Valós függvények határértéke

Előadásjegyzet

Alapfogalmak

1. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$ és $\alpha \in \mathbb{R}$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban a határértéke** α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x - x_0| < \delta$, akkor $|f(x) - \alpha| < \varepsilon$. Erre a $\lim_{x \to x_0} f(x) = \alpha$ jelölést alkalmazzuk.

2. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. az f függvénynek **az** x_0 **pontban a határértéke** $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x - x_0| < \delta$, akkor f(x) > K. Erre a $\lim_{x \to x_0} f(x) = +\infty$ jelölést alkalmazzuk.

3. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, $x_0 \in D'$. Azt mondjuk, hogy az f függvénynek **az** x_0 **pontban a határértéke** $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ és $|x - x_0| < \delta$, akkor f(x) < k. Erre $a \lim_{x \to x_0} f(x) = -\infty$ jelölést alkalmazzuk.

1. Példa. Tekintsük az

$$f(x) = 2x + 1 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to 1} f(x) = 3$$

2. Példa. Legyen

$$f(x) = \frac{1}{(x-2)^2} \qquad (x \in \mathbb{R} \setminus \{0\}).$$

Ekkor

$$\lim_{x\to 2} f(x) = +\infty.$$

- **4. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $a + \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $K \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to +\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- **5. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke α , ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $k \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k$, akkor $|f(x) \alpha| < \varepsilon$. Erre a $\lim_{x \to -\infty} f(x) = \alpha$ jelölést alkalmazzuk.
- **6. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \geqslant K$. Erre a $\lim_{x \to +\infty} f(x) = +\infty$ jelölést alkalmazzuk.
- **7. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely felülről nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} + \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $K^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \geqslant K^*$, akkor $f(x) \leqslant k$. Erre a $\lim_{x \to +\infty} f(x) = -\infty$ jelölést alkalmazzuk.
- **8. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke $+\infty$, ha tetszőleges $K \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \geq K$. Erre a $\lim_{x \to -\infty} f(x) = +\infty$ jelölést alkalmazzuk.
- **9. Definíció.** Legyen $\emptyset \neq D \subset \mathbb{R}$ egy olyan halmaz, mely alulról nem korlátos, $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek $\mathbf{a} \infty$ -ben a határértéke $-\infty$, ha tetszőleges $k \in \mathbb{R}$ esetén létezik olyan $k^* \in \mathbb{R}$, hogy ha $x \in D$ és $x \leq k^*$, akkor $f(x) \leq k$. Erre a $\lim_{x \to -\infty} f(x) = -\infty$ jelölést alkalmazzuk.
- 3. Példa. Legyen

$$f(x)=e^x \qquad (x\in\mathbb{R})\,,$$

ekkor

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = 0$$

4. Példa. Tekintsük az

$$f(x) = x^3 \qquad (x \in \mathbb{R})$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to +\infty} f(x) = +\infty \quad \text{\'es} \quad \lim_{x \to -\infty} f(x) = -\infty.$$

1. Tétel (Átviteli elv). Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$, illetve $x_0 \in D'$ és $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Ekkor $\lim_{x \to x_0} f(x) = \alpha$ pontosan akkor teljesül, ha tetszőleges $(x_n)_{n \in \mathbb{N}}$ D-beli, x_0 -hoz konvergáló sorozat esetén $\lim_{n \to \infty} f(x_n) = \alpha$ teljesül.

Határérték és folytonosság kapcsolata

2. Tétel. Legyen $\emptyset \neq D \subset \mathbb{R}$, $f: D \to \mathbb{R}$ és $x_0 \in D$. Ekkor az f függvény pontosan akkor folytonos az x_0 pontban, ha létezik a $\lim_{x\to x_0} f(x)$ határérték, és

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Határérték és műveletek

3. Tétel. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f, g : D \to \mathbb{R}$, illetve $\alpha, \beta \in \mathbb{R}$. Ha az f és g függvényeknek létezik a határértéke az x_0 pontban és

$$\lim_{x \to x_0} f(x) = \alpha \quad \text{\'es} \quad \lim_{x \to x_0} g(x) = \beta,$$

akkor

(i) az f + g függvénynek is létezik az x_0 pontban a határértéke

$$\lim_{x \to x_0} (f(x) + g(x)) = \alpha + \beta;$$

(ii) tetszőleges $\lambda \in \mathbb{R}$ esetén a $\lambda \cdot f$ függvénynek is létezik az x_0 pontban a határértéke és

$$\lim_{x \to x_0} \lambda \cdot f(x) = \lambda \cdot \alpha;$$

(iii) az $f \cdot g$ függvénynek is létezik az x_0 pontban a határértéke és

$$\lim_{x \to x_0} f(x) \cdot g(x) = \alpha \cdot \beta$$

(iv) az $\frac{f}{g}$ függvénynek is létezik a határértéke az x_0 pontban és

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta},$$

feltéve, hogy $\beta \neq 0$ és $q(x) \neq 0$ teljesül minden $x \in D$ esetén.

10. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek az x_0 pontban létezik a **jobboldali határérték**e, ha van olyan $\alpha \in \mathbb{R}$, hogy bármely $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $x_0 < x < x_0 + \delta$, akkor $|f(x) - \alpha| < \varepsilon$ teljesül.

Erre a $\lim_{x\to x_0+0} f(x) = \alpha$ jelölést fogjuk használni.

11. Definíció. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Azt mondjuk, hogy az f függvénynek az x_0 pontban létezik a **baloldali határérték**e, ha van olyan $\alpha \in \mathbb{R}$, hogy bármely $\varepsilon > 0$ esetén létezik olyan $\delta > 0$, hogy ha $x \in D$ olyan, hogy $x_0 - \delta < x < x_0$, akkor $|f(x) - \alpha| < \varepsilon$ teljesül.

Erre $a \lim_{x \to x_0 = 0} f(x) = \alpha$ jelölést fogjuk használni.

5. Példa. Tekintsük a

$$sign(x) = \begin{cases} 1, & ha \ x > 0 \\ 0, & ha \ x = 0 \\ -1, & ha \ x < 0 \end{cases}$$

módon megadott sign: $\mathbb{R} \to \mathbb{R}$ függvényt. Ekkor

$$\lim_{x \to 0+0} \operatorname{sign}(x) = 1 \qquad \lim_{x \to 0-0} \operatorname{sign}(x) = -1$$

1. Állítás. Legyen $\emptyset \neq D \subset \mathbb{R}$, $x_0 \in D'$ $f: D \to \mathbb{R}$. Ha az f függvénynek létezik az x_0 pontban a határértéke, akkor f-nek az x_0 pontban létezik a bal- és a jobboldali határértéke is és

$$\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0} f(x)$$

Szakadási helyek osztályozása

12. Definíció. Legyen $D \subset \mathbb{R}$ nyílt halmaz, $x_0 \in D$, $f: D \to \mathbb{R}$. Ha az x_0 pont az f függvénynek szakadási helye és léteznek a $\lim_{x\to x_0-0} f(x)$ és $\lim_{x\to x_0+0} f(x)$ bal- és jobboldali határértékei az f függvénynek az x_0 pontban, akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **elsőfajú szakadás** van.

Ha még az is teljesül, hogy

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 + 0} f(x),$$

akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **megszüntethető szakadás**a van.

Ha az f függvénynek az x_0 pontban szakadása van és az nem elsőfajú, akkor azt mondjuk, hogy az f függvénynek az x_0 pontban **másodfajú szakadás**a van.

6. Példa. Az

$$f(x) = \begin{cases} x, & ha \ x \neq 2 \\ 4, & ha \ x = 2 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 2$ pontban megszüntethető szakadása van.

7. Példa. Az

$$f(x) = \begin{cases} x^2, & ha \ x < 1 \\ 0, & ha \ x = 1 \\ 2 - (x - 1)^2, & ha \ x > 1 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 1$ pontban elsőfajú, nem megszüntethető szakadása van.

8. Példa. Az

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & ha \ x \neq 0 \\ 0, & ha \ x = 0 \end{cases}$$

módon megadott $f: \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 = 0$ pontban másodfajú szakadása van.

Nevezetes függvényhatárértékek

1. Legyen $n \in \mathbb{N}$, $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, $a_n \neq 0$ és

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Ekkor

$$\lim_{x\to +\infty} P(x) = \left\{ \begin{array}{ll} +\infty, & \text{ha} \quad a_n > 0 \\ -\infty, & \text{ha} \quad a_n < 0 \end{array} \right. \quad \text{\'es} \quad \lim_{x\to -\infty} P(x) = \left\{ \begin{array}{ll} +\infty, & \text{ha} \quad a_n > 0 \text{ \'es } n \text{ p\'aros} \\ -\infty, & \text{ha} \quad a_n < 0 \text{ \'es } n \text{ p\'aratlan} \\ +\infty, & \text{ha} \quad a_n < 0 \text{ \'es } n \text{ p\'aratlan} \end{array} \right.$$

2. Legyen a > 0, ekkor

$$\lim_{x \to +\infty} a^x = \begin{cases} +\infty, & \text{ha} \quad a > 1 \\ 0, & \text{ha} \quad a < 1 \end{cases} \quad \text{és} \quad \lim_{x \to -\infty} a^x = \begin{cases} 0, & \text{ha} \quad a > 1 \\ +\infty, & \text{ha} \quad a < 1 \end{cases}$$

3.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

4.

