Les séries de fonctions

M6 – Chapitre 3

Soient
$$J \subset I = [a;b] \subset \mathbb{R}$$
 $x \in I$ $f_n: I \to \mathbb{C}$ $S_n = \sum_{k=0}^n f_k(x)$ $S = \sum_{k=0}^{+\infty} f_k(x)$

Convergence sur I	Suite de fonctions	Séries de fonctions
Simple	$f_n \xrightarrow{C.S.} l$ $\Leftrightarrow \forall x \lim_{n \to \infty} f_n(x) = l(x)$	$\sum f_n \stackrel{C.S.}{\longrightarrow} S$ $\Leftrightarrow \underbrace{\lim_{n \to \infty} S_n = S}$
Uniforme	$\begin{split} f_n & \xrightarrow{\mathcal{C}.U.} l \\ \Leftrightarrow & \boxed{\ f_n - l\ _{\infty}^I \to 0} \\ \Leftrightarrow & \forall \ \varepsilon > 0, \exists \ n(\varepsilon), \forall \ n \in \mathbb{N}, \forall \ x \in I, \\ & f_n(x) - l(x) \le \varepsilon \end{split}$	$\sum f_n \xrightarrow{C.U.} S$ $\Leftrightarrow \boxed{\ S_n - S\ _{\infty}^I \to 0}$
Normale		$\sum f_n \xrightarrow{C.N.} S$ $\Leftrightarrow \sum \ f_n\ _{\infty}^I \text{ converge } \text{ vers } S$ $\Leftrightarrow \exists \alpha_n \ge f_n \text{ t.q. } \sum \alpha_n \text{ converge }$
Théorèmes		
Continuité	$f_n \overset{C.S.}{\longrightarrow} l$ f_n cont. et der. $\Rightarrow l$ non cont. $f_n \overset{C.U.}{\longrightarrow} l$ f_n continue $\Rightarrow l$ continue	$\sum_{} f_n \xrightarrow{c.s.} S$ $f_n \text{continue} \Rightarrow S \text{ continue}$
Intégration	$f_n \xrightarrow{C.U.} l$ $\Rightarrow \lim_{n \to \infty} \int_a^x f_n(x) = \int_a^x \lim_{n \to \infty} f_n(x)$	$\sum f_n \xrightarrow{C.U.} S$ $\Rightarrow \lim_{n \to \infty} \int_a^x S_n = \int_a^x \lim_{\substack{n \to \infty \\ = S}} S_n$
Dérivation		$ \left\{ \begin{array}{l} f_n \in \mathcal{C}^1 \\ \sum f_n \text{ C.S. sur } I \\ \sum f'_n \text{ C.U. sur } J \end{array} \right\} \Rightarrow \left[\left(\sum_{n=0}^{+\infty} f_n \right)' = \sum_{n=0}^{+\infty} f'_n \right] $

Remarques sur la norme infinie

$$||f(x)||_{\infty}^{I} = \sup |f(x)|$$

- $\begin{array}{ll} \bullet & \forall \, \lambda \in \mathbb{R} & \|\lambda f\|_{\infty}^{I} = |\lambda| \|f\|_{\infty}^{I} \\ \bullet & \forall \, (f,g) \in B(I)^{2} & \|f+g\|_{\infty}^{I} \leq \|f\|_{\infty}^{I} + \|g\|_{\infty}^{I} \end{array}$