CG1111: Engineering Principles and Practice I

Debrief and Tutorial for Week 8

Characteristics of DC Motors

Torque of shaft:

$$T_{\text{shaft}} = K_t I_m \text{ [N.m]}$$

Back emf:
$$E_b = K_e \omega$$
 [V]

For PMDC motor:
$$K_t = K_e$$

Note:
$$\omega = 2\pi \times \frac{RPM}{60}$$
 [rad/s]

Power

Mechanical power at motor shaft:

$$P_{\rm out} = T_{\rm shaft} \, \omega \, [W]$$

• Electrical power supplied to motor:

$$P_{\rm in} = V_m I_m [W]$$

Circuit Representation: PMDC Motor

• From the circuit:

$$I_m = \frac{V_m - E_b}{R_m}$$

• Since $E_b = K_e \omega$, we have:

$$I_{m} = \frac{V_{m}}{R_{m}} - \frac{K_{e} \, \omega}{R_{m}}$$

Basic Properties of PMDC Motor

Rearranging:

$$\omega = \frac{V_m}{K_e} - \frac{R_m I_m}{K_e}$$

• For a fixed load (i.e., fixed $T_{\rm shaft}$, which implies fixed I_m since $T_{\rm shaft} = K_t I_m$):

Shaft speed ω can be increased by increasing motor voltage V_m

• For a fixed voltage, if $T_{\rm shaft}$ increases, I_m increases, and hence ω decreases:

Shaft speed ω decreases with increasing load $T_{\rm shaft}$

Op-Amp Terminals

Op-Amp Equivalent Circuit

- A is the open-loop voltage gain
 - -It is very large, approaching infinity
- R_{in} is the input impedance & R_{out} is the output impedance

Typical Op Amp Parameters

Parameter	Variable	Typical Ranges	I deal Values
Voltage Gain	Α	10 ⁵ to 10 ⁸	∞
Input Impedance	R _{in}	10^5 to 10^8 Ω	∞ Ω
Output Impedance	R _{out}	10 to 100 Ω	0 Ω
Supply Voltage	V_{S+} or V_{cc} V_{S-} or V_{EE} or $-V_{cc}$	5 to 30 V -30 to 0 V	N/A N/A

Op-amp Golden Rules

 Rule 1: In a closed loop, the output attempts to do whatever is necessary to make the voltage difference between the inputs zero

The voltage gain of a real op-amp is so high that a fraction of a mV difference between the V_+ & V_- inputs will swing the output to saturation V_- •

– The ideal op-amp has infinite input impedance (R_{in}). Thus, the current drawn at the two input terminals ~0.

Non-Inverting Amplifier

 For an ideal op-amp, the non-inverting amplifier gain is given simply by

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 + \frac{R_{\text{f}}}{R_{\text{i}}}$$

Inverting Amplifier

 For an ideal op-amp, the inverting amplifier gain is given simply by

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{R_{\text{f}}}{R_{\text{i}}}$$

Power Gain in decibels (dB)

• The Voltage Amplification (A_v) or Gain of a voltage amplifier/filter is given by:

$$A_{v} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

The voltage gain is commonly expressed in terms of the resulting power gain in dB:

Power Gain (dB) =
$$10 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)^2 dB$$

= $20 \log_{10} \left| \frac{V_{\text{out}}}{V_{\text{in}}} \right| dB$

Question 1

- PMDC motor, 12 V source
- No-load speed = 3800 RPM
- Stall torque = 30 mNm
- If now running at <u>2500 RPM</u>, find
 - a) I_m
 - b) T_{shaft}
 - c) E_b
 - d) Electrical power consumed
 - e) Shaft power
 - f) Power loss in rotor coil

- First, find all unknown motor parameters
- 3800 RPM $\rightarrow \omega_{\text{no-load}} = 398 \text{ rad/s}$

Recall that:
$$I_m = \frac{V_m}{R_m} - \frac{K_e \ \omega}{R_m}$$

- At <u>no-load</u>, $I_m \approx 0$ since $T_{\text{shaft}} \approx 0$
 - ❖ Hence, $V_m \approx K_e \, \omega_{\text{no-load}} \rightarrow K_e \approx \frac{12}{398} = 30 \, \frac{\text{mV}}{\text{rad/s}}$
 - * For PMDC motor, $K_t = K_e = 30 \frac{\text{mNm}}{\Lambda}$
- At <u>stall condition</u>, $T_{\text{stall}} = 30 \text{ mNm}$
 - $\star I_{\text{stall}} = \frac{T_{\text{stall}}}{K_{+}} = 1 \text{ A}$
 - Since $\omega_{\text{stall}} = 0$, $I_{\text{stall}} = \frac{V_m}{R_m} \rightarrow R_m = \frac{12 \text{ V}}{1 \text{ A}} = 12 \Omega$

At 2500 RPM:

a) Find $I_{2500 \text{ RPM}}$ and b) $T_{2500 \text{ RPM}}$

$$\omega_{2500 \text{ RPM}} = 261.8 \text{ rad/s}$$

$$I_{2500 \text{ RPM}} = \frac{V_m}{R_m} - \frac{K_e \omega_{2500 \text{ RPM}}}{R_m}$$

$$= \frac{12}{12} - \frac{0.03 \times 261.8}{12} = 0.346 \text{ A}$$
Therefore, $T_{2500 \text{ RPM}} = K_t I_{2500 \text{ RPM}}$

$$= 10.4 \text{ mNm}$$

c) Find back emf $E_{2500 \text{ RPM}}$

$$E_{2500 \text{ RPM}} = K_e \omega_{2500 \text{ RPM}} = 7.85 \text{ V}$$

d) Find total electrical power consumed $P_{\rm e}$

$$P_{\rm e} = V_{\rm m} \times I_{2500 \, \rm RPM} = 4.15 \, \rm W$$

e) Find shaft power P_{shaft}

$$P_{\rm shaft} = T_{2500 \, \rm RPM} \times \omega_{2500 \, \rm RPM} = 2.72 \, \rm W$$

f) Find power loss in rotor coil

$$P_{\text{loss}} = R_{\text{m}} \times (I_{2500 \text{ RPM}})^2 = 1.44 \text{ W}$$

Question 2

- Same motor as Q1
- Load condition unchanged
 - -(i.e., same torque as $T_{2500 \text{ RPM}}$ previously)
- New desired speed = 1500 RPM

Find:

- a) Rotor current $I_{\rm m}$ and the required $V_{\rm m}$
- b) PWM duty cycle if DC source still 12 V
- c) T_{on} and T_{off} if PWM frequency = 5 kHz
- d) Electrical power consumed
- e) Power loss in rotor coil

a) Find current $I_{\rm m}$ and the required $V_{\rm m}$

Same load means same torque as $T_{2500 \text{ RPM}}$ previously, hence current remains unchanged at

$$I_{\rm m} = 0.346 \, {\rm A}$$

$$\omega_{1500 \text{ RPM}} = 157.1 \text{ rad/s}$$
 $E_b = K_e \omega = 4.71 \text{ V}$
 $V_m = R_m I_m + E_b = 8.86 \text{ V}$

b) Find PWM duty cycle if DC source is 12 V

Duty Cycle =
$$\frac{8.86}{12}$$
 = 73.8%

c) T_{on} and T_{off} if PWM frequency = 5 kHz

$$T_{\rm p} = \frac{1}{5000} = 200 \,\mu {\rm s}$$
 $T_{\rm on} = 0.738 \times 200 \,\mu {\rm s} = 147.6 \,\mu {\rm s}$
 $T_{\rm off} = T_{\rm p} - T_{\rm on} = 52.4 \,\mu {\rm s}$

d) Find total electrical power consumed

$$P_{\rm e} = V_{\rm m} \times I_{\rm m} = 8.86 \times 0.346 = 3.07 \,\rm W$$

e) Find power loss in rotor coil

$$P_{loss} = R_{m} \times (I_{m})^{2} = 1.44 \text{ W}$$

(same as Q1!)

Question 3

- PMDC motor with fan
- Fan's load torque $T_L = 0.05\omega + 0.001\omega^2$
- $K_{\rm t} = 2.42 \, {\rm Nm/A}$
- $R_{\rm m}=0.2~\Omega$
- 50 V DC power supply

• Find:

Speed of fan

Recall that:

$$T_{\rm shaft} = K_t I_m$$

$$I_m = \frac{V_m}{R_m} - \frac{K_e \omega}{R_m}$$

For PMDC motor: $K_t = K_e$

$$K_t = K_e$$

Therefore:

$$T_{\text{shaft}} = 2.42 \times \left(\frac{50}{0.2} - \frac{2.42}{0.2}\omega\right) = 605 - 29.3\omega$$

Since
$$T_{\text{shaft}} = T_L = 0.05\omega + 0.001\omega^2$$

$$605 - 29.3\omega = 0.05\omega + 0.001\omega^2$$
$$\omega^2 + 29350\omega - 605000 = 0$$

Solution of quadratic equation:

$$\omega = +20.6 \text{ or } -29371$$

Keeping the positive value, we have

$$\omega = 20.6 \text{ rad/s} \rightarrow 197 \text{ RPM}$$

Question 4

- Calculate all voltage drops and currents in this circuit, and label the currents' directions & voltage polarities
- Calculate the overall voltage gain of this amplifier circuit (A_V) , both as a ratio and as a figure in units of decibels (dB)

- Opamp's golden rule: V+ ≈ V-
- No current entering '+' & '-' inputs

- Gain = $\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{3.62}{2.6} = 1.39 \text{ V/V} \text{ (Volt per Volt)}$
- Gain in dB = $20 \log_{10} (1.39) = 2.86 dB$

Question 5

- Calculate all voltage drops and currents in this circuit, and label the currents' directions & voltage polarities
- Calculate the voltage gain for each stage of this amplifier circuit (both as a ratio and in units of decibels), then calculate the overall

- Gain of 1st stage = $\frac{V_{\text{out1}}}{V_{\text{in1}}} = \frac{6}{3.6} = 1.67 \text{ V/V}$
- Gain in $dB = 20 \log_{10} (1.67) = 4.45 dB$

- Gain of 2nd stage = $\frac{V_{\text{out2}}}{V_{\text{in2}}} = -\frac{10.2}{6} = -1.7 \text{ V/V}$
- Gain in $dB = 20 \log_{10} (|-1.7|) = 4.61 dB$
- Overall voltage gain = $1.67 \times (-1.7) = -2.84 \text{ V/V} = 9.07 \text{ dB}$