Consulta de cubos con MDX

Dra. Amparo López Gaona

Fac. Ciencias, UNAM Marzo 2018

Operaciones OLAP

... Operaciones OLAP

- Roll up: realiza agregación sobre un cubo, subiendo en la jerarquía de conceptos de una dimensión.
- Drill-drown: Inversa de roll-up. Va de menos detalle a más detalle.
 De un nivel mayor a un nivel menor o datos detallados introduciendo nuevas dimensiones.
- Slice: cubo con la selección de una dimensión dada.
- Dice: cubo con la selección de más de una dimensión.
- Pivot (rotate): cambia la orientación del cubo.
- Drill across: involucra más de una tabla de hechos.

MDX

- MDX = Multi-Dimensional Expressions es el lenguaje utilizado por SQLServer para servicios de cálculos y análisis en cubos.
- Características:
 - Las expresiones son unidades en MDX que pueden evaluarse para regresar un valor.
 - Es un lenguaje cerrado.
 - Se basa en crear tuplas a través de puntos de datos dentro del espacio n-dimensional.
 - Sólo se puede utilizar para leer y analizar datos.
 - Incluye un conjunto de funciones para realizar análisis.

Conceptos básicos

- Modelo dimensional:
 - Cubos.
 - Dimensiones y jerarquías.
 - Hechos.

Unidades vendidas

- Conceptos que se manejan en MDX:
 - Cubos
 - Niveles.
 - Miembros.
 - Medidas.
 - Tuplas.
- Dra. Amparo López Gaona

... Conceptos básicos

- Medidas = Valores numéricos almacenados en celdas del cubo.
 - Indicadores a analizar. (Measures).
- Dimensiones proporcionan significado a las medidas.
- Las dimensiones tienen atributos organizados en jerarquías.
- Los identificadores de una jerarquía son únicos.
- Cada jerarquía contiene uno o más niveles.
- Ejemplo: La dimensión Fecha puede tener una jerarquía: día, mes, trimestre, año.

... Conceptos básicos

- Cada nivel de una jerarquía dada producirá un conjunto de miembros con una relación padre-hijo.
 - El nivel mes, puede tener como miembros a: Enero, Febrero, Marzo, etc.
- Los miembros de una jerarquía deben tener nombres únicos. Pueden identificarse:
 - por su nombre.
 - por su posición.
- Es posible definir nuevos miembros, denominados miembros calculados.
- EN MDX, existe un conjunto de funciones para manejar los miembros.
 - MEMBERS, FIRSTCHILD, etc.

... Conceptos básicos (Ejemplo)

... Conceptos básicos (Jerarquía)

- La relación entre atributos de una dimensión se define explícitamente para evitar la asociación inválida entre ellos al hacer drill-down o roll-up.
 - Ejemplo: Drill-down de un miembro de Semestre (p.e. semestre2) en sus trimestres (trimestre3, trimestre4.)
- En la raíz de cada jerarquía se tiene el miembro all.

• all es el valor calculado de todos los miembros de una jerarquía.

... Conceptos básicos (Jerarquía)

 Cada miembro específico de una jerarquía, es identificado por un nombre único.

... Conceptos básicos (Jerarquía)

 Para referirse a un miembro dentro de una jerarquía de atributos se debe usar la sintaxis:

```
[Dimensión].[Miembro]
[Dimensión].[Jerarquía].[Miembro]
[Dimensión].[Jerarquía].[Nivel].[Miembro]
```

Ejemplo:

Ejes de un cubo

- Cada jerarquía de atributos dentro de un cubo forma un eje.
- Cada miembro de una jerarquía, incluyendo all, ocupa una posición en el eje. Ejemplo:

- Los hechos (Measures) también forman una jerarquía de atributos aunque no tienen el miembro all.
- Dentro de un cubo, los datos están en celdas, cada una identificada por una tupla que representa su posición.

Tuplas

Tupla:

- Combinación de miembros de diferentes dimensiones en la que puede incluirse, a lo más, un miembro de cada dimensión.
- Define una rebana del cubo (slice), que eventualmente puede llegar a ser una celda.
- Se construye utilizando una lista entre paréntesis, de miembros separados por comas.

... Tuplas (ejemplo)

... Tuplas (ejemplo)

([Calendar].[Date].[Quarter 2],

```
[Product]. [Product Line]. [Mountain].
 [Customer].[Country].[Australia])
966
([Calendar].[Date].[Semester 2],
 [Product].[Product Line].[Accesories],
 [Customer].[Country].[Canada])
573+764=1337
([Calendar].[Date].[Quarter 2],
 [Customer]. [Country]. [Canada]
 [Customer].[Country].[Australia])
ii MAL !!
El valor para la tupla ([Cliente].[Pais].[Australia]) es
                         Consulta de cubos con MDX
```

... Tuplas (otro ejemplo)

- Un cubo con dos dimensiones: Fecha y Producto y una medida (cantidad de ventas).
- La dimensión Producto tiene dos jerarquías: categoría y subcategoría.
- La dimensión Fecha tiene dos jerarquías: fiscal, calendario
- ¿Cuántos ejes tiene este cubo? 5 ejes.
- Los puntos dentro de este cubo, se localizan usando tuplas de 5 elementos.
- Obtener la celda que contiene el total de ventas de productos de la categoría de bicicleta, la subcategoría de bicicletas de montaña, para cualquier período.

```
(
  [Producto].[categoría].[bicicletas],
  [Producto].[subcategoría].[bicicletas de montaña],
  [Fecha].[calendario].[all],
  [Fecha].[fiscal].[all],
  [Measures].[total de ventas]
```

... Tuplas

 Se puede trabajar con tuplas parciales, en caso de omitir la referencia a un miembro se utiliza el miembro all del atributo,

```
(
  [Producto].[categoría].[bicicletas],
  [Producto].[subcategoría].[bicicletas de montaña],
  [Measures].[total de ventas]
)
```

• ¿Qué direcciona la siguiente tupla?

```
[Producto].[categoría].[bicicletas],
[Producto].[subcategoría].[bicicletas de montaña]
```

Si se omite la medida, utiliza la que esté definida primero porque no hay all en esa dimensión.

Conjuntos

Conjunto:

- Colección ordenada de tuplas, separadas entre sí por comas.
- Todas las tuplas de un conjunto deben tener la misma dimensionalidad:
 - Mismas dimensiones
 - Mismo orden.
- Se construyen utilizando llaves. {}
- Se usan para:
 - Especificar los ejes de una consulta.
 - Restringir resultados de una consulta.

