Séries de fonctions numériques

e me s	ens	
Cours		
1	odes de convergence d'une série de fonctions	
	1 Convergence simple	
	2 Convergence uniforme	
	3 Convergence normale	
	4 Lien entre les différents modes de convergence	
2	égularité de la somme d'une série de fonctions	
	Transfert de continuité	
	Théorème de la double limite	
	Somme d'une série de fonctions de classe \mathcal{C}^1	
	Extension aux fonctions de classes \mathcal{C}^k	
3	tégration et séries de fonctions	
	Primitivation, intégration terme à terme sur un segment et convergence uniforme	
	Interversion \sum / \int sur un intervalle quelconque, dans le cas d'une série positive	
	Interversion $\sum_{j=1}^{n-1} f_j$ sur un intervalle quelconque	
xercio		
Exe	es et résultats classiques à connaître	
	a fonction ζ de Riemann	
	aire apparaître une équation différentielle	
	tudier les limites aux bornes de l'ensemble de définition	
	tudier la dérivabilité au bord de l'ensemble de définition	
Eve	es du CCINP	
Exe		
	analalamaa dantusinamant	•
	problemes a entrainement	

Je me souviens

- 1. Qu'est-ce qu'une série numérique? Quel est le lien entre suite et série?
- 2. Quelles sont les principales techniques d'étude d'une série numérique à termes positifs? alternées? de signe quelconque?
- $3. \ \ Qu'est-ce \ que \ la \ convergence \ simple \ d'une \ suite \ de \ fonctions \ ? \ la \ convergence \ uniforme \ ?$
- 4. Comment assurer la continuité de la limite simple d'une suite de fonctions ? et la dérivabilité ?

Dans ce chapitre, les fonctions considérées sont définies sur un intervalle I de \mathbb{R} et à valeurs réelles ou complexes $(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$.

1 Modes de convergence d'une série de fonctions

Dans ce chapitre, on considère des applications $f_n: I \to \mathbb{R}$ et on étudie la série de fonctions $\sum f_n$.

1.1 Convergence simple

<u>Définition</u>. Soit $\sum f_n$ une série de fonctions $I \to \mathbb{K}$. On dit que $\sum f_n$ converge simplement si et seulement si, pour tout $x \in I$ fixé, la série numérique $\sum f_n(x)$ converge. Dans ce cas, on définit :

$$S: I \to \mathbb{K}$$

$$x \mapsto \sum_{n=0}^{+\infty} f_n(x)$$

appelée somme de la série de fonctions $\sum f_n$.

Remarque.

- La convergence simple est la convergence point à point. On rédige toujours l'étude de la convergence simple en travaillant « à x fixé ».
- Pour $n \in \mathbb{N}$, on peut noter :

$$S_n: x \mapsto \sum_{k=0}^n f_k(x)$$

Alors $(S_n)_n$ la suite de fonctions des sommes partielles de $\sum f_n$, et la convergence simple de $\sum f_n$ est équivalente à la convergence simple de $(S_n)_n$.

• En cas de convergence simple sur I, on note :

$$R_n: x \mapsto \sum_{k=n+1}^{+\infty} f_k(x) = S(x) - S_n(x)$$

Alors la suite de fonctions $(R_n)_n$ converge simplement vers la fonction constante nulle sur I.

• On peut rencontrer des séries de fonctions qui sont indexées par $n \ge n_0$.

Il arrive que la convergence simple n'ait pas lieu sur I tout entier, mais sur une partie J de I. Dans ce cas, la somme de la série de fonction n'est définie que sur J, appelé **domaine de convergence simple** :

Proposition. La somme d'une série de fonction est définie là où la série de fonction converge simplement.

Remarque. L'étude de la convergence, à x fixé, de $\sum f_n(x)$, se fait en utilisant les outils du chapitre 52 : on travaille en général sur le terme général $f_n(x)$, que l'on essaye de comparer au terme général d'unes série numérique connue (Riemann, géométrique, etc.). Dans ce cas, x joue le rôle d'un paramètre sur lequel on peut être amené à discuter.

Exemple. Étudier la convergence simple de la série de fonctions $\sum f_n$ dans le cas où :

$$1. \ f_n(x) = x^n$$

4.
$$f_n(x) = (-1)^n \frac{e^{-nx^2}}{n}$$

$$2. f_n(x) = \frac{1}{n^x}$$

5.
$$f_n(x) = \frac{e^{-nx^2}}{n^2}$$

$$3. f_n(x) = \frac{e^{-nx^2}}{n}$$

6.
$$f_n(x) = \frac{x^n}{1 + x^{2n}}$$

1.2 Convergence uniforme

<u>Définition</u>. Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$. On dit que $\sum f_n$ converge uniformément sur I si et seulement si la suite de fonctions $(S_n)_n$ de ses sommes partielles converge uniformément sur I.

Remarque. On peut quantifier la définition par :

$$\forall \varepsilon > 0, \exists N \ t.q. \ \forall n \geqslant N, \ \forall x \in I, \ \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant \varepsilon$$

Proposition. La convergence uniforme d'une série de fonctions implique sa convergence simple.

Théorème.

 $\sum f_n$ converge uniformément sur I si et seulement si :

 $\begin{cases} \sum f_n \text{ converge simplement sur } I \\ (R_n)_n \text{ converge uniformément sur } I \text{ vers } 0 \end{cases}$

Exemple. Étudier la convergence uniforme de $\sum f_n$ sur l'intervalle précisé.

1.
$$f_n(x) = (-1)^n \frac{x^n}{n}$$
, $I = [0, 1]$.

3.
$$f_n(x) = \frac{(-1)^{n-1}}{n+x^2}, I = \mathbb{R}.$$

2. $f_n(x) = xe^{-nx^2}, I = \mathbb{R}.$

Proposition. Si $\sum f_n$ et $\sum g_n$ convergent uniformément sur I, et $\lambda, \mu \in \mathbb{K}$, alors $\sum (\lambda f_n + \mu g_n)$ converge uniformément sur I.

<u>Proposition.</u> Si la série de fonctions $\sum f_n$ converge uniformément sur I, alors la suite de fonctions $(f_n)_n$ converge uniformément vers 0 sur I.

Remarque. Il est difficile de démontrer la convergence uniforme sans calculer explicitement la somme S(x), sauf à avoir recours dans certains cas au TSSA.

1.3 Convergence normale

On introduit dans ce paragraphe un autre mode de convergence des séries de fonctions, plus « fort » que les précédents.

<u>Définition.</u> Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$. On dit que $\sum f_n$ converge normalement sur I si et seulement si :

$$\begin{cases} f_n \text{ est born\'ee sur } I \text{ pour tout } n \\ \sum ||f_n||_{\infty} \text{ converge} \end{cases}$$

Remarque.

- On peut donner une définition moins forte, en ne travaillant que pour $n \ge n_0$.
- Le premier point permet de garantir l'existence de $||f_n||_{\infty} = \sup\{|f_n(x)|, x \in I\}$
- Le second point est la convergence d'une série numérique.
- La convergence normale de $\sum f_n$, c'est la convergence de $\sum ||f_n||_{\infty}$.

Théorème.

Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$.

S'il existe une série numérique $\sum \alpha_n$ convergente et majorante, c'est-à-dire telle que :

$$\forall n, \forall x, |f_n(x)| \leq \alpha_n$$

où α_n est positive, indépendante de x et t.g. d'une série convergente, alors $\sum f_n$ converge normalement.

Exemple. Étudier la convergence normale sur tout segment de $\sum \frac{x^n}{n!}$.

Exemple. Étudier la convergence normale sur [0,1] de $\sum f_n$ où $f_n(x)=(-1)^n\frac{x^n}{n}$.

1.4 Lien entre les différents modes de convergence

Proposition. La convergence uniforme implique la convergence simple.

Proposition. La convergence normale implique la convergence uniforme.

2 Régularité de la somme d'une série de fonctions

2.1 Transfert de continuité

Théorème.

