מתמטיקה בדידה - שחר פרץ - תרגיל בית 9

מידע כללי

מגיש: שחר פרץ

תאריך הגשה: 16.1.2024

~~~ תרגיל בית 9 ~~~

שאלה 1

סעיף א' - סתירה

fבתון: f הפיכה משמאל

f את יחידות ההופכית משמאל של צילב: להפריך את יחידות

: נבחר: $g_1=g_2$ נשלול $f\colon A o B$ הפיכה משמאל, ויהיו $g_1,g_2\colon B o A$ ויהיו $g_1=g_2$ נשלול

$$A = \{1, 2\}, B = \{1, 2, 3\}, f = \{\langle 1, 1, \langle 2, 2 \rangle\}$$
$$g_1 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle\}, g_2 = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 2 \rangle\}$$

Q.E.D. ■

סעיף ב׳ - סתירה

 $oldsymbol{t}$ בתון: f הפיכה מימין

f צ.ל.: סתירת יחידות קיום הופכית מימין של

הוכחה: נסתור ע"י הבאת דוגמה נגדית. נבחר פונקציה $\{(0,0),\langle 1,0 \rangle\}$ וכמו כן $A=\{0,1\}$ ו־ $A=\{0,1\}$ ובחר $G=\{0,0\}$ ובחר פונקציה $G=\{0,1\}$ וכמו כן $G=\{0,0\}$ בבחר בשלילה $G=\{0,1\}$ נניח בשלילה בשלילה $G=\{0,1\}$ נקבל $G=\{0,0\}$ בקבל $G=\{0,1\}$ וגם $G=\{0,0\}$ בקבים בקיים אך $G=\{0,0\}$ במו כן, $G=\{0,0\}$ וגם $G=\{0,0\}$ וגם $G=\{0,0\}$ וגם $G=\{0,0\}$ במו כן, $G=\{0,0\}$ וגם $G=\{0,0\}$ ווא בקרר לו וזו סתירה.

Q.E.D. ■

סעיף ג' - סתירה

 $g\circ f=id_A$ כך ש־g:B o A אמ"מ g:B o B צ.ל.: לסתור קיום

B אך נבחר את $f=\{\langle 0,0 \rangle\}$ אך נבחר ונמצא דוגמה נגדית. נבחר $f=\{\langle 0,0 \rangle\}$ אך נבחר את $f=\{\langle 0,0 \rangle\}$. נוכיח שהנגרר פסוק שקר:

 $f(g(0))=0 \land f(g(1))=1$, ולפי כלל אטא, $f\circ g=id_B$ נניח בשלילה f הפיכה משמאל, נסיק קיום g כך ש־f ע"פ הגדרתה. סה"כ f אינה הפיכה משמאל מתירה כי לא קיים אף ערך (בפרט f(g(1)) עבורו f(x)=1, ע"פ הגדרתה. סה"כ f(g(1)) אינה הפיכה משמאל והנגרר פסוק שקר.

נוכיח שהראשי פסוק אמת:

. נבחר $g\circ f=\{\langle 0,0\rangle\}=id_A$ נבחר $g\circ f=\{\langle 0,0\rangle\}=id_A$ נבחר נבחר נבחר

Q.E.D. ■

סעיף ד' - סתירה

 $f\circ g=id_B$ אמ"מ $g\colon B o A$ אמ"מ $f\circ g=id_B$ צ.ל.: לסתור קיום

הוכחה: נסתור את הגרירה בין הקיום לטענה ש־f הפיכה. נמצא דוגמה נגדית. נבחר $f=\{\langle 0,0\rangle,\langle 1,0\rangle\}$ ונבחר הוכחה: נסתור את הגרירה בין הקיום לטענה ש־f הפיכה משמאל (לפי סעיף (1)(ה) שהוכח בלי גרירה מטענה זו), $B=\{0\}$ כלומר f אינה הפיכה משמאל ובפרט לא הפיכה כלל והנגרר פסוק שקר. נבחר $f=\{\langle 0,0\rangle\}$ משמע הראשי מתקיים, וזו f=f=f0.

2.€.D. ■

סעיף הי - הוכחה

צ.ל.: f חח"ע אמ"מ קיימת פונקציה f:B o A וגם g:B o A וגם g:B o A חח"ע אמ"מ קיימת פונקציה הפיכה משמאל).

