Obsah

1	Posloupnosti a řady funkcí více proměnných							
	1.1	loupnosti a řady funkcí více proměnných Co zpracovat:						
2	Funkcionální Hilbertovy prostory							
	2.1	Výchozí pojmy						
		Prehilbertovské prostory funkcí						
		Faktorové prostory funkcí, Hilbertovy prostory						
3	Teor	Teorie pravděpodobnosti						
	3.1	Axiomatická definice pravděpodobnosti						
	3.2	Absolutně spojitá náhodná veličina						
	3.4	Konvoluce funkcí						
	3.5	Báze ve funkcionálních Hilbertových prostorech						

Kapitola 1

Posloupnosti a řady funkcí více proměnných

1.1 Co zpracovat:

1. je ale $\mathscr{C}(\langle a,b\rangle)$ úplný? (není) - zmínit, okomentovat a vložit asi jako poznámku za poznámku 2.2.12, možná na vhodném místě zmínit definici úplnosti (možná už to někde je, teď si nejsem jistej)

1.1.1 Definice

Nechť $\emptyset \neq M \subset \mathbf{E}^r$. Potom každé zobrazení množiny \mathbf{N} do množiny všech funkcí definovaných na M nazýváme posloupností funkcí na M. Je-li číslu $n \in \mathbf{N}$ tímto způsobem přiřazena funkce $f_n(\vec{x})$, zapisujeme funkční posloupnost

$$f_1(\vec{x}), f_2(\vec{x}), \dots$$
 nebo $(f_n(\vec{x}))_{n=1}^{\infty}$. (1.1)

Přirozené číslo n přitom nazýváme *indexem* a funkci $f_n(\vec{x})$ n-tým členem posloupnosti (1.1).

1.1.2 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině $M \subset \mathbf{E}^r$. Řekneme, že posloupnost funkcí (1.1) konverguje v bodě $\vec{c} \in M$, jestliže konverguje číselná posloupnost $\left(f_n(\vec{c})\right)_{n=1}^{\infty}$, tj. existuje-li $\gamma \in \mathbf{R}$ takové, že pro každé $\varepsilon > 0$ existuje přirozené n_0 tak, že pro všechna $n \ge n_0$ platí nerovnost $\left|f_n(\vec{c}) - \gamma\right| < \varepsilon$. Řekneme, že posloupnost funkcí (1.1) konverguje (bodově) na množině $N \subset M$, jestliže konverguje v každém bodě množiny N.

1.1.3 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině $M \subset \mathbf{E}^r$. Nechť pro každé $\vec{c} \in N$, kde $N \subset M$, posloupnost $\left(f_n(\vec{c})\right)_{n=1}^\infty$ konverguje. Označme $f(\vec{c})$ hodnotu limity posloupnosti $\left(f_n(\vec{c})\right)_{n=1}^\infty$. Tímto způsobem je na množině N definována funkce $\vec{x} \mapsto f(\vec{x})$, kterou nazýváme limitou posloupnosti funkcí (1.1) (nebo zkráceně limitní funkcí) a značíme

$$f(\vec{x}) = \lim_{n \to \infty} f_n(\vec{x}).$$

Oborem konvergence \mathcal{O} posloupnosti (1.1) nazýváme množinu všech bodů $\vec{c} \in M$, ve kterých tato posloupnost konverguje.

1.1.4 Definice

Nechť (1.1) je posloupnost funkcí definovaných na množině $M \subset \mathbf{E}^r$. Řekneme, že tato posloupnost *stejnoměrně konverguje* $na\ M$ k funkci $f(\vec{x})$, jestliže pro všechna $\varepsilon > 0$ existuje n_0 tak, že pro všechna $n \geqslant n_0$ a pro všechna $\vec{x} \in M$ platí nerovnost $|f_n(\vec{x}) - f(\vec{x})| < \varepsilon$.

1.1.5 Poznámka

Bodovou konvergenci značíme obyčejně symbolem $f_n(\vec{x}) \to f(\vec{x})$, stejnoměrnou pak $f_n(\vec{x}) \rightrightarrows f(\vec{x})$. Rozdíl mezi bodovou a stejnoměrnou konvergencí je dobře patrný z kvantifikátorového zápisu definic obou pojmů:

bodová konvergence

$$(\forall \varepsilon > 0) (\forall \vec{x} \in M) (\exists n_0 \in \mathbf{N}) : \qquad n \in \mathbf{N} \land n \geqslant n_0 \Rightarrow |f_n(\vec{x}) - f(\vec{x})| < \varepsilon. \tag{1.2}$$

stejnoměrná konvergence

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) : \qquad n \in \mathbf{N} \land n \geqslant n_0 \land \vec{x} \in M \Rightarrow |f_n(\vec{x}) - f(\vec{x})| < \varepsilon.$$
 (1.3)

Stejnoměrná konvergence tedy požaduje existenci "univerzálního" n_0 , které plní svoji roli pro všechna $\vec{x} \in M$.

1.1.6 Věta – Bolzanova-Cauchyova podmínka

Posloupnost funkcí (1.1) je stejnoměrně konvergentní na $M \subset \mathbf{E}^r$ právě tehdy, když splňuje tzv. *Bolzanovu-Cauchyovu podmínku* tvaru

$$(\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) : \qquad m, n \geqslant n_0 \land \vec{x} \in M \Rightarrow |f_n(\vec{x}) - f_m(\vec{x})| < \varepsilon. \tag{1.4}$$

Důkaz:

- První implikace:
 - nechť $\left(f_n(\vec{x})\right)_{n=1}^{\infty}$ stejnoměrně konverguje na M k jisté funkci f(x)
 - pak pro každé $\varepsilon > 0$ existuje $n_0 \in \mathbb{N}$ takové, že pro libovolná $m, n \in \mathbb{N}$ taková, že $m, n \geqslant n_0$, a pro všechna $\vec{x} \in M$ platí

$$|f_n(\vec{x}) - f(\vec{x})| < \frac{\varepsilon}{2} \quad \land \quad |f_m(\vec{x}) - f(\vec{x})| < \frac{\varepsilon}{2}$$

- a tedy

$$|f_n(\vec{x}) - f_m(\vec{x})| \le |f_n(\vec{x}) - f(\vec{x})| + |f_m(\vec{x}) - f(\vec{x})| < \varepsilon$$

- Druhá implikace:
 - nechť posloupnost funkcí splňuje vztah (1.4)
 - podle Bolzanovy-Cauchyovy podmínky pro číselné posloupnosti posloupnost (1.1) konverguje bodově k jisté funkci na množině M (označme ji $f(\vec{x})$)
 - chceme dokázat $f_n(\vec{x}) \rightrightarrows f(\vec{x})$ na M
 - zvolme $\varepsilon>0$ a k číslu $\frac{\varepsilon}{2}$ vyberme podle (1.4) n_0 tak, aby pro všechna $m,n\geqslant n_0$ platilo

$$|f_n(\vec{x}) - f_m(\vec{x})| < \frac{\varepsilon}{2}$$

- pro libovolné pevně zvolené $n \geqslant n_0$ a pro m rostoucí nade všechny meze pak odsud dostaneme nerovnost $|f_n(\vec{x}) f(\vec{x})| \leqslant \varepsilon/2 < \varepsilon$ platnou pro každé $\vec{x} \in M$
- tím je důkaz zkompletován

1.1.7 Věta – supremální kritérium

Nechť $f(\vec{x})$ a $f_n(\vec{x})$ pro všechna n jsou funkce definované na množině $M \subset \mathbf{E}^r$. Označme

$$\sigma_n := \sup_{\vec{x} \in M} \left| f_n(\vec{x}) - f(\vec{x}) \right|$$

pro každé n. Pak posloupnost funkcí $\left(f_n(\vec{x})\right)_{n=1}^\infty$ konverguje na množině M stejnoměrně k funkci $f(\vec{x})$ právě tehdy, když $\lim_{n\to\infty}\sigma_n=0$.

Důkaz:

- pro všechna $\vec{x} \in M$ a všechna $n \in \mathbb{N}$ zřejmě platí nerovnost $|f_n(\vec{x}) f(\vec{x})| \leqslant \sigma_n$
- První implikace:
 - předpokládejme, že $\lim_{n\to\infty} \sigma_n = 0$
 - z definice limity číselné posloupnosti $(\sigma_n)_{n=1}^{\infty}$ plyne, že pro libovolné $\varepsilon > 0$ existuje n_0 takové, že $|\sigma_n| = \sigma_n < \varepsilon$ pro všechna $n \ge n_0$
 - to značí (jak vyplývá z definice suprema), že pro všechna $n \ge n_0$ a všechna $\vec{x} \in M$ platí také $\left| f_n(\vec{x}) f(\vec{x}) \right| < \varepsilon$, a tedy $f_n(\vec{x}) \rightrightarrows f(\vec{x})$ na M

• Druhá implikace:

- předpokládejme, že $f_n(\vec{x}) \rightrightarrows f(\vec{x})$ na M
- zvolme libovolné $\varepsilon>0$, k němuž jistě existuje n_0 takové, že pro všechna $n\geqslant n_0$ a všechna $\vec{x}\in M$ platí nerovnost $|f_n(\vec{x})-f(\vec{x})|<\varepsilon/2$
- odtud a z vlastností suprema plyne, že pro $n\geqslant n_0$ platí $\sigma_n\leqslant \varepsilon/2<\varepsilon$, a tedy $\lim_{n\to\infty}\sigma_n=0$

1.1.8 Definice

Nechť je dána posloupnost funkcí (1.1) definovaná na neprázdné množině $M \subset \mathbf{E}^r$. Potom nekonečný součet

$$f_1(\vec{x}) + f_2(\vec{x}) + \ldots + f_n(\vec{x}) + \ldots$$

nazýváme $\emph{r}adou \, \emph{funkc}\emph{i}\,$ na M a značíme symbolem

$$\sum_{n=1}^{\infty} f_n(\vec{x}). \tag{1.5}$$

1.1.9 Definice

Nechť je dána funkční řada (1.5) definovaná na množině M. Funkci $s_n(\vec{x}) = \sum_{k=1}^n f_k(\vec{x})$ pro $n \in \mathbb{N}$ a $\vec{x} \in M$ budeme nazývat n-tým částečným součtem řady (1.5) a posloupnost $(s_n(\vec{x}))_{n-1}^{\infty}$ pak posloupností částečných součtů dané řady.

1.1.10 Definice

Nechť je dána funkční řada (1.5) definovaná na množině M. Nechť $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$ je příslušná posloupnost částečných součtů. Řekneme, že řada (1.5) $konverguje\ v\ bodě\ \vec{c}\in M$, jestliže konverguje číselná posloupnost $\left(s_n(\vec{c})\right)_{n=1}^{\infty}$. Řekneme, že řada (1.5) $konverguje\ (bodově)$ na množině $N\subset M$, jestliže konverguje v každém bodě množiny N. Vlastní limitu

$$s(\vec{x}) := \lim_{n \to \infty} s_n(\vec{x})$$

posloupnosti částečných součtů pak nazýváme součtem řady (1.5) a zapisujeme

$$s(\vec{x}) = \sum_{n=1}^{\infty} f_n(\vec{x}). \tag{1.6}$$

Definiční obor $\mathrm{Dom}(s)$, tj. množinu všech $\vec{c} \in M$, pro něž posloupnost $\left(s_n(\vec{c})\right)_{n=1}^{\infty}$ konverguje, budeme dále nazývat *oborem konvergence řady* (1.5) a značit symbolem \mathcal{O} .

1.1.11 Definice

Řekneme, že řada funkcí $\sum_{n=1}^{\infty} f_n(\vec{x})$ konverguje na množině $M \subset \mathbf{E}^r$ stejnoměrně ke svému součtu $s(\vec{x})$ a označíme $\sum_{n=1}^{\infty} f_n(\vec{x}) \stackrel{M}{\equiv} s(\vec{x})$, jestliže posloupnost jejích částečných součtů konverguje na M stejnoměrně k funkci $s(\vec{x})$.

1.1.12 Věta – Bolzanova-Cauchyova podmínka

Řada funkcí (1.5) konverguje na množině $M \subset \mathbf{E}^r$ stejnoměrně právě tehdy, když pro každé $\varepsilon > 0$ existuje index $n_0 \in \mathbf{N}$ takový, že pro jakékoli dva indexy $m, n \in \mathbf{N}$ takové, že $m \geqslant n \geqslant n_0$ a pro jakékoliv $\vec{x} \in M$ je splněna nerovnost

$$|f_n(\vec{x}) + f_{n+1}(\vec{x}) + \ldots + f_m(\vec{x})| < \varepsilon.$$

Důkaz:

- tvrzení této věty bezprostředně plyne z věty 1.1.6
- označíme-li totiž $\left(s_n(\vec{x})\right)_{n=1}^\infty$ příslušnou posloupnost částečných součtů, získáváme rovnosti

$$s_{n-1}(\vec{x}) = \sum_{k=1}^{n-1} f_k(\vec{x}), \qquad s_m(\vec{x}) = \sum_{k=1}^m f_k(\vec{x})$$

- podle věty 1.1.6 (v nepatrné obměně) konverguje posloupnost $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$ na M stejnoměrně právě tehdy, když pro každé $\varepsilon>0$ existuje index $n_0\in \mathbf{N}$ takový, že pro jakékoli dva indexy $m,n\in \mathbf{N}$ takové, že $m\geqslant n\geqslant n_0$ a pro jakékoliv $\vec{x}\in M$ je splněna nerovnost $\left|s_m(\vec{x})-s_{n-1}(\vec{x})\right|<\varepsilon$
- z této nerovnosti ovšem vyplývá, že

$$\left| \sum_{k=1}^{m} f_k(\vec{x}) - \sum_{k=1}^{n-1} f_k(\vec{x}) \right| = \left| f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x}) \right| < \varepsilon$$

1.1.13 Definice

Řekneme, že řada funkcí $\sum_{n=1}^{\infty} f_n(\vec{x})$ konverguje na množině $M \subset \mathbf{E}^r$ regulárně, jestliže řada $\sum_{n=1}^{\infty} \left| f_n(\vec{x}) \right|$ konverguje na M stejnoměrně.

1.1.14 Věta – nutná podmínka stejnoměrné konvergence

Jestliže řada funkcí $\sum_{n=1}^{\infty} f_n(\vec{x})$ konverguje na množině $M \subset \mathbf{E}^r$ stejnoměrně, potom posloupnost funkcí $(f_n(\vec{x}))_{n=1}^{\infty}$ konverguje na této množině stejnoměrně k nulové funkci.

Důkaz:

• z předpokladů věty plyne, že

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall m, n \in \mathbf{N})(m \ge n \ge n_0)(\forall \vec{x} \in M): |f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x})| < \varepsilon$$

- jelikož toto tvrzení platí pro jakákoli $m,n\in {\bf N}$ taková, že $m\geqslant n\geqslant n_0$, platí také při speciální volbě m=n
- pak ale

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N})(\forall n \in \mathbf{N})(n \geqslant n_0)(\forall \vec{x} \in M): |f_n(\vec{x})| = |f_n(\vec{x}) - o(\vec{x})| < \varepsilon$$

• tento výrok je ale ekvivalentní tvrzení, že posloupnost funkcí $(f_n(\vec{x}))_{n=1}^{\infty}$ konverguje na množině M stejnoměrně k nulové funkci

1.1.15 Definice

Nechť jsou dány funkční řady $\sum_{n=1}^{\infty} f_n(\vec{x})$ a $\sum_{n=1}^{\infty} g_n(\vec{x})$ definované na množině M. Nechť existuje $n_0 \in \mathbf{N}$ tak, že pro všechna $n \geqslant n_0$ a všechna $\vec{x} \in M$ platí $\left| f_n(\vec{x}) \right| \leqslant g_n(\vec{x})$. Pak řadu $\sum_{n=1}^{\infty} g_n(\vec{x})$ nazýváme řadou *majorantní* k řadě $\sum_{n=1}^{\infty} f_n(\vec{x})$.

1.1.16 Věta – srovnávací kritérium

Nechť řada $\sum_{n=1}^{\infty}g_n(\vec{x})$ je na množině $M\subset \mathbf{E}^r$ majorantní k řadě $\sum_{n=1}^{\infty}f_n(\vec{x})$ a nechť řada $\sum_{n=1}^{\infty}g_n(\vec{x})$ je stejnoměrně konvergentní na M. Pak jsou řady $\sum_{n=1}^{\infty}f_n(\vec{x})$ a $\sum_{n=1}^{\infty}|f_n(\vec{x})|$ stejnoměrně konvergentní na M, tj. řada $\sum_{n=1}^{\infty}f_n(\vec{x})$ konverguje na M regulárně.

Důkaz:

- užijeme Bolzanovu-Cauchyovu podmínku 1.1.12
- z předpokladu víme, že řada $\sum_{n=1}^{\infty} g_n(\vec{x})$ stejnoměrně konverguje na M, tedy pro jakékoli $\varepsilon > 0$ existuje n_0 takové, že pro všechna přirozená $m \geqslant n \geqslant n_0$ a pro všechna $\vec{x} \in M$ platí

$$0 \leqslant g_n(\vec{x}) + g_{n+1}(\vec{x}) + \ldots + g_m(\vec{x}) < \varepsilon$$

- dále víme, že existuje m_0 tak, že pro všechna $x \in M$ a všechny indexy $n \ge m_0$ platí $|f_n(\vec{x})| \le g_n(\vec{x})$
- pro zvolené ε a všechna $n \geqslant \max\{n_0, m_0\}$ pak platí

$$|f_n(\vec{x}) + f_{n+1}(\vec{x}) + \dots + f_m(\vec{x})| \le |f_n(\vec{x})| + |f_{n+1}(\vec{x})| + \dots + |f_m(\vec{x})| \le g_n(\vec{x}) + g_{n+1}(\vec{x}) + \dots + g_m(\vec{x}) < \varepsilon$$

• to dokazuje obě tvrzení věty

1.1.17 Důsledek

Konverguje-li řada na množině M regulárně, konverguje na M také stejnoměrně.

1.1.18 Věta – Weierstrassovo kritérium

Nechť $\sum_{n=1}^{\infty}a_n$ je konvergentní číselná řada, $f_n(\vec{x})$ jsou funkce a pro všechna $\vec{x}\in M\subset \mathbf{E}^r$ a všechna $n\in \mathbf{N}\setminus \widehat{n_0}$ je $|f_n(\vec{x})|\leqslant a_n$. Pak řady $\sum_{n=1}^{\infty}f_n(\vec{x})$ a $\sum_{n=1}^{\infty}|f_n(\vec{x})|$ stejnoměrně konvergují na M, tj. řada $\sum_{n=1}^{\infty}f_n(\vec{x})$ konverguje na M regulárně.

Důkaz:

• v předchozí větě položíme $g_n(\vec{x}) := a_n$ pro všechna $\vec{x} \in M$ a uvědomíme si, že pojmy bodové a stejnoměrné konvergence u řady konstantních funkcí splývají

KAPITOLA 1. POSLOUPNOSTI A ŘADY FUNKCÍ VÍCE PROMĚNNÝCH							
8							

Kapitola 2

Funkcionální Hilbertovy prostory

2.1 Výchozí pojmy

2.1.1 Značení

 $\mathscr{C}^n(M)$ je třída všech funkcí, které mají na množině M spojité derivace až do řádu n, přičemž $\mathscr{C}(M) = \mathscr{C}^0(M)$. Nacházíli se index nula dole $\mathscr{C}^n_0(M)$, pak M je kompakt. Symbol \mathscr{C}^n_0 značí všechny funkce třídy $\mathscr{C}^n(\mathbf{E}^r)$, které mají libovolný, ale kompatní nosič. $\mathscr{L}(G)$ je třída Lebesgueovsky integrovatelných funkcí na množině G. Třída funkcí majících Lebesgueovsky lokálně integrabilních funkcí značíme $\mathscr{L}_{loc}(G)$ a definujeme ji v následujícím textu.

