Weakly Supervised Learning (WSL)

Yongqiang Zhang July 6, 2017

Running

✓ Video capturing devices are more affordable and portable than ever.

✓ Almost every adults own a smartphone.

People also love to share their images and videos!

400 hours of new YouTube video every minute.

Object detection

Action recognition

Can we use these webly image and video to train a deep model?

weakly supervised learning

Object detection

Action recognition

Can we use these webly images and videos to train a deep model?

Overview

- What is the weakly supervised learning?
- Weakly supervised for action recognition and event detection
- Weakly supervised for action detection
- conclusion

Overview

- What is the weakly supervised learning?
- Weakly supervised for action recognition and detection
- Weakly supervised for action detection
- conclusion

What is the weakly supervised learning?

weakly supervised learning means only use a limited amount of labeled data.

What is the weakly supervised learning?

Compare with semi-supervised learning(SSL):

Semi-supervised learning is a class of supervised learning tasks and techniques that also make use of unlabeled data for training – typically a small amount of labeled data with a large amount of unlabeled data.

Overview

- What is the weakly supervised learning?
- Weakly supervised for action recognition and detection
- Weakly supervised for action detection
- conclusion

Webly videos

Action recognition Event detection

Challenge for using the webly images and videos:

 web videos are always untrimmed and contain large portion of irrelevant frames.

The irrelevant frames are indicated by green boxes in this figure

- 2. Web images could be noisy due to
 - 1) **semantic drift**, i.e. the mismatch between query and returned images. For example juggling balls in this figure(only returned ball, not juggling balls).
 - 2) **domain gap**, i.e. the inconsistencies between videos and images, e.g. images of baby crawl usually post edited with clean white background.

Preliminary experiment on action recognition

I: action recognition performance by using web images only V: action recognition performance by using web videos only

Late fusion: a simple late fusion of the prediction scores of fine-tuned models on I and V.

Framework of Lead-Exceed Neural Network(LENN)

Step1: Web data gathering Step2: Lead Network is trained by Web videos only. **Step3**: The noise of Web images are filtered by Lead Network, fine-tune the lead network by adding image leading to **Exceed Network**. **Step4: Exceed Network** is used to filter out noise frames of videos, the LSTM for temporal information.

Data gathering

1. Web images

About 600 images per category are downloaded from google image search.

2. Web videos

About 20 videos per category are downloaded from YouTube.

Video to be less than 15 minutes in length.

90% of videos have a duration between 5 and 10 minutes.

Around 60% of the videos are in resolution 1280 \times 720.

While the majority have a frame rate of 30 FPS.

- Training lead Network
- 1. Each video is decomposed into a set of frames.
- 2. Selected the key frames by L1 distance between the previous color histogram and the current one. Around 200 key frames are extracted for a 5 minute video.

$$d_{L_i}(\vec{x}, \vec{y}) = polynom_abs(\vec{x}) = \sum_{i=1}^{I} |x_i - y_i|,$$

 \vec{x} : the previous color histogram

ithe current color histogram

3. Initializing by VGG-16

- Training exceed Network
- 1. To remove useless Web images and keep related ones, used the Lead Network to perform filtering.
- 2. The remain Web images are used to further fine-tune the Lead Network and obtain the Exceed Network.
- 3. The Exceed Network is further taken back to trim Web videos to keep related frames.

- Training LSTM
- 1. Input: $\{x_1, x_1, \dots, x_T\}$, key frames selected by exceed network.
- 2. top layer is a soft-max classifier rolling time k as 25 the number of hidden state as 256
- 3. output: $\{y_1, y_2, \cdots, y_T\}$, $y \in \{1, 2, ..., C\}$, labels

Experiment Result on Action Recognition(UCF101)

Image: fine-tune only by images

video: fine-tune only by videos

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

Experiment Result on Action Recognition(UCF101)

Image + Video: Using Web images to fine-tune the VGGNet first, then using the fine-tuned model to select key frames from videos

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

Experiment Result on Action Recognition(UCF101)

Noise Mixing: Directly mixing the Web image and video key frames together.

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

Experiment Result on Action Recognition(UCF101)

Mixing: Mixing the selected Web image and video key frames .

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

Experiment Result on Action Recognition(UCF101)

Late Fusion: Using the selected Web images and videos separately to finetune two VGGNETs and then average their scores as final prediction.

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

• Experiment Result on Action Recognition(UCF101)

Method	Acc (%)
Image	62.4
Video	58.5
Image + Video	63.2
Noise Mixing	64.6
Late fusion	67.8
Mixing	68.9
Lead-Exceed (Ours)	74.4
Lead-Exceed + LSTM (Ours)	76.3

• Experiment Result on event detection(TRECVID MED 2013 and 2014)

Method	mAP (%)
Concept Discovery [3]	2.3
Bi-concept [16]	6.0
Composite Concept [16]	6.4
EventNet [45]	8.9
Selecting [32]	11.8
Lead-Exceed (Ours)	16.3
Lead-Exceed + LSTM (Ours)	16.7

Overview

- What is the weakly supervised learning?
- Weakly supervised for action recognition and detection
- Weakly supervised for action detection
- conclusion

UntrimmedNets for Weakly supervised action detection

Weakly supervised detection:

UntrimmedNets for Weakly supervised action detection

The structure of learning from untrimmed videos

Clip sampling

given an untrimmed video V with the duration of T frames, our method generates a set of clips $C = \{c_i\}_{i=1}^N$, where N is the number of clips

And $c_i = (b_i, e_i)$ is the beginning and ending location of the ith clips ci.

method

Uniform Sampling shot-based sampling Any other method

- Feature learning model
- 1. Two-Stream CNN
- 2. Temporal Segment Network(TSN)
- 3. Any other methods

Classification module

$$\mathbf{x}^c(c) = \mathbf{W}^c \phi(c)$$

 \mathbf{W}^c are the model parameters $\mathbf{x}^c(c)$, a *C*-dimensional score vector $\phi(c)$ are extracted features

Output from a soft-max layer as follow:

$$\bar{x}_i^c(c) = \frac{\exp(x_i^c(c))}{\sum_{k=1}^C \exp(x_k^c(c))},$$

- Selection module
- 1. hard selection based on the principle of multiple instance learning
 - Choose top *k* instances with the highest classification scores
 - then average among these selected instances
- 2. soft selection based on the attention-based modeling combining the classification scores of all clips and learn an importance weight to rank different clip proposals.

$$x^s(c) = \mathbf{w}^{sT}\phi(c)$$
 $\mathbf{w}^s \in \mathcal{R}^D$ is the model parameter.

output from a soft-max layer as follow:

$$\bar{x}^s(c_i) = \frac{\exp(x^s(c_i))}{\sum_{n=1}^N \exp(x^s(c_n))},$$

Video prediction

$$x_{i}^{p}(V) = \sum_{n=1}^{N} x_{i}^{s}(c_{n}) x_{i}^{c}(c_{n}),$$
$$\bar{x}_{i}^{p}(V) = \frac{\exp(x_{i}^{r}(V))}{\sum_{k=1}^{C} \exp(x_{k}^{r}(V))},$$

 $x^{s}(c_{n})$: the selection indicator score for clip proposal c_{n}

 $x^{c}(c_{n})$: the classification score for clip proposals c_{n}

 $\bar{x}_i^p(V)$: the softmax operation to normalize the aggregated video-level score

Training

employing the standard back propagation method with cross-entropy loss:

$$\ell(\mathbf{w}) = \sum_{i=1}^{M} \sum_{k=1}^{C} y_{ik} \log \bar{x}_k^p(V_i),$$

**Yik is set to 1 if video *Vi contains action instances of *kth category, and set to 0 otherwise.

M is the number of training videos.

Experiments on weakly supervised action recognition(WSR)

Method	THUMOS14	ActivityNet (a)	ActivityNet (b)
TSN (3 seg) [50]	67.7%	85.0%	88.5%
TSN (21 seg)	68.5%	86.3%	90.5%
UntrimmedNet (hard)	73.6%	87.7%	91.3%
UntrimmedNet (soft)	74.2%	86.9%	90.9%

 Experiments on weakly supervised action recognition(WSR) comparing with state of art method

THUMOS14		ActivityNet		
iDT+FV [45]	63.1%	iDT+FV [45]	66.5%*	
Two Stream [40]	66.1%	Two Stream [40]	71.9%*	
EMV+RGB [56]	61.5%	C3D [42]	74.1%*	
Objects+Motion [19]	71.6%	Depth2Action [57]	78.1%*	
TSN (3 seg) [50]	78.5%	TSN (3 seg) [50]	88.8%*	
UntrimmedNet (hard)	81.2%	UntrimmedNet (hard)	91.3%	
UntrimmedNet (soft)	82.2%	UntrimmedNet (soft)	90.9%	

• Experiments on weakly supervised action detection(WSD) THUMOS14

	$IoU(\alpha)$	α = 0.5	$\alpha = 0.4$	$\alpha = 0.3$	$\alpha = 0.2$	$\alpha = 0.1$	
Fully supervised method	Oneata <i>et al</i> . [33]*	14.4	20.8	27.0	33.6	36.6	-
	Richard <i>et al.</i> [35]*	15.2	23.2	30.0	35.7	39.7	
	Shou et al. [39]*	19.0	28.7	36.3	43.5	47.7	
	Yeung et al. [54]*	17.1	26.4	36.0	44.0	48.9	
	Yuan et al. [55]*	18.8	26.1	33.6	42.6	51.4	
	UntrimmedNet (soft)	13.7	21.1	28.2	37.7	44.4	-

Overview

- What is the weakly supervised learning?
- Weakly supervised for action recognition and detection
- Weakly supervised for action detection
- conclusion

conclusion

- Weakly supervised learning is a method to solve the problem of timeconsuming and expensive for image and vide annotation.
- Weakly supervised learning can use the simple labels (image-level, video-level) for action recognition and action detection.
- Weakly supervised for action recognition get a better performance than some fully supervised methods.
- Weakly supervised for action detection get comparable performance to that of those fully supervised method(with temporal annotation).

Reference

- You Lead, We Exceed: Labor-Free Video Concept Learning by Jointly Exploiting Web Videos and Images, CVPR2016
- UntrimmedNets for Weakly Supervised Action Recognition and Detection, CVPR2017
- Webly-supervised Video Recognition by Mutually Voting for Relevant Web Images and Web Video Frames, ECCV2016
- Weakly Supervised Deep Detection Networks, CVPR2016
- Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection, CVPR2016

Thank you!