Mathematik III - Wintersemester 14/15

18. November 2014

Inhaltsverzeichnis

1	Alge	braische Strukturen mit einer Verknüpfung	3
	1.1	Definition: Verknüpfung	3
	1.2	Beispiel	3
	1.3	Definition: Halbgruppe	3
	1.4	Bemerkung	3
	1.5	Beispiel	4
	1.6	Definition: kommutative Halbgruppe	4
	1.7	Beispiel	4
	1.8	Definition: Unterhalbgruppe	5
	1.9	Beispiel	5
		Lemma: Eins eindeutig	5
		Definition: Monoid	5
		Beispiele	5
		Definition: Untermonoid	6
		Lemma: Inverses eindeutig	6
		Definition: Gruppe, Inverse, Ordnung	6
		Bemerkung	6
		Beispiele	6
		Beispiele	7
		Satz: Gleichungen lösen in Gruppen	8
		Beispiel	8
		*	8
		Definition: Untergruppe	9
		Beispiele	9
		Satz und Definition: Rechtsnebenklassen	
		Beispiel	10
		Lemma: Mächtigkeit von Untergruppen	10
		Theorem: Satz von Lagrange	10
		Definition: Potenzen	11
		Satz: Potenzgesetze	11
		Satz und Definition: Ordnung, zyklische Gruppe	12
		Beispiel	12
		Korollar	13
	1.32	Beweis	13
	A 1	l	12
2	_	braische Strukturen mit 2 Verknüpfungen: Ringe und Körper	13
	2.1	Definition: Ring	13
	2.2	Beispiel	14
	2.3	Satz: Rechnen mit Ringen	14
	2.4	Bemerkung	14
	2.5	Definition: Körper	15
	2.6	Beispiele	15
	2.7	Satz: Rechnen im Körper, Nullteilerfreiheit	15
	2.8	Definition: Homomorphismus, Isomorphismus	16
	2.9	Beispiel	16
	2.10	Satz: Chinesischer Restsatz	16
	2 11	Reigniel	16

	2.12	Bemerkung	17
	2.13	Korollar: Phi-Funktion berechnen	17
	2.14	Definition: Polynom	18
	2.15	Beispiel	18
	2.16	Satz und Definition: Polynomring	18
	2.17	Bemerkung	19
		Beispiel	19
	2.19	Definition: Grad eines Polynoms	19
	2.20	TBD	20
	2.21	TBD	20
	2.22	TBD	20
	2.23	TBD	20
	2.24	TBD	20
	2.25	TBD	20
	2.26	TBD	20
	2.27	TBD	20
	2.28	TBD	20
	2.29	TBD	20
	2.30	Satz	20
	2.31	Satz	20
	2.32	Beispiel	20
	2.33	Definition	20
	2.34	Beispiel	21
		Abschlussbemerkung	21
3		Körper der ℂ der Komplexen Zahlen	21
	3.1	Definition	21
	3.2	Beispiel	22
	3.3	Bemerkung: komplexe Zahlenebene	22
	3.4	Satz: Eigenschaften	22
	3.5	Bemerkung	23

1 Algebraische Strukturen mit einer Verknüpfung HALBGRUPPEN, MONOIDE, GRUPPEN

1.1 Definition

Sei $X \neq \emptyset$ eine Menge.

Eine Verknüpfung oder (abstrakte) Multiplikation auf X ist eine Abbildung

$$\bullet: \quad X \times X \to X$$
$$(a,b) \mapsto a \bullet b$$

 $a \bullet b$ heißt Produkt von a und b, muss aber mit der üblichen Multiplikation von Zahlen (ab) nichts zu tun haben.

Beschreibung bei endlichen Mengen oft durch Multiplikationstafeln.

1.2 Beispiel

a)
$$X = \{a, b\}$$

$$\begin{array}{c|cccc}
\bullet & a & b \\
\hline
a & b & b \\
b & a & a
\end{array}$$

$$(a \bullet a) \bullet a = b \bullet a = a$$

$$a \bullet (a \bullet a) = a \bullet b = b \longrightarrow \text{nicht assoziativ}$$

b)
$$X = \mathbb{Z}^- (= \{0, -1, -2, \dots\})$$

Die normale Multiplikation ist auf \mathbb{Z}^- keine Verknüpfung! (zum Beispiel ist $(-2) \cdot (-3) = 6 \notin \mathbb{Z}^-$) Aber auf $X = \mathbb{N}, X = \mathbb{Z}$ oder $X = \{1\}, X = \{0, 1\}$

1.3 Definition

Sei $H \neq \emptyset$ eine Menge mit Verknüpfung.

 (H, \bullet) heißt *Halbgruppe*, falls gilt:

$$\forall a, b, c \in H : (a \bullet b) \bullet c = a \bullet (b \bullet c)$$
 (Assoziativgesetz (AG))

1.4 Bemerkung

AG sagt aus: bei endlichen Produkten ist die Klammerung irrelevant, z.B.

$$(a \cdot b) \cdot (c \cdot d) = ((a \cdot b) \cdot c) \cdot d = (a \cdot (b \cdot c)) \cdot d$$
 (usw.)

Deshalb werden Klammern meistens weggelassen.

Die Reihenfolge der Elemente ist i.A. relevant!

1.5 Beispiel

a) $(\mathbb{N}, \bullet), (\mathbb{Z}, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ i sind Halbgruppen.

Ebenso $(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+)^2$

- b) $(\mathbb{Q}\setminus\{0\},:)$ 3 ist *keine* Halbgruppe, denn z.B. (12:6):2=1 12:(6:2)=4
- c) vgl. Vorlesung Theoretische Informatik

 $A \neq \emptyset$ endliche Menge ("Alphabet")

$$A^+ = \bigcup_{n \in N} A^n = \text{Menge aller endlichen W\"{o}rter \"{u}ber } A$$

(z.B. $A = \{a, b\}$, dann ist z.B. $\underbrace{(a, a, b)}_{aab} \in A^3$)

Verknüpfung: Konkatenation (Hintereinanderschreiben)

z.B. $aab \bullet abab = aababab$

$$A^* = A^+ \cup \{\lambda\}$$
 λ (oder ϵ) ist das leere Wort

Es gilt: $\lambda \cdot w = w \cdot \lambda = w \ \forall w \in A^*$

 $(A^+, \bullet), (A^*, \bullet)$ Worthalbgruppe über A

- d) $M \neq \emptyset$ Menge, Abb(M, M): Menge aller Abbildungen $M \rightarrow M$ mit \circ (Komposition) ist Halbgruppe.
- e) (WICHTIG)

$$n \in \mathbb{N}, \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$

Verknüpfung: $\theta : a \oplus b := (a + b) \mod n$ $0 : a \oplus b := (a \cdot b) \mod n$

 $(\mathbb{Z}_n, \oplus), (\mathbb{Z}_n, \odot)$ sind Halbgruppen.

