FCC TEST REPORT

for

Nanjing Panda Information Industry Co., Ltd.

Tablet Model No.: R70F400, R70F452

Prepared for : Nanjing Panda Information Industry Co., Ltd.

Address : East of 2F, 17 Building, 301 East Zhongshan Road, Nanjing

P.R.China

Prepared By : Anbotek Compliance Laboratory Limited

Address : 1/F, 1 /Building, SEC Industrial Park, No.4 Qianhai Road,

Nanshan District, Shenzhen, 518054, China

Tel: (86) 755-26014771 Fax: (86) 755-26014772

Report Number : 201107755F

Date of Test : Jul. 18~22, 2011

Date of Report : Jul. 25, 2011

TABLE OF CONTENT

Description

Page Test Report 1. GENERAL INFORMATION......4 1.4. Measurement Uncertainty 6 2. MEASURING DEVICE AND TEST EQUIPMENT......7 3. TEST METHODOLOGY8 3.3. List of channels: 4.3. Configuration of EUT on Measurement _______10 4.5. Test Procedure 11 5. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION....... 14 5.1 Test Setup 14 5.6 Radiated Emissions 31 5.6.2. Test Configuration: 31

APPENDIX I (Photos of EUT) (7 Pages)

TEST REPORT

Applicant : Nanjing Panda Information Industry Co., Ltd.

Manufacturer : Nanjing Panda Information Industry Co., Ltd.

EUT : Tablet

Model No. : R70F400, R70F452

Serial No. : N/A

Rating : 5V=, 2.0A

Trade Mark : N/A

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.247: 2010

The device described above is tested by Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Anbotek Compliance Laboratory Limited

Date of Test:	Jul. 18~22, 2011		
Prepared by :			
	Jock zeng		
	(Engineer / Rock Zeng)		
Reviewer :			
	Cow. Kiang		
	(Project Manager / Coco Xiang)		
Approved & Authorized Signer:			

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Tablet(Wireless Network Card only)

Model Number : R70F400, R70F452

(Note: All samples are the same except the model number & shape of

appliances, so we prepare "R70F400" for EMC test only.)

Test Power Supply : 120V~, 60Hz for Adapter

Switching Adapter: Model: ADS-12G-06 05010GPCU

Input: 100~240V~ 50/60Hz Max. 0.3A

Output: 5V == 2.0A

UL, FCC

RF Transmission

: 2412-2462MHz(802.11b/g/n HT20)

Frequency

Channels : 11

Antenna Gain : 3.4dBi

Antenna Type : Internal antenna

Applicant : Nanjing Panda Information Industry Co., Ltd.

Address : East of 2F, 17 Building, 301 East Zhongshan Road, Nanjing

P.R.China

Manufacturer : Nanjing Panda Information Industry Co., Ltd.

Address : East of 2F, 17 Building, 301 East Zhongshan Road, Nanjing

P.R.China

Date of receiver : Jul. 17, 2011 Date of Test : Jul. 18~22, 2011

1.2. Auxiliary Equipment Used during Test

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Monitor	Lenovo	X61	L3-L3729 08/03
Earphone	Ouyun	OH601	
SD card	Kingston	SD4/4GBFE	
USB flash drive	Kingston	USB/4GB	

Signal Cable Type	Signal cable Description
HDMI Cable	Shielded, 2.0m, with two ferrite cores bonded.
Earphone Cable	Non-Shielded, 2.0m
USB Cable	Non-Shielded, 0.5m

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, August 20, 2010.

IC-Registration No.: 8058A-1

Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, August 30, 2010.

Test Location

All Emissions tests were performed at

Anbotek Compliance Laboratory Limited. at 1/F, 1 /Building, SEC Industrial Park, No.4 Qianhai Road, Nanshan District, Shenzhen, 518054, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.3 dB

Conduction Uncertainty : Uc = 3.4dB

2. MEASURING DEVICE AND TEST EQUIPMENT

The following test equipments were used during test:

