

RecDCL: Dual Contrastive Learning for Recommendation (Oral)

Dan Zhang, Yangliao Geng, Wenwen Gong, Zhongang Qi, Zhiyu Chen, Xing Tang, Ying Shan, Yuxiao Dong, and Jie Tang

Tsinghua University, Tencent

Contrastive Learning (CL)-Based Recommendation

Background

- ➤ Using data augmentation to address scarce labeled data
- ➤ Batch-wise objectives: maximize distance between positive pairs, minimize distance between negative pairs

 E_U : embedding of users $E_I^{(+)}$: embedding of positive items $E_I^{(-)}$: embedding of negative items E_X : embedding of samples

Background

- > Using data augmentation to address scarce labeled data
- ➤ Batch-wise objectives: maximize distance between positive pairs, minimize distance between negative pair
- ➤ Batch-wise GNNs-based Rec methods depend on negative pairs

Background

> Feature-wise CL (FCL) methods can avoid collapse

• The effects of BCL and FCL

Optimization with FCL

Dan Zhang, Yangliao Geng, Wenwen Gong, Zhongang Qi, Zhiyu Chen, Xing Tang, Ying Shan, Yuxiao Dong, and Jie Tang. RecDCL: Dual Contrastive Learning for Recommendation. WWW'24.

• The effects of BCL, FCL, and BCL+FCL

Paper

Dan Zhang, Yangliao Geng, Wenwen Gong, Zhongang Qi, Zhiyu Chen, Xing Tang, Ying Shan, Yuxiao Dong, and Jie Tang. RecDCL: Dual Contrastive Learning for Recommendation. WWW'24.

Understanding BCL and FCL

Table 1: Critical comparison between BCL methods, FCL methods, and RecDCL.

Models	Embedding Information	Sample Information	Redundant Solution	Distribution
BCL	×	✓	✓	Even
FCL	✓	×	×	Orthogonal
RecDCL	√	√	×	Even

• Theoretical Insights

$$\mathcal{Z}_{\mathrm{B}}^{\star} \triangleq \arg\min_{\mathbf{z}_{1}, \mathbf{z}_{2} \in \mathcal{S}^{D-1}} \underbrace{\exp(\mathbf{z}_{1}^{\mathrm{T}} \mathbf{z}_{2})}_{\text{push-away in BCL}}$$
 $\mathcal{Z}_{\mathrm{F}}^{\star} \triangleq \arg\min_{\mathbf{z}_{1}, \mathbf{z}_{2} \in \mathcal{S}^{D-1}} \underbrace{\sum_{i=1}^{D} \sum_{j \neq i} (C_{ij})^{2}}_{\text{push-away in FCL}}$

$$|\mathcal{Z}_{\mathrm{B}}^{\star}| \geq \infty$$
 and $|\mathcal{Z}_{\mathrm{F}}^{\star}| \geq \infty$;

$$\mathcal{Z}_{\mathrm{B}}^{\star} \cap \mathcal{Z}_{\mathrm{F}}^{\star} \neq \emptyset$$

• z_1, z_2 : representations of a negative pair

• \mathcal{Z}_B^{\star} , \mathcal{Z}_F^{\star} : solution sets of push-away objectives in BCL and FCL

More details in Appendix A.1 in our paper!

We theoretically analyze the relation between BCL and FCL, and find that combining BCL and FCL helps eliminate redundant solutions but never misses an optimal solution.

- We theoretically analyze the relation between BCL and FCL, and find that combining BCL and FCL helps eliminate redundant solutions but never misses an optimal solution.
- We propose a dual contrastive learning recommendation framework --- RecDCL.

• RecDCL

> FCL: Eliminate redundancy between users and items

Eliminate redundancy within users and items.

$$\mathcal{L}_{UIBT} = \frac{1}{F} \underbrace{\sum_{m} (1 - C_{mm})^2 + \frac{\gamma}{F}}_{\text{invariance}} \underbrace{\sum_{m} \sum_{m \neq n} C_{mn}^2}_{\text{redundancy reduction}}$$

$$\mathcal{L}_{UUII} = \frac{1}{2} \log \sum_{m \neq n} (a(\mathbf{E}_{U}^{:,m})^{\top} \mathbf{E}_{U}^{:,n} + c)^{e} + \frac{1}{2} \log \sum_{m \neq n} (a(\mathbf{E}_{I}^{:,m})^{\top} \mathbf{E}_{I}^{:,n} + c)^{e},$$

• RecDCL

> FCL: Eliminate redundancy between users and items

Eliminate redundancy within users and items.

$$\mathcal{L}_{UIBT} = \frac{1}{F} \underbrace{\sum_{m} (1 - \mathbf{C}_{mm})^{2} + \frac{\gamma}{F}}_{\text{invariance}} \underbrace{\sum_{m} \sum_{m \neq n} \mathbf{C}_{mn}^{2}}_{\text{redundancy reduction}}$$

$$\mathcal{L}_{UUII} = \frac{1}{2} \log \sum_{m \neq n} (a(\mathbf{E}_{U}^{:,m})^{\top} \mathbf{E}_{U}^{:,n} + c)^{e} + \frac{1}{2} \log \sum_{m \neq n} (a(\mathbf{E}_{I}^{:,m})^{\top} \mathbf{E}_{I}^{:,n} + c)^{e},$$

 \triangleright BCL: contrastive representation on output $\mathcal{L}_{BCL} = \frac{1}{2}S(h(\mathbf{E}_U), sg(\hat{\mathbf{E}}_I)) + \frac{1}{2}S(sg(\hat{\mathbf{E}}_U), h(\mathbf{E}_I)),$

RecDCL outperforms STOA GNNs-based and SSL-based methods on four public datasets

• Recall@20

5.34% ↑

Models	Dataset	Bea	uty	Fo	od	Ga	me	Υe	elp
	Metrics	R@20	N@20	R@20	N@20	R@20	N@20	R@20	N@20
Base	Pop	3.25	1.31	5.74	3.40	2.82	1.06	1.58	0.96
MF-based	BPR-MF	14.12	6.62	27.02	21.04	18.16	8.33	6.92	4.29
	NeuMF	7.66	3.46	15.28	8.79	10.36	4.28	6.01	3.63
WAE board	Mult-VAE	11.37	5.46	24.89	20.77	15.50	7.18	9.51	5.84
VAE-based	RecVAE	12.76	6.37	26.69	22.29	17.65	8.38	10.70	6.69
GNNs-based	NGCF	13.27	6.28	26.84	20.96	18.04	8.31	7.29	4.45
GNNs-based	LightGCN	13.48	6.25	24.56	16.77	19.20	8.91	8.43	5.23
SSL-based	BUIR	14.60	7.29	28.26	22.19	15.04	6.73	8.08	4.97
	CLRec	15.17	7.56	27.64	20.65	20.12	9.60	10.95	6.89
	DirectAU	<u>15.43</u>	7.49	<u>28.57</u>	22.41	20.14	<u>9.55</u>	<u>10.97</u>	6.92
	DCL	15.59	7.54	28.63	22.52	20.20	9.58	10.99	6.96
	%Improv.	1.04%	0.67%	0.21%	0.49%	0.30%	0.31%	0.18%	0.58%
	RecDCL	15.78	7.89	28.95	23.27	20.44	9.87	11.59	7.28
	%Improv.	2.27%	5.34%	1.33%	3.84%	1.49%	3.35%	5.65%	5.20%
	<i>p</i> -value	0.004115	0.000478	0.002255	0.000017	0.264695	0.029848	0.001402	0.006503

Note that we tune embedding size from 32 to 2048 and report the best results for all baselines and our method RecDCL. Generally, the embedding size is set by default to 64.

² Indeed, RecDCL is the very first work to explore the effectiveness of FCL for recommendations. We have looked and found that there are no appropriate baselines for FCL. To comprehensively compare, we conduct the experiments in ablation studies, that is UIBT for FCL.

• We show the effectiveness of RecDCL on private industry dataset

NDCG@20 7.53% ↑

Method	BPR-MF	LightGCN	DirectAU	RecDCL	%Improv.
Recall@20	35.27	33.48	31.34	36.47	3.40%
NDCG@20	16.61	15.08	14.07	17.86	7.53%

Ablation study

The effect of different embedding sizes.

Method	Bea	auty	Yelp		
Method	Recall@20	NDCG@20	Recall@20	NDCG@20	
LightGCN	13.48	6.25	8.43	5.28	
w/ UIBT	14.78	7.47	9.92	6.18	
w/ POLY	1.01	0.50	0.06	0.03	
w/ AUG	14.90	7.51	10.08	6.36	
w/ UIBT & POLY	14.88	7.43	11.00	6.85	
w/ UIBT & AUG	<u>15.64</u>	7.63	10.73	6.78	
w/ POLY & AUG	15.16	7.59	7.65	4.66	
RecDCL	15.78	7.89	11.59	7.28	
%Improv.	17.06%	26.24%	37.49%	37.88%	

Thanks!

RecDCL: Dual Contrastive Learning for Recommendation

Dan Zhang, Yangliao Geng, Wenwen Gong, Zhongang Qi, Zhiyu Chen, Xing Tang, Ying Shan, Yuxiao Dong, Jie Tang. RecDCL: Dual Contrastive Learning for Recommendation. In Proceedings of TheWebConf (WWW'24).

Code & Data http://: https://github.com/THUDM/RecDCL

Contact: zd18@tsinghua.org.cn