北京邮电大学 2014-2015 学年第二学期

《大学物理 B(上)》期末考试试题 A 卷

-,	学生参加考试须带学生证或学院证明,	未带者不准进入考
场。	学生必须按照监考教师指定座位就坐。	

二、书本、参考资料、书包等与考试无关的东西一律放到考场 指定位置。

三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考 注 场规则》, 有考场违纪或作弊行为者, 按相应规定严肃处理。

四、学生必须将答题内容做在专用答题纸上,做在试卷、草稿

项上一律无效。

/\ ./\-	- 11787A								
考 试 课程				考试印	付间		年	月	日
题号		=	三	四	五.	六	七	八	总分
满分	30	30	10	10	10	10			100
得分									
阅 教师									

一. 选择题: (单选, 每题 3 分, 共 30 分)

- 1. 设物体沿固定圆弧形光滑轨道由静止下滑,在下滑 过程中,
 - (A) 它的加速度方向永远指向圆心.
 - (B) 它受到的轨道的作用力的大小不断增加.
 - (C) 它受到的合外力大小变化,方向永远指向圆心.
 - (D) 它受到的合外力大小不变.

Γ

2. 一个质点同时在几个力作用下的位移为: $\Delta \vec{r} = 4\vec{i} - 5\vec{i} + 6\vec{k}$ (SI) 其中一个力为恒力 $\vec{F} = -3\vec{i} - 5\vec{j} + 9\vec{k}$ (SI),则此力在该位移过程中所

- 作的功为]
 - (A) 67J
- (B) 17J
- (C) 67J (D) 91J

- 3. 关于力矩有以下几种说法:
 - (1) 对某个定轴而言,内力矩不会改变刚体的角动量.
 - (2)在一条直线上的作用力和反作用力对同一轴的力矩之和必为零.
 - (3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下, 它们的角加速度一定相等.

在上述说法中,

- (A) 只有(2) 是正确的. (B)(1)、(2) 是正确的.
- (C)(2)、(3)是正确的. (D)(1)、(2)、(3)都是正确的.

4. 在所给出的四个图象中,哪个图象能够描述一定质量的理想气体在绝 热过程中密度随压强的变化?

- 5. 两个卡诺热机的循环曲线如图所示,一个工作在温度为 T_1 与 T_3 的两 个热源之间,另一个工作在温度为 T_3 与 T_3 的两个热源之间,已知这两 个循环曲线所包围的面积相等,由此可知: []
- (A)两个热机的效率一定相等.
- (B)两个热机从高温热源所吸收的热量一定相等.
- (C)两个热机向低温热源所放出的热量一定相等.
- (D)两个热机吸收的热量与放出的热量(绝对值)的差值一定相等.

- 6. 半径为 r 的均匀带电球面 1,带有电荷 q,其外有一同心的半径为 R的均匀带电球面 2, 带有电荷 Q, 则此两球面之间的电势差 U_1 - U_2 为:

(A)
$$\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R}\right)$$
 . (B) $\frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{r}\right)$.

(C) $\frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r} - \frac{Q}{R} \right)$. (D) $\frac{q}{4\pi\varepsilon_0 r}$.

(D)
$$\frac{q}{4\pi\varepsilon_0 r}$$

- 7. C_1 和 C_2 两空气电容器并联起来接上电源充电. 然后将电源断开, 再把
- 一电介质板插入 C_1 中,如图所示,则
 - (A) C_1 和 C_2 极板上电荷都不变.
 - (B) C₁ 极板上电荷增大, C₂ 极板上电荷不变.
 - (C) C_1 极板上电荷增大, C_2 极板上电荷减少.
 - (D) C_1 极板上电荷减少, C_2 极板上电荷增大.

[]

8. 如图两个半径为R的相同的金属环在a、b两点接触(ab 连线为环直径),并相互垂直放置. 电流 I 沿 ab 连线方向由 a 端流入,b 端流出,则环中心 O 点的磁感强度的大小为

(A)
$$0$$
.

(B)
$$\frac{\mu_0 I}{4R}$$
.

