Dataset collection

749072

19/5/2008 21:56:00

Source - https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

Import Data and Required Packages

```
In [122...
                              import pandas as pd
                              import numpy as np
                              import seaborn as sns
                              import matplotlib.pyplot as plt
                              %matplotlib inline
                              import warnings
                              warnings.filterwarnings('ignore')
                              entire data = pd.read csv(r'E:\household power consumption\household power consumption.t
  In [123...
                              ## checking shape
  In [124...
                              entire data.shape
                               (2075259, 9)
Out[124]:
  In [125...
                              entire data.head()
                                                    Date
                                                                                          Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_metering_1
Out[125]:
                              0 16/12/2006 17:24:00
                                                                                                                              4.216
                                                                                                                                                                                                      234.840
                                                                                                                                                                                                                                                   18.400
                                                                                                                                                                                                                                                                                              0.000
                                                                                                                                                                                     0.418
                              1 16/12/2006 17:25:00
                                                                                                                              5.360
                                                                                                                                                                                     0.436
                                                                                                                                                                                                   233.630
                                                                                                                                                                                                                                                   23.000
                                                                                                                                                                                                                                                                                              0.000
                                                                                                                                                                                     0.498 233.290
                                                                                                                                                                                                                                                                                              0.000
                              2 16/12/2006 17:26:00
                                                                                                                              5.374
                                                                                                                                                                                                                                                   23.000
                              3 16/12/2006 17:27:00
                                                                                                                              5.388
                                                                                                                                                                                     0.502
                                                                                                                                                                                                    233.740
                                                                                                                                                                                                                                                   23.000
                                                                                                                                                                                                                                                                                              0.000
                              4 16/12/2006 17:28:00
                                                                                                                              3.666
                                                                                                                                                                                     0.528 235.680
                                                                                                                                                                                                                                                   15.800
                                                                                                                                                                                                                                                                                              0.000
                              ## selecting random 30000 sample data
  In [126...
                              data = entire data.sample(30000)
                              data.shape
  In [127...
                               (30000, 9)
Out[127]:
                              data.head()
  In [128...
Out[128]:
                                                                     Date
                                                                                           Time
                                                                                                           Global_active_power Global_reactive_power Voltage Global_intensity Sub_meterin
                                                         10/7/2010
                                                                                    23:34:00
                                                                                                                                              0.338
                                                                                                                                                                                                                       242.380
                                                                                                                                                                                                                                                                      1.600
                                                                                                                                                                                                                                                                                                               0.
                               1875250
                                                                                                                                                                                                      0.220
                               1477562
                                                         7/10/2009
                                                                                                                                              4.064
                                                                                                                                                                                                                                                                                                               0.
                                                                                   19:26:00
                                                                                                                                                                                                      0.350
                                                                                                                                                                                                                       233.240
                                                                                                                                                                                                                                                                    17.800
                                 996807
                                                         7/11/2008
                                                                                   22:51:00
                                                                                                                                              0.392
                                                                                                                                                                                                      0.074
                                                                                                                                                                                                                       238.760
                                                                                                                                                                                                                                                                      1.600
                                                                                                                                                                                                                                                                                                               0.
                               1028423
                                                      29/11/2008 21:47:00
                                                                                                                                               2.866
                                                                                                                                                                                                      0.000
                                                                                                                                                                                                                       240.490
                                                                                                                                                                                                                                                                    12.000
                                                                                                                                                                                                                                                                                                               1.
```

1.170

0.322 241.420

5.000

1.

Dataset information

- 1. date: Date in format dd/mm/yyyy
- 2. time: time in format hh:mm:ss
- 3. global_active_power: household global minute-averaged active power (in kilowatt)
- 4. global_reactive_power: household global minute-averaged reactive power (in kilowatt)
- 5. voltage: minute-averaged voltage (in volt)
- 6. global_intensity: household global minute-averaged current intensity (in ampere)
- 7. sub_metering_1: energy sub-metering No. 1 (in watt-hour of active energy). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a microwave (hot plates are not electric but gas powered)
- 8. sub_metering_2: energy sub-metering No. 2 (in watt-hour of active energy). It corresponds to the laundry room, containing a washing-machine, a tumble-drier, a refrigerator and a light
- 9. sub_metering_3: energy sub-metering No. 3 (in watt-hour of active energy). It corresponds to an electric water-heater and an air-conditioner

```
In [129... ## checking data type
           data.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 30000 entries, 1875250 to 1019532
          Data columns (total 9 columns):
            # Column
                                     Non-Null Count Dtype
               Date
                                             30000 non-null object
            0
            1 Time
                                            30000 non-null object
            2 Global active power 30000 non-null object
            3 Global reactive power 30000 non-null object
           4 Voltage 30000 non-null object
5 Global_intensity 30000 non-null object
6 Sub_metering_1 30000 non-null object
7 Sub_metering_2 30000 non-null object
8 Sub_metering_3 29638 non-null float64
          dtypes: float64(1), object(8)
          memory usage: 2.3+ MB
```

