Summary of MATLAB Onramp

Basic syntax

Example	Description
x = pi	Create variables with the equal sign (=). The left-side (x) is the variable name containing the value on the right-side (pi).
$y = \sin(-5)$	You can provide inputs to a function using parentheses.

Desktop management

Function	Example	Description
<u>save</u>	save data.mat	Save your current workspace to a MAT-file.
<u>load</u>	load data.mat	Load the variables in a MAT-file to the Workspace.
<u>clear</u>	clear	Clear all variables from the Workspace.
<u>clc</u>	clc	Clear all text from the Command Window.
<u>format</u>	format long	Change how numeric output is displayed.

Array types

Example	Description
4	scalar
[3 5]	row vector
[1;3]	column vector
[3 4 5;6 7 8]	matrix

Evenly-spaced vectors

Example	Description	
1:4	Create a vector from 1 to 4, spaced by 1, using the <u>colon (:)</u> operator.	
1:0.5:5	Create a vector from 1 to 4, spaced by 0.5.	
<u>linspace</u> (1,10,5)	Create a vector with 5 elements. The values are evenly spaced from 1 to 10.	

Creating matrices

Example	Description
rand(2)	Create a square matrix with 2 rows and 2 columns.
<u>zeros</u> (2,3)	Create a rectangular matrix with 2 rows and 3 columns.

Indexing

Example	Description	
A(<u>end</u> ,2)	Access the element in the second column of the last row.	
A(2,:)	Access the entire second row	
A(1:3,:)	Access all columns of the first three rows.	
A(2) = 11	Change the value of the second element an array to 11.	

Array operations

Example	Description
[1 1; 1 1]*[2 2;2 2] ans = 4 4 4 4	Perform <u>matrix multiplication</u> .
[1 1; 1 1].*[2 2;2 2] ans = 2 2 2 2	Perform <u>element-wise multiplication</u> .

Multiple outputs

Example	Description
$[xrow,xcol] = \underline{size}(x)$	Save the number of rows and columns in x to two different variables.
$[xMax,idx] = \underline{max}(x)$	Calculate the maximum value of x and its corresponding index value.

Documentation

Example	Description
<u>doc</u> randi	Open the documentation page for the randi function.

Plotting

Example	Description
<pre>plot(x,y,"ro-","LineWidth",5)</pre>	Plot a red (r) dashed () line with a circle (0) marker, with a heavy line width.
hold on	Add the next line to existing plot.
hold off	Create a new axes for the next plotted line.
<pre>title("My Title")</pre>	Add a label to a plot.

Using tables

Example	Description
data.HeightYards	Extract the variable HeightYards from the table data.
data.HeightMeters = data.HeightYards*0.9144	Derive a table variable from existing data.

Logicals

Example	Description
[5 10 15] > 12	Compare a vector to the value 12.
<u>v1(v1 > 6)</u>	Extract all elements in v1 that are greater than 6.
x(x==999) = 1	Replace all values in x that are equal to 999 with the value 1.

Programming

Example	Description
$\frac{\text{if }}{y = 3} \times 0.5$	If x is greater than 0.5 , set the value of y to 3 .
else y = 4 end	Otherwise, set the value of y to 4.
	The loop counter (c) progresses through the values 1:3 (1, 2, and 3).
	The loop body displays each value of c.