

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

Charakterystyki eksploatacyjne i układy redundantne

Wydział Inżynierii Mechanicznej i Robotyki Katedra Automatyzacji Procesów

Skład grupy: Przemysław Chachlica

Katarzyna Chochołek

Dawid Chuchnowski

Bartłomiej Czech

Michał Dłuski

Prowadzący: dr inż. Andrzej Jurkiewicz

Data prezentacji: 12 października 2014

Plan prezentacji

- Wstęp do zagadnienia
- Systemy bezpieczeństwa wokół nas
- Znaczenie systemów redundantnych
- Eksploatacja, niezawodność oraz inżynieria niezawodności
- Znaczenie uszkodzeń w eksploatacji oraz występowanie zużycia
- Redundancja systemowa i jej rodzaje
- Rodzaje rozkładów dla systemów ciągłych oraz dyskretnych
- Metody podwyższania niezawodności i trwałości

Teraźniejsze trendy

W XXI wieku następuje ciągły rozwój technologii wytwarzania, koncepcji projektowania oraz produkcji. Wszystkie te czynniki decydują o tym, jak szybko zostanie wymyślone, zaprojektowane oraz wytworzone

urządzenie lub maszyna.

Technika wokół nas

Często, choć nawet nie zdajemy sobie z tego sprawy, dzięki systemom nadmiarowym nasza podróż z jednego miejsca do drugiego jest bezpieczniejsza. Ktoś może zapytać się gdzie znajdują się te systemy. Otóż odpowiedź jest bardzo prosta: w autobusach, tramwajach, pociągach, samolotach a czasami nawet i samochodach.

Systemy nadmiarowe w kołowych pojazdach transportowych

- Retarder,
- Zwalniacz silnikowy

[3]

[4]

Systemy nadmiarowe w szynowych pojazdach transportowych

- Hamulec elektrodynamiczny,
- Hamulec szynowy (awaryjny),
- Hamulec szczękowy

[8]

[7]

Bezpieczeństwo, a czynnik ludzki

 3 marca 2012 czołowe zderzenie dwóch pociągów pasażerskich

Wyższość człowieka

 Awaryjne lądowanie samolotu Airbus A320-214 z 150 osobami na pokładzie na rzece Hudson.

[12]

Fazy istnienia obiektu technicznego

Co to eksploatacja?

Eksploatacja – użytkowanie i obsługa urządzenie (maszyny) lub ich grupy. Obejmuje organizacyjne, techniczne, ekonomiczne i społeczne aspekty współdziałania ludzi i maszyn.

Co to eksploatacja?

Wymagania eksploatacyjne

Niezawodność eksploatacyjna

Przystosowanie maszyny do wykonywania wyznaczonych zadań Specjalne wymagania eksploatacyjne

Wytrzymałość i sztywność

Odporność na zużycie

Odporność na drgania

Zabezpieczenie przed przeciążeniem

Niezawodność urządzeń rozruchowych

Wykonywanie przez maszynę żądanych czynności

Możliwość podwyższenia wydajności pracy

Odpowiedni zakres regulacji

Konieczna i wystarczająca moc

Ochrona bezpieczeństwa pracy operatora

Najmniejsze możliwe wymiary

Największa moc przy najmniejszej masie

Trwałe zachowanie dokładności

Cichobieżność pracy

Estetyka i komfort maszyn i wyposażenia

Ochrona środowiska naturalnego

Niezawodność - definicje

- **Niezawodność** rozumiana, jako parametr wyrobu określający prawdopodobieństwo bezawaryjnej pracy produktu w określonym środowisku i przez określoną ilość czasu.
- Niezawodności (ang. reliability) rozumiana, jako właściwość obiektu charakteryzująca jego zdolność do wykonania określonych funkcji, w określonych warunkach i określonym czasie.
- Niezawodności rozumiana, jako zdolności do ciągłego wykonywania określonych funkcji. Odnosi się do jakości i wraz z nią jest głównym czynnikiem rozpatrywanym podczas podejmowania decyzji o zakupie produktu.

Teoria niezawodności

Inżynieria niezawodności

Inżynieria niezawodności – dyscyplina naukowa mająca na celu zapobieganie uszkodzeniom poprzez m.in. kontrolę w czasie produkcji, projektowanie pod kątem zapewnienia jakości, niezawodności oraz wkład producenta w zapewnienie jakości i niezawodności.

Uszkodzenia

Uszkodzenie – zdarzenie po wystąpieniu, którego obiekt przestaje całkowicie lub częściowo wypełniać swoje funkcje. Uszkodzenie jest naruszeniem zdolności do poprawnej pracy.

