Unsupervis and I Principal Component Analysis

of projections.

· The 1st principal axis is a direction maximizing the variance

Mox at Va s.t. ||a||=1

4 a Va = a Va = 1 11 a 12 = 1 largest eigen-value.

Coordinates of xi on projected principal axis as are the 1st principal component. Cni = TXi, a1>

· Ind principal oxis: max a Va s.t. II a II = 1, a Lan Lo Vaz = le az . In buga dirineveren p≫n, 1 Kc = lc, Kij = Xi^TXj

=> Reconstitution in the new base: Xi= Zh=1 Ci,k ah Simplified representation in dimension $s \ll r$: $x = \widetilde{C}\widetilde{A}^{T} = (c_1 - c_2)/a_1$

Explained variance by $ck = \frac{\lambda k}{\sum_{i=1}^{n} \lambda i}$

Limitations: Scale variant - Need standardization · Complexity O(p3) · Might be impossible if p is too large.

· Kernel PCA $\Phi(x)^{T}\Phi(x')=k(x,x')$ Solve $Ca = \lambda_0$ where $C = \frac{1}{n} \sum \Phi(X_i) \Phi(X_i)^T$ Problem: $ak = \frac{1}{h\lambda}(X^{\dagger}(k) = \frac{1}{h\lambda}\sum_{i=1}^{n}C_{i,k}\phi(X_{i})$

In the standard case, c1 is the linear combination of variables that moximize the sum of squared correlation of variables:

$$C_A = argmax$$

$$\sum_{c \in Veul(X^1...X^0)} \sum_{i=1}^{r} R^2(X^i, c^i)$$

Le Project on 2D correlation circle: cos Oj, k =
$$\frac{\langle X^j, c^k \rangle}{\sqrt{X_j^T D X_i} \cdot C_k^T D C_k^T}$$
 and between var. j and component k.

And length of line contribution of component c: $CTR(\bar{i}, c) = PiCi^2$

· Modified metric PCA: Va = la, V= <x, x > M <x, x >

· Modified weight PCA: V= XTDX - ggT, g bauycenter, D matrix of weights.

II. Dependence tralysis

Used for discrete variables.

	Blue Eyes	Brown Eyes	Blod Hair	Brown Hair
Person 1	1	•	1	
Person 2	Л			1
Person 3		1		1

Idea: We have I profiles (line, column) and no nant to assess which cotogories of Hose profiles are correlated. It does however not say anything about intensity of relation.

Dim 2

Dim 1

Correspondance analysis can be generalized. L. Multiple components > 2.

II. K-means

min $\sum_{i=1}^{k} \sum_{i \in G} \|X_i - \mu_j\|^2$, $\mu_j = \frac{1}{|G|} \sum_{i \in G} X_i$ contex of the duster.

Start from arbitrary location of clusters

- · Find partition induced by nonzert aluster
- . Update duter conter
- · Iterate until cluster conergence

Can be expressed as:

· h-mans ++

Select initial clusters for away from each other (squared distance criteria)

· Minimotch k-means

Update controld using mini-batch of b samples chosen randomly to Complexity O(bk) instead of O(nk)

=> Always a finite number of configurations -> these algorithms convarge.

· Soft clustering

We suppose a gaussian dombition around a duster. Each point has a probability ρ_{ij} of $\exp(-\|x_i-\mu_i\|^2/2\sigma^2)$ to belong to cleater j

· Fuzzy &-means

Pareto (heavy tail) version of soft clustering: più d 1/1x:- pill d, d>0

· Weighted k-many

Assign relative importance to each sample wi.

min
$$\sum_{j=1}^{k} \sum_{i \in G} w_i \|x_i - \mu_j\|^2$$
 where $\mu_j = \frac{\sum_i C_j w_i |x_i|}{\sum_{i \in G} w_i}$

IV Gaussian Mixture model

Recall:
$$f(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \sum^d (x-\mu)}$$
, $|\Sigma|$ determinant of Σ

Idea: Data may come from one of the gaussian distribution among the mixture. We need to set the number of clusters and identify best parameters by maximum likelihood.

$$X \sim N(\mu_z, Z_z)$$
, $Z \sim T$ latent variables.
The parameters are the following: $O = (T_i, \mu_i, Z)$
 $T = (T_1 ... T_h)$ mixing dambuhon (weights)
 $P = (\mu_1 ... \mu_h)$
 $Z = (Z_1 ... Z_h)$
Lo $P_0 (x_1 Z) = T_{x_1}^{n_1} f_{z_1}(x_i)$

Maximum log likelihood: $\hat{O} = \operatorname{argmax} l(0; Z)$, $l(0, Z) = \bar{Z}_{1=1}^{n} \log \pi_{Z_{1}} + \bar{Z}_{1=1}^{n} \log f_{Z_{1}}(x)$ L. Find solutrous $\hat{\pi}_{j}$, $\hat{\mu}_{j}$, \hat{Z}_{j}

Le Estimate latent variables: $p_{\theta}(2|x) = \frac{f_{\theta}(x,2)}{p_{\theta}(x)} \wedge p_{\theta}(x,2) = \prod_{i=1}^{n} \mathbb{T}_{Z_{i}} f_{2_{i}}(x_{i})$

V. Expectation - maximization

Expected likelihood: $Z_{j=1}^k Z_{i=1}^n \rho_{ij} (\log T_j + \log f_j(x_i))$, $\rho_{ij} \in T_i f_j(x_i)$ is the probability that observation is belongs to cleater j.

