

FIG. 1

FIG. 2

FIG. 4

FIG. 5

m166 heavy chain

1. m166 heavy chain (IgG2b) complete mRNA sequence:

(From the transcriptional start point to the polyA-tail)				
	**********	**********	*********	*********
CCATCCTCT		C CTCCATCAG	A GCATGGCTGT	CTTGGGGCTG
CTCTTCTGC	C TGGTGACAT	I CCCAAGCTG:	GTCCTATCCC	AGGTGCAGCT
GAAGCAGTC		TAGTGCAGC	CTCACAGAGC	CTGTCCATCA
CCTGCACAG:		TCATTAACT	GCTATGGTGT	ACACTGGGTT
CGTCAGTCT		TCTGGAGTG	CTGGGAGTGA	TATGGAGTGG
TGGAGACAC		·	ATCCAGACTG	AGCATCAGCA
AGGACAATT			AAATGAACAG	TCTGCGAGCT
ACTGACACAC			AATAGAGGG	ATATTTACTA
TGATTTCACT		ACTACTGGGG	TCAAGGAACC	TCAGTCACCG
TCTCCTCAGC		CCCCCATCAG	TCTATCCACT	GGCCCCTGGG
TGTGGAGATA		CTCCGTGACI	CTGGGATGCC	
CTACTTCCCI	`GAGTCAGTGA	CTGTGACTTG	GAACTCTGGA	TCCCTGTCCA
GCAGTGTGCA		GCTCTCCTGC	AGTCTGGACT	CTACACTATG
AGCAGCTCAG		CTCCAGCACC	TGGCCAAGTC	AGACCGTCAC
CTGCAGCGTT		CCAGCAGCAC	CACGGTGGAC	
AGCCCAGCGG		ACAATCAACC	CCTGTCCTCC	ATGCAAGGAG
TGTCACAAAT		TAACCTCGAG	GGTGGACCAT	CCGTCTTCAT
CTTCCCTCCA		ATGTACTCAT	GATCTCCCTG	ACACCCAAGG
TCACGTGTGT		GTGAGCGAGG	ATGACCCAGA	CGTCCAGATC
AGCTGGTTTG	TGAACAACGT	GGAAGTACAC	ACAGCTCAGA	CACAAACCCA
TAGAGAGGAT	TACAACAGTA	CTATCCGGGT	GGTCAGCACC	CTCCCCATCC
AGCACCAGGA	CTGGATGAGT	GGCAAGGAGT	TCAAATGCAA	GGTCAACAAC
AAAGACCTCC	CATCACCCAT	CGAGAGAACC	ATCTCAAAAA	TTAAAGGGCT
AGTCAGAGCT	CCACAAGTAT	ACATCTTGCC	GCCACCAGCA	GAGCAGTTGT
CCAGGAAAGA	TGTCAGTCTC	ACTTGCCTGG	TCGTGGGCTT	CAACCCTGGA
GACATCAGTG	TGGAGTGGAC	CAGCAATGGG	CATACAGAGG	AGAACTACAA
GGACACCGCA	CCAGTCCTGG	ACTCTGACGG	TTCTTACTTC	ATATATAGCA
AGCTCAATAT	GAAAACAAGC	AAGTGGGAGA	AAACAGATTC	CTTCTCATGC
AACGTGAGAC	ACGAGGGTCT	GAAAAATTAC		AGACCATCTC
CCGGTCTCCG	GGTAAATGAG	CTCAGCACCC		CAGGTCCTAA
GAGACACTGG	CACCCATATC	CATGCATCCC		AAAGCATCCA
GCAAAGCCTG	GTACCATGTA	AAAAAAAA		CA

FIG. 6A

2. m166 heavy chain (IgG2b) complete amino acid sequence:

(From the start coden to the stop codon)

MAVLGLLFCL VTFPSCVLSQ VQLKQSGPGL VOPSQSLSIT CTVSGFSLTS
YGVHWVRQSP GKGLEWLGVI WSGGDTDYNA AFISRLSISK DNSKSQLFFK
MNSLRATDTA IYYCARNRGD IYYDFTYAMD YWGOGTSVTV SSAKTIPPSV
YPLAFGCGDT TGSSVTLGCL VKGYFPESVT VTWNSGSLSS SVHTFPALLQ
SGLYTMSSSV TVFSSTWPSQ TVTCSVAHPA SSTTVDKKLE PSGPISTINP
CPPCKECHKC PAPNLEGGPS VFIFPPNIKD VLMISLTPKV TCVVVDVSED
DPDVQISWFV NNVEVHTAQT QTHREDYNSI IRVVSTLPIQ HQDWMSGKEFKCKVNNKDLP SPIERTISKI KGLVRAPQVY ILPPPAEQLS RKDVSLTCLV
VGFNPGDISV EWTSNGHTEE NYKDTAPVLD SDGSYFIYSK LNMKTSKWEK
TDSFSCNVRH EGLKNYYLKK TISRSPGK[STOP]

