Home Work 1

Evan Fox

2/6/2023

Problem 1. If u, v are the only vertices of a graph G with odd degree, prove that there exists a u, v path in G

Proof. u, v must lie in the same connected component of G or else considering the induced subgraph on the vertices of the component containing u but not v, we would obtain a graph with an odd number of odd degree vertices, contradicting the handshaking lemma proved in class. Hence u, v lie in the same component and hence there exitsts a u, path.

Problem 2. Show that $\delta(G) \geq 3$ implies the existence of an even cycle

Proof. Let $x_1x_2...x_n$ be the longest path in G, then it follows that x_n must have at least two more neighbors on the path, x_k and x_l . Suppose that k < l. Then if the cylce $x_kx_{k+1}...x_nx_k$ is even, we are done; so suppose not. Then we have $|\{x_i \mid k \leq i < n\}|$ is an even integer. It follows that there is either an even number of vertices less than l or an even number greater than l (where I am ordering vertices by their index and not including x_n). In the first case $x_k...x_lx_nx_k$ is an even cycle and in the second we have $x_l,...x_nx_l$ will be an even cycle.

Problem 3. Suppose that G has no isolated vertices and that no induced subgraph on G has exactly two edges. Show that G is complete.

Proof. Let $u,v \notin E(G)$, since no vertex in G is isolated, let u',v' be adjaceint to u and v recpectivly. If u'=v' then G[u,v,u'], is an induced subgraph with two edges, so we may assume that they are distinct. If either $uv',vu'\in E(G)$, then we may take G[v',u,v] or G[u',u,v] gives us a induced subgraph on two edges so again we may assume that this doesnt happen. Now if $u'v'\in E(G)$, then G[u,u',v] again is a counter example. But now in the last case we only have edges uU' and vv' so taking induced subgraph on all four edges gives a induced subgraph with two edges. Hence there must exits a u,v edge.

Problem 4. Can there exist a function taking $k \in \mathbb{K}$ to the minimal degree $\delta(G)$ which insures G is k-connected?

Proof. No, It is not hard to construct a graph G of arbitrarily large minimal degree that is not 2-connected. Take two disjoint graphs G_1, G_2 with minimal degree n, then add a vetex v and connected it to every every vertex in G_i for i=1,2. G thus defined is not 2-connected since removing v results in two connected components.