Licence 1ere année Mathématiques et calcul 1er semestre

Lionel Moisan

Université Paris Descartes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

Nombres complexes et polynômes

Nombres complexes et polynômes

1. Nombres complexes et polynômes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

2

Nombres complexes et polynômes

Nombres complexes et polynômes

Nombres complexes et polynômes

- Introduction
- Opérations sur C
- Deux formules à connaître
- Les nombres complexes représentés dans le plan
- Représentation de l'addition des complexes
- Conjugaison
- Module d'un nombre complexe
- Lieux géométriques simples
- Racines carrées des nombres complexes
- L'équation du second degré
- Argument
- Écriture trigonométrique des nombres complexes
- Représentation de la multiplication
- Représentation de la division
- Formule de Moivre
- Exponentielle complexe
- Racines des nombres complexes
- Trigonométrie
- Polynômes
- Racines et factorisation
- Le théorème fondamental de l'algèbre

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

Nombres complexes et polynômes

Introduction

Pourquoi les nombres complexes?

Indispensables, notamment via l'analyse de Fourier, en :

- physique (mécanique des fluides, mécanique quantique, cosmologie)
- traitement du signal
- probabilités et statistiques
- traitement des images (algorithmes de Snapshat, Instagram, Photoshop, etc...)
- **.** . . .

Historique

Introduits au XVIe siècle par Cardan, Bombelli, ... comme un artifice pour résoudre l'équation du 3e degré.

Exemple: Pour résoudre l'équation

$$x^3 - 7x + 6 = 0$$

les formules générales imposent de résoudre d'abord

$$x^2 + 6x + \frac{343}{27} = 0$$

dont le discriminant $\Delta = 6^2 - 4.\frac{343}{27} = \frac{-400}{27}$ est négatif! L'introduction du nombre "imaginaire" $\sqrt{\Delta}$ (dont le carré est négatif) permet alors de continuer formellement les calculs, qui aboutissent ensuite à des solutions (1,2,-3) toutes réelles!

Artifice "magique" à l'époque, aujourd'hui notion bien comprise.

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

6

Nombres complexes et polynômes

Introduction

On définit formellement le nombre imaginaire i comme une racine carrée de -1 : $i^2 = -1$

On définit l'ensemble des nombres complexes comme :

$$\mathbb{C} = \{ z = x + iy \quad , \quad x, y \in \mathbb{R} \}$$

- ightharpoonup x est la partie réelle de z, notée : x = Re(z)
- ightharpoonup y est la partie imaginaire de z, notée : y = Im(z)

$$ightharpoonup z = x + iy = 0 \iff x = y = 0$$

$$ightharpoonup z + z' = (x + iy) + (x' + iy') = x + x' + i(y + y')$$

$$zz' = zz' = (x + iy)(x' + iy') = xx' - yy' + i(xy' + x'y)$$

$$> x + iy = x' + iy' \Leftrightarrow x = x' \text{ et } y = y'$$

$$(x + iy)(x - iy) = x^2 + y^2$$

► Si
$$x + iy \neq 0$$
: $\frac{1}{x + iy} = \frac{x - iy}{x^2 + y^2} = \frac{x}{x^2 + y^2} + i \frac{-y}{x^2 + y^2}$

... donc
$$\frac{x'+iy'}{x+iy} = \frac{(x'+iy')(x-iy)}{x^2+y^2} = \frac{xx'+yy'}{x^2+y^2} + i\frac{xy'-x'y}{x^2+y^2}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

8

Nombres complexes et polynômes

Opérations sur C

Exercices

Mettre les nombres complexes suivants sous la forme x + iy avec $x, y \in \mathbb{R}$.

