Section 14.2 - Limits and Continuity

Vector Calc

Compare the behavior, as (x1y) > 10,0)

$$f(x_1y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$$
 and $g(x_1y) = \frac{x^2-y^2}{x^2+y^2}$

See Table (and 2 f(x,y) -> 1 and g(x,y) -> DNE

We say
$$\lim_{(x,y)\to(0,0)} f(x,y) = 1$$
 and $\lim_{(x,y)\to(0,0)} g(x,y) = DNE$

· Let f be a function of two voriables whose domain includes points arbitrarily close to (a,b). We say

if for every E>0 7 8>0 S.t. if (x,y) ED and OL (x-a)2+ (y-b)2<82

A The idea is that no matter what path on f(x, v) is taken towards (x,y) -> (a,b), must have f(x,y) -> L.

* If f(x,y) -> L, ag (x,y) -> (a,s) on plath C, but

f(x,y) -> L2 as (x,y) -> (a,b) on path cz and L, +L2 then (x,y) => (a,b)

Ex 1 Show that lim x2-y2 DNE.

So
$$f(x,y) \rightarrow 1$$
 on C_1

$$C_2: (x,y) \rightarrow (0,0) \text{ along } y\text{-ax:s}: x=0 \text{ so } f(0,y) = -\frac{y^2}{y^2} = -1 \text{ for } y\neq 0$$

$$\begin{cases} f(x,y) \rightarrow -1 \text{ on } C_2 \end{cases}$$
So $f(x,y) \rightarrow -1 \text{ on } C_2$

$$[Ex3]$$
 $f(x,y) = \frac{xy^2}{x^2+y^2}$, does $\lim_{(x,y)\to(0,0)} f(x,y) = ex:s+?$ Paths on x,y -axis $f(x,y)\to 0$

$$C_m: (x,y) \to (0,0)$$
 along $y=mx$: $f(x,mx) = \frac{x^3m^2}{x^2+m^2x^2} = \frac{xm^2}{1+n^4x^2}$ for $x \neq 0$ $f(x,y) \to 0$

(:
$$(x,y) \rightarrow (0,0)$$
 along $x=y^2$: $f(y^2,y) = \frac{y^4}{y^4 + y^4} = \frac{1}{2}$ for $x \neq 0$ $f(x,y) \rightarrow \frac{1}{2}$

[Ex 4] Find lim (x,y) - (0,0) x2+y2 if it exists. Similar to Ex3 but C: f(x,y) -> 0=L

let 870. Need to find 870 so that if

$$0 < |x|^2 + y^2 < 8^2$$
 then $|\frac{3x^2y}{x^2 + y^2} - 0| < \varepsilon$ $\frac{3x^2|y|}{x^2 + y^2} < \varepsilon$

Since $x^2 \leq x^2 + y^2 \Rightarrow \frac{x^2}{x^2 + y^2} \leq 1 \Rightarrow \frac{3x^2|y|}{x^2 + y^2} \leq 3|y| \leq 3\sqrt{y^2 + x^2} \leq \epsilon$ Let $8 = \frac{8}{3}$ then for all $(x_1 y) \in D$ with $0 \leq x^2 + y^2 \leq 8^2$ then

$$\frac{3 \times^2}{x^2 + y^2} - 0$$
 \(\le 3\le 3\le y^2 + \chi^2 \le 2

Hence
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

· A function f of two variables is continuous at (a,b) if lim f(x,y) = f(a,b).
We say f is continuous on D if f is continuous at every point (a,b) in D.

Theorem 2:
$$\lim_{(x,y)\to(a,b)} x = a$$
 $\lim_{(x,y)\to(a,b)} y = b$ $\lim_{(x,y)\to(a,b)} c = c$

La All polynomials of two variables are continues.

Ex5
$$\lim_{(x,y)\to(1,2)} x^2y^3 - x^3y^2 + 3x + 2y = (1)^2(2)^3 - (1)^3(2)^2 + 3(1) + 2(2) = 11$$

$$[E \times 8]$$
 $f(x,y) = \begin{cases} \frac{3x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ Is $f(x,y) = (0,0)$

Only issue is when x2+y2=0 which is (x,y)=(0,0).

But by Ex 4 lim f(x,3) = 0 = f(0,0) So f is continous.

- * If f is defined on DCR" then lim f(x) = L means \ \ \in \ \frac{1}{8} \colors \in \ if \ \times \ \t
 - of is continues at \vec{x} if $\lim_{x \to \vec{x}} f(\vec{x}) = f(\vec{x})$.