Однією з найбільш зручних структур даних є масиви ndarray бібліотеки NumPy.

Створити масив ndarray, а по суті, перетворити будь-який масивоподібний об'єкт в масив, можна за допомогою функції

np.array()

Масиви мають наступні атрибути: ndim (розмірність), shape (розмір кожного виміру), size (загальний розмір масиву), dtype (тип елементів), nbytes (розмір масиву в байтах), itemsize (розмір елементу в байтах)

Звернення до елементів масиву відбувається аналогічно до звичайних списків мови Python. Але виділені підмасиви ndarray є представлення даних масиву, а не їх копією. Тобто при зміні даних підмасиву відбувається зміна даних і в самому масиві, що зручно при роботі з великими об'ємами даних.

Для створення копії підмасиву можна скористатись методом сору ()

Можна перетворити одновимірний масив на багатовимірний за допомогою методу reshape і провести зворотне перетворення методом ravel:

```
a=np.arange(0,10).reshape(5,2)
a.ravel()
```

Існує три методи об'єднання масивів: додавання, конкатенація та укладання.

1.Додавання включає приєднання одного масиву в кінець іншого масиву, відбувається за допомогою функції пр.аррепd. Якщо не вказувати вісь, то результатом буде одновимірний масив.

[9, 10]])

```
2.Конкатенація передбачає об'єднання масивів уздовж
(вертикальної або горизонтальної). Виконується функцією
np.concatenate.
a=np.array([0,1,2])
b=np.array([3,4,5])
c=np.array([6,7,8])
np.concatenate([a,b,c])
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
x=np.array([[1,2],[3,4]])
y=np.array([[6,7],[9,10]])
np.concatenate((x,y))
array([[ 1, 2],
[3, 4],
[6, 7],
```

3. Укладання: воно може бути двох типів: вертикальне або горизонтальне. Вертикальне укладання складає масиви один під одним. Кількість елементів у кожному підмасиві масивів має бути однаковою. Використовується функція np.vstack

```
a=np.array([0,1,2])
b=np.array([[3,4,5],[6,7,8]])
np.vstack([a,b])
array([[0,1,2],
       [3,4,5],
       [6,7,8]])
```

[6, 7, 8, 1]]

```
Горизонтальне укладання «вкладає» масиви поруч. Кількість підмасивів має бути однаковою для кожного з масивів, які розміщені горизонтально. Використовується функція np.hstack a=np.array([[0],[1]]) b=np.array([[3,4,5],[6,7,8]]) np.hstack([b,a]) array([[3,4,5,0],
```

Аналогічно масиви можна роз'єднувати наступними функціями, що приймають індекси, які задають точки роз'єднання: np.split

```
a,b,c=np.split(d,[2,6])
d,a,b,c
```

```
(array([0, 1, 2, 3, 4, 5, 6, 7, 8]),
array([0, 1]),
array([2, 3, 4, 5]),
array([6, 7, 8]))
```

```
Вертикальне роз'єднання np.vsplit a, b = np.vsplit(g,[1])
g,a,b
(array([[3, 4, 5, 0],
   [6, 7, 8, 1]]),
array([[3, 4, 5, 0]]),
array([[6, 7, 8, 1]]))
Горизонтальне роз'єднання np.hsplit
a,b = np.hsplit(g,[2])
g,a,b
(array([[3, 4, 5, 0],
   [6, 7, 8, 1]]),
array([[3, 4],
    [6, 7]]),
array([[5, 0],
   [8, 1]]))
```

Над масивами, а саме над кожним елементом масива, можливо здійснювати звичайні арифметичні операції: додавання (+, np.add), віднімання (-, np.subtract), множення (*, np.multiply), ділення (/, np.divide), піднесення до ступеню (**, np.power), ділення за модулем (%, np.mod), зміна знаку на протилежний (-, np.negative), модуль (np.abs).

При роботі з об'ємними даними виникає потреба задати масив, в якому буде збережений результат обчислення. Зробити це можна за допомогою аргументу out:

```
a=np.arange(10)
b=np.empty(10)
np.divide(a,2,out=b)
b
array([0.,0.5,1.,1.5,2.,2.5,3.,3.5,4.,4.5])
```

Суму елементів масиву можна отримати, використавши функцію np.sum(), добуток елементів np.prod(), максимальне та мінімальне значення np.max() та np.min() відповідно, np.argmax() та np.argmin() — їх індекси. Всі ці функції дозволяють обирати вісь, за якою виконується операція

```
g,g.max(axis=0),g.max(axis=1),g.sum(axis=1)
(array([[3,4,5,0],
       [6,7,8,1]]),
array([6,7,8,1]),
array([5,8]),
array([12,22]))
```

У бібліотеці NumPy також реалізовані оператори порівняння, такі як <(«менше») і> («більше») у вигляді поелементних універсальних функцій. Результат цих операторів порівняння завжди являє собою масив з булевим типом даних. Доступні для використання все шість стандартних операторів порівняння:

```
== a60 np.equal
!= a60 np.not_equal
< a60 np.less
<= a60 np.less_equal
> a60 np.greater
>= a60 np.greater_equal
```

```
a=np.random.randint(10,size=(10))
a, a<5
(array([0,5,2,4,7,7,4,3,4,5]),
    array([True, False, True, True, False, False, True, True, True, False]))
a>=3
array([False, True, False, True, True,
```

```
b=np.random.randint(10, size=(10))
b,a==b
(array([5, 8, 3, 1, 7, 1, 4, 3, 6, 2]),
array([False, False, False, True, False, True, True, False, False]))
a=np.random.randint(10, size=(2,3))
a,a!=5
(array([[3, 7, 5],
   [4, 7, 5]]),
array([[ True, True, False],
   [True, True, False]]))
```

Оскільки результатами порівняння є булеві масиви, то цікаві функції для роботи з ними.

```
Скільки в масиві елементів зі значенням True?

np.count_nonzero() aбо np.sum()

a,np.count_nonzero(a>4),np.sum(a>3,axis=1)

(array([[3,7,5],
       [4,7,5]]),

4,
       array([2,3]))
```

```
Чи є в масиві хоч одне значення True aбо False?

np.any() та np.all()

a,np.any(a<3),np.all(a!=6)

(array([[3,7,5],
      [4,7,5]]),
False,
True)
```

Можна використовувати і побітові логічні операції

```
&
        np.bitwise and
        np.bitwise or
        np.bitwise xor
        np.bitwise not
a, (a>3) & (a<9)
(array([[3, 2, 9, 7, 9],
   [4, 5, 4, 0, 4]]),
array([[False, False, False, True, False],
   [True, True, True, False, True]]))
a, np.sum((a<3)|(a>5))
(array([[3, 2, 9, 7, 9],
   [4, 5, 4, 0, 4]]),
5)
```

Булеві масиви можна використовувати в якості масок для вибору потрібних підмножин самих даних.

