Graphs

Assuming no self-loops, no multiple edges.

Undir: $m \leq {n \choose 2}$, $\sum_{v} deg(v) = 2m$

Dir: $m \le n * (n-1)$, $\sum_{v} indeg(v) = \sum_{v} outdeg(v) = m$ Subgraph: result of removing an edge, $V' \subseteq V, E' \subset E$

Induced SG: result of removing node. Is subgraph, $e \in E' \leftrightarrow (e \in E \land A)$

u connected to $v: (u \sim v) \rightarrow \exists$ path from u to v

G connected if $(u \sim v) \ \forall (u, v)$

Representations

Adj. Matrix: row 1 = outgoing edge, col <math>1 = incoming edge

- Undir: $G = G^T$

- Find a neighbour: O(n)
- Access(v) = O(1), traverse V = O(n)
- Traverse all edges of v = O(n)
- Traverse all edges of $G = O(n^2)$
- $O(V^2) = O(n^2)$ space
- Adj. List: $\sum_{v} outdeg(v) = E$
- -O(V+E)=O(n+m) space
- Find a neighbour: O(1)
- Traverse all edges of v = O(|neighbours(v)|)
- Traverse all edges of G = O(m)
- Access(v) = O(1), traverse V = O(n)

Tree: connected, acyclic graph

- Add edge \rightarrow cycle; Remove edge \rightarrow not connected
- n 1 edges

Forest: graph with trees as connected components

Spanning tree: $T \subseteq G$ S.T V(T) = V(G)

Undir. is a tree \leftrightarrow connected and E = V - 1

- O(n+m) time (list), $O(n^2)$ (matrix)
- $\Theta(n)$ space for both list and matrix
- Finds all nodes, finds shortest path from s to all others

- O(n+m) time (list), $O(n^2)$ (matrix)
- O(n+m) space
- Finds all nodes, finds shortest path from s to all others

Edge Classes

The edge (u, v) refers to the FOREST, not the graph.

- Tree: $(u, v) \in \text{Forest}$
- Forward: v is descendant of u
- Back: v is ancestory of u (back = fwd in undirs)
- Cross: none of the above are true.
- Und: DFS tree/fwd only, BFS tree/cross only
- Dir: DFS: all edges, BFS: no fwd edges

DAGs

- Source: no incoming edges
- Sink: no outgoing edges
- Multiple sources/sinks are possible. At least one of each in every DAG.
- Source & Sink \rightarrow no cycles
- A Digraph is a DAG \leftrightarrow DFS has no back edges

- Produces ordering s.t $(u, v) \in E \to u$ appears before v in the ordering
- Digraph has a Toposort \leftrightarrow it is a DAG
- Run DFS, order in decreasing order of finish time
- -O(n+m)
- Orders are not unique.

SCCs

- Run DFS. Run DFS on G^T , in decreasing order of ftime. The forests of the transpose DFS are the SCCs.
- Independent of toposort ordering

Minimum Spanning Trees

- Spanning tree w/ minumum weight
- DFS and BFS build spanning trees, but not necessarily the MST.
- Optimal Substructure: if T = MST of $G \to T[U]$, where $U \subset V$, if T[U]is connected it is an MST.

Prim: add best vertex

Kruskal's Algorithm $(O((m+n)\log(n)))$

- Only consider edges that do NOT create a cycle (safe edges)
- Add lowest-cost edge on each iteration
- Has greedy-choice property

Edge Switching

- Let $e' \notin T$, where $T \cup \{e'\}$ has a cycle. For any $e \in E$, where e is in the cycle, $T \cup \{e'\} - \{e\}$ is a tree.

Single-Source Shortest Paths (SSSPs)

- The problem: find the min-cost path from source s to each vertex v.
- Shortest path is at most of length n-1.

If d(v) > d(u) + w(u, v), then $d(v) \leftarrow d(u) + w(u, v)$

Dijkstra

It's kind of like A^* search!

Algo: Init. $S = \emptyset$; Init. $d(v) = \infty$, $\forall v \neq s$, d(s) = 0; Init. Min-Queue, keyed by d(v). While $Q \neq \emptyset$, extract $u = \min(Q)$, Add u to S; Relax all edges (u, v).

- List + binary heap (as a min-PQ): $O((m+n)\log(n))$
- Matrix: $O(n^2 + m \log(n))$
- Fib heap: $\Theta(m + n \log(n))$
- No negative cycles (undir), no negative edges (dir)

Properties

Subpath Optimality: If P = (s, ...u, ...v, ...t), then each subpath is the shortest corresponding path.

Triangle Inequality: $d(u, w) \le d(u, v) + d(v, w)$.

Relaxing an Edge

- d(v) only updated w/ relax $\rightarrow d(v) \ge d(s, v)$

relax(u, v): if d(v) > d(u) + w(u, v):

 $d(v) \leftarrow d(u) + w(u, v)$

Bellman-Ford O(VE)

- Can handle negative edge weights (but not negative cycles!)
- Updates distances OFFLINE.

Algo: Init. $d(v) = \infty$, $\forall v \neq s$, d(s) = 0; For $i \in \{1, ..., n-1\}$, For $(u, v) \in$ E, Relax edges (u, v). Endfor. For $(u, v) \in E$; If $d(u) + w(u, v) \leq d(v)$, Return FALSE. Else return TRUE.

- Use a DP table, dim = $0:(n-1)\times n$
- $d_i[v] \leftarrow \min(d_{i-1}[v], \min_{u \in Neigh(v)}[d_{i-1}[u] + w(u, v)])$
- Order irrelevant to final product.

Floyd-Warshall $O(n^3)$

- $V \times V$ table, $v_1, ... v_n$.
- Allows negative weights, no negative cycles.
- All-pairs shortest path (APSP)

Suppose $V = \{1, 2, ..., n\}$.

Then, d[i, j, k] = distance of shortest path from i to j, such that all intermediate vertices $\in \{1, 2, \dots, k\}$.

- Case 1: don't need vertex k: d[i,j,k] = d[i,j,(k-1)].
- Case 2: need vertex k: d[i, j, k] = d[i, k, (k-1)] + d[k, j, (k-1)].
- So, $d[i, j, k] = \min(\text{Case } 1, \text{ Case } 2)$
- Base cases: d[i, j, 0] = w(i, j), d[i, i, k] = 0.

Greedy Algorithms

Optimal Substructure: an optimal choice must be included in an optimal solution, but not necessarily all of them.

Fractional Knapsack

 $v_i = \text{profit per unit weight } b_i/w_i$

 $x_i = \min(w_i, W_{\text{remaining}})$

add x_i amount of item i

 $W_{\text{remaining}} \leftarrow W_{\text{remaining}} - x_i$

Choose item with highest v_i

 X^* is unique \to all $x^* \in X^*$ are saturated.

Job Scheduling

- Earliest-Start-Time-First (ESTF)

Sort the n jobs by start time $O(n \log(n))$; iterate n times, and on each iteration find the right machine, schedule the job, and update the times. Total runtime: $O(n \log(n))$.

Alternatively use a min-heap: also $O(n \log(n))$.

Activity Selection

- Earliest-Finish-Time-First (EFTF); $\Theta(n \log(n))$

Dynamic Programming

Integral Knapsack

- n items: table with 0: n-1 rows, 0: W columns. D is remaining capacity, W is total capacity.

 $- \forall D, \ A[0, D] = 0$

 $- \forall i, \ A[i,0] = 0$

- Else, $A[i, D] = \max(A[i-1, D], v_i + A[i-1, D-w_i])$

Rod Cutting

- Else, $r_n = \max_{i \in 1:n} (p_i + r_{n-i})$

Longest Common Subsequence

-O(nm)

- len(X) = n, len(Y) = m.

- Table: $0: n \times 0: m$.

- $A[i,j] = \max(D[i-1,j], D[i,j-1], 1 + D[i-1,j-1])$

- Last one only if X[i] = Y[j].

MCM

- n matrices

 $-d \in \{0, \ldots, n+1\}$

- $A[i,j] = \min_{i \le k < j} (A[i,k] + A[k+1,j], + d_{i-1}d_kd_i)$

Asymptotic Cheatsheet

For some set S,

If $f(n) \in S(g(n))$ and $g(n) \in S(h(n))$ then $f(n) \in S(h(n))$.

 $\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r} = \frac{r^{n+1} - 1}{r - 1}$ $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$

Limits:

 $\lim_{n\to\infty} \frac{h(n)}{f(n)} = 0 \to h(n) \in o(f(n))$

 $\lim_{n\to\infty} \frac{h(n)}{f(n)} = k > 0 \to h(n) \in \Theta(f(n))$

 $\log^k(n) \in o(n^{\varepsilon}), \, \forall k, \varepsilon > 0$

 $n \log(n) \in \Theta(\log(n!))$

Master Theorem

Let $T(n) = aT(\frac{n}{b}) + f(n)$ Bottom-Heavy: Leaves dominate runtime

 $-f(n) \in O(n^{\log_b(a)-\varepsilon}) \to T(n) \in \Theta(n^{\log_b(a)})$

Balanced: Leaves and internal nodes do equal work

 $-f(n) \in \Theta(n^{\log_b(a)\log_n^k}) \to T(n) \in \Theta(n^{\log_b(a)}\log^{k+1}(n)), k \ge 0$

Top-Heavy: Eariler nodes dominate runtime

 $-f(n) \in \Omega(n^{\log_b(a)+\varepsilon}), \text{ and } af(\frac{n}{b}) \leq \delta f(n), \ \delta < 1 \to T(n) \in \Theta(f(n))$

Heaps

Max-Heap Property: $A[Parent(i)] \ge A[i]$

Heap of n keys has height $|\log(n)|$

buildMaxHeap: O(n)

extractMax: $O(\log(n))$

heapSort: $\Theta(n \log(n))$

QuickSort

- Partition: O(n), returns index of pivot.

- Worst case: $O(n^2)$

- Average and best case: $O(n \log(n))$

- For any split of constant ratio, $\Theta(n \log(n))$

Randomized QuickSort

- Pivot selected uniformly at random

- Average, best, and expected worst-case runtime: $\Theta(n \log(n))$

Sorting Lower Bound

- Any comparison-based sorting algorithm requires $\Omega(n \log(n))$ comparisons in the worst case.

- A binary tree with t leaves has at least $1 + \log(t)$, or equivalently, a height of at least $\log(t)$.

- So in other words, a decision tree has at least n! leaves. It follows that the height of the tree is at least log(n!).

- Height = edges

- levels = edges + 1

Binary Search Trees

- Right-(Left)-Rotate: x becomes the right (left) child of new root, usually its left (right) child.

AVL Trees

- Height-balanced: $|h_l - h_r| \le 1$

 $-h = O(\log(n))$