nstituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais

Paginação

Aula 13

3

Introdução

- Problema com alocação particionada
 - Necessidade de uma área contígua de memória (tamanho do processo)
- Solução:
 - Retirar a restrição de que o espaço de endereçamento deva ser contíguo
- "Desacoplar" a ideia do espaço de endereçamento lógico do espaço de endereçamento físico
 - Necessidade de "mapear" o espaço lógico no espaço físico
 - Dois métodos básicos:
 - Paginação
 - Segmentação

Sistemas Operacionais 2

Princípio básico da paginação

- Divisão do espaço de endereçamento em blocos de tamanho fixo
 - São os quadros (frames) para o espaço de endereçamento físico (RAM)
 - São as páginas para o espaço de endereçamento lógico (processo)
- Regra:
 - Uma página pode ser carregada em qualquer quadro livre
 - "Quebra" a noção de espaço contíguo
 - Necessário mapear endereço lógico em físico
- Importante:
 - Processo "enxerga" um espaço de endereçamento contíguo, embora ele seja não contíguo
 - Noção de endereço lógico versus endereço fisico

Espaço de endereçamento lógico

- Endereço lógico é dividido em duas componentes:
 - Número da página
 - Deslocamento dentro de uma página
- Páginas podem assumir qualquer tamanho, porém emprega-se um tamanho potência de 2 para facilitar operações div e mod

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais

Sistemas Operacionais

4

Espaço de endereçamento físico

- Endereço físico é dividido em duas componentes:
 - Número do quadro
 - Deslocamento dentro do quadro
- Quadros possuem o mesmo tamanho da página

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais

Mapeamento de páginas em quadros

- Como uma página pode ser carregada em qualquer quadros é necessário mapear páginas em quadros
 - Tabela de páginas

Sistemas Operacionais

Tradução de endereço lógico em endereço físico

Exemplo de paginação

- Características do sistema:
 - Memória física: 64 kbytes (16 bits)
 - Tamanho processo (máx): 32 kbytes (15 bits)
 - Páginas 8 kbytes
- Paginação:
 - Número de quadros: $64/8 = 8 (0 \text{ a } 7) \rightarrow 3 \text{ bits}$
 - Número de páginas: $32/8 = 4 (0 \text{ a 3}) \rightarrow 2 \text{ bits}$
 - Deslocamento: 8 kbytes → 13 bits

Sistemas Operacionais

5

Exemplo de paginação (cont.): tradução

Alguns detalhes...

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

- A paginação elimina a fragmentação externa
 - Apresenta fragmentação interna (limitada a última página)
 - Fragmentação interna média = (tam_página 1)/2
 - Observação: pode ser por área (código, dados, heap e pilha)
- Mapeamento é feito com auxílio do hardware do processador
 - Memory Management Unit

Sistemas Operacionais 10

Proteção

- Proteção de acesso é garantida por definição:
 - Processos acessam somente suas páginas → end. válidos
 - Endereço inválido apenas na última página
 - Se houver fragmentação interna
- Inclusão de bits de controle na tabela de página (por entrada)
 - Bit de validade:
 - Página pertence ou não ao end. lógico do processo
 - Controle de acesso
 - Indicação se a página é de leitura, escrita ou executável
 - Páginas apenas de leitura, página de leitura/escrita

Exemplo de proteção

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

- Código compartilhado
 - Uma cópia do código (*read-only*, reentrante) pode ser compartilhada entre vários processos (e.g.; editores de texto, compiladores, etc...)
 - O código compartilhado pertence ao espaço lógico de todos os processos
- Dados e código próprios
 - Cada processo possui sua própria área de código e seus dados

Sistemas Operacionais

Exemplo de compartilhamento

Problema com a tabela de páginas

- Como dimensionar o tamanho da tabela de páginas?
 - Tabelas de páginas tendem a ser grandes
 - Agravado em novos processadores (e.g. processador de 64 bits, com páginas de 4 KB, gera uma tabela 2⁵² entradas)
- Tamanho fixo:

Sistemas Operacionais

- Limita o tamanho máximo de um processo
- Desperdício de memória: aloca n entradas para usar k entradas (k << n)
- Tamanho variável:
 - Dimensiona conforme necessidade, mas como armazenar a tabela de páginas?
 - lacktriangledown Contíguo em memória ightarrow fragmentação externa
 - Paginando a própria tabela
 - Estratégia normalmente usada pelos sistemas operacionais modernos

Paginação multinível

- Solução para o dimensionamento da tabela de páginas
- Organiza a tabela de páginas em dois níveis hierárquicos
 - Diretório de tabela de páginas
 - Tabela de páginas propriamente dita
- Diretórios de tabela de páginas podem ser em *n* níveis
 - Uma entrada do diretório da tabela de páginas de nível n aponta para um diretório de tabelas de páginas de nível n-1
 - O último nível é a tabela de páginas

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

13

15

Sistemas Operacionais 16

Exemplo: Paginação em dois níveis

- Processadores 80x86
 - End. Lógico: 4 Gbytes (32 bits)
 - Páginas: 4 kbytes
 - Tamanho da tabela de páginas: 4 Gbytes / 4 kbytes = 1048576 entradas

Paginação em três níveis

Típico de arquiteturas de processadores de 64 bits

Sistemas Operacionais 18

Tabela de páginas invertida

- Outra abordagem para o problema do tamanho da tabela de páginas
- Tabela de páginas invertida:
 - Uma tabela de páginas para todo o sistema (não mais por processo)
 - Uma entrada para cada quadro
 - Endereço lógico da página e a qual processo pertence
- Endereço lógico é formado por < process_id, página, deslocamento >
- Cada entrada da tabela possui < process_id, página>
- Tabela é pesquisada e retorna, se presente, o índice / associado a entrada
 - Cada indice corresponde a um quadro

Esquema da tabela de páginas invertida

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

Sistemas Operacionais 19 Sistemas Operacionais 20

17

- Paginação é um tipo de relocação (via hardware)
- Não apresenta fragmentação externa, porém gera fragmentação interna (restrita apenas a última página)
- Importante:

Sistemas Operacionais

- Visão do usuário: espaço de endereçamento contíguo
- Visão do sistema: processo é "esparramado" na memória física
- n páginas são alocadas a n quadros implicando na criação de uma função de mapeamento
 - O maior processo e a quantidade de processos em memória (escalonador de curto prazo) é limitado pela capacidade da RAM (quadros)
 - Solução para isso é empregar memória virtual (será visto mais adiante)
- Facilita implementação de proteção e compartilhamento

Leituras complementares

- A. Tanenbaum. Sistemas Operacionais Modernos (3ª edição), Pearson Brasil, 2010.
 - Capítulo 3: seções 3.3.1 e 3.3.2
- A. Silberchatz, P. Galvin; Sistemas Operacionais. (7ª edição). Campus, 2008.
 - Capítulo 8 (seções 8.4 e 8.5)
- R. Oliveira, A. Carissimi, S. Toscani; Sistemas Operacionais. Editora Bookman 4ª edição, 2010
 - Capítulo 6 (seção 6.5)

Instituto de Informática - UFRGS A. Carissimi -23-avr.-12

21

Sistemas Operacionais 22