STAT 540

Jordan Awan

Privacy

Satur

ABC

Example

Acceptance Rate

Approximate Bayesian Computing for Differential Privacy

Jordan Awan

Department of Statistics, Penn State University

November 27, 2017

Privacy

Setu

ADC

.

Acceptance Rate

Differential Privacy

Definition (DMNS06, WZ10)

- Let \mathcal{X} be a set,
- A mechanism $\mathcal{P} = \{P_{\underline{x}} \mid \underline{x} \in \mathcal{X}^n\}$ is a set of probability measures on a space \mathcal{Z}
- \mathcal{P} satisfies ϵ -Differential Privacy (ϵ DP) if for all $B \subset \mathcal{Z}$ and all $\underline{x}, \underline{x}'$ differing in one entry, we have

$$P_{\underline{x}}(B) \leq e^{\epsilon} P_{\underline{x}'}(B).$$

Problem Setup

Privacy

Setup

ABC

Examples

Acceptance Rate

- Collect sensitive data $\underline{X} \in \mathcal{X}^n$
- Output private summary $Z \sim P_X(z)$
- Model $\underline{X} \sim f_{\theta}(\underline{x})$, with prior $\theta \sim \pi(\theta)$
- Want to infer about θ , given only Z.

$$\pi(\theta \mid Z) \propto \pi(\theta) \int_{\underline{x} \in \mathcal{X}^n} f_{\theta}(\underline{x}) P_{\underline{x}}(Z) \ d\underline{x}$$

• This integral is often intractable

Privacy

Setur

ABC

Ехапіріє

Acceptance Rate

References

- Sample (approximately) a posterior distribution
- Does not require evaluating likelihood

Algorithm 1 ABC algorithm [MPR⁺11]

INPUT: $Z \in \mathcal{Z}$, ρ a pseudo-metric on \mathcal{Z} , and $c \geq 0$.

- 1: Draw $\theta \sim \pi$
- 2: Draw $Z' \sim f(z \mid \theta)$
- 3: If $\rho(Z', Z) \le c$, accept θ , else reject θ ,
- 4: Repeat 1-3 as desired.

OUTPUT: Accepted θ 's

• If ρ is a metric, and c = 0, then samples are from $\pi(\theta \mid Z)$.

References

Toy Example

Figure: c = 0, AR: 1.7%

0.2

- Closed form of posterior
- Discrete: can use c = 0
- Simulation: n = 100, $\theta = .5$, $\epsilon = .1$
- $\approx 10^4$ accepted samples

Figure: c as std error, AR: 20%

Jordan Awan

Examples

Bigger Example

- Observe *n* iid copies of D = (X, Y) (feature/class)
- $Y_i \sim \text{Bern}(p)$
- $X_i \mid (Y_i = j) \sim \text{Bern}(p_i)$
- Sufficient statistics:

- Work with $m_{ij} = n_{ij} + e_{ij}$, where $e_{ij} \stackrel{\text{iid}}{\sim} \text{Dlap}(e^{-\epsilon/2})$.
- Posterior estimates of p, p_1 , and p_2 , given uniform priors

Acceptance Rate

Privacy

Sotur

ABC

Acceptance Rate

References

- Each proposal in ABC is approximately uniform from \mathcal{Z}
- Suppose that $\mathcal{Z} = [a, b]^m$
- Acceptance region is a ball of radius $O\left(\frac{1}{\sqrt{n}}\right)$

• Acceptance rate is ratio of volumes $O\left(\frac{1}{n^{m/2}}\right)$

STAT 540

Jordan Awan

Privacy

Cotur

ABO

Acceptance Rate

References

Conclusions

- Correct statistical inference by viewing private output as latent variable model
- Likelihood is often **computationally intractable**
- ABC offers an elegant method of sampling from posterior
 - ABC works well when Z is low-dimensional
 - Trade either accuracy, or computational efficiency when Z is higher-dimensional

STAT 540

Jordan Awan

Privacy

Setup

ABC

References

References

- [AS18] J. Awan and A. Slavković. Differentially Private Uniformly Most Powerful Tests for Binomial Data. In Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2018. To Appear.
- [DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in Private Data Analysis, pages 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
 - [KKS16] Vishesh Karwa, Dan Kifer, and Aleksandra Slavković. Private posterior distributions from variational approximations. NIPS 2015 Workshop on Learning and Privacy with Incomplete Data and Weak Supervision, 2016.
- [MPR+11] Jean Michel Marin, Pierre Pudlo, Christian P. Robert, Université Paris Dauphine, Robin J. Ryder, and Université Paris Dauphine. Approximate bayesian computational methods. Statistics and Computing, pages 1–14, 2011.
 - [VS09] Duy Vu and Aleksandra Slavković. Differential privacy for clinical trial data: Preliminary evaluations. In Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW '09, pages 138–143, Washington, DC, USA, 2009. IEEE Computer Society.
 - [WM10] Oliver Williams and Frank Mesherry. Probabilistic inference and differential privacy. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2451–2459. Curran Associates, Inc., 2010.
 - [WZ10] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. JASA, 105;489:375–389, 2010.