

https://www.cd-hoerspiele.de/drei-fragezeichen-190.html

Christian Köppe, Jacqueline Nijenhuis, Jacco Gnodde, Renske Smetsers-Weeda

KEUZEMODULE ALGORITMIEK

Keuzethema Algoritmiek, berekenbaarheid en logica

Complexiteit van algoritmen

De kandidaat kan

(havo:) van gegeven algoritmen de complexiteit vergelijken, en kan klassieke 'moeilijke' problemen herkennen en benoemen.

(vwo:) het verschil tussen exponentiële en polynomiale complexiteit uitleggen, kan algoritmen op basis hiervan onderscheiden, en kan klassieke 'moeilijke' problemen herkennen en benoemen.

Berekenbaarheid

De kandidaat kan berekeningen op verschillende abstractieniveaus karakteriseren en relateren, en kan klassieke *onberekenbare* problemen herkennen en benoemen.

Logica

De kandidaat kan eigenschappen van digitale artefacten uitdrukken in logische formules.

Keuzethema Algoritmiek, berekenbaarheid en logica

Complexiteit van algoritmen

De kandidaat kan

(havo:) van gegeven algoritmen de complexiteit vergelijken, en kan klassieke 'moeilijke' problemen herkennen en benoemen.

(vwo:) het verschil tussen exponentiële en polynomiale complexiteit uitleggen, kan algoritmen op basis hiervan onderscheiden, en kan klassieke 'moeilijke' problemen herkennen en benoemen.

Berekenbaarheid

De kandidaat kan berekeningen op verschillende abstractieniveaus karakteriseren en relateren, en kan klassieke *onberekenbare* problemen herkennen en benoemen.

Logica

De kandidaat kan eigenschappen van digitale artefacten uitdrukken in logische formules.

Waarop kunnen we voortbouwen?

Kernprogramma!

Algoritmen

De kandidaat kan

- een oplossingsrichting voor een probleem uitwerken tot een algoritme;
- daarbij standaardalgoritmen herkennen en gebruiken;
- de correctheid en efficiëntie van digitale artefacten onderzoeken via de achterliggende algoritmen.

Datastructuren

De kandidaat kan verschillende abstracte datastructuren met elkaar vergelijken op en efficiëntie.

Automaten

De kandidaat kan eindige automaten gebruiken voor de karakterisering van bepaal algoritmen.

Grammatica's

De kandidaat kan grammatica's hanteren als hulpmiddel bij de beschrijving van tale

Doelstellingen

De kandidaat kan doelstellingen voor informatie- en gegevensverwerking onderscheiden, waaronder zoeken en bewerken.

Identificeren

De kandidaat kan informatie en gegevens identificeren in contexten, daarbij rekening houdend met de doelstelling.

Representeren

De kandidaat kan gegevens representeren in een geschikte datastructuur, daarbij rekening houdend met de doelstelling, en kan daarbij verschillende representaties met elkaar vergelijken op elegantie, efficiëntie en implementeerbaarheid.

Standaardrepresentaties

De kandidaat kan standaardrepresentaties van numerieke gegevens en media gebruiken en aan elkaar relateren.

Gestructureerde data

De kandidaat kan een informatiebehoefte vertalen in een zoekopdracht op een verzameling gestructureerde data.

Ontwikkelen

De kandidaat kan, voor een gegeven doelstelling,

- programmacomponenten ontwikkelen in een imperatieve programmeertaal;
- daarbij programmeertaalconstructies gebruiken die abstractie ondersteunen;
- programmacomponenten zodanig structureren dat ze door anderen gemakkelijk te begrijpen en te evalueren zijn.

Inspecteren en aanpassen

De kandidaat kan

- structuur en werking van gegeven programmacomponenten uitleggen;
- zulke programmacomponenten aanpassen op basis van evaluatie of veranderde eisen.

Lesmethodes (Instruct, Informatica-actief)

Start

Resultaten

Berichten

7oeken

3i Fundament 2019 > B: Grondslagen > B1: Algoritmen

B1: Algoritmen

- 1. Algoritmen
 - 1.1. Inleiding
 - 1.2. Kaarten sorteren
 - 1.3. Sorteeralgoritme
 - 1.4. Schematische weergave van een algoritme
 - 1.5. Hoe goed is een algoritme?
 - 1.6. Best-, average- en worstcasescenario
 - 1.7. Een zoekalgoritme
 - 1.8. Efficiëntie van een algoritme
- · 2. Standaardalgoritmen
 - · 2.1. Inleiding
 - 2.2. Sorteren
 - · 2.3. BubbleSort
 - 2.4. MergeSort
 - · 2.5. QuickSort
 - 2.6. Vergelijking tussen sorteeralgoritmen
 - 2.7. Routeplanning
 - 2.8. Het kortstepadalgoritme
- · 3. Onoplosbare problemen?
 - 3.1. Inleiding
 - 3.2. Rugzakprobleem
 - · 3.3. Correctheid en efficiëntie
 - · 3.4. Chinese postbodeprobleem

Basic ideas (feedback welkom!)

- Een korte intro/herhaling basis algoritmen
 - Optioneel, afhankelijk van voorkennis
 - Incl. zoek-/sorteeralgoritmen
- Vooral reflecteren op/evalueren van algoritmen
- Complexiteit/berekenbaarheid 2/3, logica 1/3
- "Explorerende" didactiek
- Naast veel praktische oefeningen ook duidelijke focus op concepten
- Doelgroep: H6, V5 en V6

Onderwerpen algoritmiek en berekenbaarheid

- Selectie, sequentie, iteratie
- Recursie
- Brute force/backtracking/greedy
- Correctheid/efficiëntie
- Minimaal opspannende bomen
- Kortste pad
- Dominerende sets
- Travelling salesman
- Convex Hull
- Zoeken/sorteren
- Datarepresentatie (oa hashing)
- Optioneel: halting probleem

Onderwerpen logical

- Expressies mbv. waarheidstabellen interpreteren
- Equivalenties
- Impliceert-relatie, als-dan
- Verzamelingenleer, venn-diagram (omzetten naar expressie)
- Problemen oplossen met logisch nadenken/redeneren

Constructive Alignment?!

Leerdoelen -> Assessment criteria/methoden -> Inhoud/opzet

Geen voorbeelden/richtlijnen gevonden...

■ Dus...

Hergebruik (aka of course not invented here)!

Nieuw-Zeeland

- http://csfieldguide.org.nz/en/curriculum-guides/apcsp/guidealgorithms-introduction.html
- http://csfieldguide.org.nz/en/chapters/complexity-tractability.html

Duitsland

https://www.inf-schule.de/algorithmen/algorithmen/effizienz

VS

https://sites.google.com/a/jcu.edu/mt513/resources/cs-principles-key-ideas-and-learning-out

Nog te bepalen (1)

- Concrete leerdoelen
- Toetscriteria
- Toetsvormen
- Gebruikte tools
- Gebruikte notatie/s

Nog te bepalen (2)

- Datastructuren?
- Is er ook een vertaalslag naar realisatie/context (of alleen "droogzwemmen")?
- Welke context/en (passend bij concepten én belevingswereld van leerlingen)?
- Keuze aan specifieke onderwerpen.
- Concrete didactische aanpakken

Zeker een toevoeging:

https://www.flickr.com/photos/21561428@N03/5076724542