第3回 赤雪江ゼミ

climax

2025年6月24日

目次

1	部分群と生成元	2
1.1	生成された部分群	2
1.2	巡回群	2
2	群の直積	3

1 部分群と生成元

この節では、群の部分集合が生成する部分群と、巡回群の概念について見ていく。

1.1 生成された部分群

まず、群の任意の部分集合から部分群を構成する方法を定義する。

- ■教科書 p.35 G を群、 $S \subset G$ を部分集合とする。 $x_1, \ldots, x_n \in S$ に対し、 $x_1^{\pm 1} \cdots x_n^{\pm 1}$ という形の G の元を、S の元による語 (word) という。 ただし、n=0 の場合は、語は単位元 1_G を表すものとする。
- **命題 1.1** (教科書 p.35 命題 2.3.13). S の元による語全体の集合を $\langle S \rangle$ とするとき、次の (1), (2) が成り立つ。
 - $1.\langle S \rangle$ は G の部分群である。
 - 2.~H が G の部分群で S を含めば、 $\langle S \rangle \subset H$ である(つまり $\langle S \rangle$ は S を含む最小の部分群である)。
- 証明. (1) n=0 の場合、語は 1_G と定義されるため、 $1_G \in \langle S \rangle$ である。 $w_1, w_2 \in \langle S \rangle$ をとる。これらは S の元による語であるから、 $w_1 = x_1^{\pm 1} \cdots x_n^{\pm 1}, \ w_2 = y_1^{\pm 1} \cdots y_m^{\pm 1} \ (x_i, y_j \in S)$ と書ける。 このとき、積 $w_1w_2 = x_1^{\pm 1} \cdots x_n^{\pm 1} y_1^{\pm 1} \cdots y_m^{\pm 1}$ も S の元による語であるから、 $\langle S \rangle$ の元である。 また、 w_1 の逆元は $(x_1^{\pm 1} \cdots x_n^{\pm 1})^{-1} = x_n^{\mp 1} \cdots x_1^{\mp 1}$ であり、これも S の元による語となるため $\langle S \rangle$ に含まれる。 したがって、 $\langle S \rangle$ は G の部分群である。
- (2) H を S を含む G の任意の部分群とする。 H は部分群なので $1_G \in H$ である。 $S \subset H$ であるから、任意の $x_i \in S$ に対して $x_i \in H$ である。 H は逆元と積について閉じているので、 $x_i^{\pm 1} \in H$ であり、任意の語 $x_i^{\pm 1} \cdots x_n^{\pm 1}$ は H の元でなければならない。 したがって、 $\langle S \rangle \subset H$ が示された。
- 定義 1.2 (教科書 p.36). 命題 2.3.13 の $\langle S \rangle$ を S によって生成された部分群 という。 S を 生成系、その元を 生成元 という。 特に $S = \{g_1, \ldots, g_n\}$ のとき、 $\langle S \rangle$ を $\langle g_1, \ldots, g_n \rangle$ とも書く。
- 命題 1.3 (教科書 p.36 命題 2.3.14). G を群、 $S_1 \subset S_2 \subset G$ を部分集合とする。このとき、 $\langle S_1 \rangle \subset \langle S_2 \rangle$ である。
- 証明. [J-トによる補足] $\langle S_1 \rangle$ の任意の元 g をとる。g は S_1 の元による語なので、 $g=x_1^{\pm 1}\cdots x_n^{\pm 1}$ $(x_i\in S_1)$ と書ける。仮定より $S_1\subset S_2$ であるから、各 x_i は S_2 の元でもある。 したがって、g は S_2 の元による語と見なすことができる。 よって、 $g\in \langle S_2 \rangle$ である。以上より $\langle S_1 \rangle \subset \langle S_2 \rangle$ が示された。
- **例 1.4** (教科書 p.36 例 2.3.15 生成された部分群 1). G を群、 $x \in G$, $S = \{x\}$ とする。 $x^{\pm 1} \cdots x^{\pm 1}$ という形の語は、指数の和を k とすると x^k と書ける。 k は任意の整数になりうるので、 $\langle S \rangle = \{x^n \mid n \in \mathbb{Z}\}$ となる。例えば、 $G = \mathbb{Z}$ (ノートより補足:演算は加法)、 $S = \{n\}$ とすると、 $\langle S \rangle = n\mathbb{Z}$ である。

1.2 巡回群

- 定義 1.5 (教科書 p.36 定義 2.3.16). 一つの元で生成される群を 巡回群 という。 群の部分群で巡回群であるものを巡回部分群という。言い換えると、群 G が巡回群であるとは、ある元 $x \in G$ が存在して、G のすべての元 g が $g=x^n$ $(n \in \mathbb{Z})$ という形に書けることである。
- 例 1.6 (教科書 p.36 例 2.3.17, 2.3.18 巡回群). 加法群 $\mathbb Z$ は、 $\mathbb Z = \langle 1 \rangle$ と書けるので、位数が無限大の 巡回群である。 例 2.3.15 の $n\mathbb Z$ は n を生成元とする $\mathbb Z$ の巡回部分群である。
 - 環 $\mathbb{Z}/n\mathbb{Z}$ は加法についてアーベル群である。 $\overline{1}$ を i 回足せば \overline{i} となるので、 $\mathbb{Z}/n\mathbb{Z}=\langle\overline{1}\rangle$ であり、これ

