

Bộ biến đổi điện áp một chiều

- Trong nhiều ứng dụng công nghiệp, cần thiết phải biến đổi nguồn dc cố định thành nguồn dc thay đổi được. Một bộ biến đổi như vậy được gọi là bộ biến đổi điện áp một chiều. Bộ biến đổi kiểu này, về mặt chức năng, có thể xem như tương đương với một biến áp xoay chiều có thể điều chỉnh điện áp ra một cách liên tục. Cũng giống như biến áp, bộ biến đổi điện áp một chiều có thể dùng để tăng hoặc giảm điện áp từ nguồn dc ngõ vào.
- Bộ biến đổi điện áp một chiều có rất nhiều ứng dụng trong công nghiệp và dân dụng. Chúng có thể được dùng để điều khiển động cơ trong xe điện, cầu trục, thiết bị khai thác mỏ, v.v...Chúng cũng có thể sử dụng trong các bộ nguồn dc cung cấp cho các thiết bị điện tử.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

 $\frac{1}{2}$

Bộ biến đổi điện áp một chiều

Chương này gồm hai phần chính:

- ❖ Phần 1: khảo sát các bộ biến đổi dc-dc căn bản:
 - > Bộ biến đổi dc-dc kiểu giảm áp
 - Bộ biến đổi dc-dc kiểu tăng áp
 - > Bộ biến đổi dc-dc kiểu đảo dòng
 - > Bộ biến đổi dc-dc kiểu tổng quát
- Phần 2: khảo sát ứng dụng của bộ biến đổi điện áp một chiều dùng làm nguồn một chiều kiểu đóng ngắt (Switching Mode Power Supplies)

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

3

Δ

PHẦN 1

<u>PHẦN 1:</u> Các bộ biến đổi điện áp một chiều cơ bản

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

7

Sơ lược về động cơ DC

Phương trình cơ bản của động cơ DC:

$$E = K\Phi\omega$$

$$U_{\cdot} = E + R_{\cdot \cdot} I_{\cdot \cdot}$$

$$M = K\Phi I_{"}$$

Ở chế độ xác lập, momen M do động cơ sinh ra cân bằng với momen tải M tải đặt lên trục động cơ:

Phương trình đặc tính cơ của động cơ DC:

$$\omega = \frac{U_t}{K\Phi} - \frac{R_u}{\left(K\Phi\right)^2} M = \omega_0 - \Delta\omega$$

Với động cơ DC kích từ độc lập: KΦ = const →Đặc tính cơ là đường thẳng

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

9

Sơ lược về động cơ DC

Động cơ DC kích từ độc lập hoạt động với bộ biến đổi công suất (bộ chỉnh lưu hoặc bộ biến đổi DC-DC)

Ở chế độ dòng liên tục:

- Momen động cơ phụ thuộc chủ yếu vào thành phần trung bình của dòng phần ứng,
- ➤ Sức điện động E của động cơ giả thiết là không đổi theo thời gian: do momen quán tính cơ của hệ thống thường khá lớn → thời hằng cơ >> chu kỳ nhấp nhô của dòng phần ứng → tốc độ động cơ có thể xem là không đổi ở chế độ xác lập.

Phương trình đặc tính cơ của hệ thống bộ biến đổi – động cơ khi đó:

$$\omega = \frac{U_t}{K\Phi} - \frac{R_u}{(K\Phi)^2}M$$

Do đó, có thể điều khiển tốc độ động cơ bằng cách thay đổi điện áp đặt vào phần ứng động cơ $U_{\rm t}$.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

10

Bộ giảm áp

Chế độ dòng liên tục:

- Điện áp ra u_t có dạng xung
- Giá trị trung bình của điện áp ngõ ra:

$$U_{t} = \frac{1}{T} \int_{0}^{T} u_{t} . dt = \frac{UT_{1} + 0T_{2}}{T} = U \frac{T_{1}}{T} = U \gamma$$

 $\gamma = \frac{T_1}{T}$: duty ratio (tỉ số điều chế)

$$0 \le \gamma = \frac{T_1}{T} \le 1 \qquad \Rightarrow \qquad 0 \le U_t \le U$$

> Dòng trung bình ngõ ra:

$$I_t = \frac{U_t - E}{R}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

13

Bộ giảm áp

Chế độ dòng gián đoạn:

> Tính thời gian S+D dẫn qua công thức:

$$t_2 = \tau . \ln \left[\frac{U}{E} \left(e^{\frac{T_1}{T_1}} - 1 \right) + 1 \right], \ \tau = \frac{L}{R}$$

➤ Điện áp trung bình ngõ ra:

$$U_t = U.\frac{T_1}{T} + E.\frac{T-t_2}{T} = U.\gamma + E.(1-\frac{t_2}{T})$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

Bộ tăng áp

Chế độ dòng liên tục ($i_t \ge 0$):

- ➢ Điện áp ra u₁ có dạng xung
- > Giá trị trung bình của điện áp ngõ ra:

$$U_t = \frac{1}{T} \int_{0}^{T} u_t dt = \frac{0T_1 + UT_2}{T} = U\frac{T_2}{T} = U(1 - \gamma)$$

 $\gamma = \frac{T_1}{T}$: duty ratio (tỉ số điều chế)

- Néu xem:
 - U₁ là điện áp phía nguồn cấp năng lượng (E)
 - U là điện áp phía tải nhận năng lượng

Ta có:

$$U = \frac{U_t}{1 - \gamma} > U_t$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

17

Bộ biến đổi kép dạng đảo dòng

= khi S được kích dẫn, mạch tương đương khóa bán dẫn cho phép dòng chạy qua theo cả 2 chiều. Do đó, mạch luôn ở chế độ dòng liên tục.

Khi S1 được kích: dòng i_t chạy qua S1 hoặc D1, ngoài ra S4 và D4 tắt, nên u_t = U,

Khi S4 được kích: dòng i_t chạy qua S4 hoặc D4, ngoài ra S1 và D1 tắt, nên $u_t = 0$,

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

18

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

Bộ biến đổi kép dạng đảo áp

Tính liên tục hoặc gián đoạn của dòng tải phụ thuộc vào thông số tải (R, L, E) và tỉ số điều chế.

Dòng tải chỉ chạy theo một chiều, áp trên tải có thể đổi chiều.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

23

23

Bộ biến đổi kép dạng đảo áp

Giản đồ kích 1: (Giả thiết mạch làm việc ở chế độ dòng liên tục $i_t \ge 0$)

- S₁ đóng cắt trong mỗi chu kỳ, $\gamma = T_1/T$ (T₁: thời gian đóng khóa S₁),
- S₂: dẫn liên tục, điện áp trung bình ngõ ra: $U_t = U \frac{T_1}{T} = U \gamma$
 - $\boldsymbol{\rightarrow}$ Tải nhận năng lượng từ nguồn
- S₂: tắt liên tục, điện áp trung bình ngõ ra: $U_t = -U \frac{(T-T_1)}{T} = -U(1-\gamma)$
 - → Tải trả năng lượng về nguồn

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

24

Bộ biến đổi kép dạng đảo áp

Giản đồ kích 2: (Giả thiết mạch làm việc ở chế độ dòng liên tục $i_t \ge 0$)

- S₁, S₂ cùng dẫn trong khoảng T₁ và tắt trong khoảng T-T₁,
- Điện áp trung bình ngỗ ra: $U_t = U(\frac{2T_1}{T} 1) = U(2\gamma 1)$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

25

Bộ biến đổi kép dạng tổng quát

= khi S được kích dẫn, mạch tương đương khóa bán dẫn cho phép dòng chạy qua theo cả 2 chiều. Do đó, mạch luôn ở chế độ dòng liên tục

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

26

Bộ biến đổi kép dạng tổng quát

Giản đồ kích 1:

- Kích từng cặp: (S1, S2) và (S3, S4)
- S1 và S4) kích ngược pha nhau,
- (S2 và S3) kích ngược pha nhau,
- Dòng ngõ ra có thể chạy theo cả hai chiều
- Điện áp ngõ ra biến thiên giữa –U và U
- Giá trị trung bình điện áp ngõ ra (ở chế độ dòng liên tục)

$$U_t = U(\frac{2.T_1}{T} - 1) = U(2\gamma - 1)$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

27

Bộ biến đổi kép dạng tổng quát

Giản đồ kích 2:

Để điện áp ra >0:

- S1= ON, S4 = OFF,
- S2, S3 đóng cắt ngược pha nhau
- Giá trị trung bình điện áp ngõ ra (ở chế độ dòng liên tục):

$$U_t = U \frac{T_1}{T} = U \gamma$$
; với T₁: thời gian S₂ dẫn

Để điện áp ra <0, giản đồ xung kích lúc này ra sao?

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

28

Mạch lọc cho bộ biến đổi điện áp một chiều

Mạch lọc ngõ vào:

Giả thiết bộ biến đổi được điều khiển theo phương pháp tần số đóng ngắt không đổi (T = const),

Tụ lọc C_f chọn theo:

$$C_f > \frac{I_{t \max}}{4f\Delta U_{c \max}} \qquad \text{hay} \quad C_f > \frac{I_{t \max}L\Delta i_{t \max}}{U\Delta U_{c \max}}$$

Trong đó:

- ✓ f=1 /T
- ✓ L là cảm kháng mạch tải (L=L_{ph}+L_t)
- \checkmark Δi_t max là độ nhấp nhô lớn nhất cho phép của dòng điện tải.
- ✓ I_{tmax} là dòng tải cực đại,
- \checkmark ΔU_{cmax} là nhấp nhô điện áp cho phép lớn nhất trên C_f

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

30

Mạch lọc cho bộ biến đổi điện áp một chiều

Mạch lọc ngõ ra:

Giả thiết cần lọc phẳng đòng ngõ ra i_t

Nếu $\tau = \frac{L}{R} \gg T$ (L: cảm kháng tải, R: điện trở tải),

Cần chọn sao cho: $\frac{U}{4.f.L} < \Delta i_{\text{max}}$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

31

Ví dụ tính toán

Ví dụ 4.1:

Bộ giảm áp cấp nguồn áp cho phần ứng của động cơ DC kích từ độc lập.

Nguồn một chiều U = 220V, tần số đóng ngắt f = 500Hz.

Động cơ có $R_{tf} = 2\Omega$. sức điện động tính theo công thức $E = 1,253.\omega$ [V;rad/s].

Điện cảm L_u khá lớn để dòng động cơ luôn liên tục

Dòng động cơ luôn bằng định mức, tức $I_t = I_{trdm} = 11,6[A]$

- a. Tính tỉ số T_I/T khi vận tốc động cơ là 1000 vòng/phút
- b. Tính điện áp tải nhỏ nhất ở chế độ dòng tải liên tục,

Từ đó xác định thời gian đóng tối thiểu T_1 của chế độ dòng liên tục.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

32

Ví dụ tính toán

Giải:

a. Tính tỉ số T₁/T cần thiết

$$\omega = \frac{2\pi . n}{60} = \frac{2\pi . 1000}{60} = 104,72[rad \ / \ s]$$

 $E = 1,253.\omega = 1,253.104,72 = 131,21[V]$

Ở chế độ xác lập

$$U_t = R_u \cdot I_t + E$$

$$U_t = 2.11,6 + 131,21 = 154,4[V]$$

Với dòng tải liên tục $U_t = \frac{T_t}{T} U$ Từ đó: $\frac{T_t}{T} = \frac{U_t}{U} = \frac{154.4}{220} = 0.7018$

Từ đó:
$$\frac{T_1}{T} = \frac{U_t}{U} = \frac{154.4}{220} = 0.7018$$

b.- Điện áp tải nhỏ nhất khi E ightarrow 0. Lúc đó:

 $U_{t \text{ min}} = R_{tt}.I_{t} = 2.11,6 = 23,2[V]$

Từ đó:
$$T_{1 \, min} = T \cdot \frac{U_{t \, min}}{U} = \frac{1}{f} \cdot \frac{U_{t \, min}}{U} = \frac{1}{500} \cdot \frac{23.2}{220} = 2.1 \cdot 10^{-4} [s]$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

Ví dụ 4.2

Cho bộ giảm áp cấp nguồn cho động cơ một chiều kích từ độc lập.

Nguồn một chiều U = 220V.

Tải có $R_u = 0$, $L_u = 32.5$ mH, $E = 1.253.\omega$ với ω [rad/s] là vận tốc động cơ.

Tần số đóng ngắt bộ giảm áp f = 500Hz. Cho biết dòng tải liên tục và mạch ở xác lập

- 1. Tính tỉ số $\gamma = \frac{T_1}{T}$ khi vận tốc động cơ n = 1500 v/ph.
- 2. Gọi i_{ttmin} và i_{tmax} là trị nhỏ nhất và lớn nhất của dòng điện qua tải. Tính hiệu $\Delta i_t = i_{tmax} i_{tmin}$
- 3. Để giảm bớt độ nhấp nhô dòng điện Δi_t sao cho Δi_t < 1A, cần phải thêm cảm kháng phụ bằng bao nhiêu
- 4. Trong trường hợp không sử dụng thêm cảm kháng phụ, cần phải điều chỉnh tần số đóng ngất như thế nào để $\Delta i_t < 1A$
- 5. Một cách tổng quát, khi E thay đổi trong khoảng (0, +U), tìm điều kiện về f và L để độ nhấp nhô dòng ở xác lập thỏa điều kiện $\Delta i_t < \Delta i_{tmax}$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

3

35

Giải:

1.- Tính tỉ số $\gamma = \frac{T_1}{T}$ khi vận tốc động cơ n = 1500 v/ph

Ta có:
$$\omega = 2\pi \cdot \frac{n}{60} = 2\pi \cdot \frac{1500}{60} = 157[rad/s]$$

 \mathring{O} chế độ xác lập $U_t = E = 1,253.\omega = 1,253.$ 157 = 196,8[V]

 \vec{O} chế độ dòng liên tục: $U_t = U \cdot \frac{T_1}{T} = U \cdot \gamma$

Từ đó:
$$U_t = U.\gamma = E \Rightarrow \gamma = \frac{E}{U} = \frac{196.8}{220} = 0.8946$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

37

Ví dụ tính toán

2.- Tính hiệu $\Delta i_t = i_{tmax}$ - i_{tmin}

Khi công tắc S đóng:

$$u_t = U = L \cdot \frac{di_t}{dt} + E$$

hay:
$$di_t = \frac{U - E}{L}.dt$$

Trong khoảng thời gian đóng công tắc S: dòng tăng từ i_{tmin} đến $i_{t\,max}$. Lấy tích phân hai vế của phương trình trong khoảng đóng S.

$$\Delta i_t = i_{t max} - i_{t min} = \frac{U - E}{L} . T_1$$

Do
$$\frac{T_1}{T} = \gamma = T_1 f$$
 nên:

$$\Delta i_t = \frac{U - E}{L} \cdot \frac{\gamma}{f} = \frac{220 - 196.8}{0.0325} \cdot \frac{0.8946}{500} = 1.277[A]$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

Ví dụ tính toán

3.- Tính L_{ph} sao cho $\Delta i_t < 1A$,

Để giảm độ nhấp nhô dòng điện $\Delta i_t < \Delta i_{tmax} = 1A$. Ta phải có:

$$\frac{U-E}{L} \cdot \frac{\gamma}{f} < \Delta i_{t max}$$

$$\Rightarrow L > \frac{U-E}{\Delta i_{t max}} \cdot \frac{\gamma}{f} \qquad \Leftrightarrow L > \frac{220-196,8}{1} \cdot \frac{0,8946}{500} = 0,0415[H]$$

Từ đó cảm kháng phụ thêm vào tối thiểu bằng:

$$L_{ph \ min} = L - L_u = 0.0415 - 0.0325 = 0.009 \ [H] = 9 \ [mH]$$

4.- Nếu giảm độ nhấp nhô dòng điện bằng cách thay đổi tần số đóng ngắt f, ta có:

$$f > \frac{U - E}{\Delta i_{t \, max} \, L} \, \gamma = \frac{220 - 196.8}{1.0,0325} \, .0,8946 = 648.5 [Hz]$$

Như vậy tần số f phải lớn hơn 649 Hz

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

39

39

Ví dụ tính toán

5.- Ta có:

$$\Delta i_t = \frac{U - E}{L} \cdot \frac{\gamma}{f} = \frac{U - \gamma \cdot U}{L} \cdot \frac{\gamma}{f} = \frac{U}{Lf} (t - \gamma) \gamma$$

Do hàm (1 - γ) γ có trị cực đại bằng $\frac{1}{4}$ khi $\gamma = \frac{1}{2}$ nên :

$$\Delta i_t = \frac{U}{Lf} \cdot \gamma \cdot (1 - \gamma) \le \frac{U}{Lf} \cdot \frac{1}{4}$$

Điều kiện để Δi_{t} < Δi_{tmax} cho trường hợp xác lập, ta cần có:

$$\Delta i_t \le \frac{U}{L.f} \cdot \frac{1}{4} < \Delta i_{t max}$$

Từ đó:
$$f.L > \frac{U}{4.\Delta i_{t max}} = \frac{220}{4.1} = 55[H.H_Z]$$

Việc chọn tần số và cảm kháng phụ tùy ý, thỏa điều kiện f.L > 55 $\{H.H_Z\}$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

40

Ví dụ tính toán

Ví du 4.3

Cho bộ biến đổi một chiều kép dạng đảo dòng. Nguồn một chiều U=230~V. Tải là động cơ một chiều kích từ độc lập $R_{tr}L~E$,

Biết $R_{tf}=0,1~\Omega.~E=220V$. Tính tỉ số $\gamma=\frac{T_f}{T}~khi:$

- 1. Dòng trung bình qua động cơ là 100A
- 2. Dòng trung bình qua động cơ là -100A

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

41

Ví dụ tính toán

Giải:

Ta có: $U_t = \gamma U = R_u I_t + E$

1. Trường họp $I_t = 100A$:

 $U_t = R_u I_t + E = 0.1x100 + 220 = 230V$

Vậy tỉ số $\gamma = \frac{T_1}{T}$ cần thiết là:

$$\gamma = \frac{U_t}{U} = \frac{230}{230} = 1$$

2. Trường họp $I_t = -100A$:

 $U_t = R_u I_t + E = -0.1x100 + 220 = 210V$

Vậy tỉ số $\gamma = \frac{T_1}{T}$ cần thiết là:

$$\gamma = \frac{U_t}{U} = \frac{210}{230} = 0.91$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

42

<u>PHẦN 2:</u> **Bộ nguồn kiểu đóng ngắt**

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

43

43

Bộ nguồn kiểu đóng ngắt

- Các bô nguồn kiểu đóng ngắt (Switching Mode Power Supply) hiện được sử dụng rộng rãi do có hiệu suất cao hơn và kích thước nhỏ hơn so với bộ nguồn một chiểu kiểu tuyến tính (Linear Mode Power Supplies) cùng công suất. Đó là vì các khoá bán dẫn trong nguồn một chiều kiểu đóng ngắt chỉ hoạt động ở chế độ dẫn hoặc tắt nên có tổn hao thấp.
- Ngoài ra, do hoạt động ở tần số cao, các phần tử lọc trong nguồn một chiều kiểu đóng ngắt như cuộn cảm và tụ điện cũng có kích thước giảm đi đáng kể so với phần tử tương tự trong nguồn một chiều tuyến tính.
- Phần này sẽ khảo sát các cấu hình các bộ biến đổi cơ bản ứng dụng làm nguồn một chiều kiểu đóng ngắt (không cách ly)
 - Bộ nguồn kiểu giảm áp (Buck converter)
 - Bộ nguồn kiểu tăng áp (Boost converter)
 - Bộ nguồn kiểu tăng / giảm áp (Buck/Boost converter)
 - Bộ nguồn Cuk

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

44

Bộ nguồn kiểu giảm áp

Quan hệ giữa dòng/áp ngõ ra và ngõ vào

Giả thiết L đủ lớn để mạch hoạt động ở chế độ dòng liên tục (nghĩa là dòng qua L liên tục) và tụ lọc C đủ lớn để áp ra u_o là phẳng ($u_o = U_0$).

Lưu ý là điện áp trung bình trên L trong một chu kỳ bằng zero nên diện tích phần A = diện tích phần B, suy ra:

$$(U_d-U_0)t_{on} = U_o(T_s-t_{on})$$

Hay:

$$\frac{U_o}{U_d} = \frac{t_{on}}{T_s} = \gamma$$

Bỏ qua tổn hao trên các phần tử mạch, công suất ngõ vào $P_d = U_d I_d$ sẽ bằng công suất ngõ ra $P_0 = U_0 I_0$. Từ đó suy ra:

$$\frac{I_o}{I_d} = \frac{U_d}{U_o} = \frac{T_s}{t_{on}} = \frac{1}{\gamma}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

47

Bộ nguồn kiểu giảm áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tục

Giả thiết mạch ở chế độ dòng liên tục, gọi $\Delta I_L = I_{Lmax}$ - I_{Lmin} là độ biến thiên dòng qua L.

Lưu ý:
$$\frac{di_L}{dt} = \frac{u_L}{L}$$
, ta có

$$\frac{di_L}{dt} = \frac{\Delta i_L}{\Delta t} = \frac{\Delta i_L}{\gamma T_z} = \frac{(U_d - U_o)}{L}$$

Do đó

$$\Delta i_{L} = \left(\frac{U_{d} - U_{o}}{L}\right) \gamma T_{z} = \frac{U_{o}}{L} (1 - \gamma) T_{z}$$

Dòng trung bình qua L = dòng trung bình qua tải R, nghĩa là:

$$I_L = I_o = \frac{U_o}{R}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

48

Bộ nguồn kiểu giảm áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tục

Vậy

$$\begin{split} I_{L_{\text{min}}} = & I_L + \frac{\Delta i_L}{2} = U_o \left[\frac{1}{R} + \frac{(1-\gamma)}{2Lf_z} \right] \\ I_{L_{\text{min}}} = & I_L - \frac{\Delta i_L}{2} = U_o \left[\frac{1}{R} - \frac{(1-\gamma)}{2Lf_z} \right] \end{split}$$

 \mathring{O} trạng thái biên liên tục, I_{Lmin} =0 , từ đó ta có thể suy ra quan hệ của L và f_s để mạch luôn ở chế độ dòng liên tục với tải cho trước:

$$(Lf_s)_{\min} = \frac{(1-\gamma)R}{2}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

- 4

49

Bộ nguồn kiểu giảm áp

Dợn sóng điện áp ngõ ra và chọn tụ lọc C

Giả thiết là toàn bộ thành phần xoay chiều (dợn sóng) trong dòng i_L chạy qua tụ C, còn thành phần trung bình của dòng i_L (nghĩa là thành phần I_L , và cũng là dòng I_0) chạy qua tải. Như vậy, dòng qua tụ sẽ là:

$$i_C = i_L - I_0 = i_L - I_L$$

Ta có:

Q=Cu_o

 $\Delta Q = C \Delta U_o$

$$\Delta U_o = \frac{\Delta Q}{C}$$

Lượng điện tích nạp ΔQ có thể tính ra từ hình 5, là diện tích phần tam giác tô đậm:

$$\Delta Q = \frac{1}{2} \frac{T_s}{2} \frac{\Delta i_L}{2} = \frac{T_s \Delta i_L}{8}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

5

51

Bộ nguồn kiểu giảm áp

Dợn sóng điện áp ngõ ra và chọn tụ lọc C

Từ công thức tính Δi_L và ΔU_0 ở trên, suy ra:

$$\Delta U_o = \frac{U_o(1-\gamma)}{8LCf_c^2}$$

Hay:

$$\frac{\Delta U_o}{U_o} = \frac{(1-\gamma)}{8LCf_z^2} = \frac{\pi^2}{2} (1-\gamma) \left(\frac{f_o}{f_z}\right)^2$$

Trong đó
$$f_s = \frac{1}{T_s}$$
, và: $f_c = \frac{1}{2\pi\sqrt{LC}}$

Công thức cho thấy dợn sóng điện áp có thể giảm đi rất nhiều bằng cách chọn tần số cắt của mạch lọc thông thấp LC ở ngõ ra rất nhỏ hơn tẩn số đóng cắt của mạch, nghĩa là $f_{\rm C}$ << $f_{\rm s}$. Ngoài ra, có thể thấy rằng khi mạch hoạt động ở chế độ dòng liên tục, độ dợn sóng điện áp ngõ ra không phụ thuộc vào tải.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

52

Bộ nguồn kiểu tăng áp

Quan hệ giữa dòng/áp ngõ ra và ngõ vào

Ở chế độ xác lập, áp trung bình trên điện cảm L bằng zero, suy ra:

$$U_{d}t_{on} + (U_{d} - U_{0})t_{off} = 0$$

Từ đó suy ra:

$$\frac{U_o}{U_d} = \frac{T_s}{t_{off}} = \frac{1}{1 - \gamma}$$

Giả thiết tổn hao trên mạch bằng zero: P_d = P_0 , có thể suy ra:

$$\frac{I_o}{I_d} = (1 - \gamma)$$

Lưu ý là: $I_d=I_L$.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

5

55

Bộ nguồn kiểu tăng áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tụ

Từ đồ thị dạng dòng áp trên L ở chế độ dòng liên tục, có thể tính được độ biến thiên dòng $\Delta I_L = I_{Lmax} - I_{Lmin}$ như sau:

$$\frac{\Delta i_L}{\Delta t} = \frac{\Delta i_L}{\gamma T_c} = \frac{U_d}{L}$$

Suy ra:

$$\Delta i_L = \frac{U_d}{L} \gamma T_s = \frac{U_o}{L} (1 - \gamma) \gamma T_s$$

Dòng trung bình I_L qua cuộn dây có thể tính được từ sự cân bằng công suất giữa ngõ ra và ngõ vào của mạch:

$$P_o = \frac{U_o^2}{R} = U_d I_d = U_d I_L, \quad \text{vậy:}$$

$$I_L = \frac{I_o}{(1-\gamma)} = \frac{U_o}{R(1-\gamma)} = \frac{U_d}{R(1-\gamma)^2}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

56

Bộ nguồn kiểu tăng áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tụ

Từ đây có thể tính được:
$$I_{L_{\max}} = I_L + \frac{\Delta i_L}{2} = \frac{U_d}{(1-\gamma)^2 R} + \frac{U_d \gamma T_z}{2L} = \frac{U_o}{(1-\gamma)R} + \frac{U_o (1-\gamma) \gamma T_z}{2L}$$

$$I_{L_{\min}} = I_L - \frac{\Delta i_L}{2} = \frac{U_d}{(1-\gamma)^2 R} - \frac{U_d \gamma T_z}{2L} = \frac{U_o}{(1-\gamma)R} - \frac{U_o (1-\gamma) \gamma T_z}{2L}$$

 \mathring{O} trạng thái biên liên tục, $I_{Lmin}{=}~0$, từ đó ta có thể suy ra quan hệ của L và fs cần thiết để mạch luôn ở chế độ dòng liên tục với tải cho trước:

$$I_{L\min} = 0 = \frac{U_d}{(1 - \gamma)^2 R} - \frac{U_d \gamma T_z}{2L}$$
 Vây: $(Lf_z)_{\min} = \frac{\gamma (1 - \gamma)^2 R}{2}$

Nếu cho trước f_s có thể tính được giá trị điện cảm nhỏ nhất để đảm bảo dòng liên tục với tải cho trước R như sau:

$$L_{\min} = \frac{\gamma (1 - \gamma)^2 R}{2 f_s}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

57

Bộ nguồn kiểu tăng áp

Dợn sóng điện áp ngõ ra và chọn tụ lọc C

Giả thiết là toàn bộ thành phần xoay chiều (dợn sóng) trong dòng qua diode, i_D , chạy qua tụ C, còn thành phần trung bình của dòng này chạy qua tải, phần tô đen trên hình trước biểu thị điện tích nạp xả trên tụ C trong một chu kỳ biến thiên của i_D .

Giả thiết dòng tải lo không đổi, từ đồ thị trước có thể tính được biến thiên điện tích ΔQ trên tụ:

$$\Delta Q = \frac{U_o}{R} \gamma T_s = C \Delta U_o$$

Từ công thức trên suy ra dợn sóng điện áp trên tụ:

$$\Delta U_o = \frac{U_o \gamma T_s}{RC} = \frac{U_o \gamma}{RCf_o}$$

Hoặc:

$$\frac{\Delta U_o}{U_a} = \frac{\gamma}{RCf_s} = \gamma \frac{T_s}{\tau} \text{ (v\'oi } \tau = RC\text{)}$$

Từ đây, với yêu cầu về dợn sóng áp ngõ ra cho trước, có thể tính được tu C cần thiết cho mạch lọc.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

59

59

Bộ nguồn kiểu tăng/giảm áp

Sơ đồ nguyên lý

Giả thiết mạch ở chế độ dòng liên tục, nghĩa là dòng qua cuộn cảm L liên tục.

Lưu ý là điện áp ngõ ra U₀ ngược dấu với điện áp ngõ vào U៧

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

60

Bộ nguồn kiểu tăng/giảm áp

Quan hệ giữa dòng/áp ngõ ra và ngõ vào

Lưu ý là điện áp trung bình trên L trong một chu kỳ bằng zero nên:

$$U_d \gamma T_s + (-U_o)(1-\gamma)T_s = 0$$

Suy ra quan hệ giữa áp nguồn $\mathrm{U_d}$ và áp ra $\mathrm{U_o}$ là:

$$\frac{U_o}{U_d} = \frac{\gamma}{1 - \gamma}$$

Tương tự các mục trên, nếu giả thiết là: $P_o = P_d$, ta có:

$$\frac{U_{\scriptscriptstyle d}}{U_{\scriptscriptstyle o}} = \frac{1-\gamma}{\gamma}$$

Công thức trên cho thấy tùy thuộc vào giá trị γ , áp ra U_o có thể nhỏ hơn hay lớn hơn áp nguồn U_d .

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

62

Bộ nguồn kiểu tăng/giảm áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tục

Dựa vào đồ thị biến thiên của i_, có thể tính được biến thiên dòng $\Delta I_{\rm I}$ như sau:

$$\frac{\Delta i_L}{\Delta t} = \frac{\Delta i_L}{\gamma T_s} = \frac{U_d}{L} \quad \text{hoặc} \quad \frac{\Delta i_L}{\Delta t} = \frac{\Delta i_L}{(1 - \gamma)T_s} = \frac{U_o}{L}$$

Suy ra:

$$\Delta i_L = \frac{U_d}{L} \gamma T_s = \frac{U_o}{L} (1 - \gamma) T_s$$

Lưu ý là dòng trung bình I_L qua cuộn L là tổng dòng trung bình I_d của nguồn và dòng qua diod D (cũng là dòng tải I_o). Do đó, ta có quan hệ:

$$I_L = I_d + I_o = \gamma I_L + \frac{U_o}{R}$$

Vậy:

$$I_L = \frac{U_o}{(1-\gamma)R} = \frac{U_d \gamma}{(1-\gamma)^2 R}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

6

63

Bộ nguồn kiểu tăng/giảm áp

Quan hệ giữa L và f_s để mạch ở chế độ dòng liên tục

Từ đó suv ra:

$$\begin{split} I_{L_{\text{max}}} &= I_L + \frac{\Delta i_L}{2} = \frac{U_d \gamma}{(1-\gamma)^2 R} + \frac{U_d \gamma T_z}{2L} = \frac{U_o}{(1-\gamma) R} + \frac{U_o (1-\gamma) T_z}{2L} \\ I_{L_{\text{min}}} &= I_L - \frac{\Delta i_L}{2} = \frac{U_d \gamma}{(1-\gamma)^2 R} - \frac{U_d \gamma T_z}{2L} = \frac{U_o}{(1-\gamma) R} - \frac{U_o (1-\gamma) T_z}{2L} \end{split}$$

Để mạch có thể hoạt động ở chế độ dòng liên tục, cần có điều kiện là i $_L \geq 0$. Để xác định điểm biên liên tục, dòng I_{Lmin} được cho bằng zero, từ đó suy ra giá trị nhỏ nhất của L và f_s để mạch hoạt động ở chế độ dòng liên tục là:

$$(Lf_{s})_{\min} = \frac{(1-\gamma)^{2}R}{2}$$

Hoặc:

$$L_{\min} = \frac{(1-\gamma)^2 R}{2 f_s}$$

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

64

Bộ nguồn kiểu tăng/giảm áp

Dợn sóng điện áp ngõ ra và chọn tụ lọc C

Hình trước cho thấy quan hệ giữa dợn sóng điện áp ngõ ra và dòng qua diod D. Tương tự bộ biến đổi điện áp kiểu tăng áp đã khảo sát, quan hệ giữa dợn sóng điện áp ngõ ra ΔU_o và biến thiên điện tích nạp tụ ΔQ cho bởi công thức:

$$\Delta Q = \frac{U_o}{R} \gamma T_s = C \Delta U_o$$

Từ đó tính ra biểu thức của ΔU_0 :

$$\Delta U_o = \frac{U_o \gamma T_s}{RC} = \frac{U_o \gamma}{RCf_s}$$

Hoặc:

$$\frac{\Delta U_o}{U_o} = \frac{\gamma}{RCf_z} = \gamma \frac{T_z}{\tau} \text{ (v\'oi } \tau = RC\text{)}$$

Ta thấy các công thức này tương tự các công thức cho bộ biến đổi kiểu tăng áp ở mục trên.

BÀI GIẢNG CƠ SỞ ĐIỆN TỬ CÔNG SUẤT

66

