

Partial decay widths and form factor implementation for the simulation of the Λ_c^+ decays in SHERPA

Bachelor-Arbeit
zur Erlangung des Hochschulgrades
Bachelor of Science
im Bachelor-Studiengang Physik

vorgelegt von

Sven Schiffner geboren am 28.10.1994 in Sebnitz

Institut für Kern- und Teilchendphysik
Fachrichtung Physik
Fakultät Mathematik und Naturwissenschaften
Technische Universität Dresden
2017

Eingereicht am 24. Mai 2017

1. Gutachter: Dr. Frank Siegert

2. Gutachter: Prof. Dr. Michael Kobel

Summary

Abstract

English:

Abstract

Deutsch

Contents

1	Introduction	7
2	Basic Physical Principles	9
	2.1 Baryons	9
	2.1.1 Λ_c^+ Baryon	9
	2.2 Decays	9
	2.3 Weak Decay	10
	2.4 V-A current	11
	2.5 Monte-Carlo basics	12
3	Methods and Implemnetatio	13
	3.1 Decaysdata.db	13
4	Evaluation and Discussion	17
5	Summary and Outlook	19
6	Bibliography	21

1 Introduction

One of the big questions of mankind is, why are we here. And the correspondending question is in physics is, why exists more matter than anti-matter in the universe. This thesis can't clear the question but it can be a part of the big picture.

The LHC (Large Hadron Collider) is one of the biggest experiments of humanity. This accelerator collides proton with protons, lead nuclei with protons or lead nuclei with lead nuclei. One detector of this big apparatus is the LHCb. The LHCb is a try to find the answer of the above question. It examines assymetries in the decay of matter and anti-matter mainly for lead-lead-collissions. And so deviations from the Standard Model. The Standard Model is a theory that describes the fundamental interactions between and the elementary particles itself very well. These deviations can result in additions to the Standard Model to consider a asymmetry between matter and anti-matter. And so lead to an answer for the matter surplus. For this the results from the experiment has to be compared to the theoratical results. But simulations are needed for the theoratical results. This comes from the different interactions that happens through a particle collision. A lot of particles are created and decay. On of the simulation tools is Sherpa. This program use Monte-Carlo techniques to obtain results.

One possible baryon that can be created is the Λ_c^+ . It is the lightest baryon that contains a charm quark. The charm quark is like the up quark that builds together with the down quark neutrons and protons but heavier.

For a good comparison between the experimental results and the theoratical simulations is it important to implement as much particles in the simulation as possible. This leads in a better description of the reaction and so in better theoretical results.

This thesis has the goal to improve the simulation through a better implementation of the Λ_c^+ decays.

2 Basic Physical Principles

2.1 Baryons

A Baryon is a subatomic particle. It is composite and contains three quarks. The Baryons form together with the mesons the class of the hadrons. Mesons are composed of two quarks, one quark and one antiquark.

Protons and neutrons which are the components of our normal matter are baryons. These are the lightest baryons. The proton is made of two up quark and one down quark. The neutron contains two down quark and one up quark.

All observed events so far feature that the number of baryons in a reaction is observed. To use this in calculations every quark get the baryon number B=1/3 and every anti-quark B=-1/3. In a decay from a baryon $(\sum B=1)$ the final products has to be a baryon $(\sum B=1)$ or two baryons $(\sum B=2)$ and an anti-baryon $(\sum B=-1)$ and so on.

2.1.1 Λ_c^+ Baryon

The Λ_c^+ has a mass of 2286.46 \pm 0.14MeV^[2] and a mean life time of $(2.00 \pm 0.06) \cdot 10^{-13} s^{[2]}$. It is one of the lightest charmed baryons and is made of one up, down and charm quark. His charge is +1 of the electron charge^[2].

2.2 Decays

Decays are processes with one particle in the initial state and n particles in the final state for n=2,3,... The decayed particle mustn't be in the final state. This makes the difference to rediation processes. The decay process can always be transformed in the rest mass frame of the Decayer and so the summation over the energy of all particles in the final state has to be the rest energy of the decaying particle.

A decay process or more general a transision process is characterized through Fermi's golden rule(2.1).

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho \left(E_i\right) \tag{2.1}$$

10 2.3 Weak Decay

In equation(2.1) T_{fi} is the transition matrix element and $\rho(E_i)$ is the density of states. The result is the transition rate Γ_{fi} . In natural units the unit of the transition rate is GeV⁻¹.

