

Proposition Commerciale

1. Co	adre du projet	1
1.1.	Résumé du projet	1
1.2.	Contexte du client	2
1.1.	Enjeux et objectifs	2
1.2.	Problèmes des vignerons indépendants :	
1.1.	Solution:	3
1.2.	Présentation de l'équipe	5
2.	Planning prévisionnel :	5
3 .	Spécifications fonctionnelles	7
_	frastructure IA	7
	frastructure IOT	
	frastructure BIGDATA	
	frastructure Cloud	
	curité	
	Spécifications techniques	
4.1.	Solution IA	10
4.2.	Solution IOT	10
4.3.	Solution BIGDATA	10
4.4.	Solution Cloud	11
4.5.	Solution Sécurité	11
5.	CHIFFRAGE	11

1. Cadre du projet

1.1. Résumé du projet

Les vignerons indépendants de France ont exprimé à travers l'appel d'offre les besoins suivants :

• Un système qui permet l'amélioration de l'efficacité et la productivité de l'exploitation viticole.

- Un système qui permet de répondre aux besoins spécifiques de leurs vignobles
- La gestion précise de l'irrigation
- La protection contre les maladies et les ravageurs
- L'enregistrement des données liées à la croissance des plantes
- Faire face aux aspects climatiques

Pitch d'ascenseur de la solution :

La fourniture d'un système de mise à niveau pour les cultures de vignes des vigneron indépendants afin d'améliorer l'efficacité et la productivité de notre exploitation viticole.

1.2. Contexte du client

- Union des vignerons indépendants de France
- Environ 7000 à 8000 vignerons en France
- Plante ,cultive ses vignes et commercialise son propre Vin

Le logo des *Vignerons indépendants* est apposé sur les bouteilles des producteurs respectant la charte du syndicat.

Cette charte stipule que le vigneron :

- Respecte son terroir,
- Travaille sa vigne,
- Récolte son raisin,
- Vinifie et élève son vin,
- Élabore son eau de vie (le cas échéant),
- Met en bouteille sa production dans sa cave,
- Commercialise ses produits,
- Se perfectionne dans le respect de la tradition,
- Accueille, conseille la dégustation et prend plaisir à présenter le fruit de son travail et de sa culture.

1.1. Enjeux et objectifs

- Amélioration de l'efficacité et la productivité de l'exploitation viticole.
- Gestion précise de l'irrigation
- Collecte de données précises sur les vignobles
- La plantation des vignes.
- Identification de la taille et le murissement des vignes
- La gestion de l'irrigation du sol
- La protection contre les maladies et les ravageurs
- La préservation de l'écosystèmes contre les produits tels que les pesticides

1.2. Problèmes des vignerons indépendants :

- Le changement climatique ce qui conduit à une Précocité de vendange.
- Les maladies et les ravageurs.
- Le dépérissement de la vigne.
- Concurrence commerciale.
- Le gel des vignes.
- Les vignes dévastées par les grêles.
- La non-préservation de la santé des écosystèmes viticoles à cause des produits (pesticides).

1.1. Solution:

Ne tenons d'abord à vous informer que cette solution est réalisée et adaptée à tous les vignerons indépendants de France. Sois aux 7000 – 8000 vignerons.

La taille moyenne des exploitations adhérentes est de 20,8 hectares et la majorité (60,2 %) fait moins de 20 hectares (Observatoire national des vignerons indépendants, ONVI).

En France, en 2010, les 6 000 vignerons indépendants membres de Vignerons Indépendants de France occupaient 124 500 hectares et ont produit 5,8 millions d'hectolitres.

La solution réfléchie par l'équipe est composée de :

- Une collecte de données sécurisées qui sera fera par le biais des capteurs pour la prise des différentes mesures environnementales et une câble cam pour la prise d'images régulière. Ces données-là seront transmises en temps réel vers un cloud centralisé et par la suite elles seront stockées dans une base de données qui jouera le rôle d'entrepôt de données.
- Une IA de reconnaissance des maladies sur les vignes, qui sont la cause principale d'une perte de production et qui est le plus pertinent à corriger en premier lieu. **Cette** reconnaissance se fera par le biais d'images de vignes prises depuis le sol.
- La mise à disposition d'une API permettant de requêter facilement le modèle entraîné pour obtenir des prédictions.
- Un script d'analyse de **données climatiques** / **météorologiques** qui aiderait les vignerons à optimiser leurs exploitations en apportant une meilleure gestion de l'irrigation et du vignoble grâce à l'application d'actions correctives. Ce script intégrerait l'équation Penman-Monteith. Parmi les données à analyser, on peut relever la température, la pression de l'air, l'humidité dans l'air et la radiation solaire.

