

প্রধান সূচিপত্র

অধ্যায়	অধ্যায়ের নাম	পৃষ্টা নং
অধ্যায়-০১	আংশিক ভগ্নাংশ	
অধ্যায়-০২	সূচক ধারা	
অধ্যায়-০৩	দ্বিপদী উপপাদ্য	
অধ্যায়-০৪	ফাংশন এবং ফাংশনের লেখ	
অধ্যায়-০৫	সীমা	
অধ্যায়-০৬	অন্তরক সহগ ও অন্তরীকরণ	
অধ্যায়-০৭	অন্তরীকরণের ধারণা	
অধ্যায়-০৮	অধ্যায়-৮ $rac{dy}{dx}$ এর জ্যামিতিক ব্যাখ্যা	
অধ্যায়-০৯	পর্যায়ক্রমিক অন্তরিকরণের সম্বস্যা সমাধানে মিবনীজের উপপাদ্যের ব্যবহার	
অধ্যায়-১০	আংশিক অন্তরিকরণ	
অধ্যায়-১১	অনিৰ্দিষ্ট যোজিতফল	
অধ্যায়-১২	নিৰ্দিষ্ট যোজিতফল	
অধ্যায়-১৩	ভেক্টর বীজগণিত	
অধ্যায়-১৪	ভেক্টরের ডট গুণফল	
অধ্যায়-১৫	ভেক্টরের ক্রস গুণফল	

আংশিক ভগ্নাংশ

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	
২০২৩	১টি		১টি
২০২২	১টি		১টি

"আমি ব্যর্থ হইনি; আমি কেবল ১০,০০০টি উপায় খুঁজে পেয়েছি যা কাজ করে না।"

অতি সংক্ষিপ্ত প্রশ্নোত্তর :

1. প্রকৃত ভগ্নাংশের সংজ্ঞা দাও।

[বাকাশিবো : ' ০৩,'০৪,'১১(R),' ১২(R),২০]

অথবা, বীজগণিতীয় প্রকৃত ভগ্নাংশ বলতে কী বুঝায়?

সমাধান : $\frac{f(X)}{\phi(X)}$ আকারের মূলদ ভগ্নাংশকে প্রকৃত ভগ্নাংশ বলা হয় যদি লব f(x)- এর মাত্রা হর

 $\phi(x)$ -এর মাত্রা অপেক্ষা ছোট বা কম হয়।

2. অপ্রকৃত ভগ্নাংশ কাকে বলে?

[বাকাশিবো: '০৫,'০৯(R),' ১১(R),'১২(R),'১৬(R),'১৯]

অথবা, অপকৃত ভগ্নাংশ বলতে কী বুঝায়?

সমাধান : $\frac{f(X)}{\phi(X)}$ আকারের মূলদ ভগ্নাংশকে প্রকৃত ভগ্নাংশ বলা হয় যদি লব f(x)- এর মাত্রা হর

 $\emptyset(x)$ -এর মাত্রার সমান অথবা বড় বা বেশি হয়।

 $3. \frac{x+2}{(x+1)(x-1)}$ কে আংশিক ভগ্নাংশ আকারে ধ্রুবকের মাধ্যমে প্রকাশ কর। [annimeter] কি আংশিক ভগ্নাংশ আকারে ধ্রুবকের মাধ্যমে প্রকাশ কর।

সমাধান : $\frac{x+2}{(x+1)(x-1)} \equiv \frac{A}{x+1} + \frac{B}{x-1}$ (উত্তর)

 $4. \frac{3x+1}{(x+1)(x^2+3)}$ কে আংশিক ভগ্নাংশে ধ্রুবকের মাধ্যমে প্রকাশ কর।

[বাকাশিবো : '১৮]

সমাধান : $\frac{3x+1}{(x+1)(x^2+3)} \equiv \frac{A}{x+1} + \frac{Bx+C}{x^2+3}$ (উত্তর)

 $\frac{(x^2-x-1)}{(x^2+1)(x+2)^2}$ কে আংশিক ভগ্নাংশে ধ্রুবকের মাধ্যমে প্রকাশ কর।

[বাকাশিবো : ' ১৩,' ১৫]

সমাধান : $\frac{x^2 - x - 1}{(x^2 + 1)(x + 2)^2} \equiv \frac{A}{x + 2} + \frac{B}{(x + 2)^2} + \frac{Cx + D}{x^2 + 1}$ (উত্তর)

6. $\frac{x^2-x+1}{(x^2+1)(x+1)^2}$ কে আংশিক ভগ্নাংশের আকারে প্রকাশ কর।

[বাকাশিবো : '১৫]

সমাধান: $\frac{x^2-x+1}{(x^2+1)(x+1)^2} \equiv \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{Cx+D}{x^2+1}$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর :

 $1. \frac{x^2+1}{x(x-2)^2}$ কে আংশিক ভগ্নাংশে প্রকাশ কর।

সমাধান : $\Rightarrow \frac{x^2+1}{x(x-2)^2} \equiv \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2} \dots \dots \dots \dots \dots (i)$

(i) নং সমীকরণের উভয় পক্ষকে $x(x-2)^2$ দ্বারা গুণ করে পাই,

 $x^{2} + 1 = A(x - 2)^{2} + Bx(x - 2) + Cx \dots (ii)$ $\Rightarrow x^{2} + 1 = Ax^{2} - 4Ax + 4A + Bx^{2} - 2Bx + Cx \dots (iii)$

২য় পর্ব

(ii) এ
$$x = 0$$
 বসিয়ে পাই,
$$0^2 + 1 = A(0-2)^2 + 0 + 0$$

$$\Rightarrow 1 = 4A$$

$$\therefore A = \frac{1}{4}$$

$$x^2$$
 এর সহগ সমীকৃত করে পাই, $1 = A + B$ $\Rightarrow B = 1 - A$ $= 1 - \frac{1}{4}$ $= \frac{4-1}{4}$ $= \frac{3}{4}$

A, B ও C এর মান (i) নং বসাই,

$$\frac{x^2+1}{x(x-2)^2} \equiv \frac{\frac{1}{4}}{x} + \frac{\frac{3}{4}}{x-2} + \frac{\frac{5}{2}}{(x-2)^2}$$
$$= \frac{1}{4x} + \frac{3}{4(x-2)} + \frac{5}{2(x-2)^2} \quad (উত্তর)$$

(ii) এ
$$x = 2$$
 বসিয়ে পাই,
 $2^2 + 1 = 0 + 0 + 2c$
 $\Rightarrow 4 + 1 = 2c$
 $\Rightarrow 5 = 2c$
 $\therefore C = \frac{5}{2}$

$$2. \ \frac{2x+1}{(x+1)^2(2x-5)}$$
 কে আংশিক ভগ্নাংশে প্রকাশ কর।

সমাধান : $\Rightarrow \frac{2x+1}{(x+1)^2(2x-5)} \equiv \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{2x-5} \dots \dots \dots \dots (i)$

- (i) নং সমীকরণের উভয়পক্ষকে $(x+1)^2(2x-5)$ দ্বারা গুণ করে পাই, $2x+1=A(x+1)(2x-5)+B(2x-5)+C2(x+1)^2........................(ii) <math>\Rightarrow 2x+1=2Ax^2+1Ax-5Ax-5A+2Bx-5B+Cx^2+2Cx^2+C.................(iii)$
- (ii) নং এ x = -1 বসিয়ে পাই, -2 + 1 = 0 + B(-2 5) + 0 ⇒ -1 = 7B $\therefore B = \frac{1}{7}$

(ii) নং এ
$$x = \frac{5}{2}$$
 বসিয়ে পাই,
$$5 + 1 = 0 + 0 + c\left(\frac{5}{2} + 1\right)^2$$

$$\Rightarrow 6 = C\left\{\left(\frac{5}{2}\right)^2 + 2 \cdot \frac{5}{2} \cdot 1 + 1^2\right\}$$

$$\Rightarrow 6 = C\left(\frac{25}{4} + 5 + 1\right)$$

$$\Rightarrow 6 = C\left(\frac{25}{4} + 6\right)$$

$$\Rightarrow 6 = C\left(\frac{25+24}{4}\right)$$

$$\Rightarrow 6 = C\frac{49}{4}$$

$$\Rightarrow C = \frac{24}{49}$$

 \mathbf{x}^2 এর সহগ সমীকৃত করে পাই,

$$0 = 2A + C$$

$$\Rightarrow -2A = C$$

$$\Rightarrow = -\frac{C}{2}$$

$$= -\frac{12}{49}$$

A, B ও C এর মান (i) নং এ বসাই,

$$\begin{split} \frac{2x+1}{(x+1)^2(2x-5)} &= \frac{\left(-\frac{12}{49}\right)}{x+1} + \frac{\frac{1}{7}}{(x+1)^2} + \frac{\frac{24}{59}}{2x-5} \\ &= -\frac{12}{49(x+1)} + \frac{1}{7(x+1)^2} + \frac{24}{49(2x-5)} \\ &= \frac{1}{7(x+1)^2} + \frac{1}{7(x+1)^2} + \frac{24}{49(2x-5)} \text{ (উওর)} \end{split}$$

3. $\frac{x^2-x+1}{(x-1)^2(x^2+1)}$ কে আংশিক ভগ্নাংশে প্রকাশ কর।

সমাধান :
$$\Rightarrow \frac{x^2 - x + 1}{(x - 1)^2 (x^2 + 1)} \equiv \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{Cx + D}{x^2 + 1} \dots \dots \dots (i)$$

(i) নং সমীকরণের উভয়পক্ষকে $(x-1)^2(x^2+1)$ দ্বারা গুণ করে পাই,

$$x^{2} - x + 1 = A(x - 1)(x^{2} + 1) + B(x^{2} + 1) + (Cx + D)(x - 1)^{2} \dots \dots (ii)$$

 $\Rightarrow x^{2} - x + 1 = A(x^{3} - x^{2} + x - 1) + Bx^{2} + B + Cx^{3} - 2Cx^{2} + Cx + Dx^{2} - 2Dx + D \dots (iii)$

(ii) এ x = 1 বসিয়ে পাই,

1 - 1 + 1 = 0 + B(1 + 1) + 0
⇒ 1 = 2B ∴ B =
$$\frac{1}{2}$$

 x^3, x^2 ও x এর সহগ সমীকৃত করে পাই,

$$0 = A + C$$

 $\therefore C = -A \dots (iv)$
의적 $1 = -A + B - 2C + D \Rightarrow 1 = -A + \frac{1}{2} + 2A + D$
 $\Rightarrow 1 = \frac{1}{2} + A + D \Rightarrow A + D = 1 - \frac{1}{2} = \frac{2-1}{2}$
 $\therefore A + D = \frac{1}{2} \dots (v)$

২য় পর্ব

আবার,
$$-1 = A + C - 2D$$

$$\Rightarrow -1 = A - A - 2D$$

$$\Rightarrow D = \frac{1}{2}$$

D এর মান (v) নং এ বসাই,
$$A + \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow A = \frac{1}{2} = \frac{1}{2}$$

$$\therefore A = 0$$

A এর মান (iv) নং এ বাসই,

$$C = 0$$

A, B ও C এর মান (i) নং এ বসাই,

$$\frac{x^{2}-x+1}{(x-1)^{2}(x^{2}+1)} = \frac{0}{x-1} + \frac{\frac{1}{2}}{(x-1)^{2}} + \frac{\left(0+\frac{1}{2}\right)}{x^{2}+1}$$

$$= 0 + \frac{1}{2(x-1)^{2}} + \frac{1}{2(x^{2}+1)}$$

$$= \frac{1}{2(x-1)^{2}} + \frac{1}{2(x^{2}+1)}$$
(উত্তর)

4. $\frac{6x-3}{(x+1)^2(x-2)}$ কে আংশিক ভগ্নাংশে প্রকাশ কর।

সমাধান :
$$\frac{6x-3}{(x+1)^2(x-2)} \equiv \frac{A}{x-2} + \frac{B}{x+1} + \frac{C}{(x+1)^2} \dots \dots (i)$$

(i) নং সমীকরণের উভয়পক্ষকে $(x+1)^2(x-2)$ দ্বারা গুণ করে পাই,

$$6x - 3 = A(x + 1)^{2} + B(x + 1)(x - 2) + C(x - 2) \dots \dots \dots (ii)$$

$$\Rightarrow 6x - 3 = Ax^{2} + 2Ax + 1 + Bx^{2} - Bx - 2Bx + 2B + Cx - 2c \dots \dots (iii)$$

(ii) এ x = 2 বসিয়ে পাই.

 $6 \times 2 - 3 = A(2+1)^2 + 0 + 0$

 $\Rightarrow 9A = 9$

 $\therefore A = 1$

 $\Rightarrow 12 - 3 = 9A$

(ii) এ x = -1 বসিয়ে পাই.

$$6(-1) - 3 = c(-1 - 2) + 0 + 0$$

 $\Rightarrow -6 - 3 = 3c$
 $\Rightarrow 9 = 3c$

$$\Rightarrow C = \frac{9}{3}$$

$$\stackrel{3}{\therefore} C = 3$$

 χ^2 এর সহগ সমীকৃত করে পাই,

$$0 = A + B$$

$$\Rightarrow 0 = 1 + B$$

$$\therefore B = -1$$

A, B ও C এর মান (i) নং সমীকরণে বসাই,

$$\frac{6x-3}{(x+1)^2(x-2)} \equiv \frac{1}{x-2} - \frac{1}{x+1} + \frac{3}{(x+1)^2}$$
 (উত্তর)

5.
$$\frac{5x-12}{x^25x+6}$$

সমাধান : দেওয়া আছে,
$$\frac{5x-12}{x^25x+6} = \frac{5x-12}{x^2-3x-2x+6} = \frac{5x-12}{x(x-3)-2(x-3)} = \frac{5x-12}{(x-3)(x-2)}$$
 ধরি, $\frac{5x-12}{(x-3)(x-2)} \equiv \frac{A}{x-3} + \frac{B}{x-2} \dots \dots \dots (i)$
$$\Rightarrow (x-3)(x-2) \times \frac{5x-12}{(x-3)(x-2)} \equiv (x-3) \times \frac{A}{x-3} + (x-3)(x-2) \times \frac{B}{x-2}$$

$$\Rightarrow 5x-12 = A(x-2) + B(x-3) \dots \dots (ii)$$

x এর মান 3, 2 (ii) নং সমীকরনে বসিয়ে পাই,

$$5x - 12 = A(x - 2) + B(x - 3)$$

$$\Rightarrow$$
 5 × 3 - 12 = $A(3-2) + B(3-3)$

$$\Rightarrow 15 - 12 = A \times 1 + B \times 0$$

$$\Rightarrow$$
 3 = A + 0

$$\Rightarrow A = 3$$

আবার,
$$5x - 12 = A(x - 2) + B(x - 3)$$

$$\Rightarrow$$
 5 × 2 - 12 = $A(2-2) + B(2-3)$

$$\Rightarrow 10 - 12 = A \times 0 + B \times (-1)$$

$$\Rightarrow -2 = 0 - B$$

$$\Rightarrow +2 = +B$$

$$\Rightarrow B = 2$$

A ও B এর মান (i) নং সমীকরণে বসাই,

$$\frac{5x - 12}{(x - 3)(x - 2)} \equiv \frac{A}{x - 3} + \frac{B}{x - 2}$$

$$\Rightarrow \frac{5x - 12}{(x - 3)(x - 2)} = \frac{3}{x - 3} + \frac{2}{x - 2} \quad (উত্তর)$$

6.
$$\frac{x^2+1}{x(x-2)^2}$$

সমাধান : ধরি,
$$\frac{x^2+1}{x(x-2)^2} \equiv \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2} \dots \dots (i)$$

$$\Rightarrow x^2 + 1 = A(x-x)^2 + Bx(x-2) + Cx \dots \dots (ii)$$

$$\Rightarrow x^2 + 1 = A(x^2 - 4x + 4) + Bx(x-2) + C$$

$$\Rightarrow 0.x + x^2 + 1 = Ax^2 - 4Ax + 4A + Bx - 2Bx + Cx \dots \dots (iii)$$
 x এর মান 0.2 (ii) নং সমীকরনে বসাই.

$$x^{2} + 1 = A(x - 2)^{2} + Bx(x - 2) + Cx$$
⇒ $0^{2} + 1 = A(0 - 2)^{2} + Bx(x - 2) + C \times 0$
⇒ $1 = A(-2)^{2} + 0 + 0$
⇒ $1 = A \times 4$
⇒ $A = \frac{1}{4}$

width, $x^{2} + 1 = A(x - 2)^{2} + Bx(x - 2) + Cx$
⇒ $2^{2} + 1 = A(2 - 2)^{2} + Bx(x - 2) + C \times 2$
⇒ $5 = 0 + 0 + 2c$
⇒ $c = \frac{5}{2}$

(iii) নং সমীকরণ হতে পাই, এর সহগ সমীকৃত করে পাই, 1 = A + B $\Rightarrow 1 = \frac{1}{4} + B$ $\Rightarrow B = 1 - \frac{1}{4}$ $= \frac{4-1}{4} = \frac{3}{4}$ A, B, C এর মান (i) নং এ বসাই,

$$\frac{x^2+1}{x(x-2)^2} \equiv \frac{A}{x} + \frac{B}{x-2} + \frac{Cx}{(x-2)^2}$$

$$\Rightarrow \frac{x^2+1}{x(x-2)} = \frac{1}{4x} + \frac{3}{4(x-2)} + \frac{5}{2(x-2)^2} \quad (উত্তর)$$

অথবা, x এর সহগ সমীকৃত করে পাই,

$$\Rightarrow 0 = -4A - 2B + C$$

$$\Rightarrow 0 = -4 \times \frac{1}{4} \cdot 2B + \frac{5}{2}$$

$$\Rightarrow 0 = -1 - 2B + \frac{5}{2}$$

$$\Rightarrow 2B = -1 + \frac{5}{2}$$

$$\Rightarrow B = \frac{3}{4}$$

রচনামূলক প্রশোতর:

নিম্নলিখিত ভাগ্নাংশগুলোকে আংশিক ভগ্নাংশে প্রকাশ কর :

1. $\frac{x^2-x+1}{(x-1)(x^2+1)}$ কে আংশিক ভগ্নাংশে প্রকাশ কর।

$$\Rightarrow \frac{x^2 - x + 1}{(x - 1)(x^2 + 1)} \equiv \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1} + \frac{D}{(x + 1)^2} \dots \dots \dots (i)$$

(i) নং সমীকরণের উভয়পক্ষকে $(x-1)(x^2+1)$ দ্বারা গুণ করে পাই,

$$x^{2} - x + 1 = A(x^{2} + 1) + (Bx + C)(x^{2} - 1) \dots (ii)$$

 $\Rightarrow x^{2} - x + 1 = Ax^{2} + A + Bx^{2} + Cx + Bx - C \dots (iii)$

(ii) এ x=1 বসিয়ে পাই,

$$1 - 1 + 1 = A((1+1) + 0$$

$$\Rightarrow 1 = 2A$$

$$\therefore A = \frac{1}{2}$$

আবার,

$$-1 = C - B$$

$$\Rightarrow -1 = C - \frac{1}{2}$$

$$\Rightarrow C - \frac{1}{2} = -1$$

$$\Rightarrow C = -1 + \frac{1}{2}$$

$$\Rightarrow C = \frac{-2+1}{2} \Rightarrow C = -\frac{1}{2}$$

$$\therefore C = -\frac{1}{2}$$

(iii) x^2 ও x এর সহগ সমীকৃত করে পাই,

$$1 = A + B$$

$$\Rightarrow 1 = \frac{1}{2} + B \Rightarrow -B = \frac{1}{2} - 1$$

$$\Rightarrow -B = \frac{1-2}{2} \Rightarrow B = -\frac{1}{2}$$

$$\therefore B = \frac{1}{2}$$

A, B ও C এর মান (i) নং সমীকরণে বসাই,

$$\frac{x^2 - x + 1}{(x - 1)(x^2 + 1)} \equiv \frac{\frac{1}{2}}{x - 1} + \frac{\frac{1}{2}x + \left(-\frac{1}{2}\right)}{x^2 + 1}$$

$$\equiv \frac{1}{2(x-1)} + \frac{\frac{x-1}{2}}{x^2+1} = \frac{1}{2(x-1)} + \frac{x-1}{2(x^2+1)}$$
 (উত্তর)

২য় পর্ব

$$2. \frac{(x^2-x+1)}{(x^2+1)(x+1)^2}$$
 কে আংশিক ভগ্নাংশে প্রকাশষ কর।

সমাধান : ধরি,
$$\frac{x^2-x+1}{(x^2+1)(x+1)^2} \equiv \frac{Ax+B}{x^2+1} + \frac{C}{x+1} + \frac{D}{(x+1)^2} \dots \dots (i)$$

$$\Rightarrow x^2-x+1 = (Ax+B)(x+1)^2 + C(x^2+1)(x+1) + D(x^2+1) \dots \dots (ii)$$

$$\Rightarrow x^2-x+1 = (Ax+B)(x^2+2x+1) + C(x^3+x^2+x+1) + Dx^2 + D$$

$$\Rightarrow x^2-x+1 = Ax^2+2Ax^2+Ax+Bx^2+2Bx+B+Cx^3+Cx^2$$

$$+C7Dx^2+D \dots \dots (iii)$$

$$x$$
 এর মান – 1 (ii) নং এ বসাই,

$$x^{2} - x + 1 = (Ax + B)(x + 1)^{2} + C(x^{2} + 1)(x + 1) + D(x^{2} + 1)$$

$$\Rightarrow (-1)^{2} - (-1) + 1 = 0 + 0 + D\{(-1)^{2} + 1\}$$

$$\Rightarrow 1 + 1 + 1 = D(1 + 1)$$

$$\Rightarrow D = \frac{3}{2}$$

এখন,
$$x^3$$
, x^2 , x এর সহগ সমীকৃত করে পাই,

$$\Rightarrow 0 = A + C$$

 $\Rightarrow A = -C \dots (iv)$
আবার, $1 = 2A + B + C + D$

$$\Rightarrow 1 = 2(-C) + B + C + \frac{3}{2}$$

$$\Rightarrow 1 = -2c + B + C + \frac{3}{2}$$

$$\Rightarrow 1 - \frac{3}{2} = -C + B$$

$$\Rightarrow \frac{2-3}{2} = B - C$$

$$\Rightarrow B - C = -\frac{1}{2} \dots \dots (v)$$

$$A = -0$$

$$\Rightarrow A = 0$$

i নং A, B, C, D এর মান বসাই,

$$\frac{x^2 - x + 1}{(x^2 + 1)(x + 1)^2} \equiv \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1} + \frac{D}{(x + 1)^2}$$

$$\Rightarrow \frac{x^2 - x + 1}{(x^2 + 1)(x + 1)^2} = \frac{0 \times + 1}{-2(x^2 + 1)} + \frac{0}{x + 1} + \frac{3}{(x + 1)^2}$$

$$= -\frac{1}{2(x^2 + 1)} + \frac{3}{2(x + 1)^2} = \frac{3}{2(x + 1)^2} - \frac{1}{2(x^2 + 1)} \quad (\text{West})$$

$$-1 = +2B + A + C$$

$$\Rightarrow -1 = 2B + (-C) + C$$

$$\Rightarrow -1 = 2B - C + C$$

$$\Rightarrow -1 = 2B - C + C$$

$$\Rightarrow B = -\frac{1}{2}$$

$$-\frac{1}{2} - C = -\frac{1}{2}$$

$$\Rightarrow -c = -\frac{1}{2} + \frac{1}{2}$$

$$\Rightarrow -c = 0$$

$$\Rightarrow C = 0$$

সূচক ধারা

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশাবলি		

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি		১টি
২০২৩	১টি	১টি	
२०२२	১টি	১টি	ঠটি

"গণিত পারেন না বলে কষ্টে থাকবেন না। আমি নিশ্চিত করে বলছি, আমার সমস্যা তার চেয়েও বেশি।"

এই অধ্যায়ের এর সূত্র

1.
$$e = 1 + \frac{1}{1!} - 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \infty$$

2.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \infty$$

3.
$$e^{-x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \infty$$

4.
$$a^x = 1 + \frac{x}{1!} \log_e a + \frac{x^2}{2!} (\log_e a)^2 + \dots + \infty$$

