FisicalOT-Labo: Esercitazione 4

INDICE

- OBIETTIVO DELLA PROVA
- CONTESTO TEORICO
- o STRUMENTI DI MISURA
- o <u>SCHEMA CIRCUITALE</u>
- o ANALISI DATI
- o **CONCLUSIONI**

OBIETTIVO DELLA PROVA

- Analisi del comportamento di un circuito RC al variare della frequenza del segnale di alimentazione in onda sinusoidale
 - o Filtro Passa Alto → CR
 - o Filtro Passa Basso → RC

CONTESTO TEORICO

Di seguito elencati i macro-argomenti su cui si basa l'analisi della prova effettuata in Laboratorio.

RESISTORI

- È un conduttore ohmico, cioè rispetta la legge di Ohm. Viene costruito con materiali conduttori, e in base al materiale si ottengono diversi valori di Resistenza, grandezza fisica che lo caratterizza. Essa viene definita come un impedimento al passaggio della corrente attraverso un oggetto solido tipicamente cilindrico.
- La tabella a fianco rappresenta il valore della Resistenza a seconda del codice colore di un singolo resistore

Matricola: 157547

CONDENSATORI/CAPACITORI

- Fisicamente è costituito da due armature/elettrodi di materiale conduttivo, separate da uno strato isolante, chiamato dielettrico.
- Le due armature si caricano al passaggio di corrente.

CAPACITÀ

È una proprietà che dipende dal materiale con cui è costruito il condensatore, e si misura in Farad [F].

$$F = \frac{C}{V} = \frac{s^2}{H} = \frac{C^2}{J} = \frac{A^2 \cdot s^2}{N \cdot m} = \frac{s^4 \cdot A^2}{m^2 \cdot kg}$$

Capacità(C)[F] = Q[C]/V[V]

CARICA DEL CODENSATORE

- Le armature, caricandosi, generano una differenza di potenziale ai propri capi, proporzionale alla quantità di carica immagazzinata; per questo motivo i condensatori sono noti come capacitori.
- Idealmente un condensatore mantiene la carica all'infinito, ma ciò non accade nella pratica, infatti pian piano si scarica.

SCARICA DEL CONDENSATORE

- La differenza di potenziale ai suoi capi genera flusso di corrente nel circuito.
- La scarica finisce quando si raggiunge una tensione VC quasi nulla

TEMPORIZZAZIONE

- $Vc(t) = v_i \cdot \exp(-t/T)$ $\rightarrow v_i$ = Valore di tensione all'istante di tempo inziale
- T = TAU = R * C = 1000 * 1*10^-6 = 0.001s
- Tempo = $5*T = 5ms \rightarrow$ Tempo necessario a completare la carica o la scarica del condensatore
- Prendendo di riferimento questo parametro si imposta il generatore di funzioni con un periodo del segnale almeno di 5ms. Nel nostro circuito il periodo vale 20ms.

FREQUENZA DI TAGLIO

È quel valore di frequenza a cui il segnale originale di alimentazione subisce un'attenuazione di circa il 30%, infatti Vout(t) = Vin(t) / $(\sqrt{2}/2)$ \rightarrow $(\sqrt{2}/2) = 0.707 = 70\%$

$$f_{T[Hz]} = \frac{1}{2\pi RC}$$
 \rightarrow $\omega_T = f_T \cdot 2\pi = \frac{1}{RC}$ \rightarrow pulsazione angolare di taglio

Inoltre Vc(t) = VR(t)

FILTRI

Vout(t) viene prelevata ai capi del componente più lontano dal Generatore nei due circuiti sottoelencati

- PASSA ALTO = Circuito CR
 - \circ Vout(t) = 0 per f < 1/10*ft
 - O Vout(t) = Vgen(t) per f > 10*ft
 - Vout(t) subisce un'attenuazione per le frequenze intermedie, e alla frequenza di taglio deve essere il 70% del Vgen(t)
- PASSA BASSO = Circuito RC
 - \circ Vout(t) = 0 per f > 10*ft
 - Vout(t) = Vgen(t) per f < 1/10*ft
 - Vout(t) subisce un'attenuazione per le frequenze intermedie, e alla frequenza di taglio deve essere il 70% del Vgen(t)

IMPEDENZA CAPACITIVA

Il comportamento descritto in precedenza dei due filtri è dovuto dalla presenza del condensatore, il quale genera una impedenza capacitiva, simile a una resistenza che si oppone al passaggio di corrente...

Questa impedenza però possiede un valore non reale, ma immaginario, facendo riferimento ai numeri complessi... (i = $\sqrt{-1}$)

$$Z_c = \frac{-i}{2\pi fC}$$
 \rightarrow Fè la frequenza del segnale di alimentazione

Come si osserva Zc e f sono inversamente proporzionali

- Per f -> $+\infty$ Zc -> 0 = CORTO CIRCUITO \rightarrow R = 0
- Per f -> 0 Zc -> $+\infty$ =CIRCUITO APERTO \rightarrow R = $+\infty$

STRUMENTAZIONE

COMPONENTI PER IL CIRCUITO

- \circ RESISTORE 1k Ω
- \circ CONDENSATORE 1 μF
- BREADBOARD: circuito fisico su cui i collegamenti
- o SIMULATORE online di circuiti
- GENERATORE DI FUNZIONI
 - Onda Sinusoidale
 - Duty cycle = 50%
 - Frequenza = [20, 50, 100, 200 , 1000, 2000]
 Hz
 - o Ampiezza 7.5V
 - Offset = 0V
 - Riquadro BLU = selezionare onda sinusoidale

effettuare

STRUMENTI DI MISURA

o Oscilloscopio

- Riquadro Rosso: Modifica la Scala dell'asse Y. Impostata a 2V/div
- Riquadro Giallo: Modifica la Scala dell'asse X.
 - Affinché venga visualizzato l'intero periodo del segnale di alimentazione è opportuno impostare la scala con valori

variabili per ogni frequenza selezionata.

- 10 divisioni totali, quindi ogni sec/div è 1/10 del periodo del segnale del generatore
- Tra i due riquadri Rossi vi è un pulsantino con scritto Math, il quale apre il menu verde nello schermo
 - È possibile selezionare quale operazione matematica eseguire tra i segnali dei due canali (ch1 e Ch2)
 - Nella prova è stata effettuata la misura di Ch1 Ch2
 - Ch1 = VGen(t)
 - Ch2 = VR(t)

SCHEMA CIRCUITALE CR

DATI RILEVATI

Frequenza[Hz]	Omega	Picco CH1 [V]	Picco CH2 [V]	Picco CH1-CH2 [V]	CH2 / CH1
20	125,6637061	7,5	0,896	7,5	0,119466667
50	314,1592654	7,5	2,1805	7	0,290733333
100	628,3185307	7,5	3,927	6,25	0,5236
200	1256,637061	7,5	5,54	4,5	0,738666667
500	3141,592654	7,5	6,595	2,25	0,879333333
1000	6283,185307	7,5	6,835	1,5	0,911333333
2000	12566,37061	7,5	6,92	0,95	0,922666667
5000	31415,92654	7,5	6,95	0,45	0,926666667
10000	62831,85307	7,5	6,95	0,25	0,926666667
20000	125663,7061	7,5	7,05	0,125	0,94

CH2 / CH1 = Guadagno = Vout(t) / Vgen(t)

Al fine di trovare la frequenza di taglio si deve selezionare la zona del grafico in cui il guadagno di avvicina a $0.707 = \sqrt{2}/2$

Come ipotizzato nella <u>teoria</u>, essendo in presenza di un circuito passa alto, le frequenze elevate generano il segnale in uscita quasi identico rispetto a quello di alimentazione; infatti, il guadagno (Vout / Vgen) si avvicina a 1.

