Math 297 Discussion 2 Notes

Annie Xu

January 22, 2019

Metric Spaces

A set X, whose elements we shall call points, is said to be a metric space if with any two points p and q of X there is associated a real number d(p,q), called the distance from p to q, s.t.

- (a) d(p,q) > 0 if $p \neq q$; d(p,p) = 0;
- (b) d(p,q) = d(q,p);
- (c) $d(p,q) \le d(p,r) + d(r,q)$, for any $r \in X$.

Examples: real line with usual distance, Euclidean metric, d_p , distance of complex numbers, Manhattan distance, supremum metric (infinity metric) $d((x_1, y_1), (x_2, y_2)) = max(|x_1 - x_2|, |y_1 - y_2|)$, metric on the space of functions. (Check these are metrics)

Open and closed sets in metric spaces These are defined in your class.

An example of a metric space in which every set is both open and closed. Let $X = \mathbb{R}$ and the discrete metric d is defined as follows: d(x,y) = 1 if $x \neq y$; d(x,y) = 0 if x = y.

Topological Spaces

1) Topology

A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- 1. \emptyset and X are in \mathcal{T} .
- 2. The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- 3. The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a topological space.

2) Open and closed sets in a topological space Let (X, \mathcal{T}) be a topological space. A set U is said to be *open* in X if $U \in \mathcal{T}$. A set V is said to be *closed* in X if $X \setminus V \in \mathcal{T}$.

Examples

Discrete topology

Properties: The finest topology for X. Every point is an isolated point. x is not a limit point of the sequence x, x, x, \ldots considered as a set, though it is an adherent point of the set. For any set $A \subset X$, $A = A^{\circ} = \bar{A}$. May be obtained from the discrete metric.

Indiscrete (trivial) topology

Properties: The coarsest one for X. Every point of X is a limit point for every subset of X, and every sequence converges to every point of X (we proved this later).

3) Basis and sub-basis

If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- 1. For each $x \in X$, there is at least one basis element B containing x.
- 2. If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

A subbasis δ for a topology on X is a collection of subsets of X whose union equals X. The topology generated by the subbasis δ is defined to be the collection \mathcal{T} of all unions of finite intersections of elements of δ .

Remark. If \mathcal{B} , as a basis of X, is countable, we say that X is **second counable**.

4) Hausdorff spaces

Let (X, \mathcal{T}) be a topological space, we say X is **Hausdorff** if $\forall x, y \in X$ with $x \neq y$, there are disjoint open sets $U_x, V_y \in \mathcal{T}$ such that $x \in U_x$ and $y \in V_y$.

Note: A metric space is automatically Hausdorff. (Why?)

Theorem 1. X is Hausdorff if and only if $\Delta = \{(x, x) | x \in X\} \subset X \times X$ is closed in $X \times X$ in the product topology. (We'll prove it after introducing product topology)