§ 16.1 多元函数的概念

- 一、平面点集
- 二、R²上的完备性定理
- 三、多元函数的概念

一、平面点集

1. 邻域: 以点 $X_0 = (x_0, y_0)$ 为中心,以 δ 为半径的圆内部点的全体称为 X_0 的 δ 邻域. 记作 $U(X_0, \delta)$,

记 $U^0(X_0, \delta) = U(X_0, \delta) - \{X_0\}, 称为 X_0$ 的 去心 δ 邻域. 如图

2. 内点: 设 E 是一平面点集, $X_0 = (x_0, y_0) \in E$, 若存在邻域 $U(X_0, \delta) \subseteq E$,则称 X_0 为 E 的内点.

E 的全体内点所成集合称为E 的内部,记为 E^0 .

例1 比如 $z = \sqrt{1 - x^2 - y^2}$ 的定义域D为单位圆盘,

$$D = \{(x, y) | x^2 + y^2 \le 1 \}$$
 如图

易知, 圆内部的每一点都是 D 的内点. 但圆周上的点不是 D 的内点.

上页

下页

返回

3. 边界点:

设 E 是一平面点集, $X_0 = (x_0, y_0)$ 是平面上一个点. 若 X_0 的任何邻域 $U(X_0, \delta)$ 内既有属于 E 的点,又有不属于 E的点,则称 X_0 为 E 的边界点.

E 的全体边界点所成集合称为 E 的边界. 记作 ∂E .

如,例2中定义域 D 的边界是直线 x + y = 0 上点的全体. 例1中定义域 D 的边界是单位圆周 $x^2 + y^2 = 1$ 上的点的全体. 如图

4. 开集

设E是一平面点集,若E中每一点都是E的内点.

即 $E \subseteq E^0$, 则称 E 是一个开集. 规定, Ø, \mathbb{R}^2 为开集.

由于总有 $E^0 \subseteq E$, 因此, $E \subseteq E^0 \Leftrightarrow E = E^0$

故也可说,若 $E = E^0$,则称 E 是一个开集.

比如,例2中 D 是开集,($D = D^0$),而例1 中 D 不是开集.

又比如,E如图

若 E 不包含边界,则 E 为开集.

若 E 包含边界,则 E 不是开集.

结论: 非空平面点集 E 为开集的充要条件是 E 中每一点都不是 E 的边界点. 即 E 不含有 E 的边界点.

证: 必要性. 设 E 为开集, $\forall X \in E$,

由开集定义知X为E的内点. 故X不是E的边界点.

充分性. 若 E 中每一点都不是 E 的边界点.

要证 E 为开集. $\forall X \in E$, 由于 X 不是 E 的边界点.

故必存在X的一个邻域 $U(X,\delta)$,在这个邻域 $U(X,\delta)$

内或者全是 E 中的点. 或者全都不是 E 中的点, 两

者必居其一. 由于 $X \in E$, 故后一情形不会发生.

因此, $U(X, \delta)$ 内必全是 E 中的点. 故 $X \in E^0$,即, $E \subseteq E^0$,所以 E 是开集.

5. 连通集

设 E 是一非空平面点集, 若 $\forall X$, $Y \in E$. 都可用完全含于 E 的折线将它们连接起来, 则称 E 为连通集. 如图

从直观上看,所谓E是连通集,是指E是 连成一片的. E 中的点都可用折线连接. 例1,2中的D都是连通集. 如图 y X X $x^2 + y^2 = 1$ x + y = 0

若E是连通的非空开集,则称E是开区域.

比如,例2中 D 是 开区域.从直观上看,开 区域是连成一片的,不 包括边界的平面点集. 如图.

7. 闭区域 (闭域)

若 E 是开域, 记 $\overline{E} = E \cup \partial E = E^0 \cup \partial E$ 称为闭区域.

如图

易见,例1中的 D 是 闭区域.从直观上看,闭 区域是连成一片的.包括 边界的平面点集.

教材把开区域和闭区域都叫作区域.

8. 设 $E \subseteq R^2$, 若存在 r > 0, 使 $E \subseteq U(O, r)$, 则称 E 为有界集. 否则称 E 为无界集.

易见,例2中 D 是无界集,它是无界开区域,而例1中 D 是有界集,它是有界闭区域.

9. 聚点

设 E 是平面点集, X_0 是平面上一个点. 若 X_0 的任一邻域内总有无限多个点属于 E . 则称 X_0 是E 的一个聚点.

从几何上看,所谓 X_0 是 E 的聚点是指在 X_0 的附近聚集了无限多个 E 中的点. 即,在 X_0 的任意近傍都有无限多个 E 中的点.

(1) 聚点定义也可叙述为: 若 X_0 的任一邻域内至少含有 E 中一个异于 X_0 的点. 则称 X_0 为 E 的 一个聚点.

- (2) E 的聚点 X_0 可能属于 E, 也可能不属于 E.
- (3) E 的内点一定是 E 的聚点.

(4) 若 E 是开区域.则 E 中每一点都是 E 的聚点. 若 $\bar{E} = E \cup \partial E$ 为闭区域.则 \bar{E} 中每一点都是E的聚点. 从而是 \bar{E} 的聚点. 即,区域中的任一点都是该区域的聚点.

