Lower-dimensional Bayesian Mallows model for rank-based unsupervised transcriptomic analysis

ISBA 2022

Emilie Eliseussen¹, Thomas Fleischer² and Valeria Vitelli¹ June 30, 2022

¹Oslo Centre for Biostatistics and Epidemiology, University of Oslo

²Department of Cancer Genetics, Oslo University Hospital, Oslo

Motivation

• The **Central Dogma of Biology**: genes in DNA provide instructions for proteins.

- The Central Dogma of Biology: genes in DNA provide instructions for proteins.
- Omics data is a collective characterization and quantification of biological molecules.

- The **Central Dogma of Biology**: genes in DNA provide instructions for proteins.
- Omics data is a collective characterization and quantification of biological molecules.
 - Examples of *omics* data: gen*omics* profile DNA, transcript*omics* measure transcripts; prote*omics* and metabol*omics* quantify proteins and metabolites.

- The **Central Dogma of Biology**: genes in DNA provide instructions for proteins.
- Omics data is a collective characterization and quantification of biological molecules.
 - Examples of *omics* data: gen*omics* profile DNA, transcript*omics* measure transcripts; prote*omics* and metabol*omics* quantify proteins and metabolites.
- Analysis and interpretation of omics data (ideally combined) can lead to a more comprehensive understanding of human health and disease.

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

Possible solutions:

• Unsupervised variable selection/dimension reduction.

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

- **Unsupervised** variable selection/dimension reduction.
- Transform data into rankings: why?

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

- Unsupervised variable selection/dimension reduction.
- · Transform data into rankings: why?
 - · More robust to noise, outliers, heterogeneity.

Challenges: high-dimensionality (p >> n), noise, non-normality, heterogeneity, complex structures, no outcome, ...

- **Unsupervised** variable selection/dimension reduction.
- · Transform data into rankings: why?
 - · More robust to noise, outliers, heterogeneity.
 - Easier to perform data integration: no scaling involved increase reproducibility.

Main goals

Main goals

Short-term goal: have a rank-based unsupervised variable selection method able to analyze high-dimensional data.

Main goals

Short-term goal: have a rank-based unsupervised variable selection method able to analyze high-dimensional data.

Long-term goal: perform multi-omic data integration to increase statistical power, sample size and improve our understanding of biological systems.

Methodology

- $A = \{A_1, ..., A_n\}$ a finite set of n items ranked by N assessors.
 - · In our case: items \leftarrow genes, assessors \leftarrow patients.

- A = {A₁,...,A_n} a finite set of n items ranked by N assessors.
 In our case: items ← genes, assessors ← patients.
- We assume the data are complete rankings $R_j \sim \text{Mallows}(\boldsymbol{\rho}, \alpha)$, j=1,...,N.

- $A = \{A_1, ..., A_n\}$ a finite set of n items ranked by N assessors.
 - In our case: items ← genes, assessors ← patients.
- We assume the data are complete rankings $R_j \sim \text{Mallows}(\boldsymbol{\rho}, \alpha)$, j = 1, ..., N.
- The Mallows model [Mallows, 1957] is a probabilistic model for a ranking R defined on the space \mathcal{P}_n of permutations of dimension n:

$$P(R|\alpha, \rho) = \frac{1}{Z_n(\alpha, \rho)} \exp\left\{-\frac{\alpha}{n} d(R, \rho)\right\} 1_{\mathcal{P}_n}(R)$$

where α is a scale parameter, ρ is the consensus ranking, $Z_n(\alpha, \rho)$ is the normalizing function and $d(\cdot, \cdot)$ is a distance measure between rankings.

4

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

The lower-dimensional Bayesian Mallows model (lowBMM) [Eliseussen et al., 2022]:

• $\mathcal{A}^* = \{A_{i_1}, ..., A_{i_{n^*}}\}$ is an n^* -dimensional reduced set of items, with $n^* << n$, $\mathcal{A}^* \subset \mathcal{A}$, n^* is fixed.

5

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

- $\mathcal{A}^* = \{A_{i_1}, ..., A_{i_{n^*}}\}$ is an n^* -dimensional reduced set of items, with $n^* << n$, $\mathcal{A}^* \subset \mathcal{A}$, n^* is fixed.
- We assume the data are complete rankings, however only a subset follows the Mallows model while the rest of the data are assumed to be unranked.

