

128K x 8 HIGH-SPEED **CMOS STATIC RAM**

MAY 1999

FEATURES

- High-speed access time: 12, 15, 20, 25 ns
- Low active power: 600 mW (typical)
- Low standby power: 500 μW (typical) CMOS standby
- Output Enable (OE) and two Chip Enable (CE1 and CE2) inputs for ease in applications
- · Fully static operation: no clock or refresh required
- TTL compatible inputs and outputs
- Single 5V (±10%) power supply
- Low power version available: IS61C1024L
- Commercial and industrial temperature ranges available

DESCRIPTION

The ISSI IS61C1024 and IS61C1024L are very high-speed, low power, 131,072-word by 8-bit CMOS static RAMs. They are fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.

When CE1 is HIGH or CE2 is LOW (deselected), the device assumes a standby mode at which the power dissipation can be reduced by using CMOS input levels.

Easy memory expansion is provided by using two Chip Enable inputs, CE1 and CE2. The active LOW Write Enable (WE) controls both writing and reading of the memory.

The IS61C1024 and IS61C1024L are available in 32-pin 300-mil SOJ, and TSOP (Type I, 8x20), and sTSOP (Type I, 8 x 13.4) packages.

FUNCTIONAL BLOCK DIAGRAM

ISSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 1999, Integrated Silicon Solution, Inc.

PIN CONFIGURATION 32-Pin SOJ

PIN CONFIGURATION 32-Pin TSOP (Type 1) (T) and sTSOP (Type 1) (H)

PIN DESCRIPTIONS

A0-A16	Address Inputs
CE1	Chip Enable 1 Input
CE2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/07	Input/Output
Vcc	Power
GND	Ground

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%

TRUTH TABLE

Mode	WE	CE1	CE2	ŌĒ	I/O Operation	Vcc Current
Not Selected	Χ	Н	Х	Χ	High-Z	ISB1, ISB2
(Power-down)	Χ	Χ	L	Χ	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	lcc1, lcc2
Read	Н	L	Н	L	D ouт	lcc1, lcc2
Write	L	L	Н	Χ	Din	lcc1, lcc2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	pF
Соит	Output Capacitance	Vout = 0V	7	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{CC} = 5.0V$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., IoH = -4.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 8.0 mA		_	0.4	V
ViH	Input HIGH Voltage			2.2	Vcc + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lц	Input Leakage	GND ≤ Vin ≤ Vcc	Com. Ind.	-2 -5	2 5	μΑ
lLO	Output Leakage	GND ≤ Vouт ≤ Vcc Outputs Disabled	Com. Ind.	-2 -5	2 5	μΑ

Note:

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

IS61C1024 POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		-12 Min.	ns Max.		ns Max.		ns Max.	-25 Min.	ns Max.	Unit
lcc1	Vcc Operating Supply Current	$VCC = VCC \text{ MAX.}, \overline{CE} = VIL$ $IOUT = 0 \text{ mA}, f = 0$	Com. Ind.	_	85 110	_	85 110	_	85 110	_	85 110	mA
lcc2	Vcc Dynamic Operating Supply Current	$VCC = VCC MAX., \overline{CE} = VIL$ $IOUT = 0 mA, f = fMAX$	Com.	_	170 180	_	160 170	_	150 160	_	140 150	mA
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} &\text{Vcc} = \text{Vcc MAX.,} \\ &\frac{\text{Vin}}{\text{CE1}} = \text{Vih or Vil} \\ &\overline{\text{CE2}} \geq \text{Vih, f} = 0 \text{ or} \\ &\text{CE2} \leq \text{Vil, f} = 0 \end{aligned}$	Com. Ind.	_	40 60	_	40 60	_	40 60	_	40 60	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{aligned} & \frac{\text{Vcc} = \text{Vcc MAX.,}}{\text{CE1}} \leq \text{Vcc} - 0.2\text{V,}\\ & \text{CE2} \leq 0.2\text{V}\\ & \text{Vin} > \text{Vcc} - 0.2\text{V, or}\\ & \text{Vin} \leq 0.2\text{V, } f = 0 \end{aligned}$	Com. Ind.	_	30 40	_	30 40	_	30 40	_	30 40	mA

Note:

IS61C1024L POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		-15 Min.		-20 Min.	ns Max.		ins Max.	Unit	
lcc1	Vcc Operating Supply Current	$Vcc = Vcc \text{ MAX.}, \overline{CE} = Vlc \text{ IOUT} = 0 \text{ mA}, f = 0$	Com. Ind.	_	85 110	_	85 110	_	85 110	mA	
lcc2	Vcc Dynamic Operating Supply Current	$V_{CC} = V_{CC} \text{ MAX.}, \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = f_{MAX}$	Com. Ind.	_	160 170	_	150 160	_	140 150	mA	
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} &\text{Vcc} = \text{Vcc MAX}, \\ &\text{Vin} = \text{Vih or Vil} \\ &\overline{\text{CE1}} \geq \text{Vih, f} = 0 \text{ or} \\ &\text{CE2} \leq \text{Vil, f} = 0 \end{aligned}$	Com. Ind.	_	40 60	-	40 60	_	40 60	mA	
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:vcc} \begin{split} & \underline{\text{Vcc}} = \text{Vcc MAX.}, \\ & \overline{\text{CE1}} \leq \text{Vcc} - 0.2\text{V}, \\ & \text{CE2} \leq 0.2\text{V} \\ & \text{Vin} > \text{Vcc} - 0.2\text{V}, \text{ or} \\ & \text{Vin} \leq 0.2\text{V}, \text{ f} = 0 \end{split}$	Com. Ind.	_	500 750	_	500 750	_	500 750	μА	

Note:

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-12	(2)	-15	ns	-20	ns	-25	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	12	_	15	_	20	_	25	_	ns
t AA	Address Access Time	_	12	_	15	_	20	_	25	ns
t oha	Output Hold Time	3	_	3	_	3	_	3	_	ns
tACE1	CE1 Access Time	_	12	_	15	_	20	_	25	ns
tACE2	CE2 Access Time	_	12	_	15	_	20	_	25	ns
t DOE	OE Access Time	_	6	_	7	_	9	_	9	ns
tLZOE ⁽³⁾	OE to Low-Z Output	0	_	0	_	0	_	0	_	ns
thzoe(3)	OE to High-Z Output	0	6	0	6	0	7	0	10	ns
tLZCE1(3)	CE1 to Low-Z Output	2	_	2	_	3	_	3	_	ns
tLZCE2 ⁽³⁾	CE2 to Low-Z Output	2	_	2	_	3	_	3	_	ns
tHZCE ⁽³⁾	CE1 or CE2 to High-Z Output	0	7	0	8	0	9	0	10	ns
t PU ⁽⁴⁾	CE1 or CE2 to Power-Up	0	_	0	_	0	_	0	_	ns
t PD ⁽⁴⁾	CE1 or CE2 to Power-Down	_	12	_	12	_	18		20	ns

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- -12 ns device for IS61C1024 only.
 Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 4. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing	1.5V
and Reference Level	
Output Load	See Figures 1 and 2

AC TEST LOADS

480 Ω **OUTPUT** o 255Ω 5 pF Including jig and scope =

Figure 2

AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

- Notes:
 1. WE is HIGH for a Read Cycle.
 2. The device is continuously selected. OE, CE1 = VIL, CE2 = VIH.
- 3. Address is valid prior to or coincident with $\overline{\text{CE1}}$ LOW and CE2 HIGH transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range, Standard and Low Power)

		-12 ns	(3)	-15 n	ıs	-20	ns	-25	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	12	_	15	_	20	_	25	_	ns
tsce1	CE1 to Write End	10	_	12	_	15	_	20	_	ns
tsce2	CE2 to Write End	10	_	12	_	15	_	20	_	ns
taw	Address Setup Time to Write End	10	_	12	_	15	_	20	_	ns
t HA	Address Hold from Write End	0	_	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	0	_	ns
tpwe ⁽⁴⁾	WE Pulse Width	10	_	10	_	12	_	15	_	ns
tsp	Data Setup to Write End	7	_	8	_	10	_	12	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	0	_	ns
tHZWE ⁽⁵⁾	WE LOW to High-Z Output	_	7	_	7	_	10	_	12	ns
tLZWE ⁽⁵⁾	WE HIGH to Low-Z Output	2		2		2		2		ns

Notes:

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

^{2.} The internal write time is defined by the overlap of CE1 LOW, CE2 HIGH and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

^{3. -12} ns device for IS61C1024 only.