THE TOHOWINE	s test equipments w	cic uscu dui	ing test.		
Equipment	Manufacturer	Model #	Serial #	Data of Cal.	Due Data
EMI Test Receiver	Rohde & Schwarz	ESCI	100119	Mar.03, 2011	Mar.02, 2012
EMI Test Receiver	Rohde & Schwarz	ESIB26	100249	Sep.22, 2010	Sep.21, 2011
EMI Test Software	SHURPLE	ESK1	N/A	N/A	N/A
Spectrum Analyzer	Agilent	E7405A	MY45114970	Jun.21, 2011	Jun.20, 2012
Signal Generator	Rohde & Schwarz	SMR27	100124	Jul.06, 2010	Jul.05, 2012
Signal Generator	Rohde & Schwarz	SML03	102319	Aug.01, 2010	Aug.01, 2012
AC Power Source	Sepcial power system	YF650	N/A	N/A	N/A
Absorbing Clamp	Rohde & Schwarz	MDS21	100218	Apr.30, 2010	Apr.29, 2012
Power Meter	Rohde & Schwarz	NRVD	101287	Jul.19, 2009	Jul.18, 2011
Coaxial Cable	N/A	N/A	N/A	May.31, 2011	May.30, 2012
Coaxial Cable	N/A	N/A	N/A	May.31, 2011	May.30, 2012
Coaxial Cable	N/A	N/A	N/A	May.31, 2011	May.30, 2012
Universal radio					
Communication	Rohde & Schwarz	CMU200	101724	Sep.08, 2009	Sep.07, 2011
tester					
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	N/A	N/A	N/A
BiConilog Antenna	ETS-LINDGREN	3142C	00042670	Mar.03, 2011	Mar.02, 2012
BiConilog Antenna	ETS-LINDGREN	3142C	00042673	Mar.03, 2011	Mar.02, 2012
Loop Antenna	ETS-LINGREN	6502	00071730	Mar.03, 2011	Mar.02, 2012
Double-ridged	ETS-LINDGREN	3117	00035926	Dec.30, 2009	Dec.29, 2011
Waveguide horn	E15-LINDOKEN	3117	00033920	Dec.30, 2009	Dec.29, 2011
Double-ridged	ETS-LINDGREN	3117	00041545	Dec.30, 2009	Dec.29, 2011
Waveguide horn	E15-LINDOKEN	3117	00041545	Dec.30, 2009	Dec.29, 2011
Pre-amplifier	CD	PAM0203	804203	Jun.21, 2011	Jun.20, 2012
RF Switch	CD	RSU-M3	706543	Jun.21, 2011	Jun.20, 2012
Thermo-/Hygrometer	N/A	TH01	N/A	May.03, 2011	May.02, 2012
Shielding Room	Zhong Yu Electronic	N/A	N/A	N/A	N/A
3m Anechoic Chamber	Zhong Yu Electronic	N/A	N/A	Apr.28, 2010	Apr.27, 2012

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC Part 15, Paragraph 15.247

3.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	-	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

^{*} The digital circuit porting of the EUT has been tested and verified to comply with FCC Part 15, Subpart B., Class B Digital Devices and the associated Radio Receiver has also been tested and found to comply with FCC Part 15, Subpart B – Radio Receivers.

3.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode isprogrammed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1Mbps highest data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6Mbps data rate (the worst case) are chosen for the final testing.

IEEE802.11n HT20: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6.5Mbps data rate (the worst case) are chosen for the final testing.

3.3. List of channels:

√ - available

X - tested

Number	Frequency(MHz)	802.11 b/g/	n HT20
1	2412	√	X
2	2417	√	
3	2422	√	
4	2427	√	
5	2432	√	
6	2437	√	X
7	2442	√	
8	2447	√	
9	2452	√	
10	2457	√	
11	2462	√	X

4. Conducted Emission Test

4.1. Block Diagram of Test Setup

4.1.1. Block diagram of connection between the EUT and simulators

(EUT: Tablet)

4.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

4.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

EUT : Tablet Model Number : R70F400

Applicant : Nanjing Panda Information Industry Co., Ltd.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3. Let the EUT work in test mode (ON) and measure it.

4.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2009 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 4.6.

4.6. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

CONDUCTED EMISSION TEST DATA

EUT: Tablet M/N: R70F400

Operating Condition: On

Test Site: 1# Shielded Room

Operator: Well Wang

Test Specification: AC 120V/60Hz for Adapter

Comment: Live Line

Tem:25℃ Hum:50%

SCAN TABLE: "Voltage (150K~30M) FIN"
Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "AT1107695101 fin"

7/20/2011 4:21PM							
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.330000	48.40	10.1	60	11.1	QP	L1	GND
0.627000	43.70	10.1	56	12.3	QP	L1	GND
0.879000	41.70	10.1	56	14.3	ÕΡ	L1	GND
2.224500	39.80	10.3	56	16.2	ÕP	L1	GND
4.116000	36.80	10.5	56	19.2	ÕP	L1	GND
4.435500	37.70	10.5	56	18.3		L1	GND

MEASUREMENT RESULT: "AT1107695101 fin2"

7/20/2011 4: Frequency MHz	21PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.249000	16.20	10.1	52	35.6	AV	L1	GND
0.330000	30.80	10.1	50	18.7	AV	L1	GND
0.627000	27.20	10.1	46	18.8	AV	L1	GND
0.991500	25.90	10.2	46	20.1	AV	L1	GND
4.741500	27.30	10.5	46	18.7	AV	L1	GND
6.042000	23.50	10.5	50	26.5	AV	L1	GND

