

# «Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

### ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

**КАФЕДРА** ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

**НАПРАВЛЕНИЕ ПОДГОТОВКИ** МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

#### Отчет

по лабораторной работе № 5

Название лабораторной работы: <u>Проверка гипотез о параметрах</u> нормального распределения.

# Вариант № 9

# Дисциплина:

Теория вероятности и математическая статистика

| Студент группы ФН11-52Б |                 | <u>Очкин Н.В.</u> |
|-------------------------|-----------------|-------------------|
|                         | (Подпись, дата) | (И.О. Фамилия)    |
|                         |                 |                   |
| Преподаватель           |                 | Облакова Т.В.     |
| •                       | (Подпись, дата) | (И.О. Фамилия)    |

# Задание

По данной выборке из нормально распределенной генеральной совокупности:

- 1. постройте критерий  $S_2$  уровня  $\alpha$  и проверьте гипотезу  $H_0$  :  $a=a_0$  против односторонней альтернативы  $H_2$ , если  $\sigma$  неизвестно;
- 2. постройте критерий  $S_3$  уровня  $\alpha$  и проверьте гипотезу  $H_{01}: \sigma = \sigma_0$  против альтернативы  $H_3$ , если a неизвестно;
- 3. постройте оптимальный критерий  $S_1$  уровня  $\alpha$  и проверьте  $H_0$  против простой альтернативы  $H_1: a=a_1,$  если  $\sigma=\sigma_1$  известно;
- 4. найдите ошибку второго рода  $\beta = P(\overline{S_1}|H_1)$  критерий  $S_1$ ;
- 5. найдите такие значения  $a_1$ , для которых ошибка второго рода критерия  $S_1$  не превосходит  $\varepsilon$ ;
- 6. постройте совмещенные графики гистограммы относительных частот данной выборки и плотностей нормального распределения с параметрами  $(a_0, \sigma_1)$  и  $(a_1, \sigma_1)$

# Исходные данные

|     |   |           |     | $H_3$               |     |           |     |     |     |
|-----|---|-----------|-----|---------------------|-----|-----------|-----|-----|-----|
| 0.1 | 3 | $a > a_0$ | 2.1 | $\sigma > \sigma_0$ | 3.5 | $a = a_1$ | 2.2 | 0.1 | 100 |

| -3.442 | 1.295  | 3.672  | 2.354 | 5.238 | 1.136 | 4.421 | 2.071  | 0.269  | 0.894 |
|--------|--------|--------|-------|-------|-------|-------|--------|--------|-------|
| 8.202  | 0.605  | -2.011 | 3.375 | 3.767 | 1.068 | 2.928 | -0.276 | 4.924  | 3.31  |
| 5.741  | 6.951  | 3.417  | 2.991 | 5.599 | 4.896 | 9.197 | 3.823  | 1.827  | 5.389 |
| 2.504  | 4.212  | -2.021 | 1.891 | 3.689 | 5.366 | 3.117 | 4.641  | 2.968  | 4.645 |
| 3.752  | 4.582  | 3.601  | 0.934 | 2.785 | 3.294 | 4.695 | 1.092  | 3.155  | 4.352 |
| 0.896  | 0.839  | 4.309  | 2.793 | 7.233 | 0.95  | 5.228 | 1.28   | 5.19   | 0.972 |
| 4.562  | 1.915  | 4.243  | 4.495 | 0.648 | 5.34  | 3.294 | 2.791  | 6.805  | 3.474 |
| 3.044  | 5.452  | 2.957  | 7.862 | 4.61  | 1.317 | 5.383 | 3.205  | -1.022 | 3.602 |
| 3.373  | 5.415  | 4.093  | 5.407 | 0.501 | 2.135 | 1.957 | 0.826  | 5.34   | 3.759 |
| 1.735  | -3.277 | 5.101  | 1.43  | 3.494 | 0.545 | 4.699 | 3.44   | 2.85   | 4.33  |

# Ход решения работы

## Первоначальная обработка статистических данных

Обработка статистических данных происходит в среде Jupyter Notebook.

Крайние члены вариационного ряда и размах выборки
 Крайние члены вариационного ряда находятся как минимум и максимум выборки:

```
min_ = min(data)
max_ = max(data)

range_ = max_ - min_

min: -3.442 max: 9.197

ω: 12.639
```

• Группировка данных

Элементы выборки можно объединить в группы и построить интервальный вариационный ряд. Для этого отрезок  $\omega$  разбивается на l равных интервалов. Количество интервалов l можно вычислить по правилу Стёрджеса:

$$l = 1 + \lfloor \log_2 N \rfloor,$$

где [ ] - обозначение целой части числа.

```
l_{-} = 1 + int(np.log2(n_{-})) l = 7
```

Для группировки данных найдем интервальный шаг:

```
h_ = range_ / l_ h = 1.8056
```

Найдем границы интервалов, интервалы и середины интервалов группировки:

```
int_boundaries_ = np.array(
        [min_ + i * h_ for i in range(0, l_ + 1, 1)]
)

intervals_ = np.array(
        [(int_boundaries_[i], int_boundaries_[i+1]) for i in range(0, l_, 1)]
)

mid_ranges_ = np.array(
        [sum(interval)/2 for interval in intervals_]
)
```

#### границы интервалов:

 $\begin{bmatrix} -3.442 & -1.6364 & 0.1691 & 1.9747 & 3.7803 & 5.5859 & 7.3914 & 9.197 \end{bmatrix}$ 

#### интервалы:

$$\begin{bmatrix} -3.442 & -1.6364 \\ -1.6364 & 0.1691 \\ \hline{0.1691} & 1.9747 \\ \hline{1.9747} & 3.7803 \\ \hline{3.7803} & 5.5859 \\ \hline{5.5859} & 7.3914 \\ \hline{7.3914} & 9.197 \end{bmatrix}$$

#### середины интервалов:

 $[-2.5392 \quad -0.7336 \quad 1.0719 \quad 2.8775 \quad 4.6831 \quad 6.4886 \quad 8.2942]$ 

Найдём частоты попадания элементов из выборки в каждый из интервалов:

```
present = lambda el, int_ : int_[0] <= el < int_[1]
freqs_ = np.zeros(l_)
for el in data:
    for j in range(0, l_, 1):
        if present(el, intervals_[j]):
            freqs_[j] += 1

freqs_[-1] += np.count_nonzero(data == max_)</pre>
```

#### частоты:

[4. 2. 24. 32. 30. 5. 3.]

Найдем относительные частоты:

```
rel_freqs_ = freqs_ / n_
```

относительные частоты:

 $[0.04 \quad 0.02 \quad 0.24 \quad 0.32 \quad 0.3 \quad 0.05 \quad 0.03]$ 

Проверим, что сумма вероятности равна 1:

```
assert np.sum(rel_freqs_) == 1
```

Найдем вектор плотности относительной частоты:

```
rel_freqs_density_ = rel_freqs_ / h_
```

# вектор плотности относительной частоты : $\begin{bmatrix} 0.0222 & 0.0111 & 0.1329 & 0.1772 & 0.1662 & 0.0277 & 0.0166 \end{bmatrix}$

Таким образом была произведена группировка статистических данных. Результатом группировки является интервальный вариационный ряд, который можно представить в виде таблицы:

| Инте   | рвальный | вариан | ионный | ngπ  |
|--------|----------|--------|--------|------|
| _rinic | рьальпыи | Бариац | иоппыи | рид_ |

| Интервал  |           | Частота | Относительная Частота | Плотность<br>относительной<br>частоты |  |
|-----------|-----------|---------|-----------------------|---------------------------------------|--|
| [-3.442]  | - 1.6364) | 4       | 0.04                  | 0.0222                                |  |
| [-1.6364] | 0.1691)   | 2       | 0.02                  | 0.0111                                |  |
| [ 0.1691  | 1.9747)   | 24      | 0.24                  | 0.1329                                |  |
| [ 1.9747  | 3.7803)   | 32      | 0.32                  | 0.1772                                |  |
| [ 3.7803  | 5.5859)   | 30      | 0.30                  | 0.1662                                |  |
| [ 5.5859  | 7.3914)   | 5       | 0.05                  | 0.0277                                |  |
| [ 7.3914  | 9.197 ]   | 3       | 0.03                  | 0.0166                                |  |

#### • Гистограмма относительных частот

```
def buildBar(filename):
   RED = '#6F1D1B'
    _, ax = plt.subplots(figsize=(10, 6))
    x_values = mid_ranges_
    y_values = rel_freqs_density_
    ax.bar(x_values,
           y_values,
           width=h_,
           color='white',
           edgecolor=RED,
           linestyle='-',
           linewidth=1.5,
           align='center')
    decorate_plot(ax, int_boundaries_, 'int', '$p^r$', loc=(0, 0))
    plt.savefig(f'{filename}.png', dpi=300, transparent=True)
    plt.show()
```



• Выборочные характеристики выборки Найдем выборочное среднее и среднее квадратичное отклонение выборки:

overlineX = 1/n\_ \* sum(data\_) 
$$S2 = 1/(n_- - 1) * sum((data_- - overlineX)**2)$$
 
$$\overline{X} \approx 3.17705 \qquad S^2 \approx 5.1431775$$

# Решение задания

1. Постройте критерий  $S_2$  уровня  $\alpha$  и проверьте гипотезу  $H_0: a=a_0$  против односторонней альтернативы  $H_2,$  если  $\sigma$  неизвестно.

$$\alpha = 0.1$$
  $H_0: a = 3$   $H_2: a > 3$   $\sigma$  — неизвестно  $S_2$ 

Критическое множество для среднего при альтернативе  $H_2: a>3$  имеет вид:



Рассмотрим статистику:

$$\frac{\overline{X} - a}{S} \sqrt{n} \sim t(n - 1)$$

Тогда по определению ошибки первого рода  $\alpha = P(S_2|H_0)$ :

$$\alpha = P\left(\overline{X} > C_2 | a = 3\right) = P\left(\frac{\overline{X} - a_0}{S} \sqrt{n} > \frac{C_2 - a_0}{S} \sqrt{n}\right) = F_{t(n-1)}\left(\frac{C_2 - a_0}{S} \sqrt{n}\right)$$

$$\Rightarrow \frac{C_2 - a_0}{S} \sqrt{n} = t_{1-\alpha}(n-1)$$

$$\Rightarrow C_2 = \frac{S \cdot t_{1-\alpha}(n-1)}{\sqrt{n}} + a_0 \approx 3.29259$$

quantile = sp.stats.t.ppf(1-alpha, n\_-1)
C2 = np.sqrt(S2)\*quantile/np.sqrt(n\_) + a0

Следовательно, гипотеза  $H_0: a=3$  принимается, потому что  $\overline{X}=3.17705$  не принадлежит критическому множеству  $S_2=\{\overline{X}>3.29259\}$ 

2. Постройте критерий  $S_3$  уровня  $\alpha$  и проверьте гипотезу  $H_{01}: \sigma = \sigma_0$  против альтернативы  $H_3$ , если a неизвестно.

$$\alpha = 0.1$$
  $H_{01}: \sigma = 2.1$   $H_{3}: \sigma > 2.1$   $a$  — неизвестно  $S_{3}$ 

Критическое множество для среднего квадратического отклонения при альтернативе  $H_3:\sigma>2.1$  имеет вид:

$$S_3 = \{S^2 > C_3\}$$

Рассмотрим статистику:

$$\frac{S^2(n-1)}{\sigma^2} \sim \chi^2(n-1)$$

Тогда по определению ошибки первого рода  $\alpha = P(S_3|H_{01})$ :

$$\alpha = P\left(S^{2} > C_{3} | \sigma = 2.1\right) = P\left(\frac{S^{2}(n-1)}{\sigma_{0}^{2}} > \frac{C_{3}(n-1)}{\sigma_{0}^{2}}\right) = \chi^{2}(n-1)\left(\frac{C_{3}(n-1)}{\sigma_{0}^{2}}\right)$$

$$\Rightarrow \frac{C_{3}(n-1)}{\sigma_{0}^{2}} = \chi^{2}_{1-\alpha}(n-1)$$

$$\Rightarrow C_{3} = \frac{\chi^{2}_{1-\alpha}(n-1)}{n-1} \cdot \sigma_{0}^{2} \approx 5.22994$$

Следовательно, гипотеза  $H_{01}$  :  $\sigma=2.1$  принимается, потому что  $S^2=5.1431775$  не принадлежит критическому множеству  $S_3=\{S^2>5.22994\}$ 

3. Постройте оптимальный критерий  $S_1$  уровня  $\alpha$  и проверьте  $H_0$  против простой альтернативы  $H_1: a=a_1$ , если  $\sigma=\sigma_1$  известно.

$$\alpha = 0.1$$
  $H_0: a = 3$   $H_1: a = 3.5$   $\sigma = 2.2$   $S_1$ 

Критическое множество для среднего квадратического отклонения при альтернативе  $H_1: a=3.5$  имеет вид:

$$S_1 = \{ \overline{X} < C_1 \}$$

Рассмотрим статистику:

$$\frac{\overline{X} - a}{\sigma} \sqrt{n} \sim N(0, 1)$$

Тогда по определению ошибки первого рода  $\alpha = P(S_1|H_0)$ :

$$\alpha = P\left(\overline{X} < C_1 | a = 3\right) = P\left(\frac{\overline{X} - a_0}{\sigma_1} \sqrt{n} < \frac{C_1 - a_0}{\sigma_1} \sqrt{n}\right) = \Phi\left(\frac{C_1 - a_0}{\sigma_1} \sqrt{n}\right)$$

$$\Rightarrow \frac{C_1 - a_0}{\sigma_1} \sqrt{n} = u_\alpha$$

$$\Rightarrow C_1 = \frac{u_\alpha \cdot \sigma_1}{\sqrt{n}} + a_0 \approx 2.7180587$$

Следовательно, гипотеза  $H_0: a=3$  принимается, потому что  $\overline{X}=3.17705$  не принадлежит критическому множеству  $S_1=\left\{\overline{X}<2.7180587\right\}$ 

4. Найдите ошибку второго рода  $\beta = P(\overline{S_1}|H_1)$  критерий  $S_1$ .

$$S_1 = \left\{ \overline{X} < C_1 \right\} = \left\{ \overline{X} < 2.7180587 \right\}$$
$$\frac{\overline{X} - a}{\sigma} \sqrt{n} \sim N(0, 1)$$

Согласно определению ошибки второго рода  $\beta = P(\overline{S_1}|H_1)$ :

$$\beta = P(\overline{X} > C_1 | a = 3.5) = P(\frac{\overline{X} - a_0}{\sigma_1} \sqrt{n}) > \frac{C_1 - a_1}{\sigma_1} \sqrt{n}) = 1 - \Phi(\frac{C_1 - a_1}{\sigma_1} \sqrt{n}) \approx 0.99981$$

5. Найдите такие значения  $a_1$ , для которых ошибка второго рода критерия  $S_1$  не превосходит  $\varepsilon$ .

$$\varepsilon = 0.1$$

$$1 - \Phi\left(\frac{C_1 - a_1}{\sigma_1}\sqrt{n}\right) <= 0.1$$

$$\Rightarrow \Phi\left(\frac{C_1 - a_1}{\sigma_1}\sqrt{n}\right) \le 0.9$$

$$\frac{C_1 - a_1}{\sigma_1}\sqrt{n} = u_{1-\varepsilon}$$

$$\Rightarrow a_1 = \frac{-u_{0.9} \cdot \sigma_1}{\sqrt{n}} + C_1 \approx 2.436117$$

```
quantile = sp.stats.norm.ppf(1 - epsilon, 0, 1)
a1_ = -quantile * sigma1 / np.sqrt(n_) + C1
```

6. Постройте совмещенные графики гистограммы относительных частот данной выборки и плотностей нормального распределения с параметрами  $(a_0, \sigma_1)$  и  $(a_1, \sigma_1)$ .

```
def buildBar(filename):
    RED = '#6F1D1B'

_, ax = plt.subplots(figsize=(10, 6))

x_values = mid_ranges_
    y_values = rel_freqs_density_
```

```
# hist
ax.bar(x_values,
       y_values,
       width=h_,
       color='white',
       edgecolor=RED,
       linestyle='-',
       linewidth=1.5,
       align='center')
x_values = np.linspace(min_, max_, 100)
# norm pdf with a0 sigma1
y_values = sp.stats.norm.pdf(x_values, a0, sigma1)
ax.plot(x_values,
        y_values,
        color='black',
        linestyle='--',
        linewidth=1.5,
        label='$N(a_0, \\sigma_1)$')
# norm pdf with a1 sigma1
y_values = sp.stats.norm.pdf(x_values, a1, sigma1)
ax.plot(x_values,
        y_values,
        color='blue',
        linestyle='-',
        linewidth=1.5,
        label='$N(a_1, \\sigma_1)$')
decorate_plot(ax, int_boundaries_, 'int', '$p^r$', loc='best')
plt.savefig(f'{filename}.png', dpi=300, transparent=True)
plt.show()
                                                             --- N(a_0, \sigma_1)
                                                               -N(a_1,\sigma_1)
0.175
0.150
0.125
0.100
0.075
```

1.97

int

0.050

0.025

0.000

# Вывод

В процессе выполнения задания мы освоили этапы первоначальной обработки статистических данных и изучили основные понятия, связанные с этой темой. Мы научились по заданной выборке составлять интервальный вариационный ряд, который является результатом группировки данных, а также вычислять выборочное среднее и среднее квадратичное отклонение выборки. На следующем этапе был разобран способ построения гистограммы относительных частот. Затем, были посчитаны критические множества для среднего и среднего квадратичного отклонения, а также проверены 3 гипотезы с разными альтернативами. Была найдена ошибка второго рода для критерия  $S_1$  и такое значение параметра  $a_1$ , при котором ошибка второго рода критерия  $S_1$  не превосходит  $\varepsilon$ . Также были построены совмещенные графики гистограммы относительных частот x и плотностей нормального распределения  $N(a_0,\sigma_1)$  и  $N(a_1,\sigma_1)$ . По второму рисунку видно, что кривая плотности нормального закона для основной гипотезы  $H_0$ : a=3 лучше ложится на гистограмму, чем в случае альтернативы  $H_1$ : a=3.5, что согласуется в пункте 3.

# Приложение

Программный код, с помощью которого была выполнена данная лабораторная работа.

```
import numpy as np
import matplotlib.pyplot as plt
import scipy as sp
def decorate_plot(ax, x_ticks, xname, yname, loc=(-0.025, -0.3)):
    SIZE_TICKS = 10
    # Eliminate upper and right axes
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    # Show ticks in the left and lower axes only
    ax.xaxis.set_ticks_position('bottom')
    ax.yaxis.set_ticks_position('left')
    # axis names
    ax.set_xlabel(xname, fontsize=15)
    ax.xaxis.set_label_coords(0.98, 0.05)
    ax.set_ylabel(yname, rotation=0, fontsize=15)
    ax.yaxis.set_label_coords(0.025, 0.95)
    ax.set_xticks(x_ticks)
    # Adjust the font size of the tick labels
    ax.tick_params(axis='both', which='major', labelsize=SIZE_TICKS)
    plt.legend(fontsize=10, loc=loc)
    # Update font settings
    plt.rcParams.update({'font.family': 'serif', 'font.size': 12})
    # Adjust layout
    plt.tight_layout()
data_ = np.array([
    -3.442, 1.295, 3.672, 2.354, 5.238, 1.136, 4.421, 2.071, 0.269, 0.894,
    8.202, 0.605, -2.011, 3.375, 3.767, 1.068, 2.928, -0.276, 4.924, 3.31,
    5.741, 6.951, 3.417, 2.991, 5.599, 4.896, 9.197, 3.823, 1.827, 5.389,
    2.504, 4.212, -2.021, 1.891, 3.689, 5.366, 3.117, 4.641, 2.968, 4.645,
    3.752, 4.582, 3.601, 0.934, 2.785, 3.294, 4.695, 1.092, 3.155, 4.352,
    0.896, 0.839, 4.309, 2.793, 7.233, 0.95, 5.228, 1.28, 5.19, 0.972,
    4.562, 1.915, 4.243, 4.495, 0.648, 5.34, 3.294, 2.791, 6.805, 3.474,
    3.044, 5.452, 2.957, 7.862, 4.61, 1.317, 5.383, 3.205, -1.022, 3.602,
    3.373, 5.415, 4.093, 5.407, 0.501, 2.135, 1.957, 0.826, 5.34, 3.759,
    1.735, -3.277, 5.101, 1.43, 3.494, 0.545, 4.699, 3.44, 2.85, 4.33
])
```

```
data_
def group(data):
    n_{-} = len(data)
    print(f'n: {n_}')
    min_{-} = min(data)
    max_{-} = max(data)
    print(f'min: {min_} max: {max_}')
    range_ = max_ - min_
    print(f'range: {range_}')
    l_{-} = 1 + int(np.log2(n_{-}))
    print(f'l: {1_}')
    h_ = range_ / 1_
    print(f'h: {h_}')
    int_boundaries_ = np.array(
        [\min_{} + i * h_{} for i in range(0, l_{} + 1, 1)]
    )
    print(f'interval boundaries: {int_boundaries_}')
    intervals_ = np.array(
        [(int_boundaries_[i], int_boundaries_[i+1]) for i in range(0, 1_, 1)]
    print(f'intervals: {intervals_}')
    mid_ranges_ = np.array(
        [sum(interval)/2 for interval in intervals_]
    print(f'intervals\', midpoints: {mid_ranges_}')
    present = lambda el, int_ : int_[0] <= el < int_[1]</pre>
    freqs_ = np.zeros(1_)
    for el in data:
        for j in range(0, 1_, 1):
            if present(el, intervals_[j]):
                freqs_[j] += 1
    freqs_[-1] += np.count_nonzero(data == max_)
    print(f'frequencies: {freqs_}')
    rel_freqs_ = freqs_ / n_
    print(f'relative frequencies: {rel_freqs_}')
    assert np.sum(rel_freqs_) == 1
    rel_freqs_density_ = rel_freqs_ / h_
    print(f'relative frequencies\' density: {rel_freqs_density_}')
    print(f'-'*100)
    space_= ' ' * 5
    for i in range(l_):
```

```
print(f'{intervals_[i]}{space_}{freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{rel_freqs_[i]}{space_}{space_}{rel_freqs_[i]}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_}{space_
           return n_, min_, max_, h_, int_boundaries_, mid_ranges_, rel_freqs_density_
n_, min_, max_, h_, int_boundaries_, mid_ranges_, rel_freqs_density_ = group(data_)
def buildBar(filename):
           RED = '#6F1D1B'
           _, ax = plt.subplots(figsize=(10, 6))
           x_values = mid_ranges_
           y_values = rel_freqs_density_
           ax.bar(x_values,
                              y_values,
                              width=h_,
                              color='white',
                              edgecolor=RED,
                              linestyle='-',
                              linewidth=1.5,
                              align='center')
           decorate_plot(ax, int_boundaries_, 'int', '$p^r$', loc=(0, 0))
           plt.savefig(f'{filename}.png', dpi=300, transparent=True)
           plt.show()
buildBar('hist')
overlineX = 1/n_* * sum(data_)
print(f'mean: {overlineX}')
S2 = 1/(n_- - 1) * sum((data_ - overlineX)**2)
print(f'variance: {S2}')
alpha = 0.1
a0 = 3
sigma0 = 2.1
a1 = 3.5
sigma1 = 2.2
epsilon = 0.1
check = lambda cond : 'accept' if not cond else 'decline'
quantile = sp.stats.t.ppf(1-alpha, n_-1)
C2 = np.sqrt(S2)*quantile/np.sqrt(n_) + a0
print(f'C2 = {C2}, overlineX > C2 = {overlineX > C2} => {check(overlineX > C2)}')
quantile = sp.stats.chi2.ppf(1-alpha, n_-1)
C3 = quantile * sigma0**2 / (n_ - 1)
print(f'C3 = \{C3\}, S2 > C3 = \{S2 > C3\} = \{check(S2 > C3)\}')
```

```
quantile = sp.stats.norm.ppf(alpha, 0, 1)
C1 = quantile * sigma1 / np.sqrt(n_) + a0
print(f'C1 = {C1}, overlineX < C1 = {overlineX < C1} => {check(overlineX < C1)}')</pre>
val = (C1 - a1)/sigma1 * np.sqrt(n_)
beta = 1 - sp.stats.norm.cdf(val, 0, 1)
print(f'beta = {beta}')
quantile = sp.stats.norm.ppf(1 - epsilon, 0, 1)
a1_ = -quantile * sigma1 / np.sqrt(n_) + C1
print(f'a1\' = {a1_}')
def buildBar(filename):
    RED = '#6F1D1B'
    _, ax = plt.subplots(figsize=(10, 6))
    x_values = mid_ranges_
    y_values = rel_freqs_density_
    # hist
    ax.bar(x_values,
           y_values,
           width=h_,
           color='white',
           edgecolor=RED,
           linestyle='-',
           linewidth=1.5,
           align='center')
    x_values = np.linspace(min_, max_, 100)
    # norm pdf with a0 sigma1
    y_values = sp.stats.norm.pdf(x_values, a0, sigma1)
    ax.plot(x_values,
            y_values,
            color='black',
            linestyle='--',
            linewidth=1.5,
            label='$N(a_0, \\sigma_1)$')
    # norm pdf with a1 sigma1
    y_values = sp.stats.norm.pdf(x_values, a1, sigma1)
    ax.plot(x_values,
            y_values,
            color='blue',
            linestyle='-',
            linewidth=1.5,
            label='$N(a_1, \\sigma_1)$')
    decorate_plot(ax, int_boundaries_, 'int', '$p^r$', loc='best')
```

```
plt.savefig(f'{filename}.png', dpi=300, transparent=True)
plt.show()
buildBar('hist_pdf1_pdf2')
```