1 What we have learned so far

Overview: up till now we have learned quite a few practical control design tools. In the discussion sessions we have provided some details about LQG/LTR, FSLQ, ZPET, Preview Control, derivation of closed-loop transfer functions, MATLAB coding, and Bode's Integral Formula.

A slightly more comprehensive¹ checklist is as follows:

- Design of Feedback Control System
 - Derive closed-loop transfer functions from external inputs (disturbance, measurement noise, reference) to any signal in the loop
 - The general concept of how the frequency response of the loop transfer function should look like
 - Derivation of nominal stability conditions
 - Robust stability conditions (DFC-10, DFC-12, DFC-14)
- LQG/LTR (Loop Transfer Recovery)
 - Main difference between LQG and LQG/LTR:
 - * LQG is an optimal control problem. The input noise and the measurement noise physically exist in the plant.
 - * LQG/LTR is a feedback controller design method. It is not an optimal control method. The plant does not have real noises. W, V, ρ , and N are design parameters we choose.
 - The use of the fictitious Kalman filter and the benefit of the target feedback loop
 - The design of the LQ cost to approximate the target loop transfer function
 - Point-wise convergence of the loop transfer function to the target feedback loop that is designed using the fictitious Kalman filter
- Frequency Shaped LQ (FSLQ) Problem
 - Performance index as a time-domain integration or a frequency-domain integration and the relationship between these two expressions
 - Design procedure: the filtered states, the enlarged system, the cost function etc
 - The optimal solution
 - Roles of Q_f , R_f and ρ
- Feedforward Tracking Control
 - Zero phase error tracking controller: cancel poles and cancellable (asymptotically stable) zeros, remove phase shift between the desired output and the output
- Preview Control (understand the idea, do not need to memorize the solution)
 - The use of future information in a length- N_p preview window
 - The use of the reference generator and how future information is built into the enlarged system
 - The transformation to a standard LQ problem
- Internal Model Principle and Repetitive Control
 - Internal model principle: including the internal model in the loop transfer function will asymptotically reject the disturbance d(k)
 - Internal models for basic disturbances/references
 - Repetitive controller design by pole placement or pole-zero cancellation

¹The list may not be complete. The length of the items does not necessarily reflect the importance of the related content.

- Bode's Integral Theorem and waferbed effect (understand the idea, do not need to memorize the proof)
 - Basic concept
 - The 'waterbed' picture
 - The interpretations
- Disturbance Observer (DOB)
 - Idea of DOB: use control signal to reject disturbance by applying the inverse of the plant model
 - Derive various transfer functions in the DOB loop and analyze the stability
 - Discrete-time DOB analysis

2 Some more discussions on block-diagram analysis

Exercise: derive (quickly) the various transfer functions in the following block diagrams; analyze the closed-loop stability; construct the closed-loop system in the state space .

