Package 'morphomap'

October 9, 2023

October 9, 2023
Type Package
Title Morphometric Maps, Bone Landmarking and Cross Sectional Geometry
Version 1.5
Description Extract cross sections from long bone meshes at specified intervals along the diaphysis. Calculate two and three-dimensional morphometric maps, cross-sectional geometric parameters, and semilandmarks on the periosteal and endosteal contours of each cross section.
Depends R (>= $3.5.0$)
Imports Arothron (>= 1.0), lattice (>= 0.2), mgcv (>= 1.8), Rvcg (>= 0.18), Morpho (>= 2.0), oce (>= 1.1), sp (>= 1.3), geometry (>= 0.4.0), rgl (>= 0.1), colorRamps (>= 2.3), DescTools (>= 0.99), grDevices (>= 3.5), graphics (>= 3.5)
License GPL-2
Encoding UTF-8
LazyLoad yes
RoxygenNote 7.2.3
NeedsCompilation no
Author Antonio Profico [aut, cre], Luca Bondioli [aut], Pasquale Raia [aut], Julien Claude [ctb], Paul O'Higgins [aut], Damiano Marchi [aut]
Maintainer Antonio Profico <antonio.profico@gmail.com></antonio.profico@gmail.com>
Repository CRAN
Date/Publication 2023-10-09 18:20:02 UTC
R topics documented: morphomap-package Ex_mpShapeList
HomFem38023

2 morphomap-package

Index	4
	PanFem27713
	morphomapZmoment
	morphomapWriteMorphologika
	morphomapVariations
	morphomapTriangulate
	morphomapTri2sects
	morphomapTranslate
	morphomapThickness
	morphomapSort
	morphomapShape
	morphomapSegm
	morphomapRegradius
	morphomapRectangle
	morphomapReadMorphologika
	morphomapPlotShape
	morphomapPic
	morphomapPCA
	morphomapMoment
	morphomapMirror
	morphomapMatrix2array
	morphomapImport
	morphomapFlip
	morphomapExport
	morphomapDF
	morphomapCSG
	morphomapCore
	morphomapCircle
	morphomapCheck
	morphomapCentroid
	morphomapArray2matrix
	morphomapArea
	morphomapAlignment
	morphomap3Dmap
	morphomap2Dmap

Description

morphomap-package

Tool to process long bone meshes (shape data, morphometric maps and cross-sectional geometry)

2D and 3D cortical thickness maps and cross sectional geometry

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Ex_mpShapeList 3

Ex_mpShapeList

example dataset

Description

morphomapShape objects from 5 femora

Usage

```
data(Ex_mpShapeList)
```

Author(s)

Antonio Profico

HomFem38023

example dataset

Description

3D mesh of a human femur bone

Usage

```
data(HomFem38023)
```

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomap2Dmap

morphomap2Dmap

Description

Create a 2D cortical thickness map

4 morphomap2Dmap

Usage

```
morphomap2Dmap(
  morphomap.shape,
  rem.out = FALSE,
  fac.out = 0.5,
  smooth = FALSE,
  scale = TRUE,
  smooth.iter = 5,
  gamMap = FALSE,
  nrow = 90,
  ncol = 100,
  gd1 = 250,
 method = "equiangular",
  unwrap = ^{"}A^{"},
  plot = TRUE,
 pal = blue2green2red(101),
  aspect = 2
)
```

Arguments

morphomap.shape

list: output from morphomapShape function

rem.out logical: if TRUE the outlier will be removed

fac.out numeric: parameter to set the threshold in outliers detection

smooth logical: if TRUE a smooth filter is applied

scale logical: if TRUE the thichkness matrix is scaled from 0 to 1

smooth.iter numeric: number of smoothing iterations
gamMap logical: if TRUE gam smoothing is applied
nrow numeric: number of rows for gam smoothing
ncol numeric: number of columns for gam smoothing

gdl numeric: number of degree of freedom for gam smoothing

method character: if set on "equiangular" the cortical thickness is meant as the distance

of the segment intersecting the external and internal outline starting from the centroid of the section. If set on "closest" the cortical thickness is calculated at

each point as the closest distance between external and internal outlines

unwrap character: starting qaudrant to unwrap the diaphysis ("A"=anterior, "L"=lateral,

"P"=posterior, "M"=mesial)

plot logical: if TRUE the 2D morphometric map is plotted

pal character vector: colors to be used in the map production

aspect numeric: axis ratio for 2D morphometric map

morphomap2Dmap 5

Value

dataframe dataframe for colormap production 2Dmap thickness color map gamoutput output from GAM data input used to build the GAM map

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
if (interactive()){
library(colorRamps)
#morphomap on a human femur bone
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,</pre>
inn.sur=endMesh,num.sect=61,mech.len = mech_length, start = 0.2,end=0.8)
shapeSections<-morphomapShape(rawSections,24,sects_vector=NULL,cent.out="CCA",
delta=0.1, side="left")
#built 2D morphometric map without GAM smoothing
bone2Dmap<-morphomap2Dmap(morphomap.shape=shapeSections,</pre>
                     plot = TRUE, rem.out = TRUE, fac.out = 1.0, pal = blue2green2red(101),
                           aspect=2)
#built 2D morphometric map with GAM smoothing
bone2Dmap<-morphomap2Dmap(morphomap.shape=shapeSections,gam=TRUE,
                     plot = TRUE, rem.out = TRUE, fac.out = 1.0, pal = blue2green2red(101),
                           aspect=2)
#morphomap on a chimpanzee femur bone
data(PanFem27713)
meshes<-morphomapSegm(PanFem27713, param1=3)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-277.13
rawSections<-morphomapCore(out.sur=perMesh,
                  inn.sur=endMesh,num.sect=61,mech.len = mech_length, start = 0.2,end=0.8)
shapeSections<-morphomapShape(rawSections,24,sects_vector=NULL,cent.out="CCA",</pre>
delta=0.1, side="left")
#built 2D morphometric map without GAM smoothing
bone2Dmap<-morphomap2Dmap(morphomap.shape=shapeSections,plot = TRUE,</pre>
rem.out = TRUE, fac.out = 1.0, pal = blue2green2red(101), aspect=2)
#built 2D morphometric map with GAM smoothing
bone2Dmap<-morphomap2Dmap(morphomap.shape=shapeSections,gam=TRUE,
                      plot = TRUE, rem.out = TRUE, fac.out = 1.0, pal = blue2green2red(101),
                           aspect=2)
```

6 morphomap3Dmap

}

morphomap3Dmap

morphomap3Dmap

Description

Plot a 3D thickness map in four different anatomical views

Usage

