3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24

25

2728

29

30

31 32 AARON MEURER*, ONDŘEJ ČERTÍK[†], AMIT KUMAR[‡], JASON K. MOORE[§], SARTAJ SINGH[¶], THILINA RATHNAYAKE^{||}, BRIAN E. GRANGER[#], RICHARD P. MULLER[†]†, FRANCESCO BONAZZI[‡]†, HARSH GUPTA¹, SHIVAM VATS², FREDRIK JOHANSSON³, FABIAN PEDREGOSA⁴, ASHUTOSH SABOO⁵, ISURU FERNANDO⁶, SUMITH⁷, AND ROBERT CIMRMAN⁸

1. Introduction. SymPy is a full featured computer algebra system (CAS) written in the Python programming language. It is a free and open source software, being licensed under the 3-clause BSD license. SymPy was started by Ondřej Čertík in 2005, and it has since grown into a large project with over 500 contributors. SymPy is developed on GitHub using a bazaar community model [40]. The accessibility of the codebase and the open community model allows SymPy to rapidly respond to the needs of the community of users, and has made the large contributor count possible.

Python is a popular dynamically typed programming language that has a focus on ease of use and readability. It also a very popular language for scientific computing and data science, with a wide range of useful libraries [35]. SymPy is itself used by many libraries and tools across many domains, such as Sage [45] (pure mathematics), yt [49] (astronomy and astrophysics), PyDy [23] (multibody dynamics), and SfePy [17] (finite elements).

Unlike many CASs, SymPy does not invent its own programming language. Python itself is used both for the internal implementation and the end user interaction. The exclusive usage of one programming language makes it easier for people already familiar with it to use or develop SymPy and at the same time allows developers to focus on mathematics, rather than language design.

SymPy is designed with a strong focus on usability as a library. This means that extensibility is important in its application program interface (API) design. This is also one of the reasons SymPy makes no attempt to extend the Python language itself. The goal is for users of SymPy to be able to import SymPy alongside other Python libraries in their workflow, whether that is an interactive workflow or programmatic use as part of a larger system.

Being developed as a library, SymPy does not have a built-in graphical user interface (GUI). However, SymPy exposes a rich interactive display system, including reg-

```
*University of South Carolina (asmeurer@gmail.com).
```

[†]Los Alamos National Laboratory (ondrej.certik@gmail.com).

[‡]Delhi Technological University (dtu.amit@gmail.com).

[§]University of California, Davis (jkm@ucdavis.edu).

[¶]Indian Institute of Technology (BHU) (singhsartaj94@gmail.com).

University of Moratuwa (thilinarmtb.10@cse.mrt.ac.lk).

[#]California Polytechnic State University (ellisonbg@gmail.com).

^{††}Center for Computing Research, Sandia National Laboratories (rmuller@sandia.gov).

^{‡‡}Max Planck Institute of Colloids and Interfaces (francesco.bonazzi@mpikg.mpg.de).

¹Indian Institute of Technology Kharagpur (hargup@protonmail.com).

²Indian Institute of Technology Kharagpur (shivamvats.iitkgp@gmail.com).

 $^{^3}$ INRIA Bordeaux-Sud-Ouest - LFANT project-team (fredrik.johansson@gmail.com).

⁴INRIA - SIERRA project-team (f@bianp.net).

⁵Birla Institute of Technology and Science, Pilani, K.K. Birla Goa Campus (ashutosh.saboo@gmail.com).

⁶University of Moratuwa (isuru.11@cse.mrt.ac.lk).

⁷Indian Institute of Technology Bombay (sumith@cse.iitb.ac.in).

⁸New Technologies - Research Centre, University of West Bohemia (cimrman3@ntc.zcu.cz).

istering printers with Jupyter [37] frontends, including the Notebook and Qt Console, which will pretty print SymPy expressions using MathJax [16] or LATEX rendering.

Section 2 discusses the architecture of SymPy. Section 3 enumerates the features of SymPy and takes a closer look at some of the important ones. Following that, section 4 looks at the numerical features of SymPy and its dependency library, mpmath. Section 5 looks at the domain specific physics submodules for doing classical mechanics and quantum mechanics. Finally, section 6 concludes the paper and discusses future work.

2. Architecture.

2.1. Basic Usage. Because SymPy is built on Python, it requires that all variable names be defined before they can be used. The following statement imports all SymPy functions into the global Python namespace. All examples in this paper assume that this has been run.

```
>>> from sympy import *
```

Symbolic variables, called symbols, must be defined and assigned to Python variables before they can be used. This is typically done through the symbols function, which creates multiple symbols at once. For instance,

```
>>> x, y, z = symbols('x y z')
```

creates three symbols representing variables named x, y, and z, assigned to Python variables of the same name. The Python variable names that symbols are assigned to are immaterial—one could have just as well have written a, b, c = symbols('x y z'). All examples in this paper will assume that the symbols x, y, and z have been assigned to a variable identical to their names.

Expressions are created from symbols using Python syntax through operator overloading, which mirrors usual mathematical notation. Note that in Python, exponentiation is **. For instance, the following creates the expression $(x^2 - 2x + 3)/y$.

```
>>> (x**2 - 2*x + 3)/y
(x**2 - 2*x + 3)/y
```

SymPy expressions are immutable. This simplifies the design by allowing interning. It also allows expressions to be hashed and stored in Python dictionaries, thereby enabling caching and other features.

2.2. The Core. A computer algebra system (CAS) represents mathematical expressions as data structures. For example the mathematical expression x + y is represented as a tree with three nodes, +, x, and y, where x and y are ordered children of +. As users of the computer algebra system manipulate mathematical expressions with traditional mathematical syntax the CAS manipulates the underlying data structures. Automated optimizations and computations such as integration, simplification, etc. are all functions that consume and produce expression trees.

In SymPy every symbolic expression is an instance of a Python Basic class, a superclass of all SymPy types providing common methods to all SymPy tree-elements such as traversals, caching, etc.. The children of a node in the tree are held in the args attribute. A leaf node in the expression tree has empty args.

For example, consider the expression xy + 2:

```
76 >>> expr = x*y + 2
```

By order of operations, the parent of the expression tree for expr is an addition, so it is of type Add. The child nodes of expr are 2 and x*y.

```
79 >>> type(expr)
```

0 <class 'sympy.core.add.Add'>

```
81 >>> expr.args
82 (2, x*y)
83 One can d
```

96 97

98

99

100

101

102103

104

105

106

108 109

110

111

112

113

114

115

116 117

118

119

123

124

125

126

127

One can dig further into the expression tree to see the full expression. For example, the first child node, given by expr.args[0] is 2. Its class is Integer, and it has empty args, indicating that it is a leaf node.

```
86 >>> expr.args[0]
87 2
88 >>> type(expr.args[0])
89 <class 'sympy.core.numbers.Integer'>
90 >>> expr.args[0].args
91 ()
```

A useful way to view an expression tree is with the srepr function, which returns a string representation of an expression as valid Python code with all the nested class constructor calls to create the given expression.

```
95 >>> srepr(expr)
```

```
"Add(Mul(Symbol('x'), Symbol('y')), Integer(2))"
```

Every SymPy expression satisfies a key invariant:

```
expr.func(*expr.args) == expr
```

This means that expressions are rebuildable from their args.¹ Here, we note that in SymPy, the == operator represents exact structural equality, not mathematical equality. This allows one to test if any two expressions are equal to one another as expression trees.

Python allows classes to override mathematical operators. The Python interpreter translates the above x*y + 2 to, roughly, (x._mul__(y)).__add__(2). Both x and y, returned from the symbols function, are Symbol instances. The 2 in the expression is processed by Python as a literal, and is stored as Python's builtin int type. When 2 is passed to the __add__ method of Symbol, it is converted to the SymPy type Integer(2) before being stored in the resulting expression tree. In this way, SymPy expressions can be built in the natural way using Python operators and numeric literals.

2.3. Logical Inference and Assumptions. SymPy performs logical inference through its assumptions system. The assumptions system allows users to specify that symbols have certain common mathematical properties, such as being positive, imaginary, or integral. SymPy is careful to never perform simplifications on an expression unless the assumptions allow them. For instance, the identity $\sqrt{t^2} = t$ holds if t is nonnegative $(t \ge 0)$. If t is real, the identity $\sqrt{t^2} = |t|$ holds. However, for general complex t, no such identity holds.

By default, SymPy performs all calculations assuming that symbols are complex valued. This assumption makes it easier to treat mathematical problems in full generality.

```
120 >>> t = Symbol('t')

121 >>> sqrt(t**2)

122 sqrt(t**2)
```

By assuming the most general case, that symbols are complex by default, SymPy avoids performing mathematically invalid operations. However, in many cases users will wish to simplify expressions containing terms like $\sqrt{t^2}$.

Assumptions are set on Symbol objects when they are created. For instance Symbol('t', positive=True) will create a symbol named t that is assumed to be

¹expr.func is used instead of type(expr) to allow the function of an expression to be distinct from its actual Python class. In most cases the two are the same.

```
128     positive.
129     >>> t = Symbol('t', positive=True)
130     >>> sqrt(t**2)
131     t
```

Some of the common assumptions that SymPy allows are positive, negative, real, nonpositive, nonnegative, real, integer, and commutative.² Assumptions on any object can be checked with the is_assumption attributes, like t.is_positive.

Assumptions are only needed to restrict a domain so that certain simplifications can be performed. It is not required to make the domain match the input of a function. For instance, one can create the object $\sum_{n=0}^m f(n)$ as Sum(f(n), (n, 0, m)) without setting integer=True when creating the Symbol object n.

The assumptions system additionally has deductive capabilities. The assumptions use a three-valued logic using the Python builtin objects True, False, and None. None represents the "unknown" case. This could mean that the given assumption could be either true or false under the given information, for instance, Symbol('x', real=True).is_positive will give None because a real symbol might be positive or it might not. It could also mean not enough is implemented to compute the given fact. For instance, (pi + E).is_irrational gives None, because SymPy does not know how to determine if $\pi + e$ is rational or irrational, indeed, it is an open problem in mathematics.

Basic implications between the facts are used to deduce assumptions. For instance, the assumptions system knows that being an integer implies being rational, so Symbol('x', integer=True).is_rational returns True. Furthermore, expressions compute the assumptions on themselves based on the assumptions of their arguments. For instance, if x and y are both created with positive=True, then (x + y).is positive will be True.

SymPy also has an experimental assumptions system where facts are stored separately from objects, and deductions are made with a SAT solver. We will not discuss this system here.

2.4. Extensibility. While the core of SymPy is quite small it has been extended to a broad variety of domains by a broad variety of contributors. This is due in part because the same language, Python, is used both for the internal implementation and the external usage by users. All of the extensibility capabilities available to users are also used by functions that are part of SymPy. It is easy for most SymPy users to transition to development.

