15.06.2015

OTOMATİK KONTROL BÜTÜNLEME SINAVI CEVAPLARI

S1)

Yanda verilen kontrol sistemi için;

- **a)** Kök-yer eğrisini çiziniz. (kutuplar, sıfırlar, kutup-sıfır dağılımı, asimtodlar, kopma noktaları, imajiner ekseni kesme noktalarını, kompleks kutuptan çıkış açısını bulunuz)
- b) Kararlılık analizini yapınız
- c) $s_{1,2} = -1.3 \pm 0.5 j$ kapalı çevrim kutupları olması için kazancı yer eğrisinden hesaplayınız.

S2)

Yanda kapalı çevrim kontrol blok diyagramı verilen sisteminde; $G_c(z) = K$

$$G(s) = \frac{1}{s + 0.2}$$
; $H(s) = 0.8$; $T = 0.1 sn$ olmak üzere;

- a) $\frac{C(z)}{R(z)}$ kapalı çevrim transfer fonksiyonunu elde
- b) Kararlılık analizi yapınız
- c) R(z) birim basamak giriş ve K=15 olduğuna göre C(k) = ? elde ediniz.

S3)

Yanda belirtilen sistem sayısal işlemci ile kontrol edilecektir.

a) Sistemi tanımlayan dinamik denklemleri yazınız. $G(s) = \frac{V_o(s)}{U(s)}$ kapalı çevrim

transfer fonksiyonunu elde ediniz.

b) D(z) ayrık zaman kontrolcü olmak üzere kapalı çevrim kontrol blok diyagramını çiziniz. (Her bloğa ait transfer fonksiyonu yazınız)

S4)

Şekilde çelik top bir elektro mıknatıs yardımı ile x(t) pozisyonunda asılı

olarak tutulmak istenmektedir. **SİSTEM DENGEDE** ($F(t) = \frac{K_e i^2(t)}{x^2(t)}$

elektro miknatis kuvvet, Elektromiknatisa ait endüktans ihmal edilecektir. K_e : elektro miknatis katsayısı, k: yay sabiti olmak üzere,

- a) Sisteme ait dinamik denklemleri yazınız
- **b**) $x(t) = x_0(t)$ çalışma noktası etrafında sistemi doğrusallaştırarak

 $\Delta x(t) = A^* \Delta x(t) + B^* \Delta u(t)$ vektör matris formunda elde ediniz.

$$A^* = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\mathbf{Y}, \mathbf{F}} B^* = \begin{bmatrix} \frac{\partial f_1}{\partial r_1} & \frac{\partial f_1}{\partial r_2} & \cdots & \frac{\partial f_1}{\partial r_n} \\ \frac{\partial f_2}{\partial r_1} & \frac{\partial f_2}{\partial r_2} & \cdots & \frac{\partial f_2}{\partial r_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial r_1} & \frac{\partial f_n}{\partial r_2} & \cdots & \frac{\partial f_n}{\partial r_n} \end{bmatrix}_{\mathbf{Y}, \mathbf{F}}$$

$$x(k) = \sum_{i=1}^{n} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z - z_i)^m X(z) z^{k-1} \right]_{z=z_i}$$

$$X(z) = \sum_{i=1}^{n} \left\{ \frac{1}{(m-1)!} \frac{d^{m-1}}{ds^{m-1}} \left[(s-s_i)^m X(s) \frac{z}{z-e^{sT}} \right] \right\}$$

Başarılar, Süre 90 dk

Prof. Dr. Ayhan ÖZDEMİR, Yrd. Doç. Dr. Zekiye ERDEM

CEVAPLAR

C1. a)

1. A.Ç.T.F. =
$$\frac{K(s^2 + 3s + 2)}{s^2 - 0.4s + 1.4}$$

Açık çevrim transfer fonksiyonuna ait:

Kutuplar Sıfırlar
$$p_1 = 0.2 + 1.166j$$
 $s_1 = -1$ $p_2 = 0.2 - 1.166j$ $s_2 = -2$ $m = 2$ Kutup sayısı. $m = 2$ Sıfır sayısı.

2. Kutup sıfır dağılımı

✓ iki Sıfır arası kök-yer eğrisine dahil olduğundan bir adet girdi olarak kopma noktası olacaktır.

