中山大学本科生期末考试

考试科目:《高等数学一(I)》(A卷)

学年学期: 2015-2016 学年第1 学期 44

学 院/系: 数学学院

考试方式: 闭卷

考试时长: 120 分钟

《中山大学授予学士学位工作细则》第八条:"考试作弊者,不授予学士学位."

以下为试题区域、共14道大题、总分100分、考生请在答题纸上作答

1. 设
$$a_n = n\left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi}\right)$$
, 求 $\lim_{n \to \infty} a_n$. 解:

$$\frac{n^2}{n^2+n\pi} < a_n < \frac{n^2}{n^2+\pi},$$

丽

$$\frac{n^2}{n^2 + n\pi} < a_n < \frac{n^2}{n^2 + \pi},$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n\pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n}} = 1,$$

$$\lim_{n \to \infty} \frac{n^2}{n^2 + \pi} = \lim_{n \to \infty} \frac{1}{1 + \frac{\pi}{n}} = 1,$$

由夹逼定理,

$$\lim_{n\to\infty} a_n = 1.$$

2. 求极限
$$\lim_{x\to 0} \left(\frac{1+\tan x}{1+\sin x}\right)^{\frac{1}{x^3}}$$
.

 $\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{x^3}} = \lim_{x \to 0} \left(1 + \frac{\tan x - \sin x}{1 + \sin x} \right)^{\frac{1 + \sin x}{1 + \sin x} \cdot \frac{\tan x - \sin x}{1 + \sin x} \cdot \frac{1}{x^3}} = e^{\lim_{x \to 0} \frac{\tan x - \sin x}{x^3 (1 + \sin x)}}$

考察极限 $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3(1+\sin x)}$.

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3 (1 + \sin x)}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} \cdot \lim_{x \to 0} \frac{1}{(1 + \sin x)}$$

$$= \frac{x + \frac{x^3}{3} - \left(x - \frac{x^3}{6}\right) + o\left(x^3\right)}{x^3} \times 1$$

$$= \frac{\frac{1}{2}x^3 + o\left(x^3\right)}{x^3}$$

$$= \frac{1}{2}.$$

所以,

$$\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{\tan x - \sin x}{x^3 (1 + \sin x)}} = e^{\frac{1}{2}} = \sqrt{e}$$

3. 计算积分 $\int e^x \arctan(e^{-x}) dx$. 解:

$$\int e^x \arctan(e^{-x}) dx = \int \arctan(-e^x) d(e^x)$$

$$= -e^x \arctan e^x - \int e^x \frac{-e^x}{1 + e^{2x}} dx,$$

$$= -e^x \arctan e^x + \int \frac{e^{2x}}{1 + e^{2x}} dx$$

$$= -e^x \arctan e^x + \frac{1}{2} \ln(e^{2x} + 1) + C$$

4. 计算积分 $\int_0^{100\pi} \sqrt{1-\cos 2x} dx$.

解:

由于 $f(x) = \sqrt{1 - \cos 2x} = \sqrt{2} |\sin x|$ 是周期为 π 的周期函数, 故

$$\int_{0}^{100\pi} \sqrt{1 - \cos 2x} \, dx = \sqrt{2} \int_{0}^{100\pi} |\sin x| dx$$

$$= \sqrt{2} \int_{0}^{\pi} |\sin x| dx + \sqrt{2} \int_{\pi}^{2\pi} |\sin x| dx + \cdots$$

$$+ \sqrt{2} \int_{99\pi}^{100\pi} |\sin x| dx$$

$$= 100 \sqrt{2} \int_{0}^{\pi} |\sin x| dx$$

$$= 100 \sqrt{2} \int_{0}^{\pi} \sin x \, dx$$

$$= 200 \sqrt{2}$$

5. 求双曲抛物面 $\frac{x^2}{4} - \frac{y^2}{9} = 2z$ 与平面 x + y + z = 6 的交线在 P(4,0,2) 处的切线方程.

6. 设函数
$$f(x)$$
 在 $x = 0$ 的某个邻域内有二阶导数,且 $\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x}\right)^{\frac{1}{x}} = e^3$,求 $f(0), f'(0), f''(0)$

由题设条件知,有

$$f(x) = f(0) + f'(0)x + \frac{f''(\theta x)}{2}x^{2}(0 < \theta < 1).$$
又由 $\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right)^{1/x}$

$$= \lim_{x \to 0} \left[1 + \left(x + \frac{f(x)}{x} \right) \right]^{\frac{1}{x + f(x)/x}} = e^{3},$$
知 $\lim_{x \to 0} \left(1 + x + \frac{f(x)}{x} \right) = 1, \lim_{x \to 0} \left[x + \frac{f(x)}{x} \right] \frac{1}{x} = 3,$
即 $\lim_{x \to 0} \frac{f(x)}{x} = 0,$
即 $\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left[\frac{f(0)}{x} + f'(0) + \frac{f''(\theta x)}{2}x^{2} \right] = 0.$
知 $f(0) = 0, f'(0) = 0, f(x) = \frac{f''(\theta x)}{2}x^{2} \quad (0 < \theta < 1).$
又由 $\lim_{x \to 0} \left[x + \frac{f(x)}{x} \right] \frac{1}{x}$

$$= \lim_{x \to 0} \left[1 + \frac{f(0)}{x^{2}} + \frac{f'(0)}{x} + \frac{f''(\theta x)}{2} \right] = 3,$$
知 $\lim_{x \to 0} f''(\theta x) = 4 \Rightarrow f''(0) = 4.$

