SP706P/R/S/T, SP708/R/S/T

+3. 0V/+3. 3V 低功耗微处理器外围监控器件

- 高精度低电压监控器
 - 2.63V 下的 SP706P/R 及 SP708R
 - 2.93V 下的 SP706S 及 SP708S
 - 3.08V 下的 SP706T 及 SP708T
- 复位脉冲宽度-200ms
- 独立的看门狗定时器-溢出周期 1.6s (SP706P/S/R/T)
- 最大电源电流 40uA
- 支持开关式 TTL/CMOS 手动复位输入
- Vcc 下降至 1V 时,产生RESET信号
- RESET 输出:

SP706P 高电平有效 SP706R/S/T 低电平有效 SP708R/S/T 支持高/低电平两种方式

- WDI 可以保持为浮空,以禁止看门狗功能
- 内嵌 Vcc 干扰抑止电路
- 提供8引脚PDIP, NSOIC及uSOIC封装
- 内嵌电压监测器,可检测供电失败或电池不足警告
- 706P/R/S/T 及 708R/S/T 引脚兼容性增强以符合工业标准

描述

SP706P/S/R/T, SP708R/S/T 系列属于微处理器(uP)监控器件。其集成有众多组件,可监测 uP 及数字系统中的供电及电池的工作情况。由于以上众多组件的使用,SP706P/S/R/T,SP708R/S/T 系列可有效地增强系统的可靠性及工作效率。SP706P/S/R/T,SP708R/S/T 系列包含一个看门狗定时器,一个 uP 复位模块,一个供电失败比较器,及一个手动复位输入模块。SP706P/S/R/T,SP708R/S/T 系列适用于+3. 0V 或+3. 3V 环境 ,如计算机,汽车系统,控制器,及其他一些智能仪器。对于对电源供电要求严格的 uP 系统/数字处理系统,SP706P/R/S/T,SP708R/S/T 系列是一款非常理想的选择。

型号	RESET 有效态	RESET 阈值	手动复位	PFI 准确率	看门狗输入
SP706P	高	2.63V	YES	4%	YES
SP706R	低	2.63V	YES	4%	YES
SP706S	低	2. 93V	YES	4%	YES
SP706T	低	3. 08V	YES	4%	YES
SP708R	低/高	2. 63V	YES	4%	NO
SP708S	低/高	2. 93V	TES	4%	NO
SP708T	低/高	3. 08V	YES	4%	NO

极限参数

终端电压(以GND为基准):

Vcc -0.3V 到+6.0V

输入电流:

 Vcc
 20mA

 GND
 20mA

 输出电流(所有输出)
 20mA

 ESD 额定值
 2kV

电源持续功耗:

Plastic DIP (70℃以上时, 9.09mW/℃递减) 727mW 50 (70℃以上时, 5.88mW/℃递减) 471mW Mini SO (70℃以上时, 4.10mW/℃递减) 330mW 正常工作温度范围 -65℃到 160℃

这里仅对部分参数进行描述,器件在以上状态的工作性能,及下面规范中的相关操作,没有在这里说明。长期处于极限工作状态将影响器件的稳定性。

规范

SP70_P/R 的 Vcc 范围为 2. 7V 到 5. 5V,SP70_S 的 Vcc 范围为 3. 0 到 5. 5V,SP70_T 的 Vcc 范围为 3. 15V 到 5. 5V, $T_A=T_{MIN}$ 到 T_{MAX} 到 T_{MAX} 的 T_{MAX} 所非有特别说明,一般以上数据皆以 25 ℃时为准。