importing date time

```
In [130... import datetime as dt
```

seperating date, month and year

```
In [131... data['Date'] = pd.to_datetime(data['Date'])
In [132... data['date'] = data['Date'].dt.day
In [133... data['month']=data['Date'].dt.month
In [134... data['year'] = data['Date'].dt.year
```

seprating hours minutes and seconds

```
In [135... data['hour'] = pd.to_datetime(data['Time'], format='%H:%M:%S').dt.hour
In [136... data['Minutes'] = pd.to_datetime(data['Time'], format='%H:%M:%S').dt.minute
```

replacing special characters from data

```
In [137... data.replace('?', np.nan, inplace=True)
        data.replace(",", np.nan, inplace=True)
In [138...
        data.replace(" ", np.nan, inplace=True)
In [139...
In [140... data.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 30000 entries, 1875250 to 1019532
        Data columns (total 14 columns):
                                   Non-Null Count Dtype
            Column
         0
           Date
                                   30000 non-null datetime64[ns]
         1 Time
                                   30000 non-null object
         2 Global active power 29638 non-null object
         3 Global_reactive_power 29638 non-null object
                                  29638 non-null object
         4 Voltage
         5 Global intensity
                                  29638 non-null object
           Sub metering_1
                                   29638 non-null object
         7 Sub_metering_2
8 Sub_metering_3
                                  29638 non-null object
                                  29638 non-null float64
                                   30000 non-null int64
         9
           date
                                   30000 non-null int64
         10 month
         11 year
                                   30000 non-null int64
         12 hour
                                   30000 non-null int64
         13 Minutes
                                   30000 non-null int64
        dtypes: datetime64[ns](1), float64(1), int64(5), object(7)
        memory usage: 3.4+ MB
```

converting the data type of dataset

```
In [141... data['Global_active_power'] = data['Global_active_power'].astype(float)
In [142... data['Global_reactive_power'] = data['Global_reactive_power'].astype(float)
In [143... data['Voltage'] = data['Voltage'].astype(float)
In [144... data['Global_intensity'] = data['Global_intensity'].astype(float)
In [145... data['Sub_metering_1'] = data['Sub_metering_1'].astype(float)
In [146... data['Sub_metering_2'] = data['Sub_metering_2'].astype(float)
In [147... data['Sub_metering_3'] = data['Sub_metering_3'].astype(float)
```

replacing null values with mean

```
In [148... data['Global_active_power'] = data['Global_active_power'].fillna(data['Global_active_pow
In [149... data['Global_reactive_power'] = data['Global_reactive_power'].fillna(data['Global_reacti
In [150... data['Voltage'] = data['Voltage'].fillna(data['Voltage'].mean())
In [151... data['Global_intensity'] = data['Global_intensity'].fillna(data['Global_intensity'].mean
```

```
data['Sub metering 1'] = data['Sub metering 1'].fillna(data['Sub metering 1'].mean())
In [152...
          data['Sub metering 2'] = data['Sub metering 2'].fillna(data['Sub metering 2'].mean())
In [153...
          data['Sub metering 3'] = data['Sub metering 3'].fillna(data['Sub metering 3'].mean())
In [154...
          data.isnull().sum()
In [155...
          Date
                                    0
Out[155]:
                                    0
          Time
          Global active power
          Global reactive power
                                    0
          Voltage
          Global intensity
                                    0
          Sub metering 1
                                    0
          Sub metering 2
                                    0
          Sub metering 3
                                    0
                                    0
          date
                                    0
          month
          year
                                    0
          hour
                                    0
                                    0
          Minutes
          dtype: int64
```

creating total metering column

```
In [156... data['Total_metering'] = data['Sub_metering_1'] + data['Sub_metering_2'] + data[
```

		Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_
c	ount	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.00000
m	nean	1.079779	0.122780	240.855735	4.576888	1.079729	1.25420
	std	1.041191	0.111851	3.227113	4.377274	6.000329	5.56829
	min	0.076000	0.000000	225.120000	0.200000	0.000000	0.00000
259	25%	0.310000	0.048000	239.020000	1.400000	0.000000	0.00000
	50%	0.616000	0.100000	240.980000	2.600000	0.000000	0.00000
759	75%	1.506000	0.190000	242.890000	6.200000	0.000000	1.00000
	max	8.670000	1.390000	253.510000	37.200000	79.000000	75.00000

observations

- 1. Global active power :- has observed mean power of 1.09879 with standard deviation of 1.047. Minimum power obderved 0.07 and maximum power observed 9.24 And and range 25th to 75th percentile is [0.31 to 1.52].
- 2. Global reactive power :- has observed mean power of 0.12 with standard deviation of 0.11. Minimum power observed 0 and maximum power observed 1.07 And and range 25th to 75th percentile is [0.05 to 1.07].
- 3. Voltage: has observed mean voltage of 240.82 with standard deviation of 3.21. Minimum voltage observed 225.02 and maximum voltage observed 242.86 And and range 25th to 75th percentile is

[239.01000 - 252.75000].

- 4. Global intensity: has observed mean intensity of 4.6600 with standard deviation of 4.401490. Minimum intensity observed 0.200000 and Maximum intensity observed 40.600000 And and range 25th to 75th percentile is [1.400000 to 40.600000]
- 5. Total metering :- has observed mean metering of 8.946802 with standard deviation of 12.767918. Minimum metering observed is 0 and maximum metering observed 134.000000. And and range 25th to 75th percentile is [0 to 18.00000].

dropping date, time, submetering 1,2,3 columns

```
new data = data.drop(columns=['Date', 'Time',
In [158...
                    'Sub metering 1', 'Sub metering 2',
                    'Sub metering 3'])
           new data.head()
In [159...
Out[159]:
                     Global_active_power
                                        Global_reactive_power
                                                              Voltage Global_intensity
                                                                                      date month year hour
                                                                                                                Minut
                                                                                          7
           1875250
                                  0.338
                                                                242.38
                                                                                                10 2010
                                                                                                            23
                                                        0.220
                                                                                  1.6
            1477562
                                                        0.350
                                                               233.24
                                                                                         10
                                                                                                 7 2009
                                                                                                            19
                                  4.064
                                                                                  17.8
            996807
                                  0.392
                                                        0.074
                                                               238.76
                                                                                  1.6
                                                                                                 7
                                                                                                    2008
                                                                                                            22
                                                                                         11
            1028423
                                                        0.000
                                                               240.49
                                                                                         29
                                                                                                    2008
                                  2.866
                                                                                  12.0
                                                                                                11
                                                                                                            21
            749072
                                                                                                 5 2008
                                  1.170
                                                        0.322
                                                               241.42
                                                                                  5.0
                                                                                         19
                                                                                                            21
           plt.figure(figsize=(15,15))
In [160...
```

```
In [160... plt.figure(figsize=(15,15))
    plt.suptitle("Univariate Analysis", fontsize=20, fontweight= 'bold')

for i in range(0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.kdeplot(x=new_data[new_data.columns[i]],shade=True, color='r')
    plt.xlabel(new_data.columns[i])
    plt.tight_layout()
```


Observation

- 1. Global_active_power
- Power is distributed betweem 0 to 8.
- Most of the power distributed between 0 to 2.
- Distribution is not normal
- 1. Global reactive power
- Reactive power is distributed between 0 to 0.8.
- most of the power distributed between 0 to 0.2.
- 1. Voltage
- Voltage is distributed between 230 to 250.
- most of the voltage distributed between 230 to 250.
- Voltage is distributed normally
- 1. Global intensity
- Intensity is distributed between 0 to 20.
- Most of the intensity distributed between 0 to 10.

- 1. Total metering
- Metering is distributed between 0 to 60
- most of the distribution is between 0 to 20.

```
In [161... plt.figure(figsize=(15,15))
    plt.suptitle('Relation of features with Total metering', fontsize=20)

for i in range(0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(x=new_data['Total_metering'], y=new_data[new_data.columns[i]])
    plt.ylabel(new_data.columns[i])
    plt.xlabel('Total_metering')
    plt.tight_layout()
```



```
In [162... sns.lineplot(x='hour', y='Total_metering', data=new_data, color = 'red');
```


observation

• Total metering id maximum between 7 to 10 hour.

```
In [163... sns.lineplot(x='month', y='Total_metering', data=new_data, color = 'red');
```


observation

• in july there is least power consumption

```
In [164... sns.lineplot(x='date', y='Total_metering', data=new_data, color = 'red');
```


observation

• power is very less consumed between dates 6 and 7

```
In [165... sns.lineplot(x='year', y='Total_metering', data=new_data, color = 'red');
```


observation

• Power consumption decreased from 2006

Checking with pairplot

```
In [166... sns.pairplot(new_data)
```

Out[166]:

<seaborn.axisgrid.PairGrid at 0x20846341fa0>

Checking correlation

```
In [167... plt.figure(figsize=(15,15))
    sns.heatmap(data=new_data.corr(), annot=True);
```


observation

• Global active power and Global intensity are highly correlated

features

Variance

```
from statsmodels.stats.outliers influence import variance inflation factor
In [168...
          vif data = pd.DataFrame()
In [169...
          vif data['VIF'] = [variance inflation factor(new data.values,i) for i in range(len(new d
          vif data['features'] = new data.columns
          vif data
                   VIF
Out[169]:
```

1263.307134 Global_active_power

```
1
      2.933370 Global_reactive_power
2 7524.087773
                             Voltage
3 1280.863208
                      Global_intensity
      4.201976
                                date
5
      4.537380
                              month
6 7608.625121
                                year
      4.183764
                                hour
      3.897966
                             Minutes
      5.252017
                       Total_metering
```

Out[171]:

	Global_reactive_power	Voltage	Global_intensity	date	month	hour	Minutes	Total_metering
1875250	0.220	242.38	1.6	7	10	23	34	2.0
1477562	0.350	233.24	17.8	10	7	19	26	27.0
996807	0.074	238.76	1.6	11	7	22	51	1.0
1028423	0.000	240.49	12.0	29	11	21	47	19.0
749072	0.322	241.42	5.0	19	5	21	56	2.0

Checking for outliers

```
In [175... plt.figure(figsize=(15,15))
  plt.suptitle("Outliers Analysis", fontsize = 20, fontweight = 'bold', alpha= 0.8)

for i in range(0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(new_data[new_data.columns[i]])
    plt.tight_layout()
```


importing winsorizer

```
In [178... from feature_engine.outliers.winsorizer import Winsorizer
```

Out[179]:		Global_reactive_power	Voltage	Global_intensity	date	month	hour	Minutes	Total_metering
	1875250	0.220	242.38	1.6	7	10	23	34	2.0
	1477562	0.350	233.24	17.8	10	7	19	26	27.0
	996807	0.074	238.76	1.6	11	7	22	51	1.0
	1028423	0.000	240.49	12.0	29	11	21	47	19.0
	749072	0.322	241.42	5.0	19	5	21	56	2.0
	•••								
	1451421	0.296	239.47	6.4	19	9	15	45	19.0
	118428	0.000	241.06	1.8	3	8	23	12	0.0
	1226108	0.210	239.41	6.4	16	4	4	32	19.0
	125203	0.116	241.53	1.4	13	3	16	7	0.0
	1019532	0.190	235.19	18.4	23	11	17	36	17.0

Outlier handling for Voltage feature

Outlier handling for Global_intensity feature

Outlier handling for Total metering feature

Checking for outliers after outlier treatment

```
In [183... plt.figure(figsize=(15,15))
  plt.suptitle("Outliers Analysis", fontsize = 20, fontweight = 'bold', alpha= 0.8)

for i in range(0, len(new_data.columns)):
    plt.subplot(5,3,i+1)
    sns.boxplot(new_data[new_data.columns[i]])
    plt.tight_layout()
```


save cleaned data

```
In [184... new_data.to_csv("cleaned_power_consumption_data.csv")
```

uploading the data in Mongodb

loading the data from mongodb

data db.head()

In [188...

```
In [187... db = client.power_consumption
    collection = db.power_consumption_data
    data_db = pd.DataFrame(list(collection.find()))
```

