30-09-2008: Recop

* Lemma 2.15:

a has inverse
$$\Rightarrow$$
 a · n \times = b has in \times n unique soln

- . Theorem 2.7: in verse unique
- · Corollary 2.6: way to show no inverse

* Lemma 2. 8

$$a \cdot n \times = 1$$
 (=) $a \times + ny = 1$
has soln for some $x \approx y$

Th 2.9 (=) a has inverse

Cor 2.10 in verse: x mod n

* Lemma 2.11

$$a \times +ny = 1 \quad \textcircled{a} \quad \gcd(a,n) = 1$$

$$for Some \times Ey$$

* Extended GCD

Extended GCD Also: Example

		, _,			ALC STATE OF THE S			
65 has inverse	\(\frac{1}{x} + \frac{1}{x} \)		(66005,1)	/qco(6.5)	VGCD(65, 6)	GCD (201, 65)	GCD(K, j)	
inverse in Zzoi. It is	= 6(·(-34) + 20 = -2210 + 221				65 = 6.10 +5	201 = 65.3 + 6	K = J · 9 + Y	
-34 m od 20	2 0 1 1 12						Scd	۳
01 = 167			en e	1		*		×
J	9 c & c x		C				~	= y'-qx'
	Ċ.			4000			X	x', \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			(C	1	1	<_	X

Corollary of Theorem 2.14

Exist $x \in y$ S.t. $jx + ky = 5 \operatorname{cd}(j,k)$

$$jx + kj = 1$$

(A)

Lemma 2.11

$$jx+kj=1$$
 => $gcdcj.kj=1$

Theorem 2.15:

gcd cj.kj=1 (=> jx+kj=1 for Some x 2 y

Running Time of GCD/ Extended GCD

* GCDCj,k) (osjek)

takes at most 2logzk stops

K

K2 > Klojk

Summary of Lecture 5

la has inverse in En

1 Lemma 2.15

a.nx = 1 has soln

I Lemmaz.8. Th 2.9

[ax+ny = 1 for some x 2 y]

J Th 2.15

[gcd (a, n) = 1]

Extended GCD (k.j)

- gcd(k, j)

- x , y s . +

jx + xy=1

used to find inverse.