Estatística e Probabilidade - Avaliação Presencial - 2023/02 - Gabarito

Questão 1:

- a) Segue abaixo interpretação e cálculo da probabilidade dos eventos pedidos:
 - A = "os destroços estão na região" e $\mathbb{P}(A) = 1/2$, conforme informado pelo enunciado.
 - A^c = "os destroços não estão na região" e $\mathbb{P}(A^c) = 1 \mathbb{P}(A) = 1/2$.
 - B|A= "os destroços são encontrados dado que estão na região" e $\mathbb{P}(A)=3/4$, conforme informado pelo enunciado.
 - $B^c|A=$ "os destroços não são encontrados dado que estão na região" e $\mathbb{P}(B^c|A)=1-\mathbb{P}(B|A)=1/4$.
 - $B|A^c$ = "os destroços são encontrados dado que não estão na região" e $\mathbb{P}(B|A^c) = 0$, pois é impossível achar destrocos que não estão na região!
 - $B^c|A^c$ = "os destroços não são encontrados dado que não estão na região" e $\mathbb{P}(B^c|A^c) = 1 \mathbb{P}(B|A^c) = 1$; de outra forma, com certeza não iremos encontrar destroços que não estão na região!
- b) Queremos calcular $\mathbb{P}(B)$:

$$\begin{split} \mathbb{P}(B) &= \mathbb{P}(B|A)\mathbb{P}(A) + \mathbb{P}(B|A^c)\mathbb{P}(A^c) \\ &= \frac{3}{4} \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} \\ &= \frac{3}{8}. \end{split}$$

c) Queremos atualizar $\mathbb{P}(A)$ à luz do conhecimento do evento B^c , ou seja, queremos calcular $\mathbb{P}(A|B^c)$. Pelo Teorema de Bayes e por resultados obtidos nos itens a) e b), temos que:

$$\mathbb{P}(A|B^c) = \frac{\mathbb{P}(B^c|A)\mathbb{P}(A)}{\mathbb{P}(B^c)}$$
$$= \frac{1/4 \cdot 1/2}{5/8}$$
$$= \frac{1}{5}.$$

Questão 2:

a) O tempo de duração de todos os componentes será dado por $S_{50} = T_1 + \cdots + T_{50}$, pois cada T_i é o tempo de funcionamento de um componente, e eles são substituídos instantaneamente quando dão defeito. Queremos calcular então a probabilidade de que S_{50} seja menor que ou igual à quantidade de dias da missão. Para utilizarmos o Teorema Central do Limite, usando que $\mathbb{E}[T_i] = 2$, temos que λ , o parâmetro comum das exponenciais de cada T_i , é igual a 1/2. Dessa forma, além de $\mu = \mathbb{E}[T_i] = 2$ temos que $\sigma^2 = \mathbb{V}(T_i) = 4$, e portanto, $\sigma = \mathrm{dp}(T_i) = 2$. Dessa forma, denotando por Z uma variável aleatória normal padrão, temos que:

$$\mathbb{P}(S_{50} \le 100) = \mathbb{P}\left(\frac{S_{50} - 50 \cdot \mu}{\sigma\sqrt{50}} \le \frac{100 - 50 \cdot \mu}{\sigma\sqrt{50}}\right)$$

$$\approx \mathbb{P}\left(Z \le \frac{100 - 50 \cdot 2}{2\sqrt{50}}\right)$$

$$= \mathbb{P}(Z \le 0)$$

$$= \frac{1}{2},$$

pela simetria da Normal em torno de sua média.

b) Queremos agora responder a seguinte pergunta: para qual valor de t temos que $\mathbb{P}(S_{50} \geq t) = 0,999$? Note que, ao contrário do item a), a desigualdade está no sentido oposto pois queremos que a quantidade de componentes seja suficiente para concluir a missão em segurança. Repetindo o raciocínio do item a) e novamente denotando por Z uma variável aleatória normal padrão, temos que:

$$\mathbb{P}(S_{50} \ge t) = \mathbb{P}\left(\frac{S_{50} - 50 \cdot \mu}{\sigma\sqrt{50}} \ge \frac{t - 50 \cdot \mu}{\sigma\sqrt{50}}\right)$$
$$\approx \mathbb{P}\left(Z \ge \frac{t - 50 \cdot 2}{2\sqrt{50}}\right)$$
$$= 0.999.$$

Conforme informado pelo enunciado, temos que

$$\frac{t-50\cdot 2}{2\sqrt{50}} = -3.$$

Usando a aproximação roubadíssima de $\sqrt{50} \approx 7$ e resolvendo para t, temos que $t \approx 58$ dias.

- c) Para um componente específico, temos que T representa o seu tempo de vida. Tendo T uma distribuição exponencial com parâmetro $\lambda=1/2$, sabemos que, se X representa a quantidade de falhas do componente por dia, X tem distribuição de Poisson com o mesmo parâmetro $\lambda=1/2$. Como o componente deve ser substituído assim que falha, X representa também a quantidade de componentes utilizados por dia no ônibus espacial.
- d) Se X_i é o número de componentes utilizados no dia i da missão, então o número de componentes utilizados ao longo de toda a missão é dado por $Y = X_1 + \cdots + X_{100}$. Vimos em aula que soma de Poisson é Poisson, e dessa forma Y também tem distribuição de Poisson, com parâmetro igual à soma dos parâmetros das distribuições somadas, ou seja, $100 \cdot 1/2 = 50$. Outra forma de pensar é pegando gancho no item c): lá X representava a quantidade de componentes utilizados em um único dia. Para mudar a escala de referência de "um dia" para "100 dias", a distribuição ainda será Poisson, e para encontrar seu parâmetro basta multiplicar o parâmetro de X por 100.

Questão 3:

a) Para que f_X seja de fato uma densidade, ela tem que ser positiva e integrar um. Temos então que:

$$1 = \int_{-\infty}^{+\infty} f_X(x) dx$$
$$= \int_{2}^{\infty} \frac{C}{x^2} dx$$
$$= \left[-\frac{C}{x} \right]_{x=2}^{x=\infty}$$
$$= \frac{C}{2},$$

de modo que C = 2. Como tal valor é positivo, temos adicionalmente que $f_X(x) \ge 0$ para todo x, de modo que f_X é de fato uma função densidade de probabilidade.

b) Para encontrar a mediana, queremos encontrar μ tal que

$$\int_{2}^{\mu} \frac{2}{x^{2}} dx = \mathbb{P}(X \le \mu) = \mathbb{P}(X \ge \mu) = \int_{\mu}^{\infty} \frac{2}{x^{2}} dx = \frac{1}{2}.$$

Escolhendo uma das integrais para resolver (escolhi a da direita), temos que:

$$\frac{1}{2} = \int_{2} \mu^{\infty} \frac{2}{x^{2}} dx$$
$$= \left[-\frac{2}{x} \right]_{x=\mu}^{x=\infty}$$
$$= \frac{2}{\mu},$$

de modo que $\mu = 4$.

c) Calculemos, primeiramente $\mathbb{E}[X]$. Pela definição, temos que:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f_X(x) \ dx$$
$$= \int_{2}^{\infty} x \cdot \frac{2}{x^2} \ dx$$
$$= 2 \int_{2}^{\infty} \frac{1}{x} \ dx$$
$$= 2 \ln(x) \Big|_{x=2}^{x=\infty}$$
$$= \infty.$$

O valor a ser pago é de $0,1\mathbb{E}[X]$, mas como $\mathbb{E}[X]$ é infinito, o valor a ser pago é infinito! Mesmo dividindo em suaves prestações, esse parece ser um péssimo negócio!