Unit 1: Linear Algebra - Practice Problems

1. Find the row echelon and reduced row echelon form of the following matrices. Hence find the rank.

(a)
$$\begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 2 \end{bmatrix}$$

(a)
$$\begin{vmatrix} 2 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 2 \end{vmatrix}$$
 (b) $\begin{vmatrix} 2 & 3 & 1 \\ -1 & 2 & 1 \\ 4 & -1 & -1 \end{vmatrix}$

(c)
$$\begin{bmatrix} 1 & 4 & 4 & 1 \\ 0 & 1 & -2 & 2 \\ 3 & 3 & 1 & 4 \\ 0 & 1 & -3 & -2 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 4 & 4 & 1 \\ 0 & 1 & -2 & 2 \\ 3 & 3 & 1 & 4 \\ 0 & 1 & -3 & -2 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & -2 & 0 \\ -2 & 3 & -2 & 3 \\ 0 & -3 & 3 & 3 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & -5 \\ 4 & 4 & 3 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & -5 \\ 4 & 4 & 3 \end{bmatrix}$$
 (f) $\begin{bmatrix} 3 & -3 & 6 \\ 2 & 3 & -5 \\ 1 & -3 & 6 \end{bmatrix}$

$$(g) \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 3 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 5 & 3 \end{bmatrix}$$

2. Use Gauss-Jordan method to find the inverse for the following matrices:

(a)
$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & -5 \\ 4 & 4 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 & 5 \\ 1 & 2 & -5 \\ 4 & 4 & 3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3 & -3 & 6 \\ 2 & 3 & -5 \\ 1 & -3 & 6 \end{bmatrix}$$
 (e) $\begin{bmatrix} 1 & 3 & 4 \\ 2 & -1 & -2 \\ 8 & 4 & 2 \end{bmatrix}$ (f) $\begin{bmatrix} 3 & 2 & 4 \\ 4 & 1 & 5 \\ 6 & 5 & 7 \end{bmatrix}$

(e)
$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & -1 & -2 \\ 8 & 4 & 2 \end{bmatrix}$$

(f)
$$\begin{bmatrix} 3 & 2 & 4 \\ 4 & 1 & 5 \\ 6 & 5 & 7 \end{bmatrix}$$

(g)
$$\begin{bmatrix} -2 & 1 & 1 & 2 \\ 3 & 0 & 2 & -2 \\ 1 & 1 & 3 & 4 \\ 2 & 5 & 3 & 5 \end{bmatrix}$$
 (h)
$$\begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 3 & 3 & 3 \end{bmatrix}$$

(h)
$$\begin{vmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 3 & 3 & 3 \end{vmatrix}$$

Note: For more problems, See page 40, Higher Engineering Mathematics by BS Grewal

3. Test the following system of equations for consistency and solve by Gauss elimination method

(a)
$$3x + 3y + 2z = 1$$
; $x + 2y = 4$; $10y + 3z = -2$; $2x - 3y - z = 5$

(b)
$$3x_1 + 2x_2 + 4x_3 = 7$$
; $2x_1 + x_2 + x_3 = 4$; $x_1 + 3x_2 + 5x_3 = 2$

(c)
$$x + y + z + u = 2$$
; $2x - y + 2z - u = -5$; $3x + 2y + 3z + 4u = 7$; $x - 2y - 3z + 2u = 5$

(d)
$$x + y + z = 6$$
; $x - y + 2z = 5$; $3x + y + z = 8$

(e)
$$2x_1 + x_2 + 4x_3 = 12$$
; $4x_1 + 11x_2 - x_3 = 33$; $8x_1 - 3x_2 + 2x_3 = 20$

4. Derive the solution set for each of the following systems using Gauss-Jordan method

(a)
$$x+y+z=9$$
; $2x+y-z=0$; $2x+5y+7z=52$

(b)
$$x+y+z=9$$
; $2x-3y+4z=13$; $3x+4y+5z=40$

(c)
$$2x + 5y + 7z = 52$$
; $2x + y - z = 0$; $x + y + z = 9$

(d)
$$20x + y - 2z = 1$$
; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$

(e)
$$x_1 - x_2 + x_3 - x_4 = 2$$
; $x_1 - x_2 + x_3 + x_4 = 0$; $4x_1 - 4x_2 + 4x_3 = 4$; $-2x_1 + 2x_2 - 2x_3 + x_4 = -3$

5. Solve each of the following homogeneous systems:

(a)
$$2x_1 + 4x_2 - 5x_3 + 3x_4 = 0$$
; $3x_1 + 6x_2 - 7x_3 + 4x_4 = 0$; $5x_1 + 10x_2 - 11x_3 + 6x_4 = 0$

(b)
$$x - 2y - 3z = 0$$
; $2x + y + 3z = 0$; $3x - 4y - 2z = 0$.

(c)
$$x + 2y + 3z + t = 0$$
; $2x + 4y + 7z + 4t = 0$; $3x + 6y + 10z + 5t = 0$

(d)
$$x - 2y - 3z = 0$$
; $2x + 5y + 2z = 0$; $3x - y - 4z = 0$

(e)
$$x_1 + 3x_2 + 2x_3 - x_4 - x_5 = 0$$
; $2x_1 + 6x_2 + 5x_3 + x_4 - x_5 = 0$; $5x_1 + 15x_2 + 12x_3 + x_4 - 3x_5 = 0$

(f)
$$2x_1 - 4x_2 + 3x_3 - x_4 + 2x_5 = 0$$
; $3x_1 - 6x_2 + 5x_3 - 2x_4 + 4x_5 = 0$; $5x_1 - 10x_2 + 7x_3 - 3x_4 + 18x_5 = 0$

- 6. Find the value of λ for which the system $x+2y+3z=14; \ x+4y+7z=30; \ x+y+z=\lambda$ is consistent. Find the solution for this value of λ .
- 7. Find the values of λ and μ such that the equations $2x + 3y + 5z = 9; 7x + 3y 2z = 8; \ 2x + 3y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) an infinite number of solutions.
- 8. Find the values of a and b for the system of equations $2x-y+2z=-1; \quad x-3z+y=2; \quad x+2az=3b$ to have (i) unique solution (ii) infinite solutions (iii) no solution
- 9. Find the values of a and b for which the equations x + ay + z = 3; x + 2y + 2z = b; x + 5y + 3z = 9 are consistent. When will these equations have a unique solution?
- 10. Find the values of λ and μ such that the system of equations $x+y+z=6; \quad x+2y+3z=10; \quad x+2y+\lambda z=\mu,$ may have (i) no solution (ii) unique solution (iii) an infinite number of solutions

Note: See Higher Engineering Mathematics by BS Grewal, pages 50-51 for more problems.

Gauss Seidel Method

1. Solve the following using Gauss – Seidel method. Perform 5 iterations.

a)
$$4x + 2y + z = 14$$

$$x + 5y - z = 10$$

$$x + y + 8z = 20$$

b)
$$10x + 4y - 2z = 20$$

$$3x + 12y - z = 28$$

$$x + 4y + 7z = 2$$

2. Solve the following using Gauss - Seidel method. Iterate until absolute relative error is less than 10^{-3}

a)
$$28x + 4y - z = 32$$

$$x + 3y + 10z = 24$$

$$2x + 17y + 4z = 35$$

a)
$$28x + 4y - z = 32$$
 b) $x + y + 54z = 110$

$$27x + 6y - z = 85$$

$$2x + 17y + 4z = 35$$
 $6x + 15y + 2z = 72$

Eigenvalues and Eigenvectors

1. Find the eigenvalues and the corresponding eigenvectors for each of the following matrices:

a)
$$\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 6 & -4 \\ 3 & -1 \end{bmatrix}$$

a)
$$\begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$
 b) $\begin{bmatrix} 6 & -4 \\ 3 & -1 \end{bmatrix}$ c) $\begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$

d)
$$\begin{bmatrix} 3 & -8 \\ 2 & 3 \end{bmatrix}$$

e)
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{bmatrix}$$

2. Two eigenvalues of the matrix A are equal to 1 each. Find the eigenvalues of A^{-1} , where

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

Note: See page 60, Higher Engineering Mathematics by BS Grewal for extra problems.