somewhere a person is authentication	SSD (static separation of duty) relations
factor, 718	in RBAC, 773
SONETs (Synchronous Optical Networks),	SSH (Secure Shell)
538–539	code repositories, 1144
source code analysis attacks	communications channels, 701-702
in cryptography, 370	SSIDs (Service Set IDs), 565
source code vulnerabilities, 1133–1134	SSO (single sign-on)
source files, protecting, 896	identity management, 750-752
source routing in firewalls, 966	replay attacks, 372–373
Soviet Union collapse, increase	SSPs (signal switching points), 682
of attacks from, 134	staff, awareness programs for, 42
SOW (statements of work) in project	stakeholders
management, 1081	enterprise architecture frameworks, 190
SOX (Sarbanes-Oxley Act), 20	incident notifications, 1004
Spafford, Eugene H., 3	standalone mode in WLANs, 565
spaghetti code, 1126	standard changes, 892
Spanning Tree Protocol (STP), 657	Standard Generalized Markup
SPB (Shortest Path Bridging) protocol, 657	Language (SGML), 776
spearphishing, 865	standard windows, 441
Specht, Paul, 150	standards
special characters in passwords, 720	business continuity, 104–106
Spectre attacks, 257, 372	coding, 1135–1136
speed	controls, 258
biometric authentication, 726	industry, 156–158
TCP vs. UDP, 506	logs, 979
SPF (Sender Policy Framework), 624	organizational, 29–31
spikes in electric power, 451	WLANs, 565–574
Spiral methodology for software development,	standby lighting, 912
1098–1099	standby UPS systems, 453
split knowledge, 34	star integrity axiom in Biba model, 399
split tunnels in VPNs, 697	star property rule in Bell-LaPadula, 398
splitting DNS, 530	star topology, 488
Splunk product, 979	start bits, 646
SPML (Service Provisioning Markup Language),	state actors, 60–61
777–779	state tables
spoofing	stateful firewalls, 949, 952
e-mail, 623	three-way-handshake process, 951
firewalls, 965	stateful firewalls, 949–952
STRIDE model, 388	stateful NAT, 533
spread spectrum wireless communications,	stateless inspection in packet-filtering
561–563	firewalls, 948
sprinklers, 459–460	statements of work (SOW) in project
sprints in Scrum methodology, 1102	management, 1081
SRKs (storage root keys) in Trusted Platform	states
Modules, 405	controls, 254–258
SRS (Software Requirements	TCP connections, 951
Specification), 1083	static analysis
SS7 (Signaling System 7) protocol, 682	antimalware software, 970
	application security, 1139

static application security	supervisor role, 24
testing (SAST), 1139	supervisory control and data acquisition
static electricity, 454	(SCADÁ) systems, 290, 294
static mapping in NAT, 532	supply chain risk management
static routing protocols, 534–535	attacks, 133
static separation of duty (SSD) relations	hardware, 98
in RBAC, 773	minimum security requirements, 100
statistical attacks in cryptography, 370	overview, 96–98
statistical time-division multiplexing	risk sources, 99–100
(STDM), 544	service level agreements, 101
steganography, 264–265	services, 99
stegomedium, 265	software, 99
Stevens, Ted, 469	upstream and downstream, 98
sticky notes in Kanban methodology,	supply system threats in site planning, 423
1102–1103	support agreements, 672
Stoll, Clifford, 643	support staff, tasks and responsibilities, 886
stop bits, 646	surges in electric power, 451
storage, data, 232–233, 259–260	surveillance
storage facilities, 447–448	CPTED, 431–432
storage keys in Trusted Platform Modules, 406	description, 913
storage root keys (SRKs) in Trusted Platform	digital forensics, 1019–1020
Modules, 405	suspending accounts, 860
STP (shielded twisted pair) cable, 649	sustain stage in change management, 892
