Mobileye - The sensing challenge

Preview

- How difficult is it to train a new DNN classifier?
- Pretty easy:
 - import tensorflow as tf
 - *myNet = tf.resnet() ...*

Train it on ImageNet where we have for example:

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

Preview

This looks pretty promising but ...
 How many of you will place their life on the classifier?

• Training a classifiers to work on **real world data**, in a **real-time** environment is one of our main challenges...

Mobileye - A Short Summary

- Mobileye was launched in 1999
- First products were based on single-lensed camera (mono-camera) to enable ADAS - Advanced Driver Assist Systems. (inspired by human vision).
- Mobileye's vision safety technology for ADAS is deployed on over 15 million vehicles with more than 25 automaker partners including some of the world's largest.
- We used our vast experience in ADAS technologies and product like Automatic Emergency Braking (AEB) and Lane Keeping Assistance (LKA), as building blocks for higher level autonomous vehicles (AV) technology.

Three Pillars of Autonomous Driving

- **Sensing:** interpret the scene with 360 awareness and produce an "Environmental Model".
- Mapping: either as part of sensing or a layer redundant to sensing.
 Mapping requires some sort of connectivity for the purpose of updates.
- **Driving Policy (Planning):** learn to negotiate a driving path in the presence of other moving agents

Vehicles Detection

• How would you start detecting the vehicles in this scene:

Vehicles Detection

Vehicles Detection - trucks...

Vehicles initial Attention results

Clustering

Alignment + Filtering

Approval + Orientation

Weird Looking Vehicles

Wheels Detection

Wheels Detection won't always help...

Detecting other objects

Free Space

The Sensing Challenge

Perception of a comprehensive Environmental Model breaks down into four main challenges:

- Free-space: determining the drivable area and its delimiters
- Driving Paths: the geometry of the routes within the drivable area
- Moving Objects: all road users within the drivable area or path
- Scene Semantics: the vast vocabulary of visual cues (explicit and implicit) such as traffic lights and their color, traffic signs, turn indicators, pedestrian gaze direction, on-road markings, etc.

Other Semantics detection

- Following the AV new requirements:
 - Blinking/Braking/Hazard signals
 - Police officer gestures.
 - Emergency Vehicles .
 - Special scenes (car accident, vehicles on fire).

How to trap an Autonomous Vehicle...

Vehicles Detection Examples

The Mapping Challenge

Road Experience Management™ (REM™)

Mobileye's Road Experience Management (REMTM) is an end-to-end mapping and localization engine for full autonomy. The solution is comprised of three layers:

- harvesting agents (any camera-equipped vehicle)
- map aggregating server (cloud)
- map-consuming agents (autonomous vehicle).

Driving Policy

 Where sensing detects the present, driving policy plans for the future

Driving Policy

The End

But not for you, We are hiring ...

