Parametric Curves and Surfaces

Parametric Polynomial Curves

The functions are all polynomials in the parameter.

$$x(u) = a_0 + a_1 u^1 + a_2 u^2 + \cdots + a_n u^n = \sum_{k=0}^n a_k u^k$$

$$y(u) = b_0 + b_1 u^1 + b_2 u^2 + \cdots + b_n u^n = \sum_{k=0}^{n} b_k u^k$$

- We'll assume that u varies from 0 to 1
- Pros:
 - efficient to compute
 - infinitely differentiable
 - Generalization to 3D curves is completely straightforward:
 add z(u)
- **Power basis** (1, u, u²,...) form does not reveal geometry of curves.

Linear Interpolation (1D)

Interpolate values using linear interpolation; in 1D:

$$\hat{f}(t) = (1-t)f_i + tf_j$$

Can think of this as a linear combination of two functions:

- (1-t) and t are two linear basis functions
 - Each gives the contribution of one point while t varies
- Can we use higher-order bases to get more interesting geometry?

Bernstein Basis

Provide more flexibility by using higher-order polynomials

Bezier Curves

A Bezier curve is a curve expressed in the Bernstein basis:

$$C(u) := \sum_{k=0}^n B_{n,k}(u) p_k$$
 control points Blending control points using weights computed from basis

functions

- For n=1, just get a line segment!
- For n=2, get quadratic Bezier (parabola)
- For n=3, get cubic Bezier

Bezier Curves

- Important features (see next few slides):
 - Interpolates endpoints
 - Tangent to end segments
 - Contained in convex hull
 - Symmetry
 - Affine invariant
 - Variational diminishing
 - **–** ...

Endpoint interpolations

At u=0, $B_0(0)=1$, the other functions = 0 At u=1, $B_3(1)=1$, the other functions = 0

Tangent to end segments,

For cubic Bezier curves, we have

$$Q(u) = (1-u)^3 V_0 + 3u(1-u)^2 V_1 + 3u^2 (1-u)V_2 + u^3 V_3$$

Expanding the terms in u and rearranging:

$$Q(u) = (-V_0 + 3V_1 - 3V_2 + V_3)u^3 + (3V_0 - 6V_1 + 3V_2)u^2 + (-3V_0 + 3V_1)u + V_0$$

• Differentiating:

$$Q'(u) = 3(-V_0 + 3V_1 - 3V_2 + V_3)u^2 + 2(3V_0 - 6V_1 + 3V_2)u + (-3V_0 + 3V_1)$$

What are the tangents at endpoints?

Contained in Convex hull

• Desirable properties:

Affine — **sum** of all coefficients is always **exactly 1** (a.k.a., a combination "partition of unity")

Convex – each Bernstein coefficient is **positive**

The curve is generated by **convex combinations** of the control points and therefore lies within the **convex hull** of the control points.

Convex Hull

Symmetry

• Relabeling the control points from P_0 , P_1 ,..., P_n to P_n , P_{n-1} ..., P_0 and using the symmetry property of Bernstein polynomials, we get the same Bezier curve

Affine invariance

Partition of unity and non-negativity also imply affine invariance

Variational Diminishing

- Bezier curves are smoother than the polygon formed by their control points.
- Any line drawn through the curve has equal or fewer intersections with the curve than with the control polygon.

Possible

Impossible

Evaluation by recursive interpolations

 A Bezier curve at a particular u can be evaluated using deCasteljau's algorithm (recursive linear interpolation)

How many linear interpolations for a degree n Bezier curve?

deCasteljau's algorithm

There are several ways to define Bezier curves.

One way is using Bernstein polynomials.