Global_reactive_power Out[188]: Voltage Global_intensity date month hour Minutes 7 636b43552765269750ca75da 0.220 242.38 1.6 10 23 34 636b43552765269750ca75db 0.350 233.24 13.4 10 19 26 7 636b43552765269750ca75dc 0.074 238.76 22 51 1.6 11 636b43552765269750ca75dd 0.000 47 240.49 12.0 29 11 21 636b43552765269750ca75de 0.322 5.0 19 5 21 56 241.42

```
In [189... | #### dropping id column
           data db.drop(columns=[' id'],axis=1,inplace=True)
           data db.head()
In [190...
Out[190]:
              Global_reactive_power Voltage Global_intensity date month hour Minutes Total_metering
           0
                             0.220
                                     242.38
                                                        1.6
                                                               7
                                                                      10
                                                                            23
                                                                                     34
                                                                                                   2.0
           1
                                     233.24
                                                              10
                                                                       7
                                                                            19
                                                                                                   27.0
                             0.350
                                                       13.4
                                                                                     26
           2
                                     238.76
                                                                       7
                             0.074
                                                        1.6
                                                                            22
                                                                                                   1.0
                                                              11
                                                                                     51
           3
                             0.000
                                     240.49
                                                       12.0
                                                              29
                                                                      11
                                                                            21
                                                                                     47
                                                                                                   19.0
           4
                             0.322
                                     241.42
                                                        5.0
                                                              19
                                                                       5
                                                                            21
                                                                                                   2.0
                                                                                     56
           splitting data into independent and dependent features
           X = data db.drop('Total metering', axis=1)
In [191...
           X.head()
In [192...
Out[192]:
                                   Voltage Global_intensity
              Global_reactive_power
                                                            date month hour
                                                                                Minutes
           0
                             0.220
                                     242.38
                                                        1.6
                                                               7
                                                                      10
                                                                            23
                                                                                     34
           1
                             0.350
                                     233.24
                                                       13.4
                                                              10
                                                                            19
                                                                                     26
           2
                                     238.76
                                                                       7
                                                                            22
                             0.074
                                                        1.6
                                                              11
                                                                                     51
           3
                             0.000
                                     240.49
                                                              29
                                                                                     47
                                                       12.0
                                                                      11
                                                                            21
           4
                             0.322
                                     241.42
                                                        5.0
                                                              19
                                                                       5
                                                                            21
                                                                                     56
           y = data db['Total metering']
In [193...
           y.head()
In [194...
           0
                  2.0
Out[194]:
                 27.0
           2
                 1.0
                 19.0
                  2.0
           Name: Total metering, dtype: float64
           splitting train and test data
           from sklearn.model selection import train test split
In [195...
           X train, X test, y train, y test = train test split(X, y, test size=0.25, random state=1
In [196...
           X train.head()
Out[196]:
                   Global_reactive_power
                                        Voltage
                                                Global_intensity date
                                                                      month hour
                                                                                    Minutes
           13707
                                  0.202
                                                                                          1
                                         233.88
                                                            1.4
                                                                   25
                                                                           7
                                                                                11
```

17

1.6

1.4

3

2

2

26

46

10403

6673

0.082

0.180

242.42

239.83

```
2987
                               0.000
                                      243.47
                                                       8.0
                                                             29
                                                                    10
                                                                                 44
          y train.head()
In [197...
          13707
                    0.0
Out[197]:
          10403
                    0.0
                    2.0
          6673
          28904
                    1.0
          2987
                    0.0
          Name: Total metering, dtype: float64
          X test.head()
In [198...
                                    Voltage Global_intensity date month hour Minutes
Out[198]:
                 Global_reactive_power
          20412
                               0.000
                                      239.16
                                                       8.2
                                                             22
                                                                     3
                                                                         18
                                                                                  3
                               0.403
           1296
                                      240.33
                                                       3.6
                                                             31
                                                                     8
                                                                         12
                                                                                  58
           3906
                               0.264
                                      239.39
                                                                     7
                                                                         22
                                                      11.6
                                                             31
                                                                                 30
          20454
                               0.154
                                      242.03
                                                              8
                                                       1.0
                                                                    11
                                                                         14
                                                                                 14
           5200
                                                                                  3
                               0.234
                                      244.98
                                                       1.8
                                                              4
                                                                     1
                                                                         16
          y test.head()
In [199...
          20412
                    18.0
Out[199]:
          1296
                     2.0
          3906
                    22.0
          20454
                     1.0
          5200
                     2.0
          Name: Total metering, dtype: float64
          Standardizing data
          from sklearn.preprocessing import StandardScaler
In [200...
          scaler = StandardScaler()
In [201...
          Using fit_transform to standardise Train data
          X train = scaler.fit transform(X train)
In [202...
          X train
          array([[ 0.77792657, -2.23953047, -0.80501412, ..., 0.1513342 ,
Out[202]:
                   -0.07053633, -1.64368897],
                  [-0.36383572, 0.48885226, -0.7504291, ..., -1.0076241,
                   -1.36798459, -0.20452951],
                  [0.56860348, -0.33860808, -0.80501412, ..., -1.58710325,
                   -1.36798459, 0.94679807],
                  [-0.49704132, -0.12135981, 0.34127123, ..., 1.02055293,
                    0.50610733, -1.47098984],
                  [-1.14403995, 0.40259191, -0.64125907, ...,
                   -0.93550184, -0.54992778],
                  [0.02417392, -0.01090359, 0.06203824, ..., 0.73081335,
                   -1.07966275, -0.72262691]])
```

