

SAT/SMT solvers 11. Binary Decision Diagrams

Roman Kholin

Lomonosov Moscow State University

Moscow, 2023

Binary Decision Trees

A binary decision tree is a rooted, directed tree with two types of vertices, terminal vertices and nonterminal vertices.

Each nonterminal vertex v is labeled by a variable var(v) and has two successors:

- low(v) corresponding to the case where the variable v is assigned 0
- high(v) corresponding to the case where the variable v is assigned 1

Each terminal vertex v is labeled by value(v) which is either 0 or 1

Binary Decision Trees

There is usually a lot of redundancy in such trees There are eight subtrees with roots labeled by b_2 , but only three are distinct

Binary Decision Diagrams

- Binary decision diagram is a rooted, directed acyclic graph with two types of vertices, terminal vertices and nonterminal vertices
- Each nonterminal vertex v is labeled by a variable var(v) and has two successors, low(v) and high(v)
- Each terminal vertex is labeled by either 0 or 1

Example

$$f = x_1x_2 + x_4$$
$$(x_1 \wedge x_2 \vee x_4)$$

Odd parity function

 \neg, \lor, \land

Canonical Form Property

- Such a representation must guarantee that two boolean functions are logically equivalent if and only if they have isomorphic representations
- This simplifies tasks like checking equivalence of two formulas and deciding if a given formula is satisfiable or not

Two binary decision diagrams are isomorphic if there exists a bijection h between the graphs such that:

- terminals are mapped to terminals and nonterminals are mapped to nonterminals
- for every terminal vertex v, value(v) = value(h(v))
- for every nonterminal vertex v:
 - var(v) = var(h(v))
 - h(low(v)) = low(h(v))
 - h(high(v)) = high(h(v))

Canonical Form Property

To obtain a canonical representation for boolean functions by placing two restrictions on binary decision diagrams:

- The variables should appear in the same order along each path from the root to a terminal
- There should be no isomorphic subtrees or redundant vertices in the diagram

The first requirement is easy to achieve:

- Impose total ordering < on the variables in the formula
- Require that if vertex u has a nonterminal successor v, then var(u) < var(v)

Canonical Form Property

The second requirement is achieved by repeatedly applying three transformation rules that do not alter the function represented by the diagram:

- Remove duplicate terminals: Eliminate all but one terminal vertex with a given label and redirect all arcs to the eliminated vertices to the remaining one
- Remove duplicate nonterminals: If nonterminals u and v have var(u) = var(v), low(u) = low(v) and high(u) = high(v), then eliminate one of the two vertices and redirect all incoming arcs to the other vertex
- Remove redundant tests: If nonterminal vertex v has low(v) = high(v), then eliminate v and redirect all incoming arcs to low(v)

The term Ordered Binary Decision Diagram (OBDD) will be used to refer to the graph obtained in this manner

Example

Ordered Binary Decision Diagrams

- The canonical form may be obtained by applying the transformation rules until the size of the diagram can no longer be reduced
- It was shown how this can be done by a procedure called Reduce in linear time

If OBDDs are used as a canonical form for boolean functions, then

- checking equivalence is reduced to checking isomorphism between OBDDs
- satisfiability can be determined by checking equivalence with the trivial OBDD that consists of only one terminal labeled by 0

OBDD for Comparator Example

$$a_1 < b_1 < a_2 < b_2$$

The number of vertices will be 3n + 2

OBDD for Comparator Example

$$a_1 < a_2 < b_1 < b_2$$

The number of vertices will be $3 * 2^n - 1$

How to get OBDD for f * g (if we know OBDDs for f and g)? The key idea for efficient implementation of these operations is the Shannon expansion

$$f = \neg x \wedge f|_{x=0} \vee x \wedge f|_{x=1}$$

Let * be an arbitrary two argument logical operation, and let f and f' be two boolean functions

To simplify the explanation of the algorithm we introduce the following notation:

- v and v' are the roots of the OBDDs for f and f'
- x = var(v) and x' = var(v')

- If v and v' are both terminal vertices, then f * f' = value(v) * value(v')
- If x = x', then we use the Shannon expansion $f * f' = \neg x \land (f|_{x=0} * f'|_{x=0}) \lor x \land (f|_{x=1} * f'|_{x=1})$
- If x < x', then $f'|_{x=0} = f'|_{x=1} = f'$ since f' does not depend on x. In this case the Shannon Expansion simplifies to $f * f' = \neg x \land (f|_{x=0}) \lor x \land (f|_{x=1})$
- If x > x' in the previous manner

Recursive Calls

 F_1,G_1

Recursive Calls

Recursive Calls

Recursive Calls

 F_1,G_1

Recursive Calls

Reduced Result