1.6 Definition

Eine Halbgruppe (H, \bullet) heißt *kommutativ*, falls gilt:

$$\forall a, b \in H : a \cdot b = b \cdot a$$
 (Kommutativgesetz, KG)

1.7 Beispiel

Beispiele 1.5 a), e) sind kommutative Halbgruppen. (hallo \neq ollah, ab \neq ba, Worthalbgruppe nicht kommutativ)

¹ • normale Multiplikation

²⁺ normale Addition

^{3:} normale Division

1.8 Definition

Sei (H, \bullet) Halbgruppe, $\emptyset \neq U \subseteq H$

U heißt *Unterhalbgruppe* von *H*, falls $u \cdot v \in U \ \forall u, v \in U \ \text{gilt.}$

 (U, \odot) ist dann selbst Halbgruppe.

1.9 Beispiel

 $(\mathbb{Z},+)$ Halbgruppe

G =Menge aller gerade ganzen Zahlen $\subseteq \mathbb{Z}$

(G,+) ist Unterhalbgruppe von $(\mathbb{Z},+)$

U =Menge aller ungerade Zahlen $\subseteq \mathbb{Z}$

(U,+) ist keine Unterhalbgruppe!

1.10 Lemma

Eindeutigkeit des neutralen Elements:

Sei (H, \bullet) Halbgruppe, $e_1, e_2 \in H$ mit $(*)e_1 \cdot x = x \cdot e_1 = x$ und $(**)e_2 \cdot x = x \cdot e_2 = x \ \forall x \in H$ Dann ist $e_1 = e_2$

Beweis.
$$e_1 \stackrel{(**)}{=} e_1 \cdot e_2 \stackrel{(*)}{=} e_2$$

1.11 Definition

Eine Halbgruppe (H, \bullet) heißt *Monoid*, falls $e \in H$ existiert mit $e \cdot x = x \cdot e = x \ \forall x \in H$ e heißt *neutrales Element* / Einselement / Eins in H.

Schreibweise: (H, \bullet, e)

Für additive Verknüpfung oft 0 für *e* (Nullelement) multiplikative 1

Nach 1.10 ist das neutrale Element eindeutig!

1.12 Beispiele

- a) (\mathbb{N}, \bullet) Monoid mit e = 1 $(\mathbb{N}, +)$ kein Monoid $(\mathbb{N}_0, +)$ Monoid mit e = 0 $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ Monoide mit e = 0 $(\mathbb{Z}, \bullet), (\mathbb{N}_0, \bullet), (\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ Monoide mit e = 1
- b) $(Abb(M, M), \circ)$ Monoid, e = id
- c) (\mathbb{Z}_n, \oplus) Monoid, e = 0 (\mathbb{Z}_n, \odot) Monoid, e = 1
- d) (A^*, \bullet) Monoid, $e = \lambda$ (hallo $\lambda = \lambda$ hallo = hallo)

1.13 Definition

Sei (M, \bullet, e) Monoid. Eine Teilmenge $\emptyset \neq U \subseteq M$ heißt *Untermonoid* von M, falls U mit \bullet selbst ein Monoid mit neutralem Element e ist (also $e \in U$)

1.14 Lemma

Eindeutigkeit des inversen Elements:

Sei (H, \bullet, e) Monoid und es gebe zu jedem Element $h \in H$ Elemente $x, y \in H$ mit $h \cdot x \stackrel{(*)}{=} e \stackrel{(**)}{=} y \cdot h$.

Dann ist x = v

Beweis.
$$y = y \cdot e \stackrel{(*)}{=} y \cdot (h \cdot x) \stackrel{(AG)}{=} (y \cdot h) \cdot x \stackrel{(**)}{=} e \cdot x = x$$

1.15 Definition

(i) (H, \bullet, e) Monoid, $h \in H$

Falls ein $x \in H$ existiert mit hx = xh = e, so nennt man h invertierbar und x das Inverse zu h, bez. h^{-1} (bei additiven Verknüpfungen oft auch -h)

Nach 1.14 ist h^{-1} eindeutig bestimmt!

Es gilt: e ist immer invertierbar, $e^{-1} = e$

- (ii) Ein Monoid (G, \bullet, e) heißt Gruppe, falls jedes Element in G invertierbar ist.
- (iii) Für eine endliche Gruppe G heißt die Anzahl der Elemente in G die Ordnung von G, |G|

1.16 Bemerkung

 (H, \bullet, e) Monoid.

Sei G die Menge aller invertierbaren Elemente von H, dann ist (G, \bullet, e) eine Gruppe.

Es gilt: e invertierbar ($e^{-1} = e$)

und falls g invertierbar, dann ist auch g^{-1} invertierbar: $(g^{-1})^{-1} = g$

falls g, h invertierbar, dann auch $g \cdot h$: $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$

1.17 Beispiele

- a) $(\mathbb{N}_0, +, 0)$ ist keine Gruppe aber $(\mathbb{Z}, +, 0), (\mathbb{Q}, +, 0), (\mathbb{R}, +, 0)$ sind Gruppen.
- b) $(\mathbb{Z}, \bullet, 1)$ ist keine Gruppe. Die Menge der invertierbaren Elemente ist $\{1, -1\}$, diese bilden eine Gruppe.
- c) $(\mathbb{Q}, \bullet, 1)$ ist keine Gruppe, aber $(\mathbb{Q}\setminus\{0\}, \bullet, 1), (\mathbb{R}\setminus\{0\}, \bullet, 1)$ sind Gruppen.
- d) A^* ist keine Gruppe, nur λ ist invertierbar.

1.18 Beispiele

- a) $(\mathbb{Z}_n, \oplus, 0)$ ist Gruppe (was ist das Inverse zu $x \in \mathbb{Z}_n$? Siehe PÜ1, A9)
- b) Sei $n \ge 2$. $(Z_n, \odot, 1)$ ist Monoid aber keine Gruppe.

Wann ist ein Element aus Z_n invertierbar bezüglich \odot ?

$$z \in \mathbb{Z}_n \text{ invertierbar} \qquad \Leftrightarrow \qquad \exists x \in \mathbb{Z}_n : z \odot x = 1$$

$$\Leftrightarrow \qquad \exists x \in \mathbb{Z} : (z \cdot x) \bmod n = 1$$

$$\Leftrightarrow \qquad \exists x, q \in \mathbb{Z} : z \cdot x = q \cdot n + 1$$

$$\Leftrightarrow \qquad \exists x, q \in \mathbb{Z} : z \cdot x + (-q \cdot n) = 1$$

$$\overset{\text{Mathe I}}{\Leftrightarrow} \qquad \gcd(z, n) = 1$$

also sind nur zu *n* teilerfremde Elemente invertierbar!

