Д**3** 13

Владимир Латыпов

donrumata03@gmail.com

Содержание

6 Ромбик за один шаг не замыкается!	. 3
7 7	
8 Наличие типа подвыражений	
9 Необитаемый остров невезения	

6 Ромбик за один шаг не замыкается!

 $(\lambda x.T)\Omega$

$$\begin{array}{c}
\bullet \xrightarrow{\beta} T \\
\bullet \xrightarrow{\beta} (\lambda x.T)\Omega
\end{array}$$

Однако T — уже в нормальной форме — не β -редуцируется ни во что, т.ч.

$$\not\exists S.T \xrightarrow[\beta]{} S \land (\lambda x.T)\Omega \xrightarrow[\beta]{} S$$

7 7...

8 Наличие типа подвыражений

Рассмотрим дерево доказательства, что A имеет тип α . И докажем для подвыражений индукцией по дереву разбора A, каждый раз ссылаясь на детей и делая это конечное количество раз.

- Если D переменная, доказано: постулировали, что она имеет тип δ
- Если $D \equiv \lambda x.E$ и оно было получено как абстракция, то для подвыражения x есть тип в контексте Γ , а для E доказательство в дереве выше.

$$\frac{\frac{\text{proof}}{\Gamma, x : \varphi \vdash E : \psi}}{\Gamma \vdash \lambda x . E : \varphi \to \psi}$$

• Если D было получено как MP (аппликация BC), то в левой ветке есть доказательство, что $\Gamma \vdash C : \varphi$, а в правой — что $\Gamma \vdash B : \varphi \to \delta$.

$$\frac{\frac{\operatorname{proof}_1}{\Gamma \vdash C \colon \varphi} \quad \frac{\operatorname{proof}_2}{\Gamma \vdash B \colon \varphi \to \psi}}{\Gamma \vdash D \colon \psi}$$

9 Необитаемый остров невезения

Утверждается, что вот же он: $((\alpha \to \beta) \to \beta) \to \alpha$.

Пусть у нас есть λ -выражение, имеющее этот тип и дерево доказательство, что оно этот тип имеет. Тогда