STP (Spanning Tree Protocol), 657	Sutter Health of California breach, 255
STPs (signal transfer points), 683	SVCs (switched virtual circuits), 549
strata in NTP, 831	SWGDE (Scientific Working Group on
strategic alignment, 15–16	Digital Evidence), 1009
stream ciphers in symmetric key cryptography,	swipe cards for ownership-based
333–334	authentication, 732–733
stream-symmetric ciphers, 575	switch controls in device locks, 921
streaming protocols, 691	switch spoofing attacks, 632
strict liability category in civil law, 128	switched virtual circuits (SVCs), 549
STRIDE model, 387–388	switches
strong authentication, 718–719	characteristics, 665
strong star property rule in Bell-LaPadula, 398	layer 3 and 4, 659
structured walkthrough tests in disaster	overview, 657–658
recovery plans, 1063	VLANs, 630
subjects	switching WANs, 545–547
ABAC, 774	symbolic AI approach, 976–978
data, 245	symbolic links, 819, 821
subnet masks in IP addresses, 511–512	symmetric key cryptography
subnets in IP addresses, 510-512	with asymmetric, 346–349
substitution ciphers, 318	block ciphers, 330–333
sub-techniques in MITRE ATT&CK	description, 328
framework, 389	initialization vectors, 334–335
succession planning, 1043	overview, 329-330
Sullivan, Joseph, 20	stream ciphers, 333-334
supernetting IP addresses, 512	summary, 330

symmetric services in DSL, 684	stateful firewalls, 949, 952
SYN/ACK packets, 508	three-way-handshake process, 951
SYN floods, 508	tabletop exercises (TTXs) in disaster recovery
SYN packets, 508, 949-951	plans, 1063-1064
SYN-RECEIVED state in TCP connections, 951	TACACS (Terminal Access Controller Access
SYN-SENT state in TCP connections, 951	Control System), 790–793
synchronization	TACS (Total Access Communication
NTP, 830	System), 584
passwords, 737	tactics in MITRE ATT&CK framework, 389
Synchronous Optical Networks (SONETs),	tailoring controls, 258
538–539	tamper-resistant property in reference
synchronous replication, 1039	monitors, 766
synchronous token devices for one-time	tampering category in STRIDE model, 388
passwords, 730–731	tape vaulting for backups, 1039
synchronous transmission, 645–647	tapes for backups, 860
synthetic transactions, 832	Target company breach, 96–97
system access control, 802	target hardening vs. CPTED, 428
system account access review, 798	targeted penetration tests, 826–827
system administrators, tasks and	targets of attacks, 474
responsibilities, 886	tarpits, 976
system architectures	taxonomies in data retention, 236
chapter questions, 311–315	TCG (Trusted Computing Group), 404
chapter review, 310–311	TCP. See Transmission Control
client-based, 284	Protocol (TCP)
cloud-based, 301–305	TCP/IP (Transmission Control Protocol/
database, 285–286	Internet Protocol) suite, 471, 502-503
distributed, 307–309	TDF (transborder data flow), 146-147
high-performance computing, 288–289	TDM (time-division multiplexing), 541-542
industrial control systems, 289–296	TDMA (time division multiple access)
overview, 283	GTS, 570
pervasive, 305–307	mobile communications, 584
server-based, 284–285	teams
virtualized systems, 296–301	backup administrators, 1035
system authentication, 579	business continuity planning, 1030
system images, 896	disaster recovery plans, 1056
system-level event audits, 742	incident response, 991, 1000–1001
system owners, 23–24	risk analysis, 76, 78
system resilience in availability, 1051	risk assessment, 66–67
system sensing access control readers, 925	risk management, 56–57
system-specific controls in Risk Management	software development, 1080
Framework, 175	technical controls
system-specific policies, 29	assessments. See testing
