Image Classification using Convolutional Neural Networks(CNN) in PyTorch 1. Exploring the Cifar10 Dataset In [2]: import os import torch import torchvision import tarfile from torchvision.datasets.utils import download_url from torch.utils.data import random_split c:\Users\Infornet\anaconda3\envs\kingdu\lib\site-packages\tqdm\auto.py:22: TqdmWarning: IProgress not foun d. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm c:\Users\Infornet\anaconda3\envs\kingdu\lib\site-packages\torchvision\io\image.py:13: UserWarning: Failed to load image Python extension: warn(f"Failed to load image Python extension: {e}") In [3]: # Dowload the dataset dataset_url = "https://s3.amazonaws.com/fast-ai-imageclas/cifar10.tgz" download_url(dataset_url, '.') Using downloaded and verified file: .\cifar10.tgz In [4]: # Extract from archive with tarfile.open('./cifar10.tgz', 'r:gz') as tar: tar.extractall(path='./data') In [5]: data_dir = './data/cifar10' print(os.listdir(data_dir)) classes = os.listdir(data_dir + "/train") print(classes) ['test', 'train'] ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] 두개의 폴더 내부를 살펴보면, 하나는 train, test이고 각 클래스에 동일한 수의 이미지가 있는지 확인. train은 5000개, test는 1000개 airplane_files = os.listdir(data_dir + "/train/airplane") print('No. of training examples for airplanes:', len(airplane_files)) print(airplane_files[:5]) No. of training examples for airplanes: 5000 ['0001.png', '0002.png', '0003.png', '0004.png', '0005.png'] In [7]: ship_test_files = os.listdir(data_dir + "/test/ship") print("No. of test examples for ship:", len(ship_test_files)) print(ship_test_files[:5]) No. of test examples for ship: 1000 ['0001.png', '0002.png', '0003.png', '0004.png', '0005.png'] 이미지 폴더의 class를 torchvision을 통해 pytorch tensor로 로드해본다. In [8]: from torchvision.datasets import ImageFolder from torchvision.transforms import ToTensor In [9]: | dataset = ImageFolder(data_dir+'/train', transform = ToTensor()) 각 원소는 튜플이고 이미지 텐서와 라벨을 갖고있다. cf. 튜플 : 순서가 있는 객체의 집합으로 리스트와 유사하다. 하지만 값 변경 X • 이미지 텐서는 32*32 pixel 에 channel은 3(RGB)라서 각 이미지 shape = (3,32,32) In [10]: img, label = dataset[0]print(img.shape, label) torch.Size([3, 32, 32]) 0 tensor([[[0.7922, 0.7922, 0.8000, ..., 0.8118, 0.8039, 0.7961], Out[10]: [0.8078, 0.8078, 0.8118, ..., 0.8235, 0.8157, 0.8078], $[0.8235, 0.8275, 0.8314, \ldots, 0.8392, 0.8314, 0.8235],$ [0.8549, 0.8235, 0.7608, ..., 0.9529, 0.9569, 0.9529], ..., 0.9451, 0.9451, 0.9451], [0.8588, 0.8510, 0.8471, [0.8510, 0.8471, 0.8510, ..., 0.9373, 0.9373, 0.9412]], [[0.8000, 0.8000, 0.8078, ..., 0.8157, 0.8078, 0.8000], ..., 0.8275, 0.8196, 0.8118], [0.8157, 0.8157, 0.8196, [0.8314, 0.8353, 0.8392, ..., 0.8392, 0.8353, 0.8275], [0.8510, 0.8196, 0.7608, ..., 0.9490, 0.9490, 0.9529], [0.8549, 0.8471, 0.8471, ..., 0.9412, 0.9412, 0.9412], ..., 0.9333, 0.9333, 0.9333]], [0.8471, 0.8431, 0.8471, [[0.7804, 0.7804, 0.7882, ..., 0.7843, 0.7804, 0.7765], [0.7961, 0.7961, 0.8000, ..., 0.8039, 0.7961, 0.7882], ..., 0.8235, 0.8157, 0.8078], [0.8118, 0.8157, 0.8235, [0.8706, 0.8392, 0.7765, ..., 0.9686, 0.9686, 0.9686], [0.8745, 0.8667, 0.8627, ..., 0.9608, 0.9608, 0.9608], [0.8667, 0.8627, 0.8667, ..., 0.9529, 0.9529, 0.9529]]]) In [11]: print(dataset.classes) ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] 여기 ipynb 상에서 시각화를 하고싶다면 matplotlib을 써야하는데 이때는 텐서 차원을 (32x32x3)으로 바꿔야함 In [12]: import matplotlib import matplotlib.pyplot as plt %matplotlib inline # 요건 그림 위에 수식 없이 바로 보여지게끔 하는 코딩 matplotlib.rcParams['figure.facecolor'] = '#ffffff' In [13]: def show_example(img, label) : print('Label: ', dataset.classes[label], "(" + str(label) + ")") plt.imshow(img.permute(1,2,0)) # """ # # Permute() : 모든 차원들을 맞교환할 수 있음. # *ex*) # x = torch.rand(16, 32, 3)# y = x.permute(2,1,0) --> [3, 32, 16] In [14]: show_example(*dataset[0]) Label: airplane (0) 0 5 10 15 20 25 30 10 15 20 25 30 show_example(*dataset[10000]) In [15]: Label: bird (2) 0 5 10 15 20 25 30 0 5 10 15 20 25 30 Train, Valid Split $random_seed = 42$ In [16]: torch.manual_seed(random_seed); $val_size = 5000$ In [17]: train_size = len(dataset) - val_size train_ds, val_ds = random_split(dataset, [train_size, val_size]) len(train_ds), len(val_ds) (45000, 5000) Out[17]: In [18]: from torch.utils.data.dataloader import DataLoader batch_size=128 배치사이즈에 load 시켜주려면 data loader가 필요하니까 In [19]: train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=4, pin_memory=True) val_dl = DataLoader(val_ds, batch_size*2, num_workers=4, pin_memory=True) In [20]: **from** torchvision.utils **import** make_grid def show_batch(dl): for images, labels in dl: fig, ax = plt.subplots(figsize=(12,6)) ax.set_xticks([]); ax.set_yticks([]) ax.imshow(make_grid(images, nrow=16).permute(1, 2, 0)) break In [21]: show_batch(train_dl) Defining the Model(Convolutional Neural Network) def apply_kernel(image, kernel): In [22]: ri, ci = image.shape # image dimensions rk, ck = kernel.shape# kernel dimensions ro, co = ri-rk+1, ci-ck+1 # output dimensions output = torch.zeros([ro, co]) for i in range(ro): for j in range(co): output[i,j] = torch.sum(image[i:i+rk, j:j+ck] * kernel) return output In [23]: | import torch.nn as nn import torch.nn.functional as F # CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, In [24]: stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=N simple_model = nn.Sequential(# input channel : 3, out_channel: nn.Conv2d(3, 8, kernel_size=3, stride=1, padding=1), nn.MaxPool2d(2, 2) In [25]: for images, labels in train_dl: print('images.shape:', images.shape) out = simple_model(images) print('out.shape:', out.shape) images.shape: torch.Size([128, 3, 32, 32]) out.shape: torch.Size([128, 8, 16, 16]) In [26]: class ImageClassificationBase(nn.Module): def training_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss return loss def validation_step(self, batch): images, labels = batch out = self(images) # Generate predictions loss = F.cross_entropy(out, labels) # Calculate loss acc = accuracy(out, labels) # Calculate accuracy return {'val_loss': loss.detach(), 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): print("Epoch [{}], train_loss: {:.4f}, val_loss: {:.4f}, val_acc: {:.4f}".format(epoch, result['train_loss'], result['val_loss'], result['val_acc'])) def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) nn.sequential 을 사용하여 층과 활성화함수를 하나의 network architecture로 연결시킬것이다. In [27]: # torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None class Cifar10CnnModel(ImageClassificationBase): def __init__(self): super().__init__() self.network = nn.Sequential(nn.Conv2d(3, 32, kernel_size=3, padding=1), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 64 x 16 x 16 nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 128 x 8 x 8 nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1), nn.ReLU() nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(2, 2), # output: 256 x 4 x 4 nn.Flatten(), nn.Linear(256*4*4, 1024), nn.ReLU(), nn.Linear(1024, 512), nn.ReLU(), nn.Linear(512, 10)) def forward(self, xb): return self.network(xb) In [28]: model = Cifar10CnnModel() model Cifar10CnnModel(Out[28]: (network): Sequential((0): Conv2d $(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (1): ReLU() $(2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (3): ReLU() (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (6): ReLU() (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (8): ReLU() (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (10): Conv2d $(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (11): ReLU() (12): Conv2d $(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))$ (13): ReLU() (14): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (15): Flatten(start_dim=1, end_dim=-1) (16): Linear(in_features=4096, out_features=1024, bias=True) (17): ReLU() (18): Linear(in_features=1024, out_features=512, bias=True) (19): ReLU() (20): Linear(in_features=512, out_features=10, bias=True))) In [29]: for images, labels in train_dl: print('images.shape:', images.shape) out = model(images) print('out.shape:', out.shape) print('out[0]:', out[0]) images.shape: torch.Size([128, 3, 32, 32]) out.shape: torch.Size([128, 10]) out[0]: tensor([0.0239, -0.0466, 0.0067, 0.0193, 0.0044, -0.0598, -0.0188, -0.0242, 0.0431, -0.0164], grad_fn=<SelectBackward0>) GPU를 원활하게 사용하기 위해 사용 가능한 경우 몇 가지 도우미 함수(get_default_device 및 to_device)와 도우미 클래스 DeviceDataLoader를 정의하여 필요에 따라 모델 및 데이터를 GPU로 이동시킨다! In [30]: def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list,tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader(): """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dlself.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) In [31]: device = get_default_device() device device(type='cuda') Out[31]: 이제 DeviceDataLoader를 사용하여 데이터 배치를 GPU로 자동 전송(사용 가능한 경우)하고 to_device를 사용하여 모델을 GPU(사 용 가능한 경우)로 이동하기 위해 교육 및 검증 데이터 로더를 래핑할 수 있습니다. In [32]: train_dl = DeviceDataLoader(train_dl, device) val_dl = DeviceDataLoader(val_dl, device) to_device(model, device); Training the Model In [33]: @torch.no_grad() def evaluate(model, val_loader): model.eval() outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): # Training Phase model.train() train_losses = [] for batch in train_loader: loss = model.training_step(batch) train_losses.append(loss) loss.backward() optimizer.step() optimizer.zero_grad() # Validation phase result = evaluate(model, val_loader) result['train_loss'] = torch.stack(train_losses).mean().item() model.epoch_end(epoch, result) history.append(result) return history In [34]: model = to_device(Cifar10CnnModel(), device) evaluate(model, val_dl) In [35]: {'val_loss': 2.302245855331421, 'val_acc': 0.10039062798023224} Out[35]: 무작위에서 뽑았을때(초기정확도)는 10% 이며, 우리는 모델을 훈련하기 위해 하이퍼파라미터(학습속도, epoch수, batch_size 등)를 사용할 것이다. -> 높은 정확도를 위하여 $num_epochs = 30$ In [36]: opt_func = torch.optim.Adam lr = 0.001history = fit(num_epochs, lr, model, train_dl, val_dl, opt_func) In [37]: Epoch [0], train_loss: 1.8620, val_loss: 1.6588, val_acc: 0.3808 Epoch [1], train_loss: 1.5650, val_loss: 1.5005, val_acc: 0.4409 Epoch [2], train_loss: 1.4717, val_loss: 1.4334, val_acc: 0.4638 Epoch [3], train_loss: 1.4029, val_loss: 1.4123, val_acc: 0.4777 Epoch [4], train_loss: 1.3518, val_loss: 1.3767, val_acc: 0.5030 Epoch [5], train_loss: 1.3078, val_loss: 1.3254, val_acc: 0.5146 Epoch [6], train_loss: 1.2707, val_loss: 1.2587, val_acc: 0.5475 Epoch [7], train_loss: 1.2387, val_loss: 1.2567, val_acc: 0.5473 Epoch [8], train_loss: 1.2103, val_loss: 1.2291, val_acc: 0.5545 Epoch [9], train_loss: 1.1853, val_loss: 1.2028, val_acc: 0.5643 Epoch [10], train_loss: 1.1628, val_loss: 1.1866, val_acc: 0.5715 Epoch [11], train_loss: 1.1422, val_loss: 1.1849, val_acc: 0.5766 Epoch [12], train_loss: 1.1229, val_loss: 1.1442, val_acc: 0.5844 Epoch [13], train_loss: 1.1048, val_loss: 1.1740, val_acc: 0.5805 Epoch [14], train_loss: 1.0883, val_loss: 1.1482, val_acc: 0.5859 Epoch [15], train_loss: 1.0716, val_loss: 1.1028, val_acc: 0.6005 Epoch [16], train_loss: 1.0598, val_loss: 1.1180, val_acc: 0.5978 Epoch [17], train_loss: 1.0434, val_loss: 1.0900, val_acc: 0.6070 Epoch [18], train_loss: 1.0304, val_loss: 1.0842, val_acc: 0.6119 Epoch [19], train_loss: 1.0169, val_loss: 1.0683, val_acc: 0.6194 Epoch [20], train_loss: 1.0055, val_loss: 1.0588, val_acc: 0.6178 Epoch [21], train_loss: 0.9903, val_loss: 1.0579, val_acc: 0.6221 Epoch [22], train_loss: 0.9800, val_loss: 1.0426, val_acc: 0.6286 Epoch [23], train_loss: 0.9674, val_loss: 1.0266, val_acc: 0.6407 Epoch [24], train_loss: 0.9570, val_loss: 1.0226, val_acc: 0.6365 Epoch [25], train_loss: 0.9472, val_loss: 1.0106, val_acc: 0.6404 train_loss: 0.9380, val_loss: 1.0077, Epoch [26], val_acc: 0.6424 Epoch [27], train_loss: 0.9272, val_loss: 1.0063, val_acc: 0.6474 Epoch [28], train_loss: 0.9178, val_loss: 1.0028, val_acc: 0.6482 Epoch [29], train_loss: 0.9101, val_loss: 0.9973, val_acc: 0.6509 In [38]: def plot_accuracies(history): accuracies = [x['val_acc'] for x in history] plt.plot(accuracies, '-x') plt.xlabel('epoch') plt.ylabel('accuracy') plt.title('Accuracy vs. No. of epochs'); plot_accuracies(history) In [39]: Accuracy vs. No. of epochs 0.65 0.60 0.55 0.50 0.45 0.40 5 20 25 10 15 30 epoch 이 모델은 약 65% 이상 정도의 정확도에 도달하였고, epoch을 더 돌린다 하더라도 정확도가 올라갈 것 같지 않다. def plot_losses(history): In [40]: train_losses = [x.get('train_loss') for x in history] val_losses = [x['val_loss'] for x in history] plt.plot(train_losses, '-bx') plt.plot(val_losses, '-rx') plt.xlabel('epoch') plt.ylabel('loss') plt.legend(['Training', 'Validation']) plt.title('Loss vs. No. of epochs'); In [41]: plot_losses(history) Loss vs. No. of epochs Training 1.8 Validation 1.6 SS 1.4 1.2 1.0 0 5 10 15 20 25 30 epoch 처음에는 훈련과 검증 모두 손실이 낮아지다가 epoch 3부터는 훈련손실만 더 낮아지고 검증set 손실은 더 높아지는것을 확인할 수 있다. -> 과적합! 이 과적합을 피하기 위해 "노이즈"를 추가한다. 배치 정규화 및 드롭아웃과 같은 정규화 기술 사용을 통해. Testiong with individual images test_dataset = ImageFolder(data_dir+'/test', transform=ToTensor()) In [42]: In [43]: def predict_image(img, model): # Convert to a batch of 1 xb = to_device(img.unsqueeze(0), device) # Get predictions from model yb = model(xb)# Pick index with highest probability _, preds = torch.max(yb, dim=1) # Retrieve the class label return dataset.classes[preds[0].item()] In [44]: img, label = test_dataset[0] plt.imshow(img.permute(1, 2, 0)) print('Label:', dataset.classes[label], ', Predicted:', predict_image(img, model)) Label: airplane , Predicted: airplane 0 5 10 15 20 25 30 5 20 0 10 15 25 30 In [45]: img, label = test_dataset[1002] plt.imshow(img.permute(1, 2, 0)) print('Label:', dataset.classes[label], ', Predicted:', predict_image(img, model)) Label: automobile , Predicted: automobile 5 10 15 20 25 30 10 15 5 20 30 25 In [46]: img, label = test_dataset[6153] plt.imshow(img.permute(1, 2, 0)) print('Label:', dataset.classes[label], ', Predicted:', predict_image(img, model)) Label: frog , Predicted: frog 5 10 -15 -20 25 30 20 0 5 10 15 25 30 test_loader = DeviceDataLoader(DataLoader(test_dataset, batch_size*2), device) In [47]: result = evaluate(model, test_loader) result {'val_loss': 0.9809231162071228, 'val_acc': 0.6494140625} Out[47]: Saving and loading the model torch.save(model.state_dict(), 'cifar10-cnn-acc0.7637-epoch200-lr0.001-adam-bs256.pth') In [48]: In []:

Cifar10-CNN ipynb version