Щоб вибрати потрібні значення з масиву, досить просто проіндексувати вихідний масив а з цього булеву масиву. Така дія носить назву операції накладення маски або маскування:

```
a[a>5]
```

array([9, 7, 9])

Для сортування масивів існує функція **np.sort()**. За замовчанням вона використовує метод швидкого сортування, що можна змінити за допомогою параметра **kind**.

```
b=np.random.randint(100,size=(10))
b,np.sort(b)
(array([27,99,74,7,48,7,12,35,64,28]),
    array([7,7,12,27,28,35,48,64,74,99]))

b.sort()
b
array([7,7,12,27,28,35,48,64,74,99])
```

Функція argsort повертає індекси відсортованих елементів.

```
b=np.random.randint(100,size=(10))
b,np.sort(b),np.argsort(b)
```

```
(array([51, 9, 75, 47, 19, 93, 57, 42, 94, 73]),
array([9, 19, 42, 47, 51, 57, 73, 75, 93, 94]),
array([1, 4, 7, 3, 0, 6, 9, 2, 5, 8], dtype=int64))
```

Перший елемент цього результату відповідає індексу мінімального елемента, другий - індексу другого за величиною і т. д.

За допомогою аргументу axis можна сортувати двовимірні масиви за рядками та стовпцями.

```
a=np.random.randint(100,size=(3,6))
a
array([[65, 70, 67, 3, 47, 33],
   [25, 27, 76, 14, 5, 41],
   [31, 76, 56, 82, 13, 70]])
np.sort(a,axis=0)
array([[25, 27, 56, 3, 5, 33],
   [31, 70, 67, 14, 13, 41],
   [65, 76, 76, 82, 47, 70]])
np.sort(a,axis=1)
array([[ 3, 33, 47, 65, 67, 70],
   [5, 14, 25, 27, 41, 76],
   [13, 31, 56, 70, 76, 82]])
```

Іноді не потрібно сортувати весь масив, а просто потрібно знайти К найменших значень в ньому. Бібліотека NumPy надає для цієї мети функцію np.partition. Функція np.partition приймає на вході масив і число К. Результат являє собою новий масив з К найменшими значеннями зліва від точки розбиття і інші значення праворуч від неї в довільному порядку:

b, np.partition(b,4)

(array([51, 9, 75, 47, 19, 93, 57, 42, 94, 73]), array([9, 19, 42, 47, 51, 93, 57, 75, 94, 73]))

np.argpartition(b,4)

array([1, 4, 7, 3, 0, 5, 6, 2, 8, 9], dtype=int64)

Можна отримувати доступ до елементів масиву не лише за окремими індексами, а й за масивами індексів (тобто доступ до декількох елементів масиву одночасно). a=np.random.randint(50, size=(10))

a

array([4, 23, 41, 25, 18, 23, 15, 19, 18, 23]

a[[0,3,8]]

array([4, 25, 18])

Бібліотека NumPy має також і структуровані масиви і масиви записів для зберігання неоднорідних даних.

```
Для створення структурованого масиву потрібно вказати типи даних
a = np.zeros(97, dtype={ 'names': ('sex', 'body',
'heart'),
'formats':('U1', 'f4', 'f4')})
'b' байт
'i' ціле число
'u' ціле без знаку
'f' число з плаваючою крапкою
'с' комплексне число
'S', 'a' рядок
'U' рядок Unicode
'V' void
```

```
Далі можна заповнити порожній масив значеннями
data = pd.read csv('catsM.csv')
a['sex'] = data['Sex']
a['body'] = data['Bwt']
a['heart'] = data['Hwt']
print(a)
[('M', 2., 6.5) ('M', 2., 6.5) ('M', 2.1, 10.1) ('M', 2.2, 7.2)
('M', 2.2, 7.6) ('M', 2.2, 7.9) ('M', 2.2, 8.5) ('M', 2.2, 9.1)
('M', 2.2, 9.6) ('M', 2.2, 9.6) ('M', 2.2, 10.7) ('M', 2.3, 9.6)
('M', 2.4, 7.3) ('M', 2.4, 7.9) ('M', 2.4, 7.9) ('M', 2.4, 9.1)
('M', 2.4, 9.3) ('M', 2.5, 7.9) ('M', 2.5, 8.6) ('M', 2.5, 8.8)
('M', 2.5, 8.8) ('M', 2.5, 9.3) ('M', 2.5, 11.) ('M', 2.5, 12.7)
('M', 2.5, 12.7) ('M', 2.6, 7.7) ('M', 2.6, 8.3) ('M', 2.6, 9.4)
```

```
a[11]
('M', 2.3, 9.6)
a[a['body']>3.5]
array([('M', 3.6, 11.8), ('M', 3.6, 13.3), ('M', 3.6, 14.8),
    ('M', 3.6, 15.), ('M', 3.7, 11.), ('M', 3.8, 14.8),
    ('M', 3.8, 16.8), ('M', 3.9, 14.4), ('M', 3.9, 20.5)],
   dtype=[('sex', '<U1'), ('body', '<f4'), ('heart', '<f4')])
a[(a['body']>2.5)&(a['body']<3.0)]
array([('M', 2.6, 7.7), ('M', 2.6, 8.3), ('M', 2.6, 9.4),
    ('M', 2.6, 9.4), ('M', 2.6, 10.5), ('M', 2.6, 11.5),
    ('M', 2.7, 8.), ('M', 2.7, 9.), ('M', 2.7, 9.6),
    ('M', 2.7, 9.6), ('M', 2.7, 9.8), ('M', 2.7, 10.4),
    ('M', 2.7, 11.1), ('M', 2.7, 12.), ('M', 2.7, 12.5),
    ('M', 2.8, 9.1), ('M', 2.8, 10.), ('M', 2.8, 10.2),
    ('M', 2.8, 11.4), ('M', 2.8, 12.), ('M', 2.8, 13.3),
    ('M', 2.8, 13.5), ('M', 2.9, 9.4), ('M', 2.9, 10.1),
    ('M', 2.9, 10.6), ('M', 2.9, 11.3), ('M', 2.9, 11.8)],
```

