Niveau: 2nde AC

Discipline:

PHYSIQUE-CHIMIE

CÔTE D'IVOIRE - ÉCOLE NUMÉRIQUE

THÈME 3: LA MATIÈRE ET SES TRANSFORMATIONS

TITRE DE LA LEÇON: EQUATION-BILAN D'UNE REACTION CHIMIQUE

I. <u>SITUATION D'APPRENTISSAGE</u>

Des élèves de la classe de seconde C du Lycée Moderne de Bouaflé découvrent dans une revue scientifique le texte suivant : « L'un des problèmes de l'industrie chimique est d'exploiter des réactions chimiques où il n'y a pas de pertes... Ce qui nécessite le respect (des proportions des réactifs engagés dans la réaction) d'un mélange des réactifs dans certaines proportions: c'est l'objet de la stœchiométrie. » Afin de mieux appréhender cette préoccupation, sur initiative du professeur de Physique-Chimie, ces élèves se proposent d'écrire l'équation-bilan d'une réaction chimique, de déterminer des quantités de matière et des volumes à partir de l'équation-bilan et de connaître la loi de Lavoisier.

II. CONTENU DE LA LEÇON

1. Équation-bilan d'une réaction chimique

1.1.Expérience et observations

1.2.Interprétation

Réactifs	Produits	
- Carbone C - Oxyde de cuivre II CuO	Transformation chimique	Cuivre CuDioxyde de carbone CO₂

1.3. Conclusion

L'équation-bilan de la réaction chimique s'écrit :

$$\underbrace{C + 2CuO}_{\text{Les réactifs}} \rightarrow \underbrace{2Cu + CO_2}_{\text{Les produits}}$$

- ❖ Les coefficients placés devant les formules des réactifs et des produits sont appelés coefficients stœchiométriques. Ils permettent de respecter la conservation des atomes.
- + signifie réagit avec (réactifs); + signifie et (produits)
- ❖ la flèche → signifie **pour donner**
- ❖ 1 mole d'atome de carbone réagit avec 2 moles d'oxyde de cuivre II pour donner 2 moles d'atomes de cuivre et 1 mole de molécule de dioxyde de carbone.

	$C + 2CuO \rightarrow 2Cu + CO_2$			2	
Bilan molairede l'équation	1 mole	2 moles		2 moles	1 mole
	n_{C}	n_{CuO}		n_{Cu}	n_{CO_2}
	12g	159g		127g	44g
	171g			171g	

Le bilan molaire permet d'écrire : $\frac{n_{\mathcal{C}}}{1} = \frac{n_{\mathcal{C}u0}}{2} = \frac{n_{\mathcal{C}u}}{2} = \frac{n_{\mathcal{C}o_2}}{1}$

Activité d'application

Équilibre les équations-bilan de réactions chimiques suivantes :

$$Al + S \longrightarrow Al_2S_3$$

$$Fe + O_2 \longrightarrow Fe_2O_3$$

$$PbO + C \longrightarrow Pb + CO_2$$

$$C_3H_8 + Cl_2 \longrightarrow C + HCl$$

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

Solution

$$2A1 + 3S \longrightarrow Al_2S_3$$

$$4\text{Fe} + 3\text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3$$

$$2PbO + C \longrightarrow 2Pb + CO_2$$

$$C_3H_8 + 4Cl_2 \longrightarrow 3C + 8HCl$$

$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

1.4. Équation-bilan et stœchiométrie

Soit l'équation-bilan suivante :

$$a A + b B \rightarrow c C + d D$$

Les proportions sont stœchiométriques: Dans ce cas, à la fin de la réaction, il ne reste plus de réactifs et les produits sont obtenus dans les proportions de l'équation-bilan.

$$\frac{n_A}{a} = \frac{n_B}{b} = \frac{n_C}{c} = \frac{n_D}{d}$$

- ❖ L'un des réactifs est en excès et l'autre en défaut. Celui qui est en défaut est dit réactif limitant.
 - Si $\left| \frac{n_B}{h} > \frac{n_A}{a} \right|$ alors B est en excès et A est en défaut.

Activité d'application

Le chlorure d'hydrogène HCℓ réagit avec le dioxygène pour donner de l'eau et du dichlore selon l'équation-bilan suivante :

$$\begin{array}{ccccc} 4HC\ell + & O_2 & \longrightarrow 2H_2O & + & 2C\ell_2 \\ n_1n_2n_3n_4 & & & \end{array}$$

Calcule:

- 1) la quantité de matière de dichlore sachant que 5 moles de chlorure d'hydrogène ont réagi.
- 2) la quantité de matière de dioxygène nécessaire pour cette réaction.

Solution

1) Quantité de matière de dichlore obtenue (n₄)

$$\frac{n_1}{4} = \frac{n_4}{2} \Longrightarrow \frac{5}{4} = \frac{n_4}{2} \Longrightarrow n_4 = \frac{5 \times 2}{4} = 2,5 \text{ mol}$$

2) Quantité de matière de dioxygène nécessaire (n2)

$$\frac{n_1}{4} = \frac{n_2}{1} \implies \frac{5}{4} = \frac{n_2}{1} \implies n_2 = \frac{5}{4} = 1,25 \ mol$$

2. Conservation de matiere

2.1. Conservation des éléments

Au cours d'une réaction chimique, chacun des éléments présents dans les réactifs se retrouve dans les produits : on dit qu'il y a **conservation des éléments**.

2.2.Loi de Lavoisier

La somme des masses des produits d'une réaction est égale à la somme des masses des réactifs transformés.

Remarque: Le bilan molaire permet d'établir:

- le bilan massique :
- le bilan volumique au niveau des corps à l'état gazeux s'ils sont tous placés dans les mêmes conditions de température et de pression (loi d'Avogadro Ampère).

Exemple de bilan massique

	Réactifs		Produits	
Equation-bilan	3 Fe	+ 2 O ₂ $-$	→ Fe ₃ O ₄	
Bilan molaire	3 mol	2 mol	1 mol	
Bilan massique	$m_{Fe} = 3 \times 55,8$	$m_{O_2} = 2 \times 32$	$m_{Fe_3O_4} = 3 \times 55,8 + 4 \times 16$	
(m = n.M)	= 167,4 g	=64g	= 231,4 g	
Somme des masses	231,4 g		231,4 g	

Exemple de bilan volumique (Valable uniquement pour les gaz)

	Réactifs		Produits	
Equation-bilan	$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$			
Bilan molaire	1 mol	5 mol	3 mol	4 mol
Bilan volumique	$V_{C_3H_8}$	$5V_{O_2}$	$3V_{CO_2}$	$4V_{H_2O}$

$$\frac{V_{C_3H_8}}{1} = \frac{V_{O_2}}{5} = \frac{V_{CO_2}}{3} = \frac{V_{H_2O}}{4}$$

Situation d'évaluation

Au cours d'une activité du club scientifique d'un Lycée Moderne, un groupe d'élève de 2^{nde} C désire obtenir du fer à partir de l'oxyde ferrique II. Ils mélangent alors 16 g d'oxyde de fer (Fe₂O₃) et 38 g d'aluminium. A l'aide d'une mèche de magnésium, ils déclenchent la réaction et observe une vive incandescence. La réaction s'arrête au bout d'un instant. Une discussion s'engage alors entre ces élèves : certains prétendent que l'oxyde de fer à totalement disparu, d'autres estiment que c'est l'aluminium qui a totalement disparu. Ils savent néanmoins que les produits de cette réaction sont : le fer et l'alumine (Al₂O₃). Pour les départager tu décides de connaître le réactif en défaut afin de déterminer les masses des produits formés.

On donne: Masse molaire (g/mol): Fe:56; Al: 27; O:16

- 1- Écris l'équation-bilan de cette réaction.
- 2- Détermine la quantité de matière initiale d'oxyde ferrique et celle d'aluminium.
- 3- Justifie que ce mélange n'est pas stœchiométrique et identifie le réactif en excès.
- 4- Détermine :
 - 4.1 la masse du réactif en excès restant en fin de réaction.
 - 4.2 la masse de fer obtenue
 - 4.3 la masse d'alumine obtenue.

