3. Markov Chains Computational Music Creativity

to recap the theory

What's a Markov chain (MC)?

What's a Markov chain (MC)?

- Mathematical system that undergoes transitions from one state to another
- Model sequence of events probabilistically

Key assumption

The next state depends only on the current state and not on the sequence of events that preceded it (memoryless)

Markov chain formalisation

 States: The possible conditions (e.g., weather condition, coin side, note)

Markov chain formalisation

- States: The possible conditions (e.g., weather condition, coin side, note)
- Initial probabilities: Likelihood of starting the sequence in a state

Markov chain formalisation

- States: The possible conditions (e.g., weather condition, coin side, note)
- Initial probabilities: Likelihood of starting the sequence in a state
- Transition probabilities: Likelihood of moving from one state to another

$$S = \{C, D, E, G, A\}$$

$$I_{p} = \begin{pmatrix} p_{C} \\ p_{D} \\ p_{E} \\ p_{G} \\ p_{A} \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \end{pmatrix}$$

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

First pitch

- First pitch
 - a. Use Ip vector

$$I_{p} = \begin{pmatrix} p_{C} \\ p_{D} \\ p_{E} \\ p_{G} \\ p_{A} \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \end{pmatrix}$$

- First pitch
 - a. Use Ip vector
 - b. Roll dice

$$I_{p} = \begin{pmatrix} p_{C} \\ p_{D} \\ p_{E} \\ p_{G} \\ p_{A} \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \end{pmatrix}$$

- First pitch
 - a. Use Ip vector
 - b. Roll dice
 - c. Get pitch from Ip

$$I_{p} = \begin{pmatrix} p_{C} \\ p_{D} \\ p_{E} \\ p_{G} \\ p_{A} \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \end{pmatrix}$$

- First pitch
 - a. Use Ip vector
 - b. Roll dice
 - c. Get pitch from Ip
- Subsequent pitches

- First pitch
 - a. Use lp vector
 - b. Roll dice
 - c. Get pitch from Ip
- Subsequent pitches
 - a. Use Tp matrix

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

- First pitch
 - a. Use Ip vector
 - b. Roll dice
 - c. Get pitch from Ip
- Subsequent pitches
 - a. Use Tp matrix
 - b. Get to the row of the current pitch

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

First pitch

- a. Use Ip vector
- b. Roll dice
- c. Get pitch from Ip
- Subsequent pitches
 - a. Use Tp matrix
 - b. Get to the row of the current pitch
 - c. Roll dice

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

First pitch

- a. Use Ip vector
- b. Roll dice
- c. Get pitch from Ip
- Subsequent pitches
 - a. Use Tp matrix
 - b. Get to the row of the current pitch
 - c. Roll dice
 - d. Get new pitch

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

E -> G

First pitch

- a. Use Ip vector
- b. Roll dice
- c. Get pitch from Ip
- Subsequent pitches
 - a. Use Tp matrix
 - b. Get to the row of the current pitch
 - c. Roll dice
 - d. Get new pitch

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

Training a MC melody generator

Canon in D

(84)

(94)

(94)

(11)

(11)

(12)

(13)

(14)

(14)

(15)

(14)

(15)

(16)

(16)

(17)

(17)

(17)

(17)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

(18)

$$I_{p} = \begin{pmatrix} p_{C} \\ p_{D} \\ p_{E} \\ p_{G} \\ p_{A} \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.15 \\ 0.15 \end{pmatrix}$$

$$T_{p} = \begin{pmatrix} p_{CC} & p_{CD} & p_{CE} & p_{CG} & p_{CA} \\ p_{DC} & p_{DD} & p_{DE} & p_{DG} & p_{DA} \\ p_{EC} & p_{ED} & p_{EE} & p_{EG} & p_{EA} \\ p_{GC} & p_{GD} & p_{GE} & p_{GG} & p_{GA} \\ p_{AC} & p_{AD} & p_{AE} & p_{AG} & p_{AA} \end{pmatrix} = \begin{pmatrix} 0 & 0.4 & 0.2 & 0.3 & 0.1 \\ 0.3 & 0 & 0.4 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0 & 0.5 & 0.1 \\ 0.2 & 0.1 & 0.3 & 0 & 0.4 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \end{pmatrix}$$

How do you "train" a Markov Chain?

My experience with MCs

- MCs are s**t for melody / rhythm generation
- Work well for form / instrumentation
- Expert-crafted probabilities can work really well

Tips to use MCs

- Train different MCs for different styles
- Combine rules + MCs
- Use 2nd order chains

Subsequent token depends on previous 2 tokens

What's the relationship between MC and Transformer?

markov chains

2nd order markov chains

RNN

LSTM

Transformer

Activity 1: Improve Markov Chain

Come up with strategies to improve a MC that generates the lead melody for a song (e.g., rules, weighting). For each:

- Pros and cons
- Limitations

Instructions:

- Work in groups (5 people)
- 10' to come up with solution
- 5' to discuss together

GEDMAS

Activity 2: GEDMAS paper

Read the paper. Answer these questions:

- What's GEDMAS? What does it generate?
- What's GEDMAS' architecture?
- What do MCs have to do with GEDMAS?
- How does GEDMAS generate a full piece?
- What's GEDMAS trained on?
- What are GEDMAS' limitations? How would you improve it?

Instructions:

- Work in pairs
- 15' to read and take notes
- 8' to discuss together

Assignment 2: Second Order Markov Chain

Re-adapt the MC melody generator you've seen in the tutorial to a 2nd order Markov Chains.

Deadline: 25 January at midnight

