Formas Padrão das Funções Lógicas

Lógica de Predicados 2014/2

Profa: Daniela Scherer dos Santos daniela.santos37@ulbra.edu.br

Formas padrão das funções lógicas

As funções lógicas podem ser expressas em duas formas padrão:

- soma padrão de produtos
- produto padrão de somas

A expressão é uma <u>soma</u> (OR) padrão de produtos (AND) de variáveis (complementadas ou não - negadas ou não).

- F(A,B,C)= A.B.C + A'.B.C + A.B'.C + A.B.C'
- F(A,B,C) = A'.B'.C' + A'.B.C' + A.B'.C'

A expressão é uma <u>soma</u> (OR) <u>padrão</u> de produtos (AND) de variáveis (complementatas ou não - negadas ou não).

Exemplos:

padrão: significa que cada uma das variáveis aparece (às vezes complementada, às vezes não) em cada um dos termos do produto.

- F(A,B,C)= A.B.C + A'.B.C + A.B'.C + A.B.C'
- F(A,B,C) = A'.B'.C' + A'.B.C' + A.B'.C'

- Exemplo:
- A FUNÇÃO ABAIXO É UMA SOMA DE PRODUTOS, NO ENTANTO, NÃO ESTÁ EM SUA FORMA PADRÃO:
 - ♦ F(A,B,C) = A.B + A'.C + B.C'
 - 🤚 no primeiro termo falta a representação da variável C
 - 🦫 no segundo termo falta a representação da variável B
 - 🦫 no terceiro termo falta a representação da variável A

Qualquer função pode ser escrita na forma de uma soma de produtos

- Exemplo:
 - F(A,B,C,D) = (A' + BC) (B + C'D)

Qualquer função pode ser escrita na forma de uma soma de produtos

•
$$F(A,B,C,D) = (A' + B.C).(B + C'.D)$$
 (distributiva)

$$A'B + A'C'D + BCB + BCC'D$$

Qualquer função pode ser escrita na forma de uma soma de produtos

Qualquer função pode ser escrita na forma de uma soma de produtos

Qualquer função pode ser escrita na forma de uma soma de produtos

```
    F(A,B,C,D) = (A' + BC) (B + C'D) (distributiva)
    A'B + A'C'D + BCB + BCC'D (T9 e T6)
    A'B + A'C'D + BC + BD.0 (T4)
    A'B + A'C'D + BC + 0
```


Qualquer função pode ser escrita na forma de uma soma de produtos

Qualquer função pode ser escrita na forma de uma soma de produtos

Qualquer função pode ser escrita na forma de uma soma de produtos

Exemplo:

•
$$F(A,B,C,D) = (A' + BC) (B + C'D)$$
 (distributiva)

$$A'B + A'C'D + BCB + BCC'D (T9 e T6)$$

$$A'B + A'C'D + BC + BD.0 (T4)$$

$$A'B + A'C'D + BC + 0$$
 (T5)

soma de produtos

mas, não é uma soma PADRÃO de produtos, pois as variáveis A, B, C e D não estão presentes em todos os termos da expressão

$$F(A,B,C,D) = A'B + A'C'D + BC$$

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$
$$A'C'D.(B+B') =$$

Esta multiplicação não altera o valor lógico da função, pois (B + B') = 1conforme o teorema 7 (A + A' = 1).

$$F(A,B,C,D) = A'B + A'C'D + BC$$
$$A'C'D.(B+B') = A'C'DB + A'C'DB'$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') =$$

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = -$$

Esta multiplicação não altera o valor lógico da função, pois (C + C') = (D + D') = 1 conforme o teorema 7 (A + A' = 1).

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' +$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D +$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

 $A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$
 $A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D'$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

 $A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$
 $A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$
 $BC.(A+A').(D+D') =$

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') =$$

Esta multiplicação não altera o valor lógico da função, pois (A + A') = (D + D') = 1 conforme o teorema 7 (A + A' = 1).

