Wiederhalung · R = Z, ode R = K[X], O + m & R, m & N falls R = Z $-a,b \in \mathbb{R}$: $a \equiv_{\mathbf{m}} b : (=) m \mid a-b$ - =m int AR auf R, a AK von a ER $\mathbb{R}/\equiv_{\mathbf{m}} =: \mathbb{R}/(m), \quad \mathbb{Z}_{\mathbf{m}} := \mathbb{Z}/(m)$ $- \alpha \in \mathbb{R}$ a mod m := +, falls ag a = 9 m + r und lo∈r2 m, fall R= Z, lolegr2 deg m, fall R=KIX) - a,b∈ R:

a = mb \iff $a \mod m = b \mod m$ $\bar{a} = a + Rm := \{a + xm \mid x \in R\} \text{ Renthlane}$

 $\mathbb{Z}_{2} = \{0, 1\}$ ō: Menge de gerade Zahle ī: " ungerade " $\mathbb{Z}_3 = \{\bar{o}, \bar{\tau}, \bar{z}\}$ $Z_1 = \{\bar{o}\}$ für Em: { 0, 1, ..., m-1} Reprasentanten nyster " KOX3/(m): KOX7 « deg m R/(m) hommutativer Ring unit

R/(m) hommutativer Ring unit $\overline{a} + \overline{b} := \overline{a+b}$, $\overline{a} \cdot \overline{b} := \overline{a\cdot b}$, $1 = \overline{1}$, $0 = \overline{0}$

$$\begin{array}{l} \left(\mathbb{R}/(m) \right)^{\times} = \left\{ \begin{array}{l} \overline{a} \mid ggT(a_{1}m) = 1 \right\} \\ \text{Sei } \alpha \in \mathbb{R} \mid mih \mid ggT(a_{1}m) = 1 \\ \mathbb{R}ertimme \mid x, y \in \mathbb{R} \mid mih \mid x \alpha + y m = 1 \\ \Rightarrow \overline{x} = \overline{a}^{-1} \\ \left[\begin{array}{l} ym = x\alpha - 1 \\ \end{array} \right] \Rightarrow m \mid x \alpha - 1 =) \quad x \alpha \equiv m 1 \\ \Rightarrow \overline{x} = \overline{1} \Rightarrow \overline{x} \cdot \overline{a} = \overline{1} = 1 . \end{array}] \\ \text{Pe N } \frac{\operatorname{Primeabl}}{\operatorname{rimeabl}}, \text{ fall } \operatorname{p71} \text{ and } \operatorname{1p} \text{ distensing Tailer in p in N}. \\ g \in K[X] \text{ irreducibel}, \text{ fall } g \neq v, \operatorname{oleg} g \geqslant 1 \text{ distensing Tailer in p in N}. \\ \mathbb{C}_{s} \mid g = f, h, f, h \in K[X] \Rightarrow f \in K^{\times} \text{ ode } h \in K^{\times}. \\ \mathbb{R}/(m) \text{ sit } \text{ Korpur } (=) \text{ for } \operatorname{Primeabl} \left(\mathbb{R} = \mathbb{Z} \right) \\ \text{ an irreducibel} \left(\mathbb{R} = K[X] \right) \end{aligned}$$

=)" m micht Primeall (irreducibel m=a.b mid a,b & Rx $\bar{a} + c$, $\bar{b} + c$ in R(m) and $\bar{a} \cdot \bar{b} = \bar{c} = c$ R/Cm7 int kein Korper €" Sai a ∈ R mil à ≠ 0 =) 897 $(a_1m) = 1$ $[m = ggT(a_im) \cdot q, m irreduribel =) ggT(a_im) = 1 oder$ =) ggT(a,m1=2 ode m | ggT(a,m) =) ggT(aim1=? oder in/a da ggT(aim)/a] Davit à G (R/cm))x.