一般,集合 E 的边界点不一定是 E 的聚点. 但若 E 是开集,则 E 的边界点一定是 E 的聚点。

邻域,内点,边界点,开集,连 通, 有界, 开区域, 闭区域, 聚点 这些概念都可毫无困难地推广到三 维空间 R3 中去, 且有类似的几何 意义. 它们还可推广到 4 维以上的 空间中去,但不再有几何意义.

说明:

- (1) 内点一定是聚点;
- (2) 边界点可能是聚点;

例如,
$$\{(x,y) | 0 < x^2 + y^2 \le 1\}$$

- (0,0) 既是边界点也是聚点.
- (3) 点集E的聚点可以属于E,也可以不属于E.

例如,
$$\{(x,y) \mid 0 < x^2 + y^2 \le 1\}$$

(0,0) 是聚点但不属于集合.

例如,
$$\{(x,y) | x^2 + y^2 = 1\}$$

边界上的点都是聚点也都属于集合.

(4) n 维空间 实数 x ← 一対应 → 数轴点. 实数全体表 数组 (x,y) ← 一対应 → 平面点 (x,y) 全体表 数组 (x,y,z) ← 一対应 → 空间点 (x,y,z) 全体表 实数全体表示直线(一维空间) R (x,y) 全体表示平面(二维空间) R^2 (x,y,z) 全体表示空间(三维空间) R^3 推广:

n 维数组 $(x_1, x_2, ..., x_n)$ 全体称为 n 维空间,记为 \mathbb{R}^n .

n 维空间中两点间距离公式

设两点为 $P(x_1, x_2, \dots, x_n)$, $Q(y_1, y_2, \dots, y_n)$,

$$||PQ|| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots + (y_n - x_n)^2}.$$

特殊地,当n=1,2,3时,便为数轴、平面、空间两点间的距离。

n 维空间中邻域概念:

$$U(P_0, \delta) = \{P: ||PP_0|| < \delta, P \in \mathbb{R}^n\}$$

区域、内点、边界点、区域、聚点等概念也可定义.

二、 R^2 上的完备性定理

定义 1 设 $\{P_n\}$ ($\subset R^2$ 为平面点列, $P_o \in R^2$ 为一固定点. 若对任给的正数 ε ,存在正整数 N,使得当 n > N 时,有 $P_n \in U(P_o; \varepsilon)$,则称点列 $\{P_n\}$ 收敛于点 P_o ,记作

$$\lim_{n\to\infty}P_n=P_0 \quad \text{if } P_n\to P_0, \quad n\to\infty.$$

三、多元函数的概念

设x和y是两个变量。D是一个给定的数集, 若对于每个数 $x \in D$,变量

y 按照一定法则总有确定的数值和它对应,则称 y 是 x 的函数,记作 y = f(x).

1.二元函数的定义

设D 是平面上的一个点集,如果对于每个点 $P(x,y) \in D$,变量 z 按照一定的法则总有确定的值和它对应,则称 z 是变量x,y 的二元函数,记为z = f(x,y)(或记为z = f(P)).

点集D---定义域,x, y---自变量,z---因变量.

$$W = \{z \mid z = f(x,y), (x,y) \in D\}$$
 --- 值域.

回忆

例1 求
$$f(x,y) = \frac{\arcsin(3-x^2-y^2)}{\sqrt{x-y^2}}$$
 的定义域.

解
$$\begin{cases} |3-x^2-y^2| \le 1 \\ x-y^2 > 0 \end{cases}$$

$$\Rightarrow \begin{cases} 2 \le x^2 + y^2 \le 4 \\ x > y^2 \end{cases}$$

所求定义域为 $D = \{(x,y) | 2 \le x^2 + y^2 \le 4, x > y^2 \}.$

二元函数 z = f(x, y) 的图形

设函数z = f(x,y)的定义域为D,对于任意取定的 $P(x,y) \in D$,对应的函数值为z = f(x,y). 以x 为横坐标、y 为纵坐标、z 为竖坐标在空间就确定一点M(x,y,z),当(x,y)取遍D上一切点时,得一个空间点集

 $\{(x,y,z) | z = f(x,y), (x,y) \in D\},\$

这个点集称为二元函数的图形.

(如下页图)

二元函数的图形通常是一张曲面.

例如 $z = \sin xy$

图形如右图.

例如 $x^2 + y^2 + z^2 = a^2$ 左图球面.

$$D = \{(x, y) | x^2 + y^2 \le a^2 \}$$

单值
$$z = \sqrt{a^2 - x^2 - y^2}$$

单值
$$z = \sqrt{a^2 - x^2 - y^2}$$

分支: $z = -\sqrt{a^2 - x^2 - y^2}$

2.多元函数的概念

设D是R"的一个非空子集,从0到实数集R定义 的任一映射称为定义在D上的一个n元(实 值)函数,记作: $D \subset R^n \to R$ 或 $y = f(x) = f(x_1, x_2, \dots, x_n), x \in D$ 其中 x_1, x_2, \dots, x_n 称为自变量, y称为因变量, D称为函数的定义域, $f(D) = \{f(x) | x \in D\}$ 称为函数的值域,并且称7"十中的子集 $\{(x_1, x_2, \dots, x_n, y)|y = f(x), x \in D\}$ 为函数 y = f(x)(在D上)的图形(或图像)。