K-MAP for POS Expression

YADATI KRISHNA

September 1, 2022

1

1

1

Contents

- 1 Components
- 2 Hardware
- 3 Software

Abstract

This manual shows how to use Arduino and LED to represent the K-MAP for POS expression for the function "G" shown in below truth table.

U	V	W	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

1 Components

Components	Value	Quantity
Arduino	UNO	1
LED	-	1
Jumper wires	M-M	3
Breadboard		1

2 Hardware

- **Problem 2.1** Make connections between the Arduino and LED using Breadboard.
 - 3 Software

Problem 3.1. execute the following program after downloading.

https://github.com/KrishnaYadati/Assignments/assignment2

K-MAP

U, V, W are the inputs and LED is the output. Using boolean logic.

$$G = (V + W')(U + W')(U' + V' + W)$$
 (1)