Последовательность.

Лемма о вложенных отрезках.

Всякую функицию $f: N \to X$ будем называть **последовательностью** элементов множества X. Значение f(n) называют n-ным членом последовательности и обычно обозначают через x_n . Саму последовательность будем обозначать $\{x_n\}$ и $x_1, x_2, ..., x_n, ...$

Пусть $X_1, X_2, ..., X_n, ...$ - последовательность каких-либо множеств. Если $X_1 \supset X_2 \supset ... \supset X_n \supset ...$, то говорят, что имеется последовательность **вложенных** множеств.

Множество, состоящее из конечного числа элементов, называется **конечным**. Множества, не являющиеся конечными, называются **бесконечными**.

Любой интервал $(a;b) = \{x \in R : a < x < b\}$, содержащий данную точку c называется **окрестностью** этой точки. Точка x_0 называется предельной точкой множества $M \subset R$, если любая окрестность этой точки содержит бесконечное множество точек множества M.

Лемма (Коши - Кантор, лемма о вложенных отрезках) Для любой последовательности $I_1\supset I_2\supset...\supset I_n\supset...$ вложенных отрезков найдется такая точка $c\in R$, принадлежащая всем этим отрезкам. Более того, если для любого числа $\varepsilon>0$ существует отрезок I_n , длинна которого $|I_n|<\varepsilon$, то c единственная общая точка для всех отезков.

Доказательство. Пусть $I_n = [a_n; b_n] = \{x \in R : a_n \leqslant x \leqslant b_n\}$. Обозначим $X = \{a_n\}, Y = \{b_n\}$ Проверим, что $a_m \leqslant b_n, \forall m, n \in N$. Действительно, предположим, что существуют такие $m, n \in N$, что $a_m > b_n$. Тогда $b_m \geqslant a_m > b_n \geqslant a_n$. И мы получаем, что отрезки I_m и I_n не пересекаются, что не может быть по условию. Таким образом, в силу аксиомы поллноты, существует число $c \in R$ такое, что $a_n \leqslant c \leqslant b_n, \forall m, n \in N$. В частности $a_n \leqslant c \leqslant b_n, \forall n \in N$. Итак, $c \in I_n, \forall n \in N$.

Предположим теперь, что существуют $c_1, c_2 \in \bigcap_{n=1}^{+\infty} I_n$ и $c_1 < c_2$. Тогда имеем $a_n \leqslant c_1 < c_2 \leqslant b_n \Rightarrow 0 < c_2 - c_1 \leqslant b_n - a_n, \forall n$. Т.е. длинна каждого отрезка не может быть меньше положительной величины $c_2 - c_1$. Но это не может быть, если в системе отрезков есть отрезки сколь угодно малой длинны. **Лемма доказанна**.

Критерий Коши существования придела функции.

Теорема (критерий Коши существования придела функции)

Пусть a предельна точка множества $E.\Phi$ ункция $f:E\to R$ имеет конечный предел при $x\to a$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x, x' \in E, 0 < |x - a| < \delta, 0 < |x' - a| < \delta \Rightarrow |f(x') - f(x)| < \varepsilon.$$

Доказательство. Пусть существует конечный предел оказательство. Пусть существует конечный предел $\lim_{x\to B} f(x) = A$. Тогда

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x, x' \in E, 0 < |x - a| < \delta, 0 < |x' - a| < \delta \Rightarrow |f(x) - A| < \varepsilon/2$$

$$\Rightarrow |f(x) - A| < \varepsilon/2; |f(x' - A)| < \varepsilon/2 \Rightarrow$$

$$|f(x') - f(x)| < \varepsilon$$

Пусть выподняется условие в теореме. Возьмем произвольную последовательность $\{x_n\}, x_n \in E/\{a\}, x \to a, n \to \infty$. Возьмём произвольное число $\varepsilon > 0$ и найдём по нему число $\delta > 0$ в соответсвии с условтем теоремы.

$$\lim_{n \to \infty} x_n = a, x_n \in E/\{a\} \Rightarrow \exists N \in N : \forall n > N \Rightarrow 0 < |x_n - a| < \delta.$$

Поэтому для $\forall n,m>N\Rightarrow |f(x_n)-f(x_m)|<\varepsilon$. Таким образом, последовательность $\{f(x_n)\}$ фундаментальна, значит, имеет предел. Остается доказать, что для разных последовательностей такой предел будет одним и тем же.

Предположим, что

$$\{x_n\}, x_n \in E/\{a\}, x_n \to a, n \to \infty, \lim_{n \to \infty} f(x_n) = A;$$

 $\{x'_n\}, x'_n \in E/\{a\}, x'_n \to a, n \to \infty, \lim_{n \to \infty} f(x'_n) = A';$

Составим новую последовательность $x_1, x_1', x_2, x_2', ..., x_n, x_n', ...$ Она сходится к a и, по доказанному, последовательность $f(x_1), f(x_1'), f(x_2), f(x_2'), ..., f(x_n), f(x_n')$... должна сходиться, скажем, к числу A''. Но тогда любая её подпоследовательность должна сходиться к этому же предему. Таким образом, A = A' = A''. Теорема доказана.