

CYNOSURE III GNSS Chip HD8040 Series

Datasheet V1.4

Notice, Statement and Copyright

ALLYSTAR Technology offers this document as a service to its customers, to support application and engineering efforts that use the products designed by ALLYSTAR Technology. Products and specifications discussed herein are for reference purposes only. Performance characteristics listed in this document do not constitute a warranty or guarantee of product performance.

ALLYSTAR Technology assumes no liability or responsibility for any claims or damages arising out of the use of this document, or from the use of integrated circuits based on this document, including, but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights.

This document contains proprietary technical information which is the property of ALLYSTAR Technology, copying of this document and giving it to others and using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. ALLYSTAR Technology reserves the right to make changes in its products, specifications and other information at any time without notice.

For more recent documents, please visit www.allystar.com .

Copyright © Allystar Technology (Shenzhen) Co., Ltd. 2019. All rights reserved.

TABLE OF CONTENT

1	SYS	TEM O	VERVIEW	8
	1.1	General	Description	8
	1.2	Features	S	8
	1.3	Block Di	agram	9
	1.4	Specifica	ations	10
	1.5	HD8040	series product	12
2	NA	/IGATIO	ON SUBSYSTEM	13
	2.1	Block Di	agram	13
	2.2	RF Front	tend	13
		2.2.1	RF Features	13
	2.3	GNSS Ba	aseband Engine	
		2.3.1	Baseband Engine Features	15
3	MC	U SUBS	SYSTEM	16
	3.1	ARM Pro	ocessor System	16
	3.2	Clock Ge	enerator and Supervisor	16
	3.3	Timer		16
	3.4	DMA Co	ontroller	16
	3.5	Watchdo	og	16
	3.6	Serial Co	ommunication Interfaces	17
		3.6.1	UART	17
		3.6.2	I ² C	17
		3.6.3	SPI	17
		3.6.4	SQI	17
		3.6.5	USB	18
	3.7	Time Sy	nchronization Interfaces	18
		3.7.1	PPS	18
		3.7.2	FSYNC / TSYNC	18
	3.8	Other Pe	eripherals	
		3.8.1	INCP	18
		3.8.2	PWM	
		3.8.3	External Interrupts	19
		3.8.4	ADC	19
		3.8.5	External I/O Port Configuration	
		3.8.6	Cryptographic Engine (CRYPTO)	20
4	PO	NER M	ANAGEMENT UNIT (PMU)	21
	4.1	Control	Logic Block	22
	4.2	Low Vol	tage Detection	22
	4.3	Backup	RAM	22

	4.4	RTC	22
	4.5	DCDC	22
	4.6	LDO	22
	4.7	Dynamic Voltage Frequency Scaling (DVFS)	22
5	FIR	MWARE UPDATE	23
	5.1	Mode Entry	23
		5.1.1 User Normal Mode	23
		5.1.2 BootROM Command Mode	23
	5.2	Update Firmware in User Normal Mode	24
	5.3	Update Firmware in BootROM Command Mode	24
6	PIN	DESCRIPTION	25
	6.1	Package Pin Assignment	25
		6.1.1 QFN40	25
		6.1.2 WLCSP	26
	6.2	Pin Description	27
		6.2.1 Power and Ground Pins	27
		6.2.2 Oscillator Pins	28
		6.2.3 RF Pins	28
		6.2.4 USB Interface Pins	28
		6.2.5 Reset and Mode Pins	28
		6.2.6 General Purpose Pins	29
7	ELE	CTRICAL CHARACTERISTICS	30
	7.1	Absolute Maximum Rating	30
	7.2	IO Type of Pin	30
	7.3	IO Characteristics	31
		7.3.1 Type IO-1	31
		7.3.2 Type IO-2	31
		7.3.3 Type IO-3	32
		7.3.4 Type IO-4	32
		7.3.5 USB I/O	33
	7.4	DC Characteristics	33
		7.4.1 Operating Conditions	33
		7.4.2 Power Consumption	34
8	AC	CHARACTERISTICS	35
	8.1	Reset Minimum Timing	35
	8.2	Crystal Oscillation	35
	8.3	UART Interface Timing	35
	8.4	I ² C Interface Timing	36
	8.5	Master/Slave SPI Timing	36
	8.6	Master SQI/SPI Timing	37

8.7	GNSS SYNC Signal Timing	37
8.8	GPIO and Other Peripherals Timing	38
ME	CHANICAL SPECIFICATION	39
9.1	QFN40	39
9.2	WLCSP	40
PRC	DDUCT PACKAGING	41
10.1	6 1	
	10.1.1 Reel Packaging	
	10.1.2 Package Dimensions	42
ORI	DERING INFORMATION	43
11.1	6	
11.2	Ordering Codes	44
REL	ATED DOCUMENTS	45
RFV	VISION HISTORY	45
	9.1 9.2 PRC 10.1 ORI 11.1 11.2 REL	9.2 WLCSP PRODUCT PACKAGING 10.1 Packing Hierarchy 10.1.1 Reel Packaging 10.1.2 Package Dimensions ORDERING INFORMATION

List of tables

Table 1 Specifications	10
Table 2 GNSS reception table	12
Table 3 Key features	12
Table 4 Pins for dedicated resources	19
Table 5 Application power mode	21
Table 6 WLCSP Ball map	26
Table 7 Power and ground pins	27
Table 8 Oscillator pins	28
Table 9 RF pins	28
Table 10 USB interface pins	28
Table 11 Reset and mode pins	28
Table 12 General purpose pins	29
Table 13 Absolute rating	30
Table 14 IO type of pin	30
Table 15 Type IO-1	31
Table 16 Type IO-2	31
Table 17 Type IO-3	32
Table 18 Type IO-4	32
Table 19 USB signal	33
Table 20 Operating conditions	33
Table 21 HD8040 series power consumption	34
Table 22 Reset minimum timing	35
Table 23 Crystal oscillation	35
Table 24 UART interface timing	35
Table 25 I ² C interface timing	36
Table 26 Master/Slave SPI timing	36
Table 27 Master SQI/SPI timing	37
Table 28 GNSS SYNC signal timing	37
Table 29 GPIO and other peripherals timing	38
Table 30 Common dimensions	39
Table 31 Dimensions (BGA100)	40
Table 32 Packing hierarchy	41
Table 33 Package dimensions	42
Table 34 Product codes explanation	43
Table 35 Ordering codes	44

List of figures

Figure 1 Block diagram	S
Figure 2 Navigation block diagram	13
Figure 3 Power Management Unit	21
Figure 4 Timing of mode entry with host controller	23
Figure 5 QFN40 (top view)	25
Figure 6 WLCSP (top side view)	26
Figure 7 Reset minimum timing	35
Figure 8 UART interface timing	35
Figure 9 I ² C interface timing	36
Figure 10 Master/Slave SPI timing	37
Figure 11 Master SQI/SPI timing	37
Figure 12 GPIO and other peripherals timing	38
Figure 13 QFN40 Top/side/bottom view	39
Figure 14 WLCSP Top/side/bottom view	
Figure 15 QFN40 Reel and tape dimensions	41
Figure 16 WLCSP Reel and tape dimensions	
Figure 17 Product marking	43

Copyright © ALLYSTAR

1 SYSTEM OVERVIEW

1.1 General Description

ALLYSTAR HD8040 series is highly integrated GNSS receiver chip. It is the World's 1st multi-band multi-system SoC chip which supports BDS-3 (BeiDou Navigation Satellite System 3). Besides, it is capable of tracking all global civil navigation systems (BDS, GPS, GLONASS, Galileo, IRNSS, QZSS and SBAS) in all bands (L1, L2, L5, L6).

