Math6450_Assignment1_copy_for_pdf_render

September 5, 2025

Part 1: Data Exploration and Preparation

BOSTON HOUSING DATASET ANALYSIS

1.1 DATASET DIMENSIONS

Number of observations (rows): 506 Number of variables (columns): 14

Dataset shape: (506, 14)

Column names: ['crim', 'zn', 'indus', 'chas', 'nox', u c'rm', 'age', 'dis', 'rad', 'tax', 'ptratio', 'b', u c'lstat', 'medv']

1.2 DESCRIPTIVE STATISTICS

Descriptive statistics for TARGET VARIABLE (medv):

count 506.000
mean 22.533
std 9.197
min 5.000
25% 17.025
50% 21.200
75% 25.000
max 50.000

Name: medv, dtype: float64

Descriptive statistics for PRIMARY FEATURE (1stat):

count 506.000 12.653 mean 7.141 std min 1.730 6.950 25% 50% 11.360 75% 16.955 37.970 max

Name: 1stat, dtype: float64

Additional statistics for medv:

Variance: 84.5867

Standard deviation: 9.1971

Skewness: 1.1081 Kurtosis: 1.4952

Additional statistics for lstat:

Variance: 50.9948

Standard deviation: 7.1411

Skewness: 0.9065 Kurtosis: 0.4932

1.3 CORRELATION ANALYSIS

Correlation coefficient between medv and lstat: -0. $\hookrightarrow 7377$

INTERPRETAITION:

- The correlation coefficient of -0.7377 indicates a_{\sqcup} -strong negative relationship
- This means that as lstat (% lower status_ population) increases, medv (median home value)_ tends to decrease
- The relationship explains approximately 54.4% of $_{\mbox{$\sqcup$}}$ +the variance (R^2 = 0.5441)

- Statistical significance: p-value = 5.08e-88
- The correlation is statistically significant at $\alpha_{\rm LJ}$ = 0.05

1.4 SCATTER PLOT ANALYSIS

PATTERN OBSERVED IN SCATTER PLOT:

- \hookrightarrow relationship between 1stat and medv

- The relationship seems stronger (steeper decline)

 →at lower lstat values and levels off at higher

 →lstat values

SUMMARY:

- Dataset contains 506 observations and 14 variables
- Non-linear relationship visible in scatter plot
- Both variables show reasonable distributions for □ □ regression analysis

Part 2: Linear Regression Model Fitting

$$medv = \hat{\beta}_0 + \hat{\beta}_1 \times lstat$$

COEFFICIENTS:

Intercept (β_0): 34.5538 Slope (β_1): -0.9500

2.1 ESTIMATED REGRESSION EQUATION

medv = 34.5538 + (-0.9500) \times lstat

 $medv = 34.5538 - 0.9500 \times 1stat$

Alternative notation:

 $\hat{y} = 34.5538 + (-0.9500)x$

where \hat{y} = predicted median home value and x = 1stat

2.2 INTERPRETATION OF INTERCEPT (β_0)

Intercept value: 34.5538

INTERPRETATION:

- In practical terms: \$34554

PRACTICAL MEANING:

- Observed 1stat range: 1.73% to 37.97%
- Since the minimum observed lstat is 1.73%, lstat = $_{\sqcup}$ $_{\hookrightarrow}$ 0 is outside our data range
- Therefore, the intercept represents extrapolation ⊔ ⇔beyond observed data
- While mathematically meaningful, it has LIMITED_ -PRACTICAL MEANING because:
- * Real-world interpretation: represents the

2.3 INTERPRETATION OF SLOPE (β_1)

Slope value: -0.9500

INTERPRETATION:

For each 1% increase in 1stat (lower status population), the median home value decreases by \$0. 9500k on average, holding all other factors constant.

