Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ФизМех

Направление подготовки «01.03.02 Прикладная математика и информатика»

Отчет по лабораторной работе N 1 тема "Интерполяция табличных функций" Дисциплина "Численные методы"

Выполнил студент гр. 5030102/00001 Преподаватель:

Золин И.М.

Добрецова С.Б.

Санкт-Петербург

2022

1 Формулировка задачи и её формализация

1.1 Формулировка задания

Нам дан набор точек $(x_i, y_i), i = 0, ..., n$ и их количество (n+1). пусть $x^h = \{x_i\}_{i=0}^n$ - сетка, $y^h = \{y_i\}_{i=0}^n$ - сеточная функция. Пусть табличная функция задана парой элементов (x^h, y^h) . Требуется построить функцию $\phi(x)$ в форме интерполяционного полинома Лангранжа, которая удовлетворяет критерию близости: $\phi(x) \approx (x^h, y^h)$

Для построения полинома необходимо использовать чебышевскую сетки.

Также нужно исследовать влияние количества узлов на точность интерполяции и сходимость интерполяционного процесса.

2 Алгоритм метода и условия его применимости

2.1 Построение интерполяционного полинома в форме Лангранжа:

2.1.1 Алгоритм

1. Входные данные: пусть x – аргумент интерполяционного полинома; x^h, y^h – сетка и сеточная функция;

Построение чебышевской сетки на выбранном интервале:
$$x^{(0)}\in R^n, y^{(1)}=A*x^{(1)}x^{(1)}=\frac{y^{(1)}}{\mu_1}, \mu_1=||x^{(1)}||$$

2.2Построение чебышевской сетки на выбранном интервале:

Строим чебышевскую сетку на отрезке [a, b] на к узлах. Сетку записываем в массив x^h : $t_k \in [-1, 1], x^h \in [a, b]$

$$t_k = 0$$
 для k от 0 до n:
$$t_k = \cos(\frac{\pi \cdot (2k+1)}{2 \cdot (n+1)})$$
 $x_k^h = \frac{a+b}{2} + \frac{b-a}{2} \cdot t_k$ конен никла.

2.3Условия применимости метода

Критерии существования и единственности интерполяционного полинома:

- 1. Степень полинома должна быть на 1 меньше, чем количество точек.
 - $2. x_i$ должны быть попарно различны Проверка:
- 1. Табличная функция задана: $(x_i, y_i), i = 0, \dots, n$. Следовательно, количество точек (n+1). Полином Лагранжа строится по формуле $L_n(x) = \sum_{i=0}^n y_i \cdot \prod_{k=0, k \neq i}^n \frac{(x-x_k)}{(x_i-x_k)}$, степень этого полинома п. Поэтому степень полинома Лагранжа всегда на 1 меньше, чем количество точек. Условие выполнено.
- 2. Мы строим сетку с учетом того, что x_i не повторяются. Потому что в случае равномерной сетки мы к одному и тому же числу прибавляем разные числа, которые не повторяются. А в случае чебышевской сетки мы сначала считаем корни полинома Чебышева на отрезке [0, 1], они различны. Затем переводим их в наш отрезок интерполяции, что тоже приводит к различным узлам сетки.

3 Предварительный анализ задачи

Согласно теореме: если матрица вещественная и симметричная, то она является матрицей простой структуры. Будем задавать матрицы, удовлетворяющие данному критерию.

Такие матрицы будем искать с помощью QR-разложения из пакета Matlab, где матрица Q — ортогональная, R - верхнетреугольная. (Генерируются матрица, полученную матрицу представляем в виде QR-разложения, т.е. умножения 2 матриц Q и R). С помощью QR-разложения находим матрицу Q.

Задается диагональная матрица D, у нее на диагонали – собственные числа.

Нужная симметричная матрица получается следующим образом: $A = Q \cdot D \cdot Q^T$

4 Тестовый пример с детальными расчётами для задачи малой размерности

5 Подготовка контрольных тестов

Создаётся симметричная матрица $A_{10\times 10}$ для нахождения собственных чисел с помощью метода скалярных произведений с точностью $\epsilon=10^{-i}$, где $i\in[0,14], i\in\mathbb{N}$. Собственные числа:[-10, 10, 1, 8, 2, 7, 6, 5, 3, 4]

6 Модульная структура программы

ScalarProductMethod(вх: A, ϵ , вых: $\lambda_{1,2}, w_{1,2}, n$) Находит максимальные собственные числа разные по знаку матрицы А $\lambda_{1,2}$ и соответствующие им собственные вектора $w_{1,2}$ с помощью метода скалярных произведений за п итераций с заданной точностью ϵ .

7 Анализ результатов

1.По графику зависимости количества итераций метода скалярных произведений от заданной точности видно, что количество итераций увеличивается линейно [4 5 7 9 11 14 16 19 24 29

- $34\ 39\ 44\ 50$]. При изменении ϵ на порядок количество итераций изменяется примерно на 20.
- 2. Графики заивисимости с.в. и невязок от заданной точности линейны.

8 Выводы

- 1. Увеличение количества узлов сетки, на которой строится интерполяционный полином, не приводит к снижению погрешности.
- 2. При выборе большого числа узлов в случае равномерной сеток норма вектора ошибки интерполяции возрастает. Для сетки Чебышева при большом числе узлов ошибка будет увеличиваться, но не так сильно, как в случае с равномерной сеткой. Это значит, что выбор большого числа точек только ухудшает процесс интерполяции.
- 3. Для построения интерполяционного полинома лучше использовать сетку Чебышева. Такая сетка в большинстве случаев уменьшит ошибку построения интерполяционного полинома.