Bicausal optimal transport between the laws of SDEs

Benjamin A. Robinson (University of Klagenfurt)

NAASDE, Będlewo — September 23, 2024

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743).

Bicausal optimal transport between the laws of SDEs

Benjamin A. Robinson (University of Klagenfurt)

NAASDE, Będlewo — September 23, 2024

Supported by Austrian Science Fund (FWF) projects (Y782-N25), (P35519), (P34743). Joint work with

Julio Backhoff-Veraguas
University of Vienna

Sigrid Källblad KTH Stockholm

Comparing stochastic models

Aim: Compute a measure of model uncertainty

E.g. optimal stopping:

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\tau \in \mathcal{T}} \mathbb{E}^{\mathbb{P}}[L(\tau, \omega)]$$

 ${\mathbb P}$ law of solution of SDE

Comparing stochastic models

Aim: Compute a measure of model uncertainty

E.g. optimal stopping:

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\tau \in \mathcal{T}} \mathbb{E}^{\mathbb{P}}[L(\tau, \omega)]$$

 \mathbb{P} law of solution of SDE

Want:

- Appropriate topology on laws of stochastic processes
- Distance we can actually compute

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [Backhoff-Veraguas, Källblad, R. '24]

For "sufficiently nice" coefficients, we can compute an "appropriate distance" $d_p,\ p\geq 1$,

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [Backhoff-Veraguas, Källblad, R. '24]

For "sufficiently nice" coefficients, we can compute an "appropriate distance" $d_p,\ p\geq 1$, by

$$d_p(\mu,\nu)^p = \mathbb{E}\left[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\right], \quad \text{with } B = W.$$

Application

E.g. optimal stopping:

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\tau \in \mathcal{T}} \mathbb{E}^{\mathbb{P}}[L(\tau, \omega)]$$

Application

E.g. optimal stopping:

$$\mathbb{P} \mapsto v(\mathbb{P}) = \sup_{\tau \in \mathcal{T}} \mathbb{E}^{\mathbb{P}}[L(\tau, \omega)]$$

Theorem

[Acciaio, Backhoff-Veraguas, Zalashko '19], [R. Szölgyenyi '24]

$$\omega\mapsto L(t,\omega)\quad \text{Lipschitz on } (\Omega,\|\cdot\|_{L^p}) \text{ unif. in } t\in[0,T]$$

$$\Rightarrow$$

$$\mathbb{P} \mapsto v(\mathbb{P})$$
 Lipschitz on $(\mathcal{P}_p(\Omega), d_p)$

Ingredients

Ingredients

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find Wasserstein distance

$$\mathcal{W}_p^p(\mu,\nu) \coloneqq \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^p]$$

Metrises weak topology on $\mathcal{P}_p(\mathbb{R}^N)$

Example

[Aldous '81], [Backhoff-Veraguas, Bartl, Beiglböck, Eder '20]

$$V \coloneqq \sup_{\tau} \mathbb{E}^{\mu}[X_{\tau}]$$

$$V_n \coloneqq \sup_{\tau} \mathbb{E}^{\mu_n}[X_{\tau}]$$

Example

[Aldous '81], [Backhoff-Veraguas, Bartl, Beiglböck, Eder '20]

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find Wasserstein distance

$$\mathcal{W}_p^p(\mu,\nu) \coloneqq \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^p]$$

Metrises weak topology on $\mathcal{P}_p(\mathbb{R}^N)$

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find Wasserstein distance

$$\mathcal{W}_{p}^{p}(\mu,\nu) \coloneqq \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^{p}]$$

$$" = \inf_{\substack{T : \mathbb{R}^{d} \to \mathbb{R}^{d} \\ T_{\#}\mu = \nu}} \mathbb{E}\left[\sum_{n=1}^{N} |T_{n}(X) - X_{n}|^{p}\right]"$$

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find Wasserstein distance

$$\mathcal{W}_p^p(\mu, \nu) := \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^p]$$

$$" = \inf_{\substack{T : \mathbb{R}^d \to \mathbb{R}^d \\ T_{\#}\mu = \nu}} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right]"$$

$$T(X) = (T_1(X_1, \dots, X_N), \dots, T_N(X_1, \dots, X_N))$$

Example

[Aldous '81], [Backhoff-Veraguas, Bartl, Beiglböck, Eder '20]

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find Wasserstein distance

$$\mathcal{W}_{p}^{p}(\mu,\nu) := \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^{p}]$$

$$" = \inf_{\substack{T : \mathbb{R}^{d} \to \mathbb{R}^{d} \\ T_{\#}\mu = \nu}} \mathbb{E}\left[\sum_{n=1}^{N} |T_{n}(X) - X_{n}|^{p}\right]$$

$$T(X) = (T_{1}(X_{1}, \dots, X_{N}), \dots, T_{N}(X_{1}, \dots, X_{N}))$$

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find adapted Wasserstein distance

$$\begin{split} \mathcal{AW}_p^p(\mu,\nu) &\coloneqq \inf_{\substack{X \sim \mu, Y \sim \nu \\ \text{bicausal}}} \mathbb{E}[|X - Y|^p] \\ & \text{``} = \inf_{\substack{T \colon \mathbb{R}^d \to \mathbb{R}^d \\ T_\# \mu = \nu}} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right] \text{'`} \\ & \text{biadapted} \end{split}$$

$$T(X) = (T_1(X_1), T_2(X_1, X_2), \dots, T_N(X_1, \dots, X_N))$$

and symmetric condition.

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find adapted Wasserstein distance

$$\begin{split} \mathcal{AW}_p^p(\mu,\nu) &\coloneqq \inf_{\substack{X \sim \mu, Y \sim \nu \\ \text{bicausal}}} \mathbb{E}[|X - Y|^p] \\ & \text{``} = \inf_{\substack{T \colon \mathbb{R}^d \to \mathbb{R}^d \\ T \neq \mu = \nu \\ T \text{ biadapted}}} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right] \text{''} \end{split}$$

$$T(X) = (T_1(X_1), T_2(X_1, X_2), \dots, T_N(X_1, \dots, X_N))$$

and symmetric condition.

Metrises adapted weak topology on $\mathcal{P}_p(\mathbb{R}^N)$

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^N)$, $p \in [1, \infty)$.

Find adapted Wasserstein distance

$$\begin{split} \mathcal{AW}_p^p(\mu,\nu) &\coloneqq \inf_{\substack{X \sim \mu, Y \sim \nu \\ \text{bicausal}}} \mathbb{E}[|X - Y|^p] \\ & \text{``} = \inf_{\substack{T \colon \mathbb{R}^d \to \mathbb{R}^d \\ T \# \mu = \nu}} \mathbb{E}\left[\sum_{n=1}^N |T_n(X) - X_n|^p\right] \text{'`} \\ & \text{biadapted} \end{split}$$

$$T(X) = (T_1(X_1), T_2(X_1, X_2), \dots, T_N(X_1, \dots, X_N))$$

and symmetric condition.

Metrises adapted weak topology on $\mathcal{P}_p(\mathbb{R}^N)$

Acciaio, Aldous, Backhoff-Veraguas, Bartl, Beiglböck, Bion-Nadal, Eder, Hellwig, Källblad, Pammer, Pflug, Pichler, Talay, Zalaschko,

Example

[Aldous '81], [Backhoff-Veraguas, Bartl, Beiglböck, Eder '20]

Continuous time

Similar definition of Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega := C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \quad \mathcal{W}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p \mathrm{d}t \right]$$
$$\mathrm{Cpl}(\mu, \nu) = \{ \pi = \mathrm{Law}(X, Y) \colon X \sim \mu, Y \sim \nu \}$$

Continuous time

Similar definition of Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega := C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \rightsquigarrow \quad \mathcal{W}_p^p(\mu, \nu) := \inf_{\pi \in \mathrm{Cpl}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p \mathrm{d}t \right]$$
$$\mathrm{Cpl}(\mu, \nu) = \{ \pi = \mathrm{Law}(X, Y) \colon X \sim \mu, Y \sim \nu \}$$

Continuous time

Similar definition of adapted Wasserstein distance in continuous time w.r.t. L^p norm on $\Omega \coloneqq C([0,T],\mathbb{R})$

$$\mu, \nu \in \mathcal{P}(\Omega) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \mathbf{Cpl_{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\int_0^T |\omega_t - \bar{\omega}_t|^p \mathrm{d}t \right]$$

$$\operatorname{Cpl}_{\operatorname{bc}}(\mu,\nu) = \{ \pi \in \operatorname{Cpl}(\mu,\nu) \colon \pi \text{ bicausal} \}$$