In practical terms:

- A 1% increase in lower status population is u ⇔associated with a \$950 decrease in median home u ⇔value
- A 5% increase in lower status population would_ $_{\mbox{-}}\mbox{decrease}$ median home value by \$4750
- A 10% increase in lower status population would_decrease median home value by \$9500

2.4 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTING 95% CONFIDENCE INTERVALS:

0 1 Intercept 33.448 35.659 lstat -1.026 -0.874

DETAILED CONFIDENCE INTERVALS:

Intercept (β_0) : [33.4485, 35.6592] Slope (β_1) : [-1.0261, -0.8740]

SIGNIFICANCE TESTING:

INTERCEPT (β_0) ANALYSIS:

- 95% CI: [33.4485, 35.6592]
- Contains zero? No
- \hookrightarrow different from zero
- ⇒intercept is between 33.4485 and

35.6592

SLOPE (β_1) ANALYSIS:

- 95% CI: [-1.0261, -0.8740]
- Contains zero? No
- Conclusion: The slope IS significantly different
- This means we can be 95% confident the true slope $_{\!\sqcup}$ $_{\!\dashv}$ is between -1.0261 and
- -0.8740

P-VALUES (for additional confirmation):

Intercept p-value: 3.74e-236
Slope p-value: 5.08e-88
Both p-values < 0.05: True</pre>

MODEL SUMMARY STATISTICS:

R-squared: 0.5441

Adjusted R-squared: 0.5432

F-statistic: 601.62

F-statistic p-value: 5.08e-88

Standard Error: 6.2158

FINAL SUMMARY:

- Regression equation: medv = 34.5538 + (-0.9500) \times_{\square} \hookrightarrow lstat
- Both coefficients are statistically significant at $_{\square}$ = 0.05
- The model explains 54.4% of the variance in $\mathtt{median}_{\square}$ —home values
- For every 1% increase in lower status population, ⊔ → median home value decreases by \$950 on average

2.5 R-SQUARED ANALYSIS R-squared value: 0.5441

R-squared as percentage: 54.41%

INTERPRETATION:

- R^2 = 0.5441 means that 54.41% of the variation in ⇔median home values is explained by the percentage⊔ →of lower status population (lstat)
- The remaining 45.59% of variation is due to other ⇒factors not included in this model
- This indicates a moderate relationship
- In practical terms: knowing the 1stat value allows \ominus us to predict about 54.4% of the variation in home $_{\sqcup}$

2.6 ROOT MEAN SQUARE ERROR (RMSE) Mean Squared Error (MSE): 38.6357 Root Mean Square Error (RMSE): 6.2158

INTERPRETATION:

- RMSE = 6.2158 thousands of dollars
- In actual dollars: \$6216
- ⇒approximately \$6216
- On average, our predictions are off by about ±\$6216 ⇔from the actual median home value

CONTEXT:

- Mean home value: \$22.53k (\$22533)
- Standard deviation of home values: \$9.20k
- Range of home values: \$45.00k
- RMSE as % of mean: 27.6%
- RMSE as % of standard deviation: 67.6%

2.7 F-STATISTIC AND OVERALL MODEL SIGNIFICANCE

F-statistic: 601.6179

F-statistic p-value: 5.08e-88

Degrees of freedom: Model = 1.0, Residual = 504.0

HYPOTHESIS TEST:

 H_0 : The model has no explanatory power (β_1 = 0) H_1 : The model has explanatory power ($\beta_1 \neq 0$)

INTERPRETATION:

- F-statistic = 601.6179 with p-value = 5.08e-88
- Since p-value < 0.05, we REJECT the null hypothesis
- Conclusion: The model IS statistically significant
- This means lstat DOES have significant explanatory →power for predicting medv

PRACTICAL MEANING:

- The F-test confirms that our regression model
- ⇔performs significantly better than a model with no⊔ →predictors (just the mean)
- ⇔statistically meaningful
- We can be confident that lstat is a useful \sqcup →predictor of median home values

2.8 ADJUSTED R-SQUARED COMPARISON

R-squared: 0.544146

Adjusted R-squared: 0.543242

Difference: 0.000904

WHY THERE MIGHT BE A DIFFERENCE:

- Regular R²: 0.544146 Adjusted R²: 0.543242
- The difference of 0.000904 is very small

WHAT ADJUSTED R-SQUARED ACCOUNTS FOR:

- Number of predictors in the model: 1.0
- Sample size: 506 observations

- Degrees of freedom penalty for adding predictors

FORMULA EXPLANATION:

Adjusted $R^2 = 1 - [(1 - R^2) \times (n - 1) / (n - k - 1)]$ where n = sample size (506) and $k = number of_{\square}$ →predictors (1.0)

Manual calculation: 0.543242

INTERPRETATION:

- The very small difference suggests our model is not_{\sqcup} ⇔overfitting
- With only one predictor, the adjustment is minimal
- Both R^2 and adjusted R^2 tell essentially the same

PRACTICAL IMPLICATIONS:

- For model comparison: Use adjusted \mathbf{R}^2 when
- ${\hookrightarrow} comparing models with different numbers of_{\sqcup}$
- ⇔predictors
- For interpretation: Both values are nearly
 - ⇔identical, indicating a robust single-predictor □
- The penalty for our one predictor is minimal given_

FINAL SUMMARY:

- R^2 = 0.5441 (54.41% of variance explained)
- Adjusted R^2 = 0.5432 (54.32% of variance explained)
- RMSE = \$6216 (typical prediction error)
- F-statistic = 601.6179, p < 0.05 (highly \Box
- \hookrightarrow significant model)
- ⇒just 1stat
- Typical prediction accuracy: ±\$6216 (27.6% of mean_ ⇔home value)

Part 3: Statistical Inference and Hypothesis Testing

3.1 HYPOTHESIS TESTING SETUP

TESTING THE SLOPE COEFFICIENT:

- $H_0: \beta_1 = 0$ (The slope coefficient is zero)
 - \rightarrow 1stat has no linear relationship with medv
 - → There is no linear association between % lower
- ⇒status population and median home value
- H_1 : $\beta_1 \neq 0$ (The slope coefficient is not zero)
 - → lstat has a significant linear relationship $_{\!\!\!\!\sqcup}$
 - ⇔with medv

 - ⇒between % lower status population and median home⊔ ⇔value

Type of test: Two-tailed test Significance level: α = 0.05

3.2 T-STATISTIC AND P-VALUE ANALYSIS

TEST STATISTICS:

t-statistic: -24.527900

p-value: 5.08e-88

Degrees of freedom: 504.0

Critical t-value (α = 0.05, two-tailed): ±1.9647

DECISION MAKING:

Decision rule: Reject H_0 if |t| > 1.9647 OR if ⇔p-value < 0.05

Observed: |t| = 24.5279, p-value = 5.08e-88

CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT H_0 : The slope coefficient IS significantly \Box

- \rightarrow different from zero - |t| = 24.5279 > 1.9647
- p-value = 5.08e-88 < 0.05
- Statistical evidence: There IS a significant
- ⇔linear relationship between 1stat and medv

PRACTICAL INTERPRETATION:

- We can be 95% confident that changes in % lower ⇒ status population have a real, measurable effect ⇒ on median home values
- The effect size: each 1% increase in 1stat is ⇔associated with a \$950 decrease in median home ⇔value

3.3 CONFIDENCE INTERVAL ANALYSIS

CONFIDENCE INTERVALS FOR SLOPE COEFFICIENT: 95% Confidence Interval: [-1.026148, -0.873951] 99% Confidence Interval: [-1.050199, -0.849899]

INTERVAL WIDTH COMPARISON:

95% CI width: 0.152198 99% CI width: 0.200300 Width increase: 0.048102

Percent increase in width: 31.6%

INTERPRETATION:

95% CONFIDENCE INTERVAL:

- In practical terms: each 1% increase in lstatudecreases median home value by between \$874 andus \$1026

99% CONFIDENCE INTERVAL:

- We are 99% confident that the true slope_ coefficient lies between -1.050199 and -0.849899
- In practical terms: each 1% increase in lstatu decreases median home value by between \$850 andu \$1050

COMPARISON ANALYSIS:

- The 99% CI is wider than the 95% CI by 0.048102
- This represents a 31.6% increase in width
- WHY: Higher confidence level requires a wider ⊔ interval to capture the true parameter
- TRADE-OFF: More confidence (99% vs 95%) comes atuethe cost of precision (wider interval)

SIGNIFICANCE IMPLICATIONS:

95% CI contains zero: No

99% CI contains zero: No

- Since neither interval contains zero, the slope is $_{\!\!\!\!\sqcup}$ -significant at both levels

3.4 TESTING SPECIFIC CLAIM

CLAIM TO TEST:

Someone claims that each 1% increase in lstatudecreases median home value by exactly \$1000 In our units: β_1 = -1.0 (since medv is in thousandsucof dollars)

HYPOTHESES:

 ${\rm H_0}\colon \ \beta_1$ = -1.0 (the claim is correct) ${\rm H_1}\colon \ \beta_1 \ \neq \ -1.0$ (the claim is incorrect)

TEST USING CONFIDENCE INTERVALS:

Observed slope coefficient: -0.950049 Claimed slope coefficient: -1.0

95% Confidence Interval Test:

- 95% CI: [-1.026148, -0.873951]
- Does the CI contain -1.0? Yes

99% Confidence Interval Test:

- 99% CI: [-1.050199, -0.849899]
- Does the CI contain -1.0? Yes

FORMAL T-TEST:

t-statistic = (observed - claimed) / SE = (-0.950049 $_{\mbox{\tiny \Box}}$ $_{\mbox{\tiny \Box}}$ -1.0) / 0.038733

t-statistic = 1.2896

p-value (two-tailed): 0.1978

CONCLUSION:

FAIL TO REJECT the claim at 95% confidence level

- The claimed value (-1.0) IS within the 95%
- ⇔confidence interval

- Our regression results SUPPORT the claim FAIL TO REJECT the claim at 99% confidence level

- The claimed value (-1.0) IS within the 99%
- ⇔confidence interval

STATISTICAL EVIDENCE:

- Our estimate: Each 1% increase in lstat decreases $_{\!\sqcup}$ $_{\!\rightharpoonup}$ home value by \$950
- Claimed effect: Each 1% increase in 1stat decreases_
 -home value by \$1000
- Difference: \$50
- The difference is not statistically significant (p $_{\!\!\!\!\perp}$ = 0.1978 \geq 0.05)
- Insufficient evidence to reject the claim

Estimate: -0.950

FINAL SUMMARY:

Hypotheses: H $_0$: β_1 = 0 vs H $_1$: $\beta_1\neq$ 0 Test results: t = -24.5279, p = 5.08e-88 Conclusion: Reject H $_0$ - slope is significant

Confidence intervals:

95% CI: [-1.026148, -0.873951] (width: 0.152198) 99% CI: [-1.050199, -0.849899] (width: 0.200300) 99% CI is 31.6% wider than 95% CI Claim test: The claim of exactly \$1000 decrease is SUPPORTED

Our estimate: \$950 decrease per 1% 1stat increase

Part 4: Assumption Testing and Model Diagnostics

BOSTON HOUSING ASSUMPTION TESTING AND MODEL

→DIAGNUSTICS

MODEL SUMMARY: Sample size: 506

Number of residuals: 506

Mean of residuals: 0.000000 (should be \approx 0) Standard deviation of residuals: 6.2096

4.1 SHAPIRO-WILK TEST FOR NORMALITY OF RESIDUALS HYPOTHESIS TESTING:

 $\mathrm{H}_0\colon \mathrm{Residuals}$ follow a normal distribution $\mathrm{H}_1\colon \mathrm{Residuals}$ do not follow a normal distribution

Significance level: $\alpha = 0.05$

TEST RESULTS:

Shapiro-Wilk test statistic (W): 0.878572

p-value: 0.000000

DECISION MAKING:

Decision rule: Reject H_0 if p-value < 0.05

Observed p-value: 0.000000

CONCLUSION AT 5% SIGNIFICANCE LEVEL:

REJECT H_0 : Residuals do not follow a normal \sqcup \hookrightarrow distribution

- Statistical evidence suggests departure \mathtt{from}_{\sqcup} -normality
- The normality assumption may be violated

INTERPRETation OF TEST STATISTIC:

- -W = 0.878572
- W ranges from 0 to 1, with values closer to $1_{\mbox{\scriptsize L}}$ $_{\mbox{\scriptsize cl}}$ indicating more normal-like data
- Our value suggests weak evidence of normality based $_{\!\!\!\! \sqcup}$ on the test statistic alone

ADDITIONAL NORMALITY TESTS (for comparison):

D'Agostino's test: statistic = 137.0434, p-value = 0.

Jarque-Bera test: statistic = 291.3734, p-value = 0.

CONSENSUS: Tests show mixed results regarding $_{\square}$ onormality

4.2 Q-Q PLOT ANALYSIS

Q-Q PLOT INTERPRETATION:

The Q-Q (Quantile-Quantile) plot compares residual $_{\square}$ $_{\square}$ quantiles to theoretical

normal quantiles

Q-Q plot correlation: 0.9373

(Values closer to 1 indicate better fit to normal_□
distribution)

VISUAL ASSESSMENT:

- Good fit with minor deviations
- Look for points following the red diagonal line
- Systematic deviations suggest non-normality
- Graphed Q-Q plot backs up the previously observed_ weak evidence of normality based on the test_ statistic

4.3 HISTOGRAM WITH NORMAL DISTRIBUTION OVERLAY SHAPE ANALYSIS:

Skewness: 1.4527

Kurtosis: 2.3191 (excess kurtosis)

SKEWNESS INTERPRETATION:

- Skewness = 1.4527 indicates highly skewed
- Distribution is skewed to the right

KURTOSIS INTERPRETATION:

- Normal distribution has excess kurtosis = 0

DEPARTURES FROM NORMALITY:

Identified departures from normality:

- 1. Skewness (1.453)
- 2. Kurtosis (2.319)
- ${\tt 3.}$ Shapiro-Wilk test rejection
- 4. Q-Q plot deviations

4.2 VISUAL EVIDENCE VS STATISTICAL TEST COMPARISON: Statistical test result (Shapiro-Wilk): Rejects_

→normality

Visual evidence assessment: Shows deviations $\mathtt{from}_{\boldsymbol{\sqcup}}$ ${}_{\boldsymbol{\sqcup}}\mathtt{normality}$

normality

DETAILED VISUAL OBSERVATIONS:

Q-Q Plot:

- Systematic deviations from diagonal line (r = 0.
- Visual evidence against perfect normality

Histogram:

- Notable departures from bell-shaped normal
- ⇔distribution
- Skewness and/or kurtosis concerns visible

PRACTICAL IMPLICATIONS FOR REGRESSION:

NORMALITY ASSUMPTION VIOLATED:

- Confidence intervals may be less reliable
- Consider robust standard errors
- Prediction intervals may be inaccurate
- Consider variable transformation

SAMPLE SIZE CONSIDERATIONS:

- Sample size: 506 observations
- Large sample: Central Limit Theorem helps with ⊔
 →normality concerns
- Minor deviations from normality are less problematic

FINAL SUMMARY:

Shapiro-Wilk test: W = 0.878572, p = 0.000000 Conclusion: Residuals deviate from normality

Q-Q plot assessment: r = 0.9373

Visual evidence: Shows deviations from normality

Histogram analysis:

Skewness: 1.4527, Kurtosis: 2.3191

Shape: highly skewed, heavy-tailed (leptokurtic)

Overall normality assessment: VIOLATED

4.4: BREUSCH-PAGAN TEST RESULTS

Test Statistic: 4.1871 P-value: 0.0407 Degrees of Freedom: 1

Conclusion: Reject H0 at α = 0.05. Evidence of \Box \hookrightarrow heteroscedasticity.

Verification (statsmodels function): Stat = 65.1218, $_{\sqcup}$ $_{\hookrightarrow}$ P-value = 0.0000

4.5: RESIDUALS VS. FITTED VALUES ANALYSIS Pattern interpretation:

- HOMOSCEDASTICITY: Points should be randomly_scattered around the horizontal line at y=0
- HETEROSCEDASTICITY indicators:
- * Funnel shape (variance increases or decreases_with fitted values)
- * Curved patterns in the smoothing line
- * Clear clustering or systematic patterns

Variance in lowest third of fitted values: 17.2703 Variance in highest third of fitted values: 31.7984 Variance ratio (high/low): 1.8412

LOWESS smoothing 10 10 10 10 20 30 40 Fitted Values

Residuals vs. Fitted Values

4.6: SCALE-LOCATION PLOT ANALYSIS

Evidence of changing variance:

- CHANGING VARIANCE indicators:

 - * Clear patterns or curves in the line

Correlation between fitted values and |residuals|: 0.

Interpretation:

* Moderate correlation suggests possible

→heteroscedasticity

COMPREHENSIVE HOMOSCEDASTICITY ASSESSMENT

TEST RESULTS SUMMARY:

- 1. Breusch-Pagan Test: Statistic = 4.1871, P-value = $_{\sqcup}$ $_{\hookrightarrow}$ 0.0407
- → Reject HO at α = 0.05. Evidence of \Box \hookrightarrow heteroscedasticity.
- 2. Variance Ratio Analysis: 1.8412
 → Suggests homoscedasticity
- 3. Scale-Location Correlation: 0.1507
 - → Moderate evidence of heteroscedasticity

RECOMMENDATIONS:

- Evidence suggests heteroscedasticity
- Consider transformations (log, Box-Cox)
- \bullet Use robust standard errors (White's correction)
- Consider weighted least squares regression
- \bullet Explore different model specifications

Note: Visual inspection of plots is crucial -u statistical tests should be combined with graphical analysis for completeu

4.7: DURBIN-WATSON TEST RESULTS Durbin-Watson Statistic: 1.0784 First-order autocorrelation (ρ): 0.4608

INTERPRETATION:

→ Evidence of positive autocorrelation. Independence → assumption may be violated.

Durbin-Watson Guidelines:

• DW \approx 2.0: No autocorrelation (ideal)

• DW < 1.5: Strong positive autocorrelation

• DW > 2.5: Strong negative autocorrelation

• 1.5 \leq DW \leq 2.5: Acceptable range

4.8: COOK'S DISTANCE ANALYSIS
Maximum Cook's Distance: 0.1657
Mean Cook's Distance: 0.0030
Standard Deviation: 0.0112

INFLUENTIAL OBSERVATIONS CRITERIA:

- Threshold 4/n = 4/506 = 0.0079
- Conservative threshold = 1.0

PECIII TO

- Observations with Cook's D > 4/n: 30 (5.9%)
- Observations with Cook's D > 1.0: 0 (0.0%)

CONCLUSION: Moderate Cook's distance values. Some observations may be influential but not necessarily problematic.

TOP 5 MOST INFLUENTIAL OBSERVATIONS:

- 1. Observation 368: Cook's D = 0.1657
- 2. Observation 372: Cook's D = 0.0941
- 3. Observation 364: Cook's D = 0.0694
- 4. Observation 365: Cook's D = 0.0672
- 5. Observation 369: Cook's D = 0.0553

4.9: HIGH LEVERAGE ANALYSIS

Number of parameters (p): 14

Sample size (n): 506

High leverage threshold (2p/n): 2 \times 14 / 506 = 0.0553

HIGH LEVERAGE RESULTS:

- Observations with high leverage: 36
- Percentage of total sample: 7.1%
- Maximum leverage value: 0.3060
- Mean leverage value: 0.0277

TOP 5 HIGHEST LEVERAGE OBSERVATIONS:

- 1. Observation 380: Leverage = 0.3060
- 2. Observation 418: Leverage = 0.1901
- 3. Observation 405: Leverage = 0.1564
- 4. Observation 410: Leverage = 0.1247
- 5. Observation 365: Leverage = 0.0985
- 4.10 Based on all assumption tests, is your linear regression model valid for statistical inference? Summarize which assumptions are satisfied and which (if any) are violated.

todo

4.10: COMPREHENSIVE MODEL VALIDATION SUMMARY

LINEAR REGRESSION ASSUMPTIONS ASSESSMENT:

1. LINEARITY:

Test method: Residuals vs. fitted plots, $\mathtt{added}_{\ensuremath{\square}}$ variable plots

Result: [Add your previous linearity test results] Status: [SATISFIED / VIOLATED / MARGINAL]

2. INDEPENDENCE OF RESIDUALS:

Test method: Durbin-Watson test

Result: DW = 1.0784

Status: VIOLATED

3. HOMOSCEDASTICITY (Constant Variance):

Test method: Breusch-Pagan test, residuals plots
Result: [Add your previous homoscedasticity test
□ □ results]

Status: [SATISFIED / VIOLATED / MARGINAL]

4. NORMALITY OF RESIDUALS:

Test method: Shapiro-Wilk, Q-Q plots, histograms Result: [Add your previous normality test results] Status: [SATISFIED / VIOLATED / MARGINAL]

5. NO MULTICOLLINEARITY:

Test method: VIF analysis, correlation matrix
Result: [Add your multicollinearity test results_
if available]

Status: [SATISFIED / VIOLATED / MARGINAL]

6. NO EXCESSIVE INFLUENTIAL OBSERVATIONS:

Test method: Cook's distance, leverage analysis Cook's D max: 0.1657

High leverage obs: 36 (7.1%)

 ${\tt Status: \ MARGINAL - Some \ influential \ observations} {\sqcup} \\ {\hookrightarrow} {\tt present}$

OVERALL MODEL VALIDITY FOR STATISTICAL INFERENCE: CURRENT ASSESSMENT (based on available tests):

- Assumptions checked: 2
- Assumptions satisfied: 0

RECOMMENDATIONS:

Some concerns with independence or $influential_{\square}$ $\hookrightarrow observations$

NEXT STEPS:

- Complete all assumption tests (linearity, ⊔

 →homoscedasticity, normality)
- Consider remedial measures if assumptions are ⊔ ⇔violated:
 - Data transformations (log, Box-Cox)
 - Robust regression methods
 - Remove or downweight influential observations

Note: A complete assessment requires results from all $_{\!\!\!\sqcup}$ $_{\!\!\!\!\sqcup}$ assumption tests.

Update this summary once you have completed the \mathtt{full}_{\square} —diagnostic suite.

5: Predictions and Intervals

PREDICTIONS AND INTERVALS ANALYSIS

DATASET OVERVIEW

Dataset shape: (506, 14)

Column names: ['crim', 'zn', 'indus', 'chas', 'nox', \cup 'rm', 'age', 'dis', 'rad',

'tax', 'ptratio', 'b', 'lstat', 'medv']

Using 'medv' as target variable

Using 'lstat' as predictor variable (lstat)

SIMPLE LINEAR REGRESSION MODEL

Model: medv ~ lstat R-squared: 0.5441

Regression equation: medv = $34.5538 + -0.9500 \times 1stat$

5.1: PREDICTION FOR LSTAT = 10%

CALCULATION:

 $\hat{y} = \beta_0 + \beta_1 \times X$

 $\hat{y} = 34.5538 + -0.9500 \times 10.0$

 $\hat{y} = 25.0533$

Predicted median home value for lstat = 10%: \$25.05k

5.2: 95% CONFIDENCE INTERVAL FOR MEAN RESPONSE CALCULATION DETAILS:

- Predicted value: 25.0533
- Standard error of mean: 0.2948
- t-critical (α =0.05, df=504.0): 1.9647
- Margin of error: 0.5792

95% CONFIDENCE INTERVAL: [24.4741, 25.6326] In dollars: [\$24.47k, \$25.63k]

INTERPRETATION:

We are 95% confident that the mean median home value ⊔ ofor all neighborhoods

with lstat = 10% is between \$24.47k and \$25.63k.

5.3: 95% PREDICTION INTERVAL FOR INDIVIDUAL RESPONSE CALCULATION DETAILS:

- Predicted value: 25.0533
- Standard error of prediction: 6.4803
- t-critical (α =0.05, df=504.0): 1.9647
- Margin of error: 12.7316

95% PREDICTION INTERVAL: [12.3217, 37.7850] In dollars: [\$12.32k, \$37.78k]

INTERVAL COMPARISON:

- Confidence interval width: 1.1584
- Prediction interval width: 25.4633

5.4: CONFIDENCE VS PREDICTION INTERVALS CONCEPTUAL DIFFERENCES:

CONFIDENCE INTERVAL:

- Estimates uncertainty about the MEAN response for $a_{\mbox{\scriptsize LI}}$ $_{\mbox{\scriptsize G}}$ given X value
- Answers: 'What is the average Y for all $_{\square}$ $_{\square}$ observations with this X?'

- Gets narrower as sample size increases
- Narrower interval (less uncertainty)

PREDICTION INTERVAL:

- \bullet Estimates uncertainty about an INDIVIDUAL response $_{\sqcup}$ $_{\hookrightarrow} for a given X value$
- Answers: 'What might Y be for a single new_{\sqcup} \hookrightarrow observation with this X?'
- Accounts for both estimation uncertainty $\texttt{AND}_{\mbox{$\sqcup$}}$ $\hookrightarrow\!$ individual variation
- Includes natural scatter around the regression line
- Wider interval (more uncertainty)

WHEN TO USE EACH:

USE CONFIDENCE INTERVAL when:

- Estimating average outcomes for policy/planning
- Comparing mean responses between groups
- Making statements about population parameters
- Example: 'What's the average home value in 10%⊔ ⇔lstat neighborhoods?'

USE PREDICTION INTERVAL when:

- Predicting outcomes for specific individuals/cases
- Setting bounds for individual forecasts
- Risk assessment for single observations
- Example: 'What might this specific house be worth?'

5.5: PREDICTIONS AT MULTIPLE LSTAT VALUES POINT PREDICTIONS:

lstat = 5%:

- → Predicted value: \$29.80k
- \rightarrow 95% CI: [\$29.01k, \$30.60k]
- → 95% PI: [\$16.63k, \$42.98k]

lstat = 10%:

- → Predicted value: \$25.05k
- → 95% CI: [\$24.47k, \$25.63k]
- → 95% PI: [\$12.32k, \$37.78k]

lstat = 15%:

- → Predicted value: \$20.30k
- \rightarrow 95% CI: [\$19.73k, \$20.87k]
- → 95% PI: [\$7.58k, \$33.02k]

1stat = 25%:

- → Predicted value: \$10.80k
- → 95% CI: [\$9.72k, \$11.89k]
- → 95% PI: [\$-3.15k, \$24.75k]

RELATIONSHIP ANALYSIS:

Model slope (β_1): -0.9500

Interpretation: For each 1% increase in lstat, median.

—home value

decreases by \$0.95k on average

CHANGES BETWEEN LSTAT LEVELS:

- $5.0\% \rightarrow 10.0\%$: Change = \$-4.75k
- Rate: \$-0.95k per 1% lstat increase
- $10.0\% \rightarrow 15.0\%$: Change = \$-4.75k
- Rate: \$-0.95k per $1\frac{1}{3}$ lstat increase
- 15.0% → 25.0%: Change = \$-9.50k
 - Rate: \$-0.95k per 1% 1stat increase

COMMENTS ON RELATIONSHIP:

- The relationship shows moderate negative association
- Linear relationship assumed constant across all $_{\square}$ $_{\hookrightarrow} lstat\ levels$

PREDICTIONS SUMMARY TABLE

DETAILED PREDICTIONS TABLE:

lstat prediction ci_lower ci_upper pi_lower u

→pi_upper ci_width pi_width

width_ratio

5 29.804 29.007 30.600 16.627

→42.980 1.592 26.353

16.550

42.980	1.592	26.353			
16.550					
10	25.053	24.474	25.633	12.322	ш
⇔37.785	1.158	25.463			
21.981					
15	20.303	19.732	20.875	7.585	ш
⇒33.021	1.143	25.436			
22.254					
25	10.803	9.717	11.888	-3.148	ш
⇒24.754	2.170	27.902			
12 856					

KEY INSIGHTS:

- As 1stat increases, predicted home values decrease
- Prediction intervals are consistently 18.4x wider $_{\!\sqcup}$ $_{\!\hookrightarrow}$ than confidence intervals
- The linear relationship appears moderate (R^2 = 0. ${4544}$)

MODEL ASSUMPTIONS REMINDER

For these intervals to be valid, ensure:

- Linear relationship between variables
- \bullet Independence of residuals
- $\bullet \ \ {\tt Homoscedasticity} \ \ ({\tt constant} \ \ {\tt variance})$
- ullet Normality of residuals
- No influential outliers