

Neural Networks For People Who Get Confused Easily

by James McCammon (A fellow who gets confused easily)

Broadcasting

How "broadcasting" b works

Notes

1. What broadcasting is doing from a mathamtical perspective is taking the outer product of \mathbf{b} and an implicitly defined, usually unshown vector of 1s, denoted as $\mathbf{1}_n$, where n is the same as our batch size. This outer product has the effect of creating a new matrix of the same size as $\mathbf{H} \cdot \mathbf{\Omega}^T$. We can then add the terms element wise.

The vector of 1s is constructed to be a column vector. We then transpose \mathbf{b} . This gives us an $(n \times 1)$ vector of 1s times \mathbf{b} , which is $(1 \times p)$. The result is a matrix that is $(n \times p)$, the same size as $\mathbf{H} \cdot \mathbf{\Omega}^T$. The outer product can be thought of using standard matrix multiplication, taking the vectors of 1s as an $(n \times 1)$ matrix and \mathbf{b} as an $(1 \times p)$ matrix. Standard matrix multiplication rules then apply. This new matrix contains the elements of \mathbf{b} in each row, copied n times. See the example below for an example.