THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1020

Exercise 1

Produced by Jeff Chak-Fu WONG

Exercise 1 Combining graphing procedures

Graph the function $f(x) = \frac{3}{x-2} + 1$. Find the domain and the range of f.

Solution:

It is helpful to write f as $f(x) = \frac{3}{x-2} + 1$. Now we use the following steps to obtain the graph of f.

Step 1
$$y = \frac{1}{x}$$
 Reciprocal function

Step 2 $y = 3\left(\frac{1}{x}\right) = \frac{3}{x}$ Multiply by 3.

Vertical stretch of the graph of $y = \frac{1}{x}$ by a factor of 3.

Step 3 $y = \frac{3}{x-2}$ Replace x by $x-2$.

Horizontal shift to the right 2 units.

Step 4 $y = \frac{3}{x-2} + 1$ Add 1.

Vertical shift up 1 unit.

The domain of $y = \frac{1}{x}$ is $\{x | x \neq 0\}$ and its range $\{y | y \neq 0\}$.

Because we shifted right 2 units and up 1 unit to obtain f, the domain of f is $\{x|\ x\neq 2\}$ and its range $\{y|\ y\neq 1\}$.

See Figure 1.

Figure 1:

Exercise 2 Combining graphing procedures

Graph the function $f(x) = \sqrt{1-x} + 2$. Find the domain and the range of f.

Solution:

It is because horizontal shifts require the form x - h, we begin by rewriting f as

$$f(x) = \sqrt{1 - x} + 2$$

= $\sqrt{-(x - 1)} + 2$.

Now use the following steps:

$$\begin{array}{lll} \text{Step 1} & y = \sqrt{x} & \text{Square root function.} \\ \text{Step 2} & y = \sqrt{-x} & \text{Replace x by $-x$.} \\ \text{Reflect about the y-axis.} \\ \text{Step 3} & y = \sqrt{-(x-1)} & \text{Replace x by $x-1$.} \\ \text{Horizontal shift to the right 1 unit.} \\ \text{Step 4} & y = \sqrt{1-x} + 2 & \text{Add 2.} \\ & & \text{Vertical shift up 2 units.} \end{array}$$

The domain of $y = \frac{1}{x}$ is $(-\infty, 1]$ and its range $[2, +\infty)$.

