MASTER_MIX

350 nL in each well

Source

Destination

[60 μ L in each well]

H_2O

25, 50, 75 or 125 nL in different wells

Source

Destination

[$60 \mu L$ in each well]

25 nL (J2–J7, J9–J14, J18–J21, K22–K24, L22–L24, N22–N24, O22–O24, A1, A8, A15, D1, D8, D15, G1, G8, G15, K1, K8, K15, N1, N8, N15)

50 nL (B2-B7, B9-B14, B18-B21, E2-E7, E9-E14, E18-E21, H2-H7, H9-H14, H18-H21, L2-L7, L9-L14, L18-L21, O2-O7, O9-O14, O18-O21, M23, P23, J1, J8, J15)

75 nL (C2-C7, C9-C14, C18-C21, F2-F7, F9-F14, F18-F21, I2-I7, I9-I14, I18-I21, M2-M7, M9-M14, M18-M21, P2-P7, P9-P14, P18-P21, B1, B8, B15, E1, E8, E15, H1, H8, H15, L1, L8, L15, O1, O8, O15) **100 nL** (C1, C8, C15, F1, F8, F15, I1, I8, I15, M1, M8, M15, P1, P8, P15)

RNA

25 nL in each well

J1-J21, K22-24, L22-L24, M23, N22-N24, O22-O24, P23 = RNA- CONTROLS

Destination

Source

4 μg/μL [L1] - 400 ng/μL [L2] - 40 ng/μL [L3] - 4 ng/μL [L4] - 400 pg/μL [L5] [20 μL in each well]

100 ng [A1-I7] - 10 ng [A8-I14] - 1 ng [A16-I21] - 100 pg [K1-M21] - 10 pg [N1-P21]

RT_PRIMERS

25 nL in each well

Source

Destination

10 μ M [K1] – 20 μ M [K2] – 40 μ M [K3] – 80 μ M [K4] – 160 μ M [K5] – 240 μ M [K6] [20 μ L in each well]

0.5 μM [col.2,9,16,K22,N22] **– 1** μM [col. 3,10,17,K23,N23] **– 2** μM [col.4,11,18,K24, N24] **– 4** μM [col.5,12,19,L22, O22] **– 8** μM [col. 6,13,20,L23,O23] **– 12** μM [col. 7,14,21,L24, O24]

TSO (barcodes 1-70)

25, 50, or 100 nL (1, 2 or 4 drops)

A1-A7, D1-D7, G1-G7, J1-J21 → 4 drops B1-B7, E1-E7, H1-H7 → 2 drops C1-C7, F1-F7, I1-I7 → 1 drop

(K22-K24, L22-L24, M23 → 4 drops N22-N24, O22-O24, P23 → 4 drops...)

Source

Destination

600 μM (rows A,B,C) **400** μM (rows D,E,F) **50** μM (rows G,H,I,J) **[20** μL in each well] **120** μM (A1–A21, K1–K7, N1–N7) – **60** μM (B1–B21, L–1–L7, O1–O7) – **30** μM (C1–C21, M1–M7, P1–P7) – **80** μM (D1–D21, K8–K14, N8–N14, J1–J21, K22–K24, L22–L24, M23, N22–N24, O22–O24, P23) – **40** μM (E1–E21, L8–L14, O8–O14) – **20** μM (F1–F21, M8–M14, P8–P14) – **10** μM (G1–G21, K15–K21, N15–N21) – **5** μM (H1–H21, L15–L21, O15–O21) – **2.5** μM (I1–I21, M15–M21, P1–P21)

MASTER_MIX PREPARATION (SSIII, nanoCAGE)

Reagent	Volume for 1 reaction (nL)	Stock conc.	Final conc.	Master_Mix for 384 reactions (201,25 μL)
Sorbitol/ Trehalose	40	0,66 M/3,3 M	0,0528M/0,264M	23
SuperScript III Reaction Buffer	100	5x	1x	57,5
DTT	50	0,1 M	0,01 M	28,75
dNTPs	31,25	10 mM	0,625 mM	17,97
Betain	75	5 M	0,75 M	43,13
SuperScript III	50	200 U/μL	20 U/uL	28,75
H ₂ O	3,75	-	-	2,16
TOTAL	350			201,25

(65 - 15) / 350 = 142 destination wells filled per source well

 \rightarrow 3x 65 μ L wells required to effectively fill 384 wells

MASTER_MIX PREPARATION (SSIV, manufacturer)

Reagent	Volume for 1 reaction (nL)	Stock conc.	Final conc.	Master_Mix for 384 reactions (201,25 μL)
Sorbitol/ Trehalose	40	0,66 M/3,3 M	0,0528M/0,264M	23
SuperScript IV Reaction Buffer	100	5x	1x	57,5
DTT	25	0,1 M	0,005 M	14,375
dNTPs	31,25	10 mM	0,625 mM	17,97
Betain	75	5 M	0,75 M	43,13
SuperScript IV	25	200 U/μL	10 U/uL	14,375
H ₂ O	53,75	-	-	30,90625
TOTAL	350			201,25

(65 - 15) / 350 = 142 destination wells filled per source well

 \rightarrow 3x 65 μ L wells required to effectively fill 384 wells

		Random primer concentration (μM)						
		0	0,5	1	2	4	8	16
TSO	160	no_RT_PRIMERS	320,000	160,000	80,000	40,000	20,000	10,000
concentration -	80	no_RT_PRIMERS	160,000	80,000	40,000	20,000	10,000	5,000
	40	no_RT_PRIMERS	80,000	40,000	20,000	10,000	5,000	2,500
	60	no_RT_PRIMERS	120,000	60,000	30,000	15,000	7,500	3,750
	30	no_RT_PRIMERS	60,000	30,000	15,000	7,500	3,750	1,875
	20	no_RT_PRIMERS	40,000	20,000	10,000	5,000	2,500	1,250
	10	no_RT_PRIMERS	20,000	10,000	5,000	2,500	1,250	0,625
	5	no_RT_PRIMERS	10,000	5,000	2,500	1,250	0,625	0,313
	2,5	no_RT_PRIMERS	5,000	2,500	1,250	0,625	0,313	0,156
(μM)	10	no_RT_PRIMERS	20,000	10,000	5,000	2,500	1,250	0,625

close to sc-nanoCAGE conditions

nanoCAGE conditions

no RNA

no RT primers

RT REACTION

- ABI 7900 HT qPCR system used for the RT
- RT conditions SSIII (nanoCAGE):
 - 22°C, 10 min.
 - 50°C, 30 min.
 - 70°C, 15 min.
 - 4°C, Hold
- RT conditions SSIV (manufacturer):
 - 23°C, 10 min.
 - 50°C, 10 min.
 - -80°C, 10 min.
 - 4°C, Hold

RT SAMPLES PURIFICATION

- 5 µL of water added in 7 wells, then RT products from 70 wells were collected (5 RNA concentration tested)
- 2x AMPure XP purification: 1.2x
- Elutions in 30 μ L and 20 μ L H₂O

qPCR

- Kapa Sybr Fast kit
- StepOne qPCR system
- Purified cDNA samples analysed in triplicates

CDNA PCR

- Kapa HiFi Hot Start
- amplification cycles for each sample
- AMPure XP purification: 1x
- Elution in 20 μ L H₂O
- Picogreen quantitation and BioAnalyzer HS DNA chip