HYBRID GRU-LSTM WITH INTEGRATED FUNDAMENTAL & TECHNICAL ANALYSIS FOR

STOCK PRICE PREDICTION

AIT2109934 Adrian Chieng Hong Jie



## Outline

Introduction Problem Background Aims and Objectives Literature Review Research Methodology Research Findings Conclusion **Future Works** 





## Why stock price prediction?

- Stock price prediction is a crucial task for investors and financial institutions, enabling informed decisions and risk management (Shah, 2023).
- A range of studies have explored the predictive ability of fundamental and technical analysis in stock price movement.
- Agustin (2019) found that while each approach can independently predict stock prices, their integration can enhance predictive power.
- The unpredictable nature of stock prices remains challenging, prompting the need for more accurate prediction algorithms (Gnanavel, 2023).

#### Problem Statement



Limitation of Fundamental & Technical Analysis

Fail to capture the multifaceted factors influencing stock prices.



Limitation of LSTM standalone model

Underperform when compared to other hybrid models.

## Aims & Objectives



### Objectives

- To develop a hybrid model that integrates GRU, LSTM, and fundamental analysis, leveraging their complementary strengths.
- To evaluate the performance of the hybrid model using performance metrics including RMSE, MAE and MSE.
- Investigate the impact of varying the number of layers in GRU and LSTM architectures on the performance and accuracy of predicting stock price trends.
- To evaluate the performance of the enhanced predictive model with evaluation metrics such as MSE, RMSE, MAE, and MAPE.

## Literature Review



#### **Stock Price Prediction Models**



Traditional
Statistical Model



Machine Learning Model



Deep Learning Model

#### **Traditional Statistical Model**

- Autoregressive Integrated Moving Average (ARIMA)
- works based on the outcomes and the related dependencies where the past values are inputted and the future values are produced
- useful when dealing with linear and stationary data patterns

•

AR

AutoRegressive (AR) for looking at past observations

Differencing (I or Integrated) for handling changes in data patterns MA

Moving
Averages (MA)
for considering
error terms

## Machine Learning (ML) Models

Support Vector Regression (SVR)

√ Captures non-linear dependencies

√ Handles noisy market data

X Limited scalability

X No sequential processing

Random Forests (RF)

√ Handles non-linear features

√ Good feature combination

X No temporal dependencies

Extreme Gradient
Boosting
(XGBoost)

✓ Most efficient (MSE: 0.004)

√ Strong feature handling

X No temporal dependencies

## Deep Learning (DL) Models



#### **Recurrent Neural Networks**

#### Capabilities

- → Process variable-length sequences
- → Learn temporal patterns
- → Capture market dynamics

#### Advantages

- √ Superior sequence learning
- √ Time series specialization
- √ Convolutional perception



#### Long Short-Term Memory

Specialized for capturing long-term market patterns and dependencies



#### Gated Recurrent Unit

Streamlined architecture offering computational efficiency

## Long Short-Term Memory (LSTM)



Figure 2.1: Structure of a LSTM algorithm (Hamayel & Owda, 2021).



#### proficiency in handling time-series data

maintaining a memory of previous states, LSTM networks can capture trends and patterns over long periods



#### ability to deal with noise in data

filter out the noise and focus on the underlying patterns of the data as shown Ma (2020)



#### computationally intensive

complexity of the model requires substantial computational resources



#### prone to overfitting

Techniques like regularization, dropout and cross-validation can be used to mitigate this issue



#### **Variant of LSTM**

A type of RNN that has gained popularity in time-series forecasting tasks



#### Address the vanishing gradient problem

Use gating mechanisms to control the flow of information





- only two gates: reset gate and update gate
- The smaller the value of the reset gate, the more memory is ignored
- The greater the value of the update gate, the more information it will generate

#### Computationally more efficient than LSTM



- fewer parameters
- reduces the computational burden
- attractive option for real-time stock prediction applications (Zhang and Aggarwal, 2021).

#### Gated Recurrent Unit (GRU)



Figure 2.1: Structure of a GRU algorithm (Jin et al., 2020).



### **Hybrid GRU-LSTM Architecture**



#### Applications across domains

- Financial market: Stock price prediction, Cryptocurrency trends
- Other fields: Traffic prediction, Anomaly detection, COVID-19 trends



#### Key advantages

- Superior performance vs. single models
- Handles multiple data sources
- Better accuracy metrics (MSE, RMSE, MAPE)



#### Recent advancements

- Swarm intelligence enhancement for intrusion detection (Al-kathari et al., 2023)
- Attention mechanisms for cryptocurrency prediction (Chen et al., 2023)

Stock prediction methods can be classified into 2 main categories (Huang et al., 2021).



#### **Fundamental Analysis**

- analysis of a company's intrinsic value via its published financial reports (Qin and Boicu, 2023)
- financial position, employees performance, yearly report, balance sheets, income reports
- financial ratios like D/E, P/S, P/B and EPS ratio.

#### **Technical Analysis**

- analysis of market activity such as historical price data, sentiments, flow-of-funds and cycle.
- technical analysts; aim to predict stock movement in the short run.
- risky over long time horizons since it does not take the fundamentals of company's health into account (Kaushik, 2024).

## Research Methodology



## Research Design

- quantitative and experimental methodology
- utilizes machine learning techniques
- mainly consists of three modules
- Data Module, Pre-Processing Module and GRU-LSTM Module.



### Step 1: Data Module

- data collected using Yahoo Finance API
- 2 stocks: Dalian Friendship(Group)Co.Ltd.
   (000679.SZ)
- Dalian Thermal Power Co.,Ltd. (600719.SS)
- Open, High, Low, Close, Volume, Dividends & Stock Splits
- 2430 rows and 7 columns



## Step 2: Preprocessing Module





Data

Transformation











## Exploratory Data Analysis (EDA)

- Understand data structure and distributions.
- Identify trends, anomalies, and outliers.
- Columns analyzed include Open, High, Low, Close, Volume, Dividends, and Stock Splits
- Line plots for stock price trends.
- Histograms for price distributions

## Data Cleaning

- Ensure data quality and consistency
- Remove irrelevant or redundant information.
- Checked with data.isnull().sum()—no missing values found.
- Confirmed no duplicates exist.
- Columns like Dividends and Stock Splits excluded as they don't contribute to predictions.
- Removed as it lacks numerical significance.



## Feature Engineering



#### **Purpose of Feature Engineering**

- Enhance the dataset to improve the model's ability to capture patterns and trends.
- Generate additional meaningful features that aid predictive accuracy.



#### **Features Added**

- Moving Averages
- Stochastic Indicators
- Moving Average Convergence Divergence (MACD)
- Relative Strength Index (RSI)



#### **Data Normalization**



#### **Purpose:**

- Bring all features to a comparable scale.
- Enhance model convergence and reduce training time.
- Avoids dominance of features with larger scales.



#### **Method Used**

- Min-Max Scaling:
- Transforms data to a range of [0, 1].
- Applied to features such as Open, High, Low, Close, and Volume.



### **Data Transformation**



#### **Purpose:**

- Enable compatibility with the GRU-LSTM model, which requires data in sequential (3D) format.
- Preserve temporal dependencies critical for time-series forecasting.



#### **Propotions:**

- Transformed dimensions: (samples, time steps, features).
- Example: If 100 samples, 10 time steps, and 5 features → final shape is (100, 10, 5).



## Data Splitting



#### **Purpose:**

- Bring all features to a comparable scale.
- Ensure that the model is evaluated on unseen data to simulate real-world performance



#### **Propotions:**

- Training Set: 64% of the dataset used to learn model weights.
- Validation Set: 16% of the dataset used for hyperparameter tuning and performance monitoring.
- Test Set: 20% of the dataset reserved for evaluating model accuracy on unseen data.



## Step 3: GRU-LSTM Module

- combines both GRU and LSTM layers in a way to take advantage of the 'best of both worlds
- GRU provides computational efficiency
- LSTM provides robust handling of long-term dependencies.
- Input layer, GRU, LSTM, and dense output layer
- Rectified Linear Unit (ReLU) activation function
- dense output layer (regression layer)
- MSE loss function



## Step 4: Training and Validation



#### Importance of Training and Validation

- Ensures the GRU-LSTM hybrid model effectively learns patterns in stock price data.
- Validates the model's ability to generalize to unseen data



#### **Propotions:**

- Training Set: 64% of the dataset used to learn model weights.
- Validation Set: 16% of the dataset used for hyperparameter tuning and performance monitoring.
- Test Set: 20% of the dataset reserved for evaluating model accuracy on unseen data.



## Step 4: Training and Validation



#### **Training Configuration**

- Optimizer: Adam optimizer dynamically adjusts the learning rate for efficient convergence.
- Batch Size: 64 samples per batch for computational efficiency.
- **Epochs:** Model trained over 20 epochs to balance learning and avoid overfitting.
- Loss Function: Mean Squared Error (MSE) minimizes the difference between predicted and actual stock prices.



## Step 5: Model Evaluation

- Validate the model's ability to predict stock prices accurately and robustly.
- Use the following error metrics to provide a comprehensive understanding of model performance:











## Research Findings



### Feature Analysis -Stochastic Indicators



- give information on the direction of the market
- over-bought values close to 100
- over-sold values close to zero
- intersections of the K and D lines are used as buy/sell signals
- K line is seen to crossover the D line upwards, this depicts a bullish situation
- Otherwise, it depicts a bearish situation.

## Feature Analysis - MACD & Signal line



- Identify momentum shifts in stock prices.
- Bullish Signal: MACD crosses above the signal line.
- Bearish Signal: MACD crosses below the signal line.
- Highlights key momentum shifts and trend reversals.

### Feature Analysis - EMA



- 50-day MA/EMA: Represents short-term trends in stock prices.
- 200-day MA/EMA: Reflects long-term price trends.
- Golden Cross: 50-day MA/EMA crosses above the 200-day MA/EMA
- Death Cross: 50-day MA/EMA crosses below the 200-day MA/EMA.

### Feature Analysis -RSI



- measures the speed and change of price movements.
- Values range from 0 to 100, indicating overbought or oversold conditions.
- RSI > 70: Overbought condition.
- Indicates a potential price decline.
- RSI < 30: Oversold condition.
- Indicates a potential price increase.

# Performance of Models



## Performance Metrics of the ARIMA Model







#### **Observations:**

- ARIMA struggles to capture sudden market spikes or drops.
- Noticeable lag in adjusting to new trends.
- Predictions are over-smoothed, lacking responsiveness to rapid market changes.



#### **Key Limitations:**

- ARIMA assumes market data is stationary, which is rarely the case in real-world volatile stock markets.
- Unable to adjust quickly to dynamic and non-linear price movements.

## Performance Metrics of the ARIMA Model

| Stock  | Metrics |       |       |  |  |
|--------|---------|-------|-------|--|--|
|        | MSE     | RMSE  | MAE   |  |  |
| 000679 | 2.055   | 1.434 | 1.059 |  |  |
| 600719 | 5.408   | 2.326 | 1.912 |  |  |

## Performance Metrics of the Standalone Models





GRU- 000679





GRU-600719

### Performance Comparison:

- GRU demonstrates superior performance for both stocks
- Lower RMSE
- Consistent predictions during volatile market conditions.
- LSTM shows advantages in percentage-based deviations
- Lower MAPE: Handles certain scenarios involving relative errors more effectively.

## Performance Results of GRU and LSTM Standalone Models

| Evaluation |       | Metrics |        |        |        |  |
|------------|-------|---------|--------|--------|--------|--|
| Stock      | Model | MSE     | RMSE   | MAE    | MAPE   |  |
| 600719     | GRU   | 0.0029  | 0.0542 | 0.0463 | 0.2835 |  |
|            | LSTM  | 0.0032  | 0.0566 | 0.0474 | 0.2221 |  |
| 000679     | GRU   | 0.0025  | 0.0505 | 0.0406 | 0.1164 |  |
|            | LSTM  | 0.0030  | 0.0545 | 0.0384 | 0.0842 |  |

## Performance of Hybrid GRU-LSTM Model



Fundamental & Technical - 600719



Technical Only - 600719



Fundamental & Technical -000679



**Technical Only -000679** 

## Performance Results of the Hybrid GRU-LSTM Models

| Evaluation |                         | Metrics |        |        |        |
|------------|-------------------------|---------|--------|--------|--------|
| Stock      | Data                    | MSE     | RMSE   | MAE    | MAPE   |
| 600719     | Fundamental & Technical | 0.0002  | 0.0141 | 0.0111 | 0.0569 |
|            | Technical Only          | 0.0036  | 0.0601 | 0.0540 | 0.2659 |
| 000679     | Fundamental & Technical | 0.0013  | 0.0360 | 0.0269 | 0.0587 |
|            | Technical Only          | 0.0022  | 0.0474 | 0.0348 | 0.0610 |

## Effect of GRU and LSTM Layer Configurations

- Trade-off Between Complexity and Accuracy:
  - Excessive layers → Overfitting.
  - Few layers → Less precise predictions.
  - Moderate layers → Best performance.
  - Layer configuration depends on the stock's characteristics.

- Different Optimal Configurations for Each Stock:
  - Stock 000679: 4 GRU, 6 LSTM.
  - Stock 600719: 2 GRU, 4 LSTM.

## Conclusion



### Conclusion

- Design a hybrid model for stock price prediction using LSTM, GRU and fundamental analysis.
- Outperformed conventional methods across multiple metrics
- Successfully tested on two stock datasets: 600719 & 000679
- Combined GRU's computational efficiency with LSTM's longterm dependency capture
- Enhanced robustness through fundamental indicator integration

### **Future Works**



#### Sentiment Analysis Integration

 Incorporate market sentiment from news articles, earnings reports, and social media



#### **Enhanced Model Testing**

 Test generalizability with larger, more diverse datasets



### Fundamental Data Expansion

 Include EPS, P/E ratio, D/E ratio, and P/B ratio using US market data



#### Real-time Framework

 Develop real-time prediction system for practical market applications

## Thank You For Your Attention