5.
$$e^{-1} = 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \infty$$

6. সমান্তর ধারার
$$n$$
 তম পদ $=a+(n-n)d$

7. গুণোত্তর ধারার যোগফল
$$S=arac{1-r^n}{1-r}$$

গুরুত্বপূর্ণ একটি প্রমাণ যা পরিক্ষায় ৯৯% আসার সম্ভাবনা রয়েছে → Lets do it

i. প্রমাণ কর যে, 2 < e < 3 |

সমাধান:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \infty$$

$$\forall e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \infty$$

$$\forall e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \infty$$

সুতরাং,
$$e>2$$
 I

এখানে,
$$\frac{1}{6!} < \frac{1}{25}$$
, $\frac{1}{7!} < \frac{1}{26}$ ইত্যাদি।
$$= 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \infty <= 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \infty$$

$$= 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \infty$$

$$= 1 + 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^{\infty}}{1 - \frac{1}{2}}$$

$$= 1 + \frac{1 - 0}{\frac{1}{2}}$$

$$= 1 + 2 = 3$$

$$\therefore s - \frac{a(i - r^{\infty})}{1 - r^{\infty}}$$

সুতারাং,
$$e < 3$$
 I

আবার,
$$3! = 3.2.1 > 2^2$$
 $\therefore \frac{1}{3!} < \frac{1}{2^2}$

$$4! = 4.3.2.1 > 2^3$$
 $\therefore \frac{1}{4!} < \frac{1}{2^3}$

$$5! = 5.4.3.2.1 > 2^4$$
 $\therefore \frac{1}{5!} < \frac{1}{2^4}$

এখানে,
$$a = 1$$

$$r = \frac{1}{2}$$

$$i = a - a(i - r^{\infty})$$

$$\therefore S = \frac{a(i-r^{\infty})}{1-r}$$

ii.
$$\frac{2}{|1|} + \frac{2+4}{|2|} + \frac{2+4+6}{|3|} + \dots = 3e$$

সমাধান : প্রদত্ত ধারার n তম পদ =
$$\frac{2+4+6+\cdots}{\lfloor a+(n-1)d} = \frac{2(1+2+3+\cdots+n)}{\lfloor 1+(n-1).1} = \frac{2\cdot\frac{n(n+1)}{2}}{\lfloor 1+n-1} = \frac{n(n+1)}{\lfloor n-1}$$

$$= \frac{n(n+1)}{n\lfloor n-1} = \frac{n+1}{\lfloor n-1} = \frac{n-1+3}{\lfloor n-1} = \frac{n-1}{\lfloor n-1} + \frac{2}{\lfloor n-1}$$

$$= \frac{n-1}{(n-1)\lfloor n-2} + \frac{2}{\lfloor n-1} = \frac{1}{\lfloor n-2} + \frac{2}{\lfloor n-1} = \frac{n-1}{\lfloor n-1} + \frac{2}{\lfloor n-$$

n এর মান 1,2,3,4,..... ইত্যাদি বসিয়ে পাই,

$$\begin{split} S &= \left(\frac{1}{(1-2)!} + \frac{1}{(2-2)!} + \frac{1}{(3-2)!} + \frac{1}{(4-2)!} + \dots + \infty\right) \\ &\quad + 2\left(\frac{1}{(1-1)!} + \frac{1}{(2-1)!} + \frac{1}{(3-1)!} + \frac{1}{(4-1)!} + \dots + \infty\right) \\ &= \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} \dots \dots + \infty\right) + 2\left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \infty\right) \\ &= e + 2e = 3e \text{ (প্রমাণিত)} \end{split}$$

iii.
$$1 + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots = \frac{3}{2}e$$

(iii) প্রদিত্ত ধারার
$$n$$
 তম পদ $= \frac{1+2+3+\cdots+n}{\lfloor a+(n-1)d} = \frac{\frac{n(n+1)}{2}}{\lfloor 1+(n-1).1} = \frac{n(n+1)}{2\lfloor n} = \frac{n+1}{2\lfloor n-1}$ $= \frac{n-1+2}{2\lfloor n-1} = \frac{n-1}{2\lfloor n-1} + \frac{2}{2\lfloor n-1} = \frac{1}{2\lfloor n-2} + \frac{1}{\lfloor n-1}$

n এর মান 1, 2, 3, 4, ইত্যাদি বসিয়ে পাই,

$$\begin{split} S &= \frac{1}{2} \Big(1 + \frac{1}{|1|} + \frac{1}{|2|} + \frac{1}{|3|} + \dots + \infty \Big) + \Big(1 + \frac{1}{|1|} + \frac{1}{|2|} + \frac{1}{|3|} + \dots + \infty \Big) \\ &= \frac{1}{2} e + e = \frac{e}{2} + e = \frac{e + 2e}{2} = \frac{3e}{2} = \frac{3}{2} e \text{ (প্রমাণিত)} \end{split}$$

iv.
$$\frac{1}{2} + \frac{1+2}{3} + \frac{1+2+3}{4} + \frac{1+2+3+4}{5} + \dots = \frac{1}{2}e$$

সমাধান: পদত্ত ধারার n তম পদ $=\frac{1+2+3+\cdots+n}{|a+(n-1)d|}$

$$= \frac{\frac{[a+(n-1)a]}{\frac{n(n+1)}{2}}}{\frac{[2+(n-1)1]}{2}} = \frac{n(n+1)}{2[2+n-1]} = \frac{n(n+1)}{2[n+1]} = \frac{n}{2[n]} = \frac{1}{2[n-1]}$$

n এর মান 1, 2, 3, 4, ইত্যাদি বসিয়ে পাই,

$$S = \frac{1}{2} \left(1 + \frac{1}{|1|} + \frac{1}{|2|} + \frac{1}{|3|} + \frac{1}{|4|} + \dots + \infty \right) = \frac{1}{2} e$$
 (প্রমাণিত)

২য় পর্ব

Type-2:

1.
$$1 + \frac{2}{|1|} + \frac{3}{|2|} + \frac{4}{|3|} + \cdots$$

সমাধান: প্রদত্ত ধারার
$$n$$
 তম পদ $= \frac{a+(n-1)d}{\lfloor a+(n-1)d} = \frac{1+n(n-1)1}{\lfloor 0+(n-1)1} = \frac{n-1+1}{\lfloor n-1} = \frac{n-1}{\lfloor n-1} + \frac{1}{\lfloor n-1}$ $= \frac{1}{\lfloor n-2} + \frac{1}{\lfloor n-1}$

n এর মান 1, 2, 3, 4, ইত্যাদি বসিয়ে পাই,

$$S = \left(1 + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \infty\right) + \left(1 + \frac{1}{2} + \frac{1}{2} + \dots + \infty\right) = e + e = 2e \text{ (প্রমাণিত)}$$

2.
$$\frac{5}{11} + \frac{7}{12} + \frac{9}{13} + \frac{11}{14} + \cdots$$

3.
$$1 + \frac{3}{|1|} + \frac{5}{|2|} + \frac{7}{|3|} + \cdots$$

Type-3

1.
$$\frac{1^2}{11} + \frac{3^2}{12} + \frac{5^2}{13} + \frac{7^2}{14} + \cdots \infty$$

সমাধান : পদত্ত ধারা n তম পদ =
$$\frac{\{a+(n-1)d\}^2}{[a+(n-1)d]} = \frac{\{1+(n-1)2\}^2}{[1+(n-1)1]} = \frac{(1+2n-2)^2}{[n]}$$

$$= \frac{(2n+1)^2}{[n]} = \frac{4n^2+4n+1}{[n]} = \frac{4n(n-1)+1}{[n]} = \frac{4n(n-1)}{[n]} + \frac{1}{[n]}$$

n এর মান 1, 2, 3, 4, ইত্যাদতি বসিয়ে পাই,

$$S = 4\left(1 + \frac{1}{|1|} + \frac{1}{|2|} + \frac{1}{|3|} + \dots + \infty\right) + \left(1 + \frac{1}{|1|} + \frac{1}{|2|} + \frac{1}{|3|} + \dots + \infty - 1\right)$$

= $4e + e - 1 = 5e - 1$ (উত্তর)

2.
$$\frac{1^2}{|1} + \frac{2^2}{|2} + \frac{3^2}{|3} + \cdots \infty$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর :

$1.e^x$ ধারাটি লেখ।

[বাকাশিবো : ' o৮, '১৫(R), '১৬,'২২,'২২]

সমাধান :
$$e^x = 1 + \frac{x}{1} + \frac{x^2}{12} + \frac{x^3}{13} + \dots \dots \infty$$

2. e এর মানের সীমা লেখ।

[বাকাশিবো: '১৪,'১৫,' '১৫(R),'২১']

সমাধান: 2 < e < 3

 $3. e^{-x}$ ধারাটি লেখ।

[বাকাশিবো : ' ০৫,'১২,'১৩(R),'১৪,'১৭,' ১৭(R),'১৮,'২০(R),'২১,]

অথবা, e^{-x} ধারাটি বিস্তৃতি কর।

[বাকাশিবো : '০৯(R),'১১(R),'১২(R),]

 $4.~e^{-1}$ ধারাটি লেখ।

5. a^x ধারাটি লেখ।

[বাকাশিবো: '০০,'০৪,'০৪(R),'০৯,'১০(R),'১৫(R),'২০]

সমাধান : $a^x = 1 + \frac{x}{11} \log_e a + \frac{x^2}{12} (\log_e a)^2 + \dots \dots \infty$

6. $\frac{1}{2} \left(e + \frac{1}{e} \right)$ সমান কত?

[বাকাশিবো : '১৮(R)]

সমাধান : $\frac{1}{2}\left(e + \frac{1}{e}\right) = \left(1 + \frac{1}{2} + \frac{2}{4} + \dots + \infty\right)$

7. $1+\frac{1}{12}+\frac{1}{14}+\ldots$ েক e এর মাধ্যমে প্রকাশ কর।

[বাকাশিবো : ' ৯৯,'০১,'১৩,'১৮(R)]

সমাধান : আমরা জানি $e=1+\frac{1}{|1}+\frac{1}{|2}+\frac{1}{|3}+\frac{1}{|4}+\ldots\ldots\infty$

এবং $e^{-1} = 1 - \frac{1}{|1|} + \frac{1}{|2|} - \frac{1}{|3|} + \frac{1}{|4|} - \dots \dots \dots \infty$

যোগ করে পাই, $e+e^{-1}=2\left(1+\frac{1}{2}+\frac{1}{4}+\dots\dots \infty\right)$

বা, $1 + \frac{1}{2} + \frac{1}{4} + \dots \dots \infty = \frac{1}{2} (e + e^{-1})$ (উত্তর)

8. $1+rac{1}{3!}+rac{1}{5!}+\ldots$ এর মান e এর মাধ্যমে লেখ।

[বাকাশিবো : '১৩,'১৬(R)]

অথবা, $1 + \frac{1}{3} + \frac{1}{5} + \dots$ এর মান কত?

[বাকাশিবো : '০৬]

সমাধান : আমরা জানি $e=1+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\ldots \infty$

এবং $e^{-1} = 1 - \frac{1}{|1|} + \frac{1}{|2|} - \frac{1}{|3|} + \dots \dots \infty$

বিয়োগ করে পাই,

 $e-e^{-1}=2(\frac{1}{|1}+\frac{1}{|3}+\frac{1}{|5}+\ldots\ldots \infty \div 1+\frac{1}{|3}+\frac{1}{|5}+\ldots\ldots \infty =\frac{1}{2}(e-e^{-1})$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর:

1.
$$\frac{2}{1!} + \frac{2+4}{2!} + \frac{2+4+6}{3!} + \dots = 3e$$

সমাধান : প্রদত্ত ধারার
$$n$$
 তম পদ $= \frac{2+4+6+\cdots}{(a+(n-1)d)!} = \frac{2(1+2+3+\cdots)}{(1+(n-1)\times 1)!} = \frac{2\times\frac{n(n+1)}{2}}{(1+n-1)!} = \frac{n(n+1)}{n!}$ $= \frac{n(n+1)}{n(n-1)!} = \frac{n-1+2}{(n-1)!} = \frac{n-1}{(n-1)!} + \frac{2}{(n-1)!} = \frac{(n-1)1}{(n-1)!} + \frac{2}{(n-1)!} = \frac{1}{(n-2)!} + \frac{2}{(n-1)!}$

n তম পদ =
$$a + (n-1)d$$

$$S = \frac{n(n+1)}{2} = a \frac{1-r^{\infty}}{1-r}$$

$$d = 1, \quad a = 1$$

$$= n(n-1)!$$

$$= (n-1)(n-1-1)!$$

$$= n-1(-2)!$$

এখন, n এর মান 1, 2, 3, 4, 5, ইত্যাদি বসিয়ে পাই

$$\begin{split} S &= \left(\frac{1}{(1-2)!} + \frac{1}{(2-2)!} + \frac{1}{(3-2)!} + \frac{1}{(4-2)!} + \frac{1}{(5-2)!} + \cdots\right) \\ &\quad + 2\left(\frac{1}{(1-1)!} + \frac{1}{(2-1)!} + \frac{1}{(3-1)!} + \frac{1}{(4-1)!} + \frac{1}{(5-1)!} + \cdots\right) \\ &\Rightarrow S &= \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots\right) + 2\left(1 + \frac{1}{1!} + \frac{1}{2!} + \cdots\right) = e + 2e = 3e \text{ (প্রমাণিত)} \end{split}$$

2.
$$\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + \dots = \frac{3}{2}e$$

সমাধান : পদত্ত ধারার
$$n$$
 তম পদ $= \frac{1+2+3+\cdots}{(a+(n-1)d)!} = \frac{\frac{n(n+1)}{2}}{(1+(n-1)1)!} = \frac{n(n+1)}{2n!} = \frac{n(n+1)}{2n(n-1)!} = \frac{n+1}{2(n-1)!} = \frac{n+1}{2(n-1)!} = \frac{n-1}{2(n-1)!} = \frac{n-1}{2(n-1)!} + \frac{1}{(n-1)!} = \frac{1}{2(n-2)!} + \frac{1}{(n-1)!}$

এখন, n এর মান 1, 2, 3, 4, 5, ইত্যাদি বসিয়ে,

$$S = \frac{1}{2} \left(\frac{1}{(1-2)!} + \frac{1}{(2-2)!} + \frac{1}{(3-2)!} + \frac{1}{(4-2)!} + \frac{1}{(5-2)!} \right) + \left(\frac{1}{(n-1)!} + \frac{1}{(2-1)!} + \frac{1}{(3-1)!} + \frac{1}{(4-1)!} + \dots \right) = \frac{1}{2} e + e = \frac{e+2e}{2} = \frac{3}{2} e \quad (প্রমাণিত)$$

3.
$$\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} + \frac{1+2+3+4}{5!} + \dots = \frac{1}{2}e$$

সমাধান: n তম পদ =
$$\frac{1+2+3+\cdots}{a+(n-1)d} = \frac{\frac{n(n+1)}{2}}{2+(n-1)^1} = \frac{n(n+1)}{2(2+n+n-1)} = \frac{n(n+1)}{2(n+1)} = \frac{n(n+1)}{2(n+1)} = \frac{n(n+1)}{2(n+1)(n+1-1)!}$$

$$= \frac{n}{2n!} = \frac{n}{2n(n-1)!} = \frac{1}{2(n-1)!}$$

n এর মান 1, 2, 3, 4, 5, ইত্যাদি বসিয়ে পাই,

$$S = \frac{1}{2} \left(\frac{1}{(1-1)!} + \frac{1}{(2-1)!} + \frac{1}{(3-1)!} + \frac{1}{(4-1)!} + \cdots \right) = \frac{1}{2} e$$
 (প্রমাণিত)

4.
$$\frac{1}{0!} + \frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \cdots$$

সমাধান : প্রদত্ত ধারার
$$n$$
 তম পদ $= \frac{a+(n-1)d}{(a+(n-1)d)!} = \frac{1+(n-1)1}{(0+(n-1)1)!} = \frac{1+n-1}{(n-1)!} = \frac{n}{(n-1)!} = \frac{n-1+1}{(n-1)!} = \frac$

n এর মান 1, 2, 3, 4, 5, ইত্যাদি বসিয়ে পাই,

$$S = \left(\frac{1}{(1-2)!} + \frac{1}{(2-2)!} + \frac{1}{(3-2)!} + \frac{1}{(4-2)!} + \frac{1}{(5-2)!} + \cdots\right) + \left(\frac{1}{(n-1)!} + \frac{1}{(2-1)!} + \frac{1}{(3-1)!} + \cdots\right) = e + e = 2e$$
 (প্রাণিত)

দ্বিপদী উপপাদ্য (ক)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
অতি সংক্ষিপ্ত প্রশ্লাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশ্লাবলি		

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Questions Analysis)

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি		১টি
২০২৩		১টি	
२०२२		গী?	

"এ পর্যন্ত আমি একজনও গণিতবিদ দেখিনি, যিনি যুক্তি প্রয়োগ করতে পারেন।"

এই অধ্যায়ের প্রয়োজনীয় সূত্রাবলিঃ

ধনাত্মক পূর্ণ সংখ্যা সূচকের দ্বিপদী বিস্তৃতি:

- 1. $(a+x)^n = a^n + {}^nC_1a^{n-1}x^1 + {}^nC_2a^{n-2}x^2 + {}^nC_2a^{n-3}x^3 + \dots + {}^nC_ra^{n-r}x^r + \dots + x^n (r+1)$ তম পদ $= {}^nC_ra^{n-r}x^2$
- 2. পদের সংখ্যা বিজোড় হলে মধ্যপদ হবে 1 টি। মধ্যাপদ $=\left(rac{n}{2}+1
 ight)$
- 3. পদের সংখ্যা জোড় হলে মধ্যপদ হবে ২ টি।

১ম পদ
$$=\frac{n-1}{2}+1$$
, ২য় পদ $=\frac{n+1}{2}+1$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

 $1. \ (a+x)^{20}$ এর বিস্তৃতিতে সাধারণ পদটি কত?

[বাকাশিবো : '০৬(R),'২২]

সমাধান : $(a+x)^{20}$ এর বিস্তৃতির সাধারণ পদ বা (r+1) তম পদ $={}^{20}C_ra^{20}$

ধনাত্মক পূর্ণ সংখ্যা সূচকের দ্বিপদী উপপাদ্য লিখ।

[বাকাশিবো : '৯৬,'৯৭,'১৫,'১৯]

সমাধান : n এর মান যেকোনো ধনাত্মক পূর্ণ সংখ্যা হলে, $(a+x)^n=a^n+{}^nc_2a^{n-2}x^2+\cdots+{}^nC_2a^{n-2}x^2+\cdots+{}^nC_ra^{n-r}x^r+\cdots+x^n.$

3. $(2+x)^{21}$ এর বিস্তৃতিতে সাধারণ পদটি লিখ।

[বাকাশিবো : '১৬]

সমাধান : সাধারণ পদ = (r+1) তম পদ $= {}^{21}C_r 2^{21} {}^r x^r$. (উত্তর)

4. $(a+x)^n$ এর বিস্তৃতিতে মোট কয়টি পদ আছে?

[বাকাশিবো : '০৯,'১২,'১৬R]

সমাধান : $(a+x)^n$ এর বিস্তৃতিতে মোট পদ আছে =(n+1) সংখ্যক।

5. $(1-x)^n$ এর বিস্তৃতিতে সাধারণ পদটি লিখ।

[বাকাশিবো : '০৪(R),'৬০(R),'১০(R),'১৩,'১৪,'১৫R]

সামাধান : সাধারণ পদ =(r+1) তম পদ $={}^nC_r(1)^{n-r}(-x)^r={}^nC_r(-1)^rx^r$. (উত্তর)

 $6.\left(2+rac{x}{2}
ight)^5$ - এর বিস্তৃতিতে মধ্যপদগুলোর নাম লেখ।

[বাকাশিবো : '১৫]

সমাধান : এখানে n=5 একটি বিজোড় সংখ্যা। অতএব বিস্তৃতিতে মধ্যপদ হবে দুটি।

এর ১মটি হবে $\left(\frac{5+1}{2}\right)$ তমপদ =3rd পদ এবং

২য়টি হবে $\left(\frac{5+3}{2}\right)$ তমপদ =4th পদ।

সংক্ষিপ্ত প্রশ্নোত্তর:

(i)
$$\left(3x-rac{2}{x^2}
ight)^{15}$$
 এর বিস্তৃতিতে x এর নিরপেক্ষ পদটি নির্ণয় কর।

সমাধান :
$$\left(3x-\frac{2}{x^2}\right)^{15}$$
 এর বিস্তৃতিতে $(n+1)$ তম পদ, ${}^nC_ra^{n-r}x^r$

যেহেতু χ নিরপেক্ষ পদ সেহেতু χ এর পাওয়ার 0।

$$\therefore 15 - 3r = 0$$

$$\Rightarrow r = 5$$

তাহলে
$$(5+1)=6$$
 তম পদটি x নিপেক্ষ হবে r এর মান (i) নং সমীকরণে বসিয়ে পাই,
$$={}^{15}C_5.3^{15-5}x^{15-3.5}(-2)^5\ =-{}^{15}C_53^{10}x^02^5=-{}^{15}C_53^{10}2^5$$
 (উত্তর)

(ii)
$$\left(2x-rac{3}{x}
ight)^{21}$$
 এর বিস্তৃতিতে x এর সহগ নির্ণয় কর।

সমাধান : =
$$\left(2x-\frac{3}{x}\right)^{21}$$
 এর বিস্তৃতিতে $(r+1)$ তম পদ, ${}^nC_rn^{n-r}x^r$ = ${}^{21}C_r(2x)^{21-r}\left(-\frac{3}{x}\right)^r={}^{21}C_r2^{21-r}(-3)^r\left(\frac{1}{x}\right)^r={}^{21}C_r2^{21-r}x^{21-r}(-3)^rx^{-r}$ = ${}^{21}C_r2^{21-r}x^{21-2r}(-3)^r\dots\dots(i)$

যেহেতু x এর পাওয়ার 1 সেহেতু,

$$21 - 2r = 1$$

$$\Rightarrow 21 - 1 = 2r$$

$$\Rightarrow 20 = 2r$$

$$\Rightarrow r = 10$$

r এর মান (i) নং বসিয়ে পাই,

$${}^{21}C_{10}2^{21-10}x^{21-2.10}(-3)^{10} = {}^{21}C_{10}2^{11}3^{10}x$$
$$= {}^{21}C_{10}2^{11}3^{10}x$$

সুতরাং, x এর সহগ $^{21}C_{10}2^{11}3^{10}$ (উত্তর)

(iii)
$$\left(x-\frac{1}{x}\right)^{18}$$
 এর বিস্তৃতিতে মধ্যপদ কয়টি এবং এর মান কত?

