Package 'spacexr'

June 7, 2022

Type Package	
Fitle SpatialeXpressionR: Cell type identification and cell type-specific differential expression in spatial transcriptomics	
Version 2.0.0	
Author Dylan Cable	
Maintainer <dcable@mit.edu></dcable@mit.edu>	
Description	
cell type identification and cell type-specific differential expression for spatial transcriptomic	es
Depends R (>= $3.5.0$)	
License GNU General Public License v3.0.	
Encoding UTF-8	
LazyData true	
Imports readr, ggplot2, pals, Matrix, parallel, doParallel, foreach, quadprog, tibble, dplyr, reshape2, knitr, rmarkdown, fields, mgcv, CompQuadForm	
RoxygenNote 7.1.1	
VignetteBuilder knitr	
R topics documented: aggregate_cell_types	

11.1.	4
ild.designmatrix.regions	4
ild.designmatrix.single	5
oose_sigma_c	5
nvert.old.RCTD	6
ount_cell_types	6
eate.RCTD	7
eate.RCTD.replicates	8
eate_RCTD_plots	10
SIDE.population.inference	10
var.celltocell.interactions	11
var.point.density	12
Bulk	13
Pixels	13
t_cell_type_info	14
t_decomposed_data	14
t_de_genes	15
t_doublet_weights	16
t_norm_ref	16
t_standard_errors	17
nport_weights	17
ake_all_de_plots	18
ake_de_plots_genes	18
ake_de_plots_quant	18
ake_de_plots_regions	19
ake_de_plots_replicates	19
ake_de_plots_spatial	20
erge.RCTD.objects	20
ormalize_weights	
ot_all_cell_types	21
ot_class	22
ot_cond_occur	22
ot_doublets	
ot_doublets_type	
ot_doub_occur_stack	
ot_gene_raw	
ot_gene_regions	25
ot_gene_two_regions	25
ot_occur_unthreshold	26
ot_prediction_gene	27
ot_puck_continuous	27
ot_puck_wrapper	28
ot_weights	29
ot_weights_doublet	29
ot_weights_unthreshold	30
ocess beads batch	30
ocess_data	31
CTD-class	32
CTD.replicates-class	33
ad.SpatialRNA	33
ad.VisiumSpatialRNA	34
eference	34
eference-class	35
	55

aggregate_cell_types	3
restrict_counts	35
restrict_puck	36
run.CSIDE	
run.CSIDE.general	38
run.CSIDE.nonparam	40
run.CSIDE.regions	41
run.CSIDE.replicates	43
run.CSIDE.single	44
run.RCTD	46
run.RCTD.replicates	47
save.CSIDE.replicates	47
set_cell_types_assigned	48
set_likelihood_vars	48
spacexr	49
SpatialRNA	49
SpatialRNA-class	50
write_de_summary	50
Index	51
aggregate cell types. Aggregates the nixel occurrences for each cell type in the RCTF	

aggregate_cell_types Aggregates the pixel occurrences for each cell type in the RCTD object

Description

The difference with count_cell_types is that this function does not filter out pixels based on total cell type weight, as occurs in the CSIDE algorithm.

Usage

```
aggregate_cell_types(myRCTD, barcodes, doublet_mode = T)
```

Arguments

barcodes	the barcodes, or pixel names, of the ${\tt SpatialRNA}$ object to be used when counting cell types.
doublet_mode	(default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses RCTD full mode weights
RCTD	an RCTD object with annotated cell types e.g. from the run.RCTD function.

Value

a named vector of number of pixel occurrences for each cell type

build.designmatrix.nonparam

Constructs a design matrix for running CSIDE nonparametrically

Description

The design matrix contains thin plate spline basis functions spanning the space of smooth functions.

Usage

```
build.designmatrix.nonparam(myRCTD, barcodes = NULL, df = 15)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

barcodes (default NULL) the barcodes, or pixel names, of the SpatialRNA object to be

used when creating the design matrix.

df (default 15) the degrees of freedom, or number of basis functions to be used in

the design matrix

Value

A design matrix containing the covariates for running CSIDE. The rownames represent pixel names and are a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential expression.

build.designmatrix.regions

Constructs a design matrix for running CSIDE across a set of regions

Description

The design matrix contains for each region a column of 0s and 1s representing membership in that region.

Usage

```
build.designmatrix.regions(myRCTD, region_list)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

region_list a list of character vectors, where each vector contains pixel names, or bar-

codes, for a single region. These pixel names should be a subset of the pixels in

the SpatialRNA object

Value

A design matrix containing the covariates for running CSIDE. The rownames represent pixel names and are a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential expression.

build.designmatrix.single

Constructs a design matrix for running CSIDE with a single explanatory variable

Description

The design matrix contains an intercept column and a column of the explanatory variable.

Usage

```
build.designmatrix.single(myRCTD, explanatory.variable)
```

Arguments

```
myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function. explanatory.variable
```

a named numeric vector representing the explanatory variable used for explaining differential expression in CSIDE. Names of the variable are the SpatialRNA pixel names, and values should be standardized between 0 and 1.

Value

A design matrix containing the covariates for running CSIDE. The rownames represent pixel names and are a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential expression.

choose_sigma_c

Estimates sigma_c by maximum likelihood

Description

Estimates sigma_c by maximum likelihood

Usage

```
choose_sigma_c(RCTD)
```

Arguments

RCTD an RCTD object after running the fitBulk function.

Value

Returns an RCTD with the estimated sigma_c.

6 count_cell_types

convert.old.RCTD	Updates an old RCTD object to be compatible with the current version of spacexr.
------------------	--

Description

Updates an old RCTD object to be compatible with the current version of spacexr.

Usage

```
convert.old.RCTD(myRCTD)
```

Arguments

RCTD

an RCTD object (potentially from an older version.

Value

an RCTD object updated to be compatible with the current version of spacexr.

Description

The difference with aggregate_cell_types is that this function does filter out pixels based on total cell type weight, as occurs in the CSIDE algorithm.

Usage

```
count_cell_types(
  myRCTD,
  barcodes,
  cell_types,
  cell_type_threshold = 125,
  doublet_mode = T,
  weight_threshold = NULL
)
```

Arguments

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when count-

ing cell typel\.

cell_types the cell types used for CSIDE. If null, cell types will be chosen with aggregate

occurences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types

cell_type_threshold

(default 125) min occurence of number of cells for each cell type to be used, as aggregated by aggregate_cell_types

create.RCTD 7

```
doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses RCTD full mode weights

weight_threshold (default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for doublet_mode or 0.95 for full_mode.

RCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.
```

Value

a named vector of number of pixel occurrences for each cell type

Description

Creates an RCTD object from a scRNA-seq reference Reference object and a SpatialRNA object

Usage

```
create.RCTD(
  spatialRNA,
  reference,
  max\_cores = 4,
  test_mode = FALSE,
  gene\_cutoff = 0.000125,
  fc_cutoff = 0.5,
  gene_cutoff_reg = 2e-04,
  fc_cutoff_reg = 0.75,
  UMI_min = 100,
  UMI_max = 2e+07,
  UMI_min_sigma = 300,
  class_df = NULL,
  CELL_MIN_INSTANCE = 25,
  cell_type_names = NULL,
  MAX_MULTI_TYPES = 4,
  keep_reference = F,
  cell_type_info = NULL,
  CONFIDENCE\_THRESHOLD = 10,
  DOUBLET_THRESHOLD = 25
)
```

Arguments

spatialRNA a SpatialRNA object to run RCTD on
reference a Reference object scRNA-seq reference used for RCTD
max_cores for parallel processing, the number of cores used. If set to 1, parallel processing is not used. The system will additionally be checked for number of available cores.

gene_cutoff minimum normalized gene expression for genes to be included in the platform

effect normalization step.

fc_cutoff minimum log-fold-change (across cell types) for genes to be included in the

platform effect normalization step.

gene_cutoff_reg

minimum normalized gene expression for genes to be included in the RCTD

step.

fc_cutoff_reg minimum log-fold-change (across cell types) for genes to be included in the

RCTD step.

UMI_min minimum UMI per pixel included in the analysis
UMI_max maximum UMI per pixel included in the analysis

UMI_min_sigma minimum UMI per pixel for the choose_sigma_c function

class_df (optional) if not NULL, then a dataframe mapping each cell type to a cell class,

so that RCTD will report confidence on the class level.

