House

2024-10-26

```
house <- read.csv("Voting Data - House.csv")</pre>
house$R_vote_share <- house$votes_r / house$votes_total * 100
result <- house %>%
  group_by(state_abbrev, dist) %>%
  summarize(
    avg_R_votes = mean(votes_r, na.rm = TRUE),
    avg_D_votes = mean(votes_d, na.rm = TRUE),
    avg_0_votes = mean(votes_o, na.rm = TRUE),
    total_avg_votes = rowSums(cbind(avg_R_votes, avg_D_votes, avg_O_votes), na.rm = TRUE),
    avg_R_vote_share = mean(R_vote_share, na.rm = TRUE),
    avg_Rpres_share = mean(Rpres., na.rm = TRUE)
  ) %>%
  ungroup()
## 'summarise()' has grouped output by 'state_abbrev'. You can override using the
## '.groups' argument.
result$diff_vote_share <- result$avg_Rpres_share - result$avg_R_vote_share
result_final <- subset(result, select = c("state_abbrev", "dist", "diff_vote_share"))
print(result_final, n = Inf)
## # A tibble: 435 x 3
##
       state_abbrev dist diff_vote_share
##
                  <int>
       <chr>
                                    <dbl>
##
     1 AK
                        0
                                   0.600
                        1
##
    2 AL
                                 -16.8
##
    3 AL
                        2
                                   7.40
##
     4 AL
                        3
                                  -1.90
##
                                  -9.56
     5 AL
                        4
##
     6 AL
                        5
                                 -17.5
                        6
##
     7 AL
                                 -16.9
##
     8 AL
                        7
                                 {\tt NaN}
##
    9 AR
                        1
                                 -21.1
                        2
                                  -4.10
## 10 AR
## 11 AR
                        3
                                  -8.93
## 12 AR
                        4
                                  -6.36
## 13 AZ
                        1
                                   2.15
## 14 AZ
                        2
                                  -6.63
## 15 AZ
                        3
                                  -1.31
## 16 AZ
                                  -2.76
```

##	17		5	-4.47
##	18		6	-5.26
##	19		7	-0.348
##	20		8	-6.51
##	21	AZ	9	-0.841
##		CA	1	-1.72
##	23		2 3	-0.0945
## ##		CA CA	4	-1.46 -5.49
##		CA	5	1.26
##		CA	6	0.199
##	28	CA	7	-4.73
##	29	CA	8	-4.78
##			9	-3.57
##	31	CA	10	-1.80
##			11	-4.33
##			12	NaN
##		CA	13	-1.53
##	35	CA	14	-0.580
##	36	CA	15	-2.35
##	37	CA	16	-3.63
##	38	CA	17	-5.63
##	39	CA	18	-8.10
##	40	CA	19	-2.47
##	41	CA	20	-2.12
##	42	CA	21	-12.0
##	43	CA	22	-9.02
##	44	CA	23	-8.05
##	45	CA	24	-7.26
##	46	CA	25	-7.86
##	47	CA	26	-3.27
##	48	CA	27	-1.78
##	49	CA	28	0.0928
##		CA	29	NaN
##	51	CA	30	-1.37
##	52	CA	31	-3.57
##	53	CA	32	-3.17
##	54 ==	CA	33	-5.22
## ##	55 56	CA CA	34 35	NaN 0.632
##	57	CA	36	4.05
##	58	CA	37	-2.34
##	59	CA	38	0.313
##	60	CA	39	-10.5
##	61	CA	40	-10.6
##	62	CA	41	-0.888
##	63	CA	42	-4.91
##	64	CA	43	-7.30
##	65	CA	44	NaN
##	66	CA	45	-8.69
##	67	CA	46	-0.541
##	68	CA	47	-3.35
##	69	CA	48	-7.47
##	70	CA	49	-5.71

##		CA	50	-5.05
##	72	CA	51	-2.63
##	73	CA	52	-6.05
##	74	CA	53	-2.75
##	75	CO	1	-3.02
##	76	CO	2	-2.02
##		CO	3	-1.21
##		CO	4	-4.82
##		CO	5	-3.98
##		CO	6	-5.16
##		CO	7	-0.433
##		CT	1	1.42
##		CT	2	13.9
##		CT	3	4.25
##		CT	4	-2.61
##	86	CT	5	2.13
##	87	DE	0	0.261
##	88	FL	1	-0.153
##	89	FL	2	-16.0
##	90	FL	3	-0.746
##	91	FL	4	-4.64
##		FL	5	0.717
##		FL	6	-2.01
##		FL	7	-1.73
##		FL	8	-3.90
##			9	
		FL		0.738
##		FL	10	0.208
##		FL	11	-0.922
##		FL	12	-8.07
##	100	FL	13	-0.627
##	101	FL	14	1.34
##	102	FL	15	-3.04
##	103	FL	16	-4.00
##	104	FL	17	-0.467
##	105	FL	18	-1.37
##	106		19	-3.91
##	107		20	-0.400
##	108		21	3.03
##	109		22	0.408
##	110		23	-2.66
##	111		24	-0.708
	112			
##			25	-6.90
##	113		26	-5.83
##	114		27	-9.62
##		GA	1	-23.0
##	116	GA	2	3.53
##	117	GA	3	-3.57
##	118	GA	4	-0.883
##	119	GA	5	-2.93
##	120	GA	6	-7.56
##	121		7	-5.88
##	122		8	-3.45
##	123		9	-12.2
##	124		10	-20.5
11 TT	124	чл	10	20.0

## 125 GA	11	-5.34	
## 126 GA	12	-3.65	
## 127 GA	13	2.38	
## 128 GA	14	-13.1	
## 129 HI	1	7.15	
## 130 HI	2	6.96	
## 131 IA	1		
		-2.75	
## 132 IA	2	2.05	
## 133 IA	3	-1.67	
## 134 IA	4	0.186	
## 135 ID	1	-2.55	
## 136 ID	2	-6.19	
## 137 IL	1	-2.98	
## 138 IL	2	-0.524	
## 139 IL	3	-2.24	
## 140 IL	4	-0.693	
## 140 IL	5	-2.09	
## 142 IL	6	-9.43	
## 143 IL	7	-3.90	
## 144 IL	8	-4.01	
## 145 IL	9	-5.11	
## 146 IL	10	-8.46	
## 147 IL	11	-2.35	
## 148 IL	12	-1.80	
## 149 IL	13	-6.96	
## 150 IL	14	-6.09	
## 151 IL	15	-15.3	
## 152 IL	16	-26.1	
## 153 IL	17	4.73	
## 154 IL	18	-10.5	
## 154 IL	1	2.71	
## 156 IN	2	-1.05	
## 157 IN	3	-4.50	
## 158 IN	4	-1.57	
## 159 IN	5	-4.14	
## 160 IN	6	-0.627	
## 161 IN	7	-0.892	
## 162 IN	8	-0.490	
## 163 IN	9	2.96	
## 164 KS	1	0.961	
## 165 KS	2	-2.00	
## 166 KS	3	-2.60	
## 167 KS	4	-2.23	
## 168 KY	1	-1.04	
## 169 KY	2	-17.9	
## 170 KY	3		
		2.10	
## 171 KY	4	-4.23	
## 172 KY	5	-12.2	
## 173 KY	6	-5.08	
## 174 LA	1	-5.03	
## 175 LA	2	7.59	
## 176 LA	3	14.5	
## 177 LA	4	13.1	
## 178 LA	5	-3.99	

