Nanostructures Nanomaterials

Synthesis, Properties, and Applications **2nd Edition**

World Scientific Series in Nanoscience and Nanotechnology

Series Editor: Mark Reed (Yale University)

- Vol. 1 Molecular Electronics: An Introduciton to Theory and Experiment Juan Carlos Cuevas (Universidad Autónoma de Madrid, Spain) and Elke Scheer (Universität Konstanz, Germany)
- Vol. 2 Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, 2nd Edition Guozhong Cao (University of Washington, USA) and Ying Wang (Louisiana State University, USA)

2 World Scientific Series in Nanoscience and Nanotechnology

Nanostructures Nanomaterials **S**

Synthesis, Properties, and Applications

2nd Edition

Guozhong Cao University of Washington, USA

Ying Wang

Louisiana State University, USA

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

World Scientific Series in Nanoscience and Nanotechnology, Vol. 2 NANOSTRUCTURES AND NANOMATERIALS, 2nd Edition Synthesis, Properties, and Applications

Copyright © 2011 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN-13 978-981-4322-50-8 ISBN-10 981-4322-50-4 ISBN-13 978-981-4324-55-7 (pbk) ISBN-10 981-4324-55-8 (pbk)

Typeset by Stallion Press

Email: enquiries@stallionpress.com

Printed in Singapore.

Preface to the Second Edition

We are delighted by the publication of this second edition by World Scientific Publishing Co. The first edition arrived at a time of great excitement in nanotechnology, and this excitement continues to grow. The main objective of this new edition was, therefore, to update with the new development in the processing and fabrication of nanostructures and nanomaterials in the past seven years, but retain the scope and the characteristic of the first edition: to summarize the fundamentals and technical approaches in synthesis, fabrication, and processing of nanostructures and nanomaterials so as to provide the readers with a systematic and coherent picture of the field and to serve as a general introduction to people just entering the field and experts seeking for information in other subfields.

The new edition features some rewritings to improve clarity, ranging from rewording to rearranging some paragraphs. Updates are found mostly in Chapters 3, 4, 6, and 9. Updated information on the synthesis of nanoparticles and core—shell nanostructures has been integrated into Chapter 3. A review on synthesis and properties of inorganic nanotubes (other than carbon nanotubes) has been added into Chapter 4. Chapter 6 has been updated by adding more information on synthesis of mesoporous materials and subsections on inverse opals and bio-induced materials. Chapter 9 has the most extensive expansion by adding applications of nanostructures and nanomaterials in lithium-ion batteries, hydrogen storage, thermoelectrics, environmental applications, photonic crystals, and plasmon devices. Other updates and revision include the replacement of figures in Chapters 1, 5, and 8.

We want to take this opportunity to thank the support from the readers throughout the world, and our particular appreciation goes to those who pointed out the errors, omissions, and ambiguity in the first edition.

We tried hard to make all the correction and improve the presentation in the second edition. However, it is apparent that we could not possibly incorporate all the important topics and all the new advancement in nanostructures and nanomaterials into this book.

We wish to acknowledge the help and support received from our colleagues, students, friends, and loved family members. We are indebted to Chuan Cai and Dongsheng Guan for taking care of the figures and the copyright permissions.

Guozhong Cao Seattle, WA

Ying Wang Baton Rouge, LA 10 May 2010

Contents

Prefe	ace to th	e Second Edition	V
Cha	pter 1	Introduction	1
1.1.	Introdu	action	1
1.2.	Emerge	ence of Nanotechnology	4
1.3.	Botton	n-Up and Top-Down Approaches	8
1.4.	Challer	nges in Nanotechnology	10
1.5.	Scope	of the Book	13
Refe	rences		15
Cha	pter 2 I	Physical Chemistry of Solid Surfaces	19
2.1.	Introdu	action	19
2.2.	Surface	e Energy	21
2.3.	Chemi	cal Potential as a Function of Surface Curvature	32
2.4.	Electrostatic Stabilization		38
	2.4.1.	Surface charge density	38
	2.4.2.	Electric potential at the proximity of solid surface	39
	2.4.3.	Van der Waals attraction potential	43
	2.4.4.	Interactions between two particles: DLVO theory	45
2.5.	Steric Stabilization		50
	2.5.1.	Solvent and polymer	51
	2.5.2.	Interactions between polymer layers	53
	2.5.3.	Mixed steric and electric interactions	57
2.6.	Summa	ary	57
Refe	rences		57