Profa. Dan

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = BCAD + BCAD' + BCA'D + BCA'D'$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

$$F(A,B,C,D) = A'B + A'C'D + BC$$

 $A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$
 $A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$
 $BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

A'BC'D + A'B'C'D +

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D + A'BC'D' +

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D + A'BC'D' + ABCD + ABCD' + A'BCD + A'BCD'

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D + A'BC'D' + ABCD + ABCD' + A'BCD + A'BCD'

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'

transformando a função resultante em uma soma padrão de produtos:

$$F(A,B,C,D) = A'B + A'C'D + BC$$

$$A'C'D.(B+B') = A'C'DB + A'C'DB' = A'BC'D + A'B'C'D$$

$$A'B.(C+C').(D+D') = A'BCD + A'BCD' + A'BC'D + A'BC'D'$$

$$BC.(A+A').(D+D') = ABCD + ABCD' + A'BCD + A'BCD'$$

SOMA PADRÃO DE PRODUTOS

A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'

Soma padrão de produtos

F(A,B,C,D) = A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'

Cada um dos produtos da função é chamado *Mintermo*.

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

F(A,B,C,D) = A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

$$F(A,B,C,D) = A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'$$

 0101 0001 0111 0110 0100 1111 1110

atribui-se o número binário 0 para cada variável complementada e o número binário 1 para cada variável não complementada.

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

$$F(A,B,C,D) = A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'$$

$$0101 \quad 0001 \quad 0111 \quad 0110 \quad 0100 \quad 1111 \quad 1110$$

$$5 \quad 1 \quad 7 \quad 6 \quad 4 \quad 15 \quad 14$$

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

$$F(A,B,C,D) = A'BC'D + A'B'C'D + A'BCD + A'BCD' + A'BC'D' + ABCD + ABCD'$$

$$0101 \quad 0001 \quad 0111 \quad 0110 \quad 0100 \quad 1111 \quad 1110$$

$$5 \quad 1 \quad 7 \quad 6 \quad 4 \quad 15 \quad 14$$

substituímos os números binários por seus equivalentes decimais

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos mintermos.

Exemplo:

podemos agora escrever

$$F(A,B,C,D) = \sum (1,4,5,6,7,14,15)$$

Aqui temos a função A'B'C'D + A'BC'D' + A'BCD' + A'BCD' + A'BCD + ABCD' + ABCD' + ABCD' expressa como uma função de Mintermos

A expressão é um produto (AND) padrão de somas (OR) de variáveis (complementadas ou não - negadas ou não).

Exemplos:

•
$$F(x,y) = (x'+y).(x+y')$$

- A função abaixo é um produto de somas mas não está em sua forma padrão:
 - $F(x,y) = x \cdot (x+y')$ \rightarrow falta o y no primeiro termo

Qualquer função pode ser escrita na forma de um produto de somas.

- Exemplo:
 - F(A,B,C,D) = (A' + BC) (B + C'D)

Qualquer função pode ser escrita na forma de um produto de somas.

Exemplo:

$$(A'+B).(A'+C).(B+C').(B+D)$$

Qualquer função pode ser escrita na forma de um produto de somas.

Exemplo:

•
$$F(A,B,C,D) = (A' + BC) (B + C'D) (distributiva)$$

(A'+B).(A'+C). (B+C').(B+D)

produto de somas

Qualquer função pode ser escrita na forma de um produto de somas.

Exemplo:

•
$$F(A,B,C,D) = (A' + BC) (B + C'D) (distributiva)$$

(A'+B).(A'+C). (B+C').(B+D)

produto de somas

mas, não é um produto PADRÃO de somas, pois as variáveis A, B, C e D não estão presentes em todos os termos da expressão

Transformando a expressão resultante em um produto de somas.

• F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)

Transformando a expressão resultante em um produto de somas.

• F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)

o que falta? C e D (complementadas ou não) o que falta? A e C (complementadas ou não)

o que falta? A e D (complementadas ou não)

o que falta?
B e D(complementadas ou não)
Logica de Predicados

Transformando a expressão resultante em um produto de somas.

Esta adição não altera o valor lógico da função, pois (CC') = (DD') = 0 conforme o teorema 5 (A + 0 = 0).

Transformando a expressão resultante em um produto de somas.

```
    F(A,B,C,D) = (A'+B).(A'+C). (B+C').(B+D)
    (A'+B + CC' + DD')= (A'+B+CC'+D)(A'+B+CC'+D')
    = (A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')
    (A'+B+C'+D')
```


Transformando a expressão resultante em um produto de somas.

F(A,B,C,D) = (A'+B).(A'+C). (B+C').(B+D)
 (A'+B+C'+DD')= (A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)(A'+B+C'+D')
 (A'+BB'+C+DD')=

Transformando a expressão resultante em um produto de somas.

• F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)

(A'+B+CC'+DD')= (A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)(A'+B+C'+D')

$$(A'+BB'+C+DD')=$$

Esta adição não altera o valor lógico da função, pois (CB') = (DD') = 0 conforme o teorema 5 (A + 0 = 0).

Transformando a expressão resultante em um produto de somas.

F(A,B,C,D) = (A'+B).(A'+C). (B+C').(B+D)
 (A'+B+C'+D)(A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)
 (A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
 (A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B+C+D')
 (A'+B+C+D)(A'+B'+C+D)(A'+B+C+D')

Transformando a expressão resultante em um produto de somas.

```
    F(A,B,C,D) = (A'+B).(A'+C). (B+C').(B+D)
    (A'+B + CC' + DD') = (A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)
    (A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
    (A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B'+C+D)
    (AA'+B+C'+DD') = (AA'+B+C'+D)(AA'+B+C'+D') = (A+B+C'+D')(A'+B+C'+D')
    (AA'+B+C'+DD') = (AA'+B+C'+D)(AA'+B+C'+D')
    (A'+B+C'+D)(A'+B+C'+D)(A+B+C'+D')
```


Transformando a expressão resultante em um produto de somas.

• F(A,B,C,D) = (A'+B).(A'+C). (B+C').(B+D)
(A'+B + CC' + DD') = (A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)
(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
(A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B'+C+D)
(A'+B+C+D')(A'+B'+C+D')
(AA'+B+C'+D')(A'+B+C'+D')
(AA'+B+C'+D')(A'+B+C'+D')
(AA'+B+C'+D')(A'+B+C'+D')
(AA'+B+C'+D')(A'+B+C'+D')
(AA'+B+C'+D)(AA'+B+C'+D)(AA'+B+C'+D)(AA'+B+C'+D)
(AA'+B+C'+D)(A'+B+C'+D)

Transformando a expressão resultante em um produto de somas.

• F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)

```
(A'+B+CC'+DD')= (A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)(A'+B+C'+D')
```

$$(A'+BB'+C+DD')=$$
 $(A'+BB'+C+D)(A'+BB'+C+D')=$ $(A'+B+C+D)(A'+B'+C+D)$ $(A'+B+C+D')(A'+B'+C+D')$

$$(AA'+B+C'+DD')=(AA'+B+C'+D)(AA'+B+C'+D')=(A+B+C'+D)(A'+B+C'+D)$$
 $(A+B+C'+D')(A'+B+C'+D')$

$$(AA'+B+CC'+D)=(AA'+B+C+D)(AA'+B+C'+D)=(A+B+C+D)(A'+B+C+D)$$
 $(A+B+C'+D)(A'+B+C'+D)$


```
F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)
(A'+B+C'+D)(A'+B+C+D') = (A'+B+C'+D)(A'+B+C'+D') = (A'+B+C'+D)(A'+B+C'+D')
(A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B'+C+D)
(A'+B+C+D')(A'+B'+C+D')
(AA'+B+C'+DD') = (AA'+B+C'+D)(AA'+B+C'+D') = (A+B+C'+D)(A'+B+C'+D)
(AA'+B+C'+D')(A'+B+C'+D')
(AA'+B+C'+D)(A'+B+C'+D)
```

$$(A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')$$


```
F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)
(A'+B+C'+D)(A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)
(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
(A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B'+C+D)
(A'+B+C+D')(A'+B'+C+D')
(AA'+B+C'+D)(A'+B+C'+D)
(AA'+B+C'+D)(A'+B+C'+D)
(AA'+B+C'+D)(A'+B+C'+D)
(AA'+B+C'+D)(A'+B+C'+D)
```

```
(A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')(A'+B+C+D)(A'+B'+C+D)
(A'+B+C+D')(A'+B'+C+D')
```



```
F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)
(A'+B+C'+D)(A'+B+CC'+D)(A'+B+CC'+D') = (A'+B+C+D)
(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
(A'+BB'+C+DD') = (A'+BB'+C+D)(A'+BB'+C+D') = (A'+B+C+D)(A'+B'+C+D)
(A'+B+C+D')(A'+B'+C+D')
(AA'+B+C'+DD') = (AA'+B+C'+D)(AA'+B+C'+D') = (A+B+C'+D)(A'+B+C'+D)
(A+B+C'+D)(A'+B+C'+D')
(AA'+B+C'+D)(A'+B+C'+D)
```



```
F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)
   (A'+B+CC'+DD')=(A'+B+CC'+D)(A'+B+CC'+D')=(A'+B+C+D)
     (A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
   (A'+BB'+C+DD')=(A'+BB'+C+D)(A'+BB'+C+D')=(A'+B+C+D)(A'+B'+C+D)
     (A'+B+C+D')(A'+B'+C+D')
   (AA'+B+C'+DD')=(AA'+B+C'+D)(AA'+B+C'+D')=(A+B+C'+D)(A'+B+C'+D)
     (A+B+C'+D')(A'+B+C'+D')
   (AA'+B+CC'+D)=(AA'+B+C+D)(AA'+B+C'+D)=(A+B+C+D)(A'+B+C+D)
     (A+B+C'+D)(A'+B+C'+D)
```

```
(A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')(A'+B+C+D)(A'+B'+C+D)(A'+B+C+D')(A'+B+C+D')(A'+B+C'+D)(A'+B+C'+D')(A'+B+C'+D')(A'+B+C'+D)(A'+B+C'+D)(A'+B+C'+D)(A'+B+C'+D)
```



```
F(A,B,C,D) = (A'+B).(A'+C).(B+C').(B+D)
   (A'+B+CC'+DD')=(A'+B+CC'+D)(A'+B+CC'+D')=(A'+B+C+D)
     (A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')
   (A'+BB'+C+DD')=(A'+BB'+C+D)(A'+BB'+C+D')=(A'+B+C+D)(A'+B'+C+D)
     (A'+B+C+D')(A'+B'+C+D')
   (AA'+B+C'+DD')=(AA'+B+C'+D)(AA'+B+C'+D')=(A+B+C'+D)(A'+B+C'+D)
     (A+B+C'+D')(A'+B+C'+D')
   (AA'+B+CC'+D)=(AA'+B+C+D)(AA'+B+C'+D)=(A+B+C+D)(A'+B+C+D)
     (A+B+C'+D)(A'+B+C'+D)
```


$$F(A,B,C,D) = (A'+B+C+D) (A'+B+C'+D) (A'+B+C+D')$$

 $(A'+B+C'+D')(A'+B'+C+D)(A'+B'+C+D')(A+B+C'+D)$
 $(A+B+C'+D')(A+B+C+D)$

$$F(A,B,C,D) = (A'+B+C+D) (A'+B+C'+D) (A'+B+C+D')$$

 $(A'+B+C'+D')(A'+B'+C+D)(A'+B'+C+D')(A+B+C'+D)$
 $(A+B+C'+D')(A+B+C+D)$

Cada um dos termos soma é chamado Maxtermo.

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

(A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')(A'+B'+C+D)(A'+B'+C+D')(A+B+C'+D)(A+B+C'+D')(A+B+C+D)

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

```
(A'+B+C+D)(A'+B+C'+D)(A'+B+C+D')(A'+B+C'+D')(A'+B'+C+D)(A'+B'+C+D')(A+B+C'+D)(A+B+C'+D')(A+B+C+D)
1000 1010 1001 1011 1100 1101 0010 0011 0000
```


Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

atribui-se o número binário 1 para cada variável complementada e o número binário 0 para cada variável não complementada.

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

(A'+B+C+D))(A'+B+C'+D)(A'+B+C+D')	(A'+B+C'+D	')(A'+B'+C+D)(A'+B'+C+D')	(A+B+C'+D)	(A+B+C'+D	')(A+B+C+D)	
1000	1010	1001	1011	1100	1101	0010	0011	0000	
8	10	9	11	12	13	2	3	0	

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

substituímos os números binários por seus equivalentes decimais

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

Exemplo:

<u></u>									
(A'+B+C+D)	(A'+B+C'+D)	(A'+B+C+D')	(A'+B+C'+D'	(A'+B'+C+C)	D)(A'+B'+C+D')	(A+B+C'+D)	(A+B+C'+D)	$^{\prime})(A+B+C+D)$)
,		, , , , ,		, , , , ,	, (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, (/(
1000	1010	1001	1011	1100	1101	0010	0011	0000	

8	10	9	11	12	13	2	3	0	
	10	J				_			
(A+B+C+D)(A+B+C'+D	(A+B+C'+D')(A'+B+C+D)(A'+B+C+D')	(A'+B+C'+D)(A'+B+C'+D)	A' + B + C' + D')(A'+B'+C+D	(A'+B'+C+D'))
(, (, D , C , D)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(151015)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>'</i>
0000	0010	0011	1000	1001	1010	1011	1100	1101	
0000	0010	0011	1000	1001	1010	1011	1100	1101	
Λ	2	3	8	a	10	11	12	13	
0	2	3	8	9	10	11	12	13	

Uma função lógica pode ser especificada usando a convenção adotada para a numeração dos maxtermos.

$$F(A,B,C,D) = \prod (0,2,3,8,9,10,11,12,13)$$

Aqui temos a função expressa como uma função de Maxtermos

Uma função lógica pode ser expressa em uma tabela verdade como uma soma de mintermos ou como um produto de maxtermos.

