

High Efficiency, 1.5MHz 2A Synchronous Step Down Regulator

General Description

The SY8892 is a high efficiency 1.5MHz synchronous step down DC/DC regulator, capable of delivering up to 2A output currents. It can operate over a wide input voltage range from 2.5V to 5.5V and integrates main switch and synchronous switch with very low R_{DS (ON)} to minimize the conduction loss.

The SY8892 is in a space saving, low profile SOT563 package.

Ordering Information

Ordering Number	Package type	Note	
SY8892ARC	SOT563		

Features

- 2.5V to 5.5V Input Voltage Range
- 55 µA Low Quiescent Current
- Low R_{DS(ON)} for Internal Switches (Top/Bottom): $125m\Omega$ /75m Ω
- High Switching Frequency 1.5MHz Minimizes the External Components
- Internal Soft-start Limits the Inrush Current
- 100% Dropout Operation
- Power Good Indicator
- Hic-cup for Short Circuit Protection
- **Output Auto Discharge Function**
- RoHS Compliant and Halogen Free
- Compact Package: SOT563

Applications

- Set Top Box
- **USB** Dongle
- Media Player
- **Smart Phone**

Typical Application

Figure 1. Schematic Diagram

Pin Out (Top View)

Top Mark: M4xyz (device code: M4, x=year code, y=week code, z= lot number code)

Pin Description

Pin Name	Pin Number	Pin Description
FB	1	Output feedback pin. Connect this pin to the center point of the output resistor divider (as shown in Figure 1) to program the output voltage: $V_{OUT}=0.6\times(1+R_H/R_L)$.
GND	2	Ground pin.
VIN	3	Input pin. Decouple this pin to the GND pin with at least a 10 µF ceramic capacitor.
LX	4	Inductor pin. Connect this pin to the switching node of the inductor.
EN	5	Enable control. Pull high to turn on. Do not leave it floating.
PG	6	Power good indicator. Power good indicator (open drain output). Low if the output < 90% or the output >120% of regulation voltage; High otherwise. Connect a pull-up resistor to the input.

Function Block

Figure 3. Block Diagram

Absolute Maximum Ratings (Note 1)

Supply Input VoltageFB, EN, PG Voltage	
LX Voltage	
Power Dissipation, PD @ TA = 25C	
Package Thermal Resistance (Note 2)	
$ heta$ $_{ m JA}$	90 ℃/W
$ heta$ $_{ m JC}$	
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	65 ℃ to 150 ℃
(*1) LX Voltage Tested Down to -3V <20ns	
(*2) LX Voltage Tested Up to +7V <20ns	
-	
D	

Recommended Operating Conditions (Note 3)

Supply Input Voltage		2.5V to 5.5V
Junction Temperature	Range	-40 ℃ to 125 ℃
Ambient Temperature	Range	-40 ℃ to 85 ℃

Electrical Characteristics

 $(V_{IN} = 5V, V_{OUT} = 1.8V, L = 1.0\mu H, C_{OUT} = 22\mu F, T_A = 25 \, \degree C$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	$V_{\rm IN}$		2.5		5.5	V
Input UVLO Threshold	$V_{\rm UVLO}$			2.45	2.5	V
Input UVLO Hysteresis	V_{YST}			150		mV
Shutdown Current	I_{SHDN}	$V_{EN}=0V$		0.1	1	μΑ
Quiescent Current	I_Q	$V_{FB}=V_{REF}\times 105\%$		55		μΑ
Feedback Reference Voltage	V_{REF}	I _{OUT} =1A, CCM	0.591	0.6	0.609	V
LX Node Discharge Resistance	R_{DIS}			50		Ω
Top FET R _{ON}	R _{DS(ON)1}			125		m Ω
Bottom FET RON	R _{DS(ON)2}			75		mΩ
EN Input Voltage High	$V_{EN,H}$		1.2			V
EN Input Voltage Low	$V_{\mathrm{EN,L}}$				0.4	V
PG Threshold for Under Voltage	$V_{PG,UVP}$			90		%
Detection	V PG,UVP			90		70
PG Low Delay Time for Under	t _{UVP.DLY}			15		μs
Voltage Detection	COVP,DL1			13		μз
PG Threshold for Over Voltage	$V_{PG,OVP}$			120		%
Detection PG Low Delay Time for Over						
Voltage Detection	tovp,dly			15		μs
Min ON Time	tovven			50		ns
Maximum Duty Cycle	t _{ON,MIN} D _{MAX}		100	30		%
	DMAX	from EN high to LX start	100			/0
Turn On Delay Time	t _{ON,DLY}	switching		0.25		ms
Soft-start Time	tss	V _{OUT} from 0% to 100%		0.75		ms
Switching Frequency	f_{SW}	I _{OUT} =1A, CCM		1.5		MHz
Top FET Current Limit	$I_{LMT,TOP}$		3			A
Output Under Voltage Protection	V_{UVP}			50		$%V_{REF}$
Threshold	VUVP					/0 V REF
Output UVP Delay	t _{UVP,DLY}			10		μs
UVP Hiccup ON Time	t _{UVP,ON}			1.45		ms
UVP Hiccup OFF Time	t _{UVP,OFF}			1.45		ms
Thermal Shutdown	T_{SD}			160		\mathcal{C}
Temperature						
Thermal Shutdown Hysteresis	T _{HYS}			20		\mathcal{C}

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note2: θ JA of SY8892ARC is measured in the natural convection at $T_A = 25 \, \text{C}$ on 2OZ two-layer Silergy evaluation board. Pin 4 is the case position for SY8892ARC θ JC measurement.

Note 3: The device is not guaranteed to function outside its operating conditions.

SOT563 Package Outline Drawing

Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification

1. Taping Orientation

SOT563

Feeding Direction

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer * length(mm)	Leader * length (mm)	Qty per reel (pcs)
SOT563	8	4	7''	280	160	5000

3. Others: NA