Stellar Structure and Evolution —Exercises—

Wolfgang Glatzel astromundus, October 5-16, 2015

Part 2

1) Assume that the equation of state of the stellar matter is described by that of an ideal gas $p = \frac{\Re}{\mu} \rho T$ (p: pressure, ρ : density, T: temperature, μ : mean molecular weight, \Re : gas constant) with the specific heat $c_V = \frac{3}{2} \frac{\Re}{\mu}$. How big is then the thermal energy content E_T and the (gravitational) potential energy E_G of a star? Hint: Use M_r as independent variable and express E_T and E_G as an integral over M_r .

Derive from the condition of hydrostatic equilibrium (independent variable M_r) by integration over M_r the virial theorem for a star in hydrostatic equilibrium:

$$E_G = -2E_T$$

What is the relation between the total energy E_{total} and E_T ? What is the sign of E_{total} ? What happens, if a star loses energy by radiation (no additional energy sources)? If a specific heat would be assigned to a star, which sign would it have?

2) On the basis of order of magnitude estimates prove that a relation between pressure and density together with the requirement of hydrostatic equilibrium implies a relation between mass M and radius R of a star.

Hint: Derivatives of the form $\frac{dy}{dM_r}$ may be estimated by y/M, the density by $\rho \propto M/R^3$. Assume a power law relation between pressure and density of the form $p \propto \rho^{\gamma}$.

What are the mass - radius relations for $\gamma = 4/3$ and $\gamma = 5/3$? Interpret the result.

3) A stellar model: Assume that pressure and density of the stellar matter are related by an equation of state of the form $p = K\rho^2$ (p: pressure, ρ : density, K: Constant). Calculate the density as a function of radius using the requirement of hydrostatic equilibrium.

Hint: Use Poisson's equation for the gravitational potential. For the solution of the problem use $r\rho$ as dependent variable rather than ρ .

Are all solutions physically meaningful? Are there free parameters? Sketch and interpret the solution.