UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

EEL7045 - Circuitos Elétricos A - Laboratório

<u>AULA 01</u> ERROS EM MEDIDAS, PADRÕES E INSTRUMENTOS ELÉTRICOS DE MEDIÇÃO

1 INTRODUÇÃO

A tecnologia moderna exige que as avaliações das grandezas que tomam parte nos fenômenos físicos sejam feitas com precisão e exatidão cada vez maiores. Na engenharia elétrica, a medida de certas grandezas é de fundamental importância tanto na pesquisa, quanto na monitoração, funcionamento seguro, proteção e controle de equipamentos eletroeletrônicos e redes elétricas.

Um dos objetivos desta disciplina é dar base fundamental para as medições elétricas, estudando os instrumentos mais comumente empregados nestas medições.

A disciplina tem como finalidade capacitar o aluno para solucionar os problemas básicos das medições elétricas.

- O que medir;
- Com que medir;
- Como avaliar a medição.

Na medição elétrica as grandezas fundamentais são:

- Corrente;
- Tensão;
- Freqüência;
- Potência.

Além disso, existem outras grandezas que podem ser medidas, tais como:

- Resistência;
- Capacitância;
- Indutância;
- Fator de potência;
- Energia.

Os instrumentos normalmente utilizados na medição elétrica são do tipo:

- Bobina móvel (A, V, Ω) ;
- Ferro móvel (A, V);
- Eletrodinâmicos (W, A, V, cos φ);
- Lâminas vibratórias (Hz);
- Indução (KΩ);
- Eletrostáticos (V);

• Eletrônicos (A, V, Hz).

Avaliar a medição envolve o problema da análise dos dados fornecidos pelos instrumentos a fim de concluir sobre sua exatidão e os erros que possam ter ocorrido na medição.

As medidas estão todas baseadas no Sistema Internacional de Unidades. Foi o decreto nº 81.621 de 03 de maio de 1978 que ratificou no Brasil a adoção do Sistema Internacional de Unidades (SI) como o sistema de unidades de medidas no país.

2 ERROS EM MEDIDAS

2.1 Definições conforme a ABNT (NB-278/73)

Erro

É o desvio observado entre o valor medido e o valor verdadeiro (ou aceito como verdadeiro).

Valor verdadeiro

É o valor exato da medida de uma grandeza obtido quando nenhum tipo de erro incide na medição.

Na prática é impossível eliminar todos os erros e obter um valor aceito como verdadeiro. Utiliza-se uma medida de uma amostra de um determinado número de medidas técnicas, usando o mesmo material e mantendo-se as mesmas condições ambientais, usando então este valor como verdadeiro.

Assim, o erro em uma unidade é definido como:

$$\delta X = X_m - X_p = X_m - X_v$$

Onde:

 X_m = Valor da grandeza obtido através da medida;

 X_p = Valor padrão da grandeza, obtido através do método de referência construído na prática;

 X_{ν} = Valor verdadeiro da grandeza, que é um valor ideal, supondo a supressão total de todo o tipo de erro.

Na falta de X_{ν} se aceita X_{p} , que é denominado, então, de valor de referência tomado como verdadeiro.

Exatidão

É a característica de um instrumento de medida que exprime o afastamento entre a medida nele observada e o valor de referência aceito como verdadeiro.

Precisão

Refere-se a maior ou menor aproximação da medida em termos de casas decimais. A precisão, portanto, revela o rigor com que um instrumento de medida indica o valor de uma certa grandeza.

Classe de exatidão

É o limite de erro, garantido pelo fabricante de um instrumento, que se pode cometer em qualquer medida efetuada pelo mesmo, ou seja, é uma classificação do instrumento de medida para designar a sua exatidão. O número que a designa chama-se índice de classe.

Índice de classe (IC)

Número que designa a classe de exatidão, o qual deve ser tomado como uma porcentagem do valor de plena escala de um instrumento.

Escala de um instrumento

É o intervalo de valores que um instrumento pode medir. Normalmente vai de zero a um valor máximo que se denomina calibre ou valor de plena escala.

Valor de plena escala

É o máximo valor da grandeza que um instrumento pode medir.

Erro absoluto (δX)

É a diferença algébrica entre o valor medido (X_m) e o valor aceito como verdadeiro (X_v) . Assim, pode-se dizer que o valor verdadeiro situa-se entre:

$$X_m - \delta X < X_v < X_m + \delta X$$

Neste caso, δX é o limite máximo do erro absoluto ou simplesmente erro absoluto. Assim, diz-se que:

- Se X>Xv, o erro é por excesso;
- Se X<Xv, o erro é por falta.

Erro relativo (ε)

É definido como a relação entre o erro absoluto (δX) e valor aceito como verdadeiro (X_{ν}) de uma grandeza, podendo ou não ser expresso em percentual.

$$\varepsilon = \frac{\delta X}{X_{y}}$$
 ou $\varepsilon\% = \frac{\delta X}{X_{y}} \cdot 100$

Para efeito de cálculo do erro relativo, pode-se considerar $X_v = Xm$, logo:

$$\varepsilon = \frac{\delta X}{X_m}$$

Classificação dos erros

Os erros podem ser classificados como:

- Grosseiros;
- Sistemáticos;
- Acidentais, aleatórios ou residuais.

Erros grosseiros

São devidos à falta de atenção, são resultados de enganos nas leituras e anotações de resultados. São de inteira responsabilidade do operador e não podem ser tratados matematicamente. Para evitá-los é necessário proceder a repetição dos trabalhos, mas é necessário sobretudo, que se trabalhe com muita atenção.

Erros sistemáticos

São ligados às deficiências do método, do material empregado ou da avaliação da medida do operador. Estes erros podem ser classificados como:

- De construção e ajuste;
- De leitura:
- Inerente ao método;
- Devido a condições externas.

a – Erros de construção e ajuste

São erros de graduação da escala na indústria e erros de ajuste entre pinos e eixos, assim como de componentes elétricos.

Estes erros tendem a crescer com a idade do instrumento devido a:

- Oxidação;
- Desgaste dos contatos entre peças móveis e fixas;
- Variação dos coeficientes de elasticidade de molas.

Estes erros são diferentes em diferentes pontos da escala. Eles podem ser contornados através da construção de uma tabela de correção de erros.

b – Erros de leitura

São devidos a influência do operador e dependem das características do sistema de leitura. São resultados do ângulo de observação (paralaxe) do operador.

Estes erros podem ser limitados usando-se dois ou mais operadores e/ou equipando o instrumento com um espelho junto à escala.

c – Erros inerentes ao método

Ocorrem quando a medida é obtida por métodos que necessitem de processamento indireto de grandezas auxiliares.

<u>d</u> – Erros devido às condições externas

São aqueles inerentes a condições à medida de uma grandeza. Podem resultar de: variações de temperatura, pressão, umidade, presença de campos elétricos, etc.

Erros aleatórios

São erros devido ao imponderável e são essencialmente variáveis e não suscetíveis de limitações.

Propagação de erros

Pode-se calcular o máximo erro sistemático de uma grandeza X que depende de várias grandezas a,b,c,...q. Seja X o valor obtido para esta grandeza que é função de outras grandezas: a,b,c,...q. X = f(a,b,c,...q)

Torna-se necessário relacionar o erro δx em relação a cada um dos erros das grandezas associadas, assim:

$$\delta x = \left| \frac{\partial x}{\partial a} \right| \Delta a + \left| \frac{\partial x}{\partial b} \right| \Delta b + \left| \frac{\partial x}{\partial c} \right| \Delta c + \dots + \left| \frac{\partial x}{\partial q} \right| \Delta q$$

Onde as derivadas parciais podem ser positivas ou negativas. Os erros parciais Δa , Δb , Δc , ... Δq são relacionados com cada uma das grandezas medidas.

O fato de se tomar o módulo de cada uma das derivadas parciais garante o deslocamento de cada um dos erros parciais na mesma direção.

Erros de inserção

Suponhamos que o valor teórico de uma grandeza seja X_S . O valor teórico dessa grandeza, com a presença do instrumento, que apresenta uma resistência interna R_i (na freqüência considerada), é denominado X_C . O erro de inserção do instrumento é:

$$\delta_{ins} = \left| \frac{X_s - X_c}{X_s} \right|.100$$

3 PADRÕES

Todas as medições realizadas na prática são feitas através de instrumentos de medição que foram previamente calibrados por comparação com outros instrumentos de medidas, denominados padrões de medidas.

3.1 Padrão

É um instrumento de medida destinado a definir, conservar ou reproduzir a unidade base de medida de uma grandeza.

Os padrões podem reproduzir a unidade base de medida, bem como seus múltiplos e submúltiplos.

Padrão primário

É como se denomina o padrão que possui as mais elevadas qualidades de reprodução de uma unidade de medida de uma grandeza. Os padrões primários nunca são utilizados diretamente para medições, a não ser na geração de padrões secundários. São conservados em condições especiais de ambiente nos laboratórios nacionais.

Padrão secundário ou padrão de trabalho

É um intermediário entre os padrões primários que viabiliza a distribuição das referências de medidas para os laboratórios secundários, onde são utilizados para aferição dos instrumentos de medidas.

A principal característica deste padrão é a permanência, que é a capacidade do mesmo em conservar a classe de exatidão por maior espaço de tempo, dentro de condições especificadas de utilização.

Qualidades exigidas de um padrão

- Ser constante;
- Ser de alta precisão;
- Ser consistente com a definição da unidade correspondente.

Não existe padrão permanente. O que existe são padrões com elevado grau de permanência.

Calibração e manutenção de padrões

A calibração de padrões é feita regularmente através de laboratórios nacionais, comparando-os com os padrões definidos como primários para uma grandeza especificada.

Esta comparação também é chamada aferição. O processo de aferição permite a criação de padrões secundários, que poderão servir de padrões intermediários ou de transferência.

4 ALGUMAS NOÇÕES IMPORTANTES SOBRE MEDIDAS

4.1 Notação

O resultado de uma medida (X) é constituído por três itens, a saber:

- Um número representado por *x*;
- Uma unidade representada por *u*;
- Uma indicação da confiabilidade, indicada pelo erro provável (Δx).

Desta forma tem-se:

$$X = (x \pm \Delta x)u$$

Após o erro, quando representado, e a unidade deve haver um caractere de espaço. Maiores informações podem ser obtidas no documento "*Unidades Legais de Medidas*" do Inmetro (http://www.inmetro.gov.br).

4.2 Algarismos significativos

Os resultados de uma medida devem ser representados com apenas os algarismos de que se tem certeza mais um único algarismo duvidoso.

4.3 Critérios de arredondamento

Ao realizar operações com medidas realizadas em diferentes instrumentos, que possuem diferentes números de algarismos significativos, exprime-se o resultado final com apenas um algarismo duvidoso, isto é, mantém-se o menor número de algarismos significativos.

Durante as operações, podem-se expressar os resultados intermediários com todos os algarismos possíveis, a fim de diminuir o erro devido aos arredondamentos. Apenas no final é que se arredonda o resultado para preservar um algarismo duvidoso. A regra a ser seguida é:

- Quantidade após o algarismo duvidoso <u>maior</u> que 5, 500, etc. → arredondase o algarismo duvidoso para mais;
- Quantidade após o algarismo duvidoso menor que 5, 500, etc. → arredondase o algarismo duvidoso para menos;
- Quantidade após o algarismo duvidoso <u>igual</u> a 5, 500, etc. → torna-se o algarismo duvidoso par.

O erro, com exceção do percentual, sempre deve ser representado com apenas um algarismo significativo.

Maiores informações sobre os itens vistos neste tópico podem ser esclarecidos consultando o livro "Introdução ao Laboratório de Física", da Editora da UFSC.

5 INSTRUMENTOS ELÉTRICOS DE MEDIÇÃO

5.1 Instrumentos elétricos de medição analógicos

Os instrumentos elétricos empregados na medição das grandezas elétricas apresentam um conjunto móvel que é deslocado aproveitando um dos efeitos da corrente elétrica: efeito térmico, efeito magnético, efeito dinâmico, etc.

Preso a um conjunto móvel, está um ponteiro que se desloca na frente de uma escala graduada de valores da grandeza que o instrumento é destinado a medir.

