An introduction to domain decomposition methods

Victorita Dolean

with: F. Nataf, P. Jolivet, P.-H. Tournier

LJLL French-Spanish summer school, Ciudad Real, 7-11 July 2025

Outline

Introduction

- Why domain decomposition
- Connection with the Block-Jacobi algorithm
- Discrete setting
- Convergence analysis

Resources (slides and lecture notes) from https://github.com/vicdolean/domain-decomposition-notes.

1

Introduction

EM wave propagation in heterogeneous media

Maxwell's equations

Reconstruct the permittivity ε

$$\nabla \times (\mu^{-1}\nabla \times \mathbf{E}) - \omega^2 \varepsilon \mathbf{E} = \mathbf{J}$$

- E is the electric field
- $\mu >$ 0 is the magnetic permeability
- $\varepsilon >$ 0 is the electric permittivity.
- ω is the frequency

Challenges

- High frequency: solution highly oscillatory

 pollution effect, large linear systems.
- Low frequency: near singular operator with a huge near kernel.

AIM

The linear system inherits the properties of the PDE
→ design a **robust** solver.

Au = b? Landscape of linear solvers

Iterative Methods

- Fixed-point: Jacobi, Gauss-Seidel, SSOR
- · Krylov methods:
 - Conjugate Gradient (Stiefel-Hestenes)
 - GMRES (Y. Saad), QMR (R. Freund)
 - MinRes, BiCGSTAB (van der Vorst)

Direct Solvers

- MUMPS (J.Y. L'Excellent)
- · SuperLU (Demmel et al), PastiX
- UMFPACK, PARDISO (O. Schenk)

"Hybrid" Methods (DDM)

- Multigrid: Brandt, Ruge-Stüben, Falgout, McCormick, Ruhe, Notay . . .
- Domain decomposition (DDM): Widlund, Farhat, Mandel, Lions . . .

Natural parallel compromise between robustness and scalability

Sparse Gaussian Elimination: Complexity and Practical Limits

Asymptotic Complexity for Structured PDE Matrices

Method	1D (d = 1)	2D (d = 2)	3D (d = 3)
Dense matrix	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^3)$
Band structure exploited	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{7/3})$
Sparse (e.g. nested dissection)	$\mathcal{O}(n)$	$\mathcal{O}(n^{3/2})$	$\mathcal{O}(n^2)$

Practical Limits (2025)

- Sparse direct solvers handle up to n $\sim 10^7$ in 2D and n $\sim 10^5$ in 3D on modern hardware.
- Fill-in in 3D limits scalability: memory and factorization time dominate.
- Hybrid methods (e.g. domain decomposition or multilevel solvers) are preferred for large-scale problems.

Modern Sparse Direct Solvers

- PARDISO: High-performance sparse solver https://www.pardiso-project.org
- SuperLU (Dist): Parallel solver for general matrices- https://github.com/xiaoyeli/superlu_dist
- MUMPS: MPI-parallel multifrontal solver http://mumps-solver.org
- UMFPACK (SuiteSparse): Serial sparse LU https://suitesparse.com

Need & Opportunities for massively parallel computing

Processor Evolution (1970-2020)

- · Moore's Law: steady increase in transistor count until today.
- Dennard Scaling breakdown (2005): power and frequency hit physical limits.
- Led to multi-core architectures, performance stagnation in single-thread execution.
- New focus: parallelism, heterogeneity, and architectural innovation.

Top500 Supercomputers (1993-2025)

- Exponential performance growth of top systems (1), 500 and total peak.
- Entry point into the exascale era reached around 2023–2024.
- Reflects hardware scaling, algorithmic advances, and parallelism.

Need & Opportunities for massively parallel computing

The Rise of Parallel Machines

Parallel computing is now accessible to everyone:

- Laptops (Apple Mx, Linux, Windows): 4–12 cores
- Desktops/Workstations: 16–128 cores
- Lab Clusters: ~300 cores
- University HPC Clusters: ~10,000 cores
- Cloud Infrastructures (AWS, Azure): elastic, on-demand compute
- National Supercomputers: > 100,000 cores, e.g., Fugaku, LUMI, Frontier

All fields of science and engineering are affected.

