

Outline

Outline

- O Background and motivation
- O New optical method
- O Experimental setup
- O Results
- O Conclusion

Background and Motivation

Liquid Properties

O Surface tension

© The National Wildlife Federation

O Viscosity

© Anton Paar Wiki

Project Goal

 Non-intrusive method for measurement of surface tension and viscosity

O Why?

- Quantification of properties
- Existing method
- Applications
 - Chemical & process, energy, biomedical etc.
- O Personal goals
 - Cheap, simple and mobile setup

Capillary Waves

- O Interfacial tension is dominant force
- Characterized by tiny amplitude and high frequency
- O Linear wave theory (dispersion eq.)

$$\omega^2 = k \left(g + \frac{k^2 \sigma}{\rho} \right) \tanh(kh)$$

New Optical Method

Numerical Validation

- O Using refraction as magnifier
- O Geometric optics
 - Forward ray-tracing problem
 - Inverse ray-tracing problem
- O MATLAB code
 - Constrained and unconstrained numerical optimization

Mukim et al., AIP Advances, 2022

Numerical Validation

O Good accuracy for low and high curvature values

Experimental Setup

Proof of Concept

Setup

- O Using things lying in lab to build simple setup
- O Mechanical excitor for wave generation
- O Signal generator to drive the mechanical excitor at given frequency and amplitude
- O High speed camera for image capturing
 - Smart phone camera can be used
- O Tweaks in code for experimentation
 - Point laser source instead of line source
 - Inclusion of glass bottom

Post-processing

O Mean Curve Calculation

Results

Image Processing

Inverse Ray Tracing

Surface Normal Calculation

Cross-Section Reconstruction

Conclusion

Conclusion

- Experimentation with crude setup is difficult, time consuming but exciting
- O Possible to measure tiny wave amplitude with simple setup
- Results are promising but method needs a bit experimental and post-processing fine tuning
- Quantification of sensitivity since initial study suggests high sensitivity to the input parameters
- O Inverse algorithm works well but needs few minutes to run per frame
- Need to resolve this out before proceeding with temporal decay for viscosity

