Markov Decision Process Examples

Example I: Maze Problem as MDP

- \bullet Rewards: -1 per time-step
- Actions: N, E, S, W
- States: Agent's location

Maze Problem as MDP

• Numbers represent value $V^{\pi}(s)$ of each state s

Maze Problem as MDP

• Arrows represent policy $\pi(s)$ for each state s

Maze Problem as MDP

https://www.samyzaf.com/ML/rl/qmaze.html

Example II: Super Mario Bros. Game

Super Mario Bros. Game as MDP

Terminology: state and action

state s (this frame)

Action $a \in \{\text{left, right, up}\}\$

Terminology: state transition

state transition

• E.g., "up" action leads to a new state.

- State transition can be random.
- · Randomness is from the environment.

Terminology: state transition

state transition

• E.g., "up" action leads to a new state.

- State transition can be random.
- · Randomness is from the environment.

•
$$p(s'|s,a) = \mathbb{P}(S'=s'|S=s,A=a).$$

Terminology: reward

reward R

• Collect a coin: R = +1

• Win the game: R = +10000

• Touch a Goomba: R = -10000 (game over).

• Nothing happens: R=0

Terminology: policy

policy π

- $\pi(a \mid s)$ is the probability of taking action A = a given state s, e.g.,
 - $\pi(\text{left} \mid s) = 0.2$,
 - $\pi(\text{right}|s) = 0.1$,
 - $\pi(\text{up} \mid s) = 0.7$.
- Upon observing state S = s, the agent's action A can be random.

Example III: Robot in Grid World

Example: Robot in Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Markov Decision Process

- States: Positions of Robots
- Actions: Movements
- State Transitions:
 Uncertain resulting state
 for the chosen direction
- Rewards: small living reward in non-terminate states; big rewards of +1 or -1 in terminate states

Value Iteration

k = 100

Policy Extraction

Q Values

Optimal Policy

Example IV: Jack's Car Rental Problem

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - \blacksquare 2nd location: average requests = 4, average returns = 2

Shared-bike Relocation Problem

Policy Iteration

