1. Objective

The goal of this study is to approximate the Runge function

$$f(x) = \frac{1}{1 + 25x^2}$$

and its derivative

$$f'(x) = -\frac{50x}{(1+25x^2)^2}$$

using a neural network.

Approximating derivatives directly is challenging because small errors in the function can be amplified in its derivative. Therefore, we construct a neural network and train it using a **combined loss** that accounts for both the function values and the derivative values.

2. Methodology

Dataset

- 200 evenly spaced points in [-1,1] are used as the training set.
- 50 additional points are used as the validation set.
- Both function values f(x) and derivatives f'(x) are computed analytically.

Neural Network Architecture

- Input layer: 1 neuron (x)
- Hidden layers: 2 layers with 64 neurons each, **tanh** activation for smooth approximation
- Output layer: 1 neuron (predict f(x))

Training Setup

The total loss consists of **two components**:

1. Function loss (MSE):

$$loss_f = \frac{1}{N} \sum_{i=1}^{N} \left(f_{pred}(x_i) - f_{true}(x_i) \right)^2$$

2. Derivative loss (MSE):

$$loss_{f'} = \frac{1}{N} \sum_{i=1}^{N} \left(f'_{\text{pred}}(x_i) - f'_{\text{true}}(x_i) \right)^2$$

Total loss:

$$loss = loss_f + loss_{f'}$$

- The derivative is computed using **PyTorch autograd** during training.
- Optimizer: Adam with learning rate 0.001
- Training epochs: 3000

Evaluation

- Compare the true function with the neural network prediction.
- Plot training and validation loss curves.
- Compute validation errors: MSE and maximum absolute error.

3. Results

Function Approximation

- Blue solid line: true Runge function
- Orange dashed line: neural network prediction
- The network successfully captures the overall shape, especially in the central region.

Derivative Approximation

- Blue solid line: true Derivative of Runge function
- Orange dashed line: neural network prediction
- The network successfully captures the overall shape, especially in the central region.

Loss Curves

 Training and validation losses decrease steadily and converge, showing stable learning without overfitting.

Result

Training with total Loss (Function loss & Derivative loss)

```
Epoch 200/3000, Train Loss: 0.004282, Val Loss: 0.004169
Epoch 400/3000, Train Loss: 0.000354, Val Loss: 0.000348
Epoch 600/3000, Train Loss: 0.000109, Val Loss: 0.000108
Epoch 800/3000, Train Loss: 0.000050, Val Loss: 0.000049
Epoch 1000/3000, Train Loss: 0.000028, Val Loss: 0.000028
Epoch 1200/3000, Train Loss: 0.000017, Val Loss: 0.000017
Epoch 1400/3000, Train Loss: 0.000012, Val Loss: 0.000012
Epoch 1600/3000, Train Loss: 0.000021, Val Loss: 0.000036
Epoch 1800/3000, Train Loss: 0.000008, Val Loss: 0.000008
Epoch 2000/3000, Train Loss: 0.000007, Val Loss: 0.000007
Epoch 2200/3000, Train Loss: 0.000005, Val Loss: 0.000005
Epoch 2600/3000, Train Loss: 0.000007, Val Loss: 0.000005
Epoch 2600/3000, Train Loss: 0.000007, Val Loss: 0.000005
Epoch 2800/3000, Train Loss: 0.000007, Val Loss: 0.000007
Epoch 3000/3000, Train Loss: 0.000007, Val Loss: 0.0000007
Epoch 3000/3000, Train Loss: 0.000007, Val Loss: 0.0000007
Epoch 3000/3000, Train Loss: 0.000007, Val Loss: 0.0000007
Epoch 3000/3000, Train Loss: 0.0000007, Val Loss: 0.0000007
Epoch 3000/3000, Train Loss: 0.0000007, Val Loss: 0.0000007
```

Error Metrics

```
Validation f(x) - MSE: 9.7083394e-08 Max error: 0.0004952401 Validation f'(x) - MSE: 3.497311e-06 Max error: 0.004785776
```