Lung function

Michael Cho

October 7, 2012

Contents

I COPDGene	1
1 Phenotypes	2
2 Qqplots	3
II ECLIPSE	10
3 Phenotypes	10
4 Qqplots	12
III Norway	19
5 Phenotypes	19
6 Qqplots	20
IV Meta-analysis	27
<pre>options(stringsAsFactors = F) .libPaths("/udd/remhc/bin/R-2.15.0/library") source("/udd/remhc/bin/gwasFunctions.r") source("http://faculty.ucr.edu/~tgirke/Docume require(xtable)</pre>	ents/R_BioCond/My_R_Scripts/vennDia.R")

Part I COPDGene

Run in recge00. Files created are sAa.txt and sNhw.txt.

1 Phenotypes

```
nhw <- read.table("sNhw.txt", header = T, na = "-9")</pre>
summary(nhw$fev1pp_utah)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
      8.9
                     77.9
                              73.5
                                      93.1
##
           54.8
                                             151.0
                                                        19
summary(nhw$FEV1_FVC_utah)
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
##
      0.15
             0.53
                      0.69
                              0.64
                                      0.77
                                              1.00
                                                        19
summary(nhw$FEV1_utah)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                      NA's
                                              Max.
##
      0.22
           1.50
                      2.20
                              2.21
                                      2.86
                                              5.50
                                                        19
summary(nhw$fev1pp_utah[nhw$finalgold %in% c(2, 3, 4)])
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
       8.9
                              49.6
                                              79.9
##
              34.7
                      50.1
                                      65.6
summary(nhw$FEV1_FVC_utah[nhw$finalgold %in% c(2, 3, 4)])
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
     0.150
           0.380
                    0.490
                             0.486
                                     0.600
                                             0.690
summary(nhw$FEV1_utah[nhw$finalgold %in% c(2, 3, 4)])
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
    0.220 0.949 1.380 1.450 1.870 3.570
```

QQPlots and lambdas.

2 Qqplots

Figure 1: fev1Nhw

Lambda = 1.02258 :

Figure 2: fev1NhwCa

Lambda = 0.99674 :

Figure 3: fev1ppNhw

Lambda = 1.02495 :

Figure 4: fev1ppNhwCa

Lambda = 1.00047 :

Figure 5: ratioNhw

Lambda = 1.02543 :

Figure 6: ratioNhwCa

Lambda = 1.0028 :

Part II ECLIPSE

3 Phenotypes

```
eclCohort <- read.table("~/GWAS/eclipsePrune01IterCovPcas.txt", header = T,</pre>
    na.strings = "-9")
temp <- read.csv("~/GWAS/ECLIPSEFiles/genetics_phenotype20090810.csv")</pre>
temp <- temp[, c("Global.Subject.ID", "Forced.expiratory.volume..1.second...L.",
    "Post.dose.FEV1", "Height..cm.")]
names(temp) <- c("FID", "preFev1", "fev1", "height")</pre>
temp$FID <- paste("EC", temp$FID, sep = "")</pre>
any(is.na(eclCohort$post_fev1pp2))
## [1] TRUE
## use the postbd values to keep the sample size the same
eclCohort$post_fev1pp2 <- ifelse(is.na(eclCohort$post_fev1pp), eclCohort$pre_fev1pp,</pre>
    eclCohort$post_fev1pp)
any(is.na(eclCohort$post_fev1pp2))
## [1] FALSE
eclCohort$post_ratio2 <- ifelse(is.na(eclCohort$post_ratio), eclCohort$pre_ratio,</pre>
    eclCohort$post_ratio)
eclCohort <- merge(eclCohort, temp, by = "FID", all.x = T)
eclCohort$fev1 <- ifelse(is.na(eclCohort$fev1), eclCohort$preFev1, eclCohort$fev1)
## write.table(eclCohort, 'eclCohortLungFx.txt',row.names=F,quote=F,na='-9')
eclCase <- read.table("~/GWAS/eclipseCovPcsCases.txt", header = T, na.strings = "-9")
eclCase$post_fev1pp2 <- ifelse(is.na(eclCase$post_fev1pp), eclCase$pre_fev1pp,
    eclCase$post_fev1pp)
any(is.na(eclCase$post_fev1pp2))
## [1] FALSE
eclCase$post_ratio2 <- ifelse(is.na(eclCase$post_ratio), eclCase$pre_ratio,
    eclCase$post_ratio)
eclCase <- merge(eclCase, temp, by = "FID", all.x = T)
eclCase$fev1 <- ifelse(is.na(eclCase$fev1), eclCase$preFev1, eclCase$fev1)
## write.table(eclCase,'eclCaseLungFx.txt',row.names=F,quote=F,na='-9')
```

