It so happens that this function can be simplified as: $S(d) = \frac{-125+d^3}{-20-d+d^2}$

 $= \frac{(d-5) \left(d^2 + 5 d + 25\right)}{(d-5) (d+4)}$ $= \frac{d^2 + 5 d + 25}{}$

To find the vertical asymptote : d + 4 = 0d = -4

There is a vertical asymptote at d=-4To find the horizontal asymptote : First we must compare the degrees of the polynomials.

The numerator contains a 3rd degree polynomial while the denominator contains a 2nd degree polynomial. Since the polynomial in the numerator is a higher degree than the denominator,

there is no horizontal asymptote. To find the oblique asymptote :

we must divide the numerator by the denominator $\frac{-125+d^3}{-20-d+d^2} = \frac{d^2+5}{d+4} = \frac{21}{d+4} + (d+1)$

There is an oblique asymptote at j=d+1