Analisi comparativa dei metodi di dosaggio degli anticorpi anti recettore del TSH

Metodo Routine:

- Brahms Trak Human con metodica LIA
- Metodo Siemens XPi TSI Assay chemiluminescenza Immulite 2000

Metodo di comparazione Thermophisher: anti TSH-R Elia su Immunocap 250

Analisi dei dati effettuata con la suite CONTINUUM ANALITICS https://www.continuum.io/ (https://www.continuum.io/)

basata sui seguenti moduli python:

- Pandas: per la gestione dei dati e le analisi di base
- Matplotlib: per i grafici di base
- · Seaborn per grafici avanzati
- Statmodels e scipy per le analisi avanzate

tutti i software utilizzati sono open source

```
In [41]: %matplotlib inline
    #importo le librerie
    import pandas as pd
    import os
    from __future__ import print_function,division
    import numpy as np
    import seaborn as sns
    os.environ["NLS_LANG"] = "ITALIAN_ITALY.UTF8"
```

campione	valore_cap	valore_rut
----------	------------	------------

Importazione del file con i dati

```
In [42]: #importo il file con i dati
path=r"D:\d\05 Lavscien\autoimmunita\corr_thibya\compar_thibya_brahms.csv"
database=pd.read_csv(path,sep=';',usecols=[1, 2, 3,4,5])#colonne da utilizzare
database['valore_cap']=database['valore_cap'].apply(lambda x: round(x,2))
database.drop(['codificato','accettazione'],axis=1,inplace=True)
database.tail(6)
```

Out[42]:

	campione	valore_cap	valore_rut
68	9430601678	2.30	0.1
69	9430600613	13.82	14.2
70	9430601997	2.52	0.1
71	9430600787	2.34	0.6
72	9430601111	2.54	0.8
73	9430601066	3.07	1.2

Varibili d'ambiete in comune

```
In [43]: #variabili d'ambiente comuni
  cutoff_cap=2.9 #tre 2.9 r 3.3 dubbi
  #cutoff_cap=3.3
  cutoff_rout=1 #brahms 1-1.5 dubbi
  METODO_ROUTINE="Brahms Trak Human LIA"
  #METODO_ROUTINE="Siemens Immulite 2000 Chemil."
  CAP="Thermo Fisher ELIA anti-TSH-R Cap250 "
```

Aggiungo due colonne con pos neg in base al cut-off

In [44]: campiameio realere valore valore cap N = cutoff cap)

database['rut_PN']=(database['valore_rut']>=cutoff_rout)

database['cap_PN'].replace([True,False],['Pos','Neg'],inplace=True)

database['rut_PN'].replace([True,False],['Pos','Neg'],inplace=True)

database.head()

Out[44]:

	campione	valore_cap	valore_rut	cap_PN	rut_PN
0	9430598753	1.77	0.4	Neg	Neg
1	9430598217	2.46	0.3	Neg	Neg
2	9430598216	2.26	0.8	Neg	Neg
3 9	9430598758 2.57	2.57	2.2	Neg	Pos
4	9430598331	2.29	0.4	Neg	Neg

In [45]: database.describe()

Out[45]:

	campione	valore_cap	valore_rut
count	7.400000e+01	74.000000	74.000000
mean	9.430545e+09	5.334189	3.548378
std 1.595923e+05	8.101052	8.094432	
min	9.430089e+09	1.770000	0.100000
25%	9.430599e+09	2.492500	0.400000
50%	50% 9.430600e+09	2.905000	0.600000
75% 9.4	9.430601e+09	3.610000	1.400000
max	9.430602e+09	58.450000	40.000000

	rut_PN	Neg	Pos
_	cap_PN		

Calcolo la tabella delle frequenze

modulo utilizzato scipy.stat http://docs.scipy.org/doc/scipy/reference/stats.html (http://docs.scipy.org/doc/scipy/reference/stats.html)

In [46]: #sci.py moduli

from scipy.stats import chi2_contingency, fisher_exact
pd.crosstab(database.cap_PN,database.rut_PN)