Бібліотека NumPy має клас np.recarray, практично ідентичний структурованим масивів, але з однією додатковою можливістю: доступ до полів можна здійснювати як до атрибутів, а не тільки як до ключів словника.

```
b = a.view(np.recarray)
b.heart
array([ 6.5, 6.5, 10.1, 7.2, 7.6, 7.9, 8.5, 9.1, 9.6, 9.6, 10.7,
    9.6, 7.3, 7.9, 7.9, 9.1, 9.3, 7.9, 8.6, 8.8, 8.8, 9.3,
    11., 12.7, 12.7, 7.7, 8.3, 9.4, 9.4, 10.5, 11.5, 8., 9.,
    9.6, 9.6, 9.8, 10.4, 11.1, 12., 12.5, 9.1, 10., 10.2, 11.4,
    12., 13.3, 13.5, 9.4, 10.1, 10.6, 11.3, 11.8, 10., 10.4, 10.6,
    11.6, 12.2, 12.4, 12.7, 13.3, 13.8, 9.9, 11.5, 12.1, 12.5, 13.
    14.3, 11.6, 11.9, 12.3, 13. , 13.5, 13.6, 11.5, 12. , 14.1, 14.9,
    15.4, 11.2, 12.2, 12.4, 12.8, 14.4, 11.7, 12.9, 15.6, 15.7, 17.2,
    11.8, 13.3, 14.8, 15. , 11. , 14.8, 16.8, 14.4, 20.5],
   dtype=float32)
```

Бібліотека Pandas має багато особливотей, які добре підходять для обробки та аналізу даних:

- 1. Pandas надає засоби для позначення та індексації, що значно пришвидшують доступ до даних.
- 2. Pandas підтримує читання та запис популярних форматів файлів, наприклад, JSON, CSV, Excel та інші.
- 3. Часто дані надходять з декількох джерел і Pandas надає функції для поєднання та комбінування наборів даних.
- 4. Також Pandas має вбудовані засоби для візуалізації даних на основі Matplotlib.
- 5. Бібліотека Pandas інтегрується з іншими бібліотеками, такими як Numpy, Matplotlib, Scipy та Scikit-learn.
- 6. Pandas має функції для групування даних за категоріями, застосування до цих груп окремих операцій та комбінування результату.
- 7. Pandas також має засоби для обробки відсутніх, дубльованих та помилкових даних.

Об'єкт Series бібліотеки Pandas - одновимірний масив індексованих даних. Його можна створити зі списку або масиву наступним чином:

```
pd.Series({1:'AB',2:'CD',3:'EF'})
     AΒ
     CD
     EF
pd.Series(np.random.normal(size=4))
      0.470160
     -1.019613
      0.066487
      0.151582
pd.Series([2,0,1,6],index=['a','b','c','d'])
 a
 b
       6
```

```
pd.Series(np.arange(1,5))
```

1 2 3

Основна відмінність між об'єктом Series та одновимірним масивом бібліотеки NumPy - індекс. У той час як індекс масиву NumPy, який використовується для доступу до значень, - цілочисельний і описується неявно, індекс об'єкта Series бібліотеки Pandas описується явно і зв'язується зі значеннями. Цей індекс не обов'язково має бути цілим числом, а може складатися з значень будь-якого типу.

Об'єктом Series також має багато спільного зі словниками, тобто наборами пар ключ-значення.

```
a.keys()
Index(['I', 'II', 'III', 'IV'], dtype='object')
list(a.items())
[('I', 1), ('II', 2), ('III', 3), ('IV', 4)]
a['V']=5
a
   2
III 3
IV
   4
dtype: int64
```

Кількість елементів у об'єкті Series можна знайти трьома способами: за допомогою атрибуту size, функції len або параметру shape. Атрибут size та функція len повертають одне значення, тобто кількість елементів.

```
x=pd.Series(np.arange(1,10))
x.size
9
len(x)
9
```

Атрибут shape повертає кортеж з кількістю рядків та стовпців:

x.shape

(9,)

Атрибут values повертає масив NumPy, що містить значення всіх елементів об'єкта Series.

x.values

array([1, 2, 3, 4, 5, 6, 7, 8, 9])

До індексів об'єкта Series можна отримати доступ через атрибут index. Індекс являє собою об'єкт з типом даних за замовчуванням RangeIndex і множиною значень.

x.index

RangeIndex(start=0, stop=9, step=1)

Метод value_counts() об'єкта Series показує унікальні значення, що містяться в цьому об'єкті, та кількість кожного з цих унікальних значень. Часто цей метод використовують для категоріальних ознак, щоб дізнатись, які значення вони можуть приймати.

```
y=pd.Series(['a','b','a','c','d','b'])
y.value_counts()

a     2
b     2
d     1
c     1
```

До об'єкту Series можна послідовно застосовувати декілька методів. Нижче використовується метод для підрахунку унікальних значень та метод, який показує перші два результати.

```
y=pd.Series(['a','b','a','c','d','b'])
y.value_counts().head(2)
a 2
b 2
```

Наступна базова структура бібліотеки Pandas - об'єкт DataFrame. Якщо об'єкт Series - аналог одновимірного масиву з гнучкими індексами, об'єкт DataFrame - аналог двовимірного масиву з гнучкими індексами рядків і гнучкими іменами стовпців.

3 36

Об'єкт DataFrame містить три складові: об'єкт стовпців column, об'єкт індексів index та масив NumPy, в якому зберігаються значення.

