STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 10: October 26

Lecturer: Persi Diaconis Scribes: Kenneth Tay

10.1 Integrals Continued

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, $f: \Omega \to \mathbb{R}$ a measurable function. We defined the integral

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu$$

if the RHS is not $\infty - \infty$, where, for non-negative functions g,

$$\int g d\mu := \sup \sum \nu_i \mu(A_i)$$

where the sup is taken over all decompositions $\{A_i\}$ of Ω , $\nu_i = \inf_{\omega \in A_i} g(\omega)$.

We proved the following proposition last lecture:

Proposition 10.1 For non-negative measurable f and g:

- 1. If f is simple, i.e. $f = \sum_{i=1}^{n} x_i \delta_{A_i}$, then $\int f d\mu = \sum_{i=1}^{n} x_i \mu(A_i)$.
- 2. (Monotonicity) If $f \leq g$, then $\int f d\mu \leq \int g d\mu$.
- 3. (Monotone Convergence Theorem) If $f_n(\omega) \nearrow f(\omega)$ for all ω , then

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu = \int \lim_{n \to \infty} f_n d\mu.$$

4. (Linearity) For real numbers α and β ,

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta + \int g d\mu.$$

Note that all of the above hold if the hypotheses hold μ -a.e. For example, for property 2 above: if $0 \le f \le g$ μ -a.s., then $\int f d\mu \le \int g d\mu$.

Proof: We prove the a.e. version of property 2. (The a.e. versions of the other properties can be proven in a similar manner.)

10-2 Lecture 10: October 26

Let $G = \{\omega : f(\omega) \leq g(\omega)\}$. Then $\mu(G^c) = 0$, and for any partition $\{A_i\}$,

$$\sum_{i=1}^{n} \inf_{\omega \in A_i} f(\omega)\mu(A_i) = \sum_{i=1}^{n} \inf_{\omega \in A_i} f(\omega)\mu(A_i \cap G)$$

$$\leq \sum_{i=1}^{n} \inf_{\omega \in A_i \cap G} f(\omega)\mu(A_i \cap G)$$

$$\leq \sum_{i=1}^{n} \inf_{\omega \in A_i \cap G} g(\omega)\mu(A_i \cap G)$$

$$\leq \int g d\mu.$$

Since this holds for all partitions $\{A_i\}$, we can take sup on the LHS to obtain the desired result.

Important note: We can't always switch limits with integrals, i.e. if $f_n(\omega) \to f(\omega)$ for all ω , it does not follow that $\int f_n d\mu \to \int f d\mu$. E.g. take $(\Omega, \mathcal{F}, \mu) = ([0, 1], \text{Borel sets}, \lambda)$. Let $f_n(\omega) = n^2 \delta_{(0, \frac{1}{n})}$. Then $f_n(\omega) \to 0$ for all ω , but $\int f_n d\mu = n \nearrow \infty$.

Theorem 10.2 (Fatou's Lemma) Let $\{f_n\}$ be any sequence of non-negative measurable functions. Then

$$\int \liminf f_n d\mu \le \liminf \int f_n d\mu.$$

Proof: Let $g_n = \inf_{k \ge n} f_n$. Then $g_n \le f_n$, so

$$\int g_n d\mu \le \int f_n d\mu.$$

By definition of $\lim \inf g_n$ increases to $\lim \inf f_n$. Thus, by taking $\lim \inf g_n$ on both sides of the above inequality and using the Monotone Convergence Theorem, we have

$$\int \liminf f_n d\mu = \int \lim g_n d\mu = \liminf \int g_n d\mu \le \liminf \int f_n d\mu.$$

Some remarks on Fatou's Lemma:

- 1. The f_n 's can be any collection of non-negative measurable functions.
- 2. A case to demonstrate Fatou's Lemma: Take $(\Omega, \mathcal{F}, \mu) = ([0, 1], \text{Borel sets}, \lambda)$. Let

$$f_n = \begin{cases} \delta_{(0,1/2)} & \text{if } n \text{ even,} \\ \delta_{(1/2,1)} & \text{if } n \text{ odd.} \end{cases}$$

In this case, $\liminf f_n = 0$ but $\int f_n d\lambda = \frac{1}{2}$, so Fatou's Lemma holds.

3. The assumption of f being non-negative cannot be dropped. Take $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}, \text{Borel sets}, \lambda)$. Let $f_n = -\frac{1}{n}\delta_{(n,2n)}$. Then $f_n \to 0$ pointwise but $\int f_n d\mu = -1$ for all n. Fatou's Lemma does not hold in this case

Lecture 10: October 26

Theorem 10.3 (Dominated Convergence Theorem) Let $\{f_n\}$ be a sequence of measurable functions such that $f_n \to f$ a.s. and there exists an integrable function $g \ge 0$ such that $|f_n| \le g$ a.s. Then f is measurable and integrable, and

 $\lim_{n \to \infty} \int f_n d\mu = \int f d\mu.$

Proof: We have $f_n^+(\omega) \leq g(\omega), f_n^-(\omega) \leq g(\omega)$, so they are both integrable. Let

$$f^* = \limsup f_n, \quad f_* = \liminf f_n.$$

We also have $f^* \leq g$ and $f_* \leq g$, and so they are integrable. In addition, $g + f_* \geq 0$ and $g - f^* \geq 0$. By the Monotone Convergence Theorem and Fatou's Lemma,

$$\begin{split} \int (g+f_*)d\mu &= \int \liminf (g+f_n)d\mu \\ &\leq \liminf \int (g+f_n)d\mu \\ &= \int gd\mu + \liminf \int f_nd\mu, \\ &\int f_*d\mu \leq \liminf \int f_nd\mu. \end{split}$$

Similarly,

$$\int (g - f^*) d\mu = \int \liminf (g - f_n) d\mu$$

$$\leq \liminf \int (g - f_n) d\mu$$

$$= \int g - \limsup \int f_n d\mu,$$

$$\lim \sup \int f_n d\mu \leq \int f^* d\mu.$$

So

$$\int \liminf f_n d\mu \le \liminf \int f_n d\mu \le \limsup \int f_n d\mu \le \int \limsup f_n d\mu.$$

But since $f_n \to f$ a.s., the inequalities above are actually equalities, and so

$$\int f d\mu = \lim_{n} \int f_n d\mu.$$

10.1.1 Applications of the Convergence Theorems

10.1.1.1 Proving f is finite a.s.

On [0,1], let $\{r_i\}_{i=1}^{\infty}$ be the rational numbers ordered in the "standard" way, e.g. $0,1,\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{3}{4},\dots$ Define

$$f(x) = \sum_{i=1}^{\infty} \frac{1}{i^2 |r_i - x|^{\frac{1}{2}}}.$$

10-4 Lecture 10: October 26

Let
$$f_n(x) = \sum_{i=1}^n \frac{1}{i^2 |r_i - x|^{\frac{1}{2}}}$$
. We have

$$\int_{0}^{1} f_{n}(x)dx = \sum_{i=1}^{n} \frac{1}{i^{2}} \int_{0}^{1} \frac{1}{|r_{i} - x|^{2}} dx$$
$$\leq \sum_{i=1}^{n} \frac{c}{i^{2}}$$

for some constant c, i.e. every f_n is integrable. Note that $f_n(x) \nearrow f(x)$. By Fatou's Lemma,

$$\int_0^1 f(x)dx \le \liminf \sum_{i=1}^n \frac{c}{i^2} < \infty.$$

Therefore f is finite a.s. (even though it's infinite for all rational x)!

Take-home Problem: Find a single x for which f(x) is finite. (Hint: $f\left(\frac{1}{\sqrt{2}}\right) < \infty$, use the Thue-Siegal-Roth Theorem.)

10.1.1.2 New measures from densities

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

Definition 10.4 A density is a non-negative function f such that $\int f d\mu = 1$.

Proposition 10.5 For a density f, Define

$$u(A) = \int_A f d\mu = \int \delta_A f d\mu.$$

Then ν is a probability measure on (Ω, \mathcal{F}) such that $\mu(A) = 0 \Rightarrow \nu(A) = 0$.

Proof:

- $\nu(\emptyset) = \int \delta_{\emptyset} f d\mu = \int 0 d\mu = 0$. $\nu(\Omega) = \int f d\mu = 1$.
- If $A \subseteq B$, then $\delta_A(\omega)f(\omega) \le \delta_B(\omega)f(\omega)$ for all ω , so $\nu(A) = \int \delta_A f d\mu \le \int \delta_B f d\mu \le \nu(B)$.
- If $\{A_i\}_{i=1}^{\infty}$ is a partition of A, then

$$\delta_A(\omega) = \delta_{\bigcup A_i}(\omega) = \sum_i \delta_{A_i}(\omega).$$

Integrating both sides and using the Dominated Convergence Theorem (both sides dominated by f),

$$\nu\left(\bigcup_{i} A_{i}\right) = \int \delta_{A} f d\mu$$

$$= \int \sum_{i} \delta_{A_{i}} f d\mu$$

$$= \sum_{i} \int \delta_{A_{i}} f d\mu$$

$$= \sum_{i} \nu(A_{i}).$$

Lecture 10: October 26

10.2 Change of Measure

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and let Ω' another space. Say we have a function $T : \Omega \to \Omega'$. We can use T to introduce a σ -algebra on Ω' : let $\mathcal{F}' = \{B \subseteq \Omega' : T^{-1}B \in \mathcal{F}\}$. Then T becomes a measurable function from (Ω, \mathcal{F}) to (Ω', \mathcal{F}') .

We can also use T to define a measure on (Ω', \mathcal{F}') : Define a measure $\mu^{T^{-1}}$ on (Ω', \mathcal{F}') such that

$$\mu^{T^{-1}}(B) = \mu(T^{-1}(B)).$$

Theorem 10.6 If $f: \Omega' \to \mathbb{R}$ is $\mu^{T^{-1}}$ integrable, then $f \circ T: \Omega \to \mathbb{R}$ is μ integrable, and

$$\int_{\Omega'} f d\mu^{T^{-1}} = \int_{\Omega} f \circ T d\mu.$$

Proof: Step 1: Prove for indicator functions.

Take $f(\omega) = \delta_B(\omega)$ for some set $B \in \mathcal{F}'$. Then

$$\int_{\Omega'} f d\mu^{T^{-1}} = \mu^{T^{-1}}(B) = \mu(T^{-1}(B)) = \int_{\Omega} f \circ T d\mu.$$

Step 2: Prove for simple functions.

Since simple functions are finite linear combinations of indicator functions, by Step 1 and linearity of the integral, the theorem is true for simple functions too.

Step 3: Prove for general functions. For f^+ and f^- , there exist a sequences of simple functions $\{g_n\}$ and $\{h_n\}$ such that $g_n \nearrow f^+$, $h_n \nearrow f^-$. Since the theorem is true for each of the g_n and h_n 's, it is true for f^+ and f^- by the Monotone Convergence Theorem, and hence it is true for $f = f^+ - f^-$.

Example (coin tossing measure): Suppose $\Omega = \{0,1\}^n$, $\mu(x) = \frac{1}{2^n}$. Let $T: \Omega \to \mathbb{R}$ be the function $T(x) = \sum_{i=1}^n x_i$. Then $\mu^{T^{-1}}(\{j\}) = \frac{1}{2^n} \binom{n}{j}$.

So, for any function $f: \{0, 1, ..., n\} \to \mathbb{R}$, we have

$$\sum_{j=0}^{n} f(j) \frac{\binom{n}{j}}{2^n} = \int_{\Omega} f(x) \mu(dx).$$