Probabilités - Statistiques

David Loiseaux et Fanny Simões

1er Mars 2022

Contenu

Bases de probabilités

Modèle mathématique

Cas fini

Quelques outils

Espérance, variances

Convergence

Grande dimension (Exemple) → Notebook

Bases de statistiques (paramétrique)

Modèle mathématique

Série d'exemple : cas Gaussien

Maximum de vraisemblance

Apprentissage statistique

Références

Contenu

Bases de probabilités

Modèle mathématique

Cas fini

Quelques outils

Espérance, variances

Convergence

Grande dimension (Exemple) → Notebook

Bases de statistiques (paramétrique)

Modèle mathématique

Série d'exemple : cas Gaussien

Maximum de vraisemblance

Apprentissage statistique

Références

Modèle mathématique - Tribu

Soit Ω un ensemble. Un sous ensemble $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ des parties de Ω , est une tribu (ou σ -algèbre) si

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- 3. $\forall n \in \mathbb{N}, A_n \in F \implies \bigcup_n A_n \in \mathcal{F}.$

Propriétés

Modèle mathématique - Mesure de probabilité

Une mesure de probabilité sur (Ω, \mathcal{F}) est une application $\mathbb{P} \colon \mathcal{F} \to [0, 1]$ telle que

- 1. $\mathbb{P}(\Omega) = 1$, et
- 2. (σ -additivité) pour toute famille dénombrable $A_n \in \mathcal{F}$ d'éléments 2 à 2 disjoints

$$\mathbb{P}\left(\bigcup_{n} A_{n}\right) = \sum_{n} \mathbb{P}(A_{n}) \tag{1}$$

1.
$$\forall A \in \mathcal{F}, \mathbb{P}(A^c) = 1 - \mathbb{P}(A),$$

- 1. $\forall A \in \mathcal{F}, \mathbb{P}(A^c) = 1 \mathbb{P}(A),$
- $2. \ \mathbb{P}(\emptyset) = 0,$

- 1. $\forall A \in \mathcal{F}, \mathbb{P}(A^c) = 1 \mathbb{P}(A),$
- 2. $\mathbb{P}(\emptyset) = 0$,
- 3. $A \subseteq B \in \mathcal{F} \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

- 1. $\forall A \in \mathcal{F}, \mathbb{P}(A^c) = 1 \mathbb{P}(A),$
- 2. $\mathbb{P}(\emptyset) = 0$,
- 3. $A \subseteq B \in \mathcal{F} \implies \mathbb{P}(A) \leq \mathbb{P}(B)$
- 4. (σ -sous-additivité) $\forall n \in \mathbb{N}, A_n \in \mathcal{F}, \mathbb{P}(\cup_n A_n) \leq \sum_n \mathbb{P}(A_n),$

- 1. $\forall A \in \mathcal{F}, \mathbb{P}(A^c) = 1 \mathbb{P}(A),$
- 2. $\mathbb{P}(\emptyset) = 0$,
- 3. $A \subseteq B \in \mathcal{F} \implies \mathbb{P}(A) \leq \mathbb{P}(B)$
- 4. (σ-sous-additivité) \forall n ∈ \mathbb{N} , A_n ∈ \mathcal{F} , \mathbb{P} ($\cup_n A_n$) ≤ $\sum_n \mathbb{P}(A_n)$,
- 5. $\forall n \in \mathbb{N}, A_n \subseteq A_{n+1} \in \mathcal{F} \implies P(\cup_n A_n) = \lim_n \mathbb{P}(A_n),$
- 6. $\forall n \in \mathbb{N}, B_n \supseteq B_{n+1} \in \mathcal{F} \implies P(\cap_n B_n) = \lim_n \mathbb{P}(B_n)$

Modèle mathématique - Variable aléatoire

Version « intuitive » :

Une variable aléatoire est un « objet aléatoire », qui prend des valeurs quelque part (souvent $\mathbb R$) et qui doit pouvoir « s'exprimer avec $\mathcal F$ ».

Modèle mathématique - Variable aléatoire

Version « intuitive » :

Une variable aléatoire est un « objet aléatoire », qui prend des valeurs quelque part (souvent $\mathbb R$) et qui doit pouvoir « s'exprimer avec $\mathcal F$ ».

Version matheuse:

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé. Une variable aléatoire X de cet espace probabilisé est une fonction \mathcal{F} -mesurable $X:\Omega\to\mathcal{E}$, où $(\mathcal{E},\mathcal{E})$ est un espace mesuré.

