Wasserstein-Distance

This is an brief introduction to Wasserstein-Distance, including its formulation, computation and application.

- Wasserstein-Distance
 - Tutorials
 - Introduction
 - Existing metrics
 - Transportation problem
 - Formulation
 - Wasserstein distance (Kantorovich formulation)
 - Optimal transport and Wasserstein distance
 - Several dual formulations
 - Kantorovich-Rubinstein Duality
 - Lipschitz constrained formulation
 - Unconstrained formulation
 - Quadratic cost function
 - Convex formulation
 - Computation
 - Close form
 - Discrete case
 - Linear programming
 - Sinkhorn iteration
 - ADMM
 - Continue case
 - Two-step computation
 - Penalty term
 - Lipschitz constraint
 - Unconstrained optimization
 - Convex formulation
 - Gaussian mixture model
 - Empirical study
 - Application

Tutorials

- 1. Optimal Transport for Applied Mathematicians
- 2. Optimal Transport for Data Analysis
- 3. A user's guide to optimal transport

Introduction

We will start from some some intuitive examples.

Existing metrics

1. metrics

1. KL divergence:
$$D_{\mathrm{KL}}(P\|Q) = -\sum_{i} P(i) \ln \frac{Q(i)}{P(i)}$$

1. KL divergence:
$$D_{\mathrm{KL}}(P\|Q) = -\sum_i P(i) \ln \frac{Q(i)}{P(i)}$$
 2. JS divergence: $D_{\mathrm{JS}}(P,Q) = \frac{1}{2} \left(D_{\mathrm{KL}} \left(P \| \frac{P+Q}{2} \right) + D_{\mathrm{KL}} \left(Q \| \frac{P+Q}{2} \right) \right)$

3. F divergence:
$$D_f(p\|q) = \int q(x) f\left(rac{p(x)}{q(x)}
ight) dx$$
 , where f is a convex function.

2. Issues

1. can not evaluate 2 distributions with different support set.

1. example:
$$\{p(x)|x\in[0,1]\}$$
 and $\{q(y)|y\in[2,3]\}$

- 2. use KL/JS divergence as loss function -> gradient vanishing!
- 3. need well-defined distance metric

Transportation problem

	D_1	D_2	• • •	D_n	Supply
O_1	c_{11}	c_{12}		c_{1n}	a_1
O_2	c_{21}	c_{22}	• • •	c_{2n}	a_2
:	•	•••	•	:	•
O_m	c_{m1}	c_{m2}	• • •	c_{mn}	a_m
Demand	b_1	b_2		b_n	

1. Problem:

1. origin:
$$\{O_1, ..., O_m\}$$
, destination: $\{D_1, ..., D_n\}$

2. supply:
$$\{a_1,...,a_m\}$$
, demand: $\{b_1,...,b_n\}$

3. transport supply goods in origin locations to satisfy demand in destinations

4. transport plan/matrix:
$$x_{ij}$$

5. transport cost:
$$c_{ij}$$

2. Formulation

1. Primal formation

Minimize
$$\sum_{i=1}^{m}\sum_{j=1}^{n}c_{ij}x_{ij}$$
 Subject to:

$$\sum_{j=1}^{n} x_{ij} = a_i \quad ext{ for } i = 1, 2, \dots, m \ \sum_{i=1}^{m} x_{ij} = b_j \quad ext{ for } j = 1, 2, \dots, n \ x_{ij} \geq 0 \quad ext{ for } i = 1, 2, \dots, m ext{ and } j = 1, 2, \dots, n$$

2. Dual formulation

Maximize
$$\sum_{i=1}^m a_i f_i + \sum_{i=1}^n b_i g_i$$
 Subject to:

$$f_i + g_j \leq c_{ij} \quad ext{ for } i = 1, 2, \ldots, m, ext{ for } j = 1, 2, \ldots, n$$

Formulation

Wasserstein distance (Kantorovich formulation)