参数	最小值	典型值	最大值	单位	条件
操作电压范围,Vcc	1.0		5. 5	V	
电源电流, I _{SUPPLY}		25	40	UA	MR=Vcc 或浮空,WDI 浮空
复位阀值	2. 55	2. 63	2. 70	V	SP70_P/R
	2. 85	2. 93	3. 00		SP70_S
	3. 00	3. 08	3. 15		SP70_T
滞后复位阀值		20		mV	注解 2
复位脉冲宽度, t _{rs}	140	200	280	ms	注解 2
RESET输出电压					
V_{OH}	0.8xVcc				$V_{\text{RST(MAX)}} < V_{\text{CC}} < 3.6 \text{V}$, $I_{\text{SOURCE}} = 500 \text{uA}$
V_{OL}			0.3	V	$V_{\text{RST(MAX)}} \le V_{\text{CC}} \le 3.6 \text{V}$, $I_{\text{SINK}} = 1.2 \text{mA}$
V_{OH}	Vcc-1.5				4.5V <vcc<5.5v, i<sub="">SOURCE=800uA</vcc<5.5v,>
V_{OL}			0. 4		4.5 V < V cc<5.5 V , I _{SINK} =3.2 m A

RESET 输出电压					
V _{OH}	VCC-0. 6				V _{RST (MAX)} <vcc<3.6v, i<sub="">SOURCE=215uA</vcc<3.6v,>
V _{ot} .	, , , , , , ,		0.3	V	V _{RST (MAX)} <vcc<3. 6v,="" i<sub="">SOURCE=1. 2mA</vcc<3.>
V _{OH}	VCC-1. 5		0.0	`	4. 5V <vcc<5. 5v,="" i<sub="">SOURCE=800uA</vcc<5.>
V _{ot} .	1.00		0. 4		4. 5V <vcc<5. 5v,="" i<sub="">SOURCE=3. 2mA</vcc<5.>
看门狗溢出周期,two	1.00	1. 60	2. 25	S	Vcc<3.6V
WDI 脉冲宽度,twp	50	1.00	2. 20	Ns	V _{IL} =0.4V, V _{IH} =0.8xVcc
WDI 输入阀值	30			113	VIII U. TV, VIII U. GAVEC
V _{IL}			0.6		VRST(MAX) <vcc<3.6v< td=""></vcc<3.6v<>
V _{IH}	0. 7xVcc		0.0	V	VRST (MAX) <vcc<3. 6v<="" td=""></vcc<3.>
V _{II}	0. 72700		0. 6	'	Vcc=5. 0V
V _{IL}	3. 5		0.0		Vcc=5. 0V
WDI 输入电流	-1	0. 02	1	uA	WDI=0 或 Vcc
	-1	0.02	1	uA	WD1-0 致 ₹CC
WDO输出电压 Von	0.8xVcc				V _{rst (MAX)} <vcc<3.6v, i<sub="">source=500uA</vcc<3.6v,>
V _{OL}	U. OXVCC		0.3	V	V _{RST (MAX)} VCC S. 6V, I _{SUNK} =3.00dA V _{RST (MAX)} VCC S. 6V, I _{SUNK} =1.2mA
	Vcc-1.5		0. 5	v	4. 5V <vcc<5. 5v,="" i<sub="">SOURCE=800uA</vcc<5.>
V _{OH}	VCC-1. 5		0.4		
V _{OL}	0.5	70	0. 4		4. 5V <vcc<5. 5v,="" i<sub="">SINK=3. 2mA</vcc<5.>
MR上拉电流	25	70	250	uA	MR=0V, $V_{RST (MAX)} < V_{CC} < 3.6V$
	100	250	600		MR=0V, 4.5V <vcc<5.5v< td=""></vcc<5.5v<>
MR脉冲宽度, tm	500			ns	V _{RST (MAX)} <vcc 2<="" <3.6v,注解="" td=""></vcc>
	150				4.5V <vcc<5.5v, 2<="" td="" 注解=""></vcc<5.5v,>
MR脉冲宽度, tw	500			ns	V _{RST (MAX)} <vcc<3.6v< td=""></vcc<3.6v<>
_	150				4. 5V <vcc<5. 5v<="" td=""></vcc<5.>
MR输入阀值					
$V_{\scriptscriptstyle \mathrm{IL}}$			0.6		V _{rst (MAX)} <vcc<3. 6v<="" td=""></vcc<3.>
V_{IH}	0.7xVcc			V	V _{rst (MAX)} <vcc<3. 6v<="" td=""></vcc<3.>
$V_{\scriptscriptstyle \mathrm{IL}}$			0.8		4. 5V <vcc<5. 5v<="" td=""></vcc<5.>
V _{IH}	2. 0				4. 5V <vcc<5. 5v<="" td=""></vcc<5.>
MR到复位时的延迟,			750	ns	V _{RST (MAX)} <vcc<3.6v,注解 2<="" td=""></vcc<3.6v,注解>
twD			250		4.5V <vcc<5.5v, 2<="" td="" 注解=""></vcc<5.5v,>
PFI 输入阀值	1. 20	1. 25	1. 30	V	SP70_P/R: Vcc=3.0V
					SP70_S/T: Vcc=3.3V
					PFI 失败
PFI 输入电流	-25.00	0. 01	25. 00	nA	
PF0输出电压					
VOH	0.8xVcc				$V_{RST(MAX)}$ < Vcc < 3. 6V, I_{SOURCE} = 500uA
VOL			0.3	V	$V_{\text{RST (MAX)}} \le V_{\text{CC}} \le 3.6 \text{V}$, $I_{\text{SINK}} = 1.2 \text{mA}$
VOH	Vcc-1.5				4.5V $<$ Vcc $<$ 5.5V, I $_{SOURCE}$ =800uA
VOL			0. 4		4.5V $<$ Vcc $<$ 5.5V, I $_{SINK}$ =3.2mA

图 1 引脚分布图

名称			引脚描述					
			SP706P		SP70R/S/T		SP708R/S/T	
		DIP/	uSOIC	DIP/	uSOIC	DIP/	uS0IC	
		SOIC		SOCI		SOCI		
MR	手动复位-当被拉低于 0.8V 以下时,输入触发一个复位	1	3	1	31	1	3	
	信号。其输入为低电平有效,内部有 70uA 上拉电流。							
	其可被 TTL/CMOS 逻辑线驱动,或通过开关短接至地。							
Vcc	电压输入	2	4	2	4	2	4	
GND	所有信号的地参考端	3	5	3	5	3	5	
PFI	供电失败信号输入—当电压监控器输入低于 1.25V 时,	4	6	4	6	4	6	
	PFO 为 LOW。如果没有使用该引脚,可将 PFI 连接至地							
	或VCC。							
PF0	供电失败信号输出—输出为高直到 PFI 低于 1.25V。	5	7	5	7	5	7	
WDI	看门狗输入—如果输入保持 HIGH 或者 LOW 长达 1.6s,	6	8	6	8			
	内部看门狗定时器超时,WDO将为 LOW。将 WDI 浮空或者							
	将 WDI 与高阻抗触发缓冲连接,以禁止看门狗功能。一							
	旦设定RESET,且 WDI 为触发态,或 WDI 遇到一个上升							
	沿/下降沿,内部看门狗定时器都将清0。							
NC	无连接					6	8	
RESET	低电平有效RESET信号输出—当 Vcc 低于复位阀值后,			7	1	7	1	
	将输出 200ms 的 LOW 脉冲。其保持 200ms 的低电平,在							
	Vcc 上升超过复位阀值,或MR从 LOW 上升到 HIGH 的过程							
	中。一个看门狗溢出将不会触发RESET,除非WDO与 MR							
	连接。							

WDO	看门狗输出一当内部看门狗定时器完成 1.6s 的计时,	8	2	8	2		
	其将被拉低;其不会升高,直到看门狗被清为 0。WDO在						
	低电平状态下将为 LOW。当 Vcc 低于复位阀值, WDO将						
	为低。然而,与RESET不同,WDO没有最小的脉冲宽度限						
	制。一旦 Vcc 超过复位阀值,WDO 将立即持续为 HIGH,						
	之间没有任何延迟。						
RESET	高电平有效 RESET 输出- 输出为 RESET 的补充。一旦	7	1	-	-	8	2
	RESET 为高,RESET为低,反之亦然。SP708R/S/T 仅有						
	一个复位输出。						

