Recurrence Relations

Recurrence

- A function defined in terms of
 - -one or more base cases, and
 - itself, with smaller arguments.

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ T(n-1) + 1 & \text{if } n > 1. \end{cases}$$

Solution: T(n) = n.

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n \ge 1. \end{cases}$$

Solution: $T(n) = n \lg n + n$.

Contd...

$$T(n) = \begin{cases} 0 & \text{if } n = 2, \\ T(\sqrt{n}) + 1 & \text{if } n > 2. \end{cases}$$
Solution: $T(n) = \lg \lg n$.

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ T(n/3) + T(2n/3) + n & \text{if } n > 1. \end{cases}$$
Solution: $T(n) = \Theta(n \lg n).$

Solving Recurrences

- Substitution method,
- Recursion-tree method, and
- Master method.

Master Method

Provides bounds for recurrences of the form

$$T(n) = aT(n/b) + f(n)$$

- where $a \ge 1$, b > 1, and f(n) is a given function.
- Such recurrences characterizes a divide-andconquer algorithm that
 - -Creates 'a' sub-problems, each of which is '1/b' the size of the original problem.
 - Takes 'f(n)' time in the divide and combine steps together.

Master Theorem

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If there exists a constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If there exists a constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.
- 3. If there exists a constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and if f(n) additionally satisfies the *regularity condition* $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Compare $n^{\log_b a}$ vs. f(n)

Example:

$$T(n) = 4T(n/2) + n$$

Reading from the equation, a=4, b=2, and f(n)=n.

Is
$$n = O(n^{\log_2 4 - \epsilon}) = O(n^{2 - \epsilon})$$
?

Yes, so case 1 applies and $T(n) = \theta(n^2)$.

Contd...

$$T(n) = 4T(n/2) + n^2$$

Reading from the equation, a=4, b=2, and $f(n)=n^2$.

Is
$$n^2 = O(n^{\log_2 4 - \epsilon}) = O(n^{2 - \epsilon})$$
?

No, if $\epsilon > 0$, but it is true if $\epsilon = 0$, so case 2 applies and $T(n) = \Theta(n^2 \log n)$.

Contd...

$$T(n) = 4T(n/2) + n^3$$

Reading from the equation, a=4, b=2, and $f(n)=n^3$.

Is
$$n^3 = \Omega(n^{\log_2 4 + \epsilon}) = \Omega(n^{2 + \epsilon})$$
?

Yes, for $0 < \epsilon$, so case 3 might apply.

Is
$$4(n/2)^3 \le c \cdot n^3$$
?

Yes, for $c \ge 1/2$, so there exists a c < 1 to satisfy the regularity condition, so case 3 applies and $T(n) = \Theta(n^3)$.