МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа аэрокосмических технологий

Отчет о выполнении лабораторной работы 1.1.1

Определение удельного сопротивления нихромовой проволоки

Ефремова Татьяна, Б03-503

1 Аннотация

Цели работы: измерить удельное сопротивление проволоки; вычислить систематические и случайные погрешности при использовании линейки, микрометра, штангенциркуля, вольтметра, амперметра и моста постоянного тока.

$\mathbf{2}$ Теоретические сведения

Удельное сопротивление проволоки круглого сечения:

$$\rho = \frac{R_{\rm \pi p}}{l} \frac{\pi d^2}{4},\tag{1}$$

где $R_{\rm np}$ – сопротивление проволоки, d – диаметр, l – длина. Сопротивление параллельного соединения проволоки и вольтметра:

$$R_{\rm np1} = \frac{V_{\rm v}}{I_{\rm a}},\tag{2}$$

где $V_{\rm v}$ – напряжение вольтметра, $I_{\rm A}$ – сила тока через амперметр. Ввиду неидлеальности вольтметра, спротивление проволоки:

$$R_{\rm np} = \frac{R_{\rm v} R_{\rm np1}}{R_{\rm v} - R_{\rm np1}},\tag{3}$$

где $R_{
m v}$ – сопротивление вольтметра.

Рис. 1: Схема цепи

3 Оборудование

3.1Используемое оборудование

Отрезок нихромовой проволоки, вольтметр, амперметр, источник ЭДС, мост постоянного тока, реостат, линейка, штангенциркуль, микрометр.

3.2Инструментальные погрешности

линейка: $\Delta_{\text{лин}} = \pm 0, 5$ мм (маркировка производителя). При определении положений контактов имеется дополнительная погрешность, которая может быть оценена как $\Delta_{\text{лин}} \approx \pm 2$ мм.

штангенциркуль: $\Delta_{\text{шт}} = \pm 0, 1$ мм (маркировка производителя).

микрометр: $\Delta_{\text{мкм}} = \pm 0,01$ мм (маркировка прозиводителя).

амперметр: абсолютная погрешность в диапазоне 80-150 мА: $\Delta_{\rm A}=\pm0.01$ mA.

вольтметр: шкала линейная, 150 делений; класс точности – 0.5; предел измерений – 0.75В.

Абсолютная погрешность по цене деления: $\Delta_{\rm B}=\pm\frac{0.75}{150*2}=\pm2.50~{\rm mV};$ Абсолютная погрешность по классу точности: $\Delta_{\rm B}=\pm\frac{0.75*0.5}{2}=\pm1.875~{\rm mV}.$

мост постоянного тока Р4833: разрядность магазина сопротивлений – 5 ед; класс точности – 0,1; Используемый диапазон измерений: $10^{-4} - 10$ Ом (для множителя $N = 10^{-2}$). Погрешность измерений в используемом диапазоне: $\Delta_{\mbox{\scriptsize MHT}} = \pm 0,010$ Ом.

Результаты измерений и обработка данных 4

Измерение диаметра d проволоки

Таблица 1: Измерения диаметра проволоки штангенциркулем и микрометром

	1	2	3	4	5	6	7	8	9	10
d_{imt} , mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_{mkm} , mm	0,36	0,37	0,36	0,36	0,37	0,36	0,35	0,36	0,36	0,36

$$\bar{d}_{\text{imt}} = 0,4$$
 mm; $\bar{d}_{\text{mkm}} = 0,361$ mm

При измерении диаметра проволоки штангенциркулем отсутствует случайная погрешность, т.е. результат измерений определяет лишь точность прибора: $d_{\mathrm{mr}}=0,4\pm0,1$ мм.

При измерении диаметра проволоки присутствуют как случайная, так и систематическая погрешности:

$$\sigma_{
m oth} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (d_i - \bar{d})^2} \approx 6 \cdot 10^{-3} \; {
m mm}; \; \sigma_{
m cp} = \frac{\sigma_{
m oth}}{\sqrt{N}} \approx 2 \cdot 10^{-3} \; {
m mm}; \; \sigma_{
m полн} = \sqrt{\sigma_{
m cp}^2 + \Delta_{
m mkm}^2} \approx 0,01 \; {
m mm};$$
 Т. к. $\sigma_{
m cp} << \sigma_{
m mkm}$, можно считать, что проволока однородная, а погрешность при измерении ее диаметра

определяется лишь точностью микрометра: $d_{\text{мкм}} = 0,361 \pm 0,010$ мм.

Измерение сопротивления $R_{\rm np}$ проволоки

Результаты измерений зависимостей показаний вольтметра V от показаний амперметра I в схеме рис. 1при разных длинах l проволоки представлены в табл. 2. Соответствующие графики зависимостей изображены на рис. 2.

Таблица 2: Показания приборов и значения сопротивления

Taomique 2. Holassamin il pricopos il sua formi comportissionini														
$l=50~\mathrm{cm}$														
I, mA	30,5	40,6	50,7	60,7	75,2	81,0	85,7	90,8	99,9	110,8	120,5	131,0	140,0	150,3
U, mV	150	200	250	300	375	402	425	450	500	550	600	650	700	750
$R, O_{\rm M}$	4,918	4,926	4,931	4,942	4,986	4,969	4,959	4,959	5,001	4,964	4,979	4,962	5,0	4,991
	$l=30~\mathrm{cm}$													
I, mA	35,5	39,3	52,0	59,9	69,6	76,3	85,3	101,4	110,5	119,6	148,0	161,6	205,1	218,7
U, mV	100	110	150	175	200	225	250	300	325	350	450	500	610	650
R, Om	2,817	2,799	2,885	2,922	2,874	2,949	2,931	2,959	2,941	2,926	3,041	3,094	2,974	2,972
	$l=20~\mathrm{cm}$													
I, mA	69,9	86,6	101	113,3	137,9	149,9	161,6	189	206,2	222,1	240,0	297,0	323,0	350,0
U, mV	140	175	200	225	275	300	325	375	415	450	490	595	655	710
R, Om	2,003	2,021	1,980	1,986	1,994	2,001	2,011	1,984	2,013	2,0261	2,042	2,003	2,028	2,029

Таблица 3: Показания приборов

· · · · · · · · · · · · · · · · · · ·	1 1						
	l = 50 cm	l = 30 cm	l = 20 cm				
R_0 , Om	5,090	3,051	2,093				
$R_{ m cp},{ m O}$ м	4,963	2,934	2,009				
$\sigma_{\text{отд}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (R_i - R_{\text{cp}})^2}, \text{Ом}$	0,779	1,218	0,232				
$\sigma_{\mathrm{cp}} = \frac{\sigma_{\mathrm{or}\pi}}{\sqrt{N}}, \mathrm{Om}$	0,208	0,325	0,062				
$\sigma_{ ext{chct}} = R_{ ext{cp}} \sqrt{\left(rac{\Delta_B}{V_{ ext{max}}} ight)^2 + \left(rac{\Delta_A}{I_{ ext{max}}} ight)^2}, ext{ Om}$	0,012	0,008	0,005				
$\sigma_{ m полн} = \sqrt{\sigma_{ m cp}^2 + \Delta_{ m \scriptscriptstyle MKM}^2},~{ m OM}$	0,208	0,325	0,062				

Обсуждение результатов 5

6 Выводы