Endliche Primkörper

Definition

$$p \in \mathbb{P}$$

Primkörper zu p: $\mathbb{F}_p := \mathbb{Z}/(p) = \mathbb{Z}_p$

Beispiel

$$\blacktriangleright \mathbb{F}_2 = \mathbb{Z}/(2) = \{\overline{0}, \overline{1}\}$$

Endliche Primkörper (Forts.)

Unterdrücke den Querstrich in der Notation

▶
$$\mathbb{F}_3 = \mathbb{Z}/(3) = \{0, 1, 2\}$$

+	0	1	2		0		27.110
	0			0	0	0	
1	1 2	2	0	1	0 0 0	1	
2	2	0	1	2	0	2	

▶
$$\mathbb{F}_5 = \mathbb{Z}/(5) = \{0, 1, 2, 3, 4\}$$

+	0	1	2	3	4		0	1	2	3	4
0	0	1	2	3	4	 				0	
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2					4	
4	4	0	1	2	3	4	0	4	3	2	1

Restklassenkörper von Polynomringen

Beispiel

 $\mathbb{R}[X]/(X^2+1)$ ist Körper

Definition

Körper der komplexen Zahlen: $\mathbb{C} := \mathbb{R}[X]/(X^2+1)$

Terminologien und Notationen:

- ightharpoonup komplexe Zahl: Element von $\mathbb C$
- lacktriangle imaginäre Einheit: $\mathrm{i}:=\overline{X}\in\mathbb{C}$

$$i^2 = \overline{\chi}^2 = \overline{\chi}^2 + \overline{1} - \overline{1} = (\overline{\chi}^2 + 1) - \overline{1} = -1.$$

Bemerkung

►
$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
 Snothe $a := \overline{a}$ für $\mathbb{R}[X]_{\angle 1}$.
► $a, b, a', b' \in \mathbb{R}$ Snothe $a := \overline{a}$ für $\mathbb{R}[X]_{\angle 1}$.
Frethe jeder Franca Perkhlame durch where $a := a + bi = a' + b'i \Leftrightarrow a = a' \text{ und } b = b'$ for $a + b \times \{a, b \in \mathbb{R}\}$.
► $a, b, c, d \in \mathbb{R}$

$$(a + bi) + (c + di) = (a + c) + (b + d) \text{ i}$$

 $(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$

Definition

$$z \in \mathbb{C}$$
, $a, b \in \mathbb{R}$ mit $z = a + bi$

- ▶ Realteil von z: Re z := a
- ▶ Imaginärteil von z: $\operatorname{Im} z := b$

Beispiel

- $ightharpoonup \operatorname{Re}(2-i) = 2$
- $\blacktriangleright \operatorname{Im}(2-i) = -4$

Definition

$$z\in\mathbb{C}$$

zu z konjugierte komplexe Zahl: $\overline{z} := \operatorname{Re} z - (\operatorname{Im} z)i$

Beispiel

$$\overline{3-2i} = 3 + 2i$$

Beispiel

- $ightharpoonup \mathbb{F}_2[X]/(X^2+X+1)$ ist Körper
- ▶ $\mathbb{F}_2[X]/(X^3+X+1)$ ist Körper
- ▶ $\mathbb{F}_3[X]/(X^2+1)$ ist Körper

Notation

- $ightharpoonup \mathbb{F}_4:=\mathbb{F}_2[X]/(X^2+X+1); \quad \alpha:=\overline{X} \text{ in } \mathbb{F}_4$
- $ightharpoonup \mathbb{F}_8 := \mathbb{F}_2[X]/(X^3+X+1); \quad \beta := \overline{X} \text{ in } \mathbb{F}_8$
- $ightharpoonup \mathbb{F}_9 := \mathbb{F}_3[X]/(X^2+1); \qquad \qquad \iota := \overline{X} \text{ in } \mathbb{F}_9$

