Introduction Multivariate Methods Linear Discriminant Analysis Logistic Regression LDA or Logistic Regression?

Chapter 5: Linear Models for Classification

Richard Liu

School of Mathematics, XMU

June 24, 2020

Content

- Introduction
- Multivariate Methods
- Linear Discriminant Analysis
- 4 Logistic Regression
- 5 LDA or Logistic Regression?
 - Another View: Generative Model v.s. Discriminativ Model

Source

- Trevor Hastie, et al. The Elements of Statistical Learning
- Jie Hu, Applied Linear Models Course in XMU
- Zhihu: Gaussian Mixture Methods
- Zhihua Zhang, Deep Learning Basics Course in PKU

Introduction
Multivariate Methods
Linear Discriminant Analysis
Logistic Regression
LDA or Logistic Regression?

Section 1

Introduction

- In chapter 3-4 we have discussed linear models for regression. However, there exist some other linear models used for solving classification problems.
- Examples: LDA, QDA, Logistic Regression (main topics in this chapter)
- In fact, these are parametric methods, and also there exist some other non-parametric methods.
 - Examples: Decision Trees (Introduced in Chapter 2 SVM, Ensemble Methods, Xgboost (Introduced in the further chapters).

Introduction
Multivariate Methods
Linear Discriminant Analysis
Logistic Regression
LDA or Logistic Regression?

Section 2

Multivariate Methods

- We could use the methods introduced before.
- Suppose we have K classes with K indicators Y_k , where $Y_k = 1$ if G = k and otherwise 0, then there will be an indicator response matrix \mathbf{Y} . By multivariate regression we have

$$\hat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

• For a new independent variable x (which is a vector) we could have $\hat{f}(x)^T = (1, x^T)\hat{\mathbf{B}}$, where $\hat{\mathbf{B}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$

Criterion

 $\hat{G}(x) = \arg\max_{k} \hat{f}_{k}(x)$, where k denotes the indicators of classes.

Explanation

Note that
$$E(Y_k|X=x) = P(G=k|X=x)$$

Problem: Masking!

Masking

Linear Regression

What happened?

- We projected the data onto the plane joining the three centroids. Then we could run three regression lines and draw them on the same graph.
- For comparison we draw the graphs for quadratic regression, too.

Graphs

We should attribute this to the natural rigidity of multivariate regression.

Introduction
Multivariate Methods
Linear Discriminant Analysis
Logistic Regression
LDA or Logistic Regression?

Section 3

Linear Discriminant Analysis

- Could we solve classification by some alternative linear models?
 - Linear Discriminant Analysis (LDA)
- Discriminant Analysis: Given the number of groups, identify where the observations locate by specified characteristic values.
- Relies on Bayesian Statistics.

- Prior: Suppose we have π_k be the prior probability of class k, which means $P(G = k) = \pi_k$.
- Posterior:

$$P(G = k|X = x) = \frac{f_k(x)\pi_k}{\sum_{l=1}^{K} f_l(x)\pi_l}$$

Where $f_k(x)$ is the pdf of data in the k-th class.

Theorem 1

Prove the posterior probability.

4 D > 4 A > 4 B > 4 B >

Suppose we have the probability

$$f_k(x) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1} (x-\mu_k)}$$

And suppose that $\Sigma_k = \Sigma, \forall k$, then

$$\begin{split} \log \frac{\Pr(G = k|X = x)}{\Pr(G = \ell|X = x)} &= \log \frac{f_k(x)}{f_\ell(x)} + \log \frac{\pi_k}{\pi_\ell} \\ &= \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2} \left(\mu_k + \mu_\ell\right)^T \Sigma^{-1} \left(\mu_k - \mu_\ell\right) \\ &+ x^T \Sigma^{-1} \left(\mu_k - \mu_\ell\right) \end{split}$$

Question: Why log-ratio?

Why call LDA?

- Note that the log-ratio is linear w.r.t x.
- In fact, we have the following linear discriminant functions

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

(Why defined as this?)

Criterion

$$G(x) = \arg\max_k \delta_k(x)$$

Decision Boundary——Graphs

Decision Boundary——Explanation

- The independent variables on decision boundaries have the same discriminant function values.
- Consider a simple 1-d case with 2 classes and the same prior probability, then we have

$$\frac{x\mu_1}{\sigma} - \frac{1}{2}\frac{\mu_1^2}{\sigma} = \frac{x\mu_2}{\sigma} - \frac{1}{2}\frac{\mu_2^2}{\sigma}$$

- Solve this equation, we obtain $x = \frac{\mu_1 + \mu_2}{2}$.
- You could draw two graphs to find some interesting phenomenons.

How to apply this model into the real data?

- Problem: In real sample data, all parameters are unknown.
 - So we need some estimators.

Estimators

 $\hat{\pi}_k = \frac{N_k}{N}$, where N_k is the number of class-k observations. $\hat{\mu}_k = \sum_{g_i = k} x_i / N_k$ and $\hat{\Sigma} = \sum_{k=1}^K \sum_{g_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K)$

Quadratic Discriminant Analysis

• If we drop the assumptions $\Sigma_k = \Sigma$, then the discriminant functions become

$$\delta_k(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{\Sigma}_k| - \frac{1}{2}\left(\mathbf{x} - \mu_k\right)^T\mathbf{\Sigma}_k^{-1}\left(\mathbf{x} - \mu_k\right) + \log\pi_k$$

• We call it Quadratic Discriminant Analysis (QDA) because it is a quadratic function w.r.t. *x*.

Decision Boundaries (Difference?)

Bias-Variance Trade-off

- Background: Many models based on LDA apply well on real data (e.g. Naive Bayes).
- Why?
 - Bias-Variance Trade-off
- Generally, higher bias, lower variance.
- Linear or quadratic models are simple and have few parameters, this may lead to higher bias, which means they have a good generality (lower variance).

Introduction
Multivariate Methods
Linear Discriminant Analysis
Logistic Regression
LDA or Logistic Regression?

Section 4

Logistic Regression

- Problem: For predicting binary values, could we use traditional multivariate regression models?
 - No!
 - Rigidity, unboundedness, etc.
- Do an exponential transformation and normalize.
- A simple case (with only two classes):

$$P(G=1|X=x)=rac{\exp(eta_0+eta^Tx)}{1+\exp(eta_0+eta^Tx)}$$
, $P(G=2|X=x)=rac{1}{1+\exp(eta_0+eta^Tx)}$. It is widely used in Biostatistics.

General Form

Problem Formulation (Part 1)

$$\log \frac{\Pr(G = 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{10} + \beta_1^T x$$

$$\log \frac{\Pr(G = 2 | X = x)}{\Pr(G = K | X = x)} = \beta_{20} + \beta_2^T x$$

$$\vdots$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + \beta_{K-1}^T x$$
(1)

For the same reason, you know that we could use log-rail here.

Problem Formulation (Part 2)

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k0} + \beta_k^T x)}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell0} + \beta_\ell^T x)}, k = 1, \dots, K - 1$$

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell0} + \beta_\ell^T x)}$$
(2)

- How to find the estimators of β ?
 - Maximum Likelihood Estimator (MLE)!
- We will introduce the simple case with 2 classes and defer the general discussion later.

Chapter 5: Linear Models for Classification

Maximum Likelihood Estimator

• Note that the log-likelihood for *N* observations is

$$l(\theta) = \sum_{i=1}^{N} \log p_{g_i}(x_i; \theta)$$

where
$$p_k(x_i; \theta) = P(G = k | X = x_i; \theta)$$

• Consider the two-class case, where $y_i = 1$ when $g_i = 1$ and $y_i = 0$ when $g_i = 2$. Then we could write the likelihood as

$$l(\beta) = \sum_{i=1}^{N} [y_i \beta^T x_i - \log(1 + e^{\beta^T x_i})]$$

Why?

Introduction
Multivariate Methods
Linear Discriminant Analysis
Logistic Regression
LDA or Logistic Regression?

Bad News

 The analytical solution of the objective does not exist, which means we need to rely on Numerical Optimization to solve the problem.

Section 5

LDA or Logistic Regression?

Comparison

The formula for LDA is

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = K | X = x)} = \log \frac{\pi_k}{\pi_K} - \frac{1}{2} (\mu_k + \mu_K)^T \Sigma^{-1} (\mu_k - \mu_K) + x^T \Sigma^{-1} (\mu_k - \mu_K)$$
$$= \alpha_{k0} + \alpha_k^T x$$

The formula for Logistic Regression is

$$\log \frac{\Pr(G = k|X = x)}{\Pr(G = K|X = x)} = \beta_{k0} + \beta_k^T x$$

What is the difference?

