

PRÁCTRICA:

EJERCICIOS DE CONVERSIONES

INTEGRANTES:

EDUARDO TOMAS FERIA ORTIZ (LÍDER DEL EQUIPO)

RICARDO MÉNDEZ BARRIOS

ISAÍ REYES PEÑA

MATERIA:

MATEMATÍCAS DISCRETAS

CATEDRATICO:

ROMAN CRUZ JOSE ALFREDO

TLAXIACO, OAXACA A 12 DE SEPTIEMBRE DEL 2021.

ÍNDICE

Objetivo	3
Conversión de Decimal a Binario	4
Conversión de Decimal a Hexadecimal	6
Conversión de Decimal a Octal	9
Conversión de Binario a Decimal	12
Conversión de Binario a Hexadecimal	16
Conversión de Binario a Octal.	21
Conversión de Octal a Decimal.	25
Conversión de Octal a Binario.	27
Conversión de Octal a Hexadecimal.	32
Conversión de Hexadecimal a Decimal.	37
Conversión de Hexadecimal a Binario.	43
Conversión de Hexadecimal a Octal.	49
Resultados y conclusiones	55

OBJETIVO

Se pretende que con esta práctica se llegue a buen entendimiento y resolución de los ejercicios de conversión numérica (Binario a decimal/ Decimal a Octal/Hexadecimal a Binario/etc....) adjuntados con sus respectivas figuras y desarrollados por el equipo que se mencionaba antes.

1. Conversión de decimal a binario. (Desarrollado por Isaí Reyes Peña).

2. Conversión de decimal a hexadecimal. (Desarrollado por Isaí Reyes Peña).

Tabla de equivalencia Hexadecimal - decimal

0000	0	
0000	1	
0001	0	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7 8 9	
1000	8	
1001	9	
1010	A	
1011	B	
1100	C	
1101	D	
1110	C D E	
1111	F	

4 dígitos Binarios representan 1 dígito Hexadecimal.

Valor en Decimal 5 Respuesta	6 Respuesta
51 2 1 25 2 1 1 1 1 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
B= 110011 0 1 1	B= 11011 Y 1
0011 ₂ = 316 R= 33	

7 Responsts	Valor en Decimal 7 111	Valor Decimal 8 120
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kespucsta	Respuesta
SHOT ON POCO M3	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

3. Conversión de decimal a octal. (Desarrollado por Isaí Reyes Peña).

Valor on Daimal	2 / (a) an Desimal
1 III	2 Valor en Decimal 1999 Respuesta
1 Respuesta	Respuesta
11/18	999 8 R= 1747
113 8 R=157	1 124 8
7 1 8	7 15 8
5	4 1

7 Valor en Docimal .	9 Valor en Decimal
415	555
Respuesta 51	Respuesta
415 8 87415	555 8
1 51 8 15	1 69 8
7 1 6 7	3 1 8 8
3 1	5 1 1
6 R= 637	0 1
8 Nalor en Deamal	10 Valor en Decimal
615	666
Respuesta	Respuesta
658 1768 2 R=1147 7 199 4 11	666 8 R= 1232 1 83 8 2 1 10 8 3 1 1

4. Conversión de binario a Decimal. (Desarrollado por Isaí Reyes Peña).

Valor Pilnario 2 1 111011 Response R=119 1 $X 2 = 1 $	Valor en Bingrio 1110 Brespuesta $R = 14$ 0 $\times 2^{\circ} = 0$ 1 $\times 2^{\circ} = 2$ 1 $\times 2^{\circ} = 4$ 1 $\times 2^{\circ} = 8$
Valor on Bingrio 3 11101 Respuesta $1 \times 2^{\circ} = 1$ $1 \times 2^{1} = 2$ $0 \times 2^{2} = 0$ $1 \times 2^{3} = 8$ $1 \times 2^{4} = 16$ $1 \times 2^{5} = 32$	Valor en Binario 4 110 11 Respuesta 1 $\times 2^{\circ} = 1$ 1 $\times 2^{\circ} = 2$ 1 $\times 2^{\circ} = 4$ 0 $\times 2^{\circ} = 0$ 1 $\times 2^{\circ} = 16$ 1 $\times 2^{\circ} = 16$ 1 $\times 2^{\circ} = 32$
32 16 8 2 1 5 9	R=55

