第4章 数学基础

一 来自整数理论的一些概念

1 数的整除性

初等数论研究的基本对象是整数集合

$$Z = \{0, \pm 1, \pm 2, \pm 3, \ldots\}$$

和自然数集合(即正整数集合)

$$N = \{1, 2, 3, 4, \ldots\}$$

定义:设 Z 为有全体整数而构成的集合,若 $b \neq 0$ 且 a ,b , $m \in Z$ 使得 a = mb 此时称 b 整除 a 。记为 $b \mid a$,还称 b 为 a 的除数(因子)。如果不存在整数 m 使得 a = mb 则称 b 不整除 a 。

例如: 24 的正因子是: 1、2、3、4、6、8、12 和 24。

对于数的整除有以下规则成立:

- 1. 如果 $a \mid 1$ 则 $a = \pm 1$ 。
- 2. 如果 $a \mid b \perp b \mid a$,则 $a = \pm b$ 。
- 3. 任何*b* ≠ 0 能整除 0。
- 4. 如果b|g而且b|h,则对任意整数m和n有b|(mg+nh)。

为明白最后一个规则,证明如下:

如果b|g,则g是b的倍数,可以表示成: $g=b\times g_1$, g_1 为某一整数。

如果b|h,则h是b的倍数,可以表示成: $h=b\times h$, h,为某一整数。

故有:

 $mg + nh = mbg_1 + nbh_1 = b \times (mg_1 + nh_1)$

所以b能整除mg + nh。

2素数(质数)的概念:

定义:整数p>1被称为素数是指p的因子仅有1,-1,p,-p。

例如:下面的表给出了在2000以内的所有素数。

表 2.1 2000 以内的所有素数

2	3 5	7	11	13 17		23	29	31	37 4	11 43	47
53	59	61	67	71 73	79	83	89	97	101	103	107
109	113	127	131	137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223	227	229	233	239
241	251	257	263	269	271	277	281	283	293	307	311
313	317	331	337	347	349	353	359	367	373	379	383
389	397	401	409	419	421	431	433	439	443	449	457
461	463	467	479	487	491	499	503	509	521	523	541
547	557	563	569	571	577	587	593	599	601	607	613
617	619	631	641	643	647	653	659	661	673	677	683
691	701	709	719	727	733	739	743	751	757	761	769
773	787	797	809	811	821	823	827	829	839	853	857
859	863	877	881	883	887	907	911	919	929	937	941
947	953	967	97.	1 977	983	991			009	1013	1019
1021	103	1 1	033	1039	1049	1051	106	51 1	063	1069	1087
1091	109		.097	1103	1109	1117	112		129	1151	1153
1163			181	1187	1193	1201	121		217	1223	1229
1231			249	1259	1277	1279	128		289	1291	1297
1301			307	1319	1321	1327	136		367	1373	1381
1399			423	1427	1429	1433	143		447	1451	1453
1459			481	1483	1487	1489	149		499	1511	1523
1531			549	1553	1559	1567	157		579	1583	1597
1601			609	1613	1619	1621	162		637	1657	1663
1667			693	1697	1699	1709	172		723	1733	1741
1747			759	1777	1783	1787	178		801	1811	1823
1831			861	1867	1871	1873	187		.879	1889	1901
1907			931	1933	1949	1951	197	'3 1	.979	1987	1993
1997	7 199	9									

算术基本定理。任意大于 1 的整数 a 都能被因式分解为如下的唯一形式:

$$a = P_1^{\alpha_1} P_2^{\alpha_2} \dots P_t^{\alpha_t}$$

其中 $P_1 > P_2 > ... P_t$ 都是素数而且每一个 $\alpha_i > 0$ (i = 1, 2, 3, ...)。

例如: $91 = 7 \times 13$; $11011 = 7 \times 11^2 \times 13$

任一个给定的正整数可以通过简单列出后面公式中非零分量来说明。

例如: 整数 12 可以表示为 $\{a_2 = 2, a_3 = 1\}$; 整数 18 可以表示为 $\{a_2 = 1, a_3 = 2\}$; 两个数的乘法等同于对应指数分量的加法:

$$K = mn \rightarrow k_p = m_p + n_p$$
 对所有的 p

例如: $l=12\times18=216$; $k_2=2+1=3$; $k_3=1+2=3$;

 $216 = 2^3 \times 3^3$

对于 $a \mid b$,它们的素数因子的关系如何?如果任何以 p^k 形式表示的整数仅能被对应素数分量小于或者等于它的另一整数 p^j 整除,其中 $j \le k$,因此有:

$$a \mid b \to a_p \le b_p$$
 对所有的 p

例如: a=12; b=36; $12 \mid 36$; $12=2^2 \times 3$; $36=2^2 \times 3^2$ $a_2=2=b_2$; $a_3=1 \le 2=b_3$

3 互为素数

定义: 符号 gcd(a,b) 表示 a 和 b 的最大公因子。正整数 c 是 a 和 b 的最大公因子,如果满足下列条件:

- 1. c是a和b因子;
- 2. 任何a和b的因子也是c的因子。

此外,还有如下的等价定义:

$$gcd(a,b) = max[k,k \mid a \perp k \mid b]$$

因为通常要求最大公因子为正,而

$$\gcd(a,b) = \gcd(a,-b) = \gcd(-a,b) = \gcd(-a,-b)$$
, $-\Re \gcd(a,b) = \gcd(|a|,|b|)$.

此外,由于 0 均能被所有非零整数整除,因此有 gcd(a,0) = |a|。

如果将两个正整数分别表示为素数的乘积,很容易确定它们的最大公因子。

$$k = \gcd(a,b) \to k_p = \min(a_p,b_p)$$
 对所有的 p 。

确定一个大数的素因子在计算上往往是不容易做到的。

如果两个正整数之间没有共同的素数因子,则称整数a和b互素。即它们仅有一个公因子 1。换句话说,如果 $\gcd(a,b)=1$,则认为a和b互素。

4 带余除法及展转相除法(欧几里德算法)

即 $0 \le r < b$ 。

定理 1: (帶余除法) 设 $a,b \in Z,b > 0$ 则存在唯一决定的整数 $a \cap r$,使得:

$$a = qb + r, 0 \le r < b$$

证明:用b作单位来度量 $a = [a] + \{a\}$,[a]为a的以b为单位的整数部分, $\{a\}$ 为a的小数部分。先证明满足条件的q和r是存在的。为此令 $q = \left[\frac{a}{b}\right]$,r = a - qb,则q和r都是整数,并且由于 $\frac{r}{b} = \frac{a}{b} - q = \left\{\frac{a}{b}\right\}$,而 $0 \le \left\{\frac{a}{b}\right\} < 1$,从而 $0 \le \frac{r}{b} < 1$,

再证明q和r是唯一确定的。如果又有整数q'和r'使得a=q'b'+r', $0 \le r' < b$,则|r-r'| < b,并且r-r' = b(q'-q)。这表明r-r'是正整数b的倍数,并且r-r'的绝对值又小于b。只有可能r=r',于是q=q',证毕。

事实上,从几何直观上来看,定理是很明显的:设想把所有正,负整数和零都描在实数轴上,那么b的 一切整倍数 qb 便形成实数轴上的一列等距分点。代表整数 a 的那个点必落在某两个相邻分点的区间内 (qb ,(q+1)b),或者与这样一个区间的左端重合。这就意味着我们有

$$a = qb + r, 0 \le r < b$$

下图说明了给定a和正整数 b,总能找到q和r满足之前的关系。数轴上的点代表整数;a必将为余数线上某一点(图中显示a为正数的情况,a为负数也是类似的情况)。由 0 为起点,经过 b,2b,直到 qb,以致 $qb \le a$ 并且 (q+1)b > a 由 qb 到a的距离是r,这样就得到了唯一的值q和r,剩余值r通常称为余数。

利用定理1可以得到如下重要的结果:

定理 2 对于集合 $S = \{ax + by \mid x, y \in Z\}$, 有如下结论:

- 2. 若 $n \in S, c \in Z$,则 $cn \in S$ 。
- 3. 设d为集合S中的最小正整数,则S恰好是d的所有倍数构成的集合。
- 4. $d = \gcd(a,b)$.

证明:(略),可作为习题。

注1 集合 S 恰好是由 gcd(a,b) 的所有倍数构成的,于是可以得到最大公因子的一些有用的性质:

注 2 我们有如下结论:

- 1. 设m为正整数,则 $gcd(ma, mb) = m \times gcd(a, b)$ 。
- 2. 若 gcd(a,b) = d , 则 $\frac{a}{d}$ 和 $\frac{b}{d}$ 是互素的整数。
- 3. a n b 的每个公因子都是 gcd(a,b) 的因子。
- 4. 若 gcd(a,m) = gcd(b,m) = 1,则 gcd(ab,m) = 1。
- 5. 若 a , b 是 不 全 为 0 的 整 数 , 则 对 每 个 整 数 x 有 gcd(a,b) = gcd(a,b+ax) 。

由这些结论,我们可以得到求出最大公因子的如下算法:

展转相除法(欧几里德算法): 假定 d>f>0。 限制算法仅仅考虑正整数是可以接受的,因为 $\gcd(a,b)=\gcd(|a|,|b|)$ 。

EUCLID(d,f)

1.
$$X \leftarrow d; Y \leftarrow f$$

2. if
$$Y = 0$$
 return $X = \gcd(d, f)$

3.
$$R = X \mod Y$$

4.
$$X \leftarrow Y$$

5.
$$Y \leftarrow R$$

例如: 要找出 gcd(1970,1006)

$$1970 = 1 \times 1006 + 904$$
 gcd(1006,904)

$$1006 = 1 \times 904 + 162$$
 $gcd(904,162)$

$$904 = 5 \times 162 + 94$$
 $gcd(162,94)$

$$162 = 1 \times 94 + 68$$
 $gcd(94,68)$

$$94 = 1 \times 68 + 26$$
 $gcd(68,26)$

$$68 = 2 \times 26 + 16$$
 $gcd(26,16)$

$$26 = 1 \times 16 + 10$$
 $gcd(16,10)$

$$16 = 1 \times 10 + 6$$
 $gcd(10,6)$

$$10 = 1 \times 6 + 4 \qquad \qquad \gcd(6,4)$$

$$6 = 2 \times 2 + 2 \qquad \qquad \gcd(4,2)$$

$$2 = 2 \times 2 + 0 \qquad \qquad \gcd(2,0)$$

所以gcd(1970,1066) = 2。

5 模运算

我们现在知道,任意给定一个正整数n和任意一个整数a,如果用a除以n,

得到商q和余数r将满足如下关系:

$$a = qn + r$$
 $0 \le r < n; q = \lfloor a/n \rfloor$

这里|x|表示小于或者等于x的最大整数。

如果 $(a \mod n) = (b \mod n)$, 则称整数 $a \sqcap b \notin n$ 同余,可以书写为 $a \equiv b \mod n$ 。

例如: $73 \equiv 4 \mod 23$; $21 \equiv -9 \mod 10$

注意: 如果 $a \equiv 0 \mod n$ 则 $n \mid a$ 。

模运算符就有如下性质:

- 1. 如果 $n \mid (a-b)$ 则 $a \equiv b \mod n$ 。
- 2. $(a \mod n) = (b \mod n)$ 等价于 $a \equiv b \mod n$ 。
- 3. $a \equiv b \mod n$ 等价于 $b \equiv a \mod n$ 。
- 4. 如果 $a \equiv b \mod n$ 而且 $b \equiv c \mod n$,则有 $a \equiv c \mod n$ 。

模运算操作规则

模运算规则如下:

- 1. $[(a \bmod n) + (b \bmod n)] \bmod n = (a+b) \bmod n \circ$
- 2. $[(a \bmod n) (b \bmod n)] \bmod n = (a b) \bmod n .$
- 3. $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$ o

下面证明第一条规则的合理性: 定义 $(a \mod n) = r_a$, $(b \mod n) = r_b$ 则可得 $a = r_a + jn, j$ 为某一整数; $b = r_b + kn, k$ 为某一整数。有:

$$(a+b) \bmod n = (r_a + jn + r_b + kn) \bmod n$$

$$=(r_a+r_b+(k+j)n) \operatorname{mod} n$$

$$=(r_a+r_b) \bmod n$$

 $= [(a \bmod n) + (b \bmod n)] \bmod n$

其它规则的合理性证明留为作业。

要注意,指数运算可以看作是多次重复乘法。

例如: 为了计算11⁷ mod13可以按照如下方式进行:

$$11^2 = 121 \equiv 4 \mod 13$$

$$11^4 \equiv 4^2 = 3 \mod 13$$

$$11^7 = 11 \times 4 \times 3 \equiv 132 \equiv 2 \mod 13$$

因此,通常加法、乘法、减法的规则都可以适用于模运算,注意:除法运算 在某些情况下也适用,例如当模数n为素数的时候。

如下表给出了模 8 的加法和乘法运算的结果: 首先观察加法表,运算结果一目了然,并且在这个结果矩阵中呈现一种规律性。此外,类似普通的加法,在模运算中每个数存在加法逆元,或者称为相反数。在这种情况下,一个数 x 的加法逆元 y 是满足 $x+y\equiv 0$ mod 8 的数。为了找出左边一列数对应的加法逆元,可以扫描对应列中值为 0 的项目,0 所在列对应的位于项行位置的数就是要找的加法逆元;同样的,乘法表中的表项也是很容易得到的。在模 8 乘法运算中,一个数 x 的乘法逆元 y 是满足 $x\times y\equiv 1$ mod 8 的数。这里必须注意并不是所有模 8 的数都存在乘法逆元;这一点随后还会讨论。

模8运算

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

×	0	1	2	3	4	5	6	7
0	0	0	0	0		0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	7	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

模运算的性质

定义集合 Z_n 为所有小于n的非负整数集合:

$$Z_n = \{0,1,\ldots,(n-1)\}$$

该集合也被当作模n的余数集合。如果在该集合上实行模运算, Z_n 中的整数保持如下性质:

1. 交换律:

$$(w+x) \operatorname{mod} n = (x+w) \operatorname{mod} n \qquad (w \times x) \operatorname{mod} n = (x \times w) \operatorname{mod} n$$

2. 结合律

$$[(w+x)+y] \bmod n = [w+(x+y)] \bmod n \qquad [(w\times x)\times y] \bmod n = [w\times (x\times y)] \bmod n$$

3. 分配律

$$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)]$$

4. 恒等

$$(0+w) \operatorname{mod} n = w \operatorname{mod} n$$
 $(1\times w) \operatorname{mod} n = w \operatorname{mod} n$

- 5. $(a+b) \equiv (a+c) \mod n \rightarrow b \equiv c \mod n$
- 6. $(a \times b) \equiv (a \times c) \mod n \rightarrow b \equiv c \mod n$ 如果 $a \subseteq n$ 互素

例如: 为了说明这一点,考虑一个附加条件不满足的例子:

$$6 \times 3 = 18 \equiv 2 \mod 8$$
 $6 \times 7 = 42 \equiv 2 \mod 8$ 但是 $3 \neq 7 \mod 8$

造成这个奇怪的结果的原因是模数为合数时,有乘法零因子存在。

最后,还可以观察到如果 p 是一个素数,则集合中的所有数均与 p 互素。这样就能在之前所列的性质中再加上一条性质:

乘法逆元
$$(w^{-1})$$
对每一个 $w \in \mathbb{Z}_p$,存在一个 \mathbb{Z} ,使得 $w \times \mathbb{Z} \equiv 1 \mod p$ 。

因为p和w互素,如果用w乘以 Z_p 中所有的数模p,得到的余数将以不同

的次序涵盖 Z_p 中的所有数。那么。至少有一个余数的值为 1。因此,在 Z_p 中的某个数与w相乘模p的余数为 1。这个数就是w的乘法逆元,命名为 w^{-1} 。

最后一点:如果 $\gcd(a,n)=1$,则能在 Z_n 中找到b,使得 $a\times b\equiv 1 \mod p$ 。原因与前面是相同的。因为 a 与 n 互素,如果用 a 与 Z_n 中的所有数相乘模 n,得到的与数将以不同的次序涵盖 Z_n 中的所有数。因此在 Z_n 中存在某个数 b ,使得 $a\times b\equiv 1 \mod p$ 。

例如: 表 2.3 提供了说明本概念的一个例子。

表 2.3 模 7 运算

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

W	w的加法逆元	w的乘法逆元
0	0	_
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

数论中一些有用的定理

定理3 (费马定理): 如果p为素数, a是不能被p整除的正整数,则有:

$$a^{p-1} \equiv 1 \bmod p$$

证明: 易见,若 Z_p 中所有数均与a相乘模p,结果仅引起原 Z_p 中数的次序 重排,并且, $a \times 0 \equiv 0 \bmod p$ 。因此,有

 ${a \mod p, 2a \mod p, ..., (p-1)a \mod p} = {1, 2, ..., (p-1)}$ 。 可得:

$$a \times 2a \times 3a \times \cdots \times ((p-1)a)$$

$$\equiv [(a \bmod p) \times (2a \bmod p) \times \dots \times ((p-1)a \bmod p)] \bmod p$$

$$\equiv (p-1)! \mod p$$

然而,我们有

$$a \times 2a \times 3a \times \cdots \times ((p-1)a) = (p-a)!a^{p-1}$$

所以

$$(p-1)!a^{p-1} \equiv (p-1)! \mod p$$

两端消去(p-1)!,因为它与p互素。定理得证。

费马定理的另一种等价形式:如果p是素数,a是任意正整数,则:

$$a^p \equiv a \bmod p$$
 .

费马定理的一个具体应用:

例如:求3⁴⁰⁰的最末两位数字。

由于 3 和 100 互素,由费马定理知: 3⁴⁰ ≡1 mod 100。于是:

$$3^{400} = (3^{40})^{10} \equiv 1^{10} \equiv 1 \pmod{100}$$
,所以 3^{400} 的最末两位数字是 01 。

欧拉函数

在引入欧拉定理之前,需要首先介绍数论中的一个重要的量,即**欧拉函数** (Euler's toient function),记为 $\phi(n)$, $\phi(n)$ 表示小于n且与n互素的正整数的个数。

如下表列出了 30 以内的整数的 $\phi(n)$ 值, $\phi(1)$ 被定义为 1,但没有实际意义。

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
φ(n)	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8
n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
φ(n)	8	16	6	18	8	12	10	22	8	20	12	18	12	28	8

表一 某些数和它们的欧拉函数:

很显然,对于任意一个素数p,有:

$$\phi(p) = p - 1$$

现在假定有两个不同的素数 p 和 q ,则对于 n = pq ,有:

$$\phi(n) = \phi(pq) = \phi(p)\phi(q) = (p-1)\times(q-1)$$

为了完全证明这一命题,考虑模 n 的完全剩余类集合为 $Z_n = \{0,1,2,...,(pq-1)\},$ 其中不与n互素的余数含于两个集合 $\{p,2p,...,(q-1)p\}$, $\{q,2q,...,(p-1)q\}$ 和 0 中。因此:

$$\phi(n) = pq - [(q-1) + (p-1) + 1]$$

$$= pq - (p+q) + 1$$

$$= (p-1) \times (q-1)$$

$$= \phi(p) \times \phi(q)$$

对于一般的整数n,它的欧拉函数 $\phi(n)$ 的求解方法由以下定理给出:

定理 4: $\phi(1)=1$, 当 $n \geq 2$ 的时候,设 $n = p_1^{e_1} p_2^{e_2} \cdots p_g^{e_g}$ 是 n 的标准分解式(还记得算术基本定理吗?),则: $\phi(n) = \prod_{i=1}^g (p_i^{e_i} - p_i^{e_i-1}) = n \times \prod_{i=1}^g (1 + \frac{1}{p_i})$ 。

请同学将这个定理作为习题作业, 来证明。

欧拉定理

定理 5 (欧拉费马定理): 对于任何互素的整数 a 和 n ,有:

$$a^{\phi(n)} \equiv 1 \operatorname{mod} n$$

证明: 如果n为素数,则该命题成立,因为此时 $\phi(n) = (n-1)$,适合费马定理条件。不妨设n为一般的正整数,小于n的且与n互素的正整数的集合,标记如下:

$$R = \{x_1, x_2, \dots, x_{\phi(n)}\}$$

现在对该集合中的每个整数乘以 a 模 n:

$$S = \{(ax_1 \bmod n), (ax_2 \bmod n), \dots, (ax_{\phi(n)} \bmod n)\}$$

集合S是集合R的一个置换(即元素相同,顺序不同),原因如下:

- 1. 因为a和n互素, x_i 和n也互素,则 ax_i 一定和n也互素。因此,S中的所有数均小于n并且和n互素。
- 2. S 中不存在重复的整数。如果 $ax_i \mod n = ax_j \mod n$,则 $x_i = x_j$ 。 因此有

$$\prod_{i=1}^{\phi(n)} a x_i \equiv \prod_{i=1}^{\phi(n)} x_i \pmod{n}$$

$$a^{\phi(n)} \left[\prod_{i=1}^{\phi(n)} x_i \right] \equiv \prod_{i=1}^{\phi(n)} x_i \pmod{n}$$
 $a^{\phi(n)} \equiv 1 \pmod{n}$

The proof of the proof of

欧拉定理的另一种等价形式也很有用:

$$a^{\phi(n)+1} \equiv a(\bmod n)$$

这种形式在说明 RSA 算法的时候是很有用的。

定理 6 给定两个素数 p 和 q 以及整数 n = pq 和 m ,其中 0 < m < n ,则下列关系成立:

$$m^{\phi(n)+1} = m^{(p-1)(q-1)+1} \equiv m \mod n$$

证明:如果 $\gcd(m,n)=1$,则根据欧拉定理显然成立。假定 $\gcd(m,n)\neq 1$,因为n=pq,等式 $\gcd(m,n)=1$ 等价于逻辑表达式 (m不是p的倍数)AND(m不是q

的倍数)。如果m是p的倍数,则m和n有公因子p,因而是不可能互素的。同样,如果m是q的倍数也是一样的。所以 $\gcd(m,n) \neq 1$ 等价于m是p的倍数或者m是q的倍数。

下面讨论一下m是p的倍数的情况,显然m=cp,c是某个正整数。在这种情况下,必然有gcd(m,q)=1;否则 m也是q的倍数,但是m<pq。自然有:

$$\left[m^{\phi(q)}\right]^{\phi(p)}\equiv 1\,\mathrm{mod}\,q$$
 ,也就是 $m^{\phi(n)}\equiv 1\,\mathrm{mod}\,q$;

因此,存在某个正整数k使得:

$$m^{\phi(n)} = 1 + kq$$

在等式两边同时乘m = cp,有:

$$m^{\phi(n)+1} = m + kcpq = m + kcn$$

 $m^{\phi(n)+1} \equiv m \mod n$

m 是 q 的倍数的情况也可以采用类似的方法得出。于是,定理 6 成立。 注记:由这个定理可以推出:

$$\left[m^{\phi(n)}\right]^k = 1 \mod n$$

$$m^{k\phi(n)} \equiv 1 \mod n$$

$$m^{k\phi(n)+1} \equiv m \mod n$$

中国剩余定理(CRT)

中国剩余定理,在研究许多复杂问题时,有着特别的意义。许多自以为通晓此定理的人,未必如此!

例如:(孙子算经)今有物不知其数。三三数之余二,五五数之余三,七七数之余二。问物几何?

答曰: $23 \equiv 2 \times 70 + 3 \times 21 + 2 \times 15 \pmod{105}$

(口诀:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。)

问题是: 70, 21, 15 是如何得到的?

原问题为求解同余方程组:

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

注意: 若 x_0 为上述同余方程组的解,则 $x_1 = x_0 + k \times 105$ 也为上述同余方程组的解。有意义的是,解题口诀提示我们先解下面三个特殊的同余方程组:

$$\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 0 \pmod{5} \\ x \equiv 0 \pmod{7} \end{cases} \qquad \begin{cases} x \equiv 0 \pmod{3} \\ x \equiv 1 \pmod{5} \\ x \equiv 0 \pmod{7} \end{cases} \qquad \begin{cases} x \equiv 0 \pmod{3} \\ x \equiv 0 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$$

的特殊解:

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 21 \qquad \qquad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 70 \qquad \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 15$$

定理 7 (中国剩余定理): 设自然数 m_1, m_2, \cdots, m_r 两两互素,并记

 $N = m_1 m_2 \cdots m_r$, 则同余方程组:

在模N同余的意义下有唯一解。

证明: 考虑方程组:

$$\begin{cases} x \equiv 0 \pmod{m_1} \\ \dots \\ x \equiv 0 \pmod{m_{i-1}} \\ x \equiv 0 \pmod{m_i} \\ x \equiv 0 \pmod{m_{i+1}} \\ \dots \\ \dots \\ x \equiv 0 \pmod{m_r} \end{cases}$$
 $(1 \le i \le r)$

由于各个 m_i 两两互素,这个方程组做变量替换,令 $x = (N/m_i) \times y$ 方程组等价于解同余方程组:

$$(N/m_i)y = 1 \pmod{m_i} \quad (1 \le i \le r)$$
.

