Lógica CC Licenciatura em Ciências da Computação

Luís Pinto

Departamento de Matemática Universidade do Minho

1º. semestre, 2020/2021

3.2 Semântica do Cálculo de Predicados de Primeira Ordem da Lógica Clássica

Observação 170: As fórmulas do Cálculo de Predicados são construídas a partir das fórmulas atómicas (símbolos de relação "aplicados" a termos) e, por esta razão, as fórmulas atómicas desempenham papel semelhante ao das variáveis proposicionais no Cálculo Proposicional.

Contudo, ao passo que no Cálculo Proposicional podemos atribuir "diretamente" um valor lógico a uma variável proposicional, a *atribuição de valores lógicos às fórmulas atómicas* é um processo mais complexo.

Para atribuirmos valores lógicos a fórmulas atómicas, em particular, será necessário fixar previamente a *interpretação dos termos*.

Tal requer que indiquemos qual o *universo de objetos* (*domínio de discurso*) pretendido para a denotação dos termos (por exemplo, números naturais, conjuntos, etc.), bem como a interpretação pretendida quer para os símbolos de função do tipo de linguagem em questão (por exemplo, para indicar que tomando \mathbb{N}_0 por universo, o símbolo de função binário + denotará a *operação* de adição) quer para as variáveis de primeira ordem.

Para a *interpretação das fórmulas atómicas*, será ainda necessário fixar a interpretação dos símbolos de relação como *relações* entre objetos do domínio de discurso.

A indicação de qual o domínio de discurso pretendido e de quais as interpretações que deverão ser dadas aos diversos símbolos será efetuada através daquilo que designaremos por estrutura para um tipo de linguagem.

A interpretação de variáveis de primeira ordem será feita no contexto de um domínio de discurso, através daquilo a que chamaremos *atribuições numa estrutura*.

Um par (*estrutura*, *atribuição*) permitirá fixar o valor lógico de qualquer fórmula e, portanto, pode ser pensado como uma *valoração*, uma vez que estes pares desempenharão papel idêntico ao das valorações do Cálculo Proposicional.

Definição 171: Seja L um tipo de linguagem. Uma *estrutura de tipo L*, que abreviadamente designaremos por L-*estrutura*, é um par $(D, \overline{})$ tal que:

- a) D é um conjunto não vazio, chamado o domínio da estrutura;
- b) é uma função, chamada a função interpretação da estrutura, e é tal que:
 - a cada constante c de L faz corresponder um elemento de D, que será notado por c;
 - a cada símbolo de função f de L, de aridade n ≥ 1, faz corresponder uma função de tipo Dⁿ → D, que será notada por f;
 - a cada símbolo de relação R de L, de aridade n, faz corresponder uma relação n-ária em D (i.e. um subconjunto de D^n), que será notada por \overline{R} .

Definição 171 (cont.):

Para cada símbolo de função ou relação s de L, \overline{s} é chamada a interpretação de s na estrutura.

Se L incluir o símbolo = como símbolo de relação binário, $E = (D, \overline{})$ diz-se uma *estrutura normal de tipo L* quando a interpretação de = é a relação de igualdade em D (i.e., $\equiv = \{(x, y) \in D \times D : x = y\}$).

Notação 172: Habitualmente, usaremos a letra E (possivelmente indexada) para denotar estruturas. Dada uma estrutura E, a notação dom(E) denotará o domínio de E.

Exemplo 173:

- a) Seja $E_{Arit} = (\mathbb{N}_0, \overline{})$, onde:
 - $\overline{0}$ é o número *zero*;
 - \overline{s} é a função *sucessor* em \mathbb{N}_0 , *i.e.*, $\overline{s}: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $n \mapsto n+1$
 - $\overline{+}$ é a função *adição* em \mathbb{N}_0 , *i.e.*, $\overline{+}: \mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$; $(m,n) \mapsto m+n$
 - $\overline{\times}$ é a função *multiplicação* em \mathbb{N}_0 , *i.e.*,

- \equiv é a relação de *igualdade* em \mathbb{N}_0 , *i.e.*,
 - $\equiv = \{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m = n\};$
- \leq é a relação *menor do que* em \mathbb{N}_0 , *i.e.*, $\leq -\int (m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n$

 $\overline{<} = \{(m, n) \in \mathbb{N}_0 \times \mathbb{N}_0 : m < n\}.$

Então, E_{Arit} é uma estrutura normal de tipo L_{Arit} , que designaremos por estrutura standard para L_{Arit} .

9/83

- **b)** O par $E_0 = (\{a, b\}, \overline{\ })$, onde:
 - 0 = a:
 - \overline{s} é a função $\{a,b\} \longrightarrow \{a,b\}$;
 - \mp é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$; $(x,y) \mapsto b$
 - $\overline{\times}$ é a função $\{a,b\} \times \{a,b\} \longrightarrow \{a,b\}$; $(x,y) \qquad \mapsto \begin{cases} a & \text{se } x = y \\ b & \text{se } x \neq y \end{cases}$

$$= -\{(a, a), (b, b)\};$$

- $\bullet \equiv \{(a, a), (b, b)\};$
- \leq = {(a, b)},

é também uma *L*_{Arit}-estrutura normal.

Existem $2 \times 4 \times 16 \times 16 \times 16 \times 16$ L_{Arit} -estruturas cujo domínio é $\{a, b\}$, das quais $2 \times 4 \times 16 \times 16 \times 16$ são normais. (Porquê?)

Exemplo 174:

- a) Seja $E_1 = (\mathbb{R}, \overline{})$, onde:
 - $\bar{\cdot}$ é operação de adição em \mathbb{R} ;
 - 1 é o número real 0;
 - -1 é a operação que a cada real faz corresponder o seu simétrico;
 - \equiv é a relação de *igualdade* em \mathbb{R} . Então, E_1 é uma estrutura normal de tipo L_{arupo} .
- **b)** Seja E_2 definida tal como E_1 , com exceção da interpretação do símbolo $^{-1}$ que em E_2 é interpretado como a operação que a cada real x faz corresponder x-1. Então, E_2 é também uma estrutura normal de tipo L_{grupo} .

Exemplo 175:

- **a)** Seja $E_3 = (\mathcal{P}(\{a, b\}), \overline{\ })$, onde:
 - \equiv é a relação de *igualdade* em subconjuntos de $\{a, b\}$;
 - \leq é a relação de *contido ou igual* em subconjuntos de $\{a,b\}$.

Então, E_3 é uma estrutura normal de tipo L_{cpo} .

b) Seja $A = (X, \leq)$ um conjunto parcialmente ordenado. Então, $E_A = (X, \neg)$, onde \equiv é a relação de *igualdade* em X e \leq é a relação \leq em X, é uma estrutura normal de tipo L_{cpo} .

