MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Indistinguishability of sums and products). Let \mathcal{X}_0 and \mathcal{X}_1 be (t_1, ε_1) -indistinguishable and let \mathcal{Y}_0 and \mathcal{Y}_1 be (t_2, ε_2) -indistinguishable. Estimate the computational distance between the following games

$$\mathcal{G}_{0} \qquad \qquad \mathcal{G}_{0} \\ \begin{bmatrix} x \leftarrow \mathcal{X}_{0} \\ y \leftarrow \mathcal{Y}_{0} \\ u = x + y \\ v = x \cdot y \\ \textit{return } \mathsf{Adv}(u, v) \end{bmatrix} \qquad \begin{bmatrix} x \leftarrow \mathcal{X}_{1} \\ y \leftarrow \mathcal{Y}_{1} \\ u = x + y \\ v = x \cdot y \\ \textit{return } \mathsf{Adv}(u, v) \end{bmatrix}$$

Highlight all hidden assumptions. Do you get different results when you known that Adv ignores the second argument. Formalise this and explain why the resulting bound is different.

Solution.