Grau en Enginyeria Informàtica Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

MATEMÀTIQUES 1

Part I: Teoria de grafs

Respostes a alguns exercicis

Curs 2022-2023(2)

Aquest document conté les respostes a alguns dels problemes de la segona part de l'assignatura Matemàtiques 1. Aprofitem per fer constar i agrair la tasca del becari docent Gabriel Bernardino en la redacció de les solucions.				
Us ho agraïrem si ens comuniqueu qualsevol errada que det	ecteu.			
	Anna de Mier Montserrat Maureso Dept. Matemàtiques			

Conceptes bàsics de grafs

1.1

$$M_A(T_5) = \left(egin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \end{array}
ight) \qquad M_A(C_5) = \left(egin{array}{cccccc} 0 & 1 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 \end{array}
ight)$$

$$M_A(W_5) = \left(egin{array}{ccccc} 0 & 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 0 \end{array}
ight)$$

3) Per a $n \geq 3$ ($n \geq 4$ en el cas del graf W_n):

$$N_n = (V, E): |V| = n, |E| = 0, \delta(N_n) = 0, \Delta(N_n) = 0$$

 $K = (V, E): |V| = n, |E| = (n) = \frac{n(n-1)}{2}, \delta(K) = n$

$$\begin{split} N_n &= (V,E): \ |V| = n, \ |E| = 0, \delta(N_n) = 0, \ \Delta(N_n) = 0 \\ K_n &= (V,E): \ |V| = n, \ |E| = \binom{n}{2} = \frac{n(n-1)}{2}, \ \delta(K_n) = n-1, \ \Delta(K_n) = n-1 \\ T_n &= (V,E): \ |V| = n, \ |E| = n-1, \ \delta(T_n) = 1, \ \Delta(T_n) = 2 \\ C_n &= (V,E): \ |V| = n, \ |E| = n, \ \delta(C_n) = 2, \ \Delta(C_n) = 2 \\ W_n &= (V,E): \ |V| = n, \ |E| = 2n-2, \ \delta(W_n) = 3, \ \Delta(W_n) = n-1 \end{split}$$

$$T_n = (V, E): |V| = n, |E| = n - 1, \delta(\bar{T}_n) = 1, \Delta(T_n) = 2$$

$$C_n = (V, E): |V| = n, |E| = n, \delta(C_n) = 2, \Delta(C_n) = 2$$

$$W_n = (V, E)$$
: $|V| = n$, $|E| = 2n - 2$, $\delta(W_n) = 3$, $\Delta(W_n) = n - 1$

1.2

■ Solució d' 1. i 2.

1	2	3	4	5	6
4	4	4	1	1	1
5	5	5	2	2	2
6	6	6	3	3	3

■ Solució de 3. i 4.

1	2	3	4	5	6	7
7	7	7	7	7	7	1
						2
						3
						4
						5
						6

1.4 1) $\frac{r \cdot n}{2}$; 2) $r \cdot s$;

1.6

1.7

$$G^c\colon\quad A=\{14,15,25,35\};\quad M_A=\left(\begin{array}{cccc} 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 & 0\\ 1 & 1 & 1 & 0 & 0 \end{array}\right);$$

$$G-4: \quad A = \{12, 13, 23\}; \quad M_A(G-4) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

$$G-45: \quad A=\{12,13,23,24,34\}; \quad M_A(G-45)=\begin{pmatrix} 0 & 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 1 & 0\\ 1 & 1 & 0 & 1 & 0\\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix};$$

$$G+25 \colon \quad A = \{12,13,23,24,25,34,45\}; \quad M_A(G+25) = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix};$$

1.8

$$G^c = (V, A): |V| = n; |A| = \binom{n}{2} - m = \frac{n(n-1)}{2} - m.$$

■
$$G - v = (V, A)$$
: $|V| = n - 1$; $|A| = m - g(u)$.

$$\blacksquare G - a = (V, A): |V| = n; |A| = m - 1.$$

1.10

2)
$$T_3 \times K_3$$
 (1, a) (2, a) (3, a) (3, b) (3, b) (3, c)

$$A = \{(1,a)(1,b); (1,a)(1,c); (1,a)(2,a); (1,b)(1,c); (1,b)(2,b); (1,c)(2,c); (2,a)(2,b); (2,a)(2,c); (2,a)(3,a); (2,b)(2,c); (2,b)(3,b); (2,c)(3,c); (3,a)(3,b); (3,a)(3,c); (3,b)(3,c)\}$$

1.11 Ordre $|V_1||V_2|$, $g_{G_1\times G_2}(u_1, u_2) = g_{G_1}(u_1) + g_{G_2}(u_2)$ i mida $|V_1||A_2| + |V_2||A_1|$.

1.13

1.14 21; $2^{21} = 2097152$.

