Math 553 Exam 1

Theo Koss

March 2022

1. Consider the ellipse $\gamma(t) = (a\cos t, b\sin t)$, where a, b > 0. Compute the curvature of γ at t, and find the points on the trace of γ where the curvature achieves its maximum and minimum values.

$$\gamma'(t) = (-a\sin t, b\cos t), \gamma''(t) = (-a\cos t, -b\sin t)$$

$$\kappa(t) = \frac{||\gamma'(t) \times \gamma''(t)||}{||\gamma'(t)||^3} = \frac{||\gamma'(t) \times \gamma''(t)||}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}$$

Cross product:

$$\gamma'(t) \times \gamma''(t) = (-a\sin t, b\cos t) \times (-a\cos t, -b\sin t)$$
$$= (0, 0, ab\sin^2 t + ab\cos^2 t) = (0, 0, ab)$$
$$||(0, 0, ab)|| = ab$$

Therefore,

$$\kappa(t) = \frac{ab}{\sqrt{a^2 \sin^2 t + b^2 \cos^2 t}}$$

Extreme points:

If b > a,

Max:
$$t = n\pi + \frac{\pi}{2}$$

Min: $t = n\pi$
 $n \in \mathbb{Z}$

If a > b,

Max:
$$t = n\pi$$

Min: $t = n\pi + \frac{\pi}{2}$
 $n \in \mathbb{Z}$

If a = b, curvature is constant, therefore there is no max or min. (makes sense as the curve is an ellipse, with axes a and b. If a > b then the ellipse is horizontal, and if b > a then the ellipse is vertical.)

2. Find a value x so that the arc length of the tractrix $\alpha(t) = (\sin t, \cos t + \log \tan \frac{t}{2})$ on the interval $[\frac{\pi}{2}, x]$ is equal to 1.

$$\alpha'(t) = (\cos t, -\sin t + \csc t)$$

$$|\alpha'(t)| = \sqrt{\cos^2 t + (\csc t - \sin t)^2}$$

$$= \sqrt{\csc^2 t + \sin^2 t - 2 + \cos^2 t}$$

$$= \sqrt{\csc^2 t - 1} = \sqrt{\cot^2 t}$$

$$= |\cot t|$$

$$\mathcal{L} = \int_{\frac{\pi}{2}}^{x} |\alpha'(t)| dt = \int_{\frac{\pi}{2}}^{x} |\cot t| \ dt = \left[\frac{\cot t \ln|\sin t|}{|\cot t|}\right]_{\pi/2}^{x}$$

$$= \frac{\cot x \ln|\sin x|}{|\cot x|} - \underbrace{\frac{\cot \frac{\pi}{2} \ln|\sin \frac{\pi}{2}|}{\cot \frac{\pi}{2}}}_{=0, \text{ by L'Hospital's}} = 1$$

$$\implies \ln|\sin x| = \frac{|\cot x|}{\cot x} = \pm 1$$

$$\ln|\sin x| = -1$$

At $x = \arcsin \frac{1}{e} \approx 2.76486514$.

3. Find the curvature and torsion of the parameterized curve $\alpha(t) = (3t, 3t^2, 2t^3)$.

$$\kappa(t) = \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3}$$

$$= \frac{|(36t^2, -36t, 18)|}{|(3, 6t, 6t^2)|^3}$$

$$= \frac{36t^2 + 18}{216t^6 + 324t^4 + 162t^2 + 27}$$

$$= \frac{12t^2 + 6}{72t^6 + 108t^4 + 54t^2 + 9}$$

$$= \left(\frac{6}{9}\right) \cdot \left(\frac{2t^2 + 1}{8t^6 + 12t^4 + 6t^2 + 1}\right)$$

$$\tau(t) = -\frac{(\alpha'(t) \times \alpha''(t)) \cdot \alpha'''(t)}{|\alpha'(t) \times \alpha''(t)|^2}$$

$$= \frac{12}{(2t^2 + 1)^2}$$

$$= \frac{12}{4t^4 + 4t^2 + 1}$$

4. Let $I \subset \mathbb{R}$ be an open interval, and let $\alpha : I \to \mathbb{R}^2$ be a regular curve, not necessarily PBAL. Suppose there is a value $t_0 \in I$ where the map $t \mapsto |\alpha(t)|$ achieves a local maximum. Show that the curvature $\kappa(t_0)$ at t_0 satisfies $|\kappa(t_0)| \geqslant \frac{1}{|\alpha(t_0)|}$.