Os instrumentos mais utilizados são os instrumentos de bobina móvel e imã permanente (BMIP), os de ferro móvel (FM), e os eletrodinâmicos, descritos a seguir.

Instrumento de bobina móvel e imã permanente

São também denominados de instrumentos magnetoelétricos. Uma representação simplificada deste instrumento é apresentada na figura 1.

Figura 1 – Instrumento de bobina móvel e imã permanente.

As principais partes deste instrumento estão descritas a seguir:

- Imã permanente de peças polares cilíndricas, fornecendo no entreferro uma indução magnética de cerca de 0,125 Wb/m²;
- Núcleo cilíndrico de ferro doce, com a finalidade de tornar radiais as linhas de fluxo magnético;
- Quadro retangular de metal condutor, em geral feito de alumínio, com a finalidade de servir de suporte à bobina e produzir amortecimento por corrente de Foucault (corrente parasita);
- Bobina de fio de cobre, enrolada sobre o quadro de alumínio, por onde circulará a corrente a medir.

Princípio de funcionamento dos instrumentos de bobina móvel e imã permanente

Quando um condutor é percorrido por uma corrente I, na presença de um campo magnético (B), fica submetido a uma força F cujo sentido é dado pela regra da mão direita, e cujo módulo é dado por: $F = B \cdot I \cdot L \cdot \sin(\alpha)$, onde L é o comprimento do condutor sob a ação do campo magnético B, e α é o angulo entre \vec{B} e a direção de $i\vec{L}$ no espaço.

Assim a corrente *I* a medir, ao percorrer a bobina "b" vai dar origem às forças *F*. Assim, percebe-se que se a corrente *I* mudar de sentido, *F* também mudará de sentido, fazendo com que o ponteiro se desloque no sentido de 0 para 1 ou no sentido de 0 para 2. Se *I* mudar de sentido muito rapidamente, as forças *F* mudarão também de sentido, mas o conjunto mecânico não acompanhará essa mudança, devido à sua inércia. Logo, este tipo de instrumento não irá deslocar o ponteiro da sua posição de repouso quando a corrente *I* é alternada, na freqüência industrial (50-60 Hz). Se a freqüência da corrente alternada for baixa e da mesma ordem da freqüência do conjunto móvel, o ponteiro ficará oscilando, de um lado para o outro, em torno do seu ponto de equilíbrio.

Figura 2 - Princípio de funcionamento do instrumento de bobina móvel e imã permanente.

Instrumentos de ferro móvel (FM)

Os instrumentos de ferro móvel são também conhecidos como instrumentos ferromagnéticos ou eletromagnéticos.

O seu princípio de funcionamento é baseado na ação do campo magnético, criado pela corrente a medir percorrendo uma bobina fixa, sobre uma peça de ferro doce móvel. Existem dois tipos de instrumentos básicos de ferro móvel:

- Instrumento de "atração" ou de "núcleo mergulhador";
- Instrumento de "repulsão" ou de "palheta móvel".

a) Instrumento de núcleo mergulhador

A figura 3 a seguir mostra as partes essenciais do instrumento.

A corrente *I* circulando pela bobina fixa, faz surgir um campo magnético que atrai o núcleo de ferro doce, dando uma leitura proporcional a corrente circulante.

Figura 3 – Instrumento de ferro móvel com núcleo mergulhador.

Instrumentos de repulsão

A corrente i, ao percorrer a bobina fixa, imanta as duas lâminas de ferro doce A_1 e A_2 no mesmo sentido, criando assim uma força de repulsão entre elas. A_1 é fixa à bobina e A_2 é móvel e solidária ao eixo, ao qual está também solidário o ponteiro. A figura 4 a seguir ilustra o esquema citado.

Figura 4 – Instrumento de ferro móvel de repulsão.

Instrumentos eletrodinâmicos

Os instrumentos eletrodinâmicos estão baseados na ação múltipla de dois condutores através dos quais circulam correntes. Sabe-se que dois condutores com correntes de diferentes sentidos repelem-se, atraindo-se com correntes de igual sentido. De acordo com o exposto, os instrumentos eletrodinâmicos compõem-se das bobinas fixa 1 e móvel 2, como ilustrado na figura 5.