Show the distribution of the phenotypes.

```
summary(ecl$post_ratio2)
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                             Max.
##
    0.172  0.367  0.458  0.478  0.569
                                            0.986
summary(ecl$fev1)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                             Max.
                   1.320 1.510 1.840
                                            5.300
##
    0.387
           0.964
ecl <- read.table("eclCaseLungFx.txt", header = T, na = "-9")
summary(ecl$post_fev1pp2)
     Min. 1st Qu. Median
##
                             Mean 3rd Qu.
                                             Max.
##
     13.4
           35.5
                     46.3
                             47.6
                                     59.8
                                             80.6
summary(ecl$post_ratio2)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
##
    0.172 0.359
                   0.441
                            0.447 0.535
                                            0.839
summary(ecl$fev1)
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                             Max.
    0.387  0.938  1.250  1.330  1.650
                                           3.320
##
## eclFev1pp.param
/proj/reglns/regln00/GWAS/Imputation/eclipse
--bfile /proj/reglns/regln00/GWAS/COPD_ECLIPSE_2009sorted
--covar eclCohortLungFx.txt
--covar-name pca1-pca8,age,py
--sex
--pheno eclCohortLungFx.txt
--pheno-name post_fev1pp2
--out eclFev1pp
## same covariates; alternative outcomes are post_ratio (eclRatio) and fev1 (eclFev1) with the
## for cases
/proj/reglns/regln00/GWAS/Imputation/eclipse
```

Max.

ecl <- read.table("eclCohortLungFx.txt", header = T, na = "-9")</pre>

48.6

Mean 3rd Qu.

53.2 64.7 147.0

ecl <- ecl[!is.na(ecl\$pca1),]
summary(ecl\$post_fev1pp2)</pre>

##

##

13.4

Min. 1st Qu. Median

36.9

```
1000g
--bfile /proj/reglns/regln00/GWAS/COPD_ECLIPSE_2009sorted
--linear
--covar eclCaseLungFx.txt
--covar-name pca1-pca6,age,py
--sex
--pheno eclCaseLungFx.txt
--pheno-name post_fev1pp2
--out eclCaFev1pp
```

4 Qqplots

ECLIPSE Qq plots etc.

Figure 7: Fev1

Lambda = 1.00842 :

Figure 8: CaFev1

Lambda = 0.99348 :

Figure 9: Fev1pp

Lambda = 1.00655 :

Figure 10: CaFev1pp

Lambda = 0.99209 :

Figure 11: Ratio

Lambda = 1.00187 :

Figure 12: CaRatio

Lambda = 0.99814 :

Part III Norway

5 Phenotypes

```
nor <- read.table("~/GWAS/norwayIterCovPcs.txt", header = T, na = "-9")</pre>
nor <- nor[!is.na(nor$pca1), ]</pre>
summary(nor$post_fev1pp)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      8.3
           52.5
                   77.8
                             72.2 93.1
                                            139.0
summary(nor$post_maxrat)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
     0.170 0.530 0.690 0.648 0.790
                                            1.000
summary(nor$post_fev1max)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      0.25
           1.46
                     2.42
                             2.38
                                   3.18
                                             5.57
nor <- read.table("~/GWAS/norwayCovPcCaseIter.txt", header = T, na = "-9")</pre>
nor <- nor[!is.na(nor$pca1), ]</pre>
summary(nor$post_fev1pp)
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
      8.3
           37.0
                   53.2
                             50.7
                                    65.0
                                             79.9
summary(nor$post_maxrat)
     Min. 1st Qu. Median
                             Mean 3rd Qu.
##
                                             Max.
     0.170  0.410  0.540  0.514  0.625
                                            0.700
summary(nor$post_fev1max)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
     0.25 1.04 1.49 1.57 1.99
                                             3.78
/proj/reglns/regln00/GWAS/Imputation/norway
1000g
--bfile /proj/reglns/regln00/GWAS/NORWAY_GSK_COPD_2009sorted
--linear
--covar ~/GWAS/norwayIterCovPcs.txt
--covar-name pca1-pca14,age,py
```

```
--sex
--pheno ~/GWAS/norwayIterCovPcs.txt
--pheno-name post_fev1pp
--out norFev1pp
## ratio is post_maxrat and norRatio; fev1 is post_fev1max using height as a covariate
## for cases
/proj/reglns/regln00/GWAS/Imputation/norway
1000g
--bfile /proj/reglns/regln00/GWAS/NORWAY_GSK_COPD_2009sorted
--linear
--covar ~/GWAS/norCovPcCaseIter.txt
--covar-name pca1-pca5,age,py
--sex
--pheno ~/GWAS/norCovPcCaseIter.txt
--pheno-name post_fev1pp
--out norCaFev1pp
```

