Loss Landscape Visualization

Talk by Stefan Wezel

Optimization and Neural Architecture Search

January 18, 2021

Overview

- Introduction
- Motivation
- o Tools to inspect the loss landscape
- How does the landscape look like?
- o How can we use those Findings?
 - Two Examples
- Summary and Discussion

Introduction

- \circ Deep neural nets (DNNs) have large parameter set heta
- \circ We want to find optimal set of parameters θ^*
- o By minimizing $\mathcal{L}(X,Y;\theta)$
- No closed form solution
- We rely on iterative approaches
 - Stochastic Gradient Descent (SGD), ADAM, ...

Motivation

- o When designing a model
 - What architecture, learning rate, ...
- o Often rely on experience or anecdotal knowledge
- Loss landscape visualization could help build intuition and empirical knowledge
 - What is the role of architecture?
 - What is the effect of hyperparameters?
 - Help understand generalization in DNNs
 - Do flat minima really generalize better?

Loss Landscape Visualization - But How?

Image source: Introduction to Neural Networks - A. Zell

Linear Interpolation - Idea

- o Obvious problem: weight space is very high dimensional
- We need to find some visualizable subspace
- o Goodfellow et al. propose:
 - ullet Linearly interpolate between two parameter sets $heta_0$ and $heta_1$
- \circ Iteratively increase weight on θ_1 (and reduce on θ_0)
 - Plot $f(\alpha) = \mathcal{L}((1-\alpha)\theta_0 + \alpha\theta_1)$

6

- \circ Interplolation between $heta_{untrained}$ (left) and $heta_{trained}$ (right)
- Loss is smooth (in this subspace)

Linear Interpolation - Results

- Investigate other things
- o I.e. the effect of batch size
- $\circ\,\to$ increase weight on large batch size model

o Model with smaller batch size has flatter minimum

Linear Interpolation - Results

- Investigate other things
- o I.e. the effect of batch size
- $\circ \, o$ increase weight on large batch size model

o Model with smaller batch size has flatter minimum

Linear Interpolation - Limitations

- 1-D interpolation subspace is limited
 - Can it capture non-convexities?
- o Does not consider norms of weights/filters
- o Can be misleading

- \circ Idea: Choose center point $\hat{ heta}$ and two direction vectors
 - $f(\alpha, \beta) = \mathcal{L}(\hat{\theta} + \alpha u_1 + \beta u_2)$
 - plot loss at center + samples along directions
- o More expressive plots
- o Problem: scaling behavior
- Scale of updates does not correspond to scale of weights
 - Changes in weights can have too much/ too little effect
- Distorted loss landscape
- o Proposed solution by Li et al.:
 - Filter normalization

1

2D approaches - Filter Normalization

- \circ Pick random direction vectors u_i
- o Normalize direction: $u_i \leftarrow \frac{||w||}{||u_i||}$
- o Updates live on same scale as the weights
- \circ Plot f around centerpoint $\hat{\theta}$
- o Compare different architectures, hyperparameters, ...

2D with Filter Normalization - Results

o Convolutional neural net without skip connections

2D with Filter Normalization - Results

o Convolutional neural net with skip connections

2D with Filter Normalization - Results

- \circ Loss landscape around $\hat{ heta}$
- o For batch size 128 versus 8192
- o Smaller batch size indeed has flatter minimum
- o and lower test error
- o Only slight difference in 'flatness'

2D with Filter Normalization - Results

- \circ Loss landscape around $\hat{ heta}$
- o For batch size 128 versus 8192
- o Smaller batch size indeed has flatter minimum
- o and lower test error
- Slight difference in 'flatness'

2D with Filter Normalization - Challenges

- High computational cost
- o No experiments on recurrent architectures (so far)
- Only models that perform well on benchmark datasets were investigated
- Not perfectly clear whether findings hold for other models

What did we learn from visualizations?

Summary

- Roughly convex loss landscape
- o Depending on architecture
- Relation between flatness and generalization
 - Backed by further analysis of Hessians at minima
- How can we put these findings to use?
 - Exploit convex structure
 - Build optimizer that prefers flat minima

Examples

PAL - Parabolic Approximation Line Search - Mutschler & Zell

- o Show loss in gradient direction is mostly convex
- Well suited for parabolic approximation
- Adjust step size according to shape of loss

Take measurements

- current loss $l_t(0)$
- derivative in gradient direction $l'_t(0)$
- ullet loss at measuring distance $l_t(\mu)$

Image source: Parabolic Approximation Line Search for DNNs - Mutschler & Zel

$$\hat{l_t}(s) = as^2 + bs + c$$
 with parameters $a = \underbrace{\frac{l_t(\mu) - l_t(0) - l'(0)\mu}{\mu^2}}_{curvature}$
$$b = \underbrace{\frac{l_t'(0)}{shift}}_{height}$$

$$c = \underbrace{\frac{l_t(0)}{height}}$$

 $\circ \to \mathsf{Jump}$ to minimum of approximated parabola

Examples

Entropy-SGD - Bias towards wide valleys - Chaudari et al.

- o How to tell apart good minima from bad minima?
 - -> flatness
- Propose new metric Local entropy
- Measures 'flatness' of valley
- Maximize this

Image source: Entropy-SGD Biasing Gradient Descent Into Wide Valleys - Chaudari et al

- Nested optimization loop
- At every step, estimate volume of good parameter cofigurations in neighborhood
- o the larger the volume, the flatter the minimum
- \circ Scope hyperparameter γ
 - Determines 'how far to look for configurations'
 - ullet for $\gamma o \infty$, approaches regular loss landscape
 - for $\gamma \to 0$, approaches uniform distribution

Model	Entropy-SGD		SGD / Adam	
	Error (%) / Perplexity	Epochs	Error (%) / Perplexity	Epochs
mnistfc	1.37 ± 0.03	120	1.39 ± 0.03	66
LeNet	0.5 ± 0.01	80	0.51 ± 0.01	100
All-CNN-BN	7.81 ± 0.09	160	7.71 ± 0.19	180
PTB-LSTM	77.656 ± 0.171	25	78.6 ± 0.26	55
char-LSTM	1.217 ± 0.005	25	1.226 ± 0.01	40

• Entropy-SGD has lower error/perplexity in most settings

Table source: Entropy-SGD Biasing Gradient Descent Into Wide Valleys - Chaudari et a

- o Visualizing helps with intuition
- o provides good foundation for empirical analysis
- o helps building better optimizers
- Questions for you:
 - Is LLV worth the effort or is it just pretty pictures?
 - How does it compare to grid search?
 - What would you want in a good loss landscape visualization?

References

- Xing, C., Arpit, D., Tsirigotis, C. and Bengio, Y., 2018. A walk with sgd. arXiv preprint arXiv:1802.08770.
- Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L. and Zecchina, R., 2019.
 Entropy-sgd: Biasing gradient descent into wide valleys.
 Journal of Statistical Mechanics: Theory and Experiment, 2019(12), ρ.124018.
- Mutschler, M. and Zell, A., 2019. Parabolic Approximation Line Search: An efficient and effective line search approach for DNNs. arXiv preprint arXiv:1903.11991.
- Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T., 2018.
 Visualizing the loss landscape of neural nets. In Advances in neural information processing systems (ρρ. 6389-6399).

References

- Goodfellow, I.J., Vinyals, O. and Saxe, A.M., 2014. Qualitatively characterizing neural network optimization problems. arXiv preprint arXiv:1412.6544.
- Baldassi, C., Borgs, C., Chayes, J.T., Ingrosso, A., Lucibello, C., Saglietti, L. and Zecchina, R., 2016. Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes. Proceedings of the National Academy of Sciences, 113(48), pp.E7655-E7662.
- Hochreiter, S. and Schmidhuber, J., 1997. Flat minima. Neural Computation, 9(1), ρρ.1-42.