Matematički fakultet

Projekat iz predmeta Konstrukcija i analiza algoritama 2

ŠKOLSKA 2018/2019

Radix sort

Student: Jelena Ćosić 1081/2018 Mentori: dr Vesna Marinković Mirko Spasić

February 1, 2019

Sadržaj

1	Algoritam	2
2	Složenost	3
3	Primeri	5
4	Rezultati	8

1 Algoritam

Najjednostavniji postupak sortiranja niza prirodnih brojeva bi se sastojao u tome da se obezbedi dovoljan broj lokacija, i da se onda svaki element smesti na svoju lokaciju. Taj postupak zove se **sortiranje razvrstavanjem (eng. bucket sort)**. Ovaj algoritam sortiranja razvrstavanjem radi dobro ako su elementi iz malog, jednostavnog opsega, koji je unapred poznat.

Prirodno uopštenje ove ideje je **sortiranje višestrukim razvrstavanjem (engl. radix sort)**. Ovaj algoritam sortiranja koristi pozicionu reprezentaciju i odvojeno analizira cifre na različitim pozicijama. Ipak, ako su elementi stringovi koje treba sortirati leksikografski, možemo ih upoređivati znak po znak, pa se dobija leksikografsko sortiranje.

Postoji i druga varijanta iste ideje a to je verzija sortiranja višestrukim razvrstavanjem (cifre se prolaze sleva udesno) poznata je kao **sortiranje obratnim višestrukim razvrstavanjem**. Opseg se može podeliti na bilo koji odgovarajući način.

Način realizacije sortiranja višestrukim razvrstavanjem zasniva se na primeni indukcije obrnutim redosledom: sortiranje se radi zdesna ulevo, polazeći od najnižih cifara. Pretpostavljamo da su elementi veliki brojevi, predstavljeni sa k cifara u sistemu sa osnovom d (cifre su iz opsega od 0 do d-1).

Induktivna hipoteza: Umemo da sortiramo brojeve sa manje od k cifara.

Razlika između ovog metoda i sortiranja obratnim višestrukim razvrstavanjem je u načinu na koji se proširuje hipoteza (ideja primene induktivne hipoteze obrnutim redosledom slična je kao kod Hornerove šeme). Kod datih brojeva sa k cifara mi najpre ignorišemo najvišu (prvu) cifru i sortiramo brojeve prema ostatku cifara indukcijom. Tako dobijamo listu brojeva sortiranih prema najnižih k-1 cifara. Zatim prolazimo još jednom kroz sve elemente, i razvrstavamo ih prema najvišoj cifri u d pregrada. Konačno, objedinjujemo redom sadržaje pregrada. Ovaj algoritam zove se **sortiranje direktnim višestrukim razvrstavanjem**. Pokazaćemo da su elementi na kraju sortirani po svih k cifara.

Tvrdimo da su dva elementa svrstana u različite pregrade u ispravnom poretku. Za to nam nije potrebna induktivna hipoteza, jer je najviša cifra prvog od njih veća od najviše cifre drugog. S druge strane, ako dva elementa imaju iste najviše cifre, onda su oni prema induktivnoj hipotezi dovedeni u ispravan redosled pre poslednjeg koraka. Bitno je da elementi stavljeni u istu pregradu ostaju u istom redosledu kao i pre razvrstavanja. Ovo se može postići upotrebom liste za svaku pregradu i objedinjavanjem d lista na kraju svake etape u jednu globalnu listu od svih elemenata (sortiranih prema najnižih i cifara).

U primerima koje ćemo razmatrati podela će biti izvršena u skladu sa dekadnim prikazom brojeva. Naime, posmatrajući najmanje značajnu cifru u svakom broju, brojevi se razvrstavaju u različite skupove označene ciframa od 0 do d-1. Nakon toga, dolazi do ponovnog objedinjavanja nastalih skupova brojeva i algoritam se nastavlja posmatrajući narednu cifru po značajanosti. Postojaće onoliko različitih koraka koliko cifara ima najveći broj u nizu koji se sortira. Algoritam se završava kada su obrađene sve cifre u svim brojevima i tada se dobija sortiran niz brojeva.

Na narednoj slici (Slika 1) nalazi se pseudokod algoritma za sortiranje direktnim višestrukim razvrstavanjem.

```
Алгоритам DVR_sort(X, n, k);
Улаз: X (низ од n целих ненегативних бројева са по k цифара).
Излаз: X (сортирани низ).
begin
    Претпостављамо да су на почетку сви елементи у глобалној листи GL
     \{GL\ се користи због једноставности; листа се може реализовати у X\}
    for i := 0 to d - 1 do
     \{d \text{ je 6poj Moryhux цифара; } d = 10 \text{ у декадном случају}\}
        иницијализовати листу Q[i] као празну листу;
    for i := k downto 1 do
        while GL није празна do {разврставање по i-тој цифри}
             скини x из GL; \{x је први елемент са листе\}
             c := i-та цифра x; {гледано слева удесно}
            убаци x у Q[c];
        for t := 0 to d - 1 do {обједињавање локалних листа}
            укључи Q[t] у GL; {додавање на крај листе}
    for i := 1 to n do {преписивање елемената из GL у низ x}
        скини X[i] из GL
end
```

Slika 1: Sortiranje direktnim višestrukim razvrstavanjem

2 Složenost

Potrebno je n koraka za kopiranje elemenata u globalnu listu GL i d koraka za inicijalizaciju lista Q[i]. U glavnoj petlji algoritma, koja se izvršava k puta, svaki elemenat se vadi iz globalne i stavlja u neku od lista Q[i]. Na kraju se sve liste Q[i] ponovo objedinjavaju u GL. Ukupna vremenska složenost algoritma je $O(k \cdot (n+d))$.

Slično, neka je d broj ponavljanja algoritma sortiranja razvrstavanjem (odnosno, d je broj cifara najvećeg elementa), k broj pregrada koje se koriste i n broj elemenata zadatog niza. Tada, ukupna vremenska složenost algoritma **radix sort** je $O(d \cdot O(n+k)) = O(d \cdot (n+k))$, u opštem slučaju. Ipak, broj cifara i opseg su često konstantni pa je složenost u prosečnom slučaju O(n).

Sa naredne slike (Slika 2) može se zaključiti da **radix sort** je jedan od najefikasnijih algoritama sortiranja što se tiče vremenske složenosti. Ako posmatramo prostornu složenost, tu je situacija malo lošija jer je potrebno prostora za smeštanje n + k elemenata neophodnih u toku sortiranja.

Array Sorting Algorithms

Algorithm	Time Complexity			Space Complexity	
	Best	Average	Worst	Worst	
Quicksort	$\Omega(\text{n log(n)})$	$\Theta(n \log(n))$	O(n^2)	0(log(n))	
<u>Mergesort</u>	$\Omega(\text{n log(n)})$	$\Theta(n \log(n))$	O(n log(n))	O(n)	
<u>Timsort</u>	Ω(n)	$\Theta(n \log(n))$	O(n log(n))	0(n)	
<u>Heapsort</u>	$\Omega(\text{n log(n)})$	$\Theta(n \log(n))$	O(n log(n))	0(1)	
Bubble Sort	Ω(n)	Θ(n^2)	O(n^2)	0(1)	
Insertion Sort	Ω(n)	Θ(n^2)	O(n^2)	0(1)	
Selection Sort	Ω(n^2)	Θ(n^2)	O(n^2)	0(1)	
Tree Sort	$\Omega(\text{n log(n)})$	$\Theta(n \log(n))$	O(n^2)	O(n)	
Shell Sort	$\Omega(\text{n log(n)})$	Θ(n(log(n))^2)	O(n(log(n))^2)	0(1)	
Bucket Sort	$\Omega(n+k)$	0(n+k)	O(n^2)	O(n)	
Radix Sort	$\Omega(nk)$	Θ(nk)	O(nk)	O(n+k)	
Counting Sort	$\Omega(n+k)$	0(n+k)	0(n+k)	0(k)	
<u>Cubesort</u>	Ω(n)	$\Theta(n \log(n))$	O(n log(n))	0(n)	

Slika 2: Složenost različitih algoritama sortiranja

3 Primeri

Primer 3.1 Postepeni prikaz sortiranja brojeva : 329, 457, 657, 839, 436, 720, 355 algoritmom radix sort.

Rešenje: Na sledećim slikama su predstavljeni svi koraci prilikom sortiranja.

Slika 3: Početak

Slika 4: Korak 1 Slika 5: Korak 1

Slika 6: Korak 2

Slika 7: Korak 2

Slika 8: Korak 3

Slika 9: Korak 3

Primer 3.2 Pokazati kako je moguće sortirati n celih brojeva iz opsega $[0, n^2 - 1]$ u vremenu O(n).

Rešenje 1: Ako bismo primenili algoritam radix sort, pri čemu su brojevi zapisani u osnovi n, onda je $d = \log_n n^2 = 2$ i k = n, pa je vremenska složenost $O(2 \cdot (n+n)) = O(n)$. U implementaciji ovog algoritma nije neophodno pretvarati brojeve iz dekadne osnove u osnovu broja n, već je moguće izdvojiti potrebne cifre korišćenjem operatora mod n i div n.

Rešenje 2: Svaka vrednost bi bila razmatrana kao dvocifreni broj, gde je svaka cifra iz opsega [0, n-1]. Ovaj algoritam bio bi složenosti O(2(n+n)) = O(n).

Na narednoj slici (Slika 10) prikazan je pseudokod rešenja.

```
Algoritam: Sortiranje_u_linearnom_vremenu(niz)
Ulaz: niz (n celih brojeva iz opsega [0, n²-1])
Izlaz: sortirani niz sort_niz
begin
    niz1 := niz mod n; // operator mod se primenjuje na svaki element niza niz
    niz2 := niz div n; // operator div se primenjuje na svaki element niza niz
    // drugi argument algoritma bucket_sort je broj pregrada
    sort_niz1 := bucket_sort(niz1, n);
    sort_niz2 := bucket_sort(niz2, n);
    objedini nizove sort_niz1 i sort_niz2 u niz sort_niz kao u radix_sort algoritmu;
    return sort_niz;
end
```

Slika 10: Sortiranje u linearnom vremenu

Primer 3.3 Dato je k listi i svaka od njih sadrži n elemenata. Ključevi elemenata su celi brojevi iz opsega [1, m]. Pokazati kako se mogu sortirati sve liste tako da vremenska složenost u najgorem slučaju bude O(kn + m).

Rešenje: Prvo algoritam grube sile: Kada bismo svaku listu sortirali razvrstavanjem, onda bi vremenska složenost bila $O(k \cdot O(n+m)) = O(kn+km)$. Ova složenost je lošija od zahtevane složenosti, pa je treba popraviti.

Umesto da sortiramo k listi pojedinačno, bilo bi poželjno sortirati ih sve odjednom. Svakom elementu j iz liste i možemo pridružiti uređen par (l_i, e_j) . Nad ovim parovima primenimo radix sort, koji će prvo sortirati razvrstavanjem po brojevima e_j , a zatim po rednim brojevima listi l_i . Vremenska složenost opisanog algoritma se jednostavno izračunava iz najgore složenosti algoritma radix sort $O(d' \cdot (n' + k'))$ za d' = 2, n' = nk i k' = m + k, odnosno, $O(2 \cdot (nk + (m + k))) = O(k \cdot (n + 1) + m) = O(kn + m)$.

4 Rezultati

Broj cifara/ velicina ulaza	10	100	1 000	10 000
1	19 248	83 228	520 070	4 370 475
2	22 669	97 030	606 313	5 094 228
3	28 230	121 079	757 793	6 367 209
4	31 651	136 872	979 491	8 231 277
5	37 212	173 657	1 085 139	9 119 103
6	41 917	189 910	1 527 407	9 828 273
7	46 194	227 122	1 856 328	14 492 618

Slika 11: Rezultati testiranja (nanosekunde)

Na priloženoj slici (Slika 11) prikazani su rezultati testiranja rada algoritma. Sve unete vrednosti u ćelijama tabele su predstavljene u nanosekundama. Svaki red predstavlja broj cifara ulaznih brojeva, a kolone predstavljaju veličinu ulaza.

Posmatrajući tabelu, možemo zaključiti da se vreme izvršavanja algoritma ne menja drastično kako raste broj cifara u brojevima dok veličina ulaza ostaje ista. Čak i kada se broj cifara poveća duplo, vreme ne bude duplo uvećano. Isto tako, ako posmatramo brojeve sa istim brojem cifara, a da se veličina ulaza povećava svaki put 10 puta više, možemo primetiti da se i u tom slučaju vreme izvršavanja ne uvećava 10 puta, već manje.

Na osnovu svih navedenih test primera, moše se zaključiti da je složenost algoritma radix sort zaista O(nk), gde je n veličina ulaza, a k broj cifara najvećeg elementa.

Literatura

- [1] Miodrag Živković, Algoritmi, Matematički fakultet, Beograd
- [2] Miodrag Živković, Vesna Marinković, Konstrukcija i analiza algoritama 2, Materijal sa predavanja, Matematički fakultet, Beograd
- [3] Nikola Ajzenhamer, Konstrukcija i analiza algoritama 2, materijal sa vežbi, Matematički fakultet, Beograd