1. Cel projektu.

Czestość występowania krwotoku podpajęczynówkowego z pękniętego tetniaka (aSAH) została oszacowana na 6,67: 100 000. Każdego roku, na aSAH zapada około pół miliona osób. Około 15% z nich umiera przed dotarciem do szpitala, 25% w ciagu 24 godzin a 45% w ciagu 30 dni. Głównym czynnikiem przyczyniającym się do śmierci i niepełnosprawności osób, które przezyły aSAH jest Późne Niedokrwienie Mózgu (DCI). Mechanizmy DCI sa słabo poznane, brak jest skutecznej terapij farmakologicznej. Niestety, wiekszość leków eksperymentalnych nie poprawia znacząco wyników leczenia pacjentów z aSAH. Jedynie doustna nimodipina wykazuje efekty; nie przeciwdziała DCI, ale poprawia wyniki neurologiczne. Dlatego w celu odkrycia nowych celów terapeutycznych konieczne jest nowe podejście do badania patofizjologii DCI na poziomie molekularnym i komórkowym. Jak już wiadomo, obecność wynaczynionej hemoglobiny w przestrzeni podpajeczynówkowej indukuje uwalnianie reaktywnych form tlenu (ROS), powodując peroksydację lipidów błonowych komórek śródbłonka i proliferacje komórek mięśni gładkich. W ośrodkowym układzie nerwowym role ochronna przed szkodliwym działaniem ROS odgrywaja enzymy: dysmutaza ponadtlenkowa (SOD), układ glutationowy (w tym peroksydaza glutationowa (GPx) i reduktaza (GR) oraz układ tioredoksyny (w tym peroksydaza tioredoksyny (TPx) i reduktaza (TR)) wszystkie one potrzebują fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH), którego głównym źródłem jest dehydrogenaza glukozo-6-fosforanowa (G6PD). Po aSAH aktywność tych enzymów spada, maleje również ich stężenie, zaburzając dynamiczną równowagę oksydacyjnoantyoksydacyjna na korzyść produkcji ROS. Ponadto wtórne przekaźniki komórkowe (miRNA) moga również odgrywać ważna role w tym procesie; Homeostaza tetnic i ich reaktywność regulowana jest także przez swoiste miRNA, których ekspresja może korelować z ryzykiem DCI. Stawiamy hipoteze, że ryzyko DCI zależy od aktywności i stężenia SOD, GPx, GR, TPx, TR, G6PD, stężenia nuleotydu NADPH i ekspresji miRNA regulującego enzymy przeciwutleniające i homeostaze naczyniowa.

2. Badania podstawowe realizowane w projekcie.

Analizowana grupa będzie składać się z około 132 pacjentów z aSAH i 44 ochotników (pacjenci z zespołami cieśni nerwów obwodowych). Od każdego pacjenta zostaną pobrane seryjne próbki krwi. Aby zidentyfikować metabolity związane z DCI, u 704 pacjentów zostanie zastosowana chromatografia cieczowa z tandemową spektrometrią mas (LC-MS/MS). Pozwoli to na identyfikację związanych z DCI różnic w metabolitach związanych ze stresem oksydacyjnym i mechanizmami antyoksydacyjnymi. Za pomocą testu ELISA (test immunoenzymatyczny) wykonamy analizę stężenia i aktywności enzymów mechanizmów przeciwutleniających, a mianowicie: SOD, GPx, GR, TPx, TR, G6PD i stężenia nukleotydu NADPH u wszystkich pacjentów z aSAH. Analiza zostanie przeprowadzona za pomocą testu ELISA na 132 próbkach osocza w 5 punktach czasowych i próbkach kontrolnych. Zostaną ustalone statystycznie istotne różnice między grupami (z DCI i bez). Na tym etapie ustalimy, który enzym przeciwutleniający działa niewłaściwie u pacjentów z DCI.

Następnie zostanie przeprowadzona analiza miRNA. Wykonamy profilowanie prawie wszystkich mikroRNA wykrywalnych w ludzkim osoczu, w próbkach 20 pacjentów po aSAH (10 z DCI i 10 bez; w 2 punktach czasowych). Te miRNA, które zostaną ocenione jako statystycznie istotne dla DCI, zostaną walidowane na całej grupie chorych - składającej się ze 132 pacjentów po aSAH i w grupie kontrolnej. W rezultacie potwierdzimy czy ekspresja miRNA jest zmieniona przez DCI i czy miRNA, które różnicują pacjentów według wystąpienia DCI, są również wrażliwe na operację (tj. czy ich ekspresja zmienia się w odpowiedzi na leczenie chirurgiczne). Następnie ustalimy, czy ustalony profil miRNA może być wykorzystany jako marker monitorujący pacjentów z DCI. Mamy nadzieję, że te badania przybliżą nas do zrozumienia patofizjologii DCI.

3. Uzasadnienie podjęcia tematyki badawczej.

DCI po krwotoku podpajęczynówkowym stwarza zagrożenie dla chorego. Ubytkowe objawy neurologiczne będące rezultatem DCI mogą doprowadzić do zgonu spowodowanego niedokrwieniem mózgu i jego następstwami. Ponieważ niewiele wiadomo na temat patofizjologii DCI, brak jest odpowiedniego leczenia. Choroba ta pozostaje wyzwaniem zarówno dla lekarzy, jak i biologów molekularnych. Głównym celem tego projektu jest odpowiedź na pytanie o istniejącą korelację pomiędzy metabolomiką, mechanizmami przeciwutleniającymi, ekspresją miRNA a patogenezą DCI. W perspektywie, projekt ten może dostarczyć klinicznie użytecznych informacji, które pomogą w prognozowaniu indywidualnego ryzyka wystąpienia DCI i jego monitorowania. Oczekujemy, że nasze wyniki będą mogły być wykorzystane w planowaniu nowych terapii lekowych, zapobiegających wystąpieniu DCI.