Definição 176: Seja E uma L-estrutura. Uma função $a: \mathcal{V} \longrightarrow dom(E)$ (do conjunto \mathcal{V} das variáveis de primeira ordem para o domínio de E) diz-se uma atribuição em E.

Exemplo 177: As funções $a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$ e

 $a^{ind}: \mathcal{V} \longrightarrow \mathbb{N}_0$ são atribuições em E_{Arit} .

Definição 178: Sejam $E = (D, \overline{})$ uma L-estrutura, a uma atribuição em E e t um L-termo.

O *valor* de t em E para a é o elemento de D, notado por $t[a]_E$ ou por t[a] (quando é claro qual a estrutura que deve ser considerada), definido, por recursão estrutural em L-termos, do seguinte modo:

- **a)** x[a] = a(x), para todo $x \in \mathcal{V}$;
- **b)** $c[a] = \overline{c}$, para todo $c \in C$;
- **c)** $f(t_1,...,t_n)[a] = \overline{f}(t_1[a],...,t_n[a])$ para todo $f \in \mathcal{F}$ de aridade $n \geq 1$ e para todo $t_1,...,t_n \in \mathcal{T}_L$.

Exemplo 179: Seja t o L_{Arit} -termo $s(0) \times (x_0 + x_2)$.

1 O valor de t para a atribuição a^{ind} , na L_{Arit} -estrutura E_{Arit} , é

$$(s(0) \times (x_0 + x_2))[a^{ind}]$$

= $s(0)[a^{ind}] \times (x_0 + x_2)[a^{ind}]$
= $(0[a^{ind}] + 1) \times (x_0[a^{ind}] + x_2[a^{ind}])$
= $(0 + 1) \times (0 + 2)$
= 2

Já para a atribuição a₀ (do exemplo anterior), o valor de t é 0 (porquê?).

Exemplo 179 (cont.):

3 Consideremos agora a L_{Arit} -estrutura E_0 do Exemplo 173 e a seguinte atribuição nesta estrutura:

$$a': \mathcal{V} \longrightarrow \{a, b\}$$

 $x \mapsto b$

O valor de t em E_0 para a' é:

$$\begin{array}{rcl}
& (s(0) \times (x_0 + x_2))[a'] \\
&= & \overline{\times}(s(0)[a'], (x_0 + x_2)[a']) \\
&= & \overline{\times}(\overline{s}(0[a']), \overline{+}(x_0[a'], x_2[a'])) \\
&= & \overline{\times}(\overline{s}(a), \overline{+}(b, b)) \\
&= & \overline{\times}(a, b) \\
&= & b
\end{array}$$

Exemplo 180: Consideremos a estrutura de tipo L_{grupo} E_1 do Exemplo 174 e consideremos a atribuição a em E_1 tal que $a(x_i) = i$ para todo $i \in \mathbb{N}_0$.

 $[a]_{E_1} = 0$ e, de facto, para toda a atribuição a' em E_1

- 1 $(x_1^{-1}.1)[a]_{E_1} = -1$ e $(x_1^{-1}.x_2)[a]_{E_1} = 1$. Porquê?
- tem-se $(1.1)^{-1}[a']_{E_1} = 0$, pois:

$$(1.1)^{-1}[a']_{E_1} = -((1.1)[a']_{E_1}) = -(1[a']_{E_1} + 1[a']_{E_1}) = -(0+0) = 0.$$

Proposição 181: Seja t um L-termo e sejam a_1 e a_2 duas atribuições numa L-estrutura $E = (D, \overline{})$.

Se $a_1(x) = a_2(x)$, para todo $x \in VAR(t)$, então $t[a_1] = t[a_2]$.

Dem.: Por indução estrutural em *t*. A prova está organizada por casos, consoante *a forma* de *t*.

a) Caso t seja uma variável. Então, $t \in VAR(t)$. Logo, por hipótese, $a_1(t) = a_2(t)$ (*). Assim,

$$t[a_1] \stackrel{\text{(1)}}{=} a_1(t) \stackrel{\text{(*)}}{=} a_2(t) \stackrel{\text{(1)}}{=} t[a_2].$$

Justificações

(1) Definição de valor de um termo para uma atribuição.

b) Caso t seja uma constante. Então,

$$t[a_1] \stackrel{\text{(1)}}{=} \overline{t} \stackrel{\text{(1)}}{=} t[a_2].$$

Justificações

(1) Definição de valor de um termo para uma atribuição.

Semântica

c) Caso $t = f(t_1, ..., t_n)$, com $f \in \mathcal{F}$ de aridade $n \ge 1$ e $t_1, ..., t_n \in \mathcal{T}_L$. Então,

$$t[a_1] = f(t_1, ..., t_n)[a_1]$$

$$\stackrel{(1)}{=} \overline{f}(t_1[a_1], ..., t_n[a_1])$$

$$\stackrel{(2)}{=} \overline{f}(t_1[a_2], ..., t_n[a_2])$$

$$\stackrel{(1)}{=} f(t_1, ..., t_n)[a_2]$$

$$= t[a_2].$$

Justificações

- (1) Definição de valor de um termo para uma atribuição.
- (2) Para $1 \le i \le n$, como $VAR(t_i) \subseteq VAR(t)$, da hipótese segue-se que: $a_1(x) = a_2(x)$, para todo $x \in VAR(t_i)$. Logo, por H.I., para todo $1 \le i \le n$, $t_i[a_1] = t_i[a_2]$.

Notação 182: Sejam a uma atribuição numa L-estrutura E, $d \in dom(E)$ e x uma variável. Escrevemos $a \begin{pmatrix} x \\ d \end{pmatrix}$ para a atribuição $a' : \mathcal{V} \longrightarrow dom(E)$ em E definida por:

para todo
$$y \in \mathcal{V}$$
, $a'(y) = \begin{cases} d \text{ se } y = x \\ a(y) \text{ se } y \neq x \end{cases}$.

Exemplo 183: $a^{ind} \begin{pmatrix} x_0 \\ 1 \end{pmatrix}$ denota a atribuição em L_{Arit} definida por:

$$a^{ind}\Big(egin{array}{c} x_0 \ 1 \end{array}\Big)(x_i)=\left\{egin{array}{cc} 1 & ext{se } i=0 \ & & ext{, para todo } i\in\mathbb{N}_0. \ i & ext{se } i
eq 0 \end{array}
ight.$$

Exemplo 184: Verifique que

$$(x_0+0)[a^{ind}\binom{x_0}{1}]=1=(x_0+0)[s(0)/x_0][a^{ind}].$$

De facto, esta igualdade é um caso particular da proposição seguinte, que fornece uma alternativa para o cálculo do valor de um termo que resulta de uma substituição.

Proposição 185: Sejam t_0 e t_1 *L*-termos e seja *a* uma atribuição numa *L*-estrutura. Então, $t_0[t_1/x][a] = t_0[a\binom{x}{t_1[a]}]$.

Dem.: Por indução estrutural em t_0 . (Exercício.)

Definição 186: Sejam $E = (D, \overline{\ })$ uma L-estrutura, a uma atribuição em E e φ uma L-fórmula. O valor lógico de φ em E para a é o elemento do conjunto dos valores lógicos $\{0,1\}$, notado por $\varphi[a]_E$ ou por $\varphi[a]$ (quando é claro qual a estrutura que deve ser considerada), definido, por recursão em L-fórmulas, do seguinte modo:

- **a)** \perp [*a*] = 0;
- **b)** $R(t_1,...,t_n)[a]=1$ sse $(t_1[a],...,t_n[a])\in R$, para todo o símbolo de relação R de aridade n e para todo $t_1,...,t_n\in \mathcal{T}_L$;
- **c)** $(\neg \varphi_1)[a] = f_{\neg}(\varphi_1[a])$, para todo $\varphi_1 \in \mathcal{F}_L$;
- **d)** $(\varphi_1 \wedge \varphi_2)[a] = f_{\wedge}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **e)** $(\varphi_1 \vee \varphi_2)[a] = f_{\vee}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **f)** $(\varphi_1 \to \varphi_2)[a] = f_{\to}(\varphi_1[a], \varphi_2[a]),$ para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;
- **g)** $(\varphi_1 \leftrightarrow \varphi_2)[a] = f_{\leftrightarrow}(\varphi_1[a], \varphi_2[a])$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}_L$;

Definição 186 (cont.):

- **h)** $(\exists x \varphi_1)[a] = 1$ sse para algum $d \in D$, $\varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$;
 - i) $(\forall x \varphi_1)[a] = 1$ sse para todo $d \in D$, $\varphi_1[a \begin{pmatrix} x \\ d \end{pmatrix}] = 1$, para todo $x \in \mathcal{V}, \varphi_1 \in \mathcal{F}_L$.

Proposição 187: Para quaisquer *L*-estrutura *E*, atribuição *a* em *E*, *L*-fórmula φ e variável *x*,

- **a)** $(\exists x \varphi)[a] = 0$ sse para todo $d \in dom(E), \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0;$
- **b)** $(\forall x \varphi)[a] = 0$ sse para algum $d \in dom(E)$, $\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] = 0$;
- **c)** $(\exists x \varphi)[a] = m \acute{a} x imo \{ \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}] : d \in D \};$
- **d)** $(\forall x \varphi)[a] = minimo\{\varphi[a\begin{pmatrix} x \\ d \end{pmatrix}] : d \in D\}.$

Dem.: Imediata, tendo em atenção a definição de valor lógico e as propriedades de *máximo* e de *mínimo*.

Exemplo 188: Consideremos a estrutura L_{Arit} e as atribuições a^{ind} e a_0 em E_{Arit} , definidas no Exemplo 177.

- 1 Para a L_{Arit} -fórmula $\varphi_0 = s(0) < x_2$, tem-se:
 - i) $\varphi_0[a^{ind}] = 1$, dado que $s(0)[a^{ind}] = 1$, $x_2[a^{ind}] = 2$ e $(1,2) \in \mathbb{Z}$ (pois 1 é menor que 2);
 - ii) $\varphi_0[a_0] = 0$, dado que $s(0)[a_0] = 1$, $x_2[a_0] = 0$ e $(1,0) \notin \mathbb{Z}$ (pois 1 não é menor que 0);
- 2 Para a L_{Arit} -fórmula $\varphi_1 = \exists x_2(s(0) < x_2)$ tem-se:
 - i) $\varphi_1[a^{ind}] = 1$, pois existe $n \in \mathbb{N}_0$ t.q. $s(0) < x_2[a^{ind} {x_2 \choose n}] = 1$ (como $s(0)[a^{ind} {x_2 \choose n}] = 1$, basta tomar n > 1);
 - **ii)** $\varphi_1[a_0] = 1$, pois existe $n \in \mathbb{N}_0$ t.q. $s(0) < x_2[a_0 \binom{x_2}{n}] = 1$ (também neste caso se tem $s(0)[a_0 \binom{x_2}{n}] = 1$, pelo que, basta tomar n > 1);

Exemplo 188 (cont.):

- Para a L_{Arit} -fórmula $\varphi_2 = \exists x_2 \neg (s(0) < x_2)$ tem-se também o valor lógico 1, quer para a^{ind} quer para a_0 (porquê?);
- 4 Já para a L_{Arit} -fórmula $\varphi_3 = \forall x_2(s(0) < x_2)$ tem-se valor lógico 0 para ambas as atribuições (de facto, a afirmação "para todo $n \in \mathbb{N}_0$, 1 < n" é falsa).

Exemplo 189: Consideremos agora a L_{Arit} -estrutura E_0 do Exemplo 173 e as atribuições a' e a'' em E_0 t.q., para todo $i \in \mathbb{N}_0$, $a'(x_i) = b$ e $a''(x_i) = a$ sse i é par.

- 1 Para a L_{Arit} -fórmula $\varphi_0 = s(0) < x_2$ (considerada no exemplo anterior), tem-se:
 - i) $\varphi_0[a'] = 1$, dado que s(0)[a'] = a, $x_2[a'] = b$ e $(a, b) \in \overline{<}$;
 - ii) $\varphi_0[a''] = 0$, dado que s(0)[a''] = a, $x_2[a'] = a$ e $(a, a) \notin \overline{<}$.
- 2 Para a L_{Arit} -fórmula $\varphi_1 = \exists x_2(s(0) < x_2)$ o valor lógico é 1 para ambas as atribuições (porquê?).
- 3 Verifique que as fórmulas φ_2 e φ_3 do exemplo anterior recebem valores lógicos 1 e 0, respetivamente, para ambas as atribuições.

Exemplo 190: Consideremos a L_{grupo} -fórmula

 $\varphi_0 = \forall x_0(x_0 \cdot x_0^{-1} = 1)$ e as L_{grupo} -estruturas E_1 e E_2 do Exemplo 174.

- 1 Para qualquer atribuição em E_1 , o valor lógico de φ_0 em E_1 é 1, uma vez que a afirmação "para todo $x \in \mathbb{R}$, x + (-x) = 0" é verdadeira.
- 2 Já em E_2 , o valor lógico de φ_0 é 0, independentemente da atribuição, uma vez que a afirmação "para todo $x \in \mathbb{R}$, x + (x 1) = 0" é falsa.

Exemplo 191: Em relação à L_{cpo} -estrutura E_3 (considerada no Exemplo 175) e a qualquer atribuição em E_3 que atribua o conjunto vazio à variável x_1 :

- 1 a L_{cpo} -fórmula $\exists x_0(x_0 \leq x_1)$ tem valor lógico 1 (a afirmação "existe $X \in \mathcal{P}(\{a,b\})$ tal que $X \subseteq \emptyset$ " é verdadeira);
- 2 a L_{cpo} -fórmula $\exists x_0 (x_0 \leq x_1 \land \neg (x_0 = x_1))$ tem valor lógico 0 (a afirmação "existe $X \in \mathcal{P}(\{a,b\})$ tal que $X \subseteq \emptyset$ e $X \neq \emptyset$ " é falsa").

Definição 192: Sejam E uma L-estrutura, a uma atribuição em E e φ uma L-fórmula. Dizemos que E satisfaz φ para a, escrevendo $E \models \varphi[a]$, quando $\varphi[a]_E = 1$. Escrevemos $E \not\models \varphi[a]$ quando E não satisfaz φ para a, ou seja, quando $\varphi[a]_E = 0$.

Proposição 193: Sejam *E* uma *L*-estrutura e *a* uma atribuição em *E*. Então:

- **a)** $E \models \exists x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$;
- **b)** $E \models \forall x \varphi[a]$ sse $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- **c)** $E \not\models \exists x \varphi[a]$ sse $E \not\models \varphi[a \begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$;
- **d)** $E \not\models \forall x \varphi[a]$ sse existe $d \in dom(E)$ t.q. $E \not\models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$.

Dem.: Consequência imediata da definição de satisfação e da Proposição 187. Por exemplo:

$$\begin{array}{ll} E \not\models \exists x \varphi[a] \\ \text{sse} & \exists x \varphi[a]_E = 0 \\ \text{sse} & \varphi[a \left(\begin{array}{c} x \\ d \end{array} \right)]_E = 0, \text{ para todo } d \in \textit{dom}(E) \\ \text{sse} & E \not\models \varphi[a \left(\begin{array}{c} x \\ d \end{array} \right)], \text{ para todo } d \in \textit{dom}(E) \\ \end{array} \text{ (def. de } \not\models). \end{array}$$

Proposição 194: Seja φ uma L-fórmula e sejam a_1 e a_2 atribuições numa L-estrutura E. Se $a_1(x) = a_2(x)$, para todo $x \in LIV(\varphi)$, então $E \models \varphi[a_1]$ sse $E \models \varphi[a_2]$.

Dem.: Por indução estrutural em φ . (Exercício.)

Corolário 195: Sejam φ uma L-sentença e E uma L-estrutura. Se para alguma atribuição a em E, $E \models \varphi[a]$, então para toda a atribuição a em E, $E \models \varphi[a]$.

Dem.: Exercício.

Proposição 196: Sejam φ uma L-fórmula, $E = (D, \overline{\ })$ uma L-estrutura, a uma atribuição em E e x uma variável substituível sem captura de variáveis por um L-termo t em φ . Então,

$$E \models \varphi[t/x][a]$$
 sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}].$

Dem.: A demonstração segue por indução estrutural em φ . Vejamos alguns casos.

1) Caso $\varphi \neq \perp$. Então, $\varphi[t/x] = \perp$ e ambos os lados da equivalência são falsos.

2) Caso $\varphi = R(t_1, ..., t_n)$, com $R \in \mathcal{R}$, de aridade $n \ge 1$, e $t_1, ..., t_n \in \mathcal{T}_L$. Então:

$$E \models R(t_1,...,t_n)[a\binom{x}{t[a]}]$$
sse
$$(t_1[a\binom{x}{t[a]}),...,t_n[a\binom{x}{t[a]})]) \in \overline{R}$$
sse
$$(t_1[t/x][a],...,t_n[t/x][a]) \in \overline{R}$$
sse
$$E \models R(t_1[t/x],...,t_n[t/x])[a]$$
sse
$$E \models R(t_1,...,t_n)[t/x][a].$$

Justificações

- (1) Definição de satisfação.
- (2) Pela Proposição 185, $t_i[a\begin{pmatrix} x \\ t[a] \end{pmatrix}] = [t/x]t_i[a]$., para todo $1 \le i \le n$
- (3) Definição de substituição.

- **3)** Caso $\varphi = \forall y \varphi_1$.
 - **3.a)** Subcaso y = x. Entao,

$$E \models \varphi[t/x][a]$$
sse $E \models \varphi[a]$
sse $E \models \varphi[a\begin{pmatrix} x \\ t[a] \end{pmatrix}].$

Justificações

- Definição de substituição.
- (2) Pela proposição anterior, uma vez que, como x ∉ LIV(φ), as duas atribuições coincidem no valor das variáveis com ocorrências livres em φ.

- **3)** Caso $\varphi = \forall y \varphi_1$.
 - **3.b)** Subcaso $y \neq x$. Então, $y \notin VAR(t)$ (de outra forma x não seria substituível sem captura de variáveis por t em φ). Assim,

$$E \models (\forall y \varphi_1)[t/x][a]$$
sse $E \models \forall y(\varphi_1[t/x])[a]$
sse $E \models \varphi_1[t/x][a\begin{pmatrix} y \\ d \end{pmatrix}]$, para todo $d \in dom(E)$
sse $E \models \varphi_1[a\begin{pmatrix} y \\ d \end{pmatrix}\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$
sse $E \models \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}\begin{pmatrix} y \\ d \end{pmatrix}]$, para todo $d \in dom(E)$
sse $E \models \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}\begin{pmatrix} y \\ d \end{pmatrix}]$, para todo $d \in dom(E)$
sse $E \models \forall y \varphi_1[a\begin{pmatrix} x \\ t[a] \end{pmatrix}]$

Justificações

- Definição de substituição.
- (2) Proposição 193.
- (3) Hipótese de indução.
- (4) Como $y \neq x$, $a \begin{pmatrix} x \\ t[a] \end{pmatrix} \begin{pmatrix} y \\ d \end{pmatrix} = a \begin{pmatrix} y \\ d \end{pmatrix} \begin{pmatrix} x \\ t[a] \end{pmatrix}$ e, da Proposição 181, por $y \notin VAR(t)$, $t[a] = t[a \begin{pmatrix} y \\ d \end{pmatrix}]$.

4) Restantes casos: exercício.

Definição 197: Dizemos que uma L-fórmula φ é *válida* numa L-estrutura E ou que E valida φ (notação: $E \models \varphi$) quando, para toda a atribuição a em E, $E \models \varphi[a]$.

Utilizamos a notação $E \not\models \varphi$ quando φ não é válida em E, *i.e.*, quando existe uma atribuição a em E tal que $E \not\models \varphi[a]$.

Exemplo 198: Consideremos a estrutura E_{Arit} .

- 1 A fórmula $x_0 = x_0$ é válida em E_{Arit} ; de facto, para qualquer atribuição a em E_{Arit} , tem-se $E_{Arit} \models x_0 = x_0[a]$, uma vez que $x_0[a] = a(x_0)$ e $(a(x_0), a(x_0)) \in \equiv (a(x_0))$ e $a(x_0)$ são naturais iguais).
- 2 A fórmula $x_0 = x_1$ não é válida em E_{Arit} ; por exemplo, para a atribuição a^{ind} tem-se $x_0[a^{ind}] = 0$, $x_1[a^{ind}] = 1$ e $(0,1) \notin \Xi$, pelo que $E_{Arit} \not\models x_0 = x_1[a^{ind}]$.
- 3 A fórmula $\neg(x_0 = x_1)$ não é válida em E_{Arit} ; por exemplo, para a atribuição a_0 que atribui 0 a todas as variáveis tem-se $x_0[a_0] = 0$, $x_1[a_0] = 0$ e $(0,0) \in \Xi$, pelo que $E_{Arit} \models x_0 = x_1[a_0]$ e, consequentemente, $E_{Arit} \not\models \neg(x_0 = x_1)[a_0]$.
- 4 A fórmula $x_0 = x_1 \vee \neg(x_0 = x_1)$ é válida em E_{Arit} (para qualquer atribuição a em E_{Arit} , a afirmação " $(a(x_0), a(x_1)) \in \equiv$ ou $(a(x_0), a(x_1)) \notin \equiv$ " é verdadeira).

5 A fórmula $\exists x_0 \neg (x_0 = x_1)$ é válida em E_{Arit} (para toda a atribuição a em E_{Arit} a afirmação "existe $n \in \mathbb{N}_0$, $n \neq a(x_1)$ " é verdadeira (tome-se, por exemplo, $n = a(x_1) + 1$)) e a fórmula $\forall x_1 \exists x_0 \neg (x_0 = x_1)$ é também válida em E_{Arit} (porquê?).

Exemplo 199:

- 1 A L_{grupo} -fórmula $\forall x_0(x_0 \cdot x_0^{-1} = 1)$ é válida na estrutura E_1 do Exemplo 174 (a afirmação "para todo $x \in \mathbb{R}$, x + (-x) = 0" é verdadeira).
- 2 A L_{cpo} -fórmula $\forall x_0 \forall x_1 ((x_0 \leq x_1 \land x_1 \leq x_0) \rightarrow x_0 = x_1)$ é válida na estrutura E_3 do Exemplo 175 (a afirmação "para todo $X_0, X_1 \in \mathcal{P}(\{a,b\})$, se $X_0 \subseteq X_1$ e $X_1 \subseteq X_0$, então $X_0 = X_1$ " é verdadeira).

Proposição 200: Sejam E uma L-estrutura e φ uma L-sentença. Então, $E \models \varphi$ sse para alguma atribuição a em E, $E \models \varphi[a]$.

Dem.: Se $E \models \varphi$, é imediato que $E \models \varphi[a]$ para alguma atribuição a, pois $E \models \varphi$ significa que $E \models \varphi[a]$ para toda a atribuição a.

Admitamos agora que $E \models \varphi[a]$ para alguma atribuição a. Tomemos uma atribuição a' arbitrária em E.

(Queremos provar que $E \models \varphi[a']$.)

Como φ é uma L-sentença e portanto $LIV(\varphi) = \emptyset$, tem-se trivialmente que a(x) = a'(x) para todo $x \in LIV(\varphi)$.

Assim, atendendo à Proposição 194 e a que $E \models \varphi[a]$, conclui-se $E \models \varphi[a']$.

Definição 201: Uma *L*-fórmula φ é (universalmente) válida (notação: $\models \varphi$) quando é válida em toda a *L*-estrutura.

Utilizamos a notação $\not\models \varphi$ quando φ *não é (universalmente) válida, i.e.*, quando existe uma *L*-estrutura *E* tal que $E \not\models \varphi$.

Observação 202: Uma L-fórmula φ não é universalmente válida quando existe alguma L-estrutura que não valida φ , ou seja, quando existe alguma L-estrutra E e alguma atribuição E em E t.q. $E \not\models \varphi[A]$.

Exemplo 203:

- 1 A L_{Arit} -fórmula $x_0 = x_1$ não é universalmente válida. Como vimos no exemplo anterior, esta fórmula não é válida na estrutura E_{Arit} .
- 2 No exemplo anterior, vimos que a fórmula $x_0 = x_0$ é válida na estrutura E_{Arit} .

No entanto, esta fórmula não é válida em todas as L_{Arit} -estruturas.

Por exemplo, se considerarmos uma L_{Arit} -estrutura $E_1 = (\{a,b\}, \overline{\ })$ em que \equiv seja a relação $\{(a,a)\}, E_1$ não valida $x_0 = x_0$, pois considerando uma atribuição a' em E_1 t.q. $a'(x_0) = b$ teremos $E_1 \not\models x_0 = x_0[a']$, uma vez que o par $(x_0[a'], x_0[a'])$, que é igual ao par (b,b), não pertence à relação \equiv .

3 A L_{Arit} -fórmula $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$ é universalmente válida.

De facto, dadas uma qualquer L_{Arit} -estrutura $E = (D, \overline{})$ e uma qualquer atribuição a em E, tem-se:

$$E \models \forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))[a]$$
sse
$$E \models (x_0 = x_1 \lor \neg(x_0 = x_1))[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$E \models x_0 = x_1[a\binom{x_0}{d}] \text{ou} E \models \neg(x_0 = x_1)[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$(d, a(x_1)) \in \exists \text{ ou } E \not\models x_0 = x_1[a\binom{x_0}{d}], \text{ para todo } d \in D$$
sse
$$(d, a(x_1)) \in \exists \text{ ou } (d, a(x_1)) \not\in \exists, \text{ para todo } d \in D$$

e a última afirmação é verdadeira.

Definição 204: Uma L-fórmula φ é logicamente equivalente a uma L-fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando $\models \varphi \leftrightarrow \psi$, i.e., quando para para toda a L-estrutura E e para toda a atribuição a em E, $E \models \varphi[a]$ sse $E \models \psi[a]$.

Observação 205: As propriedades enunciadas para e equivalência lógica no capítulo anterior, mantêm-se válidas no contexto do Cálculo de Predicados. Por exemplo, \Leftrightarrow é uma relação de equivalência em \mathcal{F}_l .

