

RELATÓRIO PRÁTICO DE CIRCUITOS ELÉTRICOS 1

Prática 2

Ponte de Wheatstone

Guilherme Rodrigues do Santos - RA: 2199580

Luiz Eduardo Caldas Kramer - RA: 2199661

R	R1	R2	Rx	RDec
V	0.83	0.83	4.17	4.16

2)

RX	RDec	
20kΩ	10kΩ	
50kΩ	25kΩ	
100kΩ	50kΩ	
150kΩ	75kΩ	
180kΩ	90kΩ	

Questões:

1)

Sabendo que $\mathbf{Rx} = (\frac{R1}{R3})$. \mathbf{Rdec} , e $\mathbf{R1} = 20\Omega$, $\mathbf{R3} = 100\Omega$, $\mathbf{RDec} = 10\Omega$, temos:

Rx =
$$(\frac{20\Omega}{100\Omega})$$
.10 Ω = 5 Ω .10 Ω = **50** Ω

2)

Sabendo que $\mathbf{R}\mathbf{x}$ =($\frac{R1}{R3}$). $\mathbf{R}\mathbf{2}$, e R1 = 1.5k Ω , R2 = 300 Ω , R2 = 750 Ω , temos: $\mathbf{R}\mathbf{x}$ = ($\frac{750\Omega}{1500\Omega}$).300 Ω = **150\Omega**, assim a Resistencia equivalente em ABCD:

Req = 1.5kΩ + 300Ω || 750Ω + 150Ω = 1.8kΩ || 900Ω, sabendo que: Req = $\frac{R1R2}{R1+R2}$ = $\frac{1.8kΩ*900Ω}{2.7kΩ}$ = 600Ω de modo que o circuito pode ser representado conforme a figura abaixo:

Como os resistores estão em série: Req = $600\Omega + 150\Omega = 750\Omega$, portanto é possível conseguir a corrente.

$$I = \frac{U}{R} = \frac{10V}{750\Omega} = 13.3 \text{ mA}$$

$$Vcd = 13.3 \text{ mA} * 600\Omega = 8V$$

Voltando no circuito inicial, logo após realizar a primeira associação de resistores:

 $I_{1,8k\Omega} = I_1 e I_{900\Omega} = I_2$

l1 = 4.4 mA e **l**2 = 8.9 mA

 $Rx = 150\Omega$

Vab = **0V**

Vdc = 8V

Vr3 = **6.67V**

11 = 4.4 mA