Statistics One

Lecture 7
Introduction to Regression

Two segments

- Intro to regression
- NHST: A closer look

Lecture 7
Segment 1
Intro to Regression

Regression

- Important concepts/topics
 - Regression equation and "model"
 - Ordinary least squares estimation
 - Unstandardized regression coefficients
 - Standardized regression coefficients

Regression

- A statistical analysis used to predict scores on an outcome variable, based on scores on one or more predictor variables
 - For example, we can predict how many runs a baseball player will score (Y) if we know the player's batting average (X)

• Y = m + bX + e # Y is a linear function of X, b = slope

- Y = m + bX + e # Y is a linear function of X, b = slope
- Y = a + BX + e # same as above, notation changed

- Y = m + bX + e # Y is a linear function of X, b = slope
- Y = a + BX + e # same as above, notation changed
- $Y = B_0 + B_1X_1 + e \#$ same, another notation change

- Y = m + bX + e # Y is a linear function of X, b = slope
- Y = a + BX + e # same as above, notation changed
- $Y = B_0 + B_1X_1 + e \#$ same, another notation change
- $\hat{Y} = B_0 + B_1 X_1 # \hat{Y}$ is the predicted score on Y

- Y = m + bX + e # Y is a linear function of X, b = slope
- Y = a + BX + e # same as above, notation changed
- $Y = B_0 + B_1X_1 + e \#$ same, another notation change
- $\hat{Y} = B_0 + B_1 X_1 \# \hat{Y}$ is the predicted score on Y
- $Y \hat{Y} = e^{\#} e$ is the prediction error (residual)

Scatterplot: plot(R~AVG)

Regression "model"

- The regression model is used to "model" or predict future behavior
 - The "model" is just the equation

Regression: It gets better

- The goal is to produce better models so we can generate more accurate predictions
 - Add more predictor variables, and/or...
 - Develop better predictor variables
 - For example, we can better predict how many runs a baseball player will score (Y) if we know the player's on-base-percentage (X)

Scatterplot: plot(R~OBP)

Why did it get better?

- OBP is a "model" that takes into account walks, aka "base on balls" (BB)
- The predictions improved, particularly for Granderson and Nunez, because:
 - For Granderson, BB = 85
 - For Nunez, BB = 22

Why did it get better?

- Lesson: Examine residuals!
- Plot in a histogram
- Scatterplot residuals with X
 - Good way to test assumptions
 - Linear relationship between X and Y
 - Homoscedasticity
 - More on this next lecture

- Regression equation:
 - $\hat{Y} = B_0 + B_1 X_1 # \hat{Y}$ is the predicted score on \hat{Y}
 - $Y \hat{Y} = e \# e$ is the prediction error (residual)

- The values of the coefficients (B) are estimated such that the model yields optimal predictions.
 - Minimize the residuals!
 - The sum of the squared (SS) residuals is minimized
 - $-SS.RESIDUAL = \Sigma(\acute{Y} Y)^2$
 - ORDINARY LEAST SQUARES estimation

- Sum of Squared deviation scores (SS) in variable Y
 - SS.Y

• Sum of Cross Products (SP.XY)

- Sum of Cross Products (SP.XY)
 - Also called SS.MODEL

 $SS.X \rightarrow$

 $SS.Y \rightarrow$

• Sum of Squared deviation scores (SS) in variable Y

SS.Y→

• How to calculate B (unstandardized)

$$-B = r \times (SD_y/SD_x)$$

- Standardized regression coefficient = $\beta = r$
 - If X and Y are standardized then:
 - $SD_y = SD_x = 1$
 - $B = r \times (SD_y/SD_x)$
 - $\beta = r$

Scatterplot: plot(R~OBP)

• In R: $lm(R\sim OBP)$

$$-\hat{Y} = -282 + (1044)X$$

$$- \text{Let } X = .35$$

$$-\hat{\mathbf{Y}} = 83$$

- Why is B so large? (B = 1044)
- Because SD_y is so much greater than SD_x
- $SD_y = 31$
- $SD_x = .02$
 - $B = r \times (SD_y/SD_x)$

Regression

- Important concepts
 - Regression equation and "model"
 - Ordinary least squares estimation
 - Unstandardized regression coefficients
 - Standardized regression coefficients

© 2012 Andrew Conway