CELL_MIN_INSTANCE

minimum number of cells required per cell type. Default 25, can be lowered if

desired.

cell_type_names

A list of cell types to be included from the reference. If NULL, uses all cell

types

MAX_MULTI_TYPES

(multi-mode only) Default 4, max number of cell types per pixel

keep_reference (Default FALSE) if true, keeps the reference object stored within the RCTD

object

cell_type_info Default NULL, option to pass in cell_type_info directly

CONFIDENCE_THRESHOLD

(Default 10) the minimum change in likelihood (compared to other cell types)

necessary to determine a cell type identity with confidence

DOUBLET_THRESHOLD

(Default 25) the penalty weight of predicting a doublet instead of a singlet for a

pixel

Value

an RCTD object, which is ready to run the run.RCTD function

create.RCTD.replicates

Creates an RCTD.replicates object across multiple SpatialRNA

replicates

Description

Applies the create.RCTD function for each SpatialRNA replicate inputted using a scRNA-seq reference Reference object.

Usage

```
create.RCTD.replicates(
  spatialRNA.replicates,
  reference,
  replicate_names,
  group_ids = NULL,
 max\_cores = 4,
  test_mode = FALSE,
  gene_cutoff = 0.000125,
  fc\_cutoff = 0.5,
  gene_cutoff_reg = 2e-04,
  fc_cutoff_reg = 0.75,
 UMI_min = 100,
 UMI_max = 2e+07,
 UMI_min_sigma = 300,
  class_df = NULL,
 CELL_MIN_INSTANCE = 25,
  cell_type_names = NULL,
 MAX_MULTI_TYPES = 4,
 keep_reference = F
)
```

Arguments

spatialRNA.replicates

a list of multiple SpatialRNA objects to run RCTD on

reference a Reference object scRNA-seq reference used for RCTD

replicate_names

a character vector of names for each replicate provided in spatialRNA.replicates

group_ids (default constant across replicates) a named integer vector (length number of

replicates) containing the group id for each replicate. Names represent the replicate names, and replicates of the same group will be expected to be more similar

than replicates across groups

max_cores for parallel processing, the number of cores used. If set to 1, parallel processing

is not used. The system will additionally be checked for number of available

cores.

gene_cutoff minimum normalized gene expression for genes to be included in the platform

effect normalization step.

fc_cutoff minimum log-fold-change (across cell types) for genes to be included in the

platform effect normalization step.

gene_cutoff_reg

minimum normalized gene expression for genes to be included in the RCTD

step.

fc_cutoff_reg minimum log-fold-change (across cell types) for genes to be included in the

RCTD step.

UMI_min minimum UMI per pixel included in the analysis
UMI_max maximum UMI per pixel included in the analysis

UMI_min_sigma minimum UMI per pixel for the choose_sigma_c function

class_df (optional) if not NULL, then a dataframe mapping each cell type to a cell class, so that RCTD will report confidence on the class level.

CELL_MIN_INSTANCE

minimum number of cells required per cell type. Default 25, can be lowered if desired.

cell_type_names

A list of cell types to be included from the reference. If NULL, uses all cell types

MAX_MULTI_TYPES

(multi-mode only) Default 4, max number of cell types per pixel

keep_reference (Default FALSE) if true, keeps the reference object stored within the RCTD

object

cell_type_info Default NULL, option to pass in cell_type_info directly

Value

an RCTD.replicates object, which is ready to run the run.RCTD.replicates function

create_RCTD_plots

Create all plots for an RCTD object after cell types have been assigned

Description

Create all plots for an RCTD object after cell types have been assigned

Usage

```
create_RCTD_plots(myRCTD, datadir)
```

Arguments

myRCTD a RCTD object with annotated cell types e.g. from the run.RCTD function.

datadir directory where plots should be saved

 ${\tt CSIDE.population.inference}$

Runs population-level differential expression inference for a RCTD.replicates object

Description

First, CSIDE must have been run on all replicates using e.g. the run.CSIDE.replicates function.

exvar.celltocell.interactions 11

Usage

```
CSIDE.population.inference(
  RCTD.replicates,
  use.groups = FALSE,
  MIN.CONV.REPLICATES = 2,
  MIN.CONV.GROUPS = 2,
  CT.PROP = 0.5,
  q_thresh = 0.01,
  log_fc_thresh = 0.4,
  normalize_expr = F
)
```

Arguments

RCTD.replicates

a RCTD. replicates object for which to perform population-level DE inference.

use.groups (default FALSE) if TRUE, treats the replicates as having multiple groups (e.g.

samples) according to the group_ids slot

MIN.CONV.REPLICATES

(default 2) the minimum number of replicates (if not use.groups) for which a

gene must converge

MIN.CONV.GROUPS

(default 2) the minimum number of groups (if use.groups) for which a gene must

converge

CT. PROP (default 0.5) minimum ratio of gene expression within cell type compared to

other cell types

q_thresh (default 0.01) false discovery rate

log_fc_thresh (default 0.4) minimum natural log estimated DE threshold

normalize_expr (default FALSE) if TRUE, constrains total gene expression to sum to 1 in each

condition

Value

an RCTD.replicates object containing the results of the CSIDE population-level algorithm. See RCTD.replicates for documentation on the population_de_results, population_sig_gene_list, and population_sig_gene_df objects.

```
exvar.celltocell.interactions
```

Constructs an explanatory variable representing density of a cell type

Description

This explanatory variable can be used with CSIDE to detect cell-to-cell interactions. Density is computing using an exponentially-decaying filter. Currently only works for doublet mode RCTD.

Usage

```
exvar.celltocell.interactions(myRCTD, barcodes, cell_type, radius = 50)
```

12 exvar.point.density

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when creating

the explanatory variable.

cell_type the cell type (character) for which to compute density.

radius (default 50) the radius of the exponential filter. Approximately, the distance

considered to be a relevant interaction.

Value

explanatory.variable a named numeric vector representing the explanatory variable used for explaining differential expression in CSIDE. Names of the variable are the SpatialRNA pixel names, and values are standardized between 0 and 1. This variable represents density of the selected cell type.

exvar.point.density Constructs an explanatory variable representing density of a set of points

Description

This explanatory variable can be used with CSIDE to detect DE in the proximity of these points. Density is computing using an exponentially-decaying filter.

Usage

```
exvar.point.density(myRCTD, barcodes, points, radius = 50)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when creating

the explanatory variable.

points a N by 2 matrix containing the locations of the points to be used for computing

density. The first column should be the x coordinates while the second column

should be the y coordinate.

radius (default 50) the radius of the exponential filter. Approximately, the distance

considered to be a relevant interaction.

Value

explanatory.variable a named numeric vector representing the explanatory variable used for explaining differential expression in CSIDE. Names of the variable are the SpatialRNA pixel names, and values are standardized between 0 and 1. This variable represents density of the given point set.

fitBulk 13

fitBulk

Performs Platform Effect Normalization:

Description

Estimates bulk cell type composition and uses this to estimate platform effects and normalize cell type proportions

Usage

fitBulk(RCTD)

Arguments

RCTD

an RCTD object after running the create.RCTD function.

Value

Returns an RCTD object normalized for platform effects.

fitPixels

Runs the RCTD algorithm

Description

If in doublet mode, fits at most two cell types per pixel. It classifies each pixel as 'singlet' or 'doublet' and searches for the cell types on the pixel. If in full mode, can fit any number of cell types on each pixel. In multi mode, cell types are added using a greedy algorithm, up to a fixed number.

Usage

```
fitPixels(RCTD, doublet_mode = "doublet")
```

Arguments

RCTD an RCTD object after running the choose_sigma_c function.

doublet_mode character string, either "doublet", "multi", or "full" on which mode to run

RCTD. Please see above description.

Value

an RCTD object containing the results of the RCTD algorithm.

Description

Computes averaged normalized expression (summing to 1) for all cells within a cell type

Usage

```
get_cell_type_info(raw.data, cell_types, nUMI, cell_type_names = NULL)
```

Arguments

raw.data a Digital Gene Expression matrix, with gene names as rownames and single

cells as columns (barcodes for colnames)

cell_types a named list of cell type assignment for each cell in raw.data nUMI a named list of total UMI count for each cell in raw.data

Value

Returns cell_type_info, a list of three elements: (1) cell_type_means (a data_frame (genes by cell types) for mean normalized expression) (2) cell_type_names (a list of cell type names) and (3) the number of cell types

Description

Warning: in the current RCTD version, this function is deprecated, and is no longer supported. For differential expression tasks, we instead recommend the RCTDE method.

Usage

```
get_decomposed_data(
  results_df,
  gene_list,
  puck,
  weights_doublet,
  cell_type_info
)
```

Arguments

```
results_df a dataframe of RCTD results

gene_list a list of genes to be used for the decomposition

puck an object of type SpatialRNA

weights_doublet

a dataframe of predicted weights in doublet mode

cell_type_info cell type information and profiles of each cell, calculated from the scRNA-seq reference (see get_cell_type_info)
```

get_de_genes 15

Details

Applied to the output of gather_results. Singlet pixels are left unchanged, and doublet_certain conditions are decomposed into single cells.

Value

An object of type SpatialRNA representing the decomposed cells

get_de_genes

Returns a list of differentially expressed genes

Description

For each cell type, chooses genes that have a minimum average normalized expression in that cell type, and whose expression is larger in that cell type than the average of all cell types. Filters out mitochondrial genes.

Usage

```
get_de_genes(
  cell_type_info,
  puck,
  fc_thresh = 1.25,
  expr_thresh = 0.00015,
  MIN_OBS = 3
)
```

Arguments

```
cell_type_info cell type information and profiles of each cell, calculated from the scRNA-seq reference (see get_cell_type_info)
```

puck an object of type SpatialRNA

fc_thresh minimum log_e fold change required for a gene.

expr_thresh minimum expression threshold, as normalized expression (proportion out of 1,

or counts per 1).

MIN_OBS the minimum number of occurances of each gene in the SpatialRNA object.

Value

a list of differntially expressed gene names

16 get_norm_ref

get_doublet_weights	Converts RCTD doublet mode results to a weight matrix (across all
	cell types)

Description

RCTD must have been run in doublet mode

Usage

```
get_doublet_weights(myRCTD)
```

Arguments

RCTD an RCTD object with annotated cell types from the run.RCTD function.

Value

a weights matrix of cell type proportions for each pixel and each cell type.

Description

renormalizes cell_type_means to have average the same as the puck. The average for each gene is weighted by cell type proportions given by proportions.

Usage

```
get_norm_ref(puck, cell_type_means, gene_list, proportions)
```

Arguments

```
puck an object of type SpatialRNA, the target dataset

cell_type_means

a data_frame (genes by cell types) for mean normalized expression (see get_cell_type_info)

gene_list a list of genes to be used for the normalization

proportions a named list (for each cell type) of proportion of the cell type on the bulk dataset (not constrained to sum to 1)
```

Value

Returns cell_type_means, a data_frame (genes by cell types) for mean normalized cell type expression profiles in which platform effects have been removed to match the SpatialRNA data.

get_standard_errors 17

get_standard_errors

On an RCTD object after running CSIDE, returns an array of standard errors of CSIDE coefficients

Description

The dimensions of the standard error array is N_genes x N_coefficients x N_cell_types The N_coefficients are the number of explanatory variables in the CSIDE model

Usage

```
get_standard_errors(myRCTD)
```

Arguments

myRCTD

an RCTD object with fitted CSIDE e.g. from the run. CSIDE function.

Value

a three-dimensional array representing CSIDE standard errors for each gene, each coefficient, and each cell type.

import_weights

Assigns a cell type 'weights' matrix to an RCTD object

Description

Assigns a cell type 'weights' matrix to an RCTD object

Usage

```
import_weights(myRCTD, weights)
```

Arguments

myRCTD a RCTD object to be assigned weights.

weights a matrix of weights to be normalized

Value

the RCTD object with weights assigned.

18 make_de_plots_quant

make_all_de_plots

Makes all CSIDE plots on RCTD object, after running CSIDE

Description

Makes all CSIDE plots on RCTD object, after running CSIDE

Usage

```
make_all_de_plots(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

make_de_plots_genes

Makes spatial gene CSIDE plots (colored continuously) on RCTD ob-

ject, after running CSIDE

Description

Makes spatial gene CSIDE plots (colored continuously) on RCTD object, after running CSIDE

Usage

```
make_de_plots_genes(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

make_de_plots_quant Makes

Makes quantitative CSIDE plots on RCTD object, after running

CSIDE

Description

Makes quantitative CSIDE plots on RCTD object, after running CSIDE

Usage

```
make_de_plots_quant(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

make_de_plots_regions

make_de_plots_regions Makes spatial gene CSIDE plots (colored by discrete regions) on RCTD object, after running CSIDE

Description

Makes spatial gene CSIDE plots (colored by discrete regions) on RCTD object, after running CSIDE

Usage

```
make_de_plots_regions(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

make_de_plots_replicates

Makes spatial gene CSIDE plots (colored by two discrete regions) on RCTD replicates object, after running CSIDE

Description

Runs on genes that were identified as significant at the population level

Usage

```
make_de_plots_replicates(RCTD.replicates, datadir)
```

Arguments

RCTD.replicates

a RCTD. replicates object after performing population-level DE inference.

datadir output directory

Details

These plots are colored by two discrete regions based on high or low explanatory variable values. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

make_de_plots_spatial Makes spatial gene CSIDE plots (colored by two discrete regions) on RCTD object, after running CSIDE

Description

These plots are colored by two discrete regions based on high or low explanatory variable values. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

Usage

```
make_de_plots_spatial(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

merge.RCTD.objects

Creates an RCTD.replicates object across multiple RCTD objects

Description

Creates an RCTD. replicates object across multiple RCTD objects

Usage

```
## S3 method for class 'RCTD.objects'
merge(RCTD.reps, replicate_names, group_ids = NULL)
```

Arguments

 $\begin{tabular}{ll} RCTD.\,reps & a list of multiple RCTD objects to merge into one RCTD.\,replicates object. \\ replicate_names & \begin{tabular}{ll} replicate_names & \begin{tabular}{$

a character vector of names for each replicate provided in RCTD.reps

group_ids (default constant across replicates) a named integer vector (length number of

replicates) containing the group id for each replicate. Names represent the replicate names, and replicates of the same group will be expected to be more similar

than replicates across groups

Value

```
an RCTD.replicates object, containing each RCTD object in RCTD.reps
```

normalize_weights 21

normalize_weights

Normalizes the 'weights' matrix from the RCTD results object

Description

Normalizes the 'weights' matrix from the RCTD results object

Usage

```
normalize_weights(weights)
```

Arguments

weights

a matrix of weights to be normalized

Value

norm.weights a normalized matrix of weights where rows sum to one.

Description

Plots the first cell type in doublet mode. Saves as 'all_cell_types.pdf'

Usage

```
plot_all_cell_types(results_df, coords, cell_type_names, resultsdir)
```

Arguments

```
results_df a dataframe of RCTD results (see gather_results)
coords a dataframe of coordinates of each pixel
```

cell_type_names

list of cell type names

resultsdir output directory

Value

```
returns ggplot2 object
```

22 plot_cond_occur

plot_class

Plots a factor variable in space on the puck

Description

Colors points based on class

Usage

```
plot_class(puck, barcodes_cur, my_class, counter_barcodes = NULL, title = NULL)
```

Arguments

puck an object of type SpatialRNA

barcodes_cur a list of barcodes to include in the plot

my_class a named (by barcode) factor list for the coloring

Value

Returns a ggplot object

plot_cond_occur

Barplot of the confident counts for each cell type

Description

Plots the number of confident labels in 'full_mode'. Saves as 'cell_type_occur.pdf'

Usage

```
\verb|plot_cond_occur(cell_type_names, resultsdir, weights, puck)|\\
```

Arguments

cell_type_names

list of cell type names

resultsdir output directory

weights a dataframe of RCTD output weights (see gather_results)

puck an object of type SpatialRNA

Value

```
returns ggplot2 object
```

plot_doublets 23

plot_doublets

Plots all doublets in space

Description

```
saves as 'all_doublets.pdf'
```

Usage

```
plot_doublets(puck, doublets, resultsdir, cell_type_names)
```

Arguments

puck an object of type SpatialRNA

doublets a dataframe of RCTD results restricted to doublets

resultsdir output directory

cell_type_names

list of cell type names

Value

```
returns ggplot2 object
```

plot_doublets_type

Plots doublets of each cell type individually

Description

Plots the first cell type in doublet mode. Saves as 'all_doublets_type.pdf'

Usage

```
plot_doublets_type(puck, doublets_base, resultsdir, cell_type_names)
```

Arguments

puck an object of type SpatialRNA

 ${\tt doublets_base} \quad \text{a dataframe of RCTD results restricted to doublets}$

resultsdir output directory

cell_type_names

list of cell type names

24 plot_gene_raw

```
\verb"plot_doub_occur_stack" \textit{ Plots doublet co-occurances}
```

Description

Plots the doublet co-occurances. Saves as 'doublet_stacked_bar.pdf'

Usage

```
plot_doub_occur_stack(doub_occur, resultsdir, cell_type_names)
```

Arguments

doub_occur a table of occurances of doublets
resultsdir output directory

cell_type_names

list of cell type names

Value

```
returns ggplot2 object
```

plot_gene_raw Makes a spatial plot of continuous gene expression for a particular gene

Description

Units counts per 500

Usage

```
plot_gene_raw(myRCTD, gene, cell_type, ymax = 10)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

gene to be plotted

cell_type cell_type to be plotted (only single cell type pixels)

ymax (default 10) maximum expression (in counts per 500) for color scale

Value

gene expression plot

plot_gene_regions 25

plot_gene_regions

Makes a spatial plot of gene expression for a particular gene This plot is colored by several discrete regions based on a categorical design matrix. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

Description

Makes a spatial plot of gene expression for a particular gene This plot is colored by several discrete regions based on a categorical design matrix. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

Usage

```
plot_gene_regions(
  myRCTD,
  cell_type,
  gene,
  pixel_weight_thresh = 0.8,
  expr_thresh = 0
)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE cell_type to be plotted (only single cell type pixels) cell_type gene gene to be plotted pixel_weight_thresh (default 0.8) minimum cell type weight for pixels that are included (default 0) the minimum expression threshold to clear to be considered to be expr_thresh expressed

Value

gene expression plot

plot_gene_two_regions Makes a spatial plot of gene expression for a particular gene This plot is colored by two discrete regions based on high or low explanatory variable values. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

Description

Makes a spatial plot of gene expression for a particular gene This plot is colored by two discrete regions based on high or low explanatory variable values. Bold points represent expressed, whereas unbold points represent pixels not expressing the gene.

Usage

```
plot_gene_two_regions(
  myRCTD,
  gene,
  cell_type,
  min_UMI = 200,
  expr.thresh = 0,
  exvar_thresh = 0.5
)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

gene gene to be plotted

cell_type cell_type to be plotted (only single cell type pixels)

min_UMI (default 200) minimum UMI for pixels that are included

expr.thresh (default 0) the minimum expression threshold to clear to be considered to be expressed

exvar_thresh threshold of the explanatory variable in order for points to be sorted into the two regions

Value

gene expression plot

```
plot_occur_unthreshold
```

Barplot of the counts for each cell type

Description

Plots the number of (including unconfident) labels in 'full_mode'. Saves as 'cell_type_occur_unthreshold.pdf'

Usage

```
plot_occur_unthreshold(cell_type_info, resultsdir, weights)
```

Arguments

```
cell_type_info cell type information and profiles (see get_cell_type_info)
resultsdir output directory
weights a dataframe of RCTD output weights (see gather_results)
```

plot_prediction_gene 27

Description

Units counts per 500

Usage

```
plot_prediction_gene(myRCTD, cell_type, gene)
```

Arguments

```
myRCTD RCTD object containing de_results, after running CSIDE
cell_type cell_type to be plotted (only single cell type pixels)
gene gene to be plotted
```

Value

plot of fitted gene expression

Description

Colors points based on value of the function

Usage

```
plot_puck_continuous(
  puck,
  barcodes,
  plot_val,
  ylimit = c(0, 1),
  title = NULL,
  counter_barcodes = NULL,
  label = F,
  my_pal = NULL,
  xlim = NULL,
  ylim = NULL,
  size = 0.15,
  alpha = 1,
  small_point = F
```

28 plot_puck_wrapper

Arguments

```
puck an object of type SpatialRNA
barcodes a list of barcodes to include in the plot
plot_val a named (by barcode) list of values to plot
ylimit minimum and maximum values for the range of plot as a numeric list
xlim (optional) minimum and maximum value for x coordinate as a numeric list
ylim (optional) minimum and maximum value for y coordinate as a numeric list
size numeric size of points
cell_type_info cell type information and profiles (see get_cell_type_info)
```

Value

Returns a ggplot object

plot_puck_wrapper

Plots a continuous value over filtered locations on the puck

Description

Colors points based on value of the function, filtered for e.g. UMI and cell type

Usage

```
plot_puck_wrapper(
  puck,
  plot_val,
  cell_type = NULL,
  minUMI = 0,
  maxUMI = 2e+05,
  min_val = NULL,
  max_val = NULL,
  title = NULL,
  my_cond = NULL
)
```

Arguments

```
puck an object of type SpatialRNA

plot_val a named (by barcode) list of values to plot

cell_type string specifying cell type to plot. if NULL, then all cell types are plotted

minUMI numeric, minimum value for total UMIs to filter pixels

maxUMI numeric, maximum value for total UMIs to filter pixels

min_val numeric, minimum value for the range of plot as a numeric list

max_val numeric, maximum value for the range of plot as a numeric list

cell_type_info cell type information and profiles (see get_cell_type_info)
```

Value

Returns a ggplot object

plot_weights 29

plot_weights

Spatially plot the confident weights for each cell type

Description

Plots the confident weights for each cell type as in full_mode. Saves as 'cell_type_weights.pdf'

Usage

```
plot_weights(cell_type_names, puck, resultsdir, weights)
```

Arguments

```
cell_type_names
```

list of cell type names

puck an object of type SpatialRNA

resultsdir output directory

weights a dataframe of RCTD output weights (see gather_results)

Description

Plots the weights for each cell type as in doublet_mode. Saves as 'cell_type_weights_doublet.pdf'

Usage

```
plot_weights_doublet(
  cell_type_names,
  puck,
  resultsdir,
  weights_doublet,
  results_df
)
```

Arguments

```
cell_type_names
```

list of cell type names

puck an object of type SpatialRNA

resultsdir output directory

weights_doublet

a dataframe of RCTD output weights for doublets (see gather_results)

results_df dataframe of RCTD results (see gather_results)

30 process_beads_batch

```
plot_weights_unthreshold
```

Spatially plot all weights for each cell type

Description

Plots all weights for each cell type as in full_mode. Saves as 'cell_type_weights_unthreshold.pdf'

Usage

```
plot_weights_unthreshold(cell_type_names, puck, resultsdir, weights)
```

Arguments

```
cell_type_names
```

list of cell type names

puck an object of type SpatialRNA

resultsdir output directory

weights a dataframe of RCTD output weights (see gather_results)

process_beads_batch

Runs RCTD in doublet mode on puck

Description

Then, computes cell type proportions for each pixel in puck. Classifies each pixel as 'singlet' or 'doublet' and searches for the cell types on the pixel

Usage

```
process_beads_batch(
  cell_type_info,
  gene_list,
  puck,
  class_df = NULL,
  constrain = T,
  MAX_CORES = 8,
  MIN.CHANGE = 0.001,
  CONFIDENCE_THRESHOLD = 10,
  DOUBLET_THRESHOLD = 25
)
```

31 process_data

Arguments

cell_type_info cell type information and profiles of each cell, calculated from the scRNA-seq reference (see get_cell_type_info) a list of genes to be used for RCTD gene_list an object of type SpatialRNA, the target dataset puck class_df A dataframe returned by get_class_df to map cell types to classes logical whether to constrain the weights to sum to one on each pixel constrain CONFIDENCE_THRESHOLD (Default 10) the minimum change in likelihood (compared to other cell types) necessary to determine a cell type identity with confidence DOUBLET_THRESHOLD (Default 25) the penalty weight of predicting a doublet instead of a singlet for a

pixel

number of cores to use (will use parallel processing if more than one). max_cores

Value

Returns results, a list of RCTD results for each pixel, which can be organized by feeding into gather_results

process_data

Runs RCTD in full mode on puck

Description

Renormalizes cell_type_means to have average the same as the puck if proportions is given. Then, computes cell type proportions for each pixel in puck.

Usage