CONDUCTED EMISSION TEST DATA

EUT: Tablet M/N: R70F400

Operating Condition: On

Test Site: 1# Shielded Room

Operator: Well Wang

Test Specification: AC 120V/60Hz for Adapter

Comment: Neutral Line

Tem:25°C Hum:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "AT1107695102 fin"

7/	/20/2011 4:2 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.334500	46.10	10.1	59	13.2	QP	N	GND
	0.528000	41.10	10.1	56	14.9	QP	N	GND
	0.663000	41.90	10.1	56	14.1	QP	N	GND
	1.495500	39.40	10.3	56	16.6	QP	N	GND
	2.359500	37.40	10.3	56	18.6	QP	N	GND
	4.741500	36.50	10.5	56	19.5	OP	N	GND

MEASUREMENT RESULT: "AT1107695102 fin2"

25PM						
			_	Detector	Line	PΕ
dΒμV	dB	dΒμV	dB			
05 50	10 1	4.0	22.6	7		CHIE
25.50	10.1	49	23.6	AV	N	GND
23.50	10.1	46	22.8	AV	N	GND
22.70	10.1	46	23.3	AV	N	GND
21.00	10.3	46	25.0	AV	N	GND
24.20	10.5	46	21.8	AV	N	GND
21.00	10.6	50	29.0	AV	N	GND
	Level dBµV 25.50 23.50 22.70 21.00 24.20	Level Transd dBμV dB 25.50 10.1 23.50 10.1 22.70 10.1 21.00 10.3 24.20 10.5	Level Transd Limit dBμV dB dBμV 25.50 10.1 49 23.50 10.1 46 22.70 10.1 46 21.00 10.3 46 24.20 10.5 46	Level dBμV Transd dB dBμV Limit dBμV Margin dB 25.50 10.1 49 23.6 23.50 10.1 46 22.8 22.70 10.1 46 23.3 21.00 10.3 46 25.0 24.20 10.5 46 21.8	Level dBμV Transd dB dBμV Limit dB Margin dB Detector dB 25.50 10.1 49 23.6 AV 23.50 10.1 46 22.8 AV 22.70 10.1 46 23.3 AV 21.00 10.3 46 25.0 AV 24.20 10.5 46 21.8 AV	Level dBμV Transd dB dBμV Limit dB dB Margin dB Detector Line dB 25.50 10.1 49 23.6 AV N 23.50 10.1 46 22.8 AV N 22.70 10.1 46 23.3 AV N 21.00 10.3 46 25.0 AV N 24.20 10.5 46 21.8 AV N

5. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

5.1 Test Setup

5.2 6dB Bandwidth

a. Limt

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = RBW, Span = 50MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup

See 5.1

d. Test Results

Pass

e. Test Data

Test mode: IEEE 802.11b

Channel	Frequency	ncy Bandwidth		Results	
Chamiei	(MHz)	(MHz)	(kHz)	Results	
Low	2412	10.10		Pass	
Mid	2437	10.00	>500	Pass	
High	2462	10.00		Pass	
Test mode: IEEE 802.11g					
Channel	Frequency	Bandwidth	Limit	Results	
Chamiei	(MHz)	(MHz)	(kHz)	Results	
Low	2412	16.30		Pass	
Mid	2437	16.40	>500	Pass	
High	2462	16.60		Pass	
Test mode: IEEE 802.11n H	Γ20				
Channel	Frequency	Bandwidth	Limit	Results	
Chamiei	(MHz)	(MHz) (MHz) (kHz)		Results	
Low	2412	17.60		Pass	
Mid	2437	17.70	>500	Pass	
High	2462	17.70		Pass	

f. Test Plots

See the following page.

Test Mode: 802.11g---Mid

5.3 Maximum Peak output power test

a. Limt

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Oct 2007 KDB558074 for compliance to FCC 47CFR 15.247 requirements. For FCC §15.247(b) the power output was measured on the EUT using a 50 ohm SMA cable connected to peak power meter via power sensor. Peak output power was read directly from power meter. The test was performed at 3 channels (lowest, middle and highest).

d. Test Results

Pass

e. Test Data

Test mode: IEEE 802.11b

Γ	Champal	Frequency	Maximum tra	ansmit power	Li	mit	D agult
	Channel	(MHz)	(dBm)	(watts)	(dBm)	(watts)	Result
Γ	Low	2412	6.21	0.00418			Pass
Γ	Mid	2437	6.35	0.00432	30	1	Pass
	High	2462	5.44	0.00350			Pass

