ІДЗ ДО ПРАКТИЧНОГО ЗАНЯТТЯ 6:

СКАЛЯРНИЙ; МІШАНИЙ ТА ВЕКТОРНИЙ ДОБУТКИ ВЕКТОРІВ І ЇХ ЗАСТОСУВАННЯ ДО РОЗВ'ЯЗУВАННЯ ЗАДАЧ

Задача

У декартовій прямокутній системі координат задано точки: $A_1(x_1, y_1, z_1), A_2(x_2, y_2, z_2), A_3(x_3, y_3, z_3), A_4(x_4, y_4, z_4)$ В системі координат *Охуг* побудуйте піріміду $A_1A_2A_3A_4$ та знайдіть:

- I. 1) скалярний добуток векторів $\overrightarrow{A_1}\overrightarrow{A_2}$, $\overrightarrow{A_1}\overrightarrow{A_4}$;
 - 2) кут між векторами $\overrightarrow{A_1 A_2}$, $\overrightarrow{A_1 A_4}$;
 - проекцію вектора $\overrightarrow{A_1 A_2}$ на вектор $\overrightarrow{A_1 A_4}$;
 - проекцію вектора $\overrightarrow{A_1}\overrightarrow{A_4}$ на вектор $\overrightarrow{A_1}\overrightarrow{A_2}$;
- II. 4) векторний добуток векторів $\overline{A_1}\overline{A_2}$, $\overline{A_1}\overline{A_3}$;
 - 5) площу перерізу; який проходить через середину ребра l і дві вершини піраміди
 - 6) перевірити вектори $\overrightarrow{A_2A_3}$ та $\overrightarrow{A_4A_1}$ на ортогональність та колінеарність;
- III. 7) Перевірити вектори $\overline{A_3A_4}$; $\overline{A_2A_3}$ та $\overline{A_1A_4}$ на компланарність;
 - 8) Вказати; яку тройку векторів: праву чи ліву задають вектори $\overrightarrow{A_3A_2}$; $\overrightarrow{A_1A_4}$ та $\overrightarrow{A_1A_3}$ у вказаній послідовності;
 - 9) Обчислити об'єм піраміди $A_1A_2A_3A_4$.

Варіанти завдань:

N⁰	m ; A ₁	m; A ₂	m ; A ₃	m; A ₄	Ребро l	Вершини
					(див. п.4)	(див. п.5)
1.	$A_1(1;4;1)$	$A_2(3; 2; 1)$	$A_3(1;-1;-3)$	$A_4(10;7;4)$	A_1A_3	A_2 та A_4
2.	$A_1(-2;3;-2)$	$A_2(-3;5;4)$	$A_3(6;5;3)$	$A_4(2; -3; 4)$	A_4A_3	A_2 та A_1
3.	$A_1(-3;-5;6)$	$A_2(2;7;-2)$	$A_3(9; 6; 3)$	$A_4(7;5;3);$	A_1A_4	A_2 та A_3
4.	$A_1(6; -3; 2)$	$A_2(4;8;-3)$	$A_3(3;6;-4)$	$A_4(5; 3; 3)$	A_1A_2	A_4 та A_3
5.	$A_1(4; 6; 3)$	$A_2(-6;2;6)$	$A_3(3;-2;3)$	$A_4(-5; 6; 4)$	A_4A_2	A_3 та A_1
6.	$A_1(2; 3; -4)$	$A_2(8;-3;2)$	$A_3(6;5;-3)$	$A_4(-4; 2; 3)$	A_3A_2	A_4 та A_1

7.	$A_1(-2;3;4)$	$A_2(5;5;6)$	$A_3(2;3;4)$	$A_4(4;-3;2)$	A_1A_3	A_2 та A_4
8.	$A_1(8;7;5)$	$A_2(4;-3;2)$	$A_3(6;4;1)$	$A_4(-2;5;8)$	A_4A_3	A_2 та A_1
9.	$A_1(-5; 6; 4)$	$A_2(8; 9; 10)$	$A_3(4; 8; 7)$	$A_4(-2; 1; 5)$	A_1A_4	A_2 та A_3
10.	$A_1(2;-1;2)$	$A_2(3; 2; -2)$	$A_3(-3;6;-2)$	$A_4(4;-1;-3)$	A_1A_2	A_4 та A_3
11.	$A_1(1;-1;3)$	$A_2(8;5;3)$	$A_3(9; 6; 3)$	$A_4(3;6;-4)$	A_4A_2	A_3 Ta A_1
12.	$A_1(-5; 6; 1)$	$A_2(-1;3;0)$	$A_3(1;-2;2)$	$A_4(-1; 1; 3)$	A_3A_2	A_4 та A_1
13.	$A_1(1;-7;5)$	$A_2(0; -9; 7)$	$A_3(2;3;-2)$	$A_4(-3;1;-1)$	A_1A_3	A_2 та A_4
14.	$A_1(5; 2; 3)$	$A_2(7;5;-6)$	$A_3(-2;-5;-1)$	$A_4(-1;-1;-1)$	A_4A_3	A_2 та A_1
15.	$A_1(-2;4;2)$	$A_2(3;7;0)$	$A_3(5;4;3)$	$A_4(-1; -3; 2)$	A_1A_4	A_2 та A_3
16.	$A_1(6; 5; 4)$	$A_2(9; -2; 7)$	$A_3(6;4;1)$	$A_4(8; 3; 2)$	A_1A_2	A_4 та A_3
17.	$A_1(3;4;-1)$	$A_2(5;-1;1)$	$A_3(-2;0;3)$	$A_4(-3; -5; 5)$	A_4A_2	A_3 та A_1
18.	$A_1(2; 3; 4)$	$A_2(11;4;7)$	$A_3(6; 10; 12)$	$A_4(4;-1;5)$	A_3A_2	A_4 та A_1
19.	$A_1(1; 8; -3)$	$A_2(9; -2; 4)$	$A_3(12;5;4)$	$A_4(8; -2; 4)$	A_1A_3	A_2 та A_4
20.	$A_1(4; -3; 5)$	$A_2(6; 9; 0)$	$A_3(7; 3; 4)$	$A_4(2;3;5)$	A_4A_3	A_2 та A_1
21.	$A_1(1; 1; 1)$	$A_2(2;-1;1)$	$A_3(4;-2;3)$	$A_4(8; -4; 5)$	A_1A_4	A_2 та A_3
22.	$A_1(6; -3; 2)$	$A_2(5; 1; 4)$	$A_3(2; 1; 1)$	$A_4(4; 0; -2)$	A_1A_2	A_4 та A_3
23.	$A_1(0; -2; 1)$	$A_2(4;-2;1)$	$A_3(-2; 0; -2)$	$A_4(-10;2;-3)$	A_4A_2	A_3 та A_1
24.	$A_1(9; 7; 4)$	$A_2(3;-2;-5)$	$A_3(4; 7; 6)$	$A_4(8; 0; -4)$	A_3A_2	A_4 та A_1
25.	$A_1(1; 1; -3)$	$A_2(-2;-1;1)$	$A_3(3; 1; -2)$	$A_4(8; 2; -3)$	A_1A_3	A_2 та A_4
26.	$A_1(6;4;-1)$	$A_2(-2;5;-2)$	$A_3(3;3;5);$	$A_4(4; -4; 3);$	A_4A_3	A_2 та A_1
27.	$A_1(4; -3; 3)$	$A_2(5; 2; 6)$	$A_3(2;3;2)$	$A_4(5; 0; -2)$	A_1A_4	A_2 та A_3
28.	$A_1(5; 2; -4)$	$A_2(8;-1;7)$	$A_3(5; 6; 3)$	$A_4(-1;4;2)$	A_1A_2	A_4 та A_3
29.	$A_1(-1;4;4)$	$A_2(7; 6; 3)$	$A_3(2;4;7)$	$A_4(7; -5; 3)$	A_4A_2	A_3 та A_1
30.	$A_1(6; 6; 4)$	$A_2(5;-4;1)$	$A_3(7; 8; 3)$	$A_4(-4; 6; 2)$	A_3A_2	A_4 та A_1

ТИПОВИЙ ВАРАНТ РОЗВ'ЯЗКУ

Задача

У декартовій прямокутній системі координат задано точки:

$$A_1(1;4;-2), A_2(-1;8,3), A_3(2;-2;4), A_4(5;7;-6)$$

В системі координат Oxyz побудуємо піраміду $A_1A_2A_3A_4$; а потім перейдемо до розв'язання задачі ($\partial u B. \ nidpyчник \ \Gamma eomempii з \ школи$):

рисунок 1

Частина I. Скалярний добуток векторів

1) Знайти скалярний добуток векторів $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_4}$;