```
process_data(
  puck,
  gene_list,
  cell_type_info,
  proportions = NULL,
  trust_model = FALSE,
  constrain = T,
 OLS = F
)
```

Arguments

puck an object of type SpatialRNA, the target dataset

a list of genes to be used for RCTD gene_list

cell_type_info cell type information and profiles of each cell, calculated from the scRNA-seq

reference (see get_cell_type_info)

(optional) If given, a named list (for each cell type) of proportion of the cell type proportions

on the bulk dataset (not constrained to sum to 1)

logical whether to constrain the weights to sum to one on each pixel constrain

32 RCTD-class

Value

Returns test_results, a list of three items: (1) conf_mat a confusion matrix (not relevant) (2) weights a dataframe of predicted weights (3) a named list of predicted cell types

RCTD-class

An S4 class used to run the RCTD and CSIDE algorithms

Description

Created using the create.RCTD function, a user can run RCTD using the run.RCTD function.

Slots

spatialRNA a SpatialRNA object containing the Spatial RNA dataset to be used for RCTD originalSpatialRNA a SpatialRNA object containing the Spatial RNA dataset with all genes reference a Reference object containing the cell type-labeled single cell reference config a list of configuration options, set using the create.RCTD function

cell_type_info a named list of cell type profiles (means), containing two elements: info, directly calculated from the scRNA-seq reference, and renorm, renormalized the match the SpatialRNA dataset.

internal_vars a list of internal variables used by RCTD's computation

results (created after running RCTD) a list of results_df (a dataframe of RCTD results in doublet mode), weights (a dataframe of RCTD predicted weights in full mode), and weights_doublet (a dataframe of predicted weights in doublet mode, with cell type information in results_df).

In doublet-mode, The results of 'doublet_mode' are stored in '@results\$results_df' and '@results\$weights_doublet', the weights of each cell type. More specifically, the 'results_df' object contains one column per pixel (barcodes as rownames). Important columns are: * 'spot_class', a factor variable representing RCTD's classification in doublet mode: "singlet" (1 cell type on pixel), "doublet_certain" (2 cell types on pixel), "doublet_uncertain" (2 cell types on pixel, but only confident of 1), "reject" (no prediction given for pixel). * Next, the 'first_type' column gives the first cell type predicted on the bead (for all spot_class conditions except "reject"). * The 'second_type column' gives the second cell type predicted on the bead for doublet spot_class conditions (not a confident prediction for "doublet_uncertain").

Note that in multi-mode, results consists of a list of results for each pixel, which contains all_weights (weights from full mode), cell_type_list (cell types on multi mode), conf_list (which cell types are confident on multi mode) and sub_weights (proportions of cell types on multi mode).

de_results results of the CSIDE algorithm. Contains 'gene_fits', which contains the results of fits on individual genes, whereas 'res_gene_list' is a list, for each cell type, of significant genes detected by CSIDE.

internal_vars_de a list of variables that are used internally by CSIDE

RCTD.replicates-class An S4 class used to store multiple replicates as SpatialRNA objects.

Description

By storing multiple SpatialRNA replicates in this one object, it is convenient to run RCTD and CSIDE across all replicates. Finally, multiple replicates can be combined with population-level differential expression inference using the CSIDE.population.inference function

Details

Created using the create.RCTD.replicates or merge.RCTD.objects functions. One can run RCTD using the run.RCTD.replicates function, and one can run CSIDE using the run.CSIDE.replicates function

Slots

RCTD. reps a list of RCTD objects, one for each replicate

population_de_results A list, indexed by cell type, of dataframes summarizing population-level differential expression for each genes. Relevant columns include: tau, variance across replicates; log_fc_est, the estimated differential expression; sd_est, the standard error of estimated DE

population_sig_gene_list A list, indexed by cell type, of vectors of significant genes population_sig_gene_df A list, indexed by cell type, of dataframe summarizing population-

level differential expression for each significant gene, similar to population_de_results. Additionally, contains p (representing p-values) and q_val (representing q-values).

groups_ids a named integer vector (length number of replicates) containing the group id for each replicate. Names represent the replicate names, and replicates of the same group will be expected to be more similar than replicates across groups

read.SpatialRNA

Creates a SpatialRNA object from a coords and counts file

Description

Warning: this function is provided out of convenience for experienced users, but we can not provide direct support for debugging file input errors. If you are obtaining errors from this method, we recommend a less error-prone procedure of loading in your coords and counts matrices in first and then using the 'SpatialRNA' constructor function, which will systematically check for errors in the inputs.

Usage

```
read.SpatialRNA(datadir, count_file = "counts.csv", coords_file = "coords.csv")
```

Arguments

```
datadir (character) full path to input directory

count_file (character) file name of the counts csv file (genes by pixels matrix)

coord_file (character) file name of the coords csv file (pixels by (barcodes, x, y) matrix)
```

Reference Reference

Details

The coords matrix needs to be formated as columns (barcodes, x, y)

Value

Returns a SpatialRNA object containing the coordinates and counts from the input files

read.VisiumSpatialRNA Creates a SpatialRNA object from a 10x Genomics Visium 'outs' directory

Description

Given a SpatialRNA directory 10x Genomics Visium 'outs' directory and returns a SpatialRNA object.

Usage

```
read.VisiumSpatialRNA(datadir)
```

Arguments

datadir (string) full path to the 10x Genomics Visium 'outs' directory

Value

Returns a SpatialRNA object containing the coordinates and counts from the input files

Reference

constructor of Reference object

Description

constructor of Reference object

Usage

```
Reference(
  counts,
  cell_types,
  nUMI = NULL,
  require_int = TRUE,
  n_max_cells = 10000
```

Reference-class 35

Arguments

counts A matrix (or dgCmatrix) representing Digital Gene Expression (DGE). Row-

names should be genes and colnames represent barcodes/cell names.

cell_types A named (by cell barcode) factor of cell type for each cell. The 'levels' of the

factor would be the possible cell type identities.

nUMI Optional, a named (by cell barcode) list of total counts or UMI's appearing

at each pixel. If not provided, nUMI will be assumed to be the total counts

appearing on each pixel.

Counts should be untransformed count-level data

Value

Returns a Reference object containing the counts matrix, cell type labels, and UMI vector from the input files

Reference-class

An S4 class to represent Single-Cell RNA-seq reference

Description

An S4 class to represent Single-Cell RNA-seq reference

Slots

cell_types a factor of cell type identities for each cell

counts a sparse matrix of raw counts for each gene (rowname) and each cell (colnames or barcodes)

nUMI an atomic vector of numeric UMI counts per cell

restrict_counts Restricts a SpatialRNA object to a subset of genes (and applies a UMI threshold)

Description

Restricts a SpatialRNA object to a subset of genes (and applies a UMI threshold)

Usage

```
restrict_counts(puck, gene_list, UMI_thresh = 1, UMI_max = 20000)
```

Arguments

puck a SpatialRNA object gene_list a list of gene names

UMI_thresh minimum UMI per pixel

UMI_max maximum UMI per pixel

Value

Returns a SpatialRNA with counts filtered based on UMI threshold and gene list

36 run.CSIDE

restrict_puck

Restricts a SpatialRNA object to a subset of pixels

Description

Given a SpatialRNA object and a list of barcodes (pixels), will return a SpatialRNA object restricted to the barcodes.

Usage

```
restrict_puck(puck, barcodes)
```

Arguments

puck a SpatialRNA object

barcodes a list of barcode names, a subset of rownames (puck@coords)

Value

Returns a SpatialRNA object subsampled to the barcodes

run.CSIDE

Runs cell type specific CSIDE on a RCTD object with a general design

Description

Identifies cell type specific differential expression (DE) across a general design matrix of covariates. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE. The type of test is determined by test_mode, and the parameters tested is determined by params_to_test.

Usage

```
run.CSIDE(
  myRCTD,
  X,
  barcodes,
  cell_types,
  gene_threshold = 5e-05,
  cell_type_threshold = 125,
  doublet_mode = T,
  test_mode = "individual",
  weight_threshold = NULL,
  sigma_gene = T,
  PRECISION.THRESHOLD = 0.01,
  cell_types_present = NULL,
  test_genes_sig = T,
  fdr = 0.01,
```

run.CSIDE 37

```
cell_type_specific = NULL,
params_to_test = NULL,
normalize_expr = F,
logs = F,
cell_type_filter = NULL)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

X a matrix containing the covariates for running CSIDE. The rownames represent pixel names and should be a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential expression and

need to be linearly independent.

