Задачи 1.1 и 1.2 (по два пункта каждая). Для следующих подмножеств арифметического векторного пространства \mathbb{R}^n определите, являются ли они подпространствами \mathbb{R}^n (=являются ли они сами векторными пространствами):

- (a) Множество векторов $(x_1, \ldots, x_n)^T$, для которых $x_1 + 2x_2 + 3x_3 + \ldots + nx_n = 0$;
- (b) Множество векторов, для которых $x_1 + x_2 + \ldots + x_n = 1$;
- (c) Множество векторов, имеющих вид $(\lambda, 2\lambda, 3\lambda, \dots, n\lambda)$, где $\lambda \in \mathbb{R}$;
- (d) Множество векторов с рациональными координатами.

Обратите внимание, что проверять все аксиомы векторного пространства тут не надо. Пожалуйста, вспомните, что мы обсуждали на семинаре и проверяйте только то, что действительно нужно проверять.

Задача 1.3. Назовите хотя бы три поля, над которыми \mathbb{C}^n являлось бы векторным пространством.

Задачи 1.4 и 1.5 (по два пункта каждая). Для следующих подмножеств множества $\mathbb{R}[x]$ многочленов с коэффициентами из \mathbb{R} определите, являются ли они подпространствами:

- (a) Множество многочленов f(x), у которых коэффициент при x^2 равен 1;
- (b) Множество многочленов f(x), для которых f(1) = 0;
- (c) Множество многочленов, для которых f'(2) + 2f''(1) = 0;
- (d) Множество многочленов f(x), имеющих вид $f(x) = g(x^2)$ для некоторого многочлена g(x) (по-другому их можно охарактеризовать как многочлены, у которых не равны нулю только коэффициенты при чётных степенях).

Линейные оболочки.

Напомним, что **линейной оболочкой** векторов v_1, \ldots, v_m называется множество, которое обозначается $\langle v_1, \ldots, v_m \rangle$ и состоит из всех линейных комбинаций векторов v_1, \ldots, v_m , то есть из всех векторов вида $\lambda_1 v_1 + \ldots + \lambda_m v_m$, где λ_i — скаляры.

Я тут намеренно упростил ситуацию, определив линейную оболочку конечной системы; про линейные оболочки бесконечных систем поговорим на семинаре, если будет время.

Пример. Проверим, лежит ли вектор $w=(1,4,-2,1)^T$ в линейной оболочке векторов $v_1=(1,2,-1,0)^T$ и $v_2=(-1,0,0,1)^T$.

Давайте вспомним определение. Линейная оболочка v_1 и v_2 состоит из векторов вида $a_1v_1+a_2v_2$, где a_1,a_2 — скаляры. То есть w лежит в этой линейной оболочке, если найдутся a_1 и a_2 , для которых $a_1v_1+a_2v_2=w$, то есть

$$a_1 \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ -2 \\ 1 \end{pmatrix}$$

Нетрудно видеть, что это система уравнений на a_1, a_2 с матрицей

$$\begin{pmatrix}
1 & -1 & 1 \\
2 & 0 & 4 \\
-1 & 0 & -2 \\
0 & 1 & 1
\end{pmatrix}$$

Легко проверить, что эта система имеет (единственное) решение $(2,1)^T$. Раз решение есть, то $w \in \langle v_1, v_2 \rangle$ (а если решения не было бы, то мы бы сказали, что $w \notin \langle v_1, v_2 \rangle$). Более того, $w = 2v_1 + v_2$.

Мимоходом мы проиллюстрировали тривиальное, но полезное утверждение о том, что система Ax=b совместна тогда и только тогда, когда вектор b лежит в линейной оболочке столбцов матрицы A.

Задача 1.6. Определите, какие из матриц

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 0 \\ 3 & 1 \end{pmatrix}$$

лежат в линейной оболочке матриц

$$u_1 = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 0 & -2 \\ 1 & 1 \end{pmatrix}, \quad u_3 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$$

Для тех, которые лежат в линейной оболочке, найдите коэффициенты, с которыми они выражаются через u_i .

Указание. Просто вытяните матрицы в векторы длины 4 и проделайте то же самое, что происходило выше в примере.

Задача 2.1. Докажите, что в любом векторном пространстве $0 \cdot x = 0$ (только не перепутайте, какой из нулей — это ноль-вектор, а какой — ноль-скаляр...).

Задача 2.2. Докажите, что в любом векторном пространстве $(-1) \cdot x = -x$ (справа — противоположный вектор!).

Напомним, что **подпространством** называется такое подмножество векторного пространства, которое содержит ноль и замкнуто относительно сложения и умножения (то есть, грубо говоря, само является векторным пространством).

Если вас очень просят предъявить какое-нибудь подпространство, это можно сделать, например, выбрав несколько векторов и предъявив их линейную оболочку (ведь линейная оболочка — это всегда подпространство!).

Задача 2.3. Докажите, что в \mathbb{R}^5 бесконечно много подпространств (пожалуйста, именно докажите).

Задача 2.4. Пусть подмножество $M\subseteq\mathbb{R}^n$ является ограниченным, то есть существует некоторое C, такое что $|v|\leqslant C$ для всех $v\in M$ (здесь $|v|=\sqrt{v_1^2+\ldots+v_n^2}$ — это обычная длина вектора). Докажите, что M не может быть подпространством.

Задача 2.5. Опишите все подпространства пространства \mathbb{R}^3 (ответ можете формулировать на геометрическом языке, если хотите). Намёк: все они являются до боли знакомыми вам объектами из стереометрии.

Задача 3.1. Может ли векторное пространство совпадать с объединением двух собственных (то есть отличных от нуля и всего пространства) подпространств? А какого-либо другого конечного числа? Вопросы до какой-то степени с подвохом, учтите это.

Задача 3.2. Пусть M — множество из n элементов. На множестве его подмножество (которое обозначается 2^M) определим следующим образом сложение:

$$A + B := A \triangle B = (A \backslash B) \cup (B \backslash A)$$

(эта операция назвается cummempureckas разность) и следующим образом умножение на элементы поля \mathbb{Z}_2 :

$$1 \cdot A = A, \qquad 0 \cdot A = \emptyset$$

- (a) Докажите, что относительно этих операций множество 2^M является векторным простанством над полем \mathbb{Z}_2 ; найдите его базис и размерность.
- (b) Пусть A_1, \ldots, A_k подмножества M, причём ни одно из них не лежит в объединении остальных. Докажите, что A_1, \ldots, A_k линейно независимая система.

Задача 3.3. Алгеброй над полем \mathbb{F} называется кольцо, которое является также векторным пространством над полем \mathbb{F} . На самом деле, почти все кольца, которые вы видели на данный момент (в частности, кольцо многочленов над полем, кольцо матриц с коэффициентами из поля) тривиальным образом являются алгебрами. Приведите пример кольца, которое не являлось бы алгеброй ни над каким полем. Обязательно обоснуйте ответ.

Задача 3.4. Попробуйте ввести структуру алгебры (=корректное определение умножения) на векторном пространстве \mathbb{R}^2 . Бонус, если получится придумать несколько структур. Обязательно доказывайте, что ваше умножение удовлетворяет всему, что надо. На всякий случай напомню, что я называю кольцом множество, на котором введены операции сложения (коммутативная, ассоциативная, с нулём и противоположными элементами) и умножения (дистрибутивная, остальное не обязазательно).