CONVERSE, CONTRA POSITIVE AND INVERSE OF AN IMPLICATION:

There are some related implication. They are as follows

- When $p \to q$ an implication, then converse of $p \to q$ is an implication $q \to p$.
- When $p \to q$ an implication, then contra positive of $p \to q$ is an implication $\sim q \to \sim p$.
- When $p \to q$ an implication, then inverse of $p \to q$ is an implication $\sim p \to \sim q$.

Remark: A conditional proposition and its converse or inverse are not logically equivalent. On other hand, a conditional proposition and its contra positive are logically equivalent (Can be check using the truth table).

•

The importance of the contra positive derives from the fact that mathematical theorems in the form $p \to q$ can sometimes be proved easily when restarted in the form $\sim q \to \sim p$.

Example

Prove that if x^2 is divisible by 4, then x is even.

Solution:

Let p: x^2 is divisible by 4 and q: x is even.

The implication is of the form $p \to q$. The contra positive is $\sim q \to \sim p$, which state in words: If x is odd, then x^2 is not divisible by 4.

The proof of contra positive is easy.

Since x is odd, x=2k+1, for some integer k.

Hence, $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k + 1/4)$.

Since $k^2 + k$ is an integer, $k^2 + k + 1/4$ is not integer therefore x^2 is not divisible by 4.

<u>Example:</u> State Converse, Contra positive and Inverse of the following statement:

1) If it rain then the crop will grow.

Solution: *p*: It rains and *q*: The crop will grow.

Converse ($q \rightarrow p$) If the crop grow, then there has been rain.

<u>Contra positive</u> ($\sim q \rightarrow \sim p$): If the crop do not grow, then there has been no rain.

Inverse ($\sim p \rightarrow \sim q$): If it does not rain, then crop will not grow.

2)If a triangle is not isosceles then it is not equilateral.

Solution:

p: A triangle is not isosceles

q: It is not equilateral.

Converse $(q \rightarrow p)$: If a triangle is not equilateral, then it is not isosceles.

Contra positive ($\sim q \rightarrow \sim p$): If the triangle is equilateral, then it is isosceles.

Inverse ($\sim p \rightarrow \sim q$): If a triangle is isosceles then it is equilateral.

PRATICE EXAMPLE

<u>Example</u>: State Converse, Contra positive and Inverse of the following statement:

- 1) If a triangle is isosceles, then two of its sides are equal.
- 2) If there is no unemployment in India, then the Indian's won't go to the USA for employment.

Example: If P represents "This book is good" and Q represent "This book is cheap", then write the following sentences in symbolic form.

Solution: Here

Sentences	Symbol
This book is good and cheap.	$P \wedge Q$
This book is not good and cheap.	$\sim P \wedge Q$
This book is costly but good.	~Q∧ P
This book is neither good nor cheap.	~ <i>P</i> ∧~Q
This book is either good or cheap.	$P \vee Q$

Example: If P: It is raining, Q: I have the time, R: I will go to a movie. Write the sentences in English corresponding to the following propositional form $(\sim P \land Q) \leftrightarrow R$, $(Q \to R) \land (R \to Q) \sim Q \lor R$ and $R \to (\sim P \land Q)$.

$(\sim P \land Q) \leftrightarrow R$	I will go to a movie if and only if it is not raining and I have the time
$(Q \to R) \land (R \to Q)$	I will go to movie if and only if I have the time.
$\sim Q \vee R$	It is not the case that I have the time or I will go to a movie
$R \to (\sim P \land Q)$	I will go to a movie only if it is not raining and I have the time

Example: Construct a truth table for each compound proposition.

1)
$$p \land (\sim q \lor q)$$

Solution:

p	\boldsymbol{q}	~ q	$(\sim q \lor q)$	$p \land (\sim q \lor q)$
T	T	F	T	T
T	F	T	T	T
F	T	F	T	F
F	F	T	T	F

$$\mathbf{2}\big)\big(P\vee Q\big)\wedge \big(P\to Q\big)\wedge \big(Q\to P\big)$$

Solution:

]	P	Q	$(P \vee Q)$	$P \rightarrow Q$	$(P \vee Q) \wedge (P \to Q)$	$Q \rightarrow P$	$(P \vee Q) \wedge (P \to Q) \wedge (Q \to P)$
•	Γ	T	T	T	Т	T	T
•	Γ	F	T	F	F	T	F
]	F	T	T	T	Т	F	F
]	F	F	F	T	F	T	F

PRATICE EXAMPLE

Obtain the truth table for the following:

$$1)(P \vee Q) \to (P \vee R) \to (Q \vee R)$$

$$2)(\sim P \leftrightarrow \sim Q) \leftrightarrow Q \leftrightarrow R$$

$$3)(P \wedge Q) \vee (\sim P \wedge Q) \vee (P \wedge \sim Q) \vee (\sim P \wedge \sim Q)$$

$$4) p \land (q \lor r)$$

$$5) \sim (p \vee q) \vee (\sim p \wedge \sim q)$$

ALGEBRA OF PROPOSITION

Idempotent law	$p \lor p \equiv p$
Ť	$p \wedge p \equiv p$
Associative Law	$p \lor (q \lor r) \equiv (p \lor q) \lor r$
	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
Commutative Law	$p \vee q \equiv q \vee p$
Commutative Law	$p \wedge q \equiv q \wedge p$
Distributive Law	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Do Mongon's Law	$\sim (p \lor q) \equiv \sim p \land \sim q$
De Morgan's Law	$\sim (p \land q) \equiv \sim p \lor \sim q$

ALGEBRA OF PROPOSITION (Continued)

Involution law	$\sim (\sim p) \equiv p$
	$\sim F \equiv T$
Complement Law	$\sim T \equiv F$
comprement zuw	$p \lor \sim p \equiv T$
	$p \nearrow \sim p \equiv F$
	$p \lor F \equiv p$
Identity Law	$p \lor T \equiv T$
racifelty Law	$p \wedge T \equiv p$
	$p \wedge F \equiv F$

SOME DERIVED CONNECTIVES

NAND: NAND is the negation of conjunction of two statements. Assume p and q are any two statement then NAND of p and q is a proposition which is false when both p and q are true otherwise true. It is denoted by $p \uparrow q$.

p	q	$p \uparrow q$
Т	Т	F
Т	F	T
F	T	T
F	F	T

SOME DERIVED CONNECTIVES (Continued)

NOR: NOR is negation of disjunction of two statements. Assume p and q be two proposition .NOR of p and q is a proposition which is true when both p and q are false, otherwise false. It is denoted by It is denoted by $p \downarrow q$.

p	$oldsymbol{q}$	p↓q
Т	T	F
Т	F	T
F	T	T
F	F	F

SOME DERIVED CONNECTIVES (Continued)

XOR (Exclusive or): It is a proposition that is true when exactly one of p and q is true but not both and is false otherwise. It is denoted by $p \oplus q$.

p	$oldsymbol{q}$	$p \oplus q$
T	T	F
Т	F	T
F	T	T
F	F	F

LOGICAL EQUIVALENCE

If two propositions P and Q have the same truth values in every possible case, the propositions are **logically** equivalent. It is denoted by $p \equiv q$.

To test whether two proposition P and Q are logically equivalent

Method 1: Using Truth Table.

Method 2: Using Algebra of proposition (Properties of Proposition).

Method 1: Using Truth Table

- **Step 1:** Construct the truth Table for compound statement *P* and *Q*.
- **Step 2:** Check each combination of truth values of the propositional variables to see whether the value of *P* is same as the truth value of *Q*. If in each row the truth value of *P* is the same as the truth value of *Q*, then *P* and *Q* are logically equivalent.

Example: Use truth tables to prove

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

1	2	3	4	5	6	7	8
p	\boldsymbol{q}	r	$q \wedge r$	$p \lor (q \land r)$	$(p \lor q)$	$(p \lor r)$	$(p \land q) \land (p \lor r)$
Т	T	T	Т	Т	T	T	Т
T	T	F	F	Т	T	T	T
Т	F	T	F	T	Т	T	T
F	T	T	Т	Т	T	T	Т
F	F	F	F	F	F	F	F
F	F	T	F	F	F	T	F
F	T	F	F	F	T	F	F
T	F	F	F	T	T	T	Т

Since the entries in 5 and 8 columns is same, therefore $p \lor (q \land r) \equiv (p \land q) \land (p \lor r)$

Example: Use truth tables to prove

$$\sim (p \land q) \equiv (\sim p \lor \sim q)$$

1	2	3	4	5	6	7
p	q	$(p \wedge q)$	$\sim (p \wedge q)$	~p	~p	$(\sim p \lor \sim q)$
T	T	Т	F	F	F	F
T	F	F	Т	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

Since the entries in 4 and 7 columns is same, therefore $\sim (p \land q) \equiv (\sim p \lor \sim q)$.

Method 2: Using Algebra of proposition.

Example: Show that
$$(P \land Q) \lor (P \land \sim Q) \equiv P$$
.

Solution:
$$(P \land Q) \lor (P \land \sim Q) \equiv P \land (Q \lor \sim Q)$$

(Using Distributive Law)

 $\equiv P \land T$

(By using Complement Law)

 $\equiv P$

(By using Identity Law)

 $= R.H.S$
 $\therefore (P \land Q) \lor (P \land \sim Q) \equiv P$

Example: Show that
$$(P \to Q) \land (R \to Q) \equiv (P \lor R) \to Q$$
.

Solution: $(P \to Q) \land (R \to Q) \equiv (\sim P \lor Q) \land (\sim R \lor Q)$

Equivalent form of $P \to Q \equiv \sim P \lor Q$)

$$\equiv (Q \lor \sim P) \land (Q \lor \sim R)$$
(Commutative Law)

$$\equiv Q \lor (\sim P \land \sim R)$$
(Distributive Law)

$$\equiv Q \lor (\sim (P \lor R))$$
(De Morgan's Law)

$$\equiv (\sim (P \lor R)) \lor Q$$
(Commutative Law)

$$\equiv (P \lor R) \to Q$$
(Equivalent form of $P \to Q \equiv \sim P \lor Q$)

Hence Proved.

Example: Show that
$$(\sim P \land (\sim Q \land R)) \lor (Q \land R) \lor (P \land R) \equiv R$$
.
Solution: L.H.S: $(\sim P \land (\sim Q \land R)) \lor (Q \land R) \lor (P \land R)$
 $\equiv (\sim P \land \sim Q) \land R) \lor (Q \land R) \lor (P \land R)$
 $\equiv (\sim P \lor Q) \land R) \lor (Q \land R) \lor (P \land R)$
(De Morgan Law)
 $\equiv (\sim P \lor Q) \land R) \lor (P \lor Q) \land R$
(Distributive Law)
 $\equiv (\sim P \lor Q) \land R) \lor (P \lor Q) \land R$
 $\equiv (\sim P \lor Q) \lor P \lor Q) \land R$
 $\equiv P \land R$
 $\equiv P \land R$
(Distributive Law)
 $\equiv R \land R$
(Distributive Law)
 $\equiv R \land R$
(Distributive Law)
 $\equiv R \land R$
(Distributive Law)
Hence Proved.

PRATICE EXAMPLE

Example: Show that the following statements are logically equivalent using truth table.

1.
$$p \leftrightarrow q \equiv ((p \rightarrow q) \land (q \rightarrow p))$$

2.
$$p \leftrightarrow q \equiv ((p \lor q) \rightarrow (p \land q))$$

$$3. (p \lor q) \to r \equiv ((p \to r) \land (q \to r))$$

Show that the following statements are logically equivalent without using truth table.

$$4. p \leftrightarrow q \equiv (p \lor q) \rightarrow (p \land q)$$