Metric Entropy

Jiuzhou Miao

School of Statistics and Mathematics, Zhejiang Gongshang University

April 9, 2025

- Covering and packing
- 2 Sub-Gaussian processes and Orlicz processes
- Gaussian comparison inequalities

- Covering and packing
- 2 Sub-Gaussian processes and Orlicz processes
- Gaussian comparison inequalities

Metric and metric space

Definition 1 (Metric and metric space)

Let \mathbb{T} be a non-empty set. A function $\rho: \mathbb{T} \times \mathbb{T} \to \mathbb{R}$ is called as a metric on \mathbb{T} if the following conditions hold:

- (1) $\rho(t,t') \geq 0$ for all pairs (t,t') with "=" if and only if t=t'.
- (2) $\rho(t,t') = \rho(t',t)$ for all pairs (t,t').
- (3) $\rho(t,t') < \rho(t,t'') + \rho(t'',t)$ for all pairs (t,t',t'').

The pair (\mathbb{T}, ρ) is called as a metric space.

ullet The real space \mathbb{R}^d with Euclidean metric

$$\varrho(t, t') = ||t - t'||_2 = \sqrt{\sum_{i=1}^{d} (t_i - t'_i)^2}.$$

ullet The real space \mathbb{R}^d with Euclidean metric

$$\varrho(\mathbf{t}, \mathbf{t}') = \|\mathbf{t} - \mathbf{t}'\|_2 = \sqrt{\sum_{i=1}^d (t_i - t_i')^2}.$$

 \bullet The discrete cube $\{0,1\}^d$ with the rescaled Hamming metric

$$\varrho(\boldsymbol{t}, \boldsymbol{t}') = d^{-1} \sum_{i=1}^{d} \mathbb{I}(t_i \neq t_i').$$

• The space $\mathcal{L}^2(\mu, [0, 1])$ with metric

$$\varrho(f,g) = \|f - g\|_2 = \left[\int_0^1 \left\{ f(x) - g(x) \right\}^2 d\mu(x) \right]^{1/2}.$$

• The space $\mathcal{L}^2(\mu, [0, 1])$ with metric

$$\varrho(f,g) = \|f - g\|_2 = \left[\int_0^1 \{f(x) - g(x)\}^2 d\mu(x)\right]^{1/2}.$$

• The space $\mathcal{C}[0,1]$ with sup-norm metric

$$\varrho(f,g) = \|f - g\|_{\infty} = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

Covering number

Definition 2 (Covering number)

A δ -cover of a set \mathbb{T} with respect to a metric ρ is a set $\{t_1,\ldots,t_N\}\subseteq\mathbb{T}$ such that for each $t\in\mathbb{T}$, there exists some $i \in \{1, \dots, N\}$ such that $\rho(t, t_i) < \delta$. The δ -covering number $\mathcal{N}(\delta, \mathbb{T}, \varrho)$ is defined by the cardinality of the smallest δ -cover.

• When discussing metric entropy, we restrict our attention to metric spaces (\mathbb{T}, ρ) that are totally bounded, i.e., the covering number $\mathcal{N}(\delta, \mathbb{T}, \rho) < \infty$ for all $\delta > 0$.

Covering number

Definition 2 (Covering number)

A δ -cover of a set $\mathbb T$ with respect to a metric ϱ is a set $\{t_1,\ldots,t_N\}\subseteq \mathbb T$ such that for each $t\in \mathbb T$, there exists some $i\in \{1,\ldots,N\}$ such that $\varrho(t,t_i)\leq \delta$. The δ -covering number $\mathcal N(\delta,\mathbb T,\varrho)$ is defined by the cardinality of the smallest δ -cover.

- When discussing metric entropy, we restrict our attention to metric spaces (\mathbb{T},ϱ) that are totally bounded, i.e., the covering number $\mathcal{N}(\delta,\mathbb{T},\varrho)<\infty$ for all $\delta>0$.
- The quantity $\log \mathcal{N}(\delta, \mathbb{T}, \varrho)$ is called as the metric entropy of the set \mathbb{T} with respect to metric ϱ .

Packing number

Definition 3 (Packing number)

A δ -packing of a set $\mathbb T$ with respect to a metric ϱ is a set $\{t_1,\ldots,t_M\}\subseteq \mathbb T$ such that $\varrho(t_i,t_j)>\delta$ for all distinct $i,j\in\{1,\ldots,M\}$. The δ -packing number $\mathcal M(\delta,\mathbb T,\varrho)$ is defined by the cardinality of the largest δ -packing.

