

INSTITUT SUPERIEUR DES SCIENCES DE TECHNOLOGIE DE COMMERCE ET D'AGRICULTURE

Composition de	Session de	Niveau		Durée	
MATHEMATIQUES	Février 2021	2	Industrielles	03 h	03

Exercice 1: Analyse I (1,5+1,5+1)pts = 4pts

- **1.** Etudier les variations de la fonctions f, définie par : $f(x) = xe^{\frac{1}{x}}$.
- **2.** Construire soigneusement $(C_f)_f$ ainsi que ses différentes asymptotes.
- **3.** Déduire sur le même graphe la construction de la fonction h(x) = |f(-x)|, après avoir expliqué brièvement comment obtenir (C_h) à partir de (C_f) .

Exercice 2 : Algèbre linéaire (0,5+1+1+1+1,5)pts = 5pts

On désigne par f un endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par :

$$A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix} \text{ On pose } a = e_1 - e_2 + e_3, \ b = 2e_1 - e_2 + e_3, \ c = 2e_1 - 2e_2 + e_3 \text{ trois}$$

vecteurs de \mathbb{R}^3 .

- **1.** Montrer que $\mathbf{B} = \{a, b, c\}$ est une base de \mathbb{R}^3 .
- **2.** Déterminer la matrice de passage P de la base canonique vers la base B et calculer P^{-1} .
- **3.** Déterminer la matrice M de f dans la base B.
- **4.** Calculer $P^{-1}AP$ en fonction de M.
- **5.** Calculer M^4 et déduire A^{4n} en fonction de n.

Exercice 3: Analyse II (1+2+1+1+1+0,5)pts = 6,5pts

1. Résoudre les équations différentielles suivantes :

$$(E_1): y' + 2y = 3y^3$$
 (On utilisera le changement de variable $y = \frac{1}{z^2}$).

 $(E_2): y'' + 2y' + 2y = (3e^{2x} + 5\cos 2x)\mu(t)$ (on utilisera la transformation de Laplace).

- **2.** On considère l'équation (E): $(1 + 2x)y' + y = -\frac{2}{1+2x'}$ avec y(0) = 2.
 - **a.** En admettant que (E) admet une solution développable en série entière, $y = \sum_{n=0}^{+\infty} a_n x^n$, trouver une relation récurrente mettant en relation a_n et a_{n+1} .
 - **b.** Déduire en se servant d'un raisonnement par récurrence, que $a_n = 2(-2)^n$.
 - ${f c.}$ Déduire la somme de la série entière ${f y}$ obtenue après avoir déterminé son domaine de convergence.
 - **d.** Déduire la somme de la série numérique $\sum_{n=0}^{+\infty} \left(-\frac{1}{2}\right)^n$.

Exercice 4: Analyse II (0,5+1+0,5+0,5+2)pts = 4,5pts

On considère la fonction $f(2\pi)$ – périodique définie sur $[-\pi,\pi]$ par : $f(x)=x^2$.

- 1. Représenter f sur 03 périodes.
- 2. Calculer les coefficients de Fourier associés à f.
- **3.** f Respecte elle les conditions du théorème de Dirichlet ? Justifier.
- 4. Déduire les sommes des séries suivantes :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} \; ; \; \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \; ; \; \sum_{n=1}^{+\infty} \frac{1}{n^4} \; et \; \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4}$$