1. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 15

Total points: 15

Teilaufg	abe und Antwort	Punkte			
Subtask	Subtask and solution				
1.1	+ hohe Leistungsdichte / high power density				
	+ einfache Realisierung von Linearbewegungen / simple realization of linear movement				
	+ gute Steuer- und Regelbarkeit / good controllability				
	+ gutes Zeitverhalten durch niedrige Massenträgheiten / good time response due to low mass inertia				
	+ gute Schmierung und Abfuhr der Verlustwärme durch das Fluid / good lubrication and removal of heat losses via the fluid				
	+ einfache und zuverlässige Absicherung gegen Überlast / simple and dependable overload protection				
	- Energieverbrauch (Verluste durch Reibung und interne Leckage) / power consumption (losses due to friction and internal leakage)				
	- Wartung des Druckmediums (Schmutzempfindlichkeit und Verschleiß der Komponenten) / preventive maintenance of the pressurizing medium (Sensitivity of the components towards contamination and wear)				
	- Umwelt (Geräuschabstrahlung, Leckage,) / environmental pollution/damage (noise emission, leakage, fire hazard)				
1.2	Volumenschluss; Druckübertragung; Leistungsübertragung /	0,5			
	volume connection; power transfer2. Schmierung; Kühlung; Partikelabtransport; Korrosionsschutz /	1			
	lubrication; cooling; particle removal; corrosion protection				
1.3	1. Allgemeine Flüssigkeiten / general liquids	0,5			
	2. Schwerentflammbare Flüssigkeiten / Fire-retardant fluids	0,5			
	3. Umweltverträgliche Flüssigkeiten / Environmentally compatible	0,5			
	fluids				
	4. Spezielle Flüssigkeiten / Special liquids				
1.4	1. Links: Blende / Left: Orifice	0,5			
	2. Rechts: Drossel / Right: Throttle				

_	abe und Antwort	Punkte
Subtask	and solution	Points
1.5	Blende $Q = \alpha_D \cdot A \cdot \sqrt{\frac{2}{p}} \cdot \sqrt{\Delta p}$ Korrekte Formel mit Kennzeichnung je 0,5 Pkt. / correct formula + indication each 0.5 Pts. Drossel $Q = \frac{\pi \cdot r^4}{8 \cdot \eta \cdot 1} \cdot \Delta p$ Korrekter Verlauf	1
	Drossel $Q = \frac{\pi \cdot r^4}{8 \cdot \eta \cdot 1} \cdot \Delta p$ Korrekter Verlauf mit Kennzeichnung je 0,5 Pkt. / correct course + indication each 0.5 Pts.	1
1.6	Axialkolbenpumpe in Schrägscheibenbauweise / Axial piston pump in	0,5
	swashplate design	
	Verstellbar / adjustable displacement volume	0,5
1.7	1. Steuerspiegel / Umsteuerplatte / Valve plate / comutation plate	0,5
	2. Kolben / Piston	0,5
	3. Schwenkwiege / Schwenkjoch / Schrägscheibe / Swash plate	0,5
	4. Kolbengleitschuh / <i>Piston shoe</i>	0,5
	5. Kolbentrommel / Zylinder / Cylinder barrel	0,5
1.8	10000 1000 1000 1000 1000 1000 1000 HLP 46 1000 1000 1000 HVLP 10 3 -20 0 20 40 60 80 Temperatur [°C]	
	Stützpunkt und Verlauf (sinkt mit steigender Temperatur) je 0,5 Pkt. /	1
	support point and course (sinking with rising temperature) each 0.5 Pts.	
	HVLP Verlauf flacher als HLP / HVLP course flatter than HLP	0,5

Teilaufgabe und	Teilaufgabe und Antwort		
Subtask and solu	tion	Points	
1.9	$Q_p = Q_S + Q_M => \dot{Q_p} = \dot{Q_S} + \dot{Q_M}$	0,5	
	$\dot{Q}_p = 0$	0,5	
	$L_H = rac{\Delta p}{\dot{Q_M}} \Leftrightarrow \dot{Q_M} = rac{p_1 - p_{ND}}{L_H}$	0,5	
	$egin{aligned} \mathcal{C}_{H} &= rac{Q_{S}}{\dot{p_{1}}} \Longleftrightarrow Q_{S} = \dot{p_{1}} \cdot \mathcal{C}_{H} \ \dot{Q_{S}} &= \ddot{p_{1}} \cdot \mathcal{C}_{H} \end{aligned}$	0,5	
	$0 = \ddot{p}_1 \cdot C_H + \frac{p_1 - p_{ND}}{L_H}$ $\Leftrightarrow \frac{1}{C_H L_H} \cdot p_{ND} = \ddot{p}_1 + \frac{1}{C_H L_H} \cdot p_1$	1	
1.10	$\omega_0 = \sqrt{\frac{1}{C_H L_H}}$	0,5	

2. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 1 Total points: 1	
	D1

	gabe und Antwort and solution		Punkte Points		
2.1	0,5 Punkte pro Nennung (insgesamt max. 1,5 Punkte)		1,5		
2.1	Schaltmagnet, Proportional magnet, Tauchspule, Linear motor,				
	Torquemotor, piezoelektrischer Wandler	uic, Emearmotor,			
	Switching solenoid, Proportional solenoid, Voice	coil Linear motor			
	Torque motor, Piezo-electric converter	Coll, Linear molor,			
2.2	5/3-Wege Schaltventil mit Federzentrierung	(0,5 Punkte)	1,0		
2.2	Spring centered 5/2-way switching valve	(0,5 Funkte)	1,0		
		(0.5 Punkto)			
	und hydraulischer Betätigung with fluid actuation	(0,5 Punkte)			
2.3	·	(0.5 Dunleta)	1.5		
2.3	- Kegelsitz / Poppet valve	(0,5 Punkte)	1,5		
	- Kugelsitz / Ball valve	(0,5 Punkte)			
2.4	- Tellersitz / Disc valve	(0,5 Punkte)	0.5		
2.4	Eine hermetische Abichtung kann realisiert werden.	(0,5 Punkte)	0,5		
2.5	A leakproof blocking of the flow is possible.		1.5		
2.5	$Q = v_2 \cdot A_2 = \alpha_D \cdot A_2 \cdot \sqrt{\frac{2}{\rho}} \cdot \sqrt{\Delta p}$	(0,5 Punkte)	1,5		
	$v_2 = \frac{Q}{A_2} = \alpha_D \cdot \sqrt{\frac{2}{\rho}} \cdot \sqrt{\Delta p} = 0.6 \cdot \sqrt{\frac{2}{870 \frac{kg}{m^3}} \cdot 250 \ bar}$	(0,5 Punkte)			
	$v_2 \approx 144 \frac{m}{s}$	(0,5 Punkte)			
2.6	$v_1 = \frac{Q}{A_1} = 4 \cdot \frac{Q}{\pi \cdot d_1^2} = \frac{4 \cdot 100 \frac{l}{min}}{\pi \cdot (16 \ mm)^2} = 8,29 \frac{m}{s}$	(0,5 Punkte)	2,0		
	$F_{str} = \rho \cdot Q \cdot (v_{2ax} - v_{1ax})$	(0,5 Punkte)			
	$F_{str} = \rho \cdot Q \cdot (v_2 \cdot cos\varepsilon - v_1)$	(0,5 Punkte)			
	$F_{str} = 870 \frac{kg}{m^3} \cdot 100 \frac{l}{min} \cdot \left(90 \frac{m}{s} \cdot cos30^\circ - 8,29 \frac{m}{s}\right)$				
	$F_{str} \approx 101 N$	(0,5 Punkte)			
2.7	Kräftebilanz mit F_{Str} : / Balance of forces with F_{Str} :	,	2,0		
	$p_1 \cdot A_K - F_{Str} - p_x \cdot A_K = 0$	(0,5 Punkte)	,		
	Kräftebilanz ohne F_{Str} : / Balance of forces without F_{Str}				
	$p_1' \cdot A_K - p_r \cdot A_K = 0$	(0,5 Punkte)			
	$\Rightarrow p_1' = p_1 - \frac{F_{Str}}{A_K} = p_1 - 4 \cdot \frac{F_{Str}}{\pi \cdot d_K^2}$	(0,5 Punkte)			
	$\Rightarrow p_1' = 250 \text{ bar } - 4 \cdot \frac{338 N}{\pi \cdot (16 mm)^2}$. ,			
	$\Rightarrow p_1' \approx 233 \ bar$	(0,5 Punkte)			

3. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

	gabe und Antwort	Punkte
Subtask	a and solution	Points
3.1	(Einhubige) Radialkolbenpumpen / (single stroke) radial piston machine	0,5
	(Einhubige) Fügelzellenpumpen / (single stroke) vane pump	0,5
	Axialkolbenmaschinen / Axial piston machine	0,5
3.2	- kinematische Pulsation -> Durch die endliche Anzahl der	1
	Verdrängerräume kommt es zu Pulsationen	
	kinematic flow ripple -> Due tot he finite number of displacement	
	chambers	
	- kompressionsbedingte Pulsation → Wenn der Verdrängerraum vor dem	1
	Einsteuern in den Hochdruck nicht vorkomprimiert wird, strömt Öl zurück	
	in die Verdrängerräume.	
	condition-conditioned ripple \rightarrow occures whenever the pressure in the	
	displacement chamber is not equal to the system pressure, thus forcing oil	
	to flow back into the chamber	
3.3	Anschluß Rückschlagventil	
	(verstellbarer) Widerstand adjustable orifice	0,5
	Rückschlagventil check valve	0,5
	Absatz an Kolbestange und Gegenstück im Gehäuse	0,5
	flange on piston rod and coutnerpart in housing	
	Kerben im Absatz longitudinal slot in flange	0,5
	ODER/OR Kunststoffanschlag/Feder <i>plastic block/spring</i> (1 Punkt)	ĺ
3.4	Kreiselpumpe centrifugal pump	0,5

	gabe und Antwort	Punkte
Subtask	and solution	Points
3.5	$V_K = rac{Q_{th}}{n}$	0,5
	$V_K = rac{84,84 \ l/min}{2000 \ U/min}$	0,5
	$V_K = 42,42 \frac{cm^3}{U}$	
3.6	$dx = \frac{dV}{A} = \frac{V_{UT}dp}{AE_{Fl}}$	0,5
	$dc = rac{dF}{dx} = rac{dpA^2E_{Fl}^{\prime}}{V_{UT}dp}$	0,5
	Es wird eine lineare Druckerhöhungg angenommen.	
	Under the assumption of a linear increase in pressure.	0,5
	$W_K = rac{cdx^2}{2} = rac{1}{2} rac{A^2 E_{Fl}'}{V_{UT}} rac{V_{UT}^2 dp^2}{A^2 E_{Fl}'} = rac{\Delta p^2 V_{UT}}{2 E_{Fl}'}$	
	$W_A = \left(V_K - rac{V_{UT}\Delta p}{E_{Fl}'} ight)\Delta p$	0,5
	$\frac{W_K}{W_A} = \frac{\Delta p^2 V_{UT}}{2E_{Fl}' \Delta p \left(V_K - \frac{V_{UT} \Delta p}{E_{Fl}'}\right)} = \frac{\Delta p}{2E_{Fl}' \left(\frac{V_K}{V_{UT}} - \frac{\Delta p}{E_{Fl}'}\right)}$	0,5
	$\frac{W_K}{W_A} = \frac{50 \ bar}{2 \cdot 16.000 \ bar \left(\frac{12,12 \ cm^3}{13 \ cm^3} - \frac{50 \ bar}{16.000 \ bar}\right)}$	0,5
	$\frac{W_K}{W_A} = 0,1682 \%$	
	Da Anzahl der Kolben in Aufgabenstellung fehlt, gibt es 0,5 zusätzlich für	
	einen richtigen Lösungsansatz. Since the number of pistons wasn't given,	
	an additional 0.5 are awarded for a correct approach.	

4. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

Teilaufg	eilaufgabe und Antwort			
Subtask	ask and solution			
4.1	Leistungsregelung (Volumenstrom so vom Druck abhängig, dass die Leistung konstant bleibt) Power control (Volume flow depends on pressure in a way that power stays constant)			
4.2	Nur ein gerin small volume j Blende für	ger V flow g	Volumenstrom wird durch die Blende gelassen / Onligets through orrifice renzte Schwenkwinkelgeschwindigkeit und som ötigt / orifice limits the swash plate angle velocity an	it 0,5
	thus oscillatio	ns		
4.3			Steuerung Widerstandssteuerung Verdrängersteuerung	0,5 für 2 Richtige
		ang Aufgeprägter Volumenstrom	I x, \dot{x}, F III x, \dot{x}, F $Q_p = const.$	0.5 for each two correct solutions
		Spelsung Aufgeprägter Druck	$\begin{array}{c c} II & x, \dot{x}, F \\ \hline & & \\ &$	

Blatt/Page:	9
-------------	---

Teilaufgabe Subtask and	Punkte Points	
4.5	$\Delta p = \frac{2 \pi M_{Anfahr}}{V_{Motor} \eta_{hm,Motor}} = 349,066 \text{ bar}$	0,5
	$p_{\rm HD} = p_{\rm DBV} + \Delta p = 354,066 \text{ bar}$	
	$Q_{\text{Pumpe}} = Z_{\text{Räder}} k_{\text{Leckage}} p_{\text{HD}} = 70,813 \text{ l/min}$	0,5
	$\alpha = \frac{Q_{Pumpe}}{V_{Pumpe}\eta_{vol,Pumpe}n_{Pumpe}} = 0,09939 = 10\%$	0,5
	$P = \frac{\Delta p Q_{Pumpe}}{\eta_{hm,Pumpe} \eta_{vol,Pumpe}} = 45648 \text{ W} = 45,65 \text{ kW}$	0,5
4.6	$\Delta p_{max} = p_{DBV,HD} - p_{DBV,ND} = 395 \ bar$	0,5
	$M_{Brems} = \frac{\Delta p_{max} V_{Motor}}{2\pi \eta_{hm,Motor}} = 3492,57 \text{Nm}$	0,5

5. Aufgabe - Musterlösung

Excercise - Solution

Gesamtpunktzahl: 15

Total points: 15

eilaufgabe und Antwort ubtask and solution				
1		Sitzventile	Schieberventile	Points 2
	Vorteile	hohe Funktionssicherheit	geringe Betätigungskräfte durch Druckentlastung des Schiebers (flächengleiche Schieberkammern)	
		unempfindlich gegen Verschmutzung	einfache Realisierung von komplizierten Schaltbildern, da der Schieber gleichzeitig mehrere Anschlüsse schalten kann	
		leckagefreie Abdichtung der Anschlüsse		
	Nachteile	eine Druckentlastung des Dicht- elements ist aufwendig	hohe Fertigungstoleranzen zwischen Schieber und Buchse sind erforderlich, um die Leckage möglichst klein zu halten	
		Betätigung zumeist gegen Druckkräfte, so dass relativ große Kräfte erforderlich sind	eine gewisse Leckage ist unver- meidbar	
		mehr als zwei Schaltstellungen erfordern aufwändigere Konstruktionen		

eilaufgabe und Antwort				Punkte
Subtask and sol	lution	Seat valves	Spool valves	Points
			Special mass	
Adva	antages	high functional safety	small actuation forces with pressure relief of the valve (valve chambers with the same surface)	
		immune against contamination	easy implementation of complex circuit schemes, because the spool can actuate multiple connections at the same time	
		leakage-free sealing of the connections		
Disa	dvantages	a pressure relief of the sealing element is costly	high production tolerance between spool and bushing is necessary to keep the leakage preferably small	
		actuation mostly against pressure forces so that relatively high forces are required	a certain leakage is inevitable	
		more than two switching positions require costlier designs		
5.2		1 / / 2		2
Funkti	on: Bei erre	eichen eines eingestellten D	ruckniveaus an (1) öffnet das	
		_	uchern an (2) frei. Durch das	
	_	ist die Durchströmung von (
	•	_	el at (1) the valve opens and	
connec	cts to additi	onal consumers connected to	o (2). The checkvalve enables	
alwas	flow from (2	2) to (1).		