Proposition 4 (Packing and covering)

For all $\delta > 0$, one has that

$$\mathcal{M}(2\delta, \mathbb{T}, \varrho) \leq \mathcal{N}(\delta, \mathbb{T}, \varrho) \leq \mathcal{M}(\delta, \mathbb{T}, \varrho).$$

Covering of [-1,1]

• Consider the interval [-1,1] equipped with the metric $\rho(t,t') = |t-t'|$. Let $t_i = -1 + 2(i-1)\delta$, $i = 1, \ldots, 1 + |1/\delta|$.

Covering of [-1,1]

- Consider the interval [-1,1] equipped with the metric $\rho(t,t') = |t-t'|$. Let $t_i = -1 + 2(i-1)\delta$. $i = 1, \ldots, 1 + |1/\delta|$.
- For any $t \in [-1,1]$, there exists some $i \in \{1,\ldots,1+|1/\delta|\}$ such that $\varrho(t,t_i) \leq 1/\delta$, which shows that

$$\mathcal{N}(\delta, [-1, 1], |\cdot|) \le 1 + 1/\delta.$$

Covering of [-1,1]

- Consider the interval [-1,1] equipped with the metric $\varrho(t,t')=|t-t'|$. Let $t_i=-1+2(i-1)\delta$, $i=1,\ldots,1+\lfloor 1/\delta \rfloor$.
- For any $t \in [-1,1]$, there exists some $i \in \{1,\ldots,1+\lfloor 1/\delta \rfloor\}$ such that $\varrho(t,t_i) \leq 1/\delta$, which shows that

$$\mathcal{N}(\delta, [-1, 1], |\cdot|) \le 1 + 1/\delta.$$

• For all $i \neq j$, one has that $\varrho(t_i, t_j) \geq 2\delta > \delta$, which implies that

$$\mathcal{M}(2\delta, [-1, 1], |\cdot|) \ge \lfloor 1/\delta \rfloor.$$

Covering of [-1, 1]

- Consider the interval [-1,1] equipped with the metric $\varrho(t,t')=|t-t'|$. Let $t_i=-1+2(i-1)\delta$, $i=1,\ldots,1+\lfloor 1/\delta \rfloor$.
- For any $t \in [-1,1]$, there exists some $i \in \{1,\ldots,1+\lfloor 1/\delta \rfloor\}$ such that $\varrho(t,t_i) \leq 1/\delta$, which shows that

$$\mathcal{N}(\delta, [-1, 1], |\cdot|) \le 1 + 1/\delta.$$

• For all $i \neq j$, one has that $\varrho(t_i, t_j) \geq 2\delta > \delta$, which implies that

$$\mathcal{M}(2\delta, [-1, 1], |\cdot|) \ge \lfloor 1/\delta \rfloor.$$

By Proposition 4, one has that

$$\log \mathcal{N}(\delta, [-1, 1], |\cdot|) \simeq \log (1/\delta).$$

Volume ratios and metric entropy

Proposition 5 (Volume ratios)

Consider a pair of norms $\|\cdot\|$ and $\|\cdot\|'$ on \mathbb{R}^d and let B and B' be their corresponding unit balls. Then the δ -covering number of B in the norm $\|\cdot\|'$ -norm obeys the bounds

$$\delta^{-d} \frac{\operatorname{Vol}(B)}{\operatorname{Vol}(B')} \le \mathcal{N}(\delta, B, \|\cdot\|') \le \frac{\operatorname{Vol}(2\delta^{-1}B + B')}{\operatorname{Vol}(B')},$$

where $A + B = \{a + b : a \in A, b \in B\}$ is the Minkowski sum of A and B and Vol(A) is the volume of the set B.

Volume ratios and metric entropy

• When $B' \subseteq B$, then one has that

$$\operatorname{Vol}(2\delta^{-1}B + B') \le \operatorname{Vol}((1 + 2/\delta)B) = (1 + 2/\delta)^d \operatorname{Vol}(B).$$

Volume ratios and metric entropy

• When $B' \subseteq B$, then one has that

$$\operatorname{Vol}(2\delta^{-1}B + B') \le \operatorname{Vol}((1 + 2/\delta)B) = (1 + 2/\delta)^d \operatorname{Vol}(B).$$

