# FUNKCIE, GRAFY – základné pojmy

Funkcia f reálnej premennej x je predpis, ktorý každému  $x \in A$  priraďuje *najviac jedno*  $y \in B$  tak, že y = f(x).

**Definičný obor funkcie D(f)** je množina všetkých x **Obor hodnôt funkcie H(f)** je množina všetkých y

x – argument, nezávislá premenná

y – hodnota funkcie, závislá premenná



# Funkcia môže byť určená:

• množinou usporiadaných dvojíc A = {[1; 5], [3; 4],[5; 6],[-3; 7],[-1; 5],[3; 8]}

|   | . 1  |     | 191  |     |
|---|------|-----|------|-----|
| _ | to   | bu] | 1/12 | ~11 |
| • | - 12 |     | ıκι  | )   |
|   |      |     |      |     |

| X | 1  | 2 | 3 | 4 | 5 | 6 |
|---|----|---|---|---|---|---|
| У | -1 | 0 | 1 | 2 | 3 | 4 |

• predpisom f: y = 3x - 1

grafom



**Grafom funkcie** je množina všetkých bodov v rovine, ktorých súradnice sú  $[x; y]; x \in D(f), y \in H(f)$ .

### MONOTÓNNOSŤ FUNKCIE

Funkcia f je **rastúca**, ak pre všetky  $x_1$ ,  $x_2$  z definičného oboru platí, že:

Ak  $x_1 < x_2$ , potom  $f(x_1) < f(x_2)$ .

Funkcia f je klesajúca, ak pre všetky x<sub>1</sub>, x<sub>2</sub> z definičného oboru platí, že:

Ak  $x_1 < x_2$ , potom  $f(x_1) > f(x_2)$ .

Funkcia f je konštantná, ak pre všetky x<sub>1</sub>, x<sub>2</sub> z definičného oboru platí, že:

Ak  $x_1 < x_2$ , potom  $f(x_1) = f(x_2)$ .

Ak je funkcia na celom definičnom obore rastúca, resp. klesajúca, tak sa nazýva monotónna funkcia.

#### PARITA FUNKCIE

### Párna funkcia:

- 1. Definičný obor je symetrický podľa osi y.
- 2. Pre všetky x z D(f) platí:  $\mathbf{f}(-\mathbf{x}) = \mathbf{f}(\mathbf{x})$  Graf je symetrický podľa osi y.



# Nepárna funkcia:

- 1. Definičný obor je symetrický podľa osi y.
- 2. Pre všetky x z D(f) platí:  $\mathbf{f}(-\mathbf{x}) = -\mathbf{f}(\mathbf{x})$

Graf je symetrický podľa začiatku súradnicovej sústavy.



### PROSTÁ FUNKCIA

Funkcia f sa nazýva **prostá**, ak rôznym číslam x z D(f) priradí rôzne hodnoty y. Ak  $x1 \neq x2$ , tak potom  $f(x1) \neq f(x2)$ .

Ak je funkcia monotónna, tak je určite prostá!!!

## EXTRÉMY FUNKCIE

Ak budeme hovorit' o maxime a minime na celom definičnom obore funkcie, nazývame ich **globálne**, teda celkové.

Ak však nájdeme maximum alebo minimum len na nejakej časti definičného oboru, budeme ho nazývať **lokálne**, teda miestne.

Funkcia f má v bode a  $\epsilon$  M maximum na množine M práve vtedy, keď pre všetky x  $\epsilon$  M platí  $f(x) \le f(a)$ . Funkcia f má v bode b  $\epsilon$  M minimum na množine M práve vtedy, keď pre všetky x  $\epsilon$  M platí  $f(x) \ge f(b)$ .

#### OHRANIČENOSŤ FUNKCIE

Funkcia f sa nazýva **zhora ohraničená na množine M**  $\subset$  D práve vtedy, ak existuje také číslo h, že pre všetky x  $\in$  M platí  $f(x) \le h$ . Číslu h hovoríme horné ohraničenie (horná hranica).

Funkcia f sa nazýva zdola ohraničená na množine  $M \subset D$  práve vtedy, ak existuje také číslo d, že pre všetky x  $\in$  M platí  $f(x) \ge d$ . Číslu d hovoríme dolné ohraničenie (dolná hranica).

Funkcia f sa nazýva **ohraničená na množine M** ⊂ D práve vtedy, ak je na množine M ohraničená zhora a súčasne aj zdola.

#### PERIODICKOSŤ FUNKCIE

Funkcia f sa nazýva periodická práve vtedy, keď existuje také kladné číslo p, že pre každé celé číslo k platí:

- 1) ak  $x \in D(f)$ , tak aj  $x + k.p \in D(f)$
- 2) f(x + k.p) = f(x).

Číslo p nazývame perióda funkcie f.