LI310 - Examen 2009 Vendredi 4 janvier 2010

Benjamin BARON

1 Transmission de données

Question 1.1. Loi de Shannon:

$$C_b = B_c \log_2(1 + \frac{P_S}{P_N}) \Leftrightarrow B_c = \frac{C_b}{\log_2(1 + \frac{P_S}{P_N})}$$

Or

$$\frac{P_S}{P_N} = 10^{\frac{S/N}{10}} = 10^{\frac{9,15}{10}} \approx 8,22$$

Application numérique:

$$B_c = \frac{2.10^6}{\log_2(1+8,22)} = 6,24.10^5 \text{ Hz}$$

Nombre de canaux :

$$n = \frac{1.10^6}{6.24.10^5} \approx 16,0257$$

On pourra alors constituer au maximum n=16 canaux de bande passante 624 kHz.

Question 1.2. Loi de Nyquist :

$$D \leqslant 2B \log_2(M) \Leftrightarrow M \geqslant 2^{\frac{D}{2B}}$$

Application numérique:

$$M \geqslant 2^{\frac{2.10^6}{2 \times 800.10^3}} \approx 2,378$$

Ainsi, M = 4. Il s'agit donc d'un code NRZ 4-aire.

Durée T_S de chacun des symboles :

$$T_S = \frac{\log_2(M)}{D_b}$$

Application numérique:

$$T_S = \frac{\log_2(4)}{2.10^6} = 1.10^{-6} \text{ s} = 1 \ \mu\text{s}$$

Question 1.3. Voie BV à 4 Mbit/s. Solution permettant de garder les mêmes paramètres.

Puisque c'est du multiplexage fréquentiel, alors on peut regrouper deux voies BV de 2 Mbits/s en une voie voie BV de 4 Mibt/s (ou allouer deux canaux BV à une seule BV). Il y aura donc :

- Une voie BV de 4 Mbit/s;
- 10 voies BV de 2 Mbit/s.

Solution qui permette d'offrir 12 voies BV dont une à 4 Mbit/s en modifiant les paramètres de codage de l'un des canaux.

En modifiant les paramètres de codage de l'un des canaux, on a alors :

$$M \geqslant 2^{\frac{4.10^6}{2 \times 800.10^3}} \approx 5,657$$

Donc en prenant M=8, on a bien le résultat souhaité. De plus, la durée T_S de chacun des symboles sera de

$$T_S = \frac{\log(8)}{4.10^6} = 7,5.10^{-7} \text{ s} = 0,75 \ \mu\text{s}$$

2 HDLC

Question 2.1.

Source 010100111110111111010 Suite de bits émises 01010011111001111101011111010

Question 2.2.

Destinataire 011111100111111010101111110

Suite de bits interprétée 011111011111101

Question 2.5. Délai de reprise le plus court : REJ car il n'y a pas besoin de réordonner les trames reçues, ce qui est la cas avec SREJ.

Technique qui utilise le plus de bande passante : REJ car avec SREJ, seule la trame qui fait défaut est retransmise. Avec REJ, il faut retransmettre au plus 3 trames (ie. la largeur de la fenêtre), dont au plus 2 qui ont déjà été reçues.

Question 3.1. On a les tables de routage à la suite de la convergence :

A		
dest	next	dist
В	В	2
С	D	4
D	D	3

next	dist
Α	2
С	3
С	4
	A C

С			
dest	next	dist	
Α	D	4	
В	В	3	
D	D	1	
	dest A B	dest next A D B B	

D		
dest	next	dist
Α	Α	3
В	С	4
С	С	1

Question 3.2. La liaison V_{dc} est rompue :

C et D s'en rendent compte et mettent à jour leur table de routage. On a les tables de routage :

A				
dest	next	dist		
В	В	2		
С	D	4		
D	D	3		

В		
dest	next	dist
А	Α	2
С	С	3
D	С	4

С				
	dest	next	dist	
	Α	D	8	
	В	В	3	
	D	D	8	

D		
dest	next	dist
Α	Α	3
В	С	8
С	С	8

Question 3.3. Vecteurs de distance envoyés par C, D, A:

- $VC = (A\infty, B3, C0, D\infty)$
- $-VD = (A3, B\infty, C\infty, D0)$
- -VA = (A0, B2, C4, D3)

Question 3.4. Scénario d'échange :

- $-\ A \leftarrow VC$
- $-\ B \leftarrow VC$
- $\ A \leftarrow VD$

Α			
dest	next	dist	
В	В	2	
С	D	8	
D	D	3	

В		
dest	next	dist
Α	Α	2
С	С	3
D	С	∞

		С		
ext	dist	dest	next	dist
4	2	А	D	00
0	3	В	В	3
0	8	D	D	00

D				
dest	next	dist		
А	Α	3		
В	С	00		
С	С	00		

Question 3.5. Scénario d'échange :

$$-B \leftarrow VA$$

$$- C \leftarrow VA$$

$$-D \leftarrow VA$$

A			В			С			D		
dest	next	dist									
В	В	2	Α	Α	2	Α	Α	6	Α	Α	3
С	D	00	С	С	3	В	В	3	В	Α	5
D	D	3	D	Α	5	D	Α	9	С	Α	7

Question 3.6. Vecteur distance envoyé par B: VB = (A2, B0, C3, D5)

Question 3.7. Scénario d'échange :

$$-A \leftarrow VB$$

$$- \ C \leftarrow VB$$

А			В
dest	next	dist	C
В	В	2	
С	В	5	
D	D	3	

В					
dest	next	dist			
А	А	2			
С	С	3			
D	А	5			

С		
dest	next	dist
Α	В	5
В	В	3
D	В	8

	D		
	dest	next	dist
	А	Α	3
	В	Α	5
]	С	Α	7

Question 3.8. La valeur VA = (A0, B2, C4, D3) que A avait transmise à D était erronée. En effet, la valeur C4 faisait prenait en compte le lien D-C. De ce fait la distance pour aller jusqu'à C est fausse dans la table de routage de D. Il faut alors que A retransmette la bonne distance vers C à D afin qu'il actualise sa table de routage.

Il faut alors que A transmette son vecteur de distances VA = (A0, B2, C5, D3) à D. On a alors :

A					
dest	next	dist			
В	В	2			
С	В	5			
D	D	3			

С							
	dest	next	dist				
	А	В	5				
	В	В	3				
	D	В	8				

D		
dest	next	dist
Α	Α	3
В	Α	5
С	Α	8

4 Réseaux locaux

Question 4.1. Représentation graphique de la topologie choisie.

- (a) topologie en bus
- (b) Topologie en anneau

Question 4.2. Longueur de câble nécessaire :

- Bus : 35L- Anneau : 36L

Question 4.3. Contrainte principale avec le protocole CSMA/CD si l'on veut être sûr de détecter toutes les collisions.

Soit t_{trans} le temps de transmission d'une trame et soit $t_{prop_{max}}$ le temps de propagation maximale d'une trame entre les deux terminaux les plus éloignés du réseau local. On a alors :

$$t_{trans} \geqslant 2t_{prop_{max}}$$

Question 4.4. Débit $D=100~{
m Mbit/s},\,L=10~{
m m},$ vitesse de propagation $V=200\,000~{
m km/s},$ longueur d'une trame $T=512~{
m bits}.$

Protocole CSMA/CD utilisable sur le réseau local construit plus haut.

Calcul du temps de transmission t_{trans} :

$$t_{trans} = \frac{T}{D} = \frac{512}{100.10^6} = 5,12.10^{-6} \text{ s}$$

Calcul du temps de propagation maximal $t_{prop_{max}}$:

$$t_{prop_{max}} = \frac{35 \times L}{V} = \frac{35 \times 10}{20000010^3} = 1,75.10^{-6} \text{ s}$$

Or $t_{trans} \ge 2t_{prop_{max}}$, donc le protocole CSMA/CD est utilisable sur le réseau local considéré.

Question 4.5. Cartes réseaux qui permettent de doubler le débit pour chaque machine (ie. D' = 2D). Calcul du temps de transmission t_{trans} :

$$t_{trans} = \frac{T}{2D} = \frac{512}{200 \cdot 10^6} = 2,56.10^{-6} \text{ s} < 2t_{prop_{max}}$$

C'est donc impossible...

Question 4.6. Résolution de ce problème :

- Augmenter la longueur T de la trame en ajoutant des octets de bourrage. T = 700 bits au minimum.
- Rapprocher les ordinateurs les uns des autres de façon à réduire la distance L. L = 7,31 m max.

5 IP

Question 5.1. Netmask du LAN1 : 255.255.255.240.

Longueur du préfixe de sous-réseau : 28 car 3×8 bits + 4 ($240_d = 1111\,0000_b$).

Question 5.2. Adresse IP du LAN1 : 194.215.85.160/28.

Question 5.3. Nombre de machines que l'on peut mettre sur LAN1 : $2^4 - 2 = 14$. Or il y a déjà deux machines (A et R1) sur LAN1, donc on peut ajouter 12 machines sur LAN1.

Question 5.4. Adresse de diffusion sur LAN1 : 194.215.85.175/28.

Question 5.5. LAN2 conçu pour contenir 510 machines maximum. A cela, il faut ajouter l'adresse IP du réseau LAN2 et l'adresse de diffusion. On a alors 512 adresses IP possibles pour LAN2. Or il faut 9 bits $(log_2(512) = 2)$ pour coder 512 adresses différentes. De ce fait, le masque associé à LAN2 est 255.255.254.0/23.

Question 5.6. Adresse IP de LAN2 : 131.24.64.0/23

Adresse de diffusion de LAN2 : 131.24.65.255/23

Question 5.7. Adresse IP de l'interface eth0 du routeur R1. Cette interface est connectée au réseau LAN1, donc elle a pour adresse 194.215.85.174/28.

Adresse de l'interface eth
1 du routeur R1. Cette interface est connectée au réseau LAN2, donc elle a pour adresse 131.24.6.254/23

Question 5.8. A souhaite envoyer un message à B.

Table de routage minimale de A:

Destination	Netmask	Gateway	Interface
194.215.85.174	255.255.255.240	*	eth0
131.24.64.12	255.255.254.0	194.215.85.174/28	eth0
default	0.0.0.0	194.215.85.174/28	eth0

Question 5.9. Trame Ethernet construite par A en direction de B:

- @MAC dest : R1 eth0

- @MAC source : 5E:FF:56:A2:AF:15

— @IP source: 194.215.85.168— @IP dest: 131.24.64.12

Question 5.10. Protocole permettant à A de connaître les valeurs des adresses manquantes (ie. R1 eth0) : ARP.

Le protocole ARP (*Address Resolution Protocol*) permet à une machine d'obtenir l'adresse Ethernet (physique) d'une autre machine, connaissant son adresse IP (logique).

Question 5.11. La machine A diffuse alors sur le LAN1 une trame contenant une requête ARP afin de connaître l'adresse Ethernet de l'interface eth0 du routeur R1 ayant pour adresse IP: 131.215.85.174/28 Cette requête ARP aura pour adresse FF:FF:FF:FF:FF:FF (adresse de diffusion) et contiendra le champ Target IP Address égal à l'adresse IP de l'interface IP du routeur R1.