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

- $\mathcal{A}^* = \{A_{i_1}, ..., A_{i_{n^*}}\}$ is an n^* -dimensional reduced set of items, with $n^* << n$, $\mathcal{A}^* \subset \mathcal{A}$, n^* is fixed.
- We assume the data are complete rankings, however only a subset follows the Mallows model while the rest of the data are assumed to be unranked.
- Scale parameter α fixed.

The Bayesian Mallows model (BMM) described in [Vitelli et al., 2018], however, does not scale to typical -omics dimensions.

- $\mathcal{A}^* = \{A_{i_1}, ..., A_{i_{n^*}}\}$ is an n^* -dimensional reduced set of items, with $n^* << n$, $\mathcal{A}^* \subset \mathcal{A}$, n^* is fixed.
- We assume the data are complete rankings, however only a subset follows the Mallows model while the rest of the data are assumed to be unranked.
- Scale parameter α fixed.
- · We assume assessors are homogeneous (no mixtures).

The lower-dimensional Bayesian Mallows model (lowBMM)

$$R_{j}|_{\mathcal{A}^{*}} \sim \text{Mallows}(\boldsymbol{\rho}, \alpha), \quad j = 1, \dots, N$$
 $R_{j}|_{\mathcal{A} \setminus \mathcal{A}^{*}} \sim \mathcal{U}(\mathcal{P}_{n-n^{*}}), \quad j = 1, \dots, N$
 $\boldsymbol{\rho}|_{\mathcal{A}^{*}} \sim \mathcal{U}(\mathcal{P}_{n^{*}})$
 $\mathcal{A}^{*} \sim \mathcal{U}(\mathcal{P}_{\mathcal{C}})$

 \mathcal{C} : collection of all $\binom{n}{n^*}$ possible sets.

The lower-dimensional Bayesian Mallows model (lowBMM)

C: collection of all $\binom{n}{n^*}$ possible sets.

Posterior distribution:

$$P(\boldsymbol{\rho}, \mathcal{A}^* | \mathbf{R}_1, ..., \mathbf{R}_N) \propto \exp \left\{ -\frac{\alpha}{n^*} \sum_{j=1}^N d_{\mathcal{A}^*}(\mathbf{R}_j, \boldsymbol{\rho}) \right\} 1_{\mathcal{P}_{n^*}}(\boldsymbol{\rho}) 1_{\mathcal{C}}(\mathcal{A}^*).$$

6

We iterate over the following steps:

We iterate over the following steps:

1. MH-step: update ρ Sample: $\rho_{\text{prop}} \sim \text{LS}(\rho_{m-1}, l)$, where LS is the "leap-and-shift" function from [Vitelli et al., 2018].

We iterate over the following steps:

- 1. MH-step: update ρ Sample: $\rho_{\text{prop}} \sim \text{LS}(\rho_{m-1}, l)$, where LS is the "leap-and-shift" function from [Vitelli et al., 2018].
- 2. MH-step: update \mathcal{A}^* Sample: $\mathcal{A}^*_{\text{prop}} \sim q(\mathcal{A}^*_{\text{prop}}|\mathcal{A}^*_{m-1})$, where q is described in [Eliseussen et al., 2022].

We iterate over the following steps:

- 1. MH-step: update ρ Sample: $\rho_{\text{prop}} \sim \text{LS}(\rho_{m-1}, l)$, where LS is the "leap-and-shift" function from [Vitelli et al., 2018].
- 2. MH-step: update \mathcal{A}^* Sample: $\mathcal{A}^*_{\text{prop}} \sim q(\mathcal{A}^*_{\text{prop}}|\mathcal{A}^*_{m-1})$, where q is described in [Eliseussen et al., 2022].

Two tuning parameters involved:

We iterate over the following steps:

- 1. MH-step: update ρ Sample: $\rho_{\text{prop}} \sim \text{LS}(\rho_{m-1}, l)$, where LS is the "leap-and-shift" function from [Vitelli et al., 2018].
- 2. MH-step: update \mathcal{A}^* Sample: $\mathcal{A}^*_{\text{prop}} \sim q(\mathcal{A}^*_{\text{prop}}|\mathcal{A}^*_{m-1})$, where q is described in [Eliseussen et al., 2022].

Two tuning parameters involved:

· l: "leap size" for ρ : $l \sim$ 20% n^* , from previous empirical studies.

We iterate over the following steps:

- 1. MH-step: update ρ Sample: $\rho_{\text{prop}} \sim \text{LS}(\rho_{m-1}, l)$, where LS is the "leap-and-shift" function from [Vitelli et al., 2018].
- 2. MH-step: update \mathcal{A}^* Sample: $\mathcal{A}^*_{\text{prop}} \sim q(\mathcal{A}^*_{\text{prop}}|\mathcal{A}^*_{m-1})$, where q is described in [Eliseussen et al., 2022].

Two tuning parameters involved:

- l: "leap size" for ρ : $l \sim 20\% \, n^*$, from previous empirical studies.
- L: "swap size" for \mathcal{A}^* : keep low.

Data examples

• Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.
- Posterior summaries computed after burn-in: $\hat{\rho}_{\hat{\mathcal{A}}^*}$, $\hat{\mathcal{A}}^*$ (details in [Eliseussen et al., 2022]).

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.
- Posterior summaries computed after burn-in: $\hat{\rho}_{\hat{\mathcal{A}}^*}$, $\hat{\mathcal{A}}^*$ (details in [Eliseussen et al., 2022]).
- · Performance measures:

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.
- Posterior summaries computed after burn-in: $\hat{\rho}_{\hat{\mathcal{A}}^*}$, $\hat{\mathcal{A}}^*$ (details in [Eliseussen et al., 2022]).
- · Performance measures:

•
$$\hat{p} = n_{corr}/n^*$$
, with $n_{corr} = |\mathcal{A}^* \cap \hat{\mathcal{A}}^*|$.

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.
- Posterior summaries computed after burn-in: $\hat{\rho}_{\hat{\mathcal{A}}^*}$, $\hat{\mathcal{A}}^*$ (details in [Eliseussen et al., 2022]).
- · Performance measures:
 - $\hat{p} = n_{corr}/n^*$, with $n_{corr} = |\mathcal{A}^* \cap \hat{\mathcal{A}}^*|$.
 - · $d_{\text{norm}}(\boldsymbol{\rho}_{\mathcal{A}^*}, \hat{\boldsymbol{\rho}}_{\mathcal{A}^*}) = d(\boldsymbol{\rho}_{\mathcal{A}^*}, \hat{\boldsymbol{\rho}}_{\mathcal{A}^*})/n_{\text{corr.}}$

- Two data dimensions: toy example (n = 20) and more realistic dimension (n = 1000).
- Data simulated in a top-rank scenario, i.e. items in \mathcal{A}^* are top ranked.
- Posterior summaries computed after burn-in: $\hat{\rho}_{\hat{\mathcal{A}}^*}$, $\hat{\mathcal{A}}^*$ (details in [Eliseussen et al., 2022]).
- · Performance measures:
 - $\hat{p} = n_{corr}/n^*$, with $n_{corr} = |\mathcal{A}^* \cap \hat{\mathcal{A}}^*|$.
 - · $d_{\text{norm}}(\boldsymbol{\rho}_{\mathcal{A}^*}, \hat{\boldsymbol{\rho}}_{\mathcal{A}^*}) = d(\boldsymbol{\rho}_{\mathcal{A}^*}, \hat{\boldsymbol{\rho}}_{\mathcal{A}^*})/n_{\text{corr.}}$
 - Computing time

Comparison with other methods

	Mallows- based	Frequentist/ Bayesian	Estimate uncertainty	Variable selection
Mallows model (MM) ¹	1	Frequentist	Х	Х
Extended Mallows model (EMM)	1	Frequentist	/	×
Partition Mallows model (PAMA)	1	Bayesian	✓	1
Bayesian Mallows model (BMM)	1	Bayesian	✓	Х
Markov chain-based methods MC ₁ , MC ₂ , MC ₃	×	Frequentist	×	×
Cross Entropy Monte Carlo (CEMC)	×	Frequentist	×	Х
BORDA	X	-	Х	Х

Table 1: Methods used in the comparison with lowBMM.

¹R package *PerMallows* used.

Comparison with other methods: toy example

Figure 1: Boxplots of \hat{p} (left) and d_{norm} (right) over 50 repetitions. n=20, $n^*=8$, N=5, $M=10^3$, $\alpha=2$.

Comparison with other methods: toy example

Figure 1: Boxplots of \hat{p} (left) and d_{norm} (right) over 50 repetitions. n=20, $n^*=8$, N=5, $M=10^3$, $\alpha=2$.

