Analyse

Chapitre 5 : Convolution

Lucie Le Briquer

30 novembre 2017

Table des matières

1	Introduction	1
2	Fonction maximale et applications 2.1 Deux théorèmes fondamentaux	6 6 7
3	Rappels du cours précédent 3.1 Définitions et théorème d'Hardy-Littlewood	10 10 12 14 16
1	Introduction	
	Théorème 1 (Young)	
	Soient $p, q, r \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Soit $f \in \mathcal{L}^p(\mathbb{R}^d)$ et $g \in \mathcal{L}^q(\mathbb{R}^d)$. Alors:	
	• L'intégrale $(f * g)(x) \int_{\mathbb{R}^d} f(x - y)g(y)dy$ converge pour presque tout $x \in \mathbb{R}^d$.	
	$\bullet \ \ f * g\ _{\mathcal{L}^r} \leqslant \ f\ _{\mathcal{L}^p} \ g\ _{\mathcal{L}^q}$	

Remarque. Pour p = 1, $||f * g||_{\mathcal{L}^q} \leq ||f||_{\mathcal{L}^1} ||g||_{\mathcal{L}^p}$

Preuve.

- 1. $r = +\infty \Rightarrow q = p'$ le conjugué de p, on conclut par Hölder.
- 2. $r=1 \implies p=q=1.$ On observe que :

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)| |g(y)| dy dx \underset{\text{Fubini}}{=} \left(\int_{\mathbb{R}^d} |f(z)| dz \right) \left(\int_{\mathbb{R}^d} |g(y)| dy \right) = \|f\|_{\mathcal{L}^1} \|g\|_{\mathcal{L}^1}$$

3. $1 < r < +\infty$, on pose r' tel que $\frac{1}{r} + \frac{1}{r'} = 1$ (exposant conjugué). Si f = 0 ou g = 0, c'est trivial. On peut supposer que $||f||_{\mathcal{L}^p} = ||g||_{\mathcal{L}^q} = 1$. Écrivons :

$$|f(x-y)||g(y)| = \varphi_x(y)\psi_x(y)$$
 avec
$$\begin{cases} \varphi_x(y) = |f(x-y)|^{p/r}|g(y)|^{q/r} \\ \psi_x(y) = |f(x-y)|^{1-\frac{p}{r}}|g(y)|^{1-\frac{q}{r}} \end{cases}$$

On a:

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \underbrace{|\varphi_x(y)|}_{=\varphi_x(y)\geqslant 0} {}^r dy dx = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)|^p |g(y)|^q dy dx = ||f||_{\mathcal{L}^p}^p ||g||_{\mathcal{L}^q}^q = 1$$

et,

$$|\psi_x(y)|^{r'} = |f(x-y)|^{pr'\left(\frac{1}{p} - \frac{1}{r}\right)} |g(y)|^{qr'\left(\frac{1}{q} - \frac{1}{r}\right)}$$

Soient s,t>0 tels que $\frac{1}{s}=r'\left(\frac{1}{p}-\frac{1}{r}\right)$ et $\frac{1}{t}=r'\left(\frac{1}{q}-\frac{1}{r}\right)$. Alors :

$$\frac{1}{s} + \frac{1}{t} = r'\left(\frac{1}{p} + \frac{1}{q} - 2\frac{1}{r}\right) = r'\left(1 - \frac{1}{r}\right) = 1$$

i.e. t est l'exposant conjugué de s. On peut donc appliquer l'inégalité de Hölder à x fixé :

$$\begin{split} \int_{\mathbb{R}^d} & |\psi_x(y)|^{r'} \leqslant \left(\int_{\mathbb{R}^d} |f(x-y)|^{pr'\left(\frac{1}{p}-\frac{1}{r}\right)s} dy \right) + \left(\int_{\mathbb{R}^d} |g(y)|^{qr'\left(\frac{1}{q}-\frac{1}{r}\right)t} dy \right) \\ & \leqslant \left(\int_{\mathbb{R}^d} |f(x-y)|^p dy \right) + \left(\int_{\mathbb{R}^d} |g(y)|^q dy \right) \quad \text{car } r'\left(\frac{1}{p|q} - \frac{1}{r}\right)(s|t) = 1 \\ & \leqslant \underbrace{\|f\|_{\mathcal{L}^p}^{p/s} \|g\|_{\mathcal{L}^q}^{q/t}}_{-1} = 1 \end{split}$$

Maintenant,

$$|(f * g)(x)| \leqslant \int_{\mathbb{R}^d} \varphi_x(y) \psi_x(y) dy \leqslant \left(\int_{\mathbb{R}^d} \varphi_x(y)^r dt \right)^{1/r} \underbrace{\left(\int_{\mathbb{R}^d} \psi_x(y)^{r'} dy \right)^{1/r'}}_{\leqslant 1}$$

 $\Rightarrow \ |(f*g)(x)|^r \leqslant \int_{\mathbb{R}^d} \varphi_x(y)^r dy.$ Ainsi :

$$||f * g||_{\mathcal{L}^r}^r \leqslant \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \varphi_x(y)^r dy dx \leqslant 1 = ||f||_{\mathcal{L}^p}^r ||g||_{\mathcal{L}^q}^r$$

Définition 1 (approximation de l'identité) -

Une approximation de l'identité est une suite $(\rho_n)_{n\in\mathbb{N}}\in(\mathcal{L}^1(\mathbb{R}^d))^{\mathbb{N}}$ telle que :

- 1. $\rho_n \geqslant 0$
- $2. \int_{\mathbb{R}^d} \rho_n dx = 1$
- 3. $\operatorname{supp}(\rho_n) \subseteq \overline{\mathcal{B}(0,1/n)}$
- 4. $\rho_n \in \mathcal{C}_0^{\infty}(\mathbb{R}^d)$

Exemple.

$$\rho(x) = \begin{cases} \exp\left(\frac{1}{|x|^2 - 1}\right) & \text{pour } |x| < 1\\ 0 & \text{pour } |x| \geqslant 1 \end{cases}$$

 $\rho \in \mathcal{C}_0^{\infty}(\mathbb{R}^d)$. On pose alors $\rho_n(x) = Cn^d\rho(nx)$, où $C = \frac{1}{\int_{\mathbb{R}^d} \rho(x)dx}$.

Théorème 2

- 1. Supposons que $f \in \mathcal{C}^0(\mathbb{R}^d)$. Alors $\rho_n * f$ converge vers f uniformément sur tout compact de \mathbb{R}^d .
- 2. Si $1 \leq p < +\infty$, alors $\rho_n * f \xrightarrow[n \to +\infty]{} f$ dans $\mathcal{L}^p(\mathbb{R}^d)$

Remarque. Si $f \in \mathcal{L}^{\infty}(\mathbb{R}^d)$ alors $\rho_n * f = \int \rho_n(x-y)f(y)dy$ est \mathcal{C}^{∞} (théorème de dérivation de Lebesgue, on choisit $f \in \mathcal{L}^{\infty}$ pour avoir la convergence dominée mais on pourrait prendre autre chose). Donc $\rho_n * f \xrightarrow[\|.\|_{\infty}]{} f$, $\Rightarrow f$ est \mathcal{C}^0 .

Preuve.

1. Soit K un compact de \mathbb{R}^d , f est uniformément continue sur K, d'où :

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ y \in \mathcal{B}(0, \delta), \ x \in K, \ |f(x - y) - f(x)| \leqslant \varepsilon$$

Donc

$$\begin{aligned} \left| (\rho_n * f)(x) f(x) \right| &= \left| \int_{\mathbb{R}^d} \rho_n(x - y) f(y) dy - f(x) \right| \\ &= \left| \int_{\mathbb{R}^d} \rho_n(y) f(x - y) dy - f(x) \right| & \text{car } * \text{ commutatif} \\ &= \left| \int_{\mathbb{R}^d} \rho_n(x) (f(x - y) - f(x)) dy \right| & \text{car } \int_{\mathbb{R}^d} \rho_n(x) dx = 1 \\ &\leqslant \int_{\overline{\mathcal{B}(0, 1/n)}} \rho_n(x) |f(x - y) - f(x)| dy & \text{car } \rho_n \geqslant 0, \text{ supp}(\rho_n) \subseteq \overline{\mathcal{B}(0, 1/n)} \end{aligned}$$

D'où,

$$\forall n \geqslant \frac{1}{\delta}, \ \left| (\rho_n * f)(x) - f(x) \right| \leqslant \int_{\overline{\mathcal{B}(0,1/n)}} \varepsilon \rho_n(y) dy = \varepsilon$$

2. Soit $f \in \mathcal{L}^p(\mathbb{R}^d)$ avec $1 \leqslant p < +\infty$. On rappelle que $\mathcal{C}^0_0(\mathbb{R}^d)$ est dense dans $\mathcal{L}^p(\mathbb{R}^d)$ $(1 \leqslant p < +\infty)$. Soit $\varepsilon > 0$, $\tilde{f} \in \mathcal{C}^0_0$ telle que $||f - \tilde{f}||_{\mathcal{L}^p} \leqslant \varepsilon$.

On va utiliser $\rho_n * \tilde{f} \longrightarrow \tilde{f}$ uniformément sur K, avec K compact, bien choisi.

$$\operatorname{supp}(\rho_n * \tilde{f}) = \sup_{\subset \overline{\mathcal{B}(0,1)}} (\rho_n) + \operatorname{supp}(\tilde{f})$$

On prend $K = \overline{\mathcal{B}(0,1)} + \operatorname{supp}(\tilde{f})$. Or :

$$\rho_n * f - f = \rho_n * \tilde{f} - \tilde{f} + \tilde{f} - f + \rho_n * (\tilde{f} - f)$$

D'où,

$$\|\rho_{n} * f - f\|_{\mathcal{L}^{p}(\mathbb{R}^{d})} \leq \|\rho_{n} * \tilde{f} - \tilde{f}\|_{\mathcal{L}^{p}(\mathbb{R}^{d})} + \|\tilde{f} - f\|_{\mathcal{L}^{p}(\mathbb{R}^{d})} + \|\rho_{n} * (f - \tilde{f})\|_{\mathcal{L}^{p}(\mathbb{R}^{d})}$$
$$\leq \|\rho_{n} * \tilde{f} - \tilde{f}\|_{\mathcal{L}^{p}(\mathbb{R}^{d})} + 2\|\tilde{f} - f\|_{\mathcal{L}^{p}(\mathbb{R}^{d})}$$

car l'inégalité de Young donne $\|\rho_n*(f-\tilde{f})\|_{\mathcal{L}^p(\mathbb{R}^d)} \leq \|f-\tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} \underbrace{\|\rho_n\|_{\mathcal{L}^1(\mathbb{R}^d)}}_{-1}$. De plus,

$$\|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} = \|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^p(K)} \leqslant |K|^{1/p} \|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^\infty(K)} \xrightarrow[n \to +\infty]{} 0$$

Corollaire 1

Soit $\Omega \in \mathbb{R}^d$ un ouvert. Alors $C_0^{\infty}(\Omega)$ est dense dans $\mathcal{L}^p(\Omega)$ pour $1 \leq p < +\infty$.

Preuve.

