Corps des nombres complexes

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 23, 2024

Représentation algèbrique

On appelle l'ensemble des nombres complexes et on note $\mathbb C$ l'ensemble contenant les nombres réels tel que

$$\mathbb{C} = \left\{ z = x + iy / (x, y) \in \mathbb{R}^2 \text{ et } i^2 = -1 \right\}$$

où x = Re(z) est dite partie réelle de z et y = Im(z) est dite partie imaginaire de z, et on a

$$z = Re(z) + iIm(z)$$

Cette représentation est dite représentation algèbrique du nombre complexe z.

Représentation graphique

Dans le plan complexe, à tout point M(x,y) on peut associer le nombre complexe z=x+iy. On dit que z est l'affixe du point M et que M est l'image ponctuelle de z et que \overrightarrow{OM} est image vectorielle de z.

Dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$ sur l'axe horizontal, il y a les réels dont la partie imaginaire est nulle et sur l'axe vertical, il y a les nombres imaginaire pure dont la partie réelle est nulle.

Dans le plan complexe, le module de z est la longueur du vecteur \overrightarrow{OM} .

L'argument de z est la mesure de l'angle entre l'axe des réels et \overrightarrow{OM} , orienté suivant le sens trigonométrique on note $\arg z$. Le conjugué du nombre complexe z=x+iy est le nombre complexe $\overline{z}=x-iy$.

 \overline{z} est l'affixe du vecteur $\overrightarrow{OM'}$ (vecteur symetrique à \overrightarrow{OM} par rapport à l'axe horizontal des réels.

Représentation trigonométrique

Tout nombre complexe z = x + iy peut s'écrire sous la forme

$$z = r(\cos\theta + i\sin\theta), r \ge 0$$

où
$$r = |z| = \sqrt{x^2 + y^2}$$
 est le module de z et $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$ où θ est l'argument de z . $tg\theta = \frac{y}{x}$ avec $x \neq 0$.

Forme exponentielle

Pour tout nombre réel θ , on appelle exponentielle complexe noté $e^{i\theta}$, le nombre complexe de module 1 et d'argument θ ,

$$e^{i\theta} = \cos \theta + i \sin \theta$$

 $e^{-i\theta} = \cos \theta - i \sin \theta$

par suite on a la formule d'Euler

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i},$$

par conséquent, pour tout nombre complexe $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$, où $r_1 = |z_1|$, on a

$$z_1 = r_1 e^{i\theta_1}$$
 et $\overline{z_1} = r_1 e^{-i\theta_1}$

Opérations sur les nombres complexes

Soient z_1 et z_2 deux nombres complexes tels que

$$z_1 = x_1 + iy_1 = r_1 (\cos \theta_1 + i \sin \theta_1) = r_1 e^{i\theta_1}$$

 $z_2 = x_2 + iy_2 = r_2 (\cos \theta_2 + i \sin \theta_2) = r_2 e^{i\theta_2}$

1. L'addition

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$
...forme algèbrique
 $z_1 + z_2 = r_1(\cos\theta_1 + i\sin\theta_1) + r_2(\cos\theta_2 + i\sin\theta_2)$ forme trigonométrie
 $z_1 + z_2 = r_1e^{i\theta_1} + r_2e^{i\theta_2}$...forme exponentielle.

2. Le produit

$$z_1.z_2 = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$
 ...forme algèbrique $z_1.z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$...forme trigonométrique $z_1.z_2 = r_1r_2e^{i(\theta_1+\theta_2)}$...forme exponentielle.

3. Division

$$\frac{z_1}{z_2} = \frac{(x_1x_2 + y_1y_2)}{x_2^2 + y_2^2} + i\frac{(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2} ... \text{forme algèbrique}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos\left(\theta_1 - \theta_2\right) + i\sin\left(\theta_1 - \theta_2\right)\right) ... \text{forme trigonométrique}$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} ... \text{forme exponentielle}.$$

Formule de Moivre

La formule

$$z^{n} = (\cos \theta + i \sin \theta)^{n} = \cos (n\theta) + i \sin (n\theta), \forall n \in \mathbb{N}.$$

est appelée formule de Moivre.

Racine n^{ième} d'un nombre complexe

Soit $\omega \in \mathbb{C}$, $n \in \mathbb{N}/\omega = \rho (\cos \alpha + i \sin \alpha)$.

Pour résoudre dans C l'équation

$$z^n = \omega$$
,

on pose $z = r(\cos \theta + i \sin \theta)$, cherchons r et θ tels que

$$z^n = r^n (\cos n\theta + i \sin n\theta) = \rho (\cos \alpha + i \sin \alpha).$$

Par identification:

$$\left\{ \begin{array}{c} r^n = \rho \\ n\theta = \alpha + 2k\pi, k \in \mathbb{Z} \end{array} \right. \Rightarrow \left\{ \begin{array}{c} r = \sqrt[n]{\rho} \\ \theta = \frac{\alpha}{n} + \frac{2k\pi}{n}, k \in \mathbb{Z} \end{array} \right.$$

On trouve les solutions pour $k = 0, 1, 2, ..., \mathbf{n} - \mathbf{1}$.

Racine carrée d'un nombre complexe

Exemple d'application: Déterminer les racines carrées de

$$\omega = 3 + 4i$$
.

On a $|\omega|=5$, $\cos\alpha=\frac{3}{5}$, $\sin\alpha=\frac{4}{5}$ on remarque que $\arg\alpha$ n'est pas parmis les argument connus, pour celà on va utiliser la forme algèbrique.

Cherchons un $z = x + iy/z^2 = \omega$

$$z^2 = x^2 - y^2 + 2ixy = \omega = 3 + 4i$$

 $|z|^2 = x^2 + y^2 = |\omega| = 5,$

$$\begin{cases} x^2 - y^2 = 3 \\ 2xy = 4 \\ x^2 + y^2 = 5 \end{cases} \Rightarrow \begin{cases} x^2 = 4 \\ y^2 = 1 \\ xy = 2 \end{cases} \Rightarrow (x, y) = (2, 1) \text{ ou } (x, y) = (-2, -1)$$

d'où les racines carrées de $\omega = 3 + 4i$ sont $z_1 = 2 + i$, $z_2 = -2 - i$.

Résolution des équations du second degré dans C

Etant donnée l'équation

$$az^2 + bz + c = 0, a, b, c \in \mathbb{R}, z \in \mathbb{C}.$$

Pour résoudre cette équation, on calcule le discriminant

$$\Delta = b^2 - 4ac$$

puis on distingue les trois cas:

1er cas:
$$\Delta > 0, z_1 = \frac{-b - \sqrt{\Delta}}{2a}, z_2 = \frac{-b + \sqrt{\Delta}}{2a}.$$

2ème cas:
$$\Delta = 0, z_1 = z_2 = \frac{-b}{2a}$$
.

$$3^{\grave{e}me}$$
 cas: $\Delta < 0, z_1 = rac{-b - i\sqrt{\Delta}}{2a}, z_2 = rac{-b + i\sqrt{\Delta}}{2a}.$

Remarque: Si les coéfficients $a, b, c \in \mathbb{C}$ alors le discriminant Δ pourrait être un nombre complexe, donc il faudra calculer sa racine carrée.