• When B' = B, then one has that

$$d\log(1/\delta) \le \log \mathcal{N}(\delta, B, \|\cdot\|) \le d\log(1 + 2/\delta).$$

ullet Consider the function class \mathcal{F}_L of $f:[0,1] \to \mathbb{R}$ such that f is L-Lipschitz with f(0)=0. Then

$$\log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp (1/\delta).$$

• Consider the function class \mathcal{F}_L of $f:[0,1]\to\mathbb{R}$ such that f is L-Lipschitz with f(0) = 0. Then

$$\log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp (1/\delta).$$

• For the case that f defined on $[0,1]^d$ and the function class $\mathcal{F}_{L,d}$ similarly defined with \mathcal{F}_{L} , one has that

$$\log \mathcal{N}(\delta, \mathcal{F}_{L,d}, \|\cdot\|_{\infty}) \asymp (1/\delta)^d.$$

• For some integer α and parameter $\gamma \in (0,1]$, consider the class of functions $f:[0,1]\to\mathbb{R}$ such that

$$\left| f^{(j)}(x) \right| \le C_j$$

for all $x \in [0,1]$ and $j = 0, \ldots, \alpha$ and

$$\left| f^{(\alpha)}(x) - f^{(\alpha)}(x') \right| \le L|x - x'|^{\gamma}$$

for all $x, x' \in [0, 1]$.

• For some integer α and parameter $\gamma \in (0,1]$, consider the class of functions $f:[0,1]\to\mathbb{R}$ such that

$$\left| f^{(j)}(x) \right| \le C_j$$

for all $x \in [0,1]$ and $j = 0, \ldots, \alpha$ and

$$\left| f^{(\alpha)}(x) - f^{(\alpha)}(x') \right| \le L|x - x'|^{\gamma}$$

for all $x, x' \in [0, 1]$.

• Denote this class by $\mathcal{F}_{\alpha,\gamma}$. One has that

$$\log \mathcal{N}(\delta, \mathcal{F}_{\alpha, \gamma}, \|\cdot\|_{\infty}) \simeq (1/\delta)^{1/(\alpha+\gamma)}.$$

• Given a sequence of non-negative real numbers $\{\mu_j\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} \mu_j < \infty$, consider the ellipsoid

$$\mathcal{E} = \left\{ \{\theta_j\}_{j=1}^{\infty} : \sum_{j=1}^{\infty} \theta_j^2 / \mu_j \le 1 \right\} \subseteq l^2(\mathbb{N}).$$

Such ellipsoids play an important role in the discussion of reproducing kernel Hilbert spaces.

• Given a sequence of non-negative real numbers $\{\mu_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \mu_i < \infty$, consider the ellipsoid

$$\mathcal{E} = \left\{ \{\theta_j\}_{j=1}^{\infty} : \sum_{j=1}^{\infty} \theta_j^2 / \mu_j \le 1 \right\} \subseteq l^2(\mathbb{N}).$$

Such ellipsoids play an important role in the discussion of reproducing kernel Hilbert spaces.

• We set $\mu_i = j^{-2\alpha}$ for some $\alpha > 1/2$. Then

$$\log \mathcal{N}(\delta, \mathcal{E}, \|\cdot\|_{l^2(\mathbb{N})}) \asymp (1/\delta)^{1/\alpha}.$$

- Covering and packing
- 2 Sub-Gaussian processes and Orlicz processes

l_q -Euclidean balls

• For $q \in [1, \infty]$, define the l_q -norm of $x \in \mathbb{R}^d$ by

$$\|x\|_q = \begin{cases} \left(\sum_{i=1}^d |x_i|^q\right)^{1/q}, & 1 \le q < \infty \\ \max_{1 \le i \le d} |x_i|, & q = \infty \end{cases}.$$

l_q -Euclidean balls

• For $q \in [1, \infty]$, define the l_q -norm of $\boldsymbol{x} \in \mathbb{R}^d$ by

$$\|x\|_q = \begin{cases} \left(\sum_{i=1}^d |x_i|^q\right)^{1/q}, & 1 \le q < \infty \\ \max_{1 \le i \le d} |x_i|, & q = \infty \end{cases}.$$

• The l_a -Euclidean balls $B_a^d(r)$ are defined by

$$B_q^d(r) = \{ \boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}||_q \le r \}.$$

l_q -Euclidean balls

• For $q \in [1, \infty]$, define the l_q -norm of $\boldsymbol{x} \in \mathbb{R}^d$ by

$$\|x\|_q = \begin{cases} \left(\sum_{i=1}^d |x_i|^q\right)^{1/q}, & 1 \le q < \infty \\ \max_{1 \le i \le d} |x_i|, & q = \infty \end{cases}.$$

• The l_a -Euclidean balls $B_a^d(r)$ are defined by

$$B_q^d(r) = \{ \boldsymbol{x} \in \mathbb{R}^d : ||\boldsymbol{x}||_q \le r \}.$$

ullet When r=1, the l_q -Euclidean balls $B^d_a(1)$ are denoted by $B^d_a(1)$ for simplicity.

Gaussian and Rademacher complexity

• Let $\mathbf{Z} = (Z_1, \dots, Z_d)^\mathsf{T}$ and $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_d)^\mathsf{T}$, where $\{Z_i\}_{i=1}^d$ and $\{\varepsilon_i\}_{i=1}^d$ are i.i.d. standard normal and Rademacher random variables respectively.

Gaussian and Rademacher complexity

- Let $\mathbf{Z} = (Z_1, \dots, Z_d)^\mathsf{T}$ and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_d)^\mathsf{T}$, where $\{Z_i\}_{i=1}^d$ and $\{\varepsilon_i\}_{i=1}^d$ are i.i.d. standard normal and Rademacher random variables respectively.
- ullet Given $\mathbb{T}\subseteq\mathbb{R}^d$, the family of random variables $\{G_{m{t}},m{t}\in\mathbb{T}\}$ and $\{R_{m{t}},m{t}\in\mathbb{T}\}$, where

$$G_{m{t}} = \sum_{i=1}^{d} t_i Z_i = \langle m{t}, m{Z} \rangle,$$
 $R_{m{t}} = \sum_{i=1}^{d} t_i R_i = \langle m{t}, m{arepsilon}
angle,$

are known as canonical Gaussian process and Rademacher process associated with $\ensuremath{\mathbb{T}}.$

Gaussian and Rademacher complexity

• The quantities $\mathcal{G}(\mathbb{T}) = \mathbb{E} \left(\sup_{t \in \mathbb{T}} G_t\right)$ and $\mathcal{R}(\mathbb{T}) = \mathbb{E} \left(\sup_{t \in \mathbb{T}} R_t\right)$ are known as the Gaussian complexity and Rademacher complexity of \mathbb{T} .

Proposition 6 (Gaussian and Rademacher complexity)

For any $\mathbb{T} \subseteq \mathbb{R}^d$, one has that

$$\mathcal{R}(\mathbb{T}) \leq \sqrt{\pi/2}\mathcal{G}(\mathbb{T}).$$

Recall that

$$B_2^d = \{ t \in \mathbb{R}^d : ||t||_2 \le 1 \}.$$

Recall that

$$B_2^d = \{ t \in \mathbb{R}^d : ||t||_2 \le 1 \}.$$

Computing the Rademacher complexity is straightforward:

$$\mathcal{R}(B_2^d) = \mathbb{E}\Big\{\sup_{\|oldsymbol{t}\|_2 \le 1} \langle oldsymbol{t}, oldsymbol{arepsilon} \Big\} = \sqrt{d}.$$

Recall that

$$B_2^d = \{ t \in \mathbb{R}^d : ||t||_2 \le 1 \}.$$

Computing the Rademacher complexity is straightforward:

$$\mathcal{R}(B_2^d) = \mathbb{E}\Big\{\sup_{\|\boldsymbol{t}\|_2 \le 1} \langle \boldsymbol{t}, \boldsymbol{\varepsilon} \rangle\Big\} = \sqrt{d}.$$

ullet By replacing $oldsymbol{arepsilon}$ with ${f Z}$ and using Jensen's inequality, one can obtain that

$$\mathbb{E}(\|\mathbf{Z}\|_2) \le \sqrt{\mathbb{E}(\|\mathbf{Z}\|_2^2)} = \sqrt{d}.$$

• On the other hand, it can be shown that

$$\mathbb{E}(\|\mathbf{Z}\|_2) \ge \sqrt{d}(1 - o(1)).$$

On the other hand, it can be shown that

$$\mathbb{E}(\|\mathbf{Z}\|_2) \ge \sqrt{d}(1 - o(1)).$$

• Combine these upper and lower bounds, one has that

$$\mathcal{R}(B_2^d)/\sqrt{d} = 1 - o(1).$$

• Let \mathcal{F} be a function class. For any collection $x_1^n = \{x_1, \dots, x_n\}$, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \Big\{ \big(f(x_1), \dots, f(x_n) \big)^\mathsf{T} : f \in \mathcal{F} \Big\}.$$

