Funções Parciais Recursivas e Cálculo- λ

Carlos A. P. Campani

4 de novembro de 2008

1 Introdução

- Funções parciais recursivas são equivalentes ao formalismo Máquina de Turing;
- Representam as funções que podem ser computadas em uma máquina.

Tipos de formalismos para especificar algoritmos:

Operacional Máquinas abstratas (Máquina de Turing);

Axiomático Regras definem os componentes da linguagem (Gramáticas);

Funcional ou Denotacional Funções construídas de forma a serem compostas — linguagem- λ (Alonzo Church) e funções parciais recursivas (Kleene).

Equivalências entre máquinas e gramáticas (hierarquia de Chomsky):

- Autômatos finitos \equiv Gramáticas regulares;
- Autômatos de pilha não-determinísticos ≡
 Gramáticas livres de contexto;
- Máquinas universais (Máquina de Turing) =
 Gramáticas irrestritas.

2 Cálculo- λ

- Formalismo para representar funções proposto por Alonzo Church (1941);
- Fornece um sistema axiomático para o cálculo com as expressões da linguagem- λ ;
- Linguagem- $\lambda \equiv \text{linguagem functional (LISP)}$.

2.1 Definição de Expressão- λ

Definição 1 (expressão- λ ou termo- λ)

- 1. Uma variável é uma expressão-λ;
- 2. Se M é uma expressão- λ e x é uma variável, então $\lambda x M$ é uma expressão-lambda, interpretada como "uma função com argumento x";
- 3. Se F e A são expressões- λ , então (FA) é uma expressão- λ , interpretada como "F aplicado ao argumento A";
- 4. Nada mais é expressão- λ .

Exemplos 1

1.
$$\lambda x \stackrel{M}{\frown} x$$
;

$$2. \ (\lambda xx \underbrace{(yz)}_{A});$$

3.
$$(\lambda x \underbrace{(xx)}_{M} \underbrace{x}_{Y});$$

4.
$$(\underbrace{\lambda xx}_{F}\underbrace{\lambda xx}_{A});$$

5.
$$\lambda x \underbrace{\lambda y(xy)}_{M}$$
.

Exercício 1 Determine as expressões válidas:

- 1. λxx ;
- 2. λx ;
- $3. \lambda x \lambda y x.$

2.2 Variáveis Livres e Limitadas

Se uma ocorrência de uma variável x está no escopo de um λx , então sua ocorrência é dita limitada, caso contrário é dita livre.

Exemplo 1 $(x\lambda x\lambda y(xy))$

Primeira ocorrência de x é livre, a segunda é limitada.

2.3 Substituição de Variáveis

 $M[x \leftarrow A]$ denota a substituição uniforme de todas as ocorrências *livres* de x por A.

Exemplo 2 $(x\lambda x\lambda y(xy))[x \leftarrow \lambda zz] = (\lambda zz\lambda x\lambda y(xy)).$

2.4 Reduções do Cálculo- λ

(FA)

F functional;

A argumento.

$$(\underbrace{\lambda x M}_{F} A) \Rightarrow M[x \leftarrow A]$$

Exemplo 3

$$(\lambda xx(yz)) \Rightarrow (yz)$$

Exemplos 2

- 1. $(\lambda xx\lambda xx) \Rightarrow \lambda xx$;
- 2. $((\lambda x \lambda y(xy)\lambda xx)x) \Rightarrow (\lambda y(\lambda xxy)x) \Rightarrow (\lambda xxx) \Rightarrow x;$
- 3. $(\lambda x(xx)\lambda x(xx)) \Rightarrow (\lambda x(xx)\lambda x(xx))$ (irredutivel);
- 4. $(\lambda xyz) \Rightarrow y$ (jogar for alguma coisa).

Exercício 2 Efetue as seguintes reduções:

- 1. $(\lambda z(\lambda yzx)(xx))$
- 2. $(\lambda x x \lambda x x)$
- 3. $(\lambda x(xx)\lambda yy(xx))$

2.5 Currying

• Ocorre quando da aplicação de um termo- λ em que existem menos argumentos que variáveis limitadas;

$$(\lambda x \lambda y(xy)z) \Rightarrow \lambda y(zy)$$

- Na matemática: f(x, y), fixando um x qualquer, resulta em uma função de y;
- Natural de fazer na programação funcional/difícil de fazer na programação procedural (necessário editar o fonte e atribuir os valores que não serão lidos).

2.6 Aplicação- λ e Abstração- λ

Abstração- λ $M \Rightarrow \lambda x M$;

Aplicação- λ $(\lambda x MA) \Rightarrow M[x \leftarrow A].$

$$\underbrace{(\lambda x M A)}_{\text{redex}} \Rightarrow \underbrace{M[x \leftarrow A]}_{\text{contractum}}$$

Definição 2 Uma expressão-λ que não pode ser mais reduzida é chamada forma normal.

Exemplo 4 $\lambda xx \not e uma forma normal.$

Exemplo 5 $(\lambda xx(yz))$ não é uma forma normal.

Exemplo 6 $(\lambda x(xx)\lambda x(xx))$ não é uma forma normal.

2.7 Teorema de Church-Rosser

• Podem existir mais de uma redução possíveis (mais de um redex)

• Pode haver caminhos sem saída

• Considerando os diversos caminhos, seria a resposta da avaliação das expressões única? Ou seja, seriam as formas normais idênticas?

Teorema 1 (Teorema de Church-Rosser)

Para qualquer expressão- λ P e para quaisquer Q e R, se $P \Rightarrow Q$ e $P \Rightarrow R$, então existe um S tal que $Q \Rightarrow S$ e $R \Rightarrow S$.

2.8 Teorema da Normalização

Sempre usar o redex mais à esquerda e mais externo primeiro em uma redução.

estratégia normal \approx call by name \approx eal \approx menor ponto fixo

2.9 Representação dos Conectivos da Lógica

if A then B else C

$$T \equiv \lambda x \lambda y x$$
$$((Ta)b) \equiv ((\lambda x \lambda y x a)b) \Rightarrow (\lambda y a b) \Rightarrow a$$
$$F \equiv \lambda x \lambda y y$$

$$((Fa)b) \equiv ((\lambda x \lambda y y a)b) \Rightarrow (\lambda y y b) \Rightarrow b$$

2 CÁLCULO-λ

$$not \equiv \lambda x((xF)T)$$

Exemplo 7 (not F)

$$(\lambda x((xF)T)F) \Rightarrow ((FF)T) \Rightarrow T$$

and
$$\equiv \lambda x \lambda y((xy)F)$$

or $\equiv \lambda x \lambda y((xT)y)$
 $\rightarrow \equiv \lambda x \lambda y((xy)T)$

2.10 Manipulação de Listas

Usar F e T como seletores de elementos de listas (if-then-else aninhados).

- $T \equiv \lambda x \lambda y x$ (primeiro elemento da lista);
- $FT \equiv \lambda x \lambda y (y \lambda x \lambda y x) \equiv \lambda x \lambda y (yT)$ (segundo elemento da lista);
- $F^2T \equiv \lambda x \lambda y (y \lambda x \lambda y (y \lambda x \lambda y x)) \equiv \lambda x \lambda y (y FT)$ (terceiro elemento da lista);
- $F^{i+1}T \equiv \lambda x \lambda y (yF^iT)$ (o (i+2)-ésimo elemento).

2 CÁLCULO-λ

$$\langle \phi_0, \phi_1, \dots, \phi_{n-1} \rangle$$

- $\langle \phi_0 \rangle \equiv \lambda x((x\phi_0)\psi)$ (ψ é o terminador de lista);
- $\langle \phi_0, \phi_1 \rangle \equiv \lambda x((x\phi_0)\lambda x((x\phi_1)\psi)) \equiv \lambda x((x\phi_0)\langle \phi_1 \rangle);$
- $\langle \phi_0, \phi_1, \dots, \phi_{n-1} \rangle \equiv \lambda x((x\phi_0) \langle \phi_1, \dots, \phi_{n-1} \rangle).$

(obtendo o primeiro elemento de uma lista)

$$(\langle \phi_0 \rangle T) \equiv (\lambda x ((x\phi_0)\psi)\lambda x \lambda y x) \Rightarrow ((\lambda x \lambda y x \phi_0)\psi) \Rightarrow$$
$$\Rightarrow (\lambda y \phi_0 \psi) \Rightarrow \phi_0$$

