Оглавление

1	Анн	ютаци	я	4	
2	Аналитический обзор литературы				
	2.1	Базов	ые методы и подходы	9	
		2.1.1	Регулярные выражения		
		2.1.2	Нормализация текста	4	
		2.1.3	Byte Pair Encoding	Ę	
		2.1.4	WordPiece	Ę	
		2.1.5	Нормализация слов, леммализация, стемминг	6	
		2.1.6	Расстояние Левенштейна	6	
	2.2	Языкс	овые модели основанные на N-граммах	,	
		2.2.1	N-граммы	7	
		2.2.2	Оценка языковых моделей	6	

Глава 1

Аннотация

бла-бла-бла

Глава 2

Аналитический обзор литературы

2.1 Базовые методы и подходы

Текстовый корпус — большой и структурированный набор текстов (в настоящее время обычно хранится и обрабатывается в электронном виде). В корпусной лингвистике они используются для статистического анализа и проверки гипотез, проверки происшествий или языковых правил на определенной языковой территории.

Регулярные выражения (англ. regular expressions) - формальный язык поиска и осуществления манипуляций с подстроками в тексте, основанный на использовании метасимволов (символов-джокеров, англ. wildcard characters). Для поиска используется строка-образец (англ. pattern, по-русски её часто называют «шаблоном», «маской»), состоящая из символов и метасимволов и задающая правило поиска. Для манипуляций с текстом дополнительно задаётся строка замены, которая также может содержать в себе специальные символы. [1]

Парсер (англ. parser; от parse – анализ, разбор), или синтаксический анализатор, – часть программы, преобразующей входные данные (как правило, текст) в структурированный формат. Парсер выполняет синтаксический анализ текста.

Стемминг - это процесс нахождения основы слова для заданного исходного слова. [2] Лемматизация - процесс приведения словоформы к лемме - её нормальной (словарной) форме. [3]

Клитика - это часть слова, которая не может стоять сама по себе и может появиться в тексте только когда оно прикреплено к другому слову. [4]

2.1.1 Регулярные выражения

Одним из невосполнимых успехов в стандартизации в информатике стали регулярные выражения (RE), язык для уточнения строк текстового поиска. Этот язык используется во всех языках программирования, текстовых процессорах и инструментах обработки текста, таких как инструменты Unix grep или Emacs. Формально регулярное выражение - это алгебраическое обозначение для характеристики набора строк. Они особенно полезны для поиска в текстах, когда есть шаблон для поиска и корпус текста для поиска. Функция поиска по регулярному выражению будет искать через корпус, возвращая все тексты, которые соответствуют шаблону. Корпус может быть отдельным документом или коллекцией. Например, инструмент командной строки Unix grep принимает регулярное выражение и возвращает каждую строку входного документа, которая соответствует выражению. Поиск может быть спроектирован так, чтобы возвращать каждое совпадение в строке, если их больше одного или только самое первое совпадение. Регулярные выражения бывают разных видов. Далее будут описываться описывать расширенные регулярные выражения; различные парсеры регулярных выражений могут распознавать только их подмножества, или трактуют некоторые выражения немного по-другому. Использование онлайн-тестера регулярных выражений - это удобный способ проверить свои выражения и изучить эти варианты.

Character	Description	Example
[]	A set of characters	"[a-m]"
\	Signals a special sequence (can also be used to escape special characters)	"\d"
	Any character (except newline character)	"heo"
^	Starts with	"^hello"
\$	Ends with	"world\$"
*	Zero or more occurrences	"aix*"
+	One or more occurrences	"aix+"
{}	Exactly the specified number of occurrences	"al{2}"
1	Either or	"falls stays"
()	Capture and group	

Рисунок 1 – регулярные выражения в языке программирования Python

2.1.2 Нормализация текста

Перед обработкой текста практически на любом естественном языке текст должен быть нормализован. Как минимум три задачи входят в любой процесс нормализации:

- 1. Токенизация (сегментирование) слов
- 2. Нормализация форматов слов
- 3. Сегментирование предложений

Токенизатор также может быть использован для расширения клитикальных сокращений. В зависимости от приложения алгоритмы токенизации могут также токенизировать выражения из нескольких слов, такие как «New York» или «Rock 'n' Roll», как один токен, для чего требуется некоторый словарь выражений из нескольких слов. Таким образом, токенизация тесно связана с обнаружением именованных объектов, задачей обнаружения имен, дат и организации.

Один широко используемый стандарт токенизации известен как стандарт токенизации Penn Treebank, используемый для проанализированных корпусов (treebanks), выпущенных Linuistic Data Consortium (LDC), источником многих полезных наборов данных. Этот стандарт выделяет клитики, объединяет слова, написанные через дефисы, и выделяет все знаки препинания. На практике, поскольку токенизация должна выполняться перед любой другой языковой обработкой, она должна быть очень быстрой. Поэтому стандартный метод токенизации – использовать детерминированные алгоритмы, основанные на регулярных выражениях, скомпилированных в очень эффективные конечные автоматы.