The typical way to create a custom SymPy object is to subclass an existing SymPy class, generally one of Basic, Expr, or Function. All SymPy classes used for expression trees³ should be subclasses of the base class Basic, which defines some basic methods for symbolic expression trees. Expr is the subclass for mathematical expressions that can be added and multiplied together. Instances of Expr typically represent complex numbers, but may also include other "rings" like matrix expressions. Not all SymPy classes are subclasses of Expr. For instance, logic expressions, such as And(x, y) are subclasses of Basic but not of Expr.

The Function class is a subclass of Expr which makes it easier to define mathematical functions called with arguments. This includes named functions like $\sin(x)$

 $^{^2 \}text{If } A \text{ and } B \text{ are Symbols created with commutative=False then SymPy will keep } A \cdot B \text{ and } B \cdot A \text{ distinct.}$

 $^{^{3}}$ Some internal classes, such as those used in the polynomial module, do not follow this rule for efficiency reasons.

and $\log(x)$ as well as undefined functions like f(x). Subclasses of Function should define a class method eval, which returns values for which the function should be automatically evaluated, and None for arguments that should not be automatically evaluated.

Many SymPy functions perform various evaluations down the expression tree. Classes define their behavior in such functions by defining a relevant _eval_* method. For instance, an object can indicate to the diff function how to take the derivative of itself by defining the _eval_derivative(self, x) method, which may in turn call diff on its args. The most common _eval_* methods relate to the assumptions. eval is assumption defines the assumptions for assumption.

As an example of the notions presented in this section, Figure 1 presents a stripped down version of the gamma function $\Gamma(x)$ from SymPy, which evaluates itself on positive integer arguments, has the positive and real assumptions defined, can be rewritten in terms of factorial with $\operatorname{gamma}(x)$.rewrite(factorial), and can be differentiated. fdiff is a convenience method for subclasses of Function. fdiff returns the derivative of the function without considering the chain rule. self.func is used throughout instead of referencing gamma explicitly so that potential subclasses of gamma can reuse the methods. The actual gamma function defined in SymPy has many more capabilities, such as evaluation at rational points and series expansion.

3. Features. SymPy has an extensive feature set that encompasses too much to cover in-depth here. Bedrock areas, such as calculus, receive their own subsections below. Table 1 gives a compact listing of all major capabilities present in the SymPy codebase. This gives a sampling from the breadth of topics and application domains that SymPy services. Unless stated otherwise, all features noted in Table 1 are symbolic in nature. Numeric features are discussed in Section 4.

Table 1: SymPy Features and Descriptions

Feature		Description
Calculus		Algorithms for computing derivatives, integrals, and limits.
Category Theory		Representation of objects, morphisms, and diagrams. Tools for drawing diagrams with Xy-pic.
Code Generation		Enables generation of compilable and executable code in a variety of different programming languages directly from expressions. Target languages include C, Fortran, Julia, JavaScript, Mathematica, Matlab and Octave, Python, and Theano.
Combinatorics Group Theory	&	Implements permutations, combinations, partitions, subsets, various permutation groups (such as polyhedral, Rubik, symmetric, and others), Gray codes [34], and Prufer sequences [11].
Concrete Math		Summation, products, tools for determining whether summation and product expressions are convergent, absolutely convergent, hypergeometric, and other properties. May also compute Gosper's normal form [39] for two univariate polynomials.

Cryptography Represents block and stream ciphers, including shift,

Affine, substitution, Vigenere's, Hill's, bifid, RSA, Kid RSA, linear-feedback shift registers, and Elgamal encryp-

tion

Differential Geome-

 try

Classes to represent manifolds, metrics, tensor products, and coordinate systems in Riemannian and pseudo-

Riemannian geometries [46].

Geometry Allows the creation of 2D geometrical entities, such as lines

and circles. Enables queries on these entities, such as asking the area of an ellipse, checking for collinearity of a set of points, or finding the intersection between two lines.

Lie Algebras Represents Lie algebras and root systems.

Logic boolean expression, equivalence testing, satisfiability, nor-

mal forms.

Matrices Tools for creating matrices of symbols and expressions.

This is capable of both sparse and dense representations and performing symbolic linear algebraic operations (e.g.,

inversion and factorization).

Matrix Expressions Matrices with symbolic dimensions (unspecified entries).

Block matrices.

Number Theory prime number generation, primality testing, integer fac-

torization, continued fractions, Egyptian fractions, modular arithmetic, quadratic residues, partitions, binomial and multinomial coefficients, prime number tools, integer

factorization.

Plotting Hooks for visualizing expressions via matplotlib [?] or as

text drawings when lacking a graphical back-end. 2D function plotting, 3D function plotting, and 2D implicit function

tion plotting are supported.

Polynomials Computes polynomial algebras over various coefficient do-

mains. Functionality ranges from the simple (e.g., polynomial division) to the advanced (e.g., Gröbner bases [8] and multivariate factorization over algebraic number do-

mains).

Printing Functions for printing SymPy expressions in the terminal

with ASCII or Unicode characters, and converting SymPy

expressions to LATEX and MathML.

Series Implements series expansion, sequences, and limit of se-

quences. This includes Taylor, Laurent and Puiseux series as well as special series, such as Fourier and formal power

series.

Sets Representations of empty, finite, and infinite sets. This

includes special sets such as for all natural, integer, and complex numbers. Operations on sets such as union, intersection, Cartesian product, and building sets from other

sets.

Simplification	Functions for manipulating and simplifying expressions.
	Includes algorithms for simplifying hypergeometric func-
	tions, trigonometric expressions, rational functions, com-
	binatorial functions, square root denesting, and common
	subexpression elimination.
Solvers	Functions for symbolically solving equations algebraically,
	systems of equations, both linear and non-linear, inequal-
	ities, ordinary differential equations, partial differential
	equations, Diophantine equations, and recurrence rela-
	tions.
Special Functions	Implements a number of well known special functions, in-
	cluding Dirac delta, Gamma, Beta, Gauss error functions,
	Fresnel integrals, Exponential integrals, Logarithmic in-
	tegrals, Trigonometric integrals, Bessel, Hankel, Airy, B-
	spline, Riemann Zeta, Dirichlet eta, polylogarithm, Lerch
	transcendent, hypergeometric, elliptic integrals, Mathieu,
	Jacobi polynomials, Gegenbauer polynomial, Chebyshev
	polynomial, Legendre polynomial, Hermite polynomial,
	Laguerre polynomial, and spherical harmonic functions.
Statistics	Support for a random variable type as well as the ability
	to declare this variable from prebuilt distribution functions
	such as Normal, Exponential, Coin, Die, and other custom
	distributions [41].
Tensors	Symbolic manipulation of indexed objects.
Vectors	Provides basic vector math and differential calculus with
	respect to 3D Cartesian coordinate systems.

3.1. Simplification. The generic way to simplify an expression is by calling the simplify function. It must be emphasized that simplification is not an unambigously defined mathematical operation [15]. The simplify function applies several simplification routines along with some heuristics to make the output expression as "simple" as possible.

It is often preferable to apply more directed simplification functions. These apply very specific rules to the input expression, and are often able to make guarantees about the output (for instance, the factor function, given a polynomial with rational coefficients in several variables, is guaranteed to produce a factorization into irreducible factors). Table 2 lists some common simplification functions.

Table 2: Some SymPy Simplification Functions

```
expand expand the expression
>>> expand((x + y)**3)
x**3 + 3*x**2*y + 3*x*y**2 + y**3

factor factor a polynomial into irreducibles
>>> factor(x**3 + 3*x**2*y + 3*x*y**2 + y**3)
(x + y)**3
```

```
collect
           collect polynomial coefficients
           >>> collect(y*x**2 + 3*x**2 - x*y + x - 1, x)
           x^{**}2^{*}(y + 3) + x^{*}(-y + 1) - 1
           rewrite a rational function as p/q with common factors canceled
cancel
           >>> cancel((x**2 + 2*x + 1)/(x**2 - 1))
           (x + 1)/(x - 1)
           compute the partial fraction decomposition of a rational function
apart
           \Rightarrow apart((x**3 + 4*x - 1)/(x**2 - 1))
           x + 3/(x + 1) + 2/(x - 1)
trigsimp
           simplify trigonometric expressions [21]
           >>> trigsimp(cos(x)**2*tan(x) - sin(2*x))
           -\sin(2*x)/2
```

```
Substitutions are performed through the .subs method.
208
     >>> (\sin(x) + x**2 + 1).subs(x, y + 1)
209
     (y + 1)**2 + \sin(y + 1) + 1
210
          3.2. Calculus. Integrals are calculated with the integrate function. SymPy im-
211
     plements a combination of the Risch algorithm [14], table lookups, a reimplementation
212
     of Manuel Bronstein's "Poor Man's Integrator" [13], and an algorithm for computing
     integrals based on Meijer G-functions. These allow SymPy to compute a wide variety
214
     of indefinite and definite integrals.
216
     >>> integrate(sin(x), x)
217
     -cos(x)
     >> integrate(sin(x), (x, 0, 1))
218
219
     -\cos(1) + 1
         Derivatives are computed with the diff function. Derivatives are computed re-
220
     cursively using the various differentiation rules.
221
     >> diff(sin(x)*exp(x), x)
222
     exp(x)*sin(x) + exp(x)*cos(x)
223
          Summations and products are computed with summation and product, respec-
224
     tively. Summations are computed using a combination of Gosper's algorithm, an
225
     algorithm that uses Meijer G-functions, and heuristics. Products are computed via
226
     some heuristics.
227
         Limits are computed with the limit function. The limit module implements the
228
     Gruntz algorithm [25] for computing symbolic limits. For example, the following
229
     computes \lim x \sin(\frac{1}{x}) = 1 (note that \infty is oo in SymPy).
     >>> limit(x*sin(1/x), x, oo)
231
232
     As a more complicated example, SymPy computes \lim_{x \to 0} \left(2e^{\frac{1-\cos(x)}{\sin(x)}} - 1\right)^{\frac{\sinh(x)}{\tan^2(x)}} = e. >>> limit((2*E**((1-cos(x))/sin(x))-1)**(sinh(x)/atan(x)**2), x, 0)
233
234
     Ε
235
          Integrals, derivatives, summations, products, and limits that can't be computed
236
     return unevaluated objects. These can also be created directly if the user chooses.
237
     >>> integrate(x**x, x)
238
```

Fig. 1: A stripped down version of sympy.gamma.

```
from sympy import Integer, Function, floor, factorial, polygamma
class gamma(Function)
   @classmethod
   def eval(cls, arg):
        if isinstance(arg, Integer) and arg.is positive:
            return factorial(arg - 1)
    def eval is positive(self):
        x = self.args[0]
        if x.is positive:
            return True
        elif x.is noninteger:
            return floor(x).is even
   def eval is real(self):
        x = self.args[0]
        # noninteger means real and not integer
        if x.is positive or x.is noninteger:
            return True
   def eval rewrite as factorial(self, z):
        return factorial(z - 1)
   def fdiff(self, argindex=1):
        from sympy.core.function import ArgumentIndexError
        if argindex == 1:
            return self.func(self.args[0])*polygamma(0, self.args[0])
        else:
            raise ArgumentIndexError(self, argindex)
```

Integral(x**x, x)

239

240

241242

243

244

245

246

248249

250

251

252

3.3. Polynomials. SymPy implements a wide variety of algorithms for polynomial manipulation, which ranges from relatively simple algorithms for doing arithmetics of polynomials, to advanced methods for factoring multivariate polynomials into irreducibles, symbolically determining real and complex root isolation intervals, or computing Gröbner bases.

