

BC26&BC28&M26

兼容设计手册

NB-IoT/GSM/GPRS 系列

版本: BC26&BC28&M26_兼容设计手册_V1.1

日期: 2018-05-07

状态: 受控文件

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2018, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2018.

文档历史

修订记录

版本	日期	作者	变更描述
1.0	2018-04-27	孙鹏鹏/靳坤	初始版本
1.1	2018-05-07	靳坤	 更新表 2,增加 M26 辅助串口描述。 更新图 3,增加 100uF、47uF、33pF 和 10pF 电容的设计。 更新表 7,增加 M26 辅助串口的描述。 更新图 11,增加 M26 辅助串口的设计。 更新 4.8 章节关于 M26 ADC0 的描述。

目录

文档	当历史	2
目園	₹	3
表格	各索引	4
图片	十索引	5
1	引言	6
2	综述	7
	2.1. 产品简介	
	2.2. 功能概述	8
	2.3. 引脚分配	9
3	引脚描述	11
4	硬件参考设计	15
	4.1. 供电电源	
	4.1.1. 模块工作电压	15
	4.1.2. 供电电源设计	16
	4.2. 开机电路	17
	4.3. 关机	18
	4.4. 复位	19
	4.4.1. BC26/BC28 硬件复位	19
	4.4.2. BC26/BC28 软件复位	20
	4.5. 网络状态指示	20
	4.6. (U)SIM 接口	20
	4.7. 串口	21
	4.8. 模数转换接口	22
	4.9. RF 接口	23
5	物理尺寸	24
	5.1. 推荐兼容封装	24
	5.2. 推荐钢网尺寸	26
	5.3. 安装示意图	28
6	生产焊接与包装	
	6.1. 生产焊接	
	6.2. 包装	30
7	附录 A	32

表格索引

表 2: 主要性能参数	表 1:	模块基本信息	7
表 3: I/O 参数定义	表 2:	主要性能参数	8
表 4: 引脚对比			
表 5:模块工作电压范围			
表 6: 供电类型与电源转换电路对应关系			
表 7:模块 UART接口电压域表 8:模块 ADC接口信息			
表 8:模块 ADC 接口信息			
	表 9:	参考文档	. 32

图片索引

图 1:	BC26&BC28&M26 引脚分配	. 10
图 2:	VBAT 电压波形图	. 15
图 3:	供电电源参考设计电路	. 16
图 4:	开集驱动控制 PWRKEY 开机参考电路(BC26/M26)	. 17
图 5:	BC26&BC28&M26 开机时序	. 17
图 6:	BC26&BC28&M26 关机时序图	. 18
	BC26&BC28 硬件复位电路	
	BC26&BC28 硬件复位时序	
图 9:	NETLIGHT 参考设计电路	. 20
	: 6-PIN (U)SIM 卡接口兼容设计电路	
	:串口电平转换参考电路	
	: RF 天线接口参考设计电路	
	: BC26&BC28&M26 底视图	
	: BC26&BC28&M26 推荐兼容封装	
	: BC26 和 BC28 钢网尺寸	
	: M26 钢网尺寸	
	: 安装效果图	
	: 回流焊温度曲线	
图 19	: 卷带尺寸(单位: 毫米)	. 30
图 20:	· 卷盘尺寸(单位: 毫米)	. 31

1 引言

移远通信的 NB-IoT 模块 BC26、BC28 与 GSM/GPRS 模块 M26 相互兼容。本文档主要描述了 BC26、BC28 与 M26 之间的兼容设计。

2 综述

2.1. 产品简介

M26 是一款四频段的 GSM/GPRS 模块,支持 GSM850/EGSM900/DCS1800/PCS1900 频段。BC26 和 BC28 是高性能、低功耗、支持多频段的 NB-IoT 模块。BC26、BC28 与 M26 采用兼容设计,用户可根据需求选择合适的产品作为终端应用。

表 1: 模块基本信息

模块	外观	封装	尺寸 (mm)	描述
BC26	BC26 NA 01-AXXXX BC26NA-04-STD SN-XXXXXXXXIME1XXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 个 LCC 引脚 14 个 LGA 引脚	17.7 × 15.8 × 2.0	多频段 NB-IoT 模块
BC28	BC28 JA Q1-A1437 BC28JA-02-STD SN:XXXXXXXXXXXXXXXXXI JMEI:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 个 LCC 引脚 14 个 LGA 引脚	17.7 × 15.8 × 2.0	多频段 NB-IoT 模块
M26	M26 FB 0X-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	44 个 LCC 引脚	17.7 × 15.8 × 2.3	四频 GSM/GPRS 模块

