7-5 Additional Practice

Graphing Other Trigonometric Functions

Sketch the graph over the region -2π to 2π . Describe the domain, range, period, zeros and asymptotes of the function.

Domain: $\left\{x: x \neq \frac{\pi}{2} + n\pi, \text{ where } n \text{ is an integer}\right\}$

Range: $-\infty$, ∞

Period: ______

Asymptotes: any multiple of $\frac{\pi}{2}$

For Items 2 and 3, sketch the graphs of the functions. Then describe how the graph of each function compares to the graph of the parent function.

2.
$$y = \frac{1}{4} \tan 4x$$

Vertical compression makes the graph look more bent than the parent function $y = \tan x$. Horizontal compression changes the period of the function to $\frac{\pi}{4}$.

3.
$$y = 2 \cot 0.25x$$

Vertical stretch makes the graph look straighter than the parent function $y = \cot x$. The horizontal stretch changes the period of the function from $\frac{\pi}{2}$ to 2π .

- **4.** Benjamin is observing a hotel's entrance from a bench 30 ft away.
 - a. Write a function to model the height h of the hotel as a function of the angle of inclination x from his position to the entrance of the hotel. $y = 30 \tan x$
 - **b.** Identify an appropriate domain. Answers may vary. Sample: $-\pi < x < \pi$

6. Graph the function y = sec x. Describe how the graph of y = sec x is related to the graph of y = cos x.
y = sec x is the reciprocal of y = cos x.