" \mathcal{F}^X_t independent of \mathcal{F}^Y_T conditional on F^Y_t " and vice versa

Ingredients

$$b, \bar{b} \colon [0, T] \times \mathbb{R} \to \mathbb{R}, \ \sigma, \bar{\sigma} \colon [0, T] \times \mathbb{R} \to [0, \infty),$$

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \quad X_0 = x_0,$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \quad \bar{X}_0 = x_0.$$

$$\mu = \text{Law}(X), \ \nu = \text{Law}(\bar{X})$$

Theorem [Backhoff-Veraguas, Källblad, R. '24]

For "sufficiently nice" coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu, \nu) = \mathbb{E}\left[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\right], \quad \text{with } B = W.$$

Coupling SDEs

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. '24]

Optimising over bicausal couplings $\pi \in \operatorname{Cpl}_{\mathrm{bc}}(\mu, \nu)$ \Leftrightarrow Optimising over correlations between B, W

Coupling SDEs

Theorem [Backhoff-Veraguas, Källblad, R. '24]

Optimising over bicausal couplings $\pi \in \mathrm{Cpl}_{\mathrm{bc}}(\mu, \nu)$

Optimising over correlations between B, W

Product coupling

B, W independent

Synchronous coupling

Choose the same driving Brownian motion B = W.

Proof of main result

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. 24]

For "sufficiently nice" coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

Proof of main result

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. 24]

For "sufficiently nice" coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs:
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

Ingredients

Classical optimal transport on ${\mathbb R}$

Probability measures $\mu, \nu \in \mathcal{P}_p(\mathbb{R})$, $p \in [1, \infty)$.

Wasserstein distance

$$\mathcal{W}_p^p(\mu,\nu) \coloneqq \inf_{X \sim \mu, Y \sim \nu} \mathbb{E}[|X - Y|^p]$$

is attained by monotone rearrangement

$$X = F_X^{-1}(U), \quad Y = F_Y^{-1}(U), \quad U \text{ uniform}$$

Key result in discrete time

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

— generalisation of monotone rearrangement to N time steps

Key result in discrete time

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$X_1 = F_{\mu_1}^{-1}(U_1), Y_1 = F_{\nu_1}^{-1}(U_1),$$

Key result in discrete time

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$X_1=F_{\mu_1}^{-1}(U_1),\ Y_1=F_{\nu_1}^{-1}(U_1),\ \text{and for }k\in\{2,\dots,N\}$$

$$X_k=F_{\mu_{X_1,\dots,X_{k-1}}}^{-1}(U_k),\quad Y_k=F_{\nu_{Y_1,\dots,Y_{k-1}}}^{-1}(U_k)$$

 U_1, \ldots, U_N independent uniform

$$\pi_{\mathrm{KR}}(\mu,\nu) \coloneqq \mathrm{Law}(X,Y)$$

Key result in discrete time

$$\mu, \nu \in \mathcal{P}(\mathbb{R}^N) \quad \leadsto \quad \mathcal{AW}_p^p(\mu, \nu) := \inf_{\pi \in \operatorname{Cpl}_{\operatorname{bc}}(\mu, \nu)} \mathbb{E}^{\pi} \left[\sum_{n=1}^N |X_n - Y_n|^p \right]$$

Knothe-Rosenblatt rearrangement

$$X_1=F_{\mu_1}^{-1}(U_1)\text{, }Y_1=F_{\nu_1}^{-1}(U_1)\text{, and for }k\in\{2,\dots,N\}$$

$$X_k=F_{\mu_{X_1,\dots,X_{k-1}}}^{-1}(U_k)\text{, }Y_k=F_{\nu_{Y_1,\dots,Y_{k-1}}}^{-1}(U_k)$$

 U_1, \ldots, U_N independent uniform

$$\pi_{\mathrm{KR}}(\mu,\nu) \coloneqq \mathrm{Law}(X,Y)$$

Theorem [Rüschendorf '85]

For μ, ν Markov and stochastically comonotone, the Knothe–Rosenblatt rearrangement is optimal.