Cas fini - Mesure uniforme

On suppose ici $|\Omega|=n<+\infty$, et $\mathcal{F}=\mathcal{P}(\Omega)$. La probabilité uniforme d'un évènement A est défini par

$$\mathbb{P}\colon A\in\mathcal{F}\longmapsto\frac{|A|}{|\Omega|}.$$

Exemple: On lance 2 dés,

 $A := \{ \omega \in \Omega : \text{ la somme des points est 4} \}$

$$\mathcal{P}(A) = \frac{|\{(1,3),(2,2),(3,1)\}|}{|\Omega|} = \frac{3}{36} = \frac{1}{12}.$$

```
Soit E un ensemble fini; et p \in \mathbb{N}^*.
Un p-arrangement de E est un p-uplet (x_1, \ldots, x_p) tel que i \neq j \implies x_i \neq x_j.
\longrightarrow Tirage ordonné sans remise.
```


Soit E un ensemble fini; et $p \in \mathbb{N}^*$. Un p-arrangement de E est un p-uplet (x_1, \ldots, x_p) tel que $i \neq j \implies x_i \neq x_j$. \longrightarrow Tirage ordonné sans remise. Le nombre de p-arrangements de E est :

Soit *E* un ensemble fini; et $p \in \mathbb{N}^*$.

Un *p*-arrangement de *E* est un *p*-uplet $(x_1, ..., x_p)$ tel que $i \neq j \implies x_i \neq x_j$.

→ Tirage ordonné sans remise.

Le nombre de *p*-arrangements de *E* est :

$$A_n^p = n \times (n-1) \times \cdots \times (n-p+1) = \frac{n!}{(n-p)!}$$

Soit *E* un ensemble fini; et $p \in \mathbb{N}^*$.

Un *p*-arrangement de *E* est un *p*-uplet $(x_1, ..., x_p)$ tel que $i \neq j \implies x_i \neq x_j$.

→ Tirage ordonné sans remise.

Le nombre de *p*-arrangements de *E* est :

$$A_n^p = n \times (n-1) \times \cdots \times (n-p+1) = \frac{n!}{(n-p)!}$$

Une *p*-combinaison de *E* est un *p*-ensemble $\{x_1, \ldots, x_p\}$.

→ Tirage non-ordonné sans remise.

Le nombre de *p*-combinaisons de *E* est

Soit *E* un ensemble fini; et $p \in \mathbb{N}^*$.

Un *p*-arrangement de *E* est un *p*-uplet $(x_1, ..., x_p)$ tel que $i \neq j \implies x_i \neq x_j$.

→ Tirage ordonné sans remise.

Le nombre de *p*-arrangements de *E* est :

$$A_n^p = n \times (n-1) \times \cdots \times (n-p+1) = \frac{n!}{(n-p)!}$$

Une *p*-combinaison de *E* est un *p*-ensemble $\{x_1, \ldots, x_p\}$.

→ Tirage non-ordonné sans remise.

Le nombre de *p*-combinaisons de *E* est

$$\binom{n}{p} = \frac{n!}{p!(n-p)!}$$

Double urne

Probabilités conditionnelles

Soient $A, B \in \mathcal{F}$ deux évènements, avec $\mathbb{P}(B) > 0$. La probabilité $\mathbb{P}(A|B)$ de A sachant B est défini par

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Probabilités conditionnelles

Soient $A, B \in \mathcal{F}$ deux évènements, avec $\mathbb{P}(B) > 0$. La probabilité $\mathbb{P}(A|B)$ de A sachant B est défini par

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $\longrightarrow \mathbb{P}(\cdot|B)$ est une mesure de probabilité.

Probabilités conditionnelles

Soient $A, B \in \mathcal{F}$ deux évènements, avec $\mathbb{P}(B) > 0$. La probabilité $\mathbb{P}(A|B)$ de A sachant B est défini par

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $\longrightarrow \mathbb{P}(\cdot|B)$ est une mesure de probabilité.

Remarque : On peut aussi définir une mesure de probabilité sachant une variable aléatoire, ou une tribu, mais c'est plus compliqué.

Probabilités totales

Si
$$\Omega = \bigcup_n B_n$$
, on a

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \cap B_n)$$

Probabilités totales

Si
$$\Omega = \bigcup_n B_n$$
, on a

$$\mathbb{P}(A) = \sum_{n} \mathbb{P}(A \cap B_n) = \sum_{n} \mathbb{P}(B_n) \mathbb{P}(A|B_n).$$

Indépendance

► A et B sont indépendant $\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

Indépendance

- ► A et B sont indépendant $\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$
- ▶ Deux variables aléatoires X et Y sont indépendantes si pour tout $A, B \in \mathcal{F}$,

$$\mathbb{P}(X \in A \text{ et } Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B).$$

Exemples

Espérances

Si X est une variable aléatoire pouvant prendre un nombre fini (ou dénombrable) de valeurs, par exemple $X \in \{x_1, \ldots, x_n\}$, on définit l'espérance de X **lorsque c'est bien défini** par

$$\mathbb{E}(X) := \sum_{k=1}^n x_k \mathbb{P}(X = x_k).$$

Espérances

Si X est une variable aléatoire pouvant prendre un nombre fini (ou dénombrable) de valeurs, par exemple $X \in \{x_1, \ldots, x_n\}$, on définit l'espérance de X **lorsque c'est bien défini** par

$$\mathbb{E}(X) := \sum_{k=1}^{n} x_k \mathbb{P}(X = x_k).$$

 $\mathbb{E}(X) = 0 \Leftrightarrow X \text{ est centrée.}$

Espérances

Si X est une variable aléatoire pouvant prendre un nombre fini (ou dénombrable) de valeurs, par exemple $X \in \{x_1, \ldots, x_n\}$, on définit l'espérance de X **lorsque c'est bien défini** par

$$\mathbb{E}(X) := \sum_{k=1}^{n} x_k \mathbb{P}(X = x_k).$$

 $\mathbb{E}(X) = 0 \Leftrightarrow X \text{ est centrée.}$

Plus généralement, lorsque X est intégrable par rapport à \mathbb{P} , on définit

$$\mathbb{E}(X) := \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{E} x d\mathbb{P}_{X}(x) = \int_{E} x f(x) d\mathbb{P}(x)$$

si f est la densité de \mathbb{P}_X par rapport à \mathbb{P} .

