots, y_{m}|\mu_{2})p(\mu_{1}, \mu_{2})$$

$$\propto \exp\left[-\frac{1}{2}\left(\sum_{i=1}^{n}(x_{i}-\mu_{1})^{2}+2\sum_{i=1}^{m}(y_{i}-\mu_{2})^{2}+(3\mu_{1}^{2}+4\mu_{1}\mu_{2}+3\mu_{2}^{2})\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left((n+3)\mu_{1}^{2}-2\left(\sum_{i=1}^{n}x_{i}-2\mu_{2}\right)\mu_{1}\right)\right]$$

$$\propto \exp\left[-\frac{n+3}{2}\left(\mu_{1}^{2}-2\frac{\sum_{i=1}^{n}x_{i}-2\mu_{2}}{n+3}\mu_{1}\right)\right],$$

Thus, we have $\mu_1|\mu_2, x_1, \dots, x_n, y_1, \dots, y_m \sim \text{Normal}(\frac{\sum_{i=1}^n x_i - 2\mu_2}{n+3}, \frac{1}{n+3})$. Similarly, we have $\mu_2|\mu_1, x_1, \dots, x_n, y_1, \dots, y_m \sim \text{Normal}(\frac{2\sum_{i=1}^m y_i - 2\mu_1}{2m+3}, \frac{1}{2m+3})$.

(b) Solution

```
> x = scan(file="assignment4_x_2021.txt", what=double())
> y = scan(file="assignment4_y_2021.txt", what=double())
> set.seed(30027)
> # Implement Gibbs Sampler
> GibbsS <- function(mu1.0, mu2.0, nreps, x, y){</pre>
    Gsamples <- matrix(nrow=nreps, ncol=2)</pre>
    Gsamples[1,] \leftarrow c(mu1.0, mu2.0)
   # main loop
    n = length(x)
    m = length(y)
   for (i in 2:nreps) {
     mu1 = Gsamples[i-1,1]
     mu2 = Gsamples[i-1,2]
     mu1 = rnorm(1, (sum(x)-2*mu2)/(n+3), sqrt(1/(n+3)))
      mu2 = rnorm(1, (2*sum(y)-2*mu1)/(2*m+3), sqrt(1/(2*m+3)))
      Gsamples[i,] <- c(mu1, mu2)</pre>
    return(Gsamples=Gsamples)
> # number of iterations
> nreps <- 500
> # run two Gibbs sampling chains
> GibbsS1 = GibbsS(mu1.0=0, mu2.0=0, nreps, x, y)
> GibbsS2 = GibbsS(mu1.0=2, mu2.0=-1, nreps, x, y)
Make a trace plot for each of parameters.
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(1:nreps, GibbsS1[,1], type="l", col="red",
       ylim = c(min(GibbsS1[,1],GibbsS2[,1]), max(GibbsS1[,1],GibbsS2[,1])),
```

```
xlab = "iteration", ylab ="mu1")
> points(1:nreps, GibbsS2[,1], type="1", col="blue")
> plot(1:nreps, GibbsS1[,2], type="l", col="red",
       ylim = c(min(GibbsS1[,2],GibbsS2[,2]), max(GibbsS1[,2],GibbsS2[,2])),
       xlab = "iteration", ylab ="mu2")
> points(1:nreps, GibbsS2[,2], type="1", col="blue")
    3.0
    2.0
mu1
    1.0
    0.0
              100
                            300
        0
                     200
                                   400
                                          500
                       iteration
    1.0
mu2
              100
                     200
                            300
                                    400
                                          500
                       iteration
Let's zoom in on the trace plot.
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(1:nreps, GibbsS1[,1], type="l", col="red", ylim = c(2.5,3.5),
       xlab = "iteration", ylab ="mu1")
> points(1:nreps, GibbsS2[,1], type="l", col="blue")
> plot(1:nreps, GibbsS1[,2], type="l", col="red", ylim = c(-2.5, -1.5),
       xlab = "iteration",ylab ="mu2")
> points(1:nreps, GibbsS2[,2], type="1", col="blue")
mu1
    3.0
        0
              100
                     200
                            300
                                   400
                                          500
                        iteration
```

The trace plots show that samples from different chains are mixed well and behave similarly.

500

400

(c) **Solution** We will remove the first 50 samples as burn-in period.

