(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-278586

(43)公開日 平成6年(1994)10月4日

(51) Int.Cl.5

識別配号

庁内整理番号

FΊ

技術表示箇所

B60T 8/24

8610-3H

審査請求 未請求 請求項の数1 OL (全 8 頁)

(21)出願番号

特願平5-66382

(22)出願日

平成5年(1993)3月25日

(71)出顧人 000006286

三菱自動車工業株式会社

東京都港区芝五丁目33番8号

(72)発明者 礒田 桂司

東京都港区芝五丁目33番8号 三菱自動車

工業株式会社内

(74)代理人 弁理士 長門 侃二

(54)【発明の名称】 車両のブレーキ装置

(57)【要約】

【目的】 この発明は、自動ブレーキ制御により、左右 輪に差を付けてプレーキ力を配分することができ、しか も、左右輪に均等なプレーキ力を発生および増圧を可能 としたり、均等なブレーキカの低減を可能とする車両の ブレーキ装置を提供することを目的とする。

【構成】 この発明のプレーキ装置1は、各マスタシリ ンダ12とプレーキ力配分制御装置5等より構成されて いる。ブレーキカ配分制御回路5は、電磁切換井80と 連通切換弁40等と備え、連通切換弁40は、各マスタ シリンダ12へ作動力を伝える各制御用シリンダ14, 15において、第1制御圧力室24と第4制御圧力室2 7とを連通し、第2制御圧力室25と第3制御圧力室2 6とを連通する第1切換位置41と、第1制御圧力室2 4と第3制御圧力室26とを連通し、第2制御圧力室2 5と第4制御圧力室27とを連通する第2切換位置42 とを有している。

【特許請求の範囲】

【請求項1】 左側輪用および右側輪用プレーキ圧をそれぞれ発生させる各マスタシリンダと、プレーキペダル側に接続された操作ロッドと各マスタシリンダとの間に設けられ、圧力源から圧液の供給を受けて、各マスタシリンダへの作動力に差を付けてこれらマスタシリンダに作動力を配分して与えるようにしたプレーキ力配分制御手段とを備え、

プレーキカ配分制御手段は、ハウジングに設けられた一 対のシリンダ孔と、これらシリンダ孔にそれぞれ嵌合さ れ、各マスタシリンダへ作動力を伝達する制御用ピスト ンと、各シリンダ孔内において、制御用ピストンの一端 面により区画され、圧力源からの圧液が供給されたと き、加圧されて制御用ピストンを往動させマスタシリン ダの作動力を増加させる往動圧力室と、各シリンダ孔内 において、制御用ビストンの他端面により区画され、圧 力源からの圧液が供給されたとき、加圧されて制御用ビ ストンを復動させマスタシリンダへの作動力を減少させ る復動圧力室と、一方の制御用ピストン側の往動圧力室 と他方の制御用ピストン側の復動圧力室とを連通し、一 方の制御用ビストン側の復動圧力室と他方の制御用ビス トン側の往動圧力室とを連通する一対の第1連通管路 と、一方の制御用ピストン側において、圧力源からの圧 液を往動圧力室および復動圧力室に切換えて供給する切 換制御弁とを有した車両のプレーキ装置において、

一方および他方の制御用ピストン側の往動圧力室同士を 連通し、一方および他方の制御用ピストン側の復動圧力 室同士を連通する一対の第2連通管路と、前配第1連通 管路と第2連通管路とを切換える連通切換手段とを備え たことを特徴とする車両のプレーキ装置。

【発明の詳細な説明】

[0001]

ģ: ·.

【産業上の利用分野】この発明は、左右輪のブレーキカを自在に変化させることのできる車両のブレーキ装置に 関する。

[0002]

【従来の技術】車両の旋回走行時等において、左右輪の各プレーキ力を操作して車両に発生するヨーモーメントを積極的に制御すれば、車両の旋回性能の向上を図ることができる。従来、左右輪のプレーキ制御を実施することのできるプレーキ装置としては、運転者がプレーキペダルを操作することで発生したプレーキオイルの圧力を左側輪用および右側輪用プレーキ圧として適当な割合で配分し、これにより、左右の車輪間でプレーキ力を変化させてヨーモーメントを積極的に発生させるものや、運転者がプレーキペダルを操作していない場合においても、自動プレーキ制御により、左側および右側車輪のうち、どちらか一方の車輪についてプレーキ圧を発生させ、これにより、ヨーモーメントを積極的に発生させるものが知られている。