For decay process the only one intial is possible, the decayer and f is often labeled as i in literature. And so Fermi's golden rule becomes to equation (??).

$$\Gamma_i = 2\pi |T_i|^2 \rho(E) \tag{2.2}$$

The Γ_i is called partial decay width. And is characteristic value for a decay process. The sum over all partial decay widths is called total decay width(2.3).

$$\Gamma = \sum_{i} \Gamma_{i} \tag{2.3}$$

The total width (2.3) is an criterion for the lifetime of the decaying particle. The lifetime (??) of the particle in natural units is the inverse of Γ .

$$\tau = \frac{1}{\Gamma} \tag{2.4}$$

The branching ratio(2.5) is the probability to decay in a specific final state. It can be calculated with the partial and total decay width.

$$BR(i \to f) = \frac{\Gamma_f}{\Gamma} \tag{2.5}$$

The formula (2.5) use the same indices like equation (2.1).

2.3 Weak Decay

A weak decay is the transition of a particle through the weak interaction. An elementary particle that is possibly part of an composite can in this way decay to a W[±]-Boson and an correspondending part. But the W-Boson only couple to lef-handed fundamental particles and right-handed fundamental anti-particles. The spinor for the weak interaction than looks like (2.6). There the upper have isospin -1/2 and the lower isospin +1/2.

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix}_L, \begin{pmatrix} d \\ u \end{pmatrix}_L, \begin{pmatrix} s \\ c \end{pmatrix}_L, \text{ etc.}$$
 (2.6)

In (2.6) only the important particles are shown.

The value for a W[±] propagator is $\propto \frac{(}{1})q^2 - m_W^2$. But in most process the transferred momentum is much lower compared to the Mass of the W[±] boson because it is the mass difference of the initial particle and the final particle that are connected through the W[±] vertex. This leads to an estimation there the propagator becomes to $\propto \frac{(}{1})m_W^2 \propto G_F$. G_F is the Fermi constant for

the weak interaction and the process looks like a one to three vertex because W^{\pm} boson is not stable and decays in other particles.

The measurement of leptons are mostly very accurate in a detector and the calculation of the transisition matrix element becomes easier for leptonic decays only this decays are considered. For the Λ_c^+ exists the following Feynman diagram(2.1). The Λ_c^+ can decay in a neutron or a Lambda as baryon and a positron or anit-muon as lepton plus the correspondending neutrino to observe the lepton number.

Figure 2.1: Semileptonic decay modes of the Λ_c^+ into a neutron (udd) or a Λ (uds), an positron or an anti-muon and the correspondending neutrino (own graphic)

2.4 V-A current

The value of a Vertex where two pertinent leptons transforms into a W[±] boson is $-i\frac{g}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^{5})$. If the sum is splitted, the term without γ^{5} is called vector and the part with the γ^{5} axial-vector through the geometrical effect of the γ -matrix. The transition from quarks needs an additional factor V_{if} . i is the quark and in the initial state and f the quark in the final state. The factor comes from the CKM-matrix^[1]. The matrix from [1] is shown in (2.7).

$$V_{CKM} = \begin{bmatrix} 0.97434^{+0.00011}_{-0.00012} & 0.22506 \pm 0.00050 & 0.00357 \pm 0.00015 \\ 0.22492 \pm 0.00050 & 0.97351 \pm 0.00013 & 0.0411 \pm 0.0013 \\ 0.00875^{+0.00032}_{-0.00033} & 0.0403 \pm 0.0013 & 0.99915 \pm 0.00005 \end{bmatrix}$$
(2.7)

With the general Feynman rules for vertices and propagators the transition matrix element becomes to (2.8) like in [3, Eq. 1].

$$T = \frac{G_F}{\sqrt{2}} V_{Qq} \bar{u}_l \gamma^\mu \left(1 - \gamma^5 \right) u_{\nu_l} \langle B(p', s') | J_\mu | \Lambda_c(p, s) \rangle \tag{2.8}$$

The B in (2.8) stands for the neutron or Λ . The current J_{μ} can be splitted in a vector-axial and an axial part $J_{\mu} = V_{\mu} - A_{\mu}$ like in (2.9).

