Chapter 5

Discrete Random **Variables**

Chapter 5

Discrete Random Variables

Section 5.1

Discrete Random Variables and Probability Distributions

Definitions 5.1 & 5.2

Random Variable

A random variable is a quantitative variable whose value depends on chance.

Discrete Random Variable

A discrete random variable is a random variable whose possible values can be listed. In particular, a random variable with only a finite number of possible values is a discrete random variable.

Probability Distribution and Probability Histogram

Probability distribution: A listing of the possible values and corresponding probabilities of a discrete random variable, or a formula for the probabilities.

Probability histogram: A graph of the probability distribution that displays the possible values of a discrete random variable on the horizontal axis and the probabilities of those values on the vertical axis. The probability of each value is represented by a vertical bar whose height equals the probability.

Table 5.2 & Figure 5.1

Probability distribution of the random variable *X*, the number of siblings of a randomly selected student

Siblings	Probability $P(X = x)$
0	0.200
1	0.425
2	0.275
3	0.075
4	0.025
	1.000

Probability histogram for the random variable X, the number of siblings of a randomly selected student

Key Fact 5.1

Sum of the Probabilities of a Discrete Random Variable

For any discrete random variable X, we have $\sum P(X = x) = 1$.

Key Fact 5.2

Interpretation of a Probability Distribution

In a large number of independent observations of a random variable X, the proportion of times each possible value occurs will approximate the probability distribution of X; or, equivalently, the proportion histogram will approximate the probability histogram for X.

Figure 5.2

(a) Histogram of proportions for the numbers of heads obtained in three tosses of a balanced dime for 1000 observations; (b) probability histogram for the number of heads obtained in three tosses of a balanced dime

Section 5.2

The Mean and Standard Deviation of a Discrete Random Variable

Mean of a Discrete Random Variable

The **mean of a discrete random variable X** is denoted μ_X or, when no confusion will arise, simply μ . It is defined by

$$\mu = \sum x P(X = x).$$

The terms **expected value** and **expectation** are commonly used in place of the term mean.†

Key Fact 5.3

Interpretation of the Mean of a Random Variable

In a large number of independent observations of a random variable X, the average value of those observations will approximately equal the mean, μ , of X. The larger the number of observations, the closer the average tends to be to μ .

Figure 5.3

Graphs showing the average number of busy tellers versus the number of observations for two simulations of 100 observations each

Standard Deviation of a Discrete Random Variable

The standard deviation of a discrete random variable X is denoted σ_X or, when no confusion will arise, simply σ . It is defined as

$$\sigma = \sqrt{\Sigma(x-\mu)^2 P(X=x)}.$$

The standard deviation of a discrete random variable can also be obtained from the computing formula

$$\sigma = \sqrt{\Sigma x^2 P(X = x) - \mu^2}.$$

Section 5.3 The Binomial Distribution

Factorials

The product of the first k positive integers (counting numbers) is called k factorial and is denoted k!. In symbols,

$$k! = k(k-1)\cdots 2\cdot 1.$$

We also define 0! = 1.

Binomial Coefficients

If n is a positive integer and x is a nonnegative integer less than or equal to n, then the **binomial coefficient** $\binom{n}{x}$ is defined as

$$\binom{n}{x} = \frac{n!}{x! (n-x)!}.^{\dagger}$$

Bernoulli Trials

Repeated trials of an experiment are called **Bernoulli trials** if the following three conditions are satisfied:

- 1. The experiment (each trial) has two possible outcomes, denoted generically *s*, for success, and *f*, for failure.
- 2. The trials are independent, meaning that the outcome on one trial in no way affects the outcome on other trials.
- 3. The probability of a success, called the **success probability** and denoted **p**, remains the same from trial to trial.

