3.2) Many-electron systems 110

- electrons occupy states with different combinations of n, ℓ, m, s
- filling sequence determined by interplay between $V_{eff}(r)$ and centrifugal potential $\propto \ell (\ell+1)/r^2$

- state with lowest energy found using Hund's rules:
 - 1) filled (sub-) shells have total angular momentum L=0, S=0
 - 2) state with maximum S (parallel spins) are occupied first
 - 3) state with maximum L compatible with S
 - 4) for more than half-filled subshells J = L + S, else J = |L S|

- $\vec{L} = \sum \vec{\ell}_i = 0; \vec{S} = \sum \vec{s}_i = 0$ ad 1) direct consequence of Pauli principle: if a shell is filled, there must be an equal number of electrons with positive and negative spin orientations $\rightarrow J = L + S = 0$
- wavefunctions must be antisymmetric (Pauli principle) ad 2) \rightarrow wavefunction with symmetric spin part (maximum S) has antisymmetric orbital wavefunction \rightarrow maximum "distance" between electrons → minimum Coulomb repulsion
- \rightarrow state of first electron in new shell has $|m_{\ell}| = \ell$, then state ad 3) with $|m_{\ell}| = \ell - 1$ is filled ... explanation: average distance from the core increases with increasing $m_{\ell} \rightarrow$ larger average distance between electrons → smaller Coulomb repulsion (effect smaller than for rule 2)
- rules 2 and 3 determine S and $L \rightarrow$ possible values for J range ad 4) from |L - S| to L + S; half-filled shells: L = 0 (rule 3) $\rightarrow J = S$ magnetic properties of atoms determined by J

periodic table of elements (1869): Dmitri Mendelejew (1834–1907) Lothar Meyer (1830–1895)

similarities of chemical properties → horizontal grouping 1864: hypothesis of inner structure of atoms

Periodensystem nach Lothar Meyer (1870)										
I.	II.	III.	IV.	v.	VI.	VII.	VIII.	IX.		
	<u>B</u> =11,0	<u>Al</u> =27,3		-		? <u>In</u> =113,4	<u>Tl</u> =202,7			
			-		-		-			
	<u>C</u> =11,97	<u>Si</u> =28		-		<u>Sn</u> =117,8		<u>Pb</u> =206,4		
			<u>Ti</u> =48		<u>Zr</u> =89,7		-			
	<u>N</u> =14,01	<u>P</u> =30,9		<u>As</u> =74,9		<u>Sb</u> =122,1		<u>Bi</u> =207,5		
			<u>v</u> =51,2		<u>Nb</u> =93,7		<u>Ta</u> =182,2			
	<u>Q</u> =15,96	<u>\$</u> =31,98		<u>Se</u> =78		<u>Te</u> =128?		-		
			<u>Cr</u> =52,4		<u>Mo</u> =95,6		<u>W</u> =183,5			
-	E=19,1	<u>Cl</u> =35,8		Br=79,75		1=126,5		-		
			<u>Mn</u> =54,8		<u>Ru</u> =103,5		<u>Os</u> =198,6?			
			<u>Fe</u> =55,9		<u>Rh</u> =104,1		<u>Ir</u> =196,7			
			<u>Co</u> = <u>Ni</u> =58,6		<u>Pd</u> =106,2		<u>Pt</u> =196,7			
<u>Li</u> =7,01	<u>Na</u> =22,99	<u>K</u> =39,04		<u>Rb</u> =85,2		<u>Cs</u> =132,7		-		
			<u>Cu</u> =63,3		<u>Aq</u> =107,66		<u>Au</u> =196,2			
? <u>Be</u> =9,3	Mq=23,9	<u>Ca</u> =39,9		<u>Sr</u> =87,0		<u>Ba</u> =136,8		-		
			<u>Zn</u> =64,9		<u>Cd</u> =111,6		<u>Hg</u> =199,8			
					Quelle: Anna	alen der Chemie,	Supplementband	d 7, 354 (1870)		

periodic table of elements (1869): Dmitri Mendelejew (1834–1907) Lothar Meyer (1830–1895)

electronic configuration of outer shell determines chemical properties → vertical grouping

