IntroML - Lecture Notes Week 5

Ruben Schenk, ruben.schenk@inf.ethz.ch

April 6, 2022

1 Kernel Methods

1.1 Improving Polynomial Regression

1.1.1 Computational Complexity

How large is p to express a degree m polynomial for $x \in \mathbb{R}^d$? We can count the number of monomials of degree at most m:

Given any m-th degree monomial $1^{\alpha_0}x_{[1]}^{\alpha_1}\cdots x_{[d]}^{\alpha_d}$ with $\alpha_i\in\mathbb{N}$ and $\sum_{j=0}^d\alpha_j=m$, we can encode it as a d+m binary string with d zeros and m ones:

Build the string: Start with empty string s. For l = 0, ..., d do:

- 1. If $\alpha_l \geq 1$, append α_l ones to the string, i.e. $s \leftarrow (s, 1, ..., 1)$. If l < d, also add a zero, i.e. $s \leftarrow (s, 0)$.
- 2. Else if $\alpha_l = 0$, append $s \leftarrow (s, 0)$.

This gives you m+1 consecutive chunks of 1's – the number of 1's in the *i*-th chunk is the power of x_i .

Example: Let d = 5 and m = 7:

 $\bullet \ \ x_{[1]}^2 x_{[2]} x_{[3]}^3 \to 1011010011100$

Hence, each monomial corresponds to picking a set of m from d+m numbers, yielding a total number of $p=\binom{d+m}{m}\simeq \frac{(d+m-1)\cdots d}{m\cdots 1}$ which turns into:

$$p = \begin{cases} \mathcal{O}(d^m) & \text{for large enough } d, \\ \mathcal{O}(m^d) & \text{for large enough } m. \end{cases}$$

For mth degree polynomial features, the total training set $\{(\phi(x_i), y_i)\}_{i=1}^n$ is of size $\mathcal{O}(nd^m)$.

1.1.2 Kernel Trick

For high-dimensional data in practice, e.g. $d\sim 10^5$ and $n\sim 10^5$, even choosing m=3 to fit 3rd degree polynomials yields $\mathcal{O}(nd^m)\sim 10^{20}$ complexity. This is prohibitive from both the memory and the computational perspective.

The **kernel trick** is given, in short, as follows:

Kernel trick:

- 1. Save memory by noting that the training loss minimizer only depends on the feature vectors via their inner products (for polynomials: $\mathcal{O}(nd^m) \to \mathcal{O}(n^2)$ memory reduction!)
- 2. We can sometimes more efficiently compute the inner products, i.e. for polynomials of monomials, reduce polynomial to linear $\mathcal{O}(n^2d^m) \to \mathcal{O}(n^2(d+m))$

Step 1: Minimizer only depends on inner product Remember for parameterized function $F_w = \{f: f_w \text{ with } w \in \mathbb{R}^p\}$, the minimizer $\arg\min_{f \in F} \frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i))$ can be written as $\hat{f} = f_{\hat{w}}$ with $\hat{w} = \arg\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i))$.

Claim 1: Among the global minimizers in $\arg\min_{w\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n l(y_i,\,w^T\phi(x_i)),$ on of them:

- 1. has the form $\hat{w} = \Phi^T \hat{\alpha}$ with $\hat{\alpha} \in \mathbb{R}^n$, such that $\hat{f}(x) = \sum_{i=1}^n \hat{\alpha}_i \langle \phi(x_i), \phi(x) \rangle$, and where
- 2. $\hat{\alpha}$ only depends on x_i via the inner products $\langle \phi(x_i), \phi(x_j) \rangle$ for i, j = 1, ..., n.

So far, we reduced the problem to $\hat{\alpha} = \arg\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n l(y_i, \alpha^T \Phi \phi(x_i)) =: \arg\min_{\alpha \in \mathbb{R}^n} \tilde{L}(\alpha)$. We can use the inner products of the features to define a symmetric **kernel function**:

$$k: X \times X \to \mathbb{R}, k(x, z) = \langle \phi(x), \phi(z) \rangle,$$

and kernel matrix $K \in \mathbb{R}^{n \times n}$ with $K = \Phi \Phi^T$ and $K_{ij} = k(x_i, x_j)$. The loss $\tilde{L}(\alpha)$ only depends on the entries of K, hence, we only need to keep memory of $\mathcal{O}(n^2)$ bits.

Step 2: Efficient Computation For the feature vector $\phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]$, the inner product reads:

$$\langle \phi(x), \phi(z) \rangle = 1 + 2x_1z_1 + 2x_2z_2 + 2x_1z_1x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 = (1 + \langle x, z \rangle)^2 =: k(x, z)$$

More generally, for appropriate scaling of monomials and cross terms, the inner product of m-th degree polynomial features in any dimension d can be written as:

$$\langle \phi(x), \phi(z) \rangle = k(x, z) = (1 + \langle x, z \rangle)^m$$

1.2 Kernelized Regression for Polynomials

Linear Kernelized
$$\widehat{w} = \operatorname{argmin}_{w} \big| |y - Xw| \big|^{2} = X^{\mathsf{T}} \widehat{\alpha}$$
 search in subspace
$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - XX^{\mathsf{T}} \alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - XX^{\mathsf{T}} \alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi \Phi^{\mathsf{T}} \alpha||^{2} = \operatorname{argmin}_{\alpha}$$

Replace X by Φ , x by $\phi(x)$, and XX^T by $\Phi\Phi^T$ = K kernel matrix with $K_{i,j}=k(x_i,x_j)$

Claim 2 (Representer Theorem): The global minimizer(s) $\arg \min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, w^T \phi(x_i)) + \lambda ||w||^2$ have the form $\hat{w} = \Phi^T \hat{\alpha}$ with some $\hat{\alpha} \in \mathbb{R}^n$, such that $\hat{f} = \sum_{i=1}^n \hat{\alpha}_i \langle \phi(x_i), \phi(x) \rangle$.

Using the kernel trick, for ridge regression $\frac{1}{n}||y - \Phi w||^2 + \lambda ||w||^2$, using $w = \Phi^T \alpha$ and $K = \Phi \Phi^T$, we obtain

$$\frac{1}{n}||y - \Phi w||^2 + \lambda||w||^2 = \frac{1}{n}||y - \Phi \Phi^T \alpha||^2 + \lambda||\Phi^T \alpha||^2 = \frac{1}{n}||y - K\alpha||^2 + \lambda\alpha^T K\alpha.$$

1.3 Infinite-Dimensional Features & RBF Kernels

1.3.1 Infinite-Dimensional Feature Maps

For every $x, \phi(x)$ is a countable sequence. For every j, ϕ_j is a function!

We can write $f(x) = \langle w, \phi(x) \rangle_{l^2}$ and again define $S = \text{span}\{\phi(x_1), ..., \phi(x_n)\} \subset l^2$. For ridge regression, by orthogonal decomposition, we again have $||w||^2 = ||\Pi_S w||^2 + ||\Pi_{S^{\perp}} w||^2$, and hence can use the same arguments to obtain:

$$||y - \Phi w||^2 + \lambda ||w||^2 = ||y - K\alpha||^2 + \lambda \alpha^T K\alpha$$

1.3.2 Valid Kernels & Compositions

But how do we find infinite dimensional features ϕ such that k is easy to compute? No general recipe! But we can do some reverse engineering. We start with a computable kernel first and then find the features:

- 1. Define some bivariate function $x: X \times X \to \mathbb{R}$ with $X \subset \mathbb{R}^d$
- 2. Then, find ϕ such that $\langle \phi(x), \phi(y) \rangle = k(x, y)$ where $\phi(x) \in l^2$

For which k do such ϕ exist? The necessary conditions for k to be inner products of feature vectors are as follows:

- Kernel functions must be symmetric because they are inner products (k(x, z) = k(z, x))
- The kernel function k is positive-semidefinite, i.e. the kernel matrix K with $(K)_{ij} = k(x_i, x_j)$ is positive-semidefinite for any choice of inputs $x_1, ..., x_n$ and any $n \in \mathbb{N}$

Inner product kernels $k(x, z) = h(\langle x, z \rangle)$ are positive-semidefinite if the Taylor series $h(\langle x, z \rangle) = \sum_{j=0}^{\infty} a_j (\langle x, z \rangle)^j$ has $a_j \geq 0$ for all $j \geq 0$.

Radial Basis Functions (RBF) kernel k(x, z) = h(||x-z||) are often positive-semidefinite, e.g. such as α -exponential kernels $k(x, z) = \exp(-\frac{||x-z||^{\alpha}}{\tau})$ with bandwidth parameter τ such the

- Gaussian kernel with $\alpha = 2$
- Laplacian kernel with $\alpha = 1$

What are the features corresponding to a given bivariate valid kernel function?

Mercer's Theorem: For kernel $k: X \times X \to \mathbb{R}$ on a compact domain $X \in \mathbb{R}^d$, we can find a sequence $\{\mu_j\}_{j=1}^{\infty}$ and a basis $\{\phi_j\}_{j=1}^{\infty}$ of $L_2(X)$ (a sequence of functions) such that $k(x,y) = \sum_{j=1}^{\infty} \mu_j \phi_j(x) \phi_j(y) = \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle_{l_2}$ for all $x, y \in X$. The features $\tilde{\phi}(x)$ are induced by a kernel with $\tilde{\phi}_j(x) = \sqrt{\mu_j} \phi_j(x)$.

1.3.3 Function Space Induced by Kernels

More generally, a kernel $k: X \times X \to \mathbb{R}$ induces a reproducing kernel Hilbert space (RKHS):

$$F_k = \{ f : f(x) = \sum_{j=1}^m \beta_j k(x_j, x) \text{ for } x_j \in X, m \in \mathbb{N} \}$$

We can define an inner product for this function space: For any two functions $f(x) = \sum_{l=1}^{m} \alpha_l k(x_l, x)$ and $g(x) = \sum_{r=1}^{q} \beta_r k(x_r, x)$, the inner product reads:

$$\langle f, g \rangle_F = \sum_r \sum_l \alpha_l \beta_r k(x_r, x_l)$$

Hence, the *Hilbert norm* of $f(x) = \sum_{l=1}^{m} \alpha_l k(x_l, x)$ reads:

$$||f||_F^2 = \langle f, f \rangle_F = \sum_{l=1}^m \alpha_i \alpha_j k(x_i, x_j) = \alpha^T K \alpha$$

1.4 Other Non-Linear Methods

1.4.1 K-Nearest Neighbor (kNN)

With the method for **k-Nearest Neighbors** there is actually no training involved! The classification is done during test time:

- 1. Given training set D
- 2. Pick k and distance metric d in X
- 3. For given x, find among $x_1, ..., x_n \in D$ the k closest to $x \to x_{i_1}, ..., x_{i_k}$
- 4. Output the majority vote of labels $y_{i_1}, ..., y_{i_k}$

1.4.2 Decision Trees & Random Forests (RF)

Decision Trees are another method of classification. They:

- ullet Return a partition of X with sets aligned with canonical coordinates
- Each x in a set S of the partition is labeled $\hat{y} = \text{majority class}$ in set S
- Sets in partition are determined by *leaf nodes* of a binary tree that contains data points that satisfy decision rules along the path

The creation of binary trees $f: X \to Y$ is done as follows:

- each tree node v is associated with a splitting ruler $r_v: X \to \{0, 1\}$
- each leaf node returns $\hat{y} = \text{majority class in set } S$

The decision rule at tree node v has the following characteristics:

- Decision rule at some node v is usually of the form $r_v(x) = \mathbb{I}\{x_i > t_i\}$
- For each node v, choose feature i and threshold t_i that minimizes the uncertainty u on sets $D(v_1) = \{x \in D(v) : r_v(x) = 1\}$ and $D(v_0) = \{x \in D(v) : r_v(x) = 0\}$

