Convex Hulls

Birgit Vogtenhuber

Overview

- Introduction
- Algorithms for computing convex hulls
- A lower bound for the computational complexity of convex hull computation
- Summary

Birgit Vogtenhuber Convex Hulls

Introduction

Representing objects in space

- Algorithmic solution of geometric problems:
 nice playground for developing algorithms.
- For a start: geometric objects in the plane.
- Constant-size description
 - Points / lines
 - Curves
- Compound objects
 - Line segments
 - Polygons

Motivation

- Polygons represent 2-dimensional parts of the plane
- Complexity can be rather arbitrary
- Convex sets have many important properties
- Convex hull "simplifies" a set.

Birgit Vogtenhuber Convex Hulls

Definition: A set $P \subseteq \mathbb{R}^d$ is *convex* if the segment between two points of P is also contained in P.

- d-dimensional real space
- Euclidean metric
- more general / different definitions exist

Definition: A set $P \subseteq \mathbb{R}^d$ is *convex* if the segment between two points of P is also contained in P.

Equivalent: intersection of P with a line is connected.

Observation: For any family $(P_i)_{i\in I}$ of convex sets, the

intersection $\bigcap_{i \in I} P_i$ is convex.

- Convex sets are relatively easy to handle.
- We may want to "approximate" a set with a convex set.
- For a given set, we want a small convex set containing it, or actually, a smallest.

Birgit Vogtenhuber Convex Hulls

8 i

- Convex sets are relatively easy to handle.
- We may want to "approximate" a set with a convex set.
- For a given set, we want a small convex set containing it, or actually, a smallest.

Birgit Vogtenhuber Convex Hulls

8 ii

- Convex sets are relatively easy to handle.
- We may want to "approximate" a set with a convex set.
- For a given set, we want a small convex set containing it, or actually, a smallest.

Birgit Vogtenhuber Convex Hulls

8 iii

- Convex sets are relatively easy to handle.
- We may want to "approximate" a set with a convex set.
- For a given set, we want a small convex set containing it, or actually, a smallest.

Birgit Vogtenhuber Convex Hulls

8 iv

Convex Hull

Definition: The *convex hull* conv(P) of a set $P \subseteq \mathbb{R}^d$ is the intersection of all convex supersets of P.

Birgit Vogtenhuber Convex Hulls

- Paramount in Computational Geomtry
 - geometric data structure
- Applications:

Width of a polygon

10 iii Birgit Vogtenhuber Convex Hulls

- Paramount in Computational Geomtry
 - geometric data structure
- Applications:

Diameter of a point set S: maximum distance between two points of S.

10 vi Birgit Vogtenhuber Convex Hulls

- Paramount in Computational Geomtry
 - geometric data structure
- Applications:

Linear separation of data points:

10 ix Birgit Vogtenhuber Convex Hulls

- Paramount in Computational Geomtry
 - geometric data structure
- Applications:

Many algorithms involve computing the convex hull of a point set as a sub-routine.

10 x Birgit Vogtenhuber Convex Hulls

Convex Hull Algorithms

11

- How should we construct the convex hull of a set?
- Suitable sets needed
- Suitable representation of the hull needed
- ullet Focus: finite point set in \mathbb{R}^2

Birgit Vogtenhuber Convex Hulls

- Convex hull of a point set: convex polygon.
- Convex hull of a polygon: convex hull of its vertex set.

Birgit Vogtenhuber Convex Hulls

13 i

- Convex hull of a point set: convex polygon.
- Convex hull of a polygon: convex hull of its vertex set.

Birgit Vogtenhuber Convex Hulls

13 ii

Input:

$$P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$$

Output: Sequence

 (q_1,\ldots,q_h) of vertices

maybe only a set?

Input:

$$P = \{p_1, \dots, p_n\} \subset \mathbb{R}^2$$

Output: Sequence

 (q_1,\ldots,q_h) of vertices

what about degeneracies?

How does an algorithm "see" this?

How can you find an extreme point?

