

SEQUENCE LISTING

```
<110> Nagy, Zoltan
      Brunner, Christoph
      Tesar, Michael
      Thomassen-Wolf, Elisabeth
      Rauchenberger, Robert
<120> HUMAN POLYPEPTIDES CAUSING OR LEADING TO THE KILLING
      OF CELLS INCLUDING LYMPHOID TUMOR CELLS
<130> GPCG-P01-003
<140> 10/001934
<141> 2001-11-15
<150> PCT/US01/15625
<151> 2001-05-14
<150> EP 00 11 0065.0
<151> 2000-05-12
<150> US 60/238,762
<151> 2000-10-06
<160> 62
<170> PatentIn version 3.2
<210> 1
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222> (1)..(4)
<223> Xaa represents any amino acid residue
<220>
<221> VARIANT
<222> (7)..(7)
<223> Xaa represents any amino acid residue
<220>
<221> VARIANT
<222> (10)..(10)
<223> Xaa represents any amino acid residue
<223> sequence for VHconCDR3
<400> 1
Xaa Xaa Xaa Arg Gly Xaa Phe Asp Xaa
```

```
<210> 2
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<221> VARIANT
<222> (5)..(8)
<223> Xaa represents any amino acid residue
<220>
<223> sequence for VLconCDR3
<400> 2
Gln Ser Tyr Asp Xaa Xaa Xaa Xaa
<210> 3
<211> 10
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-VH-CDR3, MS-GPC8-1-VH-CDR3, MS-GPC8-6-VH-CDR3,
MS-GPC8-9-VH-CDR3, MS-GPC8-10-VH-CDR3, MS-GPC8-17-VH-CDR3, MS-GPC8-18-VH-CDR3,
MS-GPC8-27-VH-CDR3, MS-GPC8-6-2-VH-CDR3, MS-GPC8-6-13-VH-CDR3,
MS-GPC8-6-19-VH-CDR3
<220>
<223> sequence for MS-GPC8-6-27-VH-CDR3, MS-GPC8-6-45-VH-CDR3,
MS-GPC8-10-57-VH-CDR3,
MS-GPC8-27-7-VH-CDR3, MS-GPC8-27-10-VH-CDR3, MS-GPC8-27-41-VH-CDR3,
MS-GPC8-6-47-VH-CDR3
<400> 3
Ser Pro Arg Tyr Arg Gly Ala Phe Asp Tyr
<210> 4
<211> 8
<212> PRT
<213> artificial sequence
<223> sequence for MS-GPC8-10-VL-CDR3, MS-GPC8-10-57-VL-CDR3
<400> 4
Gln Ser Tyr Asp Leu Ile Arg His
<210> 5
<211> 8
<212> PRT
<213> artificial sequence
<220>
```

```
<223> sequence for MS-GPC8-27-VL-CDR3, MS-GPC8-27-7-VL-CDR3,
MS-GPC8-27-10-VL-CDR3, MS-GPC8-27-41-VL-CDR3
<400> 5
Gln Ser Tyr Asp Met Asn Val His
                5
<210> 6
<211> 13
<212> PRT
<213> artificial sequence
<220>
<221> VARIANT
<222> (4)..(5)
<223> Xaa represents any amino acid residue
<220>
<221> VARIANT
<222> (9)..(9)
<223> Xaa represents any amino acid residue
<220>
<221> VARIANT
<222> (13)..(13)
<223> Xaa represents any amino acid residue
<220>
<223> sequence for VLconCDR1
<400> 6
Ser Gly Ser Xaa Xaa Asn Ile Gly Xaa Asn Tyr Val Xaa
<210> 7
<211>
      13
<212> PRT
<213> artificial sequence
<223> sequence for MS-GPC-8-10-57-VL-CDR1, MS-GPC-8-27-41-VL-CDR1
<400> 7
Ser Gly Ser Glu Ser Asn Ile Gly Asn Asn Tyr Val Gln
<210> 8
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for Streptaq
<400> 8
```

```
Trp Ser His Pro Gln Phe Glu Lys
<210> 9
<211> 4
<212> PRT
<213> artificial sequence
<220>
<223> FLAG peptide
<400> 9
Asp Tyr Lys Asp
<210> 10
<211> 17
<212> DNA
<213> artificial sequence
<220>
<223> sequence for PrimerCRT5
<400> 10
gtggtggttc cgatatc
                                                                        17
<210> 11
<211> 44
<212> DNA
<213> artificial sequence
<220>
<223> sequence for PrimerCRT6
<400> 11
agcgtcacac tcggtgcggc tttcggctgg ccaagaacgg gtta
                                                                        44
<210> 12
<211> 13
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC1-VL-CDR1,MS-GPC8-VL-CDR1,MS-GPC10-VL-CDR1,
MS-GPC8-1-VL-CDR1, MS-GPC8-6-VL-CDR1, MS-GPC8-9-VL-CDR1, MS-GPC8-10-VL-CDR1,
MS-GPC8-17-VL-CDR1, MS-GPC8-18-VL-CDR1, MS-GPC8-27-VL-CDR1,
<400> 12
Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr Val Ser
<210> 13
<211> 13
<212> PRT
<213> artificial sequence
```

```
<sub><</sub>220>
<223> sequence for MS-GPC8-6-2-VL-CDR1
<400> 13
ser Gly Ser Glu Ser Asn Ile Gly Ser Asn Tyr Val His
1
<210> 14
<211> 13
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-6-19-VL-CDR1
<400> 14
ser Gly Ser Glu Ser Asn Ile Gly Ser Asn Tyr Val Ala
<210> 15
<211> 13
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-6-27-VL-CDR1
<400> 15
ser Gly Ser Asp Ser Asn Ile Gly Ala Asn Tyr Val Thr
<210> 16
<211> 13
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-6-45-VL-CDR1
<400> 16
ser Gly Ser Glu Pro Asn Ile Gly Ser Asn Tyr Val Phe
<210> 17
<211> 13
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-27-7-VL-CDR1
<400> 17
Ser Gly Ser Glu Ser Asn Ile Gly Asn Asn Tyr Val Gly
               5
```

```
<210> 18
<211> 13
<212> PRT
<213> artificial sequence
<223> sequence for MS-GPC8-27-10-VL-CDR1
<400> 18
Ser Gly Ser Glu Ser Asn Ile Gly Ala Asn Tyr Val Asn
<210> 19
<211> 10
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC1-VH-CDR3
<400> 19
Gln Tyr Gly His Arg Gly Gly Phe Asp His
<210> 20
<211> 9
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC6-VH-CDR3
<400> 20
Gly Tyr Gly Arg Tyr Ser Pro Asp Leu
<210> 21
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC6-VL-CDR3
<400> 21
Gln Gln Tyr Ser Asn Leu Pro Phe
<210> 22
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-VL-CDR3
```

```
<400> 22
Gln Ser Tyr Asp Met Pro Gln Ala
<210> 23
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC10-VL-CDR3
<400> 23
Gln Ser Tyr Asp Leu Thr Met Gly
<210> 24
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-1-VL-CDR3
<400> 24
Gln Ser Tyr Asp Phe Ser His Tyr
<210> 25
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-9-VL-CDR3
<400> 25
Gln Ser Tyr Asp Ile Gln Leu His
<210> 26
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-17-VL-CDR3
<400> 26
Gln Ser Tyr Asp Phe Ser Val Tyr
<210> 27
<211> 8
```

```
<212> PRT
<213> artificial sequence
<223> sequence for MS-GPC8-18-VL-CDR3
<400> 27
Gln Ser Tyr Asp Phe Ser Ile Tyr
<210> 28
<211> 109
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-1-VL
<400> 28
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ser His
Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
<210> 29
<211> 13
<212> PRT
<213> artificial sequence
<223> sequence for MS-GPC8-6-13-VL-CDR1
<400> 29
Ser Gly Ser Glu Ser Asn Ile Gly Ala Asn Tyr Val Thr
<210> 30
<211> 13
<212> PRT
<213> artificial sequence
```

```
<220>
<223> sequence for MS-GPC8-6-47-VL-CDR1
Ser Gly Ser Glu Ser Asn Ile Gly Ser Asn Tyr Val Ser
<210> 31
<211> 109
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-9-VL
<400> 31
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Ile Gln Leu
               85
                                   90
His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
<210> 32
<211> 109
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-18-VL
<400> 32
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
    50
                       55
```