Polynomial manipulation is useful on its own, but in SymPy, it's mostly used indirectly as a tool in other areas of the library. In fact, many mathematical problems in symbolic computing are first expressed using entities from the symbolic core, preprocessed, and then transformed into a problem in the polynomial algebra, where generic and efficient algorithms are used to solve the problem and, in the end, solutions to the original one are recovered. For example, this is a common scheme in symbolic integration or summation algorithms.

SymPy implements dense and sparse polynomial representations. Both are used in the univariate and multivariate cases. The dense representation is the default

for univariate polynomials. For multivariate polynomials, the choice of representa-254 tion is based on the application. The most common case for the sparse representa-255 tion is algorithms for computing Gröbner bases (Buchberger, F4, and F5), because 256 different monomial orderings can be expressed easily in this representation. However, algorithms for computing multivariate GCDs or factorizations, at least those 258 currently implemented in SymPy, are better expressed when the representation is dense. The dense multivariate representation is specifically a recursively dense rep-260 resentation, where polynomials in $K[x_0, x_1, \ldots, x_n]$ are viewed as a polynomials in 261 $K[x_0][x_1]...[x_n]$. Note that despite this, the coefficient domain K, can be a multi-262 variate polynomial domain as well. The dense recursive representation in Python gets 263 inefficient when the number of variables gets high. 264

Here are some examples of the sympy.polys submodule. Factorization:

```
>>> t = symbols("t")
266
     \Rightarrow f = (2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 - 423*x*y**4 -
267
              47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t - 9*y**3*z**3*t**2 +
268
              9*v**3*t**2 - v**2*z**3*t**2 + v**2*t**2 + 3*z**6*t**2 +
269
              2*z**4*t**3 - 3*z**3*t**2 - 2*z*t**3)
270
271
    >>> factor(f)
    (t^{**}2^{*}z^{**}3 - t^{**}2 + 47^{*}x^{*}y)^{*}(2^{*}t^{*}z + 45^{*}x^{**}3 - 9^{*}y^{**}3 - y^{**}2 + 3^{*}z^{**}3)
272
    Gröbner bases:
273
274
    >>> x0, x1, x2 = symbols('x:3')
    >>> I = [x0 + 2*x1 + 2*x2 - 1, x0**2 + 2*x1**2 + 2*x2**2 - x0, 2*x0*x1 + 2*x1*x2 - x1]
275
   >>> groebner(I, order='lex')
    GroebnerBasis([7*x0 - 420*x2**3 + 158*x2**2 + 8*x2 - 7,
277
    7*x1 + 210*x2**3 - 79*x2**2 + 3*x2
    84*x2**4 - 40*x2**3 + x2**2 + x2], x0, x1, x2, domain='ZZ', order='lex')
    Root isolation:
    \Rightarrow f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20
282
    >>> intervals(f, all=True, eps=0.001)
    ([])
283
      [((-425/1024 - 625*I/1024, -1485/3584 - 2185*I/3584), 1),
284
       ((-425/1024 + 2185*I/3584, -1485/3584 + 625*I/1024), 1),
285
       ((3175/1792 - 2605*I/1792, 1815/1024 - 10415*I/7168), 1),
286
       ((3175/1792 + 10415*I/7168, 1815/1024 + 2605*I/1792), 1)])
287
288
```

3.4. Printers. SymPy has a rich collection of expression printers for displaying expressions to the user. By default, an interactive Python session will render the str form of an expression, which has been used in all the examples in this paper so far.

```
291 >>> phi0 = Symbol('phi0')
292 >>> str(Integral(sqrt(phi0), phi0))
293 'Integral(sqrt(phi0), phi0)'
```

265

289

290

294

295

297

298

Expressions can be printed with 2D monospace text with pprint. This uses Unicode characters to render mathematical symbols such as integral signs, square roots, and parentheses. Greek letters and subscripts in symbol names are rendered automatically.

Alternately, the use_unicode=False flag can be set, which causes the expression to be

```
printed using only ASCII characters.
300
301
    >>> pprint(Integral(sqrt(phi0 + 1), phi0), use_unicode=False)
302
303
304
       305
306
307
        The function latex returns a LATEX representation of an expression.
308
    >>> print(latex(Integral(sqrt(phi0 + 1), phi0)))
309
    \int \int \int d\pi \{0\} + 1\}\, d\phi {0}
310
```

Users are encouraged to run the init_printing function at the beginning of interactive sessions, which automatically enables the best pretty printing supported by their environment. In the Jupyter notebook or qtconsole [37] the LATEX printer is used to render expressions using MathJax or LATEX, if it is installed on the system. The 2D text representation is used otherwise.

Other printers such as MathML are also available. SymPy uses an extensible printer subsystem which allows users to customize the printing for any given printer, and for custom objects to define their printing behavior for any printer. SymPy's code generation capabilities, which we will not discuss in-depth here, use this subsystem to convert expressions into code in various languages.

3.5. Solvers. SymPy has a module of equation solvers for symbolic equations. There are two submodules to solve algebraic equations in SymPy, referred to as old solve function, solve, and new solve function, solveset. Solveset is introduced with several design changes with respect to the old solve function to resolve the issues with old solve function, for example old solve function's input API has many flags which are not needed and they make it hard for the user and the developers to work on solvers. In contrast to the old solve function, the solveset has a clean input API, it only asks for the necessary information from the user. The function signatures of the old and new solve function:

```
solveset(f, symbol, domain) # new solve function
The old solve function has an inconsistent output API for various types of inputs,
whereas the solveset has a canonical output API which is achieved using sets. It can
consistently return various types of solutions.
```

 Single solution >>> solveset(x - 1) {1} • Finite set of solution, quadratic equation >>> solveset(x**2 - pi**2, x) {-pi, pi} • No Solution >>> solveset(1, x) EmptySet() • Interval of solution >>> solveset(x**2 - 3 > 0, x, domain=S.Reals) (-oo, -sqrt(3)) U (sqrt(3), oo) • Infinitely many solutions >>> solveset(sin(x) - 1, x, domain=S.Reals)

solve(f, *symbols, **flags) # old solve function

```
ImageSet(Lambda( n, 2* n*pi + pi/2), Integers())
349
350
    >>> solveset(x - x, x, domain=S.Reals)
    (-00, 00)
351
352
    >>> solveset(x - x, x, domain=S.Complexes)
353
     S.Complexes

    Linear system: finite and infinite solution for determined, under determined

354
             and over determined problems.
355
    >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
356
    >>> b = Matrix([3, 6, 9])
    >>> linsolve((A, b), x, y, z)
358
    \{(-1, 2, 0)\}
359
    >>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))
360
     \{(-y - 1, y, 2)\}
361
362
```

The new solve i.e. **solveset** is under active development and is a planned replacement for **solve**, Hence there are some features which are implemented in solve and is not yet implemented in solveset. The table below show the current state of old and new solve functions.

Solveset vs Solve Feature solve solveset Consistent Output API No Yes No Yes Consistent Input API Univariate Yes Yes Linear System Yes Yes (linsolve) Non Linear System Yes Not yet Transcendental Yes Not yet

368 369 370

371

372

383

390

363

364

365 366

367

Below are some of the examples of old **solve** function:

 Non Linear (multivariate) System of Equation: Intersection of a circle and a parabola.

```
>>> solve([x**2 + y**2 - 16, 4*x - y**2 + 6], x, y)
373
     [(-2 + sqrt(14), -sqrt(-2 + 4*sqrt(14))),
374
     (-2 + sqrt(14), sqrt(-2 + 4*sqrt(14))),
375
376
      (-sqrt(14) - 2, -I*sqrt(2 + 4*sqrt(14))),
     (-sqrt(14) - 2, I*sqrt(2 + 4*sqrt(14)))]
          • Transcendental Equation
378
    >>> solve((x + log(x))**2 - 5*(x + log(x)) + 6, x)
379
380
    [LambertW(exp(2)), LambertW(exp(3))]
381
    >> solve(x**3 + exp(x))
    [-3*LambertW((-1)**(2/3)/3)]
382
```

3.6. Matrices. SymPy supports matrices with symbolic expressions as elements.

```
384 >>> x, y = symbols('x y')
385 >>> A = Matrix(2, 2, [x, x + y, y, x])
386 >>> A
387 Matrix([
388 [x, x + y],
389 [y, x]])
```

All SymPy matrix types perform linear algebra including matrix addition, multiplication, exponentiation, computing determinants, solving linear systems, and com-

puting inverses using LU decomposition, LDL decomposition, Gauss-Jordan elimina-393 tion, Cholesky decomposition, Moore-Penrose pseudoinverse, and adjugate matrix.

All operations are computed symbolically. Fore example eigenvalues are computed by generating the characteristic polynomial using the Berkowitz algorithm and then solving it using polynomial routines. Diagonalizable matrices can be diagonalized first to compute the eigenvalues.

```
>>> A.eigenvals()
398
     \{x - sqrt(y*(x + y)): 1, x + sqrt(y*(x + y)): 1\}
399
```

392

394

395

396

397

400

401

402

403

404

405

406

431

436

437

438

439 440 (m + n, m + n)

Internally these matrices store the elements as a list, making it a dense representation. For storing sparse matrices, the SparseMatrix class can be used. Sparse matrices store the elements in a dictionary of keys (DoK) format.

SymPy also supports matrices with symbolic dimension values. MatrixSymbol represents a matrix with dimensions $m \times n$, where m and n can be symbolic. Matrix addition and multiplication, scalar operations, matrix inverse, and transpose are stored symbolically as matrix expressions.

```
>>> m, n, p = symbols("m, n, p", integer=True)
407
    >>> R = MatrixSymbol("R", m, n)
408
409
    >>> S = MatrixSymbol("S", n, p)
    >>> T = MatrixSymbol("T", m, p)
410
    >>> U = R*S + 2*T
411
    >>> U.shape
412
    (m, p)
413
414
    >>> U[0, 1]
    2*T[0, 1] + Sum(R[0, _k]*S[_k, 1], (_k, 0, n - 1))
415
416
```

Block matrices are also supported in SymPy. BlockMatrix elements can be any matrix expression which includes explicit matrices, matrix symbols, and block matri-417 ces. All functionalities of matrix expressions are also present in BlockMatrix. 418

```
419
    >>> n, m, l = symbols('n m l')
420
    >>> X = MatrixSymbol('X', n, n)
    >>> Y = MatrixSymbol('Y', m ,m)
421
    >>> Z = MatrixSymbol('Z', n, m)
422
    >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
423
424
    >>> B
425
    Matrix([
    [X, Z],
426
    [0, Y]])
427
428
    >>> B[0, 0]
429
    X[0, 0]
    >>> B.shape
430
```

When symbolic matrices are combined with the assumptions module for logi-432 cal inference they provide powerful reasoning over invertibility, semi-definiteness, or-433 thogonality, etc. which are valuable in the construction of numerical linear algebra 434 435 programs.

4. Numerics. The Float class holds an arbitrary-precision binary floating-point value and a precision in bits. An operation between two Float inputs is rounded to the larger of the two precisions. Since Python floating-point literals automatically evaluate to double (53-bit) precision, strings should be used to input precise decimal values:

The preferred way to evaluate an expression numerically is with the evalf method, which internally estimates the number of accurate bits of the floating-point approximation for each sub-expression, and adaptively increases the working precision until the estimated accuracy of the final result matches the sought number of decimal digits.

The internal error tracking does not provide rigorous error bounds (in the sense of interval arithmetic) and cannot be used to track uncertainty in measurement data in any meaningful way; the sole purpose is to mitigate loss of accuracy that typically occurs when converting symbolic expressions to numerical values, for example due to catastrophic cancellation. This is illustrated by the following example (the input 25 specifies that 25 digits are sought):

```
457 >>> cos(exp(-100)).evalf(25) - 1
458 0
459 >>> (cos(exp(-100)) - 1).evalf(25)
460 -6.919482633683687653243407e-88
```

 The evalf method works with complex numbers and supports more complicated expressions, such as special functions, infinite series and integrals.

SymPy does not track the accuracy of approximate numbers outside of evalf. The familiar dangers of floating-point arithmetic apply [24], and symbolic expressions containing floating-point numbers should be treated with some caution. This approach is similar to Maple and Maxima.

By contrast, Mathematica uses a form of significance arithmetic [43] for approximate numbers. This offers further protection against numerical errors, but leads to non-obvious semantics while still not being mathematically rigorous (for a critique of significance arithmetic, see Fateman [18]). SymPy's evalf internals are non-rigorous in the same sense, but have no bearing on the semantics of floating-point numbers in the rest of the system.

4.1. The mpmath library. The implementation of arbitrary-precision floating-point arithmetic is supplied by the mpmath library, which originally was developed as a SymPy module but subsequently has been moved to a standalone pure Python package. The basic datatypes in mpmath are mpf and mpc, which respectively act as multiprecision substitutes for Python's float and complex. The floating-point precision is controlled by a global context:

```
479 >>> import mpmath

480 >>> mpmath.mp.dps = 30  # 30 digits of precision

481 >>> mpmath.mpf("0.1") + mpmath.exp(-50)

482 mpf('0.1000000000000000000192874984794')

483 >>> print(_) # pretty-printed

484 0.1000000000000000000192874985
```

For pure numerical computing, it is convenient to use mpmath directly with from mpmath import * (it is best to avoid such an import statement when using SymPy simultaneously, since numerical functions such as exp will shadow the symbolic counterparts in SymPy).

Like SymPy, mpmath is a pure Python library. Internally, mpmath represents a floating-point number $(-1)^s x \cdot 2^y$ by a tuple (s, x, y, b) where x and y are arbitrary-size Python integers and the redundant integer b stores the bit length of x for quick access. If GMPY [27] is installed, mpmath automatically switches to using the gmpy.mpz type for x and using GMPY helper methods to perform rounding-related operations, improving performance.

The mpmath library includes support for special functions, root-finding, linear algebra, polynomial approximation, and numerical computation of limits, derivatives, integrals, infinite series, and ODE solutions. All features work in arbitrary precision and use algorithms that support computing hundreds of digits rapidly, except in degenerate cases.

The double exponential (tanh-sinh) quadrature is used for numerical integration by default. For smooth integrands, this algorithm usually converges extremely rapidly, even when the integration interval is infinite or singularities are present at the endpoints [47, 9]. However, for good performance, singularities in the middle of the interval must be specified by the user. To evaluate slowly converging limits and infinite series, mpmath automatically attempts to apply Richardson extrapolation and the Shanks transformation (Euler-Maclaurin summation can also be used) [10]. A function to evaluate oscillatory integrals by means of convergence acceleration is also available.

A wide array of higher mathematical functions are implemented with full support for complex values of all parameters and arguments, including complete and incomplete gamma functions, Bessel functions, orthogonal polynomials, elliptic functions and integrals, zeta and polylogarithm functions, the generalized hypergeometric function, and the Meijer G-function.

Most special functions are implemented as linear combinations of the generalized hypergeometric function ${}_pF_q$, which is computed by a combination of direct summation, argument transformations (for ${}_2F_1, {}_3F_2, \ldots$) and asymptotic expansions (for ${}_0F_1, {}_1F_1, {}_1F_2, {}_2F_2, {}_2F_3$) to cover the whole complex domain. Numerical integration and generic convergence acceleration are also used in a few special cases.

In general, linear combinations and argument transformations give rise to singularities that have to be removed for certain combinations of parameters. A typical example is the modified Bessel function of the second kind

$$K_{\nu}(z) = \frac{1}{2} \left[\left(\frac{z}{2} \right)^{-\nu} \Gamma(\nu)_{0} F_{1} \left(1 - \nu, \frac{z^{2}}{4} \right) - \left(\frac{z}{2} \right)^{\nu} \frac{\pi}{\nu \sin(\pi \nu) \Gamma(\nu)} {}_{0} F_{1} \left(\nu + 1, \frac{z^{2}}{4} \right) \right]$$

where the limiting value $\lim_{\varepsilon\to 0} K_{n+\varepsilon}(z)$ has to be computed when $\nu=n$ is an integer. A generic algorithm is used to evaluate hypergeometric-type linear combinations of the above type. This algorithm automatically detects cancellation problems, and computes limits numerically by perturbing parameters whenever internal singularities occur (the perturbation size is automatically decreased until the result is detected to converge numerically).

Due to this generic approach, particular combinations of hypergeometric functions can be specified easily. The implementation of the Meijer G-function takes only a few dozen lines of code, yet covers the whole input domain in a robust way. The Meijer G-function instance $G_{1,3}^{3,0}\left(0;\frac{1}{2},-1,-\frac{3}{2}|x\right)$ is a good test case [48]; past versions of both Maple and Mathematica produced incorrect numerical values for large x>0. Here, mpmath automatically removes the internal singularity and compensates for cancellations (amounting to 656 bits of precision when x=10000), giving correct

```
values:
>>> mpmath.mp.dps = 15
>>> mpmath.meijerg([[],[0]],[[-0.5,-1,-1.5],[]],10000)
2.4392576907199564e-94
Equivalently, with SymPy's interface this function can be evaluated as:
>>> meijerg([[],[0]],[[-S(1)/2,-1,-S(3)/2],[]],10000).evalf()
2.43925769071996e-94
```

We highlight the generalized hypergeometric functions and the Meijer G-function, due to those functions' frequent appearance in closed forms for integrals and sums (see section 3.2). Via mpmath, SymPy has relatively good support for evaluating sums and integrals numerically, using two complementary approaches: direct numerical evaluation, or first computing a symbolic closed form involving special functions.

4.2. Numerical simplification. The nsimplify function in SymPy (a wrapper of identify in mpmath) attempts to find a simple symbolic expression that evaluates to the same numerical value as the given input. It works by applying a few simple transformations (including square roots, reciprocals, logarithms and exponentials) to the input and, for each transformed value, using the PSLQ algorithm [19] to search for a matching algebraic number or optionally a linear combination of user-provided base constants (such as π).

```
base constants (such as \pi).

>>> t = 1 / (sin(pi/5)+sin(2*pi/5)+sin(3*pi/5)+sin(4*pi/5))**2

>>> nsimplify(t)

-2*sqrt(5)/5 + 1

>>> nsimplify(pi, tolerance=0.01)

22/7

>>> nsimplify(1.783919626661888, [pi], tolerance=1e-12)

pi/(-1/3 + 2*pi/3)
```

5. Domain Specific Submodules. SymPy includes several packages that allow users to solve domain specific problems. For example, a comprehensive physics package is included that is useful for solving problems in classical mechanics, optics, and quantum mechanics along with support for manipuating physical quantities with units.

5.1. Classical Mechanics.

 5.1.1. Vector Algebra. The sympy.physics.vector package provides reference frame, time, and space aware vector and dyadic objects that allow for three dimensional operations such as addition, subtraction, scalar multiplication, inner and outer products, cross products, etc. Both of these objects can be written in very compact notation that make it easy to express the vectors and dyadics in terms of multiple reference frames with arbitrarily defined relative orientations. The vectors are used to specify the positions, velocities, and accelerations of points, orientations, angular velocities, and angular accelerations of reference frames, and force and torques. The dyadics are essentially reference frame aware 3×3 tensors. The vector and dyadic objects can be used for any one-, two-, or three-dimensional vector algebra and they provide a strong framework for building physics and engineering tools.

The following Python interpreter session showing how a vector is created using the orthogonal unit vectors of three reference frames that are oriented with respect to each other and the result of expressing the vector in the A frame. The B frame is oriented with respect to the A frame using Z-X-Z Euler Angles of magnitude π , $\frac{\pi}{2}$, and $\frac{\pi}{3}$ rad, respectively whereas the C frame is oriented with respect to the B frame

```
through a simple rotation about the B frame's X unit vector through \frac{\pi}{2} rad.
583
584
    >>> from sympy import pi
    >>> from sympy.physics.vector import ReferenceFrame
585
    >>> A = ReferenceFrame('A')
    >>> B = ReferenceFrame('B')
587
    >>> C = ReferenceFrame('C')
    >>> B.orient(A, 'body', (pi, pi / 3, pi / 4), 'zxz')
589
    >>> C.orient(B, 'axis', (pi / 2, B.x))
    >>> v = 1 * A.x + 2 * B.z + 3 * C.y
591
592
    A.x + 2*B.z + 3*C.y
593
594
    >>> v.express(A)
    A.x + 5*sqrt(3)/2*A.y + 5/2*A.z
595
```

598 599

600

602

603

604 605

606

607

608

609

611

612

613

5.1.2. Mechanics. The sympy.physics.mechanics package utilizes the sympy. physics.vector package to populate time aware particle and rigid body objects to fully describe the kinematics and kinetics of a rigid multi-body system. These objects store all of the information needed to derive the ordinary differential or differential algebraic equations that govern the motion of the system, i.e., the equations of motion. These equations of motion abide by Newton's laws of motion and can handle any arbitrary kinematical constraints or complex loads. The package offers two automated methods for formulating the equations of motion based on Lagrangian Dynamics [29] and Kane's Method [28]. Lastly, there are automated linearization routines for constrained dynamical systems based on [38].

5.2. Symbolic Quantum Mechanics. The sympy.physics.quantum package has extensive capabilities for symbolic quantum mechanics, with Python objects to represent the different mathematical objects relevant in quantum theory [42]: states (bras and kets), operators (unitary, hermitian, etc.) and basis sets as well as operations on these objects such as representations, tensor products, inner products, outer products, commutators, anticommutators, etc. The base objects are designed in the most general way possible to enable any particular quantum system to be implemented by subclassing the base operators to provide system specific logic.

For example, you can define symbolic quantum operators and states and perform 614 a full range of operations with them: 615

```
>>> from sympy.physics.quantum import Commutator, Dagger, Operator
616
    >>> from sympy.physics.quantum import Ket, qapply
    >>> A = Operator('A')
618
619
    >>> B = Operator('B')
620
    >>> C = Operator('C')
621
    >>> D = Operator('D')
    >>> a = Ket('a')
622
    >>> comm = Commutator(A, B)
    >>> comm
624
625
    [A,B]
626
    >>> qapply(Dagger(comm*a)).doit()
627
    -<a|*(Dagger(A)*Dagger(B) - Dagger(B)*Dagger(A))</pre>
    Commutators can be expanded using common commutator identities:
628
    >>> Commutator(C+B, A*D).expand(commutator=True)
629
     -[A,B]*D - [A,C]*D + A*[B,D] + A*[C,D]
630
631
         On top of this set of base objects, a number of specific quantum systems have
```

632 been implemented. These include:

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 649

- Position/momentum operators and states, raising/lowering operators and states, simple harmonic oscillator, density matrices, hydrogen atom.
- Second quantized formalism of non-relativistic many-body quantum mechanics [20].
- Quantum angular momentum [50]. Spin operators and their eigenstates can be represented in any basis and for any quantum numbers. Facilities for Clebsch-Gordan Coefficients, Wigner Coefficients, rotations, and angular momentum coupling are also present in their symbolic and numerical forms.
- Quantum information and computing [33]. Multidimensional qubit states, and a full set of one- and two-qubit gates are provided and can be represented symbolically or as matrices/vectors. With these building blocks it is possible to implement a number of basic quantum algorithms including the quantum Fourier transform, quantum error correction, quantum teleportation, Grover's algorithm, dense coding, etc.

Here are a few short examples of the quantum information and computing capabilities in sympy.physics.quantum. We start with a simple 4 qubit state and flip one of the qubits:

```
>>> from sympy.physics.quantum.qubit import Qubit
650
    >>> q = Qubit('0101')
651
652
    >>> q
    |0101>
653
654
    >>> q.flip(1)
655
    |0111>
     Qubit states can also be used in adjoint operations, tensor products, inner/outer
656
     products:
657
    >>> Dagger(q)
659
    <0101|
660
    >>> ip = Dagger(q)*q
661
    >>> ip
    <0101|0101>
662
    >>> ip.doit()
663
664
     Quantum gates (unitary operators) can be applied to transform these states and then
665
    classical measurements can be performed on the results:
666
    >>> from sympy.physics.quantum.qubit import Qubit, measure all
    >>> from sympy.physics.quantum.gate import H, X, Y, Z
668
    >>> from sympy.physics.quantum.qapply import qapply
669
670
   >>> c = H(0)*H(1)*Qubit('00')
671
672
    H(0)*H(1)*|00>
673 >>> q = qapply(c)
    >>> measure all(q)
674
    [(|00\rangle, 1/4), (|01\rangle, 1/4), (|10\rangle, 1/4), (|11\rangle, 1/4)]
   Here is a final example of creating a 3-qubit quantum fourier transform, decomposing
676
    it into one- and two-qubit gates, and then generating a circuit plot for the sequence
    of gates (see Figure 2).
678
    >>> from sympy.physics.quantum.qft import QFT
    >>> from sympy.physics.quantum.circuitplot import circuit plot
    >>> fourier = QFT(0,3).decompose()
```


Fig. 2: The circuit diagram for a 3-qubit quantum fourier transform generated by SymPy.

```
682 >>> fourier

683 SWAP(0,2)*H(0)*C((0),S(1))*H(1)*C((0),T(2))*C((1),S(2))*H(2)

684 >>> c = circuit_plot(fourier, nqubits=3)
```

6. Conclusion and future work. SymPy is a robust computer algebra system that provides a wide array of features both in traditional computer algebra and in broad scientific disciplines. It is written in the general purpose Python language which allows it to be used in a first-class way with other Python projects, including the scientific Python stack. SymPy is designed to be used in an extensible way and, unlike many other CASs, both as an end-user application and as a library.

SymPy expressions are immutable trees of Python objects. SymPy uses Python both as the internal language and the user language, meaning users can use the same methods that the library implements to extend it. SymPy has an assumptions system for declaring and deducing mathematical properties on expressions.

SymPy has submodules for many areas of mathematics. It has functions for simplifying expressions, doing common calculus operations, pretty printing expressions, solving equations, and symbolic matrices. Other included areas are discrete math, concrete math, plotting, geometry, statistics, polynomials, sets, series, vectors, combinatorics, group theory, code generation, tensors, Lie algebras, cryptography, and special functions. Additionally, SymPy contains submodules targeting certain specific domains, such as classical mechanics and quantum mechanics. This breadth of domains is due to a strong and vibrant user community that were attracted to SymPy because of its ease of access.

Some of the planned future work for SymPy includes work on improving code generation, improvements to the speed of SymPy, and improving the solvers module.

7. Acknowledgements. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

8. References.

REFERENCES

- 712 [1] https://github.com/sympy/sympy/blob/master/doc/src/modules/polys/ringseries.rst.
- 713 [2] https://reference.wolfram.com/language/ref/Flat.html.

720

721

722

723

724

725

726

727

732

735

736

737

738

741

742

743

746

747

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

- 714 https://reference.wolfram.com/language/ref/Orderless.html.
- 715 https://reference.wolfram.com/language/ref/OneIdentity.html. 716
 - [5] https://reference.wolfram.com/language/tutorial/FlatAndOrderlessFunctions.html.
- 717 The software engineering of the wolfram system, 2016, https://reference.wolfram.com/ 718 language/tutorial/The Software Engineering Of The Wolfram System. html.
 - [7] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, NY, USA, ninth printing ed., 1964, http://www.math.ucla.edu/~cbm/aands/.
 - W. W. Adams and P. Loustaunau, An introduction to Gröbner bases, no. 3, American Mathematical Soc., 1994.
 - [9] D. H. BAILEY, K. JEYABALAN, AND X. S. LI, A comparison of three high-precision quadrature schemes, Experimental Mathematics, 14 (2005), pp. 317-329.
 - [10] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer, 1st ed., October 1999.
- [11] N. BIGGS, E. K. LLOYD, AND R. J. WILSON, Graph Theory, 1736-1936, Oxford University 728 729 Press, 1976.
- 730 [12] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge University Press, 731 version 0.5.1 ed.
 - [13] M. Bronstein, Poor Man's Integrator, http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint.
- 733[14] M. Bronstein, Symbolic Integration I: Transcendental Functions, Springer-Verlag, New York, 734 NY. USA, 2005.
 - [15] J. CARETTE, Understanding Expression Simplification, in ISSAC '04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, New York, NY, USA, 2004, ACM Press, pp. 72-79, http://dx.doi.org/http://doi.acm.org/10.1145/ 1005285.1005298.
- 739 [16] D. CERVONE, Mathjax: a platform for mathematics on the web, Notices of the AMS, 59 (2012), 740pp. 312-316.
 - [17] R. CIMRMAN, SfePy write your own FE application, in Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), P. de Buyl and N. Varoquaux, eds., 2014, pp. 65-70. http://arxiv.org/abs/1404.6391.
- [18] R. J. FATEMAN, A review of Mathematica, Journal of Symbolic Computation, 13 (1992), 744745 pp. 545–579, http://dx.doi.org/DOI:10.1016/S0747-7171(10)80011-2.
 - [19] H. R. P. FERGUSON, D. H. BAILEY, AND S. ARNO, Analysis of PSLQ, an integer relation finding algorithm, Mathematics of Computation, 68 (1999), pp. 351–369.
- 748 [20] A. FETTER AND J. WALECKA, Quantum Theory of Many-Particle Systems, Dover Publications, 749 2003.
- 750 [21] H. Fu, X. Zhong, and Z. Zeng, Automated and Readable Simplification of Trigonometric Expressions, Mathematical and Computer Modelling, 55 (2006), pp. 1169-1177.
 - Y. C. Fung, A first course in continuum mechanics, Pearson, third edition ed., 1993.
 - [23] G. Gede, D. L. Peterson, A. S. Nanjangud, J. K. Moore, and M. Hubbard, Constrained multibody dynamics with python: From symbolic equation generation to publication, in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2013, pp. V07BT10A051-V07BT10A051.
 - [24] D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys (CSUR), 23 (1991), pp. 5-48.
 - [25] D. Gruntz, On Computing Limits in a Symbolic Manipulation System, PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 1996.
 - D. Gruntz and W. Koepf, Formal power series, (1993).
 - C. V. Horsen, GMPY. https://pypi.python.org/pypi/gmpy2, 2015.
 - T. R. KANE AND D. A. LEVINSON, Dynamics, Theory and Applications, McGraw Hill, 1985.
 - [29] J. LAGRANGE, Mécanique analytique, no. v. 1 in Mécanique analytique, Ve Courcier, 1811.
- 766 [30] L. R. U. Manssur, R. Portugal, and B. F. Svaiter, Group-theoretic approach for symbolic 767 tensor manipulation, Int. J. Mod. Phys. C, 13 (2002), http://dx.doi.org/http://dx.doi.org/ 768 10.1142/S0129183102004571.
- 769 [31] J. MARTÍN-GARCÍA, xact, efficient tensor computer algebra, 2002-2016, http://metric.iem.csic. 770 es/Martin-Garcia/xAct/.
- 771 [32] M. Moskewicz, C. Madigan, and S. Malik, Method and system for efficient implementation 772 of boolean satisfiability, Aug. 26 2008, http://www.google.co.in/patents/US7418369. US 773 Patent 7,418,369.

- 774 [33] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge 775 University Press, 2011.
- 776[34] A. NIJENHUIS AND H. S. WILF, Combinatorial Algorithms: For Computers and Calculators, 777 Academic Press, New York, NY, USA, second ed., 1978.
- 778 [35] T. E. OLIPHANT, Python for scientific computing, Computing in Science & Engineering, 9 779 (2007), pp. 10–20.
- 780 [36] K. Peeters, Cadabra: a field-theory motivated symbolic computer algebra system, Computer 781 Physics Communications, (2007).
 - F. Pérez and B. E. Granger, Ipython: a system for interactive scientific computing, Computing in Science & Engineering, 9 (2007), pp. 21–29.
 - [38] D. L. Peterson, G. Gede, and M. Hubbard, Symbolic linearization of equations of motion of constrained multibody systems, Multibody System Dynamics, 33 (2014), pp. 143-161, http://dx.doi.org/10.1007/s11044-014-9436-5.
- [39] M. Petkovšek, H. S. Wilf, and D. Zeilberger, A = bak peters, Wellesley, MA, (1996). 787
 - [40] E. RAYMOND, The cathedral and the bazaar, Knowledge, Technology & Policy, 12 (1999), pp. 23-
 - [41] M. ROCKLIN AND A. R. TERREL, Symbolic statistics with sympy, Computing in Science and Engineering, 14 (2012), http://dx.doi.org/10.1109/MCSE.2012.56.
 - J. SAKURAI AND J. NAPOLITANO, Modern Quantum Mechanics, Addison-Wesley, 2010.
 - M. Sofroniou and G. Spaletta, Precise numerical computation, Journal of Logic and Algebraic Programming, 64 (2005), pp. 113–134.
 - [44] P. SOLIN, K. SEGETH, AND I. DOLEZEL, Higher-Order Finite Element Methods, Chapman & Hall / CRC Press, 2003.
- 797 [45] W. Stein and D. Joyner, SAGE: System for Algebra and Geometry Experimentation, 2005.
 - [46]G. J. Sussman and J. Wisdom, Functional Differential Geometry, Massachusetts Institute of Technology Press, 2013.
- [47] H. TAKAHASI AND M. MORI, Double exponential formulas for numerical integration, Publica-800 tions of the Research Institute for Mathematical Sciences, 9 (1974), pp. 721-741.
 - V. T. Toth, Maple and meijer's g-function: a numerical instability and a cure. http://www. vttoth.com/CMS/index.php/technical-notes/67, 2007.
 - [49] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. NORMAN, yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data, The Astrophysical Journal Supplement Series, 192 (2011), pp. 9-+, http://dx.doi.org/10.1088/ 0067-0049/192/1/9, arXiv:1011.3514.
 - [50] R. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wi-
 - [51] O. Zienkiewicz, R. Taylor, and J. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, seventh edition ed., 2013, http://dx.doi.org/http: //dx.doi.org/10.1016/B978-1-85617-633-0.00019-8.

9. Supplement.

782

783

784

785

786

788

789

790

791 792

793

794

795

796

798 799

801

802

803

804 805

806 807

808 809

810 811

812

813 814

815

816

817

818

819

820

821

822

823

824

9.1. Limits: The Gruntz Algorithm. SymPy calculates limits using the Gruntz algorithm, as described in [25]. The basic idea is as follows: any limit can be converted to a limit $\lim_{x\to\infty} f(x)$ by substitutions like $x\to \frac{1}{x}$. Then the most varying subexpression ω (that converges to zero as $x \to \infty$ the fastest from all subexpressions) is identified in f(x), and f(x) is expanded into a series with respect to ω . Any positive powers of ω converge to zero. If there are negative powers of ω , then the limit is infinite. The constant term (independent of ω , but could depend on x) then determines the limit (one might need to recursively apply the Gruntz algorithm on this term to determine the limit).

To determine the most varying subexpression, the comparability classes must first be defined, by calculating L:

825 (1)
$$L \equiv \lim_{x \to \infty} \frac{\log |f(x)|}{\log |g(x)|}$$

And then operations <, > and \sim are defined as follows: f > g when $L = \pm \infty$ (it is said that f is more rapidly varying than q, i.e., f goes to ∞ or 0 faster than q, f is greater than any power of g), f < g when L = 0 (f is less rapidly varying than g) and $f \sim g$ when $L \neq 0, \pm \infty$ (both f and g are bounded from above and below by suitable integral powers of the other). Here are some examples of comparability classes:

$$2 < x < e^x < e^{x^2} < e^{e^x}$$

$$2 \sim 3 \sim -5$$

$$x \sim x^2 \sim x^3 \sim \frac{1}{x} \sim x^m \sim -x$$

$$e^x \sim e^{-x} \sim e^{2x} \sim e^{x+e^{-x}}$$

$$f(x) \sim \frac{1}{f(x)}$$

The Gruntz algorithm is now illustrated on the following example: 826

827 (2)
$$f(x) = e^{x+2e^{-x}} - e^x + \frac{1}{x}.$$

- The goal is to calculate $\lim_{x\to a} f(x)$. First the set of most rapidly varying subexpressions 828
- is determined, the so called *mrv set*. For (2), the following mrv set $\{e^x, e^{-x}, e^{x+2e^{-x}}\}$
- is obtained. These are all subexpressions of (2) and they all belong to the same 830
- comparability class. This calculation can be done using SymPy as follows: 831
- >>> from sympy.series.gruntz import mrv 832
- >>> mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)[0].keys()833
- dict keys([exp(x + 2*exp(-x)), exp(x), exp(-x)]) 834

835 Next any item ω is taken from mrv that converges to zero for $x \to \infty$. The item $\omega = e^{-x}$ is obtained. If such a term is not present in the mrv set (i.e., all terms 836 converge to infinity instead of zero), the relation $f(x) \sim \frac{1}{f(x)}$ can be used. 837

Next step is to rewrite the mrv in terms of ω : $\{\frac{1}{\omega}, \omega, \frac{1}{\omega}e^{2\omega}\}$. Then the original 838 subexpressions are substituted back into f(x) and expanded with respect to ω : 839

840 (3)
$$f(x) = \frac{1}{x} - \frac{1}{\omega} + \frac{1}{\omega} e^{2\omega} = 2 + \frac{1}{x} + 2\omega + O(\omega^2)$$

Since ω is from the mrv set, then in the limit $x \to \infty$ it is $\omega \to 0$ and so 841 842 $2\omega + O(\omega^2) \rightarrow 0$ in (3):

843 (4)
$$f(x) = \frac{1}{x} - \frac{1}{\omega} + \frac{1}{\omega}e^{2\omega} = 2 + \frac{1}{x} + 2\omega + O(\omega^2) \to 2 + \frac{1}{x}$$

Since the result $(2+\frac{1}{x})$ still depends on x, the above procedure is iterated on the 844 result until just a number (independent of x) is obtained, which is the final limit. In 845 the above case the limit is 2, as can be verified by SymPy: 846

>>> limit(exp(x+2*exp(-x))-exp(x) + 1/x, x, oo)

2 848

In general, when f(x) is expanded in terms of ω , it is obtained: 849

850 (5)
$$f(x) = \underbrace{O\left(\frac{1}{\omega^3}\right)}_{\infty} + \underbrace{\frac{C_{-2}(x)}{\omega^2}}_{\infty} + \underbrace{\frac{C_{-1}(x)}{\omega}}_{\infty} + C_0(x) + \underbrace{C_1(x)\omega}_{0} + \underbrace{O(\omega^2)}_{0}$$

- The positive powers of ω are zero. If there are any negative powers of ω , then the 851
- result of the limit is infinity, otherwise the limit is equal to $\lim C_0(x)$. The expression 852
- $C_0(x)$ is simpler than f(x) and so the algorithm always converges. A proof of this, as 853
- well as further details are given in Gruntz's Ph.D. thesis [25]. 854

9.2. Series.

 9.2.1. Series Expansion. SymPy is able to calculate the symbolic series expansion of an arbitrary series or expression involving elementary and special functions and multiple variables. For this it has two different implementations- the series method and Ring Series.

The first approach stores a series as an object of the Basic class. Each function has its specific implementation of its expansion which is able to evaluate the Puiseux series expansion about a specified point. For example, consider a Taylor expansion about 0:

```
864 >>> from sympy import symbols, series
865 >>> x, y = symbols('x, y')
866 >>> series(sin(x+y) + cos(x*y), x, 0, 2)
867 1 + sin(y) + x*cos(y) + 0(x**2)
```

The newer and much faster[1] approach called Ring Series makes use of the observation that a truncated Taylor series, is in fact a polynomial. Ring Series uses the efficient representation and operations of sparse polynomials. The choice of sparse polynomials is deliberate as it performs well in a wider range of cases than a dense representation. Ring Series gives the user the freedom to choose the type of coefficients he wants to have in his series, allowing the use of faster operations on certain types.

For this, several low level methods for expansion of trigonometric, hyperbolic and other elementary functions like inverse of a series, calculating nth root, etc, are implemented using variants of the Newton[12] Method. All these support Puiseux series expansion. The following example demonstrates the use of an elementary function that calculates the Taylor expansion of the sine of a series.

```
880 >>> from sympy import ring
881 >>> from sympy.polys.ring_series import rs_sin
882 >>> R, t = ring('t', QQ)
883 >>> rs_sin(t**2 + t, t, 5)
884 -1/2*t**4 - 1/6*t**3 + t**2 + t
```

The function <code>sympy.polys.rs_series</code> makes use of these elementary functions to expand an arbitrary SymPy expression. It does so by following a recursive strategy of expanding the lower most functions first and then composing them recursively to calculate the desired expansion. Currently it only supports expansion about 0 and is under active development. Ring Series is several times faster than the default implementation with the speed difference increasing with the size of the series. The <code>sympy.polys.rs_series</code> takes as input any SymPy expression and hence there is no need to explicitly create a polynomial <code>ring</code>. An example:

```
>>> from sympy.polys.ring_series import rs_series
>>> from sympy.abc import a, b
>>> from sympy import sin, cos
>>> rs_series(sin(a + b), a, 4)
-1/2*(sin(b))*a**2 + (sin(b)) - 1/6*a**3*(cos(b)) + a*(cos(b))
```

9.2.2. Formal Power Series. SymPy can be used for computing the Formal Power Series of a function. The implementation is based on the algorithm described in the paper on Formal Power Series[26]. The advantage of this approach is that an explicit formula for the coefficients of the series expansion is generated rather than just computing a few terms.

The following example shows how to use fps:

```
>>> f = fps(sin(x), x, x0=0)
904
905
    >>> f.truncate(6)
    x - x^{**3/6} + x^{**5/120} + 0(x^{**6})
906
907
    >>> f[15]
    -x**15/1307674368000
908
         9.2.3. Fourier Series. SymPy provides functionality to compute Fourier Series
909
    of a function using the fourier series function. Under the hood it just computes a0,
910
    an, bn using standard integration formulas.
911
         Here's an example on how to compute Fourier Series in SymPy:
912
913
    >>> L = symbols('L')
    >>> f = fourier series(2 * (Heaviside(x/L) - Heaviside(x/L - 1)) - 1, (x, 0, 2*L))
914
    >>> f.truncate(3)
915
    4*sin(pi*x/L)/pi + 4*sin(3*pi*x/L)/(3*pi) + 4*sin(5*pi*x/L)/(5*pi)
916
917
         9.3. Logic. SymPy supports construction and manipulation of boolean expres-
    sions through the logic module. SymPy symbols can be used as propositional vari-
918
    ables and also be substituted as True or False. A good number of manipulation
919
    features for boolean expressions have been implemented in the logic module.
920
         9.3.1. Constructing boolean expressions. A boolean variable can be de-
921
922
    clared as a SymPy symbol. Python operators &, | and ~ are overloaded for logical
    And, Or and negate. Several others like Xor, Implies can be constructed with ^, »
923
    respectively. The above are just a shorthand, expressions can also be constructed by
924
    directly calling And(), Or(), Not(), Xor(), Nand(), Nor(), etc.
925
    >>> from sympy import *
926
    >>> x, y, z = symbols('x y z')
927
928
    >>> e = (x \& y) | z
    >>> e.subs({x: True, y: True, z: False})
929
930
    True
         9.3.2. CNF and DNF. Any boolean expression can be converted to conjunc-
931
    tive normal form, disjunctive normal form and negation normal form. The API also
    permits to check if a boolean expression is in any of the above mentioned forms.
933
    >>> from sympy.logic.boolalg import is dnf, is cnf
    >> x, y, z = symbols('x y z')
935
    >>> to cnf((x & y) | z)
936
    And (0r(x, z), 0r(y, z))
937
    >>> to dnf(x & (y | z))
938
    Or(And(x, y), And(x, z))
939
    >>> is cnf((x | y) & z)
940
941
    True
942
    >> is dnf((x \& y) | z)
943
    True
         9.3.3. Simplification and Equivalence. The module supports simplification
944
    of given boolean expression by making deductions on it. Equivalence of two expres-
945
946
    sions can also be checked. If so, it is possible to return the mapping of variables of
    two expressions so as to represent the same logical behaviour.
947
    >>> from sympy import *
948
949
    >>> a, b, c, x, y, z = symbols('a b c x y z')
    >>> e = a \& (~a | ~b) \& (a | c)
```

```
>>> simplify(e)
951
952
    And(Not(b), a)
    >>> e1 = a & (b | c)
953
    >>> e2 = (x \& y) | (x \& z)
    >>> bool map(e1, e2)
955
     (And(Or(b, c), a), {a: x, b: y, c: z})
956
```