[0003]

【発明が解決しようとする課題】しかしながら、上記従来の車両のプレーキ装置においては、左右輪のプレーキカ配分制御の実施に制限があった。つまり、上述のタイプのブレーキ装置は、プレーキベダル操作とは関係のない自動プレーキ制御において、左右輪に差を付けてプレーキ力を配分することはできるが、左右輪に均等なプレーキカを発生させたり、左右輪のプレーキカを均等に低減したりすることができないとの問題があった。

【0004】この発明は、上述の問題点を解決するためになされたもので、プレーキペダル操作とは関係のない自動プレーキ制御において、左右輪に差を付けてプレーキカを配分することができ、しかも、左右輪に均等なプレーキカを発生させたり、左右輪のプレーキカを均等に低減できる車両のプレーキ装置を提供することを目的とする。

[0.005]

【課題を解決するための手段】この発明の車両のプレー キ装置によれば、上記目的を達成するために、左側輪用 および右側輪用プレーキ圧をそれぞれ発生させる各マス タシリンダと、プレーキペダル側に接続された操作ロッ ドと各マスタシリンダとの間に設けられ、圧力額から圧 液の供給を受けて、各マスタシリンダへの作動力に差を 付けてこれらマスタシリンダに作動力を配分して与える ようにしたプレーキ力配分制御手段とを備え、プレーキ 力配分制御手段は、ハウジングに設けられた一対のシリ ンダ孔と、これらシリンダ孔にそれぞれ嵌合され、各マ スタシリンダへ作動力を伝達する制御用ピストンと、各 シリンダ孔内において、制御用ピストンの一端面により 30 区画され、圧力源からの圧液が供給されたとき、加圧さ れて制御用ピストンを往動させマスタシリンダの作動力 を増加させる往動圧力室と、各シリンダ孔内において、 制御用ピストンの他端面により区画され、圧力源からの 圧液が供給されたとき、加圧されて制御用ピストンを復 動させマスタシリンダへの作動力を減少させる復動圧力 室と、一方の制御用ピスドン側の往動圧力室と他方の制 御用ピストン側の復動圧力室とを連通し、一方の制御用 ピストン側の復動圧力室と他方の制御用ピストン側の往 助圧力室とを連通する一対の第1連通管路と、一方の制 御用ピストン側において、圧力源からの圧液を往動圧力 室および復動圧力室に切換えて供給する切換制御弁とを 有した車両のブレーキ装置において、一方および他方の 制御用ピストン側の往動圧力室同士を連通し、一方およ び他方の制御用ピストン側の復動圧力室同士を連通する 一対の第2連通管路と、前記第1連通管路と第2連通管 路とを切換える連通切換手段とを備えて構成されてい る.

[0006]

【作用】この発明の車両のプレーキ装置によれば、プレ 50 ーキペダル操作力に関係なく、プレーキカ配分制御手段 は、連通切換手段を第1連通管路に切換え、切換制御弁 を制御して、各制御ピストンを互いに逆方向に移動さ せ、その作動力を各マスタシリンダに差を付けて配分 し、どちらか一方のマスタシリンダ他シリンダにプレー キ圧を発生させる。また、ブレーキカ配分制御手段は、 連通切換手段を第2連通管路に切換え、切換制御弁を制 御して、各制御ピストンを同方向に往動および復動さ せ、その作動力を各マスタシリンダに均等に配分し、各 マスタシリンダに左右輪均等のプレーキ圧を発生させ

3

[0007]

【実施例】以下、この発明の一実施例を図1ないし図7 に基づいて詳しく説明する。図1は、この発明を適用し たプレーキ装置の一実施例を示し、プレーキ装置1は、 マスタシリンダユニット3、プレーキ圧回路4、プレー キカ配分制御回路5、コントローラ7等より構成されて

【0008】マスタシリンダユニット3は、一対のマス タシリンダ12、一対の制御シリンダ14、15および パランス機構17等より構成されている。そして、これ 20 ら各シリンダ12、13、14は、ハウジング(図示せ ず)内に形成され、パランス機構17等は、ハウジング 内に収容されている。一対の制御シリンダ14、15 は、一対のマスタシリンダ12と連結機構17の間に配 置されている。各制御シリンダ14, 15内には、それ ぞれ制御用ピストン20,21が摺動自在に嵌合されて いる。各制御用ピストン20,21は、その両端面から 延びるピストンロッド22,23を有しており、基端側 に延びるピストンロッド22,23にはパランス機構1 7が、前端側に延びるピストンロッド22、23には各 マスタシリンダ12が、それぞれ機械的に接続されてい

