

DATA SCIENCE

MÓDULO 3

Hiperparámetros y Model Validation Agosto de 2017

Pensando en Model Validation

En la clase pasada, vimos una receta básica para aplicar un modelo de machine learning supervisado:

- 1. Elegir una clase de modelo
- 2. Elegir los hiperparámetros del modelo
- 3. Ajustar el modelo a los datos de entrenamiento
- 4. Usar el modelo para predecir etiquetas para nuevos datos

Los primeros dos pasos, la elección del modelo y los hiperparámetros, son tal vez las etapas más importante al usar estas herramientas y técnicas efectivamente. Para realizar una elección informada, necesitamos una manera de *validar* que nuestro modelo y nuestros hiperparámetros representan un buen **fit** (ajuste) para los datos.

Aunque esto puede parecer simple, hay algunas trampas que debemos evitar para lograr esto de manera efectiva.

Pensando en Model Validation

En principio, la validación de modelos es simple: luego de elegir un modelo y sus hiperparámetros, podemos estimar cuán efectivo es, aplicándolo a algunos de los datos de entrenamiento y comparando la predicción con el valor de verdad conocido.

Las próximas secciones muestran:

- Primero una aproximación naive a la validación de modelos y explica por qué falla
- Luego explora el uso de holdout sets y cross-validation para una evaluación de modelos más robusta

Model validation, la forma incorrecta

Vamos a demostrar la aproximación incorrecta a la validación usando el dataset Iris:

```
In [1]:
from sklearn.datasets import load_iris
iris = load_iris()
```

X = iris.datay = iris.target

Luego elegimos un modelo y sus hiperparámetros. Aquí usaremos un clasificador k-neighbors con n_neighbors=1. Este es un modelo muy simple e intuitivo que dice "la etiqueta de un punto desconocido es la misma que la etiqueta de sus puntos de entrenamiento más cercanos"

In [2]:

from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n neighbors=1)

Model validation, la forma incorrecta

Luego entrenamos el modelo, y lo usamos para predecir etiquetas para datos que ya conocemos:

```
In [3]:
model.fit(X, y)
y_model = model.predict(X)
```

Finalmente, computamos la fracción de puntos etiquetados correctamente:

```
In [4]:

from sklearn.metrics import accuracy_score
accuracy_score(y, y_model)

Out[4]:
1.0
```


Vemos un **accuracy score** de 1.0, lo cual indica que el 100% de los puntos fueron etiquetados correctamente por nuestro modelo!

Pero estamos midiendo verdaderamente el accuracy esperado? Realmente logramos un modelo que esperamos que funcione correctamente el 100% de las veces?

Como pueden imaginarse, la respuesta es no. De hecho, este procedimiento contiene una **falla fundamental**:

Entrenar y evaluar el modelo

con los mismos datos

Model validation la forma correcta: Holdout sets

Entonces, qué podemos hacer?

Podemos hacernos una mejor idea de la performance del modelo usando lo que se conoce como un holdout set: esto es, nos reservamos un subconjunto de los datos de entrenamiento, y luego usamos este subconjunto para verificar la performance del modelo.

Esta separación puede hacerse usando la función **train_test_split** en Scikit-Learn:

In [5]:

from sklearn.cross validation import train test split

dividimos los datos con un 50% en cada subconjunto X1, X2, y1, y2 = train test split(X, y, random state=0,train size=0.5)

Model validation la forma correcta: Holdout sets

ajustamos el modelo en un subconjunto de los datos model.fit(X1, y1)

evaluamos el modelo con el otro conjunto de datos y2 model = model.predict(X2) accuracy_score(y2, y2_model)

Out[5]:

0.9066666666666662

Aguí vemos un resultado más razonable: el clasificador nearest-neighbor tiene un 90% de precisión con este subconjunto de datos reservados (no usados para entrenar el modelo).

El subconjunto reservado es similar a un nuevo set de datos no conocidos, porque "el modelo no los ha visto antes".

Una desventaja de usar un holdout set para model validation es que perdemos una porción de nuestros datos para el entrenamiento del modelo.

En el caso anterior, la mitad del dataset no contribuye al training del modelo!

Esta no es una solución óptima, y puede causar problemas, especialmente si el set inicial de entrenamiento es pequeño.

Una forma de resolver esto es usar cross-validation; es decir, realizar una secuencia de ajustes donde cada subconjunto de los datos es usado como set de entrenamiento (training set) y como set de validación (validation set).

Aquí hacemos **dos iteraciones** de ajuste y predicción (notar el **chaining** en la invocación de los métodos **fit()** y **predict()**)

Alternativamente, cada iteración usa cada mitad de los datos como un set de validación.

Usando los datos divididos como antes, podríamos implementar cross-validation de esta forma:

In [6]:

```
y2_model = model.fit(X1, y1).predict(X2)
y1_model = model.fit(X2, y2).predict(X1)
accuracy_score(y1, y1_model), accuracy_score(y2, y2_model)
```

Out[6]:

Se muestran dos scores de accuracy, que podríamos combinar (por ejemplo, tomando la media) para obtener una mejor medida de la performance global del modelo. Esta forma particular de cross-validation se conoce como **two-fold cross-validation**, es decir dividimos los datos en dos conjuntos que usamos, por turnos, como como set de validación.

Podríamos extender esta idea y usar incluso más iteraciones, y más divisiones (folds) de los datos, por ejemplo, aquí vemos una descripción de una **five-fold cross-validation:**

Aquí dividimos los datos en cinco grupos, y usamos a cada uno de ellos en turnos para evaluar el ajuste del modelo sobre las 4/5s partes restante del dataset.

Esto sería tedioso de programar a mano, por lo que podemos usar la función cross_val_score():

In [7]:

```
from sklearn.cross_validation import cross_val_score cross_val_score(model, X, y, cv=5)
```

Out[7]:

array([0.96666667, 0.96666667, 0.93333333, 0.93333333, 1.])

Repetir la validación con diferentes subconjuntos de los datos nos da una mejor estimación de la performance del algoritmo.

Esquemas de cross-validation en Scikit-Learn

Scikit-Learn implementa un número de esquemas de cross-validation que son útiles en situaciones particulares;

Para una descripción completa, explorar el submódulo **sklearn.cross_validation** o mirar la documentación online en **cross-validation** documentation.

Por ejemplo, podriamos querer usar el caso extremo en el cual nuestro numero de subconjuntos es igual al número de data points: es decir, entrenar el modelo con todos los puntos menos uno, en cada iteración.

Este tipo de cross-validation se conoce como **leave-one-out** y lo vemos a continuación.


```
In [8]:
```

```
from sklearn.cross validation import LeaveOneOut
scores = cross val score(model, X, y, cv=LeaveOneOut(len(X)))
scores
Out[8]:
```

Como tenemos 150 muestras, la validación leave-one-out nos devuelve los scores de 150 iteraciones y cada score indica bien la predicción exitosa (1.0) o no exitosa (0.0). Tomando la media de estos scores obtenemos una estimación del error rate:

```
In [9]:
```

scores.mean()

Out[9]:

0.959999999999999

Seleccionar el mejor modelo

Seleccionar el mejor modelo

Ahora que hemos visto los fundamentos de la validación de modelos y la cross-validation, vamos a avanzar un poco más en profundidad en lo que respecta a **model selection** y la **elección de hiperparámetros**.

Estos son de los aspectos más importantes en la práctica de machine learning, y frecuentemente esta información es subestimada en los tutoriales introductorios de la disciplina.

La siguiente pregunta es **una de las más importantes** que vamos a hacernos:

si nuestro estimador tiene un rendimiento bajo, cómo deberíamos avanzar?

