

SEM Imaging

- Magnification and Deflection System
- Focussing (contamination dots)
- Imaging

Motivation

To be good in e-beam lithography

means to be good in SEM imaging.

2

Tip Geometry & Crossover

a) LaB₆ gun

b) thermal field emission

(Gersley, J. Appl. Phys. 65 (3), 914 (1989))

Filament Types

source type	brightness	source	energy	vacuum
	[A/cm²/sr]	size	spread [eV]	[torr]
tungsten	~105	25µm	2-3	106
thermionic				
LaB ₆ thermionic	~106	10µm	2-3	10 8
thermal FE	~108	20nm	0.9	10 9
(Schottky)				
cold FE	~109	5nm	0.22	10 10

SPIE HANDBOOK OF MICROLITHOGRAPHY, MICROMACHINING AND MICROFABRICATION Volume 1: Microlithography, Chapter 2.2

4

Beam deflection (E-static/magnetic)

Either magnetic or electrostatic fields can be used to focus electrons just as glass lenses are used to focus rays of light.

Electro-static

Electro-magnetic

Beam deflection (E-static/magnetic)

Electron lenses have very poor performance (spherical and chromatic aberrations) compared to light lenses; thus electrons must be kept very close to the axis - small a

Spherical aberration

Chromatic aberration

www.raith.com

Beam Deflection E-static or B?

Magnetic deflection

- lower aberrations (as with electrostatic lenses (= condensor in gun))
- but max. frequency is limited by the coil resonances to ~10 MHz.
- max. angle limited by off-axis aberrations to about1 degree
- Trade off between resolution and field size

on-axis aberrations increase with increasing working distance

deflection angle and thus off-axis aberrations decrease with increasing working distance

P Compromise field size is much smaller than most chips!

Beam Blanker

Beam blanker off Beam blanker on

Focus / Stigmation Correction

Focussing - Contamination Dots

top view

side view

(Images taken during the acceptance test of Raith 200 at the University of Neuchâtel (Switzerland) 4/98)

Focussing = WD and Stigmation

(Image taken at KTH Stockholm (Sweden), see http://www.nanophys.kth.se/nanophys/facilities/nfl/sem-ebeam.htm)

Influence of Acceleration Voltage

LOW (short penetration depth)

- + Clear surface structures
- + Less damage
- + Less charge up
- + Less edge effect
- Lower resolution

High (large penetration depth)

- + Higher resolution
- Unclear surface structures
- More edge effects
- More sample damage (heating)

(A guide to Scanning Microscope Observation, Jeol web page 1999)

12

www.raith.com

Influence of Beam Current-Aperture

Low (small aperture)

- + Higher resolution
- + Less damage (heating)
- + Larger depth of focus
- Grainy image

High (large aperture)

- + Smooth image
- + Good signal-to-noise
- Deteriorated resolution
- More damage (heating)
- Lower resolution
- Smaller depth of focus

(A guide to Scanning Microscope Observation, Jeol web page 1999)

Influence of Working Distance

Small

- + Higher resolution
- Smaller depth of focus

Large

- + Larger depth of focus
- Lower resolution

(A guide to Scanning Microscope Observation, Jeol web page 1999)

www.raith.com

Important rule for SEM imaging

Take always the **IOW** magnification images first!!!

