MITSCHRIEB

Analysis II

Sommersemester 2025

Emma Bach

Vorlesung gehalten von Prof. Dr. Michael Růžička

Inhalt

1	\mathbf{Der}	· Euklidische Raum	2
	1.1	Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n	4
	1.2	Mehrdimensionale Ableitungen	6
	1.3	Differenzierbarkeit	7

Chapter 1

Der Euklidische Raum

Lemma 1.1. Sei $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum. Dann wird durch

$$||u|| = \sqrt{\langle u, u \rangle}$$

auf V eine Norm erklärt. Diese bezeichnet man als die durch das Skalarprodukt induzierte Norm.

Definition 1.2. Seu $(V, \langle _, _ \rangle)$ ein euklidischer Vektorraum, Die Vektoren $u, v \in V$ heißen **orthogonal**, wenn

$$\langle u, v \rangle = 0$$

ist. Für $u, v \in V \setminus \{0\}$ Wird die reelle Zahl

$$\phi = \arccos \frac{\langle u, v \rangle}{\|u\| \; \|v\|}$$

als der Winkel zwischen u und v bezeichnet.

Anmerkung 1.3. Es gilt

$$\frac{|\langle u, v \rangle|}{\|u\| \ \|v\|} \le 1$$

Lemma 1.4. Für $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ sei

$$||X||_{\max} := \max\{|x_1|, \dots, |x_n|\}$$

Dann ist $|| \cdot ||_{\max}$ eine Norm auf \mathbb{R}^n und es gilt

$$||X||_{\max} \le ||X|| \le \sqrt{n} ||X||_{\max}$$

Satz 1.5. Die Menge \mathbb{Q}^n der Punkte mit rational Koordinaten ist dicht in \mathbb{R}^n .

Beweis. Sei $X \in \mathbb{R}^n$ und $\varepsilon \in \mathbb{R}^+$. Da \mathbb{Q} dicht in \mathbb{R} ist gilt

$$\forall i \in \{1, \dots, n\} : \exists y_i \in \mathbb{Q} : |x_i - y_i| \le \frac{\varepsilon}{\sqrt{n}}$$

Durch Lemma 1.4 folgt:

$$||x - y|| \le \sqrt{n}||X - Y|| < \varepsilon$$

Satz 1.6. Sei $(X_k)_{k\in\mathbb{N}}$ eine Folge aus \mathbb{R}^n . Sei $X_k = (x_1^{(k)}, \dots, x_n^{(k)})$. Dann gilt:

$$\lim_{k \to \infty} X_k = X \Leftrightarrow \forall i : \lim_{k \to \infty} x_i^{(k)} = x_i$$

Insbesondere ist X_k eine Cauchyfolge, wenn die Komponenten Cauchyfolgen sind.

Beweis. $X_k \to X$, $i \in \{1, ..., n\}$, $\varepsilon \in \mathbb{R}^+$. Dann gilt

$$\exists k_o \in \mathbb{N} : \forall k \ge k_0 : ||X_k - X|| \le \varepsilon \implies \forall i : \left| x_i^{(k)} - x_i \right| < \varepsilon \implies \lim_{k \to \infty} x_i^{(k)} = x_i$$

Und umgekehrt:

$$\forall i: x_i^{(k)} \to x_i, \varepsilon \in \mathbb{R}^+ \implies \exists k_0^i \in \mathbb{N}: \forall k \ge k_0^i \left| x_i^{(k)} - x_i \right| \le \frac{\varepsilon}{\sqrt{n}}$$
$$k_0 := \max\{k_0^n, \dots, k_0^n\} \implies \forall k \ge k_0: \left| x_i^{(k)} - x_i \right| < \frac{\varepsilon}{\sqrt{n}} \implies \|X_k - X\| \le \sqrt{n} \|X_k - X\| < \varepsilon$$

Satz 1.7. Für konvergente Folgen $(X_k), (Y_k) \in \mathbb{R}^n, (\lambda_k) \in \mathbb{R}$ gilt:

$$\lim_{k \to \infty} (X_k + Y_k) = \lim_{k \to \infty} X_k + \lim_{k \to \infty} Y_k \tag{1.1}$$

$$\lim_{k \to \infty} \lambda_k X_k = \left(\lim_{k \to \infty} \lambda_k\right) \left(\lim_{k \to \infty} X_k\right) \tag{1.2}$$

$$\lim_{k \to \infty} \langle X_k, Y_k \rangle = \left\langle \lim_{k \to \infty} X_k, \lim_{k \to \infty} Y_k \right\rangle \tag{1.3}$$

Satz 1.8. \mathbb{R}^n ist vollständig.

Beweis. Ist X_k eine Cauchyfolge in \mathbb{R}^n , so sind nach Satz 1.6 alle Teilfolgen Cauchy in \mathbb{R} . Also:

$$\exists x_i \in \mathbb{R} : x_i^{(k)} \to x_i \implies \exists X \in \mathbb{R}^n : X_k \to X$$

Satz 1.9. (Bolzano-Weierstrass:) Jede beschränkte Folge in \mathbb{R}^n besitzt eine konvergente Teilfolge.

Beweis. Sei (X_k) eine beschränkte Folge in \mathbb{R}^n . Nach 1.4 müssen die Komponentenfolgen ebenfalls beschränkt sein. Nach dem eindimensionalen Fall des Satzes von Bolzano-Weierstrass existieren also konvergente Teilfolgen der Koordinatenfolgen. Angenommen, die konvergente Teilfolge der ersten Komponente ist gegeben durch $x_1^{(k_n)} \to x_1$. So ist $x_2^{(k_n)}$ ebenfalls eine beschränkte Teilfolge, also existiert eine Teilfolge $x_2^{(k_n)_m}$ welche in den ersten beiden Komponenten konvergiert. Führt man dieses Verfahren induktiv fort, erhält man eine konvergente Teilfolge von (X_k) .

Satz 1.10. Sei $(A_i)_{i\in\mathbb{N}}$ eine Folge abgeschlossener beschränkter nichtleerer Teilmengen des \mathbb{R}^n , sodass $A_1 \supseteq A_2 \supseteq \ldots$ Dann ist $\bigcap_{i\in\mathbb{N}} \neq \emptyset$

Beweis. $A_i \neq \emptyset \implies \exists X_i \in A$ sd. $(X_i)_{i \in \mathbb{N}}$ eine Folge ist. Da A_i beschränkt ist ist $(X_i)_{i \in \mathbb{N}}$ beschränkt, also hat X_i eine konvergente Teilfolge X_{i_k} mit Limes X. Es gilt $X_{i_k} \in A_{i_k} \subseteq A_i$, also ist X ein Berührpunkt von A_i , also $X \in A_i$.

Satz 1.11. Jede abgeschlossene beschränkte Teilmenge des \mathbb{R}^n ist kompakt.

Beweis. Analog zur eindimensionalen Version, wobei statt Intervallen $[a_i, b_i]$ Hyperwürfel $[a_i^{(1)}, b_i^{(1)}] \times \ldots \times [a_i^{(n)}, b_i^{(n)}]$ genutzt werden müssen.

Satz 1.12. Seien $\|.\|_1$ und $\|.\|_2$ Normen auf \mathbb{R}^n . So existieren $k, K \in \mathbb{R}^+$ mit

$$\forall X \in \mathbb{R}^n : k \|X\|_1 \le \|X\|_2 \le K \|X\|_1$$

Beweis. Diese Normenäquivalenz bildet eine Äquivalenzrelation. Es reicht also, zu zeigen, dass jede Norm $\|\cdot\|_2$ äquivalent zu einer spezifischen Norm $\|\cdot\|_1$ ist. Wir wählen $\|\cdot\|_{\max}$. Sei (E_i) die Standardbasis des \mathbb{R}^n . Wir definieren:

$$K := ||E_1||_2 + \ldots + ||E_n||_2$$

Dann gilt:

$$||X||_{2} = ||x_{1}E_{1} + \ldots + x_{n}E_{n}||$$

$$\leq |x_{1}||E_{1}||_{2} + \ldots + |x_{n}||E_{n}||_{2}$$

$$\leq ||X||_{\max}K \quad \text{[citation needed]}$$

Es bleibt die Rückrichtung zu zeigen.

Lemma 1.13. $f(X) := ||X||_2$ ist stetig.

Beweis.

$$|||X||_2 - ||Y||_2| \le ||X - Y||_2 \le K||X - Y||_{\max} \le K||X - Y||$$

Also ist $\| \cdot \|_2$ stetig bezüglich der euklidischen Norm $\| \cdot \|$.

Wir definieren nun:

$$A := \{ X \in \mathbb{R}^n \mid ||X||_{\max} = 1 \}$$

Diese Menge ist beschränkt. Wir wollen Zeigen, dass sie außerdem abgeschlossen ist. Sei $X_i \to X$, $X_i \in A$. Es gilt:

$$|||X_i||_{\max} - ||X||_{\max}| \le ||X_i - X||_{\max} \le ||X_i - X||$$

Also konvergiert jede Menge, also ist A kompakt, also auch abgeschlossen. Dementsprechend muss f auf A ein Minimum k annehmen. Wir wissen $f \geq 0$, also ist $k \geq 0$. Es gilt sogar k > 0, da keiner der Vektoren in A der Nullvektor ist. Nun gilt also $\forall X \in A : ||X||_2 \geq k$. Wir definieren:

$$\lambda := \frac{1}{\|X\|_{\max}}$$

$$\|\lambda X\|_{\max} = |\lambda| \|X\|_{\max} = 1$$

$$\left|\lambda\right|\left\|X\right\|_{2}=\left\|\lambda X\right\|_{2}\geq k\implies \left\|X_{2}\right\|\geq k\|X\|_{\max}$$

Anmerkung 1.14. Im unendlichdimensionalen Fall gilt Satz 1.12 nicht.

1.1 Abbildungen und Koordinatenfunktionen auf \mathbb{R}^n

In diesem Abschnitt betrachten wir Funktionen $F: \mathbb{R}^n \to \mathbb{R}^k$. Betrachten wir zuerst den Spezialfall Linearer Funktionen, also $\forall X, Y \in \mathbb{R}^n : \forall \lambda, \mu \in \mathbb{R} : F(\lambda X + \mu Y) = \lambda F(X) + \mu F(Y)$.

Sei (E_i) die Standardbasis des \mathbb{R}^n und sei (E_i) die Standardbasis des \mathbb{R}^k . Nun gilt:

$$F(E_j) = \sum_{i=1}^k a_{ij} E_i'$$

Daraus erhalten wir Koeffizienten a_{ij} , welche eine Matrix bilden. Umgekehrt können wir aus den Koeffizienten die Abbildung F rekonstruieren, indem wir definieren:

$$F(X) = F\left(\sum_{j=1}^{n} x_j E_j\right)$$

$$= \sum_{j=1}^{n} x_j F(E_j)$$

$$= \sum_{j=1}^{n} x_j \sum_{i=1}^{k} a_{ij} E'_i$$

$$= \sum_{i=1}^{k} \left(\sum_{j=1}^{n} a_{ij} x_j\right) E'_i$$

[missing stuff here]

Definition 1.15. Wir bezeichnen als $p_i: M \to k$ die Projektion eines Vektors auf die *i*-te Komponente.

Satz 1.16. Sei M ein metrischer Raum, $F: M \to \mathbb{R}^n$ eine Abbildung und $x \in M$. Dann ist F stetig in x genau dann, wenn $p_i \circ F$ stetig für alle i ist.

Beweis. 1. p_i ist stetig. Ist also F stetig folgt direkt, dass auch $p_i \circ F$ stetig ist.

2. Angenommen, $p_i \circ F$ ist stetig $\forall i, \varepsilon \in \mathbb{R}^+$. Da $p_i \circ F$ stetig ist existiert eine Umgebung U_i von x, sodass $|f_i(x) - f_i(y)| < \frac{\varepsilon}{\sqrt{n}} \forall y \in U_i$. Ebenso für die anderen Komponenten. Nun gilt:

$$||F(y) - F(x)|| \le \sqrt{n} ||F(x) - F(y)||_{\max} \le \varepsilon$$

Analog gilt das Selbe für Stetigkeit auf M, gleichmäßige Stetigkeit, etc.

Definition 1.17. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, x_0 ein Häufungspunkt, $y \in \mathbb{R}^k$. Dann definieren wir:

$$\lim_{x \to x_0} F(x) = y \Leftrightarrow \forall \varepsilon \in \mathbb{R}^+ : \exists \delta \in \mathbb{R}^+ : \forall x \in M \setminus \{x_0\} : ||x - x_0|| \le \delta \implies ||F(x) - y|| < \varepsilon$$

F ist stetig in x_0 genau dann, wenn $\lim_{x\to x_0} F(x) = F(x_0)$.

Satz 1.18. Sei $M \subseteq \mathbb{R}^n$, $F: M \to \mathbb{R}^k$ eine Abbildung, $X_0 \in M$ ein Häufungspunkt, $Y \in \mathbb{R}^k$ und $f_i = p_i \circ F$. Dann gilt:

$$\lim_{X \to X_0} F(X) = Y \Leftrightarrow \forall i : \lim_{X \to X_0} f_i(X) = y_i$$

Beweis. Analog zu Beweis 1.16.

Korollar 1.19.

$$F(X) \to Y, G(X) \to Z \implies F(X) + G(X) \to Y + Z$$

1.2 Mehrdimensionale Ableitungen

Beispiel 1.20. Sei $f: M \to \mathbb{R}$ definiert auf einer offenen Menge $M \subseteq \mathbb{R}^n$.

$$f(X) = f(x_1, \dots, x_n)$$
 bzgl. der Standardbasis

Wir können aber auch $X = \sum x_i' E_i'$ bezüglich einer beliebigen anderen Basis darstellen. Also:

$$f(X) = f(x_1, \dots, x_n) = g(x'_1, \dots, x'_n)$$

Da f in der Regel nicht linear ist, ist ein solcher Basiswechsel sehr viel komplizierter als in der Linearen Algebra! Wo möglich ist es also besser, über f(X) zu reden.

Definition 1.21. Sei $f: \mathbb{R}^n \to \mathbb{R}, \overline{X} \in M$. Betrachte die Abbildung

$$t \to f(\overline{x}_1, \dots \overline{x}_{i-1}, t, \overline{x}_{i+1}, \dots, \overline{x}_n),$$

welche eine Mehrdimensionale Funktion $f(x_1, \dots x_n)$ auf eine eindimensionale Funktion f(t) abbildet. Achtung: Wir nehmen hier implizit eine Darstellung bezüglich der Standardbasis an!

Beispiel 1.22. Betrachte folgende Funktion:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

f ist an (0,0) partiellen differenzierbar, die Partiellen Ableitungen sind 0. Allerdings gilt

$$\forall x : f(x, x) = \frac{1}{2}$$

Also ist f an 0 nicht stetig! Es existieren also Funktionen, die an einem Punkt partiell Differenzierbar sind, an dem sie nicht stetig sind.

<u>Idee</u>: Fordere partielle Differenzierbarkeit bezüglich jeder möglichen Basis, also partielle Differenzierbarkeit in jedem Vektor.

Beispiel 1.23.

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Wir betrachten die "Linearisierung" $t \to f(t, \alpha t)$. Einsetzen liefert:

$$f(t,\alpha t) = \frac{\alpha t}{t^2 + a^2}$$

Diese Funktion ist differenzierbar, also ist f differenzierbar bezüglich beliebiger Basen. Das reicht jedoch immer noch nicht:

$$f(a, a^2) = \frac{a^2 a^2}{a^4 + a^4} = \frac{1}{2}$$

Also ist f immer noch nicht stetig - es ist stetig für Folgen, welche den Nullpunkt durch Geraden erreichen, aber nicht, wenn wir durch kompliziertere Pfade gegen den Nullpunkt gehen.

Wir wollen die Begriffe aus der Analysis I über Stetigkeit und Ableitbarkeit retten, also brauchen wir einen komplizierteren Ableitungsbegriff.

1.3 Differenzierbarkeit

Sei f eine beliebige Funktion $\mathbb{R} \to \mathbb{R}$. Die Ableitung gibt uns die Tangente der Funktion an einem beliebigen Punkt, also die beste affine Approximation der Funktion an diesem Punkt.

Definition 1.24. Eine Funktion $F: \mathbb{R}^n \to \mathbb{R}^k$ heißt **affin**, wenn es eine Lineare Funktion $L: \mathbb{R}^n \to \mathbb{R}^k$ und eine Konstante $Z \in \mathbb{R}^k$ gibt, sodass:

$$F(X) = L(X) + Z$$

Sei $g: \mathbb{R} \to \mathbb{R}$ affin, also g(x) = cx + t für $c, t \in \mathbb{R}$. Sei $f: \mathbb{R} \to \mathbb{R}$. Wir wollen eine beliebige Funktion f an der Stelle x_0 approximieren. Für eine gute Approximation wollen wir $f(x_0) = g(x_0)$, also erhalten wir:

$$q(x) = c(x - x_0) + f(x_0).$$

Schreibe $x = x_0 + h$ und lasse h gegen 0 gehen.

$$h \to f(x_0 + h) - g(x_0 + h) = f(x_0 + h) - f(x_0) - ch$$

Wir sagen, die Approximation ist gut, wenn $f(x_0 + h) - f(x_0) - ch$ schneller gegen 0 geht als h selbst, also:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - ch}{h} = 0 \tag{1.4}$$

Was äquivalent ist zu:

$$c = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Wir sagen also, f ist in x_0 differenzierbar, genau dann, wenn eine lineare Abbildung L existiert, sodass:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - L(h)}{h} = 0$$

Diese geometrische Intuition, nach der die Ableitung die beste affine Approximation der Funktion an einem gegebenen Punkt ist, können wir auf den \mathbb{R}^n übertragen. Analog zu der Interpretation affiner Funktionen als Geraden in \mathbb{R} , also der Ableitung als das Finden einer Tangentengeraden auf dem Funktionengraph, sucht man beim Ableiten einer Mehrdimensionalen Funktion eine Tangenten(hyper-)ebene auf dem Funktionengraph.

Definition 1.25. Sei $M \subset \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^k$ eine Abbildung, sei $X_0 \in M$. Die Abbildung F heißt **differenzierbar** am Punkt X_0 , wenn es eine Lineare Abbildung $L: \mathbb{R}^n \to \mathbb{R}^k$ gibt, sodass:

$$\lim_{H \to 0} \frac{F(X_0 + H) - F(X_0) - L(H)}{\|H\|} = 0.$$

Wir nennen sie das **Differenzial von** F **im Punkt** X_0 und notieren sie als DF_{X_0} . F heißt differenzierbar, wenn sie differenzierbar an jedem Punkt $X \in M$ ist.

Anmerkung 1.26. Differenzierbarkeit kann analog über die Eigenschaften des Restglieds $R(X, X_0)$ definiert werden: Sei

$$f(X) = f(X_0) + Df_{X_0}(X - X_0) + R(X, X_0).$$

Dann ist f genau dann differenzierbar, wenn:

$$\lim_{X \to X_0} \frac{R(X, X_0)}{\|X - X_0\|} = 0$$

Satz 1.27. Gibt es ein Differential, ist es eindeutig bestimmt.

Beweis. Seien L_1, L_2 Differentiale. Es folgt:

$$\lim_{H \to 0} \frac{L_1(H) - L_2(H)}{\|H\|} = 0$$

Sei $X \in \mathbb{R}^n \setminus \{0\}$. Dann gilt:

$$\lim_{t \to 0} \frac{L_1(tX) - L_2(tX)}{\|tX\|} = 0$$

$$\implies \frac{L_1(X) - L_2(X)}{\|X\|} = 0$$

$$\implies L_1(X) - L_2(X) = 0$$

also sind die beiden Differentiale identisch.

Anmerkung 1.28. Unserer Differenzierbarkeitsbegriff wird insbesonders in der älteren Literatur oft als totale Differenzierbarkeit bezeichnet.

Satz 1.29. Ist $F: M \to \mathbb{R}^k$ an einem Punkt X_0 differenzierbar, so ist F an diesem Punkt stetiq.

Beweis. Sei F differenzierbar. Da die Differenzierbarkeit über den Limes des Differentialquotienten definiert ist folgt direkt:

$$\forall \varepsilon \in \mathbb{R}^+ : \exists \delta_1 \in \mathbb{R}^+ : \forall H \in M : (X_0 + H \in M) \land (0 \le ||H|| \le \delta_1)$$

$$\implies \frac{||F(X_0 + M) - F(X_0) - DF_{X_0}(H)||}{||H||} \le \frac{\varepsilon}{2}$$

$$\implies ||F(X_0 + M) - F(X_0) - DF_{X_0}(H)|| \le \frac{\varepsilon}{2} ||H||$$

Da DF_{X_0} eine lineare Abbildung ist ist DF_{X_0} gleichmäßig stetig, also gilt:

$$\exists \delta_2 \in \mathbb{R}^+ : ||H|| < \delta_2 \implies ||DF_{X_0}(H)|| \le \frac{\varepsilon}{2}$$

Also gilt für $||H|| \le \delta := \min\{\delta_1, \delta_2, 1\}$

$$||F(X_0 + H) - F(X_0)||$$

$$= ||F(X_0 + H) - F(X_0) - DF_{X_0}(H) + DF_{X_0}(H)||$$

$$\leq ||F(X_0 + H) - F(X_0) - DF_{X_0}(H)|| + ||DF_{X_0}(H)||$$

$$\leq \frac{\varepsilon}{2} ||H|| + \frac{\varepsilon}{2}$$

$$\leq \varepsilon$$

Satz 1.30. Sind F und G differenzierbar, so auch F + G, und es gilt

$$D(F+G)_{X_0} = DF_{X_0} + DG_{X_0}$$

Beweis.

$$\lim_{H \to 0} \frac{(F+G)(X_0+H) - (F+G)(X_0) - (DF_{X_0} + DG_{X_0})}{\|H\|}$$

$$= \lim_{H \to 0} \frac{F(X_0+H) - F(X_0) - DF_{X_0}}{\|H\|} + \lim_{H \to 0} \frac{G(X_0+H) - G(X_0) - DG_{X_0}}{\|H\|}$$

$$= 0$$

Satz 1.31. <u>Kettenregel:</u> Seien $M \subseteq \mathbb{R}^n$, $N \subseteq \mathbb{R}^n$ offen, seien $F: M \to N$, $G: N \to \mathbb{R}^m$ Abbildungen, sei X_0

Beweis. Sei $F(X_0) = Y_0, F(X_0 + H) - F(X_0) = Z, H \in \mathbb{R}^n \setminus \{0\}, X_0 + H \in M.$ $\frac{1}{\|H\|} ((G \circ F)(X_0 + H) - (G \circ F)(X_0) - DG_{F(X_0)} \circ DF_{X_0}(H))$ $= \frac{1}{\|H\|} (G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H))$ $= \frac{1}{\|H\|} (DG_{Y_0}(F(X_0 + H) - F(X_0)) - DG_{Y_0}(DF_{X_0}(H)))$

 $= \frac{1}{\|H\|} DG_{Y_0}((F(X_0 + H) - F(X_0)) - DF_{X_0}(H))$

$$\lim_{H \to 0} \frac{1}{\|H\|} DG_{Y_0}((F(X_0 + H) - F(X_0)) - DF_{X_0}(H)) = DG_{Y_0}(0) = 0$$

$$\frac{1}{\|H\|}(G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H)) = \begin{cases} 0 & Z_H = 0 \\ \frac{1}{\|H\|}(G(Y_0 + Z_H) - G(Y_0) - DG_{Y_0}(Z_H)) & Z_H \neq 0 \end{cases}$$

Der Term zweite Term in $Z_H \neq 0$ geht gegen 0 für $H \rightarrow 0 \implies Z_H = F(X_0 + H) - F(X_0) \rightarrow 0$

$$\begin{split} \frac{\|Z_H\|}{\|H\|} &= \frac{\|F(X_0 + H) - F(X_0)\|}{\|H\|} \\ &= \frac{\|DF_{X_0}(H) - R(X_0, H)\|}{\|H\|} \\ &\leq \frac{\|DF_{X_0}(H)\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|} \\ &\leq \frac{\|DF_{X_0}(H)\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|} \\ &\stackrel{???}{\leq} \frac{\|DF_{X_0}\|\|H\|}{\|H\|} + \frac{\|R(X_0, H)\|}{\|H\|} \\ &= \|DF_{X_0}\| + \frac{\|R(X_0, H)\|}{\|H\|} \\ &\leq c \end{split}$$

Satz 1.32. Seien $I \subseteq \mathbb{R}$, $N \subseteq \mathbb{R}^k$ offen, seien $F: I \to N$, $G: N \to \mathbb{R}^n$ Abbildungen.

Ist F differenzierbar in $t_0 \in I$ und G differenzierbar in $F(t_0)$, so gilt:

$$(G \circ F)'(t_0) = DG_{F(t_0)}(F'(t_0))$$

Beweis. Gemät Kettenregel gilt $D(G \circ F) = DG_{F(t_0)} \circ DF_{t_0}$. Nun gilt:

$$h(G \circ F)'(t_0) = hD(G \circ F)_{t_0}(1)$$

$$= D(G \circ F)_{t_0}(h)$$

$$= DG_{F(t_0)}(DF_{t_0}(h))$$

$$= hDG_{F(t_0)}(F'(t_0))$$

Mittelwertsatz: $f:[x,y]\to\mathbb{R}$, dann $\exists y:f(y)-f(x)=f'(z)(y-x)$. Im Allgemeinen ist dieser im Mehrdimensionalen Fall leider falsch.

Betrachte allerdings die folgende Ungleichung, welche die Wichtigste Konsequenz des Mittelwertsatzes ist: $|f(y) - f(x)| \le |f'(z)||y - x| \le c|y - x|$. Diese kann im Allgemeinen erhalten werden.

 $F: M \subset \mathbb{R}^n \to \mathbb{R}^k \ X, Y \in M$. Sei $[X,Y] = \{(1-\lambda)X + \lambda Y\}$ die Verbindungslinie zwischen den beiden Vektoren.

Satz 1.33. Sei $M \subseteq \mathbb{R}^n$ offen, $X, Y \in M$ mit $[X, Y] \subseteq M$. Die Abbildung $F : M \to \mathbb{R}^k$ sei stetig in M und differenzierbar in den Punkten $(1 - \lambda)X + \lambda Y$ mit $\lambda \in (0, 1)$. Gilt

$$\forall \lambda \in (0,1) : \forall (1-\lambda)X + \lambda Y : ||DF_Z|| \le c$$

so gilt auch

$$||F(Y) - F(X)|| \le c||Y - X||$$

Beweis. Angenommen $G:[0,1]\to\mathbb{R}^k$ ist stetig auf [0,1] und differenzierbar auf (0,1). So gilt

$$\forall t \in (0,1) : ||G'(t)|| \le c$$

Sei $\varepsilon \in \mathbb{R}^+$ und

$$A := \{ t \in [0,1] \mid ||G(t) - G(0)|| \le (c + \varepsilon)t + \varepsilon \}$$

Da G stetig in 0 ist gilt $[0, \tau] \subseteq A$.

Sei $s = \sup A$. Es gilt $0 < s \le 1$, also ist G stetig in s.

Da $t \in A \implies t \leq s$

$$||G(t) - G(0)|| \le (c + \varepsilon)t + \varepsilon \to s \implies ||G(s) - G(0)|| \le (c + \varepsilon)s + \varepsilon$$

also $s \in A$. Angenommen, s < 1. Dann gilt $\exists h > 0 : s + h < 1$.

$$\left\| \frac{G(s+h) - G(s)}{h} - G'(s) \right\| \le \varepsilon$$

$$\implies \left\| \frac{G(s+h) - G(s)}{h} \right\| \le \varepsilon + G'(s) \le c + \varepsilon$$

$$||G(s+h) - G(0)|| \le ||G(s+h) - G(s)|| + ||G(s) - G(0)||$$

$$\le (c+\varepsilon)h + (c+\varepsilon)s + \varepsilon$$

$$\le (c+\varepsilon)(s+h) + \varepsilon$$

Daraus folgt $s + h \in A$. Da s das Supremum ist ist dies ein Widerspruch. Also gilt h = 1.

$$\forall \varepsilon \in \mathbb{R}^+ : ||G(1) - G(0)|| \le c + \varepsilon + \varepsilon = c + 2\varepsilon$$
$$\implies ||G(1) - G(0)|| \le c$$

Sei F wie im Satz. Sei $K:[0,1] \to \mathbb{R}^n: t \to (1-t)X+tY$. Diese Abbildung ist affin, also differenzierbar. Es gilt K'(t) = Y - X. $F \circ K$ ist diffbar in (0,1)

$$D(F \circ K)_t = DF_{K(t)} \circ DK_t$$

$$(F \circ K)'(t) = DF_{K(t)}(K'(t)) = DF_{K(t)}(Y - X)$$

$$||(F \circ K)'(t)|| = ||DF_{K(t)}(Y - X)|| \le ||DF_{K(t)}|| ||Y - X|| \le c||Y - X||$$

 $Mit G := F \circ K \text{ und } c := c ||Y - X||$

$$||F(Y) - F(X)|| \le c||Y - X||$$

[missing stuff - gradients]

Definition 1.34. Eine Funktion f heißt **partiell differenzierbar**, wenn für jede Koordinatenachse i die Partielle Ableitung $\forall i \in \{0, ..., n\} : \partial_i f : M \subseteq \mathbb{R} \to \mathbb{R} : X \to \delta_i f(X)$ existiert.

Satz 1.35. Ist $f: M \to \mathbb{R}$ in einer Umgebung von X_0 partiell differenzierbar und sind die partiellen Ableitungen in X_0 stetig, so ist f in X_0 differenzierbar.

Beweis. Sei U ein offener Ball um X_0 , welcher vollständig in M enthalten ist. Sei $H \in \mathbb{R}^n$, sodass $X_0 + H \in U$. Nun gilt:

$$f(X_0 + H) - f(X_0) = \sum_{i=1}^{n} (f(x_1, \dots, x_{i-1}, \dots, x_i + h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n))$$
$$- \sum_{i=1}^{n} (f(x_1, \dots, x_{i-1}, \dots, x_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n))$$

Die Summenglieder sind partielle Ableitung. Nach Mittelwertsatz erhalten wir:

$$\sum_{i=1}^{n} h_1 \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1}, \dots, x_n) \ c_i \in (0, 1)$$

Nun gilt:

$$\frac{1}{\|H\|} |f(X_0 + H) - f(X_0) - \langle \nabla f(X_0), H \rangle|
= \frac{1}{\|H\|} \left| \sum_{i=1}^n h_1 \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n) - \partial_i (f(x_0, \dots, x_n)) \right|
\leq \left| \sum_{i=1}^n \partial_i f(x_1, \dots, x_{i-1}, x_i + c_i h_i, x_{i+1} + h_{i+1}, \dots, x_n + h_n) - \partial_i (f(x_0, \dots, x_n)) \right| \to 0$$

Sei $M \subseteq \mathbb{R}^n$ offen, $X_0 \in M$, $F: M \to \mathbb{R}^k$. Seien $\forall i \in \{1, \dots, n\} f: M \to \mathbb{R}^n \to \mathbb{R}$ Koordinatenfunktionen.

$$F(X) = (f_1(X), \dots, f_k(X)) = \sum_{i=1}^k f_i(X) E_i'$$

$$Y = F(X) \Leftrightarrow \forall i : y_i = f_i(x_1, \dots, x_n)$$

$$(1.5)$$

Satz 1.36. Die Abbildung F ist genau dann differenzierbar in X_0 , wenn alle Koordinatenfunktionen f_i in X_0 differenzierbar sind. Ist das der Fall, gilt:

$$DF_{X_0}(H) = \sum_{i=1}^k (Df_i)_{X_0}(H)E_i' \forall H \in \mathbb{R}^n$$

Beweis. $L: \mathbb{R}^n \to \mathbb{R}^n$ linear. Dann

$$\lim_{H \to 0} \frac{F(X_0 + H) - F(X_0) - L(H)}{\|H\|} = 0 \Leftrightarrow \lim_{H \to 0} \frac{f_i(X_0 + H) - f_i(X_0) - (D_i \circ L)(H)}{\|H\|} = 0$$

Wir wollen nun das Differential bezüglich der Standardbasis übersichtlich darstellen. Es gilt:

$$L(E_j) = \sum_{i=1}^k a_{ij} E_i'$$

$$DF_{X_0} = \sum_{i=1}^{k} \partial_j f_i(X_0) E_j'$$

Die Koeffizienten der Darstellenden Matrix sind also identisch mit den Partiellen Ableitungen.

Satz 1.37. Sei $F: M \to \mathbb{R}^k$ differenzierbar in $X_0 \in M$. Dann wir das Differential DF_{X_0} bezüglich der Standardbasis in \mathbb{R}^n und \mathbb{R}^k beschrieben als die $k \times n$ -Matrix

$$JF(X_0) = (\delta_i f_i(X_0))_{1 \le i \le n, 1 \le j \le k}$$

Sie heißt die Funktionalmatrix oder Jacobimatrix von F in X_0 . Falls k = n wird die Determinante dieser Matrix als Funktionaldeterminante oder Jacobideterminante von F in X_0 bezeichnet.

[missing stuff]

Satz 1.38. Ist $r \geq 2$ und $f \in C^r(M)$, so sind die partiellen Ableitungen von f bis zur Ordnung r unabhängig von der Reihenfolgen es gilt also:

$$\partial_1 \dots \partial_r f = \partial_{\sigma(1)} \dots \delta_{\sigma}(r) f$$

Satz 1.39. Taylor-Formel: Sei $g: [-\varepsilon, h] \to \mathbb{R}$ $\varepsilon, h > 0$. Sei g: (k+1)- mal differenzierbar. Dann gilt:

$$\exists c \in (0,h) : g(h) = \sum_{j=0}^{k} \frac{1}{j!} g^{(j)}(0) h^j + \frac{1}{(k+1)!} g^{(k+1)}(c) h^{k+1}$$

Sei $f: M \to \mathbb{R}$ $M \subseteq \mathbb{R}^n$ offen, $x_0 \in M$. Sei $k \in \mathbb{N}$, $f \in C^k(M)$ mit partielle differenzierbaren partiellen Ableitungen k-ter Ordnung, $H \in \mathbb{R}^n : [x_0, x_0 + H] \subseteq M$. Sei $g(t) := f(x_0 + tH)$. Dann gilt für $r \in \{1, \ldots, k+1\}$:

$$g^{(r)}(t) = \sum_{i_1, \dots, i_r}^{n} \delta i_1 \dots \delta i_r f(X_0 + tH) h_{i_1} \dots h_{i_r}$$

$$g(1) = \sum_{r=0}^{k} \frac{1}{r!} g^{(r)}(0) + \frac{1}{(k+1)!} g^{(k+1)}(c)$$

Satz 1.40. Mehrdimensionale Taylorformel: Sei $M \subseteq \mathbb{R}^n$ offen, $X_0 \in M$, $H \in \mathbb{R}^n$ mit $[X_0, X_0 + h] \subseteq M$, $k \in \mathbb{N}$, $f \in C^k(M)$, sodass die partiellen Ableitungen der Ordnung k in M differenzierbar sind. Dann $\exists c \in (0,1)$, sodass:

$$f(X_0 + h) = f(X_0) + \sum_{r=1}^k \frac{1}{r!} \sum_{i_1, \dots i_r = 1}^n \delta i_1 \dots \delta i_r f(X_0 + tH) h_{i_1} \dots h_{i_r} + \frac{1}{(k+1)!} \sum_{i_1, \dots i_r = 1}^n \delta i_1 \dots \delta i_r f(X_0 + cH) h_{i_1} \dots h_{i_r}$$

Kompakter für k = 2:

$$f(X_0 + H) = f(X_0) + \langle \nabla f(X_0), H \rangle + \frac{1}{2} \sum_{i,j=1}^{n} \partial_i \partial_j f(X_0) h_i h_h + R(X_0, h)$$

$$R(X_0, H) = \frac{1}{6} \sum_{i,j,k=1}^{n} \delta_i \delta_j \delta_k f(Y) h_i h_j h_k \quad Y \in [X_0, X_0 + H]$$

Falls die dritten Ableitungen auf der Verbindungslinie beschränkt sind gilt:

$$\lim_{H \to 0} \frac{R(X_0; H)}{\|H\|^2} = 0$$

Satz 1.41. Sei $f: M \to \mathbb{R}$ zweimal partiell differenzierbar in X_0 . Dann heißt die durch

$$Q(f, X_0; H) := \sum_{i,j=1}^{n} \delta_i \delta_j f(X_0) h_i h_j$$

definierte Funktion $Q(f, X_0; H \text{ die } \textbf{Hesse-Form} \text{ von } f \text{ im } Punkt X_0 \text{ und die dadurch definierte } Matrix$

$$Hess(f, X_0)_{ij} = (\partial_i \partial_j f(X_0))$$

heißt die **Hesse-Matrix** von f in X_0 .

[...]

Lemma 1.42. Sei $M \subseteq \mathbb{R}^n$ offen, $F: M \to \mathbb{R}^n$ eine C^1 -Abbildung, sei $L: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung, sei $X, Y \in M$ mit $[X, Y] \subseteq M$. Dann gilt:

$$||F(X) - F(Y) - L(X - Y)|| \le ||X - Y|| \cdot \max_{Z \in [X,Y]} ||DF_Z - L||$$

Beweis.

$$G(X) := F(X) - L(X) \quad X \in M$$

$$DG_Z = DF_Z - L$$

Dann muss für $F \in C^1$ folgende Funktion stetig sein:

$$Z \to ||DF_Z - L||$$

Zusätzlich ist [X,Y] kompakt, also existiert das Maximum

$$\max_{Z \in [X,Y]} \|DF_Z - L\| := c$$

Gemäß Mittelwertsatz ist nun

$$||F(X) - F(Y) - L(X - Y)|| \le c||X - Y||$$

Satz 1.43. Sei $M \subseteq R^n$ offen. Sei $\vec{x}_0 \in M$. Sei $F : M \to \mathbb{R}^n$ eine C^r -Abbildung $(r \in \mathbb{N}_1)$. Sei das Differential $DF_{\vec{x}_0}$ regulär, also det $JF(\vec{x}_0) \neq 0$. Dann existiert eine offene Umgebung $U \subseteq M$ von \vec{x}_0 , sodass folgendes gilt:

- 1. die Einschränkung $F|_U$ ist injektiv
- 2. die Bildmenge F(U) := V ist offen
- 3. die Umkehrabbildung $(F|_U)^{-1}: V \to U$ ist C^r .

Beweis. Sei I die Identitätsabbildung des \mathbb{R}^n . Sei $U(0,\alpha) := \{\vec{x} \in \mathbb{R}^n \mid \vec{x} < \alpha\}$.

Annahmen: $\vec{x}_0 = 0$, F(0) = 0 (Erfüllbar durch Verschieben), $DF_0 = I$ (Erfüllbar durch invertierbare Lineare Abbildung der Funktion?)

 $\vec{x} \to ||DF_{\vec{x}} - I||$ ist stetig mit $||DF_0 - I|| = 0$. Also gilt

$$\forall \varepsilon > 0 : \exists \alpha > 0 : \forall \vec{x} \in U_{\alpha} : ||DF_{\vec{x}} - I|| \le \varepsilon$$

Nach 4.3 folgt:

$$\forall \vec{x}, \vec{y} \in U_{\alpha} : ||F(\vec{x}) - F(\vec{y}) - (\vec{x} - \vec{y})|| \le \varepsilon ||\vec{x} - \vec{y}||$$

$$\begin{aligned} \|\vec{x} - \vec{y}\| &\leq \|\vec{x} - \vec{y} - (F(\vec{x}) - F(\vec{y}))\| + \|F(\vec{x}) - F(\vec{y})\| \\ &\leq \varepsilon \|\vec{x} - \vec{y}\| + \|F(\vec{x}) - F(\vec{y})\| \end{aligned}$$

also:

$$(1 - \varepsilon) \|\vec{x} - \vec{y}\| < \|F(\vec{x}) - F(\vec{y})\|$$

Also ist $||F(\vec{x}) - F(\vec{y})|| = 0$ gdw. $\vec{x} = \vec{y}$, also folgt Injektivität.

Lemma 1.44. $U_{(1-\varepsilon)\alpha} \subseteq F(U_{\alpha})$

Beweis. Sei $\vec{y} \in U_{(1-\varepsilon)\alpha}$. Wir suchen $\vec{x} \in U_{\alpha} : \vec{y} = F(\vec{x})$. Wir wollen den Banchschen Fixpunktsatz anwenden. Dafür definieren wir $\phi : \overline{U_{\alpha}} \to \mathbb{R}^n$ als:

$$\phi(\vec{x}) := \vec{y} - F(\vec{x}) + \vec{x}$$

Sei nun $X \in \overline{U_{\alpha}}$. Dann gilt:

$$\begin{aligned} \|\phi(\vec{x})\| &\leq \|\vec{y}\| + \|F(\vec{x}) - \vec{x}\| \\ &\leq \|\vec{y}\| + \varepsilon \|\vec{x}\| \\ &< (1 - \varepsilon)\alpha + \varepsilon\alpha \\ &= \alpha \end{aligned}$$

Sei $X, Z \in \overline{U_{\alpha}}$. Nun gilt:

$$\|\phi(\vec{x}) - \phi(\vec{z})\| = \|F(\vec{x}) - \vec{x} - (F(\vec{z}) - \vec{z})\|$$

 $\leq \varepsilon \|\vec{x} - \vec{z}\|$

Gemäß Banachschem Fixpunktsatz existert also genau ein $X \in \overline{U_{\alpha}}$, sodass $\phi(\vec{x}) = \vec{x}$, also $F(\vec{x}) = \vec{y}$. Da $\phi(\vec{x}) < \alpha$ gilt auch $\vec{x} \in U_{\alpha}$.

Sei nun $V:U_{(1-\varepsilon)\alpha}$ und $U:=F^{-1}(V)$. Gemäß Lemma ist U eine Obermenge von V, also ist U eine offene Umgebung von 0. Wir wissen bereits, dass $F|_U$ injektiv ist. Sei also nun $G:V\to U$ die Umkehrabbildung von $F|_U$.

Lemma 1.45. G ist in 0 differenzierbar.

Beweis. Sei $\varepsilon' \in \mathbb{R}^+$. So existiert ein $\alpha' \in \mathbb{R}^+$, sodass $U_{\alpha'} \in M$ und

$$||F(\vec{x}) - \vec{x}|| \le \frac{\varepsilon'}{1 + \varepsilon'} ||\vec{x}|| \quad \forall \vec{x} \in U_{\alpha'}$$
$$||\vec{x}|| \le ||\vec{x} - F(\vec{x})|| + ||F(\vec{x})||$$
$$\le \frac{\varepsilon'}{1 + \varepsilon'} ||\vec{x}|| + ||F(\vec{x})||$$

also:

$$\|\vec{x}\| < (1 + \varepsilon') \|F(\vec{x})\| \quad \forall \vec{x} \in U_{\alpha'}$$

Sei nun $\vec{h} \in V$ mit $\|\vec{h}\| < \alpha'(1 - \varepsilon)$. Sei $\vec{x} := G(\vec{h})$. Gemäß Lemma ist $V \subseteq F(U_{\alpha})$, also $G(V) \subseteq G(F(U_{\alpha}))$, also $U \subseteq U_{\alpha}$, also $\vec{x} \in U$ (?)

Gemäß vorheriger Überlegungen haben wir

$$\|X\| \leq \frac{1}{1-\varepsilon} \|F(\vec{x})\| = \frac{1}{1-\varepsilon} \left\| \vec{h} \right\| < \alpha'$$

Wir betrachten nun endlich den Differentialquotienten:

$$\begin{split} \left\| G(\vec{h}) - \vec{h} \right\| &= \| \vec{x} - F(\vec{x}) \| \\ &\stackrel{(*)}{\leq} \frac{\varepsilon *}{1 + \varepsilon'} \| \vec{x} \| \\ &\leq \varepsilon' \| F(\vec{x}) \| \\ &\leq \varepsilon' \left\| \vec{h} \right\| \end{split}$$

also:

$$\frac{\left\|G(\vec{h}) - \vec{h}\right\|}{\left\|\vec{h}\right\|} \leq \varepsilon'$$

für alle $0 < \|\vec{h}\| < \min\{\alpha(1-\varepsilon), \alpha'(1-\varepsilon)\}$, also ist G in 0 differenzierbar mit $DG_0 = I$.

Was ist nun, wenn die Vorraussetzungen $\vec{x} = 0$, F(0) = 0, $DF_0 = I$ nicht gelten?

Wir definieren lineare Translationsabbildungen $T_{\vec{z}}:\mathbb{R}^n\to\mathbb{R}^n$ $\vec{x}\to\vec{x}+\vec{z}.$ Sei nun:

- $L: DF_{\vec{x}_0}$,
- $M' := (L \circ T_{-\vec{x}_0})(M),$
- $F'(\vec{x}) := T_{-F(\vec{x}_0)} \circ F \circ T_{\vec{x}_0} \circ L^{-1}(\vec{x})$

Die Differentiale sind DL = L und $DT_Z = I$. Nun gilt:

$$DF_0' = I \circ DF_{\vec{x}_0} \circ I \circ (DF_{\vec{x}_0})^{-1} = I$$

Also $F'(0)=0,\ 0\in M'.\ F'$ ist also umkehrbar und die Umkehrabbildung ist differenzierbar in 0. Für die Ursprüungliche Abbildung gilt $F=T_{T_{\vec{x}_0}}\circ F'\circ L\circ T_{-\vec{x}_0}.$

Definition 1.46. Sei $F:M\subseteq\mathbb{R}^n\to\mathbb{R}^n$ eine C^r -Funktion mit regulären Differentialen. Eine solche Abbildung nennt man einen C^r -Diffeomorphismus.