【0009】ここで、制御シリンダ14、15のうち、 右側用マスタシリンダ12を介して右側車輪のプレーキ 力を制御するものを第1制御シリンダ14とし、左側用 マスタシリンダ12を介して左側車輪のプレーキ力を制 御するものを第2制御シリンダ15とする。また、各制 御用ピストン20, 21のうち、第1制御シリンダ14 の嵌合されているものを第1制御用ピストン20とし、 第2制御シリンダ15に嵌合されているものを第2制御 用ピストン21とする。さらに、ピストンロッド22, 23のうち、第1制御ピストン20か延びているものを 第1ピストンロッド22とし、第2制御ピストン21か 延びているものを第2ピストンロッド23とする。

【0010】第1制御シリンダ14は、第1制御用ピス トン20より基端側の空間が第1制御圧力室24とさ れ、第1制御用ピストン20より先端側の空間が第2制 御圧力室25とされている。また、第2制御シリンダ1 5は、第2制御用ピストン21より基端側の空間が第3

端側の空間が第4制御圧力室27とされている。

【0011】第1および第3制御圧力室は、各制御用ビ ストン20.21に関して、往動圧力室とされている。 つまり、この往動圧力室に油圧が供給されると、各制御 用ピストン20、21は、各制御シリンダ14、15内 を往動する。第2および第4制御圧力室は、各制御用ビ ストン20、21に関して、復動圧力室とされている。 つまり、この復動圧力室に油圧が供給されると、各制御 用ピストン20, 21は、各制御シリンダ14, 15内 10 を復動する。

【0012】第1制御シリンダ14には、第1制御圧力 室24の基端側に第1制御ポート30および第1接続ポ ート32が、第2制御圧力室25の先端側に第2制御ボ ート31および第2接続ポート33がそれぞれ設けられ ている。また、第2制御シリンダ15には、第3制御圧 力室26の基端側に第3接続ポート34が、第4制御圧 力室27の先端側に第4接続ポート35がそれぞれ設け られている。そして、第1および第2接続ポート32, 33は、連通切換弁40(連通切換手段)を介して、第 3および第4接続ポート34,35が接続されている。 【0013】連通切換弁4.0は、電磁式の2位置切換弁

である。この連通切換弁40は、図1に示す第1切換位 置41において、第1接続ポート32と第4接続ポート 35とを、第2接続ポート33と第3接続ポート34と をそれぞれ接続する。すなわち、第1制御圧力室24と 第4制御圧力室27とが、第2制御圧力室25と第3制 御圧力室26とがそれぞれ連通される。この状態から、 連通切換弁40のソレノイド43が励磁されると、連通 切換弁40が第2切換位置42に切り換えられる。第2 切換位置42では、第1接続ポート32と第3接続ポー ト34とを、第2接続ポート33と第4接続ポート35 とをそれぞれ接続する。すなわち、第1制御圧力室24 と第3制御圧力室26とが、第2制御圧力室25と第4 制御圧力室27とがそれぞれ連通される。

【0014】パランス機構17は、支持ロッド50、パ ランスパー51および一対の作用ロッド52等より構成 されており、図示しないが、これら構成部品はハウジン グ内に収容されている。支持ロッド50の基端には、離 間可能にしてブッシュロッド53の先端が挿入され当接 されている。このブッシュロッド53は、ブレーキブー スタ、すなわち、いわゆるマスタパック(図示せず)かご ら延出しており、プレーキペダル54が踏み込み操作さ れた場合、支持ロッド50を移動させる。したがって、 支持ロッド50は、プッシュロッド53に押されて軸線で 方向に移動することができる。

【0015】パランスパー51は、その中央位置におい て支持ロッド50に回動自在に連結されており、プレー キ装置1が作動していない状態において、支持ロッド5 0に直交するように延びている。したがって、パランス 制御圧力室26とされ、第1制御用ピストン20より先 50 パー51の両端は、支持ロッド50から等距離位置に配

置されている。パランスパー51の両端には、各作用ロ ッド52の基端が回動自在に連結されており、これら作 用ロッド52の先端は、各第1および第2制御用ピスト ン20,21の各ピストンロッド22,23の基端に離 間可能にして接続されている。したがって、各ピストン ロッド22, 23に各作用ロッド52に押されて軸線方 向に移動することができる。

【0016】マスタシリンダ12は、いわゆるタンデム タイプのもので、プライマリピストン60およびセカン ダリピストン61等から構成されている。一方のマスタ 10 シリンダ12は、右側前後車輪へのプレーキ力を発生 し、他方のマスタシリンダ12は、左側前後車輪へのプ レーキ力を発生する。また、両方は共に同じ構造を有し ている。したがって、右輪側のマスタシリンダ12につ いてのみを説明し、左輪側のマスタシリンダ12につい ての説明は省略する。

【0017】プライマリピストン60(以下、Pピスト ン60と記す)は、マスタシリンダ12の基端側に収容 されている。セカンダリピストン61(以下、Sピスト ン61と記す) は、マスタシリンダ12のPピストン6 20 0より先端側の空間に収容され、その空間の略中央位置 に配置されている。Pピストン60とSピストン61と の間の空間は、第1プレーキ圧力室62となっており、 また、Sピストン61の先端側の空間は、第2プレーキ 圧力室63となっている。各プレーキ圧力室内62.6 3には、リターンスプリング64,65が収容されてい る。各リターンスプリング64,65は、スプリングシ ート(図示しない)に保持され、スプリングシートは、 各ピストン60、61から延びるピン(図示しない)に ガイドされている。したがって、各ピストン60,61 30 が往復運動して各プレーキ圧力室62,63の容積が変 化した場合、各リターンスプリングは円滑に伸縮するこ とができる。

【0018】各ピストン60、61が移動していない状 盤(図1に示す状態)において、マスタシリンダ12に は、第1および第2ポート66,67が第1プレーキ圧 力室62に臨み、また、第3および第4ポート68、6 9が第2プレーキ圧力室63に臨んでそれぞれ設けられ ている。この第1プレーキ圧力室62には、後輪側のプ レーキ圧が発生し、また、第2プレーキ圧力室63に は、前輪側のブレーキ圧が発生する。

【0019】プレーキ圧回路4は、図1に示すように、 ブレーキオイルを貯留できるリザーパタンクと、各車輪 FR(右側前輪), RR(右側後輪), FL(左側前 輪),RL(左側後輪)に配設されたディスクブレーキ 機構70と、各プレーキ圧力室62,63から各ディス クプレーキ機構70にプレーキ圧を供給できる各プレー キホース71と、各プレーキ圧力室62,63内と、ハ ウジングに取り付けられたリザーバタンク内とを連通す る油路72等より 成されている。なお、図1において 50 0、例えば、ハンドル(図示せず)の操舵角を検出する

は、このリザーパタンクの図示を省略すると共に、後述 するオイルポンプ75に係るリザーパタンク73に油路 72を延ばしている。

6

【0020】各プレーキホース71は、第1および第3 ポート66,68に接続されている。また、油路72 は、第2および第4ポート67,69に接続されてい る。なお、後輪側のプレーキホース71の途中には、ブ ロボーショニングパルブ74が介挿されている。 ブレー キカ配分制御回路5 (ブレーキカ配分制御手段) は、上 述した連通切換弁40に加え、リザープタンク73、オ イルポンプ75、電磁比例減圧弁7.6および電磁切換弁 80 (切換制御弁) 等より構成されている。

【0021】オイルポンプ75は、電動モータ88によ り回転駆動され、リザープタンク73から吸い込んだプ レーキオイルを、油路84を介して電磁比例減圧弁76 に圧送する。なお、この油路84の途中には、アキュー ムレータ89が接続されている。電磁比例減圧弁76 は、ソレノイド78、スプール77およびリターンスプ リング79等より構成されている。スプール77には、

油孔が設けられている。ソレノイド78が励磁される と、スプール77は軸線方向に移動し、その移動距離に 応じて、オイルボンブ75から圧送されたプレーキオイ ルを電磁切換弁80に供給する。