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ser Ile 85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 33

<211> 3548

<212> DNA

<213> artificial sequence

<220>

<223> sequence for pMORPH13 scFv

<400> 33

agagcatgcg taggagaaaa taaaatgaaa caaagcacta ttgcactggc actcttaccg 60 ttgctcttca cccctgttac caaagccgac tacaaagatg aagtgcaatt gqttcaqtct 120 ggcgcggaag tgaaaaaacc gggcagcagc gtgaaagtga gctgcaaagc ctccqqaqqc 180 acttttagca gctatgcgat tagctgggtg cgccaagccc ctgggcaggg tctcgagtgg 240 atgggcggca ttattccgat ttttggcacg gcgaactacg cgcagaagtt tcagggccgg 300 gtgaccatta ccgcggatga aagcaccagc accgcgtata tggaactgag cagcctgcgt 360 agcgaagata cggccgtgta ttattgcgcg cgttattatg atcgtatgta taatatggat 420 tattggggcc aaggcaccct ggtgacggtt agctcagcgg gtggcggttc tggcggcggt 480 gggagcggtg gcggtggttc tggcggtggt ggttccgata tcgaactgac ccagccgcct 540 teagtgageg ttgcaccagg teagacegeg egtatetegt gtageggega tgcqetqqqe 600 gataaatacg cgagctggta ccagcagaaa cccgggcagg cgccagttct ggtgatttat 660 gatgattetg acceptecete aggeateceg gaaceettta geggatecaa cageggeaac 720 accgcgaccc tgaccattag cggcactcag gcggaagacg aagcggatta ttattgccag 780 agctatgacg ctcatatgcg tcctgtgttt ggcggcggca cgaagttaac cgttcttggc 840 caggaattcg agcagaagct gatctctgag gaggatctga actagggtgg tggctctggt 900 tccggtgatt ttgattatga aaagatggca aacgctaata agggggctat gaccgaaaat 960 gccgatgaaa acgcgctaca gtctgacgct aaaggcaaac ttgattctgt cgctactgat 1020 tacggtgctg ctatcgatgg tttcattggt gacgtttccg gccttgctaa tggtaatggt 1080 gctactggtg attttgctgg ctctaattcc caaatggctc aagtcggtga cggtgataat 1140 tcacctttaa tgaataattt ccgtcaatat ttaccttccc tccctcaatc ggttgaatgt 1200