2.2. 功能概述

下表对比了 BC26、BC28 和 M26 的主要性能参数。

表 2: 主要性能参数

功能	BC26	BC28	M26		
供电	供电电压: 2.1V~3.63V 典型值: 3.3V	供电电压: 3.1V~4.2V 典型值: 3.6V	供电电压: 3.3V~4.6V 典型值: 4.0V		
峰值电流	VBAT 最大电流: 0.5A	VBAT 最大电流: 0.8A	VBAT 最大电流: 1.6A		
休眠耗流	最大 5uA @PSM	最大 5uA @PSM	1.3mA @DRX=5 1.2mA @DRX=9		
频段	H-FDD: B1/B2*/B3/B5/B8/B12*/ B13*/B17*/B18*/B19*/ B20/B25*/B26*/B28*/B66*	H-FDD: B1/B3/B5/B8/B20/B28*	四频段: GSM850/ EGSM900/ DCS1800/PCS1900		
温度范围	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C		
UART 接口	主串口: ● 用于 AT 命令传送和数据传输时,支持的波特率为4800bps、9600bps、115200bps(默认)、230400bps、460800bps和921600bps。 ● 用于软件升级时,支持的波特率为115200bps(默认)和921600bps。	4800bps、9600bps(默 认)和 115200bps。	主串口: ● 全功能串口● 用于 AT 命令传送和 GPRS 数据传输● 自适应波特率:从 4800bps 到 115200bps● 也可用于软件升级		
	 调试串口: ● 用于软件调试;支持的波特率为4800bps、9600bps、115200bps(默认)、230400bps、460800bps和921600bps。 辅助串口: ● 用于AT命令传送和数据 	调试串口: ● 用于软件调试,仅支持波特率 921600bps。	调试串口:		

	传输;支持的波特率为4800bps、9600bps,115200bps(默认)、230400bps、460800bps		模块默认波特率为 115200bps不支持自适应波特率
	和 921600bps。 信号电平: 1.8V	信号电平: 3.0V	信号电平: 2.8V
(U)SIM 接口	支持 USIM 卡: 1.8V	支持 USIM 卡: 1.8V/3.0V	支持(U)SIM 卡: 1.8V/3.0V
音频接口	不支持	不支持	一路模拟音频输入 两路模拟音频输出
PCM 接口	不支持	不支持	支持
ADC 接口	支持 ADC*	支持 ADC*	支持 ADC
ВТ	不支持	不支持	支持 BT 3.0
RTC	不支持	不支持	Vnorm=2.8V V _I =1.5V~3.3V
固件升级	通过 UART 或 DFOTA*升级	通过 UART 或 DFOTA 升级	通过主串口升级

- 1. 1) 表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. "*"表示正在开发中。

2.3. 引脚分配

BC26、BC28与 M26 模块的引脚分配图如下:

图 1: BC26&BC28&M26 引脚分配

- 1. 蓝色字体标示的是 BC26 的引脚名称。
- 2. 绿色字体标示的是 M26 的引脚名称。
- 3. 黑色字体标示的是 BC28 的引脚名称。
- 4. 橙色标示的是 BC26 和 BC28 比 M26 多出的引脚。
- 5. "*"表示正在开发中。

3 引脚描述

该章节描述了 BC26、BC28 与 M26 的引脚定义及比较。

表 3: I/O 参数定义

类型	描述
Ю	双向端口
DI	数字输入
DO	数字输出
OD	漏极开路
PI	电源输入
PO	电源输出
Al	模拟输入
AO	模拟输出

下表描述了 BC26、BC28 和 M26 的引脚功能及电气特性对比:

表 4: 引脚对比

引脚	BC26			BC28			M26	M26		
号	引脚名	I/O	描述	引脚名	I/O	描述	引脚名	I/O	描述	
1	GND			GND			AGND		模拟地,外部音 频电路的单独 接地连接	
2	RESERVED	/	/	RESERVED	/	/	SPK2P	АО	通道 2 的单端音频输出(正)	
3	SPI_MISO	DI	主机输入从机输 出信号	RESERVED	/	/	MICP	AI	差分音频输入 (正)	