Lorsque bien défini (ou positif),

1. (Linéarité) $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$,

Lorsque bien défini (ou positif),

- 1. (Linéarité) $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$,
- 2. (Linéarité) $\alpha \in \mathbb{R} \implies \mathbb{E}(\alpha X) = \alpha \mathbb{E}(X)$,

Lorsque bien défini (ou positif),

- 1. (Linéarité) $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$,
- 2. (Linéarité) $\alpha \in \mathbb{R} \implies \mathbb{E}(\alpha X) = \alpha \mathbb{E}(X)$,
- 3. (Inégalité de Jensen) Si φ est une fonction convexe sur $\mathbb R$ et X est réelle,

$$\varphi\left(\mathbb{E}(X)\right) \leq \mathbb{E}\left(\varphi(X)\right).$$

Typiquement,

$$|\mathbb{E}(X)| \leq \mathbb{E}|X|.$$

Lorsque bien défini (ou positif),

- 1. (Linéarité) $\mathbb{E}(X + Y) = \mathbb{E}(X) + \mathbb{E}(Y)$,
- 2. (Linéarité) $\alpha \in \mathbb{R} \implies \mathbb{E}(\alpha X) = \alpha \mathbb{E}(X)$,
- 3. (Inégalité de Jensen) Si φ est une fonction convexe sur $\mathbb R$ et X est réelle,

$$\varphi\left(\mathbb{E}(X)\right) \leq \mathbb{E}\left(\varphi(X)\right).$$

Typiquement,

$$|\mathbb{E}(X)| \leq \mathbb{E}|X|.$$

4. (Inégalité de Hölder) Lorsque bien défini, si $\frac{1}{p} + \frac{1}{q} = 1$, on a

$$\mathbb{E}(|XY|) \leq \mathbb{E}(|X|^p)^{1/p} \mathbb{E}(|Y|^q)^{1/q}.$$

Variance, écart type

--- Pareil que l'espérance mais au carré et recentré.

$$\mathrm{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

Variance, écart type

--- Pareil que l'espérance mais au carré et recentré.

$$\mathrm{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

--- Pareil que l'espérance mais au carré et recentré.

$$\mathrm{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

--- Pareil que l'espérance mais au carré et recentré.

$$\mathrm{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

1.
$$var(aX) = a^2 var(X)$$

---- Pareil que l'espérance mais au carré et recentré.

$$\mathrm{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

- 1. $var(aX) = a^2 var(X)$
- 2. var(X + a) = var(X)

--- Pareil que l'espérance mais au carré et recentré.

$$\operatorname{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

- 1. $var(aX) = a^2 var(X)$
- 2. var(X + a) = var(X)
- 3. si X et Y sont indépendants var(X + Y) = var(X) + var(Y)

→ Pareil que l'espérance mais au carré et recentré.

$$\operatorname{var}(X) = \mathbb{E}\left((X - \mathbb{E}(X))^2\right) = \mathbb{E}(X^2) - \mathbb{E}(X)^2.$$

X est dite *réduite* si var(X) = 1.

Propriétés

- 1. $var(aX) = a^2 var(X)$
- 2. var(X + a) = var(X)
- 3. si X et Y sont indépendants var(X + Y) = var(X) + var(Y)

L'écart type de *X* est la racine de la variance

$$\sqrt{\operatorname{var}(X)}$$

Exemple

Loi (forte) des grands nombres

Soit X une variable aléatoire réelle, et $(X_i)_{i\in\mathbb{N}}$ *iid* de même loi que X. Alors

$$X$$
 intégrable $\Leftrightarrow \overline{X}_n \xrightarrow[n \to \infty]{} \mathbb{E}(X)$ presque sûrement;

où $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ est l'estimateur de la moyenne empirique de X.

Application : Monté-Carlo

TODO

Théorème limite central

Si $(X_n)_n$ est une suite de loi iid admettant une variance, alors

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}-\mathbb{E}(X)=\sqrt{n}(\overline{X}_{n}-\mathbb{E}(X))\xrightarrow{\mathcal{L}}\mathcal{N}(0,\operatorname{var}(X)).$$

Théorème limite central

Si $(X_n)_n$ est une suite de loi iid admettant une variance, alors

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}X_{i}-\mathbb{E}(X)=\sqrt{n}(\overline{X}_{n}-\mathbb{E}(X))\xrightarrow{\mathcal{L}}\mathcal{N}(0,\operatorname{var}(X)).$$

 \sqrt{n} est moralement la bonne vitesse car

$$\operatorname{var}\left(\sqrt{n}\overline{X}_n\right) = \operatorname{var}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n \operatorname{var}(X_i) = \operatorname{var}(X).$$

Contenu

Bases de probabilités

Modèle mathématique

Cas fini

Quelques outils

Espérance, variances

Convergence

Grande dimension (Exemple) → Notebook

Bases de statistiques (paramétrique)

Modèle mathématique

Série d'exemple : cas Gaussien

Maximum de vraisemblance

Apprentissage statistique

Références

Notebook

Contenu

Bases de probabilités

Modèle mathématique

Cas fini

Quelques outils

Espérance, variances

Convergence

Grande dimension (Exemple) → Notebook

Bases de statistiques (paramétrique)

Modèle mathématique

Série d'exemple : cas Gaussien

Maximum de vraisemblance

Apprentissage statistique

Références

But: Étant donné un échantillon $(X_i)_{1 \le i \le n}$ iid de même loi que X, \longrightarrow Qui est X sachant $(X_i)_i$?

But: Étant donné un échantillon $(X_i)_{1 \le i \le n}$ iid de même loi que X, \longrightarrow Qui est X sachant $(X_i)_i$?

Modèle : On va supposer que X suit une loi parmi une famille de loi indexée par un paramètre $\theta \in \mathbb{R}^n$ fixée à l'avance. On note $\mathcal{P} = (\mathcal{P}_{\theta})_{\theta}$ cette famille de loi.

But: Étant donné un échantillon $(X_i)_{1 \le i \le n}$ iid de même loi que X, \longrightarrow Qui est X sachant $(X_i)_i$?

Modèle: On va supposer que X suit une loi parmi une famille de loi indexée par un paramètre $\theta \in \mathbb{R}^n$ fixée à l'avance. On note $\mathcal{P} = (\mathcal{P}_{\theta})_{\theta}$ cette famille de loi.

Exemple :

1.
$$X \sim \mathcal{N}(-12, 78^2)$$
 ou uniforme sur $[-32, 14]$
 $\longrightarrow \mathcal{P}_0 = \mathcal{N}(-12, 78^2)$ et $\mathcal{P}_1 = \mathcal{U}_{[-32, 14]}$.

But: Étant donné un échantillon $(X_i)_{1 \le i \le n}$ iid de même loi que X, \longrightarrow Qui est X sachant $(X_i)_i$?

Modèle : On va supposer que X suit une loi parmi une famille de loi indexée par un paramètre $\theta \in \mathbb{R}^n$ fixée à l'avance. On note $\mathcal{P} = (\mathcal{P}_{\theta})_{\theta}$ cette famille de loi.

Exemple:

- 1. $X \sim \mathcal{N}(-12, 78^2)$ ou uniforme sur [-32, 14] $\longrightarrow \mathcal{P}_0 = \mathcal{N}(-12, 78^2)$ et $\mathcal{P}_1 = \mathcal{U}_{[-32, 14]}$.
- 2. *X* suit une loi exponentielle dont on ne connaît pas la moyenne : $\longrightarrow \mathcal{P}_{\mathbf{m}} = \mathcal{E}(m)$.

But: Étant donné un échantillon $(X_i)_{1 \le i \le n}$ iid de même loi que X, \longrightarrow Qui est X sachant $(X_i)_i$?

Modèle : On va supposer que X suit une loi parmi une famille de loi indexée par un paramètre $\theta \in \mathbb{R}^n$ fixée à l'avance. On note $\mathcal{P} = (\mathcal{P}_{\theta})_{\theta}$ cette famille de loi.

Exemple:

- 1. $X \sim \mathcal{N}(-12, 78^2)$ ou uniforme sur [-32, 14] $\longrightarrow \mathcal{P}_0 = \mathcal{N}(-12, 78^2)$ et $\mathcal{P}_1 = \mathcal{U}_{[-32, 14]}$.
- 2. *X* suit une loi exponentielle dont on ne connaît pas la moyenne : $\longrightarrow \mathcal{P}_{\mathbf{m}} = \mathcal{E}(m)$.
- 3. *X* suit une loi normale dont on ne connaît pas la moyenne, ni la variance :

$$\longrightarrow \mathcal{P}_{\mu,\sigma^2} = \mathcal{N}(\mu,\sigma^2).$$

Hypothèses (cas paramétrique)

Trouver $X \Leftrightarrow$ trouver le paramètre θ tq $X \sim \mathcal{P}_{\theta}$.