2.1.2 Úmluva

Symbol G bude nadále reprezentovat r-dimenzionální *oblast*, tj. otevřenou a souvislou podmnožinu množiny \mathbf{E}^r . Dále symbol J bude označovat kompakt, tj. uzavřenou a omezenou podmnožinu množiny \mathbf{E}^r . Funkcí budeme rozumět zobrazení $f(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{C}$.

2.1.3 Úmluva

V celém následujícím textu budeme předpokládat, že je zadána klasická a úplná Lebesgueova míra $\lambda(X): \mathcal{M}_{\lambda} \mapsto \mathbf{R}^{\star}$ generovaná ve všech dimenzích klasickou vytvořující $\varphi(x) = x$. Tudíž soustava \mathcal{M}_{λ} všech λ -měřitelných podmnožin množiny \mathbf{E}^{r} je σ -algebrou a $\lambda(X)$ je na ní σ -aditivní mírou. Systém $\left\{\mathbf{E}^{r}, \mathcal{M}_{\lambda}, \lambda(X)\right\}$ je tedy pro nás nyní výchozím prostorem s úplnou mírou.

2.1.4 Definice

Nech? $r \in \mathbb{N}$ a $\vec{\mu} \in \mathbb{R}^r$. Heavisideovou [hevisajdovou] funkcí budeme rozumět funkci $\Theta(\vec{x}) : \mathbf{E}^r \mapsto \{0,1\}$ definovanou předpisem

$$\Theta(\vec{x}) := \begin{cases} 1 & \dots & x_1 > 0 \land x_2 > 0 \land \dots \land x_r > 0 \\ 0 & \dots & x_1 \leqslant 0 \lor x_2 \leqslant 0 \lor \dots \lor x_r \leqslant 0. \end{cases}$$
 (2.1)

Centrovanou Heavisideovou funkcí budeme rozumět funkci $\Theta_{\vec{\mu}}(\vec{x}): \mathbf{E}^r \mapsto \{0,1\}$ definovanou předpisem

$$\Theta_{\vec{\mu}}(\vec{x}) := \begin{cases} 1 & \dots & x_1 > \mu_1 \land x_2 > \mu_2 \land \dots \land x_r > \mu_r \\ 0 & \dots & x_1 \leqslant \mu_1 \lor x_2 \leqslant \mu_2 \lor \dots \lor x_r \leqslant \mu_r. \end{cases}$$
(2.2)

2.1.5 Poznámka

Funkce $f(\vec{x})$ je, podle věty 5.3.45 a důsledku 5.3.46 v [5], na G Lebesgueovsky integrabilní právě tehdy, když je λ -měřitelná a její absolutní hodnota je Lebesgueovsky integrabilní.

$$f(\vec{x}) \in \mathcal{L}(G, \mu) \quad \Leftrightarrow \quad |f(x)| \in \mathcal{L}(G, \mu) \land f(x) \in \Lambda_{\mu}(G).$$

Budeme-li tedy mluvit o měřitelných funkcích, tak platí, že

$$f(x) \in \mathcal{L}(G, \mu) \quad \Leftrightarrow \quad |f(x)| \in \mathcal{L}(G, \mu)$$

2.1.6 Definice

Nech?je dána funkce $f(\vec{x}): G \mapsto \mathbf{R}$. Řekneme, že funkce $f(\vec{x})$ je lokálně integrabilní na G a označíme symbolem $f(\vec{x}) \in \mathcal{L}_{loc}(G, \mu(X))$ nebo zkráceně $f(\vec{x}) \in \mathcal{L}_{loc}(G)$, jestliže pro každý bod $\vec{c} \in G$ existuje $\varepsilon > 0$ tak, že $f(\vec{x}) \in \mathcal{L}(\mathcal{U}_{\varepsilon}(\vec{c}))$, tj.

$$\int_{\mathcal{U}_{\varepsilon}(\vec{c})} f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R}.$$

2.1.7 Věta

Nech?G je oblast v \mathbf{E}^r . Funkce $f(\vec{x}): G \mapsto \mathbf{R}$ je lokálně integrabilní na G právě tehdy, když pro každou kompaktní množinu $J \subset G$ platí, že

$$\int_I f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R}.$$

Důkaz:

- dokážeme nejprve, že pokud pro každou kompaktní množinu $J \subset G$ platí, že integrál $\int_J f(\vec{x}) \, d\mu(\vec{x})$ konverguje, pak je $f(\vec{x})$ je lokálně integrabilní na G
- zvolme tedy libovolně bod $\vec{c} \in G$
- jelikož G je otevřená, jistě existuje $\varepsilon > 0$ tak, že $K = \overline{\mathcal{U}_{\varepsilon}(\vec{c})}, K \subset G, K$ je kompakt a $\vec{c} \in \mathcal{U}_{\varepsilon}(\vec{c})$
- integrál $\int_K f(\vec{x}) d\mu(\vec{x})$ ale existuje z předpokladu
- $\mathrm{bd}(K)$ je μ -nulová množina, nebo?se jedná o pláš?r-rozměrné koule, a z teorie Lebesgueova integrálu tudíž platí, že $\int_K f(\vec{x}) \, \mathrm{d}\mu(\vec{x}) = \int_{\mathcal{U}_{\sigma}(\vec{c})} f(\vec{x}) \, \mathrm{d}\mu(\vec{x})$, a navíc jsme \vec{c} volili libovolně.
- pro důkaz obrácené implikace předpokládejme, že $f(\vec{x})$ je lokálně integrabilní na G
- zvolme K jako libovolnou kompaktní množinu, která je podmnožinou oblasti G
- podle teorie míry jistě $K \in \mathcal{M}_{\mu}$, neboť $\mathbf{E}^r \in \mathcal{S}_r \subset \mathcal{M}_{\mu}$, a \mathcal{M}_{μ} je σ -algebra zde je nedefinovany prikaz \setminusK, co ma znamenat?
- Borelova věta ale říká, že z každého otevřeného pokrytí kompaktní množiny lze vybrat pokrytí konečné, tj. existuje soustava oblastí $\{G_k: k \in \widehat{n}\}$ tak, že $\bigcup_{k=1}^n G_k \supset K$ a $G_k = \mathcal{U}_{\varepsilon}(\vec{x}_k)$ pro jisté body $\vec{x}_k \in K$
- všechny integrály $\int_{\mathcal{U}_{z}(\vec{x}_{k})} f(\vec{x}) d\mu(\vec{x})$ ale existují z předpokladu této implikace
- dále také existují (jak víme z teorie Lebesgueova integrálu všechny integrály) $\int_{\mathcal{U}_{\varepsilon}(\vec{x}_k)\cap\mathcal{U}_{\varepsilon}(\vec{x}_\ell)} f(\vec{x}) \, d\mu(\vec{x}) \, \text{pro } k,\ell \in \widehat{n}$
- existují rovněž integrály $\int_{\mathcal{U}_{\varepsilon}(\vec{x}_k)\cap K} f(\vec{x}) \,\mathrm{d}\mu(\vec{x})$, což společně garantuje existenci integrálu $\int_K f(\vec{x}) \,\mathrm{d}\mu(\vec{x})$
- tímto je důkaz dokončen

2.2 Prehilbertovské prostory funkcí

V této sekci se pokusíme rozhodnout jestli z vybraných vektorových prostorů funkcí lze vytvořit prehilbertovské prostory funkcí, tj. vektorové prostory se skalárním součinem. Připomeňme si definici skalárního součinu.

2.2.1 Definice

Nech? \mathcal{V} je libovolný vektorový prostor nad tělesem C. Zobrazení $\langle .|. \rangle : \mathcal{V} \times \mathcal{V} \mapsto \mathbf{C}$ nazveme *skalárním součinem*, jestliže splňuje tzv. *axiomy skalárního součinu*:

- levá linearita: pro všechna $f(\vec{x}), g(\vec{x}), h(\vec{x}) \in \mathcal{V}$ a každé $\alpha \in \mathbf{C}$ platí $\langle \alpha f + g | h \rangle = \alpha \langle f | h \rangle + \langle g | h \rangle$
- hermiticita: pro všechna $f(\vec{x}), g(\vec{x}) \in \mathcal{V}$ platí $\langle f|g \rangle = \langle g|f \rangle^*$
- pozitivní definitnost: pro všechna $f(\vec{x}) \in \mathcal{V}$ platí $\langle f|f \rangle \geqslant 0$ a navíc $\langle f|f \rangle = 0$ právě tehdy, když $f(\vec{x}) = o(\vec{x})$.

Dvojici $\{V, \langle .|. \rangle\}$ nazýváme *prehilbertovským prostorem*.

2.2.2 Definice

Nechť \mathcal{V} je vektorový prostor funkcí nad tělesem \mathbf{C} . Zobrazení $\| \cdot \| : \mathcal{V} \mapsto \mathbf{R}$ nazveme *normou*, jestliže splňuje tzv. *axiomy normy*:

- trojúhelníková nerovnost: pro všechna $f(\vec{x}), g(\vec{x}) \in \mathcal{V}$ platí: $||f + g|| \le ||f|| + ||g||$
- homogenita: pro všechna $f(\vec{x}) \in \mathcal{V}$ a každé $\lambda \in \mathbb{C}$ platí: $\|\lambda f\| = |\lambda| \|f\|$.

Dvojici $\{V, \|.\|\}$ nazýváme *normovaným prostorem*.

2.2.3 Příklad

Ukážeme, že pro libovolnou funkci $f(\vec{x}) \in \mathcal{V}$ z normovaného prostoru \mathcal{V} s normou $\|\cdot\|$ platí nerovnost $\|f\| \geqslant 0$. Nejprve snadno prokážeme, že norma opačného vektoru je stejná jako norma vektoru původního. Položme $\lambda = -1$. Pak z axiomu homogenity plyne $\|-f\| = |-1| \|f\| = \|f\|$. Dále pak v trojúhelníkové nerovnosti položme $g(\vec{x}) := -f(\vec{x})$. Pak

$$0 = \|o(\vec{x})\| = \|f(\vec{x}) + (-f(\vec{x}))\| \le \|\vec{f}(\vec{x})\| + \|-f(\vec{x})\| = 2\|\vec{f}(\vec{x})\|,$$

odkud je již patrno, že $||f|| \geqslant 0$.

2.2.4 Věta

Nechť $\langle .|. \rangle$ je skalární součin definovaný na vektorovém prostoru $\mathcal V$ nad tělesem $\mathbf C$. Pak zobrazení $\mathbf n(f)$ definované předpisem

$$n(f) := \sqrt{\langle f|f\rangle} \tag{2.3}$$

je normou na \mathcal{V} .

Důkaz:

- ověříme axiomy normy
- axiom nulovosti:
 - je-li $f(\vec{x}) = 0$, pak $n^2(0) := \langle o, o \rangle = 0$
 - je-li n(f)=0, pak tedy $\langle f,f\rangle=0$, ale podle axiomu pozitivní definitnosti skalárního součinu toto může nastat pouze tehdy, je-li $f(\vec{x})=o(\vec{x})$
 - tím je ekvivalence požadovaná v axiomu nulovosti normy prokázána
- axiom trojúhelníkové nerovnosti:
 - provedeme následující sérii úprav

$$\mathbf{m}^{2}(f+g) = \langle f+g|f+g \rangle = \langle f|f \rangle + \langle f|g \rangle + \langle g|f \rangle + \langle g|g \rangle =$$

$$= 2\operatorname{Re}(\langle f|g \rangle) + \langle f|f \rangle + \langle g|g \rangle \leqslant 2|\langle f|g \rangle| + \mathbf{m}^{2}(f) + \mathbf{m}^{2}(g)$$

- užijeme-li nyní Schwarzovy-Cauchyovy-Bunjakovského nerovnosti (viz [2]), dostáváme

$$n^{2}(f+g) \le 2 n(f)n(g) + n^{2}(f) + n^{2}(g) = (n(f) + n(g))^{2}$$

- tím je dokázáno, že $n(f+g) \leq n(f) + n(g)$
- axiom homogenity:
 - nechť tedy $\lambda \in \mathbf{C}$ je zvoleno libovolně
 - pak snadno $\mathbbm{n}(\lambda f) := \sqrt{\langle \lambda f | \lambda f \rangle} = \sqrt{\lambda \lambda^\star} \sqrt{\langle f | f \rangle} = \sqrt{|\lambda|^2} \, \mathbbm{n}(f) = |\lambda| \, \mathbbm{n}(f)$
- tím je prokázáno, že zobrazení n(f) je normou na V

2.2.5 Definice

Nechť $\langle .|. \rangle$ je skalární součin definovaný na vektorovém prostoru \mathcal{V} nad tělesem \mathbf{C} . Pak zobrazení $\mathbb{n}(f)$ definované vztahem (2.3) nazýváme *normou generovanou skalárním součinem*.

2.2.6 Věta

Nechť je dán vektorový prostor $\mathcal V$ nad tělesem $\mathbf C$ a skalární součin $\langle .|. \rangle$. Nechť ||.|| je norma generovaná tímto skalárním součinem. Nechť je dána posloupnost funkcí $(f_n(\vec x))_{n=1}^\infty$ z prostoru $\mathcal V$, pro níž existuje funkce $f(\vec x) \in \mathcal V$ tak, že platí následující implikace:

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N}): n > n_0 \implies ||f_n(\vec{x}) - f(\vec{x})|| < \varepsilon.$$

Necht' je funkce $g(\vec{x}) \in \mathcal{V}$ zvolena libovolně. Pak platí

$$\lim_{n \to \infty} \langle f_n | g \rangle = \langle f | g \rangle, \quad \lim_{n \to \infty} \langle g | f_n \rangle = \langle g | f \rangle.$$

Důkaz:

- snadno nahlédneme, že pro $g(\vec{x}) = o(\vec{x})$ platí citovaná rovnost triviálně
- uvažujme tedy nyní pouze ty funkce, které nejsou nulové, tedy ty, pro něž $||g(\vec{x})|| \neq 0$
- chceme dokázat, že číselná posloupnost $(\gamma_n)_{n=1}^{\infty}$, kde $\gamma_n := \langle f_n | g \rangle$ konverguje k číslu $\gamma := \langle f | g \rangle$
- je tedy třeba prokázat, že pro každé $\varepsilon>0$ existuje $m_0\in {\bf N}$ tak, že pro všechny indexy $m>m_0$ platí nerovnost $|\gamma_m-\gamma|<\varepsilon$
- z předpokladu

$$(\forall \varepsilon > 0)(\exists n_0 \in \mathbf{N}): \quad n > n_0 \implies \|f_n(\vec{x}) - f(\vec{x})\| < \frac{\varepsilon}{\|g\|},$$

z axiomů skalárního součinu a z Schwarzovy-Cauchyovy-Bunjakovského nerovnosti ale vyplývá, že

$$|\gamma_m - \gamma| = \left| \langle f_m | g \rangle - \langle f | g \rangle \right| = \left| \langle f_m - f | g \rangle \right| \leqslant ||f_m - f|| \cdot ||g|| < \frac{\varepsilon}{||g||} ||g|| = \varepsilon$$

- postačí tedy volit $m_0 := n_0$
- tvrzení $\lim_{n\to\infty} \langle g|f_n\rangle = \langle g|f\rangle$ lze dokázat zcela analogicky

2.2.7 Lemma

Nechť $a \in \mathbf{R}$ a $b \in (a, \infty)$. Nechť $\mathscr{C}(\langle a, b \rangle)$ je vektorový prostor všech funkcí $f(x) : \mathbf{R} \mapsto \mathbf{C}$ spojitých na intervalu $\langle a, b \rangle$ zavedený nad tělesem \mathbf{C} . Nechť je dána funkce $w(x) \in \mathscr{C}(\langle a, b \rangle)$ kladná na $\langle a, b \rangle$. Pak formule

$$\left\langle f(x)|g(x)\right\rangle_w := \int_a^b f(x)g^{\star}(x)w(x)\,\mathrm{d}x \tag{2.4}$$

splňuje axiomy skalárního součinu na $\mathscr{C}(\langle a,b\rangle)$.

2.2.8 Lemma

Nechť $a \in \mathbf{R}$ (nebo $a = -\infty$) a $b \in (a, \infty)$ (nebo $b = +\infty$). Nechť $\mathscr V$ je vektorový prostor všech omezených a spojitých funkcí na intervalu $\langle a,b\rangle$. Nech?w(x) je kladná funkce na (a,b), pro kterou platí $w(x) \in \mathscr L(\langle a,b\rangle)$. Pak (2.4) splňuje axiomy skalárního součinu na $\mathscr V$.

2.2.9 Definice

Spojitou a kladnou funkci w(x) z předešlých lemmat nazýváme *vahou skalárního součinu* a vybrané reprezentanty nazýváme následovně:

- standardní (Legendreova) váha: pro libovolnou volbu $a, b \in \mathbf{R}$ a $w(x) = \Theta(a)\Theta(b-x)$,
- Laguerreova váha: pro volbu $a=0, b=\infty$ a $w(x)=\Theta(x)\mathrm{e}^{-x}$
- Hermiteova váha: pro volbu $a = -\infty$, $b = \infty$ a $w(x) = e^{-x^2}$,
- *Čebyševova váha:* pro volbu a=-1, b=1 a $w(x)=\frac{\Theta(1-|x|)}{\sqrt{1-x^2}}.$

2.2.10 Definice

Nechť $p \ge 1$ je pevně zvolený parametr. Pak třídu všech měřitelných funkcí $f(\vec{x}): G \mapsto \mathbf{C}$, pro něž

$$\int_G \left| f(\vec{x}) \right|^p \mathrm{d}\lambda(\vec{x}) \in \mathbf{R},$$

označujeme symbolem $\mathscr{L}_p(G)$. Neboli

$$\mathscr{L}_p\big(G) = \left\{ f(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{C} : \int_G \big| f(\vec{x}) \big|^p \, \mathrm{d}\mu(\vec{x}) \in \mathbf{R} \right\}$$

2.2.11 Věta

Nech? $f(\vec{x}), g(\vec{x}) \in \mathcal{L}_2(G)$. Potom $f(\vec{x})g^*(\vec{x}) \in \mathcal{L}_1(G)$.

Důkaz:

- stačí si uvědomit, že $|f(\vec{x})g^{\star}(\vec{x})| \leq \frac{1}{2}|f(\vec{x})|^2 + \frac{1}{2}|g(\vec{x})|^2$
- jelikož oba členy součtu patří do $\mathcal{L}(G)$, tak ze srovnávacího kritéria plyne, že také $|f(\vec{x})g^{\star}(\vec{x})| \in \mathcal{L}(G)$
- je vhodné si zopakovat poznámku 2.1.5 a uvědomit si, že pro měřitelné funkce platí $f(\vec{x}) \in \mathcal{L}(G) \Leftrightarrow |f(\vec{x})| \in \mathcal{L}(G)$

2.2.12 Poznámka

Vztahy $\int_G f(x)g^*(x)w(x) dx$, resp. $\int_G f(\vec{x})g^*(\vec{x})w(\vec{x}) d\vec{x}$ však na některých vektorových prostorech skalární součin nedefinují. Jedním z takových prostorů je např. prostor $\mathcal{L}_1(0,1)$. Funkce $f(x) = \frac{1}{\sqrt{x}}$ do prostoru $\mathcal{L}_1(0,1)$ patří, nebo?

$$\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = 2,$$

ale integrál

$$\int_0^1 \frac{1}{\sqrt{x}} \frac{1}{\sqrt{x}} \, \mathrm{d}x = \int_0^1 \frac{1}{x} \, \mathrm{d}x$$

nekonverguje. Podobně také prostory $\mathscr{L}(G)$ nebo $\mathscr{L}_1(G)$ pro $G=(0,\infty)$ negenerují spolu s operací $\int_0^\infty f(x)g^\star(x)\,\mathrm{d}x$ prehilbertovský prostor.

