

20V P-Channel Enhancement Mode MOSFET

Product Description

The GSM9105 is the P-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- -20V/-3.4A, $R_{DS(ON)} = 95m\Omega@V_{GS} = -4.5V$
- -20V/-2.4A, $R_{DS(ON)} = 120 \text{m}\Omega@V_{GS} = -2.5V$
- -20V/-1.7A, $R_{DS(ON)} = 145 \text{m}\Omega @V_{GS} = -1.8V$
- -20V/-1.0A, $R_{DS(ON)} = 210$ m Ω @ $V_{GS} = -1.25$ V
- Super high density cell design for extremely low R_{DS(ON)}
- Exceptional on-resistance and maximum DC current capability
- SOT-23-3L package design

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter

Block Diagram

Ordering Information

P/N	Marking		
GSM9105ZF	13YW		
GSMI9103ZF	MFPM		

Packages & Pin Assignments

M=Month (ref "Data Mode info)

Absolute Maximum Ratings

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		V_{DSS}	-20	V	
Gate –Source Voltage		V_{GSS}	±12	V	
Continuous Drain Current(T _J =150°C)	T _A =25°C	I_	-3.4	A	
	T _A =70°C	I _D	-2.4	^	
Pulsed Drain Current		I _{DM}	-8	Α	
Continuous Source Current(Diode Conduction)		Is	-1.4	Α	
Power Dissipation	T _A =25°C	PD	1.25	W	
	T _A =70°C	FD	0.8		
Operating Junction Temperature		TJ	-55/150	$^{\circ}\mathbb{C}$	
Storage Temperature Range		T _{STG}	-55/150	$^{\circ}\mathbb{C}$	
Thermal Resistance-Junction to Ambient		$R_{\theta JA}$	105	°C/W	

Electrical Characteristics

(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V_{GS} =0V, I_{D} = -250uA	-20			V	
Gate Threshold Voltage	$V_{GS(th)}$				-0.8	V	
Gate Leakage Current	I _{GSS}	V_{DS} =0V, V_{GS} =±12V			±100	nA	
_		V_{DS} = -20V, V_{GS} =0V			-1		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = -20V, V_{GS} =0V			-5	uA	
		T _J =55°ℂ			-5		
On-State Drain Current	I _{D(on)}	V_{DS} \leq -5V, V_{GS} = -4.5V	-6			Α	
		V_{GS} = -4.5 V , I_{D} = -3.4 A		0.076	0.095	Ω	
Drain-Source On-Resistance	R _{DS(on)}	V_{GS} = -2.5 V , I_{D} = -2.4 A		0.097	0.120		
Brain Godree On Resistance		V_{GS} = -1.8 V , I_{D} = -1.7 A		0.123	0.145		
		V_{GS} = -1.25 V , I_{D} = -1.0 A		0.185	0.210		
Forward Transconductance	g _{fs}	$V_{DS} = -5V, I_{D} = -2.8A$		6		S	
Diode Forward Voltage	V_{SD}	I_S = -1.5A, V_{GS} =0V		-0.8	-1.2	V	
Dynamic							
Total Gate Charge	Qg	V _{DS} = -6V,V _{GS} = -4.5		4.8	8		
Gate-Source Charge	Q_{gs}	V _{DS} 0V, V _{GS} 4.5 I _D ≡ -2.8A		1.0		nC	
Gate-Drain Charge	Q_{gd}	ID= -2.0A		1.0			
Input Capacitance	C _{iss})/ - 6)/)/ -0)/		485			
Output Capacitance	Coss	V_{DS} = -6V, V_{GS} =0V f=1MHz		85		pF	
Reverse Transfer Capacitance	C _{rss}	I – I IVII IZ		40			
Turn-On Time	t _{d(on)}	V _{DD} = -6V,R _L =6Ω		10	16		
	t _r			13	23		
Turn-Off Time	t _{d(off)}	$I_D = -1.0A, V_{GEN} = -4.5$ $R_G = 6\Omega$		18	25	ns	
Turn-On Time	t _f	11G-022		15	20		

2

Typical Performance Characteristics

200 V_{GS}=-1.8V R_{DS(ON)} (mΩ) 100 150 V_{GS}=-2.5V V_{GS}=-4.5V 50 2 0 4 6 -I_D (A)

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

Package Dimension

SOT-23-3

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	1.05	1.25	0.041	0.049	
A1	0	0.1	0	0.004	
A2	1.05	1.15	0.041	0.045	
b	0.3	0.4	0.012	0.016	
С	0.1	0.2	0.004	0.008	
D	2.82	3.02	0.111	0.119	
E	1.5	1.7	0.059	0.067	
E1	2.65	2.95	0.104	0.116	
е	0.950 (TYP)		0.037	(TYP)	
e1	1.8	2	0.071	0.079	
L	0.700 (TYP)		0.028 (TYP)		
L1	0.3	0.6	0.012	0.024	
Q	0°	8°	0°	8°	

NOTICE

Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

(Revise Date:2008/1/15 Version_1.2)