Soit $\sum f_n$ une série de fonctions définies sur I.

Si:

- $\sum f_n$ converge uniformément sur I (on note S sa somme),
- pour tout n, f_n est continue sur I,

alors:

 \circ S est continue sur I.

Raisonnement classique. Si $\sum f_n$ converge uniformément sur tout segment $[a,b] \subset I$, et si les f_n sont continues sur I, alors S est continue sur tout $[a,b] \subset I$ donc sur I.

Remarque. Ce résultat, qui exploite le caractère local de la continuité, s'adapte aussi lorsque la convergence uniforme est vérifiée sur une famille d'intervalles adaptés à la situation.

Exemple. On note $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$. Montrer que exp est continue sur \mathbb{R} .

2.2 Théorème de la double limite

Théorème de la double limite.

Soit $\sum f_n$ une série de fonctions définies sur I et a une extrémité de I (éventuellement infinie).

- $\sum f_n$ converge uniformément sur I (on note S sa somme),
- pour tout n, f_n admet une limite finie ℓ_n en a,

alors:

- la série $\sum \ell_n$ converge (on note ℓ sa somme),
- \circ la fonction S admet une limite en a,
- \circ cette limite est égale à ℓ .

Preuve. La démonstration est hors programme.

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des limites envisagées.

Exemple. Pour x > 0, on note $f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$. Déterminer la limite pour $x \to +\infty$ de f(x).

Exemple. On s'intéresse à la série $\sum x^n$, qui converge simplement sur]-1,1[. Utiliser le théorème de la double limite pour montrer que la convergence n'est pas uniforme sur]-1,1[.

2.3 Somme d'une série de fonctions de classe C^1

Théorème de dérivation terme à terme d'une série de fonctions.

Soit $\sum f_n$ une série de fonctions définies sur I.

Si

- $\sum f_n$ converge simplement sur I (on note S sa somme),
- pour tout n, f_n est de classe C^1 sur I,
- la série des dérivées $\sum f'_n$ converge uniformément sur I,

alors:

- S est de classe C^1 sur I,
- pour tout $x: S'(x) = \sum_{n=0}^{+\infty} f'_n(x)$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \frac{\mathrm{d}f_n}{\mathrm{d}x}(x)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des dérivées envisagées.

- La convergence uniforme de $\sum f_n$ n'entraı̂ne pas la dérivabilité de la somme.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I
 de ∑ f'_n par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles
 adaptés à la situation.

Remarque. Étudier les variations de la somme f d'une série de fonction, c'est d'abord comparer f(x) et f(y) pour x < y, ce qui peut souvent se faire en comparant les « sommandes », sans faire appel au théorème de classe C^1 , lourd à mettre en œuvre.

Exemple. Étudier la dérivabilité de la somme de la série $\sum \frac{1}{x^2 - n^2}$

Exemple. Montrer que $x \mapsto \sum_{n=1}^{+\infty} \frac{\mathrm{e}^{-nx^2}}{n^2}$ est dérivable sur \mathbb{R} .

2.4 Extension aux fonctions de classes C^k

Théorème.

Soit $\sum f_n$ une série de fonctions définie sur I, et $k \in \mathbb{N}^*$.

Si:

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $\sum f_n^{(j)}$ converge simplement sur I,
- la série $\sum f_n^{(k)}$ converge uniformément sur I,

alors:

• la somme
$$S = \sum_{n=0}^{+\infty} f_n$$
 est de classe C^k sur I

• pour tout
$$1 \leqslant j \leqslant k$$
, $S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}(x) = \sum_{n=0}^{+\infty} f_n^{(j)}(x)$$

Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $\sum f_n^{(k)}$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que S est de classe C^{∞} , on montre la convergence simple de $\sum f_n$ et la convergence uniforme de toutes les $\sum f_n^{(j)}$, pour $j \ge 1$.

Exemple. Montrer que $x \mapsto \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^4}$ est de classe \mathcal{C}^2 sur \mathbb{R} .

