

FEATURES

- Package Size 1.0"x1.0"x0.4"
- ► Ultra-wide 4:1 Input Range
- ► High Efficiency up to 87%
- ► Operating Temp. Range -40°C to +80°C
- ► I/O-isolation Voltage 1500VDC
- ► Remote On/Off Control
- ▶ Input Filter complies to EN55022, Class A & FCC, Level A
- ► Shielded Metal Case with Isolated Baseplate
- ► UL/cUL/IEC/EN 60950-1 Safety Approval
- ▶ 3 Years Product Warranty

PRODUCT OVERVIEW

The MINMAX MJWI10 series are cost optimized dc-dc converter modules offering 10W output power in a 1"x1"x0.4" shielded metal package with industry standard pinout. All models provide ultra-wide 4:1 input voltage range and tight output voltage regulation.

State-of-the-art circuit topology provides a high efficiency up to 87% which allows an operating temperature range of -40°C to +80°C. Further features include remote On/Off, overload protection and conducted EMI compliance to EN55022, class A.

Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and other space critical applications.

lodel Selection G	ulue							
Model	Input	Output	Output Current Input Cu		ırrent	Max. capacitive	Efficiency	
Number	Voltage Voltage			Load	(typ.)			
	(Range)		Max.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	μF	%
MJWI10-24S033		3.3	2200	330	352		560	86
MJWI10-24S05		5	2000	300	496		560	84
MJWI10-24S051		5.1	2000	300	506		560	84
MJWI10-24S12	24	12	830	125	483		150	86
MJWI10-24S15		15	660	100	474	30	150	87
MJWI10-24S24	(9 ~ 36)	24	410	62	477		68	86
MJWI10-24D05	†	±5	±1000	±150	496		220#	84
MJWI10-24D12		±12	±410	±62	477		100#	86
MJWI10-24D15		±15	±330	±50	474		100#	87
MJWI10-48S033		3.3	2200	330	180		560	85
MJWI10-48S05		5	2000	300	248		560	84
MJWI10-48S051		5.1	2000	300	253		560	84
MJWI10-48S12	48	12	830	125	241		150	86
MJWI10-48S15		15	660	100	237	20	150	87
MJWI10-48S24	(18 ~ 75)	24	410	62	238		68	86
MJWI10-48D05		±5	±1000	±150	248		220#	84
MJWI10-48D12		±12	±410	±62	238		100#	86
MJWI10-48D15		±15	±330	±50	237		100#	87

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
Innut Curre Veltage (4 and may)	24V Input Models	-0.7		50	VDC
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	
Chart I in Thurshald Valteur	24V Input Models			9	
Start-Up Threshold Voltage	48V Input Models			18	
	24V Input Models			8.5	
Under Voltage Shutdown	48V Input Models			17	
Reverse Polarity Input Current				1.5	Α
Short Circuit Input Power	All M		2500		mW
Internal Power Dissipation	All Models			5000	mW
Conducted EMI		Compliance	to EN 55022,class	A and FCC, part	15, level A

Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy				±2.0	%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads		±1.0	±2.0	%	
Line Regulation	Vin=Min. to Max.		±0.3	±1.0	%	
Load Regulation	lo=15% to 100%		±0.5		%	
Ripple & Noise	0-20 MHz Bandwidth			100	mV_{p-p}	
Transient Recovery Time	250/ Load Stan Change		300	600	μsec	
Transient Response Deviation	25% Load Step Change		±3	±6	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Over Current Protection	Hiccup	110	150		%	
Short Circuit Protection	Hiccup Automatic Recovery					

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage (rated)	60 Seconds	1500			VDC	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100KHz, 1V			1500	pF	
Switching Frequency			450		KHz	
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	MIL-HDBK-217F@25°C, Ground Benign 350,000			Hours	
Safety Approvals	UL/cUL 60950-1 recognition(C	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-scheme)				

Remote On/Off Control						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Converter On	2.5V ~ 50V or Open Circuit					
Converter Off	0~1.0V or Short Circuit (Pin 2 and Pin 6)					
Control Input Current (on)	Vctrl = 5V			500	μA	
Control Input Current (off)	Vctrl = 0V			-500	μA	
Control Common	Referenced to Negative Input					
Standby Input Current				10	mA	

Environmental Specifications					
Parameter	Conditions	Min.	Max.	Unit	
Operating Ambient Temperature Range	Natural Convention		00	00	
(See Power Derating Curve)	Natural Convection	-40	+80	°C	
Case Temperature			+100	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Cooling	Free-Air convection				
RFI	Six-Sided Shielded, Metal Case				
Lead Temperature (1.5mm from case for 10Sec.)			260	°C	

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 To order the converter with heatsink, please add a suffix -HS (e.g. MJWI10-24S05-HS) to order code.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM)
- 7 Specifications are subject to change without notice.

Package Specifications Mechanical Dimensions

Pin Connections						
Single Output Dual Output						
+Vin +Vin						
-Vin	-Vin					
+Vout	+Vout					
No Pin	Common					
-Vout	-Vout					
Remote On/Off	Remote On/Off					
	Single Output +Vin -Vin +Vout No Pin -Vout					

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

▶ Pin diameter Ø 1.0 ±0.05 (0.04±0.002)

Physical Characteristics

Case Size : 25.4x25.4x10.16mm (1.0x1.0x0.4 inches)

Case Material : Aluminium Alloy, Black Anodized Coating

Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy with Gold Plate Over Nickel Subplate

Weight : 15g

Heatsink Material: Aluminum Finish: Anodic treatment (black)

Weight: 2g

- ▶ The advantages of adding a heatsink are:
- 1. To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega)$ at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout $0.47\mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal.

The switch can be an open collector or equivalent. A logic low is 0V to 1V. A logic high is 2.5V to 50V. The maximum sink current at on/off terminal during a logic low is -500μA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 50V) is 500μA.

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 6.8μF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7μ F capacitors at the output.

Maximum Capacitive Load

The MJWI10 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