[Sig-pep] MAVLGLLFCLVTFPSCVLS

[VH-region]

FR1: QVQLKQSGPGLVQPSQSLSITCTVSGFSLT

CDR1: SYGVH

FR2: WVRQSPGKGLEWLG CDR2: VIWSGGDTDYNAAFIS

FR3: RLSISKDNSKSQLFFKMNSLRATDTAIYYCAR

CDR3: NRGDIYYDFTYAMDY FR4: WGQGTSVTVSS

[CH-region]

CH:

AKTTPPSVYP LAPGCGDTTG SSVTLGCLVK GYFPESVTVT WNSGSLSSSV HTFPALLQSG LYTMSSSVTV PSSTWPSQTV TCSVAHPASS TTVDKKLEPS GPISTINPCF PCKECHKCPA PNLEGGPSVF IFPPNIKDVL MISLTPKVTC VVVDVSEDDP DVQISWFVNN VEVHTAQTQT HREDYNSTIR VVSTLPIQHQ DWMSGKEFKC KVNNKDLPSP IERTISKIKG LVRAPQVYIL PPPAEQLSRK DVSLTCLVVG FNPGDISVEW TSNGHTEENY KDTAPVLDSD GSYFIYSKLN MKTSKWEKTD SFSCNVRHEG LKNYYLKKTI SRSPGK[STOP]

FIG. 6B

m166 light chain

1. m166 light chain (k) complete mRNA sequence:

(From the transcriptional start point to the polyA tail)

ACACCCTTTG_CTGGAGTCAG-AATCACACTG_ATCACACACA_GTCATGAGTG TGCTCACTCA GGTCCTGGCG TTGCTGCTGC TGTGGCTTAC AGGTGCCAGA TGTGACATCC AGATGACTCA GTCTCCAGCC TCCCTATCTG CATCTGTGGG AGAAACTGTC ACCATCACAT GTCGAGCAAG TGGGAATATT CAAAATTATT TAGCATGGTA_TCAGCAGACA-CAGGGAAAAT-CTCCTCAGCT_CCTGGTCTAT TCTGCAAAAA CCTTAGCAGA TGGTGTGCCA TCAAGGTTCA GTGGCAGTGG ATCAGGAACA CAATATTCTC TCAAGATCAA CAGCCTGCAG CCTGAAGATT TTGGGAGTTA TTACTGTCAA CATTTTTGGA GTACTCCGTA CACGTTCGGA GGGGGGACCA AGCTGGAAAT AAAACGGGCT GATGCTGCAC CAACTGTATC CATCITCCCA CCATCCAGTG AGCAGTTAAC ATCTGGAGGT GCCTCAGTCG TGTGCTTCTT GAACAACTTC TACCCCAAAG ACATCAATGT CAAGTGGAAG ATTGATGGCA GTGAACGACA AAATGGCGTC CTGAACAGTT GGACTGATCA GGACAGCAAA GACAGCACCT ACAGCATGAG CAGCACCCTC ACGTTGACCA AGGACGAGTA TGAACGACAT AACAGCTATA CCTGTGAGGC CACTCACAAG ACATCAACTT CACCCATTGT CAAGAGCTTC AACAGGAATG AGTGTTAGAG ACAAAGGTCC TGAGACGCCA CCACCAGCTC CCCAGCTCCA TCCTATCTTC CCTTCTAAGG TCTTGGAGGC TTCCCCACAA GCGACCTACC ACTGTTGCGG TGCTCCAAAC CTCCTCCCA CCTCCTTCTC CTCCTCCC CTTTCCTTGG CTTTTATCAT GCTAATATTT GCAGAAAATA TTCAATAAAG TGAGTCTTTG САЛАЛАЛАЛ АЛАЛАЛАЛА АЛАЛАЛАЛ

2. m166 light chain (k) amino acid complete sequence:

(From the start coden to the stop codon)

MSVLTQVLAL LLLWLTGARC DIQMTQSPAS LSASVGETVT ITCRASGNIQ
NYLAWYQQTQ GKSPQLLVYS AKTLADGVPS RFSGSGSGTQ YSLKINSLQP
EDFGSYYCQH FWSTPYTFGG GTKLEIKRAD AAPTVSIFPP SSEQLTSGGA
SVVCFLNNFY PKDINVKWKI DGSERQNGVL NSWTDQDSKD STYSMSSTLT
LTKDEYERHN SYTCEATHKT STSPIVKSFN RNEC[STOP]

[Sig-pep] MSVLTQVLALLLLWLTGARC

[VL-region]

FR1: DIQMTQSPASLSASVGETVTITC

CDR1: RASGNIQNYLA FR2: WYQQTQGKSPQLLVY

CDR2: SAKTLAD

FR3: GVPSRFSGSGSGTQYSLKINSLQPEDFGSYYC

CDR3: QHFWSTPYT FR4: FGGGTKLEIKR

[CL-region]

CL: ADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKIDGSERQNGVL NSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC(STOP)