MANCHESTER 1824

Relative Quantifier Elimination for the Module of Continuous Semi-Algebraic Functions on a Real Closed Field

Ricardo Jesús Palomino Piepenborn (ricardo.palomino@manchester.ac.uk). Supervisor: Marcus Tressl.

Set-up and statement of the main theorem

We fix the following notation:

- (i) R is a real closed field,
- (ii) $M_R := C_{\text{s.a.}}(R, R)$ is the ordered module (over itself) of continuous semi-algebraic functions $R \longrightarrow R$ under pointwise addition,
- (iii) L_R is the lattice of closed and semi-algebraic subsets of R,
- (iv) \widehat{R} is the real closure of the ordered field extension R(t) of R, where t is a positive infinitesimal with respect to R, and
- (v) $V_R := \text{conv. hull}_{\widehat{R}}(R) \ (= R + \mathfrak{m}_{V_R} \text{ as subsets of } \widehat{R}).$

Lemma 1. V_R is isomorphic to the ring of germs of continuous semi-algebraic functions $R \longrightarrow R$ at r^+ and at r^- for all $r \in R$, i.e. $V_R \cong C_{\text{s.a.}}(R,R)/I_{r^+}$ where

$$I_{r^+} := \{ f \in C_{\text{s.a.}}(R, R) \mid \exists \epsilon > 0 \text{ such that } f|_{[r, r + \epsilon]} = 0 \},$$

and $V_R \cong C_{\text{s.a.}}(R,R)/I_{r^-}$, where

$$I_{r^{-}} := \{ f \in C_{\text{s.a.}}(R, R) \mid \exists \epsilon > 0 \text{ such that } f|_{[r-\epsilon, r]} = 0 \}.$$

Proof sketch. For $V_R \cong C_{\text{s.a.}}(R,R)/I_{r^+}$, consider the composite ring homomorphism

$$C_{\text{s.a.}}(R,R) \longrightarrow C_{\text{s.a.}}(\widehat{R},\widehat{R}) \longrightarrow \widehat{R}$$

$$f \longmapsto f_{\widehat{R}} \longmapsto f_{\widehat{R}}(r+t).$$

Definition 2. We let \mathcal{M}_R be the 3-sorted module structure consisting of:

- (i) a sort for M_R interpreted as a $\{+, -, 0, \leq, (\lambda_\alpha)_{\alpha \in M_R}\}$ -structure, where each λ_α is a unary function $M_R \longrightarrow M_R$ interpreted as multiplication by $\alpha \in M_R$;
- (ii) a sort for L_R interpreted as a $\{\cup, \cap, \subseteq, \top, \bot\}$ -structure;
- (iii) a sort for V_R interpreted as a $\{+,\cdot,-,0,1,\leq\}$ -structure;
- (iv) a unary function $P: M_R \longrightarrow L_R$ interpreted as

$$P(f) = \{ f \ge 0 \} := \{ r \in R \mid f(r) \ge 0 \};$$

(v) for each $r \in R$, unary functions $\pi_{r^+}, \pi_{r^-}: M_R \longrightarrow V_R$ interpreted as

$$\pi_{r^+}(f) := f_{\widehat{R}}(r+t) \text{ and } \pi_{r^-}(f) := f_{\widehat{R}}(r-t).$$

We write $\mathcal{L}^{\text{m.s.}/R}$ for the 3-sorted language of \mathcal{M}_R .

Figure 1. The 3-sorted module structure \mathcal{M}_R .

Theorem 3. Every $\mathcal{L}^{\text{m.s.}/R}$ -formula is equivalent modulo \mathcal{M}_R to a formula with no quantifiers over the module sort. In particular, every $\mathcal{L}^{\text{m.s.}/R}$ -formula is equivalent modulo \mathcal{M}_R to a formula of the form

$$\exists \xi_1 \dots \xi_m \exists X_1 \dots X_n \left[\gamma \& \bigwedge_{i=1}^m \xi_i = P(s_i) \& \bigwedge_{j=1}^n X_j = \pi_j(t_j) \right], \quad (*)$$

where

- ξ_1, \ldots, ξ_m are lattice variables,
- X_1, \ldots, X_n are germ variables,
- γ is a Boolean combination of lattice and germ formulas (with parameters),
- s_i , t_j are module terms, and
- π_j is either $\pi_{r_i^+}$ or $\pi_{r_i^-}$ for some $r_j \in R$.

Moreover, if R is a recursive real closed field, every $\mathcal{L}^{\text{m.s.}/R}$ -formula is effectively equivalent modulo \mathcal{M}_R to a formula of the form (*).

Corollary 4. Let R be a recursive real closed field. Then the module M_R is decidable.

Proof sketch. By Theorem 3, if the lattice L_R and the partially ordered ring V_R are decidable, then so is \mathcal{M}_R , and decidability of M_R then follows; that L_R is decidable follows from decidability of the monadic second-order theory of the infinite binary tree with two successor functions (see [3] and [5]), and decidability of the real closed valuation ring V_R follows from [2].

Connection with lattice-ordered groups and reduction step

We follow some ideas from the proof in [1] of effective quantifier elimination for divisible lattice-ordered groups $G \hookrightarrow N^X$ (where X is a set and N is a totally ordered Abelian group) satisfying a patching condition, relative to the sublattice of $\mathcal{P}(X)$ given by the G-zero sets

$$P(f) = \{ f \ge 0 \} := \{ x \in X \mid f(x) \ge 0 \}, \ f \in G \hookrightarrow N^X.$$

In particular, the underlying group of the ordered module M_R is a divisible lattice-ordered group of functions $R \longrightarrow R$ which satisfies the patching condition due to the semi-algebraic Tietze extension theorem (see [4]); therefore, in the 2-sorted structure

$$(C_{\text{s.a.}}(R,R);+,-,0,\leq) \xrightarrow{P} (L_R;\cup,\cap,\subseteq,\top,\perp)$$

every formula is equivalent to a formula with no quantifiers over the group sort.

Using the fact that the set consisting of the lattice and germ sorts is closed in $\mathcal{L}^{\text{m.s.}/R}$ (in the sense of [6]) and after the appropriate simplification arguments, eliminating module quantifiers in $\mathcal{L}^{\text{m.s.}/R}$ -formulas modulo \mathcal{M}_R reduces to eliminating module quantifiers in formulas of the form

$$\exists h \in M_R : A \subseteq \{\lambda_{\alpha}(h) \ge f\} \& B \subseteq \{\lambda_{\alpha}(h) \le g\}, \tag{\dagger}$$

where $A, B \in L_R$, $f, g \in M_R$ and $\alpha \geq 0$.

Elimination step as existence of local solutions

Using the fact that for all $\alpha \in M_R$ with $\alpha \geq 0$ and all $f,g \in M_R$ we have $\{f \geq g\} = \{\lambda_{\alpha}(f) \geq \lambda_{\alpha}(g)\}$, if $\alpha > 0$ then (†) is equivalent to a formula with no module quantifiers by [1], so the main obstruction to eliminate module quantifiers is at points $r \in R$ with $\alpha(r) = 0$. In particular, by an iterated Tietze extension argument, eliminating the quantifier in (†) is equivalent to eliminating the quantifier in (†) locally around the boundary points of $\{\alpha = 0\}$:

Proposition 5. Let $A, B \in L_R$, $f, g, \alpha \in M_R$, and suppose $\alpha \ge 0$. Let $\{a_1, \ldots, a_n\}$ be the boundary points of $\{\alpha = 0\}$. The following are equivalent:

- (i) (†) holds in \mathcal{M}_R .
- (ii)(a) $A \cap \{\alpha = 0\} \subseteq \{0 \ge f\}$, $B \cap \{\alpha = 0\} \subseteq \{0 \le g\}$, $A \cap B \subseteq \{f \le g\}$, and
 - (b) there is some $\epsilon > 0$ such that (†) is solvable in $Z_0 := \bigcup_{i=1}^n \overline{B}_{\epsilon}(a_i)$; i.e. there is some $h_0 \in M$ such that $Z_0 \cap A \subseteq \{\lambda_{\alpha}(h_0) \geq f\}$ and $Z_0 \cap B \subseteq \{\lambda_{\alpha}(h_0) \leq g\}$.

Translating existence of local solutions to the germ sort

We make use of the ring of germs V_R to turn item (ii) (b) in Proposition 5 into a first-order statement for the module structure \mathcal{M}_R ; the key ingredient to do so is Lemma 6 below, whose proof relies crucially in o-minimality of the field R and the fact that elements of V_R are R-bounded in \widehat{R} .

Lemma 6. Let $f, g, \alpha \in M_R$ and suppose that $\alpha \geq 0$. Let also $r \in R$. The following are equivalent:

- (i) $\mathcal{M}_R \models \exists Y \in V_R \ (\pi_{r^+}(\alpha)Y \geq \pi_{r^+}(f)).$
- (ii) There exists a continuous semi-algebraic function $h: R \longrightarrow R$ and $\epsilon > 0$ such that

$$[r, r + \epsilon] \subseteq {\lambda_{\alpha}(h) \ge f}.$$

References

- [1] Fuxing Shen and Volker Wiespfenning. Continuous Functions: ℓ -groups and decision problems. Unpublished note. 1987.
- [2] Gregory Cherlin and Max Dickmann. Real closed rings. II. Model Theory. In *Ann. Pure Appl. Logic*, 25(3), 1983, pp 213-231.
- [3] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. In *Trans. Amer. Math. Soc.*, 141, 1969, pp 1-35.
- [4] Jacek Bochnak, Michel Coste and Marie-Françoise Roy. Real algebraic geometry. Springer-Verlag, 36, 1998, pp x+430.
- [5] Marcus Tressl. On the strength of some topological lattices. In *American Mathematical Society*, 2017, pp 325-347.
- [6] Silvain Rideau-Kikuchi. PhD Thesis: Elimination in Valued Fields. *Université Paris-Sud*, 2014.