```
morphomap3Dmap(
  morphomap.shape,
  out.sur,
  method = "equiangular",
  scale = TRUE,
  rem.out = FALSE,
  fac.out = 0.5,
  smooth = FALSE,
  smooth.iter = 5,
  k = 5,
  plot = TRUE,
  pal = blue2green2red(101)
)
```

Arguments

morphomap.shape

list: output from morphomapShape function

out.sur 3D mesh: 3D mesh of the long bone

method character: if set on "equiangular" the cortical thickness is meant as the distance

of the segment intersecting the external and internal outline starting from the centroid of the section. If set on "closest" the cortical thickness is calculated at

each point as the closest distance between external and internal outlines

scale logical: if TRUE the cortical thickness matrix will be scaled from 0 to 1 rem. out logical: if TRUE outliers are identified and removed from thickness matrix

fac.out numeric: parameter to set the threshold in outliers detection

smooth logical: if TRUE the smoothing filter is applied on the thickness matrix

smooth.iter numeric: number of smoothing iterations

k integer: neighbourhood of kd-tree to search the nearest semilandmarks to each

vertex

plot logical: if TRUE the 3D map is plotted

pal character vector: colors to be used in the map production

morphomap3Dmap 7

Value

cols color associated at each vertex of 3D mesh thickmat thickness matrix after smoothing and outliers removal

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
if(interactive()){
#morphomap on a human femur bone
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,</pre>
inn.sur=endMesh,num.sect=61,
mech.len = mech_length,param1 = 0.5,
radius.fact = 2.5, npovs = 100, clean_int_out = TRUE,
num.points = 500, start = 0.2, end=0.8)
shapeSections<-morphomapShape(rawSections,24,sects_vector=NULL,cent.out="CCA",
delta=0.1, side="left")
#built 3D morphometric map
bone3Dmap<-morphomap3Dmap(shapeSections, out.sur=perMesh,
                           plot = TRUE,rem.out=TRUE,
                           fac.out=1.5, smooth=TRUE,
                           smooth.iter=5)
#or
require(rgl)
rgl::open3d()
rgl::shade3d(perMesh,col=bone3Dmap$cols,specular="black")
#morphomap on a chimpanzee femur bone
data(PanFem27713)
meshes<-morphomapSegm(PanFem27713, param1=3)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-277.13
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end=0.8)
shapeSections<-morphomapShape(rawSections,24,sects_vector=NULL,cent.out="CCA",
delta=0.1, side="left")
#built 3D morphometric map
bone3Dmap<-morphomap3Dmap(shapeSections, out.sur=perMesh,</pre>
                           plot = TRUE, rem.out=TRUE,
                           fac.out=1.5, smooth=TRUE,
                           smooth.iter=5)
#or
```

```
require(rgl)
rgl::open3d()
rgl::shade3d(perMesh,col=bone3Dmap$cols,specular="black")
}
```

morphomapAlignment

morphomap A lignment

Description

Align a femur bone following the protocol proposed by Ruff (2002)

Usage

```
morphomapAlignment(
 mesh,
  set,
  side = c("left", "right"),
 param1 = 4,
 iter1 = 2000,
  iter2 = 2000,
 iter3 = 2000,
  from 1 = 180,
  to1 = 360,
  from 2 = -5,
  to2 = 5,
  from3 = -5,
  to3 = 5,
  tol = 0.5
)
```

Arguments

mesh	3D mesh: femur long bone mesh
set	matrix: 7 landmarks acquired on the mesh (see details)
side	character: specify if the femur bone is "left" or "right" side
param1	numeric: parameter for spherical flipping (usually ranged between 3 and 4)
iter1	numeric: number of iterations first alignment
iter2	numeric: number of iterations second alignment
iter3	numeric: number of iterations third alignment
from1	numeric: inferior range of the allowed rotation in the first alignment
to1	numeric: superior range of the allowed rotation in the first alignment
from2	numeric: inferior range of the allowed rotation in the second alignment
to2	numeric: superior range of the allowed rotation in the second alignment
from3	numeric: inferior range of the allowed rotation in the third alignment
to3	numeric: superior range of the allowed rotation in the third alignment
tol	numeric: maximum allowed error in the alignment expressed in mm

morphomapArea 9

Details

The function 'morphomapAlignment' is designed to align a femur bone. I did not tested on other long bones. The function requires 7 anatomical landmarks samples as follow: 1-the point at the center of the diaphysis in posterior view after the less trochanter, 2- the most posterior point on the lateral epicondyle, 3-the most posterior point on the medial epicondyle, 4- the most inferior point on the intercondilar fossa, 5- neck of the femur, 6- the most inferior point on the medial epicondyle and 7-the most inferior point on the lateral epicondyle. If the function in a short time does not complete the alignment, please stop the R session, check your landmark configuration or try to increase the value of the argument 'tol'.

Value

sur: mesh of the aligned femur bone coo: coordinates of the landmark used in the alignment (plus two added automatically) mech length: mechanical length of the aligned femur bone

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomapAred

Description

Shoelace formula to calculate the area of a closed outline

Usage

```
morphomapArea(p, delta = 0.1, method = "shoelace")
```

Arguments

p matrix: kx2 matrix

delta numeric: picture elements of adjustable side length

method character: the user can choice to calculate the area applying the "shoelace" for-

mula or discretizing the cross sections in dA areas (method = "delta")

Value

ar numeric: area

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

10 morphomapCentroid

Examples

```
extsec<-morphomapCircle(10,100)
#shoelace method
area<-morphomapArea(extsec, method="shoelace")
#delta method
area<-morphomapArea(extsec, method="delta",delta=0.01)</pre>
```

morphomapArray2matrix morphomapArray2matrix

Description

Convert an array into a matrix

Usage

```
morphomapArray2matrix(array)
```

Arguments

array an array

Value

mat a matrix

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomapCentroid morphomapCentroid

Description

Calculate the barycenter of the cortical area

Usage

```
morphomapCentroid(cp, mp, delta = 0.1)
```

Arguments

cp matrix: coordinates of the external outline of the section
mp matrix: coordinates of the internal outline of the section
delta numeric: picture elements of adjustable side length

morphomapCheck 11

Value

centroid numeric vector: coordinates of the cortical area

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
extsec<-morphomapCircle(10,100)
intsec<-morphomapCircle(8,100)
plot(extsec,asp=1,type="1")
points(intsec,col=2,type="1")
cent<-morphomapCentroid(extsec,intsec,delta = 0.1)
points(cent[1],cent[2],pch=19,col=3)</pre>
```

morphomapCheck

morphomapCheck

Description

Plot the long bone mesh to check the orientation of the long bone

Usage

```
morphomapCheck(mesh, col = "white")
```

Arguments

mesh 3D mesh: long bone 3D model

col character: color mesh

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
library(morphomap)
data(HomFem38023)
morphomapCheck(HomFem38023)
```

12 morphomapCore

 ${\tt morphomapCircle}$

morphomap Circle

Description

Define a circular outline

Usage

```
morphomapCircle(r = 1, n = 1000)
```

Arguments

r numeric: radius of the outline

n numeric: number of points along the outline

Value

mat matrix with coordinates

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
extsec<-morphomapCircle(10,100)
intsec<-morphomapCircle(8,100)
plot(extsec,asp=1,type="1")
points(intsec,type="1",col=2)</pre>
```

morphomapCore

morphomap Core

Description

Tool to build 3D and 2D cross sections

morphomapCore 13

Usage

```
morphomapCore(
  out.sur = out.sur,
  inn.sur = inn.sur,
  num.sect = 61,
  mech.len,
  clean_int_out = TRUE,
  param1 = 0.5,
  radius.fact = 2.5,
  npovs = 100,
  num.points = 500,
  start = 0.2,
  end = 0.8,
  print.progress = TRUE
)
```

Arguments

out.sur	object of class mesh3d
inn.sur	object of class mesh3d
num.sect	number of sections
mech.len	mechanical length of the long bone
clean_int_out	logical if TRUE the inner section will be cleaned by using spherical flipping
param1	numeric parameter for spherical flipping operator (how much the section will be deformed)
radius.fact	numeric parameter for spherical flipping operator (distance from the center of the outline at which the povs are defined)
npovs	numeric: number of points of view defined around the section
num.points	number of equiengular points to be defined on each section
start	percentage of the mechanical length from which the first section is defined
end	percentage of the mechanical length from which the last section is defined
print.progress	logical: if TRUE a progress bar is printed to the screen

Value

3D_out num.pointsx3xnum.sect array of the external outlines
3D_inn num.pointsx3xnum.sect array of the internal outlines
2D_out num.pointsx2xnum.sect array of the external outlines
2D_inn num.pointsx2xnum.sect array of the internal outlines
mech_length mechanical length of the long bone
start percentage of the mechanical length from which the first section is defined
end percentage of the mechanical length from which the last section is defined

14 morphomapCSG

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
if(interactive()){
#raw section on a human femur bone
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end=0.8)
#2D plot of the first section
plot(rawSections$`2D_out`[,,1],col="grey",asp=1,xlab="x",ylab="y",type="l")
points(rawSections$`2D_inn`[,,1],col="red",type="l")
#3D plot of the first section
require(rgl)
rgl::open3d()
rgl::plot3d(rawSections$`3D_out`[,,1],aspect=FALSE,col="grey",
type="l", lwd=5, xlab="x", ylab="y", zlab="z")
rgl::plot3d(rawSections$`3D_inn`[,,1],aspect=FALSE,col="red",
type="1", lwd=5, add=TRUE)
#raw section on a chimpanzee femur bone
data(PanFem27713)
meshes<-morphomapSegm(PanFem27713, param1=3)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-277.13
rawSections<-morphomapCore(out.sur=perMesh,
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end = 0.8)
#2D plot of the first section
plot(rawSections$`2D_out`[,,1],col="grey",asp=1,xlab="x",ylab="y",type="l")
points(rawSections$`2D_inn`[,,1],col="red",type="l")
#3D plot of the first section
require(rgl)
rgl::open3d()
rgl::plot3d(rawSections$`3D_out`[,,1],aspect=FALSE,col="grey",
type="1", lwd=5, xlab="x", ylab="y", zlab="z")
rgl::plot3d(rawSections$`3D_inn`[,,1],aspect=FALSE,col="red",
type="1", lwd=5, add=TRUE)
}
```

morphomapCSG 15

Description

Tool for Cross-sectional geometry

Usage

```
morphomapCSG(
  cp,
  mp,
  translate = FALSE,
  center = c("I", "E", "CCA"),
  delta = 0.1,
  Cx = NULL,
  Cy = NULL,
  I_xy = TRUE,
  I_minmax = TRUE,
  Zxy = TRUE
)
```