Out[46]:

rut_PN	Neg	Pos
cap_PN		
Neg	32	5
Pos	18	19

```
In [47]: ax=pd.crosstab(database.cap_PN,database.rut_PN).plot(kind='bar',stacked=True, )
    ax.legend(['Neg','Pos'])
    ax.set_xlabel(CAP)
```

Out[47]: <matplotlib.text.Text at 0x1292f0b0>

Test chi quadrato

```
In [48]: # test chi square
    chi2, pvalue, dof, ex = chi2_contingency(pd.crosstab(database.cap_PN,database.rut_PN))
    print ('valore di p:{}'.format(pvalue))
```

valore di p:0.00124545445958

Test esatto di Fisher

```
In [49]: # test esatto di Fisher
    oddsratio, pvalue =fisher_exact(pd.crosstab(database.cap_PN,database.rut_PN))
    print ('valore di p:{}'.format(pvalue))

valore di p:0.00101091533838
```

test corretto per questo caso è il test di McNemar:

test non parametrico dati appaiati risposte nominali binarie

Test esatto McNemar (per la dipendenza delle variabili)

modulo utilizzato statsmodels http://statsmodels.sourceforge.net/stable/index.html (http://statsmodels.sourceforge.net/stable/index.html)

```
In [50]: from statsmodels.sandbox.stats.runs import mcnemar
    stat,p=mcnemar(pd.crosstab(database.cap_PN,database.rut_PN))
    print("valore di p:{}".format(p))

valore di p:0.0106220245361
```

Analisi della regressione

```
In [51]: # grafico di dispersione
    import matplotlib.pyplot as plt
    fig = plt.figure()
    fig.suptitle('Scatterplot', fontsize=14, fontweight='bold')
    ax = fig.add_subplot(111)
    ax.set_xlabel(METODO_ROUTINE)
    ax.set_ylabel(CAP)
    ax.plot(database.valore_rut,database.valore_cap,'o')
    plt.show()
```


eseguiamo ora lo studio di regressione con tre modelli diversi

Moduli statmodels e scipy

```
In [52]: # con statmodel : regressione minimi quadrati
    ##res_ols = sm.OLS(y, statsmodels.tools.add_constant(X)).fit() per vecchia versione
import statsmodels.api as sm
#sm.OLS(Y,X)
X = sm.add_constant(database.valore_rut )
modello_minquad=sm.OLS(database.valore_cap,X)
regressione_minquad=modello_minquad.fit()
regressione_minquad.summary()
```

Out[52]: OLS Regression Results

Dep. Variable:	valore_cap	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.842
Method:	Least Squares	F-statistic:	390.4
Date:	Fri, 30 Sep 2016	Prob (F-statistic):	8.50e-31
Time:	12:21:53	Log-Likelihood:	-190.49
No. Observations:	74	AIC:	385.0
Df Residuals:	72	BIC:	389.6
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	2.0711	0.409	5.064	0.000	1.256	2.886
valore_rut	0.9196	0.047	19.760	0.000	0.827	1.012

Omnibus:	67.461	Durbin-Watson:	1.908
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1368.471
Skew:	2.121	Prob(JB):	6.92e-298
Kurtosis:	23.636	Cond. No.	9.63

In [53]: # con statmodel : regressione robusta (Robust Linear Model)
X = sm.add_constant(database.valore_rut)
modello=sm.RLM(database.valore_cap,X)
regressione_robusta=modello.fit()
regressione_robusta.summary()

Out[53]: Robust linear Model Regression Results

Dep. Variable:	valore_cap	No. Observations:	74
Model:	RLM	Df Residuals:	72
Method:	IRLS	Df Model:	1
Norm:	HuberT		
Scale Est.:	mad		
Cov Type:	H1		
Date:	Fri, 30 Sep 2016		
Time:	12:21:53		
No. Iterations:	50		

	coef	std err	z	P> z	[0.025	0.975]
const	2.3419	0.103	22.720	0.000	2.140	2.544
valore_rut	0.6943	0.012	59.191	0.000	0.671	0.717

```
In [54]: #importo La Librearia seborn per una migliore visualizzazione grafica

sns.set(color_codes=True)
ax = sns.regplot(x=database.valore_rut,y=database.valore_cap, color="g",robust=True)
ax = sns.regplot(x=database.valore_rut,y=database.valore_cap, color="b")
ax.set_title('Regressione lineare OLS + RLM ')
ax.set_xlabel(METODO_ROUTINE)
ax.set_ylabel(CAP)
ax.set(ylim=(0, None))
ax.set(xlim=(0, None))
```

Out[54]: [(0, 50.0)]


```
In [55]: sns.set(color_codes=True)
    ax2 = sns.regplot(x=database.valore_rut,y=database.valore_cap, color="g",robust=True)
    ax2 = sns.regplot(x=database.valore_rut,y=database.valore_cap, color="b")
    ax2.set_title('Regressione lineare OLS + RLM ')
    ax2.set_xlabel(METODO_ROUTINE)
    ax2.set_ylabel(CAP)
    ax2.set(ylim=(0, 20))
    ax2.set(xlim=(0, 8))
```

Out[55]: [(0, 8)]


```
In [56]: ax=sns.jointplot(x=database.valore_rut,y=database.valore_cap, kind="reg");
ax.set_axis_labels(METODO_ROUTINE,CAP)
```

Out[56]: <seaborn.axisgrid.JointGrid at 0x13b75030>

Ortogonal Distance Regression (Deming Regression)

```
In [57]: # regressione ODR (ortogonal distance regression Deming)
         import scipy.odr as odr
         #modello di fitting
         def funzione(B,x):
             return B[0]*x+B[1]
         linear= odr.Model(funzione)
         variabili=odr.Data(database.valore rut,database.valore cap)
         regressione_ortogonale=odr.ODR(variabili,linear,beta0=[1., 2.])
         output=regressione_ortogonale.run()
         #print (odr.Model)
         output.pprint()
         Beta: [ 1.00088365 1.78267543]
         Beta Std Error: [ 0.04851125  0.41899546]
         Beta Covariance: [[ 0.00043625 -0.00154797]
          [-0.00154797 0.03254372]]
         Residual Variance: 5.39450361153
         Inverse Condition #: 0.109803542662
         Reason(s) for Halting:
           Sum of squares convergence
In [58]: print("coefficente angolare: {ang}, Intercetta: {int}".format(ang=output.beta[0],int=output.beta[1]))
```

coefficente angolare: 1.00088364976, Intercetta: 1.78267543073

Bias

Out[59]:

	campione	valore_cap	valore_rut	cap_PN	rut_PN	bias
0	9430598753	1.77	0.4	Neg	Neg	-1.37
1	9430598217	2.46	0.3	Neg	Neg	-2.16
2	9430598216	2.26	0.8	Neg	Neg	-1.46
3	9430598758	2.57	2.2	Neg	Pos	-0.37
4	9430598331	2.29	0.4	Neg	Neg	-1.89

In [60]: sns.distplot(database_b.bias)

Out[60]: <matplotlib.axes._subplots.AxesSubplot at 0x124f7cf0>


```
In [61]: database: describe() valore_cap valore_rut bias
```

Out[61]:

	campione	valore_cap	valore_rut	bias
count	7.400000e+01	74.000000	74.000000	74.000000
mean	9.430545e+09	5.334189	3.548378	-1.785811
std	1.595923e+05	8.101052	8.094432	3.262094
min	9.430089e+09	1.770000	0.100000	-18.450000
25%	9.430599e+09	2.492500	0.400000	-2.635000
50%	9.430600e+09	2.905000	0.600000	-2.125000
75%	9.430601e+09	3.610000	1.400000	-1.387500
max	9.430602e+09	58.450000	40.000000	11.760000

Creo colonne con Positivo negativo dubbio in base ai cut off secificati dalle ditte

```
In [62]: def discret_cap(x):
             if x<2.9:
                  return 'N'
             elif x>=3.3:
                  return 'P'
             else:
                  return 'D'
         def discret_bra(x):
             if x<1:
                  return 'N'
             elif x>=1.5:
                  return 'P'
             else:
                  return 'D'
         database['cap_PND']=database['valore_cap'].apply(discret_cap)
         database['rut_PND']=database['valore_rut'].apply(discret_bra)
```

In [63]:

Out[63]:

đạt.		P alore_cap	valore_rut	cap_PN	rut_PN	bias	cap_PND	rut_PND
сар	PND campione	valore_cap	valore_rut	cap_PN	rut_PN	bias	cap_PND	rut_PND
0	9430598753	1.77	0.4	Neg	Neg	-1.37	N	N
1	9430598217	2.46	0.3	Neg	Neg	-2.16	N	N
2	9430598216	2.26	0.8	Neg	Neg	-1.46	N	N
3	9430598758	2.57	2.2	Neg	Pos	-0.37	Ν	Р
4	9430598331	2.29	0.4	Neg	Neg	-1.89	Ν	N
5	9430599124	1.80	0.6	Neg	Neg	-1.20	Z	N
6	9430599592	2.24	0.5	Neg	Neg	-1.74	Ν	N
7	9430599586	2.87	0.6	Neg	Neg	-2.27	Z	N
8	9430600502	23.83	21.3	Pos	Pos	-2.53	Р	Р
9	9430600789	6.98	7.3	Pos	Pos	0.32	Р	Р
10	9430089154	5.51	4.2	Pos	Pos	-1.31	Р	Р
11	9430598588	1.98	0.7	Neg	Neg	-1.28	N	N

In [64]: pd.crosstab(database.cap_PND,database.rut_PND)

Out[64]:

rut_PND	D	N	Р
cap_PND			
D	1	13	0
N	3	32	2
Р	3	5	15

```
In [65]: ax=pd.crosstab(database.cap_PND,database.rut_PND).plot(kind='bar',stacked=True, )
    ax.legend(['Bra Dub','Bra Neg','Bra Pos'])
    ax.set_xlabel(CAP)
```

Out[65]: <matplotlib.text.Text at 0x135d9330>

Creo una colonna che assume valore positivo solo nel caso in cui i due metodi abbiano dato valore opposto N con P o vieceversa)

```
In [66]:
    def no_match(x):
        if (x['cap_PND']==x['rut_PND']or x['cap_PND']=='D' or x['rut_PND']=='D'):
            return 0
        else:
            return 1

#df.apply(lambda row: my_test(row['a'], row['c']), axis=1)

database['mismatch']=database.apply(no_match,axis=1)
#database['valore_cap'].apply(discret_cap)
        per_disc=round(100*database['mismatch'].sum()/database['mismatch'].count(),2)
        database.head(20)
```

Out[66]:

	eampiene	¥alere_eap	¥alere_rut	eap_PN	rut_PN	bias	eap_PNB	rut_PNB	mismateh
0	9430598753	1.77	0.4	Neg	Neg	-1.37	N	N	0
1	9430598217	2.46	0.3	Neg	Neg	-2.16	N	N	0
2	9430598216	2.26	0.8	Neg	Neg	-1.46	N	N	0
3	9430598758	2.57	2.2	Neg	Pos	-0.37	Z	Р	1
4	9430598331	2.29	0.4	Neg	Neg	-1.89	Z	N	0
5	9430599124	1.80	0.6	Neg	Neg	-1.20	N	N	0
6	9430599592	2.24	0.5	Neg	Neg	-1.74	Z	N	0
7	9430599586	2.87	0.6	Neg	Neg	-2.27	Z	N	0
8	9430600502	23.83	21.3	Pos	Pos	-2.53	Р	Р	0
9	9430600789	6.98	7.3	Pos	Pos	0.32	Р	Р	0
10	9430089154	5.51	4.2	Pos	Pos	-1.31	Р	Р	0
11	9430598588	1.98	0.7	Neg	Neg	-1.28	Z	N	0
12	9430598843	2.76	1.7	Neg	Pos	-1.06	Z	Р	1
13	9430598608	18.24	30.0	Pos	Pos	11.76	Р	Р	0
14	9430598139	2.49	1.0	Neg	Pos	-1.49	Z	D	0
15	9430599313	4.24	6.3	Pos	Pos	2.06	Р	Р	0
16	9430598183	2.26	0.3	Neg	Neg	-1.96	Z	N	0
17	9430600433	3.28	0.1	Pos	Neg	-3.18	D	N	0
18	9430599237	4.46	4.9	Pos	Pos	0.44	Р	Р	0
19	9430600330	3.85	3.4	Pos	Pos	-0.45	Р	Р	0