Comparison

Note that P(X, G = k) = P(X)P(G = k|X). So the key difference is the assumptions put on the prior probability P(X). For these two models have the same conditional probability form.

$$\Pr(G = k | X = x) = \frac{e^{\beta_{k0} + \beta_k^T x}}{1 + \sum_{\ell=1}^{K-1} e^{\beta_{\ell0} + \beta_\ell^T x}}$$

Comparison

That is to say, in LDA, we have

$$P(X) = \sum_{k=1}^{K} \pi_k \phi(X; \mu_k, \Sigma)$$

while we do not add on much information on the prior probability in Logistic Regression.

- For LDA: more accurate (lower bias) but less robust (higher variance).
- Why?

Subsection 1

Another View: Generative Model v.s. Discriminative Model

Generative Model: Assumptions

• Assume that $x = (x_1, \dots, x_p)^T \in \mathbb{R}^p$, $y = \{0, 1\}$, then we assume the joint-distribution of X, Y is known and parameterized by θ , which means

$$p(x,y|\theta) = p(y|\theta_1)p(x|y,\theta_2)$$

• Example: Bernoulli Prior and Gaussian Posterior. This implies $p(y|\pi) = \pi^y (1-\pi)^{1-y}, \pi \in (0,1)$ and $p(x_j|Y=k,\theta_j) \sim N(\mu_{kj},\sigma_j^2), k=0,1$

Generative Model: Example

- To provide a posterior distribution of $p(y|x, \theta)$ with given data (x here means all the data, not just an observation). we need to find the joint distribution first, and then use Bayesian Formula.
- Here, we introduce Naive Bayes, having assumption

$$p(x,y|\theta) = p(y|\pi)p(x|y,\hat{\theta}) = p(y|\pi)\prod_{j=1}^{p} p(x_j|y,\theta_j)$$

Generative Model: Example

• With previous assumptions we have

$$p(x|y = k, \theta) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\{-\frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k)\}$$

with
$$\mu_0 = (\mu_{01}, \dots, \mu_{0p})^T$$
, $\mu_1 = (\mu_{11}, \dots, \mu_{1p})^T$, $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_p^2)$.

• This formula is the same as that in the previous sections.

Generative Model: Example

• With Bayesian Formula, we could find

$$\begin{split} P(Y=1|x,\theta) &= \frac{P(x|Y=1,\theta)P(Y=1|\pi)}{P(x|Y=1,\theta)P(Y=1|\pi) + P(x|Y=0,\theta)P(Y=1|\pi)} \\ &= \frac{1}{1 + \frac{1-\pi}{\pi} \exp\{-(\mu_1 - \mu_0)^T \Sigma^{-1} x + \frac{1}{2} (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 + \mu_0)\}} \\ &= \frac{1}{1 + \exp\{-\beta^T x - r\}} \end{split}$$
 where $\beta = \Sigma^{-1} (\mu_1 - \mu_0)$,

Generative Model: Parameters Estimation

We need to use MLE with data

$$D = \{(x_n, y_n), n = 1, ..., N\}$$
, which means

$$l(\theta|D) = \log\{\prod_{n=1}^{N} p(y_n|\pi) \prod_{j=1}^{p} p(x_{nj}|y_n, \theta_j)\}$$

$$= \sum_{n=1}^{N} \log p(y_n|\pi) + \sum_{n=1}^{N} \sum_{j=1}^{p} \log p(x_{n,j}|y_n, \theta_j)$$

Discriminative Model: Assumptions

- Assume that $p(y = 1|x, \beta) = \frac{1}{1 + \exp\{-\beta^T x\}}$. This means we do not care much about the distribution of X.
- Example: $p(y|x, \beta) = (\mu(x))^y (1 \mu(x))^{1-y}$, where $\mu(x) \in (0, 1)$.
- MLE: $l(\beta) = \sum_{i=1}^{n} [y_i \log \mu_i + (1 y_i) \log(1 \mu_i)]$ (similar to Logistic Regression).
- No analytic results, we need numerical optimization
 (e.g. Gradient Descent).

Thank you!

