H-STORE ANALYSIS

Which customer are likely to return?

Prepared By: Senit Ghebregziabher (20050)

BAN 501: Quantitative Methods for Business

Prof. Angie Lu

H Store Case Study

Company and Data

Company: H Store

Dataset Properties

[5 rows x 47 columns]

Dataset shape:

(20000, 47)

Objectives

- 1. Customer return prediction
- 2. Insight Generation
- 3. Interpretation

Business Insights

Identify high-value customers for targeted campaigns.

Refine marketing efforts based on traffic sources and engagement behavior.

Prioritize regions with high revenue potential.

My strategy

Data Processing

Data Understanding and Preparation:

Addressed missing values:

- Numerical columns: Imputed with median.
- Categorical columns:
 Used placeholders like
 "Missing" or mode

Feature Engineering

- 1. General Features
- 2. Revenue Engineered Features
- 3. Visualization

Modeling Approach

Classification: Predicted whether a customer would generate revenue.

Regression: Estimated revenue amount for returning customers using log-transformed revenue.

Models used:

HistGradientBoostingClassifier and Random Forest

1.Data Preprocessing: Log Revenue

- 1. Better handling of skewed revenue distributions
- 2. More interpretable visualizations
- 3. More stable statistical relationships
- 4. Better feature engineering based on revenue patterns

Features: General

1. Visit Frequency Analysis:

Displays customer loyalty patterns

Insights:

- Skewed Distribution
- High Customer Drop-off
- Long Tail of Frequent Visitors

Recommendations

- Enhance Onboarding Experience,
- Monitor Churn Causes
- personalized follow-up for Low Frequency Visitors

Number of Visits

2. Users Device Category

Insights:

- Dominance of Desktop Users
- Minimal Tablet Traffic

Recommendations

- Optimize for Desktop Experience
- Improve mobile optimization (responsive design, faster loading)
- Device-specific marketing strategies.
- A/B Testing Across Devices

Proportion of New vs. Returning Customers

Returning vs. Non-Returning Customers

Customer Retention:

 Is the proportion of returning customers high? This indicates customer loyalty.

Revenue trend over time

2. Features: Revenue Indexed

A. Traffic Source: how different marketing channels contribute to revenue

Recommendations

- Focus on Direct and Paid Search
- Explore optimization strategies for Social and Organic Search

B. Revenue by Device OS:

Highest Revenue by

Chrome OS

Reccs:

- Focus marketing efforts on users of Chrome OS, Macintosh, and Linux
- Identify potential barriers (e.g., UI issues, limited functionality) and improve user experience
- -Tailor promotions specifically for Chrome OS and Mac users

C. Revenue by Country:

Highest Revenue by

United States

Reccs:

- -Focus on the U.S. Market: Maximize efforts in the highest revenue-generating region.
- Target India, UK, and Canada for growth opportunities.
- -Localize strategies for Turkey and Germany..

D. Engagement Metrics

- Total Hits
- Total PageViews
- Visit Number
- Total Transaction
 Revenue

How customer engagement correlates with revenue?

Key Insights on Website Engagement and Revenue

- Correlation between totals.transactionRevenue and both totals.hits (0.26) and totals.pageviews (0.27), indicates engagement (hits and pageviews) positively influences revenue
- Moderate Revenue Impact: emphasizing the need for engaging content and user experience.
- Hits & Pageviews: strong alignment. (0.99), users with more hits tend to view more pages
- Visit Frequency: Low Correlation (0.02), limited impact on revenue

Optimization Potential: Improving engagement strategies can unlock revenue growth opportunities. Focus on content. Use A/B Testing.

Regression Model

Model Training:

both Random Forest and Gradient Boosting: chosen due to their robustness

- Uses cross-validation for robust evaluation
- Calculates various performance metrics

Random Forest Results:

Classification Report:

	precision	recall	f1-score	support
0	0.12	0.02	0.04	436
1	0.89	0.98	0.93	3564
accuracy			0.88	4000
macro avg	0.51	0.50	0.48	4000
weighted avg	0.81	0.88	0.84	4000

Mean CV Score: 0.6151245802533782 CV Score Std: 0.014902796199868175

ROC AUC Score: 0.6053472415284342

Top 5 Important Features:

	feature	importance
5	geoNetwork.country	0.297051
6	totals.hits	0.146348
7	totals.pageviews	0.123949
0	channelGrouping	0.115672
3	device.browser	0.089911

Random Forest: Key Insights

Accuracy: 88%, driven by strong performance on Class 1 (returning customers).

Recall: High for Class 1 (98%), but extremely low for Class 0 (2%).

ROC AUC: 0.605, indicating limited ability to differentiate between classes.

Feature Importance:

- **Top Feature:** geoNetwork.country (29.7%) highlights geographic variations.
- Other Key Features: Engagement metrics like totals.hits (14.6%) and totals.pageviews (12.4%).

Limitations

Poor detection of non-returning customers (Class 0) due to class imbalance

Gradient Boosting Results:

Classification Report:

	precision	recall	f1-score	support
0	0.33	0.00	0.00	436
1	0.89	1.00	0.94	3564
accuracy			0.89	4000
macro avg	0.61	0.50	0.47	4000
weighted avg	0.83	0.89	0.84	4000

Mean CV Score: 0.6220771659521557 CV Score Std: 0.016420224124088983

ROC AUC Score: 0.6387711209958916

Top 5 Important Features:

	TOP 3 Important red	cures.
	feature	importance
10	visitNumber	0.668849
5	geoNetwork.country	0.087987
6	totals.hits	0.052426
7	totals.pageviews	0.051914
3	device.browser	0.046852

Random Forest: Key Insights

Accuracy: 89%, slightly better than Random Forest.

Recall: Perfect for Class 1 (100%) but fails entirely on Class 0 (0%).

ROC AUC: 0.639, moderately better than Random Forest.

Feature Importance:

•Top Feature: visitNumber (66.8%) indicates customer visit frequency as the strongest predictor.

•Other Key Features: geoNetwork.country (8.8%), totals.hits, and totals.pageviews.

Limitations:

- Completely neglects Class 0, making it ineffective for predicting non-returning customers.
- Requires class-balancing strategies for better real-world application.

Random Forest Results

Gradient Boosting Results

Model Comparison

Random Forest vs. Gradient Boosting

Metric	Random Forest	Gradient Boosting
Accuracy	88%	89%
Recall (Class 0)	2%	0%
Recall (Class 1)	98%	100%
ROC AUC	0.605	0.639
Top Feature	geoNetwork.country	visitNumber

Class 0: Non
Returning Customers

Class 1: Returning
Customers

Weaknesses: Both models heavily favor Class 1, with poor performance on Class 0. Require resampling or cost-sensitive learning to address class imbalance.

Recommendation: Gradient Boosting is preferred for its slightly better general performance, but both models require improvement for practical customer churn prediction.

Final Thoughts

- Engagement metrics (hits and pageviews) are critical for driving revenue.
- A data-driven approach focusing on user quality over quantity will maximize profitability.
- Continuous testing and user behavior analysis are essential to refine the engagement-to-revenue pipeline

Thank you for your attention