HD8040 series is based on the state of art CYNOSURE III architecture, integrating multi-band multi-system GNSS RF and baseband. This newly designed architecture makes this single chip achieve sub-meter level position accuracy without correction data from ground-based augmentation station and higher sensitivity, greater for improved jam resistance and multipath, provide a highly robust service in complicated environment.

An intelligent power management unit is built in the SoC chip. With the help of high efficient DCDC converter and high PSRR (Power Supply Rejection Ratio) linear regulators, HD8040 series achieves not only excellent power consumption performance but also good power supply noise immunity. A 12bit ADC, Low Voltage Detection (LVD) and Power-on Reset (POR) are implemented to monitor the main domain, the backup domain I/O and core supply voltage. There are five low power modes provided according to different application requirements. In the lowest power consumption mode (RTC mode), HD8040 series consumes less than 2uA current while 32.768kHz crystal oscillator remains running to periodically wake up the chip, which is a crucial feature for the battery life in IoT market.

Meanwhile, HD8040 series is equipped with a hardware cryptographic engine (CRYPTO) supporting various encryption/decryption standard (AES/DES/SM4) to protect sensitive data such as position information during data exchange. It ensures the security of positioning and navigation information.

It can be widely used in mobile phones, wearable devices, unmanned aerial vehicle, vehicle management, unmanned driving, car navigation, marine navigation, GIS data acquisition, engineering survey, and other fields.

1.2 Features

- Concurrent reception of multi-band multi-system satellite signals
- Supports all civil GNSS signals
- Supports BDS-3 signal: B1C, B2a and B3I
- Low power consumption
- Ultra low power RTC mode
- Built-in AES/DES/SM4 data encode/decode cryptographic engine
- ARM Cortex-M4F processor with cache controller
- Smart jammer detection and suppression

1.3 Block Diagram

Confidential 5

Figure 1 Block diagram

1.4 Specifications

Table 1 Specifications

Table 1 Specifications						
Parameter	Specification					
CNSS angina	Cynosure III GNSS engine					
GNSS engine	Total 136 channels & DSP accelerator					
	GPS/QZSS: L1 C/A, L1C, L2C, L5, L6					
	BDS: B1C, B1I, B2a, B2I, B3I					
CNICC recording	GLONASS: L1, L2					
GNSS reception	Galileo: E1, E5, E6					
	IRNSS: L5					
	SBAS: WAAS, EGNOS, MSAS, GAGA	N, SDCM				
Update rate	GNSS	20Hz Maximum				
	GNSS	2.5m CEP				
Position accuracy [1]	SBAS	2.0m CEP				
	D-GNSS	<1.0m CEP				
	GNSS	0.1m/s CEP				
	SBAS	0.05 m/s				
Velocity & Time accuracy	D-GNSS	0.05 m/s				
	1PPS	25 ns				
	Hot start	1 sec				
Time to First Fix(TTFF) [1]	Cold start	28 secs				
	Cold start	-148dBm				
	Hot start	-155dBm				
Sensitivity [1]	Reacquisition	-158dBm				
	Tracking & navigation	-162dBm				
	Velocity	515m/s				
GNSS Operating limit	Altitude	18,000m				
	Others					
	Antenna short circuit protection					
Safety supervision	System clock stop detection					
,	Low voltage detection					
	Main clock oscillator	TCXO or Crystal (16~40MHz)				
Clock	Sub clock oscillator	32.768kHz Crystal (optional)				
	USB (FS, 12Mbps)	1				
	UART	2				
Serial communication interface	SPI (Master/Salve Mode)	2				
2 3.1.a. communication interrace	SQI (1-bit/4-bit Master Mode)	1				
	I ² C	1				
	PWM	4				
	INCP	2				
Peripheral	External interrupt	7				
	Digital I/O	16				
	Digital I/O	10				

Parameter	Specification				
Cynchronization	Time synchronization	1			
Synchronization	Frequency synchronization	1			
ADC	Analog Input Channel	2			
ADC	ENOB	12 bit			
Cryptographic Engine	AES / DES / TDES / SM4				
Dynatogol	NMEA 0183 Protocol Ver. 4.00/4.10,				
Protocol	Cynosure GNSS Receiver Protocol				
	Main voltage	1.8 ~ 3.6V			
Operating condition	Digital I/O voltage	1.8~ 3.6V			
	Backup voltage	1.8 ~3.6V			
	GPS+QZSS, L1 band	16mA ^[2]			
Power consumption	GNSS, L1+L5 band	34mA ^[3]			
	Standby	1.2uA ^[4]			
Operating temperature	-40°C to +85°C				
Storage temperature	-40°C to +125°C				
Doolings	QFN40 5.0mm X 5.0mm				
Package	WLCSP 3.0mm X 3.0mm				
Certification	Rohs & Reach				

^{* [1]} Demonstrated with a good external LNA

^{* [2]} Open sky conditions, GPS+QZSS, L1 band, 16 tracked Satellites

^{* [3]} Open sky conditions, GPS+BDS+GLONASS+Galileo, L1+L5 band, 32 tracked Satellites

^{* [4]} Standby under RTC mode, wake up by PRTRG and RTC time-out

1.5 HD8040 series product

HD8040 series P/N, GNSS reception and features:

Table 2 GNSS reception table

P/N	Mode	GPS/QZSS			BDS			GLO	NASS	(Salile	0	IRNSS	SBAS				
P/N	iviode	L1CA	L1C	L2C	L5	L6	B1I	B1C	B2I	B2a	взі	L1	L2	E1	E5	E6	L5	L1
HD8040	-	•	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	•
	A(default)	•	•	-	•	-	•	•	-	•	-	•	-	•	•	-	-	•
HD8040D	B ^[1]	•	•	•	-	-	•	•	•	-	-	•	•	•	-	-	-	•
	C ^[2]	•	•	-	-	•	•	•	-	-	•	•	-	•	-	•	-	•
HD8041	-	•	•	-	-	-	•	•	-	-	-	•	-	•	-	-	-	•
HD8041D	-	•	•	-	•	-	•	•	-	•	-	•	-	•	•	-	•	•

Table 3 Key features

P/N	MODE	Key features
HD8040	-	GPS+QZS+BDS, L1, super low power consumption
	A(default)	GPS+QZS+BDS+GAL+GLO, L1+L5, D-GNSS (GNSS) for sub-meter accuracy
HD8040D	B ^[1]	GPS+QZS+BDS+GAL+GLO, L1+L2, D-GNSS (GNSS) for sub-meter accuracy
	C ^[2]	GPS+QZS+BDS+GAL+GLO, L1+L6, D-GNSS (GNSS) for sub-meter accuracy
HD8041	-	GPS+QZS+BDS+GAL+GLO, L1
HD8041D	-	GPS+QZS+BDS+GAL+GLO+IRNSS, L1+L5, D-GNSS (GNSS) for sub-meter accuracy

^{* [1]} For standalone application, it supports to use MODE A instead of MODE B.