Токенизация в таких языках, как письменный китайский, японский и тайский, намного сложнее, так как они не используют пробелы для обозначения потенциальных границ слов. В китайском языке, например, слова состоят из символов (называемых ханзи). Каждый символ обычно представляет одну единицу значения (называется морфема) и произносится как один слог. Длина слов в среднем составляет около 2,4 символов. Но решить, что считать словом на китайском, сложно.

Существует третий вариант токенизации текста. Вместо того, чтобы определять токены как слова или в виде символов (как на китайском), мы можем использовать данные для автоматического определения, какого размер токены должны быть. Возможно, иногда нам могут потребоваться токены – разделенные пробелами слова; в других случаях полезно иметь токены размера больше, чем слова (например, New York Times), а иногда меньше, чем слова (например, морфема не-) Морфема - это наименьшая смысловая единица языка.

2.1.3 Byte Pair Encoding

Причина, по которой полезно иметь токены подслов - когда обращаешься с неизвестными словами. Неизвестные слова особенно актуальны для систем машинного обучения. Они часто узнают некоторые факты о словах в одном корпусе (учебный корпус), а затем используют эти факты для принятия решений слов в тестовом корпусе. Таким образом, если наш учебный корпус содержит, скажем, слова «низкий» и «нижайший», но не «ниже», но слово «ниже» появляется в тестовом корпусе, система не будет знать, что с этим делать. Решением этой проблемы является использование своего рода токенизации, в которой большинство токенов являются словами, но некоторые токены являются частыми морфемами или другими подсловами, такими как «-ший», так что не появившееся в учебном корпусе слово может быть представлено путем объединения частей.

Самый простой такой алгоритм - это кодирование байтовой пары, или BPE (Byte Pair Encoging, также известный как Digram Coding [5]).

Алгоритм начинается с набора символов, равного набору букв в алфавите. Каждое слово представлено в виде последовательности символов плюс специальный символ конца слова. На каждом шаге алгоритма мы подсчитываем количество пар букв, находим наиболее часто встречающуюся пару (A, B) и заменяем ее новым символом (AB). Мы продолжаем считать и объединять, пока не сделали к слияний; к является параметром алгоритма. Результирующий набор символов будет состоять из исходного набора букв плюс к новых символов. Конечно, в реальных алгоритмах ВРЕ выполняется со многими тысячами слияний на очень больших входных словарях. В результате большиство слов будет представлено как один символ и только очень редкие слова (и неизвестные слова) должны быть представлены по частям.

Рисунок 2 – пример выполнения алгоритма ВРЕ с 7 операциями слияния

2.1.4 WordPiece

Есть несколько альтернатив алгоритму ВРЕ. Как и ВРЕ, алгоритм WordPiece начинается с некоторой простой токенизации (например, по пробелам), а затем разбивает получившиеся грубые лексемы на токены подслов. Модель WordPiece отличается от ВРЕ тем, что специальные маркеры границ слова появляется в начале слова, а не в конце, и в том, как он объединяет пары. Вместо того, чтобы объединять наиболее часто встречающиеся пары, WordPiece объединяет те пары, которые максимизируют схожесть текста с выбранной языковой моделью на обучающей выборке. Тогда каждое слово токенизируется с использованием жадного алгоритма с самым длинным соответствием префиксу. Это отличается от алгоритма декодирования, который был введен для ВРЕ, выполняющий слияния на тестовом тексте в том же порядке они были извлечены из учебного набора. Жадное декодирование с самым длинным соответствием префиксу иногда называют максимальным соответствием или максимальным паросочетанием.

2.1.5 Нормализация слов, леммализация, стемминг

Нормализация слов - это задание слов / токенов в стандартном формате, выбор одной нормальной формы для слов с несколькими формами.

Сжатие регистра - переводит все слова в тексте в нижний регистр, это очень полезно для обобщения во многих задачах, таких как поиск информации или распознавание речь. Для анализа тональности текста и других задач классификации текста, извлечения информации и машинного перевода, напротив, регистр может оказаться весьма полезными и сжатие вообще не применяется.

Лемматизация определяет, имеют ли два слова имеют одинаковый корень, несмотря на их поверхностные различия. Например, слова am, are и is имеют общую лемму be; Самые сложные методы лемматизации предполагают полный морфологический анализ слова. (Морфология - наука о том, как слова строятся из более мелких значащих единиц, называемых морфемами)

Алгоритмы лемматизации могут быть достаточно сложными. По этой причине иногда используются более простые, но грубые методы, который в основном заключаются в обрезке аффиксов окончаний слова. Этот наивный вариант морфологического анализа называется *стемминг*. Одним из наиболее распространенных алгоритмов стемминга является стеммирование Портера (1980). [6]

Стеммер Портера, примененный к следующему параграфу:

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

производит такой стеммированный вывод:

Thi wa not the map we found in Billi Bone's chest but an accur copi complet in all thing name and height and sound with the single except of the red cross and the written note

2.1.6 Расстояние Левенштейна.

Расстояние Левенштейна [7] или Minimum edit distance между двумя строками определяется как минимальное количество операций редактирования (такие операции, как: вставка, удаление, замена) необходимых для того, чтобы преобразовать одну строку в другую. Разрыв между *intention* и *execution*, например, равен 5 (удалить i, заменить е на n, заменить х на t, вставить с, заменить и на n). Намного легче увидеть это, посмотрев на Рисунок 3.

Рисунок 3 — Расстояние Левенштейна между словами "intention" и "execution". Описание операций: d - удаление, s - замена, i - вставка.

2.2 Языковые модели основанные на N-граммах.

Модели, которые сопоставляют последовательностям слов вероятности называются Language Models (LM, Языковые Модели).

N-грамма - это последовательность из N слов. 2-грамму называют *биграммой* (*bigram*), 3-грамму называют *триграммой* (*trigram*). В области обработки естественного языка N-граммы используется в основном для предугадывания на основе вероятностных моделей. N-граммная модель рассчитывает вероятность последнего слова N-граммы, если известны все предыдущие. При использовании этого подхода для моделирования языка предполагается, что появление каждого слова зависит только от предыдущих слов. [8]

Другим применением N-грамм является выявление плагиата. Если разделить текст на несколько небольших фрагментов, представленных N-граммами, их легко сравнить друг с другом и таким образом получить степень сходства анализируемых документов[9]. N-граммы часто успешно используются для категоризации текста и языка. Кроме того, их можно использовать для создания функций, которые позволяют получать знания из текстовых данных. Используя N-граммы, можно эффективно найти кандидатов, чтобы заменить слова с ошибками правописания.

2.2.1 **N**-граммы.

Рассмотрим задачу вычисления P(w|h) - вероятность, что следующим словом является w, при данной истории h. Пусть история h: its water is so transparent that, нужно узнать вероятность того, что следующим словом является the, то есть, нужно найти:

Один из способов оценить эту вероятность - по относительным частотам: можно взять очень большой корпус, подсчитать, сколько раз встречается its water is so transparent that, подсчитать, сколько раз за этим последует the. Тогда это было бы ответом на вопрос "Мы видели историю h некоторое число раз, сколько раз следующее слово было the":

$$P(\textit{the} \mid \textit{its water is so transparent that}) = \frac{C(\textit{its water is so transparent that the})}{C(\textit{its water is so transparent that})}$$

С огромным корпусом (например, Глобальная Сеть) можно рассчитать и посчитать вероятности с помощью этой формулы.

Метод расчета вероятностей таким методом работает в многих случаях, но оказывается, что даже Глобальная Сеть недостаточно велика, чтобы дать хорошие оценки в большинстве случаев. Это происходит потому, что новые предложения создаются все время.

Похожим образом, если нужно узнать вероятность появления какой-то последовательности из n слов, нужно посчитать, сколько раз она появляется вреди всем последовательностей из n слов. На это требуется огромная вычислительная сила.

Есть способ умнее: обозначим вероятность того, что конкретное слово X_i примет значение w_i или $P(X_i = w_i)$ за $P(w_i)$. Обозначим последовательность N слов как w_1, w_2, \ldots, w_n и как w_1^n . Обозначим совместную вероятность того, что каждое слова в последовательности имеет какое-то значение $P(X = w_1, Y = w_2, \ldots, W = w_n)$ за $P(w_1, w_2, \ldots, w_n)$. Теперь, чтобы вычислить вероятность целой последовательности $P(w_1, w_2, \ldots, w_n)$ можно воспользоваться цепным правилом вероятностей:

$$P(X_1,...,X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1^2)...P(X_n|X_1^{n-1})$$

Цепное правило показывает взаимосвязь между вычислением совместной вероятности последовательности и вычислением условной вероятности слова, при данных предыдущих словах.

Предыдущая формула предполагает, что можно оценить совместную вероятность целой последовательности слов умножая между собой условные вероятности. Но похоже, что цепное правило не сильно-то и помогает, так как неизвестен способ вычисления точной вероятности слова после длинной последовательности предыдущих слов. $P(X_n \mid X_1^{n-1})$. Но с помощью N-грам можно аппроксимировать историю по нескольким предыдущим словам.