1. view it as a continuous version of transportation problem

Minimize $\mathcal{W}[p,q]=\inf_{\gamma\in\Pi[p,q]}\iint\gamma(x,y)c(x,y)dxdy$ Subject to:

$$\int \gamma(x,y)dy = p(x)$$
$$\int \gamma(x,y)dx = q(y)$$

- 2. cost function c(x, y):
 - 1. any norm, $\|x-y\|_1, \ \|x-y\|_2, \ \|x-y\|_2^2$
- 3. joint distribution $\gamma(x,y)$:
 - 1. with marginal distribution $\gamma(x)=p(x), \gamma(y)=q(y)$

Optimal transport and Wasserstein distance

1. Optimal transport (Monge formulation)

$$C_M(T) = \int_\Omega c(x,T(x)) p(x) \mathrm{d} \ q = T(p)$$

- 1. transport map: q(y) = T(p(x))
 - 1. non-linear constraint

Several dual formulations

Kantorovich-Rubinstein Duality

$$\mathcal{W}[p,q] = \max_{f,g} \left\{ \int [p(x)f(x) + q(x)g(x)] dx \mid f(x) + g(y) \leq c(x,y)
ight\}$$

1. primal-dual optimality condition

1.
$$f(x) + g(y) = c(x, y)$$

- 2. Proof:
- 1. forward: if primal and dual reach optimality, then

$$\underbrace{\iint \gamma(x,y)c(x,y)dxdy}_{\text{primal formulation}}$$

$$= \underbrace{\int [p(x)f(x) + q(x)g(x)]dx}_{\text{primal=dual when reaching optimality}}$$
(2)

$$=\int [p(x)f(x)+q(x)g(x)]dx \tag{2}$$

$$= \underbrace{\iint [f(x) + g(y)]\gamma(x, y)dxdy}_{\text{marginal distribution}}$$
(3)

$$\rightarrow f(x) + g(y) = c(x, y) \tag{4}$$

2. backward: if f(x) + g(y) = c(x, y) holds, then:

$$\underbrace{\int [p(x)f(x) + q(x)g(x)]dx}_{(5)}$$

$$\underbrace{\int [p(x)f(x) + q(x)g(x)]dx}_{\text{dual formulation}}$$

$$= \underbrace{\int \int [f(x) + g(y)]\gamma(x,y)dxdy}_{\text{marginal distribution}}$$
(6)

$$= \iint \gamma(x,y)c(x,y)dxdy \tag{7}$$

$$\rightarrow$$
 primal = dual when reaching optimality (8)

Lipschitz constrained formulation

$$\mathcal{W}[p,q] = \max_f \left\{ \int [p(x)f(oldsymbol{x}) - q(oldsymbol{x})f(oldsymbol{x})]dx \mid \|f\|_L \leq 1
ight\}$$

1. consider the optimality condition when x = y

1.
$$f(y)+g(y)=c(y,y)=0
ightarrow g(y)=-f(y)$$

2. take g(y) = -f(y) into the $\mathcal{W}[p,q]$

1. objective function:
$$\max_f \left\{ \int [p(x)f(m{x}) - q(m{x})f(m{x})] dx \right\}$$

2. constraints: $||f||_L < 1$

1.
$$f(x)-f(y)\leq c(x,y)$$
 and $f(y)-f(x)\leq c(y,x)$ 2. $\|f\|_L=rac{|f(x)-f(y)|}{c(x,y)}\leq 1$

2.
$$||f||_L = \frac{|f(x) - f(y)|}{c(x,y)} \le 1$$

Unconstrained formulation

$$\mathcal{W}[p,q] = \max_f \int f(x) dp(x) + \int \min_x [c(x,y) - f(x)] dq(y)$$

- 1. C-transform:
 - 1. For $f \in C(\Omega)$ define its c-transform $f^c \in C(\Omega)$ by

$$f^c(y) = \inf\{c(x,y) - f(x) \mid x \in \Omega\}$$

2. and its $ar{c}$ -transform $g^{ar{c}} \in C(\Omega)$ by

$$g^{\overline{c}}(x) = \inf\{c(x,y) - g(y) \mid y \in \Omega\}$$

- 3. $f^{c\hat{c}}(x) \geq f(x)$, "=" holds when f is concave
- 2. Consider g(y) is the C-transform of f(x)
 - 1. $f^c(y) = \inf_x \{c(x,y) f(x)\}$
 - 2. Proof of such a transform will not affect the optimality
 - 1. prove f(x) and $f^{c}(y)$ satisfy the constraint

$$f(x) + \inf\{c(x,y) - f(x)\}\tag{9}$$

$$\leq f(x) + c(x,y) - f(x) \tag{10}$$

$$=c(x,y) \tag{11}$$

The constraint is always be satisfied under C-transform

2. prove f(x) and $f^{c}(y)$ reach optimality condition

$$f(x) = g^c(x) \tag{12}$$

$$ightarrow f^c(y) = g^{c\hat{c}}(y) \ge g(y)$$
 (13)

$$\rightarrow f(x) + f^{c}(y) \ge f(x) + g(y) \tag{14}$$

when
$$f(x)+g(y)=c(x,y)$$
, $c(x,y)\leq f(x)+f^c(y)\geq c(x,y)$
Therefore $f(x)+f^c(y)=c(x,y)$ and reaches optimality.

Quadratic cost function

- 1. quadratic cost function: $c(x,y) = rac{1}{2} \|x-y\|^2$
- 2. The C-transform can be simplified as:

$$f(x) = \inf_{y} \left\{ \frac{1}{2} \|x - y\|^{2} - g(y) \right\}$$

$$= \frac{1}{2} \|x\|^{2} + \inf_{y} \left\{ -\langle x, y \rangle + \frac{1}{2} \|y\|^{2} - g(y) \right\}$$

$$= \frac{1}{2} \|x\|^{2} - \sup_{y} \left\{ \langle x, y \rangle - \left[\frac{1}{2} \|y\|^{2} - g(y) \right] \right\}$$

$$:= \phi(x) : \text{convex}$$

- 1. $\phi(x)$ is the convex conjugate of $\frac{1}{2}\|y\|^2-g(y)$
- 3. Brenier theorem:
 - 1. Under quadratic case, optimal transport map T(x) is equivalent with transport plan $\gamma(x,y)$

$$T(x) = x - \nabla f(x) = x - (x - \nabla \phi(x)) = \nabla \phi(x)$$

Convex formulation

$$\mathcal{W}[p,q] = C_{p,q} - \min_{f' \in ext{cvx}} \max_{g' \in ext{cvx}} \left\{ \mathbb{E}_p[f'(x)] + \mathbb{E}_q[f^{'*}(y)]
ight\}$$

1. under quadratic case:

$$egin{aligned} f(x)+g(y) &\leq rac{1}{2}\|x-y\|_2^2 &\Longleftrightarrow \ \left[rac{1}{2}\|x\|_2^2-f(x)
ight] + \left[rac{1}{2}\|y\|_2^2-g(y)
ight] \geq \langle x,y
angle \end{aligned}$$

2. define:

1.
$$f'(x) = \frac{1}{2} ||x||_2^2 - f(x)$$

2. $g'(y) = \frac{1}{2} ||y||_2^2 - g(y)$

3. The objective function becomes:

$$\mathcal{W}[p,q] = C_{p,q} - \min_{f',g'} \left\{ \mathbb{E}_p[f'(x)] + \mathbb{E}_q[g'(y)] \mid f'(x) + g'(y) \geq \langle x,y
angle
ight\} \ C_{p,q} = rac{1}{2} \mathbb{E}_p[\|X\|_2^2] + \mathbb{E}_q[\|Y\|_2^2]$$

4. apply the conjugate transformation

1.
$$g'(y)=f^{'*}(y)=\sup_{x}\left\{\langle x,y
angle-\underbrace{\left[rac{1}{2}\|x\|^2-f(x)
ight]}_{f'(x)}
ight\}$$

5. unconstrained optimization

$$\mathcal{W}[p,q] = C_{p,q} - \min_{f',g'} \left\{ \mathbb{E}_p[f'(x)] + \mathbb{E}_q[f^{'*}(y)]
ight\}$$

- 1. similar proof as C-transform
 - 1. constraint:

1.
$$f'(x) + f^{'*}(y) \geq \langle x,y
angle$$

2. optimality

1.
$$f^{**} \leq f$$
, "=" holds when f is convex

- 2. f' and g' are convex
- 6. According to the Brenier theorem, when reach optimality

1.
$$x = \nabla g'(y) = T(y)$$
 is the optimal transport map

2.
$$f^{'*}(y) = \sup_{x} \left\{ \langle x,y \rangle - \left[\frac{1}{2} \|x\|^2 - f(x) \right] \right\}$$

3.
$$f^{*'}(y) = \langle T(y), y \rangle - \left[\frac{1}{2} \| T(y) \|^2 - f'(T(y)) \right]$$

7. convex formulation:

$$egin{aligned} \mathcal{W}[p,q] &= C_{p,q} - \min_{f' \in ext{cvx}} \max_{g' \in ext{cvx}} \left\{ \mathbb{E}_p[f'(x)] + \mathbb{E}_q[f^{'*}(y)]
ight\} \ \mathcal{W}[p,q] &= C_{p,q} - \min_{f' \in ext{cvx}} \max_{g' \in ext{cvx}} \left\{ \mathbb{E}_p[f'(
abla g'(y))] + \mathbb{E}_q[\langle
abla g'(y), y
angle - f'(
abla g'(y))]
ight\} \end{aligned}$$

Computation

Close form

- 1. Gaussian distribution under quadratic cost
 - 1. Distributions: $\mathcal{N}_1(\mu_1, \Sigma_1)$, $\mathcal{N}_2(\mu_2, \Sigma_2)$
 - 2. Transport map: $x \longrightarrow \mu_2 + A(x \mu_1)$

1.
$$A=\Sigma_1^{-1/2}\left(\Sigma_1^{1/2}\Sigma_2\Sigma_1^{1/2}
ight)\Sigma_1^{-1/2}$$

3. W-distance:

$$W_2\left(\mathcal{N}_1,\mathcal{N}_2
ight) = \left\|\mu_1 - \mu_2
ight\|_2^2 + \mathrm{Tr}\left(\Sigma_1 + \Sigma_2 - 2\left(\Sigma_1^{1/2}\Sigma_2\Sigma_1^{1/2}
ight)^{1/2}
ight)$$

Discrete case

Linear programming

Maximize $\sum_{i=1}^n a_i f_i + \sum_{i=1}^n b_i g_i$ Subject to:

$$f_i+g_j \leq c_{ij} \quad ext{ for } i=1,2,\ldots,n, ext{ for } j=1,2,\ldots,n$$

- 1. solve in dual form
- 2. polynomial complexity
- 3. not scalable when n is large

Sinkhorn iteration

Minimize $\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij} - \lambda^{-1} H(x)$ Subject to:

$$egin{array}{l} \sum_{j=1}^n x_{ij} = p_i & ext{for } i = 1, 2, \ldots, n \ \sum_{i=1}^n x_{ij} = q_j & ext{for } j = 1, 2, \ldots, n \ x_{ij} \geq 0 & ext{for } i, j = 1, 2, \ldots, n \end{array}$$

- 1. entropy regularization: $H(x) = -x \log x$
 - 1. strongly convex
 - 2. link primal and dual solution
- 2. Optimality condition

1.
$$abla_x L(x,f,g) = 0 = c_{ij} + \lambda^{-1}(1+\log x) - f_i - g_j$$

2.
$$x_{ij}=e^{\lambda f_i}e^{-c_{ij}\lambda-1}e^{\lambda g_j}=v_iK_{ij}u_j$$

3. constraints

$$\sum_{j=1}^n x_{ij} = v_i \sum_{j=1}^n K_{ij} u_j = p_i \quad ext{ for } i = 1, 2, \dots, n \ \sum_{i=1}^n x_{ij} = u_j \sum_{i=1}^n v_i K_{ij} = q_j \quad ext{ for } j = 1, 2, \dots, n$$

- 3. Matrix normalization/balancing
 - 1. find a matrix has row and column constraints
 - 2. double stochastic matrix
- 4. Sinkhorn-Knopp algorithm

$$egin{aligned} v_i^{n+1} &= rac{p_i}{\sum_j K_{ij} u_j^n} \ u_j^{n+1} &= rac{p_i}{\sum_i K_{ij} v_i^{n+1}} \end{aligned}$$

5. limited numerical accuracy when λ is large

ADMM

Continue case

Two-step computation

Penalty term

Lipschitz constraint

Unconstrained optimization

Convex formulation

Gaussian mixture model

Empirical study

Application