

Institut National Polytechnique

SERVICE DES CONCOURS

Félix Houphouët – Boigny

Concours GIC session 2017

Composition : **Physique 2** (électricité, optique)

Durée : 4 Heures

L'épreuve consiste en trois problèmes qui sont indépendants. Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il est invité à la signaler sur sa copie et à poursuivre sa composition en expliquant les raisons des initiatives qu'il aura été amené à prendre. On attachera un grand soin à la présentation des copies.

<u>Problème 1</u>: Principe du moteur asynchrone

A. Dipôle magnétique : définitions et propriétés fondamentales

 $\begin{pmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ e_x, e_y, e_z \end{pmatrix}$ désignent les vecteurs unitaires d'un repère orthonormé direct Oxyz lié à un référentiel galiléen. On considère une spire MNPQ de forme rectangulaire $\begin{pmatrix} MN = QP = a, & MQ = NP = b \end{pmatrix}$ parcourue par un courant continu d'intensité I. Cette spire est placée dans un champ magnétique constant et uniforme $\mathbf{r} = \mathbf{r} = \mathbf{r$

Figure 1. Dipôle magnétique

- 1. Déterminer soigneusement les forces F_i exercées sur chacun des côtés de la spire. En déduire la force magnétique résultante sur la boucle.
- Vérifier que le système des forces exercées par le champ magnétique est un couple. Déterminer les moments Γ_{Ci} par rapport au centre C du rectangle, des actions exercées par le champ B sur chaque côté de la spire. En déduire que le moment résultant Γ peut se mettre sous la forme $\Gamma = \mu \wedge B$. Exprimer le moment magnétique μ de la boucle en fonction de la surface A de celle-ci, de l'intensité I et du vecteur unitaire I perpendiculaire au plan de la boucle.
 - 3. Application numérique : on donne a = b = 0.1 m, I = 10 A, B = 0.1 T. Calculer μ et Γ .
- 4. On suppose que la spire peut tourner librement autour de l'axe Oy, la position de la spire étant caractérisée par l'angle θ entre le champ $\stackrel{1}{B}$ et le moment magnétique $\stackrel{1}{\mu}:\theta=\begin{pmatrix} r & r \\ B, \mu \end{pmatrix}$. Pour quelle valeur de θ la boucle est-elle en équilibre stable? en équilibre instable? Justifier brièvement les réponses.
- 5. On suppose qu'à partir de l'angle θ , la spire subit une rotation infinitésimale $d\theta$. Exprimer le travail δW du couple magnétique durant ce déplacement; déterminer le travail correspondant à une rotation finie entre θ_1 et θ_2 . En déduire l'existence d'une énergie potentielle $U=-\mu$. B.
- **6.** Application numérique : la spire effectue une rotation depuis la position $\theta_1 = \frac{\pi}{2}$ jusqu'à la position $\theta_2 = 0$. Quelle est la variation de son énergie potentielle?

L'expression du moment $\overset{1}{\Gamma} = \overset{r}{\mu} \wedge \overset{1}{B}$ est valable pour la boucle parcourue par un courant d'intensité i variable dans le temps et placée dans un champ magnétique $\overset{1}{B}$ variable dans le temps.

B. Principe du moteur asynchrone

Une petite bobine plate de centre O, formée de N spires de section A, fermée sur elle-même, d'inductance propre L et résistance r tourne à la vitesse constante ω autour de l'axe O_Z . Sa position est repérée par l'angle entre $\stackrel{1}{e_x}$ et le vecteur unitaire $\stackrel{1}{n}$ normal au plan de la bobine : $(\stackrel{\Gamma}{e_x}, \stackrel{\Gamma}{n}) = \omega t - \alpha_0$ où α_0 désigne une constante positive. Cette bobine est plongée dans un champ magnétique $\stackrel{1}{B}$, de norme constante, «tournant» lui aussi autour de l'axe O_Z à la vitesse angulaire ω_0 constante : $(\stackrel{\Gamma}{e_x}, \stackrel{\Gamma}{B}) = \omega_0 t$. Voir la figure 2.

Figure 2. Bobine et champ tournant

- 7. Déterminer la valeur, à l'instant t, de l'angle $\alpha = \begin{pmatrix} \mathbf{r} & \mathbf{l} \\ \mathbf{r} & \mathbf{B} \end{pmatrix}$ en fonction de ω , ω_0 , α_0 et t. En déduire le flux Φ du champ \mathbf{r} à travers la bobine. Quelle est la force électromotrice induite e correspondante?
- 8. En régime établi, cette force électromotrice engendre dans le circuit (r, L) un courant sinusoïdal i(t) de même pulsation que e que l'on exprimera sous la forme $i = I \sin(\alpha \varphi)$. Déterminer I et $\tan \varphi$.
- 9. A quel couple $\Gamma = \Gamma e_z^r$ le circuit est-il soumis? Quelle est la valeur moyenne Γ_m de Γ ? À quelle condition le couple est-il moteur?

On se propose d'étudier la variation du couple moyen Γ_m en fonction de la vitesse angulaire.

