

A.S.T.R.O.COM.

ADVANCED SOLAR TRACKING AND ROVER OBSERVATION COMMUNICATION

- South Pole of Moon is area of interest for researchers
- Lunar south pole has many craters that are in permanent darkness due to the sun's path across the lunar south pole's sky
- Approached by FSI to solve a few problems for lunar exploration:
 - 1. Permanently dark locations on the moon are difficult to explore
 - Lack of power infrastructure on the moon limits exploration
 - Permanently dark locations are a valuable location for research
 - Communication on lunar surface is limited
 - Range of communication limits exploration of craters
 - Limited communication infrastructure on moon

- Proposed Solution:
 - A heliostat tower
 - To reflect light from the sun into permanently dark locations
 - Equipped with communication capabilities
 - 2. A smaller communication beacon
 - Carriable by rovers
 - Form a communication network with rovers

GOALS

Overall Goals (High Level)

- Build a tower to handle rover communication.
- Build a tower to handle sunlight diversion to targets.

Stretch Goals

- P2P Networking for communication and mirror tower with rovers.
- Wireless charging and/or docking station for communication tower.

Mirror Tower Objectives (Lower Level)

- Identify optimal sun location based on lux value from sensor.
- Receive requests from communication tower using protocols.
- Create a heliostat algorithm to orient towards the target with motors.
- Create a self-sustainable power supply using solar and battery power.

Communication Beacon Objectives (Lower Level)

- Receive requests from target through mesh network protocols.
- Relay requests to mirror tower using communication protocols.
- Create a small and portable tower that can be moved by rovers.

SPECIFICATIONS TABLE

	Heliostat Tower
Minimum Temperature	-40°C
Reflector	
Minimum size	Ift diameter
Maximum size	5ft diameter
Maximum Weight	9kgs
Minimum Reflectivity	90%
Response Time	3 minutes
Tower Frame	
Maximum total weight	27kgs
Minimum Weight Capacity	10kgs
Solar Panel	
Minimum Power	30W during sunlight hours
Maximum Voltage	24V
Battery	
Minimum Lifespan	2 weeks without sun

Communication Tower					
Minimum Enclosure Volume 6.5"x6.5"x5"					
Maximum Weight	2kg				
Minimum Network Range	20m				
Communication Rate	2400MHz				
Voltage input	3.3V or 5V				
Maximum Current Draw	500mA				
Minimum Temperature -40°C					
Latency I second					
Maximum Power	<mark>5W</mark>				

Software SD1 Software Flowchart

Stephen Martin | September 11, 2023

SOFTWARE BLOCK DIAGRAM

COMPARISON AND SELECTION OF HARDWARE

- MCU
- Solar Panels
- Voltage Regulation
- 3Charge Controller
- Reflectors
- Motors

- Motor Controllers
- Sensor
- Batteries
- Antenna

MCU

			1		
	ESP32	MSP430	Raspberry Pi 0	Arduino	Arduino
				MKR1310	MK1010
Cost -					
Processor &					
DevKit (USD)					
	9.18	20	15	46	38.6
Wi-Fi	Yes	No	Yes	No	Yes
Bluetooth	Yes	No	Yes	No	Yes
Zigbee	Yes	No	Yes	No	No
Z-Wave	No	No	Yes	No	No
LoRaWAN	No	No	Yes	Yes	No
6LoWPAN	No	No	Yes	No	No
UART	Yes	Yes	Yes	Yes	Yes
I2C	Yes	Yes	Yes	Yes	Yes
SPI	Yes	Yes	Yes	Yes	Yes
PWM	Yes	Yes	Yes	Yes	Yes
ADC	Yes	Yes	Yes	Yes	Yes
DAC	Yes	Yes	No	Yes	Yes
Flash Memory	4 MB	128 KB	None	256 KB	256 KB
RAM	520 KB	2 KB	512 MB	32 KB	32 KB
Operating					
Voltage (V)	3.6	5	5	3.3	3.3
Current Draw					
(A)	0.379	0.2	2.5	0.154	0.154
Power					
Consumption					
(W)	1.3644	1	12.5	0.5082	0.5082

- Microcontroller was chosen over FPGA, presenting characteristics that were better fits for the project such as low power consumption, cost and high amounts of documentation.
- ESP32 had the best combination of low cost, low power and networking capabilities and all connections required.