1841	4167
5007	7880
8370	9968
9726	6983
1320	4617
860 6	5772
5694	771
2680	1338
7487	4582
5114	7406
8678	5231
397 6	521
643 5	297
708 7	428
2128	8275
1249	1906
4222	8732
9755	4487

15 ii Birgit Vogtenhuber Convex Hulls

Properties of the convex hull

A point is on the convex hull boundary iff it is not contained in a triangle spanned by three points.

Trivial algorithm: Check all points with all triangles in ${\cal O}(n^4)$ time.

16

Birgit Vogtenhuber Convex Hulls

Another Algorithm

Identify edges of the convex hull in $O(n^3)$ time.

Birgit Vogtenhuber Convex Hulls

17

Start with extreme point

18 ii Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 iv Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 vii Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 viii Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 ix Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 xiv Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 xv Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 xvi Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 xix Birgit Vogtenhuber Convex Hulls

- Start with extreme point
- Find edges that have all other points to the left

18 xx Birgit Vogtenhuber Convex Hulls

Input:

• Array p[1..N] of points $(N \ge 3)$

Output:

Array q[1..h] with convex hull vertices in order

Preparation:

- Find the point with smallest x-coordinate (q_now) .
- q_now is the first known convex hull point.
- Choose a different point (q_next) as the first candidate for the next convex hull point.
- The array q is still empty.

Jarvis' Wrap

```
for (i = 2 to N)
    if (p[i].x < p[1].x)
        swap(p[1], p[i])
q_now = p[1]
q_next = p[2]
h = 0</pre>
```

19 ii

Birgit Vogtenhuber Convex Hulls

Jarvis' Wrap

Every round:

- add q_now to array q
- find next convex hull point q_next:
 point such that no other point is right of the directed line from q_now to q_next
- replace q_now by q_next
- replace q_next by new candidate different from q_now

End:

- When the next found convex hull point is equal to q[1] then the convex hull is completed.
- This is the case when q_now equals q[1] after a round.

Birgit Vogtenhuber Convex Hulls

Jarvis' Wrap

```
for (i = 2 \text{ to } N)
   if (p[i].x < p[1].x)
      swap(p[1], p[i])
q_now = p[1]
q_next = p[2]
h = 0
do
  h = h+1
  q[h] = q_now
  for (i = 2 \text{ to } N)
    if (rightturn(q_now, q_next, p[i]))
      q_next = p[i]
  q_now = q_next
  q_next = p[1]
while (q_{now} != q[1])
```

19 iv Birgit Vogtenhuber

Convex Hulls

Jarvis' Wrap Analysis

Runtime:

- Preparation: $\Theta(n)$ time
- Outer loop is processed $h \leq n$ times
- Inner loop is processed $\Theta(n)$ times each round.
- $\Theta(nh) = O(n^2)$ rightturn tests
- Worst case: $h = \Theta(n)$
- Output sensitive (good for small hulls)
- Asymptotically not optimal

Storage:

O(n) in addition to input:
 q and constantly many extra variables.

20 ii Birgit Vogtenhuber Convex Hulls

Jarvis' Wrap Analysis

Correctness:

- Before round k,
 - \circ q contains k-1 vertices of the convex hull in order,
 - q_now is the next vertex on the convex hull.
- At the end of round k, q_now is the next convex hull vertex after q[h]: edge from q[h] to q_now has no other point to the right.
- When q_now equals q[1] the convex hull is complete.

Degeneracies:

- Several points with smallest x-coordinate
- More than two points on a line

20 iv Birgit Vogtenhuber Convex Hulls

Orientation Test

Do three points make a left turn?

- Needed by many algorithms
- Evaluate degree 2 polynomial: *algebraic degree* 2
- Practical relevance

Do two segments cross? \Rightarrow four orientation tests

21 iii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 iii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 iv Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 v Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 vii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 ix Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xi Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xiii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xv Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xvii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xviii Birgit Vogtenhuber

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xix Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xx Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxi Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxiii Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxiv Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxv Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

22 xxvi Birgit Vogtenhuber Convex Hulls

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn

Input:

• Array p[1..N] of points $(N \ge 3)$

Output:

23 i

Array q[1..h] with convex hull vertices (in order)

Preparation:

- Place the point with smallest y-coordinate into p[1]
- Sort all other points counterclockwise around p[1]:
 p[i] is larger than p[j] if p[i] is left of the directed
 line from p[1] to p[j]
- p[1] and p[2] are the first two convex hull vertices:
 Add them in this order to q.

