Zadanie 1

Ciężarek połączony sprężyną o współczynniku sprężystości k_1 wykonuje drgania o częstości ω_1 . Jaka będzie częstość drgań ω po podłączeniu sprężyny o współczynniku sprężystości k_2 (patrz rysunek)?

Zadanie 2

Walec o wysokości ℓ_0 i polu podstawy S pływa na powierzchni cieczy o gęstości ρ . W stanie równowagi (patrz rysunek) zanurzony jest na wysokości ℓ . Walec popchnięto w dół i zaczął wykonywać drgania. Wykazać, że są to drgania harmoniczne i obliczyć częstość drgań.

Zadanie 3

Deska o masie m leży (symetrycznie) na dwóch obracających się w przeciwnych kierunkach walcach. Między deską, a walcami występuje tarcie o współczynniku f. W pewnej chwili deska została wysunięta z położenia równowagi. Znaleźć częstość drgań deski.

Zadanie 4

Wahadło matematyczne: wyprowadzić częstość drgań ω wahadła matematycznego przy założeniu małego kąta wychylenia α z pozycji równowagi, przyjmij, że wahadło znajduje się w polu o przyśpieszeniu g, a długość wahadła wynosi ℓ .

Zadanie 5

Wahadło o długości ℓ z ciężarkiem o masie m zostało powieszone w środku samochodu. W chwili początkowej ciężarek znajdował się w spoczynku. W pewnej chwili samochód poruszał się z przyśpieszeniem a a następnie zatrzymał się. Zakładając, że nić wahadła wytrzyma obciążenie związane z przyśpieszeniem, stosując przybliżenie małego kąta, znajdź zależność między amplitudą drgań θ_0 , a przyśpieszeniem a, g.

Zadanie 6

Znaleźć sprężynę zastępczą następującego układu:

