

Estruturas de Dados

Análise de Complexidade

Professores: Luiz Chaimowicz e Raquel Prates

Módulo 1 - Sumário

Análise de Complexidade de Algoritmos

- Introdução, Medida do Custo de um Algoritmo
- Função de Complexidade
- Melhor Caso, Pior Caso, Caso Médio.
- Limite Inferior: Oráculo

Complexidade Assintótica

- Introdução, Dominação Assintótica
- Notações O, Ω, θ
- Classes de Comportamento Assintótico

Técnicas de Análise

Análise de Algoritmos Recursivos

- Revisão de Algoritmos Recursivos
- Equações de Recorrência
- Expansão de Termos, Teorema Mestre

2 Aulas

1 Aula

1 Aula

2 Aulas

Projeto de Algoritmos

- Projeto de algoritmos
 - Análise do problema
 - Decisões de projeto
 - Tipos Abstratos de Dados
 - Algoritmo a ser utilizado
- Principais Perguntas:
 - O Algoritmo funciona?
 - O Algoritmo é eficiente?

Projeto de Algoritmos

- A eficiência de um algoritmo pode ser medida com várias métricas. Por exemplo:
 - tempo de execução
 - espaço ocupado
 - **.** . . .

Esse tipo de estudo é chamado:
 Análise de Algoritmos

Problemas na Análise de Algoritmos

Análise de um algoritmo particular

Análise de uma classe de algoritmos.

Problemas na Análise de Algoritmos

- Análise de um algoritmo particular
 - Qual é o custo de usar um dado algoritmo para resolver um problema específico?
 - Estudamos as características de um algotimo específico:
 - Análise do número de vezes que cada parte do algoritmo deve ser executada
 - Estudo da quantidade de memória necessária para suas estruturas de dados
 - ...

Problemas na Análise de Algoritmos

- Análise de uma classe de algoritmos.
 - Qual é o algoritmo de menor custo possível para resolver um problema particular?
 - Toda uma família de algoritmos é investigada.
 - Procura-se identificar um que seja o melhor possível.
 - Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe.

Medida de Custo

- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado.
- Como medir o custo de um algoritmo?
 - Medida de custo pela execução do algoritmo
 - Medida de custo por um modelo matemático

Medida do Custo pela Execução do Programa

- Medidas que dependam da execução em um computador real (em geral) são inadequadas:
 - os resultados são dependentes do compilador;
 - os resultados dependem do hardware;
 - quando grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto.

Medida do Custo pela Execução do Programa

- Apesar disso, há argumentos a favor de se obter medidas reais de tempo.
 - Quando há vários algoritmos distintos para resolver um mesmo tipo de problema, todos com um custo de execução dentro de uma mesma ordem de grandeza.
 - Quando queremos analisar o comportamento do algoritmo no ambiente onde ele vai ser utilizado
- Nesse caso, tanto os custos reais das operações quanto os custos não aparentes do sistema, tais como alocação de memória, indexação, carga, são considerados.

Medida do Custo por meio de um Modelo Matemático

- Usa um modelo matemático baseado em um computador idealizado.
- Computador idealizado:
 Modelo RAM Random Access Machine (Máquina de Acesso Aleatório)
 - Um processador que executa uma ação por vez
 - Memória que armazena os dados
 - Operações básicas de custo constante
 - Acesso a memória
 - Testes condicionais
 - Operações aritméticas
 - Etc...

Medida do Custo por meio de um Modelo Matemático

- Deve ser especificado o conjunto de operações e seus custos de execuções.
 - É mais usual ignorar o custo de algumas das operações e considerar apenas as operações mais significativas.
- Ex.: algoritmos de ordenação.
 - Consideramos o número de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulação de índices, caso existam.

DCC

Custo de um Algoritmo

Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema.

Algoritmo Ótimo: Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.

O custo de execução de um algoritmo é dado por uma função de custo ou função de complexidade f.

f(n) é a medida do custo necessário para executar um algoritmo para um problema de tamanho n.