【0022】つまり、スプール77が移動していない状 態において、スプール77の油孔の位置関係から、油路 84が接続されるポートは閉塞されている。そして、ス プール77が移動すると、油路84から油路85、86 にプレーキオイルが流入し始める。この場合、スプール 77の移動距離の増加に比例して、前記油孔の位置関係 から、油路84から油路85内に流入するブレーキオイ ルの量は減少し、油路86内に流入するプレーキオイル の量は増加する。なお、スプール77の移動距離は、ソ レノイド78への通電量に比例して増加する。

【0023】電磁切換弁80は、2位置切換弁である。 この電磁切換弁80は、図1に示す第1切換位置81に おいて、電磁比例減圧弁76から延びる油路86と油路 90を、油路91とリザープタンク73に延びる油路8 7をそれぞれ接続する。この状態から、電磁切換弁80 のソレノイド83が励磁されると、電磁切換井80が第 2切換位置82に切り換えられる。第2切換位置82 は、油路86と油路91を、油路90と油路87をそれ ぞれ接続する。

【0024】なお、油路91は、第1制御ポート30を 介して第1制御圧力室24にプレーキオイルを供給で き、油路90は、第2制御ポート31を介して第2制御 圧力室25にプレーキオイルを供給できる。 コントロー ラ7は、図示しないROM, RAM等の記憶装置、中央 演算装置 (CPU)、入出力装置等を内蔵している。そ して、入出力装置の入力側には、種々のセンサ類10

ハンドル操舵角センサ、車速を検出する車速センサ、車 幅方向の加速度を検出する横Gセンサ、ブレーキペダル 5 4 の階込操作を検出するプレーキスイッチ等が電気的 に接続されている。

【0025】また、コントローラ7の入出力装置の出力 側には、オイルポンプ75の電動モータ88、電磁比例 滅圧弁76および電磁切換弁80の各ソレノイド78, 83、連通切換弁40のソレノイド43等が電気的に接 続されている。したがって、コントローラ7は、電動モ ータ88を操作してオイルポンプ75からのプレーキオ 10 イルの吐出量を制御することができる。また、電磁比例 減圧弁76のソレノイド78を励磁して、電磁切換弁8 0へのプレーキオイルの供給量を制御することができ る。さらに、電磁切換弁80の第1および第2切換位置 81,82に切換えを制御することができる。そして、 連通切換弁40の第1および第2切換位置41.42の 切換えを制御することができる。

【0026】次に、ブレーキ装置1の作動について説明 する。このプレーキ装置1では、通常プレーキ制御、自 動プレーキ制御およびプレーキ力配分制御を実施するこ とができる。まず、通常プレーキ制御について、図2に 基づいて説明する。なお、図2において、各マスタシリ ンダ12のSピストン61、第2プレーキ圧力室63に ついての図示を省略してある。また、図3ないし図6に ついても同様である。

【0027】運転者がプレーキペダル54の踏込操作を 行うと、マスタパックのプッシュロッド53が支持ロッ ド50およびパランスパー51を移動させる。 パランス パー51の両端には作用ロッド52が回動自在に連結さ れており、また、これら各作用ロッド52は、支持ロッ ド50より等距離位置に配置されているので、バランス パー51は支持ロッド50に対して揺動することなく移 動する。したがって、各作用ロッド52は互いに同位置 まで移動し、各ピストンロッド22,23を同距離だけ 押し出す。これにより、各Pピストン60等は互いに同 位置まで往動し、左輪側と右輪側とで同一のプレーキ圧 Pa , Pi を発生させる。

【0028】パランスパー51の移動距離は、プレーキ ペダル54の踏込量に応じて変化する。このため、各ブ レーキ圧力室62,63内に発生するプレーキ圧P... PLの大きさは、プレーキペダル54の踏込量に比例す る。したがって、図7中、特性Aで示すように、左右の プレーキ圧Pェ, P. は等しく上昇する。次に、自動ブ レーキ制御について、図3に基づいて説明する。 コント ローラ7は、例えば、車両の旋回走行時において、プレ ーキペダル54が操作されていない場合にこの自動ブレ 一キ制御を実施する。

【0029】コントローラ7は、例えば、右輪側のディ スクプレーキ機構70のみを作動させる場合、電磁切換 例減圧弁76のスプール77を、必要なプレーキカに応 じた距離だけ移動させる。したがって、このスプール? 7の移動距離に応じた量のオイルが油路91に供給さ れ、第1制御ポート30を介して第1制御圧力室24内 に流入する (図1参照)。

