

编辑丨极市平台

极市导读

本文重新思考并改进相对位置编码在视觉Transformer中的使用,并提出了 4 种专门用于视觉Transformer的方法,并通过实验证明了在检测和分类任务上较大的性能提升。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

写在前面

由于Transformer对于序列数据进行并行操作,所以序列的位置信息就被忽略了。因此,相对位置编码(Relative position encoding, RPE)是Transformer获取输入序列位置信息的重要方法,RPE在自然语言处理任务中已被广泛使用。

但是,在计算机视觉任务中,相对位置编码的有效性还没有得到很好的研究,甚至还存在争议。因此,作者在本文中先回顾了现有的相对位置编码方法,并分析了它们在视觉Transformer中应用的优缺点。接着,作者提出了新的用于二维图像的相对位置编码方法(iRPE)。iRPE考虑了方向,相对距离,Query的相互作用,以及Self-Attention机制中相对位置embedding。作为一个即插即用的模块,本文提出的iREP是简单并且轻量级的。

实验表明,通过使用iRPE,DeiT和DETR在ImageNet和COCO上,与原始版本相比,分别获得了1.5%(top-1 Acc)和1.3%(m AP)的性能提升(无需任何调参)。

论文和代码地址

Rethinking and Improving Relative Position Encoding for Vision Transformer

Kan Wu^{1,2,*}, Houwen Peng^{2,*,†}, Minghao Chen², Jianlong Fu², Hongyang Chao¹

Sun Yat-sen University ² Microsoft Research Asia

论文地址:

https://arxiv.org/abs/2107.14222

代码地址:

https://github.com/microsoft/AutoML/tree/main/iRPE

研究动机

Transformer最近在计算机视觉领域引起了极大的关注,因为它具有强大的性能和捕获Long-range关系的能力。然而,Transformer中的Self-Attention有一个固有的缺陷——它不能捕获输入token的顺序。因此,Transformer在计算的时候就需要显式的引入位置信息。

为Transformer编码位置表示的方法主要有两类。一个是绝对位置编码,另一个是相对位置编码。**绝对位置编码**将输入token的绝对位置从1编码到最大序列长度。也就是说,每个位置都有一个单独的编码向量。然后将编码向量与输入token组合,使得模型能够知道每个token的位置信息。**相对位置编码**对输入token之间的相对距离进行编码,从而来学习token的相对关系。

这两种编码方式在NLP任务中都被广泛应用,并且证明是非常有效的。但是在CV任务中,它们的有效性还没被很好的探索。因此,在本文中,**作者重新思考并改进相对位置编码在视觉Transformer中的使用**。

在本文中,作者首先回顾了现有的相对位置编码方法,然后提出了专门用于二维图像的方法iRPE。

方法

方法背景

绝对位置编码

由于Transformer不包含递归和卷积,为了使模型知道序列的顺序,需要注入一些关于token位置的信息。原始Self-Attention采用了绝对位置,并添加绝对位置编码 $p=(p_1,\ldots,p_n)$ 到输入token,用公式表示如下:

$$\mathbf{x}_i = \mathbf{x}_i + \mathbf{p}_i$$

相对位置编码

除了每个输入token的绝对位置之外,一些研究人员还考虑了token之间的相对关系。相对位置编码使得Transformer能够学习token之间的相对位置关系,用公式表示如下:

$$\mathbf{z}_i = \sum_{j=1}^n \alpha_{ij} (\mathbf{x}_j \mathbf{W}^V + \mathbf{p}_{ij}^V),$$

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q + \mathbf{p}_{ij}^Q)(\mathbf{x}_j \mathbf{W}^K + \mathbf{p}_{ij}^K)^T}{\sqrt{d_z}}.$$

回顾相对位置编码

Shaw's RPE

[1]提出一种Self-Attention的相对位置编码方法。输入token被建模为一个有向全连通图。每条边都代表两个位置之间的相对位置信息。此外,作者认为精确的相对位置信息在一定距离之外是无用的,因此引入了clip函数来减少参数量,公式表示如下:

$$\mathbf{z}_{i} = \sum_{j=1}^{n} \alpha_{ij} (\mathbf{x}_{j} \mathbf{W}^{V} + \mathbf{p}_{clip(i-j,k)}^{V}),$$

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q)(\mathbf{x}_j \mathbf{W}^K + \mathbf{p}_{clip(i-j,k)}^K)^T}{\sqrt{d_z}},$$

