

MTK Battery Management
- Gauge Master 2

Revision History

Revision	Data (mm/dd/yyyy)	Author	Note
V1.0	05/21/2015	Ricky Wu	1 st version for customer

Preface

- **SOC** Status of charge
- **DOD** Depth of discharge
- **D0** DOD0, initial depth of discharge
- OCV/ZCV Open circuit voltage / Zero current voltage
- Qmax Maximum available capacity of battery
- **Rbat** Internal impedance of battery package

MTK Gauge Master 2 System Architecture

- System-side Li-Ion battery fuel gauge SOC
 - Precise Battery Fuel Gauge
 - Battery current measurement
 - Temperature Reporting

MTK Gauge Master2 Algorithm Overview

- GM2 Algorithm are three different layers of SOC
 - Battery SOC
 - Smooth and Monotonic SOC
 - System Display SOC
- 1. Estimated using OCV+Coulomb Counter
- 2. D0 enhance by RTC memory
- 3. Temperature Compensation
- 4. Aging Compensation
- 5. Loading Compensation

Battery SOC

Smooth and Monotonic SOC

- 1. Implements good user experience tracking slope
- 2. Discharging SOC is monotonic

- 1. Cut off SOC
 - Based on system cut off voltage
- 2. Full SOC
 - Adjustment by user experience

System Display SOC

MTK Gauge Master2 Algorithm

		Before	GM 2.0
Battery SOC	Principle	OCV+Coulomb Counter	OCV+Coulomb Counter
	Power on off initial D0	Use RTC for Keep SOC (Customized)	Use RTC for Keep SOC Enhance (Customized)
	Temperature Compensation	Only Initial	Always
	Aging Compensation	NA	Learning Qmax
	Loading Compensation	NA	Yes
	Error Compensation when System Sleep	NA	Yes

Power on off initial D0

- Initial D0 is determined by the following percentage
 - HW OCV
 - SW OCV
 - RTC Record
- Analyzing Initial D0 results by the following factors
 - HW OCV
 - SW OCV
 - RTC Record
 - VBAT

Temperature Compensation

- Based on -10 Degrees, 0 degrees, 25 degrees, 50 degrees battery parameters, using interpolation to sort out the other temperature battery parameters
- Each temperature changes, algorithm dynamic sorting battery parameters for the new temperature of the battery
 - ZCV, DOD, Rbat, Qmax

Aging Compensation

Loading Compensation

Battery
Parameters
(Rbat)

Average current

Q_MAX_SYS_ ____VOLTAGE

Decide Loading Factor

Error Compensation when System Sleep

When AP sleep more than 35 minutes, and the average current consumption <10mA, If the new battery ZCV and old battery ZCV gap> 20mV, readjust FG SOC percentage

Update New ZCV-old Sleep >35min Ibat<10mA ZCV >20mV FG SOC

MTK Gauge Master2 Algorithm

	Before	GM 2.0
	Monotonic SOC NA	Yes
Smooth and Monotonic SOC		Yes (Smooth Time depend
Wionotonic 30C	Smooth tracking SOC Only 60/10 S tracking	on Loading, Qmax, SOC, T)

MEDIATEK

Smooth and Monotonic SOC

Monotonic SOC

- Decrease only during battery discharge
- Increase only during battery charge

Smooth SOC

- Smooth tracking SOC depend on Loading, Qmax, SOC, Temp
- Good user experience slope

MTK Gauge Master2 Algorithm

		Before	GIM 2.0
	Full SOC - System 100%	NA	Yes (Customized)
System Display	Cut off SOC - System 1%	NA	Yes (Customized)
System Display SOC	Cut off SOC Time	NA	Yes (Customized)
		Keep 100% when FG SOC> 90%	Keep 100% when FG SOC > CV- 10%

System Display SOC

Full SOC

- System 100%
- Customized Feature
- Enhance User experience for CV stage

Cut off SOC

- System 1%
- Customized Feature
- Enhance User experience for Heavy Loading

Cut off SOC Time

- -System 1% keep timing
- Customized Feature
- Enhance User experience for Light Loading

Full SOC

- Re-Charge
- Enhance User experience for Re-Charge stage

MEDIATEK everyday genius