

ရေသွင်းနည်းအမျိုးမျိုးနှင့် အစက်ချရေသွင်းနည်းစနစ်အကြောင်း

အမှာစာ

မကွေးတိုင်းဒေသကြီး၊ မကွေးမြို့နယ်၊ မင်းလှမြို့နယ်နှင့် မြို့သစ်မြို့နယ်များတွင် ပြုလုပ်လျှက်ရှိသော "ENI Foundation မှ အထောက်အပံ့ပေးပြီး PC Myanmar အဖွဲ့" မှ ဆောင်ရွက်လျှက် ရှိသော စီမံကိန်းတွင် အစက်ချရေပေးစနစ်ကိုအသုံးပြု၍ ဟင်းသီး ဟင်းရွက်စိုက်ပျိုးခြင်းကို ဆောင်ရွက်လျှက်ရှိပါသည်။ စိုက်ပျိုးရေ ရှားပါးမှုပြဿနာနှင့် ရင်ဆိုင်နေကြရသော အပူးပိုင်းဒေသရှိ တောင်သူများ အနေဖြင့် ရေကို စနစ်တကျ အသုံးချတတ်ရန် လိုအပ်လှပါသည်။

သဘာဝအရင်းအမြစ်များကို စနစ်တကျ စီမံခန့်ခွဲမှု နည်းပညာ များတိုးတက်လာသည့်အခါစိုက်ပျိုးထုတ်လုပ် သူများအနေဖြင့်လည်း စေတ်နှင့်လျော်ညီသော စိုက်ပျိုးနည်းစနစ်များ နည်းပညာများကို လေ့လာဆောင်ရွက်ကြရေည်ဖြစ်ပါသည်။ အစက်ချရေသွင်း စိုက်ပျိုးရေး စနစ်သည် အချိန်ကုန်လုပ်အားသက်သာ၍ ထိရောက်သော ရေသွင်း နည်းစနစ်ဖြစ်ပြီး တဖြည်းဖြည်းတွင်ကျယ်လာသော နည်းပညာတစ်ခု ဖြစ်ပါသည်။ အစက်ချရေသွင်းစနစ်ကို အသုံးပြု၍သီးနှံစိုက်ပျိုး ထုတ်လုပ်လိုသည့် တောင်သူများအနေဖြင့် အထောက်အကူ ဖြစ်စေ အံ့သောငှာ ဤစာအုပ်ကို စုစည်းတင်ပြုခြင်းဖြစ်ပါသည်။

ဤစာအုပ်အား စုစည်းတင်ပြခွင့်ပေးပါသော PC Myanmar မှ ဆရာ၊ ဆရာမများ၊ ဝိုင်းဝန်းကူညီဆောင်ရွက်ပေးကြပါသော ညီအစ်ကို မောင်နှမများအားကျေးဇူးတင်အထူး တင်ရှိပါသည်။

တောင်သူများအနေဖြင့်လည်း ခေတ်မီရေအစက်ချစနစ်ကို အသုံးပြု၍ သီးနှံစိုက်ပျိုးထုတ်လုပ်မှုတွင် ရေရှားမှုကြောင့်ကြုံတွေနေ ရသော အခက်အခဲများအား ကျော်လွှားနိုင်ပါစေဟု ဆန္ဒပြု လိုက်ပါသည်။

> ဇော်ထွန်း (B.Agr.Sc) (PC Myanmar)

မာတိကာ

စဉ်	အကြောင်းအရာ	စာမျက်နာ
ЭШ	နိဒါန်း	၁
اال	အသုံးများသော ရေသွင်းနည်းစနစ်များ	
Ы	မြောင်းရေသွင်းစနစ်	J
911	ရေလွှမ်းရေသွင်းစနစ်	J
၅။	ရေခွက်ကျင်းများဖြင့် ရေသွင်းစနစ်	9
GII	ရေဖျန်းကိရိယာသုံး ရေသွင်းစနစ်	9
၇။	ရေထမ်းပုံးများဖြင့် ရေပေးခြင်း	9
ଗା	အစက်ချရေပေးသွင်းနည်းစနစ်	9
	(က) မြေမျက်နှာ သွင်ပြင်	િ
	(ခ) မြေဆီလွှာအမျိုးအစား	?
ତା	ရေရရှိမှုနှင့် ရေ၏ အရည်အသွေး	၈
OOII	သီးနှံအမျိုးအစား	၈
OOII	အစက်ချရေသွင်းစနစ်ပြုလုပ်ရာတွင် လိုအပ်သည့်	e
	ပစ္စည်းများ	
၁၂။	ရေအစက်ချပိုက်များနှင့် တပ်ဆင်အသုံးပြုပုံများ	၁၂
၁၃။	အစက်ချရေသွင်းစနစ်၏ အားသာချက်များ	၁၂
291	အစက်ချရေသွင်း၏ အားနည်းချက်များ	၁၃
၁၅။	သမရိုးကျ ရေသွင်းစနစ်၏ အစက်ချရေသွင်းစနစ်တို့ဖ	၏ ၁၄
	သီးနှံအထွက်အပေါ် အကျိုးသက်ရောက်မှု နှိုင်းယှဉ်	ပုံ
	രധാഃ	
၁၆။	အစက်ချရေသွင်း စနစ်ဖြင့် မြေဩဇာသုံးစွဲမှုကို	99
	ကျော့ချနိုင်ပုံ ဇယား	
၁၇။	ကိုးကားချက်များ	၁၅

သီးနှံပင်များအတွက် အသုံးပြုနေကြသော ရေသွင်းနည်းစနစ်များနှင့် အစက်ချရေသွင်းစနစ်အကြောင်း ^{နို့ချ}န်း

ရေသည် သက်ရှိသတ္တဝါတိုင်းအတွက် မရှိမဖြစ်လိုအပ်သော အရာဖြစ်သည်။ နေ့စဉ်လူနေမှုဘဝအတွက် ရေသည် အရေးကြီး သော အရာဖြစ်သကဲ့သို့ အပင်များအတွက်လည်း ရေမရရှိပါက ရှင်သန်ဖြစ်ထွန်းနိုင်စွမ်းမရှိပေ။ စိုက်ပျိုးသောသီးနှံအမျိုးအစား၊ မြေ အနေအထားနှင့်ရေရရှိမှု အပေါ် မူတည်၍ ရေကိုပုံစံ အမျိုးမျိုးဖြင့် စိုက်ခင်းများတွင် အသုံးချနေကြသည်။ စိုက်ပျိုးရေကို ဆည်များမှ တဆင့်သော်လည်းကောင်း၊ ကန်များတူးပြီး ရေကိုလှောင်၍သော် လည်းကောင်း၊ ချောင်းများကိုပိတ်လှောင်၍ သော်လည်းကောင်း ပုံစံ အမျိုးမျိုးဖြင့်အသုံးပြုကြသည်။ ဆည်မြောင်း၊ ကန်၊ ချောင်းများနှင့် ဝေးသောနေရာများတွင် မိုးကောင်းသောက် စိုက်ပျိုးရေးအဖြစ် ရပ်တည်နေကြပြီး၊ ရေတွင်းများ တူးဖော်ပြီးစိုက်ပျိုးရေးအတွက် လိုအပ်သောရေကို ထုတ်ယူသုံးစွဲနေကြသည်လည်းရှိသည်။

အသုံးများသော ရေသွင်နည်းစနစ်များ

ခေတ်အဆက်ဆက်ရေသွင်းနည်း စနစ်များစွာရှိရာတွင် အသုံး များသော ရေပေးစနစ်ပုံစံများမှာ - စိုက်ခင်းတစ်ခုလုံးအား လွှမ်းခြုံရေ ပေးသွင်းခြင်း (Flood irrigation) မြောင်းဖော်၍ရေပေးသွင်းခြင်း (Furrow irrigation)၊ ကျင်းခွက်များပြုလုပ်၍ ရေသွင်းခြင်း (Basin Irrigation)၊ ရေဖျန်းကိရိယာအသုံးပြု၍ ရေပေးခြင်း (Sprinkler Irrigation)၊ ရေထမ်းပုံးဖြင့်လောင်း၍ ရေပေးခြင်းနှင့် အစက်ချ ရေပေးခြင်း (Drip Irrigation) တို့ဖြစ်သည်။

မိုးခေါင်ရေရှားသော အပူပိုင်း မိုးနည်းရပ်ဝန်းဒေသများတွင် သီးနှံပင်များသည် ရေလုံလောက်စွာ မရရှိသောကြောင့် ပျက်စီး ဆုံးရှုံးကြရသည်။ သီးနှံပင်များ၏ ရေလိုအပ်ချက်ကို ဖြည့်ဆည်း ပေးနိုင်ရန်အတွက် ရေပေးသွင်းမှု ပုံစံများသည် စိုက်ပျိုးသူများ အတွက်အရေးပါလှသည်။

မြောင်းရေသွင်းစနစ် (Furrow Method) - ဤစနစ်တွင် ရေမြောင်းများအား သီးနှံပင်ကြားတစ်လျှောက် တဖက်တချက်စီတွင် ပြုလုပ်ပြီး ရေသွင်းပေးခြင်းဖြစ်သည်။ ဤစနစ်သည် ရေစီးဆင်းမှုနှုန်း ကို ထိန်းချုပ်၍ရသော နေရာများတွင် သင့်တော်သည်။ စိုက်ပျိုးသော သီးနှံအမျိုးအစား၊ မြေအမျိုးအစားအပေါ် မူတည်၍ မြောင်းအကျယ် ကိုပြုလုပ်ပေးရသည်။ သွင်းရေသည် ရေမြောင်း၏ ဘေးတဖက် တချက်မှာရှိသော မြေကိုစွတ်စိုစေခြင်းဖြင့် အပင်အတွက် လိုအပ် သော ရေကိုရရှိစေခြင်းဖြစ်သည်။ သဲဆန်သော မြေမှလွဲ၍ မြေအများ စုအတွက်သင့်လျော်သည်။ ဥယျဉ်ခံ့သီးနှံစိုက်ခင်းများ၊ ဟင်းသီး ဟင်းရွက် စိုက်ခင်းများတွင် အများဆုံးအသုံးပြုသည်။ အားနည်း ချက်မှာ သွင်းရေမှတဆင့် အပင်ရောဂါများ ကူးစက်ပြန့်နှံ့ခြင်းများ၊ အနိမ့်ပိုင်းကျသော နေရာများတွင် ရေဝပ်ခြင်းများ၊ ဓာတ်မြေသြဇာ ရရှိမှု မညီညာခြင်းများ ဖြစ်ပေါ် စေနိုင်သည်။