10. Vérifier qu'il est possible d'écrire Γ_m sous la forme :

$$\Gamma_m = \frac{\Phi_0^2}{2\beta}$$
 avec $\Phi_0 = NBA$ et $\beta = \frac{r}{\omega_0 - \omega} + \frac{L^2}{r}(\omega_0 - \omega)$

- 11. Pour quelle valeur de ω (dans le domaine moteur) la quantité β est-elle minimale?
- 12. Soit ω_{M} la valeur de la pulsation qui donne le maximum de Γ_{m} , soit Γ_{max} (toujours dans le domaine moteur). Exprimer Γ_{max} et vérifier que ce couple moyen maximal est indépendant de la résistance r.
- 13. Donner l'allure de la courbe $\Gamma_m(\omega)$ pour tout le domaine de variation de ω (y compris les valeurs négatives). On désignera les extrema par les points M et M'.
- **14.** Interpréter les branches $\omega < 0$, puis $0 < \omega < \omega_0$ et $\omega > \omega_0$. Justifier le terme de « moteur asynchrone» de ce dispositif.

Problème 2 : Mesure par interférométrie

Le dispositif étudié constitue un interféromètre compact dédié à l'étude sismique de sources stellaires. Le principe proposé, un peu moins efficace qu'un spectromètre à réseau, conduit à un instrument bien moins encombrant et bien moins coûteux. Le principe de l'interféromètre est analysé, ainsi que son installation au foyer d'un télescope et son fonctionnement dans des conditions d'observation réalistes. On suppose, dans tout le

problème, les optiques idéales : lentilles parfaitement transparentes, miroirs totalement réfléchissants, lames semi-réfléchissantes divisant le faisceau incident en deux faisceaux d'intensités lumineuses égales.

A - Interférométrie

Dans tout ce qui suivra, on notera σ le nombre d'onde, à savoir l'inverse de la longueur d'onde λ . On exprimera ce nombre en m^{-1} .

1. La figure 1 correspond au montage de principe d'un interféromètre de MICHELSON. Les miroirs sont réglés de telle façon que l'on observe les anneaux d'interférence circulaires sur l'écran E placé dans le plan focal de la lentille L, de distance focale image f'.

Quel est le rôle de la lame L semi-réfléchissante *SR* ? Quel est celui de la lentille L ? Montrer qu'avec ce montage la moitié du flux incident est irrémédiablement perdue.

- 2. La différence de marche, différence entre les deux chemins optiques pour un rayon entrant perpendiculairement au miroir (1), est notée D; pour un rayon entrant avec une inclinaison i on rappelle que la différence de marche est alors donnée par $\delta = D\cos i$. L'interféromètre est éclairé par une source étendue, supposée strictement monochromatique de nombre d'onde σ_0 . On suppose la tâche centrale en F' brillante. Exprimer le rayon r_1 du premier anneau sombre, en fonction de σ_0 , D, et f'. Faire un schéma de ce que l'on observe sur l'écran.
- 3. La source est l'image d'une étoile, telle celle fournie par un télescope. Cette image est étalée par la diffraction mais surtout par la turbulence atmosphérique, ce qui donne des rayons entrant dans l'interféromètre d'inclinaisons diverses mais faibles. Quelle est la figure d'interférence observée en fonction de D en présence d'un filtre interférentiel qui sélectionne une très étroite bande passante autour d'un nombre d'onde σ_0 donné ?
- 4. On éclaire l'interféromètre par une source monochromatique, de nombre d'onde σ_0 . Un détecteur est placé au foyer F' de la lentille L. Ce détecteur délivre un signal S(D), proportionnel à l'intensité lumineuse au point F'. Ce signal sera appelé dans la suite interférogramme. Il dépend de la différence de marche D. Montrer que S(D) est donné par : $S(D) = S_0 \left(1 + \cos(2\pi\sigma_0 D)\right)$. Que représente S_0 ? Quelle est la période de l'interférogramme?
- 5. On illumine l'interféromètre par une source présentant un doublet de nombres d'onde σ_1 et σ_2 voisins. Chacune des raies est supposée monochromatique et leurs intensités sont égales. Déterminer l'expression de l'interférogramme S(D) correspondant. Mettre en évidence deux périodes caractéristiques dans S(D). Application numérique : Représenter l'allure de l'interférogramme pour le doublet du sodium : $\lambda_1 = 589,0$ nm et $\lambda_2 = 589,6$ nm.

B. Interférogramme d'une raie élargie

On suppose maintenant que le profil spectral de la source n'est plus monochromatique mais possède une largeur $\Delta\sigma$. On désigne par I_{σ} l'intensité spectrale : dans l'intervalle $\left[\sigma;\sigma+d\sigma\right]$ l'intensité émise est $I_{\sigma}d\sigma$. On admettra que les rayonnements correspondant à chaque intervalle de largeur $d\sigma$, sont incohérents. On notera I_0 l'intensité lumineuse totale de la raie. I_0 est donc donnée par la somme des intensités de chaque intervalle :

$$I_0 = \int_0^\infty I_\sigma d\sigma$$

Dans la suite, on prendra:

$$I_0(\sigma) = \frac{I_0}{\Delta \sigma} \quad si \quad |\sigma - \sigma_0| \le \frac{\Delta \sigma}{2}$$

$$I_0(\sigma) = 0$$
 $si |\sigma - \sigma_0| > \frac{\Delta \sigma}{2}$

6. Montrer alors que le signal détecté est donné par : $S\left(D\right) = S_0\left(1 + v\cos\left(2\pi\sigma_0D\right)\right)$ et exprimer la fonction de visibilité des franges v en fonction de D et $\Delta\sigma$. Représenter schématiquement la fonction $v\left(D\right)$. Quelle est la plus petite valeur $D_{\Delta\sigma}$ de D qui annule la fonction de visibilité?

