

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

(An autonomous Institute affiliated to Savitribai Phule Pune University)
Department of Electronics & Telecommunication Engineering

VITE&TC PDTY23 ITPRODUCT

Problem	Given an integer A, find the floor value of real number A / 200
Statement #35	Floor value of a real number X is the greatest integer less than or equal to X
Problem	-10 ⁸ <= A <= 10 ⁸
Constraint	
Example	A = -2113
Input	
Example	-11
Output	

Problem	Given an integer A, find the ceil value of real number A / 200
Statement #36	Ceil value of a real number X is the smallest integer value that is greater than or equal to X
Problem	The only first line contains the integer N denoting the number of
Constraint	layers
Example	A = -2113
Input	
Example	-10
Output	

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

(An autonomous Institute affiliated to Savitribai Phule Pune University)
Department of Electronics & Telecommunication Engineering

Problem	Given the temperature of a day in Degrees Celsius, convert this
Statement	given temperature from Celsius to Fahrenheit. Write a program to
#37	do so. Round the output up to 2 decimal places
#37	
Problem	Fahrenheit = ((9/5)*Celsius) + 32
Constraint	
Example	36.8
Input	
Example	98.24
Output	

Problem	Given an integer A, find the rounded value of real number A / 200
Statement	Rounded value of 2.4 = 2
#38	
	Rounded value of 2.5 = 3
	Rounded value of -2.4 = -2
	Rounded value of -2.5 = -3
Problem	-10 ⁸ <= A <= 10 ⁸
Constraint	
Example	A = 7
Input	
Example	0
Output	

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

(An autonomous Institute affiliated to Savitribai Phule Pune University)
Department of Electronics & Telecommunication Engineering

Problem	Given three integers, A, B and C. You have to find the number of
Statement	days it will take to reach zero cases of Corona in a city.
#39	A - Average cases recovered in a day of the corona B - Number of new cases of corona daily C - Current active cases of the corona
	Return the minimum number of days it will take to reach 0 active
	cases of Covid
Problem	1 <= B < A <= 5000
Constraint	1 <= C <= 1000
Example	A = 4
Input	B = 3
	C = 2
Example	2
Output	

Problem	You are given a positive integer A denoting the radius of a circle.
Statement	You have to calculate the area of the Circle
#40	Area of a circle having radius R is given by $(\pi * R^2)$
	Since, the answer can be a real number, you have to return the ceil value of the area. Ceil value of a real number X is the smallest integer that is greater than or equal to X
Problem	1 <= A <= 1000
Constraint	
Example	A = 4
Input	
Example	51
Output	

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

(An autonomous Institute affiliated to Savitribai Phule Pune University)
Department of Electronics & Telecommunication Engineering

Problem	You will be given an integer N. You need to return the count of
Statement	prime numbers less than or equal to N
#41	
Problem	0 <= N <= 10^3
Constraint	
Example	19
Input	
Example	8
Output	

Problem	Given the height (A) and weight (B) of a person as input in
Statement	centimetres and kilograms.
#42	Find the BMI of that person and the classification of the user based on their BMI.
	Print Underweight if BMI < 18.5
	Print Normal weight if BMI lies in the range [18.5, 24.9]
	Print Overweight if BMI lies in the range (24.9, 29.9]
	Print Obese if BMI is greater than 29.9
	If x is the weight in kilograms and y is the height in metres.
	Then, BMI is calculated as x/(y*y)
Problem	101
Constraint	29
Example	Overweight
Input	28.4

VISHWAKARMA INSTITUTE OF TECHNOLOGY, PUNE

(An autonomous Institute affiliated to Savitribai Phule Pune University) Department of Electronics & Telecommunication Engineering

Problem	Given a number A. Return square root of the number if it is perfect
Statement	square otherwise return -1
#43	
Problem	1 <= A <= 108
Constraint	
Example	A = 1001
Input	
Example	-1
Output	
Explanation	1001 is not a perfect square

Problem	Given two integers A and B. A represents the count of mangoes
Statement	and B represent the count of slices of mangoes. Mango can be cut
#44	into three slices of mangoes. A glass of mango shake can be
π44	formed by two slices of mangoes.
	Find the maximum number of glasses of mango shakes you can
	Tind the maximum number of glasses of mango snakes you can
	make with A mangoes and B slices of mangoes initially.
Problem	0 <= A, B <= 10^8
Constraint	
Example	A = 7
Innut	
Input	B = 1
Example	11
Output	

Dr Shripad Bhatlawande

Professor and Head, Dept of E&TC Engineering, Vishwakarma Institute of Technology, Pune