MA5233 Computational Mathematics

Lecture 2: Error Analysis

Simon Etter

2019/2020

Floating-point numbers

- +,-,*,/,sqrt are all approximate.
- From the IEEE standard:
 - "[...] every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result [...]"
- ► This only refers to single operations. Errors can still accumulate in longer calculations.

Key to understanding error propagation

- Conditioning
- ► Stability

Conditioning

A function f(x) is called *well-conditioned* if small relative perturbations in input x lead to small relative perturbations in output f(x).

Condition number

$$\kappa(f,x) := \lim_{\Delta x \to 0} \frac{|f(x + \Delta x) - f(x)|}{|f(x)|} \frac{|x|}{|\Delta x|} = \frac{|f'(x)|}{|f(x)|} |x|$$

Note

Conditioning is a property of the mathematical problem. Conditioning does not depend on the method used to solve the problem.

Example

Predicting the outcome of a die role is ill-conditioned: small perturbations in how you role the die may change the outcome.

Forward and backward error

Let $\tilde{f}(x)$ be a numerical approximation to f(x).

- ▶ Relative forward error: $\frac{|\tilde{f}(x) f(x)|}{|f(x)|}$.
- ▶ Relative backward error: $\frac{|\tilde{x}-x|}{|x|}$ where \tilde{x} such that $f(\tilde{x}) = \tilde{f}(x)$.

Forward and backward stability

 $\tilde{f}(x)$ is called *forward/backward stable* if the corresponding error is "small" (usually $\mathcal{O}(\text{eps})$).

Examples

- ► IEEE standard guarantees that +,-,*,/,sqrt are forward stable.
- sqrt(x) is backward stable:
 - forward stability guarantees $\operatorname{sqrt}(\mathtt{x}) = \sqrt{x} (1 + \varepsilon)$ with $|\varepsilon| \ll 1$;
 - hence sqrt(x) is the correct solution for

$$\tilde{x} = x(1+\varepsilon)^2 = x(1+2\varepsilon) + \mathcal{O}(\varepsilon^2).$$

Fundamental theorem of error analysis

forward error \approx condition number \times backward error

Proof.

$$\frac{|\tilde{f}(x) - f(x)|}{|f(x)|} = \frac{|f(\tilde{x}) - f(x)|}{|f(x)|} \approx \frac{|f'(x)|}{|f(x)|} |x| \frac{|\tilde{x} - x|}{|x|}$$

Composition theorem

If $\tilde{f}(x)$, $\tilde{g}(x)$ are forward-stable approximations of well-conditioned functions f(x), g(x), then $\tilde{f}(\tilde{g}(x))$ is forward stable.

By previous theorem, forward may be replaced with backward stability. *Proof.*

$$\begin{split} \tilde{f}\left(\tilde{g}(x)
ight) &= \tilde{f}\left(g(x)\left(1+arepsilon
ight) & ext{stability of } ilde{g}(x) \\ &= f\left(g(x)\left(1+arepsilon
ight) \left(1+arepsilon
ight) & ext{stability of } ilde{f}(x) \\ &= f\left(g(x)
ight) \left(1+2arepsilon
ight) & ext{conditioning of } f(x) \end{split}$$

 ε is a generic constant which represents numbers on the order of machine precision. Different occurrences of ε need not have the same value, and $\varepsilon^2=0$.

Summary

- ► Floating-point arithmetic necessarily involves rounding errors.
- Error analysis is based on conditioning and backward stability.
- ▶ Backward error allows us to compare rounding error against other sources of errors, e.g. measurement or previous computations.
- ► Condition number quantifies error amplification.
- ► Condition number is independent of algorithm.

Vector norm ($\mathbb{K} = \mathbb{R}$ or \mathbb{C})

Map $\|\cdot\|:\mathbb{K}^n\to\mathbb{R}$ satisfying the following.

- ▶ Absolute homogeneity: $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{K}$.
- ► Triangle inequality: $||x + y|| \le ||x|| + ||y||$.
- Nonnegativity: $||x|| \ge 0$ and ||x|| = 0 iff x = 0.

Important vector norms

Definitions

1-norm:
$$||x||_1 := \sum_{k=1}^n |x_k|$$

2-norm:
$$||x||_2 := \sqrt{\sum_{k=1}^n |x_k|^2}$$

$$\mathsf{Inf-norm}\colon \ \|x\|_{\infty} := \mathsf{max}_k \, |x_k|$$

Relations

$$||x||_2 \le ||x||_1 \le \sqrt{n} \, ||x||_2$$

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} \, ||x||_{\infty}$$

$$||x||_{\infty} \leq ||x||_1 \leq n \, ||x||_{\infty}$$

Norm equivalence theorem

For any two norms $\|\cdot\|_a$, $\|\cdot\|_b$ on a finite-dimensional vector space V, there exists a constant C such that

$$\frac{1}{C} \|x\|_{a} \leq \|x\|_{b} \leq C \|x\|_{a} \qquad \forall x \in V.$$

Matrix norm ($\mathbb{K} = \mathbb{R}$ or \mathbb{C})

Vector norm on $\mathbb{K}^{n\times n}$ which additionally satisfies the following.

▶ Submultiplicativity: $||AB|| \le ||A|| ||B||$.

Induced matrix norm

Given vector norm $\|\cdot\|$, define induced matrix norm through

$$||A|| := \max_{||x||=1} ||Ax||.$$

Matrix norms $\|\cdot\|_{p}$ will always refer to norms induced by vector norms $\|\cdot\|_{p}$.

Frobenius norm

$$||A||_F := \sqrt{\sum_{i,j=1}^n |A_{ij}|^2}$$

Theorem

$$||A||_{1} = \max_{j \in \{1,...,n\}} \sum_{i=1}^{n} |A_{ij}| \qquad ||A||_{2} = \max_{k \in \{1,...,n\}} \sigma_{k}(A)$$

$$||A||_{\infty} = \max_{i \in \{1,...,n\}} \sum_{j=1}^{n} |A_{ij}| \qquad ||A||_{F} = \sqrt{\sum_{k=1}^{n} \sigma_{k}(A)^{2}}$$

 $\sigma_k(A)$ denote the singular values of A.

Condition number of matrix

$$\kappa(A) := ||A|| \, ||A^{-1}||$$

Motivation.

- ▶ Consider the function f(x) := Ax.
- ► Its condition number is given by

$$\kappa(f,x) = \frac{\|\nabla f\|}{\|f(x)\|} \|x\| = \frac{\|A\|}{\|Ax\|} \|x\| \le \|A\| \|A^{-1}\|.$$

Why does condition number of Ax depend on A^{-1} ?

- Assume A is singular, $x \in \ker(A)$ and $\Delta x \notin \ker(A)$ such that $\|\Delta x\| \ll \|x\|$.
- ► Then Ax = 0 but $A(x + \Delta x) \neq 0$.
- ► Hence small relative perturbation in *x* leads to infinitely large relative perturbation in *Ax*.

Conditioning of addition

$$\kappa_1(+,(xy)^T) = \frac{\|(1\ 1)\|_1}{|x+y|} \|(x\ y)^T\|_1 = \frac{|x|+|y|}{|x+y|}$$

Hence addition is well-conditioned unless $|x + y| \ll |x| + |y|$.

Remarks:

- We used 1-norm, but conclusion holds for all norms due to norm equivalence.
- ▶ $\|(1\ 1)\|_1$ denotes operator 1-norm because (1\ 1) is a row vector. Hence, $\|(1\ 1)\|_1 = \|(1\ 1)^T\|_{\infty} = 1$.

Stability of addition

According to IEEE specification, it holds

$$x + y = (x + y)(1 + \varepsilon) = x(1 + \varepsilon) + y(1 + \varepsilon).$$

Hence, x+y is exact result for input $\tilde{x} = x(1 + \varepsilon)$, $\tilde{y} = y(1 + \varepsilon)$.

Floating-point addition in practice

The ill-conditioning of addition is a real issue!

Example. Set x = eps()/2. In FP arithmetic, we then have

$$(1 + 2*x + x^2) - (1 + x)^2 == eps()$$

because $1 + 2x + x^2 \rightarrow 1 + eps()$ but $1 + x \rightarrow 1$.

Conditioning of multiplication

Assume w.l.o.g. |x| > |y|.

$$\kappa_1(x, (xy)^T) = \frac{\|(yx)\|_1}{|xy|} \|(xy)^T\|_1 = \frac{|x|(|x|+|y|)}{|xy|} \le 2\frac{|x|}{|y|}$$

Hence multiplication is well-conditioned unless $|x| \gg |y|$.

Same remarks as on previous slide apply.

Stability of multiplication

According to IEEE specification, it holds

$$x * y = (xy)(1+\varepsilon) = x(y(1+\varepsilon)).$$

Hence, x+y is exact result for input $\tilde{x} = x$, $\tilde{y} = y(1 + \varepsilon)$.

Floating-point multiplication in practice

Ill-conditioning of multiplication is almost always harmless.

Example. Consider the computation 1e30 * pi.

- ▶ The previous slide assumed rounding error in pi may be $\mathcal{O}(\varepsilon 10^{30})$.
- ▶ However, rounding error in pi is $\mathcal{O}(\varepsilon \pi)$.

References and further reading

N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (2002), doi:10.1137/1.9780898718027