

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

Part I. Integrity Constraints

What are integrity constraints?

Integrity constraints are pre-defined rules that are applied to the table fields or relations to maintain the overall validity, integrity, and consistency of the data present in the database table. These constraints are protocols that a table's data columns must follow, and they are used to restrict the types of information that can be entered into a table.

Integrity constraints are essential in ensuring data quality and consistency in databases. They help to prevent accidental damage to the database by authorized users by ensuring that the data remains consistent when changes are made to the database. Every time there is an insertion, deletion, or updating of data in the database, it is the responsibility of these integrity constraints to maintain the integrity of data.

We divide integrity constraints into two types, domain constraints which constraint the definition domain of an attribute and key constraints, which are related to the key attributes.

The following examples demonstrate how to create tables with different types of constrained attributes. It is always possible to create the table and then add the constraints later on with one of the commands

ALTER TABLE table_name **MODIFY** attribute_name ...

ALTER TABLE table_name ADD CONSTRAINT constraint_name ...

Domain Constraints

CHECK Constraint:

This constraint restricts the values that a column can hold **CHECK (<condition>)**

```
ALTER TABLE Students ADD CONSTRAINT Ck_Employees CHECK (Age >= 18);
```

NOT NULL Constraint:

This constraint ensures that a column cannot hold NULL values.

```
ALTER TABLE Employees MODIFY EmployeeEmail VARCHAR(50) NOT NULL;
```


2nd Cycle Department

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

DEFAULT Constraint:

This constraint is used to provide a default value value for a column when no no value is specified during an insert. Example:

GETDATE() is a function that is used to retrieve the current date and time from the system

ALTER TABLE Orders MODIFY OrderDate DATE DEFAULT GETDATE();

Key Constraints

PRIMARY KEY Constraint:

This constraint uniquely identifies each record in a database table.

ALTER TABLE Products ADD CONSTRAINT pk_product PRIMARY KEY(ProductID);

```
Run SQL query/queries on server "mysql wampserver": 

1 CREATE TABLE Products (
2 ProductID INT PRIMARY KEY,
3 ProductName VARCHAR(50),
4 Price DECIMAL(10,2)

5 );
```

There can be compound primary keys. Example:

```
CREATE TABLE tab_name(
   atr1 INT,
   atr2 INT,
   atr3 INT,
   CONSTRAINT fk_1 FOREIGN KEY(atr1) REFERENCES another_tab_1 (another_atr_1),
   CONSTRAINT fk_2 FOREIGN KEY(atr2) REFERENCES another_tab_2 (another_atr_2),
   CONSTRAINT pk PRIMARY KEY(atr1, atr2)
);
```


2nd Cycle Department

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

UNIQUE Constraint:

This constraint ensures that all values in a column are unique.

```
ALTER TABLE Employees ADD CONSTRAINT uk_employee UNIQUE(EmployeeEmail);
```

Run SQL query/queries on server "mysql wampserver": 1 CREATE TABLE Employees (2 EmployeeID INT PRIMARY KEY, 3 EmployeeEmail VARCHAR(50) UNIQUE, 4 Salary DECIMAL(10,2) 5);

FOREIGN KEY Constraint:

This constraint is used to create a relationship between two tables.

Since foreign key attributes in a table reference attributes in a foreign table, there are special referential actions that can be defined when creating or altering a foreign key, which are 'ON UPDATE' and 'ON DELETE'. These will be covered in part III of these series.

```
Run SQL query/queries on server "mysql wampserver": 

1 CREATE TABLE Orders (
2 OrderID INT PRIMARY KEY,
3 CustomerID INT,
4 OrderDate DATE,
5 FOREIGN KEY (CustomerID) REFERENCES
Customers(CustomerID)
6);
7
8 CREATE TABLE Customers (
9 CustomerID INT PRIMARY KEY,
10 CustomerName VARCHAR(50)
11);
Clear
```

Why name constraints?

Naming constraints is a good practise that helps improve readability, maintainability and reliability of a database. By knowing the name of the constraint we can alter the constraint.

```
CREATE TABLE tab_name_(
    pk_atr VARCHAR(2) PRIMARY KEY
);

CREATE TABLE tab_name(
    atr1 INT,
    atr2 VARCHAR(2),
    constraint pk_cons primary key (atr1),
    constraint fk_cons foreign key (atr2) references tab_name_(atr3)
);
```

How to show all the constraints?

```
SELECT CONSTRAINT_NAME FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS;
```


2nd Cycle Department

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

How to show the constraints of a table called 'table_name'?

```
SELECT CONSTRAINT_NAME FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
WHERE TABLE_NAME = 'table_name';
```

How to show all the constraints labeled by the name, the constraint type and the table name? SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

Knowing a constraint's name, how to modify it?

```
ALTER TABLE child_table_name
DROP FOREIGN KEY fk_name,
ADD CONSTRAINT fk_name
FOREIGN KEY (child_column_name)
REFERENCES parent_table_name (parent_column_name)
ON DELETE CASCADE
ON UPDATE CASCADE;
```


1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

Application:

Using SQL command line, create a database called 'music-db' containing the below tables and constraints.

Attribute	Туре	Constraint
	So	ngs
SongID	Integer	primary key
SongName	Varchar(100)	not null
Artist	Integer	references an artist
Album	Integer	references an album
Genre	Varchar(1)	
ReleaseDate	Date	
Duration	Time	
	Alb	ums
AlbumID	Integer	primary key
AlbumName	Varchar(100)	not null
ReleaseDate	Date	
Genre	Varchar(50)	
	Ar	tists
ArtistID	Integer	primary key
ArtistName	Varchar(100)	
Email	Varchar(100)	
Country	Varchar(50)	
Genre	Varchar(50)	
	Play	vlists
PlaylistID	Integer	primary key
PlaylistName	Varchar(100)	not null
-	Playlis	tDetails
PlaylistDetailID	Integer	primary key
Playlist	Integer	references a playlist
Song	Integer	references a song

- Modify 'Artists' table and add a constraint to 'Genre' that accepts either 'f' for female or 'm' for male
- Modify 'Songs' table and add a constraint to the attribute 'Duration' restricting the value to be >'00:00:00'
- Add a constraint to 'Artists' table to ensure that 'ArtistName' is not null
- Add a constraint to 'Artists' table to ensure that the values of 'Email' column are unique

In the following assignments, we will represent entities in a relational model as such: Artists(<u>ArtistID</u>, ArtistName, Email, Country, Genre)
PlaylistDetails(<u>PlaylistDetailID</u>, Playlist#, Song#)

Underlined attributes represent primary keys attributes marked with # represent foreign keys

2nd Cycle Department

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03: Integrity Contraints

Part II. Insertions

Understanding insertions

Insertion commands allow you to create instances of the entities in your database.

Inserting

When inserting data of the types VARCHAR, TEXT, and DATE, the text values should be enclosed in single quotation marks (' '). This formatting is necessary to differentiate the textual data from the SQL commands and to ensure that the database interprets the values as literal text rather than as SQL commands. On the other hand, when the column is numeric, there is no need to use quotation marks. You simply need to specify the number.

1. Inserting multiple rows

It is possible to insert multiple tuples to a table using one query.

NB. The order is important.

```
INSERT INTO table_name_ VALUES (val1, val2, ...), (val1_, val2_, ...), ...;
```

2. Inserting one row at a time

It's also possible to insert one tuple at a time. There are two ways of doing so:

```
a. Inserting by order
```

```
INSERT INTO table_name_ VALUES (val1, val2, ...);
```

b. Inserting with column name

Here the order is not important because we specify the name of the column.

```
INSERT INTO table_name_ (column1, column2, ...) VALUES (val1, val2, ...);
```

Updating

The UPDATE command allows you to update one or more values in the same row of a table, potentially satisfying a given logical expression (predicate). The general syntax for this command is:

```
UPDATE table_name_ SET col1 = expr1 [,col2 = exp2 ...] [WHERE predicate];
```

Deleting

The DELETE command allows you to delete rows from a table that satisfy a given expression (predicate) or can be used to delete all rows from a table. The general syntax for this command is:

```
DELETE FROM table_name [WHERE predicate];
```

The WHERE clause is optional; if omitted, all rows of the table will be deleted.

Example of a predicate:

```
DELETE FROM tab_name WHERE atr1 = 'value';
```


1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03: Integrity Contraints

Application

Creating the database

Using sql queries, create the library database described by the following relational model:

Entities tables:

Books(<u>ISBN</u>, title, publisher#, publicationDate, genre)

Authors(<u>authorID</u>, authorName, email, age, country)

Publishers(<u>publisherID</u>, publisherName, headquartersLocation, foundationYear, website)

Members(<u>memberID</u>, name, email, phone, address)

Relationship tables:

WrittenBy(book#, author#)

BookLoans(<u>loanID</u>, book#, member#, borrowDate, returnDate, dueDate)

- All Ids are declared as integers
- 'phone' is a string of characters
- 'email' should be unique
- 'website' should be unique
- AuthorID, publisherID, memberID, loanID should AutoIncrement

Populating the database

Populate the database with the following information

Books table					
ISBN	title	publisher	publicationDate	genre	
97801424	To Kill a Mockingbird	1	1960-07-11	Fiction	
97800611	1984	2	1949-06-08	Science Fiction	
97805479	The Hobbit	3	1937-09-21	Fantasy	
97800629	The Push	2	2021-01-05	Psychological Thriller	
97803582	The Silent Patient	2	2019-02-05	Psychological Thriller	
97803583	The Ballad of Songbirds and Snakes	1	2020-05-19	Dystopian Fiction	
97803584	The Midnight Library	4	2020-09-29	Fiction	
97805931	The Testaments	1	2019-09-10	Dystopian Fiction	

Authors table						
authorID	authorName	email	age	country		
1	Harper Lee	harperlee@gmail.com	89	USA		
2	George Orwell	georgeorwell@gmail.com	46	UK		
3	J.R.R. Tolkien	tolkien@gmail.com	81	UK		

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

Publishers table				
publisherID	publisherName	headquartersLocation	foundationYear	website
1	Penquin Random House	New York, NY	2014	https://www.penguinrando mhouse.com/
2	HarperCollins	New York, NY	1989	https://www.harpercollins.c om/
3	Houghton Mifflin Harcourt	Boston, MA	1832	https://www.hmhbooks.co m/
4	Penguin Classics	London, UK	1935	https://www.penguin.co.uk/
5	HarperOne	San Francisco, CA	1977	https://www.harperone.com
6	St. Martin's Press	New York, NY	1952	https://us.macmillan.com/s mp
7	Doubleday	New York, NY	1897	https://www.penguinrando mhouse.com/imprints/doubl e/

Members table					
memberID	name	email	phone	address	
1	John Smith	johnsmith@gmail.com	555-1234	123 Main St	
2	Jane Doe	janedoe@gmail.com	555-5678	456 Elm St	
3	Bob Johnson	bobjohnson@gmail.com	555-9012	789 Oak St	

WrittenBy table			
book	author		
97801424	1		
97800611	2		

BookLoan table						
loanID	book#	member#	borrowDate	returnDate	dueDate	
1	97801424	1	2023-10-01	2023-10-08	2023-10-15	
2	97800611	2	2023-10-02	2023-10-09	2023-10-16	
3	97805479	3	2023-10-03	2023-10-10	2023-10-17	

Write the appropriate queries to implement the following insertions and comment the results:

- Insert into authors table the values (4, 'JRT', 'tolkien@gmail.com', 50, 'UK')
- Update publisherYear in Publishers table where publisherID = 1, and change its value from 2014 to 2013
- Add the following information to the database: Book 97805479 is written by author 3
- Member 1 comes to the library and borrows book 97800611 today. Add this information to the database (use CURDATE() function to get today's date).

1st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03: Integrity Contraints

Part III. Deletion and Update Triggers

What are they?

Triggers in SQL are used to automatically execute a set of SQL statements when a specific event occurs in the database. The purpose of triggers **'ON DELETE'** and **'ON UPDATE'** is to perform certain actions when a DELETE or UPDATE operation is executed on a table.

'ON DELETE' trigger

The purpose of 'ON DELETE' trigger is to perform certain actions when a row containing a referenced field is deleted. Four scenarios are possible:

CASCADE	indicates the cascading deletion of rows in the table whose foreign key value corresponds to that of the deleted row's primary key.
RESTRICT	indicates an error in the event of deleting a primary key value corresponding to a foreign key row.
SET NULL	sets the value to NULL in the rows of the table whose foreign key value corresponds to that of the deleted row's primary key.
NO	Rows in the table whose foreign key value corresponds to that of the deleted row's primary key
ACTION	remain unchanged.

'ON UPDATE' trigger

The purpose of 'ON UPDATE' trigger is to perform certain actions when a row containing a referenced field is updated. Four scenarios are possible:

CASCADE	indicates the cascading update of rows in the table whose foreign key value corresponds to that
	of the deleted row's primary key.
RESTRICT	indicates an error in the event of updating a primary key value corresponding to a foreign key
	row.
SET NULL	sets the value to NULL in the rows of the table whose foreign key value corresponds to that of
	the updated row's primary key.
NO	Rows in the table whose foreign key value corresponds to that of the updated row's primary key
ACTION	remain unchanged.

Syntax

The syntaxe is the following

```
FOREIGN KEY (foreign_key) REFERENCES tab_name(primary_key)
ON DELETE delete_option
ON UPDATE update_option;
```

Where 'delete_option' and 'update_option' are one of the previously described scenarios; CASCADE,

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03: Integrity Contraints

RESTRICT, SET NULL, NO ACTION. NB. The default value is RESTRICT.

Application

You are asked to export the previous populated database to conserve it since you will do some updating and deletion operations in the following assignment.

To better understand and visualize what happens to the referring column (the foreign key) once we modify the referenced column (primary key), we propose the following assignment.

For each scenario (CASCADE, RESTRICT, SET NULL, NO ACTION) and for each case (DELETING or UPDATING) do the following:

- Alter the books table and modify the foreign key adding one of the options above as a trigger
- Then according to the case (deletion or updating) delete or update the mentioned publisher accordingly and comment what happens to the books table as stated below
- Restore the tables to their previous state and try it again with another scenario

Deletion

Delete publisher with publisherID = 3, and comment what happens to the book(s) referencing it in each scenario

Publishers table						
publisherID	publisherID publisherName headquartersLocation foundationYear website					
3	Houghton Mifflin Harcourt	Boston, MA	1832	https://www.hmhbooks.co m/		

CASCADE

Books table					
ISBN	title	publisher	publicationDate	genre	
97801424	To Kill a Mockingbird	1	1960-07-11	Fiction	
97800611	1984	2	1949-06-08	Science Fiction	
97805479	The Hobbit		1937-09-21	Fantasy	

RESTRICT

Books table					
ISBN	title	publisher	publicationDate	genre	
97801424	To Kill a Mockingbird	1	1960-07-11	Fiction	
97800611	1984	2	1949-06-08	Science Fiction	
97805479	The Hobbit		1937-09-21	Fantasy	

2nd Cycle Department 1st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

SET NULL

Books table							
ISBN title publisher publicationDate genre							
97801424	To Kill a Mockingbird	1	1960-07-11	Fiction			
97800611	1984	2	1949-06-08	Science Fiction			
97805479	The Hobbit		1937-09-21	Fantasy			

NO ACTION

Books table						
ISBN title publisher publicationDate genre						
97801424	To Kill a Mockingbird	1	1960-07-11	Fiction		
97800611	1984	2	1949-06-08	Science Fiction		
97805479	The Hobbit		1937-09-21	Fantasy		

Updating

Update publisher and change publisher ID value from 4 to 3, and then comment what happens to the book(s) referencing it

Publishers table					
publisherID	publisherName	headquartersLocation	foundationYear	website	
3	Penguin Classics	London, UK	1935	https://www.penguin.co.uk/	

CASCADE

Books table					
ISBN title publisher publicationDate genre					
97803584	The Midnight Library		2020-09-29	Fiction	

RESTRICT

Books table					
ISBN title publisher publicationDate genre					
97803584	The Midnight Library		2020-09-29	Fiction	

SET NULL

Books table					
ISBN	title	publisher	publicationDate	genre	
97803584	The Midnight Library		2020-09-29	Fiction	

2nd Cycle Department

1 st year Speciality Class

2023 - 2024

Databases

Practical Assignments 03 : Integrity Contraints

NO ACTION

Books table					
ISBN title publisher publicationDate gen					
97803584	The Midnight Library		2020-09-29	Fiction	

Application 2

In the original database, for all foreign keys in child tables, set option cascade for updating and set null for deleting.