

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 July 2002 (25.07.2002)

PCT

(10) International Publication Number
WO 02/057301 A2

(51) International Patent Classification⁷: **C07K 14/005** (74) Agent: MURGITROYD & COMPANY; 165-169 Scotland Street, Glasgow G5 8PL (GB).

(21) International Application Number: **PCT/GB02/00234**

(81) Designated States (*national*): AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date: 21 January 2002 (21.01.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0101513.0 19 January 2001 (19.01.2001) GB

(71) Applicant (*for all designated States except US*): SCOTTISH CROP RESEARCH INSTITUTE [GB/GB]; Invergowrie, Dundee DD2 5DA (GB).

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): TALIANSKI, Mikhail Emmanuilovich [GB/GB]; 2F-L, 14 Baxter Park Terrace, Dundee DD4 6NW (GB). RIABOV, Evgeni Vitalievich [GB/GB]; 11 Cleeve Court, Kings Hill, West Malling, Kent ME19 4LP (GB). REAVY, Brian [GB/GB]; 16 Fountainbrac, Monifieth, Angus DD5 4DX (GB). MACFARLANE, Stuart, Andrew [GB/GB]; 8 Cupar Road, Newport on Tay, Fife DD6 8DG (GB).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/057301 A2

(54) Title: GENE SILENCING SUPPRESSOR

(57) Abstract: A plant virus protein, displaying PTGS suppressor activity, and the use thereof as a suppressor of the gene silencing mechanism in a non-plant host cell (i.e. an animal cell) is provided. Examples of the plant virus protein include cysteine-rich proteins, such as the 16K CRP of tobacco rattle virus or the 12K CRP of pea early browning virus. Also described is a method of suppressing or inhibiting a gene silencing mechanism in a non-plant organism or cell through the use of a plant virus protein, exhibiting post transcriptional gene silencing suppressing functions.

1 **GENE SILENCING SUPPRESSOR**

2

3 The present invention relates to the suppression of
4 post-transcription gene silencing due to the presence
5 of a cysteine-rich plant virus protein in the host.

6

7 Plants employ post transcriptional gene silencing
8 (PTGS) as a mechanism to defend themselves against
9 infection by viruses. In response, some plant
10 viruses encode proteins that suppress PTGS and, thus,
11 increase virus pathogenicity. Here we show that the
12 *Tobacco rattle virus* (TRV) 16K cysteine-rich protein
13 (CRP) is a silencing suppressor that is required for
14 efficient virus multiplication, both in protoplasts
15 and plants. The 16K protein can be substituted by
16 the 12K CRP from the related virus, *Pea early-*
17 *browning virus* and by the 2b protein, a known
18 silencing suppressor, from the unrelated virus,
19 *Cucumber mosaic virus*.

20

21 Expression of the 16K CRP and other PTGS suppressors
22 in a *Drosophila* cell system prevents silencing of a

1 lacZ gene, demonstrating directly that the 16K CRP is
2 a suppressor of post-transcriptional gene silencing.
3 These results identify the tobaviruses CRPs as a new
4 class of PTGS-suppressors and suggest that the CRPs
5 encoded by other, unrelated, plant viruses may also
6 be silencing suppressors.

7
8 Plant viruses vary considerably in their ability to
9 infect different plant species so that, for example,
10 Cucumber mosaic virus (CMV) is known to infect more
11 than 775 species from at least 85 different families
12 (Palukaitis et al., 1992), whereas, Potato leafroll
13 virus infects only about 20 species, most of which
14 are from the family Solanaceae (Harrison, 1984). A
15 particular virus might be unable to infect a plant
16 species because the plant lacks a protein that is
17 required for efficient replication of the virus, for
18 example, *Arabidopsis* TOM1 (Yamanaka et al., 2000).

19
20 Alternatively the plant may actively resist infection
21 by the virus, for example, tobacco plants carrying
22 the N gene are resistant to strains of *Tobacco mosaic*
23 virus (TMV) but are not resistant to other
24 tobamoviruses (Whitham et al., 1994). A more general
25 resistance mechanism, referred to as systemic
26 acquired resistance (SAR), also exists in tobacco and
27 other plants (Sticher et al., 1997). In this
28 process, challenge to the lower leaves of a plant
29 with TMV (or other unrelated pathogens) induces
30 partial resistance to TMV (or other viruses) in
31 upper, uninoculated leaves. SAR is dependent on the

1 synthesis of salicylic acid (SA) and exogenous
2 application of SA can induce resistance to viruses.
3 However, SA-mediated resistance appears to act by
4 several mechanisms, as TMV is inhibited at the stage
5 of virus replication, whereas CMV is blocked in
6 systemic movement (Chivasa *et al.*, 1997; Naylor *et*
7 *al.*, 1998).

8
9 More recently it has been discovered that plants also
10 may employ a cytoplasmic, sequence-specific, RNA
11 degradation system known as post transcriptional gene
12 silencing (PTGS) to combat virus infection. PTGS in
13 plants was first identified as the cause of
14 cosuppression, in which transformation of plants with
15 an additional copy of a host gene could abolish
16 expression of both the transgene and host homologue
17 by degradation of cytoplasmic mRNA (Napoli *et al.*,
18 1990). This system was shown to act on viruses,
19 firstly by the demonstration that transformation of
20 plants with non-translatable viral sequences often
21 resulted in either extreme resistance or in a
22 "recovery" phenotype where plants developed
23 resistance following an initial, virus-susceptible
24 phase (Lindbo *et al.*, 1993). In other studies it was
25 shown that plants in which expression of a β -
26 glucuronidase (GUS) transgene had been silenced by
27 PTGS were protected against infection by a plant
28 virus that carried part of the same (GUS) gene
29 (English *et al.*, 1996). Furthermore, it was shown
30 that host gene or transgene expression could be
31 silenced following infection with a virus carrying

1 part (or all) of the same gene (Kumagai et al., 1995;
2 Ruiz et al., 1998).

3

4 Several approaches have been taken to examine in
5 detail the interaction of plant viruses with the gene
6 silencing process. Infection with CMV of plants that
7 carried post-transcriptionally silenced transgenes
8 (GUS and nitrate reductase) led to the reversal of
9 PTGS and resumption of transgene expression in newly
10 emerging leaves (Beclin et al., 1998). Earlier work
11 had identified the CMV 2b protein as a pathogenicity
12 determinant that is required for symptom formation
13 and systemic invasion of particular hosts (Ding et
14 al., 1995). Silencing of a green fluorescent protein
15 (GFP) transgene in *Nicotiana benthamiana* plants was
16 reversed following infection with *Potato virus X*
17 (PVX) that had been modified to express the CMV 2b
18 gene, demonstrating that the 2b protein is a
19 silencing suppressor (Brigneti et al., 1998). This
20 and other studies showed that the HC-Pro proteins of
21 *Potato virus Y* and *Tobacco etch virus* can also
22 function as silencing suppressors (Anandalakshmi et
23 al., 1998; Kasschau et al., 1998). Evidence that
24 PTGS is a defensive system that can target viruses
25 comes from studies of *Arabidopsis* mutants (*sgs2* and
26 *sgs3*) that originally were isolated in a screen for
27 plants impaired in the silencing of a GUS transgene
28 (Elmayan et al., 1998). These plants have an
29 increased susceptibility to CMV, showing that the
30 PTGS system does provide some protection against this
31 virus (Mourrain et al., 2000). Interestingly, the

1 ~~sgs~~ mutants do not have increased susceptibility to
2 two other viruses, *Turnip mosaic virus* and *Turnip*
3 *vein clearing virus*. Plant virus-encoded silencing
4 suppressors may target different components of the
5 PTGS system. For example, the CMV 2b protein
6 prevents initiation of silencing in newly emerging
7 tissues but has no effect on already established
8 silencing. In contrast the potyvirus HC-Pro protein
9 suppresses silencing in all tissues (Brigneti et al.,
10 1998).

11
12 A survey of a small number of other plant viruses
13 showed that the comovirus *Cowpea mosaic virus*, the
14 geminivirus *African cassava mosaic virus*, the
15 potexvirus *Narcissus mosaic virus*, the tobamovirus
16 TMV, the sobemovirus *Rice yellow mottle virus* (RYMV),
17 the tombusvirus *Tomato bushy stunt virus* (TBSV) and
18 the tobaviruses *Tobacco rattle virus* (TRV) also were
19 able to suppress GFP silencing (Voinnet et al.,
20 1999). Although in this study the potexvirus PVX did
21 not suppress silencing, using a different assay these
22 authors showed that PVX is in fact able to prevent
23 systemic silencing (Voinnet et al., 2000). Thus, it
24 seems probable that many plant viruses encode
25 proteins that allow them to evade or inhibit PTGS in
26 certain plant species, and that different suppressors
27 target different parts of the PTGS pathway.

28
29 Inhibiting gene silencing in a host organism allows
30 an increase and/or in certain cases renders possible
31 the expression of a transgene which can be introduced

1 within the organism either through a foreign vector
2 or through the genetic modification of the host
3 organism itself.

4
5 Thus suppression or inhibition of the gene silencing
6 mechanism may have many therapeutical implications,
7 especially in gene therapy for humans, when a foreign
8 gene expressing, for example, a therapeutic substance
9 needs to be introduced and expressed in a host cell.

10
11 **Statement of the invention**

12
13 According to the present invention there is provided
14 a method of suppressing or inhibiting gene silencing
15 mechanisms in a non-plant host cell through the use
16 of a plant virus protein exhibiting post-
17 transcriptional gene silencing (PTGS) suppressing
18 functions. Preferably the non-plant cells are animal
19 cells or insect cells and more particularly may be
20 mammalian cells.

21
22 The invention further provides a vector which
23 comprises a polynucleotide sequence which encodes the
24 above PTGS suppressor protein, and which
25 advantageously expresses said polynucleotide sequence
26 in a non-plant cell.

27
28 Typically, the PTGS suppressor protein is, or is
29 derived from, the HC-Pro protein of tobacco etch
30 virus (TEV), the 2b protein of cucumber mosaic virus
31 (CMV), the ORF0 protein of potato leafroll-virus

1 (PLRV), the 16K CRP protein of the *tobacco rattle*
2 virus, the 12K CRP protein of *Pea early browning*
3 virus and functional equivalents thereof. The term
4 "functional equivalent" refers to modifications of
5 the proteins, wherein the modifications do not
6 adversely affect the ability of the protein (relative
7 to the wild-type form) to suppress gene silencing.
8 Also included are related proteins having, for
9 instance 60% or more homology, preferably 75% or more
10 homology, especially 80% or 90% or more homology with
11 the protein in question. Desirably the related
12 protein will show 95% or more (even 98% or 99%)
13 homology with the protein in question. Amongst
14 functional equivalents of the PTGS suppressor
15 protein, HC-Pro, 2b, ORF0 and 16K CRP or
16 corresponding proteins of other related plant viruses
17 are particularly preferred.

18

19 A further object of the invention is a method to
20 increase the expression and/or replication of a virus
21 in a host cell, said method comprising reduction of
22 post-transcriptional gene silencing by said host cell
23 by expression of a plant virus protein in said non-
24 plant host cell.

