Abgabe - Übungsblatt [4]

[Vincent Schönbach]

[Yihao Wang]

17. Mai 2020

a)
$$\Omega_3 = [1:6]^3 = \{(\omega_1, \omega_2, \omega_3) \mid \forall i : \omega_i \in [1:6]\}$$

 $A = 2^{\Omega}$
 $\Omega' = \{(\omega_1, \omega_2, \omega_3) \mid \omega_1 < \omega_2 < \omega_3\}$
 $A' = 2^{\Omega'}$

- b) #unterschiedlicher Augenzahlen 0: d.h. 3 Augenzahlen sind identisch. Es gibt offensichtlich insgesmat 6 Fälle.
 - #unterschiedlicher Augenzahlen 1: d.h. 2 Augenzahlen sind identisch. Es gibt insgesmat $\binom{6}{2} \times 2 = 30$ Fälle.
 - #unterschiedlicher Augenzahlen 2: d.h. 3 Augenzahlen unterscheiden sich. Es gibt insgesmat $\binom{6}{3}=20$ Fälle.

- 1.
- 2. Dichtefunktion:

$$F^{'}(X) = \frac{1}{\rho(F^{-1}(x))}$$

$$F(x) = \begin{cases} 0, x < 0 \\ 1, x \in [0, 1] \\ 1, x > 1 \end{cases}$$

	X2 X1	1	2	4
a)	2	$\frac{1}{4}$	0	0
	3	Ō	$\frac{1}{2}$	0
	4	0	$\tilde{0}$	$\frac{1}{4}$

	y1 y2	1	2	Sum
b)	1	0.2	0.45	0.65
	2	0.3	0.05	0.35
	Sum	0.5	0.5	1