Propiedades de redes

Propiedades de redes

Propiedades de la RED

Propiedades de los NODOS

Propiedades de los ENLACES

Propiedades de la RED

Tipo de red

Matrices de adyacencia

Caminos

Secuencia de nodos conectados por una secuencia de enlaces

Los pesos representan mayor o menor "distancia" según nos convenga

Ejemplos:

- Distancia filogenética:
 Mayor peso ~ más lejano en la red
 - → CASO ESTÁNDAR
- Afinidad de sustrato:
 Mayor peso ~ más cercano en la red

Algoritmos:

- Djikstra
- Bellman-Ford
- A*
- Floyd Warshall

Camino más corto promedio

$$l_{prom} = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1 \neq i}^{N} d_{ij}$$

Diámetro

 $D = max d_{ij}$

Componente débilmente conectado

Componente fuertemente conectado

¿Componente gigante?

- Siempre tendremos (al menos) un componente con un mayor número de nodos. Lo llamamos el "componente más grande."
- Podemos tener un componente que contenga más de la mitad (50% +1) de los nodos. Lo llamamos "Componente gigante."
- Algunas personas utilizan los conceptos indistintamente. ¡Cuidado!

Componente fuertemente conectado

Componente fuertemente conectado

Propiedades globales de la Red

Nos faltan algunas propiedades globales que vamos a definir usando propiedades de nodos y enlaces

Propiedades de los NODOS

Grado

Número de vecinos

Grados de entrada y salida

Distribución de grado

Hubs

- Formalmente:
 - Llamamos hub a un nodo con grado significativamente mayor al grado promedio de la red
 - Requerimos un modelo para evaluarlo
- Informalmente:
 - Llamamos hub a los nodos con mayor grado en la red

Fuerza

Betweenness Centrality

$$b_i = \sum_{r,s} \frac{n_{rs}^i}{g_{rs}}$$

Otras centralidades

- Eigenvector
- Katz
- PageRank
- Closeness
- Comunicabilidad

Clustering Coefficient

$$C_i = \frac{Num \cdot \Delta_i}{k_i(K_i - 1)/2}$$

0 si
$$k_i = 0$$
 o $k_i = 1$

$$C = \frac{1}{N} \sum_{i=1}^{N} C_i$$

$$T=3\times\frac{Num.\Delta}{Num.Paths de d_{ij}=2}$$

Propiedades de los ENLACES

Edge Betweenness

Distribución de pesos

Tareas

Siguiente semana:

- Traer analizada una red de trabajo, afin a sus intereses de investigación
 - 50 1000 nodos, E >> N (menos de 50,000 enlaces).
 - Artículo publicado, o
 - Datos propios mapeados a red, o
 - Generada con otra estrategia (¡no trivial!)

Tareas

Siguiente semana:

 Preparar una lámina (o dos) de Graph layouts, conteniendo: fundamento del layout, ventajas y desventajas

Equipos:

- 1: Métodos force-directed (Fruchterman Reingold, Kamada-Kawai)
- 2: Métodos espectrales
- 3: Métodos jerárquicos (Sugiyama), diagramas de dominancia
- 4: Diagramas de arco, árboles, circulares
- 5: Métodos ortogonales,
- 6: Hive plots

Tareas

Dos semanas:

Preparar una presentación sobre bases de datos de redes por equipo:

- 1 Human Connectome Project
- 2 Regulon DB
- 3 STRING-DB
- 4 IntAct Molecular Interaction Database + Pathway Commons
- 5 KEGG + Reactome
- 6???