Estas son varias respuestas posibles:

- Usar un modelo más complicado / flexible
- Usar un modelo menos complicado / flexible
- Obtener más muestras de entrenamiento
- Obtener más datos para agregar features a cada muestra

Seleccionar el mejor modelo

La respuesta a esta pregunta es frecuentemente contraintuitiva

Por ejemplo:

- A veces, usar un modelo más complicado nos dará peores resultados,
- Agregar más muestras de training puede no mejorar tus resultados!

La habilidad para determinar qué pasos mejorarán tu modelo es la habilidad fundamental que queremos desarrollar como aprendices de machine learning.

Fundamentalmente, la búsqueda del "mejor modelo" se trata de encontrar un punto óptimo en lo que se conoce como el dilema entre el sesgo y la varianza (the tradeoff between *bias* and *variance*).

Consideremos la siguiente figura, que representa dos regresiones ajustadas al mismo dataset

Claramente, ninguno de estos modelos es particularmente un buen ajuste a los datos, pero cada uno falla de diferentes formas.

El dilema Sesgo - Varianza

Este modelo intenta encontrar una línea recta para ajustar los datos.

Como **los datos son intrínsecamente más complicados**, el modelo de línea recta nunca será capaz de describir bien el dataset.

En estos casos se dice que el modelo **subajusta (underfit)** los datos.

Es decir, el modelo no tiene la suficiente flexibilidad para representar apropiadamente todas las características en los datos

Otra forma de decirlo es que el modelo tiene un **sesgo alto** (high bias).

21

Consideremos la siguiente figura, que representa dos regresiones ajustadas al mismo dataset.

Este modelo intenta ajustar un **polinomio de grado alto** a los datos.

Aquí el ajuste del modelo tiene suficiente flexibilidad para tener en cuenta casi perfectamente los detalles finos en las características de los datos

Pero aunque describe muy precisamente los datos de entrenamiento, su forma pareciera estar **reflejando más las propiedades del ruido** que las propiedades intrínsecas del proceso generador de los datos.

Se dice que tal modelo **sobre-ajusta (overfit)** a los datos: es decir, el modelo tiene tanta flexibilidad que termina incluyendo tanto los errores aleatorios como la distribución de los datos; otra forma de decir esto es que el modelo tiene **alta varianza (high variance)**.

Para arrojar más luz a este problema, consideremos qué pasa si **usamos estos dos modelos para predecir el valor de "y" para datos nuevos.** En el diagrama, los puntos rojos son los que fueron omitidos del entrenamiento:

El score usado aquí es R², o <u>coeficiente de determinación</u>, el cual mide **cuán bien se comporta un modelo con respecto a una media simple de valores target.**

 $R^2 = 1$ indica una precisión perfecta,

 $R^2 = 0$ indica que el modelo no funciona mejor que simplemente tomar la media de los datos,

 $R^2 < 0$ nos dice que el modelo rinde incluso peor que tomar la media de los valores target.

De los scores asociados con estos dos modelos, podemos hacer **observaciones que pueden generalizarse:**

Para modelos con alto sesgo, la performance del modelo con el set de validación es similar a la performance con el set de entrenamiento

Para modelos con alta varianza, la performance del modelo con el set de validación es mucho peor que la performance con el set de entrenamiento

- El score de entrenamiento es siempre mayor que score de validación. Generalmente este es el caso: el modelo será un mejor ajuste para los datos que ya ha visto que para los que todavía no.
- Para un modelo de muy baja complejidad (sesgo alto), el set de entrenamiento se underfitea, es decir que el modelo es un mal predictor tanto para los datos de entrenamiento como para los nuevos datos.
- Para modelos con muy alta complejidad (modelos con alta varianza), los datos de entrenamiento son overfiteados, lo que significa que el modelo predice muy bien los datos de entrenamiento pero falla para cualquier dato nuevo.
- Para algún modelo intermedio, la validation curve tiene un máximo. Este nivel de complejidad indica un compromiso apropiado entre sesgo y varianza.

