Lab 03

Trigonometric Functions Description

In this lab, you will use a hardware description to approximate the sine and cosine functions in hardware using Taylor series.

Procedure

Introduction and Background

• The instructor will introduce the topic for today's lab and give a brief lecture on the background of trigonometric function representation using Taylor series.

Discussion of Hardware

- The subject of today's lab is a black box, with the following properties:
 - Input x angle in radians
 - ullet 4 bits integer, 16 bits fraction, range roughly $[-3,\,3]$
 - Output $\sin x$ and $\cos x$
 - Output as integers, but divide by 2^{16}
 - Range [-1, 1]

Hardware Description Review

1. Download the VHDL file [lab03.vhd] from Canvas and place it in a new folder titled Lab03.

- 2. Open Vivado and create a new project.
 - From the Quick Start menu, select Create Project.
 - Click Next.
 - On the second page, if desired, give the project an appropriate and change the location. Click Next.
 - Ensure RTL Project is selected. Click Next.
 - On the Add Sources page, click Add Files and add lab03.vhd from where you
 downloaded it.
 - Ensure Copy sources into project is checked. Click Next.
 - Click next constraints are not needed for this lab.
 - Select the following:
 - Category: General Purpose
 - Family: Artix-7
 - Package: cpg236
 - Speed: -1
 - Finally, select the middle option: xc7a35tcpg236-1.
 - Click Next.
 - · Click Finish.
- 3. When Vivado finishes creating the project, run synthesis.
 - From the left side pane, click Run Synthesis.
 - If a popup appears, click ok.
 - After synthesis completes, you may see a popup with the options Run Implementation, Open Synthesized Design, and View Reports.
 - Here you can either click Cancel, or select View Reports and click OK.
- 4. While we wait for synthesis to complete, open the file in the editor, and follow along with the instructor to review the hardware description.
 - To do this: inside the Project Manager pane, under the Sources subpane, and under the Design Sources folder, double-click the lab03.vhd file.

Hardware Simulation

- 5. Make a copy of the template datasheet for your lab group's simulation results: https://docs.google.com/spreadsheets/d/1VU7yeTY62XRbNFxh09OKpoA-UU9S5EVNhFx7ttC47xc/edit?usp=sharing
- 6. Follow along with the instructor to review the testing and verification program: https://pl.kotl.in/3zbv8P94-

- 7. Setup the behavioral simulation.
 - In Vivado, from the left side pane, click Run Simulation, then Run Behavioral Simulation.
 - Minimize the two panes on the left with Scope and Objects tabs to make the wave view bigger.
 - Optionally, minimize the bottom pane (Tcl Console/Messages/Log).
 - Optionally, drag the handle next to Value to make the columns larger.
 - Set the radix for x to Binary.
 - Within the waveform graph, under the Name column, right-click the input x.
 - Click Radix, and select Binary.
 - Similarly, set the radix for sin_x and cos_x to Signed Decimal.
- 8. Run the simulation with various input values. Record results in your datasheet.
 - Right-click x and select Force constant.
 - Change the value radix to Binary.
 - Using the test program, determine the binary value of $\pi/6$.
 - Enter the binary value provided by the test program as the Force value.
 - Click ok.
 - At the top, run for a specified time by clicking the play button with (T) under it. Alternatively, press Shift+F2.
 - This is directly left of the text box and dropdown with 10 and us, respectively.
 - Your value may be us (microseconds) or ns (nanoseconds). You can change to ns if desired. For this lab, it does not matter, but technically the latter is more realistic.
 - At this point, you should see the value you entered along with the intermediate values and the outputs.
 - Note that the intermediate values will be inside the arrays, below sin_x and cos_x.
- 9. Repeat step 8 for all values in the datasheet (i.e., each major angle on the unit circle).
 - While holding Ctrl, you can use the mouse scroll wheel to zoom in and out in the waveform view.
 - While holding Shift, you can use the mouse scroll wheel to navigate horizontally along the waveform view.
 - If you accidentally close the waveform view, go to Window in the toolbar, and click Waveform.

- 10. Once you have acquired all data, close the simulation.
 - If prompted, save the waveform configuration and add it to the project (click Save). This is not necessary, but is helpful if you close the simulation and need to simulate again.

Discussion of Results

- 11. With your lab group (or as a class, per the instructor's directions), discuss the following questions. Your answers should be included in your informal report for this lab.
 - · Were the simulation results accurate enough?
 - · How could the accuracy be improved?

Deliverables

Lab Report

- Submit an **informal report** including the following:
 - Your lab group's completed datasheet
 - Your lab group's answers to the discussion questions in step 11.

Outcomes

- Understand how the sine and cosine functions are implemented in hardware.
- Practice working with VHDL.
- Practice using Vivado for hardware simulation.
- Understand one method of representing fixed-point binary numbers.