cgcccttttg	tctttggcgc	tggtaaacca	tatgaatttt	ctattgattg	tgacaaaata	1260
aacttattcc	gtggtgtctt	tgcgtttctt	ttatatgttg	ccacctttat	gtatgtattt	1320
tctacgtttg	ctaacatact	gcgtaataag	gagtcttgat	aagcttgacc	tgtgaagtga	1380
aaaatggcgc	agattgtgcg	acatttttt	tgtctgccgt	ttaatgaaat	tgtaaacgtt	1440
aatattttgt	taaaattcgc	gttaaatttt	tgttaaatca	gctcattttt	taaccaatag	1500
gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	ccgagatagg	gttgagtgtt	1560
gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	actccaacgt	caaagggcga	1620
aaaaccgtct	atcagggcga	tggcccacta	cgagaaccat	caccctaatc	aagttttttg	1680
gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	ggagcccccg	atttagagct	1740
tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	agaaagcgaa	aggagcgggc	1800
gctagggcgc	tggcaagtgt	agcggtcacg	ctgcgcgtaa	ccaccacacc	cgccgcgctt	1860
aatgcgccgc	tacagggcgc	gtgctagcca	tgtgagcaaa	aggccagcaa	aaggccagga	1920
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	1980
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	2040
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	2100
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	2160
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	2220
agtccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	2280
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	2340
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaaga	acagtatttg	2400
gtatctgcgc	tctgctgtag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	2460
gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	2520
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	2580
acgaaaactc	acgttaaggg	attttggtca	gatctagcac	caggcgttta	agggcaccaa	2640
taactgcctt	aaaaaaatta	cgccccgccc	tgccactcat	cgcagtactg	ttgtaattca	2700
ttaagcattc	tgccgacatg	gaagccatca	caaacggcat	gatgaacctg	aatcgccagc	2760
ggcatcagca	ccttgtcgcc	ttgcgtataa	tatttgccca	tagtgaaaac	gggggcgaag	2820
aagttgtcca	tattggctac	gtttaaatca	aaactggtga	aactcaccca	gggattggct	2880
gagacgaaaa	acatattctc	aataaaccct	ttagggaaat	aggccaggtt	ttcaccgtaa	2940
cacgccacat	cttgcgaata	tatgtgtaga	aactgccgga	aatcgtcgtg	gtattcactc	3000

cagagcgatg aaaacgtttc	agtttgctca	tggaaaacgg	tgtaacaagg	gtgaacacta	3060
tcccatatca ccagctcacc	gtctttcatt	gccatacgga	actccgggtg	agcattcatc	3120
aggcgggcaa gaatgtgaat	aaaggccgga	taaaacttgt	gcttattttt	ctttacggtc	3180
tttaaaaagg ccgtaatatc	cagctgaacg	gtctggttat	aggtacattg	agcaactgac	3240
tgaaatgcct caaaatgttc	tttacgatgc	cattgggata	tatcaacggt	ggtatatcca	3300
gtgattttt tctccatttt	agcttcctta	gctcctgaaa	atctcgataa	ctcaaaaaat	3360
acgcccggta gtgatcttat	ttcattatgg	tgaaagttgg	aacctcaccc	gacgtctaat	3420
gtgagttagc tcactcatta	ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	3480
ttgtgtggaa ttgtgagcgg	ataacaattt	cacacaggaa	acagctatga	ccatgattac	3540
gaatttct					3548
<210> 34 <211> 4410 <212> DNA <213> artificial seq <220> <223> sequence for p					
<400> 34 tctagagcat gcgtaggaga	aaataaaatg	aaacaaagca	ctattgcact	ggcactctta	60
ccgttgctct tcacccctgt	taccaaagcc	gactacaaag	atgaagtgca	attggtggaa	120
agcggcggcg gcctggtgca	accgggcggc	agcctgcgtc	tgagctgcgc	ggcctccgga	180
tttaccttta gcagctatgc	gatgagctgg	gtgcgccaag	cccctgggaa	gggtctcgag	240
tgggtgagcg cgattagcgg	tagcggcggc	agcacctatt	atgcggatag	cgtgaaaggc	300
cgttttacca tttcacgtga	taattcgaaa	aacaccctgt	atctgcaaat	gaacagcctg	360
cgtgcggaag atacggccgt	gtattattgc	gcgcgtgtta	agaagcattt	ttctcgtaag	420
aattggtttg attattgggg	ccaaggcacc	ctggtgacgg	ttagctcagc	gggtggcggt	480
tctggcggcg gtgggagcgg	tggcggtggt	tctggcggtg	gtggttccga	tatcgtgatg	540
acccagagcc cactgagcct	gccagtgact	ccgggcgagc	ctgcgagcat	tagctgcaga	600
agcagccaaa gcctgctgca	tagcaacggc	tataactatc	tggattggta	ccttcaaaaa	660
ccaggtcaaa gcccgcagct	attaatttat	ctgggcagca	accgtgccag	tggggtcccg	720
gatcgtttta gcggctctgg	atccggcacc	gattttaccc	tgaaaattag	ccgtgtggaa	780
gctgaagacg tgggcgtgta	ttattgccag	cagcattata	ccaccccgcc	gacctttggc	840