Індекси та стовпці разом називаються осями. Індекси формують вісь 0, а стовпці – вісь 1.

```
odd_numbr=pd.Series([1,3,5])

even_numbr=pd.Series([2,4,6])

df=pd.DataFrame([odd_numbr,even_numbr])

df.columns=['first','second','third']

df
```

df=pd.DataFrame([(1,3,5),(2,4,6)],columns=['firs
t','second','third'])
df

	first	second	third
0	1	3	5
1	2	4	6

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792

159 rows × 7 columns

До окремих об'єктів Series, якими є стовпці об'єкта DataFrame, можна звертатися за допомогою такої ж індексації, як і для словників, за іменем стовпця:

```
data['Height']
   11.5200
   12.4800
   12.3778
   12.7300
   12.4440
154 2.0904
   2.4300
155
156
   2.2770
157
    2.8728
158 2.9322
Name: Height, Length: 159, dtype: float64
abo data.Height
```

Також до елементів об'єкта DataFrame можна звертатись як до елементів масиву, за індексами.

```
data.values[1]
array(['Bream', 290.0, 24.0, 26.3, 31.2, 12.48, 4.3056], dtype=object)
```

data.values[1,4]

3 об'єктів DataFrame також можна виділяти підмасиви: data[1:5]

	Species	Weight	Length1	Length2	Length3	Height	Width	ratio
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	0.345000
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	0.379397
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	0.350000
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	0.412568

data[:10:2]

	Species	Weight	Length1	Length2	Length3	Height	Width	ratio
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	0.348958
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	0.379397
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	0.412568
6	Bream	500.0	26.8	29.7	34.5	14.1795	5.2785	0.372263
8	Bream	450.0	27.6	30.0	35.1	14.0049	4.8438	0.345865

3 об'єктів DataFrame також можна виділяти підмасиви: data[(data.Weight>200)&(data.Weight<300)]

	Species	Weight	Length1	Length2	Length3	Height	Width	ratio
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	0.348958
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	0.345000
52	Roach	290.0	24.0	26.0	29.2	8.8768	4.4968	0.506579
53	Roach	272.0	25.0	27.0	30.6	8.5680	4.7736	0.557143
55	Whitefish	270.0	23.6	26.0	28.7	8.3804	4.2476	0.506849
56	Whitefish	270.0	24.1	26.5	29.3	8.1454	4.2485	0.521583
70	Parkki	273.0	23.0	25.0	28.0	11.0880	4.1440	0.373737
96	Perch	225.0	22.0	24.0	25.5	7.2930	3.7230	0.510490
101	Perch	218.0	25.0	26.5	28.0	7.1680	4.1440	0.578125
103	Perch	260.0	25.4	27.5	28.9	7.1672	4.3350	0.604839
104	Perch	265.0	25.4	27.5	28.9	7.0516	4.3350	0.614754

Атрибут loc дозволяє виконати індексацію і зрізи з використанням прямого індексу. За допомогою індексатора іloc можна індексувати вихідний масив, як ніби це простий масив NumPy, але зі збереженням в результуючих даних міток об'єкта DataFrame для індексу і стовпців:

data.iloc[:4, :3]

haaiaa Walabt Lanathi

data.loc[:'1','Length2']

	Species	weight	Length1
0	Bream	242.0	23.2
1	Bream	290.0	24.0
2	Bream	340.0	23.9
3	Bream	363.0	26.3

	Species	Weight	Length1	Length2
0	Bream	242.0	23.2	25.4
1	Bream	290.0	24.0	26.3

Об'єкт DataFrame має кілька атрибутів.

Атрибут index надає тип об'єкту індексів та його значення.

df=pd.DataFrame([(1,3,5),(2,4,6)],columns=['first','seco
nd','third'])

	first	second	third
0	1	3	5
1	2	4	6

df.index

RangeIndex(start=0, stop=2, step=1)

df.columns

Index(['first', 'second', 'third'], dtype='object')

df.values

```
array([[1, 3, 5],
[2, 4, 6]], dtype=int64)
```

Імена стовпців можна змінити за допомогою методу rename. В якості аргументу цьому методу передається словник, ключі якого — старі назви стовпців, а значення — нові назви. Параметр inplace використовується для того, щоб зміни відбувались в самому об'єкті DataFrame.

df.rename(columns={'first':'l','second':'ll','third':'lll'},inplace=True)

Перейменувати стовпці можна і через відповідний атрибут columns, записавши нові назви в масиві.

Є декілька способів додати новий стовпець до DataFrame.

1) За допомогою оператору індексації []

	first	second	third	fourth
0	1	3	5	7
1	2	4	6	8

2) За допомогою методу insert

df.insert(2,'two and half',[9,10])

 df
 first second two and half third fourth

 0
 1
 3
 9
 5
 7

 1
 2
 4
 10
 6
 8

Перший аргумент — це індекс, за яким потрібно вставити новий стовпець, другий аргумент — назва нового стовпця, а третій — список значень нового стовпця.

3) За допомогою loc

df.loc[:,'fourth']=[77,88]

df

	first	second	two and half	third	fourth
0	1	3	9	5	77
1	2	4	10	6	88

4) За допомогою функції concat a=pd.Series([11,22]) df=pd.concat([df,a],axis=1) df

	first	second	third	fourth	0
0	1	3	5	7	11
1	2	4	6	8	22

До об'єкту DataFrame можна додавати рядки за допомогою функції pd.concat:

```
new_row=pd.DataFrame([{'first':1, 'second':2,
'third':3}])
pd.concat([df,new_row])
```

Стовпець з DataFrame можна видалити наступними методами:

1) За допомогою функції del.

```
del df['third']
```

2) За допомогою методу рор

```
df.pop('second')
```

Метод рор видаляє стовпець в оригінальному DataFrame і повертає видалений стовпець як об'єкт Series.

3) За допомогою методу drop

```
df.drop(['first'],axis=1,inplace=True)
```

За замовчуванням цей метод видаляє рядки (axis=0), тому для видалення стовпця потрібно вказати значення параметру axis 1.

Також можна видаляти рядки з DataFrame.

1) Використовуючи вибір за допомогою умов та булевих виразів.

Наприклад, видалення всіх значень, що менші п'яти.

```
df[~(df.values<5)]</pre>
```

2) Використовуючи метод drop:

```
df.drop(1)
```

Як об'єкт Series, так і об'єкт DataFrame містять явний індекс, що забезпечує можливість посилатися на дані і модифікувати їх. Об'єкт Index можна розглядати або як незмінний масив або як впорядкований набір елементів, що можуть повторюватись.

```
i=pd.Index(np.random.randint(25,size=(6)))
i
```

Int64Index([9, 0, 16, 12, 8, 5], dtype='int64')

Об'єкт Index може мати різні типи даних:

Index: загальний тип індексів, саме такий тип має індекс стовпців.

RangeIndex: тип індексу за замовчуванням, являє собою зростаючі цілі числа.

Int64Index: індекс, що складається з цілих чисел. На відміну від RangeIndex, вони не обов'язково повинні зростати та розташовуватись рівномірно.

