Computer Vision

Image and Video Analysis

Introduction to Computer Vision

- Automate the derivation of useful information from digital images
- Types of image data:
 - RGB images
 - Multiple images from different cameras
 - Video sequences
 - 3D point clouds (LiDaR)

Computer Vision Tasks

Semantic Instance **Object** Classification Segmentation Segmentation Detection GRASS, CAT, CAT DOG, DOG, CAT DOG, DOG, CAT TREE, SKY Multiple Object No spatial extent No objects, just pixels This image is CC0 public domain

Computer Vision Tasks

Pose estimation Activity recognition

Object tracking

Convolutional Neural Networks

Architecture Overview

Why do we need a specialized architecture for images?

- Fully connected layers do not scale well for images (WxHx3)
 - Leads to massive numbers of parameters
 - AlexNet example
 - 227x227x3 image -> 55x55x96 feature space (11x11x3 kernels)
 - 364 parameters/kernel * 96 kernels = 34,944 parameters
 - FC network would connect each of these neurons: ~44 billion connections
- Fully connected layers do not exhibit translation invariance
 - FC feature detection depends on the location within an image, due to the way the neurons are wired
 - Want to capture features regardless of the location in the image

Convolution

- "Sweep" a kernel over an image to detect features

Γ1	0	$1^{\overline{}}$
0	1	0
1	0	1

Kernel / Filter

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Learned Filter Bank, ImageNet Krizhevsky et al.

Pooling Operations

- Feature maps have very high dimension
- Pooling operations reduce the dimensionality before further convolutional/FC layers

Pooling Operations

- Max pool
 - Take the maximum value within the filter
- Average pool
 - Take the average value within the filter

max pool with 2x2 filters and stride 2

CNN Intuition

- As we move forward in the CNN, activations go from low level features to high level semantic information
 - The first convolutional layer may learn filters that represent points and lines
 - High spatial resolution, low semantic content
 - At later stages, lower spatial resolution, high semantic content
- The final pooling layer leads into a fully-connected neural network for the final prediction

High spatial resolution at early layers

Reduced dimensionality, learned a compressed representation

ImageNet Challenge

- Compete to obtain best top-5 test error rate when classifying an image into 1 of 1000 categories
- AlexNet, 2012
 - Convolutional layers
 - ReLU activation function

Some Other CV DNNs

Object Detection

Single-shot object detection:

- YOLO You Only Look Once
- Single pass of input image to predict the location and classification of objects
- Real-time processing, low latency applications

Two-stage detection:

- Region Proposal Network suggests bounding boxes, then a CNN refines and classifies
- High accuracy

Vision Transformer (ViT)

- Taking a leaf from NLP, ViTs use a transformer architecture
- Tokenize an image
- Self-attention mechanisms model dependencies between tokens