Colle n°18: exo-types

Exercice 1. Commutant d'une matrice (d'après CC-INP n°73)

Soit C(A) l'ensemble des matrices de $M_2(\mathbb{R})$ qui commutent avec la matrice $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$

- 1. Montrer que C(A) est un sous-espace vectoriel de $M_2(\mathbb{R})$.
 - \circ $C(A) \subset M_2(\mathbb{R})$ car les matrices qui commutent avec A sont de format (2,2).
 - $\circ \ \overline{A \times 0_2 = 0_2 \times A} = 0_2 \text{ donc } 0_2 \in C(A)$

Donc $C(A) \neq \emptyset$

∘ Soit $(\overline{P,Q)} \in C(A)^2$, $\lambda \in \mathbb{R}$. Montrons que $\lambda P + Q \in C(A)$:

$$(\lambda P + Q)A = \lambda PA + QA$$

 $= \lambda AP + AQ \quad (\operatorname{car}(P, Q) \in C(A)^2)$
et
 $A(\lambda P + Q) = \lambda AP + AQ$

Donc $\lambda P + Q$ commute avec A. $\lambda P + Q \in C(A)$ Donc C(A) est un sous-espace vectoriel de $M_2(\mathbb{R})$

- 2. On note V(A) le sous-espace vectoriel de $M_2(\mathbb{R})$ engendré par les puissance de $A:V(A)=Vect(A^k,k\in\mathbb{N})$. Montrer que V(A) est un sous-espace vectoriel de C(A).
 - \circ Montrons que $V(A) \subset C(A)$:

Soit $B \in V(A)$. B est une combinaison linéaire finie de $(A^k)_{k \in \mathbb{N}}$.

Donc il existe $k \in \mathbb{N}$ tel que $B = \sum_{i=1}^{k} \lambda_i A^i$, avec $(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k$.

Alors
$$AB = \sum_{i=1}^{k} \lambda_i A^{i+1}$$
 et $BA = \sum_{i=1}^{k} \lambda_i A^{i+1}$.

Donc
$$AB = BA \text{ et } B \in C(A)$$

∘ Montrons que $V(A) \neq \emptyset$:

$$\overline{A^0 = I \text{ et } 0 \times I \in \text{Vect}((A^k)_{k \in \mathbb{N}})}.$$

Donc
$$0_2 \in V(A)$$
 et $V(A) \neq \emptyset$

 $\circ \ \, \underline{\mbox{Montrons que $V(A)$ est stable par combinaison linéaire}} :$

Soit
$$(B,C) \in V(A)^2, \lambda \in \mathbb{R}$$
:

Alors:

$$\exists n \in \mathbb{N}, B = \sum_{i=1}^{n} \lambda_k A^k, (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$$

$$\exists p \in \mathbb{N}, C = \sum_{i=1}^{p} \mu_k A^k, (\mu_1, \dots, \mu_p) \in \mathbb{R}^p$$

Donc $\lambda B + C$ est combinaison linéaire de A^k .

Donc
$$\lambda B + C \in V(A)$$

3. Montrer que A^2 est combiansion linéaire de A et I. Que peut-on en déduire sur V(A)? On a :

$$A^2 = \begin{pmatrix} 8 & 1 \\ 4 & 5 \end{pmatrix} = A + 6I$$

Montrons que V(A) = Vect(A, I):

 \circ \bigcirc : Soit $M \in \text{Vect}(I, A)$. Alors il existe $(a, b) \in \mathbb{R}^2$ tel que M = aI + bA.

Donc M est une combinaison linéaire finie de $(A^k)_{k\in\mathbb{N}}.$

Donc
$$Vect(I, A) \subset Vect((A^k)_{k \in \mathbb{N}}) = V(A)$$

 $\circ \ \ \boxed{\subset} : \text{Soit } M \in V(A).$

Donc il existe $n \in \mathbb{N}, M = \sum_{i=1}^{n} \lambda_k A^k, (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$.

On veut montrer par récurrence, $\forall k \in \mathbb{N}, H(k)$: " A^k est combinaison linéaire de(A, I)":

— Initialisation : k = 0 :

$$A^0 = I = 0A + I$$

Donc H(0) est vraie.

— <u>Hérédité : Soit $k \in \mathbb{N}$:</u> On suppose H(k) vraie, montrons que H(k+1) est vraie.

$$\begin{split} A^{k+1} &= A \times A^k \\ &= A(aI+bA) \quad \text{par hypothèse de récurrence avec } (a,b) \in \mathbb{R}^2 \\ &= aA+bA^2 \\ &= aA+b(A+6I) \\ A^{k+1} &= \boxed{(a+b)A+6bI} \end{split}$$

Donc H(k+1) est vraie.

— Bilan : $\forall k \in \mathbb{N}, A^k$ est combinaison linéaire de I et A.

Or $\operatorname{Vect}(I,A)$ est un espace vectoriel, donc $\operatorname{Vect}((A^k)_{k\in\mathbb{N}})\subset\operatorname{Vect}(I,A)$ Donc $\left[\operatorname{Vect}(I,A)=\operatorname{Vect}((A^k)_{k\in\mathbb{N}})\right]$

4. Déterminer une base de C(A). A-t-on C(A) = V(A)?

On cherche les matrices M qui vérifient : MA = AM.

On pose
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, (a, b, c, d) \in \mathbb{R}^4$$

On obtient:

$$AM = \begin{pmatrix} 2a+c & 2b+d \\ 4a-c & 4b-d \end{pmatrix}$$

$$MA = \begin{pmatrix} 2a + 4b & a - b \\ 2c + 4d & c - d \end{pmatrix}$$

Il faut donc résoudre le système AM = MA.

On obtient
$$C(A) = \left\{ \begin{pmatrix} 3b+d & b \\ 4b & d \end{pmatrix}, (b,d) \in \mathbb{R}^2 \right\}$$

Donc
$$C(A) = \text{Vect}(B, I)$$
, avec $B = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}$

Montrons que C(A) = V(A): $\circ \bigcirc$: Déjà vu dans (2)

- ∘ □:
 - -V(A) est un espace vectoriel

$$-\begin{cases} I \in V(A) \\ B = I + A \in V(A) \end{cases}$$

Bilan: V(A) = Vect(I, B) = C(A)

Montrons que (I, A) est une base de C(A):

- $\circ |(I, A) \text{ engendre } C(A)| (\operatorname{car} C(A) = \operatorname{Vect}(I, A))$
- \circ Montrons que (I, A) est une famille libre :

Soit $(a,b) \in \mathbb{R}^2$ tel que $aI + bA = 0_2$, montrons que a = b = 0:

$$aI + bA = \begin{pmatrix} a + 2b & b \\ 4b & a - b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

On a b = 0 et par substitution on trouve a = 0, donc |(I, A)| est une famille libre

Donc (I, A) est une base de C(A)

Exercice 2. Application de la décomposition en éléments simples

1. Cours : Soit $F = \frac{P}{Q}$ sous forme irréductible. Si α est un pôle simple de F, déterminer sa partie polaire (deux formules et preuves attendues)

On cherche F sous la forme $F = \frac{a}{X - \alpha} + F_1(X)$, avec α qui n'est pas pôle de F_1

Formule 1:
$$a = \lim_{x \to \alpha} \frac{(X - \alpha)P(X)}{Q(X)}$$

Preuve: On cherche a tel que:

$$\frac{P(X)}{Q(X)} = \frac{a}{X - \alpha} + F_1(X)$$

$$\iff (X - \alpha)\frac{P(X)}{Q(X)} = a + (X - \alpha)F_1(X)$$

Or $\lim_{x\to\alpha} a + (x-\alpha)F_1(x) = a$ (car α n'est pas pôle de F_1).

Donc par unicité de la limite : $\lim_{x \to \alpha} \frac{(x - \alpha)P(x)}{Q(x)} = a$

Formule 2:
$$a = \frac{P(\alpha)}{Q'(\alpha)}$$

 \underline{Q} peut s'écrire sous la forme $Q(X)=(X-\alpha)R(X)$, avec $R(\alpha)\neq 0$ (α est pôle simple de F).

Donc
$$Q'(X) = R(X) + (X - \alpha)R'(X)$$
. Évalué en α , $Q'(\alpha) = R(\alpha) = \frac{Q(\alpha)}{(X - \alpha)}$

Donc
$$\frac{P(\alpha)}{Q'(\alpha)} = \frac{(X - \alpha)P(\alpha)}{Q(\alpha)}$$