Cones of codimension two special cycles

Riccardo Zuffetti, GU, Frankfurt a.M. (Germany)

30th November 2021

Contents

- Motivation
- Cones & properties
- Orthogonal Shimura varieties and special cycles
- Main results
- Siegel modular forms & cones of coefficients

Time permitting:

Possible generalizations

Motivation

X = complex (quasi-)projective algebraic variety

Cones in $Pic(X) \otimes \mathbb{R}$ generated by (nef, ample, effective, etc) divisors have been intensely studied.

Example

- $X = \text{Fano variety} \implies \text{Nef}(X)$ is rational polyhedral. (Mori)
- $X = \overline{\mathcal{M}}_{g,n} \implies \overline{\mathrm{Eff}}(X)$ is non polyhedral for $g \geq 2$ and $n \geq 2$. (Mullane)
- X = orthogonal Shimura variety of dim $\geq 3 \implies$ cone of *special divisors* is rational polyhedral (Bruinier–Möller).

Motivation

X = complex (quasi-)projective algebraic variety

Cones in $\operatorname{Pic}(X) \otimes \mathbb{R}$ generated by (nef, ample, effective, etc) divisors have been intensely studied.

Example

- $X = \text{Fano variety} \implies \text{Nef}(X)$ is rational polyhedral. (Mori)
- $X = \overline{\mathcal{M}}_{g,n} \implies \overline{\mathrm{Eff}}(X)$ is non polyhedral for $g \geq 2$ and $n \geq 2$. (Mullane)
- $X = \text{orthogonal Shimura variety of dim } \ge 3 \implies \text{cone of } special$ divisors is rational polyhedral (Bruinier–Möller). \leadsto special cycles?

Question

What about cones of cycles in higher codimension?

Cones

V= finite-dim \mathbb{Q} -vector space. $\mathcal{G}\subseteq V$ non-empty subset.

 $\langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}} \coloneqq$ (convex) cone generated by \mathcal{G} in V = smallest subset of V that contains \mathcal{G} and is closed under lin. comb. with non-negative coefficients in \mathbb{Q} .

 $V_{\mathbb{R}} = V \otimes \mathbb{R}$ with Euclidean topology.

 $\overline{\langle \mathcal{G} \rangle_{\mathbb{Q}_{>0}}} \coloneqq \, \mathbb{R}\text{-closure of} \,\, \langle \mathcal{G} \rangle_{\mathbb{Q}_{>0}}.$

Cones

V= finite-dim \mathbb{Q} -vector space. $\mathcal{G}\subseteq V$ non-empty subset.

 $\langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}} \coloneqq$ (convex) cone generated by \mathcal{G} in V = smallest subset of V that contains \mathcal{G} and is closed under lin. comb. with non-negative coefficients in \mathbb{Q} .

 $V_{\mathbb{R}} = V \otimes \mathbb{R}$ with Euclidean topology.

$$\overline{\langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}}} \coloneqq \, \mathbb{R}\text{-closure of} \,\, \langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}}.$$

Definition

The cone $\langle \mathcal{G} \rangle_{\mathbb{Q}_{>0}}$ is:

- pointed if it contains no lines (= subspaces of dim 1).
- $\bullet \ \text{polyhedral} \ \text{if} \ \langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}} = \langle \mathcal{G}' \rangle_{\mathbb{Q}_{\geq 0}} \ \text{for some} \ \mathcal{G}' \subseteq \mathcal{G} \ \text{finite}.$
- rational if $\overline{\langle \mathcal{G} \rangle_{\mathbb{Q}_{>0}}}$ is generated over \mathbb{R} by elements of V.

Examples

$$\left\langle (1,a)\in\mathbb{Q}^2:a\in[0,1]\cap\mathbb{Q}\right\rangle_{\mathbb{Q}_{>0}}\implies$$

pointed, polyhedral, rational

Examples

$$ig\langle (1,a)\in\mathbb{Q}^2:a\in[0,1]\cap\mathbb{Q}ig
angle_{\mathbb{Q}\geq\mathbf{0}} \ ig\langle (1,a)\in\mathbb{Q}^2:a\in[0,\pi)\cap\mathbb{Q}ig
angle_{\mathbb{Q}\geq\mathbf{0}} \implies$$

pointed, non-polyhedral, non-rational

Examples in \mathbb{Q}^3

Strategy to prove polyhedrality

Let $\mathcal{C} = \langle \mathcal{G} \rangle_{\mathbb{Q}_{\geq 0}}$ be a cone generated by \mathcal{G} in V. How to understand whether \mathcal{C} is polyhedral?

Strategy to prove polyhedrality

Let $\mathcal{C}=\langle\mathcal{G}\rangle_{\mathbb{Q}_{\geq 0}}$ be a cone generated by \mathcal{G} in V.

How to understand whether C is polyhedral?

STEP 1: find all rays of $\overline{\mathcal{C}} \subseteq V_{\mathbb{R}}$ arising as "limits" of rays generated by elements of \mathcal{G} .

STEP 2: understand how sequences of rays generated over \mathcal{G} converge towards the "limits".

Strategy to prove polyhedrality

Let $\mathcal{C}=\langle\mathcal{G}\rangle_{\mathbb{Q}_{\geq 0}}$ be a cone generated by \mathcal{G} in V.

How to understand whether C is polyhedral?

STEP 1: find all rays of $\overline{\mathcal{C}} \subseteq V_{\mathbb{R}}$ arising as "limits" of rays generated by elements of \mathcal{G} .

STEP 2: understand how sequences of rays generated over \mathcal{G} converge towards the "limits".

Definition

A ray r of $\overline{\mathcal{C}}$ is an **accumulation ray of** \mathcal{C} (w.r.t. \mathcal{G}) if there exists a sequence $(g_j)_{j\in\mathbb{N}}$ of *pairwise different* generators in \mathcal{G} , such that

$$\mathbb{R}_{\geq 0} \cdot g_j \longrightarrow r$$
, when $j \longrightarrow \infty$.

The accumulation cone of $\mathcal C$ (w.r.t. $\mathcal G$) is the cone generated by the accumulation rays of $\mathcal C$ and by 0.

Orthogonal Shimura varieties

L= even $\underline{unimodular}$ lattice of signature $(b,2),\ b>2.$ $\langle\cdot,\cdot\rangle=$ sym. bilinear form, $q(\cdot)=\langle\cdot,\cdot\rangle/2$ quadratic form.

$$\mathcal{D} = \Big\{ z \in L \otimes \mathbb{C} \setminus \{0\} : \langle z, z \rangle = 0 \text{ and } \langle z, \overline{z} \rangle < 0 \Big\} / \mathbb{C}^* \quad \subset \mathbb{P}(L \otimes \mathbb{C})$$

Orthogonal Shimura varieties

L= even $\underline{unimodular}$ lattice of signature $(b,2),\ b>2.$ $\langle\cdot,\cdot\rangle=$ sym. bilinear form, $\ q(\cdot)=\langle\cdot,\cdot\rangle/2$ quadratic form.

$$\mathcal{D} = \Big\{z \in L \otimes \mathbb{C} \setminus \{0\} : \langle z, z \rangle = 0 \text{ and } \langle z, \overline{z} \rangle < 0 \Big\} / \mathbb{C}^* \quad \subset \mathbb{P}(L \otimes \mathbb{C})$$

 \mathcal{D} is a *b*-dim complex manifold with 2 connected components.

$$\mathcal{D} = \mathcal{D}^+ \coprod \mathcal{D}^-$$

$$\mathrm{O}(\mathit{L}) \circlearrowleft \mathcal{D} \quad \leadsto \quad \mathrm{O}^+(\mathit{L}) = \mathsf{subgroup} \ \mathsf{of} \ \mathrm{O}(\mathit{L}) \ \mathsf{preserving} \ \mathcal{D}^+.$$

Definition

 $\Gamma \leq \mathrm{O}^+(L)$ finite index subgroup. The orthogonal Shimura variety associated to Γ is

$$X_{\Gamma} = \Gamma \backslash \mathcal{D}^+.$$

Special cycles of codimension 2

$$\begin{split} &\Lambda_2 = \Bigr\{ \, T = \left(\begin{smallmatrix} n & r/2 \\ r/2 & m \end{smallmatrix} \right) : n,r,m \in \mathbb{Z} \text{ and } T \geq 0 \Bigr\} = \left\{ \begin{smallmatrix} \text{sym. half-int. pos.} \\ \text{semi-def } 2 \times 2\text{-mat.} \end{smallmatrix} \right\} \\ &\Lambda_2^+ = \! \{ \, T \in \Lambda_2 : \, T > 0 \}. \end{split}$$

