

Recitations7 - Additional meeting

Question 1 247 [I.2 Fall 2017 majors]

There are two assets: a risk-free asset with return r_f and a risky asset with return \tilde{r} . Returns are per-dollar returns, that is, total returns for one dollar invested. An agent has expected utility function with von Neumann (or Bernoulli) utility index $v(x) = -(\alpha - x)^2$, for $\alpha > 0$, and initial wealth w > 0 Assume that $\alpha > wr_f$. Negative investment (i.e., short selling) is permitted for both assets.

- a Find the optimal investment in the risky asset as a function of the expected return and the variance of the return on the risky asset, the risk-free return, and the agent's wealth. Consider the following comparative statics exercise. The return \tilde{r} is changed to a more risky return \tilde{r}' . The expected return on \tilde{r}' is the same as on \tilde{r} , that is, $E(\tilde{r}') = E(\tilde{r})$
- b State a definition of more risky return (or more risky random variable).
- c Suppose that $E(\tilde{r}) > r_f$. Show that the optimal investment in the risky asset with more risky return \tilde{r}' is smaller then the optimal investment with less risky return \tilde{r} , everything else being unchanged? Prove your answer.

Question 2

There are three states with equal probabilities $\pi_s = \frac{1}{3}$ for $s \in \{1, 2, 3\}$. Consider two state contingent consumption plans z = (8, 2, 2), and y = (3, 3, 6)

- a Does y FOSD dominate z?
- b Is z more risky than y?

Question 3 [Stochastic Dominance and Risk]

Consider two real-valued random variables y and z on some finite state space with $\mathbb{E}[y] = \mathbb{E}[z]$.

- a Prove that if y is more risky than z, then $\mathbb{E}[v(z)] \geq \mathbb{E}[v(y)]$ for every nondecreasing continuous and concave function $v : \mathbb{R} \to \mathbb{R}$. You may assume v is twice differentiable.
- b Give an example of two random variables y and z such that $y \neq z, \mathbb{E}[y] = \mathbb{E}[z]$ and neither z is more risky than y nor y is more risky than z.

Question 4 [Pratt]

Consider an agent whose preferences over real-valued random variables (or state-contingent consumption plans) are represented by an expected utility function with strictly increasing and twicedifferentianble vN-M utility $v : \mathbb{R} \to \mathbb{R}$. Let $\rho(w, \tilde{z})$ denote the risk compensation for random variable \tilde{z} with $\mathbb{E}(z) = 0$ at risk-free initial wealth w. Let A(w) denote the Arrow-Pratt measure of risk aversion at w.

- a Prove that A is an increasing function of w if and only if risk compensation ρ is an increasing function of w for every \tilde{z} with $\mathbb{E}(\tilde{z}) = 0$ and $\tilde{z} \neq 0$.
- b Derive an explicit expression for risk compensation for quadratic utility $v(x) = -(\alpha x)^2$ where $\alpha > 0$. Prove that this quadratic utility is, up to an increasing linear transformation, the only utility function with risk compensation of the form you derived.
- c Give an example of two vN-M utility function v_1 and v_2 such that neither v_1 is more risk averse than v_2 , nor v_2 is risk averse than v_1 in the sense of the Theorem of Pratt.

Question 5

Suppose that \tilde{z} takes two values z_1 or z_2 , where $z_1 \leq z_2$, with probabilities π and $1 - \pi$, respectively. Let \tilde{y} takes two values y_1 or y_2 , where again $y_1 \leq y_2$, with probabilities π and $1 - \pi$. Assume that $0 < \pi < 1$

a Under what conditions (necessary and sufficient) on z_i and y_i does \tilde{z} dominate \tilde{y} in the sense of the First-Order Stochastic Dominance? Justify your answer.

b Under what conditions does \tilde{z} dominate \tilde{y} in the sense of the Second-Order Stochastic Dominance? Under what conditions is \tilde{y} more risky than \tilde{z} ?

Question $6 \sim 223$ [I.2 Fall 2016 majors]

Consider two real-valued random variables y and z such that $\mathbb{E}[y] = \mathbb{E}[z]$. Suppose that cumulative distribution functions F_y and F_z have the following (weak) single-crossing property:

$$\exists_{t^* \in \mathbb{R}} \quad \left\{ \begin{array}{l} F_y(t) \geqslant F_z(t) & \text{for } t \leqslant t^* \\ F_y(t) \leqslant F_z(t) & \text{for } t \geqslant t^* \end{array} \right.$$

Show that y is more risky than z. You may assume that y and z are random variables on a state space with S states.

Question 7

Consider two random variables y and z with the same expectations $\mathbb{E}[y] = \mathbb{E}[z]$.

- a Show that if y is more risky than z then $Var[y] \geqslant Var[z]$.
- b Suppose both y and z are normal. Show that y is more risky than z if and only if $Var[y] \geqslant Var[z]$.
- c Show that if z is more risky than y and y is more risky than z then y and z have the same distribution, i.e. $F_y(t) = F_z(t)$ for all t You may assume y and z take only finitely many values.

Question 8

Consider two random variables y and z on a probability space. You may think about y and z as statecontingent consumption plans on a finite state space. Let $\{y_1, y_2, \ldots, y_k\}$ be the values y can take. Show that if $\mathbb{E}[z \mid y] = 0$ ($= \mathbb{E}[z \mid y = y_i]$ for all $i \in \{1, 2, \ldots, k\}$) then z + y is more risky than y

Question 9 271 [I.2 Spring 2019 majors]

Consider two real-valued random variables \tilde{y} and \tilde{z} on some state space (i.e. probability space). Let F_y and F_z be their cumulative distribution functions, and $E(\bar{z})$ and $E(\bar{y})$ their expected values. You may assume that \bar{y} and \bar{z} take values in a finite interval [a, b]

- a State a definition of \bar{z} first-order stochastically dominating (FSD) \tilde{y} . State a definition of second-order stochastic dominance (SSD). Your definitions should be stated in terms of cumulative distribution functions F_y and F_z
- b State a definition of \tilde{y} being more risky than \tilde{z} . Give a brief justification for why it is a sensible definition of more risky.
- c Suppose that \bar{z} has uniform distribution on an interval $[\underline{z}, \bar{z}]$ while \bar{y} has uniform distribution on $[y, \bar{y}]$. Under what conditions on the bounds z, \bar{z}, y, \bar{y} does \bar{z} FSD \tilde{y} ? Prove your statement.
- d Suppose again that \bar{z} and \tilde{y} have uniform distributions as in (c). Show that if $\underline{y} \leq \underline{z}$ and $z \leq \bar{y}$ and $E(\bar{z}) = E(\bar{y})$, then \tilde{y} is more risky than \bar{z} You may assume some specific (distinct) numerical values of $\underline{z}, \bar{z}, \underline{y}, \bar{y}$ in your proof, if you find it convenient.

Question 10 255 [I.2 Spring 2018 majors]

Consider two real-valued random variables \tilde{y} and \bar{z} on some state space (i.e. probability space). Let F_y and F_z be their cumulative distribution functions, and $E(\bar{z})$ and $E(\bar{y})$ their expected values. You may assume that \tilde{y} and \tilde{z} take values in a finite interval [a, b]

- a State a definition of \bar{z} second-order stochastically dominating (SSD) \tilde{y} . Your definition should be stated in terms of cumulative distribution functions F_y and F_z
- b State a definition of \tilde{y} being more risky than \bar{z} . Provide a justification for why it is a sensible definition of more risky.
- c Extend the definition of more risky to random variables that may have different expected values as follows: \tilde{y} is more risky than \bar{z} if and only if $\tilde{y} E(\tilde{y})$ is more risky than $\tilde{z} E(\bar{z})$. Show that if \tilde{y} is more risky than \tilde{z} and $E(\bar{z}) \geq E(\bar{y})$, then \bar{z} second-order stochastically dominates \tilde{y}
- d Show that $\lambda \bar{z}$ is more risky than \bar{z} for every $\lambda \geq 1$ and every \bar{z} . Note that $E(\bar{z})$ may be different from 0