8 Fonctions trigonométriques

Rappel

Voici le graphe de la fonction sinus :

On rappelle quelques propriétés de la fonction sinus démontrées aux exercices 1.6 et 1.9 :

- 1) elle est définie sur l'ensemble des nombres réels et à valeurs dans [-1;1];
- 2) elle est impaire : $\sin(-x) = -\sin(x)$ pour tout $x \in \mathbb{R}$;
- 3) elle est périodique de période $2\pi : \sin(x+2\pi) = \sin(x)$ pour tout $x \in \mathbb{R}$.

Passons au graphe de la fonction cosinus:

Les propriétés suivantes de la fonction cosinus ont aussi été démontrées :

- 1) elle est définie sur l'ensemble des nombres réels et à valeurs dans [-1;1];
- 2) elle est paire : $\cos(-x) = \cos(x)$ pour tout $x \in \mathbb{R}$;
- 3) elle est périodique de période $2\pi : \cos(x+2\pi) = \cos(x)$ pour tout $x \in \mathbb{R}$.

Les relations $\sin(x + \frac{\pi}{2}) = \cos(x)$ et $\cos(x - \frac{\pi}{2}) = \sin(x)$ impliquent que les graphes des fonctions sinus et cosinus s'obtiennent l'un à partir de l'autre par une translation de $\frac{\pi}{2}$ dans la direction de l'axe des abscisses.

8.1 Fonction tangente

On rappelle que la fonction tangente est définie par $\tan(x) = \frac{\sin(x)}{\cos(x)}$.

- 1) Quel est le domaine de définition de la fonction tangente?
- 2) Étudier la parité de la fonction tangente.
- 3) Vérifier que la fonction tangente est périodique de période π .
- 4) Quelles sont les asymptotes verticales de la fonction tangente?
- 5) Représenter soigneusement le graphe de la fonction tangente.

8.2 Fonction cotangente

On rappelle que la fonction cotangente est définie par $\cot(x) = \frac{\cos(x)}{\sin(x)}$.

- 1) Quel est le domaine de définition de la fonction cotangente?
- 2) Étudier la parité de la fonction cotangente.
- 3) Vérifier que la fonction cotangente est périodique de période π .
- 4) Quelles sont les asymptotes verticales de la fonction cotangente?
- 5) Représenter soigneusement le graphe de la fonction cotangente.

8.3 Déterminer la parité et la période des fonctions suivantes :

$$1) \ f(x) = \sin(2x)$$

2)
$$f(x) = \sin(2x+3)$$

$$3) f(x) = \cos(3x)$$

4)
$$f(x) = \cos(3x + 5)$$

$$5) \ f(x) = \cos(\frac{x}{5})$$

6)
$$f(x) = \tan(\frac{x}{2})$$

7)
$$f(x) = \sin(2x) + \sin(x)$$

8)
$$f(x) = \sin(x) \cos(x)$$

9)
$$f(x) = \sin^2(x)$$

$$10) f(x) = \sin^3(x)$$

$$11) f(x) = \cos^2(x)$$

12)
$$f(x) = \cos^3(x)$$

8.4 Déterminer les zéros et le signe de chaque fonction sur l'intervalle [0; p[, où p désigne la période de la fonction.

1)
$$f(x) = \sin(3x + \frac{\pi}{4})$$

$$2) f(x) = \cos(x) + \sin(x)$$

3)
$$f(x) = \sin(x) \cos(x)$$

4)
$$f(x) = \cos(x) + \sin^2(x) - 1$$

5)
$$f(x) = \frac{4\cos^2(x) - 1}{\cos(x)}$$

6)
$$f(x) = 3 \tan^2(x) - 4\sqrt{3} \tan(x) + 3$$

8.5 1) En fonction de $h \in]0; \frac{\pi}{2}[$, calculer :

- (a) l'aire du triangle OAB;
- (b) l'aire du secteur OAE;
- (c) l'aire du triangle OCE.

2) En déduire que $\cos(h) \sin(h) < h < \frac{\sin(h)}{\cos(h)}$, puis que $\frac{1}{\cos(h)} > \frac{\sin(h)}{h} > \cos(h)$.

- 3) En tirer que $\lim_{\substack{h\to 0\\h>0}} \frac{\sin(h)}{h} = 1$.
- 4) Conclure, vu la parité de la fonction sinus, que $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$.

8.6 Montrer que $\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$.

Indication pour lever l'indétermination : $\lim_{h\to 0} \frac{\cos(h)-1}{h} = \lim_{h\to 0} \frac{\cos(h)-1}{h} \cdot \frac{\cos(h)+1}{\cos(h)+1}$.

8.7 Démontrer la formule $\left[\left(\sin(x) \right)' = \cos(x) \right]$.

Rappels: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ et $\sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta)$

8.8 Démontrer la formule $\left[\cos(x)\right]' = -\sin(x)$.

Indication: $\cos(x) = \sin(\frac{\pi}{2} - x)$

8.9 Démontrer la formule $\left(\tan(x)\right)' = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$.

8.10 Démontrer la formule $\left(\cot(x)\right)' = -\frac{1}{\sin^2(x)} = -1 - \cot^2(x)$.

- 8.11 Calculer les dérivées première et deuxième des fonctions de l'exercice 8.4.
- **8.12** Démontrer que la fonction $f(x) = \sin^6(x) + \cos^6(x) + 3\sin^2(x)\cos^2(x)$ est constante.
- 8.13 Dans un trapèze ABCD, rectangle en D, la base AB et la diagonale AC ont une longueur L fixée. Déterminer pour quelle valeur de l'angle α l'aire du trapèze est maximale.

 Quelle est l'aire maximale?

- 8.14 Déterminer l'aire maximale d'un trapèze isocèle ABCD inscrit dans le demicercle de diamètre AB.
- **8.15** Étudier selon le plan d'étude la fonction $f(x) = \sin(x) + \sqrt{3}\cos(x)$.
- **8.16** Étudier selon le plan d'étude la fonction $f(x) = \cos^3(x) 3\cos(x) + 2$.

- **8.17** Étudier selon le plan d'étude la fonction $f(x) = \frac{\cos(x)}{2 \sin(x)}$.
- 8.18 Étudier selon le plan d'étude la fonction $f(x) = \frac{\sin(x)}{\cos(x) + \sin(x)}$.

Fonctions trigonométriques inverses

Définissons la fonction arc sinus, qui est la fonction inverse de la fonction sinus.

Construisons le symétrique, par rapport à la bissectrice du premier quadrant, du graphe de la fonction sinus.

La courbe ainsi obtenue ne définit pas une fonction, car pour une valeur de $x \in [-1; 1]$, il existe plus d'une image.

Par contre, si pour $x \in [-1;1]$ nous choisissons uniquement des valeurs de y qui appartiennent à $[-\frac{\pi}{2};\frac{\pi}{2}]$, nous obtenons une fonction que nous appelons arc sinus.

Pour
$$x \in [-1; 1]$$
 et $y \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, on pose : $y = \arcsin(x) \iff x = \sin(y)$.

Construisons le symétrique, par rapport à la bissectrice du premier quadrant, du graphe de la fonction cosinus.

La courbe ainsi obtenue ne définit pas une fonction, car pour une valeur de $x \in [-1; 1]$, il existe plus d'une image.

Par contre, si pour $x \in [-1;1]$ nous choisissons uniquement des valeurs de y qui appartiennent à $[0;\pi]$, nous obtenons une fonction que nous appelons arc cosinus.

Pour
$$x \in [-1; 1]$$
 et $y \in [0; \pi]$, on pose : $y = \arccos(x) \iff x = \cos(y)$.

- 8.19 Définir de même les fonctions arc tangente et arc cotangente.
- 8.20 1) En dérivant l'égalité $\sin(\arcsin(x)) = x$, montrer que $\left(\arcsin(x)\right)' = \frac{1}{\cos(\arcsin(x))}.$

2) Justifier que si $\alpha \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, alors $\cos(\alpha) = \sqrt{1 - \sin^2(\alpha)}$.

3) En déduire la formule
$$\left(\arcsin(x)\right)' = \frac{1}{\sqrt{1-x^2}}$$
.

- 8.21 1) En dérivant l'égalité $\cos(\arccos(x)) = x$, montrer que $(\arccos(x))' = -\frac{1}{\sin(\arccos(x))}$.
 - 2) Justifier que si $\alpha \in [0; \pi]$, alors $\sin(\alpha) = \sqrt{1 \cos^2(\alpha)}$.
 - 3) En déduire la formule $\left(\arccos(x)\right)' = -\frac{1}{\sqrt{1-x^2}}\right|$.
- 8.22 Démontrer la formule $\left(\arctan(x)\right)' = \frac{1}{1+x^2}\right|$.

8.23 Démontrer la formule
$$\left(\operatorname{arccot}(x)\right)' = -\frac{1}{1+x^2}\right)$$

- 8.24 Le bas d'un écran de cinéma de 12 mètres de haut arrive à 6 mètres au-dessus des yeux d'une spectatrice.
 - 1) Exprimer α et β en fonction de x.
 - 2) Exprimer θ en fonction de x.
 - 3) Si l'on obtient la meilleure vision lorsque l'ouverture d'angle θ rapportée à l'écran est maximale, à quelle distance x du bas de l'écran la spectatrice doit-elle se trouver pour avoir la meilleure vision?

Réponses

- 8.1 1) $D_{tan} = \mathbb{R} \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$ 2) la fonction tangente est impaire
 - 4) asymptotes verticales $x = \frac{\pi}{2} + k \pi$ où $k \in \mathbb{Z}$

- 1) $D_{cot} = \mathbb{R} \{k \pi : k \in \mathbb{Z}\}$ 8.2
- 2) la fonction cotangente est impaire
- 4) asymptotes verticales $x = k \pi$ où $k \in \mathbb{Z}$

8.3 1) impaire période : π

3) paire

- période : $\frac{2\pi}{3}$
- 5) paire période : 10π
- 7) impaire période : 2π
- 9) paire période : π
- 11) paire période : π
- 8.4

8.11 1)
$$f'(x) = 3\cos(3x + \frac{\pi}{4})$$

- 2) quelconque période : π
- 4) quelconque période : $\frac{2\pi}{3}$
 - 6) impaire période : 2π
 - 8) impaire période : π
 - 10) impaire période : 2π
 - 12) paire période : 2π

$$2) \begin{bmatrix} 0 & + \frac{3\pi}{4} & - \frac{7\pi}{4} & + \\ & & & & \end{bmatrix}$$

$$4) \stackrel{0}{\downarrow} + \stackrel{\frac{\pi}{2}}{\downarrow} - \stackrel{\frac{3\pi}{2}}{\downarrow} + \stackrel{2\pi}{\downarrow}$$

$$f''(x) = -9\sin\left(3\,x + \frac{\pi}{4}\right)$$

2)
$$f'(x) = -\sin(x) + \cos(x)$$
 $f''(x) = -\cos(x) - \sin(x)$

3)
$$f'(x) = \cos^2(x) - \sin^2(x)$$
 $f''(x) = -4\sin(x)\cos(x)$

4)
$$f'(x) = -\sin(x) + 2\sin(x)\cos(x)$$
 $f''(x) = -\cos(x) + 2\cos^2(x) - 2\sin^2(x)$

4)
$$f'(x) = -\sin(x) + 2\sin(x)\cos(x)$$
 $f''(x) = -\cos(x) + 2\cos^2(x) - 2\sin^2(x)$
5) $f'(x) = -\frac{\sin(x)(4\cos^2(x) + 1)}{\cos^2(x)}$ $f''(x) = -\frac{2\sin^2(x) + 4\cos^4(x) + \cos^2(x)}{\cos^3(x)}$

6)
$$f'(x) = (6 \tan(x) - 4\sqrt{3}) (1 + \tan^2(x))$$

 $f''(x) = 2 (9 \tan^2(x) - 4\sqrt{3} \tan(x) + 3) (\tan^2(x) + 1)$

8.13
$$\alpha = \frac{\pi}{3}$$
 aire maximale : $\frac{3\sqrt{3}L^2}{8}$

8.14
$$\frac{3\sqrt{3}}{16}$$
 (AB)²

8.15
$$D_f = \mathbb{R}$$
 f n'est ni paire ni impaire $p = 2\pi$
$$\begin{bmatrix} 1 & \frac{2\pi}{3} & \frac{5\pi}{3} & \frac{5\pi}{3} & \frac{2\pi}{3} \\ \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{3} \end{bmatrix} f$$

$$f'(x) = \cos(x) - \sqrt{3}\sin(x) \qquad \begin{bmatrix} 0 & +\frac{\pi}{6} & -\frac{7\pi}{6} & +2\pi\\ & & & & \end{bmatrix} f'$$

$$(\frac{\pi}{6}; 2)$$
 maximum $(\frac{7\pi}{6}; -2)$ minimum

$$f''(x) = -\sin(x) - \sqrt{3}\cos(x) \qquad \begin{bmatrix} 0 & -\frac{2\pi}{3} & +\frac{5\pi}{3} & -2\pi\\ -\frac{1}{3} & +\frac{1}{3} & -\frac{1}{3} & -$$

