$12a_{0594} (K12a_{0594})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -278579575u^{38} + 801007023u^{37} + \dots + 960147928b + 4668885888, \\ &- 506726616u^{38} + 1536859595u^{37} + \dots + 960147928a + 7944281003, \ u^{39} - 2u^{38} + \dots + 13u - 8 \rangle \\ I_2^u &= \langle -u^6 + 2u^4 - u^2 + b, \ -u^6 + u^4 + a + 1, \\ &u^{15} - 5u^{13} + u^{12} + 10u^{11} - 4u^{10} - 10u^9 + 6u^8 + 5u^7 - 5u^6 - u^5 + 3u^4 + u^3 - u^2 - u + 1 \rangle \\ I_3^u &= \langle 2b - a + 1, \ a^2 - 2a + 13, \ u + 1 \rangle \\ I_4^u &= \langle 2b - a + 1, \ a^2 - 2a + 5, \ u - 1 \rangle \\ I_5^u &= \langle b, \ a - 1, \ u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 59 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -2.79 \times 10^8 u^{38} + 8.01 \times 10^8 u^{37} + \dots + 9.60 \times 10^8 b + 4.67 \times 10^9, \ -5.07 \times 10^8 u^{38} + 1.54 \times 10^9 u^{37} + \dots + 9.60 \times 10^8 a + 7.94 \times 10^9, \ u^{39} - 2u^{38} + \dots + 13u - 8 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.527759u^{38} - 1.60065u^{37} + \dots + 10.7329u - 8.27402 \\ 0.290142u^{38} - 0.834254u^{37} + \dots + 7.56410u - 4.86267 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.785150u^{38} - 0.610681u^{37} + \dots + 11.4919u - 1.16835 \\ 0.354400u^{38} - 0.130647u^{37} + \dots + 2.97397u + 2.89166 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.848153u^{38} + 2.71323u^{37} + \dots + 15.2658u + 5.19809 \\ -0.487224u^{38} + 1.44307u^{37} + \dots + 12.6317u + 7.27384 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.237617u^{38} - 0.766395u^{37} + \dots + 3.16882u - 3.41134 \\ 0.290142u^{38} - 0.834254u^{37} + \dots + 7.56410u - 4.86267 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.150856u^{38} + 0.0217381u^{37} + \dots + 17.3547u + 9.46883 \\ 0.170865u^{38} - 0.242768u^{37} + \dots + 12.7382u + 5.24191 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.508134u^{38} - 1.24630u^{37} + \dots + 5.04688u - 6.94472 \\ 0.466487u^{38} - 1.22328u^{37} + \dots + 7.11369u - 4.38047 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.546702u^{38} - 2.31337u^{37} + \dots + 5.56221u - 1.82639 \\ 0.230030u^{38} - 1.40951u^{37} + \dots + 12.5505u - 4.06507 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{1009740537}{480073964}u^{38} - \frac{2449057759}{480073964}u^{37} + \dots + \frac{13839136571}{480073964}u + \frac{1544450212}{120018491}u^{38} + \dots + \frac{13839136571}{120018491}u + \frac{1544450212}{120018491}u^{38} + \dots + \frac{13839136571}{120018491}u + \frac{1544450212}{120018491}u^{38} + \dots + \frac{13839136571}{120018491}u^{38} + \dots + \frac{138391$$

Crossings	u-Polynomials at each crossing
c_1	$u^{39} + 16u^{38} + \dots + 841u + 64$
c_2, c_6	$u^{39} - 2u^{38} + \dots + 13u - 8$
c_3	$u^{39} + 2u^{38} + \dots - 434u - 82$
c_4, c_5, c_9 c_{10}, c_{11}	$u^{39} + 2u^{38} + \dots - 6u - 2$
c_7, c_8, c_{12}	$u^{39} + 2u^{38} + \dots - 3u - 8$