N° Linha	А	В	С	F(A,B,C)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

N° Linha	А	В	С	F(A,B,C)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

- Saídas 1 indicam a função expressa como uma soma de mintermos;
- Saídas 0 indicam a função expressa como um produto de maxtermos;

• Representando a função expressa na tabela verdade como uma soma de Mintermos:

N° Linha	А	В	С	F(A,B,C)	
0	0	0	0	1	(A'.B'.C')
1	0	0	1	0	
2	0	1	0	1	(A'.B.C')
3	0	1	1	1	(A'.B.C)
4	1	0	0	0	
5	1	0	1	0	
6	1	1	0	1	(A.B.C')
7	1	1	1	1	(A.B.C)

76

erer dos

• Representando a função expressa na tabela verdade como uma soma de Mintermos:

$$F(A,B,C)=(A'.B'.C')+(A'.B.C')+(A'.B.C)+(A.B.C')+(A.B.C')$$

N° Linha	А	В	С	F(A,B,C)		
0	0	0	0	1	(A'.B'.C')	
1	0	0	1	0		
2	0	1	0	1	(A'.B.C')	
3	0	1	1	1	(A'.B.C)	
4	1	0	0	0		
5	1	0	1	0		
6	1	1	0	1	(A.B.C')	
7	1	1	1	1	(A.B.C)	herer dos

/ /

• Representando a função expressa na tabela verdade como uma soma de Mintermos:

$$F(A,B,C)=(A'.B'.C')+(A'.B.C')+(A'.B.C)+(A.B.C')+(A.B.C)$$

 $F(A,B,C) = \sum (0,2,3,6,7)$

N° Linha	А	В	С	F(A,B,C)		
0	0	0	0	1	(A'.B'.C')	l
1	0	0	1	0		
2	0	1	0	1	(A'.B.C')	
3	0	1	1	1	(A'.B.C)	
4	1	0	0	0		•
5	1	0	1	0		
6	1	1	0	1	(A.B.C')	
7	1	1	1	1	(A.B.C)	herer dos

78

• Representando a função expressa na tabela verdade como um produto de Maxtermos:

	F(A,B,C)	С	В	A	N° Linha
	1	0	0	0	0
(A+B+C')	0	1	0	0	1
	1	0	1	0	2
	1	1	1	0	3
(A'+B+C)	0	0	0	1	4
(A'+B+C')	0	1	0	1	5
	1	0	1	1	6
Profa. Danie	1	1	1	1	7

ntos

• Representando a função expressa na tabela verdade como um produto de Maxtermos:

$$F(A,B,C)=(A + B + C').(A'+B+C).(A'+B+C')$$

N° Linha	А	В	С	F(A,B,C)	
0	0	0	0	1	
1	0	0	1	0	(A+B+C')
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	(A'+B+C)
5	1	0	1	0	(A'+B+C')
6	1	1	0	1	
7	1	1	1	1	Profa. Daniela Scherer dos 80

ntos

• Representando a função expressa na tabela verdade como um produto de Maxtermos:

$$F(A,B,C)=(A + B + C').(A'+B+C).(A'+B+C')$$

 $F(A,B,C) = \prod (1,4,5)$

N° Linha	А	В	С	F(A,B,C)	
0	0	0	0	1	
1	0	0	1	0	(A+B+C')
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	(A'+B+C)
5	1	0	1	0	(A'+B+C) (A'+B+C')
6	1	1	0	1	
7	1	1	1	1	Profa. Daniela Scherer dos

ntos

Conversão Binário - decimal

Conversões binário - decimal:

- para 4	4 variáveis
0000 - 0	1001 - 9
0001 - 1	1010 - 10
0010 - 2	1011 - 11
0011 - 3	1100 - 12
0100 - 4	1101 - 13
0101 - 5	1110 - 14
0110 - 6	1111 - 15
0111 - 7	
1000 – 8	
	0000 - 0 0001 - 1 0010 - 2 0011 - 3 0100 - 4 0101 - 5 0110 - 6 0111 - 7

Referências

TAUB, H. Circuitos Digitais e Microprocessadores.1984.

