Problema da Parada

Teoria da Computação

INF05501

Relembrando

- O Problema da Auto-Aplicação tenta determinar a existência de um programa universal, o qual é capaz de processar qualquer outro programa, incluindo ele mesmo
- Tal problema é indecidível (não-solucionável)
- O Princípio da Redução permite que partamos de problemas cuja a classe de solucionabilidade seja conhecida e possamos determinar a classe de outros problemas
- Logo, podemos usar o Problema da Auto-Aplicação para determinar a decidibilidade de outros problemas

Problema da Parada

Dadas uma Máquina Universal M e uma entrada qualquer w sobre o alfabeto de entrada Σ de M, decidir se M irá parar para w

Problema da Parada

Dadas uma Máquina Universal M e uma entrada qualquer w sobre o alfabeto de entrada Σ de M, decidir se M irá parar para w

Portanto, podemos definir tal problema através da seguinte linguagem:

$$L_P = \{(m, w) \mid m = codigo(M) \text{ e } w \in ACEITA(M) \cup REJEITA(M)\}$$

Problema da Parada é Não-Solucionável

Problema da Parada é Não-Solucionável

Portanto, deve-se demonstrar que L_P não é recursiva

Prova do Teorema 1

Supondo-se que L_P seja recursiva, então existe uma Máquina Universal M_P a qual aceita L_P e sempre para para qualquer entrada

Logo:

$$ACEITA(M_P) = L_P$$

 $REJEITA(M_P) = \Sigma^* - L_P$
 $LOOP(M_P) = \emptyset$

Suponha-se a existência de uma Máquina Universal R que, para qualquer entrada w, gera o par (w,w)

Seja M uma máquina da seguinte forma:

Suponha-se a existência de uma Máquina Universal R que, para qualquer entrada w, gera o par (w,w)

Seja M uma máquina da seguinte forma:

Problema da Auto-Aplicação foi reduzido ao Problema da Parada!!

Portanto:

- Se $w \in L_{AA}$, então $R(w) = (w, w) \in L_P$
- Se $w \notin L_{AA}$, então $R(w) = (w, w) \notin L_P$

Como supõe-se que L_P seja recursiva e L_{AA} foi reduzida a L_P , então L_{AA} deve ser recursiva

Isto significa que o Problema da Auto-Aplicação deve ser solucionável

Isto significa que o Problema da Auto-Aplicação deve ser solucionável

Visto que o **Problema da Auto-Aplicação foi provado ser não-solucionável**, então é absurdo supor-se que o Problema da Parada seja solucionável

Isto significa que o Problema da Auto-Aplicação deve ser solucionável

Visto que o **Problema da Auto-Aplicação foi provado ser não-solucionável**, então é absurdo supor-se que o **Problema da Parada seja solucionável**

Logo, o Problema da Parada é não-solucionável

Problema da Parada é Parcialmente Solucionável

Problema da Parada é Parcialmente Solucionável

Portanto, deve-se demonstrar que L_P é enumerável recursivamente

Problema da Parada é Parcialmente Solucionável

Portanto, deve-se demonstrar que L_P é enumerável recursivamente

Prova é análoga à do Teorema 1

Outro Problemas de Decisão

- Muitos problemas conhecidos são não-solucionáveis
- Alguns deles se apresentam com variações de outros problemas conhecidos e, desta forma, tornam a aplicação da redução mais simples e direta
- Por exemplo, são problemas relacionados ao Problema da Parada:
 - Problema da Palavra Vazia
 - Problema da Totalidade
 - Problema da Equivalência
 - Problema da Vacuidade

Problema da Parada da Palavra Vazia

Dada uma Máquina Universal M, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar a entrada vazia?

Problema da Parada da Palavra Vazia

Dada uma Máquina Universal M, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar a entrada vazia?

O Problema da Palavra Vazia é uma variação do Problema da Parada, restringindo-se a entrada à palavra vazia (ou à ausência de entrada)

Problema da Parada da Palavra Vazia

Dada uma Máquina Universal M, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar a entrada vazia?

O Problema da Palavra Vazia é uma variação do Problema da Parada, restringindo-se a entrada à palavra vazia (ou à ausência de entrada)

Portanto, podemos definir tal problema através da seguinte linguagem:

$$L_{\varepsilon} = \{ m \mid m = codigo(M) \ \mathbf{e} \ \varepsilon \in ACEITA(M) \cup REJEITA(M) \}$$

Problema da Parada da Palavra Vazia é Não-Solucionável

Problema da Parada da Palavra Vazia é Não-Solucionável

Portanto, L_{ε} não deve ser recursiva

Problema da Parada da Palavra Vazia é Não-Solucionável

Portanto, L_{ε} não deve ser recursiva

Para a prova, usa-se o Princípio da Redução, reduzindo-se L_P (linguagem que descreve o Problema da Parada) à linguagem L_ε

Prova do Teorema 3

Sejam:

T um **Máquina Universal** qualquer definida sobre o alfabeto Σ

w uma **palavra** qualquer sobre Σ

W uma **Máquina Universal** que recebe como entrada a palavra vazia e gera a palavra w

M uma **Máquina Universal** definida em termos de T e W, da seguinte maneira:

Podemos chegar às seguintes conclusões:

- Se T aceita a palavra w, então M aceita a palavra vazia
- Se T não aceita a palavra w (rejeita ou fica em loop), então M não aceita a palavra vazia (rejeita ou fica em loop)

Ou seja, supondo-se t e m como os códigos de T e M, respectivamente:

- Se $(t,w)\in L_P$, então $m\in L_{arepsilon}$
- Se $(t,w) \not\in L_P$, então $m \not\in L_{\varepsilon}$

Portanto, o **Problema da Parada é reduzido ao Problema da Parada da Palavra Vazia**

Ou seja, supondo-se t e m como os códigos de T e M, respectivamente:

- ullet Se $(t,w)\in L_P$, então $m\in L_arepsilon$
- Se $(t,w) \not\in L_P$, então $m \not\in L_{\varepsilon}$

Portanto, o **Problema da Parada é reduzido ao Problema da Parada da Palavra Vazia**

Como o Problema da Parada é não-solucionável (L_P não é recursiva), o Problema da Parada da Palavra Vazia também é não-solucionável (L_ε não é recursiva)

Problema da Totalidade

Dada uma Máquina Universal M qualquer, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar qualquer entrada?

Problema da Totalidade

Dada uma Máquina Universal M qualquer, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar qualquer entrada?

O Problema da Totalidade é uma variação do Problema da Parada onde não há restrições quanto às possíveis entradas

Problema da Totalidade

Dada uma Máquina Universal M qualquer, existe um algoritmo que verifique se M para, aceitando ou rejeitando, ao processar qualquer entrada?

O Problema da Totalidade é uma variação do Problema da Parada onde não há restrições quanto às possíveis entradas

Tal problema pode ser traduzido na seguinte linguagem:

$$L_T = \{m \mid m = codigo(M) \in LOOP(M) = \emptyset\}$$

Problema da Totalidade é Não-Solucionável

Problema da Totalidade é Não-Solucionável

Portanto, L_T não deve ser recursiva

Problema da Totalidade é Não-Solucionável

Portanto, L_T não deve ser recursiva

Para a prova, usa-se o Princípio da Redução, reduzindo-se L_P (linguagem que descreve o Problema da Parada) à linguagem L_T

Prova do Teorema 4

Supondo-se que L_T seja recursiva, então deve existir uma Máquina Universal M_T que sempre para, onde $ACEITA(M_T) = L_T$

Supondo-se uma Máquina Universal R que, para qualquer entrada (p,w), gera p, tem-se uma Máquina Universal M definida usando R e M_T como segue:

Desta forma, o Problema da Parada foi reduzido ao Problema da Totalidade, pois

- Se $(p,w) \in L_P$, então $R((p,w)) \in L_T$
- Se $(p,w) \not\in L_P$, então $R((p,w)) \not\in L_T$

Desta forma, o Problema da Parada foi reduzido ao Problema da Totalidade, pois

- Se $(p,w) \in L_P$, então $R((p,w)) \in L_T$
- Se $(p,w) \not\in L_P$, então $R((p,w)) \not\in L_T$

Como é suposto que o Problema da Totalidade é solucionável (L_T é recursiva), então o **Problema da Parada deveria ser solucionável**

Prova do Teorema 4 (cont.)

