TRIGONOMETRY

QUICK REVISION BATCH PDF

:- By Gourav Saluja Sir

Channel Name: Maths with Gourav

Trigonometry Complete pdf of Quick Revision Batch

1. If A + B = C, then tan A tan B tan C =?

यदि A + B = C है, तो tan A tan B tan C का

मान क्या होगा?

- a) tan C + tan A tan B
- b) tan C + tan A + tan B
- c) tan A tan B tan C
- d) tan C tan A tan B
- 2. If tan A - tan B - tan C =tan A tan B tan C, what is the value of A in terms of B and C?

यदि

tan A - tan B - tan C =

tan A tan B tan C है, तो B और C के संदर्भ

 \vec{H} A का मान क्या होगा?

- a) A = B + C b) A = 2B 2C
- c) A = B C d) $A = \frac{B-C}{2}$
- value of $tan27^{\circ} tan34^{\circ} +$ 3. Find the $tan34^{\circ}tan29^{\circ} + tan29^{\circ}tan27^{\circ}$. $tan27^{\circ} tan34^{\circ} + tan34^{\circ} tan29^{\circ} +$ tan29°tan27° का मान ज्ञात कीजिए।
 - a) 0

b) -1

c) $\sqrt{3}$

- d) 1
- $4. \tan 3A \tan 2A \tan A =$
 - a) tan 3A tan 2A tan A
 - b) -tan 3A tan 2A tan A
 - tan A tan 2A tan 2A tan 3A tan 3A tan A
 - d) None of these
- 5. If in $\triangle ABC$, tan A + tan B + tan C = 6, then cot A cot B cot C =

अगर $\triangle ABC$ में, tan A + tan B + tan C =

6 है, तो cot A cot B cot C =

- a) 6

- b) 1 c) $\frac{1}{6}$ d) None of these

6. $\tan 20^{\circ} + \tan 40^{\circ} + \sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$ equal to

 $\tan 20^{\circ} + \tan 40^{\circ} + \sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$ बराबर है

- a) $\frac{\sqrt{3}}{4}$ b) $\frac{\sqrt{3}}{2}$ c) $\sqrt{3}$
- d) 1
- 7. The Value of $(1 + tan 10^{\circ})(1 + tan 35^{\circ})$ is :

 $(1 + tan \, 10^{\circ})(1 + tan \, 35^{\circ})$ का मान क्या

होगा?

- a) $\frac{3}{4}$
- b) 1
- c) 2
- d) $\frac{1}{2}$
- 8. What is the value of the following in terms of trigonometric ratios?

sinA 1+cosA 1+cosA

त्रिकोणमितीय में अनुपातो निम्नलिखित का मान क्या होगा?

$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A}$$

- a) 2 cosec A
- b) 2 cos A
- c) 2 sec A
- d) 2 sin A
- 9. $(cosec\theta cot\theta)^2 = ?, (0^\circ < \theta < 90^\circ)$
 - a) $\frac{1+\cos\theta}{1-\sin\theta}$

- 10. If $\frac{\cos\theta}{1-\sin\theta} + \frac{\cos\theta}{1+\sin\theta} = 4$, $0^{\circ} < \theta < 90^{\circ}$, then the value of $(tan\theta + cosec\theta)$ is:

 $\frac{\cos\theta}{1-\sin\theta} + \frac{\cos\theta}{1+\sin\theta} = 4,0^{\circ} < \theta < 90,$ तो

 $(tan\theta + cosec\theta)$ का मान है:

11. The value of $\frac{\sin A}{\cot A + \csc A} - \frac{\sin A}{\cot A - \csc A} + 1$ is:

$$\frac{\sin A}{\cot A + \csc A} - \frac{\sin A}{\cot A - \csc A} + 1$$
 का मान है-
a) $\frac{1}{2}$ b) 3 c) 0 d) 2

12. If
$$\left\{ \left(\frac{sec\theta - 1}{sec\theta + 1} \right) \right\}^n = cosec\theta - cot\theta$$
, then $n = ?$
यदि $\left\{ \left(\frac{sec\theta - 1}{sec\theta + 1} \right) \right\}^n = cosec\theta - cot\theta$ है, तो $n = ?$

a) 1

b) 0.5

c) -1

d) -0.5

13.
$$\frac{1+sin\theta}{cos\theta}$$
 is equal to which of the following $\left(\frac{where}{where} \theta \neq \frac{\pi}{2} \right)$? $\frac{1+sin\theta}{cos\theta}$ निम्नलिखित में से किसके बराबर है? $\left(\frac{1}{sin\theta} \frac{1}{sin\theta} + \frac{\pi}{2} \right)$? a) $\frac{1+cos\theta}{sin\theta}$ b) $\frac{tan\theta+1}{tan\theta-1}$ c) $\frac{tan\theta-1}{tan\theta+1}$ d) $\frac{cos\theta}{1-sin\theta}$

14. The value of
$$1+\sqrt{\frac{\cot\theta+\cos\theta}{\cot\theta-\cos\theta}}$$
, $if~0^\circ<\theta<90^\circ$, is equal to:

यदि
$$0^{\circ} < \theta < 90^{\circ}$$
 है, तो $1 + \sqrt{\frac{\cot \theta + \cos \theta}{\cot \theta - \cos \theta}}$, का

- मान ज्ञात कीजिए।
- b) $1 \sec \theta \tan \theta$ a) $1 - \sec \theta + \tan \theta$
- c) $1 + sec \theta tan \theta$
- d) $1 + \sec \theta + \tan \theta$

15. The value of
$$2-\sqrt{\frac{\cot\theta+\cos\theta}{\cot\theta-\cos\theta}}$$
, when $0^\circ<\theta<$

 90° is equal to :

$$2-\sqrt{rac{\cot heta+\cos heta}{\cot heta-\cos heta}}$$
, का मान बताइए, जबिक 0° $<$

- $\theta < 90^{\circ}$ है।
- a) $2 + \sec \theta + \tan \theta$ b) $2 \sec \theta + \tan \theta$
- c) $2 \sec \theta \tan \theta$ d) $2 + \sec \theta + \tan \theta$

16. If
$$cosec\theta + cot\theta = p$$
, then the value of $\frac{p^2-1}{p^2+1}$ is:

राद्रः
$$\mathbf{z}$$
यदि \mathbf{z} $\mathbf{cosec}\theta+\mathbf{cot}\theta=p$, तो $\frac{p^2-1}{p^2+1}$ का \mathbf{z} का \mathbf{z}

- a) $cos\theta$
- b) $sin\theta$
- c) $cot\theta$
- d) $cosec\theta$

17. If
$$\sqrt{\frac{1-cos\theta}{1+cos\theta}} \times \sqrt{\frac{cosec\theta-cot\theta}{cosec\theta+cot\theta}} = \frac{1-r}{1+r}$$
 then the value of r is:

यदि
$$\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \times \sqrt{\frac{\cos e c\theta - \cot\theta}{\cos e c\theta + \cot\theta}} = \frac{1-r}{1+r}$$
 है, तो r का

- a) $Sin\theta$
- b) Cosecθ
- c) Sec θ
- d) $Cos\theta$

18.
$$\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = ?$$

- a) secθ sinθ b) $sec\theta$ $tan\theta$
- c) $sec\theta + tan\theta$ d) $sec\theta tan\theta$

19. The value of
$$\frac{sin\theta+cos\theta-1}{sin\theta-cos\theta+1} \times \sqrt{\frac{1+sin\theta}{1-sin\theta}}$$

$$\frac{sin\theta+cos\theta-1}{sin\theta-cos\theta+1} imes \sqrt{\frac{1+sin\theta}{1-sin\theta}}$$
 का मान

c) -2

d) 2

20. Find the value
$$\frac{sin\theta+cos\theta-1}{sin\theta-cos\theta+1} \times \frac{tan^2\theta(cosecc^2\theta-1)}{sec\theta-tan\theta}$$
 ਸਾਜ ਗਾਨ कीजिए, $\frac{sin\theta+cos\theta-1}{sin\theta-cos\theta+1} > \frac{sin\theta+cos\theta-1}{sin\theta-cos\theta+1}$

- $tan^2\theta(cosecc^2\theta-1)$ $sec\theta$ - $tan\theta$
- a) 0
- b) -1 d) $\frac{1}{2}$

c) 1

21.
$$\frac{(1+\cos\theta)(\operatorname{Cosec}\theta-\operatorname{Cot}\theta)\operatorname{sec}\theta}{\operatorname{Sin}\theta(1-\sin\theta)(\operatorname{sec}\theta+\tan\theta)} =$$

