Tópicos de Matemática Discreta

exame de recurso — 21 de janeiro de 2019

duração: 2 horas

1. (a) Sejam φ e ψ as fórmulas proposicionais

$$\varphi = p_1 \lor (p_2 \to p_1)$$
 e $\psi = \neg p_1 \land p_2$.

Diga, justificando, se a fórmula $\varphi \wedge \psi$ é uma contradição. O argumento representado por

$$\frac{\varphi}{\psi}$$

é um argumento válido qualquer que seja a fórmula proposicional γ ? Justifique a sua resposta.

(b) Seja A um subconjunto de \mathbb{Z} . Considere que p representa a proposição a seguir indicada

$$p: \exists_{x,y \in A} (x \neq y \rightarrow x < y) \rightarrow \exists_{x,y \in A} (x \neq y \land x < y).$$

Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: Qualquer que seja o subconjunto A de \mathbb{Z} , a proposição p é verdadeira.

- 2. Sejam A, B, C e D conjuntos. Indique, justificando, se cada uma das afirmações seguintes é verdadeira ou falsa:
 - (a) $(A \times B) \cap (C \times D) = \emptyset \Rightarrow (A \cap C = \emptyset) \vee (B \cap D = \emptyset);$
 - (b) $A \in B \Rightarrow \mathcal{P}(A) \in \mathcal{P}(B)$.
- 3. Prove, por indução nos naturais, que $9^n 1$ é um múltiplo de 8, para todo o natural n.
- 4. Sejam $n \in \mathbb{N}$ e $f_n : \mathbb{Z} \to \mathbb{N}$ a função definida por $f_n(x) = \begin{cases} -nx & \text{se } x < 0 \\ 2x + 1 & \text{se } x \ge 0 \end{cases}$.
 - (a) Considere n=3.
 - i. Determine $f_n(\{-5, -2, 7\})$ e $f_n^{\leftarrow}(\{4, 5\})$.
 - ii. Diga, justificando, se a função f_n é injetiva e se é sobrejetiva.
 - (b) Dê exemplo de $n \in \mathbb{N}$ tal que f_n seja invertível e determine a função inversa de f_n .
- 5. Seja R a relação binária em $A = \{x \in \mathbb{Z} \mid |x| \le 5\}$ definida por

$$a R b$$
 se e só se $a - b = 4k$, para algum $k \in \mathbb{Z}$.

- (a) Sabendo que R é reflexiva e simétrica, justifique que a relação R é uma relação de equivalência em A.
- (b) Determine $[0]_R$. Diga, justificando, se é verdadeira ou falsa a afirmação seguinte: Se a, b são inteiros tais que $[ab]_R = [0]_R$, então $[a]_R = [0]_R$ ou $[b]_R = [0]_R$.
- (c) Determine A/R.
- 6. Sejam a,b dois números naturais e seja $A=\{1,3,12,15,25,125,150,300,1500,a,b\}$. Seja | a relação "divide" definida em A por

$$x \mid y \text{ sse } \exists k \in \mathbb{N} : y = kx \ (x, y \in A).$$

O diagrama de Hasse associado a (A, |) é o que se encontra representado ao lado.

- (a) Indique, justificando, os valores de a e b.
- (b) Seja X = {15,25}. Indique, justificando, os majorantes e os minorantes de X em A e, caso existam, o supremo e o ínfimo de X
- (c) Diga, justificando, se o c.p.o. é um reticulado.

- 7. Considere o grafo G representado ao lado.
 - (a) Justifique que o grafo não é uma árvore.
 - (b) Indique, justificando, o número de arestas que é necessário remover de G para se obter um grafo euleriano.

Cotações	1.	2.	3.	4.	5.	6.	7.
	1,5+1,25	1,5+1,25	1,5	1.5 + 1.0 + 1.0	1,25+1,25+1,25	1,0+1,5+1,0	1,0+1,25