Programming Test: Learning Activations in Neural Networks

Dataset Used: Breast Cancer Wisconsin (Diagnostic) Data Set

Features Present:

- 1) ID number
- 2) Diagnosis (M = malignant, B = benign)

3-32)

Ten real-valued features are computed for each cell nucleus:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

All feature values are recoded with four significant digits.

Missing attribute values: none

ALGORITHM:

BASIC EXPLORATORY DATA ANALYSIS:

- 1. Imported required Libraries(Numpy, Pandas, Matplotlib.pyplot, Seaborn, SKlearn, TensorFlow)
- 2. Removed unwanted features
- 3. Searched missing values in the data.(Not Present)
- Serched for and Confirmed that we have only 1 categorical data feature and the rest are continuous data features.

DATA PRE-PROCESSING:

- 1. For entire dataset to be of a continuous numerical form, we will be encoding the categorial variable DIAGNOSIS and converting into a numerical form,
 - From the above datset, it is clearly visible that the DIAGNOSIS feature is taking 0s and 1s as values.
- 2. We will be splitting the updated dataset we have into two parts. The first is a collection of the independent variables and is called the MATRIX OF FEATURES. The other is a collection of the dependent variables and is known as RESPONSE FEATURE.
- 3. We will Standard Scalar so that the values become centered on 0 with a standard deviation 1

MODEL:

- 1. Initialised the ANN
- 2. Added the input layer and the first hidden layer using activation function "Relu".
- 3. Added the output layer with activation function "Sigmoid".
- 4. Compiled the ANN with optimizer = 'adam', loss = 'binary_crossentropy' and metrics = 'accuracy'
- 5. Trained the ANN on the training set with validation_data = (X_test,Y_test),batch_size = 16, epochs = 100.
- 6. Predicted on the test set results

CLASSIFICATION REPORT:

	precision	recall	f1-score	support
0	0.96	1.00	0.98	88
1	1.00	0.93	0.96	55
accuracy			0.97	143
macro avg	0.98	0.96	0.97	143
weighted avg	0.97	0.97	0.97	143

CONFUSION MATRIX:

ACCURACY SCORE: 0.972