基础电路与电子学

主讲: 陈开志

办公室: 学院2号楼304

Email: ckz@fzu.edu.cn

一、课程性质

价值:

- 1, 电路设计基础
- 2, 其它专业课程 的基础
- 3, 硬件是我们国 家被"卡脖子" 最严重的领域

电路设计流程: PCB设计软件

- 1. 根据项目需求选用合适的芯片,根据芯片手册搭建外围电路,设计出原理图,利用画电路板软件画出电路板图,
- 2. 送到制电路板工厂制板,焊接芯片等原件,
- 3. 调试电路板硬件
- 4. 加载软件调试

一、课程性质

关于计算机硬件方面的第一门专业基础课

基础电路与电子学→模拟信号

数字电路与逻辑设计→数字信号

计算机组成原理——信号在内部的处理

计算机系统结构——信号在外部的处理

计算机网络 --> 信号在网络的传输与处理

计算机接口技术

DSP、FPGA、ARM嵌入式系统、单片机等(软硬件相结合的技术)

硬件

软件

计算机

课程

二、课程内容

常见电子器件

半导体二极管 < 稳压管 半导体三极管

下篇 模拟电子技术

学时数: 40-42

-共射放大电路 放大电路的分析 \ 多级放大电路 共集放大电路 差动放大电路

放大电路的改善 →负反馈放大电路 功率放大电路

集成运算放大器→运算电路

数字电路

福州大学课程中心课程网站:

电脑登录 http://met2.fzu.edu.cn/meol/index.do

手机登录 课程伴侣 (以前叫优慕课)

用户名: 学号

初始密码: a@123456

课程中心平台已经 启用密码找回功能 请设置好安全邮箱

学习记录 课程成绩 学习分析

通知公告

• 2020-09-02	2020年秋季开学啦!
* 2020-03-19	关于设置找回密码邮箱
- 2020-03-18	教师和学生找回密码的
• 2020-02-19	关于学生登录密码的通
• 2020-02-05	2020年春季学期-延期

课程列表

基础电路与电子学 *****

课程编号: 00300167 主讲教师: 黄昉菀

进入课程

学习档案

注:下列统计项中,除"最近进入访问课程时间""最后一次登录系统时间"外,其余均为截止到昨天24:00的统计结果

本课程网络学习总时长	0 分钟
进入课程次数	0 次
第一次访问课程时间	2024-02-26 15:50:08
最近进入访问课程时间	2024-02-26 15:50:08
闽读教学资源次数	0次
在课程中查看常见问题次数	0 次
在课程中评论常见问题次数	0 次
在课程中交作业次数	0 次
在课程中撰写学习笔记次数	0次
在课程中查看课程简介次数	0次
在课程中查看教学大纲次数	0 次
在课程中查看教学日历次数	0次
在课程中学习播课次数	0次
在课程中学习播课个数	0 ↑
在课程中学习播课视频次数	0次
在课程中学习播课视频时长	0 分钟
在课程中提交在线测试次数	0次

暨景系统次数	0次
在线总时间	0 分钟
第一次登录系统时间	2024-02-26 14:29:46
最后一次暨录系统时间	2024-02-26 16:02:39

基础电路与电子学

	ne of the training		课程学习上 课程学习下	
课程学习上	≫ 在线测试			
第1次课	测试标题	第2次课		
第2次课	开始时间	2024-02-26 12:00:00		
电路中的物理量 (1)	截止时间	2024-04-02 00:00:00		
课程课件	允许测试次数	1		
随堂测试	限制用时 (分钟)	30		
课程讨论	开始测试	٥		
課程作业	交卷			
	查看结果			

随堂测试在复习后做,只能做一次,做完后自动评分并公布答案。题目相对简单,主要以选择、填空、判断为主。

注: 如果题目中有多个空请按顺序录入答案并在答案之间回车换行。		如果有突发情况(如断网、
例如: 题目为: 我国的首都是	星,金融中心是,最南端的经济特区是。	
	北京	- 误判) 可以联系老师进行
则在此按如下方式輸入答案: 海南		重考或修改分数。
		王为以为人为效。

填空题答案若为分数,请转换为小数,并仅保留到小数点后一位。

计算平时成绩时会参考同学的发言情况和回复质量。

课程作业

课程学习上 第1次课 第2次课 电路中的物理量(1) 课程课件 随堂测试 课程讨论

作业要求做在纸 上,抄题目和画 图,并写出详细 解答过程。

● 作业内容

注意: 只有线上授课的同学需要线上提交作业!

提交起止时间: 2024-02-26 12:00:00 -- 2024-06-30 00:00:00 | 允许多次提交: 是 | 发布状态: 已发布

作业1-9 求 V₁、V₂、V₃=?

补充问题:请问I=?

