Time-lapse Full-Waveform Inversion using Hamiltonian Monte Carlo: A proof of concept

Maria Kotsi¹, Alison Malcolm¹, Gregory Ely²

- ¹ Memorial University of Newfoundland, CA
- ² Massachusetts Institute of Technology, USA

Time-Lapse Seismic Imaging

Over a reservoir's life its parameters will change

 <u>Time-lapse or 4D seismic</u>: same location but different time

 Full–Waveform Inversion (FWI): delivers a velocity model of the subsurface

Bayesian Time-Lapse Inversion

 $\delta \mathbf{d}$: Observed data residual

Goal: estimate distribution of time-lapse models given data residuals $p(\delta m \mid \delta d)$

Challenges:

- Large dimensionality (visualization, covariance)
- Expensive forward solvers (finite difference, finite element)
- Non-linear forward model (multi-modal or non-Gaussian model distribution)

Solution: Markov Chain Monte Carlo with a fast forward solver

Outline

- Motivation
- Markov Chain Monte Carlo

- Hamiltonian Monte Carlo
- Local solver
- Numerical Example
- Summary

Markov Chain Monte Carlo

HMC treats a model as virtual Hamiltonian particle that moves along a trajectory.

Initial state δm_0

- Initial model
 - Associated potential energy $U(\delta m)$

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation
 - $H(\delta m, p) = U(\delta m) + K(p)$
- 4. Get a new proposed model

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation
 - $H(\delta m, p) = U(\delta m) + K(p)$
- 4. Get a new proposed model
- Accept/Reject based on Metropolis criterion

HMC treats a model as virtual Hamiltonian particle that moves along a trajectory.

Initial state δm_0

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation
 - $H(\delta m, p) = U(\delta m) + K(p)$
- 4. Get a new proposed model
- Accept/Reject based on Metropolis criterion
- 6. Move on

HMC treats a model as virtual Hamiltonian particle that moves along a trajectory.

Initial state δm_0

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation

•
$$H(\delta m, p) = U(\delta m) + K(p)$$

- 4. Get a new proposed model
- Accept/Reject based on Metropolis criterion
- 6. Move on

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation
 - $H(\delta m, p) = U(\delta m) + K(p)$
- 4. Get a new proposed model
- Accept/Reject based on Metropolis criterion
- 6. Move on

HMC treats a model as virtual Hamiltonian particle that moves along a trajectory.

Initial state δm_0

- 1. Initial model
 - Associated potential energy $U(\delta m)$
- 2. Add auxiliary momentum
 - Associated kinetic energy K(p)
- 3. Solve Hamilton's equation
 - $H(\delta m, p) = U(\delta m) + K(p)$
- 4. Get a new proposed model
- Accept/Reject based on Metropolis criterion
- 6. Move on

	Metropolis Hastings	Hamiltonian Monte Carlo
DoF	1 - 10 ²	10³ - 10 ⁶
Iterations	104 - 106	10 ³ - 10 ⁵
Computational cost	Low	High
Pixel-by-pixel UQ	No	Yes
Gradient calculation	No	Yes

- Metropolis Hastings algorithms are used to ground truth probability distribution.
 - Very slow to converge as the number of dimensions grows
 - Requires reduced parameterization techniques
- Hamiltonian Monte Carlo is more advanced
 - Use the geometry of the target distribution for faster exploration

Outline

- Motivation
- Markov Chain Monte Carlo
- Hamiltonian Monte Carlo
- Local solver
- Numerical Example
- Summary

Local Acoustic Solver

1) Split model to subdomain and exterior. Model in exterior & initial guess in local domain = background model m_0

Willemsen et al. (2016); Malcolm & Willemsen (2017)

Local Acoustic Solver

- 1) Split model to subdomain and exterior. Model in exterior & initial guess in local domain = background model m_0
- 2) Perturbation δm exists only in local domain Get model m and wavefield u

Willemsen et al. (2016); Malcolm & Willemsen (2017)

Local Acoustic Solver

- 1) Split model to subdomain and exterior. Model in exterior & initial guess in local domain = background model m_0
- 2) Perturbation δm exists only in local domain Get model m and wavefield u
- 3) Propagate u to the receivers

Willemsen et al. (2016); Malcolm & Willemsen (2017)

- Marmousi: background baseline model
- Time lapse change : $\delta m = 75 \ m/s$
- 1 shot, 651 receivers
- Single frequency of 8 Hz
- Full domain grid points:
 Nz*Nx = 113925
- Local domain grid points:
 Nz_{sub}*Nx_{sub} = 1100

- Setup (a & b)
 - $> \delta m = 200 \, m/s$
 - > 600 DoF
 - > 5 shots, 651 receivers
 - ➤ Single frequency: 5 Hz
- Background model (c)
 - > Inverted baseline
 - ➤ 64 shots, 651 receivers
 - > 3, 4, 5, 6.5, 8, 10 Hz sequentially for 15 iterations per frequency.

- One chain with 7,000 samples
- Median model:
 - Good approximation of shape
 - Magnitude underestimated

Summary

- We generated a framework for uncertainty quantification in a targeted way
- Use of local solver for fast gradient calculations

_ Computational savings are
$$\frac{t_{local}}{t_{full}} = 0.03$$

- Proof of concept of HMC on time-lapse scenario
 - Superior performance when compared to MH
- Future work:
 - Use of Mass Matrix in the kinetic energy formulation
 - Multiple frequencies

ΤΗΑΝΚ ΥΟυ! ΕΥΧΑΡΙΣΤΩ!

https://twitter.com/steinbergart/status/1239253552461164544/photo/1