##	179		6	-30.0
##	180		1	NaN
##	181	MA	2	0.216
##		MA	3	-1.50
##	183		4	-3.30
##	184		5	-1.81
##		MA	6	-10.6
##	186 187	MA MA	7	NaN
## ##		MA	8 9	23.7 12.3
##	189		1	-32.9
##		MD	2	-8.06
##	191	MD	3	-6.31
##	192	MD	4	14.1
##	193	MD	5	-1.31
##	194	MD	6	-14.3
##	195	MD	7	9.15
##	196	MD	8	11.3
##	197	ME	1	15.2
##	198	ME	2	5.98
##	199	MI	1	-4.97
##	200	MI	2	-5.84
##	201	MI	3	-2.83
##	202	MI	4	-14.1
##	203	MI	5	15.1
##	204	MI	6	-3.48
##	205	MI	7	-10.2
##	206	MI	8	1.59
##	207	MI	9	19.1
##	208	MI	10	-23.9
##	209	MI	11	-24.1
##	210	MI	12	-10.8
##	211	MI	13	19.2
##	212	MI	14	31.8
##	213		1	-5.63
##	214		2	-11.4
##	215	MN	3	-26.0
##	216	MN	4	6.60
##	217	MN	5	36.3
##	218	MN	6 7	-6.66 -12.9
## ##	219220	MN MN	8	-12.9 -17.8
##	221	MO	1	38.7
##	222	MO	2	10.9
##	223	MO	3	-15.3
##	224	MO	4	-16.3
##	225	MO	5	28.5
##	226	MO	6	5.17
##	227	MO	7	3.15
##	228	MO	8	-25.7
##	229	MS	1	-20.5
##	230	MS	2	33.2
##	231	MS	3	-3.06
##	232	MS	4	-38.8
			-	

##	233	MT	0	-7.06
##	234	NC	1	9.87
##	235	NC	2	-1.22
##	236	NC	3	-20.5
##	237	NC	4	29.5
##	238	NC	5	-15.3
##	239	NC	6	8.61
##	240	NC	7	-7.11
##	241	NC	8	1.15
##	242	NC	9	8.55
##	243	NC	10	-24.1
##	244	NC	11	-18.3
##	245	NC	12	32.6
##	246	NC	13	-0.661
##	247	ND	0	-16.8
##	248	NE	1	-4.18
##			2	12.0
	249	NE		
##	250	NE	3	-43.1
##	251	NH	1	-4.14
##	252	NH	2	-0.910
##	253	NJ	1	13.9
##	254	NJ	2	-2.97
##	255	NJ	3	-0.674
##	256	NJ	4	-18.1
##	257	NJ	5	-1.66
##	258	NJ	6	-3.98
##	259	NJ	7	-21.6
##	260	NJ	8	3.27
##	261	NJ	9	1.94
##	262	NJ	10	26.0
##	263	NJ	11	-19.1
##	264	NJ	12	11.5
##	265	NM	1	7.48
##	266	NM	2	-21.9
##	267	NM	3	4.76
##	268	NV	1	19.5
##	269	NV	2	-10.6
##	270	NV	3	4.86
##	271	NV	4	7.08
##	272	NY	1	-8.58
##	273	NY	2	-13.4
##	274	NY	3	-17.2
##	275	NY	4	-17.6
##	276	NY	5	10.9
##	277	NY	6	-14.0
##	278	NY	7	3.62
##	279	NY	8	3.16
##	280	NY	9	22.4
			10	
##	281	NY		11.2
##	282	NY	11	-47.2
##	283	NY	12	-1.14
##	284	NY	13	8.06
##	285	NY	14	-4.49
##	286	NY	15	23.8

##	287		16	NaN
##	288	NY	17	13.6
##	289	NY	18	0.601
##	290	NY	19	-2.20
##	291	NY	20	19.1
##	292	NY	21	-7.44
##	293	NY	22	2.27
##	294	NY	23	-15.9
##	295	NY	24	-18.9
##	296	NY	25	6.21
##	297	NY	26	27.0
##	298	NY	27	-10.1
##	299	OH	1	-13.4
##	300	OH	2	-16.7
##	301	OH	3	33.1
##	302	OH	4	-2.46
##	303	OH	5	-2.10
##	304	OH	6	-7.34
##	305	OH	7	-14.5
##	306	OH	8	-23.3
##	307	OH	9	0.0708
##	308	OH	10	-25.0
##	309	ОН	11	28.6
##	310	ОН	12	-10.3
##	311	OH	13	16.0
##	312		14	-5.13
##	313		15	-5.85
##	314		16	2.25
##	315	OK	1	11.1
##	316	OK	2	-2.68
##	317	OK	3	-19.0
##	318	OK	4	-25.8
##	319	OK	5	-9.30
##	320	OR	1	2.97
##	321	OR	2	-31.0
##	322	OR	3	21.9
##	323	OR	4	-11.9
##	324	OR	5	-17.0
##	325	PA	1	7.93
##	326	PA	2	14.7
##	327	PA	3	-4.62
##	328	PA	4	-12.5
##	329	PA	5	-6.80
##	330	PA	6	-2.99
##	331	PA	7	6.90
##	332	PA	8	14.0
##	333	PA	9	-9.47
##	334	PA DA	10	-2.31
##	335	PA	11	-13.9 -15.2
##	336	PA	12	-15.3 -16.0
##	337	PA	13	-16.0
##	338	PA	14	15.9
##	339	PA	15	-9.88
##	340	PA	16	-3.49

##	341		17	-12.9
##	342	PA	18	-26.1
##	343	RI	1	12.9
##	344	RI	2	18.1
##	345	SC	1	6.36
##	346	SC	2	6.17
##	347	SC	3	-13.7
	348		4	-20.4
	349		5	-14.7
##			6	30.9
##		SC	7	7.85
##			0	-1.89
##			1	
				-12.0
##			2	-4.68
##		TN	3	-14.0
##		TN	4	-11.2
##	357		5	32.7
##	358	TN	6	-5.79
##	359	TN	7	-28.5
##	360	TN	8	-22.6
##	361	TN	9	42.5
##	362	TX	1	-20.9
##	363	TX	2	4.47
##		TX	3	10.4
##		TX	4	-24.0
##	366	TX	5	-22.3
##		TX	6	3.32
			7	-7.53
##		TX		
##		TX	8	-48.5
##	370	TX	9	43.4
##	371		10	16.1
##	372		11	-14.4
##		TX	12	2.13
##	374	TX	13	-35.2
##	375	TX	14	-23.9
##	376	TX	15	1.50
##	377	TX	16	2.02
##	378	TX	17	-10.6
##	379	TX	18	29.7
##	380	TX	19	-37.1
##	381	TX	20	18.2
##	382	TX	21	-6.37
##	383	TX	22	-5.05
##	384	TX	23	1.37
##	385	TX	24	4.97
##	386	TX	25 26	1.04
##	387	TX	26	-13.6
##	388	TX	27	-26.1
##	389	TX	28	-9.56
##	390	TX	29	10.5
##	391	TX	30	29.8
##	392	TX	31	-22.0
##	393	TX	32	-26.8
##	394	TX	33	13.3

##	395	TX	34	11.7
##	396	TX	35	30.0
##	397	TX	36	-26.0
##	398	UT	1	-16.1
##	399	UT	2	-10.6
##	400	UT	3	-18.1
##	401	UT	4	-0.615
##	402	VA	1	-19.7
##	403	VA	2	-19.4
##	404	VA	3	12.9
##	405	VA	4	16.5
##	406	VA	5	-0.209
##	407	VA	6	-30.8
##	408	VA	7	-8.30
##	409	VA	8	30.7
##	410	VA	9	-47.7
##	411	VA	10	-18.7
##	412	VA	11	5.99
##	413	VT	0	9.49
##	414	WA	1	-0.478
##	415	WA	2	17.9
##	416	WA	3	-4.04
##	417	WA	4	-15.6
##	418	WA	5	-34.6
##	419	WA	6	-11.0
##	420	WA	7	17.6
##	421	WA	8	-21.9
##	422	WA	9	20.3
##	423	WA	10	0.118
##	424	WI	1	-22.9
##	425	WI	2	5.92
##	426	WI	3	-8.64
##	427	WI	4	33.6
##	428	WI	5	-6.10
##	429	WI	6	-0.492
##	430	WI	7	1.38
##	431	WI	8	3.48
##	432	WV	1	-2.28
##	433	WV	2	8.84
##	434	WV	3	1.83
##	435	WY	0	4.95