ST444: Exercise Sheet 1

Part I: Python

- 1. Recall that the relative error is the absolute error divided by the magnitude of the exact value. Give an example (in Python) to show that the sum of three floating-point numbers can have a very large *relative* error.
- 2. Read in a string name, e.g. "Richard", then print a greeting of the form "Hello Richard!".

Part II: Introduction to Computational Data Science

- 1. Show that the largest integer that can be stored in m bits (of unsigned type) is $2^m 1$.
- 2. Study the IEEE standard for both float type and double type. See for instance https://en.wikipedia.org/wiki/Double-precision_floating-point_format
- 3. Let "~" denote the result of floating-point conversion. Prove or disprove that

$$(\tilde{x}+\tilde{y})+\tilde{z}=\tilde{x}+(\tilde{y}+\tilde{z}).$$

- 4. (*) Let y = 1 + x for a positive number x. If y is stored as the double float value \tilde{y} according to the IEEE standard, under what conditions will $\tilde{y} = 1$?
- 5. Recall the numerical differentiation example (i.e. Example 4) from Lecture 1. Try out different values of delta and see at which values the procedure breaks down. Could this cut-off value be (roughly) explained without running the code?
- 6. Recall the linear regression example (i.e. Example 5) from Lecture 1. Try shifting x by different values and see at which values the procedure breaks down.
- 7. (*) Recall the matrix multiplication example (i.e. Example 6) from Lecture 1. Let n be an positive integer, and let a_1, \ldots, a_{n+1} be n+1 positive integers. Suppose that you are given n matrices, where the i-th matrix \mathbf{B}_i is $a_i \times a_{i+1}$. How to determine the optimal parenthesization of a product of these n matrices, $\mathbf{B}_1 \mathbf{B}_2 \cdots \mathbf{B}_n$?
 - (Hint: use dynamic programming; to be discussed in more detail later in the course; for those who are interested, search for "matrix chain multiplication")