CNF Encodings for the Car Sequencing Problem

Valentin Mayer-Eichberger and Toby Walsh NICTA and University of New South Wales, Australia

Introduction

- Cars require different options (air-conditioning, sun-roof, etc.)
- ► Is there a production sequence for cars on the assembly line satisfying the sliding capacity constraints?
- ► CSPLib Benchmark Nr. 1

Example

- ► Classes $C = \{1, 2, 3\}$ with demand $d_1 = 3, d_2 = 2, d_3 = 2$
- ▶ Options $O = \{a, b\}$ with capacity constraints 1/2 and 1/5
- ► Class 1 no restriction
- ► Class 2 requires option **a**
- Class 3 requires option **a** and **b**

 Sequence of cars
 3 1 2 1 2 1 3

 Option a
 1 - 1 - 1 - 1

 Option b
 1 - - - - 1

PB Model

- ightharpoonup Boolean variable $\mathbf{c}_{\mathbf{i}}^{\mathbf{k}}$: car $\mathbf{k} \in \mathbf{C}$ is at position \mathbf{i}
- ▶ Boolean variable o: option $I \in O$ is at position i
- ightharpoonup Demand constraints: $\forall \mathbf{k} \in \mathbf{C}$

$$\sum_{i=1}^{n} c_i^k = d_k$$

ightharpoonup Capacity constraints: $\forall I \in O$ with ratio u_I/q_I

$$\bigwedge_{i=0}^{n-q_l} (\sum_{i=1}^{q_l} o_{i+j}^l \leq u_l)$$

And in all positions $i \in \{1 \dots n\}$ of the sequence it must hold:

ightharpoonup Link between classes and options: for each $\mathbf{k} \in \mathbf{C}$ and

$$\begin{aligned} \forall I \in O_k: \ c_i^k - o_i^l \leq 0 \\ \forall I \in O \setminus O_k: \ c_i^k + o_i^l \leq 1 \end{aligned}$$

Exactly one car:

$$\sum_{k \in C} c_i^k = 1$$

The SAT Approach: The Ultimate Decomposition

- ▶ ONE constraint: e.g. $\mathbf{a} \lor \mathbf{b} \lor \neg \mathbf{c}$.
- ▶ ONE propagator: e.g. **a** and \neg **a** \lor **b** then propagate **b**.
- ► Using SAT solvers as blackboxes.
- ► Central constraint in car sequencing representing cars and options:

$$(\sum_{i=1}^n x_i = d) \wedge \bigwedge_{i=0}^{n-q} (\sum_{l=1}^q x_{i+l} \leq u)$$

Counter based Clause Set

Example: 22 Cars, Capacity 4/8, Demand d = 12

Results on the harder CSPLib Instances

	E1	E2	E3	ASP	РВ
#solved UNSAT	17	15	17	10	8
#fastest UNSAT	5	4	4	0	4
#solved SAT	11	11	11	7	2
#fastest SAT	0	4	7	0	0

Conclusions and Future Work

- Conclusion
 - ▶ SAT can be very competitive on CP benchmarks

E1-E3=variants of SAT, PB=minisat+, ASP=Clasp

- ▶ SAT is very strong on showing unsatisfiability
- ▶ Global Constraints motivate for encodings
- ▶ Choosing the right encoding of cardinality constraints is crucial
- ► Future work:
 - ▶ Fair Comparison to CP, IP, ASP, LS . . .
 - ▶ Clean proof of GAC and lower bound on size
 - ▶ Idea useful in rostering, planning, scheduling?
 - Exponential encoding in the number of options?
 - ▶ New instances!

Discussion: Related Work

- ► Sinz: Sequential Counter CNF [5]
- ► Een and Soerensson: Translation through BDDs to CNF [3]
- ► Bacchus: Decomposition through DFAs to CNF [1]
- ► Brand et al: Decomposition to cumulative sums for CP [2]
- ► Siala et al: Linear time propagator for CP [4]

Bibliography

Fahiem Bacchus.
 GAC Via Unit Propagation.
 In CP, pages 133–147, 2007.
 Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter J. Stuckey, and Toby Walsh.
 Encodings of the Sequence Constraint.
 In CP, pages 210–224, 2007.
 Niklas Eén and Niklas Sörensson.
 Translating Pseudo-Boolean Constraints into SAT.
 Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):1−26, 2006.
 Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.

An Optimal Arc Consistency Algorithm for a Chain of Atmost Constraints with Cardina In *CP*, pages 55–69, 2012.

In *CP*, pages 55–69, 2012.

Carsten Sinz.

In *CP*, pages 827–831, 2005.

Created with LATEX beamer poster http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamer poster.php