Proposição 206: Sejam $x, y \in \mathcal{V}$ e $\varphi, \psi \in \mathcal{F}_I$.

a) $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$

b) $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$

c) $\forall x \varphi \Leftrightarrow \neg \exists x \neg \varphi$

- **d)** $\exists x \varphi \Leftrightarrow \neg \forall x \neg \varphi$
- e) $\forall x(\varphi \land \psi) \Leftrightarrow \forall x\varphi \land \forall x\psi$ f) $\exists x(\varphi \lor \psi) \Leftrightarrow \exists x\varphi \lor \exists x\psi$
- $\mathbf{g}) \models (\forall x \varphi \lor \forall x \psi) \to \forall x (\varphi \lor \psi),$ mas não necessariamente $\models \forall x(\varphi \lor \psi) \to (\forall x \varphi \lor \forall x \psi)$
- $h) \models \exists x (\varphi \land \psi) \rightarrow (\exists x \varphi \land \exists x \psi),$ mas não necessariamente $\models (\exists x \varphi \land \exists x \psi) \rightarrow \exists x (\varphi \land \psi)$
- i) $\forall x \forall y \varphi \Leftrightarrow \forall y \forall x \varphi$

- i) $\exists x \exists y \varphi \Leftrightarrow \exists y \exists x \varphi$
- $\mathbf{k}) \models \exists x \forall y \varphi \rightarrow \forall y \exists x \varphi$ mas não necessariamente $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$

- I) $Qx\varphi \Leftrightarrow \varphi$ se $x \notin LIV(\varphi)$, para todo $Q \in \{\exists, \forall\}$
- **m)** $Qx\varphi \Leftrightarrow Qy\varphi[y/x]$ se $y \notin LIV(\varphi)$ e x é substituível por y em φ , para todo $Q \in \{\exists, \forall\}$
- n) $Qx(\varphi \Box \psi) \Leftrightarrow (Qx\varphi) \Box \psi$ e $Qx(\psi \Box \varphi) \Leftrightarrow \psi \Box (Qx\varphi)$, se $x \notin LIV(\psi)$, para todo $\Box \in \{\land, \lor\}$ e para todo $Q \in \{\exists, \forall\}$

Dem.:

c) Sejam L uma linguagem, E uma L-estrutura e a uma atribuição em E. (Queremos demonstrar que: $E \models \forall x \varphi[a]$ sse $E \models \neg \exists x \neg \varphi[a]$.)

$$E \models \forall x \varphi[a]$$
sse $E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$ (1)
sse $E \not\models \neg \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$ (2)
sse $E \not\models \exists x \neg \varphi[a]$ (3)
sse $E \models \neg \exists x \neg \varphi[a]$ (4)

Justificações

- (1) Por (b) da Proposição 193.
- (2) Para todo $\psi \in \mathcal{F}_L$, $E \models \psi[a]$ sse $E \not\models \neg \psi[a]$ (Exercício).
- (3) Por (c) da Proposição 193.
- **(4)** Para todo $\psi \in \mathcal{F}_L$, $E \not\models \psi[a]$ sse $E \models \neg \psi[a]$ (Exercício).

k) Mostremos que $\models \forall x \exists y \varphi \rightarrow \exists y \forall x \varphi$ não é necessariamente válida.

Seja L uma linguagem contendo um símbolo R de relação, binário. Seja E uma L-estrutura de domínio $\{a,b\}$, onde a interpretação de R é o conjunto $\{(a,b),(b,a)\}$. Então, $E \models \forall x_0 \exists x_1 R(x_0,x_1)$, mas $E \not\models \exists x_1 \forall x_0 R(x_0,x_1)$ (Porquê?). Logo,

 $E \not\models \forall x_0 \exists x_1 R(x_0, x_1) \rightarrow \exists x_1 \forall x_0 R(x_0, x_1).$

Demonstração das restantes afirmações: exercício.

Definição 207: Chamaremos *instanciação (de variáveis proposicionais com L-fórmulas)* a uma função do tipo $\mathcal{V}^{CP} \longrightarrow \mathcal{F}_L$. Cada instanciação *i* determina uma função do tipo $\mathcal{F}^{CP} \longrightarrow \mathcal{F}_L$ que satisfaz as seguintes condições¹:

- a) $i(\perp) = \perp$;
- **b)** $i(\neg \varphi) = \neg i(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **c)** $i(\varphi \Box \psi) = i(\varphi) \Box i(\psi)$, para todo $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ e para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

¹A função determinada por uma instanciação i pode ser vista como uma operação de *substituição simultânea*, onde cada variável proposicional p é substituída por $\underline{i}(p)$.

Definição 208: Uma *L*-fórmula ψ é uma *instância* de uma fórmula φ do Cálculo Proposicional quando existe alguma instanciação i tal que $i(\varphi) = \psi$.

Exemplo 209: A *L_{Arit}*-fórmula

 $(x_0=x_1) o (\exists x_0(x_0=0) o (x_0=x_1))$ é uma instância da fórmula $p_0 o (p_1 o p_0)$ do Cálculo Proposicional.

De facto, considerando-se uma instanciação i tal que $i(p_0)$ é a fórmula $(x_0 = x_1)$ e $i(p_1)$ é a fórmula $\exists x_0(x_0 = 0)$, tem-se:

$$i(p_0 \to (p_1 \to p_0))$$

= $i(p_0) \to i(p_1 \to p_0)$
= $(x_0 = x_1) \to (i(p_1) \to i(p_0))$
= $(x_0 = x_1) \to (\exists x_0(x_0 = 0) \to (x_0 = x_1)).$

Mas, esta fórmula L_{Arit} -fórmula é também instância, por exemplo, de $p_0 \rightarrow p_1$ e de p_0 . Porquê?

Teorema 210 (Teorema da Instanciação): Se φ é uma tautologia do Cálculo Proposicional, então toda a instância de φ é universalmente válida.

Dem.: Suponhamos que φ uma tautologia do Cálculo Proposicional e que ψ é uma L-fórmula que é instância de φ . Seja E uma L-estrutura e a uma atribuição em E.(Queremos demonstrar que $E \models \psi[a]$.)

Uma vez que ψ é instância de φ , existe uma instanciação i tal que $i(\varphi) = \psi$. Seja v a valoração do Cálculo Proposicional que satisfaz as seguintes condições:

para todo
$$p \in \mathcal{V}^{CP}$$
, $v(p) = \begin{cases} 1 \text{ se } E \models i(p)[a] \\ 0 \text{ se } E \not\models i(p)[a] \end{cases}$.

Demonstra-se (por indução estrutural em φ) que: $v(\varphi) = 1$ sse $E \models \psi[a]$. Donde, como $v(\varphi) = 1$ (pois φ é uma tautologia), se segue que $E \models \psi[a]$.

Exemplo 211: Como vimos no exemplo anterior, a L_{Arit} -fórmula $(x_0 = x_1) \rightarrow (\exists x_0(x_0 = 0) \rightarrow (x_0 = x_1))$ é instância da tautologia $p_0 \rightarrow (p_1 \rightarrow p_0)$.

Logo, pelo Teorema da Instanciação, podemos concluir que esta L_{Arit} -fórmula é universalmente válida.

Observação 212: Como seria de esperar, nem todas as fórmulas universalmente válidas são instâncias de tautologias.

Por exemplo, vimos no Exemplo 203 que a fórmula $\forall x_0(x_0 = x_1 \lor \neg(x_0 = x_1))$ é universalmente válida e esta fórmula não é instância de qualquer tautologia (esta fórmula é apenas instância de variáveis proposicionais, que não são tautologias).

Definição 213: Uma *L*-fórmula diz-se uma *forma normal prenexa* quando é constituída por um prefixo de quantificações (eventualmente vazio), seguido de uma fórmula sem quantificações, ou seja, quando é uma fórmula da forma

$$Q_1 y_1 ... Q_n y_n \varphi$$
,

onde $n \in \mathbb{N}_0$, para cada i, $Q_i \in \{\forall, \exists\}$ e $y_i \in \mathcal{V}$ e φ é uma L-fórmula sem quantificações.

Exemplo 214:

- As L_{Arit} -fórmulas $x_0 < x_1$, $\exists x_1(x_0 < x_1 \land \neg(x_1 = 0))$, $\forall x_0 \exists x_1(x_0 < x_1 \land \neg(x_1 = 0))$ são formas normais prenexas.
- 2 A L_{Arit} -fórmula $\forall x_0(\exists x_1(x_1 < x_0) \rightarrow \exists x_2(x_0 = s(x_2)))$ não é uma forma normal prenexa (por causa das quantificações existenciais debaixo da implicação).

Contudo:

$$\forall x_0 (\exists x_1(x_1 < x_0) \to \exists x_1(x_0 = s(x_1))) \\ \Leftrightarrow \forall x_0 (\neg \exists x_1(x_1 < x_0) \lor \exists x_1(x_0 = s(x_1))) \\ \Leftrightarrow \forall x_0 (\forall x_1 \neg (x_1 < x_0) \lor \exists x_1(x_0 = s(x_1))) \\ \Leftrightarrow \forall x_0 \forall x_1 (\neg (x_1 < x_0) \lor \exists x_1(x_0 = s(x_1))) \\ \Leftrightarrow \forall x_0 \forall x_1 (\neg (x_1 < x_0) \lor \exists x_2(x_0 = s(x_2))) \\ \Leftrightarrow \forall x_0 \forall x_1 \exists x_2 (\neg (x_1 < x_0) \lor (x_0 = s(x_2)))$$

e a última fórmula é uma forma normal prenexa.

Proposição 215: Para toda a *L*-fórmula φ , existe uma forma normal prenexa ψ tal que $\varphi \Leftrightarrow \psi$.

Dem.: Dada uma L-fórmula φ , uma forma normal prenexa ψ que lhe seja logicamente equivalente pode ser obtida com recurso às seguintes transformações:

- escrever implicações e equivalências em termos de negações, conjunções e disjunções;
- mover quantificações para fora de negações, conjunções e disjunções (renomeando, se necessário, o nome de variáveis ligadas), com recurso às equivalências lógicas a), b), m) e n) da Proposição 206.

Definição 216: Sejam E uma L-estrutura, a uma atribuição em E e Γ um conjunto de L-fórmulas.

Dizemos que E satisfaz Γ para a ou que o par (E, a) satisfaz Γ , escrevendo $E \models \Gamma[a]$, quando para todo $\varphi \in \Gamma$, $E \models \varphi[a]$.

Caso contrário, dizemos que E $n\~ao$ satisfaz Γ para a ou que o par (E,a) $n\~ao$ satisfaz Γ , escrevendo $E \not\models \Gamma[a]$.

Exemplo 217: O par (E_{Arit}, a^{ind}) satisfaz o conjunto de L_{Arit} -fórmulas

$$\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\},\$$

mas não satisfaz o conjunto de L_{Arit}-fórmulas

$$\{\forall X_0(X_0 \times X_1 = X_0), \forall X_1(X_1 \times S(X_2) = X_1)\}.$$

Definição 218: Um conjunto de L-fórmulas Γ diz-se satisfazível ou (semanticamente) consistente quando para alguma L-estrutura E e para alguma atribuição a em E, (E,a) satisfaz Γ .

Caso contrário, Γ diz-se *insatisfazível* ou *(semanticamente) inconsistente.*

Exemplo 219:

- a) O conjunto de L_{Arit} -fórmulas
 - $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_0) = x_1)\}\$ é semanticamente consistente (por exemplo, (E_{Arit}, a^{ind}) satisfá-lo).
 - O conjunto de L_{Arit}-fórmulas
- $\{\forall x_0(x_0 \times x_1 = x_0), \forall x_1(x_1 \times s(x_2) = x_1)\}$ também é semanticamente consistente (exercício).
- **b)** O conjunto de L_{Arit} -fórmulas $\{\forall x_0(x_0 = x_0), \neg (0 = 0)\}$ é semanticamente inconsistente (exercício).

Definição 220: Sejam E uma L-estrutura e Γ um conjunto de L-fórmulas.

Dizemos que E valida Γ ou que E é um modelo de Γ , escrevendo $E \models \Gamma$, quando para toda a atribuição a em E, $E \models \Gamma[a]$.

Caso contrário, dizemos que E $n\~{ao}$ valida Γ ou que E $n\~{ao}$ e modelo de Γ , escrevendo $E \not\models \Gamma$.

Dizemos que E é um modelo normal de Γ quando E é um modelo de Γ e E é uma L-estrutura normal.

 $\forall x_0 \neg (0 = s(x_0));$

Exemplo 221: E_{Arit} é um modelo normal do conjunto formado pelas seguintes L_{Arit} -sentenças:

$$egin{aligned} & orall x_0 orall x_1 ((s(x_0) = s(x_1))
ightarrow (x_0 = x_1)); \ & orall x_0
eg (s(x_0) < 0); \ & orall x_0 orall x_1 ((x_0 = s(x_1))
ightarrow ((x_0 < x_1) \lor (x_0 = x_1)))); \ & orall x_0 (x_0 + 0 = x_0); \ & orall x_0 orall x_1 (s(x_0) + x_1 = s(x_0 + x_1)); \ & orall x_0 (x_0 imes 0 = 0); \ & orall x_0 orall x_1 (s(x_0) imes x_1 = (x_0 imes x_1) + x_1). \end{aligned}$$

A axiomática de Peano para a Aritmética é constituída por estas fórmulas, juntamente com um princípio de indução para \mathbb{N}_0 .