Here, we show another way: via repeated linear interpolations

$$V_{0}^{1} = (1-u)V_{0} + uV_{1}$$

$$V_{1}^{1} = (1-u)V_{1} + uV_{2}$$

$$V_{2}^{1} = (1-u)V_{2} + uV_{3}$$

$$V_{0}^{2} = (1-u)V_{0}^{1} + uV_{1}^{1}$$

$$V_{1}^{2} = (1-u)V_{1}^{1} + uV_{2}^{1}$$

$$Q(u) = (1-u)V_{0}^{2} + uV_{1}^{2}$$

$$= (1-u)[(1-u)V_{0}^{1} + uV_{1}^{1}] + u[(1-u)V_{1}^{1} + uV_{2}^{1}]$$

$$= (1-u)[(1-u)\{(1-u)V_{0} + uV_{1}^{1}\} + u\{(1-u)V_{1} + uV_{2}\}] + \dots$$

$$= (1-u)^{3}V_{0} + 3u(1-u)^{2}V_{1} + 3u^{2}(1-u)V_{2} + u^{3}V_{3}$$

Splitting Bezier curves

- deCasteljau's algorithm is useful for splitting a Bezier curve into two Bezier curves
- Original Bezier curve represented by V₀, V₁, V₂, V₃
- Split into two Bezier curves represented by L_0 , L_1 , L_2 , L_3 and R_0 , R_1 , R_2 , R_3

Useful for

- finding line-Bezier intersection or Bezier-Bezier intersections
- Adaptive display

Subdivide: display

Power-basis form vs Bernstein-basis form

- Mathematically, Bezier curves are equivalent to polynomial curves expressed in power-basis form
- Bezier curves are expressed in terms of meaningful geometric elements (control points).

$$Q(u) = (1-u)^{3}V_{0} + 3u(1-u)^{2}V_{1} + 3u^{2}(1-u)V_{2} + u^{3}V_{3}$$

$$= V_{0} + (-3V_{0} + 3V_{1})u + (3V_{0} - 6V_{1} + 3V_{2})u^{2} + (-V_{0} + 3V_{1} - 3V_{2} + V_{3})u^{3}$$

$$= \begin{bmatrix} V_{0,x} + (-3V_{0,x} + 3V_{1,x})u + (3V_{0,x} - 6V_{1,x} + 3V_{2,x})u^{2} + (-V_{0,x} + 3V_{1,x} - 3V_{2,x} + V_{3,x})u^{3} \\ V_{0,y} + (-3V_{0,y} + 3V_{1,y})u + (3V_{0,y} - 6V_{1,y} + 3V_{2,y})u^{2} + (-V_{0,y} + 3V_{1,y} - 3V_{2,y} + V_{3,y})u^{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{0} + a_{1}u + a_{2}u^{2} + a_{3}u^{3} \end{bmatrix} \begin{bmatrix} x(u) \end{bmatrix}$$

$$= \begin{bmatrix} a_0 + a_1 u + a_2 u^2 + a_3 u^3 \\ b_0 + b_1 u + b_2 u^2 + b_3 u^3 \\ 1 \end{bmatrix} = \begin{bmatrix} x(u) \\ y(u) \\ 1 \end{bmatrix}$$

Higher-order polynomials...?

- What if we want more interesting curves than cubic polynomials?
- Use higher-degree polynomials?
 - have more wiggles
 - Very hard to control

Piecewise Bezier curves

- Piece together several Bezier curves to get a Bezier spline
- Widely-used (illustrator, fonts, SVG, etc.)

Formally, piecewise Bezier curve:

piecewise Bézier
$$C(u) := C_i \left(\frac{u - u_i}{u_{i+1} - u_i} \right), \qquad u_i \le u < u_{i+1}$$
 single Bézier

Bezier splines: continuity

First-order continuity means continuous first derivative

$$Q'(u) = \frac{dQ(u)}{du}$$

- Q'(u) is called the **tangent**
- If we think of u as "time" and Q(u) as the path of a particle through space, Q'(u) represents the **velocity** (direction and magnitude)

Second-order continuity means continuous second derivative

$$Q''(u) = \frac{d^2Q(u)}{du^2}$$

 Q"(u) represents acceleration if Q(u) represents a motion curve

Parametric Continuity

• In general, Cⁿ continuity is defined as follows:

$$Q(u)$$
 is C^n continuous
iff
 $Q^{(i)}(u)$ is continuous for $0 \le i \le n$

Two curves $Q_1(u)$ and $Q_2(u)$

$$Q_1^{(i)}(1) = Q_2^{(i)}(0)$$

These conditions are *nested*

 C^0 :

Ensuring C⁰ continuity

- Q_v(u) defined by V₀,V₁,V₂,V₃
- Q_w(u) defined by W₀,W₁,W₂,W₃
- Joint is C⁰ continuous if

$$C^0: Q_V(1) = Q_W(0)$$

What constraint does this place on W₀,W₁,W₂,W₃?

$$W_0 = V_3$$

Ensuring C¹ continuity

• Joint is C¹ continuous if $C^0: Q_V(1) = Q_W(0)$ $C^1: Q_V(1) = Q_W(0)$

What additional constraint does this place on (W₀,W₁,W₂,W₃)?

