QCD at High Temperature

(Experiment)

Kinematics

CMS:
$$s = (p_1 + p_2)^2 = 4E_{CM}^2$$

Lab:
$$p_1 = (m, 0)$$
 $p_2 = (E_L, p_z) = (E_L, \sqrt{E_L^2 - m^2})$

$$\longrightarrow$$

$$s = (m + E_L)^2 - (E_L^2 - m^2) = 2m(E_L + m)$$
 $E_{CM} = \sqrt{mE_L/2}$

$$SPS: 200 \text{ GeV (LAB)}$$

$$E_{CM} = 10 \text{ GeV}$$
 $\gamma = 10$

$$E_{CM} = 100 \text{ GeV} \quad \gamma = 100$$

$$E_{CM} = 2.75 \text{ TeV} \quad \gamma = 2750$$

$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

$$SPS: \Delta y = 6$$

SPS:
$$\Delta y = 6$$
 RHIC: $\Delta y = 10.6$ LHC: $\Delta y = 17.3$

LHC:
$$\Delta y = 17.3$$

Bjorken Expansion

Experimental observation: At high energy $(\Delta y \to \infty)$ rapidity distributions of produced particles (in both pp and AA) are "flat"

$$\frac{dN}{dy} \simeq const$$

Physics depends on proper time $\tau = \sqrt{t^2 - z^2}$, not on y

All comoving (v=z/t) observers are equivalent

Analogous to Hubble expansion

Bjorken Expansion

Bjorken Expansion: Hydrodynamics

Consider perfect relativistic fluid; 4-velocity $u_{\mu}=(1,\vec{v})\gamma$

$$T_{\mu\nu} = (\epsilon + P)u_{\mu}u_{\nu} - Pg_{\mu\nu}$$

Hydro = Conservation Laws $(\partial^{\mu}T_{\mu\nu}=0)$ + Equ. of State $(P=P(\epsilon))$

$$\partial^{\mu}T_{\mu\nu} = (\partial^{\mu}\epsilon + \partial^{\mu}P)u_{\mu}u_{\nu} + (\epsilon + P)((\partial^{\mu}u_{\mu})u_{\nu} + u_{\mu}\partial^{\mu}u_{\nu}) - \partial_{\nu}P = 0$$

Contract with u_{ν} , use $u^2=1$

$$(\partial^{\mu} \epsilon + \partial^{\mu} P) u_{\mu} + (\epsilon + P) \partial^{\mu} u_{\mu} - u^{\nu} \partial_{\nu} P = 0$$

$$u_{\mu}\partial^{\mu}\epsilon + (\epsilon + P)\partial^{\mu}u_{\mu} = 0$$

Thermodynamic relations

$$d\epsilon = Tds$$
 $\epsilon + P = Ts$

Hydrodynamic equations

$$u^{\mu}(T\partial_{\mu}s) + (Ts)\partial^{\mu}u_{\mu} = 0$$

$$\partial_{\mu} \left(s u^{\mu} \right) = 0$$

 $\partial_{\mu} (su^{\mu}) = 0$ isentropic expansion

Variables: $t = \tau \cosh \alpha$, $z = \tau \sinh \alpha$. $\Rightarrow u_{\mu} = (\cosh \alpha, 0, 0, \sinh \alpha)$

$$\partial^{\mu}(su_{\mu}) = 0 \qquad \Rightarrow \qquad \frac{d}{d\tau} \left[\tau s(\tau)\right] = 0$$

Solution for ideal Bj hydrodynamics

$$s(\tau) = \frac{s_0 \tau_0}{\tau} \qquad T = \frac{const}{\tau^{1/3}}$$

Exact boost invariance, no transverse expansion, no dissipation, . . .

Numerical Estimates

Total entropy in rapidity interval $[y, y + \Delta y]$

$$S = s\pi R^2 z = s\pi R^2 \tau \Delta y = (s_0 \tau_0) \pi R^2 \Delta y$$
$$s_0 \tau_0 = \frac{1}{\pi R^2} \frac{S}{\Delta y}$$

Use $S/N \simeq 3.6$

$$s_0 = \frac{3.6}{\pi R^2 \tau_0} \left(\frac{dN}{dy}\right)$$
 Bj estimate
$$\epsilon_0 = \frac{1}{\pi R^2 \tau_0} \left(\frac{dE_T}{dy}\right)$$

Depends on initial time τ_0

RHIC: Au-Au collisions ($\sqrt{s} = 200 \text{ GeV}$)

$$\frac{dN}{dy} \simeq 998 \qquad \tau_0 = 1 \text{ fm} \qquad s_0 \simeq 33 \text{ fm}^{-3}$$

Use QGP equation of state $s=2g\pi^2T^3/45$

$$T_0 \simeq 240 \text{ MeV}$$
 $\epsilon_0 \simeq (5-6) \text{GeV/fm}^3$

LHC: Factor ~ 2 in multiplicity

$$T_0 \simeq 300 \; \mathrm{MeV}$$
 $\epsilon_0 \simeq 15 \mathrm{GeV/fm}^3$

BNL and RHIC

Multiplicities

Phobos White Paper (2005)

Bjorken Expansion

Collective Behavior: Radial Flow

Radial expansion leads to blue-shifted spectra in Au+Au

Elliptic Flow

Hydrodynamic expansion converts coordinate space anisotropy

to momentum space anisotropy

source: U. Heinz (2005)

Elliptic Flow II

source: U. Heinz (2005)

Viscous Corrections

Longitudinal expansion: Bj expansion solves Navier-Stokes equation

$$\frac{1}{s}\frac{ds}{d\tau} = -\frac{1}{\tau}\left(1 - \frac{\frac{4}{3}\eta + \zeta}{sT\tau}\right)$$

Viscous corrections small if $\frac{4}{3}\frac{\eta}{s} + \frac{\zeta}{s} \ll (T\tau)$

$$\frac{4}{3}\frac{\eta}{s} + \frac{\zeta}{s} \ll (T\tau)$$

early
$$T\tau \sim \tau^{2/3}$$
 $\eta/s \sim const$ $\eta/s < \tau_0 T_0$

late
$$T\tau \sim const$$
 $\eta \sim T/\sigma$ $\tau^2/\sigma < 1$

Hydro valid for $\tau \in [\tau_0, \tau_{fr}]$

Viscous corrections to T_{ij} (radial expansion)

$$T_{zz} = P - \frac{4}{3} \frac{\eta}{\tau}$$
 $T_{xx} = T_{yy} = P + \frac{2}{3} \frac{\eta}{\tau}$

increases radial flow (central collision)

decreases elliptic flow (peripheral collision)

Modification of distribution function

$$\delta f = \frac{3}{8} \frac{\Gamma_s}{T^2} f_0 (1 + f_0) p_\alpha p_\beta \nabla^{\langle \alpha} u^{\beta \rangle}$$

Correction to spectrum grows with p_{\perp}^2

$$\frac{\delta(dN)}{dN_0} = \frac{\Gamma_s}{4\tau_f} \left(\frac{p_\perp}{T}\right)^2$$

Elliptic flow III: Viscous effects

Romatschke (2007), Teaney (2003)

Elliptic flow IV: Systematic trends

source: R. Snellings (STAR)

Deviation from ideal hydro

increases for more peripheral events

increases with p_{\perp}

A (Most) Perfect Fluid?

A (Most) Perfect Fluid?

Elliptic Flow V: Recombination

"quark number" scaling of elliptic flow

Elliptic flow VI: Predictions for LHC

Romatschke, Luzum (2009)

Busza (QM 2009)

Jet Quenching

$$R_{AA} = \frac{n_{AA}}{N_{coll} n_{pp}}$$

source: Phenix White Paper (2005)

Jet Quenching II

Disappearance of away-side jet

source: Star White Paper (2005)

Jet Quenching III: The Mach Cone

azimuthal multiplicity $dN/d\phi$ (high energy trigger particle at $\phi=0$)

source: Phenix (PRL, 2006), W. Zajc (2007)

wake of a fast quark in $\mathcal{N}=4$ plasma

Chesler and Yaffe (2007)

Jet Quenching: Theory

energy loss governed by

$$\hat{q} = \rho \int q_{\perp}^2 dq_{\perp}^2 \frac{d\sigma}{dq_{\perp}^2}$$

larger than pQCD predicts?

also: large energy loss of heavy quarks

[some recent doubts about \hat{q} , see P. Stankus seminar], source: R. Baier (2004)

Phase Diagram: Freezeout

Summary (Experiment)

Matter equilibrates quickly and behaves collectively

Little Bang, not little fizzle

Initial energy density in excess of 10 ${
m GeV/fm^3}$

Conditions for Plasma achieved

Evidence for strongly interacting Plasma ("sQGP")

Fast equilibration $\tau_0 \ll 1$ fm

Large elliptic flow, "perfect fluid"

Strong energy loss of leading partons

LHC: Pb+Pb $\sqrt{s_{NN}}=2.76~{\rm TeV}$

Alice results: Multiplicity scaling with energy

What does it mean?

Factor 2.2 in multiplicity: factor 2.85 in energy density, factor 1.3 in temperature (at fixed τ_0)

 $AA \neq pp$: extra multiplicity per participant pair.

Simple saturation works better than improved saturation.

Alice flow

Flow excitation function

What does it mean?

Hydro rules! RHIC data not an accident.

Differential v_2 exactly equal to RHIC (!?)

Integrated v_2 somewhat high: mean p_T increase? acceptance?

Alice jet quenching

What does it mean?

Suppresion at 10 GeV same as RHIC (!??)

But: p_T dependence no longer flat, agrees with predictions (expect factorization as $p_T \to \infty$).

Frontier I: Initial conditions & higher moments of flow

Hydro converts moments of initial deformation to moments of flow

Glauber predicts flat initial spectrum $(n \ge 3)$. Observed flow spectrum consistent with sound attenuation

$$\delta T^{\mu\nu}(t) = \exp\left(-\frac{2}{3}\frac{\eta}{s}\frac{k^2t}{T}\right)\delta T^{\mu\nu}(0)$$

Frontier II: Everything flows (even p+Pb)

Signatures of collectivity in p+Pb collisions.

Mass ordering of mean p_T

Mass ordering of $v_2(p_T)$

CMS (2013)

Alice (2013)

Consistent with AA data for conformal hydro scaling

$$Kn^{-1} \sim \frac{c_s}{c} \frac{1}{S} \frac{dN}{dy}$$

 $Kn^{-1} \sim \frac{c_s}{c} \frac{dN}{dy}$

non-conformal fluid

conformal fluid

Knudsen scaling: Compare pPb and PbPb

Triangular flow $v_3(p_T)$ in pPb (red) and PbPb (blue)

 p_T dependence scaled by mean $\langle p_T \rangle$

Teaney, Basar (2014)

Frontier III: Fluctuations and the critical point

Net-Proton kurtosis and skewness from RHIC beam energy scan

Star Collaboration (2015)