- a) $sec^2\theta$

- c) $\cos^2\theta$ d) $\csc^2\theta$

22. For
$$0 < \theta < 90$$
, if $\frac{\sec\theta(1-\sin\theta)(\sec\theta+\tan\theta)}{(\sec\theta-\tan\theta)^2} = \frac{1+k}{1-k}$, then k is equal to:

यदि
$$0 < \theta < 90$$
 है और $\frac{\sec\theta(1-\sin\theta)(\sec\theta+\tan\theta)}{(\sec\theta-\tan\theta)^2} = \frac{1+k}{1-k}$ है, तो k बराबर है:

- a) cosec θ
- b) $\cos \theta$
- c) Sec θ
- d) $\sin \theta$
- 23. $1 + 2 \tan^2 \theta + 2 \sin \theta \sec^2 \theta$, $0^{\circ} < \theta <$ 90°, is equal to:

$$1 + 2 \tan^2 \theta + 2 \sin \theta \sec^2 \theta$$
, $0^{\circ} < \theta <$

90° का मान ज्ञात करें।

a)
$$\frac{1-\sin\theta}{1+\sin\theta}$$
 b) $\frac{1+\sin\theta}{1-\sin\theta}$

- 24. If $1 + 2 \tan^2 \theta + 2 \sin \theta \sec^2 \theta = \frac{a}{b}$, $0^{\circ} <$ $\theta < 90^{\circ}$, then $\frac{a+b}{a-b} = ?$

$$1 + 2 \tan^2 \theta + 2 \sin \theta \sec^2 \theta =$$

$$\frac{a}{b}$$
, $0^{\circ} < \theta < 90^{\circ}$ है, तो $\frac{a+b}{a-b}$ क्या होगा?

- a) cosec θ
- b) $\cos \theta$
- c) sec θ
- d) $\sin \theta$
- 25. If $sec\theta + tan\theta = k$, $0^{\circ} < \theta < 90^{\circ}$, $\frac{(k-1)^2-2}{(k+1)^2-2k}$ is equal to:

यदि
$$\sec\theta+\tan\theta=k,0^\circ<\theta<90^\circ$$
 तों $\frac{(k-1)^2-2}{(k+1)^2-2k}$ इसके बराबर है:

- a) $sin\theta cos\theta$
- b) $cos\theta + sin\theta$
- c) secθ cosecθ
- d) $cos\theta sin\theta$
- 26. If $x = a \cos \theta + b \sin \theta$ and $y = a \sin \theta b$ b cos θ , the value of $x^2 + y^2$ is:

यदि $x = a \cos \theta + b \sin \theta$ और $a \sin \theta - b \cos \theta$ है, तो $x^2 + y^2$ का मान है:

- a) $a^2 b^2$
- c) $a^2 + b^2$
- 27. The elimination of θ from $x\cos\theta y\sin\theta =$ 2 and $xsin\theta - ycos\theta = 4$ will give:

 $x\cos\theta - y\sin\theta = 2$ 311 $\sqrt{x}\sin\theta - y\cos\theta = 4$ से θ का विलोपन देगा:

a)
$$3x^2 - y^2 = 20$$

b)
$$x^2 + y^2 = 20$$

c)
$$3x^2 + y^2 = 20$$

d)
$$x^2 - y^2 = 20$$

28. If 3sinx + 4cosx = 2, then the value of $3\cos x - 4\sin x$ is equal to:

यदि $3\sin x + 4\cos x = 2$, तो $3\cos x - 4\sin x$ का मान है:

- a) $\sqrt{21}$
- b) $\sqrt{23}$
- c) 21
- d) $\sqrt{29}$
- 29. If $sin\theta Cos\theta = \frac{4}{5}$, then find the value of $sin\theta + Cos\theta$.

यदि $sin\theta - Cos\theta = \frac{4}{5}$ है, तो $sin\theta + Cos\theta$ का मान ज्ञात कीजिए।

a) $\frac{5}{\sqrt{34}}$

- 30. If θ is an acute angle, and it is given that $5sin \theta + 12cos \theta = 13$, then what is the value of $tan \theta$?

यदि θ एक न्युन कोण है, और यह दिया गया है कि $5\sin\theta + 12\cos\theta = 13$, तो $\tan\theta$ का मान क्या है?

a) $\frac{5}{13}$ c) $\frac{12}{13}$

- $\sqrt{sec^2\theta + cosec^2\theta} \times$ 31. The Value of $\sqrt{\tan^2\theta - \sin^2\theta}$ is equal to: $\sqrt{\sec^2\theta + \csc^2\theta} \times \sqrt{\tan^2\theta - \sin^2\theta}$ का मान इसके बराबर है:
 - a) $cosec\theta sec^2\theta$

```
b) sin\theta sec^2\theta
```

- c) $\sin \theta \cos^2$
- d) $cosec\theta cos^2\theta$

32. If
$$tan^2\theta = 1 - a^2$$
, then the value of $sec\theta + tan^3\theta \ cosec\theta$ is:

 $tan^2\theta = 1 - a^2$ है. यदि $sec\theta +$ $tan^3\theta \ cosec\theta$ का मान क्या है?

a)
$$(2-a)^{\frac{3}{2}}$$

b)
$$(a^2-1)^{\frac{3}{2}}$$

c)
$$(2-a^2)^{\frac{3}{2}}$$

d)
$$a^{\frac{3}{2}}$$

33. If
$$tan^2\alpha = 3 + Q^2$$
, then $sec \alpha + tan^3\alpha cosec \alpha = ?$
 $tan^2\alpha = 3 + Q^2$
 $tan^3\alpha cosec \alpha = ?$

a)
$$(3 + Q^2)^{\frac{3}{2}}$$
 b) $(7 + Q^2)^{\frac{3}{2}}$

b)
$$(7+Q^2)^{\frac{3}{2}}$$

c)
$$(5-Q^2)^{\frac{3}{2}}$$
 d) $(4+Q^2)^{\frac{3}{2}}$

d)
$$(4+Q^2)^{\frac{3}{2}}$$

34. The expression
$$\frac{(1-2\sin^2\theta\cos^2\theta)(\cot\theta+1)\cos\theta}{(\sin^4\theta+\cos^4\theta)(1+\tan\theta)\csc\theta}$$

1,
$$0^{\circ} < \theta < 90^{\circ}$$
, equals:

ट्यंजक
$$\frac{(1-2\sin^2\theta\cos^2\theta)(\cot\theta+1)\cos\theta}{(\sin^4\theta+\cos^4\theta)(1+\tan\theta)\csc\theta}-1$$
 का

मान बताइए, जहां $0^{\circ} < \theta < 90^{\circ}$ है।

- a) $cos^2 \theta$ b) $-sin^2 \theta$
- c) $sec^2\theta$
- d) $-sec^2 \theta$

35.
$$\frac{(1+\sec\theta \csc\theta)^2(\sec\theta-\tan\theta)^2(1+\sin\theta)}{(\sin\theta+\sec\theta)^2+(\cos\theta+\csc\theta)^2}, \ \ 0^{\circ}<\theta<$$

90°, is equal to:

$$\frac{(1+\sec\theta \csc\theta)^2 (\sec\theta - \tan\theta)^2 (1+\sin\theta)}{(\sin\theta + \sec\theta)^2 + (\cos\theta + \csc\theta)^2}, \ \mathbf{0}^{\circ} < \theta <$$

90°, का मान इनमें से किसके बराबर होगा?

- a) $1 \sin \theta$
- b) $\sin \theta$
- c) $1 \cos \theta$
- d) $\cos \theta$

36.
$$\left(\frac{tan^3\theta}{sec^2\theta} + \frac{cot^3\theta}{cosec^2\theta} + 2\sin\theta\cos\theta\right) \div (1 + cosec^2\theta + tan^2\theta), \ 0^\circ < \theta < 90^\circ,$$
 is equal to:

$$\left(\frac{tan^3\theta}{sec^2\theta} + \frac{cot^3\theta}{cosec^2\theta} + 2\sin\theta\cos\theta\right) \div \\ (1 + cosec^2\theta + tan^2\theta), \ 0^\circ < \theta < 90^\circ, \quad$$
का मान इनमें से किसके बराबर होगा?

- a) $\sin \theta \cos \theta$ b) sec θ
- c) $cosec \theta sec \theta d) cosec \theta$

37.
$$\frac{1+\cos\theta-\sin^2\theta}{\sin\theta~(1+\cos\theta)} \times \frac{\sqrt{\sec^2\theta+\csc^2\theta}}{\tan\theta+\cot\theta}$$
, $0^\circ < \theta < 90^\circ$, is equal to:

$$rac{1+\cos heta-\sin^2 heta}{\sin heta\,(1+\cos heta)}\, imes\,rac{\sqrt{\sec^2 heta+\csc^2 heta}}{ an heta+\cot heta}$$
, $0^\circ< heta<$

90, का मान इनमें से किसके बराबर होगा?

- a) $tan \theta$
- b) $cosec \theta$
- c) sec θ
- d) cot θ

38. The expression
$$\frac{\tan^6\theta - \sec^6 + 3\sec^2\theta\tan^2\theta}{\tan^2\theta + \cot^2\theta + 2}, \ \mathbf{0}^{\circ} < \mathbf{0}^{\circ}$$

 $\theta < 90^{\circ}$, is equal to:

ट्यंजक
$$\frac{tan^6 \, heta - sec^6 + 3 \, sec^2 \, heta \, tan^2 \, heta}{tan^2 \, heta + cot^2 \, heta + 2}$$
 का मान बताइए जहां $0^\circ < heta < 90^\circ$ है।

- a) $sec^2 \theta cosec^2 \theta$ b) $-sec^2 \theta cosec^2 \theta$

then

- c) $\cos^2 \theta \sin^2 \theta$ d) $-\cos^2 \theta \sin^2 \theta$

39. If
$$0^{\circ} < \theta < 90^{\circ}$$
, $\frac{(1-\sin\theta)(\sec\theta+\tan\theta)\tan\theta}{(\tan\theta+\sec\theta+1)(\cot\theta-\csc\theta+1)} =$?

 $0^{\circ} < \theta < 90^{\circ}$ तो $(1-\sin\theta)$ (sec θ +tan θ) tan θ $(\tan \theta + \sec \theta + 1) (\cot \theta - \csc \theta + 1)$

करें।

- b) $\sin \theta$
- c) $\cos \theta$

$$\frac{\cos^4\theta-\sin^4\theta+2\sin^2\theta+3}{(\csc\theta+\cot\theta+1)(\csc\theta-\cot\theta+1)-2},\ 0^\circ<\theta<90^\circ, \text{ is equal to:}$$

ट्यंजक
$$\frac{\cos^4\theta - \sin^4\theta + 2\sin^2\theta + 3}{(\csc\theta + \cot\theta + 1)(\csc\theta - \cot\theta + 1) - 2}$$
 का

मान बताइए, जहां $0^{\circ} < \theta < 90^{\circ}$ है।

- a) $\frac{1}{2}$ sin θ
- b) sec θ
- c) 2 cosec θ
- d) $2 \sin \theta$

41. If
$$tan\theta + cot\theta = 4$$
, then the ratio of $3(tan^2\theta + cot^2\theta)$ to $(2cosec^2\theta sec^2\theta - 4)$ will be:

यदि
$$tan\theta+cot\theta=4$$
 है, तो $3(tan^2\theta+cot^2\theta)$ का $(2cosec^2\theta\,sec^2\theta-4)$ से अनुपात ज्ञात करें।

- a) 4:3 b) 3:4
- c) 5:4 d) 3:2

42.
$$\frac{(sin\theta-cos\theta)(1+tan\theta+cot\theta)(cosec^2\theta)}{sec^3\theta-cosec^3\theta}, \ 0^\circ < \theta < 90^\circ, \text{ is equal to:}$$

$$\frac{(\sin\theta - \cos\theta)(1 + \tan\theta + \cot\theta)(\cos^2\theta)}{\sec^3\theta - \csc^3\theta}, \ 0^\circ < \theta < 90^\circ$$

किसके बराबर होगा?

- a) secθcosecθ
- b) $\cos^2 \theta$
- c) $sin^2 \theta$
- d) $sin\theta cos\theta$

43. If
$$cot^2\theta + cot^4\theta = 2$$
, then the value of $2 sin^4\theta + sin^2\theta$ is:

यदि $cot^2\theta + cot^4\theta = 2$ है, तो $2 sin^4\theta + sin^2\theta$ का मान ज्ञात करें।

- a) 3
- b) 5
- c) 1

d) 2

44. If $tan^2\theta + tan^4\theta = 1$, then:

यदि
$$tan^2\theta + tan^4\theta = 1$$
 है तो

होगा |

- a) $cot^2\theta + cot^4\theta = 1$
- b) $cos^2\theta + cos^4\theta = 1$
- c) $sin^2\theta + sin^4\theta = 1$
- d) $cosec^2\theta + sec^4\theta = 1$

45.
$$\frac{sec^2\theta(2+tan^2\theta+cot^2\theta)\div(sin^2\theta-tan^2\theta)}{(cosec^2\theta+sec^2\theta)(1+cot^2\theta)^2} =$$

a) -1

b) :

c) -2

d) 2

46.
$$\frac{\cos^{6}\theta + \sin^{6}\theta + 3\sin^{2}\theta\cos^{2}\theta}{\csc\theta \sec\theta (\sin\theta + \cos\theta - 1)(\sin\theta + \cos\theta + 1)} =$$

- a) 1
- b) 2
- c) $\frac{1}{2}$
- d) 3

47.
$$\frac{(1+\cos\theta)^2+\sin^2\theta}{(\cos^2\theta-1)\sin^2\theta}=?$$

- a) $\cos \theta (1 + \sin \theta)$
- b) $2\cos\theta (1 + \sec\theta)$
- c) $sec \theta(1 + sin \theta)$
- d) $2 \sec \theta (1 + \sec \theta)$

48. If
$$\frac{(Sin\theta-cosec\theta)(cos\theta-sec\theta)}{tan^2\theta-sin^2\theta}=r^3$$
, then $r=?$ अगर $\frac{(Sin\theta-cosec\theta)(cos\theta-sec\theta)}{tan^2\theta-sin^2\theta}=r^3$ है, तो $r=?$

- a) $Sin\theta Cos\theta$
- b) $tan\theta$
- c) $Cot\theta$
- d) CosecθSecθ
- 49. Solve the following to find its value in terms of trigonometric ratios. (sin A + cos A)(1 sin A cos A)

निम्नलिखित को त्रिकोणिमतीय अनुपातों के संदर्भ में इसका मान ज्ञात करने के लिए हल करें | $(\sin A + \cos A)(1 - \sin A \cos A)$

- a) $sin^3A + cos^3A$
- b) $sin^2A cos^2A$
- c) $[\cos A \sin A][\sin^2 A + \cos^2 A]$
- d) $sin^3A cos^3A$
- 50. If $sin\alpha + cos\alpha = tan\frac{\pi}{3}$, then the value of $(sin^3\alpha + cos^3\alpha)$ is equal to:

यदि $sin\alpha + cos\alpha = tan\frac{\pi}{3}$ है, तो $(sin^3\alpha + cos^3\alpha)$ का मान ज्ञात कीजिए।

- a) ½ b) 1
- c) 0
- d) 3/2

51. If
$$sin\theta+cos\theta=\frac{\sqrt{3}-1}{2\sqrt{2}}$$
, then what is the value of $tan\theta+cot\theta$?

यदि
$$sin\theta+cos\theta=rac{\sqrt{3}-1}{2\sqrt{2}}$$
 है, तो $tan\theta+cot\theta$ का मान क्या है?

a)
$$8(\sqrt{3}-2)$$

b)
$$12(\sqrt{3}-2)$$

c)
$$12(\sqrt{3}+2)$$
 d) $8(\sqrt{3}+2)$

d)
$$8(\sqrt{3}+2)$$

below? $\cos^2 x, \cos^2 2x, \cos^2 3x, ..., \cos^2 30x, \sin^2 x, \sin^2 2x, \sin^2 2x, \sin^2 3x \cos^4 \theta \sin^2 \theta \cos^2 \theta \cos^$ नीचे दिए गए साठ पदों का औसत क्या होगा? $\cos^2 x, \cos^2 2x, \cos^2 3x, ..., \cos^2 30x, \sin^2 x, \sin^2 2x, \sin^2 \frac{3}{2}x, ..., \sin^2 30x$

- a) cos^2x
- b) 0.5
- c) 1
- d) $\cos^2 x \sin^2 x$

53. The value of
$$\frac{\sec\theta \csc\theta}{2+\tan^2\theta+\cot^2\theta}$$
 is equal to: $\frac{\sec\theta \csc\theta}{2+\tan^2\theta+\cot^2\theta}$ का मान ज्ञात करें।

$$\frac{\sec\theta \csc\theta}{2+\tan^2\theta+\cot^2\theta}$$
 का मान ज्ञात करें|

- a) $\sec \theta \csc \theta$
- b) sec θ sin θ
- c) $\sin \theta \cos \theta$
- d) $\cos \theta \csc \theta$

54. Let
$$0^{\circ} < \theta < 90^{\circ}$$
. $(1 + cot^{2}\theta)(1 + tan^{2}\theta) \times (sin\theta - cosec\theta)(cos\theta - sec\theta)$ is equal to:

मान लें कि
$$0^\circ < heta < 90^\circ$$
 है। तो $(1+cot^2 heta)(1+tan^2 heta) imes(sin heta -$

$$cosec heta)(cos heta-sec heta)$$
 का मान इनमें से

किसके बराबर होगा?