Hypothèses (cas paramétrique)

Trouver $X \Leftrightarrow$ trouver le paramètre θ tq $X \sim \mathcal{P}_{\theta}$. Souvent, pour simplifier on teste des hypothèses : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS H_1 : \ll \theta \in B \gg$$

Hypothèses (cas paramétrique)

Trouver $X \Leftrightarrow$ trouver le paramètre θ tq $X \sim \mathcal{P}_{\theta}$. Souvent, pour simplifier on teste des hypothèses : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS H_1 : \ll \theta \in B \gg$$

et on peut regarder

Réalité

		H_0	H_1
Décision	H_0	OK	Erreur de 2ème espèce
	H_1	Erreur de 1ère espèce	OK

Exemple

Si on choisit H_0 ou H_1 en fonction d'un test $T(X_1, \ldots, X_n) \in [0, 1]$

Si on choisit H_0 ou H_1 en fonction d'un test $T(X_1, ..., X_n) \in [0, 1]$ avec

- ► $T \approx 1$ on choisit H_1 ,
- ► $T \approx 0$ on choisit H_0 ,
- ightharpoonup 0 << T << 1 on choisit un seuil à l'avance.

Version matheuse:

$$p(x) = \sup_{\theta \text{ tq } H_0 \text{ est vrai}} \mathbb{P}\left(T(\tilde{X}_1, \dots, \tilde{X}_n) \geq T(x) \text{ avec } \tilde{X}_i \sim \mathcal{P}_\theta \text{ iid}\right)$$

Si on choisit H_0 ou H_1 en fonction d'un test $T(X_1, ..., X_n) \in [0, 1]$ avec

- ► $T \approx 1$ on choisit H_1 ,
- ► $T \approx 0$ on choisit H_0 ,
- ▶ 0 << T << 1 on choisit un seuil à l'avance.

Version matheuse:

$$p(x) = \sup_{\theta \text{ tq } H_0 \text{ est vrai}} \mathbb{P}\left(T(\tilde{X}_1, \dots, \tilde{X}_n) \geq T(x) \text{ avec } \tilde{X}_i \sim \mathcal{P}_\theta \text{ iid}\right)$$

Version intuitive : La *p*-valeur d'un échantillon $x = (x_1, ..., x_n) =$ la proba de faire un choix plus extrême (selon T) que x

Si on choisit H_0 ou H_1 en fonction d'un test $T(X_1, ..., X_n) \in [0, 1]$ avec

- ► $T \approx 1$ on choisit H_1 ,
- ► $T \approx 0$ on choisit H_0 ,
- ightharpoonup 0 << T << 1 on choisit un seuil à l'avance.

Version matheuse:

$$p(x) = \sup_{\theta \text{ tq } H_0 \text{ est vrai}} \mathbb{P}\left(T(\tilde{X}_1, \dots, \tilde{X}_n) \geq T(x) \text{ avec } \tilde{X}_i \sim \mathcal{P}_\theta \text{ iid}\right)$$

Version intuitive: La *p*-valeur d'un échantillon $x = (x_1, ..., x_n) =$ la proba de faire un choix plus extrême (selon T) que x

Attention aux mauvaises interpretations!

Ex : Moralement, si H_0 est vrai, on a $p(X_1, ..., X_n) \sim \mathcal{U}_{[0,1]}$!

Lois utiles:

Loi normale.

Lois utiles:

- Loi normale.
- Loi du χ^2 (Chi-deux) :

$$\chi^2(n) \sim (\mathcal{N}(0,1)^2)^{\otimes n} \sim X_1^2 + \cdots + X_n^2,$$

où $(X_i)_i$ est iid $\sim \mathcal{N}(0, 1)$.

Lois utiles:

- Loi normale.
- Loi du χ^2 (Chi-deux) :

$$\chi^2(n) \sim (\mathcal{N}(0,1)^2)^{\otimes n} \sim X_1^2 + \cdots + X_n^2$$

où $(X_i)_i$ est iid $\sim \mathcal{N}(0, 1)$.

Loi de Student \mathcal{T} à d degrés de liberté.

$$\mathcal{T}(d) \sim \ll \frac{\mathcal{N}(0,1)}{\sqrt{\chi^2(d)/d}} \gg \sim \frac{X}{\sqrt{\left(Y_1^2 + \dots + Y_d^2\right)/d}}$$

où X et les Y_i sont des lois normales indépendantes.

On considère un échantillon $X_1, \ldots, X_n \ (\in L^2)$.

$$H_0: m = m_0 \quad \text{VS} \quad H_1: m \neq m_0$$

On considère un échantillon $X_1, \ldots, X_n \ (\in L^2)$.

$$H_0: m = m_0 \quad \text{VS} \quad H_1: m \neq m_0$$

Test :
$$T = \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

On considère un échantillon $X_1, \ldots, X_n \ (\in L^2)$.

$$H_0: m = m_0 \quad \text{VS} \quad H_1: m \neq m_0$$

Test :
$$T = \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

Sous $H_0: T \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1)$.

Sous
$$H_1: |T| \xrightarrow[n \to \infty]{\text{p.s.}} +\infty$$
.

On considère un échantillon $X_1, \ldots, X_n \ (\in L^2)$.

$$H_0: m = m_0 \quad \text{VS} \quad H_1: m \neq m_0$$

Test :
$$T = \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

Sous $H_0 : T \xrightarrow[n \to \infty]{P.S.} \mathcal{N}(0, 1)$.
Sous $H_1 : |T| \xrightarrow[n \to \infty]{P.S.} +\infty$.

