WaveNet: A Generative Model for Raw Audio

Денис Золотухин

ниу вшэ

15 марта 2019

Очём

- ▶ Модель звука в WaveNet
- ▶ Свёртки: простая и умная
- Архитектура сети
- Параметризация
- Эксперименты

Немного о звуке

Для хранения на компьютере звук делится на равные интервалы с выбранной частотой (дескретизации).

Рис.: Секунда речи

Иненсивность звука в каждом из них квантуется по выбранному числу уровней (глубина кодирования). Таким образом, звук можно представить как **временной ряд** $\{x_i\}_{i=1}^T$.

Модель распеределения в WaveNet

 $X = \{x_1, \dots, x_T\}$ - представление звука. Разбиваем p(X) в произведение:

$$p(X) = \prod_{i=1}^{T} p(x_i|x_{i-1},\dots,x_1)$$

Стакаем слои, но только свёрточные, размерость по времени сохраняется.

Простая свёртка, на зависящая от будущего

Рис.: Простая свёртка

Растянутая свёртка

Рис.: Растянутая свёртка

Зачем?

Такая свёртка значительно расширяет область видимости, достижение которой обычными свертками непрактично.

хотим помнить ≈ 1 с частота 44.1к Γ ц \Longrightarrow область видимости ≈ 44000 будем стакать 10к слоёв?

В WaveNet стакаются слои с размерами свёртки $1,2,4,\ldots,512,$ а потом снова начинают с размера 1.

Мю-закон

При глубине кодирования 16 бит получаем, что softmax должен предсказать 65536 вероятностей. Это число уменьшается с помощью μ -трансформации:

$$f(x_t) = \operatorname{sgn}(x_t) \frac{\ln(1 + \mu |x_t|)}{1 + \mu}$$

Здесь $-1 < x_t < 1, \, \mu = 256$. После этого $f(x_t)$ квантуется в одно из 256 значений.

Устройство слоя

Структура каждого слоя такова:

$$z = \tanh(W_{f,k} * X) \odot \sigma(W_{g,k} * X)$$

W - свёрточный вентиль (его мы учим), * - свёртка, \odot - поэлементное поизведение, k - номер слоя, z - внутреннее состояние.

f и g обозначают "filter"
и "gate" вентили (привет, GRU).

Пропускаем слои

Рис.: Архитектура блока

Условная генерация

Если у нас есть дополнительный вход нашей сети, то мы можем генерировать выход, обуславливаясь на него:

$$p(x|h) = \prod_{i=1}^{T} p(x_i|x_{i-1}, \dots, x_1, h)$$

Где h - входной параметр. Различаются два вида таких параметров: глобальные и локальные.

Глобальная параметризация

h представляет глобальное условие, напрмиер id человека. Тогда внутренние переменные считаются так:

$$z = \tanh(W_{f,k} * X + V_{f,k}^T h) \odot \sigma(W_{g,k} * X + V_{g,k}^T h)$$

V - линейные отображения h, которые мы можем выучить.

Локальная параметризация

 h_t - последовательность, с более низкой частотой, чем у звука (слова текста). Тогда мы апскейлим её до нужной нам частоты y=f(h) и заливаем в сеть:

$$z = \tanh(W_{f,k} * X + V_{f,k} * y) \odot \sigma(W_{g,k} * X + V_{g,k} * y)$$

Здесь $V_{f,k} * y$ это уже свёртка 1×1 .

Зависимость только от говорящего

- 44 часа речи 109 людей
- ▶ Без текста: правдободоные звуки, но без смысла

- ▶ Музыка
- Ясно слышно фортепиано, но какая-либо мелодия отсутствует

Синтез речи на основе текста

Рис.: Сравнение WaveNet с другими подходами

Выводы

- ▶ WaveNet сеть для генерации звука
- Для увеличения области видимости применяются "дырявые" свёртки
- Используется схему вентилей, похожая на ту, которую можно увидеть в GRU
- WaveNet можно легко параметризовать: текст для синтеза, тембр голоса, качество записи
- WaveNet на данный момент одна из лучших сетей для генерации звука, особенно речи

Ссылки

 $[1].\ https://arxiv.org/abs/1609.03499$