Arguments

cp matrix: coordinates of the external outline
mp matrix: coordinates of the internal outline
translate logical: if TRUE the section will be centered

center how to define the center of each section. The method allowed are "CCA" (center

of cortical area), "E" (barycenter of the external outline) and "I" (barycenter of

the internal outline)

delta numeric: picture elements of adjustable side length

Cx numeric: new x center coordinate
Cy numeric: new y center coordinate

I_xy logical: if TRUE the product of inertia around the x and y axis is calculated

I_minmax logical: if TRUE the Imin and Imax will be calculated

Zxy logical: if TRUE the polar moment of inertia will be calculated

Value

Cx x coordinate of the centered section

Cy y coordinate of the centered section

T_area total area

M_area medullar area

CA cortical area

Ext_perim external perimeter

Med_perim medullar perimiter

Mean_thick mean thickness of the section

16 morphomapCSG

Sd_thick thickness standard deviation

Min_thick minimum thickness

Max_thick maximum thickness

Ix numeric: moment of inertia around the x axis
Iy numeric: moment of inertia around the y axis
Zx numeric: moment of inertia around the x axis
Zy numeric: moment of inertia around the y axis

Zpol numeric: polar moment of inertia

dx new centered coordinates of the internal outline dy new centered coordinates of the internal outline

Imin numeric: minimum moment of inertia
Imax numeric: maximum moment of inertia

J numeric: polar moment of inertia

Zmax numeric: the maximum polar section Zmin numeric: the minimum polar section

theta numeric: theta angle

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
#calculation of csg parameter on a human femur cross section
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end = 0.8)
shapeSections<-morphomapShape(rawSections, 250, sects_vector=NULL, cent.out="CCA",
delta=0.1, side="left")
csgSect31<-morphomapCSG(cp = shapeSections$`2D_out`[,,31],</pre>
                         mp=shapeSections$`2D_inn`[,,31],
                         translate = FALSE,center="CCA")
#Cross sectional geometry along the entire femur bone
results<-matrix(NA,ncol=24,nrow=61)
rownames(results)<-paste("section",c(1:61))</pre>
colnames(results)<-c("Cx","Cy","T_area","M_area","CA",</pre>
                      "Ext_perim", "Med_perim", "Mean_thick", "Sd_thick",
                      "Min_thick", "Max_thick", "Ix", "Iy", "Zx" , "Zy", "Zpol" ,
                      "dx", "dy", "Imin", "Imax", "J", "Zmax", "Zmin", "theta")
```

morphomapDF 17

```
for(i in 1:61){
  results[i,]<-unlist(morphomapCSG(cp = shapeSections$`2D_out`[,,i],</pre>
                                       mp=shapeSections$`2D_inn`[,,i],
                                     translate = FALSE,center="CCA",delta = 0.5))
}
plot(c(1:61),results[,24],type="b",main="Theta",cex=1,
     xlab="section",ylab="radians")
#calculation of csg parameter on a chimpanzee femur cross section
data(PanFem27713)
meshes<-morphomapSegm(PanFem27713, param1=3)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-277.13
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end=0.8)
shapeSections<-morphomapShape(rawSections, 250, sects_vector=NULL, cent.out="CCA",
delta=0.1, side="left")
csgSect31<-morphomapCSG(cp = shapeSections$`2D_out`[,,31],</pre>
                         mp=shapeSections$`2D_inn`[,,31],
                         translate = FALSE,center="CCA")
#Cross sectional geometry along the entire femur bone
results<-matrix(NA,ncol=24,nrow=61)
rownames(results)<-paste("section",c(1:61))</pre>
colnames(results)<-c("Cx","Cy","T_area","M_area","CA",</pre>
                      "Ext_perim", "Med_perim", "Mean_thick", "Sd_thick",
                      "Min_thick", "Max_thick", "Ix", "Iy", "Zx" , "Zy", "Zpol" ,
                      "dx", "dy", "Imin", "Imax", "J", "Zmax", "Zmin", "theta")
for(i in 1:61){
  results[i,]<-unlist(morphomapCSG(cp = shapeSections$`2D_out`[,,i],</pre>
                                     mp=shapeSections$`2D_inn`[,,i],
                                     translate = FALSE,center="CCA",delta = 0.5))
  }
plot(c(1:61),results[,24],type="b",main="Theta",cex=1,
     xlab="section",ylab="radians")
```

morphomapDF

morphomapDF

Description

Tool to build a data.frame suitable for morphometric maps

18 morphomapDF

Usage

```
morphomapDF(
  morphomap.thickness,
  rem.out = TRUE,
  fac.out = 0.5,
  smooth = TRUE,
  scale = TRUE,
  smooth.iter = 5,
  method = "equiangular",
  unwrap = "A"
)
```

Arguments

morphomap.thickness

list: morphomap.Thickness object

rem.out logical: if TRUE the outlier will be removed

fac.out numeric: parameter to set the threshold in outliers detection

smooth logical: if TRUE the smooth algorithm is applied

scale logical: if TRUE the thichkness matrix is scaled from 0 to 1

smooth.iter numeric: number of smoothing iterations

method character: if set on "equiangular" the cortical thickness is meant as the distance

of the segment intersecting the external and internal outline starting from the centroid of the section. If set on "closest" the cortical thickness is calculated at

each point as the closest distance between external and internal outlines

unwrap character: starting qaudrant to unwrap the diaphysis ("A"=anterior, "L"=lateral,

"P"=posterior, "M"=mesial)

Value

XYZ data.frame for morphometric map labels character vector for x labels in the morphometric map

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
library(lattice)
library(colorRamps)
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23</pre>
```

morphomapExport 19

morphomapExport

morphomapExport

Description

Export the output from ToothAlignement

Usage

```
morphomapExport(mpShapeObject, id, file)
```

Arguments

mpShapeObject list: list containing morphomapShape objects

id character: label name

file character: name the output file

Author(s)

