Dimostrazioni per l'esame orale di Analisi Matematica A

Filippo Troncana, dalle note della professoressa A. Defranceschi con l'aiuto del collega D. Borra ${\rm A.A.~2022/2023}$

Indice

Ι	Modulo 1	1
1	Irrazionalità di $\sqrt{2}$	1
2	Funzioni in generale	1
II	Modulo 2	2

Parte I

Modulo 1

1 Irrazionalità di $\sqrt{2}$

Teorema. $\sqrt{2}$ è irrazionale, ovvero $\nexists m, n \in \mathbb{Z}$: $MCD(m, n) = 1 \land \frac{m}{n} = \sqrt{2}$.

Dimostrazione. Siano $m, n \in \mathbb{Z}$ tali che $MCD(m, n) = 1 \wedge \frac{m^2}{n^2} = 2$. Allora $m^2 = 2n^2$, dunque m^2 è pari e automaticamente m è pari.

Sia m = 2k, allora $4k^2 = 2n^2 \Rightarrow n^2 = 2k^2$, dunque anche n è pari.

Ma allora $MCD(m, n) \geq 2$, assurdo, dunque non esistono tali $m, n \in \mathbb{Z}$.

2 Funzioni in generale

DEF. Dati due insiemi X, Y, una **funzione** $f: X \to Y$ è una qualsiasi legge che ad ogni elemento $x \in X$ associa un unico elemento $y \in Y$, e scriviamo y = f(x). X si dice **dominio** di f, Y si dice **codominio** di f.

DEF. Dati due insiemi X,Y e una funzione $f:X\to Y$, essa induce una **funzione immagine** che indichiamo con lo stesso nome:

$$f: \mathcal{P}(X) \to \mathcal{P}(Y)$$

$$A \to \{y \in Y: \exists x \in A: y = f(x)\}$$

Parte II Modulo 2