# Algorithms and Satisfiability

# Lecture 5: Parallel Algorithms

DAT6 spring 2023 Simonas Šaltenis



## Parallel algorithms



- Goals of the lecture:
  - to understand the model of dynamic multithreading (aka fork-join parallelism);
  - to understand work, span, and parallelism the concepts necessary for the analysis of parallel algorithms;
  - to understand and be able to analyze the parallel merge sort algorithm.

#### Fibonacci Numbers



- Leonardo Fibonacci (1202):
  - A rabbit starts producing offspring on the second generation after its birth and produces one child each generation
  - How many rabbits will there be after n generations?

| F(1)=1 | F(2)=1 | F(3)=2 | F(4)=3 | F(5)=5 | F(6)=8 |
|--------|--------|--------|--------|--------|--------|
|        |        |        |        |        |        |
|        |        |        |        |        |        |
|        |        |        |        |        |        |

# Fibonacci Numbers (2)



- F(n) = F(n-1) + F(n-2)
- F(0) = 0, F(1) = 1
  - 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

- Straightforward recursive procedure is slow!
- Why? How slow?
- Let's draw the recursion tree

# Fibonacci Numbers (3)





# Fibonacci Numbers (4)



- How many summations are there W(n)?
  - W(n) = W(n-1) + W(n-2) + 1
  - $W(n) \ge 2W(n-2) + 1$  and W(1) = W(0) = 0
  - Solving the recurrence we get

$$W(n) \ge 2^{(n-1)/2} - 1 \approx 1.4^{n-1}$$

- Precisely W(n) =  $\Theta(\varphi^n)$ , were  $\varphi$  is the *golden ratio*  $(1+\sqrt{5})/2$   $\approx 1.618$
- Running time is exponential.

#### Multithreaded version

- What if we can do the two recursive calls in parallel
  - Using the so-called nested parallelism

# FibonacciP analysis





- "Running time":
  - $S(n) = \max(S(n-1), S(n-2)) + 1 = S(n-1) + 1$
  - Thus  $S(n) = \Theta(n)$

#### Work, Span, Parallelism



- Three main concepts (informally):
  - Work: the running time on a machine with one-processor  $(T_1)$ .
    - Fibonacci:  $\Theta(\varphi^n)$
  - Span: the running time on a machine with infinite processors  $(T_{\infty})$ .
    - Fibonacci: Θ(n)
  - Parallelism = Work/Span how many processors on average are used by the algorithm.
    - Fibonacci:  $\Theta(\varphi^n / n)$
- More formally:
  - Computation log a DAG of serial strands of instructions (vertices) and dependencies (edges) between them.
  - Work = the number of vertices in the computation log.
  - Span = the length of the longest path (critical path) in the computation log.

#### **Computation DAG**



Using an example of computing Fibonacci number of 4.

```
FibonacciP(n)
01 if n ≤ 1 then return n
02 else
03         x = spawn FibonacciP(n-1)
04         y = FibonacciP(n-2)
05         sync
06 return x + y
```

- Lines 1-3
- Lines 4-5
- O Line 6



#### **Computation DAG**

Edge(u, v) means that u must execute before v.





Spawned procedure



Called procedure



Work: number of vertices, 17 Span: the length of the longest path (critical path), 8

P-FIB(0)

P-FIB(1)

# Work law and span law



- Notation
  - Work T<sub>1</sub>
  - Span T<sub>∞</sub>
  - Multithreaded computation on P processors: T<sub>P</sub>
- Work law: T<sub>P</sub>≥T<sub>1</sub> / P
  - An ideal parallel computer with P processors can do at most P units of work.
- Span law: T<sub>P</sub>≥ T<sub>∞</sub>
  - An ideal parallel computer with P processors cannot run any faster than a machine with unlimited number of processors.

#### Assumptions

- The fork-join parallelism (dynamic multithreading) environment:
  - Shared-memory multi-core system
  - Concurrency platform task-prallel programming :
    - Takes care of allocating work to physical threads (in other words: scheduling logical threads on physical threads)
    - Takes care of synchronization, consistent access to memory
  - Pseudocode keywords: spawn, sync and parallel
    - Indicates potential (or logical) parallelism: what may run in parallel.
  - We do not consider locking, race conditions, etc:
    - Parallel threads are independent they work on separated items of data.
  - We abstract from actual physical scheduling:
    - It can be shown that simple greedy scheduling works well enough.

#### Speedup, Slackness



- When running on an actual system with P physical threads:
  - Slackness of a computation: Parallelism / P.
  - What does it mean when slackness < 1? Slackness > 1?
  - Speedup =  $T_1/T_P$ .
  - Perfect linear speedup, when speedup = P.

#### Mini quiz



- Considering the case for computing P-Fib(4).
- We already know that the work T₁ = 17 and the span T = 8
- Consider the following setups, each setup corresponds to a machine with P processing units. Which one is the most likely setup to achieve the perfect linear speedup?
- A: P=2, B: P=3, C: P=4?
- Go to <u>Socrative</u> and vote.

#### To Summarize



| Notation                         | Meaning                                                                                                                                                                        |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T <sub>1</sub>                   | Work, the running time on a machine with one processor.                                                                                                                        |
| T∞                               | Span, the running time on a machine with infinite processors.                                                                                                                  |
| $T_P$                            | The running time on a machine with P processors.                                                                                                                               |
| $T_P \ge T_1 / P$                | Work law                                                                                                                                                                       |
| $T_{P} \geq T_{\infty}$          | Span law                                                                                                                                                                       |
| $T_1/T_P$                        | Speedup. Speedup must be ≤ P according to the work law. When speedup is equal to P, it achieves <i>perfect speed up</i> .                                                      |
| $T_1/T_{\infty}$                 | Parallelism. The maximum possible speedup that can be achieved on any number of processors                                                                                     |
| T <sub>1</sub> / PT <sub>∞</sub> | Slackness = Parallelism/P. The larger the slackness, the more likely to achieve perfect speed up. When slackness is less than 1, it is impossible to achieve perfect speed up. |

## Computing span



- Sequential execution:
  - Work and span: T(A followed\_by B) = T(A) + T(B)



- Parallel execution:
  - Work:  $T_1(A in\_parallel\_with B) = T_1(A) + T_1(B)$
  - Span:  $T_{\infty}(A \text{ in\_parallel\_with } B) = \max(T_{\infty}(A), T_{\infty}(B))$



# Goal of algorithm design

- Goal of the parallel algorithm design increase parallelism.
  - Usually achieved by decreasing span (remember, parallelism = W/S)
  - It may pay off to slightly increase work, if span can be decreased significantly (in practice, relevant for highly parallel systems, such as supercomputers, but also GPUs)
- Intra-operation parallelism vs. inter-operation parallelism.

#### Side Note: Efficient Fibonacci

- The efficient O(n) serial algorithm:
  - Simple application of "dynamic programming" (or memoized evaluation of the recursive version)

```
FibonacciImproved(n)

01 if n ≤ 1 then return n

02 Fim2 ←0

03 Fim1 ←1

04 for i ← 2 to n do

05 Fi ← Fim1 + Fim2

06 Fim2 ← Fim1

07 Fim1 ← Fi

05 return Fi
```

Can be actually done in O(lg n) additions and multiplications.

#### Parallel loops



Denoted by the parallel keyword

```
ArrayCopy(A, B)

01 parallel for i = 1 to sizeof(A) do

02 B[i] = A[i]
```

- Analysis of span:
  - $S(n) = O(\lg n) + \max_i S_{iteration(i)}$
  - Why?
  - Parallel loop is implemented by divide-and-conquer

```
ArrayCopyRecursive(A, B, 1, r)

01 if 1 > r then return

02 if 1 = r then B[1] = A[r]

03 else

04  q = [(1+r)/2]

05  spawn ArrayCopyRecursive(A, B, 1, q-1)

06  ArrayCopyRecursive(A, B, q, r)
```

#### Examples



Exchanging neighboring elements:

```
ArrayExchange (A)

01 parallel for i = 1 to [sizeof(A)/2] do

02 tmp = A[i*2]

03 A[i*2] = A[i*2-1]

04 A[i*2-1] = tmp
```



Compute the largest stock price difference :



#### Merge Sort



Running time?

# Parallelising Merge Sort



```
Merge-Sort'(A, p, r)
01 if p < r then
02    q = [(p+r)/2]
03    spawn Merge-Sort'(A, p, q)
04    Merge-Sort'(A, q+1, r)
05    sync
06    Merge(A, p, q, r)</pre>
```

- Work
  - $W(n) = 2W(n/2) + \Theta(n)$
  - $W(n) = \Theta(n \lg n)$
- Span:
  - $S(n) = S(n/2) + \Theta(n)$
  - $S(n) = \Theta(n)$
- Parallelism:  $W(n)/S(n) = \Theta(\lg n)$ . Rather low...

#### Merge-Sort Recursion Tree





- Problem merging is very serial:
  - At the top level, only one processor does Θ(n) work in serial!
  - At the second level, only two processors do  $\Theta(n)$  work.

• ...

## Multithreaded merging



 Main idea – make the algorithm divide-and-conquer and use nested parallelism.



# Multithreaded merging analysis



- One key idea: do binary search in the smaller of the two arrays!
  - This ensures that the *largest* of the two recursive calls works with at most 3n/4 elements, where n = the sum of sizes of the two arrays.
  - Why?
- Span:
  - $S(n) = S(3n/4) + \Theta(\lg n)$
  - What is the solution?
  - $S(n) = \Theta(\lg^2 n)$
- Work:
  - Can be shown to be  $\Theta(n)$ .

## Multithreaded merge sort



```
PMerge-Sort(A, p, r)
01 if p < r then
02         q = [(p+r)/2]
03         spawn PMerge-Sort(A, p, q)
04         PMerge-Sort(A, q+1, r)
05         sync
06         PMerge(A, p, q, r)</pre>
```

- Work:
  - The same recurrence and solution:  $W(n) = \Theta(n \lg n)$
- Span:
  - $S(n) = S(n/2) + \Theta(\lg^2 n)$
  - $S(n) = \Theta(\lg^3 n)$
- Parallelism:
  - $W(n) / S(n) = \Theta(n \lg n) / \Theta(\lg^3 n) = \Theta(n / \lg^2 n)$

#### To summarize



• Work:  $\Theta(nlgn)$ 

|             | Merge Procedure | Span            | Parallelism                             |
|-------------|-----------------|-----------------|-----------------------------------------|
| Naïve merge | Θ( <i>n</i> )   | Θ( <i>n</i> )   | ⊖( <i>lgn</i> )                         |
| P-Merge     | $\Theta(lg^2n)$ | $\Theta(lg^3n)$ | Θ(n / <i>lg</i> <sup>2</sup> <i>n</i> ) |

# Goal of the multi-threaded algorithm design

- Goal of the multi-threaded algorithm design increase parallelism.
  - Parallelism = work / span
  - Usually achieved by decreasing span
    - MergeSort without P-Merge and with P-Merge
    - $\Theta(n)$  vs.  $\Theta(lg^3n)$
  - It may pay off to slightly increase work, if span can be decreased significantly (in practice, relevant for highly parallel systems, such as supercomputers, GPUs)