

6. Résultats

6. Résultats pour l'élément structural Référence

Longueur I_{y} cm^4 λ₋₂₀ cm Profondeur cm λ_{20} *I*, cm⁴ **Poids** N/m λ80 cm^4 l_s Surface d'application de la charge m^2 I_v cm⁴ kN/m^2 C_p Wind load

Charge externe

Nom du projet:

Localisation:

Date:

Par:

Bending Moment (kN·cm) from Wind Load (and Horizontal Live Load) (SLS) Summer Winter M_o —— M_v —— Metal Profile Normal Stresses (N/mm²) from Wind Load (and Horizontal Live Load) (SLS) Summer Winter Thermal Isolator Shear Flow (N/mm) from Wind Load (and Horizontal Live Load) (SLS) Winter Summer T_{ν} - T_{ν} — Flèche frontale due au vent (mm) Ambient δ_h Nom du projet: Date: schüco

Localisation:

Par:

Moments maximaux (ELS)

	Été (kN·cm)				Hiver (kN·cm)				
	M _{omax}	M_{umax}	$M_{_{vmax}}$	M_{temp}	M_{omax}	M_{umax}	M_{vmax}	$M_{_{temp}}$	
Charge de vent									
Charge d'exploitation									
Charge thermique									

Contraintes maximales

Été					Hiver					
Alum	Aluminium (<i>N/mm</i> ²)			Barrettes thermique (<i>N/mm</i>)		Aluminiur	Barı	Barrettes thermique (<i>N/mm</i>)		
σ_{oo}	σ _{ou}	σ_{uo}	σ _{uu}	T_{ν}	σ ₀₀	σ_{ou}	σ_{uo}	σ_{uu}	$T_{_{V}}$	

Charge de vent

Charge d'exploitation

Charge thermique

CC1

CC2

$$\sigma_{\max}/\beta_{0.2} = \max(\max(\sigma_{oo}, \sigma_{ou}) + \sigma_{o}, \max(\sigma_{uo}, \sigma_{uu}) + \sigma_{u})/\beta_{0.2}$$
=

$$T_{max} / (R^{S}/A_{2}) = \begin{cases} \text{ \'et\'e} \\ \text{ Hiver} \end{cases}$$
$$20 / R^{T} = \begin{cases} \text{ \'et\'e} \\ \text{ Hiver} \end{cases}$$

Flèche maximale

Frontale (Charge de vent, température ambiante)

$$\delta_h =$$

$$\delta_{h_allow} =$$

$$\delta_h/\delta_{h_allow} =$$

$$1.1(T_{vw}+T_{vt})/(R^s/A2) = \begin{cases} \text{\'et\'e} \\ \text{Hiver} \end{cases}$$

Verticale (Charge d'exploitation)

$$\delta_v =$$

$$\delta_{v_allow} =$$

$$\delta_{\scriptscriptstyle V}/\delta_{\scriptscriptstyle V_allow} =$$

Nom du projet:

Localisation:

Date:

Par: