Users' Manual

for **AIEM.m**

Contents

1.INTRODUCTION	3
2.CASES	4
2.1 BACKSCATTERING CASE	4
2.2 BISTATIC CASE	5

1.Introduction

The function *AIEM.m* computes the scattering coefficients from three types of correlation surfaces (Gaussian, exponential, and 1.5-power) using the advanced integral equation model (AIEM). Table 1 and Table 2 lists the descriptions of inputs and outputs. Figure 1 shows the flowchart for the function.

Table 1 Input parameters of AIEM

Parameters	Description
theta_i	incident angle in degree
theta_s	scattering angle in degree
phi_s	scattering azimuth angle in deg
kl	normalized surface correlation length multiplies by wave number k.
ks	normalized surface rms height multiplies by wave number k.
err	the real part of surface relative dielectric constant
eri	the imaginary part of surface relative dielectric constant
itype	itype=1 Gaussian correlation function
	itype=2 exponential correlation function

Table 2 Output parameters of AIEM

Parameters	Description	
НН	scattering coefficient of HH polarization	
VV	scattering coefficient of VV polarization	
HV	scattering coefficient of HV polarization	
VH	scattering coefficient of VH polarization	

Figure 1 Flowchart of AIEM.m

2.Cases

2.1 Backscattering Case

For both backscattering and bistatic scattering, we set the incident azimuth angle to be 0° . The inputs for the backscattering case are listed in Table 3. Running the first part of code *cases.m* in this file simulates the backscattering coefficients with the change of incident angle, as shown in Figure 2.

Table 3	Innut	parameters	for Rac	kscattering	Case
iable 5	muut	Darameters	IUI Dat	KSCattering	Case

Table 5 input parameters for Backscattering case	
Parameters	Value
theta_i	0°~90°
theta_s	equals to theta_i
phi_s	180°
kl	2
ks	0.4
err	12
eri	1.8
itype	1, 2

Figure 2 The backscattering coefficients changed with the incident angle

2.2 Bistatic Case

Table 4 lists the related inputs for the bistatic case. Figure 3 shows bistatic scattering coefficients as a function of scattering azimuth angle. The second part of *cases.m* is the bistatic case.

Table 4 Input parameters for Backscattering Case

<u> </u>	
Parameters	Value
theta_i	30°
theta_s	60°
phi_s	0°~180°
kl	2
ks	0.4
err	12
eri	1.8
itype	1, 2

Figure 3 The bistatic coefficients changed with the scattering azimuth angle