

Project Management for Managers Lec - 40

Probability Models in Networks - II

Dr. M.K. Barua

Department of Management
Indian Institute of Technology Roorkee

The distributions of durations of different activities, as assessed by project incharge are as follows.

T23 has normal distribution with to
$$= 4$$
 and tp $= 16$

T39 has normal distribution with to
$$= 8$$
 and tp $= 16$

T46 has normal distribution with to
$$= 4$$
 and tp $= 10$

T45	Prob.
3	.2
4	.3
5	.4
6	.1

T14	Prob.
16	.25
17	.50
18	.25

T67	Prob.
4	.5
5	.5

T78	Prob.
5	.4
6	.6

Find critical path variance along it.

What is the probability that the project will be completed in less than or 40 days.

Find out expected value and variance for all the activities.

If we have an activity (i,j) assumed to have a normal distribution with tp = 9 and to = 3, then we fit normal distribution to the activity.

$$\mu = E(X) = (tp+to)/2$$
 and $\sigma = (tp-to)/6$.

T12 has normal distribution with to = 3 and tp = 9

Expected duration of E(T12) = 6 and $\sigma^2 = (9-6)/6 = 1$.

Similarly,

16 expected duration of E(T23) (4,16) = 10 and σ^2 = 4 **17** expected duration of E(T39) (8,16) = 12 and σ^2 = 16/9 18 E(T89) = 4 and $\sigma^2 = 0$, and for dummy $E(T43) = \sigma^2 = 0$, Now find expected value and variance of an activity with discrete E(T14) = 16*.25+17*.50+18*.25 = 17

T14

Prob.

.25

.50

.25

After finding E (T14) = 17, the variance of T14 is

$$V^2$$
 14 = E (T14- E(T14)) ²
= E (T14- 17) ²
= E (16-17) ² = 1

$$= \mathbf{E} (17-17)^2 = 0$$

$$= \mathbf{E} (18-17)^2 = 1$$

$$(T14-17)^2$$
: 1 0 1

$$(V14)^2 = 1*.25 + 0*.5 + 1*.25 = 0.5$$

T14	Prob.	
16	.25	
17	.50	
18	.25	

$$E(T45) = .6 +1.2 +2 +.6 =4.4$$

$$V^{2} 45 = E (T45 - E(T45))^{2}$$

$$= E (T45 - 4.4)^{2}$$

$$= E (3 - 4.4)^{2} = 1.96$$

$$= E (4 - 4.4)^{2} = .16$$

$$= E (5 - 4.4)^{2} = .36$$

T45	Prob.
3	.2
4	.3
5	.4
6	.1

 $(T45-4.4)^2$:

1.96

 $=E (6-4.4)^2 = 2.56$

.16

.36

2.56

Prob.:

.2

.3

.4

.1

$$V^2 45 = 1.96 \cdot .2 + .16 \cdot .3 + .6 \cdot .4 + 2.56 \cdot .1 = .84$$

For activity 6-7, E(67) and V2(67) = 4.5 and .25 and

for activity 7-8, E(78) and V2(78) = 5.6 and .24

After finding expected values and variance for all the activities find critical path.

The project duration is 38.1

he project duration is: 1-4-6-7-8-9= 17+7+4.5+5.6+4= 38.1 and

Variance: 1-4-6-7-8-9

$$0.5+1+.25+0.24+0=1.99$$
 and Std Dev = 1.41

$$P(T \le 40) = (40-38.1)/(1.41) = 1.35$$

Appendix Table 1

Areas under the Standard Normal Probability Distribution between the Mean and Positive Values of z

Example:	×	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
o find the area				0.0000	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
	0.0	0.0000	0.0040	0.0080	0.0120	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
ider the curve	0.1	0.0398	0.0438	0.0478	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
tween the	0.2	0.0793	0.0832	0.0871	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
	0.3	0.1179	0.1217	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
ean and a point	0.4	0.1554		0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
24 standard	0.5	0.1915	0.1950	0.1983	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
	0.6	0.2257	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
viations to the	0.7	0.2580	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
ht of the	0.8	0.2881	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
	0.9	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
an, look up	1.0	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
e value	1.1	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4177
posite 2.2 and	1.2	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4319
	1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.444
der 0.04 in the	1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4535	0.454
ble: 0.4875 of	1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.463
	1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4623	0.470
e area under	1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4761	0.476
e curve lies	1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4750	0.4812	0.481
	2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4850	0.4854	0.485
tween the	2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4884	0.4887	0.489
ean and a z	2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4913	0.491
	2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4932	0.4934	0.493
alue of 2.24.	2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4948	0.4949	0.4951	0.495
	2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4962	0.4963	0.496
	2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4971	0.4972	0.4973	0.497
	2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4979	0.4979	0.4980	0.498
	2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4985	0.4985	0.4986	0.498
	2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4989	0.4989	0.4990	0.499
	3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4787	0.4707	0	

38.1 40

.50+0.4115=0.91 =91%

