EXERCISES

1. Use the given graph of f to find the Riemann sum with six subintervals. Take the sample points to be (a) left endpoints and (b) midpoints. In each case draw a diagram and explain what the Riemann sum represents.

2. (a) Evaluate the Riemann sum for

$$f(x) = x^2 - x \qquad 0 \le x \le 2$$

with four subintervals, taking the sample points to be right endpoints. Explain, with the aid of a diagram, what the Riemann sum represents.

(b) Use the definition of a definite integral (with right endpoints) to calculate the value of the integral

$$\int_0^2 (x^2 - x) \, dx$$

- (c) Use the Fundamental Theorem to check your answer to
- (d) Draw a diagram to explain the geometric meaning of the integral in part (b).
- 3. Evaluate

$$\int_0^1 \left(x + \sqrt{1 - x^2} \right) dx$$

by interpreting it in terms of areas.

4. Express

$$\lim_{n\to\infty}\sum_{i=1}^n\sin x_i\,\Delta x$$

as a definite integral on the interval $[0, \pi]$ and then evaluate the integral.

- **5.** If $\int_0^6 f(x) dx = 10$ and $\int_0^4 f(x) dx = 7$, find $\int_0^6 f(x) dx$.
- **6.** (a) Write $\int_{1}^{5} (x + 2x^{5}) dx$ as a limit of Riemann sums, taking the sample points to be right endpoints. Use a computer algebra system to evaluate the sum and to compute the limit.
 - (b) Use the Fundamental Theorem to check your answer to part (a).

7. The figure shows the graphs of f, f', and $\int_0^x f(t) dt$. Identify each graph, and explain your choices.

8. Evaluate:

(a)
$$\int_0^1 \frac{d}{dx} (e^{\arctan x}) dx$$
 (b) $\frac{d}{dx} \int_0^1 e^{\arctan x} dx$

(b)
$$\frac{d}{dx} \int_0^1 e^{\arctan x} dx$$

(c)
$$\frac{d}{dx} \int_0^x e^{\arctan t} dt$$

9. The graph of f consists of the three line segments shown. If $g(x) = \int_0^x f(t) dt$, find g(4) and g'(4).

- **10.** If f is the function in Exercise 9, find g''(4).
- 11-40 Evaluate the integral, if it exists.

11.
$$\int_{1}^{2} (8x^3 + 3x^2) dx$$

12.
$$\int_0^T (x^4 - 8x + 7) dx$$

13.
$$\int_0^1 (1-x^9) dx$$

14.
$$\int_0^1 (1-x)^9 dx$$

11.
$$\int_{1}^{2} (8x^{3} + 3x^{2}) dx$$

12. $\int_{0}^{T} (x^{4} - 8x + 7) dx$
13. $\int_{0}^{1} (1 - x^{9}) dx$
14. $\int_{0}^{1} (1 - x)^{9} dx$
15. $\int_{1}^{9} \frac{\sqrt{u} - 2u^{2}}{u} du$
16. $\int_{0}^{1} (\sqrt[4]{u} + 1)^{2} du$

16.
$$\int_0^1 \left(\sqrt[4]{u} + 1 \right)^2 du$$

17.
$$\int_0^1 y(y^2+1)^5 dy$$
 18. $\int_0^2 y^2 \sqrt{1+y^3} dy$

18.
$$\int_0^2 y^2 \sqrt{1 + y^3} \, dy$$

19.
$$\int_{1}^{5} \frac{dt}{(t-4)^2}$$

20.
$$\int_0^1 \sin(3\pi t) dt$$

21.
$$\int_0^1 v^2 \cos(v^3) dv$$

22.
$$\int_{-1}^{1} \frac{\sin x}{1+x^2} dx$$

23.
$$\int_{-\pi/4}^{\pi/4} \frac{t^4 \tan t}{2 + \cos t} dt$$
 24.
$$\int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

24.
$$\int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

$$25. \int \left(\frac{1-x}{x}\right)^2 dx$$

26.
$$\int_{1}^{10} \frac{x}{x^2 - 4} \, dx$$

$$27. \int \frac{x+2}{\sqrt{x^2+4x}} dx$$

$$28. \int \frac{\csc^2 x}{1 + \cot x} \, dx$$

29.
$$\int \sin \pi t \cos \pi t \, dt$$

30.
$$\int \sin x \, \cos(\cos x) \, dx$$

31.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$32. \int \frac{\sin(\ln x)}{x} dx$$

