STATS300B – Lecture 8

Julia Palacios Scribed by Michael Howes

01/27/22

Contents

I Fisher information 1

1 Fisher information

Suppose we have a model $\mathcal{P} = \{P_{\theta} : \theta \in \Omega\}$ and $\Omega \subseteq \mathbb{R}^d$. Define $l_{\theta}(x) = \log(p_{\theta}(x))$ where p_{θ} is the density of P_{θ} . The Fisher information of θ is defined to be the matrix,

$$I(\theta) = \mathbb{E}[\nabla l_{\theta}(X)\nabla l_{\theta}(X)^T] = \operatorname{Var}_{\theta}(\nabla l_{\theta}(X)).$$

If integration and differentiation can be exchanged, then

$$I(\theta) = -\mathbb{E}[\nabla^2 l_{\theta}(X)].$$

Under appropriate assumptions about the regularity of the map $\theta \mapsto l_{\theta}$, then for all θ in the interior of Ω ,

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} \mathsf{N}_k(0, I(\theta)^{-1}),$$

where $\widehat{\theta}_n$ is the MLE from a sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P_{\theta}$. We can combine this result with the delta method. If $g: \Omega \to \mathbb{R}$ is differentiable at θ , then

$$\sqrt{n}(g(\widehat{\theta}_n) - g(\theta)) \stackrel{d}{\to} N(0, \nabla g(\theta)^T I(\theta)^{-1} \nabla g(\theta)).$$

And there is also a multivariate version, if $g:\Omega\to\mathbb{R}^p$, then

$$\sqrt{n}(g(\widehat{\theta}_n) - g(\theta)) \stackrel{d}{\to} \mathsf{N}_p\left(0, (Dg(\theta))^T I(\theta)^{-1} (Dg(\theta))\right).$$