^{* [2]} Adopting corrections broadcasted from satellites to improve accuracy (supported by specific firmware)

^{*} HD8040 series P/N within the letter "S" means to support embedded AES/DES/SM4 data encryption. (e.g. HD8040S, HD8041S)

2 NAVIGATION SUBSYSTEM

2.1 Block Diagram

Figure 2 Navigation block diagram

2.2 RF Frontend

The wideband RF Frontend (RFFE) can concurrently receive L1 and L5 bands (or L1 and L2 bands) RF signals from external active or passive antenna and down-converts it to the digital IF signals. The IF signals are then processed by the GNSS baseband engine.

2.2.1 RF Features

- L1 band single-frequency mode
 - » Low positioning accuracy/speed
 - » For extremely low-power applications
 - » Supports:
 - GPS L1 C/A + Galileo E1 + QZSS L1
 - BDS B1I
 - GLONASS L1
- L1 band multi-frequency mode

- » Medium positioning accuracy/speed
- » For most consumer/automotive applications
- L1+L2 band mode
 - » High positioning accuracy/speed
 - » For high precision and professional applications
- L1+L5 band mode
 - » High positioning accuracy/speed and best anti-multipath performance
 - » For high precision and professional applications
- L1+L6 band mode
 - » High positioning accuracy/speed and best anti-multipath performance
 - » For high precision and professional applications
 - » Improving position accuracy via correction terms (SSR-Type) broadcasted from satellites in L6 band
- Fractional-N local oscillator synthesizer of low phase noise
- L1/L2/L5 wideband Low Noise Amplifier (LNA) with single RF input
- Automatic Gain Control (AGC)
- 8-bit high-speed ADC
- Active Antenna Detection
- Can be shut down independently for power saving
- Allow bypass of each IF channel and replacement by external RF front end
- Support direct output of each IF channel for analysis or usage by external baseband device
- Receiver noise figure:
 - » 2.5dB (L1 band mode)
 - » L1: 2.8dB and L2/L5: 3.3dB (L1+L2 or L1+L5 band mode)

2.3 GNSS Baseband Engine

The baseband engine acquires up to 96 and tracks up to 40 satellite signals simultaneously. It has dedicated circuit to accelerate the decoding of the tracked signal. A full featured firmware is available by request.

2.3.1 Baseband Engine Features

- Supports various modulation scheme and PRN (pseudorandom noise) code generator to handle all existed
 GNSS systems
- Supports various combinations of GNSS system and multi-band to achieve optimized solution for global or local area
- Adjustable clock frequency with clock-gating to baseband engine to achieve lower power consumption
- GNSS Decode engines: Stream/block Viterbi, CRC (cyclic redundancy codes), LDPC (low density parity check)
- Supports Multi-PPS with adjustable pulse width for various applications
- Smart adaptive anti-jamming filter
- Supports external Time and Frequency aiding signal
- Rich set of GNSS Firmware, examples:
 - » Dual frequency + multi-system
 - » Full L1-band for GPS + BDS + GLONASS + Galileo
 - » Dual-band RTK (Real-time Kinematic) solution

3 MCU SUBSYSTEM

3.1 ARM Processor System

HD8040 series is powered by ARM Cortex-M4F processor that runs up to 172MHz (without co-exist of USB). Together with the 4-way associative data/instruction cache, HD8040 series can deliver high processing power to many application programs. The processor system includes:

- ARM Cortex-M4F
- Integrated nested vectored interrupt controller (NVIC)
- Floating Point Unit (FPU)
- ROM
- RAM
- Embedded Flash

3.2 Clock Generator and Supervisor

The clock generator generates a wide range of different operating clock frequencies according to the requirement of different subsystems. It supports the critical operation of HD8040 series even in absence of the external oscillator clock. It achieves this by switching to the built-in oscillator clock automatically when the clock supervisor detects the loss of the external clock source for a certain period.

3.3 Timer

In addition to the ARM processor's timer, the chip has two more programmable 32/16-bit Timers for general purpose. These Timers support three modes: free-running, periodic and one-shot.

3.4 DMA Controller

Direct Memory Access Controller (DMAC) allows data movement among memory and most communication interfaces without CPU intervention. Furthermore, cyclic redundancy codes (CRC) can be generated simultaneously during the data movement.

3.5 Watchdog

The Watchdog timer can prevent deadlock. In normal operation, firmware resets the Watchdog timer at regular interval before timer overflow occurs. Otherwise, a watchdog reset will be generated.

3.6 Serial Communication Interfaces

3.6.1 UART

HD8040 series has 2 Universal Asynchronous Receiver / Transmitter (UART) interfaces. The features of each UART include:

- Two channels with full duplex operation
- Range: 1200 bps ~ 460800 bps, the default baud rate is 115200 bps
- Programmable serial interface
- Supports ISO/IEC7816
- · Hardware flow control signals shared for UARTO/1

3.6.2 I²C

I²C interface is a serial input & output port, and it can be operated in master or slave mode.

- 7-bit and 10-bit addressing modes
- Speed: 100Kps standard mode and 400Kps fast mode
- Supports DMA data transmission in master mode

3.6.3 SPI

The Serial Peripheral Interface (SPI) interface allows for the connection of external devices with a serial interface. The SPI supports both the common SPI protocol and the I²S audio protocol (output only). It can be operated in master or slave mode.

- SPI-features
 - » Full-duplex synchronous communication
 - » Configurable slave/master mode
 - » The frequency of SPICK clock is programmable
- I²S-features
 - » The I²S clock direction is programmable
 - » The I²S (SPICK) clock can be driven by the external audio DAC

3.6.4 **SQI**

SQI supports both 1-bit and 4-bit mode interface (master mode only). It can be functioned as generic SQI/SPI interface or Serial Flash Controller. When it acts as a SQI/SPI flash controller, HD8040 series can access the serial flash area as if it was a regular memory area. It supports direct execution of program code stored in serial flash area.

In addition, the module can be set to communicate with general SQI/SPI slave device.

- Set to 1/4 wires mode
- The frequency of SQICK clock is programmable
- The MSB/LSB data transfer is programmable
- Up to 3 programmable interrupt events
- Dedicated 8 words data buffer for data transfer
- Two dedicated areas for non-prefetch and prefetch operation

3.6.5 USB

USB version 2.0 FS compatible interface (device only) can be used for communication as an alternative to the UART or other communication interfaces.

- Supports USB 2.0 full speed
- USB plug-in detection via External Interrupt 7
- Full Speed: 12Mbps
- Supports Windows XP/7/8/10 OS®, Android, Linux

3.7 Time Synchronization Interfaces

3.7.1 PPS

An extremely accurate time pulse signal "Pulse Per Second" (PPS) generated by GNSS can be output to designated pin. It is useful in many timing applications. The pulse interval can be adjusted by changing internal parameters.

