Oservians un sitema, un corpo sægetto a forse (Conservative e son)

Ef = EN. MECCANICA FINALE = Kg + Uf

WTOT. = LAVORD TOTHE DELLE FORZE => WTOT. = Kg - Ki

VIOT. = WIC + WC

LAVORD DEUT

LAVORD DEUT

FORTE NOV

CONSERVATIVE

CONSERVATIVE

CONSERVATIVE

CONSERVATIVE

 $K_{f} - K_{i} = W_{Nc} + U_{i} - U_{f}$ $W_{Nc} = K_{f} + U_{f} - (K_{i} + U_{i})$ $E_{f} = E_{i}$

 $W_{NC} = E_{f} - E_{i} = \Delta E$

Il **teorema lavoro-energia** dice che il lavoro $W_{\rm nc}$ delle forze *non* conservative è uguale alla variazione $\Delta E = E_f - E_i$ dell'energia meccanica del sistema, cioè alla variazione ΔK dell'energia cinetica sommata alla variazione ΔU dell'energia potenziale:

lavoro delle forze non conservative (J)

 $W_{\rm nc} = \Delta E = \Delta K + \Delta U$

variazione di energia cinetica (J)

variazione di energia meccanica (J)

variazione di energia potenziale (J) [19]

 $mgh + \frac{1}{2}mv_{i}^{2} = \frac{1}{2}Kd^{2} - mgd$ se holto di risolvere questa equesione nell'incomite $8h + \frac{1}{2}N^{-2} = \frac{1}{2}\frac{k}{m}d^{2} - 85l$ $\frac{k}{m}d^{2}-288=28h+N_{i}^{2}$ $\frac{K}{m}d^2 - 28d - 28h - N_1^2 = 0$ $d = \frac{8 \pm \sqrt{8^2 + \frac{k}{m}} (28ln + N_i^2)}{k} = 0,3579...m$ ACCETABILE $k = 55,0 \frac{N}{m}$ $N_{i} = 2,30 \frac{m}{5}$ h = 0,730 m M = 0,237 kgd= 0,358 m = 35,8 cm