L'usage da la calculatrice et du mobile est interdit.

N.B.

- 1- Il sera tenu compte de la présentation de la copie.
- 2- Les réponses doivent être justifiées.

Exercice: (7 pts)

Soit la matrice:

$$A_m = \begin{pmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1- Déterminer suivant le paramètre m le rang de la matrice A_m .
- **2-** Pour quelles valeurs de m la matrice est-elle inversible ?
- **3-** Soit $g \in End(\mathbb{R}^3)$, $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $A_m = M_B(g)$.
- **a-** Déterminer l'endomorphisme g.
- **b-** Soit

$$C = (v_1 = (2, 0, 1), v_2 = (0, -1, 1), v_3 = (1, 1, 0))$$
 une base de \mathbb{R}^3 .

Déterminer la matrice P de passage de B vers C.

- **c-** Déterminer P^{-1} .
- **d-** En déduire $A'_{m} = M_{C}(g)$.

Problème: (13 pts)

On considère dans $M_2(\mathbb{R})$ les matrices suivantes :

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

I- Soit $A \in M_2(\mathbb{R})$ telle que $A \neq I_2$ et $A \neq N$.

1/- Soit l'application f définie comme suit :

$$f: M_2(\mathbb{R}) \longrightarrow M_2(\mathbb{R})$$

 $M \mapsto f(M) = (A \times M) - (M \times A)$

Montrer que f est un endomorphisme d'espaces vectoriels.

- 2/ Déterminer ker f.
- 3/ Montrer que (ker $f, +, \times$) est un anneau unitaire (+ et \times désignent, respectivement, la somme et le produit des matrices).

II- Pour toute la suite, on pose : $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$.

1/- Soit la matrice
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}).$$

- a/ Déterminer c et d en fonction de a et b pour que f(M) = 0.
- \mathbf{b} / En déduire une base de ker f ainsi que le rang de f.
- \mathbf{c} / Montrer que tout élément K de ker f , on a :

$$K^{2} = \begin{pmatrix} a^{2} & (a+b)^{2} - a^{2} \\ 0 & (a+b)^{2} \end{pmatrix}.$$

d/ Déterminer, par récurrence, K^n pour tout $n \in \mathbb{N}^*$.

2/- On munit $M_2(\mathbb{R})$ de la base :

$$B_C = \left\{ E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- **a**/ Déterminer la matrice $L = M_{B_C}(f)$.
- \mathbf{b} / En échelonnant la matrice L, déterminer une base de ker f et une base de Im f.
- **c**/ Compléter la base de ker f en une base de $M_2(\mathbb{R})$.