

DEPARTMENT OF ELECTRONICS AND ELECTRICAL COMMUNICATION ENGINEERING, IIT KHARAGPUR

Experiment 1: Sampling

 $Samyak\ Sheersh,\ Anubhav\ Mitra$

Roll Numbers: 22EC30045, 22EC30007 Group Number: 24

1 Objectives

- 1. To design FIR filters for various orders and cutoff frequencies.
- 2. To assess whether passband and stop band frequencies are attenuated by the filter designed.
- 3. To assess the response of such FIR filters to noise contaminated signals.

2 Definitions of windows and LPF

2.1 LPF

$$h_d[n] = \begin{cases} \frac{\omega_c}{\pi} & n = k\\ \frac{\sin(\omega_c(n-k))}{\pi(n-k)} & otherwise \end{cases}$$
 (1)

2.2 Rectangular Window

$$w[n] = \begin{cases} 1 & n = 0, 1, \dots, N - 1 \\ 0 & otherwise \end{cases}$$
 (2)

2.3 Triangular Window

$$w[n] = \begin{cases} 1 - 2\frac{n - \frac{N-1}{2}}{N-1} & n = 0, 1, \dots, N-1\\ 0 & otherwise \end{cases}$$
 (3)

2.4 Hanning Window

$$w[n] = \begin{cases} \frac{1}{2} - \frac{1}{2}\cos(\frac{2\pi n}{N-1}) & n = 0, 1, \dots, N-1\\ 0 & otherwise \end{cases}$$
 (4)

2.5 Hanning Window

$$w[n] = \begin{cases} 0.54 - 0.46\cos(\frac{2\pi n}{N-1}) & n = 0, 1, \dots, N-1\\ 0 & otherwise \end{cases}$$
 (5)

2.6 Blackmann Window

$$w[n] = \begin{cases} 0.42 - 0.5\cos(\frac{2\pi n}{N-1}) + 0.08\cos(\frac{4\pi n}{N-1}) & n = 0, 1, \dots, N-1\\ 0 & otherwise \end{cases}$$
 (6)

3 Observation Tables, Graphs and Diagrams

3.1 Rectangular Window

N	Transition Width (kHz)	First Side Lobe (dB)	Max Attenuation (dB)
8	2.30	-19.4	-45
64	0.25	-20.9	-51
512	0.02	-21.1	-70

Outputs of the freqz function

3.1.1 N=8

3.1.2 N=64

3.1.3 N=512

3.2 Triangular Window

N	Transition Width (kHz)	First Side Lobe (dB)	Max Attenuation (dB)
8	2.63	-20.9	-26
64	0.28	-20.6	-37
512	0.05	-20.7	-60

3

- 3.2.1 N=8
- 3.2.2 N=64
- 3.2.3 N=512
- 3.3 Hanning Window
- 3.3.1 N=8
- 3.3.2 N=64
- 3.3.3 N=512

- 3.4 Hamming Window
- 3.4.1 N=8
- 3.4.2 N=64
- 3.4.3 N=512

3.5 Blackmann Window

4 Discussion: Samyak Sheersh

1.