







Hands-on workshop over objectcategorisatie op basis van Linux, C++ & OpenCV

14 februari 2014

IWT-Tetra-project TOBCAT (nr. 120135)



Uw lunch werd gesponsord door





## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                              |
|----------------|-------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                 |
| 1 <b>0</b> u15 | Introductie objectcategorisatie + voorstelling algoritme          |
| 11u00          | Pauze                                                             |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de            |
|                | preprocessing van de nodige data                                  |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision )         |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,      |
|                | het intrainen van een objectmodel en het uittesten van detector   |
| 15u00          | Pauze                                                             |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en |
|                | de 'kwaliteit' van de detector bespreken                          |
| 15u50          | Vragen & evaluatie                                                |
| 16u00          | Einde van de workshop                                             |
|                |                                                                   |



#### **EAVISE**

#### **Embedded Artificially intelligent VISion**

#### **Engineering**

- Vertalen van state-of-theart beeldverwerkingsalgorithnes naar oplossingen voor specifieke problemen in industriële applicaties.
- Implementeren van geavanceerde beeldverwerkingstechnieken op embedded systemen.
- Optimaliseren van visiealgoritmes tot real time performantie
- Toepassen van nieuwe Artificial Intelligence technieken in computer visie applicaties.













## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 1 <b>0</b> u15 | Introductie objectcategorisatie + voorstelling algoritme                                                                        |
| 11u <b>00</b>  | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision )                                                                       |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



# RECENTE EVOLUTIE VAN VISUELE OBJECTDETECTIE







1980 's



759265 22223 0 a 3 8 0 7



1990 's tot begin 2000 's

























Momenteel



### WAT IS OBJECTCATEGORISATIE?

Objectherkenning
Object recognition
Object identification







### WAT IS OBJECTCATEGORISATIE?

 FOCUS → de objecten binnen een klasse vertonen onderlinge variatie in kleur vorm grootte zoals bij auto's









Moeilijker naarmate er meer variatie is















### ALGEMENE AANPAK BIJ OBJECTCATEGORISATIE

- Trainingsstap: leer uit voorbeelden een algemene beschrijving van de objectklasse = model
- Detectiestap: zoek in nieuwe beelden naar object door met dit ingetrainde model te vergelijken









### ALGEMENE AANPAK BIJ OBJECTCATEGORISATIE







# HEEL WAT VARIATIE UITDAGINGEN IN OBJECT CATEGORISATIE.



**Belichting** 



Pose v/h object





Clutter



**Occlusie** 



Intra-klasse variatie in het voorkomen



**Aanzicht** 



#### EEN ZO ROBUUST MOGELIJK RESULTAAT







- State-of-the-art technieken kunnen al heel wat:
  - Inleren van deze variatie (voorkomen, schaal, vorm, ...)
     in de objecten
  - Compenseren voor clutter, occlusie en overlappende objecten

### DOEL TOBCAT PROJECT



- Deze modernere state-of-the-art technieken van objectclassificatie
   bekend maken bij de doelgroep van industriële bedrijven
- Toegankelijk en transparant maken van de beschikbare technologie voor de bedrijven van de doelgroep, zodat men er zelf mee aan de slag kan gaan







## TOEPASSINGEN IN TOBCAT (1)

















## TOEPASSINGEN IN TOBCAT (2)

Original input - grayscale





Original input - mask red strawberries

Original input - mask unripe strawberries

**KU LEUVEN** 



## TOEPASSINGEN IN TOBCAT (3)















## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 10u15          | Introductie objectcategorisatie + voorstelling algoritme                                                                        |
| 11u00          | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 🔸 data vision                                                                         |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



#### STATE-OF-THE-ART ALGORITMES

- 1. Viola&Jones: Haar/AdaBoost [CVPR2001] (workshop)
- 2. Dalal&Triggs: HOG/SVM [CVPR2005]
- 3. Felzenswalb: deformable part models [CVPR2010]
- 4. Dollár: integral channel features [BMVC2009]



3.