1.
$$(5+6i)+(3-2i)$$

6.
$$i^3$$

2.
$$(4-\frac{1}{2}i)-(3-\frac{5}{2}i)$$

7.
$$i^4$$

3.
$$(3+2i)(5-3i)$$

8.
$$\frac{1}{2+3i}$$

4.
$$(1-\frac{i}{3})(2+6i)$$

9.
$$\frac{2+2i}{2-i}$$

5.
$$2(4+i)$$

10.
$$\frac{3-5i}{3+2i}$$

Somme de puissances

Pour tous $a, b \in \mathbb{C}$ et tout entier $n \neq 0$;

$$b^{n+1} - a^{n+1} = (b-a)(b^n + b^{n-1}a + b^{n-2}a^2 + \dots + b^1a^{n-1} + a^n)$$

= $(b-a)\sum_{k=0}^n b^{n-k}a^k = (b-a)\sum_{k=0}^n b^ka^{n-k}$
avec $a^0 = b^0 = 1$.

$$n = 0$$
: $b - a = (b - a) \times 1$

$$n=1$$
: $b^2-a^2=(b-a)(b+a)$

$$n = 1$$
: $b^2 - a^2 = (b - a)(b + a)$
 $n = 2$: $b^3 - a^3 = (b - a)(b^2 + ab + a^2)$

Conséquence : pour tout $z \in \mathbb{C}$ et tout $n \ge 0$,

$$z^{n+1}-1=(z-1)(1+z+z^2+\cdots+z^n)$$

et donc, si $z \neq 1$,

$$1+z+z^2+\cdots+z^n=\frac{1-z^{n+1}}{1-z}.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

10

Nombres complexes et polynômes

Deux formules à connaître

Somme de puissances : démonstration

Pour tous $a, b \in \mathbb{C}$ et tout entier $n \neq 0$;

 $= b^{n+1} - a^{n+1}$

$$b^{n+1}-a^{n+1} = (b-a)(b^n+b^{n-1}a+b^{n-2}a^2+\cdots+b^1a^{n-1}+a^n)$$

Posons
$$S = b^{n} + b^{n-1}a + b^{n-2}a^{2} + \cdots + b^{1}a^{n-1} + a^{n}$$
. On a :

$$(b-a)S = bS-Sa$$

= $(b^{n+1} + b^n a + b^{n-1} a^2 + \dots + ba^n)$
 $-(b^n a + b^{n-1} a^2 + \dots + ba^n + a^{n+1})$

Le binôme de Newton

Pour tous nombres complexes a et b et tout nombre entier $n \neq 0$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

avec $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ et $k! = 1 \times 2 \times \cdots \times k$.

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6$$

Exercice: Soit z = 2 - i. Mettre z^4 , puis $1 + z + z^2 + z^3$ sous la forme x + iy, avec $x, y \in \mathbb{R}$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

12

Nombres complexes et polynômes

Les nombres complexes représentés dans le plan

Soit $z = a + ib \in \mathbb{C}$.

Le nombre complexe z s'appelle l'affixe du point M de coordonnées (a,b) dans le plan.

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

14

Nombres complexes et polynômes

Représentation de l'addition des complexes

Soit $z = x + iy \in \mathbb{C}$.

On appelle nombre complexe conjugué de z, le nombre :

$$\bar{z} = x - iy$$

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

16

Nombres complexes et polynômes

Conjugaison

Conjugué : règles de calcul

$$z = x + iy$$
 $\bar{z} = x - iy$

▶
$$Re(\bar{z}) = Re(z)$$
 et $Im(\bar{z}) = -Im(z)$

►
$$Re(z) = \frac{1}{2}(z + \bar{z})$$
 et $Im(z) = \frac{1}{2i}(z - \bar{z})$

$$ightharpoonup z \in \mathbb{R} \iff z = \bar{z}$$

$$ightharpoonup z \in i \mathbb{R} \iff z + \bar{z} = 0$$

$$\overline{(z_1+z_2)} = \overline{z_1} + \overline{z_2}, \quad \overline{(\overline{z})} = z, \quad \overline{(z_1z_2)} = \overline{z_1z_2}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \quad \overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$$

Exercice : a) Calculer $\overline{2+3i}$. b) Résoudre $z+2\overline{z}=0$.

On appelle module du nombre complexe z, le nombre réel :

$$|z| = \sqrt{z\bar{z}} = \sqrt{x^2 + y^2}$$

- ► $|z| = |-z| = |\bar{z}|, |x| \le |z|, |y| \le |z|$
- $|z| = 0 \Leftrightarrow z = 0$
- ightharpoonup |zz'| = |z||z'|; |1/z| = 1/|z|; |z/z'| = |z|/|z'|
- $|z+z'| \leq |z| + |z'|$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

18

Nombres complexes et polynômes

Module d'un nombre complexe

On considère le plan complexe, muni d'un repère orthonormé.

