CTRP - A Toy Example

1 Data

Considering f=5 predictors and B=10 permutations, we simulate a $B\times f$ matrix of global test statistics:

		${f G}$		
(1)	(2)	(3)	(4)	(5)
28.42	16.68	9.36	6.12	9.40
0.10	0.06	1.37	0.08	0.56
0.69	3.07	4.33	0.83	0.36
1.07	30.31	1.11	8.55	0.26
0.22	7.45	2.87	0.48	1.02
1.83	0.04	2.85	0.04	0.02
17.68	1.82	6.00	1.52	1.06
1.77	26.12	0.29	0.26	4.07
2.71	0.37	8.47	5.83	4.42
1.14	0.03	24.06	8.84	2.41

Assume that we want to test $S = \{5\}$ with significance level $\alpha = 0.20$.

2 Shortcut

Table 1: Supersets of $S = \{5\}$, having sizes |V| = 1 + v with v = 0, ..., 4. The sets in bold are used to define the lower critical value L_v .

We define

- **D**, matrix of the centered test statistics in $F \setminus S$, where the indices appear in the order (4,3,2,1) (since $g_4 \leq g_3 \leq g_2 \leq g_1$);
- R, matrix obtained from **D** by sorting the elements within each row in decreasing order.

\mathbf{d}_S	D				\mathbf{R}			
(5)	(4)	(3)	(2)	(1)				
0.00	0.00	0.00	0.00	0.00	0.00 (1) 0.00 (2) 0.00 (3) 0.00 (4)			
-8.84	-6.03	-7.99	-16.62	-28.32	-6.03 (4) $-7.99 (3)$ $-16.62 (2)$ $-28.32 (1)$			
-9.04	-5.29	-5.02	-13.61	-27.72	-5.02(3) $-5.29(4)$ $-13.61(2)$ $-27.72(1)$			
-9.14	2.43	-8.25	13.63	-27.34	13.63 (2) $2.43 (4)$ $-8.25 (3)$ $-27.34 (1)$			
-8.38	-5.63	-6.49	-9.23	-28.19	-5.63 (4) -6.49 (3) -9.23 (2) -28.19 (1)			
-9.38	-6.08	-6.51	-16.64	-26.59	-6.08 (4) $-6.51 (3)$ $-16.64 (2)$ $-26.59 (1)$			
-8.34	-4.59	-3.36	-14.86	-10.74	-3.36 (3) $-4.59 (4)$ $-10.74 (1)$ $-14.86 (2)$			
-5.33	-5.85	-9.07	9.44	-26.65	9.44(2) $-5.85(4)$ $-9.07(3)$ $-26.65(1)$			
-4.98	-0.28	-0.89	-16.31	-25.71	-0.28 (4) -0.89 (3) -16.31 (2) -25.71 (1)			
-6.99	2.72	14.70	-16.65	-27.27	14.70 (3) $2.72 (4)$ $-16.65 (2)$ $-27.27 (1)$			

The lower and upper critical values, L_v and U_v , are the 8-th ordered statistics of

$$\mathbf{d}_{\tilde{V}} = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{D}_i \qquad \qquad \mathbf{u}_v = \mathbf{d}_3 + \sum_{i=1}^{v} \mathbf{R}_i.$$

Since the first column of **R** having no positive elements has index w = 3, we start by computing L_v for v = 0, 1, 2.

No non-rejection is found, and thus we proceed by examining v > 2, until we find either a rejection or a negative U_v . Here U_v becomes negative for v = 3, hence the supersets with v = 3, 4 are automatically rejected.

Finally, we determine the indecisive values by looking at U_v . Here they are v=1,2.

Figure 1: Upper (red) and lower (blue) critical values and observed values (zero, black) by additional superset size v. The bounds for v = 4 have not been computed in the analysis.

\overline{v}	0	1	2	3	4
					(-33.49) (-33.49)
rej	Т	?	?	Т	Т

3 Branch and Bound

3.1 Removal of the highest statistic.

The last index in \mathbf{D} , e = 1, determines the branching rule. We explore first the subspace \mathbb{S}_{-1} , where we examine only U_v .

Since the outcome is still indecisive for both sizes v = 1, 2, the subspace is partitioned again according to the inclusion of e = 2 (corresponding to the second highest statistic g_i).

Since S is not rejected in $\mathbb{S}_{-1,+2}$, it is not rejected in the total space after 3 steps.

3.2 Keeping of the highest statistic.

The last index in \mathbf{D} , e = 1, determines the branching rule. We explore first the subspace \mathbb{S}_{+1} , where we examine both critical values.

S is not rejected after 3 steps: it is rejected in \mathbb{S}_{+1} , but it is not rejected in $\mathbb{S}_{-1,+2}$.

3.3 Removal of the lowest statistic.

The first index in \mathbf{D} , e=4, determines the branching rule. We explore first the subspace \mathbb{S}_{-4} , where we examine both critical values.

S is not rejected after 2 steps, where the subspaces \mathbb{S}_{-4} and $\mathbb{S}_{-4,-3}$ are explored.

3.4 Keeping of the lowest statistic.

The first index in \mathbf{D} , e=4, determines the branching rule. We explore first the subspace \mathbb{S}_{+4} , where we examine only U_v .

After 2 steps, S is rejected in the subspace \mathbb{S}_{+4} . Subsequently, after 2 other steps, it is not rejected in \mathbb{S}_{-4} . In conclusion, it is not rejected after 4 steps.

