

Lecture 03 – Fundamentals of digital imaging II

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Basic relationship between pixels
 - Neighborhood of a pixel
 - Adjacency
 - Digital path (or curve)
 - Connected regions and connected components
 - Objects and background in a image
 - Boundary, borders, contour, or frontier
- Logical and arithmetic operations between images
 - Arithmetic operations
 - Logical operations
- Distance measures

BASIC RELATIONSHIP BETWEEN PIXELS

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

4-neighbors of p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Diagonal-neighbors of p, $N_D(p)$:

4-neighbors of p, $N_4(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

Diagonal-neighbors of p, $N_D(p)$:

4-neighbors of p, $N_{4}(p)$:

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

(x+1, y+1)

8-neighbors of
$$p$$
, $N_8(p)$:
 $N_4(p) \cup N_D(p)$

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_4(p)$

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_4(p)$

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_{4}(p)$

8-adjaceny:

- Two pixels *p* and *q* are 8-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_8(p)$.

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_{4}(p)$

8-adjaceny:

- Two pixels p and q are 8-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_8(p)$.

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_{4}(p)$

8-adjaceny:

- Two pixels p and q are 8-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_8(p)$.

M-adjacency (mixed adjacency):

- Two pixels *p* and *q* are m-adjacent if:
 - q is in $N_4(p)$ **OR**
 - q is in $N_D(p)$ and the intersection between $N_4(p)$ and $N_4(q)$ does not contain any pixels whose values belong to V.

4-adjacency:

- Two pixels p and q are 4-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_{\Delta}(p)$

8-adjaceny:

- Two pixels p and q are 8-adjacent if:
 - The values of p and q are in the set V, and
 - The pixel q is in the set $N_8(p)$.

M-adjacency (mixed adjacency):

- Two pixels *p* and *q* are m-adjacent if:
 - q is in $N_4(p)$ **OR**
 - q is in $N_D(p)$ and the intersection between $N_4(p)$ and $N_4(q)$ does not contain any pixels whose values belong to V.

- A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is
 - A sequence of distinct pixels with coordinates:
 - $(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$
 - where:
 - $(x_0, y_0) = (x, y),$
 - $(x_n, y_n) = (s, t)$, and
 - the pixels (x_i, y_i) and (x_{i-1}, y_{i-1}) are adjacent for $1 \le i \le n$
- If $(x_0, y_0) = (x_0, y_0)$, the path is closed
- Depending on the type of adjacency, the paths can be:
 - 4-path
 - 8-path
 - m-path

Considering neighborhood-4:

• One of the paths between p in (2,5) and q in (2,2):

- One of the paths between p in (2,5) and q in (2,2):
 - (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).

- Another path between p in (2,5) and q in (2,2):
 - (2,5), (1,5), (1,4), (1,3), (2,3), (2,2).

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

Considering neighborhood-8:

One of the paths between p in (2,5) and q in (2,2):

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,4), (1,3), (2,2).

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

- Another path between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,4), (1,3), (1,2), (2,2).

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

- One of the paths between p in (2,5) and q in (2,2):
 - *(2,5), (1,4), (1,3), (2,2).*
- One of the paths between p in (2,3) and q in (6,2):

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,4), (1,3), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - *-* (2,3), (2,2), (3,2), (4,3), (5,3), (6,3), (6,2).

Considering neighborhood-4:

- One of the paths between p in (2,5) and q in (2,2):
 - *-* (2,5), (1,5), (1,4), (1,3), (1,2), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - There is no path!

- One of the paths between p in (2,5) and q in (2,2):
 - *–* (2,5), (1,4), (1,3), (2,2).
- One of the paths between p in (2,3) and q in (6,2):
 - *-* (2,3), (2,2), (3,2), (4,3), (5,3), (6,2).

Connected regions and connected components

Connected region:

- Any region R in which there is at least one path between any pairs of pixels (p, q)

Connected component:

- A maximum connected region
- It is not a proper subset of any larger connected region

Connected regions and connected components

Connected region:

 Any region R in which there is at least one path between any pairs of pixels (p, q)

Connected component:

- A maximum connected region
- It is not a proper subset of any larger connected region

Maximum connected region (Connected component)

Connected components

Connected components

Connected components

Label image

Objects and background in a image

- Image foreground (objects)
 - Set of all connected components in the image
- Image background
 - The complement of the set of connected components

Objects and background in a image

- Image foreground (objects)
 - Set of all connected components in the image
- Image background
 - The complement of the set of connected components

- Border of a connected component C:
 - Set of points in C that are adjacent to the complement points of C.
 - Connectivity dependent.
 - Inner border.