Antonio Profico

morphomapFlip

morphomapFlip

Description

Spherical flipping operator for bi-dimensional configuration

Usage

```
morphomapFlip(mat, param1 = 0.8, param2 = 10, radius.fact = 1.5, npovs = 100)
```

20 morphomapImport

Arguments

mat numeric matrix: coordinates of the bi-dimensional configuration

param1 numeric: first parameter for spherical flipping
param2 numeric: second parameter for spherical flipping

radius.fact mechanical length of the long bone

npovs number of evenly spaced points to be defined on each section

Value

mat matrix after spherical flipping

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
#create a section
extsec<-morphomapCircle(10,1000)
intsec<-morphomapCircle(8,1000)</pre>
#simulate noise
noiseX < -rnorm(1000, mean = 0, sd = 0.2)
noiseY < -rnorm(1000, mean = 0, sd = 0.2)
noise<-cbind(noiseX,noiseY)</pre>
noisect<-intsec+noise
#spherical flipping
flipsect<-morphomapFlip(noisect,param1 = 2,radius.fact = 2)</pre>
sortsect<-morphomapSort(flipsect)</pre>
#original section
plot(extsec,asp=1,type="l",xlim=c(-15,15),ylim=c(-15,15))
points(intsec,asp=1,type="1",xlim=c(-15,15),ylim=c(-15,15))
#noise
points(noisect,col=2)
#new section after spherical flipping
points(sortsect,type="l",col=3,asp=1,lwd=2)
```

morphomapImport

morphomapImport

Description

Import a morphomapShape object exported with morphomapExport

Usage

```
morphomapImport(file)
```

Arguments

file character: name of input file

Value

3D_out num.pointsx3xnum.sect array in which the external outlines are stored 3D_inn num.pointsx3xnum.sect array in which the internal outlines are stored 2D_out num.pointsx2xnum.sect array in which the external outlines are stored 2D_inn num.pointsx2xnum.sect array in which the interal outlines are stored ALPM_inn array with the coordinates of ALPM coordinates on the external outline ALPM_out array with the coordinates of ALPM coordinates on the internal outline mech_length mechanical length of the long bone

start percentage of the mechanical length from which the first section is defined end percentage of the mechanical length from which the last section is defined

Author(s)

Antonio Profico

morphomapMatrix2array morphomapMatrix2array

Description

Convert a matrix into an array

Usage

```
morphomapMatrix2array(matrix, nsects)
```

Arguments

matrix an array

nsects number of cross sections

Value

array an array

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

22 morphomapMoment

morphomapMirror

morphomap Mirror

Description

Mirror a long bone mesh along the yz plane

Usage

```
morphomapMirror(mesh)
```

Arguments

mesh

object of class mesh3d

Value

mesh: object of class mesh3d

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
if(interactive()){
#a left human femur bone
require(rgl)
data(HomFem38023)
lfem<-HomFem38023
rfem<-morphomapMirror(lfem)
rgl::open3d()
rgl::wire3d(lfem,col="green")
rgl::ire3d(rfem,col="red")
}</pre>
```

morphomapMoment

morphomapMoment

Description

Calculate the moment of inertia around the x and y axes and the product of inertia

Usage

```
morphomapMoment(cp, mp, delta = 0.1)
```

morphomapPCA 23

Arguments

cp matrix: coordinates of the external outline
mp matrix: coordinates of the internal outline

delta numeric: picture elements of adjustable side length

Value

Ix numeric: moment of inertia around the x axis

Iy numeric: moment of inertia around the y axis

Ixy numeric: product of inertia around the x and y axis

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
#create a section
extsec<-morphomapCircle(10,1000)
intsec<-morphomapCircle(8,1000)
InMs<-morphomapMoment(extsec,intsec,delta=0.1)</pre>
```

morphomapPCA

morphomapPCA

Description

Calculate maps of cortical thickness and perform a Principal Component Analysis

Usage

```
morphomapPCA(
  mpShapeList,
  gamMap = TRUE,
  nrow = 61,
  ncol = 24,
  rem.out = TRUE,
  scaleThick = FALSE,
  fac.out = 1.5,
  method = "equiangular",
  scalePCA = TRUE,
  unwrap = "A"
)
```

24 morphomapPic

Arguments

mpShapeListlist: list containing morphomapShape objects gamMap list: list containing morphomapShape objects list: list containing morphomapShape objects nrow list: list containing morphomapShape objects ncol list: list containing morphomapShape objects rem.out list: list containing morphomapShape objects scaleThick fac.out list: list containing morphomapShape objects list: list containing morphomapShape objects method scalePCA list: list containing morphomapShape objects list: list containing morphomapShape objects unwrap

Value

PCscores PC scores

PCs loadings

Variance Table of the explained Variance by the PCs meanMap mean morphometric map

CorMaps morphometric maps

Author(s)

Antonio Profico

Examples

data(Ex_mpShapeList)
PCA<-morphomapPCA(Ex_mpShapeList)
plot(PCA\$PCscores)
barplot(PCA\$Variance[,2])</pre>

morphomapPic morphomapPic

Description

Save the sections defined via morphomapShape or morphomapCore

morphomapPic 25

Usage

```
morphomapPic(
  morphomap.core,
  morphomap.shape,
  vector = NULL,
  full = TRUE,
  width = 1500,
  height = 1500,
  pointsize = 12,
  res = 300,
  colthk = "red",
  collbs = "blue",
  dirpath = tempdir()
)
```

Arguments

morphomap.core list: morphomap.core object

morphomap.shape

list: morphomap.shape object

vector numeric: define which sections will be saved

full logical: if TRUE the thickness at ALPM is reported

width numeric: width of the picture
height numeric: height of the picture
pointsize numeric: pointsize of plotted text

res numeric: the nominal resolution in ppi which will be recorded

colthk specify the color for the numbers collbs specify the color for the labels

dirpath character: path of the directory where the pictures will be saved

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
shapeSections<-morphomapShape(rawSections,250,sects_vector=NULL,cent.out="CCA",</pre>
delta=0.5, side="left")
morphomapPic(rawSections, shapeSections, full=TRUE, dirpath=tempdir(),
            width=2500, height=2500)
#export picture from a chimpanzee femur bone
data(PanFem27713)
meshes<-morphomapSegm(PanFem27713, param1=3)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-277.13</pre>
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=11,mech.len = mech_length,
                            start = 0.2, end=0.8)
shapeSections<-morphomapShape(rawSections,250,sects_vector=NULL,cent.out="CCA",delta=0.5,
side="left")
morphomapPic(rawSections, shapeSections, full=TRUE, dirpath=tempdir(),
             width=2500, height=2500)
```

morphomapPlotShape

morphomapPlotShape

Description

Visualize 2D and 3D cross sections

Usage

```
morphomapPlotShape(
  Shape,
  dims = 3,
  col1 = "red",
  col2 = "green",
  colc = "orange",
  colr = "violet",
  coll1 = "darkred",
  coll2 = "darkgreen",
  size = 1.5,
  1wd = 0.7,
  colmesh1 = "red",
  colmesh2 = "green",
  alpha = 0.3
  tri = TRUE,
  outlines = TRUE,
  points = TRUE,
  lines = FALSE,
  centroid = FALSE,
```

```
cent.out = "CCA",
delta = 0.1,
vecs = NULL
)
```

Arguments

Shape	list: output from morphomapShape function
dims	numeric: 2 = bi-dimensional cross sections, 3 = three-dimensional cross sections
col1	color of the external outline
col2	color of the internal outline
colc	color of the centroid of the cross section
colr	color of the radii
coll1	color of the lines on the enternal outline
coll2	color of the lines on the internal outline
size	numeric: points and spheres size
lwd	numeric: line width in pixels
colmesh1	color of the periosteal mesh
colmesh2	color of the endosteal mesh
alpha	numeric: alpha value between 0(fully transparent) and 1 (opaque)
tri	logical: if TRUE the semilandmarks configuration is triangulated
outlines	logical: if TRUE the 2D and 3D outlines are plotted
points	logical: if TRUE points (2D) and spheres (3D) are plotted
lines	logical: if TRUE 2D and 3D lines are plotted
centroid	logical: if TRUE 2D and 3D centroids are plotted
cent.out	how to define the center of each section. The method allowed are "CCA" (center of cortical area), "E" (barycenter of the external outline) and "I" (barycenter of the internal outline)
delta	pixel size used to calculate the CCA
vecs	numeric: which sections will be plotted. If dims is set on 2 only the first element of the vector vecs is considered

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
if(interactive()){
#morphomap on a human femur bone
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023)
perMesh<-meshes$external</pre>
```

```
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,
inn.sur=endMesh,num.sect=61,mech.len = mech_length, start = 0.2,end=0.8)
shapeSections<-morphomapShape(rawSections,21,sects_vector=NULL,cent.out="CCA",
delta=0.1, side="left")
#Plot the object morphomapShape in three dimensions
morphomapPlotShape(shapeSections,dims=3, size=0.5)
#Plot a 2D cross-section
morphomapPlotShape(shapeSections,dims=2,lines=TRUE,vecs=31)
}</pre>
```

morphomapReadMorphologika

morphomap Read Morphologika

Description

Import an array stored in a morphologika file

Usage

morphomapReadMorphologika(file)

Arguments

file

path of the file to be read

Value

out list containing an array, labels, groups and variables

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomapRectangle

morphomapRectangle

Description

Define a rectangular outline

Usage

```
morphomapRectangle(l = 1, h = 1, n = 1000)
```

morphomapRegradius 29

Arguments

numeric: length of the rectanglenumeric: height of the rectangle

n numeric: number of points along the outline

Value

mat matrix with coordinates

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
extsec<-morphomapRectangle(10,6,100)
intsec<-morphomapRectangle(8,4,100)
plot(extsec,asp=1,type="1")
points(intsec,type="1",col=2)</pre>
```

morphomapRegradius

morphomapRegradius

Description

Wrapper of the function regularradius written by Julien Claude (Morphometrics with R)

Usage

```
morphomapRegradius(mat, center, n)
```

Arguments

mat a kx2 matrix

center coordinates of the center from which the calculation of regular radius started

n number of points

Value

V2 position of landmarks equi angular spaced

Author(s)

Julien Claude, Antonio Profico

References

Claude, J. (2008). Morphometrics with R. Springer Science & Business Media.

30 morphomapSegm

Examples

```
extsec<-morphomapCircle(10,1000)
sel<-morphomapRegradius(extsec,center = c(0,0),n=11)
selcoo<-extsec[sel,]
plot(extsec,type="1",asp=1)
points(selcoo,col="red",pch=19)</pre>
```

morphomapSegm

morphomap Segm

Description

Separate a mesh from its visible and not visible components by using CA-LSE method

Usage

```
morphomapSegm(mesh, views = 30, param1 = 4, num.cores = NULL)
```

Arguments

mesh object of class mesh3d

views numeric: number of points of view

param1 numeric: first parameter for spherical flipping (usually ranged between 3 and 4)

num.cores numeric: number of cores

Details

The result could be affected by the value set in the param1 argument. Before running morphomapCore please the periosteal and endosteal surfaces.

