OUING 5 side 1 Andreas B. Berg

1)
$$\vec{r}(t) = (t^3, t^2)$$

a) $\vec{r}(t) = \vec{r}(t) = (3t^2, 2t)$
 $\vec{r}(t) = |\vec{r}(t)| = \sqrt{9t^4 + 4t^2} = t\sqrt{9t^2 + 4t}$
 $\vec{r}(t) = \vec{r}(t) = (6t, 2)$

$$a(t) = v'(t) = \frac{1}{2 \cdot \sqrt{9 \cdot 2^2 + 4^2}}$$

b)
$$L_{0-10} = \int_{0}^{10} v(t) dt = \int_{0}^{10} t \sqrt{9t^{2}+4} dt$$
 (4)
 $v = 9t^{2}+4$ $clv = 18t dt$ $tdt = \frac{1}{18}dv$

$$\int t \sqrt{9t^{2}+4} dt = \int \frac{1}{18} \sqrt{v} dv = \frac{1}{27} v^{\frac{3}{2}} + C$$

$$(4) = \frac{1}{27} \left[(9t^{2}+4)^{\frac{3}{2}} \right]_{0}^{10} = \frac{1}{27} \left(904^{\frac{3}{2}} + 8 \right) \approx 1007$$

$$2)a) \vec{r}(t) = (a\cos t, b\sin t) \qquad t \in [0, 2\pi]$$

$$\frac{X(t)^2}{a^2} + \frac{Y(t)^2}{b^2} = \frac{a^2\cos(t)^2}{a^2} + \frac{b^2\sin(t)^2}{b^2}$$

$$= \cos^2 \xi + \sin^2 \xi = I$$

=)
$$\vec{r}(t)$$
 er ellipsen $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$= \sqrt{q^2 + (b^2 - a^2)\cos^2 \xi} = \sqrt{(a^2 - b^2)\sin^2 \xi + b^2}$$

Alcselerasjon:
$$a(t)=\vec{v}'(t)=r''(t)=(-a\cos t, -b\sin t)$$

2) c) Omtrets =
$$L_{0\rightarrow2\pi} = \int_{0}^{2\pi} |r'(t)| dt$$

= $\int_{0}^{2\pi} \sqrt{\alpha^2 \sin^2 t + b^2 \cos^2 t} dt$

3)
$$P(t) = (2\cos t, \sqrt{2}\sin t, \sqrt{2}\sin t)$$

a) Hastighet:
$$v(t) = r'(t) = (-2 \sin t, \sqrt{2} \cos t, \sqrt{2} \cos t)$$

() Ser at
$$x^2 + y^2 + z^2 = 4\cos^2 t + 4\sin^2 t = 4$$
, sa
| kurven ligger i kuleflate om origo med $r = 2$, oksa
 $\frac{x^2 + y^2 + z^2 = 4}{2}$ \tag{4}

(1)
$$c(t) = (\cos^2 t, 3t - t^2, t)$$
. Finn paron tangent ; $t = 0$
 $v(t) = c'(t) = (-\sin(2t), 3 - 2t, 1)$

$$|V(0)| = \sqrt{\sin^2(0) + 9 + 1} = \sqrt{10}$$

$$T_{0} = \begin{pmatrix} -\sin(0) & \frac{3}{10} & \frac{1}{10} \end{pmatrix} = \begin{pmatrix} 0 & \frac{3}{10} & \frac{1}{10} \end{pmatrix}$$

$$\text{ev} t = \begin{pmatrix} 0 & \frac{3\sqrt{10}}{10} & \sqrt{10} \\ 0 & \frac{1}{10} & \frac{1}{10} \end{pmatrix}$$

OVING 5 side 3 Andreas B. Berg

5) Anta f: R2 - R har kont. annenordens partiellaeriverte, og at r(t) = x(t) i + y(t); der x og y er to ganger deriverbare. La g(t)=f(r(t)). Vis at:

 $g''(t) = \frac{\partial^2 f}{\partial x^2} (r(t)) x'(t)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} r(t) x'(t) y'(t) + \frac{\partial^2 f}{\partial y^2} r(t) y'(t)^2$ $+\frac{3}{3}\frac{1}{5}r(t)x''(t)+\frac{3}{3}\frac{1}{5}r(t)y''(t)$

$$g'(t) = f'(r(t)) \cdot r'(t)$$

$$= \left(\frac{\partial f}{\partial x}(r(t)), \frac{\partial f}{\partial y}(r(t))\right) \cdot \left(x'(t), y'(t)\right)$$

$$= \left(\frac{\partial f}{\partial x}(r(t)), x'(t) + \frac{\partial f}{\partial y}(r(t)), y'(t)\right)$$

$$= \left(\frac{\partial f}{\partial x}(r(t)), x'(t) + \frac{\partial f}{\partial y}(r(t)), y'(t)\right)$$

$$= \left(\frac{\partial f}{\partial x}(r(t)), x'(t), r'(t) + \frac{\partial f}{\partial y}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x'(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), y''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t), \frac{\partial f}{\partial x}(r(t)), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t), x''(t), \frac{\partial f}{\partial x}(r(t), x''(t), x''(t), \frac{\partial f}{\partial x}(r(t), x''(t), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t), x''(t), x''(t), \frac{\partial f}{\partial x}(r(t), x''(t), x''(t), \frac{\partial f}{\partial x}(r(t), x''(t), x''(t), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t)\right)$$

$$+ \left(\frac{\partial f}{\partial x}(r(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t), x''(t$$

Andreas B. Berg OVING 5 side 4 6)a) f(x, y) = xy $r(t) = (e^t, \cos t)$ $g(t) = f(r(t)) = e^t \cos t$ g'(t) = et cost - et sint = et (cost-sint) $\Delta t(L(f)) \cdot L(f) = \left(\frac{2}{3} \times \frac{2}{3} + \frac{2$ $= (\cos t, e^t) \cdot (e^t, -\sin t)$ = et cost - et sint = g'(t) b) $f(x,y) = (x^2 + y^2) \log (\sqrt{x^2 + y^2})$ $r(t) = (e^t, e^{-t})$ $g(t) = f(r(t)) = (e^{2t} + e^{-2t}) \log (\sqrt{e^{2t} + e^{-2t}})$ 9(t) = (2e2t - 2e2t) log (Je2t + e2t) $+\left(e^{2t}+e^{-2t}\right)\frac{e^{2t}-e^{-2t}}{\ln 10\cdot (e^{2t}+e^{-2t})}$ = (2e2t-2e-2t) log (Je2t+e-2t) + et-e $\Delta t(\iota(f)) \circ \iota_{\iota}(f) = \left(\frac{9x}{9t}, \frac{9\lambda}{9t}\right) \circ \left(x_{\iota}(f), \lambda_{\iota}(f)\right)$ = (2et log((et+e-2t)) + (e2t+e2t) ((ln 10)(e3t+e2t)) 2et log ((et -e-t) + (2n 10)) · (et , -e-t) = 2e log (\[\left(\frac{2t}{e^{7t}} \right) - \frac{e^{2t}}{4n 10} - 2e^{7t} \log (\left(\frac{e^{7t}}{e^{7t}} \right) \]

$$= (2e^{2t} - 2e^{-2t})\log(\sqrt{e^{2t}} + e^{-2t}) + \frac{e^{2t} - e^{-2t}}{\ln 10} = g'(t)$$

7) Regn of Efds now
$$f(x, y, z) = z \cos(xy)$$
 og

C param ved $r(t) = 3ti + 4tj + 5tk$, $t \in [0, \sqrt{\pi}]$

8 r or glatt: intervallet

Efds = $\int_{s_{s}}^{s_{s}} f(r(s)) ds = \int_{s}^{\pi} f(r(t)) |r'(t)| dt$

= $\int_{s}^{\pi} 25\sqrt{2} t \cos(12t^{2}) \cdot \sqrt{50} dt$
 $t = 12t^{2}$, $dv = 24t dt$, $t dt = \frac{1}{24}dv$

So $\int 25\sqrt{2} t \cos(12t^{2}) dt = \frac{25\sqrt{2}}{24} \int \cos(v) dv$
 $t = \frac{25\sqrt{2}}{24} \sin(v) + C = \frac{25\sqrt{2}}{24} \sin(12t^{2}) + C$

(4) = $\frac{25\sqrt{2}}{24} \left[\sin(12t^{2}) \right]_{s}^{\pi} = \frac{25\sqrt{2}}{24} \left(0 - 0 \right) = 0$

8) Regn of
$$\{f \text{ ds } \text{ nai } f(x,y,z) = xyz, C \text{ param. ved} \}$$

$$r(t) = (e^{t}, -e^{-t}, \sqrt{2}t) \text{ } t \in [0,1]$$

$$r \text{ glutt } : \text{ intervallet}$$

$$\{f \text{ ds} = \int_{0}^{1} f(r(t)) | r'(t)| dt$$

$$= \int_{0}^{1} \frac{e^{t}}{-e^{t}} \sqrt{2}t \cdot \sqrt{e^{2t} + e^{-2t} + 2} dt$$

$$= \int_{0}^{1} -\sqrt{2}t \cdot \sqrt{e^{2t} + e^{-2t} + 2} dt$$

$$= \int_{0}^{1} -\sqrt{2}t \cdot \sqrt{e^{t} + e^{-t}} dt$$

$$= \int_{0}^{1} -\sqrt{2}t \cdot (e^{t} + e^{-t}) dt \quad [v = t + e^{-t}] v = e^{t} - e^{t}$$

$$= -\sqrt{2}\left[\left[f(e^{t} - e^{-t})\right]_{0}^{1} - \int_{0}^{1} e^{t} - e^{-t} dt\right]$$

Andreas B. Berg

Forts.
8) Har: =
$$-\sqrt{z} \left(\left[t(e^{t} - e^{-t}) \right]_{o}^{1} - \int_{o}^{1} e^{t} - e^{-t} dt \right)$$

= $-\sqrt{z} \left(\left[t(e^{t} - e^{-t}) \right]_{o}^{1} - \left[e^{t} + e^{-t} \right]_{o}^{1} \right)$
= $-\sqrt{z} \left(e^{t} - e^{-t} - e^{t} - e^{-t} + e^{t} + e^{-t} \right)$
= $-\sqrt{z} \left(2 - 2e^{-t} \right) = 2\sqrt{z} \left(e^{-t} - 1 \right)$

a) Kurven har parametrisering
$$r(\Theta) = (f_x, f_y)$$
, der f_x er kurven i x-retning og f_y i y-retning. Se på en xyeblikksskisse av $f(\Theta)$:

Ser at
$$f_x = f(\Theta) \cos \Theta$$
 by $f_y = f(\Theta) \sin (\Theta)$

$$= \int r(\Theta) = \left(f(\Theta) \cos \Theta, f(\Theta) \sin \Theta\right)$$

$$|f'(\Theta)| = |f'(\Theta)| = |f'($$

$$(\omega_2 \times \epsilon_2)^2 \times \epsilon_1 = \sqrt{f(\omega)^2 + f'(\omega)^2}$$

Andreas B. Berg

$$L = \int_{0}^{\pi} |r'(\Theta)| d\Theta = \int_{0}^{\pi} |V(\Theta)| d\Theta$$

$$= \int_{0}^{\pi} |f(\Theta)|^{2} + f'(\Theta)|^{2} d\Theta = \int_{0}^{\pi} |v|^{2} |G(\Theta)| d\Theta$$

$$= \int_{0}^{\pi} |d\Theta| = \int_{0}^{\pi} |v|^{2} |G(\Theta)| d\Theta$$

$$\begin{cases} g ds = \int_0^{\pi} g(r(\Theta)) \cdot |r'(\Theta)| d\Theta \\ = \int_0^{\pi} \sin^3 \Theta \cos \Theta \cdot |d\Theta| \end{cases}$$

$$= \int_0^{\pi} \sin^3 \Theta \cos \Theta \ d\Theta = (4) \quad U = \sin \Theta \quad dU = \cos \Theta \ dU$$

$$\int \sin^3 \Theta \cos \Theta \, d\Theta = \int 0^3 \, d\sigma = \frac{1}{4} 0^4 + C = \frac{\sin^4 \Theta}{4} + C$$

$$(\mathbf{x}) = \begin{bmatrix} \sin^4 \Theta \end{bmatrix}_0^{\pi} = \frac{O}{4} - \frac{O}{4} = \frac{O}{4}$$