Class: 2

Unit: Solubility

Date: Teacher:

Lesson Plan Template

Stage 1: Desired Results

Previous knowledge (General)

Students should have been introduced to the definition of solution chemistry, and understand the terms **solution**, **solvent**, **solute**, **soluble**, **saturated**, **unsaturated**, and understand that solubility is dependent on: nature of solute, amount of solute, nature of solvent, amount of solvent, temperature of solution.

Big Ideas	Essential Questions:
Some solvents can dissociate into ions in solution which allows conductivity. chemical bonding based on electronegativity	Why do certain solvents form ions in solution and others don't? How do ionic solutions conduct electricity?
Content solubility of molecular and ionic compounds	 Formulate multiple hypotheses and predict multiple outcomes Seek and analyze patterns, trends, and connections in data, including describing relationships between variables, performing calculations, and identifying inconsistencies Demonstrate an awareness of assumptions, question information given, and identify bias in their own work and in primary and secondary sources Communicate scientific ideas and information, and perhaps a suggested course of action, for a specific purpose and audience, constructing evidence-based arguments and using appropriate scientific language, conventions, and representations

Core Competencies:

Collaboration: working collectively, supporting group interactions **Thinking:** questioning and investigating, reflecting and assessing

Stage 2: Assessment Evidence

- Lab worksheet,
- Exit slip for snowball,
- Exercises for hw

Materials and Equipment Needed for this Lesson

Circuit with lightbulb and open electrodes to dip into solutions. Hook: salt, water, beakers, electrodes Lab handout and worksheet to handout. Slide show on ions in solutions HW hangout

Stage 3: Lesson

	Lesson Stages	Learning Activities	Time Allotted
1.	Warm-up	Hook:	10min
		Ask: is water conductive? (pure water)	
	Get students'	Some students might say yes since it is a	
	attention, connect to	common misconception.	
	previous knowledge	Use electrical conductivity light circuit to	
	and explain why the	dip into distilled water, lightbulb does not	
	topic is important to	light up. Not conductive. (discrepancy	
	learn.	event)	
		Ask: if water is not conductive then can	
		Timmy stay in the swimming pool during a	
		thunderstorm? Why not? What's the	

		difference between pure water and	
		swimming pool water?	
		Add salt into same beaker of water and	
		test electrode. Show that the light goes	
		on. It now conducts.	
		Safety: no harsh chemicals are used	
		except water and table salt, so no PPE	
		required. Electrodes with lightbulb might	
		short so take care not to touch the two	
		electrodes together.	
2.	Presentation	Present how ions conduct electricity in	20 min
		solutions. Ionic compounds dissociate in	
	Teach the new	solution to form positive and negative	
	content and	ions. When electrodes are placed in a	
	language.	solution containing ions,	
		positively-charged ions flow toward one	
		electrode and negatively-charged ions	
		flow toward the other electrode. This flow	
		of electrical charge completes the circuit	
		and the light bulbs glow.	
		Draw diagram (figure 1) on board while	
		explaining the above concept.	
		Reinforce teaching by playing the	
		following video:	
		https://www.youtube.com/watch?v=qyHw	
		QEq0AIQ	
		"Ionic Compounds: Conducting Electricity	
		GCSE Chemistry (9-1) kayscience.com"	
		Establish the following points:	
		 Conducting solutions contain ions, 	
		conductivity is positively correlated	
		to concentration	
		Metal + nonmetal substance will	
		form ions	
		Nonmetal+nonmetal will not form	
		an ionic solution	
		Acids and bases form conducting	
		solutions	
		Solids don't conduct	
		Metals conduct	
Щ	ļ		

