

Bauman Moscow State University Th. Computer Science Dept.

Pushdown Machines: Visible and Not

Antonina Nepeivoda a nevod@mail.ru

Lecture Outline

Finite Automata is Enough?

Real-world machines are finite. Do finite models suffice?

Recall "elevator automaton" with a unique final state on the "ground floor", breaking if asked to reach an non-existing floor:

"up" and "dwn" instructions can be interpreted wrt a parentheses structure. That is, parsing string "((" we move to Lv2, and "(()())" returns us to Lv1.

Real-world nesting depth is limited (even in Lisp-like languages), and linear blow-up in state size seems satisfactory.

Until we decide to use several sorts of brackets...

Myhill-Nerode Congruence for Many-Sorted Brackets

Congruence Table

graciice labic								
							$)\rangle$	
	ε	+	-	-	-	-	_	-
	(_	+	-	-	-	-	-
	<	_	_	+	_	_	_	_
	((–	-	-	+	-	_	-
	((_	-	-	-	+	- -	-
	((_	-	-	-	-	+	-
	$\langle \langle$	_	-	-	-	-	-	+

- *N*-depth balanced sequences of 2 sorts of brackets $\Rightarrow 2^{N+1} 1$ states in a min NFA.
- *N*-depth balanced sequences of *K* sorts of brackets $\Rightarrow \frac{K^{N+1}-1}{K-1}$ states in a min <u>NFA</u>.

Finite automata cannot track nested structures efficiently.

Memoising Counters via Additional Memory

 Queue as a memory — can be considered as an additional tape with the write access, since it can be "re-rolled" to any wanted position with no memory loss.

• Stack as a memory — information given in Q_1 cannot be stored except in states when α is read. More restrictive, natural for tracking nested structures.

Natural Idea: Call-Return Counters

Input alphabet Σ is split into disjoint union $\Sigma_I \cup \Sigma_C \cup \Sigma_R$, where:

 Σ_I is internal alphabet (symbols not affecting the stack),

 Σ_C is call alphabet (symbols that push on the stack),

 Σ_R is return alphabet (symbols that pop from stack).

Balanced parentheses language:

- Σ_I all non-brackets;
- Σ_C all opening brackets;
- Σ_R all closing brackets.

With several sorts of brackets:

- state space does not increase;
- transitions set grows linearly.

(, PUSH Bp (, PUSH FP (, PUSH BA (, PUSH FA), POP F_P \rangle , POP F_A), POP B_P

 \rangle , POP B_A

For simplicity, henceforth we usually use an unique sort of brackets.

Handling Imbalance

Language of valid prefixes of balanced parentheses?

The final configuration can admit non-empty stack.

Language of valid suffixes of balanced parentheses?

Return symbols can be safely popped from the empty stack (\bot) .

Visibly Pushdown Automaton

Definition

A VPA is a tuple $\mathcal{A} = \langle Q, \Sigma_C \cup \Sigma_R \cup \Sigma_I, \Gamma, \delta, q_0, F \rangle$, where:

- Q is a finite set of states, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is the set of final states.
- Γ is a finite stack alphabet, containing bottom-of-stack symbol \bot ,
- δ is the transitions set, consisting of the three subsets:
 - call transitions: $\delta_C \subseteq Q \times \Sigma_C \times (\Gamma \setminus \{\bot\}) \times Q$,
 - return transitions: $\delta_R \subseteq Q \times \Sigma_R \times \Gamma \times Q$,
 - internal transitions: $\delta_I \subseteq Q \times \Sigma_I \times Q$.

The subsets are disjoint, since alphabets Σ_C , Σ_R , Σ_I are disjoint. The transitions depend on, and change, the stack, and VPA configuration is current state current stack

current state
$$q_i$$
, $a_k \dots a_n$, $\gamma_m \dots \gamma_1 \perp$ suffix to parse

Visibly Pushdown Automaton

The transitions depend on, and change, the stack, and VPA configuration is current state current stack

current state
$$\left(\overbrace{q_i}, \underbrace{a_k \dots a_n}, \overbrace{\gamma_m \dots \gamma_1 \bot} \right)$$
suffix to parse

Given such a configuration, next configurations are defined as follows:

- if $a_k \in \Sigma_C$ and $\langle q_i, a_k, \gamma_{m+1}, q_j \rangle \in \delta$, then $\langle a_{k+1} \dots a_n, \gamma_{m+1} \gamma_m \dots \gamma_1 \bot \rangle$. Note that the stack bottom \bot can never be pushed.
- if $a_k \in \Sigma_I$ and $\langle q_i, a_k, q_j \rangle \in \delta$, then $\langle a_{k+1} \dots a_n, q_j, \gamma_m \dots \gamma_1 \bot \rangle$. ε -transitions are forbidden, even for the internal case.
- if $a_k \in \Sigma_R$, and m > 0, and $\langle q_i, a_k, \gamma_m, q_j \rangle \in \delta$, then $\langle a_{k+1} \dots a_n, q_j, \gamma_{m-1} \dots \gamma_1 \perp \rangle$.
- if $a_k \in \Sigma_R$, and m = 0, and $\langle q_i, a_k, \bot, q_j \rangle \in \delta$, then $\langle a_{k+1} \ldots a_n, q_j, \bot \rangle$. I.e. the stack bottom is a fixed point of POP operation.

