Harnessing Large Language Models in Financial Technologies

Chen Liu

Department of Computer Science City University of Hong Kong

September 13, 2025 @ EPFL Alumni Great Bay Area Gathering, Shenzhen, China.

1/23

Overview of My Research

Sparse Portfolio Optimization

Problem definition

 \triangleright Select at most m assets from n candidates to maximize investment performance.

Chen Liu (CityUHK CS) 3/23

Sparse Portfolio Optimization

Problem definition

Select at most m assets from n candidates to maximize investment performance.

Why sparsity matters?

- better interpretability of selected assets.
- lower transaction costs and easier implementation.

Sparse Portfolio Optimization

Problem definition

Select at most m assets from n candidates to maximize investment performance.

Why sparsity matters?

- better interpretability of selected assets.
- lower transaction costs and easier implementation.

Evaluation metrics

- Cumulative Wealth (CW): total portfolio return over the horizon.
- Sharpe Ratio (SR): risk-adjusted return per unit volatility.
- Maximum Drawdown (MD): worst-case loss from peak to trough.

hen Liu (CitvUHK CS) 3/23

Alpha Factor

Definition

- An alpha factor is a mathematical expression that maps historical features (e.g. price, volume, volatility) to a score for each asset.
- ightharpoonup Higher alpha factor score ightharpoonup More attractive asset under the investment objective.

Evaluation

▶ The correlation between the ranking by alpha factors and the real ranking.

Figure: Example of alpha factors with their tree-structures in Alpha158 (Left) and how multiple factors' outputs are aggregated using models such as XGBoost or LightGBM to produce a final score (Right).

Chen Liu (CityUHK CS)

Alpha Factor

Traditional Alpha Factor Pool

```
Alpha#1: (rank(Ts ArgMax(SignedPower(((returns < 0) ? stddev(returns, 20) : close), 2.), 5)) -
0.5)
Alpha#2: (-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))
Alpha#3: (-1 * correlation(rank(open), rank(volume), 10))
Alpha#4: (-1 * Ts_Rank(rank(low), 9))
Alpha#5: (rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))
Alpha#6: (-1 * correlation(open, volume, 10))
Alpha#7: ((adv20 < volume)? ((-1 * ts_rank(abs(delta(close, 7)), 60)) * sign(delta(close, 7))): (-1
* 1))
```

Alpha Factor

Traditional Alpha Factor Pool

```
Alpha#74: ((rank(correlation(close, sum(adv30, 37.4843), 15.1365)) <
rank(correlation(rank(((high * 0.0261661) + (vwap * (1 - 0.0261661)))), rank(volume), 11.4791)))
* -1)
Alpha#75: (rank(correlation(vwap, volume, 4.24304)) < rank(correlation(rank(low), rank(adv50),
12.4413)))
Alpha#76: (max(rank(decay linear(delta(vwap, 1.24383), 11.8259)),
Ts Rank(decay linear(Ts Rank(correlation(IndNeutralize(low, IndClass.sector), adv81,
8.14941), 19.569), 17.1543), 19.383)) * -1)
Alpha#77: min(rank(decay linear((((high + low) / 2) + high) - (vwap + high)), 20.0451))
rank(decay linear(correlation(((high + low) / 2), adv40, 3.1614), 5.64125)))
Alpha#78: (rank(correlation(sum(((low * 0.352233) + (vwap * (1 - 0.352233))), 19.7428),
sum(adv40, 19.7428), 6.83313))^rank(correlation(rank(vwap), rank(volume), 5.77492)))
Alpha#79: (rank(delta(IndNeutralize(((close * 0.60733) + (open * (1 - 0.60733))),
IndClass.sector), 1.23438)) < rank(correlation(Ts Rank(vwap, 3.60973), Ts Rank(adv150,
9.18637), 14.6644)))
```

Limitations of Current Methods

Factor-based Methods

- Interpretable but require heavy manual design.
- Degrade quickly in live trading.
- Sparse decay: performance drops sharply when selecting only few assets.

Traditional Optimization Methods

- Competitive but uninterpretable results.
- Computationally expensive and sensitive to hyper-parameters.

Limitations of Current Methods

Factor-based Methods

- Interpretable but require heavy manual design.
- Degrade quickly in live trading.
- Sparse decay: performance drops sharply when selecting only few assets.

Traditional Optimization Methods

- Competitive but uninterpretable results.
- Computationally expensive and sensitive to hyper-parameters.

Let's design an **adaptive**, **interpretable and robust** algorithm to find competitive alphas efficiently.

Overall Framework

Prompt to Improve Alpha Factor

```
You are a world-class quantitative researcher and Python programmer specializing
in alpha factor design for asset ranking.
Your task is to generate high-quality Python factor functions that are evolved
versions of provided factors.
STRICT REQUIREMENTS:
1. Output ONLY a Python list of function strings - no comments or explanations
2. Each function MUST:
 - Be bug-free and executable
 - Maintain identical input signature: prices, window - Use only numpy (as np),
don't depend on any external function or variable, you need to do computation all
inside function
 - Handle edge cases (short series, NaNs)
 - Clearly indicate if combining or modifying existing factors
3. Absolute prohibitions:
 - No external functions
 - No hardcoded values that should be parameters
 - No pandas or other libraries
 - No comments in output code
4. Factor name rules: [factor_name_part]_[window_size]_v[version number], the
window-size can only be the following value: 3, 7, 14, 21
5. Value of output factor: For factors, higher value means better asset, please
make sure the output value is positive related to performance of assets.
ACTION SPACE:
1. Improve existing factors by mutation:
 - Modifying parameters (e.g., inner parameters)
 - Adjusting logic
 - Updating inside operators for factors
2. Improve existing factors by crossover:
 - Combining two existing factors to create a new one if you think they can work
together
 - Restart version number from v1 for new factors
IMPROVEMENT CRITERIA:
1. Version increments must show clear:
```

Figure: Prompt fed to LLMs in the evolution of alpha factors.

- if you improve from a given version, increase 1 to version number, the

Evolution of Alpha Factor

```
def volatility_comb_sharpe_21_vs(prices, window=21):
log_returns = pp.dff((n_plog)rrices(-window:]))
vol = pp.std((og_returns))
mean_ref = np.mean((og_returns))
std_ref = np.std((og_returns))
std_ref = np.std((og_returns))
std_ref = np.std((og_returns))
return np.exp(-vol**2.0) * (i + sharpe)

def volatility_comb_sharpe_21_v4(prices, window=21):
log_returns = np.dff(np.log(prices(-window:]))
vol = np.std(log_returns)
mean_ref = np.mean(log_returns)
std_ref = np.std(log_returns)
std_ref = np.td(log_returns)
std_ref = np.td(l
```

```
def return_skewness_score(...):
log_returns = np.dff(rp.log(prices[-window:]))
mean = np.mean(log_returns)
std = np.std(log_returns)
skew = np.mean((log_returns - mean) / std) ** 3)
return np.exp(-abs(skew))
```

```
def bollinger_band_score(...):
ma = moving_average(prices, window)
std = np.std(prices/window:))
width = (2 * std) / (ma + 1e-6)
return 1 / (1 + width)
```



```
def skewness_comb_bb_21_v1(...):
log_returns = np. diff(rp.log(prices[-window:]))
skew = ...
ma = np.mean(prices[-window:])
std = np. std(prices[-window:])
bb_width = (2 * std) / (ma + 1e-6)
return np.exp(-abs(skew)) * (1 / (1 + bb_width))
```

(b) Factor Crossover

Figure: How alpha factor evolves in LLM-enabled search.

Interpret Alpha Factors

Figure: Use LLMs to interpret alpha factors.

Overall Framework

Evolutionary Factor Search (EFS)

Key Features of EFS:

- **LLM-driven factor generation:** prompt LLMs to create executable alpha factor formulas.
- **Evolutionary Search:** refine factors iteratively via *mutation* and *crossover*, guided by hacktest results
- Closed-Loop Feedback: use performance metrics (CW, SR) to update and prune the factor pool.
- **Sparse Portfolio Construction:** select top-m asset to construct portfolio.
- **Transparency:** factors are human-readable, interpretability and directly deployable.

hen Liu (CitvUHK CS) 12/23

Results on Real Market

Table: Evaluation of Cumulative Wealth (CW \uparrow), Sharpe Ratio (SR \uparrow), and Maximum Drawdown (MDD \downarrow) on real-market datasets (US50, HSI45 and CSI300) for different model variants. The time frame is from 2019 to 2024 for US50, from 2022 to 2025 for HSI45 and CSI300.

			US50			HSI45			CSI300		
Group	Method	CW↑	SR↑	MDD↓	CW↑	SR↑	MDD↓	CW↑	SR↑	MDD↓	
	1/N	4.562	0.072	0.344	1.333	0.029	0.409	1.087	0.014	0.214	
Baseline	Min-cVaR	1.779	0.038	0.314	1.628	0.063	0.244	0.992	0.003	0.286	
	Max-Sharpe	4.495	0.061	0.461	1.428	0.043	0.300	1.008	0.007	0.333	
	LGBM	4.182	0.063	0.332	1.611	0.038	0.367	2.334	0.072	0.225	
10	XGBoost	6.313	0.077	0.328	1.581	0.035	0.440	1.420	0.032	0.345	
m=10	mSSRM-PGA	5.121	0.059	0.569	0.766	-0.003	0.547	0.881	0.002	0.399	
	ASMCVaR	10.259	0.073	0.582	2.481	0.052	0.453	1.453	0.030	0.462	
	EFS-DeepSeek	25.101	0.132	0.288	3.463	0.080	0.385	3.437	0.079	0.327	
	EFS-GPT	22.905	0.130	0.260	2.789	0.067	0.292	4.962	0.098	0.301	
m=15	LGBM	3.899	0.062	0.328	1.588	0.037	0.387	1.812	0.055	0.250	
	XGBoost	5.607	0.076	0.319	1.586	0.036	0.420	1.348	0.029	0.344	
	mSSRM-PGA	4.976	0.062	0.477	0.766	-0.003	0.547	0.787	-0.010	0.384	
	ASMCVaR	11.124	0.074	0.566	2.647	0.054	0.434	1.658	0.035	0.424	
	EFS-DeepSeek	13.978	0.114	0.298	2.364	0.061	0.406	2.510	0.067	0.298	
	EFS-GPT	14.707	0.117	0.278	2.277	0.058	0.307	3.218	0.082	0.246	

Ablation Studies

Table: Overall real-market portfolio performance metrics (CW = Cumulative Wealth, SR = Sharpe Ratio, MDD = Maximum Drawdown, RankIC = Rank Information Coefficient, RankICIR = Rank Information Coefficient Information Ratio). The time frame is from 2019 to 2024 for US50, from 2022 to 2025 for HSI45.

	US50					HSI45					
Method	CW↑	SR↑	MDD↓	RankIC†	RankICIR†	CW↑	SR↑	MDD↓	RankIC↑	RankICIR†	
Initial Factor EFS-DeepSeek	6.254 32.993±6.044	0.081 0.149±0.003	0.449 0.260±0.013	0.005 0.027±0.001	$^{0.352}_{1.582\pm0.050}$	1.364 3.193±0.923	$0.031 \\ 0.076 {\pm} 0.015$	0.386 0.387±0.026	0.018 0.022±0.001	0.950 1.412±0.103	
w/o Sparse Heuristic w/o Numeric w/o Quality	19.248±3.642 23.414±3.814 24.152±7.988	0.125 ± 0.003 0.133 ± 0.007 0.133 ± 0.016	$\begin{array}{c} 0.346 {\pm} 0.048 \\ 0.324 {\pm} 0.042 \\ 0.297 {\pm} 0.052 \end{array}$	$0.020\pm0.004 \\ 0.023\pm0.004 \\ 0.021\pm0.003$	$\substack{1.262 \pm 0.265\\1.334 \pm 0.201\\1.178 \pm 0.202}$	2.198±1.094 2.943±0.516 2.402±0.404	$0.051\pm0.030 \\ 0.072\pm0.007 \\ 0.060\pm0.010$	0.391 ± 0.051 0.372 ± 0.024 0.429 ± 0.023	0.027 ± 0.015 0.024 ± 0.002 0.016 ± 0.003	1.508±0.828 1.435±0.118 1.011±0.200	
w/o Performance w/o TA Factors	9.549 ± 5.869 5.367 ± 1.652	0.094 ± 0.019 0.074 ± 0.011	0.327 ± 0.053 0.394 ± 0.043	0.009 ± 0.009 0.002 ± 0.004	0.487 ± 0.467 0.117 ± 0.241	1.168 ± 0.036 1.875 ± 1.354	0.020 ± 0.002 0.037 ± 0.037	0.369 ± 0.025 0.359 ± 0.062	0.009 ± 0.002 0.008 ± 0.016	0.522±0.10 0.494±0.94	

Chen Liu (CitvUHK CS) 14 / 23

Portfolio Performance

Figure: Portfolio performance comparison across US50, HSI45, and CSI300 datasets. Each plot shows the evolution of LLM-generated portfolios versus baselines and the ASMCVaR benchmark over time.

Portfolio Performance

Figure: Portfolio performance comparison across US50, HSI45, and CSI300 datasets. Each plot shows the evolution of LLM-generated portfolios versus baselines and the ASMCVaR benchmark over time.

Portfolio Performance

Figure: Portfolio performance comparison across US50, HSI45, and CSI300 datasets. Each plot shows the evolution of LLM-generated portfolios versus baselines and the ASMCVaR benchmark over time.

Figure: Annual snapshots of the top 10 most frequently selected assets under EFS in representative years for US50 (top row: 2020, 2022, 2023) and HSI45 (bottom row: 2023, 2024, 2025). Bar height denotes the number of selections within the given year, while the color encodes the annual return rate of each asset. This illustrates EFS's dynamic asset preference and adaptability to varying market environments.

Chen Liu (CityUHK CS)

Figure: Factor score heatmaps and corresponding baseline curves across three datasets.

Figure: Factor score heatmaps and corresponding baseline curves across three datasets.

In general, portfolio holdings are more consistent in bull market.

Figure: Factor score heatmaps and corresponding baseline curves across three datasets.

In general, portfolio holdings are more consistent in bull market.

Transaction Fees

Table: Backtest results under transaction costs c=0.1% and c=0.2%. Metrics shown are Cumulative Wealth (CW), Sharpe Ratio (SR), and Maximum Drawdown (MDD) across datasets US50, HSI45, and CSI300.

с	Method	US50				HSI45		CSI300		
		CW	SR	MDD	CW	SR	MDD	CW	SR	MDD
-	EFS-GPT 4.1 EFS-DeepSeek	39.746 ± 15.484 32.709 ± 6.244	$0.154{\pm}0.013 \ 0.149{\pm}0.003$	$\substack{0.252 \pm 0.021 \\ 0.261 \pm 0.014}$	3.338±0.770 3.203±0.906	$\begin{array}{c} 0.076 {\pm} 0.012 \\ 0.076 {\pm} 0.015 \end{array}$	$\substack{0.324 \pm 0.041 \\ 0.385 \pm 0.024}$	3.862±0.802 2.451±0.412	$^{0.086\pm0.011}_{0.060\pm0.010}$	$\begin{array}{c} 0.290 {\pm} 0.079 \\ 0.356 {\pm} 0.022 \end{array}$
0.1%	EFS-GPT 4.1 EFS-DeepSeek	25.293±10.802 22.058±4.053	$0.135{\pm}0.016 \ 0.133{\pm}0.003$	$\substack{0.256 \pm 0.021 \\ 0.265 \pm 0.015}$	2.710±0.571 2.643±0.775	$^{0.065\pm0.011}_{0.065\pm0.015}$	$0.340 \pm 0.049 \\ 0.410 \pm 0.023$	2.624±0.425 1.668±0.227	$\begin{array}{c} 0.064{\pm}0.008 \\ 0.039{\pm}0.008 \end{array}$	0.354±0.093 0.434±0.012
0.2%	EFS-GPT 4.1 EFS-DeepSeek	$\substack{16.114 \pm 7.464 \\ 14.876 \pm 2.646}$	$0.117{\pm}0.018 \ 0.117{\pm}0.003$	$\begin{array}{c} 0.260\!\pm\!0.022 \\ 0.270\!\pm\!0.016 \end{array}$	2.201±0.422 2.182±0.665	$\begin{array}{c} 0.054{\pm}0.011 \\ 0.054{\pm}0.016 \end{array}$	$\begin{array}{c} 0.358 {\pm} 0.056 \\ 0.433 {\pm} 0.022 \end{array}$	1.785±0.208 1.136±0.130	$^{0.043\pm0.006}_{0.018\pm0.007}$	$\substack{0.412 \pm 0.103 \\ 0.502 \pm 0.009}$

Chen Liu (CityUHK CS) 18 / 23

Different LLMs

Figure: Radar chart comparison of model performance in alpha factor searching. (Left) Models evaluated on generation and evaluation tasks across reliability, stability, accuracy, scoring, and ranking dimensions. (Right) Models compared on search efficiency metrics including diversity, cost, reliability, improvement rate, and improvement ratio.

Summary

Contributions:

- ▶ We propose a unified evolutionary factor search (EFS) framework.
- We adaptively adjust alpha factors in different market regimes.
- ► The alpha factors found demonstrate good interpretability and competitive performance.

Current Limitations:

- Backtesting is computationally expensive.
- Sensitivity to prompt design and hyper-parameters.
- Limited coverage of multimodal signals (e.g. news, macro events).

Future Works

- ▶ Multimodal factor mining using news and alternative textual data.
- ▶ Enhance prompt robustness with automatic filtering and tuning.

Chen Liu (CityUHK CS)

Future Development

Future Development

Acknowledgements

- Prof. Yuan Zhang, Shanghai University of Finance and Economics.
- My research postgraduate students:
 - ► Haochen Luo
 - ▶ Jiandong Chen
- ► High school summer interns:
 - ► Ho Tin Ko
 - David Sun

Thank You!

Chen Liu (CityUHK CS)

23 / 23