(vgl. $(Z_6,0,1)$: 0,2,3,4 nicht invertierbar, 1,5 invertierbar)

Bezeichnung:

$$Z_n^* = \{ z \in \mathbb{Z}_n \mid ggT(z, n) = 1 \}$$

ist Gruppe bezüglich \odot (vgl. Bemerkung ??) mit Ordnung $|Z_n^*| = \varphi(n)$ ("phi von n", Eulersche φ -Funktion) = Anzahl aller $z \in \mathbb{N}$, die teilerfremd zu n sind und $1 \le z \le n$.

$$\varphi(3) = 2, \varphi(4) = 2, \varphi(7) = 6$$

Wie berechnet man das Inverse von $z \in \mathbb{Z}_n^*$?

Mathe I, Erweiterter Euklidischer Algorithmus (WHK, S. 80/81) liefert zu z und n (ggT(z,n) = 1) Zahlen s,t \in \mathbb{Z} mit

$$z \cdot s + n \cdot t = 1$$

$$\Rightarrow (z \cdot s) \mod n = 1$$

$$\Rightarrow (z^{-1}) = s \mod n$$

Beispiel:

$$n = 8$$
: (\mathbb{Z}_8, \odot), $z = 5$ ist invertierbar, $ggT(8,5) = 1$
EEA: $5 \cdot (-3) + 8 \cdot 2 = 1 \Rightarrow z^{-1} = -3 \mod 8 \Rightarrow z^{-1} = 5$

c) Abb(M, M): invertierbare Elemente sind genau die *bijektiven* Abbildungen auf M, Bij(M) (Mathe I)

Speziell: $M = \{1, 2, ..., n\}$, dann heißt Bij(M) die symmetrische Gruppe von Grad n, S_n

 $|S_n| = n!$, Elemente heißen Permutationen.

Bsp: n = 2

$$S_2 = \left\{ \underbrace{\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}}_{id}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$$

n = 3

$$S_{3} = \left\{ \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}}_{id}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$

$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \in S_3$$

$$\pi \circ \varrho = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \ \varrho \circ \pi = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{ (nicht kommutativ!)}$$

$$\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \pi, \ \varrho^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

1.19 Satz (Gleichungen lösen in Gruppen)

Sei G Gruppe, $a, b \in G$

- (i) Es gibt genau ein $x \in G$ mit ax = b (nämlich $x = a^{-1}b$)
- (ii) Es gibt genau ein $y \in G$ mit ya = b (nämlich $y = ba^{-1}$)
- (iii) Ist ax = bx für ein $x \in G$, dann gilt a = b (Kürzungsregel)

Beweis. (i) • $x = a^{-1}$ ist Lösung (prüfe ax = b): $a \cdot \underbrace{a^{-1}b}_{x} \stackrel{AG}{=} (a \cdot a^{-1}) \cdot b = e \cdot b = b$

- Es gibt genau eine Lösung: Es gelte ax = b $\Rightarrow x = ex = (a^{-1}a)x \stackrel{AG}{=} a^{-1}(ax) = a^{-1}b$
- (ii) analog
- (iii) Multipliziere von rechts mit x^{-1} links

1.20 Beispiel

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \text{- Was ist } x?$$

$$a \cdot x = b \Leftrightarrow x = a^{-1} \cdot b$$

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}^{-1} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

1.21 Definition

 (G, \cdot) Gruppe, $\emptyset \neq U \subseteq G$ Teilmenge.

U heißt Untergruppe von $G(U \leq G)$, falls U bzgl. · selbst eine Gruppe ist.

Insbesondere gilt dann: $\forall u, v \in U$ ist $u \cdot v \in U$. e von G ist auch neutrales Element in U. (*) Inversen in U sind die gleichen wie in G.

(*) Angenommen e ist neutrales Element in G, aber f neutrales Element in U, f^{-1} Inverses von f in G.

Dann ist
$$f^{-1} \cdot f = f \cdot f^{-1} = e$$
 und $f \cdot f = f$.
 $\Rightarrow f = e \cdot f = (f^{-1} \cdot f) \cdot f = f^{-1} \cdot (f \cdot f) = f^{-1} \cdot f = e$

1.22 Beispiele

- a) $(\mathbb{Z},+) \leq (\mathbb{Q},+) \leq (\mathbb{R},+)$
- b) $(\{-1,1\},\cdot) \leq (\mathbb{Q}\setminus\{0\},\cdot) \leq (\mathbb{R}\setminus\{0\},\cdot)$
- c) (e,\cdot) ist Untergruppe jeder beliebigen Gruppe mit Verknüpfung \cdot und neutralem Element e.

d)
$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \in S_3, \, \pi^{-1} = \pi, \pi^{-1} \circ \pi = \mathrm{id} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

 $\Rightarrow (\pi, \mathrm{id}) \leq S_3$

1.23 Satz und Definition

G Gruppe, $U \leq G$

(i) Durch $x \sim y \Leftrightarrow x \cdot y^{-1} \in U$ $x + (-y) \in U$ (bei additiver Verknüpfung) wird auf G eine Äquivalenzrelation definiert

Beweis

~ ist reflexiv:
$$x \sim x$$
 gilt $\forall x \in G$, denn $x \cdot x^{-1} = e \in U$ √
~ ist symmetrisch: $x \sim y \Rightarrow y \sim x$
Sei $x \sim y$, also $x \cdot y^{-1} \in U$ (zzg.: $y \sim x$, also $y \cdot x^{-1} \in U$)
dann ist $y \cdot x^{-1} = (x \cdot y^{-1})^{-1} \in U$, da auch $x \cdot y^{-1} \in U$.
~ ist transitiv: $x \sim y, y \sim z \Rightarrow x \sim z$
Sei $x \sim y$, also $x \cdot y^{-1} \in U$ und $y \sim z$, also $y \cdot z^{-1} \in U$ (zzg.: $x \sim z$, d.h. $x \cdot z^{-1} \in U$)
 $x \cdot z^{-1} = xez^{-1} = x(y^{-1}y)z^{-1} = \underbrace{(x \cdot y^{-1})}_{\in U} \cdot \underbrace{(y \cdot z^{-1})}_{\in U} \in U$, also $x \sim z$.

(ii) Für $x \in G$ ist $Ux = \{u \cdot x \mid u \in U\}$ die Äquivalenzklasse von x bzgl. \sim und heißt *Rechtsnebenklasse* von U in G.

