

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

An Interactive Web Solution for Electronic Health Records Segmentation and Prediction

Sudeep Mathew

SRN: R19MBA09

Date: 27/08/2022

MBA in Business Analytics

Capstone Project Presentation Year: II

race.reva.edu.in

Agenda

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

01 Introduction

Back Ground | Current status | Why this study

05 Project Methodology

Conceptual Framework | Research Design

02 Literature Review

Seminal works | Summary | Research Gap

06 Business Understanding

Business Context | Monetary Impact

03 Problem Statement

Business Problem | Analytics Solution

n7 Data Understanding

Data Collection | Variables

04 Project Objectives

Primary & Secondary Objectives | Expected Outcome

08 Data Preparation

Pre-processing | Process \| Techniques

09 Descriptive Analytics

Univariate | Bivariate | Hypothesis

10 Modeling

Machine Learning | Model Evaluation | Insights

11 Model Deployment

Applications | Demo

12 Suggestions and Conclusions

Insights | Next Step \| Future Scope

13 Annexure

References | Publications | Plagiarism Score

Introduction

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Electronic Health Record (EHR)
Is a source of meaningful insights to the Patients health

Literature Review

Established as per the section 2(f) of the UGC Act, 1956,

Year	Author	Description
2021	Irine	Discussed about various NLP Application in the EHR dataset
2020	Aurelie, Macio	Works indicated that traditional classification model suitable best for the EHR text data classification
2016	Ziyi Liu	Indicated that structured data is not enough to get good accuracy but instead combining unstructured data will yield higher accuracy
2018	Bo jin	LSTM sequential model created for predicting the risk of heart failure
2019	Lutz	Mentioned that natural grouping is present in EHR data and hierarchical clustering provides higher quality clusters than kmeans
2021	Hubbard	Developed a machine learning model for predicting the risk of type 2 diabetics patients
2020	Mantas	LDA approach for segmenting patients EHR data

Business Problem

- Early identification and prevention of disease, and thereby ensuring patient care have been crucial steps for clinical research. Companies find it difficult to analyze and interpret patients' electronic health records.
- The medical or clinical team does not have a way to **explore the data and segment** patients.
- The prevention of the occurrence of a serious adverse event like the probability of
 occurrence of death must be prevented. Continuous monitoring of patients' EHR records
 and predictive analytics reduce the risk to patient's life.

Proposed Solution

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Web Interactive Application

Exploratory Data Analytics Tool

Patients Chest Heart Failure Segmentation Tool

Patient Serious Adverse Event Prediction

Project Methodology

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Approach

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Business Understanding

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

DECISION MAKING

Approved by AICTE, New Delhi

Data Understanding

Data has collected from MIMIC 111 Data Mart and it consists of 46000 patients electronic health records

Datasets	Description
Patients	Demographic data for unique patients
Admission	Consists of unique records
D_ICD_Diagnosis	Standard coding datasets for diagnosis
DIAGNOSIS_ICD	The standard dataset contains coded information
Prescription	Dataset related to the drug administrated to the patient

Data Understanding

Fields

SUBJECT_ID

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Fields	Description	
Subject_id	Unique id for all patients	
Gender	Gender for each patients	
DOB	Date of birth of the patients	
DOD	Date of Death of the patients	
DOD_HOSP	Date of death if the death at the hospital	
EXPIRE_FL AG	Determine if the patients died or alive	

Fields	Description
SUBJECT_ID	Unique id for all patients ♥
	Unique id for every
HADM_ID	hospital admissions for
	each patients
	Date and time of ICU
STARTDATE	admission date and time
ENDDATE	ICU end date time
	Drug name given to
DRUG	patient

Unique id for every hospital admissions for HADM_ID each patients ADMITTIME Date and time of admissions DISCHTIME Date and time of discharge **DEATHTIME** Date of death if the death at the hospital Admission type whether it is elective or ADMISSION_TYPE emergency ADMISSION_LOCATION Location of the Admission **ETHNICITY** Ethnic of the patient DIAGNOSIS Diagnosis of the patients disease HOSPITAL_EXPIRE_FLAG Whether the patient dies in hospital or not Fields Description Standard code for the diagnosis ICD9 CODE Short title for each diagnosis SHORT_TITLE Title for Long each LONG TITLE diagnosis