Float64Index: індекс з чисел з плаваючою комою.

IntervalIndex: індекс з інтервалів.

CategoricalIndex: індекс має обмежену та скінченну множину значень.

DateTimeIndex: індекс являє собою дату та час.

PeriodIndex: індекс являє собою період часу, наприклад, рік.

TimedeltaIndex: представляє проміжок часу між двома відліками часу, наприклад, двома датами.

MultiIndex: ієрархічний індекс з кількома рівнями.

Об'єкт Index має такі ж атрибути, як ndarray і до його елементів так само можна звертатись за індексами, виділяти підмасиви

```
Int64Index([9, 0, 16, 12, 8, 5], dtype='int64')
i.size
6

i[-2]
8

i[:1:-1]
Int64Index([5, 8, 12, 16], dtype='int64')
```

```
Але елементи об'єкту Index, на відміну від елементів масиву ndarray, не
так легко змінити.
Наприклад, команда
i[0]=3
викличе помилку.
Індекс стовпців має деякі корисні атрибути:
1) атрибут values: повертає назви стовпців
periodic_table=pd.DataFrame({'Element':['Hydrogen',
    'Helium','Lithium','Beryllium','Boron']},index=['H',
'He', 'Li', 'Be', 'B'1)
column index=periodic table.columns
column index.values
array(['Element'], dtype=object)
```

2) Атрибут hasnans: повертає True або False, в залежності від наявності null значень.

column_index.hasnans
False

3) Атрибут nbytes: повертає зайнятий об'єм пам'яті у байтах column_index.nbytes

Об'єкт Index, по суті, є множиною (хоча його елементи можуть повторюватись), тому над ним можна виконувати всі операції над множинами.

Об'єднання множин: a=pd.Index(np.random.randint(25,size=(6))) b=pd.Index(np.random.randint(25,size=(6))) a,b, a|b,a.union(b) (Int64Index([10, 9, 13, 9, 14, 2], dtype='int64'), Int64Index([23, 7, 19, 1, 14, 16], dtype='int64'), Int64Index([1, 2, 7, 9, 9, 10, 13, 14, 16, 19, 23], dtype='int64'), Int64Index([1, 2, 7, 9, 9, 10, 13, 14, 16, 19, 23], dtype='int64')) Перетин множин: a=pd.Index(np.random.randint(25,size=(6))) b=pd.Index(np.random.randint(25,size=(6))) a,b, a&b,a.intersection(b) (Int64Index([2, 4, 23, 21, 12, 2], dtype='int64'), Int64Index([0, 6, 22, 16, 23, 12], dtype='int64'), Int64Index([23, 12], dtype='int64'), Int64Index([23, 12], dtype='int64'))

```
Різниця множин:
a=pd.Index (np.random.randint (25, size=(6)))
b=pd.Index (np.random.randint (25, size=(6)))
a,b,a.difference(b), b.difference(a)
(Int64Index([12,1,24,9,19,10], dtype='int64'),
Int64Index([4,1,15,15,17,18], dtype='int64'),
Int64Index([9,10,12,19,24], dtype='int64'),
Int64Index([4,15,17,18], dtype='int64'))
Симетрична різниця
a. symmetric difference(b)
```

Також можна створити індекс зі значень стовпців: data = pd.read_csv('Fish.csv') data.set_index(['Species'])

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792

Species					Height	Width
Openies						
Bream	242.0	23.2	25.4	30.0	11.5200	4.0200
Bream	290.0	24.0	26.3	31.2	12.4800	4.3056
Bream	340.0	23.9	26.5	31.1	12.3778	4.6961
Bream	363.0	26.3	29.0	33.5	12.7300	4.4555
Bream	430.0	26.5	29.0	34.0	12.4440	5.1340
Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936
Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690
Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558
Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672
Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792

Або встановити індекс відразу при читанні файлу data=pd.read_csv('Fish.csv',index_col='Species')

3 об'єктами Series та DataFrame працюють ті ж самі арифметичні операції, що й з масивами NumPy. np.divide(data['Weight'],1000)

```
0.2420
0
      0.2900
      0.3400
      0.3630
      0.4300
154
      0.0122
155
      0.0134
     0.0122
156
157
     0.0197
158
      0.0199
Name: Weight, Length: 159, dtype: float64
```

При бінарних операціях над двома об'єктами Series або DataFrame бібліотека Pandas буде вирівнювати індекси в процесі виконання операції. Це дуже зручно при роботі з неповними даними.

```
a = pd.Series([1, 2, 3],index=['I', 'II', 'III'])
b = pd.Series([3, 4, 5],index=['II', 'III', 'IV'])
a+b
| NaN
|| 5.0
|| 7.0
|V NaN
dtype: float64
```

Відсутні дані можна заповнити певним значенням: a.multiply(b,fill value=0) 0.0 6.0 III 12.0 IV 0.0 dtype: float64 a.multiply(b,fill value=a.min()) 1.0 6.0 III 12.0 5.0 IV dtype: float64

2 6 17 11 17

1 8 20 0

Так само вирівнювання відбувається при роботі з DataFrame a = pd.DataFrame (np.random.randint(25, size=(4, 4)), columns=['I','II','III','IV']) b = pd.DataFrame (np.random.randint(25, size=(2, 2)), columns=['III','II']) a b a+b

1 24 11

1 NaN 22.0 42.0 NaN

2 NaN NaN NaN NaN

3 NaN NaN NaN NaN

Можливі також операції між об'єктами DataFrame та Series.

	а	b
0	25	1
1	21	34
2	17	7
3	8	19

	а	b
0	0	0
1	- 4	33
2	-8	6
3	-17	18

	а	b
0	NaN	NaN
1	42.0	68.0
2	34.0	14.0
3	NaN	NaN

Найбільш поширені типи даних в Pandas:

object – для суміші з різноманітних даних

int64 – для цілих чисел

float64 – для чисел з плаваючою комою

Datetime – для дати та часу

Category – для ознак, які приймають лише декілька різних значень

За допомогою атрибуту dtypes можна отримати типи стовпців в DataFrame.

Щоб отримати кількість стовпців, які містять дані кожного типу, можна за допомогою методу get_dtype_counts:

```
df.get_dtype_counts()
```

За допомогою методу select_dtypes можна відфільтрувати стовпці на основі типу даних

```
df.select_dtypes(include='number')
```

Таким чином буде обрано всі стовпці, що містять цілі числа та числа з плаваючою комою.

