ML2017 HW3 Report

生技三 b03b02014 張皓鈞

2017年4月26日

1. (1%) 請説明你實作的 CNN model, 其模型架構、訓練過程和準確率為何?

· CNN 模型架構:

主要構成為三組 Convolutional layer x2, Max pooling layer, Dropout(0.25),在通過每層 Convolutional layer 之前的輸入特徵都先用 0 擴增特徵圖的邊界,通過 layer 之後都經過 LeakyReLU ($\alpha=0.001$)的運算,並且經過 Batch Normalization。在 Dense 部份,則是用兩層 128 個 neuron的 layer,activation function 一樣是 LeakyReLU ($\alpha=0.001$,Dropout 一樣是用機率 =0.25,最後以 softmax 來輸出 7 種 class 的分數。

• 訓練過程:

首先隨機取樣 3000 筆測資作為 validation data, 剩餘測資透過 Keras 內建的 data generator,隨機將剩餘測資進行水平翻轉、垂直和水平移動 0.1 倍的長度距離。每次訓練前皆隨機變更測資的順序,每次以 64 筆測資作為一個 batch。我用 validation 準確度作為標準,每個 epoch 訓練速度約為 600 秒,從 80 個 epoch 當中選出最高準確度的模型,發現此模型是訓練了 67 個 epoch 的模型,在 Kaggle 的 public dataset 上面分類準確度為 0.69407。

· Loss and Accuracy Plot

CNN Model Architecture Detail

Layer (type)	Output Shape	Parameters
Conv2D 1	(None, 46, 46, 64)	640
Batch normalization 1	(None, 46, 46, 64)	256
Conv2D 2	(None, 46, 46, 64)	36928
Batch normalization 2	(None, 46, 46, 64)	256
Max pooling 1	(None, 23, 23, 64)	0
Dropout 1	(None, 23, 23, 64)	0
Conv2D 3	(None, 23, 23, 128)	73856
Batch normalization 3	(None, 23, 23, 128)	512
Conv2D 4	(None, 23, 23, 128)	147584
Batch normalization 4	(None, 23, 23, 128)	512
Max pooling 2	(None, 11, 11, 128)	0
Dropout 2	(None, 11, 11, 128)	0
Conv2D 5	(None, 11, 11, 256)	295168
Batch normalization 5	(None, 11, 11, 256)	1024
Conv2D 6	(None, 11, 11, 256)	590080
Batch normalization 6	(None, 11, 11, 256)	1024
Max pooling 3	(None, 5, 5, 256)	0
Dropout 3	(None, 5, 5, 256)	0
Flatten 1	(None, 6400)	0
Dropout 4	(None, 6400)	0
Dense 1	(None, 128)	819328
Batch normalization 7	(None, 128)	512
Dropout 5	(None, 128)	0
Dense 2	(None, 128)	16512
Batch normalization 8	(None, 128)	512
Dropout 6	(None, 128)	0
Dense 3	(None, 7)	903

Total params: 1,985,607.0
Trainable params: 1,983,303.0
Non-trainable params: 2,304.0

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼?

• DNN 模型架構:

如圖,主要構成為 3 層 512、2 層 256 和 4 層 128 的 layer,每層的 activation function 一樣是 LeakyReLU ($\alpha=0.001$),Dropout 一樣是用機率 =0.25,且都有 Batch normalization。最後以 softmax 來輸出 7 種 class 的分數。

• 訓練過程:

與 CNN 一樣使用 validation 準確度作為標準,每個 epoch 訓練的速度約在 20 秒左右,從 80 個 epoch 當中選出最高準確度的模型,發現此模型是訓練了 67 個 epoch 的模型,在 Kaggle 的 public dataset 上面分類準確度為 0.41794。

• 觀察:

在相近的參數數目和層數下,經過相同的訓練過程和訓練次數,可以發現 CNN 的準確度比 DNN 還要高很多,符合我們對 CNN 是一種比較具有抽取影像特徵能力之 Neural Network 的了解。 其中,epoch 的訓練速度上,CNN 的速度比 DNN 要慢的許多,原因可能包含 CNN 可以看作是某一 DNN 的參數區域化的版本,所以在此 CNN 本身是一個更多參數的 DNN 的變形,因此跟我們的 DNN 相比之下,訓練速度會慢許多。

