Analog electronics

Fengchun Zhang

fz@es.aau.dk

Agenda

- Diode
 - Recap I-V equation of PN junctions, diode models, solutions to assignments
 - Practical diode circuits
 - Logic gates
 - Half-wave rectifier & full-wave rectifier

Lec. 1 recap: PN junction- Shockley's equation

 I_s and V_T are temperature dependent.

 I_s doubles for every 5°C rise in temperature. $V_T \approx 26$ mV @ 27 °C

$$I = I_S \left(e^{\frac{V}{nV_T}} - 1 \right)$$
 For anything with PN junctions

 I_s : reverse saturation current, given in datasheet

V: voltage across the junction

n: ideal factor, depending on the construction of the

PN junction, 1 < n < 2, n = 1 for ideal PN junction

 V_T : thermal voltage

$$V_T = \frac{KT_K}{q}$$

K: Boltzmann's constant = 1.38×10^{-23} J/K

 T_K : the absolute temperature in kelvins = 273 + x °C

q: the magnitude of electronic charge = 1.6×10^{-19} C

Lec. 1 recap: PN junction diode

A two terminal component

- conducts current primarily in one direction
- 'passes' positive voltage & 'blocks' negative voltage

Lec. 1 recap: PN diode models

The diode has two states:

- $V_D \le V_{D,on} \rightarrow \text{diode is off } \rightarrow \text{open circuit}$
- $V_D > V_{D,on}$ diode is on \rightarrow a voltage drop \odot

Principle of diode circuit analysis

- Begin by assuming a certain state of diodes, i.e., on or off, check the final results against these assumptions.
- If a diode is about to turn on or off, it must sustain a voltage of $V_{D,on}$, but the current flowing through it is small, i.e., approximating 0 A
- If a diode is on and carries a current, the current must flow from the anode to the cathode, i.e., along the direction of the arrow.

Example

Assuming the constant voltage drop model and the diode in reverse and forward bias regions, I_1 , I_{D1} , I_{D2} and $V_o = ?$

Types of characteristics for circuits

- I-V characteristics
- Input-output characteristics
- Time response

PN diode circuit—I-V & input-output

Assuming the constant voltage drop model, plot the I-V and V_D -V curves for the diode in reverse and forward bias regions.

Agenda

- Diode
 - Recap I-V equation of PN junctions, diode models, solutions to assignments
 - Practical diode circuits
 - Logic gates
 - Half-wave rectifier & full-wave rectifier

Application example: OR logic gate

Α	В	LED
0	0	0 (off)
0	1	1 (on)
1	0	1 (on)
1	1	1 (on)

The LED forward voltage drop is 2 V.

Quiz: ? logic gate

Α	В	LED
0	0	
0	1	
1	0	
1	1	

A & B voltage:

- 1→5 V
- $0 \rightarrow 0 \vee$

The LED forward voltage drop is 2 V.

Types of characteristics for circuits

- I-V characteristics
- Input-output characteristics
- Time response

PN diode circuit— time reponse

Alternating Current (AC)
Direct Current (DC)
Rectifier: convert AC to DC

- 1. Ideal model
- 2. Constant-voltage drop model

PN junction diode application example: charger/adapter

 V_{out} :

- 5 V for cellphone
- 20 V for laptop

Half-wave rectifier

Half-wave rectifier with capacitor

How does the output voltage look like afterwards?

Half-wave rectifier with capacitor

How does the output voltage look like afterwards? How to calculate the ripple amplitude of the output voltage?

Full-wave rectifier Vs. half-wave rectifier

- The ripple amplitude becomes half
- The maximum reverse voltage becomes half
- More complex

Full-wave rectifier

Quiz: Full-wave rectifier with capacitor

Full-wave rectifier with capacitor and load

Recap: Half-wave rectifier Vs. Full-wave rectifier with capacitor and load

Ripple amplitude = $\frac{V_O - V_{D,on}}{fRC}$

Max reverse voltage = $\frac{2}{V_o} - V_{D,on}$

Ripple amplitude = $\frac{V_O - 2V_{D,on}}{2fRC}$

Max reverse voltage = $V_o - V_{D,on}$