2018~201 9 学年第二学期《线性代数》试卷(A)评分细则

一、填空题(每小题4分,共20分)

1. 625 2.
$$\frac{2E-A}{5}$$
 3. 1 4. $(1,2,3,4)^T + c(2,3,4,5)$

二、选择题(每小题4分,共20分)

1. (D) 2. (B) 3. (D) 4. (D) 5. (A)

$$\equiv$$
、(8分)解: $D = (\lambda + 1) \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 0 & 0 & \lambda \end{vmatrix} + (-1) \cdot (-1)^7 \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ 4 & 3 & 2 \end{vmatrix}$

$$= (\lambda + 1) \cdot \lambda^3 + 2\lambda^2 + 4 + 3\lambda$$

$$=\lambda^4+\lambda^3+2\lambda^2+3\lambda+4$$

四、(10分) 解:由已知有 $A^2 - AB = E$.因为|A| = -1,知A可逆,于是 $B = A - A^{-1}$

$$\mathbb{X} A^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad \mathbb{A} \overline{\cap} B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} - \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

五、(12分)解:用初等行变换把增广矩阵化为行阶梯形矩阵,

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 2 & 3 & a+2 & 4 & b+3 \\ 3 & 5 & 1 & a+8 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & a+1 & 0 & b \\ 0 & 0 & 0 & a+1 & 0 \end{pmatrix},$$
由此可知。

- (1) 当 $a \neq -1$ 时,r(A) = r(A|b) = 4,方程组有唯一解;
- (2) 当a = -1, $b \neq 0$ 时, r(A) = 2, r(A|b) = 3, 方程组无解;
- (3) 当a = -1, b = 0时, r(A) = r(A|b) = 2, 方程组有无穷多个解.

六、(14分) **解**: (1) A 的特征值为 $\lambda = 1$, $\lambda_1 = \lambda_2 = 0$;

当
$$\lambda_1 = 1$$
时, $r(A - E) = r \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = 2 = 3 - 1$,
当 $\lambda_2 = \lambda_3 = 0$ 时, $r(A) = r \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1 = 3 - 2$,由定理可知, A 可对角化.
(2) 当 $\lambda_1 = 1$ 时, $A - E = \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,得 $(A - E)x = 0$ 的基础解系,

即线性无关的特征向量 $\alpha_1 = (1,0,0)^T$.

当
$$\lambda_2 = \lambda_3 = 0$$
时, $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 得 $Ax = 0$ 的基础解系,即线性无关的特征向量

 $\alpha_2 = (-1,1,0)^T$, $\alpha_3 = (-1,0,1)^T$.

令
$$P = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,则有 $P^{-1}AP = \Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

七、(10 分) 证: 因为 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,故存在不同时为零的数 k_1,k_2,k_3 使得

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0.$$

若 $k_3 = 0$,则因为 α_1, α_2 线性无关,可推出 $k_1 = k_2 = 0$ 矛盾,故 $k_3 \neq 0$,从而 $\alpha_3 = -\frac{1}{k_2}(k_1\alpha_1 + k_2\alpha_2)$,

即 α_3 由 α_1 , α_2 线性表示.

若
$$\alpha_3 = \lambda_1 \alpha_1 + \lambda_2 \alpha_2$$
, $\alpha_3 = \lambda_1' \alpha_1 + \lambda_2' \alpha_2$,两式相减得 $0 = (\lambda_1 - \lambda_1') \alpha_1 + (\lambda_2 - \lambda_2') \alpha_2$,

因为 α_1,α_2 线性无关,故 $\lambda_1 = \lambda_1',\lambda_2 = \lambda_2'$. 从而 α_3 由 α_1,α_2 线性表示且表示式唯一.

八、(6分) 证: 必要性:设 B^TAB 为正定矩阵,由定义, $\forall x \neq 0$,恒有 $x^T(B^TAB)x > 0$

即 $\forall x \neq 0$, 恒有 $(Bx)^T A(Bx) > 0$. 即 $\forall x \neq 0$, 恒有 $Bx \neq 0$. 因此, 齐次线性方程组 Bx = 0 只有零解,从而 r(B) = n

充分性: 因 $(\mathbf{B}^T A \mathbf{B})^T = \mathbf{B}^T A^T (\mathbf{B}^T)^T = \mathbf{B}^T A \mathbf{B}$,

知 B^TAB 为实对称矩阵,若 r(B) = n,则齐次方程组 Bx = 0 只有零解,即对 $\forall x \neq 0$ 必有 $Bx \neq 0$. 又 A 为正定矩阵,所以对于 $Bx \neq 0$,恒有 $(Bx)^TA(Bx) > 0$,即当 $x \neq 0$ 时, $x^T(B^TAB)x > 0$,故 B^TAB 为正定矩阵.