Normal forms BCNF (Boyce-Codd Normal Form)

BCNF (Boyce-Codd Normal Form)

Conditions for BCNF

Primary Key

Determinant

Dependent

BCNF is based on the concept of a determinant.

→AccountNO → {Balance, Branch}

It is in 3NF and every determinant should be key.

- A relation R is in Boyce-Codd normal form (BCNF)
 - 1. if and only if it is in 3NF and
 - 2. for every F.D. of the form $X \rightarrow Y$, either Y is proper subset of X (i.e. Trivial F.D.) or X is a key.

OR

- A relation R is in Boyce-Codd normal form (BCNF)
 - 1. if and only if it is in 3NF and
 - 2. no any prime key attribute is transitively dependent on the key

BCNF (Boyce-Codd Normal Form) [Example]

Student				
RNO	Subject	Faculty		
101	DS	Patel		
102	DBMS	Shah		
103	DS	Jadeja		
104	DBMS	Dave		
105	DBMS	Shah		
102	DS	Patel		
101	DBMS	Dave		
105	DS	Jadeja		

- **FD1**: RNO, Subject → Faculty
- **FD2**: Faculty → Subject
- So {RNO, Subject} → Subject (Transitivity rule)

In FD2, determinant is Faculty which is not a primary key. So student table is not in BCNF.

Problem: In this relation one student can learn more than one subject with different faculty then records will be stored repeatedly for each student, language and faculty combination which occupies more space.

- Here, one faculty teaches only one subject, but a subject may be taught by more than one faculty.
- A student can learn a subject from only one faculty.

BCNF (Boyce-Codd Normal Form) [Example]

Student

Student		
Subject	Faculty	
DS	Patel	
DBMS	Shah	
DS	Jadeja	
DBMS	Dave	
DBMS	Shah	
DS	Patel	
DBMS	Dave	
DS	Jadeja	
	Subject DS DBMS DS DBMS DBMS DBMS DS DBMS	

<u>Faculty</u>	Subject
Patel	DS
Shah	DBMS
Jadeja	DS
Dave	DBMS

Table-2

RNO	<u>Faculty</u>
101	Patel
102	Shah
103	Jadeja
104	Dave
105	Shah
102	Patel
101	Dave
105	Jadeja

- Solution: Decompose relation in such a way that resultant relations do not have any transitive FD.
 - Remove transitive dependent prime attribute from relation that violets BCNF.
 - Place them in separate new relation along with the non-prime attribute due to which transitive dependency occurred.
 - The primary key of new relation will be this non-prime attribute due to which transitive dependency occurred.
 - Keep other attributes same as in that table with same primary key and add a prime attribute of other relation into it as a foreign key.

Q. 1 Given that R (A, B, C) & FD {AB \rightarrow C, C \rightarrow B}. Check whether it is in BCNF or not, if not, then convert it into BCNF.

Key = {AB, AC}.C → B violates BCNF rule.

- i. Lossless (Yes)
- ii. Dependency preserving (May be)

Normal forms (Exercises)

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (B \rightarrow C, D \rightarrow A)$
 - → Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is BD

Relation R is in 1NF but not 2NF. In above FDs, there is a partial dependency (As per FD B \rightarrow C, C depends only on B but Key is BD so C is partial depends on key (BD)) (As per FD D \rightarrow A, A depends only on D but Key is BD so A is partial depends on key (BD))

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (C \rightarrow D, C \rightarrow A, B \rightarrow C)$
 - → Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is B

Relation R is in 2NF but not 3NF. In above FDs, there is a transitive dependency (As per FDs B \rightarrow C & C \rightarrow D then B \rightarrow D so D is transitive depends on key (B)) (As per FDs B \rightarrow C & C \rightarrow A then B \rightarrow A so A is transitive depends on key (B))

- ▶ Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (A \rightarrow B, BC \rightarrow D, A \rightarrow C)$
 - Identify the candidate key(s) for R.
 - → Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key is A

Relation R is in 2NF but not 3NF. In above FDs, there is a transitive dependency (As per FDs A \rightarrow B & A \rightarrow C then A \rightarrow BC using union rule) and

(As per FDs A \rightarrow BC & BC \rightarrow D then A \rightarrow D so D is transitive depends on key (A))

- Suppose you are given a relation R with four attributes ABCD. For each of the following sets of FDs, do the following: $F = (ABC \rightarrow D, D \rightarrow A)$
 - Identify the candidate key(s) for R.
 - Identify the best normal form that R satisfies (1NF, 2NF, 3NF or BCNF).

Candidate Key are ABC & BCD

Relation R is in 3NF but not BCNF.

In the above FDs, both FDs have prime attribute (**D** and **A**) in dependent (right) side.

Normal Form [Exercise]

Q.) R (A, B, C, D, E), $F = (AB \rightarrow CE, E \rightarrow AB, C \rightarrow D)$, Identify the highest normal form.

Q.) R (X, Y, Z, W), $F = (X \rightarrow W, W \rightarrow X, XY \rightarrow Z, Identify the highest normal form.$