

طراحي الگوريتم ها - تمرين سري اول

موعد تحويل تمرين: ١٤ اسفند ١٤٠٢

پیش از حل سؤالات به موارد زیر دقت کنید:

- پاسخ خود را به صورت یک فایل PDF آماده کنید و با نام HW1_NAME_STDNUM.pdf در سامانه آبلود کنید. (به جای NAME ، فقط نام خانوادگی و به جای STDNUM ، شماره دانشجویی قرار بگیرد و حتماً رعایت شود.)
 - در تحویل تکالیف به زمان مجاز تعیین شده دقت نمایید. ارسال های با تاخیر مورد بررسی قرار نمی گیرند.
 - پاسخ تكاليف را حتماً در سامانه آپلود كنيد و از ارسال تكاليف به ايميل يا تلگرام اكيداً خودداري نماييد.
 - در صورت وجود شباهت واضح، نمره ای به پاسخ تعلق نمی گیرد.
 - در صورت وجود هرگونه ابهام مي توانيد از طريق ايميل سؤالات خود را با TA مطرح كنيد.
 - از طریق ایمیل زیر می توانید با TA مربوط به این تکلیف در ارتباط باشید.
 - taheri.a@ec.iut.ac.ir -

سوال ١: توابع زير را براساس پيچيد كي زماني مرتب نماييد.

$$n4^{n} \text{ , } n! \text{ } 2^{n} \text{ , } \binom{100}{n} \text{ , } logn^{logn} \text{ , } log^{logn} n \text{ , } logn! \text{ , } 2^{\frac{n}{2}} \text{ , } (\frac{3}{2})^{n}$$

$$n^{3} (\frac{5}{4})^{n} \text{ , } \sqrt{2}^{logn} \text{ , } n^{3} \text{ , } \sqrt{2}^{n^{3}} \text{ , } n^{n} \text{ , } n^{2}logn \text{ , } loglogn \text{ , } n! \text{ , } 2^{(2e+10)^{10e}}$$

$$4^{logn} \text{ , } n^{2}2^{n} \text{ , } e^{n}$$

$$\binom{100}{n} < 2^{(2e+10)^{10e}} < loglogn < logn^{logn} < \sqrt{2}^{logn} < \frac{1}{2}^{logn} < \frac{1}{2$$

سوال ۲: به ازای هر زوج تابع g(x) و g(x) مشخص کنید که تابع g(x) از Ω ، ω ، ω و ω تابع g(x) هست یا خیر ω اعدادی ثابت و بزرگ تر از ۱ هستند.)

پاسخ:

f(x)	g(x)	0	0	ω	Ω	Θ
$\log n$	log^3n			X	X	X
2^n	$2^{n/2}$	X	X			X
$log^{logn}n$	n^3	X	X			X

n^n	n!	X	X			X
$n\log^3 n$	$n^2 log log n$			X	X	X
$log n^2$	logn	X		X		
$n2^n$	e^n			X	X	X
n^k	c^n			X	X	X

سوال ۳: گزاره های زیر را اثبات یا رد کنید (برای گزاره غلط تنها مثال نقض کافی است، و برای عبارت درست باید آنرا اثبات کنید.)

$$f(n) \in O(g(n)) \Rightarrow 2^{f(n)} \in O(2^{g(n)})$$

 $\log n \in O(\sqrt[3]{n})$

$$f(n) \in o((f(n)^2))$$

$$f(n) + o(f(n)) \in \theta(f(n))$$

$$f(n) \in O(s(n)), g(n) \in O(r(n)) \implies \frac{f(n)}{g(n)} \in O\left(\frac{s(n)}{r(n)}\right)$$

پاسخ:

الف: نادرست است برای مثال اگر g(n) برابر g(n) برابر g(n) باشد.

ب: صحیح است، برای مثال میتوان با استفاده از هوپیتال (حتما باید به بی نهایت میل کند) درستی عبارت را نشان داد.

ج: نادرست است برای مثال اگر f(n) تابعی نزولی مانند n^{-1} باشد.

د: درست است، برای اثبات میتوان از هوپیتال یا یافتن ضرایب برای هر دو طرف معادله استفاده نمود.

ه: غلط است، برای مثال اگر (n) و (n) برابر (n) باشد، و (n) برابر (n)

سوال *: برنامه های زیر را از لحاظ پیچیدگی زمانی برسی کنید(با دلیل و توضیحات کامل) پاسخ: $0(a^4)$

اوردر حلقه اول لوگاریتم n در مبنای m هست(مبنا برای ما اهمیتی ندارد) و دو حلقه درونی از ارودر m^2 است، حلقه درون تابع m هم هر بار در حال شیفت به چپ(ضرب در m) هست و اوردر آن برابر a^i هست، با جایگذاری a^i بجای a^i و a^i به بای عبارت از اوردر a^i میرسیم و چون این کار در یک حلقه انجام میشود که تا a^i جلو میرود (در اصل عبارت a^i زیر یک سامیشن هست) از اوردر a^i میشود.

```
#include <bits/stdc++.h>
using namespace std;
int f(int num)
{
    if (num <= 1) return num;
    return f(num - 2) + f(num - 1);
}
int main ()
{
    int num; cin>>num;
    cout << f(num);
}</pre>
```

پاسخ: با حل عبارت T(n-1) + T(n-2) + 1 به اور در 2^n میرسیم

```
#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n; cin >> n;
    for (int i = 2; i <= n; i=pow(i,2)) {
        cout << 1 <<"\t";
    }
    return 0;
}</pre>
```

```
پاسخ: در هر بار اجرا أ به توان ۲ میرسد برای مثال میتوان نوشت: (((2^2)^2)^2 \dots)^2
| اگر فرض کنیم حلقه بالا k بار اجرا شده است k عددی است که دنبال آن می گردیم)، با دو بار لوگاریتم گرفتن از طرفین داریم: 2^k = \log n \quad => \quad k = \log \log n
```

پاسخ: از اوردر $0(n^3)$ است.