【0030】そして、第1制御圧力室24内に流入した オイルは、第1制御用ピストン20および第1ピストン ロット22を往動させると共に、第1接続ポート32、 連通切換弁40および第4接続ポート35を介して第4 制御圧力室27内に流入し、第2および第3制御圧力室 25,26内のオイルを油路90に排出させながら、第 2制御用ピストン21および第2ピストンロッド23を 復動させる。

【0031】この場合、第1ピストンロッド22の往動 距離と、第2ピストンロッド23の復動距離とは等しい ので、パランスパー51は、図中矢印CC方向に揺動 し、したがって、支持ロッド50は移動することがな い。第1ピストンロッド22が往動すると、Pピストン 6 0 等が押し出され、右輪側のブレーキ圧P』が発生す 20 る。一方、第2ピストンロッド23が復動すると、リタ ーンスプリング64,65等によりPピストン60等が 押し戻される。そして、Pピストン60等が所定位置に まで押し戻された後は、第2ピストンロッド23はPピ ストン60から離間しながら復動し、したがって、左輪 側のプレーキ圧P₁ には影響を与えない。

【0032】コントローラ7は、電磁比例減圧弁76の ソレノイド78の通電量を調整し、各ピストンロッド2 2,23の移動量を操作して、発生するプレーキ圧P1 の大きさを変化させることができる。したがって、図6 中、特性Bで示すように、のブレーキ圧P』のみが増加 する。なお、左輪側のディスクプレーキ機構70のみを 作動させる場合には、電磁切換弁80を第1切換位置8 1に切り換え、油路90を介して第3制御圧力室26内 にオイルを供給すれば良い。

【0033】次に、プレーキ力配分制御について説明す る。プレーキカ配分制御では、通常プレーキ実施中に自 動プレーキを実施する場合と、自動プレーキ実施中に通 常プレーキを実施する場合がある。まず、運転者がプレ ーキペダル54を操作している状態(図2中実線状態) より、コントローラ7が、例えば、の自動ブレーキを実 施した場合について説明する。

【0034】この場合、第1ピストンロッド22は、ブ レーキペダル54の踏込量に応じた位置(図2の実線位 置)からさらに往動し、一方、第2ピストンロッド23 は、プレーキペダル54の踏込量に応じた位置から復動 する。したがって、図4中実線で示すように、Pピスト ン60等の往動距離が増加してのプレーキ圧P は上昇 し、Pピストン60等の往動距離が減少してのブレーキ 圧Pi は下降する。各ピストンロッド22, 23は、パ $oldsymbol{n}$ $oldsymbol{n}$ oldsymbol

の変化量と、プレーキ圧P: の変化量は等しい。 【0035】したがって、この場合のプレーキ圧特性 け 図2中 特性Dアデオトラに まず ブレーキの

は、図7中、特性Dで示すように、まず、プレーキベダル54が操作されることで左の各プレーキ圧P』、P』が等しく上昇する。そして、この特性は、右輪側の自動プレーキ問御が実施された時点から変化し、プレーキ圧P』は引き続き上昇する一方、プレーキ圧P』は下降し始める。なお、この場合、左右のプレーキ圧P』、P』の和は、特性Aで示す場合の左右のプレーキ圧P』、P』の和と同じである。

【0036】次に、コントローラ7が右輪側の自動プレーキ制御を実施している状態(図3中実線状態)より、運転者がプレーキペダル54を操作した場合について説明する。 この場合、支持ロッド50およびパランスパー51は、ブッシュロッド53に押されて移動する。パランスパー51は、その中央位置で支持ロッド50に連結されており、また、各作用ロッド52は支持ロッド50に対して互いに等距離位置に配置されているので、このパランスパー51は、支持ロッド50に対する揺動角度を維持した状態で移動し、各作用ロッド52を互いに20等距離だけ移動させる。したがって、各ピストンロッド22,23は自動プレーキ制御されていた位置(図3の実線位置)から往動し、この往動距離に応じた大きさだけ左右のブレーキEPI、PIが上昇する。

【0037】したがって、この場合のプレーキ圧特性は、図7中、特性Eで示すように、まず、自動プレーキ制御されることでプレーキ圧P』のみが上昇する。そして、この特性は、プレーキペダル54が踏み込まれた時点から変化し、左右のプレーキ圧P』、P』が互いに等しい割合で上昇する。また、自動プレーキ制御では、上30述したように左右輪どちらか一方のプレーキ圧を増圧する制御を実施するほか、左右輪の両方のプレーキ圧を増圧したりあるいは減圧したりする制御も実施する。