• Let \mathcal{F} be a function class. For any collection $x_1^n = \{x_1, \dots, x_n\}$, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \left\{ \left(f(x_1), \dots, f(x_n) \right)^\mathsf{T} : f \in \mathcal{F} \right\}.$$

 Bounding the Gaussian complexity of this subset yields a measure of the complexity of \mathcal{F} at scale n, which plays an important role in the analysis of nonparametric least squares.

ullet Let ${\mathcal F}$ be a function class. For any collection $x_1^n = \{x_1, \dots, x_n\}$, consider the subset of \mathbb{R}^n given by

$$\mathcal{F}(x_1^n) = \left\{ \left(f(x_1), \dots, f(x_n) \right)^\mathsf{T} : f \in \mathcal{F} \right\}.$$

- Bounding the Gaussian complexity of this subset yields a measure of the complexity of \mathcal{F} at scale n, which plays an important role in the analysis of nonparametric least squares.
- It is most natural to analyze a version of the set $\mathcal{F}(x_1^n)$ is rescaled, either by $n^{-1/2}$ or n^{-1} .

 It is useful to observe that the Euclidean metric on the rescaled set $\mathcal{F}(x_1^n)/\sqrt{n}$ corresponds to the empirical $\mathcal{L}^2(\mathbb{P}_n)$ -metric on the function space \mathcal{F} , i.e.,

$$||f - g||_n = \sqrt{n^{-1} \sum_{i=1}^n \{f(x_i) - g(x_i)\}^2}.$$

• It is useful to observe that the Euclidean metric on the rescaled set $\mathcal{F}(x_1^n)/\sqrt{n}$ corresponds to the empirical $\mathcal{L}^2(\mathbb{P}_n)$ -metric on the function space \mathcal{F} , i.e.,

$$||f - g||_n = \sqrt{n^{-1} \sum_{i=1}^n \{f(x_i) - g(x_i)\}^2}.$$

• If \mathcal{F} is b-uniformly bounded, then $||f|_n \leq b$. In this case, we have the trivial upper bound

$$\mathcal{G}(\mathcal{F}(x_1^n)/n) \le bn^{-1/2}\mathbb{E}(\|\mathbf{Z}\|_2) \le b.$$

Sub-Gaussian processes

Definition 7 (Sub-Gaussian processes)

A collection of zero-mean random variables $\{X_t, t \in \mathbb{T}\}$ is a sub-Gaussian process with respect to a metric (or a pseudo metric) ρ_X on \mathbb{T} if

$$\mathbb{E}\left\{e^{\lambda(X_t - X_{t'})}\right\} \le e^{\lambda^2 \varrho_X^2(t, t')}$$

for all $t, t' \in \mathbb{T}$ and $\lambda \in \mathbb{R}$.

• The canonical Gaussian and Rademacher processes are both sub-Gaussian with respect to the Euclidean metric $||t-t'||_2$.

Sub-Gaussian processes

Definition 7 (Sub-Gaussian processes)

A collection of zero-mean random variables $\{X_t, t \in \mathbb{T}\}$ is a sub-Gaussian process with respect to a metric (or a pseudo metric) ρ_X on \mathbb{T} if

$$\mathbb{E}\left\{e^{\lambda(X_t - X_{t'})}\right\} \le e^{\lambda^2 \varrho_X^2(t, t')}$$

for all $t, t' \in \mathbb{T}$ and $\lambda \in \mathbb{R}$.

- The canonical Gaussian and Rademacher processes are both sub-Gaussian with respect to the Euclidean metric $||t-t'||_2$.
- For all $\epsilon > 0$.

$$\mathbb{P}(|X_t - X_{t'}| > \epsilon) \le 2e^{-\frac{\epsilon^2}{2\varrho_X^2(t,t')}}.$$

Upper bound by one-step discretization

Proposition 8 (One-step discretization bound)

Let $\{X_t, t \in \mathbb{T}\}$ be a zero-mean sub-Gaussian process with respect to the metric ϱ_X . Define $D = \sup_{t,t' \in \mathbb{T}} \varrho_X(t,t')$. Then for any $\delta \in [0,D]$ such that $\mathcal{N}(\delta,\mathbb{T},\varrho_X) \geq 10$, one has that

$$\mathbb{E}\left\{\sup_{t,t'\in\mathbb{T}} (X_t - X_{t'})\right\} \leq 2\mathbb{E}\left\{\sup_{\gamma,\gamma'\in\mathbb{T},\varrho_X(\gamma,\gamma')\leq\delta} (X_{\gamma} - X_{\gamma'})\right\} + 4D\sqrt{\log\mathcal{N}(\delta,\mathbb{T},\varrho_X)}$$

ullet The Proposition above always implies an upper bound on $\mathbb{E}(\sup_{t\in\mathbb{T}}X_t)$ by

$$\mathbb{E}\left(\sup_{t\in\mathbb{T}}X_{t}\right) = \mathbb{E}\left\{\sup_{t\in\mathbb{T}}(X_{t}-X_{t_{0}})\right\} \leq \mathbb{E}\left\{\sup_{t,t'\in\mathbb{T}}(X_{t}-X_{t'})\right\}$$

