PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-174820

(43) Date of publication of application: 13.07.1993

(51)Int.CI.

H01M 4/58 H01M 4/02

H01M 10/40

(21)Application number: 03-338959

(71)Applicant: FUJI PHOTO FILM CO LTD

(22)Date of filing:

20.12.1991

(72)Inventor: YASUNAMI SHOICHIRO

KAGAWA OKIMASA MAEKAWA YUKIO

(54) ORGANIC ELECTROLYTIC SOLUTION SECONDARY BATTERY

(57)Abstract:

PURPOSE: To provide an organic electrolytic solution secondary battery with high charge and discharge capacities and with excellent charge and discharge characteristics.

CONSTITUTION: A secondary battery comprises at least a positive electrode consisting of Liincluded transition metal chalcogenide, a negative electrode and organic electrolyte. The negative electrode comprises a low graphitization carbon material which, in X-ray diffraction, has crystal thickness Lc of 8-150Å in C axis direction, face-to-face distance d002 of a 002 face of 3.42-3.65Å and true density ρ (g/cm3) of 1.60-2.20, and mixture of fine carbon grains and/or fine carbon fiber.

LEGAL STATUS

[Date of request for examination]

20.04.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3239302

[Date of registration]

12.10.2001

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-174820

(43)公開日 平成5年(1993)7月13日

(51)Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
H 0 1 M	4/58				
	4/02	D			
	10/40	Z			

審査請求 未請求 請求項の数8(全12頁)

(21)出願番号	特願平3-338959	(71)出願人	000005201
			富士写真フイルム株式会社
(22)出願日	平成3年(1991)12月20日		神奈川県南足柄市中沼210番地
		(72)発明者	安波 昭一郎
			神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内
		(72)発明者	香川 興勝
			神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内
		(72)発明者	前川 幸雄
			神奈川県南足柄市中沼210番地 富士写真
			フイルム株式会社内

(54) 【発明の名称 】 有機電解液二次電池

(57)【要約】

【目的】 充放電容量が高く、充放電サイクル特性に優れた有機電解液二次電池を得る。

【構成】 少なくともLi含有遷移金属カルコゲナイドからなる正極、負極、および有機電解質からなる二次電池であって、負極として、X線回折におけるC軸方向の結晶厚みLcが8~150Å、002面の面間隔 d_{002} が3. 42~3. 65Åでかつ真密度 ρ (g/cm³)の値が1. 60~2. 20である低黒鉛化炭素質物と微細カーボン粒子及び/または微細カーボン繊維とを混合して用いる事を特徴とする有機電解液二次電池。

【特許請求の範囲】

【請求項1】 少なくともLi含有遷移金属カルコゲナイドからなる正極、負極、および有機電解質からなる二次電池であって、負極として、X線回折におけるC軸方向の結晶厚みLcが8~150Å、002面の面間隔d002 が3、42~3、65Åでかつ真密度 ρ (g/cm 3) の値が1、60~2、20である低黒鉛化炭素質物と微細カーボン粒子及び/または微細カーボン繊維とを混合して用いる事を特徴とする有機電解液二次電池。

【請求項2】 該低黒鉛化炭素質物がポリアクリロニト 10 リル系焼成体であることを特徴とする請求項1に記載の 有機電解液二次電池。

【請求項3】 該低黒鉛化炭素質物が石炭系コークスであることを特徴とする請求項1に記載の有機電解液二次電池。

【請求項4】 該低黒鉛化炭素質物がメソフェーズビッチ焼成体であることを特徴とする請求項1に記載の有機電解液二次電池。

【請求項5】 該微細カーボン粒子がカーボンブラック または微粒子黒鉛であることを特徴とする請求項1に記 20 載の有機電解液二次電池。

【請求項6】 該微細カーボン繊維が微細繊維状黒鉛であることを特徴とする請求項1に記載の有機電解液二次電池。

【請求項7】 該Li 含有遷移金属カルコゲナイドがLi。Co。V。O。であることを特徴とする請求項1に記載の有機電解液二次電池。(式中、a=0. $1\sim1$. b=0. $15\sim0$. 9、c=1-b、 $d=2\sim2$. 5)

【請求項8】 該Li含有遷移金属カルコゲナイドがLi。Co, Ni。O, であることを特徴とする請求項1 に記載の有機電解液二次電池。(式中、e=0.1~1.1、f=0.15~0.9、g=1-f、h=2~2.5)

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、充放電容量が高く、充放電サイクル特性に優れた二次電池、特にリチウム二次電池に関するものである。

[0002]

【従来の技術】リチウム二次電池は負極活物質としてリチウム金属を用いると、充放電の繰り返しにより充電時に活性の高い樹枝状のリチウム金属(デンドライト)や苔状のリチウム金属(モス)が生成し、それが直接またはそれが脱落して間接的に正極活物質と接触して内部短絡を起こすことがあり、サイクル特性が低いのみでなく、発火等取扱上きわめて大きな危険を有している。その対策として、リチウム合金(A1、A1-Mn(US-4,820,599)、A1-Mg(特開昭57-98977)、A1-Sn(特開昭63-6,742)、

2

Al-In、Al-Cd (特開平1-144, 57 3))を用いる方法が提案されているが、リチウム金属 を用いているので内部短絡防止に対する本質的な解決に なっていない。近年、リチウム金属を用いない方法とし て、リチウムイオンまたはリチウム金属を吸蔵・放出で きる炭素質化合物を用いる方法が提案されている。炭素 質材料は、非晶質部分と結晶性部分とをともに有する低 黒鉛化炭素と、種々の低黒鉛化炭素を2500℃以上の 高温で加熱処理することでほとんど非晶質部分を有さな いようにした高黒鉛化炭素とに大別できるが、この両者 は物性・性質等において大きく異なり、全く別の材料と して扱われている(稲垣道夫著、炭素材料工学、日刊工 業新聞社出版(1985年))。また、これらの炭素質 材料は天然に産するかあるいは種々の有機化合物を加熱 焼成処理して得られることもよく知られたことである。 【0003】高黒鉛化炭素は本来、充放電容量が高いと とが知られているが (フィジカルレビューB、42巻、 6424頁(1990))、負極活物質として用いた場 合、充電初期に充放電に必要なLiの量よりさらに多く の量の不可逆な容量損失、いわゆるエクスホリエーショ ンを示すことが知られており(ジャーナルオブエレクト ロケミカル ソサイエティ、137巻、2009頁(1 990))、この容量損失分、正極に過剰な容量を有さ せねばならず、高い充放電容量を得ることができないと いう問題がある。この容量損失を防止する方法として₩ ○90/13,924に、黒鉛化度の高い炭素質物と黒 鉛化度の低い炭素質物を混合して用いる方法が提案され ているが、黒鉛化度の高い炭素質物を用いることに何ら 変わりなく、上記の容量損失を本質的に解決しうるもの 30 ではない。一方、低黒鉛化炭素を負極に用いた提案が数 多くなされている(特開昭58-93,176、同58 -209,864、同61-214,417、同62-88, 269、同62-90, 863、同62-12 2,066、同62-216,170、同63-13, 282、同63-24,555、同63-121,24 7、同63-121, 257、同63-155, 56 8、同63-276,873、同63-314,82 1、特開平1-204, 361、同1-221, 85 9、同2-82、466、同2-155、168、同2 $40 - 230, 660, \boxed{61 - 274, 360, \boxed{62 - 28}}$ 4, 354、同3-122, 974など)が、低黒鉛化 炭素は高黒鉛化炭素に見られる充電初期の容量損失は著 しく小さくなるものの、良好なサイクル特性を得ること が難しい。

【0004】以上のように、充放電容量損失低減、充放電サイクル特性改善などリチウム二次電池用負極活物質に要求される不可欠な性能をともに満足するための、さらなる改良が望まれている。

[0005]

o 【発明が解決しようとする課題】本発明の第一の課題

は、充放電容量損失が低減化された有機電解液二次電池 を得ることである。本発明の第二の課題は、充放電サイ クル特性に優れた有機電解液二次電池を得ることであ る。

[0006]

【課題を解決するための手段】発明者らは鋭意検討の結果、本発明の課題が、少なくともLi含有遷移金属カルコゲナイドからなる正極、負極、および有機電解質からなる二次電池であって、負極として、X線回折における C軸方向の結晶厚みLcが8~150人、002面の面 10間隔 d_{oo} 、が3. 42~3. 65人でかつ真密度 ρ (g/c m^3)の値が1. 60~2. 20である低黒鉛化炭素質物と微細カーボン粒子及び/または微細カーボン繊維とを混合して用いることにより達成することができることを見いだした。

【0007】本発明の二次電池の負極として用いる低黒鉛化炭素は、充電初期の容量損失が小さい点で優れたものであるが、この低黒鉛化炭素にさらに微細カーボン粒子・微細カーボン繊維を混合して負極材料として用いることにより、驚くべきことに充放電サイクル特性を大幅 20 に改善できることを見いだした。

【0008】本発明の二次電池に使用される低黒鉛化炭 素としては、X線回折におけるC軸方向の結晶厚みLc が8~150Å、002面の面間隔d。oz が3.42~ 3. 65 Åでかつ真密度ρ(g/cm³)の値が1. 6 0~2.20である炭素材料を用いることができ、好ま しくは $Lc = 10 \sim 130 Å$ 、 $d_{002} = 3.43 \sim 3$. 62Å、真密度 p (g/cm³) の値が1.62~2. 20であり、さらに好ましくは $Lc = 12 \sim 120$ Å、 $d_{002} = 3.44 \sim 3.60 Å, 真密度 \rho (g/c)$ m³)の値が1.65~2.10である。このような低 黒鉛化炭素は市販の石炭系ピッチや、あるいは石炭系ピ ッチ、メソフェーズビッチ、有機高分子化合物、縮合多 環炭化水素化合物、多環複素環系化合物などをアルゴン 等の不活性ガス雰囲気下、または真空下で焼成すること で得ることができる。焼成温度は先に述べたLc、d 。o. 、 ρ の値の範囲内ならば特に限定されないが、好ま しくは400~2000℃であり、さらに好ましくは5 00~1700℃である。本発明の二次電池に用いられ る低黒鉛化炭素として特に好ましくは単独重合体あるい は共重合体などのアクリロニトリル系ポリマーを焼成し た炭素であり、繊維状または樹脂状のものなどを用いる ことができる。繊維状の炭素を用いる場合には、直径 2~2 μm、長さ100 μm~1 mmのものが好ま しく、さらに好ましくは直径0.3~1μm、長さ10 0~500μmのものである。また、樹脂状の炭素質物 を用いる場合には、平均粒径として2~150μmの範 囲が好ましく、さらに好ましくは4~120μmの範囲 であり、特に好ましくは6~100μmの範囲である。

細カーボン繊維は、カーボンブラック、微粒子黒鉛、微 細繊維状黒鉛が好ましいが、さらに好ましくはカーボン ブラックと微細繊維状黒鉛であり、ファーネスブラッ ク、ランプブラック、サーマルブラック、アセチレンブ ラック、チャンネルブラック、ローラーブラック、ディ

スクブラック、ケッチェンブラック、気相系黒鉛繊維などがあげられるが、特に好ましくはファーネスブラック、アセチレンブラック、ケッチェンブラック、気相系 黒鉛繊維である。微細カーボン粒子の粒径としては、

0.005~0.15 μ mのものが好ましく、さらに好ましくは0.01~0.1 μ mのものである。微細カーボン繊維の場合は、直径0.2 μ m以下、長さ100 μ m以下のものが好ましく、さらに好ましくは直径0.1 μ m以下、長さ50 μ m以下のものである。また、本発明の低黒鉛化炭素と微細カーボン粒子・微細カーボン繊維との混合比(重量比)は99.5:0.5~80:20の範囲が好ましく、さらに好ましくは97:3~85:15である。両者の混合法は粉体のまま混合してもよいし、水または有機溶媒を用いて分散混合してもよ

く、さらには本発明の低黒鉛化炭素に焼成する原料を溶 媒に溶解または分散させ、これに微細カーボン粒子・微 細カーボン繊維を混練した後に焼成する混合法を用いて もよい。

【0010】本発明の低黒鉛化炭素と微細カーボン粒子 ・微細カーボン繊維を混合した負極合剤には、通常用い る結着剤や補強剤などを添加することが出来る。結着剤 としては、天然多糖類、合成多糖類、合成ポリヒドロキ シ化合物、合成ボリアクリル酸化合物や含弗素化合物や 合成ゴムがおもに用いられる。それらの中でも澱粉、カ 30 ルボキシメチルセルロース、ジアセチルセルロース、ヒ ドロキシブロピルセルロース、エチレングリコール、ポ リアクリル酸、ポリテトラフルオロエチレンやポリ弗化 ビニリデン、エチレン・プロピレン・ジエン共重合体や アクリロニトリル・ブタジエン共重合体などが好まし い。補強剤としては、リチウムと反応しない繊維状物が 用いられる。例えば、ポリプロビレン繊維、ポリエチレ ン繊維、テフロン繊維などの合成ポリマーや炭素繊維が 好ましい。繊維の大きさとしては、長さが0.1~4m m、太さが0、 $1\sim50$ デニールが好ましい。特に、1~3 mm、1~6 デニールが好ましい。負極合剤はコイ ン型電池やボタン形電池では、加圧してペレットとして 用いたり、集電体の上に塗布した後圧延したり、該合剤 のプレスシートと集電体を重ねて圧延したりして、シー ト状電極を作成し、該シート状電極を巻取って円筒型電 池に用いることができる。

 $0\sim500~\mu$ mのものである。また、樹脂状の炭素質物 【0011】本発明に用いることのできるLi含有遷移を用いる場合には、平均粒径として $2\sim150~\mu$ mの範 金属カルコゲナイドからなる正極としては、 MnO_2 、 Mn_2O_3 、 CoO_2 、 Co_3 Mn_1-2 O_2 Mn_2O_3 Mn_3 O_4 Mn_4 O_5 Mn_5 O_7 N_8 M_8 M_8 M_8 M_9 M_9

1-x O,、MoS,、MoO,、TiS,などのLi化 物が好ましい。特に好ましくはLi。Co。V。O $a = 0.1 \sim 1.1$, $b = 0.12 \sim 0.9$, $c = 0.12 \sim 1.1$ 1-b, $d=2\sim2.5$), $x \in U$ i. Co. Ni. O_h (e = 0. 1~1. 1, f = 0. 12~0. 9, g =1-f、 $h=2\sim2.5$) である。遷移金属カルコゲ ナイトのLi化物はリチウムを含む化合物と混合して焼 成する方法やイオン交換法が主に用いられる。還移金属 カルコゲナイドの合成法はよく知られた方法でよいが、 特に空気中やアルゴン、窒素などの不活性ガス雰囲気下 10

で200~1500℃で焼成することが好ましい。 【0012】電解質としては、プロピレンカーボネー ト、エチレンカーボネート、ジエチルカーボネート、ア -ブチロラクトン、1,2-ジメトキシエタン、テトラ ヒドロフラン、2-メチルテトラヒドロフラン、ジメチ ルスルフォキシド、1,3-ジオキソラン、ホルムアミ ド、ジメチルホルムアミド、ジオキソラン、アセトニト リル、ニトロメタン、エチルモノグライム、リン酸トリ エステル(特開昭60-23, 973)、トリメトキシ 体(特開昭62-15,771、同62-22,37 2、同62-108、474)、スルホラン(特開昭6 2-31, 959)、3-メチル-2-オキサゾリジノ ン(特開昭62-44,961)、プロピレンカーボネ - ト誘導体(特開昭62-290,069、同62-2 90,071)、テトラヒドロフラン誘導体(特開昭6 3-32, 872)、エチルエーテル(特開昭63-6 2, 166)、1, 3-プロパンサルトン(特開昭63 -102, 173) などの非プロトン性有機溶媒の少な くとも一種以上を混合した溶媒とその溶媒に溶けるリチ ウム塩、例えば、CIO, -、BF, -、PF, -、C F_3 SO₃ - CF_3 CO₂ - AsF_6 - SbF_6 - 、(CF,SO₂)2N-、B₁₀Cl₁₀2-(特開昭5 7-74, 974), $(1, 2-\nu + \nu + \nu + \nu + \nu)$, C10, (特開昭57-74, 977)、低級脂肪族 カルボン酸塩(特開昭60-41, 773)、A1C1 4 ~ 、C 1 ~ 、B r ~ 、I ~ (特開昭60 − 247, 2 65)、クロロボラン化合物(特開昭61-165,9 57)、四フェニルホウ酸(特開昭61-214, 37 6)などの一種以上から構成されている。なかでも、プ ロピレンカーボネートと1、2-ジメトキシエタンの混 合液にLiClO、あるいはLiBF、を含む電解液が 代表的である。

【0013】また、電解液の他に次の様な固体電解質も 用いることができる。固体電解質としては、無機固体電 解質と有機固体電解質に分けられる。無機固体電解質に は、Liの窒化物、ハロゲン化物、酸素酸塩などがよく 知られている。なかでも、Li,N、LiI、Li,N I2, Li3 N-LiI-LiOH, LiSiO4, L iSiO, -LiI-LiOH (特開昭49-81, 8

99), xLi, PO, - (1-x) Li, SiO , (特開昭59-60, 866)、Li₂SiS, (特 開昭60-501、731)、硫化リン化合物(特開昭 62-82, 665) などが有効である。有機固体電解 質では、ポリエチレンオキサイド誘導体か該誘導体を含 むポリマー (特開昭63-135, 447)、ポリプロ ピレンオキサイド誘導体か該誘導体を含むポリマー、イ オン解離基を含むボリマー(特開昭62-254,30 2、同62-254,303、同63-193,95 4)、イオン解離基を含むポリマーと上記非プロトン性 電解液の混合物(米国特許4,792,504、同4, 830,939、特開昭62-22,375、同62-22, 376、同63-22, 375、同63-22, 776、特開平1-95, 117)、リン酸エステルポ リマー(特開昭61-256, 573)、非プロトン性 極性溶媒を含有させた高分子マトリックス材料(米国特 許4,822,701、同4,830,939,特開昭 63-239, 779、特願平2-30, 318、同2 - 78, 531) が有効である。さらに、ポリアクリロ メタン(特開昭61-4,170)、ジオキソラン誘導 20 ニトリルを電解液に添加する方法もある(特開昭62-278,774)。また、無機と有機固体電解質を併用 する方法(特開昭60-1,768)も知られている。 【0014】セパレーターは、イオン透過度が大きく、 所定の機械的強度を持つ、絶縁性の薄膜である。耐有機 溶剤性と疎水性からポリプレビレンなどのオレフィン系 の不織布やガラス繊維などが用いられている。さらに、 ボリプロピレンやボリエチレンの表面に、側鎖にボリエ チレンオキシド基を有するアクリロイルモノマーをブラ ズマグラフト重合した修飾セパレーターを用いることも 30 できる。