若要得到特解, 只要令

$$x_i = (N/m_i) \times y_i$$

则方程组的解为: $x_0 = b_1 x_1 + b_2 x_2 + \dots + b_r x_r \pmod{N}$

在模N同余的意义下唯一。证毕。

二 来自群论中的若干基本概念

定义 (群) 设G 为非空集合,若在G 中定义一个运算"·",使得 $\forall a,b \in G$ (表示 从G 中取出得任意元素 a,b)有 $a \cdot b \in G$,并且满足如下公理:

- 1. 结合律成立: $\forall a,b,c \in G$ 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- 2. G中存在单位元e: $\forall a \in G$, 有 $e \cdot a = a \cdot e = a$;
- 3. G中存在相应的逆元: $\forall a \in G$, 有 $a^{-1} \in G$, 使得 $a \cdot a^{-1} = a^{-1} \cdot a = e$;

则称G对运算"·"形成一个群,具体表示为 (G,\cdot) ,一般记为G。

注:

- 1. |G|表示群G内的元素的个数;若|G|<+ ∞ (G内的元素有限),则称G为有限群;若|G|=+ ∞ ,称G为无限群。
- **2.** 若 $\forall a,b \in G$,有 $a \cdot b = b \cdot a$,称G为交换群(或称G为 Abel 群)。

3. G 为群,H 是G 的一个非空子集。如果相对于G 的那个运算来说,H 也是一个群,则称H 是G 的一个子群,记为 $H \le G$ 。

我们可以发现全体整数的集合 Z 对整数的加法形成一个群 Z^+ 。取定一个正整数 n,则由 n 的一切整倍数所形成的集合 H_n 是 Z^+ 的一个子群。易见,对于同余式:

$$a \equiv b \pmod{n}$$

相当于说 $a-b \in H_n$; 于是,上述同余式可以写为:

$$a \equiv b \pmod{H_n}$$

定义 (左陪集): 设G是一个群,H是G的一个子群。设 $a \in G$,那么集合 $\{ah \mid h \in H\}$ 被称为群G中相对于子群H的a左陪集,表示为aH,即 $aH = \{ah \mid h \in H\}$,a为左陪集代表元。自然,也有右陪集的概念。

注:

- 1. 有关左陪集的重要性质:
 - (1). $aH = bH \Leftrightarrow a^{-1}h \in H$
 - (2). $aH = H \Leftrightarrow a \in H$
 - (3). $b \in aH \Leftrightarrow aH = bH$
- 2. $\forall a,b \in G$,有 aH = bH 或者 $aH \cap bH = \phi$
- 3. G 可以按照子群 H 的左陪集分解为一些两两不交的等价类。若 $g_1,g_2 \in G$,它们是在同一类中,是指 $g_1^{-1}g_2 \in H$,即 $g_1H = g_2H$;形式 地记为:

$$a \equiv^{(\pm)} b \pmod{H}$$

- 4. 易见, $G = \bigcup_{g \in G} gH$
- 5. G 为群, $H \le G$ 。H 在G 中的左陪集的个数称为H 在G 中的指数,记为 [G:H] 。
- 6. 若G 为有限群, $H \leq G$,则有: $|G| = |H| \cdot [G:H]$

定义 (正规子群): G 为群, H 是G 的子群, 若 $\forall g \in G$ 有 gH = Hg 则称 H 是

G的正规子群,记为H extstyle G。

注:

- 1. 如果G是交换群,那么它里面的任何一个子群都是G的正规子群。
- 2. 设H $ext{ riangle }G$, 则G / H 对自己的乘法构成群,这里

$$G/H = \{aH \mid a \in H, H \in G$$
的正规子群}。

证明: $\forall aH, bH \in G/H$, 有:

$$(aH)(bH) = a(Hb)H = abHH = abH \in G/H$$

由于群G满足结合律,自然G/H关于陪集的运算也满足结合律;另一方面,可以验证H为G/H中的单位元,并且 $(aH)(a^{-1}H)=aa^{-1}H=H$,说明 G/H中的每个元素都有逆元。所以G/H是群。

定义 (商群): 设G是群, H extstyle G, 则G/H 关于子集的乘法构成的群称为G 关于H 的商群。

注: 群G的商群 $\overline{G} = G/H$ 是类比于整数加群 Z^+ 模整数n 而得到的剩余类加群:

$$Z^+/< n> = \{[0],[1],[2],\cdots,[n-1]\}$$

定义 (循环群): 若群G可以由一个元素的方幂生成,即 $G = \{\dots, g^{-3}, g^{-2}, g^{-1}, g^0 = 1, g, g^2, g^3, \dots\}, 此时,称<math>G$ 为循环群,其中g为G的生成元,记为G = < g > 。

例如:循环群的几个例子:

- 1. 全体整数的集合 Z 对于整数的加法形成一个循环群,记为 Z^+ ,它的生成元仅有 1 和-1。 Z^+ 为无限循环群。
- 2. n次复单位根对复数乘法形成一个n阶循环群 $U_n = <\xi>,\xi$ 为n次本原单位根。

3. 整数同余类环Z/<n>中的全部元素对同余类加法所形成的群 Z_n^+ ,是一个阶为n的循环群。若a和n互素,则由a决定的模n同余类[a]就是 Z_n^+ 的生成元。事实上, $\forall [b] \in Z_n^+$,必有一个整数k 使得 $a \cdot k \equiv b \pmod{n}$ 。这样,我们有:

$$k[a] = [a] + [a] + \dots + [a] = [k \cdot a] = [b]$$
 ($f(a) \land f(a))$

4. 整数同余类环 $Z^{/}$ <n>的乘法可逆元的全体组成的集合对同余类乘法形成一个群 Z_n^* ,这个群是交换群,一般不是循环群,以 Z_{12}^* 为例,

$$Z_{12}^* = \{[1],[5],[7],[11]\}$$

它不是循环群。仅当 n 为素数 $_p$ 的时候, Z_n^* 为循环群。

三 环和域的基本概念

定义(环): 所谓一个(结合)环,指的是这样一个集合 R ,在它里面定义了加法"+"和乘法"•"两种运算,并且满足下列条件:

- 1. 集合 R 相对于加法"+"来说构成交换群;
- 2. 集合 R 相对于乘法"•"来说封闭,且满足结合律;
- 3. 分配律成立: $\forall a,b,c \in R$, $a \bullet (b+c) = a \bullet b + a \bullet c$, 并且有: $(b+c) \bullet a = b \bullet a + c \bullet a$.

注:

- 1. $\forall a \in R, a^m a^n = a^{m+n}$ $(a^m)^n = a^{mn}$, 注意, 当乘法不满足交换律的时候, 公式 $(ab)^n = a^n b^n$ 一般不成立。
- 2. 若环 R 对"•"来说满足交换律,称它为交换环。
- 3. 环R被称为含有单位元的环,是指R内含有乘法单位元"1",使得 $\forall a \in R$ 有 $a \bullet 1 = 1 \bullet a = a$ 。

例如:环的若干例子:

- 1. 整数环 Z。易见全体整数的集合对数的加法形成一个群;对数的乘法也形成一个群,它满足分配律。 Z 为含有单位元"1"的交换环。它是最具体最容易被接受的数环。
- 2. 剩余类环 Z_n 。 Z_n 为整数模n剩余类的集合

$$Z_n = \{[0],[1],\cdots,[n-1]\}$$

它对剩余类的加法和乘法构成一个含有单位元"[1]"的交换环。

- 3. 各式各样的数域都对通常的数的加法和乘法形成一个含有"1"的交换环。
- 4. 设 F 表示上面几个例子给出的任意一个数环。定义 $F[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mid a_i \in F, n$ 为正整数 $\}$,它是数域 F 上的一元多项式环。
- 5. 取大于 1 的正整数 n ,则 n 的一切整数倍形成的集合 nZ 对数的加法和乘法形成了一个不含单位元"1"的交换环。

整环

定义(整环): 含有乘法单位元"1"而无零因子的交换环称为整环。 注:

- 1. 无零因子是指,由 $a \cdot b = 0$ 可以推出a = 0或者b = 0。反之,如果 $a \cdot b = 0$,则 $a \neq 0$, $b \neq 0$ 。否则,称a为左零因子,b为右零因子。
- 2. 整环是类比于我们熟知的整数环,提取了整数环中的主要特征,例如乘法的消去律。
- 3. 任何一个整环都至少含有 2 个元素。恰含有 2 个元素的整环是存在的,例如 $F_2 = \{0,1\}$ 它对模 2 的加法乘法运算形成一个整环,事实上,它为二元域。

定义(除环):一个环被称为除环(或斜域),是指该环的非零元全体对"•"形成一个群。

定义(域):一个可交换的除环称为域。 注:

- 1. F_p 为整数模 P 的剩余类环, P 为素数,可以验证它为域。因为 F_p 中的元素有限,称它为有限域;又因为 P 为素数,又称之为素域。
- 2. 域首先必是整环,反之则不然。例如,整数环 $^{\mathbf{Z}}$,域 $^{\mathbf{F}}$ 上的多项式环 $^{\mathbf{F}}$ [x]多时整环,但它们都不是域。然而,对有限整环来说:

定理 8: 任意一个由有限个元素组成的整环R必定是有限域。

定理 9: 在整环 R 的加法群 R^+ 中,或者每个非零元素都生成一个无限阶的循环群;或者存在一个素数 P , R^+ 中的每个元素都生成一个 P 阶循环子群。

证明: R 为整环,于是 $1 \in R$ 。 R^+ 作为R 的加法群含有由 1 生成的循环子群 $<1>=\{k\cdot 1|k\in Z\}$

1. 如果<1>为无限循环群:

 $\forall a \in R, a \neq 0,$ 来证< a >也为无限循环群。若否,设a的阶为m,于是:

$$0 = m \cdot a = \underbrace{a + a + \dots + a}_{m} = \underbrace{(1 + 1 + \dots + 1)}_{m} \cdot a = (m \cdot 1) \cdot a$$

由于整环无零因子,必有 $m\cdot 1=0$,说明|<1>|为m的因子,与<1>为无限循环群矛盾。所以<a>也为无限循环群。

2. 如果<1>为有限循环群:

首先断定 R^+ 元素 1 的阶必为某个素数 P 。事实上,如果假设 $|<1>|=m=p_1p_2$,其中 $1< p_1< m, 1< p_2< m$ 。我们有:

$$(p_1 \cdot 1)(p_2 \cdot 1) = \underbrace{(1+1+\dots+1)}_{p_1}\underbrace{(1+1+\dots+1)}_{p_2} = \underbrace{1+1+\dots+1}_{m} = m \cdot 1 = 0$$

由于整环无零因子,所以 $p_1\cdot 1$ 和 $p_2\cdot 1$ 这两者中必然有一个为0,这与 |<1>|=m矛盾。所以m必为素数,设m=p为一个素数。 $\forall a \in R, a \neq 0$,有

$$p \cdot a = \underbrace{a + a + \dots + a}_{p} = \underbrace{(1 + 1 + \dots + 1)}_{p} \cdot a = (p \cdot 1)a = 0$$

说明 R^+ 中的每个非零元素都生成一个P阶的循环子群,证毕。

注:当 R 为整环时,上述定理中的两种情况必有而且仅有一种成立。前一种情况称整环 R 的特征为 0(char R =0);后一种情况称整环 R 的特征为 P (char R = P)。易见,有限域作为特殊的整环,它的特征必定为 P 。

推论 1: F 为有限域,则 F 中的元素的个数 |F| 是其特征的方幂,即 $|F| = p^n$ 。

推论 2: 在一个特征为 p 的整环 R 中,对任意自然数 m 有:

$$(a+b)^{p^m} = a^{p^m} + b^{p^m}, (ab)^{p^m} = a^{p^m}b^{p^m}, \forall a, b \in R$$

推论 3: 在一个特征为 p 的整环 R 中,由等式 $a^{p^m}=b^{p^m}$ 对某个自然数成立,可以断定 a=b 。

子环和环同构

定义 (子环): 设 R 是一个环, R 1 $\subseteq ^R$ 1. R 2 \uparrow 4 ,如果 R 1 对 R 2 的运算"+"和"•"也形成一个环,称 R 1 为 R 3 的一个子环。

定义 (环同构): 设 R 和 $^{R'}$ 是两个环。如果有一个保持加法和乘法运算的 1-1 映射到 $^R'$ 之上,且 $\forall a,b \in R$ 有:

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

$$\varphi(ab) = \varphi(a) \cdot \varphi(b)$$

此时,称 $R \times R'$ 同构。

注: 同构映射 φ 把 R 中的"0"元映射成为 R ′中的"0"元; 把 R 中的"1"元映射成为 R ′中的"1"元; 把 R 中的子环映射成为 R ′中的子环。

定理 10: 任何一个特征为 0 的整环 R(或者域 F)都包含了一个整子环(子域),它同构于整数环 Z (有理数域 Q),任何一个特征为 p>0 的整环 R (或者域 F)都包含一个子整环同构于 F_p 。

注:由此定理知,整环或者域都包含有一个最小的整环(或者最小的域)做它们的出发点。

下面讨论交换环 R 的商环。我们已经知道,对群 G 的一个正规子群 H 来说,可以给出商群 $^{\overline{G}}=G/H$,这个商群以 H 的各个陪集作为元素,使得 $^{G/H}$ 成为 G 的一个缩影。如何把这个现象类比到商环呢?先从最具体的整数环 Z 入手,设 R 为整数环 Z ,它的子环:

$$R_1 = < n > = \{ n \cdot k \mid k \in Z \}$$

 $\forall m, l \in \mathbb{Z}$, 称 m, l 模 R_1 同余,即 $m \equiv l \pmod{R_1}$, 相当于 $n \mid m - l$, 由数论的写法 $m \equiv l \pmod{n}$ 。 R 对 R_1 的商环就是:

$$Z/R_1 = Z_n = \{[0],[1],\cdots,[n-1]\}$$

我们已知在 Z_n 的乘法为[a][b]=[ab],它的意义是: $\forall a+r_1 \in [a], \forall b+r_2 \in [b]$,有: $[a][b]=(a+r_1)(b+r_2)=ab+ar_2+r_1b+r_1r_2=[ab]$,相当于:

$$ar_2 + r_1b + r_1r_2 \in \langle n \rangle = R_1$$

这就诱导出一般交换环 R 中的理想子环的想法。

定义(理想): 交换环R的一个子环 R_1 称为R中的一个理想子环(简称理想),如果 $\forall a \in R, r \in R_1$ 有 $ar \in R_1$ 。

注:

1. 设 $b_1,b_2,...,b_n$ 是整环R中的任意一组元素,则形如:

$$r = a_1b_1 + a_2b_2 + \dots + a_nb_n, \forall a_i \in R$$

的元素全体是 R 中的理想 R_1 ,它称为由 b_1, b_2, \cdots, b_n 这些元素生成的理想,记为: $< b_1, b_2, \cdots, b_n >$ 。

特别,由单独一个元素 b 所生成的理想 $^{< b>}$ 被称为 R 中的一个主理想,由 R 中的一切形如 a 的元素组成, $^{< b>}=\{ab\,|\,a\in R\}$ 。

2. 整数环 Z 中, Z 的任何一个子环都是一个理想; Z 的任何一个理想都是主理

想。原因是, Z^+ 是循环群, Z^+ 的任何一个子群也必然是循环群 H_n 。

3. 域 F 上的多项式环 F[x] 中,不一定每一个子环都是理想子环,例如,有理数域上的一元多项式环 Q[x] 中,带整系数的那些多项式组成一个子环,但不是理想。然而,可以证明多项式环 F[x] 中的每一个理想都是主理想。

定理 11: 设R是一个交换环, R_1 是R的一个理想。如果将两个模 R_1 同余类 [a],[b]的和与积分别定义为同余类[a+b],[ab],即:

$$[a] + [b] = [a+b], [a] \cdot [b] = [ab]$$

则由全部模 R_1 同余类所组成的集合 $\overline{R} = R/R_1$ 对上述运算构成环,称为R对 R_1 的 商环。

有限域

定义 (子域,扩域): 设 E 为一个域, F 为 E 中的一个非空子集。如果相对于 E 中的加法和乘法来说 F 是一个域,则称 F 为 E 的一个子域 (或者基域), E 为 F 的一个扩域 (或扩张)。

注:

- 1. 任何一个特征为 0 的域 E 都包含一个子域 F ,它同构于有理数域 Q ,任何一个特征为 P 的域 E 都包含了一个子域 F ,它同构于素域 F_p 。易见,扩域 E 对 E 中的加法运算和 F 中的元素与 E 中的元素的乘法运算形成 F 上的一个向量空间。如果 E 作为 F 上的向量空间是 E ,则 E 被称为 E 的一个 E 次扩张,否则 E 称为 E 的无限次扩张。前者记为 E :E :E 。。
- 2. 特征为0的域E可以视为由有理数域Q扩张而来,特征为p的域E可视为由 素域 F_p 扩张而来。对于特征为p的域E来说,若设E的乘法单位元为e,则

e 的全体整倍元的集合为 $\{e,2e,\cdots,(p-1)e\mid pe=\bar{o}\}\cong F_p$ 。这就说明E 可视为由 F_p 扩张而来。若设 $[E:F_p]=n$,则存在n个元素 u_i ($1\leq i\leq n$) 使得E 中任意元u 可以唯一的表示成为:

$$u = a_1 u_1 + a_2 u_2 + \dots + a_n u_n \qquad a_i \in F_n$$

从而可知 $|E| = p^n$

定理 12 (域扩张):设F 为任意域,而

$$m(x) = x^{d} + m_{1}x^{d-1} + m_{2}x^{d-2} + \dots + m_{d}, m_{i} \in F$$

为F上的一个d次不可约多项式,则同余类环E = F/< m(x)>可视为F上的一个有限次扩域,并且有: [E:F] = d。

证明: 首先证明 E = F / < m(x) >为域。设 $f(x) \in F[x]$, $\forall q(x) \in F[x]$ 有: q(x)m(x) + f(x) 模 m(x) 的同余类设为 [f(x)],知它是 E 中的一个元素,若 $f(x) \notin [0]$,知(f(x),m(x))=1,因此必有多项式 $u(x) \in F[x]$,使得:

$$u(x) f(x) + v(x) m(x) = 1$$

于是有: $[u(x)] \cdot [f(x)] = [1]$,或者说 $[f(x)]^{-1} = [u(x)]$ 。这说明 E = F[x]/< m(x) > 中的每个非零元素都有乘法逆元,所以它是一个域。下面证明 [E:F] = d。

