Feb 1 Worksheet

Selected problems from Chapter 2 of Book of Proof by Hammack.

Write these statements in the form $P \Longleftrightarrow Q$ for suitable statements P and Q.

- **1.** For matrix *A* to be invertible, it is necessary and sufficient that $det(A) \neq 0$.
- 2. If a function has a constant derivative then it is linear, and conversely.

Write a truth table for the following logical statements.

1.
$$P \lor (Q \Rightarrow R)$$

4.
$$\sim (P \vee Q) \vee (\sim P)$$

7.
$$(P \land \sim P) \Rightarrow Q$$

1.
$$P \lor (Q \Rightarrow R)$$
4. $\sim (P \lor Q) \lor (\sim P)$
7. $(P \land \sim P) \Rightarrow Q$

2. $(Q \lor R) \Leftrightarrow (R \land Q)$
5. $(P \land \sim P) \lor Q$
8. $P \lor (Q \land \sim R)$

3. $\sim (P \Rightarrow Q)$
6. $(P \land \sim P) \land Q$
9. $\sim (\sim P \lor \sim Q)$

5.
$$(P \land \sim P) \lor Q$$

8.
$$P \vee (Q \wedge \sim R)$$

3.
$$\sim (P \Rightarrow Q)$$

6.
$$(P \land \sim P) \land Q$$

9.
$$\sim (\sim P \lor \sim Q)$$

Use truth tables to prove logical equivalence of these statements.

3.
$$P \Rightarrow Q = (\sim P) \lor G$$

7.
$$P \Rightarrow Q = (P \land \sim Q) \Rightarrow (Q \land \sim Q)$$

4.
$$\sim (P \vee Q) = (\sim P) \wedge (\sim Q)$$