- a) $sec \theta cosec \theta$
- b) $\sin \theta + \cos \theta$
- c) $sec \theta + cosec \theta$
- d) $\sin \theta \cos \theta$

55. If
$$7 \sin^2 \theta + 4 \cos^2 \theta = 5$$
 and θ lies in the first quadrant, then what is the value of
$$\frac{\sqrt{3} \sec \theta + \tan \theta}{\sqrt{2} \cot \theta - \sqrt{3} \cos \theta}$$
?

यदि $7 \sin^2 \theta + 4 \cos^2 \theta = 5$ और θ पहले चतुर्थाश में स्थित है, तो $\frac{\sqrt{3}\sec\theta+\tan\theta}{\sqrt{2}\cot\theta-\sqrt{3}\cos\theta}$ का मान क्या होगा?

- a) $4\sqrt{2}$ b) $2(1+\sqrt{2})$
- c) $3\sqrt{2}$ d) $2(\sqrt{2}-1)$

56. If
$$117 \cos^2 A + 129 \sin^2 A = 120$$
 and $170 \cos^2 B + 158 \sin^2 B = 161$, then the value of $Cosec^2 A Sec^2 B$ is:

अगर $117 \cos^2 A + 129 \sin^2 A = 120$ और $170\cos^2 B + 158\sin^2 B = 161$ तो Cosec² A Sec² B है:

- a) 1

b) 9

c) 4

d) 16

$$7n^{rac{sec^6 heta-tan^6 heta-3sec^2 hetatan^2 heta+1}{3 ilde{\chi}_{os}^4 heta}}=0$$

58.
$$cos^3 60 - cos^3 240 - cos^3 360 =$$

होगा।

59.
$$tan(\theta-14\pi)$$
 is equal to:

 $tan(\theta - 14\pi)$ निम्न में किसके बराबर है?

- a) $tan\theta$
- b) $-cot\theta$
- c) $cot\theta$
- $d) tan\theta$

60. What is the value of
$$Cos\left(-\frac{17\pi}{3}\right)$$

 $Cos\left(-\frac{17\pi}{3}\right)$ का मान क्या होगा?

- a) 1

61. If $tan40^\circ = \alpha$, then find $\frac{tan320^\circ - tan310^\circ}{1 + tan320^\circ \cdot tan310^\circ}$.

यदि $tan40^{\circ} = \alpha$ है, तो $\frac{tan320^{\circ} - tan310^{\circ}}{1 + tan320^{\circ} tan310^{\circ}}$. मान ज्ञात किजिए।

- a) $\frac{1-\alpha^2}{\alpha}$ b) $\frac{1+\alpha^2}{2\alpha}$ c) $\frac{1-\alpha^2}{\alpha}$

- 62. If $cos x = \frac{-\sqrt{3}}{2}$ and $\pi < x < \frac{3\pi}{2}$, then the value of $4 \cot^2 x - 3 \csc^2 x$ is:

यदि $cosx = \frac{-\sqrt{3}}{2}$ और $\pi < x < \frac{3\pi}{2}$ है, तो

- $4 \cot^2 x 3 \csc^2 x$ का मान है:
- a) 8

b) 0

c) 2

- d) 1
- 63. If $cos x = \frac{-1}{2}$ and $\pi < x < \frac{3\pi}{2}$, then the value of $4 \tan^2 x + 3 \csc^2 x$ is:

यदि $cosx = \frac{-1}{2}$ और $\pi < x < \frac{3\pi}{2}$ है, तो $4 \tan^2 x + 3 \csc^2 x$ है:

a) 16

b) 8

c) 4

- d) 10
- 64. If $cosx = \frac{-\sqrt{3}}{2}$ and $\pi < x < \frac{3\pi}{2}$, then the value of $2 \cot^2 x + 3 \csc^2 x$ is:

यदि $cosx = \frac{-\sqrt{3}}{2}$ और $\pi < x < \frac{3\pi}{2}$ है, तो

- $2 \cot^2 x + 3 \csc^2 x$ है:
- a) 14

b) 16

c) 8

- d) 18
- 65. If A lies between 45° and 540° , and sinA =0. 5, what is the value of A/3 in degrees? यदि A का मान 45° और 540° के मध्य है, और sinA = 0.5 है, तो A/3 का मान अंश में कितना होगा?
 - a) 170°
- b) 175°
- c) 165°
- d) 160°
- 66. Find θ , if $\cos\theta = -\frac{\sqrt{3}}{2}$.

यदि $cos\theta = -\frac{\sqrt{3}}{2}$, है, तो θ का माना ज्ञात

- a) $\frac{3\pi}{2}$ b) $\frac{2\pi}{3}$ c) $\frac{4\pi}{3}$
- d) $\frac{5\pi}{6}$
- 67. Find $cos\left(-\frac{7\pi}{2}\right)$. $\cos\left(-\frac{7\pi}{2}\right)$ ज्ञात कीजिए।

b) 1

d) 0

68. Which among the following continuously in the range $0^{\circ} < \theta < 90^{\circ}$?

निम्नलिखित में से कौन $0^{\circ} < \theta < 90^{\circ}$ की सीमा में लगातार बढता है?

- a) $cot \theta$
- b) Cosec θ
- c) $tan \theta$
- d) $\cos \theta$
- 69. The

 $\frac{3 \left(\cot ^2 47^{\circ} - sec^2 43^{\circ}\right) - 2 \left(tan^2 23^{\circ} - cosec^2 67^{\circ}\right)}{cosec^2 \left(68^{\circ} + \theta\right) - tan \left(\theta + 61^{\circ}\right) - tan^2 \left(22^{\circ} - \theta\right) + cot \left(29^{\circ} - \theta\right)}$

 $3 \left(cot^2 \ 47^{\circ} - sec^2 \ 43^{\circ} \right) - 2 \left(tan^2 \ 23^{\circ} - cosec^2 \ 67^{\circ} \right)$ $\overline{cosec^2 (68^{\circ}+\theta)-tan (\theta+61^{\circ})-tan^2 (22^{\circ}-\theta)+cot (29^{\circ}-\theta)}$

का मान क्या होगा?

a) 0

b) -1

c) 1

- d) 5
- 70. The value of

 $3 \left(cosec^2 \ 26^{\circ} - tan^2 \ 64^{\circ} \right) + \left(cot^2 \ 42^{\circ} - sec^2 \ 48^{\circ} \right)$ $\overline{\cot(22^{\circ}-\theta)-\csc^{2}(62^{\circ}+\theta)-\tan(\theta+68^{\circ})+\tan^{2}(28^{\circ}-\theta)}$ $3 (cosec^2 26^{\circ} - tan^2 64^{\circ}) + (cot^2 42^{\circ} - sec^2 48^{\circ})$ $\overline{\cot(22^{\circ}-\theta)-\csc^{2}(62^{\circ}+\theta)-\tan(\theta+68^{\circ})+\tan^{2}(28^{\circ}-\theta)}$

का मान बताइए।

- a) 3 b) 4
- c) -1
- d)-2

71. The value of $\frac{(\cos 9^{\circ} + \sin 81^{\circ})(\sec 9^{\circ} + \csc 81^{\circ})}{\cos \sec^2 71^{\circ} + \cos^2 15^{\circ} - \tan^2 19^{\circ} + \cos^2 75^{\circ}}$

 $(cos~9^\circ + sin~81^\circ)(sec~9^\circ + cosec~81^\circ)$ $cosec^2 71^{\circ} + cos^2 15^{\circ} - tan^2 19^{\circ} + cos^2 75^{\circ}$

बताइए|

a) 1

b) 4

c) -3

d) 2

72. Which of the following values suits for A to A Tan62°Sec28°cot 38° make the equation Cosec62°Tan11°

1 true?

