2021

김범채 AlLab. 연구소장 2021.06.10.

주식회사 바스젠바이오

INTRO

- Data Labeling
- Data Partitioning
- Data Sampling
- Data Augmentation
- Model Selection
- Model Fitting
 - Network & Layers
 - Loss
 - Optimization
- Model Inference

Evaluation

구성	설명
Augmentation	Training & validation의 수가 부족하거나, 특정 조건을 부여할 때 사용
Model zoo	다양한 모델 저장된 모델 명 DB
Model fitting	모델에 맞는 하이퍼 파라미터를 선정
Model inference	학습된 모델의 예측 값 추출
Evaluation	모델 검증, Experiment results: accuracy, sensitivity, specificity, AUC

Problem

- To perform segmentation given only a few annotated examples.
- To avoid the risk of overfitting due to insufficient training data, used meta-learning approach called episodic training.

Problem

Figure 1: Our model performs visual reasoning in coarse-to-fine manner by gradually squeezing high-dimensional hypercorrelation to the target segmentation mask with efficient 4D convolutions.

Coarse-grained classification

Coarse-grained classification 은 Cifar10, Cifar100, MNIST 등의 데이터셋을 사용해 classification 하는 것이 Coarse-grained classification 의 예시입니다.

Fine-grained classification

Fine-grained classification 은 Coarse-grained classification 보다 더 세밀하게 classification 을 한다고 이해 할 수 있습니다. Stanford dogs 가 가장 유명한 Fine-grained classification dataset 인데, 아래 이미지를 보시면

이미지 출처 [1]

Proposed Approach

- HSNet, which captures relevant patterns in multi-level feature correlations
- we adopt an encoder-decoder structure in our architecture
 - the encoder gradually squeezes dimension of the input hypercorrelations by aggregating their local information to a global context
 - the decoder processes the encoded context to predict a query mask.

Figure 2: Overall architecture of the proposed network which consists of three main parts: hypercorrelation construction, 4D-convolutional pyramid encoder, and 2D-convolutional context decoder. We refer the readers to Sec. 4 for details of the architecture.

narities between the support and query images. Given a pair of query and support images, $I^{\rm q}, I^{\rm s} \in \mathbb{R}^{3 \times H \times W}$, the backbone network produces a sequence of L pairs of intermediate feature maps $\{(\mathbf{F}_l^{\rm q}, \mathbf{F}_l^{\rm s})\}_{l=1}^L$. We mask each support feature map $\mathbf{F}_l^{\rm s} \in \mathbb{R}^{C_l \times H_l \times W_l^{\dagger}}$ using the support mask $\mathbf{M}^{\rm s} \in \{0,1\}^{H \times W}$ to discard irrelevant activations for reliable mask prediction:

$$\hat{\mathbf{F}}_{l}^{s} = \mathbf{F}_{l}^{s} \odot \zeta_{l}(\mathbf{M}^{s}), \tag{1}$$

where \odot is Hadamard product and $\zeta_l(\cdot)$ is a function that bilinearly interpolates input tensor to the spatial size of the feature map \mathbf{F}_l^s at layer l followed by expansion along channel dimension such that $\zeta_l : \mathbb{R}^{H \times W} \to \mathbb{R}^{C_l \times H_l \times W_l}$. For the subsequent hypercorrelation construction, a pair of query and masked support features at each layer forms a 4D correlation tensor $\hat{\mathbf{C}}_l \in \mathbb{R}^{H_l \times W_l \times H_l \times W_l}$ using cosine similarity:

$$\hat{\mathbf{C}}_{l}(\mathbf{x}^{q}, \mathbf{x}^{s}) = \text{ReLU}\left(\frac{\mathbf{F}_{l}^{q}(\mathbf{x}^{q}) \cdot \hat{\mathbf{F}}_{l}^{s}(\mathbf{x}^{s})}{\|\mathbf{F}_{l}^{q}(\mathbf{x}^{q})\| \|\hat{\mathbf{F}}_{l}^{s}(\mathbf{x}^{s})\|}\right), \quad (2)$$

where \mathbf{x}^q and \mathbf{x}^s denote 2-dimensional spatial positions of feature maps \mathbf{F}_l^q and $\hat{\mathbf{F}}_l^s$ respectively, and ReLU suppresses noisy correlation scores. From the resultant set of 4D correlations $\{\hat{\mathbf{C}}_l\}_{l=1}^L$, we collect 4D tensors having the same spatial sizes[‡] and denote the subset as $\{\hat{\mathbf{C}}_l\}_{l\in\mathcal{L}_n}$

4.2. 4D-convolutional pyramid encoder

Our encoder network takes the hypercorrelation pyramid $C = \{C_p\}_{p=1}^P$ to effectively squeeze it into a condensed feature map $\mathbf{Z} \in \mathbb{R}^{128 \times H_1 \times W_1}$. We achieve this correlation learning using two types of building blocks: a squeezing block f_p^{sqz} and a mixing block f_p^{mix} . Each block

Figure 3: Building blocks in Hypercorrelation Squeeze Networks. s and g denotes strides of 4D conv and the number of groups in group normalization [75] respectively. Note $p \in \{1, 2\}$ for f_p^{mix} .

4.3. 2D-convolutional context decoder

The decoder network consists of a series of 2D convolutions, ReLU, and upsampling layers followed by softmax function as illustrated in Fig. 2. The network takes the context representation \mathbf{Z} and predicts two-channel map $\hat{\mathbf{M}}^{\mathrm{q}} \in [0,1]^{2 \times H \times W}$ where two channel values indicate probabilities of foreground and background. During training, the network parameters are optimized using the mean of crossentropy loss between the prediction $\hat{\mathbf{M}}^{\mathrm{q}}$ and the ground-truth \mathbf{M}^{q} over all pixel locations. During testing, we take the maximum channel value at each pixel to obtain final query mask prediction $\bar{\mathbf{M}}^{\mathrm{q}} \in \{0,1\}^{H \times W}$ for evaluation.

Figure 4: 4D convolution (left) and weights of 4D kernel [55, 77] (middle) and center-pivot 4D kernel (right). Each black wire that connects two different pixel locations represent a single weight of the 4D kernel. The kernel size used in this example is (3, 3, 3, 3), *i.e.*, $\hat{k} = 3$.

Experimental results

1. Resuts on PASCAL-5i dataset.

Backbone Methods			_1		l-shot						5-shot			# learnable
network		50	5^{1}	5^{2}	5^{3}	mean	FB-IoU	50	5^1	5^2	5^{3}	mean	FB-IoU	params
VGG16 [61]	OSLSM [58]	33.6	55.3	40.9	33.5	40.8	61.3	35.9	58.1	42.7	39.1	43.9	61.5	276.7M
	co-FCN [51]	36.7	50.6	44.9	32.4	41.1	60.1	37.5	50.0	44.1	33.9	41.4	60.2	34.2M
	AMP-2 [60]	41.9	50.2	46.7	34.7	43.4	61.9	40.3	55.3	49.9	40.1	46.4	62.1	15.8M
	PANet [72]	42.3	58.0	51.1	41.2	48.1	66.5	51.8	64.6	59.8	46.5	55.7	70.7	14.7M
	PFENet [67]	56.9	68.2	<u>54.4</u>	<u>52.4</u>	<u>58.0</u>	<u>72.0</u>	59.0	69.1	54.8	<u>52.9</u>	59.0	<u>72.3</u>	10.4M
	HSNet (ours)	59.6	<u>65.7</u>	59.6	54.0	59.7	73.4	64.9	<u>69.0</u>	64.1	58.6	64.1	76.6	2.6M
ResNet50 [17]	PANet [72]	44.0	57.5	50.8	44.0	49.1	-	55.3	67.2	61.3	53.2	59.3	-	23.5M
	PGNet [82]	56.0	66.9	50.6	50.4	56.0	69.9	57.7	68.7	52.9	54.6	58.5	70.5	17.2M
	PPNet [35]	48.6	60.6	55.7	46.5	52.8	69.2	58.9	68.3	66.8	58.0	63.0	<u>75.8</u>	31.5M
	PFENet [67]	61.7	69.5	55.4	56.3	60.8	73.3	63.1	70.7	55.8	57.9	61.9	73.9	10.8M
	RePRI [4]	59.8	68.3	62.1	48.5	59.7	-	64.6	71.4	71.1	<u>59.3</u>	66.6	-	-
	HSNet (ours)	64.3	70.7	60.3	60.5	64.0	76.7	70.3	73.2	67.4	67.1	69.5	80.6	2.6M
ResNet101 [17]	FWB [43]	51.3	64.5	56.7	52.2	56.2	-	54.8	67.4	62.2	55.3	59.9	-	43.0M
	PPNet [35]	52.7	62.8	57.4	47.7	55.2	70.9	60.3	70.0	69.4	60.7	65.1	77.5	50.5M
	DAN [71]	54.7	68.6	57.8	51.6	58.2	71.9	57.9	69.0	60.1	54.9	60.5	72.3	-
	PFENet [67]	60.5	69.4	54.4	55.9	60.1	72.9	62.8	70.4	54.9	57.6	61.4	73.5	10.8M
	RePRI [4]	59.6	68.6	62.2	47.2	59.4	-	66.2	71.4	67.0	57.7	65.6	-	-
	HSNet (ours)	67.3	72.3	62.0	63.1	66.2	77.6	71.8	74.4	67.0	68.3	70.4	80.6	2.6M
	HSNet† (ours)	66.2	<u>69.5</u>	53.9	56.2	61.5	72.5	68.9	71.9	56.3	57.9	63.7	73.8	2.6M

Table 1. Performance on PASCAL-5ⁱ in mIoU and FB-IoU. Some results are from [4, 35, 67, 71, 76]. Superscript † denotes our model without support feature masking (Eqn. 1). Numbers in bold indicate the best performance and underlined ones are the second best.

2. Results on COCO-20ⁱ and FSS-1000.

Backbone	Methods	1-shot					5-shot						
network		20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU	20^{0}	20^{1}	20^{2}	20^{3}	mean	FB-IoU
ResNet50 [17]	PPNet [35]	28.1	30.8	29.5	27.7	29.0	-	39.0	40.8	37.1	37.3	38.5	-
	PMM [76]	29.3	34.8	27.1	27.3	29.6	-	33.0	40.6	30.3	33.3	34.3	-
	RPMM [76]	29.5	36.8	28.9	27.0	30.6	-	33.8	42.0	33.0	33.3	35.5	-
	PFENet [67]	36.5	38.6	34.5	33.8	35.8	-	36.5	43.3	37.8	38.4	39.0	-
	RePRI [4]	32.0	38.7	32.7	33.1	34.1	-	39.3	45.4	39.7	41.8	41.6	-
	HSNet (ours)	36.3	43.1	38.7	38.7	39.2	68.2	43.3	51.3	48.2	45.0	46.9	70.7
ResNet101 [17]	FWB [43]	17.0	18.0	21.0	28.9	21.2	-	19.1	21.5	23.9	30.1	23.7	-
	DAN [71]	-	-	-	-	24.4	62.3	-	-	-	-	29.6	63.9
	PFENet [67]	36.8	41.8	38.7	36.7	38.5	63.0	40.4	46.8	43.2	40.5	42.7	65.8
	HSNet (ours)	37.2	44.1	42.4	41.3	41.2	69.1	45.9	53.0	51.8	47.1	49.5	72.4

Backbone	Markada	mIoU				
network	Methods	1-shot	5-shot			
	OSLSM [58]	70.3	73.0			
	GNet [52]	71.9	74.3			
VGG16 [61]	FSS [31]	73.5	80.1			
	DoG-LSTM [2]	80.8	83.4			
	HSNet (ours)	82.3	85.8			
ResNet50 [17]	HSNet (ours)	85.5	87.8			
ResNet101 [17]	DAN [71]	85.2	88.1			
Residential [17]	HSNet (ours)	86.5	88.5			

Table 2. Performance on COCO-20ⁱ (left) and FSS-1000 (right) in mIoU and FB-IoU. Some results are from [2, 4, 35, 67, 71, 76].

3. Qualitative results

Figure 4. Qualitative (1-shot) results on dataset in presence of large differences in object scales and extremely small objects.