25

26 Another object of the invention is a method for
27 protecting a heterologous viral vector or transgene
28 from post-transcriptional gene silencing in a non-
29 plant host cell, the heterologous viral vector or
30 transgene expressing at least one heterologous
31 protein of interest in the host cell, -said method

1 comprising the expression of a plant virus protein in
2 said host cell.

3
4 A further object of the invention is a method to
5 increase the yield of expression of a heterologous
6 protein expressed by a viral vector or transgene in a
7 non-plant host cell, said method comprising the
8 expression of a plant virus protein in said host
9 cell.

10
11 The method of the present invention finds particular
12 utility in the production of a protein of interest
13 (for example a therapeutic protein) in a biofactory,
14 such as an animal organism.

15
16 Any heterologous protein (which term is deemed to
17 include small protein molecules or peptides) may be
18 used in the present invention and there is no
19 particular limitation as to size (which in any event
20 would depend only upon the viral vector, if used).
21 Mention may be made of antibodies (including
22 antibody-type molecules such as ScFv, for example),
23 protein hormones such as GnRH, insulin or the like,
24 cellular receptors or other biologically active
25 proteins as being exemplary of heterologous proteins
26 of interest. The heterologous protein will in
27 general be a pre-determined molecule which is
28 specifically selected for expression.

29
30 The invention further relates to a vector which
31 comprises a polynucleotide sequence which encodes the

1 above PTGS suppressor protein, and which expresses
2 said polynucleotide sequence in the non-plant host
3 cell.

4

5 The reference to "plant virus protein" refers not
6 only to the full-length wild type version of the
7 protein, but also to variations of such proteins to
8 include minor modifications thereto (for example
9 amino acid deletions, insertions or substitutions)
10 which do not adversely affect its ability to protect
11 heterologous vectors or transgenes from gene
12 silencing by the host cell.

13

14 More particularly in one embodiment the plant virus
15 protein is a cysteine-rich protein. Examples of such
16 cysteine-rich protein include the 16K CRP protein, in
17 particular the 16K CRP protein of the *tobacco rattle*
18 virus, or its functional equivalent. In another
19 embodiment the cysteine-rich protein is the 12K CRP
20 of *Pea early browning virus* or its functional
21 equivalent.

22

23 Whilst protection of nucleic acid, and particularly
24 RNA, from silencing machinery is exemplified in plant
25 cells and insect cells, protection in other types of
26 host organisms, such as animals, fungi etc. using the
27 cysteine-rich plant virus protein expressed
28 transgenically, from viral vectors or by other ways,
29 in medical therapy/gene, therapy/over-expression
30 systems, for example in yeast/fungi (fermentation)
31 falls-within the scope of the present invention.

1 Although the previous study showed that TRV was able
2 to suppress transgene silencing, the specific viral
3 protein responsible for this activity was not
4 identified. TRV, like the other tobaviruses *Pea*
5 *early-browning virus* (PEBV) and *Pepper ringspot*
6 virus, has a bipartite, positive strand RNA genome
7 (MacFarlane, 1999). The larger RNA (RNA1) encodes
8 the 134K and 194K proteins that comprise the viral
9 replicase, a 29K cell-to-cell movement protein, and a
10 16K cysteine-rich protein (CRP). The smaller RNA
11 (RNA2) varies considerably between isolates, but
12 always encodes the coat protein (CP) and may encode
13 other (2b and 2c) proteins involved in virus
14 transmission by nematodes. A characteristic of the
15 tobaviruses is that RNA1 can infect plants
16 systemically in the absence of RNA2; i.e. without CP
17 expression and virion formation. This type of
18 infection, referred to as NM-infection, occurs
19 frequently in vegetatively propagated crop plants
20 such as potato and bulbous ornamentals, and is often
21 associated with increased symptom severity. Clearly,
22 therefore, RNA1 encodes all the functions necessary
23 for virus multiplication including, possibly,
24 suppression of PTGS/host defence. As the TRV 16K
25 protein is the one protein encoded by RNA1 without an
26 assigned function we investigated whether it played a
27 role in viral replication and pathogenicity.
28
29 We have found that the 16K CRP acts to suppress gene
30 silencing in plant and animal cells.

1
2 Thus the invention also relates to the use of a
3 cysteine-rich plant virus protein displaying PTGS
4 suppressor activity as a suppressor of the gene
5 silencing mechanism of a host cell.
6 Preferred host cells are plant cells, for example
7 tobacco plants. Whilst the present invention will
8 normally contemplate the use of whole plants or
9 plantlets as the host cells, limited infection of
10 certain parts of the plant may also be utilised, as
11 of course may be the use of protoplasts or other *in*
12 *vitro* cell cultures. Other host cells include insect
13 cells, especially cell cultures thereof.
14

15 The present invention will now be further described
16 with reference to the following, non-limiting,
17 examples and figures in which:

18

19 **Figure Legends**

20 ..

21 **Figure 1.** Deletion of the 16K gene prevents virus
22 infection. (A) Northern blot of RNA extracted from *N.*
23 *tabacum* leaves 7 days post inoculation (dpi). Lanes
24 1-6, inoculated with wild type RNA1 (transcript from
25 pTRV1) and RNA2-GFP (transcript from pK20-GFPC).
26 Lanes 7-12, inoculated with transcripts of pTRV1-
27 16K and pK20-GFPC. M is RNA from uninoculated plants.
28 C is RNA of *N. benthamiana* infected with wild type
29 TRV. Blot hybridised with probes specific for TRV
30 RNA1 and RNA2. Location of RNAs 1 and 2 is
31 indicated. (B) GFP expression, viewed under UV light,

1 in tobacco leaves inoculated with transcripts of
2 pK20-GFPc and pTRV1 (bottom, left), pTRV1NB (top,
3 left), pTRV1-12 (top, right) or pTRV1-16 Δ (bottom,
4 right).

5

6 **Figure 2.** Comparison of 16K and 12K CRPs. (A)
7 Alignment of amino acid sequences of tobavavirus CRPs
8 generated by the Clustal W programme. Asterisks
9 identify residues that are identical between the 16K
10 and 12K proteins. Hyphens indicate spaces inserted
11 to maximise alignment. Residues forming the CRP
12 motif identified by Diao et al., 1999 are in solid
13 boxes. C-terminal basic domain is boxed in dashed
14 lines. (B) Schematic drawing of constructs used in
15 this work. Asterisk in pTRV1 represents the leaky
16 terminator present in the TRV replicase protein.
17 1a/MP denotes the cell-to-cell-movement protein. The
18 single and double terminators inserted into the 16K
19 genes of pTRV1-16stop and pTRV1-16dstop appear as
20 asterisks below the 16K gene.

21

22 **Figure 3.** Multiplication of 16K mutants. (A)
23 Northern blot of RNA extracted from *N. benthamiana*
24 plants at 6dpi (inoculated leaf) and 11dpi (systemic
25 leaf). Lanes 1-3, wild type RNA1 (pTRV1) and RNA2-
26 GFP (pK20-GFPc). Lanes 4-6, pTRV1NB and pK20-GFPc.
27 Lanes 7-9, pTRV1-16 Δ and pK20-GFPc. Lanes 10-12,
28 pTRV1-12 and pK20-GFPc. M is RNA from an uninoculated
29 plant. Blot hybridised with probes specific for TRV
30 RNA1 and RNA2. (B) GFP-fluorescence indicating
31 systemic movement of TRV derived from pTRV1-12 and

1 pK20-GFPc. (C) Northern blot of RNA extracted from *N.*
2 *benthamiana* protoplasts 48 hours after inoculation
3 with transcripts of wild type RNA2 (pK20-RNA2) and
4 (1) pTRV1, (2) pTRV1NB, (3) pTRV1-16 β , (4) pTRV1-12.
5 M is from protoplasts electroporated without
6 transcript. C is RNA from plants infected with TRV.
7 Blot hybridised with probes specific for TRV RNA1 and
8 RNA2. RNA1 can be seen in lanes 3 and 4 after very
9 long exposure of the blot, and in other protoplast
10 experiments. rRNA denotes ribosomal RNAs in these
11 samples, labelled by ethidium bromide staining. (D)
12 Northern blot of RNA extracted from leaves of *N.*
13 *benthamiana* inoculated with transcript RNA2 from
14 pK20-GFPc and transcript RNA1 from pTRV1NB (lanes 1
15 and 2) or pTRV1-16stop (lanes 3-7). Blot hybridised
16 with probes specific for TRV RNA1 and RNA2.
17

18 **Figure 4.** The 16K gene is a pathogenicity
19 determinant. (A) Symptoms on *N. tabacum* var. *Samsun*
20 NN following infection by TRV RNA1 (top, left), TRV
21 RNA1 and RNA2 (top, right) or TRV RNA1 and RNA2-16K.
22 Expression of an additional copy of the 16K gene from
23 RNA2 (RNA2-16K) results in severe stunting and
24 necrosis of the plants. (B) Northern blot of RNA
25 extracted from systemically-infected leaves of plants
26 photographed in (A). Lanes 1-3, RNA1-only infection.
27 Lanes 4-6, infection with RNA1 and RNA2. Lanes 7-9,
28 infection with RNA1 and RNA2-16K. Position of viral
29 RNAs is indicated by arrows. 1 is RNA1, 2a is wild
30 type RNA2, 2b is RNA2-16K. rRNA denotes ribosomal
31 RNAs in these samples, labelled by ethidium bromide

1 staining. Blot hybridised with probes specific for
2 TRV RNA1 and RNA2.

3

4 **Figure 5.** Heterologous expression of the 16K gene.
5 (A) Upper, uninoculated leaves of tobacco inoculated
6 with transcripts of PVX (left) and PVX-16K (right).
7 (B) *N. benthamiana* plants 20 days after inoculation
8 with transcripts of PVX (left) and PVX-16K (right).
9 The plants infected with PVX continued to grow after
10 this time, whereas, the severe tip necrosis of the
11 plants infected with PVX-16K was fatal.

12

13 **Figure 6.** Complementation of a 16K mutation in
14 trans. (A) Northern blot of RNA samples of *N.*
15 *benthamiana* inoculated with transcripts of (lanes 1-
16 4) pTRV1NB and pK20-GFPc, (lanes 5-8) pTRV1NB and
17 pK20-16K, (lanes 9-12) pTRV1-16dstop and pK20-GFPc,
18 (lanes 13-16) pTRV1-16dstop and pK20-16K. Expression
19 of the 16K gene from RNA2 complements the early
20 termination mutations in the 16K gene on RNA1. M is
21 RNA from uninoculated plants. Blot hybridised with
22 probes specific for TRV RNA1 and RNA2. The position
23 of viral RNA 1 and 2 indicated by arrows. (B)
24 Northern blot of RNA samples of *N. benthamiana*
25 inoculated with transcripts of (lanes 1-4) pTRV1-
26 16dstop and pK20-GFPc, (lanes 5-8) pTRV1-16dstop and
27 pK20-CMV2b, (lanes 9-12) pTRV1-16dstop and pK20-16K.
28 Expression of the CMV 2b gene from RNA2 complements
29 the early termination mutations in the 16K gene on
30 RNA1. Blot hybridised with probes specific for TRV
31 RNA1 and RNA2.

1 **Figure 7.** Suppression of gene silencing in *Drosophila*
2 cells by the TRV 16K protein.

3 **(A)** Representative field of view of cells transfected
4 with a plasmid expressing the *lacZ* gene alone, or **(B)**
5 with this plasmid and dsRNA to induce silencing, or
6 **(C)** with this plasmid, dsRNA and a second plasmid
7 expressing the 16K protein.

8 **(D)** The percentage of cells in a culture expressing
9 the *lacZ* gene in a transient assay.

10 Cells were transfected with a plasmid expressing the
11 *lacZ* gene alone (*lacZ*) ; or with the plasmid and dsRNA
12 to induce silencing (*lacZ* + dsRNA) ; or with the
13 plasmid, dsRNA and a second plasmid expressing the
14 16K protein (*lacZ* + dsRNA + 16K). A minimum of 100
15 cells in each of 5 representative fields of view
16 (i.e. >500 cells) was counted and the percentage
17 staining positive for *lacZ* expression was determined.

18

19 **EXAMPLE 1: TRV 16K CRP IN PLANTS**

20

21 **Materials and methods**

22

23 Construction of full-length clone of TRV RNA1

24

25 Single-stranded cDNA was synthesised from total RNA
26 extracted from *Nicotiana benthamiana* plants infected
27 with TRV isolate PpK20 as described previously
28 (MacFarlane *et al.*, 1991). A full-length clone of
29 RNA1 was amplified using a proof-reading polymerase
30 with primers designed to include a T7 RNA polymerase
31 promoter sequence and-SmaI restriction site at the 5'

1 and 3' ends, respectively, of the virus sequence, and
2 ligated into plasmid PCR-TOPO-XL according to the
3 manufacturer's instructions (Invitrogen). The full-
4 length clone, pTRV1, was linearised with *Sma*I, and
5 transcribed using T7 RNA polymerase (Ambion Inc.).
6 Transcripts were capped by addition of diguanosine
7 triphosphate to the transcription reaction
8 (MacFarlane et al., 1991).

9

10 Mutation of the 16K gene to produce pTRV1NB, pTRV1-
11 16Δ, pTRV1-12 and pTRV1-16stop

12

13 Inverse PCR was used to introduce a *Nde*I site
14 immediately upstream of the 16K initiation codon and
15 a *Bgl*III site immediately after the 16K termination
16 codon. A fragment carrying these mutations was moved
17 into the full-length cDNA clone to produce plasmid
18 pTRV1NB. Subsequently, the 16K gene was deleted by
19 digestion with *Nde*I and *Bgl*III, blunting with Klenow
20 polymerase and religation to produce plasmid pTRV1-
21 16Δ.

22

23 The 12K gene from RNA1 of PEBV isolate SP5 was PCR
24 amplified to include an upstream *Nde*I site and a
25 downstream *Bgl*III site. This fragment was inserted
26 into pTRV1NB in place of the 16K gene to produce
27 plasmid pTRV1-12.

28

29 The *Nde*I-*Bgl*III fragment carrying the 16K gene was
30 reamplified using a mutagenic primer
31 (TCCATATGACGTGTACTC**TAGGGTTGTGAATGAAGTC**ACTGTT)

1 (SEQ ID No: 1) to introduce an early terminator
2 (bold) at position 6126, 16 nucleotides downstream of
3 the 16K initiation codon (underlined). The fragment
4 was moved into the full-length clone pTRV1NB to
5 produce plasmid pTRV1-16stop.

6

7 Inverse PCR was used to introduce two early
8 terminators at positions 6120 and 6126 (bold), 10 and
9 16 nucleotides downstream of the 16K initiation codon
10 (underlined) to produce the sequence

11 ATGACGTGTTAACTCTAG... (SEQ ID No: 2) A fragment
12 incorporating these changes but lacking the *Nde*I and
13 *Bgl*III 16K-flanking sites was moved into the full-
14 length clone pTRV1 to produce plasmid pTRV1-16dstop.

15

16 Expression of heterologous viral genes from TRV RNA2

17

18 The CMV 2b gene was amplified from a full-length cDNA
19 clone of RNA2 of CMV isolate Fny to incorporate *Nco*I
20 and *Kpn*I sites at the 5' and 3' ends of the gene,
21 respectively. The *Nco*I-*Kpn*I fragment was used to
22 replace the GFP gene carried on a similar fragment in
23 the TRV virus vector plasmid pK20-GFPc (MacFarlane
24 and Popovich, 2000). This new construct, pK20-CMV2b,
25 expresses the CMV 2b protein from a duplicated
26 tobravirus CP subgenomic promoter in TRV RNA2.
27 Similar strategies were used to clone the PEBV 12K
28 gene, as a *Rca*I-*Eco*RI fragment, and the TRV 16K gene,
29 as a *Rca*I-*Kpn*I fragment, into TRV RNA2 to produce,
30 respectively, plasmids pK20-12K and pK20-16K.

31

1 Inoculation and analysis of plants

2
3 Leaves of small *N. benthamiana* or *N. tabacum* cv.
4 Samsun NN plants were dusted with carborundum and
5 mechanically inoculated with capped transcripts of
6 TRV RNA1 and RNA2. RNA was isolated from samples of
7 inoculated and systemically infected leaves at 5-7
8 dpi and 10-12 dpi, respectively, and analysed by
9 northern blotting as described before (MacFarlane et
10 al., 1991) except that complementary-strand, RNA
11 probes were prepared using a non-radioactive system
12 (AlkPhos, Amersham Pharmacia).

13
14 Protoplasts were isolated from *N. benthamiana* plants
15 as described before (Power and Chapman, 1985) and
16 inoculated with transcript RNA by electroporation.
17 RNA was extracted after 48 hours and analysed by
18 northern blotting.

19
20 **Results**

21
22 The 16K gene is required for virus multiplication

23
24 The initial step in this work was the construction of
25 a full-length cDNA clone of RNA1 of TRV isolate
26 PpK20. Transcripts derived from this clone, pTRV1,
27 were infectious when inoculated to plants either
28 alone or in combination with transcripts of TRV PpK20
29 RNA2 (Mueller et al., 1997). Unlike the previously
30 described clone of TRV RNA1 (Hamilton and Baulcombe,
31 1989), transcripts from pTRV1 were encapsidated into

1 virus particles, and could be transmitted by the
2 natural nematode vector of TRV (data not shown). A
3 modified clone of TRV RNA1 was created in which the
4 16K gene was flanked by novel restriction sites.
5

6 Transcripts from this clone, pTRV1NB, behaved in an
7 identical way to those derived from the wild type
8 clone pTRV1. A second clone, pTRV1-16Δ, was created
9 in which the entire 16K gene was deleted.

10 Transcripts derived from clones pTRV1NB or pTRV1-16Δ
11 were mixed with RNA2 transcripts from clone pK20-GFPc
12 and inoculated to *Nicotiana tabacum* (var. Samsun NN).
13 Fluorescent lesions were visible by three days post
14 inoculation (dpi) on four of six plants inoculated
15 with wild type (pTRV1NB) RNA1 and RNA2-GFP, however,
16 no fluorescent lesions were visible on any plant
17 inoculated with RNA1 carrying the 16K gene deletion
18 even at 6dpi or later. Northern blot analysis showed
19 that, although both TRV RNAs were clearly evident in
20 plants inoculated with wild type transcripts, neither
21 RNA1 nor RNA2 could be detected in plants inoculated
22 with transcripts from the 16K deletion mutant (Fig.
23 1A).

24

25 The 3' proximal open reading frame of RNA1 of all
26 three tobaviruses encodes a small, cysteine-rich
27 protein (CRP). The CRP from PEBV is smaller (12K)
28 than the TRV 16K protein, however, both proteins
29 contain cysteine/histidine motifs reminiscent of
30 zinc-binding domains present in some regulatory
31 proteins and both have C-terminal regions rich in

1 basic amino acid residues (Fig. 2A). Amino acid
2 sequence identity between the 16K and 12K proteins is
3 low (31%), however, there is a striking conservation
4 in the arrangement of the cysteines and their
5 flanking residues in these proteins. Thus, clone
6 pTRV1-12 was constructed to determine whether the
7 similarities in the cysteine-rich domains would
8 enable the PEBV 12K protein to function in place of
9 the TRV 16K protein (Fig. 2B). Inoculation of *N.*
10 *tabacum* with transcripts of pTRV1-12 and pK20-GFPc
11 produced isolated, very small fluorescent lesions on
12 only two of five plants at 5 dpi, whereas, in the
13 same experiment all five plants inoculated with wild
14 type transcripts carried many, large fluorescent
15 lesions by this time (Fig. 1B). As before,
16 transcripts from pTRV1-16Δ were apparently not
17 infectious.

18
19 Inoculation of *N. benthamiana* with transcripts from
20 these clones gave slightly different results.
21 Although mutant TRV1-12 was not as infectious as wild
22 type TRV1 or TRV1NB, viral RNAs were clearly
23 detectable in both inoculated and systemically
24 infected leaves (Fig. 3A) and GFP fluorescence was
25 apparent in systemic leaves (Fig. 3B). Viral RNAs
26 were barely detectable in leaves inoculated with
27 mutant TRV1-16Δ, and were not detected in upper,
28 uninoculated leaves samples at 11dpi. Lack of
29 systemic movement of mutant TRV-16Δ was confirmed by
30 RT-PCR analysis of these samples (data not shown). In

1 *N. benthamiana* protoplasts, mutants TRV1-16Δ and
2 TRV1-12 both accumulated to much lower levels than
3 did the wild type viruses, suggesting that the 16K
4 gene is required for efficient replication of TRV and
5 that, in these conditions, the PEBV 12K gene is not
6 an adequate replacement (Fig. 3C).

7

8 The requirement of the 16K protein for efficient TRV
9 replication was further examined by the creation of
10 two mutants carrying premature translation
11 termination codons in the 16K gene. In mutant TRV-
12 16stop, the sixth codon of the 16K gene is replaced
13 by a UAG terminator and the 16K gene is flanked by
14 NdeI and *Bgl*III sites. This mutant multiplied very
15 poorly compared to wild type virus both in whole
16 plants (Fig. 3D) and in protoplasts (data not shown),
17 confirming that the 16K protein rather than the 16K
18 RNA sequence is required for efficient virus
19 replication. In mutant TRV-16dstop, the fourth codon
20 is UAA and the sixth codon is UAG, however, the 16K
21 gene is not flanked by artificial NdeI and *Bgl*III
22 restriction sites. This mutant also replicated
23 poorly confirming that the non-viral restriction
24 sites introduced into all of the previous mutants
25 were not the cause of reduced replication efficiency.

