Session 4: Efficient Zero Knowledge

Yehuda Lindell Bar-Ilan University

Proof Systems

- Completeness: can convince of a true statement
- Soundness: cannot convince for a false statement
- Classic proofs:
 - Written by hand; non-interactive
- Interactive proofs:
 - Prover and verifier interact
 - Adds a lot of power (NP vs PSPACE)

Graph Non-Isomorphism

- P claims that and are not isomorphic
- Verifier step
 - Chooses a random bit
 - Computes as a random permutation of
 - Sends to prover P
- Prover step
 - Find (inefficiently) the bit b such that
 - Send to V

Graph Non-Isomorphism

- Completeness: easy
- Soundness:
 - If the graphs are isomorphic, then a random permutation of G_0 has **the same distribution** as a random permutation of G_1
 - P cannot know which bit V started with, and so is right with probability at most ½
 - Repeating n times reduces the cheating probability to 2^{-n}

Zero Knowledge

- Prover P, verifier V, language L, statement x
- P proves that $x \in L$ without revealing anything but that fact
 - Completeness: as before
 - Soundness: V accepts with negligible probability when $x \notin L$, for any P^*
 - Computational soundness: when P^* is polynomial-time
- Zero-knowledge:
 - For every V^* there exists a simulator S such that S(x) outputs a view indistinguishable from V^* 's view in a real execution with P

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which $(x, w) \in R$ without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor K that obtains w from any P^* where $(x, w) \in R$ with the same probability that P^* convinces V
- Equivalently:
 - The protocol securely computes the functionality $f_{zk}((x, w), x) = (\lambda, R(x, w))$

Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)
- But, can it be efficient?
 - It seems that zero-knowledge protocols for "interesting languages" are complicated and expensive

Sigma Protocols

- A way to obtain efficient zero knowledge
 - Many general tools
 - Many interesting languages can be proven with a sigma protocol

An Example – Schnorr DLOG

- Let \mathbb{G} be a group of order q, with generator g
- **P** and **V** have input $h = g^w$, **P** has w
- P proves that to V that it knows w
 - **P** chooses a random $r \leftarrow \mathbb{Z}_q$ and sends $a = g^r$ to **V**
 - **V** sends **P** a random e ∈ $\{0,1\}^t$
 - **P** sends $z = r + ew \mod q$ to **V**
 - **V** checks that $g^z = a \cdot h^e$

Completeness

- Follows since $g^z = g^{r+ew} = g^r \cdot (g^w)^e = a \cdot h^e$

Schnorr's Protocol

Proof of knowledge

- Assume **P** can answer two queries e_1 and e_2 for the same first message a
- Then, we have $g^{z_1} = a \cdot h^{e_1}$ and $g^{z_2} = a \cdot h^{e_2}$
- Thus, $a=g^{z_1}\cdot h^{-e_1}=g^{z_2}\cdot h^{-e_2}$ and so $g^{z_1-z_2}=h^{e_1-e_2}$
- Therefore $DLOG_g(h) = (z_1 z_2)(e_1 e_2)^{-1} \mod q$
- Since are all known from the transcripts, this can be computed

Conclusion:

If P can answer with probability greater than ,
 then it must know the dlog

Schnorr's Protocol

- What about zero knowledge? Seems not...
- Honest-verifier zero knowledge
 - Choose a random z and e, and compute $a = g^z \cdot h^{-e}$
 - Observe that (a, e, z) chosen this way has the same distribution as when V chooses e randomly
 - In particular, $g^z = a \cdot h^e$
- This is not very strong, but we will see that it yields efficient general ZK

Definitions

- Sigma protocol template
 - Common input: P and V both have x
 - Private input: P has w such that $(x,w) \in R$
 - Protocol:
 - P sends a message a
 - V sends a <u>random</u> t-bit string e
 - P sends a reply z
 - V accepts based solely on (x,a,e,z)

Definitions

- Completeness: as usual
- Special soundness:
 - There exists an algorithm A that given any x and pair of transcripts (a,e,z),(a,e',z') with e≠e' outputs w s.t. (x,w)∈R
- Special honest-verifier ZK
 - There exists an M that given x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e

Sigma Protocol DH Tuple

Relation R of Diffie-Hellman tuples

- $-(g,h,u,v) \in \mathbb{R}$ iff exists w s.t. $u=g^w$ and $v=h^w$
- Useful in many protocols

Protocol

- P chooses a random r and sends $a=g^r$, $b=h^r$
- V sends a random e
- P sends z=r+ew mod q
- V checks that g^z=au^e, h^z=bv^e

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
 - Given (a,b,e,z),(a,b,e',z'), we have g^z=au^e, g^{z'}=au^{e'}, h^z=bv^e, h^{z'}=bv^{e'} and so like in DLOG on both
 - w = (z-z')(e-e')

