

2. Autómatas finitos

2.1. Autómatas Finitos Deterministas (AFD)

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Autómata Finito (AF)

- Informalmente, diagrama de estados que captura de manera exhaustiva todos los posibles estados y transiciones que una máquina puede tomar como respuesta a una secuencia de símbolos de entrada
- Autómatas Finitos Deterministas (AFD)
 - El siguiente estado está determinado por el estado actual y por el símbolo de entrada
- Automata Finito No-determinista (AFN)
 - Desde un estado, leyendo un símbolo de entrada, es posible pasar a varios estados distintos

Autómatas Finitos: Ejemplos

Interruptor

Push

Reconocimiento de la palabra "then"

Autómata Finito Determinista - Definición

- Un Autómata Finito Determinista (AFD) viene dado por:
 - Q ==> conjunto finito (y no vacío) de estados
 - \blacksquare Σ ==> alfabeto
 - q₀ ==> estado inicial
 - F ==> conjunto de estados finales
 - δ ==> función de transición

$$\delta: Q \times \Sigma \rightarrow Q$$

- Un AFD es una tupla:
 - (Q, \sum , q₀,F, δ)

- Input: palabra w en ∑*
- Ouput: Acepta el AFD w?
- Pasos:
 - Comienza en el estado inicial q₀
 - Para cada símbolo en w
 - Calcula el próximo estado, a partir del estado actual y del símbolo actual, usando la función de transición
 - Si al consumir todos los símbolos de w el estado actual es final (F) entonces acepta w;
 - Si no, rechaza w.

Lenguajes regulares

- L(A) conjunto de palabras que acepta o reconoce A
 - A cualquier lenguaje aceptado por un AFD se le llama "Lenguaje Regular".

Ejemplo #1

- Diseña un AFD para el lenguaje:
 - L = {w | w es una palabra sobre el alfabeto binario que contiene 01 como subpalabra}
- Pasos para diseñar un AFD que acepta L:
 - $\sum = \{0,1\}$
 - Decidir conjunto de estados: Q
 - Designar estados inicial y final(es)
 - δ: Decidir las transiciones:
- Estados Finales == estados de aceptación
- Otros estados == estados de no aceptación o de rechazo

4

AFD para palabras que contienen 01

• ¿Por qué es este AFD determinista?

• ¿Y si le añadimos al lenguaje la palabra vacía?

•
$$Q = \{q_0, q_1, q_2\}$$

•
$$\sum = \{0,1\}$$

• estado inicial = q_0

•
$$F = \{q_2\}$$

 Tabla de transiciones símbolos

	δ	0	1
S	•q ₀	q_1	q_0
ado	q_1	q_1	q_2
estados	*q ₂	q_2	q_2

Ejemplo #2

Diseña un AFD para el lenguaje:

```
L = { w | w sobre el alfabeto binario con una cantidad par de 0s y 1s}
```

• ?

Función de transición extendida

- $\delta (q, w) = \text{estado que alcanza el}$ autómata desde q al leer w
- $\hat{\delta} (q, \epsilon) = q$ $\hat{\delta} (q, wa) = \delta (\hat{\delta}(q, w), a)$
 - ¿Qué ocurre en el ejemplo #2 tomando w=100 y a=1:

$$\bullet \hat{\delta} (q_0, wa) = ?$$

Lenguaje de un AFD

Un AFD A acepta w si hay un camino desde q_0 a un estado final etiquetado por w

• es decir, $L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$

2. Autómatas finitos

2.2. Autómatas Finitos No-Deterministas (AFN)

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Autómata Finito Nodeterminista (AFN)

- Un Autómata Finito No-determinista
 (AFN)

 No "tiene que", sólo puede
 - es, por supuesto, "no-determinista"
 - En un estado, ante cierto símbolo, puede tener que elegir entre distintos caminos
 - La intuición es que el AFN sabe elegir bien

 La función de transición asigna a cada estado y símbolo un conjunto de estados

Autómata Finito Nodeterminista - definición

- Un Autómata Finito No-determinista (AFN) viene dado por:
 - Q ==> conjunto finito (y no vacío) de estados
 - \blacksquare Σ ==> alfabeto
 - q₀ ==> estado inicial
 - F ==> conjunto de estados finales
 - δ ==> función de transición

$$\delta: Q \times \Sigma \rightarrow \text{subconjuntos de } Q = \int_{\mathbb{R}^n} \mathbb{Q}(Q)$$

- Un AFN es una tupla:
 - (Q, \sum , q₀,F, δ)

¿Cómo se ejecuta un AFN?

- Input: palabra w en ∑*
- Output: ¿Acepta el AFN w?
- Pasos:
 - Empieza en el "estado inicial" q₀
 - Para cada símbolo en w
 - Dado el estado actual y el símbolo actual de w, elige según la función de transición algún estado como estado siguiente. Si no hay ninguno, rechaza w en esta ejecución
 - Si después de leer todos los símbolos de w, el AFN está en un estado de aceptación (F), acepta w en esta ejecución;
 - Si no, rechaza w en esta ejecución.
 - w es aceptada por el AFN si lo es en alguna ejecución

AFN para palabras que contienen 01

¿Por qué es no-determinista?

¿Qué pasa si se recibe un 0 en q₁?

• Q =
$$\{q_0, q_1, q_2\}$$

•
$$\Sigma = \{0,1\}$$

• estado inicial = q₀

•
$$F = \{q_2\}$$

 Tabla de transiciones símbolos

	δ	0	1
SC	• q ₀	$\{q_0,q_1\}$	$\{q_0\}$
estados	q ₁	Ф	{q ₂ }
es.	*q ₂	{q ₂ }	{q ₂ }

Ejemplo #3

Diseña un AFN para el lenguaje L = { w | w acaba en 01}

Función de transición de un AFN extendida

Base: $\hat{\delta}$ (q,ε) = {q}

Inducción:

• Sea
$$\delta(q, w) = \{p_1, p_2, ..., p_k\}$$

•
$$\delta(p_i, a) = S_i$$
 para $i=1, 2..., k$

• Entonces, $\hat{\delta}$ (q, wa) = $S_1 U S_2 U ... U S_k$

Lenguaje de un AFN

 Un AFN N acepta w si existe algún camino del estado inicial a algún estado final etiquetado por w, es decir

$$L(N) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \Phi \}$$

Ventajas y desventajas de los AFN

- Potencia del no-determinismo
- Pero "imaginarios", en el sentido de que en la práctica han de implementarse de manera determinista

Diferencias: AFD vs. AFN

AFD

- Todas las transiciones son deterministas
 - Cada transición lleva a un único estado
- La función de transición ha de estar definida para cada estado y símbolo
- Acepta el input si el último estado está en F
- A veces, más difícil de construir por el número de estados
- 5. Implementación factible

AFN

- Algunas transiciones pueden ser no-deterministas
 - Una transición puede llevar a un conjunto de estados
- La función de transición no ha de estar definida para cada estado y símbolo
- Acepta el input si *alguno* de los últimos estados está en F
- 4. En general, más fácil de construir que un AFD
- La implementación ha de ser determinista (hay que convertirlo a AFD)

Sin embargo, ¡los AFD y los AFN son equivalentes!

2. Autómatas finitos

2.3. Equivalencia entre AFD y AFN

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Teorema: Para cualquier lenguaje L

Ha de ser cierto para todo L . L aceptado por un AFD ⇔ L aceptado por un AFN Demostración:

1 =>

 Todo AFD es un AFN para el que cada estado tiene exactamente una transición para cada símbolo. Por lo tanto, si L es aceptado por un AFD, es aceptado por el correspondiente AFN.

2. <=

 Hay que probar que para cada AFN existe un AFD equivalente, es decir, que acepta el mismo lenguaje (en las próximas transparencias...)

Demostración de <=

- <=: Si L es aceptado por un AFN también es aceptado por algún AFD
- En otras palabras...
- Dado un AFN N, podemos construir un AFD D tal que L(N)=L(D)
- ¿Cómo podemos convertir un AFN en AFD?
 - Observación: cada transición del AFN devuelve un subconjunto de estados
 - Idea: Consideramos un "estado" en el AFD para cada posible subconjunto de estados del AFN

Construcción de subconjuntos

De AFN a AFD: construcción de subconjuntos

- Sea N = $(Q_N, \Sigma, \delta_N, q_0, F_N)$
- Objetivo: Construir $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ tal que L(D) = L(N)
- Construcción:
 - 1. Q_D = subconjuntos de Q_N (conjunto potencia)
 - 2. F_D = subconjuntos S de Q_N tales que S∩ F_N ≠Φ
 - 3. δ_D : para cada subconjunto S de Q_N y para cada símbolo a de Σ:

<u>Idea:</u> para evitar tener que enumerar todos los subconjuntos, creamos los estados de manera "perezosa"

Construcción de subconjuntos: ejemplo

• $L = \{ w \mid w \text{ acaba en } 01 \}$

AFN:

	δ_N	0	1
_	\mathbf{q}_0	${q_0,q_1}$	{q ₀ }
	q_1	Ø	{q ₂ }
,	*q ₂	Ø	Ø

AFD:

	δ_{D}	0	1
_	→ {q ₀ }	$\{q_0,q_1\}$	$\{q_0\}$
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
	*{q ₀ ,q ₂ }	${q_0,q_1}$	{q ₀ }

- 1. Determina las transiciones
- 2. Conserva sólo aquellos estados alcanzables desde {q₀}

Mismo ejemplo, con PEREZA

• $L = \{w \mid w \text{ acaba en } 01\}$

AFN:

δ_{N}	0	1
\rightarrow q ₀	${q_0,q_1}$	{q ₀ }
q_1	Ø	{q ₂ }
*q ₂	Ø	Ø

AFD:

	δ_{D}	0	1
→	$\{q_0\}$	${q_0,q_1}$	$\{q_0\}$

Idea principal:

Considerar estados conforme se vayan necesitando

Corrección de la construcción de subconjuntos

Teorema: Si D es el AFD construido a partir del AFN N usando la construcción de subconjuntos, entonces L(D)=L(N)

- Demostración:
 - Basta probar que para cada w se tiene $δ_D({q_0},w) ≡ δ_N({q_0},w)$
 - Se prueba mediante inducción sobre la longitud de w

2. Autómatas finitos

2.4. Autómatas Finitos No-Deterministas con transiciones ϵ (ϵ -AFN)

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

AFN con transiciones ε

- Extendemos los AFN con transiciones ε
 - es decir, el AFN puede saltar de un estado a otro sin consumir ningún símbolo de entrada
- Objetivo:
 - Así es más sencillo diseñar AFN
- ε-AFN tienen una columna más en su tabla de transiciones

 $\delta: Q \times (\sum \bigcup \{\epsilon\}) \rightarrow \text{subconjuntos de } Q$

Ejemplo de ε-AFN

L = {w | w es vacía, o acaba en 01}

δ_{E}	0	1	3
*q' ₀	Ø	Ø	{q ₀ }
q_0	${q_0,q_1}$	{q ₀ }	Ø
q_1	Ø	{q ₂ }	Ø
*q ₂	Ø	Ø	Ø

ε-clausura de un estado q, CLAUS(q), es el conjunto de todos los estados (incluido q) que se pueden alcanzar desde q siguiendo cualquier número de transiciones ε.

Ejemplo de ε-AFN

L = {w | w es vacía, o acaba en 01}

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	$\{q_0\}$
	q_0	${q_0,q_1}$	$\{q_0\}$	Ø
	q_1	Ø	{q ₂ }	Ø
	*q ₂	Ø	Ø	Ø

Ejecuciones para w=101:

$$CLAUS(q'_0) = \{q_0, q'_0\}$$

- Base: q pertenece a CLAUS(q)
- Inducción:
 - Si p pertenece a CLAUS(q)
 - y r pertenece a $\delta(p, \epsilon)$
 - Entonces r pertenece a CLAUS(q)

Función de transición de un ε - AFN extendida: $\delta(q,wa)$ =?

Función de transición de un ε- AFN extendida

Base: $\hat{\delta}$ (q,ε) = CLAUS(q)

Inducción:

• Sea
$$\delta(q, w) = \{p_1, p_2, ..., p_k\}$$

•
$$\delta(p_1,a) U \delta(p_2,a) U ... U \delta(p_k,a) = \{r_1,r_2...,r_m\}$$

Entonces,

$$\hat{\delta}$$
 (q,wa)= CLAUS(r_1)U... U CLAUS(r_m)

Lenguaje de un ε- AFN

 Un ε-AFN E acepta w si existe algún camino del estado inicial a algún estado final etiquetado por w (posiblemente con ε intermedios), es decir

$$L(E) = \{ w \mid \widehat{\delta}(q_0, w) \cap F \neq \Phi \}$$

2. Autómatas finitos

2.5. Equivalencia de los AFN y los ϵ – AFN (eliminación de transiciones ϵ)

Fernando Rosa Velardo

Traducción y adaptación de transparencias de Ananth Kalyanaraman (http://www.eecs.wsu.edu/~ananth/)

Equivalencia entre AFD, AFN y ε-AFN

 Teorema: L es el lenguaje aceptado por algún ε-AFN si y solo si L es el lenguaje aceptado por algún AFN

- Consecuencia:
 - AFD \equiv AFN $\equiv \epsilon$ -AFN
 - (todos aceptan Lenguajes Regulares)

Eliminación de transiciones ε

- Sea E = $(Q, \sum, \delta_E, q_0, F_E)$ un ε -AFN
- Objetivo: Construir un AFN $N=(Q, \sum, \delta_N, q_0, F_N)$ tal que L(N)=L(E)
- Construcción:
 - 1. $F_N = \{ q \mid CLAUS(q) \cap F_E \neq \Phi \}$
 - $\delta_{N}(q,a) = U \delta_{E}(p,a)$ $p \in CLAUS(q)$

¡¡OJO: Distinto al libro!!

ε-AFN→ AFN (con pereza)

L = {w | w es vacía o acaba en 01}

	δ_{E}	0	1	8
→	*q' ₀	Ø	Ø	{q ₀ }
	q_0	${q_0,q_1}$	$\{q_0\}$	Ø
	q_1	Ø	{q ₂ }	Ø
	*q ₂	Ø	Ø	Ø

	δ_N	0	1
→	*q' ₀		
·	•••		

ε-AFN→ AFN (con pereza)

L = {w | w es vacía o acaba en 01}

$\begin{array}{c} 0,1 \\ \hline \\ q_0 \end{array} \xrightarrow{0} \begin{array}{c} 1 \\ \hline \\ q_1 \end{array} \xrightarrow{1} \begin{array}{c} q \\ \end{array}$	2)
0,1 0	

	δ_{E}	0	1	3
→	*q' ₀	Ø	Ø	$\{q_0\}$
	q_0	$\{q_0,q_1\}$	$\{q_0\}$	Ø
	q_1	Ø	{q ₂ }	Ø
	*q ₂	Ø	Ø	Ø

	δ_N	0	1
→	*q' ₀	${q_0,q_1}$	{q ₀ }
	q_0	${q_0,q_1}$	$\{q_0\}$
	q_1	Ø	{q ₂ }
	*q ₂	Ø	Ø