Exemplo 222: Os grupos são os modelos normais do conjunto formado pelas seguintes L_{grupo} -sentenças:

$$\forall x_0 \forall x_1 \forall x_2 ((x_0 \cdot x_1) \cdot x_2 = x_0 \cdot (x_1 \cdot x_2)); \forall x_0 ((x_0 \cdot 1 = x_0) \wedge (1 \cdot x_0 = x_0)); \forall x_0 ((x_0 \cdot x_0^{-1} = 1) \wedge (x_0^{-1} \cdot x_0 = 1)).$$

De facto, uma L_{grupo} -estrutura normal $E = (D, \overline{})$ é um modelo deste conjunto de fórmulas se e só se $(D, \overline{}, \overline{1}, \overline{-1})$ é um grupo.

Exemplo 223: Os conjuntos parcialmente ordenados são os modelos normais do conjunto formado pelas seguintes L_{cpo} -sentenças:

$$\forall x_0(x_0 \leq x_0); \ \forall x_0 \forall x_1(((x_0 \leq x_1) \land (x_1 \leq x_0)) \rightarrow (x_0 = x_1)); \ \forall x_0 \forall x_1 \forall x_2(((x_0 \leq x_1) \land (x_1 \leq x_2)) \rightarrow (x_0 \leq x_2)).$$

Uma L_{cpo} -estrutura normal $E=(D,\overline{})$ é um modelo deste conjunto de fórmulas se e só se $(D,\overline{\leq})$ é um conjunto parcialmente ordenado.

Proposição 224: Seja Γ um conjunto de *L*-sentenças.

- Uma L-estrutura E é um modelo de Γ sse para alguma atribuição a em E, (E, a) satisfaz Γ.
- Γ é satisfazível sse existem modelos de Γ.

Dem.: Exercício.

Definição 225: Uma L-fórmula φ diz-se uma consequência (semântica) de um conjunto de L-fórmulas Γ (notação: $\Gamma \models \varphi$) quando para toda a L-estrutura E e para toda a atribuição E em E, se $E \models \Gamma[A]$, então $E \models \varphi[A]$.

Observação 226: Na denotação de relações de consequência semântica, usaremos simplificações semalhantes às utilizadas no contexto do Cálculo Proposicional.

Por exemplo, dadas L-fórmulas φ e ψ e dado um conjunto de L-fórmulas Γ , a notação Γ , $\varphi \models \psi$ abrevia $\Gamma \cup \{\varphi\} \models \psi$.

Exemplo 227: No contexto do tipo de linguagem L_{Arit} ,

$$\forall x_0 \neg (x_0 = s(x_0)) \models \neg (0 = s(0)).$$

De facto, dada uma L_{Arit} -estrutura $E = (D, \overline{})$ e dada uma atribuição a em E tais que $E \models \{\forall x_0 \neg (x_0 = s(x_0))\}[a]$, temos que, para todo o $d \in D$, $(d, \overline{s}(d)) \notin \Xi$.

Assim, como $\overline{0} \in D$, em particular, temos que $(\overline{0}, \overline{s}(\overline{0})) \notin \Xi$. Consequentemente, $E \models \neg(0 = s(0))[a]$. **Proposição 228**: Sejam Γ um conjunto de *L*-sentenças e φ uma *L*-sentença. Então, Γ $\models \varphi$ se e só se todos os modelos de Γ validam φ .

Dem.: Exercício.

Notação 229: Adiante, usaremos a notação $LIV(\Gamma)$, com Γ um conjunto de L-fórmulas, para representar o conjunto $\bigcup_{\varphi \in \Gamma} LIV(\varphi)$.

Proposição 230: Sejam φ e ψ *L*-fórmulas, seja Γ um conjunto de *L*-fórmulas, seja x uma variável e seja t um *L*-termo.

- a) Se $\Gamma \models \forall x \varphi$ e x é substituível sem captura de variáveis por t em φ , então $\Gamma \models \varphi[t/x]$.
- **b)** Se $\Gamma \models \varphi$ e $x \notin LIV(\Gamma)$, então $\Gamma \models \forall x \varphi$.
- c) Se $\Gamma \models \varphi[t/x]$ e x é substituível sem captura de variáveis por t em φ , então $\Gamma \models \exists x \varphi$.
- **d)** Se $\Gamma \models \exists x \varphi$ e $\Gamma, \varphi \models \psi$, e $x \notin LIV(\Gamma \cup \{\psi\})$, então $\Gamma \models \psi$.

- a) Suponhamos que (E, a) satisfaz Γ. (Queremos demonstrar que: $E \models \varphi[t/x][a]$.)
 - Então, pela hipótese, $E \models \forall x \varphi[a]$.

Assim, por definição de satisfação,

$$E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$$
, para todo $d \in dom(E)$.

Daqui, em particular, $E \models \varphi[a\left(\begin{array}{c} x \\ t[a] \end{array}\right)]$, pois $t[a] \in dom(E)$. Logo, como por hipótese x é substituível sem captura de variáveis por t em φ , aplicando a Proposição 196, $E \models \varphi[t/x][a]$.

b) Suponhamos que (*E*, *a*) satisfaz Γ. (Queremos demonstrar que: $E \models \forall x \varphi[a]$.)

Por hipótese, $x \notin LIV(\Gamma)$.

Logo, para todo $\psi \in \Gamma$, $x \notin LIV(\psi)$ e, para todo $d \in dom(E)$, as atribuições a e $a \begin{pmatrix} x \\ d \end{pmatrix}$ atribuem os mesmos valores a todas as variáveis livres de ψ .

Assim, para todo $\psi \in \Gamma$, segue da Proposição 194 que

$$E \models \psi[a]$$
 sse $E \models \psi[a\begin{pmatrix} x \\ d \end{pmatrix}]$, para todo $d \in dom(E)$.

Consequentemente, uma vez que (E, a) satisfaz Γ , para todo $d \in dom(E)$, $(E, a \begin{pmatrix} x \\ d \end{pmatrix})$ também satisfaz Γ .

Como por hipótese $\Gamma \models \varphi$, segue que

$$E \models \varphi[a\begin{pmatrix} x \\ d \end{pmatrix}]$$
, para todo $d \in dom(E)$,

o que permite concluir $E \models \forall x \varphi[a]$.

c) e d): exercício.