		1	
		2	
Kolokvij		3	\neg
21. januar 2023		4	
Možno je doseči 100 točk. Vse odgovore dobro utemelji! Veliko uspeha!			\dashv
		Σ	
Ime in priimek	Vpisna številka		

Poišči vsa kompleksna števila $a\in\mathbb{C},$ pri katerih ima naslednji sistem enačb natanko eno rešitev:

$$|z - 4| = 2|z - 1|$$

$$|z - a| + |z - 2a| = |a|$$

Dobljeno množico ustreznih vrednosti za \boldsymbol{a} grafično ponazori.

Ugotovi, za katere $n\in\mathbb{N}$ obstaja limita

$$\lim_{x \to \infty} \frac{2023 \left(\sqrt[n]{1+x^3} - 1\right) - x^3}{\left(e^{x^2} - 1 - x^2\right) \sin^2 x}.$$

Kadar obstaja, jo izračunaj.

Naj bo $n \geq 2$ in $\{v_1, \dots, v_n\}$ baza realnega vektorskega prostora V. Utemelji za katera naravna števila nje množica

$$\{v_1+v_2,v_2+v_3,\ldots,v_n+v_1\}$$

baza prostora V.

Izračunaj vsoto v odvisnosti od $x \in \mathbb{R}$

$$1 + \sum_{n=1}^{2023} (n \cdot \sin^2(nx)) + \sum_{i=1}^{2023} (i \cdot \cos^2(ix)).$$