Logica e Modelli Computazionali

Esercizi Macchine di Turing

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Università di Roma)

Esecuzioni

- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una Macchina di Turing terminante con k nastri e x un input per M
- Definizione. Una configurazione C genera una configurazione D in M ($C \Rightarrow_M D$) se
 - $C = (\sigma y, q, x\tau), D = (\sigma, q', yz\tau) \in \delta(q, x) = (q', z, \leftarrow) \in \sigma \neq \epsilon$ (movimento a sinistra)
 - $C = (\epsilon, q, x\tau), D = (\epsilon, q', z\tau) \in \delta(q, x) = (q', z, \leftarrow)$ (movimento a sinistra bloccato)
 - $C = (\sigma, q, xy\tau), D = (\sigma z, q', y\tau) \in \delta(q, x) = (q', z, \rightarrow) \in \tau \neq \epsilon$ (movimento a destra)
 - $C = (\sigma, q, \epsilon), D = (\sigma z, q', \epsilon)$ e $\delta(q, \sqcup) = (q', z, \rightarrow)$ (movimento a destra oltre il nastro corrente)
 - $C = (\sigma, q, x\tau), D = (\sigma, q', z\tau) \in \delta(q, x) = (q', z, -)$ (nessun movimento)
- **Definizione**. L'esecuzione di M con input x ($E_M(x)$) è la sequenza di configurazioni di M $C_1, C_2, ..., C_n$ tale che
 - C_1 è la configurazione iniziale di M con input x
 - C_n è una configurazione accettante\rifiutante
 - $C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{ves}, q_{no}, a, b\}$
- 1. Fornire un input accettato da *M* (se esiste)
- 2. Fornire un input rifiutato da M(se esiste)
- 3. Fornire un input ne accettato ne rifiutato da M (se esiste)
- 4. Definire l'esecuzione di *M* per l'input 0011001
- 5. Definire l'esecuzione di *M* per l'input 000010

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a, 1, \rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
(a,\sqcup)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a,1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes},\sqcup,-)$
(<i>b</i> , 0)	$(q_{no},1,-)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b\}$
- 1. $(\epsilon, q_0, 0011001)$
- $2. (11, q_0, 11001)$
- *3.* (110, *b*, 1001)
- 4. $(1100, q_0, 001)$
- *5.* (11001, *a*, 01)
- 6. $(110011, q_0, 1)$
- 7. $(1100110, b, \epsilon)$
- 8. $(1100110, q_{yes}, \epsilon)$

(q,x) \	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a,1,\rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
(a,\sqcup)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a,1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes}$, \sqcup , $-)$
(<i>b</i> , 0)	$(q_{no},1,-)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b\}$
- 1. $(\epsilon, q_0, 000010)$
- *2.* (1, *a*, 00010)
- $3. \quad (11, q_0, 0010)$
- *4.* (111, *a*, 010)
- 5. $(1111, q_0, 10)$
- 6. (11110, b, 0)
- 7. $(111110, q_{no}, 1)$

(q,x) \	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a,1,\rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
(a,\sqcup)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a,1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes}$, \sqcup , $-)$
(<i>b</i> , 0)	$(q_{no},1,-)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b\}$
- 1. Fornire un input accettato da *M* (se esiste)
- 2. Fornire un input rifiutato da M(se esiste)
- 3. Fornire un input ne accettato ne rifiutato da M (se esiste)
- 4. Definire l'esecuzione di *M* per l'input 0011001
- 5. Definire l'esecuzione di *M* per l'input 000010

(q,x) \	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a,1,\rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
(a,\sqcup)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a,1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes},\sqcup,-)$
(b, 0)	$(q_{no},1,-)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{ves}, q_{no}, a, b\}$
- 1. Fornire un input accettato da *M* (se esiste)
 - 0011001
- 2. Fornire un input rifiutato da M(se esiste)
 - 000010
- 3. Fornire un input ne accettato ne rifiutato da M(se esiste)
 - $-\epsilon$

