What Explains ASX 200 Index Volatility? Evidence from Domestic Macroeconomic Indicators and Global Market Performance

Zelin Chen, Haibin Miao, Yuwen Mao (Group 8)

University of Melbourne

Oct 2017

Table of Contents

- 1 Literature Review
- 2 Model Setup
 - GARCH with exogenous variables
 - Multivariate GARCH
- 3 Results
 - GARCH estimations
 - MGARCH estimations
- 4 Limitations
- 5 Reference

 Engle and Rangle (2008) investigated the correlation of annualised low-frequency volatility and a set of macroeconomic variables (GDP, CPI, forex, interest rates). [1]

- Engle and Rangle (2008) investigated the correlation of annualised low-frequency volatility and a set of macroeconomic variables (GDP, CPI, forex, interest rates). [1]
- H.A.P.K. (2016) adjusted GARCH(1,1) model is used to regress conditional variance of index volatility of Siri Lankas stock exchange index.
 [2]

- Engle and Rangle (2008) investigated the correlation of annualised low-frequency volatility and a set of macroeconomic variables (GDP, CPI, forex, interest rates). [1]
- H.A.P.K. (2016) adjusted GARCH(1,1) model is used to regress conditional variance of index volatility of Siri Lankas stock exchange index.
 [2]
- Karunanayake, Valadkhani and O'Brien (2009) used MGARCH model to quantify correlations between stock market returns of Australia (ASX 200), Singapore (STI), the UK (FTSE 100) and the US (S&P 500). [4]

- Engle and Rangle (2008) investigated the correlation of annualised low-frequency volatility and a set of macroeconomic variables (GDP, CPI, forex, interest rates). [1]
- H.A.P.K. (2016) adjusted GARCH(1,1) model is used to regress conditional variance of index volatility of Siri Lankas stock exchange index.
 [2]
- Karunanayake, Valadkhani and O'Brien (2009) used MGARCH model to quantify correlations between stock market returns of Australia (ASX 200), Singapore (STI), the UK (FTSE 100) and the US (S&P 500). [4]
- Vlady, Tufan and Hamarat (2011) investigated causality of weather condition on the ASX 200 Index. [5]

- Engle and Rangle (2008) investigated the correlation of annualised low-frequency volatility and a set of macroeconomic variables (GDP, CPI, forex, interest rates). [1]
- H.A.P.K. (2016) adjusted GARCH(1,1) model is used to regress conditional variance of index volatility of Siri Lankas stock exchange index.
 [2]
- Karunanayake, Valadkhani and O'Brien (2009) used MGARCH model to quantify correlations between stock market returns of Australia (ASX 200), Singapore (STI), the UK (FTSE 100) and the US (S&P 500). [4]
- Vlady, Tufan and Hamarat (2011) investigated causality of weather condition on the ASX 200 Index. [5]
- Hasan and Ratti (2012) studied the effect of oil shock on the return and volatility of ASX 200 index. GARCH-M model is introduced, and the conditional mean equation of returns is consisted of its own lag, old price return, oil price return volatility, and the conditional volatility measure of returns. [3]

Model Setup

GARCH with exogenous variables

Model Specification: GRACH

Mean Equation

$$r_{a,t} = c + u_{a,t}, \quad u_{a,t} \sim N(0, \sigma_{a,t}^2)$$

Model Specification: GRACH

Mean Equation

$$r_{a,t} = c + u_{a,t}, \quad u_{a,t} \sim N(0, \sigma_{a,t}^2)$$

Variance Equation

$$\begin{aligned} \sigma_{a,t}^2 &= \beta_0 + \beta_1 u_{a,t-1}^2 + \beta_2 \sigma_{a,t-1}^2 + \gamma_1 \textit{Voltwi}_t + \gamma_2 \textit{Volbond}_t + \gamma_3 \textit{Volune}_t + \\ \theta_1 \textit{Volftse}_t + \theta_2 \textit{Volnik}_t + \theta_3 \textit{Volsp}_t + w_t \end{aligned}$$

Model Specification: MGARCH

Mean Equation

$$r_t = c + u_t$$
, where $u_t \sim N(0, H_t)$

Model Specification: MGARCH

Mean Equation

$$\mathbf{r_t} = \mathbf{c} + \mathbf{u_t}$$
, where $\mathbf{u_t} \sim N(0, \mathbf{H_t})$

Variance Equation (VECH)

$$vech(H_t) = M + Avech(u_tu_t') + Bvech(H_{t-1})$$

GARCH estimations

Results: GARCH model

Table: GARCH(1,1) with Exogenous Variables

	variable	coefficient	t-statistic
mean equation	Constant	0.766*	4.705
variance equation	Constant	3.638*	8.761
	Resid ²	0.035	1.542
	GARCH(-1)	1.012*	41.10
	TWI	0.038*	0.400
	Bond	-0.027*	3.284
	Unemploy	0.001	0.126
	FTSE 100	-0.064*	2.294
	Nikkei 225	-0.107*	11.16
	S&P 500	0.029*	1.981

MGARCH estimations

Results: MGARCH model

Table: MGARCH coefficients for ASX 200 Index

index	variables	М	A1	B1
$\overline{(1)}$	ASX 200	1.875	0.144*	0.713*
(2)	Bond	0.017	0.150*	0.703*
(3)	TWI	-0.215	0.148*	0.657*
(4)	Unemployment	-0.022	0.071	0.723*
(5)	FTSE 100	-0.054	0.127*	0.578
(6)	NIKKEI 225	0.722	0.147	0.512*
(7)	SP 500	0.161	0.165*	0.772*

Results:MGARCH model

Suggestions and Limitations

 Other variables such as VIX, CPI, material price index can be included if data is available.

Suggestions and Limitations

- Other variables such as VIX, CPI, material price index can be included if data is available.
- Over-identification should not be a problem in this case.

Suggestions and Limitations

- Other variables such as VIX, CPI, material price index can be included if data is available.
- Over-identification should not be a problem in this case.
- What is your thought?

References

Robert F. Engle and Jose G. Rangel. "The Spline-GARCH model for low-frequency volatility and its global macroeconomic causes". In: *The Review of Financial Studies* 21 (3 2008), pp. 1187–1222.

Perera H. A. P. K. "Effects of exchange rate volatility on stock market return volatility: evidence from an emerging market". In: *International Journal of Science and Research* 5 (1 2016), pp. 1750–1755.

Mohammad Zahidul Hasan and Ronald A. Ratti. "Oil price shocks and volatility in Australian stock returns". In: *Global Accounting, Finance and Economics Conference* (2012), pp. 1–38.

Indika Karunanayake, Abbas Valadkhani, and Martin O'Brien. "Modelling Australian stock market volatility: a multivariate GARCH approach". In: *Economics Working Paper Series* (2009), pp. 1–14.

Svetlana Vlady, Ekrem Tufan, and Bahattin Hamarat. "Causality of weather conditions in Australian stock equity returns". In: *Business Statistics - Economic Informatics* 1 (17 2011), pp. 184–197.