Year 12 Chemistry

Topic Test #3 (Organic) - 2012

Name: **ANSWERS** Mark = _____ / 55

Part 1: Multiple Choice Section

5 marks

1. **A** 2. **A** 3. **D** 4. **D** 5. **B**

✓ each

Part 2: Short Answer Section

50 marks

- 1. Write fully balanced equations for any reactions that occur in the following procedures. If no reaction occurs, write 'no reaction'. Write the name of any organic product formed.
 - (a) The combustion of octane in excess oxygen

Equation: $2 CH_3(CH_2)_6CH_3 + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O$

✓,

(b) Propan-1-ol is added to methanoic acid in the presence of concentrated sulfuric acid.

Equation: HCOOH + CH₃CH₂CH₂OH → HCOOCH₂CH₂CH₃ + H₂O ✓✓

Name of organic product: 1-propyl methanoate

(2+2+1 = 5 marks)

2. Complete the table below by naming a reactant that will react with the reactant in column 1 to give the product in column 3.

Reactant 1	Reactant 2	Product formed
ethene	water	ethanol
propene	hydrogen chloride	2-chloropropane
ethanol	propanoic acid	ethyl propanoate
butanoic acid	propan-1-ol	1-propylbutanoate

✓ each (4 marks)

3. Give the order of the boiling points of these chemicals, numbering them 1 to 6, with 6 being the highest value.

Compounds	Order of boiling points $(1-6)$
butan-1-ol	5
methylpropane	1
butanoic acid	6
butan-2-ol	4
butane	2
butanal	3

✓each (6 marks)

4. Use the following condensed structural formulae to answer the guestions that follow:

A CH₃CH₂CH₂CH₂CH₂OH

1° alcohol

B CH₃CH(OH)CH₂CH₂CH₃ 2° alcohol
C CH₃CH(OH)CH(CH₃)CH₃ 2° alcohol
D CH₃C(CH₃)₂CH₂OH 1° alcohol
E CH₃C(OH)CH₂CH₃ 3° alcohol
CH₃

Choose which compounds (A, B, C, D or E) which will give each of the following reactions (there may be more than one answer in each case)

- (a) Which compound(s) react with a warm solution containing sulfuric acid and potassium dichromate to produce a carboxylic acid.
- (b) Which compound(s) react with a warm solution containing sulfuric acid and potassium dichromate to produce a ketone. B, C ✓✓
- (c) Which compound(s) would show no visible signs of a reaction with a warm solution containing sulfuric acid and potassium dichromate.

 E

 ✓
- (d) Write the structure and name for the oxidation product of **C** with acidified potassium permanganate.
 - structure CH₃COCH(CH₃)CH₃ ✓ name 3-methybutan-2-one ✓
- (e) Write the equation for the reaction between **D** and methanoic acid in the presence of concentrated sulfuric acid.

$$CH_3C(CH_3)_2CH_2OH + HCOOH \rightarrow HCOOCH_2C(CH_3)_3 + H_2O$$

(f) Class alcohols **C** and **E** as primary (1°), secondary (2°) or tertiary (3°)

Alcohols	Class
С	2° ✓
E	3° ✓

(11 marks)

5. Write IUPAC names for the following compounds.

Compounds	Names
CH₃CH₂COOCH₃	methyl propanaoate
(CH ₃)₃CH	methylpropane
CH ₃ CH(CH ₃)CH ₂ CH ₂ COCH ₃	5-methylhexan-2-one

✓ each (3 marks)

6. Draw a piece of polymer using but-1-ene as the monomer; show 3 repeating units.

(2 marks)

7. An organic compound X has an empirical formula C_2H_4O .

0.0278 mol of this compound has a mass 2.45 g.

(a) What is the molecular formula of compound X? Show all working.

EFM = 44.05
$$\checkmark$$

M(X) = m/n = 2.45/0.0278 = 88.13 g mol⁻¹ \checkmark
 \therefore MF = 2 x EF = $C_4H_8O_2$

- (b) Compound X has several isomers.
 - (i) Isomer 1 is a sweet smelling liquid which was prepared using propan-2-ol as one of its reactants. Give structure of isomer 1.

(ii) Isomer 2 is also a sweet smelling liquid but ethanoic acid was used in its preparation. Give structure and name of isomer 2.

(iii) Isomer 3 gives off a gas when added to solid sodium carbonate. Give structure and name of isomer 3.

(3 + 5 = 8 marks)

8. Two α-amino acids are shown below

(a) A chemical is said to be amphoteric if it can react with an acid and a base.
 Glycine can be classed as an amphoteric chemical.
 Using equations illustrate the amphoteric property of glycine

(b) Draw a piece of condensation polymer between glycine and alanine molecules.

(4 + 2 = 6 marks)

9. Here is the structure of a typical saturated triglyceride fat;

Biology Program 74

- (a) What is the important functional group in this molecule? ester
- (b) An important reaction of such fats and oils is hydrolysis by reaction with sodium hydroxide solution. Draw the two main organic products of this hydrolysis.

Product 1	Product 2
H₂COH HCOH H₂COH	CH₃(CH₂)₁₄COO¯
	*

(1,2,2=5 marks)

End of Test