A brief introduction to Species Distribution Models in Python

Predicting spatial distributions for ecological species leveraging Python's ever-strengthening machine learning stack.

Author: Daniel Furman (mailto:dryanfurman@gmail.com) | November 2020

Species Distributions Models (SDMs) are an important and widely used tool for ecologists, agriculture scientists, conservation biologists, and many other geospatial science enthusiasts. While dozens of tutorials leverage the traditional R stack for SDMs, with packages such as Raster, implementations of SDMs in Python are, **surprisingly**, rather limited. To bridge this gap, we explore a SDM workflow powered by Python's machine learning capabilities. The methods employed barely scratch the surface of available techniques, and hopefully this introduction can serve as a springboard to further exploration.

If you are completely new to SDMs, it may be prudent to start here (https://www.google.com/search?
here:q=species+distribution+modeling&oq=species+distribution+modeling&aqs=chrome..69i57j35i39j0l3j69i61l2j69i60.6
BDMs associate presence locations of a species to climate variables, giving you the power to predict species suitability across an entire landscape. First, environmental variables are sampled from presence coordinates. Second, a statistical model (here, SK-Learn classifiers) defines a species-environment relationship. Third, the species-environment relationship is mapped across the study space, denoting a potential distribution of the

species (referred to as interpolation). Projecting to future/past climates or to novel geographic areas is referred to

conceptualization -> data pre-processing -> model training/assessment ->
interpolate/extrapolate -> iterate

Tutorial Objectives

1. Create a SDM workspace with a Python codebase.

as extrapolation. A typical workflow is as follows:

- 2. Run a suite of SDMs with your ML classifiers of choice.
- 3. Visualize model predictions with climate features (1970-2000).

Section 1 | Set up

1.1 | Workspace

The first step is to create inputs / outputs folders in our working file directory. It is best practices to keep the data and results separated, as outputs folder should be completely reproducible.

```
In [1]: import os
    os.mkdir("inputs")
    os.mkdir("outputs")
```

We now install the additional dependencies we will need for our SDMs, with four primary libraries:

- scikit-learn: De-facto Python machine learning
- pyimpute: spatial classification
- rasterio: reads and writes geospatial rasters
- geopandas: spatial operations in Python made easy

These can be installed at the terminal using pip install LIBRARY, but you may find it cleaner to create a conda virtual environment from requirements-py.txt (see <u>Git repo (https://github.com/daniel-furman/py-sdms-tutorial)</u>).

1.2 | Data Processing

We first need to download a geodatabase (here we use a .shp file) denoting presence/absence coordinates, which can be directly loaded into Python as a GeoPandas GeoDataFrame (a tabular data structure for geometric data types). Here, the CLASS column is a binary indication of the presence/absence of the species. For this tutorial, we are using Joshua trees (*Yucca brevifolia*) as the example species:

To follow along chunk by chunk, clone the <u>Git repo (https://github.com/daniel-furman/py-sdms-tutorial)</u> and open Intro-to-SDMs-Py.ipynb in your working directory of choice.

```
In [2]: import geopandas as gpd
    import shutil
    import glob
    # grab jtree data after cloning Git repo
    for f in sorted(glob.glob('data/jtree*')):
        shutil.copy(f,'inputs/')
    # or grab your data of choice and move to 'inputs/'
    pa = gpd.GeoDataFrame.from_file("inputs/jtree.shp")
    pa.sample(5) # GeoDataFrame for the species
```

Out[2]:

	CLASS	geometry
244	0.0	POINT (-111.81250 34.52083)
5211	1.0	POINT (-116.14671 34.02692)
3552	1.0	POINT (-113.18179 34.36595)
3230	1.0	POINT (-115.71752 36.44939)
3387	0.0	POINT (-113.89583 35.85417)

We now check that there are no duplicate or NaN coordinates, as well as inspect the shapefile's attributes.

```
In [3]: print("number of duplicates: ", pa.duplicated(subset='geometry', keep='firs
t').sum())
print("number of NA's: ", pa['geometry'].isna().sum())
print("Coordinate reference system is: {}".format(pa.crs))
print("{} observations with {} columns".format(*pa.shape))

number of duplicates: 0
number of NA's: 0
Coordinate reference system is: epsg:4326
7200 observations with 2 columns
```

We can map the species presences (pa==1).

```
In [4]: pa[pa.CLASS == 1].plot(marker='*', color='green', markersize=8)

Out[4]: <AxesSubplot:>

38
37
36
35
34
33
32
-118 -116 -114 -112
```

And we can map the background points (pa == 0).

```
In [5]: pa[pa.CLASS == 0].plot(marker='+', color='black', markersize=4)
```

Out[5]: <AxesSubplot:>

However, if you don't have a geospatial database with presences/absence coordinates, there are some easy steps to create one for *virtually any species* of interest! You can start by searching the open-data Global Biodiversity Information Facility (<u>GBIF (https://www.gbif.org)</u>), downloading a species database to .csv , and migrating to R to pipe the database to .shp (e.g. see data-pre-processing.R in the <u>Git repo (https://github.com/daniel-furman/py-sdms-tutorial</u>) or the additional information section below).

Section 2 | Mapping species suitability

In this section we will train our machine learning classifiers and make spatial predictions of the species distribution over current conditions (1970-2000).

First, we load 19 bioclimatic features (here we use 2.5 arc-minute resolution) from the publicly available WorldClim database (https://www.worldclim.org) (v. 2.1, Fick & Hijmans, 2017).

There are 19 raster features.

We are now ready to use pyimpute to generate the raster maps of suitability. We first prep the pyimpute workflow:

```
In [7]: from pyimpute import load_training_vector
    from pyimpute import load_targets
    train_xs, train_y = load_training_vector(pa, raster_features, response_field
    ='CLASS')
    target_xs, raster_info = load_targets(raster_features)
    train_xs.shape, train_y.shape # check shape, does it match the size above of t
    he observations?
Out[7]: ((7200, 19), (7200,))
```

and we implemement several scikit-learn classifiers:

```
In [8]: # import machine learning classifiers
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import ExtraTreesClassifier
        from xgboost import XGBClassifier
        from lightgbm import LGBMClassifier
        CLASS MAP = {
            'rf': (RandomForestClassifier()),
            'et': (ExtraTreesClassifier()),
            'xgb': (XGBClassifier()),
            'lgbm': (LGBMClassifier())
            }
        from pyimpute import impute
        from sklearn import model selection
        # model fitting and spatial range prediction
        for name, (model) in CLASS_MAP.items():
            # cross validation for accuracy scores (displayed as a percentage)
            k = 5 \# k-fold
            kf = model_selection.KFold(n_splits=k)
            accuracy scores = model selection.cross val score(model, train xs, train
        y, cv=kf, scoring='accuracy')
            print(name + " %d-fold Cross Validation Accuracy: %0.2f (+/- %0.2f)"
                  % (k, accuracy_scores.mean() * 100, accuracy_scores.std() * 200))
            # spatial prediction
            model.fit(train xs, train y)
            os.mkdir('outputs/' + name + '-images')
            impute(target_xs, model, raster_info, outdir='outputs/' + name + '-image
        s',
                   class_prob=True, certainty=True)
        rf 5-fold Cross Validation Accuracy: 93.67 (+/- 0.54)
        et 5-fold Cross Validation Accuracy: 93.82 (+/- 0.99)
        xgb 5-fold Cross Validation Accuracy: 93.54 (+/- 0.99)
        lgbm 5-fold Cross Validation Accuracy: 93.67 (+/- 0.88)
```

All done! We have a responses.tif raster which is the predicted class (0 or 1) and probability_1.tif with a continuous suitability scale. Let's average the continuous output for the four models and plot our map.

```
In [9]: from pylab import plt
# define spatial plotter
def plotit(x, title, cmap="Blues"):
    plt.imshow(x, cmap=cmap, interpolation='nearest')
    plt.colorbar()
    plt.title(title, fontweight = 'bold')

import rasterio
distr_rf = rasterio.open("outputs/rf-images/probability_1.0.tif").read(1)
distr_et = rasterio.open("outputs/et-images/probability_1.0.tif").read(1)
distr_xgb = rasterio.open("outputs/xgb-images/probability_1.0.tif").read(1)
distr_lgbm = rasterio.open("outputs/lgbm-images/probability_1.0.tif").read(1)
distr_averaged = (distr_rf + distr_et + distr_xgb + distr_lgbm)/4

plotit(distr_averaged, "Joshua Tree Range, averaged", cmap="Greens")
```


Lastly, let's zoom in to Joshua Tree National Park and inspect the suitability there.

```
In [10]: plotit(distr_averaged[100:150, 100:150], "Joshua Tree National Park Suitabilit
y", cmap="Greens")
```


Additional resources

- 1. <u>Species distribution modeling with R (https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf)</u> (Hijmans and Elith, 2017)
- 2. Pyimpute's README.md (https://github.com/perrygeo/pyimpute/blob/master/README.md)
- 3. A study on generating pseudo absence points

 (https://www.researchgate.net/publication/229149956_Selecting_PseudoAbsences for Species Distribution Models How Where and How Many) (Barbet-Massin et al., 2012)
- 4. A study on SDM transferability and pixel size (https://www.nature.com/articles/s41598-018-25437-1) (Manzoor et al., 2018)
- 5. A study on SDMs for invasive species (https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13161) (Lake et al., 2020)
- 6. A book <u>on mapping SDMs (https://www.amazon.com/Mapping-Species-Distributions-Biodiversity-Conservation/dp/0521700027</u>) (Franklin, 2009)
- 7. A more modern SDMs tutorial (https://damariszurell.github.io/SDM-Intro/) (Zurell, 2020)
- 8. A study on collinearity among model variables (https://onlinelibrary.wiley.com/doi/full/10.1111/j.1600-0587.2012.07348.x) (C. F. Dormann et al., 2012)

Data Citations

- 1. GBIF.org (01 November 2020) GBIF Occurrence' Download https://doi.org/10.15468/dl.g6swrm (https://doi.org/10.15468/dl.g6swrm)
- 2. Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.