Also (Eigenschaften von Äquivalenzklassen siehe Mathe I):

- (a) $Ux = Uy \Leftrightarrow x \sim y$, also $x \cdot y^{-1} \in U$
- (b) $x, y \in G$, dann ist entweder Ux = Uy oder $Ux \cap Uy = \emptyset$

Beweis

(a) Sei
$$x \sim y \Rightarrow y \sim x \Rightarrow y \cdot x^{-1} \in U \Rightarrow y = y(x^{-1} \cdot x) = \underbrace{(y \cdot x^{-1})}_{\in U} x \in Ux$$

(b) Sei $y \in Ux$, dann zeige: $x \sim y$ $y \in Ux \Rightarrow y = u \cdot x$ für ein $u \in U$ $\Rightarrow x \cdot y^{-1} = x \cdot (ux)^{-1} = x \cdot x^{-1} \cdot u^{-1} = u^{-1} \in U$ Es wurde gezeigt, dass $x \sim y$ gilt.

1.24 Beispiel

$$G = (\mathbb{Z}, +), 3\mathbb{Z} = \{\dots, -3, 0, 3, 6, \dots\}$$

$$U = (3\mathbb{Z}, +) \leq G \text{ (ÜA, Blatt 2)}$$
Inverses zu y in $(\mathbb{Z}, +)$ ist $-y$.
$$x \sim y \Leftrightarrow x \cdot y^{-1} \in U$$

$$\text{bzw.: } x - y \in U$$

$$x = 0 : U + 0 = \{u + 0 \mid u \in U\} = \{\dots, -3, 0, 3, 6, \dots\} = U = 3\mathbb{Z}$$

$$x = 1 : U + 1 = \{u + 1 \mid u \in U\} = \{\dots, -2, 1, 4, 7, 10, \dots\} = 3\mathbb{Z} + 1$$

$$x = 2 : U + 2 = \{u + 2 \mid u \in U\} = \{\dots, -1, 2, 5, 8, 11, \dots\} = 3\mathbb{Z} + 2$$

$$x = 3 : U + 3 = U + 0 = 0$$

1.25 Lemma

G Gruppe, U endliche Untergruppe von G, $x \in G$ Dann ist |U| = |Ux|

Beweis

Abb
$$\varphi: U \rightarrow Ux$$

$$u \mapsto ux$$

ist surjektiv und injektiv (falls $u_1x = u_2x$, dann ist $u_1 = u_2$ (Satz 1.19 (iii), Kürzungsregel)) Also ist φ bijektiv, also U, Ux gleich mächtig.

1.26 Theorem (Satz von Lagrange)

G endliche Gruppe, $U \leq G$

Dann gilt |U| ist Teiler von |G| und $q = \frac{|G|}{|U|}$ ist die Anzahl der Rechtsnebenklassen von U in G

Beweis

Seien Ux_1, \dots, Ux_q die q verschiedenen Rechtsnebenklassen von U in G

Mathe I & ??
$$\Rightarrow$$
 $G = \bigcup_{i=1}^{q} Ux_i$ (disjunkte Vereinigung der Äquivalenzklassen)

$$\Rightarrow |G| = \sum_{i=1}^{q} \underbrace{|Ux_i|}_{|U|} \stackrel{1.25}{=} q \cdot |U|$$

1.27 Definition

$$(G, \bullet, e)$$
 Gruppe, $a \in G$

Definiere
$$a^0 := e$$

$$a^1 := a$$

$$a^m := a^{m-1} \cdot a \quad \text{für } m \in \mathbb{N}$$

$$a^m := (a^m)^{-1} \quad \text{für } m \in \mathbb{Z}^-$$

(Potenzen von a)

Bei additiver Schreibweise:
$$0 \cdot a = e$$

 $1 \cdot a = a$
 $m \cdot a = \begin{cases} (m-1) \cdot a + a & \text{für } m \in \mathbb{N} \\ (-m) \cdot (-a) & \text{für } m \in \mathbb{Z}^- \end{cases}$

1.28 Satz

G, a wie oben

(i)
$$(a^{-1})^m = (a^m)^{-1} = a^{-m} \quad \forall m \in \mathbb{Z}$$

(ii)
$$a^m \cdot a^n = a^{m+n} \quad \forall m, n \in \mathbb{Z}$$

(iii)
$$(a^m)^n = a^{m \cdot n} \quad \forall m, n \in \mathbb{Z}$$

Beweis

(i)
$$m \in \mathbb{N} : (a^{-1})^m \cdot a^m = \underbrace{a^{-1} \cdot a^{-1} \cdot \dots \cdot a^{-1}}_{m \text{ mal}} \cdot \underbrace{a \cdot \dots \cdot a \cdot a}_{m \text{ mal}} = e$$

$$\Rightarrow (a^{-1})^m = (a^m)^{-1} \text{ (Inverses von } a^m)$$

$$\text{nach Definition ist } a^{-m} = (a^{-1})^m$$

$$\Rightarrow \text{ (i) gilt } \forall m \in \mathbb{N}$$

$$m = 0 : e = e = e \checkmark$$

$$m \in \mathbb{Z}^- : \text{dann ist } -m \in \mathbb{N}$$

Wende den bewiesenen Teil an auf a^{-1} statt a und -m statt m, Behauptung folgt.

(ii), (iii) per Induktion und mit (i)

1.29 Satz und Definition

G endliche Gruppe, $g \in G$

- (i) Es existiert eine kleinste natürliche Zahl n mit $g^n = e$, diese heißt die Ordnung o(g) von G
- (ii) Die Menge $\{g^0=e,g^1=g,g^2,\dots,g^{n-1}\}$ ist eine Untergruppe von G, die von g erzeugte zyklische Gruppe < g>

Es gilt
$$o(g) = |\langle g \rangle| = n$$
 teilt $|G|$

(iii) $g^{|G|} = e$

Bemerkung: Eine endliche Gruppe heißt *zyklisch*, falls sie von einem Element erzeugt werden kann.

