1. • Show that x(t) satisfies $||A^{-1}x(t)||^2 = 1$.

$$||A^{-1}x(t)||^{2} = ||A^{-1}Au(t)||^{2}$$

$$= ||u(t)||^{2}$$

$$= ||\cos(t)| \sin(t)| ||^{2}$$

$$= \cos^{2}(t) + \sin^{2}(t)$$

$$= 1$$

• Show that the equation above may be written as $x \cdot Mx = 1$.

$$x \cdot Mx = x^{T} Mx$$

$$= x^{T} (A^{-1})^{T} A^{-1} x$$

$$= (A^{-1}x)^{T} A^{-1} x$$

$$= A^{-1}x \cdot A^{-1} x$$

$$= ||A^{-1}x||^{2}$$

$$= 1.$$

• Show that M is symmetric.

$$M^{T} = ((A^{-1})^{T} A^{-1})^{T}$$

$$= (A^{-1})^{T} ((A^{-1})^{T})^{T}$$

$$= (A^{-1})^{T} A^{-1}$$

$$= M$$

• Suppose $M = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$. We must show that $x \cdot Mx$ can be written as $ax^2 + by^2 + 2cxy$.

$$1 = x \cdot Mx$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ c & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} ax + cy \\ cx + by \end{bmatrix}$$

$$= ax^2 + by^2 + 2cxy.$$

- Show that both λ_1 and λ_2 are positive. Since $x \cdot Mx = ||A^{-1}x||^2$, then all outputs of $x \cdot Mx$ are strictly positive. Suppose $x = u_1$, then $u_1 \cdot Mu_1 = u_1 \cdot \lambda_1 u_1 = \lambda_1 ||u_1||^2 = \lambda_1 > 0$. A similar proof exists for u_2 . Therefore the eigenvalues are strictly positive.
 - Suppose $\lambda_1 = \lambda_2$. We must show that $||x(t)|| = \frac{1}{\sqrt{\lambda_1}}$. Let U be the matrix where u_1 and u_2 are columns. Since u_1, u_2 are orthonormal, then U is an orthogonal

matrix. Therefore $U^{-1} = U^T$. Let $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, and let $q = \begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} = U^T x$. Therefore we may rewrite $x \cdot Mx$ as follows:

$$1 = x \cdot Mx = q \cdot Dq = \lambda_1 q_1^2(t) + \lambda_2 q_2^2(t).$$

This equation defines an ellipse paramaterized by $q_1(t) = \pm \frac{1}{\lambda_1} \cos(t), q_2(t) = \pm \frac{1}{\lambda_2} \sin(t)$. Since $q = V^T x$, then we may explicitly solve for x via $x = Vq = \pm (\frac{1}{\lambda_1} \cos(t)u_1 + \frac{1}{\lambda_2} \sin(t)u_2)$. Therefore if $\lambda_1 = \lambda_2$, then $||x|| = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2}} = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_1}} = \frac{1}{\sqrt{\lambda_1}}$.

- Consider the case where $\lambda_1 > \lambda_2$. Note that $||x||^2 = \frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2} = u \cdot \begin{bmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{bmatrix} u$, let the matrix in the quadratic function above be denoted S^2 . By lemma 19 in the previous carlen multivarible textbook, $||x||^2$ on the unit circle is maximized and minimized by the eigenvalues of S^2 . For the matrix S^2 the eigenvalues are obviously $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$. Since $\lambda_1 > \lambda_2$, then $\frac{1}{\lambda_1} < \frac{1}{\lambda_2}$, therefore making $\frac{1}{\lambda_2}$ the maximum of $||x||^2$, and therefore forcing $\frac{1}{\lambda_1}$ to be the minimum. Since $\sqrt{}$ is a monotonically increasing function on \mathbb{R}_+ , then ||x|| has a maximum of $\frac{1}{\sqrt{\lambda_2}}$ and a minimum of $\frac{1}{\sqrt{\lambda_1}}$. We must show that ||x|| is maximal if and only if $x(t) = \pm \frac{1}{\lambda_2} u_2$.
 - Suppose $x(t) = \pm \frac{1}{\lambda_2} u_2$. We must show that ||x(t)|| is maximal.

$$||x(t)|| = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2}} \le \sqrt{\frac{\cos^2(t)}{\lambda_2} + \frac{\sin^2(t)}{\lambda_2}} = \frac{1}{\sqrt{\lambda_2}} = ||\pm \frac{1}{\sqrt{\lambda_2}}u_2||$$

- Suppose ||x(t)|| is maximal. We must show that $x(t) = \pm \frac{1}{\lambda_2} u_2$. Since x^2 is strictly increasing on \mathbb{R}_+ then $||x(t)||^2$ is maximal. This is equivalent to $\begin{bmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{bmatrix}$
- 3. Let

$$v_1 = \frac{1}{\sqrt{\lambda_1}} A^{-1} u_1, v_2 = \frac{1}{\sqrt{\lambda_2}} A^{-1} u_2.$$

• Show that $\{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 . By definition of orthonormal basis we must show that $v_1 \cdot v_2 = 0$, $v_1 \cdot v_1 = v_2 \cdot v_2 = 1$.

$$v_1 \cdot v_2 = v_1^T v_2$$

$$= \frac{1}{\sqrt{\lambda_1}} (A^{-1} u_1)^T \frac{1}{\sqrt{\lambda_2}} A^{-1} u_2$$

$$= \frac{1}{\sqrt{\lambda_1 \lambda_2}} u_1^T (A^{-1})^T A^{-1} u_2$$

$$= \frac{1}{\sqrt{\lambda_1 \lambda_2}} \lambda_2 u_1^T u_2$$

$$= 0$$

_

$$v_1 \cdot v_1 =$$