Imperial College London

113: Architecture

Spring 2018

Lecture: Caches (Memory Hierarchy)

Instructor: Dr. Jana Giceva

Today: Caches and Memory Hierarchy

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets, index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Direct-Mapped Cache

Direct-Mapped Cache Problem

Associativity

- What if we could store data in any place in the cache?
 - More complicated hardware = more power consumed and slower
- So we *combine* two ideas:
 - Each address maps to exactly one set
 - Each set can store block in more than one way

Cache Organization (3)

- Associativity (N): number of ways for each set
 - Such a cache is called an "N-way set associative cache"
 - We now index into cache sets, of which there are C/K/N
 - Use lowest $log_2(C/K/N) = I$ bits of block address
 - Direct-mapped: N=1, so $I = log_2(C/K)$ as we saw previously
 - Fully-associative: N=C/K, so I = 0 bits

Cache notation:

C – size of cache

K – block size

N – associativity

Example Placement

Block size (K)	16 B
Capacity (C/K)	8 blocks
Address (A)	16 bits

- Where would data from address 0x1833 be placed?
 - **Binary:** 0b 0001 1000 0011 0011

Direct-mapped

Example Placement

Block size (K)	16 B
Capacity (C/K)	8 blocks
Address (A)	16 bits

- Where would data from address 0x1833 be placed?
 - Binary: 0b 0001 1000 0011 **0011**

I = 3
Direct-mapped

Set	Tag	Data
0		
1		
2 3 4 5 6		
3		
4		
5		
6		
7		

| = 22-way set associative

Set	Tag	Data
0		
1		
2		
2		
3		
3		

I = 1

4-way set associative

Set	Tag	Data
0		
1		

Example Placement

Block size	16 B
Capacity	8 blocks
Address	16 bits

- Where would data from address 0x1833 be placed?
 - Binary: 0b 0001 1000 0011 0011

Block Replacement

- Any empty block in the correct set may be used to store block
- If there are no empty blocks, which one should we replace?
 - No choice for direct-mapped caches
 - Caches typically use something close to least recently used (LRU) (hardware usually implements "not most recently used")

Direct-mapped				
Set	Tag	Data		
0				
1				
2				
2 3 4				
5 6				
6				
7				

General Cache Organisation (S, N, K)

N = blocks/lines per set

Cache Read

N = blocks/lines per set

1. Locate set

2. Check if any line in set

K = bytes per block

Example: Direct-Mapped Cache (N=1)

Direct-mapped: One line/block per set

Block size K = 8 bytes

Example: Direct-Mapped Cache (N=1)

Direct-mapped: One line/block per set

Block size K = 8 bytes

Example: Direct-Mapped Cache (N=1)

Direct-mapped: One line/block per set

Block size K = 8 bytes

No match?

Then old line gets evicted and replaced

Example: Set-Associative Cache (N=2)

2-way: Two lines per set Address of short int. Block size K = 8 bytes bits 0...01 tag find set tag tag tag tag tag tag

Example: Set-Associative Cache (N=2)

Example: Set-Associative Cache (N=2)

No match?

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

Types of Cache Misses: 3 C's!

- Compulsory (cold) miss:
 - Occurs on first access to a block

Conflict miss:

- Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot.
 - E.g., referencing blocks 0, 8, 0, 8, ... could miss every time
- Direct-mapped caches have more conflict misses than N-way set-associative

Capacity miss:

- Occurs when the set of active cache blocks (the working set) is larger than the cache
- Note: Fully-associative only has Compulsory and Capacity misses

What to do on a write hit?

Multiple copies of data exist. What is the problem with that?

Write-through

- Write immediately to memory and all caches in between
- Memory is always consistent with the cache copy
- Slow: what if the same value (or line!) is written several times

Write-back

- Defer write to memory until line is evicted (replaced)
- Need a dirty bit
 - Indicates line is different from memory
- Higher performance (but more complex)

What to do on a write-miss?

- Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - More complex to implement
 - May evict an existing value
 - Common with write-back caches
- No-write-allocate (writes immediately to memory)
 - Simpler to implement
 - Slower code (bad if value consistently re-read)
 - Seen with write-through caches

Real caches: Intel Core i7-5960X (Haswell)

- All caches have a block/line size of 64 bytes
- L1 i-cache and d-cache:
 - 32 KiB, 8-way set-associative
 - i-cache: no writes, d-cache: write-back
 - Access: 4 cycles
- L2 unified cache:
 - 256 KiB, 8-way set-associative
 - private, write-back
 - Access: 11 cycles
- L3 unified cache: (shared among multiple cores)
 - 8 MiB, 16-way set-associative
 - shared, write-back
 - Access: 30-40 cycles

Slower, but more likely to hit

Software caches are more flexible

Examples:

- file system buffer caches, web browser caches, etc.
- Content-delivery networks (CDN): cache for the internet (e.g., Netflix)

Some design differences:

- Almost always fully associative:
 - So, no placement restrictions
 - Index structures like hash tables are common
- Often use complex replacement policies
 - Misses are very expensive when disk or network involved
 - Worth thousands of cycles to avoid them
- Not necessarily constrained to single "block" transfers
 - May fetch or write-back in larger units, opportunistically

Today: Caches and Memory Hierarchy

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets, index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Optimizations for the memory hierarchy

- Write code that has locality
 - Spatial: access data contiguously
 - Temporal: make sure access to the same data is not too far apart in time
- How to achieve this?
 - Adjust memory access in *code* (software) to improve miss rate (MR)
 - Requires knowledge of both how caches work as well as your system's parameters
 - Proper choice of algorithm
 - Loop transformations