সমাধান :
$$\left(x-\frac{1}{x}\right)^{18}$$
 এর বিস্তৃতিতে মোট পদসংখ্যা $(n+1)=18+19$ যা একটি বিজোড় সংখ্যা। সুতরাং মধ্যপদ 1 টি।

মধ্যপদ হবে,
$$\frac{n}{2}+1=\frac{18}{2}+1=10$$
 তম পদ।

10 তম পদ বা
$$(9+1)$$
 তম পদ = ${}^nC_ra^{n-r}x^r$

$$= {}^{18}C_9x^{18-9}\left(-\frac{1}{x}\right)^9$$

$$= {}^{18}C_9x^9(-1)^9x^{-9}$$

$$= {}^{18}C_9x^{9-9}(-1)^9$$

$$= {}^{18}C_9x^{9-9}(-1)^9$$

রচনামূলক প্রশ্নোত্র:

(i)
$$\left(1-\frac{1}{x}\right)^{17}$$
 এর বিস্তৃতিতে মধ্যপদ বের কর এবং এদের মান নির্ণয় কর।

সমাধান :
$$\left(1-\frac{1}{x}\right)^{17}$$
 এর বিস্তৃতিতে মোট পদ $(n+1)=17+1=18$ যা একটি জোড়
সংখ্যা।

সুতরাং, মধ্যপদ হবে ২টি।

১ম তম মধ্যপদ =
$$\frac{n-1}{2} + 1 = \frac{17-1}{2} + 1 = 8 + 1 = 9$$
 তম

২য় তম মধ্যপদ
$$=$$
 $\frac{n+1}{2}+1=\frac{17+1}{2}+1=10$ তম পদ।

৩য় তম মধ্যপদ =
$${}^{17}C_8x^{17-8}\left(-\frac{1}{x}\right)^8={}^{17}C_8x^9(-1)^8\left(\frac{1}{x}\right)^8={}^{17}C_8x^9(-1)^8x^{-8}$$
 = ${}^{17}C_8x$ (উত্তর)

8ৰ্থ তম মধ্যপদ =
$${}^{17}C_9x^{17-9}\left(-\frac{1}{x}\right)^9 = {}^{17}C_9x^8(-1)^9\left(\frac{1}{x}\right)^9 = -{}^{17}C_9x^8x^{-9}$$

$$= -{}^{17}C_9x^{-1} \quad (উত্তর)$$

$$(\mathrm{ii}) \left(2x - rac{1}{4x^2}
ight)^{12}$$
 এর বিস্তৃতিতে x বর্জিত পদ এবং এর মান নির্ণয় কর।

সমাধান :
$$\left(2x-\frac{1}{4x^2}\right)^{12}$$
 এরবিস্তৃতিতে $(r+1)$ তম পদ, $={}^nC_ra^{n-r}x^r$

$$={}^{12}C_r(2x)^{12-r}\left(\frac{1}{4x^2}\right)^r$$

$$={}^{12}C_r2^{12-r}x^{12-r}\left(\frac{1}{4}\right)^rx^{-2r}$$

$$= {}^{12}C_r 2^{12-r} x^{12-3r} \left(\frac{1}{4}\right)^r \dots \dots (i)$$

যেহেতু x বর্জিত পদ সেহেতু x এর পাওয়ার 0 হবে,

$$12 - 3r = 0$$

$$\Rightarrow r = 4$$
 [$(r+1) = 4+1=5$ তম পদ]

r এর মান (i) এ বসিয়ে পাই,

$$^{12}C_4 2^{12-4} x^{12-3.4} \left(\frac{1}{4}\right)^4$$

$$= ^{12}C_4 \cdot 2^8 \frac{1}{4^4}$$

$$= 495 \times 256 \times \frac{1}{256}$$

$$= 495 \quad (উত্তর)$$

(iii) $(1+x)^{44}$ এর বিস্তৃতিতে 21 তম পদ ও 22 তম পদ দুটি সমান হলে x এর মান নির্ণয় কর।

সমাধান : $(1+x)^{44}$ এর বিস্তৃতিতে (r+1) তম পদ $= {}^n\mathcal{C}_r a^{n-r} x^r$

$$\therefore 21$$
 তম পদ $^{44}C_{20}$. $1^{44-20}x^{20} = ^{44}C_{20}x^{20}$

$$\therefore$$
 22 তম পদ = $^{44}C_{21}1^{44-21}x^{21} = {}^{44}C_{21}x^{21}$

শতিমতে,
$$^{44}C_{20}x^{20} = ^{44}C_{21}x^{21}$$

$$\Rightarrow ^{44}C_{20} = ^{44}C_{21}x^{21}$$

$$\Rightarrow \frac{ ^{144}}{ ^{120[44-20)}} = \frac{ ^{144}}{ ^{121[44-21}}x$$

$$\Rightarrow \frac{ ^{1}}{ ^{120[24}} = \frac{ ^{1}}{ ^{21[20[44-21}}x$$

$$\Rightarrow \frac{ ^{1}}{ ^{24[23}} = \frac{ ^{1}}{ ^{21[20[23}}x$$

$$\Rightarrow \frac{1}{24} = \frac{x}{21}$$

$$x = \frac{21}{24}$$

$$=\frac{7}{8}$$
 (উত্তর)

দ্বিপদী উপপাদ্য (খ)

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)	
বিষয়	পৃষ্ঠা নং
সূত্রাবলী ও শর্টকার্ট টেকনিক	
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি	
❖ সংক্ষিপ্ত প্রশ্নাবলি	
❖ রচনামূলক প্রশ্লাবলি	

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪		ত্তী?	১টি
২০২৩			
২০২২			

"গণিত কেবল সত্যই প্রকাশ করে না, তার মধ্যে রয়েছে অনন্ত সৌন্দর্য।"

এই অধ্যায়ের এর সূত্র

1.
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} \times x^r + \dots \infty$$

2.
$$(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \frac{n(n+x)(n+2)}{3!}x^3 + \cdots$$

3.
$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \frac{n(n+1)(n+2)}{3!}x^3 + \cdots$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর:

 $1. \ (1-x)^{-3}$ এর বিস্তৃতিতে ৪র্থ পদ পর্যন্ত নির্ণয় কর।

[বাকাশিবো: '১০(R),'১৪,'১৬]

সমাধান: আমরা জানি,

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{3}x^3 + \dots$$

এখন n=-3 এবং x=-x বসিয়ে পাই,

$$\therefore (1-x)^{-3} = 1 + (-3)(-x) + \frac{-3(-3-1)}{2}(-x)^2 + (-\frac{3(-1)(-3-2)}{2}(-x)^3 + \dots \dots$$

 $= 1 + 3x + 6x^2 + 10x^3 + \cdots$ (উত্তর)

2. $\left(1+\frac{x}{3}\right)^{-\frac{1}{2}}$ এর বিস্তৃতির ২য় ও ৩য় পদ নির্ণয় কর।

[বাকাশিবো : '১৬R]

সমাধান: আমরা জানি, $(1+x)^n$ এর বিস্তৃতিতে ২য় পদ = nx ও ৩য় পদ $= \frac{n(n-1)}{\lfloor 2} x^2$

$$\therefore \left(1+\frac{x}{3}\right)^{-\frac{1}{2}}$$
 এর বিস্তৃতিতে ২য় পদ $=-\frac{1}{2}\times\frac{x}{3}=-\frac{1}{6}x$ (উত্তর) ৩য় পদ $=\frac{-\frac{1}{2}\left(\frac{1}{2}-1\right)}{|2|}\cdot\left(\frac{x}{3}\right)^2=\frac{\frac{1}{2}\cdot\frac{3}{2}}{2}\frac{x^2}{9}=\frac{x^2}{24}$ (উত্তর)

৩. $\left(1-\frac{x}{8}\right)^{\overline{2}}$ এর বিস্তৃতির ২য় ও ৩য় পদ নির্ণয় কর।

[বাকাশিবো : '08(R),'১৩R,'১৫R]

সমাধান : আমরা জানি, $(1+x)^n$ এর বিস্তৃতিতে ২য় পদ =nx

$$\therefore \left(1 - \frac{x}{8}\right)^{\frac{1}{2}}$$
 এর বিস্তৃতিতে ২য় পদ $= \frac{1}{2}\left(-\frac{1}{2}\right) = -\frac{x}{16}$ (উত্তর)

এবং ৩য় পদ
$$=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2}\left(-\frac{x}{8}\right)^2=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2}\frac{x^2}{64}=-\frac{1}{8}\frac{x^2}{64}=\frac{x^2}{512}$$
 (উত্তর)

4. $(1+x)^{-1}$ এর বিস্তৃতির প্রথম চারটি পদ লিখ।

[বাকাশিবো : '০২(R),'০৩R,'১8]

সমাধান: $(1+x)^{-1}$ এর (r+1) তম পদ $=(-1)^r.x^r.r=0,1,2,3$ বসিয়ে পাই, প্রথম চারটি পদ $=1-x+x^2-x^3$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর:

1. যদি
$$y = x + x^2 + x^3 + x^4 + \cdots$$
 হয় তাহলে দেখাও যে, $x = y - y^2 + y^3 - y^4 + \cdots$ ত $\Rightarrow y = x + x^2 + x^3 + x^4 + \cdots$ ত $\Rightarrow 1 + y = 1 + x + x^2 + x^3 + x^4 + \cdots$ [উভয়পক্ষৈ 1 যোগ করে] $\Rightarrow 1 + y = \frac{1}{1-y}$ $\Rightarrow \frac{1}{1-x} = \frac{1}{1+y}$ $\Rightarrow 1 - x = (1+y)^{-1}$ $\Rightarrow 1 - x = 1 - y + y^2 - y^3 + y^4 - \cdots$ ত $\Rightarrow -x = -y + y^2 - y^3 + y^4 - \cdots$ ত $\Rightarrow x = y - y^2 + y^3 - y^4 + \cdots$ (উত্তর)

(ii) $(1 - x + x^2 + ^{-1} = \left\{\frac{(1+x)(1-x+x^2)}{1+x}\right\}^{-1}$ $= \{(1+x)^{-1}\}^{-1}(1+x^3)^{-1}$ $= (1+x)\{1-x^3+(x^3)^2-(x^3)^3+(x^3)^4-(x^3)^5+\cdots\}$ $= (1+x)\{1-x^3+x^6-x^9+x^{12}-x^{15}+\cdots\}$ (উত্তর)

রচনামূলক প্রশ্নোতর:

1. দেখাও যে, $(1-4x)^{-\frac{1}{2}}$ এর বিস্তৃতিতে (r+1) তম পদটির মান $\frac{|2r}{(|r)^2}x^2$ সমাধান : আমরা জানি, $(1+x)^n \text{ এর বিস্তৃতিতে } (r+1) \text{ তম পদ} = \frac{n(n-1)(n-2)\dots}{|}x^n$ $\therefore (1-4x)^{-\frac{1}{2}} \text{ এর বিস্তৃতিতে } (r+1) \text{ তম পদ}$ $= \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\dots\left(-\frac{1}{2}-r+1\right)}{|r|}(4x)^r$ $= \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\dots\left(\frac{2r-1}{2}\right)}{|r|}(-1)^2 \cdot 4^r \cdot x^r$ $= (-1)^r \frac{1}{2^r} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2r-1)}{|r|}(-1)^r (2^r)^r x^r$

[Notebook :- $(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots + (-1)^r x^r +]$

$$\begin{split} &= (-1)^{2r} \frac{1 \cdot 3 \cdot 4 \cdot \dots \cdot (2r-1)}{|r|} 2^r x^r \quad [\because (-1)^{2r} = 1] \\ &= \frac{1 \cdot 3 \cdot 4 \cdot \dots \cdot (2r-1) \cdot \{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2r)\}}{|r| \{2 \cdot 4 \cdot 5 \cdot \dots \cdot (2r)\}} 2^r x^r = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot (2r)}{|r| \{(2 \cdot 1) \cdot (2 \cdot 2) \cdot (2 \cdot 3 \cdot \dots \cdot (2r))\}} 2^r x^r \\ &= \frac{|2r|}{|r \cdot 2^r (1 \cdot 2 \cdot 3 \cdot \dots \cdot r)} 2^r x^r = \frac{|2r|}{|r \cdot |r|} x^r = \frac{|2r|}{(|r|)^2} x^r \quad (প্রমাণীত) \end{split}$$

2. দেখাও যে, $(1-2x)^{-\frac{1}{2}}$ এর বিস্তৃতিতে (r+1) তম পদের সহগ $\frac{|2r|}{(|r|^22^r)}$ সমাধান : আমরা জানি,

$$(1+x)^2 \text{ এর বিস্তৃতিতে } (r+1) \text{ তম পদ} = \frac{n(n-1)(n-2)\dots}{|r|} x^n$$

$$(1-2x)^{-\frac{1}{2}} \text{ এর বিস্তৃতিতে } r-1 \text{ তম পদ}$$

$$= \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\dots \left(-\frac{1}{2}-r+1\right)}{|r|} (-2x)^r$$

$$= \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\dots \left(\frac{2r-1}{2}\right)}{|r|} (-1)^r 2^r x^r$$

$$= (-1)^{2r} \frac{1}{2^r} \frac{1.3.5.\dots (2r-1)}{|r|} 2^r x^r$$

$$= (-1)^{2r} \frac{1.3.5.\dots (2r-1)\{2.4.6.\dots (2r)\}}{|r|} x^r$$

$$= \frac{1.2.3.4.5.\dots (2r-1)2r}{|r|\{(2.1)(2.2)(2.3)\dots (2r)\}} x^r = \frac{|2r|}{|r|^2r(1.2.3.\dots r)} x^r$$

$$= \frac{|2r|}{|r|^2r|r} x^r = \frac{|2r|}{(|r|^22^r)}$$

$$\therefore x^r \text{ এর সহগ} = \frac{|2r|}{(|r|^22^r)}$$
 (প্রমাণীত)

3. প্রমাণ কর যে, $(1-5x+6x^2)^{-1}$ এর বিস্তৃতিতে x^n এর সহগ $3^{n+1}-x^{n+1}$ সমাধান : $(1-5x+6x^2)^{-1}=\frac{1}{1-5x+6x^2}=\frac{1}{1-3x-2x+6x^2}=\frac{1}{(1-2x)(1-3x)}$

ধরি.

$$\frac{1}{(1-2x)(1-3x)} = \frac{A}{1-2x} + \frac{B}{1-3x} \dots \dots (i)$$

(i) নং সমীকরণের উভয় পক্ষকে (1-2x)(1-3x) দ্বারা গুণ করে পাই, 1=A(1-3x)+B(1-2x).....(ii)

(ii) নং এ
$$x=\frac{1}{2}$$
 বসিয়ে পাই,
$$1=A\left(1-\frac{3}{2}\right) \qquad \qquad 1=B\left(1-\frac{2}{3}\right) \\ \Rightarrow 1=A\left(-\frac{1}{2}\right) \qquad \qquad \Rightarrow 1=B\left(\frac{1}{3}\right) \\ \therefore A=-2 \qquad \qquad \therefore B=3 \\$$
প্রদত্ত রাশি
$$=\frac{1}{(1-2x)(1-3x)}=-\frac{2}{1-2x}+\frac{1}{1-3x} \\ =-2(1-2x)^{-1}+2(1-3x)^{-1} \\ =-2\{1+2x+(2x)^2+\cdots+(2x)^5+\cdots\} \\ +3\{1+3x+(3x)^2+\cdots+(3x)^r+\cdots\}$$

- $\therefore x^2$ এর সহগ = $-2.2^r + 3.3^r = 3^{r+1} 2^{r+1}$
- \therefore নির্ণেয় χ^n এর সহগ = $3^{n+1} 2^{n+1}$ (প্রমাণীত)

উদাহরণ

উদাহরণ-১ : $(2+3x)^{-3}$ এর বিস্তৃতিতে প্রথম চারটি পদ নির্ণয় কর।

সমাধান :
$$(2+3x)^{-3}$$

$$= \left\{2\left(1+\frac{3}{2}x\right)\right\}^{-3} = 2^{-3}\left(1+\frac{3}{2}x\right)^{-3}$$

$$= \frac{1}{8}\left\{1+nx+\frac{n(n-1)}{2}x^2+\frac{n(n-1)(n-2)}{3}+x^3+\ldots\ldots\right\}$$

$$= \frac{1}{8}\left\{1+\left(-3\right).\frac{3}{2}x+\frac{-3(-3-1)}{2}.\left(\frac{3}{2}\right)2+\frac{-3(-3-1)(-3-2)}{6}\left(\frac{3}{2}x\right)3+\cdots\right\}$$

$$= \frac{1}{8}\left\{1-\frac{9}{2}x+\frac{3\times 4}{2}\times\frac{9}{4}x^2-\frac{3\times 4\times 5}{6}\times\frac{27}{8}x^3+\ldots\ldots\right\}$$

$$= \frac{1}{8}\left\{1-\frac{9}{2}x+\frac{27}{3}x^2-\frac{135}{4}x^3\ldots\right\} \text{(উওর)}$$

ফাংশন এবং ফাংশনের লেখ

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্লাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	
২০২৩		১টি	
२०२२	১টি	১টি	

"আমার কাছে কোনো সমীকরণের কোনো অর্থ নেই, যদি না এটি আল্লাহর চিন্তা প্রকাশ করে।"

অতিসংক্ষিপ্ত প্রশ্নউত্তর

1. যদি $f(x) = e^x$ হয়, তবে f(0) কত?

সমাধান : দেওয়া আছে,
$$f(x) = e^x = f(0) = e^0 = 1$$
 [: $a^0 = 1$]

2.
$$f(x) = \sin x$$
 হলে, $f\left(\frac{1}{3}\right) = \overline{\Phi}$

সমাধান: দেওয়া আছে,
$$f(x) = \sin x \implies f\left(\frac{1}{3}\right) = \sin\frac{1}{3}$$

3.
$$f(x) = tanx$$
 হলে, $f\left(\frac{\pi}{2}\right)$ এর মান নির্ণয় কর।

সমাধান: দেওয়া আছে,
$$f(x) = tanx \Rightarrow f\left(\frac{\pi}{r}\right) = tan\frac{\pi}{r} = \infty$$

4. ফাংশন বা অপেক্ষা কাকে বলে ?

সমাধান:

5.
$$f(x) = \frac{x}{1-x}$$
 এর ডোমেইন নির্ণয় কর।

সমাধান : দেওয়া আছে,
$$f(x) = \frac{x}{1-x} = \frac{1}{1-1} = \frac{1}{0} = \infty$$

6. যদি
$$f(x) = e^x$$
 হয় তবে $f\left(\log\cos\frac{\pi}{4}\right)$ এর মান কত?

সমাধান: দেওয়া আছে,
$$f(x)=e^x \Rightarrow f(\log\cos\frac{\pi}{r}=e=\cos\frac{\pi}{r}=\frac{1}{\sqrt{2}}$$

7. যদি
$$f(x)=rac{1-x}{1+x}$$
 হয় তবে প্রমাণ কর যে, $f(\cos\theta)=\tan^2rac{\theta}{2}$

সমাধান : দেওয়া আছে,
$$f(x) = \frac{1-x}{1+x}$$
 $\Rightarrow f(\cos \theta) = \frac{1-\cos \theta}{1+\cos \theta}$

$$L.H.S = f(\cos\theta) = \frac{1 - \cos\theta}{1 + \cos\theta} = \frac{2\sin^2\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}}$$

$$R.H.S = \tan^2 \theta = \sin 2\theta = 2\sin \theta.\cos \theta$$

$$1 + \cos 2\theta = 2\cos^2 \theta \implies 1 - \cos 2\theta = 2\sin^2 \theta$$

$$1 + \cos\theta = 2\cos\frac{\theta}{2}$$
 and $1 - \cos\theta = 2\sin^2\frac{\theta}{2}$

সংক্ষিপ্ত প্রশ্নউত্তর

1.
$$f(x) = \frac{x}{x^2 - 1}$$

সমাধান : ধরি,

$$y = f(x) = \frac{x}{x^2 - 1}$$

$$f(x) = \frac{x}{x^2 - 1}$$
....(i)

$$\therefore y = \frac{x}{x^2 - 1}$$
(ii)

i. নং হতে,

$$f(x) = \frac{x}{x^2 - 1}$$

প্রদও f(x) ফাংশন অসংঙ্গায়িত হবে, যদি $x^2-1=0$ হয় বা, $x=\pm 1$ হয়। অর্থাৎ \Rightarrow $x=\pm 1$ ব্যতিত সকল বাস্তব মানের জন্য f(x) এর মান নির্ণয় করা যায়।

$$\therefore$$
 ডোমেন , $f = R - \{\pm 1\}$

$$y = \frac{x}{x^2 - 1}$$

বা,
$$y(x^2 - 1) = x$$

বা,
$$x^2y - y = x$$

বা,
$$x^2y - x - y = 0$$

বা,
$$x = \frac{1 \pm \sqrt{1 + 4y^2}}{2y}$$

এখানে, y=0 হলে x এর মান অসংঙ্গায়িত হয় ।

সুতরাং,

রেঞ্জ,
$$f = R - \{0\}$$
 Ans:

2.
$$f(x) = \frac{x}{1-x}$$

সমাধান: ধরি,

$$y = f(x) = \frac{x}{1 - x}$$

$$\therefore f(x) = \frac{x}{1-x} \dots (i)$$

$$\therefore y = \frac{x}{1-x}$$
....(ii)

y=-1হলে x এর মান অসংঙ্গায়ি

সুতরাং: রেজ,
$$f = R - \{-1\}$$

$$b = -1$$
$$a = y$$

Note: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

(i) নং হতে ,
$$y = \frac{x}{1-x} \Longrightarrow y(1-x) = x$$

$$\Rightarrow y - xy = x$$

$$\Rightarrow y = x + xy$$

$$\Rightarrow y = x(1+y)$$

$$\Rightarrow x = \frac{y}{1+y}$$

রচনামূলক প্রশ্নউত্তর

1. যদি $f(x) = \sin x$ এবং $\phi(x)\cos x$ হয় তবে প্রমান কর যে,

সমাধান :
$$\emptyset$$
 $(2x) = 1 - 2f^2(x)$
দেয়া আছে,
 $f(x) = sinx$
 $\emptyset(x) = cosx$
 $\therefore \emptyset(2x) = cos2x$
 $L.S = \emptyset(2x)$

= cos2x

$$R.S = 1 - 2f^{2}(x)$$

$$= 1 - 2sine^{2}x = cos2x$$

$$\therefore L.S = R, S \quad (proved)$$

2. যদি $f(x) = e^{-x}$ হয় তবে দেখাও যে, (x + y) f(x - y) f(2x) f(2y).

সমাধান : দেয়া আছে,
$$f(x) = e^x + e^{-x}$$

$$f(x) = e^{x+y} + e^{-x-y}$$

$$f(x-y) = e^{x-y} + e^{-x} + y$$

$$f(2x) = e^{2x} + e^{-2x}$$

$$f(x) = e^{2y} + e^{-2y}$$

$$L.H.S = f(x+y).f(x-y)$$

$$= (e^{x+y} + e^{x-y}) \times (e^{x-y} + e^{-x+y}) = e^{2x} + e^{2y} + e^{-2y} + e^{-2x}$$

$$= (e^{2x} + e^{-2x}) + (e^{2y} + e^{2y})$$

$$R.H.S = f(2x) + f(2y)$$

$$= (e^{2x} + e^{-2x}) + (e^{2y} + e^{-2y})$$

$$L.S = R.S \quad \text{(Showed)}$$

3. যদি f(x) = logsinx এবং $\phi(x) = logcosx$ হয় তবে প্রমান কর যে,

(i)
$$e^{2\phi(a)} - e^{2f(a)} = e^{\phi(2a)}$$

সমাধান: দেয়া আছে,

$$f(x) = logsinx$$

$$f(a) = logsina$$

$$\emptyset(x) = logcosx$$

$$f(a) = logcosa$$

$$f(a)$$

Note:

 e^{loga} পরস্পর কাটা যায়। তাই, $e^{loga}=a$ অথবা, $e^{logcos^2a}=\cos^2a$

$$= e^{2\log \cos a} - e^{2\log \sin a} = e^{\log \cos^2 a} - e^{\log \sin^2 a} a$$

$$= \cos^2 a - \sin^2 a = \cos 2a$$

$$R. S = e^{\emptyset(2a)} = e^{\log \cos 2a} = \cos 2a$$

$$\therefore L. S = R. S$$

4. যদি $y = f(x) = \frac{4x-7}{2x-4}$ হয় তবে প্রমান করতে হবে যে, f(y) = x

সমাধান: দেয়া আছে,

$$y = f(x) = \frac{4x-7}{2x-4}$$

$$f(x) = \frac{4x-7}{2x-4}$$
.....(i)
$$y = \frac{4x-7}{2x-4}$$
....(ii)
(i) নং হতে ,
$$f(x) = \frac{4x-7}{2x-4}$$

$$f(y) = \frac{4y-7}{2y-4}$$

ii. হতে পাই
$$y = \frac{4x - 7}{2x - 4}$$

$$\Rightarrow 2xy - 4y = 4x - 7$$

$$\Rightarrow 2xy - 4x = 4y - 7$$

$$\Rightarrow x(2y - 4) = 4y - 7$$

$$\Rightarrow x = \frac{4y - 7}{2y - 4}$$
সূতরাং, $f(y) = x$ (প্রমানিত)

5. যদি $f(x) = h \frac{x-k}{h-k} + k \frac{x-h}{k-h}$ হয় তবে প্রমান করতে হবে যে, f(h) + f(k) = f(h+k) সমাধান:

দেয়া আছে,
$$f(x) = h \frac{x-k}{h-k} + \frac{x-h}{k-h}$$

$$f(h) = h \frac{h-k}{h-k} + k \frac{h-h}{k-h}$$

$$f(h) = h$$

$$f(h) = h$$

$$f(k) = h \frac{k-k}{h-k} + k \frac{k-h}{k-h}$$

$$f(k) = k$$

R.S =
$$f(x + k) = h + k$$

সূতরাং , L.S= R.S (Proved)

6. যদি
$$f(x)=rac{1-x}{1+x}$$
 হয় তবে দেখাও যে, $f(cos\theta)= an^2rac{ heta}{2}$ সমাধান : দেওয়া আছে, $f(x)=rac{1-x}{1+x}$
$$f(cos\theta)=rac{1-cos\theta}{1+cos\theta}rac{2\sin^2rac{ heta}{2}}{2\cos^2rac{ heta}{2}}= an^2rac{ heta}{2}\,f(cos\theta)= an^2rac{ heta}{2}$$
 সূতরাং , $L.S=R.S$ (প্রমাণীত)

সীমা

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)	
বিষয়	পृष्ठी नः
সূত্রাবলী ও শর্টকার্ট টেকনিক	
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি	
❖ সংক্ষিপ্ত প্রশ্নাবলি	
❖ রচনামূলক প্রশাবলি	

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কভটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	
২০২৩	১টি	১টি	
२०२२	১টি	য়ী	

"গণিত তার কাছেই প্রকৃত সৌন্দর্য সহকারে ধরা দেয়, যে বিশুদ্ধ মন ও ভালোবাসা নিয়ে গণিতের দিকে অগ্রসর হয়।"

এই অধ্যায়ের এর সূত্র

1.
$$\lim_{x \to a} \frac{x^n - ax}{x - a} = na^{n-1}$$

$$2. \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1$$

3.
$$\lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1$$
 $\exists i, \lim_{x \to 0} \frac{x}{\sin \theta} = 1$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

1. $x \to a$ $\frac{x^{n}-a^{n}}{x-a}$ এর মান লেখ।

সমাধান:
$$\lim_{x\to a} \frac{x^{n}-ax}{x-a} = na^{n-1} = na^{n-1} \quad (উত্তর)$$

2. $\frac{\text{Lt}}{\mathbf{x} \to \infty} \frac{\mathbf{x}}{2\mathbf{x}-1}$ এর মান নির্ণয় কর।

সমাধান:
$$\lim_{x \to \infty} \frac{x}{2x+1} = \lim_{\frac{1}{x} \to 0} 1 \frac{1}{2+\frac{1}{x}} = \frac{1}{2+0} = \frac{1}{2}$$
 (উত্তর)

3.
$$\frac{\text{Lt}}{\mathbf{x} \to 2} = \frac{\mathbf{x}^2 - 4}{\mathbf{x} - 2} = \overline{\mathbf{v}}$$

সমাধান:
$$\frac{\operatorname{Lt}}{x \to 2} = \frac{x^2 - 4}{x - 2} = \frac{\operatorname{Lt}}{x \to 2} = \frac{(x + 2)(x - 2)}{x - 2} = \frac{\operatorname{Lt}}{x \to 2} (x + 2) = 2 + 2 = 4$$
 (উত্তর)

4.
$$\underset{x \to 0}{\text{Lt}} x \text{ cosecx} = \overline{\Phi \Phi}$$
?

