Table of Contents

Gagandeep Thapar; AERO 560 HW2	2
Problem 2	2
givens	
nitial conditions	
un sim	
ınpack data: A	
inpack data: B	
inpack data: C	
plot data: A	
olot data: B	
plot data: C	
plot misc	

Gagandeep Thapar; AERO 560 HW2

Problem 2

givens

initial conditions

run sim

unpack data: A

unpack data: B

unpack data: C

plot data: A

$${\rm T_{C} = \text{-}K_{p}sign(n_{e})} \epsilon_{e} \text{ -} \text{ } \text{K}_{d}\omega$$

plot data: B

$$\mathbf{T_{C}} = \mathbf{-K_{p}sign(n_{e})} \boldsymbol{\epsilon_{e}} - \mathbf{K_{d}} (\mathbf{1} \mathbf{-\boldsymbol{\epsilon}_{e}^{T}} \boldsymbol{\epsilon_{e}}) \boldsymbol{\omega}$$

plot data: C

$$\mathbf{T_{C}} = \mathbf{-K_{p}sign(n_{e})} \boldsymbol{\epsilon_{e}} - \mathbf{K_{d}(1 + \boldsymbol{\epsilon_{e}^{T} \boldsymbol{\epsilon_{e}}})} \boldsymbol{\omega}$$

plot misc

~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~

4. The satellite can maintain pointing with the disturbance torque. Setting the disturbance torque to 0 results in a similar result with the satellite reaching steady state in less time.

6. Each control law requires different amount of torque for different amounts of time, however, each reach steady state in a similar amount of time. Control Law B has a greater peak than its counterparts as expected due to the control law looking at the difference in the quaternion near equilibrium (which will cause a larger torque requirement initially).

^{5.} The max torque exerted (in the second control law) is 698.61 Nm. With a height of 10.00 m, the satellite must exert 139.72 N of thrust. No EP is currently capable of producing that much thrust.

Published with MATLAB® R2022b