Representability of commons:

In Joven functor
$$C \xrightarrow{3} A \xleftarrow{f} B$$
 and $C \xrightarrow{r} A$ \exists a liyection:
$$\left\{ \begin{array}{c} Y \xrightarrow{g} f \\ C \xrightarrow{g} A \end{array} \right. \text{ absolute} \qquad \left\{ \begin{array}{c} \cong \\ \text{Hom}_{B}(B,r) \xrightarrow{r} \cong \\ \text{CxB} \end{array} \right. \text{ Hom}_{A}(f,g) \right\}$$

The linear
$$C \xrightarrow{g} A \xleftarrow{f} B$$
 I an absolute right lifting through f iff $C \xrightarrow{f} Hom_{A}(f,g)$ admits a right adjoint right inverse in which case $r:= p_{o}: c$ is the representing functor.

Def a right adjoint right inverse (ran) for $f:B \longrightarrow A$ is a right adjoint is state counit $f: \stackrel{\Sigma}{\Longrightarrow} id_A$ is the identity 2-cell ($f:=id_A$). By triangle identities: $f\eta = id_f$, $\eta i = id_i$

Icf:
$$A \in X$$
 of slice ∞ -cosmos over A
• ole = isofib $B \xrightarrow{P} A$, $C \xrightarrow{Y} A$
• mor = $Fun_A(B \xrightarrow{P} A, C \xrightarrow{Y} A) \longrightarrow Fun_B(B, C)$
 $\downarrow q$
 $\downarrow q$
 $\downarrow q$
 $\downarrow q$

- . $X \longrightarrow A$ defines a map $\mathbb{K}/_A \longrightarrow \mathbb{K}/_X$
- A RARI to fB > A is exactly a terminal element of f over A.

§4. Adjunctions

Reof. B A are adjoint flu iff Homa (f, A) ZAXB Homa (B, U).

· Given any $X \xrightarrow{a} A$, $Y \xrightarrow{b} B$, $Hom_A(fb,a) \xrightarrow{\sim}_{xxy} Hom_B(b,ua)$.

 $f \rightarrow g \Rightarrow 1 \xrightarrow{\underline{\epsilon}a} \operatorname{Hom}_{A}(f_{\underline{a}a})$ is derminal $g \rightarrow 1 \xrightarrow{\underline{\eta}b} \operatorname{Hom}_{B}(b,u)$ is initial.

The Adjoint efunctor theorem $B \xrightarrow{f} A$ admits a right adjoint iff $Hom_A(f,A) \xrightarrow{P_1} A$ how a terminal element over A. Dually f has a left adjoint iff $Hom_A(A,f) \xrightarrow{P_0} A$ has an initial element over A.

Limits & Colemits

Def: Given $1 \xrightarrow{J} A^{J}$, ∞ - category of

coner over d:

Hom A^{3} (\triangle , d) $\downarrow^{p_{1}}$ $\downarrow^{p_{0}}$ $\downarrow^{p_{0}}$ \downarrow^{q} \downarrow^{q}

Cones under d:

Prop of has a limit of $Hom_{A^{\dagger}}(\Delta, d)$ is right refrescritable (colonet) $(Hom_{A^{\dagger}}(d, \Delta))$ (left)

· d has a limit iff Hom AJ (A, d) has a terminal element.