MAT 271 – CÁLCULO NUMÉRICO –PER3/2021 Professor Amarísio Araújo – DMA/UFV

Solução aproximada da equação: f(x) = 0.

- \square Consideremos que a equação f(x) = 0 tem uma solução única \bar{x} em um intervalo [a,b], com a função f satisfazendo as condições do TVI em [a,b].
- \Box f é contínua em [a,b], com f(a). f(b) < 0 (f(a) e f(b) têm sinais contrários).

 \square O Método da Bisseção é um método iterativo que consiste na construção de uma sequência de aproximações $x_1, x_2, x_3, ..., x_n, ...$, para a solução \bar{x} do seguinte modo:

- Inicialmente, renomeamos o intervalo [a,b], fazendo $a=a_0$ e $b=b_0$, ou seja, o intervalo inicial de busca passa a ser denotado por $[a_0,b_0]$.
- > O primeiro termo da sequência de aproximações, x_1 , é tomado como sendo o ponto médio do intervalo $[a_0,b_0]$, isto é: $x_1=\frac{a_0+b_0}{2}$. a_0 a_0 a_0
- > Se $f(x_1) = 0$, então x_1 já seria a solução da equação (uma solução exata), e não teríamos mais o que fazer. Caso contrário:
 - i) Se $f(x_1)$. $f(a_0) < 0$, significa que a solução \bar{x} deve estar entre a_0 e x_1 . Neste caso, consideramos um novo intervalo de busca $[a_1, b_1]$ tomando: $a_1 = a_0$ e $b_1 = x_1$.

 $\overline{a_1}$ b_1

ii) Se $f(x_1)$. $f(a_0) > 0$, significa que a solução \bar{x} deve estar entre x_1 e b_0 . Neste caso, consideramos um novo intervalo de busca $[a_1, b_1]$ tomando: $a_1 = x_1$ e $b_1 = b_0$.

 $\overline{a_1}$ b_1

- > O primeiro termo da sequência de aproximações, x_1 , é tomado como sendo o ponto médio do intervalo $[a_0,b_0]$, isto é: $x_1=\frac{a_0+b_0}{2}$. a_0
- Se $f(x_1) = 0$, então x_1 já seria a solução da equação (uma solução exata), e não teríamos mais o que fazer. Caso contrário:
 - i) Se $f(x_1)$. $f(a_0) < 0$, significa que a solução \bar{x} deve estar entre a_0 e x_1 . Neste caso, consideramos um novo intervalo de busca $[a_1, b_1]$ tomando: $a_1 = a_0$ e $b_1 = x_1$.

$$\overline{a_1}$$
 b

ii) Se $f(x_1)$. $f(a_0) > 0$, significa que a solução \bar{x} deve estar entre x_1 e b_0 . Neste caso, consideramos um novo intervalo de busca $[a_1, b_1]$ tomando: $a_1 = x_1$ e $b_1 = b_0$.

$$\overline{a_1}$$
 b

Seja qual for o caso (i ou ii), teremos um novo intervalo de busca $[a_1,b_1]$, contendo a solução \bar{x} e tal que $[a_1,b_1]\subset [a_0,b_0]$ e $b_1-a_1=(b_0-a_0)/2$, isto é, o novo intervalo de busca tem como comprimento a metade do comprimento do intervalo de busca anterior.

> O segundo termo da sequência de aproximações, x_2 , é tomado, então, no novo intervalo $[a_1,b_1]$, de modo análogo ao primeiro termo, como ponto médio deste intervalo, isto é: $x_2 = \frac{a_1 + b_1}{2}$. $a_1 \qquad x_2 \qquad b_1$

- Se $f(x_2) = 0$, então x_2 já seria a solução da equação (uma solução exata), e não teríamos mais o que fazer. Caso contrário:
 - i) Se $f(x_2)$. $f(a_1) < 0$, significa que a solução \bar{x} deve estar entre a_1 e x_2 . Neste caso, consideramos um novo intervalo de busca $[a_2,b_2]$ tomando: $a_2=a_1$ e $b_2=x_2$.

$$\overline{a_2}$$
 $\overline{b_2}$

ii) Se $f(x_2)$. $f(a_1) > 0$, significa que a solução \bar{x} deve estar entre x_2 e b_1 . Neste caso, consideramos um novo intervalo de busca $[a_2, b_2]$ tomando: $a_2 = x_2$ e $b_2 = b_1$.

$$a_2$$
 b_2

Seja qual for o caso (i ou ii), teremos um novo intervalo de busca $[a_2,b_2]$, contendo a solução \bar{x} e tal que $[a_2,b_2]\subset [a_1,b_1]\subset [a_0,b_0]$ e $b_2-a_2=(b_1-a_1)/2$, isto é, o novo intervalo de busca tem como comprimento a metade do comprimento do intervalo de busca anterior.

