5- Introduction to Statistical Inference

Alex Sanchez, Miriam Mota, Mireia Ferrer and Santi Perez-Hoyos

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 - Adapt : rebuild and transform the material
- Under the following conditions:
 - **Attribution**: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one

Outline

- The objectives of statistical inference
- Examples
- Point estimation. On incidence and prevalence
- Confidence intervals
- Sample size calculations

The objectives of Statistical Inference (I)

Taking the observed (measured) values of a group of samples. . .

we aim at determining the properties of the entire population.

The objectives of Statistical Inference (II)

Example

- Consider the data in the "osteoporosis.csv" dataset.
- It can be useful to provide information such as:
 - The percentage of menopausic women with osteoporosis
 - The mean bone density in menopausic or non-menopausic women
 - The existence of significance differences:
 - Observed % of osteoporosis vs "theoretical" population values
 - BUA in menopasuic vs non menopausic
- Answering these questions (and questions like these) is the main goal of Statistical Inference

Two types of statistical inference problems

ESTIMATION

- When we wish to learn some characteristics of our population, such as
 - The percentage of non osteopenic or menopausic women
 - The mean bone density in each of these groups

HYPOTHESIS TESING

- When we wish to check about some statement on some characteristic of the population or we wish to make some comparisons
 - Is it true that the mean bone density is smaller than 75 in menopausic
 - Can we state that non menopausic women have a higher bone density than menopausic?

Estimators: Aproximating the value of population parameters

- Numerical values calculated on a sample that we believe to be a good approximation of a certain real value (parameter) in the population.
- Intuitively, we work with many estimators, such as the mean or a computed percentage of a given sample, that we assume that are somehow characterizing a population.
- It is not always obvious to decide which is the best estimator for each parameter
- In order to decide which estimator we use we can rely on the properties of the estimators such as the bias or the precision (the variance) of the estimator.

Estimation

The aim of estimation is to infer properties (parameters) of the distribution of population data from sample data

Some key concepts

- Point estimate: Give a numerical value to the parameter of interest
- Estimator: Mathematical function to obtain the estimate
- Interval Estimation: Give two values between which is the value of the population parameter with a preset confidence level (or probability)
- Random error: Difference between estimation and real value if the sample is random

Example. Computing estimations (1)

- Read the Osteoporosis dataset and turn factors into variables automatically with Rbase function read.delim
- Take a sample of size 100 from the original file. Call it 'osteo100' and work with this file from now on.
- Compute the mean value of the variable containing bone density values BUA
- Split the computation between all subgroups from variable classific and variable menop
- Compute the percentage of menopausic women from variable menop

Example. Computing estimations with R (1)

```
library(dplyr)
# Read data
osteoporosis <- read.delim2("datasets/osteoporosis.csv", strings
# Take subsample
osteo100 <- sample_n(osteoporosis, 100)
# mean bone density
buaMean <- mean(osteo100$bua)
print(buaMean)</pre>
```

[1] 73.49

Example. Computing estimations with R (2)

```
# Mean bone density ny groups
osteo100 %>%
  group_by(menop) %>%
  summarize(m = mean(bua))
## # A tibble: 2 x 2
##
    menop
## * <fct> <dbl>
## 1 NO 82.4
## 2 SI 70.2
# Proportion of menop women (Proportion is a mean of 0-1 values
mean(ifelse(osteo100$menop=="SI",1,0))
## [1] 0.73
```

Exercise 1

- Read the diabetes dataset. Convert characters into factors before continuing.
- Provide an estimate of
 - The distribution of a numerical variable.
 - a proportion of at least one categorical variable and
 - the mean value of at least one numerical variable.
- Could you have used different estimators?
- How would you decide?

Likelihood estimator

How precise is an estimator?

- We all are familar with "forks" associated with voting results.
 - They usually start "wide" and tend to disappear as more votes are counted.
- Imagine you are given an estimate of 18% for the incidence of a certain disease.
- Is it a good estimate?
- Hard to know without more information
 - ullet 18 \pm 2 is probably useful
 - ullet 18 \pm 12 is probably too wide to be considered useful
- So given an estimator and a n estimation (a value) how can we provide a measure of how precise this estimation is?

The **Standard Error** of an estimator

- An obvious question when we choose an estimator is how precise it is to approximate the value of the population parameter.
- This can be answered using the standard error of the estimator
- The standard error is a great quantity :
 - It informs about the precision of our estimates
 - Helps build another type of estimators: confidence intervals
 - Helps find formulae to compute sample size for estimation

Some standard errors

Standard error of the sample mean

$$SEM = \frac{\hat{s}}{\sqrt{n}}$$

• Standard error of the sample proportion

$$SEP = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Normal approximation of sample distribution

Computing the standard error with R

- R does not include functions for standard errors, although it can be easily programmed.
- First create the functions

```
SEM <- function (x){sd(x)/sqrt(length(x))}

SEP <- function (x){
    ssize <- length(x)
    p <- sum(x)/ssize
    return(sqrt(p*(1-p)/ssize))
}</pre>
```

• Then apply them to your data

```
SEM (osteo100$"bua")
## [1] 1.75387
intMenop <- ifelse(osteo100$"menop"=="SI", 1, 0)
SEP (intMenop)</pre>
```

