FittingFunctions2.0

Improved version of the fittingfunctions python module used by the Physics Institution and LTH at Lund University.

Made in python version 3.11.5

Authored by Erik Ewald & Gustav Sjövall, 2023-2024

Contents

- FittingFunctions2.0
 - Contents
 - Importing
 - Gaussian Functions
 - gaussian class
 - Printing
 - Generic peak
 - Public members
 - Public Methods
 - Fitting Functions
 - fit gaussian
 - fit double gaussian
 - Spectrum Calibration
 - calibrate
 - Miscellaneous
 - slice_spect
 - is_iter

Importing

To import the module, folder FittingFunctions2 is placed in the working directory for the project and imported into the main file:

import FittingFunctions2 as ff

Gaussian Functions

For the following scripts the definition of a Gaussian function is as follows:

$$G(x) = A \cdot exp\left(-rac{(x-mu)^2}{2 \cdot (sigma)^2}
ight)$$

Other useful analytical formulae are:

Area:
$$area = A \cdot sigma \cdot \sqrt{2 \cdot \pi}$$

Full-Width-Half-Maximum: FWHM $= sigma \cdot 2\sqrt{2\pi}$

gaussian class

The gaussian class holds the return values from all functions that fit a Gaussian function and is not intended to be used independently. **Printing** a gaussian object gives rounded values. Raw values are accessed as public members or methods. Raw values for uncertainties have to be derived from the covariance matrix.

Printing

Example of a gaussian fitted to a Cs-137 peak in a gamma ray spectrum.

```
[ 1.87206691e-03     4.36592014e-02 -9.98241359e-05]
[-9.40087680e-01 -9.98241359e-05     4.39143608e-02]]
```

Generic peak

Public members

Member	Description
gaussian. A : float	The amplitude of the fitted function. OBS! This does not account for the scatter correction and will sometimes not match the peak height in a spectrum, see gaussian.max_height().
gaussian. mu : float	The central value of the fitted gaussian curve.
gaussian. sigma : float	The fitted value of sigma.
gussian.cov_matrix 3x3-array	The covariance matrix from the fit corresponding to <i>A, mu</i> and <i>sigma</i> .
gussian. G : float	The gross area of the region enclosed by the scatter correction boundaries, i.e. the sum of all y-values in the selected region.
gussian. B : float	The scatter background calculated as the sum of the linear scatter correction function across the region enclosed by the scatter correction boundaries.

Member	Description
gussian. N : float	The net area of the peak, i.e. <i>gussian</i> . G - <i>gussian</i> . B .

Public Methods

Method	Description
gussian.area(): -> float	The analytically calculated area of the gaussian. OBS! This may deviate from <i>gaussian.G</i> as the bin size in the x-data is not accounted for by this function.
<pre>gussian.FWHM(uncertanty = False : bool) : -> float/tuple</pre>	Return the full-width-half-max value of the peak. Setting <i>uncertanty</i> till <i>True</i> return a tuple with the FWHM as the first element the uncertainty in FWHM as the second.
<pre>gussian.max_height():-> float</pre>	Returns the real height of the gaussian at the point mu . Calculated as $corr_f(mu) + A$.
<pre>gussian.plot(xlabel = None : str , ylabel = None : str) : -> None</pre>	Plots the gaussian over the selected region.
gussian.value(x : float): -> float	Returns the value of the gaussian at the point x .

Fitting Functions

fit_gaussian

Attempts to fit a gaussian function to a data set using the *curve_fit* routine from scipy.optimize.

Parameter	Description
X : array_like	An array corresponding to the x-axis of the data set.
Y : array_like	An array corresponding to the y-axis of the data set.
region_start : float	The lower bound of the region on which the gaussian will be fitted.
region_stop : float	The upper bound of the region on which the gaussian will be fitted.
corr_left: float, optional	Left point at which scatter correction will be made. This only affects the scatter correction, the fit will always be made over the entire region.

Parameter	Description
corr_right : float, optional	Right point at which scatter correction will be made. This only affects the scatter correction, the fit will always be made over the entire region.
mu_guess : float, optional	Manual guess for <i>mu</i> .
A_guess : float, optional	Manual guess for A.
sigma_guess : float, optional	Manual guess for <i>sigma</i> .
scatter_corr: str/bool, optional	Sets method of scatter correction. 'auto' attempts automatic scatter correction, if this fails <code>region_start</code> and <code>region_stop</code> will be set as correction boundaries. Manually setting boundaries will overrule the automatically set boundaries. <code>True</code> makes scatter correction without automatically set limits. Limits are manually set by <code>corr_left</code> and <code>corr_right</code> , if one or both of these are not set <code>region_start</code> and <code>region_stop</code> will be set as correction points. <code>False</code> no scatter correction is made.
scatter_corr_points : int, optional	The number of points over which the bounds of the scatter correction is averaged. The default 3 means the point is chosen as the average of the first 3 inside the gaussian region.
corr_thresh: float, optional	Sets the gradient threshold for determining the edges of the peak when sactter_corr='auto'.
Returns De	escription

Peak: gaussian An object containing the data from the fit. See the section on the gaussian class.

fit_double_gaussian

Attempts to fit a sum of two gaussian functions to a data set using the *curve_fit* routine from scipy.optimize.

Parameter	Description
X : array_like	An array corresponding to the x-axis of the data set.
Y: array_like	An array corresponding to the y-axis of the data set.

Parameter	Description
split_point : <i>float</i>	A point in between the two peaks that split the region for the purpose of automatically assigning guesses.
region_start : float	The lower bound of the region on which the gaussian will be fitted.
region_stop : <i>float</i>	The upper bound of the region on which the gaussian will be fitted.
corr_left : float, optional	Left point at which scatter correction will be made. This only affects the scatter correction, the fit will always be made over the entire region.
corr_right : float, optional	Right point at which scatter correction will be made. This only affects the scatter correction, the fit will always be made over the entire region.
mu1_guess / mu2_guess : float, optional	Manual guess for <i>mu</i> . The first peak is lower on the x-axis than the second peak, <i>mu1</i> < <i>mu2</i> .
A1_guess / A2_guess : <i>float,</i> <i>optional</i>	Manual guess for A. The first peak is lower on the x-axis than the second peak.
sigma1_guess / sigma2_guess : float, optional	Manual guess for <i>sigma</i> . The first peak is lower on the x-axis than the second peak.
scatter_corr : bool, optional	Sets if a scatter correction is made.
scatter_corr_points:	The number of points over which the bounds of the scatter correction is averaged. The default 3 means the point is chosen as the average of the first 3 inside the gaussian region.
Returns De	escription
peak 2):	cuple containing two <i>gaussian</i> objects corresponding to the two peaks, in order of cending <i>mu</i> values. See the section on the <i>gaussian</i> class.

Spectrum Calibration

Calibrates a spectrum by marking peaks and providing energies corresponding to the marked peaks.

calibrate

calibrate(Y, peak_regions, energies, plot=False, gauss=True)

Parameter	Description
Y: array_like	The dataset corresponding to the y-axis of the spectrum.

Parameter	Description
peak_regions : array_like	An iterator containing start and stop values for the peak regions to be used in the calibration. A <i>gaussian</i> object can be given instead of a start and stop region. Example: [[150, 300], (500, 600), gaussian_peak].
energies : array_like	Iterator with the energies of the peaks at the corresponding index in <i>peak_regions</i> .
plot : <i>bool,</i> optional	Plots the calibrated spectrum and highlight the points used for calibration.
gauss : bool, optional	If True a gaussian will be fitted to each selected region using the <i>fit_gaussian</i> function and the <i>mu</i> value is used as the calibration point. If False the maximum point in the region is used as the calibration point.
Returns	Description
calib_x : numpy	narray The calibrated x-axis corresponding to the given y-axis.
(k, m) : tuple	The calibration coefficients.

Miscellaneous

Miscellaneous functions included in the package that might be of some use.

slice_spect

Slices an array containing strictly increasing values, like a calibrated x-axis, based on the values in the array. More arrays of the same shape as the first array can be given and will also be sliced into the same shape as the first array.

slice_spect(spect, *args, low=None, high=None)

Parameter	Description
spect : array_lik	ke An array containing a calibrated x-axis.
*args : array_lik optional	ke, Additional arrays of the same shape as <i>spect</i> that will be sliced into the same shape as the returned version of <i>spect</i>
low : float, optional	The low cut off point for the spectrum. Both <i>low</i> and <i>high</i> can not be omitted.
high : float, optional	The high cut off point for the spectrum. Both <i>low</i> and <i>high</i> can not be omitted.
Returns	Description
spectra: numpy_array / list	If no *args are provided only the sliced version of spect is returned. If *args are provided a list is returned containing the sliced spectra in the order they are given, first being the sliced spect.

```
is_iter
```

```
is_iter(obj)
```

Checks if an object is iterable.

Paramete	r Description
obj: any	Any type of object to be check if it is iterable.
Returns	Description
bool	<i>True</i> if <i>obj</i> is iterable, else <i>False</i>