Tarea 1

Entrega: 28 de agosto de 2023

Problema 1

Calcula el factor relativista γ de un protón de 10 GeV de energía total y de un electrón de 1 GeV.

Solución

Recordemos que el factor relativista γ está dado por:

$$\gamma = \frac{E}{mc^2}. ag{1.1}$$

Además, que las masas del electrón $(m_{\rm e})$ y protón (m_p) son $0.511\,{\rm MeV}/c^2$ y $938\,{\rm MeV}/c^2$, respectivamente. Por lo tanto, el factor relativista del protón es:

$$\gamma_p = \frac{10 \times 10^9 \,\text{eV}}{(938 \times 10^6 \,\text{eV}/c^2) \cdot c^2},$$

$$= \frac{10 \times 10^9 \,\text{eV}}{938 \times 10^6 \,\text{eV}},$$

$$\gamma_p = 10.661 \,\text{eV}.$$

Y para el electrón,

$$\begin{split} \gamma_{\rm e} &= \frac{1 \times 10^9 \, {\rm eV}}{(0.511 \times 10^6 \, {\rm eV}/c^2) \cdot c^2}, \\ &= \frac{1 \times 10^9 \, {\rm eV}}{0.511 \times 10^6 \, {\rm eV}}, \\ \gamma_{\rm e} &= 1956.95 \, {\rm eV}. \end{split}$$

Calcula el camino libre medio de ese mismo protón que cruza un bloque de plomo, con sección eficaz de 1 barn.

¿Es posible el siguiente decaimiento?

$$\tau^- \longrightarrow \nu_{\mathcal{T}} + \mu^- + \overline{\nu}_{\mu}$$

¿Qué tipo de interacción es: electromagnética, nuclear fuerte o débil? Dibuja el diagrama de Feynman asociado si el decaimiento es posible.

Solución

El diagrama de Feynman asociado es el siguiente:

Figura 1: Diagrama de Feynamn asociado al decaimiento del tauón.

¿Es posible la siguiente interacción?

$$e^- + e^- \longrightarrow e^- + e^-$$

¿Qué tipo de interacción es? Dibuja el diagrama de Feynman si la interacción es posible.

Solución

El diagrama de Feynman asociado es el siguiente:

Figura 2: Diagrama de Feynamn asociado a la colisión de dos electrones.

 $ilde{\delta}$ Son posibles los siguientes decaimientos e interacciones?

- $\Omega^- \longrightarrow \Sigma^+ + e^- + \overline{\nu}_e$
- $p + e^- \longrightarrow n + \nu_e$
- $\pi^+ + n \longrightarrow \pi^+ + p$

Justifica tus respuestas.