We can make use of the following to find the associated eigenvalue and eigenvector of A:

- 1. $Av = \lambda v$. A represents the matrix, v the eigenvector, and λ the eigenvalue associated with A.
- 2. $det(\lambda I A) = 0$. Useful for finding eigenvalues of A.
- 3. $(\lambda I A)v = 0$. Useful for finding eigenvectors associated with the eigenvalue (ie. λ_1).

Initialize matrices and solve for eigenvalues via $det(\lambda I-A)=0$.

With characteristics polynomial: $\lambda^3 - 11\lambda^2 + 34\lambda - 24 = 0$.

and corresponding eigenvalues of λ_1 =1, λ_2 =4, λ_3 =6.

 $(\lambda - 1)(\lambda - 4)(\lambda - 6) = 0$

At this point we have to make use of $(\lambda I - A)v = 0$ to solve for associated eigenvectors.

Leading to v_1 = anything, v_2 = -(5/3) v_3 , v_3 =0 ...

For eigenvalue λ_1 =1, the associated **eigenvector** is v_1 =0.

Leading to $v_1 = (2/3)v_2 + v_3$ and $v_3 = 0$...

For eigenvalue
$$\lambda_2$$
=4, the associated eigenvector is v_2 = $\begin{pmatrix} 2/3 \\ 1 \\ 0 \end{pmatrix}$

Leading to v_1 = (2/5) v_2 + (3/5) v_3 and v_2 =(5/2) v_3

Thus leading to our plugging v_2 into v_1 = (2/5)(5/2) v_3 + (3/5) v_3 = (8/5) v_3

8/5

For eigenvalue λ_3 =6, the associated **eigenvector** is v_3 = 5/2 .

1 2/3 8/5

To summarize, the eigenvectors for matrix A are: 0, 1, and 5/2.

0 0