CATEGORY THEORY DR. PAUL L. BAILEY

Examination 1 Solutions Sunday, September 8, 2019

Problem 1. (Image of Intersection)

Let $f: X \to Y$ and let $A, B \subset X$.

- (a) Show that $f(A \cap B) \subset f(A) \cap f(B)$.
- (b) Give an example where $f(A \cap B) \neq f(A) \cap f(B)$.

Solution. We show that $f(A \cap B) \subset f(A) \cap f(B)$.

Let $y \in f(A \cap B)$. Then there exists $x \in A \cap B$ such that y = f(x). Now $x \in A$ and $x \in B$, so $y = f(x) \in f(A)$ and $y = f(x) \in f(B)$. Therefore $y \in f(A) \cap f(B)$.

However, the reverse inclusion is false. For example, let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$, let $A = \{0, 1\}$, and let $B = \{0, -1\}$. In this case, $f(A \cap B) = f(\{0\}) = \{0\}$, but $f(A) \cap f(B) = \{0, 1\} \cap \{0, 1\} = \{0, 1\}$. So $f(A \cap B) \neq f(A) \cap f(B)$.

Definition 1. Let \mathcal{C} and \mathcal{D} be partitions of a set X. A *congruence* from \mathcal{C} to \mathcal{D} is a bijective function $\alpha: X \to X$ such that $\mathcal{D} = \{\alpha(C) \mid C \in \mathcal{C}\}.$

We say that \mathcal{C} and \mathcal{D} are *congruent* if there exists a congruence between them.

Problem 2. (Congruent Partitions)

Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Consider the partitions

- $\mathcal{A} = \{\{1\}, \{2,3\}, \{4,5,6\}, \{7,8,9\}\}$
- $\mathcal{B} = \{\{1\}, \{2\}, \{3,4\}, \{5,6\}, \{7,8,9\}\}$
- $\mathcal{C} = \{\{1\}, \{2,3\}, \{4,5\}, \{6,7\}, \{8,9\}\}$

Each of the following partitions \mathcal{D} , is congruent to either \mathcal{A} , \mathcal{B} , or \mathcal{C} . State which of the above is congruent to \mathcal{D} , and find a bijection $\alpha \in S_9$ which maps \mathcal{A} , \mathcal{B} , or \mathcal{C} to \mathcal{D} .

Solution. We use array notation and cycle notation for permutations.

(a) $\mathcal{D} = \{\{1,2\},\{3,4\},\{5\},\{6,7,8\},\{9\}\}$

This is congruent to \mathcal{B} . We define a function which sends \mathcal{B} to \mathcal{D} as follows:

$$\alpha: X \to X \quad \text{ given by } \quad \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 1 & 2 & 3 & 4 & 6 & 7 & 8 \end{pmatrix} = \texttt{(1 5 3)(2 9 8 7 6 4)}.$$

(b) $\mathcal{D} = \{\{1,5,6\},\{2\},\{3,8\},\{4\},\{7,9\}\}\$ This is congruent to \mathcal{B} via

$$\alpha: X \to X \quad \text{ given by } \quad \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 3 & 8 & 7 & 9 & 1 & 5 & 6 \end{pmatrix} = (\text{1 2 4 8 5 7}) \, (\text{6 9}).$$

(c) $\mathcal{D} = \{\{1, 9\}, \{2, 4\}, \{3, 5\}, \{6, 8\}, \{7\}\}$ This is congruent to \mathcal{B} via

$$\alpha: X \to X$$
 given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 1 & 9 & 2 & 4 & 3 & 5 & 6 & 8 \end{pmatrix} = (1 \ 7 \ 5 \ 3 \ 2)(3 \ 9 \ 8 \ 6).$

Problem 3. (Permutations)

Let $\alpha \in S_n$. Recall that the order of α is the least common multiple of the lengths of its disjoint cycles. Recall also that the *shape* of α is the sorted list of the lengths of its disjoint cycles.

- (a) Find all possible shapes of elements in S_4 , and how many of each shape exists.
- (b) Find all possible shapes of elements in S_6 , and find the order of an element of each shape.
- (c) Let $\alpha = (1 \ 3 \ 5 \ 7)(2 \ 4 \ 6)$ and $\beta = (1 \ 2 \ 3 \ 4 \ 5)$. Compute $\beta \alpha \beta^{-1}$.
- (d) Find $\beta \in S_9$ such that β (1 5 3 2) = (4 9 7 6) β .

Solution. (a) The shapes of S_4 . There are 4! = 24 total elements in S_4 .

- [1] 1 This is the identity only.
- [2] 6 There are $\binom{4}{2} = 6$ two-cycles.
- [3] 8 There are $\binom{4}{3} = 4$ orbits of three elements, each with two possible cycles.
- [4] 6 There is one set of four elements, and 3! = 6 ways of arranging them into cycles.
- [2,2] 3 There are 24 (1+6+8+6) = 3 remaining elements in S_4 .
- (b) We list the shapes of S_6 and there lcm's.
 - **[1]** 1
 - **[2]** 2
 - **[3]** 3
 - [4] 4
 - [5] 5
 - [6] 6
 - -[2,2] 2
 - -[2,2,2] 2
 - -[2,3] 6
 - -[2,4] 4
 - -[3,3] 3
- (c) $\beta \alpha \beta^{-1} = (1 \ 2 \ 3 \ 4 \ 5)(1 \ 3 \ 5 \ 7)(2 \ 4 \ 6)(1 \ 5 \ 4 \ 3 \ 2) = (1 \ 7 \ 2 \ 4)(3 \ 5 \ 6)$. Notice that conjugating by β has the effect of replacing each x in the support of α with $\beta(x)$.
- (d) We need a permutation which sends (1 5 3 2) to (4 9 7 6). There are many possibilities, such as

$$\beta = (1 \ 4 \ 5 \ 9 \ 3 \ 7 \ 2 \ 6)$$
 or $\beta = (1 \ 4)(5 \ 9)(3 \ 7)(2 \ 6)$.

Problem 4. (Modular Integers)

Let $n \geq 2$. Let \mathbb{Z}_n denote the set of congruence classes modulo n. Define $\mathbb{Z}_n^* = \{\overline{a} \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}$. We know the \mathbb{Z}_n^* consists of the elements in \mathbb{Z}_n which are invertible.

- (a) Find the (additive) order of $\overline{10}$ in \mathbb{Z}_{35} .
- (b) Find the (multiplicative) order of $\overline{7}$ in \mathbb{Z}_{20} .
- (c) Find the cardinality of \mathbb{Z}_{50}^* .
- (d) Circle all of the groups below which are cyclic.

$$\mathbb{Z}_8^*$$
 \mathbb{Z}_9^* \mathbb{Z}_{10}^* \mathbb{Z}_{11}^* \mathbb{Z}_{12}^* \mathbb{Z}_{14}^* .

Solution. We point out that since \mathbb{Z}_n is a group under addition and not multiplication, the order of an element in this group is additive order. Similarly, \mathbb{Z}_n^* is a group under multiplication and not addition, so the the order of an element in this group is its multiplicative order.

- (a) Find the (additive) order of $\overline{10}$ in \mathbb{Z}_{35} . The order is $\frac{n}{\gcd(a,n)} = \frac{35}{\gcd(35,10)} = \frac{35}{5} = 7$.
- (b) Find the (multiplicative) order of $\overline{7}$ in \mathbb{Z}_{20} . Here we compute $\overline{7}^2 = \overline{49} = \overline{9} = \overline{-1}$, so $\overline{7}^4 = \overline{-1}^2 = \overline{1}$. Thus the order is 4.
- (c) Find the cardinality of \mathbb{Z}_{50}^* . We remove from the set of positive integer less than 50 all multiples of 2 and of 5. If $0 \le a < 50$ and $\overline{a} \in \mathbb{Z}_{50}$, then $a \mod 10$ is 1, 3, 7, and 9, and $a \dim 10$ is 0 through 4. So, there are $4 \times 5 = 20$ elements in \mathbb{Z}_{50} .
- (d) Find the groups which are cyclic. We do this by attempting to find and element of order $\phi(n)$ in \mathbb{Z}_n^* . We will write without bars.
 - $-\mathbb{Z}_{8}^{*} = \{1, 3, 5, 7\}$. Now $3^{2} = 9 = 1$, $5^{2} = 25 = 1$, $7^{2} = 49 = 1$. There is no element of order 4, so this group is not cyclic.
 - $-\mathbb{Z}_{9}^{*} = \{1, 2, 4, 5, 7, 8\}$. We have $2^{3} = 8 = -1$, so $2^{6} = 1$. Thus 2 is an element of order 6, and $\mathbb{Z}_{9}^{*} = \langle 2 \rangle$ is cyclic.
 - $-\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$. Here $3^2 = -1$, so $\operatorname{ord}(3) = 4$, so $\mathbb{Z}_{10}^* = \langle 3 \rangle$ is cyclic.
 - $-\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$. All elements have order two, so this group is not cyclic.
 - $-\mathbb{Z}_{14}^* = \{1, 3, 5, 9, 11, 13\}.$ We have $3^3 = 27 = -1$, so $\operatorname{ord}(3) = 6$, and $\mathbb{Z}_{14}^* = \langle 3 \rangle$ is cyclic.

Problem 5. (Euclidean Algorithm)

Let m = 508 and n = 1029.

- (a) Find $x, y \in \mathbb{Z}$ such that mx + ny = 1.
- (b) Solve the equation $508x + \overline{979} = \overline{0}$ in \mathbb{Z}_{1029} .

Solution. First we perform the Euclidean algorithm to find x and y.

$$1029 = 508(2) + 13$$

$$508 = 13(39) + 1$$

$$1 = 508 - 13(39)$$

$$= 508 - [1029 - 508(2)](39)$$

$$= 508(79) + 1029(-39)$$

So, x = 79 and y = -39.

Next, we use what we have discovered: $\overline{79}$ is the inverse of $\overline{508}$ in \mathbb{Z}_{1029} . Thus

$$508x + \overline{979} = \overline{0} \quad \Rightarrow \quad 508x = \overline{-979} = \overline{50} \quad \Rightarrow \quad x = \overline{79 \cdot 50} = \overline{863}.$$