2

23

30

28904

0.000

using only transform to avoid data leakage

245.96

```
X_test = scaler.transform(X_test)
In [204...
         X test
         array([[-1.14403995, -0.55266153, 1.05087645, ..., -1.0076241,
Out[204]:
                  0.93859008, -1.52855621],
                [2.6903784, -0.1788667, -0.20457894, ..., 0.44107378,
                  0.07362458, 1.63759461],
                [1.36783708, -0.47918049, 1.97882173, ..., 0.1513342,
                  1.51523375, 0.02573601],
                . . . ,
                [-0.15451264, 1.271585, -0.7504291, ..., -0.42814495,
                  1.51523375, 1.46489548],
                [-0.53510007, -0.10538567, 0.66878133, ..., -1.58710325,
                 -1.22382367, -1.18315794],
                [1.00627903, 0.29077295, -0.80501412, ..., 0.73081335,
                 -0.79134092, -1.35585708]
```

Linear Regression

```
from sklearn.linear model import LinearRegression
In [206...
In [207...
         # creating linear regression model
          linear reg = LinearRegression()
         linear reg
         LinearRegression()
Out[207]:
          # Passing training data(X and y) to the model
In [208...
         linear reg.fit(X train, y train)
         LinearRegression()
Out[208]:
         # Printing co-efficients and intercept of best fit hyperplane
In [209...
         print("1. Coefficients of independent features is {}" .format(linear reg.coef ))
         print("2. Intercept of best fit hyper plane is {}".format(linear reg.intercept ))
         1. Coefficients of independent features is [-0.36871248 -0.20198901 9.39415512 0.01974
         707 -0.09055011 -0.90089742
          -0.142002491
         2. Intercept of best fit hyper plane is 8.321786760240233
```

Using model to get predictions of test data

Validating model using assumptions of Linear regression

Linear relationship

- Test truth data and Predicted data should follow linear relationship.
- This is an indication of a good model.

```
In [211... plt.scatter(x=y_test, y= linear_reg_pred)
```

```
plt.xlabel("Test truth data")
plt.ylabel("Predicted data")
```

Out[211]: Text(0, 0.5, 'Predicted data')

Residual distribution

• Residuals should follow normal distribution.

```
residual_linear_reg = y_test - linear_reg_pred
In [212...
          residual linear reg.head()
                  -0.204053
          20412
Out[212]:
          1296
                  -3.139416
          3906
                  -3.155300
          20454
                   1.793139
          5200
                   1.129463
          Name: Total metering, dtype: float64
In [213...
          sns.displot(x=residual linear reg, kind='kde')
          <seaborn.axisgrid.FacetGrid at 0x2086d923c10>
Out[213]:
            0.12
```


Uniform distribution

Residuals vs Predictions should follow a uniform distribution.

```
In [214... plt.scatter(x=linear_reg_pred, y=residual_linear_reg)
   plt.xlabel('Predictions')
   plt.ylabel('Residuals')
```

Out[214]: Text(0, 0.5, 'Residuals')

Performance Matrix

Cost function values

```
In [215... from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error
```

MSE, MAE and RMSE

```
In [216... print("Mean squared Error is {}".format(round(mean_squared_error(y_test,linear_reg_pred) print("Mean absolute Error is {}".format(round(mean_absolute_error(y_test,linear_reg_pre print("Root mean squared Error is {}".format(round(np.sqrt(mean_squared_error(y_test,linear_reg_pre)))))
```

Mean squared Error is 38.08 Mean absolute Error is 4.16 Root mean squared Error is 6.17

R Square and Adjusted R Square values

Ridge Regression

```
In [220... from sklearn.linear_model import Ridge
```

```
# Creating Ridge regression model
In [221...
          ridge reg = Ridge()
          ridge reg
         Ridge()
Out[221]:
          # Passing training data(X and y) to the model
In [222...
         ridge reg.fit(X train,y train)
         Ridge()
Out[222]:
In [223...
          # Printing co-efficients and intercept of best fit hyperplane
         print("coefficient of independent feature is {}".format(ridge reg.coef ))
         print("Intercept of best fit hyperplane is {}".format(ridge reg.intercept ))
         coefficient of independent feature is [-0.36858751 -0.20216072 9.39358895 0.01974724 -
         0.09053794 -0.90073391
          -0.14199239]
         Intercept of best fit hyperplane is 8.321786760240233
```

Using model to get predictions of test data

Validating model using assumptions of Ridge regression

Linear relationship

Test truth data and Predicted data should follow linear relationship.

```
plt.scatter(x=y test,y=ridge reg pred)
In [225...
           plt.xlabel("Test truth data")
           plt.ylabel("Predicted data")
           Text(0, 0.5, 'Predicted data')
Out[225]:
              35
              30
              25
           Predicted data
              20
             15
             10
               5
               0
             -5
```

40

30

20 Test truth data

Residual distribution

10

• Residuals should follow normal distribution.

```
residual ridge reg = y test - ridge reg pred
In [226...
          residual ridge reg.head()
          20412
                 -0.203536
Out[226]:
          1296
                  -3.139933
          3906
                  -3.154683
                  1.792578
          20454
          5200
                   1.129087
         Name: Total metering, dtype: float64
In [227...
          sns.displot(x=residual ridge reg, kind='kde')
          <seaborn.axisgrid.FacetGrid at 0x20860f96400>
Out[227]:
```


Uniform distribution

• Residuals vs Predictions should follow a uniform distribution.

```
In [228... plt.scatter(x=ridge_reg_pred, y=residual_ridge_reg)
    plt.xlabel('Predictions')
    plt.ylabel('Residuals')

Out[228]: Text(0, 0.5, 'Residuals')
```


Performance Matrix Ridge regression

Cost function values

MSE, MAE and RMSE

```
In [229... print("Mean squared error is {}".format(round(mean_squared_error(y_test, ridge_reg_pred) print("Mean absolute error is {}".format(round(mean_absolute_error(y_test, ridge_reg_pre print("Root Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, ridge_reg_pred)) Mean squared error is 38.08
```

Mean absolute error is 4.16 Root Mean squared error is 6.17

R Square and Adjusted R Square values

```
In [230... ridge_reg_r2_score=r2_score(y_test, ridge_reg_pred)
    print("Our Ridge regression model has {} % accuracy".format(round(ridge_reg_r2_score*100)
    ridge_reg_adj_r2_score=1-((1-ridge_reg_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.sha
    print("Adjusted R square accuracy is {} percent".format(round(ridge_reg_adj_r2_score*100))
```

Our Ridge regression model has 69.202 % accuracy Adjusted R square accuracy is 69.17 percent

Lasso Regression

Using model to get predictions of test data

Validating model using assumptions of Lasso regression

Linear relationship

Test truth data and Predicted data should follow linear relationship

```
In [237... plt.scatter(x=y_test,y=lasso_reg_pred)
plt.xlabel("Test truth data")
plt.ylabel("Predicted data")

Out[237]:

Text(0, 0.5, 'Predicted data')

25

pp 15

pp 15

sp 10

5
```

40

Residual distribution

10

0

Residuals should follow normal distribution.

20

Test truth data

30

```
residual lasso reg=y test-lasso reg pred
In [238...
          residual lasso reg.head()
          20412
                  1.156379
Out[238]:
          1296
                  -4.662802
          3906
                  -2.368575
          20454
                  0.091574
          5200
                  -0.679003
          Name: Total metering, dtype: float64
In [239... sns.displot(x=residual_lasso reg, kind='kde')
```

Out[239]: <seaborn.axisgrid.FacetGrid at 0x20847a72a90>

Uniform distribution

• Residuals vs Predictions should follow a uniform distribution.

```
In [240... plt.scatter(x=lasso_reg_pred, y=residual_lasso_reg)
plt.xlabel('Predictions')
plt.ylabel('Residuals')

Out[240]:

Text(0, 0.5, 'Residuals')
```

20

25

15

Predictions

Performance Matrix of Lasso regression

10

Performance Matrix

Ś

-30

```
print("Mean squared error is {}".format(round(mean_squared_error(y_test, lasso_reg_pred))
print("Mean absolute error is {}".format(round(mean_absolute_error(y_test, lasso_reg_pre))
print("Root Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, lasso_reg_pre)))
print("Mean squared error is {}".format(round(np.sqrt(mean_squared_error(y_test, lasso_reg_pre))))
```

Mean squared error is 39.78 Mean absolute error is 4.35

R Square and Adjusted R Square values

```
In [242... lasso_reg_r2_score=r2_score(y_test, lasso_reg_pred)
    print("Lasso regression model has {} % accuracy".format(round(lasso_reg_r2_score*100,3))

lasso_reg_adj_r2_score=1-((1-lasso_reg_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.sha
    print("Adjusted R square accuracy is {} percent".format(round(lasso_reg_adj_r2_score*100))

Lasso regression model has 67.823 % accuracy
    Adjusted R square accuracy is 67.79 percent
```

Elastic-Net Regression

```
In [243... | from sklearn.linear_model import ElasticNet
In [244...  # creating Elastic-Net regression model
          elastic reg=ElasticNet()
         elastic reg
         ElasticNet()
Out[244]:
In [245...
          # Passing training data(X and y) to the model
          elastic reg.fit(X train, y train)
         ElasticNet()
Out[245]:
In [246...  # Printing co-efficients and intercept of best fit hyperplane
          print("1. Co-efficients of independent features is {}".format(elastic reg.coef ))
         print("2. Intercept of best fit hyper plane is {}".format(elastic reg.intercept ))
         1. Co-efficients of independent features is [ 0.
                                                              -0.67641894 5.56186879 0.
                            \cap
              -0.
          -0.
                     1
         2. Intercept of best fit hyper plane is 8.321786760240233
```

Using model to get predictions of test data

Validating model using assumptions of Elastic-Net regression

Linear relationship

• Test truth data and Predicted data should follow linear relationship.

