	-
H	52

Program: B. Tech (Computer Science and Business Systems)		Semester: VIII			
Course/Module: Image Processing and Pattern Recognition (Elective VI)		Module Code:			
	Teachin	g Scheme		Evaluati	on Scheme
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Internal Continuous Assessment (ICA) (Marks -50)	Term End Examinations (TEE) (Marks -100 in Question Paper)
2	2	1	4	Marks Scaled to 50	Marks Scaled to 50

Pre-requisite: Calculus and probability, Basic programming skills

Objective:

To be familiar with processing of images, recognition of the pattern and their applications.

Outcomes:

- 1. Understand the fundamentals of image processing.
- 2. Compute and analyse effects of various image transformation techniques in spatial domains and colour image processing.
- 3. Analyse images using image segmentation and morphological operations.
- 4. Analyse images using the concept of image registration.

Detailed Syllabus:

Unit	Description	Duration
1	Introduction: Image processing systems and its applications. Basic image file formats	02
2	Image formation: Geometric and photometric models; Digitization - sampling, quantization; Image definition and its representation, neighbourhood metrics.	04
3	Intensity transformations and spatial filtering: Enhancement, contrast stretching, histogram specification, local contrast enhancement; Smoothing, linear and order statistic filtering, sharpening, spatial convolution, Gaussian smoothing, DoG, LoG.	08
4	Segmentation: Pixel classification; Grey level thresholding, global/local thresholding; Optimum thresholding - Bayes analysis, Otsu method; Derivative based edge detection operators, edge detection/linking, Canny edge detector; Region growing, split/merge techniques, line detection, Hough transform.	08
5	Image/Object features extraction: Textural features - gray level co-occurrence matrix; Moments; Connected component analysis; Convex hull;	07

SVKM's Narsee Monjee Institute of Management Studies Mukesh Patel School of Technology Management and Engineering

CE-53

	Distance transform, medial axis transform, skeletonization/thinning, shape properties.	
6	Registration: Mono-modal/multimodal image registration; Global/local registration; Transform and similarity measures for registration; Intensity/pixel interpolation.	07
7	Colour image processing: Fundamentals of different colour models - RGB, CMY, HSI, YCbCr, Lab; False colour; Pseudo colour; Enhancement; Segmentation.	05
8	Morphological Filtering Basics: Dilation and Erosion Operators, Top Hat Filters.	04
	Total	45

Text Books:

1. Digital Image Processing. R. C. Gonzalez and R. E. Woods, Prentice Hall, 4th Edition, 2018

References:

- 1. *Image Processing: The Fundamentals.* Maria Petrou and Panagiota Bosdogianni, John Wiley & Sons, Ltd.
- 2. Digital Image Processing. K. R. Castleman:, Prentice Hall, Englewood Cliffs.
- 3. Visual Reconstruction. A. Blake and A. Zisserman, MIT Press, Cambridge.
- 4. Digital Pictures. A. N. Netravali and B. G. Haskell, Plenum Press.
- 5. Digital Images and Human Vision. A. B. Watson:, MIT Press, Cambridge.

Any other information:

Total Marks of Internal Continuous Assessment (ICA): 50 Marks Distribution of ICA Marks:

Description of ICA	Marks
Test Marks	20
Term Work Marks	30
Total Marks :	50

Details of Term work:

Class Test/Assignments/ Case Studies / Projects / Presentations

Signature	Signature
(Prepared by Concerned Faculty/HOD)	(Approved by Dean)