Practical HPC

March 28, 2018

0.1 Installing Anaconda (includes Jupyter notebook)

1. at www.continuum.io, download python 3.6 version of anaconda, and install

0.2 To get tutorial files

- 1. browse to https://github.com/ycrc/PracticalHPC
- 2. click "clone or download" then "download zip"
- 3. unzip file into desired location

0.3 To follow presentation in Jupyter notebook

- 1. in a terminal, cd to PracticalHPC
- 2. run this command: jupyter notebook PracticalHPC.ipynb

0.4 What is the Yale Center for Research Computing?

- Independent center under the Provost's office
- Created to support your research computing needs
- Focus is on high performance computing and storage
- ~15 staff, including applications specialists and system engineers

- Available to consult with and educate users
- Manage compute clusters and support users
- Located at 160 St. Ronan st, at the corner of Edwards and St. Ronan
- http://research.computing.yale.edu

0.5 Overview

- Understanding the HPC environment
- Understanding your program's behavior
- Improving performance
- Running parallel programs
- Creating parallel programs

1 Assumptions

- Have logged in to a cluster and run simple jobs
- understand basics of Slurm
- want to run more effectively and efficiently

2 The HPC Environment

2.1 What is HPC?

- running jobs remotely on a compute cluster
- linux-based
- using more compute resources (cpus/memory) than you have locally
- access to huge shared storage
- access to specialized hardware, e.g. GPUs
- access to specialized software
- running large job in parallel, or many sequential jobs

3 Typical Cluster

4 Typical compute node

4.1 Typical Cluster (Yale, or elsewhere)

- Several hundred servers (nodes)
- Each node has 10s of cpus -> Thousands of total cpus
- Each node has 100s of GB RAM
- Multiple PB of shared storage
- Fast network connecting nodes and networks
- Shared by 100s of users, 1000s of jobs

Anatomy of our Clusters

alt text

alt text

alt text

4.2 Cluster Resources

These are managed by slurm, cgroups, and storage quotas - Nodes and CPUs - Node Memory (RAM) - Job Runtime - Cluster Disk Storage - GPUs

4.2.1 Note

• jobs (unrelated) normally share nodes. Slurm+cgroups makes sure you have exclusive access to your resources

5 Quick Review of Slurm allocations

\$ sbatch [options] batch.sh \$ srun –pty [options] bash

option	example	comment
-p partition	-p general	partitions(s) to run on
-c cpus	-c 20	cpus/task on single node
-n tasks	-n 4	mpi progs only
-N nodes	-N 10	forces layout, rarely useful
-t time	-t 7-, -t 3:00	job killed if exceeded
-mem=mem	-mem=16g	ditto
-mem-per-cpu= <i>mem</i>	-mem-per-cpu=8g	ditto
-J name	-J myjob	name job
-gres	-gres=gpu:p100:2	request gpus
–array spec	-array 1-10	array job

5.1 Fairshare Scheduling with backfill

- Slurm tracks cpu usage by user and group₅
- Job priority is determined by amount of recent usage
- Users and Groups with heavy recent usage have lower priority
- Backfill can run short, lower priority jobs

5.3 Memory

- default of 5 GB per allocated cpu on our clusters
- strictly enforced; jobs exceeding limit are killed
- users have limits (e.g. 640 GB)
- you can request custom memory per node or core with sbatch or srun:

```
--mem=6g
--mem-per-cpu=6g
```

5.4 Finding compute resources

```
sinfo -p general sinfo -p general -e -t IDLE -o "%P %.5a %c %m %.10l %.6D %.6t %N" alias findidle='sinfo -e -t IDLE -o "%P %.5a %c %m %.10l %.6D %.6t %N"' findidle -p general
```

5.5 Graphical Tools

http://overwatch.ycrc.yale.edu/farnam/orwell/ http://overwatch.ycrc.yale.edu/grace/orwell/

5.6 Scavenge Partition

```
$ sbatch -p scavenge
```

- Compute nodes in other partions are available via scavenge partition
- jobs subject to being killed at any time
- separate per user limits apply
- works best for short jobs, dSQ/array jobs, or jobs that checkpoint
- can include gpus

5.7 Special Nodes

5.8 Large Memory Nodes

- Compute nodes with 512GB-1.5TB of RAM
- Reserved for applications with large memory needs. Please be considerate.
- Separate slurm partition: bigmem

Typical allocation:

```
srun/sbatch -p bigmem --mem=1500g ...
```

5.9 GPU Nodes

- Some applications have been ported to GPUs with impressive performance improvement
- Gpu nodes have conventional cpus with multiple cores, and 1-4 GPUs.
- To use GPUs, you must:
- request node(s) with GPUs
- request the type and number of GPUs

Typical allocation:

```
srun --pty -p gpu -c 8 --gres=gpu:1080ti:4 ... bash
sbatch -p gpu -c 8 --gres=gpu:1080ti:4 ... batch.sh
```

5.10 GPU Nodes continued

You can also scavenge gpu nodes:

```
srun --pty -p scavenge -c 8 --gres=gpu:1080ti:4 ... bash
sbatch -p scavenge -c 8 --gres=gpu:1080ti:4 ... batch.sh
```

Note that partition names, types and number of GPUs vary by cluster.

Туре	FP	Clusters
1080ti K80 P100	single double double	farnam grace,farnam grace

6 Your Job's Behavior

6.1 What is "Running Efficiently"?

- All allocated cores are running near 100%
- GPUs (if allocated) are used
- memory requested is adequate and reasonable

6.2 Monitoring your job

```
squeue -u netid -l (your jobs)
squeue -j jobid -l (particular job)
scontrol show job jobid (during job)
sacct -j jobid -l (after job finishes)
```

Default output for squeue and sacct is not ideal. Put in .bashrc:

```
export SACCT_FORMAT="JobID%-20, JobName, User, Partition, NodeList, Elapsed, State, ExitCoexport SQUEUE_FORMAT="%.16i %.12P %.12j %.8u %.2t %.12M %.12l %24R %.4D %.4C %m %8k
```

```
in PracticalHPC:
source SLURM.env
```

6.3 Checking cpu and memory utilization for running jobs

Using top/htop - use squeue -u netid to determine where your job is running - ssh to your nodes, especially 2nd and on, and run top -u netid (or htop) - look at %CPU and RES columns - should see ~%100 cpu for each allocated core

6.4 Postmortem checking

1. Run program under /usr/bin/time

```
$ /usr/bin/time -a myprog arg1 arg2 ...
```

2. After run completes, determine actual usage (See format comment):

```
$ sacct -j jobid
```

6.5 Example: Performance

```
cd Examples/Performance
sbatch bwa.sh # runs out of RAM (default 5GB/core)
sbatch --mem=10g bwa.sh # also runs out
sbatch -c 8 # runs ok. Show htop, scontrol, sacct,
Htop: H combines threads. F5 shows tree
sacct -j jobid
scontrol show job jobid
```

7 Data

7.1 Storage Quotas

- most quotas are group quotas
- if exceeded, jobs will die trying to write
- to see all quotas for your group:

```
$ groupquota
$ groupquota -u netid
```

7.2 File Storage

Location	Purpose	Typical Limit (size/files)	Backed Up?
home	scripts, programs, documents, small files	125GB/500K	Y
project	large data, programs	1-4TB/5M	N
scratch60	temp data	10TB/5M	purged
pi_name	dedicated 8	varies	N

7.3 File Transfer

- For small transfers:
- Linux/Mac/cygwin: scp, rsync
- Windows: Mobaxterm, winscp
- For larger transfers, or outside Yale, or collaborators without Yale credentials:
- Globus

7.4 Globus

- www.globus.org
- web and command line
- very fast and robust
- transfers between endpoints
- endpoints:
- Yale clusters: yale#{cluster}
- Lots of other institutions
- personal endpoint on your own computer
- you can create *shares*, accessible to non-Yale researchers via their globus id

7.5 Example

```
show transfer between farnam and ruddle
show personal endpoint (bjornson_mac)
show creating share and sharing with jason.ignatius@yale.edu
```

7.6 Globus cli

```
$ module load Globus-CLI
$ globus login
(you'll get a url. Open that in a browser, authenticate, and copy the code. En
$ globus endpoint search bjornson_mac
$ globus endpoint search yale#farnam
(set env vars to BM and F)
$ globus ls -l $BM:/
$ globus transfer -r -s size $BM:Data $F:Data
(returns taskid)
$ globus task show taskid
```

https://docs.globus.org/cli/examples

8 Performance

- When possible, use optimized libraries, rather than roll your own
- Python: numpy or pandas instead of nested lists for matrices
- R, Matlab: vectors instead of loops

8.1 Profiling

- Helps you pinpoint where time is spent
- R: Rprof
- Python: cProfile, kernprof/line_profiler
- C: gprof

8.2 Python: cProfile for function level profiling

```
cd Examples/Profiling
module load Python
(get compute node with srun, module load Python)
python -m cProfile -o bad.prof bad.py
(takes a minute or two)

(in python)
import pstats
p=pstats.Stats('bad.prof')
p.sort_stats('time').print_stats()
```

8.3 kernprof for line-by-line

```
module load Python
  (decorate functions with @profile)
kernprof -1 bad2.py
python -m line_profiler bad2.py.lprof
```

' "rdb9@c13n08 Profiling]\$ python -m line_profiler bad2.py.lprof Timer unit: 1e-06 s Total time: 114.565 s File: bad.py Function: doit at line 4

9 Line # Hits Time Per Hit % Time Line Contents

4					@profile
5					<pre>def doit(gf, mf, of):</pre>
6	1	134	134.0	0.0	ofp=open(of, "w")
7	1	1	1.0	0.0	genenames=[]
8	1	0	0.0	0.0	geneinfo=[]
9	80923	44421	0.5	0.0	for l in open(gf):
10	80922	105965	1.3	0.1	gn, chrm, strand, start, end =
11	80922	44241	0.5	0.0	genenames.append(gn)
12	80922	49721	0.6	0.0	geneinfo.append([chrm, strand,
13					
14	71521	90557	1.3	0.1	for l in open(mf):
15	71520	126260	1.8	0.1	<pre>genename=l.strip().split()[-1]</pre>

```
16
17 71520 110808166 1549.3 96.7 idx=genenames.index(genename)
18 71520 3295037 46.1 2.9 print(l + str(geneinfo[idx]),
```

9.1 FIX: replace list with dictionary

```
kernprof -l good.py > /dev/null
python -m line_profiler good.py.lprof
```

10 Parallelism

- Sbatch can allocate multiple cores and nodes, but the script runs on one core on one node sequentially.
- Simply allocating more nodes or cores DOES NOT make jobs faster.
- How do we use multiple cores to increase speed?
- Two classes of parallelism:
- · Lots of independent sequential jobs
- Single job parallelized (somehow, maybe by someone else?)

10.1 First, my "Disclaimer"

- Parallel computing is a complex field with many tools and techniques
- Entire courses: e.g. Yale CS 424/524 "Parallel Programming Techniques" by Dr. Andrew Sherman
- We'll see some simple techniques for easy cases

10.2 Slurm Job Arrays

- Useful when you have many nearly identical, independent jobs to run
- Starts many identical copies of your script, distinguished by \$SLURM_ARRAY_TASK_ID

Submit jobs like this:

```
sbatch --array=1-100 script.sh
```

Inside your batch script this environment variable to do something different in each task:

```
./mycommand -i input.${SLURM_ARRAY_TASK_ID} \
    -o output.${SLURM_ARRAY_TASK_ID}
```

10.3 Slurm Job Arrays continued

A few nice features of job arrays: - only one job to keep track of - easy to start or cancel entire set - slurm options, e.g. cpus, memory, time limits, apply to each task, not overall job - your allocation can grow and shrink as conditions change - when using scavenge partition, tasks are killed, but job persists

10.4 Array job example

```
cd Examples/Array
sbatch array.sh
```

10.5 dSQ (aka Dead Simple Queue)

- local tool built on job arrays. Same nice features, but easier to use
- more flexible; tasks can be arbitrarily different
- reporting and error recovery built in

10.6 Using dSQ

• Create file containing list of commands to run (jobs.txt)

```
prog arg1 arg2 -o job1.out
prog arg1 arg2 -o job2.out
...
```

Create batch script

```
module load dSQ
dSQ --jobfile jobs.txt [slurm args] > run.sh
```

slurm args can specify partion, timelimit, memory, etc. in the usual way.

• Submit launch script

```
sbatch run.sh
```

For more info, see http://research.computing.yale.edu/support/hpc/user-guide/dead-simple-queue

11 dSQ Reporting

- When dSQ job is finished, you'll see a file job_<jobid>_status.tsv
- Generate report:

```
$ dSQAutopsy jobs.txt job_<jobid>_status.tsv > failedjobs.txt
Autopsy Task Report:
9 succeeded
1 failed
0 didn't run.
```

• If any jobs failed, failedjobs.txt will contain those jobs

11.1 dSQ Example

```
cd Examples/GenomePL
python mktasks.py data output > tasks.sh # create dSQ job file
module load dSQ
dSQ --jobfile tasks.sh > run.sh
sbatch run.sh # will fail, do sacct -j jobid, resubmit --mem=10q
```

12 Running already parallelized applications

12.1 Parallel bootstrap in R using Multicore library

works on multiple cpus on one node

```
boot(data=trees, statistic=volume_estimate, R=50000, parallel="multicore", ncpus=8)
```

```
cd Examples/R-Bootstrap
sbatch -c 8 ... script.sh
```

12.2 Parallel Namd

- molecular dynamics simulation written in C and C++
- Namd is parallelized several ways, which can be combined:
- OpenMP (within one node)
- MPI (across nodes)
- GPU

Example: Satellite Tobacco Mosaic Virus 1,066,628 atoms, 500 time steps

alt text

13 Namd Performance on Grace

startup (s)	simulate	total	step	step s/u	
1 node, 1 cpu	14	5833	5847	11.6	1.0
1 node, 28 cpu	13	218	231	0.44	26.3
1 node, 20 cpu+4 K80 gpus	12	32	44	.056	207
9 nodes, 40 cpus	29.5	212	242	.424	27.4

in /home/fas/lsprog/rdb9/repos/PracticalHPC/Examples/Namd/stmv - gpus slurm-9139008.out - mpi slurm-9152709.out - 28 core MP slurm-9139007.out - 1 core slurm-9140416.out

13.1 Namd Example

```
cd Examples/Namd/stmv
sbatch multi.sh
sbatch gpu.sh
use htop and nvidia-smi on allocated node
```

14 DIY Parallelism

14.1 Parallel Kmeans in R using parallel

- simple idea: reduce computation to applying function to list of values (very R-ish)
- then do that in parallel

sequential

```
starts=100000; tasks=8; nstarts=rep(starts/tasks, tasks)
results<-lapply(nstarts, function(nstart) kmeans(Boston, 4, nstart=nstart)))

parallel
library(parallel)
...
results<-mclapply(nstarts,
  function(nstart) kmeans(Boston, 4, nstart=nstart),
  mc.cores=cores)</pre>
```

14.2 Example Kmeans

```
cd R-Kmeans
sbatch kmeans.sh
sbatch parkmeans.sh
```

14.3 kmeans performance on farnam m610s

runtime	s/u	
1 node, 1 cpu	44.475	_
1 node, 8 cpus	5.96	7.46

14.4 Other thoughts on parallel R

- Parallel R, by Steve Weston, O'Reilly Press
- YCRC Bootcamp: Writing Efficient R Code (taught by Steve)
- foreach parallel construct (written by Steve)

14.5 Python Multiprocessing

- Support for creating parallel processes and communicating and synchronizing
- Simplest interface is parallel map, very similar to R's mclapply

```
import multiprocessing
p=multiprocessing.Pool(10)
inputs=[...]
results=p.map(f, inputs)
```

- Pool creates set of "workers" that compute f() on inputs
- Workers are forked processes. Have copies of data at point where pool was created
- Function, inputs, and outputs are serialized and passed between master and workers

14.6 Parallel Travelling salesman in Python using multiprocessing

- Given N cities, find shortest route visiting each once
- NP-complete -> very expensive to find optimal solution
- We'll use a heuristic approach, simulated annealing:

```
T = initialT
curr = best = initialsolution
while T > stopT:
    candidate = randomly swap two adjacent cities in curr
    if cost(candidate) < cost(best):
        curr=candidate
        best=candidate
    elif cost(candidate)-cost(best) < T
        curr=candidate
    T = T * alpha</pre>
```

14.7 Parallelization strategy

- Run K copies, starting from different initial conditions
- Take different random paths
- Choose the best solution

Example/simulated-annealing-tsp

Steps: - seq.py: explicit for loop over simulations - map.py: convert loop to map - parmap.py: convert map to parallel map

14.8 parmap.py

```
def dotrial(t):
    t.anneal()
    return t

p=multiprocessing.Pool(cores)
trials = [SimAnneal(coords, ...) for i in range(ntrials)]
got=p.map(dotrial, trials, chunksize=5)
```

14.9 Example: TSP

```
cd Examples/TSP
srun -p interactive --pty bash
python seq.py 10
python map.py 10
srun -c 10 -p interactive --pty bash
python parmap.py 100
```

14.10 Subtleties WRT random numbers

- When running in parallel, what random number sequence is seen by each process?
- many random number generators use system clock, which may not be different for each process
- you may want reproduceable results
- R: use RNGkind("L'Ecuyer-CMRG"). Sets up independent, reproducible random streams
- Matlab and Python: Each worker has same seed by default. You should explicitly set it, e.g. rng(workerid)

14.11 C/C++: OpenMP

- popular way to parallelize C programs on single node
- annotate for loop with #pragma omp for

```
#pragma omp for reduction(+:sum) for (i=0; i<len*threads; i++)
{     sum += (a[i] * b[i]);     psum = sum; }</pre>
```

14.12 Example: Matrix multiply with OpenMP

```
cd Examples/OpenMP
make mm
sbatch mm.sh
```

14.13 To get help or report problems

- Check our status page: http://research.computing.yale.edu/system-status
- Send an email to our tracking system: hpc@yale.edu
- Read documentation: http://research.computing.yale.edu/hpc-support
- Office hours: http://research.computing.yale.edu/hpc-support/office-hours-support
- Email me directly: Robert.bjornson@yale.edu