CSE 5522 Homework 2

February 18, 2015

Problem 1 (1 point)

Figure 1: GM for problem 1

Consider the DAG G in Figure 1. Assume it is a minimal I-map for P(A,B,C,D,E,F,X). Now consider marginalizing out X. Construct a new DAG G' which is a minimal I-map for P(A,B,C,D,E,F). Specify and justify which extra edges need to be added.

Problem 2 (1 point)

Here we compute global independence statements from some directed graphical models. You can use the "bayes ball" algorithm or the d-seperation criteria.

- Consider the DAG in figure 2, list all the variables that are independent of A given evidence on B.
- Consider the DAG in figure 3, list all the variables that are independent of A given evidence on J.

Figure 2: GM for problem 2 part 1

Figure 3: GM for problem 2 part 2

Problem 3 (3 points)

Consider an HMM with three states, three outputs, and the following transition and emission probabilities. Assume a uniform distribution for the initial state, 0.

π_i	π_{i+1}	a	b	\mathbf{c}
a		0.5	0.4	0.1
b		0.1	0.5	0.4
c		0.4	0.1	0.5

π	x_i	p	q	r
a		0.7	0.1	0.2
b		0.2	0.7	0.1
c		0.1	0.2	0.7

- 1. Compute the most likely sequence of hidden states for the observed sequence (p, p, r, r, q, r) by stepping through the Viterbi algorithm by hand.
- 2. Use the forward-backward algorithm to compute the probability distribution over states at position 3.
- 3. Is the most likely state the same as the state in the most likely sequence? Will this always be the case? Why?