第六章

材料的环境友好加工及制备

任何一种材料,成分设计基础上,

加工制备技术很关键;

特殊的加工工艺,可以使材料产生神奇的功能;

本章主要介绍:

降低环境材料负担性的一些技术

清洁生产技术

降低材料环境负担技术

- ☀ 再循环技术(Recycle)
- * 避害技术
- * 控制技术
- * 补救修复技术

Cleaner Production清洁生产技术

- * 定义
- * 基础理论
- * 内容
- * 实现途径
- * 审核

6.1 降低材料环境负担技术

※避害技术

2. 用环境友好的生产工艺替代污染较重的工艺

1. 用无害材料替代有害材料

- ★ 无氰电镀
- ★ 涂料 无铅
- ★ 氧化铁红代替铅丹 应用防锈底漆

- ★ 老式苯胺生产 铁粉还原 产生废渣 废水
- ★ 用流态化技术 氢气催化还原 连续化生产

避害技术处理

%污染控制技术

工业废弃物,不能循环利用,

也不能通过工艺更新减少有害物的产生

为了维持生产过程,不得不向环境排放一定污染物;

对向环境排放的污染物,在排放到环境以前进行

处理的工艺过程和技术。

17wan 万吨铬喳

污染物排放控制原理示意图

一些材料生产过程对环境的影响

材料 	大气	*	土壤/土地	
纸、纸浆	排放含 SO ₂ 、NO _x 、CH ₄ 、CO ₂ 、 CO、硫化氢、硫醇、氯化物、二噁 英等废气	(1) 水资源消耗; (2) 排放悬浮性固体物、 有机物、有机氯、二噁英	*-	
水泥、玻璃、陶瓷	排放含砷、钒、铅、铬、硅、碱、氟 化物粉尘及 NO _x 、CO ₂ 、SO ₂ 、CO 等废气	排放含油、重金属离子 废水	 (1) 矿物资源及 土地消耗; (2) 排放固体废弃物 	
金属及 矿物 开采	排放各种粉尘及有害气体	排放含金属离子及有毒 化学品废水	 (1) 矿物资源及 土地消耗; (2) 土地退化 	
钢铁	(1) 排放含铅、砷、镉、铬、铜、汞、镍、硒、锌等颗粒物和粉尘,以及含有机物、酸雾、H ₂ S、HC 等废气; (2) 紫外线辐射	(1) 水资源消耗; (2) 排放含无机物、有机物、油、悬浮性固体物、金属离子的废水		
有色 金鷹	排放含铝、砷、镉、铜、锌、汞、镍、铅、镁、锰、炭黑、气溶胶、SiO ₂ 等颗粒和粉尘,以及含 SO ₂ 、NO ₄ 、CO、H ₂ S、氯化物、氯化物、有机物等废气	排放含重金属离子及有 害化学品的废水	 (1) 排放固体废弃物; (2) 土地退化 	

污染控制技术

核心是将有害物在进入环 境之前转化为无害物,尽 量减少对环境的损害

分离处理(成分、相分离等)

污染物排放 控制方法

无害化转化处理(物理、化学)

有害物收集储存处理(废气除 '尘、废水废渣减量化)

降低材料环境负担的技术

※ 再循环技术

- 1. 资源再生化
- 2. 废物回收再利用
- 3. 能源回收再利用

再循环利用技术原理示意图

原理

尽量增加废弃产品的 再循环利用率,减少 污染物对环境的排放.

原料→工业生产→使用→废弃物这 一传统的开环模式 变为原料→工业生产→使用→废弃 物→一次资源或原料→工业生产→产品 →废品→二次资源这种闭环系统 原料或资源在生产→消费过程中多 次循环。

1. 资源再生回收利用

传统产品设计往往只注重产品的使用性能和经济性能;未考虑回收,给废品利用带来很大的困难。

产品	金属元素	元素个数
汽车	Ni, Cr, W, Mo, Mn, V, Sr, Sb, Pd, Ti, Be, In, Te, Ba	14
彩电	Ni, Cr, Mn, Nb, Sr, Sb, Ta, Ge, Ga, B, In, Ba, Bi, Re	
电器	Ni, Cr, Sr, Sb, Ta, Pb, Ti, Be, Ga, B, In, Ba, Re, Bi	
光学仪器	Nb, Sr, Ta, Ge, Ga, Be, Rb, Zr, Te, Cs	10

1.材料生产技术的开发和革新,日本汽车保险杠回收利用

- 3. 尾矿、钢渣、煤灰等用于建材
- 4. 有机废料用于化学助剂 废塑料代替焦炭作为炼铁的还原剂 治炼副产品金属镉用于PVC稳定剂

(2) 能源回收利用

工业部门	可利用能源	用途举例
钢铁工业	高炉焦炉煤气 高炉氽压氽热	发电、供 暖 发电、供 暖
电力工业	冷却水余热	养鱼、塑料大棚、供暖
化学工业	炭黑厂尾气	发电、供暖
石油工业	油田伴生气	发电、供暖

生产余热的综合利用,一直是工业界的一个重要任务

- 1. 能源回收一个重要途径是*垃圾焚烧发电*技术; 二恶英!
- 2. 有机废弃物化学处理,从中抽取油分、煤气解决塑料填埋不能降解、N、S、P、卤素等燃烧产生污染问题

典型资源和能源回收再利用工艺过程

* 补救修复技术

对于一个具体工艺过程而言,

以上的避害技术、污染控制技术、废弃物再循环技术

都是立足于将污染控制在生产过程中,

若经过上述手段,仍有污染物必须排放,

必须采取补救修复技术;

补救修复技术 restore Production resource 能源 Production 产品 补救修复 → 无害废物 energy sources

几个生产工艺过程 用一种污染处理工艺 对环境的危害降至最低 核工业 废水 废气 废渣 环境自净能力 p100

对材料行业,环境补救修复措施。

- (1)对生产过程推行清洁生产,节能降耗。减排污量和污染物的毒性;
- (2)建立高效生产和污染源削减,使废物循环回收利用的生产闭合圈,实现可持续发展。 开发固体废弃物的综合利用技术,降低材料环境负担性;
- (3)开发环境净化材料、环境修复材料等功能材料,改善地球生态环境。

Cleaner Production 清洁生产技术

- 定义 米
- 基础理论 米
- 内容 器
- 实现的途径 米
- 审核 米

060324

- ※1989 (联合国环境规划)
- **☆ Cleaner Production**

定义 通过产品设计、原料选择、似色故事物料内部循环利用等科学化与合理化,使工业生产最终生产的污染物最少的

一种工业生产和管理思路。

energy sources

废物与资源转化

生产过程最优化

社会化大生产

▲ 废物与资源转化理论基础

物质不灭

能量守衡

物质平衡原则 产生废物多 原料能源消耗大

社会化大生产理论

*清洁生产内容

清洁能源 清洁资源 清洁工艺 清洁设备 清洁产品 清洁服务 清洁管理 清洁审计

清洁生产

能源

节约能源 节能措施 新能源开发 利用可再生能源和清洁能源

生产过程

- ☞ 使用无毒无害材料
- ※ 节约原材料,尽量使用再生材料
- ☞ 开发新材料,提高材料使用寿命
- ●使中间产品无毒、无害
- ●先进、可靠的操作和控制先进工艺流程、无废工艺
- ●建立先进和完善的生产管理
- ☞ 减少生产中的各种危险因素,如高温、高压、易燃、易爆

产品

- 幣物料循环利用和现场回收利用
- ●少用稀缺和有害的原材料的产品

●提高材料可回收利用率,易回收、易处理、易降解

●产品在使用过程中以及使用后不会危害人体健康和生态环境

* 实现的途径

提高物料转化过程的资源效率

组织生产过程的环境意识

途径

- •清洁规划和管理
- •提高资源效率
- •减少废物排故
- •开发环境友好产品和工艺

- •提高物料转化过程资源效率
- •组织生产过程的环境意识
- •开发到市场售后服务
- •产品的生产和使用对环境的影响。

煤燃烧过程 综合利用

思考题

1 简述材料生态加工技术的发展趋势?

2 简述清洁生产的主要内容?