Bemerkung

- $\blacktriangleright \mathbb{F}_4 = \{a + b\alpha \mid a, b \in \mathbb{F}_2\}$
- $ightharpoonup a, b, a', b' \in \mathbb{F}_2$

$$a + b\alpha = a' + b'\alpha \Leftrightarrow a = a' \text{ und } b = b'$$

▶ $a, b, c, d \in \mathbb{F}_2$

$$(a+b\alpha)+(c+d\alpha)=(a+c) + (b+d) \qquad \alpha$$

$$(a+b\alpha) \cdot (c+d\alpha)=(ac+bd)+(ad+bc+bd)\alpha$$

$$\chi^{2}=-1-\alpha = 1+\alpha \qquad \left[\text{Wail } \overline{\chi}^{2}+\overline{\chi}+\overline{1}=\overline{0} \right]$$

 \mathbb{F}_4

+		0	1	α	$1 + \alpha$	
0		0	1	α	$1 + \alpha$	
1		1	0	1+c	α α	
α	α		$1 + \alpha$	0	1	
$1 + \alpha$	$+ \alpha \mid 1 + \alpha$		α	1	0	
		0	4		1	
		0	1	α	$1+\alpha$	
0		0	0	0	0	
1		0	1	α	$1 + \alpha$	
α		0	α	$1 + \alpha$	1	
$1 + \alpha$		0	$1 + \alpha$	1	α	

Euler-Funktion

Definition

Euler-Funktion:

$$\varphi \colon \mathbb{N} \to \mathbb{N}, \ n \mapsto |(\mathbb{Z}_n)^{\times}|$$

Beispiel

$$\varphi(8) = 4$$
, da $(\mathbb{Z}_8)^* = \{\bar{1}, \bar{3}, \bar{5}, \bar{7}\}.$

Euler-Funktion (Forts.)

Bemerkung

$$\varphi(n) = |\{x \in \{0, 1, \dots, n-1\} \mid ggT(n, x) = 1\}|.$$

Proposition

▶ $p, q \in \mathbb{P}$ mit $p \neq q$

$$\varphi(pq) = (p-1)(q-1)$$

 $ightharpoonup p \in \mathbb{P}$

$$\varphi(p) = p - 1$$

Allgemain gill:
$$q(m,n) = q(m) \cdot q(n), falls ggT(m,n) = 1.$$
(Ohne Bervein)

Bewein: Vielfache von p in 0,1,..., pq-1: 0, p, 2p, ..., (q-1)p 0, q, 2q, ..., (q-1)p 0, q, 2q, ..., (p-1)q 0, q, 2q, ..., (p-1)q

2

Euler-Funktion (Forts.)

Lemma

G endliche abelsche Gruppe, $x \in G$

$$x^{|G|} = 1$$
Bewein: $G = \{g_{11}, \dots, g_{m}\} \implies G = \{xg_{11}, \dots, xg_{m}\}_{1}, m = |G|$

$$a := \frac{1}{1-1}g_{i}$$

$$\Rightarrow a = \frac{m}{1-1}g_{i}' = \frac{m}{1-1}(xg_{i}') = x^{|G|}\frac{m}{1-1}g_{i}' = x^{|G|}g_{i}$$

Euler-Funktion (Forts.)

Satz von Euler

$$n \in \mathbb{N}$$
, $a \in \mathbb{Z}$ mit $ggT(n, a) = 1$

$$a^{\phi(n)}\equiv_n 1$$
 Folgt aun Lemma, angewardt auf $imes=\overline{lpha}\in\left(\mathbb{Z}_n
ight)^{ imes}$. M

Kleiner Satz von Fermat

$$p\in\mathbb{P},\,a\in\mathbb{Z}$$
 mit $p\neq a$:
$$a^{p-1}\equiv_p 1$$
 Falgt am Enler mit $n=p$, da $\mathcal{Q}(p)=p-1$. M

6. Dezember 2018

Die symmetrische Gruppe

Symmetrische Gruppe

Erinnerung

Es sei A eine Menge.

Abb(A, A) ist Monoid mit Verknüpfung

$$(g,f)\mapsto g\circ f=gf$$

(Komposition von Abbildungen).

Definition

- ► Es sei *A* eine Menge.
 - ► Symmetrische Gruppe auf A:

$$S_A := \mathrm{Abb}(A,A)^{\times}$$

- ▶ Permutation von A: Element von S_A
- $\frac{n}{2} = \{l_1, \dots, n\}$ $\frac{0}{2} = \emptyset$ ▶ Es sei $n \in \mathbb{N}_0$.

Symmetrische Gruppe vom Grad *n*:

$$S_n := S_{\underline{n}}$$

Notation

Für
$$\pi \in S_A$$
: $|A| = n < \infty$, $A = \{a_{A_1, \dots, a_n}\}$

$$\pi = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ \pi(a_1) & \pi(a_2) & \dots & \pi(a_n) \end{pmatrix}.$$

Für $\pi \in S_n$:

$$\pi = \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}.$$

Meistens lassen wir das Zeichen "o" für die Verknüpfung weg.

Beispiele

- $\triangleright S_0 = \{id_{\phi}\}$
- $\triangleright S_1 = \{ (\binom{4}{4}) \}$
- $> S_2 = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$

Beispiele

$$\left(\begin{array}{ccc}1&2&3\\2&1&3\end{array}\right)\left(\begin{array}{ccc}1&2&3\\3&2&1\end{array}\right)=\left(\begin{array}{ccc}1&2&3\\3&1&2\end{array}\right)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

Definition

Für $n \in \mathbb{N}_0$ ist $n! \in \mathbb{N}$, gesprochen "n Fakultät", definiert durch

$$0! := 1, \qquad 1! = 1$$

$$2! = 2$$

$$n! := \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdots n \quad 3! = 6$$

$$4! = 24$$

$$5! = 120$$

$$6! = 720$$

Proposition

Für $n \in \mathbb{N}_0$ ist $|S_n| = n!$.

Beweis de Proposition

Träger einer Permutation

Definition

Für $\pi \in S_A$ heißt

$$T_{\pi} := \{a \in A \mid \pi(a) \neq a\} \subseteq A$$

der *Träger* von π .

Träger einer Permutation (Forts.)

Bemerkung

Es seien $\pi, \psi \in S_A$.

(a)
$$\blacktriangleright \pi(T_{\pi}) = T_{\pi}$$
.

$$\pi(T_{\pi}) := \{ \pi(a) \mid a \in T_{\pi} \}$$

- (b) \blacktriangleright Gilt $T_{\pi} \subseteq B$, so kann π auch als Element von S_B aufgefasst werden.
- (c) ► Haben π und ψ disjunkte Träger, so gilt $\pi \circ \psi = \psi \circ \pi$.

Beweis de Bemerkung:

(a)
$$-B := A | T_{\pi}, d.h. T_{\pi} \cap B = \emptyset$$

 $= | \pi(B) | = \{ \pi(b) | b \in B \} = B$
 $-\pi \text{ injehtiv} = | \pi(T_{\pi}) \cap \pi(B) | = \emptyset$
 $= | \pi(T_{\pi}) \cap B | = \emptyset$
 $= | \pi(T_{\pi}) | = A | B = T_{\pi}$
 $= | \pi(T_{\pi}) | = T_{\pi} \text{ will } |\pi(T_{\pi})| = |T_{\pi}|$

(b)
$$T_{\overline{u}} \cap T_{\gamma \gamma} = \emptyset \implies \overline{u} \circ \psi = \psi \circ \overline{u}$$

$$\alpha \in T_{\overline{u}} \implies \overline{u} \circ (\alpha) \in T_{\overline{u}} \quad \text{mach } (\alpha)$$

$$=) \quad \psi (\alpha) = \alpha, \quad \psi (\overline{u} \circ (\alpha)) = \overline{u} \circ (\alpha) \quad \text{de } \alpha, \quad \overline{u} \circ (\alpha) \notin T_{\gamma \gamma}.$$

$$=) \quad \overline{u} \circ \psi (\alpha) = \overline{u} (\psi \circ (\alpha)) = \overline{u} \circ (\alpha) = \psi (\overline{u} \circ (\alpha)) = \psi \circ \overline{u} \circ (\alpha).$$

$$A \quad \text{malog} \quad \text{fix} \quad \alpha \in T_{\gamma \gamma}. \qquad \text{MI}$$

Zykel

Definition

Es seien $x_1, x_2, \dots, x_k \in A$ paarweise verschieden. $\sigma \in S_A$ mit

$$\sigma(x) = \begin{cases} x_{i+1} & \text{falls } x = x_i \text{ und } i < k, \\ x_1 & \text{falls } x = x_k, \\ x & \text{falls } x \neq x_1, x_2, \dots, x_k, \end{cases}$$

heißt Zykel der Länge k oder kurz k-Zykel von S_A . Schreibweise:

$$\sigma=(x_1,x_2,\ldots,x_k).$$

Die 2-Zykel heißen auch Transpositionen von S_A .

k-Zyhel

J Transposition

= id VX E A

Beispiele

▶ Der 4-Zykel $\sigma := (1, 5, 2, 4) \in S_5$ ist die Permutation

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{array}\right).$$

- (1,2,3,4,5)(2,1)(5,4) = (4,3,4)(2)(5)
- \blacktriangleright (1,2)(2,3) = (1,2,3)
- ► $(1,2,3)(3,2,1) = (1)(2)(3) = id_{(3)} = 2$.

Bemerkung

- ► Es gilt stets $(x_1, x_2, ..., x_k)^k = id$.
- ► Es gilt stets $(x_1, x_2, ..., x_k)^{-1} = (x_k, x_{k-1}, ..., x_1)$.
- ▶ Für Transpositionen τ gilt $\tau^{-1} = \tau$. $(a_1b)(a_1b) = \lambda d$
- ▶ Jeder 1-Zykel ist die Identität.
- ▶ Jeder k-Zykel läßt sich als Produkt von k-1 Transpositionen schreiben:

$$(x_1, x_2, \ldots, x_k) = (x_1, x_2)(x_2, x_3) \cdots (x_{k-1}, x_k).$$

Eine solche Zerlegung ist im Allgemeinen nicht eindeutig.

Satz

Jede Permutation $\pi \in S_A$ läßt sich als Produkt von Zykeln schreiben, deren Träger paarweise disjunkt sind.

Eindeutigkeit: Bis auf Reihenfolge der Faktoren.

Sprechweise: Zerlegung von π in *paarweise disjunkte Zykeln*.

Konvention: Lasse 1-Zykel weg.

Beispiel

Bewein der Sotrer: Induchtion über [Tit].

ITit = 0 =1 Ti = 1d

· TI + 0 " nelime x, e TI : Betradite die Folge:

 $X_{11} X_{2} := \pi(X_{1}), X_{3} := \pi(X_{2}), \dots X_{i} := \pi(X_{1}), i \in \mathcal{I}$

=) en ex. i,j,i < j unit $\pi^{i}(x_{i}) = \pi^{j}(x_{i})$

 $=) \quad \chi_1 = \pi^k(\chi_1) \quad \text{for } k = j-1$

=) \(\(\int \) = \(\(\times_{11} \times_{21} \cdots_{-1} \times_{k} \) \(\times_{1} \times_{k} \) \(\times_{2} \times_{2} \times_{k} \) \(\times_{2} \times_{2} \times_{2} \times_{2} \times_{2} \) \(\times_{2} \times

Iteriere diere Process. WM