Beweis

- (i) G endlich $\Rightarrow \exists i, j \in \mathbb{N}, i > j$ mit $g^i = g^j$ (Schubfachschluss -Editor)

 Dann ist $g^{i-j} \stackrel{1.28ii}{=} g^i \cdot g^{-j} \stackrel{1.28}{=} \underbrace{g^i}_{=g^j} \cdot (g^j)^{-1} = e$
- (ii) Das Produkt zweier Elemente aus < g > liegt wieder in < g > Neutrales Element ist $g^0 = e$ Inverses Element zu g^i ist $(g^i)^{-1} = g^{n-i}$ $\Rightarrow < g > \leqslant G$
- (iii) Satz von Lagrange (1.26): $n = o(g) = |\langle g \rangle| \mid |G|$ Also ist $|G| = n \cdot k$ für ein $k \in \mathbb{N}$ $g^{|G|} = g^{n \cdot k} = (g^n)^k = e^k = e$

1.30 Beispiel

$$(\mathbb{Z}_3\setminus\{0\},\odot,1)$$

$$g = 1$$
: $\langle 1 \rangle = \{g^0 = 1^0 = 1\}, o(1) = 1$

$$g = 2$$
: $\langle 2 \rangle = \{g^0 = 1, g^1 = 2\}, o(2) = 2$

 $(\mathbb{Z}_5\setminus\{0\},\odot,1)$

$$g = 2$$
: $\langle 2 \rangle = \{2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 3\}$, $o(2) = 4$

1.31 Korollar

(i) Satz von Euler

Sei
$$n \in \mathbb{N}, a \in \mathbb{Z}, ggT(a, n) = 1$$

Dann ist
$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

(ii) Kleiner Satz von Fermat

Ist p eine Primzahl, $a \in \mathbb{Z}, p \nmid a$, dann gilt

$$a^{p-1} \equiv 1 (\bmod p)$$

1.32 Beweis

a) Wir können annehmen, dass $1 \le a < n \pmod{a^{\varphi(n)}} \mod n = (a \mod n)^{\varphi(n)}$ wegen ggT(a,n) = 1 ist $a \in \mathbb{Z}_n^*$, das ist eine endliche Gruppe.

$$\begin{array}{l} ??(iii) \\ \Rightarrow a | \mathbb{Z}_n^* | = 1 (= e) \\ \Rightarrow a^{\varphi(n)} \equiv 1 (\bmod n) \\ \end{array} \qquad \begin{array}{l} a \odot a \odot \dots \\ a \cdot a \cdot \dots \end{array}$$

b) Folgt aus (i) $(n = p, \varphi(p) = -1)$

2 Algebraische Strukturen mit 2 Verknüpfungen: Ringe und Körper

2.1 Definition

Sei $R \neq \emptyset$ eine Menge mit zwei Verknüpfungen + und •.

- (i) Wir nennen $(R, +, \cdot)$ einen Ring, falls gilt:
 - (a) (R,+) ist eine abelsche Gruppe (Eselsbrücke: KAIN) Das neutrale Element bezeichnen wir hier mit 0, das zu $a \in \mathbb{R}$ Inverse mit -a (schreibe auch a-b für a+(-b)).
 - (b) (R, \cdot) ist eine Halbgruppe.
 - (c) Es gelten die Distributivgesetze:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c) = ab + ac$$

 $(a+b) \cdot c = (a \cdot c) + (b \cdot c) = ac + bc$ $\forall a,b,c \in R$

- (ii) Ein Ring $(R, +, \cdot)$ heißt *kommutativ* falls \cdot ebenfalls kommutativ ist, also falls $\forall a, b \in \mathbb{R} : a \cdot b = b \cdot a$
- (iii) Ein Ring $(R, +, \cdot)$ heißt *Ring mit Eins*, falls (R, \cdot) ein Monoid ist mit neutralen Element $1 \neq 0 \ (\forall a \in R : a \cdot 1 = 1 \cdot a = a)$.
- (iv) Ist $(R, +, \cdot)$ Ring mit Eins, dann heißen die bezüglich \cdot invertierbaren Elemente *Einheiten*. Das zu a bezügliche \cdot invertierbare Element bezeichnen wir mit a^{-1} . $R^* :=$ Menge der Einheiten in R.

2.2 Beispiel

- a) $(\mathbb{Z},+,\cdot)$ ist kommutativer Ring mit Eins (1) $\mathbb{Z}^* = \{1,-1\}, (\mathbb{Q},+,\cdot), (\mathbb{R},+,\cdot)$ ebenso $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}.$
- b) $(2\mathbb{Z}, +, \cdot)$ ist ein kommutativer Ring ohne Eins
- c) trivialer Ring ($\{0\}, +, \cdot$) ohne Eins
- d) $n \in \mathbb{N}, n \geq 2, (\mathbb{Z}_n, \oplus, \odot)$ kommutativer Ring mit Eins
- e) $(\mathbb{R}^n, \underbrace{+, \cdot}_{\text{Komponentenweise}})$; allgemein: R_1, \dots, R_n Ringe, dann $R_1, \times \dots \times R_n$ Ring.
- f) $M_n(\mathbb{R})$ Menge aller $n \times n$ -Matrizen über \mathbb{R} , mit Matrixaddition und -multiplikation ist Ring mit Eins (= E_n), nicht kommutativ für $n \ge 2$.

2.3 Satz (Rechnen mit Ringen)

Sei $(R, +, \cdot)$ ein Ring, $a, b, c \in R$. Dann gilt:

- (i) $a \cdot 0 = 0 \cdot a = 0$
- (ii) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- (iii) $(-a) \cdot (-b) = a \cdot b$

Beweis

- (i) $a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$ addiere $-(a \cdot 0)$ (Inverses von $a \cdot 0$) auf beiden Seiten, erhalte $0 = a \cdot 0$ Analog $0 \cdot a = 0$
- (ii) $(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0 \cdot b \stackrel{(i)}{=} 0$ also ist $(-a \cdot b)$ Inverses zu $a \cdot b$, also $= -(a \cdot b)$. Analog $a \cdot (-b) = -(a \cdot b)$
- (iii) $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$

2.4 Bemerkung

- a) In jedem Ring mit Eins sind 1 und -1 Einheiten (denn $(-1) \cdot (-1) = 1$, siehe 2.3(iii)) Es kann mehr geben (z.B. in \mathbb{Z}_5 usw.). Es kann auch -1 = 1 gelten (z.B. in $(\mathbb{Z}_2, \oplus, \odot)$)
- b) 0 kann nach 2.3(i) nie Einheit sein (da $1 \neq 0$)

c) In einem kommutativen Ring R gilt der Binomialsatz,

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i} \quad (n \in \mathbb{N}, a, b \in \mathbb{R})$$

•••

2.5 Definition

Ein kommutativer Ring $(K, +, \cdot)$ heißt *Körper*, wenn jedes Element $0 \neq x \in K$ eine Einheit ist, also wenn

$$K^* = K \setminus \{0\}$$

2.6 Beispiele

- a) $(\mathbb{Q},+,\cdot),(\mathbb{R},+,\cdot)$ sind Körper. $(\mathbb{Z},+,\cdot)$ ist kein Körper.
- b) vgl. Beispiel 1.18 b)

$$\mathbb{Z}_n^* = \{ z \in \mathbb{Z}_n \mid ggT(z, n) = 1 \}$$

ist Gruppe bezüglich ⊙

 \Rightarrow ($\mathbb{Z}_n, \oplus, \odot$) ist genau dann ein Körper, wenn n eine Primzahl ist.

