Векторная функция векторного аргумента – это соответствие r, при котором \forall точке $x \in \Omega$ евклидова пространства R^m сопостовляется вектор r(x) множества Q евклидова пространства R^p .

 $x \in \Omega = \{(x_1, \dots, x_m)\} \subset \mathbb{R}^m \to r(x) \in \mathbb{Q} = \{(r_1, \dots, r_p)\} \subset \mathbb{R}^p$

При этом множество Ω область задания, а Q множество значений. Если $\Omega = \{x\}$ – множество точек на прямой, то имеем функцию одного скалярного аргумента r(x).

Если $\Omega = \{(x_1, \dots, x_m)\} \subset \mathbb{R}^m$ – множество точек евклидова пространства, то имеем векторную функцию нескольких скалярных аргументов $r(x_1, \dots, x_m)$.

Годограф векторной функции

Пусть (r_1,\ldots,r_p) – координаты $r(x)\in Q\subset R^p$. Задание векторной функции r(x) равносильно заданию скалярных функций $r_1(x_1,\ldots,x_m),\ldots,r_p(x_1,\ldots,x_m)$, и если начала этих векторов совместить с началом соответствующей ДПСК, то точечное множество концов рассматриваемых радиус векторов будем называть годографом векторной функции.

If p=3 годограф векторной функции есть кривая, p=2 – поверхность.

Способы задания кривых

Элементарной кривой называют множество точек пространства, являющееся образом отрезка при топологическом отображении его в пространство.

Точки соответствующие конечным точкам отрезка, называют конечными точками элементарной кривой. Элементарные кривые – примыкающие если одна или обе пары их конечных точек совпадают между собой.

Кривой линией называется множество точек пространства, которое состоит из конечного или счетного множества элементарных кривых, примыкающих друг к другу.

Пусть γ – элементарная кривая, являющаяся образом промежутка a < t < b при топологическом отображении f его в пространство R^3 . x(t), y(t), z(t) – координаты точки на кривой γ соответствующей значению $t \in (a,b)$.

Тогда систему равенств x(t), y(t), z(t), $t \in (a,b)$ называют уравнениями кривой γ в параметрической форме или параметризацией кривой (кривая γ параметризована этими уравнениями).

Если же считать x(t), y(t), z(t) координатами радиус-вектора $\overrightarrow{r}(t)$ соответствующей точки кривой γ , мы получим векторную функцию $\overrightarrow{r}(t)$, $t \in (a,b)$, годографом которой является данная кривая. (способ задания кривой через векторную функцию скалярного аргумента по сути эквивалентный параметрическому способу).

Допустим, что кривая γ задается векторной функцией $\overrightarrow{r}(t), t \in (a,b)$.

Тогда заменив параметр t параметром u через отношение $t = g(u), u \in (\alpha, \beta)$, где g – строго возрастающая и непрерывная функция. Тогда получится новая параметризация, одну кривую можно задать множеством параметризаций.

Гладкая кривая — такая кривая, у которой векторная функция с помощью которой задана кривая дифференциируема 1 раз. Регулярная k раз $k \ge 1$.

Касательная к кривой

Пусть γ — некторая кривая, P — фиксированная точка и M — подвижная точка на кривой γ , PM — хорда кривой. Прямая PM стремится к прямой PT при $M \to P$, если угол φ между этими прямыми стремится к нулю, когда $M \to P$. Касательной к кривой γ в точке P называют прямую PT, к которой стремится хорда PM, когда $M \to P$.

Puc. 8.1

Нормальной плоскостью кривой в точке P называется плоскость, проходящая через точку P перпендикулярно касательной в данной точке.

Векторное уравнение нормальной плоскости π в точке $P(\overrightarrow{r}(t))$ имеет вид: $(\overrightarrow{\rho}-\overrightarrow{r}(t))\cdot\overrightarrow{r}'(t)=0$, где $\overrightarrow{\rho}$ – радиус-вектор произвольной точки плоскости π .

Соприкасающаяся плоскость

Пусть γ – некоторая кривая, $P \in \gamma$ – фиксированная точка, $M \in \gamma$ – подвижная, PT – касательная к кривой в точке P, PTM – плоскость проведенная через касательную PT и точку M.

Плоскость RTM стремится к плоскости π при $M \to P$, если угол между этими плоскостями стремится к нулю, когда $M \to P$. Плоскость π , к которой стремится плоскость PTM, когда $M \to P$, называют соприкасающейся плоскостью кривой γ в точке P.

Спрямляющая плоскость, главная нормаль, бинормаль

Прямую проходящую через точку P перпендикулярно касательной кривой, называют нормалью кривой. (CD, MN)

Нормаль, лежащую в соприкасающейся плоскости кривой, называют главной нормалью кривой. (CD)

Нормаль, перпендикулярную соприкасающейся плоскости кривой, называют бинормалью кривой. (MN)

Плоскость, определяемую касательной к кривой и бинормалью, называют спрямляющей плоскостью. (π_3)

Длина дуги кривой

Пусть $\gamma = AB$ – дуга кривой, являющаяся образом замкнутого отрезка [a,b] при топологическом отображении.