Proposition : Soient $z_0 \in \mathbb{C}$ et $r \ge 0$. L'ensemble des points d'affixe z vérifiant l'équation

$$|z-z_0|=r$$

est le cercle de centre Ω (d'affixe z_0) et de rayon r.

Proposition : Soient $a, b \in \mathbb{C}$. L'ensemble des points d'affixe z vérifiant l'équation

$$|z - a| = |z - b|$$

est la médiatrice du segment [AB], où A et B sont les points d'affixes a et b respectivement.

Proposition : Soient $a \in \mathbb{C}^*$ et $\alpha \in \mathbb{R}$. L'ensemble des points d'affixe z vérifiant l'équation

$$Re(az) = \alpha$$

est une droite (qui passe par le point d'affixe α/a).

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

20

Nombres complexes et polynômes

Racines carrées des nombres complexes

Proposition: Tout nombre complexe a deux racines carrées opposées.

Exemple: trouver les racines carrées de 3 + 4 i

On cherche z = x + iy tel que $z^2 = 3 + 4i$

$$(x+iy)^2 = x^2 - y^2 + 2ixy = 3 + 4i$$

$$|z|^2 = x^2 + y^2 = \sqrt{3^2 + 4^2} = 5$$

x et y sont donc solutions du système :

$$\begin{cases} x^2 - y^2 &= 3 \\ 2xy &= 4 \\ x^2 + y^2 &= 5 \end{cases}$$

D'où les deux solutions : (x, y) = (2, 1) et (x, y) = (-2, -1)

Pour trouver les racines d'un nombre complexe a + ib,

on pose :
$$(x + iy)^2 = a + ib$$

$$(x+iy)^2 = x^2 - y^2 + 2ixy = a+ib$$

$$|z|^2 = x^2 + y^2 = \sqrt{a^2 + b^2}$$

x et y sont donc solutions du système :

$$\begin{cases} x^{2} - y^{2} &= a & (1) \\ 2xy &= b & (2) \\ x^{2} + y^{2} &= \sqrt{a^{2} + b^{2}} & (3) \end{cases}$$

Les équations (1) et (3) permettent de calculer x^2 et y^2 L'équation (2) permet de trouver le signe de x et y (2 solutions possibles)

Exercice: Trouver les racines carrées des nombres complexes 4 + 3i et -4.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

22

Nombres complexes et polynômes

L'équation du second degré

$$az^2 + bz + c = 0$$
, $a \neq 0$, b , $c \in \mathbb{C}$

$$az^{2} + bz + c = a\left(z^{2} + \frac{b}{a}z + \frac{c}{a}\right) = 0$$

$$= a\left[\left(z + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = 0$$

$$= a\left[\left(z + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right] = 0$$

Les racines sont donc les nombres complexes z, tels que $z+\frac{b}{2a}$ soit une racine carrée de $\frac{\Delta}{4a^2}$

Quand a, b et c sont réels, on a les solutions (complexes) suivantes :

Si $\Delta > 0$, les deux racines sont :

$$z_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $z_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Si Δ < 0, les deux racines sont :

$$z_1 = \frac{-b+i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b-i\sqrt{-\Delta}}{2a}$

Si $\Delta = 0$, il y a une racine double :

$$z = -\frac{b}{2a}$$

Exercice : Résoudre dans C les équations

$$2z^2-2z+1=0$$
 $z^2+2z+5=0$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

24

Nombres complexes et polynômes

Argument

On dit qu'un réel θ est un argument du nombre complexe z = x + iy ($z \neq 0$) s'il vérifie

$$\begin{cases}
\cos \theta &= \frac{x}{\sqrt{x^2 + y^2}} \\
\sin \theta &= \frac{y}{\sqrt{x^2 + y^2}}
\end{cases}$$