Hardware Trends (2025)

- ARM-based SoCs: A64FX (Fugaku), Apple M1/M2, Graviton3
- Scalable Vector Extensions (SVE) enable efficient HPC+AI workloads
- High Bandwidth Memory (HBM) improves memory-bound performance
- Heterogeneous systems: CPUs + GPUs + Al accelerators

Software Evolution

- Languages: Julia, Rust, Python (MPI4Py), offer easy parallelism
- Libraries: PETSc, HPDDM, ScaLAPACK (linear algebra); DUNE, OpenFOAM (PDEs)
- Standards: MPI + OpenMP + OpenACC remain critical

The First Domain Decomposition Method

The Original Schwarz Method (H.A. Schwarz, 1870)

Solves $-\Delta u = f$ in Ω with u = 0 on $\partial \Omega$ using overlapping subdomains:

Iteration Scheme: Schwarz Alternating Method

Given u_1^n, u_2^n , compute:

$$\begin{split} -\Delta u_1^{n+1} &= f \quad \text{in } \Omega_1 \\ u_1^{n+1} &= 0 \quad \text{on } \partial \Omega_1 \cap \partial \Omega \\ u_1^{n+1} &= u_2^n \quad \text{on } \partial \Omega_1 \cap \overline{\Omega}_2 \\ -\Delta u_2^{n+1} &= f \quad \text{in } \Omega_2 \\ u_2^{n+1} &= 0 \quad \text{on } \partial \Omega_2 \cap \partial \Omega \\ u_2^{n+1} &= u_1^{n+1} \quad \text{on } \partial \Omega_2 \cap \overline{\Omega}_1 \end{split}$$

Illustration: two overlapping subdomains $\Omega_1,\,\Omega_2$

Key Characteristics

- Naturally parallel, but convergence is very slow.
- · Requires **overlap** between subdomains.
- The parallel version is known as the Jacobi-Schwarz Method (JSM).

Continuous ASM and RAS – Key Ingredients

Local-to-Global Strategy

We solve on local functions u_i supported on Ω_i and reconstruct the global function u.

Extension Operators

Each E_i extends a local function $w_i:\Omega_i\to\mathbb{R}$ to $E_i(w_i):\Omega\to\mathbb{R}$ by zero outside Ω_i .

Partition of Unity

Let $\chi_i : \Omega_i \to \mathbb{R}$ satisfy:

$$\chi_i \geq 0, \quad \chi_i(x) = 0 \text{ on } \partial \Omega_i, \quad \text{and} \quad w(x) = \sum_{i=1}^2 \mathsf{E}_i(\chi_i \, \mathsf{w}|_{\Omega_i}).$$

Iteration

Given $u^n \approx u$, compute u^{n+1} by solving local problems and combining them using E_i and χ_i .

8

Continuous ASM and RAS – Local Solves and Gluing

Local Subproblems (for i = 1, 2**)**

At each iteration n, solve:

$$\begin{split} -\Delta u_i^{n+1} &= f \quad \text{in } \Omega_i \\ u_i^{n+1} &= 0 \quad \text{on } \partial \Omega_i \cap \partial \Omega \\ u_i^{n+1} &= u^n \quad \text{on } \partial \Omega_i \cap \overline{\Omega}_{3-i} \end{split}$$

Pros & Cons

- RAS: faster convergence, non-symmetric
- ASM: easier analysis, symmetric
- Both methods are parallel, overlap-dependent

Gluing the Solutions: Two Strategies

Restricted Additive Schwarz (RAS)

$$u^{n+1} = \sum_{i=1}^{2} E_i(\chi_i u_i^{n+1})$$

Uses partition of unity for overlap control.

Additive Schwarz (ASM)

$$u^{n+1} = \sum_{i=1}^{2} E_{i}(u_{i}^{n+1})$$

Pure sum of extensions (no weighting).

9

Classical Jacobi Method

Linear System

$$AU = F$$
, $A \in \mathbb{R}^{m \times m}$, $U, F \in \mathbb{R}^{m}$

Jacobi Iteration

Let D = diag(A) (diagonal of A). Then:

$$\mathbf{U}^{n+1} = \mathbf{U}^n + D^{-1} (\mathbf{F} - A\mathbf{U}^n) = \mathbf{U}^n + D^{-1}\mathbf{r}^n$$

where $\mathbf{r}^{n} = \mathbf{F} - A\mathbf{U}^{n}$ is the residual.

Key Features

- Simple, parallelizable update (diagonal inverse).
- Convergence only under specific conditions (e.g., diagonal dominance).

