Измерение ширины запрещенной зоны полупроводникового материала

Практикум

Рекомендовано методической комиссией радиофизического факультета для студентов ННГУ, обучающихся по направлениям подготовки 010800 «Радиофизика», 010400 «Информационные технологии» и специальностям 010801 «Радиофизика и электроника», 010802 «Фундаментальная радиофизика и физическая электроника», 090106 «Информационная безопасность телекоммуникационных систем»

УДК 537.312.6 ББК 22.379 из7

ИЗ7 ИЗМЕРЕНИЕ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ ПОЛУПРОВОДНИКОВОГО МАТЕРИАЛА: Практикум. Авторы: Савинов Д.А., Оболенский С.В., Волкова Е.В., Павельев В.Г., Тарасова Е.А., Чурин А.Ю. – Нижний Новгород: Нижегородский госуниверситет, 2015. – 20 с.

Рецензент: д.ф.-м.н., профессор В.К. Киселев

В описании к лабораторной работе представлены элементы зонной теории и статистики носителей заряда в полупроводниковых структурах. Подробно изложена методика измерения ширины запрещенной зоны. Описание предназначено для студентов дневного и вечернего отделений, изучающих курсы «Физика полупроводников и полупроводниковых приборов» и «Твердотельная электроника».

Ответственный за выпуск: председатель методической комиссии радиофизического факультета ННГУ, к.ф.-м.н., доцент **Н.Д. Миловский**

УДК 537.312.6 ББК 22.379

© Нижегородский государственный университет им. Н.И. Лобачевского, 2015

ВВЕДЕНИЕ

Ширина запрещенной зоны является одной из важнейших характеристик полупроводниковых материалов. Она может быть найдена по результатам измерений электропроводности или постоянной Холла в зависимости от температуры, а также из спектрального распределения коэффициента оптического поглощения или фототока полупроводника. В настоящей работе студентам предлагается определить величину ширины запрещенной зоны полупроводникового материала по результатам измерения температурной зависимости электропроводности.

1. ЭЛЕЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ ПОЛУПРОВОДНИКОВ

В изолированном атоме электроны находятся в стационарных состояниях, каждому из которых соответствует строго определенное значение энергии. Таким образом, энергетический спектр электронных состояний в атоме является дискретным. В кристаллическом твердом теле из-за возмущений, вносимых другими атомами, уровни энергии расщепляются – образуются области или зоны разрешенных значений энергии, между которыми находятся запрещенные зоны. Для глубоких уровней расщепление невелико, т.к. находящиеся на них электроны экранируются верхними оболочками и практически не взаимодействуют с соседними атомами. Для внешних оболочек расщепление может составлять несколько электрон-вольт.

Поскольку энергетические зоны образованы из соответствующих уровней изолированных атомов, то общее число электронов, которые могут разместиться в данной зоне, равно общему числу мест на уровнях изолированных атомов, из которых образован кристалл. Если при абсолютном нуле температур осуществлять заполнение зон электронами, то заселение энергетических уровней будет осуществляться снизу вверх и на каждом уровне, согласно принципу Паули, будут располагаться два электрона, что соответствует двум различным ориентация спина. Самая верхняя полностью заполненная при абсолютном нуле температуры электронами зона называется валентной. Ближайшая к ней незаполненная или частично заполненная зона называется зоной проводимости. Как правило, в рассмотрении участвуют именно эти две зоны, поскольку все более глубоко лежащие полностью заполнены электронами и, следовательно, вклад в проводимость не дают (все уровни заняты, т.е. изменение энергии заряда, обусловленное приложением электрического поля, невозможно). Таким образом, упрощенная структура энергетического спектра электронов в твердом теле будет иметь вид, представленный на рис. 1.1. Расстояние между дном зоны проводимости и потолком валентной зоны называют шириной запрещенной зоны.

Представление о разрешенных и запрещенных зонах в сочетании с принципом Паули позволяет понять причину глубокого различия физических свойств металлов, диэлектриков и полупроводников.

Рис. 1.1. Энергетический спектр электрона в кристалле. Здесь W_c , W_v — соответственно, энергии дна зоны проводимости и потолка валентной зоны, W_g — ширина запрещенной зоны; штриховкой отмечено заполнение зоны электронами.

Действительно, если при абсолютном нуле зона проводимости полупроводника частично заполнена электронами или имеется перекрытие заполненной валентной зоны и пустой зоны проводимости, то в случае приложения электрического поля будут осуществляться энергетические переходы, обусловленные ускорением электронов во внешнем поле. Такие материалы проводят электрический ток даже при абсолютном нуле температуры и являются металлами.

