LCN: Lichen interaction network study

 $MK \ Lau$

Results

```
### REML
### We know from Lamit's dissertation work that lichen communities are
### heritable, largely driven by bark roughness
### Do we find similar patterns?
## Create a list to generate a results table
h2.tab <- matrix("", 8, 4)
colnames(h2.tab) <- c("Response", "H2", "R2", "p-value")</pre>
## Total cover ~ genotype
ptc.reml <- lme4::lmer(I(PC^(1/2)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
ptc.reml.pval <- RLRsim::exactRLRT(ptc.reml)</pre>
ptc.reml.pval
##
   simulated finite sample distribution of RLRT.
##
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 2.9627, p-value = 0.0362
fligner.test(onc.dat$PC^(1/2), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$PC^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.751, df = 12, p-value =
## 0.3169
shapiro.test(residuals(ptc.reml))
##
## Shapiro-Wilk normality test
## data: residuals(ptc.reml)
## W = 0.95096, p-value = 0.02174
h2.tab[1, "p-value"] <- ptc.reml.pval$"p.value"
h2.tab[1, "H2"] \leftarrow H2(ptc.reml, g = onc.dat$geno)
h2.tab[1, "R2"] <- R2(ptc.reml)
R2(ptc.reml)
## 0.1727875
```

```
h2.tab[1, "Response"] <- "Percent Lichen Cover"
## Species richness ~ genotype
spr.reml \leftarrow lme4::lmer(I(SR^(1/2)) \sim (1 \mid geno),
                        data = onc.dat, REML = TRUE)
spr.reml.pval <- RLRsim::exactRLRT(spr.reml)</pre>
spr.reml.pval
##
##
  simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 1.0001, p-value = 0.1375
shapiro.test(residuals(spr.reml))
    Shapiro-Wilk normality test
##
##
## data: residuals(spr.reml)
## W = 0.97364, p-value = 0.2467
fligner.test(onc.dat$SR^(1/2), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.datSR^(1/2) and onc.datgeno
## Fligner-Killeen:med chi-squared = 13.276, df = 12, p-value =
## 0.3493
h2.tab[2, "p-value"] <- spr.reml.pval$"p.value"
h2.tab[2, "H2"] <- H2(spr.reml, g = onc.dat$geno)
h2.tab[2, "R2"] <- R2(spr.reml)
R2(spr.reml)
##
          R<sub>2</sub>c
## 0.09814791
h2.tab[2, "Response"] <- "Lichen Species Richness"
## Bark roughness REML
prb.reml <- lme4::lmer(I(BR^(1/2)) ~ (1 | geno), data = onc.dat, REML = TRUE)
prb.reml.pval <- RLRsim::exactRLRT(prb.reml)</pre>
prb.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
    (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 8.7051, p-value = 5e-04
```

```
fligner.test(onc.dat$BR^(1/2), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$BR^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 6.796, df = 12, p-value = 0.8708
shapiro.test(residuals(prb.reml))
## Shapiro-Wilk normality test
## data: residuals(prb.reml)
## W = 0.9827, p-value = 0.5872
h2.tab[3, "p-value"] <- prb.reml.pval$"p.value"
h2.tab[3, "H2"] <- H2(prb.reml, g = onc.dat$geno)
h2.tab[3, "R2"] <- R2(prb.reml)
R2(prb.reml)
##
         R<sub>2</sub>c
## 0.3541988
h2.tab[3, "Response"] <- "Percent Rough Bark"
## pH ~ genotype
ph.reml <- lme4::lmer(I(log(pH)) ~ (1 | geno),</pre>
                       data = na.omit(onc.dat), REML = TRUE)
ph.reml.pval <- RLRsim::exactRLRT(ph.reml)</pre>
ph.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 1.4338, p-value = 0.1003
fligner.test(log(onc.dat$PC), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$PC) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 19.661, df = 12, p-value =
## 0.07378
shapiro.test(residuals(ph.reml))
## Shapiro-Wilk normality test
##
## data: residuals(ph.reml)
## W = 0.83154, p-value = 2.983e-06
```

```
# h2.tab[1, "p-value"] <- ph.reml.pval$"p.value"
# h2.tab[1, "H2"] \leftarrow H2(ph.reml, g = onc.dat$geno)
# h2.tab[1, "R2"] <- R2(ph.reml)
R2(ph.reml)
##
## 0.1932025
# h2.tab[1, "Response"] <- "Percent Lichen Cover"
## condensed tannins REML
ct.reml <- lme4::lmer(I(CT<sup>(1/4</sup>)) ~ (1 | geno), data = onc.dat, REML = TRUE)
ct.reml.pval <- RLRsim::exactRLRT(ct.reml)</pre>
ct.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 4.3224, p-value = 0.016
fligner.test(onc.dat$CT^(1/4), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$CT^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 7.8941, df = 12, p-value =
## 0.7933
shapiro.test(residuals(ct.reml))
##
## Shapiro-Wilk normality test
## data: residuals(ct.reml)
## W = 0.74892, p-value = 2.431e-08
## CN ratio REML
cnr.reml <- lme4::lmer(I(CN^(1/1)) ~ (1 | geno), data = onc.dat, REML = TRUE)</pre>
## boundary (singular) fit: see ?isSingular
cnr.reml.pval <- RLRsim::exactRLRT(cnr.reml)</pre>
cnr.reml.pval
##
## simulated finite sample distribution of RLRT.
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0, p-value = 1
```

```
fligner.test(onc.dat$CN^(1/1), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$CN^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 8.1112, df = 12, p-value =
## 0.7764
shapiro.test(residuals(cnr.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(cnr.reml)
## W = 0.92183, p-value = 0.001754
## Is species richness correlated with percent cover?
cor.test(onc.dat[, "SR"], onc.dat[, "PC"], data = onc.dat)
##
##
  Pearson's product-moment correlation
##
## data: onc.dat[, "SR"] and onc.dat[, "PC"]
## t = 8.3456, df = 55, p-value = 2.393e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6047186 0.8437321
## sample estimates:
         cor
## 0.7475023
## Were these correlated with bark roughness?
ptc.prb.lm \leftarrow lm(I(PC^{(1/2)}) \sim I(BR^{(1/2)}), data = onc.dat)
summary(ptc.prb.lm)
##
## Call:
## lm(formula = I(PC^(1/2)) \sim I(BR^(1/2)), data = onc.dat)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -6.0204 -1.6679 0.5559 1.9569 3.3862
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               4.5168 1.0951 4.125 0.000127 ***
## I(BR^(1/2))
                 0.4755
                           0.1904 2.497 0.015549 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.496 on 55 degrees of freedom
## Multiple R-squared: 0.1018, Adjusted R-squared: 0.08549
## F-statistic: 6.235 on 1 and 55 DF, p-value: 0.01555
```

```
fligner.test(onc.dat$PC, onc.dat$BR)
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$PC and onc.dat$BR
## Fligner-Killeen:med chi-squared = 27.366, df = 24, p-value =
## 0.2877
shapiro.test(residuals(ptc.prb.lm))
## Shapiro-Wilk normality test
##
## data: residuals(ptc.prb.lm)
## W = 0.94952, p-value = 0.01871
spr.prb.lm \leftarrow lm(I(SR^{(1)}) \sim I(BR^{(1/2)}), data = onc.dat)
summary(spr.prb.lm)
##
## lm(formula = I(SR^(1)) \sim I(BR^(1/2)), data = onc.dat)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.0420 -1.3123 -0.1178 1.2308 4.3519
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                            0.8002 3.126 0.00283 **
## (Intercept) 2.5015
                            0.1392
                                   1.228 0.22456
## I(BR^(1/2))
                0.1709
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.824 on 55 degrees of freedom
## Multiple R-squared: 0.0267, Adjusted R-squared: 0.009003
## F-statistic: 1.509 on 1 and 55 DF, p-value: 0.2246
fligner.test(onc.dat$SR^(1), onc.dat$BR)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$SR^(1) and onc.dat$BR
## Fligner-Killeen:med chi-squared = 26.046, df = 24, p-value =
## 0.3508
shapiro.test(residuals(spr.prb.lm))
##
## Shapiro-Wilk normality test
## data: residuals(spr.prb.lm)
## W = 0.97168, p-value = 0.2008
```

```
## COM ~ genotype + Bark roughness + PTC + SPR
set.seed(2)
rcom.ng.perm <- vegan::adonis2(onc.com.rel^(1/1) ~ BR + PC + SR,</pre>
                              data = onc.dat, perm = 10000, mrank = TRUE)
set.seed(2)
rcom.perm <- vegan::adonis2(onc.com.rel^(1/1) ~ geno + BR + PC + SR,
                            data = onc.dat, perm = 10000, mrank = TRUE)
com.ng.perm <- vegan::adonis2(onc.com^(1/1) ~ BR + PC + SR,</pre>
                              data = onc.dat, perm = 10000, mrank = TRUE)
set.seed(2)
com.perm <- vegan::adonis2(onc.com^(1/1) ~ geno + BR + PC + SR,
                           data = onc.dat, perm = 10000, mrank = TRUE)
rcom.ng.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = onc.com.rel^(1/1) ~ BR + PC + SR, data = onc.dat, permutations = 10000, mra
           Df SumOfSqs
                            R2
                                     F
                                           Pr(>F)
## BR
            1
                0.4303 0.03805 3.6619 0.009699 **
## PC
                3.8545 0.34087 32.8043 9.999e-05 ***
                0.7957 0.07037 6.7721 9.999e-05 ***
## SR.
            1
## Residual 53 6.2275 0.55072
           56 11.3079 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
rcom.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = onc.com.rel^(1/1) ~ geno + BR + PC + SR, data = onc.dat, permutations = 100
##
           Df SumOfSqs
                            R2
                                     F
                                           Pr(>F)
           12 2.7463 0.24287 1.8307 0.0040996 **
## geno
            1
                0.1533 0.01355 1.2259 0.2704730
## BR
## PC
               2.6521 0.23453 21.2144 9.999e-05 ***
            1
            1 0.6307 0.05578 5.0454 0.0009999 ***
## SR
## Residual 41 5.1255 0.45327
         56 11.3079 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
h2.tab[4, "p-value"] <- unlist(rcom.perm)["Pr(>F)1"]
h2.tab[4, "H2"] \leftarrow H2(rcom.perm, g = onc.dat$geno)
h2.tab[4, "R2"] <- R2(rcom.perm)
h2.tab[4, "Response"] <- "Lichen Community Composition"
## Is network similarity correlated with community composition?
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel), mrank = TRUE)
```

```
pval3 llim.2.5% ulim.97.5%
      mantelr
                   pval1
                              pval2
## 0.09647102 0.07000000 0.93100000 0.10800000 0.05686630 0.13717392
spr.d <- dist(onc.dat$SR)</pre>
ptc.d <- dist(onc.dat$PC)</pre>
prb.d <- dist(onc.dat$BR)</pre>
### rough -> cover -> rich -> net
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel) + spr.d + ptc.d + prb.d, mrank = TRUE)
##
                                         pval3 llim.2.5% ulim.97.5%
     mantelr
                   pval1
                              pval2
## 0.06973178 0.15100000 0.85000000 0.30700000 0.02433790 0.13242100
## Partial Mantels using RFLP distance
ecodist::mantel(cn.mu.d.onc ~ rflp.d)
##
       mantelr
                                 pval2
                                             pval3
                                                     llim.2.5% ulim.97.5%
## -0.03234181 0.60900000 0.39200000 0.83600000 -0.20149909 0.17943999
ecodist::mantel(onc.com.mu.d ~ rflp.d)
      mantelr
                   pval1
                              pval2
                                         pval3 llim.2.5% ulim.97.5%
   0.1179051 0.2830000 0.7180000 0.4830000 -0.2789494 0.2435282
ecodist::mantel(cn.mu.d.onc ~ onc.com.mu.d)
##
      mantelr
                   pval1
                              pval2
                                         pval3 llim.2.5% ulim.97.5%
## 0.33358296 0.05100000 0.95000000 0.05100000 0.06485786 0.49729068
## Was lichen network similarity determined by genotype?
set.seed(1234)
cn.perm <- vegan::adonis2(cn.d.onc ~ geno + BR + PC + SR,</pre>
                          data = onc.dat, permutations = 10000, mrank = TRUE)
set.seed(1234)
cn.perm.ng <- vegan::adonis2(cn.d.onc ~ BR + PC + SR,
               data = onc.dat, permutations = 10000, mrank = TRUE)
cn.perm.ng
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = cn.d.onc ~ BR + PC + SR, data = onc.dat, permutations = 10000, mrank = TRUE
##
            Df SumOfSqs
                                      F
                                           Pr(>F)
                             R2
## BR
            1
                  61.42 0.03968 4.1141
                                          0.04200 *
                  51.25 0.03312 3.4332
## PC
             1
                                          0.06489
## SR.
             1
                 643.74 0.41596 43.1223 9.999e-05 ***
## Residual 53 791.20 0.51124
## Total
           56 1547.61 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
cn.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
##
```

```
## vegan::adonis2(formula = cn.d.onc ~ geno + BR + PC + SR, data = onc.dat, permutations = 10000, mrank
           Df SumOfSqs
                            R2
##
                                     F
                                           Pr(>F)
## geno
           12 475.28 0.30711 2.8608 0.005999 **
                 21.32 0.01377 1.5396 0.224378
## BR
            1
## PC
            1
                 25.42 0.01642 1.8358 0.190681
## SR
            1 457.96 0.29591 33.0782 9.999e-05 ***
## Residual 41 567.63 0.36678
           56 1547.61 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
h2.tab[5, "p-value"] <- as.matrix(cn.perm)[1, "Pr(>F)"]
h2.tab[5, "H2"] <- H2(cn.perm, g = onc.dat[, "geno"], perm =10000)
h2.tab[5, "R2"] <- R2(cn.perm)
h2.tab[5, "Response"] <- "Lichen Network"
                                        # db rda for network similarity
dbr.cn.geno <- vegan::dbrda(cn.d.onc ~ geno, data = onc.dat, distance = "bray")
anova(dbr.cn.geno, permutations = 5000)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 5000
## Model: vegan::dbrda(formula = cn.d.onc ~ geno, data = onc.dat, distance = "bray")
           Df Variance
                            F Pr(>F)
           12 8.4872 1.6252 0.1016
## Model
## Residual 44 19.1487
H2(dbr.cn.geno)
## [1] 0.3071071
## What aspects of networks explained the similiarity?
## L = number of edges, LD = link density, C = connectivity,
## dcen = degree centrality
link.reml <- lme4::lmer(I(log(L + 0.00000001))) \sim (1 | geno),
                          data = onc.dat, REML = TRUE)
link.reml.pval <- RLRsim::exactRLRT(link.reml, nsim = 50000)</pre>
link.reml.pval
##
## simulated finite sample distribution of RLRT.
## (p-value based on 50000 simulated values)
##
## data:
## RLRT = 2.0768, p-value = 0.06484
fligner.test(log(onc.dat$L + 0.0000001), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$L + 1e-07) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 12.549, df = 12, p-value =
## 0.4027
```

```
shapiro.test(residuals(link.reml))
## Shapiro-Wilk normality test
## data: residuals(link.reml)
## W = 0.83557, p-value = 1.927e-06
h2.tab[6, "p-value"] <- link.reml.pval$"p.value"
h2.tab[6, "H2"] <- H2(link.reml, g = onc.dat$geno)
h2.tab[6, "R2"] <- R2(link.reml)
R2(link.reml)
##
## 0.1711595
h2.tab[6, "Response"] <- "Number of Network Links"
                                         # network centrality
cen.reml <- lme4::lmer(I(Cen^(1/2)) ~ (1 | geno),</pre>
                       data = onc.dat, REML = TRUE)
cen.reml.pval <- RLRsim::exactRLRT(cen.reml, nsim = 50000)</pre>
cen.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 50000 simulated values)
##
## data:
## RLRT = 3.1568, p-value = 0.03118
fligner.test(onc.dat$L^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$L^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 17.141, df = 12, p-value =
## 0.1444
shapiro.test(residuals(cen.reml))
##
## Shapiro-Wilk normality test
## data: residuals(cen.reml)
## W = 0.90132, p-value = 0.0002144
h2.tab[7, "p-value"] <- cen.reml.pval$"p.value"
h2.tab[7, "H2"] \leftarrow H2(cen.reml, g = onc.dat$geno)
h2.tab[7, "R2"] <- R2(cen.reml)
R2(cen.reml)
##
## 0.2131819
```

```
h2.tab[7, "Response"] <- "Network Centrality"
                                        # network modularity
mod.reml <- lme4::lmer(I(onc.ns[, "mod.lik"]^(1/4)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
mod.reml.pval <- RLRsim::exactRLRT(mod.reml)</pre>
mod.reml.pval
##
## simulated finite sample distribution of RLRT.
##
  (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.15205, p-value = 0.3112
fligner.test(onc.ns[, "mod.lik"]^(1/4), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
## data: onc.ns[, "mod.lik"]^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 12.902, df = 12, p-value =
## 0.3762
shapiro.test(residuals(mod.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(mod.reml)
## W = 0.52644, p-value = 2.745e-12
h2.tab[8, "p-value"] <- mod.reml.pval$"p.value"
h2.tab[8, "H2"] <- H2(mod.reml, g = onc.dat$geno)
h2.tab[8, "R2"] <- R2(mod.reml)
h2.tab[8, "Response"] <- "Network Modularity"
                                        # network stats in relation to other variables
L.aov \leftarrow aov(I(log(L + 0.000001)) \sim BR + PC + SR, data = onc.dat)
summary(L.aov)
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
                1 102.3 102.3 2.786
                                           0.1010
## BR
                1 231.2
## PC
                           231.2
                                 6.298
                                           0.0152 *
                           972.4 26.494 3.95e-06 ***
## SR
               1 972.4
## Residuals
              53 1945.2
                            36.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(L.aov))
## Shapiro-Wilk normality test
## data: residuals(L.aov)
## W = 0.96551, p-value = 0.1034
```

```
cen.aov \leftarrow aov(I(Cen^(1/2)) ~ BR + PC + SR, data = onc.dat)
summary(cen.aov)
               Df Sum Sq Mean Sq F value
##
                                           Pr(>F)
## BR
                    3.77
                            3.77
               1
                                 2.165
                                           0.1471
                                  3.732
## PC
                1
                    6.50
                            6.50
                                           0.0587 .
## SR
                1 56.08
                           56.08 32.200 5.94e-07 ***
               53 92.31
## Residuals
                           1.74
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(cen.aov))
##
## Shapiro-Wilk normality test
##
## data: residuals(cen.aov)
## W = 0.97138, p-value = 0.1944
mod.aov \leftarrow aov(I(onc.ns[, "mod.lik"]^(1/4)) \sim BR + PC + SR, data = onc.dat)
summary(mod.aov)
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
## BR
                1 0.0442 0.0442 0.790
                                            0.378
## PC
                1 0.0830 0.0830
                                  1.481
                                            0.229
                1 1.3948 1.3948 24.906 6.86e-06 ***
## SR
## Residuals
               53 2.9681 0.0560
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals((mod.aov)))
##
## Shapiro-Wilk normality test
## data: residuals((mod.aov))
## W = 0.91902, p-value = 0.0009775
cor.test(onc.ns[, "L"], onc.ns[, "Cen"])
##
## Pearson's product-moment correlation
## data: onc.ns[, "L"] and onc.ns[, "Cen"]
## t = 13.37, df = 55, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7950728 0.9244074
## sample estimates:
##
         cor
## 0.8744752
                                        # are these metrics correlated with network similarity
L.d <- dist(onc.dat$L)</pre>
cen.d <- dist(onc.dat$Cen)</pre>
mod.d <- dist(cn.mod.onc)</pre>
```

```
cn.L.cen.perm <- adonis2(cn.d.onc ~ L + Cen, data = onc.dat, mrank = TRUE)</pre>
## So, are there patterns in the centrality of individual lichen species?
sppcen.test <- apply(cen.spp[, apply(cen.spp, 2, sum) >= 2], 2, function(x)
    lme4::lmer(I(x^(1/2)) \sim (1 \mid geno), data = onc.dat, REML = TRUE))
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
sppcen.pval <- lapply(sppcen.test, RLRsim::exactRLRT)</pre>
sppcen.tab <- do.call(rbind, lapply(sppcen.pval, function(x)</pre>
    c(x[["statistic"]], x[["p.value"]])))
sppcen.h2 <- round(unlist(lapply(sppcen.test, H2)), 3)</pre>
sppcen.h2