On pose:

$$\tilde{f}(x) = \left\{ \begin{array}{ll} f(x) & \text{si } x \in \Omega \\ 0 & \text{si } x \notin \Omega \end{array} \right. \quad \text{et} \quad K_n = \left\{ x \in \mathbb{R}^d \mid |x| \leqslant n \text{ et } \operatorname{dist}(x, \Omega^C) \geqslant \frac{2}{n} \right\}$$

 $(K_n)_{n\in\mathbb{N}}$ est une suite exhaustive de compacts (i.e. $K_n\subseteq \widehat{K_{n+1}}$ et $\bigcup_{n\in\mathbb{N}}K_n=\Omega$) On pose $g_n=\mathbbm{1}_{K_n}\widetilde{f},\ f_n=\rho_n*g_n$. Alors :

1.
$$\operatorname{supp}(f_n) \subset \overline{\mathcal{B}(0,1/n)} + K_n \subset \Omega$$

2.
$$f_n \in \mathcal{C}_0^{\infty}(\Omega)$$

De plus,

$$\begin{split} \|f_n - f\|_{\mathcal{L}^p(\Omega)} &= \|f_n - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} = \|\rho_n * g_n - \tilde{f}\|_{(\mathbb{R}^d)} \\ &\leq \|\rho_n * (g_n - \tilde{f})\|_{\mathcal{L}^p(\mathbb{R}^d)} + \|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} \\ &\leq \|g_n - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} + \|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} \end{split}$$

car par Young $\|\rho_n * (g_n - \tilde{f})\|_{\mathcal{L}^p(\mathbb{R}^d)} \leq \|\rho_n\|_{\mathcal{L}^1(\mathbb{R}^d)} \|g_n - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)}$.

Par le point 2 du théorème précédent, $\|\rho_n * \tilde{f} - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} \xrightarrow[n \to +\infty]{} 0$. De plus $\|g_n - \tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} = \|(\mathbb{1}_{K_n} - \mathbb{1}_{\Omega})\tilde{f}\|_{\mathcal{L}^p(\mathbb{R}^d)} \xrightarrow[n \to +\infty]{} 0$ par convergence dominée.

- Corollaire 2 —

Soit Ω un ouvert et $u \in \mathcal{L}^1_{loc}(\Omega)$. Alors :

$$\left[\forall f \in \mathcal{C}_0^{\infty}(\Omega), \int u f dx = 0\right] \Rightarrow u = 0$$

On a montré que $\int ugdx = 0$ pour $g \in \mathcal{L}^{\infty}(\Omega)$, avec $\operatorname{supp}(g) \subset K$ compact $\subset \Omega$. On pose $g_n = f_n * g$, alors $g_n \in \mathcal{C}_0^{\infty}(\Omega)$ donc $\int ug_n dx = 0$. $g \in \mathcal{L}^1(\Omega)$ car \mathcal{L}^{∞} , à support compact, alors $g_n \xrightarrow[n \to +\infty]{} g$ dans $\mathcal{L}^1(\Omega)$. Donc il existe une sous-suite qui converge presque partout vers g. Par convergence dominée $\int ugdx = 0$.

On applique avec $g_K=\mathrm{sgn}(u)$ sur K, 0 sinon, où K compact quelconque inclus dans $\Omega.$ On a donc $\int_K |u| dx = 0 \ \forall K,$ d'où u=0.

2 Fonction maximale et applications

2.1 Deux théorèmes fondamentaux

Premier théorème. Soit $(\rho_n)_{n\in\mathbb{N}}$ une approximation de l'identité et $f\in\mathcal{L}(\mathbb{R}^d)$, $p\in[1,+\infty[$. On a vu que $\rho_n*f\to f$ dans $\mathcal{L}^p(\mathbb{R}^d)$.

Remarque. Question. convergence ponctuelle? On peut converger dans \mathcal{L}^p mais pas simplement, on a par contre une sous-suite convergeant presque partout.

Bosses glissantes:

- Théorème 3

Pour presque tout $x \in \mathbb{R}^d$, $(\rho_n * f)(x) \xrightarrow[n \to +\infty]{} f(x)$.

Second théorème.

Théorème 4

Soit $d \geqslant 1$. Soient trois réels $p, q, \alpha > 0$ tels que $\frac{1}{p} = \frac{1}{q} + \frac{\alpha}{d}$, avec 1 . Alors :

$$\exists C>0 \text{ tel que } I_{\alpha}f(x)=\int_{\mathbb{R}^d}\frac{f(y)}{|x-y|^{d-\alpha}}dy \quad \text{v\'erifie } \|I_{\alpha}f\|_{\mathcal{L}^q}\leqslant C\|f\|_{\mathcal{L}^p}$$

Remarque. Si on avait $|x|^{-d} \in \mathcal{L}^1(\mathbb{R}^d)$ alors $x^{\alpha-d} \in \mathcal{L}^{d/(d-\alpha)}(\mathbb{R}^d)$ et ce théorème serait conséquence de Young. Mais on a une divergence logarithmique : $\int_{R>|x|>\varepsilon} |x|^{-d}dx$ diverge comme $\sum^N \frac{1}{n}$ ("cas critique").

Remarque.

- Principale difficulté : $|x|^{-d} \notin \mathcal{L}^1(\mathbb{R}^d)$
- \bullet Principaux outils : fonction maximale d'Hardy-Littlewood, espaces \mathcal{L}^p faibles

Définition 2 (fonction maximale d'Hardy-Littlewood) -

Soif $f: \mathbb{R}^d \to \mathbb{C}$, $x \in \mathbb{R}^d$. On définit la fonction maximale d'Hardy-Littlewood par :

$$M(f)(x) = \sum_{r>0} \frac{1}{|\mathcal{B}(x,r)|} \int_{\mathcal{B}(x,r)} |f(y)| dy$$

Remarque. On verra que $||M(f)||_{\mathcal{L}^p} \leqslant C_p ||f||_{\mathcal{L}^p}$ pour $p \in]1, +\infty]$.

- Trivial si $p=+\infty$
- Faux si p=1, en revanche $||M(f)||_{\mathcal{L}^1_w} \leqslant C||f||_{\mathcal{L}^1}$ pour un certain espace \mathcal{L}^1_w appelé " \mathcal{L}^1 faible".

2.2 Espaces \mathcal{L}^p faibles

Idée. Pour étudier f, on peut étudier ses ensembles de niveaux.

Notations. Pour $\lambda > 0$,

$$\begin{aligned} \{|f| > \lambda\} &:= \{x \in \mathbb{R}^d \mid |f(x)| > \lambda\} \\ \Big| \{|f| > \lambda\} \Big| &:= \text{mesure de Lebesgue de } \{|f| > \lambda\} \\ F(\lambda) &:= \Big| \{|f| > \lambda\} \Big| \end{aligned}$$

Lemme 1

$$||f||_p^p = p \int_0^{+\infty} \lambda^{p-1} F(\lambda) d\lambda$$

Preuve.

$$||f||_{\mathcal{L}^p}^p = \int_{\mathbb{R}^d} |f(x)|^p dx = \int_{\mathbb{R}^d} \int_0^{|f(x)|} p\lambda^{p-1} d\lambda dx$$
$$= \int_0^{+\infty} \int_{|f| > \lambda} p\lambda^{p-1} dx d\lambda$$
$$= \int_0^{+\infty} p\lambda^{p-1} \Big| \{|f| > \lambda\} \Big|$$

Lemme 2 (Chebyshev)

$$\forall p \in [1, +\infty[, \ \forall \lambda > 0, \ F(\lambda) \leqslant \lambda^{-p} \|f\|_{\mathcal{L}^p}^p$$

$$||f||_{\mathcal{L}^p}^p = \int_{\mathbb{R}^d} |f(x)|^p dx \geqslant \lambda^p \int_{|f| > \lambda} dx = \lambda^p F(\lambda)$$

Définition 3 (espace \mathcal{L}_w^p) —

Soit $p \in [1, +\infty]$, \mathcal{L}^p_w (\mathcal{L}^p faible) est l'ensemble des fonctions telles que :

$$||f||_{\mathcal{L}^p_w} := \sup_{\lambda > 0} \lambda f(\lambda)^{1/p} < +\infty$$

Remarque. Alors $\mathcal{L}^p(\mathbb{R}^d) \subseteq \mathcal{L}^p_{\omega}(\mathbb{R}^d)$ par Chebyshev. En revanche $\mathcal{L}^p_w \neq \mathcal{L}^p$ car $\frac{1}{|x|} \in \mathcal{L}^1_{\omega}(\mathbb{R})$ puique $\lambda \left| \left\{ \frac{1}{|x|} > \lambda \right\} \right| = \lambda^{\frac{2}{\lambda}} < +\infty$.

- **Théorème 5** (Hardy-Littlewood) –

1. Il existe une constante C_1 telle que :

$$\forall f \in \mathcal{L}^1(\mathbb{R}^d), \quad \|M(f)\|_{\mathcal{L}^1_\infty} \leqslant C_1 \|f\|_{\mathcal{L}^1}$$

2. $\forall p \in]1,+\infty], \, \exists C_p > 0$ telle que :

$$\forall f \in \mathcal{L}^p(\mathbb{R}^d), \quad \|M(f)\|_{\mathcal{L}^p} \leqslant C_p \|f\|_{\mathcal{L}^p}$$

Remarque. Si $M(f) \in \mathcal{L}^1$, alors f = 0. En effet, supposons $\int_{\mathcal{B}(0,1)} |f| dx > 0$ et soit $|x| \ge 1$, alors :

$$M(f)(x) \geqslant \frac{1}{|\mathcal{B}(x,2x)|} \int_{\mathcal{B}(x,2x)} |f| \geqslant \frac{1}{\mathcal{B}(x,2x)} \int_{\mathcal{B}(0,1)} |f| dx \geqslant \frac{C}{x^d} \notin \mathcal{L}^1$$

Preuve. (du théorème d'Hardy-Littlewood)

Se décompose en trois étapes :

- 1. $p = +\infty$
- 2. le point 1): $\mathcal{L}^1 \to \mathcal{L}^1_w$
- 3. interpolation

En détails,

- 1. $p = +\infty$: trivial car $M(f)(x) \leq ||f||_{\infty}$
- 2. On a le lemme suivant :

Lemme 3 (Vitali)

Soit $E \subseteq \mathbb{R}^d$ un ensemble mesurable, de mesure finie. Supposons que $E \subseteq \bigcup_{a \in A} B_a$, B_a boules ouvertes. Alors, il existe $J \subseteq A$ fini tel que $(B_a)_{a \in J}$ disjointes deux-à-deux, et :

 $\left| \bigcup_{a \in J} B_a \right| \geqslant \frac{|E|}{2 \times 3^d}$

On veut montrer que $\forall \lambda > 0$, $\lambda \Big| \{M(f) > \lambda\} \Big| \leq C_1 \|f\|_{\mathcal{L}^1}$. Fixons $\lambda > 0$. Introduisons $E \subset \{M(f) > \lambda\}$ mesurable, de mesure finie. Si $x \in E$:

$$M(f)(x) = \sup_{r>0} \frac{1}{|\mathcal{B}(x,r)|} \int_{\mathcal{B}(x,r)} |f(y)| dy > \lambda$$

Donc $\exists r_x$ tel que $\frac{1}{|\mathcal{B}(x,r_x)|} \int_{\mathcal{B}(x,r_x)} |f(y)| dy > \lambda$. Alors $E \subset \bigcup_{x \in E} \mathcal{B}(x,r_x)$ donc par Vitali, il existe $N \in \mathbb{N}$ et $x_1,...,x_N \in E$ tels que :

$$\left| \bigcup_{i=1}^{N} \underbrace{\mathcal{B}(x_i, r_{x_i})}_{\text{disjointes}} \right| \geqslant \frac{3^{-d}}{2} |E|$$

Or,

$$|\mathcal{B}(x_i, r_{x_i})| \leqslant \frac{1}{\lambda} \int_{\mathcal{B}(x_i, r_{x_i})} |f(y)| dy$$

Donc,

$$\frac{3^{-d}}{2}|E| \underset{\text{disj.}}{\leqslant} \sum_{i=1}^{N} \frac{1}{\lambda} \int_{\mathcal{B}(x_{i}, r_{x_{i}})} |f(y)| dy \underset{\text{disj.}}{\leqslant} \frac{1}{\lambda} \int_{\mathbb{R}^{d}} |f| dy$$

On prend le sup sur E:

$$\left| \{ M(f) > \lambda \} \right| \leqslant \frac{2 \times 3^d}{\lambda} \| f \|_{\mathcal{L}^1}$$

Preuve. (de Vitali)

Soit K compact, $\subset E$ tel que $|K| > \frac{1}{2}|E|$ (existe par régularité de la mesure de Lebesgue). Par compactié, $\exists I_1 \subset A$ fini tel $(B_a)_{a \in I_1}$ recouvre K. Soit B_1 une boule de rayon maximal parmi les $(B_a)_{a \in I_1}$, on pose alors :

$$I_2 = \{ a \in I_1 \mid B_a \cap B_1 = \emptyset \}$$

Soit B_2 de rayon maximal parmi B_a , $a \in I_2$, etc..

Cet algorithme finit, et génère $B_1, ..., B_N$ disjointes deux-à-deux. Soit $a \in I_1$ quelconque, ou bien $B_a \in \{B_1...B_N\}$, ou bien il existe i_0 minimal tel que $B_a \cap B_{i_0} \neq \emptyset$. Par construction, rayon $(B_a) \leq \text{rayon}(B_{i_0})$. Donc $B_a \subseteq 3B_{i_0}$ (boule de même centre que B_{i_0} et de rayon trois fois celui de B_{i_0}). D'où :

$$\frac{1}{2}|E| \leqslant |K| \leqslant \left| \bigcup_{a \in I_1} B_a \right| \leqslant \left| \bigcup_{i=1}^N 3B_i \right| \leqslant 3^d \left| \sum_{i=1}^N B_i \right| \stackrel{=}{\underset{\text{disj.}}{=}} 3^d \left| \bigcup_{i=1}^N B_i \right|$$

3. Cours suivant.

3 Rappels du cours précédent

3.1 Définitions et théorème d'Hardy-Littlewood

$$f : \mathbb{R}^d \longrightarrow \mathbb{C}, \ f \in L^1_{loc}(\mathbb{R}^d), \ x \in \mathbb{R}^d$$

1.

$$M(f)(x) = \sup_{r>0} \left\{ \frac{1}{|\mathcal{B}(x,r)|} \int_{\mathcal{B}(x,r)} |f(y)| dy \right\}$$

 $M(f): \mathbb{R}^d \longrightarrow \mathbb{R}^+$. A-t-on $M: L^p \longrightarrow L^p$? $f \mapsto M(f)$ pas linéaire.

Analyse harmonique. 3 cas : p = 1, 1

2. $\lambda > 0$,

$$\left|\{|f| > \lambda\}\right| = \text{mesure}\left\{x \in \mathbb{R}^d, |f(x)| > \lambda\right\}$$

$$||f||_{L^p}^p = p \int_0^{+\infty} \lambda^{p-1} \Big| \{|f| > \lambda\} \Big| d\lambda$$

$$(\|f\|_{L^p}^p=\int |f|^p dx=\int_{\mathbb{R}^d}\int_0^{|f(x)|}p\lambda^{p-1}d\lambda dx+ \text{ Fubini})$$

3.

$$\left| \{ |f| > \lambda \} \right| \leqslant \frac{1}{\lambda} ||f||_{L^{1}}$$

$$||f||_{L^{1}_{\mathcal{W}}} = \sup_{\lambda > 0} \lambda \left| \{ |f(x)| > \lambda \} \right|$$

$$|x|^{-d} \in L^1_{\mathcal{W}}(\mathbb{R}^d)$$

Analyse harmonique: divergence log.

4.

$$||M(f)||_{L^{\infty}} \leqslant ||f||_{L^{\infty}}$$

 $||M(f)||_{L^{1}} \leqslant C_{1}||f||_{L^{1}}$ Vitali

Théorème 6 (Hardy-Littlewood) ——

 $\forall p \in]1, +\infty], \ \exists C_p > 0 \text{ tel que } \forall f \in L^p(\mathbb{R}^d),$

$$||M(f)||_{L^p}\leqslant C_p||f||_{L^p}$$

 $p = \infty$ ok, $L^1 \longrightarrow L^1_{\mathcal{W}}$.

(i) Procédons par interpolation. Soit $f \in L^p(\mathbb{R}^d)$. Décomposons $f = f_1 + f_2 \in L^\infty$. On a une famille de décomposition : soit $\lambda > 0$,

$$f = \underbrace{f \times \mathbb{1}_{\{|f| > \frac{\lambda}{2}\}}}_{=f^{\lambda}} + \underbrace{f \times \mathbb{1}_{\{|f| \leqslant \frac{\lambda}{2}\}}}_{=f_{\lambda}}$$

On a $f_{\lambda} \in L^{\infty}$ et $f^{\lambda} \in L^{1}$. En effet :

$$||f^{\lambda}||_{L^{1}} = \int_{\{|f| > \frac{\lambda}{2}\}} |f| dx \le \int_{\mathbb{R}^{d}} |f|^{p} \left(\frac{\lambda}{2}\right)^{1-p} dx$$

(ii) $f \mapsto M(f)$ n'est pas linéaire. Mais sous-additif :

$$M(f_1 + f_2) \leq M(f_1) + M(f_2)$$

(iii):

$$||M(f)||_{L^p}^p = p \int_0^{+\infty} \lambda^{p-1} \Big| \{ |M(f)| > \lambda \} \Big| d\lambda$$

Or |M(f)| = M(f) donc :

$$||M(f)||_{L^p}^p = p \int_0^{+\infty} \lambda^{p-1} \Big| \{ M(f^{\lambda} + f_{\lambda}) > \lambda \} \Big| d\lambda$$

Or,

$$\left\{M(f^{\lambda}+f_{\lambda})>\lambda\right\}\subset \left\{M(f^{\lambda})>\frac{\lambda}{2}\right\}$$

car $|f_{\lambda} \leqslant \frac{\lambda}{2}|$ et $M(f^{\lambda} + f_{\lambda}) \leqslant M(f^{\lambda}) + M(f_{\lambda})$.

$$\begin{split} \|M(f)\|_{L^{p}}^{p} &\leqslant p \int_{0}^{+\infty} \lambda^{p-1} \Big| \{M(f^{\lambda}) > \frac{\lambda}{2} \} \Big| d\lambda \\ &\leqslant p \int_{0}^{+\infty} \lambda^{p-1} \frac{1}{\lambda/2} \|M(f^{\lambda})\|_{L_{\mathcal{W}}^{1}} d\lambda \quad \text{par d\'ef de } \|.\|_{L_{\mathcal{W}}^{1}} \\ &\leqslant 2pC_{1} \int_{0}^{+\infty} \lambda^{p-2} \|f^{\lambda}\|_{L^{1}} d\lambda \quad \text{Hardy-Littlewood } L_{\mathcal{W}}^{1} \\ &\leqslant 2pC_{1} \int_{0}^{+\infty} \lambda^{p-2} \int_{\{|f| > \frac{\lambda}{2}\}} |f|(x) dx d\lambda \\ &\leqslant 2pC_{1} \int_{\mathbb{R}^{d}} \left(\int_{0}^{2|f|} \lambda^{p-2} d\lambda \right) |f(x)| dx \\ &\leqslant 2pC_{1} \int_{\mathbb{R}^{d}} \left(\int_{0}^{2|f|} \lambda^{p-2} d\lambda \right) |f(x)|^{p} dx \\ &\leqslant 2pC_{1} \int_{\mathbb{R}^{d}} \left(\int_{0}^{2|f|} \lambda^{p-2} d\lambda \right) |f(x)|^{p} dx \\ &\leqslant 2pC_{1} \int_{\mathbb{R}^{d}} \left(\int_{0}^{2|f|} \lambda^{p-2} d\lambda \right) |f(x)|^{p} dx \\ &\leqslant C_{p}^{p} \|f\|_{L^{p}}^{p} \end{split}$$

3.2 Applications aux approximations de l'identité

Soit $\rho \colon \mathbb{R}^d \longrightarrow \mathbb{R}^+$ telle que :

- 1. $\operatorname{supp}(\rho) \subset \mathcal{B}(0,1), \, \rho \in \mathcal{C}_0^{\infty}(\mathcal{B}(0,1))$
- 2. radiale : $\rho(x) = \rho(y)$ si |x| = |y|
- 3. décroissante : $\rho(x) \leqslant \rho(y)$ si $x \leqslant y$
- 4. normalisée : $\int_{\mathbb{R}^d} \rho(x) dx = 1$

On pose $\rho_n(x) = n^d \rho(nx)$.

On a vu que si $1\leqslant p<+\infty$ alors :

$$\|\rho_n * f - f\|_{L^p} \xrightarrow[n \to +\infty]{} 0$$

Théorème 7 —

Soit $f \in L^p(\mathbb{R}^d)$, $1 \leq p > +\infty$. Alors :

$$\lim(\rho_n * f(x) - f(x)) = 0$$
 pour presque tout x

Preuve

Déjà vu si $f\in \mathcal{C}^0_0(\mathbb{R}^d)$ —> densité de $\mathcal{C}^0_0(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$.

– **Lemme 4** (clé) ———

Pour presque tout $x \in \mathbb{R}^d$, on a :

$$\sup_{n\in\mathbb{N}} |\rho_n * f(x)| \leqslant M(f)(x)$$

Notons que

1.
$$|\rho_n * f(x)| \leq \rho_n * |f|(x)$$

2.
$$M(f) = M(|f|)$$

On peut supposer que $f=|f|\geqslant 0.$ On peut écrire :

$$\rho(x) = \lim_{N \to +\infty} \rho^{(N)}(x)$$

où $\rho^{(N)}$ est de la forme $\sum_{p=1}^{N} a_p \mathbb{1}_{\mathcal{B}(0,r_p)}$.

Alors:

$$\rho_n^{(N)} * f(x) = n^d \int_{\mathbb{R}^d} \sum_{1}^{N} a_p \mathbb{1}_{\mathcal{B}(0, r_p)}(n(x - y)) f(y) dy$$

$$= n^d \sum_{1}^{N} a_p \int_{\mathcal{B}(x, r_p/n)} f(y) dy$$

$$\leqslant n^d \sum_{1}^{N} a_p \left| \mathcal{B}\left(x, \frac{r_p}{n}\right) \right| \times M(f)(x)$$

$$\leqslant \left(\sum_{1}^{N} a_p |\mathcal{B}(0, r_p)|\right) M(f)(x)$$

$$\leqslant \int_{1}^{N} \rho dx = 1$$

$$\leqslant M(f)(x)$$

Preuve. (du théorème)

On fait p = 1, 1 est analogue. Introduisons :

$$\theta(f)(x) = \limsup_{n \to +\infty} |\rho_n * f(x) - f(x)|$$

On montre que:

$$\forall \varepsilon > 0, \ \left| \{ \theta(f) > \varepsilon \} \right| = 0$$

 $\Rightarrow \rho_n * f \longrightarrow f$ presque partout.

Soit $g \in \mathcal{C}^0_0(\mathbb{R}^d)$. Alors $\theta(g) = 0$ et $\theta(f) = \theta(f - g)$.

$$\left\{\theta(f-g)>\varepsilon\right\}\subset \left\{|f-g|>\frac{\varepsilon}{2}\right\}\bigcup\left\{|\rho_n*(f-g)|>\frac{\varepsilon}{2}\right\}$$

Donc:

$$\begin{split} \left| \left\{ \theta(f-g) > \varepsilon \right\} \right| &\leqslant \left| \left\{ |f-g| > \frac{\varepsilon}{2} \right\} \right| + \left\{ M(f,g) > \frac{\varepsilon}{2} \right\} \\ &\leqslant \underbrace{\frac{2}{\varepsilon} \|f-g\|_{L^1}}_{\text{par Chebyshev}} + \underbrace{\frac{2}{\varepsilon} \|M(f-g)\|_{L^1_{\mathcal{W}}}}_{\text{def de } \|.\|_{L^1_{\mathcal{W}}}} \\ &\leqslant \frac{c}{\varepsilon} \|f-g\|_{L^1} \qquad \text{par Hardy-Littlewood} \end{split}$$

Donc:

$$\left| \left\{ \theta(f - g) > \varepsilon \right\} \right| \leqslant \inf_{g \in \mathcal{C}_0^0(\mathbb{R}^d)} \frac{c}{\varepsilon} \|f - g\|_{L^1} = 0$$

- Corollaire 3 (théorème de différentiation de Lebesgue)

Soit $f \in L^1(\mathbb{R}^d)$, alors pour presque tout $x \in \mathbb{R}^d$ on a :

$$f(x) = \lim_{t \to 0} \frac{1}{|\mathcal{B}(x,t)|} \int_{\mathcal{B}(x,t)} f(y) dy$$

Preuve.

$$\rho(y) = \frac{1}{|\mathcal{B}(0,1)|} \mathbb{1}_{\mathcal{B}(0,1)}(y)$$

3.3 Inégalité d'Hardy-Littlewood-Sobolev

On a vu (Young) que si $f \in L^p$, si $g \in L^q$ alors $f * g \in L^r$ avec $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$.

On va traiter un cas singulier : $g(x) = \frac{1}{|x|^{d-\alpha}}$ et voir $g \in L^q$ avec q tel que $q(d-\alpha) = d$.

$$|g|^q = \frac{1}{|x|^d}$$

On a:

$$\int_{\mathcal{B}(0,\varepsilon)} \frac{dx}{|x|^d} = |\log \varepsilon|$$

Étant donné $0 < \alpha < d$ on pose :

$$I_{\alpha}(f)(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x - y|^{d - \alpha}} dy$$

Théorème 8 (Hardy-Littlewood-Sobolev) -

Soient $p,q,\alpha>0$ tels que :

$$\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{d}, \quad 1$$

Alors,

$$||I_{\alpha}(f)||_{L^{q}} \leqslant C||f||_{L^{p}}$$

Remarque. Comme si Young vrai.

Preuve.

Singularité en 0 et $+\infty$ pour $|x|^{-d}$. On découpe :

$$I_{\alpha}(f) = I_{\alpha}^{R}(f) + I_{\alpha,R}(f), R > 0$$

On a, par définition,

$$I_{\alpha}^{R}(f)(x) = \int_{\mathbb{R}^{d} \backslash \mathcal{B}(x,R)} \frac{f(y)}{|x - y|^{d - x}} dy$$

 et

$$I_{\alpha,R}(f)(x) = \int_{\mathcal{B}(x,R)} \frac{f(y)}{|x-y|^{d-x}} dy$$

1. $I_{\alpha,R}(f)(x) = \psi_{\alpha,R} * f(x)$ où :

$$\psi_{\alpha,R}(x) = |x|^{\alpha - d} \mathbb{1}_{\mathcal{B}(0,R)}$$

Soit $\rho = \frac{1}{\|\psi_{\alpha,R}\|_{L^1}} \psi_{\alpha,R}$. Alors :

$$|\rho * f(x)| \le \sup_{n \in \mathbb{N}} |\rho_n * f(x)| \le M(f)(x)$$

Or,

$$\|\psi_{\alpha,R}\|_{L^1} = \int_{\mathcal{B}(0,R)} \frac{dx}{|x|^{d-\alpha}} = \int_0^R C_d \frac{r^{d-1}}{r^{d-\alpha}} dr$$
$$= C_d r^{\alpha}$$

Finalement,

$$|I_{\alpha,R}(f)(x)| \leqslant CR^{\alpha}M(f)(x)$$

2. Par ailleurs:

$$I_{\alpha}^{R}(f)(x) = \int_{\mathbb{R}^{d} \setminus \mathcal{B}(x,R)} \frac{f(y)}{|x - y|^{d - x}} dy$$

$$\leq \|f\|_{L^{p}} \left(\int_{\mathbb{R}^{d} \setminus \mathcal{B}(x,R)} \frac{dy}{|x - y|^{p'(d - \alpha)}} \right)^{\frac{1}{p'}}$$

$$\leq \|f\|_{L^{p}} \left(\int_{\mathbb{R}^{d} \setminus \mathcal{B}(0,R)} \frac{dy}{|y|^{p'(d - \alpha)}} \right)^{\frac{1}{p'}}$$

$$\leq \|f\|_{L^{p}} \left(\int_{R}^{+\infty} r^{d - 1 + p'(\alpha - d)} dr \right)^{\frac{1}{p'}} C$$

$$\leq C \|f\|_{L^{p}} \left(R^{d + p'(\alpha - d)} \right)^{\frac{1}{p'}}$$

$$\leq C \|f\|_{L^{p}} R^{\alpha - \frac{d}{p}}$$

On combine :

$$\forall x, |I_{\alpha}(f)(x)| \leq CR^{\alpha}M(f)(x) + CR^{\alpha - \frac{d}{p}}||f||_{L^{p}}$$

