Data handling: Time-Series

ECE30007 Intro to Al Project

Contents

- Time-Series
- What is Time-Series
- Handling Real-Estate Data
- Exercise

Time-Series example

Stock Price

https://kr.investing.com/equities/tesla-motors

https://kr.investing.com/equities/apple-computer-inc

Time-Series example

Temperature

https://data.kma.go.kr/stcs/grnd/grndTaList.do?pgmNo=70

What is Time-Series?

Time-Series

- Time series is defined as a set of quantitative observation arranged in chronological order.
- In order words, time series is a series of data points indexed in time order.
 It is a sequence of discrete-time data with same intervals.
- A time series graph plots observed values on the y-axis against an increment of time on the x-axis.

- Trend
- Seasonal
- Cyclic
- Irregular

Components

- **Trend**: Long-term change in the mean level. General tendency of data to increase or decrease or stagnate over a long period of time.
 - Time series relating to Economics, Business, and Commerce may show an upward or increasing tendency.
 - Whereas, the time series relating to death rates, birth rates, share prices, etc. may show a downward or decreasing tendency.

Here, there is a clear and increasing trend.
 There is also a strong seasonal pattern that increases in size as the level of the series increases.

https://otexts.com/fpp2/fpp_files/figure-html/a10-1.png

- **Seasonal**: A *seasonal* pattern occurs when a time series is affected by seasonal factors such as the time of the year or the day of the week.
 - changes that take place due to the rhythmic forces which operate in a regular and periodic manner.
 - These forces usually have the same or most similar pattern year after year.
 - Seasonality is always of a fixed and known frequency.
 - These variations may be due to seasons, weather conditions, habits, customs or traditions.

- Cyclic: Apart from seasonal effects, some time-series exhibit variation at not a fixed period due to some other physical cause. Or some time-series exhibit oscillations, which do not have a fixed period but which are predictable to some extent.
 - These fluctuations are usually due to economic conditions,
 and are often related to the "business cycle."
 - The duration of these fluctuations is usually at least 2 years.
 - In general, the average length of cycles is longer than the length of a seasonal pattern, and the magnitude of cycles tends to be more variable than the magnitude of seasonal patterns.

- Irregular: after trend and cyclic variations have been removed from a data, then it's left with residuals that may or may not be random.
 - Or random variations are fluctuations which are a result of unforeseen and unpredictable forces.
 - These forces operate in an absolutely random or erratic manner and do not have any definite pattern.
 - Thus, these variations may be due to floods, famines, earthquakes, strikes, etc.

Temporal patterns

Think what kinds of patterns each plot has.

Stationary vs Non-Stationary

- As you can imagine, it is very difficult to forecast timeseries data. We cannot predict with certainty what will occur in the future.
- Therefore, most statistical forecasting methods are based on the assumption that the time series can be rendered approximately stationary through the use of mathematical transformations.
- A stationarized series is relatively easy to predict.

Stationary Time-Series

- Stationary Time Series: data does not have any upward or downward trend or seasonal effects. Mean or variance are consistent over time
- A stationary time series is one whose properties do not depend on the time at which the series is observed. Thus, time series with trends, or with seasonality, are not stationary
 - the trend and seasonality will affect the value of the time series at different times.

In this plot, variance and covariance are constant with time. This is what a stationary time series looks like.

Non-Stationary Time-Series

- Non-Stationary Time Series: data show trends, seasonal effects, and other structures depend on time. Forecasting performance is dependent on the time of observation. Mean and variance change over time and a drift in the model is captured.
- A non-stationary time series can be converted to a stationary time series through a technique called differencing.

Non-Stationary Time-Series

- In the first plot, we can clearly see that the mean varies (increases) with time which results in an upward trend. Thus, this is a nonstationary series. For a series to be classified as stationary, it should not exhibit a trend.
- In the second plot, we certainly do not see a trend in the series, but the variance of the series is a function of time. As mentioned previously, a stationary series must have a constant variance.
- In the third plot, the spread becomes closer as the time increases, which implies that the covariance is a function of time.

Differencing

 Differencing is basically subtracting the previous value from the current value of your time series i.e.

$$Y_t' = Y_t - Y_{t-1}$$

 For n observations(data), the differenced series will only have n-1 observations as it is not possible to calculate a difference for the first element of a series.

Differencing

- Sometimes first order difference does not make it stationary, then we may go for higher orders like differencing the first order differenced series
- Differencing <u>stabilizes the mean</u> of the series which helps to eliminate the trend and seasonality. Other methods such as log transform stabilizes the variance.

numpy.diff(a, n=1, axis=-1, prepend=<no value>, append=<no value>)[source]¶ Calculate the n-th discrete difference along the given axis.