                        Ch
            Cs
                  Ls
                               Χm
                                     Pm
## 0.000 0.147 0.000 0.264 0.201 0.000 0.090
## Mean centrality of species
sort(apply(cen.spp, 2, mean), decreasing = TRUE)
                      Ch
                                  Ls
                                             R.s
## 0.73204678 0.54157218 0.39722829 0.18378675 0.14553120 0.07914127
                      P11
## 0.06376775 0.02105263 0.00000000
## Ordinations
### nits = 10,
### iconf = random
### epsilon = 1e-12 = acceptable change in stress
### maxit = 500 = maximum number of iterations
ord.com <- nmds.min(nms.com, 3)
## Minimum stress for given dimensionality: 0.1008929
## r^2 for minimum stress configuration: 0.9357185
## Minimum stress for given dimensionality: 0.1008923
## r^2 for minimum stress configuration: 0.9357192
ord.cn <- nmds.min(nms.cn, 2)
## Minimum stress for given dimensionality: 0.01065901
## r^2 for minimum stress configuration: 0.999322
## Minimum stress for given dimensionality: 0.01065177
## r^2 for minimum stress configuration: 0.9993026
## checking variance explained by ordinations
ord1.cn.reml <- lme4::lmer(I(ord.cn[, 1]^(1/1)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
ord2.cn.reml <- lme4::lmer(I(ord.cn[, 2]^(1/1)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
ord1.cn.reml.pval <- RLRsim::exactRLRT(ord1.cn.reml)</pre>
ord2.cn.reml.pval <- RLRsim::exactRLRT(ord2.cn.reml)</pre>
ord1.cn.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
```

```
##
## data:
## RLRT = 0.99634, p-value = 0.1383
ord2.cn.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 1.5446, p-value = 0.0921
fligner.test(ord.cn[, 1]^(1/1), onc.dat$geno)
##
##
   Fligner-Killeen test of homogeneity of variances
##
## data: ord.cn[, 1]^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 9.1949, df = 12, p-value =
fligner.test(ord.cn[, 2]^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: ord.cn[, 2]^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 20.467, df = 12, p-value =
## 0.05876
ord1.com.reml <- lme4::lmer(I(ord.com[, 1]^(1/1)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
ord2.com.reml <- lme4::lmer(I(ord.com[, 2]^(1/1)) ~ (1 | geno),
                       data = onc.dat, REML = TRUE)
ord1.com.reml.pval <- RLRsim::exactRLRT(ord1.com.reml)</pre>
ord2.com.reml.pval <- RLRsim::exactRLRT(ord2.com.reml)</pre>
ord1.com.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.15481, p-value = 0.308
ord2.com.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## RLRT = 1.0007, p-value = 0.1374
```

```
fligner.test(ord.com[, 1]^(1/1), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
##
## data: ord.com[, 1]^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 9.2957, df = 12, p-value =
## 0.6775
fligner.test(ord.com[, 2]^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: ord.com[, 2]^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 16.885, df = 12, p-value = 0.154
fligner.test(ord.com[, 3]^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: ord.com[, 3]^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 14.828, df = 12, p-value = 0.251
summary(lm(ord.cn[, 1] ~ SR + PC, data = onc.dat))
##
## Call:
## lm(formula = ord.cn[, 1] ~ SR + PC, data = onc.dat)
## Residuals:
     Min
             10 Median
                           3Q
## -3.045 -1.358 0.558 1.002 2.768
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.366974 0.443265 3.084 0.00322 **
## SR
              -0.729440
                          0.166371 -4.384 5.42e-05 ***
                                    2.128 0.03788 *
## PC
               0.019870
                          0.009335
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.515 on 54 degrees of freedom
## Multiple R-squared: 0.2915, Adjusted R-squared: 0.2652
## F-statistic: 11.11 on 2 and 54 DF, p-value: 9.112e-05
summary(lm(ord.cn[, 2] ~ SR + PC, data = onc.dat))
##
## Call:
## lm(formula = ord.cn[, 2] ~ SR + PC, data = onc.dat)
##
## Residuals:
      Min
                               30
               1Q Median
## -6.5847 -2.4168 -0.1514 1.8472 10.7904
##
```

```
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.75016
                          1.05563 -3.553 0.000801 ***
                                   7.094 2.90e-09 ***
               2.81065
                          0.39621
## PC
              -0.10297
                          0.02223 -4.632 2.32e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.609 on 54 degrees of freedom
## Multiple R-squared: 0.4874, Adjusted R-squared: 0.4684
## F-statistic: 25.67 on 2 and 54 DF, p-value: 1.46e-08
summary(lm(ord.com[, 1] ~ SR + PC, data = onc.dat))
##
## Call:
## lm(formula = ord.com[, 1] ~ SR + PC, data = onc.dat)
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.18219 -0.09009 -0.01473 0.05476 0.65166
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5139707 0.0397134 -12.942 < 2e-16 ***
                                      3.567 0.000767 ***
               0.0531621 0.0149057
## PC
               0.0057656 0.0008364
                                      6.894 6.13e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1358 on 54 degrees of freedom
## Multiple R-squared: 0.8028, Adjusted R-squared: 0.7955
## F-statistic: 109.9 on 2 and 54 DF, p-value: < 2.2e-16
summary(lm(ord.com[, 2] ~ SR + PC, data = onc.dat))
##
## Call:
## lm(formula = ord.com[, 2] ~ SR + PC, data = onc.dat)
##
## Residuals:
       Min
                 1Q
                      Median
                                           Max
## -0.54342 -0.11659 0.03507 0.16837 0.50217
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.225642
                          0.068185 -3.309 0.00167 **
               0.014867
                          0.025592
                                    0.581 0.56371
## SR.
## PC
               0.003038
                          0.001436
                                   2.116 0.03898 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2331 on 54 degrees of freedom
## Multiple R-squared: 0.2183, Adjusted R-squared: 0.1893
## F-statistic: 7.538 on 2 and 54 DF, p-value: 0.001297
```

```
## Lichen size distribution
## X. gallericulata thalli are about 0.22 +/- 0.003 cm^2 on average
## with an average median size of 0.12 +/- 0.001 \text{ cm}^2
## and, size does not vary significantly with genotype.
xgs.reml <- lme4::lmer(I(mean.thallus) ~ (1 | geno),</pre>
                       data = xgs.data[xgs.data$geno %in% names(which(table(xgs.data$geno) > 2)), ],
                       REML = TRUE)
xgs.median.reml <- lme4::lmer(median.thallus ~ (1 | geno),
                       data = xgs.data[xgs.data$geno %in% names(which(table(xgs.data$geno) > 2)), ],
                       REML = TRUE)
RLRsim::exactRLRT(xgs.reml)
##
##
   simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 2.4792, p-value = 0.0495
RLRsim::exactRLRT(xgs.median.reml)
##
##
   simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 0.092023, p-value = 0.3419
fligner.test(xgs.data$mean.thallus, xgs.data$geno)
## Fligner-Killeen test of homogeneity of variances
## data: xgs.data$mean.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 13.244, df = 17, p-value =
## 0.7197
fligner.test(xgs.data$median.thallus, xgs.data$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: xgs.data$median.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 19.374, df = 17, p-value =
## 0.3075
mean(xgs.data$mean.thallus)
## [1] 0.1808442
sd(xgs.data$mean.thallus) / (length(xgs.data$mean.thallus) - 1)
## [1] 0.001845945
mean(xgs.data$median.thallus)
```

```
## [1] 0.1170852
sd(xgs.data$median.thallus) / (length(xgs.data$median.thallus) - 1)
## [1] 0.001223999
                                          # ONC and Wild Stand (Uintah)
all.dat <- rbind(wild.dat[, c("BR", "PC", "SR", "L", "Cen")],
                  onc.dat[, c("BR", "PC", "SR", "L", "Cen")])
                                          # Network distances
cn.all <- cn.wild
for (i in 1:length(cn.wild)){
    cn.all[[i]] <- cn.wild[[i]][match(rownames(cn.onc[[1]]), rownames(cn.wild[[i]])),</pre>
                                 match(colnames(cn.onc[[1]]), colnames(cn.wild[[i]]))]
cn.all <- append(cn.all, cn.onc)</pre>
cn.d.all <- netDist(cn.all, method = "bc")</pre>
cn.nms.geno <- c(rep("wild", length(cn.wild)), onc.geno)</pre>
if (!exists("cn.nms.all")){
    set.seed(12345)
    cn.nms.all <- nmds.min(nmds(cn.d.all, 2, 2))</pre>
    vec.all <- envfit(cn.nms.all, all.dat)</pre>
                                          # jitter identical points
    cn.nms.all[cn.nms.geno == "H10", ] <- cn.nms.all[cn.nms.geno == "H10", ] - 0.2</pre>
}
## Minimum stress for given dimensionality: 0.04194367
## r^2 for minimum stress configuration: 0.9915263
Tables
```

```
h2.tab[, "H2"] <- round(as.numeric(h2.tab[, "H2"]), digits = 5)
h2.tab[, "R2"] <- round(as.numeric(h2.tab[, "R2"]), digits = 5)
h2.tab[, "p-value"] <- round(as.numeric(h2.tab[, "p-value"]), digits = 5)
h2.tab <- h2.tab[order(h2.tab[, "H2"], decreasing = TRUE), ]
h2.xtab <- xtable::xtable(h2.tab, caption =
    "Genotypic effects of cottonwood trees on the associated lichen community.",
                          label = "tab:h2 table")
print(h2.xtab,
      type = "latex",
      include.rownames = FALSE,
      include.colnames = TRUE
% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:40 2019
                                         # community permanova
rcom.ng.perm.xtab <- xtable::xtable(rcom.ng.perm, caption =</pre>
    "PerMANOVA Pseudo-F Table showing the predictors of community similarity.",
                          label = "tab:com_ng_perm")
print(rcom.ng.perm.xtab,
      type = "latex",
      include.rownames = TRUE,
      include.colnames = TRUE
```

Response	H2	R2	p-value
Percent Rough Bark	0.3542	0.3542	5e-04
Network Centrality	0.21318	0.21318	0.03118
Percent Lichen Cover	0.17279	0.17279	0.0362
Number of Network Links	0.17116	0.17116	0.06484
Lichen Network	0.16493	0.30711	0.006
Lichen Community Composition	0.10196	0.24287	0.0041
Lichen Species Richness	0.09815	0.09815	0.1375
Network Modularity	0.04631	0.04631	0.3112

Table 1: Genotypic effects of cottonwood trees on the associated lichen community.

)

% latex table generated in R 3.6.0 by x table 1.8-4 package % Wed May 15 15:00:40 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	0.43	0.04	3.66	0.0097
PC	1	3.85	0.34	32.80	0.0001
SR	1	0.80	0.07	6.77	0.0001
Residual	53	6.23	0.55		
Total	56	11.31	1.00		

Table 2: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

% latex table generated in R 3.6.0 by x table 1.8-4 package % Wed May 15 15:00:41 2019

	Df	SumOfSqs	R2	F	Pr(>F)
geno	12	2.75	0.24	1.83	0.0041
BR	1	0.15	0.01	1.23	0.2705
PC	1	2.65	0.23	21.21	0.0001
SR	1	0.63	0.06	5.05	0.0010
Residual	41	5.13	0.45		
Total	56	11.31	1.00		

Table 3: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:41 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	61.42	0.04	4.11	0.0420
PC	1	51.25	0.03	3.43	0.0649
SR	1	643.74	0.42	43.12	0.0001
Residual	53	791.20	0.51		
Total	56	1547.61	1.00		

Table 4: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:41 2019

	Df	SumOfSqs	R2	F	Pr(>F)
geno	12	475.28	0.31	2.86	0.0060
BR	1	21.32	0.01	1.54	0.2244
PC	1	25.42	0.02	1.84	0.1907
SR	1	457.96	0.30	33.08	0.0001
Residual	41	567.63	0.37		
Total	56	1547.61	1.00		

Table 5: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:41 2019

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	102.25	102.25	2.79	0.1010
PC	1	231.15	231.15	6.30	0.0152
SR	1	972.40	972.40	26.49	0.0000
Residuals	53	1945.20	36.70		

Table 6: ANOVA F Table showing the predictors of the number of network links.

```
type = "latex",
include.rownames = TRUE,
include.colnames = TRUE
)
```

% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:41 2019

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	3.77	3.77	2.17	0.1471
PC	1	6.50	6.50	3.73	0.0587
SR	1	56.08	56.08	32.20	0.0000
Residuals	53	92.31	1.74		

Table 7: ANOVA F Table showing the predictors of network centralization.

