Circuit Optimization

Logic Design

Standard Forms

- Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- Examples:
 - -SOP:ABC + A'B'C+B
 - -POS: (A+B)(A+B'+C')C
- These "mixed" forms are neither SOP nor POS
 - -(AB+C)(A+C)
 - -ABC'+AC(A+B)

Standard Sum-of-Products (SOP)

A Simplification Example:

$$-F = \sum_{m} (1,4,5,6,7)$$

- Writing the minterm expression:
 - -F=
- Simplifying:
 - -F=

- Simplified F contains 3 literals compared to 15 in minterm F
 - Literal: variable or its complement

AND/OR Two-level Implementation of SOP Expression

• The two implementations for F are shown below – it is quite apparent which is simpler!

Observations

- Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a **simplest** expression?

Karnaugh Maps (K-map)

- A K-map is a collection of squares
 - Each square represents a minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
- The K-map can be viewed as
 - A reorganized version of the truth table

Two Variable Maps

- A 2-variable Karnaugh Map:
 - minterm m₀ and minterm m₁ are adjacent
 - differ in the value of the variable y

	y = 0	y = 1
x = 0	m ₀ =	m =
x = 1	m ₂ =	m, = x y

- -interm m_0 and minterm m_2 differ in the \bar{x} variable.
- $-m_1$ and m_3 differ in the x variable as well.
- m₂ and m₃ differ in the value of the variable y

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:

Function Table

Input Values (x,y)	Function Value F(x,y)
0 0	I
0 1	0
10	0
11	

K-Map

	y = 0	y = 1
x = 0		0
x = I	0	

A three-variable K-map:

	yz=00	yz=0 I	yz=11	yz=10
x=0	m _o	m _I	m_3	m ₂
x=I	m ₄	m ₅	m ₇	m ₆

 Where each minterm corresponds to the product terms:

	yz=00	yz=01	yz=11	yz=10
x=0	χyz	χyz	Туz	χyz
x=I	χÿ̄z̄	хÿz	хуг	хуѿ

Note that if the binary value for an index differs in one bit position, the minterms are adjacent on the K-Map

Alternative Map Labeling

- Map use largely involves:
 - Entering values into the map, and Reading off product terms from the map.
- Alternate labelings are useful:

Example Functions

- By convention, we represent the minterms of F by a "1" in the map and leave the minterms of blank
- Example:

$$-F(x,y,z)=\Sigma_{m}(2,3,4,5)$$

			y	
	0	1	³ 1	² 1
X	⁴ 1	⁵ 1	7	6
		Z		

$$-G(a,b,c)=\Sigma_{m}(3,4,6,7)$$

Combining Squares

- On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones.
- Example:
 - $-F(x,y,z)=\Sigma_{m}(2,3,6,7)$
 - -After minimization $\mathbf{F} = \mathbf{y}$

Combining Squares

- On a 3-variable K-Map:
 - -One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones.
- Example:
 - $-F(x,y,z)=\Sigma_{m}(2,3,6,7)$
 - -After minimization $\mathbf{F} = \mathbf{y}$

			J	J
	0	1	³ 1	² 1
X	4	5	⁷ 1	⁶ 1
		7	Z	

- Example Shapes of 2-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 2-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 2-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 2-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 4-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 4-cell Rectangles:
 - Read off the product terms for the rectangles shown

- Example Shapes of 8-cell Rectangles:
 - Read off the product terms for the rectangles shown

- K-Maps can be used to simplify Boolean functions by systematic methods.
 - -Terms are selected to cover the "1s"in the map.
- Simplify $F(x,y,z) = \Sigma_m(1,2,3,5,7)$

- K-Maps can be used to simplify Boolean functions by systematic methods.
 - -Terms are selected to cover the "1s"in the map.
- Simplify $F(x,y,z) = \Sigma_m(1,2,3,5,7)$

- K-Maps can be used to simplify Boolean functions by systematic methods.
 - -Terms are selected to cover the "1s"in the map.
- Simplify $F(x,y,z) = \Sigma_m(1,2,3,5,7)$

Three-Variable Map Simplification

Use a K-map to find an optimum SOP equation for

$$F(X, Y, Z) = \Sigma_m(0,1,2,4,6,7)$$

Four-Variable Map Simplification

• $F(w,x,y,z)=\Sigma_m(0,2,4,5,6,7,8,10,13,15)$

Four-Variable Map Simplification

• $F(w,x,y,z)=\Sigma_m(3,4,5,7,9,13,14,15)$

Don't Cares in K-Maps

- Sometimes a function table or map contains entries for which it is known:
 - —the input values for the minterm will never occur, or
 - The output value for the minterm is not used
- In these cases, the output value need not be defined
 - Instead, the output value is defined as a "don't care"
- By placing "don't cares" (an "x" entry) in the function table or map, the cost of the logic circuit may be lowered.

- The map below gives a function F(w,x,y,z) which is defined as "5 or more" over BCD inputs.
 - With the don't cares used for the 6 non-BCD combinations:

- The map below gives a function F(w,x,y,z) which is defined as "5 or more" over BCD inputs.
 - With the don't cares used for the 6 non-BCD combinations:

- The map below gives a function F(w,x,y,z) which is defined as "5 or more" over BCD inputs.
 - With the don't cares used for the 6 non-BCD combinations:

- The map below gives a function F(w,x,y,z) which is defined as "5 or more" over BCD inputs.
 - With the don't cares used for the 6 non-BCD combinations:

