

Methods in Phase Quantification with PXRD

Nate Henderson, Ph.D. Senior Applications Scientist - XRD

Reflection Geometry (Bragg-Brentano)

Line Geometry (1D Detector)

- Diverging beam geometry increases sampling statistics through large sample illumination
- Rapid data collection with linear detectors (1D)
- Generally preferred over spot beam analysis (2D) for quantification

Quantification Overview

- Concentration of crystalline phases calculated as a function of intensity
- Data quality is generally a limiting factor
- Selected Methods:
 - Calibration Curve
 - Reference Intensity Ratio
 - Full Pattern Summation
 - Quantitative Rietveld Refinement

Degree of crystallinity / Percent Amorphous

Calibration Curve

Calibration standards provide an increase in instrument response with increased concentration

Calibration Curve

Non-reproducible preferred orientation leads to poor quality calibration curve

Calibration Curve

Benefits

- Sensitive to low concentrations (micrograms under controlled conditions)
- Simple, straight-forward concept

Challenges

- Requires availability of standards
- Requires intensity monitoring for tube aging
- Susceptible to preferred orientation

Reference Intensity Ratio (RIR Method)

 I/I_C is measured or calculated with a 50/50 wt% mixture of a given material with corundum (AI_2O_3)

$$\frac{I_a}{I_b} = \frac{(I/I_c)_a}{(I/I_c)_b} \frac{x_a}{x_b}$$

Reference Intensity Ratio (RIR Method)

Scaling of largest reflections (100% peak) for each phase provides concentration

Reference Intensity Ratio (RIR Method)

Benefits

- Quick and simple process
- Widely implemented in XRD software packages
- I/Ic values widely available or easily obtainable by user

Challenges

- Susceptible to errors in data quality from preferred orientation and graininess
- Relies on availability of DB values for I/Ic or ability of user to derive independently
- Errors with crystallite size broadening (changes to observed peak maximum)

Full Pattern Summation

Summation of user-collected reference patterns (both crystalline and amorphous possible)

Full Pattern Summation

Full Pattern Summation

Benefits

- Extends quantification to amorphous phases and textured phases that are highly reproducible
- Can be implemented for multiple amorphous phases

Challenges

- Requires characterization of pure phases for baseline "fingerprint"
- Requires similar data collection parameters
- Susceptible to variations in non-reproducible preferred orientation

Standardless, least-squares modeling using scaling of calculated, known crystal structures

Hill and Howard, 1987

Refinement model can be modified and extended by adding additional structures as needed

Complex mixtures can be refined with high quality data and thorough phase identification

Phase			
	Actual (wt%)	Refined (wt%)	Difference
Quartz	15.3	16.2	0.9
K-Feldspar	8.6	8.1	0.5
Plagioclase	10.9	10.0	0.9
Calcite	10.6	12.5	1.9
Pyrite	3.9	3.6	0.3
Rutile	3.0	3.2	0.2
Anatase	1.3	1.1	0.2
Amphibole	0.1	-	0.1
Chloritoid	0.3	-	0.3
Zircon	0.1	-	0.1
Kaolinite	21.6	17.7	3.9
Muscovite	4.9	8.2	3.3
Montmorillonite	9.8	10.5	0.7
Pyrophyllite	9.6	8.9	0.7

Benefits

- Generally regarded as gold standard for quantification via PXRD
- No standards required
- Robust quantification method with ability to deconvolve overlapping reflections in complex mixtures
- Modeling possible for almost any definable parameter (e.g., preferred orientation, crystallite size broadening, anisotropic peak broadening, etc.)

Challenges

- Requires known crystal structures for building refinement model
- Potential error due to microabsorption (contrast in densities)
- Steeper learning curve with more advanced understanding on diffraction experiment

© 2022 Bruker

Degree of Crystallinity (Ratio of Integrated Areas)

Degree of Crystallinity (Ratio of Integrated Areas)

Benefits

- Simple, rapid calculation
- Widely implemented in XRD software packages
- Can analyze multiple amorphous phases in a single diffraction specimen

Challenges

- Susceptible to user bias in integration and background fitting
- Inaccuracies possible with aggressive background modeling
- Decreased accuracies with large difference in scattering potential between amorphous and crystalline phases (different chemical compositions)

Supplemental Reading

- Madsen, I.C.; Scarlett, N.V.Y.; Kleeberg, R.; Knorr, K.
 Chapter 3.9: Quantitative Phase Analysis
 in International Tables for Crystallography, Volume H, Powder Diffraction
 Eds. Gilmore, Kaduk, and Schenk, Wiley, 2019
- Madsen, I.C. and Scarlett, N.V.Y.
 Chapter 11: Quantitative Phase Analysis
 in Powder Diffraction: Theory and Practice
 Eds. Dinnebier and Billinge, Royal Society of Chemistry, 2008.
- Madsen, I.C.; Scarlett, N.V.Y.; Kern, A.
 Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction.
 Z. Krist. 226, 2011, 944.
- Madsen, I.C.; Scarlett, N.V.Y.; Riley, D.P.; Raven, M.D. Quantitative Phase Analysis using the Rietveld Method in Modern Diffraction Methods
 Eds. Mittemeijer and Welzel, Wiley, 2012.

Innovation with Integrity