Bound Gaussian and Rademacher complexity

• Let $\mathbb{T} \subseteq \mathbb{R}^d$. Denote

$$\tilde{\mathbb{T}}_{\delta} = \big\{ \boldsymbol{\gamma} - \boldsymbol{\gamma}' : \boldsymbol{\gamma}, \boldsymbol{\gamma}' \in \mathbb{T}, \|\boldsymbol{\gamma} - \boldsymbol{\gamma}'\|_2 \leq \delta \big\}.$$

Bound Gaussian and Rademacher complexity

• Let $\mathbb{T} \subseteq \mathbb{R}^d$. Denote

$$ilde{\mathbb{T}}_{\delta} = ig\{ oldsymbol{\gamma} - oldsymbol{\gamma}' : oldsymbol{\gamma}, oldsymbol{\gamma}' \in \mathbb{T}, \|oldsymbol{\gamma} - oldsymbol{\gamma}'\|_2 \leq \delta ig\}.$$

Then Proposition 8 implies that

$$\mathcal{G}(\mathbb{T}) \leq \inf_{\delta \in [0,D]} \left\{ 2\mathcal{G}(\tilde{\mathbb{T}}_{\delta}) + 4D\sqrt{\log \mathcal{N}(\delta, \mathbb{T}, \|\cdot\|_{2})} \right\}$$

$$\leq \inf_{\delta \in [0,D]} \left\{ 2\delta\sqrt{d} + 4D\sqrt{\log \mathcal{N}(\delta, \mathbb{T}, \|\cdot\|_{2})} \right\},$$

$$\mathcal{R}(\mathbb{T}) \leq \inf_{\delta \in [0,D]} \left\{ 2\mathcal{R}(\tilde{\mathbb{T}}_{\delta}) + 4D\sqrt{\log \mathcal{N}(\delta, \mathbb{T}, \|\cdot\|_{2})} \right\}$$

$$= \inf_{\delta \in [0,D]} \left\{ 2\delta\sqrt{d} + 4D\sqrt{\log \mathcal{N}(\delta, \mathbb{T}, \|\cdot\|_{2})} \right\}.$$

Gaussian complexity for smoothness classes

• Recall the class \mathcal{F}_L and its metric entropy

$$\log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp (1/\delta).$$

Assume that the functions in \mathcal{F}_L are uniformly bounded by 1.

Gaussian complexity for smoothness classes

ullet Recall the class \mathcal{F}_L and its metric entropy

$$\log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_{\infty}) \asymp (1/\delta).$$

Assume that the functions in \mathcal{F}_L are uniformly bounded by 1.

• Let $\mathbb{T} = \mathcal{F}(x_1^n)/\sqrt{n}$. One has that

$$D = \sup_{\boldsymbol{\gamma}, \boldsymbol{\gamma}' \in \mathbb{T}} \|\boldsymbol{\gamma} - \boldsymbol{\gamma}'\|_2 \le 2$$

and

$$\log \mathcal{N}(\delta, \mathbb{T}, \|\cdot\|_2) = \log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_n) \le \log \mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_\infty).$$

Gaussian complexity for \mathcal{F}_L

Then one has that

$$\mathcal{G}\big(\mathcal{F}_L(x_1^n)/n\big) = n^{-1/2}\mathcal{G}(\mathbb{T}) \leq n^{-1/2}\inf_{\delta \in [0,2]} \Big\{2\delta\sqrt{n} + 8c\delta^{-1/2}\Big\}$$

for some positive c independent of n.

Gaussian complexity for \mathcal{F}_L

Then one has that

$$\mathcal{G}\big(\mathcal{F}_L(x_1^n)/n\big) = n^{-1/2}\mathcal{G}(\mathbb{T}) \leq n^{-1/2}\inf_{\delta \in [0,2]} \Big\{2\delta\sqrt{n} + 8c\delta^{-1/2}\Big\}$$

for some positive c independent of n.