Example: matrix multiplication

```
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++) // move along rows of a
      for (j = 0; j < n; j++) // move along columns of b
      for (k = 0; k < n, k++)
           c[i*n + j] += a[i*n + k] * b[k*n + j];
}</pre>
```


Cache miss analysis

- Read from a (i,:)
- 2. Read from b (:, j)
 Ignoring matrix c for now

Assume:

- Square matrix $(n \times n)$, elements are doubles
- Cache block size K =64, 8 doubles in a block
- Cache size $C \ll n$ (much smaller than n)

n/8 misses

First iteration:

$$\frac{n}{8} + n = \frac{9n}{8}$$
 misses

- Afterwards in cache: (schematic)
- Total misses: $\frac{9n}{8} \times n^2 = \frac{9}{8}n^3$

Linear Algebra to the Rescue (1)

- Can get the same result of matrix multiplication by splitting the matrices into smaller submatrices (matrix "blocks")
- For example, multiply two 4×4 matrices:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \text{ with B defined similarly.}$$

$$AB = \begin{bmatrix} (A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\ (A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22}) \end{bmatrix}.$$

Linear Algebra to the Rescue (2)

C_{11}	C_{12}	C_{13}	C_{14}
C_{21}	C_{22}	C_{23}	C_{24}
C ₃₁	C_{32}	C_{33}	C_{34}
C_{41}	C_{42}	C_{43}	C_{44}

A ₁₁	A ₁₂	A ₁₃	A ₁₄
A ₂₁	A ₂₂	A ₂₃	A ₂₄
A ₃₁	A_{32}	A_{33}	A ₃₄
A ₄₁	A_{42}	A_{43}	A ₄₄

B ₁₁	B ₁₂	B ₁₃	B ₁₄
B ₂₁	B ₂₂	B_{23}	B ₂₄
B ₃₁	B ₃₂	B_{33}	B ₃₄
B ₄₁	B ₄₂	B_{43}	B ₄₄

■ Matrices of size $n \times n$, split into 4 blocks of size r (n = 4r)

$$C_{22} = A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} + A_{24}B_{42} = \sum_{k} A_{2k} \times B_{k2}$$

- Multiplication operates on small "block" matrices
 - Choose size so that they fit in the cache
 - This technique called "cache blocking"

Blocked Matrix Multiply

```
/* move by rxr BLOCKS now */
for (i = 0; i < n; i+=r)
  for (j = 0; j < n; j+=r)
    for (k = 0; k < n, k+=r)
        /* block matrix multiplication */
    for (ib = i; ib < i+r; ib++)
        for (jb = j; jb < j+r; jb++)
        for (kb = k; kb < k+r; jb++)
        c[ib*n + jb] += a[ib*n + kb] * b[kb*n + jb]</pre>
```

- Blocked version of the naïve algorithm
 - r =block matrix size (assume r divides n evenly)
- 6 nested loops may seem less efficient, but leads to a much faster code!!

Cache Miss Analysis (Blocked)

Assume:

- Square matrix $(n \times n)$, elements are doubles
- Cache block size K =64, 8 doubles in a cache block
- Cache size $C \ll n$ (much smaller than n)
- Three blocks $(r \times r)$ fit into cache: $3r^2 < C$

 r^2 elements per block, 8 blocks in cache

First (block) iteration:

- $\frac{r^2}{8}$ misses for each block
- $\frac{2n}{r} \times \frac{r^2}{8} = \frac{nr}{4} \text{ (again omitting matrix c)}$

n/r blocks in row and column

Afterwards in cache (schematic):

Cache Miss Analysis (Blocked)

Assume:

- Square matrix $(n \times n)$, elements are doubles
- Cache block size K =64, B = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks $(r \times r)$ fit into cache: $3r^2 < C$

First (block) iteration:

- $\frac{r^2}{8}$ misses for each block
- $\frac{2n}{r} \times \frac{r^2}{8} = \frac{nr}{4}$ (again omitting matrix c)
- Total misses:

$$\frac{nr}{4} \times (\frac{n}{r})^2 = \frac{n^3}{(4B)}.$$

Matrix Multiply Summary

- Naïve: $(9/8) \times n^3$
- Blocked: $1/(4r) \times n^3$
 - If r = 8, difference is $4 * 8 * \frac{9}{8} = 36x$
 - If r = 8, difference is $4 * 16 * \frac{9}{8} = 72x$
- Blocking optimization only works if the blocks fit in the cache
 - Suggests larger possible block size up to limit $3r^2 \le C$
- Matrix multiplication has inherent temporal locality:
 - Input data: $3n^2$, computation $2n^3$
 - Every array element used O(n) times!
 - But program has to be written properly

Cache-Friendly Code

- Programmer can optimise for cache performance
 - How data structures are organised
 - How data are accessed:
 - Nested loop structure
 - Blocking is a general technique
- All systems favour "cache-friendly code"
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, cache block size, associativity, etc.
 - Can get most of the advantage with generic code:
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)
 - Focus on inner loop cycle

The Memory Mountain

Ridges of temporal Locality

Working data set size (increasing)

Learn About Your Machine

- Linux:
 - lscpu
 - ls /sys/devices/system/cpu/cpu0/cache/index0/
 - Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
 - cat /proc/cpunfo | grep cache | sort | uniq
- Windows:
 - wmic memcache get <query> (all values in KB)
 - Ex: wmic memcache get MaxCacheSize
- Modern processor specs: http://www.7-cpu.com/