E中由零次多项式,亦即 F 中的元素所决定的那些模 m(x) 同余类 [k] , $k \in F$ 组成 E 中的一个子域 \overline{F} ; 而映射 $\sigma(k) = [k]$ 是 F 到 \overline{F} 之上的一个同构映射。这样, F 中的元素 k 的同余类 [k] 仍然为 k ,把 x 决定的模 m(x) 的同余类 [x] 记为 α ,这样一来 F[x] 中的任意多项式

$$f(x)$$
] = $a_0 + a_1 x + \dots + a_n x^n$

对应于

$$[f(x)] = [a_0 + a_1x + \dots + a_nx^n] = [a_0] + [a_1][x] + \dots + [a_n][x^n] = a_0 + a_1\alpha + \dots + a_n\alpha^n$$

 $= f(\alpha)$

特别,我们有 $m(\alpha) = [m(x)] = 0$,于是借助于F上不可约多项式m(x)所造出得扩域 E种,元素 α (=[x])是m(x)的一个零点。不仅如此,假如F上的另一个多项式l(x)也以 α 为零点,那么由 $[l(x)] = l(\alpha) = 0$,可知有m(x) | l(x)。事实上, $\forall f(x) \in F[x]$ 有

$$f(x) = q(x)m(x) + r(x),$$

其中:

$$r(x) = r_0 + r_1 x + \dots + r_{d-1} x^{d-1}$$

于是

$$[f(x)] = f(\alpha) = r_0 + r_1 \alpha + \dots + r_{d-1} \alpha^{d-1}$$

也即 E 中任意元素都可以表示成为 $^{1},\alpha,\dots,\alpha^{d-1}$ 的线性组合。

另一方面,若有 $a_0,a_1,\cdots,a_{d-1}\in F$,使得 $\sum_{i=0}^{d-1}a_i\alpha^i=0$,相当于说 $m(x)|a_0+a_1x+\cdots+a_{d-1}x^{d-1}$,仅当 $a_0=a_1=\cdots=a_{d-1}=0$ 。说明 $1,\alpha,\cdots,\alpha^{d-1}$ 关于域F是线性无关的,于是它们为E在F的一个基,有[E:F]=d。证毕。

注:

- 1. 对于关系式 $m(\alpha) = [m(x)] = 0$ 来说,意味着扩域E是基域F上的不可约多项式m(x)的一个零点 α 添加到F上去而得到的,可把E记为 $F(\alpha)$ 。特别的,如果F是素域 F_p ,而m(x)是 F_p 上的一个d次不可约多项式,则 $F_p(\alpha)$ 是由 p^{α} 个元素构成的域。事实上,任何一个有限域都可以从某个素域 F_p 出发,通过添加 F_p 上某个不可约多项式的一个零点得到。
- 2. 当我们把 $F(\alpha)$ 中的元素表示成为 $f(\alpha) = r_0 + r_1 \alpha + \dots + r_{d-1} \alpha^{d-1}$ 这种形式的时候,表达式中的系数 $r_i (0 \le i \le d-1)$ 是唯一确定的,因此可以把 $F(\alpha)$ 中的元素表示为F上的d维向量 $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{d-1})$ 。

例如: $m(x) = x^4 + x^3 + 1$ 是 F_2 上的一个四次不可约多项式。易见, $F_2[x]/< x^4 + x^3 + 1 >$ 为 F_2 上的一个四次扩域。如果把[x] 记为 α ,那么这个域中的 16 个元素可以表示为:

$$\gamma = a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3, a_i \in F_2$$

这 16 个元素可以表示为:

$$\begin{split} & \gamma_0 = (0,0,0,0) \quad , \quad \gamma_1 = (1,0,0,0) \quad , \quad \gamma_2 = (0,1,0,0) \quad , \quad \gamma_3 = (1,1,0,0) \quad , \quad \gamma_4 = (0,0,1,0) \quad , \\ & \gamma_5 = (1,0,1,0) \quad , \quad \gamma_6 = (0,1,1,0) \quad , \quad \gamma_7 = (1,1,1,0) \quad , \quad \gamma_8 = (0,0,0,1) \quad , \quad \gamma_9 = (1,0,0,1) \quad , \\ & \gamma_{10} = (0,1,0,1) \quad , \quad \gamma_{11} = (1,1,0,1) \quad , \quad \gamma_{12} = (0,0,1,1) \quad , \quad \gamma_{13} = (1,0,1,1) \quad , \quad \gamma_{14} = (0,1,1,1) \quad , \\ & \gamma_{15} = (1,1,1,1) \end{split}$$

请读者自行计算 $\alpha^5, \alpha^6, \dots, \alpha^{15}$ 的表达式。

我们可以用线性代数的知识证明下面的

定理 13(望远镜公式):设域 E 是域 F 的有限次扩张,域 K 是域 E 的有限次扩张,则域 K 是域 F 的有限次扩张,并且有:[K:F]=[K:E][E:F]

事实上,我们已经注意到作为有限域F—身兼具了两个交换群。其一,F相对于"+"来说,它是交换群,并且F⁺中的每个非 0 元都以某个素数P作为它的阶,即 $\forall g \in F$ ⁺, $g \neq 0$,有g^p = $p \cdot g = 0$,p 称为域F 的一个特征。其二,F^{*} = $F \setminus \{0\}$ 相对于"×"而言也是交换群。若F 为F_p 的n 次扩张,此时 $F = F_q$, $q = p^n$,即F 为 P^n 元有限域。此时 $|F^*| = q - 1$,于是 $\forall \alpha \in F$ ^{*},必然有: $\alpha^{q-1} = 1$,也就是 $\alpha^q = \alpha$,进一步就是 $\alpha^q - \alpha = 0$,于是可以断定有限域F 中全部q 个元素都满足方程

$$x^{q} - x = 0$$

即 F 中的 q 个元素的多项式 $G(x) = x^q - x$ 的 q 个零点。易见, $G(x) \in F_p[x]$,G(x) 在 F 中有分解式

$$G(x) = \prod_{\alpha \in F} (x - \alpha)$$

称G(x) 为有限域F 的一揽子多项式。

我们有重要的结论

定理 14: 有限域 F 的乘法群 F^* 是一个 q-1 阶的循环群。

 F^* 为循环群意味着存在 $\alpha \in F^*$ 使 $F^* = <\alpha>$,此时 α 称为q-1次的本原单位根:同时 α 也称为有限域F中的本原元。

设 α 为有限域F 中的本原元,则F 中任意非零元 β 都可以表示成为: $\beta = \alpha^k$ 的形式,其中k 称为 β 对本原元 α 的指数,记为: $k = ind_{\alpha}\beta$ 同时k 也称为以 α 为底 β 的对数,也可以记为 $k = \log_{\alpha}\beta$ 。 注:

- 1. 对于 α 来说, β 的对数仅在模q-1的条件下唯一确定,所以规定 $0 \le k \le q-1$ 。
- 2. $k = ind_{\alpha}\beta$ 这个函数实际上是定义在 F^* 之上而在整数同余类环 Z_{q-1} 中取值的一个对数函数,有如下性质:
 - (1) $ind_{\alpha}\beta_{1}\beta_{2} = ind_{\alpha}\beta_{1} + ind_{\alpha}\beta_{2} \pmod{q-1}$
 - (2) $ind_{\alpha}\beta^{k} = k \cdot ind_{\alpha}\beta \pmod{q-1}$
- 3. 设 α 为有限域F 的一个本原元,则F 的非零元素 β 是本原元的充要条件是 $(ind_{\alpha}\beta, q-1)=1$ 。