... Conjuntos (Ejemplos)

```
¿Qué hay en el siguiente conjunto?
{[Calendar].[Date].[Calendar Year],[Calendar].[Date]}
¿Qué hay en el siguiente conjunto?
  ([Product].[product line].[accesories]),
  ([Product].[product line].[mountain]),
  ([Product].[product line].[road]),
  ([Product].[product line].[touring])
}
¿Qué hay en el siguiente conjunto?
([Product].[product line].[accesories], [Calendar][date].[CY 2012])
([Product].[product line].[mountain], [Calendar].[date].[CY 2011]),
([Product].[product line].[road], [Calendar].[date].[CY 2013]),
([Product].[product line].[touring],[Calendar].[date].[CY 2012])
```

... Conjuntos (Ejemplos)

```
{
    ([Product].[product line].[accesories], [Calendar][date].[CY 2012])
    ([Customer].[country].[Canada], [Calendar][date].[CY 2012])}

ii MAL !!
```

Navegación en la jerarquía

Dado un miembro de una dimensión se puede navegar en la jerarquía utilizando las siguientes funciones:

Función	Descripción		
Parent	Devuelve el miembro que es el padre		
Children	Devuelve un el conjunto con los hijos		
FirstChild	Devuelve el primer miembro hijo		
LastChild	Devuelve el último miembro hijo		
Siblings	Devuelve un conjunto con los hermanos		
	incluyéndose a si mismo		
FirstSibling	Devuelve el primer hijo de un padre		
LastSibling	Devuelve el ultimo hijo de un padre		

... Navegación en la jerarquía

... Navegación en la jerarquía

La navegación no está limitada a los familiares inmediatos

Función	Descripción		
Ancestor(Member, Level)	Devuelve un ancestro del nivel dado		
Ancestors (Member, Level)	Igual que antes pero en un conjunto		
Ascendants(Member)	Devuelve el conjunto con los ancestros		
	incluyéndose		
Descendants(Member, Level)	Devuelve los descendientes de un miembro		
	de un nivel		

... Navegación en la jerarquía

Cubo ejemplo de ventas (Adventure Works)

- Measures
- KPI
- Cuenta
- (iii) Cliente
- Fecha
- Fecha de Entrega
- Departamento
- Divisa de Destino
- Empleado
- Geografía
- Detalles de la Orden de Ventas por Internet
- Organización
- Producto
 - Promoción
- @ Revendedor
- - Detalles de la Orden de Ventas del Revendedor
- Canal de Ventas
- Razón de Ventas
 - Detalles del Resumen de la Orden De Ventas

... Cubo ejemplo (Adventure Works) Medidas

- Measures
 - Clientes del Internet
 - 🕀 🚞 Órdenes de las Ventas
 - 표 🚞 Ordenes por Internet
 - 🛨 📴 Pedidos del Revendedor
 - Reporte Financiero
 - 班 🚞 Tasas de Cambio
 - Wentas de Revendedor
 - Wentas por Internet
 - Wentas Sumarias

... Cubo ejemplo (Adventure Works) Dimensiones

Geografía

- + Geografía
 - Pais
 - Estado-Provincia
 - Ciudad
 - Código Postal

Producto

- + Categoría de Producto
 - Categoría
 - Subcategoría
 - Nombre del producto
- + Líneas de productos
 - Línea de productos
 - Nombre del modelo

Fecha

- + Calendario
 - Año calendario
 - Semestre calendario
 - Trimestre alendario
 - Mes
 - Fecha
- + Fiscal
 - Año fiscal
 - Semestre fiscal
 - Trimestre fiscal
 - Mes
 - Fecha

... Cubo ejemplo (Adventure Works) Dimensiones

Cliente

- + Geografía del Cliente
 - Pais-Región
 - Estado-Provincia
 - Ciudad
 - Código Postal
 - Cliente

La instrucción SELECT

Tiene como propósito consultar un cubo.

```
SELECT especificación de ejes ON COLUMNS,
especificación de ejes ON ROWS,
FROM nombreCubo
WHERE rebanada
```

- La claúsula FROM especifica el cubo sobre el que se hará la consulta.
 - Sólo se puede especificar un cubo.
- La claúsula WHERE es opcional y restringe los resultados a cierta rebanada del cubo.

La instrucción SELECT

Consulta más general:

```
-- Consulta más sencilla y menos usada
SELECT
FROM [Adventure Works];
Resultado
$80,450,596.98
El hecho por omisión es 'Ventas por distribuidor' (reseller sales
```

amount).

Otra forma de hacerlo es:

```
SELECT [Measures].[Reseller Sales Amount] ON COLUMNS FROM [Adventure Works];
```

Reseller Sales Amount \$80,450,596.98

... La instrucción SELECT

Monto de ventas por Internet:

```
SELECT [Measures].[Internet Sales Amount] ON COLUMNS FROM [Adventure Works];
```


... La instrucción SELECT

Solicitar el total de ventas por año para todos los años registrados.

```
SELECT [Date].[Calendar].[Calendar Year] ON COLUMNS FROM [Adventure Works];
```


También que requiere el acumulado de todos los periodos

```
SELECT {[Date].[Calendar].[Calendar Year], [Date].[Calendar]}
ON COLUMNS
```

FROM [Adventure Works];

... La instrucción SELECT (renglones)

Total de ventas por año y por categoría de productos.

SELECT

[Date].[Calendar].[Calendar Year] ON COLUMNS,
Product.[Product categories].Category ON ROWS
FROM [Adventure Works];

... La instrucción SELECT (renglones)

Ahora con suma total de los años y de las categorías.

```
SELECT
```

```
{[Date].[Calendar].[Calendar Year],[Date].[Calendar]} ON COLUMNS,
{[Product].[Product Categories].[Category],
    [Product].[Product Categories]} ON ROWS
FROM [Adventure Works];
```


... La instrucción SELECT (renglones)

Para eliminar las columnas con null, se pone la frase non empty antes de cada conjunto del que se quieren eliminar.

```
--Ocultando nulos

SELECT

NON EMPTY

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]} ON COLUMNS,

{[Product].[Product Categories].[Category],

[Product].[Product Categories]} ON ROWS

FROM [Adventure Works];
```

	CY 2001	CY 2002	CY 2003	CY 2004	All Periods
Accessories	\$20,235.36	\$92,735.35	\$296,532.88	\$161,794.33	\$571,297.93
Bikes	\$7,395,348.63	\$19,956,014.67	\$25,551,775.07	\$13,399,243.18	\$66,302,381.56
Clothing	\$34,376.34	\$485,587.15	\$871,864.19	\$386,013.16	\$1,777,840.84
Components	\$615,474.98	\$3,610,092.47	\$5,482,497.29	\$2,091,011.92	\$11,799,076.66
All Products	\$8,065,435.31	\$24,144,429.65	\$32,202,669.43	\$16,038,062.60	\$80,450,596.98

Dimensiones y jerarquías

• ¿Qué devuelve la siguiente consulta?

