CH1020 Exercises (Worksheet 6)

- 1. Calculate the molarity of each of the following solutions:
 - a. 0.250 mol NaCl in 175 mL of solution
 - b. 0.070 mmol AgNO₃ in 50 µL of solution
 - c. 1.2 mmol Na₂SO₄ in 0.10 L solution
 - d. 7.8 g NaOH in 150 mL solution
- 2. Phosphate-buffered saline (abbreviated PBS) is a buffer solution commonly used in biological and biochemical research. A typical composition of a PBS is as follows:

137 mM NaCl

2.70 mM KCI

10.0 mM Na₂HPO₄

1.80 mM KH₂PO₄

You want to prepare 500 mL of PBS buffer. How many grams do you need of each component of the buffer?

- 3. The solubility of AgCl in water is 0.002 g/L. Is it possible to make a 0.010 mM AgCl aqueous solution?
- 4. How many moles of Na are in each of the following solutions:
 - a. 0.70 L of 0.50 M NaCl
 - b. 400 mL of 0.10 M Na₃PO₄
- 5. What is the molarity of Cl⁻ in each of these solutions:
 - a. 0.200 M AICl₃
 - b. 0.450 M FeCl₂
- 6. What volume of 0.200 M ethanol solution contains 0.450 mol ethanol?
- 7. What volume of 1.5 M SrCl₂ is needed to prepare 400.0 mL of a 10 mM solution?
- 8. Classify each compound as a strong electrolyte, weak electrolyte or nonelectrolyte
 - a. CsCl
 - b. CH₃CH₂OH (ethanol)
 - c. NH₃ (weak base)
 - d. FeCl₃
 - e. Na₂SO₄
 - f. PbCl₂ (very low solubility)

- 9. You are mixing 30.0 mL of 0.700 M K_3PO_4 with 0.0500 L of 0.400 M KCl solution. What is the final concentration of the common ion?
- 10. You are mixing 200 cm³ of 0.6M FeCl₂ and 300 cm³ of 200 mM FeCl₃. Identify the common ion and determine its concentration in the resulting solution.