The moment matrix of $\lambda = (\lambda_1, \lambda_2) \in L^2$ is

$$q(\lambda) = \frac{1}{2} \Big(\langle \lambda_i, \lambda_j \rangle \Big)_{i,j} = \frac{1}{2} \Big(\frac{\langle \lambda_1, \lambda_1 \rangle}{\langle \lambda_1, \lambda_2 \rangle} \frac{\langle \lambda_1, \lambda_2 \rangle}{\langle \lambda_2, \lambda_2 \rangle} \Big).$$

Special cycles of codimension 2

$$\begin{split} &\Lambda_2 = \Bigr\{ \, T = \left(\begin{smallmatrix} n & r/2 \\ r/2 & m \end{smallmatrix} \right) : n,r,m \in \mathbb{Z} \text{ and } T \geq 0 \Bigr\} = \left\{ \begin{smallmatrix} \text{sym. half-int. pos.} \\ \text{semi-def } 2 \times 2\text{-mat.} \end{smallmatrix} \right\} \\ &\Lambda_2^+ = \! \{ \, T \in \Lambda_2 : \, T > 0 \}. \end{split}$$

The moment matrix of $\lambda = (\lambda_1, \lambda_2) \in L^2$ is

$$q(\boldsymbol{\lambda}) = \frac{1}{2} \Big(\langle \lambda_i, \lambda_j \rangle \Big)_{i,j} = \frac{1}{2} \Big(\frac{\langle \lambda_1, \lambda_1 \rangle}{\langle \lambda_1, \lambda_2 \rangle} \frac{\langle \lambda_1, \lambda_2 \rangle}{\langle \lambda_2, \lambda_2 \rangle} \Big).$$

For $T \in \Lambda_2^+$, consider

$$\sum_{\substack{\boldsymbol{\lambda} \in L^2 \\ q(\boldsymbol{\lambda}) = T}} \boldsymbol{\lambda}^\perp \quad \subset \mathcal{D}^+ \quad \Longrightarrow \quad Z(T) \coloneqq \Gamma \backslash \sum_{\substack{\boldsymbol{\lambda} \in L^2 \\ q(\boldsymbol{\lambda}) = T}} \boldsymbol{\lambda}^\perp \quad \subset X_\Gamma = \Gamma \backslash \mathcal{D}^+$$

Definition

Z(T) is the (codimension 2) special cycle associated to $T \in \Lambda_2^+$. Its rational class in $\mathrm{CH}^2(X_\Gamma)$ is denoted by $\{Z(T)\}$.

Cones of special cycles

If $T \in \Lambda_2$, then Z(T) is of codimension $\operatorname{rk}(T)$.

Example

 $Z(\begin{smallmatrix}n&0\\0&0\end{smallmatrix})$ is the *n*-th **Heegner divisor**, usually denoted by H_n .

Still possible to define a codimension 2 cycle as $\{Z(T)\} \cdot \{\omega^*\}^{2-\mathrm{rk}(T)}$,

where ω is the *Hodge bundle* of X_{Γ} .

Definition

The cone of special cycles (of codim. 2) on X_{Γ} is

$$\mathcal{C}_{X_{\Gamma}} = \langle \{Z(T)\} : T \in \Lambda_2^+ \rangle_{\mathbb{Q}_{\geq 0}} \quad \subset \mathrm{CH}^2(X_{\Gamma}) \otimes \mathbb{Q}.$$

The cone of rank 1 special cycles (of codim. 2) on X_{Γ} is

$$\mathcal{C}'_{X_{\Gamma}} = \langle \{Z(T)\} \cdot \{\omega^*\} : T \in \Lambda_2, \mathrm{rk}(T) = 1 \rangle_{\mathbb{Q}_{\geq 0}} \quad \subset \mathrm{CH}^2(X_{\Gamma}) \otimes \mathbb{Q}.$$

Main results

- L = even unimodular lattice of signature (b, 2), b > 2.
- $k = 1 + b/2 \implies$ even, because L is unimodular.
- $M_1^k = \text{space of weight } k \text{ modular forms w.r.t. } \mathrm{SL}_2(\mathbb{Z}).$

Theorem (Z.)

