Statistical-Inference-Course-Project Part 1

Yigang

Part 1: Simulation

Run 1000 simulations for exponential distribution, where each simulations has lambda = 0.2 and n = 40

```
set.seed(1)

lambda <- 0.2
n <- 40
times <- 1000

simulations <- matrix(rexp(n*times, rate = lambda), times)
simulation_mean <- apply(simulations, 1, mean)

hist(simulation_mean)</pre>
```

Histogram of simulation_mean

Compare mean from simulation with theoretical mean

```
theoretical_mean <- 1/lambda
hist(simulation_mean)
abline(v = theoretical_mean, col = "red")
text(6, 220, expression("theoretical_mean" == 5), col = "red")</pre>
```

Histogram of simulation_mean

Compare variation from simulation with theoretical variation

```
theoretical_var <- (1/lambda)^2/n;
theoretical_sd <- 1/lambda/sqrt(n);
simulation_sd <- sd(simulation_mean)
print(paste("Theoretical variance = ", theoretical_var))

## [1] "Theoretical variance = 0.625"
print (paste("Simulation Variance = ",round(var(simulation_mean), 3)))

## [1] "Simulation Variance = 0.618"
print (paste("Theoretical standard deviation = ", round(theoretical_sd, 3)))

## [1] "Theoretical standard deviation = 0.791"
print (paste("Simulation standard deviation = ",round(simulation_sd, 3)))

## [1] "Simulation standard deviation = 0.786"</pre>
```

Show the distribution is approximately normal

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Compare Confidence Interval from simulation with theoretical Confidence Interval

Conclusion

The simulations provide an evidence that support the Central Limit Theorem and the distribution of sample means are approximately normal.