1 EINFÜHRUNG 4

Abbildung 1:
$$T_2^2 = T_1^2(T_1 - 1) = T_1^3 - T_1^2$$

1 Einführung

Algebraische Geometrie kann man verstehen, als das Studium von Systemen polynomialer Gleichungen (in mehreren Variabelen). Damit ist die algebraische Geometrie eine Verallgemeinerung der linearen Algebra, also statt X auch X^n , und auch der Algebra, durch Polynome in mehreren Variabelen.

Frage. Sei k ein (algebraisch abgeschlossener) Körper, und $f_1, \ldots, f_m \in k[T_1, \ldots, T_n]$ gegeben. Was sind die "geometrischen Eigenschaften" der Nullstellenmenge

$$V(f_1, \dots, f_n) := \{ (t_1, \dots, t_n) \in k^n \mid f_i(t_1, \dots, t_n) = 0 \ \forall i \}$$

Beispiel 1. Sei $f = T_2^2 - T_1^2(T_1 - 1) \in k[T_1, T_2]$. Die Nullstellenmenge für $k = \mathbb{R}$ (aber: trügerisch, da \mathbb{R} nicht algebraisch abgeschlossen!) ist gegeben durch:

Dimension 1. Glatte und singulären Punkten: (0,0) singulär. Alle anderen Punkte verletzen eine eindeutig bestimmte Tangente.

Abbildung 2: Spitze und Doppelpunkt

Vergleiche den Satz über implizite Funktionen. (Analysis, Differentialgeometrie)

V(f) ist lokal diffeomorph zu \mathbb{R} (= reelle Gerade) im Punkt (x_1, x_2) genau dann, wenn die Jacobi-Matrix

$$\left(\frac{\partial f}{\partial T_1}, \frac{\partial f}{\partial T_2}\right) = (T_1(3T_1 - 2), 2T_2)$$

hat Rang 1 in (x_1, x_2) . Das ist äquivalent dazu, dass $(x_1, x_2) \neq (0, 0)$. Dies lässt sich rein formal über beliebigen Grundkörpern **algebraisch** formulieren.

Methoden. GAGA - Géometrie algébrique, géometrique analytique (Serre)

Komplexe Geometrie (\mathbb{C}), Differential geometrie (\mathbb{R})	Algebraische Geometrie
Analytische Hilfsmittel	Kommutative Algebra