• Loss and Accuracy Plot

DNN Model Architecture Detail

Layer (type)	Output Shape	Parameters
Flatten 1	(None, 2304)	0
Dense 1	(None, 512)	1180160
Batch normalization 1	(None, 512)	2048
Dense 2	(None, 512)	262656
Batch normalization 2	(None, 512)	2048
Dropout 1	(None, 512)	0
Dense 3	(None, 512)	262656
Batch normalization 3	(None, 512)	2048
Dropout 2	(None, 512)	0
Dense 4	(None, 256)	131328
Batch normalization 4	(None, 256)	1024
Dropout 3	(None, 256)	0
Dense 5	(None, 256)	65792
Batch normalization 5	(None, 256)	1024
Dropout 4	(None, 256)	0
Dense 6	(None, 128)	32896
Batch normalization 6	(None, 128)	512
Dropout 5	(None, 128)	0
Dense 7	(None, 128)	16512
Batch normalization 7	(None, 128)	512
Dropout 6	(None, 128)	0
Dense 8	(None, 128)	16512
Batch normalization 8	(None, 128)	512
Dropout 7	(None, 128)	0
Dense 9	(None, 128)	16512
Batch normalization 9	(None, 128)	512
Dropout 8	(None, 128)	0
Dense 10	(None, 7)	903

Total params: 1,996,167.0
Trainable params: 1,991,047.0
Non-trainable params: 5,120.0

3. (1%) 觀察答錯的圖片中, 哪些 class 彼此間容易用混? [繪出 confusion matrix 分析]

• Confusion Matrix:

此 Matrix 是由(1)所隨機取樣的 3000 筆 validation data 所計算出來的。

• 觀察:

- (a) 從 confusion matrix 的分布可以發現此模型在每種情緒上都有 0.5 以上的比例分類正確,尤 其在快樂的部份有最高的準確度,高達 0.9; 第 2 高的則是驚喜的情緒,有 0.78; 但是,在嘌心、恐懼和難過這 3 個情緒分類上準確度就比較低,都只有稍微大於 0.5 而已。
- (b) 在各種情緒當中,其中噁心容易和生氣、難過搞混(比例分別是 0.19 和 0.12); 恐懼也是容易和生氣、難過搞混(比例為 0.13 和 0.16); 而難過的情緒則是容易和生氣、恐懼還有中立搞混(比例分別是 0.11、0.15 和 0.15)。
- (c) 有趣的是,從第 2 個直排可以看到,在各種情緒下,分類器最不會將情緒分類到'噁心'。(只有生氣會有 0.01 的比例被分到噁心)
- (d) 另外,從第 6 個直排也發現,我們所訓練出的分類器也比較不會將情緒分類到'驚喜'。(其他種情緒分類到驚喜的比例都在 0.02 以下,只有恐懼有 0.07 的比例分類到驚喜)
- 4. (1%) 從 (1)(2) 可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

• 觀察:

- (a) 從 3000 筆 validation data 中,取出編號 0 到 4 的訓練資料,分別繪出影響 CNN 分類比較大的 heatmap 以及把對 CNN 影響不大的部份 Mask 掉。從中發現 CNN 主要 focus 在人臉的嘴巴、眼睛部份來分類情緒,例如第 3 張的側臉圖也是專注在右邊人臉正面的方向。
- (b) 第2、4張中因為嘴巴部份有被手擋住,而heatmap上嘴巴部份皆沒有太大的影響,在masked的部份嘴巴也不太明顯,因此推測這可能是恐懼、難過、噁心分類準確度較低的原因。
- 5. (1%) 承 (1)(2), 利用上課所提到的 gradient ascent, 觀察特定層的 filter 最容易被哪種圖片 activate。
 - (a) 能最容易 activate filters 的影像:

Filters of layer conv2d 1 (# Ascent Epoch 90)

• 説明:

這些影像是利用 gradient ascent 的方式,從 white noise 開始,經過 100 個 epoch 所產生的影像,各影像為最容易 activate 該 filter 的影像。其中各影像下排的數字為最後產生的 loss。

