

CLAIM LISTING

No claims are canceled, amended or added by this paper. The following is a listing of claims pending in this case.

1. **(Previously Presented)** A method for performing OTDM, said method comprising the following steps:

- a) generating n bit streams of approximately B Gb/s from respectively n tunable laser beams having respectively wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n ;
- b) generating from said n bit streams n group velocity dispersed bit streams by introducing group velocity dispersion into said n bit streams;
- c) combining said n group velocity dispersed bit streams into a composite bit stream of approximately nB Gb/s; and
- d) in response to misalignment of bits within said composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create OTDM time differential between consecutive bits within said composite bit stream.

2. **(Previously Presented)** The method of Claim 1, further comprising the following steps:

- e) generating a single-wavelength composite bit stream of approximately wavelength λ_v and nB Gb/s by operating on said composite bit stream with a wavelength converter; and
- f) in response to misalignment of bits within said single-wavelength composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create OTDM time differential between consecutive bits within said single-wavelength composite bit stream.

3. **(Original)** An OTDM transmitter, comprising:

- a) n channels of bit streams D1, D2, ... and Dn having respectively wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n , wherein for j = 1 to n, the j-th channel comprises:
 - j1) a tunable laser source Sj providing a bit stream Bj of approximately B Gb/s; and
 - j2) a group velocity dispersive element Ej coupled to said Sj, introducing group velocity dispersion into said Bj to generate said Dj;
- b) a combiner coupled to said n channels and adapted to optically combine said D1, D2, and Dn into a composite bit stream of approximately nB Gb/s; and
- c) a wavelength converter coupled to said combiner and adapted to convert said composite bit stream into a single-wavelength composite bit stream of approximately nB Gb/s to be transmitted through an optical link, wherein OTDM time differential can be created between consecutive bits of said single-wavelength composite bit stream by tuning $\lambda_1, \lambda_2, \dots$ and λ_n .

4. **(Previously Presented)** A method for performing OTDM transmission, said method comprising the steps of:

- a) generating n bit streams of approximately B Gb/s from respectively n tunable laser beams having respectively initial wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n ;
- b) generating n group velocity dispersed bit streams by introducing group velocity dispersion into said n bit streams;
- c) combining said n group velocity dispersed bit streams into a composite bit stream of approximately nB Gb/s;
- d) generating a single-wavelength composite bit stream of wavelength λ_v by wavelength converting said composite bit stream with a wavelength converter;
- e) in response to misalignment of bits within said single-wavelength composite bit stream, tuning said $\lambda_1, \lambda_2, \dots$ and λ_n to create OTDM time differential between consecutive bits within said single-wavelength composite bit stream; and
- f) transmitting said single-wavelength composite bit stream by launching said single-wavelength composite bit stream into an optical transmission link.

5. **(Previously Presented)** A WDM system, comprising:

a) m OTDM channels, wherein for $k = 1$ to m , the k -th OTDM channel comprises:

 kl) n channels V_{k1}, V_{k2}, \dots and V_{kn} providing respectively bit streams D_{k1}, D_{k2}, \dots and D_{kn} having respectively wavelengths of $\lambda_{k1}, \lambda_{k2}, \dots$ and λ_{kn} , wherein for $j = 1$ to n , the j -th channel V_{kj} comprises:

 kj 1) a tunable laser source S_{kj} providing a bit stream B_{kj} of approximately B Gb/s; and

 kj2) a group velocity dispersive element E_{kj} coupled to said S_{kj} , introducing group velocity dispersion into said B_{kj} to generate said D_{kj} ;

 k2) a combiner coupled to said n channels and adapted to optically combine said n bit streams into a composite bit stream U_k ;

 k3) a wavelength converter coupled to said combiner and adapted to convert said composite bit stream into a single-wavelength composite bit stream A_k of wavelength λ_{vk} , wherein OTDM time differential can be created between consecutive bits of said A_k by tuning $\lambda_{k1}, \lambda_{k2}, \dots$ and λ_{kn} ; and

 b) a WDM multiplexer coupled to said m OTDM channels, with said WDM multiplexer adapted to generate a composite optical signal with a data rate of approximately mnB Gb/s.

