Z-Score Based Anomaly Detection on Time-Series Data

Dataset: complex.csv

Author: Alireza Montazeri (223632922)

Introduction

Anomaly detection identifies unusual patterns or outliers in data. In time series, these anomalies can signify critical events like system failures, cyber-attacks, or unexpected opportunities.

Z-score Algorithm Explained

The **Z-score** measures how far a data point is from the mean in terms of standard deviations:

$$z = \frac{x-\mu}{\sigma}$$

Where:

- x = current value
- μ = mean of the data
- σ = standard deviation

In time-series, nearby data points tend to be more similar than far away data points. That means most of the time the best context is last n sample of data given a data point we want to evaluate. Or if we want to take into account seasonality, the same period of time for the previous day, month or year.

A very basic anomaly detection algorithm would be:

- Take n sample of data prior to a given timestamp.
- Remove outliers from the sample, and calculate the average and standard deviation of the metric (we could use median based statistics as well).
- · Calculate the Z-score for a series of data points, comparing to the context average and standard deviation.
- To avoid locality in the anomalies, do some aggreggations. For instance, you can work in groups of ten seconds and consider an anomaly if the Z-score is beyond the threshold during a period of time.
- Return 0 or 1 depending on the Z-score value, a threshold of ±2 would work.

Implementation

plt.ylabel('Values')

plt.legend()
plt.show()

Now, let's implement the Z-score based anomaly detection algorithm and test it on our dataset (complex.csv).

```
In [ ]: # Import necessary libraries
         import pandas as pd
         import matplotlib.pyplot as plt
In [3]: df = pd.read_csv('complex.csv')
         df.head()
Out[31:
            time
                        s1
                                          s3
                                 s2
               0 1.000000 2.00000 0.700000
         0
               1 1.010000 1.99995 0.707000
         2
               2 1.019999 1.99980 0.713999
               3 1.029996 1.99955 0.720997
         3
               4 1.039989 1.99920 0.727993
In [4]: plt.figure(figsize=(10, 5))
         plt.plot(df['time'], df['s1'], label='s1', color='blue')
         plt.plot(df['time'], df['s2'], label='s2', color='green')
plt.plot(df['time'], df['s3'], label='s3', color='red')
         plt.title('Line Plot of s1, s2, and s3')
         plt.xlabel('Time')
```

Line Plot of s1, s2, and s3

The plot shows time series data for s1, s2, and s3, all following smooth, periodic patterns. However, s1 exhibits a clear anomaly around time index ~300, where it abruptly drops to near zero—unlike s2 and s3, which remain stable. This confirms the presence of an isolated anomaly in s1 that warrants further investigation using algorithmic detection.

Z-score Anomaly Detection Function

```
In [5]: class ZScoreAnomalyDetection:
            def __init__(self, df=None, window_size=30, z_thresh=2.5):
                Initialize the detector.
                Parameters:
                - df: Optional pandas DataFrame with 'time' and value columns.
                - window_size: Rolling window size.
                - z_thresh: Z-score threshold.
                self.window_size = window_size
                self.z_thresh = z_thresh
                if df is not None:
                    self.df = df.copy()
                else:
                    self.df = pd.DataFrame(columns=['time', 'value'])
            def is anomaly(self, time step, value):
                Check if the given value at time step is an anomaly.
                If initialized with a DataFrame, use the historical data.
                Otherwise, add the incoming data to internal DataFrame.
                Parameters:
                - time_step: The time or index of the value.
                - value: The actual value to check.
                Returns:
                - True if anomaly, False otherwise.
                # If streaming mode, append new data
                if self.df.empty or 'value' not in self.df.columns:
                    self.df = pd.DataFrame(columns=['time', 'value'])
                if time_step not in self.df['time'].values:
                    new_row = pd.DataFrame({'time': [time_step], 'value': [value]})
                    self.df = pd.concat([self.df, new_row], ignore_index=True)
                # Sort by time just in case
                self.df = self.df.sort_values(by='time').reset_index(drop=True)
                # Get the index of the current time step
                idx = self.df[self.df['time'] == time_step].index[0]
                # Need enough previous points to compute rolling statistics
```

```
if idx < self.window size:</pre>
                    return False # Not enough data yet
                # Extract the last 'window size' number of values *before or including* current
                window_data = self.df.loc[idx - self.window_size + 1: idx, 'value']
                # Calculate mean and std manually
                mean = window data.mean()
                std = window data.std()
                # If std is zero, we can't compute a Z-score
                if std == 0:
                    return False
                # Calculate Z-score
                z = (self.df.loc[idx, 'value'] - mean) / std
                return abs(z) > self.z_thresh
In [6]: # Using the original dataframe for s1
        detector = ZScoreAnomalyDetection(df[['time', 's1']].rename(columns={'s1': 'value'}), window size=200, z thresh:
        # Detected anomalies
```

```
In [6]: # Using the original dataframe for s1
detector = ZScoreAnomalyDetection(df[['time', 's1']].rename(columns={'s1': 'value'}), window_size=200, z_thresh

# Detected anomalies
anomalies = [detector.is_anomaly(row['time'], row['s1']) for _, row in df.iterrows()]

# Plot the original s1 values and the detected anomalies
plt.figure(figsize=(10, 5))
plt.plot(df['time'], df['s1'], label='s1')
plt.plot(df['time'], anomalies, label='Anomaly')

plt.title('s1 with Detected Anomalies')
plt.xlabel('Time')
plt.ylabel('s1 Value')
plt.legend()
plt.show()
```