Residual distribution

• Residuals should follow normal distribution.

```
residual elastic reg=y test-elastic reg pred
In [249...
           residual elastic reg.head()
           20412
                     3.459546
Out[249]:
           1296
                    -5.304934
           3906
                     2.348140
           20454
                    -1.990826
                    -1.567698
           5200
          Name: Total metering, dtype: float64
           sns.displot(x=residual elastic reg, kind='kde')
In [250...
           <seaborn.axisgrid.FacetGrid at 0x20848a90a30>
Out[250]:
             0.12
             0.10
             0.08
          Density
90.0
             0.04
             0.02
             0.00 <del>+</del>
-30
```

Uniform distribution

-20

-io

Residuals vs Predictions should follow a uniform distribution.

Ò

Total_metering

```
plt.scatter(x=elastic reg pred, y=residual elastic reg)
```

20

30

```
plt.xlabel('Predictions')
plt.ylabel('Residuals')
```

Text(0, 0.5, 'Residuals') Out[251]:

Performance Matrix Elastic Net regression

Cost function values

MSE, MAE and RMSE

Root Mean squared error is '7.08'

```
print("Mean squared error is '{}'".format(round(mean squared error(y test, elastic reg p
print("Mean absolute error is '{}'".format(round(mean absolute error(y test, elastic reg
print("Root Mean squared error is '{}'".format(round(np.sqrt(mean squared error(y test,
Mean squared error is '50.11'
Mean absolute error is '5.4'
```

R Square and Adjusted R Square values

```
elastic reg r2 score=r2 score(y test, elastic reg pred)
In [254...
        print("Our Elastic-Net regression model has {} % accuracy".format(round(elastic reg r2 s
         elastic reg adj r2 score=1-((1-elastic reg r2 score)*(len(y test)-1)/(len(y test)-X test
        print("Adjusted R square accuracy is {} percent".format(round(elastic reg adj r2 score*1
```

Our Elastic-Net regression model has 59.473 % accuracy Adjusted R square accuracy is 59.43 percent

SVR

```
from sklearn.svm import SVR
In [255...
In [256...
          # creating SVR model
          svr = SVR()
          SVR()
Out[256]:
          # Passing training data(X and y) to the model
          svr.fit(X train, y train)
```

```
Out[257]: SVR()
```

Using model to get predictions of test data

Performance Matrix SVR

Cost function values

MSE, MAE and RMSE

R Square and Adjusted R Square values

```
In [261... svr_r2_score=r2_score(y_test, svr_pred)
    print("SVR model has {} % accuracy".format(round(svr_r2_score*100,3)))

    svr_adj_r2_score=1-((1-svr_r2_score)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))
    print("Adjusted R square accuracy is {} percent".format(round(svr_adj_r2_score*100,2)))

SVR model has 72.745 % accuracy
    Adjusted R square accuracy is 72.72 percent
```

Apply hyperparameter tuning

```
params = { 'kernel' : ['linear', 'poly', 'sigmoid', 'rbf']
In [262...
          from sklearn.model selection import GridSearchCV
In [263...
          grid = GridSearchCV(estimator = svr, param grid = params,cv=10, n jobs= -1 )
In [264...
          grid.fit(X train,y train)
In [265..
          GridSearchCV(cv=10, estimator=SVR(), n jobs=-1,
Out[265]:
                        param grid={'kernel': ['linear', 'poly', 'sigmoid', 'rbf']})
          grid.best score
In [266...
          0.7295816330213211
Out[266]:
          new svr = grid.best params
In [267...
In [268...
          new svr
```

```
Out[268]: {'kernel': 'rbf'}
          results = {'models':['Linear', 'Ridge', 'Lasso', 'ElasticNet', 'SVR'],
In [271...
                       'R-Squared':[linear_reg_r2_score,ridge_reg_r2_score,lasso_reg_r2_score,elasti
                       'Adjusted-R-Square':[linear_reg_adj_r2_score,ridge_reg_adj_r2_score,lasso_reg_
          results = pd.DataFrame(results)
In [272...
          results
In [273...
Out[273]:
               models R-Squared Adjusted-R-Square
           0
                        0.692019
                                         0.691731
                Linear
                        0.692019
                                         0.691732
           1
                Ridge
           2
                                         0.677934
                 Lasso
                        0.678234
           3 ElasticNet
                        0.594727
                                         0.594349
           4
                  SVR
                        0.727450
                                         0.727196
```