STAT 320: Principles of Probability Unit 7: Multivariate Random Variables

United Arab Emirates University

Department of Statistics

Outline

- Discrete Multivariate Random Variables

Discrete Multivariate Random Variables

Joint Probability Mass Function

We will just restrict the presentation to the bivariate case.

Joint Cumulative Distribution Function

Definition (Bivariate CDF)

Let X, Y be two discrete random variables. The joint cumulative distribution function is given by

$$F_{X,Y}(x, y) := P(X \le x, Y \le y).$$

If the joint probability mass function of X and Y is $p_{X,Y}(x,y) = P(X = x; Y = y)$. then

$$P\left(X \leq \frac{\mathbf{x}}{\mathbf{x}}, Y \leq \frac{\mathbf{y}}{\mathbf{y}}\right) = \sum_{\left\{\mathbf{s} \leq \mathbf{x}, t \leq \mathbf{y} \mid \text{where } (\mathbf{s}, t) \in \mathcal{S}_{X,Y}\right\}} p_{X,Y}(\mathbf{s}, t)$$

Marginal Distributions

The marginal probability mass function of X is given by

$$\rho_{X}(\underline{x}) = \sum_{(x, t) \in \mathcal{S}_{XY}} \rho_{X,Y}(\underline{x}, t)$$

The marginal probability mass function of X is given by

$$p_{\gamma}(\mathbf{\underline{y}}) = \sum_{(\mathbf{S}, \mathbf{\underline{y}}) \in \mathcal{S}_{\chi\gamma}} p_{\chi,\gamma}(\mathbf{S}, \mathbf{\underline{y}})$$

Example: Suppose two cards are drawn at random without replacement from a deck of 4 cards numbered 1, 2, 3, 4. Let X be the number on the first card and Y be the number of the second card.

- Find the joint probability function of X and Y.
- Find the marginal probability function of X.
- Find the marginal probability function of Y.

Y	1	2	3	4	Marginal of Y
1	0	1 12	1 12	1/12	1 1
2	1/12	0	12	12	$\frac{1}{4}$
3	12	1 12	0	12	1/4
4	1/12	1 12	1 12	0	$\frac{1}{4}$
Marginal of X	1/4	1/4	1/4	$\frac{1}{4}$	

Example: A fair coin is flipped three times. Let X denotes the number of heads to occur in the first two flips, a and let Y denotes the number of heads to occur in the last two flips.

- \odot Find the joint probability function of (X, Y)
- O Calculate P(X = Y).

YX		0		1		2	Marginal of Y
0	П	18	1	1 8		0	
1	T	<u>1</u> 8	T	2 8	T	1 8	2/4
2	\blacksquare	0		1 8		1 8	1/4
Marginal of X	$\ $	<u>1</u>		<u>2</u>		1/4	

$$P(X = Y) = \sum_{\substack{(X, Y) \in \mathcal{S}_{XY}}} p_{X,Y}(X, Y) = p_{X,Y}(0,0) + p_{X,Y}(1,1) + p_{X,Y}(2,2) = \frac{1}{2}.$$

Example: Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue balls. If we let X and Y denote respectively, the number of red and white balls chosen. Find the joint probability mass function of X and Y.

YX	0	1	2	3	Marginal of Y
0	10 220 40	30 220 60	15 220 12	1 220	56 220 112
2	220 30 220	220 18 220	0	0	220 48 220
Marginal of X	84 220	0 108 220	<u>27</u>	0 1 220	220

Outline

- Discrete Multivariate Random Variables
- Continuous Multivariate Random Variables
- Conditional Distributions
- Statistically Independent Random Variables
- Expectation for Different Functions of Multivariate Random Variables
- Variance and Covariance of a Random Variable

Continuous Multivariate Random Variables

Joint Cumulative Distribution Function

Definition (Bivariate CDF)

Let X, Y be two discrete random variables. The joint cumulative distribution function is given by

$$F_{X,Y}(x, y) := P(X \le x, Y \le y).$$

If the joint probability density function of X and Y is $f_{X,Y}(X,Y)$, then

$$P\left(X \leq \left| \mathbf{x} \right|, Y \leq \left| \mathbf{y} \right| \right) = \int \int f_{X,Y}(\left| \mathbf{s} \right|, \left| t \right|) d\mathbf{s} dt$$
 $\left\{ \left| \mathbf{s} \leq \mathbf{x} \right|, \left| t \leq \mathbf{y} \right| \text{ where } (\mathbf{s}, t) \in \mathcal{S}_{X,Y} \right\}$

$$f(x;y) = \frac{d^2 F(x,y)}{dx \ dy}$$

$$F(x;y) = \int_{\{(s \le x, t \le y): (\mathbf{S}, t) \in \mathcal{S}_{yv}\}} f_{x,y}(\mathbf{S}, t) ds dt :$$

Marginal Distributions

The marginal probability mass function of X is given by

$$f_{X}(\mathbf{x}) = \int_{\{t:(\mathbf{X}, t) \in \mathcal{S}_{XY}\}} f_{X,Y}(\mathbf{x}, t) dt$$

The marginal probability mass function of X is given by

Example:

The joint pdf of X; Y is given by

$$f_{x,y}(x,y) = \begin{cases} \frac{x+y+1}{2} & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

- lacktriangle Find the cumulative distribution function of (X,Y).
- Find the marginal density of X.
- Find the marginal density of Y.