SELECT [Sales Channel] ON COLUMNS

FROM [Adventure Works];

All Sales Channels

\$80,450,596,98

• ¿Qué devuelve la siguiente consulta? SELECT [Product] ON COLUMNS FROM [Adventure Works]:

Executing the query ...

Query (0, 1) The 'Product' dimension contains more than one hierarchy, therefore the hierarchy

Execution complete

• ¿Qué devuelve la siguiente consulta? SELECT [Product].[Category] ON COLUMNS FROM [Adventure Works];

> All Products \$80,450,596.98

La función MEMBERS

En las consultas se han estado construyendo explícitamente los conjuntos. Una función frecuentemente utilizada es MEMBERS

```
[Dimension].MEMBERS --- Si sólo tiene una jerarquía [Dimension].[Hierarchy].MEMBERS [Dimension].[Hierarchy].[Level].MEMBERS
```

Si no se especifican niveles, la función regresa el conjunto de todos sus miembros incluyendo all, en otro caso, no.

... La función MEMBERS

- Obtener el total de ventas por canales de venta SELECT [Sales Channel].MEMBERS ON COLUMNS FROM [Adventure Works];
- Obtener el total de ventas por categoría de productos.

SELECT

[Product].[Product Categories].MEMBERS ON COLUMNS FROM [Adventure Works];

All Products	Accessories	Bikes	Clothing	Components
\$80,450,596.98	\$571,297.93	\$66,302,381.56	\$1,777,840.84	\$11,799,076.66

... La función MEMBERS

Obtener las medidas para las tiendas ubicadas en México.

SELECT

```
Measures.MEMBERS ON COLUMNS,
[Customer].[Customer geography].[country].Mexico ON ROWS
FROM [Adventure Works];
```

Obtener las medidas para las tiendas ubicadas en México y en Canadá.

SELECT

```
Measures.MEMBERS ON COLUMNS,
{[Customer].[Customer geography].[country].Mexico,
[Customer].[Customer geography].[country].Canada} ON ROWS
FROM [Adventure Works];
```

Miembros individuales

Existen varias formas de hacer referencia a miembros individuales:

Por nombre

```
SELECT [Product].[Category].bikes ON COLUMNS FROM [Adventure Works];
```

Por posición dentro del nivel.

```
SELECT [Product].[Category].&[1] ON COLUMNS FROM [Adventure Works];
```


Total de ventas de bicicletas y ropa

```
SELECT
{[Product].[Category].[Bikes],[Product].[Category].[Clothing]}
ON COLUMNS
FROM [Adventure Works];
```

```
Bikes Clothing $66,302,381.56 $1,777,840.84
```

... La función MEMBERS y la operación PIVOT

Obtener las ventas registradas cada año para cada categoría de artículos.

SELECT

[Date].[Calendar].[Calendar Year] ON COLUMNS, [Product].[Product Categories].[Category] ON ROWS FROM [Adventure Works]

SELECT

[Product].[Product Categories].MEMBERS ON COLUMNS,
 [Date].[Calendar].[Calendar Year] ON ROWS
FROM [Adventure Works];

... La función Members

Total de ventas, en Estados Unidos, durante los años 2005, 2006 y 2007 de los productos de todas las categorías.

	CY 2005	CY 2006	CY 2007
	Estados Unidos	Estados Unidos	Estados Unidos
Accesorio	\$15,087.81	\$61,263.90	\$151,136.35
Bicicleta	\$6,024,627.35	\$14,716,804.14	\$16,139,984.68
Prenda	\$26,463.00	\$317,939.41	\$495,443.62
Componente	\$485,897.68	\$2,526,542.06	\$3,284,551.84

La función CHILDREN

Ventas por Internet en todos los estados (provincias) de Francia.

```
SELECT
[Measures].[Internet Sales Amount] ON COLUMNS,
[Customer].[Customer Geography].[Country].[France].MEMBERS ON ROW
```

```
¡¡¡ERROR!!! Francia no es un nivel.
Los miembros tienen hijos.
```

[Adventure Works];

SELECT

FROM

```
[Measures].[Internet Sales Amount] ON COLUMNS,
[Customer].[Customer Geography].[Country].[France].CHILDREN ON RO'
FROM [Adventure Works];
```

La función DESCENDANTS

Ventas por Internet en todos las ciudades de Francia.

```
SELECT
```

```
[Measures].[Internet Sales Amount] ON COLUMNS,
[Customer].[Customer Geography].[Country].[France].CHILDREN.CHILD.
FROM [Adventure Works];
```

Error los hijos no tienen hijos, sólo los miembros tienen hijos.

```
SELECT
```

SELECT

Cross Join

	Internet Sales Amount
CY 2001	\$3,266,373.66
CY 2002	\$6,530,343.53
CY 2003	\$9,791,060.30
CY 2004	\$9,770,899.74
CY 2006	(null)
July 2001	\$473,388.16
August 2001	\$506,191.69
September 2001	\$473,943.03
October 2001	\$513,329.47
November 2001	\$543,993.41
December 2001	\$755,527.89
January 2002	\$596,746.56
February 2002	\$550,816.69
March 2002	\$644,135.20

Cross Join

- La función cross join permite combinar las tuplas de un conjunto con las de otro para formar tuplas multi-partes.
- Es un producto cruz, así que combina cada tupla del primer conjunto con cada una de los siguientes:
- Sintaxis

```
Crossjoin( {Set1}, {Set2}, [, ... {Setn}] )
```

- Restricciones:
 - Si los conjuntos de miembros son de la misma dimensión, entonces deben ser de diferente jerarquía, o bien
 - Los conjuntos de miembros son de diferentes dimensiones.

... Cross Join (Ejemplo)

```
SELECT [Measures].[Internet Sales Amount] ON COLUMNS,

CROSSJOIN([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year]) ON ROWS

FROM [Adventure Works];
```

][]	Internet Sales Amount
CY 2001	July	\$473,388.16
CY 2001	August	\$506,191.69
CY 2001	September	\$473,943.03
CY 2001	October	\$513,329.47
CY 2001	November	\$543,993.41
CY 2001	December	\$755,527.89
CY 2002	January	\$596,746.56
CY 2002	February	\$550,816.69
CY 2002	March	\$644,135.20
CY 2002	April	\$663,692.29
CY 2002	May	\$673,556.20
CY 2002	June	\$676,763.65
CY 2002	July	\$500,365.16

... Cross Join con dos medidas

Obtener el total de ventas por Internet y total de ventas por distribuidor para cada mes de cada año.

		Internet Sales Amount	Reseller Sales Amount
CY 2001	July	\$473,388.16	\$489,328.58
CY 2001	August	\$506,191.69	\$1,538,408.31
CY 2001	September	\$473,943.03	\$1,165,897.08
CY 2001	October	\$513,329.47	\$844,721.00
CY 2001	November	\$543,993.41	\$2,324,135.80
CY 2001	December	\$755,527.89	\$1,702,944.54
CY 2002	January	\$596,746.56	\$713,116.69
CY 2002	February	\$550,816.69	\$1,900,788.93
CY 2002	March	\$644,135.20	\$1,455,280.41
CY 2002	April	\$663,692.29	\$882,899.94
CY 2002	May	\$673,556.20	\$2,269,116.71
CY 2002	June	\$676,763.65	\$1,001,803.77

... Cross Join (en los 2 ejes)

Obtener el total de ventas por Internet y total de ventas por distribuidor de cada categoria de productos; para cada mes de cada año.

FROM [Adventure Works];

		Accessories	Accessories	Bikes	Bikes
		Internet Sales Amount	Reseller Sales Amount	Internet Sales Amount	Reseller Sales Amount
CY 2001	July	(null)	\$1,695.67	\$473,388.16	\$453,231.80
CY 2001	August	(null)	\$3,593.20	\$506,191.69	\$1,413,253.52
CY 2001	September	(null)	\$3,250.03	\$473,943.03	\$1,054,995.97
CY 2001	October	[null]	\$1,937.90	\$513,329.47	\$777,394.97
CY 2001	November	(null)	\$5,490.73	\$543,993.41	\$2,152,858.49
CY 2001	December	(null)	\$4,267.84	\$755,527.89	\$1,543,613.88
CY 2002	January	(null)	\$585.41	\$596,746.56	\$687,178.08
CY 2002	February	[null]	\$2,159.96	\$550,816.69	\$1,814,374.32
CY 2002	March	(null)	\$2,200.33	\$644,135.20	\$1,375,940.84
CY 2002	April	(null)	\$1,776.41	\$663,692.29	\$813,847.26
CY 2002	May	(null)	\$5,577.84	\$673,556,20	\$2,082,726,08

... Cross Join (2 dimensiones)

Obtener el total de ventas para cada mes de cada año por cada categoria de productos vendidos en cada pais.

```
SELECT CROSSJOIN([Sales Territory].[Sales Territory].[Country],
                 [Product].[Product Categories].[Category]) ON COLU
       CROSSJOIN([Date].[Calendar].[Calendar Year],
                 [Date].[Month of Year].[Month of Year])ON ROWS
FR.OM
       [Adventure Works];
```

United States Canada Canada Canada Canada Accessories Bikes Clothina Components Accessories CY 2001 July \$302.80 \$99,240.99 \$736.11 \$15,080.99 \$1,392.87 CY 2001 August \$847.83 \$293,581.57 \$1,304.86 \$21,246.81 \$2,745.36 CY 2001 September \$908.39 \$182,503.16 \$976.75 \$21,252.57 \$2,341.63 CY 2001 October \$524.85 \$210,463.22 \$933.18 \$22,985,99 \$1,413.06 November \$1,919.16 \$21,805.08 \$4,077.67 CY 2001 \$1,413.06 \$356,669.19 CY 2001 December \$1,150.63 \$228,263,14 \$2.043.27 \$3,117,21 \$27,205.85 CY 2002 January \$201.87 \$154.028.98 \$330.92 \$9,218.07 \$383.54 CY 2002 February \$645.97 \$257,729.62 \$1,366,45 \$16,889,11 \$1,513.99 March CY 2002 \$403.73 \$317,344.58 \$840.72 \$16,755.45 \$1,796,60 CY 2002 April \$363.36 \$204,146.65 \$804.17 \$22,753.56 \$1,413.06 CY 2002 May \$1,056.06 \$351,100.57 \$2,170.06 \$30,315.92 \$4,521.78

\$1,069.88

CY 2002 June

\$1,904.67

\$21,155,11

\$3,209.65

... Cross Join anidados

```
¿Qué hace la siguiente consulta?

SELECT CROSSJOIN([Sales Territory].[Sales Territory].[Country],

CROSSJOIN([Product].[Product Categories].[Category],

{[Measures].[Internet Order Count],

[Measures].[Reseller Order Count]})) ON COLUMNS,

CROSSJOIN([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year]) ON ROWS

FROM [Adventure Works];
```

		France	France	France	France
		Accessories	Accessories	Bikes	Bikes
		Internet Order Count	Reseller Order Count	Internet Order Count	Reseller Order Count
CY 2003	July	41	3	54	2
CY 2003	August	114	7	55	16
CY 2003	September	135	4	61	6
CY 2003	October	110	2	44	3
CY 2003	November	114	7	61	16
CY 2003	December	179	2	115	7
CY 2004	January	126	3	66	3
CY 2004	February	155	3	95	16
CY 2004	March	162	3	81	6
		4.00	1.00		

... Cross Join (Otra sintaxis)

```
SELECT CROSSJOIN([Sales Territory].[Sales Territory].[Country],
          CROSSJOIN([Product].[Product Categories].[Category],
              {[Measures].[Internet Order Count].
               [Measures].[Reseller Order Count]})) ON COLUMNS,
       ([Date].[Calendar].[Calendar Year],
        [Date].[Month of Year].[Month of Year]) ON ROWS
      [Adventure Works];
FROM
SELECT CROSSJOIN([Sales Territory].[Sales Territory].[Country],
          CROSSJOIN([Product].[Product Categories].[Category],
              {[Measures].[Internet Order Count],
               [Measures]. [Reseller Order Count]})) ON COLUMNS.
       [Date].[Calendar].[Calendar Year]
       * [Date].[Month of Year].[Month of Year]) ON ROWS
```

[Adventure Works]:

... Cross join

Total de ventas anuales, en Estados Unidos, de todas las categorías de productos para las bicicletas de montaña.

FROM [Adventure Works];

• Para ordenar el resultado de una consulta se utiliza la función ORDER con la siguiente sintaxis:

```
ORDER(set, expression [, ASC | DESC | BASC | BDESC])
```

 Ejemplo: Obtener el total de ventas por Internet para cada subcategoría de productos, ordenadas por la cantidad ventas por Internet.

```
SELECT
  [Measures].[Internet Sales Amount] ON COLUMNS,

ORDER(
    [Product].[Subcategory].[Subcategory],
    [Measures].[Internet Sales Amount], ASC) ON ROWS

FROM [Adventure Works];
```

	Internet Sales Amour
Wheels	(null)
Socks	\$5,106.32
Cleaners	\$7,218.60
Caps	\$19,688.10
Gloves	\$35,020.70
Vests	\$35,687.00
Bike Racks	\$39,360.00
Bike Stands	\$39,591.00
Hydration Packs	\$40,307.67
Fenders	\$46,619.58
Bottles and Cages	\$56,798.19
Shorts	\$71,319.81
Jerseys	\$172,950.68
Helmets	\$225,335.60
Tires and Tubes	\$245,529.32
Touring Bikes	\$3,844,801.05
Mountain Bikes	\$9.952.759.56

Descend	lente.

■ Messages ■ Results

	Reseller Sales Amount
Mountain-200 Black, 38	\$1,634,647.94
Mountain-200 Black, 38	\$1,471,078.72
Road-350-W Yellow, 48	\$1,380,253.88
Touring-1000 Blue, 60	\$1,370,784.22
Mountain-200 Black, 42	\$1,360,828.02
Mountain-200 Black, 42	\$1,285,524.65
Road-350-W Yellow, 40	\$1,238,754.64
Touring-1000 Yellow, 60	\$1,184,363.30
Mountain-200 Silver, 38	\$1,181,945.82
Mountain-200 Silver, 42	\$1,175,932.52
Mountain-100 Black, 38	\$1,174,622.74
Mountain-200 Silver, 38	\$1,172,269.42

Total de ventas por Internet de los productos por subcategoría dentro de cada categoría.

		Internet Sales Amount
Accessories	Tires and Tubes	\$245,529.32
Accessories	Helmets	\$225,335.60
Accessories	Bottles and Cages	\$56,798.19
Accessories	Fenders	\$46,619.58
Accessories	Hydration Packs	\$40,307.67
Accessories	Bike Stands	\$39,591.00
Accessories	Bike Racks	\$39,360.00
Accessories	Cleaners	\$7,218.60
Bikes	Road Bikes	\$14,520,584.04
Bikes	Mountain Bikes	\$9,952,759.56
Bikes	Touring Bikes	\$3,844,801.05
Clothing	Jerseys	\$172,950.68
Clothing	Shorts	\$71,319.81
Clothing	Vests	\$35,687.00
Clothing	Gloves	\$35,020.70
Clothing	Caps	\$19,688.10

		Internet Sales Amount
Bikes	Road Bikes	\$14,520,584.04
Bikes	Mountain Bikes	\$9,952,759.56
Bikes	Touring Bikes	\$3,844,801.05
Accessories	Tires and Tubes	\$245,529.32
Accessories	Helmets	\$225,335.60
Clothing	Jerseys	\$172,950.68
Clothing	Shorts	\$71,319.81
Accessories	Bottles and Cages	\$56,798.19
Accessories	Fenders	\$46,619.58
Accessories	Hydration Packs	\$40,307.67
Accessories	Bike Stands	\$39,591.00
Accessories	Bike Racks	\$39,360.00
Clothing	Vests	\$35,687.00
Clothing	Gloves	\$35,020.70
Clothing	Caps	\$19,688.10
Accessories	Cleaners	\$7,218.60
Clothing	Cooks	\$5.10£.32

Ordenando por dos criterios

Ordenar por cantidad ordenadas y luego por importe de ventas.

```
SELECT.
  { [Measures].[Reseller Order Quantity] , [Measures].[Reseller Sale
  } ON COLUMNS.
ORDER (
    ORDER (
      [Product]. [Product]. [Product]. MEMBERS
     , [Measures] . [Reseller Sales Amount]
     ,BDESC
   , [Measures] . [Reseller Order Quantity]
   ,BDESC
  ) ON ROWS
FROM [Adventure Works];
```

Especificación de rebanadas (slices)

- Opcionalmente puede incluirse una cláusula WHERE para reducir el alcance de la consulta. (rebanando las dimensiones)
- Usualmente, se utiliza para definir la medida que será obtenida.
- Ejemplo: Obtener el total de ventas por Internet para cada país y de acuerdo a la categoría de los productos.

• Obtener el total de ventas para el año 2008:

```
WHERE (Measures.[Internet Sales Amount],
[Date].[Calendar].[CY 2008])
```

... Especificación de rebanadas (slices)

```
SELECT
    { ([Date].[Calendar].[CY 2002]),
        ([Date].[Calendar].[CY 2003]),
        ([Date].[Calendar].[CY 2004])
    } ON COLUMNS,
    {[Product].[Category].[Category].Members} ON ROWS
FROM [Adventure Works]
WHERE ([Geography].[Country].[Estados Unidos]);
```


... Especificación de rebanadas (slices)

```
SELECT
{ ([Date].[Calendar].[CY 2002]),
    ([Date].[Calendar].[CY 2003]),
    ([Date].[Calendar].[CY 2004])
} ON COLUMNS
{[Product].[Category].Members} ON ROWS
FROM [Adventure Works]
WHERE ([Geography].[Country].[Estados Unidos]);
```


... Especificación de rebanadas (slices)

```
SELECT
{ ([Date].[Calendar].[CY 2002]),
    ([Date].[Calendar].[CY 2003]),
    ([Date].[Calendar].[CY 2004])
} ON COLUMNS,
{[Product].[Category].Members} ON ROWS
FROM [Adventure Works]
WHERE ([Geography].[Country].[Estados Unidos]);
```


... Especificación de rebanadas

Ventas por Internet a los clientes en Canadá y Australia, mostradas por categorías de productos.

... Especificación de rebanadas y cross Join

WHERE ([Geography].[Country].[United States]);

```
SELECT
{ ([Date].[Calendar].[CY 2002]),
    ([Date].[Calendar].[CY 2003]),
    ([Date].[Calendar].[CY 2004]) } *
    {([Measures].[Reseller Sales Amount]), ([Measures].[Internet Samount])} ON COLUMNS,
    {[Product].[Category].[Category].Members} ON ROWS
FROM [Adventure Works]
```

... Especificación de rebanadas y cross Join

Rangos

Mostrar la cantidad de ventas por distribuidor entre 2005 y 2009 en los países desde Canadá y hasta Reino Unido.

```
SELECT
```


Top/Bottom

- Hay un par de funciones para encontrar los elementos primeros o últimos elementos de un conjunto
- Sintaxis:

```
TopCount( {Set}, n [, Expression])
BottomCount( {Set}, n [, Expression])
```

• Ejemplo: Obtener los 5 productos con mayores ventas por Internet.

```
SELECT
```

```
[Measures].[Internet Sales Amount] ON COLUMNS,
TopCount(
      {[Product].[Subcategory].[Subcategory].Members},
      5,
      ([Measures].[Internet Sales Amount])
) ON ROWS
FROM [Adventure works];
```

... Top/Bottom

Obtener los 5 productos menos vendidos por Internet.

```
SELECT
  [Measures].[Internet Sales Amount] ON COLUMNS,
BottomCount(
         {[Product].[Subcategory].[Subcategory].Members},
         5,
         ([Measures].[Internet Sales Amount])
) ON ROWS
FROM [Adventure works];
```

... Top/Bottom

Obtener las 10 ciudades con mayores ventas en Internet en 2005.

```
SELECT

[Measures].[Internet Sales Amount] ON COLUMNS,

TOPCOUNT ([Customer].[Customer Geography].[City],

10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2005])) ON ROWS

FROM [Adventure Works]

WHERE [Date].[Calendar].[Calendar Year].[CY 2005]
```

... Top/Bottom

	2005		
	Internet Sales Amount		
London	\$286,474.92		
Paris	\$175,338.19		
Bellflower	\$116,752.62		
Wollongong	\$99,650.02		
Brisbane	\$95,118.98		
Berkeley	\$92,682.88		
Sydney	\$90,781.20		
Burlingame	\$89,550.19		
Bendigo	\$88,268.71		
Townsville	\$87,999.40		

2007		
Internet Sales Amoun		
\$336,223.71		
\$233,163.14		
\$123,579.77		
\$116,121.34		
\$112,847.99		
\$106,911.35		
\$103,427.66		
\$98,667.35		
\$95,656.38		
\$95,591.56		

 $\alpha \alpha \alpha \overline{\alpha}$

En MDX hay funciones para manejo de conjuntos de tuplas y son:

```
Union( {Set1}, {Set2})
Intersect( {Set1}, {Set2} )
Except( {Set1}, {Set2} )
```

Obtener las ciudades que estuvieron entre las 10 con más ventas por Internet en 2005 y las que estuvieron entre las 10 con más ventas en 2007. [Measures].[Internet Sales Amount] ON COLUMNS, UNION (

```
TOPCOUNT ([Customer].[Customer Geography].[City],
          10,
          ([Measures].[Internet Sales Amount],
           [Date].[Calendar].[Calendar Year].[CY 2005])),
TOPCOUNT ([Customer].[Customer Geography].[City],
          10,
          ([Measures].[Internet Sales Amount],
           [Date].[Calendar].[Calendar Year].[CY 2007])))
```

ON ROWS

```
FROM [Adventure works]
WHERE { [Date] . [Calendar] . [Calendar Year] . [CY 2005],
       [Date].[Calendar].[Calendar Year].[CY 2007]}
```

	Internet Sales Amount
London	\$622,698.63
Paris	\$408,501.33
Wollongong	\$223,229.79
Bendigo	\$204,390.05
Warrnambool	\$200,055.66
Townsville	\$183,655.78
Goulburn	\$181,467.83
Hobart	\$160,153.91
Melton	\$158,670.16
Melbourne	\$153,198.24
Bellflower	\$186,720.94
Sydney	\$185,763.40
Brisbane	\$179,821.51
Berkeley	\$168,084.73
Burlingame	\$150,504.95

Información de las ciudades que tuvieron ventas altas en 2005 pero no en 2007.

```
SELECT
  [Measures].[Reseller Sales Amount] ON COLUMNS,
  EXCEPT(
      TOPCOUNT ([Customer].[Customer Geography].[City],
                10.
                ([Measures].[Internet Sales Amount],
                 [Date].[Calendar].[Calendar Year].[CY 2005])),
      TOPCOUNT ([Customer].[Customer Geography].[City],
                10,
                ([Measures].[Internet Sales Amount],
                 [Date].[Calendar].[Calendar Year].[CY 2007])))
  ON ROWS
```

FROM [Adventure works]

	Internet Sales Amount
Warrnambool	\$112,847.99
Hobart	\$106,911.35
Melton	\$103,427.66
Goulburn	\$98,667.35
Melbourne	\$95,591.56

Ciudades que estuvieron entre las 10 mejores tanto en 2005 como en 2007.

```
SELECT
  {([Measures].[Reseller Sales Amount])} ON COLUMNS,
  INTERSECT (
      TOPCOUNT ([Customer].[Customer Geography].[City],
                10.
                ([Measures].[Internet Sales Amount],
                  [Date].[Calendar].[Calendar Year].[CY 2005])),
      TOPCOUNT ([Customer].[Customer Geography].[City],
                10,
                ([Measures].[Internet Sales Amount],
                  [Date].[Calendar].[Calendar Year].[CY 2007])))
  ON ROWS
FROM [Adventure works]:
WHERE { [Date] . [Calendar] . [Calendar Year] . [CY 2005],
       [Date].[Calendar].[Calendar Year].[CY_2007]}
```

	Internet Sales Amount
London	\$622,698.63
Paris	\$408,501.33
Wollongong	\$223,229.79
Bendigo	\$204,390.05
Townsville	\$183,655.78

Filtros

- Para especificar criterios más complejos que los vistos hasta ahora se utilizan los llamados filtros que son más parecidos a la claúsula WHERE de SQL.
- Sintaxis

- Un filtro permite evaluar cada tupla de un conjunto de acuerdo al critero proporcionado.
- La expresión es una expresión lógica que utiliza los operadores habituales y como conectores lógicos AND, OR y XOR

Obtener el total de ventas por Internet para las diferentes categorías de productos.

