Barát nélkül

Diákok ülnek egy sorban egymás mellett. Mindenkinek 1 barátja van, aki a vele szomszédos egyik széken ül – de nem tudjuk, hogy melyiken. Ki kell választani közülük néhányat úgy, hogy a kiválasztottak között senkinek ne legyen ott a barátja. Egy kiválasztás diákok növekvő sorrendű felsorolását jelenti. Két kiválasztásból az a kisebb, amelyben szereplő sorszámok közül az első eltérő a kisebb (pl. (1,3,4,7) kisebb, mint (1,3,5,6)).

Készíts programot, amely megadja egy kiválasztást közvetlenül megelőző, illetve követő kiválasztást!

Bemenet

A standard bemenet első sorában a diákok száma (3≤N≤100 000), valamint a kiválasztandó diákok száma (1≤K≤N/2) van. A következő sor egy kiválasztásban szereplő diákok sorszámait tartalmazza (1≤S_i≤N).

Kimenet

A standard kimenet első sorába a bemenetbelit közvetlenül megelőző kiválasztást, a másodikba a bemenetbelit közvetlenül követő kiválasztást kell írni! Az elsőt az utolsó előzi meg, az utolsót az első követi.

Példa

Bemenet	Kimenet			
6 3	1 3 6			
1 4 6	2 4 6			

Korlátok

Időlimit: 0.2 mp.

Legfényesebb négyzet

Egy nagyméretű fekete-fehér fényképen az egyes fénypontokról a fényességüket tároljuk. A képen a legfényesebb K*K méretű négyzet az a K*K-as terület, amelyen a minimális fényesség a lehető legnagyobb.

Készíts programot, amely megadja a legfényesebb K*K-as négyzetet!

Bemenet

A standard bemenet első sorában a fénykép sorai és oszlopai száma (1≤S, 0≤500), valamint a K értéke (0≤K≤min (S, O)) van. A következő S sor a kép egyes sorai O oszlopában levő értéket tartalmazza (0≤Kép_{i,j}≤1000).

Kimenet

A standard kimenet első sorába a legfényesebb K*K-as négyzet bal felső sarkának sor és oszlop koordinátáját kell írni! Több megoldás esetén közülük a bal felsőt (azaz a legkisebb sor, azon belül pedig a legkisebb oszlop koordinátájút).

Példa

Bemenet		Kimenet
4 5 2		2 3
5 3 5 2	7	
1 2 3 3	9	
1 7 4 3	5	
1 1 3 3	3	

Korlátok

Időlimit: 1.5 mp.

Maximális vám

Egy folyó mentén N város helyezkedik el. Mindegyiknek van egy bányája a folyó túloldalán, de nem biztos, hogy pont vele szemben, de mindegyikkel szemben van bánya. A városokat és a bányákat is a folyó folyásirányában sorszámozzuk. A király egy vámhivatalt hoz létre két város között, ahol megvámolhatja az itt áthaladó, a bányából a városba tartó hajókat.

Készíts programot, amely megadja, hogy melyik két város közé építse a vámhivatalt, hogy a lehető legtöbb szállítási útvonalat vámolhassa meg!

Bemenet

A standard bemenet első sorában a városok száma van ($2 \le N \le 100\,000$). A második sor i. száma az i. városhoz tartozó bánya sorszáma a folyó túloldalán ($1 \le B_i \le N$).

Kimenet

A standard kimenet első sorába a megvámolható legtöbb útvonal darabszámát kell írni! A második sorba az i sorszámot kell írni, ha a legtöbb vám úgy érhető el, hogy a vámhivatalt az i. és az i+1. város közé helyezik el! Több megoldás esetén a legkisebbet.

Példa

Bemenet	Kimenet
6	4
4 1 6 5 2 3	3

Korlátok

Időlimit: 0.2 mp.

Támogatás a leghosszabb időszakra

Egy zöldséges feljegyezte minden napra az aznapi hasznát (negatív, ha aznap az üzlet veszteséges volt, pozitív, ha nyereséges). Egyetlen olyan időszakra kaphat önkormányzati támogatást, amelyen az összhaszna pontosan K forint volt.

Készíts programot, amely megadja a leghosszabb időszakot, amire az önkormányzattól támogatást kérhet!

Bemenet

A standard bemenet első sorában a napok száma (1≤N≤100 000), valamint a K értéke (0≤K≤100 000) van. A második sor az egyes napok hasznát tartalmazza (-1000≤H_i≤1000).

Kimenet

A standard kimenet első sorába a leghosszabb időszak első és utolsó napja sorszámát kell írni, amelyen az összhaszon pontosan K forint volt! Több megoldás esetén a legkorábban kezdődőt kell kiírni, ha nincs megoldás, akkor pedig -1-et!

Példa

Bemenet								Κi	Lmen	et
10 10								6	10	
-4 8 12	-1	23	2	3	5	5	- 5			

Korlátok

Időlimit: 0.5 mp.