Лабораторная работа 3.6.1. Спектральный анализ электрических сигналов

Иван Сладков

19 февраля 2022 г.

1 Аннотация

В данной работе проводится исследование спектров различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно-модулированных гармонических колебаний (АМ-сигналов)). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа. Проводится проверка нескольких теоретических соотношений.

2 Теоретические сведения

Рассмотрим функцию вида

$$f(x) = \sum_{n=1}^{N} A_n \cos(\omega_n t - \alpha_n), \tag{1}$$

где A_n, ω_n, α_n — постоянные величины. Множество пар (ω_i, A_i) называется спектром f(x) и может быть конечным или бесконечным.

Периодический сигнал может быть представлен в виде ряда Фурье:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (A_n \cos(n\Omega_1 t - \psi_n)),$$
 (2)

где $a_0/2=const$ — среднее значение функции, A_n — амплитуды членов разложения. Спектр любой периодической функции можно представить в виде набора гармонических колебаний с дискретными частотами $\Omega_1=\frac{1}{T_1}, 2\Omega_1, \ldots$ и постоянной составляющей с нулевой частотой. Такой спектр называется линейчатым или дискретным.

Непериодический сигнал представим в виде интеграла Фурье. В данной работе исследование таких сигналов не проводится.

Для периодического прямоугольного сигнала $\langle V \rangle = V_0 \frac{\tau}{T}, A_n \sim \frac{\sin x}{x}$. Здесь и далее шириной спектра $\Delta \nu$ называем расстояние от главного максимума до 1-го нуля огибающей. При этом выполнено соотношение неопределённостей:

$$\Delta \nu \tau \simeq 1 \tag{3}$$

Рис. 1: Периодический прямоугольный сигнал

Для последовательности цугов с длительностью τ и периодом T разложение в спектр представлено на рисунке 2.

Рис. 2: Периодическая последовательность цугов

В случае АМ-колебаний, сигнал определяется формулой:

$$f(t) = A_0 \left(1 + m \cos \Omega t \right) \cos \omega_0 t,\tag{4}$$

где m — глубина модуляции. Спектр такого сигнала на рис. 3. Причём амплитуды синусов $\omega_0 \pm \Omega$ равны m/2, а все начальные фазы одинаковы. То есть,

$$\frac{a_{\text{бок}}}{a_{\text{осн}}} = \frac{U_{min}^S}{U_{max}^S} = \frac{m}{2} \tag{5}$$

Глубину модуляции можно рассчитать по формуле:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{6}$$

Рис. 3: АМ-сигнал

3 Оборудование и инструментальные погрешности

Установка, используемая в работе, представлена на рис. 4. Функциональный генератор позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала USB-осциллографа.

Инструментальные погрешности считаются малыми.

Компьютер с PicoScope 6

Функциональный генератор waveStation 2052

USB-осциллограф АКИП-4108

4 Результаты измерений и обработка данных

4.1 Спектры прямоугольных импульсов

Заметим, что при возрастании τ вдвое, ширина спектра уменьшается в 2 раза и в 2 раза возрастает амплитуда спектра.

Рис. 4: Схема экспериментальной установки

При увеличении $f_{\text{повт}} = 1/T$ в 2 раза, ширина спектра и $\delta \nu$ — частота 1-й гармоники — увеличивается во столько же раз.

Изучим зависимость $\Delta \nu(\tau)$. Результат в таблице 1.

τ	40	60	80	100	120	140	160	180	200
$\Delta \nu$	25000	17000	12500	10000	8000	7000	6000	5500	5000

Таблица 1: Зависимость $\Delta\nu(\tau)$

Построим картины спектров для $\tau = 50$ мкс (рис. 5) и $\tau = 100$ мкс (рис. 6).

Проверим справедливость соотношения неопределённостей. Построим график $\Delta\nu(1/\tau)$ на рис. 7; из него видно, что соотношение (3) выполняется с хорошей точностью.

Спектры цугов гармонических колебаний

Обратим внимание, что при увеличении au вдвое ширина спектра убывает, а амплитуда возрастает в 2раза.

На рис. 8 изображены картины спектра при различных частотах несущей.