Birgit Vogtenhuber Convex Hulls

```
for (i = 2 to N)
   if (p[i].y < p[1].y)
     swap(p[1], p[i])
sort p[2..N] counterclockwise around p[1]
q[1] = p[1]
q[2] = p[2]
h = 2</pre>
```

Birgit Vogtenhuber Convex Hulls

23 ii

Process the remaining points from p[3] to p[n].

Processing point p[i]:

- While from the last edge of the convex hull there is no left turn to p[i], remove the last point from q.
- Add p[i] to q.

End:

23 iii

 After p[n] has been processed, the convex hull vertices are stored in order in q.

Birgit Vogtenhuber Convex Hulls

```
for (i = 2 \text{ to } N)
  if (p[i].y < p[1].y)
    swap(p[1], p[i])
sort p[2..N] counterclockwise around p[1]
q[1] = p[1]
q[2] = p[2]
h = 2
for (i = 3 \text{ to } N)
  while (h>1 and not leftturn(q[h-1],q[h],p[i]))
    h = h - 1
  h = h + 1
  q[h] = p[i]
```

23 iv Birgit Vogtenhuber Convex Hulls

Running time:

- Preparation in $O(n \log n)$ time due to sorting.
- Buliding the convex hull: $\Theta(n)$ time. Why?

```
for (i = 3 to N)
  while (h>1 and not leftturn(q[h-1],q[h],p[i]))
    h = h - 1
  h = h + 1
  q[h] = p[i]
```

 \longrightarrow in total $O(n \log n)$ time.

Storage:

• O(n) in addition to input

24 iv Birgit Vogtenhuber Convex Hulls

Correctness:

24 v

- Before the round for p[i], q contains the vertices of the convex hull of p[1..i−1] in order. ← initially true
- After the round for p[i], q contains the vertices of the convex hull of p[1..i] in order:
 - Point p[i] is the "last" vertex of the convex hull.
 - The last point q[h] is removed iff it lies in the triangle ∆ q[1] q[h-1] p[i].
 If it does not lie in this triangle, it is on the convex hull of p[1..i].

Birgit Vogtenhuber Convex Hulls

Lower Bound

Birgit Vogtenhuber Convex Hulls

25

Lower Bound

Theorem: In the algebraic decision tree model, $\Omega(n \log n)$ operations are needed to construct the convex hull of n points in \mathbb{R}^d .

Birgit Vogtenhuber Convex Hulls

26 iv

Conclusion

- ullet The convex hull of n points in \mathbb{R}^2 can be computed in
 - \circ O(nh) time by Jarvis' Wrap: output sensitive, but quadratic in the worst case.
 - o $O(n \log n)$ time by Graham's scan: worst-case optimal, but not output-sensitive.
- Lower bound of $\Omega(n \log n)$ time in the worst case follows from $\Omega(n \log n)$ worst case time for sorting.

Remark: The convex hull of n points in \mathbb{R}^2 can be computed in $O(n \log h)$ time by *Chan's algorithm* (a clever combination of Graham's scan and Jarvis' wrap).

Question: Can the convex hull of n points in \mathbb{R}^2 be computed faster when the points are sorted in x-order?

27 iii Birgit Vogtenhuber Convex Hulls

Conclusion

- ullet The convex hull of n points in \mathbb{R}^2 can be computed in
 - \circ O(nh) time by Jarvis' Wrap: output sensitive, but quadratic in the worst case.
 - $O(n \log n)$ time by Graham's scan: worst-case optimal, but not output-sensitive.
- Lower bound of $\Omega(n \log n)$ time in the worst case follows from $\Omega(n \log n)$ worst case time for sorting.

Thank you for your attention.

Question: Can the convex hull of n points in \mathbb{R}^2 be computed faster when the points are sorted in x-order?

27 iv Birgit Vogtenhuber Convex Hulls