Valoren Binario 1111110 Respuesta 2	A POPUL	Valor en 1010 Respuest	0
$0 \times 2^6 = 0$ 32		0 × 2° = 0	16
$1 \times 2' = 2$ 16 8 1 X $2^2 = 4$ 8	R= 126	0 x 21 = 0 1 x 22 = 4	30
		0 X 23 = 0 1 X 24 = 16	R=20

5. Conversión de binario a Hexadecimal. (Desarrollado por Ricardo Méndez Barrios)

1. Convierte 1010011100112 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

1010 = A	R: A73 ₁₆
0111 = 7	
0011 = 3	

TABLA DE VALORES BINARIOS								
256	128	64	32	16	8	4	2	1
					1	0	1	0
					0	1	1	1
					0	0	1	1

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

2. Convierte 10100100112 a hexadecimal:

0010 = 2

	-
Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

00.0	_							
1001	= 9							
0011	= 3							
TABI	LA DE	VAL	ORES	BINA	RIOS			
256	128	64	32	16	8	4	2	1
					0	0	1	0
					1	0	0	1
					0	0	1	1
\sim								

R: 293₁₆

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

3. Convierte 0001111101102 a hexadecimal:

Hexadecimal
0
1
2
3
4
5
6
7
8
9
Α
В
С
D
E
F

0001 = 1	R: 1F6 ₁₆
1111 = F	
0110 = 6	

TABI	_A DE	VAL	ORES	BINA	RIOS			
256	128	64	32	16	8	4	2	1
					0	0	0	1
					1	1	1	1
					0	1	1	0

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

4. Convierte 111100001112 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

0111 = 7	R	: F87 1	6	
1000 = 8				
1111 = F				
TABLA DE VALO	ES BINARIOS	3		
256 128 64 3	16 8	1	2	1

IABI		: VAL	ORES	BINA	RIOS			
256	128	64	32	16	8	4	2	1
					0	1	1	1
					1	0	0	0
					0	1	1	1

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

5. Convierte 010101011110101112 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

1010 = A	R: ABD7 ₁₆
1011 = B	
1101 = D	
0111 = 7	

TABI	_A DE	VAL	ORES	BINA	RIOS			
256	128	64	32	16	8	4	2	1
					1	0	1	0
					1	0	1	1
					1	1	0	1
					0	1	1	1

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores

6. Convierte 110011002 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

1100 = C	R: CC ₁₆
1100 = C	

TABLA DE VALORES BINARIOS								
256	128	64	32	16	8	4	2	1
					1	1	0	0
					1	1	0	0

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

7. Convierte 01111010001100012 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

0111 = A	R: A731 ₁₆
1010 = 7	
0011 = 3	
0001 = 1	

TABLA DE VALORES BINARIOS								
256	128	64	32	16	8	4	2	1
					0	1	1	1
					1	0	1	0
					0	0	1	1
					0	0	0	1

Cuando hay un 1 en alguna casilla es porque ese valor está habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados

8. Convierte 1010100101012 a hexadecimal:

Binario	Hexadecimal			
0000	0			
0001	1			
0010	2			
0011	3			
0100	4			
0101	5			
0110	6			
0111	7			
1000	8			
1001	9			
1010	Α			
1011	В			
1100	С			
1101	D			
1110	E			
1111	F			

1010	= A	A R: A95 ₁₆						
1001	= 9							
0101	= 5							
TABI	TABLA DE VALORES BINARIOS							
256	128	64	32	16	8	4	2	1
					1	0	1	0
					1	0	0	1
					0	1	0	1
Cuando hay un 1 en alguna casilla es porque ese								

valor esta habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados

9. Convierte 0010010010002 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

0010	= 2				R:	24816	6	
0100	= 4							
1000	= 8							
TABLA DE VALORES BINARIOS								
256	128	64	32	16	8	4	2	1
					0	0	1	0
 	1	1	1	1				1 _ 1

Cuando hay un 1 en alguna casilla es porque ese valor esta habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

10. Convierte 1000110000102 a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

1000	= 8 R: 8C2 ₁₆							
1100	= c							
0010 = 2								
TABLA DE VALORES BINARIOS								
256	128	64	32	16	8	4	2	1
					1	0	0	0
					1	1	0	0
					0	0	1	0
Cuando hay un 1 en alguna casilla es norque ese								

Cuando hay un 1 en alguna casilla es porque ese valor esta habilitado y cuando hay un 0 el valor esta deshabilitado, y se suman los valores habilitados.

