

Goten: GPU-Outsourcing Trusted Execution of Neural Network Training

Lucien K. L. Ng, Sherman S. M. Chow, Anna P. Y. Woo, Donald P. H. Wong (CUHK), and Yongjun Zhao (CUHK → NTU)

Department of Information Engineering, Chinese University of Hong Kong (CUHK), Hong Kong

Privacy of "Big" Training Data

- Sensitive
- Medical Image analysis, Child Exploitation Imagery, etc.
- Privacy laws & Regulations, e.g., GDPR
- Massive
- Hardly any single entity's data is sufficient
- Private Training
- No one learns anything about the model & other's data

Why Federated Learning is not enough?

- Federated Learning:
- Each data contributor train DNN locally
- They exchange the DNN's weight frequently,
- Problems:
- Every contributor can use the DNN
- » No rate-limiting, even for non-agreed uses
- Contributors may steal others' data
- » Model Inversion Attack [Fredrikson et al.]
- Noisy/Implicit data ⇒ Data privacy

xkcd.com/2169

(intel) SGX

Preliminary: TEE & GPU

TEE: Trusted Execution Environment (e.g., SGX)

- e protect the data's privacy inside
- even the machine owner cannot read it
- eprocesses data efficiently as plaintext on CPU
- too *slow* for batched linear operations

GPU: Graphics Processing Unit

- egin GPU can speed up the linear layers in DNNs
- The most time-consuming part in DNNs
- BPU does not have TEE
- lack of data privacy & model privacy!

Goten: GPU + TEE for Private Training

- Contributors send their data to SGX's TEE/enclaves
- Securely outsource linear-layer computation to GPUs
- resided in with 3 non-colluding servers (U_0 , U_1 , U_2)
- can reduce to 2 servers (at ½ of the throughput)
- Train (mostly) non-linear layers in SGX

Non-Colluding Servers in Goten

- Each server holds a secret-share of the model/data
- Individual share by itself is totally meaningless
- Candidates:
- Some of the Data Contributors
- Government: Hospital/Monetary authority
- Independent & Competing Cloud Server Providers

GPU-Outsourcing Protocol for Linear Layers (Overview)

(Light-Weight) Crypto Tool: Additive Secret Shares (SS)

- $x = \langle x \rangle_0 + \langle x \rangle_1 \pmod{q}$
- $< x >_0$ and $< x >_1$ is a pair of additive SSs for x
- Privacy (<x>_i has no information about x)
- For each value of x, given $\langle x \rangle_i$, \exists corresponding $\langle x \rangle_{1-i}$
- (Efficient) Homomorphic operation:
- < x > + < y > = < x + y >
- For brevity, we will omit (mod q)

GPU-Outsourcing Protocol for Linear Layers (Details)

- Goal: Compute $y = W \otimes x$ (\otimes is the linear operation)
- Without leaking any (W, x, y) to (U₀, U₁, U₂)
 - 1: $U_2: u \leftarrow \text{Rand}(r_u), v \leftarrow \text{Rand}(r_v)$ $2: U_2 \rightarrow \mathsf{E}_0, \mathsf{E}_1: z = u \otimes v$ for i = 0, 1 (in parallel) 3: $\mathsf{E}_i \to \mathsf{U}_i : \langle W \rangle_i \leftarrow \mathsf{Gen}_i(r_W, W), \langle x \rangle_i \leftarrow \mathsf{Gen}_i(r_x, x),$ $e = W - \text{Rand}(r_u), f = x - \text{Rand}(r_v)$ 4: $\mathsf{U}_i \to \mathsf{E}_0, \mathsf{E}_1 : y_i = \langle W \rangle_i \otimes f + e \otimes \langle x \rangle_i - i \cdot e \otimes f$ endfor 5: $E_0, E_1: y = z + y_0 + y_1$
- Gen₀ (r_x, x) and Gen₁ (r_x, x) are generators for $\langle x \rangle_0$ and $\langle x \rangle_1$
- Rand(*r*) is a secure pseudo-random generator
- $\{r_u, r_v, r_x, r_w\}$ are pre-agreed random seeds

- What each non-colluding server sees:
- **U0**: $<W>_0$, $<x>_0$, e, f
- **U1**: $<W>_1$, $<x>_1$, e, f
- **U2**: *u*, *v*
- They are all secret shares or random tensors:
- $<W>_{0/1}$ and $<x>_{0/1}$ are secret shares (by definition)
- -e = (W u) and f = (x v) are secret shares
- u and v are random tensors

Performance on Training

CIFAR-10: Common Benchmark for Computer Vision

- Goten attains >89% accuracy in 34 hours
- vs. Falcon's 5 weeks (accuracy not reported)
- 132× throughput speed up over Falcon
- Falcon [Sameer Wagh et al.]: State-of-the-Art Crypto Approach

Framework	GPU TEE	DNN Arch.	Throughput	Speedup
Falcon	XIX	VGG-16	1482	132×
CaffeScone*	XIV	VGG-11	28800	6.84×
Goten	√ √	VGG-11	196733	-

[*] Our pure-TEE private training framework over Caffe & SCONE (Secure Container Environment)

Training for Invasive Ductal Carcinoma (IDC) Detection

- Showcase application involving sensitive training data
- IDC: The most common type of breast cancer
- Dataset: Images of women's breast tissue [Cruz-Roa et al.]

Accuracy	81%	82%	83%	84%	85%	86%
Speedup	8.53×	13.7×	4.27×	6.33×	3.42×	7.28×
Time (min)	1.25	1.56	13.1	16.9	31.2	46.8

GPU: Nvidia V100 16GB CPU (w/ SGX): Intel i7-7700K

Network: Google Cloud (8Gbps & <5ms latency)

Conclusion

- Best of Both Worlds: TEE & GPU
- Our Techniques:
- Lightweight Crypto for GPU-Outsourcing
- Dynamic Quantization for Weight Fluctuation during Training
- Future Work: GPU-Friendly Pure-Crypto Solution [Ng and Chow]
- Code: github.com/goten-team/Goten

References

- Matt Fredrikson, Somesh Jha, Thomas Ristenpart. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures. CCS '15.
- Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning. PETS '21.
- Cruz-Roa et al. Automatic Detection of Invasive Ductal Carcinoma in Whole Slide Images with Convolutional Neural Networks. Medical Imaging: Digital Pathology '14.
- Lucien K. L. Ng, Sherman S. M. Chow. GPU-Friendly Oblivious and Rapid Classification Engine. Usenix Security '21.

{luciengkl, sherman}@ie.cuhk.edu.hk