Теперь рассмотрим ситуацию, когда между валентной зоной и зоной проводимости имеется запрещенная зона конечной ширины (рис. 1.1). В этом случае при абсолютном нуле, а также полном затемнении и не слишком сильном электрическом поле твердое тело не будет проводить электрический ток: в зоне проводимости электронов нет, а электроны заполненной валентной зоны не могут изменить своего состояния, поскольку все соседние уровни заняты. При повышении температуры и/или освещении такого тела электроны валентной зоны будут получать дополнительную энергию и переходить в зону проводимости. Вследствие таких переходов, во-первых, появятся электроны в зоне проводимости (они будут участвовать в переносе тока и обеспечивать электронную проводимость), а во-вторых, освободятся верхние уровни валентной зоны, что позволит и ее электронам участвовать в переносе тока, обеспечивая дырочную проводимость. Материал, имеющий запрещенную зону небольшой ширины, является полупроводником. Разница между полупроводниками и диэлектриками с точки зрения зонной теории заключается лишь в величине ширины запрещенной зоны.

Ширина запрещенной зоны $W_{\rm g}$ — один из важнейших параметров твердотельных материалов. При температуре 300 К она составляет в германии (Ge) 0.803 эВ, в кремнии (Si) — 1.12 эВ, в арсениде галлия (GaAs) — 1.43 эВ, в фосфиде индия (InP) — 1.29 эВ.

2. КОНЦЕНТРАЦИЯ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКЕ

Задача вычисления концентрации носителей заряда распадается на две: 1) определение числа возможных квантовых состояний электронов в разрешенных зонах в твердом теле и 2) выяснение фактического распределения электро-

нов по этим квантовым состояниям. Рассмотрим последовательно решение каждой из подзадач.

Число состояний в любой зоне кристалла равно общему числу мест на уровнях изолированных атомов, образовавших кристалл, т.е. числу атомов N_0 , умноженному на кратность вырождения ν атомного уровня, образовавшего данную зону:

$$\int_{W_I}^{W_2} N(W)dW = \nu N_0 , \qquad (2.1)$$

где N(W)dW — число квантовых состояний в интервале энергий от W до W+dW в единице объёма полупроводника, а N(W) — так называемая, *плотность квантовых состояний*, W_1 и W_2 — энергии нижнего и верхнего края зоны, соответственно.

Нахождение точного вида функции N(W) — очень сложная задача. Приведем ее решение для простейшего случая, когда электроны заполняют только уровни вблизи дна зоны проводимости, т.е. для описания зависимости энергии носителей от квазиимпульса $W(\vec{p})$ справедливо приближение эффективной массы:

$$W = W_C + \frac{(p)^2}{2m_n^*}, (2.2)$$

где W_C — энергия дна зоны проводимости, m_n^* — эффективная масса l электрона на дне зоны проводимости, $\vec{p} = \hbar \vec{k}$ — квазиимпульс электрона, \vec{k} — квазиволновой вектор.

Число состояний в интервале энергий (W, W+dW) может быть найдено путем определения отношения объема в пространстве квазиволновых векторов (k-пространстве), заключенного между двумя указанными изоэнергетическими поверхностями, к объему одного квантового состояния.

В случае закона дисперсии, представленного в виде (2.2) поверхности равной энергии в k-пространстве являются сферами с радиусом k. Выделим шаровой слой, заключенный между двумя изоэнергетическими поверхностями, соответствующими энергиям W и W+dW. Объем этого слоя имеет величину:

$$dV_p = 4\pi k^2 dk. (2.3)$$

Объём, приходящийся на одно электронное состояние равен $dk_x dk_y dk_z = \frac{(2\pi)^3}{V}$, где V- объём кристалла. В каждой ячейке могут находиться два электрона с противоположными спинами. С учетом этого, число состояний в объеме dV_p равно:

¹ Эффективная масса носителей заряда учитывает влияние внутреннего поля кристаллической решетки на движение частиц под действием внешнего поля. Может существенно отличаться от массы электрона в вакууме.

$$dZ = 2\frac{dV_p}{(2\pi\hbar)^3} = \frac{k^2 dk}{\pi^2} \ . \tag{2.4}$$

Из равенства (2.2.) получим:

$$\hbar k = \sqrt{2m_n^* (W - W_C)}, \qquad (2.5)$$

откуда

$$dk = \frac{1}{2\hbar} \left(2m_n^* (W - W_C) \right)^{1/2} dW.$$
 (2.6)

Подставляя (2.5) и (2.6) в (2.4), получим выражение для плотности квантовых состояний у дна зоны проводимости:

$$N_c(W) = \frac{dZ}{dW} = 4\pi \left[\frac{2m_n^*}{(2\pi\hbar)^2} \right]^{3/2} \sqrt{W - W_C} . \tag{2.7}$$

Аналогично определяется плотность состояний вблизи потолка валентной зоны.

Для определения числа электронов в зоне проводимости или дырок в валентной зоне кроме плотности состояний необходимо знать также вероятность заполнения каждого состояния (уровня энергии) электронами. Если считать электроны невзаимодействующими, как это обычно делается, то газ электронов подчиняется законам идеального газа.

Статистика электронов подчиняется распределению Ферми-Дирака:

$$f(W) = \frac{1}{\frac{W - W_F}{k_B T} + 1},$$
(2.8)

которое даёт вероятность того, что в тепловом равновесии состояние с энергией W занято электроном. Здесь k_B — постоянная Больцмана, T — абсолютная температура, W_F — энергия (уровень) Ферми — максимальная энергия электронов при абсолютном нуле. Для температуры, отличной от нуля, функция f(W) в точке $W = W_F$ имеет перегиб.

Рассмотрим случай, когда T>0. Из выражения (2.8) следует, что для $W=W_F$: f(W)=1/2. При очень больших энергиях, когда $W-W_F>>k_BT$, можно пренебречь 1 в знаменателе, и выражение f(W) принимает вид:

$$f(W) = e^{\frac{W_F - W}{k_B T}}, \tag{2.9}$$

т.е. совпадает с функцией Максвелла-Больцмана для частиц, подчиняющихся классическим законам. Аналогично, при очень малых энергиях, когда $W << W_F$ (но $W - W_F >> k_B T$), экспонента в знаменателе (2.8.) очень мала и, разлагая функцию f(W) в ряд по малому параметру и ограничиваясь нулевым и первым слагаемыми, получим:

$$f(W) = 1 - e^{\frac{W - W_F}{k_B T}}. (2.10)$$

Зависимость плотности состояний в зоне проводимости от энергии и вероятности заполнения этих состояний позволяет определить концентрацию свободных электронов dn, энергия которых заключена в интервале от W до W+dW:

$$dn = f(W)N(W)dW. (2.11)$$

Интегрирование выражения (2.11) по всей зоне проводимости позволяет найти полное число электронов в ней. Так как функция Ферми быстро спадает с ростом энергии, верхний предел можно заменить бесконечностью.

В элементарных функциях такой интеграл не вычисляется, и для его нахождения используют специальные таблицы. Однако, если уровень Ферми лежит в запрещенной зоне достаточно далеко от ее краев, т.е. $W_c - W_F >> k_B T$, то для функции Ферми справедливо приближение Больцмана и интеграл можно вычислить. Такой полупроводник называется *невырожденным*. Интегрируя (2.11) в данном приближении, получим:

$$n = \int_{Wc}^{\infty} f(W)N(W)dW = N_c e^{-\frac{W_c - W_F}{k_B T}},$$
(2.12)

где $N_c = 2 \left[\frac{2\pi m_n^* k_B T}{h^2} \right]^{3/2} - 9 \phi$ фективная плотность состояний в зоне проводи-

мости.

Аналогично концентрация дырок:

$$p = N_V e^{-\frac{W_F - W_V}{k_B T}}, (2.13)$$

$$p = N_V e^{-B} \quad , \eqno(2.13)$$
 где $N_V = 2 \left[\frac{2\pi m_p^* k_B T}{h^2} \right]^{3/2}$ — эффективная плотность состояний в валентной зоне.

Полученные выше выражения для концентрации электронов и дырок в совокупности *с принципом электронейтральности* полупроводника (в однородном полупроводнике не может быть существенных нескомпенсированных объемных зарядов ни в равновесном состоянии, ни при наличии тока) позволяют сделать выводы о положении уровня Ферми в полупроводнике.

Рассмотрим *собственный полупроводник*, для которого влияние примесных атомов не существенно. Свободные носители заряда в этом случае возникают только за счет разрыва валентных связей. Поэтому в собственном полупроводнике концентрация дырок p равна концентрации электронов n: $n = p \equiv n_i$. Это условие электронейтральности собственного полупроводника. Из этого условия, приравняв (2.12) и (2.13), получим:

$$W_F = \frac{W_c + W_v}{2} + \frac{k_B T}{2} \ln \frac{N_V}{N_c} = \frac{W_c + W_v}{2} - \frac{3k_B T}{4} \ln \frac{m_n^*}{m_p^*},$$
 (2.14)

т.е. уровень Ферми W_F собственного полупроводника при абсолютном нуле температуры лежит в центре запрещенной зоны и, вообще говоря, смещается

при возрастании температуры. Этот случай показан на рис. 2.1.a, где слева направо схематически приведены простейшая зонная диаграмма, плотность состояний N(W), распределение Ферми f(W) и концентрация носителей заряда.

Если в полупроводник введены примесные атомы, то, как показано на рис. 2.1. δ и 2.1. ϵ , уровень Ферми должен смещаться для сохранения электронейтральности. В случае 2.1. δ , например, в кристалл добавляется донорная примесь, приводящая к образованию локальных энергетических уровней W_d . Пусть концентрация доноров составляет N_d (см $^{-3}$). Для сохранения элентронейтральности отрицательный заряд электронов должен быть равен полному заряд удырок и ионизованных доноров:

$$n = N_d + p. (2.15)$$

Следовательно, n > p и уровень Ферми обязан сместиться к дну зоны проводимости, как показано на рис. 2.1.6.

Температурная зависимость концентраций электронов и дырок в собственном полупроводнике определяется формулами (2.12) и (2.13) с учетом (2.14). Этими же формулами определяются и концентрации носителей в примесном полупроводнике при достаточно высоких температурах, когда количество электронов в зоне проводимости и дырок в валентной зоне определяется переходами электронов через запрещенную зону. При этом уровень Ферми лежит вблизи середины запрещенной зоны, т.е. $W_F = \frac{(W_c + W_v)}{2}$. Подставляя по-

следнее соотношение в (2.12), получим концентрацию электронов:

$$n = N_{C} e^{\frac{W_{C} - W_{V}}{2k_{B}T}} = N_{C} e^{\frac{W_{g}}{2k_{B}T}}, (2.16)$$

где W_g — ширина запрещенной зоны. Величина N_c зависит от температуры по закону $T^{3/2}$. Эта зависимость слабая по сравнению с экспонентой, поэтому температурная зависимость концентрации определяется, в основном, экспоненциальным множителем.

При низких температурах концентрация носителей в примесном полупроводнике определяется примесями. При очень низких температурах, когда еще не вся примесь ионизована, уровень Ферми, например, для электронного полупроводника, лежит примерно посередине между уровнем донорной примеси и дном зоны проводимости, т.е. $W_F = (W_c + W_d)/2$. Тогда (2.12) принимает вид:

$$n = N_{C} e^{-\frac{W_{C} - W_{d}}{2k_{B}T}} = N_{C} e^{-\frac{\Delta W_{d}}{2k_{B}T}}, \qquad (2.16)$$

где ΔW_d – энергия ионизации донорной примеси.

Для более высоких температур, когда вся примесь ионизована, но вероятность перехода электронов из валентной зоны мала, концентрация носителей заряда просто равна концентрации примеси $n=N_d$.

Рис. 2.1. Графическое изображение решения уравнения электронейтральности для собственного полупроводника (а), для примесного полупроводника, легированного донорной (б) и акцепторной (в) примесью.

Таким образом, зависимость концентрации от температуры имеет три участка (см. рис. 2.2.). Область *примесной проводимости* при низких температурах — 1-2; область *истощения примесей* — участок 2-3 и область *собственной проводимости* — участок 3-4. В координатах $\ln(n)$, 1/Т экспоненты (2.16), (2.17.) выглядят как прямые, наклон которых характеризуется величинами W_g и ΔW_d . Результаты измерения температурной зависимости концентрации электронов позволяют определить ширину запрещенной зоны полупроводника и энергию ионизации примеси.

Рис. 2.2. Зависимость концентрации носителей заряда от температуры в полупроводнике.

Измерение концентрации носителей заряда требует разработки специальной методики. Гораздо проще проводить измерения проводимости образца, но на нее, помимо концентрации носителей, оказывает влияние подвижность частиц. Поэтому далее мы разберем особенности движения носителей заряда в полупроводнике под действием электрического поля.

3. ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКЕ

В реальной кристаллической структуре всегда присутствуют дефекты: тепловые колебания атомов решётки, примеси и т.д. Поэтому при воздействии внешнего электрического поля частица движется ускоренно лишь на небольшом участке пути, а затем испытывает рассеяние (взаимодействие с дефектами кристалла), изменяя свой импульс и (в случае неупругого взаимодействия) энергию, теряет направленную скорость, после чего процесс разгона начинается заново (рис. 3.1). В слабых электрических полях ($\leq 10^3$ В/см) средняя скорость направленного движения носителей заряда (дрейфовая скорость) пропорциональна напряжённости электрического поля: $\upsilon = \mu E$. Коэффициент пропорциональности между скоростью и полем μ называется подвиженостью носителей заряда. Эта величина численно равна средней скорости направленного движения частиц в электрическом поле с напряженностью 1 В/м.

Рис. 3.1. Схематическое изображение движения электрона в полупроводнике под действием электрического поля.

Подвижность носителей заряда сильно меняется с изменением температуры. Для получения этой зависимости необходимо кратко остановится на основных механизмах рассеяния носителей заряда в полупроводниках.

Рассеяние носителей заряда на нейтральных атомах примеси и нейтральных дефектах является слабым. Однако, при низких температурах, когда примеси еще практически не ионизованы, а тепловые колебания отсутствуют, этот механизм играет существенную роль. Для того, чтобы электрон изменил направление своего движения в результате взаимодействия с нейтральной примесью или дефектом, необходимо, чтобы траектория электрона проходила через место расположения дефекта либо через примыкающую к нему область решетки, в которой им вызваны искажения. Рассеяние на нейтральных примесях не зависит от температуры, а подвижность, обусловленная этим рассеянием, постоянна и зависит только от концентрации рассеивающих центров.

Электрическое поле ионизованного примесного атома распространяется на много периодов кристаллической решетки, и электрон, проходя на значительном расстоянии от иона, изменит под действием его поля направление своего движения. Пусть рассеяние в полупроводнике происходит только на ионах примеси, а тепловые колебания и нейтральные центры рассеяния отсутствуют. Тогда, как показывают расчеты, подвижность зависит от температуры как $T^{3/2}$, т.е. увеличивается. Этот результат легко понять, если учесть, что с ростом температуры увеличивается средняя скорость хаотического движения электронов, а быстрые электроны слабее отклоняются статическим полем ионов. Этот механизм рассеяния играет основную роль при температурах, когда уже имеется большая концентрация ионизированных примесей, но тепловые колебания еще мало влияют на рассеяние.

Рассмотрим теперь полупроводник, в котором отсутствуют примеси и дефекты, а рассеяние происходит только на тепловых колебаниях решетки. С ростом температуры амплитуда колебаний возрастает или, говоря языком квантовой статистики, возрастает концентрация фононов в кристалле. Очевидно, что рассеяние с ростом температуры должно усиливаться, а подвижность падать. Для неполярных полупроводников, таких как германий и кремний, уменьшение подвижности происходит по закону $T^{3/2}$.

Если же действует одновременно все три механизма рассеяния, то результирующая подвижность будет определяться так:

$$\frac{1}{\mu_{\Sigma}} = \frac{1}{\mu_{1}} + \frac{1}{\mu_{2}} + \frac{1}{\mu_{3}}.$$
 (3.1)

Поскольку подвижность — это средняя скорость в единичном электрическом поле, то она пропорциональна среднему времени свободного пробега τ , за которое электрон набирает направленную скорость. Если τ_I , τ_2 , τ_3 — времена свободного пробега для каждого из трех механизмов рассеяния, то $1/\tau_1,1/\tau_2,1/\tau_3$ — соответствующие частоты столкновений. Когда действует несколько механизмов рассеяния, то эти частоты складываются арифметически, откуда и следует формула (3.1). Для выполнения данной работы важно, что итоговая зависимость подвижности от температуры является степенной функцией.

4. ЗАВИСИМОСТЬ ПРОВОДИМОСТИ ОТ ТЕМПЕРАТУРЫ

Плотность тока, создаваемого всеми свободными электронами, равна:

$$j = en\mu_n E = \sigma_n E , \qquad (4.1)$$

где n — концентрация электронов, σ_n = $en\mu_n$ — удельная проводимость полупроводника, обусловленная электронами.

Если имеется два типа носителей в полупроводнике – электроны и дырки, то проводимость равна:

$$\sigma = e(n\mu_n + p\mu_p). \tag{4.2}$$

Для определения температурной зависимости проводимости необходимо перемножить зависимости концентрации и подвижности носителей заряда от температуры. При низких температурах и неполной ионизации примесей концентрация зависит от обратной температуры по экспоненциальному закону (2.19), а подвижность – по степенному, т.е. температурная зависимость концентрации определяет температурную зависимость проводимости:

$$\sigma = \sigma_d e^{(-\Delta W_d / 2k_B T)} \ . \tag{4.3}$$

Здесь σ_d содержит степенную зависимость подвижности и эффективной плотности состояний от температуры.