- גרירה ראשונה: נניח f חח"ע וכמו כן ידוע $g\colon B\to A$ עבורה $g\colon B\to A$ גרירה ראשונה: נניח f חח"ע וכמו כן ידוע (לפי $g\colon B\to A$ עבורה f ש־f מלאה ב־f מלאה לכן f^{-1} פונקציה על f פונקציה על f נבחר $g=f^{-1}$. נוכיח $g=f^{-1}$ מלאה ב־f מלאה ב־f פונקציה על f פונקציה על f פונקציה על f באמצעות כלל g מלאה ב־f מלאה ב־f פונקציה על f פונקציה על
- סה"כ d_A שוויון תחום: f מלאה ב־A ע"פ הגדרתה, ולכן $g\circ f$ מלאה ב־A לפי משפט נתון, וכמו כן על d_A , סה"כ $\mathrm{dom}(id_A)=\mathrm{dom}(g\circ f)$
- שוויון איברים: יהי $A \in A$, נוכיח $g(y) = id_A(x)$. ע"פ הגדרת הפונקציות, צ.ל. באופן שקול g(y). ע"פ הגדרה נמצא ב־g(y) ולכן g(y) מוגדר, כמו כן לפי הגדרת g(y) = x, שע"פ הגדרה נמצא ב־g(y) = x פונקציה הופכית g(y) = x ומשום ש־g(y) = x חח"ע סה"כ
- גרירה שנייה: נניח קיום פונקציה f לא חח"ע, נניח קיום פונקציה f לא חח"ע, גרירה שנייה: נניח קיום פונקציה $g:B\to A$ ההופכית משמאל, ונוכיח f חח"ע. $g\circ f=id_A$ אזי קיימים $g:f(a_1)=f(a_2)$ עבורם $g:f(a_1)=f(a_2)$ עבורם $g:f(a_1)=g:f(a_2)$ עבורם $g:f(a_1)=g:f(a_2)$ על $g:f(a_1)=g:f(a_2)$ בנוסח שקול לפי כלל $g:f(a_1)=g:f(a_2)$ מהנחת השלילה $g:f(a_1)=g:f(a_2)=g:f(a_1)=g:f(a_2)$ כלומר $g:f(a_1)=g:f(a_2)=g:f(a_1)=g:f(a_2)$ מהנחת סתירה.

Q.E.D. ■

סעיף אי

נתון:

$$f(x) = \sqrt[3]{x^5 + 1}, f: \mathbb{R} \to \mathbb{R}$$

צ.ל.: *f* הפיכה

הוכחה: נבחר פונקציה הופכית $g\colon \mathbb{R} o \mathbb{R}$ וגם $g\colon \mathbb{R} o \mathbb{R}$ וגם $g\colon \mathbb{R} o \mathbb{R}$ וגם פיקים $g\colon \mathfrak{g} o \mathfrak{g}$. נוכיח את שני התנאים שיחדיו הכרחיים ומספיקים (את שניהם אוכיח באמצעות כלל

 $g\circ f=id_{\mathbb{R}}$ נוכיח •

$$(g \circ f)(x) = g(f(x)) = \sqrt[5]{\left(\sqrt[3]{x^5 + 1}\right)^3 - 1}$$

= $\sqrt[5]{x^5 + -1} = x$
= $id_{\mathbb{R}}(x)$

 $f \circ g = id_{\mathbb{R}}$ נוכיח •

$$(f \circ g)(x) = f(g(x)) = \sqrt[3]{\left(\sqrt[5]{x^3 - 1}\right)^3 + 1}$$
$$= \sqrt[3]{x^3 - 1 + 1} = x$$
$$= id_{\mathbb{R}}(x)$$

Q.E.D. ■

סעיף בי

נתון:

$$f = \lambda \langle x, y \rangle \in \mathbb{R}^2 . \langle x + y, x - y \rangle, f \colon \mathbb{R}^2 \to \mathbb{R}^2$$

צ.ל.: *f* הפיכה

הפיכה הפילה של פונקציה המגדרה $g\colon \mathbb{R}^2 \to \mathbb{R}$. נוכיח לפי המגדרה של פונקציה הפיכה $g\colon \mathbb{R}^2 \to \mathbb{R}^2$. נוכיח לפי המגדרה של פונקציה הפיכה (בשני המקרים אשתמש בכלל g:

 $:g\circ f=id_{\mathbb{R}^2}$ •

$$(g \circ f)(\langle x, y \rangle) = g(f(\langle x, y \rangle)) = g(\langle x + y, x - y \rangle) \qquad (\beta \text{ rule})$$
$$= \langle x + y - y, x - y + y \rangle = \langle x, y \rangle \quad (\beta \text{ rule})$$
$$= id_{\mathbb{R}^2}(\langle x, y \rangle)$$

 $: f \circ g = id_{\mathbb{R}^2} \quad \bullet$

$$(f \circ g)(\langle x, y \rangle) = f(g(\langle x, y \rangle)) = f(\langle x - y, x + y \rangle) \qquad (\beta \text{ rule})$$
$$= \langle x - y + y, x + y - y \rangle = \langle x, y \rangle \quad (\beta \text{ rule})$$
$$= id_{\mathbb{R}^2}(\langle x, y \rangle)$$

Q.E.D. ■

סעיף גי

נתון:

$$f = \lambda h \in \mathbb{R} \to \mathbb{R}.\lambda x \in \mathbb{R}.h(x+1), f: (\mathbb{R} \to \mathbb{R}) \to (\mathbb{R} \to \mathbb{R})$$

צ.ל.: *f* הפיכה

