

CREDIT CARD CUSTOMERS ANALYSIS

EXPLORATORY DATA ANALYSIS (EDA)

XIZHU LIN, DANNI SHEN, HAN WANG

Project Overview

Business Objective

To provide insight into which customers are eager to churn.

Therefore, the banks could have a deeper understanding of their customers and target the appropriate groups to decrease their credit card churning rate.

Project Overview

Data Sources

Credit Card Attrition Dataset Overview:

Database of records of bank customers, both attrited customers and existing customers, with features like gender, age, salary, marital status, credit card limit, credit card category, inactive months, etc.

Data Sources:

https://www.kaggle.com/datasets/sakshigoyal7/credit-card-customers?datasetId=982921&sortBy=commentCount&page=2 10,127 observations/ 23 variables

Attribute Summary

Numeric(14)

Demographic:

Customer_Age, Dependent_count

Organizational:

Total Relationship Count,

Months Inactive 12 mon,

Contacts Count 12 mon,

Credit Limit, Total Revolving Bal,

Total_Amt_Chng_Q4_Q1,

Total Ct Chng Q4 Q1,

Total_Trans_Amt, Total_Trans_Ct,

Avg_Utilization_Ratio,

Avg_Open_To_Buy,

Months_on_book

Factor(6)

Output: Attrition_Flag

Demographic:

Gender, Education Level,

Marital_Status, Income_Category

Organizational:

Card Categor

Insights:

Customer age presents a normal distribution.

School of Engineering

• Dependent count presents a normal distribution.

School of Engineering

Insights:

Total_Amt_Chng_Q4_Q1 and Total_Ct_Chng_Q4_Q1 present highly positive skew.

Insights:

- The proportion of graduates is the largest at Education Level.
- **School of Engineering** The proportion of blue cards is the largest in Card Category.

Insights:

• The credit limits differentiate by customer age.

School of Engineering

Insights:

• The card categories differentiate by customer age.

School of Engineering

USC Viterbi School of Engineering

Insights:

Different card categories/ income categories/ education level categories have different dependent counts.

Insights:

· The credit limit is biased in gender.

School of Engineering

Different income categories have different credit limits.

USC Viterbi School of Engineering

Insights:

 The card categories differentiate in total relationship count. (Relationship Count is total number of products held by the customer)

School of Engineering •

Insights:

• Almost the same ratio of men to women in most groups.

Insights:

V11CTD1 • Almost the same ratio of different education levels in most School of Engineering groups.

Insights:

V11CTD1 • Almost the same ratio of different marital statuses in most School of Engineering groups.

Insights:

 Income categories distribute differently in other categories. School of Engineering

Insights:

V1CCTD1 • Almost the same ratio of different card categories in most School of Engineering groups.

Thanks for watching!