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a, 1, \rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
<i>(a,</i> ⊔)	$(q_{yes}$, \sqcup , $-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a, 1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes}$, \sqcup , $-)$
(<i>b</i> , 0)	$(q_{no}, 1, -)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{ves}, q_{no}, a, b\}$
- 1. Definire l'esecuzione di *M* per l'input 0011001
 - 1. $(q_0, \epsilon, 0011001)$
 - *2.* (*a*, 1, 011001)
 - $3. \quad (q_0, 11, 11001)$
 - *4.* (*b*, 110, 1001)
 - $5. \quad (q_0, 1100, 001)$
 - *6.* (*a*, 11001, 01)
 - 7. $(q_0, 110011, 1)$
 - 8. $(b, 1100110, \epsilon)$
 - 9. $(q_{yes}, 1100110, \epsilon)$

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a, 1, \rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
(a,\sqcup)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a, 1)	$(q_{no},0,-)$
(b,\sqcup)	$(q_{yes}$, \sqcup , $-)$
(<i>b</i> , 0)	$(q_{no},1,-)$
(<i>b</i> , 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{ves}, q_{no}, a, b\}$
- 1. Definire l'esecuzione di *M* per l'input 000010
 - 1. $(q_0, \epsilon, 000010)$
 - *2.* (*a*, 1,00010)
 - $3. \quad (q_0, 11,0010)$
 - *4.* (*a*, 111, 010)
 - $5. \quad (q_0, 1111, 10)$
 - *6.* (*b*, 11110, 0)
 - 7. $(q_{no}, 11110, 1)$

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	(q_0,\sqcup,\to)
$(q_0, 0)$	$(a,1,\rightarrow)$
$(q_0, 1)$	$(b,0,\rightarrow)$
<i>(a,</i> ⊔)	$(q_{yes},\sqcup,-)$
(a, 0)	$(q_0, 1, \rightarrow)$
(a, 1)	$(q_{no},0,-)$
(<i>b</i> ,⊔)	$(q_{yes},\sqcup,-)$
(<i>b</i> , 0)	$(q_{no}, 1, -)$
(b, 1)	$(q_0, 0, \rightarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b\}$
- 1. Fornire un input accettato da *M* (se esiste)
- 2. Fornire un input rifiutato da M(se esiste)
- 3. Fornire un input ne accettato ne rifiutato da M (se esiste)
- 4. Definire l'esecuzione di *M* per l'input 101010
- 5. Definire l'esecuzione di *M* per l'input 100

$\delta(q,x)$
$(q_{yes}$, \sqcup , $-)$
$(a,0,\rightarrow)$
$(b,1,\rightarrow)$
$(q_{no},\sqcup,-)$
$(q_0, 0, \rightarrow)$
$(a, 1, \rightarrow)$
$(q_{no},\sqcup,-)$
$(b,0,\rightarrow)$
$(c,1,\rightarrow)$
$(q_{yes}$, \sqcup , $-)$
$(q_0, 0, -)$
$(b,1,\leftarrow)$

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{ves}, q_{no}, a, b, c\}$
- 1. Fornire un input accettato da *M* (se esiste)
 - 101010
- 2. Fornire un input rifiutato da M(se esiste)
 - 100
- 3. Fornire un input ne accettato ne rifiutato da M (se esiste)
 - **–** 1011

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $-)$
$(q_0, 0)$	$(a,0,\rightarrow)$
$(q_0, 1)$	$(b,1,\rightarrow)$
(a,\sqcup)	$(q_{no},\sqcup,-)$
(a, 0)	$(q_0, 0, \rightarrow)$
(a, 1)	$(a,1,\rightarrow)$
(<i>b</i> ,⊔)	$(q_{no},\sqcup,-)$
(<i>b</i> , 0)	$(b,0,\rightarrow)$
(b, 1)	$(c,1,\rightarrow)$
(c,⊔)	$(q_{yes}$, \sqcup , $-)$
(c, 0)	$(q_0, 0, -)$
(c, 1)	(<i>b</i> , 1, ←)