6 Qqplots

Figure 13: Fev1

Lambda = 1.01501 :

Figure 14: CaFev1

Lambda = 1.00467 :

Figure 15: Fev1pp

Lambda = 1.00983 :

Figure 16: CaFev1pp

Lambda = 1.00655 :

Figure 17: Ratio

Lambda = 1.01218 :

Figure 18: CaRatio

Lambda = 1.00327 :

Part IV

Meta-analysis

```
VERBOSE OFF
## SCHEME STDERR
AVERAGEFREQ ON
MINMAXFREQ ON
MARKER SNP
STDERRLABEL SE
ALLELE A1 A2
EFFECT BETA
PVAL
        Ρ
FREQLABEL FRQ
DEFAULT 5351
PROCESS Cg/fev1ppNhwAll.assoc.logistic.gz
DEFAULT 1912
PROCESS eclFev1pp.assoc.linear.gz
DEFAULT 1659
PROCESS norFev1pp.assoc.linear.gz
GENOMICCONTROL ON
OUTFILE metal201209Fev1pp .tbl
ANALYZE HETEROGENEITY
## for cases CaFev1pp
DEFAULT 2819
PROCESS Cg/fev1ppNhwCaAll.assoc.linear.gz
DEFAULT 1736
PROCESS eclCaFev1pp.assoc.linear.gz
DEFAULT 854
PROCESS norCaFev1pp.assoc.linear.gz
## Run the metal analyses - create a small shell script to deal with the results
## We first do: join -1 2 -2 1 temp2 temp1 -a 1 | awk '\!$6{$6="."}; {print $0}'
## to create the joined marker file
## head -1 metal201209CaFev1pp1.tbl > tempHeader
## echo 'Chr Bp Gene' >> tempHeader
## ### ##processMetal.sh
grep -v '?' metal201209${1}1.tbl | sort -k10,10g | gzip -c > metal201209${1}1NoMiss.gz
zcat metal201209${1}1NoMiss.gz | head -5000 | sort -k1,1 > temp1${1}
join -1 1 -2 1 temp1${1} /udd/remhc/Resources/cgNhwAllSnpGeneLoc.txt | sort -k10,10g | awk 'BE
res <- as.vector(sapply(c("Fev1pp", "Fev1", "Ratio"), function(x) paste(c("",
    "Ca"), x, sep = "")))
for (r in res) {
```

cmd <- paste("sh processMetal.sh", r)</pre>

Chr	MarkerName	Вр	P.value	Gene	Direction	HetISq
15	rs8040868	78911181	7.28e-15	CHRNA3(0.0)	+++	-26.30
4	rs1512281	145434901	6.46e-13	HHIP-AS1(129.0)	_	0.00
4	rs6837671	89873092	3.54e-11	FAM13A(0.0)	+++	0.00
19	rs7937	41302706	1.56e-08	RAB4B-EGLN2(0.0	_	0.00
3	rs2811520	128012277	6.43 e-08	EEFSEC(0.0)		-34.50
4	rs7664805	106843958	8.96e-08	NPNT(0.0)	_	34.20
11	rs737693	102726142	6.14 e-07	MMP12(7.0)	_	-22.70
9	rs1108581	136505241	7.53e-07	DBH(0.0)	_	0.00
10	rs7100689	82222178	8.81e-07	TSPAN14(0.0)	+++	15.50
17	rs7224296	44800046	9.33e-07	NSF(0.0),MIR431	+++	0.00

Table 1: Fev1pp

Reviewing these results:

For FEV1pp and FEV1, recapitulates known loci; NPNT locus is near GSTCD. Other comments: EEFSEC is stronger here than in the case control analysis. Other loci seem to be novel: TSPAN1 is near but still a few MB away from C10orf11 (prior GWAS loci) on 10q, KNTC1 is also new. To do: Look at heterogeneity - meta-regression?