The C¹ Bezier spline

- How then could we construct a curve passing through a set of points P₀, ..., P_n with C¹ continuity?
- We can devise a scheme to place the Bezier control points (consider the interior points; end points need special treatment)

$$V_0 = P_1$$

$$V_1 = P_1 + \frac{1}{6}(P_2 - P_0)$$

$$V_2 = P_2 - \frac{1}{6}(P_3 - P_1)$$

$$V_3 = P_2$$

Second-order continuity

• To develop C² splines, we need second-order derivatives

$$Q'(u) = 3(-V_0 + 3V_1 - 3V_2 + V_3)u^2 + 2(3V_0 - 6V_1 + 3V_2)u + (-3V_0 + 3V_1)$$

$$Q''(u) = 6(-V_0 + 3V_1 - 3V_2 + V_3) u + 2(3V_0 - 6V_1 + 3V_2)$$

At the two endpoints:

$$\begin{split} Q''(0) &= 6(V_0 - 2V_1 + V_2) \\ &= -6\big[(V_1 - V_0) + (V_1 - V_2)\big] \\ &= -\frac{1}{6} Q''(\phi) = (V_1 - V_0)^{\perp} (V_1 - V_2) \\ Q''(1) &= 6(V_1 - 2V_2 + V_3) \\ &= -6\big[(V_2 - V_3) + (V_2 - V_1)\big] \end{split}$$

Ensuring C² continuity

• The joint is C² continuous if

$$C^0: Q_V(1) = Q_W(0)$$

$$C^1: Q_V(1) = Q_W(0)$$

$$C^2: Q_V''(1) = Q_W''(0)$$

What additional constraint does this place on (W₀,W₁,W₂,W₃)?

$$(W_1 - W_0) + (W_1 - W_2)$$

= $(V_2 - V_3) + (V_2 - V_1)$

Constructing C² Bezier spline

- Given the **corner points** (i.e., **B**_i) of the **A-frames**
- Let's build a C² continuous approximating spline

- The B_i points are called de Boor points
- We will see how to define **B-splines** directly using these points later

Constructing C² Bezier spline

Define the Bezier control points (V) in terms of the de Boor points (B):

$$\begin{split} V_{1} &= \underline{2/3} \quad B_{1} + \underline{1/3} \quad B_{2} \\ V_{2} &= \underline{1/3} \quad B_{1} + \underline{2/3} \quad B_{2} \\ V_{0} &= \underline{1/2} \quad [\underline{1/3} \quad B_{0} + \underline{2/3} \quad B_{1}] + \underline{1/2} \quad [\underline{2/3} \quad B_{1} + \underline{1/3} \quad B_{2}] \\ &= \underline{1/6} \quad B_{0} + \underline{4/6} \quad B_{1} + \underline{1/6} \quad B_{2} \\ V_{3} &= \underline{1/6} \quad B_{1} + \underline{4/6} \quad B_{2} + \underline{1/6} \quad B_{3} \end{split}$$

Constructing C² Bezier spline

Express the Bezier points in terms of the given de Boor points:

$$\begin{bmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 1/6 & 2/3 & 1/6 & 0 \\ 0 & 2/3 & 1/3 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 0 & 1/6 & 2/3 & 1/6 \end{bmatrix} \begin{bmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{bmatrix} \begin{bmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{bmatrix}$$

Endpoint interpolation

- How do we define the first and last curve segments?
- To get endpoint interpolation while still using the same matrix is to simply **repeat the endpoints** (*multiplicity* = 3 for *cubics* to create *two curve segments* at each end)

Comparison

	Local control	interpolatory	C ²
C ¹ interpolating Bezier spline	Y	Υ	N
C ² approximating Bezier spline	Υ	Ν	Y
C ² -interpolating spline	N	Υ	Y

Note that it is not possible to build a C^2 continuous interpolating spline using a *local* procedure. We will need to set up the C^2 continuous constraints for all the V_i points and solve the resulting system of linear equations.

https://courses.cs.washington.edu/courses/csep557/10au/lectures/c2-interp.pdf

Reparameterization

- We have so far consider **parametric continuity**, i.e. continuity of derivatives w.r.t. the parameter u
- This form of continuity makes sense particularly if we really are describing a particle moving over time and want its **motion** (e.g., velocity and acceleration) to be smooth.
- But, what if we're thinking only in terms of the shape of the curve? Is the parameterization actually **intrinsic to the shape**, i.e., is it the case that a shape has only one parameterization?

Gⁿ (Geometric) Continuity

 Geometric continuity is defined in terms of arc-length parametrization:

$$Q(s)$$
 is G^n continuous iff
$$Q^{(i)}(s) = \frac{d^i Q(s)}{ds^i}$$
 is continuous for $0 \le i \le n$

where Q(s) is parameterized by arc length s.

- Then the **first derivative** (tangent) is of unit length
- And the **second derivative** points to center of the osculating circle

$$||Q''(s)|| = \kappa(s) = \frac{1}{r(s)}$$

Gⁿ continuity is a weaker constraint than Cⁿ continuity

$$O(s) = \lim_{s_1, s_2, s_3 \to s} O(s_1, s_2, s_3)$$

Parametric Surfaces

Tensor Product surfaces

- Can use a pair of curves to get a surface
- Value at any point (u,v) is given by product of a curve f at u and a curve g at v (sometimes called the "tensor product"):

Bezier Patches

• Bezier patch is sum of (tensor) products of Bernstein bases

Tensor product Bezier surfaces

Let's walk through the construction steps:

- The surface interpolates the four corner control points
- The boundary curves of a Bézier patch are themselves Bézier curves. E.g.,

$$S(0, v) = \sum_{j=0}^{3} p_{0j} B_{j,3}(v)$$

Tangents and normal

- We can compute tangents to the surface at any point by looking at (infinitesimally) nearby points.
 - Holding one parameter constant and finding two nearby points by varying the other parameter. Thus, we can get two tangents:

$$\mathbf{t}_{u} = \frac{\partial S(u, v)}{\partial u} \qquad \mathbf{t}_{v} = \frac{\partial S(u, v)}{\partial v}$$

- How do we compute the **normal**?
 - Take cross product of the two tangents

Bézier Patch

Differentiation at the corners:

$$Q_{u}(0,0) = 3(p_{10} - p_{00})$$

$$Q_{v}(0,0) = 3(p_{01} - p_{00})$$

$$Q_{uv}(0,0) = 9(p_{00} - p_{01} - p_{10} + p_{11})$$
twist vector

Bezier surface

• Just as we connected Bezier *curves*, we can connect Bezier *patches* to get a surface:

Can we always get tangent continuity?

Bezier Patches: limited connectivity

Notice that exactly four patches meet around *every* vertex!

In practice, far too constrained.

To make interesting shapes (with good continuity), we need patches that allow more interesting connectivity...

Other parametric schemes

- There are many other parametric curve schemes
 - B-spline
 - Rational Bezier
 - NURBS
 - Hermite
 - Gregory
 - **—** ...
- Can form corresponding tensor product surface schemes

Uniform Cubic B-spline

$$C(t) = \sum_{i=0}^{3} P_i B_{i,4}(t)$$

$$= P_0 \frac{1}{6} (1 - 3t + 3t^2 - t^3) + P_1 \frac{1}{6} (4 - 6t^2 + 3t^3) + P_2 \frac{1}{6} (1 + 3t + 3t^2 - 3t^3) + P_3 \frac{1}{6} (t^3)$$

uniform B-spline basis functions

Uniform cubic B-spline

$$x(t) = P_0 \frac{1}{6} \left(1 - 3t + 3t^2 - t^3 \right)$$

$$+ P \frac{1}{6_1} \left(4 - 6t^2 + 3t^3 \right)$$

$$+ P_2 \frac{1}{6} \left(1 + 3t + 3t^2 - 3t^3 \right)$$

$$+ P_3 \frac{1}{6} \left(t^3 \right)$$

- Does the curve interpolate its endpoints?
- Does it lie inside its convex hull?