সমাধান: Lt
$$x \ cosec \ x =$$
Lt $\frac{x}{x \to 0} = 1$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর

1.
$$\frac{Lt}{x \to \pi} \frac{1 + \cos x}{(\pi - x)^2}$$
সমাধান ধরি,
$$x = \pi + h$$

$$\Rightarrow \pi + h = x \Rightarrow \pi - x = -h$$

$$\frac{Lt}{h \to 0} \frac{1 + \cos(\pi + h)}{(-h)^2}$$

$$= \frac{Lt}{h \to 0} \frac{1 - \cos h}{h^2} = \frac{Lt}{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{h^2} = \frac{Lt}{h \to 0} \left(\frac{\sin \frac{h}{2}}{\frac{h}{2}}\right) \times \frac{1}{4}$$

$$= 2 \times 1 \times \frac{1}{4} = \frac{1}{2} \quad \text{(Ans:)}$$

2. Lt
$$\frac{a-\sqrt{a^2-x^2}}{x^2}$$
 সমাধান:

Lt
$$\frac{a - \sqrt{a^2 - x^2}}{x^2} = \frac{\text{Lt}}{x \to 0} \frac{(a - \sqrt{a^2 - x^2})(a + \sqrt{a^2 - x^2})}{x^2(a + \sqrt{a^2 - x^2})}$$

$$= \frac{\text{Lt}}{x \to 0} \frac{a^2 - (\sqrt{a^2 - x^2})^2}{x^2(a + \sqrt{a^2 - x^2})} = \frac{\text{Lt}}{x \to 0} \frac{a^2 - a^2 + x^2}{x^2(a + \sqrt{a^2 - x^2})}$$

$$= \frac{\text{Lt}}{x \to 0} \frac{x^2}{x^2(a + \sqrt{a^2 - x^2})} = \frac{\text{Lt}}{x \to 0} \frac{1}{a + \sqrt{a^2 - x^2}} = \frac{1}{a + \sqrt{a^2 - 0}}$$

$$= \frac{1}{a + a} = \frac{1}{2a} \quad \text{(Ans.)}$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \frac{\sqrt{1+3x} - \sqrt{1-4x}}{x} }{ \frac{x}{x} - \sqrt{1-4x}) (\sqrt{1+3x} + \sqrt{1-4x}) }{ \frac{x(\sqrt{1+3x} + \sqrt{1-4x})}{x(\sqrt{1+3x} + \sqrt{1-4x})} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} \right)^2 - \left(\sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} + \sqrt{1-4x})}{x(\sqrt{1+3x} + \sqrt{1-4x})} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} \right)^2 - \left(\sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} + \sqrt{1-4x})}{x(\sqrt{1+3x} + \sqrt{1-4x})} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} - \sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} - \sqrt{1-4x})^2}{x(\sqrt{1+3x} + \sqrt{1-4x})} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} - \sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} - \sqrt{1-4x})^2}{x(\sqrt{1-4x})^2} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} - \sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} - \sqrt{1-4x})^2}{x(\sqrt{1-4x})^2} }$$

$$= \frac{ \text{Lt} }{x \to 0} \frac{ \left(\sqrt{1+3x} - \sqrt{1-4x} \right)^2 }{ \frac{x(\sqrt{1+3x} - \sqrt{1-4x})^2}{x(\sqrt{1-4x})^2} }$$

$$= \frac{1+3x-1+4x}{x(\sqrt{1+3x}+\sqrt{1-4x})} = \frac{\text{Lt}}{x\to 0} \frac{7x}{x(\sqrt{1+3x}+\sqrt{1-4x})}$$

$$= \frac{\text{Lt}}{x\to 0} \frac{7}{\sqrt{1+3x}+\sqrt{1-4x}} = \frac{7}{\sqrt{1+3\times 0}+\sqrt{1-4\times 0}}$$

$$= \frac{7}{1+1} = \frac{7}{2} \quad \text{(Ans:)}$$

4.
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$
 সমাধান :

Lt
$$\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

 $x \to 0$ $\frac{x}{x}$
 $= \frac{Lt}{x \to 0} \frac{(\sqrt{1+x}-\sqrt{1-x})(\sqrt{1+x}+\sqrt{1-x})}{x(\sqrt{1+x}+\sqrt{1-x})}$
 $= \frac{Lt}{x \to 0} \frac{(\sqrt{1+x})^2-(\sqrt{1-x})^2}{x(\sqrt{1+x}+\sqrt{1-x})}$
 $= \frac{Lt}{x \to 0} \frac{1+x-1+x}{x(\sqrt{1+x}+\sqrt{1-x})} = \frac{Lt}{x \to 0} \frac{2x}{x(\sqrt{1+x}+\sqrt{1-x})}$
 $= \frac{Lt}{x \to 0} \frac{2}{\sqrt{1+x}+\sqrt{1-x}} = \frac{2}{\sqrt{1+0}+\sqrt{1-0}}$
 $= \frac{2}{1+1} = \frac{2}{2} = 1 \text{ Ans}$

$$5. \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

6.
$$\underset{x\to 0}{\text{Lt}} \frac{\cos 7x - \cos 9x}{\cos 3x - \cos 5x}$$

Lt
$$\frac{\cos 7x - \cos 9x}{\cos 3x - \cos 5x} =$$
 Lt $\frac{2 \sin \frac{7x + 9x}{2} \sin \frac{9x - 7x}{2}}{2 \sin \frac{3x + 5x}{2} \sin \frac{5x - 3x}{2}}$

$$=$$
 Lt $\frac{\sin 8x \cdot \sin x}{\sin 4x \cdot \sin x} =$ Lt $\frac{\sin 8x}{\sin 4x}$

$$=$$
 Lt $\frac{2 \sin 4x \cdot \cos 4x}{\sin 4x} =$ Lt $\cos 4x$

$$=$$
 2 × $\cos 4$ × 0 = 2 × 1 = 2 (Ans)

$$\left[\cos C - \cos D = 2\sin \frac{C+D}{2}\sin \frac{D-C}{2}\right]$$

[sin2A = 2sinA.cosA]

7. Lt
$$x \to a \frac{x^{\frac{5}{2}} - a^{\frac{5}{2}}}{\sqrt{x} - \sqrt{a}}$$

সমাধান,

$$Lt \frac{x^{\frac{5}{2}} - a^{\frac{5}{2}}}{x \to a} = Lt \frac{\left(x^{\frac{1}{2}}\right)^{5} - \left(a^{\frac{1}{2}}\right)^{5}}{\sqrt{x} - \sqrt{a}}$$

$$= Lt \frac{x^{\frac{5}{2}} - a^{\frac{5}{2}}}{\sqrt{x} - \sqrt{a}} = 5(\sqrt{a})^{5-1}$$

$$= 5(\sqrt{a})^{4} = 5\left\{\left(\sqrt{a}\right)^{2}\right\}^{2} = 5a^{2} (Ans)$$

$$\begin{vmatrix}
Lt & x^{\frac{5}{2}} - a^{\frac{5}{2}} \\
\sqrt{x} - \sqrt{a}
\end{vmatrix} = na^{n-1}$$

8.
$$\lim_{x\to 0} \frac{1-\cos 7x}{3x^2}$$

সমাধান:

$$Lt _{X \to 0} \frac{1 - \cos 7x}{3x^{2}} = Lt _{X \to 0} \frac{2 \sin^{2} \frac{7x}{2}}{3x^{2}}$$

$$= \frac{3}{2} \frac{Lt}{\frac{7x}{2} \to o} \left(\frac{\sin \frac{7x}{2}}{\frac{7x}{2}}\right)^{2} \times \frac{49}{4}$$

$$= \frac{2}{3} \times \frac{49}{4} = \frac{49}{6} \qquad (Ans)$$

$$\begin{bmatrix} Lt & \frac{\sin x}{x} = 1 \end{bmatrix}$$

9.
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 2x}$$

10. Lt
$$\frac{\sin x - \sin y}{x - y}$$

সমাধান:

$$\frac{\text{Lt}}{x \to y} \frac{\sin x - \sin y}{x - y} = \frac{\text{Lt}}{x \to y} \frac{2 \cos \frac{x + y}{2} \cdot \sin \frac{x - y}{2}}{x - y}$$

$$= \frac{2 \text{Lt}}{x \to y} \cos \frac{x + y}{2} \times \frac{\text{Lt}}{x \to y} \left(\frac{\sin \frac{x - y}{2}}{\frac{x - y}{2}} \right) \times \frac{1}{2}$$

$$= \frac{2 \text{Lt}}{x \to y} \cos \frac{y + y}{2} \cdot \frac{\text{Lt}}{x - y} \cdot \frac{\sin \frac{x - y}{2}}{\frac{x - y}{2}} \times \frac{1}{2}$$

$$= 2 \cos y \times \frac{1}{2} = \cos y \quad \text{(Ans)}$$

0७

অন্তরক সহগ ও অন্তরীকরণ

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)	
বিষয়	পৃষ্ঠা নং
সূত্রাবলী ও শর্টকার্ট টেকনিক	
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি	
সংক্ষিপ্ত প্রশ্নাবলি	
রচনামূলক প্রশ্লাবলি	

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪		১টি	
২০২৩	১টি	১টি	
२०२२	১টি		ঠী

"গণিত ভালবাসার মতই; সাধারণ একটি ব্যাপার, কিন্তু জটিল হয়ে উঠতেই পারে।"

এই অধ্যায়ের এর সূত্র

1.
$$\frac{d}{dx}f(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

 $1. \frac{d}{dx} (e^x)$ এর মান কত?

[বকাশিবো : ২১]

সমাধান : $\frac{d}{dx}(e^x) = e^x$ (উত্তর)

2. মূল নিয়মে অন্তরক সহগ সূত্রটি লেখ।

সমাধান: মনে করি, y = f(x) : $\frac{dy}{dx} = \operatorname{Lt}_{h=0} \frac{f(x+h) - f(x)}{h}$ (উত্তর)

3. $\frac{d}{dx}(e^x.\cos x)$ নির্ণয় কর।

সমাধান : $\frac{d}{dx}(e^x \cos x) = \cos x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(\cos x)$ $= e^x \cos x - e^x \sin x = e^x (\cos x - \sin x)$ (উত্তর)

4. $\frac{d}{dx}(x^n) = \overline{\Phi}$ ত?

সমাধান : $\frac{d}{dx}(x^n) = nx^{n-1}$ (উত্তর)

5. $\frac{d}{dx}(\sec^{-1}x) = \overline{\Phi}$

সমাধান : $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$ (উত্তর)

6. $S=ut+rac{1}{2}ft^2$ হলে $rac{ds}{dt}$ নির্ণয় কর।

সমাধান : $s=ut+\frac{1}{2}ft^2$, $\therefore \frac{ds}{dt}=\frac{d}{dt}\left(ut+\frac{1}{2}ft^2\right)=u+ft$ (উত্তর)

 $7. \ 10^{x}$ এর অন্তরীকরণ কর।

সমাধান: $\frac{d}{dx}(10^x) = 10^x \log_e 10$ (উত্তর)

8. $\frac{d}{dx}\left(x-\frac{1}{x}\right)=$ কত?

সমাধান : $\frac{d}{dx}\left(x - \frac{1}{x}\right) = \frac{d}{dx}(x - x^{-1}) = 1 - (-1)x^{-1} = 1 + x^2 = 1 + \frac{1}{x^2}$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর

1. মূল নিয়মে অন্তরক সহগ নির্ণয় কর।

সমাধান : ধরি,
$$y=\sqrt{x}$$

$$\therefore f(x)=\sqrt{x}$$

$$\therefore f(x+h)=\sqrt{x+h}$$
 আমরা জানি,
$$\frac{dy}{dx}=\mathop{\rm Lt}_{h\to 0}\frac{f(x+h)-f(x)}{h}\qquad \qquad [$$
 উভয় পক্ষকে $(\sqrt{x+h}+\sqrt{x})$ দ্বারা গুণ করে $]$
$$\Rightarrow \frac{d}{dx}\left(\sqrt{x}\right)=\frac{\mathop{\rm Lt}_{h\to 0}\left((\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})\right)}{h(\sqrt{x+h}+\sqrt{x})}\qquad \qquad [a^2-b^2=(a+b)(a-b)]$$

$$=\mathop{\rm Lt}_{h\to 0}\frac{(x+h-x)}{h(\sqrt{x+h}+\sqrt{x})}=\mathop{\rm Lt}_{h\to 0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x}+o+\sqrt{x}}$$

$$\therefore \frac{1}{2\sqrt{x}}$$

$$\therefore \frac{d}{dx}\left(\sqrt{x}\right)=\frac{1}{2\sqrt{x}} \ (\ensuremath{\mbox{\colored}{\mbox{$$

2. e^x

সমাধান:

ধরি,
$$y = e^x$$

$$f(x) = e^x$$

$$f(x + h) = e^{xth}$$

আমরা জানি,

$$\begin{aligned} \frac{dy}{dx} &= \operatorname{Lt}_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \therefore \frac{d}{dx} (e^x) &= \operatorname{Lt}_{h \to 0} \frac{e^{x+h} - e^x}{h} \\ &= \operatorname{Lt}_{h \to 0} \frac{e^x e^h - e^x}{h} = \operatorname{Lt}_{h \to 0} \frac{e^x (e^h - 1)}{h} = e^x \operatorname{Lt}_{h \to 0} \frac{e^h - 1}{h} \left[\operatorname{Lt}_{h \to 0} \frac{e^h - 1}{h} = 1 \right] \\ &= e^x \times 1 = e^x \quad (\ensuremath{\overline{\ensuremath{\nabla}}} e^x) \end{aligned}$$

$3. \sin 2x$

সমাধান:

ধরি,
$$y = f(x) = sin2x$$

$$f(x + h) = sin2(x + h)$$
আমরা জানি,
$$\frac{dy}{dx} = \text{Lt } \frac{f(x+h) - f(x)}{f(x+h)}$$

কারিগরি পাঠশাল

$$\Rightarrow \frac{d}{dx}(sin2x) = \lim_{h \to 0} \frac{sin2(x+h) - sin2x}{h}$$

$$= 2 \lim_{h \to 0} \frac{2 \cos \frac{2(x+h) + 2x}{2} \sin \frac{2(x+h) - 2x}{2}}{h} \qquad [sinC - \sin D = 2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}]$$

$$= 2 \lim_{h \to 0} \frac{\cos \frac{2x + 2h + 2x}{2} \sin \frac{2x + 2h - 2x}{2}}{h} = 2 \lim_{h \to 0} \frac{\cos \left(\frac{4x + 2h}{2}\right) \sin \frac{2h}{h}}{h}$$

$$= 2 \lim_{h \to 0} \frac{\cos \left(\frac{2(2x+h)}{2} \sin \frac{2h}{h}\right)}{h} = 2 \lim_{h \to 0} \frac{\cos (2x+h) \sin h}{h}$$

$$= 2 \lim_{h \to 0} \cos (2x = h) \lim_{h \to 0} \frac{\sin h}{h} \qquad [\because \lim_{h \to 0} \frac{\sin \theta}{\theta} = 1]$$

$$= 2 \times \cos(2x + D) \times 1 = 2\cos 2x \text{ ($\overline{\forall}$GS]}$$

$4. \cos 2x$

সমাধান:

ধরি,
$$y = f(x) = cos2x$$

$$f(x + h) = cos2(x + h)$$

$$\frac{dy}{dx} = \text{Lt}_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\therefore \frac{d}{dx}(\cos 2x) = \text{Lt}_{h \to 0} \frac{\cos 2(x+h) - \cos 2x}{h}$$

$$= \text{Lt}_{h \to 0} \frac{\frac{2\sin \frac{2(x+h) + 2x}{2} \sin \frac{2x - 3(x+h)}{2}}{h}}{h} [\cos C - \cos D = 2 \sin \frac{C+d}{2} \sin \frac{D-c}{2}]$$

$$= 2 \text{Lt}_{h \to 0} \frac{\sin \frac{2x + 2h + 2x}{2} \sin \frac{2x - 2x - 2h}{2}}{h} = 2 \text{Lt}_{h \to 0} \frac{\sin \frac{4x + 2h}{2} \sin - \frac{2h}{2}}{h}$$

$$= -2 \text{Lt}_{h \to 0} \frac{\sin \frac{2(2x+h)}{2} \sin h}{h} = -2 \text{Lt}_{h \to 0} \frac{\sin (2x+h) \sin h}{h}$$

$$= -2 \text{Lt}_{h \to 0} \sin(2x+h) \times \text{Lt}_{h \to 0} \frac{\sin h}{h} \qquad [\text{Lt}_{\theta \to 0} \frac{\sin \theta}{\theta} = 1]$$

$$= -2 \times \sin(2x+0) \times 1 = -2\sin 2x \quad (\text{$\ensuremath{\sc box{0.5}}$})$$

5. a^x

সমাধান:

ধরি,
$$y = a^x$$

$$f(x) = a^x$$

$$f(x+h) = a^{x+h}$$
আমরা জানি.

$$\frac{dy}{dx} = \operatorname{Lt}_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow \frac{d}{dx} (a^x) = \operatorname{Lt}_{h\to 0} \frac{a^{x+h} - a^x}{h} = \operatorname{Lt}_{h\to 0} \frac{a^x a^h - a^x}{h} = \operatorname{Lt}_{h\to 0} \frac{a^x (a^h - 1)}{h}$$

$$= a^x \operatorname{Lt}_{h\to 0} \frac{a^{h-1}}{h} = a^x \operatorname{Lt}_{h\to 0} \frac{e^{\log a^h} - 1}{h}$$

$$=a^x$$
 $\underset{h\to 0}{\operatorname{Lt}} \frac{e^{hlog}a-1}{h} = a^x \underset{hlog}{\operatorname{Lt}} \frac{e^{hlog}a-1}{hlog} \qquad [\frac{e^{hlog}a-1}{hlog} = 1]$
 $=a^x \times 1 \times log = a^x log \qquad (উত্তর)$

6. $\log_e x$

সমাধান:

ধরি,
$$y = \log_e x$$

$$f(x) = \log_e x$$

$$f(x+h) = \log_e (x+h)$$

আমরা জানি.

$$\frac{dy}{dx} = \operatorname{Lt}_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

$$\therefore \frac{dy}{dx} = \operatorname{Lt}_{h\to 0} \frac{\log_e(x+h) - \log_e x}{h} = \operatorname{Lt}_{h\to 0} \frac{\log_e \frac{x+h}{x}}{h}$$

$$= \operatorname{Lt}_{h\to 0} \frac{\log_e(1 + \frac{h}{x})}{\frac{h}{x} \times x} = \operatorname{Lt}_{\frac{h}{x} \to 0} \frac{\log_e(1 + \frac{h}{x})}{\frac{h}{x}} \frac{1}{x} \qquad [\because \frac{\log_e(1+x)}{x} = 1]$$

$$= 1 \times \frac{1}{x} = \frac{1}{x} \therefore \frac{d}{dx} (\log_e x) = \frac{1}{x} (\text{West})$$

7. e^{ax}

সমাধান :

ধরি,
$$y = e^{ax}$$

$$f(x) = e^{ax}$$

$$f(x + h) = e^{a(x+h)} = e^{ax+ah}$$

আমরা জানি

$$\frac{d}{dx}f(x) = \underset{h \to 0}{\text{Lt}} \frac{f(x+x) - f(x)}{h}$$

$$\frac{d}{dx}e^{ax} = \underset{h \to 0}{\text{Lt}} \frac{e^{ax+ah} - e^{ax}}{h} = \underset{h \to 0}{\text{Lt}} \frac{e^{ax}e^{ah} - e^{ax}}{h} = \underset{h \to 0}{\text{Lt}} \frac{e^{ax}(e^{ah} - 1)}{h}$$

$$= e^{ax} \underset{ah \to 0}{\text{Lt}} \frac{e^{ah} - 1}{ah \times \frac{1}{a}} = e^{ax} \cdot a \quad [\because \underset{h \to 0}{\text{Lt}} \frac{e^{x} - 1}{x} = 1]$$

$$= ae^{ax} \quad (উওর)$$

09

অন্তরীকরণের ধারণা

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পृष्ठी नः	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
❖ রচনামূলক প্রশাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪		১টি	১টি
২০২৩	১টি	১টি	১টি
२०२२	১টি	১টি	

"গণিত তার কাছেই প্রকৃত সৌন্দর্য সহকারে ধরা দেয়, যে বিশুদ্ধ মন ও ভালোবাসা নিয়ে গণিতের দিকে অগ্রসর হয়।"

এই অধ্যায়ের এর সূত্র

$$1. \ \frac{d}{dx}(c)=0$$
 বা, $\frac{d}{dx}$ (সংখ্যা বা ধ্রুবক) $=$ 0

$$2. \ \frac{d}{dx}x^n = nx^{n-1}$$

3.
$$\frac{d}{dx}e^x = e^x$$

4.
$$\frac{d}{dx}logx = \frac{1}{x}$$

5.
$$\frac{d}{dx}sinx = cosx$$

$$6. \ \frac{d}{dx}cosx = -sinx$$

7.
$$\frac{d}{dx}tanx = \sec^2 x$$

8.
$$\frac{d}{dx}cotx = cosec^2x$$

9.
$$\frac{d}{dx}secx = secx.tanx$$

$$10.\frac{d}{dx}secx = -cosecx.cotx$$

$$11.\frac{d}{dx}x = 1$$

$$12.\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

$$13.\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$

$$14.\frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}}$$

$$15.\frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2}$$

$$16.\frac{d}{dx}\cot^{-1}x = -\frac{1}{1+x^2}$$

17.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2}-1}$$

$$18.\frac{d}{dx}(cosec^{-1}x) = -\frac{1}{x\sqrt{s^2 - 1}}$$

$$19.\frac{d}{dx}u^2 = u\frac{d}{dx}v + v\frac{d}{dx}u$$

$$20.\frac{d}{dx}.\frac{u}{v} = \frac{v\frac{d}{dx}u - u\frac{d}{dx}v}{v^2}$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

1. $\frac{d}{dx}$ (sinx) = কত?