26

27 The 16K protein is a pathogenicity determinant

28

29 TRV RNA2 can be used as a vector from which
30 heterologous sequences are expressed at high levels
31 using a duplicated coat protein promoter (MacFarlane

1 and Popovich, 2000). Clone pK20-16K was constructed
2 to examine the effects of over-expression of the 16K
3 protein on symptom production by TRV. Infection of
4 tobacco plants with TRV RNA1 only (NM infection)
5 resulted in stem/mid-vein necrosis and slight
6 stunting but on most systemic leaf blades no symptom
7 formed. Infection with wild type (RNA1 and RNA2) TRV
8 (isolate PpK20) resulted in infrequent, small
9 necrotic patches on systemic leaves together with
10 some leaf distortion and chlorotic mottle. Infection
11 with TRV RNA1 and RNA2-16K caused severe stunting and
12 distortion of systemic leaves together with
13 widespread necrosis (Fig. 4A). Northern blot
14 analysis of these plants showed that NM-infected
15 plants had little or no virus RNA in systemic leaf
16 blades. Both viral RNAs were easily detectable in
17 wild type virus-infected tissue. However, infection
18 with TRV RNA1 and RNA2-16K led to an increase in the
19 level of virus RNAs, particularly RNA2 (Fig. 4B).
20 Thus, over-expression of the 16K protein leads to
21 increased pathogenicity of TRV.

22

23 Expression of the 16K gene from a PVX vector

24

25 To examine whether enhancement of symptom expression
26 by the 16K protein was specific for TRV, the 16K gene
27 was cloned into the PVX vector (Chapman et al.,
28 1992). Inoculation of tobacco plants with PVX
29 lacking any insert resulted in a systemic, chlorotic
30 mottle (Fig. 5A, left). Systemic infection with PVX-
31 -16K was slower by 1 to 2 days than with PVX and

1 produced severe, chlorotic lesions rather than
2 mottling (Fig. 5B, right). There was an even greater
3 contrast in symptomatology of the two viruses
4 following inoculation to *N. benthamiana*. Both PVX and
5 PVX-16K initially induced severe systemic leaf
6 curling and vein chlorosis. However, by 20dpi,
7 whereas PVX-infected plants were highly stunted,
8 plants infected with PVX-16K were killed (Fig. 5B).
9 Thus, the TRV 16K protein is a pathogenicity
10 determinant that can function when expressed from a
11 different virus.

12

13 Complementation of 16K mutation by the gene encoding
14 the CMV 2b silencing suppressor

15

16 As expression of the 16K gene from TRV RNA2 enhanced
17 the replication (and symptom production) of wild type
18 TRV RNA1, experiments were carried out to test the
19 effect of this RNA2 on the replication of the 16dstop
20 RNA1 mutant. Virus could not be detected by northern
21 blotting of plants inoculated with 16dstop RNA1 and
22 RNA2-GFP, either in inoculated or systemic leaves
23 (Fig. 6A, lanes 9-12). However, inoculation with
24 16dstop RNA1 and RNA2-16K produced a readily
25 detectable infection (Fig. 6A, lanes 13-16). Thus,
26 expression of the 16K protein *in trans* completely
27 rescued the very poorly replicating 16dstop RNA1
28 mutant. Likewise, other experiments showed that
29 expression of the PEBV 12K CRP from TRV RNA2 was able
30 to complement the 16dstop mutation (data not shown).

1 The results from experiments described above showed
2 that the TRV 16K protein is a pathogenicity
3 determinant that is required for efficient viral
4 replication and, thereafter, systemic infection of
5 plants. These properties are consistent with the 16K
6 protein acting as a PTGS suppressor. We hypothesized
7 that the absence of suppressor function resulting
8 from the 16dstop RNA1 mutation could be overcome by
9 co-expression of a host defense suppressor protein
10 derived from another virus. Thus, 16dstop RNA1 was
11 inoculated to plants together with transcripts of
12 pK20-CMV2b, in which the CMV2b gene is expressed from
13 TRV RNA2. Northern blotting showed that, indeed, the
14 CMV 2b gene was able to rescue TRV carrying a
15 mutation in the 16K gene, resulting in high levels of
16 viral RNAs both in inoculated and systemic infected
17 leaves (Fig. 6B, lanes 5-8). RT-PCR and sequencing
18 confirmed that the 16dstop mutation was retained in
19 RNA1 and that the CMV 2b gene was retained in RNA2
20

21 **Discussion**

22

23 In this study, we examined the role of the 16K
24 protein in the replication and pathogenesis of TRV.
25 An earlier report suggested that the 16K gene was
26 dispensable for TRV multiplication (Guilford *et al.*,
27 1991). Our results conflict with those of this
28 previous study, as we show that mutation of the 16K
29 gene leads to a significant decrease in the
30 accumulation of virus RNA in infected plants.
31 Protoplast--studies--confirmed that the 16K protein is

1 required for efficient virus replication, and over-
2 expression of the 16K protein, whether from TRV or
3 from PVX, led to an increase in the severity of
4 symptoms. Expression of the 16K protein from TRV
5 RNA2 functions *in trans* to complement a mutation in
6 the RNA1-encoded 16K gene. Also, mutation of the 16K
7 gene was overcome by incorporation of the gene
8 encoding the CMV 2b silencing suppressor protein into
9 TRV RNA2, suggesting that the 16K protein itself
10 might be a silencing suppressor. We have used a
11 novel, insect cell expression system to confirm that
12 the TRV 16K protein is a suppressor of gene silencing
13 which may explain how alteration in the level of 16K
14 expression has such a significant effect on virus
15 pathogenicity.

16

17 Mutation of some of the other virus genes recently
18 identified as encoding silencing suppressors results
19 in a wide range of effects. The CMV 2b protein was
20 shown not to be required for systemic infection of *N.*
21 *glutinosa*, although RNAs 1 and 2 accumulated to lower
22 levels and symptoms produced by a 2b mutant were much
23 reduced and delayed in appearance compared to those
24 of the wild type virus (Ding *et al.*, 1995). In
25 inoculated leaves of cucumber, the 2b mutant
26 accumulated to much lower levels (<5%) than did the
27 wild type virus, and did not move systemically.
28 Whether these phenotypes resulted from reduction in
29 virus replication or from specific failures in virus
30 movement is not known. The potyvirus HC-Pro protein
31 is multi-functional, being involved in virus-

1 transmission by aphids, autoproteolytic cleavage
2 between itself and the downstream P3 protein, genome
3 amplification and long-distance virus movement
4 (Govier et al., 1977; Carrington et al., 1989; Cronin
5 et al., 1995; Kasschau et al., 1997). A number of
6 insertion mutations that were introduced into the
7 *Tobacco etch virus* (TEV) HC-Pro gene did not affect
8 autoproteolytic function but did suppress virus
9 replication in protoplasts (Cronin et al., 1995).
10 One mutant (IGN) which accumulated to levels less
11 than 1% of the wild type virus was, however, able to
12 move systemically and induce mild, systemic symptoms.
13 In contrast, another mutant (CCCE) accumulated in
14 protoplasts to 25% of the level of wild type virus
15 but was incapable of moving into upper leaves. These
16 results suggested that HC-Pro has separate functions
17 associated with virus replication and movement. The
18 TBSV silencing suppressor has been identified as the
19 p19 protein that is nested within the p22 cell-to-
20 cell movement protein gene near the 3' terminus of
21 the virus RNA (Voinnet et al., 1999). Expression of
22 the p19 protein is required for systemic spread of
23 the virus in spinach, induction of a hypersensitive
24 response in *N. tabacum* and induction of systemic
25 lethal collapse in *N. benthamiana* (Scholthof et al.,
26 1995a; 1995b). However, in *N. benthamiana*
27 protoplasts mutation of the p19 gene had no effect on
28 virus replication (Chu et al., 2000). Perhaps the
29 results obtained following mutation of the gene
30 encoding the RYMV P1 silencing suppressor are most
31 similar to our findings with the TRV-16K gene. The

1 RYMV P1 protein is encoded by the 5' terminal open
2 reading frame of the viral RNA. Deletion of the
3 entire gene or insertion of a premature termination
4 codon into the gene abolished replication of viral
5 RNA in protoplasts. A mutant in which the P1
6 initiation codon was removed was able to replicate at
7 reduced levels (c. 50% of wild type) in protoplast
8 but did not accumulate either in inoculated, or in
9 upper uninoculated leaves of whole plants (Bonneau et
10 al., 1998). As with some of the silencing
11 suppressors discussed above, it is possible that in
12 some plant species, mutation of the TRV 16K gene may
13 not be deleterious. Deletion or frameshift mutation
14 of the PEBV 12K gene produced similar results in
15 *Nicotiana* species to those obtained here for the TRV
16 16K gene, with a c. 60-fold reduction in accumulation
17 of virus RNAs (S. MacFarlane, unpublished). In
18 contrast, in pea the PEBV 16K deletion mutant
19 accumulated to wild type levels, although the 16K
20 frameshift mutant could not be detected (Wang et al.,
21 1997).

22

23 A premature termination mutation of the 16K gene was
24 overcome by co-expression of the CMV 2b gene from TRV
25 RNA2. The 2b protein is known to intervene at the
26 stage of PTGS initiation (Brigneti et al., 1998) and
27 could, thus, be able to prevent a silencing-based
28 defence reaction being initiated against the TRV 16K
29 mutant. As yet, there are no data to explain whether
30 the TRV 16K protein acts against PTGS initiation, or
31 during the later maintenance phase (as is the case

1 for the potyvirus HC-Pro protein). There are a few
2 other examples where the pathogenicity of one virus
3 has been modified by co-expression of a silencing
4 suppressor derived from a different virus.
5 Expression of the potyvirus HC-Pro protein in
6 transgenic plants showed it to be the determinant
7 that mediates increases in PVX multiplication and
8 pathogenicity during PVX/potyvirus synergism (Vance
9 et al., 1995). When the 16K gene was expressed from
10 the PVX vector, there was an increase in the severity
11 of disease symptoms in a similar way to when other
12 silencing suppressors were expressed from PVX
13 (Scholthof, et al., 1995b; Brigneti, et al., 1998;
14 Voinnet, et al., 1999; Lucy et al., 2000). Only one
15 other example has been reported in which a silencing
16 suppressor from one virus has been completely
17 replaced with that of another virus (Ding et al.,
18 1996). In this experiment the 2b gene of CMV was
19 replaced with the homologous gene from another
20 cucumovirus *Tomato aspermy virus* (TAV).
21 Unexpectedly, the hybrid virus had a significantly
22 increased pathogenicity compared to either of the
23 parental viruses (Ding et al., 1996). TRV and CMV
24 are taxonomically very distinct, and there is no
25 significant amino acid sequence similarity between
26 the 16K and 2b proteins. Nevertheless, these
27 proteins are functionally equivalent in the
28 protection of TRV against host defence mechanisms.
29
30 The TRV 16K protein was detected by western blotting
31 in extracts of infected tobacco protoplasts--(Angenent

1 *et al.*, 1989). The 16K protein accumulated to high
2 levels, equivalent to that of the coat protein (CP),
3 but continued to be expressed even after CP synthesis
4 had declined. Cell fractionation experiments,
5 combined with sedimentation analysis, showed that the
6 16K protein accumulated in a high-molecular weight
7 complex, either as a multimer or in association with
8 host proteins (Angenent *et al.*, 1989). It is
9 tempting to speculate that the 16K protein may
10 associate with proteins of the host silencing system,
11 thus, inhibiting their action against TRV. In whole
12 plants the 16K protein was only detected when
13 infected leaves were extracted using highly
14 denaturing reagents, although, even in these
15 conditions some of the protein still accumulated in
16 higher molecular weight aggregations (Liu *et al.*,
17 1991). Immunogold labelling of ultrathin sections
18 showed that the 16K protein was located both in the
19 cytoplasm but mostly in the nucleus (Liu *et al.*,
20 1991). Interestingly, the CMV 2b protein also
21 localises to the nucleus, and removal of an arginine-
22 rich domain at the N-terminus of the protein
23 abolished both transport into the nucleus and
24 silencing suppressor activity (Lucy *et al.*, 2000).
25 The TRV 16K and PEBV 12K proteins also possess an
26 arginine-rich domain, at the C-terminus of the
27 proteins, which might function as a nuclear
28 localisation signal (Fig. 2A). Computer alignment
29 suggested that there might be significant amino acid
30 sequence homology between the C-terminal basic domain
31 of the TRV 16K protein and mammalian high-mobility.

