

Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) First In Semester Examination

CT314 (Statistical Communication Theory)

Date of Examination: Feb 07, 2018

Duration: 2 Hours Maximum Marks: 20

Instructions: 1. Attempt all questions. 2 Use of scientific non programmable calculator is permitted. 3. All the acronyms carry their usual meaning.

- Q1 Write the sample space corresponding to the following experiments. (4 marks)
 - a. Determine the values of voltage waveform at time t_1 .
 - b. Pick a number X at random between zero and one, then pick a number Y at random between zero and X.
 - c. Select a ball from an urn containing balls numbered 1 to 4. Suppose that balls 1 and 2 are black and 3 and 4 are white. Note the number and color of ball you select.
 - d. Toss the coin 3 times and note the number of tails.
- Q2: Show that if A_1 , A_2 , A_3 are independent then A_1 is independent of $A_2 + A_3$ (2 marks)
- Q3: Define random variable. What is the condition for its existence? (2 marks)
- Q4: Samples are drawn from Gaussian distributed random variable X having zero mean and variance 1 (As you have done in your lab). We now want to obtain the sample values from these drawn samples so that they represent Gaussian random variable Y with mean 2 and variance 4. Write the transformation to be performed on X to get Y i.e., write the function g(X). Give (approximate) plots of the PDFs of X and Y. Write the mathematical expressions for these PDFs. (5 marks)
- Q5: Let S be a sample space with six sample points. The events identified on S are $A = \{s_1, s_2\}$, $B = \{s_3, s_4, s_5\}$ and $C = \{s_6\}$ with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{2}$, $P(C) = \frac{1}{6}$. Let X() be the transformation given by $X(s_i) = 10$, i = 1, 2, $X(s_i) = 20$, i = 3, 4, 5 and $X(s_i) = 30$, i = 6. Plot the CDF and PDF of X. (3 marks)
- Q6: Consider the half wave rectifier transformation Y = g(X) which is given as: Y = 0, for $X \le 0$ and Y = X, for X > 0. If X has uniform PDF in the range -0.5 to 1.5, plot the CDF and PDF for X as well for Y. Note that Y is a constant (equal to zero) in the range $(-\infty,0)$. Hence, there exists discontinuity at y = 0 for $F_Y(y)$ that leads to an impulse for $f_Y(y)$.