ရေလွှမ်းရေသွင်းစနစ် (Flood Method) - စိုက်ခင်းတစ်ခုလုံး အား ရေလွှမ်း၍ပေးသွင်းသော ဤရေသွင်းစနစ်သည် ရေပေါများစွာ ရရှိသော နေရာများတွင် အသုံးပြုနိုင်သည်။ စိုက်ခင်းတစ်ခုလုံး ရေလွှမ်းသွားသဖြင့် သီးနှံပင်များ၏ ရေလိုအပ်မှုကို အဆင်ပြေစေပြီး အမြစ်ဖွဲ့ စည်းပုံကျယ်ပြန့်သော သီးနှံစိုက်ခင်းများအတွက် ဤစနစ် သည် အသင့်တော်ဆုံးဖြစ်သည်။ ဤစနစ်အသုံးပြုမည့်စိုက်ခင်းသည် မြေပြင်ညီညာရန်လိုအပ်ပြီး ရေထုတ်မြောင်းများကြိုတင် ပြုလုပ်ထား ရန် လိုအပ်သည်။ အချိန်ကြာမြင့်စွာ ရေဝပ်ခြင်း၊ အပင်အတွက် အာဟာရများ ရေနှင့်အတူမြောပါသွားခြင်းများဖြစ်စေနိုင်သည်။

ရေခွက်ကျင်းများဖြင့် ရေသွင်းစနစ်(Basin Method) - ဤစနစ် တွင် သေးငယ်သော ရေခွက်ကျင်းများအား အပင်ခြေတွင် ပြုလုပ်ရ သည်။ ၎င်းရေခွက်ကျင်း တစ်ခုနှင့်တစ်ခုကို ရေသွင်းမြောင်း အဖြောင့်ဖြင့် ဆက်သွယ်ထားသည်။ သွင်းရေများသည် ရေသွင်း မြောင်းတစ်လျှောက် အပင်ခြေများကို တိုက်ရိုက်ထိကာ စီးဆင်းသွား သည်။ ဤစနစ်တွင် သဘာဝမြေဩဇာနှင့် ဓာတ်မြေဩဇာများသည် ရေစီးကြောင်းနှင့်အတူမျောသွင်းပြီး ရေသွင်းမြောင်အဆုံးတွင် စုနေ နိုင်သည်။ ရောဂါရှိသောအပင်မှ အပင်ရောဂါများ သွင်းရေမှတဆင့် အရြားအပင်သို့ကူးစက်နိုင်သည်။

ရေဖျန်းကိရိယာသုံး ရေသွင်းစနစ် (Sprinkler Method) - ဤစနစ်သည် အစက်ချရေသွင်းစနစ်ကဲ့သို့ ရေကိုအကျိုးရှိရှိနှင့် အပင်များအတွက် ညီညီညာညာ ပေးဝေးနိုင်သည်။ ဤစနစ်သည် တောင်စောင်းများနှင့် မြေမညီညာသော နေရာများတွင်ပိုမို သင့်လျော်သည်။ လွှမ်းခြုံရေသွင်းစနစ်ထက် ရေကုန်ကျမှုကို ၃၅ - ၄၀% အထိသက်သာစေသည်။ ရေတိုက်စားမှုကို သက်သာစေသည်။ သွင်းရေနှင့်အတူ အပင်အတွက် အာဟာရများနှင့် ဓာတုဆေးဝါးများ ကို တပါတည်း ထည့်သွင်းအသုံးပြုနိုင်သည်။ ရေဖျန်းကိရိယာသုံး ရေသွင်းစနစ်၏ အားနည်းချက်မှာ ကနဦးတပ်ဆင်စရိတ် ကြီးမားခြင်း နှင့် ရေငွေပြန်ဆုံးရှုံးနိုင်မှုများသည်။ ဤရေပေးစနစ်သည် သဲဆန် သော မြေများအတွက် သင့်လျော်သည်။ လေတိုက်စတ်မှု ပြင်းထန် ချိန် ရေဖြန်းပါက အပင်မှ ရေရရှိမှု မညီညာခြင်း၊ ရေမသန့်ရှင်းပါက ပိုက်လိုင်းများပိတ်ဆို့ ခြင်းများဖြစ်ပေါ် စေနိုင်သည်။

ရေထမ်းပုံးများဖြင့်ရေပေးခြင်း - ဤစနစ်ကို မြန်မာနိုင်ငံ နေရာ အတော်များများတွင် ဟင်းသီးဟင်းရွက် စိုက်ခင်းများတွင် အသုံးပြု လျှုက်ရှိကြသည်။ ချောင်း၊ မြောင်း၊ အင်းအိုင်၊ ရေကန်များ၊ မောင်း တွင်း၊ တုံကင်တွင်းများမှ ရေကိုသံပုံးများတွင်ထည့်၍ လူအားဖြင့် ထမ်းပိုးကာ စိုက်ခင်းများတွင် ပက်ဖျန်းအသုံးပြုကြသည်။ အပင် အတွက် လိုအပ်သော ရေပမာဏ ကိုချင့်ချိန်ပေးသွင်းနိုင်သည်။

အလုပ် သမားခကုန်ကျစရိတ်များသည်။

အစက်ချရေပေးသွင်းနည်းစနစ်

အစက်ချရေပေးသွင်းနည်းစနစ်ဆိုသည်မှာ ရေနှင့် အပင်အတွက် အာဟာရဓာတ်များကို အပင်၏ အမြစ်များဆီသို့ တဖြေးဖြေးချင်း တိုက်ရိုက်အစက်ချပေးသွင်းသော နည်းစနစ်ဖြစ်ပါသည်။ ရေကို အမြစ်ဇုံဆီသို့ တိုက်ရိုက်ရောက်ရှိစေရန်နှင့် ရေငွေ့ပြန်ဆုံးရှုံးမှု အနည်းဆုံးဖြစ်စေရန် ရည်ရွယ်ပါသည်။ ရေရှားပါးသော အရပ်ဒေသ များတွင် ဤစနစ်ကိုအသုံးပြု၍ ဟင်းသီးဟင်းရွက်များကို ရာသီ မရွေးစိုက်ပျိုးထုတ်လုပ်နိုင်သည်။ မြူနီစီပါယ်ရေ၊ မြေအောက်ရေများ၊ စမ်းရေများ၊ မြစ်ချောင်း အင်းအိုင်များမှ ရေကိုအသုံးပြုနိုင်ပါသည်။ အစက်ချရေပေးစနစ်သည် တောင်သူများအတွက် ကုန်ကျစရိတ် နည်းနည်းဖြင့် ဆောင်ရွက်နိုင်သော နည်းလမ်းများဖြစ်ပါသည်။ အထူးသဖြင့် မိုးရေ ရရှိမှု မသေချာသောနေရာများတွင် ရေသုံးစွဲမှု အကန့်အသတ်ရှိသော ဟင်းသီးဟင်းရွက်စိုက်ခင်းများတွင် အသုံးပြုရန် သင့်လျှော်သည်။ အချို့သော သီးနှံစိုက်ခင်းများတွင် အစက်ချ ရေသွင်းစနစ်နှင့်အတူပျိုးဘောင်၊ စိုက်ဘောင်များကို ပလစ်စတစ် များ၊ ကောက်ရိုးများဖုံးအုပ်ပေးခြင်းဖြင့် ရေကိုပိုမိုရွှေတာစေပြီး ပေါင်း ပေါက်ရောက်မှုကို သက်သာစေသည်။

ကနဦးအစက်ချရေသွင်းစနစ်ကို တရုတ်နိုင်ငံနှင့် အီဂျစ်နိုင်ငံ တို့တွင် လွန်ခဲ့သော ရှေးနှစ်ထောင်ပေါင်းများစွာကပင် စတင်အသုံးပြု ခဲ့ကြသည်။ ထိုစဉ်ကမြေအိုးများတွင် အပေါက်ငယ်များဖောက်ကာ အစက်ချရေပေးစနစ် ပုံစံမျိုးပြုလုပ်ခဲ့ကြသည်။ စေတ်မီ မိုက်ခရိုရေ သွင်းနည်းစနစ်ကို ၁၈၆ဂ ခုနှစ်တွင် ဂျာမနီနိုင်ငံမှ စတင်လေ့လာခဲ့ ကြသည်။ ဒုတိယက္ဘမှာစစ်ပြီးနောက်တွင် ပလစ်စတစ်ပိုက်များ အသုံးပြုမှုကို ဩစတေးလျနိုင်ငံမှ စတင်တီထွင်ခဲ့ပြီး ဆယ်စုနှစ်ကြာပြီးနောက် ပထမဆုံး ပလစ်စတစ်ရေအစက်ချ ပိုက်ခေါင်းကို အစွရေး နိုင်ငံမှ တီထွင်ခဲ့ပါသည်။ ၁၉၇ဂ ခုနှစ်များမှ စတင်၍ ဩစတေးလျ၊ အစွရေး၊ မက္ကဆီကို၊ နယူးဇီလန်၊ တောင်အာဖရိကနှင့် အမေရိကန် နိုင်ငံတို့သည် ဟင်းသီးဟင်းရွက်စိုက်ခင်းများ၊ ခြံများတွင် ရေ အစက်ချ ပေးစနစ်ကို ကျယ်ကျယ်ပြန့်ပြန့် အသုံးပြုလာကြသည်။

အစက်ချ ရေသွင်းစနစ်သည် အခြားသော ရေဖြန်းကိရိယာ သုံးပြု၍ ရေပေးခြင်း (Sprinkler irrigation) နှင့် သမရိုးကျရေသွင်း စနစ် (Surface irrigation) များထက်ပိုမိုထိရောက်သော ရေသွင်း စနစ်ဖြစ်ပါသည်။ ပိုမိုကောင်းမွန်သော အစက်ချရေသွင်းစိုက်ပျိုးနည်း ရရှိစေရန်နှင့် သင့်လျော်သော အစက်ချရေသွင်းစနစ်ကို ရွေးချယ် အသုံးပြုနိုင်ရန်အတွက် မိမိစိုက်ပျိုးလိုသည့် စိုက်ခင်း၏မြေမျက်နှာ သွင်ပြင် အနေအထား၊ မြေဆီလွှာအမျိုးအစား၊ ရေရရှိမှုနှင့် အရည် အသွေး၊ သီးနှံအမျိုးအစား၊ ရာသီဥတုနှင့်ကိုက်ညီသော စိုက်ပျိုးမှု အခြေအနေများကို ကြိုတင်သိရှိထားသင့်ပါသည်။ မြေမျက်နှာသွင်ပြင်- အစက်ချရေသွင်းစနစ်သည် အခြား ရေသွင်းစနစ်များနှင့်နှိုင်းယှဉ်ပါက နေရာမရွေးအသုံးပြနိုင်သော ရေသွင်း စနစ်ဖြစ်သည်။ သဲဆန်သောမြေ၊ ကျောက်သားထူထပ် သောနေရာ များ၊ လှိုင်းတွန့်ပုံသဏ္ဍာန် မြေမျက်နှာသွင် ပြင်ရှိသော နေရာများ၊ မတ်စောက်သောမြေနေရာအတွက် ဤစနစ်ကိုအသုံး ပြုနိုင်ပါသည်။ မြေမျက်နှာသွင်ပြင်အနေအထားအရ အသုံးပြုရမည့် အစက်ချဒီဇိုင်း ကို ရွေးချယ်သင့်သည်။

မြေဆီလွှာအမျိုးအစား - မြေအမျိုးအစားအပေါ် မူတည်၍ ရေအစက် ကျနှုန်းမတူညီသော အစက်ချပိုက်ခေါင်း (Emitters/Droppers)များကို ရွေးချယ်ပေးရပါမည်။ အဓိကမြေအမျိုးအစားသုံးမျိုးရှိပြီး တစ်ခုနှင့် တစ်ခု ရေစုပ်ယူမှုနှုန်းလည်းမတူညီပေ။

ရွံ့စေးမြေ - ရေစုပ်ယူမှု နှေးကွေးသည်။ မြေပေါ်တွင် ကျယ်ပြန့်စွာ ပြန့်နှံ့စိမ့်ဝင်ပြီး မြေအောက်တွင် လုံးချွန်းပုံပြောင်းပြန် စိမ့်ဝင်သည်။ ထိုမြေအမျိုးအစားတွင် တစ်နာရီလျှင် ဂါလန်ဝက်နှုန်းစိမ့်ထွက်သော ရေအစက်ချ ပိုက်ခေါင်းသည် ထိရောက်သော ရေစိမ့်နိုင်မှု ကို ရရှိရန် အကောင်းဆုံးဖြစ်သည်။

နှုန်းဆန်သောမြေ - ရေကိုပုံမှန်စုပ်ယူ နိုင်စွမ်းရှိသည်။ မြေကြီး အောက်ဘက်သို့ လုံးချွန်းပုံသဏ္ဍန်စိမ့်ဝင်ပြန့်နှံ့သည်။ တစ်နာရီလျှင် ဂါလန်ဝက်မှ တစ်ဂါလန်ထိ ထွက်ရှိနိုင်သော ရေအစက်ချခေါင်းသည် နန်းဆန်သောမြေမျိုးတွင် ပိုမိုထိရောက်စေနိုင်သည်။

သဲဆန်မြေ - ရေကိုလျှင်မြန်စွာ စုပ်ယူနိုင်ပြီး အောက်ဘက်သို့ အဖြောင့်အတိုင်းစိမ့်ဝင်ပြန့်နှံ့သည်။ သဲဆန်မြေတွင် တစ်နာရီလျှင် တစ်ဂါလန်မှ နှစ်ဂါလန်ထိ စိမ့်ထွက်နိုင်သော ရေအစက်ချခေါင်းသည် အမြစ်များအတွက် လုံလောက်သော ရေပမာကကို ထောက်ပံ့ ပေးနိုင်သည်။

