Rețele neuronale convoluționale. Straturi speciale și arhitecturi.

Prof. Dr. Radu Ionescu raducu.ionescu@gmail.com Facultatea de Matematică și Informatică Universitatea din București

SGD cu mini-batch

Repetă:

- 1. Selectăm un mini-batch de exemple
- 2. Propagăm înainte prin graf pentru a obține pierderea
- 3. Propagăm înapoi pentru a calcula gradienții
- 4. Actualizăm ponderile pe baza gradienților calculați

Rețele neuronale sunt funcții universale de aproximare

Teorema Aproximării Universale:

O rețea neuronală de tip feed-forward cu un strat ascuns având un număr finit de neuroni poate aproxima orice funcție continuă definită pe un subset compact din \mathbb{R}^n .

- Deși rețele neronale cu două straturi (un strat ascuns) sunt funcții universale de aproximare, lățimea (numărul de perceptroni) acestor rețele poate fi exponențial de mare.
- În practică, preferăm rețele mai adânci (cu mai multe straturi)

Rețele neuronale convoluționale

Un strat convoluțional este format din mai multe filtre (de exemplu 6)

Concatenăm activările pentru a obține o nouă "imagine" de 28x28x6

În esență o rețea convoluțională (CNN sau ConvNet) este o formată dintr-o secvență de straturi convoluționale, între care interpunem funcții de activare

Filtrele corespond unor un trăsături ale obiectelor

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Activare maximă = răspunsul cel mai mare

Activare maximă = răspunsul cel mai mare

exemplu cu 32 de filtre 5x5

Vizualizarea filterelor învățate

Vizualizarea filterelor învățate

Vizualizarea filterelor învățate

Figure Credit: [Zeiler & Fergus ECCV14]

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3

=> Output de 5x5

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3 aplicat cu **stride 2**

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3 aplicat cu **stride 2**

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3 aplicat cu **stride 2**

=> Output de 3x3

7

Imagine de 7x7 (fără adâncime) Filtru de 3x3 aplicat cu **stride 3?**

Nu se potrivește!
Nu putem aplica un filtru de 3x3
pe o imagine de 7x7 folosind stride
3

	F		
F			

Mărimea activării: (N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/1 + 1 = 5$$

stride 2 => $(7 - 3)/2 + 1 = 3$
stride 3 => $(7 - 3)/3 + 1 = 2.33$:(

În practică: deobicei imaginea se bordează cu 0

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. imagine de 7x7 filtru **3x3**, aplicat cu **stride 1 bordăm cu 1 pixel** de valoare 0

O: Cum arată activarea?

=> Output de 7x7

În general, se folosesc straturi convoluționale cu stride 1, cu filtre de dimensiune FxF, și bordură de (F-1)/2. (menține dimensiunea imaginii de input)

e.g. F = 3 => bordăm cu 1 pixel (valoare 0)

F = 5 => bordăm cu 2 pixeli (valoare 0)

F = 7 => bordăm cu 3 pixeli (valoare 0)

Aplicând convoluții cu filtre de 5x5 în mod repetat pe un input de 32x32 micșorează volumul (32 => 28 => 24 ...)
Micșorarea prea rapidă a volumului nu produce rezultate optime

Volum de input: 32x32x3 10 filtre de 5x5 cu stride 1, bordură 2 Mărimea volumului de output: ?

Volum de input: 32x32x3

10 filtre de 5x5 cu stride 1, bordură 2

Volum de input: **32x32x3** 10 filtre de 5x5 cu stride 1, bordură 2

Numărul de parametrii al acestui strat: ?

Volum de input: 32x32x3

10 filtre de 5x5 cu stride 1, bordură 2

Setări comune:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

K = (puteri ale lui 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (orice se încadrează)
- F = 1, S = 1, P = 0
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Are sens să folosim chiar filtre de 1x1

Stratul convoluțional din punct de vedere biologic

Stratul convoluțional din punct de vedere biologic

Un activation map este matrice cu output-urile a 28x28 neuroni:

- 1. Fiecare este conectat la o regiune mică din input
- 2. Toții neuronii au aceeși parametrii

filtru 5x5 = câmp receptiv de 5x5 pentru fiecare neuron

Stratul convoluțional din punct de vedere biologic

E.g. cu 5 filtre, stratul convoluțional este format din neuroni aranjați într-un grid (28x28x5)

Pentru o regiune vor fi 5 neuroni diferiți (toți primesc același input)

Mai avem de discutat despre două tipuri de straturi: POOL, FC

Stratul de pooling

- Reduce reprezentarea, permite o utilizare mai ușoară
- Operează pe fiecare activation map în parte:

MAX Pooling

Un activation map

X	_	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
					V

max pooling cu filtre de 2x2 și stride 2

6	8
3	4

Setări comune:

F = 2, S = 2

F = 3. S = 2

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - \circ their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $\circ D_2 = D_1$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Straturi cu conexiuni complete (FC layer)

• Conține neuroni conectați cu întregul volum de input, ca în rețelele neuronale obișnuite

[LeCun et al., 1998]

Straturi convoluționale cu filtre de 5x5, aplicate cu stride 1 Straturi de pooling cu filtre de 2x2, aplicate cu stride 2 Arhitectura este [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

Primul strat (CONV1): 96 filtre de 11x11, aplicate cu stride 4

Q: Care este mărimea volumului de output? Hint: (227-11) / 4 + 1 = 55

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

Primul strat (CONV1): 96 filtre de 11x11, aplicate cu stride 4

=>

Volumul de output este [55x55x96]

Q: Care este numărul parametrilor din acest strat?

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

Primul strat (CONV1): 96 filtre de 11x11, aplicate cu stride 4

=>

Volumul de output este [55x55x96]

Parametrii: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

CONV1: 55x55x96

Al doilea strat (POOL1): filtre de 3x3 aplicate cu stride 2

Q: Care este mărimea volumului de output? Hint: (55-3) / 2 + 1 = 27

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

CONV1: 55x55x96

Al doilea strat (POOL1): filtre de 3x3 aplicate cu stride 2 Volumul de output este [27x27x96]

Q: Care este numărul parametrilor din acest strat?

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

CONV1: 55x55x96

Al doilea strat (POOL1): filtre de 3x3 aplicate cu stride 2

Volumul de output este [27x27x96]

Parametrii: **0**

[Krizhevsky et al. 2012]

Input: imagini de 227x227x3

CONV1: 55x55x96

POOL1: 27x27x96

•••

[Krizhevsky et al. 2012]

Arhitectura completă AlexNet:

[227x227x3] INPUT

[55x55x96] CONV1: 96 filtre de 11x11 cu stride 4, fără bordură

[27x27x96] MAX POOL1: filtre de 3x3 cu stride 2

[27x27x96] NORM1: strat de normalizare

[27x27x256] CONV2: 256 filtre de 5x5 cu stride 1, bordură 2

[13x13x256] MAX POOL2: filtre de 3x3 cu stride 2

[13x13x256] NORM2: strat de normalizare

[13x13x384] CONV3: 384 filtre de 3x3 cu stride 1, bordură 1

[13x13x384] CONV4: 384 filtre de 3x3 cu stride 1, bordură 1

[13x13x256] CONV5: 256 filtre de 3x3 cu stride 1, bordură 1

[6x6x256] MAX POOL3: filtre de 3x3 cu stride 2

[4096] FC6: 4096 neuroni [4096] FC7: 4096 neuroni

[1000] FC8: 1000 neuroni (scoruri pentru 1000 de clase)

Detalii:

- Prima utilizare a ReLU
- Straturi de normalizare (nu se mai folosesc)
- Augmentarea datelor
- Dropout 0.5
- Mărimea batch-ului 128
- SGD cu moment 0.9
- Rata de învățare 0.01, împărțită la 10 atunci când acuratețea de validare atinge un platou
- Ansamblu de 7 CNN-uri: 18.2% => 15.4%

Studiu de caz: VGGNet

[Simonyan and Zisserman, 2014]

Doar CONV de 3x3 cu stride 1, bordură 1 și MAX POOL de 2x2 cu stride 2

Cel mai bun model

11.2% eroare top 5 la ILSVRC 2013

=>

7.3% eroare top 5

		ConvNet C	onfiguration			
A	A-LRN	D	Е			
11 weight layers	11 weight layers	13 weight layers			19 weight layers	
	i	nput (224×2	24 RGB imag	:)		
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	
		max	pool			
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	
		max	pool			
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-25 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256	
	N N	max	pool		conve zee	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
		max	pool			
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
		max	pool		-	
			4096			
		A 100 A	4096	-		
		0.51	1000			
		soft-	-max			

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E	
Number of parameters	133	133	134	138	144	

(fără a număra bias-urile)

