### SOUTENANCE DE MÉMOIRE DE MASTER OPTION: ALGÈBRE COMMUTATIVE ET CRYPTOGRAPHIE SPÉCIALITÉ: THÉORIE DES FILTRATIONS

KABLAM Edjabrou Ulrich Blanchard

Université NANGUI ABROGOUA UFR Sciences Fondamentales Appliquées

10 Juillet 2024

## THÈME : DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES

Directeur de Mémoire : Mr. ASSAN Abdoulaye Encadrant scientifique : Mr. BROU Kouadjo Pierre

#### PLAN DE PRÉSENTATION

- INTRODUCTION
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATION BONNES
- CONCLUSION



### INTRODUCTION FILTRATIONS

- (i) Une filtration de l'anneau A est une suite  $f = (I_n)_{n \in \mathbb{Z}}$  d'idéaux de A, décroissante pour l'inclusion et vérifiant  $I_0 = A$  et  $I_n I_m \subseteq I_{n+m}$ .
- (ii) Une filtration  $f=(I_n)_{n\in\mathbb{Z}}$  est dite I-bonne si pour tout  $n\in\mathbb{N},\quad II_n\subseteq I_{n+1}$  et s'il existe k un entier tel que pour tout  $n\geqslant k$ ,  $II_n=I_{n+1}$ .





### INTRODUCTION PROPRIÉTÉ DE LA FILTRATION I-ADIQUE

f I-adique  $\Longrightarrow f$  I-bonne  $\Longrightarrow f$  fortement A.P  $\Longrightarrow f$  A.P.





#### INTRODUCTION

#### ÉLÉMENT ENTIER ET RÉDUCTION

- (i) Un élément x de A est dit entier sur f s'il existe un entier  $m \in \mathbb{N}$  tel que :  $x^m + a_1 x^{m-1} + \cdots + a_m = x^m + \sum_{i=1}^m a_i x^{m-i} = 0$ ,  $m \in \mathbb{N}^*$  où  $a_i \in I_i$ ,  $\forall i = 1, \dots, m$ .
- (ii) f est une  $\beta$ -réduction de g si :
  - a)  $f \leq g$
  - b)  $\exists k \geq 1 \text{ tel que } J_{n+k} = I_n J_k, \forall n \geq k.$



### INTRODUCTION PROBLÉMATIQUE ET ANNONCE DU PLAN

- (i) Comment étendre de manière rigoureuse les résultats obtenus dans le contexte restreint de la filtration l-adique à des filtrations bonnes
- (i) Comment ces notions interagissent-elles dans des environnements mathématiques variés ?





- INTRODUCTION
- DÉPENDANCE INTÉGRALE, RÉDUCTION ET FILTRATIONS BONNES
- CONCLUSION



ÉNONCE

#### Théorème Principal (1/4)

Soient  $f=(I_n)_{n\in\mathbb{N}}\leq g=(J_n)_{n\in\mathbb{N}}$  des filtrations sur l'anneau A. Nous considérons les assertions suivantes :

- (i) f est une réduction de g.
- (ii)  $J_n^2 = I_n J_n$  pour tout n assez grand.
- (iii)  $I_n$  est une réduction de  $J_n$  pour tout n assez grand.
- (iv) Il existe un entier  $s \ge 1$  tel que pour tout  $n \ge s$ ,  $J_{s+n} = J_s J_n$ ,  $I_{s+n} = I_s I_n$ ,  $J_s^2 = I_s J_s$ ,  $J_{s+p} I_s = I_{s+p} J_s$  pour tout p = 1, 2, ..., s-1
- (v) Il existe un entier  $k \ge 1$  tel que  $g^{(k)}$  est  $I_k$  bonne



#### ÉNONCE

### Théorème Principal (2/4)

- (vi) Il existe un entier  $r \ge 1$  tel que  $f^{(r)}$  est une réduction de  $g^{(r)}$ .
- (vii) Pour tout entier  $m \ge 1$  tel que  $f^{(m)}$  est une réduction de  $g^{(m)}$ .
- (viii) g est entière sur f.
  - (ix) g est fortement entière sur f.
  - (x) g est f fine.



#### ÉNONCE

#### Théorème Principal (3/4)

- (xi) g est f bonne.
- (xii) g est faiblement f bonne.
- (xiii) II existe un entier  $N \ge 1$  tel que  $t_N g \le f \le g$
- (xiv) Il existe un entier  $N \ge 1$  tel que  $t_N g' \le t_N f'$  où f' est la clôture intégrale de f.
- (xv) P(f) = P(g), où P(f) est la clôture prüférienne de f.



**RÉSULTAT** 

#### Théorème Principal (4/4)

On a les résultats suivants :

(1)

- (a) f est une réduction de g si et seulement si pour tout entier  $m \ge 1$  tel que  $f^{(m)}$  est une réduction de  $g^{(m)}$ .
- (b) Il existe un entier  $k \ge 1$  tel que  $g^{(k)}$  est  $I_k$  bonne si et seulement s'il existe un entier  $r \ge 1$  tel que  $f^{(r)}$  est une réduction de  $g^{(r)}$ .
- (c) g est entière sur f si et seulement si P(f) = P(g), où P(f) est la clôture prüférienne de f.



**RÉSULTAT** 

#### Théorème Principal (5/4)

On a les résultats suivants :

(1)

- (d) Si  $J_n^2 = I_n J_n$  pour tout n assez grand alors  $I_n$  est une réduction de  $J_n$  pour tout n assez grand.
- (e) S'il existe un entier  $s \ge 1$  tel que pour tout  $n \ge s$ ,  $J_{s+n} = J_s J_n$ ,  $I_{s+n} = I_s I_n$ ,  $J_s^2 = I_s J_s$ ,  $J_{s+p} I_s = I_{s+p} J_s$  pour tout p = 1, 2, ..., s-1 alors f est une réduction de g.
- (f) Si f est une réduction de g alors il existe un entier  $k \ge 1$  tel que  $g^{(k)}$  est  $I_k bonne$



**RÉSULTAT** 

### Théorème Principal (6/4)

On a les résultats suivants :

- (1)
- (g) Si g est fortement entière sur f alors :
  - Pour tout entier m > 1 tel que  $f^{(m)}$  est une réduction de  $g^{(m)}$ .
  - g est faiblement f bonne.
  - Il existe un entier  $N \ge 1$  tel que  $t_N g \le f \le g$



### MERCI POUR VOTRE AIMABLE ATTENTION