三、课程要求

- 1、课前预习、课后复习与独立完成作业
- 2、上课认真做好笔记
- 3、认真做好实验《电子线路综合实验》

包括九个实验: 电路分析方法的验证、 二极管和稳压管应用电路、 三种基本放大电路、 负反馈两级放大电路、 功率放大电路、 集成运算放大器应用等, 涵盖了理论课的全部重要知识

4、课堂纪律

成绩: 期末考70%, 平时30% (作业和纪律)

第1章

直流电路

第1章 直流电路

- 1.1 电路与电路模型
- 1.2 电流,电压,电位
- 1.3 电功率
- 1.4 电阻元件
- 1.5 电压源与电流源
- 1.6 基尔霍夫定律
- 1.7 简单的电阻电路
- 1.8 支路电流分析法
- 1.9 节点电位分析法
- 1.10 叠加原理
- 1.11 等效电源定理
- 1.12含受控电源的电阻电路

电路的基本概念

电路的基本 分析方法

1.1 电路与电路模型

电路一词的两种含义:

- (1) 实际电路: 电源、负载、连线组成
- (2) 电路模型: 元器件的符号组成

问题: 画出手电筒的电路模型?

注意点:

1、实际元件可以用一种理想元件或多个理想元件的组合来表示

2、一个实际元件在不同的条件下可能要用不同的理想元件表示

下述符号均为DIN (欧洲标准)

补充:还有一种符号标准为ANSI (美国标准)

以P17的图1-31为例

以P66的图3-26为例

电路的功能

1、完成能量的传输和转换

化学能 —— 电能 —— 光能和热能动能

- ※ 遵循能量守恒定律 所提供的电能=所消耗的电能
- 2、完成信号的传递和处理

举例:麦克风电路

完成了信号由弱到强的处理

结论: 任何一个放大电路都需要直流电源和交流电源的共同

1.2 电流、电压、电位

- 一、电流
- 1、概念 电场力 → 电荷 → 定向移动 → 电流

直流电流 →大小和方向不会随着时间而变化

- 2、分类 / 交流电流 → 大小或方向会随着时间而变化 ;

$$A(安培)$$
 $\leftarrow I = \frac{Q}{t} \xrightarrow{C} C(库仑)$ $\phi \in S(t)$ $\phi \in S(t)$ $\phi \in S(t)$ $\phi \in S(t)$

一、电流

- 4、电流方向
- (1) 实际方向 正电荷移动的方向

对于复杂电路, 很难直接判断出电流的实际方向

(2) 参考方向(正负号表示方向)

(2) 参考方向

标识方法:

- ① 箭头表示法 o—
 - a b
- ② 下标表示法 I_{ab}
- ② 若I < 0, 说明实际方向和参考方向相反; 举例: 电路如下图所示,求流过负载 R_L 的电流的实际方向。

分析方法:

- ① 任意设定 I 的参考方向
- ② 分析电路 假设I=3A
- ③ 根据结果进行判断

注意:参考方向设定原则

,人为任意设定

一旦设定就不可更改

1.2 电流、电压、电位

电压和电压的参考方向

 U_{ab} : 电场力把单位正电荷从u点移到u的功。

电压强度
$$V(伏特) \leftarrow U_{ab} = \frac{W}{Q} \xrightarrow{J($$
(焦耳) $C($ 库仑)

直流电压 —>大小和方向不会随着时间而变化

| 3、方向 | 实际方向 | 高电位 → 低电位 | 人为任意设定 | 参考方向 | 一旦设定就不可更改

参考方向的标识方法

- ※ ① 箭头表示法 a b
 - ② 下标表示法 U_{ab}
 - ③ 极性表示法 o + U o
- ① 若U>0, 说明实际方向和参考方向相同;
- ② 若U < 0, 说明实际方向和参考方向相反;

电压分析: 设定的参考方向,利用电路的各种分析方法对电路进行分析,可以计算得到电压U的大小,

思考: 同一元件上的电压和电流参考方向怎么设定?

4、关联参考方向和非关联参考方向 --> 对同一个元件而言

设定原则:设定的参考方向尽量和实际方向一致

■电阻元件一般建议采用关联参考方向设置;
电源元件一般建议采用非关联参考方向设置;

给下图所有电流电压设定参考方向

注意: 同一导线上的元件 电流都是一样的,方向只 要设定一次

设定原则:设定的参考方向尽量和实际方向一致

电阻元件一般建议采用关联参考方向设置;

电源元件一般建议采用非关联参考方向设置;

具体步骤: 1先根据电源已标的电压/电流的方向设定电流/ 电压方向(非关联)2再设定跟电源串接的电阻负载元件 的电压参考方向,3非串接的元件参考方向任意设定

第1章 直流电路

- 1.1 电路与电路模型
- 1.2 电流,电压,电位
- 1.3 电功率
- 1.4 电阻元件
- 1.5 电压源与电流源
- 1.6 基尔霍夫定律
- 1.7 简单的电阻电路
- 1.8 支路电流分析法
- 1.9 节点电位分析法
- 1.10 叠加原理
- 1.11 等效电源定理
- 1.12含受控电源的电阻电路

电路的基本概念

电路的基本 分析方法