Automation system Cogue

https://github.com/atztogo/cogue

Atsushi Togo*¹ and Isao Tanaka¹,²

¹Elements Strategy Initiative for Structural Materials, Kyoto University ²Department of Materials Science and Engineering, Kyoto University

Automation with queueing system

Automation

• Automation is hierarchical.

• VASP calculation, well automated.

• Bunch of VASP calculations may be automated by a shell-script.

Distributed computation

- Distribution is hierarchical.
 - VASP calculation, well distributed by MPI

• Maybe distributed by a shell-script.

• Maybe distributed using a queueing system.

Example: Thermal expansion calculation

- 1. Structure optimization of a unit cell
- 2. Create 10 unit cells with different volumes
- 3. Structure optimization of 10 unit cells
- 4. 11 phonon calculations
- 5. Quasi-harmonic fitting

Structure optimization

Stage 1 Determine initial volume

Implementations of execution tasks that are submitted to queueing system

Structure optimization with a limited number of iteration, e.g., 10

Forces on atoms

Energy

Stress

Elastic constants

Dielectric constant Born effective charges

Implementation of general structure optimization task

Implementation of phonon task

Implementation of thermal expansion calculation

Kernel of automation system

```
def _deep_run(self, task):
   cwd = self._chdir_in(task.get_directory())
   subtasks = task.get_tasks()
   if subtasks: # taskset
      for subtask in subtasks: Concurrent tasks
          if not subtask.done():
             else: # job task
      self._queue.set_job_status(task)
   task.set_status()
   if task.done(): Series task
      try:
          next_subtasks = task.next()
      except StopIteration:
          task.end()
      else:
          for next_subtask in next_subtasks:
             self._deep_begin(next_subtask)
   self._chdir_out(cwd, task.get_status())
```

*Standardization

To control tasks, each task has to hold the following methods:

> Task.begin() Task.end()

Task.done() Task.next()

Script for bulk modulus calculation

```
#!/usr/bin/env python
import numpy as np
import coque
import coque.calculator.vasp as vasp
import coque.qsystem.gridengine as ge
task name = "sno2"
# Crystal structure
symbols = ['Sn'] * 2 + ['0'] * 4
lattice = [[4.75, 0, 0],
           [0, 4.75, 0],
           [0, 0, 3.25]]
points=np.transpose([[0.0, 0.0, 0.0],
                     [0.5, 0.5, 0.5],
                     [0.3, 0.3, 0.0],
                     [0.7, 0.7, 0.0],
                     [0.2, 0.8, 0.5],
                     [0.8, 0.2, 0.5]])
cell = coque.cell(lattice=lattice,
                  points=points,
                  symbols=symbols)
# Vasp settings
ps_map = {'Sn': 'Sn_PBE',}
          '0': '0 PBE'}
incar = vasp.incar()
incar.set_structure_optimization()
incar.set_encut(400)
incar.set_prec("Normal")
```

```
Queue
job = ge.job(script="vasp5212serial",
             shell="/bin/zsh",
             jobname=task name,
             stdout="std.log",
             stderr="err.log")
# Task
task = vasp.bulk_modulus(max_iteration=2,
                         cell=cell,
                         pseudo_potential_map=ps_map,
                         k_{mesh}=[4, 4, 6],
                         incar=incar,
                         iob=iob)
# Automatic calculation
calc = cogue.autocalc()
calc.append(task_name, task) # More tasks can be appended.
calc.set_queue(ge.queue())
calc.run(check_period=5)
print "space group:", cogue.symmetry(cell)['international']
print "status:", task.get_status()
# 201.411956183 GPa
print "bulk modulus:", task.get_bulk_modulus(), "GPa"
```

Application of metastable structure search

A hypothetical structure: CsCl-type NaCl at p=0

$\omega^2 < 0$: Instability of crystal potential

$$D(\mathbf{q})\mathbf{e}(\mathbf{q}s) = [\omega(\mathbf{q}s)]^2\mathbf{e}(\mathbf{q}s)$$

*Imaginary frequencies are shown by negative values.

Automatic structure relaxation

Dynamically stable structures of NaCl

Most of the structures were found as close-packed alternate stacking of Na and Cl layers.

*See for more details, Togo and Tanaka, Phys. Rev. B 87, 184104 (2013)