Optimization and Computational Linear Algebra for Data Science Lecture 3: Rank

Léo MIOLANE · leo.miolane@gmail.com

September 19, 2019

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Definition of the rank

Definition 1.1 (Rank of a family of vectors)

We define the rank of a family x_1, \ldots, x_k of vectors of \mathbb{R}^n as the dimension of its span:

$$\operatorname{rank}(x_1,\ldots,x_k) \stackrel{\text{def}}{=} \dim(\operatorname{Span}(x_1,\ldots,x_k)).$$

If the vectors $x_1, \ldots x_k$ are linearly independent then $\operatorname{rank}(x_1, \ldots x_k) = k$. Indeed, in that case (x_1, \ldots, x_k) forms a basis of $\operatorname{Span}(x_1, \ldots, x_k)$ so $\dim(\operatorname{Span}(x_1, \ldots, x_k)) = k$.

Definition 1.2 (Rank of a matrix)

Let $M \in \mathbb{R}^{n \times m}$. Let $c_1, \ldots, c_m \in \mathbb{R}^n$ be its columns. We define

$$\operatorname{rank}(M) \stackrel{\text{def}}{=} \operatorname{rank}(c_1, \dots, c_m) = \dim(\operatorname{Im}(M)). \tag{1}$$

Proposition 1.1

Let $M \in \mathbb{R}^{n \times m}$. Let $r_1, \ldots, r_n \in \mathbb{R}^m$ be the rows of M and $c_1, \ldots, c_m \in \mathbb{R}^n$ be its columns. Then we have

$$rank(r_1, \dots, r_n) = rank(c_1, \dots, c_m) = rank(M).$$
(2)

Proof. In order to prove (2) it suffices to show (since columns and rows are playing exchangeable roles) that $\operatorname{rank}(\ell_1,\ldots,\ell_n) \leq \operatorname{rank}(c_1,\ldots,c_m)$. Let $r \stackrel{\text{def}}{=} \operatorname{rank}(\ell_1,\ldots,\ell_n)$ and (x_1,\ldots,x_r) be a basis of $\operatorname{Span}(\ell_1,\ldots,\ell_n)$. We will prove that

$$(Mx_1, \dots, Mx_r)$$
 is linearly independent. (3)

The result follows. Indeed (Mx_1, \ldots, Mx_r) is then a linearly independent family of r vectors of $\text{Im}(M) = \text{Span}(c_1, \ldots, c_m)$: this implies that $\text{rank}(c_1, \ldots, c_m) = \text{dim}(\text{Span}(c_1, \ldots, c_m)) \ge r = \text{rank}(\ell_1, \ldots, \ell_n)$.

It remains to prove (3). Let $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ such that $\alpha_1 M x_1 + \cdots + \alpha_r M x_r = 0$. We will show that in such case the α_i are all zero. Define $v \stackrel{\text{def}}{=} \alpha_1 x_1 + \cdots + \alpha_r x_r$. We have by linearity

$$Mv = M(\alpha_1 x_1 + \dots + \alpha_r x_r) = \alpha_1 M x_1 + \dots + \alpha_r M x_r = 0.$$

Since the i^{th} coordinate of Mv is equal to $(Mv)_i = \ell_i \cdot v$, we get that v is orthogonal to all the ℓ_i , and therefore to $\text{Span}(\ell_1, \dots, \ell_n)$. Notice now that $v \in \text{Span}(x_1, \dots, x_r) = \text{Span}(\ell_1, \dots, \ell_n)$ by construction. The vector v is orthogonal to itself, hence $\alpha_1 x_1 + \dots + \alpha_r x_r = v = 0$. Recall that the family (x_1, \dots, x_r) is linearly independent (because it is a basis) so $\alpha_1 = \dots = \alpha_r = 0$.

Remark 1.1. For $v_1, \ldots, v_k \in \mathbb{R}^n$, and $\alpha \in \mathbb{R} \setminus \{0\}$, $\beta \in \mathbb{R}$ one can easily verify that

$$\operatorname{rank}(v_1, \dots, v_k) = \operatorname{rank}(v_1, \dots, v_{i-1}, \alpha v_i, v_{i+1}, \dots, v_k)$$

=
$$\operatorname{rank}(v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_{j-1}, v_j + \beta v_i, v_{j+1}, \dots, v_k).$$

As a consequence, the Gaussian elimination method keeps the rank of a matrix unchanged!

2 Properties of the rank

Theorem 2.1 (Rank-nullity theorem)

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then

$$rank(L) + \dim(Ker(L)) = m.$$

Theorem 2.1 is proved at the end of these notes.

Proposition 2.1

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then the following holds

- (i) $rank(A) \le min(n, m)$.
- (ii) $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.

Exercise 2.1 (Important). Let $M \in \mathbb{R}^{n \times m}$ and $r = \operatorname{rank}(M)$. Show that there exist $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times m}$ such that M = AB.

3 Invertible matrices

Definition 3.1 (Matrix inverse)

A matrix $M \in \mathbb{R}^{n \times n}$ is called invertible if there exists a matrix $M^{-1} \in \mathbb{R}^{n \times n}$ such that

$$MM^{-1} = M^{-1}M = \mathrm{Id}_n$$
.

Such matrix M^{-1} is unique and is called the inverse of M.

Remark 3.1. $M \in \mathbb{R}^{n \times n}$ is invertible if and only if the linear transformation associated to M is a bijection. In that case, M^{-1} is the matrix associated to the inverse transformation.

Theorem 3.1

Let $M \in \mathbb{R}^{n \times n}$. The following points are equivalent:

- (i) M is invertible.
- (ii) rank(M) = n.
- (iii) $Ker(M) = \{0\}.$

Proof. Points (ii) and (iii) are equivalent by Theorem 2.1. It remains to prove that (i) \Leftrightarrow [(ii)-(iii)].

We start by proving that (i) implies (iii). Assume that M is invertible and consider $x \in \text{Ker}(M)$. Since $M^{-1}M = \text{Id}_n$, we have $M^{-1}Mx = x$, which leads to 0 = x because Mx = 0. Hence $\text{Ker}(M) = \{0\}$.

Conversely assume that [(ii)-(iii)] hold. Then, as seen at the end of Lecture 2, for all $y \in \mathbb{R}^n$ there exists a unique $x^{(y)} \in \mathbb{R}^n$ such that $Mx^{(y)} = y$. One can verify easily that the map $L: y \mapsto x^{(y)}$ is linear and verifies (by construction) $L \circ M = M \circ L = \mathrm{Id}$. Consequently, the corresponding matrices verify: $LM = ML = \mathrm{Id}_n$.

Exercise 3.1. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times m}$. Show that if B is invertible then $\operatorname{rank}(AB) = \operatorname{rank}(A)$. Similarly for $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, show that if A is invertible then $\operatorname{rank}(AB) = \operatorname{rank}(B)$.

4 Transpose of a matrix, symmetric matrices

Definition 4.1 (Transpose)

Let $M \in \mathbb{R}^{n \times m}$. We define its transpose $M^{\mathsf{T}} \in \mathbb{R}^{m \times n}$ by

$$(M^{\mathsf{T}})_{i,j} = M_{j,i}$$

for all $i \in \{1, ..., m\}$ and $j \in \{1, ..., n\}$.

Remark 4.1.

- We have $(M^{\mathsf{T}})^{\mathsf{T}} = M$.
- The mapping $M \mapsto M^{\mathsf{T}}$ is linear.

We remark also that the rows of M become the columns of M^{T} and that the columns of M become the rows of M^{T} . By Definition 1.2, this gives:

Proposition 4.1

$$\operatorname{rank}(M) = \operatorname{rank}(M^{\mathsf{T}}).$$

Proposition 4.2

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then

$$(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}.$$

Corollary 4.1

If $M \in \mathbb{R}^{n \times n}$ is invertible, then so is M^{T} and

$$(M^{\mathsf{T}})^{-1} = (M^{-1})^{\mathsf{T}}.$$

Proof. We compute, using Proposition 4.2:

$$M^{\mathsf{T}}(M^{-1})^{\mathsf{T}} = (M^{-1}M)^{\mathsf{T}} = \mathrm{Id}_n^{\mathsf{T}} = \mathrm{Id}_n.$$

This proves that M^{T} is invertible with inverse $(M^{-1})^{\mathsf{T}}$.

Definition 4.2 (Symmetric matrix)

A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be symmetric if

$$\forall i, j \in \{1, \dots, n\}, \ A_{i,j} = A_{j,i}$$

or, equivalently if $A = A^{\mathsf{T}}$.

The following example is fundamental:

Example 4.1 (Gram matrices). Let $M \in \mathbb{R}^{k \times n}$. Then the $n \times n$ "Gram matrix" $A \stackrel{\text{def}}{=} M^{\mathsf{T}} M$ is symmetric.

Proof of Theorem 2.1

We will need the following result.

Proposition 4.3

Let V be a vector space of dimension n. Let $x_1, \ldots, x_k \in V$. If x_1, \ldots, x_k are linearly independent then one can find vectors $x_{k+1}, \ldots, x_n \in V$ such that (x_1, \ldots, x_n) forms a basis of V.

Let us write $k = \dim(\text{Ker}(L))$ and let us fix a basis (x_1, \ldots, x_k) of Ker(L). By Proposition 4.3 one can complete this family into a basis $(x_1, \ldots, x_k, x_{k+1}, \ldots x_m)$ of \mathbb{R}^m . We will show that

- (i) $\operatorname{Span}(L(x_{k+1}), \dots, L(x_m)) = \operatorname{Im}(L).$
- (ii) the family $(L(x_{k+1}), \ldots, L(x_m))$ is linearly independent.

By proving (i) and (ii) we will get that $(L(x_{k+1}), \ldots, L(x_m))$ is a basis of Im(L) which implies that

$$rank(L) = \dim(Im(L)) = m - k = m - \dim(Ker(L)),$$

hence the result.

We start by proving (i). Since $L(x_{k+1}), \ldots, L(x_m)$ are all in $\operatorname{Im}(L)$ (which is a linear subspace) any linear combination of these vectors belongs to $\operatorname{Im}(L)$, hence $\operatorname{Span}(L(x_{k+1}), \ldots, L(x_m)) \subset \operatorname{Im}(L)$.

Let us prove the converse inclusion. Let $y \in \text{Im}(L)$, which means that we can find $z \in \mathbb{R}^m$ such that y = L(z). Let $(\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m$ be the coordinates of z in the basis (x_1, \ldots, x_m) : $z = \alpha_1 x_1 + \cdots + \alpha_m x_m$. We have then by linearity of L

$$y = L(z) = L(\alpha_1 x_1 + \dots + \alpha_m x_m) = \alpha_1 L(x_1) + \dots + \alpha_m L(x_m).$$

Recall now that x_1, \ldots, x_k belong to Ker(L). Therefore $L(x_1) = \cdots = L(x_k) = 0$. We get

$$y = \alpha_{k+1}L(x_{k+1}) + \dots + \alpha_mL(x_m),$$

hence $y \in \operatorname{Span}(L(x_{k+1}), \dots, L(x_m))$: $\operatorname{Im}(L) \subset \operatorname{Span}(L(x_{k+1}), \dots, L(x_m))$. We conclude that $\operatorname{Im}(L) = \operatorname{Span}(L(x_{k+1}), \dots, L(x_m))$.

Let us now prove (ii). To prove that $(L(x_{k+1}), \ldots, L(x_m))$ are linearly independent, we consider scalars $\alpha_{k+1}, \ldots, \alpha_m \in \mathbb{R}$ such that $\alpha_{k+1}L(x_{k+1}) + \cdots + \alpha_mL(x_m) = 0$. Our goal is to show that $\alpha_{k+1} = \cdots = \alpha_m = 0$. We have by linearity of L:

$$0 = \alpha_{k+1}L(x_{k+1}) + \dots + \alpha_mL(x_m) = L(\alpha_{k+1}x_{k+1} + \dots + \alpha_mx_m)$$

which gives that $\alpha_{k+1}x_{k+1} + \cdots + \alpha_m x_m \in \text{Ker}(L)$. Recall that (x_1, \ldots, x_k) is a basis of Ker(L), so there exists scalars $\alpha_1, \ldots, \alpha_k$ such that $\alpha_1 x_1 + \cdots + \alpha_k x_k = \alpha_{k+1} x_{k+1} + \cdots + \alpha_m x_m$. We obtain

$$\alpha_1 x_1 + \dots + \alpha_k x_k - \alpha_{k+1} x_{k+1} - \dots - \alpha_m x_m = 0$$

which implies that $\alpha_1 = \cdots = \alpha_m = 0$ because (x_1, \ldots, x_m) is a basis of \mathbb{R}^m . This proves (ii). \square