Chap	oter 3	Zero-Dimensional Nanostructures: Nanoparticles	61
3.1.	Introdu	action	61
3.2.	Nanoparticles Through Homogeneous Nucleation		
	3.2.1.	Fundamentals of homogeneous nucleation	63
	3.2.2.	•	69
		3.2.2.1. Growth controlled by diffusion	70
		3.2.2.2. Growth controlled by surface process	71
	3.2.3.	Synthesis of metallic nanoparticles	75
		3.2.3.1. Influences of reduction reagents	80
		3.2.3.2. Influences by other factors	83
		3.2.3.3. Influences of polymer stabilizer	86
	3.2.4.	Synthesis of semiconductor nanoparticles	93
	3.2.5.	· ·	102
		3.2.5.1. Introduction to sol–gel processing	102
		3.2.5.2. Forced hydrolysis	106
		3.2.5.3. Controlled release of ions	108
	3.2.6.	Vapor phase reactions	110
	3.2.7.	Solid-state phase segregation	112
3.3.	Nanoparticles Through Heterogeneous Nucleation		116
	3.3.1.	Fundamentals of heterogeneous nucleation	116
	3.3.2.	Synthesis of nanoparticles	118
3.4.	Kinetically Confined Synthesis of Nanoparticles		119
	3.4.1.	Synthesis inside micelles or using microemulsions	121
	3.4.2.	Aerosol synthesis	123
	3.4.3.	Growth termination	124
	3.4.4.	Spray pyrolysis	126
	3.4.5.	Template-based synthesis	126
3.5.	Epitaxi	ial Core–Shell Nanoparticles	127
3.6.	Summa	ary	130
Refe	rences		131
Chap		One-Dimensional Nanostructures: Nanowires	143
4.1.	Introdu		143
4.2.		neous Growth	145

Contents ix

	4.2.1.	Evaporation (dissolution)-condensation growth	146
		4.2.1.1. Fundamentals of evaporation (dissolution)-	
		condensation growth	146
		4.2.1.2. Evaporation-condensation growth	154
		4.2.1.3. Dissolution-condensation growth	159
	4.2.2.	Vapor (or solution)–liquid–solid (VLS or SLS)	
		growth	164
		4.2.2.1. Fundamental aspects of VLS and SLS	
		growth	164
		4.2.2.2. VLS growth of various nanowires	170
		4.2.2.3. Control of the size of nanowires	172
		4.2.2.4. Precursors and catalysts	177
		4.2.2.5. Solution-liquid-solid growth	180
	4.2.3.	Stress-induced recrystallization	183
4.3.	Templa	nte-Based Synthesis	183
	4.3.1.	Electrochemical deposition	184
	4.3.2.	Electrophoretic deposition	196
	4.3.3.	Template filling	204
		4.3.3.1. Colloidal dispersion filling	204
		4.3.3.2. Melt and solution filling	206
		4.3.3.3. Chemical vapor deposition	207
		4.3.3.4. Deposition by centrifugation	207
	4.3.4.	Converting through chemical reactions	208
4.4.	Electro	ospinning	213
4.5.	Lithog	* •	215
4.6.	Summa	ary	219
Refe	rences		219
Cha	pter 5	Two-Dimensional Nanostructures: Thin Films	229
5.1.	Introdu	action	229
5.2.	Fundar	mentals of Film Growth	230
5.3.	Vacuur	m Science	235
5.4.	Physica	al Vapor Deposition (PVD)	240
	5.4.1.	Evaporation	240
	542	Molecular beam enitaxy (MRE)	243

	5.4.3.	Sputtering	245
	5.4.4.	Comparison of evaporation and sputtering	247
5.5.	Chemical Vapor Deposition (CVD)		
	5.5.1.	Typical chemical reactions	248
		Reaction kinetics	251
	5.5.3.	Transport phenomena	251
		CVD methods	254
	5.5.5.	Diamond films by CVD	258
5.6.	Atomic	c Layer Deposition	260
5.7.	Superla	attices	265
5.8.	Self-A	ssembly	267
	5.8.1.	Monolayers of organosilicon or alkylsilane	
		derivatives	270
	5.8.2.	Monolayers of alkanethiols and sulfides	273
	5.8.3.	Monolayers of carboxylic acids, amines,	
		and alcohols	276
5.9.	Langm	uir–Blodgett Films	277
5.10.	Electro	ochemical Deposition	282
5.11.	Sol-Ge	el Films	284
5.12.	Summa	ary	289
Refer	rences		289
Chap	oter 6	Special Nanomaterials	297
6.1.	Introdu	action	297
6.2.	Carbon Fullerenes and Nanotubes		297
	6.2.1.	Carbon fullerenes	298
	6.2.2.	Fullerene-derived crystals	300
		Carbon nanotubes	300
6.3.	Micro and Mesoporous Materials		308
		Ordered mesoporous structures	308
	6.3.2.	Random mesoporous structures	320
		Crystalline microporous materials: Zeolites	324
6.4.	Core–Shell Structures		333
	6.4.1.	Metal-oxide structures	334

