Aerospace Propulsion

Lecture 11
Airbreathing Propulsion I

Airbreathing Propulsion: Part I

- History of Airbreathing Propulsion
- Basics of Gas Turbine (Jet) Engines
- Thrust

Efficiency

The Atmosphere

- Wright brothers
 - December 17, 1903
 - Kitty Hawk, North Carolina
 - "The Flyer"
 - Gas powered, 12-hp reciprocating engine
 - Propellers
- Reciprocating engines with propellers until 1930's

First powered 3 controlled alremate

- Why was the gas turbine necessary to advance aviation?
 - Reciprocating engines were mainly used to spin propellers
 - Propeller aircraft limited by velocity of propeller tips
 - Sonic propeller tips exhibit "wave drag" which significantly reduces efficiency
 - Occurs due to shocks
 - Gas turbines do not rely on (fastspinning) propellers

- Next major leap occurred with the introduction of gas turbines to aircraft
- John Barber
 - English inventor
 - First true gas turbine (1791)
 - "Horseless Carriage"
 - Not enough efficiency to power itself so external compression used

Compressor - consustor + terbhe

- Ægidius Elling
 - Norwegian researcher and inventor
 - First gas turbine producing net power
 - Same year as first flight (1903)
 - Output of 11-hp
 - Engine limited by turbine inlet temperature of 675 K
 - Materials constraint

- Maxime Guillaume
 - French inventor
 - First patent for turbojet engine (1921)
 - Axial-flow turbojet
 - First time a gas turbine was considered to power an aircraft
 - Never constructed due to insufficient technology to build the compressor

- Frank Whittle
 - British engineer (Royal Air Force)
 - Father of turbojet engine (1930 patent)
 - Possible through collaboration with Alan Arnold Griffith in 1926
 - Constructed and tested in 1937
 - Gloster E.28/39 flew using the whittle engine (Whittle W.1) in 1941

- Hans von Ohain
 - German engineer
 - First engine (Heinkel HeS 1) in 1937
 - Fueled by Hydrogen
 - Beat the Whittle engine test by a few weeks
 - First flight in 1939
 - Heinkel He 178 aircraft
 - Heinkel HeS 3 engine
 - Fueled by diesel

- Five primary processes in jet engines
 - Intake
 - Compression
 - Combustion
 - Expansion
 - Exhaust

- Classification
 - Two sources of power/work in gas turbines
 - Shaft power from turbine(s)
 - Exhaust jet
 - Turboprop Engines
 - All power from shaft used to drive propeller
 - Turbojet Engines
 - All power from exhaust jet
 - Turbofan Engines
 - Some power to exhaust, some power to drive fan

- Turboprop Engine
 - Gas turbine used to spin propeller
 - Example: PW123 (Bombardier Q200)
 - Three shafts (2000 hp)
 - Low-pressure compressor connected to low-pressure turbine
 - High-pressure compressor connected to high-pressure turbine
 - Power Turbine connected to Propeller
 - Advantage: Most efficient at low speed
 - Disadvantage: Forward speed limited by propeller tip speed

- Turbojet Engine
 - Gas turbine exhaust provides propulsion
 - Example: RR Olympus 593 (Concorde)
 - Two shafts (38,000 lb_f)
 - Advantage: Very high thrust enables high speed flight
 - Disadvantage: Very inefficient at low speeds

- Turbofan Engine
 - Conceptually, almost a combination of turbojet and turboprop engines
 - Example: GE90 (Boeing 777)
 - Two shafts (115,000 lb_f)
 - Advantage: Good thrust and efficiency at many speeds
 - Disadvantage: For a large enough fan, wave drag

Thrust

- Consider an "engine"
- Momentum balance in x-direction

m

II

Ш

•
$$T = (\dot{m}_e V_e - \dot{m}_a V) = \dot{m}_a \left(V_e \frac{\dot{m}_a + \dot{m}_f}{\dot{m}_a} - V \right) \approx \dot{m}_a (V_e - V)$$

Thrust

- Net Thrust
 - $T = (\dot{m}_e V_e \dot{m}_a V) \approx \dot{m}_a (V_e V)$
- Gross Thrust (V = 0)
 - Generally, this is the value quoted for engines
 - Gross thrust at sea level
 - $T_G = \dot{m}_e V_e \approx \dot{m}_a V_e$
- Ram Drag
 - Difference between gross thrust and next thrust
 - $T_R = T_G T = \dot{m}_a V$

Efficiency

Propulsive Efficiency

•
$$\eta_p = \frac{\dot{w}_{prop}}{\Delta \dot{K} E} = \frac{2V}{V_e + V}$$

$$\frac{2TV}{\dot{M}_{a}(Ve^{2}-V^{2})}$$
= $\frac{2\dot{M}_{a}(Ve^{2}-V^{2})}{\dot{M}_{a}(Ve^{2}-V^{2})}$
= $\frac{2(Ve^{2}-V^{2})}{Ve^{2}-V^{2}}$
= $\frac{2(Ve^{2}-V^{2})}{(Ve^{2}-V^{2})}$

- Maximized (with non-negative thrust) when $V_{\rho} = V$
 - Zero thrust!

More efficient to <u>slightly</u> accelerate more air rather than greatly accelerate less air

Efficiency

Thermal Efficiency

•
$$\eta_{th} = \frac{\Delta KE}{\dot{Q}_{in}} = \frac{\frac{1}{2}\dot{m}_{e}V_{e}^{2} - \frac{1}{2}\dot{m}_{a}V^{2}}{\dot{m}_{f}LHV}$$

Overall Efficiency

•
$$\eta_o = \frac{\dot{w}_{prop}}{\dot{Q}_{in}} = \eta_p \eta_{th}$$

- (Thrust) Specific Fuel Consumption
 - $(t)sfc = \frac{\dot{m}_f}{T}$

Lower Heating Value (LHV) is the amount of energy/heat released from combustion per mass of fuel assuming gaseous water as the product

The Atmosphere

- Ambient temperature and pressure
 - Aircraft experience a massive variation in ambient pressure, temperature, and density from sea level to cruise altitude (~35,000 ft)
 - At cruise altitude, $T \approx 218.8 \text{ K } (-65 \,^{\circ}\text{F}), p \approx 0.235 \text{ atm}$
- Rely on "International Standard Atmosphere"
 - Static Quantities
- Why do aircraft cruise between 30,000 and 40,000 ft?

Elevation - z - (m) (ħ)	Temperature - T - (K) (°F) (°C)	Pressure - p - (bar) (psi) (kPa)	Relative Density $-\rho/\rho_0$ - Density - ρ $(Kg/m3)$
10000	223.3	0.2650	0.3376
10500	220.0	0.2454	0.3172
11000	216.8	0.2270	0.2978
11500	216.7	0.2098	0.2755
12000	216.7	0.1940	0.2546

