# **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sun Aug 13 21:48:57 2017

Program finished at Sun Aug 13 23:19:42 2017 [Runtime:0000:01:30:45]



### **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3373159966

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 \*

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

**Exponential Distribution** -Population size estimation:

Proposal distributions for parameter

Parameter Proposal Theta Metropolis sampling M Metropolis sampling Divergence Metropolis sampling Divergence Spread Metropolis sampling Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Delta Prior Minimum Mean Maximum Bins UpdateFreq Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 50000 Recorded steps [a] 200 Increment (record every x step [b] Number of concurrent chains (replicates) [c]

20000000 Visited (sampled) parameter values [a\*b\*c] 10000 Number of discard trees per chain (burn-in)

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

> 1000000.00 3.00 1.50 1.00

> > Swapping interval is 1

Print options:

Data file: infile.1.0 NO

Haplotyping is turned on:

Output file: outfile\_1.0\_0.7 Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_1.0\_0.7

Print data: No

Print genealogies [only some for some data type]: None

# Data summary

Data file: infile.1.0
Datatype: Sequence data
Number of loci: 100

Mutationmodel:

| Mutation | model:  |               |                          |  |
|----------|---------|---------------|--------------------------|--|
| Locus S  | ublocus | Mutationmodel | Mutationmodel parameters |  |
|          |         |               |                          |  |
| 1        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 25       | - 1    | lukas Contor                 | [Deserted: 0.25]                       |
|----------|--------|------------------------------|----------------------------------------|
| 35<br>36 | 1<br>1 | Jukes-Cantor<br>Jukes-Cantor | [Basefreq: =0.25]                      |
| 37       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 38       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 39       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 40       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 41       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 42       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 43       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 44       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 45       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 46       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 47       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 48       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 49       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 50       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 51       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 52       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 53       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 54       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 55       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 56       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 57       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 58       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 59       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 60       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 61       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 62       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 63       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 64       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 65       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 66       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 67       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 68       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 69       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 70       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 71       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 72       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 73       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 74       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 75       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 76       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 77       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 78       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
| 79       | 1      | Jukes-Cantor                 | [Basefreq: =0.25]                      |
|          |        |                              |                                        |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| - 0.4 | 40000 |  |
|-------|-------|--|
| 21    | 10000 |  |
| 22    | 10000 |  |
| 23    | 10000 |  |
| 24    | 10000 |  |
| 25    | 10000 |  |
| 26    | 10000 |  |
| 27    | 10000 |  |
| 28    | 10000 |  |
| 29    | 10000 |  |
| 30    | 10000 |  |
| 31    | 10000 |  |
| 32    | 10000 |  |
| 33    | 10000 |  |
| 34    | 10000 |  |
| 35    | 10000 |  |
| 36    | 10000 |  |
| 37    | 10000 |  |
| 38    | 10000 |  |
| 39    | 10000 |  |
| 40    | 10000 |  |
| 41    | 10000 |  |
| 42    | 10000 |  |
| 43    | 10000 |  |
| 44    | 10000 |  |
| 45    | 10000 |  |
| 46    | 10000 |  |
| 47    | 10000 |  |
| 48    | 10000 |  |
| 49    | 10000 |  |
| 50    | 10000 |  |
| 51    | 10000 |  |
| 52    | 10000 |  |
| 53    | 10000 |  |
| 54    | 10000 |  |
| 55    | 10000 |  |
| 56    | 10000 |  |
| 57    | 10000 |  |
| 58    | 10000 |  |
| 59    | 10000 |  |
| 60    | 10000 |  |
| 61    | 10000 |  |
| 62    | 10000 |  |
| 63    | 10000 |  |
| 64    | 10000 |  |
| 65    | 10000 |  |
|       |       |  |

| 66        | 10000                  |                |             |            |  |
|-----------|------------------------|----------------|-------------|------------|--|
| 67        | 10000                  |                |             |            |  |
| 68        | 10000                  |                |             |            |  |
| 69        | 10000                  |                |             |            |  |
| 70        | 10000                  |                |             |            |  |
| 71        | 10000                  |                |             |            |  |
| 72        | 10000                  |                |             |            |  |
| 73        | 10000                  |                |             |            |  |
| 74        | 10000                  |                |             |            |  |
| 75        | 10000                  |                |             |            |  |
| 76        | 10000                  |                |             |            |  |
| 77        | 10000                  |                |             |            |  |
| 78        | 10000                  |                |             |            |  |
| 79        | 10000                  |                |             |            |  |
| 80        | 10000                  |                |             |            |  |
| 81        | 10000                  |                |             |            |  |
| 82        | 10000                  |                |             |            |  |
| 83        | 10000                  |                |             |            |  |
| 84        | 10000                  |                |             |            |  |
| 85        | 10000                  |                |             |            |  |
| 86        | 10000                  |                |             |            |  |
| 87        | 10000                  |                |             |            |  |
| 88        | 10000                  |                |             |            |  |
| 89        | 10000                  |                |             |            |  |
| 90        | 10000                  |                |             |            |  |
| 91        | 10000                  |                |             |            |  |
| 92        | 10000                  |                |             |            |  |
| 93        | 10000                  |                |             |            |  |
| 94        | 10000                  |                |             |            |  |
| 95        | 10000                  |                |             |            |  |
| 96        | 10000                  |                |             |            |  |
| 97        | 10000                  |                |             |            |  |
| 98        | 10000                  |                |             |            |  |
| 99        | 10000                  |                |             |            |  |
| 100       | 10000                  |                |             |            |  |
|           |                        |                |             |            |  |
| Site rate | e variation and probat | oilities:      |             |            |  |
| Locus S   | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6         | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|           |                        |                |             |            |  |