$$\langle B(p',s')|V_{\mu}|\Lambda_{c}(p,s)\rangle = \bar{u}(p',s')\left(F_{1}(q^{2})\gamma_{\mu} + F_{2}(q^{2})\frac{p_{\mu}}{m_{\Lambda_{c}}} + F_{3}(q^{2})\frac{p'_{\mu}}{m_{B}}\right)u(p,s)$$

$$\langle B(p',s')|A_{\mu}|\Lambda_{c}(p,s)\rangle = \bar{u}(p',s')\left(G_{1}(q^{2})\gamma_{\mu} + G_{2}(q^{2})\frac{p_{\mu}}{m_{\Lambda_{c}}} + G_{3}(q^{2})\frac{p'_{\mu}}{m_{B}}\right)\gamma^{5}u(p,s) \quad (2.9)$$

The F_i and G_i are form factors for the transition. They are specific for the initial and final baryons and describe the different behavior of the quarks in a bound state in contrast to the free decay. The functional behavior of these form factors is related to $q^2 = (p - p')^2$.

2.5 Monte-Carlo basics

The Sherpa software use Monte-Carlo methods to calculate the dynamics of the process for the phase space integration of the partial width. To understand this method Fermi's golden rule(2.1) has to be written as an integral. This integral can be ontained from the density of states. A formula like [4, Eq. 2.38] is the result of this equation. The differential dacay rate is an important part because with Monte-Carlo the integral can be performed. For this a point in the phase space is diced. The differential decay rate $d\Gamma$ is calculated. If the Ratio between the differential decay rate and the maximum decay rate is bigger as a random number between zero and one the event is accepted. This points will be collected and form the integral and so the decay rate at the end.

3 Methods and Implemnetatio

3.1 Decaysdata.db

Sherpa use for the decays from all kinds of particles the decay channels and branching ratios from the Decaysdata.db. This database has to be updated manually with data from the Particle Data Group (PDG) because there exists no automation for this work. Also data from other sources are included, e.g. EvtGen.

Good results need actual data. The first part is to update the branching ratios and deyays. For the $\Xi(1690)$ was an implementation not possible because there exists to few events about futher decays. The conclusion of different events needs a lot of attention. For some events like $\Lambda_c^+ \to \Sigma(1385)^- + \pi^+ + \pi^+$ only the channel $\Sigma(1385) \to \Lambda + \pi$ was recognized. So a division with the BR($\Sigma(1385) \to \Lambda + \pi$) was needed because Sherpa handle further decays and consider all different decays of the $\Sigma(1385)^-$. Table (3.1) was revealed with this knowledge.

Table 3.1: Changes in the Decays.dat from the Λ_c^+

Status	Outgoing Part.	BR(Delta BR)[Origin]	Decay
	I	as	
old	2212,-311	0.023(0.006)[PDG]	$\Lambda_c^+ \to P^+ + K_b$
new	2212,310	0.0158(0.0008)[PDG]	
old	2212,-313	0.016(0.005)[PDG]	$\Lambda_c^+ \to P^+ + K^*(892)_b$
new	2212,-313	0.0198(0.0028)[PDG]	
old	2212,-321,211	0.028(0.008)[PDG]	$\Lambda_c^+ \to P^+ + K^- + \pi^+$
new	2212,-321,211	0.035(0.004)[PDG]	
old	2212,-311,111	0.033(0.010)[PDG]	$\Lambda_c^+ \to P^+ + K_b + \pi$
new	2212,310,111	0.0199(0.0013)[PDG]	
old	2212,-311,221	0.012(0.004)[PDG]	$\Lambda_c^+ \to P^+ K_b + \eta$
new	2212,-311,221	0.016(0.004)[PDG]	
old	2212,-311,211,-211	0.026(0.007)[PDG]	$\Lambda_c^+ \to P^+ + K_b + \pi^+ \pi^-$
new	2212,-311,211,-211	0.049(0.004)[PDG]	
old	2212,-311,211,-211	0.026(0.007)[PDG]	$\Lambda_c^+ \to P^+ + K_b + \pi^+ + \pi^-$
new	2212,310,211,-211	0.0166(0.0012)[PDG]	
old	2212,-323,211	0.016(0.005)[PDG]	$\Lambda_c^+ \to P^+ + K^*(892)_b^+ + \pi^+$

