Corrige. DS_2013 IF, [x] est de caractéristique $\left(\frac{2}{1} + \frac{1}{2}\right)^{2} = \frac{2}{1} + \frac{1}{2} + \frac{1}{2}$ Conve $q_i \in F_p$ pour tout i, $q_i V = q_i$, donc $QV = \stackrel{\frown}{Z} q_i \chi V^i$ 21 Si R = 01, R'= nQ'Q'1-1 = 0 Si R'=0, conécuit R= En x' at danc B'= Z 7. i x'-1. Ainsi pour tent i, in: = 0 et desc si pte divise pas i, r = 0 Ainsi, $R = \frac{d'}{z} n_i x^{\uparrow \bar{x}} = \left(\frac{d'}{z} n_i x^i\right)^{\uparrow}$. 3) rycd (P, P') = F Pivi, où pour tout i, vi est le plus grand entier inférieur on égal à li tel que l'idionse l' Pare your tout i dans I, Pi divise P', et your tout i dans I Pi divise P. Reste à voir que si i & I, Pi ne derse pas P. P- e. P. Pei-III Pei + Z egla la 171 pei derse pas P. P- e. P. Pei-III Pei + Z egla la 171 pei l'i divise le second terme de cette sonne, mais par le premier. Pièr ne divise pas P'. En en déduit que rycd (P,P/= IT P. TM) Perc: U = TTP, et $V = \frac{T}{T}P^{2}$; $z \in J$ $z \in$ 5) $P = x^{11} + x^{10} + 2x + 2$, $P = x^{10} + 2$, $P = x^{10}$ 7) Si $q = p^{R}$ et si $\alpha \in IFq$, $\alpha'' = \alpha'$. Danc $\left(\alpha'''\right)'' = \alpha'$.

Ainsi, la racine p' de α' est α'' . w V = x 12 + (a²+1) x 6 + (α+2) x³+ α ∈ IF27 [x], $W = \chi^{4} + (\alpha^{2} + 1)^{9} \chi^{2} + (\alpha + 2)^{9} \chi + \alpha^{9} = \chi^{4} + (\alpha^{2} + 2\alpha + 2) \chi^{2} + \alpha \chi + \alpha + 1$