Collaborative Metric Learning (CML) (3/3)

Prediction

$$\hat{x}_{ui} = -d(\mathbf{x}_u, \mathbf{x}_i)$$

Training Objective

WARP Loss with Cov. Reg.

$$\mathcal{L}(\boldsymbol{\theta}) = \mathcal{L}_m(\boldsymbol{\theta}) + \lambda \Omega(\boldsymbol{\theta})$$
 s.t. $\|\mathbf{x}_*\| \leq 1$.

$$\mathcal{L}_m(\boldsymbol{\theta}) = \sum_{(i,j)\in\mathcal{S}} \sum_{(u,k)\notin\mathcal{S}} w_{ij} \left[m + d(\mathbf{x}_u, \mathbf{x}_i)^2 - d(\mathbf{x}_u, \mathbf{x}_j)^2 \right]_+,$$

Pros & Cons

- + Benefits from *similarity*propagation → user-user &

 item-item similarities

 automatically learned
- + Interpretability
- + LSH possible
- Metric space geometry must suit the latent geometry