On illumine l'interféromètre avec une source stellaire via un filtre de bande passante $[\sigma_1; \sigma_2]$ sélectionnant une raie en absorption, voir la figure 2. Cette raie d'absorption est suffisamment étroite pour être considérée comme monochromatique. On note I_c l'intensité totale au travers du filtre (sans absorption) et I_a l'intensité totale absorbée.

Figure 2. Spectre avec raie d'absorption

- 7. Montrer que, d'après la question précédente, on peut négliger dans le signal interférométrique tout terme interférentiel associé au spectre large délimité par le filtre si *D* est suffisamment grand, en supposant valables les résultats établis précédemment sur le profil de raie idéalisé.
- 8. En déduire que l'interférogramme s'écrit : $S(D) = S_c (1 + C \cos(2\pi\sigma_0 D))$ où S_c est proportionnel à I_c . Exprimer le contraste de franges C en fonction de I_c et I_a .

Problème 3: Onde entre deux plans parfaitement conducteurs.

On donne : Célérité des ondes dans le vide : $c=3.10^8~m.~s^{-1}$; Perméabilité du vide : $\mu_0=4\pi.10^{-7}~H.~m^{-1}$; Permittivité du vide : $\varepsilon_0=\frac{1}{36\pi.10^9}F.m^{-1}$

Dans l'espace rapporté au repère orthonormé direct Oxyz, on définit la base $\begin{pmatrix} r & r & r \\ e_x, e_y, e_z \end{pmatrix}$. On dispose de deux plans métalliques parallèles au plan yOz et d'équations x=0 et x=a. Dans l'espace vide entre ces plans conducteurs, on étudie la propagation d'une onde électromagnétique sinusoïdale de pulsation ω et polarisée rectilignement suivant Oy. Suivant le sens de propagation de l'onde, les deux plans métalliques joueront le rôle de « résonateur électromagnétique » (figure 1) ou de « guide d'ondes » (figure 2).

1.1. Montrer que dans un conducteur parfait, en l'absence de champ statique, nous avons :

 $\stackrel{1}{E}=\stackrel{1}{0},\stackrel{1}{B}=\stackrel{1}{0},\stackrel{1}{j}=\stackrel{1}{0}, \rho=0$ (champ électrique, champ magnétique, densité volumique de courant et densité volumique de charges).

1.2. Compléter les quatre relations de passage ci-après concernant les champs \vec{E} et \vec{B} au niveau de la surface d'équation x=0 entre le conducteur parfait (milieu 1) et le vide (milieu 2). Les composantes de \vec{E} et \vec{B} seront indicées T (tangentielles) et N (normales) et nous poserons σ_s et j_s respectivement la densité surfacique de charges et le vecteur surfacique de courant.

Relations: (1)
$$E_{T_2} - E_{T_1} =$$
; (2) $E_{N_2} - E_{N_1} =$; (3) $E_{T_2} - E_{T_1} =$; (4) $E_{N_2} - E_{N_1} =$

1.3. Montage en « résonateur électromagnétique » (figure 1)

L'onde électromagnétique incidente $\left(\underline{\vec{E}_i}, \underline{\vec{B}_i}\right)$, polarisée rectilignement et de champ électrique parallèle à Oy, se propage vers le métal dans le sens du vecteur d'onde $\overrightarrow{k} = -k\overrightarrow{e}_x$. En notation complexe, le champ électrique incident est donné par : $\underline{\vec{E}_i} = E_0 e^{j(\omega t + kx)} \overrightarrow{e}_y$.

- **1.3.1.** Déterminer, à l'aide de l'équation de structure d'une onde plane, le champ magnétique incident \vec{B}_i .
- **1.3.2.** En utilisant les relations de passage des composantes du champ électrique, déterminer le champ $\underline{\vec{E}_r}(0,t)$ de l'onde réfléchie sur le plan conducteur d'équation x=0, et en déduire les champs électrique $\underline{\vec{E}_r}$ et magnétique $\underline{\vec{B}_r}$ de l'onde réfléchie en tout point de 1'espace.
- **1.3.3.** Exprimer le champ électrique total $\underline{\vec{E}}(x,t)$ et le champ magnétique total $\underline{\vec{B}}(x,t)$ à l'instant t en un point M(x,y,z) de la cavité. En déduire le rapport des modules des champs complexes $\frac{E}{B}$ en fonction de c, k et x.
- **1.3.4.** Montrer que la fréquence de l'onde dans cette cavité ne peut prendre que des valeurs discrètes f_N exprimées à l'aide de l'entier N.

Application numérique : Calculer la fréquence propre minimale de ce résonateur pour une distance a = 3 cm entre les plans métalliques.

Les résultats des quatre questions suivantes seront exprimés en fonction de ε_0 , c, E_0, a et pour N = 1.