 \longrightarrow On approxime $T \approx \mathcal{N}(0, 1)$ et on regarde si la *p*-valeur est en dessous du seuil qu'on s'est fixé avant (souvent 5%, ou 1%).

Modèle $\mathcal{P} = \{ \mathcal{N}(m, \sigma^2) : m \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+ \}$ \longrightarrow On doit approximer σ .

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{1 \le i \le n} (X_i - \overline{X}_n)^2 \sim \frac{1}{n-1} \sum_{1 \le i \le n} \sigma^2 \frac{(X_i - \overline{X}_n)^2}{\sigma^2} \sim {}^{-1} \sigma^2 \chi^2 (n-1)$$

On considère alors le test

$$T = \frac{\sqrt{n}}{\hat{\sigma}_n} \left(\overline{X}_n - m_0 \right) = \frac{\sigma}{\hat{\sigma}_n} \cdot \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

^{1.} Théorème de Cochran

Modèle $\mathcal{P} = \{ \mathcal{N}(m, \sigma^2) : m \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+ \}$ \longrightarrow On doit approximer σ .

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{1 \le i \le n} (X_i - \overline{X}_n)^2 \sim \frac{1}{n-1} \sum_{1 \le i \le n} \sigma^2 \frac{(X_i - X_n)^2}{\sigma^2} \sim {}^{1} \sigma^2 \chi^2 (n-1)$$

On considère alors le test

$$T = \frac{\sqrt{n}}{\hat{\sigma}_n} \left(\overline{X}_n - m_0 \right) = \frac{\sigma}{\hat{\sigma}_n} \cdot \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

Sous $H_0: T \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{T}(n-1)$ (Thm de Slutsky + Thm de Cochran). Sous $H_1: |T| \xrightarrow[n \to \infty]{\text{p.s.}} +\infty$.

Théorème de Cochran

Modèle $\mathcal{P} = \{ \mathcal{N}(m, \sigma^2) : m \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+ \}$ \longrightarrow On doit approximer σ .

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{1 \le i \le n} (X_i - \overline{X}_n)^2 \sim \frac{1}{n-1} \sum_{1 \le i \le n} \sigma^2 \frac{(X_i - X_n)^2}{\sigma^2} \sim {}^{1} \sigma^2 \chi^2 (n-1)$$

On considère alors le test

$$T = \frac{\sqrt{n}}{\hat{\sigma}_n} \left(\overline{X}_n - m_0 \right) = \frac{\sigma}{\hat{\sigma}_n} \cdot \frac{\sqrt{n}}{\sigma} \left(\overline{X}_n - m_0 \right)$$

Sous $H_0: T \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{T}(n-1)$ (Thm de Slutsky + Thm de Cochran). Sous $H_1: |T| \xrightarrow[n \to \infty]{\text{p.s.}} +\infty$.

 \longrightarrow On approxime $T \approx \mathcal{T}(n-1)$ et on regarde si la p-valeur est en dessous du seuil qu'on s'est fixé avant (souvent 5%, ou 1%).

^{1.} Théorème de Cochran

Modèle
$$\mathcal{P}=\left\{\mathcal{N}(\mu,\sigma^2):\sigma^2\in\mathbb{R}_+\right\}$$

$$H_0:\sigma^2=\sigma_0^2\quad\text{VS}\quad H_1:\sigma^2<\sigma_0^2$$

Modèle
$$\mathcal{P}=\left\{\mathcal{N}(\mu,\sigma^2):\sigma^2\in\mathbb{R}_+\right\}$$

$$H_0:\sigma^2=\sigma_0^2\quad\text{VS}\quad H_1:\sigma^2<\sigma_0^2$$

Test:

$$T = \frac{1}{\sigma_0^2} \overline{(X - \mathbb{E}(X))^2}_n = \frac{1}{\sigma_0^2} \left[(X_1 - \mathbb{E}(X))^2 + \dots + (X_n - \mathbb{E}(X))^2 \right]$$

Modèle
$$\mathcal{P}=\left\{\mathcal{N}(\mu,\sigma^2):\sigma^2\in\mathbb{R}_+\right\}$$

$$H_0:\sigma^2=\sigma_0^2\quad\text{VS}\quad H_1:\sigma^2<\sigma_0^2$$

Test:

$$T = \frac{1}{\sigma_0^2} \overline{(X - \mathbb{E}(X))^2}_n = \frac{1}{\sigma_0^2} \left[(X_1 - \mathbb{E}(X))^2 + \dots + (X_n - \mathbb{E}(X))^2 \right]$$

Sous
$$H_0: T \sim \chi^2(n)$$
 (Loi du Chi-deux)
Sous $H_1: T \sim \chi^2(n, \mathbb{E}(X) - \sigma_0^2)$ (Loi du Chi-deux décentrée)

Modèle
$$\mathcal{P}=\left\{\mathcal{N}(\mu,\sigma^2):\sigma^2\in\mathbb{R}_+\right\}$$

$$H_0:\sigma^2=\sigma_0^2\quad\text{VS}\quad H_1:\sigma^2<\sigma_0^2$$

Test:

$$T = \frac{1}{\sigma_0^2} \overline{(X - \mathbb{E}(X))^2}_n = \frac{1}{\sigma_0^2} \left[(X_1 - \mathbb{E}(X))^2 + \dots + (X_n - \mathbb{E}(X))^2 \right]$$

