

人工智慧 Artifiçial Intelligence

國立東華大學電機工程學系楊哲旻

Outline

人工智慧發展史 人工智慧的任務 人工智慧的學習方法 資料格式

01人工智慧發展史

人工智慧發展史

誕生 階段

探索 階段

第一次低谷

繁榮 階段

第二次低谷

技術突破

黃金發展

1950-1956

- 提出圖靈測試
- 達特茅斯會意 提出人工智慧

一詞

1974-1980

電腦有限內存、 處理速度低

1987-1993

- 人工智慧硬體需求 下降,減少投資
- 無法解決深度學習 多層問題

2006-

人工智慧大量的 技術研發與應用

1956-1974

研發各種人 工智慧模型

1980-1987

- 數據量化
- 機器學習

1993-2006

- 深度學習技術突破
- 大數據累積

人工智慧發展史

- 人工智慧 (Artificial Intelligence)
 - 強人工智慧
 - 弱人工智慧

大數據時 代來臨

- 機器學習 (Machine Learning)
 - 非監督式學習
 - 監督式學習
 - 增強式學習

仿生物神 經元架構

- 深度學習 (Deep Learning)
 - 深度神經網路
 - 卷積神經網路
 - 循環神經網路

中央處理器 Central Processing Unit, CPU 圖形處理器 Graphics Processing Unit, GPU 張量處理器 Tensor Processing Unit, TPU

人工智慧的任務

分類 (Classification)

輸出為離散數值,例:疾病有病無病,影像是貓是狗等

分群 (Cluster)

又稱聚類,輸出為離散數值,藉由距離或數學公式進行類似的分類任務

回歸 (Regression)

輸出為連續數值,例:天氣溫度、PM2.5濃度等

其它複雜性任務

輸出為複雜性結構,例:輸出為圖,影像生成畢卡索畫風,人像照片生成老化人像;輸出為語音,模仿某人人聲等

人工智慧的任務

根據已標註的資料集進行訓練,自動學習出一個函數,此函數是所有權重與輸入之組合

分類

設計一函數可將類別的資料點分開

Variable 1

0

回歸

設計一函數的預測輸出與實際值(標籤)誤差最小

人工智慧的任務

分群

透過群的代表點,針對它們 近距離的資料點歸於同類

其它複雜性任務

使用生成對抗網路生成不同 畫風的圖像

人工智慧的任務 – 影像相關

分類定位

Classification + Localization

目標檢測

語義分割

實例分割

訓練集

<u>模型</u>

數據

測試/驗證集

預測能力

監督式學習(Supervised learning)

非監督式學習(Unsupervised Learning)

強化學習(Reinforcement Learning)

監督式學習(Supervised learning)

監督式學習是電腦從標籤化(Labeled)的資訊中分析模式後做出預測的學習方式

常見的監督式學習模型為:

- 1. 線性回歸
- 2. 邏輯回歸
- 3. 決策樹
- 4. 隨機森林
- 5. 支持向量機
- 6. 多層感知器
- 7. 卷積神經網路

非監督式學習(Unsupervised Learning)

非監督式學習不需事先以人力處理標籤,機 器面對資料時,做的處理是依照關聯性去歸 類、找出潛在規則與套、形成集群。

常見的非監督式學習模型為:

- 1. K平均演算法
- 2. 主成分分析
- 3. 狐獨森林
- 4. 單類別支持向量機
- 5. 自編碼器
- 6. 生成對抗網路

泛化能力(Generalization Ability)

泛化能力是指模型適應新數據的能力。以下方 法可以提高泛化能力:

- 資料樣本增大
- 資料前處理
- 調降低整模型超參數來模型複雜度

泛化能力(Generalization Ability)

資料格式

在數據分析與人工智慧模型訓練前的第一步,就是要了解資料與蒐集資料,目前常見的資料格式分為結構化、半結構化與非結構化資料:

	結構化資料 (Sturctured Data)	半結構化資料 (Semi-Structured Data)	非結構化資料 (Unstructured Data)
定義	嚴謹定義為資料可以被呈現在資料庫表 格的行與欄,即已被整理過的資料	便於資料交換,其特性同時具備欄位概念與欄位可拓展性,可透過欄位查詢資料,並可根據使用者需求來增減欄位	形式自由且不遵循標準的格式 規範,一團沒有組織的數據, 即未經整理過的資料
優缺點	查詢資料快速,佔用存儲空間少;缺點 是拓展新的欄位比較麻煩,在資料交換 上的規定也比較嚴格	利於資料交換與傳輸·並可以增減欄位;缺 點每筆資料的結構可能會不一致	佔用更多存儲空間,無法直接 用於數據分析、未規則性的資 料很難處理與整理
範例	關聯式資料庫(MySQL, Oracle等)的資料、Excel	CSV、JSON與XML	文字、圖片、音樂、影片、 PDF、網頁等

