CH-231-A Algorithms and Data Structures ADS

Lecture 10

Dr. Kinga Lipskoch

Spring 2020

Master Method (1)

The master method applies to recurrences of the form T(n) = aT(n/b) + f(n) where $a \ge 1, b > 1$, and f is asymptotically positive.

It distinguishes 3 common cases by comparing f(n) with $n^{log_b a}$

Master Method (2)

Recurrence: T(n) = aT(n/b) + f(n)

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$ -f(n) is polynomially smaller than $n^{\log_b a}$ -, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ -f(n) is polynomially larger than $n^{\log_b a}$ and $af(n/b) \le cf(n)$ – regularity condition – for some constant c < 1, then $T(n) = \Theta(f(n))$.

Master Method Not Always Applicable

- ► There is a gap between cases 1 and 2 when f(n) is smaller than n^{log_ba} but not polynomially smaller
- ► There is a gap between cases 2 and 3 when f(n) is larger than $n^{log_b a}$ but not polynomially larger
- ▶ If the regularity condition in case 3 fails to hold or you are in one of the gaps then you cannot use the master method to solve the recurrence

Idea of the Master Theorem (1)

$$T(n) = aT(n/b) + f(n)$$

Recursion tree:
$$f(n) - f(n)$$

$$f(n/b) - f(n/b) - f(n/b) - a$$

$$f(n/b^2) - f(n/b^2) - a^2$$

$$f(n/b^2) - f(n/b^2) - a^2$$

$$f(n/b^2) - a^2$$

Idea of the Master Theorem (2)

ADS Spring 2020 6 / 16

Idea of the Master Theorem (3)

<ロ > ←□ > ←□ > ← = → ← = → へへ ○

Idea of the Master Theorem (4)

Example (1)

$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2$
 $n^{log_b a} = n^2$
 $f(n) = n$
Case 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$
Thus, $T(n) = \Theta(n^2)$.

Example (2)

$$T(n) = 4T(n/2) + n^{2}$$

$$a = 4, b = 2$$

$$n^{\log_{b} a} = n^{2}$$

$$f(n) = n^{2}$$
Case 2: $f(n) = \Theta(n^{2})$,
Thus, $T(n) = \Theta(n^{2} | g | n)$.

Example (3)

$$T(n) = 4T(n/2) + n^3$$

$$a = 4, b = 2$$

$$n^{\log_b a} = n^2$$

$$f(n) = n^3$$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$ and $4(n/2)^3 \le cn^3$ for $c = 1/2$ (regularity condition) Thus, $T(n) = \Theta(n^3)$.

Example (4)

$$T(n) = 4T(n/2) + n^2/\lg n$$

$$a = 4, b = 2$$

$$n^{\log_b a} = n^2$$

$$f(n) = n^2/\lg n$$

Master method does not apply

(for every constant $\epsilon>0$, we have $n^\epsilon=\omega(\lg n)$)

Recall: Divide & Conquer

Design paradigm:

- 1. Divide the problem (instance) into subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Recall: Merge Sort

- 1. Divide: Trivial
- 2. Conquer: Recursively sort 2 subarrays
- 3. Combine: Linear-time merge

Master Method on Merge Sort

$$n^{\log_b a} = n$$
 $f(n) = n$

Case 2:
 $f(n) = \Theta(n)$,
Thus, $T(n) = \Theta(n \lg n)$.

T(n) = 2T(n/2) + n

a = 2, b = 2

Power of a Number

- Problem:
 - ▶ Input: numbers $a \in \mathbb{R}$ and $n \in \mathbb{N}$.
 - ▶ Output: *a*ⁿ
- ► Naive algorithm:
 - $ightharpoonup T(n) = \Theta(n)$
- ► Divide & Conquer:

$$a^n = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

- ► Recurrence:
- ► $T(n) = T(n/2) + \Theta(1)$
- Solution:
 - $ightharpoonup a=1, b=2, n^{log_ba}=1, f(n)=\Theta(1)\Longrightarrow \mathsf{Case}\ 2$
 - ▶ Thus, $T(n) = \Theta(\lg n)$