MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2013 SOLUTION KEY

Round 6

A) Ignoring the parallels, $m \angle ING = \frac{180 \cdot 3}{5} = 108^{\circ}$.

As base angles of isosceles triangles *BIO* and *ING*,

$$m\angle BIO = m\angle NGI = \frac{180 - 108}{2} = 36^{\circ}$$

$$\Rightarrow m\angle OGI = 108 - 36 = 72^{\circ}$$
.

Therefore, $m \angle ING + m \angle BIO + m \angle OGI = 108 + 36 + 72 = 216$.

B) Since angles *BAC* (1) and *DAC* (2) have the same vertex and equal measures, they must be reflection angles across the main diagonal. To insure that the diagonals are perpendicular, angles *BAC* and *ABD* (3) must be complementary. Therefore,

$$(2x+35)+(80-3x)=90 \Rightarrow 115-x=90 \Rightarrow x=25$$
.

C) Dropping a perpendicular from A to \overline{BC} creates a 30-60-90 right triangle.

$$AE = \frac{x}{2}$$
, $BE = \frac{x\sqrt{3}}{2}$ and $DE = \frac{x\sqrt{3}}{4}$

$$\Rightarrow a = BD = \frac{x\sqrt{3}}{2} + \frac{x\sqrt{3}}{4} = \frac{3x\sqrt{3}}{4}$$

Appling the angle bisector theorem,

$$\frac{a}{x} = \frac{b}{24} \Leftrightarrow \frac{3x\sqrt{3}}{4} = \frac{b}{24} \Leftrightarrow b = 18\sqrt{3}.$$

FYI: Without the fact that BE = 2DE, a unique value for $m\angle CAD$ could not have been determined. In $\triangle ACD$, we know two side lengths (AC and DC, but not the <u>included</u> angle). In fact, the only invariant in $\triangle CAD$ is DC. Changing x changes the length of \overline{AD} and the measures of all three angles in $\triangle CAD$, but the length of \overline{DC} remains the same.

We know that $\theta < 30^{\circ}$ (to insure that $\angle BAC$ is obtuse). In this problem, in $\triangle ADE$, there is a

unique acute angle whose tangent has this value. Its exact designation is $Tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$ and its

approximate value is 40.9°, so with this additional condition (BE = 2DE), ΔCAD is <u>uniquely</u> determined.

An easy way to confirm this approximation would be to draw a right triangle with legs of length 2 and $\sqrt{3}$; then measure the smaller acute angle with a protractor!