は位数 n の巡回群である。

命題 1.7 (教科書 p.37 命題 2.3.19). 巡回群はアーベル群である。

証明. G を x で生成される巡回群とすると $G = \{x^n \mid n \in \mathbb{Z}\}$ である。 G の任意の 2 元 g_1, g_2 は、ある整数 i,j を用いて $g_1 = x^i, g_2 = x^j$ と表せる。このとき、 $g_1g_2 = x^ix^j = x^{i+j} = x^{j+i} = x^jx^i = g_2g_1$ が成り立つ ため、G はアーベル群である。 (巡回群の場合は同じ元を並べているだけとみなせる。)

例 1.8 (教科書 p.37 例 2.3.20 生成された部分群 2). $G = \mathfrak{S}_3, \, \sigma = (123), \, \tau = (12)$ とする。

- 1. $\sigma^2 = (132), \sigma^3 = 1$ なので、 $\langle \sigma \rangle = \{1, (123), (132)\}$ は巡回部分群である。
- 2. $\tau^2 = 1$ なので、 $\langle \tau \rangle = \{1, (12)\}$ も巡回部分群である。
- 3. $S = \{\sigma, \tau\}$ とする。 $\langle S \rangle$ は σ, τ を含むため、これらの積から作られる元も含む。教科書では結論のみだが、計算をすると以下のようになる。

$$\sigma \tau \sigma^{-1} = (123)(12)(132) = (23)$$

 $\sigma^2 \tau \sigma^{-2} = (123)(23)(132) = (13)$

教科書にもあるように $(23) = \sigma \tau \sigma^{-1}$ 、 $(13) = \sigma^2 \tau \sigma^{-2}$ が成り立つ。 3 つの互換(巡回置換も含む)が 生成されれば、 \mathfrak{S}_3 のすべての元が生成可能である。したがって、 $G = \langle \sigma, \tau \rangle$ であり、 $\{\sigma, \tau\}$ は \mathfrak{S}_3 の 生成系である。

2 群の直積

定義 2.1 (教科書 p.37 定義). $\{G_i\}_{i\in I}$ を群の族とし $(I\neq\emptyset)$ 、集合としての直積を $G=\prod_{i\in I}G_i$ とする。 このとき、G 上の積を成分ごとに定義する。すなわち、 $(g_i)_{i\in I}, (h_i)_{i\in I}\in G$ に対し、その積を

$$(g_i)_{i\in I}(h_i)_{i\in I} \stackrel{\text{def}}{=} (g_ih_i)_{i\in I}$$

と定める。

- ■群となることの確認 (教科書 p.37-38) この演算によって G が群となることを確認する。
 - **結合法則**: $g=(g_i), h=(h_i), k=(k_i)$ を G の元とすると、各成分 G_i で結合法則が成り立つため、

$$g(hk) = (g_i)_{i \in I}((h_i)_{i \in I}(k_i)_{i \in I}) = (g_i(h_ik_i))_{i \in I} = ((g_ih_i)k_i)_{i \in I} = (gh)k$$

となり、G全体で結合法則が成立する。

• 単位元: 各 G_i の単位元を 1_{G_i} とするとき、 $1_G=(1_{G_i})_{i\in I}$ とおくと、これは G の単位元となる。 実際、

$$(g_i)_{i \in I} 1_G = (g_i 1_{G_i})_{i \in I} = (g_i)_{i \in I}$$

であり、同様に $1_G(g_i)_{i\in I} = (g_i)_{i\in I}$ も成り立つ。

• 逆元: $g=(g_i)_{i\in I}\in G$ の逆元は、 $g^{-1}=(g_i^{-1})_{i\in I}$ で与えられる。 なぜなら、

$$gg^{-1} = (g_i)_{i \in I} (g_i^{-1})_{i \in I} = (g_i g_i^{-1})_{i \in I} = (1_{G_i})_{i \in I} = 1_G$$

となるからである。

以上より、 $G=\prod_{i\in I}G_i$ はこの演算で群となる。 $I=\emptyset$ なら $\prod_{i\in I}G_i=\{1\}$ とみなす。これを群の**直積**といい、各 G_i を**直積因子**という。

■補足

- ullet すべての G_i がアーベル群なら、直積 G もアーベル群である。
- 自然な単射: 各 $l \in I$ に対し、写像 $i_l : G_l \to \prod_{j \in I} G_j$ を

$$i_l(x) = g_j$$
 ただし $g_j = \begin{cases} x & j = l \\ 1_{G_j} & j \neq l \end{cases}$

と定義すると、 i_l は単射準同型となる。

• 有限個の場合: $I=\{1,\dots,t\}$ の場合、直積を $G_1 \times \dots \times G_t$ とも書く。このとき、自然な単射 i_l はより明示的に

$$i_l: g_l \mapsto (1_{G_1}, \dots, 1_{G_{l-1}}, g_l, 1_{G_{l+1}}, \dots, 1_{G_t})$$

と表すことができる。。