Bézier versus BSpline

Relationship to the control points is different

Uniform Cubic B-Splines

- Basis functions can be chained together
- Local control

Basis functions are themselves C² continuous at knots

Rational Curves

 It is known from classical mathematics that all the conic curves (circle, ellipse, hyperbola, parabola) can be represented using rational functions, which is defined as ratio of two polynomials.

$$x(u) = rac{X(u)}{W(u)}$$
 $y(u) = rac{Y(u)}{W(u)}$

where X(u), Y(u) and W(u) are polynomials.

Rational Curves

Example 1:

Circle of radius 1, centered at the origin

$$x(u) = \frac{1-u^2}{1+u^2}$$
 $y(u) = \frac{2u}{1+u^2}$

Easy to verify

$$(x(u))^{2} + (y(u))^{2} = \left(\frac{1-u^{2}}{1+u^{2}}\right)^{2} + \left(\frac{2u}{1+u^{2}}\right)^{2}$$
$$= \frac{1-2u^{2}+u^{4}+4u^{2}}{(1+u^{2})^{2}} = \frac{(1+u^{2})^{2}}{(1+u^{2})^{2}} = 1$$

• Example 2:

Ellipse, centered at the origin; the y-axis is the major axis, the x-axis is the minor axis, and the major and minor radii are 2 and 1, respectively

$$x(u) = \frac{1 - u^2}{1 + u^2}$$
 $y(u) = \frac{4u}{1 + u^2}$

Rational Bezier

An n-degree rational Bezier curve is defined as:

$$\mathbf{C}(u) = \frac{\sum_{i=0}^{n} B_{i,n}(u) w_i \mathbf{P}_i}{\sum_{i=0}^{n} B_{i,n}(u) w_i} \qquad 0 \le u \le 1$$

 $w_i>0$ are the weights controlling the 'strength' of control points. When $w_i=1$ for all i, we get polynomial Bezier curves.

Re-writing

$$\mathbf{C}(u) = \sum_{i=0}^n R_{i,n}(u) \mathbf{P}_i \qquad 0 \leq u \leq 1$$
 where $R_{i,n}(u) = \frac{B_{i,n}(u) w_i}{\sum_{j=0}^n B_{j,n}(u) w_j}$

Rational Bezier

 Rational curves in n-dimensional space can be represented as a polynomial curve in (n+1)-dimensional space using homogeneous coordinates.

Now for a given set of control points, $\{P_i\}$, and weights, $\{w_i\}$, construct the weighted control points, $\mathbf{P}_i^w = (w_i x_i, w_i y_i, w_i z_i, w_i)$. Then define the nonrational (polynomial) Bézier curve in four-dimensional space

$$\mathbf{C}^w(u) = \sum_{i=0}^n B_{i,n}(u) \; \mathbf{P}^w_i$$

Writing out the coordinate functions:

$$X(u) = \sum_{i=0}^{n} B_{i,n}(u)w_ix_i$$
 $Y(u) = \sum_{i=0}^{n} B_{i,n}(u)w_iy_i$

$$Z(u) = \sum_{i=0}^{n} B_{i,n}(u) w_i z_i$$
 $W(u) = \sum_{i=0}^{n} B_{i,n}(u) w_i$

Locating the curve in three-dimensional space yields

$$x(u) = rac{X(u)}{W(u)} = rac{\displaystyle\sum_{i=0}^{n} B_{i,n}(u) w_i x_i}{\displaystyle\sum_{i=0}^{n} B_{i,n}(u) w_i}$$

$$y(u) = rac{Y(u)}{W(u)} = rac{\displaystyle\sum_{i=0}^{n} B_{i,n}(u) w_i y_i}{\displaystyle\sum_{i=0}^{n} B_{i,n}(u) w_i}$$

$$z(u) = rac{Z(u)}{W(u)} = rac{\sum_{i=0}^{n} B_{i,n}(u) w_i z_i}{\sum_{i=0}^{n} B_{i,n}(u) w_i}$$

Rational Bezier

A geometric construction of a rational Bezier curve

Properties of Bezier rational curves

- The rational Bezier basis functions have all the following properties like the polynomial Bezier basis functions:
 - Nonnegativity
 - Partition of unity
 - $R_{0,n}(0) = R_{n,n}(1)=1,$
 - **–** ...
- Therefore rational Bezier curves have all the following properties
 - Endpoint interpolation
 - Convex hull property
 - Transformation invariance
 - Variation diminishing
 - The kth derivative at u=0 (u=1) depends on the first (last)
 k+1 control points and weights

NURBS

- (N)on-(U)niform (R)ational (B)-(S)pline
 - Knots at arbitrary locations (non-uniform)
 - Ratio of polynomials (rational)
 - Piecewise B-spline curve

NURBS

Non-uniform knots: different spacing between the basis functions

- Knot vector = {0,1,2,3,4,5,5,5,6 ,7,8,9,10,11}
- Triple knots at 5
- 5 segments

Matrix representation

$$Q(u) = (1 - u)^{3}V_{0} + 3u(1 - u)^{2}V_{1} + 3u^{2}(1 - u)V_{2} + u^{3}V_{3}$$

$$= (-V_{0} + 3V_{1} - 3V_{2} + V_{3})u^{3} + (3V_{0} - 6V_{1} + 3V_{2})u^{2} + (-3V_{0} + 3V_{1})u + V_{3}$$

$$= \left(u^{3} \ u^{2} \ u \ 1\right) \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} V_{0} \\ V_{1} \\ V_{2} \\ V_{2} \end{pmatrix}$$

Bezier basis matrix

$$Q(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix}$$

B-spline basis matrix

Matrix Representation

$$Q(u) = UMP$$
where $U = \begin{bmatrix} u^3 & u^2 & u^1 & 1 \end{bmatrix}$

$$Q'(u) = [3u^2 \ 2u \ 1 \ 0 \]MP$$

Pros:

- Compact representation
- Convenient implementation in either hardware or software with available matrix facilities

Conversion between representations

$$UM_{i}P_{i} = UM_{j}P_{j}$$

$$M_{i}P_{i} = M_{j}P_{j}$$

$$P_{i} = M_{i}^{-1}M_{j}P_{j}$$

where M_{*} is the **characteristic matrix** of a particular curve scheme

$$M_{BS} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{E.g. Convert a cubic uniform B-spline} \\ \text{curve to B\'ezier curve:} \\ P_{\rm B} = M_{\rm B}^{-1} M_{\rm BS} P_{\rm BS} \end{array}$$

$$M_B = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$M_{B} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1/3 & 1 \\ 0 & 1/3 & 2/3 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} M_{BS} P_{BS} = \frac{1}{6} \begin{pmatrix} 1 & 4 & 1 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 1 & 4 & 1 \end{pmatrix} P_{BS}$$

Bicubic Surfaces

Matrix equation of a bicubic surface:

$$Q(u,v) = UMPM^{\mathrm{T}}V^{\mathrm{T}}$$

where

$$U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$$
$$V = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}$$

P is a 4×4 matrix containing the 16 control points

Bézier Patch

$$Q(u, v) = UMPM^{\mathrm{T}}V^{\mathrm{T}}$$

Differentiating
$$Q_{u}(u,v) = \begin{bmatrix} 3u^{2} & 2u & 1 & 0 \end{bmatrix} M_{\mathrm{B}}PM_{\mathrm{B}}^{\mathrm{T}}V^{\mathrm{T}}$$

$$Q_{v}(u,v) = UM_{\mathrm{B}}PM_{\mathrm{B}}^{\mathrm{T}}\begin{bmatrix} 3v^{2} \\ 2v \\ 1 \\ 0 \end{bmatrix}$$

$$Q_{uv}(u,v) = \begin{bmatrix} 3u^{2} & 2u & 1 & 0 \end{bmatrix} M_{\mathrm{B}}PM_{\mathrm{B}}^{\mathrm{T}}\begin{bmatrix} 3v^{2} \\ 2v \\ 1 \\ 0 \end{bmatrix}$$

NURBS surface

Multiple NURBS patches form a surface

- Pros: easy to evaluate, exact conics, high degree of continuity
- Cons: rectangular underlying topology; difficult to maintain continuity for arbitrary topology