% latex table generated in R 3.6.0 by xtable 1.8-4 package % Wed May 15 15:00:41 2019

	Df	SumOfSqs	R2	F	Pr(>F)
L	1	1330.80	0.86	734.67	0.0010
Cen	1	118.99	0.08	65.69	0.0010
Residual	54	97.82	0.06		
Total	56	1547.61	1.00		

Table 8: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

Plots

Figure: Genotype barplots Community composition NMDS with vectors

Figure: Lichen networks

```
par(mfrow = c(2, 2), mar = c(0, 0.1, 1.0, 0.1))
set.seed(123)
net.col <- sign(netMean(cn.mu.onc))</pre>
net.col[net.col == -1] <- 2
net.col[net.col == 1] <- 1</pre>
coord <- gplot(abs(netMean(cn.mu.onc)), gmode = "digraph",</pre>
      displaylabels = TRUE,
      edge.lwd = abs(netMean(cn.mu.onc)) * 20,
      edge.col = net.col,
      vertex.col = "black",
      vertex.cex = 0.5,
      arrowhead.cex = 0.5,
      label.cex = 1,
      main = "All Genotypes")
cn.mu.plot <- cn.mu.onc[names(cn.mu.onc) %in% c("996", "11", "1008")]</pre>
for (i in 1:length(cn.mu.plot)){
        net.col <- sign(cn.mu.plot[[i]])</pre>
        net.col[net.col == -1] <- 2
        net.col[net.col == 1] <- 1</pre>
        set.seed(123)
        gplot(abs(cn.mu.plot[[i]]), gmode = "digraph",
               displaylabels = TRUE,
```

```
coord = coord,
edge.lwd = abs(cn.mu.plot[[i]]) * 20,
edge.col = net.col,
vertex.col = "black",
vertex.cex = 0.5,
arrowhead.cex = 0.5,
label.cex = 1,
main = names(cn.mu.plot)[i])
}
```


Figure: Genotype network similarity by genotype

Figure: (A) Linkage and centrality by genotype and (B) Total cover and species richness predict L and Cen

Supplementary Figure: Lichen size distribution

```
plot(density(xgs.data$median.thallus),
    xlab = "Median Lichen Thallus Area (cm^2)",
    main = "")
abline(v = median(xgs.data$median.thallus, na.rm = TRUE), lty = 2)
```


Figure 2

ch.plot(nms.onc, onc.geno)


```
##
                  X1
                               X2
## 10
        -0.091479884 -0.104244255
## 1005 -0.124540472 0.074171596
## 1007 0.175012652 -0.154102531
## 1008 0.061349598 0.060637950
## 1012 -0.103590519 0.026719194
## 1017 -0.040197275
                     0.050863036
## 1023 0.053916695 0.005735269
        -0.032978298 -0.028980365
## 11
## 996
         0.099965753 -0.063685761
## 999
         0.105185439 -0.062733516
        -0.011830997 0.122603983
## H10
## T6
         0.002941633 0.064173827
## WC5
       -0.128224482 0.016507373
## plot(cv.onc, col = "grey30")
## legend("topleft", legend = "A")
g.order <- tapply(ns.onc[, "C"], onc.geno, mean)</pre>
g.order <- names(g.order)[order(g.order, decreasing = TRUE)]</pre>
onc.g <- factor(onc.geno, levels = g.order)</pre>
plot(ns.onc[, "C"] ~ onc.g, xlab = "Tree Genotype", ylab = "Lichen Network Connectance (C)")
```


Which wild uintah trees are similar to garden trees?

Send results to manuscript

```
manuscript.dir <- "../../lcn_manuscript"</pre>
### Send tables and figures to manuscript directory
if (exists("manuscript.dir")){
    tabs.figs <- dir(manuscript.dir)</pre>
    tab.fig.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
                           full.names = TRUE)[
                                dir("../results/lcn_notebook_files/figure-latex/") %in% tabs.figs]
    tab.fig.update <- c(tab.fig.update,</pre>
                         dir("../docs", full.names = TRUE)[dir("../docs") %in% tabs.figs])
    sapply(tab.fig.update, file.copy, to = manuscript.dir, overwrite = TRUE)
                                          # supplementary figures
    si.dir <- paste0(manuscript.dir, "/supplement")</pre>
    si <- dir(si.dir)</pre>
    si.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
                      full.names = TRUE)[
                          dir("../results/lcn_notebook_files/figure-latex/") %in% si]
    si.update <- c(si.update, dir("../docs", full.names = TRUE)[dir("../docs") %in% si])</pre>
    sapply(si.update, file.copy, to = si.dir,
           overwrite = TRUE)
```

named list()

Loading and pre-processing data

This is a place-holder for the echoing the data loading code.