Proof of main result

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. 24]

For "sufficiently nice" coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

Ingredients

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t$$

Euler scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh), \quad t \in (kh, (k+1)h].$

$$dX_t = b(X_t)dt + dW_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$$

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t$$

Euler-Maruyama scheme

$$X_0^h = X_0,$$

 $X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + W_t - W_{kh}, \quad t \in (kh, (k+1)h].$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

Remark

 $X_k^h \mapsto X_{(k+1)}^h$ is increasing if b is Lipschitz, $h \ll 1$

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h].$$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau_k^h} - W_{kh}, \quad \tau_k^h := \inf\{t > kh : |W_t - W_{kh}| > A_h|\}$$

Cf. [Milstein, Repin, Tretyakov '02], [Liu, Pagès '22], [Jourdain, Pagès '23]

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \frac{\sigma(X_{kh})(W_t^h - W_{kh}^h)}{(t - kh)(t - kh)}, \ t \in (kh, (k+1)h].$$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau_k^h} - W_{kh}, \quad \tau_k^h \coloneqq \inf\{t > kh \colon \left| W_t - W_{kh} \right| > A_h | \}$$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

Monotone Euler-Maruyama scheme

$$X_0^h = X_0,$$

$$X_t^h = X_{kh}^h + b(X_{kh})(t - kh) + \sigma(X_{kh})(W_t^h - W_{kh}^h), \ t \in (kh, (k+1)h].$$

$$W_t^h - W_{kh}^h = W_{t \wedge \tau_k^h} - W_{kh}, \quad \tau_k^h := \inf\{t > kh : |W_t - W_{kh}| > A_h|\}$$

Write $X_k^h := X_{kh}^h$ and $\mu^h = \text{Law}((X_k^h)_k)$.

Lemma [Backhoff-Veraguas, Källblad, R. '24]

For b, σ Lipschitz, the monotone Euler–Maruyama scheme is stochastically increasing.

Hence the Knothe-Rosenblatt rearrangement is optimal for μ^h , ν^h .

Moreover, $\pi_{KR}(\mu^h, \nu^h) = \text{Law}(X^h, \bar{X}^h), B = W.$

Proof of main result

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Theorem [Backhoff-Veraguas, Källblad, R. 24]

For "sufficiently nice" coefficients, we can compute the adapted Wasserstein distance by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\bigg[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\bigg], \quad \text{with } B = W.$$

- 1. Discretise SDEs;
- 2. Solve discrete-time bicausal optimal transport problem;
- 3. Pass to a limit.

Ingredients

Main result

Assumptions

- Continuous coefficients with linear growth
- Strong existence and uniqueness

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Main Theorem [Backhoff-Veraguas, Källblad, R. 24]

The adapted Wasserstein distance is given by

$$\mathcal{AW}_p^p(\mu, \nu) = \mathbb{E} \left[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t \right], \quad \text{with } B = W.$$

Main result

Assumptions

- Continuous coefficients with linear growth
- Strong existence and uniqueness

$$dX_t = b_t(X_t)dt + \sigma_t(X_t)dB_t, \ X_0 = x \iff \text{Law}(X) = \mu$$

$$d\bar{X}_t = \bar{b}_t(\bar{X}_t)dt + \bar{\sigma}_t(\bar{X}_t)dW_t, \ \bar{X}_0 = x \iff \text{Law}(\bar{X}) = \nu$$

Main Theorem [Backhoff-Veraguas, Källblad, R. 24]

The adapted Wasserstein distance is given by

$$\mathcal{AW}_p^p(\mu,\nu) = \mathbb{E}\left[\int_0^T |X_t - \bar{X}_t|^p \mathrm{d}t\right], \quad \text{with } \mathbf{B} = \mathbf{W}.$$

Synchronous coupling solves general bicausal transport problem

Extensions

- Irregular coefficients [R. Szölgyenyi '24]
 - discontinuous drift with exponential growth
 - bounded measurable drift
- Higher dimensions
 - counterexamples [Backhoff-Veraguas, Källblad, R. '24]
 - different techniques needed
- More general processes (work in progress...)
 - jump-diffusions, McKean-Vlasov equations, ...

Summary

- Study distance between stochastic processes
- Identify optimal bicausal coupling of SDEs
- Exploit properties of numerical approximations of SDEs

References:

