Resource reachability games on pushdown graphs

Martin Lang & Christof Löding

Lehrstuhl für Informatik 7 RWTH Aachen University

20. September 2013

Games with Resources

- Idea: Two-player games on graphs with non-negative integer counters
- Counters support:
 - (i) n no resource used / leave counter unchanged
 - (ii) i resource usage / increment
 - (iii) r refill resource / set the resource counter to zero

(like B-automata)

Games with Resources

- Idea: Two-player games on graphs with non-negative integer counters
- Counters support:
 - (i) n no resource used / leave counter unchanged
 - (ii) i resource usage / increment
 - (iii) r refill resource / set the resource counter to zero

(like B-automata)

We consider reachability condition:

Eve has a resource limit k to win the game.

Games with Resources

- Idea: Two-player games on graphs with non-negative integer counters
- Counters support:
 - (i) n no resource used / leave counter unchanged
 - (ii) i resource usage / increment
 - (iii) r refill resource / set the resource counter to zero

(like B-automata)

• We consider reachability condition:

Eve has a resource limit k to win the game.

How much memory is needed to win?

Memoryless does not suffice for a fixed bound.

How much memory is needed to win?

Memoryless does not suffice for a fixed bound.

• Yet: For a fixed k one can reduce the games to normal reachability games.

Bounded Winning Problem

Winning region of Eve when ignoring resources

 $W_0^i = \{v \in V \mid \text{Eve wins with resource-cost at most } i\}$

Problem

Is there a $k \in \mathbb{N}$ such that $W_0^k = W_0$?

Play on pushdown graphs

 We consider pushdown systems with such counters and play on their configuration graphs.

• Induced by a pushdown system $(\{p\} \uplus \{q\}, \Delta, \{c_0\})$ where Δ is

$$pa \xrightarrow{\mathbf{n}} q\varepsilon$$
 $qa \xrightarrow{\mathbf{i}} pb$ $pb \xrightarrow{\mathbf{n}} q\varepsilon$ $qa \xrightarrow{\mathbf{n}} pa$

Idea: Construct alternating B-automaton that recognizes configuration with the cost of winning.

Start with automaton for F

Idea: Construct alternating B-automaton that recognizes configuration with the cost of winning.

Saturate with $pa \xrightarrow{n} q\varepsilon$ (p is player 0 controlled)

Idea: Construct alternating B-automaton that recognizes configuration with the cost of winning.

Saturate with $pb \stackrel{\mathtt{n}}{\to} q\varepsilon$ (p is player 0 controlled)

Idea: Construct alternating B-automaton that recognizes configuration with the cost of winning.

Saturate with $qa \xrightarrow{i} pb$ and $qa \xrightarrow{n} pa$ (q is player 1 controlled)

Saturation Result

Solve Bounded Winning Problem

Theorem

For a resource pushdown system \mathcal{P} and a regular goal set F, one can effectively compute an alternating B-automaton \mathfrak{A} such that $[\![\mathfrak{A}]\!]((p,w)) \leq k \Leftrightarrow Eve$ wins the resource reachability game from (p,w) with resource-limit k.

Theorem (Colcombet, Löding, 2010)

The boundedness problem for alternating B-automata is decidable.