Desta forma, o Problema da Parada foi reduzido ao Problema da Totalidade, pois

- Se $(p,w) \in L_P$, então $R((p,w)) \in L_T$
- Se $(p,w) \not\in L_P$, então $R((p,w)) \not\in L_T$

Como é suposto que o Problema da Totalidade é solucionável (L_T é recursiva), então o **Problema da Parada deveria ser solucionável**

Como o Problema da Parada é não-solucionável (L_P não é recursiva), é absurdo dizer que ele é solucionável e, portanto, o Problema da Totalidade é não-solucionável

Problema da Equivalência

Dadas duas Máquinas Universais M e P quaisquer, existe um algoritmo que verifique se M e P reconhecem a mesma linguagem?

Problema da Equivalência

Dadas duas Máquinas Universais M e P quaisquer, existe um algoritmo que verifique se M e P reconhecem a mesma linguagem?

O Problema da Equivalência é também conhecido com **Problema da Equivalência de Compiladores**, referindo-se a decidir se dois compiladores reconhecem uma mesma linguagem; i.e., são **equivalentes em termos de reconhecimento desta linguagem**

Problema da Equivalência

Dadas duas Máquinas Universais M e P quaisquer, existe um algoritmo que verifique se M e P reconhecem a mesma linguagem?

O Problema da Equivalência é também conhecido com **Problema da Equivalência de Compiladores**, referindo-se a decidir se dois compiladores reconhecem uma mesma linguagem; i.e., são **equivalentes em termos de reconhecimento desta linguagem**

A linguagem que traduz tal problema é dada por:

```
L_E = \{(m, p) \mid m = codigo(M), p = codigo(P), \\ ACEITA(M) = ACEITA(P) \text{ e } REJEITA(M) = REJEITA(P) \}
```

Teorema 5

Problema da Equivalência é Não-Solucionável

Teorema 5

Problema da Equivalência é Não-Solucionável

Portanto, L_E não deve ser recursiva

Teorema 5

Problema da Equivalência é Não-Solucionável

Portanto, L_E não deve ser recursiva

Para a prova, usa-se o Princípio da Redução, reduzindo-se L_{ε} (linguagem que descreve o Problema da Parada da Palavra Vazia) à linguagem L_{E}

Prova do Teorema 5

Sejam:

T uma **Máquina Universal** qualquer

Vazia uma **Máquina Universal** que recebe qualquer palavra como entrada e sempre gera ε

 $Para_Vazia$ uma **Máquina Universal** que sempre para para a entrada vazia M uma **Máquina Universal** definida em termos das máquinas anteriores como segue:

Prova do Teorema 5 (cont.)

Assim, supondo-se t e p como os codigos de T e $Para_Vazia$, respectivamente, tem-se que:

- Se $t \in L_{\varepsilon}$, então $(t,p) \in L_{E}$
- Se $t \notin L_{\varepsilon}$, então $(t,p) \notin L_{E}$

Prova do Teorema 5 (cont.)

Assim, supondo-se t e p como os codigos de T e $Para_Vazia$, respectivamente, tem-se que:

- Se $t \in L_{\varepsilon}$, então $(t,p) \in L_{E}$
- Se $t \not\in L_{\varepsilon}$, então $(t,p) \not\in L_{E}$

Desta forma, reduzimos o Problema da Parada da Palavra Vazia ao Problema da Equivalência

Prova do Teorema 5 (cont.)

Assim, supondo-se t e p como os codigos de T e $Para_Vazia$, respectivamente, tem-se que:

- Se $t \in L_{\varepsilon}$, então $(t,p) \in L_{E}$
- Se $t \not\in L_{\varepsilon}$, então $(t,p) \not\in L_{E}$

Desta forma, reduzimos o Problema da Parada da Palavra Vazia ao Problema da Equivalência

Visto que O Problema da Parada da Palavra Vazia é não-solucionável, então o Problema da Equivalência também é não-solucionável

Problema da Vacuidade

Dada uma Máquina Universal M qualquer, existe um algoritmo que verifique se M $n\tilde{ao}$ para ao processar qualquer entrada?

Problema da Vacuidade

Dada uma Máquina Universal M qualquer, existe um algoritmo que verifique se M $n\tilde{ao}$ para ao processar qualquer entrada?

Isto é, o Problema da Vacuidade se refere a descobrir se T não reconhece linguagem alguma

Exercícios

- 1. Apresente a linguagem que descreve o Problema da Vacuidade (considere o alfabeto de entrada Σ)
- 2. O Problema da Vacuidade é solucionável ou não-solucionável?
- 3. Como podemos provar a resposta da questão anterior?