En fonction de ces données, il sera possible de prédire plusieurs jours à l'avance les quantités d'eau à fournir pour irriguer correctement l'exploitation selon les données capturées par la station météo.

La mise en place de l'apprentissage continu du modèle sous forme de soumission de lot de données périodiquement pour ajuster la performance de l'IA. Pour le cas des images, **une soumission tous les deux jours** semble adaptée pour pouvoir s'adapter rapidement aux problématiques saisonnières.

Une interface de feedback où les vignerons pourraient indiquer si les prédictions sur les maladies des vignes potentiellement identifiées sont justes ou si les prédictions sur les quantités d'irrigation à apporter sont pertinentes, ce qui permet d'améliorer le processus d'apprentissage continu.

Une visualisation selon une interface présentant une carte des vignes touchées par les maladies sur plusieurs vignobles donnés, pour pouvoir endiguer les problématiques climatiques / météorologiques ou liées à la maladie. Cette visualisation pourrait également permettre de mieux répartir la charge de travail et diriger plus facilement les équipes vers les zones sensibles.

	Notre solution
Analyse des données des vignobles	<u> </u>
Prédiction des rendements de la vigne	>
Détection précoce des maladies de la vigne	>
Gestion optimale de l'irrigation	<
Surveillance des conditions environnementales	>
Apprentissage continu amélioré avec interface de feedback	✓
Visualisation à grande échelle sur une carte des vignes touchées par des maladies	✓

1.2. Présentation de l'équipe

2. Planning prévisionnel:

Projet	Date de début	Date de fin	Durée en jours	Équipe
Phase d'initialisation	3-Jul	24-Jul	21	
Recueil des besoins	3-Jul	4-Jul	1	Chef de projet
Etude de faisabilité	4-Jul	6-Jul	2	Chef de projet
Cadrage	7-Jul	11-Jul	4	Chef de projet
Proposition commerciale	18-Jul	20-Jul	2	Chef de projet
Soutenance	24-Jul	24-Jul	1	Chef de projet
Phase de lancement	13-Jul	17-Jul	4	
Spécifications fonctionnelles	13-Jul	16-Jul	3	Chef de projet,IA,IOT,Sécurité,BIGDATA
Spécifications techniques	14-Jul	17-Jul	3	Chef de projet,IA,IOT,Sécurité,BIGDATA
Phase de conception	31-Jul	9-Aug	9	
Maquettes	31-Jul	9-Aug	9	IA,BIG DATA
Phase de développement	31-Jul	9-Feb	193	
installation de station météo	31-Jul	2-Aug	2	IOT
Installation des capteurs au sol	3-Aug	7-Aug	4	IOT
Installation des Spider Cam	7-Aug	9-Aug	2	IOT

Mise en place Protocol de gestion LoRa	10-Aug	16-Aug	6	IOT
Développement des Cartes SD	17-Aug	23-Aug	6	IOT
Développement des différents Capteurs	24-Aug	7-Sep	14	IOT
Développement du modélo boitier	8-Sep	28-Sep	20	IOT
Développement d'une interface embarqué	29-Sep	11-Oct	12	IOT
Centralisation des données dans un CLOUD	31-Jul	14-Aug	14	IOT
Installation et configuration initiale de MySQL	31-Jul	3-Aug	3	IOT
Conception et création de la structure de la base de données	4-Aug	17-Aug	13	IOT
Identification des besoins en termes d'analyses	18-Aug	22-Aug	4	IOT
Développement des requêtes SQL pour les analyses Optimisation des requêtes SQL pour améliorer les performances	23-Aug	30-Aug	7	IOT
Identification des besoins en termes de visualisation	30-Aug	4-Sep	5	IOT
Développement des visualisations	5-Sep	14-Sep	9	IOT
Collecte des données (Analyse d'images)	12-Oct	12-Oct	1	IOT
Collecte des données (Analyse de données météorologiques)	13-Oct	13-Oct	1	IA
Préparation des données (analyse d'images)	16-Oct	23-Oct	7	IA
Préparation des données (analyse des données météorologiques)	24-Oct	1-Nov	8	IA
Recherche et conception (analyse d'images)	2-Nov	8-Nov	6	
Recherche et conception (analyse de données météorologiques)	8-Nov	15-Nov	7	IA
Entrainement et validation (analyse d'images)	16-Nov	11-Dec	25	
Entrainement et validation (analyse de données météorologiques)	12-Dec	26-Dec	14	IA

Mise en place de l'apprentissage continu	27-Dec	4-Jan	8	IA
Création d'une API	5-Jan	19-Jan	14	IA
Création d'une interface	22-Jan	5-Feb	14	IA
Audit avec une équipe de red- team	20-Oct	23-Oct	3	Cybersécurité
Audit de sécurité complet	24-Oct	7-Nov	14	Cybersécurité
Accompagnement post-audit	8-Nov	16-Nov	8	Cybersécurité
TEST	6-Feb	9-Feb	3	Chef de projet
Phase d'exploitation	12-Feb	4-Mar	21	
Formation des vigeron pour l'infrastucture IA et l'utilisation d'interface	12-Feb	23-Feb	11	IA
Formation des vigerons pour maintenance de l'infrastructure IOT	26-Feb	26-Feb	1	IOT
Sensibilisation à la cybersécurité	27-Feb	27-Feb	1	Cybersécurité
Exploitation CLOUD	28-Feb	4-Mar	5	CLOUD

3. Spécifications fonctionnelles

Infrastructure IA

Fonctionnalité	Risques (obstacles)	
Analyse des données des vignobles (analyse d'images)	Manque de Compatibilité du nouveau système avec les outils	
Prédiction des rendements de la vigne	et les systèmes déjà en place	
Détection précoce des maladies de la vigne	 Dépendance de la précision des prédictions aux données et aux modèles d'apprentissage 	
Gestion optimale de l'irrigation	automatique utilisés	
Surveillance des conditions environnementales	L'adoption de nouvelles technologies dépend de leur	
Apprentissage continu amélioré avec interface de feedback	facilité d'utilisation et de leur valeur ajoutée perçue.	

Visualisation à grande échelle sur une carte des vignes touchées par des maladies (les prédictions faites sur les données)	(Formation adéquate aux utilisateurs)
---	--

Infrastructure IOT

Fonctionnalité	Risques (obstacles)
Collecte de données sur les mesures environnemental telles que l'humidité de l'air, La température et la pression atmosphérique Prise d'image régulière dans les vignobles	 Pour le cas d'une superficie très grande peut causer une trop grande distance entre les capteurs et une connexion internet faible Les performances du système peuvent être affectées par des conditions environnementales extrêmes, telles que des tempêtes et sécheresse. Cela pourrait impacter la qualité des données récoltées et impacter négativement la qualité des données récoltées. Le matériel peut être endommagé à la suite fortes intempéries climatiques. Le matériel de prise de mesures environnementales et de la prise d'image peuvent être volé.

Infrastructure BIGDATA

Fonctionnalité	Risques (obstacles)
Stockage des données dans la base données	Existence d'une base de données préexistante, Un manque des
Analyse et Traitement des données stockées dans la base données	données qui nécessiterait de récupérer des données d'autres viticoles
Visualisation des données	

Infrastructure Cloud

Fonctionnalité	Risques (obstacles)
Stockage et gestion des données collectées relatives aux vignobles dans un Cloud centralisé	/

Sécurité

Fonctionnalité	Risques (obstacles)
Cryptages de toutes les données de leur collecte à leur traitement	Risques en termes de sécurité et de confidentialité des grandes quantités de données sensibles,

4. Spécifications techniques

4.1. Solution IA

- Analyse d'image : CNN construit selon le modèle MobileNetV2 avec Transfer
 Learning fait à l'aide de Tensorflow et Keras
- Analyse de données météorologiques : Intégration de l'équation Penman-Monteith pour obtenir l'irrigation nécessaire en mm pour un secteur donné
- **Apprentissage continu :** Keras pour fournir des données en continu et faire réapprendre notre modèle
- **Feedback:** Keras et DeepZoom pour pouvoir annoter les images et donner un feedback sur les prédictions réalisées par le CNN
- **API:** Flask pour mettre à disposition notre modèle
- **Interface :** Angular et MapBox qui permet de faire de la visualisation de données sur des cartes

4.2. Solution IOT

Capteurs:

- a Humidité / température de l'air
- b Vitesse de vent
- c Direction du vent
- d Pluviomètre
- e Baromètre
- f Ensoleillement
- g Humidité du sol

Protocol de Communications: Protocoles LoRa

Stockage des données : Carte SD **Modélo Boitier :** Capteur sol

Prise d'image : Cable Cam

Visualisation : Interface embarqué

4.3. Solution BIGDATA

• Bibliothèque de création des visualisation de données : D3,js

• Technologies pour la mise en place de base de données : MySQL

• Moteur de traitement de données en mémoire : Apache Spark

4.4. Solution Cloud

Service Cloud : AWS IoT Core **Passerelle :** API Gateway

Instances EC2: pour l'API Flask et pour le training modèle **Amazon Relational Database Service pour MySQL**: RDS

Amazon Simple Storage Service pour le stockage des images collectées :

S3

4.5. Solution Sécurité

Collecte des données : Protocole Sécurisés HTTPS

Stockage des données : MySQL Entreprise Transparant Dara Encryption (TDE)

Cryptages des données :

a - Algorithme AES (Advanced Encryption Standard)

b - Stockage et gestion des clés de cryptage de manière sécurisée : KMS

5. CHIFFRAGE

Ressources Humaines:

Spécialité	Nombres de Personnes	Cout Journalier
IA	4	400,00€
IOT	1	245,00€
BIGDATA	1	210,00€
CLOUD	2	271,40 €
Sécurité	1	600,00€
Chef du projet	1	250,00€

CHIFFRAGE DU PROJET POUR 21 hectares

Project	Durée en jours	équipe	Coût estimé de la tâche
Phase d'initialisation	21		2 250,00 €
Recueil des besoins	1	Chef de projet	250,00 €
Etude de faisabilité	2	Chef de projet	250,00 €
Cadrage	4	Chef de projet	1 000,00 €
Proposition commerciale	2	Chef de projet	500,00 €
Soutenance	1	Chef de projet	250,00 €
Phase de lancement	4		1 500,00 €
Spécifications fonctionnelles	3	Chef de projet,IA,IOT,Sécurité,BIGDATA,Cloud	750,00 €
Spécifications techniques	3	Chef de projet,IA,IOT,Sécurité,BIGDATA,Cloud	750,00 €
Phase de conception	9		3 045,00 €
Maquettes	9	IA,BIG DATA	3 045,00 €
Phase de développement	193		70 373,02 €
Installation de station météo	2	ЮТ	460,00 €
Installation des capteurs au sol	4	ІОТ	2 849,28 €
Installation des Spider Cam	2	ІОТ	1 752,74 €
Mise en placeProtocol de gestion LoRa	6	ІОТ	980,00 €
Développement des Cartes SD	6	ІОТ	980,00 €
Développement des différents Capteurs	14	ІОТ	2 450,00 €
Développement du modélo boitier	20	ІОТ	3 430,00 €
Développement d'une interface embarqué	12	ЮТ	1 960,00 €
Centralisation des données dans un CLOUD	14	CLOUD	2 714,00 €
Installation et configuration initiale de MySQL	3	BIGDATA	420,00 €
Conception et création de la structure de la base de données	13	BIGDATA	1 260,00 €
Identification des besoins en termes d'analyses	4	BIGDATA	462,00€

Développement des requêtes SQL pour les analyses Optimisation des requêtes SQL pour améliorer les performances	7	BIGDATA	1 155,00 €
Identification des besoins en termes de visualisation	5	BIGDATA	735,00 €
Développement des visualisations	9	BIGDATA	1 715,00 €
Collecte des données (Analyse d'images)	1	IA	400,00 €
Collecte des données (Analyse de données météorologiques)	1	IA	400,00 €
Préparation des données (analyse d'images)	7	IA	2 200,00 €
Préparation des données (analyse des données météorologiques)	8	IA	2 200,00 €
Recherche et conception (analyse d'images)	6		1 400,00 €
Recherche et conception (analyse de données météorologiques)	7	IA	1 800,00 €
Entrainement et validation (analyse d'images)	25	IA	7 600,00 €
Entrainement et validation (analyse de données météorologiques)	14	IA	3 400,00 €
Mise en place de l'apprentissage continu	8	IA	5 600,00 €
Création d'une API	14	IA	5 400,00 €
Création d'une interface	14	IA	4 800,00 €
Audit avec une équipe de red-team	3	Cybersécurité	1 200,00 €
Audit de sécurité complet	14	Cybersécurité	5 700,00 €
Accompagnement post- audit	8	Cybersécurité	4 200,00 €
TEST	3	Chef de projet	750,00 €
Phase d'exploitation	21		5 863,00 €
Formation des vignerons pour l'infrastructure IA et l'utilisation d'interface	11	IA	4 000,00 €
Formation des vignerons pour maintenance de l'infrastructure IOT	1	ЮТ	245,00 €

Sensibilisation à la cybersécurité	1	Cybersécurité	600,00 €
Exploitation CLOUD	5	CLOUD	1 018,00 €
		Suivi du projet	44 000,00 €
		TOTAL	127 031,02 €
		Marge 30%	38 109,31 €
		TOTAL à FACTURER	165 140,33 €

Sources:

https://www.lenouveleconomiste.fr/lesdossiers/viticulture-le-label-vigneron-independant-

12836/#:~:text=La%20taille%20moyenne%20des%20exploitations,un%20tonneau %20à%20l%27épaule.

https://fr.wikipedia.org/wiki/Confédération européenne des vignerons indépend ants

https://fr.wikipedia.org/wiki/Vignerons indépendants de France