

Multicast

Redes de Comunicação de Dados

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Introdução ao modelo IP Multicast

- Distribuição eficiente de dados no modelo de "um para muitos"
 - Distribuição em forma de árvores
 - Os pacotes atravessam as ligações apenas uma vez
- Endereçamento é independente da localização
 - Endereço IP por grupo multicast
- Modelo de serviços orientado ao terminal
 - As aplicações podem subscrever ou abandonar grupos multicast
 - Os emissores n\u00e3o sabem quem recebem os seus dados
 - Semelhante ao modelo de difusão (p.e. televisão)
 - Oposto do modelo da telefonia

Multicast: considerações básicas

- Qual é o problema ?
 - Necessário conhecer todos os receptores de um grupo multicast
 - Necessário criar uma árvore (spanning tree) de receptores
- Considerações importantes:
 - Minimizar tráfego não desejado
 - Minimizar estado (sessões) nos routers
 - Escalabilidade quando o número de receptores (ou emissores) aumenta
 - Rapidez no estabelecimento de novas sessões
 - Robustez

Grupos *Multicast*

- Grupos multicast sobrepõem-se a redes
 - Os destinatários de informação multicast podem estar em diferentes redes
 - Na mesma rede nem todos os computadores podem querer receber a informação multicast
- Como criar um grupo multicast?
- Quem pode ser adicionado ao grupo multicast?
- Como sair do grupo multicast?

Encaminhamento *Multicast*

- Debugging é difícil
- Protocolos e aplicações imaturas
- Interoperabilidade entre protocolos multicast e unicast
- Instabilidade no encaminhamento
- O modelo multicast quebra os modelos de tarifação e de gestão das empresas telco/ISP

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Endereçamento IP

- Endereços de Grupos
 - -224.0.0.0 239.255.255.255
- Endereços "Classe D" bits de maior peso "1110"
- Endereços de Grupos reservados:
 - -224.0.0.0 224.0.0.255:
 - 224.0.0.1 Todos os hosts nesta subrede
 - 224.0.0.2 Todos os *routers* nesta subrede
 - 224,0,0,5 Todos os routers OSPF
 - 224.0.0.6 Todos os routers OSPF que sejam DR
 - 224.0.0.9 Todos os routers RIPv2

Reserva de endereços multicast

Problema

- Endereços multicast são um recurso limitado
- Esquema actual de reserva de endereços multicast não escala e torna o encaminhamento multicast mais difícil

Solução

- Usar endereços reservados dinamicamente
- Reserva de endereços determina a raiz da árvore partilhada
- Reserva de endereços hierárquica escala melhor e ajuda o encaminhamento multicast

Arquitectura de reserva de endereços multicast

- Multicast Address Set Claim (MASC)
 - Protocolo para reservar endereços multicast atribuídos a domínios
 - Algoritmo: Ouvir e detectar a ocorrência de colisões
- Address Allocation Protocol (AAP)
 - Protocolo para reservar endereços multicast dentro dos domínios
 - Usado pelos servidores Multicast Address Allocation Servers (MAAS)
- MDCHP (Multicast DHCP)
 - Protocolo para os terminais pedirem endereços multicast
 - Extensão ao DHCP (Dynamic Host Configuration Protocol)

Multicast Address Allocation Example

Conversão Endereços – IP Multicast - MAC

(01-00-5E-4D-62-B1)

IGMP

- Os hosts informam os routers quais os grupos que estão interessados em receber
- Os routers solicitam informação sobre quais os grupos que os hosts ainda estão interessados em receber
- IGMPv1 definido no RFC 1112
- IGMPv2 definido no RFC 2236
- IGMPv3 ainda em draft

IGMPv1

- Define 2 tipos de mensagem
- Membership Queries
 - O querier envia uma mensagem query de IGMP para o endereço 224.0.0.2 com ttl=1
 - Apenas um router por LAN está encarregue de enviar queries
 - O intervalo dos queries varia entre 60-120 segundos (configurável)
- Membership Reports
 - A mensagens IGMP de report enviada por um host suprime as dos outros hosts
 - Só existe um report por LAN
 - Existem reports não solicitados são enviados quando um host quer receber um grupo

IGMPv1 – Formato do Pacote

- Ver versão IGMP
- Tipo
 - 1 Query
 - 2 Report
- Group address Endereço do grupo multicast

IGMPv1 – Juntar-se a um grupo

IGMPv1 – General Queries

IGMPv1 – Manutenção de um grupo

IGMPv1 – Sair de um grupo

IGMPv2

- RFC 2236 define mais duas mensagens e um mecanismo de eleição do querier
 - O router com o endereço IP mais baixo é eleito o querier
- Group-specific query
 - Permite ao router saber se existe alguém interessado num grupo específico
- Leave group
 - O host envia uma mensagem de leave quando deixa de estar interessado num grupo e é
 o último membro

