

Fast synthetic-CT-free dose calculation in MRgRT: A proof-of-concept study in prostate cases

AAPM 2025 | Washington, DC | 30.07.2025

<u>Fan Xiao</u>¹, Domagoj Radonic¹, Niklas Wahl^{2,3}, Ahmad Neishabouri^{3,4}, Nikolaos Delopoulos¹, Adrian Thummerer¹, Stefanie Corradini¹, Claus Belka¹, George Dedes^{1,5}, Christopher Kurz¹, and Guillaume Landry¹

- 1. Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- 2. Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 3. National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- 4. Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 5. Department of Medical Physics, LMU Munich, Munich, Germany

MR-guided online adaptive photon radiotherapy

- MR-Linac
 - High soft-tissue contrast of MR images
 - No additional radiation from MR scanning
 - Online-replanning due to daily geometry changes
- Online adaptive MR-guided radiotherapy workflow^[1]

Al synthetic CT (sCT) generation

- Deep learning (DL)-based sCT methods for dose calculation
 - MRI has no tissue attenuation information required for accurate dose calculations
 - Convert MRI to CT-equivalent images:
 - Convolutional neural networks (CNNs)
 - Generative adversarial networks (GANs)
 - Transformers/Diffusion models
 - SynthRAD2023 Challenge Report [2]:
 - Gamma pass rates (2%/2mm) > 98% for full photon plans
 - sCT generation time per patient > 2 mins (4.0±4.8 GB GPU)
 - sCT studies in 2025^{[3][4]}:
 - sCT generation time per patient: 1-2 min
 - Limitations for real-time plan adaptation

^[2] Huijben EMC. Generating synthetic computed tomography for radiotherapy: SynthRAD2023 challenge report. Med Image Anal. 2024

^[3] Vellini L. A deep learning algorithm to generate synthetic computed tomography images for brain treatments from 0.35 T magnetic resonance imaging. *Physics and Imaging in Radiation Oncology*. 2025

^[4] Tulip R. Synthetic Computed Tomography generation using deep-learning for female pelvic radiotherapy planning. Physics and Imaging in Radiation Oncology. 2025

Al dose calculation on CT

- DL-based dose calculation for acceleration^{[5][6]}
 - Millisecond speed (~10ms) with accuracy close to Monte Carlo (MC) simulation
 - Models focus on the individual beamlet from Beam's Eye View (BEV)
 - Treat the extracted 3D cuboid as a sequence of 2D slices traveling from upstream to downstream

- [5] Neishabouri A, Long short-term memory networks for proton dose calculation in highly heterogeneous tissues. Med Phys. 2021.
- [6] Pastor-Serrano O. Sub-second photon dose prediction via transformer neural networks. Med Phys. 2023.

AI dose calculation directly on MRI?

Challenges

- Consistency between CT and MRI
- Low signal areas for soft tissues in MRI

Methods & Materials

- Patient data (from the 0.35 T MR-Linac at LMU Hospital)
 - 34 prostate cancer patients
 - Train: validation: test = 20:4:10
 - MR-CT pairs
 - 0.35 T planning MRI & deformed planning CT (dCT) registered to MRI
 - Deformable registration via an intensity-based algorithm from ViewRay TPS^[7]
 - Voxel size: 1.5x1.5x1.5 mm³
- Air cavity (AC) correction
 - Fill original ACs in dCT (threshold < -300 HU)
 - Manually AC contour on MRI (red box area)
 - Insert contoured AC mask into filled dCT
 - Assigned AC values: -700 HU^[8]
 - Corrected dCT for dose simulation.

Methods & Materials

- MC simulation (Geant4 v11.0)
 - Simulation setup:
 - B field: 0.35 T
 - Idealized parallel photon beam (a plane source from G4 GPS)
 - Uniform square field size: 1×1 cm²
 - Energy spectrum: ELEKTA PRECISE 6MV (from IAEA website)
 - Source axis distance: 100 cm
 - Simulation on prostate corrected dCT
 - Train: 10800 beams for 20 patients (5M photons/beam)
 - Validation: 2160 beams for 4 patients (50M photons/beam)
 - Test (50M photons/beam):
 - 1080 beams (through PTV) for 10 patients
 - Two 9-field intensity-modulated plans
 - Each field (9×9 cm²): 81 parallel beams (1×1 cm²)
 - Beam weights optimized by open-source toolkit pyRadPlan^[9]

gantry angles 0°-350° (Δ10°) with varied isocenters

An optimized 9-field plan using 1x1 cm² beams

Methods & Materials

BEV Cuboid extraction

3D dose/MR/AC cuboids

Cuboid size: 32×32×200

Voxel size: 2×2×2 mm³

DL Models:

LSTM: MR + Manual AC -> dose

3D Unet: MR -> predicted AC

Training parameters:

Loss:

LSTM: MSE (Mean Square Error) +10*AC*MSE

Unet: BCE (Binary Cross Entropy)

Optimizer: Adam, leaning rate: 10⁻⁵

Training time: two days (RTX A6000 GPU, 48 GB)

Results

Total 2%/2mm γ _{pr}	2%/2mm γ _{pr} , dose through AC	DSC
(mean±SD, min)	(mean±SD, min)	(mean±SD)
99.68±0.87 (91.93)	99.66±0.91 (94.45)	0.62±0.20

Results

9-field plan results

Results

- Tested on an Intel(R) Xeon(R) Gold 6354 3.00 GHz CPU and an NVIDIA RTX A6000 GPU
- GPU cost: 2GB

Model	Averaged inference time/beam (ms)
LSTM	7
Unet	5
Total	12

Conclusion

DL-based photon dose calculation directly on 0.35T MRI is feasible in prostate cases

Outlook

- Incorporate MLC modelling into MC simulation
- Compare AI dose calculation methods with synthetic CT methods
- More challenging treatment sites, e.g., lung

Thank you for your attention!

Contact: Fan.Xiao@med.uni-muenchen.de