CALCOLI

$$\frac{\omega_0-\omega_1}{\frac{\sqrt{2}}{2}-G_1}=\frac{\omega_2-\omega_1}{G_2-G_1}$$

DATA LA PROPORZIONE TROVARE ω_0 IN FUNZIONE DEGLI ALTRI PARAMETRI

P1 = (ω_1 ; G1) P2 = (ω_2 ; G2) SONO DUE PUNTI SELEZIONATI DAL GRAFICO I CUI DATI SONO EVIDENZIATI IN GIALLO NELLA TABELLA

$$\omega_0 = \frac{\omega_2 - \omega_1}{G_2 - G_1} * (\frac{\sqrt{2}}{2} - G_1) + \omega_1$$

PUNTO		Gain	wt	
P1	628,3185	0,5236	1164,435	
P2	1256,637	0,738667		

$$ft = wt / 2\Pi = 185Hz$$

0.8

0.6

0.4

0.2

Gain (Ch2/ch1)

$$\underline{\text{wt}} = \frac{1}{RC} = \frac{1}{1000 * 1 * 10^{\circ} - 6} = 1000 \Rightarrow 160 \text{Hz}$$

Err%(wt) = (1164.435 - 1000)/(1164.435) * 100 = 14%

VERIFICA CORRETTEZZA

Impostando il generatore di funzioni sulla frequenza calcolata, il segnale in uscita dovrebbe ottenere un'attenuazione del 30% rispetto a quello del generatore.

$$10.26/14.46*100=71\% \rightarrow \frac{\sqrt{2}}{2}$$

Inoltre, il segnale ch2 e ch1-ch2 devono uguagliarsi; infatti, segnale rosso e verde hanno lo stesso picco massimo e minimo.

Gain(w)

100000

150000

50000

SCHEMA CIRCUITALE RC

DATI RILEVATI

Frequenza	Omega	Picco CH1	Picco CH2	CH1 - CH2	CH2 / CH1
20	125,6637	7,5	7,4	1	0,986667
50	314,1593	7,5	7	2,125	0,933333
100	628,3185	7,5	6,1	4	0,813333
200	1256,637	7,5	4,4	5,9	0,586667
500	3141,593	7,5	2,1	6,5	0,28
1000	6283,185	7,5	1,05	6,85	0,14
2000	12566,37	7,5	0,55	7,05	0,073333
5000	31415,93	7,5	0,3	7,1	0,04
10000	62831,85	7,5	0,125	7,2	0,016667

Come nel caso precedente sono stati evidenziati i due punti tramite cui calcolare la wt, usando la formula riportata precedentemente...

Nel caso in esame CH2 corrisponde alla tensione sul condensatore, e come previsto dalla <u>teoria</u> a frequenze alte si comporta come un cortocircuito, annullando la tensione ai suoi capi

CALCOLI

$$\frac{\omega_0-\omega_1}{\frac{\sqrt{2}}{2}-G_1}=\frac{\omega_2-\omega_1}{G_2-G_1}$$

DATA LA PROPORZIONE TROVARE ω_0 IN FUNZIONE DEGLI ALTRI PARAMETRI

P1 = (ω_1 ; G1) P2 = (ω_2 ; G2) SONO DUE PUNTI SELEZIONATI DAL GRAFICO I CUI DATI SONO EVIDENZIATI IN GIALLO NELLA TABELLA

$$\omega_0 = \frac{\omega_2 - \omega_1}{G_2 - G_1} * (\frac{\sqrt{2}}{2} - G_1) + \omega_1$$

PUNTO		Gain	wt	
P1	628,3185	0,813333	922,7778	
P2	1256,637	0,586667		

$$ft = wt / 2\Pi = 146Hz$$

wt =
$$\frac{1}{RC}$$
 = $\frac{1}{1000*1*10^{\circ}-6}$ = 1000 → 160Hz

Err%(wt) = (922.77778 - 1000)/(922.7778) * 100 = 8.3%

VERIFICA CORRETTEZZA

Come per il caso precedente sono state verificate le seguenti condizioni:

- Gain = 0.7 = 10.10 / 14.76 * 100 = 70%
- Ch2 = Ch1-CH2

