

Live 10:

Servo Motor

Marcelo Macrino dos Santos marcelo.santos276@etec.sp.gov.br

Servo Motor

O que é um Servo Motor?

O servo motor é um dispositivo de controle angular. Tem um pequeno motor DC dentro que gira para um lado ou para outro num ângulo máximo de 180º. A partir da posição 0º pode ir 90º para direita e 90º para esquerda.

Os **servos** possuem incorporado neles um **encoder** e um **controlador**. Ou seja, os **servos** nada mais são do que **motores comuns** com **controladores** e **encoders** acoplados.

Os servos motores são os meios mais fáceis e baratos de se conseguir um movimento angular controlado eletronicamente. Portanto, sempre que precisar de um sistema pequeno e que converta pulsos elétricos em movimentos angulares precisos, utilize um servo.

Encoder

Um encoder para motor é um dispositivo eletromecânico que fornece um sinal elétrico que é usado para controle de velocidade e/ou posição.

Os encoders transformam o movimento mecânico em um sinal elétrico. Ele é usado pelo sistema de controle para monitorar parâmetros específicos da aplicação e fazer ajustes, se necessário, para manter a máquina operando conforme desejado.

Os parâmetros monitorados são determinados pelo tipo de aplicação e podem incluir velocidade, distância, rotação, posição entre outros.

Os encoders são mais utilizados em servo motores industriais para grandes aplicações.

Aplicações

Amplamente utilizados em robótica, sistemas de radar, sistemas de fabricação automatizados, máquinas-ferramentas, computadores, máquinas CNC, sistemas de rastreamento, etc.

- Robótica
 - Braços Mecânicos / Garras
- Modelismo
 - Controle de flaps
- Automação
 - Abertura e fechamento ou ajustes angulares

Tipos de Servo

Motores

Podemos classificar os servos motores em CA (Corrente Alternada) e CC (Corrente Contínua).

- Os de CC possuem imãs permanentes com escovas e são empregados em projetos menores devido ao seu custo, eficiência e simplicidade.
- Os de CA são utilizados na indústria em aplicações que demandam maior potência e fornecer exatidão elevada no seu controle e baixíssima manutenção.

Servo Motor de

Corrente Continua

Um servo motor cc consiste em um conjunto de um pequeno motor de corrente contínua, um potenciômetro de realimentação, uma caixa de engrenagem e pelo circuito eletrônico do acionamento e loop de controle.

Circuito de Controle: Faz a recepção do sinal de controle e vai ajustar a posição do servo motor.

Potenciômetro: Vai girar conforme a posição que esta no momento o servo motor e dar feedback da posição para o circuito de controle para saber se já atingiu a posição que foi determinada.

Motor DC: um motor DC tradicional.

Engrenagens: Faz a redução e ajustes para aumento do torque.

Princípio de Funcionamento (

Como são controlados os servos motores?

Uma tensão de referência CC é ajustada para o valor correspondente à saída desejada. Esta tensão pode ser aplicada utilizando um potenciômetro, um gerador de largura de pulso de controle (PWM) para o conversor de tensão ou através de temporizadores dependendo do circuito de controle. A regulagem do potenciômetro produz uma tensão correspondente que é então aplicada na

entrada do amplificador de erro.

No controle digital, microprocessador ou microcontrolador são utilizados para gerar os pulsos de PWM — modulação em largura de Pulso para produzir sinais de controle mais precisos.

PWM

Modulação de Largura de Pulso

Modulação deste pulso que comanda a posição que o servo motor deve estar. O sinal de frequência é de 50Hz – 20ms. (Tempo de Repetição).

Dyte Cycle – entre 1 e 2 m/s ou seja 5% a 10% do total.

Mecanismo do Servo Motor

Servo Motor SG90

Pequeno e leve, com alta potência de saída. O servo pode girar aproximadamente 180 graus (90 em cada direção)

http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf

Servo Motor MG995

Este servo padrão de alta velocidade pode girar aproximadamente 120 graus (60 em cada direção).

Specifications

Weight: 55 g

Dimension: 40.7 x 19.7 x 42.9 mm approx.

• Stall torque: 8.5 kgf·cm (4.8 V), 10 kgf·cm (6 V)

Operating speed: 0.2 s/60° (4.8 V), 0.16 s/60° (6 V)

Operating voltage: 4.8 V a 7.2 V

Dead band width: 5 μs

Stable and shock proof double ball bearing design

Temperature range: 0 °C – 55 °C

Servo Motor MG90S

Pequeno e leve com alta potência de saída, este minúsculo servo pode girar aproximadamente 180 graus (90 em cada direção)

Specifications

- Weight: 13.4 g
- Dimension: 22.5 x 12 x 35.5 mm approx.
- Stall torque: 1.8 kgf·cm (4.8V), 2.2 kgf·cm (6 V)
- Operating speed: 0.1 s/60 degree (4.8 V), 0.08 s/60 degree (6 V)
- Operating voltage: 4.8 V 6.0 V
- Dead band width: 5 μs

https://components101.com/sites/default/files/component_datasheet/MG90S-Datasheet.pdf

Servo Motor

tipo Futaba S3003

Este tipo possui um torque de 3,2 Kg/cm em 4,8VDC e de 4,2 Kg/cm em 6VDC. Além disso, este servo pode girar em até 180°.

Especificações:

- Modelo: Futaba S3003 (datasheet)
- Tensão de operação: 4,8 7,2VDC
- Torque: 3.2 Kg/cm (4,8VDC) / 4.1 Kg/cm (6VDC)
- Velocidade de operação: 0,23s/60º (4,8VDC) / 0,19s/60º (6VDC)
- Posição: 180° de giro
- Tipo de rolamento: Bucha
- Comprimento do cabo conector: 280mm
- Temperatura de operação: -30º a 60º celsius
- Dimensões (CxLxA): 36x20x41mm
- Peso: 37,2g

https://d26lpennugtm8s.cloudfront.net/stores/198/075/rte/Datasheet-Servo-S3003.pdf

Formulário Teste

Acesse este link para realizar o teste relativo ao conteúdo abordado nesta Live:

https://cutt.ly/yfpBcXO

Próxima Live...

Arduino - Plataformas e Versões 01/09/2020 às 16 horas

Acompanhe nossas Lives em:

www.robotica.cpscetec.com.br/lives

A Equipe da Robótica Paula Souza agradece a participação!