Example:

Let X, Y have joint cdf

$$F_{X,Y}(x,y) = \begin{cases} x^2y^3 & \text{for } 0 < x < 1, 0 < y < 1 \\ & \text{otherwise} \end{cases}$$

- lacktriangle Find the joint density function of (X, Y).
- Find the marginal density of X.
- Find the marginal density of Y.

Example:

The joint density of X and Y is given by

$$f_{x,y}(x,y) = egin{cases} 2e^{-x-2y} & ext{ for } 0 < x < \infty, 0 < y < \infty \ & ext{ otherwise} \end{cases}$$

- Find the marginal density of X.
- Find the marginal density of Y.
- **1** Find P(X > 1, Y < 1)
- Find P(X < Y)
- Find P(X < 4)

Outline

- Conditional Distributions

Definition

If $p_{XY}(x,y)$ denotes the joint probability function of two discrete random variables X and Y and if $p_X(x)$ and $p_Y(y)$ denote the marginal probability function of X, (Y respectively) then the conditional probability of X given Y=y is given by

$$p_{X|Y}(X \mid y) = \frac{p_{X,Y}(X,Y)}{p_{Y}(Y)}$$

The conditional probability of Y given X = x is given by

$$p_{Y|X}(y\mid x) = \frac{p_{X,Y}(x,y)}{p_X(x)}.$$

Example: Suppose two cards are drawn at random without replacement from a deck of 4 cards numbered 1, 2, 3, 4. Let X be the number on the first card and Y be the number of the second card.

- Find the conditional probability of X given Y = 2.
- Use this to compute $P(X \le 2 \mid Y = 2)$.

Example: Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue balls. If we let X and Y denote respectively, the number of red and white balls chosen.

- Find the conditional probability of X given Y = 2.
- Use this to compute $P(X \le 2 \mid Y = 2)$.

Definition

If $f_{XY}(x,y)$ denotes the joint probability density function of two continuous random variables X and Y and if $f_X(x)$ and $f_Y(y)$ denote the marginal probability density function of X, (Y respectively) then the conditional probability density of X given Y=y is given by

$$f_{X\mid Y}(x\mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

The conditional probability density of Y given X = x is given by

$$f_{Y|X}(y \mid x) = \frac{f_{X,Y}(x,y)}{f_{X}(x)}.$$

Example:

The joint pdf of X; Y is given by

$$f_{x,y}(x,y) = \begin{cases} \frac{x+y+1}{2} & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

- If \mathbf{Q} Find the conditional probability of X given $\mathbf{Y} = 0.5$.
- ① Use this to compute $P(X \le 0.75 \mid Y = 0.5)$

Example:

Let X, Y have joint cdf

$$F_{X,Y}(x,y) = \begin{cases} x^2y^3 & \text{for } 0 < x < 1, 0 < y < 1 \\ & \text{otherwise} \end{cases}$$

- Find the conditional probability of X given Y = 0.5.
- Use this to compute $P(X \ge 0.5 \mid Y = 0.5)$

Example:

The joint density of X and Y is given by

$$f_{x,y}(x,y) = egin{cases} 2e^{-x-2y} & ext{ for } 0 < x < \infty, 0 < y < \infty \\ & ext{ otherwise} \end{cases}$$

- If \mathbf{Q} Find the conditional probability of X given $\mathbf{Y} = \mathbf{1}$.
- Find the marginal density of Y.
- ① Use this to compute $P(X \le 2 \mid Y = 1)$

Outline

- Statistically Independent Random Variables

Statistically Independent Random Variables

Definition (Independent Random Variables)

Two random variables X and Y are said to be independent if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all x and y's,

Example:

The joint pdf of X; Y is given by

$$f_{x,y}(x,y) = \begin{cases} \frac{x+y+1}{2} & \text{for } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

Are X and Y independent?

Example:

Let X, Y have joint cdf

$$F_{X,Y}(x,y) = \begin{cases} x^2y^3 & \text{for } 0 < x < 1, 0 < y < 1 \\ & \text{otherwise} \end{cases}$$

Are X and Y independent?

