

Algoritmos e Linguagens de Programação

Professora: Juliana Santiago Teixeira

PRÁTICA 11: Função Recursiva

OBS.: Trabalho individual. Prazo de entrega do relatório: 1 semana após a prática, impreterivelmente até o horário de início da aula. Enviar por e-mail para "julianasteixeira@hotmail.com" com o seguinte título: "ALP_Pratica X — Nome Completo Do Aluno".

O que deve ser entregue

- Arquivo compactado nomeado "pratica-X_nome-completo-aluno.zip". Certifique-se de que o arquivo n\u00e3o est\u00e1 corrompido.
- Este arquivo deverá conter uma pasta com todos os arquivos utilizados na prática

O que deve ser feito

1. Escrever a função recursiva

```
int SomaRec(int a[], int tam);
```

que retorna a soma dos elementos do vetor a de tamanho tam.

2. Escrever a função recursiva

```
int PotenciaRec(int b, int e);
```

que retorna be. Fazer um programa para testar a função.

3. A sequência de Fibonacci é definida como se segue. Os dois primeiros elementos da sequência são iguais a 1, ou seja, F_1 = 1 e F_2 = 1. A partir daí, os próximos elementos são construídos somando-se os dois anteriores. Por exemplo, F_3 = F_1 + F_2 = 1 + 1 = 2, F_4 = F_2 + F_3 = 1 + 2 = 3 e F_5 = F_3 + F_4 = 2 + 3 = 5. Assim,

$$F_1 = 1, F_2 = 1$$
 para $n=1$ ou $n=2$ e $F_n = F_{n-2} + F_{n-1}$ para $n \ge 3$.

Escrever a função recursiva

```
int Fib(int n);
```

que retorna o número n da sequência de Fibonacci. Fazer um programa para testar a função.