

Abordagem via espaço de estados projeto de controladores

Valter J. S. Leite & Luís F. P. Silva

Centro Federal de Educação Tecnológica de MG Departamento de Engenharia Mecatrônica Teoria de Controle

August 19, 2024

Sumário

Introdução

Projeto de controlador Metodologia de projeto

Inclusão da ação integral

Controlabilidade

Um método mais geral de projeto

Projeto de observadores Projeto na forma canônica

Motivação

- Métodos LGR ou frequencial: adição de polos e zeros no ramo direto ou de realimentação para obter um transitório e precisão adequados.
- Desvantagem: após o projeto, torcer para que os polos de ordem mais elevada não afetem a aproximação de segunda ordem.

Motivação

- Métodos LGR ou frequencial: adição de polos e zeros no ramo direto ou de realimentação para obter um transitório e precisão adequados.
- Desvantagem: após o projeto, torcer para que os polos de ordem mais elevada não afetem a aproximação de segunda ordem.

Objetivo

Projetar um controlador que especifique todos os polos de malha fechada

Algumas características

Além disso...

- abordagem polinomial pode ser muito sensível a erros paramétricos;
- abordagens LGR e frequencial são baseadas em sistemas de segunda ordem;
- se o sistema possui n polos ...logo n restrições ...são necessários n parâmetros a serem ajustados.

Desvantagens

Sensibilidade a desvios paramétricos; não trata os zeros do sistema em malha fechada.

Porém...

- 1. Há um arsenal de ferramentas da álgebra linear;
- 2. Há ferramentas computacionais (matlab e python, por exemplo).

Nossa abordagem

Veremos apenas uma introdução ao método de projeto, incluindo ação integral e observadores.

Ideia central

Um sistema de controle de ordem *n* possui uma malha fechada com equação característica

$$\Delta_{\text{Deseiado}}(s) = s^n + \bar{\alpha}_{n-1}s^{n-1} + \dots + \bar{\alpha}_1s + \bar{\alpha}_0 = 0 \qquad (1)$$

- 1. Polinômio mônico:
- 2. n coeficientes determinam os polos de malha fechada;
- 3. Vamos introduzir *n* coeficientes ajustáveis para atingir qualquer alocação desejada.

Topologia para alocação de polos

Considere o modelo linearizado da planta:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u, \quad y = \mathbf{c}\mathbf{x},\tag{2}$$

em que o vetor de estados é dado por $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ é a matriz que contém a dinâmica, u é o sinal de controle, $\mathbf{B} \in \mathbb{R}^n$ é a matriz (vetor) de entrada e $\mathbf{d} = 0$ (sistema estritamente próprio).

Projeto de controlador

E se...

Ao invés de realimentar a saída, realimentarmos os estados?

E se...

Ao invés de realimentar a saída, realimentarmos os estados?

• Se realimentarmos os estados, a cada um pode ser associado um ganho k_i , i = 1, ..., n, usados para ajustar os valores dos polos de malha fechada. Neste caso:

$$u = r - \mathbf{K}\mathbf{x} \tag{3}$$

em que r é um valor de referência (não necessariamente na unidade da saída y) e $\mathbf{K} \in \mathbb{R}^{1 \times n}$:

$$\mathbf{K} = \begin{bmatrix} k_1 & k_2 & \cdots & k_{n-1} & k_n \end{bmatrix}$$

resultando em

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u = \mathbf{A}\mathbf{x} + \mathbf{B}(r - \mathbf{K}\mathbf{x}) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}r$$
 (4)

Veja Malha fechada na próxima página.

Projeto de controlador

Malha fechada

Hipótese (I)

Assumimos que o modelo linear no espaço de estados esteja na forma canônica, isto é, uma função de transferência na forma:

$$G(s) = \frac{c_1 s^{n-1} + c_2 s^{n-2} + \dots + c_{n-1} s^1 + c_n}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0}$$

pode ser representada como em (2) com

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \cdots & -\alpha_{n-1} \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$
(5)

$$\mathbf{c} = \begin{bmatrix} c_n & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix}$$

Hipótese (II)

que possui uma equação característica dada por

$$\Delta(s) = s^n + \alpha_{n-1}s^{n-1} + \dots + \alpha_1s + \alpha_0 = 0$$
 (6)

A malha fechada (4) tem matriz dinâmica dada por

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -(\alpha_0 + k_1) & -(\alpha_1 + k_2) & -(\alpha_2 + k_3) & \cdots & -(\alpha_{n-1} + k_n) \end{bmatrix}$$
(7)

cuja equação característica é dada por

$$\Delta_{\text{M.F.}}(s) = s^n + (\alpha_{n-1} + k_n)s^{n-1} + \dots + (\alpha_1 + k_2)s + (\alpha_0 + k_1) = 0$$

Procedimento (I)

Logo é necessário

$$\Delta_{\text{Desejada}}(s) = \Delta_{\text{M.F.}}(s)$$

em que

$$\Delta_{\text{M.F.}}(s) = s^n + (\alpha_{n-1} + k_n)s^{n-1} + \dots + (\alpha_1 + k_2)s + (\alpha_0 + k_1),$$

$$\Delta_{\text{Desejado}}(s) = s^n + \bar{\alpha}_{n-1}s^{n-1} + \dots + \bar{\alpha}_1s + \bar{\alpha}_0.$$

Procedimento (II)

Portanto, para o projeto da lei de controle por realimentação de estados:

$$u = r - \mathbf{K}\mathbf{x}$$

usa-se o seguinte procedimento:

Procedimento

Os elementos do ganho de realimentação de estados **K** da lei de controle (3) são calculados usando:

$$k_i = \overline{\alpha}_{i-1} - \alpha_{i-1}, \quad i = 1, \dots, n. \tag{9}$$

Exemplo

Seja um processo cujo modelo linearizado é dado por

$$G(s) = \frac{20(s+5)}{s(s+1)(s+4)}.$$

Projete um controle por realimentação de estados tal que a malha fechada possua uma sobrepassagem máxima de 9.5% e um tempo de acomodação de $t_s = 0.74$ s.

Soluções possíveis...

De

$$t_s = \frac{4}{\zeta \omega_n}; \quad \zeta = \frac{-\ln \frac{\%OS}{100\%}}{\sqrt{\pi^2 + \ln^2 \frac{\%OS}{100\%}}}$$

temos: • são necessários polos (autovalores) dominantes em $\lambda_{1,2} = -5.4 \pm 7.2i$.

• Onde alocar o terceiro polo (autovalor)?

Opções:
$$\lambda_3 = -54 \dots$$

Soluções possíveis...

De

$$t_s = \frac{4}{\zeta \omega_n}; \quad \zeta = \frac{-\ln \frac{\%OS}{100\%}}{\sqrt{\pi^2 + \ln^2 \frac{\%OS}{100\%}}}$$

temos: • são necessários polos (autovalores) dominantes em $\lambda_{1,2} = -5.4 \pm 7.2i$.

• Onde alocar o terceiro polo (autovalor)?

Opções:
$$\lambda_3 = -54 \dots$$
 ou $\lambda_3 = -5$

Soluções possíveis...

- $\Delta(s) = s(s+1)(s+4) = s^3 + 5s^2 + 4s$ é o polinômio característico do sistema.
- $\Delta_{\text{Deseiado}}(s) = (s + 5.4 + 7.2j)(s + 5.4 7.2j)(s \lambda_3)$:

$$\lambda_3 = -54 \Rightarrow \Delta_{\mbox{Desejado}}(s) = s^3 + 64.8s^2 + 664.2s + 4374$$

 $\lambda_3 = -5 \Rightarrow \Delta_{\mbox{Desejado}}(s) = s^3 + 15.8s^2 + 135s + 405$

• Assim, usando-se (9) tem-se:

$$\mathbf{K}_{\lambda_3=-54} = \begin{bmatrix} 4374 & 660.2 & 59.8 \end{bmatrix}$$

 $\mathbf{K}_{\lambda_3=-5} = \begin{bmatrix} 405 & 131 & 10.8 \end{bmatrix}$

Robustez no seguimento de referência

- Solução para entradas em degrau (inclusão do ganho de caminho direto) não é adequado se os parâmetros da planta mudam ou não são bem conhecidos.
- Neste caso: falta robustez ao seguimento de referência.
- Inclui caso em que uma perturbação constante w(t) com amplitude desconhecida pode afetar a saída da planta (efeito de carga).

Inclusão da ação integral

 Alternativa: Realimentação unitária de saída com integração do sinal de erro

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{B}_{\mathbf{w}}\mathbf{w}(t); \quad \mathbf{y}(t) = \mathbf{c}\mathbf{x}(t) \tag{10}$$

Diagrama

Figura: Topologia para controle servo.

Do diagrama temos:

$$\dot{x}_a = r - y = r - \mathbf{cx}$$

$$u(t) = v(t) - \mathbf{K}\mathbf{x}(t) = \underbrace{k_a x_a}_{v(t)} - \mathbf{K}\mathbf{x} = \begin{bmatrix} -\mathbf{K} & k_a \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix}$$

Definindo:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ x_a \end{bmatrix}; \quad \tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}k_a \\ -\mathbf{c} & 0 \end{bmatrix}; \quad \tilde{\mathbf{B}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \quad \mathbf{B}_c = \begin{bmatrix} \mathbf{B} \\ 0 \end{bmatrix}$$

$$\tilde{\mathbf{c}} = \begin{bmatrix} \mathbf{c} & 0 \end{bmatrix}$$

Resumo da ópera

Dado o sistema

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{B}_{\mathbf{W}}\mathbf{w}(t); \quad \mathbf{y}(t) = \mathbf{c}\mathbf{x}(t),$$

para projetar um controlador por realimentação de estados (**K**) com ação integral sobre o erro de regulação (k_a), basta projetar [**K** $-k_a$] para o par:

$$\tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ -\mathbf{c} & \mathbf{0} \end{bmatrix}; \quad \mathbf{B}_c = \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix}$$

Exercícios

- 1. Para cada solução:
 - 1.1 Expresse as matrizes A, B, A BK.
 - 1.2 Faça simulação para entrada em degrau e avalie a resposta. Em caso de não atendimento das especificações, quais as soluções possíveis?
 - 1.3 calcule a função de transferência obtida (entre $r \in y$).
 - 1.4 Avalie o sinal de controle em cada caso (incluindo eventuais compensações adicionadas).
- Projete um controle por realimentação de estados que leve o sistema

$$G(s) = \frac{100(s+10)}{s(s+3)(s+12)}$$

tenha 5% de sobrepassagem e um tempo de pico de $t_P = 0.3$ s.

Definição e teste

Controlabilidade

O sistema ou a equação (5) é dito <u>controlável</u> se existir uma lei de controle que leva um estado inicial qualquer $x(0) \in \mathbb{R}^n$ a um estado final qualquer $x(t_f) \in \mathbb{R}^n$, para qualquer intervalo de tempo finito t_f .

Definição e teste

Controlabilidade

O sistema ou a equação (5) é dito <u>controlável</u> se existir uma lei de controle que leva um estado inicial qualquer $x(0) \in \mathbb{R}^n$ a um estado final qualquer $x(t_f) \in \mathbb{R}^n$, para qualquer intervalo de tempo finito t_f .

Teste numérico: Se o posto de

$$C = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \cdots & \mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

é igual a n, então o sistema é controlável.

Observações

- A controlabilidade é perdida se houver cancelamento de polos e zeros.
- 2. A controlabilidade é invariante às mudanças de base.
- 3. A controlabilidade é invariante à realimentação de estados.
- Teste a controlabilidade dos sistemas trabalhados nesta aula. Veja o que ocorre em cada caso, em malha aberta e em malha fechada.

E se A não está na forma canônica?

Precisamos encontrar uma base T tal que...

A malha fechada **A** – **BK** nessa base possa ser representada por uma matriz **F** que contém os autovalores desejados para a malha fechada.

E se A não está na forma canônica?

Precisamos encontrar uma base T tal que...

A malha fechada **A** – **BK** nessa base possa ser representada por uma matriz **F** que contém os autovalores desejados para a malha fechada.

Assim, precisamos obter T tal que:

$$T^{-1}(A - BK)T = F \Rightarrow (A - BK)T = TF$$

ou ainda

$$\textbf{AT} - \textbf{B}\underbrace{\textbf{KT}}_{\bar{K}} = \textbf{FT} {\Rightarrow} \textbf{AT} - \textbf{TF} = \textbf{B}\bar{\textbf{K}}$$

Equação de Sylvester

A equação de Sylvester

$$\mathbf{AT} + \mathbf{TB} + \mathbf{c} = 0.$$

tem solução **T** única se **A** e **B** não possuem autovalores em comum.

Essa equação pode ser resolvida como um sistema linear. Via Matlab, use o comando = lyap(A,B,C).

Comparando com

$$AT - TF = B\overline{K} \Rightarrow \underbrace{A}_{A} T - T \underbrace{F}_{-B} \underbrace{-B\overline{K}}_{C} = 0$$

Equação de Sylvester

A equação de Sylvester

$$\mathbf{AT} + \mathbf{TB} + \mathbf{c} = 0.$$

tem solução **T** única se **A** e **B** não possuem autovalores em comum.

Essa equação pode ser resolvida como um sistema linear. Via Matlab, use o comando = lyap(A,B,C).

Comparando com

$$AT - TF = B\overline{K} \Rightarrow \underbrace{A}_{A} T - T \underbrace{F}_{-B} \underbrace{-B\overline{K}}_{C} = 0$$

ou seja...

$$T = lyap(A, -F, -B\bar{K})$$

Ideia

A ideia de projeto consiste em:

- Propor F que contenha os autovalores desejados para a malha fechada numa base T.
- 2. Propor um $\bar{\mathbf{K}}$ que seria o controlador nessa base $\bar{\mathbf{K}}$.
- 3. Achar a base T usando $\mathbf{T} = 1 \text{yap}(\mathbf{A}, -\mathbf{F}, -\mathbf{B}\mathbf{\bar{K}})$
- 4. Calcular o ganho $\mathbf{K} = \bar{\mathbf{K}}\mathbf{T}^{-1}$.

Ideia

A ideia de projeto consiste em:

- 1. Propor **F** que contenha os autovalores desejados para a malha fechada numa base T.
- 2. Propor um $\bar{\mathbf{K}}$ que seria o controlador nessa base $\bar{\mathbf{K}}$.
- 3. Achar a base T usando $\mathbf{T} = 1 \text{yap}(\mathbf{A}, -\mathbf{F}, -\mathbf{B}\mathbf{\bar{K}})$
- 4. Calcular o ganho $\mathbf{K} = \bar{\mathbf{K}}\mathbf{T}^{-1}$.

Cuidados

Escolher F com autovalores diferentes dos de A.

Assegurar que

$$egin{array}{ccc} K & K & \\ ar{K}F & \vdots & \\ ar{K}F^{n-1} & \end{array}$$

kF tenha posto completo.

Exemplo: modelo de 1/4 de carro

Figure 1. Schematic quarter-car model.

com: massas m_1 (suspensa) e m_2 (da suspensão), c cte. amortecimento, k cte. mola, u(t) atuador ativo, w(t) velocidade vertical imposta pela estrada.

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}u(t) + \mathbf{B}_{\mathbf{w}}w(t)$$

Equações

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ \frac{k}{m_1} & 0 & -\frac{c}{m_1} & \frac{c}{m_1} & 0 \\ \frac{-k}{m_2} & \frac{k_t}{m_2} & \frac{c}{m_2} & -\frac{c}{m_2} & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{m_1} \\ -\frac{1}{m_2} \\ 0 \end{bmatrix}; \quad \mathbf{B}_{\mathbf{w}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

em que: $x_1 \rightarrow$ deflexão da suspensão; $x_2 \rightarrow$ deflexão do pneu; $x_3 \rightarrow$ velocidade da massa suspensa; $x_4 \rightarrow$ velocidade da massa da suspensão; $x_1 \rightarrow$ integral de x_1 (estado acrescido).