300

200

T

mu2 -2.0

0

100

```
1) make a plot that shows empirical (estimated) marginal posterior distribution.
```

```
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(density(GibbsS1[-(1:50),1]), ylab="posterior dist", xlab="mu1", main="")
> plot(density(GibbsS1[-(1:50),2]), ylab="posterior dist", xlab="mu2", main="")
```


2) estimate marginal posterior mean.

```
> # for mu1
> mean(GibbsS1[-(1:50),1])
```

[1] 3.144036

```
> # for mu2
> mean(GibbsS1[-(1:50),2])
```

[1] -1.976291

3) report a 90% credible interval for the marginal posterior distribution.

```
> quantile(GibbsS1[-(1:50),1], probs=c(0.05, 0.95))
5% 95%
2.974518 3.306848
```

> # for mu2

> quantile(GibbsS1[-(1:50),2], probs=c(0.05, 0.95))

5% 95% -2.076106 -1.876740

Problem 2: Posterior inference using the Metropolis-Hastings (MH) algorithm

(a) **Solution** The posterior distribution is proportional to the product of the likelihood and prior distribution. Thus, we will use the product of the likelihood and prior distribution as a target distribution $\pi(\mu_1, \mu_2)$ in the Metropolis-Hastings algorithm.

```
> # log likelihood
> likelihood <- function(param, x, y){
+    mu1 = param[1]
+    mu2 = param[2]</pre>
```

```
+
      singlelikelihoodsX = dnorm(x, mean = mu1, sd = 1, log = T)
      singlelikelihoodsY = dnorm(y, mean = mu2, sd = sqrt(1/2), log = T)
      sumll = sum(singlelikelihoodsX) + sum(singlelikelihoodsY)
      return(sumll)
+ }
> # log prior
> prior <- function(param){</pre>
      mu1 = param[1]
      mu2 = param[2]
      return(-0.5*(3*mu1^2 + 4*mu1*mu2 + 3*mu2^2))
+ }
> # log posterior distribution up to a constant
> posterior <- function(param, x, y){</pre>
     return (likelihood(param, x, y) + prior(param))
+ }
> # proposal function
> proposalfunction <- function(param, delta){</pre>
   mu1 = param[1]
   mu2 = param[2]
   new.mu1 = rnorm(1, mu1, delta)
   new.mu2 = rnorm(1, mu2, delta)
   return(as.vector(c(new.mu1, new.mu2)))
+ }
> # log prob of proposal function
> proposal.prob <- function(old.param, new.param, delta){</pre>
   mu1 = old.param[1]
   mu2 = old.param[2]
   new.mu1 = new.param[1]
   new.mu2 = new.param[2]
   return(dnorm(new.mu1, mean = mu1, sd = delta, log = T) +
             dnorm(new.mu2, mean = mu2, sd= delta, log=T))
+ }
> # Metropolis algorithm
> run_metropolis_MCMC <- function(x, y, startvalue, iterations, delta){
      chain = array(dim = c(iterations,2))
      chain[1,] = startvalue
      for (i in 1:(iterations-1)){
         proposal = proposalfunction(chain[i,], delta)
          probab = exp(posterior(proposal,x, y) +
                         proposal.prob(proposal, chain[i,], delta) -
                         posterior(chain[i,], x, y) -
                         proposal.prob(chain[i,], proposal, delta))
          if (runif(1) < probab){</pre>
              chain[i+1,] = proposal
          }else{
              chain[i+1,] = chain[i,]
      }
      return(chain)
+ }
> # number of iterations
> nreps <- 2000
> # run two MH chains
> MHS1 = run_metropolis_MCMC(x, y, startvalue = c(0,0), nreps, delta = 1/10)
```

```
> MHS2 = run_metropolis_MCMC(x, y, startvalue = c(2,-1), nreps, delta = 1/10)
Make a trace plot for each of parameters.
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(1:nreps, MHS1[,1], type="l", col="red",
       ylim = c(min(MHS1[,1],MHS2[,1]), max(MHS1[,1],MHS2[,1])),
       xlab = "iteration", ylab ="mu1")
> points(1:nreps, MHS2[,1], type="l", col="blue")
> plot(1:nreps, MHS1[,2], type="l", col="red",
       ylim = c(min(MHS1[,2],MHS2[,2]), max(MHS1[,2],MHS2[,2])),
       xlab = "iteration", ylab ="mu2")
> points(1:nreps, MHS2[,2], type="1", col="blue")
           ╒┾┇╗╃┾┞╬╌╇╌╬╌┉┰╬╌┉┸╬╌┉╅╌╇═┩┉┷┷┷╇┉╅┷┷╇┼╬┷┉╅┼┷╌┧┷╬╌┉╅┼┷╌╣╱╬
   2.0
mu1
   1.0
   0.0
                        1000
                                 1500
                                          2000
        0
                500
```


Let's zoom in on the trace plot.