3. Asimtodlar

n-m=0, Kutup sayısı = Sıfır sayısı olduğundan kök-yer eğrisinin sonsuza giden kolu dolayısıyla asimtodu yoktur.

4.Kopma noktaları;

$$\frac{dG(s)H(s)}{ds} = 0 \quad \text{ifadesinden hesaplanır.} \quad \frac{d}{dz} \left(\frac{K\left(s^2 + 3s + 2\right)}{s^2 - 0.4s + 1.4} \right) = 0 \quad \text{dan}$$

$$\Rightarrow \quad K \left[\frac{(2s+3)(s^2 - 0.4s + 1.4) - (2s - 0.4)(s^2 + 3s + 2)}{(s^2 - 0.4s + 1.4)^2} \right] = 0 \quad \text{dan}$$

$$-3.4s^2 - 1.2s + 5 = 0 \rightarrow \boxed{s_1 = -1.4019}; \ s_2 = -1.049$$

- ✓ iki sıfır arası kök-yer eğrisine dahil olduğundan bir adet girdi olarak kopma noktası olacaktır. Dahil olan bölge göz önünde bulundurulduğunda (-1 ve -2 noktaları arası);
- ✓ Girdi olarak kopma noktası=-1.4019 noktasıdır.

5. Imajiner ekseni kesme noktaları

Imajiner ekseni kesme noktaları 2 yol ile hesaplanabilinir.

I. YOL:

Yer eğrisinin imajiner ekseni kesme noktaları karakteristik denklem köklerinin kritik (sınır) kazanç değeri için K_s hesaplanması ile de elde edilebilir.

karakteristik denklem:

$$F(s) = 1 + G(s)H(s) = 1 + \frac{K(s^2 + 3s + 2)}{s^2 - 0.4s + 1.4} = 0 \implies F(s) = (1 + K)s^2 + (3K - 0.4)s + 2K + 1.4 = 0$$

Routh tablosu oluşturulur.

1. sütunda bulunan katsayıların tümü pozitif olmalıdır.

$$1+K>0$$
 ise $K>-1$ dir.

$$3K - 0.4 > 0$$
 ise $K > 0.133$ dür.

$$2K+1.4>0$$
 $K>-0.7$ dir.

 $0.133 < K < \infty$ aralığında olmalıdır. Sınır kazanç **Ks=0.133**

K=0.133 için sistem marjinal kararlı davranır. Sınır kazanç değeri için karakteristik denklem ile kök yer eğrisinin sanal ekseni kestiği nokta elde edilir.

Tabloda s^2 terimden denklem yazılır ve K yerine Ks (sınır kazanç) koyulur.

$$(1+K)s^2 + (2K+1.4)=0$$
 denkleminde K=0.133 yazılır.

$$F(s) = 1.133s^2 + 1.666 = 0 \rightarrow \boxed{s_{1,2} = \pm j1, 2126}$$
 olarak elde edilir.

II. YOL: Karakteristik denklemde s yerine jw koyularak

$$F(s) = 1 + G(s)H(s) = 1 + \frac{K(s^2 + 3s + 2)}{s^2 - 0.4s + 1.4} = 0 \implies F(s) = (1 + K)s^2 + (3K - 0.4)s + 2K + 1.4 = 0$$

*İ*majiner eksende kompleks köklerin reel k*ısı*mları, $\sigma = 0$ dır.

$$s \to jw \ koyulur \ ve \ F(jw) = (1+K)(jw)^2 + (3K-0.4)(jw) + 2K+1.4 = 0$$
 yazılır

$$F(s) = -(1+K)w^2 + (3K-0.4)jw + 2K + 1.4 = 0$$

 $-(1+K)w^2+2K+1.4+jw(3K-0.4)=0$ reel ve imajiner kısımlar ayrı ayrı sıfıra eşitlen ir.

$$3K - 0.4 = 0 \rightarrow K = \frac{0.4}{3}$$
 $K = K_s = 0.133$ sınır kazanç elde edilir. Bu sınır kazanç değeri

$$-(1+K)w^2+2K+1.4=0$$
 ifadesinde yerine koyulur.

$$-(1+0.133)w^2 + 2*0.133 + 1.4 = 0$$
 ise $w^2 = -\frac{1.666}{1.133} \rightarrow w^2 = 1.471$

$$w=\pm 1.2126$$
 $s_{1,2}=\mp jw \rightarrow s_{1,2}=\mp j1.2126j$ imajiner ekseni kesme noktaları elde edilir.