- **1.3.5.** Déterminer le vecteur de Poynting $\vec{R}(x,t)$ de l'onde résultante et en déduire sa moyenne temporelle $<\vec{R}(x,t)>_t$. Commenter le résultat.
- **1.3.6.** Calculer la densité volumique d'énergie électromagnétique u(x,t) puis sa moyenne temporelle $\langle u(x,t)\rangle_t$ en fonction de ε_0 et E_0 .
- **1.3.7.** Déterminer le vecteur densité surfacique de courant $\vec{j}_s(t)$ qui parcourt à l'instant t la plaque métallique à l'interface métal-vide, en x = 0.
- **1.3.8**. En déduire, en fonction de ε_0 et E_0 , la pression électromagnétique moyenne temporelle $\langle p \rangle_t = \left\langle \frac{df}{dS} \right\rangle_t$

exercée par l'onde sur cette plaque, sachant que $df = \int_{s}^{r} dS \wedge \frac{B(0,t)}{2}$ est la force de Laplace exercée sur

l'élément de surface dS du plan métallique d'équation x = 0.

Application numérique: On donne la valeur $E_0 = 100 \text{ V.m}^{-1}$; calculer $\langle u(x,t) \rangle_t$ et $\langle p \rangle_t$.

1.4. Montage en « guide d'ondes » (figure 2)

On considère une onde électromagnétique $(\underline{\vec{E}_1}, \underline{\vec{B}_1})$, progressive, monochromatique, se propageant dans le vide entre deux plans conducteurs distants de a, suivant la direction de Oz et telle que le champ électrique reste parallèle aux deux plans. On impose que la forme de $\underline{\vec{E}_1}$ est : $\underline{\vec{E}_1}(x,z,t) = E_1(x)e^{j(\omega t - k_g z)}\vec{e}_y$.

- **1.4.1.** Exprimer l'équation de Maxwell-Faraday et en déduire que \vec{B}_1 est de la forme :
- $\overrightarrow{B_1}(x,z,t) = [F(x)\vec{e}_x + jG(x)\vec{e}_z]e^{j(\omega t k_g z)}$, sachant que l'on exclut de $\overrightarrow{B_1}$ toute composante statique. Expliciter les fonctions F(x) et G(x). Justifier l'attribution du sigle « T.E » à cette onde.
- **1.4.2.** Exprimer l'équation de Maxwell-Ampère et en déduire l'équation différentielle vérifiée par l'amplitude $E_1(x)$ du champ électrique. Les champs $\underline{\vec{E_1}}$ et $\underline{\overrightarrow{B_1}}$ vérifient-ils les deux autres équations de Maxwell ? Justifier votre réponse.
- **1.4.3.** Résoudre l'équation différentielle vérifiée par $E_1(x)$ et donner la solution dans le cas $k_g < \frac{\omega}{c}$, sachant que le champ électrique \vec{E}_1 vérifie des conditions sur les plans conducteurs du guide d'ondes. On notera α l'amplitude de la solution obtenue pour $E_1(x)$ et on introduira un nombre entier N_1 , non nul et positif, dénombrant N_1 « modes » de propagation.
- **1.4.4.** Connaissant $E_1(x)$, déterminer les expressions, en représentations complexe et réelle, des champs électrique \vec{E}_1 et magnétique \vec{B}_1 .
- **1.4.5.** Exprimer k_g en fonction de ω , c, N_1 et a. Quelle est la fréquence de coupure f_c en dessous de laquelle la propagation de l'onde n'existe pas ? Calculer numériquement f_c pour le mode $N_1 = 1$ et a = 3 cm.

Les résultats des cinq questions suivantes seront exprimés pour $N_1 = 1$.

1.4.6. On nomme f la fréquence de l'onde. Exprimer la vitesse de phase \mathbf{v}_{φ} en fonction de c et du rapport $\frac{f_c}{f}$.

Application numérique: Calculer numériquement v_{φ} pour $f = 3f_c$.

- **1.4.7.** Déterminer le vecteur de Poynting $R_1(x,z,t)$ de 1'onde résultante et en déduire sa moyenne temporelle $\langle R_1(x,z,t) \rangle_t$.
- **1.4.8.** En déduire le flux énergétique moyen Φ_m à travers une surface S perpendiculaire à l'axe Oz et de largeur b suivant la direction Oy. On introduira la vitesse de phase $\mathbf{v}_{_{\mathcal{O}}}$ dans le résultat de Φ_m .
- **1.4.9.** Exprimer la densité volumique d'énergie électromagnétique $u_{em}(x,z,t)$ et sa moyenne temporelle $\langle u_{em}(x,z,t)\rangle_t$.
- **1.4.10.** Calculer l'énergie électromagnétique localisée en moyenne dW_{em} , dans un volume d'épaisseur dz et limité par deux surfaces S perpendiculaires à Oz.

En déduire la vitesse de propagation de l'energie moyenne v_e en fonction de v_{φ} à travers les surfaces S perpendiculaires à Oz. Commenter le résultat. Représenter sur un même graphe v_e et v_{φ} en fonction du quotient des fréquences $\frac{f}{f_c}$. Positionner sur le graphe les points représentatifs de v_e et v_{φ} correspondant à l'application numérique de la question **1.4.6.**

Corrige Concours GIC 2017/Physique 2

Problème nº4 - Principe du moteur asynchrone

A. Dipôle magnétique : définitions et propriétés fe	fondamentales	es
---	---------------	----

2. Puisque le champ magnétique est uniforme, le point d'application R de la force de Laplace est situé au milieu du segment NP on a donc $\vec{\Gamma}_{NP} = \vec{C}R \wedge \vec{F}_{NP} = \frac{a}{2}bBI\vec{e}_y$ Pour le côté QM, on trouve la même valeur $\vec{\Gamma}_{QM} = \frac{a}{2}bBI\vec{e}_y$ En sommant ces deux contributions, on trouve $\vec{\Gamma} = abIB\vec{e}_y = \vec{\mu} \wedge \vec{B}$ avec $\vec{\mu} = abI\vec{e}_z$.