Autocorrelation function (ACF)

- ACF shows not only the lag-one autocorrelation, but the entire autocorrelation function for different lags.
- Any significant non-zero autocorrelations implies that the series can be forecasted from the past data.
- When data have a trend, the autocorrelations for small lags tend to be large and positive because observations nearby in time are also nearby in size. So the ACF of trended time series tends to have positive values that slowly decrease as the lags increase.
- When data are seasonal, the autocorrelations will be larger for the seasonal lags (at multiples of the seasonal frequency) than for other lags.

Autocorrelation function (ACF)

 When data are both trended and seasonal, you see a combination of these effects.

method

statsmodels.graphics.tsaplots.plot_acf(x, ax=None, lags=None, *, alpha=0.05, use_vlines=True, adjusted=False, fft=False, missin g='none', title='Autocorrelation', zero=True, vlines_kwargs=None, **kwargs)

White Noise

- Mean is constant with time
- Variance is also constant with time
- Zero autocorrelation at all lags.
- A white noise time series is simply a sequence of uncorrelated random variables that are identically distributed.

White Noise

What does it look like

```
In [102]: noise=np.random.normal(loc= 0, scale = 1, size = 500)
    plt.plot(noise)
```


- NumPy random normal creates an array of normally distributed random numbers.
 - The loc argument is the <u>mean.</u>
 - The scale argument is the <u>standard deviation</u>.

White Noise

What does it look like

There is no autocorrelations but itself.

You may need
>> pip install xlrd
>> pip install openpyxl

Read excel data

```
import numpy as np
In [1]:
          import matplotlib.pyplot as plt
          import pandas as pd
          df = pd.read excel('data set train.xlsx')
   In [3]: df
   Out [3]:
                   aptnm(아
                                                                                                                     dis_subway(지
                            yyyyqrt(거
                                                                                                                                   brand_r(유
                                      price(가 con_year(건
                                                                   area(면
                                                                          floor(충
                                                                                  Latitude(위
                                                                                             Longtitude(경
                                                                                                                                             n_home(세
                     파트 이
                             래년도 분
                                                                                                             gdp ...
                                                                                                                       하철역과의 거
                                                                                                                                     명 아파트
                                                   축년도)
                                                                                                                                                   대수)
                                                                                                                                    브랜드순)
                                 기별)
                    강남역우
                              2006Q1
                                         9000
                                                     2004
                                                                     17.23
                                                                                7 37.494204
                                                                                                127.043545 225613 ...
                                                                                                                        849.353653
                                                                                                                                           0
                                                                                                                                                     52
                    정에쉐르
                              2006Q1
                                         9000
                                                     2004
                                                                     17.23
                                                                                7 37.494204
                                                                                                127.043545 225613 ...
                                                                                                                        849.353653
                                                                                                                                           0
                                                                                                                                                     52
                    정에쉐르
                   개포주공
                              2006Q1
                                        73000
                                                     1982
                                                            개포동
                                                                     50.38
                                                                                3 37.478407
                                                                                                127.061375 225613 ...
                                                                                                                        1486.178329
                                                                                                                                           0
                                                                                                                                                   5040
                      1단지
                    개포주공
                              2006Q1
                                        70000
                                                     1982
                                                            개포동
                                                                                5 37.484609
                                                                                               127.067275 225613 ...
                                                                                                                                           0
                                                                     50.64
                                                                                                                        1160.598717
                                                                                                                                                   5040
                      1단지
                    개포주공
                              2006Q1
                                        40000
                                                     1982
                                                            개포동
                                                                     35.44
                                                                                4 37.482445
                                                                                                127.051278 225613
                                                                                                                                           0
                                                                                                                                                   5040
                                                                                                                        650.325555
                      1단지
                ...
                    현대빌라
            17395
                              2017Q3
                                       179000
                                                     1998
                                                                    169.63
                                                                                  37.526956
                                                                                                127.053126 446835
                                                                                                                        874.719438
                                                                                                                                           0
                                                                                                                                                     14
                    현대이스
            17396
                              2017Q3
                                       122500
                                                     1999
                                                                    244.14
                                                                                   37.496260
                                                                                               127.046404 446835 ...
                                                                                                                        944.717800
                                                                                                                                           0
                                                                                                                                                     12
                    현대하이
            17397
                              2017Q3
                                        64000
                                                                                                                                           0
                                                                     96.21
                                                                                   37.491379
                                                                                                127.034880
                                                                                                          446835 ...
                                                                                                                        812.764336
                                                                                                                                                     12
            17398
                    현대한강
                              2017Q3
                                       170000
                                                     1992
                                                            청담동
                                                                    136.26
                                                                                   37.524675
                                                                                                127.056226
                                                                                                          446835 ...
                                                                                                                        717.729425
                                                                                                                                           0
                                                                                                                                                     18
            17399
                   현대한강
                              2017Q3
                                       170000
                                                     1992
                                                            청담동
                                                                    136.26
                                                                                8 37.524675
                                                                                               127.056226 446835
                                                                                                                        717.729425
                                                                                                                                           0
                                                                                                                                                     18
            17400 rows x 29 columns
```

- Let's see how data looks like
 - df.shape

```
In [2]: df.shape
Out [2]: (17400, 29)
```

df.columns

- Let's see how data looks like
 - df.describe()

- Let's see how data looks like
 - df.info()

```
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 17400 entries, 0 to 17399
        Data columns (total 29 columns):
            Column
                                      Non-Null Count Dtype
            aptnm(아파트 이름)
                                        17400 non-null object
            yyyygrt(거래년도 분기별)
                                         17400 non-null object
            price(가격)
                                       17400 non-null int64
            con year(건축년도)
                                        17400 non-null int64
            dong(동)
                                      17400 non-null object
            area(면적)
                                       17400 non-null float64
            floor(층수)
                                       17400 non-null int64
            Latitude(위도)
                                       17400 non-null float64
            Longtitude(경도)
                                       17400 non-null float64
            gdp
                                      17400 non-null int64
            e grwth(경제성장률)
                                        17400 non-null float64
            Seoul_1.rate(지가상승률)
                                        17400 non-null float64
            house rate(담보대출금리)
                                        17400 non-null float64
            dis park(국립 공원과의 거리)
                                         17400 non-null float64
            dis highschool(고등학교와의 거리) 17400 non-null float64
            neater(건강 시스템)
                                           1/400 non-null object
            Yongpae(용적률)
                                          16137 non-null float64
            Gunpae(건폐율)
                                          15771 non-null float64
            Highest(최고층)
                                          17400 non-null int64
        28 Lowest(최저층)
                                          17400 non-null int64
       dtypes: float64(15), int64(9), object(5)
       memory usage: 3.8+ MB
```


- Let's see how data looks like
 - Check missing value

Out [59] :													
	ide(위 도)	Longtitude(경 도)	gdp	 dis_subway(지 하철역과의 거 리)	brand_r(유 명 아파트 브랜드순)	n_home(세 대수)	n_dong(동 수)	parking_per(세 대별 주차장수)	Heater(난 방시스 템)	Yongpae(용 적률)	Gunpae(건 폐율)	Highest(최 고층)	Lowest(초 저층
	78407	127.061375	225613	 1486.178329	0	1060	9	0.28	중앙난방	NaN	NaN	15	13
	94581	127.075275	225613	 316.902800	0	1060	9	0.28	중앙난방	NaN	NaN	15	13
	84335	127.071381	225613	 1155.513971	0	1060	9	0.28	중앙난방	NaN	NaN	15	13
	84609	127.067275	225613	 1160.598717	0	1060	9	0.28	중앙난방	NaN	NaN	15	13
	78407	127.061375	225613	 1486.178329	0	1060	9	0.28	중앙난방	NaN	NaN	15	13

Handling NaN data

- Dealing with missing data
 - Replace NaN data with the average value of the column values.

```
In [66]: df['Yongpae(용적률)']=df['Yongpae(용적률)'].replace(np.nan,df['Yongpae(용적률)'].mean())
df['Gunpae(건폐뮬)']=df['Gunpae(건폐뮬)'].replace(np.nan,df['Gunpae(건폐뮬)'].mean())
```

```
24 Heater(난방 시스템) 17400 non-null object
25 Yongpae(용적률) 17400 non-null float64
26 Gunpae(건폐뮬) 17400 non-null float64
27 Highest(최고층) 17400 non-null int64
28 Lowest(최저층) 17400 non-null int64
dtypes: float64(15), int64(9), object(5)
memory usage: 3.8+ MB
```


Let's see how data looks like

```
In [11]: df['dong(동)'].value_counts()

Out[11]: 개포동 5866
역삼동 3729
대치동 2411
수서동 1937
도곡동 1032
청담동 868
논현동 636
삼성동 569
일원동 333
세곡동 17
압구정동 2
Name: dong(동), dtype: int64
```


Let's see how data looks like

```
In [14]: df['yyyyqrt(거래년도 분기별)'].value_counts()
Out[14]: 2017Q1
                    780
         2006Q1
                    703
         2006Q3
                    682
         2006Q4
                    670
         2006Q2
                    562
         2017Q2
                    537
         2016Q3
                    419
         2012Q4
                    416
         2008Q2
                    416
         2015Q2
                    405
                    397
         2011Q3
         2016Q1
                    389
         2007Q4
                    386
         2008Q1
                    385
         2015Q3
                    373
         2015Q1
                    370
         2016Q2
                    369
         2011Q4
                    367
         2011Q1
                    357
         2011Q2
                    353
         2010Q1
                    353
```


Basic

Slice Dataframe(1)

```
In [22]: datal= df.loc[:,'yyyygrt(거래년도 분기별)':'Longtitude(경도)']
           data1.head()
Out[22]:
              yyyyqrt(거래년도 분기별) price(가격) con_year(건축년도) dong(동) area(면적) floor(충수) Latitude(위도) Longtitude(경도)
            0
                                                              역삼동
                          2006Q1
                                      9000
                                                       2004
                                                                        17.23
                                                                                     7
                                                                                          37.494204
                                                                                                        127.043545
            1
                          2006Q1
                                      9000
                                                       2004
                                                              역삼동
                                                                        17.23
                                                                                          37.494204
                                                                                                        127.043545
                                                              개포동
            2
                          2006Q1
                                                                        50.38
                                                                                          37,478407
                                                                                                        127.061375
                                      73000
                                                       1982
                                                              개포동
            3
                                                                                          37,484609
                          2006Q1
                                      70000
                                                       1982
                                                                        50.64
                                                                                                        127.067275
                                                              개포동
                          2006Q1
                                      40000
                                                       1982
                                                                        35.44
                                                                                          37.482445
                                                                                                        127.051278
```

Slice Dataframe(2)

```
In [23]: datal= df[['yyyyqrt(거래년도 분기별)','price(가격)','dong(동)','Latitude(위도)', 'Longtitude(경도)',
                        'Seoul 1.rate(지가상승률)','dis subway(지하철역과의 거리)' ]]
           data1.head()
Out[23]:
              yyyyqrt(거래년도 분기별) price(가격)
                                          dong(동) Latitude(위도) Longtitude(경도) Seoul_I.rate(지가상승률) dis_subway(지하철역과의 거리)
           0
                                     9000
                                             역삼동
                                                                                        0.152881
                                                                                                              849.353653
                          2006Q1
                                                     37.494204
                                                                   127.043545
                                             역삼동
                          2006Q1
                                     9000
                                                     37.494204
                                                                   127.043545
                                                                                        0.152881
                                                                                                              849.353653
           2
                                    73000
                                             개포동
                                                     37.478407
                                                                   127.061375
                                                                                        0.152881
                                                                                                             1486.178329
                          2006Q1
           3
                          2006Q1
                                    70000
                                             개포동
                                                     37.484609
                                                                   127.067275
                                                                                        0.152881
                                                                                                             1160.598717
                          2006Q1
                                    40000
                                             개포동
                                                     37.482445
                                                                   127.051278
                                                                                        0.152881
                                                                                                              650.325555
```


Visualize the graph considering the Location

```
In [17]: | dong = ['Chungdam', 'Apgujeong', 'Dogok', 'Samsung', 'Daechi', 'Gaepo', 'Yeocksam', 'Suseo']
          Ion=[127.0487,127.0303,127.0438,127.0565,127.0611,127.0609,127.0374,127.1052]
          lat = [37.5232, 37.5317, 37.4898, 37.5140, 37.4995, 37.4790, 37.4999, 37.4890]
          data = {'Dong':dong,'Lat':lat,'Lng' : Ion}
          dong_data=pd.DataFrame(data=data)
          dong_data
Out [17]:
                 Dong
                           Lat
                                    Lng
          0 Chungdam 37.5232 127.0487
          1 Apgujeong 37.5317 127.0303
                 Dogok 37.4898 127.0438
          3 Samsung 37.5140 127.0565
                Daechi 37.4995 127.0611
                 Gaepo 37.4790 127.0609
          6 Yeocksam 37.4999 127.0374
                 Suseo 37.4890 127.1052
```


Exercise(2) – Visualization

Visualize the graph considering the Location

```
In [18]
          for i in range(8):
              plt.text(dong_data['Lng'][i], dong_data['Lat'][i],dong_data['Dong'][i],fontsize=12)
          plt.scatter(dong_data['Lng'], dong_data['Lat'],edgecolors="black",c="None", s=2500, alpha=0.3)
Out[18]: <matplotlib.collections.PathCollection at Ox22af38dda30>
             37.53
             37.52
             37.51
             37.50
             37.49
             37.48
             37.47
             37.46
                    0.02
                               0.04
                                          0.06
                                                    0.08
                                                               0.10
                                                               +1.27e2
                                        Longitude
```


- Basic
 - Since column names are too complicated, let's change them to more readable names

Visualize the graph considering the Location & Price

```
plt.figure(figsize=(25, 15))
plt.scatter(x=data2["Lng"], y=data2["Lat"], c=data2["price"], cmap=plt.cm.Reds)
plt.colorbar(label='color')
for i in range(8):
    plt.text(dong_data['Lng'][i], dong_data['Lat'][i],dong_data['Dong'][i],fontsize=12)
plt.scatter(dong_data['Lng'], dong_data['Lat'],edgecolors="black",c="None", s=15000, alpha=0.3)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
    Text(0, 0.5, 'Latitude')
```


visualization of price in 2006 and 2017

```
In [31]: # visualize price at 2006 and 2017
         plt.figure(figsize=(25, 8))
         tp=data2[data2['yearqrt'].str.contains("2006Q")]
         plt.subplot(1,2,1) # price plot
         plt.scatter(x=tp["Lng"], y=tp["Lat"], c=tp["price"], s=200, cmap=plt.cm.Reds)
         plt.colorbar(label='color')
         for i in range(8): # Marking areas
             plt.text(dong data['Lng'][i], dong data['Lat'][i],dong data['Dong'][i],fontsize=12)
         plt.scatter(dong data['Lng'], dong data['Lat'],edgecolors="black",c="None", s=15000, alpha=0.3)
         plt.title("2006"); plt.xlabel("Longitude"); plt.ylabel("Latitude");
         tp=data2[data2['yeargrt'].str.contains("2017Q")]
         plt.subplot(1,2,2) # price plot
         plt.scatter(x=tp["Lng"], y=tp["Lat"], c=tp["price"], s=200,cmap=plt.cm.Reds)
         plt.colorbar(label='color')
         for i in range(8): # Marking areas
             plt.text(dong data['Lng'][i], dong data['Lat'][i],dong data['Dong'][i],fontsize=12)
         plt.scatter(dong data['Lng'], dong data['Lat'],edgecolors="black",c="None", s=15000, alpha=0.3)
         plt.title("2017"); plt.xlabel("Longitude"); plt.ylabel("Latitude");
```


• See how '개포동' price changes over time

```
In [54]: data_gaepo=data2[data2['dong']=='개포동']
```


Data Handling

• See how '개포동' price changes over time

data_gaepo_time=data_gaepo.groupby('yearqrt').mean() #<- groupby needs methods for each group
data_gaepo_time</pre>

	price	Lat	Lng	rate	station_dist
yearqrt					
2006Q1	66954.968288	37.483163	127.063829	0.152881	1106.719865
2006Q2	69240.408163	37.484935	127.066870	0.430146	1009.206136
2006Q3	71064.128440	37.484071	127.063688	0.367231	1060.919660
2006Q4	86538.140704	37.484502	127.065871	0.624673	1033.040965
2007Q1	79064.285714	37.487090	127.068583	0.100708	846.666678
2007Q2	79900.581395	37.484986	127.065834	0.041493	1061.339749
2007Q3	83373.809524	37.487327	127.068551	0.082893	824.821010
2007Q4	79498.275862	37.485786	127.066398	0.218588	971.971004
2008Q1	85955.714286	37.485744	127.066507	0.209861	962.489877
2008Q2	84108.695652	37.484425	127.065823	0.351297	1023.281134
2008Q3	77840.000000	37.483972	127.066124	0.109589	1079.431441
2008Q4	64602.264706	37.485964	127.066588	-2.642750	1014.797750
2009Q1	70429.411765	37.484927	127.065044	-0.011379	1014.017935
2009Q2	83072.031250	37.484784	127.065404	0.011595	968.311408
2009Q3	89909.210526	37.483692	127.063648	0.065216	1026.569361
2009Q4	86573.170732	37.483848	127.065990	0.022254	1094.525948

Data Handling

See how Gaepo-dong price changes over time

Exercise(3) —Each dong's average price change over time

In [73]:

- Get unique values of dongs from the dataset.
- Iterate by each dong.
- Separate the data by dongs.
- Groupby 'yyyyqrt(거래년도 분기별)'.
- Plot each dong's graph by subplot (there will be 11 subplots)

Basic Decomposition

Moving Average

- The first step in a classical decomposition is to use a moving average method to estimate the trend-cycle.
 - remove noise and better expose the signal of the underlying causal processes.
 - a simple and common type of smoothing used in time series analysis and time series forecasting.

A moving average of order m can be written as

$$\hat{T}_t = \frac{1}{m} \sum_{j=-k}^k y_{t+j},\tag{6.1}$$

 The average eliminates some of the randomness in the data, leaving a smooth trend-cycle component. We call this an m-MA, meaning a moving average of order m.

Basic Decomposition

Moving Average

https://otexts.com/fpp2/moving-averages.html

- Notice that the trend-cycle (in red) is smoother than the original data and captures the main movement of the time series without all of the minor fluctuations.
- The order of the moving average determines the smoothness of the trend-cycle estimate.
- Simple moving averages such as these are usually of an odd order (e.g., 3, 5, 7, etc.).

Exercise(4) —Simple Smoothing using 5-MA

In [74]: Bring codes from Exercise 3. Average every 5 price values Plot each dong's graph by subplot (there will be 11 subplots) (if you don't want empty graphs, don't plot them)

Data Analysis

Correlation coefficient: Quantifies the association between variables or features of a dataset.

