Lecture 18 - Bivariate RVs

Thursday, November 11, 2021 9:28 AM

Joint PMF:
$$f(x,y) = P(X=x, Y=y)$$

Marginal PMFs: $f_{\chi}(x) = \sum_{\chi} f(\chi, \chi)$
 $f_{\chi}(y) = \sum_{\chi} f(\chi, \chi)$

$$\chi = \begin{cases} 0 & \text{last flip is T} \\ 1 & \text{last flip is H} \end{cases}$$

f(x,y)		0	(2	3	
V/	0	$f(0,0) = \sqrt{8}$	$f(0,1) = \frac{3}{8}$	<u>/</u> 8	0	$f_{\chi}(0) = \frac{1}{2}$
<i>X</i>	1	C	/8	2/8	/8	$f_{\chi}(1) = \frac{1}{2}$
		fy (0)=/8	fy(1)=3	$f_{y}(2) = \frac{3}{8}$	fy(3)=/8	

Defu: Joint PDF

Defin: Joint PDF

If X and Y are continuous we call

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

the joint PDF if $\forall C \subset \mathbb{R}^2$
 $P((X,Y) \in C) = \int_C f(x,y) dxdy$

() nivariate case:

$$P(X \in A) = \int_{A} f(x) dx$$

Facts': (1)
$$F(x,y) = \int_{-\infty}^{x} f(u,v) du dv$$

$$\left(\text{uni} : F(x) = \begin{cases} x \\ f(t) dt \end{cases} \right)$$

$$(2) \quad f(x,y) = \frac{\partial^2 F}{\partial x \partial y}$$

(uni:
$$f(x) = \frac{dF}{dx}$$
)

(3)
$$f(x,y) \ge 0$$
 and $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$

Theorem: Rel. by Joint/Marjinals

(1) $f_{*}(x) = \int_{\mathbb{R}} f(x,y) dy$

(2) $f_{*}(y) = \int_{\mathbb{R}} f(x,y) dx < \frac{1}{2} \frac{1}{$

Lectures 1 Page 3

Lectures 1 Page 4

$$\frac{1}{x-x} \int_{0}^{x} (xy) dy = \frac{1}{x} \int_{0}^{x} (xy) dx = \frac{1}{x} \int_{0}^{x} (xy) dx = \frac{1}{x} \int_{0}^{x} dx = \frac{1}{x} \int_{0$$

$$\begin{cases} \{x,y\} = \{0xy^2 & \text{for } 0 < x < 1 \\ 0 < y < 1 \end{cases} \\ = P(\{x,y\}) \in C$$

$$= \begin{cases} \{x,y\} & \text{dxdy} \end{cases}$$

 $\frac{\mathcal{E}_{X,y}}{\mathcal{E}_{X,y}} = e^{-y} \qquad 0 < x < y$ $P(x+y>1) \qquad 1 \qquad x+y>1$ $= \int f(x,y) dxdy \qquad | \qquad y=x \qquad y=1-x$

Defn: Bivariale Expectation

If (X,Y) is Biv RV and g:R2 >R

then

 $\mathbb{E}[g(X,Y)] =$

ZZg(x,y)f(x,y) xyg(x,y)f(x,y) pmf (discrete)

SS g(x,y) f(x,y) dxcly

Univar: $\mathbb{E}[g(x)] = \int g(x)f(x) dx$

$$\frac{\xi_{X,y}}{g(x,y)=xy} \text{ (af } f(x,y) = 1 \text{ few } 0 < x < 1$$

$$E[XY] = \int xy(1) \, dy \, dx$$

$$= \frac{1}{12}$$

$$= \frac{1}{12}$$

$$= \frac{1}{12}$$

$$= \frac{1}{12}$$

Theorem: Biv Expectation is Linear

If
$$g_1: \mathbb{R}^2 \to \mathbb{R}$$
, $g_2: \mathbb{R}^2 \to \mathbb{R}$,

and $a_1b \in \mathbb{R}$, then

$$\mathbb{E}\left[ag_1(X,Y) + bg_2(X,Y)\right]$$

$$= a\mathbb{E}\left[g_1(X,Y)\right] + b\mathbb{E}\left[g_2(X,Y)\right].$$