Method	BORDA	CEMC	EMM	lowBMM	MC1	MC2	MC3	MM	PAMA
time (sec)	0.02	58.42	0.05	0.54	4.42	4.42	4.42	0.0003	17.58

Table 2: Average computing times over 50 runs.

Comparison with other methods: larger dimension

Figure 2: Boxplots of \hat{p} (left) and d_{norm} (right) over 50 repetitions. n=1000, N=50, $n^*=50$, $M=7.5\cdot 10^4$, $\alpha=5$.

Comparison with other methods: larger dimension

Figure 2: Boxplots of \hat{p} (left) and d_{norm} (right) over 50 repetitions. n=1000, N=50, $n^*=50$, $M=7.5\cdot 10^4$, $\alpha=5$.

Method	BMM	EMM	lowBMM	MM
time (sec)	116.36	2307.42	236.92	9.48

Table 3: Average computing times over 50 runs.

²http://www.nature.com/tcga/

²http://www.nature.com/tcga/

Raw RNAseq data from The Cancer Genome Atlas (TCGA)²:

• n = 15348 genes and N = 265 ovarian cancer patients.

²http://www.nature.com/tcga/

- n = 15348 genes and N = 265 ovarian cancer patients.
- $n^* = 500$, number of genes to be selected.

²http://www.nature.com/tcga/

- n = 15348 genes and N = 265 ovarian cancer patients.
- $n^* = 500$, number of genes to be selected.
- Tuning parameters: L = 1, l = 100.

²http://www.nature.com/tcga/

- n = 15348 genes and N = 265 ovarian cancer patients.
- $n^* = 500$, number of genes to be selected.
- Tuning parameters: L = 1, l = 100.
- $\alpha = 10$ (estimated off-line).

²http://www.nature.com/tcga/

Real data application: post-processing of results

• Post-processing step: compute "top probability selection": $\hat{\mathcal{A}}_{top}^* = \{A_i \in \mathcal{A}^* \text{ s.t. } P(A_i \in top\text{-}K, i = 1, ..., n \mid A_i \in \hat{\mathcal{A}}^*) > c\}.$

Real data application: post-processing of results

- Post-processing step: compute "top probability selection": $\hat{\mathcal{A}}_{top}^* = \{A_i \in \mathcal{A}^* \text{ s.t. } P(A_i \in top\text{-}K, i = 1, ..., n \mid A_i \in \hat{\mathcal{A}}^*) > c\}.$
- In our case: K = 75 and C = 0.77 resulting in $|\hat{A}_{top}^*| = 63$ genes.

Interpretation of results: GSEA

Gene Set Name	# Genes in Gene set	# Genes in overlap	p-value
Regulation of cell differentiation (GOBP)	1618	16	2.59E-9
Regulation of multicellular organimsal development (GOBP)	1397	13	2.05E-7
Regulation of anatomical structure morphogenesis (GOBP)	1006	11	4.17E-7
Positive regulation of developmental process (GOBP)	1284	12	6.17E-7
Positive regulation of cell differentiation (GOBP)	844	10	7.2E-7
Response to endogenous stimulus (GOBP)	1624	13	1.12E-6
Cellular response to nitrogen compound (GOBP)	698	9	1.37E-6
Sensory organ development (GOBP)	534	8	1.84E-6
Animal organ morphogenesis (GOBP)	1025	10	4.08E-6
Striated muscle cell differentiation (GOBP)	269	6	4.12E-6

Table 4: Overview of the top-10 gene sets ranked according to the associated p-value from a GSEA performed on the selection $\hat{\mathcal{A}}_{top}^*$.

Conclusions and way forward

Main takeaways

 Ranks are more robust to outliers, noise, and allows for easier comparisons between multiple data sources.

Main takeaways

- Ranks are more robust to outliers, noise, and allows for easier comparisons between multiple data sources.
- Variable selection is essential in high-dimensional settings such as omics.

Main takeaways

- Ranks are more robust to outliers, noise, and allows for easier comparisons between multiple data sources.
- Variable selection is essential in high-dimensional settings such as omics.
- Aim of lowBMM: reproducible and robust unsupervised variable selection procedure in a complex high-dimensional setting.

Further directions

• Extensions for lowBMM: clustering, handle missing data, include estimation of α , improved convergence diagnostics.

Further directions

- Extensions for lowBMM: clustering, handle missing data, include estimation of α , improved convergence diagnostics.
- ...once this is in place → multiple data integration.

References

Eliseussen, E., Fleischer, T., and Vitelli, V. (2022).