[বাকাশিবো: ২১]

সমাধান : $\frac{d}{dx}(\sin x) = \cos x$ (উত্তর

2. $\frac{d}{dx}$ (tan⁻¹x) = কত?

[বাকাশিবো: ২০]

সমাধান: $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ (উত্তর)

 $3. \frac{d}{dx}(uv) = \overline{\Phi}$ ত?

[বাকাশিবো: ২০]

সমাধান : $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ (উত্তর)

4. $\frac{d}{dx}(e^{-x}sinx)$ নির্ণয় কর।

[বাকাশিবো: ১৯]

সমাধান: $\frac{d}{dx}(e^x \sin x) = e^x \frac{d}{dx}(\sin x) + \sin x \frac{d}{dx}e^x = e^x \cos x + \sin x. e^x$ $= e^x(\cos x + \sin x) \qquad (উত্তর)$

5.
$$\frac{d}{dx}(\mathbf{cosec}^{-1} 2\mathbf{x}) = \overline{\Phi}$$

[বাকাশিবো: ৯৮, ১৪, ১৮]

সমাধান :
$$\frac{d}{dx}(cosec^{-1}2x) = -1/(2x\sqrt{(2x)^2 - 1}.2 = -\frac{1}{x\sqrt{4x^2 - 1}}$$
 (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর

(i)
$$y = \sin^2 \log (\cos^2)$$

সমাধান : দেওয়া আছে, $y = \sin^2 \log (\cos x)$

$$\Rightarrow \frac{dy}{dx} = (\sin \log \cos x)^2 = 2 \sin \log \cos x \frac{d}{dx} \sin \log \cos x$$

=
$$2 \sin \log \cos x \cdot \cos \log \cos x \cdot \frac{d}{dx} \log \cos x$$

=
$$2 \sin \log \cos x \cdot \cos \log \cos x \cdot \frac{1}{\cos x} \frac{d}{dx} \cos x$$

$$= \sin 2 \log \cos x \cdot \frac{-\sin x}{\cos x} = \sin 2 \log \cos x \quad x - \tan x$$

(ii)
$$\frac{d}{dx} \cdot \frac{x^x + tanx}{e^x - cotx}$$

সমাধান :
$$= \frac{(e^x - \cot x)\frac{d}{dx}(x^n + \tan x) - (x^n + \tan x)\frac{d}{dx}(e^x - \cot x)}{(e^x - \cot x)^2}$$

$$= \frac{(e^x + \cot x)(nx^{n+1} + \sec x \cdot \tan x) - (x^n + \tan x)(e^x + \cos x)}{(e^x - \cot x)^2} \qquad (উওর)$$

(iii)
$$\frac{d}{dx} \frac{1+\sin x}{1-\sin x}$$

সমাধান:
$$= \frac{(1-\sin x)\frac{d}{dx}(1+\sin x - (1+\sin x)\frac{d}{dx}(1-\sin x)}{(1-\sin x)^2} = \frac{(1-\sin x)\cos x - (1+\sin x)\cdot (-\cos x)}{(1-\sin x)^2}$$

$$= \frac{\cos x - \sin x \cdot \cos x + (1+\sin x)\cdot \cos x}{(1-\sin x)^2} = \frac{2\cos x}{(1-\sin x)^2} \text{ [Ans]}$$

(iv) $\frac{d}{dx}$ $e^{5x} \log \sec x$

সমাধান : =
$$e^{5x} \frac{d}{dx} \log \sec x + \log \sec x \cdot \frac{d}{dx} e^{5x}$$

= $e^{5x} \frac{1}{\sec x} \frac{d}{dx} \sec x + \log \sec x e^{5x} \frac{d}{dx} 5x$
= $e^{5x} \frac{1}{\sec x} \sec x \tan x + \log \sec x \cdot e^{5x} \cdot 5 = e^{5x} (5 \log \sec x + \tan x)$

$$v. \tan^{-1} \frac{4\sqrt{x}}{1-4x}$$

সমাধান : =
$$\tan^{-1} \frac{2.2\sqrt{x}}{1-2(2\sqrt{x})^2} = 2 \tan^{-1} 2\sqrt{x} = \sqrt{\frac{1+\cos x}{1-\cos x}} = \sqrt{\frac{2\cos^2\frac{x}{2}}{2\sin^2\frac{x}{2}}} = \sqrt{\cot^2\frac{x}{2}}$$

$$= \cot\frac{x}{2} \div \frac{d}{dx}\cot\frac{x}{2} = -\csc^2\frac{x}{2} \cdot \frac{d}{dx}\frac{x}{2} = -\frac{1}{2}\csc^2\frac{x}{2} \quad (উওর)$$

vi. $\sqrt{\sin \sqrt{x}}$

সমাধান : ধরি,
$$y = \sqrt{\sin \sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \sqrt{\sin \sqrt{x}} = \frac{1}{2\sqrt{\sin \sqrt{x}}} \times \frac{d}{dx} \sin \sqrt{x} = \frac{1}{2\sqrt{\sin \sqrt{x}}} \times \cos \sqrt{x}. \frac{d}{dx} \sqrt{x}$$

$$= \frac{\cos \sqrt{x}}{2\sqrt{\sin \sqrt{x}}} \times \frac{1}{2\sqrt{x}} = \frac{\cos \sqrt{x}}{4\sqrt{x}\sqrt{\sin \sqrt{x}}} \qquad (উত্তর)$$

$$Vii. \frac{\sin x - \cos x}{\sqrt{1 - \sin 2x}}$$

সমাধান :
$$\frac{\sin x - \cos x}{\sqrt{1 - \sin 2 x}} \begin{bmatrix} 1 = \sin^2 x + \cos^2 x \\ \sin 2x = 2 \sin x \cdot \cos x \end{bmatrix}$$

$$= \frac{\sin x - \cos x}{\sqrt{\frac{\sin^2 x}{a} + \frac{\cos^2 x}{b} - \frac{2 \sin x}{a} \frac{\cos x}{b}}}$$

$$= \frac{\sin x - \cos x}{\sqrt{(\sin x - \cos x)^2}} \begin{bmatrix} a^2 + b^2 - 2ab \\ = (a - b)^2 \end{bmatrix} = 1 \therefore \frac{d}{dx} (1) = 0 \text{ [ans]}$$

ob

$\frac{dy}{dx}$ এর জ্যামিতিক ব্যাখ্যা

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্লাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশ্নাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪		১টি	
২০২৩	১টি	১টি	
२०२२	ত্তী	গী?	

"গণিতকে অবজ্ঞা করা জ্ঞানার্জনের পক্ষে ক্ষতিকর কারণ গনিত ছাড়া বিজ্ঞান বা বিশ্বব্রহ্মান্ড সম্বন্ধে জ্ঞান লাভ করা অসম্ভব।"

এই অধ্যায়ের এর সূত্র

$$1. \frac{dy}{dx} = tan 90^\circ$$
 [পর্শক x অফের উপর লম্ব]

$$2. \frac{dx}{dx} = tan0^\circ = 0$$
 [স্পর্শক x অফের সমান্তরাল]

অতিসংক্ষিপ্ত প্রশ্লোত্তর

1. স্পর্শক x অক্ষের উপর লম্ব হলে $\frac{dy}{dx}$ কত?

সমাধান : স্পর্শক χ অক্ষের উপর লম্ব হলে $\frac{dy}{dx}=$ কত?

$$y=rac{1}{x^2}$$
 বক্ররেখার $x=-1$ বিন্দুতে ঢাল নির্ণয় কর।

[বাকাশিবো: ১৯]

[বাকাশিবো: ১৮, ২০, ২১]

সমাধান :
$$y = \frac{1}{x^2}$$
 বা, $y = x^{-2}$ বা, $\frac{dy}{dx} = -2x^{-2-1}$, $\therefore \frac{dy}{dx} = -\frac{2}{x^3}$, $\therefore x = -1$ বিন্দুতে ঢাল $= -\frac{2}{(-1)^3} = 2$.

3. স্পর্শক x অক্ষের সমান্তরাল হলে $\frac{dy}{dx}$ কত?

[বাকাশিবো: ১৪, ১৫]

সমাধান : স্পর্শক x অক্ষের সমান্তরাল হলে $\frac{dy}{dx}=\tan 0^\circ=0.$

4.
$$\frac{\mathrm{d}y}{\mathrm{d}x}=1$$
 হলে স্পর্শক x অক্ষের সাথে কত কোণ উৎপন্ন করবে।

[বাকাশিবো: ১৪, ১৫]

সমাধান : দেওয়া আছে, $\frac{\mathrm{d}y}{\mathrm{d}x}=1$, বা, $\tan\theta=\tan45^\circ$, \div $\theta=45^\circ$, \div নির্ণেয় কোণ 45°

5.
$$\frac{\mathrm{d}y}{\mathrm{d}x}=\mathbf{0}$$
 হলে স্পর্শক x অক্ষের সাথে কত ডিগ্রি কোণ উৎপন্ন করবে।

[বাকাশিবো: ১২, ১৫]

সমাধান : $\frac{dy}{dx} = 0$, বা, $tan\theta = tan0^{\circ}$, $\therefore \theta = 0^{\circ}$

6.
$$y^2 = x^2$$
 বক্ররেখার (1, 1) বিন্দুতে ঢাল কত?

[বাকাশিবো: ১৫]

সমাধান : $y^2=x^2$, বা, $2y\frac{dy}{dx}=2x$ বা, $\frac{dy}{dx}=\frac{x}{y}$, \div (1,1) বিন্দুতে ঢাল $\frac{dy}{dx}=1$

7.
$$\frac{\mathrm{d}y}{\mathrm{d}x}=\infty$$
 হলে স্পর্শক অক্ষের সাথে কত ডিগ্রি কোণ উৎপন্ন করবে।

[বাকাশিবো: ১৩]

সমাধান : $\frac{dy}{dx} = \infty$, বা, $tan\theta = tan90^\circ$, $\therefore \theta = 90^\circ$, \therefore নির্ণেয় কোণ 90°

সংক্ষিপ্ত প্রশ্নোত্তর

1. $x^x + xy + y^2 = 0$ বক্সরেখার (2, -2) বিন্দুতে স্পর্শকের ঢাল নির্ণয় কর। সমাধান :

দেওয়া আছে, $x^2 + xy + y^2 = 0$

 χ এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$\Rightarrow (x+2y)\frac{dy}{dx} = -(2x+y)$$

$$\Rightarrow \frac{dy}{dx} = -\frac{2x+y}{x+2y}$$

$$\therefore (2,-2)$$
 বিশুতে = $-\frac{2.2+(-2)}{2+2(-2)} = -\frac{4-2}{2-4} = -\frac{2}{-2} = 1$
ঢাল = 1 (উত্তর)

2. $y = \sqrt{x}$ বক্সরেখার উপর কোন বিন্দুতে স্পর্শক x অক্ষের সাথে 45° কোন উৎপন্ন করে? সমাধান :

x এর মান (i) নং সমীকরণে বসাই,

$$y = \sqrt{\frac{1}{4}}$$
$$= \frac{1}{2}$$

 \therefore নির্নেয় বিন্দুর স্থানাঙ্ক $\left(\frac{1}{4},\frac{1}{2}\right)$ (উত্তর)

3. $y=x^2+\sqrt{1-x^2}$ বক্সরেখার উপর যেসব বিন্দুতে স্পর্শক x অক্ষের উপর লম্ব সেই সব বিন্দু গুলো বের কর।

সমাধান:

দেওয়া আছে,
$$y = x^2 + \sqrt{1 - x^2}$$

$$\Rightarrow \frac{dy}{dx} = 2x + \frac{1}{2\sqrt{1 - x^2}}(-2x)$$

$$\Rightarrow \frac{dy}{dx} = 2x - \frac{x}{\sqrt{1 - x^2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}}$$

যেহেতু স্পর্শকটি $_X$ অক্ষের উপর লম্ব সুতরাং $\frac{dy}{dx}=\infty$ $\Rightarrow \frac{2x(\sqrt{1-x^2})-x}{\sqrt{1-x^2}}=\infty$ $\Rightarrow \frac{2x(\sqrt{1-x^2})-x}{\sqrt{1-x^2}}=\frac{1}{0} \qquad [: = \frac{1}{0}]$ $\Rightarrow \sqrt{1-x^2}=0$ $\Rightarrow 1-x^2=0$ $\Rightarrow -x^2=-1$ $\Rightarrow x=+1$

যখন
$$x-1$$
 তখন $y=(1)^2+\sqrt{1-1^2}$

$$=1$$
যখন $x=-1$ তখন $y=(-1)^2+\sqrt{1-(-1)^2}$

$$=1$$
∴নির্ণেয় বিন্দুর স্থানান্ধ $(1,1),(-1,1)$ (উত্তর)

4. $y=2x^3+2x^3-12x+10$ বক্সরেখার যে সকল বিন্দুতে স্পর্শক x অক্ষের সাথে সমান্তরাল তাদের স্থানাঙ্ক নির্ণয় কর।

সমাধান:

$$\Rightarrow x^2 + 2x - x - 2 = 0$$
 $\Rightarrow (x + 2)(x - 1) = 0$
হয়, $x + 2 = 0$ অথবা, $x - 1 = 0$
 $\therefore x = -2$
 $\therefore x = -2,1$ $\therefore x = 1$
যখন, $x = -2$ তখন $y = 2(-2)^3 + 3(-2)^2 - 12(2) + 10$
 $= -16 + 12 + 24 + 10$
 $= 30$
যখন, $x = 1$ তখন, $y = 2(1)^3 + 3(1)^2 - 12(1) + 10$
 $= 2 + 3 - 12 + 10$
 $= 3$
 \therefore নির্ণেয় বিন্দুর স্থানাঙ্ক $(1,3), (-2,30)$ উত্তর)

5. $y=x^3-3x+2$ বক্সরেখার যে সমস্ত বিন্দুতে স্পর্শক গুলো x অক্ষের সমান্তরাল তদের স্থানাঙ্ক নির্ণয় কর।

সমাধান:

দেওয়া আছে,
$$y = x^3 - 3x + 2$$

x এর সাপেক্ষে অন্তরীকরণ করে পাই.

$$\frac{dy}{dx} = 3x^2 - 3$$

যেহেতু স্পর্শক $_{
m X}$ অক্ষের সমান্তরাল কাজেই $rac{dy}{dx}=0$ হবে।

সুতরাং
$$3x^2 - 3 = 0$$

$$\Rightarrow 3(x^2 - 1) = 0$$

$$\Rightarrow x^2 - 1 = 0$$

$$\Rightarrow x^2 = 1$$

$$\therefore x = \pm 1$$

যখন
$$x = 1$$
 তখন $y = (1)^3 - 3(1) + 2 = 1 - 3 + 2 = 0$

যখন
$$x = -1$$
 তখন $y = (-1)^3 - 3(-1) + 2 = -1 + 3 + 2 = 4$

$$\frac{dy}{dx}(x^n) = nx^{n-1}$$
$$\frac{dy}{dx}(x^3) = 3x^{3-1}$$
$$= 3x^2$$

রচনামূলক প্রশ্নোত্তর

 $1. \; y = x^2 + \sqrt{4-x^2}$ বক্সরেখার উপর যেসব বিন্দুতে স্পর্শক x অক্ষের উপর লম্ব সেই সব বিন্দুগুলো বের কর।

সমাধান:

দেওয়া আছে,
$$y = x^2 + \sqrt{4 - x^2}$$

x এর সাপেক্ষে অন্তরীকরণ করে পাই,

$$\frac{dy}{dx} = 2x + \frac{1}{2\sqrt{4-x^2}}(-2x)$$

$$= 2x - \frac{x}{\sqrt{4-x^2}}$$

$$= \frac{2x\sqrt{4-x^2}-x}{\sqrt{4-x^2}}$$

যেহেতু χ অক্ষের উপর লম্ব কাজেই $\frac{dy}{dx}=\infty$

$$\Rightarrow \frac{2x\sqrt{4-x^2}-x}{\sqrt{4-x^2}} = \infty$$

$$\Rightarrow \frac{2x\sqrt{4-x^2}}{\sqrt{4-x^2}} = \frac{1}{0}$$

$$\Rightarrow \sqrt{4-x^2} = 0$$

$$\Rightarrow 4-x^2 = 0$$

$$\Rightarrow -x^2 = -4$$

$$\Rightarrow x^2 = 4$$

$$\therefore x = \pm 2$$

যখন
$$x = 2$$
 তখন $y = (2)^2 + \sqrt{4 - (2)^2}$
= 4

যখন
$$x = -2$$
 তখন $y = (-2)^2 + \sqrt{4 - (-2)^2}$
= 4

ဝန

পর্যায়ক্রমিক অন্তরীকরণের সমস্যা সমাধানে মিবনীজের উপপাদ্যের ব্যবহার

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পृष्ठा नः	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
 রচনামূলক প্রশ্লাবলি 		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি		১টি
২০২৩	১টি	১টি	
২০২২			১টি

"গণিতে আপনার সমস্যা নিয়ে চিন্তা করবেন না। নিশ্চিত থাকুন আমার সমস্যা আরও বেশি।"

এই অধ্যায়ের এর সূত্র

1.
$$(uv)_n = uv_n + {}^nC_1u_1v_{n-1} + {}^nC_2u_2v_{2-2} + \dots + {}^nC_ru_rv_{n-r} + \dots + U_{n^2}$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

[বাকাশিবো: ৯৮,'১১,'২০,'২২]

সমাধান :
$$y=e^x$$
, $\Rightarrow y_1=e^x$, $\Rightarrow y_2=e^x$, $\Rightarrow y_n=e^x$ (উত্তর)

2.
$$y = e^{-ax}$$
 হলে $Yn = \overline{\phi}$

[বাকাশিবো : ০১,০৩R,০৯,'১০,'১২,'১৩,'১৪R,'১৫R,'১৭R]

সমাধান :
$$y=e^{-ax}$$
 , $\Rightarrow y_1=-ae^{-ax}=(-1)ae^{-ax}$,
$$\Rightarrow y_2=(-1)a.(-1)ae^{-ax}=(-1)^2a^2e^{-ax}$$

$$\Rightarrow y_3=(-1)^3a^3e^{-ax} \,, \quad \Rightarrow y_n=(-1)^na^ne^{-ax} \quad \text{(উত্তর)}$$

3. লিববনিজের উপপাদ্যটি লেখ।

[বাকাশিবো: '১৭T]

সমাধান : যদি u এবং v উভয়ই x এর ফাংশন হয়, তবে এদের গুণফলের n তম অন্তরক সহগ হলো, $(uv)_n = uv_n + {}^nC_1u_1v_1 + {}^nC_2u_2v_{n-2} + {}^nC_3u_3v_{n-3} + \cdots + {}^nC_1u_rv_{n-r} + \cdots + u_nv$

4.
$$y = x^n$$
 হলে $Y_n = \overline{\phi}$ ত?

[বাকাশিবো : '০২R,'১১R,'১৫]

সমাধান :
$$y = x^n$$
, $\Rightarrow y_1 = nx^{n-1}$, $\Rightarrow y_2 = n(n-1)x^{n-2}$
 $\Rightarrow y_3 = n(n-1)(n-2)x^{n-3}$

অনুরূপভাবে,

$$y_n = n(n-1)(n-2) \dots 3.2.1. x^{n-n} = n!. x^0 = n!$$
 (উত্তর)

5.
$$y = a^x$$
 হলে $Y_n = \overline{\phi}$

[বাকাশিবো : '১৫]

সমাধান :
$$y=a^x$$
, $\Rightarrow y_1=a^x\log_e a$, $\Rightarrow y_2=a^x(\log_e a)^2$, $\Rightarrow y_3=a^x(\log_e a)^3$
 $\therefore y_n=a^x(\log_e a)^3$ (উত্তর)

6.
$$y = \cos x$$
 হলে দেখাও যে, $y_4 - y = 0$

[বাকাশিবো: '১২,'১৫]

সমাধান:
$$y=cosx$$
, $\Rightarrow y_1=-\sin x$, $\Rightarrow y_2=-\cos x$, $\Rightarrow y_3=\sin x$ $y_4=\cos x=y$, $\Rightarrow y_4-y=0$ (দেখানো হলো)

সংক্ষিপ্ত প্রশ্নোত্তর

1.
$$y = (\cos^{-1} x)^2$$
 হলে, প্রমান কর যে, $(1 - x^2)y_2 - xy_1 = 2$

সমাধান: দেওয়া আছে,

$$y = (\cos^{-1} x)^{2}$$

$$\Rightarrow y_{1} = 2\cos^{-1} \frac{d}{dx}\cos^{-1} x$$

$$\Rightarrow y_{1} = 2\cos^{-1} - \frac{1}{\sqrt{1 - x^{2}}}$$

$$\Rightarrow y_{1} \left(\sqrt{1 - x^{2}}\right) = -2\cos^{-1} x$$

$$\Rightarrow y_{1}^{2} (1 - x^{2}) = 4(\cos^{-1} x)^{2}$$

$$\Rightarrow y_{1}^{2} (-2x)2y_{1}y_{2}(1 - x^{2}) = 4y_{1}$$

$$\Rightarrow 2y_{1}(-y_{1}x) + (1 - x^{2})y_{2} = 2.2y_{1}$$

$$\Rightarrow (1 - x^{2})y_{2} - xy_{1} = 2$$
(প্রমাণিত)

2.
$$y=(\sin^{-1}x)^2$$
 হলে, প্রমান কর যে, $(1-x^2)y_2-xy_1=2$ অথবা, $\sin\sqrt{y}=x$ হলে প্রমান কর যে, $(1-x^2)y_2-xy_1=2$

 $y = \sin(m sin^{-1} x)$ হলে, দেখাও যে, $(1-x^2)y_2 - xy_1 + m^2 y = 0$

সমাধান: দেওয়া আছে,

$$y = e^{ain^{-1}x}$$

$$\Rightarrow y_1 = e^{ain^{-1}x} \cdot a \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow y_1(\sqrt{1-x^2}) = a e^{ain^{-1}x}$$

$$\Rightarrow y_1^2(1-x^2) = a^2(e^{ain^{-1}x})^2$$

$$\Rightarrow y_1^2(1-x^2) = a^2y^2$$

$$\Rightarrow y_1^2(-2x) + (1-x^2)2y_1y_2 = a^22yy_1$$

$$\Rightarrow 2y_1\{-xy_1 + (1+x^2)y_2\} = a^2y_12y_1$$

$$\Rightarrow (1-x^2)y_2 - xy_1 = a^2y_1 \quad \text{(দেখানো হলো)}$$

4. $y = \tan(mtan^{-1}x)$ হলে, দেখাও যে, $(1-x^2)y_1 = m(1+y^2)$

সমাধান: দেওয়া আছে.

$$y = \tan(mtan^{-1}x)$$

$$\Rightarrow y_1 = \sec^2(mtan^{-1}) m \frac{d}{dx} \tan^{-1} x$$

$$\Rightarrow y_1 = \sec^2(mtan^{-1}) m \frac{1}{1+x^2}$$

$$\Rightarrow y_1(1+x^2) = \{1 + \tan^2(mtan^{-1}x)\}m$$

 $\Rightarrow y_1(1+x^2) = (1+y^2)m$
 $\Rightarrow (1+x^2)y_1 = m(1+y^2)$ (দেখানো হলো)

5.
$$y = \sin^{-1} x$$
 হলে, প্রমান কর যে, $(1 - x^2)y_2 - xy_1 = 0$

সমাধান: দেওয়া আছে,

$$sin\sqrt{y} = x
\Rightarrow \sqrt{y} = xin^{-1}x
\Rightarrow y = (sin^{-1}x)^{2}
\Rightarrow y_{1} = 2xin^{-1}x \frac{1}{\sqrt{1-x^{2}}}
\Rightarrow y_{1}\sqrt{1-x^{2}} = 2sin^{-1}x
\Rightarrow y_{1}^{2}(1-x^{2}) = 4(sin^{-1}x)^{2}
\Rightarrow y_{1}^{2}(-2x) + (1-x^{2})2y_{1}y_{2} = 4y_{1}
\Rightarrow 2y_{1}\{-xy_{1} + (1-x^{2})y_{2}\} = 2.2y_{1}
\Rightarrow (1-x^{2})y_{2} - xy_{1} = 2$$

 $6. y = e^{asinx}$ হলে, প্রমান কর যে, $(1-x^2)y_2 - xy_1 = a^2y$

সমাধান: দেওয়া আছে,

$$y = \sin(m\sin^{-1}x)$$

⇒ $y_1 = \cos(m\sin^{-1}x) m \frac{1}{\sqrt{1-x^2}}$
⇒ $y_1(\sqrt{1-x^2}) = \cos(m\sin^{-1}x) m$
⇒ $y_1^2(1-x^2) = \cos^2(m\sin^{-1}x) m^2$
⇒ $y_1^2(1-x^2) = 1 - \sin^2(m\sin^{-1}x) m^2$
⇒ $y_1^2(1-x^2) = (1-y^2) m^2$
⇒ $y_1^2(-2x) + (1+x^2)2y_1y_2 = (0-2yy_1)m^2$
⇒ $2y_1\{-xy_1 + (1-x^2)y_2\} = -2y_1ym^2$
⇒ $(1-x^2)y_2 - xy_1 = -m^2y$
⇒ $(1-x^2)y_2 - xy_1 + m^2y = 0$ (উত্তর)

রচনামূলক প্রশ্নোত্তর

$$1. \; y = \cos(m cos^{-1} x)$$
 হলে দেখাও যে , $(1-x^2) y_{n+1} - (2x+1) x y_{n+1} - (m^2-n^2) y_n = 0$

সমাধান: দেয়া আছে.

$$y = \cos(m\cos^{-1}x)$$

$$\Rightarrow y_1 = -\sin(m\cos^{-1}x) \frac{d}{dx} m\cos^{-1}x$$

$$\Rightarrow y_1 = -\sin(m\cos^{-1}x) - \frac{m}{\sqrt{1-x^2}}$$

$$\Rightarrow y_1(\sqrt{1-x^2}) = \sin(m\cos^{-1}a) m$$

$$\Rightarrow y_1^2(1-x^2) = \sin^2(m\cos^{-1}x) m^2$$

$$\Rightarrow y_1^2(1-x^2) = 1 - \cos^2(m\cos^{-1}x) m^2$$

$$\Rightarrow y_1^2(1-x^2) = (y-y^2)m^2$$

$$\Rightarrow y_1^2(-2x) + (1-x^2)2y_1y_2 = 0 - 2yy_1m^2$$

$$\Rightarrow y_1^2(-2x) + (1-x^2)2y_1y_2 = 0 - 2yy_1m^2$$

$$\Rightarrow 2y_1\{-xy_1 + (1-x^2)y_2\} = -m^2y.2y$$

$$\Rightarrow (1-x^2)y_2 - xy_1 + m^2y = 0$$

লিবনিজের উপপাদ্য অনুযায়ী,

$$\Rightarrow (1 - x^{2})y_{n+2} + {}^{n}C_{1}(-2x)y_{n+2-1} + {}^{n}C_{2}(-2)y_{n+2-2} - (xy_{n+1} {}^{n}C_{1}.1.y_{n+1-1}) + m^{2}y_{n} = 0$$

$$(1 - x^{2})y_{n+1} = n(-2x)y_{n+1} = \frac{n(-1)}{2} \times -2 \times y_{n}$$

$$-xy_{n+1} - ny_{n} + m^{2}y_{n} = 0$$

$$\Rightarrow (1 - x^{2})y_{n+2} - 2nxy_{n+1} - xy_{n+1} - n(n-1)y_{n}$$

$$\{n(n-1) + n - m^{2}\} = 0$$

$$\Rightarrow (1 - x^{2})y_{n+2} - (2n+1)xy_{n+1} - y_{n}(n^{2} - n + n - m) = 0$$

$$\Rightarrow (1 - x^{2})y_{n+2} - (2n+1)xy_{n+1} = (m^{2} - n^{2})y_{n} = 0$$

30

আংশিক অন্তরীকরণ

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🚇 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)	
বিষয়	পৃষ্ঠা নং
সূত্রাবলী ও শর্টকার্ট টেকনিক	
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি	
❖ সংক্ষিপ্ত প্রশ্নাবলি	
❖ রচনামূলক প্রশাবলি	

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	
২০২৩	১টি		১টি
২০২২		ঠটি	

"অধিকাংশ মানুষ উপলব্ধি করার লক্ষ্য নিয়ে অন্যের বক্তব্য শোনে না, তাদের লক্ষ্য থাকে পাল্টা বক্তব্য দেয়া।"

অতিসংক্ষিপ্ত প্রশ্নউত্তর

1.
$$u = tan^{-1} \left(\frac{x}{v}\right)$$
 হলে $\frac{\delta u}{\delta x} = \overline{\Phi \Phi}$?

[বাকাশিবো : '৯৫,'০৮R,'১৫R,'২২]

সমাধান :
$$u = \tan^{-1}\left(\frac{x}{y}\right)$$
, $\therefore \frac{\delta u}{\delta x} = \frac{1}{1 + \frac{x^2}{y^2}} \cdot \frac{1}{2} = \frac{y^2}{x^2 + y^2} \cdot \frac{1}{y} = \frac{y}{x^2 + y^2}$ (উত্তর)

2. যদি
$$f=2x^2+4x^2y+y^2$$
 হয়, তবে $\frac{\delta^2 f}{\delta x^2}=$ কত?

[বাকাশিবো: '১৬]

সমাধান : দেওয়া আছে,
$$f=2x+4x^2y+y^2$$
, $\therefore \frac{\delta f}{\delta x}=2.2x+4.2xy+0$, $\therefore \frac{\delta^2 f}{\delta x^2}=4+8y$

3.
$$\mathbf{u} = \mathbf{log}(\mathbf{x}^2 + \mathbf{y}^2)$$
 হলে $\frac{\delta \mathbf{u}}{\delta \mathbf{x}}$ এর মান নির্ণয় কর।

[বাকাশিবো : ooR,'o৭,'১৫]

সমাধান:
$$u = \log(x^2 + y^2)$$
, $\therefore \frac{\delta u}{\delta x} = \frac{1}{x^2 + y^2}$. $2y = \frac{2y}{x^2 + y^2}$ (উত্তর)

4.
$$\mathbf{u} = \mathbf{x}^3 + \mathbf{x}^2 \mathbf{y}^2 + \mathbf{y}^3$$
 হলে $\frac{\delta^2 \mathbf{y}}{\delta \mathbf{x}^2}$ এর মান কত?

[বাকাশিবো : ৯৫,'১৫]

সমাধান :
$$u=x^3+x^2y^2+y^3$$
, $\therefore \frac{\delta u}{\delta x}=3x^2+2xy^2$, $\therefore \frac{\delta^2 u}{\delta x^2}=6x+2y^2$ (উত্তর)

5.
$$\mathbf{u} = \mathbf{e}^{\mathbf{a}\mathbf{x}}$$
 হলে $\frac{\delta^2 \mathbf{u}}{\delta \mathbf{x}^2}$ এর মান নির্ণয় কর?

[বাকাশিবো: ০০,'৯৭,'১৪]

সমাধান :
$$u=e^{ax}$$
, $\therefore \frac{\delta u}{\delta x}=e^{ax}$. $a : \frac{\delta^2 u}{\delta x^2}=e^{ax}$. $a^2=a^2e^{ax}$ (উত্তর)

6.
$$\mathbf{u} = \mathbf{e}^{\mathbf{x}\mathbf{y}\mathbf{z}}$$
 হলে $\frac{\delta\mathbf{u}}{\delta\mathbf{x}}$ এর মান কত?

[বাকাশিবো : ০১,'১২,]

সমাধান :
$$u=e^{xyz}$$
, $\therefore \frac{\delta u}{\delta x}=e^{xyz}$. $\frac{\delta}{\delta x}(xyz)=e^{eyz}$. $(yz)=yz$ e^{xyz} (উত্তর)

সংক্ষিপ্ত প্রশ্নউত্তর

$$1.\;u=x^2y+y^2z+z^2x$$
 হয়, তবে দেখাও যে , $ux+uy+uz=(x+y+z)^2$

সমাধান : দেওয়া আছে,
$$U=x^2y+y^2z+z^2x$$

$$\therefore Ux = 2xy + x^2 \dots \dots (i)$$

$$\therefore Uy = x^2 + 2yz \dots \dots (ii)$$

$$\therefore Uz = y^2 + 2zx \dots \dots (iii)$$

$$Ux + Uy + Uz = 2xy + z^2 + x^2 + 2yz + y^2 + 2zx$$

= $x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = (x + y + z)^2$ (উত্তর)

2. যদি
$$U=\log(x^2+y^2-2xy)$$
 হয়, তবে দেখাও যে, $\frac{\delta x}{\delta x}+\frac{\delta u}{\delta y}=0$

সমাধান : দেওয়া আছে, $U = \log(x^2 + y^2 - 2xy)$

3.
$$u=\sin^{-1}\frac{x}{y}+\tan^{-1}\frac{y}{x}$$
 হয়, তবে দেখাও যে, $x\frac{\delta u}{\delta x}+y\frac{\delta u}{\delta y}=0$

সমাধান : দেওয়া আছে, $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$

$$\therefore y \frac{\delta u}{\delta y} = -\frac{x}{\sqrt{y^2 - x^2}} + \frac{xy}{x^2 + y^2} \dots \dots (ii)$$

(i) ও (ii) নং যোগ করে পাই,

$$x\frac{\delta u}{\delta x} + y\frac{\delta u}{\delta y} = \frac{x}{\sqrt{y^2 - x^2}} - \frac{xy}{x^2 + y^2} - \frac{x}{\sqrt{y^2 - x^2}} + \frac{xy}{x^2 + y^2}$$
$$\therefore x\frac{\delta u}{\delta x} + y\frac{\delta u}{\delta y} = 0 \qquad \text{(প্রমাণীত)}$$

4. যদি
$$u=\log(x^2+y^2)$$
 হয়, তবে প্রমাণ কর যে, $\frac{\delta^2 u}{\delta x^2}+\frac{\delta^2 u}{\delta y^2}=0$

সমাধান: দেওয়া আছে, $u = \log(x^2 + y^2)$

$$\therefore \frac{\delta u}{\delta x} = \frac{1}{x^2 + y^2} \cdot 2x$$

$$\therefore \frac{\delta^2 u}{\delta x^2} = \frac{(x^2 + y^2) \cdot 2 - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4x^2}{(x^2 + y^2)^2} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$\therefore \frac{\delta^2 u}{\delta x^2} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2} \dots \dots \dots (i)$$

আবার, $\frac{\delta u}{\delta x} = \frac{1}{x^2 + y^2} \cdot 2y$

$$\therefore \frac{\delta^2 u}{\delta x^2} = \frac{(x^2 + y^2) \cdot 2 - (2y) \cdot 2y}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2} = -\frac{2y^2 - 2x^2}{(x^2 + y^2)^2} \dots \dots (ii)$$

(i) ও (ii) যোগ করে পাই

$$\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2} - \frac{2y^2 - 2x^2}{(x^2 + y^2)^2}$$

$$\therefore \frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0$$
 (প্রমাণীত)

5. যদি
$$v=x^2+y^2+z^2$$
 হয়, তবে দেখাও যে, $\frac{\delta^2 v}{\delta x^2}+\frac{\delta^2 v}{\delta y^2}+\frac{\delta^2 v}{\delta z^2}=6$

সমাধান : দেওয়া আছে,
$$v = x^2 + y^2 + z^2$$

$$\therefore \frac{\delta v}{\delta x} = 2x$$
 আবার, $\therefore \frac{\delta v}{\delta y} = 2y$

$$\therefore \frac{\delta v}{\delta x} = 2x$$
 আবার, $\therefore \frac{\delta v}{\delta y} = 2y$ আবার, $\frac{\delta v}{\delta z} = 2z$ $\therefore \frac{\delta^2 v}{\delta z^2} = 2$ $\therefore \frac{\delta^2 v}{\delta^2 z^2} = 2$

$$\therefore \frac{\delta^2 v}{\delta x^2} + \frac{\delta^2 v}{\delta y^2} + \frac{\delta^2 v}{\delta^2 z^2} = 2 + 2 + 2 = 6$$

(প্রমাণীত)

 $\therefore \frac{\delta^2 v}{\delta^2 z^2} = 2$

রচনামূলক প্রশ্নোত্র

$$1.$$
 যদি $u=\sqrt{x^2+y^2+z^2}$ হয়, তবে প্রমাণ কর যে, $ux^2+uy^2+uz^2=1$

সমাধান : দেওয়া আছে,
$$u=\sqrt{x^2+y^2+z^2}$$
, $\Rightarrow u^2=x^2+y^2+z^2$, $\Rightarrow 2uux=2x$, $\Rightarrow ux=\frac{2x}{2u}$, $\therefore ux=\frac{x}{2}$(i)

অনুরূপভাবে,
$$uy = \frac{y}{u} \dots \dots (ii)$$

$$uz = \frac{z}{u} \dots \dots (iii)$$

$$L.H.S = Ux^{2} + uy^{2} + uz^{2} = \left(\frac{x}{u}\right)^{2} + \left(\frac{y}{u}\right)^{2} + \left(\frac{z}{u}\right)^{2} = \frac{x^{2}}{u^{2}} + \frac{y^{2}}{u^{2}} + \frac{z^{2}}{u^{2}}$$

$$= \frac{x^{2} + y^{2} + z^{2}}{u^{2}} = \frac{u^{2}}{u^{2}} = 1 = R.H.S \qquad (প্রমাণীত)$$

2. যদি
$$u=\cos^{-1}\frac{x}{y}+\tan^{-1}\frac{y}{x}$$
 হয়, তবে প্রমান কর যে, $x\frac{\delta u}{\delta x}+y\frac{\delta u}{\delta y}=0$

সমাধান : দেওয়া আছে,
$$u = \cos^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$$

$$\therefore x \frac{\delta u}{\delta x} = -\frac{x}{\sqrt{v^2 - x^2}} - \frac{xy}{x^2 + v^2} \dots \dots (i)$$

আবার,
$$\frac{\delta u}{\delta y} = -\frac{1}{\sqrt{1-\frac{x^2}{y^2}}} \left(-\frac{x}{y^2}\right) + \frac{1}{1+\frac{y^2}{x^2}} \cdot \frac{1}{x} = -\frac{1}{\sqrt{\frac{y^2-x^2}{y^2}}} \left(-\frac{x}{y^2}\right) + \frac{1}{\frac{x^2+y^2}{x^2}} \cdot \frac{1}{x} = \frac{x}{y\sqrt{y^2-x^2}} + \frac{x}{x^2+y^2}$$

$$\therefore y \frac{\delta u}{\delta} = \frac{x}{\sqrt{y^2 - x^2}} + \frac{xy}{x^2 + y^2} \dots \dots \dots (ii)$$

VVx = x $\Rightarrow Vx = \frac{x}{v}$

$$x\frac{\delta u}{\delta x} + y\frac{\delta u}{\delta y} = -\frac{x}{\sqrt{y^2 - x}} - \frac{xy}{x^2 + y^2} + \frac{x}{\sqrt{y^2 + x^2}} + \frac{xy}{x^2 + y^2}$$
$$\therefore x\frac{\delta u}{\delta x} + y\frac{\delta u}{\delta y} = 0 \qquad (প্রমাণীত)$$

2. যদি
$$v=\sqrt{x^2+y^2+z^2}$$
 হয়, তবে দেখাও যে $V_{xx}+V_{yy}+V_{zz}=rac{2}{V}$

সমাধান: দেওয়া আছে,
$$V = \sqrt{x^2 + y^2 + z^2}$$

$$\therefore V^2 = x^2 + y^2 + z^2$$

$$\Rightarrow 2_{vvx} = 2x$$

$$\therefore VVx = x$$

আবার, আংশিক অন্তরীকরণ করে পাই,

$$VVx_x + VxVx = 1$$

$$\Rightarrow VVxx + \left(\frac{x}{v}\right)^2 = 1$$

$$\Rightarrow VVxx + \frac{x^2}{v^2} = 1 \dots \dots (i)$$

অনুরূপভাবে,
$$VVyy + \frac{y^2}{y^2} = 1 \dots (ii)$$

এবং
$$VVzz + \frac{z^2}{V^2} = 1 \dots \dots (iii)$$

(i), (ii) ও (iii) নং যোগ করে পাই,

$$VVxx + \frac{x^{2}}{v^{2}} + VVyy + \frac{y^{2}}{v^{2}} + Wzz + \frac{z^{2}}{v^{2}} = 1 + 1 + 1$$

$$\Rightarrow V(Vxx + Vyy + Vzz) + \frac{x^{2}}{v^{2}} + \frac{y^{2}}{v^{2}} + \frac{y^{2}}{v^{2}} + \frac{z^{2}}{v^{2}} = 3$$

$$\Rightarrow V(Vxx + Vyy + Vzz) + \frac{x^{2} + y^{2} + z^{2}}{v^{2}} = 3$$

$$\Rightarrow V(Vxx + Vyy + Vzz) + \frac{v^{2}}{v^{2}} = 3$$

$$\Rightarrow V(Vxx + Vyy + Vzz) + 1 = 1$$

$$\Rightarrow V(Vxx + Vyy + Vzz) = 3 - 1$$

$$\Rightarrow V(Vxx + Vyy + Vzz) = 2$$

 $\Rightarrow Vxx + Vyy + Vzz = \frac{2}{V}$ (প্রমাণীত)

আংশিক অন্তরীকরণ

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কভটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	১টি
২০২৩	১টি		১টি
২০২২		১টি	গীረ

'আপনি না চাইলে কেউ আপনাকে হীনমন্যতায় ভোগাতে পারবে না।"

এই অধ্যায়ের এর সূত্র

1.
$$fx^n dx = \frac{x^{n+1}}{n+1} + c$$

$$2. f1dx = x + c$$

$$3. f \frac{1}{x} dx = log x + c$$

$$4. f \cos x \, dx = \sin x + c$$

$$5. f \sin x \, dx = -\cos x + c$$

6.
$$f \tan x \, dx = \log \cos x + c$$

7.
$$f \cot x \, dx = \log \sin x + c$$

$$8. \sec^2 x \, dx = \tan x + c$$

9.
$$f \csc^2 x dx = -\cot x + c$$

10.
$$f \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} = c$$

11.
$$f \frac{dx}{a^2 - x^2} = \frac{1}{2a} lgo \frac{a + x}{a - x} + c$$

12.
$$f \frac{dx}{1+x^2} = \tan x + c$$

13.
$$fuvdx = ufvdx - f\left(\frac{du}{dx}fvdx\right)dx$$

সংক্ষিপ্ত প্রশ্নউত্তর

1. ∫ sin ax dx কত?

সমাধান: $\int \sin ax \ dx = -\frac{\cos ax}{c} + c$. (উত্তর)

 $2. \int \frac{1}{x} dx =$ কত?

সমাধান : $\int \frac{1}{x} dx = \log x + c$ (উত্তর)

3. $\int \frac{dx}{\sqrt{1-x^2}} = \overline{\Phi}$

সমাধান: $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + c$ (উত্তর)

4. $\int uv \, dx = \overline{\Phi}$ ত?

সমাধান: $\int uv \ dx = u \int v \ dx - \int \{\frac{d}{dx} u \int v \ dx\} \ dx$ (উত্তর)

5. $\int \sec^2 x \, dx = \overline{\Phi}$

সমান : $\int \sec^2 x \, dx = \tan x + c$ (উত্তর)

6. $\int e^{ax} dx = \overline{\Phi}$?

সমান : $\int \sec^2 x \, dx = \frac{1}{a} e^{ax} + c$ (উত্তর)

7. $\int \frac{dx}{a^2 + x^2} =$ কত?

সমাধান : $\int \frac{dx}{a^2 + r^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$ (উত্তর) [বাকাশিবো: ১৫T,'২০]

[বাকাশিবো : ২০R]

[বাকাশিবো: ১৬,'১৯,'২২]

[বাকাশিবো: ১৭,'২১]

[বাকাশিবো: ০২,'১৭]

[বাকাশিবো : ১৫R,']

[বাকাশিবো : ৯৬,'৯৭,'০১,']

সংক্ষিপ্ত প্রশ্নউত্তর

Type: 1

$$2sinA.cosB = sin(A + B) + sin(A - B)$$

$$2cosA.sinB = sin(A + B) - sin(A - B)$$

$$2cosA.cosB = cos(A + B) + cos(A - B)$$

$$2sinA.sinB = cos(A - B) - cos(A + B)$$

1. $\int sin5x. sin3xdx$

সমাধান : =
$$\int \frac{1}{2} \cdot 2 \sin 5x \cdot \sin 3x \, dx = \frac{1}{2} \int (\cos 2x - \cos 8x) \, dx$$

= $\frac{1}{2} \int \cos 2x \, dx - \frac{1}{2} \int \cos 8x \, dx = \frac{1}{2} \cdot \frac{\sin 2x}{2} - \frac{1}{2} \cdot \frac{\sin 8x}{8} + C$
= $\frac{1}{4} \sin 2x - \frac{1}{16} \sin 8x + c$ (উত্তর)

2. $\int 5\cos 4x \cdot \sin 3x dx$

সমাধান :
$$5 \int cos4x. sin3x dx = 5 \int \frac{1}{2}.2cos4x. sin3x dx = \frac{5}{2} \int (sin7x - xinx) dx$$

$$= \frac{5}{2} \int sin7x dx - \frac{5}{2} \int sinx dx = \frac{5}{2} \int -\frac{cos7x}{7} - \frac{5}{2} (-cosx) + C$$

$$= \frac{5}{2} (cosx - cos7x)$$
 (উত্তর)

$$1 - cos2x = 2 sin^2 x$$
$$1 + cos2x = 2 cos^2 x$$

(i) $\int \sin^4 x \, dx$

সমাধান : =
$$\int (\sin^2 x)^2 dx = \frac{1}{4} \int (2xin^2x)^2 dx = \frac{1}{4} \int 1 - \cos 2x)^2 dx$$

= $\frac{1}{4} \int (1 - 2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \int 1 dx - \frac{1}{4} \int 2\cos 2x dx + \frac{1}{4} \int \cos^2 2x dx$
= $\frac{1}{4} \cdot x - \frac{1}{4} \cdot 2\frac{\sin 2x}{2} + \frac{1}{4} \int \frac{1}{2} \cdot 2\cos^2 2x dx = \frac{1}{4}x - \frac{1}{4}\sin 2x + \frac{1}{8} \int 1 + \cos 4x dx$
= $\frac{1}{4}x - \frac{1}{4}\sin 2x + \frac{1}{8} \int 1 dx + \frac{1}{8} \int \cos 4x dx = \frac{1}{4}x - \frac{1}{4}\sin 2x + \frac{1}{8}x + \frac{1}{8}\cdot \frac{\sin 4x}{4} + C$
= $\frac{3}{8}x - \frac{1}{4}\cdot \sin 2x + \frac{1}{32}\sin 4x + c = \frac{1}{4}\left(\frac{3x}{2} - \sin 2x + \frac{1}{8}\sin 4x\right) + C$ (উওৱ)