Test mode: IEEE 802.11g

Channal	Frequency	Maximum tra	ansmit power	Li	mit	Result
Channel	(MHz)	(dBm)	(watts)	(dBm)	(watts)	Resuit
Low	2412	3.53	0.00225			Pass
Mid	2437	6.12	0.00409	30	1	Pass
High	2462	4.24	0.00265			Pass

Test mode: IEEE 802.11n HT20

Chammal	Frequency	Maximum tra	ansmit power	Li	mit	Dogult
Channel	(MHz)	(dBm)	(watts)	(dBm)	(watts)	Result
Low	2412	8.83	0.00764			Pass
Mid	2437	9.58	0.00908	30	1	Pass
High	2462	8.79	0.00757			Pass

5.4 Band Edges Measurement

a. Limt

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Peak detector: RBW=100KHz, VBW=100KHz, SWT=AUTO Average detector: RBW=1MHz, VBW=10Hz, SWT=AUTO The EUT is tested in 9*6*6 Chamber.
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

c. Test Setup

d. Test Results

Pass

e. Test Data

Test mode: IEEE 802.11b

Channel	Restrict Freq. Band (MHz)	Detector Mode	Maximum level (dBμV/m)	Limit (dBm)	Margin (dB)
Low	2310~2390	PK	56.02	74	-17.98
		AV	40.50	54	-13.50
High	2483.5~2500	PK	56.70	74	-17.30
		AV	40.60	54	-13.60
Test mode: I	EEE 802.11g	•		•	•
Channel	Restrict Freq. Band	Detector Mode	Maximum level	Limit	Margin
	(MHz)		$(dB\mu V/m)$	(dBm)	(dB)
Low	2310~2390	PK	60.62	74	-13.38
		AV	44.00	54	-10.00
High	2483.5~2500	PK	63.60	74	-10.40
		AV	44.80	54	-9.20
Test mode: I	EEE 802.11n HT20				
Channel	Restrict Freq. Band	Detector Mode	Maximum level	Limit	Margin
	(MHz)		$(dB\mu V/m)$	(dBm)	(dB)
Low	2310~2390	PK	66.10	74	-7.90
		AV	48.60	54	-5.40
High	2483.5~2500	PK	65.34	74	-8.66
		AV	48.30	54	-5.70

f. Test Plots

See the following page.

5.5 Peak Power Spectral Density

a. Limt

- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5MHz, Sweep=500s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Setup

See 5.1

d. Test Results

Pass

e. Test Data

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	PPSD(average) (dBm)	$\sum PPSD$	Limit (dBm)	Margin (dB)	Result
T	` ,	, ,	(dBm)	(ubili)	,	D
Low	2412	-5.21	-		-13.21	Pass
Mid	2437	-4.45	-	8.00	-12.45	Pass
High	2462	-4.62	-		-12.62	Pass
Test mode: IEEE	802.11g					
Cl 1	Frequency	PPSD(average)	Σ PPSD	Limit	Margin	D14
Channel	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	Result
Low	2412	-7.57	-		-15.57	Pass
Mid	2437	-7.00	-	8.00	-15.00	Pass
High	2462	-6.07	-		-14.07	Pass
Test mode: IEEE	802.11n HT20					
Cl 1	Frequency	PPSD(average)	Σ PPSD	Limit	Margin	D14
Channel	(MHz)	(dBm)	(dBm)	(dBm)	(dB)	Result
Low	2412	-6.97	-2.17 *		-10.17	Pass
Mid	2437	-7.51	-2.71 *	8.00	-10.71	Pass
High	2462	-6.76	-1.96 *		-9.96	Pass

^{*} with 4.8dB correction factor

f. Test Plot

See the following pages

CH--Mid

CH--High

5.6 Radiated Emissions

5.6.1. Requirements (15.209 & 15.205):

5.6.1.1. Test Limits (< 30 MHZ)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)	
0.009 - 0.490 0.490 - 1.705	2400/F(kHz) 24000/F(kHz)	300 30	_
1.705 - 30.0	30	30	

5.6.1.2. Test Limits (\geq 30 MHZ)

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m @3M
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
$94 \text{ dB}\mu\text{V/m} @3\text{m}$	$54 \text{ dB}\mu\text{V/m} @3\text{m}$	ABOVE 960 MHz	54dBuV/m

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.6.2. Test Configuration:

5.6.2.1. 9k to 30MHz emissions:

5.6.2.2. 30M to 1G emissions:

5.6.2.3. 1G to 40G emissions:

5.6.3. Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber.

The test results are listed in Section 5.6.4.

