Lec 36: Spectral Theory Singular Value Decomposition

Singular Value Decomposition: Overview

Singular Value Decomposition

Theorem 1 (SVD)

Let $A \in \mathbb{C}^{m \times n}$. Then A can be written as

$$A = U\Sigma V^*, \tag{SVD}$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal. If A is real, then so are U and V.

- The columns of *U* are called the **left singular vectors** of *A*;
- The columns of V are called the right singular vectors of A;
- The diagonal entries of Σ , written as $\sigma_1, \sigma_2, \ldots, \sigma_r$, for $r = \min\{m, n\}$, are called the **singular values** of A and they are nonnegative numbers ordered as

$$\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r \geqslant 0.$$

Singular Value Decomposition (cont')

Thick vs Thin SVD

Suppose that m > n and observe that:

$$U\Sigma = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_{n-1} & \mathbf{u}_n & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_{n-1} & \\ & \ddots & \\ & & \sigma_n \end{bmatrix} = \hat{U}\hat{\Sigma}.$$

SVD in MATLAB

```
• Thick SVD: [U,S,V] = svd(A);
```

• Thin SVD: [U,S,V] = svd(A, 0);

Understanding SVD

Geometric Perspective

Write
$$A=U\Sigma V^*$$
 as $AV=U\Sigma$:
$$A\mathbf{v}_k=\sigma_k\mathbf{u}_k,\quad k=1,\ldots,r=\min\{m,n\}.$$

• Each right singular vector \mathbf{v}_k is mapped by A to a scaled left singular vector $\sigma_k \mathbf{u}_k$; σ_k is the magnitude of scaling.

The image of the unit sphere under any $m \times n$ matrix is a hyperellipse.

Algebraic Perspective

Alternately, note that $\mathbf{y} = A\mathbf{z} \in \mathbb{C}^m$ for any $\mathbf{z} \in \mathbb{C}^n$ can be written as

$$(U^*\mathbf{y}) = \Sigma (V^*\mathbf{z}).$$

- Since U and V are unitary, $U^* = U^{-1}$ and $V^* = V^{-1}$.
- $U^*\mathbf{y}$ is the coordinates of $\mathbf{y} \in \mathbb{C}^m$ with respect to the basis consisting of columns of U, which is an ONB.
- $V^*\mathbf{z}$ is the coordinates of $\mathbf{z} \in \mathbb{C}^n$ with respect to the basis consisting of columns of V, which is an ONB.

Any matrix $A \in \mathbb{C}^{m \times n}$ can be viewed as a diagonal transformation from \mathbb{C}^n (source space) to \mathbb{C}^m (target space) with respect to suitably chosen orthonormal bases for both spaces.

SVD vs. EVD

Recall that a diagonalizable $A = VDV^{-1} \in \mathbb{C}^{n \times n}$ satisfies

$$\mathbf{y} = A\mathbf{z} \longrightarrow \left(V^{-1}\mathbf{y}\right) = D\left(V^{-1}\mathbf{z}\right).$$

This allowed us to view any diagonalizable square matrix $A \in \mathbb{C}^{n \times n}$ as a diagonal transformation from \mathbb{C}^n to itself¹ with respect to the basis formed by a set of eigenvector of A.

Differences.

- Basis: SVD uses two ONBs (left and right singular vectors); EVD uses one, usually non-orthogonal basis (eigenvectors).
- Universality: all matrices have an SVD; not all matrices have an EVD.
- Utility: SVD is useful in problems involving the behavior of A or A⁺; EVD is relevant to problems involving A^k.

¹The source and the target spaces of the transformation coincide.