Special HVZK

- Given (g,h,u,v) and e, choose
 random z and compute
 - $a = g^{z}u^{-e}$
 - b = h^zv^{-e}

Basic Properties

- Any sigma protocol is an interactive proof with soundness error 2^{-t}
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge with error 2^{-t}
 - The difference between the probability that P* convinces V and the probability that K obtains a witness is at most 2-t

Tools for Sigma Protocols

- Prove compound statements
 - AND, OR, subset
 - Can be done efficiently (won't see here)
- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

ZK from Sigma: Preliminaries

Commitment schemes:

- Binding: after the commitment phase, the committer cannot change the value
- Hiding: the receiver does not know anything about the commitment

Variants

- Perfect and computational binding
- Perfect and computational hiding
- Cannot have both perfect binding and hiding

Perfectly-Binding Commitments

- The ElGamal usage in Blum's coin tossing is a perfectly-binding commitment
 - $-\operatorname{Com}(m) = (h = g^r, u = g^s, v = h^s \cdot m) \text{ for } m \in \mathbb{G}$
 - Perfect binding: the values (h, u, v) fully define m
 - There exists a single pair (r,s) so that $h=g^r, u=g^s$ and m is fully defined by $\frac{v}{u^r}$
 - Computational hiding: for every $m, m' \in \mathbb{G}$, $\{\operatorname{Com}(m)\} \approx \{\operatorname{Com}(m')\}$

ZK from Sigma Protocols

The basic idea

Have V first commit to its challenge e using a perfectly-hiding commitment

The protocol

- **P** sends the 1st message α of the commit protocol
- V sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- P checks that $c=Com_{\alpha}(e;r)$ and if yes sends a reply z
- V accepts based on (x,a,e,z)

ZK from Sigma Protocols

Soundness:

 The perfectly hiding commitment reveals nothing about e and so soundness is preserved

Zero knowledge

- In order to simulate:
 - Send a' generated by the simulator, for a random e'
 - Receiver V's decommitment to e
 - Run the simulator again with e, rewind V and send a
 - Repeat until V decommits to e again
 - Conclude by sending z
- Analysis...

Pedersen Commitments

- Highly efficient perfectly-hiding commitments
 - **Parameters:** generator $oldsymbol{g}$, order $oldsymbol{q}$
 - Commit protocol (commit to $x \in \mathbb{Z}_q$):
 - Receiver chooses random $k \leftarrow \mathbb{Z}_q$ and sends $h = g^k$
 - Sender sends $c = g^r \cdot h^x$, for a random $r \leftarrow \mathbb{Z}_q$
 - Perfect hiding:
 - For every $x, y \in \mathbb{Z}_q$ there exist $r, s \in \mathbb{Z}_q$ such that $r + kx = s + ky \bmod q$
 - Computational binding:
 - If can find (x,r), (y,s) such that $g^r \cdot h^x = g^s \cdot h^y$ then can compute $k = DLOG_g(h) = r^{-s}/y^{-x} \mod q$

Efficiency of ZK

- Using Pedersen commitments, this costs only 5 additional group exponentiations
 - This is very efficient

ZKPOK from Sigma Protocols

- Is the previous protocol a proof of knowledge?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same a and different e
 - The prover may choose its first message a
 differently for every commitment string, so if the
 extractor changes e, the prover changes a

ZKPOK from Sigma Protocols

- Solution: use a trapdoor (equivocal) commitment scheme
 - Given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property, and the previous protocol can be modified only slightly to get a proof of knowledge

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
 - We have many useful general transformations
 - E.g., parallel composition, compound statements
 - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
 - It is much harder to prove ZK than Sigma
 - ZK distributions and simulation
 - Sigma: only HVZK and special oundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g,h) is to the value m
 - By encryption definition $\mathbf{u}=\mathbf{g}^{\mathbf{r}}$, $\mathbf{v}=\mathbf{h}^{\mathbf{r}}\cdot\mathbf{m}$
 - ThUS (g,h,u,v/m) is a DH tuple
 - So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH tuple
- Database of ElGamal(K_i), E_{Ki}(T_i)
 - Can release T_i without revealing anything about T_j for j ≠ I

Non-Interactive ZK (ROM)

The Fiat-Shamir paradigm

- To prove a statement x
- Generate \mathbf{a} , compute $\mathbf{e} = \mathbf{H}(\mathbf{a}, \mathbf{x})$, compute \mathbf{z}
- Send (a,e,z)

Properties:

- Soundness: follows from random oracle property
- Zero knowledge: same
- Can achieve simulation-soundness (non malleability) by including unique sid in H

Summary

- Efficient zero knowledge is very important in secure computation protocols
 - Using sigma protocols, we can get very efficient ZK
- Sigma protocols are very useful:
 - Efficient ZK
 - Efficient ZKPOK
 - Efficient NIZK in the random oracle model
 - Many other applications as well...