- 1) Usando indução prove:
- a) 3^n 2 é ímpar, para $n \ge 1$.

Caso base:

$$3^1 - 2 = 1$$

Ok

Supor que $3^{k} - 2 = 2^{a} + 1$

Mostrar que $3^{(k+1)} - 2 = 2^{a} + 1$

$$3^{(k+1)} - 2 = 3*3^k - 2$$

 $3*2^a + 3 - 2$
 $3*2*a + 1$

6a+1

b) $n! > n^2$, para $n \ge 4$.

Caso base:

$$4! > 4^2 \rightarrow 24 > 16$$

Ok

Supor que $k! > k^2$, Para $k \ge 4$.

Mostrar que $(k+1)! > (k+1)^2$:

$$\begin{aligned} & & \text{k!} > k^2 & \text{Multiplicar por (k+1)} \\ & & (k+1)! > k^2*(k+1) & \text{Se } k^2 > \text{k+1} \\ & (k+1)! > k^2*(k+1) > (k+1)*(k+1) & & \text{K}^2*(k+1) > (k+1)*(k+1) \\ & & (k+1)! > (k+1)^2 & \end{aligned}$$

2) Dado o algoritmo abaixo, prove que o mesmo está correto. Para isso enuncie a invariante do laço, prove por indução que a invariante está correta e apresente o que acontece com a invariante no término do algoritmo.

Cálculo(inteiro x, inteiro não-negativo n)

- 1. variáveis
- 2. inteiros i, j
- 3. i = 1
- 4. j = x
- 5. Enquanto $i \neq n$ faça
- 6. j = j * (i + 1)
- 7. i = i + 1
- 8. Fim Enquanto
- 9. **retorne** j /* j = x*n!*/

(Sugestão: para obter a invariante do laço pode ser usado o valor de *j* após o término do algoritmo.)

$$K = 0$$
 $k = 1$ $k = 2$ $k = 3$ $j0 = x$ $j1 = x^*(1+1) = x^*2$ $j2 = x * 2 * (2+1) = x^*2^*3$ $j3 = x^*2^*3^*(3+1) = x^*2^*3^*4$ $i0 = 1$ $i1 = 1 + 1 = 2$ $i2 = 2 + 1 = 3$ $i3 = 3 + 1 = 4$

Conjectura: J = x * i!

Caso Base:

$$J0=x$$
 $x = x$ OK

Supor que $J_k = x * i_k!$

Mostrar que $J_{k+1}=x * i_{k+1}!$

$$J_{k+1} = x * i_{k+1}!$$

$$J_k * (i + 1) = x * i_{k+1}!$$

$$x * i_k! * (i + 1) = x * i_{k+1}!$$

$$x * i_{k+1}! = x * i_{k+1}!$$

OK

Invariante: J = x * i!

No termino temos: $J = x^*n!$