system testing, 818	risk responses, 83, 86–87
T	technical reports, 872–873
T	technical sensors in incident detection, 995
T-carriers for WANs, 541–542	technological communication protocols, 646
tables	TEEs (trusted execution environments),
forwarding, 656–657	408–411
rainbow 721–722	telephone calls in PBXs, 665–667

Telephone Records and Privacy Protection	TGSs (ticket granting services) in KDC,
Act, 865	785–786
telephones in disaster recovery plans, 1062	Thailand, Personal Data Protection Act in, 144
telepresence in meeting applications, 695	The Onion Router (TOR), 307
temperature	The Open Group Architecture Framework
data processing facilities, 446	(TOGAF), 172, 194–195
HVAC systems, 453–454	The Silk Road, 665
tempered windows, 441	thermal relocking function in safes, 222
templates for disaster recovery plans, 1059	third-generation (3G) mobile wireless,
Temporal Key Integrity Protocol (TKIP),	585–586
577–578	Third Generation Partnership
Teredo tunneling, 514	Project (3GPP), 586
Terminal Access Controller Access Control	third-generation programming languages,
System (TACACS), 790–793	1118–1119
terminals in H.323, 689	third parties
termination processes in personnel security,	audits, 843–844
37–38	business continuity planning, 1068
territorial reinforcement in CPTED,	connectivity, 705–706
431–432	dealing with, 39
tertiary sites in disaster recovery, 1046	security provided by, 973–974
Tesla, Nikola, 559	software escrow, 1143
test coverage, 837	software security, 1147
test-driven development	third-party sensors in incident detection, 995
Extreme Programming, 1102	third-party services, federated identity with,
software development, 1089	754–756
testing	threat data sources for security operations
application security, 1139–1140	centers, 942–943
backups, 863	Threat Dragon, 1087
code reviews, 833–834	threat hunters, tasks and responsibilities, 886
code testing, 834–835	threat hunting in security operations
compliance checks, 838	centers, 943
data loss prevention, 270–271	threat intelligence analysts on incident
disaster recovery goals, 1054	response teams, 1001
disaster recovery plans, 1061–1065	threat intelligence in security operations
federated identity, 755	centers, 941–942
interface, 837	threat modeling
log reviews, 828–831	attack trees, 386–387
misuse cases, 835–836	Cyber Kill Chain, 387–389
overview, 817	importance, 389–390
penetration, 822–827	MITRE ATT&CK framework, 389
red teaming, 827–828	network security, 598
SDLC, 1080, 1089–1091	overview, 385
Spiral methodology, 1098	site and facility security, 418–419
strategies, 813–816	software development design, 1086
synthetic transactions, 832	STRIDE, 387–388
test coverage, 837	third-party connectivity, 705
vulnerabilities, 817–822	threat trees in software development
testing mode in anomaly-based IDS/IPS, 967	design, 1086
text messages in disaster recovery plans, 1056	threat working group (TWG), 92

threats	TOGAF (The Open Group Architecture
cybercriminals, 60	Framework), 172, 194–195
defined, 8	token passing, 491–492
duress, 931–932	Token Ring, 495–496, 499
hacktivists, 61	tokens
identifying, 62–63	electronic access control, 925
internal actors, 61–62	one-time passwords, 730
nation-state actors, 60-61	toll fraud
nature, 62	IP telephony, 692
overview, 58	PBX systems, 666
site planning, 423	tool sets for secure software, 1138
three-factor authentication, 719	top-down approach in security programs, 199
three-way-handshake process	top-level domains in DNS, 527
SIP, 689	top secret classification level, 216–218
TCP, 949–951	topologies for local area networks, 487-490
throughput in cabling, 654–655	Tor network, 665