Sous
$$H_0: T \sim \chi^2(n)$$
 (Loi du Chi-deux)
Sous $H_1: T \sim \chi^2(n, \mathbb{E}(X) - \sigma_0^2)$ (Loi du Chi-deux décentrée)

On regarde si la *p*-valeur est en dessous du seuil qu'on s'est fixé avant (souvent 5%, ou 1%)

Test de Fisher

Toujours en modèle paramétrique : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS H_1 : \ll \theta \in B \gg$$
,

Mais on suppose : les \mathcal{P}_{θ} ont une $\mathit{densit\acute{e}}$ par rapport à une autre mesure μ

Toujours en modèle paramétrique : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS H_1 : \ll \theta \in B \gg$$

Mais on suppose : les \mathcal{P}_{θ} ont une *densité* par rapport à une autre mesure μ (typiquement Lebesgue ou comptage).

Exemple: les lois de $\mathcal{P} = \{ \mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma \in \mathbb{R}_+ \}$ ont des densités :

$$L(\cdot; \mu, \sigma^2) : x \longmapsto L(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma}\right)$$

Par rapport à la mesure de Lebesgue sur \mathbb{R} .

Toujours en modèle paramétrique : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS \quad H_1 : \ll \theta \in B \gg$$

Mais on suppose : les \mathcal{P}_{θ} ont une *densité* par rapport à une autre mesure μ (typiquement Lebesgue ou comptage).

Exemple: les lois de $\mathcal{P} = \{\mathcal{U}_{[a,b)} : a \leq b \in \mathbb{R}\}$ ont des densités :

$$L(\cdot; a, b) : x \longmapsto L(x; a, b) = \frac{1}{b - a} \mathbb{1}_{[a,b)}(x)$$

Par rapport à la mesure de Lebesgue sur \mathbb{R} .

Toujours en modèle paramétrique : H_0 VS H_1

$$H_0 : \ll \theta \in A \gg VS H_1 : \ll \theta \in B \gg$$
,

Mais on suppose : les \mathcal{P}_{θ} ont une *densité* par rapport à une autre mesure μ (typiquement Lebesgue ou comptage).

Exemple: les lois de $\mathcal{P} = \{ \text{Poisson}(\lambda) : \lambda \in \mathbb{R}_+ \}$ ont des densités :

$$L(\cdot;\lambda): k \longmapsto L(k;\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Par rapport à la mesure de comptage sur \mathbb{N} .

On introduit, pour un échantillon $x = (x_1, \dots, x_n)$ de loi dans $(\mathcal{P}_{\theta}^{\otimes n})_{\theta}$ le rapport

$$\lambda(x) = \frac{\sup_{\theta \in B} L(x, \theta)}{\sup_{\theta \in A} L(x, \theta)}.$$

On introduit, pour un échantillon $x = (x_1, ..., x_n)$ de loi dans $(\mathcal{P}_{\theta}^{\otimes n})_{\theta}$ le rapport

$$\lambda(x) = \frac{\sup_{\theta \in B} L(x, \theta)}{\sup_{\theta \in A} L(x, \theta)}.$$

Et on regarde le test, pour un seuil s à fixer au préalable :

$$T(x) = \mathbb{1}_{\lambda(x) \ge s}$$

On introduit, pour un échantillon $x = (x_1, ..., x_n)$ de loi dans $(\mathcal{P}_{\theta}^{\otimes n})_{\theta}$ le rapport

$$\lambda(x) = \frac{\sup_{\theta \in B} L(x, \theta)}{\sup_{\theta \in A} L(x, \theta)}.$$

Et on regarde le test, pour un seuil s à fixer au préalable :

$$T(x) = \mathbb{1}_{\lambda(x) \ge s}$$

De plus si $\hat{\theta}$ est une statistique "exhaustive", alors il existe une fonction $\tilde{\lambda}$ tel que

$$\lambda(x) = \tilde{\lambda}(\hat{\theta}(x))$$

 \longrightarrow Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}.$

 \longrightarrow Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}$. **But :** estimer Y à partir d'un nouveau X.

 \longrightarrow Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}$. **But :** estimer Y à partir d'un nouveau X. Par exemple : f(X).

→ Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}.$ **But :** estimer Y à partir d'un nouveau X. Par exemple : f(X).
On doit définir une mesure de qualité d'une estimation; un *coût* ou une *perte* :

$$c: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$$

souvent avec $c \ge 0$, c(Y, Y) = 0 et vérifiant l'inégalité triangulaire.

→ Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}.$ **But :** estimer Y à partir d'un nouveau X. Par exemple : f(X).
On doit définir une mesure de qualité d'une estimation; un *coût* ou une *perte* :

$$c: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$$

souvent avec $c \ge 0$, c(Y, Y) = 0 et vérifiant l'inégalité triangulaire. \longrightarrow On veut trouver $f: \mathcal{X} \to \mathcal{Y}$ tq la variable aléatoire c(f(X), Y) soit, en moyenne la plus petite possible.