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when fitting

the model.

cell_types the cell types used for CSIDE. If null, cell types will be chosen with aggregate

occurences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types

gene_threshold (default 5e-5) minimum average normalized expression required for selecting

genes

cell_type_threshold

(default 125) min occurence of number of cells for each cell type to be used, as

aggregated by aggregate_cell_types

doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses

RCTD full mode weights

test_mode (default 'individual') if 'individual', tests for DE individually for each parame-

ter. If 'categorical', then tests for differences across multiple categorical param-

eters

weight_threshold

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for dou-

blet_mode or 0.8 for full_mode.

sigma_gene (default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE,

overdispersion parameter is same across all genes.

PRECISION. THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per

algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occuring often enough to consider for gene expression contamination during the step filtering out marker

genes of other cell types.

test_genes_sig (default TRUE) logical controlling whether genes will be tested for significance

fdr (default 0.01) false discovery rate for hypothesis testing

normalize_expr (default FALSE) if TRUE, constrains total gene expression to sum to 1 in each

condition. Setting normalize_expr = TRUE is only valid for testing single pa-

rameters with test_mode = 'individual'.

logs (default FALSE) if TRUE, writes progress to logs/de_logs.txt

38 run.CSIDE.general

```
cell_type_specific:
```

(default TRUE for all covariates). A logical vector of length the number of covariates indicating whether each covariate's DE parameters should be cell type-specific or shared across all cell types.

params_to_test:

(default 2 for test_mode = 'individual', all parameters for test_mode = 'categorical'). An integer vector of parameter indices to test. For example c(1,4,5) would test only parameters corresponding to columns 1, 4, and 5 of the design matrix.

Value

an RCTD object containing the results of the CSIDE algorithm. Contains objects de_results, which contain the results of the CSIDE algorithm including 'gene_fits', which contains the results of fits on individual genes, in addition 'sig_gene_list', a list, for each cell type, of significant genes detected by CSIDE. Additionally, the object contains 'internal_vars_de' a list of variables that are used internally by CSIDE

run.CSIDE.general

Runs CSIDE on a RCTD object with a general design matrix

Description

Identifies differential expression (DE) across a general design matrix of covariates. DE parameters can be cell type-specific or shared across all cell types. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE. The type of test is determined by test_mode, and the parameters tested is determined by params_to_test.

Usage

```
run.CSIDE.general(
 myRCTD,
 Х1,
 X2,
 barcodes,
  cell_types,
 gene_threshold = 5e-05,
 cell_type_threshold = 125,
 doublet_mode = T,
  test_mode = "individual",
 weight_threshold = NULL,
 sigma_gene = T,
 PRECISION.THRESHOLD = 0.01,
  cell_types_present = NULL,
  test_genes_sig = T,
 fdr = 0.01,
 params_to_test = NULL,
 normalize\_expr = F,
 logs = F,
  cell_type_filter = NULL
```

run.CSIDE.general 39

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

X1 a matrix containing the covariates shared across all cell types. The rownames

represent pixel names and should be a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential ex-

pression and need to be linearly independent.

X2 a matrix containing the cell type-specific covariates. The rownames represent

pixel names and should be a subset of the pixels in the SpatialRNA object. The columns each represent a covariate for explaining differential expression and

need to be linearly independent.

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when fitting

the model.

cell_types the cell types used for CSIDE. If null, cell types will be chosen with aggregate

occurences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types

gene_threshold (default 5e-5) minimum average normalized expression required for selecting

genes

cell_type_threshold

(default 125) min occurence of number of cells for each cell type to be used, as

aggregated by aggregate_cell_types

doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses

RCTD full mode weights

test_mode (default 'individual') if 'individual', tests for DE individually for each parame-

ter. If 'categorical', then tests for differences across multiple categorical param-

eters

weight_threshold

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for dou-

blet_mode or 0.8 for full_mode.

sigma_gene (default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE,

overdispersion parameter is same across all genes.

PRECISION. THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per

algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occuring often enough to consider for gene expression contamination during the step filtering out marker

genes of other cell types.

test_genes_sig (default TRUE) logical controlling whether genes will be tested for significance

fdr (default 0.01) false discovery rate for hypothesis testing

normalize_expr (default FALSE) if TRUE, constrains total gene expression to sum to 1 in each

condition. Setting normalize_expr = TRUE is only valid for testing single pa-

rameters with test_mode = 'individual'.

logs (default FALSE) if TRUE, writes progress to logs/de_logs.txt

params_to_test:

(default 2 for test_mode = 'individual', all parameters for test_mode = 'categorical'). An integer vector of parameter indices to test. For example c(1,4,5) would test only parameters corresponding to columns 1, 4, and 5 of the design

matrix X2.

Value

an RCTD object containing the results of the CSIDE algorithm. Contains objects de_results, which contain the results of the CSIDE algorithm including 'gene_fits', which contains the results of fits on individual genes, in addition 'sig_gene_list', a list, for each cell type, of significant genes detected by CSIDE, whereas 'all_gene_list' is the analogous list for all genes (including nonsignificant). Additionally, the object contains 'internal_vars_de' a list of variables that are used internally by CSIDE

run.CSIDE.nonparam

Runs CSIDE on a RCTD object to detect nonparametric smooth gene expression patterns

Description

Identifies cell type specific smooth gene expression patterns. The design matrix contains thin plate spline basis functions spanning the space of smooth functions. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE.

Usage

```
run.CSIDE.nonparam(
 myRCTD,
 df = 15,
 barcodes = NULL,
 cell_types = NULL,
 cell_type_threshold = 125,
 gene_threshold = 5e-05,
 doublet_mode = T,
 weight_threshold = NULL,
 sigma_gene = T,
 PRECISION.THRESHOLD = 0.01,
 cell_types_present = NULL,
 fdr = 0.01,
  test_genes_sig = T,
 logs = F
)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

df (default 15) the degrees of freedom, or number of basis functions to be used in the model.

barcodes the barcodes, or pixel names, of the SpatialRNA object to be used when fitting the model.

cell_types the cell types used for CSIDE. If null, cell types will be chosen with aggregate occurrences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types cell_type_threshold (default 125) min occurrence of number of cells for each cell type to be used, as

aggregated by aggregate_cell_types

run.CSIDE.regions 41

gene_threshold (default 5e-5) minimum average normalized expression required for selecting genes

(default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses RCTD full mode weights

weight_threshold

doublet_mode

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for doublet_mode or 0.8 for full_mode.

(default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE, sigma_gene

overdispersion parameter is same across all genes.

PRECISION. THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occuring often enough to consider for gene expression contamination during the step filtering out marker genes of other cell types.

fdr (default 0.01) false discovery rate for hypothesis testing

test_genes_sig (default TRUE) logical controlling whether genes will be tested for significance

(default FALSE) if TRUE, writes progress to logs/de_logs.txt logs

Value

an RCTD object containing the results of the CSIDE algorithm. Contains objects de_results, which contain the results of the CSIDE algorithm including 'gene fits', which contains the results of fits on individual genes, in addition 'sig_gene_list', a list, for each cell type, of significant genes detected by CSIDE. Additionally, the object contains 'internal_vars_de' a list of variables that are used internally by CSIDE

run.CSIDE.regions

Runs CSIDE on a RCTD object for DE across multiple discrete regions

Description

Identifies cell type specific differential expression (DE) across multiple discrete regions The design matrix contains for each region a column of 0s and 1s representing membership in that region. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE. Tests for differences in gene expression across regions.

Usage

```
run.CSIDE.regions(
 myRCTD,
 region_list,
 cell_types = NULL,
 cell_type_threshold = 125,
 gene_threshold = 5e-05,
 doublet_mode = T,
 weight_threshold = NULL,
```

42 run.CSIDE.regions

```
sigma_gene = T,
PRECISION.THRESHOLD = 0.01,
cell_types_present = NULL,
fdr = 0.01,
test_genes_sig = T,
logs = F
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

region_list a list of character vectors, where each vector contains pixel names, or bar-

codes, for a single region. These pixel names should be a subset of the pixels in

the SpatialRNA object

cell_types the cell types used for CSIDE. If null, cell types will be chosen with aggregate

occurences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types

cell_type_threshold

(default 125) min occurence of number of cells for each cell type to be used, as

aggregated by aggregate_cell_types

gene_threshold (default 5e-5) minimum average normalized expression required for selecting

genes

doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses

RCTD full mode weights

weight_threshold

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for dou-

blet_mode or 0.8 for full_mode.

sigma_gene (default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE,

overdispersion parameter is same across all genes.