Для того, щоб змінити тип даних, використовується метод astype:

```
fish['Species']=fish['Species'].astype('category')
```

Просте об'єднання об'єктів Pandas можна виконати за допомогою методу pd.concat()

```
a = pd.Series([1, 2, 3],index=['I', 'II', 'III'])
b = pd.Series([4, 5, 6],index=['IV', 'V', 'VI'])
pd.concat([a, b])
I 1
```

```
III 2
III 3
IV 4
V 5
VI 6
dtype: int64
```

За замовчанням конкатенація двох DataFrame відбувається за рядками. Об'єднати їх за стовпцями можна за допомогою параметра axis.

```
frame1 = pd.DataFrame({'a': a, 'b': b })
frame2 = pd.DataFrame({'a': b, 'b': a })
pd.concat([frame1,frame2])
     a b
    II 2 5
   III 3 6
    II 5 2
```

III 6 3

pd.concat([frame1,frame2],axis=1)

```
a b a b
III 3 6 6 3
```

Якщо індекс не важливий (наприклад, це просто нумерація рядків в кожному з об'єктів), його можна проігнорувати при об'єднанні. Тоді у рядків результату буде утворена нова індексація:

```
a = pd.Series([1, 2, 3],index=[1,2,3])
b = pd.Series([4, 5, 6],index=[1,2,3])
frame1 = pd.DataFrame({'a': a, 'b': b })
frame2 = pd.DataFrame({'a': b, 'b': a })
pd.concat([frame1,frame2]),pd.concat([frame1,frame2], ignore_index=True)
```

	а	b
1	1	4
2	2	5
3	3	6
1	4	1
2	5	2
3	6	3

Якщо назви стовпців (або рядків, якщо об'єднання відбувається за ними) відрізняються, то при конкатенації утворюються неіснуючі значення:

```
frame1 = pd.DataFrame({'a': a, 'b': b })
frame2 = pd.DataFrame({'a': b, 'c': a })
pd.concat([frame1,frame2])
```

```
        a
        b
        c

        I
        1
        4.0
        NaN

        II
        2
        5.0
        NaN

        III
        3
        6.0
        NaN

        I
        4
        NaN
        1.0

        II
        5
        NaN
        2.0

        III
        6
        NaN
        3.0
```

В таких випадках можна змінити значення параметру join на 'inner'. Тоді результат буде містити тільки ті стовпці (рядки), які є у обох початкових об'єктів, тобто виконується операція перетину множин. За замовчанням значення параметру join 'outer', тобто відбувається об'єднання. pd.concat([frame1,frame2],join='inner')

```
a
I 1
II 2
III 3
I 4
II 5
III 6
```

Функція pd.merge () реалізує декілька типів з'єднань: «один-доодного», «багато-до-одного» і «багато-до-багатьох». Всі ці три типи з'єднань доступні через один і той же виклик pd.merge (), тип виконуваного з'єднання залежить від форми вхідних даних.

Найпростіший тип злиття - з'єднання «один-до-одного», багато в чому нагадує конкатенацію за стовпцями.

a = pd.DataFrame({'City': ['A', 'B', 'C', 'D'], 'population': [1000000, 245653,355223,4532434]})

b = pd.DataFrame({'City': ['A', 'C', 'D', 'B'], 'region': ['a', 'b', 'c', 'c']})

c = pd.merge(a, b) city population region

	City	population	region
0	Α	1000000	а
1	В	245653	С
2	С	355223	b
3	D	4532434	С

«Багато-до-одного» - з'єднання, при якому один з двох ключових стовпців містить значення, що дублюються. У разі з'єднання «багато-до-одного» в підсумковому об'єкті DataFrame ці два записи будуть збережені.

```
d = pd.DataFrame({'region': ['a', 'b', 'c'],'MainCity':
  ['mainA', 'mainB', 'mainC']})
pd.merge(c, d)
```

	City	population	region	MainCity
0	Α	1000000	а	mainA
1	В	245653	С	mainC
2	D	4532434	С	mainC
3	С	355223	b	mainB

Якщо ключовий стовпець як в лівому, так і в правому масивах містить повторювані значення, результат виявиться злиттям типу «багато-до-багатьох».

d = pd.DataFrame({'region': ['a', 'b','c','a','b'],'Year': ['2020', '2020', '2020', '2021'],'Income':[230,654,435,270,640]})
pd.merge(c, d)

	City	population	region
0	Α	1000000	а
1	В	245653	С
2	С	355223	b
3	D	4532434	С

	region	Year	Income
0	а	2020	230
1	b	2020	654
2	С	2020	435
3	а	2021	270
4	b	2021	640

	City	population	region	Year	Income
0	Α	1000000	а	2020	230
1	Α	1000000	а	2021	270
2	В	245653	С	2020	435
3	D	4532434	С	2020	435
4	С	355223	b	2020	654
5	С	355223	b	2021	640

За умовчанням метод pd.merge () виконує пошук в двох вхідних об'єктах відповідних назв стовпців і використовує знайдене в якості ключа. Однак найчастіше імена стовпців не збігаються точно, і в методі pd.merge () є чимало параметрів для такої ситуації.

По-перше, можна явно вказати назву стовпця, за якими проводити злиття.

```
pd.merge(a, b, on ='City')
```

```
Якщо назви стовпців відрізняються, то вони вказуються в параметрах left_on та right_on a = pd.DataFrame({'City': ['A', 'B', 'C', 'D'], 'population': [1000000, 245653,355223,4532434]}) b = pd.DataFrame({'Town': ['A', 'C', 'D', 'B'], 'region': ['a', 'b', 'c', 'c']}) c=pd.merge(a, b, left on="City", right on="Town")
```

	City	population	Town	region
0	Α	1000000	А	а
1	В	245653	В	С
2	С	355223	С	b
3	D	4532434	D	С

Далі можна видалити зайвий стовпець c=c.drop('Town',axis=1) с

	City	population	region
0	А	1000000	а
1	В	245653	С
2	С	355223	b
3	D	4532434	С

Параметр how методу merge вказує яка саме операція виконується над вмістом стовпця, за яким відбувається злиття. За замовчанням його значення 'inner', тобто перетин. Інші можливі значення - 'outer', 'left' та 'right'.

```
a = pd.DataFrame({'City': ['A', 'B', 'C',
'D'],'population': [1000000, 245653,355223,4532434]})
b = pd.DataFrame({'City': ['D', 'F', 'G', 'H'],'region':
['a', 'b', 'c', 'c']})
pd.merge(a, b)
```

		City	population	region
	0	D	4532434	а

pd.merge(a,b,how='outer')

	City	population	region
0	Α	1000000.0	NaN
1	В	245653.0	NaN
2	С	355223.0	NaN
3	D	4532434.0	а
4	F	NaN	b
5	G	NaN	С
6	Н	NaN	С

pd.merge(a,b,how='left')

	City	population	region
0	Α	1000000	NaN
1	В	245653	NaN
2	С	355223	NaN
3	D	4532434	а

pd.merge(a, b,how='right')

	City	population	region
0	D	4532434.0	а
1	F	NaN	b
2	G	NaN	С
3	Н	NaN	С

Якщо дані містять однакові назви стовпців (за якими не відбувається злиття), то результат буде містити обидва ці стовпця з автоматично доданим суфіксом. Суфікс можна додати самостійно за допомогою параметру suffixes.

	•	 _	 _,
0	Α	1000000	1000020
1	В	245653	245700
2	С	355223	355345
3	D	4532434	4532000

pd.merge(a, c,on='City',suffixes=["_2000", "_2021"])

City	population	2000	population	2021
•		_		_

0	Α	1000000	1000020
1	В	245653	245700
2	С	355223	355345
3	D	4532434	4532000

Дані можна розділити на певні групи за значенням за допомогою функції pd.cut().

pd.cut(data['Weight'], [0, 300, 1000,2000])

Функція pd.qcut () розділяє дані на квантилі. Окрім самих даних, вона приймає аргумент, що дорівнює кількості частин, на які розділяються дані, а масив з долями одиниці.

pd.qcut(data['Weight'],4)

```
(120.0, 273.0]
       (273.0, 650.0]
       (273.0, 650.0]
       (273.0, 650.0]
       (273.0, 650.0]
154 (-0.001, 120.0]
     (-0.001, 120.0]
155
     (-0.001, 120.0]
156
    (-0.001, 120.0]
157
158
       (-0.001, 120.0]
Name: Weight, Length: 159, dtype: category
Categories (4, interval[float64]): [(-0.001, 120.0] < (120.0, 273.0] < (273.0, 650.0] < (650.0, 1650.0]]
```

pd.qcut(data['Weight'],[0,0.25,0.5,0.75,1]) аналогічний результат

поверне

Для об'єкту DataFrame можна викликати різні функції агрегування, в тому числі функції дескриптивної статистики, наприклад, mean чи std. Якщо одночасно потрібні всі основні статистичні характеристики, можна використати метод describe. Цей метод має параметр include. data.describe()

	Weight	Length1	Length2	Length3	Height	Width
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	398.326415	26.247170	28.415723	31.227044	8.970994	4.417486
std	357.978317	9.996441	10.716328	11.610246	4.286208	1.685804
min	0.000000	7.500000	8.400000	8.800000	1.728400	1.047600
25%	120.000000	19.050000	21.000000	23.150000	5.944800	3.385650
50%	273.000000	25.200000	27.300000	29.400000	7.786000	4.248500
75%	650.000000	32.700000	35.500000	39.650000	12.365900	5.584500
max	1650.000000	59.000000	63.400000	68.000000	18.957000	8.142000

Якщо є потреба отримати значення функцій агрегування (а також деяких інших) відносно підмасивів, виділених за певною ознакою, можна використати метод groupby. Сам метод groupby по суті створює об'єкт DataFrameGroupBy, у якого вже можна викликати інші методи.

```
data = pd.read_csv('Fish.csv')
data.groupby('Species').mean()
```

	Weight	Length1	Length2	Length3	Height	Width
Species						
Bream	617.828571	30.305714	33.108571	38.354286	15.183211	5.427614
Parkki	154.818182	18.727273	20.345455	22.790909	8.962427	3.220736
Perch	382.239286	25.735714	27.892857	29.571429	7.861870	4.745723
Pike	718.705882	42.476471	45.482353	48.717647	7.713771	5.086382
Roach	152.050000	20.645000	22.275000	24.970000	6.694795	3.657850
Smelt	11.178571	11.257143	11.921429	13.035714	2.209371	1.340093
Whitefish	531.000000	28.800000	31.316667	34.316667	10.027167	5.473050

data.groupby('Species'). describe()

	Weight	eight						Length	1	Height			Width			
	count	mean	std	min	25%	50%	75%	max	count	mean		75%	max	count	mean	std
Species																
Bream	35.0	617.828571	209.205709	242.0	462.50	610.00	717.00	1000.0	35.0	30.305714		16.360900	18.9570	35.0	5.427614	0.721509
Parkki	11.0	154.818182	78.755086	55.0	105.00	145.00	185.00	300.0	11.0	18.727273		10.041100	11.3680	11.0	3.220736	0.643347
Perch	56.0	382.239286	347.617717	5.9	120.00	207.50	692.50	1100.0	56.0	25.735714		10.846500	12.8002	56.0	4.745723	1.774626
Pike	17.0	718.705882	494.140765	200.0	345.00	510.00	950.00	1650.0	17.0	42.476471		8.926200	10.8120	17.0	5.086382	1.140269
Roach	20.0	152.050000	88.828916	0.0	104.25	147.50	171.75	390.0	20.0	20.645000		7.164150	9.4850	20.0	3.657850	0.690371
Smelt	14.0	11.178571	4.131526	6.7	8.95	9.85	12.20	19.9	14.0	11.257143		2.261225	2.9322	14.0	1.340093	0.286611
Whitefish	6.0	531.000000	309.602972	270.0	279.00	423.00	735.00	1000.0	6.0	28.800000		11.506900	12.3540	6.0	5.473050	1.194258

7 rows × 48 columns

data.groupby('Species')['Weight'].std()

```
Species
Bream 209.205709
Parkki 78.755086
Perch 347.617717
Pike 494.140765
Roach 88.828916
Smelt 4.131526
Whitefish 309.602972
Name: Weight, dtype: float64
```

Об'єкт DataFrameGroupBy по суті містить кілька DataFrame. Отримати доступ до однієї з них можна наступним чином: grouped_fish=data.groupby('Species') grouped fish.get group('Smelt')

