

Els Teoremes Petit i Gran de Picard Treball Final del Grau de Matemàtiques

Mireia Gómez Diaz

12 de juliol de 2021

Tutor: Artur Nicolau Nos

Singularitat essencial

Exposició

Motivacio

Teorema Gran de Picard Teorema Petit de Picard Objectius

Teorema de Bloch Teorema de Schottky Teoremes de Montel

Def. (singularitat essencial)

Direm que z_0 és una singularitat essencial de f(z) si z_0 és una singularitat aïllada i z_0 no és ni un pol ni una singularitat evitable.

Motivació

Exposició Motivació

Teorema Gran de Picard Teorema Petit de Picard Objectius

Teorema de Bloch Teorema de Schottky Teoremes de Montel

Teorema (de Casoratti-Weierstrass)

Sigui f una funció holomorfa amb una singularitat essencial en z=a. Llavors, en cada entorn d'a, la imatge d'f(z) és densa en \mathbb{C} .

Teorema Gran de Picard

Exposició

Teorema Gran de Picard

Teorema Petit de Picard

Teorema de Bloch

Teorema de Schottky Teoremes de Montel

Teorema (Teorema Gran de Picard)

Sigui f una funció holomorfa amb una singularitat essencial en z = a. Llavors, en cada entorn d'a, f(z) pren tots els valors complexos possibles infinites vegades amb, com a màxim, l'excepció d'un punt.

Exemple

$$f(z)=e^{1/z}$$

Teorema Petit de Picard

Exposició

Motivació Teorema Gran de Picard

Teorema Petit de Picard

Teorema de Bloch Teorema de Schottky Teoremes de Montel

Obiectius

Teorema (Teorema Petit de Picard)

Sigui f una funció entera que omet dos valors, llavors f és constant.

Exemple

$$f(z) = e^z$$

Objectius

Exposició

Teorema Gran de Picard Teorema Petit de Picard

Objectius

Teorema de Bloch

Teorema de Schottky Teoremes de Montel

L'objectiu d'aquest treball ha estat entendre i demostrar els Teoremes Petit i Gran de Picard.

Per aconseguir-ho, hem fet servir eines com:

- El Teorema de Bloch.
- El Teorema de Schottky.
- Els Teoremes de Montel.

Teorema de Bloch

Exposició

Teorema Gran de Picard Teorema Petit de Picard

Teorema de Bloch

Teorema de Schottky Teoremes de Montel

Teorema (de Bloch)

Sigui f una funció analítica en un domini que conté el disc tancat D(0,1) i que satisfà f(0) = 0 i f'(0) = 1. Llavors existeix un disc $S \subset D(0,1)$ on f és injectiva i f(S) conté un disc de radi 1/72.

Nota: $1/72 = 0,013\hat{8}$.

Constant de Bloch

Exposició

Teorema Gran de Picard Teorema Petit de Picard

Teorema de Bloch

Teorema de Schottky Teoremes de Montel

Def. (constant de Bloch)

Considerem \mathcal{F} el conjunt de funcions analítiques en un domini que conté el disc tancat $\overline{D(0,1)}$ i que satisfan f(0)=0, f'(0)=1. Per cada $f\in\mathcal{F}$ considerem $\beta(f)$ el suprem de tots els nombres r per als quals hi ha un disc $S\subset D(0,1)$ en que f és injectiva i f(S) conté un disc de radi r. Definim la constant de Bloch com

$$B = \inf\{\beta(f) : f \in \mathcal{F}\}.$$

Nota: $0,43 \le B \le 0,48$.

Teorema de Schottky

Exposició

Teorema Gran de Picard Teorema Petit de Picard

Teorema de Bloch

Teorema de Schottky Teoremes de Montel

Teorema (de Schottky)

Per cada α i β , $0 < \alpha < \infty$ i $0 \le \beta \le 1$, existeix una constant $C(\alpha, \beta)$ tal que si f és una funció analítica en un domini que conté el disc tancat D(0,1) i que no pren els valors 0 ni 1 i $|f(0)| \le \alpha$, llavors $|f(z)| \le C(\alpha, \beta)$ per a tot $|z| < \beta$.

Normalitat i equicontinuïtat

Exposició

Motivació Teorema Gran de Picard Teorema Petit de Picard Objectius Teorema de Bloch

Teorema de Schottky
Teoremes de Montel

Def. (família normal)

Sigui $\mathcal F$ una família de funcions definida sobre un conjunt obert del pla complex. Direm que $\mathcal F$ és normal si tota successió de $\mathcal F$ té una subsuccessió que convergeix uniformement sobre els compactes de l'obert.

Def. (família equicontínua)

Sigui $\mathcal{F} \subset C(G,\Omega)$. Direm que \mathcal{F} és equicontínua en un punt z_0 si per a tot $\varepsilon > 0$ existeix $\delta > 0$ tal que si $|z-z_0| < \delta$ aleshores la distància entre f(z) i $f(z_0)$ és menor a ε per a tot $f \in \mathcal{F}$.

Teoremes de Montel

Exposició

Motivacio
Teorema Gran de Picard
Teorema Petit de Picard
Objectius
Teorema de Bloch

Teorema de Schottky
Teoremes de Montel

Teorema (de Montel)

Una família de funcions holomorfes definides en un conjunt obert del pla complex és normal si, i només si, està uniformement acotada en els compactes de l'obert.

Teorema (de Montel-Caratheodory)

Sigui $\mathcal F$ la família de funcions analítiques d'un domini Ω que no prenen els valors 0 ni 1. Llavors $\mathcal F$ és normal a $C(\Omega,\mathbb C_\infty)$.

Resultats que se'n deriven

Exposició

Motivació
Teorema Gran de Picard
Teorema Petit de Picard
Objectius

Teorema de Bloch Teorema de Schottky Teoremes de Montel

Corol·lari (I)

Si f té una singularitat aïllada a z=a i hi ha dos nombres complexos que f no pren infinitament sovint, llavors z=a és un pol o una singularitat evitable.

Corol·lari (II)

Si f és una funció entera no polinomial, llavors f pren tots els valors complexos un nombre infinit de vegades excepte, com a molt, un valor.

Exposició

Motivació

Teorema Gran de Picard

Teorema Petit de Picard

Objectius Teorema de Bloch

Teorema de Schottky

Teoremes de Montel

Moltes gràcies!