Problem C. The Wave

Time limit 1500 ms

Code length Limit 50000 B

OS Linux

Read problems statements in <u>Mandarin Chinese</u>, <u>Russian</u>, <u>Vietnamese</u> and <u>Bengali</u> as well.

Chef is stuck in the wavey world of polynomials. You are given all N roots of a polynomial $P(x) = \prod_{i=1}^{N} (x - a_i)$. The roots are pairwise distinct integers, but they are not given in any particular order.

To help Chef escape, you should answer Q queries (numbered 1 through Q). For each valid i, in the i-th query, you are given an integer x_i and you have to determine whether $P(x_i)$ is positive, negative or 0.

Input

- The first line of the input contains two space-separated integers N and Q.
- The second line contains N space–separated integers a_1, a_2, \ldots, a_N .
- Q lines follow. For each valid i, the i-th of these lines contains a single integer x_i describing the i-th query.

Output

For each query, print a single line containing the string "POSITIVE", "NEGATIVE" or "0" (without quotes) describing the value of the polynomial for the i-th query.

Constraints

- $1 < N, Q < 2 \cdot 10^5$
- $|a_i| \leq 10^9$ for each valid i
- a_1, a_2, \ldots, a_N are pairwise distinct
- $|x_i| \leq 10^9$ for each valid i

Sample 1

Input	Output
4 6 1 3 5 100 -2 2 4 80 107 5	POSITIVE NEGATIVE POSITIVE NEGATIVE POSITIVE 0

The given polynomial is $(x-1) \cdot (x-3) \cdot (x-5) \cdot (x-100)$.

Query 1: x=-2. This means that $P(-2)=(-2-1)\cdot (-2-3)\cdot (-2-5)\cdot (-2-5)\cdot (-2-5)\cdot (-2-5)\cdot (-3)\cdot (-5)\cdot (-7)\cdot (-102)=10710>0$. Thus, the answer is POSITIVE .

Query 2: x=2. This means that $P(2)=(2-1)\cdot(2-3)\cdot(2-5)\cdot(2-100)=(1)\cdot(-1)\cdot(-3)\cdot(-98)=-294<0$. Thus, the answer is <code>NEGATIVE</code>.

Query 3: x=4. This means that $P(4)=(4-1)\cdot (4-3)\cdot (4-5)\cdot (4-100)=(3)\cdot (1)\cdot (-1)\cdot (-96)=288>0$. Thus, the answer is **POSITIVE** .

Query 6: x = 5. This means that $P(5) = (5-1) \cdot (5-3) \cdot (5-5) \cdot (5-100) = (4) \cdot (2) \cdot (0) \cdot (-95) = 0$. Thus, the answer is 0.