הוכחה: נבחר $g:(\mathbb{R}\to\mathbb{R})\to (\mathbb{R}\to\mathbb{R})$ כך ש־ $g:(\mathbb{R}\to\mathbb{R})\to (\mathbb{R}\to\mathbb{R})$ נוכיח את אשר דרוש מההגדרה, על בסיס כלל $g:(\mathbb{R}\to\mathbb{R})\to (\mathbb{R}\to\mathbb{R})$

 $:g\circ f=id_{\mathbb{R}\to\mathbb{R}}$ •

$$(g \circ f)(h) = g(f(h)) = g(\lambda x \in \mathbb{R}.h(x-1)) \qquad (\beta \text{ rule})$$

$$= \lambda y \in \mathbb{R}.(\lambda x \in \mathbb{R}.h(x-1))(y+1) \qquad (\beta \text{ rule})$$

$$= \lambda y \in \mathbb{R}.(\lambda x \in \mathbb{R}.h(x))(x) \qquad (\alpha \text{ rule})$$

$$= \lambda y \in \mathbb{R}.h(y) \qquad (\beta \text{ rule})$$

$$= h \qquad (\eta \text{ rule})$$

$$= id_{\mathbb{R} \to \mathbb{R}}(h)$$

 $: f \circ g = id_{\mathbb{R} \to \mathbb{R}} \quad \bullet$

$$(f \circ g)(h) = g(f(h)) = f(\lambda g \in \mathbb{R}.h(x+1)) \qquad (\beta \text{ rule})$$

$$= \lambda y \in \mathbb{R}.(\lambda x \in \mathbb{R}.h(x+1))(y-1) \qquad (\beta \text{ rule})$$

$$= \lambda y \in \mathbb{R}.(\lambda x \in \mathbb{R}.h(x))(x) \qquad (\alpha \text{ rule})$$

$$= \lambda y \in \mathbb{R}.h(y) \qquad (\beta \text{ rule})$$

$$= h \qquad (\eta \text{ rule})$$

$$= id_{\mathbb{R} \to \mathbb{R}}(h)$$

Q.E.D. ■

סעיף די

נתון:

$$\mathbf{f} = \lambda n \in \mathbb{N}. \begin{cases} \frac{n}{2} & n \in \mathbb{N}_{\text{even}} \\ -\frac{n+1}{2} & n \in \mathbb{N}_{\text{odd}} \end{cases}, f \colon \mathbb{N} \to \mathbb{Z}$$

צ.ל.: *f* הפיכה

הוכחה: נבחר $g \colon \mathbb{Z} \to \mathbb{N}$ המוגדר לפי:

$$g = \lambda z \in \mathbb{Z}.$$

$$\begin{cases} 2z & z \in \mathbb{Z}_{\geq 0} \\ -2z - 1 & z \in \mathbb{Z}_{< 0} \end{cases}$$

נוכיח את אשר נדרש מההגדרה:

- נפלג למקרים; נפלג למקרים: $f\circ g=id_{\mathbb{Z}}(z)=z$ נוכיח $z\in\mathbb{Z}$ יהי שווה). יהי $f\circ g=id_{\mathbb{Z}}$
- עם ה"כ, השוויון ממשיך ($f\circ g)(z)=f(g(z))=f(2z)$ אם $z\geq 0$ אם ה"כ, השוויון ממשיך ($f\circ g)(z)=f(z)=f(z)=0$ אם ה"כ, השוויון ממשיך העדרוש.
- אם 0>z אז z<0 אם 0>z אז f(z)=f(z)=f(z)=f(z)=f(-2z-1). באופן דומה, z<0 אם 0>z אם 0>z אם 0>z אז 0>z אז 0>z אז 0>z אם 0>z אז להוכיח את זה בבדידה 0>z אז 0>z להוכיח את זה בבדידה 0>z אז 0>z להוכיח את 0>z אז 0>z
 - נפלג למקרים; נפתמש בחוק η (התחום שווה). יהי $n\in\mathbb{N}$ נוכיח $g\circ f=id_{\mathbb{Z}}$ נפלג למקרים: $g\circ f=id_{\mathbb{Z}}$
- $rac{n}{2}>0$ אם $n\in\mathbb{N}_{ ext{even}}$ אז $n\in(f(n))=g(f(n))=2n$ אם חילוק מספרים $n\in\mathbb{N}_{ ext{even}}$. חילוק $g\circ f$ או הווען חייב להיות $g\circ f$ ביכך, המשך השוויון חייב להיות $g\circ f$ ביכך, המשך השוויון חייב להיות וווער היות חייב להיות חייב לה
- אם הגדולים מ־0, אז $g\circ f)(n)=g(f(n))=-rac{n+1}{2}$ אז אז $n\in\mathbb{N}_{\mathrm{odd}}$ אם $g\circ f(n)=g(f(n))=-rac{n+1}{2}$, ונגרר $g\circ f(n)=g(f(n))=-rac{n+1}{2}$ ולכן ההופכי מקיים $g\circ f(n)=g(f(n))=-rac{n+1}{2}$, ונגרר ונגרר

2.€.D. ■

סעיף הי

נתון:

$$Cu: ((A \times B) \to C) \to (A \to (BC))$$

 $Cu = \lambda f \in (A \times B) \to C.\lambda a \in A.\lambda b \in B.f(\langle a, b \rangle)$

צ.ל.: *Cu* הפיכה

הוכחה: נבחר:

$$F: (A \to (B \to C)) \to ((A \times B) \to C)$$
$$F = \lambda h \in (A \to (B \to C)).\lambda a \in A, b \in B.h(a)(b)$$

נוכיח את אשר דרוש, בעיקר על בסיס תחשיב למדא.

 $(F\circ Cu)(f)=f$. צ.ל. $f\colon (A\times B)\to C$ יהי יחס הזהות, יהי יהי י $F\circ Cu=id_{(A\times B)\to C}$ • נפתח לפי תחשיב למדא;

$$(F \circ Cu)(f) = F(Cu(f))$$

$$= F(\lambda a \in A.\lambda b \in B.f(\langle a, b \rangle)) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A, b \in B.(\lambda a \in A.\lambda b \in B.f(\langle a, b \rangle))(a)(b) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A, b \in B.(\lambda b \in B.f(\langle a, b \rangle))(b) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A, b \in B.f(\langle a, b \rangle) \qquad (\beta \text{ rule})$$

$$= f \qquad (\eta \text{ rule})$$

 $(Cu\circ F)(f)=f$. צ.ל. $f\colon (A o (B o C))$ נפי כלל η והגדרת יחס הזהות, יהי יחס $f\colon (A o (B o C))$. צ.ל. $f\colon (A o (B o C))$ נפתח לפי תחשיב למדא:

$$(Cu \circ F)(f) = Cu(F(f))$$

$$= Cu(\lambda a \in A, b \in B.f(a)(b)\rangle)) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A.\lambda b \in B.(\lambda a \in A, b \in B.f(a)(b)\rangle))(\langle a, b \rangle) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A.\lambda b \in B.f(a)(b) \qquad (\beta \text{ rule})$$

$$= \lambda a \in A.f(a) \qquad (\eta \text{ rule})$$

$$= f \qquad (\eta \text{ rule})$$

סה"כ שתי התנאים ההכרחיים ומספיקים הוכחו, כדרוש.

Q.E.D. ■

שאלה 3

סעיף אי

נתון:

$$f = \lambda \langle A, B \rangle \in \mathcal{P}(\mathbb{N}_{even}) \times \mathcal{P}(\mathbb{N}_{odd}).A \cup B$$

 $\mathrm{Jm}(f)=\mathcal{P}(\mathbb{N})$, הפונקציה חח"ע, $\mathrm{dom}(f)=\mathcal{P}(\mathbb{N}_{\mathrm{even}}) imes\mathcal{P}(\mathbb{N}_{\mathrm{odd}}), \mathrm{range}(f)=\mathcal{P}(\mathbb{N})$ טענה:

צ.ל.: להוכיח הפונקציה הפיכה

: המוגדרת לפי: $g\colon \mathcal{P}(\mathbb{N}) o (\mathcal{P}(\mathbb{N}_{\mathrm{even}}) imes \mathcal{P}(\mathbb{N}_{\mathrm{odd}})$ המוגדרת לפי

$$g = \lambda N \in \mathcal{P}(\mathbb{N}). \langle \{n \in N.n \in \mathbb{N}_{\text{even}}\}, \{n \in N.n \in \mathbb{N}_{\text{odd}}\} \rangle$$

נוכיח שהיא הפונקציה ההופכית;

לפי g(f(N))=N . צ.ל. $N\in\mathcal{P}(\mathbb{N})$ יהי η ; יהי נשאר נשאר נוכיח את אשר נוכיח $g\circ f=id_{\mathcal{P}(\mathbb{N})}$ (לפי הגדרת הרכבת פונקציות ויחס הזהות). נתבונן בהרכבה, לפי כלל β נקבל:

$$\cdots = g(\langle A := \{n \in N : n \in \mathbb{N}_{\text{even}}\}, B := \{n \in N : n \in \mathbb{N}_{\text{odd}}\}\rangle)$$

לפי עקרון ההפרדה, $x\in A\Longrightarrow x\in\mathbb{N}_{\mathrm{even}} \land x\in B\implies x\in\mathbb{N}_{\mathrm{odd}}$, לכן נסיק ש $x\in A\Longrightarrow x\in\mathbb{N}_{\mathrm{odd}}$, נוכיח ש $A\cup B=N$

- יהי $A \cup B$ יהי $x \in N$ כלומר $x \in N$ ולפי עקרון ההפרדה נגרר $x \in A \cup X \in A$ כלומר $x \in A \cup B$
- יהי x
 otin A נסיק x
 otin A נסיק x
 otin A נסיק x
 otin A ניח בשלילה x
 otin A נסיק x
 otin A ניח בשלילה x
 otin A בח"כ

. סה"כ g(f(N)) = N כדרוש. סר"כ מתוך טרנזיטיביות מתוך כלומר מתוך כלומר מתוך סר"כ

התחום מתאים, נוכיח את אשר נשאר יהיו קבוצות : $f \circ g = id_{\mathcal{P}(\mathbb{N}_{\mathrm{even}}) imes \mathcal{P}(\mathbb{N}_{\mathrm{odd}})}$ התחום מתאים, נוכיח את אשר נשאר בכלל יהיו קבוצת אמ"ם $\langle A, B \rangle \in \mathcal{P}(\mathbb{N}_{\mathrm{even}}) imes \mathcal{P}(\mathbb{N}_{\mathrm{odd}})$

לפי כלל (פי כלל יחס הזהות. לפי כלל ... א.ל. $A\subseteq \mathbb{N}_{\mathrm{even}} \wedge B\subseteq \mathbb{N}_{\mathrm{odd}}$, מתוך הרכבת פונקציות והגדרת יחס הזהות. לפי כלל $A\subseteq \mathbb{N}_{\mathrm{even}} \wedge B\subseteq \mathbb{N}_{\mathrm{odd}}$, ישנו שוויון ל־:

 $\cdots = f(A \cup B) = \langle C := \{ n \in A \cup B : n \in \mathbb{N}_{\text{even}} \}, D := \{ n \in A \cup B : n \in \mathbb{N}_{\text{odd}} \} \rangle$

יונית: ביוונית, הכלה דו כיוונית: $A=C \land B=D$ בה"כ צ.ל. $A=C \land B=D$

- יהי $x\in A$, נוכיח $x\in C$. לפי הגדרה, צ.ל. לפי הגדרה, צ.ל. $x\in A$ יהי $x\in A$, נוכיח $x\in A$ יהי $x\in A$, התנאי הראשון מתקיים לפי הנתון $x\in A$ והשני לפי הגדרת $x\in A$ שע"פ $x\in A$ שע"פ $x\in A$ שע"פ $x\in A$ שע"פ $x\in A$
- יהי $x\in A$ נניח $x\in A \lor x\in B$ נניח $x\in A \lor x\in B$ יהי $x\in A \lor x\in B$ נניח $x\in A \lor x\in B$ נניח $x\in B$ יהי $x\in B$ נניח $x\in B$ נניח $x\in B$ נניח $x\in B$ נניח $x\in B$ נניח מבשלילה $x\in B$ נניח קבוצת חזקה קבוצת חזקה $x\in B$ או באופן שקול $x\in A \lor x\in B$ או באופן שקול $x\in A \lor x\in B$ וזו סתירה, אזי

סה"כ הפונקציה הופכית מימין ומשאל, כלומר היא הפיכה. מש"ל.

Q.E.D. ■

סעיף בי

נתון:

$$f = \lambda g \in \mathcal{P}(\mathbb{N}) \to \mathbb{N}.\lambda n \in \mathbb{N}.g(\{n\})$$

. עענה: $\mathrm{dom}(f) = \mathcal{P}(\mathbb{N}), \mathrm{range}(f) = \mathbb{N} o \mathbb{N}$ טענה:

צ.ל.: הפונקציה לא חח"ע.

המוגדרות לפי: $g_1,g_2\colon \mathcal{P}(\mathbb{N}) o\mathbb{N}$ הוכחה: נניח בשלילה שהיא חח"ע ונראה דוגמה נגדית. נבחר

$$g_1 = \lambda N \in \mathcal{P}(\mathbb{N}). egin{cases} \max\{N\} & |N| = 1 \\ \min\{N\} & |N| \ge 2 \end{cases}$$
 $g_2 = \lambda N \in \mathcal{P}(\mathbb{N}). \max\{N\}$

 $g_1
eq g_2 \wedge f(g_1) = f(g_2)$ על מנת לסתור את הגרירה, יש להוכיח שניים

- אך, $g_1(x)=g_2(x)$, $x\in\mathcal{P}(\mathbb{N})$ נניח בשלילה שכן הם פני הדברים, אזי לפי כלל η , נגרר בין היתר יהי $g_1(x)=g_2(x)$, אר $g_1(x)=g_2(x)=g_2(x)$ נקבע לפי כלל $g_1(x)=g_2(x)=g_2(x)$ ש־ $g_2(x)=g_2(x)=g_2(x)$ נקבע לפי כלל $g_1(x)=g_2(x)=g_2(x)$
- לפי כלל η והגדרת כתיב למדא, $f(g_1)=\mathrm{dom}(f(g_2))=\mathbb{N}$ נוכיח בעזרת כלל g_1 נוכיח בעזרת כלל g_1 נגרר g_2 נגרר g_1 נארר להוכיח יהי g_1 צ.ל. יהי g_2 צ.ל. g_1 נגרר g_2 נארר להוכיח יהי g_1 צ.ל. g_2 צ.ל. g_3 נארר g_3 נארר להוכיח יהי g_3 לפי הגדרת סיגילטון, ולפי כלל g_3 נסיק g_3 (g_3) וכמו כן לפי אותו בכלל g_3 0 (g_3 0) וסה"כ לפי טרנזיטיביות g_3 1 (g_3 1) בכלל g_3 2 (g_3 3) פסה"כ לפי טרנזיטיביות g_3 3 (g_3 4) בכלל

Q.E.D. ■

סעיף גי

 $f = \lambda h \in \mathbb{N} o \mathbb{N}. \lambda n \in \mathbb{N}. \sum_{i=0}^n h(i)$ נתון:

. טענה: $\mathrm{dom}(f)=\mathbb{N} o \mathbb{N}, \mathrm{range}(f)=\mathbb{N} o \mathbb{N}$, הפונקציה לא

צ.ל.: הפונקציה לא חח"ע.

