Hypothesis Testing Tutorial

Hypothesis on one sample

The file Healthy.dat contains data on the thickness (in μ m) of the retinal nerve fibre layer (RNFL) relative to healthy patients. The file is organized in 4 columns representing the four quadrants in which the retina is normally divided: temporal superior (1st column), temporal inferior (2nd column), nasal superior (3rd column) and nasal inferior (4th column). Use hypothesis testing to answer the following questions regarding the RNFL in the temporal inferior quadrant:

- Is the mean RNFL thickness significantly different from 100 μ m? Use a 95% confidence level and compute the p-value.
- Using a 99% confidence level, is the mean RNFL thickness significantly greater than 86 μ m in healthy subjects? Assume that $RNFL < 86\mu m$ is a completely uninteresting result¹. Compute the p-value.

The file Glaucoma.dat contains the same type of data as Healthy.dat but obtained from a group of glaucoma patients. Answer the following questions regarding the RNFL in the temporal inferior quadrant:

- Is the mean RNFL thickness significantly different from 90 μ m? Use a 90% confidence level and compute the p-value.
- Do you think the 90% confidence interval for the mean RNFL in glaucoma patients contains the value 90 μ m? Compute the interval and verify your argument.

Hypothesis on two samples

• Using a 95% confidence level, test whether or not there is any statistically significant difference in RNFL thickness between healthy subjects and glaucoma patients and provide the *p*-value. Assume unequal variance.

¹An unlikely unrealistic scenario included here just for practice of one-sided tests