Let X_{Γ} be an orthogonal Shimura variety arising from L.

- The cone $C'_{X_{\Gamma}}$ is pointed, rational, polyhedral, and of dimension dim M_1^k .
- **2** The accumulation cone of $C_{X_{\Gamma}}$ is pointed, rational, polyhedral, and of the same dimension as $C'_{X_{\Gamma}}$.
- The cone C_{XΓ} is rational, and of maximal dimension in the subspace of CH²(X_Γ) ⊗ Q generated by the special cycles of codimension 2.
- The cones $\mathcal{C}_{X_{\Gamma}}$ and $\mathcal{C}'_{X_{\Gamma}}$ intersect only at the origin. If the accumulation cone of $\mathcal{C}_{X_{\Gamma}}$ is enlarged with a non-zero element of $\mathcal{C}'_{X_{\Gamma}}$, the resulting cone is non-pointed.

Open problem:

Is the cone $\mathcal{C}_{X_{\Gamma}}$ polyhedral?

STEP 1: Done ✓ Accumulation rays computed.

Example

Let m be a positive integer, and let $T_n = \binom{n-1/2}{1/2-m} \in \Lambda_2^+$.

$$\mathbb{R}_{\geq 0} \cdot \{Z(T_n)\} \xrightarrow[n \to \infty]{} \mathbb{R}_{\geq 0} \cdot \Big(\sum_{t^2 \mid m} \mu(t) \sigma_{k-1}(m/t^2) \{H_{m/t^2}\} \cdot \{\omega\}\Big).$$

The accumulation rays of $C_{X_{\Gamma}}$ are *infinitely many*. This differs from the case of cones of Heegner divisors.

STEP 2: Only partial results X The behaviour of sequences of rays converging to the accumulation cone is clear only in some cases.

→ now: use Siegel modular forms to find accumulation rays.

Siegel modular forms

 $\mathbb{H}_2=\{Z\in\mathbb{C}^{2 imes 2}:\Im(Z)>0\}=$ Siegel upper-half space. $\mathrm{Sp}_4(\mathbb{Z})$ acts on \mathbb{H}_2 as

$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{H}_2 \to \mathbb{H}_2, \qquad Z \mapsto \gamma \cdot Z = (AZ + B)(CZ + D)^{-1}.$$

Fix k > 0 even. A weight k Siegel modular form is a holomorphic map $F : \mathbb{H}_2 \to \mathbb{C}$ s.t. $F(\gamma \cdot Z) = \det(CZ + D)^k F(Z)$.

Koecher Principle: they admit a Fourier expansion

$$F(Z) = \sum_{T \in \Lambda_2} c_T(F) \exp(2\pi i \operatorname{tr}(TZ)).$$

Siegel modular forms

 $\mathbb{H}_2=\{Z\in\mathbb{C}^{2 imes 2}:\Im(Z)>0\}=$ Siegel upper-half space. $\mathrm{Sp}_4(\mathbb{Z})$ acts on \mathbb{H}_2 as

$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} : \mathbb{H}_2 \to \mathbb{H}_2, \qquad Z \mapsto \gamma \cdot Z = (AZ + B)(CZ + D)^{-1}.$$

Fix k > 0 even. A weight k Siegel modular form is a holomorphic map $F \colon \mathbb{H}_2 \to \mathbb{C}$ s.t. $F(\gamma \cdot Z) = \det(CZ + D)^k F(Z)$.

Koecher Principle: they admit a Fourier expansion

$$F(Z) = \sum_{T \in \Lambda_2} c_T(F) \exp(2\pi i \operatorname{tr}(TZ)).$$

 $M_2^k(\mathbb{Q}) = \{ \text{ weight } k \text{ Siegel mod forms with coeff in } \mathbb{Q} \}.$ $M_2^k(\mathbb{Q})^* = \text{dual space, finite dim., generated by the coefficient extraction functionals}$

$$c_T: M_2^k(\mathbb{Q}) \to \mathbb{Q}, \qquad F \mapsto c_T(F).$$

 X_{Γ} orthogonal Shimura variety as above, of dim b. $k = 1 + b/2 \implies$ even, because L is unimodular.