 \longrightarrow On peut supposer que $||f||_{L^p} = 1$.

$$\forall x, |I_{\alpha}(f)(x)| \leq CR^{\alpha}M(f)(x) + CR^{\alpha - \frac{d}{p}}$$

On choisit R tel que :

$$M(f)(x) = R^{-\frac{d}{p}}$$

Alors:

$$|I_{\alpha}(f)(x)| \leq 2C(M(f)(x))^{\beta}$$

Donc,

$$|I_{\alpha}(f)(x)|^q \leqslant C'|M(f)(x)|^p$$

par hypothèse sur p, q, α , on a $q\beta = p$.

3.4 Application aux injections de Sobolev

On a vu que si $\Omega \subset$ une bande alors :

$$\forall u \in \mathcal{H}_0^1(\Omega), \ \|u\|_{L^2(\Omega)} \leqslant C \|\nabla u\|_{L^2(\Omega)}$$

On va étudier $||u||_{L^q(\Omega)} \leq C||\nabla u||_{L^p(\Omega)}$.

Cas où $\Omega = \mathbb{R}^d$.

$$\mathcal{H}^1_0(\mathbb{R}^d) = \mathcal{H}^1(\mathbb{R}^d)$$
. Autrement dit :

$$\mathcal{C}_0^{\infty}(\mathbb{R}^d)$$
 est dense dans $\mathcal{H}^1(\mathbb{R}^d)$

Soit $u \in \mathcal{H}^1(\mathbb{R}^d)$. On introduit :

$$u_n(x) = \chi\left(\frac{x}{n}\right)(\rho_n * u)(x)$$
 $\chi = 1 \text{ sur } \mathcal{B}(0,1), \ \chi \in \mathcal{C}_0^{\infty}$

On sait que:

- $\rho_n * u \in \mathcal{C}^{\infty}$ (Lebesgue)
- $\rho_n * u \longrightarrow u \text{ dans } L^2$
- $\chi_n(\rho_n * u) \longrightarrow u$ dans L^2 (Lebesgue)

On a:

$$\int (\rho * u)\partial_j \varphi dx = \int \int \rho(x - y)u(y)(\partial_j \varphi)(x)dydx$$
$$= \int u(\theta * \partial_j \varphi)dy \quad \text{avec } \theta(x) = \rho(-x)$$

Or $\theta * \partial_j \varphi = \partial_j (\theta * \varphi)$.

$$\int (\rho * u)\partial_j \varphi dx = \int u(\theta * \partial_j \varphi) dy$$
$$= -\int (\partial_j u)(\theta * \varphi)$$
$$= -\int (\rho * \partial_j u)\varphi \longrightarrow \rho * u \in \mathcal{H}^1$$

et $\partial_i(\rho * u) = \rho * (\partial_i u)$. On veut montrer que :

$$\|\nabla(u_n-u)\|_{L^2}\longrightarrow 0$$

$$\partial_j(u_n - u) = \partial_j \left(\chi \left(\frac{x}{n} \right) (\rho_n * u) - u \right)$$

= ... + ... ok

Remarque. Donc $\mathcal{H}^1_0(\mathbb{R}^d) = \mathcal{H}^1(\mathbb{R}^d)$ mais on n'a pas l'inégalité de Poincaré $\|u\|_{L^2(\mathbb{R}^d)} \leq C\|\nabla u\|_{L^2(\mathbb{R}^d)}$. Introduisons $u_{\lambda}(x) = u(\lambda x)$.

Supposons $||u_{\lambda}||_{L^q} \leqslant C||\nabla u||_{L^p}$ alors :

$$||u_{\lambda}||_{L^{q}}^{q} = \int |u(\lambda x)|^{q} dx = \lambda^{-d} ||u||_{L^{q}}^{q}$$

$$\|\nabla u_{\lambda}\|_{L^{p}}^{p} = \lambda^{p-d} \|u\|_{L^{p}}^{p}$$

Si c'est vrai alors $\lambda^{-\frac{d}{q}} \leqslant C\lambda^{\frac{p-d}{p}} \ \forall \lambda$.

$$\Rightarrow -\frac{1}{q} = \frac{p-d}{dp}$$
 donc $q = \frac{pd}{d-p}$

Ainsi $q \neq 2$ si p = 2.

- Théorème 9 (Sobolev) ————

Soit $d \geqslant 2$, $1 . Alors <math>\exists C_p > 0$, tel que $\forall u \in \mathcal{C}_0^{\infty}(\mathbb{R}^d)$:

$$||u||_{L^{\frac{pd}{d-p}}} = C_p ||\nabla u||_{L^p}$$

Remarque. Vrai pour $u \in \mathcal{W}^{1,p}(\mathbb{R}^d)$ par densité.

Preuve.

Comme pour l'inégalité de Poincaré dans une bande.

$$u(x',x_n) = \int_{-R}^{x_n} (\partial_{x_n} u)(x',y) dy$$

Formule de représentation :

$$u(x) = \frac{1}{|S^{d-1}|} \int_{\mathbb{R}^d} \frac{(x-y)}{|x-y|^d} \cdot \nabla u(y) dy$$

cf Notes de cours.

Application de Hardy-Littlewood-Sobolev avec $\frac{1}{|x-y|^{d-\alpha}}$ pour $\alpha=1.$