Crossings	Riley Polynomials at each crossing
c_1	$y^{39} + 20y^{38} + \dots + 20945y - 4096$
c_{2}, c_{6}	$y^{39} - 16y^{38} + \dots + 841y - 64$
<i>c</i> ₃	$y^{39} + 2y^{38} + \dots - 278552y - 6724$
c_4, c_5, c_9 c_{10}, c_{11}	$y^{39} + 50y^{38} + \dots + 8y - 4$
c_7, c_8, c_{12}	$y^{39} - 40y^{38} + \dots - 535y - 64$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.510187 + 0.854260I		
a = 0.459599 + 0.050441I	7.19513 + 1.98650I	12.18743 - 1.52305I
b = -0.601563 - 0.109572I		
u = 0.510187 - 0.854260I		
a = 0.459599 - 0.050441I	7.19513 - 1.98650I	12.18743 + 1.52305I
b = -0.601563 + 0.109572I		
u = -0.622477 + 0.793703I		
a = 0.715601 - 0.679477I	5.47691 + 1.45533I	8.53847 - 4.19348I
b = -0.417743 - 0.676425I		
u = -0.622477 - 0.793703I		
a = 0.715601 + 0.679477I	5.47691 - 1.45533I	8.53847 + 4.19348I
b = -0.417743 + 0.676425I		
u = 0.340675 + 0.952778I		
a = 0.461846 - 1.211810I	-5.17058 + 7.10896I	5.57947 - 3.18452I
b = -0.09622 - 1.69407I		
u = 0.340675 - 0.952778I		
a = 0.461846 + 1.211810I	-5.17058 - 7.10896I	5.57947 + 3.18452I
b = -0.09622 + 1.69407I		
u = -0.409576 + 0.898054I		
a = 0.444383 + 0.626707I	4.02432 - 5.28034I	7.11448 + 4.34651I
b = -0.372437 + 0.928150I		
u = -0.409576 - 0.898054I		
a = 0.444383 - 0.626707I	4.02432 + 5.28034I	7.11448 - 4.34651I
b = -0.372437 - 0.928150I		
u = -0.893825 + 0.408631I		
a = 0.56327 - 3.33333I	-12.19790 + 1.67763I	3.69120 - 4.54232I
b = 0.02030 - 1.76094I		
u = -0.893825 - 0.408631I		
a = 0.56327 + 3.33333I	-12.19790 - 1.67763I	3.69120 + 4.54232I
b = 0.02030 + 1.76094I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.880857 + 0.533899I		
a = 0.46350 + 1.87403I	-1.54593 - 2.15130I	4.04314 + 3.05891I
b = 0.098417 + 1.194680I		
u = 0.880857 - 0.533899I		
a = 0.46350 - 1.87403I	-1.54593 + 2.15130I	4.04314 - 3.05891I
b = 0.098417 - 1.194680I		
u = -0.892947 + 0.364874I		
a = -0.098814 + 0.170736I	-1.36259 + 1.28896I	1.24891 - 0.92411I
b = -0.264285 + 0.451533I		
u = -0.892947 - 0.364874I		
a = -0.098814 - 0.170736I	-1.36259 - 1.28896I	1.24891 + 0.92411I
b = -0.264285 - 0.451533I		
u = 1.073090 + 0.243180I		
a = -0.20763 - 1.90178I	-5.77927 - 0.03027I	-4.62865 - 0.08924I
b = -0.131098 - 1.030410I		
u = 1.073090 - 0.243180I		
a = -0.20763 + 1.90178I	-5.77927 + 0.03027I	-4.62865 + 0.08924I
b = -0.131098 + 1.030410I		
u = 0.980860 + 0.516874I		
a = 0.601891 + 0.724041I	-0.27159 - 4.03311I	6.10073 + 7.35963I
b = -0.513688 + 0.161476I		
u = 0.980860 - 0.516874I		
a = 0.601891 - 0.724041I	-0.27159 + 4.03311I	6.10073 - 7.35963I