यदि $\frac{A Tan62^{\circ} Sec28^{\circ} cot 38^{\circ}}{Cosec62^{\circ} Tan11^{\circ}} = 1$

निम्नलिखित में से कौन सा मान A के लिए

समीकरण बनाने के लिए उपयुक्त है ?

a) $\frac{Tan38^{\circ}}{\frac{Tan79^{\circ}Tan28^{\circ}}{Tan28^{\circ}Tan38^{\circ}}}$ c) $\frac{Tan38^{\circ}}{Tan28^{\circ}Tan38^{\circ}}$

73. If $sin(x) = \frac{2}{5}$ and x is an acute angle, find the exact values of cos(4x) - cos(2x).

यदि $sin(x) = \frac{2}{5}$ और x एक न्यूनकोण है, तो cos(4x) - cos(2x) का सटीक मान ज्ञात

कीजिए।

a) $\frac{625}{32}$

c) $-\frac{427}{625}$

74. The value of $\frac{\sin 4\theta}{(1-\cos 4\theta)}$. Is:

 $\frac{\sin 4\theta}{(1-\cos 4\theta)}$ का मान क्या होगा?

a) $tan\theta$

b) $cot\theta$

c) cot 2θ

d) $tan 2\theta$

75. If $\sin \theta + \cos \theta = \sqrt{2}$, then find the value of Cosec θ + cot θ .

यदि $\sin \theta + \cos \theta = \sqrt{2}$ है, तो $\operatorname{Cosec} \theta +$ $\cot \theta$ का मान ज्ञात कीजिए।

a) $\sqrt{2} - 1$ b) $\sqrt{2} + 5$

c) $\sqrt{3} - 1$

d) $\sqrt{2} + 1$

76. What is the value of $(4sin^3x - 3sinx +$ sin3x)?

 $(4sin^3x - 3sinx + sin3x)$ का होगा?

a) 0 b) 4

c) 1

d) 3

77. If $x + \frac{1}{x} = 2 \cos \theta$, then $x^3 + \frac{1}{x^3}$?

यदि $x + \frac{1}{x} = 2 \cos \theta$ है, तो $x^3 + \frac{1}{x^3} = ?$

a) 2 $\cos 2\theta$

c) 2 $\cos 3\theta$

d) $\cos 2\theta$

78. What will be the value of $sin 10^{\circ} - 4/3$ $sin^3 10^\circ$?

 $sin 10^{\circ} - 4/3 sin^{3} 10^{\circ}$ का मान क्या होगा?

b) 1/6

d) $\frac{\sqrt{3}}{6}$

79. If $2\frac{\cos^2 x - \sec^2 x}{\tan^2 x} = a + b \cos 2x$, then a, b = ? $2\frac{\cos^2 x - \sec^2 x}{\tan^2 x} = a + b \cos 2x$ है, तो

a) $\frac{-3}{2}$, $\frac{-1}{2}$ b) $\frac{3}{2}$, $\frac{1}{2}$ c) -3, -1 d) 3, 1

80. If $(\cos q + \sin q) = 31/25$ then what will be the value of $\cos^2 q$?

यदि $(\cos q + \sin q) = 31/25$ है, तो $\cos^2 q$ का मान क्या होगा?

a) 522/625

b) 512/625

c) 513/625

d) 527/625

81. If $sinx = \frac{2}{3}$, then find the value of cos 3x.

यदि $sinx = \frac{2}{3}$, तो cos 3x का मान ज्ञात कीजिए।

a) 0.6735

b) -0.8765

c)
$$-0.5797$$
 d) 0.5678

82.
$$(cosecA - sinA)^2 + (secA - cosA)^2 - (cotA - tanA)^2 =$$

a) 2

b) 0

c) 1

d)-1

83.
$$\frac{\sin\theta[(1-\tan\theta)\tan\theta+\sec^2\theta]}{(1-\sin\theta)\tan\theta(1+\tan\theta)(\sec\theta+\tan\theta)}$$

- b) $cosec\theta$ $sec\theta$
- c) $sin\theta cos\theta$
- d)-1

84. The expression
$$(1-\sin\theta+\cos\theta)^2 (1-\cos\theta)\sec^3\theta \csc^2\theta$$

90, is equal to:

তথ্যক
$$\frac{(1-\sin\theta+\cos\theta)^2 (1-\cos\theta)\sec^3\theta \csc^2\theta}{(\sec\theta-\tan\theta)(\tan\theta+\cot\theta)}$$
 কা

मान बताइए, जहां $0^{\circ} < \theta < 90^{\circ}$ है।

 $(\sec \theta - \tan \theta)(\tan \theta + \cot \theta)$

- b) 2 $\cos \theta$ a) $sin \theta$
- c) $cot \theta$ d) 2 $tan \theta$

85. The expression
$$\frac{(1+cos\theta+sin\theta)\div(1+cos\theta-sin\theta)}{(sec\theta-cos\theta)(cot\theta+tan\theta)(1+sin\theta)}, \ \ 0^{\circ}<\theta<90^{\circ}, \ is equal to:$$

 $\frac{(1+cos\theta+sin\theta)\div(1+cos\theta-sin\theta)}{(sec\theta-cos\theta)(cot\theta+tan\theta)(1+sin\theta)}$, जहां व्यंजक

 $0^{\circ} < \theta < 90^{\circ}$ है, इनमें से किसके बराबर होगा?

- a) $tan \theta$ b) $cot \theta$
- c) $sec \theta$ d) $sin \theta$

86. The value of $\frac{sec\varphi(1-sin\varphi)(sin\varphi+cos\varphi)(sec\varphi+tan\varphi)}{sec\varphi}$ $sin\varphi(1+tan\varphi)+cos\varphi(1+cot\varphi)$

is equal to:

$$\frac{\sec\varphi(1-\sin\varphi)(\sin\varphi+\cos\varphi)(\sec\varphi+\tan\varphi)}{\sin\varphi(1+\tan\varphi)+\cos\varphi(1+\cot\varphi)}$$
 का मान है:

- a) $2\cos\varphi$
- b) cosec φ sec φ
- c) $2\sin \varphi$
- d) sin φ cos φ

87. If
$$m = \sec \theta - \tan \theta$$
 and $n = \csc \theta + \cot \theta$, then what is the value of $m + n(m - 1)$?

यदि $m = \sec \theta - \tan \theta$ और $n = \csc \theta +$ $\cot \theta$ है, तो m + n(m-1) का मान क्या है?

a) 0

b) 2

c) 1

d)-1

88. If
$$\sin m + \sin n = p$$
, $\cos m + \cos n = q$, then find the value of $\sin m \times \sin n + \cos m \times \cos n$.

यदि $\sin m + \sin n = p$, $\cos m + \cos n = q$, तो $sin m \times sin n + cos m \times cos n$ का मान ज्ञात कीजिए।

- a) $p^2 + q^2 2$
- b) $(p^2 + q^2 2)/2$
- c) p + q pq
- d) p + q + pq

$$89. \frac{(2sinA)(1+sinA)}{1+sinA+CosA} =$$

- a) 1 + sinA CosA
- b) 1 sinAcosA
- c) 1 + cosA sinA
- d) 1 + sinAcosA

90. What is the value of the expression
$$\cos 2A \cos 2B + \sin^2(A-B) - \sin^2(A+B)$$
?

 $\cos 2A \cos 2B + \sin^2(A-B)$ $sin^2(A+B)$ का मान क्या होगा?

- a) sin(2A-2B) b) sin(2A+2B)
- c) cos(2A+2B) c) cos(2A-2B)

91. If
$$x = \frac{2sin\theta}{(1+cos\theta+sin\theta)}$$
, then the value of $\frac{1-cos\theta+sin\theta}{1+sin\theta}$ is:

 $(1+\cos\theta+\sin\theta)$ मान है:

- b) x

92. The value of
$$(2cos^2\theta-1)\left[\frac{1+tan\theta}{1-tan\theta}+\frac{1-tan\theta}{1+tan\theta}\right]$$
 is:
$$(2cos^2\theta-1)\left[\frac{1+tan\theta}{1-tan\theta}+\frac{1-tan\theta}{1+tan\theta}\right]$$
 का मान क्या है?

c)
$$\frac{\sqrt{3}}{2}$$

- 93. If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin\theta = y \cos\theta$, then the value of $x^2 + y^2$ is: $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ $x \sin\theta = y \cos\theta$, है तो $x^2 + y^2$ का मान है:
 - a) 0

c) 1

94. If
$$\frac{\cos\alpha}{\sin\alpha + \cos\beta} + \frac{\cos\beta}{\sin\beta - \cos\alpha} = \frac{x}{\sin\alpha - \cos\beta} + \frac{x}{\cos\alpha} + \frac{x}{\alpha} + \frac{$$

 $\frac{\cos\beta}{\sin\beta+\cos\alpha}$, then x is equal to:

यदि
$$\frac{\cos\alpha}{\sin\alpha + \cos\beta} + \frac{\cos\beta}{\sin\beta - \cos\alpha} = \frac{x}{\sin\alpha - \cos\beta} + \frac{\cos\beta}{\sin\beta + \cos\alpha}$$
 है तो x बराबर है:

- a) $cos \beta$
- b) cosα
- c) $\sin \beta$
- d) $sin \alpha$
- 95. If $5\sin^2\theta 4\cos\theta 4 = 0$, $0^{\circ} < \theta < 90^{\circ}$, then the value of $(cot \theta + cosec \theta)$ is:

यदि
$$5sin^2 \theta - 4 cos \theta - 4 = 0$$
, है, $0^\circ < \theta <$

90° है, तो $(\cot \theta + \csc \theta)$ का मान जात

करें।

- a) $\frac{3}{2}$
- b) $\frac{\sqrt{6}}{2}$ c) $\frac{\sqrt{6}}{3}$ d) $\frac{2}{3}$
- 96. If $11\sin^2\theta \cos^2\theta + 4\sin\theta 4 = 0$, $0^{\circ} <$ $heta < 90^\circ$, then what is the value of $rac{cos2\theta + cot2\theta}{sec2\theta - tan2\theta}$?

$$11sin^2\theta - cos^2\theta + 4sin\theta - 4 =$$

$$0,\ 0^{\circ} < heta < 90^{\circ}$$
है, तो $rac{cos2 heta + cot2 heta}{sec2 heta - tan2 heta}$ का मान

क्या है?

- a) $\frac{10+5\sqrt{3}}{3}$ b) $\frac{12+7\sqrt{3}}{6}$ c) $\frac{10+7\sqrt{3}}{6}$ d) $\frac{12+5\sqrt{3}}{3}$

- 97. Solve the following equation.
 - $\theta: 2\cos^2\theta + (4+\sqrt{3})\sin\theta 2(1+\sqrt{3}) =$
 - 0 where θ is an acute angle.

निम्नलिखित समीकरण को हल करें।

$$\theta$$
: $2\cos^2\theta + (4+\sqrt{3})\sin\theta - 2(1+\sqrt{3}) =$

- 0 जहाँ θ एक न्यून कोण है।
- a) 30°
- b) 45°
- c) 15°
- 98. If $\frac{\sin^2 \theta}{\cos^2 \theta 3\cos \theta + 2} = 1$, θ lies in the first quadrant, then the value of $\frac{\tan^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2}}{\tan \theta + \sin \theta}$ is:

यदि
$$\frac{\sin^2\theta}{\cos^2\theta - 3\cos\theta + 2} = 1, \theta \text{ प्रथम चतुर्थांश में}$$
स्थित है, तो
$$\frac{\tan^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}}{\tan\theta + \sin\theta} \text{ का मान बताइए}|$$
a)
$$\frac{2\sqrt{3}}{27} \text{ b) } \frac{5\sqrt{3}}{27} \text{ c) } \frac{2\sqrt{3}}{9} \text{ d) } \frac{7\sqrt{3}}{54}$$

- 99. For θ : $0^{\circ} < \theta < 90^{\circ}$ 3 $\sec \theta + 4 \cos \theta =$ $4\sqrt{3}$, find the value of $(1 - sin\theta + cos\theta)$.
 - θ के लिए: $0^{\circ} < \theta < 90^{\circ}$ है। $3 \sec \theta +$

 $4\cos\theta = 4\sqrt{3}$ है, तो $(1-\sin\theta + \cos\theta)$ का

मान ज्ञात करें।

- a) $\frac{1+2\sqrt{3}}{2}$ b) $\frac{1+\sqrt{3}}{2}$ c) $\frac{1-\sqrt{3}}{2}$ d) $\frac{1-2\sqrt{3}}{2}$
- 100. If $sec\theta 2cos\theta = \frac{7}{2}$, where θ is a positive acute angle, then the value of $sec\theta$ is:

यदि $sec\theta - 2cos\theta = \frac{7}{2}$ है, जहाँ θ धनात्मक न्यून कोण है, तो $sec\theta$ का मान ज्ञात कीजिए।

- a) 6
- b) 8 d) 4
- c) 5

101. If $3sin\theta = 2 cos^2\theta$, $0^\circ < \theta < 90^\circ$, then the value of $(tan^2\theta + sec^2\theta - cosec^2\theta)$ is:

यदि $3\sin\theta = 2\cos^2\theta$, $0^{\circ} < \theta < 90^{\circ}$, तो $(tan^2\theta + sec^2\theta - cosec^2\theta)$ का मान है:

- a) -2
- c) $\frac{7}{3}$

102. If $sin\theta$. $sec^2\theta=\frac{2}{3}$, $0^\circ<\theta<90^\circ$, then the value of $(tan^2\theta + cos^2\theta)$ is:

यदि $sin\theta$. $sec^2\theta = \frac{2}{3}$, $0^{\circ} < \theta < 90^{\circ}$ है, तो $(tan^2\theta + cos^2\theta)$ का मान है:

- a) $\frac{7}{6}$

103. If $1 + \sin^2\theta - 3\sin\theta \cos\theta = 0$, then the value of $cot\theta$ is:

यदि $1 + \sin^2\theta - 3\sin\theta\cos\theta = 0$, तो $\cot\theta$ का मान क्या होगा?

- a) 0
- b) 2

104. If $6tan\theta - 5\sqrt{3}sec\theta + 12cot\theta = 0$, $0^{\circ} <$ $\theta < 90^{\circ}$, then the value of $(cosec\theta + sec\theta)$ is:

यदि $6tan\theta - 5\sqrt{3}sec\theta + 12cot\theta =$ 0, $0^{\circ} < \theta < 90^{\circ}$, तो $(cosec\theta + sec\theta)$ का

- मान है:
- a) $\frac{3+2\sqrt{3}}{2}$ b) $\frac{2}{3}(3+\sqrt{3})$

105. If $sec \theta$ and $sin\theta$ $(0 < \theta < 90)$ are the roots of the equation $\sqrt{6}x^2 - kx + \sqrt{6} = 0$. then the value of K is:

यदि $\sec \theta$ और $\sin \theta$ $(0 < \theta < 90)$ समीकरण $\sqrt{6}x^2 - kx + \sqrt{6} = 0$, के मूल हैं, तो k का मान है:

- a) $\sqrt{3}$
- b) $3\sqrt{2}$
- c) $2\sqrt{3}$
- d) $3\sqrt{3}$

106. If sin(A + B) = cos(A + B), what is the value of tan A?

यदि sin(A+B) = cos(A+B) है, तो tan Aका मान कितना होगा?

- 1-tanB

107. Simplify the following:

 $\cos x - \sqrt{3} \sin x$

निम्नलिखित को सरल करें:

 $\cos x - \sqrt{3}\sin x$

- a) $cos\left(\frac{\pi}{3}-x\right)$ b) $sin\left(\frac{\pi}{3}+x\right)$ c) $cos\left(\frac{\pi}{3}+x\right)$ d) $sin\left(\frac{\pi}{3}-x\right)$

108. The value of θ when $\sqrt{3}\cos\theta + \sin\theta =$ 1, $(0^{\circ} \le \theta \le 90^{\circ})$, is:

heta का मान क्या होगा, जब $\sqrt{3} \cos heta$ + $\sin \theta = 1$, $(0^{\circ} \le \theta \le 90^{\circ})$ है?

- a) 90°
- b) 30°
- c) 60°
- d) 0°

109. If $Tan\ A\ Tan\ B + \frac{\cos x}{\cos A\cos B} = 1$, then x = ?

 $Tan A Tan B + \frac{\cos x}{\cos A \cos B} = 1$ है, तो x = ?

- a) *B*
- **b)** A
- c) A + B
- d) A B

110. If $tan(\alpha + \beta) = a, tan(\alpha - \beta) = b$, then the value of $tan 2\alpha$ is:

यदि $tan(\alpha + \beta) = a$, $tan(\alpha - \beta) = b$ है, तो tan 2α का मान ज्ञात कीजिए।

- a) $\frac{a+b}{1-ab}$ c) $\frac{a-b}{1+ab}$

111. If
$$0^{\circ} < A$$
, $B < 45^{\circ}$, $cos(A+B) = \frac{24}{25}$ and $sin(A-B) = \frac{15}{17}$, then $tan2A =$ यदि $0^{\circ} < A$, $B < 45^{\circ}$, $cos(A+B) = \frac{24}{25}$ &

$$\sin(A - B) = \frac{15}{17}$$
 है, तो $\tan 2A =$

c)
$$\frac{416}{87}$$

d)
$$\frac{213}{4}$$

112. Given that A and B are second quadrant angles, $sin A = \frac{1}{3}$ and $sin B = \frac{1}{5}$, then find the value of cos(A - B).

दिया गया है कि A और B द्वितीय चतुर्भुज कोण हैं, $\sin A = \frac{1}{3}$ और $\sin B = \frac{1}{5}$, तो cos(A-B) का मान ज्ञात कीजिए।

a)
$$\frac{4\sqrt{3}+1}{15}$$

b)
$$\frac{8\sqrt{3}-1}{15}$$

c)
$$\frac{8\sqrt{3}+1}{15}$$

b)
$$\frac{8\sqrt{3}-1}{15}$$
 d) $\frac{4\sqrt{3}-1}{15}$

113. The Value of $\frac{\sin 4\theta + \sin 2\theta}{\cos 4\theta + \cos 2\theta}$ is:

sin 4θ+sin 2θ का माना क्या होगा? $\cos 4\theta + \cos 2\theta$

- a) $tan 3\theta$
- b) $cot \theta$
- c) tanθ
- c) $\cot 3\theta$
- 114. The value of $sin73^{\circ} + cos137^{\circ}$ is:

 $sin73^{\circ} + cos137^{\circ}$ का मान क्या होगा ?

- a) *cos* 13°
- b) sin 13°
- c) sin 18°
- d) cos 18°
- $cos(36^{\circ} A)cos(36^{\circ} + A) +$ 115. Simplify $cos(54^{\circ} - A)cos(54^{\circ} + A)$

निम्न का मान ज्ञात कीजिए।

 $cos(36^{\circ} - A)cos(36^{\circ} + A) + cos(54^{\circ} - A)$

- $A)cos(54^{\circ} + A)$
- a) cos A
- b) sin 2A
- c) *cos* 2*A*
- d) sin A
- 116. What is the value of $\frac{sin(A+B)}{sin A cos B}$

 $\frac{\sin(A+B)}{\sin A \cos B}$ का मान क्या है?

- a) 1 + cot A tan B
- b) 1 + tan A cot B

- c) $1 \sin A \cos B$
 - d) $1 \cot A \tan B$
- 117. For what value of θ (in degrees) is the following equation true?

 $\sin 3\theta \cos \theta - \cos 3\theta \sin \theta = \frac{1}{2}, 0 < \theta < \frac{\pi}{2}$

निम्न समीकरण में θ (डिग्री में) का सही मान क्या होगा?

$$sin3\theta cos\theta - cos3\theta sin \theta = \frac{1}{2}, 0 < \theta < \frac{\pi}{2}$$

a) 45 b) 30 c) 60 d) 15

118. Find the value of the following.

निम्नलिखित का मान ज्ञात कीजिए।

$$\frac{\sin 67^{\circ} \cos 37^{\circ} - \sin 37^{\circ} \cos 67^{\circ}}{\cos 13^{\circ} \cos 17^{\circ} - \sin 13^{\circ} \sin 17^{\circ}}$$

b) 7 c) $\frac{1}{\sqrt{3}}$ d) $\frac{4}{\sqrt{3}}$

119. If $\cos A = \sin^2 A$, and $a \sin^{12} A +$ $b \sin^{10} A + c \sin^8 A + \sin^6 A = 1$, then a +b + c = ?

 $cosA = sin^2A$ और $a \sin^{12} A +$ यदि $b \sin^{10} A + c \sin^{8} A + \sin^{6} A = 1$ है तो a +b + c = ?

- a) 7
- b) 8
- c) 9
- d) 6
- 120. Which of the following will satisfy $a^2 = b^2 + a^2$ $(ab)^2$ for the values a and b?

 $a^2 = b^2 + (ab)^2$ में a और b के मान के लिए कौन सा विकल्प उपयुक्त है?

- a) $a = \sin x$, $b = \cot x$
- b) $a = \cos x$, $b = \tan x$
- c) $a = \cot x$, $b = \cos x$
- d) $a = \sin x$, $b = \tan x$

121. If	$cos^2\theta + 3 = 3(cot^2\theta + sin^2\theta), \ 0^\circ <$
$\theta <$	90° , then what is the value of $(2cos heta+$
3sin	$(\mathbf{\theta})$?

यदि
$$cos^2\theta+3=3(cot^2\theta+sin^2\theta),~0^\circ<$$
 $\theta<90^\circ$ है, तो $(2cos\theta+3sin\theta)$ का मान

कितना होगा?

a)
$$\frac{1+3\sqrt{3}}{2}$$
 b) $\frac{2\sqrt{3}+1}{2}$

c)
$$\frac{\sqrt{3}+2}{2}$$
 d) $\frac{2+3\sqrt{3}}{2}$

d)
$$\frac{2+3\sqrt{3}}{2}$$

122. If cosA, sinA, cotA are in geometric progression, then the value of $tan^6 A$ – $tan^2 A$ is:

यदि cosA, sinA, cotA गुणोत्तर श्रेढ़ी में हैं, तो $tan^6 A - tan^2 A$ का मान है

a) 1/2

b) 3

c) 1/3

- d) 1
- 123. If $cos^2\theta sin^2\theta = tan^2\varphi$, then which of the following is true?

यदि $\cos^2\theta - \sin^2\theta = \tan^2\varphi$ है तो निम्न में से कौन सा सत्य है?

- a) $\cos \theta \cos \varphi = 1$
- b) $\cos \theta \cos \varphi = \sqrt{2}$
- c) $\cos^2 \varphi \sin^2 \varphi = \cot^2 \theta$
- d) $cos^2 \varphi sin^2 \varphi = tan^2 \theta$
- 124. If $\frac{\sec \theta \tan \theta}{\sec \theta + \tan \theta} = \frac{1}{7}$, θ lies in first quadrant, then

the value of $\frac{cosec \theta + cot^2 \theta}{cosec \theta - cot^2 \theta}$ is:
यदि $\frac{sec \theta - tan \theta}{sec \theta + tan \theta} = \frac{1}{7}$, θ प्रथम चतुर्थांश में स्थित

- है, तो $\frac{cosec \theta + cot^2 \theta}{cosec \theta cot^2 \theta}$ का मान बताइए|
 a) $\frac{19}{5}$ b) $\frac{22}{3}$ c) $\frac{37}{12}$

- d) $\frac{37}{19}$
- 125. If $sec\theta cos\theta = 14$ and $14sec\theta = x$, then the value of x is $x = x^2 + 2x^2 + 2x^2$

यदि $sec\theta - cos\theta = 14$ and $14sec\theta = x$ है,

- तो x का मान ज्ञात कीजिए।
- a) $sec^2\theta$
- b) $tan^2\theta$
- c) $2tan \theta$
- d) $2sec \theta$

- 126. The least value of $8cosec^2\theta + 25sin^2\theta$ is: $8cosec^2\theta + 25sin^2\theta$ का न्यूनतम मान है:
 - a) $20\sqrt{2}$
- b) $10\sqrt{2}$
- c) $40\sqrt{2}$
- d) $30\sqrt{2}$
- 127. If $A + B = 45^{\circ}$, then the value of 2(1 +tanA)(1 + tan B) is:

A + B = 45, and 2(1 + tanA)(1 + tanA)tan B) का मान है:

a) 2

b) 4

c) 1

- d) 0
- 128. If $1 + sin\theta = mcos\theta$, then what is the value of $sin\theta$?

यदि $1 + \sin\theta = m\cos\theta$ है, तो $\sin\theta$ का मान क्या होगा?

- b) $\frac{m^2-1}{m^2+1}$ d) $\frac{m^2+1}{m^2-1}$
- 129. Which of the following is the value of

$$\sqrt{\frac{1-\sin 45^{\circ}}{1+\sin 45^{\circ}}}$$
?

का मान निम्नलिखित में से कौन-सा

- a) *cos* 45° tan 45°
- b) $tan 45^{\circ} sec 45^{\circ}$
- c) tan 45°
- d) $sec 45^{\circ} tan 45^{\circ}$
- $\frac{x x \cos e c^2 30^{\circ}}{1 + \cos e c^2 30^{\circ}} = \cos^2 60^{\circ} + 4 \cot^2 45^{\circ} \frac{1}{3} \cos^2 60^{\circ} + \frac{1}{3} \cos^2 60^{\circ$ 130. If sec^260° , then the value of x is $\frac{x - x \cos ec^2 30^{\circ}}{1 + \cos ec^2 30^{\circ}} = \cos^2 60^{\circ} + 4 \cot^2 45^{\circ}$ sec^260° है, तो x का मान ज्ञात कीजिए|

131. If
$$\frac{5cot \, \theta + \sqrt{3}cosec \, \theta}{2\sqrt{3}cosec\theta + 3cot\theta} = 1$$
, $\theta < \theta < 90^\circ$, then the value of $\frac{7}{2}\frac{cot^2 \, \theta - \frac{3}{4}cosec^2 \, \theta}{4sin^2 \, \theta + \frac{3}{2}tan^2 \, \theta}$ will be:
$$\frac{5cot \, \theta + \sqrt{3}cosec \, \theta}{2\sqrt{3}cosec\theta + 3cot\theta} = 1$$
, $\theta < \theta < 90^\circ$ है, तो
$$\frac{\frac{7}{2}cot^2 \, \theta - \frac{3}{4}cosec^2 \, \theta}{4sin^2 \, \theta + \frac{3}{2}tan^2 \, \theta}$$
 का मान ज्ञात करें।

d) 5

a) 7

c) 0°

b) 2

- 132. For all α_i 's, (i = 1, 2, 3, ..., 20) lying from 0° to 90°, it is given that, $sin \propto_1 + sin \propto_2 +$ $sin \propto_3 + \cdots + sin \propto_{20} = 20$. What is the value of $(\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_{20})$? सभी α_i (i = 1, 2, 3, ..., 20) के लिए, जो कि 0° से 90° तक हैं, यह दिया गया है कि $sin \propto_1 +$ $sin \propto_2 + sin \propto_3 + \cdots + sin \propto_{20} = 20$ है| तो $(\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_{20})$ on Hier or significant. a) 1800° b) 900° c) 0° d) 20°
- 133. For all α_i 's, (i = 1, 2, 3, ..., 20) lying from 0° to 90°, it is given that, $\cos \propto_1 + \cos \propto_2 +$ $\cos \propto_3 + \cdots + \cos \propto_{20} = 20$. What is the value of $(\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_{20})$? सभी α_i , (i = 1, 2, 3, ..., 20) के लिए, जो कि 0° से 90° तक हैं, यह दिया गया है कि $cos \propto_1 + cos \propto_2 + cos \propto_3 + \cdots + cos \propto_{20} =$ 20 है। तो $(\alpha_1 + \alpha_2 + \alpha_3 + \cdots + \alpha_{20})$ का मान क्या होगा? a) 900° b) 1800°
- 134. If cosA + cosB + cosC = 3, then what is the value of sinA + sinB + sinC? यदि cosA + cosB + cosC = 3, तो sinA +sinB + sinC का मान क्या है?

d) 20°

a) 1 b) 2 c) 0 d) -1

- 135. If $\sin \alpha + \sin \beta = \cos \alpha + \cos \beta = 1$, then $\sin \alpha + \cos \alpha = ?$ यदि $sin\alpha + sin \beta = cos \alpha + cos \beta = 1$ है, तो $\sin \alpha + \cos \alpha = ?$ c) 0 a) 2 b) 1 d)-1
- 136. Using $2\cos A \cos B = \cos (A + B) +$ cos(A - B), find the value of cos $75^{\circ}cos\ 15^{\circ}$. $2\cos A\cos B = \cos(A+B) + \cos(A-B)$ के उपयोग से $\cos 75^{\circ} \cos 15^{\circ}$ का मान ज्ञात कीजिए।
 - a) $\frac{1}{2}$ b) $\frac{\sqrt{2}}{4}$ c) $\frac{\sqrt{2}}{2}$
- 137. If $sin A = \frac{5}{12}$ and 7 cot B = 24, then the value of (sec A cos B)(cosec B tan A) is: यदि $sin A = \frac{5}{12}$ और 7 cot B = 24 है, तो (sec A cos B)(cosec B tan A) का मान क्या होगा?
 - a) $\frac{13}{14}$ b) $\frac{15}{13}$ c) $\frac{13}{7}$ d) $\frac{65}{42}$
- 138. If $b \cos\theta = a$, then $\csc\theta + \cot\theta =$ ____. यदि $b \cos \theta = a$ है, तो $cosec\theta +$ $cot\theta =$ होगा।
- 139. In the given figure, ABC is an isosceles triangle with BC = 8cm and AB = AC =5cm. The value of $tan \ C - cot \ B$ is दी गई आकृति में, ABC एक समद्विबाह त्रिभुज है जिसमें BC = 8cm और AB =AC = 5cmहै। tan C-cot Bमान है।

140. If $cos\theta = \frac{4x}{1+4x^2}$ then what is the value of $\sin \theta$?

यदि $cos\theta = \frac{4x}{1+4x^2}$ तो $sin \theta$ का मान क्या होगा?

a)
$$\frac{1+4x^2}{x^2}$$

b)
$$\frac{1+4x^2}{4x^2}$$

a)
$$\frac{1+4x^2}{1-4x^2}$$
 b) $\frac{1+4x^2}{4x^2}$ c) $\frac{1-4x^2}{1+4x^2}$ d) $\frac{1-4x^2}{4x^2}$

d)
$$\frac{1-4x^2}{4x^2}$$

141. If $sin\theta = \frac{2\sqrt{ab}}{a+b}$, a>b>0, then the value of $\frac{\cos\theta+1}{\cos\theta-1}$ will be:

यदि $sin heta = rac{2\sqrt{ab}}{a+b}$ है, a>b>0 है, तो $rac{cos heta+1}{cos heta-1}$

का मान ज्ञात करें। a) $-\frac{b}{a}$ b) $-\frac{a}{b}$ c) $\frac{a}{b}$

a)
$$-\frac{b}{a}$$

b)
$$-\frac{a}{b}$$

c)
$$\frac{a}{b}$$

d)
$$\frac{b}{a}$$

142. A clock tower stands at the crossing of towards which point in the north-south and the east - west directions. P,Q,R and S are points on the roads due north, east, south and west respectively, where the angles of elevation of the top of the tower are respectively, α , β , γ and δ . Then $(\frac{PQ}{PC})^2$ is equal to.

एक क्लॉक टावर उत्तर-दक्षिण और पूर्व-पश्चिम दिशाओं में किस बिंदू की ओर चौराहे पर खड़ा है। P, Q, R और S क्रमशः उत्तर, पूर्व, दक्षिण और पश्चिम की ओर जाने वाली सड़कों पर बिंदु हैं, जहाँ टॉवर के शीर्ष के उन्नयन कोण क्रमशः α , β , γ and δ . हैं। तो $(\frac{PQ}{RS})^2$ के बराबर है।

a) $\frac{tan^2 \alpha + tan^2 \delta}{tan^2 \gamma + tan^2 \beta}$ b) $\frac{tan^2 \alpha + tan^2 \beta}{tan^2 \gamma + tan^2 \delta}$ c) $\frac{cot^2 \alpha + cot^2 \beta}{cot^2 \gamma + cot^2 \delta}$ d) $\frac{cot^2 \alpha + cot^2 \delta}{cot^2 \gamma + cot^2 \beta}$

a)
$$\frac{tan^2 \alpha + tan^2 \delta}{tan^2 \gamma + tan^2 \beta}$$

b)
$$\frac{\tan^2\alpha + \tan^2\beta}{\tan^2\nu + \tan^2\delta}$$

c)
$$\frac{\cot^2\alpha + \cot^2\beta}{\cot^2\nu + \cot^2\delta}$$

d)
$$\frac{\cot^2\alpha + \cot^2\delta}{\cot^2\gamma + \cot^2\beta}$$

ANSWER KEY

1. D	2. A	3. D	4. A	5. C
6. C	7. C	8. A	9. D	10. B
11. B	12. B	13. D	14. D	15. B
16. A	17. D	18. C	19. A	20. B
21. A	22. D	23. B	24. A	25. A
26. C	27. B	28. A	29. C	30. D
31. B	32. C	33. D	34. B	35. A
36. A	37. D	38. D	39. A	40. D
41. D	42. B	43. C	44. B	45. A
46. C	47. D	48. C	49. A	50. C
51. A	52. B	53. C	54. A	55. B
56. D	57. A	58. A	59. A	60. C
61. C	62. B	63.	64. D	65. A
66. D	67. D	68. C	69. B	70. D
71. D	72. C	73. B	74. C	75. D
76. A	77. C	78. B	79. C	80. D
81. C	82. C	83. A	84. A	85. B
86. D	87. D	88. B	89. A	90. C
91. C	92. A	93. C	94. B	95. B
96. B	97. D	98. D	99. B	100. D
101. B	102. C	103 . B	104. B	105. D
106. A	107. C	108. A	109. C	110. A
111. C	112. C	113. A	114. B	115. C
116. A	117. D	118. C	119. A	120. C
121. B	122. D	123. D	124. A	125. B
126. A	127. B	128. B	129. D	130. C
131. D	132. A	133. B	134. C	135. B
136. D	137. D	138. C	139. B	140. C
141. B	142. C			