A bobina móvel possui elevado número de espiras de fio fino, estando disposta ao redor ou no interior da bobina fixa. Sobre o eixo da bobina móvel encontra-se o ponteiro indicador.

Ao circular corrente pelas bobinas fixa e móvel, esta última deslocar-se-á, girando, com relação a fixa, tendendo a que o sentido do seu campo magnético coincida com o da bobina fixa. O par motor que atua sobre a bobina móvel pode ser determinado por:

$$M_m = C \cdot I_f \cdot I_m$$

Onde:

- *C* é um coeficiente que depende do número de espiras das bobinas, das dimensões, formas e da posição mútua das mesmas;
- I_f é corrente que circula pela bobina fixa;
- I_m é a corrente que circula pela bobina móvel.

O par antagônico criado pelas molas em espiral, através das quais chega a corrente até a bobina móvel, pode ser determinado por:

$$M_{ant} = \alpha \cdot W$$

A bobina móvel girará até que os pares motor e antagônico se tornem iguais.

$$C \cdot I_f \cdot I_m = \alpha \cdot W$$

De onde se pode obter o valor do ângulo de rotação da bobina móvel:

$$\alpha = \frac{C}{W} I_f . I_m$$

Como pode ser demonstrado através do estudo da expressão acima, o ângulo de deflexão da bobina móvel depende do produto das correntes que circulam pelas bobinas fixa e móvel.

Os instrumentos eletrodinâmicos podem ser utilizados como amperímetros, voltímetros ou wattímetros.

Figura 5 – Instrumento eletrodinâmico.

Dados do multímetro INSTRUTHERM ma 100

			S		Resist.	Int. (Ω)	Er	ros
Instr.	ESCALA	IC (%)	$(k\Omega/V)$ n° div	Volt. Rv	Amp Ra	$\epsilon_{ m L}$	ε _{IC}	
	0,1 V	3	20	50	2 kΩ		1,0 mV	3,0 mV
VOLT. CC	0,5 V	3	20	50	10 kΩ		5,0 mV	15 mV
	2,5 V	3	20	50	50 kΩ		25 mV	75 mV
	10 V	3	20	50	200 kΩ		0,1 V	0,3 V
	50 V	3	20	50	1,0 ΜΩ		0,5 V	1,5 V
	250 V	3	20	50	5 ΜΩ		2,5 V	7,5 V
	1000 V	3	20	50	20 MΩ		10 V	30 V
	10 V	4	9	50	90 kΩ		0,1 V	0,4 V
VOLT.	50 V	4	9	50	450 kΩ		0,5 V	2 V
CA	250 V	4	9	50	$2,25~\mathrm{M}\Omega$		2,5 V	10 V
	1000 V	4	9	50	9,0 ΜΩ		10 V	40 V
	50 μΑ	3		50		5 kΩ	0,5 μΑ	1,5 μΑ
AMD	2,5 mA	3		50		100 Ω	2,5 μΑ	75 μΑ
AMP. CC	25 mA	3		50		10 Ω	0,25 mA	0,75 mA
	250 mA	3		50		1 Ω	2,5 mA	7,5 mA
	10 A	3		50		$0,025~\Omega$	0,1 A	0,3 A

 $[\]mathcal{E}L=$ Erro de Leitura: O erro de leitura é igual a metade da menor divisão estimada na escala contínua do aparelho.

EIC = Erro devido à classe: Limite do erro definido pelo índice de classe e expresso sempre em relação ao valor final da escala.

 $[\]Delta = \mathcal{E}_L + \mathcal{E}_{IC} =$ Soma do erro de leitura e erro devido à classe.

5.2 Instrumentos elétricos de medição digitais

Multímetro digital

Até a última década ou década e meia, as medidas de tensão eram realizadas com aparelhos de medida com agulha, bobina e ferro móvel, como visto anteriormente. Hoje, em todas as aplicações foram ou estão sendo substituídas por voltímetros ou multímetros digitais.