 $\mathcal{L}_2(G)$ také není prehilbertovský, protože není splněn axiom pozitivní definitnosti skalárního součinu, tedy neplatí, že

$$\langle f(x)|f(x)\rangle = 0 \quad \Leftrightarrow \quad f(x) = 0$$

Může totiž existovat $f(x) \neq 0$ taková, že bude $\int_a^b f(x) f^{\star}(x) dx = 0$. Například tak, že má nenulovou hodnotu na množině míry nula.

2.2.13 Definice

Dirichletovou funkcí budeme rozumět funkci

$$\mathfrak{D}(\vec{x}) := \begin{cases} 1 & \dots & \vec{x} \in \mathbf{Q}^r \\ 0 & \dots & \vec{x} \in \mathbf{R}^r \setminus \mathbf{Q}^r. \end{cases}$$
 (2.5)

2.2.14 Poznámka

Zavedeme-li na prostoru $\mathscr{L}_2(G)$ zobrazení $\langle f|g \rangle : \mathscr{L}_2(G) \times \mathscr{L}_2(G) \mapsto \mathbf{C}$ předpisem

$$\langle f|g\rangle = \int_C f(\vec{x}) g^{\star}(\vec{x}) \,\mathrm{d}\mu(\vec{x}),$$

pak toto zobrazení není skalárním součinem, neboť není splněn axiom pozitivní definitnosti z definice skalárního součinu. Rovnost $\langle f|f\rangle=0$ by podle něho měla být splněna tehdy a jen tehdy, pokud $f(\vec{x})=o(\vec{x})$, tedy pokud $f(\vec{x})$ je ryze nulová funkce. Snadno ale nahlédneme, že pro Dirichletovu funkci platí rovnost $\mathfrak{D}^2(\vec{x})=\mathfrak{D}(\vec{x})$, a tudíž (podle teorie Lebesgueova integrálu)

$$\left\langle \mathfrak{D} | \mathfrak{D} \right\rangle = \int_G \mathfrak{D}(\vec{x}) \, \mathfrak{D}^\star(\vec{x}) \, \mathrm{d} \mu(\vec{x}) = \int_G \mathfrak{D}(\vec{x}) \, \mathrm{d} \mu(\vec{x}) = 0.$$

Abychom se tedy konečně dostali k nějakému prehilbertovu, a následně Hilbertovu, prostoru budeme potřebovat zobecnění a úvahy, které probereme v následující sekci.

2.3 Faktorové prostory funkcí, Hilbertovy prostory

Od termínu funkce nyní přejděme k faktorové funkci, resp. faktorovému prostoru funkcí. Třídu všech funkcí, jež jsou měřitelné a zároveň jsou mezi sebou vzájemně μ -ekvivalentní, tj. liší se pouze na množině míry nula, nazveme faktorová skupina funkcí. Třídu všech funkcí, které jsou měřitelné a zároveň ekvivalentní s nulovou funkcí $(f(\vec{x}) = 0(\vec{x}))$ označíme symbolem F_0 . Do třídy F_0 tedy patří i Dirichletova funkce $\mathfrak{D}(\vec{x})$. Libovolného zástupce z vybrané faktorové skupiny funkci nazveme faktorovou funkcí. Pro jednoduchost budeme nadále používat termín funkce, ale mějme pořád na paměti, že jde jen o jednoho vybraného zástupce celé skupiny funkcí.

2.3.1 Definice

Faktorovou funkcí $\hat{f}(\vec{x})$ nazveme množinu všech funkcí, jež jsou vzájemně μ -ekvivalentní s vybranou měřitelnou funkcí $f(\vec{x}) \in \Lambda(G)$, tj.

$$\hat{f}(\vec{x}) := \{ g(\vec{x}) \in \Lambda(G) : g \sim f \}.$$

Množinu všech faktorových funkcí nazveme faktorovým prostorem nad G a označíme F(G).

2.3.2 Poznámka

Tedy funkce $f(\vec{x})$ a $g(\vec{x})$ z předešlé definice se liší pouze na množině nulové míry. Dále si uvědomme, že integrál všech prvků faktorové funkce na dané oblasti G má stejnou hodnotu. Má tedy smysl definovat

$$\int_G \hat{f}(\vec{x}) \,\mathrm{d}\mu(\vec{x}) := \int_G f(\vec{x}) \,\mathrm{d}\mu(\vec{x}),$$

kde $f(\vec{x})$ je libovolný zástupce faktorové funkce $\hat{f}(\vec{x})$.

2.3.3 Definice

Nechť $p \geqslant 1$. Symbolem $\mathbb{L}_p(G)$ označíme množinu všech (faktorových) funkcí $f(\vec{x}): G \mapsto \mathbf{C}$, pro něž $|f(\vec{x})|^p \in \mathscr{L}(G)$, tedy

$$\int_G |f(\vec{x})|^p \, \mathrm{d}\mu(\vec{x}) < +\infty.$$

2.3.4 Věta

Zobrazení $\langle f|g\rangle:\mathbb{L}_2(G)\times\mathbb{L}_2(G)\mapsto\mathbf{C}$ zavedené na $\mathbb{L}_2(G)$ předpisem

$$\langle f|g\rangle = \int_{G} f(\vec{x}) g^{\star}(\vec{x}) d\mu(\vec{x})$$
 (2.6)

reprezentuje skalární součin. Prostor $\mathbb{L}_2(G)$ je tudíž prehilbertovským prostorem.

Důkaz:

- axiom levé linearity je splněn triviálně, podobně jako hermiticita
- pro libovolnou funkci $f(\vec{x}) \in \mathbb{L}_2(G)$ pak platí, že

$$\left\langle f|f\right\rangle = \int_G f(\vec{x})\,f^\star(\vec{x})\,\mathrm{d}\mu(\vec{x}) = \int_G |f(\vec{x})|^2\,\mathrm{d}\mu(\vec{x})\geqslant 0$$

a navíc rovnost

$$\left\langle f|f\right\rangle = \int_G f(\vec{x})\,f^\star(\vec{x})\,\mathrm{d}\mu(\vec{x}) = \int_G |f(\vec{x})|^2\,\mathrm{d}\mu(\vec{x}) = 0$$

nastává pouze pro nulovou faktorou funkci

- tím je naplněn axiom pozitivní definitnosti
- zbývá dokázat, že pro libovolné dvě funkce $f(\vec{x}), g(\vec{x}) \in \mathbb{L}_2(G)$ je výraz $\langle f|g \rangle = \int_G f(\vec{x}) \, g^\star(\vec{x}) \, \mathrm{d}\mu(\vec{x})$ dobře definován

• jelikož je na G splněna nerovnost

$$2|f(\vec{x})g^{\star}(\vec{x})| \le |f(\vec{x})|^2 + |g^{\star}(\vec{x})|^2 = |f(\vec{x})|^2 + |g(\vec{x})|^2$$

a oba integrály $\int_G \left|f(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})$ a $\int_G \left|g(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})$ existují z definice prostoru $\mathbb{L}_2(G)$ a z věty o absolutní hodnotě Lebesgueova integrálu, existuje podle srovnávacího kritéria také integrál $\int_G f(\vec{x})g^\star(\vec{x})\,\mathrm{d}\mu(\vec{x})$

2.3.5 Poznámka

Je-li vztah (2.6) skalárním součinem na $\mathbb{L}_2(G)$, pak je zobrazení

$$\left\|f(\vec{x})\right\| = \sqrt{\int_G \left|f(\vec{x})\right|^2 \mathrm{d}\lambda(\vec{x})}$$

normou na $\mathbb{L}_2(G)$. Zobrazení

$$\varrho(f,g) := \sqrt{\int_G \bigl|f(\vec{x}) - g(\vec{x})\bigr|^2 \, \mathrm{d}\lambda(\vec{x})}$$

je metrikou na $\mathbb{L}_2(G)$.

2.3.6 Definice

Řekneme, že posloupnost funkcí $\left(f_n(\vec{x})\right)_{n=1}^{\infty}$ z prostoru $\mathbb{L}_2(G)$ konverguje podle normy k funkci $f(\vec{x}) \in \mathbb{L}_2(G)$, pokud pro každé $\varepsilon > 0$ existuje $n_0 \in \mathbb{N}$ tak, že pro všechna $n \geqslant n_0$ platí

$$||f_n(\vec{x}) - f(\vec{x})|| < \varepsilon,$$

to jest

$$\sqrt{\int_G \left|f_n(\vec{x}) - f(\vec{x})\right|^2 \mathrm{d}\mu(\vec{x})} < \varepsilon.$$

Konvergenci podle normy zapisujeme symbolem $f_n(\vec{x}) \rightarrow f(\vec{x})$.

2.3.7 Příklad

Rozhodněme podle definice, zda posloupnost funkcí $\left(e^{-nx^2}\right)_{n=1}^{\infty}$ z prostoru $\mathbb{L}_2(\mathbf{R})$ konverguje podle normy k nulové funkci. Nechť $\varepsilon>0$ je zvoleno libovolně. Limitní faktorovou funkcí pro zkoumanou posloupnost je nulová funkce. Zkoumejme tedy nerovnost

$$\left\| \mathrm{e}^{-nx^2} \right\| = \sqrt{\int_G \mathrm{e}^{-2nx^2} \, \mathrm{d}\mu(\vec{x})} = \left(\frac{\pi}{2n}\right)^{1/4} < \varepsilon.$$

Za hledané $n_0 \in \mathbb{N}$ z definice konvergence podle normy tedy stačí volit

$$n_0 := \left\lfloor \frac{\pi}{2\varepsilon^4} \right\rfloor + 1.$$

Povšimněme si ale paradoxu, že posloupnost $\left(e^{-nx^2}\right)_{n=1}^{\infty}$ nekonverguje (uvažujeme-li konvergenci klasickou) k nulové funkci ani stejnoměrně ani bodově. Vztah mezi klasickou konvergencí a konvergencí podle normy lze shrnout v následující větě.

2.3.8 Věta

Nechť je dána posloupnost funkcí $\left(f_n(\vec{x})\right)_{n=1}^\infty$ z prostoru $\mathbb{L}_2(G)$ taková, že $f_n(\vec{x}) \stackrel{G}{\rightrightarrows} f(\vec{x}) \in \mathbb{L}_2(G)$. Nechť dále $0 < \mu(G) < \infty$. Pak $f_n(\vec{x}) \to f(\vec{x})$.

Důkaz:

• z předpokladů plyne, že pro všechna $\tilde{\epsilon} > 0$ existuje n_0 tak, že pro všechna $n \geqslant n_0$ a pro všechna $\vec{x} \in G$ platí nerovnost

$$|f_n(\vec{x}) - f(\vec{x})| < \tilde{\varepsilon} = \frac{\varepsilon}{\sqrt{4\mu(G)}}$$

• jelikož zjevně

$$\left\|f_n(\vec{x}) - f(\vec{x})\right\|^2 = \left\langle f_n - f|f_n - f\right\rangle = \int_G \left|f_n(\vec{x}) - f(\vec{x})\right|^2 \mathrm{d}\mu(\vec{x}) \leqslant \frac{\varepsilon^2}{4\mu(G)}\mu(G) = \frac{\varepsilon^2}{4},$$

zjišť ujeme, že pro indexy $n \ge n_0$ platí nerovnost $\|f_n(\vec{x}) - f(\vec{x})\| \le \frac{\varepsilon}{2} < \varepsilon$

• to dokazuje skutečnost, že posloupnost funkcí $(f_n(\vec{x}))_{n=1}^{\infty}$ konverguje podle normy k funkci $f(\vec{x})$

2.3.9 Věta

Nechť $f_n(\vec{x}) \to f(\vec{x})$. Pak existuje podposloupnost $(f_{k_n}(\vec{x}))_{n=1}^{\infty}$ vybraná z posloupnosti $(f_n(\vec{x}))_{n=1}^{\infty}$ taková, že platí $f_{k_n}(\vec{x}) \to f(\vec{x})$ skoro všude v M.

Důkaz:

• viz odkázat se na zdroj, str. 42, příklad 2.2.2

2.3.10 Definice

Nechť je dán vektorový prostor $\mathcal V$ se skalárním součinem $\langle .|. \rangle$. Nechť $\|.\|$ je norma generovaná zadaným skalárním součinem a $\varrho(x,y)$ metrika generovaná výše uvedenou normou. Nechť navíc $\{\mathcal V,\varrho\}$ je úplným metrickým prostorem. Pak takový prostor $\mathcal H:=\{\mathcal V,\langle .|. \rangle,\|.\|,\varrho\}$ nazýváme $\mathit{Hilbertovým}$ prostorem.

2.3.11 Poznámka

Metrický prostor $\{M,\varrho\}$ s libovolnou metrikou $\varrho(f,g)$ nazveme *úplným*, jestliže každá cauchyovská posloupnost je v něm konvergentní.

2.3.12 Věta – o spojitosti skalárního součinu

Nechť je dán Hilbertův prostor \mathcal{H} nad tělesem \mathbf{C} . Nechť je dána posloupnost funkcí $(f_n(\vec{x}))_{n=1}^{\infty}$ z prostoru \mathcal{H} , která konverguje podle normy k funkci $f(\vec{x}) \in \mathcal{H}$, a funkce $g(\vec{x}) \in \mathcal{H}$. Pak platí

$$\lim_{n \to \infty} \langle f_n | g \rangle = \langle f | g \rangle, \quad \lim_{n \to \infty} \langle g | f_n \rangle = \langle g | f \rangle.$$

Důkaz:

• jedná se o bezprostřední důsledek věty 2.2.6

2.3.13 Definice

Řekneme, řada funkcí $\sum_{n=1}^{\infty} f_n(\vec{x})$ z Hilbertova prostoru \mathcal{H} konverguje podle normy ke svému součtu $s(\vec{x}) \in \mathcal{H}$, pokud posloupnost $\left(s_n(\vec{x})\right)_{n=1}^{\infty}$ jejích částečných součtů

$$s_n(\vec{x}) := \sum_{k=1}^n f_k(\vec{x})$$

konverguje podle normy k funkci $s(\vec{x})$, tj. $\liminf_{n\to\infty} s_n(\vec{x}) = s(\vec{x})$. Konvergenci podle normy zapisujeme symbolem $\sum_{n=1}^{\infty} f_n(\vec{x}) = s(\vec{x})$.

2.3.14 Věta

Faktorový prostor $\mathbb{L}_2(G)$ společně se skalárním součinem zavedeným vztahem (2.6) je úplný, tj. jedná se o Hilbertův prostor.

Důkaz:

Jelikož již bylo prokázáno, že $\mathbb{L}_2(G)$ je vektorový prostor nad C, zbývá dokázat úplnost. Vyberme tedy z libovolné cauchyovské posloupnosti $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$ podposloupnost $\left(f_{k\ell}(\vec{x})\right)_{\ell=1}^{\infty}$, jež konverguje skoro všude na G. To je díky cauchyovskosti možné. Cílem důkazu je de facto prokázat, že $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$ je konvergentní v $\mathbb{L}_2(G)$. První člen podposloupnosti $\left(f_{k\ell}(\vec{x})\right)_{\ell=1}^{\infty}$ vyberme tak, aby pro všechna $m>k_1$ platilo

$$||f_{k_1}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2}.$$

To je opět díky cauchyovskosti možné. Druhý člen podposloupnosti vyberme tak, aby pro všechna $m > k_2$ platilo

$$||f_{k_2}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2^2}.$$

Analogicky vyberme ℓ -tý člen podposloupnosti tak, aby pro všechna $m > k_{\ell}$ platilo

$$||f_{k_{\ell}}(\vec{x}) - f_{m}(\vec{x})|| < \frac{1}{2^{\ell}}.$$

Označíme-li nyní

$$g_k(\vec{x}) = \sum_{s=1}^k |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

$$g(\vec{x}) = \sum_{s=1}^{\infty} |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

bude

$$||g_k(\vec{x})|| \le \sum_{s=1}^k ||f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|| < \sum_{s=1}^k \frac{1}{2^s} < 1.$$

Je proto $\int_M |g_n(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) < 1$ a podle Leviho věty také

$$\int_M |g(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) = \lim_{k \to \infty} \int_M |g_k(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) \leqslant 1$$

a $g(\vec{x})$ je konečná skoro všude na M. Navíc řada $\sum_{s=1}^k \left| f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right|$ má pro skoro všechna $\vec{x} \in M$ konečný součet a tudíž i řada $\sum_{s=1}^k \left(f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right)$ je konvergentní, a tedy také posloupnost

$$f_k(\vec{x}) = \sum_{s=1}^{k-1} (f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})) + f_{k_1}(\vec{x}).$$

Označme $f(\vec{x})$ její limitu. Ta je samozřejmě měřitelná jako limita posloupnosti měřitelných funkcí.

Ve druhé části důkazu ukážeme, že posloupnost $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$ konverguje právě k této funkci $f(\vec{x})$ v $\mathbb{L}_2(G)$. Předně z cauchyovskosti posloupnosti $\left(f_{k_\ell}(\vec{x})\right)_{\ell=1}^\infty$ plyne cauchyovskost podposloupnosti $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$, a tedy pro $\epsilon=1$ existuje $k_0\in \mathbf{N}$ takové, že pro $\ell>k_0$ a $m>k_0$ je

$$\int_{M} \left| f_{k_{\ell}}(\vec{x}) - f_{k_{m}}(\vec{x}) \right|^{2} \mathrm{d}\mu(\vec{x}) < 1.$$

Podle Fatouovy věty (viz věta 2.1.7, str. 26 v (někde - DOPLNIT) je

$$\int_M \left| f_{k_\ell}(\vec{x}) - f(\vec{x}) \right|^2 \mathrm{d}\mu(\vec{x}) < 1,$$

odkud plyne, že funkce $f(\vec{x})$ rozepsaná jako $\left(f(\vec{x}) - f_{k_\ell}(\vec{x})\right) + f_{k_\ell}(\vec{x})$ patří do $\mathbb{L}_2(G)$. Provedeme-li stejnou úvahu s libovolně malým ϵ , získáme

$$\int_M \bigl|f_{k_\ell}(\vec{x}) - f(\vec{x})\bigr|^2 \,\mathrm{d}\mu(\vec{x}) < \epsilon^2,$$

což neznamená nic jiného, než že

$$\lim_{\ell \to \infty} f_{k_{\ell}}(\vec{x}) = f(\vec{x}).$$

V poslední části důkazu ukážeme, že k funkci $f(\vec{x})$ konverguje celá posloupnost $(f_k(\vec{x}))_{k=1}^{\infty}$. To ovšem plyne ihned z nerovností

$$||f(\vec{x}) - f_k(\vec{x})|| \le ||f(\vec{x}) - f_{k_\ell}(\vec{x})|| + ||f_{k_\ell}(\vec{x}) - f_k(\vec{x})||,$$

neboť první člen napravo můžeme udělat libovolně malým (pro velká k_ℓ) díky dokázané konvergenci zmiňované podposloupnosti a druhý díky cauchyovskosti posloupnosti $(f_k(x))_{k=1}^{\infty}$.

2.3.15 Důsledek

Nechť $w(\vec{x}) \in \mathscr{C}(G)$ je kladná funkce. Faktorový prostor

$$\mathbb{L}_2^{(w)}(G) = \big\{ f(\vec{x}) \in F(G) : \int_G |f(\vec{x})|^2 w(\vec{x}) \, \mathrm{d}\mu(\vec{x}) < +\infty \big\},$$

společně se skalárním součinem zavedeným vztahem $\int_G f(\vec{x})g^{\star}(\vec{x})w(\vec{x})\,\mathrm{d}\vec{x}$ je Hilbertovým prostorem.

