

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«МИРЭА – Российский технологический университет»

Институт кибербезопасности и цифровых технологий ЛАБОРАТОРНОЕ ЗАНЯТИЕ № 2

по дисциплине

«Анализ защищенности систем искусственного интеллекта»

			Выполнил:
			ББМО-01-22
			Чадов В. Т.
			Проверил:
			Спирин А. А.
«Зачтено»	«»	2023 г	

Задачи:

- 1. Реализовать атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения.
- 2. Получить практические навыки переноса атак уклонения на основе черного ящика против моделей машинного обучения.

Набор данных: Для этой части используйте набор данных GTSRB (German Traffic Sign Recognition Benchmark). Набор данных состоит примерно из 51 000 изображений дорожных знаков. Существует 43 класса дорожных знаков, а размер изображений составляет 32×32 пикселя. Распределение изображений по классам показано на рис. 1. Набор данных: https://www.kaggle.com/datasets/meowmeowmeowmeow/gtsrb-german-traffic-sign

Рис. 1. Распределение изображений в GTRSB

Задание 1.

Обучить 2 классификатора на основе глубоких нейронных сетей на датасете GTSRB. Использовать следующие модели нейронных сетей: VGG16, ResNet50/10X, MobileNet v2/3. Можно использовать фреймворки Keras, TensorFlow, PyTorch, не надо создавать сети вручную и с нуля. Использовать предобученные сети (например на ImageNet). Выполнить поиск наилучших гиперпараметров моделей. Использовать бесплатные ресурсы GPU сервиса Google Colab.

Составить отчёт: (а) Заполнить Таблицу 1. (b) Для каждой модели построить графики функции потерь для данных валидации и тестирования и графики метрики Ассигасу(пример на рис. 2).

Рис. 2. Примеры графиков функции потерь и графиков точности моделей.

Задание 2.

Применить нецелевую атаку уклонения на основе белого ящика против моделей глубокого обучения. Реализовать следующие типы атак: Fast Gradient Sign Method (FGSM) и Projected Gradient Descent (PGD). Может быть использован код из следующих библиотек: Adversarial Robustness Toolbox ART, Cleverhans CH, scratchai SC.

Наиболее проработанная библиотека — Adversarial Robustness Toolbox, рекомендуется использовать её, но другие также могут быть применены.

Например, https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/art-for-tensorflow-v2-keras.ipynb объясняет как использовать ART с помощью Keras. Также есть другие https://github.com/Trusted-AI/adversarial-robustness-toolbox/tree/main/notebooks с примерами атак на основе библиотеки ART.

Используйте атаки FSGM и PGD для создания нецелевых атакующих примеров используя первые 1,000 изображений из тестового множества. Необходимо использовать следующие значения параметра искажения: $\epsilon \epsilon = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255]$. Постройте графики точности 2-х моделей в зависимости от параметра искажений $\epsilon \epsilon$ (пример на рис. 3, $\epsilon \epsilon = 80/255 \approx 0.3$). Для атаки FGSM, отобразите исходное изображение из датасета и атакующее изображение с указанием величины параметра $\epsilon \epsilon = [1/255, 5/255, 10/255, 50/255, 80/255]$, отобразите предсказанный класс атакующего изображения (см. рис. 4).

Отчёт должен содержать: (а) Заполненную таблицу 2. Все модели должны иметь точность менее 60% для $\epsilon\epsilon$ =10/255. (b) Для каждой модели постройте график зависимости точности классификации от параметра искажений $\epsilon\epsilon$ (как на рис. 3). (c) Сделать выводы о полученных результатах.

Рис. 3. Зависимость точности классификации от параметра искажений эпсилон

Рис. 4. Пример исходных и атакующих изображений

Таблица 2.

Модель	Исходные	Adversarial	Adversarial	Adversarial
	изображения	images ϵ =1/255	images ϵ =5/255	images ϵ =10/255
VGG16 - FGSM				
VGG16 - PGD				
ResNet50 - FGSM				
ResNet50 - PGD				

Задание 3:

Применение целевой атаки уклонения методом белого против моделей глубокого обучения.

Шаг 1: Используйте изображения знака «Стоп» (label class 14) из тестового набора данных. Всего имеется 270 изображений. Примените атаку Projected Gradient Descent (PGD) на знак «Стоп» с целью классификации его как знака «Ограничение скорости 30» (target label class = 1). Изменяйте значения искажений $\epsilon \epsilon$ = [1/255, 3/255, 5/255, 10/255, 20/255, 50/255, 80/255], и заполните отчёт значениями точности классификации изображений знаков "Стоп" и "Ограничение скорости 30".

2: Шаг Повторите атаку FGSM, методом объясните производительность по сравнению с PGD. Отчёт должен содержать: (a) Заполненную таблицу 3. Объясните какой размер искажений достигает максимальной производительности и объясните причины. (b) Постройте 5 изображений знака «Стоп» примеров исходных И соответствующих атакующих примеров (см. рис. 5). (c) Сравните результаты атак PGD и FGSM между собой.

Таблица 3.

Искажение	PGD attack - Stop sign images	PGD attack - Speed Limit 30 sign images
ϵ =1/255		
€=3/255		
€=5/255		
$\epsilon = 10/255$		
€=20/255		
€=50/255		
€=80/255		

Рис. 5. Пример исходных и атакующих изображений

Создаем модель ResNet50, выборки поделены 70/30, показано на рисунке 6.

```
x_train, x_val, y_train, y_val = train_test_split(data, labels, test_size=0.3, random_state=1)
img_size = (224,224)
model = Sequential()
model.add(ResNet50(include_top = False, pooling = 'avg'))
model.add(Dropout(0.1))
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.1))
model.add(Dense(43, activation = 'softmax'))
model.layers[2].trainable = False
```

Рис.6. модель ResNet50

Первый график отображает точность обучения и валидации модели RESNET50, показан на рисунке 7.

