

Lesson 4 Movement

1. Working Principle

According to the characteristics of meacanum wheel, when all wheels rotate clockwise, the car will move forward; when all wheels rotate counterclockwise, the car will move backwards. When two A wheels rotate counterclockwise and two B wheels rotate clockwise, the car will move sideways to the left; when two wheels B rotates counterclockwise and wheels A rotates clockwise, the car will move sideways to the right. The force analysis for moving forwards, backwards and sideways is shown in the following figure:

According to physical kinematics, when forces are equal and opposite to each other, they will counteract each other. Any force can be decomposed into two perpendicular vectors. Suppose the speed of wheel A and wheel B rotates at the same speed, a right force decomposed by wheel A and a left force decomposed by wheel B will counteract each other, which the direction of resultant velocity is forward.

Based on Newton's second law (F=ma), if the direction of acceleration is forward, the final resultant force is also forward.

2. Operation Steps

The entered command should be case sensitive and "Tab" key can be used to fill in keyword.

- 1) Click to enter the LX terminal.
- 2) Enter "cd MasterPi/MecanumControl/" command to come to the directory of game programmings.

3) Enter "sudo python3 Car_Move_Demo.py" command and press "Enter" to start game.

4) If want to exit the game, you can press "Ctrl+C". If fail to exit, please try multiple times.

3. Project Outcome

After starting the game, MasterPi will move forward, sideways to the right, backwards, sideways to the left in sequence.

4. Function Extension

The default speed of moving forwards is 50. This section will modify the speed of moving sideways to the left to 90 and the specific operation steps are as follow:

- 1) Click to enter the LX terminal.
- Enter "cd MasterPi/MecanumControl/" command and press "Enter" to come to the directory of game programmings.

3) Enter "udo vim Car_Move_Demo.py" command and press "Enter" to open the program file.

4) Find the code to be modified and press "i" to enter the editing mode.

5) In "set_velocity" function, the first parameter represents the motor speed and we modify it to 90. After modifying, press "Esc" and enter ":wq", and then press "Enter" to save and exit.

Hiwonder Technology Co,Ltd

```
### 143 if __name__ == '__main__':
### while start:
### chassis.set_velocity(50,90,0)
### time.sleep(1)
### chassis.set_velocity(50,0,0)
### time.sleep(1)
### chassis.set_velocity(50,270,0)
### time.sleep(1)
### chassis.set_velocity(90 180,0)
### time.sleep(1)
### chassis.set_velocity(90 180,0)
### time.sleep(1)
###
```

Note: The adjustable range of speed is from -100 to 100. When the value is positive, the motor will rotate clockwise. When the value is negative, the car will rotate counterclockwise. It is recommended to adjust the value slightly.

5. Program Analysis

The source code of program is located in: /home/pi/MasterPi/MecanumControl/Car_Move_Demo.py

5.1 Import Parameter Module

Import module	Function
import sys	Importing the Python sys module is used for getting access to the relevant function and variables

import time	Importing the Python time module is used for time-related functionalities, such as delay operations.
import signal	The receiving and processing of the signal
HiwonderSDK.mecanum	The control module related to mecanum wheel chassis

5.2 Program Logic and Corresponding Code Analysis

The diagram of program logic refers to the below figure.

From the above figure, the program's logical flow is mainly divided into importing the function library, calling relevant functions, and controlling the motors. The following documentation will be written based on the program's logical flowchart mentioned above.

♦ Import Function Library

During initialization, the function library needs to be first imported for subsequent calling. For the detailed content of importing, please refer to "3.1 Import Parameter Module".

Hiwonder Technology Co,Ltd

```
3  import sys
4  sys.path.append('/home/pi/MasterPi/')
5  import time
6  import signal
7  import HiwonderSDK.mecanum as mecanum
```

Check Python Version

```
9 Fif sys.version_info.major == 2:
10 print('Please run this program with python3!')
11 sys.exit(0)
```

sys.version_info.major is used to check the major version of Python. If the version is equal to 2, the program will print a message and exit the program.

◆ Call the mecanum.MecanumChassis () Function

```
26 chassis = mecanum.MecanumChassis()
```

The call to **mecanum.MecanumChassis()** constructor creates an object of the **MecanumChassis** class and assigns it to the chassis variable.

♦ Motor Control

```
40
    -if
         name == ' main ':
    自
41
          while start:
42
             chassis.set velocity(50,90,0)
43
             time.sleep(1)
44
             chassis.set velocity(50,0,0)
45
             time.sleep(1)
             chassis.set velocity(50,270,0)
46
47
             time.sleep(1)
             chassis.set velocity(50,180,0)
48
49
             time.sleep(1)
         chassis.set_velocity(0,0,0) # 关闭所有电机
50
         print('已关闭')
51
52
```

Control motor through set_velocity function. There are three parameters in function. Take the code "chassis.set_velocity(50,90,0)" as an example:

1) The first parameter "**50**" represents the motor speed, its unit is mm/s and it ranges from -100 to 100. When the value is negative, the motor rotates

counterclockwise.

- 2) The second parameter "**90**" represents the movement direction of car, its unit is degree and it ranges from 0 to 360. The value of 90° refer to move forward. 270° refers to move backward. 0° refers to move to the right. 180° refers to move the left. Other movement directions are obtained according to the same reference method.
- 3) The third parameter "**0**" represents the rotation speed of the car, its unit is 5° /s and it ranges from -2 to 2. When the parameter value is positive, the car will rotate clockwise. When the parameter value is negative, the car will rotate counterclockwise.