Faculty of Engineering & Technology Second Semester B.E. (C.B.S.) Examination APPLIED MATHEMATICS—II Paper—I

Time—Three Hours]

MIS-50630

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

Attempt SIX questions as follows:

Que. No. 1 OR Que. No. 2

Que. No. 3 OR Que. No. 4

Que. No. 5 OR Que. No. 6

rtmnuonline.com Que. No. 7 OR Que. No. 8

Que. No. 9 OR Que. No. 10

Que. No. 11 OR Que. No. 12

- Figures to the right indicate full marks.
- Use of non-programmable calculator is permitted.
- 1. (a) If B(n, 3) = $\frac{1}{3}$ and n is Positive Integer, find n. 5
 - Using differentiation under Integral sign, evaluate

$$\int_{0}^{\infty} \frac{\tan^{-1} ax}{x(1+x^{2})} dx$$
. rtmnuonline.com

OR

A rod of length 'a' is divided at random into two parts. Find the mean value of the sum of the squares of these two segments.

rtmnuonline.com

- Evaluate $\int (x \log x)^3 dx$. 6
- Trace the curve $9ay^2 = (x 2a) (x 5a)^2$. 6
 - Find the area of the loop of the curve $av^2 = x^2(a - x).$

OR

4. (a) If S is the arc of the curve $y^2 = x \left(1 - \frac{x}{3}\right)^2$ measured from the origin to the point (x, y). Show that

$$S^2 = y^2 + \frac{4}{3}x^2$$

- Find the volume of the solid generated by revolution of the curve $y = \frac{a^3}{a^2 + x^2}$ about its asymptote. 6
- 5. (a) Evaluate $\iint e^{2x+3y} dxdy$, over the triangle bounded by x = 0, y = 0 and x + y = 1.
 - (b) Evaluate $\iint \frac{\cos y}{\sqrt{(a-x)(a-y)}} dydx$ by changing the order of integration.
 - (c) Evaluate $\iint (a^2 x^2 y^2) dxdy$, over the semicircle $x^2 + y^2 = ax$ in the Positive quadrant by changing into Polar co-ordinates. rtmnuonline.com

OR

237

6

- 6. (a) Evaluate $\iint r \sin \theta \, dr d\theta$ over the cardioid $r = a(1 + \cos \theta)$ above the initial line.
 - (b) Find the mass of the area between $y = x^3$ and $x = y^2$ if $\rho = k(x^2 + y^2)$.
 - (c) Evaluate $\int_{-1}^{1} \int_{0}^{2} \int_{x-2}^{x+2} (x+y+z) dy dx dz$. 6
- 7. (a) Show that a vector $\overline{d} = x\overline{a} + y\overline{b} + z\overline{c}$, where x, y, z are Scalars can be expressed in the form

$$\overline{d} = \frac{[\overline{d}\,\overline{b}\,\overline{c}\,]\overline{a} + [\overline{d}\,\overline{c}\,\overline{a}\,]\overline{b} + [\overline{d}\,\overline{a}\,\overline{b}\,]\overline{c}}{[\overline{a}\,\overline{b}\,\overline{c}\,]}$$

where $\left[\overline{a}\ \overline{b}\ \overline{c}\right] \neq 0$.

- (b) The position vector of a point at time t is given by $\overline{r} = e^t (\cos t \ i + \sin t \ j)$. Show that $\overline{a} = 2(\overline{v} \overline{r})$, where \overline{a} , \overline{v} are acceleration and velocity of a Particle. rtmnuonline.com
- (c) Find the angle between the tangents to the curve $y = x^2$, $z = x^3$ at (1, 1, 1) and (-1, 1, -1).

OR

8. (a) Prove that:

$$(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [\overline{a} \, \overline{c} \, \overline{d}] \overline{b} - [\overline{b} \, \overline{c} \, \overline{d}] \overline{a}$$
.

238

(b) Find the directional derivative of $\phi = 4 e^{2x - y + z}$ at the point (1, 1, -1) in the direction towards the point (-3, 5, 6). rtmnuonline.com 7

rtmnuonline.com

- (c) Show that $\overline{F} = (x^2 yz)i + (y^2 xz)j + (z^2 xy)k$ is irrotational. Also find its Scalar Potential.
- 9. Using the line integral, compute the work done by the force $\overline{F} = (2y + 3)i + xzj + (yz x)k$ when it moves a particle from the point (0, 0, 0) to the point (2, 1, 1, 0) along the curve $x = 2t^2$, y = t, $z = t^3$.

OR

10. Use Divergence theorem to evaluate $\iint\limits_{S}\overline{F}\cdot\hat{n}\ ds$ where

 $\overline{F} = 4xi - 2y^2j + z^2k$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0, z = 3.

11. (a) Fit a curve of the form $y = a e^{bx}$ to the following data:

x	1	2	3	4	5	6
у	14	-27	40	55	68	300

b) Obtain the function whose first difference is

$$x^3 + 3x^2 + 5x + 12$$
.

OR

12. (a) Obtain the rank correlation coefficient for the following data:

x	25	28	39	25	24	30	48	45	38	25
у	44	34	28	32	34	29	35	42	24	30

rtmnuonline.com

(b) Solve $(E^2 - 5E + 6)$ $y_n = 4^n (n^2 - n + 5)$.