Shusen Wang

Policy Gradient

- Use policy network, $\pi(a|s; \theta)$, for controlling the agent.
- State-value function:

$$V_{\pi}(s) = \mathbb{E}_{A \sim \pi}[Q_{\pi}(s, A)]$$
$$= \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a).$$

Policy gradient:

$$\frac{\partial V_{\pi}(s)}{\partial \theta} = \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right].$$

$$\bullet \mathbb{E}_{A \sim \pi} \left[b \right] \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \left[\mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \frac{\partial \ln \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

= $b \cdot \sum_{a} \pi(a \mid s; \theta) \left(\frac{\partial \ln \pi(a \mid s; \theta)}{\partial \theta} \right)$

$$= \frac{1}{\pi(\mathbf{a} \mid s; \mathbf{\theta})} \cdot \frac{\partial \pi(\mathbf{a} \mid s; \mathbf{\theta})}{\partial \mathbf{\theta}}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \left(\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(\alpha \mid s; \theta) \cdot \left[\frac{1}{\pi(\alpha \mid s; \theta)} \left(\frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right) \right]$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial 1}{\partial \theta}$$

•
$$\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = b \cdot \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \pi(a \mid s; \theta) \cdot \left[\frac{1}{\pi(a \mid s; \theta)} \cdot \frac{\partial \pi(a \mid s; \theta)}{\partial \theta} \right]$$

$$= b \cdot \sum_{a} \frac{\partial \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial \sum_{a} \pi(a \mid s; \theta)}{\partial \theta}$$

$$= b \cdot \frac{\partial 1}{\partial \theta} = 0.$$

If *b* is independent of *A*, then
$$\mathbb{E}_{A \sim \pi} \left| b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right| = 0$$
.

Policy gradient:

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right]$$

If *b* is independent of *A*, then
$$\mathbb{E}_{A \sim \pi} \left| b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right| = 0$$
.

Policy gradient:

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot Q_{\pi}(s, A) \right] - \left[\mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot b \right] \right]$$
Equal to zero

If
$$b$$
 is independent of A , then $\mathbb{E}_{A \sim \pi} \left[b \cdot \frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] = 0$.

• Policy gradient:

$$\frac{\partial V_{\pi}(s)}{\partial \theta}$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s, A) \right) - \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \right] b \right]$$

$$= \mathbb{E}_{A \sim \pi} \left[\frac{\partial \ln \pi(A \mid s; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s, A) - b \right) \right].$$

Theorem. If b is independent of A_t , then policy gradient is equal to:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

Policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

• Randomly sample an action $a_t \sim \pi(\cdot \mid s_t; \theta)$.

Policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- Randomly sample an action $a_t \sim \pi(\cdot \mid s_t; \theta)$.
- Compute: $\mathbf{g}(a_t) = \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (Q_{\pi}(s_t,a_t) b).$
- $g(a_t)$ is an unbiased estimate of the policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \mathbf{A}} = \mathbb{E}_{\mathbf{A}_t \sim \pi}[\mathbf{g}(\mathbf{A}_t)].$$

Stochastic policy gradient with baseline:

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t;\theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - b)$$

- Whatever b (independent of A_t) we use, the policy gradient $\mathbb{E}_{A_t \sim \pi}[\mathbf{g}(A_t)]$ remains the same.
- However, b affects the stochastic policy gradient $\mathbf{g}(a_t)$.
- A good b leads to smaller variance and speeds up convergence.

Choices of Baselines

Choice 1: b=0

Policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- We can simply set b = 0.
- It becomes the standard policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot Q_{\pi}(s_t, A_t) \right].$$

Choice 2: b is state-value

Policy gradient with baseline:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot (Q_{\pi}(s_t, A_t) - b) \right].$$

- Because s_t has been observed, $b = V_{\pi}(s_t)$ is independent of A_t .
- Why using such a baseline?
- $V_{\pi}(s_t)$ is close to $Q_{\pi}(s_t, A_t)$:

$$V_{\pi}(s_t) = \mathbb{E}_{A_t}[Q_{\pi}(s_t, A_t)].$$

Thank you!