RPE in Transformer-XL

[2]为query引入额外的bias项,并使用正弦公式进行相对位置编码,用公式表示如下:

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q + \mathbf{u})(\mathbf{x}_j \mathbf{W}^K)^T + (\mathbf{x}_i \mathbf{W}^Q + \mathbf{v})(\mathbf{s}_{i-j} \mathbf{W}^R)^T}{\sqrt{d_z}},$$

Huang's RPE

[3]提出了一种同时考虑guery、key和相对位置交互的方法,用公式表示如下:

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q + \mathbf{p}_{ij})(\mathbf{x}_j \mathbf{W}^K + \mathbf{p}_{ij})^T - \mathbf{p}_{ij} \mathbf{p}_{ij}^T}{\sqrt{d_z}},$$

RPE in SASA

上面的相对位置编码都是针对一维的序列,[4]提出了一种对二维特征进行相对位置编码的方法,用公式表示如下:

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q)(\mathbf{x}_j \mathbf{W}^K + concat(\mathbf{p}_{\delta \tilde{x}}^K, \mathbf{p}_{\delta \tilde{y}}^K))^T}{\sqrt{d_z}},$$

相对位置编码的确定

接下来,作者引入了多种相对位置编码方式,并进行了详细的分析。首先,为了研究编码是否可以独立于输入token,作者引入了两种相对位置模式:Bias模式和Contextual模式。然后,为了研究方向性的重要性,作者设计了两种无向方法和两种有向方法。

Bias Mode and Contextual Mode

以前的相对位置编码方法都依赖于输入token,因此,作者就思考了,相对位置的编码信息能否独立于输入token来学习。基于此,作者引入相对位置编码的**Bias模式**和**Contextual模式**来研究这个问题。前者独立于输入token,而后者考虑了与query、key或value的交互。无论是哪种模式,相对位置编码都可以用下面的公式表示:

$$e_{ij} = \frac{(\mathbf{x}_i \mathbf{W}^Q)(\mathbf{x}_j \mathbf{W}^K)^T + b_{ij}}{\sqrt{d_z}},$$

对于Bias模式,编码独立于输入token,可以表示成:

$$b_{ij} = r_{ij}$$

对于Contextual 模式,编码考虑了与输入token之间的交互,可以表示成:

$$b_{ij} = (\mathbf{x}_i \mathbf{W}^Q) \mathbf{r}_{ij}^T,$$

$$b_{ij} = (\mathbf{x}_i \mathbf{W}^Q) (\mathbf{r}_{ij}^K)^T + (\mathbf{x}_j \mathbf{W}^K) (\mathbf{r}_{ij}^Q)^T,$$

A Piecewise Index Function

由于实际距离到计算距离的关系是多对一的关系,所以首先需要定义一个实际距离到计算距离的映射函数。

先前有工作提出了采用clip函数来进行映射,如下所示:

$$h(x) = max(-\beta, min(\beta, x))$$

在这种方法中,相对距离大于eta的位置分配给相同的编码,因此丢失了远距离相对位置的上下文信息。

在本文中,作者采用了一种分段函数将相对距离映射到相应的编码。这个函数基于一个假设: 越近邻的信息越重要,并通过相对距离来分配注意力。函数如下:

$$g(x) = \begin{cases} [x], & |x| \le \alpha \\ sign(x) \times min(\beta, [\alpha + \frac{\ln(|x|/\alpha)}{\ln(\gamma/\alpha)}(\beta - \alpha)]), & |x| > \alpha \end{cases}$$

如下图所示,相比于先前的方法,本文提出的方法感知距离更长,并且对不同的距离分布施加了不同程度的注意力。

2D Relative Position Calculation

为了衡量二维图像上两个点的相对距离,作者提出了两种**无向方法**(Euclidean method,Quantization method)和两种**有向方法**(Cross method,Product method),如上图所示。

Euclidean method

在Euclidean method中,作者采用了欧氏距离来衡量两个点之间的距离,如上图a所示:

$$I(i,j) = g(\sqrt{(\tilde{x}_i - \tilde{x}_j)^2 + (\tilde{y}_i - \tilde{y}_j)^2}),$$

