

Image Data Augmentation

Antonio Rueda-Toicen

SPONSORED BY THE

Learning goals

- Use data augmentation to extend training datasets
- Gain familiarity with PyTorch's transforms.v2: affine transformations, vertical and horizontal flipping, and random crops

Data augmentation

Image from https://docs.fast.ai/vision.augment

Data augmentation as regularization

Impact of Data Augmentation on Model Training

Affine transformations

$$egin{pmatrix} x' \ y' \end{pmatrix} = egin{pmatrix} a & b \ c & d \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix} + egin{pmatrix} \Delta_x \ \Delta_y \end{pmatrix}$$

Linear transformation

(Rotation, scaling, shear)

Translation

(Moving along the axes)

The RandomAffine transformation - rotation

$$egin{pmatrix} x' \ y' \end{pmatrix} = egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}$$

transforms.RandomAffine(degrees=45)

The RandomAffine transformation - translation

The RandomAffine transformation - scaling

$$egin{pmatrix} x' \ y' \end{pmatrix} = egin{pmatrix} s_x & 0 \ 0 & s_y \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}$$

transforms.RandomAffine(degrees=0, scale=(0.25, 2.5))

The RandomAffine transformation - shear

$$egin{pmatrix} x' \ y' \end{pmatrix} = egin{pmatrix} 1 & s_x \ s_y & 1 \end{pmatrix} egin{pmatrix} x \ y \end{pmatrix}$$
 transforms.RandomAffine(degrees=0, shear=45)

Horizontal and vertical flipping

RandomCrop and RandomResizedCrop

transforms.RandomCrop(size=224)

Blind data augmentation can damage your model

 $\hat{y} = \text{golden retriever (unit 207 on Imagenet)}$

Cross Entropy Loss = $-\log(0.003) = 5.809$

 $-\log(0.6) = 0.511$

The validation set should not be augmented during training


```
import torchvision.transforms.v2 as T
imagenet_mean = [0.485, 0.456, 0.406]
imagenet_std = [0.229, 0.224, 0.225]
transform = T.Compose([
# Resize to 224x224
T.Resize((224, 224)),
# Convert to torch Image
T.ToImage(),
# Convert to scaled float tensor
T.ToDtype(torch.float32, scale=True),
# Apply ImageNet normalization
T.Normalize(mean=imagenet_mean,
            std=imagenet_std)
```

Augmentation should happen <u>after</u> train, validation, and test splitting

Summary

Data augmentation creates synthetic input data

Data augmentation can improve the robustness of a model and prevent overfitting

PyTorch transforms are powerful and composable

- transforms.v2 provides rotation, scale, crop, and flip (+other) operations
- Each transform has specific parameters for fine control

Avoiding data leakage: best practices

Apply augmentations after train, validation, and test split. Never augment validation data.
 Test augmentation effects through observation and loss values

SPONSORED BY THE

Further reading and references

Data augmentation is still data curation

https://voxel51.com/blog/data-augmentation-is-still-data-curation/

Getting started with PyTorch's transforms v2

https://pytorch.org/vision/main/auto_examples/transforms/plot_transforms_getting_started_.html

Illustration of transforms

https://pytorch.org/vision/main/auto_examples/transforms/plot_transforms_illustrations.ht
 ml#sphx-glr-auto-examples-transforms-plot-transforms-illustrations-py