Definition

The modular cone of weight k is

$$\mathcal{C}_k := \langle c_T : T \in \Lambda_2^+ \rangle_{\mathbb{Q}_{>0}} \qquad \subset M_2^k(\mathbb{Q})^*$$

Kudla's Modularity Conjecture, now a theorem (Bruinier–Raum), implies:

$$\psi \colon M_2^k(\mathbb{Q})^* \xrightarrow{\text{linear}} \mathrm{CH}^2(X_{\Gamma}) \otimes \mathbb{Q}$$

$$c_T \longmapsto \{Z(T)\} \cdot \{\omega^*\}^{2-\mathrm{rk}(T)}$$

 X_{Γ} orthogonal Shimura variety as above, of dim b. $k = 1 + b/2 \implies$ even, because L is unimodular.

Definition

The modular cone of weight k is

$$\mathcal{C}_k := \langle c_T : T \in \Lambda_2^+ \rangle_{\mathbb{Q}_{>0}} \qquad \subset M_2^k(\mathbb{Q})^*$$

Kudla's Modularity Conjecture, now a theorem (Bruinier–Raum), implies:

$$\psi \colon M_2^k(\mathbb{Q})^* \xrightarrow{\text{linear}} \operatorname{CH}^2(X_{\Gamma}) \otimes \mathbb{Q}$$

$$c_T \longmapsto \{Z(T)\} \cdot \{\omega^*\}^{2-\operatorname{rk}(T)}$$

$$c_k \longmapsto c_{X_{\Gamma}}$$

IDEA: Study C_k instead of $C_{X_{\Gamma}}$. Understand which properties of C_k are preserved by ψ . (Unknown if ψ is injective!)

Why Siegel modular forms?

Possible to compute cones explicitly, e.g. with SageMath:

$$f_1, \ldots, f_\ell$$
 basis of $S_1^k(\mathbb{Q})$ $F_1, \ldots, F_{\ell'}$ basis of $S_2^k(\mathbb{Q})$.

We may choose a basis of $M_2^k(\mathbb{Q})$ as

$$E_2^k, E_{2,1}^k(f_1), \ldots, E_{2,1}^k(f_\ell), F_1, \ldots, F_{\ell'},$$

 $E_2^k = \text{Siegel-Eisenstein series},$ $E_2^k = \text{Siegel-Eisenstein series},$

 $E_{2,1}^k(f) = \text{Klingen-Eisenstein series}$ associated to f.

Why Siegel modular forms?

Possible to compute cones explicitly, e.g. with SageMath:

$$f_1,\ldots,f_\ell$$
 basis of $S_1^k(\mathbb{Q})$ $F_1,\ldots,F_{\ell'}$ basis of $S_2^k(\mathbb{Q})$.

We may choose a basis of $M_2^k(\mathbb{Q})$ as

$$E_2^k, E_{2,1}^k(f_1), \ldots, E_{2,1}^k(f_\ell), F_1, \ldots, F_{\ell'},$$

 $E_2^k = \text{Siegel-Eisenstein series},$ $E_{2,1}^k(f) = \text{Klingen-Eisenstein series}$ associated to f.

$$c_T \longleftrightarrow egin{pmatrix} c_T(E_2^k) \\ c_T\left(oldsymbol{E}_{2,1}^k(f_1)
ight) \\ dots \\ c_T\left(oldsymbol{E}_{2,1}^k(f_\ell)
ight) \\ c_T(F_1) \\ dots \\ c_T(F_{\ell'}) \end{pmatrix} \in \mathbb{Q}^{1+\ell+\ell'}$$

Accumulation of rays via estimate of Fourier coeff:

Let $T \in \Lambda_2^+$ If $k \equiv 2 \mod 4$, then $c_T(E_2^k) > 0$.

$$\mathbb{R}_{\geq 0} \cdot c_T \longleftrightarrow \mathbb{R}_{\geq 0} \cdot \left(egin{array}{c} c_{\mathcal{T}}(E_{2,1}^k(f_1)) \ dots \ c_{\mathcal{T}}(E_{2,1}^k(f_\ell)) \ dots \ c_{\mathcal{T}}(F_1) \ dots \ c_{\mathcal{T}}(F_{\ell'}) \end{array}
ight) \subset \mathbb{Q}^{1+\ell+\ell'}$$

$$\begin{array}{l} c_{\mathcal{T}} = c_{u^t \cdot \mathcal{T} \cdot u}, \text{ for every } u \in \operatorname{GL}_2(\mathbb{Z}) \\ \Longrightarrow \text{ assume } \mathcal{T} = \left(\begin{smallmatrix} n & r/2 \\ r/2 & m \end{smallmatrix} \right) \text{ reduced, i.e. } 0 \leq r \leq m \leq n. \end{array}$$

