Volos Summer School

Before we start ...

- A <u>Single Nucleotide</u>
 <u>Polymorphism</u> (SNP) is a single base pair at which more than one nucleotide is observed.
- The Minor Allele Frequency
 (MAF) is the relative frequency in a relevant population of the minor (2nd most common) allele.
- For biallelic SNPs, if the MAF of T allele is q then the frequency of the C allele is p=1-q.

Before we start

At a given position in the DNA (or genetic locus), the pair of alleles from the two chromosomes makes up the **genotype** at that position.

SNP genotypes are <u>usually encoded as 0</u>, <u>1 or 2</u>, based on the number of copies of non-reference alleles.

- genotype TT is coded as 0 (homozygous non-reference)
- genotype CT is coded as 1 (heterozygous)
- genotype TT is coded as 2 (homozygous reference)

https://www.ancestry.com/lp/genotype

Before we start

SNP genotypes are usually **encoded as 0, 1 or 2**, based on the number of copies of non-reference alleles.

- 1. genotype TT is coded as 0 (homozygous non-reference)
- 2. genotype CT is coded as 1 (heterozygous)
- 3. genotype CC is coded as 2 (homozygous reference)

Genotypes frequency:

- For $1. = q^2$
- For 2.= 2pq
- For $3 = p^2$

https://www.ancestry.com/lp/genotype

Did you say intensities?

HELMHOLTZ MUNICI

Intensities: the good ...

Intensities: the bad ...

Intensities: the ugly ...

The GWAS analysis pipeline

The (imputed) GWAS analysis pipeline

Genotyping data storage

Which data types do we need?

phenotype ~ pxgenotype + covariates + structure + e

$$\begin{bmatrix} pheno_0 \\ \vdots \\ pheno_n \end{bmatrix}$$

$$\begin{bmatrix} A/T \\ \vdots \\ T/T \end{bmatrix}$$

This one changes

Can either be text-format files or binary files.

FID	IID	PID	MID	Sex	P
1	1	0	0	2	1
2	2	0	0	1	0
3	3	0	0	1	1

Chr	SNP	GD	BPP	Allele 1	Allele 2
1	rs1	0	870000	С	Т
1	rs2	0	880000	Α	G
1	rs3	0	890000	Α	С

10101111	10101111	10100010	10111011	10101000	10000000
00101011	00100000	10101000	10001011	00000011	11111111
11111111	11111111	11111111	11111110	11111111	11111111
11111111	11111110	11111110	11111110	11101111	11111111

Legend			
FID	Family ID	rs{x}	Alleles per subject per SNP
IID	Individual ID	Chr	Chromosome
PID	Paternal ID	SNP	SNP name
MID	Maternal ID	GD	Genetic distance (morgans)
Sex	Sex of subject	BPP	Base-pair position (bp units)
Р	Phenotype	C{x}	Covariates (e.g., Multidimensional Scaling (MDS) components)

<u>ped</u>(igree) file has **6+2***n*, providing:

- 1. Family ID
- 2. Individual ID
- 3. Paternal ID (0 if father not in dataset)
- 4. Maternal ID (0 if mother not in dataset)
- 5. Sex (1=Male, 2=Female, 0 or -9=missing)
- 6. Phenotype (here 2 or 1, corresponding to case and control)
- 7. 2 alleles for each SNP (0 = missing)

- map(ing) file has 4 columns, providing:
 - 1. Chromosome
 - 2. SNP Name
 - 3. Genetic distance (in morgans)
 - 4. Base-pair position (bp unit)

- fam(ily) file consists of the
 first six columns of ped file
- The <u>bed</u> (binary pedigree)
 file is a matrix of 0s, 1s, 2s
 or NAs stored in binary
 format.
- PLINK uses the following two-bit coding of genotypes:
 - 00 = A1/A1 (Homozygous non-reference)
 - 01 = A1/A2 (Heterozygous)
 - 11 = A2/A2 (Homozygous reference)
 - 10 = 0/0 (Missing)

 bim (binary mapping) file is the .map file plus two columns, providing the A1 and A2 alleles

What is left?

Matrix file

Covariate file				
FID	IID	C1	C2	C3
1	1	0.00812835	0.00606235	-0.000871105
2	2	-0.0600943	0.0318994	-0.0827743
3	3	-0.0431903	0.00133068	-0.000276131

Phenotype files have 2 + M columns: Family ID, Individual ID, then value for each of M phenotypes

- https://www.cog-genomics.org/plink/1.9/index
- https://www.cog-genomics.org/plink/2.0/index

Why Quality Control?

HELMHOLTZ MUNICI

Why Quality Control?

The QC protocol of a GWAS is usually split into two broad categories.

"Sample QC"

"Variant QC"

- 1. Identification of variants with an excessive missing genotype
- 2. Identification of variants
 demonstrating a significant
 deviation from <u>Hardy-Weinberg</u>
 equilibrium (HWE)
- 3. Removal of all makers with a very low minor allele frequency
- 4. Removal of all makers with cluster separation score <0.4
- 5. <u>Differential missingness</u> (case/control studies)

<u>Missingness</u>

- 1. Per sample missingness
- % missing for a sample across your variants
- Per SNP missingness
- ➢ % missing for a particular variant among your samples

Quality control step	PLINK summary commands	PLINK filtering commands
Missingness	missing	geno,mind

Low genotyping call rate indicates issues with sample DNA (eg low concentration).

Discordant Sex Check

- ➤ Men have only one copy of the X chromosome
 - > All X chromosome data is expected to be homozygous.

Example

Alleles Female genotypes possible Male genotypes possible

A,C A/A, A/C, C,C A/A or C/C

> X chromosome homozygosity estimate for males (F statistic or inbreeding coefficient) is 1.

➤In Plink

check-sex	Check sexes by looking at chrX
-----------	--------------------------------

➤ Male (1): XHE > 0.80

➤• Female (2) : XHE <0.20

> No sex (0): 0.20 < XHE < 0.80

Sex check

X chr inbreeding (homozygosity) estimate F

HELMHOLTZ MUNICI

Heterozygosity rate

- The proportion of heterozygous genotypes (per sample)
- Various ways of calculating the rate

PLINK: (<observed hom. count> - <expected count>) / (<total observations> - <expected count>))

- --het (gives back and F estimate)
- <custom scripts>
- Excess heterozygosity -> Possible sample contamination
- Less than expected heterozygosity -> Possibly inbreeding

Autosomal heterozygosity and call rate

Duplicated or related individuals

A basic assumption of GWAS: unrelated individuals

• Either exclude or account for it

The presence can introduce a bias: genotypes in families to be over-represented

Duplicated or related individuals

Calculated metrics:

- Identity by state (IBS): A DNA segment is identical by state (IBS) in two or more individuals if they have identical nucleotide sequences in this segment.
- Identity by Descent (IBD): An IBS segment is identical by descent (IBD) in two or more individuals if they have inherited it from a common ancestor without recombination, that is, the segment has the same ancestral origin in these individuals.

Duplicated or related individuals

PLINK calculates identity by descent (IBD) of all sample

Approximates the percentage IBD overall, representing pairs as s

- Zero alleles IBD (z0)
- One allele IBD (z1)
- Two alleles IBD (z2)

PI_HAT (the proportion IBD, defined as P(IBD = 2) + 0.5*P(IBD =

--genome

Use an independent SNP set before running this command:

- removing regions of extended Linkage Disequilibrium (LD)
- and
- 2) pruning the remaining regions so that no pair of SNPs within a given window is correlated.

Relationship type	z0	z1	z 2	PI_HAT
Unrelated	1	0	0	0
Monozygotic (MZ) twin	0	0	1	1
Full siblings	0.25	0.5	0.25	0.5
Half siblings	0.5	0.5	0	0.25
Parent-offspring	0	1	0	0.5

<u>Linkage disequilibrium</u> (<u>LD</u>)

Is the non-random association of alleles at different loci in a given population.

In GWAS we (mainly) use correlation coefficient between pairs of loci, r²

r²=1 is perfect LD

PLINK: LD-based SNP prunning

The Hardy-Weinberg (dis)equilibrium (HWE) law:

The genotype and the allele frequencies are constant over generations.

Assumes:

- An indefinitely large population
- With no selection, no Mutation, no Migration

Significant deviations indicate genotyping errors

PLINK:

Quality control step	PLINK summary commands	PLINK filtering commands
Hardy-Weinberg equilibrium check	hardy	hwe

Less strict case threshold avoids discarding disease-associated SNPs

Population structure

Occurs when samples have different genetic ancestries

Allele frequencies can differ between subpopulations and can lead to spurious associations due to differences in ancestry rather than true associations

PLINK: Merge with a population of known ethnic structure (e.g., HapMap/1KG data) and identify outliers through dimension reduction analyses such as Principal Component Analysis and/or MultiDimensional Scaling (MDS).

Variant QC

It consists of (at least) four steps:

- 1. Identification of variants with an excessive missing genotype
- 2.Identification of variants demonstrating a significant deviation from Hardy-Weinberg equilibrium (HWE)
- 3. Removal of all makers with a very low minor allele frequency
- 4.Removal of all makers with cluster separation score

Where to draw the line?

Sample management

keep [file]	Keep samples in file
remove [file]	Remove samples in file

SNP management

extract [file]	Keep SNPs in file
exclude [file]	Remove SNPs in file

Extracting regions

chr [name]	Extract data on specified chromosome
from-bp [pos]	From specified position
to-bp [pos]	To specified position

Variant QC

maf [threshold]	Keep variants with MAF>threshold
hwe midp [threshold]	Keep variants with HWE p>threshold

Sample QC

missing	Compute per-sample and per-variant missingness
check-sex	Check sexes by looking at chrX
genome	Compute relatedness, check for duplicates

What is the command for:

- Excluding SNPs that are missing in a large proportion of the subjects (<0.90).
- Excluding individuals who have high rates of genotype missingness (<0.85).
- Keeping autosomal SNPs.
- Extracting the top 20 principal components.
- The association between SNPs and a binary/quantitative outcome.

Thank you.