

Objetivo del algoritmo
Conceptos estadísticos previos
Aproximación matemática al algoritmo
Ejemplo de implementación

OBJETIVO DEL ALGORITMO

Procesar un grupo de datos de N dimensiones sin relación o clasificación aparente y agruparlos utilizando distribuciones normales (gaussianas) de probabilidad.

OBJETIVO DEL ALGORITMO

Procesar un grupo de datos de N dimensiones sin relación o clasificación aparente y agruparlos utilizando distribuciones normales (gaussianas) de probabilidad.

MEDIA

Parámetro que define el punto medio o promedio de los datos. Gráficamente, indica en qué punto está la mitad de la función de probabilidad.

VARIANZA

Indica el nivel de dispersión de los datos. Gráficamente, define qué tan ancha o angosta es la función de probabilidad.

MATRIZ DE COVARIANZAS

Para hacer distribuciones de datos con mas de una dimensión (gaussianas de 3 o más dimensiones) es necesario utilizar matrices de covarianzas, en lugar de una sola varianza.

$$\Sigma = \begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \vdots & \vdots & \ddots & \vdots \\ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}.$$

APROXIMACIÓN MATEMÁTICA AL ALGORITMO

PASO E (EXPECTATION)

Con gaussianas existentes (inicialmente aleatorias) se calcula la probabilidad que tiene cada dato de pertenecer a cada una de estas

PASO M (MAXIMIZATION)

Se modifican las gaussianas con el objetivo de que, al final, todos los puntos tengan una probabilidad cercana a 1 de pertenecer a una de las gaussianas y cercana a 0 de pertenecer a todas las demás

PASO E

- Se calcula la probabilidad que tiene cada dato (r) de pertenecer a una gaussiana o clúster (c)
- La función N del término anterior se refiere a la función gaussiana multivariada

$$r_{ic} = \frac{\pi_c N(\mathbf{x}_i \mid \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}{\sum_{k=1}^K \pi_k N(\mathbf{x}_i \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

$$N(\mathbf{x}_i, \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) = \frac{1}{(2\pi)^{\frac{n}{2}} |\boldsymbol{\Sigma}_c|^{\frac{1}{2}}} exp($$

$$-\frac{1}{2} (\mathbf{x}_i - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_c))$$

EJEMPLO DE IMPLEMENTACIÓN