Relation between Roots and Coefficients

Quadratic Equations

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **⊘ 10+** years Teaching experience
- Taught 1 Million+ Students
- **100+** Aspiring Teachers Mentored

Q Search

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **+ LIVE Doubt** Solving
- **+ LIVE** Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results

Adnan 99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

Avush Kale 98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!

Quadratic Equation

$$ax^2 + bx + c = 0$$
; $a \ne 0$

NOTE: Quadratic Equation has 2 roots. Always.

eg:
$$x^2 - 5x + 6 = 0$$

$$(x - 2)(x - 3) = 0$$

$$x - 2 = 0$$

Roots of Quadratic Equation

The roots of the quadratic equation, $ax^2 + bx + c = 0$ is given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The expression $D = b^2 - 4ac$ is called the discriminant of the quadratic equation.

Equations convertible to Quadratic Form

$$\frac{54}{100} = \frac{1}{2} = \frac$$

$$t = 2$$

$$x^2 = 2$$

$$x = \pm \int_{0}^{\infty} \int_{0}^{\infty} dx$$

iee

$$47 - 3(2)^{31+3} + 128 = 0$$

$$=) (2^{N})^{2} - 3(2^{N})(2^{3}) + 128 = 0$$

The roots of the equation
$$4^{x} - 3.2^{x+3} + 128 = 0$$
 are:

A. 4 and 5

B. 3 and 4

C. 2 and 3

D. 1 and 2

$$4^{x} - 3(2)^{x+3} + 128 = 0$$

$$t^2 - 16t - 8t + 128 = 0$$

$$(f-16)(f-8)=0$$

$$2^{x} = 2^{3}$$

Find the real roots of the equation (x - 1)(x-2)(x-3)(x-4) = 3.

$$(x^{2}-5x+4)(x^{2}-5x+6)=3$$

 $(x^{2}-5x+4)(x^{2}-5x+6)=3$
Let: $x^{2}-5x+4=t$
 $(t)(t+2)=3$

jee

$$t^{2} + 2t - 3 = 0$$

$$(t + 3)(t - 1) = 0$$

$$n^2 - 5n + 7 = 5$$

$$n = 5 \pm \sqrt{25 - 28} \implies \text{No heally}$$

$$\frac{(u\$l^{-2})}{2\pi^{2}-5} = 0$$

$$2\pi^{2}-5\pi+3=0$$

$$3\pi^{2}-5\pi+3=0$$

$$3\pi^{2}-5\pi+3=0$$

Let $-\frac{n}{6} < \theta < -\frac{n}{12}$ Suppose α_1 and β_1 are the roots of the equation

 x^2 - 2x sec θ + 1 = 0 and α_2 and β_2 are the roots of the equation

$$x^2 + 2x \tan \theta - 1 = 0$$
. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$ then $\alpha_1 + \beta_2$ equals

JEE Adv. 2016

jee

A. 2 (sec
$$\theta$$
 - tan θ)

B.
$$2 \sec \theta$$
 | ϵ . $-2 \tan \theta$

-2 tan
$$\theta$$

D. 0

$$x^{2}-2\pi Seco + 1=0$$

$$x=2Scco + \sqrt{48c^{2}o-4}$$

$$x=Seco + \sqrt{8c^{2}o-4}$$

$$x = Scc\theta + Im\theta$$

$$x = Sec\theta + Im\theta$$

$$x = Sec\theta - Im\theta$$

$$x = Sec\theta - Im\theta$$

T jee

$$\pi^{2} + 2\pi \tan \theta - 1 = 0$$

$$\chi = -2 \tan \theta \pm \sqrt{4 \tan^{2} \theta + 4}$$

$$\mathcal{N} = -\tan\theta \pm \int \tan^2\theta + 1$$

$$\mathcal{N} = -\tan\theta \pm |8(\theta)|$$

$$x = -tong + Scio | x = -tong - Seign$$
(B2)

$$S_{4}(0 - tan \theta)$$

$$+ (-tan \theta) - S_{4}(0)$$

$$= [-2 + tan \theta]$$

Equation v/s Identity

$$a\alpha^2 + b\alpha + c = 0$$

$$a\beta^2 + b\beta + c = 0$$

$$a7^{2} + 57 + c = 0 - 3$$

(2)-(3):
$$a(\beta^{2}-y^{2})+b(\beta^{2}-y)=0$$

 $(\beta^{2}-y^{2})+b(\beta^{2}-y)=0$
 $(\beta^{2}-y^{2})+b(\beta^{2}-y)=0$
 $\Rightarrow a(\beta^{2}+y)+b=0$
 $\Rightarrow a(\beta^{2}+y)+b(\beta^{2}-y)=0$
 $\Rightarrow a(\beta^{2}+y^{2})+b(\beta^{2}-y)=0$
 $\Rightarrow a(\beta^{2}+y^{2})+b(\beta^{2}-y)=0$

Using 59 5 L=0] & using 59 1 C=0]

Find the value of "a" for which the following equation has more than two roots $(a^2 - 5a + 6)x^2 - (a^2 - 3a + 2)x + 2a - a^2 = 0$

$$(a^{2}-5a+6)n^{2}-(a^{2}-3a+1)n+(2a-a^{2})=0$$

$$(a-1)(a-1)=0 \qquad a(2-a)=0$$

$$(a-1)(a-1)=0 \qquad a=0; a=1$$

$$a=1; a=1$$

Show that
$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} = 1$$
 is an identity.

$$\chi = a : O + (a-b)(a-c) + O = 1$$

$$\chi = b : O + O + (b-c)(b-a) = 1$$

$$\chi = (3)(c-b) + O + O = 1$$

$$\chi = (3)(c-b) + O + O = 1$$

Relation Between Roots & Coefficients

If α and β , are the roots of the quadratic equation $ax^2 + bx + c = 0$, then:

antbn+c =
$$\alpha(n-\alpha)^{2}n-\beta$$

=) $n^{2}+(\frac{1}{\alpha})^{2}n+(\frac{1}{\alpha})=n^{2}-\beta n-\alpha n+\alpha \beta$
 $n^{2}+(\frac{1}{\alpha})^{2}n+(\frac{1}{\alpha})=n^{2}-(\alpha+\beta)^{2}n+(\alpha\beta)$

$$\begin{cases} \alpha + \beta = -\frac{1}{\alpha} \\ \alpha \beta = \frac{1}{\alpha} \end{cases}$$

$$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4(\alpha \beta)$$

$$(\alpha - \beta)^2 = \left(-\frac{5}{a}\right)^2 - 4\left(\frac{5}{a}\right)^2$$

$$\left(a-\beta\right)^2 = \frac{b^2 - 4ac}{a^2}$$

Relation Between Roots & Coefficients

If α and β , are the roots of the quadratic equation $ax^2 + bx + c = 0$, then:

$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$

If α and β are roots of $ax^2 + bx + c = 0$, find the value of following in terms of a, b and c.

1.
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

2.
$$(a\alpha + b)^{-2} + (a\beta + b)^{-2}$$

$$(\alpha\beta)^{2}$$

$$= (\alpha+\beta)^{2} - 2(\alpha\beta)$$

$$(\alpha\beta)^{2}$$

$$\frac{\left(-\frac{L}{a}\right)^{2}-2\left(\frac{L}{a}\right)}{\left(\frac{L}{a}\right)^{2}}$$

$$\left(\frac{L}{a}\right)^{2}-2a\left(\frac{L}{a}\right)$$

$$\left(\frac{L}{a}\right)^{2}-2a\left(\frac{L}{a}\right)$$

(2) (a x + b) -2 + (a p + b)

$$Saab 200+s 8$$

$$Saab$$

$$= \left(-\frac{c}{\alpha}\right)^{-2} + \left(-\frac{c}{\beta}\right)^{-2}$$

$$=\frac{\alpha}{c^{2}}+\frac{\beta^{2}}{c^{2}}$$

$$=\frac{\alpha^{2}+\beta^{2}}{c^{2}}$$

$$=\frac{\alpha^{2}+\beta^{2}}{c^{2}}$$

$$=\frac{\alpha+\beta^{2}-2(\alpha\beta)}{c^{2}}$$

If one root of the equation $px^2 - 14x + 8 = 0$ is six times the other, then p is equal to:

jee

- None of these

$$X + 6X = \frac{14}{P}$$

$$(x, 6x)$$
 $7x = \frac{11}{p}$

$$6 \propto \frac{2}{p^2} = \frac{8}{p^2}$$

Let α and β be the roots of the $x^2 - 6x - 2 = 0$ with $\alpha > \beta$.

If
$$a_n = \alpha^n - \beta^n$$
 for $n \ge 1$ then the value of $2a_9$

 $\alpha_n = \alpha^n - \beta^n$

 $\Omega_{10} = \alpha_{10} - \beta_{10}$

ag = x - 39

 $\alpha_8 = \kappa_8 - \beta_8$

B. 2

C. 3

2 09

(X10-1210) - 5 (XR-128)

S(x9-B9)

jee

 $(\alpha^2 - 6\alpha - 2 = 0)$

$$\frac{(\alpha^{10}-2\alpha^{8})-(\beta^{10}-2\beta^{8})}{2(\alpha^{9}-\beta^{9})}$$

$$\frac{2(\alpha^{1}-\beta^{3})}{2(\alpha^{9}-\beta^{9})}$$

$$= \frac{2(\alpha^{9}-\beta^{9})}{2(\alpha^{9}-\beta^{9})}$$

$$= \frac{2(\alpha^{9}-\beta^{9})}{2(\alpha^{9}-\beta^{9})}$$

Find k in the equation $5x^2 - kx + 1 = 0$ such that the difference between the roots of the equation is unity.

$$|\alpha - \beta| = 1$$

$$(\alpha - \beta)^2 = 1$$

$$(x+\beta)^{2} - 4(x\beta) = 1$$
 $(\frac{K}{5})^{2} - 4(\frac{1}{5})^{-1}$
 $(\frac{K^{2}}{5})^{2} = 9 = 1$
 $(\frac{K^{2}}{5})^{2} = 9 = 1$
 $(\frac{K^{2}}{5})^{2} = 45$

If c, d are the roots of the equation (x - a)(x - b) - k = 0, Then a, b are the roots of the equation:

A.
$$(x - c)(x - d) - k = 0$$

$$(x - c)(x - d) + k = 0$$

C.
$$(x - c)(x - d) + 2k = 0$$

D. None of these

$$(x-a)(x-b)-k=$$
 $(x-c)(x-d)$

$$\Rightarrow (n-c)(n-d)+k=(x-a)(n-b)$$

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

Unacademy Subscription

- **+** LIVE Polls & Leaderboard
- **LIVE Doubt** Solving
- + LIVE Interaction

Performance Analysis

- Weekly Test Series
- DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results

Adnan 99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

Avush Kale 98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

IIT JEE BUMPER OFFER

12 MONTHS

2 SUBSCRIPTION FREE TILL IIT JEE 2022
MONTHS

24 MONTHS

3 SUBSCRIPTION FREE TILL IIT JEE 2023

ON POPULAR DEMAND WE ARE BACK

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

All Stars Batch: JEE Main 2021

Upcoming Batches in June

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 2nd June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 8th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 9th June 2021

Starts on 9th June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

To unlock, use code

SAMEERLIVE

Thank you

#JEE Live Daily

Download Now!