Quantum Teleportation

March 28, 2019

The state of qubit 0 will be sent by utilising entanglement between qubit 1 and qubit 2. Alice (the sender) has qubit 0 and qubit 1, whilst Bob (the reciever) has qubit 2.

The state to teleport is: $|\psi\rangle = \frac{\sqrt{3}}{2} |0\rangle + \frac{1}{2} |1\rangle$.

1. Firstly, produce the β_{00} state using qubit 1 and qubit 2;

$$\begin{aligned} |\psi\rangle |00\rangle &= (\frac{\sqrt{3}}{2} |\mathbf{0}\rangle + \frac{1}{2} |\mathbf{1}\rangle) |00\rangle \to (\frac{\sqrt{3}}{2} |\mathbf{0}\rangle + \frac{1}{2} |\mathbf{1}\rangle) (\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle) \\ &= \frac{1}{\sqrt{2}} \left[\frac{\sqrt{3}}{2} |\mathbf{0}\rangle (|00\rangle + |\mathbf{11}\rangle) + \frac{1}{2} |\mathbf{1}\rangle (|00\rangle + |\mathbf{11}\rangle) \right] \end{aligned}$$

2. Next, qubit 0 and qubit 1 are entangled, with qubit 0 the control and qubit 1 as the target;

$$\frac{1}{\sqrt{2}} \left[\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) + \frac{1}{2} \left| \mathbf{1} \right\rangle \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) \right] \rightarrow \frac{1}{\sqrt{2}} \left[\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle \left(\left| 00 \right\rangle + \left| 11 \right\rangle \right) + \frac{1}{2} \left| \mathbf{1} \right\rangle \left(\left| 10 \right\rangle + \left| 01 \right\rangle \right) \right]$$

3. Qubit 0 is then put through the gate, that would map $|1\rangle \rightarrow |-\rangle$;

$$\begin{split} \frac{1}{\sqrt{2}} \Big[\frac{\sqrt{3}}{2} \, | \mathbf{0} \rangle \, (| 00 \rangle + | 11 \rangle) + \frac{1}{2} \, | \mathbf{1} \rangle \, (| 10 \rangle + | 01 \rangle) \Big] &\rightarrow \frac{1}{\sqrt{2}} \Big[\frac{\sqrt{3}}{2} \, \frac{1}{\sqrt{2}} (| \mathbf{0} \rangle + | \mathbf{1} \rangle) (| 00 \rangle + | 11 \rangle) + \frac{1}{2} \, \frac{1}{\sqrt{2}} (| \mathbf{0} \rangle - | \mathbf{1} \rangle) (| 10 \rangle + | 01 \rangle) \Big] \\ &= \frac{1}{2} \Big[\frac{\sqrt{3}}{2} (| \mathbf{0} \rangle + | \mathbf{1} \rangle) (| 00 \rangle + | 11 \rangle) + \frac{1}{2} (| \mathbf{0} \rangle - | \mathbf{1} \rangle) (| 10 \rangle + | 01 \rangle) \Big] \\ &= \frac{1}{2} \Big[\frac{\sqrt{3}}{2} (| \mathbf{0} 00 \rangle + | \mathbf{0} 11 \rangle + | 100 \rangle + | \mathbf{1} 11 \rangle) + \frac{1}{2} (| \mathbf{0} 01 \rangle + | \mathbf{0} 10 \rangle - | \mathbf{1} 10 \rangle - | \mathbf{1} 01 \rangle) \Big] \\ &= \frac{1}{2} \Big[| \mathbf{0} \mathbf{0} \rangle \, (\frac{\sqrt{3}}{2} \, | \mathbf{0} \rangle + \frac{1}{2} \, | \mathbf{1} \rangle) + | \mathbf{0} 1 \rangle \, (\frac{\sqrt{3}}{2} \, | \mathbf{1} \rangle + \frac{1}{2} \, | \mathbf{0} \rangle) + | \mathbf{1} \mathbf{0} \rangle \, (\frac{\sqrt{3}}{2} \, | \mathbf{0} \rangle - \frac{1}{2} \, | \mathbf{1} \rangle) + | \mathbf{1} 1 \rangle \, (\frac{\sqrt{3}}{2} \, | \mathbf{1} \rangle - \frac{1}{2} \, | \mathbf{0} \rangle) \Big] \end{split}$$

After Correction;

$$\begin{split} \Rightarrow \frac{1}{2} \Big[\left| \mathbf{00} \right\rangle (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle + \frac{1}{2} \left| \mathbf{1} \right\rangle) + \left| \mathbf{01} \right\rangle \left[\mathbf{X} \right] (\frac{\sqrt{3}}{2} \left| \mathbf{1} \right\rangle + \frac{1}{2} \left| \mathbf{0} \right\rangle) + \left| \mathbf{10} \right\rangle \left[\mathbf{Z} \right] (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle - \frac{1}{2} \left| \mathbf{1} \right\rangle) + \left| \mathbf{11} \right\rangle \left[\mathbf{X} \right] \left[\mathbf{Z} \right] (\frac{\sqrt{3}}{2} \left| \mathbf{1} \right\rangle - \frac{1}{2} \left| \mathbf{0} \right\rangle) \Big] \\ = \frac{1}{2} \Big[\left| \mathbf{00} \right\rangle (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle + \frac{1}{2} \left| \mathbf{1} \right\rangle) + \left| \mathbf{01} \right\rangle (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle + \frac{1}{2} \left| \mathbf{1} \right\rangle) + \left| \mathbf{10} \right\rangle (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle + \frac{1}{2} \left| \mathbf{1} \right\rangle) + \left| \mathbf{11} \right\rangle (\frac{\sqrt{3}}{2} \left| \mathbf{0} \right\rangle + \frac{1}{2} \left| \mathbf{1} \right\rangle) \Big] \end{split}$$

Alice (the sender) must measure her two qubits (qubit 0 and qubit 1), then send the results classically to Bob (the receiver). Alice's measurements allow the following deductions about Bob's state;

Alice's Measurements	Bob's State		Correction Required
<mark>0</mark> 0⟩	$\left[\frac{\sqrt{3}}{2}\left 0\right\rangle\right.+$	$\frac{1}{2}\ket{1}$	-
<mark>0</mark> 1⟩	$\left[rac{\sqrt{3}}{2} \left 1 ight angle + ight.$	$\frac{1}{2} \ket{0}$	X
10⟩	$\left[\frac{\sqrt{3}}{2}\left 0\right\rangle\right.$	$\frac{1}{2}\ket{1}$	Z
11>	$\left\lceil \frac{\sqrt{3}}{2} \left \frac{1}{2} \right\rangle - \right\rceil$	$\frac{1}{2} 0 \rangle$	XZ