Randomness and Universal Machines

Santiago Figuera, Frank Stephan and Guohua Wu

University of Buenos Aires National University of Singapore Nanyang Technological University

August 12, 2005

Kolmogorov complexity

General idea: Amount of information needed to describe effectively a string.

Complexity H(x): $H(x) = min\{|p| : U(p) = x\}$.

Based on universal prefix-free machine U

Prefix-free: If $\mathbf{p} \prec \mathbf{q}$ and $\mathbf{U}(\mathbf{p})$ defined then $\mathbf{U}(\mathbf{q})$ undefined.

Universal: Machine which cannot be improved much. For every further prefix-free machine \mathbf{V} the best program for any input can only be constantly shorter as the corres- ponding program for \mathbf{U} . That is, \mathbf{U} satisfies the formula

$$\forall V \exists c \forall p \exists q \, [V(p) \, \text{ defined } \Rightarrow U(q) = V(p) \wedge |q| \leq |p| + c].$$

Remark: There is also a variant of Kolmogorov complexity which does not request the machine to be prefix-free.

Martin-Löf random

General idea: A set **A** is Martin-Löf random iff no algorithm can derive any non-trivial information on the set **A**. Many natural characterizations.

Tests: A is Martin-Löf random iff there is no sequence $S_1, S_2, ...$ of classes such that

- $A \in S_n$ for all n;
- The Lebesgue measure of each S_n is at most 2^{-n} ;
- The S_n are uniformly Σ_1 , that is, $\{(n,B): B \in S_n\}$ is a Σ_1 -class.

Left-r.e. sets

Definition

A set **A** is left-r.e. if $\{\sigma : \sigma \leq_{\mathsf{lex}} \mathsf{A}\}$ is an r.e. set.

Chaitin's Ω is defined by

$$\sum_{n\in\Omega}2^{-n-1}=\sum_{p,\ U(p)\ defined}2^{-|p|}$$

and is called the halting probability of the prefix-free universal machine \mathbf{U} .

 Ω is a left-r.e. Martin-Löf random set. Every left-r.e. Martin-Löf random set is an Ω -number, that is, is the halting probability of a suitable prefix-free universal machine.

The Starting Point

Open Questions [Miller and Nies, 2005]

List of Open Questions in Algorithmic Randomness pre- sented at the Annual Meeting of the ASL in Stanford 2005.

http://www.cs.auckland.ac.nz/~nies/papers/questions.pdf

Question 8.1: A set **A** relative to which Ω is Martin-Löf random is called "low for Ω ". Is every set which is low for Ω either recursive or hyperimmune?

Question 8.9: Are Ω -numbers always truth-table equivalent?

Question 8.10: Is there a co-r.e. set X such that

$$\Omega_U[X] = \sum_{p: U(p) \in X} \, 2^{-|p|}$$

is not Martin-Löf random?

Question 8.1

A set **A** has hyperimmune Turing degree if there is a function $\mathbf{f} \leq_{\mathsf{T}} \mathbf{A}$ such that for all recursive functions \mathbf{g} there is an \mathbf{x} with $\mathbf{f}(\mathbf{x}) > \mathbf{g}(\mathbf{x})$, that is, \mathbf{f} is not majorized by \mathbf{g} . A set **A** has hyperimmune-free Turing degree if for every $\mathbf{f} \leq_{\mathsf{T}} \mathbf{A}$

there is a recursive function g which majorizes f.

A set is low for Ω if Ω is Martin-Löf random also in the world of computations relative to A.

There are many sets which are low for Ω , actually the measure of the class of these sets is 1.

Question [Miller and Nies 2005] Does every low for Ω set have hyperimmune Turing degree?

Partial Results

A recursive binary tree is a downward closed recursive subset of $\{0,1\}^*$.

Theorem [Jockusch and Soare 1972]

Every infinite recursive binary tree has an infinite branch of hyperimmune-free Turing degree. Every infinite recursive binary tree without infinite recursive branch has an infinite branch of hyperimmune Turing degree.

