Data Science

Week 9

Fitting a Model to Data (2)-Classification:

Neural Networks

Basics of Neural Network

Binary Classification

Binary Classification

http://cs230.stanford.edu/files/C1M2.pdf

Basics of Neural Network

Logistic Regression

Logistic Regression

Given x, y, want $\hat{y} = P(y = 1|x)$ infinitely close to y,

Where, $\mathbf{x} \in \mathbb{R}^{n_x}$, $0 \le \hat{y} \le 1$, output predicted value $\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b)$

Unknown Parameters: $\mathbf{w} \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$

predict "y = 1"
$$z \to +\infty$$
, $\sigma(z) \approx \frac{1}{1 + e^{-\infty}} = 1$
 $z \to -\infty$, $\sigma(z) \approx \frac{1}{1 + e^{+\infty}} = 0$

$$z \to -\infty$$
, $\sigma(z) \approx \frac{1}{1 + e^{+\infty}} =$

Basics of Neural Network

Logistic Regression Loss Function

Logistic Regression Loss Function

Logistic Regression
$$\hat{y}^{(i)} = \sigma(\mathbf{0}^T \mathbf{x}^{(i)}), 0 \le \hat{y}^{(i)} \le 1, \quad \sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$

Training set with m samples
$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \cdots, (\mathbf{x}^{(m)}, y^{(m)})$$

$$\mathbf{x}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x^{(i)} \end{bmatrix}, x_0^{(i)} = 1, y^{(i)} \in \{0, 1\}$$

How to choose parameters θ to make $\hat{y}^{(i)}$ infinitely close to $y^{(i)}$?

Logistic Regression Loss Function

Loss (error) function:

$$L(\hat{y}^{(i)}, y^{(i)}) = -y^{(i)} \ln(\hat{y}^{(i)}) - (1 - y^{(i)}) \ln(1 - \hat{y}^{(i)})$$

$$L(\hat{y}^{(i)}, y^{(i)}) \ge 0$$
if $y^{(i)} = 1$, $(1 - y^{(i)}) = 0$

$$when L(\hat{y}^{(i)}, y^{(i)}) = -\ln(\hat{y}^{(i)}) \to 0$$
, $\hat{y}^{(i)} \to 1$
if $y^{(i)} = 0$, $y^{(i)} = 0$

$$when L(\hat{y}^{(i)}, y^{(i)}) = -\ln(1 - \hat{y}^{(i)}) \to 0$$
, $\hat{y}^{(i)} \to 0$

Logistic Regression

$$J(\mathbf{\theta}) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \ln(\hat{y}^{(i)}) + (1 - y^{(i)}) \ln(1 - \hat{y}^{(i)}) \right]$$

Learning: find parameter θ to $\min_{\theta} J(\theta)$

Prediction: given new
$$x$$
 output $\hat{y} = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$

Basics of Neural Network

Gradient Descent for Logistic Regression

Gradient Descent

$$J(\mathbf{\theta}) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \ln \left(h_{\mathbf{\theta}}(x^{(i)}) \right) + (1 - y^{(i)}) \ln \left(1 - h_{\mathbf{\theta}}(x^{(i)}) \right) \right]$$

Goal: $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Good news: Convex function!

Bad news: No analytical solution

Repeat $\{\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\mathbf{\theta})\}$

Gradient Descent

$$J(\mathbf{\theta}) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \ln \left(h_{\mathbf{\theta}}(x^{(i)}) \right) + (1 - y^{(i)}) \ln \left(1 - h_{\mathbf{\theta}}(x^{(i)}) \right) \right]$$

Goal: $\min_{\mathbf{\theta}} J(\mathbf{\theta})$

Good news: Convex function!

Bad news: No analytical solution

Repeat

 $\{\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\mathbf{\theta})$

(Simultaneously update all θ_j)

$$\frac{\partial}{\partial \theta_j} J(\mathbf{\theta}) = \frac{1}{m} \sum_{i=1}^m (h_{\mathbf{\theta}} (x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Basics of Neural Network

Implementation of Logistic Regression

Implementing Logistic Regression

$$w_1 = 0, w_2 = 0, b = 0, \alpha = 4$$
 k is the number of iterations m is the number of sample data for $t = 1$ to k:

 $J = 0, dw_1 = 0, dw_2 = 0, db = 0$ for $i = 1$ to m:

 $z^{(i)} = w_1 x_1^{(i)} + w_2 x_2^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)})$
 $J += -[y^{(i)} \ln a^{(i)} + (1-y^{(i)}) \ln(1-a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)}$
 $dw_1 += x_1^{(i)} dz^{(i)}$
 $dw_2 += x_2^{(i)} dz^{(i)}$
 $db += dz^{(i)}$
 $J = J/m, dw_1 = dw_1/m, dw_2 = dw_2/m, db = db/m$
 $w_1 = w_1 - \alpha dw_1, w_2 = w_2 - \alpha dw_2, b = b - \alpha db$

Training using Logistic Regression

Gradient Descent: process to estimate the parameter (\mathbf{w}, b)

$$dw_1 = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) x_1^{(i)} \qquad dw_2 = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) x_2^{(i)} \qquad \cdots \qquad db = \frac{1}{m} \sum_{i=1}^{m} (a^{(i)} - y^{(i)})$$

Gradient Descent

$$J(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(i)}, y) - \frac{y^{(i)}}{a^{(i)}} + \frac{1 - y^{(i)}}{1 - a^{(i)}}$$

$$dw_{1} = \sum_{i=1}^{m} \frac{d\mathbf{L}}{da^{(i)}} \times \frac{da^{(i)}}{dz^{(i)}} \times \frac{dz^{(i)}}{dw_{1}} = \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) x_{1}^{(i)}$$

$$dw_{2} = \sum_{i=1}^{m} \frac{d\mathbf{L}}{da^{(i)}} \times \frac{da^{(i)}}{dz^{(i)}} \times \frac{dz^{(i)}}{dw_{2}} = \sum_{i=1}^{m} (a^{(i)} - y^{(i)}) x_{2}^{(i)}$$

$$\vdots$$

$$db = \sum_{i=1}^{m} \frac{d\mathbf{L}}{da^{(i)}} \times \frac{da^{(i)}}{dz^{(i)}} \times \frac{dz^{(i)}}{db} = \sum_{i=1}^{m} (a^{(i)} - y^{(i)})$$

$$dw_{1} = \frac{1}{m} dw_{1}, dw_{2} = \frac{1}{m} dw_{2}, \dots db = \frac{1}{m} db$$

Test New Data using Logistic Model

Prediction (Test): given new x output $\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x} + b}}$

Shallow Neural Networks

Network Representation

"Neuron" Representation of Logistic Regression

Logistic Regression

Given \mathbf{x} , \mathbf{y} , want parameters \mathbf{w} and \mathbf{b} to make \hat{y} infinitely close to \mathbf{y}

- Where, $\mathbf{x} \in \mathbb{R}^{n_x}$, $0 \le \hat{y} \le 1$, $\hat{y} = \sigma(\mathbf{w}^T\mathbf{x} + b)$ is the probability of the given \mathbf{x} belongs to the class 1 (binary classification case
- Parameters: $\mathbf{w} \in \mathbb{R}^{n_{\chi}}$, $b \in \mathbb{R}$

What is a Neural Network?

Logistic Regression

Neural Network (NN) Representation

Shallow Neural Networks

Computing Neural Network's Output

Neural Network Representation

$$z = \mathbf{w}^T \mathbf{x} + b$$
$$a = \sigma(z)$$

Calculation in Neural Unit

Calculation in Neural Network

Calculation in Neural Network

Neural Network Representation and Output

Shallow Neural Networks

Gradient descent for neural networks

Neural Network

Neural Network To find parameters \mathbf{W} ($\mathbf{W}^{[1]}$, $a^{[2]}$ $\mathbf{w}^{[2]}$...) and \mathbf{b} ($\mathbf{b}^{[1]}$, $b^{[2]}$...) to x_2 make $\hat{v}^{(i)}$ infinitely close to $v^{(i)}$. $\mathbf{W}^{[1]}_{4\times3}$ is a matrix $\mathbf{W}^{[1]}$ $z^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$ $\mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]})$ $h^{[1]}$ $a^{[2]} = \sigma(z^{[2]})$ $z^{[2]} = \mathbf{w}^{[2]} \mathbf{a}^{[1]} + b^{[2]}$ $a^{[2]} = \hat{\mathbf{v}}^{(i)}$ $\mathbf{w}^{[2]}$ is a vector in this case $L(\hat{y}^{(i)}, y^{(i)}) = -y^{(i)} \ln(\hat{y}^{(i)}) - (1 - y^{(i)}) \ln(1 - \hat{y}^{(i)})$

http://cs230.stanford.edu/files/C1M3.pdf

Training in Neural Network

Gradient Descent for Training **Neural Networks**

Parameters: $\mathbf{W}^{[1]}, \mathbf{b}^{[1]}, \mathbf{w}^{[2]}, b^{[2]}$

Cost function: $J(\mathbf{W}^{[1]}, \mathbf{b}^{[1]}, \mathbf{w}^{[2]}, b^{[2]}) = \frac{1}{m} \sum_{i=1}^{m} L(a^{[2]}, y)$

Gradient descent:

Repeat

Compute predicts
$$(\hat{y}^{(i)})$$

$$d\mathbf{W}^{[1]} = \frac{\partial J}{\partial \mathbf{W}^{[1]}}, d\mathbf{b}^{[1]} = \frac{\partial J}{\partial \mathbf{b}^{[1]}}$$

$$d\mathbf{W}^{[2]} = \frac{\partial J}{\partial \mathbf{W}^{[2]}}, d\mathbf{b}^{[2]} = \frac{\partial J}{\partial \mathbf{b}^{[2]}}$$

$$\mathbf{W}^{[1]} = \mathbf{W}^{[1]} - \alpha \cdot d\mathbf{W}^{[1]}, \mathbf{b}^{[1]} = \mathbf{b}^{[1]} - \alpha \cdot d\mathbf{b}^{[1]}$$

$$\mathbf{W}^{[2]} = \mathbf{W}^{[2]} - \alpha \cdot d\mathbf{W}^{[2]}, \mathbf{b}^{[2]} = \mathbf{b}^{[2]} - \alpha \cdot d\mathbf{b}^{[2]}$$

$$\mathbf{V}^{[2]} = \mathbf{W}^{[2]} - \alpha \cdot d\mathbf{W}^{[2]}, \mathbf{b}^{[2]} = \mathbf{b}^{[2]} - \alpha \cdot d\mathbf{b}^{[2]}$$

$$x_1$$
 x_2
 x_3

 $dw_{2,1}^{[1]} = \frac{1}{m} dw_{2,1}^{[1]}$

$$\hat{y} = \sum_{i=1}^{m} \frac{dL}{da^{[2](i)}} \times \frac{da^{[2](i)}}{dz^{[2](i)}} \times \frac{dz^{[2](i)}}{da_{2}^{[1](i)}} \times \frac{da_{2}^{[1](i)}}{dz^{[1](i)}} \times \frac{dz^{[1](i)}}{dz^{[1](i)}} \times \frac{dz^{[1](i)}}{dw_{2,1}^{[1]}}$$

$$= \sum_{i=1}^{m} (a^{[2](i)} - y^{[2](i)}) \times w_2^{[2](i)} \times a_2^{[1](i)} (1 - a_2^{[1](i)}) \times x_1^{(i)}$$

$$db_2^{[1]} = \sum_{i=1}^m \frac{dL}{da^{[2](i)}} \times \frac{da^{[2](i)}}{dz^{[2](i)}} \times \frac{dz^{[2](i)}}{da_2^{[1](i)}} \times \frac{da_2^{[1](i)}}{dz_2^{[1](i)}} \times \frac{dz_2^{[1](i)}}{dz_2^{[1](i)}} \times \frac{dz_2^{[1](i)}}{db_2^{[1]}}$$

$$db_{2}^{[1]} = \frac{1}{m} db_{2}^{[1]},$$

$$= \sum_{m} (a^{[2](i)} - y^{[2](i)}) \times w_{2}^{[2](i)} \times a_{2}^{[1](i)} (1 - a_{2}^{[1](i)})_{35}$$

Deep Neural Networks

Deep L-layer Neural network

What is a deep neural network?

3 hidden layers ("4-layer NN")

Deep neural network notation

- 3 hidden layers ("4-layer NN")
- 0-layer: input x_1, x_2, x_3 $(n^{[0]} = 3)$
- 1-layer: 5 neural units $(n^{[1]} = 5)$
- 2-layer: 4 neural units $(n^{[2]} = 4)$
- 3-layer: 2 neural units $(n^{[3]} = 2)$
- 4-layer (output layer): 1 neural units ($n^{[4]} = 1$)

neural unit in layer l

- $\mathbf{a}^{[l]} = activations in layer l$
- $\mathbf{a}^{[l]} = g(\mathbf{z}^{[l]})$
 - $\mathbf{W}^{[l]}$, $\mathbf{b}^{[l]}$ are weights for $\mathbf{z}^{[l]}$

Deep Neural Networks

Activation functions

Activation Functions

Given input x:

$$\mathbf{z}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = \sigma(\mathbf{z}^{[1]}) \qquad \qquad g(\mathbf{z}^{[1]})$$

$$z^{[2]} = \mathbf{w}^{[2]}\mathbf{a}^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]}) \qquad \qquad g(z^{[2]})$$

Other activation functions

Nane	Plot	Equation	Derivative
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$

Other activation functions

1) sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

2) Tanh activation function

3) Rectified Linear Unit (ReLU)

4) Leaky linear unit (Leaky ReLU)

Deep Neural Networks

Why deep representations?

Intuition about deep representation

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

• HyperParameters:

Learning rate

The number of iterations

The number of hidden layers

The number of neural units in each layer

Choice of activation function

mini batch size...

Empirical process in training

Deep Learning Software

Data Science

Week 10

Fitting a Model to Data (3)-Regression