Block Jacobi: Domain Partitioning

Index Partition

Split degrees of freedom into two index sets:

$$\mathcal{N}_1:=\{1,\ldots,m_s\},\quad \mathcal{N}_2:=\{m_s+1,\ldots,m\}$$

Define:

$$\boldsymbol{U}_1:=\boldsymbol{U}_{|\mathcal{N}_1},\quad \boldsymbol{U}_2:=\boldsymbol{U}_{|\mathcal{N}_2},\quad \boldsymbol{F}_1,\boldsymbol{F}_2 \text{ likewise.}$$

Block Form of A

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad \boldsymbol{U} = \begin{pmatrix} \boldsymbol{U}_1 \\ \boldsymbol{U}_2 \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \boldsymbol{F}_1 \\ \boldsymbol{F}_2 \end{pmatrix}$$

11

Block Jacobi Iteration — Local Systems

Block Jacobi Update

Solve the block systems:

$$\begin{split} A_{11} \boldsymbol{U}_1^{n+1} &= \boldsymbol{F}_1 - A_{12} \boldsymbol{U}_2^n \\ A_{22} \boldsymbol{U}_2^{n+1} &= \boldsymbol{F}_2 - A_{21} \boldsymbol{U}_1^n \end{split}$$

Matrix View

$$\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} \begin{pmatrix} \boldsymbol{U}_1^{n+1} \\ \boldsymbol{U}_2^{n+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{F}_1 - A_{12} \boldsymbol{U}_2^n \\ \boldsymbol{F}_2 - A_{21} \boldsymbol{U}_1^n \end{pmatrix}$$

Block Jacobi — Residual-Based Formulation

Compact Notation

Let $\mathbf{U}^{n} = (\mathbf{U}_{1}^{n}, \mathbf{U}_{2}^{n})^{\mathsf{T}}$. Then:

$$\mathbf{U}^{n+1} = \mathbf{U}^{n} + \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}^{-1} (\mathbf{F} - A\mathbf{U}^{n})$$

Interpretation

- Perform local solves on each block (A₁₁, A₂₂).
- Apply local inverses to the residual.
- Parallel: no coupling in the matrix used for the update.

Block-Jacobi Method — Compact Matrix Form

Operators

- R₁, R₂: Restriction operators from $\mathcal N$ to $\mathcal N_1$, $\mathcal N_2$ respectively
- R₁^T, R₂^T: Extension operators
- $A_i = R_i A R_i^T$: local block matrix

Residual

$$\boldsymbol{r}^n = \boldsymbol{F} - A\boldsymbol{U}^n, \quad \boldsymbol{r}_i^n = \boldsymbol{r}_{|\mathcal{N}_i}^n$$

Compact Block-Jacobi Update

$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n + \left(R_1^T A_1^{-1} R_1 + R_2^T A_2^{-1} R_2\right) \boldsymbol{r}^n$$

- · Parallel update using local block solves
- A_1^{-1} and A_2^{-1} are local inverses (independent)
- Structure generalizes to N blocks trivially

Schwarz Methods as Block-Jacobi Algorithms (1D Case)

Problem Setup

Let $\Omega = (0,1)$ with Dirichlet BCs:

$$-\Delta u = f \text{ in } \Omega, \quad u(0) = u(1) = 0$$

Discretize with m internal nodes using 3-point finite differences:

$$A\mathbf{U} = \mathbf{F}, \quad A \in \mathbb{R}^{m \times m}$$

where:

$$A_{jj} = \frac{2}{h^2}, \quad A_{j,j\pm 1} = -\frac{1}{h^2}, \quad h = \frac{1}{m+1}$$

Subdomain Decomposition

Overlap of width h:

$$\Omega_1 = (0, (m_s+1)h), \quad \Omega_2 = (m_sh, 1)$$

Jacobi-Schwarz Update on Ω_1

$$\begin{cases} -\frac{u_{1,j-1}^{n+1}-2u_{1,j}^{n+1}+u_{1,j+1}^{n+1}}{h^2}=f_j, \quad 1\leq j\leq m_s\\ \\ u_{1,0}^{n+1}=0\\ \\ u_{1,m_s+1}^{n+1}=u_{2,m_s+1}^n \end{cases}$$

Matrix Formulation

$$\begin{aligned} & A_{11} \mathbf{U}_1^{n+1} + A_{12} \mathbf{U}_2^n = \mathbf{F}_1 \\ & A_{22} \mathbf{U}_2^{n+1} + A_{21} \mathbf{U}_1^n = \mathbf{F}_2 \end{aligned}$$

Schwarz = Block-Jacobi (Under Minimal Overlap)

Extension Operators

$$E_1(U_1) = \begin{pmatrix} U_1 \\ 0 \end{pmatrix}, \quad E_2(U_2) = \begin{pmatrix} 0 \\ U_2 \end{pmatrix}$$

Partition of Unity

With overlap:

$$E_1(U_1)+E_2(U_2)=E_1(\chi_1U_1)+E_2(\chi_2U_2)=\begin{pmatrix} U_1\\U_2 \end{pmatrix}$$

Key Insight

When the overlap is minimal, the discrete forms of:

- Additive Schwarz (AS)
- · Restricted Additive Schwarz (RAS)
- · Jacobi-Schwarz (JS)

all reduce to the same block-Jacobi method.

From Continuous to Discrete: Domain Decomposition View

Continuous Level

- Domain: $\Omega = \bigcup_{i=1}^{N} \Omega_i$ (overlapping decomposition)
- Global function: $u:\Omega\to\mathbb{R}$
- Restriction: $u_i = u|_{\Omega_i}$
- Extension: $E_i(u_i):\Omega\to\mathbb{R}$ (zero outside Ω_i)
- Partition of unity: functions $\chi_i:\Omega_i\to\mathbb{R}$ with

$$u = \sum_{i=1}^{N} E_i(\chi_i u|_{\Omega_i})$$

Discrete Level

- Degrees of freedom: $\mathcal{N} = \bigcup_{i=1}^N \mathcal{N}_i$
- Global vector: $U \in \mathbb{R}^{\#\mathcal{N}}$
- Restriction: $R_i \in \{0,1\}^{\#\mathcal{N}_i \times \#\mathcal{N}}$
- Extension: R_i^T (transpose of R_i)
- Partition of unity: diagonal matrices D_i with positive entries s.t.:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i$$

Restriction Operators in Finite Element Decomposition

Mesh-Based Domain Decomposition

- \mathcal{T}_h : global mesh of domain Ω
- $\mathcal{T}_{h,i}$: mesh of subdomain Ω_i
- V_h: global finite element space
- $V_{h,i}$: local FE space on $\mathcal{T}_{h,i}$
- u_h: global FE solution

Restriction Operator

Restriction of u_h to Ω_i :

$$r_i(u_h) = u_h|_{\Omega_i}, \quad r_i: V_h \to V_{h,i}$$

Matrix form:

$$R_i:\mathbb{R}^{\#\mathcal{N}}\to\mathbb{R}^{\#\mathcal{N}_i}$$

(R_i is a Boolean selector)

Geometric Interpretation

Algebraic Form: Boolean Matrix Ri

$$R_i = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \end{bmatrix}$$

Each row selects one DOF from \mathcal{N} .

Algebraic Tools in Domain Decomposition

Operators

- Restriction: $R_i: \mathbb{R}^{\#\mathcal{N}} \to \mathbb{R}^{\#\mathcal{N}_i}$
- Prolongation (extension): $R_i^T : \mathbb{R}^{\#\mathcal{N}_i} \to \mathbb{R}^{\#\mathcal{N}}$
- Local matrices: $A_i = R_i A R_i^T$
- Partition of unity:

$$D_i \in \mathbb{R}^{\#\mathcal{N}_i \times \#\mathcal{N}_i} \text{ diagonal, s.t.} \quad \sum_{i=1}^N R_i^T D_i R_i = I$$

Purpose

These ingredients allow expressing local computations and gluing into a global update.

Two-Subdomain Example: Finite Differences (No Overlap)

Domain Decomposition

$$\mathcal{N} = \{1, 2, 3, 4, 5\}, \quad \mathcal{N}_1 = \{1, 2, 3\}, \quad \mathcal{N}_2 = \{4, 5\}$$

Restriction Matrices

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Partition of Unity

$$D_1=I_{3\times 3},\quad D_2=I_{2\times 2}$$

Two-Subdomain Example: Finite Differences (With Overlap)

Overlapping Decomposition

$$\mathcal{N}_1^{\delta=1} = \{1,2,3,4\}, \quad \mathcal{N}_2^{\delta=1} = \{3,4,5\}$$

Restriction Matrices

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Partition Matrices

$$D_1 = diag(1,1,\tfrac{1}{2},\tfrac{1}{2}), \quad D_2 = diag(\tfrac{1}{2},\tfrac{1}{2},1)$$

Two-Subdomain Example: Finite Elements (Overlap)

FE Node Sets

$$\mathcal{N}_1 = \{1,2,3\}, \quad \mathcal{N}_2 = \{3,4,5\}$$

Restriction Matrices

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Partition Matrices

$$D_1 = diag(1, 1, \frac{1}{2}), \quad D_2 = diag(\frac{1}{2}, 1, 1)$$

Two-Subdomain Example: FE with Overlapping Partition (Extended)

FE Node Sets

$$\mathcal{N}_1^{\delta=1} = \{1, 2, 3, 4\}, \quad \mathcal{N}_2^{\delta=1} = \{2, 3, 4, 5\}$$

Restriction Matrices

$$R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Partition Matrices

$$D_1 = diag(1,\tfrac{1}{2},\tfrac{1}{2},\tfrac{1}{2}),\, D_2 = diag(\tfrac{1}{2},\tfrac{1}{2},\tfrac{1}{2},1)$$

Multi-Domain Partitioning: General Procedure

Graph-Based Partitioning (METIS, SCOTCH)

- From matrix A, construct a graph G:
 - Nodes \leftrightarrow degrees of freedom
 - Edges: $A_{ij} \neq 0$
- · Symmetrize G if needed
- Apply partitioner to divide ${\mathcal N}$ into N subdomains

Partitioning Goals

- · Load balancing: equal work per subdomain
- · Minimal communication: few cross edges

Graph G partitioned into 3 subdomains

Multi-D Algebraic Setting with Overlap

Overlap Construction

• From disjoint sets \mathcal{N}_{i} , define overlapping sets:

$$\mathcal{N}_{\mathsf{i}}^{\delta=1} = \mathcal{N}_{\mathsf{i}} \cup \mathsf{neighbors} \ \mathsf{of} \ \mathcal{N}_{\mathsf{i}}$$

Algebraic Partition of Unity

Let R_i be the restriction from \mathcal{N} to $\mathcal{N}_i^{\delta=1}$.

$$(D_i)_{jj} = \frac{1}{\#\mathcal{M}_i}, \quad \mathcal{M}_j := \{i: j \in \mathcal{N}_i^{\delta = 1}\}$$

Multi-D Algebraic Finite Element Decomposition

Mesh and Overlap

- Let \mathcal{T}_h : mesh of Ω
- Each $\mathcal{T}_{h,i}$ gives overlapping Ω_i

FE Basis and Index Partition

Let $\{\phi_k\}_{k\in\mathcal{N}}$ be basis functions:

$$\mathcal{N}_{i} := \{k : \mathsf{supp}(\phi_{k}) \cap \Omega_{i} \neq \emptyset\}$$

Multiplicity per node:

$$\mu_k := \#\{j : \mathsf{supp}(\phi_k) \cap \Omega_j \neq \emptyset\}$$

Algebraic Partition of Unity

$$(D_i)_{kk} = \frac{1}{\mu_k}, \quad k \in \mathcal{N}_i$$

Summary: Additive Schwarz

Let the discretised Poisson problem: $A \boldsymbol{U} = \boldsymbol{F} \in \mathbb{R}^n$.

Summary: Additive Schwarz

Let the discretised Poisson problem: $A\mathbf{U} = \mathbf{F} \in \mathbb{R}^n$. Given a decomposition of [1; n], $(\mathcal{N}_1, \mathcal{N}_2)$, define: the restriction operator R_i from $\mathbb{R}^{[1;n]}$ into $\mathbb{R}^{\mathcal{N}_i}$, R_i^T as the extension by 0 from $\mathbb{R}^{\mathcal{N}_i}$ into $\mathbb{R}^{[1;n]}$.

Summary: Additive Schwarz

Let the discretised Poisson problem: $A \mathbf{U} = \mathbf{F} \in \mathbb{R}^n$. Given a decomposition of [1; n], $(\mathcal{N}_1, \mathcal{N}_2)$, define: the restriction operator R_i from $\mathbb{R}^{[1;n]}$ into $\mathbb{R}^{\mathcal{N}_i}$, R_i^T as the extension by 0 from $\mathbb{R}^{\mathcal{N}_i}$ into $\mathbb{R}^{[1;n]}$. Find $\mathbf{U}^m \longrightarrow \mathbf{U}^{m+1}$ by solving concurrently:

$$\mathbf{U}_{j}^{m+1} = \mathbf{U}_{j}^{m} + A_{j}^{-1}R_{j}(\mathbf{F} - A\mathbf{U}^{m}), j = 1, 2$$

where $\boldsymbol{U}_{i}^{m}=R_{i}\boldsymbol{U}^{m}$ and $A_{i}:=R_{i}AR_{i}^{T}.$

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i$$

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^N R_i^T D_i R_i.$$

Then,
$$\mathbf{U}^{m+1} = \sum_{i=1}^{N} R_i^T D_i \mathbf{U}_i^{m+1}$$
.

An introduction to Additive Schwarz II

We have effectively divided, but we have yet to conquer.