Contents xi

	6.4.2.	Metal–polymer structures	336
	6.4.3.	Oxide-polymer nanostructures	338
6.5.	Organi	c-Inorganic Hybrids	339
	6.5.1.	Class 1 hybrids	340
	6.5.2.	Class 2 hybrids	341
6.6.	Interca	lation Compounds	344
6.7.	Nanoco	omposites and Nanograined Materials	346
6.8.	Inverse	Opals	350
6.9.	Bio-Inc	luced Nanomaterials	353
6.10.	Summa	ary	354
Refe	rences		354
Chap	oter 7	Nanostructures Fabricated by Physical Techniques	369
7.1.	Introdu	ction	369
7.2.	Lithogi	raphy	371
	7.2.1.	Photolithography	371
	7.2.2.	Phase-shifting photolithography	375
	7.2.3.	Electron beam lithography	377
	7.2.4.	X-ray lithography	379
	7.2.5.	Focused ion beam (FIB) lithography	381
	7.2.6.	Neutral atomic beam lithography	384
7.3.	Nanomanipulation and Nanolithography		386
	7.3.1.	Scanning tunneling microscopy (STM)	387
	7.3.2.	Atomic force microscopy (AFM)	389
	7.3.3.	Near-field scanning optical microscopy (NSOM)	391
	7.3.4.	Nanomanipulation	394
	7.3.5.	Nanolithography	400
7.4.	Soft Lithography		405
	7.4.1.	Microcontact printing	405
	7.4.2	Molding	408
	7.4.3.	Nanoimprint	408
	7.4.4.	Dip-pen nanolithography	411
7.5.	Assem	bly of Nanoparticles and Nanowires	412
	7.5.1.	Capillary forces	413
	7.5.2.	Dispersion interactions	416

	753	Shear-force-assisted assembly	417
		Electric-field-assisted assembly	418
		Covalently linked assembly	418
		Gravitational-field-assisted assembly	419
		Template-assisted assembly	419
7.6.		Methods for Microfabrication	420
7.0. 7.7.	Summa		422
	rences	n y	422
Chai	ntor 8 (Characterization and Properties of Nanomaterials	433
_	=	_	
8.1.	Introdu		433
8.2.		aral Characterization	434
	8.2.1.	X-ray diffraction (XRD)	435
		Small angle X-ray scattering (SAXS)	436
		Scanning electron microscopy (SEM)	441
		Transmission electron microscopy (TEM)	444
		Scanning probe microscopy (SPM)	445
0.2		Gas adsorption	450
8.3.		cal Characterization	452
		Optical spectroscopy	452
		Electron spectroscopy	457
0.4	8.3.3.	1 3	459
8.4.	-	al Properties of Nanomaterials	461
		Melting points and lattice constants	462
		Mechanical properties	467
	8.4.3.	Optical properties	472
		8.4.3.1. Surface plasmon resonance	473
		8.4.3.2. Quantum size effects	478
	8.4.4.	Electrical conductivity	483
		8.4.4.1. Surface scattering	483
		8.4.4.2. Change of electronic structure	488
		8.4.4.3. Quantum transport	488
	_	8.4.4.4. Effect of microstructure	492
		Ferroelectrics and dielectrics	493
	8.4.6.	Superparamagnetism	496

Index

	Contents	xiii	
8.5.	Summary	498	
	references		
Chap	oter 9 Applications of Nanomaterials	509	
9.1.	Introduction	509	
9.2.	Molecular Electronics and Nanoelectronics	510	
9.3.	Nanobots	512	
9.4.	Biological Applications of Nanoparticles	514	
9.5.	Catalysis by Gold Nanoparticles	516	
9.6.	Bandgap Engineered Quantum Devices	518	
	9.6.1. Quantum well devices	518	
	9.6.2. Quantum dot devices	521	
9.7.	Nanomechanics	522	
9.8.	Carbon Nanotube Emitters	524	
9.9.	Energy Applications of Nanomaterials	527	
	9.9.1. Photoelectrochemical cells	527	
	9.9.2. Lithium-ion rechargeable batteries	530	
	9.9.3. Hydrogen storage	535	
	9.9.4. Thermoelectrics	538	
9.10.	Environmental Applications of Nanomaterials	540	
9.11.	Photonic Crystals and Plasmon Waveguides	542	
	9.11.1. Photonic crystals	542	
	9.11.2. Plasmon waveguides	544	
9.12.	Summary	546	
Refer	rences	546	
Арре	endices	561	

569