5. Imajiner Kutuptan çıkış açısı: Kutuplardan çıkış açıları faz koşulundan bulunur.

$$\theta_{z1} = 180 - \tan^{-1} \frac{1.166}{1.2}$$
 $\theta_{z1} = 44.17^{\circ}$

$$\theta_{z2} = 180 - \tan^{-1} 2.2$$
 $\theta_{z1} = 27.92^{\circ}$

$$\sigma$$
 $\theta_{pl} = 90^{\circ}$

$$(\theta_{z1} + \theta_{z2}) - (\theta_{p1} + \theta_{x}) = 180^{\circ}$$

 $-\theta_{x} = 180^{\circ} - 44.17^{\circ} - 27.92^{\circ} + 90^{\circ}$
 $\theta_{x} = -197.91^{\circ}$

Tüm hesaplamalardan sonra incelenen sistem için kök-yer eğrisi aşağıda çizdirilmiştir.

NOT: Kök yer eğrisi reel eksene göre simetriktir.

b) Kararlılık analizi

karakteristik denklem:

$$F(s) = 1 + G(s)H(s) = 1 + \frac{K(s^2 + 3s + 2)}{s^2 - 0.4s + 1.4} = 0 \implies F(s) = (1 + K)s^2 + (3K - 0.4)s + 2K + 1.4 = 0$$

Routh-Hurwitz kararlılık kriteri ile sistemin kararlılık analizi için önce 2 gerek koşula bakılmalıdır.

Ön bilgi:

- 1-) karakteristik polinom katsayılarının tümü aynı işaretli olmalıdır.
- 2-) karakteristik polinom katsayılarının hiçbiri '0' olmamalıdır.

Karakteristik denklem K'ya bağlı olduğundan yeter koşuldan elde edilecek olan "K " aralığı her iki

gerek koşulu sağlayacaktır.

1. sütunda bulunan katsayıların tümü pozitif olmalıdır.

$$1+K>0$$
 ise $K>-1$ dur.

$$3K - 0.4 > 0$$
 ise $K > 0.133$ dür.

$$2K+1.4>0$$
 $K>-0.7$ dir.

Her üç koşul K > 0.133 için sağlanmaktadır.

 $0.133 < K < \infty$ aralığında olmalıdır.

Yeter koşul için Routh tablosu oluşturulur

$$\begin{vmatrix} s^2 \\ s^1 \\ s^0 \end{vmatrix} = \begin{vmatrix} 1+K \\ 3K-0.4 \\ 0 \end{vmatrix} = 0$$
 $\begin{vmatrix} 2K+1.4 \\ 0 \\ 0 \end{vmatrix}$

c) $s_{1,2} = -1.3 \pm 0.5 j$ noktasındaki kazancın bulunması

$$a = \sqrt{(0.666^2) + (1.5^2)} = 1.6412;$$

$$b = \sqrt{(0.3^2) + (0.5^2)} = 0.5831;$$

$$c = \sqrt{(1.666^2) + (1.5^2)} = 2.2418$$

$$d = \sqrt{(0.7^2) + (0.5^2)} = 0.8602$$

$$K_{s1} = \frac{a*c}{b*d} = \frac{1.64112*2.2418}{0.5831*0.8602} = 7.31$$

C.2)

a)
$$\frac{C(z)}{R(z)} = \frac{G_c(z)G_s(z)}{I + G_c(z)G_s(z)}$$

$$G_{I}(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{1/s + 0.2}{1 + \frac{1}{s + 0.2}0.8} = \frac{1}{s + 1}$$

$$G_s(z) = z \left\{ \frac{1 - e^{-sT}}{s} G_I(s) \right\}$$

$$G_s(z) = z \left\{ \frac{1 - e^{-sT}}{s} \frac{1}{s+1} \right\}_{T=0.1} = (1 - z^{-1})z \left\{ \frac{1}{(s+1)} \frac{1}{s} \right\}_{T=0.1}$$