Exemplo: modelo de 1/4 de carro

Table 1. Nominal parameter values for quarter-car model.

Parameter	Nominal value	Unit
m_1	288.9	kg
m_2	28.58	kg kg N m ^{–1}
k	10000	$N m^{-1}$
k_t	155900	${ m N~m^{-1}}$
c	850	${ m N~s~m^{-1}}$

Desejável para a malha fechada: autovalores dominantes em $-20 \pm 15i$

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} - \mathbf{B}u(t) + \mathbf{B}_{\mathbf{w}}w(t)$$

Atividades

- 1. Projete o controlador para o exemplo da suspensão ativa.
- 2. Analise o comportamento dos estados para um degrau de velocidade unitário.
- Construa e analise o diagrama de resposta em frequência para cada um dos estados em relação à entrada de distúrbio.

Colocação do Problema

Dado o sistema:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) \tag{11}$$

$$y(t) = \mathbf{cx}(t) \tag{12}$$

⇒ Matrizes A, B e c são conhecidas.

O problema

Estimar \mathbf{x} a partir de u e y com o conhecimento de \mathbf{A} , \mathbf{B} e \mathbf{c} .

Observador em malha aberta

Pode-se duplicar o sistema original:

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\dot{\mathbf{x}}(t) + \mathbf{B}u \tag{13}$$

em que $\dot{\hat{\mathbf{x}}}(t)$ é uma estimativa de $\mathbf{x}(t)$.

Figura: Estimador de estados em malha aberta.

Estimador em malha aberta

- \Rightarrow Se o sistema e o observador possuem as mesmas condições iniciais, $\mathbf{x}(t) = \hat{\mathbf{x}}(t), \forall t \geq 0.$
- ⇒ Se (11)–(12) é observável, pode-se estimar o estado inicial em um dado instante.

Estimador em malha aberta

- \Rightarrow Se o sistema e o observador possuem as mesmas condições iniciais, $\mathbf{x}(t) = \hat{\mathbf{x}}(t), \forall t \geq 0.$
- ⇒ Se (11)–(12) é observável, pode-se estimar o estado inicial em um dado instante.
- Desvantagens:
 - 1. A cada uso do observador, $\mathbf{x}(0)$ precisa ser computado.
 - 2. Se **A** possui autovalor com parte real positiva, então pequenos desvios de $\hat{\mathbf{x}}(t)$ em relação a $\mathbf{x}(t)$ implicará em erros crescentes com o tempo.

Uma alternativa: realimentação!

- Usar a diferença entre a saídas real (y(t)) e estimada $(\hat{y}(t))$ para corrigir os estados estimados.
- Correção de estados proporcional a $y(t) \hat{y}(t)$:

$$Correção(t) = L(y(t) - \hat{y}(t)) = L(y(t) - \underbrace{c\hat{\mathbf{x}}(t)}_{\hat{y}(t)})$$

Nova equação do estimador

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{B}u(t) + \underbrace{\mathbf{L}(y - \mathbf{c}\hat{\mathbf{x}}(t))}_{\text{Correção}}$$
(14)

Realimentação de $y - \hat{y}$

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{B}u(t) + \underbrace{\mathbf{L}(y - \mathbf{c}\hat{\mathbf{x}}(t))}_{\text{Correção}}$$

Figura: Estimador de estados em malha fechada.

Comportamento do erro de estimação

• Seja $\mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t)$ o erro de estimação. \Rightarrow Derivando:

$$\dot{\mathbf{e}}(t) = \dot{\mathbf{x}}(t) - \dot{\hat{\mathbf{x}}}(t) \\
= \underbrace{\mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)}_{\mathbf{x}(t)} - \underbrace{(\mathbf{A}\hat{\mathbf{x}}(t) + \mathbf{B}u(t) + \mathbf{L}(y - \mathbf{c}\hat{\mathbf{x}}(t)))}_{\dot{\hat{\mathbf{x}}}(t)} \\
= \underbrace{(\mathbf{A} - \mathbf{L}\mathbf{c})}_{\mathbf{x}(t)} \mathbf{x}(t) - \underbrace{(\mathbf{A} - \mathbf{L}\mathbf{c})}_{\dot{\hat{\mathbf{x}}}(t)} \dot{\hat{\mathbf{x}}}(t) \\
= \underbrace{(\mathbf{A} - \mathbf{L}\mathbf{c})}_{\mathbf{Sistema}} \mathbf{Modelo} \\
= (\mathbf{A} - \mathbf{L}\mathbf{c})(\mathbf{x}(t) - \hat{\mathbf{x}}(t)) \\
= (\mathbf{A} - \mathbf{L}\mathbf{c})\mathbf{e} \tag{15}$$

• Ajustando-se os autovalores de $(\mathbf{A} - \mathbf{Lc})$, ajusta-se a velocidade com que $\mathbf{e}(t)$ aproxima-se de zero.

- Se todos os autovalores de ($\mathbf{A} \mathbf{Lc}$) possuem parte real negativa e menor que $-\sigma$, então todos os elementos de $\mathbf{e}(t)$ convergirão para zero em taxas mais rápidas que $e^{-\sigma t}$.
- Portanto, a escolha adequada de **L** dispensa o cálculo de $\mathbf{x}(t_0) \Rightarrow$ mesmo com erro inicial grande, rapidamente $\dot{\mathbf{x}}(t) \longrightarrow \mathbf{x}(t)$.
- Quais autovalores escolher para (A − Lc)?

- Se todos os autovalores de $(\mathbf{A} \mathbf{Lc})$ possuem parte real negativa e menor que $-\sigma$, então todos os elementos de $\mathbf{e}(t)$ convergirão para zero em taxas mais rápidas que $e^{-\sigma t}$.
- Portanto, a escolha adequada de **L** dispensa o cálculo de $\mathbf{x}(t_0) \Rightarrow$ mesmo com erro inicial grande, rapidamente $\dot{\mathbf{x}}(t) \longrightarrow \mathbf{x}(t)$.
- Quais autovalores escolher para (A Lc)?
- ⇒ Mesma região discutida no caso de realimentação de estados;
- ⇒ Se o estimador é usado para realimentação de estados ⇒ seus autovalores devem ser mais rápidos que os da malha fechada (5 a 10 vezes);
- ⇒ Limitação: quanto mais rápido o estimador, maiores serão os problemas devidos a saturação e ruído.

Condição para projeto

Teorema

Considere o par (\mathbf{A}, \mathbf{c}) . Todos os autovalores de $(\mathbf{A} - \mathbf{Lc})$ podem ser arbitrariamente escolhidos selecionandose um vetor real \mathbf{L} se e somente se (\mathbf{A}, \mathbf{c}) (ou $(\mathbf{A}', \mathbf{c}')$) é observável (controlável).

Procedimento de projeto

- 1. Escolha $\mathbf{F} \in \mathbb{R}^{n \times n}$ com os autovalores desejados.
- 2. Selecione qualquer $\mathbf{L} \in \mathbb{R}^{n \times 1}$ tal que (\mathbf{F}, \mathbf{L}) seja controlável.
- Encontre o único T solução de TA FT = Lc. T é não singular:
- 4. Uma estimativa de $\mathbf{x}(t)$ é gerada por

$$\dot{\mathbf{z}}(t) = \mathbf{F}\mathbf{z}(t) + \mathbf{T}\mathbf{B}u(t) + \mathbf{L}y(t)$$
 (16)

$$\hat{\mathbf{x}}(t) = \mathbf{T}^{-1}\mathbf{z}(t) \tag{17}$$

Seja o erro dado por

$$\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}(t) \Rightarrow \mathbf{T}\mathbf{e} = \mathbf{T}\mathbf{x}(t) - \underbrace{\mathbf{T}\hat{\mathbf{x}}(t)}_{\mathbf{z}} \Rightarrow \tilde{\mathbf{e}} = \mathbf{T}\mathbf{x} - \mathbf{z}$$

Derivando:

$$\dot{ ilde{\mathbf{e}}} = \mathbf{T}\dot{\mathbf{x}}(t) - \dot{\mathbf{z}}$$

Usando: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$ e a equação de Silvester (Lyapunov), $\mathbf{TA} = \mathbf{FT} + \mathbf{Lc}$:

$$\dot{\tilde{\mathbf{e}}} = \underbrace{\frac{\mathbf{TAx}(t) + \mathbf{TB}u(t)}{\mathbf{T\dot{x}}(t)}}_{\mathbf{T\dot{x}}(t)} - \underbrace{\frac{(\mathbf{Fz}(t) + \mathbf{TB}u(t) + \mathbf{L\dot{cx}}(t))}{\dot{z}}}_{\dot{z}}$$

$$= (\mathbf{FT} + \mathbf{L\dot{c}})\mathbf{x}(t) - (\mathbf{Fz}(t) + \mathbf{L\dot{cx}}(t))$$

$$= \mathbf{F}(\underbrace{\mathbf{Tx}(t) - \mathbf{z}(t)}_{\tilde{\mathbf{e}}(t)})$$

$$= \mathbf{F\tilde{e}}(t)$$

- Se **F** é estável, $\lim_{t\to\infty} \mathbf{e}(t) = 0$
 - \Rightarrow portanto $\mathbf{z}(t)$ aproxima-se de $\mathbf{T}\mathbf{x}(t)$
- \Rightarrow de forma equivalente: $\mathbf{T}\hat{\mathbf{x}}(t)$ aproxima-se de $\mathbf{T}\mathbf{x}(t)$ \Leftrightarrow $\hat{\mathbf{x}}(t)$ \longrightarrow $\mathbf{x}(t)$
- \bullet Toda a discussão feita sobre a escolha de F e $\bar{\textbf{K}}$ (aqui L) aplica-se novamente.

E se o modelo está na forma canônica?

Na forma canônica observável

$$G(s) = \frac{c_1 s^{n-1} + c_2 s^{n-2} + \dots + c_{n-1} s^1 + c_n}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0}$$

pode ser realizada como

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t), \quad \text{com}$$

$$\mathbf{A} = \begin{bmatrix} -\alpha_{n-1} & 1 & 0 & \cdots & 0 \\ -\alpha_{n-2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\alpha_0 & 0 & 0 & \cdots & 0 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$(19)$$

Na equação do erro

$$\dot{\mathbf{e}}(t) = (\mathbf{A} - \mathbf{L}\mathbf{c})\mathbf{e}(t), \text{ com } \mathbf{L} = \begin{bmatrix} \ell_n \\ \ell_{n-1} \\ \vdots \\ \ell_1 \end{bmatrix} \text{ leva a}$$

$$A - Lc =$$

$$\begin{bmatrix} -\alpha_{n-1} - \ell_n & 1 & 0 & \cdots & 0 \\ -\alpha_{n-2} - \ell_{n-1} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\alpha_0 - \ell_1 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} -\bar{\alpha}_{n-1} & 1 & 0 & \cdots & 0 \\ -\bar{\alpha}_{n-2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\bar{\alpha}_0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$
Desejado

Assim...

Procedimento

Os elementos do ganho de realimentação \mathbf{L} do observador de estados que geram a dinâmica de erro dada por $\dot{\mathbf{e}}(t) = (\mathbf{A} - \mathbf{Lc})\mathbf{e}(t)$ são calculados usando:

$$\ell_i = \bar{\alpha}_{i-1} - \alpha_{i-1}, \quad i = 1, \dots, n.$$
 (21)