表 1 器件引脚描述

图 2 SP706P/R/S/T 内部模块图

图 3 SP708R/S/T 内部模块图

图 4A 供电失败比较器反向设定响应时间

图 4B 供电失败比较器反向设定响应时间电路图

图 5A 供电失败比较器设定响应时间

图 5B 供电失败比较器设定响应时间电路图

图 6A SP706 RESET输出电压 vs 电源电压

图 6B SP706 RESET输出电压 vs 电源电压电路图

图 7A SP706 RESET输出

图 7B SP706 RESET响应时间电路图

图 8 SP708 RESET 及RESET的断定

图 9 SP708 RESET 及RESET反向断定图

图 10 SP708 RESET 与RESET 断定与反向断定电路图

图 11 SP708 RESET 输出电压 vs 电源电压

图 13 SP708 输出电压 vs 电源电压 与 RESET 响应时间电路图

特性

SP706P/R/S/T-SP708R/S/T 系列提供 4 个关键功能:

- 1 在上电,下电及掉电情况下复位输出。
- 2 如果看门狗输入引脚在 1.6S 内没有接收到一个信号,一个独立的看门输出将为低。
- 3 一个 1.25V 的阀值检测器供电失败警告,低电池检测。或监控一个非+3.3V/+3.0V 的电源。
- 4 一个低电平手动复位允许外部按键开关产生 RESET 信号。

SP706R/S/T 与 SP708R/S/T 比较,其多了一个高电平复位,且不带看门狗,其他均相同(可参见第一页中的列表)。SP706P 与 SP706R 比较,其不仅支持高电平复位还支持低电平复位。

操作原理

SP706P/R/S/T-SP708R/S/T 属于微处理器监控电路,可监控某些数字电路的供电,如微处理器,微控制器,或存储体。这一系列适用于一些要求对电源进行监控的便携式,电池供电设备。使用该系列芯片可有效降低系统的复杂性。该系列的看门狗功能可持续对系统的工作状态进行监控。下文将对SP706P/R/S/T—SP708R/S/T 的更多工作特性及优点进行描述。

复位输出

一个微处理器复位输入可启动 uP(以一种已知的状态)。SP706P/R/S/T-SP708R/S/T 系列将在上电的过程产生复位,在下电或掉电过程中阻止代码运行错误。

在上电的过程中,一旦 Vcc 达到 1V,RESET将为一个稳定的逻辑低电平,一般为 0.4V 或者更低。当 Vcc 升高后,RESET 将保持 LOW。当 Vcc 超过复位阀值时,一个内部定时器将产生 200ms 的RESET信号,一旦 Vcc 跌至复位阀值以下时(如系统掉电),RESET保持低电平。如果在初始化复位的过程中产生掉电,复位脉冲将至少持续 140ms。在下电的过程中,一旦 Vcc 跌至复位阀值以下,RESET将保持为 LOW,并稳定在 0.4V 或更低,直到 Vcc 低于 1V。

高电平 RESET 输出是RESET输出的一种简单补充, 当 Vcc 低于 1.1V 时保持有效。一些 uP, 如 Intel 的 80C51, 需要高电平复位脉冲。

看门狗定时器

SP706P/R/S/T-SP708R/S/T 系列看门狗电路可监控 uP 的工作状态。如果 uP 在 1.6s 内没有发出 WDI (WatchDog Input: 看门狗输入) 信号,或 WDI 没有进入触发态,WDO将为 LOW。当RESET信号发出以后,WDI 为触发态,看门狗定时器将被清 0,并停止计数。当RESET被释放,WDI 被拉为 HIGH 或 LOW,定时器将开始计数。此时可以检测到脉宽至少为 50ns。