【0038】まず、運転者がプレーキペダル54を操作している状態(図2中実線状態)より、コントローラ7が、例えば、左右輪の両方のプレーキ圧を減圧する自動プレーキ制御の実施をした場合について説明する。コントローラ7は、連通切換弁40を第1切換位置41から第2切換位置42に切り換えると共に、電磁比例減圧弁76のスプール77を、必要なプレーキカに応じた距離だけ移動させる。したがって、このスプール77の移動距離に応じた量のオイルが左側用油路90に供給され、第2制御ボート31を介して第2制御圧力室25内に流入する。

【0039】連通切換弁40が第2切換位置42に切り換えられると、第1制御シリンダ14の第1制御圧力室24と第2制御シリンダ15の第3制御圧力室26が、第1制御シリンダ14の第2制御圧力室25と第2制御シリンダ15の第4制御圧力室27がそれぞれ連通される。したがって、第2制御圧力室25内に流入したオイ

ルは、第1制御用ピストン20および第1ピストンロッド22を複動させると共に、第2接続ポート33、連通切換弁40および第4接続ポート35を介して第4制御圧力室27内に流入し、第1および第3制御圧力室24,26内のオイルを油路91に排出させながら、第2制御用ピストン21および第2ピストンロッド23を復動させる。

10

【0040】この場合、第1および第2ピストンロッド22,23の復動距離とは等しいので、パランスパー5101および支持ロッド50も復動される。第1および第2ピストンロッド22,23が復動すると、リターンスプリング64,65等により各Pピストン60等が押し戻され、左右輪のプレーキ圧PI,PLが均等に減圧される

【0041】このように、自動プレーキ制御により左右輪のプレーキ EP_{1} , P_{1} が減圧される状況とは、たとえば、プレーキペダルが操作された場合において、コントローラ7が車輪ロックの発生を判断した場合である。したがって、コントローラ7は、このような場合には、自動制御によりプレーキ操作力に抗する作動力を第1制御用ピストン20,21に発生させ、左右輪のプレーキ EP_{1} , P_{1} を均等に低減し、車輪ロックを防止すると共に、車両の直進および旋回安定性を図る。

【0042】次に、運転者がプレーキベダル54を操作していない状態(図1の状態)より、コントローラ7が、例えば、左右輪両方のプレーキ圧Pェ, Pェを増圧する自動プレーキ制御の実施をした場合について説明する。コントローラ7は、連通切換弁40を第1切換位置41から第2切換位置42に切り換えると共に、電磁切換弁80を第2切換位置82に切換える。そして、電磁比例減圧弁76のスプール77を、必要なプレーキカに応じた距離だけ移動させる。したがって、このスプール77の移動距離に応じた量のオイルが右側用油路91に供給され、第1制御ポート30を介して第1制御圧力室24内に流入する。

【0043】連通切換弁40が第2切換位置42に切り 換えられると、上述したように第1制御シリンダ14の 第1制御圧力室24と第2制御シリンダ15の第3制御 圧力室26が、第1制御シリンダ14の第2制御圧力室 25と第2制御シリンダ15の第4制御圧力室27がそれぞれ連通される。したがって、第1制御圧力室24内 に流入したオイルは、第1制御用ピストン20および第1ピストンロッド22を往動させると共に、第1接続ポート32、連通切換弁40および第3接続ポート34を 介して第3制御圧力室26内に流入し、第2および第4 制御圧力室25,27内のオイルを油路90に排出させながら、第2制御用ピストン21および第2ピストンロッド23を往動させる。

シリンダ 1 5 の第 4 制御圧力室 2 7 がそれぞれ連通され 【0 0 4 4】この場合、第 1 および第 2 ピストンロッド る。したがって、第 2 制御圧力室 2 5 内に流入したオイ 50 2 2 2 2 3 の往動距離とは等しいので、パランスパー 5 【0045】このように、自動ブレーキ制御により左右輪のブレーキ圧PI、PIが増圧される状況とは、たとえば、ブレーキペダル54が操作されていない場合において、コントローラ7が車速を検出し、この車速が車両の安定走行に敵していないと判断したときや、ブレーキペダル54が操作されている場合においても、コントロ10一ラ7がさらにブレーキカの付与を必要と判断したときなどが考えられる。

【0046】したがって、コントローラ7は、このような場合には、適当なプレーキ圧を自動的に第1制御用ピストン20,21に発生させあるいは増圧させ、車両の直進および旋回安定性を図る。この発明は、上述した一実施例に制約されるものではなく、種々の変形が可能である。

【0047】たとえば、一実施例にあっては、ブレーキペダル54側から各制御用ピストンへの操作力の伝達は、支持ロッド50、パランスロッド51および作用ロッド52等により機械的に行われていたが、これに限らず、この機械的伝達方法に代えて、ピストン、油路等で構成する油圧回路により、前記操作力を伝達するようにしてもよい。そうすれば、ブレーキペダル54側と各制御用ピストン20,21側とを独立して配置することができる。つまり、ブレーキ装置の各構成部材のレイアウト自由度がより大きくなる。

【0048】また、各制御用ピストン20,21の各ピストンロッド22,23からマスタシリンダ12への作30動力の伝達も、機械的に行われていたが、これに限らず、ここの機械的伝達方法に代えて、ピストン、油路等で構成する油圧回路により、前記操作力を伝達するようにしてもよい。そうすれば、各制御用ピストン側と各マスタシリンダ側とを独立して配置することができる。つまり、ブレーキ装置の各構成部材のレイアウトの自由度がより大きくなる。

[0049]

【発明の効果】以上説明したように、この発明の車両のプレーキ装置は、プレーキ力配分制御手段に、一方の制御用ピストン側の往動圧力室と他方の制御用ピストン側の復動圧力室とを連通し、一方の制御用ピストン側の復動圧力室と他方の制御用ピストン側の往動圧力室局上を連通する一対の第1連通管路と一方および他方の制御用ピストン側の往動圧力室同士を連通し、一方および他方の制御用ピストン側の復動圧力室同士を連通する一対の第2連通管路とを備え、連通切換手段により第1連通管路と第2連通管路とを切換えるようにしたから、前配操作ロッドがプレーキペダルから操作力を受ける受けないに

かかわらず、連通切換手段が第1連通管路に切換えられたとき、各マスタシリンダは、左右輪異なるブレーキカを発生することができ、連通切換手段が第2連通管路に切換えられたとき、各マスタシリンダは、左右輪に均等なブレーキカの発生および増加を可能とし、また、均等なブレーキカ配分制御による車両の直進および旋回安定性の確保を維持するとともに、自動ブレーキ制御により各マスタシリンダにブレーキカを発生させて車速を低減でき、また、ブレーキカを低減して車輪ロックの防止ができるなど、より車両の直進安定性および旋回安定性の向上を図ることができる等の効果を奏する。

12

【図面の簡単な説明】

【図1】本発明を適用したプレーキ装置1の一実施例を示す概略構成図である。

【図2】通常プレーキ制御を実施した場合のマスタシリンダユニット3の作動状態を示す概略構成図である。

【図3】自動プレーキ制御を実施した場合のマスタシリングユニット3の作動状態を示す概略構成図である。

【図4】通常プレーキ制御と自動プレーキ制御を同時に 実施した場合のマスタシリンダユニット3の作動状態を 示す概略構成図である。

【図5】通常プレーキ制御と自動プレーキ制御を同時に 実施した場合のマスタシリンダユニット3の作動状態を 示す概略構成図である。

【図 6】自動プレーキ制御を実施した場合のマスタシリンダユニット3の作動状態を示す概略構成図である。

【図7】左右のプレーキ圧P』, P』の特性を示す図である。

30 【符号の説明】

- 1 ブレーキ装置
- 3 マスタシリンダユニット
- 4 プレーキカ配分制御回路(プレーキカ配分制御手段)

7 コントローラ

- 12 マスタシリンダ
- 14.15 制御シリンダ
- 20, 21 制御用ピストン
- 22, 23 ピストンロッド
- 24~27 第1~4制御圧力室
- 40 連通切換弁
- 41 第1切換位置
- 42 第2切換位置
- 50 支持ロッド
- 51 パランスパー
- 54 ブレーキペダル
- 60 プライマリピストン
- 61 セカンダリピストン
- 80 電磁切換弁

【図1】

【図2】

[図3]

[図4]

[図5]

[図6]

-578-