MAT102 - College Algebra - Polynomial and Rational Functions

3.1 Quadratic Functions and Applications [1]

Miraj Samarakkody

Tougaloo College

Updated - June 1, 2025

▶ A function of the form f(x) = mx + c $(m \neq 0)$ is a linear function.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

- A function of the form $f(x) = mx + c \ (m \neq 0)$ is a linear function.
- ► The function defined by $f(x) = ax^2 + bx + c$ ($a \neq 0$) is called a **quadratic function**.

A function defined by $f(x) = ax^2 + bx + c$ ($a \ne 0$) is called a **quadratic function**. By completing the square, f(x) can be expressed in **vertex form** as $f(x) = a(x - h)^2 + k$.

▶ The graph of f is a parabola with vertex (h, k).

- ▶ The graph of f is a parabola with vertex (h, k).
- ▶ If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.

- ▶ The graph of f is a parabola with vertex (h, k).
- If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ If a < 0, the parabola opens downward, and the vertex is the minimum point. The minimum value of f is k.

- ▶ The graph of f is a parabola with vertex (h, k).
- If a > 0, the parabola opens upward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ If a < 0, the parabola opens downward, and the vertex is the minimum point. The minimum value of f is k.
- ▶ The axis of symmetry is x = h. This is the vertical line that passes through the vertex.

Example - Analyzing and Graphing a Quadratic Function

References

Julie Miller and Donna Gerken.

College Algebra.

McGraw-Hill Education, New York, 2nd edition, 2016.