The trace plots show that samples from different chains are mixed well and behave similarly after 2000 iterations.

- (b) Solution We will remove the first 300 samples as burn-in period.
 - 1) make a plot that shows empirical (estimated) marginal posterior distribution.

```
> par(mfrow=c(2,1), mar=c(4,4,1,1))
> plot(density(MHS1[-(1:300),1]), ylab="posterior dist", xlab="mu1", main="") > plot(density(MHS1[-(1:300),2]), ylab="posterior dist", xlab="mu2", main="")
```


2) estimate marginal posterior mean.

```
> # for mu1
> mean(MHS1[-(1:300),1])
```

[1] 3.142711

> # for mu2

> mean(MHS1[-(1:300),2])

[1] -1.982071

3) report a 90% credible interval for the marginal posterior distribution.

> # for mu1

> quantile(MHS1[-(1:300),1], probs=c(0.05, 0.95))

5% 95%

2.955025 3.305431

> # for mu2

> quantile(MHS1[-(1:300),2], probs=c(0.05, 0.95))

5% 95% -2.081424 -1.889318

Problem 3: Posterior inference using Variational Inference (VI)

(a) **Solution** From problem 1, we have

$$\log p(\mu_1, \mu_2, x_1, \dots, x_n, y_1, \dots, y_m)$$

$$= -\frac{1}{2} \left(\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right) + \text{const}$$

Then

$$\log q_{\mu_1}^*(\mu_1) = -\frac{1}{2} E_{\mu_2} \left[\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right] + \text{const}$$

$$= -\frac{1}{2} \left(\sum_{i=1}^n (x_i - \mu_1)^2 + E_{\mu_2} \left[2 \sum_{i=1}^m (y_i - \mu_2)^2 \right] + 3\mu_1^2 + 4\mu_1 E_{\mu_2}(\mu_2) \right) + \text{const}$$

$$= -\frac{1}{2} \left((n+3)\mu_1^2 - 2 \left(\sum_{i=1}^n x_i - 2E_{\mu_2}(\mu_2) \right) \mu_1 \right) + \text{const}$$

Hence, $q_{\mu_1}^*(\mu_1)$ is the pdf of $N(\mu_1^*, \sigma_1^{2*})$, where $\mu_1^* = \frac{\sum_{i=1}^n x_i - 2E_{\mu_2}(\mu_2)}{n+3}$ and $\sigma_1^{2*} = \frac{1}{n+3}$. Similarly,

$$\log q_{\mu_2}^*(\mu_2) = -\frac{1}{2} E_{\mu_1} \left[\sum_{i=1}^n (x_i - \mu_1)^2 + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + (3\mu_1^2 + 4\mu_1\mu_2 + 3\mu_2^2) \right] + \text{const}$$

$$= -\frac{1}{2} \left(E_{\mu_1} \left[\sum_{i=1}^n (x_i - \mu_1)^2 \right] + 2 \sum_{i=1}^m (y_i - \mu_2)^2 + 4 E_{\mu_1}(\mu_1) \mu_2 + 3\mu_2^2 \right) + \text{const}$$

$$= -\frac{1}{2} \left((2m+3)\mu_2^2 - 2 \left(2 \sum_{i=1}^m y_i - 2E_{\mu_1}(\mu_1) \right) \mu_2 \right) + \text{const}$$

Hence, $q_{\mu_2}^*(\mu_2)$ is the pdf of $N(\mu_2^*, \sigma_2^{2*})$, where $\mu_2^* = \frac{2\sum_{i=1}^m y_i - 2E_{\mu_1}(\mu_1)}{2m+3}$ and $\sigma_2^{2*} = \frac{1}{2m+3}$.

