

Politechnika Wrocławska

STEROWANIE PROCESAMI DYSKRETNYMI

Sprawozdanie 3

Autorzy: Adam Prystupa, 275496 Mikołaj Sobala, 275439 SPIS TREŚCI 1

Spis treści

1	Opis problemu									
2	Opis zaimplementowanych metod									
3	Wyniki	3								
	Podsumowanie 4.1 Problemy	4								

1 Opis problemu

Rozważany jest permutacyjny problem przepływowy (flow shop), w którym każde z n zadań musi przejść przez m maszyn (procesorów) w tej samej kolejności. Czas wykonania operacji na każdej maszynie jest znany, a każde zadanie może być przetwarzane tylko na jednej maszynie w danym momencie. Nie dopuszcza się przerwań ani kolejkowania zadań.

Celem jest znalezienie takiej permutacji zadań, która minimalizuje czas zakończenia ostatniego zadania (kryterium C_{max}).

Problem $F||P||C_{max}$ jest silnie NP-trudny dla $m \geq 3$.

2 Opis zaimplementowanych metod

W ramach projektu zrealizowano implementację następujących metod rozwiązywania problemu szeregowania zadań:

- Przegląd zupełny Przeszukuje wszystkie możliwe permutacje zadań, wybierając najlepszą. Gwarantuje znalezienie rozwiązania optymalnego, ale jest bardzo czasochłonny (złożoność obliczeniowa O(n!)).
- **NEH** Heurystyka do problemu przepływowego (flow shop), która buduje harmonogram iteracyjnie, dodając kolejne zadania w miejscu minimalizującym czas zakończenia. Daje bardzo dobre rozwiązania przy stosunkowo niskim koszcie obliczeniowym.
- Algorytm Johnsona dla m=2 Optymalny algorytm dla przepływowego problemu szeregowania na dwóch maszynach. Polega na sortowaniu zadań według minimalnych czasów obróbki i odpowiednim ustawieniu ich w harmonogramie.
- FNEH (NEH z akceleracją) Ulepszona wersja NEH, wykorzystująca techniki przyspieszające obliczenia, np. inteligentne aktualizowanie czasu zakończenia. Zachowuje jakość rozwiązań NEH przy mniejszym czasie działania.
- Wersja podstawowa algorytmu podziału i ograniczeń (z prostym LB) Przeszukuje przestrzeń rozwiązań, odrzucając te, które na podstawie prostego oszacowania dolnego ograniczenia (LB) nie mogą prowadzić do rozwiązania lepszego niż dotychczasowe.
- Wersja zaawansowana algorytmu podziału i ograniczeń Rozszerzona wersja, wykorzystująca bardziej złożone i dokładniejsze metody obliczania dolnych ograniczeń oraz strategie wyboru i cięcia gałęzi, co znacznie poprawia efektywność algorytmu.

3 WYNIKI 3

3 Wyniki

W celu porównania algorytmów wykonano testy dla różnych instancji. Wartość błędu była liczona od wartości przeglądu zupełnego.

Parametry komputera

Rysunek 1: Procesor

Rysunek 2: Pamięć RAM

Opis testów

- Test 1 10 zadań, 5 maszyn
- Test 2 6 zadań, 4 maszyny
- Test 3 5 zadań, 4 maszyny
- Test 4 8 zadań, 2 maszyny
- Test 5 6 zadań, 3 maszyny
- Test 6 6 zadań, 3 maszyny
- Test 7 6 zadań, 3 maszyny
- Test 8 5 zadań, 5 maszyn
- Test 9 9 zadań, 5 maszyn
- Test 10 7 zadań, 2 maszyny

4 PODSUMOWANIE 4

Tabela wyników

Numer testu	Przegląd zupełny		NEH			Johnson			FNEH			Basic+LB			Advanced		
	Cmax [-]	Czas [us]	Cmax [-]	Błąd [%]	Czas [us]	Cmax [-]	Błąd [%]	Czas [us]	Cmax [-]	Błąd [%]	Czas [us]	Cmax [-]	Błąd [%]	Czas [us]	Cmax [-]	Błąd [%]	Czas [us]
1	755	9137365	769	1,82	133	N/A	N/A	N/A	893	15,45	53	897	15,83	5241794	755	0	6865
2	535	1118	535	0	37	N/A	N/A	N/A	609	12,15	21	553	3,25	779	535	0	854
3	303	547	304	0,33	100	N/A	N/A	N/A	370	18,11	54	310	2,26	1327	303	0	451
4	319	71285	319	0	66	319	0	13	334	4,49	46	323	1,24	80681	319	0	256
5	345	1065	345	0	36	N/A	N/A	N/A	433	20,32	20	372	7,26	1024	345	0	367
6	464	1121	464	0	35	N/A	N/A	N/A	561	17,29	21	464	0	1273	464	0	458
7	431	1063	431	0	35	N/A	N/A	N/A	471	8,49	19	471	8,49	1288	431	0	896
8	503	176	503	0	26	N/A	N/A	N/A	529	4,91	16	577	12,82	155	503	0	70
9	609	878469	609	0	106	N/A	N/A	N/A	729	16,46	46	647	5,87	318415	609	0	4241
10	388	7760	388	0	47	388	0	8	402	3,48	23	389	0,26	7346	388	0	71

Rysunek 3: Tabela wyników

4 Podsumowanie

4.1 Problemy

Podczas realizacji projektu nie napotkano znaczących problemów, wynika to prawdopodobnie z faktu, iż algorytmy takie jak przegląd zupełny były podobne do poprzedniego problemu.

4.2 Wnioski

• Przegląd zupełny:

- Gwarantuje znalezienie rozwiązania optymalnego (najniższego możliwego Cmax), co czyni go punktem odniesienia dla innych algorytmów.
- Niestety jego czas działania rośnie wykładniczo wraz z liczbą zadań, co ogranicza jego zastosowanie do bardzo małych instancji problemu.

• NEH:

- Zapewnia bardzo dobrą jakość rozwiązań, często z błędem bliskim 0% względem optimum, przy znacząco krótszym czasie działania.
- Jest uniwersalny i dobrze skalowalny sprawdza się zarówno dla małych, jak i dużych instancji problemu.

• Johnson:

- Algorytm działa błyskawicznie i daje optymalne rozwiązanie, ale tylko dla instancji obejmujących dokładnie dwie maszyny.
- W przypadku problemów z większą liczbą maszyn nie może być zastosowany, co znacznie ogranicza jego uniwersalność.

• FNEH:

- Osiąga wyniki nieco gorsze jakościowo niż klasyczny NEH, ale jego czas działania jest jeszcze krótszy.
- Może być dobrym wyborem w sytuacjach, gdzie istotny jest bardzo szybki czas odpowiedzi kosztem nieco większego błędu.

4 PODSUMOWANIE 5

• Wersja podstawowa algorytmu podziału i ograniczeń (z prostym LB):

- Uzyskuje umiarkowaną jakość rozwiązań – błędy są większe niż w przypadku NEH, ale niższe niż w FNEH.

 Czas działania jest wysoki w porównaniu z NEH/FNEH, lecz może być uzasadniony, gdy wymagane są bardziej zaawansowane estymacje dolnych ograniczeń.

• Wersja zaawansowana algorytmu podziału i ograniczeń:

- Bardzo często osiąga wyniki identyczne jak przegląd zupełny, przy znacznie krótszym czasie działania, co świadczy o jego dużej skuteczności.
- Jest jednym z najbardziej zrównoważonych algorytmów pod względem jakości i czasu działania – szczególnie polecany dla średnich i dużych instancji.