Chapter 7

The Ramsey Model

7.1 Explicit dynamics: government spending

Households have an intertemporal logarithmic utility function:

$$U = \sum_{t} \beta^{t} Log C_{t}$$

Firms have a Cobb-Douglas production function:

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha}$$

Capital depreciates fully in one period, so that:

We further assume that the government wants to carry public spending G_t in the amount:

$$G_t = \zeta Y_t$$

These government expenses are financed by a lump sum tax $T_t = G_t$

7.1.1 Questions

- 1. Write the first order conditions of the household.
- 2. Compute consumption and investment.

7.1.2Solution

1. The first order conditions

The household maximizes utility:

$$U = \sum_{t} \beta^{t} Log C_{t}$$
exints: (7.1)

subject to the budget constraints:

The Lagrangian is:

$$\sum_{t} \beta^{t} \left\{ LogC_{t} + \underline{\lambda_{t}} \left[R_{t}K_{t} + \omega_{t}L_{t} - T_{t} - C_{t} - \underline{K_{t+1}} \right] \right\}$$

$$(7.3)$$

The first order conditions in C_t and K_t yield:

$$T = \lambda_t \tag{7.4}$$

$$\frac{1}{C_t} = \lambda_t$$
 with $\lambda_t = \beta R_{t+1} \lambda_{t+1}$ and $\lambda_t = \beta R_{t+1} \lambda_{t+1}$ Capilla Shaw in view of the Cobb-Douglas utility function:

Firm maximize profit subjected to budget

$$R_{t+1} = \frac{\alpha Y_{t+1}}{K_{t+1}} = \frac{\alpha Y_{t+1}}{I_t}$$

(7.6)

(7.5)

Combining (4), (5) and (6) we obtain:

$$\left(\frac{\int_{C}^{+}}{C}\right)^{+}$$

1-01

$$\frac{I_t}{C_t} = \alpha \beta \frac{Y_{t+1}}{C_{t+1}} \tag{7.7}$$

2. Equilibrium consumption and investment

Now we have the accounting identity:

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$G_{t} = \zeta Y_{t}$$

$$(1 - \zeta) Y_{t} = C_{t} + I_{t}$$

$$(7.8)$$

$$C_{t} - I_{t}$$

$$(7.9)$$

with:

$$\frac{I_t}{C_t} = \frac{\alpha\beta}{1-\zeta} + \frac{\alpha\beta}{1-\zeta} \frac{I_{t+1}}{C_{t+1}}$$
1st order difference equation
$$\frac{1}{\zeta} = \frac{\alpha\beta}{1-\zeta} + \frac{\alpha\beta}{1-\zeta} \frac{I_{t+1}}{C_{t+1}}$$

$$\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$$

7.2. EXPLICIT DYNAMICS: DISTORTIONARY TAXATION

Integrating forward we find:

So we have:

$$\frac{I_t}{\alpha \beta} = \frac{C_t}{1 - \zeta - \alpha \beta} = \frac{I_t + C_t}{1 - \zeta} \neq Y_t$$

(7.12)

So the values of consumption and investment are:

$$C_t = (1 - \zeta - \alpha\beta) Y_t$$

$$(7.13)$$

(7.14)

7.2 Explicit dynamics: distortionary taxation

We take the same model as in problem 7.1, but we now assume that G_t is financed by a proportional tax on all components of income Y_t :

$$G_t = \tau Y_t$$

The budget is balanced, so that $\tau = \zeta$.

7.2.1 Questions

- 1. Compute the dynamics of the economy.
- 2. What is the effect of distortionary taxation on investment?

7.2.2 Solution

1. The dynamics of consumption and investment

The problem is similar to that of problem 7.1, but the budget constraint of the consumer is now:

 $C_t + K_{t+1} = (1 - \tau) (R_t K_t + \omega_t L_t)$ (7.

with $\tau = \zeta$. Maximizing the utility function (1) subject to the budget constraints (15) yields the following equation, which replaces (7):

$$\frac{I_t}{C_t} = \alpha\beta \left(1 - \tau\right) \frac{Y_{t+1}}{C_{t+1}} = \alpha\beta \left(1 - \zeta\right) \frac{Y_{t+1}}{C_{t+1}} \tag{7.16}$$

Combining with (8) and (9), this yields the dynamic equation in I_t/C_t :

filstorder
$$\frac{I_{t}}{C_{t}} = \alpha \beta + \alpha \beta \frac{I_{t+1}}{C_{t+1}}$$

$$5, 5,$$

$$A = \alpha \beta + \alpha \beta A$$
(7.17)

50

2. Distortionary taxation and investment

Integrating (17) forward we obtain:

(7.18)

and so:

$$\frac{I_{t\bullet}}{\alpha\beta} = \frac{C_t}{1-\alpha\beta} = I_t + C_t = (1-\zeta)Y_t = (7.19)$$

from which we deduce consumption and investment:

$$C_t = (1 - \alpha\beta)(1 - \zeta)Y_t \tag{7.20}$$

$$I_t = \alpha \beta \left(1 - \zeta\right) Y_t \tag{7.21}$$

 $I_{t} = \alpha \beta (1 - \zeta) Y_{t} \tag{7.21}$ Comparing formulas (14) and (21), we see that distortionary taxation reduces investment.