• By taking $\delta \approx n^{-1/3}$, one has that

$$\mathcal{G}(\mathcal{F}_L(x_1^n)/n) \lesssim n^{-1/3}.$$

Dudley's entropy integral

Theorem 9 (Dudley's entropy integral bound)

Let $\{X_t, t \in \mathbb{T}\}$ be a zero-mean sub-Gaussian process with respect to the pseudo metric ϱ_X . Define $D = \sup_{t,t' \in \mathbb{T}} \varrho_X(t,t')$ and

$$\mathcal{J}(\delta, D) = \int_{\delta}^{D} \sqrt{\log \mathcal{N}(u, \mathbb{T}, \varrho_X)} du.$$

Then for any $\delta \in [0, D]$, one has that

$$\mathbb{E}\left\{\sup_{t,t'\in\mathbb{T}}(X_t - X_{t'})\right\} \le 2\mathbb{E}\left\{\sup_{\gamma,\gamma'\in\mathbb{T},\varrho_X(\gamma,\gamma')\leq\delta}(X_{\gamma} - X_{\gamma'})\right\} + 32\mathcal{J}(\delta/4, D).$$

Bounds for Vapnik-Chervonenkis classes

• Let \mathcal{F} be a b-uniformly bounded class of functions with finite VC dimension ν . We will bound the Rademacher complexity

$$\mathbb{E}_{\varepsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \right\} = n^{-1/2} \mathbb{E}_{\varepsilon} \left(\sup_{f \in \mathcal{F}} |Z_{f}| \right).$$

Bounds for Vapnik-Chervonenkis classes

• Let \mathcal{F} be a b-uniformly bounded class of functions with finite VC dimension ν . We will bound the Rademacher complexity

$$\mathbb{E}_{\varepsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \right\} = n^{-1/2} \mathbb{E}_{\varepsilon} \left(\sup_{f \in \mathcal{F}} |Z_{f}| \right).$$

ullet For $f,g\in\mathcal{F}$, one can verify that Z_f-Z_g is sub-Gaussian with parameter

$$||f - g||_{\mathbb{P}_n} = n^{-1} \sum_{i=1}^n \{f(x_i) - g(x_i)\}^2 \le 2b$$

uniformly for all $f, g \in \mathcal{F}$.

Bounds for Vapnik-Chervonenkis classes

By using that the known result that

$$\log \mathcal{N}(\delta, \mathcal{F}, \|\cdot\|_{\mathbb{P}_n}) \lesssim \log(1/\delta),$$

one has that

$$\mathbb{E}_{\varepsilon} \left\{ \sup_{f \in \mathcal{F}} \left| n^{-1} \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \right\} \lesssim n^{-1/2} \int_{0}^{2b} \sqrt{\log(1/\delta)} d\delta$$
$$\lesssim n^{-1/2}.$$

Orlicz norm

Definition 10 (Orlicz norm)

Let $\psi_q(x) = \exp(x^q) - 1$, $q \in [1, 2]$. The ψ_q -Orlicz norm of a zero-mean random variable X is given by

$$||X||_{\psi_q} = \inf \left\{ \lambda > 0 : \mathbb{E} \left\{ \psi_q (|X|/\lambda) \right\} \le 1 \right\}.$$

The Orlicz norm is infinite if there is no $\lambda \in \mathbb{R}$ for which the given expectation is finite.

• If $||X||_{\psi_q} < \infty$, then one has that for all t > 0,

$$\mathbb{P}(|X| \ge t) \le \psi_q^{-1}(t/\|X\|_{\psi_q}).$$

Orlicz processes

Definition 11 (Orlicz processes)

A zero-mean stochastic process $\{X_t, t \in \mathbb{T}\}$ is a ψ_q -Orlicz process with respect to a metric ρ_X if

$$||X_t - X_{t'}||_{\psi_q} \le \varrho_X(t, t').$$

• If $||X||_{\psi_a} < \infty$, then one has that for all t > 0,

$$\mathbb{P}(|X| \ge t) \le \psi_q^{-1}(t/\|X\|_{\psi_q}).$$

Concentration of Orlicz processes

Theorem 12 (Concentration of Orlicz processes)

Let $\{X_t, t \in \mathbb{T}\}$ is a ψ_q -Orlicz process with respect to a metric ϱ_X . Define $D = \sup_{t,t' \in \mathbb{T}} \varrho_X(t,t')$ and

$$\mathcal{J}_q(\delta, D) = \int_{\delta}^{D} \psi_q^{-1} \big(\mathcal{N}(u, \mathbb{T}, \varrho_X) \big) du,$$

where ψ_q^{-1} is the inverse of ψ_q . Then there is a universal constant c such that for all $\epsilon > 0$.

$$\mathbb{P}\Big[\sup_{t,t'\in\mathbb{T}}|X_t-X_{t'}|\geq c\big\{\mathcal{J}_q(0,D)+\epsilon\big\}\Big]\leq 1/\psi_q(\epsilon/D).$$

- Covering and packing
- Gaussian comparison inequalities

A general comparison result

Theorem 13 (General Gaussian comparison principle)

Let (X_1,\ldots,X_N) and (Y_1,\ldots,Y_N) be a pair of centered Gaussian random vectors and suppose that there exist disjoint subsets A and B of $\{1,\ldots,N\}\times\{1,\ldots,N\}$ such that $\mathbb{E}(X_iX_j)\leq \mathbb{E}(Y_iY_j)$ for all $(i,j)\in A$, $\mathbb{E}(X_iX_j)\geq \mathbb{E}(Y_iY_j)$ for all $(i,j)\in B$ and $\mathbb{E}(X_iX_j)=\mathbb{E}(Y_iY_j)$ for all $(i,j)\notin A\cup B$. Let $F:\mathbb{R}^N\to\mathbb{R}$ be a twice-differentiable function, and suppose that $\frac{\partial^2 F}{\partial u_i\partial u_j}(u)\geq 0$ for all $(i,j)\in A$ and $\frac{\partial^2 F}{\partial u_i\partial u_j}(u)\leq 0$ for all $(i,j)\in B$. Then one has that $\mathbb{E}\{F(X_1,\ldots,X_N)\}\leq \mathbb{E}\{F(Y_1,\ldots,Y_N)\}$.

Slepian's inequality

Theorem 14 (Slepian's inequality)

Let (X_1, \ldots, X_N) and (Y_1, \ldots, Y_N) be a pair of centered Gaussian random vectors such that $\mathbb{E}(X_iX_i) = \mathbb{E}(Y_iY_i)$ for all $i \neq j$ and $\mathbb{E}(X_i^2) = \mathbb{E}(Y_i^2)$ for all i = 1, ..., N. Then one has that

$$\mathbb{E}(\max_{1\leq i\leq N} X_i) \leq \mathbb{E}(\max_{1\leq i\leq N} Y_i).$$

Sudakov-Fernique comparison

Theorem 15 (Sudakov-Fernique comparison)

Let (X_1, \ldots, X_N) and (Y_1, \ldots, Y_N) be a pair of centered Gaussian random vectors such that

$$\mathbb{E}\{(X_i - X_j)^2\} \le \mathbb{E}\{(Y_i - Y_j)^2\}$$

for all $(i, j) \in \{1, \dots, N\} \times \{1, \dots, N\}$. Then one has that

$$\mathbb{E}(\max_{1\leq i\leq N} X_i) \leq \mathbb{E}(\max_{1\leq i\leq N} Y_i).$$

Gaussian contraction inequality

Proposition 16 (Gaussian contraction inequality)

Let $\{Z_i\}_{i=1}^d$ be i.i.d. standard normal random variables and $\phi_i: \mathbb{R} \to \mathbb{R}, \ j=1,\ldots,d$ are 1-Lipschitz with $\phi_i(0)=0$. Then for any $\mathbb{T} \subseteq \mathbb{R}^d$, one has that

$$\mathbb{E}\Big\{\sup_{\boldsymbol{t}\in\mathbb{T}}\sum_{i=1}^d Z_i\phi_i(t_i)\Big\} \leq \mathbb{E}\Big(\sup_{\boldsymbol{t}\in\mathbb{T}}\sum_{i=1}^d Z_it_i\Big).$$

Sudakov's lower bound

Theorem 17 (Sudakov's minoration)

Let $\{X_t, t \in \mathbb{T}\}$ be a zero-mean Gaussian process defined on the non-empty set \mathbb{T} . Then

$$\mathbb{E}\left(\sup_{t\in\mathbb{T}}X_t\right)\geq \sup_{\delta>0}\left\{2^{-1}\delta\sqrt{\log\mathcal{M}(\delta,\mathbb{T},\varrho_X)}\right\},\,$$

where
$$\varrho_X(t,t') = \sqrt{\mathbb{E}\{(X_t - X_{t'})^2\}}$$
.

Thank You