

Chomsky-Hierarchie formaler Sprachen

Formale Sprachen werden gemäß der Chomsky-Hierarchie klassifiziert.

Wir beginnen ganz "unten"/"innen" bei den Regulären Sprachen.

Sprachdefinitionen

(Klassen) formale(r) Sprachen lassen sich auf verschiedene Arten definieren.

¹ Nur reguläre Sprachen

Endliche Automaten - Übersicht

Folgende Typen endlicher Automaten werden im Rahmen der Vorlesung behandelt:

Lernziele

Welche Sprachen sind durch deterministische endliche Automaten beschrieben (akzeptiert)?

Was zeichnet einen deterministischen endlichen Automaten aus?

Initiales Beispiel

Einführendes Beispiel: Erkennung eines Wortes w = hallo

Die Abarbeitung eines Worts w lässt sich als deterministischer Automat abbilden. Wird der **akzeptierende Zustand** s_5 erreicht, gilt das Wort bzw. die Eingabe als erkannt.

Der Automat fungiert als akzeptierendes Konzept.

Weitere Beispiele

Weitere Beispiele (Schalter und Wortsuche)

	drücken
aus	an
an	aus

	d	e	m	n	r	S
0	1					
1		2				
2			3	3	3	4
3						
4						5
5		6				
6				7		
7						

Versinnbildlichung eines endlichen Automaten

Deterministische endliche Automaten - DEA (1)

Ein deterministischer endlicher Automat A_{DEA} wird über ein Quintupel

$$A_{DEA} = (\Sigma, S, \delta, s_0, F)$$

beschrieben. Die Menge der Zustände wird als

$$S = \{s_0, \dots, s_n\}$$

notiert, wobei der **Startzustand** s_0 ist und die **Endzustände** (akzeptierende Zustände) Elemente der Menge S sind. Endzustände (oder finale Elemente) werden über die Menge F angezeigt.

$$s_0 \in S, F \subseteq S$$

Man spricht in diesem Fall von endlichen Automaten, da

$$|S| + |\Sigma| \neq \infty$$

Ferner spricht man in diesem Fall auch von **deterministischen** Automaten, da es bei jeder Eingabe $a \in \Sigma$ in einem bestimmten Zustand $s \in S$ maximal einen Folgezustand geben kann. δ ist eine Funktion.

Deterministische endliche Automaten - DEA (2)

Die **Zustandsübergangsfunktion** δ wird wie folgt ausgedrückt:

$$\delta: S \times \Sigma \to S$$

bzw.

$$\delta(s,a) = s'$$
 $s,s' \in S, a \in \Sigma$

Die Zustandsübergangsfunktion lässt sich auch graphisch oder tabellarisch darstellen:

	a_1	a_2	a_3	a_4	a_5	a_6
s_0	s_1					
s_1		s_2				
s_2			s_3			
s_3				S_4		
s_4					<i>S</i> ₅	<i>s</i> ₆
s ₅						
<i>s</i> ₆						

Von einem DEA akzeptierte Sprache - Beispiel

Beispiel:

$$A_1 = (\Sigma, S, \delta, s_0, F)$$

mit

$$\Sigma = \{a_i\}_{i \in I}, S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6\}, F = \{s_5, s_6\}$$

Die akzeptierte Sprache des DEA A_1 wird wie folgt ausgedrückt:

$$L_1 = \{a_1a_2a_3a_4a_5, a_1a_2a_3a_4a_6\}$$

Anmerkung:

Diese Sprachbeschreibung gibt lediglich die **Morphologie** des Automaten wieder, nicht die akzeptierten Worte als solche, da $a_1, ..., a_6$ noch einer Instanziierung bedürfen.

Erweiterung von DEAen auf Wörter (1)

Erweitert man die Zustandsübergangsfunktion $oldsymbol{\delta}$ auf die Eingabe von Wörtern $oldsymbol{w}$, also mit

$$w \in \Sigma^*$$

gilt folgende Verknüpfung als Grundlage für die Worterkennung:

$$\delta^*: S \times \Sigma^* \to S$$

Dabei gilt:

$$\forall a \in \Sigma, w \in \Sigma^*: \delta^*(s, aw) = \delta^*(\delta(s, a), w),$$

und unter Berücksichtigung von Σ^* gilt

$$\forall s \in S: \delta^*(s, \varepsilon) = s$$

(In Kürze werden wir uns vergewissern, dass der verallgemeinerte Automat auch ein DEA ist.)

Erweiterung von DEAen auf Wörter (2)

Beispiel:

$$w = aab$$

$$\delta^*(s, aab) = \delta^*(\delta(s, a), ab) = \delta^*(\delta(\delta(s, a), a), b) = \delta^*(\delta(\delta(s, a), a), b), \epsilon) = \delta(\delta(\delta(s, a), a), b)$$

Das heißt, die einzelnen Zeichen $a \in \Sigma$ des Wortes w werden schrittweise verarbeitet.

Anmerkung:

 $oldsymbol{\delta}^*$ ist die **reflexiv-transitive Hülle** (auch **transitiver Abschluss**) der Zustandsübergangsfunktion $oldsymbol{\delta}$.

Die **transitive Hülle** R^+ einer Relation R auf einer Menge M ist wie folgt definiert:

$$xR^+y \Leftrightarrow \exists n \geq 0: \exists x_1, ..., x_n \in M: xRx_1, ..., x_nRy$$

Somit ergibt sich die reflexiv-transitive Hülle R^* über:

$$xR^*y \Leftrightarrow x = y \vee xR^+y$$

Anwendung: Definition von Ableitungen über dem reflexiv-transitiven Abschluss der Transitionsfunktion (hier δ).

DEA-Konfigurationen (1)

Konfiguration eines Automaten: Alternativ lassen sich Verarbeitungsfolgen durch Zustandsfolgen über Paare

$$k \in S \times \Sigma^*$$

$$k = (s, v), s \in S, substr(w, v) = ja$$

unter Berücksichtigung des Eingabewortes ${m w}$ beschreiben.

Beispiel:

$$w = aabaa$$

$$\mathbf{k} = (\mathbf{s}_2, \mathbf{a}\mathbf{a})$$

Das heißt, der Präfix aab wurde verarbeitet, wobei Zustandswechsel von s_0 nach s_2 erfolgten und das Suffix aa noch zu verarbeiten ist.

Eine Vorgänger-Nachfolgerbeziehung \vdash zwischen dem Paar k und k' wird über die Relation

$$\vdash \subseteq (S \times \Sigma^*) \times (S \times \Sigma^*)$$

ausgedrückt. Allgemein:

$$\mathbf{k} \vdash \mathbf{k}' = (\mathbf{s}, \mathbf{w}) \vdash (\mathbf{s}', \mathbf{w}')$$

bzw.

$$k \vdash k' = (s, aw) \vdash (s', w)$$

DEA-Konfigurationen (2)

Die reflexiv-transitive Hülle \vdash^* für die Relation \vdash ist wie folgt rekursiv definiert:

$$K = S \times \Sigma^*$$

 $\forall k \in K: k \vdash^* k'$ gdw. $\exists k'' \in K: k \vdash^* k'' \land k'' \vdash k'$

d.h.

$$\exists (k_1 \vdash k_2 \vdash \cdots k_n) : \exists k_1 \vdash^* k_n$$

Beispiel: Der Automat $A=(\{\mathbf{0},\mathbf{1}\},\{s_0,s_1,s_2,s_3,s_4\},\boldsymbol{\delta},s_0,\{s_4\})$ folge dem Zustandsdiagramm

Dann gilt
$$k \vdash^* k' \equiv k = (s_0, 1010) \vdash (s_1, 010) \vdash (s_2, 10) \vdash (s_3, 0) \vdash (s_4, \varepsilon) = k'$$

mit der Startkonfiguration $k = (s_0, 1010)$ und der Endkonfiguration $k' = (s_4, \varepsilon)$.

Von DEA akzeptierte Sprachen

Akzeptierte Sprachen:

Führen die Elemente $w \in L \subseteq \Sigma^*$ vom Startzustand s_0 zu einem akzeptierenden Zustand $s_i \in F$, so gilt die Sprache L als die vom Automaten A akzeptierte Sprache.

D.h., es gilt

$$\delta^*(s_0, w) = s_i \in F$$

bzw.

$$(s_0, w) \vdash^* (s_i \in F, \varepsilon)$$

Allgemein gilt also für akzeptierte Sprachen: ein Automat A akzeptiert die Sprache

$$L(A) = \{ w \in \Sigma^* | (s_0, w) \vdash^* (s_i \in F, \varepsilon) \}$$

Beispiel:

$$L(A) = \{1010\}$$

Von DEA akzeptierte Sprachen - Beispiele (1)

Beispiel 1:

$$L_{3b_1} = \{ w \in \Sigma^+ | w = a_1 a_2 a_3 \land a_3 = b \}, \Sigma = \{ a, b \}$$

$$A_{3b_1} = (\{a, b\}, \{s_0, s_1, s_2, s_3\}, \delta, s_0, \{s_3\})$$

Alternative Notation der Sprache L_{3b_1} :

$$L_{3b_1} = \{ w \in \{a, b\}^+ | w = xyz, x, y \in \{a, b\}, z = b \}$$

Von DEA akzeptierte Sprachen - Beispiele (2)