| 7<br>8<br>9 | 1<br>1 | 1 | 1.000 | 1.000 | 1.000 |  |
|-------------|--------|---|-------|-------|-------|--|
|             | •      | 1 | 1.000 | 1.000 | 1.000 |  |
|             | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 10          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 11          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 12          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 13          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 14          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 15          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 16          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 17          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 18          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 19          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 20          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 21          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 22          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 23          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 24          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 25          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 26          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 27          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 28          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 29          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 30          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 31          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 32          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 33          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 34          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 35          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 36          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 37          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 38          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 39          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 40          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 41          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 42          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 43          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 44          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 45          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 46          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 47          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 48          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 49          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 50          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |
| 51          | 1      | 1 | 1.000 | 1.000 | 1.000 |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1         | 1 | 1.000 | 1.000 | 1.000          |             |
|------------|-----------|---|-------|-------|----------------|-------------|
| 98         | 1         | 1 | 1.000 | 1.000 | 1.000          |             |
| 99         | 1         | 1 | 1.000 | 1.000 | 1.000          |             |
| 100        | 1         | 1 | 1.000 | 1.000 | 1.000          |             |
| Population |           | ı | 1.000 | 1.000 | Locus          | Gene copies |
| 1 Romans   |           |   |       |       | 1              | 10          |
| 1 Roman    | 5110111_0 |   |       |       | 2              | 10          |
|            |           |   |       |       | 3              | 10          |
|            |           |   |       |       | 4              | 10          |
|            |           |   |       |       | 5              | 10          |
|            |           |   |       |       | 6              | 10          |
|            |           |   |       |       | 7              | 10          |
|            |           |   |       |       | 8              | 10          |
|            |           |   |       |       | 9              | 10          |
|            |           |   |       |       | 10             | 10          |
|            |           |   |       |       | 11             | 10          |
|            |           |   |       |       | 12             | 10          |
|            |           |   |       |       | 13             | 10          |
|            |           |   |       |       | 14             | 10          |
|            |           |   |       |       | 15             | 10          |
|            |           |   |       |       | 16             | 10          |
|            |           |   |       |       | 17             | 10          |
|            |           |   |       |       | 18             | 10          |
|            |           |   |       |       | 19             | 10          |
|            |           |   |       |       | 20             | 10          |
|            |           |   |       |       | 21             | 10          |
|            |           |   |       |       | 22             | 10          |
|            |           |   |       |       | 23             | 10          |
|            |           |   |       |       | 24             | 10          |
|            |           |   |       |       | 25             | 10          |
|            |           |   |       |       | 26             | 10          |
|            |           |   |       |       | 27             | 10          |
|            |           |   |       |       | 28             | 10          |
|            |           |   |       |       | 29             | 10          |
|            |           |   |       |       | 30             | 10          |
|            |           |   |       |       | 31             | 10          |
|            |           |   |       |       | 32             | 10          |
|            |           |   |       |       | 33             | 10          |
|            |           |   |       |       | 34             | 10          |
|            |           |   |       |       | 35             | 10          |
|            |           |   |       |       | 36             | 10          |
|            |           |   |       |       | 3 <del>0</del> | 10          |
|            |           |   |       |       | 38             | 10          |
|            |           |   |       |       | 39             | 10          |
|            |           |   |       |       | 40             | 10          |
|            |           |   |       |       | <b>→</b>       | 10          |

| 41 | 10 |
|----|----|
| 42 | 10 |
| 43 | 10 |
| 44 |    |
| 45 |    |
| 46 |    |
| 47 |    |
| 48 |    |
| 49 |    |
| 50 |    |
| 51 |    |
| 52 |    |
| 53 |    |
| 54 |    |
| 55 |    |
| 56 |    |
| 57 |    |
| 58 |    |
| 59 |    |
| 60 |    |
| 61 |    |
|    |    |
| 62 |    |
| 63 |    |
| 64 |    |
| 65 |    |
| 66 |    |
| 67 |    |
| 68 |    |
| 69 |    |
| 70 |    |
| 71 |    |
| 72 |    |
| 73 |    |
| 74 |    |
| 75 |    |
| 76 |    |
| 77 |    |
| 78 |    |
| 79 |    |
| 80 |    |
| 81 |    |
| 82 |    |
| 83 |    |
| 84 |    |
| 85 | 10 |
|    |    |

|                          | 86  | 10 |  |
|--------------------------|-----|----|--|
|                          | 87  | 10 |  |
|                          | 88  | 10 |  |
|                          | 89  | 10 |  |
|                          | 90  | 10 |  |
|                          | 91  | 10 |  |
|                          | 92  | 10 |  |
|                          | 93  | 10 |  |
|                          | 94  | 10 |  |
|                          | 95  | 10 |  |
|                          | 96  | 10 |  |
|                          | 97  | 10 |  |
|                          | 98  | 10 |  |
|                          | 99  | 10 |  |
|                          | 100 | 10 |  |
| Total of all populations | 1   | 10 |  |
|                          | 2   | 10 |  |
|                          | 3   |    |  |
|                          |     | 10 |  |
|                          | 4   | 10 |  |
|                          | 5   | 10 |  |
|                          | 6   | 10 |  |
|                          | 7   | 10 |  |
|                          | 8   | 10 |  |
|                          | 9   | 10 |  |
|                          | 10  | 10 |  |
|                          | 11  | 10 |  |
|                          | 12  | 10 |  |
|                          | 13  | 10 |  |
|                          | 14  | 10 |  |
|                          | 15  | 10 |  |
|                          | 16  | 10 |  |
|                          | 17  | 10 |  |
|                          | 18  | 10 |  |
|                          | 19  | 10 |  |
|                          | 20  | 10 |  |
|                          | 21  | 10 |  |
|                          | 22  | 10 |  |
|                          | 23  | 10 |  |
|                          | 24  | 10 |  |
|                          | 25  | 10 |  |
|                          | 26  | 10 |  |
|                          | 27  | 10 |  |
|                          | 28  | 10 |  |
|                          | 29  | 10 |  |
|                          | 23  | 10 |  |
|                          | 30  | 10 |  |

|    | 10 |
|----|----|
| 31 | 10 |
| 32 | 10 |
| 33 | 10 |
| 34 | 10 |
| 35 | 10 |
| 36 | 10 |
| 37 | 10 |
| 38 | 10 |
| 39 | 10 |
| 40 | 10 |
| 41 | 10 |
| 42 | 10 |
| 43 | 10 |
| 44 | 10 |
| 45 | 10 |
| 46 | 10 |
| 47 | 10 |
| 48 | 10 |
| 49 | 10 |
| 50 | 10 |
| 51 | 10 |
| 52 | 10 |
|    |    |
| 53 | 10 |
| 54 | 10 |
| 55 | 10 |
| 56 | 10 |
| 57 | 10 |
| 58 | 10 |
| 59 | 10 |
| 60 | 10 |
| 61 | 10 |
| 62 | 10 |
| 63 | 10 |
| 64 | 10 |
| 65 | 10 |
| 66 | 10 |
| 67 | 10 |
| 68 | 10 |
| 69 | 10 |
| 70 | 10 |
| 71 | 10 |
| 72 | 10 |
| 73 | 10 |
| 74 | 10 |
| 75 | 10 |
|    |    |

| 76  | 10       |
|-----|----------|
| 77  | 10       |
| 78  | 10       |
| 79  | 10       |
| 80  | 10       |
| 81  | 10       |
| 82  | 10       |
| 83  | 10       |
| 84  | 10       |
| 85  | 10       |
| 86  | 10       |
| 87  | 10       |
| 88  | 10       |
| 89  | 10       |
| 90  | 10       |
| 91  | 10       |
| 92  |          |
| 93  | 10<br>10 |
|     |          |
| 94  | 10       |
| 95  | 10       |
| 96  | 10       |
| 97  | 10       |
| 98  | 10       |
| 99  | 10       |
| 100 | 10       |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |
|     |          |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.02793 | 0.04180 | 0.04763 | 0.04940 | 0.05140 | 0.04277 | 0.06943 |
| 2     | $\Theta_1$ | 0.02720 | 0.04207 | 0.04763 | 0.04907 | 0.05133 | 0.04223 | 0.06624 |
| 3     | $\Theta_1$ | 0.03180 | 0.04353 | 0.04790 | 0.04980 | 0.05153 | 0.04470 | 0.07797 |
| 4     | $\Theta_1$ | 0.03080 | 0.04393 | 0.04777 | 0.04933 | 0.05147 | 0.04417 | 0.07422 |
| 5     | $\Theta_1$ | 0.02927 | 0.04233 | 0.04777 | 0.04953 | 0.05153 | 0.04370 | 0.07503 |
| 6     | $\Theta_1$ | 0.02467 | 0.03913 | 0.04750 | 0.04900 | 0.05107 | 0.04050 | 0.06210 |
| 7     | $\Theta_1$ | 0.03073 | 0.04287 | 0.04777 | 0.04960 | 0.05147 | 0.04417 | 0.07574 |
| 8     | $\Theta_1$ | 0.02967 | 0.04133 | 0.04763 | 0.04967 | 0.05147 | 0.04357 | 0.07217 |
| 9     | $\Theta_1$ | 0.02047 | 0.03527 | 0.04237 | 0.04693 | 0.05060 | 0.03703 | 0.05127 |
| 10    | $\Theta_1$ | 0.02527 | 0.04053 | 0.04763 | 0.04907 | 0.05113 | 0.04103 | 0.06265 |
| 11    | $\Theta_1$ | 0.02933 | 0.04247 | 0.04777 | 0.04967 | 0.05153 | 0.04377 | 0.07568 |
| 12    | $\Theta_1$ | 0.03047 | 0.04300 | 0.04763 | 0.04953 | 0.05147 | 0.04423 | 0.07831 |
| 13    | $\Theta_1$ | 0.02553 | 0.04127 | 0.04763 | 0.04907 | 0.05120 | 0.04143 | 0.06527 |
| 14    | $\Theta_1$ | 0.02753 | 0.03587 | 0.04757 | 0.05020 | 0.05120 | 0.04243 | 0.06788 |
| 15    | $\Theta_1$ | 0.03240 | 0.04473 | 0.04790 | 0.04940 | 0.05160 | 0.04497 | 0.08025 |
| 16    | $\Theta_1$ | 0.02953 | 0.04247 | 0.04770 | 0.04953 | 0.05140 | 0.04377 | 0.07413 |
| 17    | $\Theta_1$ | 0.02707 | 0.03847 | 0.04757 | 0.04967 | 0.05127 | 0.04203 | 0.06535 |
| 18    | $\Theta_1$ | 0.02867 | 0.04220 | 0.04770 | 0.04960 | 0.05147 | 0.04350 | 0.07426 |

| 19 | $\Theta_1$ | 0.02393 | 0.03987 | 0.04750 | 0.04860 | 0.05100 | 0.04003 | 0.05919 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.03067 | 0.04400 | 0.04783 | 0.04953 | 0.05160 | 0.04423 | 0.07792 |
| 21 | $\Theta_1$ | 0.02813 | 0.04153 | 0.04763 | 0.04947 | 0.05140 | 0.04283 | 0.07084 |
| 22 | $\Theta_1$ | 0.01967 | 0.03460 | 0.04030 | 0.04607 | 0.05053 | 0.03657 | 0.05033 |
| 23 | $\Theta_1$ | 0.03040 | 0.04367 | 0.04777 | 0.04933 | 0.05153 | 0.04397 | 0.07449 |
| 24 | $\Theta_1$ | 0.02607 | 0.04073 | 0.04757 | 0.04933 | 0.05127 | 0.04217 | 0.06767 |
| 25 | $\Theta_1$ | 0.03073 | 0.04293 | 0.04777 | 0.04967 | 0.05153 | 0.04417 | 0.07475 |
| 26 | $\Theta_1$ | 0.02720 | 0.04080 | 0.04757 | 0.04927 | 0.05127 | 0.04223 | 0.06606 |
| 27 | $\Theta_1$ | 0.02207 | 0.03760 | 0.04750 | 0.04880 | 0.05100 | 0.03923 | 0.05898 |
| 28 | $\Theta_1$ | 0.03267 | 0.04367 | 0.04783 | 0.04973 | 0.05153 | 0.04483 | 0.07845 |
| 29 | $\Theta_1$ | 0.02947 | 0.04333 | 0.04763 | 0.04933 | 0.05140 | 0.04350 | 0.07305 |
| 30 | $\Theta_1$ | 0.02100 | 0.03760 | 0.04583 | 0.04807 | 0.05073 | 0.03783 | 0.05288 |
| 31 | $\Theta_1$ | 0.02900 | 0.04187 | 0.04770 | 0.04947 | 0.05140 | 0.04323 | 0.07073 |
| 32 | $\Theta_1$ | 0.02993 | 0.03993 | 0.04777 | 0.05027 | 0.05153 | 0.04390 | 0.07518 |
| 33 | $\Theta_1$ | 0.03093 | 0.04300 | 0.04783 | 0.04973 | 0.05147 | 0.04423 | 0.07570 |
| 34 | $\Theta_1$ | 0.03353 | 0.04420 | 0.04777 | 0.04973 | 0.05153 | 0.04537 | 0.08160 |
| 35 | $\Theta_1$ | 0.02433 | 0.04047 | 0.04750 | 0.04893 | 0.05120 | 0.04070 | 0.06321 |
| 36 | $\Theta_1$ | 0.02927 | 0.04220 | 0.04770 | 0.04960 | 0.05147 | 0.04343 | 0.07334 |
| 37 | $\Theta_1$ | 0.02993 | 0.04260 | 0.04770 | 0.04960 | 0.05153 | 0.04390 | 0.07598 |
| 38 | $\Theta_1$ | 0.03140 | 0.04360 | 0.04783 | 0.04980 | 0.05160 | 0.04477 | 0.07969 |
| 39 | $\Theta_1$ | 0.02960 | 0.04253 | 0.04777 | 0.04967 | 0.05147 | 0.04377 | 0.07524 |
| 40 | $\Theta_1$ | 0.02740 | 0.04067 | 0.04757 | 0.04927 | 0.05127 | 0.04210 | 0.06693 |
| 41 | $\Theta_1$ | 0.02420 | 0.03940 | 0.04757 | 0.04920 | 0.05120 | 0.04090 | 0.06490 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.03273 | 0.04380 | 0.04797 | 0.04980 | 0.05160 | 0.04497 | 0.07945 |
| 43    | $\Theta_1$ | 0.02473 | 0.03927 | 0.04757 | 0.04913 | 0.05113 | 0.04070 | 0.06216 |
| 44    | $\Theta_1$ | 0.03160 | 0.04333 | 0.04783 | 0.04967 | 0.05147 | 0.04457 | 0.07716 |
| 45    | $\Theta_1$ | 0.02880 | 0.04273 | 0.04770 | 0.04927 | 0.05140 | 0.04310 | 0.07139 |
| 46    | $\Theta_1$ | 0.02433 | 0.03940 | 0.04757 | 0.04913 | 0.05120 | 0.04083 | 0.06390 |
| 47    | $\Theta_1$ | 0.02793 | 0.04240 | 0.04763 | 0.04927 | 0.05140 | 0.04270 | 0.06906 |
| 48    | $\Theta_1$ | 0.03167 | 0.04407 | 0.04777 | 0.04933 | 0.05153 | 0.04437 | 0.07720 |
| 49    | $\Theta_1$ | 0.01833 | 0.02987 | 0.03630 | 0.04547 | 0.05033 | 0.03523 | 0.04721 |
| 50    | $\Theta_1$ | 0.02847 | 0.04187 | 0.04770 | 0.04960 | 0.05140 | 0.04317 | 0.07191 |
| 51    | $\Theta_1$ | 0.02747 | 0.04127 | 0.04770 | 0.04953 | 0.05133 | 0.04250 | 0.06876 |
| 52    | $\Theta_1$ | 0.03287 | 0.04407 | 0.04783 | 0.04980 | 0.05153 | 0.04523 | 0.07942 |
| 53    | $\Theta_1$ | 0.02887 | 0.04227 | 0.04770 | 0.04960 | 0.05147 | 0.04350 | 0.07240 |
| 54    | $\Theta_1$ | 0.02440 | 0.04033 | 0.04757 | 0.04913 | 0.05120 | 0.04077 | 0.06379 |
| 55    | $\Theta_1$ | 0.02947 | 0.04147 | 0.04763 | 0.04967 | 0.05133 | 0.04343 | 0.07160 |
| 56    | $\Theta_1$ | 0.03040 | 0.04293 | 0.04777 | 0.04967 | 0.05153 | 0.04417 | 0.07626 |
| 57    | $\Theta_1$ | 0.02260 | 0.03820 | 0.04750 | 0.04900 | 0.05107 | 0.03977 | 0.05974 |
| 58    | $\Theta_1$ | 0.02340 | 0.03967 | 0.04757 | 0.04873 | 0.05107 | 0.03983 | 0.05962 |
| 59    | $\Theta_1$ | 0.02167 | 0.03053 | 0.04750 | 0.04967 | 0.05087 | 0.03877 | 0.05814 |
| 60    | $\Theta_1$ | 0.03113 | 0.04340 | 0.04790 | 0.04980 | 0.05160 | 0.04457 | 0.07919 |
| 61    | $\Theta_1$ | 0.03053 | 0.03820 | 0.04777 | 0.05060 | 0.05153 | 0.04423 | 0.07600 |

| 62 | $\Theta_1$ | 0.03067 | 0.04307 | 0.04783 | 0.04973 | 0.05153 | 0.04423 | 0.07685 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.01907 | 0.03033 | 0.03617 | 0.04487 | 0.05027 | 0.03543 | 0.04711 |
| 64 | $\Theta_1$ | 0.02973 | 0.04240 | 0.04777 | 0.04960 | 0.05147 | 0.04363 | 0.07400 |
| 65 | $\Theta_1$ | 0.03387 | 0.04467 | 0.04803 | 0.05000 | 0.05167 | 0.04570 | 0.08353 |
| 66 | $\Theta_1$ | 0.03107 | 0.04313 | 0.04777 | 0.04967 | 0.05153 | 0.04437 | 0.07763 |
| 67 | $\Theta_1$ | 0.02873 | 0.04227 | 0.04770 | 0.04967 | 0.05147 | 0.04350 | 0.07318 |
| 68 | $\Theta_1$ | 0.02953 | 0.04247 | 0.04777 | 0.04967 | 0.05147 | 0.04370 | 0.07295 |
| 69 | $\Theta_1$ | 0.02940 | 0.04267 | 0.04777 | 0.04960 | 0.05147 | 0.04390 | 0.07650 |
| 70 | $\Theta_1$ | 0.03367 | 0.04440 | 0.04790 | 0.04980 | 0.05160 | 0.04550 | 0.08301 |
| 71 | $\Theta_1$ | 0.02960 | 0.04227 | 0.04770 | 0.04953 | 0.05153 | 0.04363 | 0.07199 |
| 72 | $\Theta_1$ | 0.03107 | 0.04307 | 0.04777 | 0.04960 | 0.05153 | 0.04437 | 0.07692 |
| 73 | $\Theta_1$ | 0.02287 | 0.03893 | 0.04750 | 0.04887 | 0.05107 | 0.03963 | 0.06039 |
| 74 | $\Theta_1$ | 0.03060 | 0.04387 | 0.04790 | 0.04967 | 0.05153 | 0.04430 | 0.07844 |
| 75 | $\Theta_1$ | 0.03133 | 0.04307 | 0.04783 | 0.04967 | 0.05153 | 0.04430 | 0.07484 |
| 76 | $\Theta_1$ | 0.02447 | 0.04073 | 0.04757 | 0.04900 | 0.05113 | 0.04090 | 0.06486 |
| 77 | $\Theta_1$ | 0.02933 | 0.04247 | 0.04777 | 0.04967 | 0.05153 | 0.04370 | 0.07513 |
| 78 | $\Theta_1$ | 0.02660 | 0.04060 | 0.04757 | 0.04940 | 0.05127 | 0.04197 | 0.06526 |
| 79 | $\Theta_1$ | 0.02567 | 0.04113 | 0.04757 | 0.04913 | 0.05127 | 0.04163 | 0.06648 |
| 80 | $\Theta_1$ | 0.02653 | 0.04093 | 0.04770 | 0.04947 | 0.05133 | 0.04223 | 0.07058 |
| 81 | $\Theta_1$ | 0.03200 | 0.04353 | 0.04783 | 0.04967 | 0.05153 | 0.04477 | 0.07911 |
| 82 | $\Theta_1$ | 0.02747 | 0.04100 | 0.04763 | 0.04933 | 0.05133 | 0.04237 | 0.07034 |
| 83 | $\Theta_1$ | 0.03107 | 0.03260 | 0.04770 | 0.05127 | 0.05147 | 0.04423 | 0.07655 |
| 84 | $\Theta_1$ | 0.03207 | 0.04340 | 0.04783 | 0.04973 | 0.05153 | 0.04463 | 0.07707 |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     |       |            |         |         |         |         |         |         |         |
|------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 85    | $\Theta_1$ | 0.03080 | 0.04393 | 0.04777 | 0.04933 | 0.05147 | 0.04410 | 0.07476 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 86    | $\Theta_1$ | 0.02487 | 0.04067 | 0.04757 | 0.04913 | 0.05127 | 0.04143 | 0.06793 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 87    | $\Theta_1$ | 0.02713 | 0.04133 | 0.04763 | 0.04947 | 0.05140 | 0.04263 | 0.07238 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 88    | $\Theta_1$ | 0.03173 | 0.04340 | 0.04783 | 0.04973 | 0.05160 | 0.04463 | 0.07719 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 89    | $\Theta_1$ | 0.02487 | 0.04033 | 0.04757 | 0.04880 | 0.05113 | 0.04057 | 0.06052 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 90    | $\Theta_1$ | 0.02313 | 0.03800 | 0.04750 | 0.04873 | 0.05093 | 0.03943 | 0.05681 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 91    | $\Theta_1$ | 0.03113 | 0.04373 | 0.04770 | 0.04933 | 0.05140 | 0.04403 | 0.07485 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 92    | $\Theta_1$ | 0.02867 | 0.04200 | 0.04777 | 0.04953 | 0.05147 | 0.04330 | 0.07269 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 93    | $\Theta_1$ | 0.02427 | 0.04093 | 0.04757 | 0.04920 | 0.05127 | 0.04117 | 0.06687 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 94    | $\Theta_1$ | 0.03167 | 0.04320 | 0.04770 | 0.04960 | 0.05153 | 0.04443 | 0.07663 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 95    | $\Theta_1$ | 0.03180 | 0.04360 | 0.04790 | 0.04980 | 0.05153 | 0.04477 | 0.07745 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                     | 96    | $\Theta_1$ | 0.03227 | 0.04373 | 0.04783 | 0.04960 | 0.05160 | 0.04497 | 0.08115 |
| 99 $\Theta_1$ 0.03267 0.04407 0.04797 0.04980 0.05160 0.04523 0.080 100 $\Theta_1$ 0.03000 0.04247 0.04770 0.04953 0.05147 0.04377 0.075 | 97    | $\Theta_1$ | 0.02993 | 0.04347 | 0.04763 | 0.04920 | 0.05140 | 0.04363 | 0.07364 |
| 100 $\Theta_1$ 0.03000 0.04247 0.04770 0.04953 0.05147 0.04377 0.075                                                                     | 98    | $\Theta_1$ | 0.03300 | 0.04507 | 0.04790 | 0.04947 | 0.05153 | 0.04523 | 0.08121 |
|                                                                                                                                          | 99    | $\Theta_1$ | 0.03267 | 0.04407 | 0.04797 | 0.04980 | 0.05160 | 0.04523 | 0.08012 |
| All $\Theta_1$ 0.00287 0.00473 0.00643 0.00820 0.00947 0.00730 0.080                                                                     | 100   | $\Theta_1$ | 0.03000 | 0.04247 | 0.04770 | 0.04953 | 0.05147 | 0.04377 | 0.07561 |
| •                                                                                                                                        | All   | $\Theta_1$ | 0.00287 | 0.00473 | 0.00643 | 0.00820 | 0.00947 | 0.00730 | 0.08077 |

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |  |

# Bayesian Analysis: Posterior distribution over all loci



## Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| Locus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15688.14 | -15180.73 | -15216.52 | -15263.23 |
| 2     | -16159.80 | -15583.21 | -15608.41 | -15656.93 |
| 3     | -17262.28 | -16480.85 | -16484.01 | -16525.85 |
| 4     | -16916.99 | -16043.49 | -16020.75 | -16066.20 |
| 5     | -15999.37 | -15554.32 | -15607.11 | -15653.81 |
| 6     | -15269.57 | -14891.92 | -14946.29 | -14995.71 |
| 7     | -18100.87 | -16683.49 | -16564.36 | -16609.79 |
| 8     | -17178.66 | -16573.73 | -16607.61 | -16654.25 |
| 9     | -15064.56 | -14726.20 | -14780.82 | -14837.97 |
| 10    | -15362.99 | -14967.96 | -15019.19 | -15070.04 |
| 11    | -17798.89 | -16848.86 | -16821.90 | -16865.97 |
| 12    | -17140.69 | -16574.81 | -16619.46 | -16665.72 |
| 13    | -16795.67 | -16019.01 | -16011.14 | -16059.96 |
| 14    | -16166.14 | -15536.98 | -15552.31 | -15600.28 |
| 15    | -17257.52 | -16464.51 | -16465.18 | -16507.83 |
| 16    | -16140.63 | -15626.05 | -15666.79 | -15712.26 |
| 17    | -16169.69 | -15528.82 | -15540.60 | -15590.65 |
| 18    | -17958.45 | -16751.64 | -16672.28 | -16717.64 |
| 19    | -15253.34 | -14839.27 | -14883.46 | -14936.12 |
| 20    | -16272.07 | -15747.48 | -15789.88 | -15837.68 |
| 21    | -15550.49 | -15166.14 | -15223.80 | -15272.96 |
| 22    | -14875.28 | -14593.45 | -14656.60 | -14713.70 |
| 23    | -15742.64 | -15372.47 | -15437.93 | -15482.82 |
| 24    | -16442.02 | -15599.11 | -15573.30 | -15621.75 |
| 25    | -17152.09 | -16193.16 | -16155.14 | -16200.53 |
| 26    | -15643.55 | -15313.36 | -15383.18 | -15431.87 |
| 27    | -15333.06 | -14957.84 | -15012.54 | -15063.64 |
| 28    | -16703.40 | -16168.63 | -16215.09 | -16257.92 |
| 29    | -16259.40 | -15681.58 | -15710.85 | -15756.44 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 21:48:57]

| 30 | -15285.32 | -14862.21 | -14903.18 | -14960.25 |
|----|-----------|-----------|-----------|-----------|
| 31 | -17825.60 | -16739.09 | -16681.13 | -16728.12 |
| 32 | -16455.45 | -15794.22 | -15809.65 | -15854.74 |
| 33 | -16133.00 | -15627.44 | -15671.11 | -15715.27 |
| 34 | -17863.69 | -17188.66 | -17221.78 | -17262.81 |
| 35 | -15440.59 | -15055.72 | -15109.83 | -15160.13 |
| 36 | -15932.45 | -15432.13 | -15473.70 | -15519.29 |
| 37 | -16450.72 | -15879.78 | -15914.69 | -15957.78 |
| 38 | -16832.37 | -16203.75 | -16234.95 | -16276.41 |
| 39 | -16056.70 | -15529.41 | -15567.70 | -15612.40 |
| 40 | -15957.16 | -15416.23 | -15445.74 | -15495.40 |
| 41 | -15694.34 | -15294.30 | -15350.41 | -15399.18 |
| 42 | -16844.38 | -16158.27 | -16174.19 | -16218.30 |
| 43 | -15817.57 | -15256.54 | -15278.88 | -15330.61 |
| 44 | -16477.66 | -15928.23 | -15967.84 | -16011.99 |
| 45 | -16656.23 | -15892.02 | -15887.38 | -15934.10 |
| 46 | -16168.50 | -15549.16 | -15565.13 | -15614.61 |
| 47 | -17673.97 | -16632.33 | -16581.35 | -16629.71 |
| 48 | -16082.43 | -15575.10 | -15619.17 | -15662.49 |
| 49 | -15030.02 | -14747.01 | -14808.94 | -14866.72 |
| 50 | -16631.81 | -15973.44 | -15989.42 | -16037.16 |
| 51 | -17323.82 | -16609.53 | -16621.58 | -16670.06 |
| 52 | -18265.90 | -17126.82 | -17068.70 | -17114.88 |
| 53 | -17194.80 | -16213.77 | -16171.83 | -16218.90 |
| 54 | -15415.07 | -15037.74 | -15092.79 | -15143.75 |
| 55 | -16082.31 | -15637.54 | -15691.01 | -15737.59 |
| 56 | -16601.22 | -15876.65 | -15881.31 | -15926.18 |
| 57 | -15096.93 | -14760.64 | -14819.54 | -14871.64 |
| 58 | -14951.97 | -14690.03 | -14761.57 | -14814.23 |
| 59 | -15322.37 | -14958.86 | -15014.31 | -15065.72 |
| 60 | -17820.84 | -16823.75 | -16789.47 | -16833.52 |
| 61 | -17232.07 | -16599.51 | -16630.45 | -16674.74 |
| 62 | -16259.53 | -15837.17 | -15900.31 | -15943.91 |
| 63 | -14943.21 | -14629.62 | -14687.33 | -14743.08 |
| 64 | -18954.99 | -17101.61 | -16901.10 | -16947.70 |
| 65 | -17873.66 | -16925.13 | -16905.06 | -16943.14 |
| 66 | -17190.14 | -16286.82 | -16263.07 | -16306.73 |
| 67 | -16926.83 | -16115.04 | -16104.48 | -16149.54 |
| 68 | -17117.16 | -16330.51 | -16326.91 | -16373.32 |
| 69 | -16920.89 | -16204.97 | -16216.01 | -16258.71 |
| 70 | -17798.82 | -16903.17 | -16892.38 | -16931.79 |
| 71 | -17176.17 | -16068.81 | -15999.36 | -16046.67 |
| 72 | -17333.55 | -16453.22 | -16435.42 | -16479.06 |
| 73 | -15485.92 | -15071.99 | -15119.97 | -15171.54 |
| 74 | -16779.08 | -16166.37 | -16198.44 | -16240.18 |
|    |           |           |           |           |

