FMI, Info, Anul I

Logică matematică și computațională

Seminar 9

(S9.1) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

- (i) $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\}\};$
- (ii) $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$

(S9.2) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare din următoarele cazuri:

- (i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
- (ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$
- (S9.3) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

(S9.4) Să se deriveze prin rezoluție clauza $C := \{\neg v_0, v_2\}$ din forma clauzală a unei formule în FNC echivalente semantic cu:

$$\varphi := ((v_0 \wedge v_1) \to v_2) \wedge (v_0 \to v_1)$$

(S9.5) Să se arate, folosind rezoluția, că formula:

$$\varphi := (v_0 \lor v_2) \land (v_2 \to v_1) \land \neg v_1 \land (v_0 \to v_4) \land \neg v_3 \land (v_4 \to v_3)$$

este nesatisfiabilă.

(S9.6) Să se ruleze algoritmul Davis-Putnam pentru intrarea:

$$\{\{\neg v_0, \neg v_1, v_2\}, \{\neg v_3, v_1, v_4\}, \{\neg v_0, \neg v_4, v_5\}, \{\neg v_2, v_6\}, \{\neg v_5, v_6\}, \{\neg v_0, v_3\}, \{v_0\}, \{\neg v_6\}\}.$$

(S9.7) Demonstrați, folosindu-vă de proprietățile satisfacerii semantice și de aplicarea sistematică (i.e., via algoritmul Davis-Putnam) a regulii rezoluției:

$$\{v_2, v_2 \rightarrow \neg v_3, v_3 \rightarrow v_4\} \vDash (\neg v_3 \rightarrow \neg (v_1 \rightarrow \neg v_2)) \lor (v_1 \rightarrow (v_3 \land v_4)) \lor v_4.$$