On a alors

$$z = x + iy = |z| \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right)$$

c'est-à-dire

$$z = |z|(\cos\theta + i\sin\theta)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

26

Nombres complexes et polynômes

Écriture trigonométrique des nombres complexes

Un nombre complexe peut s'écrire de deux manières :

- 1. algébrique : z = x + iy, $x, y \in \mathbb{R}$
- 2. trigonométrique : $z = r(\cos \theta + i \sin \theta)$, $r = |z| \in \mathbb{R}_+$, $\theta \in \mathbb{R}$

Remarque : tous les $\theta + 2k\pi$, $k \in \mathbb{Z}$ sont des arguments de z

 \hookrightarrow On appelle argument principal de z l'unique $\theta \in]-\pi,\pi]$ argument de z

Notation : $\theta = \arg(z)$

Exemples

$$z = 1 + i r = |z| = \sqrt{1^2 + 1^2} = \sqrt{2}$$
Donc:
$$z = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos(\frac{\pi}{4}) + i \sin(\frac{\pi}{4}) \right)$$

►
$$z = 3 + i\sqrt{3}$$
 $r = |z| = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3}$
Donc:
 $z = 2\sqrt{3}(\frac{3}{2\sqrt{3}} + i\frac{\sqrt{3}}{2\sqrt{3}}) = 2\sqrt{3}(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = 2\sqrt{3}(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}))$

>
$$z = 1 - i\sqrt{3}$$
 $r = |z| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$
Donc:
 $z = 2(\frac{1}{2} - i\frac{\sqrt{3}}{2}) = 2(\cos(\frac{5\pi}{3}) + i\sin(\frac{5\pi}{3}))$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

28

Nombres complexes et polynômes

Écriture trigonométrique des nombres complexes

Moyen mnémotechnique

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	π - 3	$\frac{\pi}{2}$
$\sin \theta$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$
$\cos \theta$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$

Exercice: Mettre les nombres complexes suivants sous forme trigonométrique:

1.
$$z_1 = -3 + 3i$$

3.
$$z_3 = 3\sqrt{3} - 3i$$
 5. $z_5 = -2$

5.
$$z_5 = -2$$

2.
$$z_2 = 1 + \sqrt{3}i$$

4.
$$z_4 = 8i$$

Soit:
$$z = r(\cos\theta + i\sin\theta)$$
, $z' = r'(\cos\theta' + i\sin\theta')$

$$zz' = rr' [(\cos\theta\cos\theta' - \sin\theta\sin\theta') + i(\cos\theta\sin\theta' + \sin\theta\cos\theta')]$$
$$= rr' [\cos(\theta + \theta') + i\sin(\theta + \theta')]$$

$$\hookrightarrow \arg(zz') = \arg(z) + \arg(z')$$
 (2 π)

l'égalité a lieu modulo 2π , c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que

$$arg(zz') = arg(z) + arg(z') + 2k\pi$$

Règle : Pour multiplier deux nombres complexes écrits sous forme trigonométrique,

- On multiplie les modules
- ▶ On additionne les arguments (modulo 2π)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

30

Nombres complexes et polynômes

Représentation de la multiplication

•
$$\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{r(\cos\theta - i\sin\theta)}{r^2} = \frac{r(\cos(-\theta) + i\sin(-\theta))}{r^2}$$

$$\Rightarrow \arg(z^{-1}) = -\arg(z) \quad (2\pi)$$

•
$$\frac{z'}{z} = \frac{r'}{r} \left(\cos(\theta' - \theta) + i \sin(\theta' - \theta) \right)$$

 $\hookrightarrow \arg\left(\frac{z'}{z}\right) = \arg(z') - \arg(z) \quad (2\pi)$

Règle : Pour diviser deux nombres complexes écrits sous forme trigonométrique,

- On divise les modules
- On soustrait l'argument du dénominateur de l'argument du numérateur (modulo 2π)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

32

Nombres complexes et polynômes

Formule de Moivre

Puissance entière d'un nombre complexe.