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = 1 \qquad \text{és} \qquad \lim_{x \to 0+} x^{x} = 1.$$

5.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e \qquad \text{és} \qquad \lim_{x \to 0+} \left(1 + x\right)^{\frac{1}{x}} = e.$$

6. Legyen $1 \neq a > 0$, ekkor

$$\lim_{x\to 0}\frac{a^x-1}{x}=\ln(a).$$

7. Legyenek $\alpha > 0$ és $a \in \mathbb{R}$, ekkor

$$\lim_{x \to a} \frac{\alpha^x - \alpha^a}{x - a} = \alpha^a \ln(a).$$

Polinom-per-polinom típusú függvény határértéke $\pm \infty$ -ben

Legyenek P és Q valós polinomok és tegyük fel, hogy a $\lim_{x\to +\infty}\frac{P(x)}{Q(x)}$ vagy a $\lim_{x\to -\infty}\frac{P(x)}{Q(x)}$ határértéket szeretnénk kiszámolni. Ha külön-külön számolnánk ki a számláló és a nevező határértékét, akkor azt kapnánk, hogy

$$\lim_{x \to +\infty} P(x) \in \{-\infty, +\infty\} \quad \text{és} \quad \lim_{x \to +\infty} Q(x) \in \{-\infty, +\infty\},$$

vagyis nem tudnánk dönteni. A határérték kiszámításához ezért hasonló dolgot fogunk tenni, mint a sorozatok esetén a polinom-per-polinom típusnál:

- 1. Kiemelünk a nevező legnagyobb fokú tagjával.
- 2. Használjuk, hogy tetszőleges $\alpha>0$ esetén

$$\lim_{x\to\pm\infty}\frac{1}{x^{\alpha}}=0.$$

3. A fenti lépések után már tagonként lehet számolni.

⁻Polinom-per-polinom típusú függvény határértéke véges, valós helyen

Az ebben a feladatban szereplő példák nagyon hasonlítanak az előző típusra, de van egy nagyon lényeges különbség. Igaz ugyanm hogy itt is polinomok hányadosának szeretnénk kiszámolni a határértékét, de nem $\pm\infty$ -ben, hanem egy **véges valós** helyen. Alapból ezt tagonként kell megtenni. Van viszont egy olyan eset, amikor ez nem vezet eredményre: legyenek P és Q adott valós polinomok, $x_0 \in \mathbb{R}$. Tegyük fel, hogy a

$$\lim_{x \to x_0} \frac{P(x)}{Q(x)}$$

határértéket szeretnénk kiszámolni, de

$$\lim_{x \to x_0} P(x) = 0 \qquad \text{és} \qquad \lim_{x \to x_0} Q(x) = 0.$$

Ekkor a következőket kell tennünk.

- Meghatározzuk a P és Q polinomok gyökeit (azaz, megoldjuk a P(x) = 0 és Q(x) = 0 algebrai egyenleteket).
- 2. A gyökök ismeretében gyöktényezős alakra hozzuk a P és Q polinomokat.
- 3. Egyerűsítünk és utána tagonként számolunk.

Gyökök különbsége típus

Az ilyen típusú függvényhatárértékek nagyon hasonlítanak a sorozatok esetében tanult "gyökök különbsége" típusra. Az ott tanult algebrai átalakítás itt is mindig eredményre vezet. Ha P és Q adott valós polinomok és a

$$\lim_{x \to +\infty} \sqrt{P(x)} - \sqrt{Q(x)}$$

határértéket szeretnénk kiszámolni, akkor

1. A $\sqrt{P(x)} - \sqrt{Q(x)}$ kifejezést szorozzuk meg az alábbi kifejezéssel

$$\frac{\sqrt{P(x)} + \sqrt{Q(x)}}{\sqrt{P(x)} + \sqrt{Q(x)}}.$$

- 2. A szorzás után végezzük el az adódó egyszerűsítéseket.
- 3. A kapott hányados esetében emeljünk ki a nevező "legdominánsabb" tagjával és számoljunk tagonként.

$-\frac{1}{x}(1+\frac{1}{x})^x$ típusú határértékek

Az ilyen típusú függvényhatárértékek nagyon hasonlítanak a sorozatok esetében tanult $\left(\left(1+\frac{1}{p_n}\right)^{p_n}\right)_{n\in\mathbb{N}}$ típusra. Az ott tanult algebrai átalakítások itt is eredményre vezetnek, ha használjuk, hogy

$$\lim_{x\to+\infty}\left(1+\frac{1}{x}\right)^x=e.$$