[14]

Klasyfikacja uszkodzeń

Podział ze względu na przyczyny wystąpienia uszkodzenia

- Uszkodzenia stopniowe
- Uszkodzenia nagłe

Podział ze względu na możliwość przywrócenia używalności

- Uszkodzenia usuwalne
- Uszkodzenia nieusuwalne

Podział ze względu na stopień uszkodzenia

- Uszkodzenia całkowite
- Uszkodzenia częściowe (parametryczne)

Główne przyczyny uszkodzeń

Brak wytrzymałości (słabe ogniwo)

• Zły lub słaby projekt, materiały, wykonanie

Nieprawidłowa eksploatacja

 Użytkowanie w sposób nieprzewidziany przez projektantów

Zużycie

Zużywanie – proces zmian stanu części, węzła kinematycznego, zespołu lub całej maszyny, którego skutkiem jest utracenie przez nią właściwości użytkowych.

Tribologia (określana też trybologią) jest nauką o procesach zachodzących w ruchomym styku ciał stałych. W jej zakres wchodzą badania nad tarciem, zużyciem i smarowaniem zespołów ruchomych w celu poznania tych procesów i umożliwienia racjonalnego sterowania nimi.

Klasyfikacja zużyć

Podział ze względu na przyczyny

- Przyczyny tribologiczne
- Przyczyny nietribologiczne

Podział ze względu na przebieg

- Przebiegi ustabilizowane
- Przebiegi nieustabilizowane

Podział ze względu na skutki

- Skutki normalne
- Skutki awaryjne (patologiczne)

Zużycia nietribologiczne

Ablacja

Zużycia tribologiczne – ogólny podział

Mechaniczne procesy zużywanie

 Oddzielaniu cząstek ze współpracujących powierzchni przez mikroskrawanie występami mikronierówności lub luźnymi cząstkami ściernymi

Fizyczne procesy zużywania

 związane z adhezją trących się ciał; zużycie przez oddzielenie cząstek z jednego ciała i nanoszenie ich na ciało współpracujące

Chemiczne procesy zużywania

 zachodzą pomiędzy trącymi się materiałami i ośrodkiem, w którym przebiega proces tribologiczny

Zużycia tribologiczne

- Ścierne
- Zniszczenie łuszczeniowe
- Zużycie wykruszające
- Zmęczeniowe
- Zużycie adhezyjne
- Zużycie cieplne
- Zużycie poprzez utlenianie
- Zużycie wodorowe
- Fretting

Przeciwdziałanie procesowi zużycia

- Zaprojektowanie układu smarowania
- Zapewnienie wysokiej jakości warstw wierzchnich części
- Dobieranie par montażowych wraz z zapewnieniem czystego montażu
- Przewidywanie i zapewnienie odpowiedniej regulacji
- Dobieranie par trących i materiałów do ich wyprodukowania

Redundancja

Redundancja – to termin oznaczający nadmiarowość w stosunku do tego, co konieczne np. wielokrotne występowanie w systemie jakiegoś elementu, po to, by utrzymać sprawność tego systemu w trakcie awarii.

Dodatkowe elementy:

- nie mają wpływu na normalne działanie systemu (bez uszkodzeń)
- umożliwiają poprawne działanie w obecności uszkodzeń

Rodzaje redundancji:

- Tryb manualny,
- Dublowanie urządzenia,
- Stosowanie dodatkowych układów

[20]

Redundancja w systemach automatyki

1) zimna (COLD)

- czas reakcji ma minimalne znaczenie, a obsługa zazwyczaj wymaga interwencji operatora
- tylko jeden moduł ma włączone zasilanie

2) ciepła (WARM)

 czas reakcji jest już tutaj znaczący, ale wciąż dopuszczalne są bardzo krótkie zatrzymania procesu

Redundancja w systemach automatyki

3) gorąca (HOT)

- systemie niedopuszczalna jest nawet najmniejsza przerwa w sterowaniu
- wysyłanie danych ze sterownika głównego po zeskanowaniu nastaw programowych po każdym cyklu pracy programu
- transmisja asynchroniczna

Rodzaje rozkładów dla procesów ciągłych

- rozkład Gaussa (normalny),
- X² (chi-kwadrat),
- t-studenta,
- F Snedecora,
- logarytmiczno-normalny,
- wykładniczy, prostokątny,
- rozkład Erlanga,
- gamma,
- Fishera-Tippetta

Rozkład Gaussa

Rozkład Gaussa z ilustracją reguły trzech sigm.

Przykładowe rozkłady gęstości prawdopodobieństwa w rozkładzie normalnym

Wykresy dystrybuanty dla rozkładów Gaussa

Rozkład prostokątny

Dystrybuanta rozkładu prostokątnego

Rozkład logarytmiczno - normalny

Rozkład logarytmiczno-normalny

Dystrybuanta rozkładu logarytmiczno-normalnego

Rozkład wykładniczy

Dystrybuanta rozkładu wykładniczego

Rozkład Weibulla

Przykładowe rozkłady gęstości prawdopodobieństwa wg rozkładu Weibulla

Rodzaje rozkładów dyskretnych

Dla procesów zużycia:

- dwumianowy (Bernoulliego) ,
- jednostajny dyskretny.

Pozostałe rozkłady dyskretne:

- rozkład Boltzmanna,
- jednopunktowy (typu delta Diraca),
- geometryczny,
- hipergeometryczny,
- Poissona,
- zero-jedynkowy,
- ujemny dwumianowy (Pascala)

Rozkład dwumianowy

Dystrybuanta rozkładu dwumianowego

Rozkład jednostajny dyskretny

Rozkład jednostajny dyskretny

rozkładu jednostajnego przy n=5

Funkcje opisujące niezawodność

Funkcja niezawodności

Przebieg przykładowej funkcji niezawodności

Funkcja zawodności

Przebieg przykładowej funkcji zawodności

Zależność pomiędzy funkcjami niezawodności i zawodności:

$$Q(t) = 1 - R(t)$$
 a z tego wynika, że: $Q(t) = 1 - P(T \ge t)$

Gęstość prawdopodobieństwa trwałości

Wykres przykładowej funkcji gęstości prawdopodobieństwa

Funkcja intensywności uszkodzeń

Wykres przedstawiający przykładową funkcję intensywności uszkodzeń (funkcję ryzyka).

Funkcja wiodąca (skumulowana intensywność uszkodzeń)

$$\Lambda(t) = \int_0^t \lambda(t) dt$$

gdzie t≥0

Zależności pomiędzy poszczególnymi funkcjami

Zależności pomiędzy poszczególnymi funkcjami

R(t)=	-	1-Q(t)	$\int_{t}^{\infty} f(x) dx$	$\exp\left[-\int_0^t \lambda(x)dx\right]$	$\exp[-\varLambda(t)]$
Q(t)=	1-R(t)	1	$\int_0^t f(x)dx$	$1 - \exp[-\int_0^t \lambda(x) dx]$	$1 - \exp[-\Lambda(t)]$
f(t)=	$-\frac{d}{dt}R(t)$	$\frac{d}{dt}Q(t)$	1	$\lambda(t)\exp[-\int_0^t \lambda(x)dx]$	$\frac{d}{dt}\{\exp[-\Lambda(t)]\}$
$\lambda(t)=$	$-\frac{d}{dt}[\ln R(t)]$	$-\frac{d}{dt}\{\ln[1-Q(t)]\}$	$\frac{f(t)}{\int_{t}^{\infty} f(x) dx}$	•	$\frac{d}{dt}\Lambda(t)$
$\Lambda(t)=$	$ln\frac{R(0)}{R(t)}$	$ln\frac{1-Q(0)}{1-Q(t)}$	$\int_0^t \frac{f(t)dt}{\int_0^t f(x)dx}$	$\int_0^t \lambda(x) dx$	-

Niezawodność, a trwałość

- Niezawodność
 jest określana, jako
 prawdopodobieństwo zdarzenia, że obiekt będzie
 spełniał stawiane mu wymagania w określonych
 warunkach i w określonym przedziale czasu.
- Trwałość natomiast określa jak długo obiekt pozostaje w stanie zdolności do poprawnej pracy, wraz z koniecznymi przerwami na obsługę techniczną i remonty. Trwałość możemy wyrażać w jednostkach czasu, liczbie cykli czy innej jednostce wyrażającej pracę, jaką ma wykonać urządzenie.

Gotowość - definicja

Gotowość to zdolność obiektu do natychmiastowego wykonania zadań pojawiających się w losowych chwilach i warunkach. Gotowość wyraża się przez prawdopodobieństwo, że obiekt zrealizuje zadanie we właściwym czasie.

Metody przedeksploatacyjne

- Redundancja,
- Stosowanie elementów wysokiej jakości i niezawodności,
- Przewymiarowanie konstrukcji,
- Innowacyjność.

