1. Loop over the atoms

2. Sample points on the sphere

Loop over unique atoms

Lennard-Jones energy:

$$E_{ij}^{LJ} = \epsilon \left[\left(\frac{r_m}{r_{ij}} \right)^{12} - 2 \left(\frac{r_m}{r_{ij}} \right)^6 \right]$$

atom a

 r_{min} Distance to the minimum of the LJ potential

 $-\epsilon$ Minimum of LJ potential

3. Adsorption energy calculation

Interaction energy of an adsorbate at point 1 with the structure:

$$\mathcal{E}_{i}^{a} = E_{ia}^{LJ} + \sum_{i} E_{ij}^{LJ}$$

where *j*represents the
red atoms of
the structure

Boltzmann average:

$$Z = \sum_{a} \sum_{i} \exp(-\beta \mathcal{E}_{i}^{a})$$

Approximation of the adsorption energy:

$$E_{ads} = \sum_{i} \frac{\exp(-\beta \mathcal{E}_{i}^{a})}{Z} \mathcal{E}_{i}^{a}$$