s1 with Detected Anomalies


```
In [7]: # Streaming mode: no dataframe at start
    detector_stream = ZScoreAnomalyDetection(window_size=200, z_thresh=3)

# Detect anomalies in streaming mode
    anomalies = [detector_stream.is_anomaly(t, v) for t, v in zip(df['time'], df['s1'])]

# Plot the original s1 values and anomalies detected in streaming mode
    plt.figure(figsize=(10, 5))
    plt.plot(df['time'], df['s1'], label='s1')
    plt.plot(df['time'], anomalies, label='Anomaly')

plt.title('s1 with Detected Anomalies on Streaming Mode')
    plt.xlabel('Time')
    plt.ylabel('S1 Value')
    plt.legend()
    plt.show()
```

C:\Users\Alireza\AppData\Local\Temp\ipykernel_3296\817589446.py:39: FutureWarning: The behavior of DataFrame con catenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries befo re the concat operation.

self.df = pd.concat([self.df, new_row], ignore_index=True)

From the plots of both methods—using historical data and streaming—we can see that anomalies in s1 are correctly detected around the sudden drop near time step ~300, while the rest of the signal follows the expected sinusoidal pattern without false positives. This confirms that the Z-score method, with the same parameters (threshold = 3 and window size = 200), effectively identifies significant deviations without over-flagging normal fluctuations.

Time

Conclusion

Is Z-score suitable for our future project? Yes, with considerations.

Pros	Cons
Fast and simple	Struggles with trends and seasonality
Interpretable results	Sensitive to window size and threshold tuning
Only requires the current data itself	

Best Use Cases for Z-score: Best for stationary data without complex seasonality.

- Detecting sudden spikes/drops in metrics.
- Network traffic anomaly detection.
- Industrial sensor data monitoring.
- · Financial fraud detection.

Next Steps:

- Integrate Z-score anomaly detection into the data pipeline.
- Monitor and fine-tune the rolling window and threshold.
- Consider combining with complementary methods for robustness.

References

- 1. Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys (CSUR), 41(3), 1–58. https://doi.org/10.1145/1541880.1541882 (A comprehensive survey on anomaly detection techniques across different domains.)
- 2. Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A Survey of Network Anomaly Detection Techniques. Journal of Network and Computer Applications, 60, 19–31. https://doi.org/10.1016/j.jnca.2015.11.016 (Covers statistical, machine learning, and knowledge-based anomaly detection methods, including Z-score techniques.)
- 3. **Twitter Inc. (2015).** AnomalyDetection: Anomaly Detection Using Seasonal Hybrid Extreme Studentized Deviate Test. GitHub Repository (Demonstrates practical time series anomaly detection using statistical methods inspired by Z-score.)
- 4. Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A Review on Outlier/Anomaly Detection in Time Series Data.

ACM Computing Surveys (CSUR), 54(3), 1–33. https://doi.org/10.1145/3439950 (A recent and thorough review of anomaly detection approaches specifically for time series, including statistical techniques like Z-score.)

5. **Aggarwal, C. C. (2017).** Outlier Analysis. Springer. (A key textbook covering outlier detection methods, including traditional statistical methods like Z-score.)

Processing math: 100%