Si $n \in \mathbb{N}$,

$$z^{n} = \underbrace{zz...z}_{n-\text{fois}}$$

$$= \underbrace{rr...r.}_{n-\text{fois}} \underbrace{(\cos\theta + i\sin\theta)(\cos\theta + i\sin\theta)...(\cos\theta + i\sin\theta)}_{n-\text{fois}}$$

$$= r^{n} \Big(\cos(n\theta) + i\sin(n\theta)\Big)$$

Si $n \in \mathbb{Z}_{-}^{*}$, $-n \in \mathbb{N}$

$$z^{n}z^{-n} = z^{n}(r^{-n}(\cos(-n\theta) + i\sin(-n\theta))) = 1$$

$$z^{n} = \frac{1}{z^{-n}} = \frac{1}{r^{-n} \left(\cos(-n\theta) + i\sin(-n\theta)\right)}$$
$$= r^{n} \left(\cos(-n\theta) - i\sin(-n\theta)\right)$$
$$= r^{n} \left(\cos(n\theta) + i\sin(n\theta)\right)$$

$$\hookrightarrow \forall n \in \mathbb{Z}, \ \arg(z^n) = n \arg(z) \ (2\pi)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

34

Nombres complexes et polynômes

Formule de Moivre

Ecriture trigonométrique et racine carrée

On vient de voir

$$z = r(\cos(\theta) + i\sin(\theta)) \implies z^n = r^n(\cos(n\theta) + i\sin(n\theta)).$$

 \hookrightarrow z admet pour racines carrées $\pm \sqrt{r} (\cos(\theta/2) + i \sin(\theta/2))$.

Exercice:

- 1. Mettre sous la forme trigonométrique le nombre complexe $\Delta = 1 + i\sqrt{3}$.
- 2. Trouver un nombre complexe δ tel que $\delta^2 = \Delta$.
- 3. Résoudre, dans \mathbb{C} , l'équation $\frac{z^2}{4} + z i\sqrt{3} = 0$

Formule de Moivre :

$$\forall n \in \mathbb{Z} : (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

36

Nombres complexes et polynômes

Exponentielle complexe

▶ Pour $\theta \in \mathbb{R}$, on définit

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

Autrement dit, si θ est un argument de z, alors $z = |z|e^{i\theta}$.

▶ Pour $z = x + iy \in \mathbb{C}$, on définit

$$e^z = e^x e^{iy}$$
.

On vérifie alors que pour tous nombres complexes z et z' et tout entier $n \in \mathbb{Z}$,

$$e^{z}e^{z'} = e^{z+z'}$$
 $1/e^{z} = e^{-z}$
 $e^{z}/e^{z'} = e^{z-z'}$
 $(e^{z})^{n} = e^{nz}$

Les nombres complexes de module 1

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

39

UNIVERSITÉ PARIS DESCARTES

Nombres complexes et polynômes

Exponentielle complexe

On dispose de 3 écritures pour les nombres complexes :

- 1. algébrique : z = x + iy, $x, y \in \mathbb{R}$
- 2. trigonométrique : $z = r(\cos \theta + i \sin \theta)$, $r \in \mathbb{R}_+$, $\theta \in \mathbb{R}$
- 3. exponentielle : $z = re^{i\theta}$, $r \in \mathbb{R}_+$, $\theta \in \mathbb{R}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

41

Nombres complexes et polynômes

Racines des nombres complexes

Racine n-ième d'un nombre complexe

Soit $z = r(\cos \theta + i \sin \theta) \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

On appelle racine n-ième de z tout nombre complexe

$$a = \varrho(\cos\alpha + i\sin\alpha)$$

tel que

$$z = a^n$$

$$z = a^n \iff r(\cos \theta + i \sin \theta) = \varrho^n(\cos n\alpha + i \sin n\alpha)$$

$$\Leftrightarrow \begin{cases} \varrho^n = r \\ n\alpha = \theta + 2k\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} \varrho = \sqrt[n]{r} \\ \alpha = \frac{\theta + 2k\pi}{n} \end{cases}$$

et on peut se limiter aux $k \in \mathbb{N}$ tels que $0 \le k \le n-1$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

43

Nombres complexes et polynômes

Racines des nombres complexes

Théorème : Pour $n \in \mathbb{N}^*$, tout nombre complexe $z = r(\cos \theta + i \sin \theta)$, non-nul, a n racines n-ièmes :

$$a_k = \sqrt[n]{r} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right)$$
$$0 \le k \le n - 1$$

Racines n-ièmes de l'unité

Si
$$z = 1$$
: $r = 1$, $\theta = 0$.