2.7 Satz (Rechnen im Körper, Nullteilerfreiheit)

Sei $(K, +, \cdot)$ ein Körper, $a, b \in K$

Dann gilt

$$a \cdot b = 0 \Leftrightarrow a = 0 \text{ oder } b = 0$$

Gegenbeispiel: $(\mathbb{Z}_6, \oplus, \odot)$ ist kein Körper. Hier gilt $2 \odot 3 = 0$, aber weder 2 = 0, noch 3 = 0

Beweis

"\(\infty\)": klar: $0 \cdot b = 0$ oder $a \cdot 0 = 0$ (Satz 2.3 (i), Recherregeln für Ringe)

" \Rightarrow ": Sei $a \cdot b = 0$. Angenommen $a \neq 0$ (d.h. a hat Inverses)

Dann ist
$$b = 1 \cdot b = (a^{-1} \cdot a) \cdot b$$

$$= a^{-1} \cdot (a \cdot b)$$

$$= a^{-1} \cdot 0$$

$$\stackrel{2 \cdot 3(i)}{=} 0$$

2.8 Definition

Seien $(R, +\cdot)$ und $(\tilde{R}, \boxplus, \boxdot)$ Ringe.

(i) $\varphi: R \to \tilde{R}$ heißt (Ring-)*Homomorphismus*, falls gilt:

$$\varphi(\underbrace{x+y}) = \underbrace{\varphi(x)}_{\in \tilde{R}} \boxplus \underbrace{\varphi(y)}_{\in \tilde{R}} \quad \text{und} \quad \varphi(x\cdot y) = \varphi(x) \boxdot \varphi(y) \quad \forall x,y \in R$$

2.9 Beispiel

$$\varphi(\mathbb{Z},+,\cdot)\to(\mathbb{Z}_n,\oplus,\odot)$$

 $x \mapsto x \bmod n$ ist Ringhomomorphismus (kein Isomorphismus), da φ nicht injektiv ist, z.B. $n = 5 : \varphi(1) = \varphi(6) = \varphi(11) \dots$

2.10 Satz (Chinesischer Restsatz)

Seien $m_1, \ldots, m_n \in \mathbb{N}$ paarweise teilerfremd, $M := m_1 \cdot \cdots \cdot m_n, \ a_1, \ldots, a_n \in \mathbb{Z}$

Dann existiert ein x, $0 \le x < M$ mit

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
...
 $x \equiv a_n \pmod{m_n}$

Beweis

Für jedes $i \in \{1, ..., n\}$ sind die Zahlen m_i und $M_i := \frac{M}{m_i}$ teilerfremd.

$$\Rightarrow$$
 EEA liefert s_i und $t_i \in \mathbb{Z}$ mit $t_i \cdot m_i + s_i \cdot M_i = 1$

Setze $e_i := s_i \cdot M_i$, dann gilt:

$$e_i \equiv 1 \pmod{m_i}$$

 $e_i \equiv 0 \pmod{m_j} \ (j \neq i)$

П

Die Zahl $x := \sum_{i=1}^{n} a_i e_i \pmod{M}$ ist dann die Lösung der simultanen Kongruenz.

2.11 Beispiel

a) Finde
$$0 \le x < 60 \text{ mit } x \equiv \begin{cases} 2 & (\mod 3) \\ 3 & (\mod 4) \\ 2 & (\mod 5) \end{cases}$$

$$M = 3 \cdot 4 \cdot 5 = 60$$

$$M_1 = \frac{60}{3} = 20$$
 $7 \cdot 3 + (-1) \cdot 20 = 1$ $\Rightarrow e_1 = -20$
 $M_2 = \frac{60}{4} = 15$ $4 \cdot 4 + (-1) \cdot 15 = 1$ $\Rightarrow e_2 = -15$
 $M_3 = \frac{60}{5} = 12$ $5 \cdot 5 + (-2) \cdot 12 = 1$ $\Rightarrow e_3 = -24$

$$x = (2 \cdot (-20) + 3 \cdot (-15) + 2 \cdot (-24)) \mod 60 = 47$$

- b) Was ist $2^{1000} \mod \underbrace{1155}_{3.5.7.11}$
 - (a) Berechne $2^{1000} \mod 3, 5, 7, 11$ $2^{1000} \mod 3 = (-1)^{1000} \mod 3 = 1$ $2^{1000} \mod 5 = 4^{500} \mod 5 = (-1)^{500} \mod 5 = 1$ $2^{1000} \mod 7 = 2^{3 \cdot 333 + 1} \mod 7 = (8^{333} \cdot 2) \mod 7 = (1 \cdot 2) \mod 7 = 2$ $2^{1000} \mod 11 = 2^{5 \cdot 200} \mod 11 = 32^{200} \mod 11 = (-1)^{200} \mod 11 = 1$
 - (b) Suche $0 \le x < 1155 \text{ mit } x \equiv \begin{cases} 1 & (\text{ mod } 3) \\ 1 & (\text{ mod } 5) \\ 2 & (\text{ mod } 7) \\ 1 & (\text{ mod } 11) \end{cases}$

Der chinesische Restsatz liefert x = 331

2.12 Bemerkung

Man kann auch zeigen, dass die Lösung x aus Satz 2.10 eindeutig ist:

Durch
$$\psi: \mathbb{Z}_M \to Z_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_n}$$

 $x \mapsto (x \mod m_1, \dots, x \mod m_n)$

wird ein Ringisomophismus definiert:

 ψ ist surjektiv (zu jedem n-Tupel aus $\mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$ gibt es eine Lösung x, siehe Restsatz) und es gilt:

$$\underbrace{|\mathbb{Z}_{M}|}_{M} = \underbrace{|\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{n}}|}_{m_{1} \cdot \cdots \cdot m_{n} = M}$$

also ist ψ bijektiv, also auch injektiv, also ist Lösung x eindeutig.

