STAT 111

Recitation 5

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Spring2019

February 22, 2019

From the chart:

$$P(Z < -1.96) = 0.025, \quad P(Z > 1.96) = 0.025.$$

From the chart:

$$P(Z < -1.96) = 0.025, \quad P(Z > 1.96) = 0.025.$$

► Then:

$$P(-1.96 < Z < 1.96) = 0.95.$$

From the chart:

$$P(Z < -1.96) = 0.025, \quad P(Z > 1.96) = 0.025.$$

► Then:

$$P(-1.96 < Z < 1.96) = 0.95.$$

▶ Approximate $1.96 \approx 2$ and "unstandardize":

$$P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = 0.95$$

From the chart:

$$P(Z < -1.96) = 0.025, \quad P(Z > 1.96) = 0.025.$$

► Then:

$$P(-1.96 < Z < 1.96) = 0.95.$$

▶ Approximate $1.96 \approx 2$ and "unstandardize":

$$P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = 0.95$$

 \Rightarrow

$$P(\mu - 2\sigma < X < \mu + 2\sigma) = 0.95.$$

From the chart:

$$P(Z < -1.96) = 0.025, \quad P(Z > 1.96) = 0.025.$$

► Then:

$$P(-1.96 < Z < 1.96) = 0.95.$$

▶ Approximate $1.96 \approx 2$ and "unstandardize":

$$P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = 0.95$$

 \Rightarrow

$$P(\mu - 2\sigma < X < \mu + 2\sigma) = 0.95.$$

► The probability that a normal random variable is within 2 standard deviations of the mean is 95%.

Normal Distribution: Sums and Averages

 \blacktriangleright Let X_1, \ldots, X_n be independent and normally distributed. Let

$$T_n = X_1 + \cdots + X_n, \qquad \bar{X} = \frac{X_1 + \cdots + X_n}{n}, \qquad D = X_2 - X_1.$$

Normal Distribution: Sums and Averages

 \triangleright Let X_1, \ldots, X_n be independent and normally distributed. Let

$$T_n = X_1 + \cdots + X_n, \qquad \bar{X} = \frac{X_1 + \cdots + X_n}{n}, \qquad D = X_2 - X_1.$$

▶ Then T_n , \bar{X} and D are also normal random variables.

Normal Distribution: Sums and Averages

 \blacktriangleright Let X_1, \ldots, X_n be independent and normally distributed. Let

$$T_n=X_1+\cdots+X_n, \qquad \bar{X}=rac{X_1+\cdots X_n}{n}, \qquad D=X_2-X_1.$$

- ▶ Then T_n , \bar{X} and D are also normal random variables.
- Let $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(\mu, \sigma^2)$. Then:

$$T_n \sim N(n\mu, n\sigma^2)$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$D \sim N(0, 2\sigma^2)$$

- ▶ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- a) Find P(156 < X < 164).

- ➤ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- a) Find P(156 < X < 164).

$$P(156 < X < 164) = P\left(\frac{156 - 160}{8} < \frac{X - 160}{8} < \frac{164 - 160}{8}\right)$$
$$= P(-0.5 < Z < 0.5)$$
$$= 0.3830$$

- ▶ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- a) Find P(156 < X < 164).

$$P(156 < X < 164) = P\left(\frac{156 - 160}{8} < \frac{X - 160}{8} < \frac{164 - 160}{8}\right)$$
$$= P(-0.5 < Z < 0.5)$$
$$= 0.3830$$

b) Find the probability that the average weight of 16 men chosen at random is between 156 and 164 pounds.

- ► Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- a) Find P(156 < X < 164).

$$P(156 < X < 164) = P\left(\frac{156 - 160}{8} < \frac{X - 160}{8} < \frac{164 - 160}{8}\right)$$
$$= P(-0.5 < Z < 0.5)$$
$$= 0.3830$$

b) Find the probability that the average weight of 16 men chosen at random is between 156 and 164 pounds.

$$\overline{X} \sim N(160, 64/16 = 4)$$
 $P(156 < \overline{X} < 164) = P(-2 < Z < 2)$
 ≈ 0.95

- Suppose we know the weight X of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- c) Calculate the numbers A and B such that $P(A < X < B) \approx 0.95$.

- ▶ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- c) Calculate the numbers A and B such that $P(A < X < B) \approx 0.95$.

$$0.95 \approx P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = P(-2\sigma + \mu < X < 2\sigma + \mu)$$

$$A = -2(8) + 160 = 144, \quad B = 2(8) + 160 = 176$$

- ▶ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- c) Calculate the numbers A and B such that $P(A < X < B) \approx 0.95$.

$$0.95 \approx P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = P(-2\sigma + \mu < X < 2\sigma + \mu)$$

 $A = -2(8) + 160 = 144, \quad B = 2(8) + 160 = 176$

d) Calculate the numbers ${\cal C}$ and ${\cal D}$ such that the average of 256 randomly chosen adults is between ${\cal C}$ and ${\cal D}$ with probability approximately 0.95.

- ▶ Suppose we know the weight *X* of an adult man chosen at random is normally distributed with mean 160 pounds and variance 64 pounds².
- c) Calculate the numbers A and B such that $P(A < X < B) \approx 0.95$.

$$0.95 \approx P\left(-2 < \frac{X - \mu}{\sigma} < 2\right) = P(-2\sigma + \mu < X < 2\sigma + \mu)$$

 $A = -2(8) + 160 = 144, \quad B = 2(8) + 160 = 176$

d) Calculate the numbers C and D such that the average of 256 randomly chosen adults is between C and D with probability approximately 0.95.

$$\overline{X}_{256} \sim N(160, 64/256 = 1/4)$$
 $C = -2\sigma + \mu = -2(1/2) + 160 = 159$
 $D = 2\sigma + \mu = 2(1/2) + 160 = 161$

Central Limit Theorem

The Central Limit Theorem:

- ▶ Suppose $X_1, X_2, ..., X_n$ are *iid* with mean μ and variance σ^2 .
- ▶ Then, for large *n*

$$T_n \sim N(n\mu, n\sigma^2)$$
 and $ar{X} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$

no matter the distribution of the individual X_i

▶ Allows approximation of all distributions using the normal distribution if you know the mean and variance.

Central Limit Theorem

The Central Limit Theorem:

- ▶ Suppose $X_1, X_2, ..., X_n$ are *iid* with mean μ and variance σ^2 .
- ▶ Then, for large n

$$T_n \sim N(n\mu, n\sigma^2)$$
 and $ar{X} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$

no matter the distribution of the individual X_i

Allows approximation of all distributions using the normal distribution if you know the mean and variance.

Note: if X_1, \ldots, X_n are normally distributed, then this applies for all n, not just large n.

▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.

- ▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.
- ▶ For each X_i , $Mean(X_i) = \theta$ and $Var(X_i) = \theta(1 \theta)$.

- ▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.
- ▶ For each X_i , $Mean(X_i) = \theta$ and $Var(X_i) = \theta(1 \theta)$.
- ▶ The sum is: $T_n = X_1 + X_2 + \cdots + X_n$.

- ▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.
- ▶ For each X_i , $Mean(X_i) = \theta$ and $Var(X_i) = \theta(1 \theta)$.
- ▶ The sum is: $T_n = X_1 + X_2 + \cdots + X_n$.
- ► The proportion is:

$$P=\frac{X_1+\cdots+X_n}{n}.$$

- ▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.
- ▶ For each X_i , $Mean(X_i) = \theta$ and $Var(X_i) = \theta(1 \theta)$.
- ▶ The sum is: $T_n = X_1 + X_2 + \cdots + X_n$.
- ► The proportion is:

$$P=\frac{X_1+\cdots+X_n}{n}.$$

- ▶ Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Binomial(1, \theta)$.
- ▶ For each X_i , $Mean(X_i) = \theta$ and $Var(X_i) = \theta(1 \theta)$.
- ▶ The sum is: $T_n = X_1 + X_2 + \cdots + X_n$.
- ► The proportion is:

$$P=\frac{X_1+\cdots+X_n}{n}.$$

For large *n*,

$$T_n \sim N(n\theta, n\theta[1-\theta])$$

$$P \sim N\left(\theta, \frac{\theta(1-\theta)}{n}\right)$$

Central Limit Theorem: Problem

▶ Suppose you are rolling a fair die 1000 times. Calculate the numbers *A* and *B* such that the average of the 1000 rolls is between *A* and *B* with probability approximately 0.95. You may assume the mean of one roll is 3.5 and the variance is 35/12.

Central Limit Theorem: Problem

▶ Suppose you are rolling a fair die 1000 times. Calculate the numbers *A* and *B* such that the average of the 1000 rolls is between *A* and *B* with probability approximately 0.95. You may assume the mean of one roll is 3.5 and the variance is 35/12.

$$Mean(X_i) = 3.5, \quad Var(X_i) = 35/12$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) = N\left(3.5, \frac{35}{12000}\right) \quad \text{by CLT}$$
 $A = -2\sigma + \mu = -2\sqrt{35/12000} + 3.5 \approx 3.392$
 $B = 2\sigma + \mu = 2\sqrt{35/12000} + 3.5 \approx 3.608$

We have finished the first half of the course on probability. Now, we move on to statistics.

- We have finished the first half of the course on probability. Now, we move on to statistics.
- ► Statistics is used to make inductive statements about some phenomenon (coin-flipping, dice rolling) **after** observing data.

- We have finished the first half of the course on probability. Now, we move on to statistics.
- Statistics is used to make inductive statements about some phenomenon (coin-flipping, dice rolling) after observing data.
- ► Three main activities of statistics:
 - 1. Estimating numerical values of a parameter or parameters.
 - 2. Assessing accuracy of these estimates.
 - 3. Testing hypotheses about the numerical values of parameters.