> 【0015】また、放電や充放電特性を改良する目的 で、以下に示す化合物を電解質に添加することが知られ ている。例えば、ビリジン(特開昭49-108,52 5)、トリエチルフォスファイト(特開昭47-4,3 76)、トリエタノールアミン(特開昭52-72,4 25)、環状エーテル(特開昭57-152,68 4)、エチレンジアミン(特開昭58-87,77 7)、n-グライム(特開昭58-87,778)、へ キサリン酸トリアミド(特開昭58-87,779)、 40 ニトロベンゼン誘導体(特開昭58-214,28 1)、硫黄(特開昭59-8, 280)、キノンイミン 染料(特開昭59-68, 184)、N-置換オキサゾ リジノンとN、N・-置換イミダリジノン(特開昭59 -154,778)、エチレングリコールジアルキルエ -テル(特開昭59-205, 167)、四級アンモニ ウム塩(特開昭60-30,065)、ポリエチレング リコール (特開昭60-41, 773)、ピロール (特 開昭60-79,677)、2-メトキシエタノール (特開昭60-89, 075)、A1C1。(特開昭6 50 1-88,466)、導電性ポリマ-電極活物質のモノ

マー(特開昭61-161, 673)、トリエチレンホ スホルアミド (特開昭61-208, 758)、トリア ルキルホスフィン(特開昭62-80,976)、モル フォリン(特開昭62-80、977)、カルボニル基 を持つアリール化合物(特開昭62-86,673)、 12ークラウンー4のようなクラウンエーテル類(フィ ジカル レビュー(Physical Review) B、42卷、6424頁(1990年))、ヘキサメチ ルホスホリックトリアミドと4-アルキルモルフォリン (特開昭62-217, 575)、二環性の三級アミン (特開昭62-217, 578)、オイル(特開昭62 -287,580)、四級ホスホニウム塩(特開昭63 - 121, 268)、三級スルホニウム塩(特開昭63 -121, 269) などが挙げられる。

【0016】また、電解液を不燃性にするために含ハロ ゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを 電解液に含ませることができる。(特開昭48-36, 632) また、高温保存に適性をもたせるために電解 液に炭酸ガスを含ませることができる。(特開昭59-134, 567)

【0017】また、正極活物質に電解液あるいは電解質 を含ませることができる。例えば、前記イオン導電性ポ リマーやニトロメタン(特開昭48-36,633)、 電解液の添加(特開昭57-124,870)が知られ ている。また、正極活物質の表面を改質することが出来 る。例えば、金属酸化物の表面をエステル化剤により処 理(特開昭55-163,779) したり、キレート化 剤で処理(特開昭55-163,780)、導電性高分 子(特開昭58-163, 188、同59-14, 27 4)、ポリエチレンオキサイドなど(特開昭60-9 7,561) により処理することができる。また、負極 活物質の表面を改質することもできる。例えば、イオン 導電性ポリマーやポリアセチレン層を設ける(特開昭5 8-111, 276)、LiC1(特開昭58-14 2, 771)、エチレンカーボネイト(特開昭59-3 1,573) などにより処理することができる。

【0018】電極活物質の担体として、正極には、通常 のステンレス鋼、ニッケル、アルミニウムの他に、導電 性高分子用には多孔質の発泡金属(特開昭59-18, 578)、チタン(特開昭59-68, 169)、エキ スパンドメタル(特開昭61-264,686)、パン チドメタル、負極には、通常のステンレス鋼、ニッケ ル、チタン、アルミニウムの他に、多孔質ニッケル(特 開昭58-18,883)、多孔質アルミニウム(特開 昭58-38, 466)、アルミニウム焼結体(特開昭 59-130,074)、アルミニウム繊維群の成形体 (特開昭59-148, 277)、ステンレス鋼の表面 を銀メッキ (特開昭60-41, 761)、フェノール 樹脂焼成体などの焼成炭素質材料(特開昭60-11 2, 254)、A1-Cd合金(特開昭60-211,

779)、多孔質の発泡金属(特開昭61-74,26 8) などが用いられる。

【0019】集電体としては、構成された電池において 化学変化を起こさない電子伝導体であればよい。例え ば、通常用いられるステンレス鋼、タチンやニッケルの 他に、銅のニッケルメッキ体(特開昭48-36,62 7)、銅のチタンメッキ体、硫化物の正極活物質にはス テンレス鋼の上に銅処理したもの(特開昭60-17 5, 373)などが用いられる。電池の形状はコイン、 10 ボタン、シート、シリンダーなどいずれにも適用でき

[0020]

【実施例】以下に具体例を挙げ、本発明をさらに詳しく 説明するが、発明の主旨を越えない限り、本発明は実施 例に限定されるものではない。

実施例1

ポリアクリロニトリル繊維(旭化成製、商品名カシミロ ン)を、アルゴンガス雰囲気下、1000℃で1時間焼 成し炭素質物を得た。この炭素質物のX線回折における 20 Lcは14.5Å、dooz は3.55Åであり、真密度 ρは1. 79g/cm³であった。この炭素質物90重 量%と微細カーボン粒子として市販のアセチレンブラッ ク(電気化学工業製、商品名デンカブラック)10重量 %を粉体のまま2時間混合した。この混合された炭素質 物90重量%に結着剤としてポリテトラフルオロエチレ ン(和光純薬製)10重量%を含む合剤を圧縮成形させ たペレット(15mmΦ)を作成し、負極材料とした。 正極材料として、Lias Coas Vas Ozsを84 重量%、アセチレンブラック(電気化学工業製、商品名 30 デンカブラック) 10重量%、結着剤としてポリテトラ フルオロエチレン(和光純薬製)6重量%の混合比で混 合した合剤を圧縮成形させたペレット(13mmΦ)を 用いた。正極と負極の理論容量比は1.5とした。な お、負極の理論容量はGIC理論に基づき、372mA H/gとした。電解質としては1MのLiBF。(プロ ピレンカーボネートと1,2-ジメトキシエタンの等量 混合液)を用い、さらにセパレーターとして微孔質のポ リプロピレン不織布を用いて、その電解液を不織布に含 浸させて用いた。そして、図1のようなコイン型リチウ ム電池を作成した(電池1)。さらに同様に表1に示し たアクリロニトリル系ポリマーを熱処理した炭素質負極 を作成し、同様の電池2~14を作成した。電池1~1 0についてはポリアクリロニトリル繊維を、電池11~ 13についてはポリアクリロニトリル樹脂を、電池14 についてはアクリロニトリルースチレン共重合体樹脂を 用いた。また、電池5と6については、結着剤としてポ リテトラフルオロエチレンの代わりにエチレン・プロピ レン・ジェン共重合体EPDM(住友化学工業製、商品 名ESPRENE)を用いた。これらのリチウム電池を 50 1.0mA/cm²の電流密度で、160mAH/gの

充電、放電は3.2 Vでカットの条件で充放電試験を行 い、10サイクル目の放電容量および50サイクル目の 放電容量を測定し、充放電サイクル特性の評価を行っ た。

【0021】実施例2

市販の石炭系コークス(新日鉄化学製、商品名LPCu, Lc = 41 Å, $d_{ooz} = 3.47 \text{ Å}$, $\rho = 2.09$ g/cm³)を84重量%、市販のアセチレンブラック (電気化学工業製、商品名デンカブラック) 8重量%、 結着剤として上記のEPDM8重量%の混合比で混合し 10 行った。 た合剤を塗布(溶剤トルエン)・乾燥・圧縮成形させた 負極ペレット (15mmΦ) を作成し、負極材料とし た。そして実施例1と同様にしてコイン型リチウム電池 を作成した(電池15)。さらに同様に表1に示した炭 素質負極を作成し、同様の電池16~18を作成した。 電池17については、結着剤としてEPDMの代わりに ポリフッ化ビニリデン(東京化成製)を用いた。また、 電池18については、負極として石炭系コークスに代わ りにメソフェーズピッチ焼成炭素質物を用いた。これら のリチウム電池について実施例1と同様にして充放電試 20 【0024】 験を行った。

【0022】実施例3

負極材料としては実施例電池1で述べたポリアクリロニ トリル繊維を焼成した炭素質物を用いた。セバレーター として多孔性のボリプロピレンフィルム(ダイセル化学 製、商品名ジュラガード2500)にポリオキシエチレ ンを側鎖に有するモノマー(新中村化学製、商品名M-40G) をプラズマグラフト重合(グラフト量、2.5 mg/cm²)した薄膜を用いた。これ以外は実施例電 池1と同様な電池を作成し(電池19)、充放電試験を

10

【0023】実施例4

微細カーボン繊維として気相法黒鉛繊維(昭和電工製、 商品名VG-CF)を用いた以外は実施例電池1と同様 な電池を作成し(電池20)、充放電試験を行った。 実施例5

結着剤としてポリテトラフルオロエチレン(三井フルオ ロケミカル製、商品名テフロン6 J)を用いた以外は実 施例電池1と同様な電池を作成し(電池21)、充放電 試験を行った。

【表1】

表!

Νo	焼成原料	メーカー名	焼成条件	Lc	đ 002	P
		及び商品名		(A)	(A)	(g/cm³)
A	がアクタニト別様雑	旭化成 かいい	1000°C/1hr (Ar)	14. 5	3. 55	1. 79
B	v	u	800°C/lhr (Ar)	12	3. 61	1.76
Ċ	•		1300°C/1hr (Vac.)	17. 5	3, 53	1. 79
D	,	東レールツ	900°C/1.5hr (Ar)	11.5	3, 63	1.77
E	¥	東邦レーヨン イスロン	1100°C/0, 5hr (Ar)	16	3. 55	1.75
F	• .	日本エウスラン エクスラン	1000°C/1hr (Vac.)	16	3. 58	1. 78
G	,	東レ T-300	(朱娆成)	13	3. 68	1. 69
H	,	東レ ハー40	(~)	45	3. 46	1. 88
1	約777年川は安脂	昭和電工	1000°C/1hr (Ar)	14. 5	3. 56	1.71
J	,		1450°C/1hr (Ar)	25	3. 52	1, 77
K	. *	住友化学	750°C/1hr (Ar)	11 .	3. 64	1. 75
L 7	アクリロニトリルースチレン 共重	(合成品)	1100°C/1hr (Ar)	16. 5	3. 53	1.75
ŧ	合樹脂 (7/3 wt 比)					
M ·	· 石炭系3-73	新日鉄化学LPC-u	(未饶成)	41	3. 47	2. 09
N			1300°C/1hr (Ar)	42	3. 46	2. 11
0	•	三菱化成二和二次	v	22	3, 54	1. 99
P	メソフェースピッチ	三菱瓦斯化学	1100℃/1hr (Ar)	46	3, 47	2. 08

[0025]

【表2】

13 表 2 実施例の電池

電池	負極炭素		微細 かぶね	i子·	正極	電解質
No	材料No		カーボン繊維			
1	A	*1	アセチレンブラック	10%	Lio.sCoo.sVo.sD _{2.s}	1
2	A		"	16%	. "	٠ ٦
3	A		.#/	2%	"	1
4	В		·#	10%	. <i>u</i>	
5	. с	*2	ケッチェンブラック	10%		p
6	D		N	10%	Lie. 5Coo. 5Nio. 502. 5	Л
7	E	* 1	7セチレンブラ ック	8%	<i>y</i>	1
8	F		"	4%	Lio.sCoo.sVo.sO2.s	1
9	G		N	14%	N	. 1
1 0	Н	*3	ファーネスプラック	9%	.#	ซ
1 1	I		"	5%	n	1
1 2	J	*1	7セチレンブラック	10%	"	1
1 3	K		u	10%	Lio.sCoo.sNio.sO2.s	1
1 4	L		N	10%	"	1
1 5	M		H	10%	"	п
1 6	N		#	3%	Lio.sCoo.sVo.sO2.s	1
1 7	0		"	8%	Ŋ	Л
1 8	P		æ	10%	"	1
1 9	A	*2	ケッチェンブラック	10%	u,	ፈ
2 0	A	*4	黒鉛繊維	10%	N	1
2 1	A	*1	アセチレンブラック	10%	"	1

[0026]

40 【表3】

15 表 3 表 2 の続き (比較例の電池)

電池	負極炭素	微細加松粒子・	正極	電解質
No	材料No	カーボン繊維		
a	A	無添加	Lie. 5Coo. 5Vo. 502. 5	1
b	A	u	LiCoO2	イ
С	I	. "	Lie, 6Coo. sVo. sO2. s	તં
ď	М	W	"	٦
е	P	W	"	1
f	* 5	"	Lio.sCoo.sNio.sO2,s	ᄪ
g	N	*1 アセチレンブラック 10%		п
h	* 6	無添加	Lia.sCoq.sVo.s02.s	Л
i	R	*1 アセチレンブラック 10%	"	ハ
j	A	無添加	_W	1

[0027]

* *【表4】 表 2 及び表 3 の脚注

記号	説明
* 1	電気化学工業製 デンカブラック
* 2	ライオン・アクゾ 製 ケッチェンプラックEC
* 3	コロンピアカーポン社製 ファーネスフラック RAVEN 5250
* 4	昭和電工製 VG一CF
* 5	比較例 4 のフラン樹脂焼成炭素
* 6	比較例 5 のノボラック樹脂焼成炭素
1	1M LiBF。 - プロピレンカーボネート / ジメトキシエタン (1/1 V/V)
п	1M LiC10₄ - エチレンカーボネート / ジメトキシエタン (1/1 V/V)
^	.1M LiCF _s SO _s - プロピレンカーボネート / ジェチルカーボネート (1/1 V/V)

【0029】比較例2

負極材料として、カーボンブラックを混合しなかった以外は実施例1と同様のボリアクリロニトリル樹脂焼成炭素質物からなる負極を有する電池を作成し(電池c)、 実施例1と同様にして充放電試験を行った。

【0030】比較例3

負極材料として、カーボンブラックを混合しなかった以外は実施例2と同様の石炭系ピッチコークス、メソフェーズピッチ焼成炭素質物からなる負極を有する電池を作成し(電池 d、e)、実施例1と同様にして充放電試験を行った。

【0031】比較例4

負極材料として特開平2-66, 856記載のフラン樹脂焼成炭素質物を用いた以外は実施例1、比較例1と同様な電池を作成し(電池 f、g)、充放電試験を行った。この炭素質物のL c、d₀₀₂、 ρ はそれぞれ12 Å、3.68 Å、1.65 g g g であった。電池 f

はカーボンブラック無添加、電池gはカーボンブラックを添加した。

【0032】比較例5

負極材料として特開昭62-122,066記載のノボラック樹脂焼成炭素質物を用いた以外は実施例1、比較例1と同様な電池を作成し(電池h、i)、充放電試験を行った。この炭素質物のLc、 \mathbf{d}_{002} 、 ρ はそれぞれ13Å、3.70Å、1.62g/c \mathbf{m}^3 であった。電池 \mathbf{h} はカーボンブラック無添加、電池 \mathbf{i} はカーボンブラックを添加した。

比較例6

負極材料として、カーボンブラックを混合しなかった以外は実施例電池21とと同様の電池を作成し(電池 j)、充放電試験を行った。実施例と比較例で作成した負極炭素質材料の内容を表1に、電池の構成を表2~表4に、充放電試験の結果を表5~表6にまとめて示した。表5~表6から、本発明のリチウム二次電池は比較例の電池に対し、放電容量、充放電サイクル特性において優れていることは明白である。

20 【0033】 【表5】

19 **表 5**

実施例電池の評価結果

Νο.	10サイクル目の放電容量	50サイクル目の放電容量	放電容量比
	x (mAH)	y (mAH)	к/у (%)
1	10.5	10.2	97.1
2	11.0	10.5	95.5
8	9. 5	7.9	83.2
4	10.2	9. 9	97.1
5	10.4	10.0	96.2
6	9. 9	9.6	97.0
7	10.2	9. 9	97.1
8	1 0 0	8.8	88.0
9	10.5	10.1	96.2
1 0	10. I	9. 5	94.1
1 1	10.1	9. 1	90.1
1 2	10.6	10.2	96.2
1 3	10.3	10.0	97.1
1 4	10.1	9. 5	94.1
1 5	10.3	9. 9	96.1
1 6	10.0	8. 7	87.0
1 7	10.3	10.1	98.1
1 8	10.5	10.2	97.1
1 9	10.2	8.8	96.1
2 0	10.0	9.4	94.0
2 1	10.0	9.7	97.0

[0034]

40 【表6】

21 表5の続き(比較例電池の評価結果) 表 6

No.	10サイクル目の放す	電容量	50サイクル目の	放電容量	放電容	量比
	x (mAH)		y (m A	H)	х / у	(%)
a	9. 0		5.	0	5 5	. в
b	9. 1		3.	9	4 2	. 9
C	9. 2		5.	2	. 5 в	. 5
đ	8.8		4.	1	4 6	. 6
е	7.9		4.	0	5 0	. 6
f	7. 2		3.	6	5 0	. 0
g	8.8		6.	0	6 8	. 2
ħ	7.3		3.	3	4 5	. 2
i	9.0		5.	9	6 5	. 6
j	9.5		6.	8	7 1	. 6

[0035]

【発明の効果】本発明のように、負極として、X線回折 におけるC軸方向の結晶厚みLcが8~150Å、00 2面の面間隔 d 002 が3. 42~3. 65 Å でかつ真密 度 ρ (g / c m³) の値が 1.60~2.20である低 30 2 負極合剤ペレット 黒鉛化炭素質物と微細カーボン粒子または微細カーボン 繊維とを混合して用いることにより、放電容量、充放電 サイクル特性の改良されたリチウム二次電池を得ること ができる。

【図面の簡単な説明】

*【図1】実施例に使用したコイン型電池の断面図を示し たものである。

【符号の説明】

- 1 負極封口板
- - 3 セパレーター
 - 4 正極合剤ペレット
 - 5 集電体
- 6 正極ケース
- 7 ガスケット

【図1】

