II. Fondements théoriques des SED :

THEORIE DES GRAPHES

· Pourquoi?

- Un graphe permet de modéliser simplement la structure, les connexions, les cheminements possibles d'un ensemble complexe représentant un grand nombre de situations.
- Plusieurs problèmes dans différentes disciplines (chimie, sciences sociales, réseaux, applications industrielles, ...).

II. Fondements théoriques des SED :

THEORIE DES GRAPHES

- 1. Concepts généraux
- 2. Coloration d'un graphe
- 3. Parcours dans un graphe
- 4. Etude de la connexité d'un graphe

- Définitions
- · Représentations d'un graphe
- · Connexité dans les graphes

Définitions

· Graphes orientés (GO):

- Un graphe G(X,U) est déterminé \mathbb{R}_{i} par:
 - Un ensemble $X=\{x_1,...,x_n\}$ de sommets
 - Un ensemble $U=\{u_1, ..., u_m\}$ du produit cartésien $X \times X$ d'arcs.
- Un p-graphe : pas plus que p arcs (x_i,x_i)

3-graphe

Définitions

- · Graphes et applications multivoques:
 - x_j est successeur de x_i si $(x_i,x_j) \in U$
 - L'ensemble des successeurs de x_i est noté $\Gamma(x_i)$
 - L'ensemble des prédécesseurs de x_i est noté $\Gamma^{-1}(x_i)$
 - Γ est appelée une application multivoque sur X notée : $G = (X, \Gamma)$
- L'ordre du graphe G, noté |G|, est le <u>nombre de</u> <u>sommets</u> du graphe (|G| = |X|)

· Graphes non orientés (GNO):

- On s'intéresse à l'existence d'arcs entre deux sommets sans en préciser le sens
- Arc = arête
- U est constitué de *paires* non pas de couples de sommets $(U \equiv A)$
- Multigraphe : plusieurs arêtes entre deux sommets
- Graphe simple = non multigraphe + pas de boucles

Définitions

Un graphe non orienté est déterminé par:

- Un ensemble X de sommets
- Un ensemble A d'arêtes.

Graphe Non Orienté (GNO)

Un graphe orienté est déterminé par:

- Un ensemble X de sommets
- Un ensemble U d'arcs.

· Adjacence de sommets:

Deux sommets x_i et x_k de X sont adjacents si x_i est un successeur de x_k ou si x_k est un successeur de x_i :

$$x_i$$
 adjacent à $x_k \equiv x_i \in \Gamma(x_k)$ ou $x_k \in \Gamma(x_i)$

- -Dans un graphe non orienté : $\exists a \in A : a = \{x_i, x_k\}$
- -Dans un graphe orienté : $\exists u \in U : u = (x_i, x_k)$ ou $u = (x_k, x_i)$

· Degré d'un sommet dans un graphe orienté:

Un arc $u \in U$ est un arc incident à x vers l'extérieur si l'extrémité initiale de u coïncide avec le sommet $x \in X$. On note U_x + l'ensemble des arcs incidents à x vers l'extérieur.

Un arc $u \in U$ est un arc incident à x vers l'intérieur si l'extrémité terminale de u coïncide avec le sommet $x \in X$. On note U_x -l'ensemble des arcs incidents à x vers l'intérieur.

- Le demi-degré extérieur (ou degré sortant) de x, noté d+(x), est le nombre d'arcs incidents à x vers l'extérieur: $d+(x) = |U_x+|$.
- Le demi-degré intérieur (ou degré entrant) de x, noté d-(x), est le nombre d'arcs incidents à x vers l'intérieur: $d-(x) = |U_x-|$.
- Le degré de x, noté d(x), est le nombre d'arcs ayant une extrémité coïncidant avec x: d(x) = d-(x) + d+(x).

Définitions

Degré d'un sommet dans un graphe non orienté:

Nombre d'arêtes issues d'un sommet

Graphe Non Orienté (GNO)

Degré d'un sommet dans un graphe orienté:

Nombre d'arcs arrivant et partant d'un sommet

Graphe Orienté (GO)

- Graphe réflexif: $\forall x_i \in X, (x_i, x_i) \in U$
- Graphe symétrique: $\forall x_i, x_j \in X, (x_i, x_j) \in U \rightarrow (x_j, x_i) \in U$
- Graphe transitif: $\forall x_i, x_j, x_k \in X, (x_i, x_j) \in U, (x_j, x_k) \in U \rightarrow (x_i, x_k) \in U$
- Graphe complet: $\forall x_i, x_j \in X, (x_i, x_j) \notin U \rightarrow (x_j, x_i) \in U$ Un graphe complet d'ordre n est noté Kn
- Clique: ensemble des sommets d'un sous-graphe complet.
- Sous-ensemble stable: sous-ensemble de sommets non adjacents 2 à 2
- Graphe partiel: graphe obtenu en supprimant certains arcs ou arêtes.
- Sous-graphe: graphe obtenu en supprimant certains sommets et tous les arcs ou arêtes incidents aux sommets supprimés.

- Graphe biparti:

Soit le graphe G(X, U):

- G est un graphe biparti ou bipartite si l'ensemble de ses sommets X peut être divisé en deux ensembles A et B, de sorte que :
 - les éléments de A ne sont pas reliés entre eux
 - les éléments de B ne sont pas reliés entre eux

Les arêtes (ou arcs) relient uniquement des éléments de A à des éléments de B.

Un graphe biparti complet noté $K_{p,q}$ est un graphe biparti où chacun des p sommets de A est relié à chacun des q sommets de B.

- Graphe planaire:

Soit le graphe G(X, U):

- Une représentation planaire du graphe G est la donnée, dans le plan, d'un ensemble de points de même cardinal que X, reliés deux à deux par des courbes continues du plan lorsque les sommets correspondant du graphe sont reliés, et tels que ces courbes ne se croisent pas.
- Un graphe G est dit planaire si et seulement si il admet une représentation planaire.

K₅ et K_{3,3} sont les plus petits graphes non planaires

Représentations d'un graphe

1. Matrice d'adjacence

	x_1	x_2	x_3	\leftarrow destination
x_1	0	1	1	
x_2	1	0	1	
x_3	0	0	0	
↑				
origine				

Taille: n²

Pour un graphe valué: remplacer 1 par le poids de l'arc

Concepts généraux en théorie des graphes Représentations d'un graphe

2. Matrice d'incidence sommets-arcs

	u_1	u_2	u_3	u_4
x_1	1	-1	1	0
x_2	-1	1	0	1
x_3	0	0	-1	-1

Taille: n x m

- Une chaîne est une séquence $(u_1 , u_2 , ... , u_m)$ d'arêtes telle que u_k est adjacente à u_{k+1} .
 - Une chaîne simple est une chaîne dont les arêtes sont toutes distinctes.
 - Un cycle est une chaîne fermée.
- Un chemin est une séquence $(u_1 , u_2 , ... , u_m)$ d'arcs telle que : u_k est adjacente à u_{k+1} .
 - Un chemin simple est un chemin dont les arcs sont tous distincts.
 - Un circuit est un chemin fermé.

· Chaîne - Cycle (non orienté)

 $\langle u_1, u_3, u_4, u_7 \rangle$ est un chemin de x_2 à x_3

 $\langle u_1, u_3, u_6, u_5 \rangle$ est un circuit

La longueur d'une chaîne (resp. chemin) est le nombre d'arêtes (resp. arcs) qui la composent.

Propriété:

Soit M la matrice associée à un graphe G non orienté (resp. orienté) et p un nombre entier naturel, le coefficient de MP situé à l'intersection de la ième ligne et de la jème colonne est égal au nombre de chaînes (resp. chemins) de longueur p reliant le sommet i au sommet j.

- Le terme parcours regroupe les chemins, les chaînes, les circuits et les cycles
- · Un parcours peut être
 - élémentaire : tous les sommets sont distincts
 - simple: tous les arcs (ou arêtes) sont distincts
 - hamiltonien : passe une fois et une seule par chaque sommet
 - eulérien : passe une fois et une seule par chaque arc (ou arête)

Connexité dans les graphes

· Connexité (GNO)

Un graphe G = (X, U) est connexe si $\forall x_i, x_j \in X$, il existe une chaîne entre x_i et x_j

On appelle composante connexe le plus grand sous-ensemble de sommets tels qu'il existe une chaîne entre 2 sommets quelconques.

Un graphe est connexe s'il comporte une seule composante connexe formée de tous ses sommets. Chaque composante connexe est un graphe connexe.

Forte connexité (GO)

Un graphe G = (X, U) est fortement connexe si $\forall x_i, x_j \in X$, il existe un chemin entre x_i et x_j

On appelle composante fortement connexe (CFC) le plus grand sousensemble de sommets tels qu'il existe un chemin entre 2 sommets quelconques.

Un graphe est fortement connexe s'il comporte une seule composante fortement connexe formée de tous ses sommets.

Les différentes CFC d'un graphe définissent une partition du graphe.

· Recherche de CFC : Méthode de Malgrange

<u>Propriété</u>: Un graphe non orienté est eulérien si et seulement si il contient une chaîne eulérienne ou un cycle eulérien.

Théorème d'Euler:

- 1. Un graphe admet un cycle eulérien si et seulement si il est connexe et si tous ses sommets sont de degré pair.
- 2. Un graphe admet une chaîne eulérienne entre les sommets x et y si et seulement si il est connexe et si x et y sont les deux seuls sommets de degré impair.

<u>Propriété</u>: Un graphe orienté est eulérien si et seulement si il contient un chemin eulérien ou un circuit eulérien.

Théorème d'Euler:

- 1. Un graphe admet un circuit eulérien si et seulement si il est connexe et si $\forall x \in U$, $d_+(x) = d_-(x)$
- 2. Un graphe admet un chemin eulérien entre les sommets x et y si et seulement si il est connexe et si $d_{+}=d_{-}$ pour tout sommet, sauf (x,y): $d_{-}(x)=d_{+}(x)-1$ et $d_{-}(y)=d_{+}(y)+1$