- We have finished the first half of the course on probability. Now, we move on to statistics.
- Statistics is used to make inductive statements about some phenomenon (coin-flipping, dice rolling) after observing data.
- ► Three main activities of statistics:
 - 1. Estimating numerical values of a parameter or parameters.
 - 2. Assessing accuracy of these estimates.
 - 3. Testing hypotheses about the numerical values of parameters.
- Example: Suppose flip a coin 1,000 times and observe 700 heads.
 - 1. How do I estimate the probability θ of achieving a head?
 - 2. How accurate is my estimate of θ ?
 - 3. Is this a fair coin $(\theta = 0.5)$?

▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?

- ▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?
- An intuitive estimator for θ is p = x/n, the **observed** proportion of successes.

- ▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?
- An intuitive estimator for θ is p = x/n, the **observed** proportion of successes.
- ► Consider the random variable *P*, the proportion of successes **prior** to performing the experiment.

- ▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?
- An intuitive estimator for θ is p = x/n, the **observed** proportion of successes.
- ► Consider the random variable *P*, the proportion of successes **prior** to performing the experiment.
 - ▶ $Mean(P) = \theta$ so p is "shooting at the right target". p is then referred to as an **unbiased** estimate of θ .

- ▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?
- An intuitive estimator for θ is p = x/n, the **observed** proportion of successes.
- ► Consider the random variable *P*, the proportion of successes **prior** to performing the experiment.
 - ▶ $Mean(P) = \theta$ so p is "shooting at the right target". p is then referred to as an **unbiased** estimate of θ .
- ▶ Difference between estimate and estimator:
 - **Estimate:** A function of the observed data used to estimate a given parameter. Ex: *p*.
 - **Estimator:** The random variable whose realization is the estimate. Ex: *P*.

Estimation of a parameter: Binomial parameter θ

- ▶ Recall a binomial random variable $X \sim Bin(n, \theta)$. How do we estimate the probability of success θ ?
- An intuitive estimator for θ is p = x/n, the **observed** proportion of successes.
- ► Consider the random variable *P*, the proportion of successes **prior** to performing the experiment.
 - ▶ $Mean(P) = \theta$ so p is "shooting at the right target". p is then referred to as an **unbiased** estimate of θ .
- ▶ Difference between estimate and estimator:
 - **Estimate:** A function of the observed data used to estimate a given parameter. Ex: *p*.
 - Estimator: The random variable whose realization is the estimate. Ex: P.
- To investigate the precision of an estimate, we need to consider the random variable estimator.

Precision of p as an estimate of θ depends on the variance of random variable P.

- Precision of p as an estimate of θ depends on the variance of random variable P.
- ▶ By the CLT, two standard deviation rule, and approximations (see pg. 40-41), we get the approximate 95% confidence interval for θ as

$$p \pm 2\sqrt{p(1-p)/n}$$

- Precision of p as an estimate of θ depends on the variance of random variable P.
- ▶ By the CLT, two standard deviation rule, and approximations (see pg. 40-41), we get the approximate 95% confidence interval for θ as

$$p \pm 2\sqrt{p(1-p)/n}$$

We can further approximate the 95% confidence interval with $p(1-p) \le 1/4$ to get

$$p \pm \sqrt{1/n} \tag{66}$$

- Precision of p as an estimate of θ depends on the variance of random variable P.
- ▶ By the CLT, two standard deviation rule, and approximations (see pg. 40-41), we get the approximate 95% confidence interval for θ as

$$p \pm 2\sqrt{p(1-p)/n}$$

We can further approximate the 95% confidence interval with $p(1-p) \le 1/4$ to get

$$p \pm \sqrt{1/n} \tag{66}$$

Correspondingly, the 99% confidence interval is

$$p \pm 2.576 \sqrt{p(1-p)/n} \approx p \pm 1.288 \sqrt{1/n}$$

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

$$p = x/n = 388/531 = 0.7307$$

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

$$p = x/n = 388/531 = 0.7307$$

Q2: Calculate the 95% confidence interval for θ using the approximate 95% interval formula (66):

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

$$p = x/n = 388/531 = 0.7307$$

Q2: Calculate the 95% confidence interval for θ using the approximate 95% interval formula (66):

$$p \pm \sqrt{1/n} = 0.7307 \pm \sqrt{1/531} = 0.7307 \pm 0.0434$$

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

$$p = x/n = 388/531 = 0.7307$$

Q2: Calculate the 95% confidence interval for θ using the approximate 95% interval formula (66):

$$p \pm \sqrt{1/n} = 0.7307 \pm \sqrt{1/531} = 0.7307 \pm 0.0434$$

Q3: What is the sample size if we want the width of the confidence interval to be 0.02?

In the 2017-2018 NBA season, Lebron James shot 531 free throws and made 388. We want to estimate the probability θ that Lebron James makes a free throw.

Q1: What is the estimate for θ ?

$$p = x/n = 388/531 = 0.7307$$

Q2: Calculate the 95% confidence interval for θ using the approximate 95% interval formula (66):

$$p \pm \sqrt{1/n} = 0.7307 \pm \sqrt{1/531} = 0.7307 \pm 0.0434$$

Q3: What is the sample size if we want the width of the confidence interval to be 0.02?

We want
$$\sqrt{1/n}=0.01=0.02/2$$
.
$$1/n=0.01^2$$

$$n=1/0.01^2=10000$$