

Auxiliar 8 - "Análisis Amortizado y Universos Discretos y Finitos"

Profesores: Pablo Barceló Gonzalo Navarro Auxiliar: Dustin Cobas

P1. Next Smaller Value

Dado un arreglo A[1..n], se quiere construir otro arreglo NSV[1..n], llamado "next smaller value". Concretamente, $NSV[i] = \min\{j > i, A[j] < A[i]\}$, suponiendo $A[n+1] = -\infty$.

Diseñe un algoritmo de tiempo O(n) para construir NSV y use técnicas de análisis amortizado para demostrar que su complejidad es O(n).

P2. PLCP

El arreglo $LCP[2\dots n]$ ("longest common prefix") para un texto $T[1\dots n]$ se define en función del arreglo de sufijos $A[1\dots n]$ de T: $LCP[i] = lcp(T[A[i]\dots n], T[A[i-1]\dots n])$, donde lcp(X,Y) es el largo del mayor prefijo común a X e Y. Por ejemplo, si $T[1\dots 12] = abracadabra\$$, entonces $A[1\dots 12] = \langle 12, 11, 8, 1, 4, 6, 9, 2, 5, 7, 10, 3 \rangle$ y $LCP[2\dots 12] = \langle 0, 1, 4, 1, 1, 0, 3, 0, 0, 0, 2 \rangle$.

Definimos el arreglo permutado PLCP[1...n-1] como $PLCP[j] = LCP[A^{-1}[j]]$, es decir, los sufijos se recorren en orden de texto. En nuestro ejemplo, $PLCP[1...11] = \langle 4, 3, 2, 1, 0, 1, 0, 1, 0, 0, 0 \rangle$.

- a) Demuestre que $PLCP[j] \ge PLCP[j-1] 1$.
- b) Para calcular PLCP se propone repetir para j=1 hasta n: calcular directamente $PLCP[j] = lcp(T[j ...n], T[A[A^{-1}[j]-1]...n])$ carácter a carácter, y luego pasar a j+1. La única gracia es que, por la propiedad del punto anterior, sabemos que los sufijos coincidirán en los primeros l = PLCP[j-1] 1 símbolos, por lo que podemos calcular $PLCP[j] = l + lcp(T[j+l...n], T[A[A^{-1}[j]-1]+l...n])$.

Demuestre que el costo total de este procedimiento es $\mathcal{O}(n)$.

Soluciones

P1. Next Smaller Value

Se inicializa un stack S con elementos previos aún no resueltos y se recorre A de izquierda a derecha. Para cada A[i], mientras A[i] < A[S.top], $NSV[S.top] \leftarrow i$ y pop(S). Finalmente, push(i). Esto es lineal por el mismo argumento del multipop visto en clase.

P2. PLCP

- a) Solo nos preocuparemos del caso P[j-1] > 1 pues sabemos que $PLCP \ge 0$. Notemos que PLCP[j-1] es el largo del prefijo más largo entre el j-1-ésimo sufijo y su anterior lexicográfico, es decir, si w es el j-1-ésimo sufijo, este coincide con su anterior lexicográfico, digamos w_a en los primeros PLCP[j-1] > 1 caracteres. Si a w y w_a le sacamos sus primeras letras obtendremos v y v_a ambos sufijos del texto que comparten las primeras PLCP[j-1]-1 letras y siendo v el j-ésimo sufijo. Finalmente, el anterior lexicográfico al j-ésimo sufijo v debe ser v0 y su anterior lexicográfico y por lo tanto el número de caracteres que coinciden entre v1 y su anterior lexicográfico debe ser v2 v3 y su anterior lexicográfico debe ser v3 y su anterior lexicográfico debe ser v4 y su anterior lexicográfico debe ser v5 v6 y su anterior lexicográfico debe ser v6 y su anterior lexicográfico debe ser v7 y su anterior lexicográfico debe ser v8 y su anterior lexicográfico debe ser v8 y su anterior lexicográfico debe ser v9 y su a
- b) De la primera ecuación se puede ver que el primer PLCP se puede calcular en $\mathcal{O}(n)$. De la última ecuación se deduce que para el resto de PLCPs, calcular PLCP[j] cuesta $\mathcal{O}(1) + PLCP[j] PLCP[j-1]$, siendo lo último el costo del lcp. Finalmente, sumando los costos de todos los PLCP entre 2 y n-1 la suma "telescopea" y queda PLCP[n-1] PLCP[1] lo que es $\mathcal{O}(n)$.