Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Team ID: PNT2022TMID17913

Team Details

R.Harihara sudhan.

R. B. Ragul.

N. R. Somnath Babu.

P. Santosh.

S. Srivatsan.

1. INTRODUCTION

1.1 Project Overview

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) is today's number one cause of death. Over a 17.7million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle-income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia. Although a single arrhythmia heartbeat may not have a severe impact on life, continuous arrhythmia beats can result in fatal circumstances. In this project, we build an effective electrocardiogram (ECG) arrhythmia classification method using a convolutional neural network (CNN), in which we classify ECG into seven categories, one being normal and the other six being different types of arrhythmia using deep two-dimensional CNN with grayscale ECG images. We are creating a web application where the user selects the image which is to be classified. The image is fed into the model that is trained and the cited class will be displayed on the webpage

1.2 Purpose

In the past few decades, Deep Learning has proved to be a compelling tool because of its ability to handle large amounts of data. The interest to use hidden layers has surpassed traditional techniques, especially in pattern recognition. One of the most popular deep neural networks is Convolutional Neural Networks. In this project, we develop a convolutional neural network (CNN) based method for electrocardiogram (ECG) arrhythmia classification. Using deep two-dimensional CNN and grayscale ECG images, we divide the ECG into seven categories, one of which is normal and the other six of which are various types of arrhythmia.

2. LITERATURE SURVEY

2.1 Existing problem

Cardiovascular diseases (CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in the year 2017 all over the world which is about 31% of all deaths, and over 75% of these deaths occur in low and middle-income countries. Arrhythmia is a representative type of CVD that refers to any irregular change from normal heart rhythms. There are several types of arrhythmia including atrial fibrillation, premature contraction, ventricular fibrillation, and tachycardia.

2.2 References

Title of the work	Abstract
Towards Interpretable Arrhythmia Classification	The first unique interpretable arrhythmia
with Human-machine Collaborative Knowledge	classification strategy based on a human-machine
Representation	collaborative knowledge representation is proposed
	in this research as a solution to this flaw. This
	method uses an AutoEncoder to split the expertise
	of hand-encoding and machine-encoding ECG data
	into two portions. The encoded information is then
	placed into a classifier to categories arrhythmia
	heartbeats with or without a person in the loop
	(HIL).
Arrhythmia Classification Using Biased Dropout	In the proposed strategy, authors develop an
and Morphology-Rhythm Feature With Incremental	incremental broad learning (IBL) classification
Broad Learning	model for arrhythmia-type detection based on the
	biassed dropout method. In the ECG signal
	preprocessing, they extract the morphological-
	rhythm properties of the denoised signal as the input
	data of the IBL model. By utilising better features,
	the IBL model improves the node optimization
	model's classification impact.
Multi-Label Classification of Arrhythmia for Long-	This paper aims: 1) to propose a multi-label feature
Term Electrocardiogram Signals With Feature	selection method based on ECG (MS-ECG) and
Learning	design an evaluation criterion of ECG features based
	on kernelized fuzzy rough sets so as to choose the
	optimal feature subset and optimize ECG feature
	space and 2) to propose the multi-label classification
	algorithm of arrhythmia based on ECG (MC-ECG)
	by establishing a multi objective optimization
	model.
Evaluation of performance of Cloud based Neural	In this paper, we propose an evaluation of different
Network models on Arrhythmia Classification	neural network models. The signal is transformed
	into the wavelet domain, and noise removal is

	carried out by wavelet de-noising post filtering. The
	features are extracted from the processed signal and
	are transmitted to the cloud where predictive models
	are applied to the extracted features to predict the
	class of arrhythmia thus aiding the medical
	diagnostic process.
ECG Arrhythmia Classification Using Relevance	In this paper, a experimental study was conducted to
Vector Machine	achieve the maximum accuracy the RVM classifier
	design by searching for the best value of the
	parameters that its discriminant function, and
	upstream by looking for the best subset of features
	that feed the classifier.
Automatic Detection of Cardiac Arrhythmia	The goal of this paper is to apply deep learning
Classification Using Deep Learning Techniques	techniques in the diagnosis of cardiac arrhythmia
	using ECG signals with minimal possible data pre-
	processing. We employ convolutional neural
	network (CNN), recurrent structures such as
	recurrent neural network (RNN), long short-term
	memory (LSTM) and gated recurrent unit (GRU)
	and hybrid of CNN and recurrent structures to
	automatically detect the abnormality.
Cardiac arrhythmia detection using deep learning	In this study, a deep learning framework previously
	trained on a general image data set is transferred to
	carry out automatic ECG arrhythmia diagnostics by
	classifying patient ECG's into corresponding
	cardiac conditions. Transferred deep convolutional
	neural network (namely AlexNet) is used as a
	feature extractor and the extracted features are fed
	into a simple back propagation neural network to
	carry out the final classification. Three different
	conditions of ECG waveform are selected from
	MIT-BIH arrhythmia database to evaluate the
	proposed framework.

Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation This paper proposes a two-dimensional(2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11%.

Classification of Arrhythmia in Heartbeat Detection Using Deep Learning This paper aims to apply deep learning techniques on the publicly available dataset to classify arrhythmia. We have used two kinds of the dataset in our research paper. One dataset is the MIT-BIH arrhythmia database, with a sampling frequency of 125 Hz with 1,09,446 ECG beats. The classes included in this first dataset are N, S, V, F, and Q. The second database is PTB Diagnostic ECG Database. The second database has two classes. The techniques used in these two datasets are the CNN model, CNN+ LSTM, and CNN+ LSTM + Attention Model.

ECG Arrhythmia Classification Using STFT-based Spectrogram and Convolutional Neural Network

ECG arrhythmia This paper proposes an classification method using two-dimensional deep convolutional neural network. The time domain signals of ECG, belonging to five heartbeat types including normal beat, left bundle branch block beat, right bundle branch block beat, premature ventricular contraction beat, and atrial premature contraction beat, were firstly transformed into timefrequency spectrograms by short-time Fourier transform. Subsequently, the spectrograms of the five arrhythmia types were utilized as input to the 2D-CNN such that the ECG arrhythmia types were identified and classified finally.

2.3 Problem Statement Definition

The Electrocardiogram (ECG) is one of the most frequently used in the identification and prediction of cardiovascular disorders (CVDs). The irregular heartbeats, or arrhythmias as they are often called, can be recorded in the ECG readings. For accurate diagnosis of patients' acute and chronic cardiac problems, an in-depth examination of ECG signals is essential. which needs a lot of time or an expert surgeon to do. The patient may have a costly hospitalization or a delayed start to their therapy as a result.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to help teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 Ideation & Brainstorming

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem-solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich number of creative solutions.

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	The Electrocardiogram (ECG) is one of the
	solved)	signals that is most frequently utilised in the
		identification and prediction of cardiovascular
		disorders (CVDs). The irregular heartbeats, or
		arrhythmias as they are often called, can be
		recorded in the ECG readings. For accurate
		diagnosis of patients' acute and chronic cardiac
		problems, an in-depth examination of ECG
		signals is essential. which needs a lot of time or
		an expert surgeon to do. The patient may have a
		costly hospitalisation or a delayed start to their
		therapy as a result.
2.	Idea / Solution Description	We develop a convolutional neural network
		(CNN) based method for electrocardiogram
		(ECG) arrhythmia classification. Using deep
		two-dimensional CNN and grayscale ECG
		images, we divide the ECG into six categories,
		one of which is normal and the other five of
		which are various types of arrhythmia.
3.	Novelty / Uniqueness	We have done image augmentation in
		preprocessing step.
4.	Social Impact / Customer Satisfaction	Customer/Patient need not wait for an expert
		surgeon and he/she need not spend for
		hospitalization. He/she can use the app and
		upload the image and find the type of disease and
		take the necessary measures.
5.	Business Model (Revenue Model)	This application can be used by more people for
		earlier classification of arrhythmia.
6.	Scalability of the Solution	As this application is deployed in IBM cloud it is
	_	more scalable.

3.4 Problem Solution fit

Define CS, fit into CC	1. CUSTOMER SEGMENT(S) CS Hospital with less or no cardiologist to analyse the ECG.	6. CUSTOMER CONSTRAINTS It needs a lot of aor an expert surgeon to identify the CVDs. Also it cannot be guaranteed to be accurate.	5. AVAILABLE SOLUTIONS The ECG can be analyzed by the expert surgeon and to identify the CVDs.	Explore AS, differen
Focus on J&P, tap into BE, understand RC	2. JOBS-TO-BE-DONE / PROBLEMS Analyze the ECG and predict the Cardiovascular disorder(CVDs) For accurate diagnosis of patient acute and chronic cardiac problems, an in-depth examination of ECG signals is essential.	9. PROBLEM ROOT CAUSE In earlier stage of CVDs it is nearly impossible to identify it. Even experienced doctors requires lot of time to examine Output Description:	7. BEHAVIOUR The ECG waves may vary for different persons and based on their age alse.	Explore AS, differentiate Focus on J&P, tap into BE, understand RC
₹ t	a. TRIGGERS The patient may have a costly hospitalization or a delayed strong their therapy as a result. So it should be immediately exported.	10. YOUR SOLUTION IT Deep learning techniques in the artificial intelligence field with 2-D ECG spectral image representation is used here to classify the arrhythmia with high accuracy.	In Online mode the image processing will be done at IBM cloud and results are brought to client browser.	Identify strong TR & EM
7	4. EMOTIONS: BEFORE / AFTER To get the clarification of the Cardiovascular disorder and at which level it is affected so that fear and getting out of mind revented.	is		

4. **REQUIREMENT ANALYSIS**

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)			
FR-1	ECG image upload	Patient is able to upload the ECG via the Flask app.			
		The doctor is able to upload the ECG via the Flask app.			
FR-2	Noise reduction	Convert the ECG into grayscale.			
		Reduce the noise in the image using AutoEncoder			
FR-3	CVD prediction	CVD prediction can be done at a local machine.			
		CVD prediction can be done in the IBM cloud.			
FR-4	Result presentation	CVD prediction must be presented to the end users.			

CVD prediction must be presented in detail to the
doctor.

4.2 Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description		
NFR-1	Usability	It should be convenient to use by anybody. It must be		
		user-friendly.		
NFR-2	Security	The analysed results should be kept confidential.		
		Leakage of the results of the patient will be		
		dangerous and a crime.		
NFR-3	Reliability	It should be reliable and should not cause any faults		
		or failures after a certain period of time.		
NFR-4	Performance	The analyses of the ECGs should have a good		
		accuracy level compared to expert surgeons who		
		analyse.		
NFR-5	Availability	It should be available 24/7. As there can be an		
		emergency situation for a patient.		
NFR-6	Scalability	There can be one patient also there can be many		
		patients and many ECGs to be analysed. It should be		
		scalable.		

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture

Table-1: Components & Technologies:

S.	Component	Description	Technology
No.			
1.	User Interface	The user can interact via Web UI.	HTML, CSS, JavaScript / Angular
			Js / React Js etc.
2.	Train & Test dataset	The dataset will be divided into	Python, Keras.
	split	training and testing datasets.	
3.	Image Augmentation	Image Augmentation will be	Python, ImageDataGenerator.
		done on the training dataset.	

4.	CNN Model	The core image processing will	Python, Tensorflow
		be done in this CNN model.	

Table-2: Application Characteristics:

S.	Characteristics	Description	Technology
No.			
1.	Open-Source	Flask, Tensorflow, python	python, CUDA, HTML, CSS
	Frameworks		
2.	Scalable Architecture	The Application will be deployed	IBM cloud.
		in IBM cloud. The three tiers are	
		IBM cloud, Web service and can	
		be accessible using the Internet.	
3.	Availability	Since the application is deployed	IBM cloud
		in a cloud environment it ensures	
		the availability.	
4.	Performance	Tensorflow ensures the	Python, CUDA, IBM cloud
		performance of the model by	
		using GPU in Host system.	

5.3 User Stories

User Type	Functional	User	User Story / Task	Acceptance	Priorit	Release
	Requireme	Story		criteria	y	
	nt (Epic)	Number				
Patient/Doc	Web app	USN-1	As a user, can access the	I can open the	High	Sprint-1
tor (Web			web application	website		
user)						
Patient/Doc	Dashboard	USN-2	As a user, can see the	I can see the	High	Sprint-1
tor (Web			home page / dashboard	homepage of		
user)				the website		
Patient/Doc	Home page	USN-3	As a user, can see the	I can read the	Low	Sprint-1
tor (Web			article	detail about		
user)				the project		

User Type	Functional	User	User Story / Task	Acceptance	Priorit	Release
	Requireme	Story		criteria	y	
	nt (Epic)	Number				
Patient/Doc	Navigate	USN-4	As a user, can see	I can see the	Mediu	Sprint-2
tor (Web	between		navigation buttons	navigation	m	
user)	pages			buttons		
Patient/Doc	Info page	USN-5	As a user, can click on	I can click on	Mediu	Sprint-2
tor (Web			the "info" button	the "info"	m	
user)				button		
Patient/Doc	Predict	USN-6	As a user, can click on	I can click on	High	Sprint-3
tor (Web	page		the "prediction" button	the		
user)				"prediction"		
Patient/Doc	Get to	USN-7	As a user, can see the the	I can read the	Mediu	Sprint-3
tor (Web	know about		CVDs details	article of	m	
user)	heart			CVD types		
	disease					
Patient/Doc	Prediction	USN-8	As a user, can see the	I can see the	High	Sprint-4
tor (Web	page		options available	facility of this		
user)				page		
Patient/Doc	Image	USN-9	As a user, can upload the	I can upload	High	Sprint-4
tor (Web	upload		image in this page	the image in		
user)				this page		
Patient/Doc	Result page	USN-10	As a user, can see the	I can see the	High	Sprint-4
tor (Web			type of CVD classified	type of CVD		
user)			for the image uploaded	classified		

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Home Page	USN-1	As a user, I can view the home page of the web application.	15	Low	P. Santos h, Srivats an

Sprint-2	Info Page	USN-2	As a user, I can view the information regardingthe heart disease.	15	Medium	N R Somnath Babu
Sprint-3	Prediction Page	USN-3	As a user, I can insert the scan images toclassify the arrhythmia	15	High	R B Ragul
Sprint-4	Prediction	USN-4	As a user, I expect the application to classify thelevel of arrhythmia the patient has. It must be accurate.	15	High	R Hariharasud han

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duratio n	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	15	6 Days	2 Oct 2022 4	2 Oct 2022 9	15	2 Oct 2022 9
Sprint-2	15	6 Days	3 Oct 2022 1	0 Nov 2022 5	15	0 Nov 2022 5
Sprint-3	15	6 Days	0 Nov 2022 7	1 Nov 2022 2	15	1 Nov 2022 2
Sprint-4	15	6 Days	1 Nov 2022 4	1 Nov 2022 9	15	1 Nov 2022 9

Velocity:

Imagine we have a 6-day sprint duration, and the velocity of the team is 15 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average Velocity =
$$15 / 6 = 2.5$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.2 Sprint Delivery Schedule

7. Title	Description	Date
Literature Survey and Information Gathering	Gathering Information by referring the technical papers, research publications etc.	
Prepare Empathy Map	To capture user pain and gains PrepareList of Problem Statement	10 September 2022
Ideation	Prioritize a top 3 ideas based onfeasibility and Importance	17 September 2022
Proposed Solution	Solution include novelty, feasibility, business model, social impact and scalability of solution	
Problem Solution Fit	Solution fit document	1 October 2022
Solution Architecture	Solution Architecture	1 October 2022

Customer Journey	To Understand User Interactions and experiences with application	8 October 2022
Functional Requirement	Prepare functional Requirement	12 October 2022
Data flow Diagrams	Data flow diagram	12 October 2022
Technology Architecture	Technology Architecturediagram	12 October 2022
Milestone & sprint delivery plan	Activity what we done &further plans	22 October 2022
Project Development- Delivery of sprint 1,2,3 &4	Develop and submit the developed code by testing it	24 October 2022 – 19 November 2022

7.1 Reports from JIRA

8. CODING & SOLUTIONING (Explain the features added in the project along with code)

8.1 Home page

Displays the Home page of the application. This feature aimed to give overview about the project and heart diseases.

Output:

8.2 Info page

Info page is aimed to give a complete overview of all types of cardiovascular diseases with its ECG image.

Output:

8.3 Predict page

This feature of the project is used to upload the ECG images to the server for prediction.

Output:

8.4 CVD predictor

This feature of the project is aimed to give a fault tolerant CVD predict no matter how this module will predict the CVD and gives output.

Code:

8.5 Flask App

This is the server of the application which serves all the html pages and gets the ECG images as input and predict the CVD using Deep learning technique.

Code:

```
import os
import numpy as np
from flask import Flask, request, render_template, send_from_directory,
make_response
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from predict_cvd import PredictCVD

CVDs = [
    'Left Bundle Branch Block',
    'Normal',
    'Premature Atrial Contraction',
    'Premature Ventricular Contractions',
    'Right Bundle Branch Block',
    'Ventricular Fibrillation'
]
```

```
def home():
    return render template("info.html")
    if request.method == 'POST':
       print(request.files)
       request.files['image'].save("ecg.png")
       predictor = PredictCVD()
       response = make response("response")
        response.data = "Hello"
       print (predictor.predict("ecg.png"))
        return render template(""+predictor.predict("ecg.png"))
    return render template("predict.html")
    return send_from_directory(os.path.join(app.root_path, 'static'),
    app.run(debug=True)
```

9. TESTING

- 9.1 Test Cases
 - 1 Verify user is able to see Home page
 - 2 Verify user can navigate Info Page
 - 3 Verify user can navigate Predict Page
 - 4 Verify user can see Info page
 - 5 Verify user can see Predict page
 - 6 Verify user can upload ECG image
 - 7 Verify user can redirect to predicted result page
- 9.2 User Acceptance Testing

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and howthey were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	2	3	1	1	7
Duplicate	1	0	3	0	4
External	2	0	0	1	3
Fixed	2	2	1	2	7
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	2	2	1	5
Totals	7	7	9	6	29

Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Predict Page	7	0	0	7
Info Page	5	0	0	5
Home Page	4	0	0	4
CNN ECG	3	0	0	3
Flask	9	0	0	9
Model Building	4	0	0	4
Train model on IBM	8	0	0	8
Final Report Output	2	0	0	2

10. RESULTS

10.1 Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Model Summary	_	Model: "sequential_1"
	Wiodel Sammary		Layer (type) Output Shape Param #
			max_pooling2d (MaxPooling2D (Mone, 31, 31, 32) 6
			conv2d_2 (Conv2D) (None, 29, 29, 32) 9248
			max_pooling2d_1 (MaxPooling (None, 14, 14, 32) θ 2D)
			flatten (Flatten) (None, 6272) 0
			dense (Dense) (None, 32) 200736
			dense_1 (Dense) (None, 6) 198
			Total params: 211,078 Trainable params: 211,078 Total params: 211,078 Total params: 0
2.	Accuracy	Training Accuracy - 96%	25 25 25 25 25 25 25 25
		Validation Accuracy - 90%	The second secon

Model Summary:

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 62, 62, 32)	896
<pre>max_pooling2d (MaxPooling2)</pre>	D (None, 31, 31, 32)	0
conv2d_2 (Conv2D)	(None, 29, 29, 32)	9248
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	g (None, 14, 14, 32)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 32)	200736
dense_1 (Dense)	(None, 6)	198
Total params: 211,078 Trainable params: 211,078 Non-trainable params: 0		

Model Accuracy:

11. ADVANTAGES & DISADVANTAGES

Advantages:

- Cost efficient.
- Accurate in predict of CVDs.
- User friendly

Disadvantages:

- Doesn't maintain any records for prediction.
- No authentication.
- Unable to process video data.

12. CONCLUSION

Application was built using various web technologies such as HTML, CSS, Flask, etc. and model was also build using Machine Learning Techniques such as Data Preprocessing and model building using TensorFlow and other packages to classify arrhythmia accurately and time-efficiently.

13. FUTURE SCOPE

This project only aimed to process image data. In future a system can be developed with live ECG video processing for real-time and quick response. Sometime noise may be present in prediction images that can be eliminated by employing noise reduction AutoEncoder.

14. APPENDIX

GitHub & Project Demo Link: https://github.com/IBM-EPBL/IBM-Project-2512-1658473101.git