$d^{2} \operatorname{var}(x) + d^{2} - 2d + 1 \operatorname{var}(y)$ $= \frac{d^{2}}{12} + \frac{d^{2} - 2d + 1}{4} (3)$ $= \frac{4}{12} - \frac{6d + 3}{12}$ Since the function $4d^{2} - 6d + 3$ is minimized at d = 3/4, the variance of $d \times 4(1-d)$ is minimized at d = 3/4, therefore, we should put 3/4 of \$100 on \times and 1/4 of \$100 on \times (Given $E(\times) = E(\times) = 0.5$)

The variance of XX+(1-d)y is:

 d^2 $Var(x) + (1-x)^2 var(Y)$