В области истощения примесей концентрация не зависит от температуры, поэтому в этой области температурная зависимость проводимости определяется степенной зависимостью подвижности от температуры. И, наконец, при больших температурах зависимость проводимости от обратной температуры экспоненциальна, т.к. $\mu \approx T^{3/2}$, а $N_c \approx T^{3/2}$:

$$\sigma = \sigma_c e^{\left(-W_g / 2k_B T\right)} \tag{4.4}$$

На рис. 4.1 показана зависимость $\ln(\sigma)$ от обратной температуры при различных уровнях легирования полупроводника. По экспериментально измеренным зависимостям $\sigma(T)$, аналогичным рис. 4.1., можно определить ширину запрещенной зоны и энергию активации примесей.

Рис. 4.1. Качественный вид зависимости удельной проводимости полупроводника от температуры для различных уровней легирования (N-концентрация легирующей примеси)

5. МЕТОДИКА ИЗМЕРЕНИЙ

Изменение удельной электропроводности полупроводника производится на постоянном токе методом компенсации по схеме, приведённой на рис. 5.1.

Рис. 5.1. Электрическая схема для измерений удельной электропроводности методом компенсации

Регулируемый источник тока (1) задаёт ток образца I_{o6} , измеряемый амперметром A_1 . Регулируемый источник тока (2) задаёт ток компенсации I_{κ} через эталонный резистор R_{9} , величина этого тока измеряется амперметром A_2 . Напряжение U_{ab} между зондовыми электродами а и b сравнивается с напряжением компенсации U_{κ} на эталонном резисторе R_{9} при помощи индикатора компенсации V_{κ} .

При проведении измерений нужно установить ток образца, затем, изменяя ток компенсации, добиться нулевых показаний индикатора компенсации V. В этом случае напряжение U_{κ} на эталонном резисторе $R_{\mathfrak{p}}$ будет равно напряжению U_{ab} :

$$U_{ab} = U_k = I_k R_{\mathfrak{I}} \tag{5.1}$$

В реальной ситуации между зондовыми электродами будут паразитные потенциалы, связанные, во-первых, с влиянием переходного сопротивления на контактах «образец – подводящие провода», во-вторых, появлением термоЭДС на контактах полупроводника с металлом при нагреве образца. Для того чтобы устранить влияние этих потенциалов, измерение тока компенсации производится дважды. Получив первый отсчёт $I_{\kappa l}$, необходимо изменить направление тока через образец и через эталонный резистор, опять добиться равенства напряжений U_{κ} и U_{ab} и после этого снять второй отсчет $I\kappa 2$. Обратите внимание, что полярности как разности потенциалов между электродами а и b, вызванной протеканием тока через образец, так и напряжения на эталонном резисторе R_3 , сменятся на противоположные, а паразитные потенциалы, зависящие от свойств контактов, и термоЭДС, зависящая от температуры образца, останутся прежними. Таким образом, среднеарифметическое значение

$$Ik = \frac{Ik1 + Ik2}{2}$$

будет содержать информацию только о полезной составляющей напряжения $U_{ab}.$

Величину падения напряжения компенсации U_{κ} легко подсчитать:

$$U_k = I_k R$$
э

Величину сопротивления участка образца, расположенного между зондовыми электродами а и b (R_{ob}) можно определить из равенства:

$$R_{o\delta} = \frac{U_k}{I_{o\delta}} = \frac{I_k R \Im}{I_{o\delta}}$$

Зная размеры образца: a - ширина (см), d - толщина (см), l - расстояние между электродами а и b (см), можно рассчитать удельное сопротивление образца:

$$\rho = \frac{ad}{l} R_{o\delta}$$
 (Om cm)

или обратную величину – удельную электропроводность материала: $\sigma=1/\rho$ (Oм-1 см-1).

6. СХЕМА ЛАБОРАТОРНОЙ УСТАНОВКИ

Внешний вид установки изображен на рис. 6.1, а её схема – на рис. 6.2.

Рис. 6.1. Внешний вид установки

Блок питания (1) содержит в себе два регулируемых стабилизатора тока (для образца и эталонного резистора) и регулируемый источник питания нагревателя образца, напряжение на выходе которого контролируется вольтметром $V_{\rm H}$. На верхней крышке измерительного блока (2) находится трубчатый керамический нагреватель, в котором размещён исследуемый образец и термопара для измерения температуры. Нагреватель с образцом и термопарой закрыт защитным цилиндром. В корпусе измерительного блока (2) располагается эталонный резистор $R_{\rm 9}$, на передней панели — переключатели направления тока образца и компенсации $K_{\rm 1}$ и $K_{\rm 2}$, индикатор компенсации V с переключателем чувствительности «Точно». Измерение токов образца и компенсации производится миллиамперметрами $A_{\rm 1}$ и $A_{\rm 2}$ для измерения ЭДС термопары используется мил-

ливольтметр $V_{\scriptscriptstyle T}$, показания которого пересчитываются в температуру по градуировочному графику (рис. 6.3).

Рис. 6.3. График соответствия ЭДС термопары и температуры спая

Использованное оборудование включает в себя следующие элементы.

Регулируемый стабилизатор тока

Теоретически стабилизатор тока представляет собой источник питания с бесконечно большим выходным сопротивлением и бесконечно большим выходным напряжением. Не путайте его со стабилизатором напряжения, который имеет нулевое выходное сопротивление и может выдать бесконечно большой ток (в теории, конечно).

В качестве управляющего элемента стабилизатора тока используется биполярный транзистор, включённый по схеме с общим эмиттером. Резистором R_6 можно изменять ток базы транзистора, что будет приводить к изменению тока коллектора транзистора (от 0 до 100 мА), в цепь которого включается нагрузка (образец, эталонный резистор). В данной схеме определяющим является свойство транзистора поддерживать определенное значение тока коллектора независимо от напряжения на коллекторе (естественно, в определённом диапазоне и с определённой точностью) (см. рис. 6.4).

Рис. 6.4. Качественный вид выходной вольтамперной характеристики биполярного транзистора, включенного по схеме с общим эмиттером, при различных значениях тока базы. Ік — ток коллектора, Іб — ток базы, Uкэ — напряжение между коллектором и эмиттером

Для увеличения стабильности значения тока служит резистор $R_{\mathfrak{I}}$ (не путайте с эталонным резистором на рис. 5.1), через который осуществляется отрицательная обратная связь по току: если, например, сопротивление образца уменьшится (при его нагреве), ток в цепи образца увеличится, что приведёт к уменьшению тока базы транзистора $I_{\mathfrak{G}}$, т. к. $I_{\mathfrak{G}} = (U_{\mathfrak{I}} - R_{\mathfrak{I}} * I_{\kappa}) / (R_{\mathfrak{G}} + R_{\mathfrak{G}})$, где $R_{\mathfrak{G}}$ – сопротивление перехода база-эмиттер. Уменьшение тока базы уменьшит ток коллектора, а значит, и ток образца, до прежней величины.

Аналогичные по схемному решению стабилизаторы тока используются для подачи тока в цепь компенсации (на эталонный резистор) и на нагреватель.

Миллиамперметры А1, А2

Для измерения тока образца и тока компенсации в установке используется многопредельные миллиамперметры, изготовленные на базе серийного микроамперметра. Как пользоваться многопредельными приборами, можно прочитать на сайте www.rf.unn.ru/eledep в разделе «Студентам — Инструкции к приборам».

Mилливольтметр $V_{\scriptscriptstyle \mathrm{T}}$

Милливольтметр используется для измерения термоЭДС термопары, установленной внутри нагревателя рядом с образцом. По градуировочному графику (рис. 6.3) можно определить температуру спая термопары. Не забывайте, что термопары градуируются при температуре свободных концов 0 °С.

Образец

Измеряемый образец изготовлен из германия, его размеры и расстояние между зондами приведены на передней панели измерительного блока.

Нагревательный элемент

Для нагрева образца с целью снятия зависимости его проводимости от температуры используется трубчатый керамический нагреватель, внутрь которого установлены образец и термопара. Температура нагревателя определяется величиной подаваемого с блока питания напряжения, которое контролируется вольтметром, находящимся на передней панели блока питания. Измерение температуры производится посредством термопары, расположенной внутри нагревателя в непосредственной близости от образца. Максимально допустимая температура образца 250 °C.

Термопара

Термопара служит для измерения температуры образца. Её термоЭДС измеряется милливольтметром $U_{\scriptscriptstyle T}$ и по градуировочному графику (рис. 6.3) пересчитывается в температуру. Не забывайте, что термопары градуируются при температуре свободных концов 0 °C.

Индикатор компенсации

Индикатором компенсации V является милливольтметр с нулём в середине шкалы: он показывает разность между напряжением на измерительных электродах образца и напряжением на эталонном резисторе. С целью расширения диапазона чувствительности индикатора в его цепь включен ограничительный резистор, замыкаемый кнопкой «Точно».