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b, c\}$
- Definire l'esecuzione di *M* per l'input 101010
- 1. $(q_0, \epsilon, 101010)$
- *2.* (*b*, 1,01010)
- *3.* (*b*, 10,1010)
- *4.* (*c*, 101, 010)
- $5. \quad (q_0, 101, 010)$
- *6.* (*a*, 1010, 10)
- 7. (a, 10101, 0)
- 8. $(q_0, 101010, \epsilon)$
- 9. $(q_{ves}, 101010, \epsilon)$

$\delta(q,x)$
$(q_{yes}$, \sqcup , $-)$
$(a,0,\rightarrow)$
$(b, 1, \rightarrow)$
$(q_{no},\sqcup,-)$
$(q_0, 0, \rightarrow)$
$(a, 1, \rightarrow)$
$(q_{no},\sqcup,-)$
$(b,0,\rightarrow)$
$(c, 1, \rightarrow)$
$(q_{yes},\sqcup,-)$
$(q_0, 0, -)$
(<i>b</i> , 1, ←)

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b, c\}$
- Definire l'esecuzione di *M* per l'input 100
- 1. $(q_0, \epsilon, 100)$
- *2.* (*b*, 1,00)
- *3.* (*b*, 10,0)
- 4. $(b, 100, \epsilon)$
- 5. $(q_{no}, 100, \epsilon)$

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $-)$
$(q_0, 0)$	$(a,0,\rightarrow)$
$(q_0, 1)$	$(b,1,\rightarrow)$
(a,\sqcup)	$(q_{no},\sqcup,-)$
(a, 0)	$(q_0, 0, \rightarrow)$
(a, 1)	$(a,1,\rightarrow)$
(b,\sqcup)	$(q_{no},\sqcup,-)$
(<i>b</i> , 0)	$(b,0,\rightarrow)$
(<i>b</i> , 1)	$(c, 1, \rightarrow)$
(c,\sqcup)	$(q_{yes},\sqcup,-)$
(c, 0)	$(q_0, 0, -)$
(c, 1)	(<i>b</i> , 1, ←)

- Consideriamo la seguente MdT a 1 nastro
- $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} \rangle$
- $\Sigma = \{0,1\}, \Gamma = \{\sqcup, 0,1\}, Q = \{q_0, q_{yes}, q_{no}, a, b, c\}$
- Con input 1011 la macchina non termina l'esecuzione
- 1. $(q_0, \epsilon, 1011)$
- *2.* (*b*, 1,011)
- *3.* (*b*, 10,11)
- *4.* (*c*, 101, 1)
- *5.* (*b*, 10, 11)
- *6.* (*c*, 101, 1)
- 7. (b, 10, 11)
- *8.* (*c*, 101, 1)
- 9. ...

(q,x)	$\delta(q,x)$
(q_0,\sqcup)	$(q_{yes}$, \sqcup , $-)$
$(q_0, 0)$	$(a,0,\rightarrow)$
$(q_0, 1)$	$(b, 1, \rightarrow)$
(a,\sqcup)	$(q_{no},\sqcup,-)$
(a, 0)	$(q_0, 0, \rightarrow)$
(a, 1)	$(a,1,\rightarrow)$
(<i>b</i> ,⊔)	$(q_{no},\sqcup,-)$
(<i>b</i> , 0)	$(b,0,\rightarrow)$
(b, 1)	$(c, 1, \rightarrow)$
(c,\sqcup)	$(q_{yes},\sqcup,-)$
(c, 0)	$(q_0, 0, -)$
(c, 1)	(<i>b</i> , 1, ←)

- Definizione. Sia $F_0: \mathbb{M} \to \{0,1\}$ la funzione tale che $F_0(m) = 1$ se m è l'Encoding di una Macchina di Turing con alfabeto di input $\Sigma = \{a,b\}$ che accetta la stringa $\sigma = aaabbbaaa$
- Dimostrare (utilizzando il teorema di Rice) che F₀ non è decidibile

- Definizione. Sia $F_0: \mathbb{M} \to \{0,1\}$ la funzione tale che $F_0(m) = 1$ se m è l'Encoding di una Macchina di Turing con alfabeto di input $\Sigma = \{a,b\}$ che accetta la stringa $\sigma = aaabbbaaa$
- Dimostrare (utilizzando il teorema di Rice) che F₀ non è decidibile
- **Dimostrazione**. Sia \mathcal{P} la famiglia dei linguaggi su Σ che contentono σ . Osserviamo quanto segue:
 - \mathcal{P} non è vuoto (esiste sempre un linguaggio su Σ che contiene σ)
 - \mathcal{P} non coincide con $P(\Sigma^*)$ (esiste un linguaggio su Σ che non contiene σ)
 - Concludiamo che P non è una proprietà triviale dei linguaggi di Σ
- Applicando il Teorema di Rice, concludiamo che il seguente linguaggio non è Turing Decidibile

 $B_{\mathcal{P}} = \{ m \mid m \in l' \text{encoding di una MT che riconosce un linguaggio che contiene } \sigma \}$

• Ne consegue che il problema decisionale associato a F_0 è indecidibile

- **Definizione**. Sia $e: \mathbb{G} \to G$ un encoding dei grafi finiti come matrici di incidenza sull'alfabeto Σ
- **Definizione**. Sia F_1 : $\mathbb{M} \to \{0,1\}$ la funzione tale che $F_1(m) = 1$ se m è l'Encoding di una Macchina di Turing con alfabeto di input Σ che accetta un input x se x = e(g) e g è un grafo connesso
- Dimostrare (utilizzando il teorema di Rice) che F₁ non è decidibile

• Dimostrazione. Sia \mathcal{P} la famiglia dei linguaggi su Σ che consiste di un solo insieme C definito come segue

$$C = \{s \in \Sigma^* \mid e(g) = s \ e \ g \ \text{\'e} \ un \ grafo \ connesso\}$$

- \mathcal{P} non è vuoto (esiste un grafo connesso e quindi il suo encoding)
- \mathcal{P} non coincide con $P(\Sigma^*)$ (esiste una stringa s' tale che non esiste un grafo connesso g per cui e(g) = s')
- Concludiamo che P non è una proprietà triviale dei linguaggi di Σ
- Applicando il Teorema di Rice, concludiamo che il seguente linguaggio non è Turing Decidibile

$$B_{\mathcal{P}} = \{ m \mid m \in l' encoding \ di \ una \ MT \ che \ riconosce \ C \}$$

• Ne consegue che il problema decisionale associato a F_1 è indecidibile

- Definizione. Sia $e : \mathbb{F} \to F$ un encoding delle formule proposizionali con variabile $V = \{v_1, v_2, ...\}$ con $|V| = \infty$ sull'alfabeto Σ
- **Definizione**. Sia F_2 : $\mathbb{M} \to \{0,1\}$ la funzione tale che $F_2(m) = 1$ se m è l'Encoding di una Macchina di Turing con alfabeto di input Σ che accetta un input x se x = e(g) e g è una formula proposizionale soddisfacibile
- Dimostrare (utilizzando il teorema di Rice) che F₂ non è decidibile

• Dimostrazione. Sia \mathcal{P} la famiglia dei linguaggi su Σ che consiste di un solo insieme C definito come segue

```
S = \{s \in \Sigma^* \mid e(f) = s \ e \ f \ en a \ formula \ proposizionale \ soddisfacibile\}
```

- $-\mathcal{P}$ non è vuoto (esiste una formula proposizionale soddisfacibile)
- \mathcal{P} non coincide con $P(\Sigma^*)$ (esiste una formula proposizionale insoddisfacibile)
- Concludiamo che P non è una proprietà triviale dei linguaggi di Σ
- Applicando il Teorema di Rice, concludiamo che il seguente linguaggio non è Turing Decidibile

$$B_{\mathcal{P}} = \{ m \mid m \in l' encoding \ di \ una \ MT \ che \ riconosce \ S \}$$

• Ne consegue che il problema decisionale associato a F_2 è indecidibile