২য় পর্ব

(ii) $\cos^4 x \, dx$

সমাধান :
$$\int (\cos^2 x)^2 dx = \frac{1}{4} \int (2\cos^2 x)^2 dx = \frac{1}{4} \int (1 + \cos 2x)^2 dx$$
$$= \frac{1}{4} \int (1 + 2\cos 2x + \cos^2 2x) dx = \frac{1}{4} \left[\int 1 dx + \int 2\cos 2x dx + \int \cos^2 2x dx \right]$$
$$= \frac{1}{4} \left[x + 2 \cdot \frac{\sin 2x}{2} + \frac{1}{2} \int 2 \cos^2 2x dx \right] = \frac{1}{4} \left[x + \sin^2 x + \frac{1}{2} \int (1 + \cos 4x) dx \right]$$
$$= \frac{1}{4} \left[x + \sin 2x + \frac{1}{2} \int 1 dx + \frac{1}{2} \int \cos 4x dx \right] = \frac{1}{4} \left[x + \sin 2x + \frac{1}{2} x + \frac{1}{2} \cdot \frac{\cos 4x}{4} \right] + C$$
$$= \frac{1}{4} \left[\frac{3x}{2} + \sin 2x + \frac{\cos 4x}{8} \right] + C \quad (\ensuremath{\scalebox{\sca$$

Type: 3

(i)
$$\int \frac{\cot(\cos^{-1}x)}{\sqrt{1-x^2}} dx$$

সমাধান : দেওয়া আছে, $\int rac{\cot(\cos^{-1}x)}{\sqrt{1-x^2}}.\,dx$

$$= -\int \cot z \, dz = -\log \sin z + c = -\log \sin(\cos^{-1} x) + C$$

ধরি,
$$z = \cos^{-1} x$$

$$\Rightarrow \frac{dz}{dx} = -\frac{1}{\sqrt{1-x^2}}$$

$$\therefore \frac{1}{\sqrt{1-x^2}} dx = -dz$$

(ii)
$$\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx$$

সমাধান:
$$\int \frac{1}{\cos^2(xe^x)} \cdot e^x (1+x) dx$$
$$= \int \frac{1}{\cos^2 z} \cdot dz = \int \sec^2 z \, dx$$
$$= tanz + c$$
$$= tan(xe^x) + C \quad (উত্তর)$$

ধরি,
$$xe^x = z$$

$$\Rightarrow xe^x + e^x = \frac{dz}{dx}$$

 $\int \sec^2 x \, dx = tanx + c$ $\int \cot x \, dx = log sinx + c$

$$\Rightarrow e^x(1+x) = \frac{dz}{dx}$$

$$\therefore e^x(1+x)dx = dz$$

Type: 4

(i)
$$\int \frac{tanx}{\log(cosx)} dx$$

সমাধান : =
$$\int \frac{1}{\log(\cos x)} \cdot \tan x \, dx$$

= $-\int \frac{1}{z} \cdot dz$
= $-\log z + c$
= $-\log(\log \cos x) + C$ (উত্তর)

ধরি,
$$\log(\cos x) = z$$

$$\Rightarrow \frac{1}{\cos x} \left(-\sin x \right) = \frac{dz}{dx}$$

$$\sin x \qquad dz$$

$$\Rightarrow \frac{\sin x}{\cos x} = -\frac{dz}{dx}$$

$$\Rightarrow \frac{\sin x}{\cos x}$$
. $dx = -dz$

$$\therefore tanxdx = -dx$$

Type: 5

$$\int uvdx = u \int vdx - \int \left\{ \frac{d}{dx} u \int vdx \right\} dx$$

(i) $\int e^x \cos x \, dx$

সমাধান : ধরি,
$$I = \int e^x \cos x \ dx$$

$$\Rightarrow I = \cos x \int e^x dx - \int \left\{ \frac{d}{dx} \cos x \int e^x dx \right\} dx$$

$$\Rightarrow I = \cos x \cdot e^x + \int \sin x \cdot e^x dx$$

$$\Rightarrow I = \cos x \cdot e^x + \sin x \int e^x dx - \int \{ \frac{d}{dx} \sin x \int e^x dx \} dx$$

$$\Rightarrow I = \cos x \cdot e^x + \sin x \cdot e^x - \int \cos x \cdot e^x dx$$

$$\Rightarrow I = e^x(\cos x + \sin x) - I$$

$$\Rightarrow I + I = e^x(cosx + sinx) + C$$

$$\Rightarrow 2I = e^x(\cos x + \sin x) + C$$

$$\Rightarrow I = \frac{1}{2}e^{x}(\sin x + \cos x) + C \qquad (উত্তর)$$

নির্দিষ্ট ও যোজিতফল

বোর্ড প্রশ্নাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)	
বিষয়	পृष्ठी नः
সূত্রাবলী ও শর্টকার্ট টেকনিক	
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি	
❖ সংক্ষিপ্ত প্রশ্নাবলি	
❖ রচনামূলক প্রশ্লাবলি	

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪			১টি
২০২৩			১টি
২০২২	১টি		১টি

"যে সময় হারিয়ে গেছে তাকে ফিরিয়ে আনা অসম্ভব। কিন্তু তুমি চাইলে যে সময় সামনে আসছে, তাকে সুন্দর করতে পারো।"

অতিসংক্ষিপ্ত প্রশ্নউত্তর

1.
$$\int_{1}^{e^2} \frac{dx}{x} = \overline{\Phi}$$

সমাধান:
$$\int_1^{e^2} \frac{dx}{x} = [logx]_1^{e^2} = loge^2 - loge - 0 = 2.1 = 2$$
 (উত্তর)

2.
$$\int_{h}^{a} \frac{dx}{x} = \overline{\Phi}$$

সমাধান:
$$\int_b^a \frac{dx}{x} = [\log x]_b^a = \log a - \log b = \log \left(\frac{a}{b}\right)$$
 (উত্তর)

3.
$$\int_0^{\sqrt{3}} \frac{dx}{1+x^2} = \overline{\Phi}$$

সমাধান :
$$\int_0^{\sqrt{3}} \frac{dx}{1+x^2} = \left[\tan^{-1} x\right]_0^{\sqrt{3}} = \tan^{-1} \sqrt{3} - \tan^{-1} 0 = \frac{\pi}{3} \qquad (উত্তর)$$

4.
$$\int_1^2 x^4 dx =$$
 এর মান নির্ণয় কর।

সমাধান :
$$\int_1^2 x^4 dx = \left[\frac{x^{4+1}}{4+1}\right]_1^2 = \left[\frac{x^2}{5}\right]_1^2 = \left(\frac{2^5}{5} - \frac{1}{5}\right) = \frac{32}{5} - \frac{1}{5} = \frac{32-1}{5} = \frac{31}{5}$$
 (উত্তর)

5.
$$\int_0^a \frac{dx}{a^2 + x^2}$$
 এর মান কত?

সমাধান :
$$\int_0^a \frac{dx}{a^2 + x^2} = \left[\frac{1}{a} \tan^{-1} \frac{x}{a}\right]_0^a$$
$$= \frac{1}{a} \left(\tan^{-1} \frac{a}{a} - \tan^{-1} 0\right) = \frac{1}{a} (\tan^{-1} 1 - \tan^{-1} 0) = \frac{1}{a} \tan^{-1} \tan \frac{\pi}{4} - 0 = \frac{\pi}{4a}$$

সংক্ষিপ্ত প্রশ্নউত্তর

$$\Im \int_0^{\frac{\pi}{2}} (1 + \cos x)^2 \sin x dx$$

নমাধান	
$\int_{0}^{\frac{\pi}{2}} (1 + \cos x)^{2} \sin x dx$	
$= -\int_0^1 z^2 dz = \left[\frac{z^2 + 1}{2 + 1} \right]_2^1$	
$= -\left[\frac{z^3}{3}\right] = -\frac{1}{3}\left[(1)^3 - (2)^3\right]$	
$= -\frac{1}{3}[1-8] = -\frac{1}{3}(-7)$	
$=\frac{7}{3}$ (Ans)	

$$1 + cosx = z$$

$$1 + \cos x = z$$
$$\Rightarrow -\sin x \, dx = dz$$

$$\therefore \sin x \, dx = dz$$

x	0	$\frac{\pi}{2}$
Z	2	1

২য় পর্ব

$2 \mid \int_0^{\frac{\pi}{4}} \cos x \sin^3 x \, dx$

সমাধান:
$$\frac{\pi}{\int_{0}^{\frac{\pi}{4}} \cos x \sin^{3} x \, dx}$$

$$= \int_{0}^{\frac{\pi}{4}} \sin^{3} x \cdot \cos x dx = \int_{0}^{\frac{1}{\sqrt{2}}} x^{3} \, dz$$

$$= \left[\frac{z^{4}}{4}\right]_{0}^{\frac{1}{\sqrt{2}}} = \frac{\left(\frac{1}{\sqrt{2}}\right)^{4}}{4} - 0 = \frac{\frac{1}{4}}{4}$$

$$= \frac{1 \cdot 1}{4} = \frac{1}{16} \quad (ans)$$

 $\sin x = z$

$$\therefore \cos x \, dx = dz$$

	**-	
x	0	$\frac{\pi}{4}$
Z	0	$\frac{1}{\sqrt{2}}$

$3 \int_0^{\pi} \sqrt[3]{1 - \cos x} \cdot \sin x \, dx$

ત્રમાંત્રાન:	
$\int_{0}^{\pi} \sqrt[3]{1 - \cos x} \cdot \sin x dx$	۶
\mathcal{C}^2 \mathcal{C}^2 1	1
$=3\int_{0}^{2}\sqrt{z}dz=3\int_{0}^{2}z^{\frac{1}{2}}dz$	
$= 3\left[\frac{z^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_0^2 = 3\left[\frac{z^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^2$	
$= 3\left(\frac{2^{\frac{3}{2}}}{\frac{3}{2}} - 0\right) = 3 \times 2^{\frac{3}{2}} \times \frac{2}{3} = 2.2$	<u>3</u>
$= 2(\sqrt{2})^3 = 2.2\sqrt{2} = 4\sqrt{2} $ (A)	ns)

ধরি,

$$1 - \cos x = z$$

$$\therefore \sin x \, dx = dz$$

х	0	π
Z	0	2

$8 \mid \int_0^{\frac{\pi}{4}} \tan^2 x. \, sac^2 x \, dx$

স্মাধান: $\frac{\pi}{\frac{\pi}{4}}$

$$\overline{\int_0^{\frac{\pi}{4}} \tan^2 x \cdot sac^2 x \, dx}$$

$$= \int_0^1 z^2 \, dz = \left[\frac{z^{2+1}}{2+1} \right]_0^1$$

$$= \left[\frac{z^3}{3} \right]_0^1 = \frac{1}{3} [(1)^3 - (0)^3] = \frac{1}{3} (Ans)$$

ধরি

tanx = z

 $\therefore \sec^2 x \, dx = dz$

х	0	$\frac{\pi}{4}$
Z	0	1

$C \mid \int_0^{\frac{\pi}{2}} \cos 5x \cdot \sin x \, dx$

সমাধান:
$$\int_{0}^{\frac{\pi}{2}} \cos 5x \cdot \sin x \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} 2\cos 5x \cdot \sin x \, dx$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\sin 6x - \sin 4x) dx = \frac{1}{2} \left[\frac{-\cos 6x}{6} + \frac{\cos 4x}{4} \right]_{0}^{\frac{\pi}{2}}$$

$$= -\frac{1}{12} [\cos^{3} \pi - \cos 0] \frac{1}{8} [\cos 2\pi - \cos 0]$$

$$= -\frac{1}{2} [-1 - 1] + \frac{1}{8} [1 - 1] = \frac{1}{6} \qquad (Ans)$$

$\mathfrak{G} \mid \int_0^\pi \sin^2 x \, dx$

সমাধান:

$$\int_0^{\pi} \sin^2 x \, dx = \frac{1}{2} \int_0^{\pi} 2 \sin^2 x \, dx$$

$$= \frac{1}{2} \int_0^{\pi} (1 - \cos 2x) \, dx = \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_0^{\pi}$$

$$= \frac{1}{2} \left[\pi - 0 - \frac{1}{2} (\sin 2\pi - \sin 0) \right]_0^{\pi}$$

$$= \frac{\pi}{2} \quad (Ans)$$

$$9 \cdot \int_0^1 x^3 \sqrt{1 + 3x^4} \, dx$$

সমাধান:

$$\int_{0}^{1} x^{3} \sqrt{1 + 3x^{4}} \, dx$$

$$= \int_{0}^{1} \sqrt{1 + 3x^{4}} \, x^{3} dx = \frac{1}{12} \int_{1}^{4} \sqrt{z} \, dz$$

$$= \frac{1}{12} \left[\frac{z^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{4} = \frac{1}{12} \left[\frac{4^{\frac{3}{2}}}{\frac{3}{2}} - \frac{1^{\frac{3}{2}}}{\frac{3}{2}} \right]$$

ধরি.

$$1 + 3x^4 = z$$

$$\Rightarrow 4.3x^3. dx = dz$$

$$\Rightarrow 12x^3. dx = dz$$

$$\therefore x^3 dx = \frac{1}{12} dz$$

х	0	1
Z	1	4

$$= \frac{1}{12} \left(\frac{8}{\frac{3}{2}} - \frac{1}{\frac{3}{2}} \right) = \frac{1}{12} \left(\frac{16}{3} - \frac{2}{3} \right)$$
$$= \frac{1}{12} \left(\frac{16 - 2}{3} \right) = \frac{1}{12} \times \frac{14}{3} = \frac{7}{8}$$

$$b \, \, | \, \int_0^1 \frac{\left(\tan^{-1} x\right)^2}{1-x^2} \, dx$$

$$\int_{0}^{1} \frac{(\tan^{-1} x)^{2}}{1-x^{2}} dx = \int_{0}^{1} (\tan^{-1} x)^{2} \frac{1}{1-x^{2}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} x^{2} dz = \left[\frac{z^{2-1}}{2-1}\right]_{0}^{\frac{\pi}{4}}$$

$$= \left[\frac{z^{3}}{3}\right]_{0}^{\frac{\pi}{4}} = \frac{\left(\frac{\pi}{4}\right)^{3}}{3} - 0 = \frac{\frac{\pi^{3}}{64}}{3}$$

$$= \frac{\pi^{3}}{64} \times \frac{1}{3} = \frac{\pi^{3}}{192} \qquad (Ans)$$

$$\frac{x}{1+x^{2}} dx = dz$$

$$\frac{x}{1+x^{2}} dx = dz$$

$$\tan^{-1} x = z$$

$$\therefore \frac{1}{1+x^2} dx = dz$$

x	0	1
Z	1	4

$$\delta \cdot \int_0^1 \frac{(\sin^{-1} x)^2}{\sqrt{1-x^2}} dx$$

$$\int_{0}^{1} \frac{(\sin^{-1} x)^{2}}{\sqrt{1-x^{2}}} dx = \int_{0}^{1} (\sin^{-1} x)^{2} \frac{1}{\sqrt{1-x^{2}}} dx$$

$$= \int_{0}^{\frac{\pi}{4}} z dz = \left[\frac{z^{1+1}}{1+1} \right]_{0}^{\frac{\pi}{2}} = \left[\frac{z^{2}}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{\left(\frac{\pi}{2} \right)^{2}}{2} - 0 \quad \sin^{-1} x = z$$

$$= \frac{\frac{\pi^{2}}{4}}{2} = \frac{\pi^{2}}{4} \times \frac{1}{2} = \frac{\pi^{2}}{8} \quad (Ans)$$

$$\sin^{-1} r = 2$$

$$\therefore \frac{1}{\sqrt{1-x^2}} dx = dz$$

x	0	1
Z	0	π
		2

$$\mathbf{Sol} \int_{1}^{e^{-2}} \frac{dx}{x(1-\log x)}$$

$$\int_{1}^{e^{-2}} \frac{dx}{x(1 - \log x)}$$

$$\int_{1}^{e^{-2}} \frac{1}{1 - \log x} \cdot \frac{1}{x} dx = -\int_{1}^{3} \frac{1}{z} dz$$

$$1 - \log x = z$$

$$\therefore \frac{1}{x} dx = -dz$$

х	1	e^{-2}
Z	1	3

$$= -[\log_z]_1^3 = -(\log_3 - \log_1)$$

= -(\log_3 + 0) = -\log_3 (Ans)

$$33 + \int_{1}^{e^2} \frac{dx}{x(1 + \log x)}$$

সমাধান:

$$\int_{1}^{e^{2}} \frac{dx}{1 + \log x} = \int_{1}^{e^{2}} \frac{1}{1 + \log x} \cdot \frac{1}{x} dx$$
$$= \int_{1}^{3} \frac{1}{z} \cdot dz = [\log z]_{1}^{3} = \log_{3} - \log_{1}$$
$$= \log_{3} - 0 = \log_{3} \qquad (Ans)$$

$$\Im \left\{ \int_{1}^{e^2} \frac{dx}{x(1+\log x)^2} \right\}$$

সমাধান:

$$\int_{1}^{e^{2}} \frac{dx}{x(1+\log x)^{2}}$$

$$= \int_{1}^{e^{2}} \frac{dx}{x(1+\log x)^{2}} \cdot \frac{1}{x} dx = \int_{1}^{3} \frac{1}{z^{2}} \cdot dz \qquad 1 + \log x = z$$

$$= \left[\frac{z^{-2+1}}{-2+1}\right]_{1}^{3} = \left[\frac{Z^{-1}}{-1}\right]_{1}^{3} = \left[\frac{1}{z}\right]_{1}^{3} = -\left(\frac{1}{3}-1\right) \qquad \frac{x}{z} \qquad \frac{1}{z}$$

$$= -\left(\frac{1-3}{3}\right) = \frac{2}{3} \qquad (Ans)$$

Note Book :

$$1 - \log_e - 2 = z$$

$$\Rightarrow 1 + 2\log_e = z$$

$$\Rightarrow 1 + 2.1 = z$$

ধরি,
$$1 + \log x = z$$
$$\therefore \frac{1}{x} dx = dz$$
$$x \qquad 1 \qquad e^2$$

ধরি,
$$1 + \log x = z$$

$$\therefore \frac{1}{x} dx = dz$$

$$\boxed{ x \qquad 1 \qquad e^2 \\ z \qquad 1 \qquad 3}$$

১৩।
$$\int_0^{\frac{\pi}{2}} \frac{\cos^3 x dx}{\sqrt{\sin x}}$$
সমাধান:

$$\int_0^{\frac{\pi}{2}} \frac{\cos^3 x dx}{\sqrt{\sin x}} = \int_0^{\frac{\pi}{2}} \cos^3 x \frac{1}{\sqrt{\sin x}} dx$$

$$= \int_0^{\frac{\pi}{2}} \cos^2 x \frac{1}{\sqrt{\sin x}} \cos x dx = \int_0^{\frac{\pi}{2}} (1 - \sin^2 x) \frac{1}{\sqrt{\sin x}} \cos x dx$$

$$= \int_0^1 (1 - z^2) \frac{1}{\sqrt{z}} dz = \int_0^1 \frac{1 - z^2}{\sqrt{z}} dz$$

$$= \int_0^1 \frac{1}{\sqrt{z}} - \frac{z^2}{\sqrt{z}} dz \qquad [\because \cos^2 x = 1 - \sin^2 x]$$

$$\therefore \cos x \cdot dx = dz$$

$$\therefore \cos x \cdot dx = dz$$

$$= \int_0^1 z^{-\frac{1}{2}} dz - \int_0^1 z^{2-\frac{1}{2}} dz$$

$$= \left[\frac{z^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1 - \left[\frac{z^{\frac{5}{2}}}{\frac{5}{2}} \right]_0^1 = \frac{1}{\frac{1}{2}} - \frac{1}{\frac{5}{2}} = 2 - \frac{2}{5} = \frac{10-2}{5} = \frac{8}{5} \quad \text{(Ans.)}$$

14. =
$$\int_0^1 \frac{e^x dx}{e^{2x}+1}$$
সমাধান:-
$$= \int_0^1 \frac{e^x dx}{e^{2x}+1} = \int_0^1 \frac{e^x dx}{(e^x)^2 + 1}$$

$$= \int_0^e \frac{dz}{1+z^2} = [\tan^{-1} z]_1^e$$

$$= \tan^{-1} e - \tan^{-1} 1 = \tan^{-1} e - \frac{\pi}{4}$$

$$e^{x} = z$$

$$\therefore e^{x} dx = dz$$

$$x \mid 0 \mid 1$$

$$z \mid 1 \mid c$$

ধরি.

ধরি.

15.
$$\int_{0}^{1} \frac{\sin^{-1}x}{\sqrt{1-x^{2}}} dx$$

$$= \int_{0}^{1} \frac{\sin^{-1}x}{\sqrt{1-x^{2}}} dx = \int_{0}^{1} \sin^{-1}x \frac{1}{\sqrt{1-x^{2}}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} z dz = \left[\frac{z^{1+1}}{1+1}\right]_{0}^{\frac{\pi}{2}} = \left[\frac{z^{2}}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left[z^{2}\right]_{0}^{\frac{\pi}{2}}$$

 $=\frac{1}{2}\left\{\left(\frac{\pi}{2}\right)^2-0\right\}=\frac{\pi^2}{8}$ (Ans.)

$$\sin^{-1}x = z$$

$$\frac{1}{\sqrt{1-x^2}}dx = dz$$

$$x \quad 0 \quad 1$$

$$z \quad 0 \quad \frac{\pi}{2}$$

16.
$$\int_0^{\frac{\pi}{2}} \cos^2 x dx$$

সমাধান:-

$$\int_0^{\frac{\pi}{2}} \cos^2 x dx = \int_0^{\frac{\pi}{2}} \frac{1}{2} \cdot 2 \cos^2 x dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2x) dx$$
$$= \frac{1}{2} \left[x + \frac{\sin 2x}{2} \right]_0^{\frac{\pi}{2}} = \frac{1}{2} \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - 0 - \frac{1}{2} \sin 0 \right]$$
$$= \frac{1}{2} \left[\frac{\pi}{2} + 0 - 0 - 0 \right] = \frac{\pi}{4} \text{ (Ans.)}$$

17.
$$\int_0^1 \frac{dx}{\sqrt{4-3x^2}}$$

সমাধান:-

$$\int_{0}^{1} \frac{dx}{\sqrt{4 - 3x^{2}}} = \frac{1}{-2} \int_{0}^{1} \frac{-2x dx}{\sqrt{4 - x^{2}}} = -\frac{1}{2} \left[2\sqrt{4 - x^{2}} \right]_{0}^{1}$$
$$= -\left[\sqrt{4 - 1} - \sqrt{4 - 0} \right] = -\left[\sqrt{3} - 2 \right]$$
$$= 2 - \sqrt{3} \text{ (Ans.)}$$

20

ভেক্টর বীজগণিত

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
💠 অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশাবলি		
রচনামূলক প্রশ্নাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪	১টি	১টি	
২০২৩		১টি	১টি
২০২২	১টি	১টি	

"যে অজুহাত তৈরিতে দক্ষ সে সাধারণত কোন কাজে দক্ষ হয় না।"

এই অধ্যায়ের এর সূত্র

1. একক ভেক্টর
$$\, \hat{a} = rac{ec{A}}{|ec{A}|} \,$$

অতিসংক্ষিপ্ত প্রশ্নউত্তর

ভেক্টরের ত্রিভূজ সূত্রটি লেখ।

সমাধান : যদি কোনো ত্রিভূজের সন্নিহিত বাহু দুইটি একই দিকে দুইটি ভেক্টর রাশি নির্দেশ করে তবে ত্রিভুজের তৃতীয় বাহুটি বিপরীত দিকে ভেক্টর দুইটির লব্ধির মান ও দিক নির্দেশ করবে।

$$\Delta OAB$$
 এর ক্ষেত্রে : $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ বা, $\vec{R} = \vec{P} + \vec{Q}$

$$\vec{A}=2\hat{\mathbf{i}}-\hat{\mathbf{j}}+2\hat{\mathbf{k}}$$
 এর সমান্তরাল একক ভেক্টর নির্ণয়।

সমাধান: \vec{A} = $2\hat{i} - \hat{j} + 2\hat{k}$

$$\therefore A = |\vec{A}| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$$

$$\therefore$$
 নির্ণেয় সমান্তরাল একক ভেক্টর $= \frac{\vec{A}}{|\vec{A}|} = \frac{2}{3}\hat{\imath} - \frac{1}{3}\hat{\jmath} + \frac{2}{3}\hat{k}$ (উত্তর)

একক ভেক্টর কাকে বলে।

সমাধান : যে ভেক্টর রাশির পরমমান এক তাকে একক ভেক্টর বলা হয়। একক ভেক্টরকে সাধারণত \hat{a} দ্বারা প্রকাশ করা হয়। \hat{a} কে পড়া হয় a হ্যাট।

4. $4\hat{i} - 3\hat{j} + 5\hat{k}$ দিক রাশির মান কত?