(obtendo o segundo elemento de uma lista)

$$(\langle \phi_{0}, \phi_{1}, \phi_{2} \rangle FT) \equiv$$

$$\equiv (\lambda x((x\phi_{0})\lambda x((x\phi_{1})\lambda x((x\phi_{2})\psi))) \underbrace{\lambda x \lambda y(y\lambda x \lambda y x)}) \Rightarrow$$

$$\Rightarrow ((\lambda x\lambda y(y\lambda x\lambda y x) \underbrace{\phi_{0}})\lambda x((x\phi_{1})\lambda x((x\phi_{2})\psi))) \Rightarrow$$

$$\Rightarrow (\lambda y(y\lambda x\lambda y x) \underbrace{\lambda x((x\phi_{1})\lambda x((x\phi_{2})\psi))}) \Rightarrow$$

$$\Rightarrow (\lambda x((x\phi_{1})\lambda x((x\phi_{2})\psi)) \underbrace{\lambda x\lambda y x}) \Rightarrow$$

$$\Rightarrow ((\lambda x\lambda y x \underbrace{\phi_{1}})\lambda x((x\phi_{2})\psi)) \Rightarrow$$

$$\Rightarrow (\lambda y \phi_{1} \underbrace{\lambda x((x\phi_{2})\psi)}) \Rightarrow \phi_{1}$$

2 CÁLCULO-λ

2.11 Relação com a Programação Funcional (LISP)

$$T \equiv {\rm CAR} \qquad F \equiv {\rm CDR} \qquad \psi \equiv {\rm nil}$$
 (CAR (CDR (CAR QUOTE((A B C) D))))=B

2.12 Representação de Números Inteiros

$$i \equiv F^i T$$

$$0 \equiv T$$

$$1 \equiv FT$$

$$2 \equiv FFT$$

:

2 CÁLCULO-λ

$$suc \equiv \lambda z \lambda x \lambda y(yz)$$

$$(\operatorname{suc} 1) \equiv (\lambda z \lambda x \lambda y (y z) \lambda x \lambda y (y \lambda x \lambda y x)) \Rightarrow$$
$$\lambda x \lambda y (y \lambda x \lambda y (y \lambda x \lambda y x)) \equiv FFT \equiv 2$$

Da observação que podemos escrever as expressões- λ para pred, +, -, mult etc. concluimos que

Cálculo- $\lambda \approx$ máquina de Turing

2.13 Igualdade do Cálculo- λ

Definição 3 (Redução beta) $(\lambda x MA) \Rightarrow M[x \leftarrow A]$.

Definição 4 (Redução alfa) $\lambda xM \Rightarrow \lambda yM[x \leftarrow y]$.

As reduções alfa e beta induzem uma igualdade das expressões- λ (igualdade extensional).

- = igualdade extensional;
- ≡ igualdade intencional (baseada na equivalência de abreviaturas).

2.14 Sistema Axiomático do Cálculo- λ

Serve para julgar a igualdade extensional entre termos do cálculo- λ .

 $\lambda \vdash M = N$ se e somente se existe uma dedução de M = N.

2.14.1 Axiomas/Regras de Inferência

$$M = M$$

$$(\lambda x MA) = M[x \leftarrow A]$$

$$\frac{M = N}{N = M}$$

$$M = N, N = K$$

$$M = K$$

$$M = N$$

$$(MA) = (NA)$$

$$M = N$$

$$(FM) = (FN)$$

$$M = N$$

$$\lambda x M = \lambda x N$$

Cálculo- λ =linguagem- λ +sistema axiomático

3 Funções Parciais Recursivas

- Propostas por Kleene (1936);
- Equivalentes ao formalismo Máquina de Turing e linguagem- λ .

3.1 Funções e Funcionais

Definição 5 Uma função parcial é uma relação $f \subseteq A \times B$ onde cada elemento de A se relaciona com, no máximo, um elemento de B. O conjunto A é chamado de domínio da função e o conjunto B de co-dominio.

Notação: Denotamos a função $f \subseteq A \times B$ como $f:A \to B$ e diz-se que o tipo de $f \notin A \to B$. $\langle a,b \rangle \in f$ é denotado por f(a)=b.

Exemplo 8 Seja a função $f : \mathbb{N} \to \mathbb{N}$, definida como $f(x) = x^2$. Assim, f(3) = 9.

- Uma função é *total* se ela está definida para todo o seu domínio;
- Uma função $f: A \to B$ é parcial se $\exists x \in A (\not\exists y \in Bf(x) = y)$. Exemplo: $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1/x. Observe que f(0) não está definido.