cagggtacga aagttgaaat taaacgtacg gaattcgact ataaagatga cgatgacaaa

900

ggcgcgccgt	ggagccaccc	gcagtttgaa	aaatgataag	cttgacctgt	gaagtgaaaa	960
atggcgcaga	ttgtgcgaca	tttttttgt	ctgccgttta	attaaagggg	gggggggcc	1020
ggcctggggg	ggggtgtaca	tgaaattgta	aacgttaata	ttttgttaaa	attcgcgtta	1080
aatttttgtt	aaatcagctc	attttttaac	caataggccg	aaatcggcaa	aatcccttat	1140
aaatcaaaag	aatagaccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	1200
ctattaaaga	acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	1260
ccactacgag	aaccatcacc	ctaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	1320
aatcggaacc	ctaaagggag	ccccgattt	agagcttgac	ggggaaagcc	ggcgaacgtg	1380
gcgagaaagg	aagggaagaa	agcgaaagga	gcgggcgcta	gggcgctggc	aagtgtagcg	1440
gtcacgctgc	gcgtaaccac	cacacccgcc	gcgcttaatg	cgccgctaca	gggcgcgtgc	1500
tagactagtg	tttaaaccgg	accggggggg	ggcttaagtg	ggctgcaaaa	caaaacggcc	1560
tcctgtcagg	aagccgcttt	tatcgggtag	cctcactgcc	cgctttccag	tcgggaaacc	1620
tgtcgtgcca	gctgcatcag	tgaatcggcc	aacgcgcggg	gagaggcggt	ttgcgtattg	1680
ggagccaggg	tggtttttct	tttcaccagt	gagacgggca	acagctgatt	gcccttcacc	1740
gcctggccct	gagagagttg	cagcaagcgg	tccacgctgg	tttgccccag	caggcgaaaa	1800
tcctgtttga	tggtggtcag	cggcgggata	taacatgagc	tgtcctcggt	atcgtcgtat	1860
cccactaccg	agatgtccgc	accaacgcgc	agcccggact	cggtaatggc	acgcattgcg	1920
cccagcgcca	tctgatcgtt	ggcaaccagc	atcgcagtgg	gaacgatgcc	ctcattcagc	1980
atttgcatgg	tttgttgaaa	accggacatg	gcactccagt	cgccttcccg	ttccgctatc	2040
ggctgaattt	gattgcgagt	gagatattta	tgccagccag	ccagacgcag	acgcgccgag	2100
acagaactta	atgggccagc	taacagcgcg	atttgctggt	ggcccaatgc	gaccagatgc	2160
tccacgccca	gtcgcgtacc	gtcctcatgg	gagaaaataa	tactgttgat	gggtgtctgg	2220
tcagagacat	caagaaataa	cgccggaaca	ttagtgcagg	cagcttccac	agcaatagca	2280
tcctggtcat	ccagcggata	gttaataatc	agcccactga	cacgttgcgc	gagaagattg	2340
tgcaccgccg	ctttacaggc	ttcgacgccg	cttcgttcta	ccatcgacac	gaccacgctg	2400
gcacccagtt	gatcggcgcg	agatttaatc	gccgcgacaa	tttgcgacgg	cgcgtgcagg	2460
gccagactgg	aggtggcaac	gccaatcagc	aacgactgtt	tgcccgccag	ttgttgtgcc	2520
acgcggttag	gaatgtaatt	cagctccgcc	atcgccgctt	ccacttttc	ccgcgttttc	2580
gcagaaacgt	ggctggcctg	gttcaccacg	cgggaaacgg	tctgataaga	gacaccggca	2640
tactctgcga	catcgtataa	cgttactggt	ttcacattca	ccaccctgaa	ttgactctct	2700

