

Algoritmos e Programação de Computadores Trabalho Obrigatório

Prof. Alexandre Zaghetto <u>zaghetto@unb.br</u>

Problema 1

Escreva o programa apenas em linguagem de programação C.

No presente trabalho vamos explorar alguns princípios da filtragem de imagens no domínio espacial em conjunto com os conceitos de vetor, matriz, *struct*, ponteiro, leitura e escrita em arquivos binários. Para isso:

a) Estude o formato de armazenamento de arquivos de imagem *bmp* (bitmap), exemplificado a seguir:

Example of a 2x2 Pixel Bitmap, with 24 bits/pixel encoding

Offset	Size (bytes)	Hex Value	Value	Description
0h	2	42 4D	"BM"	Magic Number (unsigned integer 66, 77)
2h	4	46 00 00 00	70 Bytes	Size of the BMP file
6h	2	00 00	Unused	Application Specific
8h	2	00 00	Unused	Application Specific

Ah	4	36 00 00 00	54 bytes	The offset where the bitmap data (pixels) can be found.
Eh	4	28 00 00 00	40 bytes	The number of bytes in the header (from this point).
12h	4	02 00 00 00	2 pixels	The width of the bitmap in pixels
16h	4	02 00 00 00	2 pixels	The height of the bitmap in pixels
1Ah	2	01 00	1 plane	Number of color planes being used.
1Ch	2	18 00	24 bits	The number of bits/pixel.
1Eh	4	00 00 00	0	BI_RGB, No compression used
22h	4	10 00 00	16 bytes	The size of the raw BMP data (after this header)
26h	4	13 OB OO OO	2,835 pixels/meter	The horizontal resolution of the image
2Ah	4	13 OB OO OO	2,835 pixels/meter	The vertical resolution of the image
2Eh	4	00 00 00	0 colors	Number of colors in the palette
32h	4	00 00 00	0 important colors	Means all colors are important

Start of Bitmap Data						
36h	3	00 00 FF	0 0 255	Red, Pixel (1,0)		
39h	3	FF FF FF	255 255 255	White, Pixel (1,1)		
3Ch	2	00 00	0 0	Padding for 4 byte alignment (Could be a value other than zero)		
3Eh	3	FF 00 00	255 0 0	Blue, Pixel (0,0)		
41h	3	00 FF 00	0 255 0	Green, Pixel (0,1)		
44h	2	00 00	0 0	Padding for 4 byte alignment (Could be a value other than zero)		

- b) Escreva um programa para ler as informações do cabeçalho do arquivo (desde "Magic Number" até "Means all colors are important") para uma *struct*, mostrando em seguida os dados na tela do computador.
- c) Leia os dados da imagem (a partir de Start of Bitmap Data) para três matrizes matR, matG e matB alocadas dinamicamente a partir dos valores de altura e largura da imagem lidos no cabeçalho.
- d) Aplique o filtro de média ou de mediana aos três planos, de acordo com a chamada feita pelo usuário, gerando planos filtrados matRfilt, matGfilt e matBfilt. O tamanho do filtro (3x3, 5x5, etc.) deve ser fornecido ao programa via linha de comando, juntamente com o nome da imagem de entrada e da imagem de saída. Verifique o efeito de ambas as filtragens nas imagens de teste boardsaltandpepper.bmp e lena_noisy.bmp de fornecidas.

e) Escreva apropriadamente o cabeçalho e os novos planos matRfilt, matGfilt e matBfilt em um arquivo binário, com a extensão *bmp*, e observe o efeito da filtragem em um visualizador de imagens qualquer.

Problema 2

Escreva o programa em linguagem de programação C.

Vá ao site http://www.tse.jus.br/eleicoes/repositorio-de-dados-eleitorais, selecione Candidatos e depois o ano de 2018. Baixe o arquivo apontado pelo link *Candidatos* (consulta_cand_2018.zip).

Leia o arquivo LEIAME.pdf que contêm o leiaute das tabelas existentes no repositório de dados eleitorais.

Escreva um programa que abra cada um dos arquivos na forma CONSULTA_CAND_<ANO ELEIÇÃO>_<SIGLA UF>.csv e forneça respostas para cada uma das perguntas abaixo.

1) Há quantos candidatos em cada turno da eleição?

No primeiro turno:

- 2) Qual é a quantidade de candidatos por cargo?
- 3) Quantos candidatos há por partido?
- 4) Qual é a quantidade de candidatos por grau de instrução? (Atribuindo-se o valor 1 ao menor grau de instrução o valor N ao maior, calcule o grau médio de instrução.)
- 5) Qual é a quantidade de candidatados por sexo?
- 6) Qual é a quantidade de candidatos por descrição da cor da raça?
- 7) Qual é a média de idade dos candidatos.

Compare seus resultados com os demais colegas.