CS-67720 Metric Embedding Theory and Its Algorithmic Applications

Lecture 8

Lecturers: Yair Bartal, Nova Fandina For comments contact fandina@qmail.com Fall 2018/19

8.1 Partial and Scaling Distortion Embeddings

Recall the following definitions we have discussed in the first lecture.

Definition 8.1. Given an embedding $f: X \to Y$, $\forall x \neq y \in X$, $dist_f(x,y) = \max \left\{ \frac{d_y(f(x),f(y))}{d_x(x,y)}, \frac{d_x(x,y)}{d_y(f(x),f(y))} \right\}$.

Definition 8.2 (Partial Embedding). Let (X, d_x) and (Y, d_y) be any metric spaces, and $G \subseteq {X \choose 2}$. We say that (f, G) is partial embedding with distortion $\alpha \ge 1$, if $\forall (x, y) \in G$ it holds that $dist_f(x, y) \le \alpha$. Partial embedding (f, G) is called $(1 - \epsilon)$ -partial, if $|G| \ge (1 - \epsilon){|X| \choose 2}$.

Definition 8.3 (Scaling Distortion). Let $\alpha:[0,1]\to\mathbb{R}^+$ be a non-increasing function. We say that embedding $f:X\to Y$ has an α -scaling distortion if for all $0\le\epsilon\le 1$ there exists a set $G_\epsilon\subset {X\choose 2}$ such that (f,G_ϵ) is a $(1-\epsilon)$ -partial embedding with distortion $\alpha(\epsilon)$.

Note that for $\epsilon < \binom{n}{2}^{-1}$ the above definition captures the notion of the worst case distortion of a non-contractive (or non-expansive) embedding f.

Scaling with Average Distortion. We discuss the strong relationship between scaling and ℓ_q distortions. Recall the definition of the ℓ_q -distortion: ℓ_q -distortion: ℓ_q -distortion: ℓ_q -distortion: ℓ_q -distortion: ℓ_q -distortion: ℓ_q -distortion ℓ_q -distortion distortion distortion ℓ_q -distortion ℓ_q -distortion ℓ_q -distortion distortion distortio

Claim 8.1 (Exercise). If an embedding f has an α -scaling distortion, then $\forall 1 \leq q < \infty$:

1.
$$\ell_q$$
-dist $(f) \leq {n \choose 2}^{-\frac{1}{q}} \left(\sum_{i=1}^{{n \choose 2}-1} \alpha \left(\frac{i}{{n \choose 2}} \right)^q + \alpha \left(\frac{1}{2{n \choose 2}} \right)^q \right)^{\frac{1}{q}}$.

2.
$$\ell_q$$
-dist $(f) \le \left(2 \int_{\frac{1}{2(n)}}^{1} (\alpha(x))^q dx\right)^{\frac{1}{q}}$.

For another direction we make the following observation.

Claim 8.2. Let $1 \leq q < \infty$, $\alpha \geq 1$, and f be an embedding. If ℓ_q -dist $(f) \leq \alpha$, then for $\epsilon = \frac{1}{2^q}$, f is an $(1 - \epsilon)$ -partial embedding with distortion at most 2α .

Proof. We have to show that there exists a set $G \subseteq {X \choose 2}$, such that $|G| \ge (1 - \epsilon) {n \choose 2}$, and the distortion of f on that set is at most 2α . Namely, we have to show that there are at most $\epsilon {n \choose 2}$ pairs that can be distorted by more than 2α . Assume by contradiction there is $S \subseteq {X \choose 2}$, $|S| > \epsilon {n \choose 2}$ and every pair from S distorted by more than 2α . Therefore, $(\ell_q - dist(f))^q > \frac{\epsilon {n \choose 2}(2\alpha)^q}{{n \choose 2}} = \alpha^q$, a contradiction.

The above claim means that for all $\gamma > 1$, f is $(1 - 1/\gamma^q)$ -partial embedding, with distortion $\gamma \alpha$. In other words, for any $0 < \epsilon < 1$ ($\epsilon = 1/\gamma^q$), f is $(1 - \epsilon)$ -partial embedding with distortion $\alpha/\epsilon^{\frac{1}{q}}$. Namely, f has ℓ_q -dist $(f)/\epsilon^{\frac{1}{q}}$ -scaling distortion.

8.1.1 Embedding into Trees with Scaling Distortion

Now we are ready to state the main result of this section.

Theorem 8.3 ([1], [2]). The following holds.

- 1. [1] Any finite metric space is embeddable into ultra-metric, with scaling distortion $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.
- 2. [1] Any weighted graph contains a spanning tree, with scaling distortion $O\left(\frac{1}{\sqrt{\epsilon}}\right)$.
- 3. [2] For any $0 < \rho < 1$, any weighted graph G contains a spanning tree, with scaling distortion $\tilde{O}\left(\sqrt{1/\epsilon}/\rho\right)$, and weight bounded by $(1+\rho)MST(G)$. This result is tight with respect to ρ .

For the first two items we conclude: for $1 \le q < 2$, ℓ_q -dist(f) = O(1); ℓ_2 - $dist(f) = O(\sqrt{\log n})$; for q > 2, ℓ_q - $dist(f) = O(n^{1-2/q})$.

Proof of Theorem 8.3(1). Let (X,d) be an n-point metric space. We construct the embedding by induction on n. The idea is to partition (in a smart way) $X = (X_1, X_2)$, and build the ultra-metric tree for X by combining the trees obtained by inductive steps on X_1 and X_2 . Let $f_1: X_1 \to U_1$ and $f_2: X_2 \to U_2$ be embeddings obtained by induction. The ultra-metric tree for X is be obtained by composing U_1 and U_2 , on the new root r, with label $\Delta(r) = diam(X) = \Delta$. Thus, we have to show how to decompose X. Next we discuss what properties should such decomposition satisfy.

We have to show that there exists c > 0, such that for any $0 < \epsilon < 1$ there is $G_{\epsilon} \subseteq {X \choose 2}$ with $|G_{\epsilon}| \geq (1 - \epsilon) {|X| \choose 2}$, such that $\forall x, y \in G_{\epsilon}$, $dist_f(x, y) \leq \frac{1}{c\sqrt{\epsilon}}$. In other words, we have to show that there are at most $\epsilon {|X| \choose 2}$ pairs of points of X with distortion larger than $\frac{1}{c\sqrt{\epsilon}}$.

By the induction's assumption, there are at most $\epsilon \binom{|X_1|}{2}$ pairs of X_1 , and at most $\epsilon \binom{|X_2|}{2}$ pairs of X_2 with distortion larger than $\frac{1}{c\sqrt{\epsilon}}$. Note that if $x \in X_1$ and $y \in X_2$ such that $d(x,y) \geq c\sqrt{\epsilon}\Delta$, then $dist_f(x,y) \leq \frac{1}{c\sqrt{\epsilon}}$. Consider the set $B_{\epsilon} = \{(x,y)|x \in X_1, y \in X_2, \ d(x,y) < c\sqrt{\epsilon}\Delta\}$. Thus, we want to partition X in such a way, that for every ϵ , the number of pairs with large distortion is bounded by:

$$\epsilon \binom{|X_1|}{2} + \epsilon \binom{|X_2|}{2} + |B_{\epsilon}| \le \epsilon \binom{|X|}{2} \Leftrightarrow |B_{\epsilon}| \le \epsilon |X_1| \cdot |X_2|.$$

Thus, we show how to partition X such that above inequality holds for every ϵ .

Let $u \in X$ be a point such that $|\mathring{\mathbb{B}}(u, \frac{\Delta}{2})| \leq \frac{n}{2}$. Note that there is such x, since if $x, y \in X$ such that $\Delta = d(x, y)$, then open balls of radius $\frac{\Delta}{2}$ around x and y are disjoint and at least one of them contains at most $\frac{n}{2}$ points. Let r > 0 be a radius (we will choose the value of r later), and let $X_1^{(r)} = \mathring{\mathbb{B}}(u, r)$ and $X_2^{(r)} = X \setminus X_1$ (note that X_1 and X_2 are dependent on r). Define the following subsets of X:

$$S_1^{(r,\epsilon)} = \{w \in X_1^{(r)} | d(w,u) > r - c\sqrt{\epsilon}\Delta\}, \quad S_2^{(r,\epsilon)} = \{w \in X_2^{(r)} | d(w,u) < r + c\sqrt{\epsilon}\Delta\}.$$

Note that $B_{\epsilon} \subseteq S_1^{(r,\epsilon)} \times S_2^{(r,\epsilon)}$, implying $|B_{\epsilon}| \leq |S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}|$. Thus, we will prove that there exists r, such that for all $0 < \epsilon < 1$, $|S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}| \leq \epsilon |X_1^{(r)}| \cdot |X_2^{(r)}|$.

