

(https://swayam.gov.in)

d22180@students.iitmandi.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning for Computer Vision (course)

Click to register for Certification

/2023_10 /exam_form /dashboard)

If already registered, click to check your payment status

Course outline

> How does an **NPTEL** online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

Edge Detection (unit?unit=29& lesson=30)

exam Week 2: Assignment 1

The due date for submitting this assignment has passed.

Due on 2023-08-09, 23:59 IST.

As per our records you have not submitted this assignment.

1) Is the given kernel separable? If yes, select the separable version.

1 point

$$\frac{1}{256} \times \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Yes,
$$\frac{1}{16} \times [1 \ 4 \ 6 \ 4 \ 1]$$

Yes,
$$\frac{1}{16} \times [1 \ 2 \ 3 \ 2 \ 1]$$

Yes,
$$\frac{1}{8} \times \begin{bmatrix} 1 & 1 & 2 & 1 & 1 \end{bmatrix}$$

O No

No, the answer is incorrect.

Score: 0

Accepted Answers: Yes,
$$\frac{1}{16} \times [\, 1 \quad 4 \quad 6 \quad 4 \quad 1\,]$$

2) Consider a 4×4 image, where each pixel uses a 4-bit signed representation (range 1 point between -2^3 to $2^3 - 1$). Reverse the contrast of the following image:

13/08/23, 16:20

- From Edges to Blobs and Corners (unit?unit=29& lesson=31)
- Scale Space, Image Pyramids and Filter Banks (unit?unit=29& lesson=32)
- Peature
 Detectors:
 SIFT and
 Variants
 (unit?unit=29&
 lesson=33)
- Optional]
 Image
 Segmentation
 (unit?unit=29&
 lesson=34)
- Other Feature Spaces (unit?unit=29& lesson=35)
- Optional Human Visual System (unit?unit=29& lesson=36)
- Lecture Slides (unit?unit=29& lesson=37)
- Quiz: Week 2: Assignment 1 (assessment? name=219)
- Week 2
 Feedback
 Form: Deep
 Learning for
 Computer
 Vision
 (unit?unit=29&
 lesson=208)

Week 3 ()

Week 4 ()

$$\left(egin{array}{ccccc} -4 & 7 & -1 & 0 \ -3 & -2 & 6 & 1 \ -6 & 5 & -7 & 4 \ -2 & -3 & 0 & -1 \end{array}
ight)$$

$$\begin{pmatrix} 2 & 6 & -1 & 0 \\ -1 & 0 & 1 & 4 \\ 3 & 2 & 2 & 0 \\ 0 & 5 & -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & -6 & 1 & 0 \\ 1 & 0 & -1 & -4 \\ -3 & -2 & -2 & 0 \\ 0 & -5 & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} -3 & 8 & 0 & 1 \\ -2 & -1 & 7 & 2 \\ -5 & 6 & -6 & 5 \\ -1 & -2 & 1 & 0 \end{pmatrix}$$

$$egin{pmatrix} 3 & -8 & 0 & -1 \ 2 & 1 & -7 & -2 \ 5 & -6 & 6 & -5 \ 1 & 2 & -1 & 0 \end{pmatrix}$$

No, the answer is incorrect.

Score: 0

Accepted Answers:

$$\left(egin{array}{ccccc} 3 & -8 & 0 & -1 \ 2 & 1 & -7 & -2 \ 5 & -6 & 6 & -5 \ 1 & 2 & -1 & 0 \end{array}
ight)$$

3) Given the 3×3 4-bit grayscale image below:

1 point

$$\begin{bmatrix} 4 & 5 & 6 \\ 3 & 2 & 7 \\ 5 & 8 & 1 \end{bmatrix}$$

what is the central element after applying linear contrast stretching? (Round off to the nearest integer)

- O 1
- **2**
- O 5
- **O** 6

No, the answer is incorrect.