958

961

968

969

971 972

973

974

975

976

977

978 979

980

981

982

983

9.3.4. SAT solving. The module also supports satisfiability checking of a given boolean expression. If satisfiable, it is possible to return a model for which the expression is satisfiable. The API also supports returning all possible models. The SAT solver has a clause learning DPLL algorithm implemented with watch literal scheme 960 and VSIDS heuristic[32].

```
>>> from sympy import *
962
    >>> a, b, c = symbols('a b c')
963
    >>> satisfiable(a & (~a | b) & (~b | c) & ~c)
964
965
    >>> satisfiable(a & (~a | b) & (~b | c) & c)
966
967
     {a: True, b: True, c: True}
```

9.4. Diophantine Equations. Diophantine equations play a central and an important role in number theory. A Diophantine equation has the form, $f(x_1, x_2, \dots x_n) =$ 0 where $n \geq 2$ and $x_1, x_2, \dots x_n$ are integer variables. If we can find n integers $a_1, a_2, \dots a_n$ such that $x_1 = a_1, x_2 = a_2, \dots x_n = a_n$ satisfies the above equation, we say that the equation is solvable.

Currently, following five types of Diophantine equations can be solved using SymPy's Diophantine module.

- Linear Diophantine equations: $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$
- General binary quadratic equation: $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- Homogeneous ternary quadratic equation: $ax^2+by^2+cz^2+dxy+eyz+fzx=0$
- Extended Pythagorean equation: $a_1x_1^2 + a_2x_2^2 + \cdots + a_nx_n^2 = a_{n+1}x_{n+1}^2$ General sum of squares: $x_1^2 + x_2^2 + \cdots + x_n^2 = k$

When an equation is fed into Diophantine module, it factors the equation (if possible) and solves each factor separately. Then all the results are combined to create the final solution set. Following examples illustrate some of the basic functionalities of the Diophantine module.

```
>>> from sympy import symbols
984
     >>> x, y, z = symbols("x, y, z", integer=True)
985
986
     >>> from sympy.solvers.diophantine import *
987
988
     >>> diophantine(2*x + 3*y - 5)
     set([(3*t 0 - 5, -2*t 0 + 5)])
989
990
    >>> diophantine(2*x + 4*y - 3)
991
     set()
992
993
    \Rightarrow diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)
994
995
     set([(2, 1), (5, 1)])
996
     >>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)
997
     set([(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)])
998
999
```

```
\Rightarrow diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)
1000
1001
     set([(-16*p**2 + 28*p*q + 20*q**2,
1002
     3*p**2 + 38*p*q - 25*q**2,
     4*p**2 - 24*p*q + 68*q**2)])
1003
1004
1005
     >>> from sympy.abc import a, b, c, d, e, f
     >>> diophantine(9*a**2 + 16*b**2 + c**2 + 49*d**2 + 4*e**2 - 25*f**2)
1006
     set([(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5,
     420*t2*t5, 60*t3*t5, 210*t4*t5,
1008
     42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 + 42*t5**2)])
1009
1010
     >>> diophantine(a^{**2} + b^{**2} + c^{**2} + d^{**2} + e^{**2} + f^{**2} - 112)
1011
     set([(8, 4, 4, 4, 0, 0)])
1012
```

9.5. Sets. SymPy supports representation of a wide variety of mathematical sets. This is achieved by first defining abstract representations of atomic set classes and then combining and transforming them using various set operations.

Each of the set classes inherits from the base class Set and defines methods to check membership and calculate unions, intersections, and set differences. When these methods are not able to evaluate to atomic set classes, they are represented as abstract unevaluated objects.

SymPy has the following atomic set classes:

1029

1042

- EmptySet represents the empty set \emptyset .
- UniversalSet is an abstract "universal set" for which everything is a member. The union of the universal set with any set gives the universal set and the intersection gives to the other set itself.
- FiniteSet is functionally equivalent to Python's built inset object. Its members can be any SymPy object including other sets themselves.
- Integers represents the set of Integers \mathbb{Z} .
- \bullet Naturals represents the set of Natural numbers $\mathbb N,$ i.e., the set of positive integers.
- Naturals0 represents the whole numbers, which are all the non-negative integers.
- Range represents a range of integers. A range is defined by specifying a start value, an end value, and a step size. Range is functionally equivalent to Python's range except it supports infinite endpoints, allowing the representation of infinite ranges.
- Interval represents an interval of real numbers. It is specified by giving the start and end point and specifying if it is open or closed in the respective ends.

Other than unevaluated classes of Union, Intersection and Set Difference operations, we have following set classes.

- ProductSet defines the Cartesian product of two or more sets. The product set is useful when representing higher dimensional spaces. For example to represent a three-dimensional space we simply take the Cartesian product of three real sets.
- ImageSet represents the image of a function when applied to a particular set. In notation, the image set of a function F with respect to a set S is $\{F(x)|x\in S\}$. SymPy uses image sets to represent sets of infinite solutions equations such as $\sin(x)=0$.

• ConditionSet represents subset of a set whose members satisfies a particular condition. In notation, the condition set of the set S with respect to the condition H is $\{x|H(x), x \in S\}$. SymPy uses condition sets to represent the set of solutions of equations and inequalities, where the equation or the inequality is the condition and the set is the domain being solved over.

A few other classes are implemented as special cases of the classes described above. The set of real numbers, Reals is implemented as a special case of Interval, $(-\infty, \infty)$. ComplexRegion is implemented as a special case of ImageSet. ComplexRegion supports both polar and rectangular representation of regions on the complex plane.

- **9.6.** Category Theory. SymPy includes a basic version of the module for dealing with categories abstract mathematical objects representing classes of structures as classes of objects (points) and morphisms (arrows) between the objects. This version of the module was designed with the following two goals in mind:
 - 1. automatic typesetting of diagrams given by a collection of objects and of morphisms between them, and
 - 2. specification and (semi-)automatic derivation of properties using commutative diagrams.

At the time of writing of this paper, the version in the master branch only implements the first goal, while a (very partially working) draft of implementation of the second goal is available at https://github.com/scolobb/sympy/tree/ct4-commutativity.

In order to achieve the two goals, the module categories defines several classes representing some of the essential concepts: objects, morphisms, categories, diagrams. Since in category theory the inner structure of its objects is often discarded (in the favour of studying the properties of morphisms), the class Object is essentially a synonym of the class Symbol. There are several morphism classes which do not have a particular internal structure either, except for CompositeMorphism, which essentially stores a list of morphisms. To capture the properties of morphisms, the class Diagram is expected to be used. This class stores a family of morphisms, the corresponding source and target objects, and, possibly, some properties of the morphisms. Generally, no restrictions are imposed on what the properties may be — for example, one might use strings of the form "forall", "exists", "unique", etc. Furthermore, the morphisms of a diagram are grouped into premises and conclusions, in order to be able to represent logical implications of the form "for a collection of mophisms P with properties p: $P \to \Omega$ (the premises), there exists a collection of morphisms C with properties $c: C \to \Omega$ (the conclusions)", where Ω is the universal collection of properties. Finally, the class Category includes a collection of diagrams which are deemed commutative and which therefore define the properties of this category.

Automatic typesetting of diagrams takes a Diagram and produces LATEX code using the Xy-pic package. Typesetting is done in two stages: layout and generation of Xy-pic code. The layout stage is taken care of by the class DiagramGrid which takes a Diagram and lays out the objects in a grid, trying to reduce the average length of the arrows in the final picture. By default, DiagramGrid uses a series of triangle-based heuristics to produce a rectangular grid. A linear layout can also be imposed. Furthermore, groups of objects can be given; in this case, the groups will be treated as atomic cells, and the member objects will be typeset independently of the other objects.

The second phase of diagram typesetting consists in actually drawing the picture and is carried out by the class <code>XypicDiagramDrawer</code>. An example of a diagram automatically typeset by <code>DiagramgGrid</code> and <code>XypicDiagramDrawer</code> in given in Figure 3.

Fig. 3: An automatically typeset commutative diagram

As far as the second main goal of the module is concerned, a (non-working) draft of an implementation is in https://github.com/scolobb/sympy/tree/ct4-commutativity. The principal idea consists in automatically deciding whether a diagram is commutative or not, given a collection of "axioms" — diagrams *known* to be commutative. The approach to implementation is based on graph embeddings (injective maps): whenever an embedding of a commutative diagram into a given diagram is found, one concludes that that subdiagram is commutative. Deciding commutativity of the whole diagram is therefore based (theoretically) on finding a "cover" of the target diagram by embeddings of the axioms. The naïve implementation proved to be prohibitively slow; a better optimised version is therefore in order, as well as application of heuristics.

 Contributions to automatic inference of commutativity of diagrams are welcome. The source code (both the one in master and in ct4-commutativity) is extensively documented. Even more extensive explanations (including some literary chatter) are given in https://scolobb.wordpress.com/.

9.7. SymPy Gamma. SymPy Gamma is a simple web application that runs on Google App Engine. It executes and displays the results of SymPy expressions as well as additional related computations, in a fashion similar to that of Wolfram Alpha. For instance, entering an integer will display its prime factors, digits in the base-10 expansion, and a factorization diagram. Entering a function will display its docstring; in general, entering an arbitrary expression will display its derivative, integral, series expansion, plot, and roots.

SymPy Gamma also has several additional features than just computing the results using SymPy.