1. По координатах точок A_1 ; A_2 ; A_4 знайдемо координати векторів $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_4}$; скориставшись формулами із шкільного курсу математики

$$\begin{cases} x = x_2 - x_1 \\ y = y_2 - y_1 \\ z = z_2 - z_1 \end{cases}$$
; де $\vec{a}(x; y; z)$; Тоді $\overrightarrow{A_1 A_2}(-2; 4; 5)$

2. Скористаємося алгебраїчною формою веторного добутку векторів; а саме для

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}; \ \vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k};$$

скалярний добуток двох векторів рівний сумі добутків їх відповідних координат:

$$\left(\vec{a}\;,\,\vec{b}\;\right) = a_x b_x + a_y b_y + a_z b_z$$
 Тоді $\left(\overrightarrow{A_1}\overrightarrow{A_2},\,\overrightarrow{A_1}\overrightarrow{A_4}\right) = -2\cdot 4 + 4\cdot 3 + 5\cdot (-4) = -8 + 12 - 20 = -16$ Відповідь: $\left(\overrightarrow{A_1}\overrightarrow{A_2},\,\overrightarrow{A_1}\overrightarrow{A_4}\right) = -16$

2) Знайти кут між векторами $\overrightarrow{A_1}\overrightarrow{A_2}$ і $\overrightarrow{A_1}\overrightarrow{A_4}$;

1. Скористаємося формулою для знаходження косинуса кута між векторами:

$$\cos\left(\vec{a},\vec{b}\right) = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \sqrt{b_x^2 + b_y^2 + b_z^2}} = \frac{\left(\vec{a},\vec{b}\right)}{|\vec{a}||\vec{b}|}$$

2. Тоді
$$\left| \overrightarrow{A_1 A_2} \right| = \sqrt{(-2)^2 + 4^2 + 5^2} = \sqrt{4 + 16 + 25} = \sqrt{45} = 3\sqrt{5}$$

$$\left| \overrightarrow{A_1 A_4} \right| = \sqrt{4^2 + 3^2 + (-4)^2} = \sqrt{16 + 9 + 16} = \sqrt{41}$$

$$\cos\left(\overrightarrow{A_1 A_2} , \overrightarrow{A_1 A_4} \right) = \frac{-16}{3\sqrt{5} \cdot \sqrt{41}} = -\frac{16}{3\sqrt{205}}$$

Bidnosidb:
$$\angle A_2 A_1 A_4 = \left(\overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_4}\right) = \arccos\left(-\frac{16}{3\sqrt{205}}\right)$$

3) Знайдемо:

- проекцію вектора $\overrightarrow{A_1}\overrightarrow{A_2}$ на вектор $\overrightarrow{A_1}\overrightarrow{A_4}$;
- проекцію вектора $\overrightarrow{A_1}\overrightarrow{A_4}$ на вектор $\overrightarrow{A_1}\overrightarrow{A_2}$;

Знайдемо довжини проекцій на заданий напрямок; скориставшись співвідношенніми:

$$np_{\vec{b}}\vec{a} = \frac{\left(\vec{a},\vec{b}\right)}{\left|\vec{b}\right|}; \quad np_{\vec{a}}\vec{b} = \frac{\left(\vec{a},\vec{b}\right)}{\left|\vec{a}\right|};$$

Тоді:

$$np_{\overline{A_1}\overline{A_4}}\overline{A_1}\overline{A_2} = \frac{\left(\overline{A_1}\overline{A_2}, \overline{A_1}\overline{A_4}\right)}{\left|\overline{A_1}\overline{A_4}\right|} = -\frac{16}{\sqrt{41}}$$

$$np_{\overline{A_1}\overline{A_2}}\overline{A_1}\overline{A_4} = \frac{\left(\overline{A_1}\overline{A_2}, \overline{A_1}\overline{A_4}\right)}{\left|\overline{A_1}\overline{A_2}\right|} = -\frac{16}{3\sqrt{5}}$$

Bionosios:
$$np_{\overline{A_1A_4}} \overrightarrow{A_1A_2} = -\frac{16}{\sqrt{41}}; \quad np_{\overline{A_1A_2}} \overrightarrow{A_1A_4} = -\frac{16}{3\sqrt{5}}$$

Частина II; Векторний добуток векторів

4) Знайти векторний добуток векторів $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$;

Так як вектори задано їх координатами $\overline{A_1}A_2$ (-2;4;-5) та $\overline{A_1}A_4$ (4;3;-4); то скористаємося алгебраїчною формою векторного добутку; а саме для

$$\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}; \ \vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k};$$

$$\begin{bmatrix} \vec{a} \times \vec{b} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Тоді

$$\begin{bmatrix} \overrightarrow{A_1} \overrightarrow{A_2} \times \overrightarrow{A_1} \overrightarrow{A_3} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -2 & 4 & -5 \\ 4 & 3 & -4 \end{vmatrix} = a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} = a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13} = a_{11} M_{12} + a_{12} M_{13} + a_{13} M_{13} = a_{11} M_{12} + a_{12} M_{13} + a_{$$

Bidnosids:
$$(-1;-28;-22)$$

- 5) Знайти площу перерізу; який проходить через середину ребра $l = A_1 A_3$ і дві вершини піраміди A_2 та A_4 ;
- 1) На рисунку 2 зображено переріз $A_5A_2A_3$

2) Знайти площу цього перерізу означає знайти площу трикутника $A_5A_2A_4$ Для цього скористаємося геометричним змістом векторного добутку векторів:

$$S_{\Delta} = \frac{1}{2} \left[\overrightarrow{A_4 A_5} \times \overrightarrow{A_4 A_2} \right]$$

!!! При обчисленні площі Δ або паралелограма; побудованого на 2-х векторах; необхідно; щоб обидва вектори мали спільний початок (*див. рис.* 2);

3) Щоб знайти координати вектора $\overrightarrow{A_4A_5}$ знайдемо координати $m.A_5$; За умовою вона ϵ серединою ребра A_1A_3 ; тоді координати $m.A_5$ знайдемо як координати середини відрізка A_1A_3 :

$$x = \frac{1+2}{2} = \frac{3}{2}; \quad y = \frac{4-2}{2} = 1; \quad z = \frac{-2+4}{2} = 1 \Rightarrow A_5\left(\frac{3}{2};1;1\right)$$

Тоді $\overline{A_4}\overline{A_5}$ (-3,5;-6;7); $\overline{A_4}\overline{A_2}$ (-6;1;9)

4) Перейдемо до обчислень:

$$\begin{bmatrix} \overline{A_4} \overline{A_5} \times \overline{A_4} \overline{A_2} \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3.5 & -6 & 7 \\ -6 & 1 & 9 \end{vmatrix} = \vec{i} \begin{vmatrix} -6 & 7 \\ 1 & 9 \end{vmatrix} - \vec{j} \begin{vmatrix} -3.5 & 7 \\ -6 & 9 \end{vmatrix} + \vec{k} \begin{vmatrix} -3.5 & -6 \\ -6 & 1 \end{vmatrix} =$$

$$= \vec{i} \begin{vmatrix} -6 & 7 \\ 1 & 9 \end{vmatrix} + \vec{j} \begin{vmatrix} 3.5 & 7 \\ 6 & 9 \end{vmatrix} - \vec{k} \begin{vmatrix} 3.5 & -6 \\ 6 & 1 \end{vmatrix} = -61\vec{i} - 10.5\vec{j} - 39.5\vec{k}$$

Тоді шукана площа перерізу (трикутника $A_5A_2A_4$) буде обчислена за формулою:

$$S_{\Delta} = \frac{1}{2} \left[\overrightarrow{A_4 A_5} \times \overrightarrow{A_4 A_2} \right] = \frac{1}{2} \sqrt{61^2 + (10,5)^2 + (39,5)^2};$$

Bidnobids: $S_{A_5A_2A_4} = \frac{1}{2}\sqrt{61^2 + (10.5)^2 + (39.5)^2};$

6) Перевірити вектори $\overrightarrow{A_2A_3}$ та $\overrightarrow{A_4A_1}$ на ортогональність та колінеарність.

Врахуємо; що вектори мають такі координати $\overrightarrow{A_2A_3}(3;-10;1)$ та $\overrightarrow{A_4A_1}(-4;-3;4)$;

1. Скористаємося умовою ортогональності двох векторів:

Якщо (\vec{a},\vec{b}) =0; то \vec{a} i \vec{b} ортогональні $(\vec{a} \perp \vec{b})$;

Тоді $(\overline{A_2A_3}, \overline{A_4A_1}) = 3 \cdot (-4) + (-10) \cdot (-3) + 1 \cdot 4 = 22 \Rightarrow$ вектори $\overline{A_2A_3}$ та $\overline{A_4A_1}$ не ортогональні;