Criteria	Microcontroller	FPGA
Environmental robustness	✓	
Low power consumption	✓	
Parallel processing		✓
Ease of use	✓	
Processing power		✓
Cost	✓	
Scalability		✓
Integration/Peripherals	✓	
Documentation	✓	

SOLAR PANELS

Solar Panel Technology	Efficiency	Low-Light Perf.	Temp. Tolerance	Radiation Resistance	Degradation	Weight & Size
Monocrystalline	High	Excellent	Good	Good	Low	Relatively heavier
Polycrystalline	Moderate	Good	Good	Good	Low to Moderate	Moderate
Thin-Film	Low	Varies	Good	Varies	Moderate to High	Lightweight & Flexible

Model	RNG-50D-SS	HQST-50P-US	SP-52-L
Brand	Renogy	HQST	Solbian
Technology	Monocrystalline	Polycrystalline	Monocrystalline
Price	\$ 59.99	\$ 65.99	\$ 499.00
Pmax at STC	50 W	50 W	52 W
Voc	22.3V	23.3V	10.9V
Vmp	18.6V	19.8V	9.IV
Imp	2.69A	2.53A	5.7A
Isc	2.94A	2.63A	6A
Weight	7.7 lbs	8.4lbs	1.8lbs
Dimensions	$22.9 \times 20 \times 1.2$	$25.9 \times 18.6 \times 1.2$	$43.7 \times 11.49 \times 0.1$
(inches)			
Temp Coefficient	-0.37	-0.37	-0.38
of Pmax (%/degC)			

S pecifications	Linear Regulators	Switching Regulators				
	Regulators	Buck Boost Buck-Boos				
Efficiency	Moderate	High				
Heat	Moderate	Low				
Voltage Output	Step-Down	Step-Down Step-Up Up or Down				
Output Ripple	Low	Low High Low				
Complexity	Low	Moderate Moderate High				
Cost	Low	Moderate	Moderate	High		

VOLTAGE REGULATION

Model	LM1085IT- 5.0/NOPB	DROK MiniBuck Converter	LM2596	TPS54JA20
Brand	Texas Instruments	DROK	Texas Instruments	Texas Instruments
Input Voltage	2.6-26V	2.5-24V	3-40V	2.7–16V
Output Voltage	3.3 or 5	3.3 or 5	1.5 to 35	0.5 to 5.5V
Output Current	3A	3A	3A	I2A
Price	2.19	1.97	1.495	0.65
Туре	LDO Buck	Buck	Buck	Buck

- Two broad categories of Solar Charge Controllers:
- I. PWM
 - Basic pulse width modulation
 - Lower efficiency
 - Cheaper
- 2. MPPT
 - Tracks highest power producing operating point
 - Higher efficiency
 - Typically, more expensive

CHARGE CONTROLLER

Model	BQ25798RQMR	SR11004	Adventurer
Brand	Texas Instruments	SMARAAD	Renogy
Input Voltage	24V max	26V max	50V max
Output Voltage	18.8V max,	12/24V	12/24V
	Programmable		
Output	5A	I0A	30A
Current			
Price	6.25	39.99	59.99
Power	Not Specified	260W	1500VV
Туре	MPPT	MPPT	PWM
Programming	Programming I2C		NA
MPPT		-	
MPPT Type	PPT Type Sets Voltage to % of Voc		NA
Charge	Programmable	Battery	Preprogrammed depending on
controls		Chemistry	chemistry
		presets	·

REFLECTORS

- Material Chosen to fabricate:
- Aluminum has high heat resistance, durable, and high reflectivity in the moon environment.
- Mylar increase reflectivity instead of glass which has higher heat change resistance and won't crack, which reduces quality of refection
- Proof of concept: plywood as cheaper alternative and easier to fabricate.

MOTORS

- Stepper motor: Nema 34 robustness and strong torque to control the rotation of the whole tower. Can be used on DC system
- Incorporated gearbox to increase movement range and control for stepper motor.
- Servo Motors: a cheaper alternative for smaller part movements.

				•	
Types of Motors	DC Brush	DC Brushles s	AC	Stepper	Servo
Financial	Small: \$5-\$50	Small:	Small: \$50- \$200	Small:	Small:
Cost	Medium: \$20- \$100	\$10-\$100 Medium: \$100- \$500	Medium: \$200- \$2,000	\$10-\$50 Medium: \$50-\$200	\$50-\$200 Medium: \$200- \$1000
Size	~8mm-35mm	~13mm- 35cm	~10cm-30cm	~0.4cm- 20cm	~0.4cm- 10cm
Torque	0.36-160 nNm	4-400 nNm	203000Ncm- 610000Ncm	10- 10000Nc m	10- 1000Ncm
Speed	5,000 to 14,000 rpm	100,000 rpm	1800-3600 rmp	Low	High
Voltages requireme nt	4.5V/4.5V/7.0V	4-24V	115V/208V/230V	3V-100V	3V-100V
Durability	High	High	High	High	Low
Weight	0.5-160g	10-1000g	750g	150-5000g	

- Stepper Controller DRV8834, cheap and can handle the amperage provided by the system.
- PCA9685 PWM: Design specific for servo and can control all three servos planned in the system, compatible with ESP32 C6 and run on I2C protocol.

Specifications	Lead Acid	NiCd	NiMH	Li-ion		
				Cobalt	Manganese	Phosphate
Specific Energy	30-50	45-60	60-120	150-250	100-150	90-120
Internal Resistance	Very low	Very low	Low	Moderate	Low	Very low
Cycle Life	200-300	1000	300-500	500-1000	500-1000	1000-2000
Self-Discharge/month	5%	20%	30%	< 8%		
at RT						
Operating	-20 to 50 C	0 to 45 C	0 to 45 C	0 to 45 C		
Temperatures						
Maintenance	3-6 Months topping	Full discharg	ge every 90	Maintenance free		
Requirements	charge	days	- -			
Safety Requirements	Thermally stable	Thermal stable, fuse		Protection circuit mandatory		
		protection				
Cost	Low	Moderate		High		

BATTERIES

Model	ML5-12	HW-4F7	PQ12V/6AH
Brand	Mighty Max Battery	Howell Energy	Power Queen
Voltage	12	12	12.8V
Amp Hour	5	7	6
Technology	SLA AGM	LiFePO4	LiFePO4
Price	16.99	32.99	19.59
Temperature Rating	-20 to 50	-20 to 70	Not Specified
Weight	3lbs	1.9lbs	1.8lbs
Dimensions	$3.5 \times 2.8 \times 4.2$	$5.9 \times 2.6 \times 3.7$	$5.9 \times 2.6 \times 3.7$
Charging	CV	CC 3.5A, CV 14.6V, Built-in	Not Specified, Built in
Requirements		BMS	BMS

SENSOR

- VL6180X and SI1145 include IR which is not needed
- MAX44009 only has breakout board; does not work for PCB
- VEML7700 best choice for price/ability

	VL6180X	MAX44009	SII 145	VEML7700
Cost (USD)	\$14.49	\$5.96	\$9.95	\$4.95
Measuring	TOF/IR Laser	Photodiode	IR-LED	Photodiode
Principle	Photodiode		Photodiode	
Max Lux	100000	188000	128000	120000
Ambient Light	Yes	Yes	Yes	Yes
Sensing				
IR Sensing	No	No	Yes	No
UV Sensing	No	No	Yes	No
			(extrapolated)	
Operating	3	3.6	3.6	3.6
Voltage (V)				
Operating	0.3	0.0003	7	0.0045
Current (mA)				
I2C	Yes	Yes	Yes	Yes
SMBus	No	Yes	No	No
ADC	Yes	Yes	Yes	Yes
Size (mm^2)	234	4	360	15.98
Operating	[-20 - 70]	[-40 - 85]	[-40 - 85]	[-25 – 85]
Temperature (
C)				
C/C++ Libraries	Yes	Yes	Yes	Yes