- Border of a connected component C:
 - Set of points in C that are adjacent to the complement points of C.
 - Connectivity dependent.
 - Inner border.

- Border of a connected component C:
 - Set of points in C that are adjacent to the complement points of C.
 - Connectivity dependent.
 - Inner border.

- Outer borders of a connected component C:
 - Set of points in the complement of C, C^c, that are adjacent to the points in C.
 - Borders always form a closed set.
 - Contour follower algorithms.

LOGICAL AND ARITHMETIC OPERATIONS

- Arithmetic operations are performed between corresponding pixels
 - SUM

•
$$g(x, y) = f_1(x,y) + f_2(x,y)$$

- SUBTRACTION
 - $g(x, y) = f_1(x,y) f_2(x,y)$
- MULTIPLICATION

•
$$g(x, y) = f_1(x,y) \times f_2(x,y)$$

- DIVISION
 - $g(x, y) = f_1(x,y) / f_2(x,y)$

Python data types (scikit-image)

dtype	from	until	Description
uint8	0	255	Unsigned 8-bit integer
uint16	0	65,535	Unsigned 16-bit integer
uint32	0	4,294,967,295	Unsigned 32-bit integer
float	-1.0	+1.0	64-bit floating point
int8	-128	127	Signed 8-bit integer
int16	-32,768	+32,767	Signed 16-bit integer
int32	-2 ³¹	2 ³¹ - 1	Signed 32-bit integer

Function	Description					
img_as_float	Convert to float					
img_as_ubyte	Convert to uint8					
img_as_uint	Convert to uint16					
img_as_int	Convert to int16					

https://scikit-image.org/docs/dev/user_guide/data_types.html

SUM

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

Truncation:

$$g'(x,y) = \min(g(x,y), L-1)$$

Normalization:

$$g' = \frac{L-1}{g_{max} - g_{min}} \times (g - g_{min})$$

$f_2(x,y)$							g(x,	<i>y</i>) =	$= f_1$	(x, y)	y) +	$f_2($	<i>x</i> , <i>y</i>)	
	0	1	2	3	4	у			0	1	2	3	4	у
0	0	0	0	0	0			0	0	0	0	0	0	
1	3	3	5	5	0			1	3	6	8	9	4	
2	3	3	5	5	0			2	3	6	8	9	4	
3	1	2	1	2	1			3	3	4	2	3	2	
4	2	1	2	1	2			4	4	3	4	2	3	
x						-		<i>x</i> _						
								\						

0.00 0.77 1.55 2.33 3.11 3.88 4.66 5.44 6.22

7.00

Wrap-around:

$$g(x,y) > L - 1 ? g(x,y) - L : g(x,y)$$

SUBTRACTION

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

$$g'(x,y) = \max(g(x,y),0)$$

Normalization:

$$g' = \frac{L-1}{g_{max} - g_{min}} \times (g - g_{min})$$

$$g'(x,y) = |g(x,y)|$$

Absolute value:

 $f_2(x,y)$

$g(x,y) = f_1(x,y) - f_2(x,y)$

Wrap-around:

$$g(x,y) < 0?L + g(x,y): g(x,y)$$

MULTIPLICATION

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

MULTIPLICATION

Masking

DIVISION

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

DIVISION

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

Division by zero

Convert to float Replace the 0 (zero) with the smallest positive value.

 $\varepsilon = np.spacing(1)$

	72(4757									
	0	1	2	3	4	у				
0	ε	ω	ε	ε	ω					
1	ω	3.	3.	4.	4.					
2	ω	3.	3.	4.	4.					
3	2.	2.	1.	1.	1.					
4	2.	2.	2.	1.	1.					
X						-				
	7									

 $f_2(x,y)'$

Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.

DIVISION

k = 3 (number of bits) $L = 2^k = 2^3 = 8$ Range: [0, L-1] or [0, 7]

0 1 2 3 4 y 0 0 0 0 0 0 0 1 3 3 5 5 0 2 3 3 5 5 0 3 1 2 1 2 1 4 2 1 2 1 2 x

 $f_1(x,y)$

Convert the result to integer (round or truncate).
Treat values.

$g(x,y) = f_1(x,y)/f_2(x,y)$										
	0	1	2	3	4	у				
0	8	8	8	8	8					
1	8	1.	1.66	1,25	0					
2	8	1.	1.66	1.25	0					
3	0.5	1.	1.	1.	1.					
4	1.	0.5	1.	1.	2.					
X						•				
•	*									
$g(x,y)' = f_1(x,y)/f_2(x,y)$										
	0	1	2	3	4	у				
0	0	0	0	0	0					

Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.

Division by zero

Replace the 0 (zero) with a very

Convert to float

small positive value.

 $\varepsilon = np.spacing(1)$

Logical operations

- Logical operations occur between binary images
 - Pixels == 0 → False
 - Pixels == $1 \rightarrow$ True

Α	В	NOT A	A AND B	A OR B	A NAND B	A NOR B	A XOR B
0	0	1	0	0	1	0	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	1	0

Logical operations

DISTANCE MEASURES

- Consider three pixels and their respective coordinates
 - p in (x, y), q in (s, t), and z in (v, w)
- D is a function or distance measure
 - $D(p, q) \ge 0$
 - D(p, q) = 0 if p = q
 - D(p, q) = D(q, p)
 - $D(p, z) \le D(p, q) + D(q, z)$
- Some distance measures:
 - Euclidian distance
 - City block distance
 - Chessboard distance

• The Euclidean distance between pixel p in (x, y) and pixel q in (s, t):

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

• The Euclidean distance between pixel p in (x, y) and pixel q in (s, t):

$$- D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- For p with coordinates (2, 2), and
 - $-q_1$ with coordinates (1, 2):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-2)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 0^2}$$

•
$$D_e(p,q) = \sqrt{1} = 1$$

 $-q_2$ with coordinates (1,1):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-1)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $-q_3$ with coordinates (0,3):

•
$$D_e(p,q) = \sqrt{(2-0)^2 + (2-3)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

• The Euclidean distance between pixel p in (x, y) and pixel q in (s, t):

$$- D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- For p with coordinates (2, 2), and
 - $-q_1$ with coordinates (1, 2):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-2)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 0^2}$$

•
$$D_e(p,q) = \sqrt{1} = 1$$

 $-q_2$ with coordinates (1,1):

•
$$D_e(p,q) = \sqrt{(2-1)^2 + (2-1)^2}$$

•
$$D_e(p,q) = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $-q_3$ with coordinates (0,3):

•
$$D_e(p,q) = \sqrt{(2-0)^2 + (2-3)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$

• The Euclidean distance between pixel p in (x, y) and pixel q in (s, t):

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- For *p* with coordinates (4, 3) and:
 - q_1 with coordinates (2, 2):

•
$$D_e(p,q) = \sqrt{(4-2)^2 + (3-2)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $-q_2$ with coordinates (5, 6):

•
$$D_e(p,q) = \sqrt{(4-5)^2 + (3-6)^2}$$

•
$$D_e(p,q) = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$$

 $-q_3$ with coordinates (0, 3):

•
$$D_e(p,q) = \sqrt{(4-0)^2 + (3-3)^2}$$

•
$$D_e(p,q) = \sqrt{4^2 + 0^2} = \sqrt{16} = 4$$

Medidas de distância

• The Euclidean distance between pixel p in (x, y) and pixel q in (s, t):

-
$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

- For *p* with coordinates (4, 3) and:
 - $-q_1$ with coordinates (2, 2):

•
$$D_e(p,q) = \sqrt{(4-2)^2 + (3-2)^2}$$

•
$$D_e(p,q) = \sqrt{2^2 + 1^2} = \sqrt{5}$$

 $-q_2$ with coordinates (5, 6):

•
$$D_e(p,q) = \sqrt{(4-5)^2 + (3-6)^2}$$

•
$$D_e(p,q) = \sqrt{(-1)^2 + (-3)^2} = \sqrt{1+9} = \sqrt{10}$$

 $-q_3$ with coordinates (0, 3):