thunking, 296	TOR (The Onion Router), 307
ticket granting services (TGSs) in KDC,	tort law system, 127–129
785–786	Total Access Communication
tickets in KDC, 785–788	System (TACS), 584
Tier 1 (organization view) in risk	total risk vs. residual risk, 81
management, 55	TPC (Transmit Power Control), 574
Tier 2 (mission/business process view) in risk	TPMs (Trusted Platform Modules), 404–406
management, 55	TPs (transformation procedures)
tiers	in Clark-Wilson model, 400
Cybersecurity Framework, 182	Traceroute tool, 520–522
risk management, 55	tracking
tight coupling software, 1131–1132	digital asset management, 261–262
time division multiple access (TDMA)	hardware, 224
GTS, 570	software, 224–227
mobile communications, 584	trade secrets, 148–149
time-division multiplexing (TDM), 541–542	trademarks, 150
time-limited trials for third-party	traffic direction in packet-filtering firewalls, 948
software, 1147	traffic-flow security, 601
time-of-check to time-of-use (TOC/TOU)	traffic shaping in QoS, 551
in atomic execution, 410	trailer hot sites, 1049
time to first byte (TTFB) in latency, 654	training, 40
Time to Live (TTL) values in packets, 512	artificial intelligence tools, 977–978
TIME-WAIT state in TCP connections, 951	content reviews, 43
timely characteristic in threat intelligence, 941	degrees and certifications, 40–41
timeouts in session termination, 741	disaster recovery communications, 1057
timing attacks in cryptography, 371–372	disaster recovery plans, 1060–1061, 1064–1065
timing smart cards, 735	
TKIP (Temporal Key Integrity Protocol),	evaluating, 43–44
577–578 TIS See Transport Lover Security (TIS)	incident response, 993
TLS. See Transport Layer Security (TLS)	measuring security, 863–867
TOC/TOU (time-of-check to time-of-use)	methods and techniques, 41–43
in atomic execution, 410	personnel, 930–931

training mode in anomaly-based IDS/IPS, 967	third-party connectivity, 706
transactions, synthetic, 832	web services, 612
transborder data flow (TDF), 146-147	Trust Centers for mobile
transfer risk strategy	communications, 572
ISO/IEC 27005, 178	trust in federated identity, 755
overview, 79	Trusted Computing Group (TCG), 404
transfers in personnel security, 37-38	trusted execution environments (TEEs),
transformation procedures (TPs)	408-411
in Clark-Wilson model, 400	Trusted Platform Modules (TPMs), 404-406
Transmission Control Protocol (TCP)	TTFB (time to first byte) in latency, 654
connection-oriented protocol, 479	TTL (Time to Live) values in packets, 512
data structures, 509	TTXs (tabletop exercises) in disaster recovery
handshakes, 508, 949-951	plans, 1063–1064
transport layer, 479, 503	tumbler locks, 918
vs, UDP, 503–506	tuning data loss prevention, 270–271
Transmission Control Protocol/Internet	tunnels
Protocol (TCP/IP) suite, 471, 502-503	DNS, 619
transmission media	ICMP, 520
cabling, 648–655	IPv6, 514–515
overview, 643–644	TLS, 610
types, 644-648	turnstiles, 441
transmission methods for local area networks,	Tuzman, Kaleil Isaza, 20
499–500	TWG (threat working group), 92
Transmit Power Control (TPC), 574	twisted-pair cabling, 649–650
transparent bridging, 656–657	two-factor authentication (2FA), 719
transponders, 925	type 1 hypervisors in virtual machines, 297
transport adjacency in IPSec, 609	type 2 hypervisors in virtual machines, 297
transport layer	Type I errors in biometric authentication,
functions and protocols, 484	724–725
OSI model, 479–480	Type II errors in biometric authentication,
Transport Layer Security (TLS)	724–725
data in motion, 255–256	types in incidents classification, 1002
malware using, 604-605	71
network security, 602–605	U
suites, 603–604	U.S. Patent and Trademark
types, 610–611	Office (USPTO), 150
transport supplies in forensics field kits, 1015	UAC (User Agent Client) in SIP, 689
transposition ciphers, 318	UAS (User Agent Server) in SIP, 689
travel safety, 930	ubiquitous computing, 305
tree topology, 488	UBR (unspecified bit rate) in ATM, 551
trials for third-party software, 1147	UC (unified communications), 695–696
trialware, 153	UCDs (use case diagrams) in software
TrickBot Trojan, 604, 969	development, 1083
Trojans in TLS, 604	UDIs (unconstrained data items) in Clark-
trust but verify principle	Wilson model, 400
network security, 599	UDP. See User Datagram Protocol (UDP)
secure architectures, 392	
site and facility security, 420	UEBA (user and entity behavior
,,	analytics), 981

UEM (unified endpoint management)	usage in TCP vs. UDP, 506
systems, 226	use case diagrams (UCDs) in software
UML (Unified Modeling Language)	development, 1083
software development, 1083	use cases
use case diagrams, 835–836	data loss prevention, 271
uncertainty in risk assessment, 74	misuse case testing, 835–836
unclassified classification level, 216-218	Use Limitation Principle in OECD, 142
unconstrained data items (UDIs)	user access review for identity and access, 797
in Clark-Wilson model, 400	user-activated readers, 925
undercover investigations in digital	User Agent Client (UAC) in SIP, 689
forensics, 1020	User Agent Server (UAS) in SIP, 689
understanding factor in outsourced	user and entity behavior analytics (UEBA), 981
security services, 974	user data file backups, 861
unicast transmission method, 499	User Datagram Protocol (UDP)
unified communications (UC), 695-696	connectionless protocol, 479
unified endpoint management (UEM)	connections, 951–952
systems, 226	vs. TCP, 503–506
Unified Modeling Language (UML)	transport layer, 479
software development, 1083	user-level event audits, 743
use case diagrams, 835–836	user managers, 24
uniform resource identifiers (URIs) for web	user stories in Agile methodologies, 1101
services, 613–614	users
uniform resource locators (URLs) in DNS,	Clark-Wilson model, 400
524, 531	description, 25
uninterruptible power supplies (UPSs)	provisioning, 739
data processing facilities, 446	USPTO (U.S. Patent and Trademark
online, 452–453	Office), 150
standby, 453	utilities
unit testing in software development,	electric power, 448–453
1089, 1091	HVAC, 453–454
United States laws for data breaches, 141-142	water and wastewater, 448-450
unmanaged patching, 904-905	utility tunnels in physical security, 439
unshielded twisted pair (UTP) cable, 649-650	UTP (unshielded twisted pair) cable, 649-650
unspecified bit rate (UBR) in ATM, 551	_
updates	V
Internet of Things, 307	vacations, mandatory, 35, 890
profiles, 740	Valasek, Chris, 627
UPS Brown color, 150	validation
UPSs (uninterruptible power supplies)	assessments, 815–816
data processing facilities, 446	parameters, 1132
online, 452–453	risk controls, 90
standby, 453	software development, 1090
upstream suppliers in risk management, 98	Validation practice in Good Practice
uptime in high availability, 1050	Guidelines, 106
urgency in incidents classification, 1002	valuation of assets, 65–66
URIs (uniform resource identifiers) for web	variable bit rate (VBR) in ATM, 551
services, 613–614	vaulting for backups, 1038–1039
URLs (uniform resource locators) in DNS,	vaults, protecting, 222
524, 531	, protecting, 222

VBR (variable bit rate) in ATM, 551	Virtual Network Computing (VNC), 700
VDI (virtual desktop infrastructure), 700–701	virtual NICs (vNICs), 704–705
