

Introduction to Mobile Communication

Mobile Communication, WS 2014/2015, Kap.1

Prof. Dr. Nils Aschenbruck

Mobil Communication (WS 2014/2015)

- 1. Introduction
- 2. Wireless Communication Basics
- 3. Wireless Medium Access Technologies
 - 1. Wireless LAN
 - 2. Bluetooth
 - 3. Performance Evaluation
 - 4. ZigBee & RFID
- 4. Cellular networks
- 5. Bricks for future Mobile Networking

1. Introduction

- 1.1. Devices, Apps and Communication Requirement
- 1.2. Mobility versus portability
- 1.3. Wireless networks in comparison to fixed networks
- 1.4. The electromagnetic spectrum
- 1.5. History of wireless communication
- 1.6. Telecommunication and Networking Wireless Solutions

- Largest SW/HW/networked system
- Largest number of subscribers
- Mobile devices dominate the Internet
- Mobile applications dominate Internet usage
- New possibilities, new threats
- Technology fully integrated into everybody's life almost 24/7, almost anywhere

- Computers are integrated (>95% embedded systems!)
 - small, cheap, portable, replaceable no more separate devices
- Technology is in the background
 - computer are aware of their environment and adapt ("location awareness")
 - computer recognize the location of the user and react appropriately (e.g., call forwarding, message forwarding, "context awareness"))
- Advances in technology
 - more computing power in smaller devices
 - flat, lightweight displays with low power consumption
 - new user interfaces due to small dimensions
 - more bandwidth per cubic meter
 - multiple wireless interfaces: NFC, piconets, wireless LANs, wireless WANs, regional wireless telecommunication networks etc.

1.2. Mobility versus portability

- Two aspects of mobility:
 - user mobility: users communicate (wireless) "anytime, anywhere, with anyone"
 - "seamless services"
 - device portability: devices can be connected anytime, anywhere to the network

•	Wireless vs. mobile		Examples	
	×	×	stationary computer	
	×	\checkmark	notebook in a hotel	
	\checkmark	*	wireless LANs in historic buildings	
	\checkmark	\checkmark	Smartphone	

- What does it mean for the client/server paradigm?
 - pure portability is no big challenge
 - point of network attachment and the client IP address are irrelevant for the server
 - seamless services is a challenge
 - reachability of the mobile device
 - continuation of data connections of higher layers (TCP, applications, ...)
 when changing network attachment

- Higher loss-rates due to interference
 - emissions of, e.g., engines, lightning
- Restrictive regulations of frequencies
 - frequencies have to be coordinated,
 - useful frequencies are almost all occupied
- Lower transmission rates
 - local some Mbit/s,
 - regional sometimes only, e.g., 53kbit/s with GSM/GPRS or about 150 kbit/s using EDGE
 - some Mbit/s with LTE
- Higher delays, higher jitter
 - connection setup time with GSM in the second range,
 - several hundred milliseconds for other wireless systems
 - in ms range with LTE
- Lower security, simpler active attacking
 - radio interface accessible for everyone,
 - base station can be simulated, thus attracting calls from mobile phones
- Always shared medium
 - secure access mechanisms important

Application layer	service locationnew applications, multimediaadaptive applications
Transport layer	congestion and flow controlquality of service
Network layer	addressing, routing,device locationhand-over
Data link layer	authenticationmedia accessmultiplexingmedia access control
Physical layer	encryptionmodulationinterferenceattenuationfrequency

Wireless mobile communication obviously affects the "last hop". However, tuning, changes and/or re-design are also required in other places.

1.4. The electromagnetic spectrum

Reminder: $\lambda = c/f$ where $\lambda =$ wave length, $c \cong 3x10^8 \text{m/s} =$ speed of light, f = frequency

Radio wavebands

Wavelength	Frequency	Common Name	Main Purposes
Above 100 km	Below 3 kHz	Extremely Low Frequency (ELF)	Submarine communications
10 -100 km	3 – 30 kHz	Very Low Frequency (VLF)	Maritime communications
1 -10 km	20 – 300 kHz	Low Frequency (LF) or Long Wave (LW)	AM broadcasting
100 -1000 m	300 -3000 kHz	Medium Frequency (MF) or Medium Wave (MW)	AM broadcasting
10 -100 m	3 – 30 MHz	High Frequency (HF) or Short Wave (SW)	AM broadcasting, amateur radio
1 -10 m	30 -300 MHz	Very High Frequency (VHF)	FM broadcasting, TV
0,1 -1 m	300 – 3000 MHz	Ultra High Frequency (UHF)	TV, cell phones
10 -100 mm	3 -30 GHz	Super High Frequency (SHF)	Fixed wireless, satellites
1 -10 mm	30 – 300 GHz	Extra High Frequency (EHF)	Satellites, radar

Source: Andy Dornan, "The Essential Guide to Wireless Communications Applications", Prentice Hall, 2001, p. 19, 20

Microwave wavebands

Wavelength	Frequency	Band	Main Communications Use
193 – 769 mm	0.4 – 1.5 GHz	L	Broadcasting and cellular
57.7 – 193 mm	1.5 – 5.2 GHz	S	Cellular
48.4 – 76.9 mm	3.9 – 6.2 GHz	С	Satellites
27.5 – 57.7 mm	5.2 – 10.9 GHz	Х	Fixed wireless, satellite
8.34 – 27.5 mm	10.9 – 36 GHz	К	Fixed wireless, satellite
6.52 – 8.34 mm	36 – 46 GHz	Q	Fixed wireless
5.36 – 6.52 mm	46 - 56 GHz	V	Future satellite
3.00 – 5.36 mm	56 - 100 GHz	W	Future cellular

Source: Andy Dornan, "The Essential Guide to Wireless Communications Applications", Prentice Hall, 2001, p. 20

Characteristics of selected wireless link standards

Source: Jim Kurose, Keith Ross: Computer Networking: A Top Down Approach - 5th edition, Addison-Wesley, April 2009.

Other Wireless Links – Spectrum Map – US

www.fas.org/spp/military/program/sigint/allochrt.pdf

UNIVERSITÄT

OSNABRÜCK

- In general: ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)
- 3GPP specific: see e.g. <u>3GPP TS 36.101 V11.4.0 (2013-03)</u>

Examples	Europe	USA	Japan
Cellular networks	GSM 880-915, 925- 960, 1710-1785, 1805-1880 UMTS 1920-1980, 2110-2170 LTE 791-821, 832- 862, 2500-2690	AMPS, TDMA, CDMA, GSM 824- 849, 869-894 TDMA, CDMA, GSM, UMTS 1850-1910, 1930-1990	PDC, FOMA 810-888, 893-958 PDC 1429-1453, 1477-1501 FOMA 1920-1980, 2110-2170
Cordless phones	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930-1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 245-380
Wireless LANs	802.11b/g 2412- 2472	802.11b/g 2412- 2462	802.11b 2412-2484 802.11g 2412-2472
Other RF systems	27, 128, 418, 433, 868	315, 915	426, 868

- Typically in the form of a spectrum sensing CR
 - Detect unused spectrum and share with others avoiding interference
 - Choose automatically best available spectrum
 - (intelligent form of time/frequency/space multiplexing)

Distinguish

- Primary Users (PU): users assigned to a specific spectrum by e.g. regulation
- Secondary Users (SU): users with a CR to use unused spectrum

Examples

- Reuse of (regionally) unused analog TV spectrum (aka white space)
- Temporary reuse of unused spectrum e.g. of pagers, amateur radio etc.

Many people in history used light for communication

- heliographs, flags ("semaphore"), …
- 150 BC smoke signals for communication; (Polybius, Greece)
- 1794, optical telegraph, Claude Chappe

- 1831 Faraday demonstrates electromagnetic induction
- J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
- H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

Heinrich Hertz 1889 – 1894 Professor University of Bonn Chair of Physics (Physikalisches Institut)

Figure 2.13 Mobile Semaphore Telegraph Used in the Crimean War 1853–1856.

(Source: [Belloc 1888])

Source: G.J. Holzmann, B. Pehrson, "The Early History of Data Networks", IEEE 1995, ISBN 0-8186-6782-6

Mobile telephony in 1910

Source: Ericsson Connexion December 1994

1895 Guglielmo Marconi

- first demonstration of wireless telegraphy (digital!)
- long wave transmission
 (high transmission power necessary, > 200kW)

huge base stations (30 100m high antennas)

- 1915 Wireless voice transmission New York San Francisco
- 1920 Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
- 1926 Train-phone on the line Hamburg Berlin
 - wires parallel to the railroad track

- 1928 many TV broadcast trials (across Atlantic, color TV, TV news)
- 1933 Frequency modulation (E. H. Armstrong)
- 1958 A-Netz in Germany
 - analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers
- 1972 B-Netz in Germany
 - analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
 - available also in A, NL and LUX, 1979 13000 customer in D
- 1979 NMT at 450MHz (Scandinavian countries)
- 1982 Start of GSM-specification
 - goal: pan-European digital mobile phone system with roaming
- 1983 Start of the American AMPS (Advanced Mobile Phone System, analog)
- 1984 CT-1 standard (Europe) for cordless telephones

1986 C-Netz in Germany

- analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
- Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage

1991 Specification of DECT

- Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
- 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 50 countries

1992 Start of GSM

- in D as D1 and D2, fully digital, 900MHz, 124 channels
- automatic location, hand-over, cellular
- roaming in Europe now worldwide in more than 170 countries
- services: data with 9.6kbit/s, FAX, voice, ...

1994 E-Netz in Germany

- **GSM** with 1800MHz, smaller cells
- As Eplus in D (1997 98% coverage of the *population*)
- 1996 HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s)
- 1997 Wireless LAN IEEE802.11
 - IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
 - already many (proprietary) products available in the beginning
- 1998 Specification of GSM successors
 - for UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000
- Iridium
 - 66 satellites (+6 spare), 1.6GHz to the mobile phone

1999 Standardization of additional wireless LANs

- IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s
- **Bluetooth** for piconets, 2.4Ghz, <1Mbit/s

Decision about IMT-2000

- Several "members" of a "family": UMTS, cdma2000, DECT, ...

Start of WAP (Wireless Application Protocol) and i-mode

- First step towards a unified Internet/mobile communication system
- Access to many services via the mobile phone

• 2000 GSM with higher data rates

- **HSCSD** offers up to 57,6kbit/s
- First **GPRS** trials with up to 50 kbit/s (packet oriented!)

UMTS auctions/beauty contests

- Hype followed by disillusionment
 (approx. 50 B\$ paid in Germany for 6 UMTS licences!)
- 2001 Start of 3G systems
 - Cdma2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan

- 2002 WLAN hot-spots start to spread
- 2003 UMTS starts in Germany
 - Start of **DVB-T** in Germany replacing analog TV
- 2005 WiMax starts as DSL alternative (not mobile)
 - first **ZigBee** products
- 2006 HSDPA starts in Germany as fast UMTS download version offering > 3 Mbit/s
 - WLAN draft for 250 Mbit/s (802.11n) using MIMO
 - WPA2 mandatory for Wi-Fi WLAN devices
- 2007 over 3.3 billion subscribers for mobile phones (NOT 3 bn people!)
- 2008 "real" Internet widely available on mobile phones (standard browsers, decent data rates)
 - 7.2 Mbit/s **HSDPA**, 1.4 Mbit/s **HSUPA** available in Germany,
 - more than 100 operators support HSPA worldwide,
 - first LTE tests (>100 Mbit/s)
- 2009 the story continues with netbooks, iphones, VolPoWLAN...

1.6. Telecommunication and Networking Wireless Solutions

Telecommunication

GSM -> GPRS -> UMTS -> HSPA -> LTE

Wireless Networks WPAN -> WLAN -> WMAN