IGMPv2 – Formato do Pacote

- Tipo
 - 0x11 Query
 - 0x12 Report v1
 - 0x16 Report v2
 - 0x17 Leave Group
- Max. Resp. Time Tempo máximo para enviar uma resposta report
- Group address Endereço do grupo *multicast* (0.0.0.0 para todos os grupos *general query*)

IGMPv2- Juntar-se a um grupo

IGMPv2 – Eleição do Querier

IGMPv2 – Manutenção de um grupo

IGMPv2 – Sair de um grupo

25

IGMPv2 – Sair de um grupo (cont.)

26

Interoperabilidade IGMPv1 – IGMPv2

- H2 Tem de enviar sempre reports IGMPv1
- H2 Pode suprimir *leaves* IGMPv2

Interoperabilidade IGMPv1 – IGMPv2

- Router A Tem de perceber que existe um membro em IGMPv1 para o grupo 224.1.1.1
- Router A Tem de ignorar todos os leaves para o grupo 224.1.1.1

Interoperabilidade IGMPv1 – IGMPv2

Router A – Tem de ser manualmente configurado para funcionar em IGMPv1

Multicast na camada 2

- Problema: Flooding de tramas multicast para todas as portas de um switch
- Solução: Os switch têm de ficar também atentos ao IGMP e perceber que portas precisam de determinado grupo multicast

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Encaminhamento Multicast: considerações básicas

- Flood and prune
 - Distance Vector Multicast Routing Protocol (DVMRP)
 - Protocol Independent Multicast Dense Mode (PIM-DM)
- Subscrição explícita (join)
 - Core Based Trees (CBT)
 - Protocol Independent Multicast Sparse Mode (PIM-SM)
- A topologia da rede é conheçida por todos os routers
 - Protocolo de estado da ligação
 - MOSPF

Protocolos do tipo flooding

- Enviar dados para todos os routers da rede
- Problemas graves:
 - Necessário evitar ciclos
 - Necessário enviar apenas uma vez para todos os nós de uma rede
 - Pode-se manter estado de cada pacote e verificar se este já visitou um determinado router anteriormente,

Reverse Path Forwarding (RPF)

- Técnica simples para construir árvores:
 - Em encaminhamento unicast, os routers enviam para o destino pelo caminho mais curto
 - Em encaminhamento multicast, os routers enviam para todas as interfaces excepto por aquela que têm o caminho mais curto para a origem

Reverse Path Forwarding Example

Escolhas na distribuição de dados

- Árvores centradas na origem (source rooted trees)
 - É mantido estado nos routers para cada emissor
 - Constrói árvore SPT de cada emissor para os receptores
 - Atrasos mínimos das origens para os destinos
- Árvores partilhadas na origem (shared trees)
 - Todos os emissores pertecem à mesma ávore SPT de distribuição
 - É mantido estado nos routers apenas para os grupos multicast desejados
 - Não é mantido estado por emissor (excepto para IGMPv3)
 - Maior atraso na distribuição de dados

Árvores centradas na origem vs. Árvores partilhadas

01.12.14

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Distance Vector Multicast Routing (DVMRP)

- Árvore SPT (spanning tree)
 - Constrói shortest path tree
 - Minímo número de saltos da origem para os receptores
- Estende os protocolos de encaminhamento unicast do tipo distance vector
- Algoritmo do tipo flood and prune :
 - No início os dados são enviados para todos os routers da rede usando o RPF
 - Mensagens do tipo prune são enviadas pelo routers para grupos não desejados para se limitar a dimensão da rede
 - É necessário manter estado nos routers para todos os grupos não desejados
 - Mensagens "prune" s\u00e3o enviadas periodicamente devido \u00e0 ocorr\u00e9ncia de timeout (um router que enviou um prune pode agora desejar pertencer a esse grupo)

Algoritmo DVMRP

- Truncated Reverse Path Muticast
 - Versão optimizada do Reverse Path Forwarding (RPF)
 - Truncating: nenhuns pacotes são enviados para redes sem receptores interessados nesse grupo

Pruning:

- Mensagens do tipo prune são enviadas se não houver receptores subscritos nesse grupo
- Necessário manter estado para cada grupo não desejado

Grafting:

- Sempre que houver uma subscrição para um grupo cancelado (através de uma mensagem de prune) é necessário enviar uma mensagem graft para cancelar a mensagem prune enviada periódicamente
- Na ocorrência de um join (IGMP) ou graft (de outro router), remove-se o estado prune e propragase uma mensagem graft

Truncated Reverse Path Multicast Example

DVMRP Pruning Example

DVMRP Grafting Example

Multicast Tunneling

Problema:

- Nem todos os routers são capazes de efectuar multicast
- No entanto, pode-se querer interligar domínios entre routers não multicast entre eles

Solução:

- Encapsular pacotes multicast em pacotes unicast
- Tunel de tráfego multicast entre routers não multicast

MBONE:

- Rede multicast virtual, subconjunto da internet
- Regiões nativas multicast são interligadas com túneis

Exemplo Multicast Tunneling

Multicast Router 2 decapsulates IP-in-IP packets. It then forwards them using Reverse Path Multicast.

Network 2

Problemas do DVMRP

- Alguns dos problemas dos protocolos distance vector mantêm-se
- É preciso manter estado para grupos não desejados
- Uso de largura de banda é intenso
 - Data flooding periódico por grupo
 - Não existem joins explicítos, e o estado prune faz timeout
 - Não é adequado a redes heterogéneas (com protocolos de encaminhamento unicast diferentes)
- Escala muito mal quando existe um número elevado de emissores

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Core Based Trees (CBT)

- Unica árvore SPT por grupo => árvores esparsas
- Adequado a um número grande de emissores
- As tabelas de encaminhamento escalam bem:
 - dimensão = O(Grupos)
- Árvores bi-direccionais

Gestão de grupos em CBT

Envio de dados em CBT (1)

Envio de dados em CBT (2)

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Protocolo Independent Multicast (PIM)

- Usa tabela de encaminhamento unicast para a topologia
- Dense mode (PIM-DM)
 - Para grupos com muitos receptores numa região local/global
 - Semelhante ao DVMRP, um algoritmo do tipo flood and prune
- Sparse mode (PIM-SM)
 - Para grupos com um pequeno conjunto de receptores amplamente distribuídos
 - Constrói uma árvore partilhada por grupo, mas pode construir árvore centrada na origem por motivos de eficiência
 - Existe um "join" explicíto

PIM Sparse-Mode

- Protocolo hibrído que combina as características do DVMRP e do CBT
- Adequado a redes amplamente distribuídas e heterógeneas
- A árvore partilhada está centrada no Rendezvous Point (RP)
- A árvore partilhada introduz os emissores aos receptores
- Existem àrvores específicas para fluxos de tráfego mais pesados
- Árvore de distribuição unidireccional

Gestão de grupos em PIM-SM

Envio de dados em PIM-SM

PIM-SM Específico para uma origem

RP Subscreve Árvore centrada na origem

PIM Rendezvous Point (RP)

- Requisito:
 - Diferentes grupos são mapeados para diferentes RPs
- Bootstrap Router (BSR)
 - Dinamicamente eleito
 - Constrói um conjunto de endereços IP de RP baseando-se nas mensagens recebidas dos Candidatos-a-RP
- De que forma os routers conhecem um RP de um dado grupo ?
 - Bootstrap Router broadcasts Bootstrap message com o RP atribuído ao PIM
 - Função de hash no endereço de grupo é mapeada para um RP

Problemas do PIM

- Broadcasts globais para todos os Rendezvous Points
- Sensível à localização do RP
- Não há controlo administrativo sobre tráfego multicast
- Concebido como inter domínio, mas agora considerado intra domínio

Multicast

- Introdução
- Grupos Multicast: IGMP
- Encaminhamento Multicast
 - Distance Vector Multicast Routing Protocol
 - Core Base Trees
 - Protocol Independent Multicast
 - Border Gateway Management Protocol

Border Gateway Multicast Protocol (BGMP)

Motivação

- Necessidade de hierarquia para encaminhamento multicast
- Combinar a reserva de endereços multicast e o encaminhamento multicast
- Protocolos de encaminhamento Inter-AS necessitam de controlo administrativo do tráfego multicast

Considerações de escalabilidade

- Necessidade para minimizar o estado no encaminhamento
- Necessidade de minimizar as mensagens de controlo
- Enviar dados apenas para onde é necessário

Controlo administrativo do tráfego

Escolhendo uma árvore partilhada

1. Using PIM, the Rendezvous Point for the multicast group is chosen by a hash function on the multicast group.

2. Therefore, the Rendezvous
Point for a session started by Host
Z at the Stanford University might
be in BBN at Router A. The PIM
shared tree would cross ISP 2
even though there are no
receivers in that direction.

3. If Host Z at the Stanford University initiates a conference, the root of the shared tree should be in the Stanford University domain (e.g. Router B). The shared tree only develops in places with interested receivers downstream.

Referências

• DVMRP: RFC1035

CBTP: RFC2189

• PIM-SM: RFC4601

• PIM-DM: RFC3973

• PIM-SSM: RFC3569

• BGMP: RFC3913