Calculus

$\frac{dy}{dx}$	Derivative of y with respect to x
$\frac{\partial y}{\partial x}$	Partial derivative of y with respect to x
$\nabla_{\boldsymbol{x}} y$	Gradient of y with respect to \boldsymbol{x}
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to \boldsymbol{X}
$\nabla_{\mathbf{X}} y$	Tensor containing derivatives of y with respect to \mathbf{X}

Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ $abla_{m{x}}^{Om{x}} f(m{x}) \text{ or } m{H}(f)(m{x}) \\
\int f(m{x}) dm{x} \\
\int_{\mathbb{S}} f(m{x}) dm{x}$ The Hessian matrix of f at input point \boldsymbol{x} Definite integral over the entire domain of \boldsymbol{x}

Definite integral with respect to \boldsymbol{x} over the set $\mathbb S$

Probability and Information Theory

$\mathrm{a}\bot\mathrm{b}$	The random variables a and b are independent
$a \perp b \mid c$	They are conditionally independent given c
P(a)	A probability distribution over a discrete variable
p(a)	A probability distribution over a continuous variable, or over a variable whose type has not been specified
$a \sim P$	Random variable a has distribution P
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
Var(f(x))	Variance of $f(x)$ under $P(x)$
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$
H(x)	Shannon entropy of the random variable x
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q
$\mathcal{N}(m{x};m{\mu},m{\Sigma})$	Gaussian distribution over x with mean μ and covariance Σ