Найдём зависимость расстояния между спектральными компонентами $\delta
u$ от частоты повторения импульсов $f_{\text{повт}}$. При $f_{\text{повт}}=0.5,\ 1,\ 2,\ 4,\ 5$ к Γ ц, и $\tau=100$ мкс, выполнено $\delta \nu=f_{\text{повт}}$. Т. к. при проведении эксперимента зависимость снята с недостаточной точностью, нет смысла строить график: угловой к-т при таких данных строго равен 1. Соотношение неопределённостей $\frac{\delta \nu}{f_{\text{повт}}} = \delta \nu \tau \simeq 1$ выполнено. Построим картины спектров для $f_{\text{повт}} = 1$ к Γ ц (рис. 9) и $f_{\text{повт}} = 2$ к Γ ц (рис. 10).

4.3Спектры АМ-сигналов

В табл. 2 занесены результаты измерения амплитуд сигналов и их гармоник, а также глубину модуляции по формуле (6). На основе этих данных построим график $\frac{U_{min}^s}{U_{max}^s}(m)$ на рис. 11. Его угловой коэффициент k = 0.49, что согласуется с теорией, т. к. из (5), k = 0.5.

Последнее значение существенно выбивается из графика. Видимо, это связано с ошибкой при проведении эксперимента.

U_{ch1} , B	U_{max}^O , мВ	U_{min}^O , мВ	U_{max}^S , мВ	U_{min}^S , мВ	m
0.2	546	450	321	15.7	0.0964
0.5	624	376	321	37.9	0.248
0.8	709	302	322	61.9	0.402
1.2	779	225	322	85.0	0.552
1.5	875	125	322	117	0.750
1.8	960	58.4	322	140	0.885
2	998	0.00	322	175	1.00

Таблица 2: Результаты измерений амплитуд осциллограмм и спектра АМ-сигналов

Рис. 5: Картина спектра прямоугольного сигнала при $\tau=50$ мкс

Рис. 6: Картина спектра прямоугольного сигнала при au=100 мкс

Рис. 7: График $\Delta \nu (1/ au)$ для проверки соотношения неопределённостей

4.4 Оценка погрешностей

Будем считать, что генерируемый источником сигнал имеет высокую точность, а осциллограф – низкие инструментальные погрешности, поэтому не будем учитывать погрешностей τ , $f_{\text{повт}}$, ν , а σ_{ν} и σ_{u} возьмём равными $\pm 100~\Gamma$ ц и $\pm 0.001~B$ соответственно, т. к. приблизительно такая ошибка измерения по экрану осциллографа.

Тогда в пп. 4.3 определим погрешность m по формуле

$$\sigma_m = m\sqrt{\frac{2\sigma_u^2}{(U_{max}^O + U_{min}^O)^2} + \frac{2\sigma_u^2}{(U_{max}^O - U_{min}^O)^2}} \approx \frac{m\sqrt{2}\sigma_u}{U_{max}^O - U_{min}^O},\tag{7}$$

а погрешность отношения амплитуд найдём через

$$\sigma_{\frac{U_{min}^S}{U_{max}^S}} = \frac{U_{min}^S}{U_{max}^S} \sqrt{\frac{\sigma_u^2}{(U_{min}^S)^2} + \frac{\sigma_u^2}{(U_{max}^S)^2}},$$
(8)

и учтём их при построении графика.

5 Вывод

Провели исследование нескольких типов периодических сигналов; исследовали их разложение в гармонический спектр, получили картины спектров. Проверили справедливость нескольких соотношений, в том числе формулы (3).

Рис. 8: Картина спектра при $\nu_0 = 10, \ 25 \ \mbox{к}\Gamma\mbox{ц}$

Рис. 9: Картина спектра цугов при $f_{\text{повт}}=1$ к Γ ц

Рис. 10: Картина спектра цугов при $f_{\text{повт}}=1$ к Γ ц

Рис. 11: Зависимость U^s_{min}/U^s_{max} от глубины модуляции

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 3 Электричество и магнетизм, 2004
- [2] Кириченко Н.А. Электричество и магнетизм., 2011
- [3] Лабораторный практикум по общей физике. В 3 томах. Том 2. Электричество и магнетизм: учебное пособие под ред. А. В. Максимычева, М. Г. Никулина