1 Gradfolge

- jedem einfachen Grad laesst sich eine Gradfolge zuordnen
 - $\rightarrow (deg(v_1), ..., deg(v_k))$ fuer $V = \{v_1, ..., v_k\}$
- ein Graph heisst k-regulaer $\Leftrightarrow \forall v \in V : deg(v) = k$
- der vollstaendige Graph K_n ist (n-1)-regulaer
- der Kreisgraph C_n mit $n \geq 3$ ist 2-regulaer
- der Hyperwuerfel Q_n ist n-regulaer
- wichtig: 2 nicht isomorphe Graphen koennen dieselbe Gradfolge besitzen
 - \rightarrow Gradfolge kein Beweis fuer Isomorphie

1.1 Handschlaglemma

$$2|E| = \sum_{i \in [n]} deg(v_i)$$

- \rightarrow ein einfacher Graph existiert \Leftrightarrow die Summe gerade ist
- \rightarrow ein einfacher Graph muss eine gerade Anzahl an Knoten ungeraden Grades haben
- \rightarrow ein einfacher Graph mit $|V| > \frac{1}{2} \sum_{i \in [n]} d_i + 1 \Rightarrow |V| > |E| + 1$ kann nicht zshg. sein

1.2 Realisierbarkeit von Gradfolgen - Havel Hakimi

1.2.1 1. Phase

Rekursive Reduktion der Gradfolge bis man eine Abbruchbedingung erreicht

- \rightarrow es werden immer so viele Grafolgen reduziert wie gross die Gradfolge des zu entfernenden Knoten ist
- \rightarrow nach jedem Schritt neu aufsteigend die uebrig gebliebende Gradfolge sortieren

Bsp.:
$$(1,1,2,3,4,4,5) \to (0,1,1,2,3,3) \to (0,0,1,1,2) \to (0,0,0,0)$$

Falls wird nicht bei einem Tupel aus nur 0 enden ist die Gradfolge nicht realisierbar.

1.2.2 2. Phase

Bottom-up Konstruktion einer Gradfolge beginnend bei 0 um die Existenz eines Graphens und seiner zugehoerigen folge zu beweisen.

$\mathbf{2}$ Baeume

- ein einfacher Graph welcher zshg. und kreisfrei ist, ist ein Baum
 - \rightarrow ein Graph ist ein Baum $\Leftrightarrow |E| = |V| 1$
- ein Knoten mit deg(u) = 1 wird als Blatt bezeichnet, sonst als innerer Knoten
- zu einem Baum mit $n \geq 4$ Knoten gibt es n-1 Isomorphe Baeume
- ein Graph dessen maximale Zshgkomponenten Baeume sind nennt man Wald
- jeder Graph hat mindestens einen Spannbaum

Wurzelbaeume 2.1

Ein Wurzelbaum G = (V, E, r) ist ein Baum G = (V, E) mit Wurzel $r \in V$

- die Hoehe $h_G(v), v \in V$ ist die Laenge des kuerzesten Pfades zu r
- die Hoehe von G wird mit $h(G) = max\{h_G(v) \mid v \in V\}$
- implizit sind alle Kanten von r weggerichtet, sodass man fuer uEv schreibt:
 - $\rightarrow \{u,v\} \in E \text{ und } h_G(v) = h_G(u) + 1$
 - \rightarrow gilt uEv,dann ist uder Vater und vdas Kind
 - \rightarrow gilt uE^*v , dann ist u der Nachfahre und v der Vorfahre
- fuer $u\in V$ ist $\left(uE^*,E\cap\binom{uE^*}{2},u\right)$ der durch u induzierte Teilbaum von G- (B_h,ϵ) hat die Hoehe h, es gibt $2^{h+1}-1$ Knoten und $2^{h+1}-2$ Kanten
- \rightarrow Anwendung: Suffixbaeume

3 Eulertouren und Hamiltonkreise

Fuer einen Pfad $v_0, ..., v_k$ in G mit $v_0 = v_k$ gilt:

3.1 Eulertour

Ein Pfad heisst Eulertour ⇔ falls jede Kante genau einmal besucht wird:

$$|\{\{v_0, v_1\}, ..., \{v_{k-1}, v_k\}\}| = |E|$$

3.1.1 Existenz

Ein zshg. Graph G=(V,E) besitzt eine Eulertour $\Leftrightarrow deg(v) \bmod 2 = 0, \forall \ v \in V$

3.2 Hamiltonkreis

Ein Pfad heisst Hamiltonkreis \Leftrightarrow er jeden Knoten genau einmal besucht:

$$|\{v_0, ..., v_{k-1}\}| = |V|$$

3.2.1 Existenz

Hinreichende Bedingung:

Ein einfacher Graph G=(V,E) mit $|V|\geq 3$ besitzt einen Hamiltonkreis $\Leftrightarrow deg(v)\geq \frac{|V|}{2},\ \forall\ v\in V$