一般情况下,WDO可与 uP 的 NMI(Non-Maskable Interrupt:不可屏蔽中断)输入引脚连接。当 Vcc 跌至复位阀值以下时,WDO将持续为 LOW,且不受看门狗定时器的约束。一般,其将产生一个 NMI 信号,但是RESET同时将为低,NMI 信号将被系统忽略。

如果 WDI 保持为无连接状态,WDO可以作为低线输出。因为浮空状态的 WDI 禁止内部定时器,仅当 Vcc 低至复位阀值以下时,WDO为 LOW,其可作为低线输出。

图 14 看门狗时序图

供电失败比较器

供电失败比较器有多种用途,因为其输出端及非反向输入端没有内部连接。其反向输入内部连接有1.25V的参考源。

为了构建一个供电失败的预警电路,可将 PFI 引脚与分压器相连,如图 16。在+5V 稳压器产生压差之前,选择分压比使 PFI 上的电压降至 1.25V 以下。使用PFO以中断 uP,这样可以为掉电做准备。

手动复位

手动复位(MR)输入允许 RESET 可被外部按键触发。开关可产生一个最低 140ms 的 RESET 脉冲。MR与 TTL/CMOS 逻辑兼容,所以其可以驱动外部逻辑线路。SP706P/R/S/T-SP708R/S/T 的MR能够被用来强制一个看门狗溢出以产生一个 RESET 脉冲,需将WDO连接至MR即可。

图 15 WDI 触发态时序。RESET 输出与图中RESET波形相反

Vcc 下降到 0V, 可确保得到一个有效的 RESET 输出

当Vcc降低到1V,RESET输出不再下降,其为开路。如果高阻抗CMOS逻辑输入端没有被驱动,其有可能发生漂移,得到一个不确定的电压值。如果一个下拉电阻被增加到RESET引脚上,任何干扰电荷或漏级电流将被导向地端,并保持RESET为低。电阻值在这里并不重要。 $100K\Omega$ 左右即可,足够大不能通过RESET信号,足够小不能将RESET拉至地。

监控电压与未调节DC输入端不同点

监控电压与未调节DC不同之处在于连接了一个分压器至RFI,并可专用于分压比调节。如果需要,可通过在PFI和PF0之间连接一个电阻(其值10倍于潜在分频网络上的两个电阻之和)增加一定的滞后。PFI与GND之间的电容,将减少供电失败电路检测线上高频噪声的敏感度。RESET能够被用来监测电压(除了+3.3V/+3.0V的Vcc线)。当PFI低至1.25V以下时,连接PF0至MR以初始化一个复位信号。图17所示为,当+3.3V/+3.0V的电源降至RESET阀值以下时,或当+12V电源下降11V左右时,SP706R/S/T-SP708R/S/T系列如何配置以设定RESET。

监控负电压源

供电失败比较器可以可以对负电源,如图18所示。当负轨性能良好(负电压数值较大),PFO为LOW。通过增加一个电阻和晶体管(如下图所示),一个HIGH PFO信号将触发RESET信号。当PFO保持为HIGH足够的时间后,SP706P/R/S/T-SP708R/S/T系列将持续产生RESET(RESET=LOW,RESET=HIGH)。电路的准确率依靠于PFI阀值容限,Vcc线路及相关电阻。

与uP(带准双向RESET引脚)的接口

带准双向RESET引脚的uP,如Motorola 68HC11系列,支持RESET输出功能。如,RESET输出被驱动为HIGH,而uP准备将其拉低时,将会得到一个不确定的逻辑电平。为了防止这种现象的出现,可在RESET输出与uP复位I/0之间连接一个4.7K Ω 电阻,如图19。并缓冲RESET输出,以供其他系统组件使用。

图16 典型操作电路

图17 同时监控+3.3V/+3.0V及+12V的电源

负向瞬态Vcc

当uP在供电、下电及掉电的过程中产生复位,这些监控在短时间内不受负向Vcc的干扰。有时Vcc仅仅 掺杂了一些小脉冲,其也会复位uP。

图20所示为最大瞬态持续时间 vs 复位比较器过载,此时不产生复位脉冲。可使用负向Vcc脉冲产生数据,根据数量(复位比较器)在3.3V时启动,在低于复位阀值时终止。图中所示为最大脉冲宽度,一个负向Vcc干扰可能在没有产生复位脉冲的情况下存在。当瞬态响应的振幅增长(如,远低于复位阀值),最大允许脉冲宽度减少。一般情况下,Vcc瞬态振幅为100mV,或在复位阀值以下持续40us或更短时间,将不会产生复位脉冲。需要靠近Vcc引脚接一个100nF旁路电容以抵抗瞬态效应。

应用设计

对于现在的工业器件,SP706P/R/S/T-SP708R/S/T系列提供优良功能及更低功耗。参见图21及22中的,电源电流性能特性与温度及电源电压关系图。

图18 监控反向电压源

图19 SP706与uP间(带准双向复位I/0)的接口

图20 最大瞬态持续时间(无复位脉冲)vs 复位比较器过载

图21 电源电流 vs 温度

图22 电源电流 vs 电源电压

订购信息

温度范围	封装
0℃到+70℃	8引脚PDIP
0℃到+70℃	8引脚NSOIC
0℃到+70℃	8引脚uSOIC
0℃到+70℃	8引脚PDIP
0℃到+70℃	8引脚NSOIC
0℃到+70℃	8引脚uSOIC
	0℃到+70℃ 0℃到+70℃ 0℃到+70℃ 0℃到+70℃ 0℃到+70℃

SP706SCP	0℃到+70℃	8引脚PDIP		
SP706SCN	0℃到+70℃	8引脚NSOIC		
SP706SCU	0℃到+70℃	8引脚uSOIC		
SP706TCP	0℃到+70℃	8引脚PDIP		
SP706TCN	0℃到+70℃	8引脚NSOIC		
SP706TCU	0℃到+70℃	8引脚uSOIC		
SP706PEP	-40℃到+85℃	8引脚PDIP		
SP706PEN	-40℃到+85℃	8引脚NSOIC		
SP706PEU	-40℃到+85℃	8引脚uSOIC		
SP706REP	-40℃到+85℃	8引脚NSOIC		
SP706REN	-40℃到+85℃	8引脚NSOIC		
SP706REU	-40℃到+85℃	8引脚uSOIC		
SP706SEP	-40℃到+85℃	8引脚PDIP		
SP706SEN	-40℃到+85℃	8引脚NSOIC		
SP706SEU	-40℃到+85℃	8引脚uS0IC		
SP706TEP	-40℃到+85℃	8引脚PDIP		
SP706TEN	-40℃到+85℃	8引脚NSOIC		
SP706TEU	-40℃到+85℃	8引脚uSOIC		
SP708RCP	0℃到+70℃	8引脚PDIP		
SP708RCN	0℃到+70℃	8引脚NSOIC		
SP708RCU	0℃到+70℃	8引脚uSOIC		
SP708SCP	0℃到+70℃	8引脚PDIP		
SP708SCN	0℃到+70℃	8引脚NSOIC		
SP708SCU	0℃到+70℃	8引脚uSOIC		
SP708TCP	0℃到+70℃	8引脚PDIP		
SP708TCN	0℃到+70℃	8引脚NSOIC		
SP708TCU	0℃到+70℃	8引脚uSOIC		
SP708REP	-40℃到+85℃	8引脚PDIP		
SP708REN	-40℃到+85℃	8引脚NSOIC		
SP708REU	-40℃到+85℃	8引脚uSOIC		
SP708SEP	-40℃到+85℃	8引脚PDIP		
SP708SEN	-40℃到+85℃	8引脚NSOIC		
SP708SEU	-40℃到+85℃	8引脚uSOIC		
SP708TEP	-40℃到+85℃	8引脚PDIP		
SP708TEN	-40℃到+85℃	8引脚NSOIC		
	10 0 23 100 0	0 31//44/18010		