- 7. 将给定的正数 12 分成三个非负数 x, 2y, 3z 之和, 使得 xy^2z^3 最大。 8. 设 $f(x) = \frac{(x-3)^2}{x-1}$, 求该函数 (1) 的单调区间和极值;

- (3) 所确定曲线的渐近线.

解:

定义域为
$$x \neq 1$$

 $y' = \frac{(x-3)(x+1)}{(x-1)^2}$
 $y'' = \frac{8}{(x-1)^3}$

f(x) 的单调递增区间为 $(-\infty, -1)$ 和 $(1, +\infty)$

f(x) 的单调递减区间为 (-1,1) 和 (1,3)

函数极大值为 f(-1) = -8, 极小值为 f(3) = 0

f(x) 在 $(-\infty, -1)$ 为凸函数, $(1, +\infty)$ 为凹函数,无拐点

x = 1 为 f(x) 的水平渐近线。

$$a = \lim_{x \to \infty} \frac{f(x)}{x} = \frac{x^2 - 6x + 9}{x^2 - x} = 1$$

$$b = \lim_{x \to \infty} f(x) - x = \frac{x^2 - 6x + 9 - x^2 + x}{x - 1} = -5$$

直线 y = x - 5 也是 f(x) 的渐进线。

9. 求函数 $f(x) = \frac{1}{x^2}$ 在 x = 3 处的带皮亚诺余项的 n 阶泰勒公式, 并写出 $f^{(n)}(3)$ 的值.

10. 讨论函数
$$f(x, y) = \begin{cases} \frac{x \sin x \sin y}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$
 在 $(0, 0)$ 处的连续性, 偏导数的存在

性及可微性.

11. 求极限
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^{x^2}$$
.

$$0 \leqslant \left(\frac{xy}{x^2 + y^2}\right)^{x^2} \leqslant \left(\frac{1}{2}\right)^{x^2}$$

$$0 \leqslant \left(\frac{xy}{x^2 + y^2}\right) \leqslant \left(\frac{1}{2}\right)$$

而 $\lim_{\substack{x \to +\infty \\ y \to +\infty}} 0 = 0, \lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{1}{2}\right)^{x^2} = 0$

由夹逼定理
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(\frac{xy}{x^2 + y^2}\right)^{x^2} = 0$$

$$\lim_{x \to +\infty} \left(\frac{xy}{x^2 + y^2} \right)^{x^2} = 0$$

12. 若方程 $e^z = xyz$ 确定了隐函数 z = z(x, y), 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$.

13. 求经过直线
$$\frac{x-1}{2} = \frac{y}{1} = \frac{z}{-1}$$
 且平行于直线 $\frac{x}{2} = \frac{y}{1} = \frac{z+1}{-2}$ 的平面方程解:

所求平面是由直线 l_1 的一个点 $\mathbf{M}_1(1,0,0)$ 和一个方向向量 $\vec{v}(2,1,-1)$ 以及直线 l_2 的一个 方向向量 $\vec{u}(2,1,-2)$ 确定的平面,

因此平面
$$\pi$$
 的方程是 $\begin{vmatrix} x-1 & 2 & 2 \\ y & 1 & 1 \\ z & -1 & -2 \end{vmatrix} = 0,$

即 x - 2y - 1 = 0.

14. 设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内有二阶导数, 且有 f(a) = f(b) = 0, f(c) > 0, (a < c < b), 证明: 在 (a, b) 内至少存在一点 ξ , 使得 $f''(\xi) < 0$. 解:

证 f(x) 在 [a,c] 上连续, 在 (a,c) 内可导, 由拉格朗日中值定理, 存在 $\xi_1 \in (a,c)$, 使得

$$f'\left(\xi_1\right) = \frac{f(c) - f(a)}{c - a} > 0.$$

f(x) 在 [c,b] 上也满足拉格朗日中值定理的条件, 因此存在 $\xi_2 \in (c,b)$, 使得

$$f'\left(\xi_2\right) = \frac{f(b) - f(c)}{b - c} < 0.$$

f'(x) 在 $\left[\xi_1,\xi_2\right]$ 上仍满足拉格朗日中值定理的条件, 故存在 $\xi\in\left(\xi_1,\xi_2\right)$, 使得

$$f^{\prime\prime}(\xi) = \frac{f^{\prime}\left(\xi_{2}\right) - f^{\prime}\left(\xi_{1}\right)}{\xi_{2} - \xi_{1}} < 0.$$