Reihen	Gruppe I. R ² 0	Gruppe II. RO	Gruppe III. R ² 0 ³	Gruppe IV. RH ⁴ RO ²	Gruppe V. RH ³ R ² 0 ⁵	Gruppe VI. R H ² R O ³	Gruppe VII. RH R ² 0 ⁷	Gruppe VIII. R04
1 2	H=1 Li=7	Be=9,4	B=11	C=12	N=14	0=16	F=19	
3	Na=23	Mg=24	Al=27,3	Si=28	P=31	8=32	C1=35,5	
4	K=39	Ca=40	-=44 ´	Ti = 48	V=51	Cr=52	Mn=55	Fe=56, Co=59, Ni=59, Cu=63
5	(Cu=63)		—=68	-=72	As= 75	Se=78	Br== 80	
6	Rb=85	Sr=87	?Yt=88	Zr == 90	Nb=94	Mo=96	-=100	Ru=104, Rh=104, Pd=106, Ag=108
7	(Ag=108)	Cd = 112	In=113	Sn=118	Sb == 122	Te=125	J == 127	
8	Cs=133	Ba = 137	?Di=138	?Ce==140	_	_	-	
9	()	_	2227	_			_	for a section of the
10		_	?Er=178		Ta=182	W=184	_	Os=195, Ir=197, Pt=198, Au=199
11		Hg=200	Tl=204	Pb = 207	Bi == 208		-	
12	_	_	-	Th=231	-	U = 240	-	

many-electron wavefunction

the helium atom – two electrons in the field of the nucleus

generalization to N electrons:

$$\left\{ -\frac{1}{2} \sum_{i} \nabla_{i}^{2} - \sum_{i} \frac{Ze^{2}}{|\vec{r}_{i}|} + \sum_{i < j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|} - E \right\} \Psi(\vec{r}_{1}, ..., \vec{r}_{N}) = 0$$

$$\downarrow V_{ee}^{(1)}$$

$$V_{ee}^{(2)}$$

Schrödinger equation cannot be solved analytically

ground state has minimum energy:

$$\rightarrow E \left[\Psi^{gs} + \Delta \Psi \right] > E \left[\Psi^{gs} \right]$$

 \rightarrow ground state can be found by variation of Ψ until $E = E_{min}$

$$\min_{\Psi} (E) = \min \langle \Psi | H | \Psi \rangle = \min \langle \Psi | T^{(1)} + V_{ne}^{(1)} + V_{ee}^{(2)} | \Psi \rangle$$

constraints:

- wavefunction remains normalized
- electrons obey Pauli exclusion principle, i.e., wavefunction changes sign upon particle interchange

$$\Psi\left(r_1,\ldots,r_i,\ldots,r_j,\ldots,r_N\right) = -\Psi\left(r_1,\ldots,r_j,\ldots,r_i,\ldots,r_N\right)$$

→ two electrons: parallel spins → antisymmetric orbital WF antiparallel spins → symmetric orbital WF

ansatz: product wavefunctions (Hartree)

$$\Psi = \psi_1(\vec{r}_1)\psi_2(\vec{r}_2)\dots\psi_N(\vec{r}_N)$$

(would be exact for non-interacting electrons)

$$\min_{\Psi} (E) = \min_{\Psi} \langle \Psi | T^{(1)} + V_{ne}^{(1)} + V_{ee}^{(2)} | \Psi \rangle$$

$$\Rightarrow \text{ e.g. helium atom:} \qquad \qquad \text{electrostatic potential}$$

$$\left(-\frac{\hbar}{2m} \Delta_1 - \frac{2}{r_1} + \int_{1}^{\infty} \frac{1}{r_{12}} \psi_2^2(\vec{r}_2) d^3 r_2 \right) \psi_1(\vec{r}_1) = E_1 \psi_1(\vec{r}_1)$$

$$\left(-\frac{\hbar}{2m}\Delta_2 - \frac{2}{r_2} + \int \frac{1}{r_{12}}\psi_1^2(\vec{r_1})d^3r_1\right)\psi_2(\vec{r_2}) = E_2\psi_2(\vec{r_2})$$

to minimize: $E = E_1 + E_2 - \iint \frac{1}{r_{12}} \psi_1^2(\vec{r_1}) \psi_2^2(\vec{r_2}) d^3 r_1 d^3 r_2$

self-consistency loop:

$$\psi_i^0 \to H^0, E^0 \to \psi_i^1 \to H^1, E^1 \to \dots \to \psi_i^{gs}, \Psi^{gs}, E^{gs}$$

approximation to the ground-state wavefunction 2

119

antisymmetrized product-wavefunction (Hartree-Fock)

Slater determinant for
$$\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(\vec{r_1}) & \cdots & \psi_1(\vec{r_N}) \\ \vdots & \ddots & \vdots \\ \psi_N(\vec{r_1}) & \cdots & \psi_N(\vec{r_N}) \end{vmatrix}$$

interaction potential in Hamiltonian contains "exchange" term

minimization:
$$E_{HF}^{gs} = \min_{\Psi} \langle \Psi | H | \Psi \rangle$$
$$H | \psi_i \rangle = \left(-\frac{1}{2} \nabla^2 + V_{ne} + V_{ee} [\psi] \right) | \psi_i \rangle = \varepsilon_i | \psi_i \rangle$$

side remark: only for closed shell systems can the wavefunction be represented by single determinant → wavefunction is linear combination of Slater determinants ("multi-configuration HF", "multi-reference configuration interaction")

states with lowest energy:

spins antiparallel, S = 0 (singlet) \rightarrow symmetric orbital wavefunction (1s²) energy $E_{sing} = 2E_1 + V_{Coul} + V_{ex}$

spins parallel, S = 1 (triplet) \rightarrow antisymmetric orbital wavefunction (1s2s) energy $E_{trip} = E_1 + E_2 + V_{Coul} - V_{ex} > E_{sing}$

121 radial Hartree-Fock density of Ar

Thomas-Fermi model (1927)

write energy as an approximate function(al) of the density

$$E = E[n] = T_{TF}[n] + \int V_{ne}(\vec{r})n(\vec{r})d^{3}r + \frac{1}{2} \iint \frac{n(\vec{r_{1}})n(\vec{r_{2}})}{\left|\vec{r_{1}} - \vec{r_{2}}\right|} d^{3}r_{1}d^{3}r_{2}$$

$$\int V_{es}[n(\vec{r})]n(\vec{r})d^{3}r$$

many electrons \rightarrow classical approximation (see electron gas): number of electrons N determines maximum momentum

$$p_{\text{max}}^{3} = 3n\pi^{2} \rightarrow \langle T[n] \rangle = \frac{3}{5} T_{\text{max}}[n] = \frac{3}{5} \frac{(3\pi^{2}n)^{2/3}}{2m}$$
$$\rightarrow T_{TF}[n] = \frac{3}{10m} (3\pi^{2})^{2/3} \int n^{5/3}(\vec{r}) d^{3}r$$

good approximation for large atoms at intermediate distances r maximum density at $r \sim \frac{a_0}{Z^{1/3}}$; half of electrons within $r < \frac{4a_0}{3Z^{1/3}}$

approximation for ground-state density

123

density-functional theory (1964; Nobel prize 1998)

Hohenberg-Kohn: knowledge of ground-state density sufficient to calculate observable ground-state properties

density from Schrödinger wavefunction:

$$n(\vec{r}) = \int |\Psi(\vec{r}, \vec{r}_2, ..., \vec{r}_N)|^2 d\vec{r}_2, ..., d\vec{r}_N = n[\Psi]$$

 \rightarrow information compression $\mathbb{R}^{3N} \rightarrow \mathbb{R}^3$

Hohenberg-Kohn theorem I:

every observable can be expressed as functional of density

$$\langle \Psi_{gs} | O | \Psi_{gs} \rangle = O[\Psi_{gs}] = O[n_{gs}]$$

Hohenberg-Kohn theorem II: unique mapping between ground state wavefunction and density

$$\rightarrow E_{gs}[n_{gs}] = E_{gs}[\Psi_{gs}]$$

125

Kohn-Sham (1965):

recipe to implement DFT: construct a system of non-interacting pseudo-particles which give the correct ground-state density $n(\vec{r}) = \sum_{i} |\varphi_{i}(\vec{r})|^{2}$

iterative solution: $n_0(\vec{r}) \rightarrow V_{eff}[n_0] \rightarrow \varphi_i[n_0] \rightarrow n_1(\vec{r}) \rightarrow ... \rightarrow n_{gs}(\vec{r})$

advantage: numerical effort reduced

disadvantage: V_{xc} unknown

radial DFT density of Ar

DFT density of large systems²⁶

e.g., electron density at metal surfaces: define a unit cell ("supercell"), containing many atomic and a thick vacuum layers; periodic boundary conditions

→ "crystal" made of thin metal slabs