b = -0.513688 - 0.161476I		
u = 0.807984 + 0.807298I		
a = 0.93590 + 1.21554I	-2.08218 - 2.94056I	6.18654 + 2.75292I
b = -0.03886 + 1.59336I		
u = 0.807984 - 0.807298I		
a = 0.93590 - 1.21554I	-2.08218 + 2.94056I	6.18654 - 2.75292I
b = -0.03886 - 1.59336I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.587388 + 0.621753I		
a = -0.417391 - 0.020298I	-9.77106 - 1.29915I	3.64577 + 3.61671I
b = -0.01628 - 1.67009I		
u = 0.587388 - 0.621753I		
a = -0.417391 + 0.020298I	-9.77106 + 1.29915I	3.64577 - 3.61671I
b = -0.01628 + 1.67009I		
u = -1.153580 + 0.222471I		
a = -0.20810 + 3.24218I	-15.6341 - 0.6387I	-4.65488 - 0.03706I
b = -0.03306 + 1.72517I		
u = -1.153580 - 0.222471I		
a = -0.20810 - 3.24218I	-15.6341 + 0.6387I	-4.65488 + 0.03706I
b = -0.03306 - 1.72517I		
u = -1.063930 + 0.555566I		
a = 1.47957 - 1.38271I	-3.72446 + 6.84807I	0.27874 - 7.93372I
b = -0.310928 - 0.963275I		
u = -1.063930 - 0.555566I		
a = 1.47957 + 1.38271I	-3.72446 - 6.84807I	0.27874 + 7.93372I
b = -0.310928 + 0.963275I		
u = -1.008430 + 0.658829I		
a = 0.103228 - 0.321231I	4.30632 + 4.00074I	7.24813 - 1.07966I
b = 0.472850 - 0.562157I		
u = -1.008430 - 0.658829I		
a = 0.103228 + 0.321231I	4.30632 - 4.00074I	7.24813 + 1.07966I
b = 0.472850 + 0.562157I		
u = 1.115460 + 0.583045I		
a = 2.22473 + 2.04920I	-13.1673 - 8.4053I	-0.71469 + 6.01805I
b = -0.08101 + 1.70763I		
u = 1.115460 - 0.583045I		
a = 2.22473 - 2.04920I	-13.1673 + 8.4053I	-0.71469 - 6.01805I
b = -0.08101 - 1.70763I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.087820 + 0.664251I		
a = -0.350032 - 0.695239I	5.45311 - 7.62050I	9.27378 + 6.71287I
b = 0.612419 - 0.190625I		
u = 1.087820 - 0.664251I		
a = -0.350032 + 0.695239I	5.45311 + 7.62050I	9.27378 - 6.71287I
b = 0.612419 + 0.190625I		
u = -0.623171 + 0.365194I		
a = -0.543839 - 0.239201I	-1.17941 + 1.46032I	3.60067 - 5.27194I
b = 0.032741 + 0.707498I		
u = -0.623171 - 0.365194I		
a = -0.543839 + 0.239201I	-1.17941 - 1.46032I	3.60067 + 5.27194I
b = 0.032741 - 0.707498I		
u = -1.146680 + 0.648201I		
a = -1.15783 + 1.54546I	1.80213 + 10.96520I	4.26192 - 8.20321I
b = 0.375338 + 0.995318I		
u = -1.146680 - 0.648201I		
a = -1.15783 - 1.54546I	1.80213 - 10.96520I	4.26192 + 8.20321I
b = 0.375338 - 0.995318I		
u = 1.190740 + 0.638471I		
a = -1.89201 - 2.31261I	-7.7538 - 12.8923I	2.81039 + 6.85603I
b = 0.10134 - 1.71568I		
u = 1.190740 - 0.638471I		
a = -1.89201 + 2.31261I	-7.7538 + 12.8923I	2.81039 - 6.85603I
b = 0.10134 + 1.71568I		
u = 0.479115		
a = -1.28073	0.778698	14.3770
b = 0.327545		

II. $I_2^u = \langle -u^6 + 2u^4 - u^2 + b, -u^6 + u^4 + a + 1, u^{15} - 5u^{13} + \dots - u + 1 \rangle$

(i) Arc colorings

a) Art colorings
$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^6 - u^4 - 1 \\ u^6 - 2u^4 + u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u^{12} - 3u^{10} + 3u^8 - 2u^6 + 2u^4 - u^2 + 1 \\ u^{12} - 4u^{10} + 6u^8 - 4u^6 + u^4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{12} - 4u^{10} + u^9 + 6u^8 - 3u^7 - 5u^6 + 3u^5 + 3u^4 - u^3 - u^2 + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u^4 - u^2 - 1 \\ u^6 - 2u^4 + u^2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^7 - 2u^5 \\ u^9 - 3u^7 + 3u^5 - 2u^3 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u^2 - 1 \\ -u^4 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{12} 16u^{10} + 24u^8 20u^6 + 12u^4 4u^3 4u^2 + 4u + 10$

Crossings	u-Polynomials at each crossing
c_1	$u^{15} + 10u^{14} + \dots + 3u + 1$
c_2, c_6, c_7 c_8, c_{12}	$u^{15} - 5u^{13} + \dots - u + 1$
<i>c</i> ₃	$(u^5 - u^4 + u^2 + u - 1)^3$
c_4, c_5, c_9 c_{10}, c_{11}	$(u^5 - u^4 + 4u^3 - 3u^2 + 3u - 1)^3$

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 10y^{14} + \dots - 9y - 1$
c_2, c_6, c_7 c_8, c_{12}	$y^{15} - 10y^{14} + \dots + 3y - 1$
<i>c</i> ₃	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^3$
c_4, c_5, c_9 c_{10}, c_{11}	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.906686 + 0.468417I		
a = -1.72729 + 0.71115I	-1.81981 + 2.21397I	3.11432 - 4.22289I
b = 0.233677 + 0.885557I		
u = -0.906686 - 0.468417I		
a = -1.72729 - 0.71115I	-1.81981 - 2.21397I	3.11432 + 4.22289I
b = 0.233677 - 0.885557I		
u = 0.989359 + 0.555107I		
a = -2.36917 - 1.31631I	-10.95830 - 3.33174I	2.08126 + 2.36228I
b = 0.05818 - 1.69128I		
u = 0.989359 - 0.555107I		
a = -2.36917 + 1.31631I	-10.95830 + 3.33174I	2.08126 - 2.36228I
b = 0.05818 + 1.69128I		
u = 0.359454 + 0.759797I		
a = -0.591315 + 0.655548I	-10.95830 + 3.33174I	2.08126 - 2.36228I
b = 0.05818 + 1.69128I		
u = 0.359454 - 0.759797I		
a = -0.591315 - 0.655548I	-10.95830 - 3.33174I	2.08126 + 2.36228I
b = 0.05818 - 1.69128I		
u = -1.23403		
a = 0.212482	0.882183	11.6090
b = 0.416284		
u = -0.379822 + 0.616522I		
a = -0.694211 - 0.196319I	-1.81981 - 2.21397I	3.11432 + 4.22289I
b = 0.233677 - 0.885557I		
u = -0.379822 - 0.616522I		
a = -0.694211 + 0.196319I	-1.81981 + 2.21397I	3.11432 - 4.22289I
b = 0.233677 + 0.885557I		
u = 0.617017 + 0.377000I		
a = -0.981816 - 0.243241I	0.882183	11.60884 + 0.I
b = 0.416284		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.617017 - 0.377000I		
a = -0.981816 + 0.243241I	0.882183	11.60884 + 0.I
b = 0.416284		
u = 1.286510 + 0.148105I		
a = 0.12253 + 1.74921I	-1.81981 + 2.21397I	3.11432 - 4.22289I
b = 0.233677 + 0.885557I		
u = 1.286510 - 0.148105I		
a = 0.12253 - 1.74921I	-1.81981 - 2.21397I	3.11432 + 4.22289I
b = 0.233677 - 0.885557I		
u = -1.348810 + 0.204690I		
a = 0.13503 - 3.10198I	-10.95830 - 3.33174I	2.08126 + 2.36228I
b = 0.05818 - 1.69128I		
u = -1.348810 - 0.204690I		
a = 0.13503 + 3.10198I	-10.95830 + 3.33174I	2.08126 - 2.36228I
b = 0.05818 + 1.69128I		

III.
$$I_3^u = \langle 2b - a + 1, \ a^2 - 2a + 13, \ u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} \frac{1}{2}a - \frac{11}{2} \\ 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}a - \frac{11}{2} \\ -3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{3}{2}a - \frac{1}{2} \\ -a + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{1}{2}a + \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}a + \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}a + \frac{9}{2} \\ 3 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{2}a + \frac{3}{2} \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}a + \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	$(u-1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^2 + 3$
c_6, c_7, c_8	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(y+3)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000 + 3.46410I	-13.1595	0
b = 1.73205I		
u = -1.00000		
a = 1.00000 - 3.46410I	-13.1595	0
b = -1.73205I		

IV.
$$I_4^u = \langle 2b - a + 1, \ a^2 - 2a + 5, \ u - 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} \frac{1}{2}a - \frac{3}{2} \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2} \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{1}{2}a + \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_4 = \begin{pmatrix} \frac{1}{2}a - \frac{5}{2} \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{2}a + \frac{3}{2} \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}a - \frac{1}{2} \\ -\frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_8	$(u-1)^2$
c_2, c_{12}	$(u+1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^2 + 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$(y+1)^2$

	Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	1.00000 + 2.00000I	-3.28987	0
b =	1.000000I		
u =	1.00000		
a =	1.00000 - 2.00000I	-3.28987	0
b =	-1.000000I		

V.
$$I_5^u = \langle b, a-1, u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	u-1
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	u
c_6, c_7, c_8	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	y-1
c_3, c_4, c_5 c_9, c_{10}, c_{11}	y

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	0	0
b = 0		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^5)(u^{15}+10u^{14}+\cdots+3u+1)(u^{39}+16u^{38}+\cdots+841u+64)$
c_2	$((u-1)^3)(u+1)^2(u^{15}-5u^{13}+\cdots-u+1)(u^{39}-2u^{38}+\cdots+13u-8)$
c_3	$u(u^{2}+1)(u^{2}+3)(u^{5}-u^{4}+\cdots+u-1)^{3}(u^{39}+2u^{38}+\cdots-434u-82)$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$u(u^{2}+1)(u^{2}+3)(u^{5}-u^{4}+4u^{3}-3u^{2}+3u-1)^{3}$ $\cdot (u^{39}+2u^{38}+\cdots-6u-2)$
c_6	$((u-1)^2)(u+1)^3(u^{15}-5u^{13}+\cdots-u+1)(u^{39}-2u^{38}+\cdots+13u-8)$
c_7, c_8	$((u-1)^2)(u+1)^3(u^{15}-5u^{13}+\cdots-u+1)(u^{39}+2u^{38}+\cdots-3u-8)$
c_{12}	$((u-1)^3)(u+1)^2(u^{15}-5u^{13}+\cdots-u+1)(u^{39}+2u^{38}+\cdots-3u-8)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^5)(y^{15} - 10y^{14} + \dots - 9y - 1)$ $\cdot (y^{39} + 20y^{38} + \dots + 20945y - 4096)$
c_2, c_6	$((y-1)^5)(y^{15}-10y^{14}+\cdots+3y-1)(y^{39}-16y^{38}+\cdots+841y-64)$
c_3	$y(y+1)^{2}(y+3)^{2}(y^{5}-y^{4}+4y^{3}-3y^{2}+3y-1)^{3}$ $\cdot (y^{39}+2y^{38}+\cdots-278552y-6724)$
$c_4, c_5, c_9 \\ c_{10}, c_{11}$	$y(y+1)^{2}(y+3)^{2}(y^{5}+7y^{4}+16y^{3}+13y^{2}+3y-1)^{3}$ $\cdot (y^{39}+50y^{38}+\cdots+8y-4)$
c_7, c_8, c_{12}	$((y-1)^5)(y^{15}-10y^{14}+\cdots+3y-1)(y^{39}-40y^{38}+\cdots-535y-64)$