সমাধান :
$$\left|4\hat{\imath}-3\hat{\jmath}+5\hat{k}\right|=\sqrt{4^2+(-3)^2+5^2}=\sqrt{16+9+25}=\sqrt{50}=\sqrt{25\times2}=5\sqrt{2}$$

 :: নির্ণেয় দিক কোসাইনসমূহ যথাক্রমে $\frac{4}{5\sqrt{2}},-\frac{3}{5\sqrt{2}},\frac{5}{5\sqrt{2}}$ (উত্তর)

5. नाल वा भृन्य एक्ट्रेंब कांक वर्ल।

সমাধান : যে ভেক্টর রাশির মান শূন্য তকে নাল বা শূন্য ভেক্টর বলা হয়। শূন্য ভেক্টরের আদিবিন্দু এবং শীর্ষবিন্দু একই।

সংক্ষিপ্ত প্রশ্নউত্তর

(১) $\overrightarrow{A}=2\hat{\imath}+4\hat{\jmath}-5\widehat{k}$, $\overrightarrow{B}=\hat{\imath}+2\hat{\jmath}+3\widehat{k}$ হলে \overrightarrow{A} ও \overrightarrow{B} এর লব্ধি ভেক্টরের সমান্তরাল একক ভেক্টর নির্ণয় কর?

সমাধান:

দেওয়া আছে.

$$\vec{A} = 2\hat{i} + 4\hat{j} - 5\hat{k}$$

$$\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\therefore \vec{A} + \vec{B} = 2\hat{i} + 4\hat{j} - 5\hat{k} + \hat{i} + 2\hat{j} + 3\hat{k}$$

$$= 3\hat{i} + 6\hat{j} - 2\hat{k}$$

$$\therefore |\vec{A} + \vec{B}| = \sqrt{(3)^2 + (6)^2 + (-2)^2}$$

$$= \sqrt{9 + 36 + 4}$$

$$= \sqrt{49} = 7$$

: নির্ণেয় একক ভেক্টর=
$$\frac{3\hat{\imath}+6\hat{\jmath}-2\hat{k}}{7}$$
 = $\frac{3}{7}\hat{\imath}+\frac{6}{7}\hat{\jmath}-\frac{2}{7}\hat{k}$

(২) P ও Q এর অবস্থান্তর ভেক্টর যথাক্রমে $2\hat{\imath}+\hat{\jmath}-2\hat{k}$ এবং $5\hat{\imath}-\hat{\jmath}+4\hat{k}$ হয় তবে \overrightarrow{PQ} এর মানকত?

সমাধান:

$$\overrightarrow{OP} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$$

এবং
$$\overrightarrow{OQ}$$
 = $5\hat{\imath} - \hat{\jmath} + 4\hat{k}$

$$\therefore \overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

$$= 5\hat{\imath} - \hat{\jmath} + 4\hat{k} - (2\hat{\imath} + \hat{\jmath} - 2\hat{k})$$

$$= 5\hat{\imath} - \hat{\jmath} + 4\hat{k} - 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$$

$$= 3\hat{\imath} - 2\hat{\jmath} + 6\hat{k}$$

$$|\overrightarrow{PQ}| = \sqrt{(3)^2 + (-2)^2 + (6)^2}$$

$$= \sqrt{9 + 4 + 36} = \sqrt{49}$$

$$= 7$$

২য় পর্ব

(৩) \overrightarrow{A} ও \overrightarrow{B} এর অবস্থান ভেক্টর যথাক্রমে $(1,\ 1,\ 1)$ ও $(2,\ 3,\ -2)$ হলে \overrightarrow{AB} ভেক্টর, এর মান ও দিক কোসাইনগুলো নির্ণয় কর ।

সমাধান:-

এখানে,
$$\overrightarrow{OA} = \hat{\imath} + \hat{\jmath} - \hat{k}$$
 $\overrightarrow{OB} = 2\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$
 $\overrightarrow{B} = \overrightarrow{OB} - \overrightarrow{OA}$

$$\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}
= 2\hat{\imath} + 3\hat{\jmath} - 2\hat{k} - (\hat{\imath} + \hat{\jmath} + \hat{k})
= 2\hat{\imath} + 3\hat{\jmath} - 2\hat{k} - \hat{\imath} - \hat{\jmath} - \hat{k}
= \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$$
(Ans)

$$= \hat{\imath} + 2\hat{\jmath} - 3\hat{k} \qquad (Ans)$$

$$\therefore |\overrightarrow{AB}| = \sqrt{(1)^2 + (2)^2 + (-3)^2}$$

$$= \sqrt{1 + 4 + 9}$$

$$= \sqrt{14} \qquad (Ans)$$

(4) $\overrightarrow{P}=2\hat{\imath}+2\hat{\jmath}-3\hat{k}$ ও $\overrightarrow{Q}=4\hat{\imath}+\hat{\jmath}-\hat{k}$ দিক রাশি দুটির লব্ধির সমান্তরাল একক ভেক্টর নির্ণয় কর।

সমাধান:-

দেওয়া আছে,

$$\overrightarrow{P} = 2\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$$

$$\overrightarrow{Q} = 4\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\therefore \overrightarrow{P} + \overrightarrow{Q} = 2\hat{\imath} + 2\hat{\jmath} - 3\hat{k} + 4\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$= 6\hat{\imath} + 3\hat{\jmath} - 2\hat{k}$$

$$\therefore |\overrightarrow{P} + \overrightarrow{Q}| = \sqrt{(6)^2 + (3)^2 + (-2)^2}$$

$$= \sqrt{36 + 9 + 4}$$

$$= \sqrt{49}$$

$$= 7$$

$$\therefore \hat{P}$$
 ও \hat{Q} এর ভেক্টর $=\frac{6\hat{\imath}+3\hat{\jmath}-2\hat{k}}{7}$ $=\frac{6}{7}\,\hat{\imath}+\frac{3}{7}\hat{\jmath}-\frac{2}{7}\hat{k}$ (Ans.)

২য় পর্ব

5. ভেক্টরের সাহায্যে প্রমাণ কর যে, বিন্দুদ্ম একই সরলরেখায় অবস্থান করে। সমাধান:-

ধরি,

$$\overrightarrow{OA} = \hat{\imath} + 2\hat{\jmath} - 4\hat{k}$$

 $\overrightarrow{OB} = 2\hat{\imath} + 5\hat{\jmath} - \hat{k}$
 $\overrightarrow{OC} = 3\hat{\imath} + 8\hat{\jmath} - 6\hat{k}$

$$\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}
= 2\hat{\imath} + 5\hat{\jmath} - \hat{k} - (\hat{\imath} + 2\hat{\jmath} + 4\hat{k}) = 2\hat{\imath} + 5\hat{\jmath} - \hat{k} - \hat{\imath} - 2\hat{\jmath} - 4\hat{k}
= \hat{\imath} + 3\hat{\jmath} - 5\hat{k}$$

যেহেতু
$$AB + BC = \sqrt{35} + \sqrt{35} = 2\sqrt{35} = AC$$

∴ বিন্দু তিনটি একই সরলরেখাই অবস্থান করবে। (Proved)

রচনামূলক প্রশ্ন

6. প্রমাণ কর যে, $2\hat{\imath}+\hat{\jmath}-\hat{k}$, $\hat{\imath}+3\hat{\jmath}-5\hat{k}$, $3\hat{\imath}+4\hat{\jmath}-4\hat{k}$ ভেক্টর তিনটি একটি সমকোণী ত্রিভূজ উৎপন্ন করে।

$$\overrightarrow{OA} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\overrightarrow{OB} = \hat{\imath} + 3\hat{\jmath} - 5\hat{k}$$

$$\overrightarrow{OC} = 3\hat{\imath} + 4\hat{\jmath} - 4\hat{k}$$

$$\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}
= \hat{i} + 3\hat{j} - 5\hat{k} - (2\hat{i} + \hat{j} + \hat{k})
= \hat{i} + 3\hat{j} - 5\hat{k} - 2\hat{i} - \hat{j} - \hat{k}
= \hat{i} + 2\hat{j} - 6\hat{k}$$

$$\therefore |\overrightarrow{AB}| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2}$$
$$= \sqrt{1 + 4} = 36 = \sqrt{41}$$

$$\therefore \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}
= 3\hat{\imath} + 4\hat{\jmath} - 4\hat{k} - (\hat{\imath} + 3\hat{\jmath} - 5\hat{k}) = 3\hat{\imath} - 4\hat{\jmath} - 4\hat{k} + 3\hat{\jmath} - \hat{\imath} + 5\hat{k})
= 2\hat{\imath} - \hat{\jmath} + \hat{k}$$

$$\therefore |\overrightarrow{BC}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6}$$

$$\therefore |\overrightarrow{AC}| = \sqrt{(1)^2 + (-3)^2 + (-5)^2} = \sqrt{1 + 9 + 25} = \sqrt{35}$$

$$AC^{2} + BC^{2} = (\sqrt{35})^{2} + (\sqrt{6})^{2}$$
$$= 35 + 6 = 41 = AB^{2}$$

: ভেক্টর তিনটি একটি সমকোণী ত্রিভূজ গঠন করে। (Proved)

\$8

ভেক্টর ডট গুণফল

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পৃষ্ঠা নং	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
❖ অতি সংক্ষিপ্ত প্রশ্নাবলি		
❖ সংক্ষিপ্ত প্রশ্নাবলি		
❖ রচনামূলক প্রশ্লাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪			
২০২৩		১টি	
२०२२			

"প্রয়োজনের চেয়ে বেশি কথা ঠেকাতে প্রকৃতির এক চমৎকার কৌশল হচ্ছে চুম্বন।"

এই অধ্যায়ের এর সূত্র

$$1. \overrightarrow{A} \cdot \overrightarrow{B} = AB \cos \theta$$

$$2.\,\hat{\imath}\cdot\hat{\jmath}=\hat{\jmath}\cdot\hat{\jmath}=\widehat{k}\cdot\widehat{k}=1$$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

 $1.\,2\hat{\imath}+5\hat{\jmath}-\hat{k}$ ও $2\hat{\jmath}+2\hat{k}$ ভেক্টর দুটির স্কেলার গুণ নির্ণয় কর।

সমাধান : (2i + 5j - k). (2j + 2k) = 0 + 10 - 2 = 8 (উত্তর)

 $2.~\underline{A}=3\underline{i}-4\underline{j}-\underline{k}$ এবং $\underline{B}=2\underline{i}+3j-6\underline{k}$ ভেক্টরদ্বয়ের অন্তরভুক্ত কোন নির্ণয় কর।

সমাধান:
$$\underline{A} \cdot \underline{B} = \left(3\underline{i} - 4\underline{j} - \underline{k}\right) \cdot \left(2\underline{i} + 3\underline{j} - 6\underline{k}\right) = 3.2 + (-4) \cdot 3 + (-1) \cdot (-6)$$
$$= 6 - 12 + 6 = 0$$

$$A = |\underline{A}| = \sqrt{(3)^2 + (-4)^2 + 9 - 1)^2} = \sqrt{26}$$

$$B = |\underline{B}| = \sqrt{(2)^2 + (3)^2 + (-6)^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7$$

ধরি, মধ্যবর্তী কোণ θ

$$\therefore \cos\theta = \frac{A.B}{AB} = \frac{0}{\sqrt{26.7}} = 0 = \cos 90^{\circ} \therefore \theta = 90^{\circ}$$
 (উত্তর)

 $oxed{3. \ A \otimes B}$ ভেক্টরদ্বয়ের মধ্যবর্তী কোন $oxed{90^0}$ হলে $oxed{A. B}$ মান কত হবে?

সমাধান: $\vec{A} \cdot \vec{B} = AB \cos 90^\circ = AB \cdot 0 = 0$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর

১। m এর কোন মানের জন্য $\overrightarrow{A}=m~\hat{i}-3m~\hat{j}+2~\hat{k}$ এবং $\overrightarrow{B}=m~\hat{i}-\hat{j}+\hat{k}$ ভেক্টর দুটি পরস্পর লম্ব হবে? (P-260)

সমাধান:-দেওয়া আছে,

$$\overrightarrow{A} = m \hat{i} - 3m \hat{j} + 2 \hat{k}$$

 $\overrightarrow{B} = m \hat{i} - \hat{i} + \hat{k}$

$$\overrightarrow{A} \cdot \overrightarrow{B} = 0$$

$$\Rightarrow (m \hat{i} - 3m \hat{j} + 2 \hat{k})(m \hat{i} - \hat{j} + \hat{k}) = 0$$

⇒
$$m^2 - 3m + 2 = 0$$

⇒ $m^2 - 2m - m + 2 = 0$
⇒ $m(m-2)-1(m-2)=0$
⇒ $(m-2)(m-1)=0$
হয়,
 $m-2=0$
⇒ $m=2$
∴ $m=1,2$ (Ans.)

২. a এর কোন মানের জন্য $\overrightarrow{A}=a\hat{\imath}-2\hat{\jmath}+\hat{k}$ এবং $\overrightarrow{B}=a\hat{\imath}-\hat{\jmath}+\hat{k}$ ভেক্টরদ্বয় পরস্পর লম্ব হবে?

সমাধান:-

দেওয়া আছে.

$$\overrightarrow{A} = a\hat{i} - 2\hat{j} + \hat{k}$$

$$\overrightarrow{B} = 2a\hat{i} - a\hat{j} + 4\hat{k}$$

$$\overrightarrow{A} \cdot \overrightarrow{B} = 0$$

$$\Rightarrow (a\hat{i} - 2\hat{j} + \hat{k}) \cdot (2a\hat{i} - a\hat{j} + 4\hat{k}) = 0$$

$$\Rightarrow 2a^2 - 2a - 4 = 0$$

$$\Rightarrow a^2 - a - 2 = 0$$

$$\Rightarrow a^2 - 2a + a - 2 = 0$$

$$\Rightarrow a(a - 2) + 1(a - 2) = 0$$

$$\Rightarrow (a - 2)(a + 1) = 0$$
হয়,
$$a - 2 = 0$$

$$\Rightarrow a = 2$$

৩. P এর মান কত হলে $P\hat{i}+2\hat{j}+\hat{k}$ এবং $2p\hat{i}+P\hat{j}-4\hat{k}$ ভেক্টরদ্বয় পরস্পর লম্ব হবে। (P-260) সমাধান:

ধরি,

$$\overrightarrow{A} = p\hat{i} - 2\hat{j} + \hat{k}$$

 $\overrightarrow{B} = 2p\hat{i} - p\hat{j} - 4\hat{k}$
 $\therefore \overrightarrow{A} \cdot \overrightarrow{B} = 0$

 \therefore a = -1,2 (Ans.)

⇒
$$(p \hat{i} - 2 \hat{j} + \hat{k}) \cdot (2p \hat{i} - p\hat{j} - 4\hat{k}) = 0$$

⇒ $2P^2 + 2p - 4 = 0$
⇒ $2(p^2 + p - 2) = 0$
⇒ $p^2 + p - 2 = 0$
⇒ $p^2 + 2p - p - 2 = 0$
⇒ $p(p + 2) - 1(p + 2) = 0$
⇒ $(p + 2)(p - 1) = 0$
 $(p + 2)(p - 1) = 0$
 $(p + 2)(p - 1) = 0$
⇒ $(p + 2)(p - 1) = 0$

8. $\overrightarrow{a}=\hat{i}+2\,\hat{j}-3\hat{k}$, $\overrightarrow{b}=4\hat{i}-\hat{j}+2\hat{k}$ এর মধ্যবর্তী কোণ নির্ণয় কর। সমাধান:-

দেওয়া আছে,

$$\overrightarrow{A} = \hat{\mathbf{i}} - 2\,\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$$
 $\overrightarrow{B} = 4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
 $\overrightarrow{A} \cdot \overrightarrow{B} = (\hat{\mathbf{i}} - 2\,\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) \cdot (4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}})$
 $= 4 + 2 - 6$
 $= 0$ যেহেতু, $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ সুতরাং মধ্যবর্তী কোণ = 90° (Ans.)

ভেক্টরের ক্রস গুণফল

বোর্ড প্রশাবলির বিশ্লেষণ (Board Questions Analysis)

🕮 এই অধ্যায়ের প্রধান সূচিপত্র (contnts)		
বিষয়	পृष्ठा नः	
সূত্রাবলী ও শর্টকার্ট টেকনিক		
💠 অতি সংক্ষিপ্ত প্রশ্নাবলি		
সংক্ষিপ্ত প্রশ্নাবলি		
রচনামূলক প্রশাবলি		

এই অধ্যায় থেকে বিগত পাঁচ বছরের ডিপ্লোমা ইন ইঞ্জিরিয়ারিং, ডিপ্লোমা ইন টেক্সটাইল, ডিপ্লোমা ইন এগ্রিকালচার, ডিপ্লোমা ইন মেরিন পরীক্ষায় মোট প্রশ্ন। নিচে 'Board Questions Analysis' অংশে এই অধ্যায় থেকে কোন সালে কোন বোর্ডে কতটি প্রশ্ন হয়েছে তা দেখানো হলো।

সাল বোর্ড	অতি সংক্ষিপ্ত	সংক্ষিপ্ত প্রশ্ন	রচনামূলক প্রশ্ন
২০২৪			
২০২৩			
২০২২			
২০২১			

''যেখানে লক্ষ্য নেই, সেখানে আশাও নেই।''

এই অধ্যায়ের এর সূত্র

$$1. \vec{A} \times \vec{B} = AB \sin\theta \times \hat{n}$$

$$2. \hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

3.
$$\hat{\imath} \times \hat{\jmath} = \hat{k}$$
, $\hat{\jmath} \times \hat{k} = \hat{\imath}$, $\hat{k} \times \hat{\imath} = \hat{\jmath}$

অতিসংক্ষিপ্ত প্রশ্নোত্তর

1. $\hat{\imath} imes (2\hat{\imath} - \hat{\jmath} + \hat{k})$ এর মান নির্ণয় কর।

[বাকাশিবো: ১৬]

সমাধান:
$$\hat{\mathbf{i}} \times (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 0 \\ 2 & -1 & 1 \end{vmatrix} = \hat{\mathbf{i}}(0+0) - \hat{\mathbf{j}}(1+0) + \hat{\mathbf{k}}(-1-0) = -\hat{\mathbf{j}} - \hat{\mathbf{k}}$$

2. $(2\hat{i} - 4\hat{k}) \times (\hat{i} + 2\hat{j})$

[বাকাশিবো: ১৪]

সমাধান :
$$(2\hat{\imath} - 4\hat{k}) \times (\hat{\imath} + 2\hat{\jmath}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & -4 \\ 1 & 2 & 0 \end{vmatrix}$$

$$= \hat{i}(0+8) - \hat{j}(0-4) + \hat{k}(4-0) = -8\vec{i} - 84\vec{j} + 4\vec{k}$$

(উত্তর)

3. $(\hat{\mathbf{j}} \times \hat{\mathbf{i}}) \times \hat{\mathbf{k}} = \overline{\mathbf{v}}$?

[বাকাশিবো: ১৪,'২২R]

সমাধান : $(\hat{j} \times \hat{i}) \times \hat{k} = -\hat{k} \times \hat{k} = -0 = 0$ (উত্তর)

$$4.\,\hat{j}\times(2\hat{\imath}+3\hat{\jmath}-4\hat{k}\,)=$$
কত?

[বাকাশিবো: ০৯,'১২]

সমাধান :
$$\vec{j} \times (2\vec{i} + 3\vec{j} - 4\vec{k}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 2 & 3 & -4 \end{vmatrix}$$

$$= \hat{i}(-4-0) - \hat{j}(0-0) + \hat{k}(0-2) = -4\vec{i} - 2\vec{k}$$

[বাকাশিবো: ০৬,'১৯]

সমাধান :
$$(\vec{\imath} \times \vec{\jmath})$$
. $\vec{k} = (\vec{k})$. $(\vec{\imath} \times \vec{\jmath}) = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = 0 - 0 + 1(1 - 0) = 1$ (উত্তর)

সংক্ষিপ্ত প্রশ্নোত্তর

 $1.\quad \vec{A}=4\hat{\imath}-\hat{\jmath}+3\hat{k}$ এবং $\vec{B}=-2\hat{\imath}+\hat{\jmath}-2\hat{k}$ হয়, তবে \vec{A} ও \vec{B} উভয়ের উপর লম্ব একক ভেক্টর নির্ণয় কর।

সমাধান :- দেওয়া আছে,

$$\vec{A} = 4\hat{\imath} - \hat{\jmath} + 3\hat{k}$$

$$\vec{B} = -2\hat{\imath} + \hat{\jmath} - 2\hat{k}$$

$$\therefore \vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & 3\hat{k} \\ 4 & -1 & 3 \\ -2 & 1 & -2 \end{vmatrix}$$

$$= \hat{\imath}(2 - 3) - \hat{\jmath}(-8 + 6) + \hat{k}(4 - 2) = -\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$$

$$\therefore |\vec{A} \times \vec{B}| = \sqrt{(-1)^2 + (2)^2 + (2)^2}$$

$$= \sqrt{1 + 4 + 4} = \sqrt{9} = 2$$

$$\therefore$$
 একক ভেক্টর $= \frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|} = \frac{-\hat{\imath} + 2\hat{\jmath} + 2\hat{k}}{3} = -\frac{1}{3}\hat{\imath} + \frac{2}{3}\hat{\jmath}\frac{2}{3}\hat{k}$

$$2.\ \overrightarrow{A}=2\hat{\imath}-3\hat{\jmath}-\widehat{k}$$
 এবং $\overrightarrow{B}=\hat{\imath}+4\hat{\jmath}-3\widehat{k}$ হলে $\overrightarrow{A} imes \overrightarrow{B}$ নির্ণয় কর।
সমাধান:-

দেওয়া আছে,

$$\vec{A} = 2\hat{\imath} - 3\hat{\jmath} - \hat{k}$$

$$\vec{B} = \hat{\imath} + 4\hat{\jmath} - 3\hat{k}$$

$$\therefore \vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -3 & -1 \\ 1 & 4 & 3 \end{vmatrix}$$

$$= \hat{\imath}(9+4) - \hat{\jmath}(6+1) + \hat{k}(8+3) = -5\hat{\imath} - 7\hat{\jmath} + 11\hat{k}$$

$$\vec{A}=\hat{\imath}-2\hat{\jmath}-3\hat{k}$$
 , $\vec{B}=2\hat{\imath}+\hat{\jmath}-\hat{k}$ এবং $\vec{C}=\hat{\imath}+3\hat{\jmath}-2\hat{k}$ হয় তবে, $(\vec{A} imes \vec{B}) imes \vec{C}$ নির্ণয় কর।

সমাধান:-

দেওয়া আছে,

$$\vec{A} = \hat{\imath} - 2\hat{\jmath} - 3\hat{k}$$

$$\vec{B} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\vec{C} = \hat{\imath} + 3\hat{\jmath} - 2\hat{k}$$

রচনামূলক প্রশোত্র

১. একটি সামন্তরিকের কর্ণ দুটো $4\hat{\imath}+2\hat{\jmath}+3\hat{k}$ ও $2\hat{\imath}-3\hat{\jmath}+\hat{k}$ হলে এর ক্ষেত্রফল কত? সমাধান:-

ধরি, ABCD সামান্তরিকের দুটি কর্ণ যথক্রমে $\overrightarrow{AC}=4\hat{\imath}+23\hat{\jmath}+3\hat{k}$ এবং $\overrightarrow{BD}=2\hat{\imath}-3\hat{\jmath}+\hat{k}$

$$\therefore \overrightarrow{AC} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 2 & 3 \\ 2 & -3 & 1 \end{vmatrix}$$

$$= \hat{i}(2+9) - \hat{j}(4-6) + \hat{k}(-12-4)$$

$$=11\hat{\imath}-2\hat{\jmath}-16\hat{k}$$

$$|\overrightarrow{AC} \times \overrightarrow{BD}| = \sqrt{(11)^2 + (2)^2 + (-16)^2}$$

$$= \sqrt{121 + 4 + 256}$$

$$= \sqrt{381}$$

$$\therefore$$
 সামান্তরিকের ক্ষেত্রফল = $\frac{1}{2} |\overrightarrow{AC}.\overrightarrow{BD}|$ $\frac{1}{2} \sqrt{381}$ বর্গ একক