Chapter 7

- 7.1 Measures of predictive accuracy
- 7.2 Information criteria and cross-validation
 - Instead of 7.2, read:
 Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5):1413–1432. arXiv preprint.
- 7.3 Model comparison based on predictive performance
- 7.4 Model comparison using Bayes factors
- 7.5 Continuous model expansion / sensitivity analysis
- 7.5 Example (may be skipped)

Model assessment, selection and inference after selection

- Extra material at https://avehtari.github.io/modelselection/
 - Videos, Slides, Notebooks, References
 - The most relevant for the course is the first part of the talk "Model assessment, comparison and selection at Master class in Bayesian statistics, CIRM, Marseille"

Predicting concrete quality

Predicting cancer recurrence

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- If are interested overall in the goodness of the predictive distribution, or we don't know (yet) the application specific utility, then good information theoretically justified choice is log-score

$$\log p(y^{\text{rep}}|y, M),$$

Outline

- What is cross-validation
 - Leave-one-out cross-validation (elpd_loo, p_loo)
 - Uncertainty in LOO (SE)
- When is cross-validation applicable?
 - data generating mechanisms and prediction tasks
 - leave-many-out cross-validation
- Fast cross-validation
 - PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
 - K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

			Count	Pct.	Min.	n_eff
(-Inf, 0)	0.5]	(good)	18	90.0%	899	
(0.5, 0	0.7]	(ok)	2	10.0%	459	
(0.7,	1]	(bad)	0	0.0%	< NA >	
(1, I	nf)	(very bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Model comparison: (negative 'elpd_diff' favors 1st model, positive favors 2nd)

$$\begin{array}{ccc} \text{elpd_diff} & \text{se} \\ -0.2 & 0.1 \end{array}$$

Posterior mean, alternative data realisation

Posterior predictive distribution

$$p(\tilde{y}|\tilde{x}=18,x,y)=\int p(\tilde{y}|\tilde{x}=18,\theta)p(\theta|x,y)d\theta$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18})]$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

See LOO-R² at avehtari.github.io/bayes_R2/bayes_R2.html

Leave-one-out predictive distribution

$$p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18}) = \int p(\tilde{y}|\tilde{x}=18, \theta) p(\theta|x_{-18}, y_{-18}) d\theta$$

Posterior predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$

Leave-one-out predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$
$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$$

Leave-one-out predictive densities

$$p(y_i|x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$$

Leave-one-out log predictive densities

Leave–one–out log predictive densities

 $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$

Leave–one–out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$ unbiased estimate of log posterior pred. density for new data

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$$

$$lpd = \sum_{i=1}^{20} \log p(y_i|x_i, x, y) \approx -26.8$$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd = $\sum_{i=1}^{20} \log p(y_i|x_i, x, y) \approx -26.8$

$$p_loo = lpd - elpd_loo \approx 2.7$$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

see Vehtari, Gelman & Gabry (2017a) and Vehtari & Ojanen (2012) for more

LOO is ok for fixed / designed x. SE is uncertainty about y|x. see Ventari & Ojanen (2012)

LOQ is ok for random x. SE is uncertainty about y|x and x. see Ventari & Ojanen (2012)

- Probability of switching well with high arsenic level in rural Bangladesh
 - Model 1 covariates: log(arsenic) and distance
 - Model 2 covariates: log(arsenic), distance and education level

Gelman, Hill & Vehtari (2020): Regression and Other Stories, Chapter 13.

Model 1 elpd_loo \approx -1952, SE=16 Model 2 elpd_loo \approx -1938, SE=17

se_diff and normal approximation for the uncertainty in the difference is good only if models are well specified and the number of observations is relatively big (more details in a forthcoming article).

 For some very simple cases you may assume that true model is included in the list of models considered (M-closed)

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)
 - but you should not force your design of experiment or analysis to stay in the simplified world

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)
 - but you should not force your design of experiment or analysis to stay in the simplified world
- In nested case, often easier and more accurate to analyse posterior distribution of more complex model directly avehtari.github.io/modelselection/betablockers.html

Sometimes predictive model comparison can be useful

Marginal posterior intervals

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/
- In a nested case choose more complex if you want to take into account all the uncertainties. andrewgelman.com/2018/07/26/ parsimonious-principle-vs-integration-uncertainties/

Model averaging

• Prefer continuous model expansion

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging
- Bayesian stacking may work better than BMA
 - Yao, Vehtari, Simpson, & Gelman (2018)

Cross-validation and model selection

- · Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process leads to overfitting

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process leads to overfitting
- Overfitting in selection process is not unique for cross-validation

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognized already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

Selection induced bias in variable selection

Selection induced bias in variable selection

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy