Polinomios

POLINOMIOS

- 1) Busca la definición de Polinomio.
 - Una vez que hayas analizado la definición, indica cuáles de las siguientes expresiones algebraicas son polinomios

a)
$$P(x) = 3x^5 - \sqrt{2}x^3 + x - 5$$

b)
$$Q(x) = -\frac{1}{4}x^2 + 0.25x^{-2} + 3x + 1$$

6°2°.EES N° 1

c)
$$M(x) = 36 - x^{12}$$

d)
$$N(x) = 3\sqrt[3]{x} + 5x^2 - 2x - 5$$

e)
$$R(x) = 0.2x^4 + \frac{1}{3}x^3 - \sqrt{3}x^2 + x + \sqrt{4}$$
 f) $S(x) = 5x^5 - \frac{3}{2x} + 4x^2 + 1$

f)
$$S(x) = 5x^5 - \frac{3}{2x} + 4x^2 + 1$$

- 2) Busca a qué es el grado, el coeficiente principal y el término independiente de un polinomio.
 - Determinar el grado, el coeficiente principal y el término independiente en los siguientes polinomios

a)
$$C(x) = 6x^3 - 9x^2 + 24x + 25$$
 b) $P(x) = x^3 + 5x^2 - 4x - 195$

b)
$$P(x) = x^3 + 5x^2 - 4x - 195$$

c)
$$T(x) = \frac{1}{3}x^6 - 4x^5 + 3x^4 + \frac{2}{3}x^3 - x^2 + 2x + \frac{1}{4}$$
 d) $M(x) = 6x + 5x^2 - x^4 + 2x^3$

3) Un polinomio está ordenado si sus términos están ordenados en forma creciente o decreciente respecto de los exponentes de la variable. Y está completo si tiene todas las potencias.

EJEMPLO:

 $P(x) = 6x^3 - 2x^2 + 3x - 1$ Es un polinomio de grado 3, coeficiente principal 6 y término independiente -1. Está ordenado y completo

 $Q(x) = -4x + x^5 + 2x^2 + 7$ Es un polinomio de grado 5, coeficiente principal 1, término independiente 7. No está ordenado y tampoco completo.

Si lo tuviera que ordenar y completar quedaría:

 $Q(x) = x^5 + 0x^4 + 0x^3 + 2x^2 - 4x + 7$ Ahí estaría ordenado y completo.

Dados $P(x) = x^4 - 2x^3 + x^2 + 5x - 12$ y $Q(x) = 3 + \frac{1}{2}x^3 - 5x + \frac{3}{2}x^2$, indiquen si están ordenados; si no, ordénenlos

Polinomios 6°2°.EES N° 1

> Indiquen si los polinomios están completos u ordenados, o ambas cosas. En caso de no estarlo, escríbanlos completos y ordenados.

$$R(x) = x^3 + \frac{1}{4}x^5 - 2$$
 $P(x) = x^2 - 7x + 4x^3 - 1$ $S(x) = -5x - 3 + 2x^4$

$$P(x) = x^2 - 7x + 4x^3 - 1$$

$$S(x) = -5x - 3 + 2x^4$$

OPERACIONES CON POLINOMIOS

Suma y resta de Polinomios

Te propongo que resuelvas las siguientes sumas y restas entre polinomios

Consideren los polinomios:

$$A(x) = 2x - x^3 + 1$$

$$B(x) = -1 + x^3$$

$$C(x) = -2x - 1 + x^3$$

 $D(x) = -x^3 + 1 + 6x^2$ realizen las operaciones indicadas:

a)
$$A(x) + B(x)$$

b)
$$D(x) + B(x)$$
 c) $A(x) + C(x)$

c)
$$A(x) + C(x)$$

d)
$$(A(x)-D(x))+(B(x)-C(x))$$
 e) $A(x)-C(x)$ f) $D(x)-B(x)+C(x)$

e)
$$A(x) - C(x)$$

f)
$$D(x) - B(x) + C(x)$$

Debes tener en cuenta, que cuando hay un signo menos delante de un paréntesis, debes cambiar TODOS los signos del paréntesis

Multiplicación de Polinomios

Para multiplicar dos polinomios, sólo basta con aplicar la propiedad distributiva. Recuerda que en la multiplicación de bases iguales, se deja la base y se suman los exponentes

Consideren los siguientes polinomios:

$$A(x) = x^2 + 3x - 1$$

$$B(x) = x + 3$$

$$C(x) = 5x^3 - 3x + 4$$

D(x) = x - 3. Efectúen los siguientes productos

a)
$$A(x) \cdot B(x)$$

b)
$$A(x) \cdot D(x)$$
 c) $B(x) \cdot B(x)$ d) $C(x) \cdot B(x)$

c)
$$B(x) \cdot B(x)$$

d)
$$C(x) \cdot B(x)$$

SEGUIMOS TRABAJANDO CON POLINOMIOS

1) Corregí los siguientes ejercicios. Si algo está mal, indicá cuál fue el error.

a)
$$(3x+2)(3x-2) = 9x-4$$

b) $(\frac{1}{2} + \frac{3}{5}y^6)(\frac{1}{2} - \frac{3}{5}y^6) = \frac{1}{4} - \frac{9}{25}y^8$
c) $(4x-2)^2 = 16x^2 - 4$
d) $(3x+1)(2x+2) - 5x^2 - 3 = x^2 + 8x - 1$

$$c)(4x-2)^{2} = 16x^{2} - 4$$

$$dy(2x+1)(2x+2) = 5x^{2} - 2 = x^{2} + 8x = 1$$

2) Indicar la opción correcta en cada caso.

a)
$$(x+2)^2 + 2 = 4x + 10$$

las soluciones son x = 2 x = -2 la solución es x = 2 no tiene solución

b)
$$x^2 - 3x - 4 = 0$$

las soluciones son x = -4 x = 1 las soluciones son x = 4 x = -1 no tiene solución

$$c)(2x+4)^2 = (x+3)^2$$

las soluciones son x = -1 x = -7/3 las soluciones son x = 1 x = 7/3 no tiene solución

3) Buscar información sobre Ruffini y la regla que permite realizar la división de polinomios.