CHARACTER TABLES FOR LINEAR POINT GROUPS

Character table for $C_{\infty v}$ point group

	E	$2\mathrm{C}_{\infty}$	•••	∞ & σ _v	Linear Functions, Rotations	Quadratic
$A_1=\Sigma^+$	1	1		1	Z	x^2+y^2, z^2
$A_2=\Sigma^-$	1	1		-1	R_z	
$E_1=\Pi$	2	2cos(Φ)		0	$(x, y) (R_x, R_y)$	(xz, yz)
$E_2=\Delta$	2	2cos(2φ)		0		(x^2-y^2, xy)
E ₃ =Ф	2	2cos(3φ)		0		
•••						

Character table for $D_{\infty h}$ point group

	E	2 C∞	•••	∞ σ_{v}	i	$2S_{\infty}$	•••	∞C' ₂	Linear Functions, Rotations	Quadratic
$A_{1g}=\Sigma_{g}^{+}$	1	1		1	1	1		1		x^2+y^2, z^2
$A_{2g}=\Sigma_{g}$	1	1	•••	-1	1	1		-1	R_z	
$E_{1g}=\Pi_{g}$	2	2cos(φ)		0	2	-2cos(φ)		0	(R_x, R_y)	(xz, yz)
$E_{2g}=\Delta_g$	2	2cos(2φ)		0	2	2cos(2φ)		0		(x^2-y^2, xy)
$E_{3g}=\Phi_g$	2	2cos(3φ)		0	2	-2cos(3φ)		0		
•••	•••	•••	•••	•••		•••		•••		
$A_{1u}=\Sigma_{u}^{+}$	1	1		1	-1	-1		-1	z	
$A_{2u}=\Sigma_u$	1	1	•••	-1	-1	-1		1		
$E_{1u}=\Pi_u$	2	2cos(φ)		0	-2	2cos(φ)		0	(x, y)	
$E_{2u}=\Delta_u$	2	2cos(2φ)		0	-2	-2cos(2φ)		0		
$E_{3u}=\Phi_u$	2	2cos(3φ)		0	-2	2cos(3φ)		0		
•••	•••		•••			•••				