Teilaufgabe und Antwort		Punkte Points	
Subtask	Subtask and solution		
5.3	Zuluftdrosselung und Abluftdrosselung	1	
	Exhaust air throtteling and supply air throtteling, meter-in flow control		
	and meter-out flow control		
5.4	Hohe Arbeitsgeschwindigkeiten bei kleinen und mittleren Massen	2	
	Günstiges Leistungsgewicht		
	Geringe Abmessungen		
	Hohe Überlastsicherheit bei unbegrenzter Einschaltdauer		
	Keine Eigenerwärmung der Antriebe		
	 Vergleichsweise einfache Steuerung von stationären Kräften und Geschwindigkeiten 		
	 Gewährleistung des Explosionsschutzes bei rein pneumatisch ausgeführten Antriebssteuerungen 		
	 Geringe Empfindlichkeit gegen Umwelteinflüsse wie Nässe, Staub und Wärme 		
	 high work speeds with the movement of small and average masses, 		
	 favorable power weight and small measurements, 		
	 high overload safety with unlimited power-on time, 		
	 no self-heating of the drives, 		
	• comparably simple control of stationary forces and speeds,		
	 ensuring protection against explosions with purely pneumatically designed drive controls and 		
	• low sensitivity towards environmental influences like wetness, dust and heat.		

	Teilaufgabe und Antwort	
Subtask	k and solution	
5.5	Summe aller Kräfte: $\sum F = 0$	2
	$m_{\text{B\"{u}chse}} \cdot g \cdot \sin \alpha + \left(F_{R,konst} + k_{Reib} \cdot v_{B\"{u}chse}\right) = \left(p_U - p_{vak}\right) \frac{\pi}{4} d_{Rohr}^2$	
	$p_{vak} = p_U - \frac{4}{\pi d_{Rohr}^2} \left(m_{\text{B\"{u}chse}} \cdot g \cdot \sin \alpha + \left(F_{R,konst} + k_{Reib} \cdot v_{B\"{u}chse} \right) \right)$	
	$p_{vak} = 0,93 \ bar$	
	Sum of forces: $\sum F = 0$	
	$m_{\text{capsule}} \cdot g \cdot \sin \alpha + \left(F_{f,const} + k_{friction} \cdot v_{capsule}\right)$	
	$= (p_U - p_{vak}) \frac{\pi}{4} d_{tube}^2$	
	$p_{vak} = p_U - \frac{4}{\pi d_{Rohr}^2} \Big(m_{\text{capsule}} \cdot g \cdot \sin \alpha$	
	$+\left(F_{f,const}+k_{friction}\cdot v_{capsule}\right)\right)$	
	$p_{vak} = 0.93 \ bar$	
5.6	Vorgang läuft langsam ab → isotherm	2
	Ideale Gasgleichung zur Bestimmung der abgesaugten Luftmasse:	
	$\Delta m = \frac{\Delta p \cdot V}{RT_0} = \frac{(p_U - p_{vak}) \cdot \frac{\pi}{4} d_{Rohr}^2 l_{Rohr}}{RT_0} = 133,96 \ g$	
	Normvolumenstrom in Massenstrom umrechnen:	
	$\dot{m}_{vak} = \frac{Q_{0,vak}}{\rho_0} = 1,974 \ g/s$	
	Dauer zum Evakuieren:	
	$\Delta t = \frac{\Delta m}{\dot{m}_{vak}} = 67,86 s$	
	Slow changing process → isothermal	
	Ideal gas equation to determine the mass of sucked in air:	
	$\Delta m = \frac{\Delta p \cdot V}{RT_0} = \frac{(p_U - p_{vak}) \cdot \frac{\pi}{4} d_{Rohr}^2 l_{Rohr}}{RT_0} = 133.96 \ g$	
	Convert standard volume flow to mass flow rate:	
	$\dot{m}_{vak} = \frac{Q_{0,vak}}{\rho_0} = 1.974 \ g/s$	
	Duration of evacuation:	
	$\Delta t = \frac{\Delta m}{\dot{m}_{vak}} = 67.86 s$	