5.6.4. Test Results

Below 30MHz

There is no emissions were detected below 30MHz

From 30MHz to 1 GHz

Operation Mode: Normal link
Test Date: May 04, 2011
Temperature: 25°C
Tested by: Rock Zeng
Humidity: 70 % RH
Polarity: Ver. / Hor.

mulity. 70	/U ICII					Tolarity. VC	1. / 1101.
Freq.	Ant.Pol.	Detector	Detector	Factor	Actual FS	Limit 3m	Safe
(MHz)	H/V	Mode	Mode	(dB)	(dBuV/m)	(dBuV/m)	Margin
		(PK/QP)	(PK/QP)				(dB)
166.650	V	Peak	53.40	-15.40	38.00	43.50	-5.50
333.686	V	Peak	53.93	-13.17	40.76	46.00	-5.24
399.166	V	Peak	49.39	-8.58	40.81	46.00	-5.19
421.020	V	Peak	49.40	-8.13	41.47	46.00	-4.73
490.000	V	Peak	47.46	-7.56	40.90	46.00	-6.10
638.180	V	Peak	44.33	-4.84	40.49	46.00	-6.51
142.050	Н	Peak	54.52	-16.59	37.93	43.50	-5.57
161.460	Н	Peak	55.42	-15.01	40.41	43.50	-3.09
178.950	Н	Peak	54.44	-14.78	39.66	43.50	-3.84
324.500	Н	Peak	51.42	-10.15	41.27	46.00	-4.73
330.666	Н	Peak	50.46	-9.87	41.59	46.00	-5.41
598.716	Н	Peak	45.62	-5.68	39.94	46.00	-6.06

Notes:

- 1. Measuring frequencies from 30 MHz to the 1GHz and the IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak/Quasi-peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Test Date: May 04, 2011

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low

Temperature: 25°C Tested by: Rock Zeng Humidity: 70 % RH Polarity: Ver. / Hor.

	Trummanty	. /0 /0	IXII							1 Oluli	ity. VCI.	/ 1101.
Item	Freq. (MHz)	Ant.Pol H/V	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Peak (dBuV/)	AV (dBuV/)	Peak Limit (dBuV/)	AV Limit (dBuV/)	Margin (dB)	Remark
1.	4824	Н	47.86	35.76	4.58	34.94	53.26		74.00	54.00	-20.74	Peak
2.	4824	Н	40.05	35.76	4.58	34.94		45.46	74.00	54.00	-8.54	AVG
3.	7240	Н	43.87	37.85	5.63	35.25	52.09		74.00			Peak
4.	9648	Н	43.61	39.39	6.34	35.70	53.64		74.00			Peak
5.	12060	Н										
6.	14472	Н										
7.	16884	Н										
8.	19296	Н										
9.	21708	Н										
10.	24120	Н										
Note:	An item 3	and 4 are	on un-rest	ricted band,	so the li	mit is -20c	lB for the fi	eld strength	of the fund	amental em	ission	
1.	4824	V	48.08	35.13	4.58	34.94		52.85	74.00	54.00	-1.15	AVG
2.	4824	V	52.06	35.13	4.58	34.94	56.83		74.00	54.00	-17.17	Peak
3.	7240	V	44.07	36.90	5.63	35.25	51.34		74.00			Peak
4.	9648	V	45.05	38.57	6.34	35.70	54.26		74.00			Peak
5.	12060	V										
6.	14472	V										
7.	16884	V										
8.	19296	V										
9.	21708	V										
10.	24120	V										

Note: An item 3 and 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

Operation Mode: TX / IEEE 802.11b / CH Mid

Test Date: May 04, 2011 Temperature: 25°C Tested by: Rock Zeng Humidity: 70 % RH Polarity: Ver. / Hor.

Item	Етоп	Amt Dol	Read	Antenna	Cable	Preamp	Le	vel	Dools Limis	ANT imit	Manain	
	Freq. (MHz)	Ant.Pol H/V	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Peak (dBuV/)	AV (dBuV/)	Peak Limit (dBuV/)	(dBuV/)	Margin (dB)	Remark
1.	4874	Н	41.19	35.83	4.61	34.93	(dDd 17)	46.70	74.00	54.00	-7.30	AVG
2.	4874	Н	48.76	35.83	4.61	34.93	54.28		74.00	54.00	-19.72	Peak
3.	7311	H	42.70	37.86	5.64	35.26	50.94		74.00	54.00	-3.06	Peak
4.	9748	Н	43.24	39.51	6.36	35.70	53.40		74.00	J4.00 	-5.00	Peak
5.	12185	Н										
		1										
6.	14622	Н										
7.	17059	Н										
8.	19496	Н										
9.	21933	Н										
10.	24370	Н										
Note:	An item 4	are on un	-restricted	band, so the	limit is	-20dB for	the field str	ength of the	e fundament	al emission		
1.	4874	V	48.00	35.18	4.61	34.93		52.87	74.00	54.00	-1.13	AVG
2.	4874	V	52.14	35.18	4.61	34.93	57.01		74.00	54.00	-16.99	Peak
3.	7311	V	43.32	36.92	5.64	35.26	50.62		74.00	54.00	-3.38	Peak
4.	9748	V	43.69	38.71	6.36	35.70	53.05		74.00			Peak
5.	12185	V										
6.	14622	V										
7.	17059	V										
8.	19496	V										
9.	21933	V										
10.	24370	V										