3 Intégration et séries de fonctions

3.1 Primitivation, intégration terme à terme sur un segment et convergence uniforme

Lemme. Soit $\sum f_n$ une série de fonctions continues sur un intervalle I à valeurs dans \mathbb{K} . Soit $a \in I$. Pour tout n, on note F_n la primitive de f_n qui s'annule en a. Si:

• $\sum f_n$ converge uniformément sur tout segment $K \subset I$ (on note S sa somme),

alors

- ∘ la série $\sum F_n$ converge uniformément sur tout segment $K\subset I$
- $\sum_{n=0}^{+\infty} F_n$ est la primitive de $\sum_{n=0}^{+\infty} f_n$ qui s'annule en a.

Théorème d'intégration terme à terme sur un segment par convergence uniforme.

Soit a < b, et $\sum f_n$ une série de fonctions définies sur un segment [a, b].

- $\sum f_n$ converge uniformément sur [a,b] (on note S sa somme),
- [a, b] est un segment,
- les f_n sont continues,

alors:

• la série
$$\sum \left(\int_a^b f_n(t) dt \right)$$
 converge,

$$\circ \sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b S(t) dt$$

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t) dt$$

Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries envisagées.

Exemple. Montrer que, pour tout $x \in \mathbb{R}$, $\sum_{n=0}^{+\infty} \frac{1}{n!} \int_0^x t^n e^{-t} dt = x$.

3.2 Interversion \sum / \int sur un intervalle quelconque, dans le cas d'une série positive

Théorème d'intégration terme à terme, cas positif.

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I. Si :

- $\sum f_n$ converge simplement sur I (on note S sa somme),
- les f_n et S sont continues par morceaux sur I
- les f_n sont intégrables sur I,

alors, dans $[0, +\infty] = [0, +\infty[\cup \{+\infty\} :$

$$\int_{I} S(t) dt = \sum_{n=0}^{+\infty} \int_{I} f_n(t) dt$$

Remarque.

• En particulier, l'intégrabilité de $\sum_{n=0}^{+\infty} f_n$ sur I équivaut à $\sum_{n=0}^{+\infty} \int_I f_n(t) dt < +\infty$.

3.3 Interversion \sum / \int sur un intervalle quelconque

Remarque. On verra plus tard le théorème suivant, après avoir défini l'intégration sur un intervalle quelconque.

Théorème d'intégration terme à terme.

Soit $\sum f_n$ une série de fonctions définies sur un intervalle I. Si :

- $\sum f_n$ converge simplement sur I (on note S sa somme),
- les f_n et S sont continues par morceaux sur I
- les f_n sont intégrables sur I,
- la série numérique $\sum \left(\int_{I} |f_n(t)| dt \right)$ converge,

alors:

 \circ la fonction S est intégrable sur I,

Exercices et résultats classiques à connaître

La fonction ζ de Riemann

54.1

On définit, lorsque c'est possible : $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

Montrer que ζ est une application définie et de classe \mathcal{C}^{∞} sur $]1, +\infty[$.

Faire apparaître une équation différentielle

54.2

(a) Déterminer le domaine de définition de la fonction f définie par :

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n+1}$$

- (b) Montrer que f est continue sur $[0, \infty[$ et de classe \mathcal{C}^1 sur $]0, +\infty[$.
- (c) Déterminer une équation différentielle simple dont f est solution et en déduire que f est de classe \mathcal{C}^1 sur $[0, +\infty[$.

Étudier les limites aux bornes de l'ensemble de définition

54.3

On considère :

$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n(n+x)}$$

- (a) Montrer que f est définie sur $]-1,+\infty[$.
- (b) Déterminer la limite de f en $+\infty$, puis un équivalent de f en $+\infty$.
- (c) Déterminer la limite de f en -1 à droite.

Étudier la dérivabilité au bord de l'ensemble de définition

54.4

Pour $x \in [-1, 1]$, on pose :

$$g(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$

- (a) Montrer que g est continue sur [-1,1], de classe C^1 sur]-1,1[.
- (b) Est-ce que g est dérivable en 1?