※ 先有結構,再有資料

資料格式

半結構化資料

> XML

```
<?xml version="1.0" encoding="UTF-8"?>
<root>
  <row>
   <order>A001</order>
   <item>紅茶</item>
   <sugar level>25%</sugar level> <!-- 只增加糖度欄位 -->
   <unit_price>30</unit_price>
   <quantity>5</quantity>
   <total amount>150</total amount>
  </row>
  <row>
   <order>A002</order>
   <item>線茶</item>
   <ice_level>25%</ice_level> <!-- 只增加冰塊欄位 -->
   <unit_price>30</unit_price>
   <quantity>3</quantity>
   <total_amount>90</total_amount>
  </row>
</root>
```

> JSON

```
"table": {
    "row": [
    {
        "order": "A001",
        "item": "紅茶",
        "sugar_level": "25%", <-- 只增加糖度欄位
        "unit_price": "30",
        "quantity": "5",
        "total_amount": "150"
    },
    {
        "order": "A002",
        "item": "綠茶",
        "ice_level": "25%", <-- 只增加冰塊欄位
        "unit_price": "30",
        "quantity": "3",
        "total_amount": "90"
    }
}
```


非結構化資料

批踢踢實業坊 > 看板 Gossiping

13 <u>Re: [問卦] 登入破三千的都給我進來</u> shotholisi

Re: [新聞] 拚基本工資28K 五一勞工大遊行 trylin

結構化資料

網路爬蟲

發文日期	作者	主題	回復人數
2018/05/01	shotholisi	登入破三千的都給我進來	13
2018/05/01	trylin	拚基本工資28K 五一勞工大遊行	0

資料格式

基本功能

- 程式檔預設附檔名為.ipynb,可以透過「File」中的功能鍵另存為.py檔案
- File中的許多功能可以另存到本機、雲端硬碟與Github
- 文字編輯則是以「Markdown」純文字語法來撰寫

基本功能

選擇「Runtime」→「Change runtime type」來更改設定,可以選擇程式語言(但目前只支援Python 2與3),另外也可指定筆記本是否要使用硬體加速器GPU/TPU。

基本功能

- 執行「!pip list」可以查看所有安裝套件與其版本
- 若需要使用尚未安裝套件則可以用「! pip install 套件名稱」來安裝

tensor2tensor 1.14.1 tensorboard 1.15.0	ist	
tensorboardcolab 0.0.22 tensorflow 1.15.0 tensorflow-addons 0.8.3 tensorflow-datasets 2.1.0 tensorflow-estimator 1.15.1 tensorflow-federated 0.12.0 tensorflow-gan 2.0.0 tensorflow-gcs-config 2.1.8 tensorflow-hub 0.7.0 tensorflow-metadata 0.21.1 tensorflow-model-optimization 0.2.1 tensorflow-privacy 0.2.2 tensorflow-probability 0.7.0 termcolor 1.1.0 terminado 0.8.3 testpath 0.4.4 text-unidecode 1.3 textblob 0.15.3 textgenrnn 1.4.1 tflearn 0.3.2	1.15.0	

- 執行「! pip install 套件名稱==版本編號」則可安裝指定的版本
- 執行「! pip install –upgrade 套件名稱」則可以安裝指定的版本 (注意:自行安裝或更新的套驗在虛擬機器關閉後即失效,建議安裝 指令保存在筆記本的單元格中)

在指令前面加! 就表示要執行命令列的 執行檔或指令(而非執行Python程式碼)

其餘功能

■ 可以設定佈景主題背景、編輯器功能及一些有趣的特效

AI相關的軟體工程師

AI相關的軟體工程師

資料工程師

所花費工作項目時間佔比

- 清洗與組織資料: 60%
- 資料收集: 19%
- 特徵探勘與工程: 9%
- 優化機器學習演算法: 5%
- 其他: 4%
- 創造訓練資料集: 3%

最不喜歡的工作項目佔比

- 清洗與組織資料: 57%
- 資料收集: 21%
- 創造訓練資料集: 10 %
- 其他: 5%
- 優化機器學習演算法: 4%
- 特徵探勘與工程: 3%