Les nombres complexes

$$\omega_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = e^{i\frac{2k\pi}{n}}, \quad 0 \le k \le n-1$$

s'appellent les racines n-ièmes de l'unité.

On a, pour tout k, $w_k = w_1^k$ et $w_k^n = 1$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

45

Nombres complexes et polynômes

Racines des nombres complexes

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

47

Nombres complexes et polynômes

Racines des nombres complexes

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

49

Nombres complexes et polynômes

Racines des nombres complexes

Somme des racines n-ièmes de l'unité

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

51

Nombres complexes et polynômes

Racines des nombres complexes

Pour n = 3:

$$1 + e^{i\frac{2\pi}{3}} + e^{i\frac{4\pi}{3}} = 1 + e^{i\frac{2\pi}{3}} + \left(e^{i\frac{2\pi}{3}}\right)^2 = \frac{1 - \left(e^{i\frac{2\pi}{3}}\right)^3}{1 - e^{i\frac{2\pi}{3}}} = 0$$

Pour n quelconque:

$$\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}} = \sum_{k=0}^{n-1} (e^{i\frac{2\pi}{n}})^k = \frac{1 - (e^{i\frac{2\pi}{n}})^n}{1 - e^{i\frac{2\pi}{n}}} = 0$$

La somme des racines n-ièmes de l'unité est nulle

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

53

Nombres complexes et polynômes

Racines des nombres complexes

Soient $n \in \mathbb{N}^*$, $z \in \mathbb{C}$ et a et b deux racines n-ièmes de z:

$$a^n = b^n = z$$
.

Alors

$$\left(\frac{a}{b}\right)^n = 1 \iff \frac{a}{b} = \omega_k \iff a = b.\omega_k$$

où $\omega_k(0 \le k \le n-1)$ est une racine *n-ième* de l'unité.

Théorème : On obtient les *n* racines *n-ièmes* d'un nombre complexe en multipliant l'une d'entre elles par les *n* racines *n-ièmes* de l'unité.

Exemple : soit à calculer les racines 7-ièmes de $z = \frac{3}{2}e^{i\frac{5\pi}{12}}$

On doit trouver a tel que $a^7 = z$.

$$|a| = \sqrt[7]{\frac{3}{2}}$$
 $a_0 = \sqrt[7]{\frac{3}{2}}e^{i\frac{5\pi}{7\times 12}} = \sqrt[7]{\frac{3}{2}}e^{i\frac{5\pi}{84}}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

55

Nombres complexes et polynômes

Racines des nombres complexes

Les autres racines sont obtenue en multipliant a_0 par les six racines 7-ièmes de l'unité (différentes de 1) :

$$a_1 = a_0 e^{i\frac{2\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{2\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{29\pi}{84}}$$

$$a_2 = a_0 e^{i\frac{4\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{4\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{53\pi}{84}}$$

$$a_3 = a_0 e^{i\frac{6\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{6\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{77\pi}{84}}$$

$$a_4 = a_0 e^{i\frac{8\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{8\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{101\pi}{84}}$$

$$a_5 = a_0 e^{i\frac{10\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{10\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{125\pi}{84}}$$

$$a_6 = a_0 e^{i\frac{12\pi}{7}} = \sqrt[7]{\frac{3}{2}} e^{i(\frac{5\pi}{84} + \frac{12\pi}{7})} = \sqrt[7]{\frac{3}{2}} e^{i\frac{149\pi}{84}}$$

Exercice: Donner les trois racines cubiques du même nombre complexe Z=1+i.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

57

Nombres complexes et polynômes

Trigonométrie

Soit
$$z \in \mathbb{C}$$
 défini par $z = \cos \theta + i \sin \theta = e^{i\theta}$

$$Re(z) = \cos \theta = \frac{1}{2}(z + \bar{z}) = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

$$Im(z) = \sin \theta = \frac{1}{2i}(z - \bar{z}) = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

$$\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$
 ; $\sin \theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$

Trigonométrie

Linéarisation des puissances de sinus et cosinus

Transformation de $\cos^n \theta$ et $\sin^n \theta$ en une somme des sinus et cosinus des multiples de θ .