הוכחה: היה לנו כבר את התרגיל הזה בשיעורי הבית הקודמים (3)(ו), מועתקת ההוכחה (עם כמה שיפורים קטנים):

 $:eta,\eta$ יהיו $:eta,f_1,f_2\colon G(f_1)=G(f_2)$, כלומר, לפי כללי שהפונקציה שהפונקציה בשלילה שהפונקציה. נניח $:eta,f_1
eta,f_2$ נניח בשלילה בשלילה בשלילה ונסיק.

$$\forall n \in \mathbb{N}. \sum_{i=0}^{n} .f_1(i) = n \in \mathbb{N}. \sum_{i=0}^{n} .f_2(i)$$

לפי כלל $m\in\mathbb{N}$ שקול לקיום $m\in\mathbb{N}$ כך ש־ $f_1(m)\neq f_2(m)$. נסכום עד $m\in\mathbb{N}$ הנמוך ביותר המקיים תכונה זו. $m\in\mathbb{N}$ בפרט, עבור $m\in\mathbb{N}$ נטען $f_1(t)=f_2(t)$ נטען $f_1(t)=f_2(t)$ ביותר, $f_1(t)=f_2(t)$ ובפרט, עבור $f_1(t)=f_2(t)$ ובפרט $f_1(t)=f_2(t)$, ובפרט $f_1(t)=f_2(t)$, ובפרט $f_1(t)=f_2(t)$, ובפרט $f_2(t)=f_2(t)$ ומטרנזיטיביות יחס הסדר $f_2(t)=f_2(t)$, ובפרט $f_2(t)=f_2(t)$ ומכימת מספרים זהים זהה (מתוך יחידות יחס החיבור). עתה, נתבונן בסכום עד $f_2(t)=f_2(t)$

$$\sum_{i=0}^{m} f_1(i) = \sum_{i=0}^{m} f_2(i)$$

$$\sum_{i=0}^{t} f_1(i) + f_1(m) = \sum_{i=0}^{t} f_2(i) + f_2(m)$$

$$f_1(m) = f_2(m)$$

וזו סתירה.

2.€.D. ■

סעיף די

 $A,B,C \neq \emptyset$, $f = \lambda g \in (A \to B) \to C.\lambda a \in A.\lambda b \in B.g(\lambda a \in A.b)$: Let

. טענה: f , $\mathrm{dom}(f) = (A o B) o C, \mathrm{range}(f) = A o (B o C)$ טענה:

צ.ל.: *f* לא חח"ע

:נבחר למדא לפי: $g_1,g_2\colon (A o B) o C$ הוכחה: נבחר

$$g_1 = \lambda h \in A \to B.h(0)$$

 $g_2 = \lambda h \in A \to B.h(1)$

fוכמו כן נבחר את $A=\{1,2\}, B=\mathbb{N}$ ואת A,B ואת $C=\mathrm{range}(g_1)\cup\mathrm{range}(g_2)$ נניח בשלילה ש־ $g_1
eq g_2 \land f(g_1)=f(g_2)$ ואת, נוכיח $g_1 \neq g_2 \Rightarrow f(g_1) \neq f(g_2)$ חח"ע, כלומר לכל

- ובפרט עבור $g_1(h)=g_2(h)$ מתקיים $h\colon A o B$ נניח בשלילה שהן שוות, כלומר לפי כלל η לכל $g_1(h)=g_2(h)$ ובפרט עבור $h:g_1(h)=0
 eq 1=g_2(h)$ אך בניגוד לכך $h=\{\langle 0,0\rangle,\langle 1,1\rangle\}$
 - :.לג β צ.ל.: $f(g_1)=f(g_2)$ •

$$f(g_1) = f(g_2)$$

$$\iff \lambda a \in A.\lambda b \in B.g_1(\lambda a \in A.b) = \lambda a \in A.\lambda b \in B.g_2(\lambda a \in A.b) \quad (\beta \text{ rule})$$

$$\iff \forall a \in A, b \in B.g_1(\lambda a \in A.b) = g_2(\lambda a \in A.B) \quad (\eta \text{ rule})$$

$$\iff \forall a \in A, b \in B, c \in C.(\lambda a \in A.b)(c) = (\lambda a \in b)(c) \quad (\beta \text{ rule})$$

$$\iff \forall b \in B.b = b \quad (\eta \text{ rule})$$

אשר מהווה פסוק אמת.