Переключатели направления тока

Переключатели K_1 и K_2 служат для изменения направления тока образца и тока компенсации, что необходимо для исключения влияния паразитных напряжений.

7. ПРАКТИЧЕСКИЕ ЗАДАНИЯ

- 7.1. Произведите измерение электропроводности образца при комнатной температуре. Установив ток образца 5-10 мА, добейтесь нулевого отклонения индикатора компенсации сначала грубой регулировкой тока компенсации, затем точной, нажав при этом кнопку «Точно» на передней панели измерительного блока. Проделайте те же действия, сменив направление тока.
- 7.2. Проведите аналогичные измерения при различных температурах. Включив нагрев образца, установите напряжение нагревателя примерно 10% от максимального значения. Температура устанавливается в течение 5–10 минут. Увеличивая напряжение нагревателя, снимите температурную зависимость тока компенсации (для двух направлений тока при каждом значении температуры) с шагом 15–20 °C.

Максимально допустимая температура образца 250 °C.

С увеличением температуры для обеспечения удовлетворительной точности измерений потребуется увеличить ток образца.

8. ТЕХНИКА БЕЗОПАСНОСТИ

- 8.1. В лабораторной установке используется опасное для жизни напряжение.
- 8.2. Сборку, разборку и изменение схемы можно производить только при выключенном питании.
- 8.3. После сборки схемы перед её включением следует пригласить заведующего лабораторией. Он проверит правильность сборки схемы и проведёт инструктаж по технике безопасности на рабочем месте.

8.4. Защитный цилиндр, расположенный на верхней стенке измерительного блока нагревается до высокой температуры. Остерегайтесь ожога.

9. ЗАДАНИЯ ПО ОБРАБОТКЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 9.1. Построить график полученной зависимости в координатах $\ln(\sigma) 10^3/T$ (Т абсолютная температура в градусах К).
- 9.2. Прологарифмировать выражение (4.4) и найти связь между угловым коэффициентом наклона кривой $\ln(\sigma) 10^3/\mathrm{T}$ и величиной W_g .
- 9.3. Определить угловой коэффициент наклона кривой $\ln(\sigma) 10^3/\mathrm{T}$ в области высоких температур и рассчитать значение W_g (в электронвольтах).
- 9.4. В области истощения примесей определить зависимость $\sigma = f(T)$, считая, что $\sigma \approx T^n$. Ее можно найти, взяв на кривой две точки и воспользовавшись соотношением $\sigma_1/\sigma_2 = (T_1/T_2)^n$.
- 9.5. Определить (экстраполяцией по графику) величину $\sigma_{\rm c}$, соответствующую электропроводности вещества при $T \!\! \to \! \infty$.

10. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что такое разрешенные и запрещенные зоны, уровень Ферми, вырожденные и невырожденные полупроводники, условие электронейтральности полупроводника, подвижность, плотность состояний, концентрация носителей заряда?
- 2. Что такое тип носителей заряда, собственные и примесные полупроводники? Какова энергия ионизации примесных атомов? Каковы механизмы рассеяния носителей заряда в полупроводниках?
- 3. Как зависят от температуры ширина запрещенной зоны, уровень Ферми, подвижность, концентрация носителей заряда, проводимость?
- 4. Методика измерения ширины запрещенной зоны. Как избежать влияния паразитной термоЭДС и контактных сопротивлений при измерениях?

11. СПИСОК ЛИТЕРАТУРЫ

- 1. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М. Высшая школа, 1985
- 2. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1990
- 3. Орешкин П.Т. Физика полупроводников и диэлектриков. М.: Высшая школа, 1976
- 4. Фистуль В.И. Введение в физику полупроводников. М.: Высш. школа, 1984
- 5. Зи С.М. Физика полупроводниковых приборов. М.: Сов. Радио, 1984.

Измерение ширины запрещенной зоны полупроводникового материала

Авторы:

Денис Александрович **Савинов**, Сергей Владимирович **Оболенский**, Екатерина Валерьевна **Волкова** и др.

Практикум

Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им. Н.И. Лобачевского». 603950, Нижний Новгород, пр. Гагарина, 23.

Подписано в печать . Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Гарнитура Таймс. Усл. печ. л. 0,82 . Уч.-изд. л. Заказ № . Тираж 200 экз.

Отпечатано в типографии Нижегородского госуниверситета им. Н.И. Лобачевского 603600, г. Нижний Новгород, ул. Большая Покровская, 37 Лицензия ПД № 18-0099 от 14.05.01