3.7.2 FSYNC / TSYNC

HD8040 series supports the use of external aiding signals (precise clock signal FSYNC or timestamp signal TSYNC) to correct its local real-time drift with proper firmware. It reduces the search time in weak satellite condition, shortens the positioning time and improves the Time to First Fix (TTFF).

3.8 Other Peripherals

3.8.1 INCP

Input Capture (INCP) records a free-running timer value whenever specified edge of input signal is detected. As a result, duration between two specified events can be calculated. It can also be acted as event counter.

- Two independent channels with dedicated edge detection circuit
- Edge detection: rise, fall or both edges
- Interrupt is generated when timer wraps around or match desired value

3.8.2 **PWM**

Pulse Width Modulator (PWM) is a programmable waveform generator

- Two group of PWMs with two channels in each PWM group
- Two waveform outputs synchronized or not synchronized for each group
- Programmable width, phase, duty and polarity
- One-shot or continuous pulse format
- Waveform data can be updated by DMA so that complex waveform can be generated

3.8.3 External Interrupts

External Interrupts (EXIRC) allows HD8040 series to interact with external device (e.g. host or user) by generating interrupt request to CPU upon detection of defined event.

- 7 independent interrupt requests, the eighth interrupt request is dedicated for USB plug-in detection
- 4 kinds of interrupt event: high level, low level, rise edge & fall edge
- Wake up the system from stop mode (high or low level only)

3.8.4 ADC

ADC controller measures external analog signals or internal power signal (main power and backup power). The measured value can be stored in backup memory automatically, or generating interrupt request to CPU when defined level is detected.

- Configurable input voltage range
- Single-end or Differential-end inputs
- Integrated internal temperature sensor
- Interrupt generation
- Data logging
- 1sec pulse period scan mode for power saving
- One shot scan mode

3.8.5 External I/O Port Configuration

HD8040 series supports up to 16 I/O pins. The resources include two types: dedicated and non-dedicated. The dedicated resources are defined to the I/O pins described in the following table, and the non-dedicated resources are assigned freely to any undefined I/O pin. Dedicated resources assignment has higher priority than non-dedicated resources.

- Dedicated resources: SQI, ADC analog input
- Non-dedicated resources: SPI, UART, I²C, EXIRC, PWM, INCP, PPS, FSYNC, TSYNC.

Table 4 Pins for dedicated resources

Dedicated resource	Pins			
SQI	GPIO0~GPIO5			
Analog input	GPIO11, GPIO12			

3.8.6 Cryptographic Engine (CRYPTO)

HD8040 series is equipped with a hardware cryptographic engine (CRYPTO) supporting various encryption/decryption standard to protect sensitive data such as position information during data exchange. A secret 256-bit key can be programmed in HD8040 with protection features. Except the on-chip cryptographic engine, no software means can access the key.

It uses the AES, DES, TDES or SM4 algorithms complied with the following standards:

- Advanced Encryption Standard (AES) as defined by Federal Information Processing Standards Publication (FIPS PUB 197)
- Data Encryption Standard (DES) & Triple-DES (TDES) as defined by Federal Information Processing Standards Publication (FIPS PUB 46-3)
- Chinese block cipher standard SM4 encryption algorithm, formerly known as SMS4
 In addition, the engine incorporates cryptographically secure True Random Number Generator (TRNG) &
 Pseudo Random Number Generator (PRNG) for random number generation.
 - » Performs data encryption or decryption
 - » Supports Electronic Codebook (ECB) or Cipher Block Chaining (CBC) mode
 - » Supports DMA transfer with 8 x 32-bit depth for each input & output FIFO
 - » Swaps input & output data on bit, byte or half-word level
 - » AES, DES, TDES and SM4 algorithm
 - » Random number generation

4 POWER MANAGEMENT UNIT (PMU)

The Power Management Unit (PMU) has two independent power domains, the main and backup power domain. The backup power source is enabled to keep important data while the main power supply is off. Furthermore, PMU can control the power supply for the external TCXO oscillator and on-chip flash. The standalone backup supply provides a convenient way to keep valuable information even though the main supply is removed. Because PMU is working on backup domain, the chip cannot work without the backup supply.

Figure 3 Power Management Unit

In order to achieve the best possible power performance, the device provides the following modes to lower the power consumption.

Table 5 Application power mode

Power mode	СРИ	Peripherals	RF	Oscillator	Main core voltage	RTC	System RAM data	Backup RAM data
Run	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Sleep	Halted	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Deep sleep	Halted	Halted	Powered off	Powered off	Enabled	Enabled	Enabled	Enabled
Data Retention	Halted	Halted	Powered off	Powered off	Retention voltage	Enabled	Retained	Retained
Data Backup	Powered off	Enabled	Powered off	Retained				
RTC	Powered off	Enabled	Powered off	Powered off				

4.1 Control Logic Block

Control logic block generates an interrupt signal to reset or power down the Main domain by a custom signal from external input.

4.2 Low Voltage Detection

PMU has four Low Voltage Detectors (LVDs) to monitor internal operating voltage and supply voltage level to ensure device is operating in normal voltage.

When internal voltage (Main domain and Backup domain) level is lower than defined threshold voltage, the system will enter into reset state and stay in reset state until all internal voltage higher than threshold voltage level.

Supply voltages (Main supply and Backup supply) are also monitored. If the supply voltage is lower than the defined threshold, device will enter the reset state or jump into non-maskable interrupt service routine (NMI) in which some necessary operation such as power-down the device can be carried out.

4.3 Backup RAM

There is a 32K-byte RAM located in the Backup domain mainly used to keep the valuable data when main power is off.

4.4 RTC

The RTC is driven by its own 32.768 kHz oscillator and is, together with the 32KB backup RAM, powered by the backup supply voltage. When the engine is in a power-saving mode or the battery is low, part of the baseband switches off. The RTC provides a time reference as system powers up to secure a Hot-Start as long as backup power presents during main power off.

4.5 DCDC

HD8040 series integrates a DCDC converter in the Main power domain to convert AVD33DC1 to 1.35V for the main LDOs supply. The DCDC can be also configured to be linear regulation mode to reduce output voltage ripple. However, the power conversion efficiency is low in this linear regulation mode.

4.6 LDO

The HD8040 series PMU includes two types of LDOs regulator to provide power supply to the digital core.

- The Main LDO: converts DCDC output (1.35V) to a 1.1V core voltage for the main domain logic.
- The Backup LDO: converts AVDD33BAK to a 0.9V core voltage for the backup domain logic.

4.7 Dynamic Voltage Frequency Scaling (DVFS)

To balance the maximum performance and power consumption of the chip, HD8040 series is equipped with DVFS function. When DVFS is enabled, core voltage will vary with the corresponding clock frequency.

5 FIRMWARE UPDATE

HD8040 series allows users to update the firmware in either User normal mode or BootROM command mode. Each mode supports two types of interfaces - UART and USB^[1].

* [1]: It is advised to install the HD-GNSS USB driver before first use.

5.1 Mode Entry

Pin state of PRTRG during system power-up or external reset active (PRRSTX from "low" to "high") determines HD8040 series operating mode.

5.1.1 User Normal Mode

Keeping PRTRG pin floating during system power-up or the external reset (PRRSTX from "low" to "high"), system will enter User Normal Mode after internal system reset releases.

• If PRTRG is controlled by any host GPIO, that host GPIO MUST be set as an input pin without pull-up or pull-down resistance during PRRSTX = "low" or power up and keep the status for at least 50ms till PRRSTX releases or power up.

5.1.2 BootROM Command Mode

Drive PRTRG pin to "low" or connect PRTRG to GND directly (not by pull-down resistance) during system power-up or the external reset (PRRSTX from "low" to "high"), system will enter BootROM Command Mode after internal system reset release.

If PRTRG is controlled by any host GPIO, that host GPIO MUST be set to output "0" during PRRSTX = "low" or power up and keep the status for at least 50ms till PRRSTX releases or power up.

Figure 4 Timing of mode entry with host controller

5.2 Update Firmware in User Normal Mode

When the GNSS firmware of HD8004 is running in User normal mode, the firmware can be updated by GNSS monitoring software "Satrack". For more information, please refer to *Satrack user manual*.

5.3 Update Firmware in BootROM Command Mode

If the flash memory of the chip has not been programmed, the chip will automatically enter BootROM Command Mode after power-up and reset, and then users can download firmware to the Flash memory. Users can also enter BootROM Command Mode manually to update firmware if necessary.

The BootROM command mode provides a secure way to update firmware

6 PIN DESCRIPTION

6.1 Package Pin Assignment

6.1.1 QFN40

Figure 5 QFN40 (top view)

6.1.2 WLCSP

Figure 6 WLCSP (top side view)

Table 6 WLCSP Ball map

1	RF_IN	NC B	VDD09_BAK	USBDP D	USBDM E	RXI F	RXO G
4	DE IN	NC	VDDOO BAK	LICDED	LICDDM	DVI	DVO
2	VSS_LNA	VSS_VCO	ANT_BIAS	PRGPIO	AVDUSB	GPIO6	хо
3	VDD11_RF	VSS_RF	VSS_A	PRRSTX	PRTRG	GPIO7	ΧI
4	VDD135_RF	VSS1	GPIO1	GPIO0	GPIO9	GPIO15	OUTVTCXO
5	VDD33_RF	GPIO2	AVD33DC2	GPIO8	GPIO13	AVD33BAK	AVSDC2
6	GPIO14	GPIO3	GPIO4	GPIO10	AVSSM	AVSBAK	AVD33DC1
7	GPIO5	GPIO12	GPIO11	AVD11M1	AVD135M	AVSDC1	AVD135DC

6.2 Pin Description

6.2.1 Power and Ground Pins

Table 7 Power and ground pins

Sumb al	N	о.	Direction	Ermation	
Symbol	QFN40	WLCSP	Direction	Function	
VDD33_DE	2	۸۶	Dougas Is	3.3V RF power supply	
VDD33_RF	3	A5	Power In	ANTDET input	
AVD22DC2		CF	Dawe la	3.3V Main Domain I/O power supply	
AVD33DC2	6	C5	Power In	GPIO0~GPIO12 I/O power supply	
AVD11M1	18	D7	Dower Out	1.1V Main Domain core power supply	
AVDITIVIT	10	D7	Power Out Main LDO output		
AVD135M	19	E7	Power In	DCDC Feedback	
AADISSIAI	19	E/	Power In Main LDO input		
AVD135DC	20	G7	Power Out	DCDC output	
				3.3V DCDC input power supply	
AVD33DC1	21	G6	Power In	3.3V Main Domain I/O power supply	
AVDSSDCI	21	GU	rowei iii	GPIO13~GPIO15 I/O power supply	
				LDO for TCXO input	
AVD11M2	25		Power In	1.1V Main Domain core power supply	
OUTVTCXO	26	G4	Power Out	2.8V/1.8V LDO for TCXO output	
AVDUSB	29	E2	Power In	3.3V USB power supply	
AVD33BAK	34	F5	Power In	3.3V Backup Domain I/O power supply	
AVDJJDAK	34	13	1 OWEI III	Backup LDO input	
VDD09_BAK	38	C1	Power Out	0.9V Backup Domain core power supply	
VDD03_BAIK		CI	1 OWEI OUL	Backup LDO input 0.9V Backup Domain core power supply	
VDD135_RF	39	A4	Power In	1.35V RF power supply	
	33	,,,	1 OWEI III	RF LDO input	
VDD11_RF	40	A3	Power Out	1.1V RF power supply	
VDD11_III	40	7.3	1 OWEI OUT	RF LDO output	
VSS_LNA		A2	GND	VSS for RF LNA	
NC		B1	GND	Reserved	
VSS_VCO		B2	GND	VSS for RF VCO	
VSS_RF		В3	GND	VSS for RF 3.3V power	
VSS_A		С3	GND	VSS for RF Analog Circuit	
VSS1		B4	GND	VSS for AVD11M1	
AVSSM		E6	GND	VSS for AVD135M	
AVSBAK		F6	GND	VSS for AVD33BAK	
AVSDC1		F7	GND	VSS for AVD33DC*	
AVSDC2		G5	GND	VSS for AVD33DC*	

6.2.2 Oscillator Pins

Table 8 Oscillator pins

Cumbal	N	о.	Direction	Function	Description
Symbol	QFN40	WLCSP	Direction	runction Description	
XI	27	G3	I	Main-Clock Oscillator, 16MHz ~	XO input / TCXO input
хо	28	G2	0	40MHz crystal oscillation or TCXO input for RF and system operation.	XO output / 1.2V power supply output for 1.2V TCXO
RXI	32	F1		Sub-Clock Oscillator, 32.768kHz	RXO input
RXO	33	G1		crystal oscillation clock for Real Time Clock and wakeup logic.	RXO output

6.2.3 RF Pins

Table 9 RF pins

Sumala al	N	о.	Divoction	Function	Description
Symbol	QFN40	WLCSP	Direction	Function	Description
RF_IN	1	A1	I	RF input	
ANT DIAC	2	C2	Power Out	ANTDET output	Output power supply for external
ANT_BIAS	2	C2	Power Out	ANTDET output	LNA or active antenna

6.2.4 USB Interface Pins

Table 10 USB interface pins

Symbol	No.		Direction	Function	Description	
Syllibol	QFN40 WLCSP		Direction	runction	Description	
USBDP	30	D1		USB differential data plus	USB 2.0 FS/LS I/O pins with	
USBDM	31	E1		USB differential data minus	internal Pull-up/down control	

6.2.5 Reset and Mode Pins

Confidential 5

Table 11 Reset and mode pins

Comple al	No.				D
Symbol	QFN40	WLCSP	Direction	Function	Description
PRGPIO	35	D2	I/O	System GPIO	Multi-Function Port: System Power Enable, Pin unassociated Peripherals or GPIO
PRTRG	36	E3	I/O	System trigger	Multi-Function Port: System Wakeup Input, Pin unassociated Peripherals or GPIO
PRRSTX	37	D3	Input	System reset	Active "L" with internal Pull-up resistor

6.2.6 General Purpose Pins

Table 12 General purpose pins

Complete	N	lo.	Divantion	Description			
Symbol	QFN40	WLCSP	Direction	Description			
GPIO0	4	D4	I/O	MUX IO: General Purpose Input / Output (GPIO), SQI / SPI-1			
GFIOU	4	D4	1/0	signal selection (SQICX)			
GPIO1	5	C4	1/0	MUX IO: GPIO, SQI / SPI-1 clock (SQICK)			
GPIO2	7	B5	1/0	MUX IO: GPIO, SQI data 0 / SPI-1 Data In (SQI0)			
GPIO3	8	В6	1/0	MUX IO: GPIO, SQI data 1 / SPI-1 Data Out (SQI1)			
GPIO4	9	C6	I/O	MUX IO: GPIO, SQI data 2 (SQI2)			
GPIO5 ^[1]	10	10	A7	1/0	MUX IO: GPIO, SQI data 3 (SQI3), UART 1 Serial Data Receive		
GF103.7	10 A		1/0	(UIN1)			
GPIO6	11	F2	1/0	MUX IO: GPIO			
GPIO7	12	F3	1/0	MUX IO: GPIO			
GPIO8	13	D5	1/0	MUX IO: GPIO			
GPIO9	14	E4	I/O	MUX IO: GPIO			
GPIO10	15	D6	1/0	MUX IO: GPIO, Serial Wire Debug I/O (SWIO)			
GPIO11 ^[2]	16	C7	1/0	MUX IO: GPIO, UART 0 Serial Data Receive (UIN0)			
GPIO12 ^[2]	17	В7	1/0	MUX IO: GPIO, UART 0 Serial Data Transmit (UOUT0)			
GPIO13	22	E5	1/0	MUX IO: GPIO, Serial Wire Debug Clock (SWCK),			
GPIUIS	22	EO	1/0	1PPS(DEFAULT)			
GPIO14 ^[1]	23	A6	1/0	MUX IO: GPIO, UART 1 Serial Data Transmit (UOUT1)			
GPIO15	24	F4	I/O	MUX IO: GPIO			

^{* [1]} In BootROM command mode, GPIO5 and GPIO14 act as UART 1.

^{* [2]} In BootROM command mode, GPIO11 and GPIO12 act as UART 0. When using GPIO11 and GPIO12 as input pins, please make sure the voltage level on GPIO11 and GPIO12 should not exceed the power supply voltage of AVDD33BAK.

7 ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Rating

This product is equipped with the device to protect the inputs from high static voltage damages; however, it is advisable to take appropriate precautions to avoid application of any voltage higher than the specified maximum rated voltages. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Table 13 Absolute rating

Symbol	Parameter	Min.	Max.	Unit
AVD33DC1/AVD33DC2	Power input for the main power domain	-0.5	3.63	V
AVDUSB	USB power input	-0.5	3.63	V
AVD33BAK	Power input for the backup power domain	-0.5	3.63	V
AVD135M	Main LDO power input	-0.5	1.98	V
VDD33_RF	3.3V RF power input	-0.5	3.63	V
VDD135_RF	1.35V RF power input	-0.5	1.98	V
VI _{max}	Input voltage on the I/O pin	-0.5	3.63	V
Tj	Junction temperature	-40	125	°C
T _{storage}	Storage temperature	-65	150	°C
T _{solder}	Solder reflow temperature		260	°C
Ta	Ambient temperature	-40	85	°C

7.2 IO Type of Pin

Table 14 IO type of pin

IO type	Pin name	Power domain	Description
10-1	PRRSTX	AVD33BAK	Chip Reset with internal Pull-up resistor, default "on"
10-2	PRTRG, PRGPIO	AVD33BAK	General I/O
10-3	GPIO0 ~ 12	AVD33DC2	General I/O
10-4	GPIO13 ~ 15	AVD33DC1	General I/O
	RXI	AVD33BAK	32.768kHz XO input
OSC	RXO	AVD33BAK	32.768kHz XO output
USC	XI	OUTVTCXO	16~40MHz TCXO/XO input
	XO	OUTVTCXO	16~40MHz XO output
DE Cianal	RF_IN	VDD11_RF	RF signal input
RF_Signal	ANT_BIAS	VDD33_RF	Power supply for the external active antenna
LICD Cianal	USBDM	AVDUSB	USB 2.0 FS/LS I/O pins with an internal pull-up/pull-
USB_Signal	USBDP	GPIO AVD33BAK General I/O AVD33DC2 General I/O AVD33DC1 General I/O AVD33BAK 32.768kHz XO input AVD33BAK 32.768kHz XO output OUTVTCXO 16~40MHz TCXO/XO input OUTVTCXO 16~40MHz XO output VDD11_RF RF signal input VDD33_RF Power supply for the external active AVDUSB USB 2.0 FS/LS I/O pins with an inter-	down controller

7.3 IO Characteristics

7.3.1 Type IO-1

Table 15 Type IO-1

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
lız	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVD33BAK*0. 7		AVD33BAK	V
VIL	Input low voltage		0		AVD33BAK*0.3	V
Ci	Input capacitance				10	pF
R _{PU}	Pull-up resistance		18		84	kOhm

7.3.2 Type IO-2

Table 16 Type IO-2

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
lız	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVD33BAK*0.7		AVD33BAK	V
VIL	Input low voltage		0		AVD33BAK *0.3	V
V	Output high valtage	I _{ОН} =-5.3 mA, AVD33BAK=3.3V	2.4			V
Vон	Output high voltage	I _{OH} =-1.2 mA, AVD33BAK=1.8V	1.3			V
W	Output lawyalta sa	I _{OL} =3.9 mA, AVD33BAK=3.3V			0.4	V
V _{OL}	Output low voltage	I _{OL} =1.9 mA, AVD33BAK=1.8V			0.32	V
Ci	Input capacitance				10	pF
R _{PU}	Pull-up resistance		18		84	kOhm

7.3.3 Type IO-3

Table 17 Type IO-3

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
lız	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVD33DC2*0.7		AVD33DC2	V
VIL	Input low voltage		0		AVD33DC2 *0.3	V
V Output high valtage	Output high voltage	I _{OH} =11.9 mA, AVD33DC2=3.3V	2.64			V
V _{OH}	Output high voltage	I _{OH} =2.8 mA, AVD33DC2=1.8V	1.53		+/-1 AVD33DC2 AVD33DC2 *0.3	V
V	Output low voltage	I _{OL} =7.9 mA, AVD33DC2=3.3V			0.4	V
V _{OL}	Output low voltage	I _{OL} =3.9 mA, AVD33DC2=1.8V			0.45	V
Ci	Input Capacitance				11	pF
R _{PU}	Pull-up resistance	-	35		84	kOhm