1.15

2) No existeix.

4) No existeix.

- 6) No existeix.
- **1.20** 4 l'Aran i 4 la parella.

- 1.23
 - $\blacksquare \ G_1 \cong G_2$
 - $\blacksquare \ G_3 \cong G_4$
 - $\blacksquare \ G_5 \cong G_6$
 - $\blacksquare G_7$
 - $\blacksquare G_8 \cong G_9 \cong G_{10}$
 - $\blacksquare G_{11}$
 - $\blacksquare G_{12}$
 - $\blacksquare G_{13}$
- **1.25** 2.

Recorreguts, connexió i distància

2.1 G_1 : Camí de longitud 9: 12345107968. No hi ha camins de longitud 11 ja que té ordre 10. Cicles: 123451; 12381051; 1681079451; 12349710861.

 G_2 : 12345106789. No hi ha camins de longitud 11 ja que té ordre 11. Cicles: 123451; 510611945; 2345109872; 512349116105.

2.4 1) $\langle \{a,b,d,e,f,g,i,j\} \rangle \bigcup \langle \{c,h\} \rangle$. 2) $\langle \{a,b,d,e,g,h,j,m\} \rangle \bigcup \langle \{c,f,i,k\} \rangle \bigcup \langle \{l\} \rangle$.

2.9

- G_1 . Vèrtexs de tall: 4. Arestes pont: cap.
- G_2 . Vèrtexs de tall: 3, 6. Arestes pont: 36.
- G_3 . Vèrtexs de tall: cap. Arestes pont: cap.

2.11
$$n = 10$$

- **2.15** 1) 1. 2) $D(G_1) = 2$, $D(G_2) = 4$. 3) 2. 4) $\lfloor n/2 \rfloor$. 5) 2. 6) n-1.
- **2.16** 1) $G = W_6$ i u un vèrtex de grau 3. 2) $G = W_7$, u el vèrtex de grau 6. 3) $G = ([4], \{12, 13, 14, 23\}), u = 4.$
- **2.17** 1) a) G_1 : e(v)=2, $1 \le v \le 10$; $r(G_1)=2$; tots els vèrtexs són centrals. El centre és, doncs, G_1 . G_2 : e(1)=e(11)=4; e(v)=3, si $2 \le v \le 10$; $r(G_2)=3$; v és vèrtex central si $2 \le v \le 10$. El centre és el subgraf induït pel conjunt de vèrtexs $\{v: 2 \le v \le 10\}$, que és el mateix que $G_2-\{1,11\}$. b) G: e(4)=2, e(v)=3, $v\ne 4$; r(G)=2; l'únic vèrtex central és el 4. Per tant, el centre és un graf trivial, K_1 . 2) C_6 . 3) T_5 .

Grafs eulerians i hamiltonians

- **3.1** Només és eulerià el graf G_4
- **3.2** Tots, llevat del primer dibuix.

- **3.3** 1) 5; 2) 4.
- **3.4** r i s parells.
- 3.5 Si els dos components són complets, 4; altrament, 3.

3.7

- **3.8** 2) 2^n ; $n2^{n-1}$; Q_n és n-regular. 3) n parell.
- **3.9** Només són hamiltonians els grafs G_1 i G_2 .
- **3.12** Dues.

Arbres

- **4.3** n = 18; ordre de T_2 : 36; mida de T_2 : 35.
- **4.4** 1 i 3.
- **4.5** 4,3,3,3,2,1,1,1,1,1,1.

4.6

4.12

- 1) n; 1.
- $2) r2^{r-1}; \lceil r/2 \rceil.$

- **4.14** Dos.
- **4.16** (1, 1, 1, 5); (1, 1, 2, 2, 2, 1); (3, 3, 1, 2, 4, 4, 2, 5, 5).

4.18 Els trajectes d'ordre 3.

4.19

- 1) Els grafs estrella.
- 2) Els grafs "biestrella": dos vèrtexs u, v de grau almenys 2 adjacents i la resta de vèrtexs són fulles que pengen d'u o de v (o sigui, tant d'u com de v penja almenys 1 fulla!).

Excercicis de repàs i consolidació

A.1

A.9 4 components connexos. 7,14,2,4,6,8,10,12,3,9,15,5.

A.19 Sí; no.

A.22 $K_1 i T_4$.

A.23 k-1.

A.24 3,3,2,1,1,1,1.

A.30 Els trajectes d'ordre $n \geq 4$.