VDSL (very high-data-rate DSL), 684	virtual passwords, 723
vendors, 39	virtual private clouds (VPCs), 301
ventilation ducts in physical security, 439	virtual private networks (VPNs)
Veracode report, 1133	authentication protocols, 697–699
verifiable property for reference monitors, 766	data in motion, 256
verification	IPSec, 607–609
backups, 860-862	L2TP, 606–607
message integrity, 354–358	overview, 605, 697
risk controls, 90	PPTP, 606
software development, 1090	TLS, 610
supply chain risk management, 100	Virtual Router Redundancy
verification 1:1, 718	Protocol (VRRP), 536
Verification function in SAMM, 1109	virtual teams in incident response, 991
Vernam, Gilbert, 325	virtual tunnel end points (VTEPs), 632
Vernam cipher, 325–328	virtualization
versatile memory in Trusted Platform	backups, 861
Modules, 406	desktop, 699–701
versioning software, 1142–1144	virtualized systems
vertical enactment for privacy, 147	containerization, 298–299
very high-data-rate DSL (VDSL), 684	networks, 704–705
very high-level programming languages,	overview, 296
1119–1120	serverless, 299–301
very small aperture terminals (VSATs),	virtual machines, 296–298
589–590	visual recording devices, 913-916
vibration detectors, 927	VLAN identifiers (VIDs), 631
VIDs (VLAN identifiers), 631	VLANs (virtual local area networks)
views in enterprise architecture frameworks,	latency, 654
190, 192	overview, 630–632
Vigenère, Blaise de, 319	VMs. See virtual machines (VMs)
Vigenère cipher, 319	VNC (Virtual Network Computing), 700
violence, threats of, 931-932	vNICs (virtual NICs), 704-705
virtual circuits in WANs, 548-549	voice communications, 682
virtual desktop infrastructure (VDI),	cable modems, 686–687
700–701	DSL, 683–685
virtual directories, 750	IP telephony, 687–692
Virtual eXtensible Local Area Networks	ISDN, 685–686
(VxLANs), 632	PSTN, 682–683
virtual firewalls, 964	voice gateways, 688
virtual local area networks (VLANs)	voice over IP (VoIP) networks
latency, 654	business continuity planning, 1069
overview, 630–632	vs. IP telephony, 688
virtual machines (VMs), 296, 704-705	overview, 687–688
antimalware, 969–970	security, 693
benefits, 297–298	voice prints, 728
hypervisors, 297	voicemail systems, 688
third-party connectivity, 705	voices in information access control, 801

voltage in electrical power, 670	Waterfall software development, 1095–1096
voltage regulators for electric power, 451	watts
volumetric IDSs, 926	electrical power, 670–672
VPCs (virtual private clouds), 301	radio signals, 560
VPNs. See virtual private networks (VPNs)	wave-division multiplexing (WDM), 544
VRRP (Virtual Router Redundancy	wave-pattern motion detectors, 927
Protocol), 536	WBSs (work breakdown structures) in project
VSATs (very small aperture terminals),	management, 1081
589–590	WDM (wave-division multiplexing), 544
VTEPs (virtual tunnel end points), 632	weaponization in Cyber Kill Chain model,
vulnerabilities	387, 994
defined, 8	web application security risks, 1134
emergency situations, 869	web of trust, 367
exception handling, 871	web portal functions in FIM systems,
human, 902–903	753–754
identifying, 62–63	web proxies, 665
information, 59	web services
managing, 900–903	HTTP, 613–614
overview, 58	overview, 611–612
people, 60	REST, 615–616
processes, 59–60, 902	SOAP, 614–615
remediation, 871	Web Services Security (WS-Security or WSS)
software, 901, 1133–1134	specification, 615
testing, 817–822	well-formed transactions in Clark-Wilson
vulnerability mapping step in penetration	model, 400
testing, 824	well-known ports, 507
vulnerability testing vs. penetration tests, 827	WEP (Wired Equivalent Privacy), 575–576