Рис.7. Accuracy ResNet50

Второй график отображает потерю обучения и валидации модели RESNET50, показан на рисунке 8.

Рис.7. Loss ResNet50

Создаем модель VGG16, показано на рисунке 8.

```
img_size = (224,224)
model = Sequential()
model.add(VGG16(include_top=False, pooling = 'avg'))
model.add(Dropout(0.1))
model.add(Dense(256, activation="relu"))
model.add(Dropout(0.1))
model.add(Dense(43, activation = 'softmax'))
model.layers[2].trainable = False
```

Рис.8. модель VGG16

Третий график отображает точность обучения и валидации модели VGG16, показан на рисунке 9.

Рис.9. Accuracy VGG16

Четвертый график отображает потерю обучения и валидации модели VGG16, показан на рисунке 10.

Рис.10. Loss VGG16

Заполним Таблицу 1.

Модель	Обучение	Валидация	Тест
ResNet50	loss: 0.0697	loss: 0.2205	loss: 0.4797
Resnetsu	accuracy: 0.9816	accuracy: 0.9442	accuracy: 0.8907
VGG16	loss: 0.1551	loss: 0.0592	loss: 0.2825
V Q Q 10	accuracy: 0.9698	accuracy: 0.9847	accuracy: 0.9426

Проведем атаки FGSM и PGD на модель RESNET50, используя первые 1,000 изображений из тестового множества. Используем значения параметра искажения:

 $\epsilon = [1/255,\, 2/255,\, 3/255,\, 4/255,\, 5/255,\, 8/255,\, 10/255,\, 20/255,\, 50/255,\, 80/255].$

Построим график зависимости точности классификации от параметра искажений эпсилон для RESNET50, показан на рисунке 11.

Рис.11. Accuracy ResNet50

Проведем атаки FGSM и PGD на модель VGG16, используя первые 1,000 изображений из тестового множества. Используем значения параметра искажения:

 $\epsilon = [1/255, 2/255, 3/255, 4/255, 5/255, 8/255, 10/255, 20/255, 50/255, 80/255].$

Построим график зависимости точности классификации от параметра искажений эпсилон для VGG16, показан на рисунке 12.

Рис.12. Accuracy VGG16

Для атаки FGSM RESNET50, отобразим исходное изображение из датасета и атакующее изображение с указанием величины параметра $\epsilon\epsilon$ = [1/255, 5/255, 10/255, 50/255, 80/255], также отобразим предсказанный класс атакующего изображения, показаны на рисунке 13.

Рис.13. Изображения RESNET50

Для атаки FGSM VGG16, отобразим исходное изображение из датасета и атакующее изображение с указанием величины параметра $\epsilon \epsilon = [1/255, 5/255, 10/255, 50/255, 80/255]$, также отобразим предсказанный класс атакующего изображения, показаны на рисунке 14.

Рис.14. Изображения VGG16

Заполним Таблицу 2.

		Adversarial	Adversarial	Adversarial
	Исходные	images	images	images
Модель	изображения	$\epsilon\epsilon$ =1/255	εε=5/255	<i>εε</i> =10/255
VGG16 -				
FGSM	89%	79%	44%	21%
VGG16 -				
PGD	89%	77%	48%	32%
ResNet50 -				
FGSM	91%	74%	33%	17%
ResNet50 -				
PGD	91%	71%	30%	23%

Используя изображения знака «Стоп» (label class 14) из тестового набора данных, применим атаки FGSM и PGD на знак «Стоп» с целью классификации его как знака «Ограничение скорости 30» (target label class = 1), изменяя значения искажений ϵ = [1/255, 3/255, 5/255, 10/255, 20/255, 50/255, 80/255].

Выведем 5 пар примеров исходных изображений знака «Стоп» и соответствующих атакующих примеров для атаки FGSM. Рисунки 15-19.

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 24, действительный класс 14

Рис.15. Изображения FGSM

Исходное изображение, предсказанный класс: 11, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Рис.16. Изображения FGSM

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 14, действительный класс 14

Рис.17. Изображения FGSM

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Рис.18. Изображения FGSM

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098, предсказанный класс: 14, действительный класс 14

Рис.19. Изображения FGSM

Выведем 5 пар примеров исходных изображений знака «Стоп» и соответствующих атакующих примеров для атаки PGD. Рисунки 20-24.

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Рис.20. Изображения PGD

Исходное изображение, предсказанный класс: 11, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Рис.21. Изображения PGD

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 14, действительный класс 14

Рис.22. Изображения PGD

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 1, действительный класс 14

Рис.23. Изображения PGD

Исходное изображение, предсказанный класс: 14, действительный класс 14

Изображение с eps: 0.0392156862745098 , предсказанный класс: 2, действительный класс 14

Рис.24. Изображения PGD

Заполним Таблицу 3.

Искажение	FGSM – Stop	FGSM – Limit 30	PGD - Stop	PGD – Limit 30
1/255	99%	99%	97%	99%
3/255	80%	99%	91%	99%
5/255	73%	99%	90%	99%
10/255	26%	99%	71%	99%

По результатам видно метод PGD значительно лучше подходит для целевой атаки, чем метод FGSM.

Выводы

В ходе работы были реализованы атаки уклонения на основе белого ящика против классификационных моделей на основе глубокого обучения и получены практические навыки переноса атак уклонения на основе черного ящика против моделей машинного обучения.

В целом, работа демонстрирует эффективность атак уклонения на основе белого ящика против моделей машинного обучения и необходимость дальнейших исследований в области безопасности систем ИИ.