EEE-2103: Electronic Devices and Circuits

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Course Outline

Syllabus:

Semiconductors: properties, bonds and types

pn junction diode: formation, properties and characteristics

Special Purpose Diodes: LED and Zener diode

Diode Applications: rectifiers, filters, clipping/clamping ckts, voltage regulator ckts

BJT: *npn/pnp* transistors, characteristics (CB/CE/CC), load line analysis BJT Biasing: transistor parameters, stability factor, methods, analysis and design Single Stage Amplifier: amplifier ckts, equivalent ckts, load line analysis, gain, classification

FET: classification, construction, operation and characteristics of JFET and MOSFET, transfer characteristics and DC biasing of JFET.

Power Electronics: operations, characteristics and applications of SCR, TRIAC and DIAC

Feedback Techniques and Op-amps: negative and positive feedback, inverting, non-inverting, differentiators, summing amplifiers

Oscillators: theory and characteristics

Introduction to IC fabrication.

Course Outline

Reference Books:

- (1) Electronic Devices and Circuits; David A. Bell
- (2) Electronic Devices and Circuit Theory; R. Boylestad and L. Nashelsky
- (3) Electronic Devices; Thomas L. Floyd

Class Hour:

Sunday: 08.30am ~ 10.00am Monday: 08.30am ~ 10.00am

Place:

Room #413, Dept. of CSE, DU

Incourse Exam:

Only one compulsory incourse exam will be taken.

6 short answer type questions will be given from any consecutive 6 lectures.

Students have to answer any 5 questions in 1 hour (marks- $5\times5=25$).

Course Outline

Notices:

Available at- sazzadmsi.webnode.com Class code @google-classroom- **6huewmh**

Marks Distribution:

- (1) Attendance/Assignment: 5
- (2) Incourse: 25
- (3) Final: 70 (answer any 5 out of 7; 5×14=70; 3 hours)

Conductors, Semiconductors and Insulators

Bonding forces between atoms:

Atoms bond themselves → what happens to outer-shell electrons

1) Metallic bonding \rightarrow

easily detached valence electrons electron gas drifting about in space voltage → electrons are easily moved create current flow POSITIVELY CHARGED

Na, Cu, Fe, Al, Au

2) Covalent bonding \rightarrow outer shell – 4 electrons, 4 holes valence shell electrons fill valence holes of 4 adjacent atoms no holes, no electrons drifting about voltage → weakly attached electrons break away create current flow

Si, Ge, GaAs, InP

SHELL OF METAL ATOMS

Conductors, Semiconductors and Insulators

Bonding forces between atoms:

3) Ionic bonding \rightarrow

insulating materials \rightarrow

rubber, glass, ceramic, wood

i) covalent bonding =

strongly attached valence shell electrons

ii) ionized atoms =

free outer-shell electrons are accepted by nearby atoms no free electrons to create current

Metallic bond → Conductors
Covalent bond → Semiconductors
Ionic bond → Insulators

Conductors, Semiconductors and Insulators

Insulator

Energy bands in different materials:

1) Insulators (10¹⁴ Ω):

Empty conduction band Filled valence band Wide forbidden gap

2) Semiconductors (10 Ω):

narrower forbidden gap

At absolute zero \rightarrow

semiconductor = insulator

At room temperature or

Applied voltage →

electron movement in conduction band and hole transfer in valence band

3) Conductors (10 $^{-6}$ Ω): no forbidden gap valence and conduction energy bands overlap

Semiconductor

Conductor

n-Type and p-Type Semiconductors

Doping:

Pure semiconductor = intrinsic material [Si, Ge, GaAs, InP]

Intrinsic material + Impurity atoms →

improve conductivity

doping = extrinsic material

donor doping = generates free conduction band electrons acceptor doping = generates valence band holes

n-type material:

Semiconductor atoms = 4 electrons + 4 holes Impurity atoms = 5 electrons + 3 holes = pentavalent atoms

P, As, Sb, Bi

Semiconductor atoms + Impurity atoms = additional free electrons donated

n-type material electrically neutral

Conduction = electron motion

Majority charge carriers = electrons

Minority charge carriers = holes

n-Type and p-Type Semiconductors

p-type material:

Semiconductor atoms = 4 electrons + 4 holes Impurity atoms = 3 electrons + 5 holes = trivalent atoms B, Al, Ga

Semiconductor atoms + Impurity atoms = additional hole to accept electron *p*-type material

electrically neutral

Conduction = hole transfer Majority charge carriers = holes Minority charge carriers = electrons

Electron-hole pair generation \rightarrow energy creates pair of electron and hole Electron-hole pair recombination \rightarrow electron falls into hole