GNP 16

54.5

GNP 8.2

- 2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = \frac{(-1)^n e^{-nx}}{n}$.
 - (a) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geq 1} f_n$.
 - (b) Étudier la convergence uniforme sur $[0, +\infty]$ de la série de fonctions

54.6

GNP 14

- 1. Soit a et b deux réels donnés avec a < b. Soit (f_n) une suite de fonctions continues sur [a,b], à valeurs réelles. Démontrer que si la suite (f_n) converge uniformément sur [a,b] vers f, alors la suite $\left(\int_{a}^{b} f_{n}(x) dx\right)$ converge vers $\int_{a}^{b} f(x) dx$.
- 2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.
- 3. Démontrer que $\int_0^{\frac{1}{2}} \left(\sum_{n=1}^{+\infty} x^n\right) dx = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$.

54.7

GNP 15.12

Soit X une partie de \mathbb{R} ou \mathbb{C} .

- 1. Soit $\sum f_n$ une série de fonctions définies sur X à valeurs dans \mathbb{R} ou \mathbb{C} . Rappeler la définition de la convergence normale de $\sum f_n$ sur X, puis celle de la convergence uniforme de $\sum f_n$ sur X.
- 2. Démontrer que toute série de fonctions, à valeurs dans $\mathbb R$ ou $\mathbb C$, normalement convergente sur X est uniformément convergente sur X.

54.8

On considère la série de fonctions de terme général u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}.$$

On pose, lorsque la série converge, $S(x) = \sum_{n=0}^{+\infty} \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{n} \right].$

- 1. Démontrer que S est dérivable sur [0,1].
- 2. Calculer S'(1).

54.9

GNP 17

Soit $A \subset \mathbb{C}$ et (f_n) une suite de fonctions de A dans \mathbb{C} .

1. Démontrer l'implication :

(la série de fonctions
$$\sum f_n$$
 converge uniformément sur A) \downarrow

(la suite de fonctions (f_n) converge uniformément vers 0 sur A)

2. On pose: $\forall n \in \mathbb{N}, \forall x \in [0; +\infty[, f_n(x) = nx^2 e^{-x\sqrt{n}}]$ Prouver que $\sum f_n$ converge simplement sur $[0; +\infty[$. $\sum f_n$ converge-t-elle uniformément sur $[0; +\infty[$? Justifier.

54.10

GNP 18

54. Séries de fonctions numériques

On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{(-1)^n x^n}{n}$.

On considère la série de fonctions $\sum_{n=1}^{\infty} u_n$.

1. Étudier la convergence simple de cette série.

On note D l'ensemble des x où cette série converge et S(x) la somme de cette série pour $x \in D$.

2. (a) La fonction S est-elle continue sur D?

- (b) Étudier la convergence normale, puis la convergence uniforme de cette série sur D.
- (c) Étudier la convergence uniforme de cette série sur [0,1].

54.11

On considère, pour tout entier naturel n non nul, la fonction f_n définie sur \mathbb{R} par $f_n(x) = \frac{x}{1 + n^4 x^4}$.

1. (a) Prouver que $\sum_{n\geq 1} f_n$ converge simplement sur \mathbb{R} .

On pose alors : $\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} f_n(x).$

(b) Soit $(a, b) \in \mathbb{R}^2$ avec 0 < a < b.

 $\sum_{n\geqslant 1} f_n \text{ converge-t-elle normalement sur } [a,b] ? \text{ sur } [a,+\infty[\,?\,$

- (c) $\sum_{n\geqslant 1} f_n$ converge-t-elle normalement sur $[0,+\infty[\,?\,]$
- 2. Prouver que f est continue sur \mathbb{R}^* .
- 3. Déterminer $\lim_{x \to +\infty} f(x)$.

Exercices

54.12

On définit, lorsque c'est possible :

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

- (a) Justifier que le domaine de définition de ζ est $]1, +\infty[$.
- (b) En utilisant le théorème de la double limite en 1, montrer que la série de fonctions ne converge pas uniformément sur $]1, +\infty[$.

