

Description

Image

Caption

Flexible latex foams are used for cushions, mattresses, packaging and padding.

The material

Polymer foams are made by the controlled expansion and solidification of a liquid or melt through a blowing agent; physical, chemical or mechanical blowing agents are possible. The resulting cellular material has a lower density, stiffness and strength than the parent material, by an amount that depends on its relative density - the volume-fraction of solid in the foam. Flexible foams can be soft and compliant, the material of cushions, mattresses, and padded clothing. Most are made from polyurethane, although latex (natural rubber) and most other elastomers can be foamed.

Composition (summary)

Hydrocarbon

Genera	l pro	pert	ies

Density	4.37	-	7.18	lb/ft^3
Price	* 1.25	-	1.38	USD/lb
Date first used	1947			
Mechanical properties				
Young's modulus	5.8e-4	-	0.00174	10^6 psi
Shear modulus	2.9e-4	-	7.25e-4	10^6 psi
Bulk modulus	5.8e-4	-	0.00174	10^6 psi
Poisson's ratio	0.26	-	0.33	
Yield strength (elastic limit)	0.00696	-	0.102	ksi
Tensile strength	0.0624	-	0.428	ksi
Compressive strength	0.00696	-	0.102	ksi
Elongation	9	-	115	% strain
Hardness - Vickers	0.0048	-	0.07	HV
Fatigue strength at 10^7 cycles	* 0.0493	-	0.363	ksi
Fracture toughness	* 0.0273	-	0.0819	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.1	-	0.5	
Themselveseedee				
Thermal properties				.=
Melting point	233	-	350	°F
Glass temperature	-172	-	0.00	°F
Maximum service temperature	181	-	233	°F
Minimum service temperature	-99.7	-	-9.67	°F
Thermal conductor or insulator?	Good in	sulat	or	
Thermal conductivity	0.0237	-	0.0451	BTU.ft/h.ft^2.F

Flexible Polymer Foam (MD)

Specific heat capacity	0.418	-	0.54	BTU/lb.°F		
Thermal expansion coefficient	63.9	-	122	µstrain/°F		
Electrical properties						
Electrical conductor or insulator?	Good in	Good insulator				
Electrical resistivity	1e20	-	1e23	µohm.cm		
Dielectric constant (relative permittivity)	1.2	-	1.3			
Dissipation factor (dielectric loss tangent)	5e-4	-	0.003			
Dielectric strength (dielectric breakdown)	102	-	152	V/mil		
Optical properties						
Transparency	Opaque					
Processability						
Processability Castability	3	_	5			
· · · · · · · · · · · · · · · · · · ·	3 1	-	5 4			
Castability	_		-			

Eco properties

Embodied energy, primary production	* 1.08e4	-	1.2e4	kcal/lb
CO2 footprint, primary production	* 3.43	-	3.79	lb/lb
Recycle	×			

Supporting information

Design guidelines

Flexible foams have characteristics that suit them for cushioning and packaging of delicate objects. They are shaped by injecting or pouring a mix of polymer, catalyst and foaming agent into a mold where the agent evolves gas, expanding the foam. Expanding in a cold mold gives a solid surface skin. Closed cell foams float in water; open cell foams absorb liquids and act as sponges.

Technical notes

The properties of foams depend, most directly, on the material of which they are made and on the relative density (the fraction of the foam that is solid). Most commercial foams have a relative density between 1% and 30%. To a lesser extent, the properties depend on the size and the shape of the cells. Low density, closed cell, foams have exceptional low thermal conductivity. Skinned rigid foams have good bending stiffness and strength of low weight.

Typical uses

Packaging, buoyancy, cushioning, sleeping mats, soft furnishings, artificial skin, sponges, carriers for inks and dyes.

Links

Reference

ProcessUniverse

Producers