2.13 Korollar

$$M = m_1 \cdot \dots \cdot m_n$$
, m_i paarweise teilerfremd.
Dann ist $\varphi(M) = \varphi(m_1) \cdot \dots \cdot \varphi(m_n)$, insbesondere:
 $n = p_1^{a_1} \cdot \dots \cdot p_k^{a_k}$ (p_i Primzahlen, $a_1 > 0$, $p_i \neq p_j$ für $i \neq j$)

Beweis

Nach 2.12 ist
$$\mathbb{Z}_M \cong \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$$
 mittels ψ
 $\Rightarrow x$ Einheit $\Leftrightarrow \psi(x) = (x \mod m_1, \dots, x \mod m_n)$ Einheit $\Leftrightarrow x \mod m_i$ Einheit $\forall i = 1 \dots n$
 $\Rightarrow \varphi(M) = \varphi(m_1) \cdot \cdots \cdot \varphi(m_n)$
 $\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$
Überlegen

2.14 Definition

Sei K Körper mit Nullelement 0 und Einselement 1:

- (i) Ein *Polynom über K* ist Ausdruck $f = a_0 x^0 + a_1 x^1 + \dots + a_n x^n$, $n \in \mathbb{N}_0, a_i \in K$. a_i heißen *Koeffizienten* des Polynoms.
 - (a) Ist $a_i = 0$, so kann man $0 \cdot x^i$ bei der Beschreibung weglassen.
 - (b) Statt a_0x^0 schreibt auch a_0
 - (c) Sind alle $a_i = 0$, so schreibt man f = 0, das Nullpolynom.
 - (d) Ist $a_i = 1$, so schreibt man x^i statt $1 \cdot x^i$
 - (e) Die Reihenfolge der $a_i x^i$ kann verändert werden, ohne dass das Polynom sich verändert $(x^4 + 2x^3 + 3 = 2x^3 + 3 + x^4)$
- (ii) Zwei Polynome f und g sind gleich, wenn (f = 0 und g = 0) oder ($f = a_0 + a_1 x^1 + \dots + a_n x^n$, $g = b_0 + b_1 x^1 + \dots + b_m x^m$, $a_n \neq 0$, $b_m \neq 0$ und n = m, $a_i = b_i$ für $i = 0, \dots, n$) gilt.
- (iii) Die Menge aller Polynome über K bezeichnet man als K[x]

2.15 Beispiel

a)
$$\underbrace{f}_{f(x)} = 3x^2 + \frac{1}{2}x - 1 \in \mathbb{Q}[x] \land f \in \mathbb{R}[x]$$

b)
$$g = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$$

Wir wollen in K[x] wie in einem Ring rechnen können. Wir brauchen dazu + und · für Polynome.

2.16 Satz und Definition

K Körper, dann wird K[x] zu einem kommutativen Ring mit Eins durch folgende Verknüpfungen:

$$f = \sum_{i=0}^{n} a_i x^i, \quad g = \sum_{j=0}^{m} b_j x^j,$$

dann

$$f + g = \underbrace{\sum_{i=0}^{\max(m,n)} (a_i + b_i) x^i}_{x^3 + 3x + 3}$$

$$f \cdot g = \sum_{i=0}^{n+m} c_i x^i$$

mit
$$c_i = a_0 b_i + a_1 b_{i-1} + \dots + a_i b_0 = \sum_{j=0}^{i} a_j b_{i-j}$$
 (Faltungsprodukt)

(setze a_i mit i > n bzw. b_i mit j > m gleich 0)

- Einselement: f = 1 $(a_0 = 1, a_j = 0 \text{ für } j \ge 1)$
- Nullelement: f = 0

K[x] heißt der *Polynomring* in einer Variablen über K.

Beweis: Ringeigenschaften nachrechnen.

2.17 Bemerkung

Die +-Zeichen in der Beschreibung der Polynome entsprechen der Ring-Addition der *Monome* $a_0, a_1, a_2, a_2, \dots, a_n, a_n$

2.18 Beispiel

a) in $\mathbb{Q}[x]$, $\mathbb{R}[x]$ Addition, Multiplikation klar

b) in
$$\mathbb{Z}_3[x]$$
: $f = 2x^3 + 2x + 1$, $g = 2x^3 + x$
 $f + g = x^3 + 1$
 $f \cdot g = (2x^3 + 2x + 1)(2x^3 + x)$
 $= x^6 + 2x^4 + x^4 + 2x^2 + 2x^3 + x$
 $= x^6 + 2x^3 + 2x^2 + x$

c) in
$$\mathbb{Z}_2[x]$$
: $f = x^2 + 1$, $g = x + 1$
 $f + g = x^2 + x$
 $f + f = 0$
 $g \cdot g = x^2 + 1$

2.19 Definition

Sei
$$0 \neq f \in K[x]$$

$$f = a_0 + a_1 x + \dots + a_n x^n \text{ mit } a_n \neq 0$$

Dann heißt n der Grad von f Grad(f)

$$Grad(0) := -\infty$$

$$Grad(f) = 0$$
 für konstante Polynome $\neq 0$

«««< HEAD

- 2.20 TBD
- 2.21 TBD
- 2.22 TBD
- 2.23 TBD
- 2.24 TBD
- 2.25 TBD
- 2.26 TBD
- 2.27 TBD
- 2.28 TBD
- 2.29 TBD

====== »»»> 3f708df428c2f14e12c871de1373c20527336ec5

2.30 Satz

Euklidischer Algorithmus in $K[x] \rightarrow$ siehe "Blatt"

2.31 Satz

EEA in $K[x] \rightarrow$ siehe "Blatt"

2.32 Beispiel

$$g = x^4 + x^3 + 2x^2 + 1, h = x^3 + 2x^2 + 2 \in \mathbb{Z}_3[x]$$
 ... TBD ...

2.33 Definition

k Körper. Ein Polynom $p \in K[x]$, $Grad(p) \ge 1$ (d.h. $p \ne 0$, p nicht konst., also keine Einheit) heißt irreduzibel, falls golt:

Ist $p = f \cdot g$ $(f, g \in K[x])$, so ist Grad(f) = 0 oder Grad(g) = 0 (d.h. f oder g ist konst. Polynom).

Bemerkung: $p = a \cdot a^{-1} \cdot p$ für $a \in K \setminus \{0\}$ geht immer.