- Função de complexidade de tempo:
 - f(n) mede o custo em número de operações para executar um algoritmo em um problema de tamanho n
- Função de complexidade de espaço:
 - f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n

- Em geral, ao longo do curso, f(n) será uma função de complexidade de tempo
 - Ela não representa tempo diretamente
 - Ela representa o número de vezes que determinada operação considerada relevante é executada

Problema: Encontrar o maior elemento de um vetor de inteiros A[n]; n ≥ 1.

```
int Max(int *A, int n) {
    int i, temp;

temp = A[0];
    for (i = 1; i < n; i++)
        if (temp < A[i])
        temp = A[i];
    return Temp;
}</pre>
```

- Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de A.
- Qual a função f(n)?

```
int Max(int *A, int n) {
   int i, temp;

temp = A[0];
for (i = 1; i < n; i++)
   if (temp < A[i])
   temp = A[i];
   return Temp;
}</pre>
```

O loop é executado de 1 até n-1, ou seja, são realizadas n-1 iterações e em cada iteração é feita uma comparação

$$F(n) = n - 1$$

Teorema: Qualquer algoritmo para encontrar o maior elemento de um conjunto com n elementos, n ≥ 1, faz pelo menos n -1 comparações.

Prova: O que determina que um elemento é o maior de uma lista qualquer? É o fato de todos os outros elementos serem menores do que ele. Cada um dos n - 1 elementos deve ser testado, por meio de comparações, se é menor do que algum outro elemento.

Logo, n-1 comparações são necessárias

O teorema nos diz que, se o número de comparações for utilizado como medida de custo, então a função Max do programa anterior é ótima.

- A medida do custo de execução de um algoritmo é uma função do tamanho da entrada dos dados.
- Para alguns algoritmos, o custo de execução depende também da organização dos dados, não apenas do tamanho da entrada
- Nessas situações vamos ter diferentes funções de complexidade para representar o melhor caso, pior caso e caso médio.

- Considere o problema de acessar os registros de um arquivo.
 - Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo.
- Como, dada uma chave qualquer, localizar o registro que contenha esta chave?
 - O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial.

```
// retorna a posição do registro ou
// n se a chave não estiver presente
int Pesquisa(TipoRegistro *A, int n, int chave) {
   int i;
   i = 0;
   while (i < n)
      if (A[i].chave == chave) {
         break;
                      Seja f uma função de complexidade tal
      i++;
                      que f(n) é o número de comparações
                      de chaves. Determine f(n).
   return i;
```

Melhor e pior caso

Melhor caso: menor tempo de execução sobre todas as entradas de tamanho n.

- Pior caso: maior tempo de execução sobre todas as entradas de tamanho n.
 - Se f é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que f(n).

Caso médio

- Caso médio (ou caso esperado): média dos tempos de execução de todas as entradas de tamanho n.
 - Na análise do caso médio esperado, supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n e o custo médio é obtido com base nessa distribuição.
 - A análise do caso médio é geralmente muito mais difícil de obter do que as análises do melhor e do pior caso.

```
// retorna a posição do registro ou
// n se a chave não estiver presente
int Pesquisa (TipoRegistro *A, int n, int chave) {
   int i;
   i = 0;
                                              F(n) = 1
   while (i < n)
       if (A[i].chave == chave)
          break;
                              Qual seria o melhor caso?
       <u>i++;</u>
                              A[0]. chave == chave \rightarrow Verdadeiro
   return i;
```

```
// retorna a posição do registro ou
// n se a chave não estiver presente
int Pesquisa(TipoRegistro *A, int n, int chave) {
   int i;
   i = 0;
                                           F(n) = n
   while(i < n) {
      if (A[i].chave == chave)
         break;
                            Qual seria o pior caso?
      i++;
                            A[n-1]. chave == chave →Verdadeiro
   return i;
                                       chave ₹ A
```

```
// retorna a posição do registro ou
// n se a chave não estiver presente
int Pesquisa(TipoRegistro *A, int n, int chave) {
   int i;
   i = 0;
   while(i < n)
      if (A[i].chave == chave)
         break;
                               Qual seria o caso médio?
      i++;
                               É necessário fazer uma
                                análise probabilística...
   return i;
```

Caso médio:

- No estudo do caso médio, vamos considerar que toda pesquisa recupera um registro.
- Seja p_i for a probabilidade de que o i-ésimo registro seja procurado.
- Considerando que para recuperar o i-ésimo registro são necessárias i comparações, então:

$$f(n) = 1. p_1 + 2. p_2 + \dots + n. p_n$$

Caso médio:

- Para calcular f(n) temos que conhecer a distribuição de probabilidades p_i.
- Se cada registro tiver a mesma probabilidade de ser procurado que todos os outros, então

$$p_i = \frac{1}{n}$$
, $1 \le i \le n$

Caso médio:

- Considerando que: $p_i = \frac{1}{n}$, $1 \le i \le n$
- Temos:

$$f(n) = 1 \cdot p_1 + 2 \cdot p_2 + \dots + n \cdot p_n$$

$$f(n) = 1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + \dots + n \cdot \frac{1}{n}$$

$$f(n) = \frac{1}{n} (1 + 2 + \dots + n)$$

$$f(n) = \frac{1}{n} \sum_{n=1}^{n} i \qquad f(n) = \frac{1}{n} \cdot \frac{n(n+1)}{2}$$

 Seja f uma função de complexidade tal que f(n) é o número de vezes que a chave de consulta é comparada com a chave de cada registro.

Melhor caso:

- Registro procurado é o primeiro consultado
- (n) = 1

Pior caso:

- Registro procurado é o ultimo ou não está presente
- (n) = n
- Caso médio
 - (n) = (n+1)/2

Maior e Menor Elemento

Problema: encontrar o maior e o menor elemento de um vetor de inteiros A[n]; n ≥ 1.

```
void MaxMin1(int *A, int n, int *Max, int *Min) {
   int i;

   *Max = A[0]; *Min = A[0];
   for (i = 1; i < n; i++) {
      if (A[i] > *Max) *Max = A[i];
      if (A[i] < *Min) *Min = A[i];
   }
}</pre>
```

Maior e Menor Elemento

- Seja f(n) o número de comparações entre os elementos de A, se A contiver n elementos.
 - Qual será o melhor, pior e caso médio?

```
void MaxMin1(int *A, int n, int *Max, int *Min) {
   int i;

*Max = A[0]; *Min = A[0];
   for (i = 1; i < n; i++) {
        if (A[i] > *Max) *Max = A[i];
        if (A[i] < *Min) *Min = A[i];
   }
}</pre>
```

Maior e Menor Elemento

- Seja f(n) o número de comparações entre os elementos de A, se A contiver n elementos.
 - Qual será o melhor, pior e caso médio?

$$F(n) = 2(n-1)$$

 A função de complexidade não varia com a organização da entrada

Como podemos diminuir a complexidade do algoritmo?

Quais são as funções de complexidade para o melhor, pior e caso médio?

```
void MaxMin2(int *A, int n, int *Max, int *Min) {
   int i;

*Max = A[0]; *Min = A[0];
   for (i = 1; i < n; i++) {
      if (A[i] > *Max) *Max = A[i];
      else if (A[i] < *Min) *Min = A[i];
   }
}</pre>
```

Melhor caso:

Quando os elementos estão em ordem crescente

$$F(n) = n - 1$$

```
void MaxMin2(int *A, int n, int *Max, int *Min) {
   int i;

*Max = A[0]; *Min = A[0];
   for (i = 1; i < n; i++) {
      if (A[i] > *Max) *Max = A[i]; (n-1)
      else if (A[i] < *Min) *Min = A[i];
}</pre>
```

Pior caso:

 Quando o maior elemento é o primeiro elemento do vetor

$$F(n) = 2(n-1)$$

Caso médio:

 No caso médio, considerando que A[i] é maior do que Max a metade das vezes

$$F(n) = \frac{3}{2}(n-1)$$

É possível diminuir ainda mais a complexidade?

Compara-se os elementos aos pares

- Considerando o número de comparações realizadas, existe a possibilidade de obter um algoritmo mais eficiente:
 - 1. Compare os elementos de A aos pares, separando-os em dois subconjuntos (maiores em um e menores em outro), a um custo de \[\ln/2 \rackslash comparações. \]
 - 2. O máximo é obtido do subconjunto que contém os maiores elementos, a um custo de \[\text{n/2} \] -1 comparações
 - 3. O mínimo é obtido do subconjunto que contém os menores elementos, a um custo de \[\ln/2 \] -1 comparações

Qual a função de complexidade para este novo algoritmo?

- Os elementos de A são comparados dois a dois. Os elementos maiores são comparados com *Max* e os elementos menores são comparados com *Min*.
- Quando n é ímpar, o elemento que está na posição A[n-1] é duplicado na posição A[n] para evitar um tratamento de exceção.
- Para esta implementação:

$$f(n) = \frac{n}{2} + \frac{n-2}{2} + \frac{n-2}{2} = \frac{3n}{2} - 2,$$

no pior caso, melhor caso e caso médio

Exemplo: Maior e Menor Elemento

```
void MaxMin3(int n, Vetor A, int *Max, int *Min) {
             int i, FimDoAnel;
              if ((n % 2) > 0) {
                           A[n] = A[n - 1];
                           FimDoAnel = n;
             else FimDoAnel = n - 1;
              if (A[0] > A[1]) { |
                            *Max = A[0]; *Min = A[1];
              else {
                            *Max = A[1]; *Min = A[0];
             while (i \leq FimDoAnel) { (N-2) 3+1-3N -3+1-3N -
                                           if (A[i] < *Min) *Min = A[i];</pre>
                             else {
                                          if (A[i - 1] < *Min) *Min = A[i - 1];
                                           if (A[i] > *Max) *Max = A[i];
                            i += 2;
```

Comparação entre os Algoritmos

 Comparação entre os algoritmos dos programas MaxMin1, MaxMin2 e MaxMin3, considerando o número de comparações como medida de complexidade.

Os três	f(n)		
algoritmos	Melhor caso	Pior caso	Caso médio
MaxMin1	2(n-1)	2(n-1)	2(n-1)

Comparação entre os Algoritmos

- Os algoritmos MaxMin2 e MaxMin3 são superiores ao algoritmo MaxMin1
- O algoritmo MaxMin3 é superior ao algoritmo MaxMin2 com relação ao pior caso e bastante próximo quanto ao caso médio.
- Existe possibilidade de obter um algoritmo MaxMin mais eficiente?
 - Qual é o limite inferior para essa classe de algoritmos?

Limite Inferior

- Existe possibilidade de obter um algoritmo MaxMin mais eficiente?
- Para responder temos de conhecer o limite inferior para essa classe de algoritmos.
 - Como? Uso de um oráculo.

Limite Inferior

- Dado um modelo de computação que expresse o comportamento do algoritmo, o oráculo informa o resultado de cada passo possível
- O oráculo procura sempre fazer com que o algoritmo trabalhe o máximo, escolhendo como resultado da próxima comparação aquele que cause o maior trabalho possível necessário para determinar a resposta final.

Teorema: Qualquer algoritmo para encontrar o maior e o menor elemento de um conjunto com n elementos não ordenados, n>1, faz pelo menos 3n/2 - 2 comparações.

- Prova: A técnica utilizada define um oráculo que descreve o comportamento do algoritmo utilizando:
 - um conjunto de n-tuplas (estados)
 - um conjunto de regras associadas que mostram as tuplas possíveis (estados) que um algoritmo pode assumir a partir de uma dada tupla e uma única comparação.

- Vamos utilizar uma 4-tupla, representada por (a; b; c; d), onde os elementos de:
 - a: número de elementos nunca comparados;
 - b: foram vencedores e nunca perderam em comparações realizadas (máximo);
 - c: foram perdedores e nunca venceram em comparações realizadas (mínimo);
 - d: foram vencedores e perdedores em comparações realizadas (elementos intermediários).

- O algoritmo inicia no estado
 - (n, 0, 0, 0): nenhum dos n itens foram comparados
- E termina em
 - (0, 1, 1, n 2): um máximo, um mínimo, e todos os outros n-2 itens foram comparados

- Após cada comparação, (a; b; c; d) assume um dentre os 6 estados possíveis abaixo:
 - 2 elementos de a são comparados

□ 1 elemento de a comparado com 1 de b ou 1 de c (se a ≥ 1)

- □ (a 1, b + 1, c, d) comparou 1 de a com 1 de c e a ganhou
- □ (a 1, b, c + 1, d) comparou 1 de a com 1 de b e a perdeu
- □ (a 1, b, c, d + 1) comparou 1 de a com 1 de c e a perdeu ou comparou 1 de a com 1 de b e a ganhou

□ 2 elementos de b são comparados (se b ≥ 2)

2 elementos de c são comparados (se c ≥ 2)

(a, b, c, d)

(n, 0, 0, 0)

(0, 1, 1, n-2)

(a, b, c, d)

(n, 0, 0, 0) comparação de 2 a 2 elementos de a (caminho mais rápido para zerar a). (0, n/2, n/2, 0)

(0, 1, 1, n-2)

(a, b, c, d)

(0, 1, 1, n-2)

(a, b, c, d)

```
    (n, 0, 0, 0)
    comparação de 2 a 2 elementos de a (caminho mais rápido para zerar a).
    (0, n/2, n/2, 0)
    comparação de elementos em b para encontrar o máximo
    (0, 1, n/2, n/2-1)
    comparação de elementos em c para encontrar o mínimo
    (0, 1, 1, n-2)
```

(a, b, c, d)

- O passo 1 requer necessariamente a manipulação do componente a.
 - O caminho mais rápido para levar a até zero requer n/2 mudanças de estado e termina com a tupla (0, n/2, n/2, 0) (por meio de comparação dos elementos de a dois a dois).

- A seguir, para reduzir o componente b até um são necessárias n/2 - 1 e mudanças de estado (mínimo de comparações necessárias para obter o maior elemento de b).
- Idem para c, com n/2 1 mudanças de estado.

- Para obter o estado (0, 1, 1, n 2) a partir do estado (n, 0, 0, 0) são necessárias:
 - n/2 + n/2 1 + n/2 1 comparações.

Logo,
$$f(n) = 3n/2 - 2$$
.

- Voltando aos algoritmos anteriores (note que a função de complexidade f(n) = 3n/2 – 2 não foi obtido analisando um algoritmo).
 - Qual é a informação que o teorema nos traz?
 - O algoritmo MaxMin3 é ótimo.

Os três	f(n)		
algoritmos	Melhor caso	Pior caso	Caso médio
MaxMin1	2(n-1)	2(n-1)	2(n-1)
MaxMin2	n-1	2(n-1)	3n/2 - 3/2
MaxMin3	3n/2 - 2	3n/2 - 2	3n/2 - 2

Referências

- Ziviani, N., Projeto de Algoritmos com Implementações em Pascal e C, 3ª Edição, Cengage Learning, 2011.
 - Capítulo 1 (até seção 1.3.1)
- Cormen, T., Leiserson, C, Rivest R., Stein, C.
 Algoritmos Teoria e Prática, 3a. Edição, Elsevier, 2012.
 - Seção 2.2