1 group chromatin (HMG) proteins (Koonin et al., 1991).
2 HMG proteins are nuclear proteins that bind DNA in a
3 non-sequence-specific fashion to promote chromatin
4 function and gene regulation (Grasser, 1998).

5
6 Viruses belonging to the genera *Tobravirus* (TRV,
7 *PEBV*), *Hordeivirus* (e.g. *Barley stripe mosaic virus*,
8 *BSMV*), *Carlavirus* (e.g. *Potato virus M*), *Pecluvirus*
9 (e.g. *Peanut clump virus*, PCV), *Furovirus* (e.g. *Soil-*
10 *borne wheat mosaic virus*) and *Benyvirus* (*Beet*
11 *necrotic yellow vein virus*, BNYVV) all encode a small
12 (<20 kDa molecular weight) protein with an N-terminal
13 or central cysteine-rich domain. Amino acid sequence
14 alignment studies suggested that the tobavirus,
15 pecluvirus, hordeivirus and furovirus proteins, in
16 particular, share a region of seven cysteines, with a
17 highly conserved central motif of Cys-Gly...Cys-Gly-X-
18 X-His (Diao et al., 1999). BSMV is the only one of
19 these viruses for which a detailed study of the
20 function of the CRP has been carried out. Virus in
21 which the gene encoding the BSMV γb CRP had been
22 deleted was able to infect barley plants systemically
23 but virus RNAs accumulated to only 10-20% of wild
24 type levels and virus CP expression was reduced by
25 three orders of magnitude (Petty et al., 1990). Site
26 directed mutation of each of the individual cysteine
27 and histidine residues identified above as part of
28 the conserved CRP motif, caused the same phenotype as
29 the complete deletion mutation, emphasising the
30 importance of these residues in CRP function (Donald
31 - and Jackson, 1994). Other properties associated with

1 the BSMV γb protein are seed transmission of the
2 virus (Edwards, 1995) and RNA-binding (Donald and
3 Jackson, 1996). Similarly, the PEBV 12K CRP also is
4 involved in seed transmission (Wang et al., 1997) and
5 can bind RNA (D. Wang and J. Davies, personal
6 communication). The roles of the CRPs in furovirus
7 and carlavirus biology are not known. However,
8 mutation of the BNYVV P14 CRP greatly reduced the
9 accumulation of virus RNA and had the additional
10 effect of decreasing expression of CP (Hehn et al.,
11 1995). Also, frameshift mutation of the P15 CRP of
12 PCV had a severe effect, reducing replication of the
13 virus in protoplasts to very low levels (Herzog et
14 al., 1998). We suggest that, based on our findings
15 on the function of the tobaviruses 16K and 12K
16 proteins, the CRPs from this diverse group of viruses
17 may all act as suppressors of the plant PTGS system.
18

19 **EXAMPLE 2: *Drosophila* cell gene silencing assay**

20

21 **Suppression of PTGS by the 16K protein**

22

23 A system for studying gene silencing in cultured
24 *Drosophila* cells was described recently in which
25 transient expression of a lacZ gene can be prevented
26 by co-transfection of the cells with double-stranded
27 lacZ-specific RNA (Hammond et al., 2000). We have
28 shown that induction of lacZ silencing can be
29 prevented by simultaneous expression of certain plant
30 virus genes demonstrating that some plant viral
31 silencing suppressors function in this heterologous

1 system (B. Reavy and S.A. MacFarlane, submitted).
2 Expression of the TRV 16K protein in *Drosophila* cells
3 also was found to prevent dsRNA-mediated silencing of
4 *lacZ*, confirming our hypothesis that it is a
5 silencing suppressor protein. When cells were
6 transfected only with a plasmid (pMT/V5-His/*lacZ*)
7 encoding the *lacZ* gene, ~ 50% of the cells stained
8 blue after 48hr indicating the production of β -
9 galactosidase. Co-transfection of cells with pMT/V5-
10 His/*lacZ* and dsRNA corresponding to ~500nts at the 5'
11 end of the *lacZ* gene resulted in only ~6% of cells
12 staining blue, indicating that efficient silencing of
13 *lacZ* had occurred. However, co-transfection of
14 pMT/V5-His/*lacZ* with *lacZ*-specific, dsRNA and a
15 plasmid carrying the 16K gene increased the number of
16 cells staining blue to ~ 26%, demonstrating that the
17 16K protein inhibits RNA-mediated gene silencing
18 (Fig. 7).

19

20 **Results and Discussion**

21

22 Analysis of gene silencing in *Drosophila* S2 cells was
23 performed by transient expression using a variation
24 of the assay described by Hammond *et al.* (2000). DS2
25 cells were transfected with a plasmid expressing β -
26 galactosidase along with dsRNA corresponding to
27 approximately the first 500 nts of the *lacZ* gene to
28 induce silencing. Co-transfection of these two
29 molecules along with a second plasmid expressing the
30 TRV 16K protein was used to assay suppression of gene
31 silencing.

1 Post-transcriptional gene silencing (PTGS), also
2 known as RNA interference or RNA silencing, has been
3 observed in a variety of organisms including plants,
4 fungus (Ding, 2000), etc. The silencing involves
5 sequence-specific degradation of a target RNA
6 molecule and can be initiated by dsRNA homologous to
7 the target RNA. PTGS has been used to generate
8 resistance to viruses in transgenic plants
9 (Waterhouse et al., 1998) but also appears to be an
10 inherent virus resistance mechanism in plants (Covey
11 et al, 1997; Ratcliff et al 1997; Elmayan et al.,
12 1998; Ratcliff et al., 1999 Mourrain et al., 2000).
13 A number of plant viruses have proteins that act as
14 suppressors of PTGS and these can act at different
15 stages of the suppression mechanism (Anandalakshmi et
16 al, 1998; Brigneti et al, 1998; Kasschau & Carrington
17 1998; Voinnet et al, 1999; Lucy et al, 2000; Llave et
18 al, 2000). PTGS has recently been demonstrated in
19 cultured *Drosophila* cells and a sequence-specific
20 nuclease involved in the process partially purified
21 (Hammond et al, 2000). Here we show that a plant
22 virus protein previously described as a suppressor of
23 gene silencing also suppress gene silencing in
24 *Drosophila* cells and also detect gene silencing
25 suppression with a second plant virus protein. The
26 HCPRO protein of tobacco etch virus (TEV) is able to
27 reverse gene silencing in plants after it has been
28 established and appears to affect a step involved in
29 maintenance of PTGS (Anandalakshmi et al, 1998; Llave
30 et al, 2000). Transient expression was used to
31 determine if expression of this protein had any

1 suppressive effect on gene silencing in *Drosophila*
2 cells. β -galactosidase activity could be detected by
3 staining in up to approximately 70% of *Drosophila*
4 cells when they were transfected with a lacZ
5 expression plasmid alone (Fig 8A). The number of
6 cells staining for β -galactosidase was only
7 approximately 12% when dsRNA corresponding to
8 approximately the first 500nts of the lacZ gene was
9 co-transfected with the lacZ expression vector (Fig
10 8B). Co-transfection of *Drosophila* cells with dsRNA
11 and lacZ and an HCPRO expression vectors resulted in
12 staining of approximately 50% of the cells in the
13 culture (Fig 8C). The number of cells staining when
14 transfected with the lacZ expression vector alone
15 varied somewhat between experiments presumably due to
16 variation in the quality of plasmid DNA and the
17 condition of the cells but there was little variation
18 between replicate plates within an experiment.

19
20 The percentage of cells that stained for β -
21 galactosidase when transfected with the lacZ
22 expression vector alone was normalised to 100 and the
23 ratio of the number of cells staining with the other
24 treatments was expressed as a percentage of this for
25 quantitation purposes in Fig 1E. The TEV HCPRO
26 protein was effective in suppressing gene silencing
27 in transient assays.

28
29 A stable cell line (DS2-HCPRO) expressing the HC-Pro
30 protein was produced to attempt to improve the
31 efficiency of the suppression assay by reducing the

1 number of co-transfected nucleic acid molecules from
2 3 to 2. An unrelated cell line (DS2-VCL) expressing
3 a recombinant antibody was used as a control for
4 silencing in order to eliminate the possibility that
5 stable transformation of the cells could interfere
6 with silencing. Co-transfection the lacZ expression
7 vector and dsRNA produced a slight reduction in the
8 number of DS2-HCPRO cells cells staining for β -
9 galactosidase activity compared to the lacZ
10 expression vector alone. A significantly greater
11 silencing effect was seen in the DS2-VCL cells (Fig
12 9). Quantitation of the numbers of cells staining
13 showed that significantly more cells stained for β -
14 galactosidase activity after transfection with the
15 lacZ expression vector and dsRNA in the DS2-HCPRO
16 cells than in the DS2-VCL cells (Fig 10). The
17 numbers of cells that stained for β -galactosidase
18 activity in the DS2-HCPRO cells in the presence of
19 the lacZ expression vector and dsRNA was slightly
20 higher than when DS2 cells were transiently
21 transfected with pMT/V5-His/lacZ along with pMT-HCPRO
22 and lacZ dsRNA indicating that suppression of
23 silencing was somewhat more efficient in the DS2-
24 HCPRO cells.

25

26 Transient transfection with mutant HC-Pro

27

28 We were interested to determine if this *Drosophila*
29 cell system could be used as a screen for gene
30 silencing suppression effects caused by other virus
31 proteins. It has been suggested that the ORF0

1 protein of potato leafroll virus (PLRV) may act as a
2 suppressor of gene silencing (REF). *Drosophila* cells
3 transfected an ORF0 expression plasmid along with the
4 *lacZ* expression plasmid and dsRNA demonstrated
5 suppression of gene silencing compared to cells
6 transfected with the *lacZ* expression plasmid and
7 dsRNA alone (Fig 11). This identification of gene
8 silencing suppression with the PLRV ORF 0 suggests
9 that this system will be a useful screening tool to
10 identify other proteins that have similar functions.
11

12 The observations here that plant virus proteins can
13 suppress gene silencing in *Drosophila* cells indicates
14 that at least part of the pathway of PTGS is
15 conserved between plants and *Drosophila*. The
16 *Drosophila* cell system has been useful for
17 elucidating some of the biochemical detail of PTGS
18 and a nuclease activity apparently deriving sequence-
19 specificity from essential ~25 nucleotide RNA species
20 has been identified (Hammond et al, 2000).

21 Suppressors of PTGS that function in *Drosophila* cells
22 will be useful for further dissection of the
23 mechanisms of PTGS in *Drosophila* cells as well as
24 being an amenable system for study of the mode of
25 action of the plant virus proteins themselves. The
26 *Drosophila* system will also be a good starting point
27 for the identification of proteins with which the
28 suppressor proteins interact.

30
31

1 **Plasmid constructions.**

2

3 A region (nts 1055-2449) of the TEV genome containing
4 the HCPRO sequence was amplified by Polymerase chain
5 reaction (PCR) using primers HCPRO-1 (5'-
6 **CCGGTACCATGAGCGACAAATCAATCTCTGAGGC-3'**) (SEQ ID No: 3)
7 and HCPRO-2 (5'- **GGCTCGAGCTACACATCTCGGTTCATCCCTCC-3'**)
8 (SEQ ID No: 4). Primer HCPRO-1 contains a KpnI site
9 (shown in bold in the sequence) and an ATG initiation
10 codon (shown underlined) in addition to the TEV
11 sequence. Primer HCPRO-2 contains an XhoI site (shown
12 in bold) and the complement of a TAG termination
13 codon (shown underlined) in addition to the TEV
14 sequence. The PCR product was cloned into pGEM-Teasy
15 (Promega) and then subcloned as a KpnI-XhoI fragment
16 into pMT/V5-HisA (Invitrogen) cut with KpnI and XhoI
17 to give plasmid pMT-HCPRO.

18

19 **PLRV ORF0 construction**

20 The PLRV ORF0 sequence was amplified by PCR using
21 cloned cDNA as a template and primers 499 (5'-
22 **ATAGCCCATGGTTGTATTGACCC-3'**) (SEQ ID No: 5) and 500
23 (5'-**TTCCAGGTACCTCTCATTCTTGTAATTCC-3'**) (SEQ ID No: 6)
24 to introduce flanking *Nco*I and *Kpn*I sites into the
25 PCR product. The PCR product was cloned into pMT/V5-
26 HisA to produce plasmid pMT-ORF0.

27

28 **RNA synthesis.** cDNA corresponding to ~500bp of the 5'
29 end of the LacZ gene was amplified using
30 pcDNA3.1/HisB/lacZ as a template and primers LacZ-1
31 ...-(5'--**TAATACGACTCACTATA**GGGAGACCCAAAGCTGGCTAGC-3'-) (SEQ

1 ID No: 7) and LacZ-2 (5'-
2 TAATACGACTCACTATAGGGCAAACGGCGGATTGACCG-3') (SEQ ID
3 No: 8). Both primers contained T7 RNA polymerase
4 initiation sequences (shown underlined). The PCR
5 product was used to direct synthesis of dsRNA using
6 T7 RNA polymerase (Invitrogen) after which the DNA
7 template was removed by DNase digestion.

8

9 **Cell culture and Transfection.** DS2 cells and DES
10 expression medium were part of the *Drosophila*
11 Expression System (Invitrogen) and cells were grown
12 according to the manufacturer's instructions. Cells
13 were grown in 60mm dishes and transfected with 10µg
14 plasmid DNA either alone or with 5 µg dsRNA by
15 calcium phosphate co-precipitation. After
16 transfection the cells were washed twice in DES
17 medium and grown for eight hours before expression of
18 proteins was induced by addition of CuSO₄. A stably
19 transformed line expressing the HCPRO gene was
20 established by co-transfection of cells with the
21 relevant plasmid and pCo-Hygro (Invitrogen) followed
22 by selection of transformed cells in medium
23 containing hygromycin. Cells were stained to detect
24 lacZ gene expression using a β-Gal Staining Kit
25 (Invitrogen) 48hrs after transfection.

26

27 **EXAMPLE 3: Groundnut Rosette Virus (GRV) ORF3**
28 **Suppresses RNA Interference in Drosophilla Cells**
29

30 The GRV ORF3 sequence was amplified by PCR using
31 cloned cDNA as a template and two sets of primers.

1 The first set of primers, GRV3HTFOR (5'-
2 CGATGGTACCACAATGGACACCACCC-3') (SEQ ID NO: 9) and
3 GRV3MTHREV (5'-
4 CGATCTCGAGTCAAATGGTGATGGTGATGCCACTTATTGGCAGCGG-3')
5 (SEQ ID No: 10), introduce a polyhistidine tag at the
6 carboxy-terminal end of the ORF3 protein and flanking
7 KpnI and XhoI sites. This PCR product was cloned
8 into pMT/V5-HisC (Invitrogen) to produce plasmid pMT-
9 ORF3/His. The second set of primers, GRV3MTHFOR (5'-
10 CGATGGTACCACAATGGGACATCATCACCATCACCATGACACCACCCGG-
11 3') (SEQ ID No: 11) and GRF3HTREV (5'-
12 CGATCTCGAGTCACCACTTATTGGCAGCGG-3') (SEQ ID No: 12),
13 introduce a polyhistidine tag at the amino-terminal
14 end of the ORF3 protein and flanking KpnI and XhoI
15 sites. This PCR product was cloned into pMT/V5-HisC
16 to produce plasmid pMT-His/ORF3.

17

18 *Drosophila* (DS2) cells were grown in Schneider's
19 *Drosophila* medium (Life Technologies). Stably
20 transformed *Drosophila* (DS2) cell lines expressing
21 the modified ORF3 proteins were produced by co-
22 transfection of cells with either pMT-ORF3/His or
23 pMT-His/ORF3 along with pCo-Hygro (Invitrogen) using
24 calcium phosphate co-precipitation, followed by
25 selection of transformed cells in medium containing
26 300 µg/ml hygromycin. Expression of the modified
27 ORF3 proteins was confirmed by immunoblotting using
28 an anti-6His antibody (Sigma). The cell lines were
29 called DS2-ORF3/His (expressing pMT-ORF3/His) and
30 DS2-His/ORF3 (expressing pMT-His/ORF3). Cultures of
31 control DS2 cells and of both transformed cell lines

1 expressing the modified ORF3 proteins were
2 transfected by calcium phosphate co-precipitation in
3 60mm tissue culture dishes with either 10 µg of
4 pMT/V5-His/lacZ (Invitrogen) or 10 µg of pMT/V5-
5 His/lacZ and 5 µg of double-stranded (ds) RNA
6 corresponding to the 5'-terminal 500 nucleotides of
7 the lacZ gene to induce gene silencing. Cells were
8 stained to detect lacZ gene expression using a β-gal
9 staining kit (Invitrogen) 48 hours after
10 transfection. The results are shown in Table 1.

11
12 Transfection efficiencies were determined in the
13 cultures transfected with pMT/V5-His/lacZ and were
14 approximately 55% for all three cell types. Only
15 10.25% of control DS2 cells transfected with pMT/V5-
16 His/lacZ + dsRNA stained for lacZ expression,
17 representing 19.2% of the cells staining when the
18 cells were transfected with pMT/V5-His/lacZ alone,
19 and indicating that RNA interference (gene silencing)
20 was occurring. In contrast, 30.75% of DS2-ORF3/His
21 cells and 33% of DS2-His/ORF3 cells transfected with
22 pMT/V5-His/lacZ + dsRNA stained for lacZ expression
representing 54.9% and 63% of the cells staining when
23 the cells were transfected with pMT/V5-His/lacZ alone
24 respectively. This indicates that RNA interference
25 (gene silencing) was suppressed in the *Drosophila*
26 cell lines expressing the modified versions of the
27 ORF3 protein and shows that the ORF3 protein can
28 suppress RNA interference (gene silencing) in
29 heterologous systems.
30

1

Cell Type	Transfection	% cells stained *
DS2	pMT/V5-His/lacZ	53.38
DS2	pMT/V5-His/lacZ + dsRNA	10.25
DS2-ORF3/His	pMT/V5-His/lacZ	56
DS2-ORF3/His	pMT/V5-His/lacZ + dsRNA	30.75
DS2-His/ORF3	pMT/V5-His/lacZ	53.4
DS2-His/ORF3	pMT/V5-His/lacZ + dsRNA	33

2

3 Table 1. Effects of GRV ORF3 on RNA interference in
 4 *Drosophila* cells. *Four randomly selected fields of
 5 view each containing ~100 cells were selected in each
 6 of duplicate plates and the number of cells staining
 7 blue was counted for each experiment.

8

1 References

2
3 Anandalakshmi, R., Pruss, G.J., Ge, X., Marathe, R.,
4 Mallory, A.C., Smith, T.H. and Vance, V.B. 1988. A
5 viral suppressor of gene silencing in plants. *Proc.*
6 *Natl. Acad. Sci. USA.*, **95**, 13079-13084.
7
8 Angenent, G.C., Verbeek, H.B.M. and Bol, J.F. 1989.
9 Expression of the 16K cistron of tobacco rattle virus
10 in protoplasts. *Virology*, **169**, 305-311.
11
12 Beclin, C., Berthome, R., Palauqui, J.C., Tepfer, M.
13 and Vaucheret, H. 1998. Infection of tobacco or
14 *Arabidopsis* plants by CMV counteracts systemic post-
15 transcriptional silencing of nonviral (trans)genes.
16 *Virology*, **252**, 313-317.
17
18 Bonneau, C., Brugidou, C., Chen, L., Beachy, R.N. and
19 Fauquet, C. 1998. Expression of the rice yellow
20 mottle virus P1 protein *in vitro* and *in vivo* and its
21 involvement in virus spread. *Virology*, **244**, 79-86.
22
23 Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding,
24 S.W. and Baulcombe, D.C. 1998. Viral pathogenicity
25 determinants are suppressors of transgene silencing
26 in *Nicotiana benthamiana*. *EMBO J.*, **17**, 6739-6746.
27
28 Carrington, J.C., Cary, S.M., Parks, T.D. and
29 Dougherty, W.G. 1989. A second proteinase encoded by
30 a plant potyvirus genome. *EMBO J.*, **8**, 365-370.
31-

1 Chapman, S., Kavanagh, T. and Baulcombe, D.C. 1992.
2 Potato virus X as a vector for gene expression in
3 plants. *Plant J.*, **2**, 549-557.

4

5 Chivasa, S., Murphy, A.M., Naylor, M. and Carr, J.P.
6 1997. Salicylic acid interferes with tobacco mosaic
7 virus replication via a novel salicylhydroxamic acid-
8 sensitive mechanism. *Plant Cell*. **9**, 547-557.

9

10 Chu, M., Desvoyes, B., Turina, M., Noad, R. and
11 Scholthof, H.B. 2000. Genetic dissection of tomato
12 bushy stunt virus p19-protein-mediated host-dependent
13 symptom induction and systemic invasion. *Virology*,
14 **266**, 79-87.

15

16 Covey S.N. et al. Plants combat infections by gene
17 silencing. *Nature*, vol 387, pages 781-782.

18

19 Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad,
20 M.C. and Carrington, J.C. 1995. Long-distance
21 movement factor: A transport function of the
22 potyvirus helper component proteinase. *Plant Cell*, **7**,
23 549-559.

24

25 Diao, A., Chen, J., Ye, R., Zheng, T., Shanquan, Y.,
26 Antoniw, J.F. and Adams, M.J. 1999. Complete sequence
27 and genome properties of Chinese wheat mosaic virus,
28 a new furovirus from China. *J. Gen. Virol.*, **80**, 1141-
29 1145.)

30

1 Ding, S.W., Shi, B.J., Li, W.X. and Symons, R.H.
2 1995. A novel naturally occurring hybrid gene encoded
3 by a plant RNA virus facilitates long distance virus
4 movement. *EMBO J.*, **14**, 5762-5772
5 Ding, S.W., Shi, B.J., Li, W.X. and Symons, R.H.
6 1996. An interspecies hybrid RNA virus is
7 significantly more virulent than either parental
8 virus. *Proc. Natl. Acad. Sci. USA*, **93**, 7470-7474.
9
10 Ding, S.W. RNA silencing. *Curr. Opinion in Biotech.*
11 **11**, 152-156 (2000).
12
13 Donald, R.G.K. and Jackson, A.O. 1994. The barley
14 stripe mosaic virus γb gene encodes a multifunctional
15 cysteine-rich protein that affects pathogenesis.
16 *Plant Cell*, **6**, 1593-1606.
17
18 Donald, R.K.G. and Jackson, A.O. 1996. RNA-binding
19 activities of barley stripe mosaic virus gamma b
20 fusion proteins. *J. Gen. Virol.*, **77**, 879-888.
21
22 Edwards, M.C. 1995. Mapping of the seed transmission
23 determinants of barley stripe mosaic virus. *Mol.*
24 *Plant Microbe Interact.*, **8**, 906-915.
25
26 Elmayan, T., Balzergue, S., Beon, F., Bourdon, V.,
27 Daubremet, J., Guenet, Y., Mourrain, P., Palauqui,
28 J.C., Vernhettes, S., Vialle, T., Wostrikoff, K. and
29 Vaucheret, H. 1998. Arabidopsis mutants impaired in
30 cosuppression. *Plant Cell*, **10**, 1747-1757.
31

1 English, J.J., Mueller, E. and Baulcombe, D.C. 1996.
2 Suppression of virus accumulation in transgenic
3 plants exhibiting silencing of nuclear genes. *Plant*
4 *Cell*, **8**, 179-188.

5 Govier, D.A., Kassanis, B. and Pirone, T.P. 1977.
6 Partial purification and characterization of the
7 potato virus Y helper component. *Virology*, **78**, 306-
8 314.

9

10 Grassé, K.D. 1998. HMG1 and HU proteins:
11 architectural elements in plant chromatin. *Trends*
12 *Plant Sci.*, **3**, 260-265.

13

14 Guilford, P.J., Ziegler-Graff, V. and Baulcombe, D.C.
15 1991. Mutation and replacement of the 16-kDa protein
16 gene in RNA-1 of tobacco rattle virus. *Virology*, **182**,
17 607-614.

18

19 Hamilton, W.D.O. and Baulcombe, D.C. 1989. Infectious
20 RNA produced by *in vitro* transcription of a full-
21 length tobacco rattle virus RNA-1 cDNA. *J. Gen.*
22 *Virol.*, **70**, 963-968.

23

24 Hammond, S.M., Bernstein, E., Beach, D. and Hannon,
25 G.J. 2000. An RNA-directed nuclease mediates post-
26 transcriptional gene silencing in *Drosophila* cells.
27 *Nature*, **404**, 293-296.

28

29 Harrison, B.D. 1984. Potato Leafroll Virus. *CMI/AAB*
30 *Descriptions of Plant Viruses*, no. 291.

31

1 Hehn, A., Bouzoubaa, S., Twell, D., Marbach, J.,
2 Richards, K., Guilly, H. and Jonard, G. 1995. The
3 small cysteine-rich protein P14 of beet necrotic
4 yellow vein virus regulates accumulation of RNA2 *in*
5 *cis* and coat protein *in trans*. *Virology*, **210**, 73-81.
6

7 Herzog, E., Hemmer, O., Hauser, S., Meyer, G.
8 Bouzoubaa, S. and Fritsch, C. 1998. Identification of
9 genes involved in replication and movement of peanut
10 clump virus. *Virology*, **248**, 312-322.

11

12 Kasschau, K.D., Cronin, S. and Carrington, J.C. 1997.
13 Genome amplification and long-distance movement
14 functions associated with the central domain of
15 *Tobacco etch virus* helper component-proteinase.
16 *Virology*, **228**, 251-262.

17

18 Kasschau, K.D. and Carrington, J.C. 1998. A
19 counterdefensive strategy of plant viruses:
20 Suppression of posttranscriptional gene silencing.
21 *Cell*, **95**, 461-470.

22

23 Koonin, E.V., Boyko, V.P. and Dolja, V.V. 1991. Small
24 cysteine-rich proteins of different groups of plant
25 RNA viruses are related to different families of
26 nucleic acid-binding proteins. *Virology*, **181**, 395-
27 398.

28

29 Kumagai, M.H., Donson, J., Della-Cioppa, G., Harvey,
30 D., Hanley, K. and Grill, L.K. 1995. Cytoplasmic
31 inhibition of carotenoid biosynthesis with virus-

1 derived RNA. *Proc. Natl. Acad. Sci. USA*, **92**, 1679-
2 1683.

3

4 Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M. and
5 Dougherty, W. G. 1993. Induction of a highly specific
6 anti-viral state in transgenic plants: Implications
7 for gene regulation and virus resistance. *Plant Cell*,
8 **5**, 1749-1759.

9

10 Liu, D.H., Robinson, D.J., Duncan, G.H. and Harrison,
11 B.D. 1991. Nuclear location of the 16K non-structural
12 protein of tobacco rattle virus. *J. Gen. Virol.*, **72**,
13 1811-1817.

14

15 Llave, C., Kasschau, K.D. & Carrington, J.C. Virus-
16 encoded suppressor of posttranscriptional gene
17 silencing targets a maintenance step in the silencing
18 pathway. *Proc. Natl Acad. Sci. USA* **97**, 13401-13406
19 (2000).

20

21 Lucy, A.P., Guo, H.S., Li, W.X. and Ding, S.W. 2000.
22 Suppression of post-transcriptional gene silencing by
23 a plant viral protein localized in the nucleus. *EMBO*
24 *J.*, **19**, 1672-1680.

25

26 MacFarlane, S.A., Wallis, C.V., Taylor, S.C.,
27 Goulden, M.G., Wood, K.R. and Davies, J.W. 1991.
28 Construction and analysis of infectious transcripts
29 synthesized from full-length cDNA clones of both
30 genomic RNAs of pea early-browning virus. *Virology*,
31 **182**, 124-129.

1
2 MacFarlane, S.A. 1999. The molecular biology of the
3 tobaviruses. *J. Gen. Virol.*, **80**, 2799-2807.
4 MacFarlane, S.A. and Popovich, A.H. (2000). Efficient
5 expression of foreign proteins in roots from
6 tobavirus vectors. *Virology*, **267**, 29-35.
7
8 Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F.,
9 Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M.,
10 Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo,
11 T.A. and Vaucheret, H. 2000. Arabidopsis SGS2 and
12 SGS3 genes are required for posttranscriptional gene
13 silencing and natural virus resistance. *Cell*, **101**,
14 533-542.
15
16 Mueller, A.M., Mooney, A.L. and MacFarlane, S.A.
17 1997. Replication of *in vitro* tobavirus recombinants
18 shows that the specificity of template recognition is
19 determined by 5' non-coding but not 3' non-coding
20 sequences. *J. Gen. Virol.*, **78**, 2085-2088.
21
22 Napoli, C., Lemieux, C. and Jorgensen, R. 1990.
23 Introduction of a chimeric chalcone synthase gene
24 into petunia results in reversible co-suppression of
25 homologous genes in *trans*. *Plant Cell*, **2**, 279-289.
26
27 Naylor, M., Murphy, A.M., Berry, J.O. and Carr, J.P.
28 1998. Salicylic acid can induce resistance in plant
29 virus movement. *Mol. Plant Microbe Interact.*, **11**,
30 860-868.
31

1 Palukaitis, P., Roosinck, M.J., Dietzgen, R.G. and
2 Francki, R.I. 1992. Cucumber mosaic virus. *Adv. Virus*
3 *Res.*, **41**, 281-348.

4

5 Petty, I.T.D., French, R., Jones, R.W. and Jackson,
6 A.O. 1990. Identification of barley stripe mosaic
7 virus genes involved in viral RNA replication and
8 systemic movement. *EMBO J.*, **9**, 3453-3457.

9

10 Power, J.B. and Chapman, J.V. 1985. Isolation,
11 culture and genetic manipulation of plant
12 protoplasts. In *Plant Cell Culture*, pp. 37-66. Edited
13 by R.A. Dixon. Oxford: ICR Press.

14

15 Ratcliff S., MacFarlane S.A., Baulcombe D.C. (1999)
16 Gene Silencing without DNA: RNA-mediated cross
17 protection between viruses. *The Plant Cell*, Vol 11,
18 pages 1207-1215.

19

20 Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. 1998.
21 Initiation and maintenance of virus-induced gene
22 silencing. *Plant Cell*, **10**, 937-946.

23

24 Scholthof, H.B., Scholthof, K.B.G., Kikkert, M. and
25 Jackson, A.O. 1995a. Tomato bushy stunt virus spread
26 is regulated by two nested genes that function in
27 cell-to-cell movement and host-dependent systemic
28 invasion. *Virology*, **213**, 425-438.

29

30 Scholthof, H.B., Morris, T.J. and Jackson, A.O.
-31 1995b. Identification of tomato bushy-stunt virus

1 host-specific symptom determinants by expression of
2 individual genes from a potato virus X vector. *Plant*
3 *Cell*, 7, 1157-1172.

4

5 Sticher, L., Mauch-Mani, B. and Metraux, J.P. 1997.
6 Systemic acquired resistance. *Annu. Rev.*
7 *Phytopathol.*, 35, 235-270.

8

9 Vance, V.B., Berger, P.H., Carrington, J.C., Hunt,
10 A.G. and Shi, X.M. 1995. 5' proximal potyviral
11 sequences mediate potato virus X/potyviral
12 synergistic disease in transgenic tobacco. *Virology*,
13 206, 583-590.

14

15 Voinnet, O., Pinto, Y.M. and Baulcombe, D.C. 1999.
16 Suppression of gene silencing: A general strategy
17 used by diverse DNA and RNA viruses of plants. *Proc.*
18 *Natl. Acad. Sci. USA*, 96, 14147-14152.

19

20 Voinnet, O., Lederer, C. and Baulcombe, D.C. 2000. A
21 viral movement protein prevents spread of the gene
22 silencing signal in *Nicotiana benthamiana*. *Cell*, 103,
23 157-167.

24

25 Wang, D., MacFarlane, S.A. and Maule, A.J. 1997.
26 Viral determinants of pea early-browning virus seed
27 transmission in pea. *Virology*, 234, 112-117.