| 75  | -17702.56   | -16550.32   | -16480.25   | -16525.00   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -16869.61   | -16153.08   | -16156.89   | -16207.12   |
| 77  | -15961.42   | -15479.96   | -15526.53   | -15572.53   |
| 78  | -16411.19   | -15738.40   | -15746.35   | -15795.81   |
| 79  | -15865.50   | -15383.05   | -15421.37   | -15472.40   |
| 80  | -15737.13   | -15389.32   | -15458.93   | -15505.37   |
| 81  | -18084.59   | -16924.37   | -16859.55   | -16903.02   |
| 82  | -15671.10   | -15233.37   | -15282.19   | -15329.48   |
| 83  | -19130.53   | -17442.03   | -17280.00   | -17325.32   |
| 84  | -16821.69   | -16279.06   | -16324.41   | -16368.45   |
| 85  | -16142.48   | -15665.82   | -15715.61   | -15760.07   |
| 86  | -16323.56   | -15711.39   | -15730.82   | -15780.65   |
| 87  | -17023.16   | -16134.45   | -16108.18   | -16154.73   |
| 88  | -18763.93   | -17220.72   | -17084.88   | -17128.00   |
| 89  | -15787.35   | -15266.86   | -15296.03   | -15348.90   |
| 90  | -14929.75   | -14676.62   | -14750.37   | -14803.20   |
| 91  | -16394.24   | -15953.09   | -16013.23   | -16057.63   |
| 92  | -15740.05   | -15279.98   | -15326.36   | -15371.93   |
| 93  | -15238.49   | -14934.82   | -15004.84   | -15055.35   |
| 94  | -16894.92   | -16171.32   | -16180.79   | -16224.25   |
| 95  | -16504.37   | -15839.23   | -15854.64   | -15898.79   |
| 96  | -18965.89   | -17510.58   | -17397.59   | -17438.68   |
| 97  | -16162.51   | -15729.23   | -15786.11   | -15831.82   |
| 98  | -17500.20   | -16662.18   | -16659.07   | -16700.64   |
| 99  | -17798.07   | -17057.86   | -17076.40   | -17118.68   |
| 100 | -15777.42   | -15388.06   | -15451.17   | -15496.13   |
| All | -1653190.96 | -1586562.32 | -1587921.46 | -1592611.31 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 46.190317]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

# Acceptance ratios for all parameters and the genealogies

| Parameter   | Accepted changes    | Ratio   |
|-------------|---------------------|---------|
| $\Theta_1$  | 386143129/399998671 | 0.96536 |
| Genealogies | 71870379/1600001329 | 0.04492 |

# MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter   | Autocorrelation | Effective Sampe Size |
|-------------|-----------------|----------------------|
| $\Theta_1$  | 0.60666         | 2460748.21           |
| Genealogies | 0.27805         | 5665418.34           |

# Average temperatures during the run

# Chain Temperatures 1 0.00000 2 0.00000 3 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

4

0.00000

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian         |
|-----------------------------------------------------------------------------------------------------------------------|
| inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta       |
| beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have     |
| a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou            |
| tes are estimated poorly because the data contains little or no information for that route. Increasing the range will |
| not help in such situations, reducing number of parameters may help in such situations.                               |
|                                                                                                                       |
|                                                                                                                       |
| No warning was recorded during the run                                                                                |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |
|                                                                                                                       |