- (c) En utilisant une comparaison série-intégrale, trouver un équivalent simple de $\zeta(x)$ quand $x \to 1$.
- (d) Montrer que ζ a une limite en $+\infty$, et la calculer.

54.13

Étude des différents mode de convergence (simple, normale, uniforme) de $\sum nx^2 e^{-x\sqrt{n}}$.

54.14

Étudier les convergences simple, normale, uniforme pour les séries de fonctions :

(a)
$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{xe^{-nx}}{\ln n}$

(b)
$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{(-1)^n x}{x^2 + n}$

(c)
$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{nx}{1 + n^3x^2}$

54.15

Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)}\right)$.

- (a) Montrer que $\sum_{n\geq 1} u_n$ converge simplement sur $[0,+\infty[$.
- (b) Montrer que la convergence est uniforme sur $[0, +\infty[$.
- (c) La convergence est-elle normale sur $[0, +\infty[$?

54.16

Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = \frac{x}{n^2 + x^2}$.

(a) Montrer que la série $\sum_{n\geqslant 1}u_n$ converge simplement sur $[0,+\infty[$.

- (b) Montrer que la convergence est uniforme sur tout $[0, A] \subset [0, +\infty[$
- (c) Vérifier que, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=n+1}^{2n} \frac{n}{n^2+k^2} \geqslant \frac{1}{5}$$

(d) En déduire que la série $\sum_{n\geqslant 1}u_n$ ne converge pas uniformément sur $[0,+\infty[$.

54.17

Étudier les convergences simple, normale, uniforme pour les séries de fonctions :

(a)
$$f_n : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \frac{\sin(nx)}{n^2 + x^2}$

(b)
$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto n^2 x^n (1-x)^n$

(c)
$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{nx^2}{n^3 + x^2}$

54.18

On note, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $f_n(x) = ne^{-nx}$.

- (a) Étudier la convergence simple de $\sum f_n$.
- (b) Montrer que $\forall a > 0, \sum f_n$ converge uniformément sur $[a, +\infty[$.
- (c) Pour x > 0, calculer $\sum_{n=1}^{+\infty} f_n(x)$.

54.19

Montrer que $x \mapsto \sum_{n=0}^{+\infty} \frac{x^2}{e^{-2nx} + e^{3nx}}$ est définie et continue sur \mathbb{R} .

54.20

Pour x > 0, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}$.

- (a) Montrer que f est ainsi correctement définie et continue sur \mathbb{R}_{+}^{*} .
- (b) Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .
- (c) En admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, déterminer un équivalent de f(x) en $+\infty$ et en 0.

54.21

On note
$$f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$$
.

- (a) Déterminer le domaine de définition de f, puis la continuité de f sur ce domaine.
- (b) Montrer que f admet une limite en $+\infty$ et déterminer cette limite.
- (c) Déterminer un équivalent de f(x) lorsque $x \to 0$.

54.22

Pour $x \in \mathbb{R}$ et sous réserve de convergence, on pose $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.

- (a) Déterminer le domaine de définition de f.
- (b) Montrer que f est de classe \mathcal{C}^{∞} sur son domaine définition.
- (c) Donner un équivalent de f(x) au voisinage de 0.

54.23

On considère la série de fonctions de t.g. u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}$$

On pose, lorsque la série converge, $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

13/15

- (a) Démontrer que S est dérivable sur [0,1].
- (b) Calculer S'(1).

Indication : penser à décomposer une fraction rationnelle en éléments simples.

Petits problèmes d'entrainement

54.24

On définit, pour $x \in \mathbb{R}$, $\zeta(x) = \sum_{x=1}^{+\infty} \frac{1}{n^x}$.

