目录

1	. 定义	1
	1.1 函数的变分	1
	1.2 泛函的变分	1
	1.3 泛函变分的基本运算法则	1
	1.4 泛函变分举例	2
2	· 欧拉─拉格朗日方程	2

1 定义

1.1 函数的变分

函数 y(x) 的变分定义为 $\delta y=y_1(x)-y(x)$, 其中 $y_1(x)$ 是"靠近"y(x) 的一个函数, 即 δy 是同一自变量 x 处相邻函数的函数值之差。

注意:

$$(\delta y)' = y_1'(x) - y'(x) = \delta y'$$
$$(\delta y)^n = \delta y^n$$

1.2 泛函的变分

定义泛函 $J[y(x)] = \int_a^b f(x,y,y') dx$,则增量 $\triangle J = \int_a^b [f(x,y+\delta y,y'+\delta y') - f(x,y,y')] dx = \int_a^b [\frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y' + \frac{1}{2} \frac{\partial^2 f}{\partial^2 y} (\delta y)^2 + \frac{\partial^2 f}{\partial y \partial y'} \delta y \delta y' + \frac{1}{2} \frac{\partial^2 f}{\partial y'^2} (\partial y')^2 + \cdots] dx$

舍弃掉 δy 和 $\delta y'$ 二次项及以上的高次项,得到关于 δy 和 $\delta y'$ 一次项的和,称为 $J[y(X)] = \int_a^b f(x,y,y') \mathbf{d}x$ 的一阶变分,简称为泛函的变分,即 $\delta J = \int_a^b \left(\frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y'\right) \mathbf{d}x$ 。

1.3 泛函变分的基本运算法则

泛函变分运算法则与微分运算法则基本相同

$$(\delta F_1 + F_2) = \delta F_1 + \delta F_2$$

$$(\delta F)^n = nF^n - 1\delta F$$

$$(\delta F_1 \cdot F_2) = F_2 \delta F_1 + F_1 \delta F_2$$

$$(\delta(\frac{F_1}{F_2}) = \frac{1}{F_2^2} (F_2 \delta F_1 - F_1 \delta F_2)$$

$$\delta \int_a^b F dx = \int_a^b \delta F dx$$

1.4 泛函变分举例

计算泛函 $J[y(x)] = \int_{-1}^{1} (y'e^7 + xy^2) dx$ 的变分

 $\delta J[y(x)] = \delta \int_{-1}^{1} (y'e^7 + xy^2) \mathbf{d}x = \int_{-1}^{1} (2xy\delta y + e^7\delta y') \mathbf{d}x = \int_{-1}^{1} (2xy\delta y) \mathbf{d}x + \int_{-1}^{1} e^7 \mathbf{d}\delta y = \int_{-1}^{1} (2xy\delta y) \mathbf{d}x,$ 最后一步利用上边界上函数变分为 $\mathbf{0}$ 。

2 欧拉-拉格朗日方程

欧拉—拉格朗日方程是泛函极值问题的必要条件, 假设 J[y(x)] 的极值问题的解为 y=y(x), 现在推导这个解所满足的微分方程。