[22]

Metody eksploatacyjne

- Redundancja,
- Stabilizacja warunków użytkowania,
- Monitorowanie SPC,
- Optymalizacja obciążeń urządzenia,
- Rozpoznawanie procesów niszczących,
- Analizy niezawodnościowe,
- Przewidywanie MTBF,
- Okresowe przeglądy techniczne i naprawy,
- Zarządzanie częściami zamiennymi,
- Szkolenia pracowników

Aspekty prawne

Wymagania odnośnie niektórych urządzeń są precyzyjnie określone i dopiero ich spełnienie gwarantuje otrzymanie certyfikatu.

Istnieją także niezależne organizacje skupiające się na utrzymaniu jakości i kompatybilności wyrobów różnych producentów.

Przykładem jest organizacja JADEC (Joint Electron Device Engineering Council) zajmująca się standaryzacją półprzewodników. Zrzesza zdecydowaną większość znaczących producentów elektroniki na świecie (np. Intel, LG, Hitachi).

Urządzenia wysokiej niezawodności

W związku z rosnącymi wymaganiami klientów, producenci coraz częściej zaczynają oznaczać swoje produkty pod względem niezawodności (R), trwałości (T) i gotowości (G), czasem podając nawet konkretne wartości wymienionych parametrów.

Przykładem maszyny o bardzo wysokim stopniu niezawodności jest lotniczy silnik turbinowy.

Aby zapewnić niezawodność na najwyższym poziomie łączy się kilka metod jej podwyższania.

Wartość dodana - podsumowanie

- Przykłady odnośnie systemów bezpieczeństwa w pojazdach ciężarowych, szynowych,
- Przykłady wypadku z winy człowieka oraz zapobiegnięcia tragedii,
- Definicja eksploatacji oraz fazy istnienia obiektu technicznego,
- Wymagania eksploatacyjne oraz rodzaje działań będących częścią fazy eksploatacyjnej,
- Uszczegółowienie metod zwiększania niezawodności,
- Aspekty prawne odnośnie niezawodności,
- Oznaczenia produktów pod względem niezawodności, trwałości i gotowości,
- Przykład produkcji silnika odrzutowego.

Źródła grafiki

- [1]http://www.import-usa.pl/maszyny.html
- [2]http://www.autocentrum.pl/galerie/renault-vel-satis/tasma-produkcyjna-1
- [3]http://www.kloft-retarder.com
- [4]http://www.telmapolska.pl/jak_dziala_retarder.php
- [5]http://pl.wikipedia.org/wiki/Autobus#mediaviewer/File:Solaris_Urbino_18_BHNS_-_RNTP_2011_-_2.JPG
- [6]http://www.cantonigroup.com/pl/components/ema_elfa/series/81/hamulce-elektromagnetyczne/
- [7]http://www.trakcja.one.pl/strona/hamulec%20szynowy.html
- [8]http://www.autram.vizz.pl/danetechnicznepolska/ngt6/zdjecia/hamulce_tarczowe.jpg
- [9]http://www.expressilustrowany.pl/artykul/857087,katastrofa-w-szczekocinach-16-ofiar-smiertelnych-49-osob-w-szpitalach-ratownicy-kontynuuja-akcje-nowe-fakty-zdjecia,id,t.html?cookie=1
- [10]http://www.se.pl/multimedia/galeria/80301/154425/katastrofa-kolejowa-w-szczekocinach-rekonstrukacja-zderzenia-dwoch-pociagow/?full=1
- [11]http://pl.wikipedia.org/wiki/Katastrofa_lotu_US_Airways_1549#mediaviewer/File:US_Airways_Flight_1549.png
- [12]http://www.tailstrike.com/150109.htm
- [13]http://ikmj.com/img/wdrozenia/ZKP.jpg
- [14]http://hydroklima.pl/obrazki/awaria.jpg
- [15]http://www.utrzymanieruchu.pl/uploads/RTEmagicC_ur_smarowanie1_02.jpg.jpg
- [16]http://www.mt.com.pl/wpcontent/uploads/2012/03/Rust03102006.jpg
- [17]http://www.fullahead.net/Silownia/silniki_pomocnicze/turbina_sp/awarie_turbina/pojedyncze_turbina/DSCN618 4.jpg
- [18]http://upload.wikimedia.org/wikipedia/commons/6/66/Cavitating-prop.jpg
- [19]http://biznes.interia.pl/gieldy/news/polska-gielda-silniejsza-od-rynkow-swiatowych,1777899,1844
- [20]http://www.siemag-tecberg.pl/centrum-informacji/aktualnosci/siemag-tecberg-liefert-mobile-shachtwinde.html
- [21]http:// www.mpcforum.pl
- [22]http://www.brief.pl/artykul,1253,innowacyjnosc_czyli_co.html