Chr	MarkerName	Bp	P.value	Gene	Direction	HetISq
13	rs9536463	54132247	7.51e-07	LINC00558(257.0		0.00
15	rs2656065	78750549	8.04e-07	IREB2(0.0)		0.00
20	rs34306377	59597631	1.63e-06	CDH4(229.0)		2.60
9	rs7875024	16288424	3.52 e-06	BNC2(121.0)		0.00
9	rs551517	113636793	4.06e-06	LPAR1(0.0)		0.00
1	rs412967	196813716	5.50e-06	CFHR1(12.0)	+++	0.00
5	rs25777	156682890	6.97 e-06	ITK(0.0)		-51.80
12	rs887357	3474645	8.21 e-06	PRMT8(15.0)	+++	-13.70
8	rs6473873	54535433	8.39e-06	ATP6V1H(92.0)	_	0.00
10	rs12783688	134246240	1.16e-05	C10 orf 91(12.0)	_	-65.20

Table 2: CaFev1pp

Chr	MarkerName	Вр	P.value	Gene	Direction	HetISq
15	rs8040868	78911181	3.31e-15	CHRNA3(0.0)	+++	4.10
4	rs1512281	145434901	9.98e-13	HHIP-AS1(129.0)		0.00
4	rs6837671	89873092	4.34e-10	FAM13A(0.0)	+++	0.00
19	rs12461383	41370338	9.07e-09	CYP2A7(11.0)	+++	0.00
10	rs7100689	82222178	4.09e-08	TSPAN14(0.0)	+++	48.10
4	rs7664805	106843958	2.32e-07	NPNT(0.0)		41.70
3	rs2811524	127999955	2.46e-07	EEFSEC(0.0)		1.70
9	rs1108581	136505241	3.71e-07	DBH(0.0)		0.00
17	rs7224296	44800046	1.75 e-06	NSF(0.0),MIR431	+++	0.00
13	rs9531098	36401576	1.76e-06	MIR548F5(0.0),D		0.00

Table 3: Fev1

Chr	MarkerName	Bp	P.value	Gene	Direction	HetISq
13	rs9536463	54132247	2.01e-07	LINC00558(257.0		0.00
20	rs34306377	59597631	2.76e-06	CDH4(229.0)	_	35.70
15	$\mathrm{rs}2656065$	78750549	4.54 e-06	IREB2(0.0)	_	0.00
12	rs650466	118646661	4.70 e-06	TAOK3(0.0)	_	0.00
9	rs551517	113636793	5.85 e-06	LPAR1(0.0)	_	0.00
5	rs29545	132759324	6.75 e-06	FSTL4(0.0)		0.00
1	rs412967	196813716	9.38e-06	CFHR1(12.0)	+++	0.00
13	rs12874564	69133985	9.72e-06	LINC00550(301.0	+++	-33.10
9	rs7875024	16288424	1.13e-05	BNC2(121.0)	_	0.00
12	rs12833560	30424221	1.26 e - 05	IPO8(357.0)	+++	-40.00

Table 4: CaFev1

Chr	MarkerName	Вр	P.value	Gene	Direction	HetISq
4	rs1512281	145434901	6.35e-18	HHIP-AS1(129.0)		-84.10
15	rs1317286	78896129	4.94e-15	CHRNA3(0.0)	+++	-92.70
4	rs6837671	89873092	3.31e-13	FAM13A(0.0)	+++	-21.50
11	rs17361668	102720344	4.73e-09	MMP3(6.0)	+++	0.00
1	rs622912	218670357	9.68e-09	TGFB2(52.0)	+++	0.00
19	rs12461383	41370338	5.45 e - 08	CYP2A7(11.0)	+++	0.00
14	rs35629566	93072317	1.39e-07	RIN3(0.0)		-13.20
3	rs2811524	127999955	4.64e-07	EEFSEC(0.0)		6.50
4	rs7664805	106843958	4.91e-07	NPNT(0.0)	_	0.00
4	rs6842499	145910286	6.17e-07	ANAPC10(5.0)	+++	23.70

Table 5: Ratio

Chr	MarkerName	Вр	P.value	Gene	Direction	HetISq
12	rs11615433	123018475	5.68e-08	KNTC1(0.0)	_	-27.20
15	rs8040868	78911181	2.63e-07	CHRNA3(0.0)	+++	0.00
11	rs494963	102715826	3.84 e-07	MMP3(1.0)	+++	0.00
1	rs1329427	196704559	9.27e-07	CFH(0.0)	+++	1.90
4	rs13141641	145506456	9.70e-07	HHIP-AS1(57.0)	_	-35.60
1	rs4457591	222078600	1.04e-06	DUSP10(163.0)	_	-55.40
5	rs12657392	78963323	2.50 e-06	PAPD4(0.0)	_	0.00
1	rs9970786	239090514	3.64e-06	LOC339535(441.0	_	0.00
5	rs281143	70969032	3.83e-06	MCCC2(14.0)	+++	0.00
11	rs947950	100407990	4.60e-06	ARHGAP42(150.0)	+++	0.00

Table 6: CaRatio