Functions:

getInfoGenes

function getInfoGenes (): --> dictionary

Return a dictionary containing information on geneTable.

getInfoDiseases

function getInfoDiseases (): --> dictionary

Return a dictionary containing information on disease Table.

getInfo

function getInfo (): --> tuple containing two dictionaries

Returns two dictionaries containing information on the two datasets.

getDiseaseTableList

function getDiseaseTableList (start=0, end=None, step=1,): --> list

Return a list containing the rows of Disease Table from start index to end index. It works like as slicing.

Parameters:

start : int start index

end: int end index

step: int

interval index

getGeneTableList

function getGeneTableList (start=0, end=None, step=1,): --> list

Return a list containing the rows of Gene Table from start index to end index. It works like as slicing.

Parameters:

start: int start index

end: int end index

step: int

interval index

getDistinctGenes

function getDistinctGenes (): --> dict

Return a dict with the unique genes present in the gene dataset.

getDistinctDiseases

function getDistinctDiseases (): --> dict

Return a dict with the unique disease present in the disease dataset.

getGeneEvidences

function getGeneEvidences (gene,): --> dict Receives as input a geneid or a gene_symbol and returns a dictionary with the sentences that relates the

COVID-19 with the gene.

Parameters: gene: str

the geneid or gene_symbol input

getDiseaseEvidences

function getDiseaseEvidences (disease,): --> dict Receives as input a diseaseID or a disease name and returns a dictionary with the sentences that relates the COVID-19 with the disease.

disease: str

Parameters:

The diseaseID or disease name input

function getCorrelation (num_rows, min_occurrences,): --> dictionary

getCorrelation

Returns a dict with the correlations between genes and diseases sorted by the highest number of occurrences. It allows to customize the number of correlations to be shown and the minimum occurrence. When called it calls the method correlation_gene_disease of the class Testing defined in "functions.py"

Parameters:

shows only this number of correlations

num_rows: int

min_occurrences : int show only the correlations with this minimum occurrences

getDiseasesRelatedToGene

function getDiseasesRelatedToGene (gene,): --> dict Receives as input a geneID or a gene symbol and returns a dict with the diseases related to the gene.

Parameters:

function getGenesRelatedToDisease (disease,): --> dict

geneID or gene_symbol

getGenesRelatedToDisease

Receives as input a diseaseID or a disease name and then returns a dict with the genes related to the disease.

disease : str

Parameters:

diseaseID or disease name

getDocumentation

Reads the documentation from .json files and return a dict with the documentation. You can either input the whole path, or the folder and the name of the file. To know more about the format of the documentation read the section dedicated in the Project Overview

function getDocumentation (path, name_file,): --> dictionary

Parameters: path: str The path to the file or the path to the folder

name_file : *str*

The name of the file. It can be either with extension or without. It's unnecessary if you input the path to the file in 'path'.