(C)
$$\frac{\sqrt{2}\mu_0 I}{4R}.$$

(E)
$$\frac{\sqrt{2}\mu_0 I}{8R}$$

- 9. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度为 B_i ,圆柱体外(r > R)的磁感强度为 B_e ,则有
 - (A) B_i 、 B_e 均与r成正比.
 - (B) B_i 、 B_e 均与r成反比.
 - (C) B_i 与r成反比, B_e 与r成正比.
 - (D) B_i 与r成正比, B_e 与r成反比.

- 10. 如图所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流 *i(t)*,则
 - (A) 圆筒内均匀地分布着变化磁场和变化电场.

- (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零.
 - (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.
- (D) 沿圆筒内任意闭合环路上电场强度的环流为零.

二. 填空题: (每空3分,共30分)

11. 一细直杆 AB,竖直靠在墙壁上,B 端沿水平方向以速度 \bar{v} 滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度大小为

12. 一物体做斜抛运动,测得在 P 点速度大小为 v , 方向与水平方向成
30°,则轨道在此点的曲率半径为。
13. 一个人站在平板车上掷铅球,人和车总质量为 M ,铅球的质量为 m ,平板车可沿水平、光滑的直轨道移动。已知未掷球时,人、车、球皆静止。球出手时沿斜上方,它相对于车的初速度大小为 v_0 ,方向与水平方向的夹角为 θ ,人在掷球过程中相对车无滑动,则球被抛出之后,车对地的速度大小为。 14. 一氧气瓶的容积为 V ,充了气未使用时压强为 p_1 ,温度为 T_1 ; 使用
后瓶内氧气的质量减少为原来的一半,其压强降为 p_2 ,则使用前后分子
热运动平均速率之比 v_1/v_2 为
15. ν mol 温度为 T、体积为 V_1 的理想气体绝热自由膨胀至 V_2 并达到新
的平衡态,此过程的熵变为
16. 图中所示为静电场的等势线图,已知 $U_1>U_2>U_3$ 。 a 和 b 点电场强度大小满足: E_a
17. 在边长分别为 a 、 b 的 N 匝矩形平面线圈中流过电流 I ,将线圈置于
均匀外磁场 $ar{B}$ 中,当线圈平面的正法向与外磁场方向间的夹角为 60°
时,此线圈所受的磁力矩的大小为
18. 质量 m ,电荷 q 的粒子具有动能 E ,垂直磁感线方向飞入磁感强度为
B 的匀强磁场中. 当该粒子越出磁场时,运动方向恰与进入时的方向相
反,那么沿粒子飞入的方向上磁场的最小宽度 $L =$.
19. 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流 I 通过,其间充满磁导率为 μ 的均匀磁介质. 介质中离中心轴距离为 r 的某点处的磁感强度的大小 $B=$
20. 真空中两只长直螺线管 1 和 2,长度相等,单层密绕匝数相同,直径

之比 $d_1 / d_2 = 1/4$. 当它们通以相同电流时,两螺线管贮存的磁能之比为

 $W_1 / W_2 =$ _____.

三. 计算题: (共40分)

21. (10 分) 空心圆环可绕光滑的竖直固定轴 AC 自由转动,转动惯量为 J_0 ,环的半径为 R,初始时环的角速度为 ω_0 . 质量为 m 的小球静止在环内最高处 A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心 O 在同一高度的 B 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径 r<< R.)

22. **(10 分)** 1 mol 的某种理想气体,开始时压强和温度分别为 p_0 和 T_0 ,后经过一等容过程,温度升高到 T_1 ,再经过一等温过程,压强又降到 p_0 。已知该理想气体的比热比 $\gamma=c_p/c_V=5/3$ 。试求:

- (1) 该理想气体的摩尔等压热容 $C_{p,m}$ 和摩尔等容热容 $C_{V,m}$;
- (2) 气体从始态变到末态的全过程中从外界吸收的热量。

23. **(10 分)**如图所示,一平行板电容器,极板面积为S,相距为d。 B 接地,A 板电势为 U_0 。现在把一块面积相同的带有电荷Q 的导体薄板 C 平行地插入两板中间。求导体板C 的电势。

24. **(10 分)** 一内外半径分别为 R, R 的均匀带电平面圆环,电荷面密度为 σ , 其中心有一半径为 r 的导体小环 (R >> r),二者同心共面如图. 设带电圆环以变角速度 $\omega = \omega(t)$ 绕垂直于环面的中心轴旋转,导体小环中的感应电流 i 等于多少?(已知小环的电阻为 R)

