

10.DERS

ULAŞTIRMA PROBLEMLERİNDE DUYARLILIK ÇÖZÜMLEMESİ

Değişim 1: Temel dışı değişkenlere ilişkin fiyatlardaki (C_{ij}) değişim

	1	2	3	4	a_i	v_i
A	8	6 10	10 25	9	35	0
В	9 45	12	13 5	7	50	3
С	14	9 10	16	5 30	40	3
b_j	45	20	30	30		
w_j	6	6	10	2		

Birinci kaynaktan birinci hedefe 1 birim malın gönderilme maliyeti C_{11} deki değişim; $\hat{C}_{11} = 8 + \Omega$ biçimindedir. Optimalliğin bozulmaması için;

 $Z_{11} - \hat{C}_{11} \le 0$ olmalıdır. Buradan;

$$v_1 + w_1 - \hat{C}_{11} \le 0; 0 + 6 - (8 + \Omega) \le 0$$

 $\Omega \geq -2$ olmalı buna bağlı olarak da $\widehat{\boldsymbol{c}}_{11} \geq \boldsymbol{6}$ olmalıdır.

Değişim 2: Temeldeki değişkenlerin fiyatlarındaki değişim

Temeldeki C_{ij} ler değiştiği için v_i ve w_j ler de değişiklik meydana gelir. Temeldeki bir değişken olan C_{13} e ilişkin değişimi incelemek istersek.

$$C_{13} = 10 \to \hat{C}_{13} = 10 + \Omega$$

$$Z_{13} - C_{13} = 0$$
 (Temelde olduğu için) $\rightarrow Z_{13} = C_{13}$

$$\hat{C}_{13} = v_1 + w_3 = 10 + \Omega$$

	1	2	3	4	a_i	v_i
A	8	6 10	10 + Ω 25	9	35	0
В	9 45	12	13 5	7	50	3- Ω
С	14	9 10	16	5 30	40	3
b_j	45	20	30	30		
w_j	6+ Ω	6	10+ Ω	2		

Temel dışı değişkenlere ilişkin tüm $Z_{ij} - C_{ij} \le 0$ olmalı.

$$Z_{11} - C_{11} = v_1 - w_1 - C_{11} = 0 + 6 + \Omega - 8 \le 0 \to \Omega \le 2$$

$$Z_{14} - C_{14} = v_1 - w_4 - C_{14} = -7 \le 0$$

$$Z_{22} - C_{22} = v_2 - w_2 - C_{22} = 3 - \Omega + 6 - 12 \le 0 \to \Omega \ge -3$$

$$Z_{24} - C_{24} = v_2 - w_4 - C_{24} = 3 - \Omega + 2 - 7 \le 0 \to \Omega \ge -2$$

$$Z_{31} - C_{31} = v_3 - w_1 - C_{31} = 3 + 6 + \Omega - 14 \le 0 \to \Omega \le 5$$

$$Z_{33} - C_{33} = v_3 - w_3 - C_{33} = 3 + 10 + \Omega - 16 \le 0 \to \Omega \le 3$$

Tüm belirlenen aralıklar kullanılarak Ω için; $-2 \le \Omega \le +2$

Aralığı elde edilir. Buradan;

$$-2 + 10 \le C_{13} \le 2 + 10$$

 $-8 \le C_{13} \le 12$

Olursa optimallik bozulmaz.

Değişim 3: Sunum ve istemdeki değişim

İki durum düşünülebilir:

1. Eğer x_{ij} temel değişken ise;

 x_{ij} , Ω kadar artar ve maliyet üzerindeki etkisi

$$\hat{Z} = Eski \ Değer + \Omega v_i + \Omega w_j$$
 biçimindedir.

Örneğin; Birinci kaynaktan, ikinci hedefe taşınacak mal miktarında 2 birim artış olsun. x_{12} temeldeki bir değişken ve iki birimlik değişimin maliyete etkisi

$$\hat{Z} = Eski \ Değer + \Omega v_i + \Omega w_j$$

=1020+2*(0)+2*(6)=1032

Maliyette 12 birimlik bir artış olmuştur.

2. Eğer x_{ij} temel dışı değişken ise; x_{ij} yi içeren bir döngü çizilir.

Örneğin; birinci kaynaktan birinci hedefe taşınacak mal miktarında 1 birin artış olsun. x_{11} de değişim olacak. Optimal çözümü bulma sürecinde kullanılan döngü ile aynı özelliklere sahip bir döngü kurulur.

	1	2	3	4	a_i
A	8 *+	6 10	10 - 25	9	35
В	9 45 -	12	13 5 +	7	50
С	14	9 10	16	5 30	40
b_j	45	20	30	30	

- (-) ile işaretlenmiş gözelere $\Omega = 1$ eklenir
- (+) ile işaretlenmiş gözelerden $\Omega = 1$ çıkartılır.

		1		2		3		4	a_i
A	8		6	10	10	26	9		35+1=36
В	9	46	12		13	4	7		50
С	14		9	10	16		5	30	40
b_i	45-	+1 = 46		20		30		30	

$$Z = 60 + 260 + (9 * 45) + (9 * 10) + (5 * 30) = 1026$$

Örnek:

	1	2	3	4	5	a_i
A	9	3	6	7 30	3 70	100
В	7	5 60	2 80	10 20	6	160
С	5 90	4	9	8 50	10	140
b_j	90	60	80	100	70	

a) x_{13} ün fiyatında ne kadarlık değişim olursa optimal çözüm değişmez? x_{13} temel dışı bir değişken;

$$\hat{C}_{13} = 6 + \Omega$$

$$Z_{13} - \hat{C}_{13} \le 0 \text{ olmal}_1$$

$$v_1 + w_3 - \hat{C}_{13} \le 0$$

$$v_1 + w_3 - \hat{C}_{13} = 0 + (-1) - (6 + \Omega) = -7 - \Omega \le 0 \rightarrow \Omega \ge -7$$
 olmalı.

b) x_{24} ün fiyatında ne kadarlık değişim olursa optimal çözüm değişmez? x_{24} temeldeki bir değişken;

$$C_{24} = 10$$

$$\hat{C}_{24} = 10 + \Omega$$

$$Z_{24} - \hat{C}_{24} = 0$$
 (Temeldeki bir değişken olduğu için)

$$Z_{24} = \hat{C}_{24}$$

	1	2	3	4	5	a_i	v_i
A	9	3	6	7 30	3 70	100	0
В	7	5 60	2 80	10+ Ω 20	6	160	3+ Ω
С	5 90	4	9	8 50	10	140	1
b_{j}	90	60	80	100	70		
w_j	4	2- Ω	-1- Ω	7	3		

Temel dışı değişkenlere ilişkin tüm $Z_{ij} - C_{ij} \le 0$ olmalı.

$$\begin{split} Z_{11} - C_{11} &= v_1 - w_1 - C_{11} \leq 0 \; ; \; 0 + 4 - 9 \leq 0 \to -5 \leq 0 \\ Z_{12} - C_{12} &= v_1 - w_2 - C_{12} \leq 0 \; ; \; 0 + (2 - \Omega) - 3 \leq 0 \to \Omega \geq -1 \\ Z_{21} - C_{21} &= v_2 - w_1 - C_{21} \leq 0 \; ; \; 3 + \Omega + 4 - 7 \leq 0 \to \Omega \leq 0 \\ Z_{32} - C_{32} &= v_3 - w_2 - C_{32} \leq 0 \; ; \; 1 + 2 - \Omega - 4 \leq 0 \to \Omega \geq -2 \\ Z_{35} - C_{35} &= v_3 - w_5 - C_{35} \leq 0 \; ; \; 1 + 3 - 10 \leq 0 \to -7 \leq 0 \\ Z_{13} - C_{13} &= v_1 - w_3 - C_{13} \leq 0 \; ; \; 0 + (-1 - \Omega) - 6 \leq 0 \to \Omega \geq -7 \\ Z_{25} - C_{25} &= v_2 - w_5 - C_{25} \leq 0 \; ; \; 3 + \Omega + 3 - 6 \leq 0 \to \Omega \leq 0 \\ Z_{33} - C_{33} &= v_3 - w_3 - C_{33} \leq 0 \; ; \; 1 + (-1 - \Omega) - 9 \leq 0 \to \Omega \geq -9 \\ \text{Tüm belirlenen aralıklar kullanılarak } \Omega \; \text{için; } \; -1 \leq \Omega \leq 0 \\ \text{Aralığı elde edilir. Buradan; } -1 + 10 \leq C_{24} \leq 0 + 10 \\ -9 \leq C_{24} \leq 10 \end{split}$$