Разобьем дугу AB на n частичных дуг точками: $A = A_0, \dots, A_n = B$ и впишем в неё ломаную с вершинами в этих точках, причем каждое звено ломаной будет хордой соответствующей частичной дуги.

Длиной дуги кривой называют предел периметра ломанной линии, вписанной в данную дугу, если число звеньев этой ломаной линии неограниченно возрастает, а длина каждого звена стремится к 0.

Puc. 8.5

Естественная параметризация

Пусть γ гладкая кривая без особых точек, $\overrightarrow{r} = \overrightarrow{r}(t), t \in (a,b),$ – параметризация кривой $\gamma, J(\overrightarrow{r}(t_0))$ – начальная точка отвечающая параметру t_0 .

Длина дуги имеющей начало в J и конец в M, соотвествующей параметру t, определяется формулой $\int\limits_{t_0}^t |\overrightarrow{r}(t)| dt$.

 $s(t),t\in(a,b)$ – однозначная, дифференции
руемая и монотонно возрастающая т. к. $\frac{ds}{dt}=|\overrightarrow{r}(t)|>0.$

Значит \exists обратная функция с такими же свойствами, это влечет существование взаимно однозначного (и непрерывного) соответствия между точками γ и значениями длины дуги, отсчитываемой от начальной точки J.

Точкам расположенным по разные стороны от J соответствуют разные значения параметра s.

Поскольку между точками кривой γ и значениями длины дуги s \exists взаимно однозначное и непрерывное соответствие, то длину дуги s можно принять за новый параметр, который будем называть натуральным параметром, а параметризация $\overrightarrow{r'} = \overrightarrow{r'}(s), s \in (\alpha, \beta)$, называется естественной.

Кривизна кривой

Пусть γ – регулярная кривая без особых точек, $P \in \gamma$ – фиксированная точка, $M \in \gamma$ – точка отличная от P и близкая к P, φ – угол между касательными к γ в точках P, M, l – длина дуги \widehat{PM} .

Кривизной кривой в данной точке называют передел отношения угла поворота касательной на дуге кривой, стягивающейся к данной точке, к длине этой дуги т. е. $k = \lim_{l \to 0} \frac{\varphi}{l}$.

Кручение кривой

Пусть γ – регулярная кривая без особых точек, $P \in \gamma$ – фиксированная точка, $M \in \gamma$ – точка отличная от P и близкая к P, ψ – угол между нормальными векторами $\overrightarrow{\beta}(t)$ и $\overrightarrow{\beta}(t+\delta t)$ соприкасающихся плоскостей кривой γ в точках $P,M,\ l$ – длина дуги $\stackrel{\frown}{PM}$.

Нормальный вектор соприкасающейся плоскости кривой лежит на бинормали этой кривой в рассматриваемой точке. Абсолютным кручением $|\kappa|$ называют предел отношения угла поворота бинормали на дуге кривой, стягивающейся к данной точке, к длине этой дуги: $|\kappa| = \lim_{l \to 0} \frac{\psi}{l}$

Если кривая задана естественной параметризацией и её кривизна $k(s) = |\overrightarrow{r}''(s)|, s \in (a,b)$, то абсолютное кручение в этом случае: $|\kappa| = \frac{|(\overrightarrow{r}'(s), \overrightarrow{r}''(s), \overrightarrow{r}''(s))|}{k^2(s)}$.

Кручением кривой в точках, в которых определяется абсолютное кручение, называют величину $\kappa(t) = \frac{(\overrightarrow{r}'(t), \overrightarrow{r}''(t), \overrightarrow{r}'''(t))}{|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)|^2}$

Поверхность

Элементарной поверхностью называют множество точек пространства, являющееся топологическим отображением круга и ограничивающей его окружности.

При этом точки, являющееся топологическим отображением точек окружности, называют граничными точками.

Граничные точки образуют замкнутую кривую – границу элементарной поверхности.

Говорят, что две элементарные поверхности склеены, если они находятся в таком взаимном расположении, при котором части их границ или обе границы целиком совпадают между собой.

Однако в результате склеивания может получиться как множество не являющееся элементарной поверхностью так и снова элементарная поверхность.

Поверхностью называют множество точек пространства, которое может быть склеено из конечного или счетного множества элементарных поверхностей.

Параметрическое уравнение поверхности – $x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in D$.

Очевидно, что векторное уравнение будет $\overrightarrow{r} = \overrightarrow{r}(x(u,v),y(u,v),z(u,v)),(u,v) \in D$

Координатными линиями данной параметризации называют линии на поверхности, соответсвующие прямым u = const, v = const.