Table 5.14

Outcomes and probabilities for observing whether each of three people is alive at age 65

Outcome	Probability		
SSS	(0.8)(0.8)(0.8) = 0.512		
ssf	(0.8)(0.8)(0.2) = 0.128		
sfs	(0.8)(0.2)(0.8) = 0.128		
sff	(0.8)(0.2)(0.2) = 0.032		
fss	(0.2)(0.8)(0.8) = 0.128		
fsf	(0.2)(0.8)(0.2) = 0.032		
ffs	(0.2)(0.2)(0.8) = 0.032		
<i>fff</i>	(0.2)(0.2)(0.2) = 0.008		

Figure 5.4

Tree diagram corresponding to Table 5.14

Key Fact 5.4

Number of Outcomes Containing a Specified Number of Successes

In *n* Bernoulli trials, the number of outcomes that contain exactly *x* successes equals the binomial coefficient $\binom{n}{x}$.

Formula 5.1

Binomial Probability Formula

Let X denote the total number of successes in n Bernoulli trials with success probability p. Then the probability distribution of the random variable X is given by

$$P(X = x) = {n \choose x} p^{x} (1 - p)^{n-x}, \qquad x = 0, 1, 2, ..., n.$$

The random variable X is called a **binomial random variable** and is said to have the **binomial distribution** with parameters n and p.

Procedure 5.1

To Find a Binomial Probability Formula

Assumptions

- *n* trials are to be performed.
- Two outcomes, success or failure, are possible for each trial.
- The trials are independent.
- The success probability, p, remains the same from trial to trial.
- Identify a success. Step 1
- Step 2 Determine p, the success probability.
- Step 3 Determine n, the number of trials.
- The binomial probability formula for the number of successes, X, is Step 4

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

Figure 5.6

Probability histograms for three different binomial distributions with parameter n = 6

Formula 5.2

Mean and Standard Deviation of a Binomial Random Variable

The mean and standard deviation of a binomial random variable with parameters *n* and *p* are

$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$,

respectively.

Key Fact 5.5

Sampling and the Binomial Distribution

Suppose that a simple random sample of size *n* is taken from a finite population in which the proportion of members that have a specified attribute is p. Then the number of members sampled that have the specified attribute

- has exactly a binomial distribution with parameters *n* and *p* if the sampling is done with replacement and
- has approximately a binomial distribution with parameters *n* and p if the sampling is done without replacement and the sample size does not exceed 5% of the population size.

Section 5.4 The Poisson Distribution

Formula 5.3

Poisson Probability Formula

Probabilities for a random variable X that has a Poisson distribution are given by the formula

$$P(X = x) = e^{-\lambda} \frac{\lambda^{x}}{x!}, \quad x = 0, 1, 2, ...,$$

where λ is a positive real number and $e \approx 2.718$. (Most calculators have an e key.) The random variable X is called a **Poisson random variable** and is said to have the **Poisson distribution** with parameter λ .

Table 5.16

Partial probability distribution of the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.

Number arriving x	Probability $P(X = x)$	Number arriving x	Probability $P(X = x)$
0	0.001	10	0.068
1	0.007	11	0.043
2	0.024	12	0.025
3	0.055	13	0.013
4	0.095	14	0.006
5	0.131	15	0.003
6	0.151	16	0.001
7	0.149	17	0.001
8	0.128	18	0.000
9	0.098		

Figure 5.7

Partial probability histogram for the random variable X, the number of patients arriving at the emergency room between 6:00 P.M. and 7:00 P.M.

Formula 5.4

Mean and Standard Deviation of a Poisson Random Variable

The mean and standard deviation of a Poisson random variable with parameter λ are

$$\mu = \lambda$$
 and $\sigma = \sqrt{\lambda}$,

respectively.

Procedure 5.2

To Approximate Binomial Probabilities by Using a Poisson Probability Formula

Step 1 Find n, the number of trials, and p, the success probability.

Continue only if $n \ge 100$ and $np \le 10$.

Approximate the binomial probabilities by using the Poisson probability formula

$$P(X = x) = e^{-np} \frac{(np)^x}{x!}.$$