- Negative correlation (red dots): In the plot on the left, the y values tend to decrease as the x values increase. This shows strong negative correlation, which occurs when large values of one feature correspond to small values of the other, and vice versa.
- Weak or no correlation (green dots): The plot in the middle shows no obvious trend. This is a form of weak correlation, which occurs when an association between two features is not obvious or is hardly observable.
- Positive correlation (blue dots): In the plot on the right, the y values tend to increase as the x values increase. This illustrates strong positive correlation, which occurs when large values of one feature correspond to large values of the other, and vice versa.

Data Analysis

Let's find if there is any correlations between variables

In [78]:	corr=df.corr() corr.head(15)											
Out [78] :		price(7)	con year(건	area(면	floor(충	Latitude(위	Longtitude(경		e_grwth(경	Seoul_I.rate(지	house_rate(담	dis_hos
		격)	축년도)	적)	수)	도)	E)	gdp	제성장률)	가상승률)	보대출금리)	 합 병원
	price(가격)	1.000000	0.085364	0.711187	0.094599	0.105059	-0.079797	0.289566	-0.132575	-0.044081	-0.016064	 -0.
	con_year(건축년 도)	0.085364	1.000000	0.439237	0.390900	0.528441	-0.428207	0.017524	0.018824	0.003777	0.064364	 -0.
	area(면적)	0.711187	0.439237	1.000000	0.185766	0.434611	-0.238154	0.112332	-0.063985	-0.049426	0.073215	 -0.3
	floor(층수)	0.094599	0.390900	0.185766	1.000000	0.162481	-0.162969	-0.005394	-0.014200	-0.032827	0.096666	 -0.
	Latitude(위도)	0.105059	0.528441	0.434611	0.162481	1.000000	-0.439299	0.025258	-0.002774	-0.006517	0.039514	 -0.
	Longtitude(경도)	-0.079797	-0.428207	-0.238154	-0.162969	-0.439299	1.000000	-0.048094	0.048237	-0.004806	0.017940	 0.
	gdp	0.289566	0.017524	0.112332	-0.005394	0.025258	-0.048094	1.000000	-0.377111	-0.213939	0.149208	 0.
	e_grwth(경제성장 률)	-0.132575	0.018824	-0.063985	-0.014200	-0.002774	0.048237	-0.377111	1.000000	0.432165	-0.179790	 -0.
	Seoul_I.rate(지가 상승률)	-0.044081	0.003777	-0.049426	-0.032827	-0.006517	-0.004806	-0.213939	0.432165	1.000000	-0.222397	 0.
	house_rate(담보대 출금리)	-0.016064	0.064364	0.073215	0.096666	0.039514	0.017940	0.149208	-0.179790	-0.222397	1.000000	 -0.
	dis_park(국립 공원 과의 거리)	0.124167	-0.249766	-0.066577	-0.062905	-0.072618	-0.105255	0.017893	-0.076643	-0.016310	-0.002624	 0.:
	dis_highschool(고 등학교와의 거리)	0.008956	0.020907	0.034017	-0.051315	0.162671	-0.204004	0.016943	0.000779	0.012210	-0.010090	 0.
	dis_reconst(재개 발 지역과의 거리)	-0.217519	0.288396	0.025094	0.086767	0.214998	0.225095	-0.110684	0.124114	0.044810	0.020718	 -0.
	dis_univ(대학과의 거리)	-0.025299	-0.607955	-0.331806	-0.233695	-0.702213	0.870612	-0.003616	-0.003406	-0.017573	-0.006254	 0.3
	dis_hospital(종합 병원과의 거리)	-0.027211	-0.567171	-0.351692	-0.334654	-0.552484	0.167502	0.013588	-0.025769	0.035069	-0.123207	 1.
	15 rows × 24 colum	nns										
	4											•

- Let's find if there is any correlations between variables
 - We can think that "Station Influence Area" can influence the price.
 - 1. Separates only "2006Q1"

		006Q1=0 006Q1	df[df['	ууууд	rt(거래년5	E 분기별) ']==	"2006(Q1"]					
Out [56] :		aptnm(아 파트 이 름)	yyyyqrt(거 래년도 분 기별)	price(가 격)	con_year(건 축년도)	dong(동)	area(면 적)	floor(충 수)	Latitude(위 도)	Longtitude(경 도)	gdp	 dis_subway(지 하철역과의 거 리)	brand_r(유 명 아파트 브랜드순)	n_home(샤 대수
	0	강남역우 정에쉐르	2006Q1	9000	2004	역삼동	17.23	7	37.494204	127.043545	225613	 849.353653	0	5
	1	강남역우 정에쉐르	2006Q1	9000	2004	역삼동	17.23	7	37.494204	127.043545	225613	 849.353653	0	5
	2	개포주공 1단지	2006Q1	73000	1982	개포동	50.38	3	37.478407	127.061375	225613	 1486.178329	0	504
	3	개포주공 1단지	2006Q1	70000	1982	개포동	50.64	5	37.484609	127.067275	225613	 1160.598717	0	504
	4	개포주공 1단지	2006Q1	40000	1982	개포동	35.44	4	37.482445	127.051278	225613	 650.325555	0	504
	698	현대까르 띠에710	2006Q1	137500	2001	역삼동	149.70	18	37.501538	127.044971	225613	 481.866907	0	13
	699	현대하이 츠	2006Q1	35700	2004	역삼동	99.22	4	37.501582	127.045546	225613	 442.591325	0	1
	700	현대하이 츠	2006Q1	34000	2004	역삼동	96.21	1	37.496302	127.042105	225613	 690.127727	0	1
	701	현대하이 츠	2006Q1	35700	2004	역삼동	99.22	4	37.501582	127.045546	225613	 442.591325	0	1
	702	현대하이	2006⊜1	34000	2004	여사도	06 21	1	37 406302	127 042105	225613	60N 127727	n	1

- Let's find if there is any correlations between variables
 - We can think that "Station Influence Area" can influence the price.
 - 2. groupby "artnm(아파트 이름)"

In [74]:	df2006Q1_apt=df2006Q1.groupby('aptnm(아파트 이름)').mean() df2006Q1_apt.head(13)												
Out [74] :		price(가격)	con_year(건 축년도)	area(면적)	floor(충 수)	Latitude(위 도)	Longtitude(경 도)	gdp	e_grwth(경 제성장률)	Seoul_I.rate(지 가상승률)	house_rate(담 보대출금리)		dis_hosp 합 병원고
	aptnm(아 파트 이 름)												
	강남역우 정에쉐르	9000.000000	2004.000000	17.230000	7.000000	37.494204	127.043545	225613.0	6.3	0.152881	5.559495		291.1
	개포주공 1단지	68966.058394	1982.000000	46.956058	3.000000	37.483186	127.063440	225613.0	6.3	0.152881	5.559495		1697.09
	개포주공 4단지	57731.764706	1982.141176	42.510235	2.800000	37.483428	127.064881	225613.0	6.3	0.152881	5.559495		1713.64
	개포주공 5단지	66784.210526	1983.000000	63.886316	8.631579	37.481076	127.061997	225613.0	6.3	0.152881	5.559495		1830.49
	개포주공 6단지	66066.666667	1983.000000	64.334444	7.444444	37.485030	127.068470	225613.0	6.3	0.152881	5.559495		1673.03
	개포주공 7단지	70996.296296	1983.000000	67.244444	8.000000	37.483491	127.063689	225613.0	6.3	0.152881	5.559495		1637.12
	공간쉐르 빌	25500.000000	2003.000000	78.080000	2.000000	37.496302	127.042105	225613.0	6.3	0.152881	5.559495		540.03
	구산	40000.000000	1993.000000	80.580000	7.000000	37.520578	127.047927	225613.0	6.3	0.152881	5.559495		222.5
	규호어물												

Data Analysis

- Let's find if there is any correlations between variables
 - We can think that "Station Influence Area" can influence the price.

n (71): ut(71):	df2006Q1_	apt.cor	r().head	()							
		price(가 격)	con_year(건 축년도)	area(면적)	floor(충수)	Latitude(위 도)	Longtitude(경 도)	gdp	e_grwth(경 제성장률)	Seoul_I.rate(지 가상승률)	house_rate(E 보대출금리
	price(가격)	1.000000	-0.134905	0.814753	0.106497	0.123592	0.258175	NaN	-0.031523	0.005549	-0.008191
	con_year(건 축년도)	-0.134905	1.000000	0.222922	0.226211	0.372288	-0.640149	NaN	0.211972	0.368273	0.517574
	area(면적)	0.814753	0.222922	1.000000	-0.002331	0.392753	-0.028654	NaN	0.081054	0.199326	0.296241
	floor(충수)	0.106497	0.226211	-0.002331	1.000000	0.071205	-0.130484	NaN	0.208021	0.285544	0.240815
	Latitude(위 도)	0.123592	0.372288	0.392753	0.071205	1.000000	-0.517893	NaN	0.119715	0.309658	0.483484

We can see that in Gangnam, "distance to subway" doesn't matter (corr = -0.029509)

```
df2006Q1=df[df['yyyyqrt(거래년도 분기별)']=="2006Q1"] # extract data in 2006Q1
df2006Q1_apt=df2006Q1.groupby('aptnm(아파트 이름)').mean() #average price
r = df2006Q1_apt.corr()
r_price = r['price(가격)']

plt.figure(figsize=(20,5))
plt.plot(r_price,'o-')
plt.yticks(fontsize = 20); plt.xticks(rotation=45, fontsize = 15, ha = 'right')
plt.title('2006Q1',fontsize=30);
plt.grid(True)
plt.show()
```


What about the results in 2016Q1, 2017Q1 and 2017Q2?

```
years = ['2006Q1', '2016Q1', '2017Q1', '2017Q2']
for y in years:
   df_y=df[df['yyyyqrt(거래년도 분기별)']==y] # extract data in 2006Q1
   df y apt=df y.groupby('aptnm(아파트 이름)').mean() #average price
   df r = df y apt.corr()
   df_r_price = df_r['price(가격)']
   if y==years[0]:
       df r price all = df r price
   else:
       df r price all = pd.concat([df r price all,df r price],axis=1)
df r price all.columns = years
plt.figure(figsize=(20,10))
plt.plot(df r price all, 'o-')
plt.yticks(fontsize = 20); plt.xticks(rotation=45, fontsize = 15, ha = 'right')
plt.grid(True)
plt.legend(years, fontsize=20)
plt.show()
```


What about the results in 2016Q1, 2017Q1 and 2017Q2?

AutoRegressive Model

- AR(p): An autoregressive process of order p
- Present value of the series, X_t , by a function of p past values, $X_{t-1}, X_{t-2}, ..., X_{t-p}$.
- $X_t = c + \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \varphi_3 X_{t-3} + \dots + \varphi_p X_{t-p} + Z_t$
 - Where $\{Z_t\}$ is white noise, i.e., $\{Z_t\} \sim WN(o, \sigma^2)$, and Z_t , is uncorrelated with X_s for each s < t.

AR(1) model

• AR(1) =
$$X_t = c + \varphi_1 X_{t-1} + Z_t$$

- For an AR(1) model:
 - when $\varphi_1 = 0$, X_t is equivalent to white noise;
 - when $\varphi_1 = 1$ and c=0, X_t is equivalent to a random walk;
 - when $\varphi_1 = 1$ and $c \ne 0$, X_t is equivalent to a random walk with drift;
 - when $\varphi_1 < 0$, X_t tends to oscillate around the mean.

Exercise(6) – the price trend in YeockSam-dong

First, let's check the price in YeockSam-dong

```
nMA = 2 # number of Pre(or post) samples to average
plt.figure(figsize=(50,15))
tmp=df[df['dong(동)']=="역삼동"]
tp=tmp.groupby('yyyygrt(거래년도 분기별)').mean().copy()
ls=[]
for j in range(nMA, len(tp)-nMA):
    Is.append(tp['price(가격)'].iloc[j-nMA:j+nMA].mean())
df_mean5=pd.DataFrame({"Time" : tp.index.values[nMA:len(tp)-nMA], "Mean_Price" : Is })
plt.plot(df_mean5["Time"],df_mean5["Mean_Price"],linewidth=3.0)
plt.yticks(fontsize = 50); plt.xticks(fontsize = 30, rotation = 45, ha = 'right')
plt.grid(True)
df_mean5.set_index("Time", inplace=True)
90000
80000
70000
60000
50000
40000
```


Exercise(6) – Autocorrelation of the price trend

Second, check autocorrelation

Exercise(6) – Autocorrelation of the price trend

Second, check autocorrelation

```
plot_pacf(df_mean5['Mean_Price'])
plt.show()
```


acf : Pearson correlation pacf: partial acf

= direct correlation

= coefficient in AR model

Exercise(7) – Stock price and volume

- Given 3 companies (codes) stock price and volume for 2 years (2019 and 2020) in 'stockprice_3.xlsx', plot 3 figures, each with 2 subplots as follows.
 - one figure for one company
 - subplot1: price curve, price with 3-MA, price with 5-MA
 - subplot2: volume curve, with 3-MA, with 5-MA
 - For all subplots, x-axis should be 'Date'.
 - Submit your code and your docx file including the 3 figures

References

- https://books.google.co.kr/books?hl=en&Ir=&id=llupDwAAQBAJ&oi=fnd&pg=PP1&dq=time+series &ots=wfdZ27Rn6c&sig=pWqrVvG8mndFUuvkfGZt4xNdZJs&redir_esc=y#v=onepage&q=time%2 Oseries&f=false
- Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series modeling and forecasting. arXiv preprint arXiv:1302.6613.
- Mingda, Z. (2018). Time Series: Auto regressive models AR MA ARMA ARIMA. University of Pittsburgh.
- https://books.google.co.kr/books?hl=en&lr=&id=o7jWV67165QC&oi=fnd&pg=PR5&dq=time+series&ots=mqfhWSFc0r&sig=9TjaCtQ-mBVuJ8xDtNIR5nq2lko&rediresc=y#v=onepage&q=time%20series&f=false
- https://realpython.com/numpy-scipy-pandas-correlation-python/
- https://otexts.com/fpp2/index.html
- https://www.analyticsvidhya.com/blog/2018/09/non-stationary-time-series-python/
- https://people.duke.edu/~rnau/411diff.htm
- https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm

