Deep Generative Models

Lecture 4

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$egin{aligned} oldsymbol{ heta}^* &= rg \max_{oldsymbol{ heta}} \log p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \log \sum_{i=1}^n \log p(\mathbf{x}_i|oldsymbol{ heta}) = \ &= rg \max_{oldsymbol{ heta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i,oldsymbol{ heta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

Recap of previous lecture

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{m{ heta}} p(\mathbf{x}|m{ heta}) \quad o \quad \max_{m{ heta},m{ heta}} \mathcal{L}(m{ heta},m{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$\max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

Recap of previous lecture

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

ELBO gradients

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &=
abla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \ &
eq \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) + \log rac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x}, \phi)}
ight] d\mathbf{z} \end{aligned}$$

Reparametrization trick

Law of the unconscious statistician (LOTUS)

Let X be a random variable and let Y = g(X). Then

$$\mathbb{E}_{p_Y}Y = \mathbb{E}_{p_X}g(X) = \int g(\mathbf{x})p(\mathbf{x})d\mathbf{x}.$$

Examples

- $r(x) = \mathcal{N}(x|0,1), y = \sigma \cdot x + \mu, p_Y(y|\theta) = \mathcal{N}(y|\mu,\sigma^2), \\ \theta = [\mu,\sigma].$
- $ightharpoonup \epsilon^* \sim r(\epsilon), \quad \mathbf{z} = g(\mathbf{x}, \epsilon, \phi), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi)$

$$\nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) f(\mathbf{z}) d\mathbf{z} = \nabla_{\phi} \int r(\epsilon) f(\mathbf{z}) d\epsilon$$
$$= \int r(\epsilon) \nabla_{\phi} f(g(\mathbf{x}, \epsilon, \phi)) d\epsilon \approx \nabla_{\phi} f(g(\mathbf{x}, \epsilon^*, \phi))$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon, \phi), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon^*, \phi), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot)$, $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Variational autoencoder (VAE)

Final algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \quad \mathbf{z}^* = g(\mathbf{x}, oldsymbol{\epsilon}^*, oldsymbol{\phi});$$
 $\mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)).$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|g(\mathbf{x}, \epsilon^*, \phi), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}));$$

$$abla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from complicated distribution $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi)=\mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

Bayesian framework

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta = \int p(\mathbf{x}|\theta)\delta(\theta - \theta^*)d\theta \approx p(\mathbf{x}|\theta^*).$$

VAE as Bayesian model

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

ELBO

$$\begin{aligned} \log p(\boldsymbol{\theta}|\mathbf{X}) &= \log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &= \mathcal{L}(q,\boldsymbol{\theta}) + \mathcal{K}L(q||p) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &\geq \left[\mathcal{L}(q,\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right] - \log p(\mathbf{X}). \end{aligned}$$

EM-algorithm

► E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{q}} \left[\mathcal{L}(oldsymbol{q}, oldsymbol{ heta}) + \log p(oldsymbol{ heta})
ight].$$

VAE limitations

 Poor variational posterior distribution (inference model encoder)

$$q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (generative model, decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Likelihood-based models so far...

Autoregressive models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:i-1}, \boldsymbol{\theta})$$

- tractable likelihood,
- no inferred latent factors.

Latent variable models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

- latent feature representation,
- intractable likelihood.

How to build model with latent variables and tractable likelihood?

Flows intuition

Let ξ be a random variable with density $p(\xi)$. Then

$$\eta = F(\xi) = \int_{-\infty}^{\xi} p(t)dt \sim U[0,1].$$

$$P(\eta < y) = P(F(\xi) < y) = P(\xi < F^{-1}(y)) = F(F^{-1}(y)) = y$$

Hence

$$\eta \sim U[0,1]; \quad \xi = F^{-1}(\eta) \quad \Rightarrow \quad \xi \sim p(\xi).$$

Flows intuition

- Let $z \sim p(z)$ is a random variable with base distribution p(z) = U[0, 1].
- Let $x \sim p(x)$ is a random variable with complex distribution p(x) and cdf F(x).
- Then noise variable z can be transformed to x using inverse cdf F^{-1} ($x = F^{-1}(z)$).

How to transform random variable z which has a distribution different from uniform to x?

- Let $z \sim p(z)$ is a random variable with base distribution p(z) and cdf G(z).
- ▶ Then $z_0 = G(z)$ has base distribution $p(z_0) = U[0,1]$.
- Let $x \sim p(x)$ is a random variable with complex distribution p(x) and cdf F(x).
- Then noise variable z can be transformed to x using cdf G and inverse cdf F^{-1} ($x = F^{-1}(z_0) = F^{-1}(G(z))$).

Change of variables

Theorem

- \triangleright **x** is a random variable with density function $p(\mathbf{x})$;
- ▶ $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, invertible function (diffeomorphism);
- $ightharpoonup z = f(x), x = f^{-1}(z) = g(z) \text{ (here } g = f^{-1}).$

Then

$$\begin{aligned} & p(\mathbf{x}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| \\ & p(\mathbf{z}) = p(\mathbf{x}) \left| \det \left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}} \right) \right| = p(g(\mathbf{z})) \left| \det \left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}} \right) \right|. \end{aligned}$$

- \triangleright x and z have the same dimensionality (lies in \mathbb{R}^m);
- $|\det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right)| = \left|\det\left(\frac{\partial g^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right)\right| = \left|\det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right)\right|^{-1};$
- $ightharpoonup f(\mathbf{x}, \boldsymbol{\theta})$ could be parametric function.

Fitting flows

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

Challenge

 $p(\mathbf{x}|\boldsymbol{\theta})$ can be intractable.

Fitting flow to solve MLE

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x}, \boldsymbol{\theta})) \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

Flows

Computational requirement

- Evaluating model density $p(\mathbf{x}|\boldsymbol{\theta})$ requires computing the transformation $\mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta})$ and its Jacobian determinant $\left|\det\left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}\right)\right|$, and evaluating the density $p(\mathbf{z})$.
- Sampling **x** from the model requires the ability to sample from $p(\mathbf{z})$ and to compute the transformation $\mathbf{x} = g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$.

Fix probabilistic model $p(\mathbf{x}|\theta)$ – the set of parameterized distributions .

Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Forward KL

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\pmb{ heta})} d\mathbf{x} o \min_{\pmb{ heta}}$$

Reverse KL

$$\mathit{KL}(p||\pi) = \int p(\mathbf{x}|oldsymbol{ heta}) \log rac{p(\mathbf{x}|oldsymbol{ heta})}{\pi(\mathbf{x})} d\mathbf{x} o \min_{oldsymbol{ heta}}$$

- ▶ What is the difference between these two formulations?
- ▶ What do we get in these two cases if $p(\mathbf{x}|\theta)$ is a flow model?

Forward KL

$$KL(\pi||p) = \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\theta)} d\mathbf{x}$$

$$= \int \pi(\mathbf{x}) \log \pi(\mathbf{x}) d\mathbf{x} - \int \pi(\mathbf{x}) \log p(\mathbf{x}|\theta) d\mathbf{x}$$

$$= -\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x}|\theta) + \text{const} \rightarrow \min_{\theta}$$

Monte-Carlo estimation

$$\mathit{KL}(\pi||p) = -\mathbb{E}_{\pi(\mathbf{x})}\log p(\mathbf{x}|\theta) + \mathrm{const} \approx -\frac{1}{n}\sum_{i=1}^{n}\log p(\mathbf{x}_{i}|\theta) \to \min_{\theta}.$$

MLE problem

$$\theta^* = \arg\max_{\theta} p(\mathbf{X}|\theta) = \arg\max_{\theta} \prod_{i=1}^{n} p(\mathbf{x}_i|\theta) = \arg\max_{\theta} \sum_{i=1}^{n} \log p(\mathbf{x}_i|\theta).$$

Forward KL

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} rac{1}{n} \sum_{i=1}^n \log p(\mathbf{x}_i | oldsymbol{ heta}) pprox rg \min_{oldsymbol{ heta}} \mathit{KL}(\pi || p)$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimation of forward KL.

Forward KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

- ▶ We need to be able to compute $f(\mathbf{x}, \boldsymbol{\theta})$ and its Jacobian.
- ▶ We need to be able to compute the density p(z).
- We don't need to think about computing the function $g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$ until we want to sample from the flow.

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for flow model

$$\log p(\mathbf{z}) = \log p(\mathbf{x}|\boldsymbol{\theta}) + \log \left| \det \left(\frac{\partial g(\mathbf{z}, \boldsymbol{\theta})}{\partial \mathbf{z}} \right) \right|$$

$$KL(p||\pi) = \mathbb{E}_{p(\mathbf{z})} \left[\log p(\mathbf{z}) - \log \left| \det \left(\frac{\partial g(\mathbf{z}, \boldsymbol{\theta})}{\partial \mathbf{z}} \right) \right| - \log \pi(g(\mathbf{z}, \boldsymbol{\theta})) \right]$$

- ▶ We need to be able to compute $g(\mathbf{z}, \theta)$ and its Jacobian.
- We need to be able to sample from the density $p(\mathbf{z})$ (do not need to evaluate it).
- ▶ We don't need to think about computing the function $f(\mathbf{x}, \boldsymbol{\theta})$.

Composition of flows

Theorem

Diffeomorphisms are **composable** (If f_1, f_2 satisfy conditions of the change of variable theorem (differentiable and invertible), then $\mathbf{z} = f(\mathbf{x}) = f_2 \circ f_1(\mathbf{x})$ also satisfies it).

$$\begin{aligned} \rho(\mathbf{x}) &= \rho(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial f_2 \circ f_1(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \cdot \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(f(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_2}{\partial \mathbf{f}_1} \right) \right| \cdot \left| \det \left(\frac{\partial \mathbf{f}_1}{\partial \mathbf{x}} \right) \right| \end{aligned}$$

What will we get in the case $\mathbf{z} = f(\mathbf{x}) = f_n \circ \cdots \circ f_1(\mathbf{x})$?

Flows

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

- Normalizing" means that the inverse flow takes samples from $p(\mathbf{x})$ and normalizes them into samples from density $p(\mathbf{z})$.
- ▶ "Flow" refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\mathbf{z} = f_K \circ \cdots \circ f_1(\mathbf{x}); \quad \mathbf{x} = f_1^{-1} \circ \cdots \circ f_K^{-1}(\mathbf{z}) = g_1 \circ \cdots \circ g_K(\mathbf{z})$$

$$p(\mathbf{x}) = p(f_K \circ \cdots \circ f_1(\mathbf{x})) \left| \det \left(\frac{\partial f_K \circ \cdots \circ f_1(\mathbf{x})}{\partial \mathbf{x}} \right) \right| =$$

$$= p(f_K \circ \cdots \circ f_1(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}} \right) \right|.$$

Flows

Example of a 4-step flow

Flow likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

What is the complexity of the determinant computation?

What we want

- ▶ Efficient computation of Jacobian $\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$;
- ▶ Efficient sampling from the base distribution p(z);
- ▶ Efficient inversion of $f(\mathbf{x}, \boldsymbol{\theta})$.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Summary

- ► The reparametrization trick gets unbiased gradients w.r.t to a variational posterior distribution.
- ► The VAE model is an LVM with two neural network: for stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and for stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ VAE is not a "true" bayesian model since parameters θ do not have a prior distribution.
- Standart VAE has several limitations that we will address later in the course.
- ► Forward KL minimization is equivalent to MLE. Reverse KL is used in variational inference.
- ► Flow models transform a simple base distribution to a complex one via a sequence of invertible transformations.
- ► Flow models have a tractable likelihood that is given by the change of variable theorem.