3. On trouve $\mu = 0.1 \, \text{A} \cdot \text{m}^2$ et $\Gamma = 0.01 \, \text{N} \cdot \text{m}$

4. Le couple dû aux forces de Laplace exercées sur le cadre est : $\vec{\Gamma} = \vec{\mu} \wedge \vec{B}$. Le calcul du produit vectoriel demande un peu d'attention car l'angle θ est défini de \vec{B} vers $\vec{\mu}$ alors que le produit vectoriel va de $\vec{\mu}$ vers \vec{B} . On ne sera donc pas surpris de voir dans l'expression du couple apparaître un signe moins. On a donc : $\vec{\Gamma} = -\mu B \sin \theta \vec{e_y}$ des positions d'équilibre sont celles qui annulent le couple, c'est donc $\theta = 0$ ou π . La position $\theta = 0$ est une position d'équilibre stable stable si on s'éloigne de cette valeur et qu'on réalise $\theta > 0$, le couple subit est négatif et tend à faire revenir le cadre dans la position $\theta = 0$. Si maintenant, on envisage $\theta < 0$, le couple sera positif ramenant toujours le cadre vers $\theta = 0$. Un raisonnement du même type conduit pour la position $\theta = \pi$ montre que cette position d'équilibre est instable.

5. On a $\delta W = \Gamma d\theta = -\mu B \sin\theta d\theta$ On en déduit que $W = \mu B (\cos\theta_2 - \cos\theta_1)$ Ce travail ne dépendant que de la position initiale et de la position finale, il est possible de définir une énergie potentielle. La variation d'énergie potentielle étant l'opposé du travail, on a $U = -\mu B \cos\theta = -\vec{\mu} \cdot \vec{B}$.

(6. On a $\Delta U = -\mu B = -0.01 \,\mathrm{J}$.

B. Principe du moteur asynchrone

7. On a par différence : $\alpha = (\omega_0 - \omega)t + \alpha_0$. Le champ magnétique est uniforme au niveau du bobinage, le calcul du flux est relativement simple : $\Phi = NA\vec{n} \cdot \vec{B}$. On trouve $\Phi = NAB\cos[(\omega_0 - \omega)t + \alpha_0]$ La force électromotrice est $e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$. Finalement après dérivation, on obtient : $e = NAB(\omega_0 - \omega)\sin[(\omega_0 - \omega)t + \alpha_0]$.

8. Puisque le bobinage possède une résistance r et un coefficient d'autoinductance L, son équation électrique est $e=ri+L\frac{\mathrm{d}i}{\mathrm{d}t}$. On obtient l'équation différentielle : $ri+L\frac{\mathrm{d}i}{\mathrm{d}t}=NAB(\omega_0-\omega)\sin[(\omega_0-\omega)t+\alpha_0]$ c'ette équation ne doit être étudiée que dans le cadre du régime permanent sinusoïdal de pulsation $(\omega_0-\omega)$. Nous allons utiliser, pour plus de facilité de calcul, la notation complexe en prenant comme image complexe de $\sin[(\omega_0-\omega)t+\alpha_0]$ la grandeur $\exp j[(\omega_0-\omega)t+\alpha_0]$. On cherche la solution pour l'intensité sous la forme $i(t)=\underline{I}\exp j[(\omega_0-\omega)t+\alpha_0]$ et que $\omega t+\alpha_0$. On trouve facilement qu'alors $\underline{I}=\frac{NAB(\omega_0-\omega)}{r+jL(\omega_0-\omega)}$. On trouve facilement que u0 et que

 $\tan \varphi = \frac{L(\omega_0 - \omega)}{r}$. Bans cette expression, on tolère I < 0 (dans le cas où $\omega_0 < \omega$), car cela simplifie la suite des calculs. Dans le cas où on aurait voulu toujours avoir I > 0, on aurait pris la valeur absolue et on aurait reporté sun déphasage de π dans φ .

9. On a $\vec{\Gamma} = \Gamma \vec{e}_z = \vec{\mu} \wedge \vec{B}$, on obtient $\vec{\Gamma} = NABI \sin \alpha \vec{e}_z$. Compte tenu de l'expression de I calculée avant, on peut écrire : $\vec{\Gamma} = \frac{N^2A^2B^2(\omega_0-\omega)}{\sqrt{r^2+L^2(\omega_0-\omega)^2}} \sin \alpha \sin(\alpha-\varphi)\vec{e}_z$ Le couple moyen sera déterminé une fois le calcul de la moyenne temporelle de $\sin \alpha \sin(\alpha-\varphi)$ effectué. Pour cela, développons : $\sin(\alpha-\varphi) = \sin \alpha \cos \varphi - \cos \alpha \sin \varphi$. Or $<\sin \alpha \cos \alpha > = <\frac{\sin 2\alpha}{2} > = 0$ et $<\sin^2 \alpha > = \frac{1}{2}$, finalement la moyenne du terme dépendant du temps est $\frac{\cos \varphi}{2}$. On peut donc donner l'expression du couple moyen : $\Gamma_m = \frac{N^2A^2B^2r(\omega_0-\omega)}{2(r^2+L^2(\omega_0-\omega)^2)}$ Le couple est moteur si $\Gamma_m > 0$ donc si $\omega > \omega_0$ puisque le sens de définition de la vitesse de rotation du bobinage est dans le sens $\omega \vec{e}_z$.