tccgggcgct	atcatgccat	accgcgaaag	gttttgcgcc	attcgatgct	agccatgtga	2760
gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	2820
aggctccgcc	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	2880
ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	gctccctcgt	gcgctctcct	2940
gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	tcccttcggg	aagcgtggcg	3000
ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	ctccaagctg	3060
ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	3120
cttgagtcca	acccggtaag	acacgactta	tegecactgg	cagcagccac	tggtaacagg	3180
attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	3240
ggctacacta	gaagaacagt	atttggtatc	tgcgctctgc	tgtagccagt	taccttcgga	3300
aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	3360
gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	3420
tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcagatct	3480
agcaccaggc	gtttaagggc	accaataact	gccttaaaaa	aattacgccc	cgccctgcca	3540
ctcatcgcag	tactgttgta	attcattaag	cattctgccg	acatggaagc	catcacaaac	3600
ggcatgatga	acctgaatcg	ccagcggcat	cagcaccttg	tcgccttgcg	tataatattt	3660
gcccatagtg	aaaacggggg	cgaagaagtt	gtccatattg	gctacgttta	aatcaaaact	3720
ggtgaaactc	acccagggat	tggctgagac	gaaaaacata	ttctcaataa	accctttagg	3780
gaaataggcc	aggttttcac	cgtaacacgc	cacatcttgc	gaatatatgt	gtagaaactg	3840
ccggaaatcg	tcgtggtatt	cactccagag	cgatgaaaac	gtttcagttt	gctcatggaa	3900
aacggtgtaa	caagggtgaa	cactatccca	tatcaccagc	tcaccgtctt	tcattgccat	3960
acggaactcc	gggtgagcat	tcatcaggcg	ggcaagaatg	tgaataaagg	ccggataaaa	4020
cttgtgctta	tttttcttta	cggtctttaa	aaaggccgta	atatccagct	gaacggtctg	4080
gttataggta	cattgagcaa	ctgactgaaa	tgcctcaaaa	tgttctttac	gatgccattg	4140
ggatatatca	acggtggtat	atccagtgat	ttttttctcc	attttagctt	ccttagctcc	4200
tgaaaatctc	gataactcaa	aaaatacgcc	cggtagtgat	cttatttcat	tatggtgaaa	4260
gttggaacct	cacccgacgt	ctaatgtgag	ttagctcact	cattaggcac	cccaggcttt	4320
acactttatg	cttccggctc	gtatgttgtg	tggaattgtg	agcggataac	aatttcacac	4380
aggaaacagc	tatgaccatg	attacgaatt				4410

```
<210>
       35
<211> 5020
<212> DNA
<213> artificial sequence
<220>
<223>
      sequence for pMx9 Fab GPC8
<400>
atcgtgctga cccagccgcc ttcagtgagt ggcgcaccag gtcagcgtgt gaccatctcg
                                                                       60
tgtagcggca gcagcagcaa cattggcagc aactatgtga gctggtacca gcagttgccc
                                                                      120
gggacggcgc cgaaactgct gatttatgat aacaaccagc gtccctcagg cgtgccggat
                                                                      180
cgttttagcg gatccaaaag cggcaccagc gcgagccttg cgattacggg cctgcaaagc
                                                                      240
gaagacgaag cggattatta ttgccagagc tatgacatgc ctcaggctgt gtttggcggc
                                                                      300
ggcacgaagt ttaaccgttc ttggccagcc gaaagccgca ccgagtgtga cgctgtttcc
                                                                      360
gccgagcagc gaagaattgc aggcgaacaa agcgaccctg gtgtgcctga ttagcgactt
                                                                      420
ttatccggga gccgtgacag tggcctggaa ggcagatagc agccccgtca aggcgggagt
                                                                      480
ggagaccacc acacceteca aacaaagcaa caacaagtac geggecagea getatetgag
                                                                      540
cctgacgcct gagcagtgga agtcccacag aagctacagc tgccaggtca cgcatgaggg
                                                                      600
gagcaccgtg gaaaaaaccg ttgcgccgac tgaggcctga taagcatgcg taggagaaaa
                                                                      660
taaaatgaaa caaagcacta ttgcactggc actcttaccg ttgctcttca cccctgttac
                                                                      720
caaagcccag gtgcaattga aagaaagcgg cccggccctg gtgaaaccga cccaaaccct
                                                                      780
gaccctgacc tgtacctttt ccggatttag cctgtccacg tctggcgttg gcgtggctg
                                                                      840
gattcgccag ccgcctggga aagccctcga gtggctggct ctgattgatt gggatgatga
                                                                      900
taagtattat agcaccagcc tgaaaacgcg tctgaccatt agcaaagata cttcgaaaaa
                                                                      960
tcaggtggtg ctgactatga ccaacatgga cccggtggat acggccacct attattgcgc
                                                                     1020
gegtteteet egttategtg gtgettttga ttattgggge caaggeacee tggtgaeggt
                                                                     1080
tageteageg tegaceaaag gteeaagegt gttteegetg geteegagea geaaaageae
                                                                     1140
cagcggcggc acggctgccc tgggctgcct ggttaaagat tatttcccgg aaccagtcac
                                                                     1200
cgtgagctgg aacagcgggg cgctgaccag cggcgtgcat acctttccgg cggtgctgca
                                                                     1260
aagcagegge etgtatagee tgageagegt tgtgaeegtg eegageagea gettaggeae
                                                                     1320
tcagacctat atttgcaacg tgaaccataa accgagcaac accaaagtgg ataaaaaagt
                                                                     1380
ggaaccgaaa agcgaattcg actataaaga tgacgatgac aaaggcgcgc cgtggagcca
                                                                     1440
eccgcagttt gaaaaatgat aagettgace tgtgaagtga aaaatggege agattgtgeg
                                                                     1500
```

acatttttt	tgtctgccgt	ttaattaaag	9999999999	gccggcctgg	gggggggtgt	1560
acatgaaatt	gtaaacgtta	atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	1620
ctcattttt	aaccaatagg	ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	1680
cgagataggg	ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	1740
ctccaacgtc	aaagggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gagaaccatc	1800
accctaatca	agttttttgg	ggtcgaggtg	ccgtaaagca	ctaaatcgga	accctaaagg	1860
gagcccccga	tttagagctt	gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	1920
gaaagcgaaa	ggagcgggcg	ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	1980
caccacaccc	gccgcgctta	atgcgccgct	acagggcgcg	tgctagacta	gtgtttaaac	2040
cggaccgggg	gggggcttaa	gtgggctgca	aaacaaaacg	gcctcctgtc	aggaagccgc	2100
ttttatcggg	tagcctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	2160
cagtgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggagcca	gggtggtttt	2220
tctttcacc	agtgagacgg	gcaacagctg	attgcccttc	accgcctggc	cctgagagag	2280
ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	aaatcctgtt	tgatggtggt	2340
cagcggcggg	atataacatg	agctgtcctc	ggtatcgtcg	tatcccacta	ccgagatgtc	2400
cgcaccaacg	cgcagcccgg	actcggtaat	ggcacgcatt	gcgcccagcg	ccatctgatc	2460
gttggcaacc	agcatcgcag	tgggaacgat	gccctcattc	agcatttgca	tggtttgttg	2520
aaaaccggac	atggcactcc	agtcgccttc	ccgttccgct	atcggctgaa	tttgattgcg	2580
agtgagatat	ttatgccagc	cagccagacg	cagacgcgcc	gagacagaac	ttaatgggcc	2640
agctaacagc	gcgatttgct	ggtggcccaa	tgcgaccaga	tgctccacgc	ccagtcgcgt	2700
accgtcctca	tgggagaaaa	taatactgtt	gatgggtgtc	tggtcagaga	catcaagaaa	2760
taacgccgga	acattagtgc	aggcagcttc	cacagcaata	gcatcctggt	catccagcgg	2820
atagttaata	atcagcccac	tgacacgttg	cgcgagaaga	ttgtgcaccg	ccgctttaca	2880
ggcttcgacg	ccgcttcgtt	ctaccatcga	cacgaccacg	ctggcaccca	gttgatcggc	2940
gcgagattta	atcgccgcga	caatttgcga	cggcgcgtgc	agggccagac	tggaggtggc	3000
aacgccaatc	agcaacgact	gtttgcccgc	cagttgttgt	gccacgcggt	taggaatgta	3060
attcagctcc	gccatcgccg	cttccacttt	ttcccgcgtt	ttcgcagaaa	cgtggctggc	3120
ctggttcacc	acgcgggaaa	cggtctgata	agagacaccg	gcatactctg	cgacatcgta	3180
taacgttact	ggtttcacat	tcaccaccct	gaattgactc	tcttccgggc	gctatcatgc	3240
cataccgcga	aaggttttgc	gccattcgat	gctagccatg	tgagcaaaag	gccagcaaaa	3300

ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggctcc	gccccctga	3360
cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	3420
ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	ccctgccgct	3480
taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	atagctcacg	3540
ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	tgcacgaacc	3600
ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	ccaacccggt	3660
aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	gagcgaggta	3720
tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	ctagaagaac	3780
agtatttggt	atctgcgctc	tgctgtagcc	agttaccttc	ggaaaaagag	ttggtagctc	3840
ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	agcagcagat	3900
tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	ggtctgacgc	3960
tcagtggaac	gaaaactcac	gttaagggat	tttggtcaga	tctagcacca	ggcgtttaag	4020
ggcaccaata	actgccttaa	aaaaattacg	ccccgccctg	ccactcatcg	cagtactgtt	4080
gtaattcatt	aagcattctg	ccgacatgga	agccatcaca	aacggcatga	tgaacctgaa	4140
tcgccagcgg	catcagcacc	ttgtcgcctt	gcgtataata	tttgcccata	gtgaaaacgg	4200
gggcgaagaa	gttgtccata	ttggctacgt	ttaaatcaaa	actggtgaaa	ctcacccagg	4260
gattggctga	gacgaaaaac	atattctcaa	taaacccttt	agggaaatag	gccaggtttt	4320
caccgtaaca	cgccacatct	tgcgaatata	tgtgtagaaa	ctgccggaaa	tcgtcgtggt	4380
attcactcca	gagcgatgaa	aacgtttcag	tttgctcatg	gaaaacggtg	taacaagggt	4440
gaacactatc	ccatatcacc	agctcaccgt	ctttcattgc	catacggaac	tccgggtgag	4500
cattcatcag	gcgggcaaga	atgtgaataa	aggccggata	aaacttgtgc	ttattttct	4560
ttacggtctt	taaaaaggcc	gtaatatcca	gctgaacggt	ctggttatag	gtacattgag	4620
caactgactg	aaatgcctca	aaatgttctt	tacgatgcca	ttgggatata	tcaacggtgg	4680
tatatccagt	gattttttc	tccattttag	cttccttagc	tcctgaaaat	ctcgataact	4740
caaaaaatac	gcccggtagt	gatcttattt	cattatggtg	aaagttggaa	cctcacccga	4800
cgtctaatgt	gagttagctc	actcattagg	caccccaggc	tttacacttt	atgcttccgg	4860
ctcgtatgtt	gtgtggaatt	gtgagcggat	aacaatttca	cacaggaaac	agctatgacc	4920
atgattacga	atttctagat	aacgagggca	aaaaatgaaa	aagacagcta	tcgcgattgc	4980
agtggcactg	gctggtttcg	ctaccgtagc	gcaggccgat			5020

```
<210>
      36
      4145
<213> artificial sequence
<220>
<223>
      sequence for pMORPH18 Fab GPC8
<400>
      36
tcagataacg agggcaaaaa atgaaaaaga cagctatcgc gattgcagtg gcactggctg
                                                                       60
gtttegetae egtagegeag geegatateg tgetgaeeca geegeettea gtgagtggeg
                                                                      120
caccaggica gcgtgtgacc atctcgtgta gcggcagcag cagcaacatt ggcagcaact
                                                                      180
atgtgagctg gtaccagcag ttgcccggga cggcgccgaa actgctgatt tatgataaca
                                                                      240
accagegtee etcaggegtg ceggategtt ttageggate caaaagegge accagegega
                                                                      300
gccttgcgat tacgggcctg caaagcgaag acgaagcgga ttattattgc cagagctatg
                                                                      360
acatgcetca ggetgtgttt ggeggeggea egaagtttaa eegttettgg eeageegaaa
                                                                      420
gccgcaccga gtgtgacgct gtttccgccg agcagcgaag aattgcaggc gaacaaagcg
                                                                      480
accetggtgt geetgattag egaettttat eegggageeg tgaeagtgge etggaaggea
                                                                      540
gatagcagcc ccgtcaaggc gggagtggag accaccacac cctccaaaca aagcaacaac
                                                                      600
aagtacgcgg ccagcagcta tctgagcctg acgcctgagc agtggaagtc ccacagaagc
                                                                      660
tacagctgcc aggtcacgca tgaggggagc accgtggaaa aaaccgttgc gccgactgag
                                                                      720
gcctgataag catgcgtagg agaaaataaa atgaaacaaa gcactattgc actggcactc
                                                                      780
ttaccgttgc tcttcacccc tgttaccaaa gcccaggtgc aattgaaaga aagcggcccg
                                                                      840
gccctggtga aaccgaccca aaccctgacc ctgacctgta ccttttccgg atttagcctg
                                                                      900
tecaegtetg gegttggegt gggetggatt egeeageege etgggaaage eetegagtgg
                                                                      960
ctggctctga ttgattggga tgatgataag tattatagca ccagcctgaa aacgcgtctg
                                                                     1020
accattagca aagatacttc gaaaaatcag gtggtgctga ctatgaccaa catggacccg
                                                                     1080
gtggatacgg ccacctatta ttgcgcgcgt tctcctcgtt atcgtggtgc ttttgattat
                                                                     1140
tggggccaag gcaccctggt gacggttagc tcagcgtcga ccaaaggtcc aagcgtgttt
                                                                     1200
eegetggete egageageaa aageaceage ggeggeaegg etgeeetggg etgeetggtt
                                                                     1260
aaagattatt teeeggaace agteacegtg agetggaaca geggggeget gaecagegge
                                                                     1320
gtgcatacct ttccggcggt gctgcaaagc agcggcctgt atagcctgag cagcgttgtg
                                                                     1380
accgtgccga gcagcagett aggcaeteag acetatattt gcaaegtgaa ecataaaeeg
                                                                     1440
agcaacacca aagtggataa aaaagtggaa ccgaaaagcg aattcggggg agggagcggg
                                                                     1500
```