4	SPI_MOSI	DO	主机输出从机输 入信号	RESERVED	/	/	MICN	AI	差分音频输入 (负)
5	SPI_SCLK	DO	串行时钟信号	RESERVED	/	/	SPK1P	АО	通道 1 的差分音频输出(正)
6	SPI_CS	DO	片选信号	RESERVED	/	/	SPK1N	AO	通道 1 的差分音频输出(负)
7	PWRKEY	DI	拉低 PWRKEY 使模块开机	RESERVED	/		PWRKEY	DI	拉低 PWRKEY 一段规定时间 来开机或者关 机
8	RESERVED	/	1	RESERVED	/	/	AVDD	РО	ADC 电路的参 考电源,不用则 悬空
9	ADC0*	Al	通用模数转换接口	ADC*	Al	通用模数 转换接口	ADC0	Al	通用模数转换 接口
10	SIM_GND		USIM 卡专用地	SIM_GND		USIM 卡专 用地	SIM_GND		(U)SIM 卡专用 地
11	SIM_DATA	Ю	USIM 卡数据信 号	SIM_DATA	Ю	USIM 卡数 据信号	SIM_DATA	Ю	(U)SIM 卡数据 线
12	SIM_RST	DO	USIM 卡复位信 号	SIM_RST	DO	USIM 卡复 位信号	SIM_RST	DO	(U)SIM 卡复位 线
13	SIM_CLK	DO	USIM 卡时钟信 号	SIM_CLK	DO	USIM 卡时 钟信号	SIM_CLK	DO	(U)SIM 卡时钟 线
14	SIM_VDD	РО	USIM 卡供电电源	SIM_VDD	РО	USIM 卡供 电电源	SIM_VDD	РО	(U)SIM 卡供电 电源
15	RESET	DI	复位模块	RESET	DI	复位模块	RESERVED	/	/
16	NETLIGHT*	DO	网络状态指示	NETLIGHT*	DO	网络状态 指示	NETLIGHT	DO	网络状态指示
17	RXD	DI	接收数据	RXD	DI	模块接收 数据	RXD	DI	模块接收数据
18	TXD	DO	模块发送数据	TXD	DO	模块发送 数据	TXD	DO	模块发送数据
19	PSM_EINT	DI	专用的外部中断, 用于从 PSM 唤醒 模块	DTR	DI	DTE 准备 就绪	DTR	DI	DTE 准备就绪
20	RI	DO	模块输出振铃提 示	RI	DO	模块输出 振铃提示	RI	DO	模块输出振铃 提示
				RESERVED	/	/	DCD	DO	模块输出载波
21	RESERVED	/	/	RESERVED		,			检测

23	RESERVED	/	/	RESERVED	/	/	RTS	DI	DTE 请求发送 数据
24	VDD_EXT	РО	1.8V 输出,PSM 模式下无电压输 出。 可为模块的上拉 电路供电;不建议 用于外部电路供 电。	VDD_EXT	РО	3.0V 外部 电路输出 电源, 在 PSM 下,不能用 于外部电 路的供电。	VDD_EXT	РО	2.8V 电源输 出,用于外部电 路
25	RESERVED	/	/	RESERVED	/	1	RFTXMON	DO	发射信号指示
26	RESERVED	/	/	RESERVED	/	/	BT_ANT	Ю	蓝牙天线接口
28	RXD_AUX	DI	模块接收数据	RESERVED	/	/	RXD_AUX	DI	模块接收数据
29	TXD_AUX	DO	模块发送数据	RESERVED	/	/	TXD_AUX	DO	模块发送数据
30	RESERVED	/	/	RESERVED	1	/	PCM_CLK	DO	PCM 时钟线
31	RESERVED	/	/	RESERVED	/	/	PCM_SYNC	DO	PCM 帧同步
32	RESERVED	/	/	RESERVED	/	/	PCM_IN	DI	PCM 数据输入
33	RESERVED	/	/	RESERVED	/	/	PCM_OUT	DO	PCM 数据输出
35	RF_ANT	Ю	射频天线接口	RF_ANT	Ю	射频天线 接口	RF_ANT	Ю	射频天线接口
38	DBG_RXD	DI	模块接收数据	RESERVED	/	1	DBG_RXD	DI	模块接收数据
39	DBG_TXD	DO	模块发送数据	DBG_TXD	DO	模块发送 数据	DBG_TXD	DO	模块发送数据
42	VBAT_BB	PI	模块基带电源: VBAT_BB= 2.1V~3.63V	VBAT	PI	模块主电 源: VBAT= 3.1V~4.2V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
43	VBAT_RF	PI	模块射频电源: VBAT_RF= 2.1V~3.63V	VBAT	PI	模块主电 源: VBAT= 3.1V~4.2V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
44	RESERVED	/	/	RESERVED	/	/	VRTC	Ю	输入: RTC 时 钟供电 输出: 通过该引 脚为备份电池 或电容充电
27, 34, 36, 37,	GND	/	地	GND	/	地	GND	/	地

40,										
41,										
45~	DECEDVED	,	35 GD コ1 Hin	DESERVED.	,	死 6万 月 中市	,	,	,	
58	RESERVED	/	预留引脚	RESERVED	/	预留引脚	/	/	/	

- 1. 红色字体标示的引脚表示封装兼容但功能不同。
- 2. 黑色字体标示的引脚表示封装兼容且功能相同。
- 3. 橙色字体标示的引脚是 BC26 和 BC28 比 M26 多出的引脚。
- 4. 预留的引脚和不使用的引脚请悬空。
- 5. "*"表示正在开发中。

4 硬件参考设计

本章节描述了 BC26、BC28 与 M26 主要功能的兼容设计。

4.1. 供电电源

4.1.1. 模块工作电压

下表为 BC26/BC28/M26 模块的工作电压范围:

表 5: 模块工作电压范围

模块	电源引脚	条件	最小值	典型值	最大值	单位
BC26	VBAT_BB & VBAT_RF	实际输入电压必须在最小、最大值范围内。	2.1	3.3	3.63	V
BC28	VBAT		3.1	3.6	4.2	V
M26	VBAT		3.3	4.0	4.6	V

考虑模块之间的兼容设计时,请确保模块输入电压最小不低于 3.3V,最大不超过 3.63V。即便当模块输入电源 VBAT 出现电压跌落时,也要确保 VBAT 电压大于模块最低工作电压值。

图 2: VBAT 电压波形图

4.1.2. 供电电源设计

模块的电源设计对其性能至关重要。BC26、BC28 和 M26 的电源应该能够提供 2A 的电流。

为了确保更好的电源供电性能以及兼容性,以下几点请注意:

- 1. 建议模块的电源输入电压为 3.6V;
- 2. 靠近 VBAT 管脚增加一个 TVS 管以提高模块的浪涌电压承受能力;
- 3. 建议靠近模块的 VBAT 管脚增加几个电容以增强电源稳定性; M26 模块建议增加 100uF、100nF、33pF 和 10pF 电容, BC26/BC28 模块建议增加 47uF、100nF、33pF 和 10pF 电容。

图 3: 供电电源参考设计电路

根据供电类型(电池供电或直流电源供电)不同,上图虚线框内电源转换电路的参考设计将有所不同, 具体说明如下表所示。

表 6:	供电类型与电源转换电路对应关系
AX U:	医电子生一甲腺科医甲啡剂 2011年

	电源转换电路		
供电类型	BC26 (VBAT=2.1V~3.63V)	BC28 (VBAT=3.1V~4.2V)	M26 (VBAT=3.3V~4.6V)
锂亚电池	0Ω	Ω0	Boost
锂锰电池	0Ω	Boost	Boost
直流供电	DC-DC	DC-DC	DC-DC

4.2. 开机电路

BC26、BC28 和 M26 的开机方式不同:

- BC28 只要通过向 VBAT 引脚提供电源便可以自动开机。
- BC26 和 M26 是通过将 PWRKEY 引脚拉低一段时间 T1(BC26≥300ms, M26>1s)来开机;推 荐使用开集驱动电路来控制 PWRKEY 引脚,参考电路如下图所示。

图 4: 开集驱动控制 PWRKEY 开机参考电路(BC26/M26)

BC26、BC28与 M26的开机时序对比图如下:

图 5: BC26&BC28&M26 开机时序

- 1. 在使用拉低 PWRKEY 的方式进行 BC26/M26 开机时,需等 VBAT 稳定一段时间以后(BC26=TBD,M26>100ms)后再拉低 PWRKEY 引脚,以保证 VBAT 电压稳定。不建议一直拉低 PWRKEY 引脚。
- 2. 绿色标示的是 BC26 的开机时序。
- 3. 蓝色标示的是 M26 的开机时序。
- 4. 黑色标示的是 BC28 的开机时序,建议 BC28 上电 3.8s 后再对模块进行操作。

4.3. 关机

M26 可通过 **AT+QPOWD** 命令或者拉低 PWRKEY 引脚一段时间 T(0.7s~1s)来实现关机,而 BC26 和 BC28 只能通过断开 VBAT 电源关机。

关机时序图如下图所示:

图 6: BC26&BC28&M26 关机时序图

备注

- 1. 绿色标示的是 BC28 的关机时序。
- 2. 黑色标示的是 M26 的关机时序。
- 3. 蓝色标示的是 BC26 的关机时序。

- 4. M26 通过 AT 命令关机的前提是 PWRKEY 要保持高电平。
- 5. M26 采用 PWRKEY 关机要保证 PWRKEY 拉低时间在 0.7s 到 1s 之间。
- 6. 网络注销时间与本地网络信号强度有关。

4.4. 复位

M26 没有复位功能, BC26 和 BC28 有硬件和软件两种复位方式。

4.4.1. BC26/BC28 硬件复位

通过拉低 RESET 引脚一段时间 T (BC26≥50ms, BC28≥100ms) 可以实现复位,复位电路图如下所示:

图 7: BC26&BC28 硬件复位电路

复位时序如下图所示:

图 8: BC26&BC28 硬件复位时序

- 1. 黑色标示的是 BC28 的关机时序。
- 2. 蓝色标示的是 BC26 的关机时序。

4.4.2. BC26/BC28 软件复位

- BC28 通过 AT+NRB 命令可实现复位操作。详细信息请参考文档 [2]。
- BC26 通过 AT+QRESET=1 命令可实现复位操作。详细信息请参考文档 [6]。

4.5. 网络状态指示

BC26/BC28/M26 的 NETLIGHT 引脚信号可以用来指示模块的网络状态,参考设计如下:

图 9: NETLIGHT 参考设计电路

4.6. (U)SIM接口

- BC26 默认支持 1.8V 的 USIM 卡。
- BC28 默认支持 1.8V/3.0V 的 USIM 卡。
- M26 默认支持 1.8V/3.0V 的 USIM/SIM 卡。

BC26、BC28 的 USIM 卡接口和 M26 的(U)SIM 卡接口相互兼容。模块的 6-pin (U)SIM 卡接口兼容设计如下图所示:

图 10: 6-Pin (U)SIM 卡接口兼容设计电路

4.7. 串口

BC28 的串口电压域与 BC26 和 M26 的电压域不同。以下是模块的电压域。

表 7: 模块 UART 接口电压域

模块	串口类型	电压域	备注
BC26	主串口、调试串口 辅助串口	1.8V	1
BC28	主串口、调试串口	3.0V	/
Mac	主串口	2.01/	支持 RTS/CTS
M26	调试串口、辅助串口	- 2.8V	/

模块串口兼容的电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 11: 串口电平转换参考电路

- 1. 如上的晶体管电路解决方案不适合超过 460Kbps 的波特率应用。
- 2. "\"表示串口的测试点。建议保留 VBAT 和 PWRKEY 的测试点以在必要时方便进行固件升级和调试。
- 3. 黑色字体标示的是 BC28, 使用 BC28 时只贴 RXD、TXD、RI 和 DBG TXD 部分电路。
- 4. 蓝色字体标示的是 BC26。
- 5. 绿色字体标示的是 M26。

4.8. 模数转换接口

BC26、BC28 和 M26 的 ADC 接口提供一个 10 位模数转换接口来测量电压值:

- BC26 的 ADC0*最大采集电压是 1.4V;
- BC28 的 ADC*最大采集电压为 4V, 但必须低于 VBAT 供电电压;
- M26 的 ADC0 最大采集电压是 2.8V。

表 8: 模块 ADC 接口信息

模块	引脚名称	引脚号	描述
BC26	ADC0*	9	通用模数转换接口
BC28	ADC*	9	通用模数转换接口
M26	ADC0	9	通用模数转换接口

"*"表示正在开发中。

4.9. RF 接口

M26 的天线接口 ANT_MAIN、BT_ANT 和 BC26/BC28 的天线接口 RF_ANT 引脚是兼容的,接口阻抗为 50Ω 。为了能够更好地调试射频性能,建议预留 π 型匹配电路,且 π 型匹配器件(R1/C1/C2)应靠近天线放置。其中 C1、C2 默认不贴,只贴 0Ω 电阻 R1。天线连接参考电路如下图所示。

RF 天线接口参考设计如下图所示:

图 12: RF 天线接口参考设计电路

5 物理尺寸

本章节主要介绍了 BC26、BC28 和 M26 模块的推荐封装及钢网设计。所有的尺寸单位为毫米; 所有未标注公差的尺寸, 公差为±0.05mm。

5.1. 推荐兼容封装

BC26、BC28与 M26的底视图如下图所示:

图 13: BC26&BC28&M26 底视图

BC26&BC28&M26 兼容封装如下图所示:

图 14: BC26&BC28&M26 推荐兼容封装

备注

- 1. 在主板 PCB 上,周围器件距离模块位置要大于 3mm。
- 2. 推荐封装中半径为 1.7mm 的圆形测试点在原理图和 PCB 中不需要设计,同时还应做禁铺处理。
- 3. 为了与 M26 兼容, BC26 和 BC28 的 52 脚不需要在兼容封装中设计。

5.2. 推荐钢网尺寸

BC26、BC28 与 M26 的 PCB 厚度不同,为保证模块锡膏焊接质量,M26 模块焊盘部分对应的钢网厚度推荐为 0.2mm,BC26/BC28 的钢网厚度推荐为 0.15mm。详细信息请参考*文档 [4]*。

BC26 和 BC28 推荐钢网尺寸如下图所示:

图 15: BC26 和 BC28 钢网尺寸

M26 推荐钢网尺寸如下图所示:

图 16: M26 钢网尺寸

5.3. 安装示意图

BC26、BC28与 M26 安装效果图如下所示:

图 17:安装效果图

6 生产焊接与包装

6.1. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板需调整到合适的力度。为保证模块锡膏焊接质量,BC26/BC28 模块焊盘部分对应的钢网厚度推荐为 0.15mm,M26 的钢网厚度推荐为 0.20mm。

推荐回流焊的温度为 235~245℃,最高不能超过 260℃。为避免模块因反复受热而损坏,建议客户在 完成 PCB 板第一面回流焊后再贴模块。推荐的回流焊曲线温度图如下所示:

图 18: 回流焊温度曲线

- 1. 在生产焊接或者其他可能直接接触移远通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇, 丙酮,三氯乙烯等)擦拭模块屏蔽罩;否则可能会造成屏蔽罩生锈。
- 2. 移远通信洋白铜镭雕屏蔽罩可满足: 12 小时中性盐雾测试后,镭雕信息清晰可辨识,二维码可扫描 (可能会有白色锈蚀)。

6.2. 包装

BC26、BC28 和 M26 模块采用卷带包装,并用真空密封袋将其封装,直到模块准备焊接时才可以打开包装。每个卷带包含 250 个模块,卷盘直径为 330 毫米。具体规格如下:

图 19: 卷带尺寸(单位:毫米)

图 20: 卷盘尺寸(单位:毫米)

7 附录 A

表 9:参考文档

序号	文档名称	备注
[1]	Quectel_M26_AT_命令手册	M26 AT 命令使用手册
[2]	Quectel_BC35-G&BC28_AT_Commands_Manual	BC28&BC35-G AT 命令使用手册
[3]	Quectel_M26_硬件设计手册	M26 硬件设计手册
[4]	移远通信模块贴片应用指导	移远通信模块贴片应用指导
[5]	Quectel_BC28_硬件设计手册	BC28 硬件设计手册
[6]	Quectel_BC26_AT_Commands_Manual	BC26 AT 命令使用手册
[7]	Quectel_BC26_硬件设计手册	BC26 硬件设计手册

表 10: 术语缩写

术语	描述
ADC	Analog-to-Digital Converter
ВТ	Bluetooth
CTS	Clear to send
DCD	Data Carrier Detect
DCS	Digital Communication System
DFOTA	Delta Firmware Upgrade Over the Air
DRX	Discontinuous Reception
DTR	Date Terminal Ready
EGSM	Extended Global System for Mobile

GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
H-FDD	Half Frequency Division Duplexing
LCC	Leadless Chip Carriers
LGA	Land Grid Array
MIC	Microphone
NB-IoT	Narrow Band Internet of Things
РСВ	Printed Circuit Board
PCM	Pulse Code Modulation
PCS	Personal Communication System
PSM	Power Saving Mode
RF	Radio Frequency
RI	Ring Indicator
RTC	Real Time Clock
RTS	Require To Send
RXD	Receive Direction
SPK	Speaker
TXD	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
(U)SIM	(Universal) Subscriber Identity Module
Vnorm	Normal Voltage Value