CS112: Data Structures

Lecture 8

More About Trees

Exam in 1 results

- :-(
- Tentatively adding 15 points (Out of 150)
- Sakai will stay the raw score

Raw Scores

Review: Hashing

- Suppose we want to store a set of numbers
 - add number to set, delete from set, test if in set should all be O(1)
- If range of numbers is small, e.g. 0 .. 9, we can use a boolean array

- What if range of numbers is large, e.g. 0...500,0000?
 - but only a small number of numbers, e.g. 10

Hashing

- If we use array of 500,000 elements, they will nearly all be false.
- Idea: divide the range into 500 blocks of 1000 numbers

Block 9:

0 0 0

Block 10: (numbers 9,001 to 10,000)

Is any set element in this range? True

Which one: 9,251

Hashing

- Array of 500 objects
 - Insert n: put in object at index n/1000
 - Lookup n: look in object at index n/1000
 - is any number in this object?
 - is it the right number?
 - All O(1)

Hash Function

- What if numbers not random, eg likely to be near each other?
 - convert n to index in some other way, e.g. index = n mod 500
 - In general, function that makes each index equally likely: "makes hash out of any pattern in the numbers" -
- Hash function: converts data to hash code
- Mapping function: converts hash code to array index. (Why separate this?)

Collisions

- Even with 500 indices for 10 numbers, it is possible that more than one number will hash to same index
- As we reduce number of indices probability of collision grows
- => must be some way to handle collisions

Linear Probing

- On insert n, if already data at hash(n), try hash(n)+1, hash(n)+2,...
- On lookup n, look at hash(n), hash(n)+1, hash(n)+2, ... until
 - find n
 - find empty object
- Problem: clumping

Quadratic Probing

- If hash(n) full try hash(n)+1, hash(n)+4, hash(n)+9, ... hash(n)+j²
- Does not have clumping effect
- Does have problem that it only tries at most half the indices

Chaining

 Instead of moving to other indices on collision, have a linked list of items at each index

Complexity

- Worst case: O(n)
 - all items hash to same index
- Average: depends on load factor $\alpha = n / \text{size}$

alpha	linear	quadratic	chaining
.1	1.06	1.06	1.05
.5	1.5	1.4	1.3
.8	3	2	1.4
.9	5.5	2.6	1.45
.99	50.5	4.6	1.5

New: Built-in Hashing in Java

- The class java.util.HashMap<K, V>
 - Mapping from (unique) key to a value
 - Note: generic with two class parameters:
 - K: class of keys
 - V: class of values

Built-in Hashing in Java

- The class java.util.HashMap<K, V>
 - Mapping from (unique) key to a value
 - Note: generic with two class parameters:
 - K: class of keys
 - V: class of values

 - See Driver.java and UseDriverMap.java

Traversals

```
preOrderPrint(tree):
    if (tree.root == null)
        return
    print(tree.node)
    preOrderPrint(tree.lst)
    preOrderPrint(tree.rst)
```

```
postOrderPrint(tree):
   if (tree.root == null)
     return
   postOrderPrint(tree.lst)
   postOrderPrint(tree.rst)
   print(tree.node)
```

```
inOrderPrint(tree):
    if (tree.root == null)
        return
    inOrderPrint(tree.lst)
    print(tree.node)
    inOrderPrint(tree.rst)
```

Traversals

PreOrder _____

InOrder

PostOrder ____

Traversals

PreOrder D B A C F E

+ * 2 3 + 1 4

InOrder __A B C D E F

2 * 3 + 1 + 4

PostOrder A C B E F D

2 3 * 14++

Non-recursive Traversals

- Problem: If a node has more than one child
 - can't work on all children, grandchildren, ...
 at once
 - have to store children that have been found but not processed
- Solution: store in stack or queue

Stack-based Traversal

```
push(root);
while(! isEmpty( )){
                             \mathbf{B}
 next = pop();
 if (next != null){
   print next.data;
   push next.leftSubTree;
   push next.rightSubTree
}}
```

Queue-based Traversal

```
enqueue root;
while(! isEmpty( )){
 next = dequeue();
 if (next != null){
   print next.data;
   enqueue next.leftSubTree;
   enqueue enqueue next.rightSubTree
}}
```

Breadth vs Depth first

- Stack: depth first
 - do all children before anything else
- Queue: breadth first
 - do all at same level before anything else

Size of Stack / Queue

- Stack: path from root to leaf: O(depth)
- Queue: entire level: $O(2^{depth})$
 - That's a lot!
 - Solution: Iterative Deepening

Iterative Deepening

 print all nodes at depth d: idfs(tree, d) if d == 0print tree.data else idfs(tree.lst, limit-1) idfs(tree.rst, limit-1) Try all depths for(j=0; j<maxDepth; j++) idfs(tree, j)

Iterative Deepening

- How much extra work?
 - How many leaves in complete binary tree of depth d? 2^d
 - How many non-leaves: 2^{d-1}-1
- Time overhead: roughly a factor of 2

Signature of a Binary Tree

- Signature of a data structure
 - Store off line
 - Use later to reconstruct the data structure
- For binary tree: can we use traversals?
 - No traversal by itself is enough to reconstruct a tree
 - But combination of preorder and inorder will do the job

Traversals -> Tree

• Preorder: DBACEF

• Inorder: ABCDFE

Traversals -> Tree

• Preorder: DBACEF

• Inorder: ABCDFE

First node in inorder is root of the tree

Traversals -> Tree

Preorder: DBACEF
Inorder: ABCDFE

- First node in inorder is root of the tree
- Everything in inorder to left of root is left subtree, so recur
- Everything in inorder to right of root is right subtree, so recur

You draw the tree

Pre D B A C E F G H I
In A B C D F E H G I

Another Signature

• Imagine a function newNode(data, leftSTree, rightSTree)

newNode(D, newNode(B, null, null), null)

• Write the signature:

- Draw the tree
 - newNode(B,

newNode(A, null, null),
newNode(C, newNode(D, null, null),
null))

General Trees

- Each node has an arbitrary number of children
- Problem: representation of a node

General Trees

- Each node has an arbitrary number of children
- Problem: representation
- Solution: linked list of children

General Tree as Binary

- First child <=> Left child
- Next sib <=> Right child