2. Скористаємося умовою колінеарності двох векторів: Якщо $\left[\vec{a} \times \vec{b}\right] = 0$; то $\vec{a} \parallel \vec{b}$; Тоді

$$\begin{bmatrix} \overrightarrow{A_2} \overrightarrow{A_3} \times \overrightarrow{A_4} \overrightarrow{A_1} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & -10 & 1 \\ -4 & -3 & 4 \end{vmatrix} = \overrightarrow{i} \begin{vmatrix} -10 & 1 \\ -3 & 4 \end{vmatrix} - \overrightarrow{j} \begin{vmatrix} 3 & 1 \\ -4 & 4 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} 3 & -10 \\ -4 & -3 \end{vmatrix} = -37\overrightarrow{i} - 16\overrightarrow{j} - 49\overrightarrow{k} \neq \overrightarrow{0}$$

Відповідь: Вектори $\overrightarrow{A_2A_3}$ та $\overrightarrow{A_4A_1}$ не колінеарні.

Частина III. Мішаний добуток векторів

7) Перевірити вектори $\overrightarrow{A_3A_4}$; $\overrightarrow{A_2A_3}$ та $\overrightarrow{A_1A_4}$ на компланарність .

Скористаємося висновками із лекції:

якщо вектори
$$\vec{a}$$
, \vec{b} i \vec{c} компланарніб, то $(\vec{a}, \vec{b}, \vec{c}) = 0$.

Тоді

$$\left(\overrightarrow{A_3}\overrightarrow{A_4}, \overrightarrow{A_2}\overrightarrow{A_3}, \overrightarrow{A_1}\overrightarrow{A_4}\right) = \begin{vmatrix} 3 & 9 & -10 \\ 3 & -10 & 1 \\ 4 & 3 & -4 \end{vmatrix} = 120 - 90 + 36 - 400 - 9 + 108 = -235 \neq 0$$

Відповідь: вектори $\overrightarrow{A_3A_4}$; $\overrightarrow{A_2A_3}$ та $\overrightarrow{A_1A_4}$ не компланарні \Rightarrow вони лінійно незалежні \Rightarrow їх можна прийняти за базисні та на основі цих векторів побудувати систему координат

8) Вказати; яку трійку векторів: праву чи ліву задають вектори $\overrightarrow{A_3A_2}$; $\overrightarrow{A_1A_4}$ та $\overrightarrow{A_1A_3}$ у вказаній послідовності

Скористаємося висновками із лекції:

- $\mathit{якщо}\left(\vec{a},\vec{b},\vec{c}\right) > 0$ задано праву трійку векторів;
- $\mathit{якщо}\left(\vec{a},\vec{b},\vec{c}\right) < 0$ задано ліву трійку векторів.

Τολί

$$\left(\overrightarrow{A_3}\overrightarrow{A_2}, \overrightarrow{A_1}\overrightarrow{A_4}, \overrightarrow{A_1}\overrightarrow{A_3}\right) = \begin{vmatrix} -3 & 10 & -1 \\ 4 & 3 & -4 \\ 1 & -6 & 6 \end{vmatrix} = -54 + 24 - 40 + 3 + 72 - 240 = -235 < 0 \implies$$
 задано ліву

трійку векторів.

 $Bi\partial noвi\partial b$: у вказаній послідовності вектори $\overline{A_3A_2}$; $\overline{A_1A_4}$ та $\overline{A_1A_3}$ від'ємно орієнтовані.

9) Обчислити об'єм піраміди $A_1A_2A_3A_4$.

Увага!!!

!!! При обчисленні об'єму призми і пірамід із застосуванням мішаного добутку векторів, необхідно пам'ятати, що всі 3 вектори повинні мати спільний початок

 $To \partial i$ на векторах $\overrightarrow{A_1} \overrightarrow{A_2}$; $\overrightarrow{A_1} \overrightarrow{A_3}$ та $\overrightarrow{A_1} \overrightarrow{A_4}$ побудуємо піраміду $A_1 A_2 A_3 A_4$.

$$\begin{split} V &= \frac{1}{6} \left| \left(\overrightarrow{A_1} \overrightarrow{A_2}, \overrightarrow{A_1} \overrightarrow{A_3}, \overrightarrow{A_1} \overrightarrow{A_4} \right) \right| = \frac{1}{6} \begin{vmatrix} -2 & 4 & -5 \\ 1 & -6 & 6 \\ 4 & 3 & -4 \end{vmatrix} = \\ &= \frac{1}{6} \cdot \left| -48 + 96 - 15 - 120 + 36 + 16 \right| = \frac{1}{6} \cdot \left| -35 \right| = \frac{35}{6} \text{ куб. од.} \end{split}$$

Відповідь:
$$V_{A_1A_2A_3A_4.} = \frac{35}{6}$$
 куб. од.