^{4.} Tested with OE HIGH.

^{5.} Tested with the load in Figure 2. Transition is measured ± 500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

WRITE CYCLE NO. 1 (CE Controlled, OE is HIGH or LOW) (1)

WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE1}}$ LOW, CE2 HIGH and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

IS61C1024 STANDARD VERSION ORDERING INFORMATION

Commercial Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
12	IS61C1024-12J	300-mil Plastic SOJ
12	IS61C1024-12K	400-mil Plastic SOJ
12	IS61C1024-12H	sTSOP (Type I)
12	IS61C1024-12T	TSOP (Type I)
15	IS61C1024-15J	300-mil Plastic SOJ
15	IS61C1024-15K	400-mil Plastic SOJ
15	IS61C1024-15H	sTSOP (Type I)
15	IS61C1024-15T	TSOP (Type I)
20	IS61C1024-20J	300-mil Plastic SOJ
20	IS61C1024-20K	400-mil Plastic SOJ
20	IS61C1024-20H	sTSOP (Type I)
20	IS61C1024-20T	TSOP (Type I)
25	IS61C1024-25J	300-mil Plastic SOJ
25	IS61C1024-25K	400-mil Plastic SOJ
25	IS61C1024-25H	sTSOP (Type I)
25	IS61C1024-25T	TSOP (Type I)

IS61C1024 STANDARD VERSION ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
12	IS61C1024-12JI	300-mil Plastic SOJ
12	IS61C1024-12KI	400-mil Plastic SOJ
12	IS61C1024-12HI	sTSOP (Type I)
12	IS61C1024-12TI	TSOP (Type I)
15	IS61C1024-15JI	300-mil Plastic SOJ
15	IS61C1024-15KI	400-mil Plastic SOJ
15	IS61C1024-15HI	sTSOP (Type I)
15	IS61C1024-15TI	TSOP (Type I)
20	IS61C1024-20JI	300-mil Plastic SOJ
20	IS61C1024-20KI	400-mil Plastic SOJ
20	IS61C1024-20HI	sTSOP (Type I)
20	IS61C1024-20TI	TSOP (Type I)
25	IS61C1024-25JI	300-mil Plastic SOJ
25	IS61C1024-25KI	400-mil Plastic SOJ
25	IS61C1024-25HI	sTSOP (Type I)
25	IS61C1024-25TI	TSOP (Type I)

IS61C1024L LOW POWER VERSION ORDERING INFORMATION Commercial Range: 0°C to +70°C

Order Part No. Speed (ns) **Package** 300-mil Plastic SOJ 15 IS61C1024L-15J IS61C1024L-15K 400-mil Plastic SOJ sTSOP (Type I) IS61C1024L-15H IS61C1024L-15T TSOP (Type I) 20 IS61C1024L-20J 300-mil Plastic SOJ 400-mil Plastic SOJ IS61C1024L-20K IS61C1024L-20H sTSOP (Type I) TSOP (Type I) IS61C1024L-20T 25 IS61C1024L-25J 300-mil Plastic SOJ 400-mil Plastic SOJ IS61C1024L-25K

sTSOP (Type I)

TSOP (Type I)

IS61C1024L-25H

IS61C1024L-25T

IS61C1024L LOW POWER VERSION ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
15	IS61C1024L-15JI	300-mil Plastic SOJ
	IS61C1024L-15KI	400-mil Plastic SOJ
	IS61C1024L-12HI	sTSOP (Type I)
	IS61C1024L-15TI	TSOP (Type I)
20	IS61C1024L-20JI	300-mil Plastic SOJ
	IS61C1024L-20KI	400-mil Plastic SOJ
	IS61C1024L-12HI	sTSOP (Type I)
	IS61C1024L-20TI	TSOP (Type I)
25	IS61C1024L-25JI	300-mil Plastic SOJ
	IS61C1024L-25KI	400-mil Plastic SOJ
	IS61C1024L-12HI	sTSOP (Type I)
	IS61C1024L-25TI	TSOP (Type I)