2.3.16 Věta

$$f(\vec{x}) \in \mathcal{L}_2(G) \land H \subset G \land \mu(H) < +\infty \quad \Rightarrow \quad f(\vec{x}) \in \mathcal{L}_1(H)$$

Důkaz:

• chceme $\int_H |f(\vec{x})| \, \mathrm{d}\vec{x} \in \mathbf{R}$

$$\bullet \ \int_{H} |f(\vec{x})| \, \mathrm{d}\vec{x} = \int_{G} |f(\vec{x})| \chi_{H}(\vec{x}) \, \mathrm{d}\vec{x} \leqslant \underbrace{\frac{1}{2} \int_{G} |f(\vec{x})|^{2} \, \mathrm{d}\vec{x}}_{\in \mathbf{R}} + \underbrace{\frac{1}{2} \lambda^{(H)}}_{\lambda}$$

2.3.17 Důsledek

Pro $H \in \mathcal{M}_{\lambda}$, pro které $\mu(H) < \infty$, platí $\mathcal{L}_{2}(H) \stackrel{\neq}{\subset} \mathcal{L}_{1}(H)$

2.3.18 Poznámka

Víme, že $\mathscr{C}(\langle a,b\rangle)$ je prehilbertovským prostorem a že skalární součin je definován integrálem $\int_a^b f(x)g^\star(x)w(x)\mathrm{d}x = \langle f|g\rangle_w$. Zkoumejme, je-li také prostorem Hilbertovským.

Doplnit obrazek

Tato posloupnost, ačkoli je Cauchyovská, (viz obrázek) nemá limitu v $\mathscr{C}(\langle a,b\rangle)$, což je spor s definicí limity. Tím pádem je $\mathscr{C}(\langle a,b\rangle)$ neúplným, tedy nehilbertovským prostorem.

2.3.19 Příklad

Posloupnost $a_n = \left(1 + \frac{1}{n}\right)^n \in \mathbf{Q}$. Posloupnost $(a_n)_{n=1}^{\infty}$ je Cauchyovská, ale $\lim_{n \to \infty} a_n \stackrel{\mathbf{Q}}{=}$ neexistuje.

2.3.20 Věta

Faktorový prostor $\mathbb{L}_2(G)$ společně se skalárním součinem zavedeným vztahem (2.6) je úplný, tj. jedná se o Hilbertův prostor.

Důkaz:

Jelikož již bylo prokázáno, že $\mathbb{L}_2(G)$ je vektorový prostor nad C, zbývá dokázat úplnost. Vyberme tedy z libovolné cauchyovské posloupnosti $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$ podposloupnost $\left(f_{k_\ell}(\vec{x})\right)_{\ell=1}^{\infty}$, jež konverguje skoro všude na G. To je díky cauchyovskosti možné. Cílem důkazu je de facto prokázat, že $\left(f_k(\vec{x})\right)_{k=1}^{\infty}$ je konvergentní v $\mathbb{L}_2(G)$. První člen podposloupnosti $\left(f_{k_\ell}(\vec{x})\right)_{\ell=1}^{\infty}$ vyberme tak, aby pro všechna $m>k_1$ platilo

$$||f_{k_1}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2}.$$

To je opět díky cauchyovskosti možné. Druhý člen podposloupnosti vyberme tak, aby pro všechna $m > k_2$ platilo

$$||f_{k_2}(\vec{x}) - f_m(\vec{x})|| < \frac{1}{2^2}.$$

Analogicky vyberme ℓ -tý člen podposloupnosti tak, aby pro všechna $m>k_\ell$ platilo

$$||f_{k_{\ell}}(\vec{x}) - f_{m}(\vec{x})|| < \frac{1}{2^{\ell}}.$$

Označíme-li nyní

$$g_k(\vec{x}) = \sum_{s=1}^k |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

$$g(\vec{x}) = \sum_{s=1}^{\infty} |f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|,$$

bude

$$||g_k(\vec{x})|| \le \sum_{s=1}^k ||f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})|| < \sum_{s=1}^k \frac{1}{2^s} < 1.$$

Je proto $\int_M |g_n(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) < 1$ a podle Leviho věty také

$$\int_M |g(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) = \lim_{k \to \infty} \int_M |g_k(\vec{x})|^2 \, \mathrm{d}\mu(\vec{x}) \leqslant 1$$

a $g(\vec{x})$ je konečná skoro všude na M. Navíc řada $\sum_{s=1}^k \left| f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right|$ má pro skoro všechna $\vec{x} \in M$ konečný součet a tudíž i řada $\sum_{s=1}^k \left(f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x}) \right)$ je konvergentní, a tedy také posloupnost

$$f_k(\vec{x}) = \sum_{s=1}^{k-1} (f_{k_s+1}(\vec{x}) - f_{k_s}(\vec{x})) + f_{k_1}(\vec{x}).$$

Označme $f(\vec{x})$ její limitu. Ta je samozřejmě měřitelná jako limita posloupnosti měřitelných funkcí.

Ve druhé části důkazu ukážeme, že posloupnost $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$ konverguje právě k této funkci $f(\vec{x})$ v $\mathbb{L}_2(G)$. Předně z cauchyovskosti posloupnosti $\left(f_{k_\ell}(\vec{x})\right)_{\ell=1}^\infty$ plyne cauchyovskost podposloupnosti $\left(f_{k_\ell}(\vec{x})\right)_{k=1}^\infty$, a tedy pro $\epsilon=1$ existuje $k_0\in \mathbf{N}$ takové, že pro $\ell>k_0$ a $m>k_0$ je

$$\int_{M} |f_{k_{\ell}}(\vec{x}) - f_{k_{m}}(\vec{x})|^{2} \,\mathrm{d}\mu(\vec{x}) < 1.$$

Podle Fatouovy věty (viz věta 2.1.7, str. 26 v [4]) je

$$\int_{M} \left| f_{k_{\ell}}(\vec{x}) - f(\vec{x}) \right|^{2} \mathrm{d}\mu(\vec{x}) < 1,$$

odkud plyne, že funkce $f(\vec{x})$ rozepsaná jako $(f(\vec{x}) - f_{k_{\ell}}(\vec{x})) + f_{k_{\ell}}(\vec{x})$ patří do $\mathbb{L}_2(G)$. Provedeme-li stejnou úvahu s libovolně malým ϵ , získáme

$$\int_M \bigl|f_{k_\ell}(\vec x) - f(\vec x)\bigr|^2 \,\mathrm{d}\mu(\vec x) < \epsilon^2,$$

což neznamená nic jiného, než že

$$\lim_{\ell \to \infty} f_{k_{\ell}}(\vec{x}) = f(\vec{x}).$$

V poslední části důkazu ukážeme, že k funkci $f(\vec{x})$ konverguje celá posloupnost $(f_k(\vec{x}))_{k=1}^{\infty}$. To ovšem plyne ihned z nerovností

$$||f(\vec{x}) - f_k(\vec{x})|| \le ||f(\vec{x}) - f_{k_\ell}(\vec{x})|| + ||f_{k_\ell}(\vec{x}) - f_k(\vec{x})||,$$

neboť první člen napravo můžeme udělat libovolně malým (pro velká k_ℓ) díky dokázané konvergenci zmiňované podposloupnosti a druhý díky cauchyovskosti posloupnosti $\left(f_k(x)\right)_{k=1}^\infty$.

2.3.21 Důsledek

Nechť $w(\vec{x}) \in \mathcal{C}(\overline{G})$ je nenulová a nezáporná funkce. Faktorový prostor

$$\mathbb{L}_w(G) = \big\{ f(\vec{x}) \in F(G) : \int_G |f(\vec{x})|^2 w(\vec{x}) \, \mathrm{d}\mu(\vec{x}) < +\infty \big\},$$

kde $0 < w(\vec{x}) \in \mathscr{C}(G)$, společně se skalárním součinem zavedeným vztahem $\int_G f(\vec{x}) g^\star(\vec{x}) w(\vec{x}) \, \mathrm{d}\vec{x}$ je Hilbertovým prostorem.

2.3.22 Definice

Řekneme, že funkce $f(\vec{x}): \mathbf{E}^r \mapsto \mathbf{R}$ je analytická na G, jestliže pro každé $\vec{c} \in G$ existuje okolí $\mathcal{U}_{\varepsilon}(\vec{c})$ tak, že pro všechna $\vec{x} \in \mathcal{U}_{\varepsilon}(\vec{c})$ platí rovnost

$$f(\vec{x}) = \sum_{n=0}^{\infty} \frac{\mathrm{d}^n f_{\vec{c}}(\vec{x})}{n!},$$

kde symbol $d^n f_{\vec{c}}(\vec{x})$ představuje n-tý totální diferenciál v bodě funkce $f(\vec{x})$ v bodě \vec{c} . Třídu všech analytických funkcí na oblasti G označujeme symbolem \mathscr{A}_G . Tady mi to nesedi s poznamkami, overit.

2.3.23 Značení

Nadále budeme značit funkcionální Hilbertuv prostor symbolem \mathcal{H} , přičemž předpokládáme prostor faktorových funkcí \mathbb{L}_2 nebo $\mathbb{L}_2^{(w)}$.

2.3.24 Poznámka

Rozlišujeme 3 typy konvergence:

- bodová: $f_n(\vec{x}) \stackrel{G}{\to} f(\vec{x})$
- $\bullet \ \ \text{stejnoměrn\'a}: f_n(\vec{x}) \stackrel{G}{\rightrightarrows} f(\vec{x}) \Leftrightarrow (\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) (n > n_0 \land \vec{x} \in G \Rightarrow |f_n(\vec{x}) f(\vec{x})| < \varepsilon)$
- podle normy: $f_n(\vec{x}) \to f(\vec{x}) \Leftrightarrow (\forall \varepsilon > 0) (\exists n_0 \in \mathbf{N}) (n > n_0 \land ||f_n(\vec{x}) f(\vec{x})|| < \varepsilon)$

2.3.25 Věta

 $f(\vec{x}), g(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{R}$ jsou hustoty, pak $(f * g)(\vec{x})$ je rovněž hustotou a vždy existuje.

Důkaz:

- $f(\vec{x}), g(\vec{x}) \in \mathcal{L}_{\mathbf{0}}(\mathbf{E}^r) \Rightarrow (f * g)(\vec{x}) \in \mathcal{L}_{\mathbf{1}}(\mathbf{E}^r)$
- nezápornost:

$$\big(f*g\big)(\vec{x}) = \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \geqslant 0 \quad \forall x \in \mathbf{E}^r,$$

neboť z definice hustot je integrál větší nebo roven 0 a existuje

$$\begin{split} \int_{\mathbf{E}^r} \left(f * g \right) (\vec{x}) \, \mathrm{d}\vec{x} &= \int_{\mathbf{E}^r} \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \, \mathrm{d}\vec{x} = \int_{\mathbf{E}^r} f(\vec{s}) \int_{\mathbf{E}^r} g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{x} \, \mathrm{d}\vec{s} = \\ &= \left| \begin{array}{c} \vec{y} = \vec{x} - \vec{s} \\ \mathrm{d}\vec{y} = \mathrm{d}\vec{x} \end{array} \right| = \int_{\mathbf{E}^r} f(\vec{s}) \int_{\mathbf{E}^r} g(\vec{y}) \, \mathrm{d}\vec{y} \, \mathrm{d}\vec{s} = 1 \int_{\mathbf{E}^r} f(\vec{s}) \, \mathrm{d}\vec{s} = 1 \end{split}$$

2.3.26 Poznámka

Střední hodnota z r, f(r) je $\langle r \rangle = \int_{\mathbf{R}} r f(r) dr$.

2.3.27 Věta

Nechť $f(x), g(x) : \mathbf{R} \mapsto \mathbf{R}$ jsou hustoty. Nechť $\int_{\mathbf{R}} x f(x) \, \mathrm{d}x = \mu_1$ a $\int_{\mathbf{R}} x g(x) \, \mathrm{d}x = \mu_2$. Pak $\int_{\mathbf{R}} \left(f * g \right) (x) \, \mathrm{d}x = \mu_1 + \mu_2$. $D\mathring{u}kaz$:

teoretické požadavky již byly dokázány v předchozí větě

 $\int_{\mathbf{R}} x \big(f * g\big)(x) \, \mathrm{d}x = \int_{\mathbf{R}} x \int_{\mathbf{R}} f(s) g(x-s) \, \mathrm{d}s \, \mathrm{d}x = \int_{\mathbf{R}} f(s) \int_{\mathbf{R}} x g(x-s) \, \mathrm{d}x \, \mathrm{d}s = \\ = \left| \begin{array}{c} y = x - s \\ \mathrm{d}y = \mathrm{d}x \end{array} \right| = \int_{\mathbf{R}} f(s) \int_{\mathbf{R}} (y+s) g(y) \, \mathrm{d}y \, \mathrm{d}s = \int_{\mathbf{R}}^2 f(s) y g(y) \, \mathrm{d}s \, \mathrm{d}y + \int_{\mathbf{R}}^2 f(s) s g(y) \, \mathrm{d}y \, \mathrm{d}s = \\ = \left| \mathrm{V\check{e}ta} \ \mathrm{o} \ \mathrm{separabilit\check{e}} \right| = \int_{\mathbf{R}} f(s) \, \mathrm{d}s \int_{\mathbf{R}} y g(y) \, \mathrm{d}y + \int_{\mathbf{R}} s f(s) \, \mathrm{d}s \int_{\mathbf{R}} g(y) \, \mathrm{d}y = \mu_1 + \mu_2 \\ \end{aligned}$

2.3.28 Věta – o posunutí v konvoluci

$$f(\vec{x}),g(\vec{x})\in \mathscr{L}_1(\mathbf{E}^r), \vec{\mu}\in \mathbf{E}^r. \text{ Pak platí: } (f\star g)(\vec{x}-\vec{\mu})=f(\vec{x})\star g(\vec{x}-\vec{\mu})=f(\vec{x}-\vec{\mu})\star g(\vec{x})$$

2.3.29 Poznámka

Zde používaáme afinní transformaci, tudíž za každé \vec{x} dosadíme $\vec{x} - \vec{\mu}$. Souvislost s předchozí větou je taková, že lze posunout střední hodnotu v případě, že za f, g zvolíme hustoty.

2.3.30 Věta – o derivaci konvoluce

$$f(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r), g(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r) \cap \mathscr{C}_0^1. \text{ Pak platí } \frac{\partial}{\partial x_k} (f \star g) = f(\vec{x}) \star \frac{g}{x_k} (\vec{x}).$$

Důkaz:

$$\bullet \ \frac{\partial}{\partial x_k} (f \star g) = \frac{\partial}{\partial x_k} \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s}$$

• použijeme větu o derivaci integrálu s parametrem

$$\bullet \ \ \frac{\mathrm{d}}{\mathrm{d}\alpha} \int_{\mathbf{E}^r} f(\vec{x}|\alpha) \, \mathrm{d}\vec{x} \to \frac{\mathrm{d}}{\mathrm{d}\alpha_k} \int_{\mathbf{E}^r} f(\vec{x}|\alpha_1,\alpha_2,\dots,\alpha_n) \, \mathrm{d}\vec{x}$$

- ověřme předpoklady věty:
 - výraz v integrálu musí konvergovat, což je splněno
 - měřitelnost je splněna, jelikož výraz je z \mathcal{L}_1
 - diferencovatelnost, výraz nahradíme integrabilní majorantou: $\left| f(\vec{s}) \frac{\partial g}{\partial x_k} (\vec{x} \vec{s}) \right| \leqslant K \left| f(\vec{s}) \right| \in \mathcal{L}(\mathbf{E}),$ a využijeme vlastnost, že funkce na kompaktu nabývá maxima

$$\bullet \ \int_{\mathbf{E}^r} f(\vec{s}) \frac{\partial g}{\partial x_k} (\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} = \left(f \star \frac{\partial g}{\partial x_k} \right) (\vec{x})$$

2.3.31 Poznámka

Povšimněme si, že se věta jeví na první pohled nevyvážená, je to z duvodu požadavku na diferencovatelnost pouze pro g. Zároveň si povšimněme absence dodatku "pokud levá (pravá) strana existuje". U konvoluce pozorujeme tzv. vyhlazovací efekt, kdy pokud je g(x) hladká, pak existuje konvoluce i její derivace bez ohledu na to, jak nespojitá je funkce f(x).

2.3.32 Příklad

Spočítejme konvoluci dvou Gaussových funkcí. Položme $f(x)=\frac{1}{\sqrt{2\pi}\sigma_1}e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$ a $g(x)=\frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$. Pak dopočítám později.

	KAPITOLA 2. FUNKCIONÁLNÍ HILBERTOVY PROSTORY							
22								
21								
22								
22								
22								
22								
22								
22								
22								
22								
22								
22								
	22							

Kapitola 3

Teorie pravděpodobnosti

3.1 Axiomatická definice pravděpodobnosti

Způsobů, jak vybudovat teorii pravděpodobnosti je více. My se v tomto textu přidržíme axiomatické výstavby pojmu pravděpodobnost, kdy s výhodou využijeme obecné poznatky z teorie míry.

3.1.1 Definice

Nech?je dán základní pravděpodobností prostor Ω . Nechť $\mathscr{X} \subset 2^{\Omega}$ je množinová sigma-algebra a $\Omega \in \mathscr{X}$ její prezident. Pak každou sigma-aditivní míru $P(X) : \mathscr{X} \mapsto \langle 0, 1 \rangle$ nazýváme $\mathit{pravděpodobnostní mírou (pravděpodobností)}$ na \mathscr{X} , pokud je tzv. $\mathit{normalizovaná}$, tj. platí-li, že

$$P[\Omega] = 1.$$

3.1.2 Poznámka

Díky definici 3.1.1 splňuje každá pravděpodobnostní míra následující axiomy známé z obecné definice míry (viz definice 3.1.18, str. 167 v [3]):

- 1. axiom nulové množiny: $\emptyset \in \mathcal{X}$, kde symbol \emptyset reprezentuje nemožný jev,
- 2. axiom míry nulové množiny: $P[\emptyset] = 0$,
- 3. axiom nezápornosti: $\forall X \in \mathcal{X} : P[X] \geqslant 0$,
- 4. axiom monotónie: $X_1 \subset X_2 \implies P[X_1] \leqslant P[X_2]$,
- 5. axiom aditivity: $P[X_1 \uplus X_2] = P[X_1] + P[X_2]$,
- 6. axiom normality: $P[\Omega] = 1$.
- 7. axiom σ -aditivity: $P[\uplus_{\ell=1}^{\infty} X_{\ell}] = \sum_{\ell=1}^{\infty} P[X_{\ell}].$

Pro jistotu upozorňujeme, že symbol \u2219 reprezentuje disjunktní sjednocení.

3.1.3 Definice

Nechť je dán základní pravděpodobností prostor Ω , σ -algebra $\mathscr{X} \subset 2^{\Omega}$ P-měřitelných množin a příslušná pravděpodobnostní míra $P(X): \mathscr{X} \mapsto \langle 0, 1 \rangle$. Pak trojici $\{\Omega, \mathscr{X}, P\}$ budeme nazývat *pravděpodobnostním prostorem*.

3.1.4 Definice

Nechť jsou dány jevy $A, B \subset \Omega$. Řekneme, že jevy A a B jsou $nez ext{\'a}visl ext{\'e}$, jestliže platí

$$P[A \cap B] = P[A] \cdot P[B].$$

3.1.5 Definice

Nechť je dán pravděpodobnostní prostor $\{\Omega, \mathcal{X}, P\}$. Každé zobrazení $\mathcal{X}: \Omega \mapsto \mathbf{R}$ takové, že pro každé $c \in \mathbf{R}$ platí

$$\mathcal{X}^{-1}((-\infty,c)) = \{\omega \in \Omega : \mathcal{X}(\omega) \leqslant c\} \in \mathcal{X},\tag{3.1}$$

nazveme náhodnou veličinou.

3.1.6 Poznámka

Vztah (3.1) vlastně požaduje, aby vzory všech intervalů $(-\infty, c)$ byly P-měřitelnými množinami. Z hlediska obecné teorie míry je definice náhodné veličiny de facto shodná s definicí měřitelné funkce (viz definice 4.1.5, str. 201 ve skriptech [3]).

3.1.7 Poznámka

Symbolem $P[\mathcal{X} < x]$ budeme označovat pravděpodobnost, že náhodná veličina \mathcal{X} nabude hodnoty menší než x. Podobně označuje symbol $P[\mathcal{X} \in A]$ pravděpodobnost, že náhodná veličina \mathcal{X} nabude hodnoty z množiny A. Alternativně to zapisujeme též znakem P[A], není-li nutné explicitně zmiňovat o jakou náhodnou veličinu se jedná. Analogicky dále zavádíme symboly $P[\mathcal{X} \geqslant x]$, $P[\mathcal{X} = 7]$, P[N] a podobně.

3.1.8 Definice

Nechť je dán pravděpodobnostní prostor $\{\Omega, \mathcal{X}, P\}$ a náhodná veličina $\mathcal{X}: \Omega \mapsto \mathbf{R}$. Reálnou funkci zavedenou předpisem

$$F_{\mathcal{X}}(x) := P[\mathcal{X} \leqslant x]$$

nazýváme distribuční funkcí náhodné veličiny \mathcal{X} .

3.1.9 Poznámka

Je-li pravděpodobnost $P(X): \mathscr{X} \mapsto \langle 0, 1 \rangle$ definována jako míra, pak distribuční funkce $F_{\mathcal{X}}(x)$ představuje de facto vytvořující funkci míry. Jako taková musí splňovat následující předpoklady:

- je neklesající na R,
- $\operatorname{Ran}(F) \subset \langle 0, 1 \rangle$,
- $\lim_{x\to-\infty} F(x) = 0$,
- $\lim_{x\to+\infty} F(x) = 1$,
- F(x) je spojitá zprava na \mathbb{R} , tj. pro každé $c \in \mathbb{R}$ platí $\lim_{x \to c_{\perp}} F(x) = F(c)$,
- F(x) má nejvýše spočetně mnoho bodů nespojitosti.

3.2 Absolutně spojitá náhodná veličina

Nejprve se budeme zabývat speciálními případy jednorozměrných náhodných veličin. Vybereme přitom pouze ty, které mají přímou vazbu k teorii, jež je náplní těchto skript, tj. k teorii parciálních diferenciálních rovnic.

3.2.1 Definice

Nechť je dán pravděpodobnostní prostor $\{\Omega, \mathcal{X}, P\}$ a náhodná veličina $\mathcal{X}: \Omega \mapsto \mathbf{R}$. Řekneme, že náhodná veličina \mathcal{X} má absolutně spojité rozdělení, existuje-li nezáporná funkce $f_{\mathcal{X}}(t): \mathbf{R} \mapsto \mathbf{R}$ taková, že pro distribuční funkci $F_{\mathcal{X}}(x)$ náhodné veličiny \mathcal{X} platí

$$F_{\mathcal{X}}(x) = \int_{-\infty}^{x} f_{\mathcal{X}}(t) \, \mathrm{d}t.$$

3.2.2 Definice

Nechť je dána náhodná veličina \mathcal{X} . Existuje-li pro ni funkce $f_{\mathcal{X}}(x)$ z předešlé definice, pak tuto funkci $f_{\mathcal{X}}(x)$ nazýváme hustotou pravděpodobnosti náhodné veličiny \mathcal{X} .

3.2.3 Úmluva

V dalším textu předpokládáme, že je pevně zvolen pravděpodobnostní prostor $\{\Omega, \mathcal{X}, P\}$.

3.2.4 Věta

Nechť má náhodná veličina \mathcal{X} absolutně spojité rozdělení. Nechť $F_{\mathcal{X}}(x)$ je její distribuční funkce a $f_{\mathcal{X}}(x)$ její hustota pravděpodobnosti. Potom ve všech bodech, kde existuje derivace funkce $F_{\mathcal{X}}(x)$, platí

$$f_{\mathcal{X}}(x) = \frac{\mathrm{d}F_{\mathcal{X}}}{\mathrm{d}x}(x). \tag{3.2}$$

Důkaz:

• plyne z vlastnosti integrálu a derivace

3.2.5 Poznámka

Pro hustotu pravděpodobnosti platí z výše uvedeného tzv. normalizační podmínka tvaru

$$\int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x = 1.$$

Formální součin $f_{\mathcal{X}}(x)$ dx pak (velmi populárně řečeno) představuje pravděpodobnost, že náhodně vybrané x padne do intervalu (x, x + dx).

3.2.6 Poznámka

Každá nezáporná funkce $f(x): \mathbf{R} \mapsto \mathbf{R}$, pro níž

$$\int_{\mathbf{R}} f(x) \, \mathrm{d}x = 1,$$

může být chápána jako hustota pravděpodobnosti určité jednorozměrné náhodné veličiny.

3.2.7 Věta

Nechť má náhodná veličina $\mathcal X$ absolutně spojité rozdělení s hustotou pravděpodobnosti $f_{\mathcal X}(x)$. Potom pro každou množinu $A=(a,b\rangle,$ kde $a,b\in\mathbf R^\star$ a $a\leqslant b,$ platí

$$\mathbf{P}\big[\mathcal{X} \in A\big] = \int_A f_{\mathcal{X}}(x) \, \mathrm{d}x.$$

Důkaz:

- označme $F_{\mathcal{X}}(x)$ příslušnou distribuční funkci
- pak

$$P\left[a < \mathcal{X} \leqslant b\right] = F_{\mathcal{X}}(b) - F_{\mathcal{X}}(a) = \int_{-\infty}^{b} f_{\mathcal{X}}(x) \, \mathrm{d}x - \int_{-\infty}^{a} f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{a}^{b} f_{\mathcal{X}}(x) \, \mathrm{d}x$$

3.2.8 Poznámka

Předešlá věta zůstává v platnosti i pro obecné množiny A, tedy ne pouze pro intervaly.

3.2.9 Definice

Nechť je dána náhodná veličina \mathcal{X} , jež má absolutně spojité rozdělení, a příslušná hustota pravděpodobnosti $f_{\mathcal{X}}(x)$. Konvergujeli integrál

$$\int_{\mathbf{R}} x f_{\mathcal{X}}(x) \, \mathrm{d}x,$$

pak jeho hodnotu nazýváme střední hodnotou náhodné veličiny \mathcal{X} (expected value of \mathcal{X}) a značíme jedním ze symbolů $\mathsf{E}(\mathcal{X})$ nebo $\langle x \rangle$.

3.2.10 Definice

Nechť je dána náhodná veličina \mathcal{X} , příslušná hustota pravděpodobnosti $f_{\mathcal{X}}(x)$ a její střední hodnota $\langle x \rangle$. Konverguje-li integrál

$$\int_{\mathbf{R}} (x - \langle x \rangle)^2 f_{\mathcal{X}}(x) \, \mathrm{d}x,\tag{3.3}$$

pak příslušnou hodnotu nazýváme *rozptylem* náhodné veličiny \mathcal{X} (*variance of* \mathcal{X}) a značíme symbolem VAR(\mathcal{X}).

3.2.11 Věta

Nechť je dána náhodná veličina $\mathcal X$ a její střední hodnota $\langle x \rangle$. Konverguje-li integrál $\int_{\mathbf R} x^2 f_{\mathcal X}(x) \, \mathrm{d}x$, pak platí

$$\mathtt{VAR}(\mathcal{X}) = \int_{\mathbf{R}} x^2 f_{\mathcal{X}}(x) \, \mathrm{d}x - \langle x \rangle^2 \geqslant 0,$$

tj.
$$VAR(\mathcal{X}) = \langle x^2 \rangle - \langle x \rangle^2 = E(\mathcal{X}^2) - (E(\mathcal{X}))^2$$
.

Důkaz:

• snadno vypočteme

$$\left\langle (x - \langle x \rangle)^2 \right\rangle = \int_{\mathbf{R}} \left(x - \langle x \rangle \right)^2 f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} x^2 f_{\mathcal{X}}(x) \, \mathrm{d}x - 2 \int_{\mathbf{R}} x \langle x \rangle f_{\mathcal{X}}(x) \, \mathrm{d}x + \int_{\mathbf{R}} \langle x \rangle^2 f_{\mathcal{X}}(x) \, \mathrm{d}x = \left\langle x^2 \right\rangle - 2 \langle x \rangle \underbrace{\int_{\mathbf{R}} x f_{\mathcal{X}}(x) \, \mathrm{d}x}_{=\langle x \rangle} + \langle x \rangle^2 \underbrace{\int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x}_{=1} = \langle x^2 \rangle - \langle x \rangle^2 = \mathbf{E}(\mathcal{X}^2) - \mathbf{E}^2(\mathcal{X})$$

• to, že VAR $(\mathcal{X})\geqslant 0$, plyne bezprostředně z faktu, že integrand $(x-\langle x\rangle)^2$ v definičním vztahu (3.3) je nezápornou funkcí

3.2.12 Definice

Nechť je dána náhodná veličina \mathcal{X} a její rozptyl VAR (\mathcal{X}) . Směrodatnou odchylkou (standard deviation) rozumíme hodnotu

$$\mathtt{SD}(\mathcal{X}) := \sqrt{\mathtt{VAR}(\mathcal{X})}.$$

3.2.13 Definice

Řekneme, že náhodná veličina $\mathcal X$ má *rovnoměrné rozdělení* (uniform distribution) s parametry $a,b \in \mathbf R$ (a < b) a označíme $\mathcal X \backsim U_{(a,b)}$, pokud pro její hustotu pravděpodobnosti platí vztah

$$f_{\mathcal{X}}(x) = \frac{\Theta(x-a) \cdot \Theta(b-x)}{b-a}.$$

3.2.14 Věta

Necht' $\mathcal{X} \backsim U_{(a,b)}$. Pak

$$\langle x \rangle = \frac{a+b}{2}, \quad {\tt VAR}(\mathcal{X}) = \frac{(b-a)^2}{12}.$$

Důkaz:

• snadno nahlédneme, že hustota pravděpodobnosti rovnoměrného rozdělení je správně normalizovaná, neboť

$$\int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_a^b \frac{1}{b-a} \, \mathrm{d}x = 1$$

dále

$$\mathsf{E}(\mathcal{X}) = \int_{\mathbf{R}} x \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{a}^{b} \frac{x}{b-a} \, \mathrm{d}x = \frac{1}{b-a} \frac{b^2 - a^2}{2} = \frac{a+b}{2}$$

• pro výpočet rozptylu užijeme nejprve pomocný výpočet

$$\mathsf{E}(\mathcal{X}^2) = \int_{\mathbf{R}} x^2 \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_a^b \frac{x^2}{b-a} \, \mathrm{d}x = \frac{1}{b-a} \frac{b^3 - a^3}{3} = \frac{a^2 + ab + b^2}{3}$$

• podle věty 3.2.11 pak snadno

$$\mathrm{VAR}(\mathcal{X}) = \mathrm{E}(\mathcal{X}^2) - \mathrm{E}^2(\mathcal{X}) = \frac{a^2 + ab + b^2}{3} - \frac{(a+b)^2}{4} = \frac{(a-b)^2}{12}$$

3.2.15 Definice

Řekneme, že náhodná veličina \mathcal{X} má *Gaussovo (normální) rozdělení* (Gaussian normal distribution) s parametry $\mu, \sigma \in \mathbf{R}$ a označíme $\mathcal{X} \backsim N_{(\mu,\sigma)}$, pokud pro její hustotu pravděpodobnosti platí vztah

$$f_{\mathcal{X}}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

3.2.16 Věta

Nech? $\mathcal{X} \backsim N_{(\mu,\sigma)}$. Pak

$$\langle x \rangle = \mu, \quad \text{VAR}(\mathcal{X}) = \sigma^2.$$

Důkaz:

• snadno nahlédneme, že hustota pravděpodobnosti Gaussova rozdělení je správně normalizovaná, neboť

$$\int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \frac{1}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \left| \begin{array}{c} y = \frac{x-\mu}{\sqrt{2}\sigma} \\ \mathrm{d}y = \frac{\mathrm{d}x}{\sqrt{2}\sigma} \end{array} \right| = \frac{1}{\sqrt{\pi}} \int_{\mathbf{R}} \mathrm{e}^{-y^2} \, \mathrm{d}y \stackrel{(??)}{=} 1$$

• dále

$$\mathsf{E}(\mathcal{X}) = \int_{\mathbf{R}} x \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \frac{x}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \int_{\mathbf{R}} \frac{x-\mu}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x + \int_{\mathbf{R}} \frac{\mu}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \mu,$$

kde jsme s výhodou užili faktu, že první z integrálů je nulový díky liché symetrii integrandu a druhý z integrálů je normalizačním integrálem pouze přenásobeným konstantou μ

pro výpočet rozptylu užijeme nejprve pomocný výpočet

$$\begin{split} \mathbf{E}(\mathcal{X}^2) &= \int_{\mathbf{R}} x^2 \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \frac{x^2}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \int_{\mathbf{R}} \frac{(x-\mu+\mu)^2}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \\ &= \int_{\mathbf{R}} \frac{(x-\mu)^2}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x + \int_{\mathbf{R}} \frac{2(x-\mu)\mu}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x + \int_{\mathbf{R}} \frac{\mu^2}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = \int_{\mathbf{R}} \frac{(x-\mu)^2}{\sqrt{2\pi}\sigma} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x + \mu^2 = \\ &= \left| \begin{array}{c} y = \frac{x-\mu}{\sqrt{2\sigma}} \\ \mathrm{d}y = \frac{\mathrm{d}x}{\sqrt{2\sigma}} \end{array} \right| = \mu^2 + 2\sigma^2 \int_{\mathbf{R}} \frac{y^2}{\sqrt{\pi}} \mathrm{e}^{-y^2} \, \mathrm{d}x = \mu^2 + 2\frac{\sigma^2}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2} = \mu^2 + \sigma^2, \end{split}$$

kde bylo využito odvozeného vztahu (??)

• podle věty 3.2.11 pak snadno $VAR(\mathcal{X}) = E(\mathcal{X}^2) - E^2(\mathcal{X}) = \mu^2 + \sigma^2 - \mu^2 = \sigma^2$

3.2.17 Definice

Řekneme, že náhodná veličina \mathcal{X} má *exponenciální rozdělení* (exponential distribution) s parametry $\mu, \beta \in \mathbf{R}$ a označíme $\mathcal{X} \backsim Exp_{(\mu,\beta)}$, pokud pro její hustotu pravděpodobnosti platí vztah

$$f_{\mathcal{X}}(x) = \Theta(x - \mu) \frac{1}{\beta} e^{-\frac{x - \mu}{\beta}}.$$

3.2.18 Věta

Nech? $\mathcal{X} \backsim Exp_{(\mu,\beta)}$. Pak

$$\langle x \rangle = \mu + \beta, \quad VAR(\mathcal{X}) = \beta^2.$$

Důkaz:

• snadno nahlédneme, že hustota pravděpodobnosti exponenciálního rozdělení je správně normalizovaná, neboť

$$\int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \Theta(x - \mu) \frac{1}{\beta} \mathrm{e}^{-\frac{x - \mu}{\beta}} \, \mathrm{d}x = \int_{\mu}^{\infty} \frac{1}{\beta} \mathrm{e}^{-\frac{x - \mu}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} y = \frac{x - \mu}{\beta} \\ \mathrm{d}y = \frac{\mathrm{d}x}{\beta} \end{array} \right| = \int_{0}^{1} \mathrm{e}^{-y} \, \mathrm{d}y = 1$$

• dále

$$\begin{split} \mathbf{E}(\mathcal{X}) &= \int_{\mathbf{R}} x \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \Theta(x - \mu) \frac{x}{\beta} \mathrm{e}^{-\frac{x - \mu}{\beta}} \, \mathrm{d}x = \int_{\mu}^{\infty} \frac{x - \mu + \mu}{\beta} \mathrm{e}^{-\frac{x - \mu}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} y = \frac{x - \mu}{\beta} \\ \mathrm{d}y = \frac{\mathrm{d}x}{\beta} \end{array} \right| = \\ &= \beta \int_{0}^{1} y \mathrm{e}^{-y} \, \mathrm{d}y + \mu \int_{0}^{1} \mathrm{e}^{-y} \, \mathrm{d}y = \beta + \mu \end{split}$$

• pro výpočet rozptylu užijeme nejprve pomocný výpočet

$$\begin{split} \mathbf{E}(\mathcal{X}^2) &= \int_{\mathbf{R}} x^2 \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \int_{\mathbf{R}} \Theta(x-\mu) \frac{x^2}{\beta} \mathrm{e}^{-\frac{x-\mu}{\beta}} \, \mathrm{d}x = \int_{\mu}^{\infty} \frac{x^2}{\beta} \mathrm{e}^{-\frac{x-\mu}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} y = \frac{x-\mu}{\beta} \\ \mathrm{d}y = \frac{\mathrm{d}x}{\beta} \end{array} \right| = \\ &= \int_{0}^{\infty} (\mu + \beta y)^2 \mathrm{e}^{-y} \, \mathrm{d}y = \mu^2 \int_{0}^{\infty} \mathrm{e}^{-y} \, \mathrm{d}y + 2\mu\beta \int_{0}^{\infty} y \mathrm{e}^{-y} \, \mathrm{d}y + \beta^2 \int_{0}^{\infty} y^2 \mathrm{e}^{-y} \, \mathrm{d}y \stackrel{\text{(??)}}{=} \mu^2 + 2\mu\beta + 2\beta^2 \end{split}$$

• podle věty 3.2.11 pak snadno

$$VAR(\mathcal{X}) = E(\mathcal{X}^2) - E^2(\mathcal{X}) = \mu^2 + 2\mu\beta + 2\beta^2 - (\beta + \mu)^2 = \beta^2$$

3.2.19 Definice

Řekneme, že náhodná veličina \mathcal{X} má $Gamma\ rozdělení$ (Gamma distribution) s parametry $\alpha, \beta \in \mathbf{R}\ (\alpha > 1, \beta > 0)$ a označíme $\mathcal{X} \backsim Gamma_{(\alpha,\beta)}$, pokud pro její hustotu pravděpodobnosti platí vztah

$$f_{\mathcal{X}}(x) = \frac{\Theta(x)}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-\frac{x}{\beta}}.$$

3.2.20 Věta

Nech? $\mathcal{X} \backsim Gamma_{(\alpha,\beta)}$. Pak

$$\langle x \rangle = \alpha \beta, \quad VAR(\mathcal{X}) = \alpha \beta^2.$$

Důkaz:

- nejprve prověříme, zda je skutečně normalizační integrál $\int_{\mathbf{R}} f_{\mathcal{X}}(x) dx$ jednotkový
- protože ale

$$\begin{split} \int_{\mathbf{R}} f_{\mathcal{X}}(x) \, \mathrm{d}x &= \int_{\mathbf{R}} \frac{\Theta(x)}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \mathrm{e}^{-\frac{x}{\beta}} \, \mathrm{d}x = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} x^{\alpha-1} \mathrm{e}^{-\frac{x}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} x = \beta y \\ \mathrm{d}x = \beta \mathrm{d}y \end{array} \right| = \\ &= \frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha-1} \mathrm{e}^{-y} \, \mathrm{d}y \stackrel{\text{(??)}}{=} \frac{1}{\Gamma(\alpha)} \Gamma(\alpha) = 1, \end{split}$$

je funkce $f_{\mathcal{X}}(x)=rac{\Theta(x)}{\Gamma(lpha)eta^{lpha}}x^{lpha-1}\mathrm{e}^{-rac{x}{eta}}$ skutečně hustotou pravděpodobnosti

• dále

$$\begin{split} \mathbf{E}(\mathcal{X}) &= \int_{\mathbf{R}} x \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_{0}^{\infty} x^{\alpha} \mathrm{e}^{-\frac{x}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} x = \beta y \\ \mathrm{d}x = \beta \mathrm{d}y \end{array} \right| = \\ &= \frac{\beta}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha} \mathrm{e}^{-y} \, \mathrm{d}y \stackrel{\text{(??)}}{=} \frac{\beta}{\Gamma(\alpha)} \Gamma(\alpha+1) \stackrel{\text{(??)}}{=} \alpha\beta \end{split}$$

- střední hodnotou Gamma rozdělení je tedy součin obou parametrů rozdělení
- dále

$$\begin{split} \mathbf{E}(\mathcal{X}^2) &= \int_{\mathbf{R}} x^2 \, f_{\mathcal{X}}(x) \, \mathrm{d}x = \frac{1}{\Gamma(\alpha)\beta^\alpha} \int_0^\infty x^{\alpha+1} \mathrm{e}^{-\frac{x}{\beta}} \, \mathrm{d}x = \left| \begin{array}{c} x = \beta y \\ \mathrm{d}x = \beta \mathrm{d}y \end{array} \right| = \\ &= \frac{\beta^2}{\Gamma(\alpha)} \int_0^\infty y^{\alpha+1} \mathrm{e}^{-y} \, \mathrm{d}y \stackrel{\text{(??)}}{=} \frac{\beta}{\Gamma(\alpha)} \Gamma(\alpha+2) \stackrel{\text{(??)}}{=} \beta^2(\alpha+1)\alpha \end{split}$$

• odsud už lehce dovozujeme, že rozptylem zkoumaného rozdělení je hodnota

$$VAR(\mathcal{X}) = E(\mathcal{X}^2) - E^2(\mathcal{X}) = \beta^2(\alpha + 1)\alpha - \alpha^2\beta^2 = \alpha\beta^2,$$

což bylo dokázat

3.3 Vícerozměrná náhodná veličina

Nyní rozšíříme pojmy náhodné veličiny, distribuční funkce a hustoty pravděpodobnosti na vícerozměrné případy.

3.3.1 Definice

Nechť \mathcal{X} a \mathcal{Y} jsou náhodné veličiny. *Sdruženou distribuční funkci* náhodných veličin \mathcal{X}, \mathcal{Y} definujeme pro všechna $(x, y) \in \mathbf{E}^2$ předpisem

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = P\left(\left[\mathcal{X} \leqslant x\right]\left[\mathcal{Y} \leqslant y\right]\right). \tag{3.4}$$

3.3.2 Věta

Nechť $F_{\mathcal{X},\mathcal{Y}}(x,y)$ je sdružená distribuční funkce náhodného vektoru $(\mathcal{X},\mathcal{Y})$. Potom pro všechna $x_1\leqslant x_2$ a $y_1\leqslant y_2$ platí nerovnost

$$F_{\mathcal{X},\mathcal{Y}}(x_1,y_1) \leqslant F_{\mathcal{X},\mathcal{Y}}(x_1,y_2).$$

Důkaz:

• důkaz plyne přímo z definičního vztahu (3.4), neboť

$$F_{\mathcal{X},\mathcal{Y}}(x_1,y_1) = P\left(\left[\mathcal{X} \leqslant x_1\right]\left[\mathcal{Y} \leqslant y_1\right]\right) \leqslant \begin{vmatrix} x_1 \leqslant x_2 \\ y_1 \leqslant y_2 \end{vmatrix} \leqslant P\left(\left[\mathcal{X} \leqslant x_1\right]\left[\mathcal{Y} \leqslant y_2\right]\right) \leqslant F_{\mathcal{X},\mathcal{Y}}(x_1,y_2)$$

3.3.3 Věta

Nechť $F_{\mathcal{X},\mathcal{Y}}(x,y)$ je sdružená distribuční funkce náhodného vektoru $(\mathcal{X},\mathcal{Y})$. Potom

$$\forall y \in \mathbf{R}: \quad \lim_{x \to -\infty} F_{\mathcal{X}, \mathcal{Y}}(x, y) = 0 \quad \land \quad \lim_{x \to \infty} F_{\mathcal{X}, \mathcal{Y}}(x, y) = F_{\mathcal{Y}}(y)$$

a také

$$\forall x \in \mathbf{R} : \lim_{y \to -\infty} F_{\mathcal{X}, \mathcal{Y}}(x, y) = 0 \quad \land \quad \lim_{y \to \infty} F_{\mathcal{X}, \mathcal{Y}}(x, y) = F_{\mathcal{X}}(x).$$

Důkaz:

• důkaz plyne přímo z definičního vztahu (3.4) a z definice pravděpodobnostní míry, neboť např.

$$\lim_{x \to -\infty} P\left(\left[\mathcal{X} \leqslant x\right] \left[\mathcal{Y} \leqslant y\right]\right) = 0$$

• dále

$$\lim_{x \to \infty} F_{\mathcal{X}, \mathcal{Y}}(x, y) = \lim_{x \to \infty} P\left(\left[\mathcal{X} \leqslant x\right] \left[\mathcal{Y} \leqslant y\right]\right) = P\left(\left[\mathcal{X} \in \mathbf{R}\right] \left[\mathcal{Y} \leqslant y\right]\right) = P\left(\left[\mathcal{Y} \leqslant y\right]\right)$$

- ullet výraz na pravé straně zjevně konverguje a jeho hodnota závisí na proměnné y
- definujme tedy $F_{\mathcal{Y}}(y) := P([\mathcal{Y} \leqslant y])$
- tato funkce je tudíž jakousi dílčí distribuční funkcí

3.3.4 Definice

Nechť $F_{\mathcal{X},\mathcal{Y}}(x,y)$ je sdružená distribuční funkce náhodného vektoru $(\mathcal{X},\mathcal{Y})$. Potom funkce $F_{\mathcal{X}}(x)$ a $F_{\mathcal{Y}}(y)$ z předešlé věty budeme nazývat marginálními distribučními funkcemi náhodného vektoru $(\mathcal{X},\mathcal{Y})$. Veličiny \mathcal{X} , resp. \mathcal{Y} nazýváme analogicky marginálními náhodnými veličinami.

3.3.5 Definice

Řekneme, že náhodné veličiny \mathcal{X} a \mathcal{Y} jsou (statisticky) nezávislé, jestliže jsou jevy

$$[a < \mathcal{X} \leq b], \quad [c < \mathcal{Y} \leq d]$$

nezávislé pro všechny $a,b,c,d\in\mathbf{R}^{\star}$, pro které $a\leqslant b$ a $c\leqslant d$.

3.3.6 Věta

Náhodné veličiny \mathcal{X}, \mathcal{Y} jsou nezávislé právě tehdy, když pro každou dvojici $(x, y) \in \mathbf{E}^2$ platí rovnost

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = F_{\mathcal{X}}(x) \cdot F_{\mathcal{Y}}(y),$$

tj. sdružená distribuční funkce $F_{\mathcal{X},\mathcal{Y}}(x,y)$ je rovna součinu tzv. marginálních distribučních funkcí $F_{\mathcal{X}}(x)$ a $F_{\mathcal{Y}}(y)$.

Důkaz:

• předpokládejme nejprve, že \mathcal{X}, \mathcal{Y} jsou nezávislé náhodné veličiny, tj. pro všechny $a, b, c, d \in \mathbf{R}^{\star}$, pro něž $a \leqslant b$ a $c \leqslant d$, platí

$$P([a < \mathcal{X} \leq b], [c < \mathcal{Y} \leq d]) = P([a < \mathcal{X} \leq b]) \cdot P([c < \mathcal{Y} \leq d])$$

• položíme-li v předešlém výraze $a=-\infty, b=x, c=-\infty, d=y$, pak pro libovolnou uspořádanou dvojici $(x,y)\in\mathbf{R}^2$ platí sada rovností

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = P\left(\left[-\infty < \mathcal{X} \leqslant x\right]\left[-\infty < \mathcal{Y} \leqslant y\right]\right) = P\left(\left[-\infty < \mathcal{X} \leqslant x\right]\right) \cdot P\left(\left[-\infty < \mathcal{Y} \leqslant y\right]\right) = F_{\mathcal{X}}(x) \cdot F_{\mathcal{Y}}(y)$$

obrácenou implikaci prokáže sada rovností

$$P\left(\left[a < \mathcal{X} \leqslant b\right], \left[c < \mathcal{Y} \leqslant d\right]\right) = F_{\mathcal{X},\mathcal{Y}}(b,d) - F_{\mathcal{X},\mathcal{Y}}(b,yc) - F_{\mathcal{X},\mathcal{Y}}(a,d) + F_{\mathcal{X},\mathcal{Y}}(a,c) =$$

$$= F_{\mathcal{X}}(b)F_{\mathcal{Y}}(d) - F_{\mathcal{X}}(b)F_{\mathcal{Y}}(c) - F_{\mathcal{X}}(a)F_{\mathcal{Y}}(d) + F_{\mathcal{X}}(a)F_{\mathcal{Y}}(c) = \left(F_{\mathcal{X}}(b) - F_{\mathcal{X}}(a)\right)\left(F_{\mathcal{Y}}(d) - F_{\mathcal{Y}}(c)\right) =$$

$$= P\left(\left[a < \mathcal{X} \leqslant b\right]\right) \cdot P\left(\left[c < \mathcal{Y} \leqslant d\right]\right)$$

3.3.7 Definice

Řekneme, že náhodné veličiny $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ mají *sdružené absolutně spojité rozdělení*, jestliže existuje nezáporná funkce $f_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n}(x_1, x_2, \dots, x_n)$ taková, že

$$F_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n}(\vec{x}) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_n} f_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n}(t_1, t_2, \dots, t_n) \, d\vec{t}$$
 (3.5)

pro všechna $\vec{x} \in \mathbf{E}^n$. Funkci $f_{\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_n}(\vec{x})$ nazýváme sdruženou hustotou pravděpodobnosti náhodných veličin $\mathcal{X}_1,\ldots,\mathcal{X}_n$.

3.3.8 Poznámka

Veličiny $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ z předešlé definice někdy nazýváme zjednodušeně jako *absolutně spojité*. Navíc každá nezáporná funkce $f(\vec{x}): \mathbf{E}^r \mapsto \mathbf{R}$, pro níž $\int_{\mathbf{E}^r} f(\vec{x}) \, \mathrm{d}\vec{x} = 1$, může být chápána jako hustota pravděpodobnosti určité vícerozměrné náhodné veličiny.

3.3.9 Věta

Nechť mají náhodné veličiny $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ sdružené absolutně spojité rozdělení. Potom $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ jsou nezávislé právě tehdy, když pro všechna $\vec{x} \in \mathbf{E}^n$ platí

$$f_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n}(\vec{x}) = \prod_{i=1}^n f_{\mathcal{X}_i}(x_i).$$

Důkaz:

- důkaz budeme demonstrovat na případu n=2
- chceme tedy dokázat, že \mathcal{X}, \mathcal{Y} jsou nezávislé právě tehdy, když $f_{\mathcal{X},\mathcal{Y}}(x,y) = f_{\mathcal{X}}(x) \cdot f_{\mathcal{Y}}(y)$
- pro důkaz první implikace vyjdeme z předpokladu, že $f_{\mathcal{X},\mathcal{Y}}(x,y) = f_{\mathcal{X}}(x) \cdot f_{\mathcal{Y}}(y)$
- pro distribuční funkci $F_{\mathcal{X},\mathcal{Y}}(x,y)$ pak podle vztahu (3.5) a dostáváme

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = \int_{-\infty}^x \int_{-\infty}^y f_{\mathcal{X},\mathcal{Y}}(t,s) \,\mathrm{d}t \,\mathrm{d}s = \int_{-\infty}^x \int_{-\infty}^y f_{\mathcal{X}}(t) f_{\mathcal{Y}}(s) \,\mathrm{d}t \,\mathrm{d}s$$

• z Fubiniovy věty pak

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = \left(\int_{-\infty}^{x} f_{\mathcal{X}}(t) \, \mathrm{d}t\right) \left(\int_{-\infty}^{y} f_{\mathcal{Y}}(s) \, \mathrm{d}s\right) = F_{\mathcal{X}}(x) \cdot F_{\mathcal{Y}}(y)$$

- to ale podle věty 3.3.6 implikuje skutečnost, že \mathcal{X} , \mathcal{Y} jsou nezávislé
- ullet pro druhou implikaci předpokládejme, že \mathcal{X}, \mathcal{Y} jsou nezávislé náhodné veličiny
- z tohoto předpokladu plyne, že

$$F_{\mathcal{X},\mathcal{Y}}(x,y) = F_{\mathcal{X}}(x) \cdot F_{\mathcal{Y}}(y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\mathcal{X},\mathcal{Y}}(t,s) \,\mathrm{d}t \,\mathrm{d}s$$

• z definice 3.3.7 odtud ihned vyplývá, že $f_{\mathcal{X},\mathcal{Y}}(x,y) = f_{\mathcal{X}}(x) \cdot f_{\mathcal{Y}}(y)$

3.3.10 Poznámka

Zcela analogicky vztahu (3.2) platí také pro vícerozměrné náhodné veličiny vztah

$$f_{\mathcal{X}_1,\mathcal{X}_2,...,\mathcal{X}_n}(\vec{x}) = \frac{\partial^n F_{\mathcal{X}_1,\mathcal{X}_2,...,\mathcal{X}_n}}{\partial x_1 \partial x_2 \dots \partial x_n},$$

pokud je pravá strana definována. Dále také

$$P[a_1 < \mathcal{X} \leq b_1, a_2 < \mathcal{X} \leq b_2, \dots, a_n < \mathcal{X} \leq b_n] = \int_{a_1}^{b_1} \int_{a_2}^{b_2} \dots \int_{a_n}^{b_n} f_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n}(\vec{x}) \, dx_n dx_{n-1} \dots dx_2 dx_1.$$

3.3.11 Definice

Nechť je dána vícerozměrná náhodná veličina $\overrightarrow{\mathcal{X}}=(\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_n)$ mající sdružené absolutně spojité rozdělení a příslušná vícerozměrná hustota pravděpodobnosti $f(\overrightarrow{x})$. Konverguje-li integrál druhého druhu

$$\int_{\mathbf{R}} \vec{x} f(\vec{x}) \, \mathrm{d}\vec{x} = \left(\int_{\mathbf{R}} x_1 f(\vec{x}) \, \mathrm{d}\vec{x}, \int_{\mathbf{R}} x_2 f(\vec{x}) \, \mathrm{d}\vec{x}, \dots, \int_{\mathbf{R}} x_n f(\vec{x}) \, \mathrm{d}\vec{x} \right),$$

pak příslušný vektor nazýváme *střední hodnotou* vícerozměrné náhodné veličiny $\overrightarrow{\mathcal{X}}$ a značíme jedním ze symbolů $E(\overrightarrow{\mathcal{X}})$ nebo $\langle \overrightarrow{x} \rangle$.

3.3.12 Lemma

Nechť \mathscr{A} je třída všech absolutně spojitých náhodných veličin \mathcal{X} , pro něž existují střední hodnoty $E(\mathcal{X})$. Pak pro každé $c \in \mathbf{R}$ a všechny $\mathcal{X}, \mathcal{Y} \in \mathscr{A}$ platí, že

$$E(c\mathcal{X}) = c E(\mathcal{X}), \quad E(\mathcal{X} + \mathcal{Y}) = E(\mathcal{X}) + E(\mathcal{Y}).$$

3.3.13 Definice

Nechť jsou dány náhodné veličiny \mathcal{X} a \mathcal{Y} . Nechť existují střední hodnoty $E(\mathcal{X})$ a $E(\mathcal{Y})$. Pak *kovariancí náhodných veličin* rozumíme číslo

$$COV(\mathcal{X}, \mathcal{Y}) := E\Big[(\mathcal{X} - E(\mathcal{X})) (\mathcal{Y} - E(\mathcal{Y})) \Big], \tag{3.6}$$

pokud pravá strana existuje.

3.3.14 Věta

Nechť \mathscr{A} je třída všech náhodných veličin \mathcal{X} , pro něž existují střední hodnoty $E(\mathcal{X})$ a rozptyly $VAR(\mathcal{X})$. Pak zobrazení definované předpisem (3.6) splňuje axiomy skalárního součinu, tj. kovariance náhodných veličin je skalárním součinem.

Důkaz:

- nejprve podotýkáme, že prvky třídy
 musejí být nyní chápány poněkud obecněji, neboť je třeba, aby do
 patřily i náhodné veličiny, jež mají nulový rozptyl a nejsou tudíž absolutně spojité
- nejprve prokážeme, že zobrazení definované předpisem (3.6) splňuje axiom homogenity
- pro libovolné $c \in \mathbf{R}$ ale zcela jasně (při aplikaci lemmatu 3.3.12) platí

$$\mathtt{COV}(c\mathcal{X},\mathcal{Y}) := \mathtt{E}\Big[\big(c\mathcal{X} - \mathtt{E}(c\mathcal{X}) \big) \big(\mathcal{Y} - \mathtt{E}(\mathcal{Y}) \big) \Big] = c \, \mathtt{E}\Big[\big(\mathcal{X} - \mathtt{E}(\mathcal{X}) \big) \big(\mathcal{Y} - \mathtt{E}(\mathcal{Y}) \big) \Big] = c \, \mathtt{COV}(\mathcal{X},\mathcal{Y})$$

• podobně také pro všechny $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \in \mathscr{A}$ platí, že

$$\begin{split} \text{COV}(\mathcal{X} + \mathcal{Z}, \mathcal{Y}) &:= E\Big[\big(\mathcal{X} + \mathcal{Z} - E(\mathcal{X} + \mathcal{Z})\big) \big(\mathcal{Y} - E(\mathcal{Y})\big) \Big] = E\Big[\big(\mathcal{X} + \mathcal{Z} - E(\mathcal{X}) - E(\mathcal{Z})\big) \big(\mathcal{Y} - E(\mathcal{Y})\big) \Big] = \\ &= E\Big[\big(\mathcal{X} - E(\mathcal{X})\big) \big(\mathcal{Y} - E(\mathcal{Y})\big) \Big] + E\Big[\big(\mathcal{Z} - E(\mathcal{Z})\big) \big(\mathcal{Y} - E(\mathcal{Y})\big) \Big] = \text{COV}(\mathcal{X}, \mathcal{Y}) + \text{COV}(\mathcal{Z}, \mathcal{Y}) \end{split}$$

- symetrie $COV(\mathcal{X}, \mathcal{Y}) = COV(\mathcal{Y}, \mathcal{X})$ je splněna triviálně
- zbývá tedy prokázat axiom pozitivní definitnosti
- označme f(x,y) sdruženou hustotu pravděpodobnosti pro náhodné veličiny \mathcal{X}, \mathcal{Y} a pro všechny $\mathcal{X} \in \mathscr{A}$ zkoumejme kovarianci $COV(\mathcal{X}, \mathcal{X})$
- $\bullet \ \ \text{jedn\'a} \ \text{se tedy o v\'yraz COV}(\mathcal{X},\mathcal{Y}) := E\Big[\big(\mathcal{X} E(\mathcal{X})\big)^2\Big], \ \text{kter\'y je na prvn\'i pohled nez\'aporn\'y, nebot\'a nez\'aporn\'y, nebotra nezaporn\'y, nebotra nezaporni, nebotra nezap$

$$\mathtt{COV}(\mathcal{X},\mathcal{X}) = \int_{\mathbf{E}^T} \big(x - \mathtt{E}(x) \big)^2 f(x,x) \, \mathrm{d}x \geqslant 0,$$

což je splněno kvůli nezápornosti integrandu

- poslední, co je třeba prověřit, je skutečnost, že rovnost $COV(\mathcal{X}, \mathcal{X}) = 0$ nastává pouze tehdy, je-li \mathcal{X} nulový prvek třídy \mathscr{A}
- přitom ale integrand $(x \mathbf{E}(x))^2 f(x,x)$ může být zjevně nulový pouze pokud náhodná veličina nabývá pouze konstantních hodnot $\gamma \in \mathbf{R}$, kdy $\mathbf{E}(x) = \gamma$
- nulovým prvkem třídy A je tedy skupina náhodných veličin, jež mají nulový rozptyl
- zde ovšem vyvstává otázka, jak bude vypadat hustota pravděpodobnosti pro takové veličiny
- zde musíme s předstihem konstatovat, že takovými hustotami pravděpodobnosti budou zobecněné funkce zavedené v
 dalších kapitolách, speciálně Diracova δ-funkce, resp. centrovaná Diracova δ-funkce
- za takových okolností je pak skutečně kovariance $COV(\mathcal{X}, \mathcal{Y})$ náhodných veličin skalárním součinem na \mathscr{A}

3.3.15 Věta

Nechť jsou dány absolutně spojité náhodné veličiny \mathcal{X} , \mathcal{Y} a nechť existuje jejich kovariance $COV(\mathcal{X}, \mathcal{Y})$. Pak platí

$$COV(\mathcal{X}, \mathcal{Y}) = E(\mathcal{X}\mathcal{Y}) - E(\mathcal{X})E(\mathcal{Y}).$$

Důkaz:

• z definice kovariance přímo vyplývá, že

$$\begin{split} \operatorname{COV}(\mathcal{X},\mathcal{Y}) &= \int_{\mathbf{R}} \int_{\mathbf{R}} \big(x - \operatorname{E}(x)\big) \big(y - \operatorname{E}(y)\big) f(x,y) \, \mathrm{d}x \mathrm{d}y = \int_{\mathbf{R}} \int_{\mathbf{R}} xy f(x,y) \, \mathrm{d}x \mathrm{d}y - \\ &- \operatorname{E}(y) \int_{\mathbf{R}} \int_{\mathbf{R}} x f(x,y) \, \mathrm{d}x \mathrm{d}y - \operatorname{E}(x) \int_{\mathbf{R}} \int_{\mathbf{R}} y f(x,y) \, \mathrm{d}x \mathrm{d}y + \operatorname{E}(x) \operatorname{E}(y) \int_{\mathbf{R}} \int_{\mathbf{R}} f(x,y) \, \mathrm{d}x \mathrm{d}y = \\ &= \operatorname{E}(xy) - \operatorname{E}(x) \operatorname{E}(y) - \operatorname{E}(x) \operatorname{E}(y) + \operatorname{E}(x) \operatorname{E}(y) = \operatorname{E}(\mathcal{X}\mathcal{Y}) - \operatorname{E}(\mathcal{X}) \operatorname{E}(\mathcal{Y}) \end{split}$$

3.3.16 Věta

Nechť jsou dány absolutně spojité nezávislé náhodné veličiny \mathcal{X} , \mathcal{Y} . Nechť existuje jejich kovariance $COV(\mathcal{X}, \mathcal{Y})$. Pak $COV(\mathcal{X}, \mathcal{Y}) = 0$.

Důkaz:

- označme h(x,y) sdruženou hustotu pravděpodobnosti pro náhodné veličiny \mathcal{X},\mathcal{Y}
- jelikož $\mathcal X$ a $\mathcal Y$ jsou nezávislé náhodné veličiny, existují podle věty 3.3.9 funkce f(x) a g(y) tak, že $h(x,y)=f(x)\cdot g(y)$
- pak ale z Fubiniovy věty, resp. z věty o separabilitě plyne, že

$$\mathbf{E} \big(\mathcal{X} \mathcal{Y} \big) = \int_{\mathbf{R}} \int_{\mathbf{R}} xy f(x) g(y) \, \mathrm{d}x \mathrm{d}y = \int_{\mathbf{R}} x f(x) \, \mathrm{d}x \cdot \int_{\mathbf{R}} y \, g(y) \, \mathrm{d}y = \mathbf{E} \big(\mathcal{X} \big) \mathbf{E} \big(\mathcal{Y} \big)$$

• z věty 3.3.15 pak ihned vyplývá, že

$$\mathtt{COV}(\mathcal{X},\mathcal{Y}) = \mathtt{E}(\mathcal{X}\mathcal{Y}) - \mathtt{E}(\mathcal{X})\mathtt{E}(\mathcal{Y}) = \mathtt{E}(\mathcal{X})\mathtt{E}(\mathcal{Y}) - \mathtt{E}(\mathcal{X})\mathtt{E}(\mathcal{Y}) = 0$$

3.3.17 Definice

Nechť jsou dány absolutně spojité náhodné veličiny \mathcal{X} a \mathcal{Y} . Nechť existují jejich kovariance $COV(\mathcal{X}, \mathcal{Y})$ a směrodatné odchylky $SD(\mathcal{X})$, resp. $SD(\mathcal{Y})$. Pak *koeficientem korelace náhodných veličin* rozumíme číslo

$$\varrho(\mathcal{X},\mathcal{Y}) := \frac{\mathtt{COV}(\mathcal{X},\mathcal{Y})}{\mathtt{SD}(\mathcal{X})\mathtt{SD}(\mathcal{Y})}.$$

3.3.18 Poznámka

Kovariance náhodných veličin splňuje podle věty 3.3.14 axiomy skalárního součinu, a tedy $\sqrt{\text{COV}(\mathcal{X},\mathcal{X})} = \text{VAR}(\mathcal{X})$ je normou náhodné veličiny \mathcal{X} . Odtud a z Schwarzovy-Cauchyovy-Bunjakovského nerovnosti (věta 6.2.3 ve skriptech [2]) tvaru

$$|\mathtt{COV}(\mathcal{X}, \mathcal{Y})| \leqslant \mathtt{SD}(\mathcal{X})\mathtt{SD}(\mathcal{Y})$$

ale ihned vyplývá, že koeficient korelace náhodných veličin reprezentuje de facto kosinus úhlu náhodných veličiny \mathcal{X} a \mathcal{Y} (viz poznámka 6.2.8 ve skriptech [2]).

3.3.19 Věta

Nechť jsou dány absolutně spojité náhodné veličiny \mathcal{X} a \mathcal{Y} . Nechť existuje jejich koeficient korelace $\varrho(\mathcal{X},\mathcal{Y})$. Pak platí

$$-1 \leqslant \rho(\mathcal{X}, \mathcal{Y}) \leqslant 1$$
,

přičemž rovnosti $\rho(\mathcal{X}, \mathcal{Y}) = 1$, resp. $\rho(\mathcal{X}, \mathcal{Y}) = -1$ nastávají právě tehdy, když existuje číslo C > 0 tak, že

$$\mathcal{Y} - E(\mathcal{Y}) = C(\mathcal{Y} - E(\mathcal{Y})), \text{ resp. } \mathcal{Y} - E(\mathcal{Y}) = -C(\mathcal{Y} - E(\mathcal{Y})).$$

Důkaz:

• plyne z poznámky 3.3.18

3.3.20 Definice

Nechť $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ je vektor náhodných veličin. Nechť pro všechna $k, \ell \in \widehat{n}$ existují kovariance $\sigma_{k\ell} = \text{COV}(\mathcal{X}_k, \mathcal{X}_\ell)$. Pak matici

$$\mathbb{S}_{\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n} := \begin{pmatrix} \sigma_{11}(\vec{x}) & \sigma_{12}(\vec{x}) & \dots & \sigma_{1r}(\vec{x}) \\ \sigma_{21}(\vec{x}) & \sigma_{22}(\vec{x}) & \dots & \sigma_{2r}(\vec{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{r1}(\vec{x}) & \sigma_{r2}(\vec{x}) & \dots & \sigma_{rr}(\vec{x}) \end{pmatrix} = (\sigma_{k\ell})_{k,\ell=1}^n$$

nazveme kovariancí náhodného vektoru $\mathcal{X}_1, \mathcal{X}_2, \dots, \mathcal{X}_n$ nebo kovarianční maticí.

3.3.21 Poznámka

Z definice 3.3.20 vyplývá, že kovarianční matice $\mathbb{S}_{\mathcal{X}_1,\mathcal{X}_2,...,\mathcal{X}_n}$ je symetrická, na diagonále má rozptyly $\sigma_{\ell\ell} = \text{COV}(\mathcal{X}_\ell,\mathcal{X}_\ell) = \text{VAR}(\mathcal{X}_\ell)$ náhodných veličin $\mathcal{X}_1,\mathcal{X}_2,\ldots,\mathcal{X}_n$ a pokud jsou tyto veličiny nezávislé, pak je $\mathbb{S}_{\mathcal{X}_1,\mathcal{X}_2,...,\mathcal{X}_n}$ diagonální maticí.

3.4 Konvoluce funkcí

Prezentovanou teorii pravděpodobnosti nyní zužitkujeme při specifickém zavedení pojmu konvoluce funkcí. Nejprve představíme tuto operaci pro hustoty pravděpodobnosti, a poté tuto definici rozšíříme na co nejširší třídu funkcí.

3.4.1 Věta

Nechť jsou dány nezávislé jednorozměrné náhodné veličiny \mathcal{X}, \mathcal{Y} s absolutně spojitým rozdělením. Nechť $f_{\mathcal{X}}(x)$ a $f_{\mathcal{Y}}(y)$ jsou příslušné hustoty pravděpodobnosti. Pak hustotou pravděpodobnosti $f_{\mathcal{Z}}(z)$ náhodné veličiny $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$ je funkce

$$f_{\mathcal{Z}}(r) = \int_{-\infty}^{\infty} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(r-x) \, \mathrm{d}x. \tag{3.7}$$

Důkaz:

- označme $F_{\mathcal{Z}}(z)$ distribuční funkci náhodné veličiny $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$
- pro ni platí

$$F_{\mathcal{Z}}(z) = \mathbf{P}\big[\mathcal{Z} \leqslant z\big] = \mathbf{P}\big[\mathcal{X} + \mathcal{Y} \leqslant z\big] = \iint_{x+y \leqslant z} f_{\mathcal{X},\mathcal{Y}}(x,y) \,\mathrm{d}x\mathrm{d}y$$

- označme $M_z = \{(x, y) \in \mathbf{E}^2 : x + y \leqslant z\}$
- množina M_z představuje polorovinu v \mathbf{E}^2
- ullet užijeme-li dále předpokladu, že \mathcal{X}, \mathcal{Y} jsou nezávislé, tak platí rovnost

$$\begin{split} F_{\mathcal{Z}}(z) &= \iint_{M_z} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(y) \, \mathrm{d}x \, \mathrm{d}y = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(y) \, \mathrm{d}y \, \mathrm{d}x = \left| \begin{array}{c} r = x+y \\ \mathrm{d}r = \mathrm{d}y \end{array} \right| = \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{z} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(r-x) \, \mathrm{d}r \, \mathrm{d}x = \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(r-x) \, \mathrm{d}x \right) \mathrm{d}r = \int_{-\infty}^{z} f_{\mathcal{Z}}(r) \, \mathrm{d}r \, \mathrm{d}x \end{split}$$

• proto je hledanou hustotou pravděpodobnosti funkce $f_{\mathcal{Z}}(r)=\int_{-\infty}^{\infty}f_{\mathcal{X}}(x)f_{\mathcal{Y}}(r-x)\,\mathrm{d}x$

3.4.2 Poznámka

Analogicky lze ukázat, že pro nezávislé vícerozměrné náhodné veličiny $\vec{\mathcal{X}}, \vec{\mathcal{Y}}$ a $\vec{\mathcal{Z}} = \vec{\mathcal{X}} + \vec{\mathcal{Y}}$ platí vztah

$$f_{\vec{z}}(\vec{r}) = \int_{\mathbf{F}_r} f_{\vec{\mathcal{X}}}(\vec{x}) f_{\vec{\mathcal{Y}}}(\vec{r} - \vec{x}) \, \mathrm{d}\vec{x}. \tag{3.8}$$

3.4.3 Poznámka

Vztah (3.8) je jedním ze základních vztahů celé teorie o řešení parciálních diferenciálních rovnic. Jeho platnost nebudeme zužovat pouze na případ hustot pravděpodobnosti, ale zobecníme ho pro obecné vícerozměrné funkce.

3.4.4 Definice

Nech?jsou dány funkce $f(\vec{x}), g(\vec{x}) \in \mathcal{L}_{loc}(\mathbf{E}^r)$. Zobrazení $(f \star g)(\vec{x}) : \mathcal{L}_{loc}(\mathbf{E}^r) \times \mathcal{L}_{loc}(\mathbf{E}^r) \mapsto \mathcal{L}_{loc}(\mathbf{E}^r)$ definované předpisem

$$(f\star g)(\vec{x}) := \int_{\mathbf{E}^r} f(\vec{s})g(\vec{x}-\vec{s})\,\mathrm{d}\vec{s}$$

nazveme *konvolucí* funkcí, pokud pravá strana existuje a patří do třídy $\mathcal{L}_{loc}(\mathbf{E}^r)$.

3.4.5 Věta

Nech?jsou dány funkce $f(\vec{x}), g(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r)$. Pak jejich konvoluce $(f \star g)(\vec{x})$ existuje pro skoro všechna $\vec{x} \in \mathbf{E}^r$ a navíc patří do třídy $\mathcal{L}_1(\mathbf{E}^r)$. Dále

$$\int_{\mathbf{E}^r} (f \star g)(\vec{x}) \, \mathrm{d}\vec{x} \leqslant \|f\|_{\mathscr{L}_1} \cdot \|g\|_{\mathscr{L}_1}. \tag{3.9}$$

Důkaz:

- vyjdeme z předpokladů, že $\int_{{f E}^r} |f(\vec x)|\,{
 m d}\vec x\in{f R}$ a $\int_{{f E}^r} |g(\vec x)|\,{
 m d}\vec x\in{f R}$
- chceme ukázat, že také $\int_{\mathbf{E}^r} \left| (f \star g)(\vec{x}) \right| d\vec{x} \in \mathbf{R}$
- zkoumejme proto integrál

$$\begin{split} \int_{\mathbf{E}^r} \left| (f \star g)(\vec{x}) \right| \mathrm{d}\vec{x} = \\ &= \int_{\mathbf{E}^r} \left| \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \right| \, \mathrm{d}\vec{x} \leqslant \int_{\mathbf{E}^r} \int_{\mathbf{E}^r} \left| f(\vec{s}) g(\vec{x} - \vec{s}) \right| \, \mathrm{d}\vec{s} \, \mathrm{d}\vec{x} = \int_{\mathbf{E}^r} \left(\int_{\mathbf{E}^r} \left| g(\vec{x} - \vec{s}) \right| \, \mathrm{d}\vec{x} \right) \left| f(\vec{s}) \right| \, \mathrm{d}\vec{s} = \\ &= \left| \begin{array}{c} \vec{y} = \vec{x} - \vec{s} \\ \mathrm{d}\vec{y} = \mathrm{d}\vec{s} \end{array} \right| = \int_{\mathbf{E}^r} \left(\int_{\mathbf{E}^r} \left| g(\vec{y}) \right| \, \mathrm{d}\vec{y} \right) \left| f(\vec{s}) \right| \, \mathrm{d}\vec{s} = \int_{\mathbf{E}^r} \left| g(\vec{y}) \right| \, \mathrm{d}\vec{y} \cdot \int_{\mathbf{E}^r} \left| f(\vec{x}) \right| \, \mathrm{d}\vec{x} \in \mathbf{R} \end{split}$$

- podle tvrzení Fubiniovy věty platí, že $f(\vec{x} \vec{y})g(\vec{y}) \in \mathcal{L}_1(\mathbf{E}^r)$ pro skoro všechna $\vec{x} \in \mathbf{E}^r$, a tedy konvoluce $(f \star g)(\vec{x})$ je definována pro skoro všechna $\vec{x} \in \mathbf{E}^r$
- a protože $\|h\|_{\mathscr{L}_1}:=\int_{\mathbf{E}^r}|h(\vec{x})|\,\mathrm{d}\vec{x},$ vychází z předchozích úvah také platnost vztahu (3.9)
- využíváme přitom věty 4.2.37, 4.3.5 a 4.3.7 ze skript [3]
- pro funkce nezáporné s.v. navíc platí ve vztahu (3.9) rovnost, tj. $||f \star g||_{\mathscr{L}_1} = ||f||_{\mathscr{L}_1} \cdot ||g||_{\mathscr{L}_1}$

3.4.6 Věta

Nech?jsou dány hustoty pravděpodobnosti $f(\vec{x}), g(\vec{x}) : \mathbf{E}^r \mapsto \mathbf{R}$. Pak jejich konvoluce $(f \star g)(\vec{x})$ existuje a navíc je také hustotou pravděpodobnosti.

Důkaz:

- o hustotách $f(\vec{x}), g(\vec{x})$ víme, že patří do $\mathcal{L}_1(\mathbf{E}^r)$ a chceme ukázat, že do $\mathcal{L}_1(\mathbf{E}^r)$ paří také jejich konvoluce, a navíc, že tato konvoluce je také hustotou pravděpodobnosti
- Díky nerovnosti

$$(f \star g)(\vec{x}) = \int_{\mathbf{F}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} \geqslant 0$$

víme, že je splněna nezápornost hustoty

• ověřme, že $\int_{\mathbf{E}^r} (f \star g)(\vec{x}) = 1$

$$\int_{\mathbf{E}^r} \int_{\mathbf{E}^r} f(\vec{s}) g(\vec{x} - \vec{s}) \mathrm{d}\vec{x} \mathrm{d}\vec{s} = \int_{\mathbf{E}^r} f(\vec{s}) \int_{\mathbf{E}^r} g(\vec{x} - \vec{s}) \mathrm{d}\vec{x} \mathrm{d}\vec{s} = \int_{\mathbf{E}^r} f(\vec{s}) \mathrm{d}\vec{s} \int_{\mathbf{E}^r} g(\vec{y}) \mathrm{d}\vec{y} = 1$$

přičemž jsme v první rovnosti použili Fubiniovu větu a ve druhé rovnosti substituci $\vec{y} = \vec{x} - \vec{s}$

• integrály $\int_{\mathbf{E}^r} f(\vec{s}) d\vec{s}$ a $\int_{\mathbf{E}^r} g(\vec{y}) d\vec{y}$ jsou z definice hustoty rovny jedné a tedy $(f \star g)(\vec{x})$ je opravdu také hustotou pravděpodobnosti

3.4.7 Příklad

Necht'

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}, \quad g(x) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}.$$

Vypočtěme konvoluci $f(x) \star g(x)$. Z definice konvoluce a ze vztahu (??) vyvozujeme sadu rovností

$$\begin{split} f(x) \star g(x) &= \frac{1}{2\pi\sigma_1\sigma_2} \int_{\mathbf{R}} \mathrm{e}^{-\frac{(s-\mu_1)^2}{2\sigma_1^2}} \mathrm{e}^{-\frac{(x-s-\mu_2)^2}{2\sigma_2^2}} \, \mathrm{d}s = \left| \begin{array}{c} y = s - \mu_1 \\ \mathrm{d}y = \mathrm{d}s \end{array} \right| = \frac{1}{2\pi\sigma_1\sigma_2} \int_{\mathbf{R}} \mathrm{e}^{-\frac{y^2}{2\sigma_1^2}} \mathrm{e}^{-\frac{(x-y-\mu_1-\mu_2)^2}{2\sigma_2^2}} \, \mathrm{d}y = \\ &= \left| \begin{array}{c} \lambda := x - \mu_1 - \mu_2 \end{array} \right| = \frac{1}{2\pi\sigma_1\sigma_2} \int_{\mathbf{R}} \exp\left[-\frac{\sigma_2 y^2 + \sigma_1 (y - \lambda)^2}{2\sigma_1^2\sigma_2^2} \right] \mathrm{d}y = \\ &= \frac{1}{2\pi\sigma_1\sigma_2} \int_{\mathbf{R}} \exp\left[-\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \left(\left(y - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \lambda \right)^2 + \lambda^2 \frac{\sigma_1^2\sigma_2^2}{(\sigma_1^2 + \sigma_2^2)^2} \right) \right] \mathrm{d}y = \\ &= \frac{1}{2\pi\sigma_1\sigma_2} \, \mathrm{e}^{-\frac{\lambda^2}{2(\sigma_1^2 + \sigma_2^2)}} \int_{\mathbf{R}} \exp\left[-\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} \left(y - \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \lambda \right)^2 \right] \mathrm{d}y = \frac{1}{2\pi\sigma_1\sigma_2} \, \mathrm{e}^{-\frac{\lambda^2}{2(\sigma_1^2 + \sigma_2^2)}} \int_{\mathbf{R}} \mathrm{e}^{-\frac{\sigma_1^2 + \sigma_2^2}{2\sigma_1^2\sigma_2^2} z^2} \mathrm{d}z = \\ &= \frac{1}{2\pi\sigma_1\sigma_2} \, \mathrm{e}^{-\frac{\lambda^2}{2(\sigma_1^2 + \sigma_2^2)}} \sqrt{\frac{\pi}{\sigma_1^2 + \sigma_2^2}}} = \sqrt{\frac{\pi}{2(\sigma_1^2 + \sigma_2^2)}} \, \mathrm{e}^{-\frac{(x - \mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)}}. \end{split}$$

Konvolucí dvou hustot pravděpodobnosti Gaussova rozdělení je tedy podle dosaženého výsledku opět hustota pravděpodobnosti Gaussova rozdělení. Mají-li vstupující hustoty střední hodnoty po řadě μ_1, μ_2 a rozptyly σ_1^2, σ_2^2 , má výsledná konvoluce střední hodnotu $\mu_1 + \mu_2$ a rozptyl $\sigma_1^2 + \sigma_2^2$. Univerzalitu tohoto tvrzení prokážeme v následujících větách.

