Assignment 1

Aditya Gupta
Department of computer science
adityagu22@iitk.ac.in

Praveen Raj
Department of Mechanical Engineering
praveenr21@iitk.ac.in

1 Breaking CARPUFF into a linear model

Let (\mathbf{u},p) and (\mathbf{v},q) be the parameters for the linear model of the two Puffs. Where $u,v\in\mathbb{R}^{32}$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{32} \end{bmatrix} \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{32} \end{bmatrix}$$

 $x_i = \prod_{j=i}^{32} (1-2c_j)$ for the challenges c_1, c_2, \cdots, c_{32} , then

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{32} \end{bmatrix}$$

then

$$\Delta_w = \mathbf{u}^T \mathbf{x} + p$$
$$\Delta_r = \mathbf{v}^T \mathbf{x} + q$$

For simplicity, let's just put bias terms inside vector. To do this we make

$$\tilde{\mathbf{u}} = \begin{bmatrix} u_1 \\ \vdots \\ u_{32} \\ p \end{bmatrix} \tilde{\mathbf{v}} = \begin{bmatrix} v_1 \\ \vdots \\ v_{32} \\ q \end{bmatrix} \text{ and } \tilde{\mathbf{x}} = \begin{bmatrix} x_1 \\ \vdots \\ x_{32} \\ x_{33} \end{bmatrix} \text{ where } x_{33} = 1$$

Where $\tilde{\mathbf{u}}, \tilde{\mathbf{v}}$ and $\tilde{\mathbf{x}} \in \mathbb{R}^{33}$ therefore,

$$\Delta_w = \tilde{\mathbf{u}}^T \tilde{\mathbf{x}}$$

$$\Delta_r = \tilde{\mathbf{v}}^T \tilde{\mathbf{x}}$$

Now for CAR-PUFF, we have

Response =
$$\begin{cases} 0 & \text{if } |\Delta_w - \Delta_r| \le \tau \\ 1 & \text{if } |\Delta_w - \Delta_r| > \tau \end{cases}$$

Or equivalently

Response =
$$\begin{cases} 0 & \text{if } (\Delta_w - \Delta_r)^2 - \tau^2 \le 0 \\ 1 & \text{if } (\Delta_w - \Delta_r)^2 - \tau^2 > 0 \end{cases}$$

Using sign Function we can write

Response =
$$\frac{1 + \operatorname{sign} \left((\Delta_w - \Delta_r)^2 - \tau^2 \right)}{2}$$

For simplicity Let's define $\mathbf{z} \in \mathbb{R}^{33}$ as the difference between the two vectors $\tilde{\mathbf{u}}$ and $\tilde{\mathbf{v}}$

$$\mathbf{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_{32} \\ z_{33} \end{bmatrix}$$

Where $\mathbf{z_i} = \mathbf{u_i} - \mathbf{v_i}$ for $i = 1, 2, \dots, 32$ and $z_{33} = p - q$ Then we can write

$$(\Delta_w - \Delta_r)^2 - \tau^2 = (\mathbf{z}^T \tilde{\mathbf{x}})^2 - \tau^2$$

$$= (\mathbf{z}^T \tilde{\mathbf{x}}) (\mathbf{z}^T \tilde{\mathbf{x}}) - \tau^2$$

$$= \left(\sum_{i=1}^{33} z_i \tilde{\mathbf{x}}_i\right) \left(\sum_{j=1}^{33} z_j \tilde{\mathbf{x}}_j\right) - \tau^2$$

$$= \sum_{i=1}^{33} \sum_{j=1}^{33} z_i z_j x_i x_j - \tau^2$$

$$= \sum_{i=1}^{33} \sum_{\substack{j=1 \ i \neq i}}^{33} z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 x_i^2 - \tau^2$$

Note that the summation $\sum_{i=1}^{33} \sum_{\substack{j=1 \ j \neq i}}^{33} z_i z_j x_i x_j$ is over all the pairs of indices i and j such that $i \neq j$.

So the term $z_i z_j x_i x_j$ is included **once for each pair of indices** i and j. hence we can write

$$\sum_{i=1}^{33} \sum_{\substack{j=1\\j\neq i}}^{33} z_i z_j x_i x_j = \sum_{i=1}^{33} \sum_{\substack{j=1\\j>i}}^{33} 2 \times z_i z_j x_i x_j \tag{1}$$

Also $x_i = \pm 1$ for $i = 1, 2, \dots, 32$ and $x_{33} = 1$ $\implies \mathbf{x_i^2} = \mathbf{1}$ for $i = 1, 2, \dots, 33$ therefore

$$\sum_{i=1}^{33} z_i^2 x_i^2 = \sum_{i=1}^{33} z_i^2 \tag{2}$$

Therefore

$$\implies (\Delta_w - \Delta_r)^2 - \tau^2 = \sum_{i=1}^{33} \sum_{\substack{j=1\\j \neq i\\j \neq i}}^{33} z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 x_i^2 - \tau^2$$

$$= \sum_{i=1}^{33} \sum_{\substack{j=1\\j > i}}^{33} 2 z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 - \tau^2 \quad \text{(using 1 and 2)}$$

- ∴ Summation $\sum_{i=1}^{33} \sum_{j=1}^{33} z_i z_j x_i x_j$ has a total of 33 × 33 terms. ∴ $\sum_{i=1}^{33} \sum_{\substack{j=1 \ j\neq i}}^{33} z_i z_j x_i x_j$ has a total of 33 × 33 − 33 terms. ∴ $\sum_{i=1}^{33} \sum_{\substack{j=1 \ j\neq i \ j>i}}^{33} 2 z_i z_j x_i x_j$ has a total of $\frac{33 \times 33 33}{2} = 528$ terms.

$$\therefore (\Delta_w - \Delta_r)^2 - \tau^2 = \left(\sum_{\substack{i=1\\j>i}}^{33} \sum_{\substack{j=1\\j>i}}^{33} 2z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 - \tau^2\right)$$

$$\therefore \text{Response} = \frac{1 + \text{sign}\left(\sum_{i=1}^{33} \sum_{\substack{j=1 \ j > i}}^{33} 2z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 - \tau^2\right)}{2}$$

Also the sum $\left(\sum_{i=1}^{33} \sum_{\substack{j=1 \ i>i}}^{33} 2z_i z_j x_i x_j + \sum_{i=1}^{33} z_i^2 - \tau^2\right)$ can be written as $\mathbf{W}^T \phi(\mathbf{c}) + \mathbf{W}^T \phi(\mathbf{c})$ **b** with

$$\mathbf{W} = \begin{bmatrix} 2z_1 z_2 \\ 2z_1 z_3 \\ \vdots \\ 2z_1 z_{33} \\ 2z_2 z_3 \\ \vdots \\ 2z_2 z_{33} \\ 2z_3 z_4 \\ \vdots \\ 2z_3 z_{33} \\ \vdots \\ 2z_3 z_{33} \\ \vdots \\ 2z_{32} z_{33} \end{bmatrix}_{\substack{528 \times 1}} \phi(\mathbf{c}) = \begin{bmatrix} x_1 x_2 \\ x_1 x_3 \\ \vdots \\ x_1 x_{33} \\ x_2 x_3 \\ \vdots \\ x_2 x_{33} \\ x_3 x_4 \\ \vdots \\ x_3 x_{33} \\ \vdots \\ x_{32} x_{33} \end{bmatrix}_{\substack{528 \times 1}}$$

$$\begin{aligned} \mathbf{b} &= z_1^2 + z_2^2 + \dots + z_{33}^2 - \tau^2. \\ \text{where } \mathbf{x_i} &= 1 - 2\mathbf{c_i} \text{ for } i = 1, 2, \cdots, 32 \text{ and } \mathbf{x_{33}} = \mathbf{1} \end{aligned}$$

Response =
$$\frac{1 + \operatorname{sign} \left(\mathbf{W}^T \phi(\mathbf{c}) + b \right)}{2}$$

with

$$\mathbf{W} = \begin{bmatrix} 2z_{1}z_{2} \\ 2z_{1}z_{3} \\ \vdots \\ 2z_{1}z_{33} \\ 2z_{2}z_{3} \\ \vdots \\ 2z_{2}z_{33} \\ 2z_{3}z_{4} \\ \vdots \\ 2z_{3}z_{33} \\ \vdots \\ 2z_{3}z_{33} \end{bmatrix}_{528 \times 1} \phi(\mathbf{c}) = \begin{bmatrix} x_{1}x_{2} \\ x_{1}x_{3} \\ \vdots \\ x_{1}x_{33} \\ x_{2}x_{3} \\ \vdots \\ x_{2}x_{33} \\ x_{3}x_{4} \\ \vdots \\ x_{3}x_{33} \\ \vdots \\ x_{32}x_{33} \end{bmatrix}_{528 \times 1}$$

$$\mathbf{b} = z_{1}^{2} + z_{2}^{2} + \dots + z_{33}^{2} - \tau^{2}.$$

Where $\mathbf{x_i} = \prod_{\mathbf{j=i}}^{\mathbf{32}} (\mathbf{1} - \mathbf{2c_j})$ for the challenges c_1, c_2, \cdots, c_{32} and $\mathbf{x_{33}} = \mathbf{1}$ and $\mathbf{z_i} = \mathbf{u_i} - \mathbf{v_i}$ for $i = 1, 2, \cdots, 32$ and $\mathbf{z_{33}} = \mathbf{p} - \mathbf{q}$ where (\mathbf{u}, p) and (\mathbf{v}, q) are the two linear models for the two arbiter PUFs sitting inside the CAR-PUF.

2 Outcomes with diffrent models with hyperparameters

2.1 Tuning C in LinearSVC and Logistic Regression

2.1.1 LinearSVC

Variation of Accuracy with C in LinearSVC

Variation of Training time with C in LinearSVC

2.1.2 Logistic Regression

Variation of Accuracy with C in Logistic Regression

Variation of Training time with C in Logistic Regression

2.2 Tuning tol in LinearSVC and Logistic Regression

2.2.1 LinearSVC

Variation of Accuracy with tol in LinearSVC

Variation of Training time with tol in LinearSVC

2.2.2 Logistic Regression

Variation of Accuracy with tol in Logistic Regression

Variation of Training time with tol in Logistic Regression