Kort overzicht van de genomen stappen in het algoritme Vertrekken vanuit een sliding window aanpak

- 1. Features selecteren
- 2. Opbouwen zwakke classifiers
- 3. Combineren tot een sterke classifier







- Features selecteren
  - Gebruik HAAR-like wavelets
  - Kleine filters door vergelijken pixel waarden in regio's in beeld



- som pixel intensiteitswaarden wit



- Gebruik van integraalbeeld
- Snel sommen uitrekenen





- 2. Opbouwen weak classifiers
  - AdaBoost algoritme
  - Welke feature of combinatie van features kan snel object en nietobjecten van elkaar scheiden
  - Tot een bepaalde accuraatheid behaald wordt









- 3. Combineren tot een strong classifier
  - Cascade / waterval structuur
  - Weak classifiers → sneller uitrekenen / minder features
  - Om de fout te reduceren (individueel zeer hoog)
  - 'Early rejection'







## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 1 <b>0</b> u15 | Introductie objectcategorisatie + voorstelling algoritme                                                                        |
| 11u <b>00</b>  | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision )                                                                       |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



#### HET IDEE HANDS-ON 1

- Vanuit een dataset, alles klaarstomen om een volledig objectmodel op te bouwen.
- Hoe kan een bedrijf een willekeurig object detecteren op verschillende achtergronden.
- Uit te voeren stappen:



# ENKELE RICHTLIJNEN VOOR HANDS-ON GEDEELTES

- Inloggen op computers via tobcat account, pwd = tobcat
- Open een terminal window
  - Standaard ~/ directory



- Wij zullen werken vanuit
  - /home/tobcat/Documents/tobcat\_workshop/
- Enkele veelgebruikte commando's
  - cd <path> → veranderen van folder
  - Is → opsomming van inhoud huidige folder
  - ./<executable\_naam> [groene kleur in ls] → code snippets
  - Als executable niet groen is → chmod +x <executable>



# ENKELE RICHTLIJNEN VOOR HANDS-ON GEDEELTES

- Als C++ ontwikkelomgeving maken we gebruik van Code::Blocks.
  - Vooraf geïnstalleerd
  - Folder software bevat alle projecten → reeds geconfigureerd
  - Folder code\_blocks bevat code voor tweede hands-on
- Veel voorkomend probleem = Code::Blocks 'vergeet' OpenCV
  - Project Build Options Linker settings Additional Linker Commands
  - Add `pkg-config opencv --libs`
- Indien problemen met software, aarzel niet om een assistent aan te spreken!



We verplaatsen ons naar de folder ../tobcat\_workshop/data/mini\_model/

We zien hier een bestaande structuur

- Positive folder bevat alle afbeeldingen met objecten
- Negative folder bevat alle afbeeldingen zonder objecten
- Deze structuur dien je zelf op te bouwen op je systeem
- Naam van de folders is niet belangrijk, al is een betekenisvolle naam wel duidelijker



We verplaatsen ons naar de folder ../tobcat\_workshop/data/mini\_model/

We zien hier een bestaande structuur

- Positive folder bevat alle afbeeldingen met objecten
- Negative folder bevat alle afbeeldingen zonder objecten
- Deze structuur dien je zelf op te bouwen op je systeem
- Naam van de folders is niet belangrijk, al is een betekenisvolle naam wel duidelijker



Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?

1. Alle code snippets werken op basis van een txt file waarin referenties zitten naar de data

SNIPPET – ./folder\_listing

NODIG – positives.txt / negatives.txt / testset.txt

2. Object annotatie - zorgen dat de objecten uit positive files gescheiden worden van achtergrondinformatie

SNIPPET – ./annotate\_images

NODIG – annotate van elk object – universeel formaat



```
#DETECTIONS X1 Y1 W1 H1 ... Xn Yn Wn Hn
NAME
D:\cookies\positives\ 1.png 6 160 1 138 132 321 5 136 141 153 139 151
D:\cookies\positives\ la.png 5 90 50 150 146 25 199 168 155 1 354 192
D:\cookies\positives\ 2.png 6 141 14 148 138 309 2 141 146 165 164 150
D:\cookies\positives\ 2a.png 3 87 47 152 151 33 209 158 138 4 358 135
D:\cookies\positives\ 3.png 6 131 43 156 129 299 4 142 137 180 180 149
D:\cookies\positives\ 3a.png 3 81 34 143 154 25 206 174 146 6 347 137
D:\cookies\positives\ 4.png 6 132 57 153 129 199 195 143 137 261 349 1
D:\cookies\positives\ 4a.png 3 77 36 150 157 31 195 160 154 8 349 138
D:\cookies\positives\ 5.png 6 117 69 143 152 253 5 154 149 345 145 152
D:\cookies\positives\ 5a.png 3 77 39 147 156 34 201 153 150 5 355 142
D:\cookies\positives\_6.png 6 87 89 149 154 180 219 153 143 228 14 148
D:\cookies\positives\ 7.png 6 197 19 148 146 75 116 146 153 173 239 14
```



Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?

- 3. De geannoteerde data moet in een OpenCV data vector komen
  - Universeel formaat voor modeltraining
  - Schaalt naar modelgrootte
     SNIPPET ./average\_dimensions & ./create\_samples
     NODIG datavector.vec

Welke stappen dienen er nu te gebeuren voor we een model van een objectklasse kunnen intrainen?

- 3. De geannoteerde data moet in een OpenCV data vector komen
  - Universeel formaat voor modeltraining
  - Schaalt naar modelgrootte
     SNIPPET ./average\_dimensions & ./create\_samples
     NODIG datavector.vec

Nuttige tools - snippets voor bedrijven

- 1. ./video2images veel data gecapteerd als videomateriaal. Deze snippet zet een video compressieloos om in frames.
- 2. ./generate\_negatives veel bedrijven verzamelen beeldmateriaal in van objecten, maar niet van de achtergronden afzonderlijk
  - Leest een annotatie file in
  - Knipt de annotaties uit positieve beelden
  - Gebruikt de overschot van de beelden als negatieve beelden
  - Heeft wel invloed op performantie! (onnatuurlijke overgangen)

### LUNCH

De maaltijd wordt aangeboden door 💠 data vision



- Systeem van zelfbediening voor maaltijd
- Eten in zaal 'de fruytenborg'
- Koffie nadien inbegrepen

### PITCH – Data Vision



## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 10u15          | Introductie objectcategorisatie + voorstelling algoritmes                                                                       |
| 11u00          | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision                                                                         |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



# TRAININGSPROCES + TESTEN DETECTOR MET OBJECTMODEL

We hebben data klaargestoomd om een model in te trainen.

- ./train\_cascade SNIPPET
- Overzicht van alle parameters een woordje uitleg
- Test met 'eenvoudig' model
  - Variatie zit in de snoepjes → segmentatie is hier al moeilijker door opdruk
  - Op achtergrond testopstelling
- Output van training van dichterbij bekijken

# TRAININGSPROCES + TESTEN DETECTOR MET OBJECTMODEL

Voor tweede hands-on baseren we ons op ingetrained model

- Ga naar .../data/candy/
- 160 positieve beelden 1000 negatieve beelden
- 17 stage classifier = # gecombineerde zwakke detectoren

Eerst interface voor detectie in OpenCV uittesten Daarna zelf schrijven

- 1. Beeld preprocessen BGR2GRAY / histogram equalisatie
- 2. Detectiestap + invloed parameters
- 3. Vizualisatiestap + invloed parameters



#### ROTATIE INVARIANTIE

- 1 model = 1 oriëntatie
- Hoe omgaan met verschillende rotaties
- Alles in 1 model?
- Afbeelding roteren? Patch roteren?

Live simulatie van rotatie invariante candy detector

- Invloed van parameters
- Real time performance mogelijk?

De broncode even dieper bekijken, welke stappen dien je te nemen?

## **PROGRAMMA**

| <b>0</b> 9u30  | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 10u15          | Voorstelling algoritmes + introductie in de software                                                                            |
| 11u00          | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision                                                                         |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



Rotatie werd reeds besproken!

#### Techniek half bestand tegen clutter

- Hangt sterk af van trainingsdata
- Enkel perfecte voorbeelden → imperfecte voorbeelden zullen nooit gedetecteerd worden

#### Techniek niet bestand tegen occlusie

- Detectoren haken al snel af als er occlusie optreedt
- DPM techniek is een waardig alternatief
  - lets robuuster dan V&J framework



In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.

- Viola & Jones
  - Goed ondersteund tutorials / documentatie / bugfree
  - Grote community die ondersteuning kan bieden
- SVM + HOG
  - Afzonderlijke componenten JA
  - Gecombineerd tot een effectief algoritme NEEN
  - Machine learning SVM → slechte ondersteuning bugs

In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.

- DPM model Felzenswalb
  - In openCV enkel detectiesoftware LatentSVM module
  - Gebaseerd op xml modellen van Pascal VOC Challenge
  - Challenge gestopt, dus ook toevoer modellen
  - Training niet voorzien → origineel project nodig
- ICF Dollar
  - In openCV 'development' branch
  - Geen robuuste implementatie ...



In begin stelden we 4 technieken voor, wat kan je verwachten van OpenCV en C++ naar enkele mogelijkheden toe.

- Al deze software zal ter beschikking gesteld worden via tobcat projectwebsite
- Alsook via de github account (source code repository)
   https://github.com/StevenPuttemans/tobcat



## **PROGRAMMA**

| 09u30          | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 10u15          | Voorstelling algoritmes + introductie in de software                                                                            |
| 11u00          | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 🔸 data vision                                                                         |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |



# EVALUEREN VAN OBJECTDETECTOREN

#### 1. Receiver Operating Characteristic





## INTRODUCTIE TOT ROC CURVES

- ROC = Receiver Operating Characteristic
- Vind zijn oorsprong in elektronische signaal detectie theorie (1940 's – 1950 's)
- Zeer populair geworden in biomedische toepassingen, vooral in radiologie en beeldverwerking
- Ook gebruikt in machine learning applicaties om de kwaliteit van classifiers te definieren
- Kan gebruikt worden om opstellingen / procedures met elkaar te vergelijken



# ROC CURVES: EEN VOORBEELD CASE

- Neem bijvoorbeeld een diagnostische test voor een ziekte
- Deze testen hebben 2 mogelijke uitkomsten:
  - 'positief' = aanwezigheid van een ziekte
  - 'negatief' = er is geen ziekte aanwezig
- Een individu kan een positief of negatief label krijgen bij een diagnostische test



## True disease state vs. Test result

| Disease Test          | Not rejected                 | rejected                    |
|-----------------------|------------------------------|-----------------------------|
| No disease<br>(D = 0) |                              | X                           |
|                       | specificity                  | Type I error<br>(False +) α |
| Disease<br>(D = 1)    | X                            |                             |
|                       | Type II error<br>(False -) β | Power 1 - β;<br>sensitivity |

## True disease state vs. Test result

| Disease Test          | not rejected         | rejected             |
|-----------------------|----------------------|----------------------|
| No disease<br>(D = 0) |                      | X                    |
|                       | True Positive<br>TP  | False Negative<br>FN |
| Disease<br>(D = 1)    | X                    |                      |
|                       | False Positive<br>FP | True Negative<br>TN  |

## SPECIFIEK VOORBEELD



Test Resultaten



### OP BASIS VAN EEN THRESHOLD



Test Resultaten





Test Resultaten

Zonder ziekte Met ziekte







Test Resultaten

Zonder ziekte Met ziekte





Test Resultaten

Zonder ziekte Met ziekte



# ROC CURVE = VERSCHUIVEN VAN DE THRESHOLD WAARDE



# ROC CURVES VERGELIJKEN

#### Een goeie test:



#### Een slechte test:





### ROC CURVES: EXTREMA

#### Beste Test:



Geval wanneer de distributies niet overlappen

#### Slechtste test:



Wanneer de distributies volledig overlappen

**KU LEUVEN** 

# AREA UNDER ROC CURVE (AUC)

- Een algemene maat van test performatie
- Twee testen vergelijken gebaseerd op hun geschatte AUC
- Continue data gebruikt men de Mann-Whitney Ustatistic



# AREA UNDER ROC CURVE (AUC)



#### TOEPASSEN OP OBJECT DETECTOREN

- Detectoren gaan over een afbeelding in een sliding window aanpak over de verschillede schaken heen:
- Elk window wordt aan een analyse van de detector onderworpen.



- · Sliding window over image
- · Each sub-window is analyzed by detector





## WAT DE DETECTOR ZIET



# EVALUEREN VAN DETECTOR RESULTATEN



| Detector result  Ground Truth | detected       | not detected      |
|-------------------------------|----------------|-------------------|
| Object present                | True Positive  | False<br>Negative |
| Object not present            | False Positive | True<br>Negative  |

# PROBLEEM MET ROC CURVES VOOR DETECTOREN

- Het aantal true negatives is voor afbeeldingen niet gekend
- Alternatief: precision-recall curve





# PRECISION-RECALL CURVES VOOR VOETGANGER DETECTOREN



Resultaten van state-of-the-art voetganger detectoren op een standard test set "Caltech"





Threshold = 5

TP? (object gedetecteerd)

FP? (een detectie op een niet object)

FN? (een object werd niet gedetecteerd)

**KU LEUVEN** 



Threshold = 5

TP? (object gedetecteerd)

FP? (een detectie op een niet object)

FN? (een object werd niet gedetecteerd)

**KU LEUVEN** 



Threshold = 5

TP? (object gedetecteerd)

FP? (een detectie op een niet object)

FN? (een object werd niet gedetecteerd)





Threshold = 5

TP? (object gedetecteerd)

FP? (een detectie op een niet object)

FN? (een object werd niet gedetecteerd)

**KU LEUVEN** 

Precision = 
$$TP / (TP + FP)$$

Recall = 
$$TP / (TP + FN)$$



### CONCLUSIE

- Om een object detector te evalueren:
  - Een set beelden annoteren
  - Op een subset van de annotaties een detector trainen (training set)
  - De overige beelden (test set) gebruiken om TP, FP & FN rates te berekenen
  - Vervolgens precision & recall uitrekenen
  - Precision-recall curves for uitplotten voor verschillende threshold waarden
- OPGELET OpenCV: sommige detectoren (e.g. Viola&Jones) geven niet automatisch een score terug waardoor je geen threshold kan toepassen
  - → geen PR-curve mogelijk



## **PROGRAMMA**

| <b>09u30</b>   | Ontvangst met koffie                                                                                                            |
|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 10u00          | Verwelkoming & introductie EAVISE                                                                                               |
| 1 <b>0</b> u15 | Voorstelling algoritmes + introductie in de software                                                                            |
| 11u <b>00</b>  | Pauze                                                                                                                           |
| 11u15          | Eerste hands-on sessie: de object annotatie tool en de preprocessing van de nodige data                                         |
| 12u30          | Middagmaal – warme lunch (aangeboden door 💠 data vision )                                                                       |
| 13u30          | Tweede hands-on sessie: het trainingsproces dieper bekijken,<br>het intrainen van een objectmodel en het uittesten van detector |
| 15u00          | Pauze                                                                                                                           |
| 15u15          | Toelichting van enkele knelpunten (rotatie, clutter, occlusie) en de 'kwaliteit' van de detector bespreken                      |
| 15u50<br>16u00 | Vragen & evaluatie Einde van de workshop                                                                                        |