PRECISION. THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per

algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occuring often enough to consider for gene expression contamination during the step filtering out marker

genes of other cell types.

fdr (default 0.01) false discovery rate for hypothesis testing

test_genes_sig (default TRUE) logical controlling whether genes will be tested for significance

logs (default FALSE) if TRUE, writes progress to logs/de_logs.txt

Value

an RCTD object containing the results of the CSIDE algorithm. Contains objects de_results, which contain the results of the CSIDE algorithm including 'gene_fits', which contains the results of fits on individual genes, in addition 'sig_gene_list', a list, for each cell type, of significant genes detected by CSIDE. Additionally, the object contains 'internal_vars_de' a list of variables that are used internally by CSIDE

```
run.CSIDE.replicates Runs CSIDE on a RCTD.replicates object
```

Description

Identifies cell type specific differential expression (DE) as a function of the explanatory variable for each replicate. The design matrix contains an intercept column and a column of the explanatory variable. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE.

Usage

```
run.CSIDE.replicates(
 RCTD.replicates,
  explanatory.variable.replicates,
  cell_types,
  cell_type_threshold = 125,
  gene_threshold = 5e-05,
  doublet_mode = T,
  weight_threshold = NULL,
  sigma_gene = T,
 PRECISION.THRESHOLD = 0.01,
  cell_types_present = NULL,
  fdr = 0.01,
  population_de = T,
  replicate_index = NULL,
  normalize\_expr = F,
 de_mode = "single",
 df = 15,
 barcodes = NULL
)
```

Arguments

```
RCTD.replicates
                  an RCTD. replicates object with annotated cell types e.g. from the run. RCTD. replicates
                  function.
explanatory.variable.replicates
                  a list of the named numeric vectors representing for each replicate the explana-
                  tory variable used for explaining differential expression in CSIDE. Names of
                  the vectors are the SpatialRNA pixel names, and values should be standardized
                  between 0 and 1.
                  the cell types used for CSIDE. Each cell type must occur at least 'cell_type_threshold',
cell_types
                  as aggregated by aggregate_cell_types
cell_type_threshold
                  (default 125) min occurence of number of cells for each cell type to be used, as
                  aggregated by aggregate_cell_types
gene_threshold (default 5e-5) minimum average normalized expression required for selecting
                  genes
```

44 run.CSIDE.single

doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses RCTD full mode weights

weight_threshold

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for doublet_mode or 0.95 for full_mode.

sigma_gene (default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE, overdispersion parameter is same across all genes.

PRECISION.THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occuring often enough to consider for gene expression contamination during the step filtering out marker genes of other cell types.

fdr (default 0.01) false discovery rate for hypothesis testing

population_de whether population-level DE should be run (can also be run later using the

CSIDE.population.inference function.)

replicate_index

(default all replicates) integer list of replicate indices (subset of 1:N_replicates)

to be run for CSIDE

normalize_expr (default FALSE) if TRUE, constrains total gene expression to sum to 1 in each

condition.

de_mode (default 'single') if 'single', calls run.CSIDE.single. If 'nonparam', calls

run.CSIDE.nonparam

df (default 15) for de_mode = nonparam, the degrees of freedom, or number of

basis functions to be used in the model.

barcodes for de_mode = nonparam, the barcodes, or pixel names, of the SpatialRNA

object to be used when fitting the model.

Value

an RCTD.replicates object containing the results of the CSIDE algorithm. See RCTD.replicates for documentation on the population_de_results, population_sig_gene_list, and population_sig_gene_df objects.

run.CSIDE.single Runs CSIDE on a RCTD object with a single explanatory variable

Description

Identifies cell type specific differential expression (DE) as a function of the explanatory variable. The design matrix contains an intercept column and a column of the explanatory variable. Uses maximum likelihood estimation to estimate DE and standard errors for each gene and each cell type. Selects genes with significant nonzero DE.

run.CSIDE.single 45

Usage

```
run.CSIDE.single(
 myRCTD,
  explanatory.variable,
  cell_types = NULL,
  cell_type_threshold = 125,
  gene_threshold = 5e-05,
  doublet_mode = T,
 weight_threshold = NULL,
  sigma\_gene = T,
  PRECISION.THRESHOLD = 0.01,
  cell_types_present = NULL,
  fdr = 0.01,
  test_genes_sig = T,
  normalize_expr = F,
  logs = F
)
```

Arguments

myRCTD an RCTD object with annotated cell types e.g. from the run.RCTD function.

explanatory.variable

a named numeric vector representing the explanatory variable used for explaining differential expression in CSIDE. Names of the variable are the SpatialRNA pixel names, and values should be standardized between 0 and 1.

cell_types

the cell types used for CSIDE. If null, cell types will be chosen with aggregate occurrences of at least 'cell_type_threshold', as aggregated by aggregate_cell_types

cell_type_threshold

(default 125) min occurrence of number of cells for each cell type to be used, as aggregated by aggregate_cell_types

gene_threshold (default 5e-5) minimum average normalized expression required for selecting genes

doublet_mode (default TRUE) if TRUE, uses RCTD doublet mode weights. Otherwise, uses RCTD full mode weights

weight_threshold

(default NULL) the threshold of total normalized weights across all cell types in cell_types per pixel to be included in the model. Default 0.99 for doublet mode or 0.8 for full mode.

sigma_gene

(default TRUE) if TRUE, fits gene specific overdispersion parameter. If FALSE, overdispersion parameter is same across all genes.

PRECISION. THRESHOLD

(default 0.01) for checking for convergence, the maximum parameter change per algorithm step

cell_types_present

cell types (a superset of 'cell_types') to be considered as occurring often enough to consider for gene expression contamination during the step filtering out marker genes of other cell types.

fdr (default 0.01) false discovery rate for hypothesis testing

test_genes_sig (default TRUE) logical controlling whether genes will be tested for significance

46 run.RCTD

normalize_expr (default FALSE) if TRUE, constrains total gene expression to sum to 1 in each condition.

logs (default FALSE) if TRUE, writes progress to logs/de logs.txt

Value

an RCTD object containing the results of the CSIDE algorithm. Contains objects de_results, which contain the results of the CSIDE algorithm including 'gene_fits', which contains the results of fits on individual genes, in addition 'sig_gene_list', a list, for each cell type, of significant genes detected by CSIDE. Additionally, the object contains 'internal_vars_de' a list of variables that are used internally by CSIDE

run.RCTD

Runs the RCTD pipeline on a RCTD object

Description

Equivalent to sequentially running the functions fitBulk, choose_sigma_c, and fitPixels

Usage

```
run.RCTD(RCTD, doublet_mode = "doublet")
```

Arguments

RCTD

an RCTD object created using the create. RCTD function.

Details

If in doublet mode, fits at most two cell types per pixel. It classifies each pixel as 'singlet' or 'doublet' and searches for the cell types on the pixel. If in full mode, can fit any number of cell types on each pixel. In multi mode, cell types are added using a greedy algorithm, up to a fixed number.

Value

an RCTD object containing the results of the RCTD algorithm. Please see RCTD documentation for more information on interpreting the content of the RCTD object.

run.RCTD.replicates 47

run.RCTD.replicates

Runs the RCTD pipeline on a RCTD. replicates object

Description

For each SpatialRNA replicate in the RCTD.replicates object, runs the run.RCTD function to assign cell types.

Usage

```
run.RCTD.replicates(RCTD.replicates, doublet_mode = "doublet")
```

Arguments

RCTD.replicates

an RCTD.replicates object created using the create.RCTD.replicates func-

tion.

 ${\tt doublet_mode} \qquad {\tt character\ string,\ either\ "doublet",\ "multi",\ or\ "full"\ on\ which\ mode\ to\ run}$

RCTD. Please see above description.

Details

If in doublet mode, fits at most two cell types per pixel. It classifies each pixel as 'singlet' or 'doublet' and searches for the cell types on the pixel. If in full mode, can fit any number of cell types on each pixel. In multi mode, cell types are added using a greedy algorithm, up to a fixed number.

Value

an RCTD.replicates object containing the results of the RCTD algorithm. Please see RCTD.replicates and RCTD documentation for more information on interpreting the content of this object.

```
save.CSIDE.replicates Saves the CSIDE population-level differential expression results for a RCTD.replicates object
```

Description

First, CSIDE must have been run on all replicates at the population level using e.g. the run.CSIDE.replicates function.

Usage

```
save.CSIDE.replicates(RCTD.replicates, resultsdir)
```

Arguments

```
RCTD.replicates
```

a RCTD. replicates object containing population-level DE inference results.

resultsdir

a directory where to save the significant gene matrices for each cell type.

48 set_likelihood_vars

```
set_cell_types_assigned
```

If cell types have been assigned to the RCTD object, running this function will toggle the cell_types_assigned variable, which enables CSIDE to be run.

Description

If cell types have been assigned to the RCTD object, running this function will toggle the cell_types_assigned variable, which enables CSIDE to be run.

Usage

```
set_cell_types_assigned(myRCTD)
```

Arguments

myRCTD

an RCTD object with annotated cell types from the run. RCTD function.

Value

the 'myRCTD' object with cell_types_assigned set to TRUE

set_likelihood_vars

Sets Precomputed Probabiliites as Global Variable

Description

Given a matrix, Q_{mat} , of P(y|x), under the Poisson-Lognormal model. Sets this as a global variable for fast computations in the future.

Usage

```
set_likelihood_vars(Q_mat_loc, X_vals)
```

Arguments

Q_mat_loc Matrix of precomputed probabiliites, as previously computed by get_Q_mat

X_vals the x-values used for computing the likelihood functions.

spacexr 49

spacexr	spacexr: an R package for assigning cell types and cell type specific
	differential expression to spatial transcriptomics data.

Running RCTD

To get started, create a SpatialRNA object (called puck here) for the spatial transcriptomics data and a Reference object (called reference here) for the scRNA-seq data. Then simply run RCTD as:

```
myRCTD <-create.RCTD(puck,reference)
myRCTD <-run.RCTD(myRCTD)</pre>
```

Running CSIDE

After running RCTD, create an explanatory variable ('explanatory.variable') representing a covariate hypothesized to explain gene expression. Then, to detect cell type-specific differential expression, simply run CSIDE as:

```
myRCTD <-run.CSIDE.single(puck,explanatory.variable)</pre>
```

SpatialRNA

constructor of SpatialRNA object

Description

constructor of SpatialRNA object

Usage

```
SpatialRNA(
  coords,
  counts,
  nUMI = NULL,
  use_fake_coords = FALSE,
  require_int = TRUE
)
```

Arguments

coords A data frame (or matrix) representing the spatial pixel locations. rownames are

barcodes/pixel names, and there should be two columns for 'x' and for 'y'.

counts A matrix (or dgCmatrix) representing Digital Gene Expression (DGE). Row-

names should be genes and colnames represent barcodes/pixel names.

nUMI Optional, a named (by pixel barcode) list of total counts or UMI's appearing

at each pixel. If not provided, nUMI will be assumed to be the total counts

appearing on each pixel.

use_fake_coords

logical, FALSE by default. If true, the 'coords' parameter will be ignored, and

replaced with a placeholder coords matrix.

require_int logical, TRUE by default. If true, requires counts and nUMI to be integers.

Counts should be untransformed count-level data

50 write_de_summary

Value

Returns a SpatialRNA object containing the coordinates and counts from the input files

SpatialRNA-class

An S4 class to represent Spatial Transcriptomic data

Description

An S4 class to represent Spatial Transcriptomic data

Slots

coords a dataframe with x and y coordinates of each pixel

counts a sparse matrix of raw counts for each gene (rowname) and each pixel (colnames or barcodes)

n_cell_type the number of cell types

cell_type_names a list of cell type names

nUMI a named list (by barcode) of total UMIs per pixel

cell_labels a factor of cell type labels for each pixel

write_de_summary

Saves to csv the CSIDE significant gene dataframes after running CSIDE

Description

Saves to csv the CSIDE significant gene dataframes after running CSIDE

Usage

```
write_de_summary(myRCTD, datadir)
```

Arguments

myRCTD RCTD object containing de_results, after running CSIDE

datadir output directory

Index

aggregate_cell_types, 3, 6, 37, 39, 40, 42,	plot_all_cell_types, 21
43, 45	plot_class, 22
build.designmatrix.nonparam,4	plot_cond_occur, 22
build.designmatrix.regions, 4	plot_doub_occur_stack, 24
build.designmatrix.single, 5	plot_doublets, 23
bullu. designilati ix. single, 3	plot_doublets_type, 23
choose_sigma_c, 5, 8, 9, 13, 46	plot_gene_raw, 24
convert.old.RCTD, 6	plot_gene_regions, 25
count_cell_types, 3, 6	plot_gene_two_regions, 25
create.RCTD, 7, 8, 13, 32, 46	plot_occur_unthreshold, 26
create.RCTD.replicates, 8, 33, 47	plot_prediction_gene, 27
create_RCTD_plots, 10	plot_puck_continuous, 27
CSIDE.population.inference, 10, 33, 44	plot_puck_wrapper, 28
colbe. populación. Inference, 10, 55, 44	plot_weights, 29
exvar.celltocell.interactions, 11	plot_weights_doublet, 29
exvar.point.density, 12	plot_weights_unthreshold, 30
c.v.a. vpc2cvacc20j, 12	process_beads_batch, 30
fitBulk, 5, 13, 46	process_data, 31
fitPixels, 13, 46	POTD 2 0 10 12 12 16 20 24 27 22
	RCTD, 3–8, 10, 12, 13, 16–20, 24–27, 33,
gather_results, 15, 21, 22, 26, 29–31	36–42, 44–48, 50
get_cell_type_info, 14, 14, 15, 16, 26, 28,	RCTD-class, 32
31	RCTD. replicates, 8, 10, 11, 19, 20, 43, 44, 47
<pre>get_class_df, 31</pre>	RCTD.replicates-class, 33
<pre>get_de_genes, 15</pre>	read. SpatialRNA, 33
<pre>get_decomposed_data, 14</pre>	read.VisiumSpatialRNA, 34
<pre>get_doublet_weights, 16</pre>	Reference, 7, 9, 32, 34, 34, 35, 49
<pre>get_norm_ref, 16</pre>	Reference-class, 35
$\operatorname{get}_{Q}\operatorname{mat}, 48$	restrict_counts, 35
<pre>get_standard_errors, 17</pre>	restrict_puck, 36
ggplot, 22, 28	run.CSIDE, 17, 36
ggplot2, <i>21–24</i>	run.CSIDE.general, 38
	run.CSIDE.nonparam, 40, 44
<pre>import_weights, 17</pre>	run.CSIDE.regions, 41
	run.CSIDE.replicates, 10, 33, 43, 47
make_all_de_plots, 18	run.CSIDE.single, 44, 44
make_de_plots_genes, 18	run.RCTD, 3–5, 7, 8, 10, 12, 16, 32, 37, 39, 40,
make_de_plots_quant, 18	42, 45, 46, 47, 48
make_de_plots_regions, 19	run.RCTD.replicates, 10, 33, 43, 47
<pre>make_de_plots_replicates, 19</pre>	00705 1: 4 47
make_de_plots_spatial, 20	save.CSIDE.replicates, 47
merge.RCTD.objects, $20, 33$	set_cell_types_assigned, 48
	set_likelihood_vars, 48
normalize_weights, 21	spacexr, 49

52 INDEX

```
\begin{array}{c} {\rm SpatialRNA},\, 3{\rm -}9,\, 12,\, 14{\rm -}16,\, 22,\, 23,\, 28{\rm -}37,\\ 39,\, 40,\, 42{\rm -}45,\, 47,\, 49,\, 49,\, 50\\ {\rm SpatialRNA-class},\, 50\\ \\ {\rm write\_de\_summary},\, 50 \end{array}
```