Statistics 5350/7110 Forecasting

Lecture 4
Estimating the ACF

Professor Stine

Admin Issues

- Questions?
 - TA office hours posted
- Assignment
 - A1 is due next Thursday
 - We'll discuss in class next Tuesday, so get started before then. Come with your questions ready.
- Quick review
 - Second-order stationarity $E(X_t) = \mu$, $Cov(X_s, X_t) = \gamma_x(s-t)$
 - What could have happened, not just what did happen...
 - Wold representation, white noise

$$X_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}, \quad \psi_0 = 1$$

• Examples (found in the revised Lecture_3.Rmd file)

Today's Topics

- Estimates of
 - Mean
 - Autocovariance and autocorrelation
- Multiple time series
 - Leading and lagging series
 - Cross-correlation
- Non-stationary data
 - Spurious correlations
 - Transformations to stationarity

Textbook §2.3

Estimating the Mean

- Estimating the mean of a stationary process
 - Sample mean is the usual choice, but is it the best estimator?

$$\overline{X} = \frac{1}{n} \sum_{t=1}^{n} X_t$$

- Properties of the average
 - Variance of the average depends on the autocovariance of the process

$$n^2 \operatorname{Var}\left(\overline{X}\right) = \operatorname{Var}\left(\sum_{t=1}^n X_t\right) = \sum_{s=1}^n \sum_{t=1}^n \gamma(s-t)$$

• Summing up the covariances gives

$$\operatorname{Var}\left(\overline{X}\right) = \frac{1}{n^2} \sum_{h=-n}^{n} \left(n - |h|\right) \gamma_{x}(h)$$

Equation 2.20

• Generalized least squares provides an alternative estimator which has smaller MSE, but you have to know the autocovariances $\gamma_x(h)$ in order to compute it!

Estimating the Mean

- Effects of covariances on variance of the mean
- White noise
 - Because uncorrelated, the ariance of the mean is familiar, namely

$$Var(\overline{X}) = \frac{\sigma_w^2}{n}$$

- Autoregression with coefficient ϕ
 - General expression is "messy"

$$\operatorname{Var}(\overline{X}) = \frac{1}{n^2} \sum_{s=1}^{n} \sum_{t=1}^{n} \gamma(s-t) = \frac{\sigma_w^2}{n(1-\phi^2)} \frac{2}{n} \left(\frac{n}{2} + (n-1)\phi + (n-2)\phi^2 + \dots + \phi^{n-1} \right)$$

Numerical example (Lecture_4.Rmd)
 How much larger is the variance of the mean compared to the usual calculation that would use Var(Xt)/n?

What happens if there's negative autocorrelation???

Estimating Autocorrelations

- Estimating the autocovariances
 - Use the sample mean

$$\hat{\gamma}_{x}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (X_{t+h} - \overline{X})(X_{t} - \overline{X}) \qquad h = 0, 1, 2, \dots, n-1$$

- Biased estimator since fewer summands as h increases
- Estimating the autocorrelation
 - Use the estimated autocovariances

$$\hat{\rho}_{x}(h) = \frac{\hat{\gamma}_{x}(h)}{\hat{\gamma}_{x}(0)}$$

Equation 2.21

 $Corr(X, Y) = \frac{Cov(X, Y)}{SD(X)SD(Y)}$

- Properties of the estimated autocorrelation
 - Like the sample mean, properties of $\hat{\rho}_x(h)$ depend on the properties of the true process

• The estimated
$$\hat{\rho}_{x}(h)$$
 are generally more autocorrelated than the process itself!
$$\operatorname{Cov}(\hat{\rho}_{x}(r+h),\hat{\rho}_{x}(r)) \approx \frac{1}{n} \sum_{j=-\infty}^{\infty} \rho_{x}(j+h) \rho_{x}(j) \quad \text{and} \quad \operatorname{Var}(\hat{\rho}_{x}(r)) \approx \frac{1}{n} \sum_{j=-\infty}^{\infty} \rho_{x}(j)^{2}$$

See Property 2.28

Estimated ACF

- White noise
 - Standard error of estimated autocorrelation if X_t is white noise is

std error
$$(\hat{\rho}(h)) \approx \frac{1}{\sqrt{n}}$$

Property 2.28

Estimated ACF

- Generate more white noise
 - Standard error of estimated autocorrelation is

std error
$$(\hat{\rho}(h)) \approx \frac{1}{\sqrt{n}}$$

• Three of the estimated autocorrelations are outside standard error lines

Multiplicity

- What does it mean for a statistical test to be "statistically significant"?
- Example: two-sided test of the mean, H_0 : $\mu = 0$ vs H_a $\mu \neq 0$
 - Assume required assumptions hold, along with normality of the data

$$X_i \sim N(\mu, \sigma^2), \quad i = 1, 2, ..., n$$

- Assuming we know $Var(X_i) = \sigma^2$, the most powerful test statistic is $z = \sqrt{n} \, \overline{X} / \sigma \sim N(0,1)$
- Significance
 - Reject H_0 if |z| > 1.96
 - If the null hypothesis H_0 holds, then P(1.96 < |z|) = 0.05
- Multiple tests
 - Suppose we test H_0 with independent samples from the same population and μ = 0.
 - 10 samples: P(At least one test rejects) = 1 P(none reject) = 1 $0.95^{10} \approx 0.40$
 - 25 samples: P(At least one test rejects) = 1 P(none reject) = 1 $0.95^{25} \approx 0.72$
 - The more you test, the more likely you will declare a statistically significant result.

Estimated ACF

- Autoregression
 - True correlations for AR(1) are $\rho(h) = \phi^{|h|}$
 - Standard error of estimated autocorrelation depends on the process

$$\operatorname{std}\operatorname{error}(\hat{\rho}_{\boldsymbol{x}}(r)) \approx \sqrt{\frac{1}{n}\sum_{j=-\infty}^{\infty}\rho_{\boldsymbol{x}}(j)^2} = \sqrt{\frac{1}{n}\sum_{j=-\infty}^{\infty}\phi^{2|j|}} = \sqrt{\frac{1+\phi^2}{n(1-\phi^2)}}$$

• Software places standard error bars as if white noise at $\pm 2/\sqrt{n}$

Multiple Time Series

- Joint stationarity
 - Means, variances and covariances are invariant of time origin
- Cross-correlation function
 - Correlation between two time series at different lags
 - Unlike ρ(h), the cross-covariance and cross-correlation need not be symmetric

$$\gamma_{x,y}(h) = \operatorname{Cov}(X_{t+h}, Y_t) \qquad \left[= \gamma_{y,x}(-h) = \operatorname{Cov}(Y_{t-h}, X_t) \right]$$

$$\rho_{x,y}(h) = \frac{\gamma_{x,y}(h)}{\sqrt{\gamma_x(0) \gamma_y(0)}}$$

- Example: If X_t and w_t are ind. white noise, what is γ_{xy} if the process is $Y_t = \alpha + \beta X_{t-4} + w_t$?
- Estimates
 - Formed as in the case of $\hat{\rho}(h)$ (Put hats on γ in the above definition)

$$\widehat{\rho}_{x,y}(h) = \frac{\widehat{\gamma}_{x,y}(h)}{\sqrt{\widehat{\gamma}_x(0)\ \widehat{\gamma}_y(0)}}$$

Text examples emphasize problem when have two time series

Definition 2.30

Example of Cross-Correlation

• Simulated process on prior slide

- Data: Southern oscillation and fish population
 - Example 2.32
 - SOI leads recruitment by about six months
 - Lagged correlation is hiding important aspect of association (see Lecture_4.Rmd)

Macroeconomic Correlations

- Common to see high correlations among macroeconomic variables
 - Many measure the size of the economy, producing collinearity
- Any time series with strong growth will appear correlated with GDP
 - Evidently not a stationary time series

FRED is great source for economic times series

Spurious Correlation

- Website
 - Vast collection of examples, mostly pairs of time series
 - https://www.tylervigen.com/spurious-correlations

The site also offers Al explanations for the observed phenomena.

- How's this happen?
 - Multiplicity: Statistics rewards persistence
 - Non-stationarity: Any generally increasing time series will be correlated with US GDP

Converting to Stationarity

• Why

- · Stationary processes permit simpler analysis, both in theory and practice
- Reduces likelihood of spurious correlation induced by trends

Test case

- Suppose that $X_t = \alpha + \rho X_{t-1} + \beta t + w_t$
- Can we distinguish whether $\rho=1$ with $\beta=0$ (random walk) from $\rho=0$ with $\beta\neq0$?

• Two approaches

- Estimate the trend using regression (and then work with residuals)
- Difference the data, forming $X_t X_{t-1} = \nabla X_t$ $(= \Delta X_t)$ or with $BX_t = X_{t-1}, (1-B)X_t$
- Each approach has advantages and disadvantages
 - Subtract regression trend: familiar, but inference for $\widehat{
 ho}$ and \widehat{eta} is nonstandard if ho=1
 - Difference: robust to specification errors (inefficient), but lose expression for the trend
 - General consensus: difference economic time series
 - "Testing for unit roots"

Issue will come up again later

What's next?

- Regression analysis
 - Review of least squares regression modeling
 - Regression diagnostics
 - Emphasis on plots and assumptions
 - Calculations in R
- In context of time series forecasting
 - Use in capturing trends such as see in macro data
 - Estimating effects of leading indicators
 - Analysis of unexplained (residual) variation