Summary CH 9 Line Integrals

(A)

$$\int_{C} f(x, y) \, ds = \int_{a}^{b} f(x(t), y(t)) \|\mathbf{r}'(t)\| dt$$

Equation of curve C: $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ $a \le t \le b$

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) ||r'(t)|| dt$$

$$C: x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
,
 $a \le t \le b$

(B)

curve C:

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
 $a \le t \le b$

 $\mathbf{F}(x,y,z)$: vector field defined on C

$$\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(x(t), y(t), z(t))$$

Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

Also holds for F(x,y)

(C)
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
 in (B) can be computed by the following formulae

If
$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$$

then
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C Pdx + Qdy.$$

Similarly, for if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$,

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} Pdx + Qdy + Rdz.$$

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$$

$$C: \mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}, \quad t \in [a, b].$$

Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P dx + Q dy$$

$$= \int_a^b P(x(t), y(t))x'(t)dt + \int_a^b Q(x(t), y(t))y'(t)dt$$

Similarly for F(x,y,z)

Conservative vector field

(I)(a) If **F** is a conservative vector field, then $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *independent of path*,

i.e.
$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$
 for any 2 paths C_1 and

 C_2 that have the same initial and terminal points.

(b) If **F** is conservative and $F = \nabla f$ (C_1

$$\int_{C} \mathbf{F} \cdot \mathbf{dr} = \int_{C} \nabla f \cdot \mathbf{dr}$$

$$= f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Example

Curve C:
$$\mathbf{r}(t) = \cos t \mathbf{i} + e^t \sin t \mathbf{j}, \ t \in [0, \pi]$$

$$\mathbf{r}(0) = \mathbf{i} = \mathbf{i} + 0 \mathbf{j} \to (1, 0)$$

$$\mathbf{r}(\pi) = -\mathbf{i} = -\mathbf{i} + 0 \mathbf{j} \to (-1, 0)$$

$$\mathbf{r}(0, 0) \xrightarrow{(0, 0)} (1, 0)$$
position vector i

$$F=\nabla f, where f(x, y) = xy^2 + x^3$$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(-1,0) - f(1,0) = -2.$$

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Conservative vector field

(II) If **F** is a conservative vector field,

then
$$\oint_{\ell} \mathbf{F} \cdot d\mathbf{r} = 0$$

for any closed curve ℓ

DO YOU KNOW HOW TO CHECK WHETHER VECTOR FIELD F(x,y) IS CONSERVATIVE?

Green's Theorem

Let D be a bounded region in the xy-plane & ∂D the boundary of D. Then

$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA.$$

We move along ∂D in the direction that the region D always on the left. This direction is called positive direction.

Positive directions, for many cases, always anticlockwise. However for some special cases, they are clockwise, see next example

Region enclosed by

 C_1 and C_2 . How to choose positive direction

$$\partial D = -C_1 + l + C_2 - l = C_2 - C_1$$

 C_1 , C_2 anticlockwise by given l bridge form left to right

Remarks of Green's theorem

(A) Green's Theorem only applied to vector fields F(x,y) of two variables: F(x,y)=P(x,y)i+Q(x,y)j

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial D} P dx + Q dy = \iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dA$$

(B) Green's Theorem only applied to closed curves

Vector equations of line segments in **THREE** dim space

Line and line segment

Recall vector equation of line in 2-dim space We can draw a line by vectors

Problem

Given point P_0 with position vector $\mathbf{r}_0 = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$

& vector $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ $P_0(x_0, y_0, z_0) \qquad I$ (a, b, c)

find the *equation* of the *line* L passing through P_0 & parallel to \mathbf{v}

Let **P** be a point on line L with **position** vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

$$\overrightarrow{P_0P}$$
 and v are parallel

$$\overrightarrow{OP} = r = r_0 + \overrightarrow{P_0P} = r_0 + tv$$

for some $t \in \mathbf{R}$.

$$P_0$$
 \mathbf{v} P_-L
 \mathbf{v} \mathbf

$$= (x_0\mathbf{i} + y_0\mathbf{j} + z_0\mathbf{k}) + t(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$$

$$\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$$

$$t \in \mathbf{R}$$

 $\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}$ $t \in \mathbf{R}$ vector equation of

 $r=r_0 + tv$, $0 \le t \le 1$ for line segment P_0P

Example

A and B have position vectors

$$-3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$$
 and $\mathbf{i} - \mathbf{j} + 4\mathbf{k}$

Write down vector equation of line segment from A to B

$$\overrightarrow{AB} = (\mathbf{i} - \mathbf{j} + 4\mathbf{k}) - (-3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k})$$

= $4\mathbf{i} - 3\mathbf{j} + 7\mathbf{k}$.

Vector equation of line segment AB is

$$r=(-3i+2j-3k)+t(4i-3j+7k)$$

0 \le t \le 1

Example

♣ The *vector* eqn.

$$\mathbf{r}(t) = (1+t)\mathbf{i} + (2+t)\mathbf{j} + (3+t)\mathbf{k}$$
$$= \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + t(\mathbf{i} + \mathbf{j} + \mathbf{k}) \qquad 0 \le t \le 1$$

represents a line segment from (1, 2, 3) to (2,3,4)

Vector equations of other curves in three dim space are always given, for example,

The circular helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$$

Vector equations of curves in TWO dim space

We are familiar with most of the curves in two dim space

For example

$$y = 2x + 3$$
 $y = 3x^{2}$ $y = 4 - x^{2}$ $y = x^{3}$
 $x = y^{2}$ $x = 5 + y^{2}$ $x = y^{3}$ $x^{2} + y^{2} = 9$
 $x = 4$ $y = 3$ $4x^{2} + 9y^{2} = 16$

Why in Ch 9 and Ch 10, we use vector equations of the above curves instead of the equations just mentioned?

ANS: Because curves in the formulae in Ch 9 and Ch 10 are in vector equation forms

CAN YOU WRITE DOWN VECTOR EQUATIONS OF THE ABOVE CURVES?