Source extraction and characterisation I – continuum

Dr. Paul Hancock

paul.hancock@curtin.edu.au

@drpaulhancock

Intro

Everything you do wrong looks like variability

If you care about variability, then you care about all the ways that things can go wrong.

Eg the presence or changes in:

- Observing conditions
- RFI
- Calibration
- Imaging
- Detection of features
- Characterisation of features
- Analysis and methodology
- Work-flows

Variability can be:

- 1. Astrophysical
 - a. Intrinsic (SNe)
 - b. Extrinsic (scintillation)
- Environmental (RFI, the ionosphere)
- 3. Instrumental (gain, bandpass stability)
- 4. Methodological (dodgy math!)

Measuring Variability

Problems:

- Masked/missing data points
- Upper/lower limits
- Non-uniform uncertainties
- Inaccurate uncertainties
- Separating significance and degree

Solutions:

- Better source characterisation
- Better statistical models

Source Finding Done Right

Assumptions:

- Compact sources
- Continuum images

Snapshot Image: Data model

Zoom

Finding sources - thresholding

(linear) Least squares fitting

Given:

- x data
- $f(\theta;x)$ model data with parameters θ

commons.wikimedia.org

Goal:

• Minimise the sum of the square of the residuals

$$\operatorname{arg Min} \sum (f(\theta; x) - x)^{2}$$

• a.k.a χ^2 minimisation

For linear models and data that is independent and identically distributed, least squares minimisation is unbiased, and has minimum variance.

Radio Images

We fit with a source model that is Gaussian

$$f(x,y) = Ae^{-\left(\frac{(x-x_0)^2}{2\sigma_x^2} + \frac{(y-y_0)^2}{2\sigma_y^2}\right)}$$

Radio Images

We fit with a source model that is Gaussian

Not linear, not even close

(non linear) Least squares fitting

Given:

- x data
- $f(\theta;x)$ model data with parameters θ

Goal:

• Minimise the sum of the square of the residuals

$$\operatorname{arg Min} \sum (f(\theta; x) - x)^{2}$$

• a.k.a χ^2 minimisation

For non linear models least squares minimisation gives a biased result.

All parameters are biased, even the 'linear ones' like amplitude

Quantifying Bias

Refreiger & Brown 1998 (arXiv:9803279) describe the expected bias as:

$$\langle a_i \rangle = \hat{a}_i - \frac{1}{2} \sigma_N^2 B_{lkj} D_{li} D_{kj} + O(\text{SNR}_s^{-3})$$

Where
$$D_{ij} = (H^{-1})_{ij},$$

$$H_{ij} = \sum_{p} \frac{\partial F}{\partial a_{i}}(\mathbf{x}^{p}; \hat{\mathbf{a}}) \frac{\partial F}{\partial a_{j}}(\mathbf{x}^{p}; \hat{\mathbf{a}}),$$

$$B_{ijk} = \sum_{p} \frac{\partial F}{\partial a_{i}}(\mathbf{x}^{p}; \hat{\mathbf{a}}) \frac{\partial^{2} F}{\partial a_{i} \partial a_{k}}(\mathbf{x}^{p}; \hat{\mathbf{a}}),$$

* Math is for demonstration purposes only - Do not try this at home

Radio Images Again

Data are correlated:

corr(x,y) = Dirty Beam / Point Spread Function

Even worse:

CLEAN-ing modifies the correlation function

Our data

What our fitting algorithms assume we have

Our data

What we actually have

What our fitting algorithms assume we have

Correlated Data

Increases bias in all parameters

Additional bias towards local noise peaks at low SNR

Nearby sources now have correlated parameters

Approaches

How many DoF do we "really" have?

o Condon 1997

Refreiger & Brown 1998 (arXiv)

o Aegean 2.0, Hancock et al. 2018

How do we do better?

Given:

- x data
- $f(\theta;x)$ model data with parameters θ
- Covariance matrix C

Goal:

 Minimise the sum of the square of the residuals modified by the inverse covariance matrix

Min {
$$(f(\theta;x) - x)^TC^{-1}(f(\theta;x) - x)$$
}

Fitting with C⁻¹

Fitting with C⁻¹

Accurate errors, biases
Accuracy of reported uncertainties

Making

- CataloguesLight-curves
- SEDs

Direction Dependant Synthesized Beam

Major Axis
Size Relative
to Zenith

Catalogues at large FoV

Catalogue and X-match?

