Loi discrètes et continues

PST

6 - Distributions usuelles

Abstract

Definition

Table des matières

Loi discrètes	2
1.1. Loi de Bernoulli	2
1.1.1. Exemples	
1.2. Loi binomiale	2
1.2.1. Exemples	2
1.2.2. Combinaison	2
1.3. Loi géométrique	3
1.3. Loi géométrique	3
1.4. Loi de Poisson	3
1.4.1. Exemples	3
Loi continues	
2.1. Loi uniforme	
2.1.1. Exemples	4
2.2. Loi exponentielle	4
2.2.1. Propriété sans mémoire	4
2.2.2. Exemples	4
2.3. Loi normale (Laplace - Gauss)	
2.3.1. Propriétés	4

1. Loi discrètes

1.1. Loi de Bernoulli

On utilise la loi de Bernoulli lors-ce qu'on réalise une expérience dont l'issue est interprétée soit comme un **succès** soit comme un **échec**. On définit une variable aléatoire *X* qui prend la valeur 1 si le succès est réalisé et 0 sinon.

La loi de Bernoulli est composée de:

- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1\}$
- · la loi de probabilité

$$P(X=x) = \begin{cases} p & \text{si } x=1 \\ 1-p=q & \text{si } x=0 \end{cases}$$

L'espérance et la variance de la loi de Bernoulli sont respectivement:

$$E(X) = p$$
$$Var(X) = pq$$

1.1.1. Exemples

- lancer d'une pièce de monnaie
- tirage d'une carte

1.2. Loi binomiale

La loi binomiale est utilisée pour représenter le nombre de succès dans une série de n expériences de Bernoulli indépendantes chacunes ayant p comme probabilité de succès. On définit une variable aléatoire X qui compte le nombre de succès dans les n expériences.

La loi binomiale est composée de:

- un paramètre n qui représente le nombre d'expériences
- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$ et q = 1 p
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1, 2, ..., n\}$
- la loi de probabilité

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} p^x q^{n-x}$$

L'espérance et la variance de la loi binomiale sont respectivement:

$$E(X) = np$$
$$Var(X) = npq$$

Notation: $\mathbb{B}(n,p)$

En posant n = 1, on obtient la loi de Bernoulli.

1.2.1. Exemples

- lancer d'une pièce de monnaie n fois
- tirage de n cartes

1.2.2. Combinaison

La combinaison de n éléments par k est notée $\binom{n}{k}$ et est définie par:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

1.3. Loi géométrique

La loi géométrique est utilisée pour représenter le nombre d'expériences de Bernoulli indépendantes nécessaires pour obtenir le premier succès. On définit une variable aléatoire X qui compte le nombre d'expériences nécessaires pour obtenir le premier succès.

La loi géométrique est composée de:

- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$ et q = 1 p
- H l'ensemble des valeurs possibles de X qui est $H = \{1, 2, 3, ...\}$
- la loi de probabilité

$$P(X = x) = p(1 - p)^{x - 1} = pq^{x - 1}$$

L'espérance et la variance de la loi géométrique sont respectivement:

$$E(X) = \frac{1}{p}$$
$$Var(X) = \frac{q}{p^2}$$

Notation: $\mathbb{G}(p)$

1.3.1. Exemples

- lancer d'une pièce de monnaie jusqu'à obtenir le premier succès
- tirage de cartes jusqu'à obtenir la première carte rouge

1.4. Loi de Poisson

La loi de Poisson est utilisée pour représenter le nombre d'événements rares dans un intervalle de temps ou d'espace donné. On définit une variable aléatoire X qui compte le nombre d'événements rares dans un intervalle de temps ou d'espace donné.

La loi de Poisson est composée de:

- un paramètre λ qui représente le nombre moyen d'événements rares dans l'intervalle de temps ou d'espace donné
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1, 2, ...\}$
- la loi de probabilité

$$P(X = x) = e^{-\lambda} \cdot \frac{\lambda^x}{x!}$$

L'espérance et la variance de la loi de Poisson sont respectivement:

$$E(X) = \lambda$$

$$E(X) = \lambda$$

 $\operatorname{Var}(X) = \lambda$

Notation: $\mathbb{P}(\lambda)$

Si $\lambda = np$ avec n grand et p petit, alors la loi de Poisson est une approximation de la loi binomiale $\mathbb{B}(n,p)$.

1.4.1. Exemples

- le nombre de fautes d'impression par page dans un livre;
- le nombre de pièces défectueuses dans une livraison importante, la production étant de bonne qualité;
- le nombre d'individus dépassant l'âge de 100 ans dans une communauté;
- le nombre de faux numéros téléphoniques composés en un jour.

2. Loi continues

2.1. Loi uniforme

La loi uniforme est utilisée pour représenter une variable aléatoire continue qui prend ses valeurs dans un intervalle [a, b]. On définit une variable aléatoire X qui prend ses valeurs dans l'intervalle [a, b].

La loi uniforme est composée de:

- deux paramètres a et b qui représentent les bornes de l'intervalle [a,b] avec a < b
- H l'ensemble des valeurs possibles de X qui est H = [a, b]
- fonction de densité de probabilité

$$f_x(u) = \begin{cases} \frac{1}{b-a} & \text{si } a \le u \le b \\ 0 & \text{sinon} \end{cases}$$

• fonction de répartition

$$F_x(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$$

L'espérance et la variance de la loi uniforme sont respectivement:

$$E(X) = \frac{a+b}{2}$$
$$Var(X) = \frac{(b-a)^2}{12}$$

Notation: $\mathbb{U}(a,b)$

2.1.1. Exemples

- heure indiquant la fin d'un batch informatique entre son heure de début et une durée maximale de 8 heures
- choix d'un point sur un segment
- distance de l'endroit d'une panne à une ville donnée

2.2. Loi exponentielle

La loi exponentielle est utilisée pour représenter le temps entre deux événements rares consécutifs. On définit une variable aléatoire X qui représente le temps entre deux événements rares consécutifs.

La loi exponentielle est composée de:

- un paramètre λ qui représente le taux d'occurrence des événements rares
- H l'ensemble des valeurs possibles de X qui est $H = [0, +\infty]$
- fonction de densité de probabilité

$$f_x(u) = \begin{cases} \lambda e^{-\lambda u} & \text{si } u \ge 0\\ 0 & \text{sinon} \end{cases}$$

• fonction de répartition

$$F_x(x) = \begin{cases} 1 - e^{-\lambda x} \text{ si } x \geq 0 \\ 0 & \text{sinon} \end{cases}$$

L'espérance et la variance de la loi exponentielle sont respectivement:

$$E(X) = \frac{1}{\lambda}$$
$$Var(X) = \frac{1}{\lambda^2}$$

Notation: $\mathbb{E}(\lambda)$

2.2.1. Propriété sans mémoire

• Une variable aléatoire est dite sans mémoire si pour tous s et t positifs,

$$P(X > s + t \mid X > t) = P(X > s)$$

• Selon la définition des probabilités conditionnelles, la relation est équivalente à

$$\frac{P(X>s+t,X>t)}{P(X>t)}=P(X>s)$$

ou encore

$$P(X > s + t) = P(X > s) \cdot P(X > t)$$

Puisque

$$e^{-\lambda \cdot (s+t)} = e^{-\lambda s} \cdot e^{-\lambda t}$$

2.2.2. Exemples

- temps d'attente d'un phénomène poissonnien de taux λ : temps d'attente du premier événement ou temps entre deux événements consécutifs
- durée de vie d'un composant électronique
- durée d'une conversation téléphonique

2.3. Loi normale (Laplace - Gauss)

La loi normale est utilisée pour représenter une variable aléatoire continue qui suit une distribution symétrique en forme de cloche. On définit une variable aléatoire *X* qui suit une distribution normale.

La loi normale est composée de:

- deux paramètres $\mu \in \mathbb{R}$ et $\sigma^2 \in \mathbb{R}^+$ qui représentent respectivement la moyenne et l'écart-type de la distribution au carré
- H l'ensemble des valeurs possibles de X qui est $H = \mathbb{R}$
- fonction de densité de probabilité

$$f_x(u) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(u-\mu)^2}{2\sigma^2}}, -\infty < u < \infty$$

• fonction de répartition

$$F_x(x) = \int_{-\infty}^x f_x(u) du, \ -\infty < x < \infty$$

L'espérance et la variance de la loi normale sont respectivement:

$$E(X) = \mu$$
$$Var(X) = \sigma^2$$

Notation: $\mathbb{N}(\mu, \sigma^2)$

2.3.1. Propriétés

Les aires des surfaces des graphes de densité valent:

- 0.683 pour $\mu \sigma$ et $\mu + \sigma$
- 0.954 pour $\mu 2\sigma$ et $\mu + 2\sigma$
- 0.997 pour $\mu 3\sigma$ et $\mu + 3\sigma$

Pour centrer et réduire une variable aléatoire X suivant une loi normale $\mathbb{N}(\mu, \sigma^2)$, on utilise la variable aléatoire Z suivant une loi normale centrée réduite $\mathbb{N}(0, 1)$:

$$Z = \frac{X - \mu}{\sigma}$$