Quantization method

在上述的Euclidean method中,具有不同相对距离的两个距离可能映射到同一距离下标(比如二维相对位置(1,0)和(1,1)都映射到距离下标1中)。因此,作者提出Quantization method,如上图b所示,公式如下所示:

$$I(i,j) = g(quant(\sqrt{(\tilde{x}_i - \tilde{x}_j)^2 + (\tilde{y}_i - \tilde{y}_j)^2})).$$

quant (\cdot) 函数可以映射一组实数0 ,1 ,1.41 ,2 ,2.24 , \ldots 到一组整数0 ,1 ,2 ,3 ,4 , \ldots 。

Cross method

像素的位置方向对图像理解也很重要,因此作者又提出了有向映射方法。Cross method分别计算水平方向和垂直方向上的编码,然后对它们进行汇总。编码信息如上图c所示,公式如下:

$$\mathbf{r}_{ij} = \mathbf{p}_{I^{\tilde{x}}(i,j)}^{\tilde{x}} + \mathbf{p}_{I^{\tilde{y}}(i,j)}^{\tilde{y}},$$

$$I^{\tilde{x}}(i,j) = g(\tilde{x}_i - \tilde{x}_j),$$

$$I^{\tilde{y}}(i,j) = g(\tilde{y}_i - \tilde{y}_j),$$

Product method

如果一个方向上的距离相同(水平或垂直),Cross method将会把不同的相对位置编码到相同的embedding中。因此,作者又提出了Product method,如上图d所示,公式如下所示:

$$\mathbf{r}_{ij} = \mathbf{p}_{I^{\tilde{x}}(i,j),I^{\tilde{y}}(i,j)}.$$

高效实现

对于Contextual模式的相对位置编码,编码信息可以通过下面的方式得到:

$$y_{ij} = (\mathbf{x}_i \mathbf{W}) \mathbf{p}_{I(i,j)}^T$$
.

但是这么做的计算复杂度是 $O(n^2d)$,所以作者在实现的时候就只计算了不同映射位置的位置编码,如下所示:

$$z_{i,t} = (\mathbf{x}_i \mathbf{W}) \mathbf{p}_t^T, t \in \{I(i,j) | i, j \in [0,n)\},$$
$$y_{ij} = z_{i,I(i,j)}.$$

这样做就可以将计算复杂度降低到O(nkd),对于图像分割这种任务,k是远小于n的,就可以大大降低计算量。

4.实验

相关位置编码分析

• Directed-Bias v.s. Undirected-Contextual

Method	Is	Is Mode		Δ
based on DeiT-S [22]	Directed	Mode	Acc(%)	Acc(%)
Original [22]	-	-	79.9	-
Euclidean		bias	80.1	+0.2
Euchdean	×	contextual	80.4	+0.5
0	- U	bias	80.3	+0.4
Quantization	×	contextual	80.5	+0.6
Cross		bias	80.5	+0.6
Closs	V	contextual	80.8	+0.9
Product		bias	80.5	+0.6
Froduct	V	contextual	80.9	+1.0

上表的结果表明了:

- 1) 无论使用哪种方法,Contextual模式都比Bias模式具有更好的性能。
- 2) 在视觉Transformer中,有向方法通常比无向方法表现更好。

• Shared v.s. Unshared

Mode	Shared	#Param.	MACs	Top-1
Mode	Shared	(M)	(M)	Acc(%)
Bias	×	22.05	4613	80.54 ± 0.06
Dias	✓	22.05	4613	80.05 ± 0.04
Contextual	×	22.28	4659	80.99 ± 0.16
Contextual	✓	22.09	4659	80.89 ± 0.04

对于bias模式,在head上共享编码时,准确度会显著下降。相比之下,在contextual模式中,两种方案之间的性能差距可以忽略不计。

• Piecewise v.s. Clip.

Function	Mode	Top-1 Acc(%)	Top-5 Acc(%)
alin	bias	80.1	94.9
clip	contextual	80.9	95.5
nicconsisco	bias	80.0	95.0
piecewise	contextual	80.9	95.5

上表比较了clip函数和分段函数的影响,在图像分类任务中,这两个函数之间的性能差距非常小,甚至可以忽略不计。但是从下表中可以看出,在检测任务中,两个函数性能还是有明显差距的。

