Laboratory 1 – Interior lights application

Interior lights interface

Exercise 1: Open and close one led

Close all leds button must clear all the leds when is pressed.

Complete the specific function to do this action.

button must open and close 1 LED when is pressed using **set_interior_lights** function.

Complete the specific function to do this action.

Exercise 2: Sweep all leds

button must give "One led at a time" effect when is pressed, start with the 0 led and open each led till the 3'th led.

HINT: Use **set4leds** in **sweep leds**(task of **sweep threads** thread).

Exercise 3: Control led brightness

Percentage spinbox is scaled between 0-100, this means the led brightness percentage. The progress bar is also scaled between 0-100 and must go through all the values until his value is equal with led brightness percentage, creating the fade event.

Progress bar value is stored in a variable. In the **valuechange** function is checked if it is bigger or less than spinbox value.

If progress bar value is **less** than spinbox value you should **fade out** from the actual brightness (meaning the progress bar percentage) to the next brightness (meaning the spin box percentage).

Change "change_pb_down_value" function to make this action work.

If progress bar value is bigger than spinbox value you should **fade in** from the actual brightness (meaning the progress bar percentage) to the next brightness (meaning the spin box percentage).

Change "change_pb_up_value" function to make this action work.

HINT: Use **ENTER key** after setting the value you want for the spinbox.

Exercise 4: KL control

KI is the abbreviation from 'klemme', which is the German term for connector/connection.

No KL – KL_s, KL_15, KL_50, KL_75 leds closed

KL_S – grey color (is the ignition switch position #1 - accessory)

KL 15 – green color (ignition switch position #2 – ON)

KL 50 – red color (ignition switch position #3 – start, CRANKING)

KL 75 – blue color (ENGINE RUNNING)

KL_list is a list that contain all the KL's. Using Next KL and Previous KL you have to go through all this list and set the following status for current KL:

no_KL = all 4 "eds closed

KL_S = just KL_S led open

KL_15 = KL_s, KL_15 leds open

KL 50 = KL s, KL 15, KL 50 leds open

KL_75 = KL_s, KL_15, KL_50, KL_75 leds open

Complete **KL lights** function to make this application work.

Description of existing functions:

set_bg_colors – make the application running like the real leds, opening interface leds.

prev_kl_function - when Previous KL button is pressed it changes the current KL to the previous KL.

next_kl_function – when Next KL button is pressed it changes the current KL to the next KL.

set_enable – set Previous KL button to disable when current KL is no_KL and set the "Next KL" button to disable when current KL is KL 75.

Exercise 5: Warning Lights

Warning Lights

When the button is pressed for the first time 4 LEDs will flash until the button is pressed again.

If **Right Signaling** or **Left Signaling** are on, they must be switched off during the operation of the **Warning Lights**, after which they must resume their functionality.

Complete the specific function to do this action.

Attention! exercises 6 uses **setWarningLights** to set the color of the LEDs

Exercise 6: Obstacle detection (Optional, BONUS)

Let's start talking about the widgets that we use to make this exercise running. In left of the "Left Door"/ "Right door" button there is a spin box. This spinbox is actually the **obstacle**. The spinbox is scaled between 0-100 (meaning the distance in cm that a door can open). Setting a value between 0-100 we fix a obstacle at the given value.

There are also 2 sliders, those sliders are also scaled between 0-100.

The "Left Door"/"Right door" button are making all the magic, because **after** we set the obstacle we just press one of these buttons to simulate an open door. Then a led has to **fade in** from 0 to the brightness equal with the **obstacle** value. When the obstacle value is reached, the led should change in a red colour and **stop fading in**.

In order to simulate closing of the door, you will use the sliders and **fade out** the leds.

HINT: We can only fade out from the sliders, the buttons are used to fade in.

Complete specific function to make the obstacle detection work.