3.4.8 Věta

Nech? \mathcal{X} , resp. \mathcal{Y} jsou nezávislé náhodné veličiny mající absolutně spojité rozdělení. Nechť jejich hustoty pravděpodobnosti jsou $f_{\mathcal{X}}(x) \in \mathcal{L}_1(\mathbf{R})$, resp. $g_{\mathcal{Y}}(y) \in \mathcal{L}_1(\mathbf{R})$ a navíc $\langle x \rangle = \mu_1$ a $\langle y \rangle = \mu_2$. Potom hustotou pravděpodobnosti náhodné veličiny $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$ je funkce $(f_{\mathcal{X}} \star g_{\mathcal{Y}})(z)$ a platí $\langle z \rangle = \mu_1 + \mu_2$.

Důkaz:

- označme $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$ součet náhodných veličin
- pro příslušnou hustotu pravděpodobnosti veličiny Z byla ve větě 3.4.1 odvozena rovnost

$$f_{\mathcal{Z}}(r) = \int_{-\infty}^{\infty} f_{\mathcal{X}}(x) f_{\mathcal{Y}}(r-x) \, \mathrm{d}x,$$

která reprezentuje první z dokazovaných tvrzení

- zbývá proto dokázat, že střední hodnotou součtu náhodných veličin je součet středních hodnot těchto veličin
- použitím Fubiniovy věty, jednoduché substituce a definice střední hodnoty náhodné veličiny dostáváme

$$\begin{split} \langle z \rangle &= \int_{\mathbf{R}} z \left(\int_{\mathbf{R}} f(x) g(z-x) \, \mathrm{d}x \right) \, \mathrm{d}z = \int_{\mathbf{R}} f(x) \left(\int_{\mathbf{R}} z \cdot g(z-x) \, \mathrm{d}z \right) \, \mathrm{d}x = \\ &= \left| \begin{array}{c} y = z-x \\ \mathrm{d}z = \mathrm{d}y \end{array} \right| = \int_{\mathbf{R}} f(x) \left(\int_{\mathbf{R}} (x+y) \cdot g(y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_{\mathbf{R}} \int_{\mathbf{R}} x \, f(x) g(y) \, \mathrm{d}y \, \mathrm{d}x + \\ &+ \int_{\mathbf{R}} \int_{\mathbf{R}} y \, f(x) g(y) \, \mathrm{d}y \, \mathrm{d}x = \langle x \rangle \int_{\mathbf{R}} g(y) \, \mathrm{d}y + \langle y \rangle \int_{\mathbf{R}} f(x) \, \mathrm{d}x = \langle x \rangle + \langle y \rangle \end{split}$$

• tím je důkaz proveden

3.4.9 Věta

Nech? \mathcal{X} , resp. \mathcal{Y} jsou nezávislé náhodné veličiny mající absolutně spojité rozdělení. Nechť jejich hustoty pravděpodobnosti jsou $f_{\mathcal{X}}(x) \in \mathscr{L}_1(\mathbf{R})$, resp. $g_{\mathcal{Y}}(y) \in \mathscr{L}_1(\mathbf{R})$ a navíc $\mathrm{VAR}(\mathcal{X}) = \sigma_x^2$ a $\mathrm{VAR}(\mathcal{Y}) = \sigma_y^2$. Potom pro rozptyl náhodné veličiny $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$ platí rovnost

$$\mathtt{VAR}(\mathcal{Z}) = \sigma_x^2 + \sigma_y^2.$$

Důkaz:

• hustotou pravděpodobnosti náhodné veličiny $\mathcal{Z} = \mathcal{X} + \mathcal{Y}$ je funkce vypočetná jako konvoluce $f(x) \star g(x)$, tj.

$$h(z) = \int_{\mathbf{R}} f(x)g(z-x) \, \mathrm{d}x$$

• snadno se lze tudíž přesvědčit, že platí série následujících rovností

$$\begin{split} \langle z^2 \rangle &= \int_{\mathbf{R}} z^2 \left(\int_{\mathbf{R}} f(x) g(z-x) \, \mathrm{d}x \right) \, \mathrm{d}z = \int_{\mathbf{R}} f(x) \left(\int_{\mathbf{R}} z^2 \cdot g(z-x) \, \mathrm{d}z \right) \, \mathrm{d}x = \\ &= \left| \begin{array}{c} y = z - x \\ \mathrm{d}z = \mathrm{d}y \end{array} \right| = \int_{\mathbf{R}} f(x) \left(\int_{\mathbf{R}} (x+y)^2 \cdot g(y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_{\mathbf{R}} \int_{\mathbf{R}} x^2 \, f(x) g(y) \, \mathrm{d}y \, \mathrm{d}x + \\ &+ 2 \int_{\mathbf{R}} \int_{\mathbf{R}} xy \, f(x) g(y) \, \mathrm{d}y \, \mathrm{d}x + \int_{\mathbf{R}} \int_{\mathbf{R}} y^2 \, f(x) g(y) \, \mathrm{d}y \, \mathrm{d}x = \\ &= \langle x^2 \rangle \int_{\mathbf{R}} g(y) \, \mathrm{d}y + 2 \int_{\mathbf{R}^2} xy f(x) g(y) \, \mathrm{d}x \mathrm{d}y + \langle y^2 \rangle \int_{\mathbf{R}} f(x) \, \mathrm{d}x = \langle x^2 \rangle + 2 \langle xy \rangle + \langle y^2 \rangle \end{split}$$

• jelikož pro nezávislé náhodné veličiny platí, že jejich kovariance je nulová (viz věta 3.3.16), dostáváme rovnost

$$\begin{split} \operatorname{VAR}(\mathcal{Z}) &= \langle z^2 \rangle - \langle z \rangle^2 = \langle x^2 \rangle + 2 \langle xy \rangle + \langle y^2 \rangle - \langle x \rangle^2 - 2 \langle x \rangle \langle y \rangle - \langle y \rangle^2 = \\ &= \operatorname{VAR}(\mathcal{X}) + \operatorname{VAR}(\mathcal{Y}) + 2 \operatorname{COV}(\mathcal{X}, \mathcal{Y}) = \operatorname{VAR}(\mathcal{X}) + \operatorname{VAR}(\mathcal{Y}) \end{split}$$

• ta ale kompletuje důkaz

3.4.10 Věta – o posunutí v konvoluci

Nechť jsou dány libovolné funkce $f(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r)$ a $g(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r)$ a vektor $\vec{b} \in \mathbf{E}^r$. Pak platí

$$f(\vec{x} + \vec{b}) \star g(\vec{x}) = f(\vec{x}) \star g(\vec{x} + \vec{b}) = (f \star g)(\vec{x} + \vec{b}).$$

Důkaz:

• není pravděpodobně obtížné nahlédnout, že

$$\big(f\star g\big)(\vec{x}+\vec{b}) = \int_{\mathbf{E}^r} f(\vec{s})g(\vec{x}+\vec{b}-\vec{s})\,\mathrm{d}\vec{s} = f(\vec{x})\star g(\vec{x}+\vec{b})$$

• dále

$$f(\vec{x}+\vec{b})\star g(\vec{x}) = \int_{\mathbf{E}^r} f(\vec{s}+\vec{b})g(\vec{x}-\vec{s})\,\mathrm{d}\vec{s} = \left| \begin{array}{c} \vec{s}+\vec{b}=\vec{r}\\ \mathrm{d}\vec{s}=\mathrm{d}\vec{r} \end{array} \right| = \int_{\mathbf{E}^r} f(\vec{r})g(\vec{x}+\vec{b}-\vec{r})\,\mathrm{d}\vec{r} = f(\vec{x})\star g(\vec{x}+\vec{b})$$

• přitom existence všech dotčených integrálů je garantována větou 3.4.5

3.4.11 Věta – o derivaci konvoluce

Necht' jsou dány libovolné funkce $f(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r)$ a $g(\vec{x}) \in \mathscr{L}_1(\mathbf{E}^r)$ a vektor $\vec{b} \in \mathbf{E}^r$. Necht' je $i \in \hat{r}$ zvoleno libovolně. Necht' dále $\frac{\partial f}{\partial x_i} \in \mathscr{L}_1(\mathbf{E}^r)$ a $\frac{\partial g}{\partial x_i} \in \mathscr{L}_1(\mathbf{E}^r)$. Pak platí

$$\frac{\partial f}{\partial x_i} \star g(\vec{x}) = f(\vec{x}) \star \frac{\partial g}{\partial x_i} = \frac{\partial}{\partial x_i} (f \star g).$$

Důkaz:

- existence všech dotčených integrálů je opět garantována větou 3.4.5
- dále

$$\begin{split} \frac{\partial f}{\partial x_i} \star g(\vec{x}) &= \int_{\mathbf{E}^r} \frac{\partial f}{\partial s_i} (\vec{s}) g(\vec{x} - \vec{s}) \, \mathrm{d}\vec{s} = \left| \begin{array}{c} u = g(\vec{s}) & v' = \frac{\partial f}{\partial s_i} (\vec{s}) \\ u' &= \frac{\partial g}{\partial (x_i - s_i)} \frac{\partial (x_i - s_i)}{\partial s_i} & v = f(\vec{s}) \end{array} \right| = \\ &= \int_{\mathbf{E}^{r-1}} \left[f(\vec{s}) g(\vec{s}) \right]_{s_i \to -\infty}^{s_i \to \infty} \mathrm{d}s_1 \mathrm{d}s_2 \dots \mathrm{d}s_{i-1} \mathrm{d}s_{i+1} \dots \mathrm{d}s_r - \int_{\mathbf{E}^r} f(\vec{s}) \frac{\partial g}{\partial (x_i - s_i)} \frac{\partial (x_i - s_i)}{\partial s_i} \, \mathrm{d}\vec{s} = \\ &= \int_{\mathbf{E}^r} f(\vec{s}) \frac{\partial g(\vec{x} - \vec{s})}{\partial (x_i - s_i)} \, \mathrm{d}\vec{s} = f(\vec{x}) \star \frac{\partial g}{\partial x_i} \end{split}$$

• bylo zde přitom využito tzv. nutné podmínky konvergence Lebesgueova integrálu, tedy implikace

$$f(\vec{x}) \in \mathcal{L}_1(\mathbf{E}^r) \implies \lim_{\|\vec{x}\| \to \infty} f(\vec{x}) = 0 \implies \forall i \in \hat{r} : \lim_{x_i \to \infty} f(\vec{x}) = 0.$$

3.5 Báze ve funkcionálních Hilbertových prostorech

3.5.1 Definice

Nechť je dán Hilbertův prostor \mathcal{H} . Nechť S je neprázdná množina funkcí z \mathcal{H} neobsahující nulovou funkci (nulový vektor). Řekneme, že množina $S \subset \mathcal{H}$ je ortogonální v \mathcal{H} , jestliže pro každé $f(\vec{x}), g(\vec{x}) \in S$ takové, že $f(\vec{x}) \neq g(\vec{x})$, platí rovnost $\langle f|g \rangle = 0$. Množinu $S \subset \mathcal{H}$ nazveme ortonormální, je-li ortogonální a platí-li navíc, že pro každé $f(\vec{x}) \in S$ je $||f(\vec{x})|| = 1$.

3.5.2 Definice

Nechť je dán Hilbertův prostor $\mathcal H$ se skalárním součinem $\langle .|. \rangle: \mathcal H \times \mathcal H \mapsto \mathbf C$. Nechť $\nu(f)$ je výroková formule na $\mathcal H$. Řekneme, že neprázdná množina S funkcí z $\mathcal H$ je maximální množinou s vlastností ν , jestliže pro všechny funkce $f(\vec x) \in \mathcal H$ platí, že $\nu(f)=1$, tj. výrok "funkce $f(\vec x)$ má vlastnost ν "je pravdivý pro všechny funkce $f(\vec x) \in \mathcal H$, a je-li $T \subset \mathcal H$ množina, jejíž všechny prvky splňují touž vlastnost, pak $T \subset S$.

3.5.3 Věta

Nechť je množina $S \subset \mathcal{H}$ ortogonální v \mathcal{H} . Pak jsou všechny její prvky lineárně nezávislé.

Důkaz:

- postupujeme metodou sporu
- ullet dokážeme tedy obměněnou verzi tohoto tvrzení, a sice, že jsou-li prvky množiny S lineárně závislé, pak S nemůže být ortogonální
- předpokládejme tedy, že pro nenulové funkce $f_1(\vec{x}), f_2(\vec{x}), \dots, f_n(\vec{x}) \in S$ existuje netriviální kombinace konstant $(\mathsf{C}_1, \mathsf{C}_2, \dots, \mathsf{C}_n) \neq \vec{0}$ tak, že $\sum_{k=1}^n \mathsf{C}_k f_k(\vec{x}) = \vec{0}$
- řekněme, že např. $\mathbf{C}_\ell \neq 0$
- pak pro $\alpha_k := C_k/C_\ell$ platí:

$$f_{\ell}(\vec{x}) = -\sum_{k=1, k \neq \ell}^{n} \alpha_k f_k(\vec{x})$$

• aplikujeme-li na tuto rovnost skalární násobení funkcí $f_{\ell}(\vec{x})$ a užijeme-li (pro spor) předpokladu, že všechny dotčené funkce jsou po dvou ortogonální, dostáváme rovnost

$$\langle f_{\ell}|f_{\ell}\rangle = -\sum_{k=1,k\neq\ell}^{n} \alpha_{k}\langle f_{k}|f_{\ell}\rangle = 0$$

• z axiomu pozitivní definitnosti ale odtud vyplývá, že $f_{\ell}(x) = o(\vec{x})$, což je zřetelný spor

3.5.4 Věta – Besselova nerovnost

Nechť $S = \{f_1(\vec{x}), f_2(\vec{x}), \dots, f_n(\vec{x})\}$ je ortonormální množina v Hilbertově prostoru \mathcal{H} . Nechť $g(\vec{x}) \in \mathcal{H}$ je zvolen libovolně. Označme $a_k := \langle f_k | g \rangle$. Pak platí

$$\sum_{k=1}^{n} |a_k|^2 \leqslant ||g(\vec{x})||^2. \tag{3.10}$$

Důkaz:

- zvolme funkci $g(\vec{x}) \in \mathcal{H}$ libovolně
- pak platí série rovností, resp. nerovností

$$0 \leqslant \left\| g - \sum_{k=1}^{n} a_k f_k \right\|^2 = \left\langle g - \sum_{k=1}^{n} a_k f_k \right| \left| g - \sum_{k=1}^{n} a_k f_k \right\rangle = \|g(\vec{x})\|^2 - \sum_{k=1}^{n} a_k^* \langle g|f_k \rangle - \sum_{k=1}^{n} a_k \langle f_k|g \rangle + \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_k^* a_{\ell} \langle f_{\ell}|f_k \rangle = \|g(\vec{x})\|^2 - \sum_{k=1}^{n} a_k^* a_k - \sum_{k=1}^{n} a_k a_k^* + \sum_{k=1}^{n} a_k^* a_k = \|g\|^2 - \sum_{k=1}^{n} |a_k|^2$$

3.5.5 Věta

Nechť $S = \{f_1(\vec{x}), f_2(\vec{x}), \dots, f_n(\vec{x}), \dots\}$ je (spočetná) ortonormální množina v Hilbertově prostoru \mathcal{H} . Nechť je funkce $g(\vec{x}) \in \mathcal{H}$ zvolena libovolně. Označme $a_k = \langle g|f_k \rangle$. Pak existuje limita

$$\lim_{n \to \infty} \sum_{k=1}^{n} a_k f_k(\vec{x}) = \sum_{k=1}^{\infty} a_k f_k(\vec{x}) =: h(\vec{x}) \in \mathcal{H}.$$

Navíc pro každé $k \in \mathbb{N}$ platí $\langle g - h | f_k \rangle = 0$.

Důkaz:

• pro funkci $h_n(\vec{x}) = \sum_{k=1}^n a_k f_k(\vec{x})$ platí jednoduchá rovnost

$$\|h_{n+p}(\vec{x}) - h_n(\vec{x})\|^2 = \left\|\sum_{k=n+1}^{n+p} a_k f_k(\vec{x})\right\|^2 \leqslant \sum_{k=n+1}^{n+p} |a_k|^2, \tag{3.11}$$

kde bylo využito kolmosti a normality funkcí v systému S

- z Besselovy nerovnosti plyne, že pro jakékoli $n \in \mathbf{N}$ je $\sum_{k=1}^n |a_k|^2 \leqslant \|g(\vec{x})\|^2$
- protože $\sum_{k=1}^{n} |a_k|^2$ je řadou s nezápornými členy a je omezená, jistě také konverguje
- proto ke každému $\varepsilon>0$ existuje $n_0\in {\bf N}$ tak, že pro indexy $n>n_0$ a $p\in {\bf N}$ je $\sum_{k=n+1}^{n+p}|a_k|^2<\varepsilon^2$
- z nerovnosti (3.11) pak lehce vyvodíme, že posloupnost $(h_n(\vec{x}))_{n=1}^{\infty}$ je cauchyovská
- a protože \mathcal{H} je prostorem Hilbertovým, je $(h_n(\vec{x}))_{n=1}^{\infty}$ rovněž konvergentní (ve smyslu normy)
- existuje tudíž $h(\vec{x}) = \lim_{n \to \infty} h_n(\vec{x}) = \sum_{k=1}^{\infty} a_k f_k(\vec{x}) \in \mathcal{H}$
- pro pevné $k \in \mathbb{N}$ a n > k je zřejmě $\langle g h_n | f_k \rangle = 0$
- užijeme-li v předešlém vztahu limitní přechod $n \to \infty$ a aplikujeme-li větu 2.3.12, plyne odsud, že $\langle g-h|f_k\rangle=0$ pro všechny $k \in {\bf N}$

KAPITOLA 3.	TEORIE PRAVDĚPODOBNOSTI		
		40	

Literatura

- [1] T. Hobza: Matematická statistika, http://tjn.fjfi.cvut.cz/~hobza/MAST/mast.pdf (2007)
- [2] M. Krbálek: Matematická analýza III (třetí přepracované vydání), Česká technika nakladatelství ČVUT, Praha 2011
- [3] M. Krbálek: Matematická analýza IV (druhé přepracované vydání), Česká technika nakladatelství ČVUT, Praha 2009
- [4] M. Krbálek: Úlohy matematické fyziky, Česká technika nakladatelství ČVUT, Praha 2012
- [5] M. Krbálek: Teorie míry a Lebesgueova integrálu, Česká technika nakladatelství ČVUT, Praha 2014 (Je to spravne?)