- (a) Déterminer le domaine de définition de ζ .
- (b) Montrer que ζ est \mathcal{C}^{∞} sur $]1, +\infty[$ et exprimer $\zeta^{(k)}(x)$ sous la forme de somme d'une série.
- (c) Étudier les variations de ζ .
- (d) Montrer que $\zeta(x) \xrightarrow[x \to +\infty]{} 1$ et $\zeta(x) 1 \underset{x \to +\infty}{\sim} \frac{1}{2^x}$.
- (e) Montrer, pour x > 1:

$$\frac{1}{x-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}$$

En déduire le comportement de $\zeta(x)$ pour $x \stackrel{>}{\to} 1$.

(f) Dresser le tableau des variations de ζ et tracer sa courbe représentative.

54.25

Pour tout $t \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $u_n(t) = \frac{\operatorname{Arctan}(nt)}{n^2}$.

- (a) Justifier que la série $\sum_{n\geqslant 1}u_n$ converge simplement sur $\mathbb R.$ On note S sa somme.
- (b) Montrer que S est continue sur \mathbb{R} , impaire.

- (c) Déterminer la limite de S en $+\infty$ (on donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$).
- (d) Préciser les variations de S.
- (e) Soit $N \in \mathbb{N}^*$. Montrer qu'il existe $t_0 > 0$ tel que, pour tout $t \in [-t_0, t_0[\setminus \{0\}, \text{ on a } :$

$$\sum_{n=1}^{N} \frac{u_n(t)}{t} \ge \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$$

- (f) Étudier la dérivabilité de S en 0.
- (g) Tracer la courbe représentative de S.

54.26

Soit $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$ (quand cela a un sens).

Montrer que $S(x) \xrightarrow[x \to +\infty]{} 0$.

En utilisant la décroissance, à x>0 fixé, de $g:t\mapsto \frac{1}{t^2+x^2}$, montrer que $S(x) \underset{x\to +\infty}{\sim} \frac{\pi}{2x}$.

54.27

Pour tout $x \in \mathbb{R} \setminus \{-1\}$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = \frac{(-1)^{n-1}}{n} \frac{x^n}{1+x^n}$. Sous réserve de convergence, on pose $f(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- (a) Déterminer le domaine définition de f.
- (b) Montrer que pour tout x non nul de D_f :

$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} - f\left(\frac{1}{x}\right)$$

(c) Pour tout $a \in [0,1[$, montrer que $\sum_{n\geqslant 1} u_n$ converge normalement sur [-a,a]. En déduire que f est continue sur $\mathbb{R} \setminus \{-1,1\}$.

(d) Montrer que f est continue en 1.

54.28

On note, pour $n \in \mathbb{N}^*$:

$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

$$x \mapsto \frac{\ln(n+x)}{n^2}$$

- (a) Étudier la convergence simple de $\sum f_n$. On note S la somme.
- (b) Monter que S est de classe C^2 sur $[0, +\infty[$ et exprimer S'(x) et S''(x) sous la forme de sommes de séries.
- (c) En déduire que S est strictement croissante et concave sur $[0, +\infty[$.
- (d) Montrer, d'une façon plus simple, que S est strictement croissante sur $[0, +\infty[$.

54.29

Soit $(a_n)_n$ une suite réelle positive et décroissante. On note, pour $n\in\mathbb{N}^*$:

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $x \mapsto a_n x^n (1-x)$

- (a) Monter que $\sum f_n$ converge simplement sur [0,1].
- (b) Montrer que $\sum f_n$ converge normalement sur [0,1] si et seulement si $\sum \frac{a_n}{n}$ converge.
- (c) Montrer que $\sum f_n$ converge uniformément sur [0,1] si et seulement si $a_n \xrightarrow[n \to +\infty]{} 0$.

54.30

On rappelle que, pour tout $z \in \mathbb{C}$, $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$. On souhaite démontrer ici que :

$$\forall z \in \mathbb{C}, \ e^z = \lim_{p \to +\infty} \left(1 + \frac{z}{p}\right)^p$$

- (a) Démontrer le résultat lorsque $z \in \mathbb{R}$, en utilisant la fonction ln.
- (b) Pour $p \in \mathbb{N}^*$, rappeler le développement par le binôme de $\left(1 + \frac{z}{p}\right)^p$.

On fixe $z \in \mathbb{C}$ et on définit, pour $k \in \mathbb{N}$ et $x \in \mathbb{R}_+$:

$$f_k(x) = \begin{cases} \frac{x(x-1)\dots(x-k+1)}{k!} \frac{z^k}{x^k} & \text{si } x \geqslant k\\ 0 & \text{sinon} \end{cases}$$

- (c) Étudier la convergence de la série numérique $\sum f_k(p)$, pour chaque $p \in \mathbb{N}^*$ fixé.
- (d) Établir la convergence normale de $\sum f_k$ sur \mathbb{R}_+ , et conclure à l'aide du théorème de la double limite.

54.31

On note cotan la fonction $\frac{\cos}{\sin}$ définie sur $\mathbb{R} \setminus \pi \mathbb{Z}$. Pour tout $N \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \mathbb{Z}$, on définit :

$$S_N(x) = \sum_{n=-N}^{N} \frac{1}{x+n}$$

- (a) Montrer que $(S_N)_N$ converge simplement sur $\mathbb{R} \setminus \mathbb{Z}$, et que sa limite, notée S, est impaire et 1-périodique.
- (b) Justifier la continuité de S sur $\mathbb{R} \setminus \mathbb{Z}$ et montrer que :

$$\forall x \in \mathbb{R} \setminus \mathbb{Z}, \ S\left(\frac{x}{2}\right) + S\left(\frac{x+1}{2}\right) = 2S(x)$$

- (c) On pose $f(x) = \pi \cot(\pi x) S(x)$, pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$. Montrer que f vérifie la même équation fonctionnelle que S, et qu'elle est prolongeable par continuité sur \mathbb{R} . On note encore f ce prolongement.
- (d) Montrer qu'il existe $a \in]0,1[$ tel que :

$$f(a) = \max_{x \in \mathbb{R}} f(x)$$

et prouver que $f(a) = f\left(\frac{a}{2}\right)$.

(e) En déduire que, pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$:

$$\pi \cot(\pi x) = \frac{1}{x} + \sum_{n=1}^{+\infty} \left(\frac{1}{x+n} + \frac{1}{x-n} \right)$$

(f) En déduire la valeur de $\zeta(1) = \sum_{n=1}^{+\infty} \frac{1}{n^2}$.

54.32

On pose, pour $n \in \mathbb{N}^*$ et t > 0:

$$H_n = \sum_{k=1}^n \frac{1}{k} \text{ et } u_n(t) = \frac{t^n \ln(t)}{H_n}$$

et, sous réserve de convergence :

$$S(t) = \sum_{n=1}^{+\infty} u_n(t)$$

- (a) Déterminer le domaine de définition de S.
- (b) Étudier la convergence normale de $\sum u_n$ sur]0,1].
- (c) Étudier la continuite de S sur [0, 1].
- (d) Étudier la limite de S en 0 à droite.

54.33

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite bornée de réels. Pour $n\in\mathbb{N}^*$ et $x\in[0,1[$, on pose :

$$f_n(x) = a_n x^n (1 - x)$$

et, sous réserve de convergence :

$$S(x) = \sum_{n=1}^{+\infty} a_n x^n (1-x)$$

- (a) Étudier la convergence simple de $\sum f_n$ sur [0,1[.
- (b) Étudier la convergence normale de $\sum f_n$ sur [0, 1[.
- (c) Est-ce que S est continue sur [0, 1[.

(d) A-t-on:
$$\lim_{x \to 1^{-}} S(x) = \sum_{n=0}^{+\infty} \lim_{x \to 1^{-}} f_n(x)$$
?

54.34

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose :

$$u_n(x) = \frac{\ln(1 + n^2 x^2)}{n^2 \ln(1 + n)}$$

et, en cas de convergence, $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- (a) Déterminer le domaine de définition de S.
- (b) Montrer que S est de classe C^1 sur $]0, +\infty[$.
- (c) Montrer que S est de classe C^1 sur D.