Value

external mesh3d of the visible facets from the points of view internal mesh3d of the not visible facets from the points of view

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

References

Profico A., Schlager S., Valoriani V., Buzi C., Melchionna M., Veneziano A., Raia P., Moggi-Cecchi J. and Manzi G., 2018. Reproducing the internal and external anatomy of fossil bones: Two new automatic digital tools. American Journal of Physical Anthropology 166(4): 979-986.

morphomapShape 31

Examples

```
if(interactive()){
#automatic separation of external and medullar femur components
require(rgl)
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023,param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
rgl::open3d()
rgl::wire3d(perMesh,col="grey")
rgl::wire3d(endMesh,col="red")
}</pre>
```

morphomapShape

morphomapShape

Description

Tool for the extraction of equiangular landmarks on the entire diaphysis

Usage

```
morphomapShape(
  morphomap.core,
  num.land,
  sects_vector,
  cent.out = "CCA",
  delta = 0.1,
  side = "left"
)
```

Arguments

morphomap.core list: morphomap.core object

num.land numeric: number of landmarks defining each section

sects_vector numeric: number of sections

cent.out how to define the center of each section. The method allowed are "CCA" (center

of cortical area), "E" (barycenter of the external outline) and "I" (barycenter of

the internal outline)

delta pixel size used to calculate the CCA

side character: specify if the long bone is "left" or "right" side

32 morphomapShape

Value

3D_out num.pointsx3xnum.sect array in which the external outlines are stored 3D_inn num.pointsx3xnum.sect array in which the internal outlines are stored 2D_out num.pointsx2xnum.sect array in which the external outlines are stored 2D_inn num.pointsx2xnum.sect array in which the interal outlines are stored ALPM_inn array with the coordinates of ALPM coordinates on the external outline ALPM_out array with the coordinates of ALPM coordinates on the internal outline mech_length mechanical length of the long bone start percentage of the mechanical length from which the first section is defined end percentage of the mechanical length from which the last section is defined

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
library(morphomap)
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh, inn.sur=endMesh, num.sect=61 ,</pre>
mech.len = mech_length, start = 0.2,end=0.8,num.points = 500)
# Shape coordinates defining as center the barycenter of the cortical area
shapeSections_CCA<-morphomapShape(rawSections,21,sects_vector=NULL, cent.out="CCA",
delta=0.1,side="left")
# First the first cross section (2D)
morphomapPlotShape(shapeSections_CCA,dims=2,cent.out="CCA",vecs=1)
# First the first cross section (3D)
morphomap Plot Shape (shape Sections\_CCA, dims=3, size=0.5, lwd=2, cent.out="I", vecs=1)
# The entire diaphysis (3D)
morphomapPlotShape(shapeSections_CCA,dims=3,size=0.5,lwd=2,cent.out="I",vecs=NULL)
# Shape coordinates defining as center the barycenter of the external perimeter
shapeSections_E<-morphomapShape(rawSections, 21, sects_vector=NULL, cent.out="E",</pre>
delta=0.1, side="left")
# First the first cross section (2D)
morphomapPlotShape(shapeSections_E,dims=2,cent.out="E",vecs=1)
# First the first cross section (3D)
morphomapPlotShape(shapeSections_E,dims=3,size=0.5,lwd=2,cent.out="I",vecs=1)
# The entire diaphysis (3D)
morphomapPlotShape(shapeSections_E,dims=3,size=0.5,lwd=2,cent.out="I",vecs=NULL)
# Shape coordinates defining as center the barycenter of the internal perimeter
shapeSections_I<-morphomapShape(rawSections, 21, sects_vector=NULL, cent.out="I",</pre>
delta=0.1, side="left")
```

morphomapSort 33

```
# First the first cross section (2D)
morphomapPlotShape(shapeSections_I,dims=2,lines=TRUE,cent.out="I",vecs=1)
# First the first cross section (3D)
morphomapPlotShape(shapeSections_I,dims=3,lines=TRUE,centroid=TRUE, size=0.5,
lwd=2,cent.out="I",vecs=1)
# The entire diaphysis (3D)
morphomapPlotShape(shapeSections_I,dims=3,size=0.5,lwd=2,cent.out="I",vecs=NULL)
```

morphomapSort

morphomapSort

Description

Sort a series of points stored as a 2D matrix

Usage

```
morphomapSort(mat)
```

Arguments

mat

numeric matrix: a kx2 matrix

Value

mat sorted kx2 matrix

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
rand<-sample(100)
extsec<-morphomapCircle(10,100)[rand,]
plot(extsec,type="1",asp=1)
sorted<-morphomapSort(extsec)
plot(sorted,type="1",asp=1)</pre>
```

morphomapThickness

morphomap Thickness

Description

Tool for the extraction of equiangular landmarks on the entire diaphysis

Usage

```
morphomapThickness(morphomap.shape)
```

Arguments

```
morphomap.shape
```

list: morphomap.shape object

Value

sect_thickness cortical thickness at each pair of landmarks on the external and internal outlines ALPM_thickness cortical thickness at ALPM quadrants

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
#morphomap on a human femur bone
data(HomFem38023)
meshes<-morphomapSegm(HomFem38023, param1=4)</pre>
perMesh<-meshes$external
endMesh<-meshes$internal
mech_length<-380.23
rawSections<-morphomapCore(out.sur=perMesh,</pre>
                            inn.sur=endMesh,num.sect=61,mech.len = mech_length,
                            start = 0.2, end=0.8)
shapeSections<-morphomapShape(rawSections,21,sects_vector=NULL,cent.out="CCA",delta=0.1)</pre>
femthick<-morphomapThickness(shapeSections)</pre>
plot(femthick$ALPM_thickness[1,,],type="l",
     main="LAMP thickness",xlab="section",ylab="thickness")
points(femthick$ALPM_thickness[2,,],type="1",col=2)
points(femthick$ALPM_thickness[3,,],type="1",col=3)
points(femthick$ALPM_thickness[4,,],type="1",col=4)
```

morphomapTranslate 35

morphomapTranslate	morphomapTranslate
mor priomapir anstace	morphomapiransiale

Description

Translate a section to a new center defined by the user

Usage

