Problem Set 8

Claire Goeckner-Wald

November 20, 2016

Primal versus Dual Problem

1. [d] a quadratic programming problem with d+1 variables
In the primal problem, we aim to minimize $\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$ with the constraint $y_n(\boldsymbol{w}^T x_n + b) \geq 1$ for n = 1, 2, ... N. Because y_n and x_n are given as input data, our variables are \boldsymbol{w} and b. Note that in this scenario, $\boldsymbol{w} = (w_1, w_2, ... w_d)$, and $b = w_0$. Thus, we have d+1 variables.

Polynomial Kernels

- **2.** [a] 0 versus all See attached code.
- **3.** [a] 1 versus all See attached code.
- 4. [c] 1800 See attached code.
- **5.** [d] Maximum C achieves the lowest $E_i n$ See attached code.
- **6.** [b] When C = 0.001, the number of support vectors is lower at Q = 5. See attached code.

Cross Validation

7.

8.

RBF Kernel

9.

10.