Proof. First, WLOG, assume $\alpha(t)$ is PBAL. If not, reparametrize such that it is, and since curvature is invariant in reparametrization, the result does not change. Now define a new function $f(t) := |\alpha(t)|^2$. Differentiating twice:

$$f'(t) = 2\alpha'\alpha$$

$$f''(t) = 2\alpha''\alpha + 2|\alpha'|^2$$

$$|\alpha'|^2 = 2\alpha''\alpha - f''(t)$$

From the problem, we know there exists a value t_0 where $|\alpha|$ is a local maximum, and therefore the second derivative of f(t) at $t = t_0$ will be negative. Therefore:

$$|\alpha'(t_0)|^2 < \alpha''(t_0)\alpha(t_0)$$

Now since α is PBAL, $|\alpha'| = 1$, so:

$$1 = |\alpha'(t_0)|^2 < \alpha''(t_0) \cdot \alpha(t_0) \leqslant |\alpha''(t_0)| \cdot |\alpha(t_0)|$$

Then, since
$$|\kappa| = |\alpha''|$$
, it holds that $|\kappa(t_0)| \geqslant \frac{1}{|\alpha(t_0)|}$. QED

- 5. Let $I \subset \mathbb{R}$ be an open interval, and let $\kappa : I \to \mathbb{R}$ be a differentiable function, and let $\alpha : I \to \mathbb{R}^2$ be a regular curve, PBAL, so that the curvature of α at $s \in I$ is given by $\kappa(s)$.
 - a. Show that there is a function $\theta: I \to \mathbb{R}$ so that $\alpha'(s) = (\cos \theta(s), \sin \theta(s))$.

Let
$$\alpha'(s) = (x, y)$$
 for some $x, y \in \mathbb{R}$.

$$(\cos \theta(s), \sin \theta(s)) = \alpha'(s)$$

$$(\cos \theta(s), \sin \theta(s)) = (x, y)$$

$$(\theta(s), \theta(s)) = (\arccos(x), \arcsin(y))$$

$$\theta(s) = \arccos(x) = \arcsin(y)$$

b. Show that $\theta'(s) = \kappa(s)$.

$$\kappa(s) = |\alpha''(s)| = \sqrt{(-\sin\theta(s))^2 + (\cos\theta(s))^2} = 1$$

$$\theta'(s) = -\frac{1}{\sqrt{1 - x^2}}$$

$$= -\frac{1}{\sqrt{1 - \cos^2\theta(s)}}$$

$$= -\frac{1}{\sin\theta(s)}$$

$$= -\frac{1}{y}$$

$$\theta'(s) = \frac{1}{\sqrt{1 - y^2}}$$

$$= \frac{1}{x}$$

$$\implies x = -y$$

$$\iff x = \sqrt{1 - (-x)^2}$$

$$\implies x = \frac{1}{\sqrt{2}}$$

$$\theta'(s) = \arccos\frac{\sqrt{2}}{2} = \frac{\pi}{4} \neq 1$$

Hmm. Not sure where I messed up, I don't know what I'm doing :(

c. Let $s_0 \in I$. Show that there is a constant $\theta_0 \in \mathbb{R}$ so that:

$$\theta(s) = \theta_0 + \int_{s_0}^{s} \kappa(t)dt.$$

$$\theta_0 = \int_{s_0}^{s} \kappa(t)dt - \theta(s)$$

(IDK)

d. Show that there are constants $a, b \in \mathbb{R}$ so that:

$$\alpha(s) = (a + \int_{s_0}^s \cos \theta(t) dt, b + \int_{s_0}^s \sin \theta(t) dt).$$
(IDK)

e. Now suppose that $\alpha, \beta: I \to \mathbb{R}$ are both parameterized by arc length, so that α and β both have curvature $\kappa(s)$ at $s \in I$, and so that $\alpha'(s_0) = \beta'(s_0)$. Show that there is a translation $T: \mathbb{R}^2 \to \mathbb{R}^2$ so that $\alpha = \beta \circ T$. What happens if one doesn't assume that $\alpha'(s_0) = \beta'(s_0)$? (IDK)