$$= \frac{z-1}{z} \left\{ s \frac{1}{s(s+1)} \frac{z}{z-e^{sT}} \bigg|_{s=0} + (s+1) \frac{1}{s(s+1)} \frac{z}{z-e^{sT}} \bigg|_{s=-1} \right\} \bigg|_{T=0,1} = \frac{z-1}{z} \left\{ \frac{z}{z-1} - \frac{z}{z-0.9048} \right\}$$

$$G_s(z) = \frac{0.0952}{z - 0.9048}$$

$$\frac{C(z)}{R(z)} = \frac{KG_s(z)}{1 + KG_s(z)} = \frac{K\frac{0.0952}{z - 0.9048}}{1 + K\frac{0.0952}{z - 0.9048}} = \frac{0.0952K}{z - 0.9048 + 0.0952K}$$

b) Jury Kararlılık analizi

$$F(z) = 1 + G(z)H(z) = 1 + \frac{0.0952K}{z - 0.9048} = 0$$

$$F(z) = z - 0.9048 + 0.0952K = 0$$

Yeter Koşullar:

i)
$$F(1) > 0 \rightarrow F(1) = 1 - 0.9048 + 0.0952K > 0 \Rightarrow K > -1$$

ii)
$$(-1)F(1) > 0 \rightarrow (-1)F(-1) = -(-1 - 0.9048 + 0.0952K) > 0 \implies K > 2$$

Gerek Koşul:

$$|a_n| > |a_0| \rightarrow |I| > |0.0952K - 0.9048|$$
 $1.9048 > 0.0952K \Rightarrow K < 20$

Kararlılık aralığı: 0 < K < 20 olarak bulunur.

c) K=15 için;

$$R(s) = \frac{1}{s}$$
 ise $R(z) = \frac{z}{z-1}$ olur.

$$C(z) = \frac{0.0952 \times 15}{z - 0.9048 + 0.0952 \times 15} \frac{z}{z - 1}$$

$$C(z) = \frac{1.428}{z + 0.5232} \frac{z}{z - 1}$$

$$c(k) = (z-1) \frac{1.428 \cancel{z}}{(z-1)(z+0.5232)} z^{k-1} \bigg|_{z=1} + (z+0.5232) \frac{1.428 \cancel{z}}{(z-1)(z+0.5232)} z^{k-1} \bigg|_{z=-0.5232}$$

$$c(k) = 0.9375 (1)^{k} - 0.9732 (-0.523)^{k}$$

Ek BİLGİ: C(k) nın k'ya göre aldığı değerlerin grafik gösterimi.

C3.

$$E(t) = u(t)K$$

$$E(s) = U(s)K$$

$$E(s) = I(s)R + \frac{I(s)}{sC}$$

$$E(s) = \frac{RCs + I}{sC} \quad I(s) \to I(s) = \frac{sC}{RCs + I} E(s)$$

$$i(t) = C\frac{dV_0(t)}{dt}$$

$$I(s) = sCV_0(s) \to V_0(s) = \frac{I(s)}{sC}$$

b) Kapalı çevrim kontrol blok diyagramı

C4.

$$e(t) = Ri(t) + L \frac{di(t)}{dt} \rightarrow e(t) = Ri(t)$$
 $i(t) = \frac{e(t)}{R}$

$$F_{miknatis} = F(t) = \frac{K_e i^2(t)}{x^2(t)}$$
 olarak verildi

$$F_{miknatis} = F_{yay} + F_{net}$$

 $F_{miknatis} = m \frac{d^2 x(t)}{dt^2} - k x(t)$ yazılır ve sistemi tanımlayan diferansiyel denklemler elde edilir.

$$\frac{K_e i^2(t)}{x^2(t)} = m \frac{d^2 x(t)}{dt^2} - k x(t) \quad \text{ifadesi düzenlenir ise,} \quad \frac{d^2 x(t)}{dt^2} = \frac{K_e i^2(t)}{m x^2(t)} + \frac{k}{m} x(t) \quad \text{elde edilir.}$$

i(t) ifadesi denklemde yerine yazılır, $\frac{d^2x(t)}{dt^2} = \frac{K_e(\frac{e(t)}{R})^2}{m x^2(t)} + \frac{k}{m}x(t)$ verilen sistemi tanımlayan diferansiyel denklem

$$\frac{d^2x(t)}{dt^2} = \frac{k}{m}x(t) + \frac{K_e e(t)^2}{mR^2 x^2(t)}$$
 olarak elde edilir.

b. Çalışma noktası etrafında doğrusallaştırma: Önce durum değişkenleri tanımlanır,

$$x(t) = x_i(t)$$
 olsun,

$$\frac{dx(t)}{dt} = x_2(t) \quad olsun. \qquad Burdan \qquad \boxed{\frac{dx_1(t)}{dt} = x_2(t)} \quad \underline{\text{1. Durum denklemi.}}$$

$$\frac{d^2x(t)}{dt^2} = \frac{dx_2(t)}{dt} \qquad yazılır ve \quad tanımlanmış olan değişkenler \frac{d^2x(t)}{dt^2}' de \quad yerine koyulur$$

$$\frac{d^2x(t)}{dt^2} = \frac{k}{m}x(t) + \frac{K_e \ e(t)^2}{mR^2 \ x^2(t)}$$

$$\frac{dx_2(t)}{dt} = \frac{k}{m}x_I(t) + K_e \frac{e(t)^2}{mR^2 x_I(t)^2}$$
 2. Durum denklemi.

$$\begin{bmatrix} \frac{dx_{l}(t)}{dt} \\ \frac{dx_{2}(t)}{dt} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \frac{k}{m} & 0 \end{bmatrix} \begin{bmatrix} x_{l}(t) \\ x_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K_{e}}{mR^{2} x_{l}(t)^{2}} \end{bmatrix} e(t)^{2}$$

Verilen sistem için 1 adet giriş $r_i = e(t)$ vardır.

$$A^* = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{x_0, e_0} \qquad B^* = \begin{bmatrix} \frac{\partial f_1}{\partial r_1} \\ \frac{\partial f_2}{\partial r_1} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial e} \\ \frac{\partial f_2}{\partial e} \end{bmatrix}_{x_0, e_0}$$

$$f_{I}(t) = \frac{dx_{I}(t)}{dt} = x_{2}(t)$$

$$f_{2}(t) = \frac{dx_{2}(t)}{dt} = \frac{k}{m}x_{I}(t) + K_{e}\frac{e(t)^{2}}{mR^{2}}x_{I}(t)^{2}$$

$$\frac{\partial f_{I}}{\partial x_{I}} = 0 \quad \text{ve} \quad \frac{\partial f_{I}}{\partial x_{2}} = I$$

$$\frac{\partial f_{2}}{\partial x_{e}} = \frac{k}{m} - K_{e}\frac{e(t)^{2} 2mR^{2} x_{I}(t)}{m^{2}R^{4} x_{I}(t)^{4}} \qquad \rightarrow \quad \frac{\partial f_{2}}{\partial x_{e}} = \frac{k}{m} - 2K_{e}\frac{e_{0}(t)^{2}}{mR^{2} x_{I}(t)^{3}} \quad \text{ve} \quad \frac{\partial f_{2}}{\partial x_{e}} = 0 \text{ dir}$$

$$\frac{\partial f_1}{\partial e} = 0$$
 ve $\frac{\partial f_2}{\partial e} = 2K_e \frac{e_0(t)}{mR^2 x_0(t)^2}$ dir.

$$A^{*} = \begin{bmatrix} 0 & I \\ \frac{k}{m} - 2K_{e} \frac{e_{0}(t)^{2}}{mR^{2} x_{I0}(t)^{3}} & 0 \end{bmatrix} \qquad B^{*} = \begin{bmatrix} 0 \\ 2K_{e} \frac{e_{0}(t)}{mR^{2} x_{I0}(t)^{2}} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\Delta x_{I}(t)}{\Delta t} \\ \frac{\Delta x_{2}(t)}{Mt} \end{bmatrix} = \begin{bmatrix} 0 & I \\ \frac{k}{m} - 2K_{e} \frac{e_{0}(t)^{2}}{mR^{2} x_{I0}(t)^{3}} & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{I}(t) \\ \Delta x_{2}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 2K_{e} \frac{e_{0}(t)}{mR^{2} x_{I0}(t)^{2}} \end{bmatrix} \Delta e(t)$$