De modo análogo, é definido o terceiro termo da sequência de aproximações, x_3 , como ponto médio do intervalo $[a_2,b_2]$, seguindo o mesmo critério dos casos anteriores para se obter o próximo intervalo de busca $[a_3,b_3]$. E, assim, o processo se repete sucessivamente, gerando uma sequência de intervalos $[a_n,b_n]$ e uma sequência de aproximações para a solução \bar{x} , dada por:

$$x_{n+1} = \frac{a_n + b_n}{2}$$
 (n = 0,1,2,...).

$$f(a_n).f(b_n) < 0$$

- Cada intervalo $[a_i, b_i]$ da sequência contém uma aproximação x_{i+1} , e o intervalo seguinte $[a_{i+1}, b_{i+1}], i = 0, 1, 2, ...,$ é obtido seguindo o critério (teste):
 - i) Se $f(x_{i+1}).f(a_i) < 0$, então: $a_{i+1} = a_i$ e $b_{i+1} = x_{i+1}$.
 - ii) Se $f(x_{i+1}).f(a_i) > 0$, então: $a_{i+1} = x_{i+1}$ e $b_{i+1} = b_i$.

$$a_i \qquad x_{i+1} \qquad b_i$$
 $a_{i+1} \qquad b_{i+1}$

$$\overline{a_{i+1}}$$
 b_{i+1}

- $\ \, \square \ \, [a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\ldots\supset [a_n,b_n]\ldots$
- $\Box b_n a_n = \frac{b_{n-1} a_{n-1}}{2}$

$$b_n - a_n = \frac{b_0 - a_0}{2^n}$$

CONVERGÊNCIA DO MÉTODO DA BISSEÇÃO

A sequência (x_n) de aproximações criada pelo Método da Bisseção converge para a solução \bar{x} da equação f(x)=0. Por isso, dizemos que ele é um método convergente. Vejamos porque isso ocorre:

Mostremos que a sequência (x_n) converge

(i) Da sequência de intervalos $[a_n, b_n]$ criada pelo método, temos duas sequências (a_n) , (b_n) .

(ii) Como $[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\ldots\supset [a_n,b_n]\ldots$, tem-se que $a_n\leq a_{n+1}$ e $b_n\geq b_{n+1}$, para todo $n=0,1,2,\ldots$, ou seja, (a_n) é monótona não-decrescente, e (b_n) é monótona não-crescente.

(iii) Além disso: $a_0 \le a_n \le b_0$ e $a_0 \le b_n \le b_0$, ou seja, (a_n) e (b_n) são sequências limitadas

(iv) De (ii) e (iii), concluímos que (a_n) e (b_n) convergem.

CONVERGÊNCIA DO MÉTODO DA BISSEÇÃO

(v) De
$$b_n-a_n=\frac{b_0-a_0}{2^n}$$
, tem-se que $\lim_{n\to\infty}(b_n-a_n)=0$. E, como (a_n) e (b_n) convergem, segue que $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=r$, $r\in\mathbb{R}$.

(vi) De
$$x_{n+1}=\frac{a_n+b_n}{2}$$
, segue, então que $\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}\frac{a_n+b_n}{2}=\frac{r+r}{2}=r$, ou seja: $\lim_{n\to\infty}x_n=r$.

(vii) Portanto, acabamos de mostrar que a sequência (x_n) converge para r. Só falta mostrar que $r=\bar{x}$.

Mostremos, agora, que $\lim_{n\to\infty} x_n = \bar{x}$:

- (i) Lembremos, inicialmente, que a_n e b_n são tais que $f(a_n)$. $f(b_n) < 0$.
- (ii) Como f é contínua e a_n e b_n são convergentes, tem-se que $f(a_n)$ e $f(b_n)$ também são sequências convergentes e $\lim_{n\to\infty} f(a_n). f(b_n) \le 0$.

CONVERGÊNCIA DO MÉTODO DA BISSEÇÃO

(iii) O fato de
$$f$$
 ser contínua também garante que $f\left(\lim_{n\to\infty}a_n\right).f\left(\lim_{n\to\infty}b_n\right)\leq 0.$

- (iv) Como $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = r$, tem-se que f(r). $f(r) \le 0$, ou seja: $[f(r)]^2 \le 0$.
- (v) Como $f(r) \in \mathbb{R}$, podemos garantir que f(r) = 0, ou seja: r é solução da equação f(x) = 0.
- (vi) Mas \bar{x} é a solução única da equação f(x)=0. Logo $r=\bar{x}$.

A sequência de aproximações de \bar{x} construída pelo Método da Bisseção converge para \bar{x} .

CRITÉRIO DE PARADA DO MÉTODO DA BISSEÇÃO

Como o método da bisseção estabelece uma sequência de aproximações para a solução \bar{x} da equação f(x)=0, é preciso estabelecer um critério de parada do método, isto é, em qual termo da sequência podemos parar e considerá-lo como uma boa aproximação de \bar{x} . Na verdade, isso será feito em todos os métodos iterativos que veremos no curso.

Lembremos que a cada intervalo $[a_n,b_n]$ temos uma aproximação $x_{n+1}, n=0,1,2,...$ Portanto, o que queremos saber é: para qual valor de n, o termo x_{n+1} é uma boa aproximação da solução \bar{x} . Como "boa aproximação", o que se quer dizer é uma aproximação que, comparada ao valor exato \bar{x} , corresponda a um erro suficientemente pequeno (que atenda a uma dada precisão).