VxLANs (Virtual eXtensible Local Area	wet chemical fire extinguishers, 459
Networks), 632	wet pipe water sprinkler systems, 460
7.7.7	whaling, 865
W	White, Joe, 20
wafer tumbler locks, 919	white box testing, 826
waiting room feature for meeting	whitelisting
applications, 694	applications, 225
walkthrough tests in disaster recovery	intrusion detection and prevention
plans, 1063	systems, 968–969
walls	whole-disk encryption, 255 Wi Fi Protected Access 2 (WPA2), 576, 578
considerations, 437	Wi-Fi Protected Access 2 (WPA2), 576–578 wide-angle lenses in CCTV systems, 915
data processing facilities, 446	wide area networks (WANs)
WANs. See wide area networks (WANs)	ATM, 550–552
WAPs (wireless access points), 564–565	CSU/DSU, 543–545
warded locks, 918	dedicated links, 541–543
warez sites, 149–150	frame relay, 547–548
warm sites, 1045–1047	HSSI, 552
Wassenaar Arrangement, 145–146	overview, 540
water and wastewater, 448–450	switching, 545–547
water detectors, 445 water lines, 438	virtual circuits, 548–549
water fines, 458 water sprinklers, 459–460	X.25, 549–550
water sprinklers, 477–400	- /

WIDSs (wireless intrusion detection	WPA Enterprise, 577
systems), 967	WPA2 (Wi-Fi Protected Access 2), 576–578
WiMAX standard, 569, 587	WPA3, 578–579
windows	WPANs (wireless personal area networks), 570
considerations, 437	write-once media for logs, 745, 831
types, 441	wrongs against a person category
WIPO (World Intellectual Property	in civil law, 127
Organization), 150	wrongs against property category
Wired Equivalent Privacy (WEP), 575–576	in civil law, 127
wired windows, 441	WRT (work recovery time) in disaster
wireless access points (WAPs), 564–565	recovery, 1031–1032
wireless intrusion detection	WS-Security specification, 615
systems (WIDSs), 967	WSS (Web Services Security)
wireless LANs (WLANs)	specification, 615
best practices, 582	WWW (World Wide Web), 777
components, 564–565	WWW (World Wide Web), 7/7
security, 575–582	X
standards, 565–574	
wireless networking	X.25 protocol, 549–550, 552
chapter questions, 592–595	X.509 certificates, 359
chapter review, 590–592	XaaS (Everything as a Service), 304–305
communication techniques overview,	XACML (Extensible Access Control Markup
559–561	Language), 781
mobile communications, 582–588	XDR (extended detection and response)
OFDM, 563–564	platforms, 968
overview, 559	XML (Extensible Markup Language), 615, 777
satellites, 589–590	XOR operation
spread spectrum, 561–563	one-time pads, 326–327
WLAN components, 564–565	stream ciphers, 333
WLAN security, 575–582	XTACACS (Extended TACACS), 790–791
WLAN standards, 565–574	YAML Ain't Markup Language (YAML), 615
wireless personal area networks (WPANs), 570	V
	Y
wiring closets, 446 WLANs. See wireless LANs (WLANs)	Ying, Jun, 20
Woods, John F., 1079	
	Z
work area separation, 803	Zachman, John, 172, 192
work breakdown structures (WBSs)	Zachman Framework, 172, 192–194
work breakdown structures (WBSs)	zero-day attacks, 971
in project management, 1081 work factor	zero knowledge in penetration testing, 825
	zero trust principle
cryptosystems, 325	network security, 599
electrical power, 671 work factor in RSA, 342	secure design, 392
	site and facility security, 419–420
work recovery time (WRT) in disaster	third-party connectivity, 706
recovery, 1031–1032	web services, 612
working images for evidence, 1012	ZigBee standard, 571–572
World Intellectual Property Organization	Zimmermann, Phil, 367
(WIPO), 150	zombies, 965
World Wide Web (WWW), 777	201110100, 707

1320

zone transfers in DNS, 525 zones access control, 803 CPTED, 429–430 DNS, 525 lighting, 911 Zoom-bombing, 694 zoom in CCTV systems, 914–915