7.3 Labor versus capital taxation

Distortionary taxes are levied proportionally on labor and capital income. We assume here that these tax rates are constant in time, and denote them τ_{ℓ} and τ_{k} respectively. Government spending is a given fraction of national income:

$$G_t = \zeta Y_t$$

We shall compute the optimal τ_{ℓ} and τ_{k} associated to ζ . We assume a Cobb-Douglas production function and hundred percent depreciation:

$$Y_t = AK_t^{\alpha} L_t^{1-\alpha}$$

$$K_{t+1} = I_t$$

The utility function is logarithmic:

$$U = \sum \beta^t Log C_t$$

We finally assume that the government budget is balanced in each period.

51

7.3.1 Questions

- 1. Derive the first order conditions.
- 2. Compute consumption and investment as a function of income and the tax rates.
- 3. Find the optimal tax rates τ_{ℓ} and τ_{k} .

7.3.2 Solution

1. First order conditions

Households maximize their intertemporal utility subject to their successive budget constraints, i.e.:

Maximize
$$\sum \beta^t Log C_t$$
 s.t.
$$C_t + K_{t+1} = (1 - \tau_\ell) \omega_t L_t + (1 - \tau_k) R_t K_t$$

where R_t , the rate of return on capital, is equal to:

$$R_t = \frac{\alpha Y_t}{K_t} \tag{7.22}$$

The first order conditions yield the following equation, which replaces (7) and (16):

$$\frac{I_t}{C_t} = \alpha \beta \left(1 - \tau_k\right) \frac{Y_{t+1}}{C_{t+1}} \tag{7.23}$$

Combining with $Y_t = C_t + I_t + G_t$ and $G_t = \zeta Y_t$ we obtain:

$$\frac{I_t}{C_t} = \frac{\alpha\beta}{1-\zeta} \left(1-\tau_k\right) + \frac{\alpha\beta}{1-\zeta} \left(1-\tau_k\right) \frac{I_{t+1}}{C_{t+1}} \tag{7.24}$$

2. Consumption and investment

Equation (24) can be integrated forward provided:

and it yields:

$$rac{I_{t}}{C_{t}}=rac{lphaeta\left(1- au_{k}
ight)}{1-\zeta-lphaeta\left(1- au_{k}
ight)}$$

So:

$$\frac{I_t}{\alpha\beta\left(1-\tau_k\right)} = \frac{C_t}{1-\zeta-\alpha\beta\left(1-\tau_k\right)} = \underbrace{I_t + C_t}_{1-\zeta} = Y_t$$

$$(7.26) = I + G + C$$
 $(7.27) G = C$

We therefore have consumption and investment:

$$C_{t} = \left[1 - \zeta - \alpha\beta \left(1 - \tau_{k}\right)\right] Y_{t}$$

n,

NO

$$K_{t+1} = I_t = \alpha \beta \left(1 - \tau_k\right) Y_t$$

log Y= log K+

ho X

3. Optimal taxes

From the law of evolution of capital (29), and the production function $Y_t = AK_t^{\alpha}L_t^{1-\alpha}$, we deduce that, up to a constant:

$$Log K_t = \frac{1 - \alpha^t}{1 - \alpha} Log \left[\alpha \beta \left(1 - \tau_k \right) \right] + \alpha^t Log K_0 \tag{7.30}$$

Now the government wants to maximize:

$$\sum \beta^{t} LogC_{t} = \sum \beta^{t} \left\{ Log \left[1 - \zeta - \alpha\beta \left(1 - \tau_{k} \right) \right] + LogY_{t} \right\}$$
 (7.31)

which becomes, in view of the Cobb-Douglas production function:

$$\sum \beta^{t} \left\{ Log \left[1 - \zeta - \alpha\beta \left(1 - \tau_{k} \right) \right] + \alpha Log K_{t} \right\}$$
 (7.32)

Let us insert (30) into (32), omitting the irrelevant terms in K_0 . This gives the maximand:

$$\sum_{\beta} \int Log \left[1 - \zeta - \alpha\beta \left(1 - \tau_k\right)\right] + \alpha \frac{1 - \alpha^t}{1 - \alpha} Log \left[\alpha\beta \left(1 - \tau_k\right)\right]$$
 (7.33)

which is equal to:

$$\frac{Log\left[1-\zeta-\alpha\beta\left(1-\tau_{k}\right)\right]}{1-\beta}+\frac{\alpha\beta}{\left(1-\beta\right)\left(1-\alpha\beta\right)}Log\left[\alpha\beta\left(1-\tau_{k}\right)\right]\tag{7.34}$$

Differentiating with respect to τ_k we find:

$$\tau_k = \zeta$$
(7.35)

programming in the constraint in the constrai

Now the government's financing constraint is:

$$G_t = \tau_\ell \omega_t L_t + \tau_k R_t K_t \tag{7.36}$$

We further have:

$$G_t = \zeta Y_t \tag{7.37}$$

and:

$$Y_t = R_t K_t + \omega_t L_t$$

These last four equations yield:

$$\tau_{\ell} = \zeta \tag{7.39}$$