Confidence intervals

Confidence intervals are based on standard errors

Formulae for confidence intervals

Confidence interval for the mean

$$\overline{X} - \underbrace{t_{\epsilon/2} \frac{\hat{\mathbf{s}}}{\sqrt{n}}}_{Precision} \leq \mu \leq \overline{X} + t_{\epsilon/2} \frac{\hat{\mathbf{s}}}{\sqrt{n}} = \overline{\mathbf{X}} \pm \mathbf{t}_{\epsilon/2} \cdot \mathsf{SEM}$$

• Confidence interval for the proportion

$$\hat{p} - \underbrace{z_{\epsilon/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}_{Precision} \leq \mu \leq \hat{p} + z_{\epsilon/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \widehat{\mathbf{p}} \pm \mathbf{z}_{\epsilon/2} \cdot \mathsf{SEM}$$

Example 2. Computing Confidence Intervals with R

- In general R does not compute (has no functions) for the direct calculation of confidence intervals
- This can be done by calling the corresponding tests functions such as t.test or prop.test
- Some R commander plugins such as EZR allow this computations directly

Example 2. Computing Confidence Intervals with R (2)

```
t.test(osteo100[["bua"]])
##
##
   One Sample t-test
##
## data: osteo100[["bua"]]
## t = 41.902, df = 99, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 70.00994 76.97006
## sample estimates:
## mean of x
##
      73.49
```

Example 2 . Computing Confidence Intervals with R (3)

```
cntMenop <- table(osteo100[["menop"]])["SI"]</pre>
ssize <- length(osteo100[["menop"]])</pre>
prop.test (x=cntMenop, n=ssize)
##
##
    1-sample proportions test with continuity correction
##
## data: cntMenop out of ssize, null probability 0.5
## X-squared = 20.25, df = 1, p-value = 6.795e-06
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.6303929 0.8116352
## sample estimates:
##
    р
## 0.73
```

Interpretation of Confidence Interval (1)

Sample size =10 , Mean=180, sd=20

Interpretation of Confidence Interval (2)

_____ Sample size =100 , Mean=180, sd=20

Interpretation of Confidence Interval (3)

Sample size =100, Mean=180, sd=20

Exercise 2.1 Computing Confidence intervals

- Read the file "osteoporosis.csv" into a dataset and call it "osteoporosis"
- Compute confidence intervals for the BUA mean and for the percentage of menopausic women with all the individuals in the dataset.
- Compare these confidence intervals with those that you obtained in example 2. How do they differ?

Exercise 2.2 Computing Confidence intervals

- Read the diabetes dataset. Convert characters into factors before continuing.
- Provide a confidence interval for:
 - a proportion of at least one categorical variable and
 - the mean value of at least one numerical variable.
- How would you find alternative approaches to compute these confidence intervals?
- Why would you want to do such a thing?

Sample Size for estimation (1)

 The standard error informs of how precise an estimation is if one knows the variability and the sample size

$$SE = \frac{\hat{\sigma}}{\sqrt{n}}$$

- We can proceed in the opposite sense: assuming we know:
 - 1 the variability (e.g. from a pilot study) and
 - the highest precision we wish to attain ("arm length" of a confidence interval:

$$\Delta = z_{\epsilon_2} \cdot SE = z_{\epsilon_2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}$$

Sample Size for estimation (2)

• The sample size needed to attain this precision can be isolated from the previous equation:

$$n = \frac{z_{\epsilon_2}^2 \hat{\sigma}^2}{\Delta^2}$$

Sample size formulae for estimating a mean or a proportion

The previous formula becomes, for specific questions:

$$n = \frac{t_{n-1,\epsilon_2}^2 \,\hat{s}^2}{\Delta^2} \quad (1), \qquad n = \frac{z_{\epsilon_2}^2 \,\hat{p}(1-\hat{p})}{\Delta^2} \quad (2), \qquad n = \frac{z_{\epsilon_2}^2}{4 \,\Delta^2} \quad (3)$$

- **1** Mean of a normal population with a given precision Δ .
- **2** Proportion p, with a given precision Δ and with an estimate, \hat{p} available, from a pilot study.
- **3** Proportion p, with a given precision Δ and assuming the worst case p=q=0.5.

Sample size calculations with R

- There are many packages in R to compute sample size for hypothesis testing. This means thay have to account not only for "precision", "variability" and "confidence", but also with "power".
- For the sake of examples it is straightforward to write simple functions to compute sample size.

```
ssize4Mean <- function (epsilon, sigma, precision){
  perc <- qnorm (1-epsilon/2)
  n <- ((perc*sigma)/prec)*2
}</pre>
```

Example 3. Sample size calculation

- Using the osteoporosis dataset, assume that the standard deviation is a good approximation to σ .
- Find the sample size needed to achieve a margin of error equal to 5 with a 95% confidence interval.

Exercise 3. Sample size calculation

- Write a function to compute the sample size for proportions in the worst case (p=q=0.5) or assuming p is known.
- Using a 50% planned proportion estimate, find the sample size needed to achieve 5 margin of error for a survey at 95 confidence level.
- How would this result change if we are told that a pilot study suggests that p=10%?