PERTEMUAN 6 ASISTENSI MATEMATIKA I PEMBAHASAN SOAL EAS 2020

Ahmad Hisbu Zakiyudin

Soal Latihan 1.1

- 12a) Dapatkan dy/dx dengan diferensiasi logaritmik dari $y = x^{\cos 2x}$
- 17) Sketsalah grafik $y = x^{1/\ln x}$
- 21) Misalkan $f(x) = e^{|x|}$
 - (a) Apakah f kontinu di x = 0?
 - (b) Apakah f dapat diturunkan di x = 0
 - (c) Sketsalah grafik dari f

Jawab: Uraikan dulu menjadi bentuk $f(x) = \begin{cases} e^x, & x \geq 0 \\ e^{-x}, & x < 0 \end{cases}$

- (a) i. $f(0) = e^0 = 1$ ada
 - ii. $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^{-x} = e^0 = 1$ dan $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} e^x = e^0 = 1$ sehingga $\lim_{x\to 0} f(x) = 1$ iii. $\lim_{x\to 0} f(x) = f(0) = 1$

Jadi f(x) kontinu di x = 0

- (b) Tinjau bahwa $f'_-(x) = -e^{-x}$ dan $f'_+(x) = e^x$ sehingga $f'_-(x) \neq f'_+(x)$. Jadi f(x) tidak dapat diturunkan di x=0
- 25) Satu dari fungsi dasar pada Matematika Statistika adalah

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right]$$

di mana μ dan σ adalah konstanta sehingga $\sigma>0$ dan $-\infty<\mu<+\infty$

- (a) Tentukan titik belok dan titik ekstrim relatifnya
- (b) Dapatkan $\lim_{x \to +\infty} f(x)$ dan $\lim_{x \to -\infty} f(x)$
- (c) Sketsalah grafik f

Jawab: Tinjau

$$f'(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right] \times \left(-\frac{2}{2\sigma}(\frac{x-\mu}{\sigma})\right) = -\frac{x-\mu}{\sigma^2\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right]$$

Cari f''(x) dengan aturan perkalian

$$f''(x) = -\frac{1}{\sigma^2 \sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] - \frac{x-\mu}{\sigma^2 \sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] \times \left(-\frac{2}{2\sigma} \left(\frac{x-\mu}{\sigma}\right)\right)$$
$$= -\frac{1}{\sigma^2 \sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right] + \frac{(x-\mu)^2}{\sigma^4 \sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

Soal Latihan 1.2

1. Dapatkan $f^{-1}(x)$ dari

b)
$$f(x) = 7x - 6$$

d)
$$f(x) = \sqrt[3]{2x-1}$$

f)
$$f(x) = e^{1/x}$$

h)
$$f(x) = \begin{cases} 2x, x \le 0 \\ x^2, x > 0 \end{cases}$$

2. Gunakan Persamaan (1.31) untuk mendapatkan turunan f^{-1} , dan cek kembali kerjaan Anda dengan diferensiasi implisit

b)
$$f(x) = 1/x^2, x > 0$$

d)
$$f(x) = 2x^5 + x^3 + 1$$

- 9d) Berapakah nilai x sehingga berlaku $\tan(\tan^{-1} x) = x$
- 15c) Buatlah sketsa grafik dari $y = \cos^{-1} \frac{1}{3}x$

27a) Buktikan
$$\sin^{-1}x=\tan^{-1}\frac{x}{\sqrt{1-x^2}}$$

28) Dapatkan
$$\frac{dy}{dx}$$

b)
$$y = \cos^{-1}(2x+1)$$

e)
$$y = \sec^{-1}(x^7)$$

$$h) \ y = \frac{1}{tan^{-1}x}$$

$$k) y = \ln(\cos^{-1} x)$$

n)
$$y = x^2 (\sin^{-1} x)^3$$

$$q) y = \tan^{-1} \left(\frac{1-x}{1+x} \right)$$

t)
$$\tan^{-1}(xe^{2x})$$

29) Hitung integral berikut:

b)
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$

e)
$$\int \frac{dx}{\sqrt{1-4x^2}}$$

$$h) \int \frac{e^x}{1 + e^{2x}} \, dx$$

Soal Latihan 1.3

- 2a) Buktikan kesamaan $\cosh 2x = 2\sinh^2 x + 1$
- 4) Dapatkan $\frac{dy}{dx}$
 - (a) $y = \sinh(4x 8)$
 - d) $y = \operatorname{sech}(e^{2x})$
 - $h) y = \sinh^3(2x)$
- 5) Hitung integral dari
 - (a) $\int \sinh^6 x \cosh x \, dx$
 - d) $\int \coth^2 x \operatorname{csch}^2 x \, dx$
 - g) $\int \tanh^6 x \operatorname{sech}^3 x \, dx$
- 16) (a) Buktikan $\cosh^{-1} x = \ln(x + \sqrt{x^2 1}), x \ge 1$
 - (b) Gunakan bagian (a) untuk mendapatkan turunan dari $\cosh^{-1} x$
- 21) Dapatkan $\frac{dy}{dx}$ dari persamaan berikut
 - $i) y = \sinh^{-1}(1/x)$
 - $j) \cosh^{-1}(\cosh x)$
 - $k) \ y = \ln(\cosh^{-1} x)$
 - $1) \ y = \sqrt{\coth^{-1} x}$
 - $m) y = e^x \operatorname{sech}^{-1} x$
 - n) $y = x^2 (\sinh^{-1} x)^3$
 - o) $y = \sinh^{-1}(\tanh x)$
 - $p) y = \cosh^{-1}(\sinh^{-1} x)$
 - $q) y = \tanh^{-1} \left(\frac{1-x}{1+x} \right)$

Soal Tambahan

Misal F(x) = f(2g(x)) dengan $f(x) = x^4 + x^3 + 1$ untuk $0 \le x \le 2$, dan $g(x) = f^{-1}(x)$. Dapatkan F'(3)

Kita punya F'(x) = 2f'(2g(x))g'(x), selanjutnya akan kita cari $g'(x) = (f^{-1})'(x)$.

Misalkan $y = f^{-1}(x)$, maka

$$x = f(y) = y^4 + y^3 + 1$$

sehingga diperoleh

$$\frac{dx}{dy} = 4y^3 + 3y^2$$

$$\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{4y^3 + 3y^2}$$

Perhatikan bahwa $g(3) = f^{-1}(3)$, dan ingat jika y = f(x) maka $x = f^{-1}(y)$ sehingga g(3) merupakan penyelesaian dari $x^4 + x^3 + 1 = 3$.

Mudah terlihat bahwa x=1 memenuhi persamaan tersebut sehingga g(3)=1.

Ingat bahwa $g(x) = f^{-1}(x) = y$ sehingga y = g(3) = 1 dan diperoleh

$$g'(3) = (f^{-1})'(3) = \frac{1}{4(1)^3 + 3(1)^2} = \frac{1}{7}$$

Substitusi semua yang telah diperoleh maka

$$F'(3) = 2f'(2g(3))g'(3) = \frac{2f'(2)}{7}$$

Dapat kita tentukan bahwa $f'(x) = 4x^3 + 3x^2$ sehingga $f'(2) = 4(2)^3 + 3(2)^2 = 44$ dan

$$F'(3) = \frac{2 \times 44}{7} = \frac{88}{7}$$