Rank-based Bayesian variable selection for genome-wide transcriptomic analyses.

Accepted for publication in Statistics in Medicine.

Mallows, C. L. (1957).

Non-null ranking models.

Biometrika, 44(1/2):114-130.

Vitelli, V., Sørensen, O., Crispino, M., Frigessi, A., and Arjas, E. (2018).

Probabilistic Preference Learning with the Mallows Rank Model. Journal of Machine Learning Research, 18(1):5796–5844.

Lower-dimensional Bayesian Mallows model for rank-based unsupervised transcriptomic analysis

ISBA 2022

Emilie Eliseussen¹, Thomas Fleischer² and Valeria Vitelli¹ June 30, 2022

¹Oslo Centre for Biostatistics and Epidemiology, University of Oslo

²Department of Cancer Genetics, Oslo University Hospital, Oslo

Back-up slides

What is ranking data?

A **ranking dataset**: describes a ranking of a set of items according to some specified feature.

Any dataset can be turned into a ranking dataset, e.g.:

	Gene 1	Gene 2	Gene 3	Gene 4
Patient 1	-0.4	1.2	0.9	-21.4
Patient 2	-5.3	0.3	12.1	-1.6

Table 5: RNAseq

	Gene 1	Gene 2	Gene 3	Gene 4
Patient 1	3	1	2	4
Patient 2	4	2	1	3

Table 6: Rankings

The lower-dimensional Bayesian Mallows model (lowBMM)

Likelihood:

$$P(\mathsf{R}_1,...,\mathsf{R}_N|\boldsymbol{\rho},\mathcal{A}^*) = \frac{1}{Z_{n^*}(\alpha)^N} \exp\left\{-\frac{\alpha}{n^*} \sum_{j=1}^N d_{\mathcal{A}^*}(\mathsf{R}_j,\boldsymbol{\rho})\right\} \prod_{j=1}^N 1_{\mathcal{P}_{n^*}}(\boldsymbol{\rho}) 1_{\mathcal{C}}(\mathcal{A}^*).$$

Priors: uniform for both parameters, $\pi(\boldsymbol{\rho}|\mathcal{A}^*) = \frac{1}{n^*!} 1_{\mathcal{P}_{n^*}}(\boldsymbol{\rho})$ and $\pi(\mathcal{A}^*) = \frac{1}{|\mathcal{C}|} 1_{\mathcal{C}}(\mathcal{A}^*)$, where \mathcal{C} is the collection of all $\binom{n}{n^*}$ possible sets.

Posterior distribution:

$$P(\boldsymbol{\rho}, \mathcal{A}^* | \mathbf{R}_1, ..., \mathbf{R}_N) \propto \exp \left\{ -\frac{\alpha}{n^*} \sum_{j=1}^N d_{\mathcal{A}^*}(\mathbf{R}_j, \boldsymbol{\rho}) \right\} 1_{\mathcal{P}_{n^*}}(\boldsymbol{\rho}) 1_{\mathcal{C}}(\mathcal{A}^*).$$

MCMC: details

In the first step of the algorithm, we propose a new consensus ranking $\rho' \in \mathcal{P}_{n^*}$ using the "leap-and-shift" proposal distribution described in [Vitelli et al., 2018]. The acceptance probability for updating ρ in the MH algorithm is

$$\min \left\{ 1, \frac{P_l(\boldsymbol{\rho}|\boldsymbol{\rho}')}{P_l(\boldsymbol{\rho}'|\boldsymbol{\rho})} \exp \left[-\frac{\alpha}{n^*} \left(\sum_{j=1}^N d_{\mathcal{A}^*}(\mathbf{R}_j, \boldsymbol{\rho}') - \sum_{j=1}^N d_{\mathcal{A}^*}(\mathbf{R}_j, \boldsymbol{\rho}) \right) \right] \right\}.$$
(1)

