Churn Prediction Analysis Report

Submitted by - GAJAL GARG

Introduction

This report outlines the steps, methodology, and findings from the churn prediction analysis conducted on the provided e-commerce dataset. The goal was to identify user churn and develop actionable insights to improve user retention.

Approach

1. Exploratory Data Analysis (EDA)

 Dataset Overview: The dataset contained 372,490 rows and 9 columns. Missing values were observed in category_code, brand, and user_session, which were addressed through imputation.

Distributions:

- Event type distribution was visualized using count plots.
- Price and category code distributions were analyzed with histograms, ensuring clean and interpretable visualizations.

• User Behavior:

 Aggregated user events to understand interactions such as view, cart, and purchase behaviors.

2. Churn Definition

• **Definition**: A user was considered churned if no purchase activity occurred within 30 days of their last interaction.

• Implementation:

- o Identified the last purchase date for each user.
- Computed the difference in days between the dataset's latest event time and each user's last purchase.
- Users exceeding the 30-day threshold were labeled as churned.

3. Feature Engineering

- Created user-level features to capture meaningful churn signals:
 - o **Recency**: Days since the last event.
 - o **Frequency**: Total number of events per user.
 - o **Monetary**: Total monetary value of transactions.
 - o **Session Count**: Unique sessions per user.

• Encoded categorical data such as category_code for modeling.

4. Model Building

- Model Used: Random Forest Classifier.
- Train-Test Split: Data split into 80% training and 20% testing sets.
- Performance Metrics:
 - Classification Report:

precision recall f1-score support

0 1.00 1.00 1.00 148882

1 0.98 0.99 0.99 28144

o accuracy 1.00 177026

macro avg 0.99 1.00 0.99 177026 weighted avg 1.00 1.00 1.00 177026

* AUC Score: 0.9988

5. Feature Importance

• Identified the most important features influencing churn:

o **Recency**: 0.42

o Monetary: 0.25

o Frequency: 0.18

o Session Count: 0.15

Recommendations

1. Personalized Discounts:

o Offer discounts to users with high cart-to-purchase ratios to incentivize purchases.

2. Targeted Engagement:

 Reach out to inactive users via marketing emails or app notifications within 30 days of inactivity.

3. **Top Product Focus**:

o Analyze and improve the top categories or products associated with churn.

4. Loyalty Programs:

 Reward frequent purchasers and high-spending users with loyalty points or exclusive offers.

5. Session Analysis:

 Improve session experiences for users with low session counts to increase engagement.

6. Brand Collaboration:

o Collaborate with popular brands to ensure availability and exclusive deals.

Conclusion

The Random Forest model effectively predicted user churn with a high level of accuracy and AUC score. The insights derived from feature importance and user behaviour analysis provide actionable strategies to reduce churn and enhance user retention.

Future Work

1. Incorporate Time-Series Analysis:

o Explore sequential patterns in user behaviour.

2. Experiment with Advanced Models:

 Use Gradient Boosting or Neural Networks to potentially improve predictive performance.

3. **Dynamic Churn Definition**:

o Adjust the churn threshold dynamically based on user segment behaviour.

Final Metrics:

• Accuracy: 1.00

• AUC Score: 0.9988