

AI2E: Workshop 10

Recurrent Neural Networks!

RIAD BESNALEM 5th year student at ESI

MOHAMED BOUSRI 5th year student at ESI

Sequence models

An exciting area in DL

What is Recurrent **Neural Networks**

Definitions, types and time traveling!

01 02

Why RNNs

Can't we just use standard NNs?

03 04

Solution for Vanishing gradient

NN Architectures as a solution

01. Sequence models

An exciting area in DL

Sequence Data Examples

Speech recognition

Music generation

Sentiment classification

DNA sequence analysis

Machine translation

Video activity recognition

Name entity recognition

"There is nothing to like in this movie."

AGCCCCTGTGAGGAACTAG

Voulez-vous chanter avec moi?

Yesterday, Harry Potter met Hermione Granger. "The quick brown fox jumped over the lazy dog."

AGCCCCTGTGAGGAACTAG

Do you want to sing with me?

Running

Yesterday, Harry Potter met Hermione Granger. Andrew Ng

02. Why RNNs

can't we just use standard NNs?

Two Main Reasons To Use RNN

O3. Recurrent Neural Networks

RNN is a type of neural networks, a feed-forward architecture used for sequential data with a variable length such as sentences or chronological series.

RNN Types

Bring your time machines...
Backpropagation through time!

04. Solution for Vanishing gradient

NN Architectures as a solution

What is the Vanishing Gradient Problem

The dinosaurs which lived millions of years ago and..., were not able to survive.

LSTM

Cell state

Forget gate

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Harry approaches and then she takes out her wand...

Input gate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update gate

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Harry approaches and then she takes out her wand...

Filtering the cell state

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

$$h_t = o_t * \tanh(C_t)$$

GRU

Deep RNNs

Word embeddings Language models

More to explore!

Word2vec

Attention mechanism Auto-**Encoder**

school of a