• 觀察:

我取第 $1 \cdot 2$ 和最後一層 Convolutional layer 的 filter 來進行分析,發現第 1 層所產生出來的影像大都是點霧狀的影像,看不出什麼特別的圖案,原因可能是因為 CNN 的第 1 層 filter 主要會先偵測比較 general 的特徵。而第 2 層就有明顯的紋路圖案出現,表示此層的 filter 發展出比較能偵測特定紋路的能力。最後一層的 Convolutional layer 的 filter 則是最能被... 樣的圖片 activate,表示 filter 最能偵測這樣的圖案,而可以看到這層的 filter 可以偵測比較複雜,逐漸看出人臉輪廓的圖案,符合我對 CNN 可以"自動進行 feature transformation"的預期。

(b) Layer Output Image

• 説明:

以上這些圖片是從 Validation data 中隨機選取一張圖片,經過 CNN model 的計算之後,特定 filter 所 ouput 出來的影像。其中因為從(a)中的影像當中發現第 2 層開始有明顯紋路且最後一

Filters of layer conv2d_2 (# Ascent Epoch 90)

層可以偵測最複雜的圖案,因此我選取了第 2 層和最後一層的 Convolutional layer 的 output 影像作為分析對象。

• 觀察:

Bonus (1%) 從 training data 中移除部份 label,實做 semi-supervised learning

- 實作方式:

我實作的是 self-training 的 semi-supervised learning。首先去除掉 label 的 data 比例為 10% 的訓練資料,並且用(1)所提及的 CNN 模型預測這些 unlabeled data,最後再將這些加上 label 的 data 加入其他訓練資料之後,再另外訓練另一個 CNN 模型,其詳細架構如附圖,訓練過程和(1)所提及的 CNN 模型一樣。在 Kaggle public data 上的預測準確度為 0.。

- Loss and Accuracy Plot

CNN Model Architecture Detail

Layer (type)	Output Shape	Parameters
Conv2D 1	(None, 46, 46, 64)	640
Batch normalization 1	(None, 46, 46, 64)	256
Conv2D 2	(None, 46, 46, 64)	36928
Batch normalization 2	(None, 46, 46, 64)	256
Max pooling 1	(None, 23, 23, 64)	0
Dropout 1	(None, 23, 23, 64)	0
Conv2D 3	(None, 23, 23, 128)	73856
Batch normalization 3	(None, 23, 23, 128)	512
Conv2D 4	(None, 23, 23, 128)	147584
Batch normalization 4	(None, 23, 23, 128)	512
Max pooling 2	(None, 11, 11, 128)	0
Dropout 2	(None, 11, 11, 128)	0
Conv2D 5	(None, 11, 11, 256)	295168
Batch normalization 5	(None, 11, 11, 256)	1024
Conv2D 6	(None, 11, 11, 256)	590080
Batch normalization 6	(None, 11, 11, 256)	1024
Max pooling 3	(None, 5, 5, 256)	0
Dropout 3	(None, 5, 5, 256)	0
Flatten 1	(None, 6400)	0
Dropout 4	(None, 6400)	0
Dense 1	(None, 128)	819328
Batch normalization 7	(None, 128)	512
Dropout 5	(None, 128)	0
Dense 2	(None, 128)	16512
Batch normalization 8	(None, 128)	512
Dropout 6	(None, 128)	0
Dense 3	(None, 7)	903

Total params: 1,985,607.0
Trainable params: 1,983,303.0
Non-trainable params: 2,304.0

Bonus (1%) 在 Problem 5 中,提供了 3 個 hint,可以嘗試實作及觀察 (但也可以不限於 hint 所提到的方向,也可以自己去研究更多關於 CNN 細節的資料),並説明你做了些什麼?[完成 1 個: +0.4%, 完成 2 個: +0.7%, 完成 3 個: +1%]

- 1. Filters of DNN:
- 2. Images activate the specific class the most:
 - Angry
 - Disgust
 - Fear
 - Нарру
 - Sad
 - Surprise
 - Neutral
- 3. Adversial Images: