Attilio Meucci

www.symmys.com

Formulas and figures in this presentation refer to the book Risk and Asset Allocation, Springer.

The notation, say, (5.24) refers to Formula 24 in Chapter 5 of the book

The notation, say, (T4.12) refers to Formula 12 in the Technical Appendices for Chapter 4, which can be downloaded from www.symmys.com

affine equiv.
$$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\} \quad (1.22)$$

	location	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)
"local" measure	$\operatorname{Mod}\left\{ X\right\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x\right) \right\}$	(1.30)

	location	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)
"local" measure	$\operatorname{Mod}\left\{ X ight\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x ight) ight\}$	(1.30)
"semi-local" measure	$\int_{-\infty}^{\operatorname{Med}\{X\}} f_X(x) dx = \frac{1}{2}$	(1.27)

	location	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)
"local" measure	$\operatorname{Mod}\left\{ X\right\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x\right) \right\}$	(1.30)
"semi-local" measure	$\int_{-\infty}^{\operatorname{Med}\{X\}} f_X(x) dx = \frac{1}{2}$	(1.27)
"global" measure	$\mathbf{E}\left\{ X\right\} \equiv \int_{-\infty}^{+\infty} x f_{X}\left(x\right) dx$	(1.25)

	location		dispersion	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)	$\operatorname{Dis}\left\{a+bX\right\} = \left b\right \operatorname{Dis}\left\{X\right\}$	(1.32)

	location		dispersion	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)	$\operatorname{Dis}\left\{a+bX\right\} = b \operatorname{Dis}\left\{X\right\}$	(1.32)
"local" measure	$\operatorname{Mod}\left\{ X\right\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x\right) \right\}$	(1.30)	(square root of) $\mathrm{MDis}\left\{X\right\} \equiv -\left.\frac{1}{\frac{d^2 \ln f_X}{dx^2}}\right _{x=\mathrm{Mod}\left\{X\right\}}$	(1.38)

	location		dispersion	
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)	$\operatorname{Dis}\left\{a+bX\right\} = \left b\right \operatorname{Dis}\left\{X\right\}$	(1.32)
"local" measure	$\operatorname{Mod}\left\{ X\right\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x\right) \right\}$	(1.30)	(square root of) $\mathrm{MDis}\left\{X\right\} \equiv -\left.\frac{1}{\frac{d^2\ln f_X}{dx^2}}\right _{x=\mathrm{Mod}\left\{X\right\}}$	(1.38)
"semi-local" measure	$\int_{-\infty}^{\operatorname{Med}\{X\}} f_X(x) dx = \frac{1}{2}$	(1.27)	$\operatorname{Ran}\left\{X\right\} \equiv Q_X\left(\overline{p}\right) - Q_X\left(\underline{p}\right)$	(1.37)

	location		dispersion
affine equiv.	$\operatorname{Loc}\left\{a+bX\right\}=a+b\operatorname{Loc}\left\{X\right\}$	(1.22)	Dis $\{a + bX\} = b $ Dis $\{X\}$ (1.32)
"local" measure	$\operatorname{Mod}\left\{ X\right\} \equiv \operatorname*{argmax}_{x\in\mathbb{R}}\left\{ f_{X}\left(x\right) \right\}$	(1.30)	(square root of) $\mathrm{MDis}\left\{X\right\} \equiv -\left.\frac{1}{\frac{d^2 \ln f_X}{dx^2}}\right _{x=\mathrm{Mod}\left\{X\right\}} \tag{1.38}$
"semi-local" measure	$\int_{-\infty}^{\operatorname{Med}\{X\}} f_X(x) dx = \frac{1}{2}$	(1.27)	$\operatorname{Ran}\left\{X\right\} \equiv Q_X\left(\overline{p}\right) - Q_X\left(\underline{p}\right) \tag{1.37}$
"global" measure	$\mathrm{E}\left\{ X\right\} \equiv \int_{-\infty}^{+\infty}xf_{X}\left(x\right) dx$	(1.25)	(square root of) $\operatorname{Var}\left\{X\right\} \equiv \left(\operatorname{Sd}\left\{X\right\}\right)^2 \qquad (1.43)$ $= \int_{\mathbb{R}} \left(x - \operatorname{E}\left\{X\right\}\right)^2 f_X\left(x\right) dx.$

raw moments

$$RM_k^X \equiv E\left\{X^k\right\} \quad (1.47)$$

$$\phi_X(\omega) = 1 + (i\omega) \operatorname{RM}_1^X + \dots + \frac{(i\omega)^k}{k!} \operatorname{RM}_k^X + \dots$$
 (T1.32)

raw moments

$$RM_k^X \equiv E\left\{X^k\right\} \tag{1.47}$$

$$\phi_X(\omega) = 1 + (i\omega) \operatorname{RM}_1^X + \dots + \frac{(i\omega)^k}{k!} \operatorname{RM}_k^X + \dots$$
 (T1.32)

$$CM_k^X \equiv E\left\{ (X - E\left\{X\right\})^k \right\}$$
 (1.48)

central moments

$$CM_k^X = \sum_{j=0}^k \frac{k! (-1)^{k-j}}{j! (k-j)!} RM_j^X (RM_1^X)^{k-j}$$
 (T1.38)

raw moments

$$RM_k^X \equiv E\left\{X^k\right\} \tag{1.47}$$

$$\phi_X(\omega) = 1 + (i\omega) \operatorname{RM}_1^X + \dots + \frac{(i\omega)^k}{k!} \operatorname{RM}_k^X + \dots$$
 (T1.32)

$$CM_k^X \equiv E\left\{ (X - E\left\{X\right\})^k \right\}$$
 (1.48)

central moments

$$CM_{k}^{X} = \sum_{i=0}^{k} \frac{k! (-1)^{k-j}}{j! (k-j)!} RM_{j}^{X} (RM_{1}^{X})^{k-j}$$
 (T1.38)

$$Sk \{X\} \equiv \frac{CM_3^X}{\left(Sd \{X\}\right)^3}$$
 (1.49)

notable examples

$$\operatorname{Ku}\left\{X\right\} \equiv \frac{\operatorname{CM}_{4}^{X}}{\left(\operatorname{Sd}\left\{X\right\}\right)^{4}} \tag{1.51}$$