```
In [1]: include("/home/nicole/Jupyter/SSBRnoJ/src/SSBR.jl")
using SSBR

In [2]: function getPos(ped,IDs)
    posAi = Array(Int64,size(IDs,1))
    for (i,id) = enumerate(IDs[:,1])
        posAi[i] = ped.idMap[id].seqID
    end
    return posAi
end

Out[2]: getPos (generic function with 1 method)

In [3]: ; cd Data/0.1/G/4
    /home/nicole/Jupyter/JG3/Data/0.1/G/4
```

```
In [4]: ;ls
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        all.ID
        alphaEstimates
        genotype.ID
        meanOfSNPGAll
        meanOfSNPGG0
        meanOfSNPGG1
        meanOfSNPGG2
        meanOfSNPGG3
        meanOfSNPGG4
        meanOfSNPGG5
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
```

```
In [7]: |;join -v1 all.ID genotype.ID > noGenotype.ID
 In [8]: |;awk '{print $1,$2}' Phe.txt > sim.phenotype
 In [9]: | ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
In [11]: ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]: ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [13]: ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]: ;join GO.ID genotype.ID > GO.Genotype.ID
In [17]: |;join G1.ID genotype.ID > G1.Genotype.ID
In [18]: |;join G2.ID genotype.ID > G2.Genotype.ID
In [19]: ;join G3.ID genotype.ID > G3.Genotype.ID
In [20]: ;join G4.ID genotype.ID > G4.Genotype.ID
In [21]: ;join G5.ID genotype.ID > G5.Genotype.ID
In [22]: | ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [23]: ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
```

```
In [24]: |;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]: ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [26]: ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
In [27]:
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc G4.Genotype.ID;wc G5.Genotype
          200 200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
         ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype.ID;wc G4.noGenotype.ID;wc G
In [29]:
          7800 7800 46800 GO.noGenotype.ID
          7800 7800 46800 Gl.noGenotype.ID
          7800 7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A_Mats,numSSBayes = calc_Ai("PedAll.txt","genotype.ID",calculateInbreeding=false)
In [30]:
         nothing
         y Vecs = make yVecs("sim.phenotype",ped,numSSBayes)
         Z Mats = make ZMats(ped, y Vecs, numSSBayes)
         nothing
In [31]:
                = 0.871
         vG
                = 7.839
         aHat3=SSBR.PBLUP(y Vecs, Z Mats, A Mats, numSSBayes, vRes, vG);
In [32]: using DataFrames
```

```
In [33]:
         df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',header=false)
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [34]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat3[posAi])[1,1]
         reg1 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with epsilon
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n", reg1)
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.655
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 1.028
Out[34]: 0.655176353038836
In [35]: TBV = a[posAi]
         mean(TBV)
Out[35]: 10.450745875
In [36]: EBV = aHat3[posAi]
         mean(EBV)
Out[36]: 0.8147784153772578
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat3[posAi])[1,1]
         reg2 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # with epsilon
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3f\n", reg2)
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.365
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.871
Out[37]: 0.36536709567934883
```

```
In [38]: TBV = a[posAi]
         mean(TBV)
Out[38]: 11.17162144444444
In [39]: | EBV = aHat3[posAi]
         mean(EBV)
Out[39]: 1.5553558012798392
In [40]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat3[posAi])[1,1]
         reg3 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 ) # with epsilon
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg3)
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.635
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 1.065
Out[40]: 0.6352838768317404
In [41]: TBV = a[posAi]
         mean(TBV)
Out[41]: 10.284389974358973
In [42]: EBV = aHat3[posAi]
         mean(EBV)
Out[42]: 0.6438759417074316
```

```
In [43]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi], aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.583
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 1.905
Out[43]: 0.5830051481884575
In [44]: TBV = a[posAi]
         mean(TBV)
Out[44]: 9.452027
In [45]: EBV = aHat3[posAi]
         mean(EBV)
Out[45]: 0.001549234296210077
In [46]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat3[posAi])[1,1]
         reg4 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", req4)
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.465
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.949
Out[46]: 0.46513089487519427
In [47]: TBV = a[posAi]
         mean(TBV)
Out[47]: 10.110348125
```

```
In [48]: EBV = aHat3[posAi]
         mean(EBV)
Out[48]: 0.33800119038650234
In [49]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat3[posAi])[1,1]
         reg5 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", reg5)
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.467
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.899
Out[49]: 0.46720380885295026
In [50]: TBV = a[posAi]
         mean(TBV)
Out[50]: 10.389132875000001
In [51]: EBV = aHat3[posAi]
         mean(EBV)
Out[51]: 0.6958058028194363
In [52]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat3[posAi])[1,1]
         reg6 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", reg6)
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.497
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.929
Out[52]: 0.4969469670878219
```

```
In [53]: TBV = a[posAi]
         mean(TBV)
Out[53]: 10.644380375
In [54]: EBV = aHat3[posAi]
         mean(EBV)
Out[54]: 0.9878915940100014
In [55]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat3[posAi])[1,1]
         reg7 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", reg7)
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.488
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.967
Out[55]: 0.4881464430574746
In [56]: TBV = a[posAi]
         mean(TBV)
Out[56]: 10.913760875
In [57]: EBV = aHat3[posAi]
         mean(EBV)
Out[57]: 1.2765794394523469
```

```
In [58]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat3[posAi])[1,1]
         reg8 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", reg8)
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.310
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.955
Out[58]: 0.30955697684103495
In [59]: TBV = a[posAi]
         mean(TBV)
Out[59]: 11.194825999999999
In [60]: EBV = aHat3[posAi]
         mean(EBV)
Out[60]: 1.588843231299051
In [61]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.624
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.739
Out[61]: 0.6244960146535103
In [62]: TBV = a[posAi]
         mean(TBV)
Out[62]: 10.763530000000001
```

```
In [63]: EBV = aHat3[posAi]
         mean(EBV)
Out[63]: 0.6516507209165104
In [64]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat3[posAi])[1,1]
         reg9 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg9)
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.674
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 0.849
Out[64]: 0.6738428338432925
In [65]: TBV = a[posAi]
         mean(TBV)
Out[65]: 10.638454999999997
In [66]: EBV = aHat3[posAi]
         mean(EBV)
Out[66]: 1.0335123171658986
In [67]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat3[posAi])[1,1]
         reg10 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req10)
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.727
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.927
Out[67]: 0.7266812621385508
```

```
In [68]: TBV = a[posAi]
         mean(TBV)
Out[68]: 10.915555
In [69]: EBV = aHat3[posAi]
         mean(EBV)
Out[69]: 1.294627689613821
In [70]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor11 = cor(a[posAi],aHat3[posAi])[1,1]
         reg11 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req11)
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.715
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.989
Out[70]: 0.7145530083143062
In [71]: TBV = a[posAi]
         mean(TBV)
Out[71]: 11.159884999999997
In [72]: EBV = aHat3[posAi]
         mean(EBV)
Out[72]: 1.5649399897625385
```

```
In [73]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat3[posAi])[1,1]
         reg12 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6.3f\n", req12)
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.373
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 0.912
Out[73]: 0.3734841962801895
In [74]: TBV = a[posAi]
         mean(TBV)
Out[74]: 11.4525
In [75]: EBV = aHat3[posAi]
         mean(EBV)
Out[75]: 1.8925510881719463
In [76]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat3[posAi])[1,1]
         reg13 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13 ) # with epsilon
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6.3f\n", reg13)
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.310
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.955
Out[76]: 0.30955697684103495
In [77]: writedlm("Correlation.G5.G.PBLUP.txt",cor13)
In [78]: writedlm("Regression.G5.G.PBLUP.txt",reg13)
```

```
In [79]: | TBV = a[posAi]
         mean(TBV)
Out[79]: 11.194825999999999
In [80]: EBV = aHat3[posAi]
         mean(EBV)
Out[80]: 1.588843231299051
In [81]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.566
         SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = 2.051
Out[81]: 0.5655492072139439
In [82]: TBV = a[posAi]
         mean(TBV)
Out[82]: 9.418398717948719
In [83]: EBV = aHat3[posAi]
         mean(EBV)
Out[83]: -0.015120034591489934
```

```
In [84]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat3[posAi])[1,1]
         reg14 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", cor14 ) # with epsilon
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg14)
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.452
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.970
Out[84]: 0.4524991536471582
In [85]: TBV = a[posAi]
         mean(TBV)
Out[85]: 10.096806923076924
In [86]: EBV = aHat3[posAi]
         mean(EBV)
Out[86]: 0.32016757175113314
In [87]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat3[posAi])[1,1]
         reg15 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor15 ) # with epsilon
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg15)
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.452
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.899
Out[87]: 0.45168675872115244
In [88]: TBV = a[posAi]
         mean(TBV)
Out[88]: 10.375634871794873
```

```
In [89]: EBV = aHat3[posAi]
         mean(EBV)
Out[89]: 0.6804513954657341
In [90]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat3[posAi])[1,1]
         reg16 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor16 ) # with epsilon
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg16)
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.483
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.927
Out[90]: 0.482860922755309
In [91]: TBV = a[posAi]
         mean(TBV)
Out[91]: 10.631162307692307
In [92]: EBV = aHat3[posAi]
         mean(EBV)
Out[92]: 0.973095481298398
In [93]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',header=false)
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat3[posAi])[1,1]
         reg17 = linreg(aHat3[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor17 ) # with epsilon
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = %6.3f\n", reg17)
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.483
         SSBRJC from Gibbs - G4.noGenotype.ID: regression of TBV on GEBV = 0.972
Out[93]: 0.48347010603931717
```

In [94]: TBV = a[posAi]
mean(TBV)

Out[94]: 10.899947051282052

In [95]: EBV = aHat3[posAi]
mean(EBV)

Out[95]: 1.2607852946133826

In [96]: numSSBayes

Out[96]: SSBR.NumSSBayes(54893,45893,9000,40000,39000,1000,0)