agcggtgatt	ttgattatga	aaagatggca	aacgctaata	agggggctat	gaccgaaaat	1560
gccgatgaaa	acgcgctaca	gtctgacgct	aaaggcaaac	ttgattctgt	cgctactgat	1620
tacggtgctg	ctatcgatgg	tttcattggt	gacgtttccg	gccttgctaa	tggtaatggt	1680
gctactggtg	attttgctgg	ctctaattcc	caaatggctc	aagtcggtga	cggtgataat	1740
tcacctttaa	tgaataattt	ccgtcaatat	ttaccttccc	tccctcaatc	ggttgaatgt	1800
cgcccttttg	tctttggcgc	tggtaaacca	tatgaatttt	ctattgattg	tgacaaaata	1860
aacttattcc	gtggtgtctt	tgcgtttctt	ttatatgttg	ccacctttat	gtatgtattt	1920
tctacgtttg	ctaacatact	gcgtaataag	gagtcttgat	aagcttgacc	tgtgaagtga	1980
aaaatggcgc	agattgtgcg	acatttttt	tgtctgccgt	ttaatgaaat	tgtaaacgtt	2040
aatattttgt	taaaattcgc	gttaaatttt	tgttaaatca	gctcattttt	taaccaatag	2100
gccgaaatcg	gcaaaatccc	ttataaatca	aaagaataga	ccgagatagg	gttgagtgtt	2160
gttccagttt	ggaacaagag	tccactatta	aagaacgtgg	actccaacgt	caaagggcga	2220
aaaaccgtct	atcagggcga	tggcccacta	cgagaaccat	caccctaatc	aagttttttg	2280
gggtcgaggt	gccgtaaagc	actaaatcgg	aaccctaaag	ggagcccccg	atttagagct	2340
tgacggggaa	agccggcgaa	cgtggcgaga	aaggaaggga	agaaagcgaa	aggagcgggc	2400
gctagggcgc	tggcaagtgt	agcggtcacg	ctgcgcgtaa	ccaccacacc	cgccgcgctt	2460
aatgcgccgc	tacagggcgc	gtgctagcca	tgtgagcaaa	aggccagcaa	aaggccagga	2520
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgcccccct	gacgagcatc	2580
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	2640
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	2700
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	2760
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	2820
agtccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	2880
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	2940
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaaga	acagtatttg	3000
gtatctgcgc	tctgctgtag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	3060
gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	3120
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	3180
acgaaaactc	acgttaaggg	attttggtca	gatctagcac	caggcgttta	agggcaccaa	3240
taactgcctt	aaaaaaatta	cgccccgccc	tgccactcat	cgcagtactg	ttgtaattca	3300

ttaagcattc	tgccgacatg	gaagccatca	caaacggcat	gatgaacctg	aatcgccagc	3360
ggcatcagca	ccttgtcgcc	ttgcgtataa	tatttgccca	tagtgaaaac	gggggcgaag	3420
aagttgtcca	tattggctac	gtttaaatca	aaactggtga	aactcaccca	gggattggct	3480
gagacgaaaa	acatattctc	aataaaccct	ttagggaaat	aggccaggtt	ttcaccgtaa	3540
cacgccacat	cttgcgaata	tatgtgtaga	aactgccgga	aatcgtcgtg	gtattcactc	3600
cagagcgatg	aaaacgtttc	agtttgctca	tggaaaacgg	tgtaacaagg	gtgaacacta	3660
tcccatatca	ccagctcacc	gtctttcatt	gccatacgga	actccgggtg	agcattcatc	3720
aggcgggcaa	gaatgtgaat	aaaggccgga	taaaacttgt	gcttatttt	ctttacggtc	3780
tttaaaaagg	ccgtaatatc	cagctgaacg	gtctggttat	aggtacattg	agcaactgac	3840
tgaaatgcct	caaaatgttc	tttacgatgc	cattgggata	tatcaacggt	ggtatatcca	3900
gtgattttt	tctccatttt	agcttcctta	gctcctgaaa	atctcgataa	ctcaaaaaat	3960
acgcccggta	gtgatcttat	ttcattatgg	tgaaagttgg	aacctcaccc	gacgtctaat	4020
gtgagttagc	tcactcatta	ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	4080
ttgtgtggaa	ttgtgagcgg	ataacaattt	cacacaggaa	acagctatga	ccatgattac	4140
gaatt						4145

```
<210> 37
```

<220>

<400> 37

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95

<211> 120

<212> PRT

<213> artificial sequence

<223> sequence for MS-GPC1-VH

Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
1 10 15

Cys Ala Arg Gln Tyr Gly His Arg Gly Gly Phe Asp His Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser <210> 38 <211> 109 <212> PRT <213> artificial sequence <220> <223> sequence for MS-GPC1-VL <400> 38 Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asn Glu Ser Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly <210> 39 <211> 118 <212> PRT <213> artificial sequence <220> <223> sequence for MS-GPC6-VH <400> 39 Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr

Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

Ser Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val

```
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
Ala Arg Gly Tyr Gly Arg Tyr Ser Pro Asp Leu Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser
       115
<210> 40
<211> 110
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC6-VL
<400> 40
Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser
Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu
Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Ser Asn Leu Pro
Phe Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr
<210> 41
<211> 120
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-VH, MS-GPC8-1-VH, MS-GPC8-6-VH, MS-GPC8-9-VH,
MS-GPC8-10-VH, MS-GPC8-17-VH, MS-GPC8-18-VH, MS-GPC8-27-VH, MS-GPC8-6-2-VH,
MS-GPC8-6-13-VH, MS-GPC8-6-27-VH, MS-GPC8-6-45-VH, MS-GPC8-6-47-VH, MS-GPC8-10-57-
MS-GPC8-27-7-VH, MS-GPC8-27-10-VH, MS-GPC8-27-41-VH
<400> 41
Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln
```

10

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Ser Pro Arg Tyr Arg Gly Ala Phe Asp Tyr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 42

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-VL

<400> 42

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Pro Gln 85 90 95

Ala Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 43

<211> 120

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC10-VH

<400> 43

Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Val Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser 50 55 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Arg Gln Leu His Tyr Arg Gly Gly Phe Asp Leu Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser

<210> 44

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC10-VL

<400> 44

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Thr Met 85 90 95

Gly Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 45

```
<211> 109
<212> PRT
```

<213> artificial sequence

<223> sequence for MS-GPC8-6-2-VL

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Ser Asn

Tyr Val His Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

<210> 46

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-6-VL

<400> 46

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

```
<210> 47
<211> 109
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-6-19-VL
<400> 47
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Ser Asn
Tyr Val Ala Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His
Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
<210> 48
<211> 109
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-10-VL
<400> 48
Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Ile Arg
```

His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105

<210> 49

<211> 109

<212> PRT

<213> artificial sequence

<220s

<223> sequence for MS-GPC8-6-27-VL

<400> 49

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Asp Ser Asn Ile Gly Ala Asn 20 25 30

Tyr Val Thr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His 85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

<210> 50

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-17-VL

<400> 50

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Ser Val 85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 51

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-6-45-VL

<400> 51

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Pro Asn Ile Gly Ser Asn 20 25 30

Tyr Val Phe Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His 85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 52

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-27-VL

<400> 52

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Ser Ser Asn Ile Gly Ser Asn
20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe
50 55 60

ger Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu
65 70 75

Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Asn 80 85 90 95

Val His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105 109

<210> 53

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-6-47-VL

<400> 53

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Ser Asn 20 25 30

Tyr Val Ser Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

The Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

ger Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His
85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly

<210> 54

211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-6-13-VL

<400> 54

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln

1 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Ala Asn 20 25 30

Tyr Val Thr Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Asp His 85 90 95

Tyr Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 55

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-27-7-VL

<400> 55

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln
1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Asn Asn 20 25 30

Tyr Val Gly Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
65 70 75 80

ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Asn Val 85 90 95

His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 56

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-10-57-VL

<400> 56

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Asn Asn 20 25 30

Tyr Val Gln Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Leu Ile Arg 85 90 95

His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
100 105

<210> 57

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-27-10-VL

<400> 57

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Ala Asn 20 25 30

Tyr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu 35 40 45

Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln 65 70 75 80

Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Asn Val 85 90 95

His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly 100 105

<210> 58

<211> 109

<212> PRT

<213> artificial sequence

<220>

<223> sequence for MS-GPC8-27-41-VL

(400> 58

Asp Ile Val Leu Thr Gln Pro Pro Ser Val Ser Gly Ala Pro Gly Gln 1 5 10 15

```
Arg Val Thr Ile Ser Cys Ser Gly Ser Glu Ser Asn Ile Gly Asn Asn
Tyr Val Gln Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro Lys Leu Leu
Ile Tyr Asp Asn Asn Gln Arg Pro Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Thr Gly Leu Gln
Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Asn Val
His Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly
<210> 59
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC1-VL-CDR3
<400> 59
Gln Ser Tyr Asp Phe Asn Glu Ser
<210> 60
<211> 8
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC8-6-VL-CDR3,MS-GPC8-6-2-VL-CDR3,
MS-GPC8-6-13-VL-CDR3, MS-GPC8-6-19-VL-CDR3, MS-GPC8-6-27-VL-CDR3,
MS-GPC8-6-45-VL-CDR3, MS-GPC8-6-47-VL-CDR3
<400> 60
Gln Ser Tyr Asp Tyr Asp His Tyr
<210> 61
<211> 10
<212> PRT
<213> artificial sequence
<220>
<223> sequence for MS-GPC10-VH-CDR3
<400> 61
Gln Leu His Tyr Arg Gly Gly Phe Asp Leu
```

```
<210> 62
<211> 12
<212> PRT
<213> artificial sequence

<220>
<223> sequence for MS-GPC6-VL-CDR1

<400> 62
Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala
1 5 10
```