Swinbank et al. 2015

Hierarchical association? Line et al. 2017 0.11 0.19 0.27 0.35 0.43 0.51 0.59 0.67

200MHz

118MHz

154MHz

88MHz

Priorized fitting with Aegean (Hancock et al. 2012/18) (now also pyBDSF)

Priorized fitting

Swapping
a detection experiment for
a measurement experiment
reduces uncertainties

Good astrometry is essential so use fits_warp:

Hurley-Walker & Hancock 2018arXiv180808017H

Fractional difference between Blind source detection and Priorized fitting

Catalog contains

- all sources from deep image
- fluxes from each narrow band for each source
- sub-threshold fluxes
- ZERO false cross ids

GLEAM priorized fits at 20 frequencies

Wideband reference image 170-230MHz 7.68 MHz narrow band images (x20)

Callingham et al. 2017

Source Finding Solution: Aegean

https://github.com/PaulHancock/Aegean

BANE

- Characterise background
- Characterise noise
- Do it right
- Do it fast

MIMAS

- Describe regions
- Combine regions
- Mask images
- ConstrainAegean
- Write MOC files

Other solutions:

Good ones:

- Selavy Whiting & Humphryes <u>2012PASA...29..371W</u>
- PyBDSF Mohan & Rafferty <u>2015ascl.soft02007M</u>
- PySE Carbone et al. <u>2018A&C....23...92C</u>

Not good ones:

- imsad (miriad)
- SAD/VSAD (aips)
- SExtractor
- Blobcat

All-in-one solutions

Survey image processing with the VAST pipeline Two approaches can be used: a Publish awesome results! stream processing approach (blue (not part of pipeline, awesomeness Exclude areas that designed for real-time are not of interest by: subject to input data) ingestion of images, and a batch trimming, masking, or processing approach (red flow) using MIMAS* region designed for already completed MIMAS surveys. (not part of pipeline) 6. Generate light curves 2. Create background and calculate variability statistics for each source using BANE*. Source Aegean + BANE Statistics include a measure of the magnitude and characterisation using confidence of variability. catalogues are found. then source finding is *see github.com/PaulHancock/Aegean docker 5. Flux monitoring. For any Hancock et al 2012, MNRAS, 422, 1812 sources which have a measurement missing from an image, replace the 3. (optional, but recommended!) missing measurement with a Crossmatch new measurements priorized fit. with a reference catalogue, and perform astrometry and gain corrections. This can reduce the 4. Source association: Regroup all the individual ionospheric induced positional flux measurements into sources. A source will have offsets from as much as 1 arcmin. at most one flux measurement per image.

RA (degrees)

1. Create images.

and noise images

Aegean*. If existing

down to 5arcsec.

finding and

not duplicated.

files

LOFAR - TraP

Swinbank et al. <u>2015A&C....11...25S</u>

Robbie

- 1. Astrometry correct each epoch
- 2. Stack to form mean image
- 3. Find persistent source in mean image
- 4. Mask persistent sources in single epoch
- 5. Create light curves for persistent sources
- 6. Blind search for transient candidates in single epochs
- 7. Identify transients and characterise variability

https://github.com/PaulHancock/Robbie (Astronomy & Computing, Submitted)

Further reading

Condon <u>1997PASP..109..166C</u> Empirical measure of errors

Refreiger & Brown 1998 arXiv:9803279 analytical treatment of uncertainty and bias

Hancock et al. 2012 2012MNRAS.422.1812H Source finding with Aegean

Hancock et al. 2018 2018PASA...35...11H Source finding on correlated data

Whiting & Humphryes 2012PASA...29..371W ASKAP soft source finder

Mohan & Rafferty 2015ascl.soft02007M LOFAR source finder

PySE - Carbone et al. 2018A&C....23...92C LOFAR source finder (for TraP)

Hurley-Walker & Hancock 2018 2018arXiv180808017H Correcting ionospheric effects in the image plane

Banyer et al 2012ASPC..461..725B VAST pipeline

Hancock et al. 2018ascl.soft08011H Robbie (= vast lite / vast ++)

Swinbank et al. 2015A&C....11...25S LOFAR TraP