Semi-Formal Proof of Minimum Information for Calculating Key Transposition in Western Music

Kaitlin Pet

1 Definition of Pertinent Concepts in Western Music Notation

- 1.1 Written music notation is based off notes on a staff line. Every note can be represented as (location, degree, frequency) where:
 - 1. location corresponds to an ordered set representing location on a staff $location = \{C, D, E, F, G, A, B\}$
 - 2. degree corresponds to an ordered set representing numerical representation within Western 12-tone scale
 - $degree = \{d_0, d_1, d_2, d_3, d_4, d_5, d_6, d_7, d_8, d_9, d_{10}, d_{11}\}$, where each degree has the absolute difference of a semitone
 - 3. frequency corresponds to absolute pitch of note that we hear. The difference between each pitch is set as 1 (semitone) to keep consistent units with degree. For this exercises the size of the set will equal 12, corresponding to 1 octave
 - $frequency = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_{10}, f_{11}\}$, where the the value of f_0 is known as the fundamental 'pitch' of the sheet music. For example, all oboe music is in "concert pitch" $(f_0 = C)$ and music written for Bflat clarinet is pitched at Bflat $(f_0 = Bflat)$
 - 4. Define FULL as set containing all 12 degrees or frequencies
- 1.2 Only 7 out of the 12 members of the set have a coordinate for location that can notated on a staff without additional operations (see operation types in 1.3 and 1.4). This subset V corresponds to notes in the key of C and is as follows:

 $\{(C,d_0,f_0),(D,d_2,f_2),(E,d_4,f_4),(F,d_5,f_5),(G,d_7,f_7),(A,d_9,f_9),(B,d_{12},f_{12})\}$

- 1.3 Notes in $V_{location}$ are used as 'characters' to create strings. To represent other members of FULL within a string, one can apply local operators (pre-operators) to the members of V. The operators can be:
 - 1. sharp, where sharp(x):d(x)=x+1 and f(x)=x+1
 - 2. flat, where flat(x): d(x) = x 1 and f(x) = x 1
 - 3. natural, where natural(x):d(x) and f(x) are the degree and frequency specified in V

For example, to represent in a string the note (F, d_6, f_6) , also known as F sharp, one must notate it as $sharp(F, d_5, f_5)$ because $(F, d_5, f_5) \in V$

- 1.4 In addition, global operators can also be applied to the entire string S (aka key signature). Key signatures allows for the creation of a shifted V, V', where the "tonic" scale degrees (d_0) does not have to coincide with the fundamental pitch (f_0) .
 - There is one possible key signature for every $f, f \in V_{frequency}$ and two valid global operations every $a, a \notin V_{frequency}$ because one can represent any a in reference to the visually representable note above or below it(e.g. the notes Gflat and Fsharp represent the same pitch but have different associated key signature).
 - Global operators are defined:

Given key is a subset of notes from $V_{location},$ O = {sharp, flat } ,op \in O, and s is a string:

 $op_{key}(s) = s', s'$ is s where for all $k \in key$, any instance of k in s is replaced with op(k)

• For example, the set of notes making up the key of G (in concert pitch)

$$\{(G,d_0,f_7),(A,d_2,f_9),(B,d_4,f_{11}),(C,d_5,f_0),(D,d_7,f_2),(E,d_9,f_4),(Fsharp,d_{12},f_6)\}$$

can be mapped from V shifting d0 so it corresponds to G and by applying a global sharp to the position of F. Therefore, for the key of G, $op_{key}()$ is $flat_{B,E}()$

• To be a valid global operator, the key is constrained in that if every member of key's degree shifts to its post-operated value, the degrees in the set consisting of op(key) + (V - key) will still map to V via addition or subtraction

• For example: If $key = \{B, E\}$ and $op = \langle flat \rangle$, the degree of B and E in V is (B, d_{12}) and (E, d_5) in V would now shift to

$$B = flat(B) = B - 1 = d_{12} - 1 = d_{11}$$
$$E = flat(E) = E - 1 = d_5 - 1 = d_4$$

The set Q consisting of key + (V - key) would thus contain the locations $\{flat(B), flat(E)\} + \{C, D, F, G, A\}$ which corresponds to degrees of $\{d_{10}, d_4\} + \{d_1, d_3, d_6, d_8, d_{10}\}$ Ordering the values in N, you get

 $\{d_1, d_3, d_4, d_6, d_8, d_{10}, d_{11}\}$ Adding 2 to each value gives you

 $\{d_3,d_5,d_6,d_8,d_{10},d_{12},d_1\}=V$ degree works on a mod 12 number system with size of 12 so 13mod12 is 1

- Thus since N maps to V, $< flat>_{B,E}$ is a valid global operation. (in musical terms, this is the key of B flat and is represented by the Bflat key signature)
- 1.5 Transpositions are a mapping that shift f_0 ("key of the sheet music") but retains the relative positions of notes in the string
 - Define: $TRANSPOSITION(f'_0, string)$ where f'_0 is the new "pitch" of the sheet music, is a mapping from V to V', s.t.

$$V = \{(d_0, f_0), (d_1, f_1), ..., (d_{12}, f_{12})\}$$
 and

$$V' = \{(d_0, f'_0), (d_1, f'_0 + 1), \dots, (d_{12}, f'_0 + 2)\}$$

2 Proof

2.1 Posit

Given S is a string, one could apply $TRANSPOSITION(f'_0, S)$ s.t. these conditions will be met:

- 1. The coordinates of $S_{location}$ (position of every note on the staff) retain the same relative positions (i.e. staff line positions could shift while pitch differences between adjacent notes remain constant)
- 2. No new notes require a local operation, i.e. all notes previously without a local operation will still not possess one
- 3. Notes with local operations would retain a local operation

2.2 Proposed Transformation

Given $f'_0 = n$ and string S on music pitched at k ($f_0 = k$):

- 1. Decompose n and k into the ordered pair (basenote, operation). E.g. if k=B flat, k can be decomposed to (B, flat). If no operation exists, set operation as natural, e.g. if n=C, C can be decomposed into (C, natural)
- 2. Set *interval* equal to the distance between n and k in $V_{location}$ If n occurs closer to the front of the set than k in $V_{location}$, interval = -(interval)
- 3. Set $opsum = k_{operation} + n_{operation}$. E.g. if k=B flat and n=D sharp, opsum = flat + sharp = (-1) + (1) = 0
- 4. Set diff = |n k|, where the sign of diff (+ or -) is equal to the sign of interval
- 5. $S' = \{ \text{For } s \in S, s_{location} = s_{location} + interval, s_{degree} = s_{degree} + diff \}$
- 6. Given (0,t) as the "tonic" note associated with the key signature of S, decompose t into $(t_{location}, t_{operation})$

```
t' = (t_{location} + interval, t_{operation} + opsum)
```

7. Set key signature of S' to new key signature associated with (d0,t'), meaning t' is the new tonic

2.3 Proof Transformation Satisfies Conditions

2.3.1 Condition 1

• Step 5 of the of the transformation ensures relative position will not change because the location of every note shifts by the same amount (*interval*)

2.3.2 Condition 2

- From section 1.4, we know the global operation (key signature) associated with a key X allows notes in V_X to sit on the staff without local operations.
- From section 1.4, we also know given S as the set of all possible key signatures, for any $v, s \in S$, V_s maps to V and V maps to V_v , so V_s maps to V_v . Therefore, V_t maps to $V_{t'}$. Since t''s corresponding global operation (key signature associated with t') was applied in Step 7, all notes that mapped to V in S will still map to V in S'. Those notes will thus not require any added accidentals.

2.3.3 Condition 3

• Since the key signature mapping detailed in section 1.4 is one-to-one, all notes previously not in V_t are also not in $V_{t'}$, so they must retain some sort of local operation (flat, sharp or natural)