Shannon's theory of Perfect Secrecy

Outline

- Measure of Security of cryptosystems
- Perfect Secrecy
- Shift cipher
 - Security analysis
- One time pad
 - Security analysis

Definitions of security

- Computational Security
 - Adversary is computationally bounded
 - The best known algorithm required at least a large number of operations N
 - Can only be proved against specific attacks
- Provable Security
 - Proof by means of reduction to a well known problem that is thought to be hard
 - Examples ???
- Unconditional Security
 - Adversary has unlimited power

Definitions of security...

- Which one do you think is the best?
 - Then why don't we use it in practical scenarios?

Unconditional Security

- Concerns the security of cryptosystems when the adversary has unbounded computational power
- Cipher-text only attack
 - Attack the cipher using cipher texts only
- When is the cipher unconditionally secure?

A priory and a posteriori probabilities

- Consider a cryptosystem (P,C,K,E,D)
- The plaintext has a probability distribution
- Pr(x): a priori probability of a plain text
- The key also has a probability distribution
- Pr(K): a priori probability of a key
- The cipher text is generated by applying the encryption function.
 - Thus $y = E_k(x)$ is the cipher text
- The plaintext and the key are independent distributions

Attacker wants to compute a posteriori probability of a plaintext

- The probability distribution on P and K, induce a probability distribution on C, the cipher text
- For a key K, $C_K(x) = \{E_K(x) : x \in P\}$
- Does the cipher text leak information about the plaintext?
 - Given a ciphertext y, we shall compute the a posteriori probability of the plain text, i.e. P(x|y) and see whether it matches with tat of the a priori probability of the plain text

Example

	а	b
K_1	1	2
K ₂	2	3
K ₃	3	4

- $P=\{a,b\}$, $P_P(a) = \frac{1}{4}$, $P_P(b) = \frac{3}{4}$
- $K=\{K_1,K_2\}, P_K(K_1)=1/2, P_K(K_2)=P_K(K_3)=1/4$
- C={1,2,3,4}
 - What is the a posteriori probability of Plaintext gince cipher texts from C?

- $P={a,b}, P_p(a) = \frac{1}{4}, P_p(b) = \frac{3}{4}$
- $K = \{K_1, K_2\}, P_K(K_1) = 1/2,$ $P_K(K_2) = P_K(K_3) = 1/4$
- C={1,2,3,4}

- $P_C(1) = P_P(a) P_K(K_1) = 1/8$
- $P_C(3) = P_P(a) P_K(K_3) + P_P(b) P_K(K_2) = 1/4$
- $P_{C}(2)=?$
- $P_{C}(4)=?$

M.Tech. I

- $P={a,b}, P_p(a) = \frac{1}{4}, P_p(b) = \frac{3}{4}$
- $K = \{K_1, K_2\}, P_K(K_1) = 1/2,$ $P_K(K_2) = P_K(K_3) = 1/4$
- C={1,2,3,4}

- $P_C(1) = P_P(a) P_K(K_1) = 1/8$
- $P_C(3) = P_P(a) P_K(K_3) + P_P(b) P_K(K_2) = 1/4$
- $P_{c}(2)=7/16$
- $P_c(4) = 3/16$

- $P={a,b}, P_p(a) = \frac{1}{4}, P_p(b) = \frac{3}{4}$
- $K = \{K_1, K_2\}, P_K(K_1) = 1/2,$ $P_K(K_2) = P_K(K_3) = 1/4$
- C={1,2,3,4}

- $P_P(a|1)=1$; $P_P(b|1)=0$
- $P_p(a|2)=?$
- The 2 can come when the plaintext was a and the key was K₂ or when the plaintext was b and the key was K₁
- Given 2, we need to computed the probability that it came from a

- $P={a,b}, P_p(a) = \frac{1}{4}, P_p(b) = \frac{3}{4}$
- $K = \{K_1, K_2\}, P_K(K_1) = 1/2,$ $P_K(K_2) = P_K(K_3) = 1/4$
- C={1,2,3,4}

- Given 2, we need to computed the probability that it came from a
- The 2 can appear with a probability:
 - By having a as the plaintext and K_2 as the key: (1/4)(1/4)=1/16
 - By having b as the plaintext and K_1 as the key: (3/4)(1/2)=3/8=6/16
 - $P_P(a|2) = (1/16)/(7/16) = 1/7$

Generalization of the example

$$p_{p}(x | y) = \frac{p_{p}(x) \sum_{K: x = d_{K}(y)} p_{K}(K)}{\sum_{\{K: y \in C(K)\}} p_{K}(K) p_{p}(d_{K}(y))}$$

13

Perfect Security

• A cryptosystem has perfect secrecy if $P_p(x|y) = P_p(x)$ for all $x \in P$ and $y \in C$

• That is ???

Shift cipher has perfect secrecy

- Suppose 26 keys in a shift cipher are used with equal probability 1/26
 - Then for any plaintext distribution shift cipher has perfect secrecy
- P=C=K=Z₂₆
- Encryption function $y = E_K(X) = (X+K) \mod 26$

Perfect Secrecy

$$p_{P}(x | y) = \frac{p_{P}(x)p_{C}(y | x)}{p_{C}(y)}$$

$$p_{C}(y) = \sum_{K \in \mathbb{Z}_{26}} p_{K}(K)p_{P}(d_{K}(y))$$

$$= \sum_{K \in \mathbb{Z}_{26}} \frac{1}{26} p_{P}(y - K) = \frac{1}{26}$$

$$p_{C}(y | x) = P_{K}(y - x \mod 26)$$

$$= \frac{1}{26}$$

16

- Perfectly secure if every ke is used with probability 1/|K|
- And for every x and every y, there is a unique key such that y=E_K(x)
- Perfect secrecy : $P_C(y|x) = P_C(y)$