

Introduction to Machine Learning Hands on Artificial Neural Networks

Marcin Świniarski

Plan of the attack

- Introduction to Machine Learning
 - Revolution of AI
 - ❖ Where we are?
 - ❖ Where we are heading?
 - What Machine Learning is?
 - Well known techniques in Machine Learning:
 - K-Nearest Neighbors(KNN)
 - Linear Regression
 - Classification and Regression Trees (CART)
 - How ANN works?
- Hands-on Artificial Neural Networks!
 - Churn Modelling
 - First working Neural Network, which is applicable in business

These people do not exist

Generative Adversarial Networks + NLP

Cat or dog?

How about this?

$$\sqrt[31]{519358139193191301^{192219}} * \int_{-4243}^{1284} e^{-24x} x^{14} dx$$

Why now?

86 milions of neurons

ResNet152 – 60 mln parameters, 152 layers

Frog vs Human

VS

16 mln neurons

86 mln neurons

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

If the efficiency of internal combustion engines increased in accordance with Moore's Law, modern cars would cover a distance of 200 billion kilometers on one tank!

What is the future?

Growth in introductory Al course enrollment (2012–2017) Source: University provided data

What Machine Learning is?

Meet Bartek, Gradient President!

Bartek loves listening to new songs!

He decides whether he likes the song or not on the basis of the song:

- Tempo
- Genre
- Intensity
- Gender of Voice

Let's take data from Bartek!

Let's take data from Bartek!

For example: Bass Astral x Igo

Let's take data from Bartek!

For example: Bass Astral x Igo

Bartek found new song(A) on Spotify: "Sex on fire"!

"Sex on fire" has:

- Medium tempo
- Soaring intensity

Now Bartek is listetning to new song "Better now" by Post Malone(B)

"Song B" has:

- Medium tempo
- Medium intensity

Will Bartek like this song or not?

Will Bartek like this song or not?

Thats where Machine Learning comes in!

Bartek will definitely like this song!

L1 norm in KNN

Different output of the algorithm!

K-Nearest Neighbors Algorithm(KNN)

K-nearest neighbors in 3 easy steps:

- Calculate the distance of a new data point to all other training data points(Euclidean or Manhatan etc.)
- Then select the K-nearest data points, where K can be any integer
- 3. Make predictions

Using <u>Breast Cancer Wisconsin Data Set</u> predict if tumor will be maligant or bengin

Linear Regression

Simple Linear Regression

Multivariable Linear Regression

$$Y(x_1, x_2, x_3) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_0$$

Linear Regression

Mean Squarred Error (MSE) Cost Function

$$MSE = \frac{1}{N} \sum_{i}^{n} (Y_i - y_i)^2$$

- N number of points
- Y_i predicted value
- y_i actual value

Linear Regression

How Linear Regression broke the history in baseball?

It just asks the series of questions!

Classification and Regression Trees

Input: age, gender, occupation, ...

Like the computer game X

Classification and Regression Trees

Random Forest Regression

How Artificial Neural Network works?

Machine Learning

Deep Learning

Types of learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Percepton

Types of activation functions

Sigmoid
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural Network

Artificial Neural Network

hidden layer 1 hidden layer 2

Loss function - how good our classifier is

Loss over the dataset is a sum of losses over samples divided by number of samples

$$L = \frac{1}{N} \sum_{i} L_{i}$$

Multiclass SVM Loss

$$L_i = \sum_{j
eq y_i} \max(0, f_j - f_{y_i} + 1)$$

Cross-entropy Loss

$$L_i = -\log\!\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$

How to optimize?

Gradient

$$rac{df(x)}{dx} = rac{f(x+h)-f(x)}{h}$$
 (bad, do not use) $rac{df(x)}{dx} = rac{f(x+h)-f(x-h)}{2h}$ (use instead)

$$abla f(p) = \left[egin{array}{c} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_n}(p) \end{array}
ight].$$

Chain rule

Optimizers

source: http://cs231n.github.io/neural-networks-3/#vis

Summary

Data preprocessing

Hyperparameters

source: http://cs231n.github.io/neural-networks-3/#vis

Overfitting How do you know your NN is overfitting?

How to prevent your NN from overfitting?

- Early Stopping
- L1 regularization
- L2 regularization
- Adding Dropout Layer

(b) After applying dropout.

Regularization

$$\lambda$$
 = regularization strength (hyperparameter)

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

In common use:

$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

 $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

L1 regularization

How does it look like in code?

- Early Stopping
- L1 regularization
- L2 regularization
- Adding Dropout Layer

Deep Learning Problems

- Deep learning requires a gigantic learning data set
- Most often it is not possible to transfer the obtained model
- The world is changing. Deep learning implies differently?
- Who is lower? Mr. Marek or his son who is going to the 3rd grade in primary school this year?
- Problem in accuracy. We can't trust neural networks 100%

Let's code!

Google Colab(click)

Questions?

