Misura del calore specifico solidi e calore latente di fusione del ghiaccio

Brusini Alessio — Ferrari Carola — Mirolo Manuele — Stroili Emanuele

14 Ottobre 2025

Indice

1	Apparato sperimentale	3
	1.1 Misura per bassi voltaggi	3
2	Procedimento di misura	3
3	Dati	4
	3.1 Calore specifico del metallo	5
	3.2 Calore latente di fusione del ghiaccio	5
4	Analisi dati	6
	4.1 Massa equivalente in acqua	6
	4.2 Calore specifico del metallo	6
	4.3 Calore latente di fusione del ghiaccio	6
	4.4 Temperatura d'equilibrio e Chi Squared	6
	4.5 Tempo caratteristco	7
5	Grafici	7
6	Conclusione	7

Sommario

L'esperimento consiste nell'ottenere la curva volt-amperometrica di una lampadina a filamento, partendo da tensioni basse fino alla fusione del tungsteno. L'obiettivo è verificare l'andamento non ohmico della resistenza interna della lampadina,

1 Apparato sperimentale

1.1 Misura per bassi voltaggi

Per ottenere la misura a bassi voltaggi si costruisce un circuito composto da:

- Generatore di corrente continua
- Resistenza
- Voltmetro
- Amperometro
- Fotodiodo
- Lampadina con tensione di funzionamento 6V

2 Procedimento di misura

La misura si svolge in due fasi: nella prima si prendono misure più fitte per poter apprezzare le oscillazioni di corrente. A questo scopo è necessario introdurre una resistenza nel circuito da utilizzare come partitore di tensione. Inoltre, nella prima fase, ci si serve di un fotodiodo per poter captare la flebile luminescenza della lampadina, non visibile univocamente a occhio nudo.

Nella seconda fase si prendono dati meno fitti, perciò si rimuovono la resistenza e il fotodiodo dal circuito, non più necessari nella misura.

3 Dati

Tensione(V)	Corrente (A)
0	17.2
30	17.2
60	17.2
90	17.2
120	17.1
150	17.1
180	17.1
210	17.2
240	17.1
270	17.1
300	17.2
330	17.2
360	17.2
390	36.9
420	36.8
450	36.7
480	36.6
510	36.5
540	36.4
570	36.4
600	36.3
630	36.1
660	36.1
690	36.0
720	35.9
750	35.9
780	35.8
810	35.8
840	35.7
870	35.7
900	35.7
930	35.7
960	35.6
990	35.6
1020	35.5

Massa equivalente - Seconda prova

Tempo (s)	Temperatura (°C)
0	19.6
30	19.7
60	19.7
90	19.7
120	19.6
150	19.6
180	19.7
210	19.6
240	19.7
270	19.7
300	36.6
330	36.3
360	36.1
390	35.8
420	36.0
450	35.8
480	35.8
510	35.7
540	35.6
570	35.5
600	25.4

3.1 Calore specifico del metallo

3.2 Calore latente di fusione del ghiaccio

metallo - Prima prova

Tempo (s)	Temperatura (°C)
0	19.9
30	19.9
60	19.9
90	19.9
120	19.9
150	19.8
180	19.9
210	19.9
240	19.9
270	19.9
300	19.9
330	19.9
360	20.1
385	24.1
400	24.1
415	24.2
445	24.4
475	24.3
505	24.3
535	24.4
565	24.3
595	24.3
625	24.3
655	24.2
685	24.2
715	24.2
745	24.2
775	24.2
805	24.1

metallo - Seconda prova

Tempo (s)	Temperatura (°C)
0	20.6
30	20.7
60	20.7
90	20.7
120	20.7
150	20.8
180	20.9
210	20.9
240	20.9
270	20.9
300	20.8
330	24.2
350	24.6
360	24.8
370	25.2
400	25.3
430	25.3
460	25.2
490	25.2
520	25.2
550	25.2
580	25.2
610	25.2
640	25.2
670	25.2
700	25.2
730	25.2

 $\begin{array}{c} Ghiaccio - Seconda \\ Prima \\ Prova \end{array}$

Tomor	. (a)	Toman anatuma	(°C)
Tempo (s)	Ten	Temperatura iperatura (C)	19.7
0	0	19.3	
30	30	19.3	19.8
60	60	19.3	19.8
90	90	19.3	19.8
120	120	19.3	19.8
150	150	19.3	19.9
180	180	19.3	19.9
	210	19.3	19.9
210	240		19.9
240	270	19.3	19.9
270	300	19.4	19.9
300	305	19.4	18.3
330		19.4	16.9
360	310	19.4	
390	315	19.4	14
420	320	19.4	11.5
450	325	15.3	11
455	330	14.0	10.2
485	335	12.9	10.1
	340		9.9
515	345	12.2	9.7
545	350	10.2	10.3
575	355	10.6	7.0
605	360	11.2	8.0
635		10.6	
665	365	10.2	7.3
695	370	9.6	9.1
725	375	9.0	9.3
730	380	8.5	9.2
735	410	8.4	8.3
740	440	8.7	8.7
	470		8.5
745	500	8.7	8.6
750	530	8.7	8.7
755	560	8.6	8.8
760	590	8.5	8.9
765		8.5	
770	620	8.4	8.9
775	650	8.5	8.9
780	680	8.5	9.0
790	710	8.4	9.0
820	740	8.5	9.0
830	770	8.5	9.2
860	800	8.5	9.2
	830		9.3
870	860	8.5	9.3
900	890	8.5	9.3
930	920	8.5	9.4
960	950	8.7	9.4
1030		8.7	
1060	980	8.8	9.5
1 1090	010	8.8	9.5
<u> 1120</u>	1040	8.8	9.6
1150	1070	8.8	9.7
1180	100	8.9	9.7
1210	130	8.9	9.8
	160		9.8
1240	190	9.0	9.8
12/0	220	9.1	9.9
1300	250	9.1	9.9
1 1330		9.1	_
	1280		10
	1310		10
	1340		10.1

4 Analisi dati

4.1 Massa equivalente in acqua

L'errore su questa quantità viene calcolato utilizzando la legge di propagazione degli errori massimi:

$$\begin{split} \Delta m^* &= \Delta m_1 + \Delta m_2 \left| \frac{T_2 - T^*}{T^* - T_1} \right| \\ &+ \Delta T_2 \frac{m_2}{|T^* - T_1|} + \Delta T_1 \frac{|T_2 - T^*|}{(T^* - T_1)^2} m_2 \\ &+ \Delta T^* \frac{|T_2 - T_1|}{(T^* - T_1)^2} m_2 \end{split}$$

dall'analisi svolta si evince che i primi 2 termini sono trascurabili:

termine	Δ (g)
1	0.01
2	0.01
3	0.20
4	0.20
5	4.70

Massa equivalente in acqua - Seconda prova

I risultati sono compatibili fra loro, perciò come dato finale si è presa la misura più precisa:

m^*	Δ (g)
17.0	5.6
19.2	4.3

$$m^* = 19.2 \pm 4.3 \ g$$

4.2 Calore specifico del metallo

Si utilizza nuovamente la legge di propagazione degli errori massimi:

$$\Delta m^* = \Delta m_1 + \Delta m_2 \left| \frac{T_2 - T^*}{T^* - T_1} \right|$$

$$+ \Delta T_2 \frac{m_2}{|T^* - T_1|} + \Delta T_1 \frac{|T_2 - T^*|}{(T^* - T_1)^2} m_2$$

$$+ \Delta T^* \frac{|T_2 - T_1|}{(T^* - T_1)^2} m_2$$

4º e 5º termine risultano trascurabili:

termine	errore (g)
1	0.1170
2	0.0229
3	0.0203
4	0.0007
5	0.0005

Calore specifico del metallo - Seconda prova

Anche in questo caso sono state svolte due misurazioni, come in precenza si ha la compatabilità dei risultati:

$c_x (\rm J g^{-1} K^{-1})$	$\Delta c_x (\mathrm{J}\mathrm{g}^{-1}\mathrm{K}^{-1})$		
0.56	0.13		
0.56	0.16		

$$c_x = 0.56 \pm 0.13 \,\mathrm{J \, g^{-1} \, K^{-1}}$$

4.3 Calore latente di fusione del ghiaccio

Ancora una volta si è fatto uso della legge di propagazione degli errori massimi:

$$\Delta \lambda_f = c_a \left[\frac{T_1 - T^*}{m_g} (\Delta m_1 + \Delta m^*) + \frac{(m_1 + m^*)(T_1 - T^*)}{m_g^2} \Delta m_g + \frac{m_1 + m^*}{m_g} \Delta T_1 + \Delta T_f + \frac{m_1 + m^* + m_g}{m_g} \Delta T^* \right]$$

$\lambda_f (J/(g \cdot K))$	$\Delta \lambda_f \; ({ m J/(g\cdot K)})$
327	45
321	57

$$\lambda_f = 327 \pm 45 \text{ J g}^{-1} \text{ K}^{-1}$$

4.4 Temperatura d'equilibrio e Chi Squared

Nota: Si informa il lettore che per l'analisi dei dati è stato utilizzato il software ROOT.

