10/999487 (AP20 RESULTER D 20 JAN 2006)

1/9

SEQUENCE LISTING

<110)>	Edwards, Mark Richard Olsson, Per Georg													
<120)>	GENETIC MARKER FOR CORONARY ARTERY DISEASE													
<130)>	ASZD-P01-135													
<150 <151		SE 0302121-9 2003-07-22													
<160)>	23													
<170)>	Pate	ntIn	ver	sion	3.2									
<210> 1 <211> 389 <212> PRT <213> Homo sapiens															
<400)>	1													
Met 1	Glı	ı Gly	Ala	Leu 5	Ala	Ala	Asn	Trp	Ser 10	Ala	Glu	Ala	Ala	Asn 15	Ala
Ser	Alá	ı Ala	Pro 20	Pro	Gly	Ala	Glu	Gly 25	Äsn	Arg	Thr	Ala	Gly 30	Pro	Pro
Arg	Arg	J Asn 35	Glu	Ala	Leu	Ala	Arg 40	Val	Glu	Val	Ala	Val 45	Leu	Cys	Leu
Ile	Lei 50	ı Leu	Leu	Ala	Leu	Ser 55	Gly	Asn	Ala	Cys	Val 60	Leu	Leu	Ala	Leu
Arg 65	Thi	Thr	Arg	Gln	Lys 70	His	Ser	Arg	Leu	Phe 75	Phe	Phe	Met	Lys	His 80
Leu	Sei	: Ile	Ala	Asp 85	Leu	Val	Val	Ala	Val 90	Phe	Gln	Val	Leu	Pro 95	Gln
Leu	Leı	ı Trp	Asp 100	Ile	Thr	Phe	Arg	Phe 105	Tyr	Gly	Pro	Asp	Leu 110	Leu	Cys
Arg	Let	val 115	Lys	Tyr	Leu	Gln	Val 120	Val	Gly	Met	Phe	Ala 125	Ser	Thr	Tyr
Leu	Le:	ı Leu)	Leu	Met	Ser	Leu 135	Asp	Arg	Cys	Leu	Ala 140	Ile	Cys	Gln	Pro

Leu Arg Ser Leu Arg Arg Arg Thr Asp Arg Leu Ala Val Leu Ala Thr
145 150 155 160

Trp Leu Gly Cys Leu Val Ala Ser Ala Pro Gln Val His Ile Phe Ser 165 170 175

Leu Arg Glu Val Ala Asp Gly Val Phe Asp Cys Trp Ala Val Phe Ile 180 185 190

Gln Pro Trp Gly Pro Lys Ala Tyr Ile Thr Trp Ile Thr Leu Ala Val 195 200 205

Tyr Ile Val Pro Val Ile Val Leu Ala Ala Cys Tyr Gly Leu Ile Ser 210 215 220

Phe Lys Ile Trp Gln Asn Leu Arg Leu Lys Thr Ala Ala Ala Ala 225 230 235 240

Ala Glu Ala Pro Glu Gly Ala Ala Ala Gly Asp Gly Gly Arg Val Ala 245 250 255

Leu Ala Arg Val Ser Ser Val Lys Leu Ile Ser Lys Ala Lys Ile Arg 260 265 270

Thr Val Lys Met Thr Phe Ile Ile Val Leu Ala Phe Ile Val Cys Trp 275 280 285

Thr Pro Phe Phe Val Gln Met Trp Ser Val Trp Asp Ala Asn Ala 290 295 300

Pro Lys Glu Ala Ser Ala Phe Ile Ile Val Met Leu Leu Ala Ser Leu 305 310 315

Asn Ser Cys Cys Asn Pro Trp Ile Tyr Met Leu Phe Thr Gly His Leu 325 330 335

Phe His Glu Leu Val Gln Arg Phe Leu Cys Cys Ser Ala Ser Tyr Leu 340 345 350

Lys Gly Arg Arg Leu Gly Glu Thr Ser Ala Ser Lys Lys Ser Asn Ser 355 360 365

Ser Ser Phe Val Leu Ser His Arg Ser Ser Ser Gln Arg Ser Cys Ser 370 380

Gln Pro Ser Thr Ala 385

<210> 2 <211> 4361 <212> DNA

<213> Homo sapiens

<400> 2 60 tgttaagget etgggaeeaa egetgggega accageteeg eteeggaggg gtetgegegg ctggcctcgc ccgccccta gcggacccgt gcgatagtgc agcctcagcc ccagcgcaca 120 180 gegeegeate cagaegetgt cegegegege ageetgggag gegeteeteg etegeeteet gtacccatcc agegaccage caggetgegg egaggggatt ccaaccgagg etccagtgag 240 300 agaceteage ttageateae attaggtgea geeggeagge cateeeaaet egggeeggga gcgcacgcgt cactggggcc gtcagtcgcc gtgcaacttc cccgggggga gtcaacttta 360 ggttcgcctg cggactcggt gcagtggaag ccgctgaaca tcccgaggaa ctggcacgct 420 gggggctctg ggcttgtggc cggtagagga ttcccgctca tttgcagtgg ctcagaggag 480 540 ggtggaccca gcagatccgt ccgtggagtc tccaggagtg gagccccggg cgcccctaca ccctccgaca cgccggatcc ggcccagccg cgccaagccg taaagggctc gaaggccggg 600 gcgcaccgct gccgccaggg tcatggaggg cgcgctcgca gccaactgga gcgccgaggc 660 agccaacgcc agcgccgcgc cgccgggggc cgagggcaac cgcaccgccg gacccccgcg 720 780 gcgcaacgag gccctggcgc gcgtggaggt ggcggtgctg tgtctcatcc tgctcctggc gctgagcggg aacgcgtgtg tgctgctggc gctgcgcacc acacgccaga agcactcgcg 840 cctcttcttc ttcatgaagc acctaagcat cgccgacctg gtggtggcag tgtttcaggt 900 gctgccgcag ttgctgtggg acatcacctt ccgcttctac gggcccgacc tgctgtgccg 960 cctggtcaag tacttgcagg tggtgggcat gttcgcctcc acctacctgc tgctgctcat 1020 gtccctggac cgctgcctgg ccatctgcca gccgctgcgc tcgctgcgcc gccgcaccga 1080 ccgcctggca gtgctcgcca cgtggctcgg ctgcctggtg gccagcgcgc cgcaggtgca 1140 1200 catcttctct ctgcgcgagg tggctgacgg cgtcttcgac tgctgggccg tcttcatcca 1260 gccctgggga cccaaggcct acatcacatg gatcacgcta gctgtctaca tcgtgccggt 1320 catcgtgctc gctgcctgct acggccttat cagcttcaag atctggcaga acttgcggct caagaccgct gcagcggcgg cggccgaggc gccagagggc gcggcggctg gcgatggggg 1380 gegegtggee etggegegtg teageagegt caageteate tecaaggeea agateegeae 1440 ggtcaagatg actttcatca tcgtgctggc cttcatcgtg tgctggacgc ctttcttctt 1500

cgtgcagatg tggagcgtct gggatgccaa cgcgcccaag gaagcctcgg ccttcatcat 1560 1620 cgtcatgctc ctggccagcc tcaacagctg ctgcaacccc tggatctaca tgctgttcac 1680 gggccacctc ttccacgaac tcgtgcagcg cttcctgtgc tgctccgcca gctacctgaa 1740 gggcagacgc ctgggagaga cgagtgccag caaaaagagc aactcgtcct cctttgtcct 1800 gagecatege agetecagee agaggagetg eteceageea tecaeggegt gacecaceag ccagggccag ggctgcagcc tgaggctcag gctgtgctgg cataagtgct ctgctcctag 1860 gtgatggcgt atgtttgtgt ataaggtacc tatcagtttg tatccctccc ctccttgggg 1920 1980 tggcttcagt ggggtggaga gtggcctcca tgatggaaga tgatagggga ctcagccatc 2040 agacaacacc ctggcctcct acacgtactt ctaccaccct gaacccactg ctgccctggg 2100 cagtgagtgg cttgttttt ctcctggact tgtaatttca ctccagtata tttttacttc 2160 ttcattctgg gatattgtga aaagcggtaa atataggatt ggtgaccaat tgggtcagga 2220 agtccagtgt tctggacttg gggtaagcag tggggttggg acctcagatg ggaagggtgg 2280 tgctaagatc ctcctgacct caaagtgtat ttgcctttaa gcgaacaaat gctggggtcc 2340 ttggggacca gcttgtcaga gggtagccct aagagaaggg gattaccttg taagaccatc tggcgcagtg gacctattag aacttgggtt aaaaatgttt aagaagctaa tgtttaagaa 2400 2460 gcatttggga aagaaaaaga aataaatgta tccagatagg aaaagaagaa gtaaaactat 2520 ttgcagatga cacagttttg tatatagaaa atcctaagga actcacacac acacacac acacacgc acacagctat tagaactaat aagcaagttc cgcaaggttt caagatacaa 2580 2640 gatcaatata caaaaatgaa ttgtatttct ttatactagc aacaaccaat atgaaaacga 2700 agttaaataa ttccatttat aataccatca gaaagaataa aataggaatc aacttaacaa 2760 aacaagtgca agactgaaaa ctacaaaatt ggaaagaaat taaagaaggc ttaaataaat 2820 ggaaagacat cctgtgttca tggatcagac ttagtattgt taagatggca atactatcct aactgacatg cagattcagt gcaatcctta tgaaaatcat agctggcttc tttacagaaa 2880 ttgataagct agtcccaaaa ttcataaaga aatgcaaggg acccagaata tccaaataag 2940 3000 ccttgaaaaa gaacaaagtt ggtggattca cacttcctga tttcataatt tacgataaag gtaatcagct cagtgtgtta ctggtttaag gatagacata cggagcagaa taaagagtac 3060 3120 agatatgaac acttatactt acggtcaatt gatttttgac aaggttccca agacaattca 3180 atagagaaag gagagtettt teaacaaatg geacegagae aatgatatge aagtgeaaaa 3240 gaatgaggtt ggacctttac tcacactatg tgcaaaaatc aactcaaaac gcatccaaga tctaaatata agagctgaaa ctataaaatc ttagaaagaa acataggcat agatctttgt 3300

aaccttgaat	taggcagtgg	tttcttagat	atgataccaa	agacacaagc	aaccaatgga	3360
aaaataggta	aattggactt	aatcaagatt	tgaagctttt	gtgattgaaa	agaccctatc	3420
aagaaggtga	aaagataacc	tgcagaatgg	gagaaaatat	ttgcgagtca	tatatatgat	3480
aaggggcttg	tatctggaat	atataaataa	ctcttataac	acaacaataa	ggagaaaaat	3540
aaatcaattt	aaaaaatggg	ctaacggttt	gaatagacat	ttctccaaag	aagatatgca	3600
aatggctact	aagcacatga	aaaaatactc	aacattatta	ttcattaggg	aaatgcaagt	3660
caaaatcaca	atgagattcc	agtttacaat	cactaggatg	gctacaataa	aaagatggac	3720
aagaacgagt	gtcggtgagg	atgtagagaa	actggtagaa	atttaaattg	ttggtgggaa	3780
tgtaaatggt	gcacctgctt	tgaaaaacag	tttggcagta	cctcaaaaag	ttaaacgtag	3840
agtgaccata	tgacccagga	atgccactcc	taggtattta	cccaagagaa	atgaaaacgt	3900
acatacacac	aaaaacttgt	acaccaatgt	tcatagcaac	attatttgta	atagccaaaa	3960
agtggaaaca	acccaaatgt	ctaccaactg	atgaatggga	aataaaatgt	ggtctgtcca	4020
cgcaatggaa	cattattaga	ctctaaaaag	aaatgaagta	ctcacacatg	ccacaacatg	4080
gatgagcctt	gaaaacttgc	taagtgaaag	aagccaggtg	caaaagccca	catattgtct	4140
gactgcattg	aaatgcaatg	tctaaaatgg	acgaatctat	atagagtgaa	tatagattag	4200
cgtttgccag	ggcctggagg	ctgtgagaga	tgaggcatga	ctactaaggg	tttggggttt	4260
ctttttcggg	tgatgaaaat	gttctgaaat	tagtggtgat	tgtgcacgat	tttgagaatg	4320
tactaaaaac	caatgaactt	taaaaaataa	aaataaacaa	a		4361
<210> 3 <211> 61 <212> DNA <213> Homo <400> 3	o sapiens					
	cccttccggt	gcctacctaa	mccacaagat	gtctgcatcg	tggtgtttct	60
С						61
<210> 4 <211> 61 <212> DNA <213> Homo	o sapiens					
<400> 4 ttgagatcaa	gaacggtgga	cagttacttt	rttcatttct	tctttcctat	ctatacgatt	60
t ·						61

t ·

<210><211><212><213>	5 61 DNA Homo sapiens	
<400> cacctto	5 cagc cttgtcctca gcagtcctcc wacctggaag gcacattccc cacctacaga	60
a		61
	6 61 DNA Homo sapiens	
<400> tttaagt	6 ttca tgttaagatg aacttccact wtaagttcaa gaaatccagc tgaagccaag	60
a		61
<210><211><211><212><213>	7 61 DNA Homo sapiens	
<222>	misc_feature (53)(53) n is a, c, g, or t	
<400>	7 tatc agcttcaaga tctggcagaa yttgcggctc aagaccgctg cancggcggc	60
g		61
<210><211><211><212><213>	8 61 DNA Homo sapiens	
	8 atcg tgccggtcat cgtgctcgct rectgctacg gccttatcag cttcaagatc	60
t		61
	9 61 DNA Homo sapiens	
<400> acctggg	9 ggaa accaagtete agagaagtte wgtacettag ccaegetgae aaaaegtggt	60
а		61

	10 30 DNA Homo sapiens	
<400> gagtggd	10 cace ccctteeggt geetacetaa	30
<212> <213>	Homo sapiens	
<400> ttgagat	11 tcaa gaacggtgga cagttacttt	30
<210><211><212><213>	12 30 DNA Homo sapiens	
<400> cacctto	12 cage ettgteetea geagteetee	30
<210><211><211><212><213>	30	
<400> tttaagt	13 ttca tgttaagatg aacttccact	30
<210><211><211><212><213>	14 30 DNA Homo sapiens	
<400> cggcctt	14 tatc agcttcaaga tctggcagaa	30
<210><211><212><212><213>	15 30 DNA Homo sapiens	
<400> gtctaca	15 atcg tgccggtcat cgtgctcgct	30
<210><211><212><212><213>	16 30 DNA Homo sapiens	

<400> acctgg	16 ggaa accaagtctc agagaagttc	30
	17 30 DNA Homo sapiens	
<400> ccacaa	17 gatg totgcatogt ggtgtttoto	30
<210><211><212><212><213>	18 30 DNA Homo sapiens	
<400> ttcatt	18 tett ettteetate tataegattt	30
<210><211><211><212><213>	19 30 DNA Homo sapiens	
<400> acctgga	19 aagg cacattcccc acctacagaa	30
<210><211><211><212><213>	20 30 DNA Homo sapiens	
<400> taagtte	20 caag aaatccagct gaagccaaga	30
<210><211><211><212><213>	21 30 DNA Homo sapiens	
<220><221><222><222><223>	misc_feature (22)(22) n is a, c, g, or t	
<400> ttgcgg	21 ctca agaccgctgc ancggcggcg	30
<210><211><212><212><213>	22 30 DNA Homo sapiens	

<400> cctgcta		ccttatcagc	ttcaagatct		30
<210>	23				
<211>	30				
<212>	DNA				
<213>	Homo	sapiens			
<400> gtacctt		cacgctgaca	aaacgtggta		30