T6 DM Tutorial on "Classification & Prediction" - Answers

1. Prediction

Take the data in the table below, plot each point in the empty graph below. Label the two axes correctly.

Draw a curve onto the chart that models the relationship between the number of days before a flight a ticket is bought and the cost of the flight

Days before	Cost
0	30
5	50
10	70
15	60
20	75
25	80
30	70
35	90
40	70
45	60
50	40

Now complete the table below, using the model you just drew above to make predictions for each day.

Days before	Cost	
3		40
12		62
24		79
46		58
48		46

2. Classification

1) Look at the scatter plot below. It shows the state of a machine given a temperature and pressure reading. Red dots indicate the machine failed, green dots indicate the machine worked properly. Ignore the blue square for a moment.

Draw a linear separator across the data that minimises the classification error given pressure and temperature. How many incorrect classifications does this model make on the given data? = 5 errors

Now look at the blue square. Perform a K-Nearest Neighbour classification of the blue square where K=6. What is the most likely class for the machine in this state (working or failed)?

Working = 4Failed = 2

2)

Person	Hair Length	Weight	Age	Class
Homer	0"	250	36	M
Marge	10"	150	-34	F
👵 Bart	2"	90	10	M
C Lisa	6"	78	8	F
Maggie	4"	20	1	F
Abe	1"	170	70	M
Selma	8"	160	41	F
Otto	10"	180	38	M
	6"	200	45	M

$$Entropy(S) = -\frac{p}{p+n}\log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n}\log_2\left(\frac{n}{p+n}\right)$$

$$Entropy(4\mathbf{F}, 5\mathbf{M}) = -(4/9)\log_2(4/9) - (5/9)\log_2(5/9)$$

$$= 0.9911$$

$$Ves \quad \text{Hair Length} <= 5?$$

$$Entropy(3\mathbf{F}, 2\mathbf{M}) = -(1/4)\log_2(1/4) - (3/4)\log_2(3/4)$$

$$= 0.8113$$

$$Entropy(3\mathbf{F}, 2\mathbf{M}) = -(3/5)\log_2(3/5) - (2/5)\log_2(2/5)$$

$$= 0.9710$$

$$Gain(A) = E(Current set) - \sum E(all child sets)$$

 $Gain(Hair Length \le 5) = 0.9911 - (4/9 * 0.8113 + 5/9 * 0.9710) = 0.0911$