Accumulation of rays via estimate of Fourier coeff:

Let $T \in \Lambda_2^+$ If $k \equiv 2 \mod 4$, then $c_T(E_2^k) > 0$.

$$\mathbb{R}_{\geq 0} \cdot \frac{c_{\mathcal{T}}}{c_{\mathcal{T}}(E_2^k)} \longleftrightarrow \mathbb{R}_{\geq 0} \cdot \begin{pmatrix} \frac{1}{c_{\mathcal{T}}(E_{2,1}^k(f_1))} \\ \vdots \\ \frac{c_{\mathcal{T}}(E_2^k)}{c_{\mathcal{T}}(E_2^k)} \\ \vdots \\ \frac{c_{\mathcal{T}}(E_{2,1}^k(f_\ell))}{c_{\mathcal{T}}(E_2^k)} \\ \vdots \\ \frac{c_{\mathcal{T}}(F_1)}{c_{\mathcal{T}}(E_2^k)} \\ \vdots \\ \frac{c_{\mathcal{T}}(F_{\ell'})}{c_{\mathcal{T}}(E_2^k)} \end{pmatrix}$$

Accumulation of rays via estimate of Fourier coeff:

Let $T \in \Lambda_2^+$ If $k \equiv 2 \mod 4$, then $c_T(E_2^k) > 0$.

$$\mathbb{R}_{\geq 0} \cdot \frac{c_T}{c_T(E_2^k)} \longleftrightarrow \mathbb{R}_{\geq 0} \cdot \begin{pmatrix} \frac{1}{c_T\left(\frac{E_2^k}{2,1}(f_1)\right)} \\ \vdots \\ \frac{c_T\left(\frac{E_2^k}{2,1}(f_\ell)\right)}{c_T(E_2^k)} \\ \frac{c_T\left(\frac{E_2^k}{2,1}(f_\ell)\right)}{c_T(E_2^k)} \\ \vdots \\ \frac{c_T\left(\frac{E_2^k}{2,1}(f_\ell)\right)}{c_T(E_2^k)} \\ \frac{\vdots}{c_T\left(\frac{E_2^k}{2,1}(f_\ell)\right)} \\ \frac{\vdots}{c_T\left(\frac{E_2^k}{2,1$$

The "mixed" behaviour of the Klingen-Eisenstein series $E_{2,1}^k(f)$ has been clarified (Böcherer–Das, 2018):

$$c_{T}(\boldsymbol{E}_{2,1}^{k}(f)) = \frac{\zeta(1-k)}{2} \sum_{t^{2}|m} \alpha_{m}(t,f) \cdot c_{\binom{n-r/2t}{r/2t \ m/t^{2}}}(\boldsymbol{E}_{2}^{k}) + \underset{\mathsf{part}}{\mathsf{cuspidal}}$$

Eisenstein part of m-th Fourier-Jacobi coefficient of $E_{2,1}^k(f)$

where
$$T = \binom{n \ r/2}{r/2 \ m} \in \Lambda_2^+$$
 is reduced, i.e. $0 \le r \le m \le n$.

- $\alpha_m(t,f) = \sum_{s|t} \mu(\frac{t}{s}) \frac{\sum \text{ Fourier coeff of } f \text{ associated to divisors of } \frac{m}{s^2}}{\sum \text{ powers of divisors of } \frac{m}{s^2}}.$
- If det $T \to \infty$, then "cuspidal part" grows slower than $c_T(E_2^k)$.

Possible generalizations

- L non-unimodular \implies vector valued Siegel modular forms.
- ullet Special cycles of codim $g\geq 2$: now $T\in \Lambda_g^+$ and

$$\{Z(T)\} \in \mathrm{CH}^g(X_\Gamma) \otimes \mathbb{Q}.$$

- \implies consider Siegel modular forms of genus g.
- Possible to construct special cycles on orthogonal Shimura varieties defined on certain totally real extensions of Q.
 - ⇒ consider Hilbert–Siegel modular forms. (Kudla, Maeda)

Thanks for your attention!