(fără a număra bias-urile)	ConvNet C	onfiguration		—
INPUT: [224x224x3] memorie: 224*224*3=150K parametrii: 0	В	С	D	
CONV3-64: [224x224x64] memorie: 224*224*64=3.2M parametrii: (3*3*3)*64 = 1,728	13 weight	16 weight	16 weight	19
CONV3-64: [224x224x64] memorie: 224*224*64=3.2M parametrii: (3*3*64)*64 = 36,864	layers	layers	layers	
POOL2: [112x112x64] memorie: 112*112*64=800K parametrii: 0		24 RGB imag	1.60	T
CONV3-128: [112x112x128] memorie: 112*112*128=1.6M parametrii: (3*3*64)*128 = 73,728	conv3-64	conv3-64 conv3-64	conv3-64	cc
	max	120 TO CAST VO. 1 STREET	CONV3-04	
CONV3-128: [112x112x128] memorie: 112*112*128=1.6M parametrii: (3*3*128)*128 = 147,456	conv3-128	conv3-128	conv3-128	co
POOL2: [56x56x128] memorie: 56*56*128=400K parametrii: 0	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*128)*256 = 294,912		pool		
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*256)*256 = 589,824	conv3-256	conv3-256	conv3-256	CO
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*256)*256 = 589,824	conv3-256	conv3-256 conv1-256	conv3-256 conv3-256	co
POOL2: [28x28x256] memorie: 28*28*256=200K parametrii: 0		COHV 1-230	COHV3-230	co
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*256)*512 = 1,179,648	max	pool		
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	CO
POOL2: [14x14x512] memorie: 14*14*512=100K parametrii: 0		conv1-512	conv3-512	co
·	max	nool		co
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296		conv1-512	conv3-512	CO
POOL2: [7x7x512] memorie: 7*7*512=25K parametrii: 0				co
FC: [1x1x4096] memorie: 4096 parametrii: 7*7*512*4096 = 102,760,448	max	4096		
FC: [1x1x4096] memorie: 4096 parametrii: 4096*4096 = 16,777,216		4096		
FC: [1x1x1000] memorie: 1000 parametrii: 4096*1000 = 4,096,000		1000		
Memorie totală: 24M * 4 bytes ~= 93MB / imagine (doar propagarea înainte, ~x2 înapoi)	soft-	max		
Numărul total de parametrii: 138M				

```
INPUT: [224x224x3]
                    memorie: 224*224*3=150K parametrii: 0
CONV3-64: [224x224x64] memorie: 224*224*64=3.2M parametrii: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memorie: 224*224*64=3.2M parametrii: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memorie: 112*112*64=800K parametrii: 0
CONV3-128: [112x112x128] memorie: 112*112*128=1.6M parametrii: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memorie: 112*112*128=1.6M parametrii: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memorie: 56*56*128=400K parametrii: 0
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memorie: 56*56*256=800K parametrii: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memorie: 28*28*256=200K parametrii: 0
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*512)*512 = 2.359.296
CONV3-512: [28x28x512] memorie: 28*28*512=400K parametrii: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memorie: 14*14*512=100K parametrii: 0
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memorie: 14*14*512=100K parametrii: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memorie: 7*7*512=25K parametrii: 0
FC: [1x1x4096] memorie: 4096 parametrii: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memorie: 4096 parametrii: 4096*4096 = 16,777,216
FC: [1x1x1000] memorie: 1000 parametrii: 4096*1000 = 4,096,000
Memorie totală: 24M * 4 bytes ~= 93MB / imagine (doar propagarea înainte, ~x2 înapoi)
Numărul total de parametrii: 138M
```

Observații:

Cea mai multă memorie este consumată în primele straturi CONV

Cei mai mulți parametrii în ultimele straturi FC Studiu de caz: GoogLeNet

Studiu de caz: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0				8				
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0			1					0
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								X.

Avantaje interesante:

 Doar 5 milioane de parametrii! (elimină straturile FC)

Comparat cu AlexNet:

- 12x mai puţini parametrii
- 2x mai multe calcule
- 6.67% (vs. 16.4%)

[He et al., 2015]

Câștigătorul ILSVRC 2015 (3.6% eroare top 5)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

CIFAR-10 experiments

[He et al., 2015]

Câștigătorul ILSVRC 2015 (3.6% eroare top 5)

- Normalizare batch după fiecare strat CONV
- Inițializare Xavier / 2
- SGD cu moment 0.9
- Rată de învățare: 0.1, împărțită la 10 când eroare pe validare atinge un platou
- Mărimea unui mini-batch 256
- Degradarea ponderilor cu 10^-5
- Fără dropout!

[He et al., 2015]

(truc utilizat și în GoogLeNet)

[He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112		7×7, 64, stride 2							
conv2_x		3×3 max pool, stride 2								
	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$				
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$				
-	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹				

7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 128, /2 3x3 conv, 128 3x3 conv, 128 ¥ 3x3 conv, 128 3x3 conv, 128 3x3 conv. 128 3x3 conv, 128 3x3 conv, 128 3x3 conv, 256, /2 3x3 conv, 256 3x3 conv. 256 3x3 conv, 512, /2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512

> avg pool fc 1000

Concluzii

- ConvNets: folosim straturi CONV, POOL, FC
- Tendință către filtre mai mici și arhitecturi mai adânci
- Tendință către eliminarea straturilor POOL/FC (doar CONV)
- Arhitectura tipică arată astfel:

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX

unde N este deobicei în jur de ~5, M este mare, 0 <= K <= 2

 Arhitecturile recente (ResNet / GoogLeNet) pun sub semnul întrebării această paradigmă