6. **(Original)** An OTDM subsystem for performing optical time-division-multiplexing, said OTDM subsystem comprising:

a) n channels of bit streams D_1, D_2, \dots and D_n having respectively wavelengths of $\lambda_1, \lambda_2, \dots$ and λ_n , wherein for $j = 1$ to n , the j -th channel comprises:

 j 1) a tunable laser source S_j providing a bit stream B_j of approximately B Gb/s; and

 j2) a group velocity dispersive element E_j coupled to said S_j , introducing group velocity dispersion into said B_j to generate said D_j ;

 b) a combiner coupled to said N channels and adapted to optically combine said D_1, D_2, \dots and D_n into a composite bit stream of approximately nB Gb/s, wherein OTDM time differential can be created between consecutive bits of said composite bit stream by tuning $\lambda_1, \lambda_2, \dots$ and λ_n .

7. **(Previously Presented)** The method according to claims 2 or 4, wherein return-to-zero (RZ) format is used in generating bit streams.

8. **(Previously Presented)** The method according to claims 1, 2 or 4, wherein said B Gb/s is 10 Gb/s, and wherein said n is 4.

9. **(Previously Presented)** The method according to claims 1, 2 or 4, wherein said B Gb/s is 40 Gb/s, and wherein said n is 4.

10. **(Previously Presented)** The device according to claims 3 or 5, wherein said wavelength converter is a vertical lasing semiconductor optical amplifier (VLSOA), and wherein said single wavelength is generated from the vertical lasing of said VLSOA.

11. **(Previously Presented)** The device according to claims 3 or 5, wherein said wavelength converter uses four-wave mixing.

12. **(Previously Presented)** The device according to claims 3 or 5, wherein said wavelength converter is a MZ-SOA.

13. **(Previously Presented)** The device according to claims 3 or 5, wherein said wavelength converter is a SOA.

14. **(Original)** The method of Claim 1, wherein said n bit streams are generated by modulating respectively n CW tunable laser sources.

15. **(Original)** The method of Claim 1, wherein said n bit streams are generated respectively by n directly modulated tunable laser sources.

16. **(Original)** The OTDM transmitter of Claim 3, wherein for said j=1 to n, said Sj in said j-th channel is a CW tunable laser that is coupled to a modulator Mj, said Mj modulating a laser beam Lj generated by said Sj into said Bj.

17. **(Original)** The OTDM transmitter of Claim 3, wherein for said j=1 to n, said Sj in said j-th channel is a tunable laser that is directly modulated.

18. **(Original)** The method of Claim 4, wherein said n bit streams are generated by modulating respectively n CW tunable laser sources.

19. **(Original)** The method of Claim 4, wherein said n bit streams are generated respectively by n directly modulated tunable laser sources.
20. **(Original)** The WDM system of Claim 5, wherein for k=1 to m and j = 1 to n, said tunable laser source Skj in said j-th channel Vkj is a tunable CW laser source that is coupled to a modulator Mkj, said Mkj modulating a laser beam Lkj produced from said Skj into said stream Bkj.
21. **(Original)** The WDM system of Claim 5, wherein for k=1 to m and j = 1 to n, said tunable laser source Skj in said j-th channel Vkj is a tunable laser that is directly modulated.
22. **(Original)** The OTDM subsystem of Claim 6, wherein for said j=1 to n, said Sj in said j-th channel is a CW tunable laser that is coupled to a modulator Mj, said Mj modulating a laser beam Lj generated by said Sj into said Bj.
23. **(Original)** The OTDM subsystem of Claim 6, wherein for said j=1 to n, said Sj in said j-th channel is a tunable laser that is directly modulated.