10. Par factorisation de $r(\omega_0 - \omega)$, on obtient très rapidement l'expression demandée par l'énoncé à savoir $\Gamma_m = \frac{\phi_0^2}{2\beta}$.

11. On a $\frac{d\beta}{d\omega} = \frac{r}{(\omega_0 - \omega)^2} - \frac{L^2}{r} = 0$. Cette équation conduit à 2 solutions $(\omega_0 - \omega) = \pm \frac{r}{L}$. Seule la solution $\omega = \omega_0 - \frac{r}{L}$ correspond à un minimum de β dans le domaine moteur.

12. On a, au vu de ce qui précède, $\omega_M = \omega_0 - \frac{r}{L}$. A partir de cette expression, on trouve bien que le couple

maximum est indépendant de r puisqu'il s'écrit $\Gamma_{max} = \frac{\Phi_0^2}{4L}$

13. L'allure de la courbe $\Gamma_m(\omega)$ est fournie sur la figure 2.

Figure 2 - Couple moyen

14. Pour $\omega < 0$, le couple moyen reste positif. C'est-à-dire que si le bobinage tourne dans le sens négatif le couple va le faire ralentir, s'arrêter puis repartir dans le sens positif. Pour $0 < \omega < \omega_0$, la vitesse de rotation est positive et le couple fait tourner dans ce même sens, c'est le fonctionnement en moteur envisagé avant. Par contre, pour $\omega_0 > \omega_0$ le bobinage tourne dans le sens positif mais subit un couple résistant. Le fonctionnement est alors celui d'un générateur.

1. La lame semi-réfléchissante divise l'amplitude de l'onde incidente en deux quantités égales formant ainsi deux faisceaux d'égale intensité sans introduire de différence de marche entre les deux (par la présence d'une lame compensatrice). La lentille L avec l'écran E placé dans son plan focal image permet de visualiser à distance finie les interférences à l'infini entre les deux faisceaux après réflexion sur les miroirs (1) et (2), les faisceaux retournent sur la lame semi-réfléchissante. La moitié seulement de chacun d'eux ira vers la lentille. Globalement, la moitié de l'intensité entrant dans le dispositif sera perdue

2. La tache centrale est brillante, comme elle correspond à l'angle i=0, cela signifie que l'ordre au centre p_0 est un entier tel que $D=p_0$. Pour l'incidence i, la différence de marche est $\delta=D$ cos i. Compte tenu de la présence de la lentille, les angles doivent être petits afin de travailler dans les conditions de Gauss. On peut donc proposer un développement limité de la différence de marche : $\delta=D(1-\frac{i^2}{2})=p\lambda=\frac{p}{\sigma_0}$. Le premier anneau sombre s'obtient pour $p=p_0-\frac{1}{2}$ du l'ordre décroît en partant du centre comme la différence de marche. Le rayon de l'anneau s'obtient en utilisant un rayon lumineux non dévié passant par le centre optique de la lentille L. On a alors : $r_1=f'i=\frac{f'}{\sqrt{D\sigma_0}}$. Sur l'écran, on observe des anneaux concentriques de centre F' dont les rayons se resserrent lorsqu'on s'éloigne du centre.

3. On a globalement la même chose qu'avant mais comme le filtre n'est pas totalement monochromatique, il y a aura une perte de contraste et peut-être moins d'anneaux car l'angle d'incidence reste faible.

L'amplitude envoyée par le chemin (1) est du type : $s_0 \exp j\omega t$, celle envoyée par le chemin (2) est déphasée : $\exp j\omega t \exp j2\pi\sigma_0 D$. L'addition des deux amplitudes donne : $s = s_0 \exp j\omega t (1 + \exp j2\pi\sigma_0 D)$ Comme l'intensité lumineuse est du type $I = \alpha s s *$, on obtient facilement la formule traditionnelle : $I = I_0(1 + \cos 2\pi\sigma_0 D)$ La valeur du signal détecté est proportionnelle à l'intensité lumineuse reçue. S_0 représente la valeur moyenne du signal détecté de période : $\frac{1}{\sigma_0}$

5. Les deux raies du doublet ne sont pas cohérentes, les intensités de chacune vont s'ajouter, il en ira de même des signaux détectés : $S(D) = S_0(1+\cos 2\pi\sigma_1 D) + S_0(1+\cos 2\pi\sigma_2 D)$ En utilisant la formule traditionnelle d'addition de deux cosinus, on arrive à : $S(D) = 2S_0[1+\cos 2\pi(\frac{\sigma_1-\sigma_2}{2})D\cos 2\pi(\frac{\sigma_1+\sigma_2}{2})D]$ Cette fonction présente des variations lentes qui constitueront l'enveloppe de la courbe de période $\frac{2}{\sigma_1-\sigma_2}=1$, 16 mm. Les variations rapides sont dues à l'autre fonction de période : $\frac{2}{\sigma_1+\sigma_2}=589$, 3 mm. Le rapport des deux périodes est de 2000 environ, il est difficile de faire un tracé tout à fait réel. En se contentant d'un rapport plus faible de 25, on obtient l'interférogramme de la figure 1.

Figure 1 - Interférogramme - Doublet du sodium

B. Interférogramme d'une raie élargie

6. Il faut comme dans la question précédente additionner les intensités à cause de l'incohérence entre les différentes longueurs d'onde. Toutefois, il faut conduire un raisonnement en considérant un intervalle de nombre d'onde infinitésimal de la largeur d σ . Le calcul de l'intensité est donc : $I = \int_{\sigma_0 - \frac{\Delta \sigma}{2}}^{\sigma_0 + \frac{\Delta \sigma}{2}} \frac{I_0}{\Delta \sigma} (1 + \cos 2\pi \sigma D) d\sigma$. Après calculs, on trouve que la forme du signal détecté est : $S(D) = S_0(1 + \sin \pi \Delta \sigma D \cos 2\pi \sigma_0 D)$. La visibilité est $v = \sin \pi \Delta \sigma D$, elle va vite décroître lorsque D va augmenter. La visibilité est représentée à la figure 2. La plus petite valeur de D qui annule la visibilité est : $D = \frac{1}{\Delta \sigma}$.

Figure 2 – Évolution de la visibilité

7. On voit d'après la question précédente qu'il suffit que D soit quelques fois plus grand que $\frac{1}{\sigma_2-\sigma_1}$ pour que la visibilité tende vers O. En l'absence de la raie d'absorption, le signal serait uniforme : $S_c(D) = kI_c$

8. Il faut modéliser le profil I_{σ} par des fonctions rectangles et plus précisément par la différence de deux fonctions rectangles. Dans ces conditions, l'intégrale mesurant les contributions de tous les nombres d'onde est donnée par : $I = \frac{I_c}{\sigma_2 - \sigma_1} \int_{\sigma_1}^{\sigma_2} (1 + \cos 2\pi \sigma D) d\sigma - \frac{I_a}{\Delta \sigma} \int_{\sigma_0 - \frac{\Delta \sigma}{2}}^{\sigma_0 + \frac{\Delta \sigma}{2}} (1 + \cos 2\pi \sigma D) d\sigma$ Après calculs, on trouve que $I = I_c (1 + \sin \pi (\sigma_2 - \sigma_1) D \cos 2\pi \frac{\sigma_1 + \sigma_2}{2} D) - I_a (1 + \sin \pi \Delta \sigma D \cos 2\pi \sigma_0 D)$ Si $D \gg \frac{1}{\sigma_2 - \sigma_1}$ alors $\sin \pi (\sigma_2 - \sigma_1) D \to 0$. De la même façon, si $\Delta \sigma \to 0$ alors $\sin \pi \Delta \sigma D \to 1$. L'expression de l'intensité devient alors $I = I_c - I_a - I_a \cos 2\pi \sigma_0 D$. En considérant que $I_a \ll I_c$, on obtient la formule recherchée pour le signal $I = I_c - I_c - I_c = I_c$.

Ph3: Onde entre deuxplans parfaitement conducteurs

1.1. (voir cours) pour un conducteur imparfait de conductivité T l'épaiseur de peau, caractéristique de la Jénétiolion de l'onde dans le milieu est donnée par $6 = \sqrt{\frac{2}{\mu_0 \tau_W}}$. Quand $\tau \rightarrow \infty$ (conducteur faifait) $\delta \rightarrow \infty$

donc dans le conducteur $\vec{E} = \vec{0}$ (si non stationnaire.) (1)

rot $\vec{B} = \mu \vec{0} \Rightarrow \vec{J} = \vec{0}$ (si non stationnaire.) (1)

rot $\vec{B} = \mu \vec{0} \Rightarrow \vec{J} = \vec{0}$ et div $\vec{0} = \vec{0} \Rightarrow \vec{0} = \vec{0}$ 1.2. $\vec{E}_{12} - \vec{E}_{13} = \vec{0}$ $\vec{0}$ $\vec{0}$

164

```
1.3 Montage en résonateur electromagnétique.
1.3.1 Ei = Eo ed (w) + 800) et
        TOTE: = - OB: U + j' k, Ei = + j w Bi > - REO (Ex, Ey) = w Bi
         Bi = - REO ed(w+ Rx) ez = - Eo ed(w+ Rx) ez
1.3.2 6n a \( \varE_{\varepsilon}(\varphi,t) + \varE_{\varepsilon}(\varphi,t) = \varphi \varepsilon \varE_{\varphi}(\varphi,t) = - \varPhi_{\varphi}(\varphi,t) = - \v
                 j ken En = jwB, + k(-Eo ej(W-Rx) exn ey) = wB, + B, (x,+) = - Exe ej(w-Rx)
1.3.3. E&= Eoedwt [edkx-e-jkx]et = &jEoedwt sinkx et = ?Eoedwt. 1/4)
                 B(x, t) = - Eoedw [edkx + e-bkx] = 2 Eo edwork = 2
                    raffort du modules: E = ctankx.
                     Dans la cavité E doit , annula pur les 2 conducteurs
                                                   - Ra = NIT = Wa = PITEN a - FN = N C
                     1.3.5 R(x,t)= 1 EnB = Eo cos(w+ II) sinkx.cos wt coskx (ey, ez)
                                      = + 4Eo2 sin wt coswt sink= coskt et = Eo2 sin lwt sin lkx ex
                      (R(x,t) = 0 6 onde phationnaire: pu de holagation de l'energie.
1.3.6 U(x,E)= = = & E E + B2 = = = = E E pinew pine &x + 1 = E cos w cos &x
                                     = 1 E E E E [ sin wt sin kx + cos wt cos kx]
                    <u(x,E)>== 1 & Eo. (1)
 1.3.7 B(0,E) , (-ex) = mojs = - 2 Eo e jut (e3, -ex) = 2 Eo e jut
          Js= & &c Esejuter (1)
  1.3.8 df = 1/3 (+) , B (0,t) = = xx & E, CE, CONW x (- 2 E, CONW +) (Ex, E3)
                                                                                   = - 2 Eo Eo cos wt en
             \langle p \rangle_{E} = + \frac{E_{0}E_{0}^{2}}{36\pi 10^{5}} = 8,8410^{-8}P_{a}. \langle u(x,t) \rangle_{E} = 2,210^{-8} \text{ J.m.}^{3}
```

1.4 Montage en "quide d'on des". $E_1(x,3,t) = E_1(x) e^{\frac{1}{3}(\omega t - R_3 2 \delta)} e^{\frac{1}{3}}$ $G = \frac{1}{4} \frac{1}{4} \frac{dE_1(x)}{dx} \frac{d}{dx}$ $G = \frac{1}{4} \frac{dE_1(x)}{dx} \frac{d}{dx}$ Ponde est "transverse electrique" car B, a une composante longitudinale (1)
Rot B, = $\mu_0 E_0 \frac{\partial E_1}{\partial t} = \frac{1}{C^2} \frac{\partial E_1}{\partial t} = \frac{j\omega}{C^2} \frac{E_1}{E_1}$ $\begin{vmatrix}
\frac{\partial}{\partial y} & | -\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial x} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial x} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial x} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial x} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial x} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} \\
\frac{\partial}{\partial y} & | \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)} & \frac{\partial}{\partial y} E_i(x) e^{j(\omega t - \partial_y y)}
\end{vmatrix} = \begin{vmatrix}
\frac{\partial}{\partial y} E_i(x) e^{j(\omega t -$ $\Rightarrow \left(k_{g}^{2} - \frac{\omega^{2}}{c^{2}}\right) E_{i}(x) = \frac{d^{2} E_{i}(x)}{dx^{2}}$ $\text{div } \overrightarrow{E_{1}} = \frac{\partial}{\partial y} \left(E_{i}(x) e^{j(\omega t - k_{g} z)}\right) = 0$ div Bi = - Ra dEre e dw-Raz) + Ra dEre e dw-Raz) = O (1) C.Q.F.D 1.4.3. A Rg (W d2 E, (x) = - (w2 - kg2) E, (x) = E,(x) = & sin[\w^2 - Rg^2 x + Y]. E(a)=0 => P=0 (1)

E(a)=0 => Ver - Rg a =: Nath

} E(x) = < sin Nath a (1) 1.4.4 - E1 (=,3,t) = of sin Ni 11 x e (wt - Rg3) ey (1)

E1 (x,3,t) = of sin Ni 11 x (os (wt - Rg3) ey (2) By O Sin Ni Tix e J(wt-kg3) (2) - and Ni Tix and (wt-kg3) (2) 3/15 Rg = $\sqrt{\frac{\omega^2 - N_1^2 \Pi^2}{\alpha^2}}$ Rg exists of $\omega > \omega_c = \frac{\Pi c}{\alpha} N_1 \Rightarrow gc = \frac{c}{2\alpha} = 5 GH_2$ A 7/8)

$$\frac{1.4.6}{8g} = \frac{\omega}{\sqrt{\omega^{2}}} = \frac{\pi^{2}c^{2}}{\sqrt{4\pi^{2}}} = \frac{2\pi\beta c}{\sqrt{4\pi^{2}c^{2}}} = \frac{c}{\sqrt{1-\frac{3c^{2}}{g^{2}}}}$$

$$\frac{1.4.7}{\sqrt{1-\frac{3}{q}}} = \frac{3c}{2\sqrt{2}}$$

$$\frac{1.4.7}{\sqrt{1-\frac{3}{q}}} = \frac{1-\frac{3c}{2}}{\sqrt{1-\frac{3c}{q}}} = \frac{3c}{2\sqrt{2}}$$

$$\frac{1.4.7}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{3c}{2\sqrt{2}}$$

$$\frac{1.4.8}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}}$$

$$\frac{1.4.8}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}}$$

$$\frac{1.4.8}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}}$$

$$\frac{1.4.8}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2}}{2\sqrt{1-\frac{3c}{q}}}$$

$$\frac{1.4.9}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2\sqrt{1-\frac{3c}{q}}}}$$

$$\frac{1.4.9}{\sqrt{1-\frac{3c^{2}}{q}}} = \frac{1-\frac{3c}{2\sqrt{1-\frac{3c}{q}}}}$$

$$\frac{1.4.9}{\sqrt{1-\frac{3c}{q}}} = \frac{1-\frac{3c}{2\sqrt{1-\frac{3c}{q}}}}$$

$$\frac{1.4.9}{\sqrt{1-\frac{3c}{q}}}} = \frac{1-\frac{3c}{2\sqrt{$$