Operation Mode: TX / IEEE 802.11b / CH High

Test Date: May 04, 2011 Temperature: 25°C Tested by: Rock Zeng Humidity: 70 % RH Polarity: Ver. / Hor.

Item	Freq. (MHz)	Ant.Pol H/V	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Peak (dBuV/)	AV (dBuV/)	Peak Limi (dBuV/)	AV Limit (dBuV/)	Margin (dB)	Remark
1.	4924	Н	40.50	35.90	4.68	34.92		46.16	74.00	54.00	-7.84	AVG
2.	4924	Н	48.77	35.90	4.68	34.92	54.43		74.00	54.00	-19.57	Peak
3.	7386	Н	42.66	37.88	5.65	35.28	50.91		74.00	54.00	-3.09	Peak
4.	9848	Н	43.86	39.61	6.38	35.70	54.15		74.00			Peak
5.	12310	Н										
6.	14772	Н										
7.	17234	Н										
8.	19696	Н										
9.	22158	Н										
10.	24620	Н										
Note:	An item 4	are on ur	n-restricted	band, so the	e limit is	-20dB for	the field st	rength of the	e fundament	al emission		
1.	4924	V	51.81	35.23	4.68	34.92	56.80		74.00	54.00	-17.20	Peak
2.	4924	V	47.64	35.23	4.68	34.92		52.63	74.00	54.00	-1.37	AVG
3.	7386	V	43.40	36.96	5.65	35.28	50.73		74.00	54.00	-3.27	Peak
4.	9848	V	43.65	38.81	6.38	35.70	53.14		74.00			Peak
5.	12310	V										
6.	14772	V										
7.	17234	V										
8.	19696	V										
9.	22158	V										
10	24620	V										

Operation Mode: TX / IEEE 802.11g / CH Low

Test Date: May 04, 2011 Temperature: 25°C Tested by: Rock Zeng Humidity: 70 % RH Polarity: Ver. / Hor.

	Trainiaity	. /0 /0	1111							1 Oluli	117. 101.	/ 1101.
Item	Freq. (MHz)	Ant.Pol H/V	Read Level (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Peak (dBuV/)	vel AV (dBuV/)	Peak Limit (dBuV/)	AV Limit (dBuV/)	Margin (dB)	Remark
1.	4824	Н	46.12	35.76	4.58	34.94	51.52		74.00		-22.48	Peak
2.	4824	Н	31.17	35.76	4.58	34.94		36.57		54.00	-17.43	AVG
3.	7240	Н	43.17	37.85	5.63	35.25	51.40					Peak
4.	9648	Н	43.41	39.39	6.34	35.70	53.44					Peak
5.	12060	Н										
6.	14472	Н										
7.	16884	Н										
8.	19296	Н										
9.	21708	Н										
10.	24120	Н										
Note:	An item 3	and 4 are	on un-rest	ricted band,	so the li	mit is -20d	dB for the fi	ield strength	of the fund	amental em	ission	
1.	4824	V	34.70	35.13	4.58	34.94		39.48	74.00	54.00	-14.52	AVG
2.	4824	V	46.81	35.13	4.58	34.94	51.58		74.00	54.00	-22.42	Peak
3.	7240	V	43.70	36.90	5.63	35.25	50.97					Peak
4.	9648	V	43.27	38.59	6.34	35.70	52.50					Peak
5.	12060	V										
6.	14472	V										
7.	16884	V										
8.	19296	V										
9.	21708	V										
10	2/120	V										

Test Date: May 04, 2011

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 25°C Humidity: 70 % RH Tested by: Rock Zeng Polarity: Ver. / Hor.

