理工大学试卷(A) 昆 明

勤奋求学 诚信考试

考试科目: 大学物理 A(1) 命题教师: 命题组 考试日期: 2020年 月 日 计算题 题号 选择题 填空题 简答题 总分 3 评分 阅卷人

物理基本常量:

真空的磁导率: $\mu_0 = 4\pi \times 10^{-7} \,\text{H/m}$; 真空的电容率 $\varepsilon_0 = 8.85 \times 10^{-12} \,\text{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{kg}$; $1 \text{nm} = 10^{-9} \text{m}$; $1 \text{eV} = 1.602 \times 10^{-19} \text{J}$; 基本电荷: $e=1.602\times10^{-19}$ C; 普朗克常数: $h=6.63\times10^{-34}$ J·s 摩尔气体常数 R=8.31 J/mol·K: 1 atm = 1.013×10^5 Pa:

总分:

鼠

政

 \leftarrow

乜

熧

卦

铋

(每题 3 分, 共 33 分) 答案请填在题首的 [一、选择题 1中

]1、质点在平面上运动,已知质点位置矢量的表示式为 $\vec{r}=3t^2\vec{i}+4t^2\vec{j}(SI)$,则该质点作

- (A) 匀速直线运动
- (B) 变速直线运动
- (C) 抛物线运动
- (D) 一般曲线运动

12、以下运动形式中, \bar{a} 保持不变的运动是:

- (A) 单摆的运动
- (B) 匀速率圆周运动
- (C) 行星的椭圆轨道运动
- (D) 抛体运动

13、某人骑自行车以速率v向正西方向行驶,遇到由北向南刮的风(设风速大小也为 v),则他感到风是从

- (A)东北方向吹来
- (B)东南方向吹来 (C)西北方向吹来
- (D)西南方向吹来

|4、竖立的圆筒形转笼,半径为 R,绕中心轴 OO' 转动,物块 A 紧靠在圆 筒的内壁上,物块与圆筒间的摩擦系数为 μ ,要使物块A不下落,圆筒转动的角速 度 ω至少应为

(A)
$$\sqrt{\frac{\mu g}{R}}$$

(B)
$$\sqrt{\mu g}$$

(A)
$$\sqrt{\frac{\mu g}{R}}$$
 (B) $\sqrt{\mu g}$ (C) $\sqrt{\frac{g}{\mu R}}$ (D) $\sqrt{\frac{g}{R}}$

(D)
$$\sqrt{\frac{g}{R}}$$

15、 质量为m 的质点,以不变速率v沿图中正三角形ABC的水 平光滑轨道运动. 质点越过 A 角时,轨道作用于质点的冲量的大小为

- (A) mv.
- (B) $\sqrt{2}mv$.
- (C) $\sqrt{3}mv$. (D) 2mv.
- 16、如图所示,一静止的均匀细棒,长为L、质量为M,可绕通过棒的端点且垂直于棒长 的光滑固定轴 O 在水平面内转动,转动惯量为 $\frac{1}{3}ML^2$. 一质量为 m、速率为 v 的子弹在水平面内 沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为 $\frac{1}{2}v$,则此时棒的角速度应为

- (C) $\frac{5mv}{3MI}$. (D) $\frac{7mv}{4MI}$

-]7、如图所示,在坐标(a, 0)处放置一点电荷+q,在坐标(-a, 0)处放置另一点电荷-q. P点是x轴上的一点,坐标为(x,0). 当x>>a时,该点场强的大小为:

(A)
$$\frac{q}{4\pi\varepsilon_0 x}$$
. (B) $\frac{qa}{\pi\varepsilon_0 x^3}$.

(B)
$$\frac{qa}{\pi \varepsilon_0 x^3}$$
.

- (C) $\frac{qa}{2\pi\varepsilon_0 x^3}$. (D) $\frac{q}{4\pi\varepsilon_0 x^2}$.
- 18、同一束电场线穿过大小不等的两个平面,如图所示,则两个平面的 \bar{E} 通量和场强关 [系是:

19、反映磁感应线是无头无尾的麦克斯韦方程为 ſ

(A) $\oint_{S} \vec{D} \cdot d\vec{S} = \sum_{i=1}^{n} q_{i}$

(B) $\oint_{L} \vec{E} \cdot d\vec{l} = -d\Phi_{m} / dt$

(C) $\oint_{S} \vec{B} \cdot d\vec{S} = 0$

(D) $\oint_{L} \vec{B} \cdot d\vec{l} = \sum_{i=1}^{n} I_{i} + d\Phi_{e} / dt$

相对于该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性 系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题的正确答案是 (A) (1) 同时, (2) 不同时 (B) (1) 不同时, (2) 同时 (C)(1)同时,(2)同时 (D)(1)不同时,(2)不同时 $|11、把一个静止质量为<math>m_0$ 的粒子,由静止加速到v=0.6c 需作的功等于 (A) $0.18m_0c^2$ (B) $0.25m_0c^2$ (C) $0.36m_0c^2$ (D) $1.25m_0c^2$ 总分: 二、填空题(共10题,共31分) 1、(本题 3 分) 质点沿半径为R的圆周运动,运动方程为 $\theta = 2t^2 + 3$ (SI),则t时刻质 点的角加速度 α = (rad/s^2) 。 2、(本题 3 分)如图所示,一斜面倾角为 θ ,用与斜面成 α 角的恒力 \vec{F} 将 一质量为m的物体沿斜面拉升了高度h,物体与斜面间的摩擦系数为 μ .摩擦力在 此过程中所作的功 W_f = 3、(本题 3 分) 二质点的质量各为 m_1 , m_2 。当它们之间的距离由 a 缩短到 b 时,万有引 力所做的功为 D 4、(本题 3 分)如图所示,在边长为 b 的正方形的顶点上,分别 有质量为m的四个质点,则此系统绕通过其中一质点A,且平行于BD对 角线的转轴的转动惯量为 . 5、(本题 3 分) 在均匀磁介质中,有三根电流 I_1 、 I_2 、 I_3 , 方向如图,图中L为所取的安培回路,则 $\oint_I \vec{H} \cdot d\vec{l} = \underline{\hspace{1cm}} .$

110、(1) 对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于

6、(本题 4 分) 如图所示,一根长为 L 的铜棒,在均匀磁 \times \times \times \times \times	E於
场 \vec{B} 中以匀角速度 ω 旋转着, \vec{B} 的方向垂直铜棒转动的平面。设 \times	LΝ
$t=0$ 时,铜棒与 Ob 成 θ 角,则在任一时刻 t 这根铜棒两端之间的感 \times \times \times \times	
应电动势为	
电势高。	埋
7 、(本题 3 分) 一半径为 R 的均匀带电球面,其电荷面密度为 σ . 若规定无穷远处为电势零点,则该球面内的电势 $U=$	
8、(本题 3 分) 一空气电容器充电后切断电源,电容器储能 W ₀ ,若此时在极	类
板间灌入相对介电常量为 ε , 的煤油,则电容器储能变为 W_0 的倍.	
9、(本题 3 分)有一速度为 <i>u</i> 的宇宙飞船沿 <i>x</i> 轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小为。	ব
10 、 $(本题 3 分)$ 飞船以 $\sqrt{21}c/5$ 的速率飞越地球,这时地球上和飞船中的工作	K
人员各自将相同的闹钟调到 6.0 小时后鸣叫,在地球上的人看来,飞船上闹钟指示时间以后鸣叫。	
	章
三、计算题(共3题,共30分)	
1、(本题 10 分)长度为 l 的刚性轻直杆(质量不计),其两端固定两个小球,质量分别为 m 和 $2m$,如图。杆可绕通过 O 且垂直于杆的水平光滑轴转动, O 到质量为	容
m 的小球的距离为 $\frac{1}{3}l$ 。杆由 θ 角度静止释放后,绕 O 轴转动,当杆转到水平位置时,	
求 (1) 系统所受到的合外力矩 <i>M</i> 的大小; (2) 系统对转轴的转动惯量; (3) 系统角加速度 α 的大小。	
θ	週

2、(本题 10 分) 一球形电容器两个极板由同心导体球面组成,内球面半径为 R_1 ,外球面半径为 R_2 ,两球面间充满了相对介电常数为 ε_r 的各向同性均匀电介质,如果内、外球面分别带有等量异号电荷 +Q 和 -Q,求:

- (1) 半径 $r(R_1 \le r \le R_2)$ 处的电位移的大小D;
- (2) 半径 $r(R_1 \le r \le R_2)$ 处的电场强度的大小E;
- (3) 两极板间的电势差U;
- (4) 电容器的电容C。

- (1) 导线 1 在 o 点的磁感应强度 B_1 大小及方向;
- (2) 导线 2 在 o 点的磁感应强度 B_2 大小及方向;
- (3) 导线 3 在 O 点的磁感应强度 B_3 大小及方向;
- (4) o 点总的磁感应强度 B_o 大小及方向。

_____ 四、简:

四、简答题(本题 6 分)

一体积为 V_0 、质量为 m_0 的立方体沿其一棱的方向相对于观察者A以速度v运动,观察

者 A 测得其密度是 $\frac{\emph{m}_0}{\emph{V}_0}$ 吗? 试用狭义相对论知识简要说明。