

Disciplina: Matemática Computacional

Aula 01 – Fundamentos Matemáticos da Álgebra Booleana

Antonio Carlos Sobieranski

"Death is not the worst than can happen to men."
Plato

Timeline

- **1854** George Boole criou um **sistema matemático** conhecido como <u>álgebra boolena</u>
 - → regras algébricas para o **raciocínio lógico**.
 - → ridicularizado na época, formou toda a base dos fundamentos de eletrônica computacional.
- **1938** *Shannon* utilizou as teoria de *Boole* para resolução de circuitos de telefonia.
- Este tipo de eletrônica emprega um pequeno grupo de circuitos lógicos ou Portas lógicas.

Álgebra booleana \rightarrow Dicotômica (ex.: $x \leftarrow 0$, $y \leftarrow 1$)

- $\mathbf{0} \rightarrow desativado \rightarrow \mathbf{0} \ volts \rightarrow false$
- $1 \ \rightarrow \ ativado \qquad \ \ \rightarrow \ 5 \ volts \qquad \ \ \rightarrow \ true$

Portas Lógicas

- Qualquer operação de Álgebra Booleana **pode ser associada** com um circuito eletrônico, com **entradas e saídas.**
- Embora circuitos eletrônicos possam serem complexos, são construídos a partir de **3 dispositivos básicos**.

Portas Lógicas

Valores resultantes para portas lógicas (2ⁿ)

X	у	AND
1	1	1
1	0	0
0	1	0
0	0	0

X	у	OR
1	1	1
1	0	1
0	1	1
0	0	0

Х	NOT
1	0
0	1

Outras Portas Lógicas

Exercícios

• 1) Construa para as seguintes expressões lógicas a **tabela verdade** e os **circuítos lógicos** correspondentes.

a)
$$(x + y')$$

b)
$$(x.y') + z$$

c)
$$(x + y) . (x + y')$$

$$(x', y')' + (x' + z)$$

e)
$$(x' \cdot y \cdot z) \cdot (x + m)'$$

f)
$$x + (y . z)$$

$$g)(x + y).(x + z)$$

$$h) x + (x . y)$$

Exercícios

• 2) Obtenha as expressões booleanas:

Exercícios

- 3) Considere a seguinte situação:
 - → Modele a expressão lógica para um quarto com 2 chaves de luz (flip-flop)
 - \rightarrow E para 3 chaves ?