Definição 6 Um funcional é uma função que possui uma ou mais funções como argumentos.

Exemplo 9 Seja o funcional $h: (\mathbb{N} \to \mathbb{N}) \times \mathbb{N} \to \mathbb{N}$, tal que h(f, x) = f(x) e $f: \mathbb{N} \to \mathbb{N}$.

3.2 Definição de Função Parcial Recursiva

- Funções parciais recursivas são funções construídas sobre funções básicas usando cinco tipos de construções: composição; condicional; recursão primitiva, recursão while e minimização;
- Função Turing-computável = função parcial recursiva;
- Função Turing computável para máquina que sempre pára = função recursiva (total).

3.2.1 Funções Básicas

Função sucessor $s: \mathbb{N} \to \mathbb{N}$, definida como s(x) = x + 1;

Função predecessor $p: \mathbb{N} \to \mathbb{N}$, definida como

$$p(x) = \begin{cases} x - 1 & \text{se } x > 0 \\ 0 & \text{se } x = 0 \end{cases};$$

Projeção $p_n^i: \mathbb{N}^n \to \mathbb{N}$, definida como $p_n^i(x_1, x_2, \dots x_n) = x_i$, para $1 \le i \le n$.

3.2.2 Composição Generalizada

Definição 7 Sejam $g, f_1, f_2, f_3, \ldots, f_k$ funções parciais tais que $g: \mathbb{N}^k \to \mathbb{N}$ e $f_i: \mathbb{N}^n \to \mathbb{N}$ para $1 \leq i \leq k$. A função parcial h, definida como

$$h(x_1, x_2, \dots, x_n) = g(f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_k(x_1, x_2, \dots, x_n))$$

 \acute{e} a composição das funções $g, f_1, f_2, f_3, \ldots, f_k$.

Exemplo 10 A função soma $2: \mathbb{N} \to \mathbb{N}$, definida como soma 2(x) = s(s(x)), usa a construção composição e resulta numa função que soma dois ao valor de seu argumento.

3.2.3 Condicional

Definição 8 A função cond : $\{V, F\} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, definida como

$$\operatorname{cond}(b, g_1, g_2) = \begin{cases} g_1 & \text{se } b = V \\ g_2 & \text{se } b = F \end{cases},$$

 \acute{e} a construção condicional, onde b \acute{e} uma expressão $l\acute{o}gica, g_1$ e g_2 são dois valores quaisquer.

 $cond(b, g_1, g_2) = se b então g_1 senão g_2$

Exemplo 11 maior: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, definida como maior $(x, y) = \operatorname{cond}(x > y, x, y)$, resulta no maior valor entre $x \in y$.

3.2.4 Recursão Primitiva

Definição 9 A função $f: \mathbb{N}^{n+1} \to \mathbb{N}$, definida como

$$f(x_1, \dots, x_n, y) = \text{cond}(y = 0, g(x_1, \dots, x_n), h(x_1, \dots, x_n, p(y), f(x_1, \dots, x_n, p(y))))$$

é chamada de recursão primitiva. Na definição,

 $h: \mathbb{N}^{n+2} \to \mathbb{N} \ e \ g: \mathbb{N}^n \to \mathbb{N} \ s \tilde{a} o \ duas \ funç \tilde{o} es \ quaisquer.$

$$f(x_1, ..., x_n, y) = \begin{cases} g(x_1, ..., x_n) & \text{se } y = 0 \\ h(x_1, ..., x_n, p(y), f(x_1, ..., x_n, p(y))) & \text{se } y \neq 0 \end{cases}$$

Exemplo 12

 $zero(x) = cond(x = 0, p_1^1(x), p_2^2(p(x), zero(p(x)))), define$ uma função que resulta no valor constante zero.

3.2.5 Recursão While

Definição 10 A função

$$f(x_1, x_2, \dots, x_n) = \begin{cases} g(x_1, \dots, x_n) & \text{se } x_i = 0\\ f(h_1(x_1, \dots, x_n), \dots, h_n(x_1, \dots, x_n)) & \text{se } x_i > 0 \end{cases}$$

é chamada de recursão while.

3.2.6 Minimização

A função $f(x_1, \ldots, x_n) = \mu y : h(x_1, \ldots, x_n, y)$, definida como o menor valor y tal que $h(x_1, \ldots, x_n, y) = 0$ e para todo $z < y, h(x_n, \ldots, x_n, z)$ está definido, é chamada de minimização.

3.2.7 Definições

Definição 11 As funções while recursivas compreendem a menor classe de funções que inclui as funções básicas e é fechado sobre a composição generalizada, condicional e recursão while.

Definição 12 As funções primitivas recursivas compreendem a menor classe de funções que inclui as funções básicas e é fechado sobre a composição generalizada e recursão primitiva.

Definição 13 As funções parciais recursivas compreendem a menor classe de funções que inclui as funções básicas e é fechado sobre a composição generalizada, recursão primitiva e minimização.

funções Turing computáveis \equiv funções while recursivas \equiv funções parciais recursivas

funções primitivas recursivas <u>un funções parciais recursivas</u>

Exemplo 13 (Função while recursiva)

$$soma(x,y) = \begin{cases} x & \text{se } y = 0\\ s(soma(x, p(y))) & \text{se } y > 0 \end{cases}$$

Exercício 3 Escreva as seguintes funções while recursivas:

- 1. $\operatorname{sub}(x,y) = x y;$
- 2. $\operatorname{mult}(x,y) = x \times y;$
- 3. fat(x) = x!.

Exemplo 14 Avaliação da função parcial recursiva $f(x) = \text{cond}(x = 0, s(zero(x)), s(p_2^2(p(x), f(p(x)))))$:

 $= s(s(s(cond(0 = 0, s(zero(0)), s(p_2^2(p(0), f(p(0)))))))) = s(s(s(s(zero(0))))))$

Observe-se que "3" é uma abreviatura para "s(s(s(zero(x))))."

 $4 \quad PONTOS \; FIXOS$

4 Pontos Fixos

- Já vimos uma interpretação computacional das funções recursivas;
- Pontos fixos: Interpretação matemática das funções recursivas.

4.1 Definições

Definição 14 A função $\bot : \mathbb{N} \to \mathbb{N}$, definida como $\bot(x) = \underline{\text{undef}}$, é chamada de função totalmente indefinida.

Definição 15 A relação \sqsubseteq sobre $\mathcal{F} \times \mathcal{F}$, onde \mathcal{F} é o conjunto das funções sobre $\mathbb{N} \to \mathbb{N}$, definida como $f_1 \sqsubseteq f_2$ se $f_1(x) = y \to f_2(x) = y$, onde $f_1, f_2 \in \mathcal{F}$, é uma relação de ordem parcial sobre \mathcal{F} .

Observação: $\bot \sqsubseteq f$, para qualquer $f \in \mathcal{F}$.

Definição 16 Um conjunto de funções $\{f_i|i \geq 0\}$ é chamado de cadeia se $f_1 \sqsubseteq f_2 \sqsubseteq f_3 \sqsubseteq \cdots$.

Definição 17 Uma função f é chamada ponto fixo do funcional F se F(f) = f.

Teorema 2 O ponto fixo f_0 do funcional F é o supremo da cadeia $F^i(\bot)$, $f_0 = \sqcup \{F^i(\bot) | i \ge 0\}$.

Observações:

- $\bullet \ F^i = F \circ F^{i-1};$
- $F^0(\bot) \sqsubseteq F^1(\bot) \sqsubseteq F^2(\bot) \sqsubseteq \cdots;$
- Identificamos o ponto fixo do funcional com a função computada pelo programa associado a este funcional.

Exemplo 15 Seja f(x) = cond(x = 0, 1, x * f(x - 1)). Cadeia:

- 1. $F^0(\bot) = \operatorname{id}(\bot) = \bot = \underline{\operatorname{undef}};$
- 2. $F^{1}(\bot) = F(\bot) = cond(x = 0, 1, x * \bot(x 1)) = cond(x = 0, 1, \underline{undef});$
- 3. $F^{2}(\bot) = F \circ F^{1}(\bot) = cond(x = 0, 1, x * (F^{1}(\bot))(x 1)) = cond(x = 0, 1, x * cond(x 1 = 0, 1, \underline{undef})) = cond(x = 0, 1, x * cond(x = 1, 1, \underline{undef}))$

Exercício 4 Calcular $F^3(\bot)$.

Observação: $\sqcup \{F^i(\bot)|i \ge 0\} = \text{fatorial}.$