Teilaufgabe und Antwort		Punkte
	and solution	Points
5.7	Strömungszustand: $\frac{p_{vak}}{p_U} = 0.8 > b \rightarrow \text{unterkritisch}$	2
	Ausflussfunktion mit $\kappa = 1,4$:	
	$\Psi = \sqrt{\frac{\kappa}{\kappa - 1} \left[\left(\frac{p_{vak}}{p_U} \right)^{\frac{2}{\kappa}} - \left(\frac{p_{vak}}{p_U} \right)^{\frac{\kappa - 1}{\kappa}} \right]} = 0,3964$	
	Blendengleichung:	
	$\dot{m}_{Loch} = \alpha_D \Psi A_{Loch} p_U \sqrt{\frac{2}{RT_0}} = 0,0985 \text{ g/s}$	
	Flow condition: $\frac{p_{vak}}{p_U} = 0.8 > b \rightarrow subsonic$	
	Discharge function with $\kappa = 1.4$: $\Psi = \sqrt{\frac{\kappa}{\kappa - 1} \left[\left(\frac{p_{vak}}{p_U} \right)^{\frac{2}{\kappa}} - \left(\frac{p_{vak}}{p_U} \right)^{\frac{\kappa - 1}{\kappa}} \right]} = 0.3964$	
	Orifice: $\dot{m}_{hole} = \alpha_D \Psi A_{hole} p_U \sqrt{\frac{2}{RT_0}} = 0.0985 \text{ g/s}$	
5.8	Massenstrom aus der Bewegung nach idealer Gasgleichung: $\dot{m}_{Beweg.} = \frac{p_{vak} \cdot Q}{RT_0} = \frac{p_{vak} \cdot \frac{\pi}{4} d_{Rohr}^2 v_{B\"{u}chse}}{RT_0} = 21,43 \ g/s$ Gesamtmassenstrom:	2
	$\dot{m}_{ges} = \dot{m}_{Beweg.} + \dot{m}_{Loch} = 22,43 g$	
	Umrechnung in Normvolumenstrom:	
	$Q_{0,transport} = \frac{\dot{m}_{ges}}{\rho_0} = 1136,3 Nl/min$	
	Massflow rate of movement: $\dot{m}_{move} = \frac{p_{vac} \cdot Q}{RT_0} = \frac{p_{vac} \cdot \frac{\pi}{4} d_{Rohr}^2 v_{capsule}}{RT_0} = 21,43 \ g/s$	
	Overall mass flow rate:	
	$\dot{m}_{sum} = \dot{m}_{move} + \dot{m}_{hole} = 22.43 \ g$	
	Convert mass flow rate to standard volume flow rate: $Q_{0,transport} = \frac{\dot{m}_{sum}}{\rho_0} = 1136.3 \ Nl/min$	

6. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

Teilaufgabe und Antwort		Punkte		
Subtask and solution			Points	
6.1		Verdichterbauart	Beispiel	2
		Compressor design	Example	
	1.	Kolbenverdichter	Membranverdichter	
	1.	Piston compressor	Diaphragm compressor	
	2.	Rotationsverdichter	Lamellenverdichter	
	2.	Rotating compressor	Vane compressor	
6.2	Berechnung über Leistungsvergleich: Calculation by performance equation:			1
	$\dot{m} = \frac{F}{2}$	$v_{\text{erdichter}} = \dot{m} \cdot w_{12} = \dot{m} \cdot n \cdot \frac{p_1}{n}$ $v_{\text{N}} \cdot \eta_{\text{Verdichter}} \cdot (n-1) \cdot \rho_1$ $n \cdot p_1 \cdot \left(\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right)$ $\frac{1}{1}$ $\frac{1}{1}$	$\frac{v_1}{-1} \cdot \left(\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right)$ $\frac{1kW \cdot 0,25 \cdot 0,15 \cdot 1,1845 \frac{kg}{m^3}}{0,15 \cdot 1bar \cdot \left(\left(\frac{9bar}{1bar} \right)^{\frac{0,15}{1,15}} - 1 \right)}$	

Teilaufgabe und Antwort		Punkte
Subtask and solution		Points
6.3	Befüllungsdauer:	3,5
	duration of inflation:	
	Polytrope Zustandsänderung:	
	Polytrope state:	
	$\left \frac{p_1}{p_2} = \left(\frac{v_2}{v_1} \right)^n \Leftrightarrow v_2 = v_1 \cdot \left(\frac{p_1}{p_2} \right)^{\frac{1}{n}} = \frac{1}{\rho_1} \cdot \left(\frac{p_1}{p_2} \right)^{\frac{1}{n}}$	
	Ermittlung der geförderten Masse:	
	Calculation of the delivered mass:	
	$\rho_2 = \frac{1}{v_2} = \rho_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{1}{n}}$	
	$\Delta m = V(\rho_2 - \rho_1) = V\rho_1 \left(\left(\frac{p_2}{p_1} \right)^{\frac{1}{n}} - 1 \right) = 35l \cdot 1, 18 \frac{kg}{m^3} \cdot \left(3, 2^{\frac{1}{1,15}} - 1 \right)$	
	= 72,26g	
	Benötigte Zeit:	
	Needed time:	
	$t = \frac{\Delta m}{\dot{m}} = \frac{\Delta m \cdot R_0 \cdot T_0}{Q \cdot p_0} = \frac{72,26g \cdot 288 \frac{Nm}{kg \cdot K} \cdot 293,15K}{180 \frac{Nl}{min} \cdot 1bar} = \underline{\frac{20,34s}{180 \frac{Nl}{min} \cdot 1bar}}$	
	Benötigte technische Leistung zur Verdichtung (stationäre Strömung):	
	Needed technical performance for the compression(stationary flow):	
	$P_{\text{Verdichter}} = w_{\text{Verdichter}} \cdot \dot{m} = \dot{m} \cdot \frac{n \cdot p_1 \cdot v_1}{n-1} \cdot \left(\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right)$	
	mit/with: $p_1 = p_0 = 1bar$; $v_1 = \frac{1}{\rho_0}$	
	$P_{\text{Verdichter}} = 3.55 \frac{g}{s} \cdot \frac{1.15 \cdot 1bar}{0.15 \cdot 1.18 \frac{kg}{m^3}} \cdot \left(3.2^{\frac{0.15}{1.15}} - 1\right) = \frac{377.9W}{1.15}$	

Teilaufgabe und Antwort		Punkte
Subtask	Subtask and solution	
6.4	Zwei Vorgänge: Two states:	2,5
	1→2: Polytrope Zustandsänderung während der Kompression Polytrope state during compression $\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\frac{n}{n-1}}$ 2→3: Isochore Zustandsänderung während der Abkühlung Isochore state during cooling $\frac{p_2}{T_2} = \frac{p_3}{T_3}$	
	mit/with: $p_1 = p_0 = 1bar$; $T_1 = T_3 = T_0 = 293,15K$	
	Gleichsetzen der beiden Gleichungen Equalisation of the equations $T_2 = \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} \cdot T_1$ $p_2 = \frac{p_3}{T_3} \cdot T_2 = \frac{p_3}{T_3} \cdot \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} \cdot T_1$	
	$p_2 \cdot p_2^{-\frac{n-1}{n}} = p_2^{\left(1 - \frac{n-1}{n}\right)} = \frac{T_1}{T_3} \cdot \frac{p_3}{p_1^{\frac{n-1}{n}}} = \frac{p_3}{p_1^{\frac{n-1}{n}}}$	
	$p_2^{\frac{1}{n}} = \frac{p_3}{p_1^{\frac{n-1}{n}}}$	
	$p_2 = \frac{p_3^n}{p_1^{n-1}} = \frac{(3,2bar)^{1,15}}{(1bar)^{0,15}} = \underline{3,81bar}$	
6.5	Maßnahme: Mehrstufige Verdichtung Element: Kühler, (zweiter Verdichter)	1
	Measure: Two/multiple stage compression Component: Cooler, (second stage compressor)	