Solution

1- Équation-bilan de la réaction

$$Fe_2O_3 + 2A\ell \rightarrow 2Fe + A\ell_2O_3$$

 $Fe_2O_3 + 2A\ell \rightarrow 2Fe + A\ell_2O_3$ 2- Calculons les quantités de matières initiales des deux réactifs

$$n_1 = \frac{m_1}{M_1} AN$$
: $n_1 = \frac{16}{160} \Rightarrow n_1 = 0,1 \text{ mol et } n_2 = \frac{m_2}{M_2} AN$: $n_2 = \frac{38}{27} \Rightarrow n_2 = 1,4 \text{ mol}$

3- D'après le bilan molaire:

$$\frac{1}{n(Fe_2O_3)} = \frac{2}{n(A\ell)} \Rightarrow n(A\ell) = 2 \times n(Fe_2O_3) \quad AN : n(A\ell) = 2 \times 0, 1 \Rightarrow n(A\ell) = 0,2 \text{ mol}$$

Il n'y a que $n(A\ell) = 0.2$ mol de l'aluminium qui a réagi sur 1,4 mol d'aluminium initial.

Ou

$$\frac{n_{\text{A}\ell}}{2} = \frac{1.4}{2} = 0.7 \text{ mol}$$

$$\frac{n_{\text{Fe}_2\text{O}_3}}{1} = \frac{0.1}{2} = 0.05 \text{ mol}$$

$$\frac{n_{\text{A}\ell}}{2} > \frac{n_{\text{Fe}_2\text{O}_3}}{1}$$

Donc les réactifs n'ont pas été tous entièrement consommés et le réactif en excès est l'aluminium.

4.1 Masse du réactif en excès restant.

* Le nombre de moles n'(Al) n'ayant pas réagi est :

$$n'(A\ell) = n_2 - n(A\ell)$$
 AN: $n'(A\ell) = 1,4 - 0,2 \Rightarrow n'(A\ell) = 1,2$ mol

* La masse restante

$$m'(A\ell) = n'(A\ell) \times M(A\ell)$$
 AN: $m'(A\ell) = 1,2 \times 27 \Rightarrow m'(A\ell) = 32,4$ g

4-2 Masse de fer obtenu.

D'après le bilan molaire :

$$\frac{2}{n(A\ell)} = \frac{2}{n(Fe)} \Rightarrow n(Fe) = n(A\ell) = 0.2 \text{ mol} \text{ AN} : m(Fe) = 0.2 \times 56 \Rightarrow m(Fe) = 11.2 \text{ g}$$

4-3 Masse d'alumine obtenue

$$\frac{2}{n(A\ell)} = \frac{1}{n(A\ell_2O_3)} \Rightarrow \mathbf{n}(A\ell_2O_3) = \frac{1}{2} \times \mathbf{n}(A\ell) \quad \text{AN} : n(A\ell_2O_3) = \frac{1}{2} \times 0, 2 = 0, 1 \text{ mol}$$

$$M(A \ell_2 O_3) = 2 \times 27 + 3 \times 16 = 102 \text{ g/mol}$$

$$m(A\ell_2O_3) = n(A\ell_2O_3) \times M(A\ell_2O_3)$$
 AN: $m(A\ell_2O_3) = 0.1 \times 102 \Rightarrow m(A\ell_2O_3) = 10.2 g$

IV. EXERCICES

Exercice1

Énonce la loi de Lavoisier.

Solution

Énoncé de la loi de Lavoisier : Au cours d'une réaction chimique la masse des produits initiaux est la même que celle des produits formés.

Exercice 2

Soit l'équation-bilan de la combustion complète du carbone :

$$C_4H_{10} + O_2 \rightarrow CO_2 + H_2O$$

- 1. Équilibrecette équation-bilan.
- 2. Fais le bilan molaire
- 3. Exprime la relation de proportionnalité entre les nombres de moles.

Solution

1.
$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4 CO_2 + 5 H_2O$$

2

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4 CO_2 + 5 H_2O$$

$$1 \, mol \, \frac{13}{2} \, mol \, 4 \, mol \, 5mol$$

3.

$$\frac{n(C_4 H_{10})}{1} = \frac{n(O_2)}{\frac{13}{2}} = \frac{n(CO_2)}{4} = \frac{n(H_2O)}{5}$$

$$\Rightarrow n(C_4 H_{10}) = \frac{2}{13} n(O_2) = \frac{1}{4} n(CO_2) = \frac{1}{5} n(H_2O)$$

Exercice3

Votre classe effectue une sortie dans une structure de production d'alcool éthylique(C_2H_6O). Le technicien de laboratoire vous apprend que l'alcool éthylique est obtenu chez eux par une fermentation du glucose ($C_6H_{12}O_6$). Le rendement de cette fermentation est évalué à 0,75.

Données : $V_m = 22,4 \text{ L.mol}^{-1}$; $M_H = 1 \text{ g.mol}^{-1}$; $M_O = 16 \text{ g.mol}^{-1}$; $M_C = 12 \text{ g.mol}^{-1}$.

Au cours de cette réaction en plus de l'éthanol, il se forme du dioxyde de carbone.

De retour en classe, tu es désigné pour étudier théoriquement la fermentation de 100 g de glucose.

- 1. Ecris l'équation-bilan de cette fermentation.
- 2. Détermine la quantité matière dans 100 g de glucose.
- 3. Détermine:
 - 3.1 lamasse d'alcool formé:
 - 3.2 le volume de dioxyde de carbone formé.

Solution

1.
$$C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$$

 $\mathbf{1}_1$

$$n_2\; n_3$$

2. Quantité matière

$$n = \frac{m}{M} = \frac{100}{180} = 0,55 \text{ mol}$$

3.

3.1 Masse d'alcool formé

$$n_1 = \frac{n_2}{2}$$
 donc $n_2 = 2n_1$

 $m_{alcool} = M_{alcool} \times n_2 \times 0,75 = 38 g$

$$3.2 V_{CO2} = V_m \times n_{CO2} \times 0.75$$

$$V_{CO2} = 22,4 \times 2 \times 0,55 \times 0,75 = 18,5 L$$

Exercice4

En vue de préparer le devoir de niveau prochain, Koné élève de 2^{nde}C recopie l'exercice ci-dessous dans un livre de Physique-Chimie.

On réalise dans un eudiomètre, la combustion complète de 30 cm^3 d'un mélange de méthane et de butane. Après passage de l'étincelle et retour dans les conditions initiales, on obtient 40 cm^3 de dioxyde de carbone et d'eau. Les volumes sont mesurés dans les CNTP où $V_m = 22,4 \text{ L}$.

Koné ne comprend pas l'exercice. Il sollicite ton aide.

- 1- Ecris les équations- bilans de la combustion complète du butane et du méthane dans le dioxygène.
- 2- Détermine les pourcentages en mole de chacun des constituants du mélange des deux hydrocarbures gazeux.
- 3. Détermine les volumes respectifs de chacun des hydrocarbures gazeux ainsi que le volume d'air que nécessite la combustion complète.

Solution

1- Equations- bilan de la combustion complète du butane et du méthane dans le dioxygène.

$$CH_4 + 2 O_2 \longrightarrow CO_2 + 2 H_2O$$
 (I)

$$C_4H_{10} + \frac{13}{2}O_2 \longrightarrow 4CO_2 + 5 H_2O$$
 (II)

2- Déterminons les pourcentages en mole de chacun des constituants

Appelons V_1 et V_2 les volumes (en cm³) de méthane et de butane dans le mélange :

$$V_1 + V_2 = 30 \text{ cm}^3(\mathbf{a})$$

Les proportions entre les volumes réagissant sont données par les coefficients des équations-bilans.

Un volume V₁ de méthane produit un volume V₁ de CO₂

Un volume V₂ de butane produit un volume 4 V₂ de CO₂

Donc:
$$V_1 + 4 V_2 = 90 \text{ cm}^3$$
 (b)

On forme le système d'équation avec (a) et (b)

$$\begin{cases} V_1 + V_2 = 30 \\ V_1 + 4 V_2 = 90 \end{cases} \qquad \begin{cases} V_1 = 10 \text{ cm}^3 = 10 \text{ mL} \\ V_2 = 20 \text{ cm}^3 = 20 \text{ mL} \end{cases}$$

* Soit n₁ le nombre de mole de méthane et n₂ celui de butane :

$$\mathbf{n}_1 = \frac{\mathbf{V}_1}{\mathbf{V}_m} \quad \text{et} \quad \mathbf{n}_2 = \frac{\mathbf{V}_2}{\mathbf{V}_m}$$

AN:
$$n_1 = \frac{10.10^{-3}}{22.4} \Rightarrow n_1 = 4,46.10^{-4} \text{ mol}$$
 et $n_2 = \frac{20.10^{-3}}{22.4} \Rightarrow n_2 = 9.10^{-4} \text{ mol}$

le nombre de mole total du mélange et les pourcentages en mole.