Consideraremos dois tipos de erros entre a solução exata \bar{x} e uma aproximação x_{n+1} :

Erro absoluto: $E_{abs} = |\bar{x} - x_{n+1}|$

Erro relativo:
$$E_{rel} = \frac{|\bar{x} - x_{n+1}|}{|\bar{x}|}$$

CRITÉRIO DE PARADA DO MÉTODO DA BISSEÇÃO

Erro absoluto:
$$E_{abs} = |\bar{x} - x_{n+1}|$$

Erro relativo:
$$E_{rel} = \frac{|\bar{x} - x_{n+1}|}{|\bar{x}|}$$

Como a solução \bar{x} , presume-se, é desconhecida (por isso, um método numérico para obtê-la de forma aproximada), é necessário ter uma ideia do erro (absoluto ou relativo) sem usar \bar{x} .

Observe que
$$a_n \le \bar{x} \le b_n$$
. Logo $|\bar{x} - x_{n+1}| \le |x_{n+1} - x_n|$.

$$a_n \qquad x_{n+1} \qquad b_n$$

$$x_n = a_n \text{ ou } x_n = b_n$$

Assim, no critério de parada, ao invés de usarmos o erro entre a solução exata \bar{x} e uma aproximação, usaremos o erro entre duas aproximações consecutivas x_n e x_{n+1} .

CRITÉRIO DE PARADA DO MÉTODO DA BISSEÇÃO

O CRITÉRIO DE PARADA DO MÉTODO DA BISSEÇÃO FICA ASSIM: Se o erro (absoluto ou relativo) entre dois termos consecutivos, x_n e x_{n+1} for menor que um dado ε ($\varepsilon > 0$), então para-se o método e x_{n+1} é o valor aproximado de \bar{x} ($\bar{x} \approx x_{n+1}$), com erro (absoluto ou relativo) menor que ε .

Usando o erro absoluto:

Se $|x_{n+1}-x_n|<\varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro absoluto menor que ε .

Usando o erro relativo:

Se $\frac{|x_{n+1}-x_n|}{|x_{n+1}|} < \varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro relativo menor que ε .

O número ε é um indicador de precisão do método e, nos métodos aqui trabalhados, será tomado como uma potência inteira negativa de 10, ou seja: $\varepsilon=10^{-k}$, $k\varepsilon\mathbb{N}$ ($\varepsilon=0.1$; $\varepsilon=0.01$; $\varepsilon=0.001$...) (tão pequeno quanto seja necessário, dependendo da natureza do problema).

EXEMPLO

Solução aproximada da equação $x^3 + cos x = 0$.

Como vimos em aula anterior, esta equação possui uma única solução \bar{x} no intervalo [-1,0], sendo a função $f(x)=x^3+cosx$ contínua em [-1,0], com f(-1)=-0.45469<0 e f(0)=1>0. Vamos usar o método da bisseção para encontrar uma aproximação de \bar{x} , com erro absoluto menor que $\varepsilon=0.1$.

RESOLVENDO O EXEMPLO

$$f(x) = x^3 + \cos x$$
, $f(-1) = -0.45469 < 0$ e $f(0) = 1 > 0$.

ATENÇÃO: CALCULADORA EM RADIANOS!!

Temos:
$$a_0 = -1$$
 e $b_0 = 0$. Então $x_1 = \frac{-1+0}{2} = -0.5$.

Decidindo sobre o novo intervalo de busca: $f(x_1) = f(-0.5) = 0.7525 > 0$, sinal contrário de $f(a_0) = f(-1) < 0$. Logo: $a_1 = a_0 = -1$ e : $b_1 = x_1 = -0.5$.

Temos:
$$a_1 = -1$$
 e $b_1 = -0.5$. Então $x_2 = \frac{-1 - 0.5}{2} = -0.75$.

$$|x_2 - x_1| = 0.25 > 0.1$$

Decidindo sobre o novo intervalo de busca: $f(x_2) = f(-0.75) = 0.3098 > 0$, sinal contrário de $f(a_1) = f(-1) < 0$. Logo: $a_2 = a_1 = -1$ e : $b_2 = x_2 = -0.75$.

Temos:
$$a_2 = -1$$
 e $b_2 = -0.75$. Então $x_3 = \frac{-1 - 0.75}{2} = -0.875$.

$$|x_3 - x_2| = 0.125 > 0.1$$

Decidindo sobre o novo intervalo de busca: $f(x_3) = f(-0.875) = -0.0289 < 0$, mesmo sinal de $f(a_2) = f(-1) < 0$. Logo: $a_3 = x_3 = -0.875$ e : $b_3 = b_2 = -0.75$.

RESOLVENDO O EXEMPLO

Temos:
$$a_3 = -0.875$$
 e $b_3 = -0.75$. Então $x_4 = \frac{-0.875 - 0.75}{2} = -0.8125$. $|x_4 - x_3| = 0.0625 < 0.1$

$$|x_4 - x_3| = 0.0625 < 0.1$$

Portanto $\bar{x} \approx x_4 = -0.8125$, com erro absoluto menor que $\varepsilon = 0.1$