	D .: .	D. H	
3.	Practice and	Predict: students take lab handout (Hebden	5min
	Production	pg 195) with list of substances that they will	
	Donatia.	test, and predict which compounds will	
	Practice,	conduct electricity and which ones won't.	
	reinforcement, and		
	extension of the new	Observe: students get into groups and test	
	content and	the conductivity of substances, both in their	20
	language.	solid forms and their dissolved forms.	20min
		Explain: student work independently to go	
		over their predictions and observations.	
		Write out findings and reflections on why	5min
		they were the same/different.	
		Go over the results as a class to avoid	
		misconceptions and verify understanding.	
		Reinforce the criteria for conductivity and	10min
		which materials can dissociate into ions.	
		Which compounds form conducting	
		solutions?	
		What can we conclude regarding	
		which phase does not conduct	
		electricity (solids except metals)?	
		 What additional requirement must 	
		be met, other than ions being present,	
		before electrical conductivity can	
		occur?	
		occur?	
4.	Closure	Depending on student energy can either do	10min
		snowball: each student write down what	
		they learned on a piece of paper, wad it up	
		and throw it into the air away from them.	
		Each student then picks up a piece of paper	
		and read it aloud. (student then put it into a	
		bin for teacher to check after on their own	
		time)	
		Or	
		Mock teacher: have volunteers come up and	
		explain the different points of how to decide	

if a substance will be conducting and nonconducting.	
Give students exercises 6, 7, 8 on page 198 of Hebden as homework due next class.	

Technical Notes:

- 1. Important trick for students is to hold electrodes close together when doing the lab. Can explain that it makes it easier to test conductivity because the ions don't have as long of a path to travel between electrodes. (so students don't get a false negative)
- 2. Group lab may require supervision or guidance for using the electrodes properly.
- 3. Use lab textbook with answering key for the lab handout and answering key.

Reflection:

Can't have too much content within one class. Need to break it down into bite chunk sized info so students can digest.

Not sure if the lab will work well given so many substances that requires dissolving, might be confusing for students.

Is 20 min enough time for the lab?

Many steps throughout the lesson for checking understanding. Perhaps not all necessary? Can take out kahoot.

Changed the exit slip to be more conceptual, since they already have hw questions from Hebden that assesses their technical knowledge.

Resource list:

Provincial Resource Centre for the Visually Impaired. (2021). *Hebden: Chemistry 11, a workbook for students*.

The Hebden textbook is the main source of structure and content for this lesson. The content teach can be taken directly from the textbook and the lab is also in the textbook on page 195. The structure of the lab is flexible but the way it's structured (POE) is a good way to structure inquiry.

The hook and the closure activities are made by me, no references available. https://www.youtube.com/watch?v=qyHwQEq0AIQ

"Ionic Compounds: Conducting Electricity | GCSE Chemistry (9-1) | kayscience.com" Use this video to supplement content teach as an additional source of teaching event so students can review while having some images and animations.

figure1

The Conductivity of Aqueous Solutions Lab: Name:		
Purpose of lab:		
Recall that atoms of molecules having an electric charge are called IONS. This section		
exami	nes the evidence for the existence of ions and the effects	which ions have on solutions.
Part A:		
Electrical conduction in a solution requires the transferring of electrically-charged ions through		
the solution. Dip the two electrodes into each dissolved solution and observe if it conducts		
electricity by looking at the brightness of the bulb glow.		
#	Substance tested	Result
1	Distilled water	No glow

no glow

Glows brightly

Pure alcohol (C₂H₅OH)

1 M NaSCN

2

3

4	1M HCl	Glows brightly
5	1M NaOH	Glows brightly
6	1M sugar (C ₁₂ H ₂₂ O ₁₁)	Glows slightly
7	1M H ₂ SO ₄	Glows brightly
8	1M Na ₃ PO ₄	Glows brightly
9	Pure glycerine	No glow
10	1М КОН	Glows brightly
11	Pure acetone	No glow

Questions:

1. How do the observations show about the purity of water?

There are no ions in solutions because it does not conduct.

2. Which of the compounds produce SUBSTANTIAL amounts of ions in solution?

	3.	Does 1 M sugar appear to contain more ions than pure water? Does it appear that
		sugar produces ions when in water?
		Sugar has slightly more ions than pure water, and since the lightbulb glows slightly, it
		must conduct electricity slightly and thus contains ions.
Name:		Date:
		hapter 9: Solutions nic Conductivity exit slip:
	4.	What is one thing you thought you knew about conductivity of solutions?
	5.	What is one thing you learned from today's class?
	6.	What is one thing you are still curious about?