Uma das vantagens dos multímetros digitais sobre os analógicos é a sua facilidade de utilização, de fato, o valor medido é diretamente apresentado como uma série de dígitos facilmente legíveis, o que permite sempre a mesma interpretação, independente do observador (não há paralaxe!). Além disso, estes multímetros possuem posicionamento automático da vírgula, detecção automática da polaridade e, freqüentemente, busca e mudança automática da escala de medida.

A mudança automática de escala é importante na medida em que permite ao multímetro realizar medições sempre com a resolução otimizada, sem a intervenção do operador, quaisquer que forem as circunstâncias.

Devido à própria natureza do processo utilizado na conversão do sinal para leitura, a precisão dos multímetros digitais pode ser muito superior à dos analógicos, e também têm uma grande vantagem sobre os analógicos: apresentarem uma grande resistência de entrada $(10^8 \, a \, 10^{12} \, \Omega)$. Este fato permite praticamente eliminar a influência do aparelho de medida no valor obtido na medição.

Descrição

Uma propriedade dos multímetros digitais é o fato de só medirem, de forma direta, tensões (recordamos que os analógicos medem correntes, de forma direta).

Um voltímetro digital, na sua forma mais simples, reduz-se a um circuito integrado que inclui um conversor do tipo AD (Analógico Digital), uma alimentação externa de baixa tensão ou bateria e um visor de cristais líquidos ou LED's. O elemento principal do multímetro é o conversor AD, que converte a tensão do sinal analógico de entrada em pulsos regulares de amplitude fixa que podem ser contados e cujo número é proporcional ao valor da tensão. É esta contagem que será convertida em caracteres alfanuméricos e apresentada no visor.

Um multímetro, como o nome indica, também mede outros sinais correspondentes a tensões alternadas, correntes contínuas ou alternadas e resistências. No entanto, como o conversor AD só pode converter sinais de tensão contínua, o valor destas grandezas terá que ser transformado em tensões contínuas, através de conversores adequados. Os conversores básicos integrados na maioria dos multímetros são: atenuador CC, conversor corrente-tensão, conversor AC-CC e conversor resistência tensão.

Atenuador CC

Os sinais que podem ser recebidos na entrada do conversor AD estão geralmente limitados a um máximo de 10 V. Isso significa que tensões contínuas superiores a este limite tem de ser atenuadas antes de analisadas pelo AD. Eletronicamente esta operação é realizada com divisores de tensão com resistências calibradas, como mostrado na figura 6 a seguir.

Conversor corrente-tensão

Na medição de correntes contínuas estas terão de ser primeiro convertidas em tensões. Eletronicamente esta operação pode ser realizada com "shunts" (resistências calibradas em paralelo) de modo que a tensão nos terminais do shunt para o máximo da escala fixa a mesma para todas as escalas e o mais baixo possível (figura 6b).

Figura 6 – Atenuador CC (a) e conversor corrente-tensão (b).

Conversor AC - CC

Como a eletrônica do AD só trabalha com níveis de tensão contínua, no caso da medição de sinais de corrente e/ou tensão alternadas, tem-se que primeiro modificar o sinal num processo de conversão AC – CC. Esta conversão pode ser feita através de um circuito detector de média simples ou com conversores RMS (média quadrática do sinal), eletrônica mais complexa baseada em amplificadores operacionais.

Conversor resistência-tensão

O valor da resistência é medido fazendo passar uma corrente constante, conhecida, através da resistência desconhecida, e medindo a tensão resultante. Eletronicamente é realizado por meio de circuitos relativamente complexos, incluindo fontes de corrente contínua estabilizada e amplificadores operacionais.

Dados do multímetro digital MINIPA (ET 2082C)

Escalas DC_V

Escala	Resolução	Precisão	Impedância de Entrada	Proteção contra sobrecarga
200 mV	0,1 mV			250 V DC/ Pico AC
2 V	1 mV	$\pm 0.5\% + 3$ dígito	10.00	
20 V	10 mV		$10 \mathrm{M}\Omega$	DC 1000 V, AC
200 V	100 mV			$750 \mathrm{V}_{\mathrm{RMS}}$
1000 V	1 V	±01% + 10 dígito		

Escalas AC_V

Escala	Resolução	Precisão	Impedância de Entrada	Proteção contra sobrecarga	Resposta em Freqüência
200 mV	0,1 mV			250 V DC/ Pico AC	
2 V	1 mV	$\pm 0.8\% + 5$ dígito	10 MO		40 a 400 Hz
20 V	10 mV		$10 \mathrm{M}\Omega$	DC 1000 V, AC	40 a 400 nz
200 V	100 mV			$750 \mathrm{V}_{\mathrm{RMS}}$	
750 V	1 V	$\pm 1,2\% + 10$ dígito			

Escalas DC_A

Escala	Resolução	Precisão	Queda de Tensão	Proteção contra sobrecarga
2 mA	1 μΑ	10.00/ + 10.4/		
20 mA	10 μΑ	±0,8% + 10dígito	0.2 V	0,2 A/250 V
200 mA	100 μΑ	±1,2% + 10dígito	0,2 V	
20 A	10 mA	±2,0% + 10 dígito		15 A/250V

Escalas AC_A

Escala	Resolução	Precisão	Queda de Tensão	Proteção contra sobrecarga
2 mA	1 μΑ	11.00/ + 15.4/		
20 mA	10 μΑ	±1,0% + 15 dígito	0.2 M	0.2 A/250 V
200 mA	100 μΑ	±2,0% + 15 dígito	0,2 V	0,2 A/250 V
20 A	10 mA	$\pm 3.0\% + 20 \text{ dígito}$		15 A/250V

Escala Resistência

Escala	Resolução	Precisão	Tensão em aberto	Proteção contra sobrecarga
200 Ω	0,1 Ω	±0,8% + 5 dígito		
2 kΩ	1 Ω			
20 kΩ	10 Ω	10.80/ + 2.45-4-		
200 kΩ	100 Ω	$\pm 0.8\% + 3$ dígito	3 V	250 V DC / Pico AC
$2 \mathrm{M}\Omega$	1 kΩ			
$20~\mathrm{M}\Omega$	10 kΩ	$\pm 1,0\% + 25$ dígito		
$2000~\mathrm{M}\Omega$	1 MΩ	±[5%(Leit-10dig)+20dig]		

Escala Capacitância

Escala	Resolução	Precisão	Freqüência de Teste	Proteção contra sobrecarga
20 nF	10 pF			
200 nF	100 pF	12.50/ . 20.1/ ./		
2 μF	1 nF	$\pm 2,5\% + 20 \text{ dígito}$	100 Hz	36 V DC / Pico AC
20 μF	10 nF			
200 μF	100 nF	±5% + 20 dígito		

Escala Indutância

Escala	Resolução	Precisão	Freqüência de Teste	Proteção contra sobrecarga
2 mH	1 μΗ			
20 mH	10 μΗ			
200 mH	100 μΗ	$\pm 2,5\% + 30$ dígito	100 Hz	36 V DC / Pico AC
2 H	1 mH			
20 H	10 mH			

 $\mathcal{E}L$ = Erro de Leitura: É dado em dígitos e indica em quantas unidades o dígito da extremidade direita pode variar.

 $\mathcal{E}IC$ = Erro devido à classe: Dado em porcentagem da leitura (não da escala) utilizada.

 $\Delta = \mathcal{E}_L + \mathcal{E}_{IC} =$ Soma do erro de leitura e erro devido à classe.

6 PARTE PRÁTICA

- a. Monte o circuito elétrico mostrado na figura 7;
- b. Determine analiticamente os valores esperados para V_1 e V_2 .
- c. Meça a tensão nos dois resistores com os voltímetros analógico e digital, registrando também os erros associados às medidas;
- d. Comente de forma crítica sobre diferenças nas medidas obtidas, observando que instrumento proporcionou melhores resultados.

Figura 7 – Circuito para medições.

7 FOLHA DE DADOS

Equipe	Aula:	Data:	/	/
Nome:		Assinatura:		
Nome:		Assinatura:		
Instrumentos utilizados				
Medidas				
			(corte aqui)
Equipe	Aula:	Data:	/	/
Nome:		Assinatura:		
Nome:		Assinatura:		
Instrumentos utilizados				
Medidas				