What is different with GMT? We now consider for each observation its probability to belong to each duster, and EM allows a dear MLE solution.

LÎJ = $\frac{n_j}{n}$, $\hat{\mu}_j = \frac{1}{n} Z_i^n P_{ij} X_i$, $\hat{Z}_j = \frac{1}{n_j} \hat{Z}_{i=1}^n P_{ij} (X_i - \hat{\mu}_j)^T$ = The is sept k-means. When $\sigma \to 0$, this is k-means.

Distance metric between 1 proba. distributions:

- KL divergence: $D(\rho | | q) = Z_j^2 \rho \log \left(\frac{\rho h}{q x}\right)$

- Entropy: H(p) = - Zj=", Alog ph

· Symmetric Gauttrian mixture model.

LET with the set of covariance matrices $\Sigma = (\sigma^2 I, ..., \sigma^2 I)$

VI. Hierarchical clustering

Aim: Reflect multiscale nature of data.

2 approaches to build a dendogram

But how do we decribe to split 2 four dusters of merge 1 close ones ?

· Maximum distance (complete unlege): d(a,b) = max | | Xi - Xj || i6a jeb

· Ward's method: Minimize sum of squared errors

$$S = \sum_{c \in C} \sum_{i \in N} ||X_i - g(c)||^2$$
 where $g(c) = \frac{1}{|c|} \sum_{i \in C} X_i$

- · Nearest neighbor chain
 - 1) Stort from any cluster
 - 2) Build diverted chain of nearest neighbors until 2 clusters are jointly nearest neighbors

3) Merge these 2 dusters and proceed with rest of chair until ampty 4) 60 to step 1 if there are at least 2 dusters left.

How do we measure performance for dustering?

- square distance Optimized for k-Hears
- log-likelihood Optimized for gaussian mixture
- mutial information (normalized)
- prevision, recall, F1- Score

VIII Density based spatral clustering of applications with noise

- · A cove is a point that has at least he points in its heighborhood.
- . A border is a non-core point that has at least 1 core in its neighborhood
- . A noise is an outlier

· Pich a 1st core point and perform core-search
Assign all points recurrisly in neighborhood to the sune cluster as X

Advantage. Can fit any shape and size of dunter . Con Grove authors

limitations: Sensitive to charic of heighborhood.

IX. Non-negative matrix factorisation model (NMF)

VFKN ~ WFKK X HKXN.

Data = Expl. vor. x Regressos

We want to decompose V into positive matrices: $\{W = [w_{pm}] \text{ s.t. } w_{pm}\} = 0$ $\Leftrightarrow V_n \simeq \sum_{k=1}^{K} h_{kn} w_k$

Vsed for: - topic modelling (LSA) - dustering (K-Maans) - tenporal segmentuhio (video) - Source separatrio (ICA).

Limitations: Charle of K

Non-unique solution

 $V \approx WH$ usually obtained through min $D(V \mid WH)$ reconstitution error. Where $O(V \mid \hat{V}) = \sum_{i=1}^{n} \sum_{n=1}^{N} d(v \cdot f_n \mid \hat{V} \cdot f_n)$.

What divergence matrics can we use?

- · Euclidean distance: $d_{euc}(x, y) = (x y)^2$ $d_{euc}(\lambda \times |\lambda y| = \lambda^2 d_{euc}(x | y))$ not scale invarient.
- Kullbach Leibler: $d_{KL}(x_1y) = x \log \frac{x}{y} x + y$ $d_{KL}(\lambda x | \lambda y) = \lambda d_{KL}(x_1y)$
- Itahari Saito (IS): $dis(x,y) = \frac{x}{y} log \frac{x}{y} 1$ dis(x,y) = dis(x,y) is scale invarient.

We solk optimal It and W values by multiplicative update (MU) and Majoratron - minimization.

Limitations: monotorially not graventeed ouvergence not so good.

X. Independent component Analysis (ICA)

Xnf ~ Africon Sn is data expl. var. regresses

Used for source separation:

Mixed signal = Mixing matrix x Sources

· 11 Sphering

Variona of entires of S must be normalized to 1.

LDE(ZZ)=I => Sisx = Misx·Z => Find M retation

Once data is sphered:

- · Construct rumerrial criteria C(Y) massuring irobperdance of entries
- · Solve max C(UZ)

Le Signals that add up: aT. We want to be as non-gamenton as possible How to measure non-gamenanity?

- · Kurtosis kurt (Y) = IE (Y") 3IE (Y2)2
- · Vegentropy: J(Y)= H [Yearman] H { y}
- Fast ICA algorithm

 max C(u) = 1 hurt $\{u^T Z\}$ | st $u^T u = I$ $L(u, \lambda) = C(u) + \lambda(1 ||u||^2)$

There must be at most 1 gaussion component inside, and we need to know how many sources there are.