→ utilité:

primitives des fonctions $\cos^n \theta$ et $\sin^n \theta$: inconnues primitives des fonctions $\cos(k\theta)$ et $\sin(k\theta)$: connues

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

60

Nombres complexes et polynômes

Trigonométrie

Trigonométrie

Linéarisation des puissances de sinus et cosinus

$$2^{3} \cos^{3} \theta = (e^{i\theta} + e^{-i\theta})^{3}$$

$$= e^{3i\theta} + 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} + e^{-3i\theta}$$

$$= (e^{3i\theta} + e^{-3i\theta}) + 3(e^{i\theta} + e^{-i\theta})$$

$$= 2\cos 3\theta + 6\cos \theta$$

$$\cos^3\theta = \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos \theta$$

- On écrit : $2^n \cos^n \theta = (e^{i\theta} + e^{-i\theta})^n$
- ► On développe $(e^{i\theta} + e^{-i\theta})^n$ avec la formule du binôme
- ▶ On regroupe chaque $e^{ki\theta}$ avec son conjugué $e^{-ki\theta}$

Trigonométrie

Linéarisation des puissances de sinus et cosinus

$$(2i)^{3} \sin^{3} \theta = (e^{i\theta} - e^{-i\theta})^{3}$$

$$= e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta}$$

$$= (e^{3i\theta} - e^{-3i\theta}) - 3(e^{i\theta} - e^{-i\theta})$$

$$= 2i\sin 3\theta - 6i\sin \theta$$

$$\Rightarrow \sin^3 \theta = -\frac{1}{4} \sin 3\theta + \frac{3}{4} \sin \theta$$

Exercice : Linéariser $\cos^4 \theta$ et $\sin^4 \theta$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

62

Nombres complexes et polynômes

Trigonométrie

Trigonométrie

Calcul des sinus et cosinus de $n\theta$ en fonction de $\cos\theta$ et $\sin\theta$

$$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n$$
 $\cos n\theta = \text{Re} ((\cos \theta + i \sin \theta)^n)$
 $\sin n\theta = \text{Im} ((\cos \theta + i \sin \theta)^n)$

Trigonométrie

Calcul des sinus et cosinus de $n\theta$ en fonction de $\cos\theta$ et $\sin\theta$

$$\cos 4\theta + i \sin 4\theta = (\cos \theta + i \sin \theta)^{4}$$

$$= (\cos \theta)^{4} + 4i(\cos \theta)^{3} \sin \theta$$

$$+ 6i^{2}(\cos \theta)^{2}(\sin \theta)^{2} + 4i^{3}(\cos \theta)(\sin \theta)^{3}$$

$$+ i^{4}(\sin \theta)^{4}$$

$$\cos 4\theta = (\cos \theta)^4 - 6(\cos \theta)^2(\sin \theta)^2 + (\sin \theta)^4$$
$$\sin 4\theta = 4(\cos \theta)^3 \sin \theta - 4\cos \theta(\sin \theta)^3$$

Exercice : Calculer $cos(3\theta)$ en fonction de $cos \theta$ et $sin \theta$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

64

Nombres complexes et polynômes

Trigonométrie

Trigonométrie (suite)

On montre de même avec la formule d'Euler, que pour tous a et b réels :

$$\sin a + \sin b = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right),$$

$$\sin a - \sin b = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right).$$

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right),$$

$$\cos a - \cos b = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right),$$

moyen mnémotechnique : "si co co si co co moins si si"

Trigonométrie (suite)

On peut se contenter de mémoriser

$$\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right),\,$$

et de retrouver les autres en changeant a en $\frac{\pi}{2} - a$ et b en $\frac{\pi}{2} \pm b$ ou $\pi + b$ selon les cas, puisque

$$\cos\left(\frac{\pi}{2}-x\right)=\sin x$$
 et $\cos\left(\pi+x\right)=-\cos x$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

66

Nombres complexes et polynômes

Polynômes

Polynômes

Définition : On appelle polynôme à coefficients dans le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{Q}$) une suite finie de coefficients $a_0, a_1, \ldots a_n \in \mathbb{K}$ que l'on écrit sous la forme $a_0 + a_1X + a_2X^2 + \ldots + a_nX^n$.

Vocabulaire et propriétés :

- un terme $a_k X^k$ ($a_k \neq 0$) est appelé monôme de degré k
- le degré du polynôme est celui de son monôme de plus haut degré (appelé terme dominant)
- ▶ les opérations usuelles *P* + *Q* et *P.Q* munissent l'ensemble des polynômes d'une structure naturelle d'anneau
- ► Le symbole X est appelée variable ou indéterminée du polynôme

Racines et factorisation

Théorème : Soit P un polynôme à coefficients dans \mathbb{K} , de degré n, et $\alpha \in \mathbb{K}$. Les deux propriétés suivantes sont équivalentes :

- (i) $P(\alpha) = 0$ (on dit que α est une racine de P)
- (ii) Il existe un polynôme Q de degré n-1, tel que $P=(X-\alpha).Q$

Le polynôme Q s'obtient de proche en proche, en commençant par le terme de plus haut degré. Par exemple si $P = X^3 - 3X^2 + 3X - 2$, on a P(2) = 0 donc on peut écrire

$$P = (X-2)(X^2 + ...)$$
 (on identifie le terme en X^3)
= $(X-2)(X^2 - X + ...)$ (on identifie le terme en X^2)
= $(X-2)(X^2 - X + 1)$ (on identifie le terme en X).

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

68

Nombres complexes et polynômes

Racines et factorisation

Racines multiples

Définition : Si α est une racine de P, on appelle multiplicité de α le plus grand entier k tel que l'on puisse factoriser P sous la forme $P = (X - \alpha)^k Q$ (avec Q polynôme, $Q \neq 0$).

Exemple: Le polynôme $X^3(X-1)(X-2)^2$ admet 3 racines: 0 (de multiplicité 3), 1 (racine simple), et 2 (racine double).

Définition : Soit $P = a_0 + a_1X + a_2X^2 + ... + a_nX^n$ un polynôme sur \mathbb{K} . On appelle polynôme dérivé de P (noté P') le polynôme

$$P' = a_1 + 2a_2X + \ldots + na_nX^{n-1}$$
.

En itérant le processus, on définit ainsi les dérivées successives P', P'', $P^{(3)}$, etc.

Théorème : $\alpha \in \mathbb{K}$ est une racine de multiplicité k de P ssi $P(\alpha) = P'(\alpha) = \ldots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.

$$a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0 = 0$$

Théorème de d'Alembert

Théorème : Tout polynôme non-constant à coefficients complexes a au moins une racine complexe.

Corollaire : Tout polynôme de degré n, à coefficients complexes, a exactement n racines complexes (comptées autant de fois que leur multiplicité).

Corollaire : Tout polynôme *P* de degré *n*, à coefficients complexes, peut s'écrire sous la forme

$$P = C(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n),$$

où C est le coefficient dominant de P et les complexes α_i sont les racines de P, comptées autant de fois que leur multiplicité.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

71

Nombres complexes et polynômes

Le théorème fondamental de l'algèbre

Calcul des racines d'un polynôme

Si P est un polynôme de degré 1 ($P = a_0 + a_1 X$), il admet $-a_0/a_1$ comme unique racine.

Si *P* est un polynôme de degré 2, ses 2 racines complexes (éventuellement confondues) peuvent se calculer explicitement à l'aide de racines carrées (formules usuelles avec le discriminant).

Si *P* est un polynôme de degré 3 ou 4, on dispose de formules du même genre (mais beaucoup plus compliquées) qui décrivent les racines de *P*.

En revanche, le théorème d'Abel (hors programme) affirme qu'il n'existe pas de telles formules générales lorsque le degré de *P* est au moins égal à 5. On est alors contraint d'avoir recours au calul numérique approché (méthode de dichotomie, de Newton, etc.).