#	Abs Pos.	Rel Pos.	#buckets	epoch	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
1 [1]	sinusoid	none	-	150	39.5	60.3	41.4	17.5	43.0	59.1
2	none	none	-	150	30.4(-9.1)	52.5	30.2	9.4	31.2	50.5
3	sinusoid	bias	9×9	150	40.6(+1.1)	61.2	42.8	19.0	43.9	60.2
4	none	contextual	9×9	150	38.7(-0.8)	60.1	40.4	18.2	41.8	56.7
5	sinusoid	ctx clip	9×9	150	40.4(+0.9)	60.9	42.4	19.1	43.7	59.8
6	sinusoid	contextual	9×9	150	40.8(+1.3)	61.5	42.5	18.5	44.4	60.5
7	sinusoid	contextual	15×15	150	40.8(+1.3)	61.7	42.6	18.5	44.2	61.2
8 [1]	sinusoid	none	-	300	40.6	61.6	-	19.9	44.3	60.2
9	sinusoid	contextual	9×9	300	42.3(+1.7)	62.8	44.3	20.7	46.2	61.1

• Number of buckets

bucket数量影响了模型的参数,上图展示了不同bucket数量下,模型准确率的变化。

• Component-wise analysis

#	Abs Pos.	p_{ij}^Q	p_{ij}^K	p_{ij}^V	Top-1	Top-5
1 [22]	learnable	×	×	×	79.9	95.0
2	×	×	×	×	77.6(-2.3)	93.8
3	×	\checkmark	×	×	80.9(+1.0)	95.4
4	×	×	\checkmark	×	80.9(+1.0)	95.3
5	×	×	×	✓	80.2(+0.3)	95.0
6	×	\checkmark	\checkmark	×	81.0(+1.1)	95.5
7	×	\checkmark	\checkmark	\checkmark	81.3(+1.4)	95.7
8	learnable	\checkmark	×	×	80.9(+1.0)	95.5
9	learnable	×	✓	×	80.9(+1.0)	95.5
4.0	l				00.0	~

2022/2/21 上午11:39	还在魔	改Transforme	r结构吗?微软。	&中山大学开》	原超强的视觉位置编码,涨点。	显著	
10	learnable	×	×	✓	80.2(+0.3)	95.1	
11	learnable	\checkmark	\checkmark	×	81.1(+1.2)	95.4	
12	learnable	1	1	\	81.4(+1.5)	95.6	

从上表可以看出,相对位置编码和绝对位置编码对DeiT模型的精度都有很大帮助。

• Complexity Analysis

上图表明,本文方法在高效实现的情况下最多需要1%的额外计算成本。

在图像分类任务上的表现

Model	#Param.	Input	MACs (M)	Top-1 Acc (%)				
(Convnets							
ResNet-50 [10]	25M	224^{2}	4121	79.0				
RegNetY-4.0GF [15]	21M	224^{2}	4012	79.4				
EfficientNet-B1 [21]	8M	240^{2}	712	79.1				
EfficientNet-B5 [21]	30M	456^{2}	10392	83.6				
Transformers								
ViT-B/16 [6]	86M	384^{2}	55630	77.9				
ViT-L/16 [6]	307M	384^{2}	191452	76.5				
DeiT-Ti [22]	5M	224^{2}	1261	72.2				
CPVT-Ti(0-5) [2]	6M	224^{2}	1262	73.4				
DeiT-Ti with iRPE-K(Ours)	6M	224^{2}	1284	73.7				
DeiT-S [22]	22M	224^{2}	4613	79.9				
CPVT-S(0-5) [2]	23M	224^{2}	4616	80.5				
DeiT-S(Shaw's) [22, 18]+	22M	224^{2}	4659	80.9				
DeiT-S(TransXL's) [22, 3]+	23M	224^{2}	4828	80.8				
DeiT-S(Huang's) [22 111+	22M	994^{2}	4706	810				

2022/2/21 上午11:39	微软&中山大学开源超强的视觉位置编码,	涨点显著
-------------------	---------------------	------

Del 1-5(Huang 5) [22, 11]	221VI	224	7/00	01.0
DeiT-S(SASA's) [22, 17]*	22M	224^{2}	4639	80.8
DeiT-S with iRPE-K(Ours)	22M	224^{2}	4659	80.9
DeiT-S with iRPE-QK(Ours)	22M	224^{2}	4706	81.1
DeiT-S with iRPE-QKV(Ours)	22M	224^{2}	4885	81.4
DeiT-B [22]	86M	224^{2}	17592	81.8
CPVT-B(0-5) [2]	86M	224^{2}	17598	81.9
DeiT-B with iRPE-K(Ours)	87M	224^{2}	17684	82.4