7.3.4 Type IO-4

Table 18 Type IO-4

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
lız	Input leakage current				+/-1	uA
V _{IH}	Input high voltage		AVD33DC1*0.7		AVD33DC1	V
\/	Innut law valtage		0		AVD33DC1	V
VIL	Input low voltage		U	+/-1 1*0.7 AVD33DC1 AVD33DC1 *0.3	V	
		I _{ОН} =11.9 mA,	2.64			V
\/.	Output high valtage	AVD33DC1=3.3V	2.64			V
V _{OH}	Output high voltage	I _{он} =2.8 mA,	1.52		+/-1 AVD33DC1 AVD33DC1 *0.3 0.4 0.45 11	V
		AVD33DC1=1.8V	1.53			V
		I _{OL} =7.9 mA,			0.4	V
	Outrant law valtage	AVD33DC1=3.3V			+/-1 AVD33DC1 AVD33DC1 *0.3 0.4 0.45 11	V
Vol	Output low voltage	I _{OL} =3.9 mA,			0.45	.,
		AVD33DC1=1.8V			+/-1 AVD33DC1 AVD33DC1 *0.3 0.4 0.45 11	V
Ci	Input capacitance				11	pF
R _{PU}	Pull-up resistance	-	35		84	kOhm

7.3.5 USB I/O

Table 19 USB signal

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{IZ}	Input leakage current				+/-10	uA
V _{IH}	Input high voltage		AVDUSB*0.9		AVDUSB	V
VIL	Input low voltage		0		AVDUSB*0.1	V
V _{ОН}	Output high voltage	I _{OH} =10 mA, AVDUSB =3.3V	2.35			V
Vol	Output low voltage	I _{OL} =10 mA, AVDUSB =3.3V			0.5	V
R _{PUIDEL}	Pull-up resistance, idle state		0.9		1.575	kOhm
R _{PUACTIVE}	Pull-up resistance, active state		1.425		3.09	kOhm

7.4 DC Characteristics

7.4.1 Operating Conditions

Table 20 Operating conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
AVD33DC1	Power input for the main power	1.8	3.3	3.6	V
	domain				
AVDUSB	USB power input	3.0	3.3	3.6	V
AVD33BAK	Power input for the backup power domain	1.62	3.3	3.63	V
AVD135M	Main LDO power input	1.28	1.35	1.98	V
VDD33_RF	3.3V RF power input	1.62	3.3	3.63	V
VDD135_RF	1.35V RF power input	1.28	1.35	1.98	V
OUTVTCXO	Output power of the external TCXO		2.8/1.8		V
ICC _{max}	Maximum operating current @ AVD33DC1			200	mA
ICC _{tcxo}	Maximum load current @ OUTVTCXO			4	mA
ICC _{tcxoL}	Maximum load current @ OUTVTCXOL			4	mA

7.4.2 Power Consumption

Table 21 HD8040 series power consumption

Symbol	Parameter	Measure Pin	Тур.	Unit
I _{CCRX1} ^[1]	Run Mode (GPS+QZSS, L1 only)	AVD33DC1 ^[4]	16	mA
I _{CCRX2} ^[2]	Run Mode (All GNSS, L1+L5)	AVD33DC1 ^[4]	34	mA
Iccdsm	Deep sleep Mode	AVD33DC1 ^[5]	0.98	mA
I _{CCRETM} [3]	Data retention Mode	AVD33DC1 ^[4]	0.55	mA
Іссовм	Data backup Mode	AVD33BAK ^[6]	9.0	uA
Іссятсм	RTC Mode	AVD33BAK ^[6]	1.2	uA

^{* [1]} GPS+QZSS, L1 band only, 16 tracking channels, position fixed

^{* [2]} All GNSS, L1 + L5 band, 32 tracking channels, position fixed

^{* [3]} Retention voltage = 0.7V

^{* [4]} Condition: AVD33DC1=3.3V@Room Temperature; All Pins Open.

^{* [5]} When DVFS is used to lower core voltage to 0.9V

^{* [6]} Condition: AVD33BAK=3.3V@Room Temperature; All Pins Open.

8 AC CHARACTERISTICS

All AC timings listed below are under the following conditions

- Core operation voltage = 1.1V
- AVD33DC1 = 3.3V
- Temperature = 25°C

8.1 Reset Minimum Timing

Table 22 Reset minimum timing

Parameter	Symbol	Pin	Condition	Min.	Тур.	Max.	Unit
Reset input time	+	PRRSTX	There is power supply and the oscillator	100			mS
Reset input time	t rstl	FNNSIA	is stable.	100			1113

Figure 7 Reset minimum timing

8.2 Crystal Oscillation

Table 23 Crystal oscillation

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
Main clock oscillation frequency	fosc	XI, XO	16		40	MHz
Real time clock oscillation frequency	f _{RTC}	RXI, RXO		32.768		kHz

8.3 UART Interface Timing

Table 24 UART interface timing

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
Output delay time	t _{DO}	UOUT1~0			10	nS
Input data minimum pulse width	t _{DW}	UIN1~0	16			t _{PCLK} [1]
UARTO request output delay time	t _{RSO}	URTSX0			10	nS
UARTO clear input minimum pulse width	tcsw	UCTSX0	1			t PCLK

^{* [1]} t_{PCLK} is APB bus clock cycle time.

Figure 8 UART interface timing

8.4 I²C Interface Timing

Table 25 I²C interface timing

Downston	Comple al	Standard	d Mode	Fast Mode		Unit
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
I2C clock frequency	f _{SCL}	0	100	0	400	kHz
LOW period of the I2C clock	t _{LOW}	4.7		1.3		mS
HIGH period of the I2C clock	tнібн	4.0		0.6		mS
Data setup time	tsudat	250		100		nS
Data hold time	t _{HDDAT}	0 ^[2]	3.45 ^[3]	0 ^[2]	0.9[3]	mS
Bus free time between a STOP and START condition	t _{BUF}	4.7		1.3		mS
Set-up time for STOP condition	t susto	4.0		0.6		mS
Set-up time for a repeated START condition	t _{SUSTA}	4.7		0.6		mS
Hold time (repeated) START condition	t _{HDSTA}	4.0		0.6		mS

^{* [2]} A device must internally provide a hold time of at least 300ns for the ISA signal to bridge the undefined region of the falling edge of ISL.

^{* [3]} The maximum t_{HDDAT} has only to be met if the device does not stretch the LOW period (t_{LOW}) of the ISL signal.

Figure 9 I²C interface timing

8.5 Master/Slave SPI Timing

Table 26 Master/Slave SPI timing

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
SPI clock frequency	f _{SCK}	f _{SCK} SPIGI(4):0			50	MHz
SPI clock frequency pulse width	f _{SCKPW}	SPICK1~0	9			nS
Data input setup time	t _{sDI}	CDIDI	4			nS
Data input hold time	t _{HDI}	t _{HDI} SPIDI				nS
Data output delay time	t _{DO}	SPIDO	0.1		13.5	nS
Select signal input setup before clock active ^[4]	tsssı		1.7			t _{ckop}
Select signal input hold after clock inactive	t _{HSSI}		6			nS
Select signal output active to SPI clock active		SPICX2~0	6			nS
Select signal output inactive from SPI clock inactive			6			nS
Word select/Bit clock output delay time ^[5]	tsso_ia twso		0.1		24	nS

^{* [4]} t_{ckop} is SPI operating clock period

^{* [5]} Applicable only when configured as I2S.