•
$$D_e(p,q) = \sqrt{(4-0)^2 + (3-3)^2}$$

•
$$D_e(p,q) = \sqrt{4^2 + 0^2} = \sqrt{16} = 4$$

- City block distance between p in (x, y) and q in (s, t)
 - $D_4(p, q) = |x s| + |y t|$

- City block distance between p in (x, y) and q in (s, t)
 - $D_4(p, q) = |x s| + |y t|$
- For p with coordinates (4, 3) and:
 - $-q_1$ with coordinates (2, 2):

•
$$D_4(p,q) = |4-2| + |3-2|$$

•
$$D_4(p,q) = 2 + 1 = 3$$

 $-q_2$ with coordinates (5, 6):

•
$$D_4(p,q) = |4-5| + |3-6|$$

•
$$D_4(p,q) = 1 + 3 = 4$$

 $-q_3$ with coordinates (0, 3):

•
$$D_4(p,q) = |4-0| + |3-3|$$

•
$$D_4(p,q) = 4 + 0 = 4$$

- City block distance between p in (x, y) and q in (s, t)
 - $D_4(p, q) = |x s| + |y t|$
- For p with coordinates (4, 3) and:
 - $-q_1$ with coordinates (2, 2):

•
$$D_4(p,q) = |4-2| + |3-2|$$

•
$$D_4(p,q) = 2 + 1 = 3$$

 $-q_2$ with coordinates (5, 6):

•
$$D_4(p,q) = |4-5| + |3-6|$$

•
$$D_4(p,q) = 1 + 3 = 4$$

- $-q_3$ with coordinates (0, 3):
 - $D_4(p,q) = |4-0| + |3-3|$
 - $D_4(p,q) = 4 + 0 = 4$

- Chessboard distance between p in (x, y) and q in (s, t)
 - $D_8(p, q) = max(|x-s|, |y-t|)$

- Chessboard distance between p in (x, y) and q in (s, t)
 - $D_8(p, q) = max(|x-s|, |y-t|)$
- For p with coordinates (4, 3) and:
 - $-q_1$ with coordinates (2, 1):

•
$$D_8(p,q) = \max(|4-2|,|3-1|)$$

•
$$D_8(p,q) = \max(2,2) = 2$$

 $-q_2$ with coordinates (5, 6):

•
$$D_8(p,q) = \max(|4-5|,|3-6|)$$

•
$$D_8(p,q) = \max(1,3) = 3$$

- $-q_3$ with coordinates (0, 3):
 - $D_8(p,q) = \max(|4-0|,|3-3|)$
 - $D_8(p,q) = \max(4,0) = 4$

- Chessboard distance between p in (x, y) and q in (s, t)
 - $D_8(p, q) = max(|x-s|, |y-t|)$
- For *p* with coordinates (4, 3) and:
 - $-q_1$ with coordinates (2, 1):

•
$$D_8(p,q) = \max(|4-2|,|3-1|)$$

•
$$D_8(p,q) = \max(2,2) = 2$$

 $-q_2$ with coordinates (5, 6):

•
$$D_8(p,q) = \max(|4-5|,|3-6|)$$

- $D_8(p,q) = \max(1,3) = 3$
- $-q_3$ with coordinates (0, 3):

•
$$D_8(p,q) = \max(|4-0|,|3-3|)$$

•
$$D_8(p,q) = \max(4,0) = 4$$

Bibliography

- GONZALEZ, R.C.; WOODS, R.E. **Digital Image Processing**. 3rd ed. Pearson, 2007.
 - Sections 2.5, and 2.6 (until 2.3.3)
- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - (in Brazilian Portuguese)
 - Available on the author's website (for personal use only)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
 - Section 2.2, and 2.3 (except 2.3.3)
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - (in Brazilian Portuguese)
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial-PDI.pdf
 - Section 3

Complementary bibliography

- scikit-image. Image data types and what they mean.
 - https://scikit-image.org/docs/dev/user_guide/data_types.html
- Chityala, R; Pudipeddi, P. Image Processing and Acquisition using Python. CRC Press, 2014.

THE END