Item		Read	Antenna	Cable	Preamp	Level		Dools Limis	iAV Limit	Margin		
	Freq. (MHz)	H/V	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Peak (dBuV/)	AV (dBuV/)	(dBuV/)	(dBuV/)	(dB)	Remark
1.	4874	Н	44.32	35.83	4.61	34.93	49.84			54.00	-4.16	Peak
2.	7311	Н	42.24	37.86	5.64	35.26	50.48			54.00	-3.52	Peak
3.	9748	Н	43.05	39.51	6.36	35.70	53.21					Peak
4.	12185	Н										
5.	14622	Н										
6.	17059	Н										
7.	19496	Н										
8.	21933	Н										
9.	24370	Н										
Maker	A i t 2			1	1::4:	204D for	41. a C a 1 d a4.		. C da	.1		

Note: An item 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

1.	4874	V	45.07	35.18	4.61	34.93	49.94	 	54.00	-4.06	Peak
2.	7311	V	43.68	36.92	5.64	35.26	50.98	 	54.00	-3.02	Peak
3.	9748	V	43.31	38.71	6.36	35.70	52.68	 			Peak
4.	12185	V						 			
5.	14622	V						 			
6.	17059	V						 			
7.	19496	V						 			
8.	21933	V						 			
9.	24370	V						 			

Note: An item 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

Operation Mode: TX / IEEE 802.11g / CH High

Test Date: May 04, 2011 Temperature: 25°C Tested by: Rock Zeng Humidity: 70 % RH Polarity: Ver. / Hor.

Read Cable Preamp Cable Cable Preamp Cable C	Trumdity. 70 70 KH												
2. 7386 H 42.05 37.88 5.65 35.28 50.30 54.00 -3.70 Peak 3. 9848 H 43.75 39.61 6.38 35.70 54.04 Peak 4. 12310 H	Item			Level	Factor	Loss	Factor	Peak	AV	Peak Limit (dBuV/)	AV Limit (dBuV/)	Margin (dB)	Remark
3. 9848 H 43.75 39.61 6.38 35.70 54.04	1.	4924	Н	42.74	35.90	4.68	34.92	48.40			54.00	-5.60	Peak
4. 12310 H	2.	7386	Н	42.05	37.88	5.65	35.28	50.30			54.00	-3.70	Peak
5. 14772 H	3.	9848	Н	43.75	39.61	6.38	35.70	54.04					Peak
6. 17234 H	4.	12310	Н										
7. 19696 H	5.	14772	Н										
8. 22158 H	6.	17234	Н										
9. 24620 H	7.	19696	Н										
Note: An item 4 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission 1.	8.	22158	Н										
1. 4924 V 44.05 35.23 4.68 34.92 49.04 54.00 -4.96 Peak 2. 7386 V 43.23 36.96 5.65 35.28 50.56 54.00 -3.44 Peak 3. 9848 V 43.18 38.81 6.38 35.70 52.67 Peak 4. 12310 V Peak 5. 14772 V 6. 17234 V 7. 19696 V 8. 22158 V	9.	24620	Н										
2. 7386 V 43.23 36.96 5.65 35.28 50.56 54.00 -3.44 Peak 3. 9848 V 43.18 38.81 6.38 35.70 52.67 Peak 4. 12310 V	Note:	An item 4	are on un	-restricted	band, so the	e limit is	-20dB for	the field str	rength of the	e fundament	al emission		
3. 9848 V 43.18 38.81 6.38 35.70 52.67 Peak 4. 12310 V -	1.	4924	V	44.05	35.23	4.68	34.92	49.04			54.00	-4.96	Peak
4. 12310 V <td>2.</td> <td>7386</td> <td>V</td> <td>43.23</td> <td>36.96</td> <td>5.65</td> <td>35.28</td> <td>50.56</td> <td></td> <td></td> <td>54.00</td> <td>-3.44</td> <td>Peak</td>	2.	7386	V	43.23	36.96	5.65	35.28	50.56			54.00	-3.44	Peak
5. 14772 V <td>3.</td> <td>9848</td> <td>V</td> <td>43.18</td> <td>38.81</td> <td>6.38</td> <td>35.70</td> <td>52.67</td> <td></td> <td></td> <td></td> <td></td> <td>Peak</td>	3.	9848	V	43.18	38.81	6.38	35.70	52.67					Peak
6. 17234 V	4.	12310	V										
7. 19696 V	5.	14772	V										
8. 22158 V	6.	17234	V										
	7.	19696	V					-					
9. 24620 V	8.	22158	V										
	9.	24620	V										