Theorem

If T is a recursive tree without recursive infinite branches then every infinite branch of T which is low for Ω does also have hyperimmune Turing degree.

Theorem

If **A** is low for Ω , **A** is nonrecursive and the Turing degree of $A \oplus K$ is hyperimmune-free relative to K then **A** has hyperimmune Turing degree.

Question 8.9

Truth-Table Reducibility

A set A is truth-table reducible to B iff there are total recursive functions f, g such that, for all x,

$$A(x) = f(x, B(0)B(1) \dots B(g(x))).$$

Theorem [Calude and Nies 1998]

The halting problem **K** is not truth-table reducible to any Martin-Löf random set.

Question [Miller and Nies]

Given two universal prefix-free machines U, V, are Ω_U and Ω_V equivalent with respect to truth-table reducibility?

It is known that Ω_U and Ω_V are equivalent with respect to weak truth-table reducibility.

Truth-Table Incomparable Ω -Numbers

Theorem

There are universal machines U and V such that Ω_U and Ω_V are incomparable for truth-table reducibility.

Given a universal machine $\textbf{U},~\Omega_{\textbf{U}}<1.$ Now choose a recursive function f such that

- $\Omega_U + 2^{-1-f(0)} + 2^{-1-f(1)} + \ldots < 1$;
- for all **n** there is $\mathbf{m} \notin \Omega_{\mathbf{U}}$ with $\mathbf{f}(\mathbf{n}) < \mathbf{m} < \mathbf{f}(\mathbf{n} + \mathbf{1})$.

Let X = f(K) for the halting problem K and note that there is a universal machine V with

$$\Omega_{\boldsymbol{V}} = \Omega_{\boldsymbol{U}} + \boldsymbol{X}.$$

If Ω_U would be truth-table reducible to Ω_V , so would be X and K, a contradiction.

Related Questions

Theorem

For truth-table reducibility, there is an antichain of Ω -numbers.

Question

Are there universal machines U, V such that Ω_U is strictly truth-table below Ω_V ?

For some related reducibility, any two Ω -numbers are either equivalent or incomparable.

Definition [Becher and Grigorieff 2005] Given a universal machine **U** and a set **X**, let

$$\Omega_U[X] = \sum_{p: U(p) \in X} \, 2^{-|p|}$$

be the probability that U halts and outputs an element of X.

A universal machine $\bf U$ is universal by adjunction if every other prefix-free machine $\bf V$ is coded into it in a direct way: there is a fixed string $\bf q$ such that $\bf U(\bf qp) = \bf V(\bf p)$ for all strings $\bf p$.

Question [Miller and Nies 2005]

Given a machine U which is universal by adjunction and a co-r.e. set X, is $\Omega_U[X]$ then Martin-Löf random?

Special Universal Machines

Observation [Miller and Nies 2005]

Let X be recursively enumerable and U be a universal machine. If X is infinite or U universal by adjunction then $\Omega_U[X]$ is an Ω -number, in particular $\Omega_U[X]$ is left-r.e. and Martin-Löf random.

Theorem

There is a universal machine U such that, for all x, $\Omega_U[\{x\}] = 2^{1-H(x)}$.

Theorem

There are a universal machine U and an infinite co-r.e. set X such that $\Omega_U[X]$ is neither left-r.e. nor Martin-Löf random.

Summary

The present work deals with open questions on random- ness collected by Nies and Miller.

Question 8.1: A partial result was obtained by showing that every set which is low for Ω and infinite branch of a binary recursive tree without recursive branches has hyperimmune Turing degree. It remains open whether this second condi- tion can be removed.

Question 8.9: This question was completely solved by showing that there is an infinite antichain of Ω -numbers with respect to truth-table reducibility.

Question 8.10: A partial result was obtained by constructing a universal machine U and a co-r.e. set X such that $\Omega_U[X]$ is not Martin-Löf random. The original question asks for machines universal by adjunction what the constructed machine is not.