Биграмма, например, аппроксимирует вероятность слова по 1 предыдущему слову, то есть $P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-1})$.

Предположение, что вероятность слова зависит только от предыдущего слова называется Марковым предположение. Марковские модели - это класс вероятностных моделей, чтобы предполагают, что можно предсказать вероятность какого-то будущего события не смотря слишком далеко назад. Можно обобщить биграмму (которая смотрит только на одно слово в прошлое) до триграммы (которая смотрит на 2 слова в прошлое), а значит, по индукции, до N-граммы (которая смотрит на n-1 слово в прошлое).

Таким образом, общее уравнение для этой N-граммной аппроксимации условной вероятности следующего слова в предложении таково:

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n+1-N}^{n-1})$$

При заданном биграмном предположении для вероятности отдельного слова, можно вычислить вероятность полной последовательности слов:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Для того, чтобы оценить вероятности этих биграм или n-грам можно использовать метод наибольшего правдоподобия (maximum likelihood estimation, MLE).

Мы получаем оценки MLE для параметров N-граммы подсчитав их в корпусе и нормализовав их таким образом, чтобы они лежали между 0 и 1.

Например, чтобы вычислить конкретную биграммную вероятность слова y при предыдущем слова x, нужно вычислить количество биграмм C(xy) и нормализовать по сумма всех биграмм, у которых первое слово x.

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_{w} C(w_{n-1}w)}$$

Эту формулу можно упростить, заметив, что количество биграмм, начинающихся с w_{n-1} должно быть равно количество слов w_{n-1} .

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

Для общего случая MLE, оценка параметра n-граммы:

$$P(w_n|w_{n-N+1}^{n-1}) = \frac{C(w_{n-N+1}^{n-1}w_n)}{C(w_{n-N+1}^{n-1})}$$

Эта формула оценивает вероятность N-граммы деля увиденную частоту конкретной последовательности на увиденную частоту префикса. Это отношение называется *относительной частотой*.

В практике применяются триграммы, 4-граммы или даже 5-граммы, в зависимости от объема обучающей выборки.

Также, чаще всего используются *погарифмические вероятности*, так как перемножение большого числа вероятностей может дать слишком маленькое число, которое может "сломать" разрядную сетку вещественного числа в цифровом представлении. При использовании логарифмов умножение заменяется на сложение, следовательно, число не будет слишком мало.

$$p_1 \times p_2 \times p_3 \times p_4 = exp(log(p_1) + log(p_2) + log(p_3) + log(p_4))$$

2.2.2 Оценка языковых моделей

Лучший способ оценить производительность языковой модели - это встроить её в приложение и вычислить, насколько приложение улучшается. Такой подход называется внешней оценкой. Внешняя оценка - это единственный способ узнать, помогает ли в решении задачи конкретное улучшение какой-то компоненты. Таким образом, для распознавания речи можно сравнить производительность двух языковых моделей, запустив дважды распознаватель и посмотреть, какой запуск дает более точный перевод.

К сожалению, запуск больших NLP систем от начала до конца - это очень дорого. Вместо этого хорошо бы иметь метрику, которая может дать быструю оценку потенциального улучшения в языковой модели. Метрика *внутренней оценки* - это одна из мер качества модели, вне зависимости от приложения.

Литература

- 1. Фридл, Дж. Регулярные выражения = Mastering Regular Expressions. СПб.: «Питер», 2001. 352 с. (Библиотека программиста). ISBN 5-318-00056-8.
- 2. Lovins, Julie Beth. Development of a Stemming Algorithm // Mechanical Translation and Computational Linguistics. 1968. T. 11.
- 3. Маннинг К., Рагхаван П., Шютце Х. Введение в информационный поиск. Вильямс, 2011. 512 с. ISBN 978-5-8459-1623-5.
- 4. Crystal, David. A First Dictionary of Linguistics and Phonetics. Boulder, CO: Westview, 1980. Print.
- 5. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes. New York: Van Nostrand Reinhold, 1994. ISBN 978-0-442-01863-4.
- 6. P. Willett. The Porter stemming algorithm: then and now (англ.) // Program: Electronic Library and Information Systems. ? 2006. ? Vol. 40, iss. 3. ? P. 219?223. ? ISSN 0033-0337.
- 7. В. И. Левенштейн. Двоичные коды с исправлением выпадений, вставок и замещений символов. Доклады Академий Наук СССР, 1965. 163.4:845-848.
- 8. Jurafsky, D. and Martin, J.H. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. ? Pearson Prentice Hall, 2009. ? 988 p. ? ISBN 9780131873216.
- 9. Proceedings of the ITAT 2008, Information Technologies? Applications and Theory, Hrebienok, Slovakia, pp. 23-26, September 2008. ISBN 978-80-969184-8-5