```
morphomapTranslate(corA, medA, Cx, Cy)
```

Arguments

corA matrix: coordinates of the external outline
medA matrix: coordinates of the internal outline
Cx numeric: new x center coordinate
Cy numeric: new y center coordinate

Value

cortical new centered coordinates of the external outline medullar new centered coordinates of the internal outline

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

```
extsec<-morphomapCircle(10,1000)
intsec<-morphomapCircle(8,1000)
plot(extsec,asp=1,type="l",xlim=c(-11,11),ylim=c(-11,11))
points(intsec,type="l")
traSect<-morphomapTranslate(extsec,intsec,1,1)
points(traSect$cortical,type="l",col="red")
points(traSect$medullar,type="l",col="red")</pre>
```

morphomapTri2sects morphomapTri2sects

Description

Triangulate the external and internal outlines of a 3D cross section

Usage

```
morphomapTri2sects(cp, mp)
```

Arguments

cp matrix: coordinates of the external outline of the section mp matrix: coordinates of the internal outline of the section

Value

matrix coordinates of the triangulated mesh tri triangulations of the triangulated mesh

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

 ${\it morphomapTriangulate} \quad {\it morphomapTriangulate}$

Description

Build a mesh starting from the coordinates of the diaphysis

Usage

```
morphomapTriangulate(set, n, close = FALSE)
```

Arguments

set matrix: coordinates of the cross sections to be triangulated

n numeric: number of cross sections

close logical: if TRUE the two surfaces are closed

Value

mesh a mesh of the triangulated semilandark configuration

morphomap Variations 37

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomapVariations morphomapVariations

Description

Calculate cortical map variation from PCA

Usage

```
morphomapVariations(PCA, scores, PC, pal = blue2green2red(101), asp = 2)
```

Arguments

PCA list: list containing morphomapShape objects
scores list: list containing morphomapShape objects
PC list: list containing morphomapShape objects
pal list: list containing morphomapShape objects
asp numeric: aspect ratio of the morphometric map

Value

mapvar: matrix containing values of cortical thickness

Author(s)

Antonio Profico

```
data(Ex_mpShapeList)
PCA<-morphomapPCA(Ex_mpShapeList)
plot(PCA$PCscores)
barplot(PCA$Variance[,2])
morphomapVariations(PCA,min(PCA$PCscores[,1]),PCA$PCs[,1])
morphomapVariations(PCA,max(PCA$PCscores[,1]),PCA$PCs[,1])</pre>
```

morphomapZmoment

38

```
{\it morphomapWriteMorphologika}
```

morphomap Write Morphologika

Description

Export an array in the morphologika format file

Usage

```
morphomapWriteMorphologika(array, groups = NULL, variables = NULL, file)
```

Arguments

array an array

groups a vector containing a classifier
variables list containing further classifiers
file path of the file to be saved

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

morphomapZmoment morphomapZmoment

Description

Calculate the polar moment of inertia around the x and y axes and the polar section module

Usage

```
morphomapZmoment(cp, mp, Cx = 0, Cy = 0, delta = 0.1)
```

Arguments

ср	matrix: coordinates of the external outline of the section
mp	matrix: coordinates of the internal outline of the section

Cx numeric: x coordinate of the section center
Cy numeric: y coordinate of the section center

delta numeric: picture elements of adjustable side length

PanFem27713 39

Value

Zx numeric: moment of inertia around the x axis Zy numeric: moment of inertia around the y axis dx numeric: maximum chord length from y axis dy numeric: maximum chord length from x axis

Zpol numeric: polar moment of inertia

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Examples

```
extsec<-morphomapCircle(10,1000)
intsec<-morphomapCircle(8,1000)
ZMs<-morphomapZmoment(extsec,intsec,delta=0.1)</pre>
```

PanFem27713

example dataset

Description

3D mesh of a chimpanzee femur bone

Usage

```
data(PanFem27713)
```

Author(s)

Antonio Profico, Luca Bondioli, Pasquale Raia, Paul O'Higgins, Damiano Marchi

Index

```
morphomapTriangulate, 36
* morphomap
    Ex_mpShapeList, 3
                                                 morphomapVariations, 37
    HomFem38023, 3
                                                 \verb|morphomapWriteMorphologika|, 38|
    PanFem27713, 39
                                                 morphomapZmoment, 38
                                                 PanFem27713, 39
Ex_mpShapeList, 3
HomFem38023, 3
morphomap (morphomap-package), 2
morphomap-package, 2
morphomap2Dmap, 3
morphomap3Dmap, 6
morphomapAlignment, 8
morphomapArea, 9
morphomapArray2matrix, 10
morphomapCentroid, 10
morphomapCheck, 11
morphomapCircle, 12
morphomapCore, 12
morphomapCSG, 14
morphomapDF, 17
morphomapExport, 19
morphomapFlip, 19
morphomapImport, 20
morphomapMatrix2array, 21
morphomapMirror, 22
morphomapMoment, 22
morphomapPCA, 23
morphomapPic, 24
morphomapPlotShape, 26
morphomapReadMorphologika, 28
morphomapRectangle, 28
{\tt morphomapRegradius}, {\tt 29}
morphomapSegm, 30
morphomapShape, 31
morphomapSort, 33
morphomapThickness, 34
morphomapTranslate, 35
morphomapTri2sects, 36
```