Cellular Automata and Neural Nets

Alex Ledger and Jacob Menick

Reed College

January 7, 2016

Rule 110

Recall rules for Rule 110:

Current Cell Pattern	111	110	101	100	011	010	001	000
New State for center cell	0	1	1	0	1	1	1	0

- f(p,q,r) = q + r + qr + pqr
- $f(p,q,r) = (q \wedge (\bar{p})) \vee (q \oplus r)$
- ▶ We constructed a neural network (on paper) that calculates one iteration of Rule 110:
 - ▶ Input: target cell's 3 parents,
 - Output: whether cell is 0 or 1

Neural Net Computing Rule 110

Our Thinking

- ► We decided to see if a neural network could efficiently compute rule 110
- Given an initial configuration (the first row)
- ► Can a neural net find the *k*th row *without computing* every row?
- ▶ Can a neural net *predict* the *k*th row given the first row?
- So we made some neural nets and tested it.

Our Neural Net Architecture

Hypothesis

- ► The neural nets will not be able to accurately predict the *k*th row.
- ▶ Differences in initial conditions propagate outward in unpredictable ways.
 - \Rightarrow Hard for NN to generalize

Results 1

Results 2

Conclusions

- We can build a neural net to exactly model an iteration of Rule 110
- ▶ A neural net with a single hidden layer can predict rule 110 for a small number of iterations, but only trivially. Just give it enough neurons in the hidden layer to model it.
- ▶ Doesn't appear to need many layers
- Incompressibility of Class 4 Automata?