Let $\bar{\epsilon} = \max\{\epsilon \mid |B(u, \frac{\sqrt{\epsilon}\tilde{\Delta}}{4})| \geq \epsilon n\}$. Note that this set is not empty, as at least $\epsilon = \frac{1}{n}$ belongs to it. Also note that $\bar{\epsilon} \leq 1/2$. Thus, for any $\epsilon > \bar{\epsilon}$, $\left|B\left(u, \frac{\sqrt{\epsilon}\tilde{\Delta}}{4}\right)\right| < \epsilon n$. We will choose choose $r \in \left[\frac{\sqrt{\bar{\epsilon}}\tilde{\Delta}}{4}, \frac{\sqrt{\bar{\epsilon}}\tilde{\Delta}}{2}\right]$.

Lemma 8.4. If
$$\epsilon > 32\bar{\epsilon}$$
, then (every r is good) $\forall r \in \left\lceil \frac{\sqrt{\bar{\epsilon}}\Delta}{4}, \frac{\sqrt{\bar{\epsilon}}\Delta}{2} \right\rceil$, $|S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}| \le \epsilon \cdot |X_1^{(r)}| \cdot |X_2^{(r)}|$.

Proof. Fix some $r \in [\frac{\sqrt{\bar{\epsilon}}\Delta}{4}, \frac{\sqrt{\bar{\epsilon}}\Delta}{2}]$ and $\epsilon > 32\bar{\epsilon}$. Note that $|S_1^{(r,\epsilon)}| \leq |X_1^{(r)}|$, and $|S_2^{(r,\epsilon)}| \leq |B(u, r + c\sqrt{\epsilon}\Delta)|$. Also, it holds that $r + c\sqrt{\epsilon}\Delta \leq (r \leq \frac{\sqrt{\bar{\epsilon}}\Delta}{2}) \leq \frac{\sqrt{\bar{\epsilon}}\Delta}{2} + c\sqrt{\epsilon}\Delta \leq (\bar{\epsilon} < \frac{\epsilon}{32}) \leq \sqrt{\epsilon}\Delta \left(\frac{1}{2\sqrt{32}} + c\right) \leq \frac{\sqrt{\frac{\bar{\epsilon}}2}\Delta}{4}$, where the last inequality holds if we choose $c = \frac{1}{32\sqrt{2}}$, which will work for all inductive steps. Therefore,

$$|S_2^{(r,\epsilon)}| \le |B(u, r + c\sqrt{\epsilon}\Delta)| \le \left|B(u, \frac{\sqrt{\frac{\epsilon}{2}}\Delta}{4})\right| \le (\frac{\epsilon}{2} > \bar{\epsilon}) \le \frac{\epsilon}{2}n.$$

Therefore,
$$|S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}| \le \epsilon \cdot |X_1^{(r)}| \cdot \frac{n}{2} \le (|X_2^{(r)}| \ge \frac{n}{2}) \le \epsilon \cdot |X_1^{(r)}| \cdot |X_2^{(r)}|.$$

Lemma 8.5. There exists $r \in \left[\frac{\sqrt{\overline{\epsilon}\Delta}}{4}, \frac{\sqrt{\overline{\epsilon}\Delta}}{2}\right] = I$, such that for all $\epsilon \leq 32\overline{\epsilon}$, $|S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}| \leq \epsilon \cdot |X_1^{(r)}| \cdot |X_2^{(r)}|$.

We first prove a small lemma. Let $0 \le r_1 \le r_2$ be any real numbers, and let $A(r_1, r_2)$ denote the size of the strip $B(u, r_2) \setminus B(u, r_1)$.

Lemma 8.6. $A(\frac{\sqrt{\bar{\epsilon}\Delta}}{4}, \frac{\sqrt{\bar{\epsilon}\Delta}}{2}) \leq 4\bar{\epsilon}n$.

Proof.
$$A(\frac{\sqrt{\bar{\epsilon}}\Delta}{4}, \frac{\sqrt{\bar{\epsilon}}\Delta}{2}) \le |B(u, \frac{\sqrt{\bar{\epsilon}}\Delta}{2})| = |B(u, \frac{\sqrt{4\bar{\epsilon}}\Delta}{4})| \le (4\bar{\epsilon} > \bar{\epsilon}) \le 4\bar{\epsilon}n.$$

Proof of Lemma 8.5. We say that r is a "bad" radius for some $\epsilon \leq 32\bar{\epsilon}$ if $|S_1^{(r,\epsilon)}| \cdot |S_2^{(r,\epsilon)}| > \epsilon |X_1^{(r)}| \cdot |X_2^{(r)}|$. Denote by J the union of the intervals that constitute all bad values of r from I. We will show that |J| < |I|. We build J iteratively. At the beginning $J = \emptyset$. At some step of the construction, consider all the values of $r \in I \setminus J$ and all the values of $\epsilon \leq 32\bar{\epsilon}$, such that the pair (r,ϵ) is a "bad" pair: r is bad for ϵ . From all these pairs we choose one with the maximum ϵ (we say maximum as we consider $\epsilon \in [1/n, 32\bar{\epsilon}]$). Denote this pair by $(\hat{r},\hat{\epsilon})$. We add to J segment of length $2c\sqrt{\hat{\epsilon}}\Delta$ with center in \hat{r} : $[\hat{r}-c\sqrt{\hat{\epsilon}}\Delta,\hat{r}+c\sqrt{\hat{\epsilon}}\Delta]$. Note that the length of the segment we add does not increase from step to step. We have to prove that |J| < |I| on the termination of the algorithm.

Consider the chosen pair $(\hat{r},\hat{\epsilon})$. Then, $A(\hat{r}-c\sqrt{\hat{\epsilon}}\Delta,\hat{r}+c\sqrt{\hat{\epsilon}}\Delta) \geq |S_1^{(\hat{r},\hat{\epsilon})}\cup S_2^{(\hat{r},\hat{\epsilon})}| = |S_1^{(\hat{r},\hat{\epsilon})}| + |S_2^{(\hat{r},\hat{\epsilon})}|$. Note that $|X_1^{(\hat{r})}| \geq |B(u,\frac{\sqrt{\hat{\epsilon}}\Delta}{4})| \geq \bar{\epsilon}n$. Therefore, $|S_1^{(\hat{r},\hat{\epsilon})}| \cdot |S_2^{(\hat{r},\hat{\epsilon})}| > (\hat{r},\hat{\epsilon})is\ bad\) > \hat{\epsilon}|X_1^{(\hat{r})}| \cdot |X_2^{(\hat{r})}| \geq \frac{\hat{\epsilon}\bar{\epsilon}n^2}{2}$. Therefore, by the inequality of arithmetic and geometric means

$$A(\hat{r} - c\sqrt{\hat{r}}\Delta, \hat{r} + c\sqrt{\hat{r}}\Delta) > 2\sqrt{\frac{\hat{\epsilon}\overline{\hat{\epsilon}}}{2}}n.$$

Therefore, we conclude that

$$|J| \le \sum_{i=1}^{t} |J_i| = \sum_{i} 2c\sqrt{\hat{\epsilon_i}}\Delta = 2c\Delta\sum_{i} \sqrt{\hat{\epsilon_i}} < (\text{have to prove }) < |I| = \frac{\sqrt{\bar{\epsilon}}\Delta}{4}.$$

Recall that $c = \frac{1}{32\sqrt{2}}$, therefore, we have to show that $\sum_{i} \sqrt{\hat{\epsilon}_{i}} < 4\sqrt{2}\sqrt{\hat{\epsilon}}$. Note that each point of I belongs to at most 2 segments of J, because the radius \hat{r} is always chosen outside the segments of J, and the lengths of the segments do not increase from step to step. Therefore,

$$\sum_{i} 2\sqrt{\frac{\hat{\epsilon}_{i}\bar{\epsilon}}{2}}n < \sum_{i} A(\hat{r}_{i} - c\sqrt{\hat{\epsilon}_{i}}\Delta, \hat{r}_{i} + c\sqrt{\hat{\epsilon}_{i}}\Delta) \leq^{(each\ point\ belongs\ to\ at\ most\ 2\ segments)} \leq 2A(\frac{\sqrt{\bar{\epsilon}}\Delta}{4}, \frac{\sqrt{\bar{\epsilon}}\Delta}{2}) \leq 2\cdot 4\cdot \bar{\epsilon}n.$$

Therefore $\sum_{i} \sqrt{\hat{\epsilon}_{i}} < 4\sqrt{2}\sqrt{\bar{\epsilon}}$, which completes the proof. Note that this process can be computed in polynomial time, by discretization of values ϵ and r.

This completes the proof of the theorem. \Box

References

- [1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and graphs into spanning trees with constant average distortion. SIAM J. Comput., 44(1):160–192, 2015.
- [2] Yair Bartal, Arnold Filtser, and Ofer Neiman. On notions of distortion and an almost minimum spanning tree with constant average distortion. In *Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016*, pages 873–882, 2016.