14 3.1 Decaysdata.db

new	2212,-323,211	0.015(0.005)[PDG]	
old	2212,-321,211,111	0.036(0.012)[PDG]	$\Lambda_c^+ \to P^+ + K^- + \pi^+ + \pi$
new	2212,-321,211,111	0.046(0.09)[PDG]	
old	2212,-321,211,211,-211	0.0011(0.0008)[PDG]	$\Lambda_c^+ \to P^+ + K^- + \pi^+ + \pi^+ + \pi^-$
new	2212,-321,211,211,-211	0.0014(0.001)[PDG]	
old	2212,-321,211,111,111	0.008(0.004)[PDG]	$\Lambda_c^+ \to P^+ + K^- + \pi^+ + \pi + \pi$
new	2212,-321,211,111,111	0.01(0.005)[PDG]	
old	2212,333	0.00082(0.00027)[PDG]	$\Lambda_c^+ \to P^+ + \phi(1020)$
new	2212,333	0.00104(0.00021)[PDG]	
S = 0			
old	2212,321,-321	0.00035(0.00017)[PDG]	$\Lambda_c^+ \to P^+ + K^+ + K^-$
new	2212,321,-321	0.00044(0.00018)[PDG]	
S = 0			
old	2212,211,211,-211,-211	0.018(0.012)[PDG]	$\Lambda_c^+ \to P^+ + \pi^+ + \pi^+ + \pi^- + \pi^-$
new	2212,211,211,-211,-211	0.0023(0.0015)[PDG]	
S = 0			
old	2212,9010221	0.0028(0.0019)[PDG]	$\Lambda_c^+ \to P^+ + f(0980)$
new	2212,9010221	0.0035(0.0023)[PDG]	
S = 0			
deleted	2212,211,-211	0.0007(0.0007)[PDG]	$\Lambda_c^+ \to P^+ + \pi^+ + \pi^-$
S = 0			
old	2224,-321	0.0086(0.003[PDG]	$\Lambda_c^+ \to \Delta(1232)^{++} + K^-$
new	2224,-321	0.0109(0.0025)[PDG]	
		Modes with hyperons	
old	3122,211	0.0107(0.0028)[PDG]	$\Lambda_c^+ \to \Lambda + \pi^+$
new	3122,211	0.0130(0.0007)[PDG]	
created	3122,211,111	0.071(0.0004)[PDG]	$\Lambda_c^+ \to \Lambda + \pi^+ + \pi$
created	3122,213	0.036(0.013)[PDG]	
S = 0			
old	3122,321	0.0005(0.00016)[PDG]	$\Lambda_c^+ \to \Lambda + K^+$
new	3122,321	0.00061(0.00012)[PDG]	
old	3122,211,113	0.011(0.005)[PDG]	$\Lambda_c^+ \to \Lambda + \pi^+ + \rho(770)$
new	3122,211,113	0.015(0.006)[PDG]	
old	3122,221,211	0.018(0.006)[PDG]	$\Lambda_c^+ \to \Lambda + \eta + \pi^+$
new	3122,221,211	0.022(0.005)[PDG]	
old	3122,223,211	0.018(0.006)[PDG]	$\Lambda_c^+ \to \Lambda + \omega(782) + \pi^+$
		· · · · · · · · · · · · · · · · · · ·	