We propose a new set \mathcal{A}^*_{prop} by perturbing $L \in \{1, ..., n^*\}$ elements in the current \mathcal{A}^* , selected with uniform probability. The L items are swapped with L items from the set $\mathcal{A} \setminus \mathcal{A}^*$, again uniformly. The move from \mathcal{A}^* to \mathcal{A}^*_{prop} is accepted with probability:

$$\min \left\{ 1, \exp \left[-\frac{\alpha}{n^*} \left(\sum_{j=1}^N d_{\mathcal{A}_{\text{prop}}^*}(\mathbf{R}_j, \boldsymbol{\rho}) - \sum_{j=1}^N d_{\mathcal{A}^*}(\mathbf{R}_j, \boldsymbol{\rho}) \right) \right] \right\}. \tag{2}$$

lowBMM: MCMC algorithm

end

Algorithm 1: MCMC scheme for inference in lowBMM

```
input: R_1, ..., R_N, \alpha, d(\cdot, \cdot), l, L, M
output: posterior distributions of \rho and \mathcal{A}^*
Initialization: randomly generate \rho_0 and \mathcal{A}_0^*
for m \leftarrow 1 to M do
      M-H step: update \rho
      sample: \rho' \sim LS(\rho_{m-1}, l) restricted on \mathcal{A}_{m-1}^* and u \sim \mathcal{U}(0, 1)
      compute: ratio \leftarrow equation(1) with \rho \leftarrow \rho_{m-1}, \mathcal{A}^* \leftarrow \mathcal{A}_{m-1}^*
      if u < ratio then
           \rho_m \leftarrow \rho'
      else
        \rho_m \leftarrow \rho_{m-1}
       end
       M-H step: update A^*
       sample: L elements in \mathcal{A}_{m-1}^* to get \mathcal{A}_{\text{prop}}^*, and u \sim \mathcal{U}(0,1)
      compute: ratio \leftarrow equation(2) with \rho \leftarrow \rho_{m-1}, \mathcal{A}^* \leftarrow \mathcal{A}^*_{m-1}
      if u < ratio then
             \mathcal{A}_m^* \leftarrow \mathcal{A}_{\text{prop}}^*
      else
        A_m^* \leftarrow A_{m-1}^*
      end
```

MH-MCMC for lowBMM: postprocessing

Posterior summaries: $\hat{
ho}_{\mathcal{A}^*}$ and $\hat{\mathcal{A}}^*$ are computed in the following way:

- 1. Suppose M posterior samples are obtained: $\{\boldsymbol{\rho}_m, \mathcal{A}_m^*\}_{m=1}^M$ with $\boldsymbol{\rho}_m = \{\rho_{mi_1^m}, ..., \rho_{mi_{**}^m}\}$ and $\mathcal{A}_m^* = \{A_{mi_1^m}, ..., A_{mi_{**}^m}\}.$
- 2. Given the samples $\{A_1^*,...,A_M^*\}$, let $W \in \mathbb{R}^{M \times n}$ be such that $W_{mi} = 1_{\mathcal{A}_m^*}(A_i)$ for each item A_i , i = 1,...,n.
- 3. Let \mathcal{A}' be the "Highest Probability Set" of \mathcal{A}^* (more details in [Eliseussen et al., 2022]). Based on \mathcal{A}' we compute $\bar{\mathbf{x}} \in \mathbb{R}^{|\mathcal{A}'|}$, $\bar{x}_i = \frac{\sum_{m=1}^M \boldsymbol{\rho}_{mi} \mathbf{1}_{\mathcal{A}_m^*}(A_i)}{\sum_{m=1}^M \mathbf{1}_{\mathcal{A}_m^*}(A_i)}$ for all $A_i \in \mathcal{A}'$.
- 4. We quantify the two posterior summaries of ho and \mathcal{A}^* as follows:

$$\hat{\mathcal{A}}^* = \left\{ A_i \in \mathcal{A}' \, | \, rank(\bar{\mathbf{x}}) \le n^* \right\}, \qquad \qquad \hat{\boldsymbol{\rho}}_{\mathcal{A}^*} = rank(\bar{\mathbf{x}})|_{\hat{\mathcal{A}}^*} \quad (3)$$

Comparison with other methods

	Mallows- based	Frequentist/ Bayesian	Estimate uncertainty	Several distances ³	Variable selection
Mallows model (MM) ⁴	1	Frequentist	Х	✓	X
Extended Mallows model (EMM)	1	Frequentist	✓	×	×
Partition Mallows model (PAMA)	1	Bayesian	✓	×	/
Bayesian Mallows model (BMM)	1	Bayesian	✓	/	×
Markov chain-based methods MC ₁ , MC ₂ , MC ₃	×	Frequentist	Х	-	х
Cross Entropy Monte Carlo (CEMC)	×	Frequentist	X	-	×
BORDA	X	-	Х	-	Х

Table 7: Methods used in the comparison with lowBMM.

³Given that the method is Mallows-based.

⁴R package *PerMallows* used.