Red Wine Quality

Este projeto tem por objetivo treinar um modelo do machine learning para prever a qualidade do vinho vermelho. Para este treinamento será utilizado o modelo Árvore de decisão, por meio do pacote (C50).

Dataset

- O Dataset está disponível em: Red Wine Quality.
- O Dataset apresenta os dados de 1599 vinhos, distribuídos entre 12 variáveis coletadas com base em testes físicos-químicos:
 - 1. fixed acidity
 - Representa a volatilidade dos ácidos presentes no vinho, ou seja, ácidos que não evaporam facilmente.
 - 2. volatile acidity
 - Representa a quantidade de ácido acético no vinho, ou seja, níveis muito altos podem causar um sabador de vinagre no vinho.
 - 3. citric acid
 - Representa a quantidade de ácido cítrico presente no vinho.
 - 4. residual sugar
 - Representa a quantidade de açúcar restante no vinho após o processo de fermentação.
 - 5. chlorides
 - Representa a quantidade de sal presente no vinho.
 - 6. free sulfur dioxide
 - Representa a quantidade de gás SO2 liberado.
 - 7. total sulfur dioxide
 - Representa o total de gás SO2.
 - 8. density

- Representa a densidade do vinho.
- 9. pH
- Representa quão ácido ou básico é um vinho em uma escala de 0 (muito ácido) a 14 (muito básico);

10. sulphates

• Um aditivo de vinho que pode contribuir para os níveis de dióxido de enxofre

11. alcohol

• Representa a percentagem de teor alcoólico do vinho.

$12\,.\,\mathrm{quality}$

• Representa a pontuação do vinho, em uma escala de 0 a 10. Sendo 0 um vinho considerado ruim e 10 um vinho bom.

Análise Exploratória dos dados

Uma breve análise dos dados, para poder entender suas características.

Distribuição da Qualidade

Como podemos ver pelo gráfico da Distribuição da Qualidade, a qualidade do vinho predomina entre 5 e 6.

Densidade por teor alcoolico do vinho

A partir do gráfico gerado, podemos observar que a tendência geral é que quanto maior o teor álcoolico do vinho, menor a sua densidade. Nesta análise, pode-se concluir também que quanto maior a qualidade do vinho, maior o teor alcoólico e menor a densidade.

Vemos que a densidade por açúcar residual tem uma distribuição bimodal para os vinhos de maior qualidade e uma cauda longa para os de menor qualidade mas de forma pouco significativa.

O pH presentes nos vinhos, apresenta uma distribuição normal e bem concentrada, na faixa entre 3.0 e 3.7.

Preparação dos dados para aplicação do modelo

Para preparação dos dados, foi necessário criar uma variável categorica para a qualidade do vinho, aplicando o seguinte critério:

Qualidade < 5 = ruim, Qualidade > 5 & Qualidade < 6 = normal, Qualidade > 6 = boa

Com isso os dados ficaram distribuidos da seguinte forma:

Table 1: Distribuição dos dados originais

Var1	Freq
bom	0.1357098
normal	0.8248906
ruim	0.0393996

Os dados foram separados aleatoriamente entre dados de 'test' e 'training', onde 80% dos dados foram separados para testes e os 20% restantes separados para treinamento do modelo.

Após a separação os dados ficaram distruibuidos da seguinte forma:

Table 2: Distribuição dos dados de treinamento

Var1	Freq
bom	0.1469898
normal	0.8123534
ruim	0.0406568

Table 3: Distribuição dos dados de testes

Var1	Freq
bom	0.090625
normal	0.875000
ruim	0.034375

É possível notar que os dados não estão distribuídos de maneira uniforme, pois em ambos os datasets há uma maior concentração de vinhos considerados **normais**, cerca de 80%, porém segue a distribuição dos dados originais.

Aplicação do Modelo

Utilizando os dados separados para treinamento e aplicando o modelo de classificação C5.0 e posteriormente fazendo a predição, utilizando a função predict, do modelo gerado após o treinamento e o dados separados para testes, gerou a seguinte matriz de confusão.

Conforme a tabela abaixo é possível ver que o modelo teve uma precisão não tão alta, cerca de 85%.

Table 4: Precisão do modelo

	confusionMatrix.overall
Accuracy	0.8593750
Kappa	0.3533031
AccuracyLower	0.8163925
AccuracyUpper	0.8955429
AccuracyNull	0.8843750
AccuracyPValue	0.9281729
${\bf Mcnemar PValue}$	NaN

Utilizando mais árvores

Em tempo, foi aplicado o modelo com até 20 árvores de decisão, a fim de obter a melhor precisão. Dessa forma, obteve-se o seguinte gráfico:

Observando, é possível perceber que o modelo não possui uma regularidade na execução, pois a precisão varia muito conforme o número de árvores, tendo a melhor precisão com 12 árvores com cerca de 96% de precisão.

Por outro lado, talvez não tenha vantagem em usar as 12 árvores, pois a partir de 8 árvores não se tem ganhos significativos de precisão, ficando na faixa dos 90%.

O repositório deste projeto pode ser encontrado em: Wine-Quality