Scene Graphs

Scene Graph - Contenu

- Construire des structures de scènes
- Traversée
- Exemples
- Allocation et ré-utilization
- Transformations

Concept du Scene Graph

- Les objets sont placés relativement les uns aux autres
- Les objets sont composés d'éléments similaires
- Graphe acyclique, directionel

Utilisé pour l'animation et la modélisation

- Chaque composant a une transformation locale associée relativement à son parent
 - shoulder: translation (0 1 0) depuis la base
 - upper arm : translation (0 3 0) depuis shoulder
 - elbow: translation (0 3 0) depuis upper arm
 - forearm : rotation Z de 90°
 puis translation (0 2 0) depuis elbow
 - Hand: translation (0 1 0) depuis forearm

Parcours pour le rendu

- Convertir les positions des objets dans le repère du monde (WC) avant de passer dans le repère camera
- Etape 1 : Obtenir la position de Base dans WC
 - p.B dans WC (stocké dans le scène graphe)
- Etape 2 : hériter des matrices de la pile
 - Pour l'objet Shoulder
 - Mettre à jour p.SB dans WC
 - Garder p.S dans les coordonnées de l'objet base
- Etc.

Parcours pour le rendu – cas général

- On traverse
 - "push" : déscente du graphe
 - "pop" : remontée du graph
- Matrice combinée : <u>current</u>
 <u>transform matrix</u> (CTM)

Partage de noeud

- Par exemple, duplication d'objets
- Exemple, une table à plusieurs endroits
- Table1 a comme CTM T1T0
- Table2 a comme CTM T2T0

Coordonnées sphériques

• Representer un point en utilisant deux angles ϑ and Φ . et r = length(x,y,z)

Z

Q est la projection de P sur le plan XY θ est l'angle entre les axes X et OQ Φ est l'angle entre les axes OP et Z

Longueur $OQ = r \sin(\Phi)$

Donc:

$$x = r \sin(\Phi)\cos(\theta)$$

$$y = r \sin(\Phi)\sin(\theta)$$

$$z = r \cos(\Phi)$$

- 1. Translate p1 so it is at the origin
- 2. Let p3 = p2-p1 (new position of p2) find spherical co-ordinate of p3 (r, Φ , ϑ)
- 3. Rotate about Z by -9 to bring p3 into ZX plane
- 4. Rotate about Y by Φ to bring p3 onto Z axis
- 5. Now rotate about Z by Δ
- 6. Invert steps 4-1

- 1. Translate p1 so it is at the origin
- 2. Let p3 = p2-p1 (new position of p2) find spherical co-ordinate of p3 (r, Φ, ϑ)
- 3. Rotate about Z by -9 to bring p3 into ZX plane
- 4. Rotate about Y by Φ to bring p3 onto Z axis
- 5. Now rotate about Z by Δ
- 6. Invert steps 4-1

Rotate1

- 1. Translate p1 so it is at the origin
- 2. Let p3 = p2-p1 (new position of p2) find spherical co-ordinate of p3 (r, Φ, ϑ)
- 3. Rotate about Z by -9 to bring p3

 Yinto ZX plane
- 4. Rotate about Y by Φ to bring p3 onto Z axis
- 5. Now rotate about Z by Δ
- 6. Invert steps 4-1

Rotate2

- 1. Translate p1 so it is at the origin
- 2. Let p3 = p2-p1 (new position of p2) find spherical co-ordinate of p3 (r, Φ, ϑ)
- 3. Rotate about Z by -9 to bring p3 into ZX plane
- 4. Rotate about Y by Φ to bring p3 onto Z axis
- 5. Now rotate about Z by Δ
- 6. Invert steps 4-1

After Steps 1-4

- 1. Translate p1 so it is at the origin
- 2. Let p3 = p2-p1 (new position of p2) find spherical co-ordinate of p3 (r, Φ, ϑ)
- 4. Rotate about Y by Φ to bring p3 onto Z axis
- 5. Now rotate about Z by Δ
- 6. Invert steps 4-1

Conclusion

- Un graphe de scène (scene graph) est utilisé pour décrire les environnements modélisés. Il permet de modéliser des objets composés d'autres objets
- Deux notions importantes :
 - Parcours pour le rendu
 - current transformation matrix
- Instantiation et partage de noeud
- Transformation vue autrement :
 - Rotation des objets autour d'un axe arbitraire