Об'єкт DataFrameGroupBy має метод aggregate() або agg(), що дозволяє, наприклад, виконувати кілька операцій агрегування: data.groupby('Species')['Weight'].agg([sum,np.prod,np.mean])

	sum	prod	mean
Species			
Bream	21624.0	5.756482e+96	617.828571
Parkki	1703.0	3.021954e+23	154.818182
Perch	21405.4	6.110171e+132	382.239286
Pike	12218.0	1.067144e+47	718.705882
Roach	3041.0	0.000000e+00	152.050000
Smelt	156.5	2.206766e+14	11.178571
Whitefish	3186.0	9.636797e+15	531.000000

Або застосовувати різні операції до різних стовпців: data.groupby('Species').agg({'Weight': max,'Height':np.median})

	Weight	Height
Species		
Bream	1000.0	14.9544
Parkki	300.0	8.8928
Perch	1100.0	6.9218
Pike	1650.0	7.2900
Roach	390.0	6.5126
Smelt	19.9	2.2002
Whitefish	1000.0	9.7610

Об'єкт DataFrameGroupBy має метод filter(), що дозволяє фільтрувати групи. Вхідним аргументом методу filter() є попередньо визначена функція або лямбда функція.

déf filtmax(d):

return d['Weight'].max()<900 data.groupby('Species').filter(filtmax)

	Species	Weight	Length1	Length2	Length3	Height	Width
35	Roach	40.0	12.9	14.1	16.2	4.1472	2.2680
36	Roach	69.0	16.5	18.2	20.3	5.2983	2.8217
37	Roach	78.0	17.5	18.8	21.2	5.5756	2.9044
38	Roach	87.0	18.2	19.8	22.2	5.6166	3.1746
39	Roach	120.0	18.6	20.0	22.2	6.2160	3.5742
40	Roach	0.0	19.0	20.5	22.8	6.4752	3.3516
41	Roach	110.0	19.1	20.8	23.1	6.1677	3.3957
42	Roach	120.0	19.4	21.0	23.7	6.1146	3.2943

Grouped_fish.filter(lambda x:x['Weight'].max()<900)</pre>

Наступний метод об'єкту DataFrameGroupBy - transform(), який дозволяє перетворювати дані, тобто застосовувати операції до всіх даних. Наприклад, можна центрувати дані:

data.groupby('Species').transform(lambda x: x -

x.mean())

	Weight	Length1	Length2	Length3	Height	Width
0	- 375.828571	-7.105714	-7.708571	-8.354286	-3.663211	-1.407614
1	-327.828571	-6.305714	-6.808571	-7.154286	-2.703211	-1.122014
2	-277.828571	-6.405714	-6.608571	-7.254286	-2.805411	-0.731514
3	- 254.828571	-4.005714	-4.108571	-4.854286	-2.453211	-0.972114
4	-187.828571	-3.805714	-4.108571	-4.354286	-2.739211	-0.293614
154	1.021429	0.242857	0.278571	0.364286	-0.118971	0.053507
155	2.221429	0.442857	0.478571	0.464286	0.220629	-0.071093
156	1.021429	0.842857	1.078571	0.764286	0.067629	-0.084293

Наступний метод об'єкту DataFrameGroupBy - apply(), дозволяє застосовувати будь-яку функцію.

```
def applyf (d):
    d['Weight'] /= d['Height']
    return d
data.groupby('Species').apply(applyf)
```

	Species	Weight	Length1	Length2	Length3	Height	Width
0	Bream	21.006944	23.2	25.4	30.0	11.5200	4.0200
1	Bream	23.237179	24.0	26.3	31.2	12.4800	4.3056
2	Bream	27.468532	23.9	26.5	31.1	12.3778	4.6961
3	Bream	28.515318	26.3	29.0	33.5	12.7300	4.4555
4	Bream	34.554806	26.5	29.0	34.0	12.4440	5.1340
154	Smelt	5.836204	11.5	12.2	13.4	2.0904	1.3936
155	Smelt	5.514403	11.7	12.4	13.5	2.4300	1.2690

Метод apply застосовує функцію до кожної групи. Метод apply є більш гнучким, ніж метод transform, оскільки він може повертати об'єкт будь-якої форми, а метод transform повинен повернути об'єкт такої ж форми. До того ж, метод transform застосовує функцію до кожного стовпця групи, а метод apply — до всієї групи. data.groupby('Species').apply(lambda x:x.isna().sum())

Для скорочення багатовимірного агрегування можна використовувати метод pivot_table().

data = pd.read_csv('Laptop-Users.csv')

	Age	Gender	Region	Occupation	Income	Has Laptop
0	14	male	city	student	0	no
1	34	female	city	teacher	22000	no
2	42	male	countryside	banker	24000	yes
3	30	male	countryside	teacher	25000	no
4	16	male	city	student	0	no
5	33	female	city	banker	20000	yes
6	26	female	city	student	8000	yes
7	22	male	city	student	4000	yes
8	28	female	countryside	teacher	12000	no
9	27	female	city	student	7000	yes

data.pivot_table(index='Gender', columns='Occupation')

	Age				Income			
Occupation	banker	officer	student	teacher	banker	officer	student	teacher
Gender								
female	31.000000	49.0	26.333333	31.0	19000.000000	25000.0	8666.666667	17000.0
male	40.333333	54.0	20.166667	28.0	25666.666667	30000.0	4000.000000	19500.0

age = pd.cut(data['Age'], [0, 21, 35, 90])
data.pivot_table(index=['Gender',age],
columns='Occupation')

		Age				Income			
	Occupation	banker	officer	student	teacher	banker	officer	student	teacher
Gender	Age								
female	(21, 35]	31.000000	NaN	26.333333	31.0	19000.000000	NaN	8666.666667	17000.0
	(35, 90]	NaN	49.0	NaN	NaN	NaN	25000.0	NaN	NaN
male	(0, 21]	NaN	NaN	16.000000	NaN	NaN	NaN	3000.000000	NaN
	(21, 35]	NaN	NaN	28.500000	28.0	NaN	NaN	6000.000000	19500.0
	(35, 90]	40.333333	54.0	NaN	NaN	25666.666667	30000.0	NaN	NaN

Якщо деякі вхідні дані є символьними рядками, то для роботи з ними в Pandas існує цілий ряд методів, які аналогічні відповідним методам Python, але працюють відразу з усіма елементами об'єкту, не потребують використання циклів і обробляють порожні значення.