Routing Algorithms

Daniel Zappala

CS 460 Computer Networking Brigham Young University

How does the Internet determine which path to use from the source to the destination?

- Challenges
 - need to handle hundreds of thousands of routes
 - need to handle changes anywhere in the network
 - stability is crucial

Packet Forwarding versus Routing

Graph Abstraction

- graph G = (V, E)
- nodes/vertices V = u, v, w, x, y, z
- links/edges E =(u, v), (u, x), (v, x), (v, w), (x, w), (x, y), (w, y), (w, z), (y, z)
- useful for virtual networks as well, e.g. to model a peer-to-peer network of TCP connections

Edge Weights or Costs

- edges can have weights/costs
 - c(w,z) = 5
 - costs may be all 1
- cost of a path is the sum of the cost of all edges in the path
- routing algorithm finds the least-cost path

Types of Routing Algorithms

- link-state algorithm
 - routers advertise their links to every other router
 - eventually, all routers know complete topology and link costs
- distance-vector algorithm
 - routers start knowing path to immediate neighbors
 - routers advertise all known destinations and path lengths to neighbors
 - eventually, all routers know which neighbor has shortest path to all destinations

Link-State Routing

Link-State Basics

- can use Dijkstra's algorithm to compute least cost paths from one source to all other nodes
- notation
 - c(x,y): link cost from node x to y, ∞ if no link between x and y
 - D(v): current cost of path from source to destination v
 - F: set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
F = [u]
for v in N:
    if v adjacent to u:
        D(v) = c(u,v)
    else:
        D(v) = infinity
while N != F:
    find w not in F such that D(w) is a minimum
    F.append(w)
    update D(v) for all v adjacent to w and not in
        D(v) = \min(D(v), D(w) + c(w, v))
```

Example: Routing Table for U

• h(v): next hop on shortest path toward v

Step	F	D(v),h(v)	D(w),h(w)	D(x),h(x)	D(y),h(y)	D(z),h(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux	2,u	4,×		2,×	∞
2	uxy	2,u	3,y		4,y	
3	uxyv		3,y		4,y	
4	uxyvw				4,y	
5	uxyvwz					

- each iteration needs to check all nodes w not in F
- N(N+1)/2 comparisons
- $O(N^2)$
- more efficient implementations possible: O(NlogN)

Distance-Vector Routing

Bellman-Ford

- distributed algorithm
 - $d_x(y)$: coast of least-cost path from x to y
 - $d_x(y) = min(c(x, y) + d_y(y))$
 - min is taken over all neighbors of x
- example
 - $d_{v}(z) = 5, d_{x}(z) = 3, d_{w}(z) = 3$
 - $d_u(z) = min(c(u, v) + d_v(z), c(u, x) + d_x(z), c(u, w) + d_w(z))$

Distance-Vector Routing

- $d_u(z) = min(2+5, 1+3, 5+3) = 4$
- node with minimum cost to destination is chosen as next hop

Bellman-Ford

- start with known costs o neighbors
- calculate best estimate of $d_x(y)$
- distance vector $D_x = \{D_x(y) : y \in N\}$
- send distance vector to neighbors whenever it changes
- update D_x using Bellman-Ford rule whenever local link cost change or neighbor's vector results in a new minimum
- distributed, asynchronous algorithm

Example

Node x table

(3 1 1 0

Reduction in Link Cost

- good news travels fast
 - at t₁, y detects cost change, updates DV, informs neighbors
 - at t₂, z receives update from y, updates its DV, informs neighbors
 - at t₃, y receives z's update, DV does not change, process finishes

bad news travels slow

- at t_0 , $d_{v}(x) = 4, d_{z}(x) = 5$
- at t₁, y detects link change, sets $d_v(x) =$ $c(y,z) + d_z(x) = 6$, sends DV to z
- at t_2 , z gets DV, updates $d_z(x) = c(z, y) + d_y(x) =$
- loop continues until $d_{v}(x) = 60$
- count to infinity problem

Distance-Vector Routing

Solutions To Count To Infinity

- poisoned reverse
 - if z's best path is through y, z tells y that $d_z(x)$ is infinite
 - prevents y from routing to x via z
 - doesn't solve all looping problems
- path vector routing
 - include a path with each route, not just the next hop
 - eliminates all count-to-infinity problems
 - optimization: include only the next-to-last hop

Load-Based Routing

Load-Based Routing

- Difficult to have stable routes when link costs reflect congestion
- e.g. cost = number of traffic flows

a. Initial routing

c. x, y, z detect better path to w. counterclockwise

b. x, y detect better path to w, clockwise

d. x, y, z, detect better path to w. clockwise