33.
$$\int \tan x \ln(\cos x) dx$$

34.
$$\int \frac{x}{\sqrt{1-x^4}} dx$$

$$35. \int \frac{x^3}{1+x^4} dx$$

36.
$$\int \sinh(1+4x) \, dx$$

37.
$$\int \frac{\sec \theta \tan \theta}{1 + \sec \theta} d\theta$$

27.
$$\int \frac{x+2}{\sqrt{x^2+4x}} dx$$
28. $\int \frac{\csc^2 x}{1+\cot x} dx$
29. $\int \sin \pi t \cos \pi t dt$
30. $\int \sin x \cos(\cos x) dx$
31. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$
32. $\int \frac{\sin(\ln x)}{x} dx$
33. $\int \tan x \ln(\cos x) dx$
34. $\int \frac{x}{\sqrt{1-x^4}} dx$
35. $\int \frac{x^3}{1+x^4} dx$
36. $\int \sinh(1+4x) dx$
37. $\int \frac{\sec \theta \tan \theta}{1+\sec \theta} d\theta$
38. $\int_0^{\pi/4} (1+\tan t)^3 \sec^2 t dt$
39. $\int_0^3 |x^2-4| dx$
40. $\int_0^4 |\sqrt{x}-1| dx$

39.
$$\int_0^3 |x^2 - 4| dx$$

40.
$$\int_0^4 |\sqrt{x} - 1| dx$$

41-42 Evaluate the indefinite integral. Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take C = 0).

41.
$$\int \frac{\cos x}{\sqrt{1 + \sin x}} dx$$
 42. $\int \frac{x^3}{\sqrt{x^2 + 1}} dx$

$$42. \int \frac{x^3}{\sqrt{x^2+1}} dx$$

- ## 43. Use a graph to give a rough estimate of the area of the region that lies under the curve $y = x\sqrt{x}$, $0 \le x \le 4$. Then find the exact area.
- **44.** Graph the function $f(x) = \cos^2 x \sin x$ and use the graph to guess the value of the integral $\int_0^{2\pi} f(x) dx$. Then evaluate the integral to confirm your guess.
 - 45-50 Find the derivative of the function.

45.
$$F(x) = \int_0^x \frac{t^2}{1+t^3} dt$$

46.
$$F(x) = \int_{x}^{1} \sqrt{t + \sin t} \ dt$$

47.
$$g(x) = \int_0^{x^4} \cos(t^2) dt$$

45.
$$F(x) = \int_0^x \frac{t^2}{1+t^3} dt$$
 46. $F(x) = \int_x^1 \sqrt{t+\sin t} dt$ 47. $g(x) = \int_0^{x^4} \cos(t^2) dt$ 48. $g(x) = \int_1^{\sin x} \frac{1-t^2}{1+t^4} dt$ 49. $y = \int_{\sqrt{x}}^x \frac{e^t}{t} dt$ 50. $y = \int_{2x}^{3x+1} \sin(t^4) dt$

49.
$$y = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$$

50.
$$y = \int_{2\pi}^{3x+1} \sin(t^4) dt$$

51-52 Use Property 8 of integrals to estimate the value of the integral.

51.
$$\int_{1}^{3} \sqrt{x^2 + 3} \ dx$$
 52. $\int_{3}^{5} \frac{1}{x + 1} \ dx$

52.
$$\int_{3}^{5} \frac{1}{x+1} dx$$

53–56 Use the properties of integrals to verify the inequality.

53.
$$\int_0^1 x^2 \cos x \, dx \le \frac{1}{3}$$

53.
$$\int_0^1 x^2 \cos x \, dx \le \frac{1}{3}$$
 54. $\int_{\pi/4}^{\pi/2} \frac{\sin x}{x} \, dx \le \frac{\sqrt{2}}{2}$

55.
$$\int_0^1 e^x \cos x \, dx \le e - 1$$
 56. $\int_0^1 x \sin^{-1}x \, dx \le \pi/4$

56.
$$\int_0^1 x \sin^{-1} x \, dx \le \pi/4$$

- **57.** Use the Midpoint Rule with n = 6 to approximate $\int_0^3 \sin(x^3) dx$.
- **58.** A particle moves along a line with velocity function $v(t) = t^2 - t$, where v is measured in meters per second. Find (a) the displacement and (b) the distance traveled by the particle during the time interval [0, 5].
- **59.** Let r(t) be the rate at which the world's oil is consumed, where t is measured in years starting at t = 0 on January 1, 2000, and r(t) is measured in barrels per year. What does $\int_0^8 r(t) dt$ represent?
- 60. A radar gun was used to record the speed of a runner at the times given in the table. Use the Midpoint Rule to estimate the distance the runner covered during those 5 seconds.

<i>t</i> (s)	v (m/s)	t (s)	v (m/s)
0	0	3.0	10.51
0.5	4.67	3.5	10.67
1.0	7.34	4.0	10.76
1.5	8.86	4.5	10.81
2.0	9.73	5.0	10.81
2.5	10.22		

61. A population of honeybees increased at a rate of r(t) bees per week, where the graph of r is as shown. Use the Midpoint Rule with six subintervals to estimate the increase in the bee population during the first 24 weeks.

62. Let

$$f(x) = \begin{cases} -x - 1 & \text{if } -3 \le x \le 0\\ -\sqrt{1 - x^2} & \text{if } 0 \le x \le 1 \end{cases}$$

Evaluate $\int_{-3}^{1} f(x) dx$ by interpreting the integral as a difference of areas.

63. If f is continuous and $\int_0^2 f(x) dx = 6$, evaluate $\int_{0}^{\pi/2} f(2\sin\theta)\cos\theta \ d\theta$.