Example:

The joint density of X and Y is given by

$$f_{x,y}(x,y) = egin{cases} 2e^{-x-2y} & ext{ for } 0 < x < \infty, 0 < y < \infty \\ & ext{ otherwise} \end{cases}$$

Are X and Y independent?

Outline

- Expectation for Different Functions of Multivariate Random Variables

Expectation for Different Functions of Multivariate Random Variables

Let X, Y be two discrete random variables with joint probability function $p_{X,Y}(x,y)$. Then the expected value of g(X,Y) is given by

$$E\left(g(X,Y)\right) = \sum_{(x,y) \in \mathcal{S}_{XY}} g(x,y) p_{x,y}(x,y)$$

Let X, Y be two continuous random variables with joint probability density function $f_{X,Y}(x,y)$. Then the expected value of g(X,Y) is given by

$$E(g(X,Y)) = \int_{(x,y)\in\mathcal{S}_{XY}} g(x,y)f_{X,Y}(x,y)dx dy$$

Example:

Let X, Y have joint cdf

$$f_{x,y}(x,y) = \begin{cases} \frac{2}{7}(x+2y) & \text{for } 0 < x < 1, 1 < y < 2\\ & \text{otherwise} \end{cases}$$

- **②** Find the expected value of $\frac{X}{Y^3}$
- \mathbf{P} Find the expected value of XY

Outline

- Variance and Covariance of a Random Variable

Reminder: Mean and Variance of a Random Variable

Mean: Let X be a random variable, then E(X) denoted by μ_X is called the **mean** of the random variable.

Variance: Let X be a random variable, then $E(X - \mu_X)^2$ denoted by Var(X) is called the **Variance** of the random variable. Note that, the alternative formula for variance is:

$$Var(X) := E(X^2) - (E(X))^2$$
.

Covariance

Definition (Covariance)

Let X, and Y be two random variables with a joint distribution. Then

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)),$$

where μ_X and μ_Y denotes the mean of the random variables X, and Y respectively.

An Alternative Formulation for the covariance is the following:

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

Statistically Independent Random Variables and Covariance

Theorem

If X, and Y are two statistically independent random variables, then

$$Cov(X, Y) = 0$$

. However, the converse of the result is not true in general.

Example:

Suppose X and Y have the following joint distribution:

X	0	1	2
0	1 1/6	1 1/3	1 1 2
1	<u>2</u> 9	1 6	0
2	1 36	0	0

Find the covariance of X and Y.

Show that X, and Y are not statistically independent?

Example:

Let X and Y have joint density

$$f_{x,y}(x,y) =$$

$$\begin{cases} 2 & \text{for } x > 0, y > 0, x + y < 1 \\ & \text{otherwise} \end{cases}$$

- Find the covariance of X and Y.
- Are the random variables X, and Y statistically independent?

Expected Value of Linear Combination

Let $X_1, X_2, ... X_n$ are random variables and $Y = a_0 + \sum_{i=1}^n a_i X_i$, where $a_i's$ are constants then

$$E(Y) = a_0 + \sum_{i=1}^n a_i E(X_i)$$

$$Var(Y) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{1 \le i < j \le n} a_i a_j Cov(X_i, X_j)$$

If $X_1, X_2, \dots X_n$ are mutually statistically independent then,

$$Var(Y) = \sum_{i=1}^{n} a_i^2 Var(X_i)$$

Let $X_1, X_2, ... X_n$ are random variables and $Y_1 = a_0 + \sum_{i=1}^n a_i X_i$, and $Y_2 = b_0 + \sum_{i=1}^n b_i X_i$, where $a_i's$ abd $b_i's$ are constants then $Cov(Y_1, Y_2) = \sum_{i=1}^n a_i b_i Var(X_i) + 2\sum \sum_{1 \le i < j \le n} a_i b_j Cov(X_i, X_j)$

If $X_1, X_2, \dots X_n$ are mutually statistically independent then,

$$Cov(Y) = \sum_{i=1}^{n} a_i b_j Var(X_i)$$

Let X and Y have joint distribution. For X and Y defined in the previous two examples, Let $Z_1 = 2X + 4Y$ and $Z_2 = X - 2Y$

- \bigcirc Find Var(Z_1), Var(Z_2)
- Find $Cov(Z_1, Z_2)$.

Example: Let X and Y be two independent random variables with means 2, 3 respectively. The variances of X, Y is provided as 4 and 2. Let $Z_1 = X + 2Y + 3$ and $Z_2 = 3X - Y$. Find: $E(Z_1)$, $E(Z_2)$, $Var(Z_1)$, $Var(Z_2)$ and $Cov(Z_1, Z_2)$.