Figure 10 Master/Slave SPI timing

8.6 Master SQI/SPI Timing

Table 27 Master SQI/SPI timing

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
SQI clock frequency (SPI mode)	f _{QCK(spi)}	f _{QCK(spi)}			76	MHz
SQI clock frequency (SQI mode)	f _{QCK(sqi)}	SQICK			43	MHz
SQI clock output pulse width	tqckpw		5			nS
Data input setup time	t _{SDI}	tsdi				nS
Data input hold time	t _{HDI}	SQI3~0	0.1			nS
Data output delay time	t _{DO}	t _{DO}			9.1	nS
Select signal output active to SQI clock active tsso_A		COLCY	5			nS
Select signal output inactive from SQI clock inactive	t _{SSO_IA} SQICX		5			nS

Figure 11 Master SQI/SPI timing

8.7 GNSS SYNC Signal Timing

Table 28 GNSS SYNC signal timing

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
Frequency sync input	f _{SYNC}	FSYNC			50	MHz
Time sync input minimum pulse width	t _{PW}	TSYNC	1.5			1/f _{osc} ^[6]

^{* [6]} f_{OSC} is the main oscillator frequency.

8.8 GPIO and Other Peripherals Timing

Table 29 GPIO and other peripherals timing

Parameters	Symbol	Pin	Min.	Тур.	Max.	Unit
Output delay time from APB clock	t _{DO}	GPIOxx ^[8]	0.1		19.5	ns
Minimum input pulse width	t _{PW}	GPIOXX	1.5			f _{PCLK} ^[7]

^{* [7]} t_{PCLK} is APB clock cycle time.

- * [8] Above parameters are also applied to peripheral functions: PWM output PWM1~0, Input Capture input IN1~0, External Interrupt input INT6~0.
- * When External Interrupt INT6~0 is selected as level detection, its input level should be held until interrupt process is completed.

Figure 12 GPIO and other peripherals timing

9 MECHANICAL SPECIFICATION

9.1 QFN40

Figure 13 QFN40 Top/side/bottom view

Table 30 Common dimensions

Constant		Common dimension					
Symbol	Min.	Nom.	Max.				
А	0.80	0.85	0.90				
A1	0.00	0.01	0.05				
A2	0.60	0.65	0.70				
А3		0.20 REF.					
D		5.00 BSC					
D1		4.75 BSC					
E		5.00 BSC					
E1		4.75 BSC					
D2	3.50	3.60	3.70				
E2	3.50	3.60	3.70				
e		0.40 BSC					
N		40					
Nd		10					
Ne		10					
L	0.25	0.35	0.45				
b	0.15	0.20	0.25				
Ө		12°					
р	0.24	0.42 0.60					

9.2 WLCSP

Figure 14 WLCSP Top/side/bottom view

Table 31 Dimensions (BGA100)

Scale	Body X	Body Y	Body Z
21:1	2.780	2.933	0.498
Ball count	Ball pitch	Raw ball diameter	
48	0.400	0.250	

- * Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- * Dimensions is measured at the maximum solder ball diameter, parallel to primary datum C.
- * All dimensions and tolerances conform to ASME Y14.5 1994.

10 PRODUCT PACKAGING

10.1 Packing Hierarchy

The general packing hierarchy differs depending on whether the product is delivered on reels or trays.

Table 32 Packing hierarchy

Chip on tape	Reel	Sealed bag	Packing box	Shipping carton
CONTROL OF THE PROPERTY OF T				

10.1.1 Reel Packaging

Confidential 5

HD8040 series chips are delivered as hermetically sealed, reeled tapes in order to enable efficient production, production lot set-up and tear-down.

- HD8040 series' chips in QFN40 package are deliverable in quantities of 4000pcs on a reel.
- HD8040 series' chips in WLCSP package are deliverable in quantities of 5000pcs on a reel.

Figure 15 QFN40 Reel and tape dimensions

Figure 16 WLCSP Reel and tape dimensions

10.1.2 Package Dimensions

Confidential 5

The reels of chips are packed in the sealed bags and shipped by the packing boxes and shipping cartons.

Table 33 Package dimensions

Material	Dimension			
Sealed bag	410*460*0.15mm			
Packing box	353*350*48mm			
Shipping carton	370*260*360mm			

11 ORDERING INFORMATION

11.1 Product Marking

Figure 17 Product marking

Table 34 Product codes explanation

Line	Content	Description		
Logo		Company Logo		
Line1	HD8040	Model		
Line2	XXFFFAAA	Reserved		
	YY	Year		
Line3	ww	Week		
	XXXX	Reserved		

11.2 Ordering Codes

Confidential 5

Table 35 Ordering codes

				GNSS				
Ordering Number	Category	Package	GPS/QZSS	BDS	GLONASS	Galileo	IRNSS	Features
HD8040-1314NM	Standard Precision	QFN40	✓	✓				GPS+BDS (L1 band only)
HD8040D-1314NM	High Precision	QFN40	✓	✓	✓	✓		GNSS (multi-band sub-meter accuracy)
HD8040S-1314NM	Standard Precision	QFN40	✓	✓				Security GNSS chip
HD8041-1314NM	Standard Precision	QFN40	✓	✓	✓	✓		GNSS (L1 band only)
HD8041D-1314NM	High Precision	QFN40	✓	~	✓	✓	✓	GNSS (multi-band sub-meter accuracy)
HD8041S-1314NM	Standard Precision	QFN40	✓	✓	✓	✓	✓	Security GNSS chip
HD8040-1314WM	Standard Precision	WLCSP	✓	✓				GPS+BDS (L1 band only)
HD8040D-1314WM	High Precision	WLCSP	✓	✓	√	✓		GNSS (multi-band sub-meter accuracy)
HD8040S-1314WM	Standard Precision	WLCSP	✓	✓				Security GNSS chip
HD8041-1314WM	Standard Precision	WLCSP	✓	✓	✓	✓		GNSS (L1 band only)
HD8041D-1314WM	High Precision	WLCSP	✓	✓	√	✓	✓	GNSS (multi-band sub-meter accuracy)
HD8041S-1314WM	Standard Precision	WLCSP	✓	✓	✓	✓	✓	Security GNSS chip

12 RELATED DOCUMENTS

- [1] Satrack User Manual
- [2] Cynosure Receiver Protocol

13 REVISION HISTORY

Revision	Date	Author	Status / Comments	
V1.0	2018-08-15	Daisy	Start version, first released	
V1.1	2018-11-12	Daisy	Updates section 1.4, 6.7.	
V1.2	2018-11-30	Daisy	Updates table 9	
			Updates HD8040 series product table	
			Add 4.1.7; updates Table 6, 12, 13, 16, 17, 19, 41;	
V1.3	2019-04-24	Daisy	Updates Figure 2	
			Add WLCSP package contents	
			Change VDDE to AVD33DC2	
			Updates 5.1.1;	
			Updates sensitivity in Section 1.4;	
V1.4	2019-09-11	Vita Wu	Updates main voltage to 1.8~3.6V (in Section 1.4 and	
			7.4.1);	
			Updates the number of UART interface in Section 3.6.1;	

www.allystar.com

info.gnss@allystar.com

5F, Building No.4, Winlead Intelligent Park, No.3, FaDa road (middle), Bantian Subdistrict, LongGang District, Shenzhen City, Guangdong Province, China.

