LAB₁

Digital System Design - 2020 spring Sungkyunkwan University

Goals

> Practice designing combinational logic circuits in Verilog HDL

Practice designing a hierarchical structural model of combinational logic circuits

Objectives

Design submodules (Adder, Subtractor, Bitwise Operator)

Design a ALU using submodules

Block Diagram

Specification

- > ALU must support following operations
 - Bitwise OR / AND / NOR
 - Signed Addition
 - Signed Subtraction

Opcode Table

Opcode	Instruction
0010	Signed Addition
0110	Signed Subtraction
0000	Bitwise AND
0001	Bitwise OR
1111	Bitwise NOR

^{*} subtraction operates data_in_1 - data_in_2

Opcode Table

Adder and Subtractor should be coded using Ripple carry adder which can be simply realized.

4 bit ripple carry adder

Restriction

- You must use submodules that you will design to implement a complete ALU.
 - Hierarchical Structural Model
 - □ Use Only Gate modules what we give to you in the code in "logic_gate.v"
 - □ logic_or, logic_and, logic_xor

No Behavioral Description(including concatenation)

you can only use statements below!

assign
$$A = B$$
;
assign $A = {}^{\sim}B$;
assign $A = (B==1)?C:D$;

Restriction

You can only modify "alu.v" file

```
'timescale 1 ns / 100 ps
     `include "logic gate.v"
    module alu
            parameter WORD SIZE = 8
           ,parameter ALU CON SIZE = 4
                             [ALU CON SIZE-1:0] alu con
            input
             ,input signed [WORD_SIZE-1 :0] data_in_1
             ,input signed [WORD_SIZE-1 :0] data_in_2
              ,output signed [WORD_SIZE-1 :0] data out
16
18
19
        localparam ADD = 4'b0010,
21
                 AND = 4'b0000,
                 OR = 4'b0001,
                 NOR = 4'b1111;
25
        ////////write your code here////////////////
29
30
32
     endmodule
```

You can use any other wires but not registers.

Test bench

- Result of test bench
 - it test 10 random input cases with each operation
 - if the whole cases are correct,
 you will get 50/50 score

```
-6, data2:
                 data2: 11111111, your answer: 11111101, correct answer: 11111101
                 data2: 11111010, your answer: 00000010, correct answer: 00000010
datal: 11111010, data2: 11111100, your answer: 11111000, correct answer: 11111000
datal: 00000010, data2: 11111010, your answer: 00000010, correct answer:
                 data2: 111111000.
                                  your answer: 00000000, correct answer: 00000000
                 data2: 00000110, your answer: 00000010, correct answer: 00000010
datal: 00000110, data2: 111111110, your answer: 00000110, correct answer: 00000110 <0K!)
                 data2: 00000001, your answer: 11111011, correct answer: 11111011
datal: 11111011, data2: 11111010, your answer: 11111011, correct answer: 11111011
datal: 11111110, data2: 00000101, your answer: 11111111, correct answer: 11111111
datal: 11111111, data2: 11111111, vour answer: 11111111, correct answer: 11111111
datal: 11111111, data2: 11111100, your answer: 11111111, correct answer: 11111111
----NOR operation--
                 data2: 00000000, your answer: 00000110, correct answer: 00000110
datal: 00000111, data2: 00000001, your answer: 11111000, correct answer: 11111000
data1: 00000110, data2: 11111100, your answer: 00000001, correct answer: 00000001
datal: 00000010, data2: 11111000, your answer: 00000101, correct answer: 00000101
datal: 00000111, data2: 11111101, your answer: 00000000, correct answer: 00000000 <OK!>
datal: 11111101, data2: 11111001, your answer: 00000010, correct
                 data2: 00000011, your answer: 00000000, correct
Total : <
                  50/50> score
```

Submission

- Submit your *.v file and report on iCampus
- Report must include questions below
 - 1. Explain your code.
 - 2. If AND-gate has 100ps delay, OR-gate has 50ps delay, and XOR-gate has 150ps delay, calculate the critical path delay of your ALU.
 - 3. Explain the disadvantage of Ripple Carry Adder.

format : name_ID.v & name_ID.pdf

ex) 홍길동_2020000000.v, 홍길동_2020000000.pdf

Grade

- Function test (50)
- Work correctly even if WORD_SIZE is changed (20)
- Coding style(readability&clarity) (30)
- Report (50)
- You don't need to write comment in your code