28

29 Waterhouse, P.M., Graham, M.W. & Wang, M.-B. Virus
30 resistance and gene silencing in plants can be
31 induced by simultaneous expression of sense and

1 antisense RNA. *Proc. Natl Acad. Sci. USA* **95**, 13959-
2 13964 (1998).

3

4 Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R.,
5 Corr, C. and Baker, B. 1994. The product of the
6 tobacco mosaic virus resistance gene N: Similarity to
7 Toll and the Interleukin-1 receptor. *Cell*, **78**, 1101-
8 1115.

9 Yamanaka, T., Ohta, T., Takahashi, M., Meshi, T.,
10 Schmidt, R., Dean, C., Naito, S and Ishikawa, M.
11 2000. TOM1, an *Arabidopsis* gene required for
12 efficient multiplication of a tobamovirus, encodes a
13 putative transmembrane protein. *Proc. Natl. Acad.*
14 *Sci. USA*, **97**, 10107-10112.

1 CLAIMS

2

3 1. A method of suppressing or inhibiting one or
4 more gene silencing mechanisms in a non-plant
5 host cell through the use of a plant virus
6 protein exhibiting post-transcriptional gene
7 silencing suppressing functions.

8

9 2. A method as claimed in Claim 1 wherein the
10 expression of a heterologous protein encoded
11 by a virus vector or transgene in the non-
12 plant host cell is increased.

13

14 3. A method as claimed in Claim 1 wherein
15 expression of a heterologous protein encoded
16 by a virus vector or transgene in the non-
17 plant host cell is protected from post-
18 transcriptional gene silencing effected by the
19 host cell.

20

21 4. A method as claimed in any one of Claims 1 to
22 3 wherein the non-plant cell is an animal
23 cell.

24

25 5. A method as claimed in any one of Claims 1 to
26 4 wherein the non-plant cell is a mammalian
27 cell.

28

29 6. A method as claimed in any one of Claims 1 to
30 4 wherein the non-plant cell is an insect
31 cell.

32

- 1 7. The method as claimed in Claim 5 wherein said
2 host cell is a *Drosophila* cell.
3
- 4 8. The method as claimed in any one of Claims 1
5 and 7 wherein said viral vector encoding said
6 heterologous protein is based on PVX, PVY, or
7 TMV.
8
- 9 9. The method as claimed in any one of Claims 2
10 and 8, wherein a transgenic host cell
11 expressing said plant virus protein is
12 inoculated with a viral vector encoding the
13 heterologous protein of interest.
14
- 15 10. The method as claimed in any one of Claims 2
16 and 9, wherein a transgenic host cell
17 expressing a heterologous protein of interest
18 is inoculated with a viral vector encoding the
19 plant virus protein.
20
- 21 11. The method as claimed in any one of Claims 2
22 to 10 wherein said plant virus protein and
23 said heterologous protein of interest are
24 encoded by a single viral vector.
25
- 26 12. The method as claimed in any one of Claims 1
27 to 11 wherein said plant virus protein is a
28 cysteine-rich plant virus protein.
29
- 30 13. The method as claimed in any one of Claims 1
31 to 11 wherein said plant virus protein is the
32 HC-Pro protein of tobacco etch virus (TEV),

1 the 2b protein of *cucumber mosaic virus* (CMV),
2 the ORF0 protein of *potato leafroll virus*
3 (PLRV), the 16K CRP protein of the *tobacco*
4 *rattle virus*, the 12K CRP of *Pea early*
5 *browning virus* or is a functional equivalent
6 of these proteins.

7

8 14. The use of a plant virus protein as a
9 suppressor of the gene silencing mechanism of
10 a non-plant host cell.

11

12 15. The use as claimed in Claim 14 wherein said
13 plant virus protein is a cysteine-rich plant
14 virus protein.

15

16 16. The use as claimed in Claim 14 wherein said
17 plant virus protein is the HC-Pro protein of
18 *tobacco etch virus* (TEV), the 2b protein of
19 *cucumber mosaic virus* (CMV), the ORF0 protein
20 of *potato leafroll virus* (PLRV), the 16K CRP
21 protein of the *tobacco rattle virus*, the 12K
22 CRP of *Pea early browning virus* or is a
23 functional equivalent of these proteins.

24

25 17. A vector comprising a polynucleotide sequence
26 which encodes at least one plant virus protein
27 displaying post-transcriptional gene
28 suppressor activity and which is capable of
29 expressing said polynucleotide sequence in a
30 non-plant host cell.

31

- 1 18. A vector as claimed in Claim 17 wherein the
2 post-transcriptional gene suppressor protein
3 is derived from the HC-Pro protein of *tobacco*
4 *etch virus* (TEV), the 2b protein of *cucumber*
5 *mosaic virus* (CMV), the ORF0 protein of *potato*
6 *leafroll virus* (PLRV), the 16K CRP protein of
7 the *tobacco rattle virus*, the 12K CRP of *Pea*
8 *early browning virus* or is a functional
9 equivalent of these proteins.
10
- 11 19. The use of a cysteine-rich plant virus protein
12 displaying post-transcriptional gene silencing
13 as a suppressor of the gene silencing
14 mechanism of a host cell.
15
- 16 20. The use as claimed in Claim 19 wherein said
17 plant virus protein is the 16K CRP of tobacco
18 rattle virus or the 12K CRP of pea early
19 browning virus.
20
- 21 21. A method of suppressing or inhibiting one or
22 more gene silencing mechanisms in a host cell
23 through the use of a cysteine-rich plant virus
24 protein exhibiting post-transcriptional gene
25 silencing suppressing functions.
26
- 27 22. The method as claimed in Claim 19 wherein said
28 plant virus protein is the 16K CRP of tobacco
29 rattle virus or the 12K CRP of pea early
30 browning virus.

1 / 12

Fig. 1a

Fig. 1b

2 / 12

TRV16K MT CVL KCCVN EVTVL GHET CSI GHANKL RKQVADM
PEBV12K MKCAV STCEV EAOSN -KFT CS MKCANKY NRHLAEKY
* * * * * * * *

TRV16K GVTRRCAENNCGWF-VCVVI NDFTFDVYNCCRSHEL
PEBV12K SIKRKCECVNCGWYPAIEVRADF-IEVYFCGGMKHL

TRV16K EKCRKRVETRNREI WKQIRRQNQAENMSATAKKSHNS
PEBV12K S-----KVISSN-----*

TRV16K	KT S ₁ KKKFKEDEFCTPKRFLR ₂ DDVPFGIDRLFAF
PEBV12K	-- ₁ -PKRKE-R-LNSPKRLFR ₂ DDIDFGLTGLFNESC

Fig. 2a

3 / 12

TRV RNA1

pTRV1

pTRV1NB

pTRV1-16D

pTRV1-12

pTRV1-16stop

pTRV1-16dstop

TRV RNA2

pK20-RNA2

pK20-GFPc

pK20-16K

pK20-12K

pK20-CMV2b

Fig. 2b

4 / 12

Fig. 3a

Fig. 3b

Fig. 3c

Fig. 3d

5 / 12

Fig. 4a

Fig. 4b

6 / 12

Fig. 5a

Fig. 5b

7 / 12

Fig. 6a

Fig. 6b

8 / 12

Fig. 7a

Fig. 7b

Fig. 7c

Fig. 7d

9 / 12

Fig. 8c

+ lacZ
+dsRNA
+HC-Pro

Fig. 8b

+ lacZ
+dsRNA

Fig. 8a

+ lacZ

10 / 12

Fig. 9c

+ lacZ

Fig. 9a

+ lacZ

Fig. 9d

+ lacZ
+dsRNA

Fig. 9b

+ lacZ
+dsRNA

11 / 12

Fig. 10

12 / 12

Fig. 11
lacZ+
dsRNA
HC PRO

1
SEQUENCE LISTING

<110> Scottish Crop Research Institute

<120> Gene Silencing Suppressor

<130> P28022A/JDA/BOU

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 47

<212> DNA

<213> Artificial sequence

<220>

<223> mutagenic primer used to reamplify NdeI-BgIII fragment

<400> 1

tccatatatgac gtgtgtactc tagggttgtg tgaatgaagt cactgtt

47

<210> 2

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> Mutated fragment of TRV 16K gene

<400> 2

atgacgtgtt aactctag

18

<210> 3

<211> 34

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer HCPRO-1 used to amplify TEV HCPRO sequence

<400> 3

ccgggtaccat gagcgacaaa tcaatctctg aggc

34

<210> 4

<211> 32

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer HCPRO-2 used to amplify TEV HCPRO sequence

<400> 4

ggctcgagct acacatctcg gttcatccct cc

32

<210> 5

2

<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Primer LacZ-1 used to amplify cDNA corresponding to the LacZ gene
<400> 5
taatacgact cactataggg agacccaaggc tggcttagc 38

<210> 6
<211> 38
<212> DNA
<213> Artificial sequence

<220>
<223> Primer LacZ-2 used to amplify cDNA corresponding to the LacZ gene
<400> 6
taatacgact cactataggg caaacggcgg attgaccg 38

<210> 7
<211> 141
<212> PRT
<213> Tobacco rattle virus

<400> 7

Met Thr Cys Val Leu Lys Gly Cys Val Asn Glu Val Thr Val Leu Gly
1 5 10 15

His Glu Thr Cys Ser Ile Gly His Ala Asn Lys Leu Arg Lys Gln Val
20 25 30

Ala Gln Met Val Gly Val Thr Arg Arg Cys Ala Glu Asn Asn Cys Gly
35 40 45

Trp Phe Val Cys Val Val Ile Asn Asp Phe Thr Phe Asp Val Tyr Asn
50 55 60

Cys Cys Gly Arg Ser His Leu Glu Lys Cys Arg Lys Arg Val Glu Thr
65 70 75 80

Arg Asn Arg Glu Ile Trp Lys Gln Ile Arg Arg Asn Gln Ala Glu Asn
85 90 95

Met Ser Ala Thr Ala Lys Lys Ser His Asn Ser Lys Thr Ser Lys Lys
100 105 110

Lys Phe Lys Glu Asp Arg Glu Phe Gly Thr Pro Lys Arg Phe Leu Arg
115 120 125

Asp Asp Val Pro Phe Gly Ile Asp Arg Leu Phe Ala Phe
130 135 140

<210> 8
<211> 107
<212> PRT
<213> Pea early browning virus

<400> 8
Met Lys Cys Ala Val Ser Thr Cys Glu Val Glu Ala Asp Ser Asn Lys
1 5 10 15

Phe Thr Cys Ser Met Lys Cys Ala Asn Lys Tyr Asn Arg His Leu Ala
20 25 30

Glu Lys Tyr Ser Ile Lys Arg Lys Cys Glu Cys Val Asn Cys Gly Trp
35 40 45

Tyr Pro Ala Ile Glu Val Arg Ala Asp Phe Ile Glu Val Tyr Phe Cys
50 55 60

Cys Gly Met Lys His Leu Ser Lys Val Ile Ser Ser Asn Pro Lys Arg
65 70 75 80

Lys Glu Arg Leu Asn Ser Pro Lys Arg Leu Phe Arg Asp Asp Ile Asp
85 90 95

Phe Cys Leu Thr Gly Leu Phe Asn Glu Ser Cys
100 105

THIS PAGE BLANK (USPTO)