2.34 Beispiel

- a) ax + b ($a \ne 0$) ist irreduzibel in K[x] für jeden Körper K
- b) $x^2 2 \in \mathbb{Q}[x]$ ist irreduzibel: angenommen nicht, dann $(x^2 - 2) = (ax + b)(cx + d)$ mit $a, b, c \in \mathbb{Q} \land a, c \neq 0$ (ax + b) hat Nullstelle $-\frac{b}{a}$, also müsste auch $(x^2 - 2)$ Nullstelle $-\frac{b}{a}$ haben. Nullstelle von $(x^2 - 2)$ sind aber nur $\sqrt{2}$ und $-\sqrt{2}$, beide nicht in \mathbb{Q} !

c)
$$x^2 - 2 \in \mathbb{R}[x]$$
 ist nicht irreduzibel.
 $x^2 - 2 = \underbrace{(x + \sqrt{2})}_{\in \mathbb{R}[x]} \cdot \underbrace{(x - \sqrt{2})}_{\in \mathbb{R}[x]}$

- d) $x^2 + 1 \in \mathbb{R}[x]$ ist irreduzibel
- e) $x^2 + 1 \in \mathbb{Z}_5[x]$ ist nicht irreduzibel: $(x^2 + 1) = (x + 2) \cdot (x + 3) = (x^2 + 3x + 2x + 1) = (x^2 + 1)$ $2 \Rightarrow (x^2 + 1)$ ist teilbar durch (x - 2) = (x + 3)

2.35 Abschlussbemerkung

- a) Irreduzibel Polynome in K[x] entsprechen den Primzahlen in \mathbb{Z} . Man kann zeigen: $f = \sum_{i=0}^n a_i x^i \in K[x], \ a_n \neq 0, n \geq 1.$ Dann existieren eindeutig bestimmte irreduzibel Polynome p_1, \ldots, p_e und natürlichen Zahlen $m_1, \ldots, m_e \in \mathbb{N}$ mit $f = a_n \cdot p_1^{m_1} \cdot \cdots \cdot p_e^{m_e}$
- b) geg: Primzahl p, dann gibt es Körper mit p Elementen: $(\mathbb{Z}_p, \oplus, \odot)$

Man kann zeigen: zu jeder Primzahlpotenz p^a gibt es Körper mit p^a Elementen, diesen konstruiert man über irreduzible Polynome in $\mathbb{Z}_p[x]$.

3 Der Körper der C der Komplexen Zahlen

3.1 Definition

Eine komplexe Zahl $\mathbb Z$ ist von der Form $z=x+i\cdot y$ mit $x,y\in\mathbb R$ und einer "Zahl" i mit $i^2=-1$ ("imaginäre Einheit"). x heißt Realteil von $z,x=\operatorname{Re} z$ y heißt Imaginärteil, $y=\operatorname{In} z$.

Die Menge aller komplexen Zahlen bezeichnen wie mit \mathbb{C} und definieren auf \mathbb{C} Addtition und Multiplikatio wie folgt:

Für
$$z = x + iy$$
 und $w = a + ib$ ist
 $z + w := (x + a) + i(y + b),$
 $z - w := (x - a) + i(y - b)$ und
 $z \cdot w := (xa - yb) + i(xb + ya).$

Erläuterung zur Multiplikation: $((x + iy)(a + ib) = xa + xib + iya + i^2yb = (xa - yb) + i(xb + ya)$.

Mit diesen Verknüpfungen ist C ein Körper:

- a) AG, kG, DG: nachrechnen
- b) $0 = 0 + i \cdot 0$
- c) additiv Inverses: -z = -x iy
- d) $1 = 1 + i \cdot 0$
- e) multiplikativ Inverses: $z^{-1} = \frac{1}{z} = \frac{1}{x+y} = \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy} = \frac{x-iy}{x^2+y^2} = \underbrace{\frac{x}{x^2+y^2}}_{\in \mathbb{R}} + i \cdot \underbrace{\frac{-y}{x^2+y^2}}_{\in \mathbb{R}}$

Man nennt für z = x + iy die Zahl $\overline{z} = x - iy$ die zu z konjugiert komplexe Zahl und $|z| := \sqrt{x^2 + y^2}$ den Betrag von z

3.2 Beispiel

a)
$$z = 2 + 3i$$
 mit $Re(z) = 2$ und $Im(z) = 3$.
 $\overline{z} = 2 - 3i, |z| = \sqrt{2^2 + 3^2} = \sqrt{13}$
 $z \cdot \overline{z} = (2 + 3i) \cdot (2 - 3i)$
 $= 4 - 6i + 6i - 9i^2 = 4 + 9 = 13$

b)
$$w = 1 + i = 1 + 1i$$
 mit $Re(w) = 1$, $Im(w) = 1$, $\overline{w}1 - i$, $|w| = \sqrt{1^2 + 1^2} = \sqrt{2}$

c) Selbst nachrechnen: $u = 7 = 7 + 0 \cdot i$, v = 5i = 0 + 5i

d)
$$u + w + z = 7 + (1 + i) + (2 + 3i) = 10 + 4i$$

 $u \cdot w = 7 \cdot (1 + i) = 7 + 7i$
 $\frac{w}{z} = \frac{1+i}{2+3i} = \frac{(1+i)\cdot(2-3i)}{4+9} = \frac{2-3i+2i-3i^2}{13} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i$

3.3 Bemerkung: komplexe Zahlenebene

Man kann \mathbb{C} veranschaulichen in der "Gaußschen Zahlenebene": Betrachte z = x + iy als Punkt (x|y) in \mathbb{R}^2 :

3.4 Satz: Eigenschaften

 $w,z\in\mathbb{C}$

a)
$$\overline{w \pm z} = \overline{w} \pm \overline{z}$$

 $\overline{w \cdot z} = \overline{w} \cdot \overline{z}$
 $\frac{\overline{w}}{z} = \frac{\overline{w}}{\overline{z}} (z \neq 0)$
 $\overline{z} = z$

Anmerkung: $\mathbb{C} \to \mathbb{C} \ z \mapsto \overline{z}$ ist Körperisomorphismus.

- b) $|z| \ge 0, |z| = 0 nur f \ddot{u} r z = 0$
- c) $|z| = |\overline{z}| = \sqrt{z}|\overline{z}|$
- d) $|w \cdot z| = |w| \cdot |z|$
- e) $|w + z| \le |w| + |z|$ (Dreiecksungleichung) $|w + z| \ge ||w| - |z||$

Beweis: nachrechnen

(z.B. d)): sei
$$z = x + iy$$
 mit $x, y \in \mathbb{R} \Rightarrow \overline{z} = x - iy$, $|z| = \sqrt{x^2 + y^2}$, $|\overline{z}| = \cdots$

3.5 Bemerkung

- a) In \mathbb{C} existiert $\sqrt{-1}$: $\pm i$, d.h. $x^2 + 1 = 0$ ist lösbar in \mathbb{C} , das Polynom $x^2 + 1$ ist nicht irreduzibel in $\mathbb{C}[x]$: $x^2 + 1 = (x + i)(x i)$
- b) Mann kann jede quadratische Gleichung $ax^2 + bx + c$ $(a,b,c \in \mathbb{R})$ in \mathbb{C} lösen: $x_{1|2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ Jedes $b^2 4ac < 0$ ist, schreibe: $\frac{-b \pm \sqrt{4ac b^2 \cdot i}}{2a}$
- c) Es gilt sogar: Fundamentalsatz der Algebra: Jedes Polynom $f \in \mathbb{C}[x]$ vom Grad $n \ge 1$ hat genau n Nullstellen in \mathbb{C} .