1. Вступ

У даній курсовій роботі необхідно виконати синтез автомата і синтез комбінаційних схем. Розробка виконується на підставі «Технічного завдання ІА/ІЦ.463626.002 ТЗ».

2. Синтез автомата

2.1. Побудова графічної схеми алгоритму і розмітка станів автомата

Відповідно до «Технічного завдання ІАЛЦ.463626.002 ТЗ» складаємо графічну схему алгоритму з урахуванням тривалості сигналів і виконуємо розмітку станів автомата (рисунок 4.1).

Рисунок 4.1 – Графічна схема алгоритму з розміченими станами

Зм.	Арк.	№ докум.	Підп.	Дата

2.2. Побудова графу автомата

Згідно з графічною схемою алгоритму побудуємо граф автомата і виконаємо кодування станів автомата (рисунок 4.2).

Рисунок 4.2 – Граф автомата з закодованими вершинами

2.3. Побудова таблиці переходів

Для синтезу логічної схеми автомату необхідно виконати синтез функцій збудження тригерів та вихідних функцій автомата. Кількість станів автомата дорівнює 9 кількість тригерів знайдемо за формулою K>=]log₂ N[=]log₂ 9[= 4. Так як для побудови даного автомата необхідно використовувати RS-тригери, запишемо таблицю переходів цього типу тригерів (рисунок 4.3).

Рисунок 4.3 – Таблиця переходів RS-тригера

					14 711 1 63 60 6 00 1 73	Арк.
					<i>IAЛЦ.463626.004 ПЗ</i>	
Зм.	Арк.	№ докум.	Підп.	Дата	II II IЦ.+03020.00+ 110	3

2.4. Синтез комбінаційних схем для функцій збудження пригерів та вихідних сигналів

Використовуючи дані з рисунку 4.2, заповнимо структурну таблицю автомата (таблиця 4.1).

Таблиця 4.1 — Структурна таблиця автомата

Переходи	Старий стан				Новий стан				Вхідні сигнали		Вихідні сигнали				Функції збудження тригерів							
	Q4	Q3	Q2	Q1	Q4	Q3	Q2	Q1	X1	X2	Y1	<i>Y2</i>	<i>Y3</i>	Y4	R4	54	R3	<i>S3</i>	<i>R2</i>	<i>S2</i>	R1	<i>S</i> 1
z1-z2	0	0	0	0	0	0	0	1	-	1	0	0	0	0	-	0	-	0	1	0	0	1
z2-z2	0	0	0	1	0	0	0	1	0	-	1	0	0	0	-	0	-	0	-	0	0	-
z2-z3	0	0	0	1	0	0	1	0	1	ı	1	0	0	0	-	0	-	0	0	1	1	0
z3-z4	0	0	1	0	0	0	1	1	ı	ı	0	1	0	0	-	0	-	0	0	ı	0	1
z4-z5	0	0	1	1	0	1	0	0	-	0	0	1	0	0	-	0	0	1	1	0	1	0
z5-z5	0	1	0	0	0	1	0	0	-	0	0	0	1	0	-	0	0	-	-	0	-	0
z4-z6	0	0	1	1	0	1	0	1	-	1	0	1	0	0	-	0	0	1	1	0	0	-
z6-z7	0	1	0	1	0	1	1	0	-	-	0	0	0	1	-	0	0	-	0	1	1	0
z7-z8	0	1	1	0	0	1	1	1	1	-	1	0	0	0	-	0	0	-	0	-	0	1
z7-z1	0	1	1	0	0	0	0	0	0	-	1	0	0	0	-	0	1	0	1	0	-	0
z8-z9	0	1	1	1	1	0	0	0	ı	1	0	1	0	0	0	1	1	0	1	0	1	0
z9-z1	1	0	0	0	0	0	0	0	-	-	0	1	0	0	1	0	-	0	-	0	-	0

2.5. Синтез комбінаційних схем для функцій эбудження пригерів та вихідних сигналів

На основі структурної таблиці автомата (таблиці 4.1) виконаємо синтез комбінаційних схем для вихідних сигналів і функцій збудження тригерів. Аргументами функцій збудження тригерів є коди станів та вхідні сигнали, для вихідних сигналів — тільки коди станів. Виконаємо мінімізацію функцій методом діаграм Вейча. Враховуючи заданий елементний базис (ЗАБО,4I,НЕ) мінімізувати функцію будемо за ДДНФ

Зм.	Арк.	№ докум.	Підп.	Дата