Matrix Theory(EE5609) Assignment 9

Anshum Agrawal Roll No- AI20MTECH11006

Abstract—Given AB = -BA, this documents finds value of trace(A) and trace(B).

Download latex-tikz codes from

https://github.com/anshum0302/EE5609/blob/master/assignment9a/assign9.tex

1 PROBLEM STATEMENT

Let A and B be real invertible matrices such that

$$\mathbf{AB} = -\mathbf{BA}.\tag{1.0.1}$$

Then

- 1) $trace \mathbf{A} = trace(\mathbf{B}) = 0$
- 2) $trace \mathbf{A} = trace(\mathbf{B}) = 1$
- 3) trace $\mathbf{A} = 0$, trace $(\mathbf{B}) = 1$
- 4) $trace(\mathbf{A}) = 1$, $trace(\mathbf{B}) = 0$

Solution:

Definition	Matrix A is said to be similar to matrix B if there exists matrix P such that $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$
Properties	Similar matrices have same eigenvalues Sum of eigenvalue of a matrix equals its trace

TABLE 1: Similar matrices and Properties

	From $(1.0.1)$ we have $\mathbf{AB} = -\mathbf{BA}$ or
$trace(\mathbf{A}) = 0$ $trace(\mathbf{B}) = 0$	$A = B(-A)B^{-1}$. So, matrix A and (-A) are similar. From properties of similar matrices their eigenvalues are same. Also sum of eigenvalue = trace of matrix. Therefore trace(A) = trace(-A) or trace(A) = -trace(A) or trace(A) = 0. Similarly we can write $B = A(-B)A^{-1}$. So, matrix B and (-B) are similar. Therefore similar to trace(A), trace(B) = 0. So this statement is true
$trace(\mathbf{A}) = 1$ $trace(\mathbf{B}) = 1$	From $(1.0.1)$ we have \mathbf{AB} =- \mathbf{BA} or $\mathbf{A} = \mathbf{B}(-\mathbf{A})\mathbf{B}^{-1}$. So, matrix \mathbf{A} and $(-\mathbf{A})$ are similar. From properties of similar matrices their eigenvalues are same. Also sum of eigenvalue = trace of matrix. Therefore trace (\mathbf{A}) = trace $(-\mathbf{A})$ or trace $(-\mathbf{A})$ or trace $(-\mathbf{A})$ or trace $(-\mathbf{A})$ = 0. As trace $(-\mathbf{A})$ = 0 this statement is false
$trace(\mathbf{A}) = 0$ $trace(\mathbf{B}) = 1$	From (1.0.1) we have \mathbf{AB} =- \mathbf{BA} or $\mathbf{B} = \mathbf{A}(-\mathbf{B})\mathbf{A}^{-1}$. So, matrix \mathbf{B} and (- \mathbf{B}) are similar. From properties of similar matrices their eigenvalues are same. Also sum of eigenvalue = trace of matrix. Therefore trace(\mathbf{B}) = trace(\mathbf{B}) or trace(\mathbf{B}) = -trace(\mathbf{B}) or trace(\mathbf{B}) = 0. As trace(\mathbf{B}) = 0 this statement is false
$trace(\mathbf{A}) = 1$ $trace(\mathbf{B}) = 0$	From (1.0.1) we have \mathbf{AB} =- \mathbf{BA} or $\mathbf{A} = \mathbf{B}(-\mathbf{A})\mathbf{B}^{-1}$. So, matrix \mathbf{A} and (- \mathbf{A}) are similar. From properties of similar matrices their eigenvalues are same. Also sum of eigenvalue = trace of matrix. Therefore trace(\mathbf{A}) = trace(\mathbf{A}) or trace(\mathbf{A}) = -trace(\mathbf{A}) or trace(\mathbf{A}) = 0. As trace(\mathbf{A}) = 0 this statement is false

TABLE 2: Calculation of trace