Zusammenfassung Stochastik I

© M Tim Baumann, http://timbaumann.info/uni-spicker

Der abstrakte Maßbegriff

Definition. Eine **Ereignisalgebra** oder **Boolesche Algebra** ist eine Menge $\mathfrak A$ mit zweistelligen Verknüpfungen \wedge ("und") und \vee ("oder"), einer einstelligen Verknüpfung $\overline{}$ (Komplement) und ausgezeichneten Elementen $U \in \mathfrak A$ (unmögliches Ereignis) und $S \in \mathfrak A$ (sicheres Ereignis), sodass für $A, B, C \in \mathfrak A$ gilt:

i. $A \wedge A = A$	vii. $A \lor A = A$
ii. $A \wedge B = B \wedge A$	viii. $A \vee S = S$
iii. $A \wedge S = A$	ix. $A \lor U = A$
iv. $A \wedge U = U$	$x. A \vee \overline{A} = S$
v. $A \wedge \overline{A} = U$	xi. $A \lor (B \lor C) = (A \lor B) \lor C$
vi. $A \wedge (B \wedge C) = (A \wedge B) \wedge C$	xii. $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$

Definition. Sei A eine Boolesche Algebra. Dann definiert

$$A \leq B$$
: $\iff A \land B = B$

eine Partialordnung auf \mathfrak{A} , gesprochen A impliziert B.

Definition. Eine Algebra (auch Mengenalgebra) $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operationen stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Durchschnitt: $A, B \in \mathfrak{A} \implies A \cap B \in \mathfrak{A}$
- Komplementbildung: $A \in \mathfrak{A} \implies A^c := \Omega \backslash A \in \mathfrak{A}$

Satz (Isomorphiesatz von Stone). Zu jeder Booleschen Algebra $\mathfrak A$ gibt es eine Menge Ω derart, dass $\mathfrak A$ isomorph zu einer Mengenalgebra $\mathfrak A$ in $\mathcal P(\Omega)$ ist.

Definition. Eine σ -Algebra ist eine Algebra $\mathfrak{A} \subset \mathcal{P}(\Omega)$, die nicht nur unter endlichen, sondern sogar unter abzählbaren Vereinigungen stabil ist, d. h.

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A} \implies \bigcup_{n=0}^{\infty} A_n \in \mathfrak{A}$.

Bemerkung. Es gilt damit:

- $\Omega = \emptyset^c \in \mathfrak{A}$
- Abgeschlossenheit unter abzählbaren Schnitten:

$$(A_n)_{n\in\mathbb{N}}$$
 Folge in $\mathfrak{A} \implies \bigcap_{n=0}^{\infty} A_n = \left(\bigcup_{n=0}^{\infty} (A_n)^c\right)^c \in \mathfrak{A}.$

Definition. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge in einer σ -Algebra \mathfrak{A} . Dann sind der Limes Superior und Limes Inferior der Folge A_n wie folgt definiert:

$$\lim_{n \to \infty} \sup A_n := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n \in \mathfrak{A}$$
$$\lim_{n \to \infty} \inf A_n := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_n \in \mathfrak{A}$$

Bemerkung. In einer σ -Algebra, in der die Mengen mögliche Ereignisse beschreiben, ist der Limes Superior das Ereignis, das eintritt, wenn unendlich viele Ereignisse der Folge A_n eintreten. Der Limes Infinum tritt genau dann ein, wenn alle bis auf endlich viele Ereignisse der Folge A_n eintreten.

Definition. Ein Ring $\mathfrak{A} \subset \mathcal{P}(\Omega)$ ist ein System von Teilmengen einer Menge Ω mit $\emptyset \in \mathfrak{A}$, das unter folgenden Operation stabil ist:

- Vereinigung: $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$
- Differenz: $A, B \in \mathfrak{A} \implies B \setminus A = B \cap A^c \in \mathfrak{A}$

Ein Ring, der nicht nur unter endlicher, sondern sogar unter abzählbarer Vereinigung stabil ist, heißt σ -Ring.

Bemerkung. \mathfrak{A} (σ -) Algebra $\iff \mathfrak{A}$ (σ -) Ring und $\Omega \in \mathfrak{A}$.

Satz. Sei $(\mathfrak{A}_i)_{(i \in I)}$ eine Familie von $(\sigma$ -) Ringen / $(\sigma$ -) Algebren über einer Menge Ω . Dann ist auch $\cup_{i \in I} \mathfrak{A}_i$ ein $(\sigma$ -) Ring / eine $(\sigma$ -) Algebra über Ω .

Satz. Sei $A_1, A_2, ...$ eine Zerlegung von Ω und $B \in \mathfrak{A}$. Dann gilt

$$\mathbb{P}(B) = \sum_{n=1}^{\infty} \mathbb{P}(B \mid A_n) \mathbb{P}(A_n) \quad \text{(Formel der totalen Wkt.)}$$

$$\mathbb{P}(A_n \mid B) = \frac{\mathbb{P}(B \mid A_n) \cdot \mathbb{P}(A_n)}{\mathbb{P}(B)} \quad \text{(Formel von Bayes)}$$

Definition. Zwei Ereignisse $A, B \in \mathfrak{A}$ heißen (stochastisch) (\mathbb{P} -)unabhängig, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Satz. A, B unabhängig $\iff \mathbb{P}(B \mid A) = \mathbb{P}(B)$.

Definition. Eine Familie A_i) $_{i \in I} \subset \mathfrak{A}$ (I endlich, abzählbar oder überabzählbar) heißt vollständig unabhhängig, falls

$$\mathbb{P}(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_m}) = \mathbb{P}(A_{i_1}) \cdot \mathbb{P}(A_{i_2}) \cdots \mathbb{P}(A_{i_n})$$

für beliebige $i_1,...,i_n \in I, 2 \le n < \infty$ und paarweise unabh., falls

$$\mathbb{P}(A_i \cap A_i) = \mathbb{P}(A_i) \cdot \mathbb{P}(A_i)$$
 für $i, i \in I, i \neq i$.

Achtung. Aus paarweiser Unabhängigkeit folgt nicht vollständige Unabhängigkeit (Gegenbeispiel: Bernsteins Tetraeder).

Definition. Sei $(\Omega, \mathfrak{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $\mathfrak{A}_1, \mathfrak{A}_2 \subset \mathfrak{A}$ zwei Ereignissysteme. Dann sind \mathfrak{A}_1 und \mathfrak{A}_2 unabhängig, falls $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$ für alle $A_1 \in \mathfrak{A}_1, A_2 \in \mathfrak{A}_2$.

Satz. Seien $\mathfrak{A}_1,\mathfrak{A}_2$ zwei unabhängige Ereignisalgebren. Dann sind die σ -Algebren $\widetilde{\mathfrak{A}}_1 = \sigma(\mathfrak{A}_1)$ und $\widetilde{\mathfrak{A}}_2 = \sigma(\mathfrak{A}_2)$ unabhängig.

Satz (von Lusin). $f:([a,b], \mathfrak{L}([a,b])) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ ist Borel-messbar $\iff \forall \epsilon > 0: \exists K\epsilon \subset [a,b]$ abgeschlossen mit $\lambda_1(\mathbb{R}^1 \setminus K_{\epsilon})$ und $f|_{K_{\epsilon}}$ stetig.

Satz. Folgerung: Es sind messbar

- monotone Funktionen
- Funktionen mit endlicher Variation

• Càdlàg-Funktionen, das sind Funktionen $f:[a,b]\to\mathbb{R}$ mit $\lim_{\epsilon\downarrow 0}f(x+\epsilon)=f(x)$ für alle $x\in[a,b[$.

Definition. Eine \mathfrak{A} -messbare numerische Funktion X über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{A}, \mathbb{P})$ heißt **Zufallsgrüße** oder **Zufallsvariable**.

Definition. Die durch die ZG X auf $(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ induzierte Bildmaß P_X

$$P_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in B\})$$

heißt Verteilung der ZG X.

$$F_X(x) = P_X(]-\infty, x]) = \mathbb{P}(\{\omega \in \Omega \mid X(\omega) \le x\})$$

heißt die Verteilungsfunktion der ZG X.

Satz. F sei eine VF auf \mathbb{R}^1 . Dann existiert ein Wahrscheinlichkeits-Raum $(\Omega, \mathfrak{A}, \mathbb{P} \text{ und eine ZG } X \text{ derart, dass}$

$$F_X(x) = F(x)$$
 für $x \in \mathbb{R}^1$

Notation. Sei X eine Zufallsgröße und $B \in \mathfrak{L}(\overline{\mathbb{R}}^1)$. Dann schreibe

$${X \in B} = X^{-1}(B).$$

Definition. Eine endliche Familie von Zufallsgrößen $X_1, ..., X_n$ heißt stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{i=1}^{n} \{X_i \in B_i\}) = \prod_{i=1}^{n} \mathbb{P}(\{X_i \in B_i\}) \text{ für alle } B_i \in \mathcal{L}(\overline{R}^1), i = 1, ..., n.$$

Satz. Seien $X_1, ..., X_n$ unabhängige Zufallsgrößen über $(\Omega, \mathfrak{A}, \mathbb{P})$ von $g_1, ..., g_n$ Borel-messbare Funktionen von \mathbb{R}^1 nach \mathbb{R}^1 . Dann sind auch die Zufallsgrößen $Y_i := g_i \circ X_i$ unabhängig über $(\Omega, \mathfrak{A}, \mathbb{P})$.

Satz. Sei $0 \le f_1 \le f_2 \le \dots$ eine isotone Folge elementarer Funktionen über (Ω, \mathfrak{A}) . Dann gilt für jede elementare Funktion f mit $f \le \sup_{n \in \mathbb{N}} f_n$ die Ungleichung $\int_{\Omega} f \, \mathrm{d}\mu \le \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu$.

Satz. Seien $(f_n)_{n\in\mathbb{N}}$ und $(g_n)_{n\in\mathbb{N}}$ isotone Folgen elementarer Funktionen mit $\sup_{n\in\mathbb{N}} f_n = \sup_{n\in\mathbb{N}} g_n$. Dann ist $\sup_{n\in\mathbb{N}\Omega} \int f_n \,\mathrm{d}\mu = \sup_{n\in\mathbb{N}\Omega} \int g_n \,\mathrm{d}\mu$.

Satz. Sei $f:(\Omega,\mathfrak{A},\mu)\to(\overline{R}^1,\mathfrak{L}(\mathbb{R}^1))$ sein \mathfrak{A} -messbar, numerisch. Dann gilt:

F ist μ -integrierbar

$$\iff f^+ \text{ und } f^- \text{ sind } \mu\text{-integrierbar mit } \int_{\Omega} f^{\pm} d\mu < \infty$$

$$\iff \int_{\Omega} |f| \, \mathrm{d}\mu < \infty$$

 $\iff \int\limits_{\Omega} g \, \mathrm{d}\mu < \infty$ für eine \mathfrak{A} -messbare, numerische Funktion mit $|f| \leq g$.

Satz. Seien $f,g:(\Omega,\mathfrak{A},\mu)\to (\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ μ -integrierbar. Dann sind $f\pm g,\ f\vee g,\ f\wedge g$ und $\alpha\cdot f$ für $\alpha\in\mathbb{R}^1$ μ -integrierbar und es gilt

$$\int_{\Omega} \alpha \cdot f + \beta \cdot g \, d\mu = \alpha \int_{\Omega} f \, d\mu + \beta \int_{\Omega} g \, d\mu, \quad \left| \int_{\Omega} f \, d\mu \right| \le \int_{\Omega} |f| \, d\mu,$$
$$f \le g \implies \int_{\Omega} f \, d\mu \le \int_{\Omega} g \, d\mu$$

Definition. Mit $L^p(\mu) = L^p(\Omega, \mathfrak{A}, \mu)$ bezeichnen wir den normierten Vektorraum der aus den Funktionen $f:(\Omega, \mathfrak{A}, \mu) \to (\mathbb{R}^1, \mathfrak{L}(\mathbb{R}^1))$ mit $\int\limits_{\Omega} |f|^p \,\mathrm{d}\mu < \infty$ für $1 \le p \le \infty$ besteht. Die Norm in diesem Raum wird durch

$$||f||_p := \left(\int_{\Omega} |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

definiert. Es kann gezeigt werden, dass die Normeigenschaften erfüllt sind.

Bemerkung. Der $L^p(\mu)$ ist ein vollständiger normierter Raum, d. h. jede Cauchy-Folge bzgl. der Norm $\|\cdot\|_p$ ist auch konvergent. Im Spezialfall p=2heißt $L^p(\mu)$ Hilbertraum der quadratisch integrierbaren Funktionen mit Skalarprodukt $\langle f,g\rangle=\int f\cdot g\,\mathrm{d}\mu.$ Es

gilt in diesem Fall außerdem die Cauchy-Schwarz-Bunjakowski-Ungleichung:

$$||f \cdot g||_1 \le ||f||_2 \cdot ||g||_2$$

Höldersche Ungleichung:

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

wobei $p, q \in [1, \infty]$ mit $\frac{1}{p} + \frac{1}{q} = 1$.

Satz. Sei $f_n:(\Omega,\mathfrak{A},\mu)\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ \mathfrak{A} -messbar und $0\leq f_1\leq f_2\leq\dots$ Dann gilt

$$\int_{\Omega} \sup_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz (von Beppo Levi). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge monotoner nichtnegativer, \mathfrak{A} -messbarer, numerischer Funktionen auf $(\Omega, \mathfrak{A}, \mu)$. Dann gilt:

$$\int_{\Omega} \sum_{n=1}^{\infty} f_n \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$

Satz. f sei \mathfrak{A} -messbar, nichtnegativ und μ -integrierbar. Dann ist

$$\nu(A) := \int_A f \, \mathrm{d}\mu = \int_\Omega f \cdot \chi_A \, \mathrm{d}\mu$$

ein ednliches Maß auf (Ω, \mathfrak{A}) .

Satz (Lemma von Fatou). Sei $f_n:(\Omega,\mathfrak{A},\mu)\to(\mathbb{R}^1,\mathfrak{L}(\mathbb{R}^1))$ eine Folge \mathfrak{A} -messbarer, nichtnegativer Funktionen. Dann gilt:

$$\int_{\Omega} \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n \, \mathrm{d}\mu$$