COMPARISON AND SELECTION OF SOFTWARE

- Vectoring and Positioning / Solar Tracking Algorithm
- Communication technologies
- Development Environment: Languages and Repositories

DEVELOPMENT ENVIRONMENT: LANGUAGES AND REPOSITORIES

Programming Languages

- C: best choice for MCU programming, low-level
- Java: best for object-oriented programming, low-level
- Python: best for existing libraries, high-level

Choice: C

Repositories

- GitHub: most popular repo, widely used among many software devs
- Bitbucket: Git based repo, includes task scheduling and team goal software

Choice: GitHub

VECTORING AND POSITIONING / SOLAR TRACKING ALGORITHM

Algorithms	Heliostat	Kalman Filtering	Skyview Factor	Ray Tracing	Two-axis Solar Tracking System	Sun tracking Photodiode
Financial Cost	Open Source	Ambiguous	Open Source	Not available	Open Source	No available
Sensor	Ambient Light	Ambient Light	Ambient Light	Ambient Light	Ambient Light	Photodiode
Algorithm	Available on	Available in	Available on	Available in	Available in	Not available
code library	GitHub	python	GitHub	Research paper	GitHub	
Efficiency	High	Low	Medium	Medium	High	High
MCU	Good (C	Fair (Python)	Bad (R Script)	Good (C	Good (C	Bad (No code)
compatibility	Language)			Language)	Language)	
Additional	Change to an	Compass				
Requirements	algorithm to	Reading or				
	change light measuring location	gyroscopic data				

• The PC140's circular polarization while also being above average in gain and efficiency made it the preferred antenna product.

	PC140	WPC.25A	FXP74	PC17	FXP70
Average	-1.92	-1.14	-2	-3.6	-2
Gain (dB)					
Peak Gain	1.67	5.15	4	.9	1.1
(dBi)					
Efficiency (%)	64	76.9	50	44	63.7
VSWR	<2	<2	<2	<1.5	<1.5
Polarization	RHCP	Linear	Linear	Linear	Linear
Cost (USD)	\$27.26	\$9.21	\$7.69	\$16.60	\$27.09

 The combination of low power consumption, suitable range, options for frequency and high scalability made Zigbee the ideal communication technology to implement.

Criteria	Wi-Fi	LoRaWAN	Bluetooth	6LoWPAN	Zigbee	Z-Wave
Range (m)	45	15000	10	100	980	800
Data rate	54 Mbps	50 Kbps	1 Mbps	250 Kbps	250 Kbps	100 Kbps
Power	30 uA-250	1 uA-16	9 uA-39	0.3 uA-35	12 uA- 54	1 uA-23
consumptio	mA	mA	mA	mA	mA	mA
n						
Max devices	255	120	3-4	100	100	232
Scalability	√	✓	×	√	√	✓
Frequency	2.4/5/6	902.3-	2.4 GHz	2.4 GHz	915	908-916
	GHz	914.9 MHz			MHz/2.4	MHz
					GHz	

HARDWARE DESIGN

- Design two separate towers, each with their own design constraints
- Majority of focus is on heliostat tower, as it is more complex
- Schematics and PCB designs
- Heliostat structure
 - Tripod on a "Lazy Susan"
- Communication Beacon
 - Antenna on an enclosure

POWER DELIVERY/ ELECTRICAL POWER SYSTEM

SENSOR CONTROL

MCU SYSTEM

LOWER-LEVEL SUBSYSTEM

- Details on software design for the overall system which includes:
- Communications through the mesh network
- Collecting sensor information
- Positioning reflector to deliver sunlight to target
- Represented with software diagrams

SD1 Software Use Case Diagram

Stephen Martin | September 11, 2023

CASE DIAGRAM

Start State Name Condition State Name Branch/Merge End

SD1 Activity Diagram

Stephen Martin | September 11, 2023

ACTIVITY DIAGRAM

MOTOR POSITIONING OF REFLECTOR BASED ON LIGHT INTENSITY ALGORITHM.

