File by Sayan Saha (sayansaha00876@gmail.com)

Exercise 7: Financial Forecasting:

Output Screenshots:-

```
✓ Main [:org.example.Main.main()]: successft 10 sec, 347 ms
                                                    09:55:11 AM: Executing ':org.example.Main.main()'...
                                                    > Task :compileJava
                                                    > Task :processResources NO-SOURCE
                                                    > Task :classes
                                                    > Task :org.example.Main.main()
                                                    Enter the principal amount
                                                    Enter the growth rate (in %) :
                                                    Enter the number of years to forecast :
                                                    Forecast after 8 years is 1477.455443789063
Time taken for recursive forecast is 58600 ns
                                                    Memoization forecast result
                                                    Forecast after 8 years is 1477.455443789063
                                                    Pseudo-Unique System ID: Windows 11-10.0-amd64-sayan-21.0.7
                                                    BUILD SUCCESSFUL in 10s
                                                    2 actionable tasks: 2 executed
                                                     09:55:22 AM: Execution finished ':org.example.Main.main()'.
```

1. Understand Recursive Algorithms

What is recursion?

Recursion is a technique used in programming where a function calls itself to solve it efficiently by breaking it down into smaller subproblems.

Why is recursion useful in forecasting?

In forecasting, the future values depend on the past values. Recursion thus help in forecasting future data on past growth patterns.

2. Setup

We define a method to forecast future values based on past data. The essential inputs are:

- Initial amount
- Growth rate (as a percentage)
- Number of years to forecast

3. Implementation of Recursive Algorithm

The entire code implementation files are attached in the folder.

I have used this recursive formula:

futureValue(year) = futureValue(year - 1) * (1 + growthRate)

4. Analysis

Time Complexity (Unoptimized Recursive Version):

- **O(n)**: One recursive call per year, but no repeated subproblems.
- Still inefficient in practice due to repeated function calls and stack overhead.

Time Complexity (Memoized Version):

- **O(n)**: Same number of logical operations, but faster due to cached results.
- Reduces redundant computation significantly.

How to Optimize:

- We used **memoization**: Stored already-computed year values in a map or array.
- We used **iteration** (loop) instead of recursion for large datasets to avoid stack overflow.
- We can use **dynamic programming** when dealing with multiple interdependent variables.