Homework 18 - MATH 791

Will Thomas

The problems in this homework set deal with a special kind of PID. Let R be a principal ideal domain with the property that, given any two prime elements, π_1 and π_2 , $\langle \pi_1 \rangle = \langle \pi_2 \rangle$, i.e., up to a unit multiple, there is just one prime element, say $\pi \in R$. Such a ring is called a discrete valuation ring, denoted DVR, and $\pi \in R$ is called a uniformizing parameter.

Problem 1:

Fix a prime $p \in \mathbb{Z}$. Let R denote the set of rational numbers whose denominators is not divisible by p. First show that R is a subring of \mathbb{Q} , and then show that R is a DVR with uniformizing parameter p.

Solution:

First we need to show that R is a subring of \mathbb{Q} . R inherits associativity and distributivity from \mathbb{Q} , so we only need to show that (R, +) is a group and that R is closed under multiplication.

Closure of (R, +) under composition:

$$\begin{split} &\frac{a_1}{a_2}, \frac{b_1}{b_2} \in R \\ &p \nmid a_2, p \nmid b_2 \\ &\frac{a_1}{a_2} + \frac{b_1}{b_2} = \frac{a_1b_2 + b_1a_2}{a_2b_2} \end{split}$$

Because \mathbb{Z} is a UFD, we use the contrapositive of one of the requirements of a prime to say that $p \nmid a_2, p \nmid b_2 \Rightarrow p \nmid a_2b_2$.

$$\Rightarrow \frac{a_1b_2 + b_1a_2}{a_2b_2} \in R$$

Closure of (R, +) under inverses:

$$\begin{aligned} \frac{a_1}{a_2} &\in R \\ \left(-\frac{a_1}{a_2}\right) &= \frac{-a_1}{a_2} = \frac{a_1}{-a_2} \in R \end{aligned}$$

Closure of R under multiplication:

$$\begin{split} &\frac{a_1}{a_2}, \frac{b_1}{b_2} \in R \\ &\frac{a_1}{a_2} * \frac{b_1}{b_2} = \frac{a_1 b_1}{a_2 b_2} \\ &p \nmid a_2, p \nmid b_2 \Rightarrow p \nmid a_2 b_2 \\ &\Rightarrow \frac{a_1}{a_2} * \frac{b_1}{b_2} \in R \end{split}$$

Also R contains the multiplicative identity $\frac{1}{1}$.

Now we need to show that R is a DVR with uniformizing parameter p.

Since primes can't be units, they must be elements of R without a multiplicative inverse.

An element has no multiplicative inverse iff it is a multiple of p.

$$\frac{a_1p}{a_2} \in R, p \nmid a_2$$

We assume WLOG that $p \nmid a_1$

If
$$\frac{a_1p}{a_2}$$
 had an inverse $\frac{x_1}{x_2}$:
$$\frac{a_1p}{a_2} * \frac{x_1}{x_2} = \frac{a_1px_1}{a_2x_2} \in \left[\left(\frac{1}{1}\right)\right]$$

$$p \nmid x_2, p \nmid a_2 \Rightarrow p \nmid a_2x_2$$
But $p \mid x_2 \neq x_2$

But $p \mid pa_1x_1$

So p divides the numerator but not the denominator

$$\Rightarrow \frac{a_1 p}{a_2} * \frac{x_1}{x_2} \notin \left[\left(\frac{1}{1} \right) \right]$$

So a multiple of p does not have an inverse

If an element in R is not a multiple of p, then it has an inverse

$$\begin{aligned} &\frac{a_1}{a_2} \in R, p \nmid a_1, \nmid a_2 \\ &\Rightarrow \frac{a_1}{a_2} \frac{a_2}{a_1} = 1, \frac{a_2}{a_1} \in R \end{aligned}$$

So for any non-unit prime $\frac{pa_1}{a_2}$:

$$\begin{aligned} p \mid \frac{pa_1}{a_2} \\ \frac{pa_1}{a_2} * \frac{a_2}{a_1} &= p \Rightarrow \frac{pa_1}{a_2} \mid p \\ \Rightarrow \langle \frac{pa_1}{a_2} \rangle &= \langle p \rangle \end{aligned}$$

Problem 2:

Let R be a DVR with uniformizing paramter $\pi \in R$. Show that $\bigcap_{n \geq 1} \langle \pi^n \rangle = 0$. Solution:

First we can see that since $0 \in \langle \pi^n \rangle$ for all $n, 0 \in \bigcap_{n \ge 1} \langle \pi^n \rangle$.

Now consider a nonzero element $a \in R$. We know that a can be written as a finite product of irreducibles (proved earlier), and that π is prime, therefore irreducible, so

case 1:
$$\pi \nmid a$$
, or case 2: $a = \pi^s b$

Suppose there are two ways of writing a in case 2:

$$a = \pi^m b = \pi^n b'$$
 suppose $m \ge n$, and $m, n \ge 1$

$$\pi^{m-n}b = b'$$
 From cancellation in IDs

$$\Rightarrow \pi^n b' = \pi^n (\pi^{m-n} b)$$

So the two factorizations have the same number of π 's

$$\pi \nmid a$$

$$\Rightarrow \forall q, \pi q \neq a \Rightarrow a \notin \langle \pi \rangle$$

In case 2:

$$a = \pi^s b$$

WLOG, assume $\pi \nmid b$

$$\Rightarrow \forall q, \pi q \neq b$$

$$\Rightarrow \forall q, \pi^{s+1} q \neq a$$

$$\Rightarrow a \notin \langle \pi^{s+1} \rangle$$

In all cases, for any nonzero a there exists an ideal of a power of π such that $a \notin \langle \pi^n \rangle$. So since a is not in all ideals of the form $\langle \pi^n \rangle$, $a \notin \bigcap_{n \ge 1} \langle \pi^n \rangle$. But $0 \in \bigcap_{n \ge 1}$. So $\bigcap_{n \ge 1} = 0$

Problem 3:

Let R be a DVR with uniformizing parameter $\pi \in R$. Show that every element in R can be written uniquely as $u\pi^n$ for some $n \geq 0$ and $u \in R$ a unit. Conclude that if K dnotes the quotient field of R, then every element in K can be written uniquely in the form $u\pi^n$ for some $n \in \mathbb{Z}$ and $u \in R$, a unit.

Solution:

First we can prove that R is a UFD. We know that every element in R can be written as a product of irreducibles. Now we prove that irreducible elements generate maximal ideals:

```
p \in R is irreducible Suppose  \subseteq < j > \subseteq R \Rightarrow p = jr p is irreducible \Rightarrow j or r is a unit if r is a unit, then < j > =  if j is a unit, then < j > = R which is not an ideal
```

So is a maximal ideal. Now we can prove that maximal ideals are prime ideals, and that an element generating a prime ideal is prime.

```
Suppose < q > is a maximal ideal and that q = ab We also assume that q \mid ab, q \nmid a < q > \subset < q > + < a > is an ideal, since the sum of ideals is an ideal < q > + < a > = R, because it is a strict superset of < q >, and < q > is maximal 1 \in < q > + < a > \Rightarrow 1 = r_1q + r_2a \Rightarrow b * 1 = b * r_1q + b * r_2a \Rightarrow b = br_1q + r_2(ab) q \mid (br_1)q, q \mid (r_2)ab \Rightarrow q \mid br_1q + r_2(ab) \Rightarrow q \mid b
```

So q is prime. We have shown that every irreducible element is prime in R. So every element can be written as a finite product of irreducibles, and therefore can be written as a finite product of primes. This implies that R is a UFD, which includes uniqueness of

the factorizations. But since there is only one prime:

$$r \in R \Rightarrow r = (u_0 \pi)(u_1 \pi)(u_2 \pi)...(u_k \pi)$$
$$\Rightarrow r = (u_0...u_k)\pi^k = u'\pi^k$$

Now we have to prove that every element of K can be written in a similar way.

$$\begin{split} &\frac{a}{b} \in K \\ &\frac{a}{b} = \frac{u_1 \pi^m}{u_2 \pi^n} \\ &\text{If } m \geq n \text{:} \\ &\frac{u_1 \pi^m}{u_2 \pi^n} = \frac{u_2 \pi^n u_2^{-1} u_1 \pi^{m-n}}{u_2 \pi^n} \\ &= \frac{u_2^{-1} u_1 \pi^{m-n}}{1} = \frac{u' \pi^{m-n}}{1} = u' \pi^{m-n} \end{split}$$

If
$$m < n$$
:

$$\frac{u_1 \pi^m}{u_2 \pi^n} = \frac{u_1 \pi^m}{u_1 \pi^m u_1^{-1} u_2 \pi^{n-m}}$$

$$= \frac{1}{u_1^{-1} u_2 \pi^{n-m}} = \frac{1}{u' \pi^{n-m}}$$

$$= \left(\frac{u' \pi^{n-m}}{1}\right)^{-1}$$

$$= (u' \pi^{n-m})^{-1} \text{ using the convention of writing } \frac{a}{1} = a \text{ in } K$$

$$= u' (\pi^{n-m})^{-1}$$

Problem 4:

Let R be a DVR with uniformizing parameter $\pi \in R$, and quotient field K. Define $v: K \to \mathbb{Z} \cup \{\infty\}$ by $v(0) = \infty$ and for $\alpha \neq 0, v(\alpha) = n$, where $\alpha \in K$ and $\alpha = u\pi^n$, as in 3. Show that for all $\alpha, \beta \in K$:

(i)
$$v(\alpha + \beta) \ge \min\{v(\alpha), v(\beta)\}\$$

(ii)
$$v(\alpha\beta) = v(\alpha) + v(\beta)$$

Observe that $R = \{a \in K \mid v(a) \ge 0\}$

Solution:

Proof of (i):

let
$$\alpha = u_1 \pi^{n_1}, \beta = u_2 \pi^{n_2}$$

We are considering the elements as being in K, but u_1, u_2 are units in R and $\alpha, \beta \in R$

Assume that $n_1 < n_2$

$$u_1 \pi^{n_1} + u_2 \pi^{n_2} = u_3 \pi^{n_3}$$
 from 3.

Suppose that $n_3 < n_1$ (This will show a contradiction)

$$u_1 \pi^{n_1} + u_2 \pi^{n_2} = u_3 \pi^{n_3}$$

$$= \pi^{n_1}(u_1 + u_2\pi^{n_2 - n_1}) = \pi^{n_1}u_3\pi^{n_3 - n_1}$$

$$= u_1 + u_2 \pi^{n_2 - n_1} = u_3 \pi^{n_3 - n_1}$$

Note that $n_3 - n_1 < 0$

$$= u_1 + u_2 \pi^{n_2 - n_1} = u_3 \left(\pi^{n_1 - n_3} \right)^{-1}$$

The expression on the left side is an element of R from closure

This implies the right side is in R (its not)

But we need to check that $u_3 (\pi^{n_1-n_3})^{-1}$ can't be in R

If $u_3(\pi^{n_1-n_3})^{-1} \in R$, then it can be written $u_1\pi^b, b \geq 0$

$$\Rightarrow u_1 \pi^b * u_3 \left(\pi^{n_1 - n_3} \right) = 1$$

$$\Rightarrow A * u_1 \pi^b * u_3 \left(\pi^{n_1 - n_3} \right) = A$$

This contradicts the unique factorization of A in R

Because of the contradiction we can conclude that $n_3 \ge \min(n_1, n_2)$

Proof of (ii):

let
$$\alpha = u_1 \pi^{n_1}, \beta = u_2 \pi^{n_2}$$

 $\alpha \beta = u_1 \pi^{n_1} u_2 \pi^{n_2}$
 $= u_1 u_2 \pi^{n_1} \pi^{n_2} = u_1 u_2 \pi^{n_1 + n_2}$
 $= u' \pi^{n_1 + n_2}$
 $\Rightarrow v(\alpha \beta) = n_1 + n_2 = v(\alpha) + v(\beta)$

Problem 5:

Let K be a field. Suppose $v: K \to \mathbb{Z} \cup \{\infty\}$ is a function such that for all $\alpha, \beta \in K$:

(i)
$$v(\alpha) = \infty \iff \alpha = 0$$

(ii)
$$v(\alpha + \beta) \ge min\{v(\alpha), v(\beta)\}\$$

(iii)
$$v(\alpha\beta) = v(\alpha) + v(\beta)$$

Such a function is called a discrete valuation on K. We assume that v takes values other than 0 and ∞ . Set $R := \{\alpha \in K \mid v(\alpha) \geq 0\}$. Prove that R is DVR by the following steps below:

- (i) Show that $u \in R$ is a unit $\iff v(u) = 0$. Hint: First show v(1) = 0.
- (ii) Show there exist element $r \in R$, with v(r) > 0.
- (iii) Prove that if $r \in R$, and v(r) > 0, then as an element of K, $v(\frac{1}{r}) = -v(r)$.
- (iv) Suppose $c := \min\{v(r) \mid r \in R \text{ and } v(r) > 0\}$. Show that the image of v is $c\mathbb{Z}$.
- (v) Show that if $\pi \in R$ and $v(\pi) = c$, then R is a DVR with uniformizing parameter π .

Solution:

Proof of (i):

$$u \in R$$
 is a unit
 $\Rightarrow uu^{-1} = 1$
 $\Rightarrow v(u) + v(u^{-1}) = v(1) = 0$
 $u, u^{-1} \in R \Rightarrow v(u), v(u^{-1}) \ge 0$
 $\Rightarrow v(u) = 0, v(u^{-1}) = 0$

Now assume v(b) = 0 for some $b \in R$

$$b^{-1} \in K = \frac{1}{b}$$

$$\Rightarrow b * \frac{1}{b} = 1 \text{ in } K$$

$$\Rightarrow v(b) + v(\frac{1}{b}) = v(1) = 0$$

$$v(b) = 0 \Rightarrow v(\frac{1}{b}) = 0$$

$$\text{since } v(\frac{1}{b}) \ge 0, \frac{1}{b} = b^{-1} \in R$$

So b has a multiplicative inverse in $R \Rightarrow b$ is a unit

Proof of (ii):

We assumed that the function $v(\alpha)$ takes values other than 0 and ∞ , so for some

 $\alpha \in K, v(\alpha) \neq 0$. We need to show that there exists an element in R with the same property.

$$\alpha \in K, v(\alpha) = c, c \neq 0$$

if $c > 0$, then $c \in R$ by definition of R , and we are done)
if $c < 0$, then $c^{-1} \in K$
 $c * c^{-1} = 1$
 $v(c * c^{-1}) = v(1) = 0$
 $v(c) + v(c^{-1}) = 0$
 $v(c^{-1}) = -v(c)$
 $\Rightarrow v(c^{-1} > 0)$
So $c^{-1} \in R$ and we are done

Proof of (iii):

$$\begin{split} r &\in R, v(r) > 0 \\ \text{The multiplicative inverse of } r \text{ in } K \text{ is } \frac{1}{r} \\ \frac{1}{r} * r &= 1 \text{ In } K \\ \Rightarrow v(\frac{1}{r} * r) &= v(1) \\ \Rightarrow v(\frac{1}{r}) + v(r) &= 0 \\ \Rightarrow v(\frac{1}{r}) &= -v(r) \end{split}$$

Proof of (iv):

First we can show that all of the elements in the image of v are divisible by c. Then we can show that for each multiple of c, ac, with $a, c \in \mathbb{Z}$, there exists an element t s.t. v(t) = ac.

$$\exists r_0 \in R \text{ s.t. } v(r_0) = c$$

Suppose there is an element $r \in R$ s.t. $c \nmid v(r)$

$$v(r) = qc + r', 0 < r' < c \text{ or}$$

$$v(r) = q(v(r_0)) + r', 0 < r' < c$$

Consider the elements of K, r, $\frac{1}{r_0}$

let
$$b = r * \frac{1}{r_0} * \frac{1}{r_0} * \dots * \frac{1}{r_0}$$

Where there are q terms of $\frac{1}{r_0}$

$$v(b) = v(r * \frac{1}{r_0} * \frac{1}{r_0} * \dots * \frac{1}{r_0})$$

$$\Rightarrow v(b) = v(r) - v(r_0) - \dots - v(r_0)$$

$$\Rightarrow v(b) = v(r) - qv(r_0) = r'$$

$$r' > 0$$
, so $b \in R$. but $r' < c$, and $c := \min\{v(r) \mid r \in R\}$

This is a contradiction, so every number in the image of v must be divisible by c

Now we have to show that each multiple of c is in the range of v, with K as the domain.

For each value qc when $q \ge 0$:

$$r_0 * r_0 * \dots * r_0 \in K$$
 with q terms of r_0

 $v(r_0 * r_0 * ... * r_0) = q * v(r_0) = qc$, So there exists an element r in K s.t. v(r) = qc

If q < 0:

$$\frac{1}{r_0} * \frac{1}{r_0} * \dots * \frac{1}{r_0} \in K \text{ with } q \text{ terms of } \frac{1}{r_0}$$
$$v(\frac{1}{r_0} * \frac{1}{r_0} * \dots * \frac{1}{r_0}) = |q| * v(\frac{1}{r_0}) = |q| * (-v(r_0)) = q * v(r_0) = qc$$

So there exists an element $r = \frac{1}{r_0} * \frac{1}{r_0} * \dots * \frac{1}{r_0}$ in K s.t. v(r) = qc

So if an element is in $c\mathbb{Z}$, then that element is in im(v), and if an element is not in $c\mathbb{Z}$, then it is not in im(v). This proves the sets are equal.

Proof of (v): To prove that R is a DVR, we show that for each prime $p \in R$, $v(p) = v(\pi) \Rightarrow p = u\pi$. So $\langle p \rangle = \langle \pi \rangle$.

Let p be a prime in R

- $\Rightarrow p$ is irreducible, so $p = ab \Rightarrow a$ or b is a unit
- $\Rightarrow v(p) = v(a) + v(b)$ So one term on the right is nonzero

We know from part (iv) that for all $r \in R$, $c \mid v(r)$

And the image of v with R as the domain is $c\mathbb{Z}^+$

$$c \mid v(p)$$

$$\Rightarrow v(\pi) * q = v(p)$$

$$\Rightarrow v(\pi) + \dots + v(\pi) = v(p)$$

But p is irreducible, so only one of the q summands on the left is nonzero (by induction)

$$\Rightarrow v(\pi) = v(p)$$

$$\Rightarrow \pi = up$$

$$\Rightarrow \pi \mid p,p \mid \pi \Rightarrow \langle p \rangle \subseteq \langle \pi \rangle, \langle \pi \rangle \subseteq \langle p \rangle,$$

$$\Rightarrow \langle \pi \rangle = \langle p \rangle$$

So R is a DVR with uniformizing parameter p.