new	3122,223,211	0.015(0.005)[PDG]	
old	3122,321,-311	0.0047(0.0015)[PDG]	$\Lambda_c^+ \to \Lambda + K^+ + K_b$
new	3122,321,-311	0.0057(0.0011)[PDG]	
old	3114,211,211	0.0055(0.0017)[PDG]	$\Lambda_c^+ \to \Sigma (1385)^- + \pi^+ + \pi^+$
new	3114,211,211	0.0090(0.0018)[PDG]	
created	3112,211,211	0.021(0.004)[PDG]	$\Lambda_c^+ \to \Sigma^- + \pi^+ + \pi^+$
old	3212,211	0.0105(0.0028)[PDG]	$\frac{\Lambda_c^+ \to \Sigma^- + \pi^+ + \pi^+}{\Lambda_c^+ \to \Sigma + \pi^+}$
new	3212,211	0.0129(0.0007)[PDG]	
S = 0			
old	3212,321	0.00042(0.00013)[PDG]	$\Lambda_c^+ \to \Sigma + K^+$
new	3212,321	0.00052(0.00008)[PDG]	
old	3212,211,211,-211	0.0083(0.0031)[PDG]	$\Lambda_c^+ \to \Sigma + \pi^+ + \pi^+ + \pi^-$
new	3212,211,211,-211	0.0113(0.0029)[PDG]	
old	3222,111	0.0100(0.0034)[PDG]	$\Lambda_c^+ \to \Sigma^+ + \pi$
new	3222,111	0.0124(0.001)[PDG]	
old	3222,221	0.0055(0.0023)[PDG]	$\Lambda_c^+ \to \Sigma^+ + \eta$
new	3222,221	0.0070(0.0023)[PDG]	
old	3222,211,-211	0.013(0.005)[PDG]	$\Lambda_c^+ \to \Sigma^+ + \pi^+ + \pi^-$
new	3222,211,-211	0.0457(0.0029)[PDG]	
S = 0			
old	3222,313	0.002[EvtGen]	$\Lambda_c^+ \to \Sigma^+ + K^*(892)$
new	3222,313	0.0036(0.001)[PDG]	
old	3222,223	0.027(0.01)[PDG]	$\Lambda_c^+ \to \Sigma^+ + \omega(782)$
new	3222,223	0.0174(0.0021)[PDG]	
old	3222,333	0.0031(0.0009)[PDG]	$\Lambda_c^+ \to \Sigma^+ + \phi(1020)$
new	3222,333	0.0040(0.0006)[PDG]	
old	3224,113	0.0037(0.0031)[PDG]	$\Lambda_c^+ \to \Sigma(1385)^+ + \rho(770)$
new	3224,113	0.0072(0.0046)[PDG]	
old	3224,221	0.0085(0.0033)[PDG]	$\Lambda_c^+ \to \Sigma(1385i)^+ + \eta$
new	3224,221	0.00124(0.00037)[PDG]	
old	3224,211,-211	0.007(0.004)[PDG]	$\Lambda_c^+ \to \Sigma(1385)^+ + \pi^+ + \pi^-$
new	3224,211,-211	0.011(0.006)[PDG]	
old	3322,321	0.0039(0.0014)[PDG]	$\Lambda_c^+ \to \Xi + K^+$
new	3322,321	0.0050(0.0012)[PDG]	
old	3312,321,211	0.0025(0.001)[PDG]	$\Lambda_c^+ \to \Xi^- + K^+ + \pi^+$
new	3312,321,211	0.0062(0.0006)[PDG]	
old	3324,321	0.0026(0.001)[PDG]	$\Lambda_c^+ \to \Xi(1530) + K^+$

3.1 Decaysdata.db

new	3324,321	0.0033(0.0009)[PDG]	
		semileptonic modes	
old	3122,12,-11	0.021(0.006)[PDG]	$\Lambda_c^+ \to \Lambda + \nu_e + e^+$
new	3122,12,-11	0.036(0.004)[PDG]	
old	3122,14,-13	0.020(0.007)[PDG]	$\Lambda_c^+ \to \Lambda + \nu_m u + m u^+$
new	3122,14,-13	0.036(0.004)[PDG]	

In the case of $\Lambda_c^+ \to P^+ p i^+ + p i^-$ was the decay already included in $Lambda_c^+ \to P^+ + f(0980)$. K_b was removed from the PDG and only K_s exists. For $Lambda_c^+ \to \Lambda + \eta + p i^+$ give the difference between $\Lambda + \pi^- + \pi + \pi^+ + \pi^+$ and $\Sigma(1385)^+ + \eta$ the right value because an η decays in $\pi^+ + \pi^-$ and a $\Sigma(1385)$ to $\Lambda + \pi$. But the decay of the $\Sigma(1385)$ is a separate channel.

4 Evaluation and Discussion

5 Summary and Outlook

6 Bibliography

- [1] A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK). THE CKM QUARK-MIXING MATRIX. 2016. URL: http://pdg.lbl.gov/2016/reviews/rpp2016-rev-ckm-matrix.pdf (visited on 03/27/2017).
- [2] C. Patrignani et al.(Particle Data Group). CHARMED BARYONS Λ_c^+ . 2016. URL: http://pdglive.lbl.gov/Particle.action?node=S033&init= (visited on 03/09/2017).
- [3] Muslema Pervin, Winston Roberts, and Simon Capstick. "Semileptonic decays of heavy lambda baryons in a quark model". In: *Phys. Rev.* C72 (2005), p. 035201. DOI: 10.1103/PhysRevC.72.035201. arXiv: nucl-th/0503030 [nucl-th].
- [4] Frank Siegert. "Simulation of hadron decays in SHERPA". In: (2007).

Erklärung

Hiermit erkläre ich, dass ich diese Arbeit im Rahmen der Betreuung am Institut für Kern- und Teilchenphysik ohne unzulässige Hilfe Dritter verfasst und alle Quellen als solche gekennzeichnet habe.

Sven Schiffner Dresden, Mai 2017