

CONTENTS

I Part 1	1
1 Chapter 1 Introduction	
1.1 Motivation 3 1.2 Topics 4	
2 Chapter 2 Computer Arithmetic and Computational Errors	
2.1 Numerical Stability 5	
II Appendices	9
Bibliography	11
Index	13

Part I

Part 1

1

Introduction

1.1 Motivation

 $Math Textbook + Laptop + Coding \stackrel{?}{\Longrightarrow} Compute Accurate Solution$

Consider the McLaurin series expansion of the function $f(x) = e^x$:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

The issue is that we cannot compute to infinity. We need to introduce partial sums

$$S_n = \sum_{i=0}^n \frac{x^i}{i!}$$

We could iterate over n until $|S_n - S_{n-1}| <$ tolerance.

We observe that the running time is dependent on the value of x. We need to find a better way to compute the sum – with more consistent running time.

Using the python program,

- When x = -30, convergence happened after 97 terms, to -6.0×10^{-5} .
- When x = -40, convergence happened after 124 terms, to approximately $-5.9 \times 10^{\circ}$.

Clearly, we have inaccuracy when x = -40, as $0 < e^x < 1$ for all x < 0. The math textbooks' s techniques does not always provide good computational algorithms.

Course goal:

Show computational algorithms and discuss why they are good.

Example (e^x Better Algorithm). A better algorithm is as follows

- Find k such that $r = \frac{x}{k}$ exactly with ||r|| < 1.
- Compute $e^r = e^{x/k}$ using the McLaurin series.
- Then, $e^x = (e^r)^k$.

Remark Error due to Catasrophic Cancellation

When we subtract two numbers that are very close to each other, we lose precision.

1.2 Topics

- Computer Arithmetic and Computational Errors (Chap. 1)
 - Floating Point Arithmetic
 - Two Concepts
 - The conditioning of a math problem
 - the numerical stability of an algorithm
- Solving Systems of Linear Equations (Chap. 2)
 - Solve Ax = b for x
- \bullet Solving Non-linear Equations (Chap. 5)

Fine x s.t. f(x) = 0 or g(x) = 0 or f(x) = g(x).

- Interpolation (Chap. 7)
 - Given the set of data

$$\{(t_i, y_i)\}_{i=0}^n$$
 or $\{(t_i, f(t_i))\}_{i=0}^n$

come up with a function g(t) that approximates the data.

2.1

Numerical Stability

There is only finite space in computer. How would we store π , an irrational number? We can't. We can only store an approximation of π . How does introduction of approximations affect the accuracy of our computations?

Example. Suppose we want to compute the value for the sequence of integrals

$$y_n = \int_0^1 \frac{x^n}{x+5} \, dx$$

for n = 0, 1, 2, ..., 8, with 3 decimal digits of accuracy.

There are several properties that I can claim:

- $y_n > 0$ for all n, since the integrand $\frac{x^n}{x+5} > 0$ for all $x \in (0,1)$.
- $y_{n+1} < y_n$ for all n, since the integrand $\frac{x^{n+1}}{x+5} = x \cdot \frac{x^n}{x+5} < \frac{x^n}{x+5}$ for all $x \in (0,1)$.

There is not closed-form solution to this problem.

$$x^{n} = x^{n} \cdot \frac{x+5}{x+5}$$
 for $x \in (0,1)$

$$x^{n} = \frac{x^{n+1}}{x+5} + \frac{5x^{n}}{x+5}$$

$$\int_{0}^{1} x^{n} dx = \int_{0}^{1} \frac{x^{n+1}}{x+5} dx + 5 \int_{0}^{1} \frac{x^{n}}{x+5} dx$$

$$\frac{1}{n+1} x^{n+1} \Big|_{0}^{1} = y_{n+1} + 5y_{n}$$

$$y_{n+1} = \frac{1}{n+1} - 5y_{n}$$

Fortunately,

$$y_0 = \int_0^1 \frac{1}{x+5} dx = \ln(x+5) \Big|_0^1$$

= \ln 6 - \ln 5
= \ln \frac{6}{5} \ddot 0.182

By the recurrence,

$$y_1 = \frac{1}{1} - 5y_0 \doteq 1 - 5(0.182) = 0.0900$$

$$y_2 = \frac{1}{2} - 5y_1 \doteq 0.5 - 5(0.0900) = 0.0500$$

$$y_3 = \frac{1}{3} - 5y_2 \doteq 0.333 - 5(0.0500) = 0.0830$$

$$y_4 = \frac{1}{4} - 5y_3 \doteq 0.25 - 5(0.0830) = -0.165$$

Clearly, something went wrong. We have a negative value for y_4 , which is impossible. We also have $y_3 > y_2$. The problem is that we are using floating point arithmetic, which is not exact. We are losing precision in our calculations.

What if we leave y_0 as an unevaluated term?

$$y_1 = 1 - 5y_0$$

$$y_2 = \frac{1}{2} - 5y_1$$

$$= -\frac{9}{2} + 25y_0$$

$$y_3 = \frac{1}{3} - 5y_2$$

$$= \frac{137}{6} - 125y_0$$

$$y_4 = \frac{1}{4} - 5y_3$$

$$= -\frac{1367}{12} + 625y_0$$

We approximated $y_0 = \ln \frac{6}{5} \approx 0.182$. We know that the true value of $y_0 \in [0.1815, 0.1825]$. Another way to express y_0 is $y_0 = 0.182 + E$, where $|E| \le 0.0005 = 5 \times 10^{-4}$ is the error in our approximation. Substituting this into the formula for y_4 , we get

$$y_4 = -\frac{1367}{12} + 625(0.182 + E)$$
$$= -113.91\dot{6} + 113.75 + 625E$$
$$= -0.1\dot{6} + 625E$$

where

$$625E \le 625 \times 5 \times 10^{-4} = 0.3125$$

and

$$y_4 < y_0 \doteq 0.182$$

 \Diamond

so our propagated error is greater than the quantity to compute.

A lesson learned from the previous example is that the math textbook algorithms does not necessarily produce good computational algorithms. This algorithms for computing y_n is said to be an numerically unstable algorithm, since a small error was magnified by the algorithm. We want the algorithms to be numerically stable.

Definition 2.1.1 Numerically Unstable

An algorithm is said to be **numerically unstable** if the error in the output is not bounded by the error in the input.

Definition 2.1.2 Numerical Stability

An algorithm is said to be **numerically stable** if the error in the output is bounded by the error in the input.

PART II

APPENDICES

BIBLIOGRAPHY

- [1] Danelnov, Plantilla latex, https://github.com/Danelnov/Plantilla-latex, 2022.
- [2] Material Design. "The color system." Section: Tools for Picking Colors. (2024), [Online]. Available: https://m2.material.io/design/color/the-color-system.html#tools-for-picking-colors.

INDEX

Numerical Stability, 7 Numerically Unstable, 6