FFT Processor Chip Info Page

This page contains a comprehensive table listing key attributes of Fast Fourier Transform (FFT) chips such as speed, power, and word size. It also contains links to all sorts of FFT processors such as: special purpose chips, board-level products, soft/synthesizable processors, and programmable DSP chips.

FFT Chip Comparisons

This table lists key features of commercial and academic FFT processors. The only requirement is that they are able to compute a 1024-point complex transform.

Processor	Year	CMOS Tech	Datapath Width	Dataword Format	Supply Voltage	Execution Time	Power	Clock	Number of Chips	Area, 0.5µ eff	I/O pads	Energy Efficiency	Processor
		(µm)	(bits)	(fixed pt., block float, float pt.)	(V)	(µsec /1024- pt xform)	(mW)	(MHz)	M=DataMem C=CoeffMem	(mm^2)	(pins)	(FFTs per Energy) See below	
DASP/PAC Honeywell [1]	1988	1.2µm	16	block float	-	102μsec	2000 + 2000 + 5*250	-	1+1+4M+C	-	269/180/-	1.7	DASP/PAC Honeywell
PDSP16510A Zarlink (Plessey,Mitel)	1989?	1.4µm	16	block float	5.0	98µsec	3000	40	1	22	84	3.6	PDSP16510A Plessey
PDSP16515A Zarlink (Plessey,Mitel)	-	-	18	block float	5.0	87μsec	-	45	1	-	84	-	PDSP16515A Plessey
L64280 LSI [5]	1990	1.5µm	20	float	5.0	26µѕес	20,000	40	10+10	233	-	2.9	L64280 LSI
Dassault Electronique [6]	1990	1.0µm	12	block float	5.0	6.4µsec	24,000?	40	6	255	299	3.4	Dassault Electronique
Y. Zhu, Univ. of Calgary [7]	1993	1.2µm	16	block float	5.0	155µsec	-	33	1+1+2M+C	15+	132	-	Y. Zhu Univ. of Calgary
TM-66 Texas Mem Sys	-	0.8µm	32	float	5.0	65µsec	7000+	50	1+1+M+	-	299/?	<3.4	TM-66 Texas Mem Sys
BDSP9124/9320 Butterfly DSP	-	0.8µm	24	block float	-	54µsec	-	60	1+1+2M+C+	-	262/68	-	BDSP9124/9320 Butterfly DSP
Cobra, Colorado State [10]	1994	0.75µm	23	-	5.0	9.5µsec	7700	40	16+	1104+	391	<12.4	Cobra Colorado State

CNET E. Bidet [11]	1994	0.5µm	10	-	3.3	51µsec	300	20	1	100	-	13.6	CNET E. Bidet
Spiffee 1		0.7µm,			3.3	30µsec	845	173				27.6	Spiffee 1
Stanford		L _{poly} = 0.6μm			1.1 **	330µsec	9.5	16				223	Stanford
Spiffee Low V _t * Stanford	1995	0.8μm, L _{poly} = 0.26μm	20	fixed	0.4	93µsec	<9.7	57	1	25	70	>887	Spiffee Low V _t Stanford
Spiffee ULP * Stanford		0.5µm			0.4	61µsec	8	85				1025	Spiffee ULP Stanford
DaSP/PaC/RaS Array Microsystems	1996?	-	16	block float	5.0	131µsec	1750 + 2000 + 3*2000	40	1+1+3	-	144/144/144	-	DaSP/PaC/RaS Array Microsystems
SNC960A Sicom	1996	0.6µm	16	-	5.0	20µsec	2000- 3000	65	1	-	-	9.0	SNC960A Sicom
DSP-24, DSP Architectures[13]	1997	0.5µm	24	block float	3.3	21µsec	3500	100	1	217	308	8.7	DSP-24 DSP Architectures
M. Wosnitza, ETH, Zurich[14]	1998	0.5µm	32	block float	3.3	80µsec	6000	66	1	167	180	2.4	M. Wosnitza ETH, Zurich
Radix RDA108	-	-	<=19	-	3.3	12.2µsec	-	84	2	-	313	-	Radix RDA108
<u>DoubleBW</u>	2000	0.35µm	24	float	3.3	10µsec	8000	128	1	429	530	5.6	DoubleBW
TM-44 Texas Mem Sys	2001	0.13µm	32	float	-	8.04μsec (16.07/2)	8000	100	1	-	800+	3.9	TM-44 Texas Mem Sys
S. M. Currie Mayo FFT [15]	2002	0.25µm	16	fixed	2.5	< 11µsec	-	100	1?	400	196	-	Currie Mayo FFT
PowerFFT Eonic BV	2002	0.18µm	32	float	1.8	10µsec	1000	128	-	-	600	34.6	PowerFFT Eonic BV
JC. Kuo NTU [16]	2003	0.35µm	16	fixed	3.3	40μsec	810	80	1	31	-	8.1	Kuo NTU
Processor	Year	CMOS Tech	Datapath Width	Dataword Format	Supply Voltage	Execution Time	Power	Clock	Number of Chips	Area, 0.5μ eff	I/O pads	Energy Efficiency	Processor
		(µm)	(bits)	(fixed pt., block float, float pt.)	(V)	(μsec /1024- pt xform)	(mW)	(MHz)	M=DataMem C=CoeffMem	(mm^2)	(pins)	(FFTs per Energy) See below	
	Programmable DSP Processors												
<u>C40</u>													C40

Texas Instruments	-	0.7µm	-	float	5.0	1298µsec	4500	60	-	-	-	-	Texas Instruments
SHARC ADSP- 21061 Analog Devices	-	-	-	float	5.0	460μsec	4500	40	-	-	-	-	SHARC Analog Devices
DSP32C Lucent	-	-	32	float	-	2110µsec	-	80	-	-	-	-	DSP32C Lucent
DSP16000 Lucent	-	-	-	-	2.7	-	-	100	-	-	-	-	DSP16000 Lucent
NM6403, Module	1998	0.5µm	32	fixed	3.3	439µsec	1300	50	1	-	256	1.7	NM6403 Module
HiPAR-DSP 4, Universitat Hannover	1999	0.5µm	16	fixed	-	222µsec	5000	66	1	180	-	0.34	HiPAR-DSP 4 Universitat Hannover
Imagine Stanford University	2002	0.15µm	-	-	2.0	20.6μsec	~9000	180	1?	2844	792	-	Imagine Stanford University
						Synthesizal	ole Process	sors					
Inventra Mentor	1997	-	20	-	-	90µsec	-	-	-	27K gates	-	-	Inventra Mentor
Inventra Mentor	1997	-	20	-	-	90µsec	-	-	-	27K gates	-	-	Inventra Mentor
						Other I	Processors						
Cray 2 (1-cpu)	-	-	-	float	-	1000µsec	-	244	-	-	-	-	Cray 2 (1-cpu)
Cray Y-MP (1-cpu)	-	-	-	float	-	600µsec	-	159	-	-	-	-	Cray Y-MP (1-cpu)
Processor	Year	CMOS Tech	Datapath Width	Dataword Format	Supply Voltage	Execution Time	Power	Clock	Number of Chips	Area, 0.5µ eff	I/O pads	Energy Efficiency	Processor
		(µm)	(bits)	(fixed pt., block float, float pt.)	(V)	(1024-pt µsec/xform)	(mW)	(MHz)	M=DataMem C=CoeffMem	(mm^2)	(pins)	(FFTs per Energy) See below	

FFTs per Energy = $Tech * (\frac{2}{3}(DPath/20) + \frac{1}{3}(DPath/20)^2) / Power / Exec Time / <math>10^{-6}$

The function shown above, FFTs per Energy, gives an adjusted number of 1024-point complex FFTs that can be calculated for a fixed amount of energy, and attempts to factor out Technology and the datapath word width, DPath. It makes use of the observation that about $\frac{1}{3}$ of the energy consumption of the 20-bit Spiffee processor scales as $DPath^2$ (e.g., multipliers) and about $\frac{2}{3}$ of the circuits scale in complexity linearly with DPath. The constant 10^{-6} is added to put the result into a more convenient range. * Low V_t Spiffee processors

The full Spiffee Low V_t version has not yet been fabricated, although portions of it have been. Numbers shown are from extrapolated measurements, and will be better than

shown because the power number includes additional circuits that the baseline Spiffee1 chip does not. The Spiffee ULP numbers are from simulations.

- ** For this case, an nwell bias was set to -0.5v. The current drawn was approximately $10\mu A$.
- [1] S. Magar, et. al., ICASSP88. Assume memory power = 250mW per chip.
- [5] P. Ruetz, et. al., ICPR90.
- [6] Private communication with designer.
- [7] Private communication with designer.
- [10] G. Sunada, et. al., ICCD '94.
- [11] E. Bidet, C. Joanblang, and P. Senn, CICC '94
- [13] Simulated results. Private communication with designer.
- [14] M. Wosnitza, "A High Precision 1024-point FFT Processor for 2D Convolution", ISSCC '98.
- [15] S. M. Currie, B. K. Gilbert, B. A. Randall, P. R. Schumacher, E. E. Swartzlander, "Implementation of a Single Chip, Pipelined, Complex, One-Dimensional Fast Fourier Transform in 0.25 um Bulk CMOS", ASAP, 2002.
- [16] J.-C. Kuo, C.-H. Wen, and A.-Y. Wu, "Implementation of a Programmable 64~2048-point FFT/IFFT Processor for OFDM-Based Communication Systems," ISCAS, 2003.