Olursa optimallik bozulmaz.

AKTARMALI ULAŞTIRMA PROBLEMLERİ

Bir ulaştırma probleminde taşımaya konu olan mallar önce üretim merkezlerinden depolara, daha sonra depolardan tüketim noktalarına taşınacaksa bu tür problemlere aktarmalı ya da kademeli ulaştırma problemleri denir.

Ulaştırma	Problemi	Aktarmalı Ulaştırma Problemi				
Kaynak	Hedef	Kaynak	Depo	Hedef		
*	0	*	+	0		
*	0	*	+	0		
* /_	0	* /	+	0		

 C_{ik} : i. kaynakta k. depoya bir birim malın ulaştırma gideri d_{kj} : k. depodan j. hedefe bir birim malın ulaştırma gideri M: çok büyük bir pozitif tamsayı

		Depol	ar		Hedef	ler		
		D1	D2	 Dk	H1	H2	 Hn	a_i
	K1	C_{11}	C_{11}	 C_{11}	M	M	 M	a_1
Kaynak	K2	C_{11}	C_{11}	 C_{11}	M	M	 M	a_2
ayr				 			 	
K	Km	C_{11}	C_{11}	 C_{11}	M	M	 M	a_m
	D1	M	M	 M	d_{11}	d_{11}	 d_{11}	d_1
Depolar	D2	M	M	 M	d_{11}	d_{11}	 d_{11}	d_2
Ď	Dk	M	M	 M	d_{11}	d_{11}	 d_{11}	d_k
	b_j	d_1	d_2	d_k	h_1	h_2	 h_n	

Problemin ulaştırma problemi yöntemiyle çözümlenebilmesi için toplam kapasitenin toplam talebe eşit olması gerekir. M ler bulundukları gözeye atama yapılmasını engelleyecektir. Böylece kaynaklardan direk hedeflere ve depolar arasında aktarma yapılması engellenmiş olacaktır.

ÖRNEK: Bir işletme iki merkezde ürettiği ürünleri üç bölge deposu aracılığı ile beş hedefe taşımak istemektedir. Üretim merkezlerinin kapasitesi sırasıyla, 125 ve 175 birimdir. Depoların kapasiteleri sırasıyla 100, 110 ve 90 dır. Hedeflerin talepleri ise sırasıyla; 45, 40, 85, 50 ve 80 birimdir. Üçüncü depodan dördüncü hedefe mal taşımak mümkün değildir. Kaynaklardan depolara ve depolardan hedeflere bir birim malın taşıma maliyetleri tablolarda verilmiştir.

		D1	D2	D3	Kapasite
Üretim	M1	70	80	65	125
Merkezi	M2	72	78	73	175

			Hedefler					
		H1	H2	Н3	H4	H5	Kapasite	
	D1	12	5	7	10	9	100	
Depolar	D2	10	6	5	9	7	110	
	D3	8	7	4	-	9	90	

Hangi üretim merkezinden hangi depoya ve hangi depodan hangi hedefe ne kadar mal taşınacağı belirlenmek istenmektedir. Bu amaçla çözümlenecek modele esas ulaştırma tablosunu düzenleyiniz.