2.€.D. ■

שאלה 4

:נתון: תהי $A
eq\emptyset$, נניח קיום A: (A imes A) o f זיווג, ויהי f: (A imes A) o A, נניח קיום א

$$A^{n} = \underbrace{A \times ... \times A}_{n \text{ times}} = \{ \langle a_{1}, ..., a_{n} \rangle \mid \forall 1 \leq i \leq n. a_{i} \in A \}$$

 $f_n\colon A^n o A$ צ.ל.: נוכיח קיום זיווג

הוכחה: נוכיח באינדוקציה

- בסיס (n=1): צ.ל. קיום זיווג $A^1=\{\langle a \rangle \mid a\in A\}$ ידוע $f_n\colon A^n \to A$ או באופן שקול לכל (n=1) בסיס (n=1): צ.ל. קיום זיווג $(a)=a_1\in A^1$. נתבונן בפונקציה $(a)=a_1\in A^1$. נתבונן בפונקציה $(a)=a_1\in A^1$.
- על: יהי $a_1 = \langle f^{-1}(a) \rangle$ נבחר $a_1 = \langle f^{-1}(a) \rangle$ נבחר $a_1 = a_1$ נוכיח קיום $a_1 \in A^1$ עבורו $a_1 \in A^1$ נבחר $a_1 \in A^1$ נבחר $a_1 \in A^1$ מלאה ב־ $a_2 \in A^1$ אשר מקיים $a_3 \in A^1$ או באופן שקול $a_1 \in A^1$ כדרוש. $(f^{-1}(a)) \in A_1 = f(\pi_1(\langle f^{-1}(a) \rangle)) = f(f^{-1}(a)) = a_1$
- ונניח $f_1(a_1)=f(a_2)$ נניח $\langle b_1 \rangle=a_1 \wedge \langle b_2 \rangle=a_2$ עבורם $b_1,b_2 \in A$ ולכן קיימים $a_1,a_2 \in A^1$ נניח $a_1,a_2 \in A^1$ ונניח $b_1,b_2 \in A$ ולכן לפי טרנזיטיביות + התכונה המרכזית של $a_1=a_2$ סה"כ:

$$f(a_1) = f(a_2)$$

$$\iff f(\pi_1(a_1)) = f(\pi_1(a_2))$$

$$\iff f(b_1) = f(b_2)$$

. ומשום ש־f חח"ע נגרר $b_1=b_2 \wedge b_1
eq b_2$, ולכן ולכן $b_1=b_2 \wedge b_1 = b_2$ והגענו

 $f_{n+1}\colon A^{n+1}\to A$ נניח שקיים זיווג, $f_n\colon A^n\to A$ נניח שקיים זיווג ($a_n=\pi_n(a)$ נניח קיום זיווג): (n>1) צעד • נטען שהפוקציה f_n המוגדרת להלן זיווג:

$$f_n = \lambda a \in A^n.\langle f_n(a_1), f_n(a_2), \dots, f_n(a_n), f(a_{n+1})\rangle$$

נוכיח את אשר הכרחי למספיק להיות f_{n+1} זיווג:

: על: יהי $y \in A$, נוכיח קיום $a \in A^{n+1}$ עבורו $y \in A$ יהי $y \in A$ על: יהי

$$y = \langle f_n^{-1}(y_1), \dots, f_n^{-1}(y_n), f(y_{n+1}) \rangle$$

: נציב ונקבל: f_n פונקציה לפי הנחת האינדוקציה שאומרת או דיווג, או באופן שקול, הפיך) נציב ונקבל:

$$f_{n+1}(y) = \langle f_n(f_n^{-1}(y_1)), \dots, f_n(f_n^{-1}(y_n), f(f^{-1}(y_{n+1}))) \rangle$$

= $\langle y_1, \dots, y_n, y_{n+1} \rangle = y$ 2.8.7.

הנחת. לפי הנחת $f_{n+1}(y_1) \neq f_{n+1}(y_2)$ נניח בשלילה (ניח $y_1 \neq y_2$ ונגיע לסתירה. לפי הנחת $y_1, y_2 \in A$ השלילה:

$$f_{n+1}(y_1) = f_{n+1}(y_2)$$

$$\iff \langle f_n(y_{1_1}), f_n(y_{1_2}), \dots, f_n(y_{1_n}), f(y_{1_{n+1}}) \rangle =$$

$$\langle f_n(y_{2_1}), f_n(y_{2_2}), \dots, f_n(y_{2_n}), f(y_{2_{n+1}}) \rangle \qquad (\beta \text{ rule})$$

ולכן, לפי התכונה המרכזית של f_n יה סדורה, $f_n(y_{1_m})=f_n(y_{2_m})$, ומשום שn חח"ע מתוך לפי התכונה המרכזית של $m\in\mathbb{N}.y_{1m}=y_{2m}$ וזו סתירה. אינדוקציה נסיק $\forall m\in\mathbb{N}.y_{1m}=y_{2m}$ ולכן מתוך התכונה המרכזית ביק

Q.E.D. ■

שאלה 5

סעיף אי

צ.ל.: לשלול

$$\forall f \colon \mathbb{Z} \to \mathbb{Z}. \exists n \in \mathbb{N}_+. f^{(n)} = id_{\mathbb{Z}}$$

הוכחה:

נוכיח $n\in\mathbb{N}_+$ יהי $f=\lambda x\in\mathbb{Z}.x+2$ נבחר $\exists f\in\mathbb{Z} o\mathbb{Z}. \forall n\in\mathbb{N}_+. f^{(n)}=id_\mathbb{Z}$ נוכיח $f^{(n)}=\lambda x\in\mathbb{Z}.x+2$

- . בסיס $f^{(n)}=f^{(1)}=f=\lambda x\in\mathbb{Z}.x+2\cdot 1$ כדרוש.
- עעד (n>1): נניח באינדוקציה שהטענה נכונה על $f^{(n)}$, ונוכיח עד $f^{(n+1)}$. לפי הגדרת ההרכבה, $f^{(n)}$ צעד $f^{(n)}$. נניח באינדוקציה שהטענה נכונה על $f^{(n)}$, ונוכיח עד $f^{(n+1)}=f^{(n)}$. נפריח שוויון ל־ $f^{(n+1)}$ בוכיח שוויון ל־ $f^{(n+1)}$ היא גם על $f^{(n+1)}$ וסה"כ הדומיין שווה. לכן, יהי $f^{(n+1)}$ היא גם על $f^{(n+1)}$ וסה"כ הדומיין שווה. לכן, יהי $f^{(n+1)}$ היא גם על $f^{(n+1)}$ או באופן שקול לפי כלל בטא $f^{(n)}(x+2)$ ולכן $f^{(n)}(x+2)$ וזה פסוק אמת כדרוש.

סה"כ, יהי $n\in\mathbb{N}_+$, נניח בשלילה ש־ $f^{(n)}=id_\mathbb{Z}$, נסיק $f^{(n)}=id_\mathbb{Z}$, ולפי כלל $n\in\mathbb{N}_+$, ולפי כלל $n\in\mathbb{N}_+$, מתקיים $x+2n=id_\mathbb{Z}$, נכפיל את x+2n=x כלומר בx+2n=x, נחבר x+2n=x, נחבר $x+2n=id_\mathbb{Z}(x)$ שני האגפים ונקבל x+2n=x, נציב ונקבל x+2n=x המהווה סתירה.

Q.E.D. ■

סעיף ב*י*

 $f \colon \{1,2,3\} o \{1,2,3\}$ נתון: יהי

(הערה: אפשר להרחיב את ההוכחה לכל קבוצה סופית) $f^{(n)}=id_{\{1,2,3\}}$ עבורו $n\in\mathbb{N}_+$ נוכיח קיום

הוכחה: נפלג למקרים:

- $f^{(n)}=f=id_{\{1,2,3\}}$ ולכן n=1 נבחר : $f=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$ ישלושה איברים ביחס זהות: בה"כ $f=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}$ כדרוש.
- שני איברים ביחס זהות: נניח בשלילה שקיים יחס בו קיימים אך ורק שני איברים ביחס הזהות, בה"כ שני איברים ביחס זהות: נניח בשלילה שקיים יחס בו קיימים אך ורק שני איברים ביחס הזהות: f(3)
 otin f(3)
 otin
- ולכן n=2 נבחר $f=\{\langle 1,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle\}$ בה"כ בה"כ בה"כ יחיד ביחס הזהות: בה"ל $f^{(n)}=f\circ f=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\}=id_{\{1,2,3\}}$
 - אפס איברים ביחס הזהות: בה"כ $\{\langle 1,3 \rangle, \langle 2,1 \rangle, \langle 3,2 \rangle\}$ נבחר n=3 ולכן:

$$f^{(n)} = (f \circ f) \circ f$$

$$= \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle\} \circ f$$

$$= \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle\}$$

$$= id_{\{1,2,3\}}$$

Q.E.D. ■