Description

Unique id for all patients

Data Preparation

Modeling

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Segmentation

SAE Classification

Model Evaluation

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi Segmentation

Six Clusters were optimal

SAE Classification

Machine Learning Model	AUC Score
Logistic Regression	89%
Naïve Bayes	86%

Deployment

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

EDA Application

- Males 54 % and Females 45 % and different age groups are present and 65 % of People are died and no people had diabetic and 70 % of people has respiratory disease
- No of days admitted in the hospital less, no of days mean is 14 and dug administrated days mean is 10 but no of drugs given to them is huge
- Even though no of days admitted is less however they have more number of drugs

- Only Females very old age people present in this cluster and patient are expired and not expired with almost same distribution
- kidney issues presence is lower
- No people has diabetic and very few people had respiratory issues
- People are not admitted to hospital often and drug administrated days are less
- Though patients are not admitted often they have consumed more drugs

- Both Females and males are equally distributed and most of the patients are adults and senior citizen and very few very old age people and people are died in this cluster is 50 % lesser than not died people
- Most of the people has kidney issues and all the people has diabetic issue and most people has respiratory issues
- No of day's admitted is less and count of diagnosis is more and drug administrated days are more

- Both Male and Females are equally distributed and majority patients are senior citizen
- Most of them expired during the treatment and most of them have kidney issues and none of them had diabetic issue however majority suffered from the respiratory issues
- No of days admitted is more and count of diagnosis is more and patients consumed more drugs in this clusters

- Only Females present in this cluster and all are senior citizen and all are expired and every one suffered from kidney issue
- No of days admitted is less and count of diagnosis is more and drug administrated days are very high

Established as per the section 2(†) of the UGC Act, 1956, Approved by AICTE, New Delhi

Segmentation Cluster6

All are males in this cluster and every one are senior citizen and both died and not died people are equally presented

Most of them do not have kidney issue and none of them had diabetics and most of them had respiratory problem

Classification Results

Machine Learning Model	AUC Score
Logistic Regression	89%
Naïve Bayes	86%

The Logistic Regression model produces higher AUC score 89 % and the model integrated with web application for predicting serious adverse event

Conclusion

- This work is intended to provide a business solution to the health care industry and to ensure the safety of the patients the proposed solution is to help the clinician and medical monitors to bring the EHR data to the app and gains insights and statistics
- App facilitates the feature to segment the patients for chest heart failure and finally, app recommends the predictability of the occurrence of serious adverse events during the conduction of clinical trial

References

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

- 1) Adler Perotte, R. R. (2015). Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis.
- 2) Ahmed Alsayat, H. E.-S. (2016). Efficient genetic K-Means clustering for health care knowledge discovery.
- 3) Andrew J. Steele, S. C. (2018). Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease.
- 4) Aurelie Mascio, Z. K. (2020). Comparative Analysis of Text Classification Approaches in Electronic Health Records.
- 5) Berger, M. L. (2016). Opportunities and challenges in leveraging electronic health record data in oncology. .
- 6) Bittar, A. V. (2020). Text Classification to Inform Suicide Risk Assessment in Electronic Health Records.
- 7) BO JIN, C. C. (2018). Predicting the Risk of Heart Failure With EHR Sequential Data Modeling.
- 8) Churpek MM, Y. T. (2014). Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards.
- 9) Eichler, H. G.-D. (2019). Data rich, information poor: can we use electronic health records to create a learning.
- 10) Estiri, H. K. (2019). A clustering approach for detecting implausible observation values in electronic health records data. .
- 11) Gabriele Spini, M. v. (2019). Private Hospital Workflow Optimization via Secure k -Means Clustering.
- 12) Hubbard, R. A. (2021). Studying pediatric health outcomes with electronic health records using Bayesian clustering and trajectory analysis. .
- 13) Irene Li, J. P. (2021). Neural Natural Language Processing for Unstructured Data in Electronic Health Records: a Review.
- 14) Jose Roberto Ayala Solaresa, b. F. (2019). Deep learning for electronic health records: A comparative review of multiple deep neural architectures.
- 15) LÜTZ, E. (2019). Unsupervised machine learning to detect patient subgroups in electronic health records.
- 16) Mantas, J. (2020). Unsupervised machine learning for the discovery of latent clusters in COVID-19 patients using electronic health records.
- 17) Mascio, A. K. (2020). Comparative analysis of text classification approaches in electronic health records.
- 18) Pai, M. M. (2021). Standard electronic health record (EHR) framework for Indian healthcare system. Health Services and Outcomes Research Methodology.
- 19) Wang, Y. Z. (2020). Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records.
- 20) Yadav, P. S. (2018). Mining electronic health records (EHRs) A survey. ACM Computing Surveys.
- 21) Ziyi Liu, J. Z. (2016). Machine Learning for Multimodal Electronic Health Records-based.

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