La temperatura d'equilibrio è stata ricavata graficamente, si compie una regressione lineare con parte dei dati raccolti dal momento in cui si è raggiunto l'equilibrio termico del sistema calorimetro-sostanza. Questo ci permette di andare a calcolare la temperatura d'equilibrio T^* , nonostante gli scambi termici con l'ambiente esterno.

Volendo trovare la miglior retta che descrive il nostro set di misure e i consegueti risultati $(x_i, y_i \pm \sigma_i)$ utilizziamo la ovvia parametrizzazzione: $f_i = mx + q$, si sono dovuti quindi stimare i parametri m e q, per farlo si è utilizzato il metodo dei minimi quadrati. Tale principio afferma che la miglior stia dei parametri è quella che minimizza il cosidetto Chi quadrato:

$$\chi^2 = \sum_{i=1}^{n} w_i (y_i - f(x_i))^2$$

dove w_i è peso, nel nostro caso esso diventa $\frac{1}{\sigma_i^2}$. Si devono quindi risolvere le equazioni: $\frac{\partial X^2}{\partial m} = 0$ e $\frac{\partial X^2}{\partial q} = 0$, mentre gli errori si trovano a partire dalla legge di propagazione della varianza:

$$\sigma_m^2 = \sum_{i=1}^N \left(\frac{\partial m}{\partial y_i}\right)^2 \sigma^2 \quad \sigma_q^2 = \sum_{i=1}^N \left(\frac{\partial q}{\partial y_i}\right)^2 \sigma^2$$

Infine, il valore del chi quadrato per grado di libertà $\frac{\chi^2}{\text{ndf}}$, dove ndf indica i gradi di libertà, nel caso del fit lineare n-2 (dove n è il numero di misure). Esso è un indicatore della qualità del fit.

Idealmente, un valore vicino a 1 indica che le incertezze sono ben stimate e il modello descrive correttamente i dati. Valori molto maggiori di 1 suggeriscono una scarsa

compatibilità (oppure errori sottostimati), mentre valori molto minori di 1 possono indicare una sovrastima delle incertezze. La probabilità del χ^2 indica quanto è plausibile ottenere il valore di χ^2 osservato se il modello fosse corretto. Serve a valutare la bontà del fit: un p-value alto (> 0.05) suggerisce che il modello descrive bene i dati, mentre uno basso indica incompatibilità.

Infine si è passati ad una trattazzione deterministica andando a valutare l'errore su ogni temperatura d'equilibrio ricavata graficamente come:

$$\Delta T^* = \Delta mx + \Delta q$$

Si sono ottenuti i seguenti risultati:

Prova	σ_m	σ_q	χ^2	χ^2/ndf	Δm	Δq	Δy
acqua 1	0.0001	0.13	9.2	1.0	0.0003	0.6	0.68
acqua 2	0.0001	0.14	10.4	1.7	0.0005	0.4	0.57
solido 1	0.0002	0.13	8.6	1.7	0.0005	0.4	0.59
solido 2	0.0002	0.08	26.7	3.6	0.0007	0.2	0.5
ghiaccio 1	0.0002	0.20	10.4	1.7	0.0005	0.5	0.75
ghiaccio 2	0.00004	0.04	19.0	1.5	0.0001	0.12	0.16

4.5 Tempo caratteristco

La misura di τ diviene più semplice grazie all'analisi sopra descritta. Si utilizzano, infatti, i parametri ottenuti dal fit della retta (indicati nei grafici come p_0 (q) e p_1 (m)) sono gli stessi che si trovano in:

$$T(t) = T_0 + \frac{T_0 - T_A}{\tau}t$$

e assumendo che il raggiugimento dell'equilibrio termico ambiente-calorimetro sia lineare si ha che:

$$\tau = \frac{1}{m} \quad \Delta \tau = \frac{\Delta m}{m} \tau$$

da cui si ottengono i seguenti:

Valori di τ e relativi errori

τ [s]	$\Delta \tau [s]$
870	340
560	37
930	470
2400	400
730	180
1400	100
580	150

5 Grafici

6 Conclusione