Duplicated unknowns coupled via a partition of unity:

$$I = \sum_{i=1}^{N} R_i^T D_i R_i.$$

$$M_{RAS}^{-1} = \sum_{i=1}^{N} R_i^T D_i A_i^{-1} R_i$$

RAS algorithm (Cai & Sarkis, 1999)

Algebraic RAS Formulation: Equivalence and Use

RAS as Global Iteration

The RAS method updates the global iterate using local solves and partition weights:

$$\boldsymbol{U}^{n+1} = \boldsymbol{U}^n + \boldsymbol{M}_{RAS}^{-1} \boldsymbol{r}^n, \quad \boldsymbol{r}^n := \boldsymbol{F} - \boldsymbol{A} \boldsymbol{U}^n$$

Local to Global Representation

The current iterate \mathbf{U}^n is reconstructed from local components:

$$\boldsymbol{U}^n = R_1^T D_1 \boldsymbol{U}_1^n + R_2^T D_2 \boldsymbol{U}_2^n$$

Each \mathbf{U}_{i}^{n} solves a local problem over an overlapping subdomain.

Krylov Usage

The operator M_{RAS}^{-1} serves as a preconditioner in Krylov subspace methods such as GMRES, BiCGStab, and others. This improves convergence for non-symmetric and ill-conditioned problems.

ASM and SORAS Preconditioners

Preconditioners Summary

· RAS (Restricted Additive Schwarz):

$$M_{RAS}^{-1} = \sum_{i=1}^N R_i^T D_i A_i^{-1} R_i$$

ASM (Additive Schwarz Method):

$$M_{ASM}^{-1} = \sum_{i=1}^N R_i^T A_i^{-1} R_i$$

SORAS (Symmetrized Overlapping RAS):

$$M_{SORAS}^{-1} = \sum_{i=1}^N R_i^T D_i B_i^{-1} D_i R_i$$

1D Domain Setup and Subdomain Error Equations

Domain Setup

Let L > 0, $\Omega = (0, L)$ split into:

•
$$\Omega_1 := (0, L_1)$$

•
$$\Omega_2 := (l_2, L)$$
 with $l_2 \leq L_1$

 $\text{Error: } e_i^n := u_i^n - u_{|\Omega_i}$

Affine solutions

$$\begin{split} e_1^{n+1}(x) &= e_2^n(L_1) \cdot \frac{x}{L_1} \\ e_2^{n+1}(x) &= e_1^{n+1}(l_2) \cdot \frac{L-x}{L-l_2} \end{split}$$

Subdomain Error PDEs

$$\begin{split} -\frac{d^2e_1^{n+1}}{dx^2} &= 0\\ e_1^{n+1}(0) &= 0\\ e_1^{n+1}(L_1) &= e_2^{n}(L_1) \end{split}$$

$$e_2^{n+1}$$
 in Ω_2 :

$$\begin{split} &-\frac{d^2e_2^{n+1}}{dx^2}=0\\ &e_2^{n+1}(l_2)=e_1^{n+1}(l_2)\\ &e_2^{n+1}(L)=0 \end{split}$$

Convergence Condition and Visualization

Interface Coupling

$$e_2^{n+1}(L_1) = e_2^n(L_1) \cdot \frac{l_2}{L_1} \cdot \frac{L-L_1}{L-l_2}$$

Observation

The current interface value depends linearly on the previous iterate.

Interface Iteration

Let $\delta := L_1 - l_2$ (overlap):

$$e_2^{n+1}(L_1) = \frac{1 - \delta/(L - l_2)}{1 + \delta/l_2} \cdot e_2^n(L_1)$$

Convergence Condition

 $\delta > 0$ is necessary and sufficient for convergence.

2D Fourier Analysis: Domain Setup and PDE

Domain and PDE

Decompose \mathbb{R}^2 into two overlapping half-planes:

•
$$\Omega_1 = (-\infty, \delta) \times \mathbb{R}$$

•
$$\Omega_2 = (0, \infty) \times \mathbb{R}$$

Solve:

$$(\eta - \Delta)u = f$$
, u bounded at infinity

Partial Fourier Transform in y

$$\left(\eta - \frac{\partial^2}{\partial x^2} + k^2\right) \hat{e}_j^{n+1}(x,k) = 0$$

For each k, general solution:

$$\hat{e}_{j}^{n+1}(x,k) = \gamma_{+}^{n+1}(k)e^{\lambda^{+}(k)x} + \gamma_{-}^{n+1}(k)e^{\lambda^{-}(k)x}$$

Error Equations

Let $e_i^n := u_i^n - u|_{\Omega_i}$.

• On
$$\Omega_1$$
: $(\eta - \Delta)e_1^{n+1} = 0$, $e_1^{n+1}(\delta, y) = e_2^n(\delta, y)$

• On
$$\Omega_2$$
: $(\eta - \Delta)e_2^{n+1} = 0$, $e_2^{n+1}(0, y) = e_1^n(0, y)$

Boundedness Condition

To ensure boundedness:

$$\begin{split} \hat{\mathbf{e}}_1^{n+1}(\mathbf{x},\mathbf{k}) &= \gamma_+^{n+1}(\mathbf{k}) \mathbf{e}^{\lambda(\mathbf{k})\mathbf{x}}, \quad \mathbf{x} < \delta \\ \hat{\mathbf{e}}_2^{n+1}(\mathbf{x},\mathbf{k}) &= \gamma_-^{n+1}(\mathbf{k}) \mathbf{e}^{-\lambda(\mathbf{k})\mathbf{x}}, \quad \mathbf{x} > 0 \end{split}$$

with
$$\lambda(k) = \sqrt{\eta + k^2}$$
.

Convergence Factor and Iteration Behavior

Interface Update and Factor

Matching at the interfaces gives:

$$\begin{split} \gamma_{+}^{n+1}(\mathbf{k}) &= \gamma_{-}^{n}(\mathbf{k}) \, \mathrm{e}^{-\lambda(\mathbf{k})\delta} \\ \gamma_{-}^{n+1}(\mathbf{k}) &= \gamma_{+}^{n}(\mathbf{k}) \, \mathrm{e}^{-\lambda(\mathbf{k})\delta} \\ \Rightarrow \gamma_{\pm}^{n+1}(\mathbf{k}) &= \rho(\mathbf{k})^{2} \cdot \gamma_{\pm}^{n-1}(\mathbf{k}) \end{split}$$

Convergence Factor

$$\rho(\mathbf{k}; \eta, \delta) = e^{-\lambda(\mathbf{k})\delta}, \quad \lambda(\mathbf{k}) = \sqrt{\eta + \mathbf{k}^2}$$

Convergence Insights

- \Rightarrow Uniform convergence: $\rho(k) < e^{-\sqrt{\eta} \delta} < 1$
- \Rightarrow High-frequency error components decay rapidly
- \Rightarrow **No overlap (** $\delta=0$ **)** \Rightarrow no decay (ho=1): stagnation

Summary of Schwarz Convergence Insights (1D and 2D)

1D Case: Iterative Affine Model

- Schwarz iterates satisfy linear error decay via interface transfer
- Convergence factor < 1 only if overlap $\delta >$ 0
- No overlap ⇒ method stagnates

2D Case: Fourier Mode Analysis

- Fourier transform yields exact decay rate per mode k
- · High-frequency modes decay fastest
- Convergence rate: $\rho(\mathbf{k}; \eta, \delta) = e^{-\sqrt{\eta + \mathbf{k}^2} \delta}$

Takeaway

Overlap is essential. Without it, Schwarz-type methods stall. With it, convergence improves with frequency.

Fixed-Point and Krylov Methods: Parallel View

Fixed Point Iteration

Given a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, we apply an iterative fixed-point method:

$$\mathbf{x}^{n+1} = \mathbf{x}^n + B^{-1}(\mathbf{b} - A\mathbf{x}^n)$$

This updates the guess by applying a correction based on the residual.

This can be interpreted as the fixed point of the map:

$$\mathbf{x} \mapsto \mathbf{x} + \mathbf{B}^{-1}(\mathbf{b} - \mathbf{A}\mathbf{x})$$

Let $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}^0$ and define $C = B^{-1}A$. Then:

$$\mathbf{x}^n = \sum_{i=0}^n (I - C)^i B^{-1} \mathbf{r}_0 + \mathbf{x}^0$$

Convergence condition: Spectral radius $\rho(I - C) < 1$.

Krylov Perspective

In Krylov methods, we solve the preconditioned system:

$$Cx = B^{-1}b$$
, with $C = B^{-1}A$

Given an initial guess \mathbf{x}^0 , the residual is:

$$\mathbf{r}^0 = \mathbf{B}^{-1}\mathbf{b} - \mathbf{C}\mathbf{x}^0$$

We define $\mathbf{y} := \mathbf{x} - \mathbf{x}^0$ and solve:

$$Cy = r^0$$

Polynomial Inversion Insight

There exists a polynomial $\ensuremath{\mathcal{P}}$ of degree less than N such that:

$$C^{-1} = \mathcal{P}(C)$$

This is the foundation of Krylov subspace methods.

Krylov Methods and CG Example

Krylov Subspaces

Each iterate is constructed from a Krylov subspace:

$$\mathcal{K}^n(C, \boldsymbol{r}^0) := span\{\boldsymbol{r}^0, C\boldsymbol{r}^0, \dots, C^{n-1}\boldsymbol{r}^0\}$$

These are polynomial combinations of the initial residual, improving the approximation progressively.

Conjugate Gradient Method (SPD Case)

Objective: Given SPD matrix A, find an optimal \mathbf{y}^n :

$$\mathbf{y}^{n} = \arg\min_{\mathbf{w} \in \mathcal{K}^{n}(A, \mathbf{r}^{0})} \|A\mathbf{w} - \mathbf{r}^{0}\|_{A^{-1}}$$

Then
$$\mathbf{x}^n = \mathbf{x}^0 + \mathbf{y}^n$$
.

CG Recurrence

$$\begin{aligned} &\text{for } i = 1, 2, \dots \text{do} \\ &\rho_{i-1} = (r_{i-1}, r_{i-1}) \\ &\text{if } i = 1 \text{ then} \\ &\textbf{p}_1 = \textbf{r}_0 \\ &\text{else} \\ &\beta_{i-1} = \rho_{i-1}/\rho_{i-2} \\ &\textbf{p}_i = \textbf{r}_{i-1} + \beta_{i-1} \textbf{p}_{i-1} \\ &\text{end if} \\ &\textbf{q}_i = A \textbf{p}_i \\ &\alpha_i = \rho_{i-1}/(\textbf{p}_i, \textbf{q}_i) \\ &\textbf{x}_i = \textbf{x}_{i-1} + \alpha_i \textbf{p}_i \\ &\textbf{r}_i = \textbf{r}_{i-1} - \alpha_i \textbf{q}_i \\ &\text{end for} \end{aligned}$$

GMRES and Schwarz Preconditioning

GMRES Iteration Principle

Find the best approximation in a Krylov subspace:

$$\boldsymbol{y}^n = \arg\min_{\boldsymbol{w} \in \mathcal{K}^n(C, \boldsymbol{r}^0)} \|C\boldsymbol{w} - \boldsymbol{r}^0\|_2$$

Preconditioned space:

$$\mathcal{K}^{n}(C,B^{-1}\textbf{r}_{0})=span\{B^{-1}\textbf{r}_{0},CB^{-1}\textbf{r}_{0},\ldots\}$$

Why Krylov?

Krylov methods generate optimally weighted iterates at minimal cost (especially for small n), whereas fixed-point schemes rely on static weights.

Schwarz Preconditioners

Schwarz methods serve as powerful preconditioners:

 RAS (Restricted Additive Schwarz): Used with GMRES or BiCGStab

$$B^{-1} = M_{RAS}^{-1} = \sum_{i=1}^{N} R_{i}^{T} D_{i} (R_{i}AR_{i}^{T})^{-1} R_{i}$$

ASM (Additive Schwarz Method): Used with CG

$$B^{-1} = M_{ASM}^{-1} = \sum_{i=1}^{N} R_i^T (R_i A R_i^T)^{-1} R_i$$

Preconditioned CG with ASM: Efficiency and Convergence

Theoretical Convergence Guarantee

When using the Additive Schwarz preconditioner M_{ASM}^{-1} in Conjugate Gradient:

$$\|\boldsymbol{x} - \boldsymbol{x}_m\|_{\boldsymbol{\mathsf{M}}_{\mathsf{ASM}}^{-1} A} \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^m \|\boldsymbol{x} - \boldsymbol{x}_0\|_{\boldsymbol{\mathsf{M}}_{\mathsf{ASM}}^{-1} A}$$

where $\kappa = \text{cond}(\mathbf{M}_{\mathsf{ASM}}^{-1}\mathbf{A})$ is the condition number of the preconditioned matrix.

Implication

A well-chosen M_{ASM}^{-1} significantly reduces κ , accelerating convergence of CG.

PCG Iteration with ASM Preconditioner

for
$$i=1,2,\ldots$$
 do
$$\rho_{i-1}=(\mathbf{r}_{i-1},\mathbf{M}_{\mathsf{ASM}}^{-1}\mathbf{r}_{i-1})$$
 if $i=1$ then
$$\mathbf{p}_1=\mathbf{M}_{\mathsf{ASM}}^{-1}\mathbf{r}_0$$
 else
$$\beta_{i-1}=\rho_{i-1}/\rho_{i-2}$$

$$\mathbf{p}_i=\mathbf{M}_{\mathsf{ASM}}^{-1}\mathbf{r}_{i-1}+\beta_{i-1}\mathbf{p}_{i-1}$$
 end if
$$\mathbf{q}_i=\mathsf{Ap}_i$$

$$\alpha_i=\rho_{i-1}/(\mathbf{p}_i,\mathbf{q}_i)$$

$$\mathbf{x}_i=\mathbf{x}_{i-1}+\alpha_i\mathbf{p}_i$$
 $\mathbf{r}_i=\mathbf{r}_{i-1}-\alpha_i\mathbf{q}_i$ end for

Numerics on a toy problem

Figure 1: Schwarz convergence as a solver (left) and as a preconditioner (right) for different overlaps