4 tâm nội tiếp đồng viên- Phép chứng minh của Jean-Louis Ayme

Nguyễn Văn Linh

Năm 2016

Tóm tắt nội dung

Trong bài viết này xin giới thiệu tới bạn đọc một bài toán của tác giả liên quan tới 4 tâm nội tiếp đồng viên và cách chứng minh thú vị của Jean-Louis Ayme với việc áp dụng liên tiếp định lý Reim. Bài toán được phát biểu như sau.

Bài toán. Cho tứ giác ABCD nội tiếp đường tròn (O). AC giao BD tại P. (APD) và (BPC) lần lượt giao CD tại E, F khác C, D. AE, BF lần lượt giao (O) tại E, E khác E, E0 các tam giác E1 khác E2. Khi đó 4 điểm E3, E4 cùng thuộc một đường tròn.

1 Tiểu sử tác giả Jean-Louis Ayme

Bản tiếng Anh sau được trích từ lời giải gốc bằng tiếng Pháp của tác giả.

Une courte biographie de Jean-Louis Ayme

Jean-Louis Ayme, Doctor-Professor of Mathematics, has done all is scolarity in Germany and in France.

After being a student of the Prytanée militaire in La Flèche where René Descartes had spent some time, and later at the military officers Ecole de l'Air of Salon-de-Provence, he joined the University of Science in Marseille before becoming a Professor of mathematics.

After teaching in France for a few years, he continued all his carrier abroad in the following countries: Tunisia, Afghanistan, Marocco, South Africa, Canada, and, finally, on Reunion Island situated in the Indian ocean.

His passion for Geometry allowed him to publish a book entitled Méthodes et Techniques en Géométrie ¹

And to create and direct until today the Website Geometry * Géométrie * Geometria 2.

2 Phép chứng minh của Jean-Louis Ayme

Trước tiên ta sẽ chứng minh rằng C, D, I_1, I_2 đồng viên.

Ta có $\angle PEF = \angle DAP = \angle CBP = \angle PFE$. Do đó PE = PF.

Gọi X là giao điểm khác D của (DI_1E) với $PD,\,Y$ là giao điểm khác C của (CI_2F) với PC.

Ta có
$$\angle DXE = \angle DI_1E = 90^\circ + \frac{1}{2}\angle DAE = 90^\circ + \frac{1}{2}\angle DPE$$
. Do đó $PX = PE$.

Chứng minh tương tự, $PY=P\tilde{F}$. Suy ra $PX=\tilde{PE}=PF=PY$ hay X,E,F,Y cùng nằm trên đường tròn tâm P.

Kéo dài EI_1, FI_2 cắt (APD), (BPC) lần lượt tại M, N.

Dễ thấy MN là phân giác $\angle APD$ nên M, P, N thẳng hàng.

Ta có $DXI_1E, DMPE$ là các tứ giác nội tiếp nên áp dụng định lý Reim, $XI_1 \parallel PM$. Chứng minh tương tự, $YI_2 \parallel PN$.

Gọi G, H lần lượt là giao điểm khác E, F của AE với $(DI_1E), BF$ với $(CI_2F). XG$ giao YH tại R.

Do hai tứ giác APED và DXEG nội tiếp nên áp dụng định lý Reim, $AP \parallel XG$. Tương tự $BP \parallel YH$. Lại có PX = PY nên PXRY là hình thoi.

Ta có PM là phân giác $\angle APD$, $XI_1 \parallel PM$ suy ra XI_1 là phân giác $\angle PXR$. Tương tự YI_2 là phân giác $\angle PYR$. Từ đó X, I_1, I_2, Y thẳng hàng.

Do hai tứ giác XEFY và DXI_1E nội tiếp nên áp dụng định lý Reim, $DI_1 \parallel FY$. Mà tứ giác FI_2YC nội tiếp nên lại áp dụng định lý Reim, tứ giác DI_1I_2C nội tiếp.

Tiếp theo ta sẽ chứng minh C, D, I_3, I_4 đồng viên.

Gọi P' là giao của DL và CK.

Ta có $\angle PCD = \angle PBF = \angle DCP'$, $\angle PDC = \angle PAE = \angle P'DC$. Suy ra P và P' đối xứng nhau

Goi X', Y' lần lươt là đối xứng của X, Y qua DC. Suy ra E, F, X', Y' cùng thuộc đường tròn (P') đối xứng với (P) qua DC.

Ta có $\angle EP'C = \angle EPC = \angle ADC = \angle ELC$. Suy ra $\angle EI_4C = 90^\circ + \frac{1}{2}\angle ELC = 90^\circ + \frac{1}{2}\angle EP'C = \angle EY'C$. Suy ra E, I_4, Y', C đồng viên.

Chứng minh tương tự, D, X', I_3, F đồng viên. Do đó $\angle I_3 X' P' = \angle DFI_3 = \frac{1}{2} \angle BFC = 90^\circ - \frac{1}{2} \angle DPC = 90^\circ - \frac{1}{2} \angle DP'C = \angle Y' X' P'$. Suy ra $I_3 \in X' Y'$. Tương tự, $I_4 \in X' Y'$.

Áp dụng định lý Reim cho 2 tứ giác nội tiếp EFY'X' và DFI_3X' ta có $DI_3 \parallel EY'$. Lại có tứ giác $EI_4Y'C$ nội tiếp nên lại áp dụng định lý Reim, DI_4I_3C nội tiếp.

Do phép đối xứng qua trục CD, XY, X'Y', CD đồng quy tại S. Từ hai kết quả trên ta thu được $SI_3 \cdot SI_4 = SD \cdot SC = SI_1 \cdot SI_2.$

Vậy I_1, I_2, I_3, I_4 đồng viên.

Phép chứng minh của tác giả bài toán 3

Trước tiên xin được đổi lại kí hiệu các đường tròn I_1, I_2, I_3, I_4 thành I_1, I_1, I_2, I_2 như hình vẽ.

Gọi T là giao của AD và BC. I là tâm đường tròn nội tiếp tam giác TCD, (X) và (Y) lần lượt là đường tròn ngoại tiếp các tam giác APD và BPC. Ta có X và Y lần lượt là điểm chính giữa cung AD và BC của (APD) và (BPC) nên XY là phân giác $\angle APD$.

 Để thấy TI song song với phân giác $\angle DPC$ nên $TI \perp XY$. Mà $TA \cdot TD = TB \cdot TC$ nên T nằm trên trục đẳng phương của (X) và (Y). Suy ra TI là trục đẳng phương của (X) và (Y).

Do đó $ID \cdot II_1 = IC \cdot IJ_1$ hay tứ giác DI_1J_1C nội tiếp.

Ta thu được $\angle EI_1J_1 = \angle DI_1J_1 - \angle DI_1E = 180^\circ - \frac{1}{2}\angle BCD - (90^\circ + \frac{1}{2}\angle DAE) = \frac{1}{2}\angle DAB - \frac{1}{2}\angle DAB$ $\frac{1}{2}\angle DAE = \angle EAP = \angle EXP$. Do đó $I_1J_1 \parallel XY$.

Gọi M,N lần lượt là điểm đối xứng với I_1 qua X,J_1 qua Y suy ra $MN\parallel XY\parallel I_1J_1.$

Suy ra $\angle MNC = \angle MNJ_1 + \angle J_1NC = \angle I_1J_1F + \angle J_1BC = \angle I_1J_1F + \angle FJ_1C - 90^\circ = \angle I_1J_1F + \angle FJ_1C - 90^\circ = \angle I_1J_1F + \angle I_1BC = \angle I_1BC$ $\angle I_1 J_1 C - 90^\circ = 270^\circ - \angle I_1 DC = 180^\circ - (90^\circ + \angle I_1 DC) = 180^\circ - \angle MDC$. Do đó tứ giác MNCDnội tiếp.

Ta có $\angle MI_2C=90^\circ+\frac{1}{2}\angle EKC=90^\circ+\frac{1}{2}\angle ADC=\angle MDC$ nên $I_2\in(MNCD)$, tương tự với

Suy ra tứ giác MNJ_2I_2 nội tiếp. Mà $I_1J_1\parallel MN$ nên theo định lý Reim, tứ giác $I_1J_1J_2I_2$ nội tiếp.

Tài liệu

- [1] AoPS topic 4 incenters are concyclic. http://www.artofproblemsolving.com/community/c6t48f6h1280308
- [2] AoPS topic Incircle problem. http://www.artofproblemsolving.com/community/c6h1208052p5974754

Email: Nguyenvanlinhkhtn@gmail.com