通过仅在key上添加相对位置编码,将DeiT-Ti/DeiT-S/DeiT-B模型分别提升了1.5%/1.0%/0.6%的性能。

在目标检测任务上的表现

#	Abs Pos.	Rel Pos.	#buckets	epoch	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
1 [1]	sinusoid	none	-	150	39.5	60.3	41.4	17.5	43.0	59.1
2	none	none	-	150	30.4(-9.1)	52.5	30.2	9.4	31.2	50.5
3	sinusoid	bias	9×9	150	40.6(+1.1)	61.2	42.8	19.0	43.9	60.2
4	none	contextual	9×9	150	38.7(-0.8)	60.1	40.4	18.2	41.8	56.7
5	sinusoid	ctx clip	9×9	150	40.4(+0.9)	60.9	42.4	19.1	43.7	59.8
6	sinusoid	contextual	9×9	150	40.8(+1.3)	61.5	42.5	18.5	44.4	60.5
7	sinusoid	contextual	15×15	150	40.8(+1.3)	61.7	42.6	18.5	44.2	61.2
8 [1]	sinusoid	none	-	300	40.6	61.6	-	19.9	44.3	60.2
9	sinusoid	contextual	9×9	300	42.3(+1.7)	62.8	44.3	20.7	46.2	61.1

在DETR中绝对位置嵌入优于相对位置嵌入,这与分类中的结果相反。作者推测DETR需要绝对位置编码的先验知识来定位目标。

可视化

上图展示了Contextual模式下相对位置编码(RPE)的可视化。

5. 总结

本文作者回顾了现有的相对位置编码方法,并提出了四种专门用于视觉Transformer的方法。作者通过实验证明了通过加入相对位 置编码,与baseline模型相比,在检测和分类任务上都有比较大的性能提升。此外,作者通过对不同位置编码方式的比较和分析, 得出了下面几个结论:

- 1) 相对位置编码可以在不同的head之间参数共享,能够在contextual模式下实现与非共享相当的性能。
- 2) 在图像分类任务中,相对位置编码可以代替绝对位置编码。然而,绝对位置编码对于目标检测任务是必须的,它需要用绝对位 置编码来预测目标的位置。
- 3) 相对位置编码应考虑位置方向性,这对于二维图像是非常重要的。
- 4) 相对位置编码迫使浅层的layer更加关注局部的patch。

参考文献

- [1]. Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. ACL, 2018.
- [2]. Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: Atten tive language models beyond a fixed-length context. In ACL,2019.
- [3]. Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer models with better relative position e mbeddings. In EMNLP, 2020
- [4]. Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon Shlens. Standalo ne self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

如果觉得有用,就请分享到朋友圈吧!

极市平台

专注计算机视觉前沿资讯和技术干货、官网:www.cvmart.net 624篇原创内容

公众号

△点击卡片关注极市平台,获取最新CV干货

公众号后台回复"CVPR21检测"获取CVPR2021目标检测论文下载~

极市平衡

YOLO教程: 一文读懂YOLO V5 与 YOLO V4 | 大盘点 | YOLO 系目标检测算法总览 | 全面解析YOLO V4网络结构

实操教程: PyTorch vs LibTorch: 网络推理速度谁更快? | 只用两行代码,我让Transformer推理加速了50倍 | PyTorch AutoGrad C++层实现

算法技巧(trick): 深度学习训练tricks总结(有实验支撑) | 深度强化学习调参Tricks合集 | 长尾识别中的Tricks汇总 (AAAI2021)

最新CV竞赛: 2021 高通人工智能应用创新大赛 | CVPR 2021 | Short-video Face Parsing Challenge | 3D人体目标检测与行为分 析竞赛开赛,奖池7万+,数据集达16671张!

	# 假市平台签约作者#
	小马 知乎:努力努力再努力
研究领域:多模态内容理解,专注	厦门大学人工智能系20级硕士。 于解决视觉模态和语言模态相结合的任务,促进Vision-Language模型的 实地应用。
作品精选	
CVPR2021最佳学生论文提名:Le	
	Net:用Self-Attention的方式进行卷积 视觉任务! 微软推出新作: Focal Self-Attention
<u> </u>	优见证券: 做私推山利TF· FOCAL Self-Attention
	\circ
	投稿方式:
添加小编微信	Fengcall(微信号: fengcall19),备注: 姓名-投稿
	Δ长按添加极市平台小编

觉得有用麻烦给个在看啦~

阅读原文

喜欢此内容的人还喜欢

15个目标检测开源数据集汇总

极市平台