$$\mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2$$
 AN: $\mathbf{n} = (4,46 + 9).10^{-4} \Rightarrow \mathbf{n} = \mathbf{13,46.10^{-4}}$ mol

$$%n_1 = \frac{n_1}{n} \times 100 = \frac{4,46.10^{-4}}{13.46.10^{-4}} \times 100 = 33,13 \%$$

$$\%n_2 = \frac{n_2}{n} \times 100 = \frac{9.10^{-4}}{13.46.10^{-4}} \times 100 = 66.87 \%$$

3- Le volume de chaque hydrocarbure: voir réponse 2°) $V_1 = 10 \text{ cm}^3 \text{ et } V_2 = 20 \text{ cm}^3$

AN:
$$V_{O2} = 2 \times 10 + \frac{13}{2} \times 20 \implies V_{O2} = 150 \text{ cm}^3$$

❖ Le volume d'air nécessaire

$$V_{air} = 5V_{02}AN$$
: $V_{air} = 5 \times 150 \implies V_{air} = 750 \text{ cm}^3$

Exercice-5

À l'issue du cours sur l'équation-bilan, votre professeur de physique – chimie décide d'évaluer vos acquis. Il vous soumet l'exercice ci-dessous.

On chauffe un mélange d'oxyde de cuivre II et de carbone dans un tube à essais coiffé d'un tube à dégagement. On observe que le gaz qui se dégage trouble l'eau de chaux et que la poudre initialement noire devient jaune rosâtre.

 $Donn\acute{e}es: C: 12g.mol^{-1} \; ; \; O: 12g.mol^{-1} \; ; Cu: 63, 5.mol^{-1} \; ; V_M \!\! = 22, 4 \; L.mol^{-1}.$

Tu es élève de la classe. Donne ta production.

- 1. Identifie les produits de cette réaction.
- 2. Ecris l'équation bilan de cette réaction.
- 3. On veut obtenir une masse m = 3.18 g de cuivre.
 - 3.1 Détermine :
 - 3.1.1 la masse des réactifs.
 - 3.1.2 le volume du gaz formé.

Solution

- 1. Les produits sont : poudre jaune rosâtre, cuivre et gaz dioxyde de carbone.
- 2. $2 CuO + C \rightarrow CO_2 + 2 Cu$

3.
$$n_{\text{Cu}} = \frac{m_{Cu}}{M_{Cu}} = \frac{3.18}{63.5} = 5.10^{-2} \text{ mol.}$$

3.1.1. D'après l'équation-bilan :

$$n_{Cuo} = n_{Cu} = 5.10^{-2} \text{ mol.}$$

 $n_{C} = \frac{n_{Cu}}{2} = 2,5.10^{-2} \text{ mol.}$

Ce qui donne :

$$m_{CuO} = 5.10^{-2} \text{ x } 79,5 = 3,975 \text{ g}$$

 $m_{C} = 2,5.10^{-2} \text{ x } 12 = 0,3 \text{ g}$

3.1.2.

$$n_{CO_2} = \frac{n_{Cu}}{2} = ,2,5.10^{-2} \text{ mol.}$$

 $V_{CO_2} = 2,5.10^{-2} \text{ x } 22,4 = 0,56 \text{ L}$

IV. DOCUMENTS

LAVOISIER, UN DES FONDATEURS DE LA CHIMIE MODERNE

Antoine Laurent Lavoisier (1743 – 1794) est un grand expérimentateur ; il est le premier à effectuer des mesures de masses et de volumes gazeux au cours d'expériences de Chimie. En 1774, il réalise la première analyse de l'air et montre que ce gaz est un mélange de dioxygène et de diazote. Il est célèbre grâce à la loi de conservation de la masse lors d'une réaction chimique (loi de Lavoisier) qu'il énonça de la manière suivante :

« Rien ne se crée, ni dans les opérations de l'art, ni dans celles de la nature, et l'on peut poser en principe que, dans toute opération, il y a une égale quantité de matière avant et après l'opération,... » Par quantité de matière, il faut entendre masse.

Il s'intéressa égalementà la biologie, aux sciences humaines et sociales...; il joua un rôle sous la révolution. Malheureusement, il avait été fermier général dans l'ancien Régime; le Tribunal révolutionnaire considéra les fermiers généraux comme des ennemis de la République et il fut guillotiné le 8 mai 1794.