Beispiel 2:

$$L_{3b_2} = \{ w \in \Sigma^+ \big| w = a_1 \dots a_{i \, mod \, 3=0} \land a_{j \, mod \, 3=0} = b, i \geq 3, 1 \leq j \leq i \}$$
mit $\Sigma = \{a, b\}$

$$A_{3b_2} = (\{a, b\}, \{s_0, s_1, s_2, s_3\}, \delta, s_0, \{s_3\})$$

Alternative Notation der Sprache L_{3b_2} :

$$L_{3b_2} = \{ w \in \{a, b\}^+ | w = \{\{a, b\} \circ \{a, b\} \circ \{b\}\}^i, i \ge 1 \}$$

Von DEA akzeptierte Sprachen - Beispiele (3)

Beispiel 3:

$$L_{3b_3}=\left\{w\in \Sigma^+\middle|w=a_1\ldots a_i\wedge a_{j\ mod\ 3=0}=b,i\geq 1;1\leq j\leq i
ight\}$$
 mit $\Sigma=\left\{a,b
ight\}$

$$A_{3b_3} = (\{a, b\}, \{s_0, s_1, s_2, s_3\}, \delta, s_0, \{s_1, s_2, s_3\})$$

Vollständige DEA (1)

Fragestellung:

Was geschieht, falls im Zustand s_2 ein a eingelesen wird (A_{3b_3}) ?

$$\delta(s_2, a) = ?$$

D.h., die Zustandsübergangsfunktion ist nicht vollständig definiert.

$$Def(\delta) \neq S \times \Sigma$$

Erweiterung des DEA zu einem **vollständigen DEA** durch die Erweiterung des Definitionsbereichs von δ auf das kartesische Produkt $S \times \Sigma$. δ als totale Funktion statt als partielle Funktion.

Vollständige DEA (2)

Beispiel A_{3b_3} :

Erweiterung:

Vollständige DEA (3)

Formal abgebildet wird ein vollständiger Automat demnach wie folgt:

$$A_{3b_{3.total}} = (\Sigma, S \cup \{s_{tot}\}, \delta_{total}, s_0, F), s_{tot} \notin S$$

mit

Aufgaben 1-3

Klasse der von DEA akzeptierten Sprachen

Klassifikation:

Die Klasse der von einem DEA akzeptierten Sprachen über Σ wird mit DFA_{Σ} notiert (DFA - Deterministic Finite Automata).

$$DFA_{\Sigma} = \bigcup_{L \subseteq \Sigma^*, \exists \ \mathsf{DEA} \ A: L = L(A)} I$$

Reguläre Sprachen

Reguläre Sprachen:

Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, falls es einen endlichen Automaten A gibt, der L akzeptiert, d.h.,

$$L = L(A)$$

Die Klasse der regulären Sprachen über einem Alphabet Σ wird mit REG_{Σ} notiert.

Es gilt:

$$REG_{\Sigma} = DFA_{\Sigma}$$

Äquivalenz von Automaten:

$$A' \equiv A$$
 gdw. $L(A') = L(A)$

Erinnerung: Definition von L(A) über Konfigurationsfolgen oder alternativ als

$$L(A) = \{ w \in \Sigma^* | \delta^*(s_0, w) \in F \}$$

ausdrücken.

Abgeschlossenheit der Klasse der regulären Sprachen

Sprachen sind abgeschlossen unter den Mengenoperationen.

Für die Menge der regulären Sprachen REG_{Σ} gilt:

- Die Menge der regulären Sprachen ist abgeschlossen unter Vereinigung
- Die Menge der regulären Sprachen ist abgeschlossen unter Schnittmengenbildung.
- Die Menge der regulären Sprachen ist abgeschlossen unter Differenzmengenbildung.
- Die Menge der regulären Sprachen ist abgeschlossen unter Konkatenation.
- Die Menge der regulären Sprachen ist abgeschlossen unter Anwendung des Kleene-Sterns.
- Die Menge der regulären Sprachen ist abgeschlossen unter Komplementbildung.
- Die Menge der regulären Sprachen ist abgeschlossen unter Spiegelung (Funktion $mirr: P(\Sigma^*) \to P(\Sigma^*)$, Teil 2)

Abgeschlossenheit von unter Vereinigung (1)

Die Beweise der Abgeschlossenheitseigenschaften können wir in Kürze leichter führen.

Für den Moment als Beweisskizze für die Abgeschlossenheit unter Vereinigung:

Zu L_1 und L_2 reguläre Sprachen muss es also DEAs A_1 und A_2 geben mit $L(A_1) = L_1$ und $L(A_2) = L_2$.

Z.B. A_1

Für den Beweis ist ein DEA A_3 zu konstruieren mit $L(A_3) = L_1 \cup L_2$.

In diesem Beispiel:

Abgeschlossenheit von unter Vereinigung (2)

Solche Beweise bleiben noch skizzenhaft, da es weitere Fälle zu beachten gibt:

NORDAKADEMIE gAG Hochschule der Wirtschaft