 $(\frac{2\pi}{3};0)$ et $(\frac{5\pi}{3};0)$ points d'inflexion

$$f'(x) = 3\sin^3(x) \qquad \stackrel{0}{\longleftarrow} \qquad + \qquad \stackrel{\pi}{\longleftarrow} \qquad - \qquad \stackrel{2\pi}{\longleftarrow} \qquad f'$$

(0;0) minimum $(\pi;4)$ maximum

$$f''(x) = 9 \sin^2(x) \cos(x) \qquad \begin{bmatrix} 0 & \frac{\pi}{2} & -\pi & -\frac{3\pi}{2} & +2\pi \\ 0 & 0 & 0 & 0 \end{bmatrix} f''(x)$$

 $(\frac{\pi}{2};2)$ et $(\frac{3\pi}{2};2)$ points d'inflexion

8.17 $D_f = \mathbb{R}$ f n'est ni paire ni impaire $p = 2\pi$ $\begin{bmatrix} + & \frac{\pi}{2} & -\frac{3\pi}{2} & + \\ & + & & \end{bmatrix}$ f

$$f'(x) = \frac{1 - 2\sin(x)}{\left(2 - \sin(x)\right)^2} \quad \begin{bmatrix} 0 & + \frac{\pi}{6} & -\frac{5\pi}{6} & +2\pi\\ 0 & + \frac{\pi}{6} & -\frac{\pi}{6} & + \frac{\pi}{6} \end{bmatrix} f'$$

 $\left(\frac{\pi}{6}; \frac{\sqrt{3}}{3}\right)$ maximum $\left(\frac{5\pi}{6}; -\frac{\sqrt{3}}{3}\right)$ minimum

$$f''(x) = \frac{-2\cos(x)\left(\sin(x) + 1\right)}{\left(2 - \sin(x)\right)^3} \qquad \begin{bmatrix} 0 & -\frac{\pi}{2} & +\frac{3\pi}{2} & -2\pi\\ -\frac{\pi}{2} & +\frac{\pi}{2} & -\frac{\pi}{2} & +\frac{\pi}{2} & -\frac{\pi}{2} \end{bmatrix} f''$$

 $(\frac{\pi}{2}\,;0)$ et $(\frac{3\,\pi}{2}\,;0)$ points d'inflexion

8.18 $D_f = \mathbb{R} - \{\frac{3\pi}{4} + k\pi : k \in \mathbb{Z}\}$ f n'est ni paire ni impaire $p = \pi$

$$\oint \frac{3\pi}{4} - \pi f \quad x = \frac{3\pi}{4} + k\pi \text{ asymptote verticale pour tout } k \in \mathbb{Z}$$

$$f'(x) = \frac{1}{(\cos(x) + \sin(x))^2} \quad \begin{bmatrix} 0 & + & \frac{3\pi}{4} & + & \pi\\ & & & \end{bmatrix} f'$$

$$f''(x) = \frac{-2(\cos(x) - \sin(x))}{(\cos(x) + \sin(x))^3} \qquad \begin{bmatrix} 0 & -\frac{\pi}{4} & +\frac{3\pi}{4} & -\pi\\ -\frac{\pi}{4} & +\frac{\pi}{4} & -\end{bmatrix} f''$$

 $(\frac{\pi}{4};\frac{1}{2})$ point d'inflexion

8.19 Pour $x \in \mathbb{R}$ et $y \in]-\frac{\pi}{2}; \frac{\pi}{2}[$, on pose $y = \arctan(x) \iff x = \tan(y)$. Pour $x \in \mathbb{R}$ et $y \in]0; \pi[$, on pose $y = \operatorname{arccot}(x) \iff x = \cot(y)$.

8.24 1) $\alpha = \arctan(\frac{18}{x})$ $\beta = \arctan(\frac{6}{x})$ 2) $\theta = \arctan(\frac{18}{x}) - \arctan(\frac{6}{x})$

3) $6\sqrt{3} \approx 10{,}39 \text{ m}$