

Continuous distributions

Outline

- Introduction
- 2 Examples of continuous distributions
 - Uniform continuous distribution
 - Exponential distribution
 - Gamma distribution
 - Normal distribution
 - Bivariate normal distribution
 - More examples
- 3 Summary

Learning Objectives

- 1 Learn what defines the some commonly used continuous distributions.
- 2 Build a vocabulary of some of the more common continuous distributions

Introduction

A brief review of continuous random variables

- Recall that a continuous random variable can be defined by a probability density function (pdf).
- A continuous random variable can take on an infinite number of values.
- A continuous random variable can belong to some pdf, i.e., $X \sim f(x|\theta)$.
 - x denotes the value that the random variable takes on.
 - \blacktriangleright θ denotes the parameter(s) of the pdf.

Density plots of continuous distributions

Examples of continuous distributions

Uniform continuous distribution

Uniform continuous distribution

- Simplest continuous probability distribution.
- $X \sim f(x|\theta) = Uniform_{cont}(x|a, b)$.
- The support is $x \in [a, b]$.
- Two parameters a and b.
- E.g., waiting times at a bus stop where a = 4.42 minutes and b = 6.84 minutes.
 - Infinite number of possible outcomes
 - ► Each outcome has an equal probability.

Exponential distribution

Exponential distribution

- Used to model the amount of time or space that has passed between events, based on a given average quantity in a unit of time or space.
 - Intricately tied to the Poisson distribution.
- $X \sim f(x|\theta) = Exponential(x|\beta)$.
- The support is $x \in [0, \infty)$.
 - ► The value of x denotes the amount of time or space.
- One parameter β (pronounced beta), called the **rate**, where β is the average number of events in one unit of space or time.

Exponential distribution (cont'd)

- Let's consider stalls A, B, C with rates of $\beta = 2, 0.5, 0.2$ customers per minute, respectively.
 - The value of β controls how quickly the probability density goes to zero with increasing x.
- Reminder: since a pdf is used, its values are relative likelihoods, called probability densities, rather than actual probabilities.
 - ► The d<distribution>() function now outputs a probability density.

An example: Waiting times at stall B

- Stall B: The rate is $\beta = 0.5$.
- We can use the dexp() function to compute the *probability density* at x = 2 minutes:


```
dexp(x = 2, # Waiting time x=2 minutes
rate = 0.5) # Average waiting time was observed to be rate=0.5
```

An example: Waiting times at stall B (cont'd)

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - ► First, we can use pexp() to find the probability that the waiting time is 2 minutes or less.

(p_2min <- pexp(q=2, # Waiting time of x=2 minutes or less
 rate = 0.5)) # Average waiting time was observed to be rate=0.5</pre>

An example: Waiting times at stall B (cont'd)

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - First, we can use pexp() to find the probability that the waiting time is 2 minutes or less.
 - Next, we can use pexp() to find the probability that the waiting time is 4 minutes or less.

 $(p_4min \leftarrow pexp(q=4, \# Waiting time of x=4 minutes or less$ rate = 0.5)) # Average waiting time was observed to be rate=0.5

An example: Waiting times at stall B (cont'd)

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - First, we can use pexp() to find the probability that the waiting time is 2 minutes or less.
 - Next, we can use pexp() to find the probability that the waiting time is 4 minutes or less.
 - ► Finally, we can take the difference.


```
# Waiting time between 2 and 4 minutes
p_4min - p_2min
```

Gamma distribution

Gamma distribution

A modified version of the exponential distribution

•
$$X \sim f(x|\theta) = Gamma(x|\beta, \alpha)$$
.

- The support is $x \in [0, \infty)$.
 - ► The value of *x* denotes the amount of time or space.
- Two parameters
 - ▶ β. called rate.
 - α (pronounced alpha), called **shape**.
 - $\begin{tabular}{ll} \star Setting shape $\alpha=1$ gives us the exponential distribution. \end{tabular}$

Gamma distribution

- A modified version of the exponential distribution
- $X \sim f(x|\theta) = Gamma(x|\beta, \alpha)$.
- The support is $x \in [0, \infty)$.
 - ► The value of *x* denotes the amount of time or space.
- Two parameters
 - 1 β , called rate.
 - 2 α (pronounced alpha), called **shape**.
 - * Setting shape $\alpha = 1$ gives us the exponential distribution.
- Changing rate has a similar effect as in the exponential model.

An example: Waiting times at stall B based on the gamma model

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - ► First, we can use pgamma() to find the probability that the waiting time is 2 minutes or less.


```
(p_2min_g <- pgamma(q=2, # Waiting time of x=2 minutes or less
    shape = 2, # Set shape = 2
    rate = 0.5)) # Average waiting time was observed to be rate=0.5</pre>
```

An example: Waiting times at stall B based on the gamma model (cont'd)

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - ► First, we can use pgamma() to find the probability that the waiting time is 2 minutes or less.
 - Next, we can use pgamma() to find the probability that the waiting time is 4 minutes or less.


```
(p_4min_g <- pgamma(q=4, # Waiting time of x=4 minutes or less
    shape = 2, # Set shape = 2
    rate = 0.5)) # Average waiting time was observed to be rate=0.5</pre>
```

An example: Waiting times at stall B based on the gamma model (cont'd)

- It is the area under the pdf that returns a probability.
- What is the probability that a customer has to wait for between 2 and 4 minutes?
 - First, we can use pgamma() to find the probability that the waiting time is 2 minutes or less.
 - ► Next, we can use pgamma() to find the probability that the waiting time is 4 minutes or less.
 - ► Finally, we can take the difference.


```
# Waiting time between 2 and 4 minutes
p_4min_g - p_2min_g
```

Normal distribution

Normal distribution

- Signature symmetric, bell-shape.
- Appears frequently, notably in the natural and social sciences.
- $X \sim f(x|\theta) = Normal(x|\mu, \sigma)$.
- The support is $x \in (-\infty, \infty)$.
- Two parameters
 - 1 μ (pronounced mu), called **mean**.
 - 2 σ (pronounced sigma), called standard deviation, or just sd.
- \bullet Changing μ displaces the curve.

Normal distribution

- Signature symmetric, bell-shape.
- Appears frequently, notably in the natural and social sciences.
- $X \sim f(x|\theta) = Normal(x|\mu, \sigma)$.
- The support is $x \in (-\infty, \infty)$.
- Two parameters
 - $\blacktriangleright \mu$ (pronounced mu), called **mean**.
 - σ (pronounced sigma), called standard deviation, or just sd.
- Changing the mean displaces the plot.
- Changing the sd makes the plot more spread-out.

An example: Fluctuating stock prices

- Suppose the price of a certain stock can be described by $X \sim f(x|\theta) = Normal(x|\mu = 10, \sigma = 1)$.
- What is the probability that the stock is between \$10.10 and \$11.42?

An example: Fluctuating stock prices (cont'd)

The probability can be computed using the pnorm() function.

Bivariate normal distribution

Bivariate normal distribution

- Combination of two normal distributions.
- Two random variables *X* and *Y* that are correlated in general.
- We shall discuss this in terms of contour plots instead.
- $X, Y \sim f(x, y|\theta) =$ $BivariateNormal(x, y|\mu_x, mu_y, \sigma_x, \sigma_y, \sigma_{xy}).$
- The support is $x, y \in (-\infty, \infty)$.
- Five parameters
 - 1 μ_x , the **mean** of X.
 - 2 μ_y , the **mean** of Y.
 - 3 σ_X , the **sd** of X.
 - 4 σ_y , the **sd** of Y.
 - 5 σ_{xy} , the covariance between X and Y.

Can be used to model pairs of random variables, e.g., height and weight.

More examples

More examples

- There are many more examples of continuous distributions.
- Weibull distribution
- Cauchy distribution
- Chi-squared distribution
- Beta distribution
- Many more
- Different distributions differ in terms of
 - ► Support
 - ▶ Parameters
 - ► Shape of histogram
- In the case of a continuous distribution, d<distribution>() computes probability densities rather than probabilities.
- p<distribution>() can be used to compute probabilities for a range of values of x, which corresponds to the area under the curve.
 - ► e.g., pexp(), pgamma(), pnorm(), etc.

Summary

Summary

In this video, we have:

- Defined some commonly used continuous distributions.
- Built a vocabulary of some of the more common continuous distributions.

References

Diez, D. M., Barr, C. D., and Cetinkaya-Rundel, M. (2012). *OpenIntro statistics*.

OpenIntro Boston, MA, USA:.

Kerns, G. J. (2010). *Introduction to probability and statistics using r.* Lulu, com.

Ross, S. (2010).

A first course in probability.

Pearson.