

Academic Year: 2019 -2020

Department

of

Electronics & Communication Engineering

St. Thomas' College of Engineering & Technology

Laboratory Report on Analog& Digital ElectronicsLab Code:ESC 391

Name:	Mayukh Barman Ray
Year: 2 ⁿ	Stream: Computer Science & Engineering
Semester:	3 rd Class Roll No:04
Group: _	1-31(Even)

General Information

Course Name	Analog& Digital ElectronicsLab	Semester	III
Course Code	ESC 391	Year with stream	2 ND yearCS
Course Credit	2	Session	2019-2020
Faculty Instructor/s	SMC	Class hours and total class load	4hrs
Technical Assistant/s		Laboratory	ElectronicsLab. [Room No. 106]

Course	This laboratory courses on hands-on experiments are for undergraduate								
objectives	Engineering students studying the course of Analog &Digital								
	ElectronicsLab. After completion of this course, the students will be								
	able to perform various experiments to supplement their theoretical								
	understanding of analog & digital electronics.								

Course Outcome:

After completion of the course student will be able to

CO	CO Statements	Bloom's
		Level
C.1	Analyze the truth table of basic combinational circuits and sequential circuits.	Analyze
C.2	Apply the design knowledge of flip-flops to realise them	Apply
~ -	with logic gates.	
C.3	Apply the knowledge to design Shift Registers using J-K /	Create
	D Flip Flop.	Create
C.4	Able to Analyze the timing diagram of different sequential	
	logic diagram.	Analyze
C.5	Analyze the frequency of oscillation condition of an	A I
	electrical circuit.	Analyze
C.6	Design of a Schmitt Trigger using 555 timer & realization	G 4
	of the in input /output waveform.	Create

CO--PO/PSO/BLOOM'S LEVEL matrix of the course:

СО	РО						PSO 1	PSO 2						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1														
CO2														
CO3														
CO4									>					
CO5						4								
CO6													•	

Recommended	1.	Sedra& Smith-Microelectronic Circuits- Oxford UP
books	2.	Boylested&Nashelsky- Electronic Devices - Pearson/PHI
	3.	Millman&Halkias – Integrated El;ectronics, McGraw Hill.
	4.	A.Anand Kumar, Fundamentals of Digital Circuits- PHI
	5.	D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum
	6.	H.Taub&D.Shilling, Digital Integrated Electronics- McGraw Hill

Grading:Grading to be done as per university rule.

List of Experiments

Expt. No.	Name of Experiment	Page No.	Date of Expt.	Signature	Grade awarded
1	Design a Full Adder using basic gates and verify its output / Design a Full Subtractor circuit using basic gates and verify its output.	4-11	15.09.20 & 22.09.20		
2	Construction of Decoder & Multiplexer circuits using logic gates.	12-17	29.09.20		
3	Realization of RS / JK / D flip flops using logic gates.				
4	Design of Shift Register using J-K / D Flip Flop.				
5	Realization of Synchronous Up/Down counter.				
6	Design a Phase-Shift Oscillator.				
7	Design of a Schmitt Trigger using 555 timer.				

EXPERIMENT NO: 2

 $\underline{\textbf{Title:}} \textbf{Design of Decoder\& Multiplexer circuits using logic gates.}$

Objective: To construct a 2 to 4 decoder & 4:1 multiplexer using logic gates.

The Experiment Covers the Course Outcome:	Analyze the truth table of basic combinational circuits and sequential circuits.
Bloom's Cognitive Domain:	Analyze

Function Table:

FOR 2 TO 4 DECODER

Enable	INP	UTs	OUTPUTs			
Е	A (MSB)	B (LSB)	D_0	D ₁	D_2	D ₃
1	0	0	1	Ω	0	<u>0</u>
1	0	1	<u>0</u>	1	<u>0</u>	<u>0</u>
1	1	0	0	0	1.	<u>0</u>
1	1	1	<u>0</u>	0	<u>0</u>	<u>1</u>
0	Х	X	0	<u>0</u>	<u>0</u>	<u>0</u>

BOOLEAN EXPRESSION:

 $D_0 = E.A'.B'$

 $D_1 = E.A'.B$

 $D_2 = E.A.B'$

 $D_3 = E.A.B$

LOGIC CIRCUIT DIAGRAM FOR DECODER:

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

S1	S0	INPUTS Y
0	0	D0 → D0 S1' S0'
0	1	D1 → D1 S1' S0
1	0	D2 → D2 S1 S0'
1	1	D3 → D3 S1 S0

BOOLEAN EXPRESSION:

Y = D0 S1' S0' + D1 S1' S0 + D2 S1 S0' + D3 S1 S0

CIRCUIT DIAGRAM FOR MULTIPLEXER:

APPARATUS: 1. Trainer Kit.

COMPONENTS:

Complete the following table as per circuit diagram and collect the component from Laboratory.

Sl.no	IC no.	IC Description	Qty
1	74HC04	Hex Inverter	1
2	74HC11	Triple 3-Input AND gate	2

OBSERVATION: The decoder circuit made in this experiment verified the above truth table.

Page **7** of **25**

Questionnaires:

- 1. Design Full adder using 3 to 8 decoder.
- 2. Design Full subtractor using 3 to 8 decoder.
- 3. Design and implement $F(A,B,C)=\sum m(1,2,4,7)$ using suitable MUX.
- 4. Design and implement $F(A,B,C) = \sum_{m} (1,2,4,7)$ using suitable Decoder.

