

PROPOSED CLAIM CHANGES - SN 09/683,821

1. (Currently Amended) A reliable symbol identification method <u>for use in a communication</u> <u>system for transmitting symbols of a high order constellation, comprising:</u>

calculating a reliability factor of a captured sample from values of a plurality of other samples in proximity to the captured sample, wherein the captured sample and the plurality of other samples represent a data signal recovered from a communication channel, <u>and</u>

if the reliability factor is less than a predetermined limit, designating the captured sample as a reliable symbol.

2. (Previously Presented) The method of claim 1, wherein the reliability factor R_n of the captured sample is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} |y_{n-i}| \cdot c_i, \text{ where }$$

 y_n is the captured sample,

y_{n-i} is a sample in proximity to the captured sample,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

- 3. (Original) The method of claim 2, where $c_i = 1$ for all i.
- 4. (Original) The method of claim 2, wherein $K_1 = 0$.
- 5. (Original) The method of claim 2, wherein $K_2 = 0$.
- 6. (Currently Amended) The method of claim 1, wherein the predetermined limit varies over time.
- 7. (Currently Amended) The method of claim 1, further comprising determining a rate at which reliable symbols are identified, and

if the rate is less than a predetermined value, increasing the predetermined limit.

8. (Currently Amended) The method of claim 1, further comprising determining a rate at which reliable symbols are identified, and

if the rate exceeds a second predetermined value, decreasing the predetermined limit.

9. (Previously Presented) The method of claim 1, wherein the reliability of a two-dimensional captured sample y_n is given by:

$$R_n = \sum\limits_{\begin{subarray}{c} i=-K_1\\ i\neq 0\end{subarray}}^{K_2} \sqrt{y_{1_{n-i}}^2 + y_{2_{n-i}}^2} \cdot c_i$$
 , where

 $\underline{y_{1_{n-i}}} \underline{\text{ and }} \underline{y_{2_{n-i}}} \underline{-y_{1_{n-i}}^2} \underline{-\text{and }} \underline{-y_{2_{n-i}}^2} -\text{respectively represent values of a neighboring sample } y_{n-i}$ in first and second dimensions,

 K_1 , K_2 are numbers of samples adjacent to the captured sample, and c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

10. (Currently Amended) A method of identifying reliable symbols for use in a communication system for transmitting symbols of a high order constellation, comprising:

for a captured sample y_n recovered from a communication channel:

iteratively, for $i = -K_1$ to K_2 , $i \neq 0$, wherein K_1 , K_2 are real numbers:

adding to a reliability factor a value of based on another captured sample y_{n-i} also recovered from the communication channel,

if the reliability factor exceeds a predetermined limit, disqualifying the captured sample as a reliable symbol, and

otherwise, incrementing i and, if i=0, re-incrementing i for a subsequent iteration; and

thereafter, unless the captured symbol has been disqualified, designating the captured sample as a reliable symbol.

- 11. (Previously Presented) The method of claim 10, wherein the adding adds an absolute value of the sample y_{n-i} to the reliability factor.
- 12. (Previously Presented) The method of claim 10, wherein the adding adds a scaled value of the sample y_{n-i} to the reliability factor, the value scaled in accordance with a predetermined coefficient c_i representing any prior knowledge of intersymbol interference effects.
- 13. (Previously Presented) The method of claim 10, wherein the adding adds the power of the sample y_{n-i} to the reliability factor.

Formatted: Claim Body

Formatted: Indent: Left: 0.5"

Formatted: Indent: Left: 1"

Formatted: Indent: Left: 0.5"

- 14. (Previously Presented) The method of claim 10, wherein the predetermined limit is half a width of an annular constellation ring in which the captured sample is observed.
- 15. (Previously Presented) The method of claim 10, wherein the predetermined limit is $(K_1 + K_2)d_{min}$ where d_{min} is half a distance between two constellation points that are closest together in a governing constellation.
- 16. (Previously Presented) The method of claim 10, wherein the predetermined limit varies over time.
- 17. (Previously Presented) The method of claim 10, further comprising determining a rate at which reliable symbols are identified, and

if the rate is less than a predetermined value, increasing the predetermined limit.

18. (Previously Presented) The method of claim 10, further comprising determining a rate at which reliable symbols are identified, and

if the rate exceeds a second predetermined value, decreasing the predetermined limit.

19. (Currently Amended) A method of identifying reliable symbols, for use in a communication system for transmitting symbols of a high order constellation, comprising: , for a captured sample recovered from a communication channel,

determining whether any value of a plurality of neighboring samples also recovered from the communication channel is within a predetermined limit, and

if none of the values exceed the predetermined limit, designating the captured sample as a reliable symbol.

- 20. (Original) The method of claim 19, wherein the predetermined limit varies over time.
- 21. (Original) The method of claim 19, further comprising determining a rate at which reliable symbols are identified,

if the rate is less than a predetermined threshold, increasing the predetermined limit.

22. (Original) The method of claim 21, further comprising, if the rate exceeds a second predetermined threshold, decreasing the predetermined limit.

Formatted: Claim Body

Formatted: Indent: Left: 0.5"

598554_1.DOC Page 3 of 12 12805/46001

- 23. (Currently Amended) The method of claim 19, wherein the plurality of neighboring samples occur in a first window adjacent to the captured sample on one side of the captured sample.
- 24. (Currently Amended) The method of claim 19, wherein the plurality of neighboring samples occur in a pair of windows that are adjacent to, and on either side of the captured sample.
- 25. (Currently Amended) A method of detecting reliable symbols within a sampled data signal, <u>for use</u> at a receiver <u>of a communication system for transmitting symbols of a high order constellation</u>, comprising:

identifying a sequence of sample values having values within a predetermined limit, and designating a sample adjacent to the sequence as a reliable symbol.

- 26. (Original) The method of claim 25, wherein the predetermined limit varies over time.
- 27. (Original) The method of claim 25, further comprising determining a rate at which reliable symbols are identified,

if the rate is less than a predetermined threshold, increasing the predetermined limit.

- 28. (Original) The method of claim 27, further comprising, if the rate exceeds a second predetermined threshold, decreasing the predetermined limit.
- 29. (Previously Presented) A data decoder for use in a communication system for transmitting symbols of a high order constellation, comprising:
- a reliable symbol detector to detect reliable symbols from a sequence of captured samples, the reliable symbols being the captured samples which are estimated to <u>be located in a correct decision region of a corresponding source symbol, have been corrupted least by intersymbol interference ("ISI"),</u>
- an adaptation unit coupled to the reliable symbol detector to generate <u>intersymbol</u> <u>interference ("ISI")</u> metrics based on the reliable symbols, and
- a data decoder to receive the captured samples and estimate<u>d</u> source symbols based on the ISI metrics.

598554_1.DOC Page 4 of 12 12805/46001

30. (Currently Amended) An equalization method for use in a communication system for transmitting symbols of a high order constellation, comprising

identifying reliable symbols from a string of captured samples recovered from a communication channel, the reliable symbols being the captured samples which are estimated to be located in a correct decision region of their corresponding source symbols, have been corrupted least by effects of the communication channel,

calculating the channel effects based on the reliable symbols and samples adjacent thereto,

correcting the captured samples based on the calculated channel effects to equalize the string of captured samples.

31. (Currently Amended) The method of claim 30, wherein the identifying comprises:

calculating a reliability factor of a captured sample from values of a plurality of samples in the neighborhood of the captured sample,

if the reliability factor is below a predetermined limit, designating the captured sample as a reliable symbol.

32. (Currently Amended) The method of claim 31, wherein the reliability factor of the captured sample y_n is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} |y_{n-i}| \cdot c_i$$
 , where

y_{n-i} is a sample in the neighborhood of the captured sample,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

33. (Currently Amended) The method of claim 31, wherein the reliability factor of the captured sample y_n is given by:

$$R_n = \sum\limits_{i=1}^K \! \left| y_{n-i} \right| \cdot c_i$$
 , where

y_{n-i} is a sample in the neighborhood of the captured sample,

K is a length of samples, and

ci is a coefficient representing any prior knowledge of intersymbol interference effects.

(Currently Amended) The method of claim 31, wherein the reliability of a twodimensional captured sample yn is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} \sqrt{y_{1_{n-i}}^2 + y_{2_{n-i}}^2} \cdot c_i$$
 , where

 $y_{1_{n-i}}$ and $y_{2_{n-i}}$ - $y_{1_{n-i}}^2$ -and $y_{2_{n-i}}^2$ -respectively represent values of a neighboring sample y_{n-i} in first and second dimensions,

K₁, K₂ are numbers of samples adjacent to the captured sample, and ci is a coefficient representing any prior knowledge of intersymbol interference effects.

(Original) The method of claim 30, wherein the identifying comprises: 35.

identifying a sequence of samples having received signal magnitude levels below a predetermined limit, and

designating a sample adjacent to the sequence as a reliable symbol.

(Original) The method of claim 30, wherein, for QAM transmission, the identifying 36. comprises:

identifying a sequence of samples for which a received signal magnitude in a quadrature-phase component is below a predetermined limit, and

designating an adjacent sample as a reliable symbol for quadrature-phase.

(Original) The method of claim 30, wherein, for QAM transmission, the identifying 37. comprises:

identifying a sequence of samples for which a received signal magnitude in an in-phase component is below a predetermined limit, and

designating an adjacent sample as a reliable symbol for in-phase.

- (Original) The method of claim 30, wherein the calculating estimates K channel 38. coefficients a_i according to a least squared error analysis of $y_{RS} - \hat{x}_n - \sum_{i=1}^{K} \hat{a}_i \hat{x}_{n-i}$, solving for \hat{a}_i , for a plurality of reliable symbols y_{RS} , where \hat{x}_n and \hat{x}_{n-i} are estimated transmitted symbols.
- (Original) The method of claim 30, further comprising assigning weights among the 39. reliable symbols based upon respective reliability factors.

- 40. (Previously Presented) An equalizer, for use in a communication system for transmitting symbols of a high order constellation, comprising:
 - a buffer memory,

a reliable symbol detector in communication with the buffer memory, the detector to estimate which samples from a sequence of captured samples <u>are located in a correct decision</u> region of their corresponding source symbols, have been corrupted least by channel effects,

an adaptation unit in communication with the reliable symbol detector to estimate channel effects based on the values of the reliable symbols and samples adjacent thereto, and a symbol decoder in communication with the adaptation unit and the buffer memory.

41. (Currently Amended) The equalizer of claim 40, wherein the reliable symbol operates according to a method, comprising:

calculating a reliability factor of a captured sample from values of a plurality of samples proximate to the captured sample, and

if the reliability factor is less than a predetermined limit, designating the captured sample as a reliable symbol.

42. (Currently Amended) The equalizer of claim 41, wherein the reliability factor R_n of the captured sample is given by:

$$R_n = \sum_{\substack{i=-K_1\\i=0}}^{K_2} |y_{n-i}| \cdot c_i \text{, where}$$

y_n is the captured sample,

y_{n-i} is a sample in proximity to the captured sample,

 $K_1,\,K_2$ are numbers of samples adjacent to the captured sample, and

c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

43. (Currently Amended) The equalizer of claim 41, wherein the reliability of a two-dimensional captured sample y_n is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} \sqrt{y_{1_{n-i}}^2 + y_{2_{n-i}}^2} \cdot c_i$$
 , where

 $\underline{y_{1_{n-1}}}$ and $\underline{y_{2_{n-1}}}$ - $y_{1_{n-1}}^2$ -and - $y_{2_{n-1}}^2$ -respectively represent values of a neighboring sample y_{n-1} in first and second dimensions,

 K_1 , K_2 are numbers of samples adjacent to the captured sample, and c_i is a coefficient <u>representing any prior knowledge of intersymbol interference effects</u>.

- 44. (Previously Presented) A receiver, for use in a communication system for transmitting symbols of a high order constellation, comprising:
 - a demodulator to sample and capture transmitted data from a channel,
- a buffer memory in communication with the demodulator to store values of captured samples,

a processor executing instructions that establish the following logical structures therein:

a reliable symbol detector in communication with the buffer memory to identify which of the stored captured samples are likely to <u>be located in a correct decision region</u> of a corresponding source symbol, have been corrupted least by channel effects, the identified samples being reliable symbols,

an adaptation unit in communication with the reliable symbol detector to estimate channel effects from values of the reliable symbols, and

- a symbol decoder unit in communication with the adaptation unit and the buffer memory.
- 45. (Currently Amended) The receiver of claim 44, wherein the reliable symbol detector operates according to a method, comprising:

calculating a reliability factor of a captured sample from values of a plurality of samples proximate to the captured sample, and

if the reliability factor is less than a predetermined limit, designating the captured sample as a reliable symbol.

46. (Currently Amended) The receiver of claim 45, wherein the reliability factor R_n of the captured sample is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} |y_{n-i}| \cdot c_i$$
, where

yn is the captured sample,

y_{n-i} is a sample in proximity to the captured sample,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

Page 8 of 12

12805/46001

47. (Currently Amended) The receiver of claim 45, wherein the reliability of a two-dimensional captured sample y_n is given by:

$$R_n = \sum_{\substack{i = -K_1 \\ i \neq 0}}^{K_2} \sqrt{y_{1_{n-i}}^2 + y_{2_{n-i}}^2} \cdot c_i \text{ , where }$$

 $\underline{y_{1_{n-i}}}\underline{\text{ and }}\underline{y_{2_{n-i}}}\underline{-y_{1_{n-i}}^2}\underline{-\text{and }}\underline{-y_{2_{n-i}}^2}\text{-respectively represent values of a neighboring sample }y_{n-i}$ in first and second dimensions,

K₁, K₂ are numbers of samples adjacent to the captured sample, and c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

- 48. (Original) The receiver of claim 44, further comprising a second buffer memory in communication with the symbol decoder.
- 49. (Previously Presented) A transmission-data communication system comprising:

a source that transmits data encoded as symbols, the symbols being selected from a high-order constellation,

a destination that captures a signal representing the transmitted symbols having been corrupted by at least intersymbol interference, the destination:

identifying reliable symbols from the captured samples, reliable symbols being those captured samples that are estimated to be <u>located in a correct decision region of</u> their <u>corresponding source symbols</u>, <u>corrupted least by intersymbol interference</u>,

calculating channel effects based on the reliable symbols and samples proximate thereto, $\underline{\text{and}}$

correcting other captured samples based on the channel effects.

50. (Currently Amended) The system of claim 49, wherein reliable symbols are identified according to a method comprising:

calculating a reliability factor of a captured sample from values of a plurality of samples proximate to the captured sample, and

if the reliability factor is less than a predetermined limit, designating the captured sample as a reliable symbol.

51. (Currently Amended) The system of claim 50, wherein the reliability factor R_n of the captured sample is given by:

Page 9 of 12

12805/46001

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} \left| y_{n-i} \right| \cdot c_i \text{, where}$$

y_n is the captured sample,

y_{n-i} is a sample in proximity to the captured sample,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

ci is a coefficient representing any prior knowledge of intersymbol interference effects.

52. (Currently Amended) The system of claim 50, wherein the reliability of a two-dimensional captured sample y_n is given by:

$$R_{n} = \sum_{\substack{i = -K_{1} \\ i \neq 0}}^{K_{2}} \sqrt{y_{1_{n-i}}^{2} + y_{2_{n-i}}^{2}} \cdot c_{i} \text{ , where }$$

 $\underline{y_{1_{n-i}}}\underline{\text{ and }}\underline{y_{2_{n-i}}}\underline{-y_{1_{n-i}}^2}\underline{-y_{1_{n-i}}^2}\underline{-\text{and }}\underline{-y_{2_{n-i}}^2}\underline{-\text{respectively represent values of a neighboring sample }y_{n-i}}$ in first and second dimensions,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

c; is a coefficient representing any prior knowledge of intersymbol interference effects.

53. (Currently Amended) A computer readable medium having stored thereon instructions that, when executed, cause a processor to identify reliable symbols from captured samples received by a system for use in communicating data via a high order constellation by a process comprising:

calculating e-a reliability factor of a captured sample from values of a plurality of samples proximate to the captured sample, and

if the reliability factor is less than a predetermined limit, designating e-the captured sample as a reliable symbol.

54. (Currently Amended) The medium of claim 53, wherein the reliability factor R_n of the captured sample is given by:

$$R_n = \sum_{\substack{i=-K_1\\i\neq 0}}^{K_2} |y_{n-i}| \cdot c_i$$
, where

yn is the captured sample,

y_{n-i} is a sample in proximity to the captured sample,

K₁, K₂ are numbers of samples adjacent to the captured sample, and

ci is a coefficient representing any prior knowledge of intersymbol interference effects.

55. (Currently Amended) The medium of claim 53, wherein the reliability of a two-dimensional captured sample y_n is given by:

$$\mathsf{R}_n = \sum_{\substack{i = -K_1 \\ i \neq 0}}^{K_2} \sqrt{y_{1_{n-i}}^2 + y_{2_{n-i}}^2} \cdot \mathsf{c}_i \text{ , where }$$

 $\underline{y_{1_{n-i}}}$ and $\underline{y_{2_{n-i}}}$ - $y_{1_{n-i}}^2$ -and - $y_{2_{n-i}}^2$ -respectively represent values of a neighboring sample y_{n-i} in first and second dimensions,

K₁, K₂ are numbers of samples adjacent to the captured sample, and c_i is a coefficient representing any prior knowledge of intersymbol interference effects.

56. (Previously Presented) A computer readable medium having stored thereon instructions that, when executed, cause a processor to <u>correct channel effects in captured samples received by a system for use in communicating data via a high order constellation by a process comprising:</u>

identify<u>ing</u> reliable symbols from a string of captured samples, the reliable symbols being the captured samples which are estimated to <u>be located in a correct decision region of a corresponding source symbol, have been corrupted least by channel effects,</u>

calculatinge channel effects based on the reliable symbols and samples proximate thereto, and

correcting the captured samples based on the channel effects.

57. (Currently Amended) A method, <u>for use in a communication system for transmitting symbols of a high order constellation</u>, of decoding a string of captured samples recovered from a communication channel comprising:

identifying reliable symbols from a the string of captured samples, the reliable symbols being the captured samples which are estimated to <u>be located in a correct decision region of a corresponding source symbol, have been corrupted least by channel effects,</u>

calculating channel effects based on the reliable symbols and samples proximate thereto,

estimating transmitted symbols from remaining captured samples based on the channel effects, and

outputting the estimated symbols as the a decoded data signal.

598554 1.DOC

Page 11 of 12 12805/46001