Math for ML Notes

Ahmed Yasser August 2025

Chapter 2

2.6.2 Rank

Definition (Rank)

The number of **linearly independent** columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of **linearly independent** rows of A and is called the **rank** of A, and is denoted by $\operatorname{rk}(A)$

Remark (Matrix Rank Properties)

- Rank equality: For any matrix A, the column rank equals the row rank: $rk(A) = rk(A^{\top})$
- Column space (image/range): The columns of $A \in \mathbb{R}^{m \times n}$ span a subspace $U \subseteq \mathbb{R}^m$ with $\dim(U) = \operatorname{rk}(A)$. A basis for U can be found using Gaussian elimination to identify pivot columns.
- **Row space**: The rows of $A \in \mathbb{R}^{m \times n}$ span a subspace $W \subseteq \mathbb{R}^n$ with $\dim(W) = \operatorname{rk}(A)$. A basis for W can be found by applying Gaussian elimination to A^{\top} .
- **Invertibility condition**: For square matrices $A \in \mathbb{R}^{n \times n}$, A is regular (invertible) if and only if rk(A) = n.
- **Linear system solvability**: For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the system Ax = b can be solved if and only if rk(A) = rk(A|b), where A|b is the augmented matrix.
- Null space (kernel): For $A \in \mathbb{R}^{m \times n}$, the solution space of Ax = 0 has dimension n rk(A). This subspace is called the kernel or null space.
- **Full rank**: A matrix $A \in \mathbb{R}^{m \times n}$ has full rank when $\text{rk}(A) = \min(m, n)$, meaning its rank equals the maximum possible rank for its dimensions.
- Rank deficient: A matrix that does not have full rank is called rank deficient.

2.7 Linear Mappings

Definition (Linear Mapping)

For vector spaces V and W, a mapping $\Phi: V \to W$ is called a **linear mapping (or linear transformation/vector space homomorphism)** if

$$\Phi(x + y) = \Phi(x) + \Phi(y)$$

 $\Phi(\lambda x) = \lambda \Phi(x)$

$\forall x, y \in V \text{ and } \lambda \in \mathbb{R}$

Remark

Consider a mapping $\Phi: \mathcal{V} \to \mathcal{W}$, where \mathcal{V} and \mathcal{W} can be arbitrary sets. Then Φ is called:

- **Injective (one-to-one)** if $\forall x, y \in \mathcal{V} : \Phi(x) = \Phi(y) \Longrightarrow x = y$ i.e. there is no two different elements in \mathcal{V} that map to the same element in \mathcal{W} .
- Surjective (onto) if $\Phi(\mathcal{V}) = \mathcal{W}$ i.e. every element in \mathcal{W} can be reached from \mathcal{V} using Φ .
- Bijective if Φ is both injective and surjective.

Remark

A bijective mapping $\Phi: \mathcal{V} \to \mathcal{W}$ is reversible: there exists a mapping $\Psi: \mathcal{W} \to \mathcal{V}$ such that $\Psi \circ \Phi(x) = x$ and $\Phi \circ \Psi(y) = y$. This mapping Ψ is the **inverse** of Φ , denoted Φ^{-1} .

Remark Special cases of linear mappings between vector spaces

- **Isomorphism**: $\Phi: V \to W$ linear and bijective (maps between different spaces, reversible)
- **Endomorphism**: $\Phi: V \to V$ linear (maps a space to itself)
- **Automorphism**: $\Phi: V \to V$ linear and bijective (maps a space to itself, reversible)
- **Identity mapping**: $id_V: V \to V, x \mapsto x$ (leaves every vector unchanged)

Remark

Finite dimensional vector spaces V and W are **isomorphic** if and only if $\dim(V) = \dim(W)$

Remark

Consider vector spaces V, W, X. Then:

- If $\Phi: V \to W$ and $\Psi: W \to X$ are **linear** then $\Psi \circ \Phi: V \to X$ is **linear**.
- If $\Phi: V \to W$ is an **isomorphism** then $\Phi^{-1}: W \to V$ is an **isomorphism**.
- If $\Phi: V \to W$ and $\Psi: V \to W$ are **linear** then $\Phi + \Psi: V \to W$ and $\lambda \Phi: V \to W, \lambda \in \mathbb{R}$ are **linear**.

2.7.1 Matrix Representation of Linear Mappings

Remark (Notaion)

- $B = \{b_1, ..., b_n\}$ is an **unordered** basis
- $B = (b_1, ..., b_n)$ is an **ordered** basis
- $B = \begin{bmatrix} b_1 & ... & b_n \end{bmatrix}$ is a **matrix** whose columns are the vectors $b_1, ..., b_n$

Definition (Coordinates)

Consider a vector space V and an **ordered** basis $B = (b_1, ..., b_n)$ of V. For any vector $x \in V$ we obtain a **unique** representation (linear combination)

$$\boldsymbol{x} = \alpha_1 b_1 + \ldots + \alpha_n b_n$$

of x with respect to B. Then $\alpha_1, ..., \alpha_n$ are the coordinates of x with respect to B, and the vector

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n$$

is the coordinate vector/coordinate representation of x with respect to the ordered basis B.

Remark

A basis effectively defines a coordinate system and any basis of the vector space defines a valid coordinate system. The coordinates of a vector may be different between different basis.

Remark

For an *n*-dimensional vector space V and an ordered basis B of V, the mapping $\Phi: \mathbb{R}^n \to V, \Phi(e_i) = b_i, \ i = 1, ..., n$, is **linear** and **bijective** (since V and \mathbb{R}^n are of the same dimension), where $(e_i, ..., e_n)$ is the **standard basis** of \mathbb{R}^n .

Definition (Transformation Matrix)

Consider vector spaces V and W with corresponding **ordered** bases $B=(\boldsymbol{b_1},...,\boldsymbol{b_n})$ and $C=(\boldsymbol{c_1},...,\boldsymbol{c_m})$. Also condier a **linear mapping** $\Phi:V\to W$. For $j\in\{i,...,n\}$

$$\Phi(\boldsymbol{b_j}) = \alpha_{1j}\boldsymbol{c_1} + \alpha_{2j}\boldsymbol{c_2} + \dots + \alpha_{mj}\boldsymbol{c_j} = \sum_{i=1}^{m} \alpha_{ij}\boldsymbol{c_i}$$

is the unique representaion (linear combination) of $\Phi(b_j)$ with respect to the C. Then we call the $m \times n$ matrix A_{Φ} , whose elements are given by

$$A_{\Phi(i,j)} = \alpha_{ij},$$

The transformation matrix of Φ with respect to the ordered bases B of V and C of W.

Remark

From the definition of the transformation matrix we can see that the coordinates of $\Phi(b_j)$ with respect to the ordered basis C of W are the j-th column of A_{Φ}

Corollary

Consider finite dimensional vector spaces V, W with ordered basis B, C and a linear mapping $\Phi: V \to W$ with transformation matrix A_{Φ} . If \hat{x} is the **coordinate vector** of $x \in V$ with respect to B and \hat{y} is the **coordinate vector** of $y = \Phi(x) \in W$ with respect to C, then

$$\hat{y} = A_{\Phi} \hat{x}$$
.

This means that the transformation matrix can be used to map coordinates with respect to an ordered basis in V to coordinates with respect to an ordered basis in W.

2.7.2 Basis Change