(b) Solution

$$ELBO(q_{\mu_1}^*(\mu_1), q_{\mu_2}^*(\mu_2)) = ELBO(\mu_1^*, \mu_2^*)$$

$$= E_{\mu_1, \mu_2} \left[\log p(\mu_1, \mu_2, x_1, \dots, x_n, y_1, \dots, y_m) \right] - E_{\mu_1, \mu_2} \left[\log(q_{\mu_1}^*(\mu_1)) \right] - E_{\mu_1, \mu_2} \left[\log(q_{\mu_2}^*(\mu_2)) \right]$$

Each term is computed as follow,

$$\begin{split} &E_{\mu_1,\mu_2}\left[\log p(\mu_1,\mu_2,x_1,\cdots,x_n,y_1,\cdots,y_m)\right] \\ &= -\frac{1}{2}E_{\mu_1,\mu_2}\left[\sum_{i=1}^n(x_i-\mu_1)^2+2\sum_{i=1}^m(y_i-\mu_2)^2+(3\mu_1^2+4\mu_1\mu_2+3\mu_2^2)\right] + \text{const} \\ &= -\frac{1}{2}\left[\sum_{i=1}^nE_{\mu_1}(x_i-\mu_1)^2+2\sum_{i=1}^mE_{\mu_2}(y_i-\mu_2)^2+3(\sigma_1^{2*}+\mu_1^{*2})+4\mu_1^*\mu_2^*+3(\sigma_2^{2*}+\mu_2^{*2})\right] + \text{const} \\ &= -\frac{1}{2}\left[\sum_{i=1}^n\left(\sigma_1^{2*}+\mu_1^{*2}-2x_i\mu_1^*\right)+2\sum_{i=1}^m\left(\sigma_2^{2*}+\mu_2^{*2}-2y_i\mu_2^*\right)+3(\sigma_1^{2*}+\mu_1^{*2})+4\mu_1^*\mu_2^*+3(\sigma_2^{2*}+\mu_2^{*2})\right] + \text{const} \end{split}$$

$$E_{\mu_1,\mu_2} \left[\log(q_{\mu_1}^*(\mu_1)) \right]$$

$$= -\frac{1}{2} E_{\mu_1,\mu_2} \left[\frac{(\mu_1 - \mu_1^*)^2}{\sigma_1^{2*}} \right] + \text{const}$$

$$= -\frac{1}{2} + \text{const}$$

$$\begin{split} E_{\mu_1,\mu_2} \left[\log(q_{\mu_2}^*(\mu_2)) \right] \\ = & -\frac{1}{2} E_{\mu_1,\mu_2} \left[\frac{(\mu_2 - \mu_2^*)^2}{\sigma_2^{2*}} \right] + \text{const} \\ = & -\frac{1}{2} + \text{const} \end{split}$$

(c) Solution

Implementation CAVI algorithm

```
> # x y : data
> # initial values for mu1*, sigma1.2*, mu2*, sigma2.2*:
              mu1.vi.init, sigma1.2.vi.init, mu2.vi.init, sigma2.2.vi.init
> # epsilon : If the ELBO has changed by less than epsilon,
              the CAVI algorithm will stop
> # max.iter: maximum number of iteration
> cavi.normal <- function(x, y, mu1.vi.init, sigma1.2.vi.init,</pre>
                          mu2.vi.init, sigma2.2.vi.init, epsilon=1e-5, max.iter=100){
   n = length(x)
   m = length(y)
   mu1.vi = mu1.vi.init
   sigma1.2.vi = sigma1.2.vi.init
   mu2.vi = mu2.vi.init
   sigma2.2.vi = sigma2.2.vi.init
   # store the ELBO for each iteration
   elbo = c()
   # I will store mu1*, sigma1.2*, mu2*, sigma2.2* for each iteration
   mu1.vi.list = sigma1.2.vi.list = mu2.vi.list = sigma2.2.vi.list = c()
   # compute the ELBO using initial values of mu1*, sigma1.2*, mu2*, sigma2.2*
   Elogq.mu1 = Elogq.mu2 = -1/2
   # Elogp.x.y.mu1.mu2
```

```
A = sigma1.2.vi + mu1.vi^2 - 2*x*mu1.vi + x*x
+
   B = sigma2.2.vi + mu2.vi^2 - 2*y*mu2.vi + y*y
   Elogp.x.y.mu1.mu2 = -0.5*sum(A) - sum(B) -
     0.5*(3*(sigma1.2.vi + mu1.vi^2) + 4*mu1.vi*mu2.vi + 3*(sigma2.2.vi + mu2.vi^2))
   elbo = c(elbo, Elogp.x.y.mu1.mu2 -Elogq.mu1 - Elogq.mu2)
   mu1.vi.list = c(mu1.vi.list, mu1.vi)
   sigma1.2.vi.list = c(sigma1.2.vi.list, sigma1.2.vi)
   mu2.vi.list = c(mu2.vi.list, mu2.vi)
   sigma2.2.vi.list = c(sigma2.2.vi.list, sigma2.2.vi)
   # set the change in the ELBO with 1
   delta.elbo = 1
   # number of iteration
   n.iter = 1
   # If the elbo has changed by less than epsilon, the CAVI will stop.
   while((delta.elbo > epsilon) & (n.iter <= max.iter)){</pre>
     # Update mu1.vi and sigma1.2.vi
     mu1.vi = (sum(x) - 2*mu2.vi)/(n + 3)
     sigma1.2.vi = 1/(n+3)
     # Update mu2.vi and sigma2.2.vi
     mu2.vi = (2*sum(y) - 2*mu1.vi)/(2*m + 3)
     sigma2.2.vi = 1/(2*m + 3)
      # compute the ELBO using the current values of mu1*, sigma1.2*, mu2*, sigma2.2*
     Elogq.mu1 = Elogq.mu2 = -1/2
     # Elogp.x.y.mu1.mu2
     A = sigma1.2.vi + mu1.vi^2 - 2*x*mu1.vi + x*x
     B = sigma2.2.vi + mu2.vi^2 - 2*y*mu2.vi + y*y
     Elogp.x.y.mu1.mu2 = -0.5*sum(A) - sum(B) -
        0.5*(3*(sigma1.2.vi + mu1.vi^2) + 4*mu1.vi*mu2.vi + 3*(sigma2.2.vi + mu2.vi^2))
     elbo = c(elbo, Elogp.x.y.mu1.mu2 - Elogq.mu1 - Elogq.mu2)
     mu1.vi.list = c(mu1.vi.list, mu1.vi)
     sigma1.2.vi.list = c(sigma1.2.vi.list, sigma1.2.vi)
     mu2.vi.list = c(mu2.vi.list, mu2.vi)
     sigma2.2.vi.list = c(sigma2.2.vi.list, sigma2.2.vi)
     # compute the change in the elbo
     delta.elbo = elbo[length(elbo)] - elbo[length(elbo)-1]
     # increase the number of iteration
     n.iter = n.iter + 1
   return(list(elbo = elbo,
                mu1.vi.list = mu1.vi.list, sigma1.2.vi.list=sigma1.2.vi.list,
                mu2.vi.list = mu2.vi.list, sigma2.2.vi.list=sigma2.2.vi.list))
+ }
```

Applying the implemented algorithm. Run the CAVI algorithm with different initial values and check that the ELBO increases at each step by plotting them.

```
> cavi1 = cavi.normal(x, y,
                      mu1.vi.init = 3, sigma1.2.vi.init = 1,
                      mu2.vi.init = -2, sigma2.2.vi.init = 1,
                      epsilon=1e-5, max.iter=100)
> cavi.res = cavi1
> cavi.res$elbo
[1] -338.7661 -135.6699 -135.6699
> plot(cavi.res$elbo, ylab='ELBO', xlab='iteration')
> print(paste("mu1* and sigma1.2* = (",
              round(cavi.res$mu1.vi.list[length(cavi.res$mu1.vi.list)],2), ",",
              round(cavi.res$sigma1.2.vi.list[length(cavi.res$sigma1.2.vi.list)],4),
              ")", sep=""))
[1] "mu1* and sigma1.2* = (3.14,0.0097)"
> print(paste("mu2* and sigma2.2* = (",
              round(cavi.res$mu2.vi.list[length(cavi.res$mu2.vi.list)],2), ",",
              round(cavi.res$sigma2.2.vi.list[length(cavi.res$sigma2.2.vi.list)],4),
              ")", sep=""))
[1] "mu2* and sigma2.2* = (-1.98, 0.0033)"
```


The two CAVI runs have equally highest ELBO. You can see that approximated posterior distributions from the runs are the same. I will use the output from the first run: $q_{\mu_1}^*(\mu_1)$ is a pdf of N(3.14,0.0097) and $q_{\mu_2}^*(\mu_2)$ is a pdf of N(-1.98,0.0033).