Test Date: May 04, 2011

Tested by: Rock Zeng

21708 24120

Operation Mode: TX / IEEE 802.11n HT20/ CH Low

Temperature: 25°C Humidity: 70 % RH

	Humidity: 70 % RH Polarity: Ver. / Hor.												
	lumidity:	/0 % F	KH	1	ı	,	1		1	Polarity	/: Ver. /	Hor.	
Item	Freq.	Ant.Pol	Read	Antenna	Cable	Preamp	Le	vel	Peak Limi	AV Limit	Margin		
	(MHz)	H/V	Level	Factor	Loss	Factor	Peak	AV	(dBuV/)	(dBuV/)	(dB)	Remark	
	(WITIZ)	11/ 1	(dBuV)	(dB)	(dB)	(dB)	(dBuV/)	(dBuV/)	(dDd V/)	(dDd V/)	(dD)		
1.	4824	Н	43.85	35.76	4.18	34.94	48.85			54.00	-5.15	Peak	
2.	7240	Н	42.09	37.85	5.43	35.25	50.11					Peak	
3.	9648	Н	42.86	39.39	6.71	35.70	53.25					Peak	
4.	12060	Н					-						
5.	14472	Н											
6.	16884	Н											
7.	19296	Н											
8.	21708	Н											
9.	24120	Н											
Note:	An item 2	and 3 are	on un-rest	ricted band,	so the li	mit is -20	dB for the f	ield strengtl	n of the fund	lamental em	ission		
1.	4824	V	43.12	35.13	4.18	34.94	47.49			54.00	-6.51	Peak	
2.	7240	V	42.30	36.90	5.43	35.25	49.37					Peak	
3.	9648	V	42.73	38.57	6.70	35.70	52.30					Peak	
4.	12060	V											
5.	14472	V											
6.	16884	V											
7.	19296	V											

Note: An item 2 and 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

Test Date: May 04, 2011

Tested by: Rock Zeng

21933 24370

Operation Mode: TX / IEEE 802.11n HT20/ CH Mid

Temperature: 25°C

	Tomperature of the Europe													
H	lumidity:	70 % F	RH							Polarity	: Ver. /	Hor.		
Item	Freq.	Ant.Pol	Read	Antenna	Cable	Preamp	Le	vel	Deak Limit	AV Limit	Margin			
	(MHz)	H/V	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Peak (dBuV/)	AV (dBuV/)	(dBuV/)		(dB)	Remark		
1.	4874	Н	44.59	35.83	4.16	34.93	49.65			54.00	-4.35	Peak		
2.	7311	Н	42.25	37.86	5.36	35.26	50.21			54.00		Peak		
3.	9748	Н	42.27	39.51	6.77	35.70	52.85					Peak		
4.	12185	Н					-							
5.	14622	Н					-							
6.	17059	Н			-									
7.	19496	Н					-							

Note: An item 2 and 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

1.	4874	V	43.32	35.18	4.16	34.93	47.73	 	54.00	-6.27	Peak
2.	7311	V	42.44	36.92	5.36	35.26	49.46	 	54.00	-4.54	Peak
3.	9748	V	42.80	38.71	6.77	35.70	52.58	 			Peak
4.	12185	V						 			
5.	14622	V						 			
6.	17059	V						 			
7.	19496	V						 			
8.	21933	V						 			
9.	24370	V						 			

Note: An item 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

Operation Mode: TX / IEEE 802.11n HT20/ CH High
Temperature: 25°C
Tested by: Rock Zeng

Humidity: 70 % RH

Polarity: Ver. / Hor.

Item		Ant.Pol	Read	Antenna	Cable	Preamp	Level		Dools I imit	AV Limit	Margin	
	(MHz)	H/V	Level (dBuV)	Factor (dB)	Loss (dB)	Factor (dB)	Peak	AV	(dBuV/)	(dBuV/)	(dB)	Remark
			` ′	` ′	` /	` ′	(dBuV/)	(dBuV/)				
1.	4924	Н	43.29	35.90	4.14	34.92	48.41			54.00	-5.59	Peak
2.	7386	Н	43.11	37.88	5.27	35.28	50.99			54.00	-3.01	Peak
3.	9848	Н	42.84	39.63	6.88	35.70	53.65					Peak
4.	12310	Н										
5.	14772	Н										
6.	17234	Н										
7.	19696	Н										
8.	22158	Н										
9.	24620	Н										
Note:	An item 3	are on un	-restricted	band, so the	limit is	-20dB for	the field str	ength of the	e fundament	al emission		
1.	4924	V	42.77	35.23	4.14	34.92	47.23			54.00	-6.77	Peak
2.	7386	V	42.60	36.96	5.27	35.28	49.55			54.00	-4.45	Peak
3.	9848	V	42.77	38.81	6.85	35.70	52.73					Peak
4.	12310	V										
5.	14772	V										
6.	17234	V										
7.	19696	V										
8.	22158	V										
9.	24620	V										

Note: An item 3 are on un-restricted band, so the limit is -20dB for the field strength of the fundamental emission

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shownin Actual FS column.
- 4. Spectrum setting:
- a. Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- b. AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms.
- 5. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.