Capitolul I

ECUAȚII DIFERENȚIALE

1. Să de integreze ecuația diferențială de ordinul întâi liniară

$$y' - y tgx = \frac{1}{\cos x}, y(0) = 0$$

Soluție: Ecuația omogenă atașată este: y'-y tgx = 0 sau $\frac{dy}{y} = tgx dx$

cu soluția $\ln y = -\ln \cos x + \ln C$ sau $y = \frac{C}{\cos x}$. Pentru rezolvarea ecuației

neomogene considerăm pe y sub forma $y = \frac{C(x)}{\cos x}$; avem

$$y' = \frac{C'(x)\cos x + C(x)\sin x}{\cos^2 x}.$$

Înlocuind în ecuație obținem:

$$\frac{C'(x)\cos x + C(x)\sin x}{\cos^2 x} - \frac{C(x)}{\cos x} \cdot tgx = \frac{1}{\cos x}$$

De unde: C'(x) = 1 și C(x) = x + C. Soluția generală a ecuației date va fi:

$$y = \frac{x + C}{\cos x}$$
.

Soluția problemei Cauchy y(0)=0 este C=0. Deci soluția particulară a ecuației diferențiale $y=\frac{x}{\cos x}$.

2. Să se integreze ecuația diferențială omogenă:

$$y' = \frac{x^2 + y^2}{xy}, \ y(1) = 0$$

Soluție:

Folosind substituția y = xt, y' = t + xt' obținem succesiv:

$$xt' + t = t + \frac{1}{t}$$
, $xt' = \frac{1}{t}$, $t dt = \frac{dx}{x}$, $\frac{t^2}{2} = \ln|x| + C$

de unde $\frac{y^2}{2x^2} = \ln|x| + C$. Punând condiția inițială y(1) = 0 obținem C = 0 și soluția particulară cerută este $y^2 = 2x^2 \ln|x|$.

3. Să se integreze ecuația diferențială omogenă generalizată:

$$(3x-7y-3)y' + 7x-3y-7 = 0$$
.

Soluție: Observăm că $\delta = \begin{vmatrix} 3 & -7 \\ 7 & -3 \end{vmatrix} = 40 \neq 0$. Sistemul $\begin{cases} 3x - 7y - 3 = 0 \\ 7x - 3y - 7 = 0 \end{cases}$ are soluția x = 1, y = 0. Substituția x = 1 + u, y = v implică $\frac{dy}{dx} = \frac{dv}{du}$ și ecuația

dată devine (3u - 7v) v' + 7u - 3v = 0.

Facem substituția v = uz(u), ceea ce conduce la soluția generală $(z-1)^2(z+1)^5u^7 = C$ sau $(y-x+1)^2(y+x+1)^5 = C$.

4. Să se integreze ecuația diferențială a lui Bernoulli:

$$y' - \frac{1}{x}y = -2xy^2$$
, $y(1) = 1$.

Soluție: $\alpha = 2$ $(y' + P(x)y = Q(x)y^{\alpha})$. Facem substituția $u = y^{1-\alpha}$ sau $u = y^{-1}$. Obținem $u' = -\frac{y'}{y^2}$ sau $y' = -\frac{u'}{u^2}$. Ecuația dată devine: $-\frac{u'}{u^2} - \frac{1}{xu} = -2x\frac{1}{u^2}$ sau $u' + \frac{u}{x} = 2x$ cu soluția generală $u = \frac{2x^2}{3} + \frac{C}{x}$. Soluția generală a ecuației este $y = \frac{1}{\frac{2x^2}{3} + \frac{C}{x}}$. Din condiția inițială deducem $C = \frac{1}{3}$,

astfel că soluția particulară căutată este $y = \frac{3x}{2x^3 + 1}$.

5. Să se integreze ecuația diferențială a lui Riccati:

$$y' + y^2 \sin x = \frac{2 \sin x}{\cos^2 x}, \quad y_P = \frac{1}{\cos x}, y(0) = -2.$$

Soluție: Substituția $y = y_p + \frac{1}{u}$ sau $y = \frac{1}{\cos x} + \frac{1}{u}$ conduce la ecuația liniară u'-2 $tgx \cdot u = \sin x$.

Soluția generală a acestei ecuații diferențiale este $u = \frac{C}{\cos^2 x} - \frac{\cos x}{3}$. Deci soluția generală a ecuației date este $y = \frac{1}{\cos x} + \frac{3\cos^2 x}{3C - \cos^3 x}$. Din condiția Cauchy y(0)=-2 rezultă C = 0 și deci soluția particulară căutată este $y = -\frac{2}{\cos x}$.

6. Să se integreze ecuatia diferentială de tip Clairaut:

$$y = xy' + y'^2$$

Soluție: Notând y'=p ecuația devine $y=xp+p^2$. Derivând în raport cu x și ținând seama de notația făcută, obținem $p=p+x\frac{dp}{dx}+2p\frac{dp}{dx}$ sau $\frac{dp}{dx}(x+2p)=0$. Soluția generală este $y=Cx+C^2$, iar soluția singulară este x=-2p, $y=-p^2$ sau $y=-\frac{x^2}{4}$.

7. Să se integreze ecuațiile diferențiale liniare de ordin superior cu coeficienți constanți omogene:

a)
$$y''-y=0$$
, $y(0)=2$, $y'(0)=0$

b)
$$y^{(4)} - 5y'' + 4y = 0$$

c)
$$y^{(3)}-6y''+11y'-6y=0$$

d)
$$y^{(3)} - 3y'' + 3y' - y = 0$$

e)
$$y^{(4)} - y = 0$$

$$f) \ y^{(5)} + 4y^{(3)} = 0$$

Soluție:

a) Ecuația caracteristică $r^2 - 1 = 0$ are rădăcinile reale și distincte $r_1 = -1$, $r_2 = 1$. Soluția generală este $y = C_1 e^{-x} + C_2 e^x$.

Din condițiile inițiale obținem $C_1 = C_2 = 1$ și deci soluția particulară este $y = e^{-x} + e^x$.

b) Ecuația caracteristică $r^4 - 5r^2 + 4 = 0$ are rădăcinile reale distincte r_1 =-2, r_2 = -1, r_3 =1, r_4 =2. Soluția generală a ecuației diferențiale est

$$y = C_1 e^{-2x} + C_2 e^{-x} + C_3 e^x + C_4 e^{2x}$$
.

c) Ecuația caracteristică r^3 - $6r^2$ +11r – 6 = 0 are rădăcinile reale distincte r_1 =1, r_2 =2, r_3 =3. Soluția generală a ecuației diferențiale este

$$y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x}.$$

d) Ecuația caracteristică r^3 - $3r^2$ + 3r- 1 = 0 are rădăcinile reale multiple: $r_1 = r_2 = r_3 = 1$. Soluția generală a ecuației diferențiale este

$$y = (C_1 + C_2 x + C_3 x^2)e^x$$
.

e) Ecuația caracteristică r^4 -l=0 are rădăcinile r_1 = -1, r_2 = 1, r_3 = -i, r_4 =i. Soluția generală a ecuației diferențiale este

$$y = C_1 e^{-x} + C_2 e^x + C_4 \cos x + C_5 \sin x.$$

f) Ecuația caracteristică $r^5 + 4r^3 = 0$ are rădăcinile $r_1 = r_2 = r_3 = 0$, $r_4 = -2i$, $r_5 = 2i$. Soluția generală a ecuației diferențiale este

$$y = C_1 + C_2 x + C_3 x^2 + C_4 \cos 2x + C_5 \sin 2x$$
.

8. Să se integreze ecuațiile diferențiale liniare de ordin superior cu coeficienți constanți neomogene:

a)
$$y''-5y'+6y = 6x^2-10x+2$$

b) $y^{(4)} - y^{(3)} - y'+y = e^x$

Soluție: a) Ecuația caracteristică a ecuației omogene este r^2 -5r + 6=0 cu rădăcinile r_1 = 2, r_2 = 3. Soluția generală a ecuației omogene este

$$y_h = C_1 e^{2x} + C_2 e^{3x}.$$

Deoarece r=0 nu este rădăcină a ecuației caracteristice căutăm soluția particulară sub forma $y_p = Ax^2 + Bx + C$. Înlocuind y_p în ecuația neomogenă obținem:

 $2A - 10Ax - 5B + 6Ax^2 + 6Bx + 6C \equiv 6x^2 - 10x + 2$ de unde rezultă A=1, B=C=0 și deci $y_p=x^2$. Soluția generală $(y=y_h+y_p)$ este:

$$y = C_1 e^x + C_2 e^{3x} + x^2$$

b) Ecuația caracteristică r^4 - r^3 -r+1=0 are rădăcinile și deci

$$y_h = C_1 e^x + C_2 x e^x + e^{-\frac{x}{2}} (C_3 \cos \frac{\sqrt{3}}{2} x + C_4 \sin \frac{\sqrt{3}}{2} x).$$

Deoarece r=1 este rădăcină dublă a ecuației caracteristice soluția particulară va avea forma $y_p = Ax^2e^x$. Rezultă $A = \frac{1}{6}$ și $y_p = \frac{1}{6}x^2e^x$ iar soluția generală a ecuației neomogene $(y = y_h + y_p)$ este:

$$y = C_1 e^x + C_2 x e^x + e^{-\frac{x}{2}} (C_3 \cos \frac{\sqrt{3}}{2} x + C_4 \sin \frac{\sqrt{3}}{2} x) + \frac{1}{6} x^2 e^x.$$

9. Să se integreze ecuația de tip Euler:

$$x^2y'' - 2xy' + 2y = x$$

Soluție: Folosim substituția $x=e^t$. Avem $y'=e^{-t}\frac{dy}{dt}$ și $y''=e^{-2t}(\frac{d^2y}{dt^2}-\frac{dy}{dt})$. Ecuația dată devine: $\frac{d^2y}{dt^2}-3\frac{dy}{dt}+2y=e^t$. Ecuația omogenă atașată acestei ecuații are soluția generală $y_h=C_1e^t+C_2e^{2t}$, iar soluția particulară $y_p=-te^t$. Deci soluția generală a ecuației neomogene este $y=C_1e^t+C_2e^{2t}-te^t$ sau $y=C_1x+C_2x^2-x\ln|x|$.

10. Să se integreze ecuația diferențială prin metoda variației constantelor

$$y''+y=tgx$$

Soluție: Ecuația caracteristică a ecuației omogene este $r^2+1=0$ cu rădăcinile $r_1=-i$ și $r_2=i$. Soluția $y_h=C_1\cos x+C_2\sin x$. Considerăm soluția sub forma $y=C_1(x)\cos x+C_2(x)\sin x$ (variația constantelor sau a lui Lagrange). Constantele $C_1(x)$ și $C_2(x)$ verifică sistemul:

$$\begin{cases} C'_{1}(x)\cos x + C'_{2}(x)\sin x = 0\\ -C'_{1}(x)\sin x + C'_{2}(x)\cos x = tgx \end{cases}$$

Soluția sistemului este:
$$C_1(x) = \sin x - \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C_1$$
 și

 $C_2(x) = -\cos x + C_2$. Soluția generală a ecuației neomogene dată va fi:

$$y = C_1 \cos x + C_2 \sin x - \cos x \ln \left| tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|.$$

11. Să se rezolve sistemul de ecuații diferențiale:

$$\begin{cases} x' = -3x - y \\ y' = x - y \end{cases}, \ x = x(t), \ y = y(t).$$

Soluție: Sin ecuația a doua x = y' + y, x' = y'' + y'. Înlocuind în prima ecuație obținem y'' + 4y' + 4y = 0. Ecuația caracteristică $r^2 + 4r + 4 = 0$ are rădăcinile $r_1 = r_2 = -2$. Soluția generală este $x(t) = (C_1 + C_2 - C_2 t)e^{-2t}$ și $y(t) = (C_1 + C_2 t)e^{-2t}$.

12. Să se integreze sistemul simetric de ecuații diferențiale:

$$\frac{dx_1}{x_3 - x_2} = \frac{dx_2}{x_1 - x_3} = \frac{dx_3}{x_2 - x_1}$$

Soluție:

Sistemul dat poate fi scris sub forma:

$$\frac{dx_1}{x_3 - x_2} = \frac{dx_2}{x_1 - x_3} = \frac{dx_3}{x_2 - x_1} = \frac{dx_1 + dx_2 + dx_3}{0} = \frac{x_1 dx_1 + x_2 dx_2 + x_3 dx_3}{0}.$$

De aici rezultă că $d(x_1+x_2+x_3)=0$ şi $x_1dx_1+x_2dx_2+x_3dx_3=0$. Soluția generală va fi formată din două integrale prime: $x_1+x_2+x_3=C_1$ şi $x_1^2+x_2^2+x_3^2=C_2$.

13. Să se integreze ecuația diferențială cu derivate parțiale de ordinul întâi liniare:

$$\sqrt{x_1} \frac{\partial u}{\partial x_1} + \sqrt{x_2} \frac{\partial u}{\partial x_2} + \sqrt{x_3} \frac{\partial u}{\partial x_3} = 0, \qquad u \Big|_{x_3 = 1} = x_1 - x_2.$$

Soluție: Sistemul caracteristic $\frac{dx_1}{\sqrt{x_1}} = \frac{dx_2}{\sqrt{x_2}} = \frac{dx_3}{\sqrt{x_3}}$ are integralele prime distincte: $\sqrt{x_1} - \sqrt{x_3} = C_1$ și $\sqrt{x_2} - \sqrt{x_3} = C_2$.

Soluția generală a ecuației este:

$$u = \Phi(\sqrt{x_1} - \sqrt{x_3}, \sqrt{x_2} - \sqrt{x_3}).$$

Pentru $x_3=1$ obținem $\sqrt{x_1}-1=C_1$, $\sqrt{x_2}-1=C_2$, de unde $x_1=(1+C_1)^2$, $x_2=(1+C_2)^2$. Cu ajutorul condiției Cauchy obținem $u=(1+C_1)^2-(1-C_2)^2$. Înlocuind pe C_1 și C_2 găsim soluția ecuației date:

$$u = (1 + \sqrt{x_1} - \sqrt{x_3})^2 - (1 + \sqrt{x_2} - \sqrt{x_3})^2.$$

14. Să se integreze ecuația diferențială cu derivate parțiale cvasiliniară:

$$2x_1u\frac{\partial u}{\partial x_1} + 2x_2u\frac{\partial u}{\partial x_2} = u^2 - x_1^2 - x_2^2, \qquad u\Big|_{x_2 = 1} = x_1.$$

Soluție: Sistemul caracteristic este:

$$\frac{dx_1}{2x_1u} = \frac{dx_2}{2x_2u} = \frac{du}{u^2 - x_1^2 - x_2^2}$$

Din primele două ecuații găsim următoarea integrală primă:

$$\frac{x_1}{x_2} = C_1$$
. Scriem sistemul caracteristic sub forma: $\frac{dx_1}{x_1} = \frac{dx_2}{x_2} = \frac{2u \ du}{u^2 - x_1^2 - x_2^2}$

Alegând combinația integrabilă $2x_1$, $2x_2$, 1 sistemul de mai sus poate fi scris astfel:

$$\frac{2x_1 dx_1}{2x_1^2} = \frac{2x_2 dx_2}{2x_2^2} = \frac{2u \ du}{u^2 - x_1^2 - x_2^2} = \frac{2x_1 dx_1 + 2x_2 dx_2 + 2u \ du}{x_1^2 + x_2^2 + u^2}$$

sau (prima și ultima):

$$\frac{dx_1}{x_1} = \frac{d(x_1^2 + x_2^2 + u^2)}{x_1^2 + x_2^2 + u^2},$$

și integrala primă: $\frac{x_1^2 + x_2^2 + u^2}{x_1} = C_2.$

Soluția generală a ecuației date este:

$$u = \Phi\left(\frac{x_1}{x_2}, \frac{x_1^2 + x_2^2 + u^2}{x_1}\right).$$

Pentru
$$x_2=1$$
, $u\Big|_{x_2=1}=x_1$ obținem: $x_1=C_1$ și $\frac{2x_1^2+1}{x_1}=C_2$

Înlocuind x_1 cu C_1 obținem între C_1 și C_2 relația:

$$\frac{2C_1^2 + 1}{C_1} = C_2$$

Revenind la valorile lui C_1 și C_2 din cele două integrale prime obținem:

$$\frac{2x_1^2 + 1}{x_1} = \frac{x_1^2 + x_2^2 + u^2}{x_1}$$

de unde soluția generală a ecuației cvasiliniare date:

$$u^2 = x_1^2 - x_2^2 + 1.$$

Probleme propuse.

Să se integreze ecuațiile diferențiale:

1.
$$y' + \frac{2}{x^2 - 1}y = 2x + 2$$
, $y(0) = -3$

2.
$$y' + \frac{2}{x}y = x^3$$

$$3. ydx + (2\sqrt{xy} - x) dy$$

4.
$$2x^2y' = 4xy - y^2$$
, $y(1) = 1$

5.
$$y' = \frac{3x - 4y + 7}{4x - 5y + 11}$$

6.
$$(3x+3y-1)dx+(x+y+1)dy=0$$

7.
$$xy'+y=-x^2y^2$$
, $y(1)=1$

8.
$$y'+y^2 + \frac{4}{x}y + \frac{2}{x^2} = 0$$
, $y_p = \frac{a}{x}$

$$9. \quad y = xy' + \frac{1}{y'}$$

10.
$$y = (1 + y')x + y'^2$$

11. *a*)
$$y''+2y'+y=0$$
, $y(0)=0$, $y'(0)=1$

b)
$$y^{(3)} - y'' + y' - y = 0$$

c)
$$y^{(4)} + 2y^{(3)} + 3y'' + 2y' + y = 0$$

$$d) y^{(5)} + y'' = 0$$

12. *a*)
$$y'' - y' - 2y = 2x + 3$$

b)
$$y^{(3)} - y'' = x$$
, $y(1) = 1$, $y'(1) = 0$, $y'(1) = -1$

c)
$$y'' - 7y' + 6y = \sin x + 3\cos x$$

d)
$$y'' - 2y' + 2y = 2e^x \cos x$$

e)
$$y^{(4)} - 16y = 6e^{2x} + e^{-x} + 3\cos 2x + 2\sin 3x$$

13. a)
$$x^2y'' - xy' + y = 2x$$
, $y(1) = 0$, $y'(1) = 1$

b)
$$x^3y^{(3)} + 3x^2y'' + xy' - y = x$$
, $y(1) = y'(1) = y''(1) = 0$

14. a)
$$y'' - y = \frac{1}{\cos x}$$

b)
$$y''-2y'+y = \frac{1}{x}e^x$$

15. a)
$$\begin{cases} x' = -2x - y + \sin t \\ y' = 4x + 2y + \cos t \end{cases}$$
, $x = x(t)$, $y = y(t)$.

$$b) \begin{cases} x' = y + z & x = x(t), \ y = y(t), \ z = z(t) \\ y' = z + x, & x(0) = 1, \ y(0) = 1, \ z(0) = 0 \end{cases}$$

16. a)
$$\frac{dx_1}{x_1(x_2 - x_3)} = \frac{dx_2}{x_2(x_3 - x_1)} = \frac{dx_3}{x_3(x_1 - x_2)}$$

b)
$$\frac{dx_1}{x_1^2 - x_2^2 - x_3^2} = \frac{dx_2}{2x_1x_2} = \frac{dx_3}{2x_1x_3}$$

c)
$$\frac{dx_1}{x_1} = \frac{dx_2}{x_2} = \frac{dx_3}{x_3 - \sqrt{x_1^2 + x_2^2 + x_3^2}}$$

17.
$$x_1(x_2 - x_3) \frac{\partial u}{\partial x_1} + x_2(x_3 - x_1) \frac{\partial u}{\partial x_2} + x_3(x_1 - x_2) \frac{\partial u}{\partial x_3} = 0$$

18. *a*)
$$x_1 \frac{\partial u}{\partial x_1} - x_2 \frac{\partial u}{\partial x_2} = u$$
, $u \Big|_{x_1 = x_2} = x_1^3$

b)
$$x_1 u \frac{\partial u}{\partial x_1} + x_2 u \frac{\partial u}{\partial x_2} = -x_1 x_2$$
, $u \Big|_{x_2 = 2} = x_1$