9

ရေရရှိမျနင့် ရေ၏အရည်အသွေး-

မြေပေါ် တွင်ရရှိနိုင်သောရေ - ဆည်မြောင်းများ၊ မြစ်ချောင်း များ၊ ကန်များ၊ စွန့်ပစ်ရေများကိုဆိုလိုပါသည်။ ၎င်းရေများကို အသုံး ပြုမည်ဆိုပါက ပိုးမွှားရောဂါသန့်ရှင်းမှု အစရှိသည့် ဇီဝဗေဒဆိုင်ရာ ပြဿနာများအတွက် ဂရုစိုက်ရမည်။ စွန့်ပစ်ရေကို အသုံးပြုမည် ဆိုပါက ရေ၏အရည်အသွေးကိုစစ်ဆေး၍ ပြန်လည်သန့်စင်ပြီးမှ အသုံးပြုသင့်ပါသည်။ အသုံးပြုသော ရေတွင် ရေညှိရေမှော်များ၊ လူတို့စွန့်ပစ်သော ပစ္စည်းများ၊ အမှိုက်သရိုက်များကြောင့် ရေပိုက် များ ပိတ်ဆို့မှုများဖြစ်ပေါ် နိုင်ပါသည်။

မြေအောက်ရေ - မြေပေါ် မှရရှိသော ရေထက်အရည် အသွေးပိုင်းဆိုင်ရာ ပိုမိုမြင့်မားသည်။ သို့သော်လည်း သံဓာတ်နှင့် ဆားပါဝင်မှု စသည့် ရေ၏ အရည်အသွေးကို ကြိုတင်တိုင်းတာ သင့်သည်။ ၎င်းဓာတ်များ မြင့်မားစွာပါဝင်နေပါက အစက်ချ ပိုက်ခေါင်းများတွင် ပိတ်ဆို့ခြင်းများဖြစ်လာပြီး ရှင်းလင်းပေရန်လိုအပ် သည်။

သီးနှံအမျိုးအစား - သီးနှံအမျိုးအစားအလိုက် စိုက်တန်းအကွာ အဝေးမတူညီကြသကဲ့သို့ အသုံးပြုရမည့် အစက်ချခေါင်း အမျိုးအစား များကွဲပြားပါသည်။ သစ်ပင်ကြီးများ၊ နွယ်ပင်များ၊ အလှဆင်အပင် များနှင့် ခြုံပင်များကဲ့သို့သော စိုက်တန်းအကွားအဝေး ကျဲသော စိုက်ခင်းများ နေရာများတွင် သီးခြားအစက်ချခေါင်း သို့မဟုတ် ဆင့်ပွားအစက်ချခေါင်းများ အသုံးပြုရသည်။ သစ်သီးပင်ငယ်များ၊ ဟင်းသီးဟင်းရွက်စိုက်ခင်းများနှင့် အခြားပင်ကြား စိပ်စိပ်စိုက်ပျိုး ရသော စိုက်ခင်းများတွင် တဆက်တစပ်တည်းရှိနေသော ရေအစက်ချ ခေါင်း အမျိုးအစားကို အသုံးပြုရသည်။

အစက်ချရေသွင်းစနစ်ပြုလုပ်ရာတွင် လိုအပ်သည့် ပစ္စည်းများ -

- ရေစစ်ခေါင်း
- အစက်ချပိုက်များ
- ပလက်စတစ်ပိုက်ခေါင်းအဆက်များ
- ရေအစက်ချခေါင်းများ
- ရေဖိအားတိုင်းတာသည့် ကိရိယာများ
- ရေအဖွင့်အပိတ်ဘားများ
- မြေဩဇာထည့်သွင်းပေးသည့် ကိရိယာများ
- ရေလှောင်ကန် (ရေစည်၊ ရေကန်များ)
- စင်ဆောက်လုပ်ရန် လိုအပ်သော ပစ္စည်းများ

ရေအစက်ချစနစ် နမူနာပုံစံနှင့် ပါဝင်သည့်ပစ္စည်းများ

ရေစစ်ဗူးများ (Filters)

ရေစစ်ဗူးများသည် ရေစီးဆင်းရာ လမ်းကြောင်းတလျှောက် ပိတ်ဆို့မှုမဖြစ်စေရန် တပ်ဆင်ထားသည့် ပစ္စည်းဖြစ်သည်။ သင့်လျှော်သော ရေစစ်နည်းစနစ်မရှိပါက ရေပိုက်များနှင့်ရေထွက် ခေါင်းများတွင် ပိတ်ဆို့မှုများဖြစ်စေနိုင်သည်။ ရေပိုက်များတလျှောက် ပိတ်ဆို့စေနိုင်သော အရာများမှာ သဲများ၊ ရွံ့နွံများ၊ အမှိုက်များ၊ ရေညှိရေမှော်များ၊ သံချေးနှင့်ထုံးကဲ့သို့သော အရာများဖြစ်ကြသည်။

ရေနှင့်အတူ ပါလာသည့် အရာများကို စစ်သည့်ရေစစ်ဗူးများ

ရေအစက်ချခေါင်းများပိတ်ဆို့မှုသည် ဤရေသွင်းစနစ်တွင် အဓိက ပြဿာနာဖြစ်သည်။ အစက်ချခေါင်းများ ပိတ်ဆို့မှုကြောင့် အပင်များ မှ ရေကိုညီညာစွာရရှိမှုအပေါ် များစွာသက်ရောက်စေသည်။

