TD3 Espace vectoriel Vocab. Espace vectoriel: { vecteurs & v: vecteur: DER N= (X,1). opération: (Maddition) 9 FU = (2" - 2m) $\lambda \cdot M = (y \cdot \lambda'' y \cdot \lambda') - (y \cdot \lambda'')$ tamille de pect eur : {U, U2, _, U2, } lie x Je a.x demen son x . Combinaison lineaux de pecteurs: u = (2,11,3) N = (1,0,1) M+N Espace engendué Machini Comb linea, -> espace en ogendie pour

$Exercices: Espaces\ vectoriels$

EXERCICE 1:

1. Dans \mathbb{R}^3 , le vecteur (-6,-17,17) est-il une combinaison linéaire des vecteurs ((2,1,3),(3,5,-2))?

2. Dans
$$\mathbb{R}^3$$
, le vecteur $\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}^t$ est-il une combinaison linéaire des vecteurs $\begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}^t, \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}^t, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}^t \end{pmatrix}$?

A)
$$W = (-6, -14, 14)$$
 $U = (-6, -14, 14)$
 $U =$

(=)
$$\beta = -4$$

 $0 = 3$
 $3x^3 - 2(4) = 17$

Exercices: Espaces vectoriels

EXERCICE 1:

- 1. Dans \mathbb{R}^3 , le vecteur $(\underline{-6,-17,17})$ est-il une combinaison linéaire des vecteurs ((2,1,3),(3,5,-2))?
- 2. Dans \mathbb{R}^3 , le vecteur $\begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}^t$ est-il une combinaison linéaire des vecteurs $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}^t$, $\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}^t$, $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}^t$?

$$X = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$X = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

(2)-(3)=)
$$\beta = -2$$

 $2Y = 4 - \lambda \beta = 8$
 $\alpha = -1 - 8$

$$\beta = -1$$

$$0 = 4$$

$$0 = -1$$

$$0 = -7$$

EXERCICE 2:

NEF

Montrer que les ensembles suivants sont des espaces vectoriels :

1.
$$F = \{(x + y, x - y, 2y)/(x, y) \in \mathbb{R}^2\}$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 / x + 2y - 3z = 0\}$$

3.
$$H = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0 \text{ et } 2x - y + z = 0\}$$

4.
$$I = \{(x, y, z) \in \mathbb{R}^3 / -x + 2y = y + 6z \text{ et } y + 3z = -2x\}$$

2.
$$G = \{(x, y, z) \in \mathbb{R}^3 / x + 2y - 3z = 0\}$$

$$= \{(x_1, y_1, y_2) \in \mathbb{R}^3 / x = -2y + 3y \}$$

$$= \{(-2y + 3y + y_1, y_2) : (y_1, y_2) \in \mathbb{R}^2 \}$$

$$= \{(-2y + 3y + y_1, y_2) : (y_1, y_2) \in \mathbb{R}^2 \}$$