下面的问题是,如何在F 中找出一个本原元使其成为对数的底?在这里我们已经知道F 为 F_q 的n次扩张,事实上

$$F\cong F_p[x]/< f(x)>$$
, $f(x)$ 为 $F_p[x]$ 中的 n 次不可约多项式
$$f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 \ .$$
 设 $\alpha=[x]$,有:
$$F=\{k_0\cdot 1+k_1\cdot \alpha+\cdots+k_{n-1}\alpha^{n-1}\,|\, k_i\in F, i=1,2,\cdots,n-1\}$$

注意, F中的任意元都为如下一揽子多项式的零点:

$$G(x) = x^{p^n} - x$$

易见, f(x)|G(x) 。 f(x) 的零点 $\alpha \in F$; α 的周期就是使等式 $\alpha' = 1$ 成立的最小正整数 t 。而这个等式等价于同余式

$$x^t \equiv 1 \pmod{f(x)}$$

由于这个事实,把使上式成立的最小正整数称为多项式 f(x) 的周期,记为 $\Pi(f(x))$, 当 然 也 视 为 $\alpha=[x]$ 的 周 期 , 自 然 有 $t=\Pi(f(x))|p^n-1$; 如 果 $t=\Pi(f(x))=p^n-1$,则在 F^* 中有 $O(\alpha)=p^n-1$,有 $F^*=<\alpha>。 <math>\alpha$ 为 F 的本原元,此时称 α 的极小多项式 f(x) 是 $F_p[x]$ 中的本原多项式。

问题是,使得 $F \cong F_p[x]/< f(x)>$ 中的f(x)是n次不可约多项式,不一定是n次本原多项式。为了在这个给定的F中找出一个本原元,只能设计一种计算F中元素周期的方法,对F中的元素累次求它的周期,一旦碰上周期为 p^n -1的元素 β 就是要找的本原元,它的极小多项式 $m_{\beta}(x)$ 为n次不可约多项式,并且有 $F_p[x]/< f(x)>\cong F_p[x]/< m_{\beta}(x)>$,进一步有 $F=F(\alpha)=F(\beta)$ 。

 $\forall \beta \in F^*$,易见 $\beta = b_0 \cdot 1 + b_1 \cdot \alpha + \dots + b_{n-1} \alpha^{n-1}$ 。我们知 $F_p(\beta)$ 为 F_p 与F之间的中间域 $F_p \subseteq F_p(\beta) \subseteq F$,所以 β 在 F_p 上有一个极小多项式m(x),它是 F_p 上的一个不可约多项式。知

$$F_p(\beta) \cong F_p[x]/< m(x)>$$
 它为 d 次扩张

由 $[F_p(\beta):F_p]$ 是 $[F:F_p]$ 因子,所以

$$\deg m(x) = d \mid n \Longrightarrow p^{\alpha} - 1 \mid p^{n} - 1$$

求 β 的周期,相当于求使同余式 $x^h \equiv 1 \pmod{m(x)}$ 成立的最小的正整数h;注意 $\beta = [x], \ \Pi(m(x)) = O(\beta) \ .$ 我们知道 $F_p(\beta)$ 的乘法群 $F_p^*(\beta)$ 为 F^* 的子群,并且 $|F_p^*(\beta)| = p^\alpha - 1, \ d = \deg m(x) \ .$ 于是有

$$\prod (m(x)) | (p^{\deg m(x)} - 1)$$

这一结果有助于我们计算 F_p 上不可约多项式的周期,相当于计算 F^* 中元素的周期。给出实际例子如下:

考虑F,上的两个不可约多项式

$$m_1(x) = x^4 + x^3 + x^2 + x + 1$$

 $m_2(x) = x^4 + x^3 + 1$

易验证,它们都为 F_2 上的不可约多项式,有: $2^{\deg m_i(x)}-1=2^4-1=15$ (i=1,2)。因此,这两个多项式的周期应该为 15 的约数,其中 1 和 3 这两个约数显然是不可能的(为什么?),因此只要讨论 5 和 15 这两个数。由

$$x^{5}-1=(x-1)(x^{4}+x^{3}+x^{2}+x+1)$$

易见 $x^5 \equiv 1 \pmod{m_1(x)}$,所以 $\Pi(m_1(x)) = 5$ 。其次由于

$$x^4 = x^3 + 1 \pmod{m_2(x)}$$
 以及

$$x^5 \equiv x^4 + x \equiv x^3 + x + 1 \stackrel{\text{def}}{=} 1 \pmod{m_2(x)}$$

所以, $\Pi(m_2(x)) \neq 5$,只有 $\Pi(m_2(x)) = 15$ 。知 $m_2(x)$ 为 F_2 的四次扩张中的本原多项式, $m_2(x)$ 也就是一个四次本原多项式。

定义(本原多项式): f(x) 为素域 F_p 上的一个n次不可约多项式,而 $f(x) \neq x$ 。如果 f(x) 的周期为 p^n-1 ,则称 f(x) 为 F_p 上的n次本原多项式,简称为本原多项式。

注: 素域 F_p 的 m 次扩张 F_{p^m} ,若设 $p^m = q$,知 F_{p^m} 为 q 元域,也可以设 $F_{p^m} = F_q$ 。 将 F_q 作为基域,也可以考虑 F_q 上的不可约多项式及其它引起的扩张问题。若 F_q 上的一个 n 次不可约多项式为 $q^n - 1$,同样称 f(x) 为 F_q 上的本原多项式。

下面给出计算n次不可约多项式周期的一个方法:

2. 令 $[x] = \alpha$,通过第一序列: $N_1 = \frac{N}{q_1}, N_2 = \frac{N}{q_2}, \cdots, N_w = \frac{N}{q_w}$ 检验,来看是否有一个整数 k 使得 $\alpha^{N_k} \equiv 1 \pmod{f(x)}$ 。如果当 $1 \le k \le s - 1$ 时, $\alpha^{N_k} \ne 1$ 但是 $\alpha^{N_s} = 1$ 。通过第二序列: $N_{s,1} = \frac{N_s}{q_{s+1}}, N_{s,2} = \frac{N_s}{q_{s+2}}, \cdots, N_{s,w-s} = \frac{N_s}{q_w}$ 检验,来看下式是否成立: $\alpha^{N_{s,k}} \equiv 1 \pmod{f(x)}$ 。如果当 $1 \le k \le t - 1$ 时 $\alpha^{N_{s,k}} \ne 1$ 但是 $\alpha^{N_{s,t}} = 1$ 。通过第三序列: $N_{s,t,1} = \frac{N_{s,t}}{q_{s+t+1}}, N_{s,t,2} = \frac{N_{s,t}}{q_{s+t+2}}, \cdots, N_{s,t,w-t-s} = \frac{N_{s,t}}{q_w}$ 检验,来看下式是否成立: $\alpha^{N_{s,t,k}} \equiv 1 \pmod{f(x)}$,以次类推。最后得知 $N_{s,t,\dots,v}$ 为 $\Pi(f(x))$ 的倍数,而对任意 $k \ge 1$ 来说, $N_{s,t,\dots,v}$ 都不是 $\Pi(f(x))$ 的倍数。我们算出: $\Pi(f(x)) = N_{s,t,\dots,v}$ 。

下面考虑计算F中元素 α 的方幂的问题。

计算 α 的方幂 α^M : α 为 F_2 上的n次不可约多项式 f(x) 的零点。首先将 α 的幂指数M 表示成为 2 进制数:

$$M = 2^{h_1} + 2^{h_2} + \dots + 2^{h_g}$$
, $\sharp + h_1 > h_2 > \dots > h_g$

从而有:

$$\alpha^{M} = \alpha^{2^{h_1}} \cdot \alpha^{2^{h_2}} \cdot \cdots \cdot \alpha^{2^{h_g}}$$

于是,计算 α^{M} 的问题可以归结为计算一系列形如 $2^{2^{h}}$ 的幂的问题。如何方便地计算 $2^{2^{h}}$:

设

$$2^{2^k} = a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1}, \quad k = 0, 1, 2, \dots, n-1,$$

则

$$(2^{2^{k}})^{2} = 2^{2^{k+1}} = a_{0} + a_{1}\alpha^{2} + \dots + a_{n-1}\alpha^{2(n-1)}$$

$$= (a_{0}, a_{1}, \dots, a_{n-1}) \begin{bmatrix} 1 \\ \alpha^{2} \\ \vdots \\ \alpha^{2(n-1)} \end{bmatrix}$$

在 $0 \le k \le n-1$ 的时候,容易算出 α^{2k} 关于基 $1,\alpha,\dots,\alpha^2,\alpha^{n-1}$ 的表达式:

$$\alpha^{2k} = a_{k,0} + a_{k,1}\alpha + \dots + a_{k,n-1}\alpha^{n-1} \quad (0 \le k \le n-1)$$

记:

$$Q = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0n-1} \\ a_{10} & a_{11} & \cdots & a_{1n-1} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n-1 \ 0} & a_{n-1 \ 1} & \cdots & a_{n-1 \ n-1} \end{bmatrix}$$

知:

$$\begin{bmatrix} 1 \\ \alpha^2 \\ \vdots \\ \alpha^{2(n-1)} \end{bmatrix} = Q \begin{bmatrix} 1 \\ \alpha \\ \vdots \\ \alpha^{n-1} \end{bmatrix}$$

这样,如果已知 α^{2^n} 在基 $1,\alpha,\cdots,\alpha^{n-1}$ 下的坐标为 $\left(a_0,a_1,\cdots,a_{n-1}\right)$ 那么 $\alpha^{2^{n+1}}$ 的坐标便是:

$$(a'_0, a'_1, \dots, a'_{n-1}) = (a_0, a_1, \dots, a_{n-1})Q$$

下面我们关心的是有限域 F_q 上的不可约多项式 f(x), 易见 $f(x) \in F_q[x]$; 如果设 $\deg f(x) = n$,即 f(x) 为 $F_q[x]$ 中的 n 次多项式,还假设 f(x) 在 $F_q[x]$ 中不可约,则 f(x) 可以引起 F_q 上的 n 次扩张, 使得 f(x) 在 F_{q^n} 上有 n 个相异根 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{n-1}}$ 。

定义(共轭): 设 F_{q^n} 是 F_q 的一个扩张。即 $\alpha \in F_{q^n}$,那么元素 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{n-1}}$ 被称为相关于 F_q 的 α 共轭系,称 α^{q^i} 是 α^{q^j} 的共轭元素。

注:

- 1. $\alpha \in F_{q^n}$, α 相关于 F_q 的 n 个共轭元素是两两相异的等价于 α 在 F_q 上的极小多项式的次数为n。
- 2. $\alpha \in F_{q^n}$, α 在 F_q 上的极小多项式的次数为 d,此时 $d \mid n$,并且 α 相关于 F_q 的共轭元素 α , α^q , α^{q^2} , ..., $\alpha^{q^{n-1}}$ 中只有 α , α^q , α^{q^2} , ..., $\alpha^{q^{d-1}}$ 是两两相异的。在前述的共轭元素系列中,每一个元素有 n/d 次重复。
- 3. $\forall \alpha \in F^*_{q^n}$,则 α 相关于 F_q 的全体共轭元在群 $F^*_{q^n}$ 中有相同的周期。

- 4. $\alpha \in F_{q^n}$,且 α 在 F_q 上的极小多项式的次数为n,则 F_{q^n} 作为 F_q 的n维向量空间有两类重要的基:
 - (1) 多项式基: $1, \alpha, \dots, \alpha^{n-1}$;
 - (2) 正规基: $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{n-1}};$

我们注意到对 $\forall \alpha \in F_{q^n}$ 来说,存在 α 在 F_q 上的极小多项式 $f(x) \in F_q[x]$ 。设 deg f(x) = d ,易见 $d \mid n$,(其中 $n = [F_{q^n} : F_q]$),我们称 $g(x) = f(x)^{n/d}$ 为 α 在 F_q 上的特征多项式。 f(x) 在 F_{q^n} 中的根为 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{d-1}}$,它们是两两相异的。我们有:

$$g(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

并且:

$$g(x) = f(x)^{n/d} = [(x - \alpha)(x - \alpha^{q}) \cdots (x - \alpha^{q^{d-1}})]^{n/d}$$

$$= (x-\alpha)(x-\alpha^q)\cdots(x-\alpha^{q^{d-1}})(x-\alpha^{q^d})\cdots(x-\alpha^{q^{n-1}})$$

把最后的表达式展开, 比较系数可知:

$$\sum_{i=0}^{n-1} \alpha^{q^i} = -a_{n-1} \in F_q$$

我们有

定义 (迹函数): $\forall \alpha \in F_{a^n}$, $\alpha \in F_q$ 上的迹函数定义为:

$$Tr_{F_{\alpha^n}/F_q}(\alpha) = \alpha + \alpha^q + \dots + \alpha^{q^{n-1}}$$

设
$$E = F_{q^n}$$
, $F = F_q$,则 $Tr_{E/F}(\alpha) = \sum_{i=0}^{n-1} \alpha^{q^i}$ 。

注:

- 1. 若 $E = F_{q^n}$, $F = F_q$, 此时 $Tr_{E/F}(\alpha)$ 被称为绝对迹。此时,记为 $Tr(\alpha)$,平时讨论最多的还是相对迹。
- 2. 由 $\sum_{i=0}^{n-1} \alpha^{q^i} = -a_{n-1} \in F_q$ 可知Tr为从扩域 F_{q^n} 到基域 F_q 的一个映射,这是一个十分有意义的映射。

我们有重要的定理

定理 15: 设 $K = F_q$, $F = F_{q^n}$, 那么迹函数 $Tr_{F/K}$ 满足如下特征:

- 1. $Tr_{F/k}(\alpha + \beta) = Tr_{F/k}(\alpha) + Tr_{F/k}(\beta)$, $\forall \alpha, \beta \in F$
- 2. $Tr_{F/k}(c \cdot \alpha) = cTr_{F/k}(\alpha)$, $\forall c \in K, \alpha \in F$
- 3. 若将F和K分别视为K上的线性空间,则 $Tr_{F/k}$ 是从F到K上的线性变换:
- 4. $\forall a \in K$,有 $Tr_{F/k}(a) = na$;
- 5. $\forall \alpha \in F$, $\forall Tr_{F/k}(\alpha^q) = Tr_{F/k}(\alpha)$

这里知证明3,其他的证明比较容易,请读者自行练习。

证明: $Tr_{F/k}$ 为是从 F 到 K 上的线性变换,只要证明 $\exists \alpha \in F$,使得 $Tr_{F/k}(\alpha) \neq 0$ 即可 (原因: $\forall b \in K$,一定存在 $c \in K$ 使得 $Tr_{F/k}(c\alpha) = b$,取 $c = b/Tr_{F/K}(\alpha)$ 即可)。 下面证明这一点。我们知道对于 $\beta \in F$ 有 $Tr_{F/k}(\beta) = 0$ 的充分条件是 β 是 K[x] 中的如下多项式的根:

$$L(x) = x^{q^{n-1}} + x^{q^{n-1}} + \dots + x^q + x$$

然而,这个多项式在F内至少有 q^{n-1} 个相异根,而F中有 q^n 个相异元素,所以必定存在 $\alpha \in F$ 使得 $Tr_{F/k}(\alpha) \neq 0$ 。得证。

定理 16: 设 $F(=F_{q^n})$ 为有限域 $K(=F_q)$ 的 n 次扩张,且 K,F 都视为域 K 上的向量空间,则 F 到 K 上的线性变换全体恰由从 F 到 K 上的如下映射 L_g 构成:

$$\{L_{\beta} \mid \beta \in F^*, L_{\beta}(\alpha) = Tr_{F/k}(\beta \alpha), \forall \alpha \in F\}$$

并且在这个集合中,对 $\beta \neq \gamma$ 来说有 $L_{\beta} \neq L_{\gamma}$ 。

证明: 由定理 12 中的 3 知,映射 $L_{\beta}()$ $\forall \beta \in F^*$ 为从 F 到 K 上的线性变换。对 $\beta, \gamma \in F^*$ 且 $\beta \neq \gamma$ 来说有:

$$L_{\beta}(\alpha) - L_{\gamma}(\alpha) = Tr_{F/k}(\beta\alpha) - Tr_{F/k}(\gamma\alpha) = Tr_{F/k}(\beta\alpha - \gamma\alpha) = Tr_{F/k}((\beta - \alpha)\alpha)$$

注意: $Tr_{F/k}$ 为从 F 到 K 上的线性变换,于是可以适当的选取 $\alpha \in F$,使得 $Tr_{F/k} ((\beta - \alpha)\alpha) \neq 0$,所以 $L_{\beta} \neq L_{\gamma}$;这说明 $\{L_{\beta} \mid \beta \in F^*\}$ 的阶为 $|F| - 1 = q^n - 1$ 。

另一方面,对于从F到K上的任意线性变换 φ 来说,取F在K上的一个基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 在 φ 下的像唯一确定。 $\varphi(\alpha_i)$ 可能取自K中的任意元素,有q种取法,于是从F到K上的非0的相异的线性变换的个数为 q^n-1 。综上所述,从F到K上的非0的线性变换全体刚好为 $\{L_{\beta}\,|\,\beta\in F^*\}$ 。证毕。