ရေအစက်ချပိုက်ခေါင်းများ (Emitters/Droppers)

အစက်ချရေသွင်းစနစ်သည် အခြားသော သမရိုးကျ ရေသွင်း စနစ်နှင့် ရေဖျန်းကိရိယာအသုံးပြု ရေသွင်းစနစ်များထက် ရေလိုအပ် ချက်နည်းပါးသည်။ စိုက်ခင်း၏ မြေမျက်နှာသွင်ပြင်၊ မြေဆီလွှာ အမျိုး အစား၊ သီးနှံအမျိုးအစား၊ ရေလိုအပ်ချက် အပေါ် မူတည်၍ အသုံးပြု ရမည့်အစက်ချခေါင်းအမျိုးအစားကို ရွေးချယ်အသုံးပြုမှသာ စနစ်ကျ သော အစက်ချရေသွင်းစနစ်ကို ရရှိမည်ဖြစ်ပါသည်။

မြေဩဇာထည့်သည့် ကိရိယာ (Fertigation System)

အစက်ချရေသွင်းစနစ်နှင့်အတူအပင်အတွက်လိုအပ်သော အာဟာရများကိုတွက်ချက်၍ ထည့်သွင်းပေးခြင်းဖြင့် အောက်ပါ အကျိုးကျေးဇူးများကို ရရှိစေပါသည်။

- ◆ အစက်ချရေသွင်းစနစ်တွင် အပင်အတွက် လိုအပ်သော အာဟာရ များကို သွင်းရေနှင့်အတူ တပါတည်း ရောနှောကာထည့်သွင်း အသုံး ပြုနိုင်သည်။ ထည့်သွင်းရမည့် အာဟာရဓာတ်များကို ရေနှင့် အတူ အမြစ်ဇုံဆီသို့ တိုက်ရိုက်ထည့်သွင်းပေးခြင်းဖြင့် သာမာန်ထက် မြေဩဇာအသုံးပြုမှုကို လျော့ချပေး နိုင်သည်။
- ◆ သီးနှံပင်များ၏ ကြီးထွားမှု အဆင့်တိုင်းအတွက် အာဟာရပေးခြင်း
 ကို အချိန်ကိုက် ပြုလုပ်ပေးနိုင်သည်။
- ◆ အမြစ်ဇုံအောက်ဖက်သို့ ရေနှင့် အတူအပင်အတွက်အာဟာရများ
 စိမ့်ဝင်ဆုံးရှုံးမှုကို လျော့နည်းစေ နိုင်သည်။
- ◆ အပင်များကို ရေသွင်းသည့်အချိန်တွင် ပေါင်းသတ်ဆေး၊
 မြေဆောင်ရောဂါနှင့် မြေအောင်းပိုးများ ကာကွယ်နှိမ်နင်း ဆေးများ
 ကိုလည်း တပါတည်း ထည့်သွင်းပေးနိုင်သည်။
- ◆ ထို့အပြင် ရေသွင်းစနစ်တလျှောက်လုံးရှိ ပိတ်ဆို့နေသော ဓာတု ပစ္စည်းများ (ထုံး၊ သံချေး) နှင့် အခြားအရာများသန့်ရှင်းစေရန် အသုံးပြုသော ကလိုရင်း၊ ဆာလဖြူရစ်အက်ဆစ် အစရှိသည် တို့ကိုလည်း ထည့်သွင်းအသုံးပြုနိုင်သည်။

ရေအစက်ချပိုက်များနှင့်တပ်ဆင်အသုံးပြုပုံများ

အစက်ချရေသွင်းစနစ်၏ အားသာချက်များ

- ◆ ရေနှင့် အာဟာရဓာတ်များကို စိမ့်ဝင်ပြန့်နှံ့မှု လျော့ချပေးခြင်းဖြင့် ဆုံးရှုံးမှုကို နည်းပါးစေသည်။
- 🔷 အပင်အတွက်ရေရရှိမှု စွမ်းအားကို မြင့်မားစေသည်။
- 🔷 မြေမျက်နှာသွင်ပြင် ညီညာစေရန်မလိုအပ်ပေ။
- 🔷 မည်သည့် စိုက်ကွက်ပုံစံကိုမဆို ရေပေးသွင်းနိုင်သည်။
- 🔷 မြေဆီလွှာတိုက်စားမှုကို လျော့နည်းစေသည်။
- 🔷 ပေါင်းမြက်များပေါက်ရောက်မှုကို လျော့နည်းစေသည်။
- ◆ အစက်ချခေါင်းမှ ရေအထွက်ကို ထိန်းချုပ်ထားသောကြောင့် ရေစိမ့်ဝင်ပြန့်နှံ့မှု ညီညာစေသည်။
- ◆ အခြားရေသွင်းနည်းစနစ်များထက် အလုပ်သမားကုန်ကျစရိတ် သက်သာသည်။

- ◆ ဈေးကွက်ဝင်သီးနှံများအတွက် ပထမတစ်ရာသီအတွင်း မှာကုန်ကျစရိတ်ပြန်လည်ရရှိနိုင်သည်။
- ♦ အခြားသော ရေပေးစနစ်များထက် အစက်ချ ရေပေးစနစ်သည် ရေပမာက အနည်းငယ်သာ လိုအပ်သည်။
- ♦ စိုက်ပျိုးပင် (၁ဂဂ ၂ဂဂ) ပင်အတွက် တစ်နေ့ ရေလီတာ ၄ဂ မှ ဂဂ ခန့်သာ လိုအပ်သည်။
- ◆ ရေနှင့်အတူ ဓာတ်မြေဩဇာများကို တပါတည်း ကျွေးနိုင်ခြင်း စသည်တို့ဖြစ်ပါသည်။

အစက်ချရေသွင်းစနစ်၏ အားနည်းချက်များ

- 🗲 ကနဦးတပ်ဆင်စရိတ် မြင့်မားသည်။
- > လတ်တလောတွင် အသုံးပြုပစ္စည်းများကို ကျယ်ကျယ်ပြန့်ပြန့် မရနိုင်သေးပေ။
- > အသုံးပြု မည့်ရေသည် မကောင်း/မသန့်ရှင်းလျှင် ရေအစက်ခေါင်း များ ပိတ်ဆို့နိုင်သည်။
- 🗲 အတွေ့အကြုံနှင့် လေ့ကျင့်သင်ကြားထားမှု လိုအပ်နိုင်နေသေးသည်။
- > အစက်ချပိုက်ခေါင်းများပိတ်ဆို့မှဖြစ်ပေါ် စေနိုင်ပြီး မကြာခကာပြုပြင် ထိန်းသိမ်းရသည်။
- > လယ်ယာသုံးကိရိယာများအသုံးပြုခြင်းနှင့်မြေပြပြင်ထွန်ယက် စိုက်ပျိုးခြင်းချိန်များတွင် အဟန့်အတားများ ဖြစ်စေနိုင်သည်။

သမရိုးကျရေသွင်းစနစ်နှင့် အစက်ချရေသွင်းစနစ်တို့၏ သီးနှံအထွက် အပေါ် အကျိုးသက်ရောက်မှု နှိုင်းယှဉ်ပုံ

	အထွက်နှုန်း (တန်/ဟက်တာ)			
သီးနှံအမည်	သမရိုးကျရေသွင်း စိုက်ပျိုးရြင်း	အစက်ချရေသွင်း စိုက်ပျိုးခြင်း	တိုးတက်မှု%	
စရမ်းချဉ်သီး	6J	90	ეი	
သင်္ဘောသီး	op.9	J 2 .9	୧୭	
ශ ඛ්ඨ්ඃ	J9	99	ടെ	
ရုံးပတိသီး	၁၅.၃	၁၇.၇	၁၆	
റി	7.5	J.e	JE	
ကန်စွန်းဉ	9·J	ඉ.ල	୧୯	
ငရုတ်သီး	9·J	6.0	99	
ငှက်ပျောသီး	၅୯.၅	റെ.၅	ഉപ	
ကြံ	၁၂၈	၁၇ပ	99	
စပျစ်သီး	<u>J</u> G.9	6J.9	JP	
သလဲသီး	<u> </u>	၁၀၉	ලබ	
ရှောက်ချိုသီး	000	၁၅၀	၅၀	

Source; INCID (1994), Drip irrigation in India, New Delhi. (Task Force Report, 2004)

အစက်ချရေသွင်းစနစ်ဖြင့် မြေဩဇာသုံးစွဲမှုကို လျော့ချနိုင်ပုံ

သီးနှံအမည်	မြေဩဇာပမာကလျော့ချနိုင်မှု %	အထွက်နှုန်းတိုးတက်မှု %
ခရမ်းချဉ်သီး	90	99
အာလူး	90	50
ရုံးပတိသီး	90.	၁၈.
ငှက်ပျောသီး	Jo.	၁၁.
ල්	ეი	90
ဘရိုကိုလီ	90	20
Caster	Go	PJ
ကြက်သွန်	90	၁၆

Source; INCID (1994), Drip irrigation in India, New Delhi. (Task Force Report, 2004)

Reference

- Dripping planning guide. https://www.dripworks.com/resources/drip-planning-guide
- 2. Drip irrigation-Wikipedia. https://en.wikipedia.org/wiki/Drip_irrigation
- 3. Dr. Amresh Chandra Pandey, 2017. Design of Drip irrigation system.
 - https://www.researchgatenet/ publication/313770420_ Design_of_Drip_Irrigation_ Method
- Marvin Watson. Drip irrigation Design. https://csfs.colostate.edu/media/sites/22/2014/02/ cmvfs-DripIrrigationDesign20141.pdf
- Lorenzo Fellin, Lin Kyaw Thu and Moe Thae Oo, 2017.
 Low cost drip irrigation system in water scarce areas.
 G.R.E.A.T project