Course Code	Course Name	Teaching Scheme (Hrs.)			Credits Assigned			
S4 94 54		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC403	Linear Integrated Circuits	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks				Exam	Term	Prac.	Total
		Internal assessment			End	Duration	Work	and	
		Test1	Test2	Avg. of Test 1 and Test 2	Sem. Exam. (ESE)	(in Hrs)	C	Oral	
ECC403	Linear Integrated Circuits	20	20	20	80	03			100

Course Pre-requisite:

- FEC105-Basic Electrical Engineering
- 2. ECC302-Electronic Devices & Circuits

Course Objectives:

- To understand the concepts, working principles and key applications of linear integrated circuits.
- To perform analysis of circuits based on linear integrated circuits.
- To design circuits and systems for particular applications using linear integrated circuits.

Course Outcome:

After successful completion of the course student will be able to:

- Outline and classify all types of integrated circuits.
- 2. Understand the fundamentals and areas of applications for the integrated circuits.
- Develop the ability to design practical circuits that perform the desired operations.
- Understand the differences between theoretical & practical results in integrated circuits.
- Identify the appropriate integrated circuit modules for designing engineering application.

Module No.	Unit No.	Topics	Hrs.				
1.0	140.	Introduction to Operational Amplifier					
	1.1	Block diagram of Op-Amp. Ideal and practical characteristics of op-amp.	07				
	1.2	Configurations of Op-Amp: Open loop and closed loop configurations of Op-amp, Inverting and Non-inverting configuration of Op-amp and buffer.					
	1.3	Summing amplifier, difference amplifiers and Instrumentation amplifier using Op-amp.	4				
2.0		Linear Applications of Operational Amplifier	08				
	2.1	Voltage to current and current to voltage converter.					
	2.2	Integrator & differentiator (ideal & practical), Active Filters: First and Second order active low pass, high pass, band pass, band reject and Notch filters.					
	2.3	Positive feedback, Barkhausen's criteria, Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator.					
3.0		Non-Linear Applications of Operational Amplifier	07				
3.0	3.1	Comparators: Inverting comparator, non-inverting comparator, zero					
		crossing detectors, window detector.					
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger.					
	3.3	Waveform Generators: Square wave generator and triangular wave generator. Basics of Precision Rectifiers: Half wave and full wave precision rectifiers. Peak detector.					
4.0		Timer IC 555 and it's applications	07				
	4.1	Functional block diagram and working of IC 555					
Ī	4.2	Design of Astable and Monostable multivibrator using IC 555	1				
•	4.3	Applications of Astable and Monostable multivibrator as Pulse width modulator and Pulse Position Modulator.	1				
5.0		Voltage Regulators.	06				
	5.1	Functional block diagram, working and design of three terminal fixed voltage regulators (78XX, 79XX series).					
-	5.2	Functional block diagram, working and design of general purpose IC 723 (HVLC and HVHC).					
	5.3	Introduction and block diagram of switching regulator, Introduction of LM 317.	1				
6.0	10	Special Purpose Integrated Circuits	04				
	6.1	Functional block diagram and working of VCO IC 566 and					
	0.1	application as frequency modulator.					
	6.2	application as frequency modulator. Functional block diagram and working of PLL IC 565 and application as FSK Demodulator.					

Textbooks:

- Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.

Reference Books:

- 1. K. R. Botkar, "Integrated Circuits", Khanna Publishers (2004)
- Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 4. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- J. Millman, Christos CHalkias, and Satyabratatajit, Millman's, Electronic Devices and Circuits," McGrawHill, 3rdEdition.

NPTEL/ Swayam Course:

 Course: ICs MOSFETs Op-Amps & Their Applications By Prof. Hardik Jeetendra Pandya (IISc Bangalore);

https://swayam.gov.in/nd1_noc20_ee13/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3. Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- Total 04 questions need to be solved.