MOTOR POSITIONING OF REFLECTOR BASED ON LIGHT INTENSITY ALGORITHM

- Goal was to reduce power consumption when the sun would not be visible
- Reducing usage of non-essential components during these times would preserve battery charge

Component	Essential/Non-Essential	Low-Power Considerations
MCU	Essential	Low-Power Mode, only essential functions
Antenna	Essential	Receive only
Sensors	Essential	Sensors will be turned on periodically
Stepper Motor	Non-Essential	
Servo Motors	Non-Essential	

PCB DESIGN

- MCU
- Sensors
- Stepper Motor Controller
- Servo Motor Controller

SENSORS PCB

STEPPER MOTOR CONTROLLER PCB

SERVO MOTOR CONTROLLER PCB

Electrical Engineering	Responsibilities	
	PSU Design and Implementation	
Alexandra Fires	PCB Design	
Alexandre Fiset	MPPT Tracking Implementation	
	Administrative Documentation	
Computer Engineering	Responsibilities	
	Reflector Technology and Design	
	Motor and Motor Controls	
Binh Pham	Vectoring Technology	
	Project Lead	
	Positioning and Vectoring Algorithm	
Computer Engineering	Responsibilities	
	MCU Selection and Implementation	
De las Kere and Level	Software Design and Implementation	
Pedro Kasprzykowski	Antenna and Communications	
	Website Design and Management	
Computer Engineering	Responsibilities	
	Sensor Selection and Implementation	
C. I. M.	MCU Selection and Implementation	
Stephen Martin	Positioning and Vectoring Algorithm	
	Software Design and Implementation	

Distribution of work table

Component	Name	Price/unit	Quantity
Mirror	0.032" × 24" × 24", 3003-	\$28.86	I
	H14 Aluminum Sheet		
Mirror Coating	Mylar Sheet	\$25.99	I
Frame	ADJ LTS-6 T-Bar Tripod	\$54.99	I
	Lightweight Lighting Stand		
Base Panels	Plywood Panels 4ftx8ft	\$25.60	2
Communicatio	Junction Box	\$26.89	I
n Tower Box			
Wheel Hub	Rear Wheel Hub	\$44.90	I
Bearing			

MECHANICAL'S BUDGETS

Component	Name	Price	Quantity
Battery	Howell Energy hw- 4f7	32.99	I
Motor w	Nema 23	\$30.73	I
Motor x-y-z	9.5-11kg*cm Servo Motor	\$17.59	3
Charge Controller/BMS	Smaraad SR I I 004	\$39.99	I
Solar Panel	RNG-50D-SS	\$49.99	I
Microcontroller	ESP32-C6-DEVKITC- I-N8	\$9.00	I
External Antenna	Wlaniot 2.4G	\$17.98	2
MicroSD card	5251	\$4.50	2
MicroSD card breakout board+	254	\$7.50	I

ELECTRICAL'S BUDGET

Component	Name	Price	Quantity
Microcontroller for	ESP32-C6-WROOM-IU	\$3.48	I
PCB			
Stepper Motor	DRV8833PVV	\$2.84	I
Controller			
Servos Motor	PCA9685PW,112	\$2.64	I
Controller			
3.3V Regulator	TPS54JA20	\$1.50	I
5V Regulator	TPS54JA20	\$1.50	I
USB-A Connector	2057-USB-AP-S-RA-SMT-ND	\$0.55	3
Sensor-MUX	TCA9548APWR	\$1.78	I
Sensor	VEML7700	\$1.88	5
USB-to-UART	CP2102N-A02-GQFN28	\$4.07	I
Bridge Controller			
MicroSD Socket	1660	\$1.95	I
Misc.	Resistors, Capacitors, Inductr,	~\$20.00	
	Jumpers, Etc		

PCB'S BUDGET