SELECT

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales ON COLUMNS,

[Product].[Product Categories].[Category] ON ROWS FROM [Adventure Works]

	Internet Sales Amount	Reseller Sales Amount
Accessories	\$700,759.96	\$571,297.93
Bikes	\$28,318,144.65	\$66,302,381.56
Clothing	\$339,772.61	\$1,777,840.84
Components	(null)	\$11,799,076.66

Obtener el total de ventas por Internet para las diferentes categorías de productos que tengan ventas por Internet.

SELECT

FROM [Adventure Works]

	Internet Sales Amount	Reseller Sales Amount
Accessories	\$700,759.96	\$571,297.93
Bikes	\$28,318,144.65	\$66,302,381.56
Clothing	\$339,772.61	\$1,777,840.84

Obtener el total de ventas por Internet para las diferentes categorías de productos que tengan ventas por Internet mayores a \$500,000.

SELECT

FROM [Adventure Works]

	Internet Sales Amount	Reseller Sales Amount	
Accessories	\$700,759.96	\$571,297.93	
Bkes	\$28,318,144.65	\$66,302,381.56	

... Filtros (comparación de dos medidas)

Productos cuyas ventas por Internet son mayores que las ventas por distribuidor.

```
SELECT.
          ([Measures].[Reseller Sales Amount]),
          ([Measures].[Internet Sales Amount])
       } ON COLUMNS.
       FILTER(
              {[Product].[Product].[Product].Members},
              ([Measures].[Internet Sales Amount]) >
              ([Measures], [Reseller Sales Amount])
                ON ROWS
FROM [Adventure Works]
```

\$571,297.93

Internet Sales Amount Reseller Sales Amount

Accessories

\$700,759,96

Lo mismo que antes pero restringido a productos dentro de las categorías ropa y accesorios

```
SELECT { ([Measures].[Reseller Sales Amount]),
         ([Measures].[Internet Sales Amount]) } ON COLUMNS,
   FILTER(
     {[Product].[Product].[Product].Members},
      ([Measures].[Internet Sales Amount]) >
      ([Measures].[Reseller Sales Amount])
   AND
      ([Product].[Category].CurrentMember IS
       [Product].[Category].[Clothing] OR
       [Product].[Category].CurrentMember IS
       [Product].[Category].[Accessories])
     ON ROWS
FROM [Adventure Works]
```

El complemento

```
SELECT { ([Measures].[Reseller Sales Amount]),
         ([Measures].[Internet Sales Amount]) } ON COLUMNS,
  FILTER (
    {[Product].[Product].[Product].Members},
     ([Measures].[Internet Sales Amount]) >
     ([Measures].[Reseller Sales Amount])
     AND NOT (
      ([Product].[Category].CurrentMember IS
       [Product].[Category].[Clothing] OR
       [Product].[Category].CurrentMember IS
       [Product].[Category].[Accessories] )
   ON ROWS
```

FROM [Adventure Works]

- Un miembro calculado permite definir fórmulas y tratarlas como un nuevo miembro de un padre especificado.
- Las fórmulas se crean como combinación de datos del cubo, operadores aritméticos, números y funciones de MDX.
 - Las funciones numéricas son SUM, COUNT, AVG, MEDIAN, MAX, MIN, VAR, STDDEV
 - Sintaxis: Función(Set_Expression [, Numeric_Expression])
- Sintaxis:

WITH MEMBER parent.name AS expression

Usos:

Crear alias. Ejemplo

```
WITH MEMBER [Measures].[Ventas] AS
[Measures].[Internet Sales Amount]
```

Definir una nueva medida, tomando las definidas. Ejemplo

```
WITH MEMBER Measures. [Total de Ventas] AS
Measures. [Internet Sales Amount] +
Measures. [Reseller Sales Amount]
```

• Formatear la salida de una medida.

```
, FORMAT_STRING = '$#,###,###.00'
, FORMAT_STRING = 'PERCENT'
```

• Definir múltiples miembros calculados en cualquier dimensión.

Miembro calculado sobre un miembro de una jerarquía. Crear un miembro en la dimensión Producto con el total de ventas por categoría

WITH MEMBER.

```
Product.Category.[All products].[Total categorias] AS
  Product.Category.Bikes + Product.Category.Accessories +
   Product.Category.Clothing + Product.Category.Components
```

SELECT

```
{Date.[calendar year].members} ON COLUMNS,
{Product.Category.Category.MEMBERS} ON ROWS
FROM [Adventure works];
```

Mensajes	Resultados				
6	Todos los Períodos	CY 2005	CY 2006	CY 2007	CY 2008
Accesorio	\$571,297.93	\$20,235.36	\$92,735.35	\$296,532.88	\$161,794.33
Bicicleta	\$66,302,381.56	\$7,395,348.63	\$19,956,014.67	\$25,551,775.07	\$13,399,243.18
Prenda	\$1,777,840.84	\$34,376.34	\$485,587.15	\$871,864.19	\$386,013.16
Componente	\$11,799,076.66	\$615,474.98	\$3,610,092.47	\$5,482,497.29	\$2,091,011.92

WITH MEMBER

Product.Category.[All products].[Total categorias] AS
Product.Category.Bikes + Product.Category.Accessories +
Product.Category.Clothing + Product.Category.Components

SELECT

{Date.[calendar year].members} ON COLUMNS, {Product.Category.Category.ALLMEMBERS ON ROWS FROM [Adventure works];

	Todos los Períodos	CY 2005	CY 2006	CY 2007	CY 2008
Accesorio	\$571,297.93	\$20,235.36	\$92,735.35	\$296,532.88	\$161,794.33
Bicicleta	\$66,302,381.56	\$7,395,348.63	\$19,956,014.67	\$25,551,775.07	\$13,399,243.18
Prenda	\$1,777,840.84	\$34,376.34	\$485,587.15	\$871,864.19	\$386,013.16
Componente	\$11,799,076.66	\$615,474.98	\$3,610,092.47	\$5,482,497.29	\$2,091,011.92
Total categorias	\$80,450,596.98	\$8,065,435.31	\$24,144,429.65	\$32,202,669.43	\$16,038,062.60

Conocer el porcentaje de bicicletas vendidas.

```
WITH MEMBER
  Product.Category.[All products].[% ventas bicicletas] AS
     (Product.Category.Bikes/Product.Category.[All products]),
     format_string = "percent"
SELECT
  Date. [calendar year].members ON COLUMNS,
  Product.Category.Category.ALLMEMBERS ON ROWS
FROM [Adventure works];
```

	Todos los Períodos	CY 2005	CY 2006	CY 2007	CY 2008
Accesorio	\$571,297.93	\$20,235.36	\$92,735.35	\$296,532.88	\$161,794.33
Bicicleta	\$66,302,381.56	\$7,395,348.63	\$19,956,014.67	\$25,551,775.07	\$13,399,243.18
Prenda	\$1,777,840.84	\$34,376.34	\$485,587.15	\$871,864.19	\$386,013.16
Componente	\$11,799,076.66	\$615,474.98	\$3,610,092.47	\$5,482,497.29	\$2,091,011.92
% ventas bicicletas	82.41%	91.69%	82.65%	79.35%	83.55%

Es posible tener más de un miembro calculado. Por ejemplo, obtener el porcentaje de bicicletas que se vendieron y el monto de ventas combinadas:

```
WITH MEMBER
  Measures. [Ventas combinadas] AS
    (Measures. [Reseller sales amount] +
     Measures. [Internet sales amount])
MEMBER.
  Product.Category.[All products].[% ventas bicicletas] AS
    (Product.Category.Bikes/Product.Category.[All products]),
     format_string = "percent"
SELECT
  {Measures.[reseller sales amount],
   Measures.[internet sales amount],
   Measures. [ventas combinadas]
  } ON COLUMNS,
  { Product.Category.Category.ALLMEMBERS} ON=ROWS > < I > < I >
```

	Monto de Ventas del Revendedor	Cantidad de Ventas por Internet	Ventas combinadas
Accesorio	\$571,297.93	\$700,759.96	\$1,272,057.89
Bicicleta	\$66,302,381.56	\$28,318,144.65	\$94,620,526.21
Prenda	\$1,777,840.84	\$339,772.61	\$2,117,613.45
Componente	\$11,799,076.66	(NULL)	\$11,799,076.66
% ventas bicicletas	82.41%	96.46%	178.87%

- Son conjuntos definidos, y bautizados, por el programador.
- Sintaxis: WITH SET name AS expression

```
WITH SET [Not 2006] AS [Date]. [Calendar]. [Calendar Year]. [CY 2001]:
                        [Date].[Calendar].[Calendar Year].[CY 2004]
MEMBER [Measures]. [Total Sales] AS
       [Measures].[Internet Sales Amount]+[Measures].[Reseller Sale
       FORMAT_STRING="£#,###.00"
MEMBER [Measures].[Customer Sales] AS
       [Measures].[Internet Sales Amount],FORMAT_STRING="£#,###.00"
MEMBER [Measures]. [Retailer Sales] AS
       [Measures.[Reseller Sales Amount], FORMAT_STRING="£#, ###.00"
SELECT
      {[Measures].[Customer Sales],[Measures].[Retailer Sales],
       [Measures].[Total Sales]} ON COLUMNS,
      {[Not 2006], [Date], [Calendar]} ON ROWS
FROM [Adventure Works]
```

	Customer Sales	Retailer Sales	Total Sales
CY 2001	£3,266,373.66	£8,065,435.31	£11,331,808.96
CY 2002	£6,530,343.53	£24,144,429.65	£30,674,773.18
CY 2003	£9,791,060.30	£32,202,669.43	£41,993,729.72
CY 2004	£9,770,899.74	£16,038,062.60	£25,808,962.34
All Periods	£29,358,677.22	£80,450,596.98	£109,809,274.20

- La función GENERATE itera a lo largo de un conjunto.
- Sintaxis:

```
Generate( {Set}, {Set Expression} [, ALL])
```

- Semántica: Itera a lo largo del conjunto pasado como primer parametro, utilizando el segundo conjunto como plantilla para mostrar el conjunto resultante.
 - Si se usa ALL, se mantienen elementos duplicados en el conjunto.
- Ejemplo. Definir un conjunto que contenga el primer semestre de cada año.

Desplegar las ventas del primer semestre de cada año.

```
WITH SET [Primer semestre] AS

GENERATE([Date].[Calendar][Calendar Year].MEMBERS,

{[Date].[Calendar].CURRENTMEMBER.FIRSTCHILD})

SELECT [Primer semestre] ON COLUMNS,

[Product].[Product categories].MEMBERS ON ROWS

FROM [Adventure Works];
```

Crear un conjunto con los 5 productos más vendidos por distribuidor.

```
WITH
SET [Top 5 Products] AS
    TopCount(
       [Product]. [Product]. [Product]. MEMBERS,
       5,
       ([Measures].[Reseller Sales Amount])
SELECT {([Measures].[Reseller Sales Amount])} ON COLUMNS,
       {[Top 5 Products]} ON ROWS
FROM [Adventure Works]
```

	Reseller Sales Amount	
Mountain-200 Black, 38	\$1,634,647.94	
Mountain-200 Black, 38	\$1,471,078.72	
Road-350-W Yellow, 48	\$1,380,253.88	
Touring-1000 Blue, 60	\$1,370,784.22	
Mountain-200 Black, 42	\$1,360,828.02	

Alcance del with

Se puede usar Create Member para que el alcance de los miembros calculados y el de los conjuntos sea durante la sesión no sólo para una consulta.

```
CREATE.
MEMBER [Adventure Works]. [Measures]. [Customer Sales] as
          [Measures].[Internet Sales Amount]
MEMBER [Adventure Works]. [Measures]. [Retailer Sales] as
          [Measures]. [Reseller Sales Amount]
MEMBER [Adventure Works]. [Measures]. [Total Sales] as
          [Measures]. [Internet Sales Amount]+
          [Measures]. [Reseller Sales Amount]
Se pueden eliminar en cualquier momento con:
drop member [Adventure Works]. [Measures]. [Customer Sales]
drop member [Adventure Works]. [Measures]. [Retailer Sales]
drop member [Adventure Works]. [Measures]. [Total Sales]
```