	D1	D2	D3	H1	H2	Н3	H4	Н5	
M1	70	80	65	M	M	M	M	M	125
M2	72	78	73	M	M	M	M	M	175
D1	M	M	M	12	5	7	10	9	100
D2	M	M	M	10	6	5	9	7	110
D3	M	M	M	8	7	4	M	9	90
	100	110	90	45	40	85	50	80	

Tablo oluşturulduktan sonra, klasik ulaştırma problemi çözüm süreci kullanılarak probleme çözüm getirilir.

ATAMA MODELİ

Atama modeli veya problemleri genel doğrusal programlama problemlerinin özel bir durumudur. Atama problemi türlü kaynakların değişik görevlere en uygun biçimde dağıtımını sağlamayı amaçlar. Bu modele daha çok, işçilerin işlere ve işlerin makinalara atanmasında baş vurulur. Programlama, bir işe veya makinaya bir işçi atanması biçiminde yapılır. Atama modelinde amaç, etkinliği maksimum kılmak için kaynak kullanımının bire bir dağılımını sağlamaktır. Modelde iş veya işçi sayısının makine sayısına eşit olduğu kabul edilir. m işçi sayısını n makine sayısını gösterdiğinde m>n ise m-n miktarda kukla makine, n>m ise n-m miktarda kukla işçi modele katılarak eşitlik sağlanır. Kukla işçi veya makinanın maliyeti sıfırdır. İşlerin en kısa zamanda veya en düşük toplam maliyetle gerçekleşmesi istenir. Problemin doğrusal programlama olarak matematiksel modeli;

Amaç:
$$Min Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \ i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} = 1 \, j = 1, \dots, n$$

$$x_{ij} = 0 \ veya \ 1$$

 x_{ij} karar değişkeni olup,

 $x_{ij} = 0$ ise i işçisi j işine atanmaz, $x_{ij} = 1$ ise i işçisi j işine atanır.

Modelin kısıtları gereği en iyi çözümde n tane karar değişkeni 1 değerini, diğerleri 0 değerini alacaktır. Atama problemlerinin çözümü için geliştirilen algoritmalardan en yaygın kullanılanı Macar Algoritmasıdır.

Macar Algoritması:

Öncelikle amaç fonksiyonunun minimum değerini araştıran atama modelleri için aşağıdaki özellikler verilebilir.

- 1. Her işlem noktasına bir iş verileceğinden yapılan bir atama sonrasında modelin bazı satır ve sütunu işlem dışı kalacaktır. Toplam maliyet ayrı ayrı maliyetlerin toplamına eşit olacağından, bir hücreye atama yapıldıktan sonra dağıtım tablosunun tüm maliyetler toplamı ilgili satır ve sütun maliyetlerinden atama yapılan hücre maliyetinin farkları kadar azalır.
- 2. Atama modelinde amaç fonksiyonuna en iyi değeri veren birden çok en iyi çözüm olabilir.

Adım 1: Her satırdaki en küçük atama gideri C_{ij} seçilip satırdaki diğer atama giderlerinden çıkartılarak satıra göre indirgenmiş tablo elde edilir.

$$\begin{bmatrix} 3 & 2 & 1 & 5 \\ 5 & 2 & 4 & 7 \\ 9 & 5 & 1 & 3 \\ 4 & 3 & 5 & 8 \end{bmatrix} \stackrel{1}{3} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 0 & 2 & 5 \\ 8 & 4 & 0 & 2 \\ 1 & 0 & 2 & 5 \end{bmatrix}$$

Adım 2: Adım birin sonunda elde edilmiş indirgenmiş matrisin her sütununun en küçük öğesi seçilir ve diğer öğelerden çıkarılır. Tablo bir kez daha indirgenmiş olur. (Sütun indirgemesi)

$$\begin{bmatrix} 2 & 1 & 0 & 4 \\ 3 & 0 & 2 & 5 \\ 8 & 4 & 0 & 2 \\ 1 & 0 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 0 & 2 \\ 2 & 1 & 2 & 3 \\ 7 & 4 & 0 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$1 \quad 0 \quad 0 \quad 2$$

Adım 3: Adım iki sonunda elde edilmiş tabloda sıfır değerini alan tüm ögelerden geçen en az sayıda yatay ya da dikey doğrular çizilir.

$$\begin{bmatrix} 2 & 1 & 0 & 2 \\ 2 & 1 & 2 & 3 \\ 7 & 4 & 0 & 0 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

Eğer kullanılan çizgi sayısı işlem sayısına eşitse en iyi çözüme ulaşılmış olup Adım 5'e aksi halde Adım 4'e gidilir.

Adım 4: Üzerinden çizgi geçmeyen ögelerden en küçüğü seçilerek (kullandığımız örnek için bu değer 1 dir.) çizgilerin dışında kalan diğer öğelerden bu değer çıkartılır. Çizgilerin kesişim noktalarındaki öğelere eklenir.

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 3 \\ 6 & 3 & 0 & 0 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$

Adım 5: Sıfır değerli gözeler dikkate alınarak her işe bir işçi karşılık gelecek biçimde atama işlemi gerçekleştirilir.

ÖRNEK: Toplam giderlerin en küçüklenmesi istenen bir atama probleminde işlerin yapılacağı işlem noktalarına ilişkin maliyetler aşağıda verilmiştir. Maliyeti minimum yapacak atama biçimini belirleyiniz.

	İşlem Noktaları							
İşlemler	1	2	3	4				
1	5	6	3	2*				
2	4	3	2*	4				
3	5	4	3	2*				
4	6	5	4	3*				

Önce satırların minimum değerleri belirlenir ve satır indirgemesi yapılır.

	İşlem Noktaları			
İşlemler	1	2	3	4
1	3	4	1	0*
2	2*	1*	0*	2
3	3	2	1	0
4	3	2	1	0

Sonra sütunların minimum değerleri belirlenir ve sütun indirgemesi yapılır.

Sıfırlar kapanacak biçimde satır ve sütunlar kapatılır.

	İşlem Noktaları			
İşlemler	1	2	3	4
1	1	3	1	0
2	0	0	0	2
3	1	1	1	0
4	1	1	1	0

Kapatan çizgi sayısı işlem sayısından az olduğu için: Üzerinden çizgi geçmeyen ögelerden en küçüğü seçilerek (örnek için bu değer 2 dir.) çizgilerin dışında kalan diğer öğelerden bu değer çıkartılır. Çizgilerin kesişim noktalarındaki öğelere eklenir.

	İşlem Noktaları			
İşlemler	1	2	3	4
1	0	2	0	0
2	0	0	0	3
3	0	0	0	0
4	0	0	0	0

Oluşan yeni tabloda sıfırları örtmek için kullanılan çizgi sayısı dörtten az olamayacağından işlem durdurulur ve sıfır olan gözeler kullanılarak atama yapılır. Bu örnek için alternatif çözümler mevcuttur.

Bunlardan biri:

	İşlem Noktaları			
İşlemler	1	2	3	4
1	0	2	0	0
2	0	0	0	3
3	0	0	0	0
4	0	0	0	0

$$X_B^* = \begin{bmatrix} x_{11} \\ x_{22} \\ x_{33} \\ x_{44} \end{bmatrix}$$
 Min Z=5+3+3+3=14 biçimindedir.

Bir başka çözüm;

	İşlem Noktaları			
İşlemler	1	2	3	4
1	0	2	0	0
2	0	0	0	3
3	0	0	0	0
4	0	0	0	0

$$X_B^* = \begin{bmatrix} x_{11} \\ x_{23} \\ x_{32} \\ x_{44} \end{bmatrix}$$
 Min Z=5+2+4+3=14 biçimindedir.

Her iki çözümde de minimum maliyet 14 olarak elde edilmiştir.

Alternatif çözümlerde farklı işlemler farklı iş noktalarına atansa da maliyetleri eşit olmak durumundadır.