6-3 Problem Set: Trig functions

1a. The following diagram shows triangle ABC, with AB=3 cm, BC=8 cm, and $\hat{ABC}=\frac{\pi}{3}$.

diagram not to scale

Show that AC = 7 cm.

[4 marks]

1b. The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.

diagram not to scale

Find the exact perimeter of this shape.

[3 marks]

2. The following diagram shows triangle PQR.

diagram not to scale

 $P\hat{Q}R = 30^{\circ}$, $Q\hat{R}P = 45^{\circ}$ and PQ = 13 cm.

Find PR. [6 marks]

3. The following diagram shows the chord [AB] in a circle of radius 8 cm, where $AB=12\ cm$.

diagram not to scale

Find the area of the shaded segment.

[7 marks]

4a. [2 marks]

The following diagram shows a circle with centre O and radius 40 cm.

diagram not to scale

The points A, B and C are on the circumference of the circle and $\hat{AOC}=1.9\ radians$

Find the length of arc ABC.

4b. Find the perimeter of sector OABC.

[2 marks]

4c. Find the area of sector OABC.

[2 marks]

5a. The depth of water in a port is modelled by the function $d(t)=p\cos qt+7.5$, for $0\leqslant t\leqslant 12$, where t is the number of hours after high tide.

At high tide, the depth is 9.7 metres.

At low tide, which is 7 hours later, the depth is 5.3 metres.

Find the value of p. [2 marks]

5b. Find the value of q. [2 marks]

5c. Use the model to find the depth of the water 10 hours after high tide. [2 marks]

6a. [3 marks]

$$ag{Let} \sin heta = rac{\sqrt{5}}{3}$$
 , where $heta$ is acute.

Find $\cos \theta$.

6b. [2 marks]

Find $\cos 2\theta$.

7a. Let
$$f(x) = 3\sin\left(\frac{\pi}{2}x\right)$$
, for $0 \leqslant x \leqslant 4$.

- (i) Write down the amplitude of f.
- (ii) Find the period of f.

[3 marks]

7b. [4 marks]

On the following grid sketch the graph of f.

BECA / Huson / 11.1 IB Math SL 7 March 2019

Name:

8a. [5 marks]

Let
$$f(x)=6x\sqrt{1-x^2}$$
 , for $-1\leqslant x\leqslant 1$, and $g(x)=\cos(x)$, for $0\leqslant x\leqslant \pi$. Let $h(x)=(f\circ g)(x)$.

Write h(x) in the form $a\sin(bx)$, where $a,\ b\in\mathbb{Z}$.

8b. [2 marks]

Hence find the range of h.

9a. The height, h metros, of a seat on a Ferris wheel after t minutes is given by

$$h(t) = -15\cos 1.2t + 17$$
, for $t \geqslant 0$.

Find the height of the seat when t=0.

[2 marks]

9b. The seat first reaches a height of 20 m after k minutes. Find k.

[3 marks]

9c. Calculate the time needed for the seat to complete a full rotation, giving your answer correct to one decimal place. [3 marks]

10a. Let
$$f(x) = 3\sin(\pi x)$$
.

Write down the amplitude of f.

[1 mark]

10b. Find the period of f.

[2 marks]

10c. On the following grid, sketch the graph of y=f(x) , for $0\leq x\leq 3$.

[4 marks]

11a. The following diagram shows part of the graph of $y=p\sin(qx)+r$

The point $A\left(\frac{\pi}{6},\ 2\right)$ is a maximum point and the point $B\left(\frac{\pi}{6},\ 1\right)$ is a minimum point.

Find the value of *p*; [2 marks]

11b. r; [2 marks]

11c. *q.* [2 marks]

12a. [3 marks]

$$\int_{\mathrm{Let}} f(x) = \cos\Bigl(rac{\pi}{4}x\Bigr) + \sin\Bigl(rac{\pi}{4}x\Bigr), ext{ for } -4 \leqslant x \leqslant 4.$$

Sketch the graph of f.

12b. [5 marks] Find the values of \boldsymbol{x} where the function is decreasing.

12c. [3 marks]

The function f can also be written in the form $f(x)=a\sin\Bigl(rac{\pi}{4}(x+c)\Bigr)$, where $a\in\mathbb{R}$, and $0\leqslant c\leqslant 2$. Find the value of a;

12d. [4 marks]

The function f can also be written in the form $f(x)=a\sin\Bigl(rac{\pi}{4}(x+c)\Bigr)$, where $a\in\mathbb{R}$, and $0\leqslant c\leqslant 2$. Find the value of c.

13a. [6 marks]

The following diagram shows the graph of $f(x)=a\sin bx+c$, for $0\leqslant x\leqslant 12$.

The graph of f has a minimum point at (3, 5) and a maximum point at (9, 17).

- (i) Find the value of c.
- (ii) Show that $b = \frac{\pi}{6}$.
- (iii) Find the value of a.

13b. [3 marks]

The graph of g is obtained from the graph of f by a translation of $\binom{k}{0}$. The maximum point on the graph of g has coordinates $(11.5,\ 17)$.

- (i) Write down the value of k.
- (ii) Find g(x).

13c. [6 marks]

The graph of g changes from concave-up to concave-down when $x=w_{\cdot}$

- (i) Find w.
- (ii) Hence or otherwise, find the maximum positive rate of change of $\emph{9}.$