PRÁCTICA GUIADA

Tamaño del Dataset: otro factor que afecta la performance

Un aspecto importante de la complejidad del modelo es que el modelo óptimo generalmente dependerá del tamaño del set de entrenamiento. Imaginemos 2 datasets con el mismo proceso generador, pero el segundo tiene 5 veces más muestras.

Validation Curve

Las líneas llenas muestran los nuevos resultados (dataset "grande"), mientras que las líneas cortadas muestran los resultados del **dataset más pequeño**.

Queda claro de la validation curve que el dataset más grande puede soportar un modelo mucho más complicado.

El pico en este ejemplo está alrededor del grado 6, pero incluso un modelo de grado 20 no está overfiteando gravemente - los scores de validación y entrenamiento se mantienen muy cerca.

Validation Curves y tamaño del dataset

De esta forma, vemos que el comportamiento de la validation curve tiene dos inputs importantes:

- la complejidad del modelo
- el número de puntos de entrenamiento

Usualmente es útil explorar el comportamiento del modelo como una función del número de muestras de entrenamiento. Esto puede hacerse usando subconjuntos de tamaño creciente de nuestros datos para ajustar nuestro modelo.

Un plot del score de entrenamiento/validación con respecto al tamaño del set de entrenamiento se conoce como **learning curve.**

Validation Curves y tamaño del dataset

El comportamiento general que podríamos esperar de una learning curve es este:

- Un modelo con una dada complejidad sobre-ajustará a un dataset pequeño: esto significa que el score de entrenamiento será relativamente alto, mientras que el score de validación será relativamente bajo.
- Un modelo con una dada complejidad sub-ajustará a un dataset grande: lo que significa que el score de entrenamiento decaerá pero, pero el score de validación se incrementará.
- Un modelo nunca, excepto por azar, dará un mejor score de validación que de entrenamiento: esto significa que las curvas deberían acercarse pero nunca cruzarse.

Learning curves en Scikit-Learn

Con estas características en mente, debreríamos esperar que una learning curve se vea, cualitativamente, como en la siguiente figura:

La característica notable de la learning curve es la convergencia a un score particular a medida que el número de muestras de entrenamiento crece.

En particular, una vez que tenemos puntos suficientes para que el modelo haya convergido, agregar más puntos de entrenamiento no ayudará a mejorar el score!

La única forma de incrementar la performance del modelo en este caso es usar otro modelo, generalmente más complejo.

Ejemplos en Scikit-Learn

La discusión anterior está pensada para darte alguna intuición en el dilema del sesgo-varianza, y su dependencia con la complejidad del modelo y el tamaño del set de entrenamiento.

En la práctica, los modelos generalmente tienen **más de un hiperparámetro para configurar** (más de una "perilla para mover"), y por lo tanto los plots de las validation curves y learning curves cambian de líneas a **superficies multidimensionales.**

En estos casos, tales visualizaciones son difíciles y deberíamos simplemente encontrar el modelo

particular que maximice el score de validación.

Scikit-Learn proveé herramientas automatizadas para realizar esta búsqueda en el módulo **sklearn.grid search**

En esta sección, hemos comenzado a explorar el concepto de **model validation** y **optimización de hiperparámetros**, enfocándonos en aspectos intuitivos del dilema sesgo-varianza y cómo entra en juego cuando ajustamos modelos a los datos.

En particular, encontramos que el uso de un set de validación o un aproximación de cross-validation es **vital** cuando tuneamos modelos para evitar el over-fitting para modelos más complejos/flexibles.

Más adelante discutiremos los detalles de los modelos más usados y en ese momento veremos qué clase de configuraciones están disponibles en esos modelos para incrementar la complejidad.

Hemos visto temas fundamentales de machine learning. Traten de repasarlos y tenerlos en mente para lo que resta del curso!