6. Conversión de Binario a Octal. (Desarrollado por Ricardo Méndez Barrios)

1. Convierte 1010011100112 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

2. Convierte 1010010011₂ a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

3. Convierte 0001111101102 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

4. Convierte 111100001112 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

5. Convierte 01010101111010111₂ a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

6. Convierte 110011002 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

7. Convierte 01111010001100012 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

000 = 0	R: 75061 ₈
111 = 7	
101 = 5	
000 = 0	
110 = 6	
001 = 1	

8. Convierte 101010010101₂ a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

9. Convierte 001001001000₂ a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

$$001 = 1$$
 R: 11108
 $001 = 1$
 $001 = 1$
 $000 = 0$

10. Convierte 1000110000102 a octal:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

R: 4302 ₈

7. Conversión de Octal a decimal. (Desarrollado por Ricardo Méndez Barrios)

1. Convierte 51638 a decimal:

Octal:	5	1	6	3
Potencia	8 ³	8 ²	8 ¹	80
Decimal	2560	64	48	3

R: 2675₁₀

2. Convierte 12238 a decimal:

Octal:	1	2	2	3
Potencia	8 ³	8 ²	8 ¹	80
Decimal	512	128	16	3

R: 659₁₀

3. Convierte 7668 a decimal:

Octal:	7	6	6
Potencia	8 ²	8 ¹	80
Decimal	448	48	6

R: 502₁₀

4. Convierte 36078 a decimal:

Octal:	3	6	0	7
Potencia	8 ³	8 ²	8 ¹	8 ⁰
Decimal	1536	384	0	7

R: 1927₁₀

5. Convierte 1257278 a decimal:

Octal:	1	2	5	7	2	7	
--------	---	---	---	---	---	---	--

Potencia	8 ⁵	84	8 ³	8 ²	8 ¹	80
Decimal	32768	8192	2560	448	16	7

R: 43991₁₀

6. Convierte 3148 a decimal:

Octal:	3	1	4
Potencia	8 ²	8 ¹	80
Decimal	192	8	4

R: 204₁₀

7. Convierte 750618 a decimal:

Octal:	7	5	0	6	1
Potencia	84	8 ³	8 ²	8 ¹	80
Decimal	28672	2560	0	48	1

R: 31281₁₀

8. Convierte 52258 a decimal:

Octal:	5	2	2	5
Potencia	8 ³	8 ²	8 ¹	80
Decimal	2560	128	16	5

R: 2709₁₀

9. Convierte 11108 a decimal:

Octal:	1	1	1	0
Potencia	8 ³	8 ²	8 ¹	80
Decimal	512	64	8	0

R: 584₁₀

10. Convierte 43028 a decimal:

Octal:	4	3	0	2
Potencia	8 ³	8 ²	8 ¹	80
Decimal	2048	192	0	2

R: 2242₁₀

8. Conversión de Octal a binario. (Desarrollado por Ricardo Méndez Barrios)

1. Convierte 51638 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

5 = 101	R: 101001110011 ₂	
1 = 001		
6 = 110		
3 = 011		

2. Convierte 1223₈ a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

$$1 = 001$$
 R: 001010010011_2
 $2 = 010$
 $2 = 010$
 $3 = 011$

3. Convierte 766₈ a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

4. Convierte 36078 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

3 = 011	R: 11110000111 ₂
6 = 110	
0 = 000	
7 = 111	

5. Convierte 1257278 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

1 = 001	R: 1010101111010111 ₂
2 = 010	
5 = 101	
7 = 111	
2 = 010	
7 = 111	

6. Convierte 3148 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

7. Convierte 750618 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

R: 111101000110001₂

7 = 111

5 = 101

0 = 000

6 = 110

1 = 001

8. Convierte 52258 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

9. Convierte 1110₈ a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

11. Convierte 43028 a binario:

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

4 = 100 3 = 011 0 = 000 2 = 010	R: 100011000010 ₂

9. Conversión de Octal a Hexadecimal. (Desarrollado por Eduardo Tomas Feria Ortiz).

Para esta conversión es necesario el sistema binario y se debe considerar lo siguiente:

- 3 dígitos Binarios representan 1 dígito octal.
- 4 dígitos Binarios representan 1 dígito Hexadecimal.
- **1.** Convertir (7654321)₈ a Hexadeciamal.
- 1.1 Convertiremos nuestro número octal a binario, para posteriormente convertir el digito binario a hexadecimal.
- 1.2 Para ello necesitamos las siguientes tablas de equivalencia que se mostraran a continuación:

"Cuando se dividen los binarios en 3 o 4 y en caso de que un digito no alcance a dividirse en 3 o 4 solamente se le agregan ceros a la izquierda"

Resultado: $(1F58D1)_{16}$

Base 8 es la forma en que se representa a el sistema octal Base 2 es la forma en que se representa a el sistema binario Base 16 es la forma en que se representa a el sistema hexadecimal

2. Convertir (67324)₈ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(6ED4)_{16}$

3. Convertir $(264)_8$ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(0B4)_{16}$

4. Convertir (5431)₈ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(B19)_{16}$

5. Convertir (547062)₈ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(2CE32)_{16}$

6. Convertir $(1121)_8$ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(251)_{16}$

7. Convertir $(761)_8$ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(1F1)_{16}$

8. Convertir $(1234567)_8$ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(53977)_{16}$

9. Convertir $(40257)_8$ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(40AF)_{16}$

10. Convertir (2566)₈ a hexadecimal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(576)_{16}$

10. Conversión de Hexadecimal a decimal. (Desarrollado por Eduardo Tomas Feria Ortiz).

- **1.** Convertir $(9361)_{16}$ a decimal.
- 1.1 Para convertir $(9361)_{16}$ a decimal es necesario examinar el digito Hexadecimal.
- 1.2 Asignamos un número según su posición del digito Hexadecimal (empezando de derecha a izquierda a partir del número 0) como se muestra a continuación: (9361)₁₆

1.3 Ahora elevamos la base del hexadecimal (16) al número asignado de la posición de los dígitos como se muestra a continuación:

$$(9361)_{16}$$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$
 $(9361)_{16}$

1.4 Ahora multiplicamos el resultado anterior por los dígitos hexadecimales según su número de posición como se muestra a continuación:

$$(9361)_{16}$$
 $3 \ 2 \ 10$
 $16^0 = 1 * 1 = 1$
 $16^3 = 4096 * 9 = 36864$
 $16^1 = 16 * 6 = 96$
 $16^2 = 256 * 3 = 768$

1.5 Lo ultimo es sumar todos los resultados obtenidos en el paso anterior y asignarle la base 10 que representa los digitos decimales:

En ocasiones con los dígitos Hexadecimales se encontraran letras pero con esta tabla de equivalencia se podrá saber la cantidad que vale.

2. convertir $(FBC)_{16}$ a decimal

$$16^0 = 1$$
 $16^1 = 16$
 $16^2 = 256$

3. convertir $(612)_{16}$ a decimal

$$16^0 = 1$$
 $16^1 = 16$
 $16^2 = 256$

16^{0}	=	1
----------	---	---

$$16^1 = 16$$

$$16^2 = 256$$

$$16^3 = 4096$$

5. convertir $(394)_{16}$ a decimal

$$16^0 = 1$$

$$16^1 = 16$$

$$16^2 = 256$$

6. convertir $(FE)_{16}$ a decimal

Resultado

Equivalencia	
decimal	hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	foro:blogspot:com- A
11	В
12	С
13	D
14	Е
15	F

16^{0}	=	1
16 ¹	=	16

7. convertir $(B123)_{16}$ a decimal

Resultado

Equivalencia	
decimal	hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	foro:blogspot.com A
11	В
12	С
13	D
14	E
15	F

(B123)16 = C45,347)10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$3 \rightarrow 4096 \times 11 = 45056$	+ = 45,347

$16^1 = 16$
$16^2 = 256$
$16^3 = 4096$

 $16^0 = 1$

15

INSTITUTO TECNOLÓGICO DE TLAXIACO

В

C D

12

13 14

INSTITUTO TECNOLÓGICO DE TLAXIACO

11. Conversión de Hexadecimal a binario. (Desarrollado por Eduardo Tomas Feria Ortiz).

Para esta conversión es necesario el sistema binario y se debe considerar lo siguiente:

• 4 dígitos Binarios representan 1 dígito Hexadecimal.

También es necesario el uso de una tabla de equivalencia

- Hexadecimal Binario
- **1.** Convertir $(FEB)_{16}$ a binario:
- 1.1 Examinamos el número Hexadecimal.
- 1.2 Dependiendo los dígitos o letras que tenga le asignamos su valor equivalente a binario con la ayuda de la tabla.
- 1.3 Ahora asignamos el resultado con el mismo orden que tenía el valor hexadecimal como se muestra en la imagen:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

2. Convertir $(68F)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

3. Convertir $(CBA8)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

4. Convertir $(BEBE)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

5. Convertir $(DADA)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

6. Convertir $(F5)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

7. Convertir $(ABC9)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

8. Convertir $(689F)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

9. Convertir $(64)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

10. Convertir $(ABCDEF)_{16}$ a binario:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

12. Conversión de hexadecimal a octal. (Desarrollado por Eduardo Tomas Feria Ortiz).

Para esta conversión es necesario el sistema binario y se debe considerar lo siguiente:

- 3 dígitos Binarios representan 1 dígito octal.
- 4 dígitos Binarios representan 1 dígito Hexadecimal.
- **1.** Convertir $(F352)_{16}$ a Octal.
- 1.1 Convertiremos nuestro digito hexadecimal a binario, para posteriormente convertir el digito binario a octal.
- 1.2 Para ello necesitamos las siguientes tablas de equivalencia que se mostraran a continuación:

"Cuando se dividen los binarios en 3 o 4 y en caso de que un digito no alcance a dividirse en 3 o 4 solamente se le agregan ceros a la izquierda"

Resultado: (171522)₈

Base 16 es la forma en que se representa a el sistema hexadecimal Base 2 es la forma en que se representa a el sistema binario Base 8 es la forma en que se representa a el sistema octal

2. Convertir $(DAD)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(6655)_8$

3. Convertir $(DAA)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(6652)_8$

4. Convertir $(FBEBE)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(3737276)_8$

5. Convertir $(E128)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(160450)_8$

6. Convertir $(F9)_{16}$ a Octal:

0000 0001	Hexadecimal 0 1	(F9)16=C111110002 (01111000)=(371)	Número binario de tres dígitos	Número octal
0010 0011 0100	2 3		000	0
0100	4 5		001	1 1
0110	6		010	,
0111	7	THE RESERVE OF THE PARTY OF THE	Address of the Park of the Par	4
1000	8		011	3
1001	9		100	4
1010 1011	A B			;
1100	С		101	5
1101			110	6
1110	D E		111	7
1111	F			1

Resultado:

 $(371)_8$

7. Convertir $(DAD)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(6655)_8$

8. Convertir $(FF98)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(177630)_8$

9. Convertir $(FF)_{16}$ a Octal:

Binario 0000 0001 0010	Hexadecimal 0 1 2	(FF)(=C), =(377),	Número binario de tres dígitos	Número octal
0011	3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	000	1 0
0100 0101	4 5		001	1 1
0110	6			'
0111	7		010	2
1000	8	V V	011	3
1001 1010	9 A		100	4
1011	В		101	5
1100	С			6
1101	D		110	0
1110 1111	E F		111	7

Resultado:

 $(377)_8$

10. Convertir $(6F5)_{16}$ a Octal:

Binario	Hexadecimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Número binario de tres dígitos	Número octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Resultado:

 $(3365)_8$

Resultados.

A causa de esta práctica el desarrollo de cada uno de los integrantes se vio afectado de una buena manera nos sirvió para establecer mucha comunicación como compañeros y futuros colegas, cada reunión fue una mejora de compañerismo y no solo eso sino que también académica a causa de realizar cada ejercicio, cada problema, cada analogía y debatir cada desacuerdo, nos sirvió para desarrollar de mejor manera nuestra práctica y llegar a mejores resultados como estudiantes /compañeros /amigos y futuros profesionistas que deseamos ser, cada uno está satisfecho con sus aportaciones a esta práctica y muy entusiasmado por lo que viene.

Conclusiones.

En conclusión las conversiones numéricas pueden se muchas, pero conforme se iba desarrollando la práctica se notó que algunas eran la inversa de otras como por ejemplo (Hexadecimal a Octal / Octal a decimal, Binario a Octal / Octal a Binario, etc.) también con el apoyo de las tablas equivalentes es más practico realizar este tipo de ejercicios y sin necesidad de hacer tantas operaciones o pensar demasiado y hacer estas tablas equivalentes, tampoco es muy costoso, basta con emplear unas reglas básicas aritméticas y por ultimo las conversiones sirven demasiado como introducción al amplio mundo de las matemáticas.