

Aname	Atable	Adatatype	Attributes
NAME	STUDENT	STRING	
STUDENTNUMBER	STUDENT	INTEGER	
CLASS	STUDENT	INTEGER	
MAJOR	STUDENT	STRING	
COURSENAME	COURSE	STRING	
COURSENUMBER	COURSE	STRING	
CREDITHOURS	COURSE	INTEGER	
DEPARTMENT	COURSE	STRING	
SECTIONIDENTIFIER	SECTION	INTEGER	
COURSENUMBER	SECTION	INTEGER	
SEMESTER	SECTION	STRING	
YEAR	SECTION	INTEGER	
INSTRUCTOR	SECTION	STRING	
STUDENTNUMBER	GRADE_REPORT	INTEGER	
SECTIONIDENTIFIER	GRADE_REPORT	INTEGER	
GRADE	GRADE_REPORT	CHAR	
COURSENUMBER	PREREQUISITE	INTEGER	
PREREQNUMBER	PREREQUISITE	INTEGER	

		Constraints – Detai	
TTRIBUTE	CONSTRAINTS		
ACname	ACattr	ACdetail	
CC1	STUDENTNUMBER	NULL	
CC2	COURSENUMBER	NULL	
CC3	SECTIONIDENTIFIER	NULL	
CC4	STUDENTNUMBER	NULL	
CC4	SECTIONIDENTIFIER	NULL	
CC5	COUSENUMBER	NULL	
CC5	PREREQNUMBER	NULL	
CD1	COURSENAME	NULL	
CF1	COUSENUMBER	COURSE	
CF2	STUDENTNUMBER	STUDENT	
CF3	SECTIONIDENTIFIER	SECTION	
CF4	COURSENUMBER	COURSE	
CF5	PREREQNUMBER	COURSE	
CK1	CREDITHOURS	credithours in (1,2,3,4,8,10)	
CK2	GRADE	grade in (A, B, C, D, F, I)	

Data Dictionary Usage (i)

- Are an integral part of a DBMS, but because of its importance it deserves a study of its own!
- Data dictionaries store information about the database structure, integrity constraints, user profiles, configuration (start-up or running/session), what's going on ...
- Documentation of data and their relationships;
- Standardisation of definitions;
- Control of
 - Change impact analysis, to investigate the effect of proposed changes;
 - Synonyms giving two or more names for the same database item;
 - Redundancy multiple copies of same data;
 - Database Activities running transactions, open cursors, active sessions, ...;

Joseph Vella - Introduction to databases

9

Data Dictionary & DBMS + SD

9

Data Dictionary Usage (ii)

- Aid to analysis and design;
- Generation of meta data for DBMSs and 4GLs;
- Provision for auditing information/assistance;
- Aid to all users
 - For example,
 - DBA, System Analyst, Programmers, end users ...

Joseph Vella - Introduction to databases

10

Query the DD examples (for PostgreSQL)

- pg_class (relations: tables, views, indices, sequences)
 - oid, relname, relkind, relowner, relpages, reltuples, relfilenode, relnamespace, reltablespace, more...
- pg_attribute (columns)
 - attname, attnum, attrelid, more...
- pg_index (indices, which also appear in pg_class)
 - Indexrelid, indrelid, indnatts, indisunique, indisprimary, more...
- pg_proc (functions)
 - oid, proname, proowner, pronamespace, proisagg, proiswindow, provariadic, more...

Joseph Vella - Introduction to databases

10

Data Dictionary & DBMS + SD

13

Query the DD examples (for PostgreSQL)

- •Table: pg database
 - oid, datname, others...
 - pg_database_size() = size of entire database
- Table: pg_tablespace
 - oid, spcname, others...
 - pg_tablespace_size() = size of tablespace (across all DBs)

Joseph Vella - Introduction to databases

14

Query the DD examples (for PostgreSQL)

View: pg_stats (over table pg_statistic)

- schemaname, tablename, attname, inherited, null_frac, avg_width, n_distinct, most_common_vals, most_common_freqs, histogram_bounds, correlation
- ANALYZE
- ALTER TABLE .. ALTER COLUMN .. SET STATISTICS
- ALTER TABLE .. ALTER COLUMN .. SET (n_distinct = ...)

Joseph Vella - Introduction to databases

15

Data Dictionary & DBMS + SD

15

Query the DD examples (for PostgreSQL)

- View: pg stat activity
 - datid, datname, procpid, usesysid, usename, application_name, client_addr, client_port, backend_start, xact_start, query_start, waiting, current_query
- SELECT * FROM pg_stat_activity WHERE waiting
- pg_backend_pid() My backend PID (also good for GDB).
- pg_cancel_backend() Cancel query.
- pg_terminate_backend() Kill backend.

Joseph Vella - Introduction to databases

16

Query the DD examples (for PostgreSQL)

•View: pg_stat_bgwriter

 checkpoints_timed, checkpoints_req, buffers_checkpoint, buffers_clean, maxwritten_clean, buffers_backend, buffers_alloc.

•View: pg_stat_all_tables

relid, schemaname, relname, seq_scan, seq_tup_read, inx_scan, inx_tup_fetch, n_tup_ins, n_tup_upd, n_tup_del, n_tup_hot_upd, n_live_tup, n_dead_tup, last_vacuum, last_autovacuum, last_analyze, last_autoanalyze, vacuum_count, autovacuum_count, analyze_count, autoanalyze_count

Joseph Vella - Introduction to databases

11

Data Dictionary & DBMS + SD

Data Dictionary & Soft Dev. With DBs

4GL and No-Code concepts (i)

Data Dictionary & Soft Dev. With DBs

- Minimise the human production cost for the development of application programs.
 - The developed application programs should have a consistent look and feel as other application programs on the same computer platform.
 - For example, if the target platform is Sun's Solaris and the clients use the Open Windows GUI, it would be advisable to use a 4GL that can generate applications with the same GUI.
- Maximise the availability of the application program to the individuals at the site of installation.
- Synergises the computer resources of a installation.
 - In terms of software, hardware and networking.

Joseph Vella - Introduction to databases

31

Data Dictionary & DBMS + SD

31

4GL and No-Code concepts (ii)

- User-friendly interface to the development team.
 - Avoid excessive use of an unyielding coding method. For example, an application generator that requires developers to repeatedly navigate a contrived menu system is something developers quickly get weary of - counterproductive!!.
- The programming constructs are simple and have consistent syntax.
 - Traditional, and bitterly learned, programming methodologies should be adopted.
- Minimise the technical detail developers need to have while implementing an application program.
 - Ignore the concurrency intricacies; or the networking procedures and protocols ...

Joseph Vella - Introduction to databases

32

4GL and No-Code concepts (iii)

- Shorten the development time.
 - The shorter the time to analyse, design, code and test cycle is, then the more effective is the implementation.
 - Also, as business opportunities (or civil laws) do not have a fixed time frame -- taking advantage of a situation requires quick reactions.
- Common programming constructs can have metaphors.
 - For example, form design can be done with a graphical interface.
- 4GL are deployable tools.
 - End users can churn out their own forms and reports.

Joseph Vella - Introduction to databases

3

Data Dictionary & DBMS + SD

33

4GL's Basic Components

- forms (VDU based) for data input and querying;
- menus and navigation for selecting an application's functions;
- connectivity to / across databases and other application programs.

Joseph Vella - Introduction to databases

34

