13 Tétel

Bázisok

Altér bázisának fogalma, bázis létezése, Rⁿ standard bázisa. Bázis konstrukciója homogén lineáris egyenletendszerrel megadott altér esetén.

Def altér: $\emptyset \models V \subseteq R^n$ az R^n tér altere (jel: $V \le R^n$), ha V zárt a műveletekre: x + y, $\lambda x \in V$ teljesül $\forall x, y \in V$ és $\forall \lambda \in R$ esetén.

Def alter bázisa: A $V \le R^n$ altér bázisa a V egy lin.ftn generátorrendszere.

Def generátor rendszer: Az x1 , . . . , xk \in Rⁿ vektorok a V \leq Rⁿ altér generátorrendszerét alkotják, ha \langle x1 , . . . , xk \rangle = V .

Def. lin függetlenség: Az x1,..., xk \in Rⁿ vektorok lineárisan függetlenek, ha a nullvektort csak a triviális lineáris kombinációjuk állítja elő: $\lambda 1 \times 1 + \ldots + \lambda k \times k = 0 \Rightarrow \lambda 1 = \ldots = \lambda k = 0$.

Def standard bázis: Az e₁, e₂, . . . , e_n vektorok az Rⁿ standard bázisát alkotja.

Minden V altérnek létezik bázisa. Ezeket 2 módszerrel tudjuk meghatározni.

- 1, ha ismerjük V nek egy generátor rendszerét, akkor csinálhatjuk azt hogy addig ritkítjuk a generátorrendszert (ezt a tulajdonságát megőrizve), amíg az lineárisan független nem lesz (így a bázis definícióját kielégítve).
- 2, vesszük V-nek egy ismert lineárisan független halmazát, és addig bővítjük (lin.ftn tulajdonságát őrizve), amíg az egy V-t generáló generátorrendszer nem lesz.

Egyenletrendszerrel megadott altér bázisának meghatározása:

- 1, az egyenletekből felírjuk a kibővített együttható mátrixot
- 2, redukált lépcsős alakra hozzuk gauss eliminációval, kifejezzük a vezér1-eket
- 3, felírjuk a bázisokat