基礎コンピュータ工学 第2章 情報の表現 (パート3:2進数の計算と2の補数)

https://github.com/tctsigemura/TecTextBook

基礎コンピュータ工学第2章 情報の表現 (パ

2進数の和差の計算

10進数の場合を思い出してみる.

- 9より大きくなる時に桁上げが発生する. り大きくなる時に利止する。 103 105 135 155 104 + 107 + 127 + 167 - 322 099 + 104___ + 001 212 207 262 322 100
- 桁借りでは10借りてくる.

基礎コンピュータ工学第2章 情報の表現(バー

2進数の和差の計算

2進数の場合は以下のようになる.

● 1より大きくなる時に桁上げが発生する.

	010		001		010			011		011
+	001	+	001	+	011		+	001	+	011
	011		010		101	_		100		110

● 桁借りでは2借りてくる.

$$011$$
 010 101 100 110 -001 -001 -011 -001 -011 -011 -011 -011

基礎コンピュータ工学第2章 情報の表現(バー

2進数の和差の計算(問題)

問題8:10進数の計算と2進数の計算をしなさい。

− 5+7 − 10進 っ進 5 0101 + 7 + 0111

- 12-7 — 10進 2進 12 1100 7 - 0111

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

負の数を2進数でどのようにビットで表現するか約束する.

(1) 符号付き絶対値表現

左端のビットを符号 (+/-) として使用する.

4ビット符号付き絶対値表現の例 -

負数	2進数	正数	2進数
-7	1111_{2}	+7	0111_2
-6	1110_{2}	+6	0110_{2}
-5	1101_{2}	+5	0101_{2}
-1	1001_2	+1	0001_2
-0	1000_{2}	+0	0000_2

- 4ビットで-7から+7の範 囲を表現できる.
- 0 の表現が二つある (-0 と +0).

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

· 補数表現 —

- n桁のb進数において b^n からxを引いた数yをxに対する「bの補数」と呼ぶ. $y = b^n - x$ (y は x に対する b の補数)
- n桁のb進数において

 b^n-1 からxを引いた数zをxに対する「(b-1)の補数」と

 $z = b^n - 1 - x$ (zはxに対する(b-1)の補数)

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

2桁の10進数における補数の例 -

$$b=10$$
進数

$$n=2$$

$$n = 2$$
桁 100
 $b^n = 100$ -25

$$b^n = 100$$
 -25 75 は 25 に対す $x = 25$ 3 10 の補数

$$n = 10$$
進数 $n = 2$ 桁

$$b^n - 1 = 99$$
 $x = 25$ 74 は 25 に対する 9 の補数

基礎コンピュータ工学第2章 情報の表現(バ・

負数の表現

- 4桁の2進数における補数の例 -

$$n = 4 \text{ fit}$$
 10000_2 $b^n = 10000_2$ -1010_2

$$x = 1010_2$$
 0110_2

$$b = 2$$
進数 0101_2 は $n = 4$ 桁 1111_2 1010_2 に

$$b^{n} - 1 = 1111_{2}$$
 -1010_{2}
 $x = 1010_{2}$ 0101_{2}

$$\begin{array}{ccc} 11_2 & -1010_2 & 対する \\ \hline 0101_2 & 1の補数 \end{array}$$

基礎コンピュータ工学第2章 情報の表現(バ・

 $0110_2~\mathrm{l}\sharp$

10102 に

2の補数

対する

負数の表現

(2) 1の補数による負数の表現

1の補数を負数の表現に使用する.

- 4ビット2進数の1の補数(2⁴ - 1 - x = z) -

もとの数 (x)	補数へ変換		補数(z)
0	$1111_2 - 0000_2$	=	1111_{2}
1	$1111_2 - 0001_2$	=	1110_{2}
2	$1111_2 - 0010_2$	=	1101_{2}
3	$1111_2 - 0011_2$	=	1100_{2}
4	$1111_2 - 0100_2$	=	1011_{2}
5	$1111_2 - 0101_2$	=	1010_{2}
6	$1111_2 - 0110_2$	=	1001_{2}
7	$1111_2 - 0111_2$	=	1000_{2}

基礎コンピュータ工学第2章 情報の表現 (バ・

負数の表現

1の補数を用いた符号付き数値 -

$$+6 \quad 0110_2 \quad - \quad - \quad - \quad - \quad + \quad | \quad +7 \quad 0111_2 \quad - \quad - \quad - \quad - \quad + \quad +$$

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

• 1の補数の求め方

ビット反転

$$x = +3_{10} = 0011_2$$
 (もとの数)

$$y = -3_{10} = 1100_2$$
 (1の補数)

• 表現できる数値の範囲

• 正負の判定

最上位ビットが

0:正の値を表現している.

1:負の値を表現している.

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現

(3) 2の補数による負数の表現

2の補数 $(2^n - x)$ を負数の表現に使用する.

4ビット 2進数の 2の補数 $(2^4 - x = y)$ -

補数 (y) もとの数 (x) 補数へ変換 0 1 0000 2- 0000 2 1 0000 2 10000_{2} -0001_{2} 1111 2 1 2 10000_{2} -0010_{2} 1110_{2} 0011_{2} 1101_{2} 3 1 0000 0100 2 1 0000 1100_{2} 4 5 1 0000 0101_{2} 1011 2 6 1 0000 0110 2 1010 2 7 1 0000 2 0111 2 1001 2 1000 2 8 10000_{2} -1000_{2}

基礎コンピュータ工学第2章 情報の表現(パー

負数の表現

```
2の補数を用いた符号付き数値 ——
     1000_{2}
     1001_{2}
   -5
-4
    1100_{2}
-3 \quad 1101_2
-2 \quad 1110_2
-1 1111<sub>2</sub>
 0 - 0000_2
    0001_{2}
 1
    0010_{2}
 3 \quad 0011_2
    0100_{2}
    0101_{2}
    0110_{2}
 6
 7 \quad 0111_2
                   基礎コンピュータ工学第2章 情報の表現 (パー
```

負数の表現

2の補数の求め方

ビット反転+1

 $x = +3_{10} = 0011_2$ (もとの数) $y = -3_{10} = 1100_2 + 1 = 1101_2$ (2の補数)

元に戻すのもビット反転+1

 $y = -3_{10} = 1101_2$ (2の補数) $y = +3_{10} = 0010_2 + 1 = 0011_2$ (もとの数)

• 表現できる数値の範囲

正負の判定

最上位ビットが

0:ゼロ, または, 正の値を表現している.

1:負の値を表現している.

基礎コンピュータ工学第2章 情報の表現(バー

負数の表現(問題1/2)

問題9:次の10進数を2の補数表現形式の4桁の2進数に変換しなさい。

- **1)** 4₁₀
- 2) -4_{10}
- **3)** 5₁₀
- **4)** -5₁₀
- **5)** 6₁₀

6) -6_{10}

基礎コンピュータ工学第2章 情報の表現(パー

負数の表現(問題2/2)

問題 1 0:次の 2 の補数表現形式の 4 桁の 2 進数を 10 進数に変換しなさい.

- **1)** 1001₂
- **2)** 0111₂
- **3)** 1101₂
- **4)** 0011₂
- **5)** 1011₂
- **6)** 1100₂

基礎コンピュータ工学第2章 情報の表現(バー

16/1