

WHAT IS AN IMAGE?

>> I = rand(256,256);

Think-Pair-Share:

- What is this? What does it look like?
- Which values does it take?
- How many values can it take?

- Is it an image?

- >> I = rand(256,256);
- >> imshow(I);

Dimensionality of an Image

- @ 8bit = 256 values ^ 65,536
 - Computer says 'Inf' combinations.

 Some depiction of all possible scenes would fit into this memory.

Dimensionality of an Image

- @ 8bit = 256 values ^ 65,536
 - Computer says 'Inf' combinations.

- Some depiction of all possible scenes would fit into this memory.
- Computer vision as making sense of an extremely high-dimensional space.
 - Subspace of 'natural' images.
 - Deriving low-dimensional, explainable models.

What is each part of an image?

What is each part of an image?

Pixel -> picture element **'138'**

Image as a 2D sampling of signal

 Signal: function depending on some variable with physical meaning.

- Image: sampling of that function.
 - 2 variables: xy coordinates
 - 3 variables: xy + time (video)
 - Brightness' is the value of the function for visible light

 Can be other physical values too: temperature, pressure, depth ...

Example 2D Images

Sampling in 1D

 Sampling in 1D takes a function, and returns a vector whose elements are values of that function at the sample points.

Sampling in 2D

 Sampling in 2D takes a function and returns a matrix.

Grayscale Digital Image

What is each part of a photograph?

'127'

Pixel -> picture element

Integrating light over a range of angles.

Output Image

Resolution – geometric vs. spatial resolution

Both images are ~500x500 pixels

Quantization

a b c d

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Quantization Effects – Radiometric Resolution

8 bit – 256 levels

4 bit – 16 levels

2 bit – 4 levels

1 bit – 2 levels

Color

Images in Matlab

- NxM RGB "im"
 - im(1,1,1) = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

	column															
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	IR				
1	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91					
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91			_
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	0.92	0.99	В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.95	0.91	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.91	0.92	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.97	0.95	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.79	0.85	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	0.45	0.33	
V	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.49	0.74	
•			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	
		•			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	

But what is color?

ANATOMY

The Eye

- The human eye is a camera
 - Iris (虹膜) colored annulus with radial muscles
 - Pupil (瞳孔) the hole (aperture) whose size is controlled by the iris
 - What's the sensor?
 - photoreceptor cells (rods and cones) in the retina (视网膜)

Visible Light

Wavelength (nm)

Viisiible

Region

Color spaces

How can we represent color?

Color spaces: RGB

Default color space

- Strongly correlated channels
- Non-perceptual

R = 1 (G=0,B=0)

$$G = 1$$
(R=0,B=0)

B = 1 (R=0,G=0)

Got it. C = r*R + g*G + b*B

IS COLOR A VECTOR SPACE? THINK-PAIR-SHARE

Color spaces: HSV

Intuitive color space

If you had to choose, would you rather go without:

- intensity ('value'), or
- hue + saturation ('chroma')?

Think-Pair-Share

Most information in intensity

Only color shown – constant intensity

Most information in intensity

Only intensity shown – constant color

Most information in intensity

Original image

Color spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

V (H=1,S=0)

Color spaces: YCbCr

Fast to compute, good for compression, used by TV

Cb (Y=0.5,Cr=0.5)

Cr (Y=0.5,Cb=05)

More references

https://www.colorsystem.com/

- A description of many different color systems developed through history.
- Navigate from the right-hand links.

Thanks to Alex Nibley!