Score: 0

Accepted Answers:

2

Map the following image operations to their types - provide your answer as integers where 0,1

Download Videos ()
Live Session ()
Text Transcripts ()
Books ()
Problem Solving Session - July 2023 ()

and 2 correspond to point, local and global operation respectively. (Assume that the image size is 10x10)

4) Mean of an image:

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 2

0.25 points

5) Convolution with kernel of size 1 × 1:___

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 0

0.25 points

6) Cross-correlation with kernel size 3 × 3:___

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 1

0.25 points

7) Flip an image by 180°:__

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 0

0.25 points

1 point

8) Match the following:

- 1) Global operation
- 2) Histogram equalization
- 3) Separable 2D kernel
- 4) Size of Gaussian kernel
- i) Inner product of two 1D kernels
- ii) Fourier transform
- iii) Noise spread
- iv) Contrast stretching
- v) Gaussian kernel

$$\bigcirc$$
 1 \rightarrow iii, 2 \rightarrow iv, 3 \rightarrow i, 4 \rightarrow ii

$$\bigcirc$$
 1 \rightarrow ii, 2 \rightarrow iv, 3 \rightarrow i, 4 \rightarrow v

$$\bigcirc$$
 1 \rightarrow ii, 2 \rightarrow iv, 3 \rightarrow iii, 4 \rightarrow v

$$\bigcirc$$
 1 \rightarrow ii, 2 \rightarrow iv, 3 \rightarrow v, 4 \rightarrow iii

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $1 \rightarrow ii$, $2 \rightarrow iv$, $3 \rightarrow v$, $4 \rightarrow iii$

9) Match the following images with their corresponding Fourier Transforms:

1 point

$$\bigcirc$$
 1 \rightarrow ii, 2 \rightarrow iii, 3 \rightarrow i, 4 \rightarrow iv

$$\bigcirc$$
 1 \rightarrow i, 2 \rightarrow ii, 3 \rightarrow iii, 4 \rightarrow iv

$$\bigcirc$$
 1 \rightarrow iii, 2 \rightarrow iv, 3 \rightarrow i, 4 \rightarrow ii

$$\bigcirc$$
 1 \rightarrow iii, 2 \rightarrow iv, 3 \rightarrow ii, 4 \rightarrow i

No, the answer is incorrect.

Score: 0

Accepted Answers:

 $1 \rightarrow iii, 2 \rightarrow iv, 3 \rightarrow i, 4 \rightarrow ii$

10) Consider a 3×3 image (I) and a filter (F) represented as matrices:

1 point

$$I = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 200 & 200 & 200 \end{bmatrix} \text{ and } F = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

4 of 6

Deep	Learning	for Com	puter	Vision -	Unit	4 -	Week 2	2

What is the value of the central pixel after convolving the image with the filter? Additionally, does the image (I) have a horizontal or vertical edge?
0, verical-410, vertical-410, horizontal0, horizontal
No, the answer is incorrect. Score: 0 Accepted Answers: 0, horizontal
11) In Harris corner detector, the cornerness measure is defined as:
1, 21, 100100, 104100, 1
No, the answer is incorrect. Score: 0 Accepted Answers: 100, 104
12) Which of the following options are false ? (Select all that apply) 1 point
 □ SIFT uses Autocorrelation for detecting corners similar to Harris corner detector. □ SIFT estimates orientations of the key points to make it rotation-invariant □ SURF uses Haar wavelets to get keypoint orientations and is better than SIFT at handling rotation invariance. □ SURF is always better than SIFT on illumination invariance.
No, the answer is incorrect.
Score: 0 Accepted Answers: SIFT uses Autocorrelation for detecting corners similar to Harris corner detector. SURF is always better than SIFT on illumination invariance.
13) During the keypoint localization step in SIFT, we get the following Hessian matrix 1 point
$H=egin{bmatrix} 8 & 4 \ 4 & 6 \end{bmatrix}$ for a particular candidate point. Should this keypoint be rejected if the threshold $a=7$?
○ Reject
O Do not Reject
No, the answer is incorrect. Score: 0
Accepted Answers: Do not Reject
14) Consider this 3x3 image, where black pixels indicate low intensity and white pixel indicates high intensity.

5 of 6 13/08/23, 16:20

The LBP descriptor for this image (computed clockwise, from the top left corner) is ____.

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 53

1 point

During the orientation estimation step in SIFT, we obtain an image after convolving it with a Gaussian kernel with appropriate σ value. Consider a 3×3 patch from that

image:
$$\begin{bmatrix} 70 & 80 & 90 \\ 60 & 100 & 70 \\ 35 & 90 & 30 \end{bmatrix}$$

15) The magnitude m for the patch is _____.

No, the answer is incorrect.

Score: 0

Accepted Answers:

(Type: Range) 13.84,14.44

0.5 points

16) The orientation θ (in degrees) for the patch is _____.

No, the answer is incorrect.

Score: 0

Accepted Answers: (Type: Numeric) 45

0.5 points

6 of 6 13/08/23, 16:20