13263 Determinant Fun

Let $M_N = (m_{ij})$ be an $N \times N$ matrix, with integer constants Q, K, A, B satisfying:

$$m_{ij} = A\cos((i+Qj)x) + B\sin((i+Qj)x)$$
, where $0 \le i, j < N$, with $x = K\frac{\pi}{N}$.

Given an integer interval [L, R], compute

$$\sum_{N=L}^{R} det(I+M_N)$$

where I is the identity matrix, and det is the determinant of a square matrix.

Input

A number of of inputs (≤ 1000), each line with integers Q, K, A, B, L, R. They satisfy, 0 < K, A, B, L, $R \leq 10^9$, $0 < L \leq R \leq 10^9$, $|Q| \leq 1$. Additionally, if Q = 0 and K is odd, then $R - L \leq 300$.

Output

For each input, output the answer on one line, rounded to 6 digits after the decimal.

Sample Input

-1 12 10 8 3 10 1 13 7 9 3 10 0 11 10 7 3 10

Sample Output

13607.000000 -12342.000000 57.083113