• It displays integration steps, differentiation steps in detail, which can be viewed in Figure 4:

1125

1126

11271128

1129

1130

1131

1132

1133

1134

1135

1136

1137 1138

1139

1140

1141 1142

Integral Steps: integrate(tan(x), x) Fullscreen 1. Rewrite the integrand: $\tan(x) = \frac{\sin(x)}{\cos(x)}$ 2. Let $u = \cos(x)$. Then let $du = -\sin(x)dx$ and substitute du: $\int -\frac{1}{u} du$ The integral of a constant times a function is the constant times the integral of the function: $\int -\frac{1}{u} du = -\int \frac{1}{u} du$ I. The integral of $\frac{1}{u}$ is $\log(u)$. So, the result is: $-\log(u)$ Now substitute u back in: $-\log(\cos(x))$ Add the constant of integration: $-\log(\cos(x)) + \text{constant}$ The answer is: $-\log(\cos(x)) + \text{constant}$

Fig. 4: Integral steps of tan(x)

- It also displays the factor tree diagrams for different numbers.
- SymPy Gamma also saves user search queries, and offers many such similar features for free, which Wolfram|Alpha only offers to its paid users.

Every input query from the user on SymPy Gamma is first, parsed by its own parser, which handles several different forms of function names, which SymPy as a library doesn't support. For instance, SymPy Gamma supports queries like sin x, whereas SymPy doesn't support this, and supports only sin(x).

This parser converts the input query to the equivalent SymPy readable code, which is then eventually processed by SymPy and the result is finally formatted in LaTeX and displayed on the SymPy Gamma web-application.

9.8. SymPy Live. SymPy Live is an online Python shell, which runs on Google App Engine, that executes SymPy code. It is integrated in the SymPy documentation examples, located at this link.

This is accomplished by providing a HTML/JavaScript GUI for entering source code and visualization of output, and a server part which evaluates the requested source code. It's an interactive AJAX shell, that runs SymPy code using Python on the server.

Certain Features of SymPy Live:

- It supports the exact same syntax as SymPy, hence it can be used easily, to test for outputs of various SymPy expressions.
- It can be run as a standalone app or in an existing app as an admin-only handler, and can also be used for system administration tasks, as an interactive way to try out APIs, or as a debugging aid during development.
- It can also be used to plot figures (link), and execute all kinds of expressions that SymPy can evaluate.
- SymPy Live also formats the output in LaTeX for pretty-printing the output.

9.9. Comparison with Mathematica. Wolfram Mathematica is a popular proprietary CAS. It features highly advanced algorithms. Mathematica has a core implemented in C++ [6] which interprets its own programming language (know as Wolfram language).

Analogously to Lisp's S-expressions, Mathematica uses its own style of M-expressions, which are arrays of either atoms or other M-expression. The first element of the expression identifies the type of the expression and is indexed by zero, whereas the first argument is indexed by one. Notice that SymPy expression arguments are stored in a Python tuple (that is, an immutable array), while the expression type is identified by the type of the object storing the expression.

Mathematica can associate attributes to its atoms. Attributes may define mathematical properties and behavior of the nodes associated to the atom. In SymPy, the usage of static class fields is roughly similar to Mathematica's attributes, though other programming patterns may also be used the achieve an equivalent behavior, such as class inheritance.

Unlike SymPy, Mathematica's expressions are mutable, that is one can change parts of the expression tree without the need of creating a new object. The reactivity of Mathematica allows for a lazy updating of any references to that data structure.

Products in Mathematica are determined by some builtin node types, such as Times, Dot, and others. Times is overloaded by the * operator, and is always meant to represent a commutative operator. The other notable product is Dot, overloaded by the . operator. This product represents matrix multiplication, it is not commutative. SymPy uses the same node for both scalar and matrix multiplication, the only exception being with abstract matrix symbols. Unlike Mathematica, SymPy determines commutativity with respect to multiplication from the factor's expression type. Mathematica puts the Orderless attribute on the expression type.

Regarding associative expressions, SymPy handles associativity by making associative expressions inherit the class AssocOp, while Mathematica specifies the Flat[2] attribute on the expression type.

Mathematica relies heavily on pattern matching: even the so-called equivalent of function declaration is in reality the definition of a pattern matching generating an expression tree transformation on input expressions. Mathematica's pattern matching is sensitive to associative[2], commutative[3], and one-identity[4] properties of its expression tree nodes[5]. SymPy has various ways to perform pattern matching. All of them play a lesser role in the CAS than in Mathematica and are basically available as a tool to rewrite expressions. The differential equation solver in SymPy somewhat relies on pattern matching to identify the kind of differential equation, but it is envisaged to replace that strategy with analysis of Lie symmetries in the future. Mathematica's real advantage is the ability to add new overloading to the expression builder at runtime, or for specific subnodes. Consider for example

In[1]:= Unprotect[Plus]

1153

```
1192

1193  Out[1]= {Plus}

1194

1195  In[2]:= Sin[x_]^2 + Cos[y_]^2 := 1

1196

1197  In[3]:= x + Sin[t]^2 + y + Cos[t]^2

1198

1199  Out[3]= 1 + x + y
```

1226

1235

This expression in Mathematica defines a substitution rule that overloads the functionality of the Plus node (the node for additions in Mathematica). The trailing underscore after a symbol means that it is to be considered a wildcard. This example may not be practical, one may wish to keep this identity unevaluated, nevertheless it clearly illustrates the potentiality to define one's own immediate transformation rules. In SymPy the operations constructing the addition node in the expression tree are Python class constructors, and cannot be modified at runtime. The way SymPy deals with extending the missing runtime overloadability functionality is by subclassing the node types. Subclasses may overload the class constructor to yield the proper extended functionality.

Unlike SymPy, Mathematica does not support type inheritance or polymorphism [18]. SymPy relies heavily on class inheritance, but for the most part, class inheritance is used to make sure that SymPy objects inherit the proper methods and implement the basic hashing system. Associativity of expressions can be achieved by inheriting the class Assocop, which may appear a more cumbersome operation than Mathematica's attribute setting.

Matrices in SymPy are types on their own. In Mathematica, nested lists are interpreted as matrices whenever the sublists have the same length. The main difference to SymPy is that ordinary operators and functions do not get generalized the same way as used in traditional mathematics. Using the standard multiplication in Mathematica performs an elementwise product, this is compatible with Mathematica's convention of commutativity of Times nodes. Matrix product is expressed by the *dot* operator, or the Dot node. The same is true for the other operators, and even functions, most notably calling the exponential function Exp on a matrix returns an elementwise exponentiation of its elements. The real matrix exponentiation is available through the MatrixExp function.

Unevaluated expressions can be achieved in various ways, most commonly with the HoldForm or Hold nodes, that block the evaluation of subnodes by the parser. Note that such a node cannot be expressed in Python, because of greedy evaluation. Whenever needed in SymPy, it is necessary to add the parameter evaluate=False to all subnodes, or put the input expression in a string.

The operator == returns a boolean whenever it is able to immediately evaluate the truthness of the equality, otherwise it returns an Equal expression. In SymPy == means structural equality and is always guaranteed to return a boolean expression. To express an equality in SymPy it is necessary to explicitly construct the Equality class.

SymPy, in accordance with Python and unlike the usual programming convention, uses ** to express the power operator, while Mathematica uses the more common ^.

 $^{^4}$ In reality, Python supports monkey patching, nonetheless it is a discouraged programming pattern.

9.10. Other Projects that use SymPy. There are several projects that use SymPy as a library for implementing a part of their project, or even as a part of back-end for their application as well.

Some of them are listed below:

1254

1265

1280

1286

- Cadabra: Cadabra is a symbolic computer algebra system (CAS) designed specifically for the solution of problems encountered in field theory.
- Octave Symbolic: The Octave-Forge Symbolic package adds symbolic calculation features to GNU Octave. These include common Computer Algebra System tools such as algebraic operations, calculus, equation solving, Fourier and Laplace transforms, variable precision arithmetic and other features.
- SymPy.jl: Provides a Julia interface to SymPy using PyCall.
- Mathics: Mathics is a free, general-purpose online CAS featuring Mathematica compatible syntax and functions. It is backed by highly extensible Python code, relying on SymPy for most mathematical tasks.
- Mathpix: An iOS App, that uses Artificial Intelligence to detect handwritten math as input, and uses SymPy Gamma, to evaluate the math input and generate the relevant steps to solve the problem.
- **IKFast**: IKFast is a robot kinematics compiler provided by OpenRAVE. It analytically solves robot inverse kinematics equations and generates optimized C++ files. It uses SymPy for its internal symbolic mathematics.
- Sage: A CAS, visioned to be a viable free open source alternative to Magma, Maple, Mathematica and Matlab.
- SageMathCloud: SageMathCloud is a web-based cloud computing and course management platform for computational mathematics.
- PyDy: Multibody Dynamics with Python.
- galgebra: Geometric algebra (previously sympy.galgebra).
- yt: Python package for analyzing and visualizing volumetric data (yt.units uses SymPy).
- SfePy: Simple finite elements in Python, see section 9.11.1.
- Quameon: Quantum Monte Carlo in Python.
- Lcapy: Experimental Python package for teaching linear circuit analysis.
- Quantum Programming in Python: Quantum 1D Simple Harmonic Oscillator and Quantum Mapping Gate.
- LaTeX Expression project: Easy LaTeX typesetting of algebraic expressions in symbolic form with automatic substitution and result computation.
- Symbolic statistical modeling: Adding statistical operations to complex physical models.
- **9.11. Project Details.** Below we provide particular examples of SymPy use in some of the projects listed above.
- **9.11.1.** SfePy. SfePy (Simple finite elements in Python), cf. [17]. is a Python package for solving partial differential equations (PDEs) in 1D, 2D and 3D by the finite element (FE) method [51]. SymPy is used within this package mostly for code generation and testing, namely:
 - generation of the hierarchical FE basis module, involving generation and symbolic differentiation of 1D Legendre and Lobatto polynomials, constructing the FE basis polynomials [44] and generating the C code;
 - generation of symbolic conversion formulas for various groups of elastic constants [22] provide any two of the Young's modulus, Poisson's ratio, bulk modulus, Lamé's first parameter, shear modulus (Lamé's second parameter)

or longitudinal wave modulus and get the other ones;

- simple physical unit conversions, generation of consistent unit sets;
- testing FE solutions using method of manufactured (analytical) solutions —
 the differential operator of a PDE is symbolically applied and a symbolic
 right-hand side is created, evaluated in quadrature points, and subsequently
 used to obtain a numerical solution that is then compared to the analytical
 one;
- testing accuracy of 1D, 2D and 3D numerical quadrature formulas (cf. [7]) by generating polynomials of suitable orders, integrating them, and comparing the results with those obtained by the numerical quadrature.
- **9.12. Tensors.** Ongoing work to provide the capabilities of tensor computer algebra has so far produced the tensor module. It is composed of three separated submodules, whose purposes are quite different: tensor.indexed and tensor.indexed_methods support indexed symbols, tensor.array contains facilities to operator on symbolic N-dimensional arrays and finally tensor.tensor is used to defineabstract tensors. The abstract tensors subsection is inspired by xAct[31] and Cadabra[36]. Canonicalization based on the Butler-Portugal[30] algorithm is supported in SymPy. It is currently limited to polynomial tensor expressions.