for the matrix "A" to have a logarithm or so to say to have a convergence in the sum,

$$-\frac{\infty}{K=1}\frac{(I-A)^{k}}{k}$$

- · "A" needs to be subficiently done to I. Specifically if III-AII<I, then the surius converges.
- · It "A" in a real matrix, "A" murd be invertible for it to save a real Logarithm.

for large "n", using the Toylor expansion to compute large "n", using the Toylor expansion to compute in lag (A), the computational complexity in O (lozer).

Language	C++	<u> </u>	PYTHON
	Problem_40:CPP	Problem _ 4cm	Problem - 4c. Py
Printed	Problem_ac_cpp. txt	Problem_4c_mathal	Problem-9c-python. txt
•		•	

Language Source code

C++ Problem_4d.cpp

MATLAB Problem_9d.m Problem_4d_Plot.m

PYTHON Problem—9d.Py

In the code, Problem - 9d. CPP for n=500 and n=1000 and n=2000, my command prompt shows the message and n=1000 and n=100

Therefore I plotted the t_matlab, t_python and predicted complexity from (b). in Problem_4d_plot.m

