Search Algorithms

niform Cost Search

```
: = start
ntier = heap({node})
.ored = {}
.e not empty(frontier):
   node = frontier.pop()
   if IS GOAL(node): return SOLUTION(node)
   explored.add(node)
   for action in node.get actions():
          child = APPLY(node, action)
          if child not in union(frontier, explored):
                 frontier.add(child)
          else if child in frontier:
                 frontier.decide and replace(child)
```


Path Cost

Path Cost : Path Cost :

Path Cost :
Path Cost :
Path Cost :
Path Cost :

Conventio

Path Cost

Path Cost 1

Conventio

Conventio

directional Uniform Cost Search

ny manner of expanding frontiers is OK

- Alternating both frontiers good for parallel computing
- Taking the min good in weighted graphs where hubs have high cost

opping criterion:

- min(forward) + min(reverse) > shortest_path_in_graph
- Note: intersection of explored sets, means you check for your stopping criterion when you POP from the queue.

¹ Search

nange the heap sort to include a heuristic function

```
f(state) = h(state) + g(state)
```

noice of a good heuristic:

- Admissible: underestimates
- Consistent (strict): monotonic

ne better the heuristic, the quicker the search

Path Cost

Path Cost

Path Cost :

Path Cost

Path Cost

Path Cost

Path Cost :

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost :

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost

Path Cost :

Path Cost

Path Cost

Path Cost

hoosing Good Heuristics