→ Données : un échantillon $D_n = (X_i, Y_i)_{1 \le i \le n}; X \in \mathcal{X}, Y \in \mathcal{Y}$. **But** : estimer Y à partir d'un nouveau X. Par exemple : f(X). On doit définir une mesure de qualité d'une estimation; un *coût* ou une *perte* :

$$c: \mathcal{Y} \times \mathcal{Y} \longrightarrow \mathbb{R}$$

souvent avec $c \ge 0$, c(Y, Y) = 0 et vérifiant l'inégalité triangulaire.

 \longrightarrow On veut trouver $f: X \to \mathcal{Y}$ tq la variable aléatoire c(f(X), Y) soit, en moyenne la plus petite possible.

 \longrightarrow Trouver un minimiseur f du risque:

$$\mathcal{R}(f) = \mathbb{E}(c(f(X), Y)|D_n)$$

Regression linéaire.

Si le problème est, pour un $\theta \in \mathbb{R}^n$, sous la forme

$$Y = \sum_{i} \theta_{i} X_{i} + \varepsilon = X \cdot \theta + \varepsilon$$

où $X = (X_1, ..., X_n)'$ et $Y = (Y_1, ..., Y_n)'$; avec $\mathbb{E}(\varepsilon | X) = 0$, et un coût quadratique $c(a, b) = ||a - b||^2$.

Regression linéaire.

Si le problème est, pour un $\theta \in \mathbb{R}^n$, sous la forme

$$Y = \sum_{i} \theta_{i} X_{i} + \varepsilon = X \cdot \theta + \varepsilon$$

où $X = (X_1, ..., X_n)'$ et $Y = (Y_1, ..., Y_n)'$; avec $\mathbb{E}(\varepsilon | X) = 0$, et un coût quadratique $c(a, b) = ||a - b||^2$.

Alors (Gauss-Markov) l'estimateur des moindres carrés est donné par

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^n} \mathbb{E}(\|Y - \theta X\|^2) = (X'X)^{-1} X' Y.$$

Regression linéaire.

Si le problème est, pour un $\theta \in \mathbb{R}^n$, sous la forme

$$Y = \sum_{i} \theta_{i} X_{i} + \varepsilon = X \cdot \theta + \varepsilon$$

où $X = (X_1, ..., X_n)'$ et $Y = (Y_1, ..., Y_n)'$; avec $\mathbb{E}(\varepsilon | X) = 0$, et un coût quadratique $c(a, b) = ||a - b||^2$.

Alors (Gauss-Markov) l'estimateur des moindres carrés est donné par

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^n} \mathbb{E}(\|Y - \theta X\|^2) = (X'X)^{-1} X' Y.$$

Si on suppose $\mathbb{E}(\boldsymbol{\varepsilon}|X) \sim \mathcal{N}(0, \sigma^2)$, alors

$$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(X'X)^{-1}).$$

Regression linéaire.

Si le problème est, pour un $\theta \in \mathbb{R}^n$, sous la forme

$$Y = \sum_{i} \theta_{i} X_{i} + \varepsilon = X \cdot \theta + \varepsilon$$

où $X = (X_1, ..., X_n)'$ et $Y = (Y_1, ..., Y_n)'$; avec $\mathbb{E}(\varepsilon | X) = 0$, et un coût quadratique $c(a, b) = ||a - b||^2$.

Alors (Gauss-Markov) l'estimateur des moindres carrés est donné par

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \mathbb{R}^n} \mathbb{E}(\|Y - \theta X\|^2) = (X'X)^{-1} X' Y.$$

Si on suppose $\mathbb{E}(\boldsymbol{\varepsilon}|X) \sim \mathcal{N}(0, \sigma^2)$, alors

$$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2(X'X)^{-1}).$$

Attention aux grandes dimensions! (cf Notebook)

En considérant f^* un $\mathit{oracle}: f^* \in \operatorname{argmin}_f(\mathcal{R}(f)).$

Modèle paramétrique.

Si on a une bonne intuition, on peut simplifier en regardant un modèle de fonction $M = \{f_{\theta} : \theta \in \mathbb{R}^n\}$

$$\mathcal{R}(f, f^*) = d(M, f^*) + \inf_{\theta} \mathcal{R}(f_{\theta})$$

 \longrightarrow en espérant que la distance $d(S, f^*)$ est petite et que $\inf_{\theta} \mathcal{R}(f_{\theta})$ est facile à calculer.

→ c'est de l'optimisation.

Contenu

Bases de probabilités

Modèle mathématique

Cas fini

Quelques outils

Espérance, variances

Convergence

Grande dimension (Exemple) → Notebook

Bases de statistiques (paramétrique)

Modèle mathématique

Série d'exemple : cas Gaussien

Maximum de vraisemblance

Apprentissage statistique

Références

Références

- 1. Probabilités Barbé, Ledoux
- 2. Introduction aux statistiques en grande dimension Giraud
- 3. Test Statistiques Fromont

