In the Claims:

Please amend the claims as follows:

Please replace the presently pending claims with the following claims:

1. (Amended) A method to inhibit p38α activity, which method comprises contacting said p38α with a compound of the formula:

or the pharmaceutically acceptable salts thereof

wherein R³ comprises a substituted or unsubstituted aromatic moiety, wherein said aromatic moiety is a monocyclic or fused bicyclic moiety containing 5-12 ring member atoms, optionally comprising one or more heteroatoms selected from O, S and N;

each Z is CR² or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N:

each R2 is either

(i) independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, acyl, wherein each of alkyl, alkenyl, alkynyl and acylimay optionally contain 1-2 O, S or N, aryl, and arylalkyl, each of said aryl and arylalkyl optionally containing 1 or more O, S or N and wherein in each of the foregoing other than H may be unsubstituted or substituted with 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR2, SR, -SOR, -SO2R, -OCOR, -NRCOR, -NRCONR2, -NRCOOR, -NRSOR, -NRSO2R, -OCONR2, RCO, -COOR, -SO3R, -CONR2, SO2NR2, CN, CF3, and NO2, wherein each R is independently H or alkyl (1-4C), and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR2, SR, -SOR, -SO2R, -OCOR, -NRCOR, -NRCONR2, -NRCOOR, -NRSOR, -NRSO2R, -OCONR2, RCO, -COOR, -SO3R, -CONR3, SO2NR2, CN, CF3, and NO2, wherein each R is independently H or alkyl (1-4C), or

independently selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, NRSOR, NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, NRSO₂R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C);

wherein L is a divalent moiety that provides a distance of 2-8Å between ring B and Ar'; n is 0 or 1; and

Ar' is a cyclic aliphatic, cyclic heteroaliphatic or a monocyclic or polycyclic aromatic moiety any of the foregoing optionally substituted with 1-3 substituents, wherein two of said substituents may form a 5-7 member cyclic optionally heterocyclic aliphatic ring and wherein Ar' and any said substituents thereon forming a cyclic aliphatic ring, may optionally contain one or more ring atoms selected from O, S and N.

Please cancel claims 2-7.

- 8. (Amended) The method of claim 1 wherein any substituents on the aromatic or heteroaromatic moiety of R^3 are independently selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C) and alkyl (1-6C).
- 9. The method of claim 1 wherein said substituents on substituted Ar' are independently selected from the group consisting of optionally substituted alkyl, alkenyl, alkynyl, aryl, alkylaryl, NH-aryl, NH-aroyl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C),

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).

10. (Amended) The method of claim 9 wherein Ar' is phenyl, 2-, 3-, or 4-pyridyl, 2- or 4-pyrimidyl, indolyl, isoquinolyl, quinolyl, benzimidazolyl, benzotriazolyl, benzotriazolyl, benzotriazolyl, benzotriazolyl, pyridyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, or imidazolyl, all of which may optionally be substituted.

Please cancel claims 11 and 12.

13. (Amended) The method of claim 1 wherein said optional substituents on R² are independently selected from the group consisting of R⁴, halo, OR⁴, NR⁴₂, SR⁴, -OOCR⁴, -NROCR⁴, -COOR⁴, R⁴CO, -CONR⁴₂, -SO₂NR⁴₂, CN, CF₃, and NO₂, wherein each R⁴ is independently H, or optionally substituted alkyl (1-6C), or optionally substituted arylalkyl (7-12C) and wherein two R⁴ or two substituents on said alkyl or arylalkyl taken together may form a fused aliphatic ring of 5-7 members.

Please cancel claim 14.

15. (Amended) The method of claim 1 wherein L is $S(CR_2^2)_m$, $-NR_1^1SO_2(CR_2^2)_l$, $SO_2(CR_2^2)_m$, $SO_2NR_1^1(CR_2^2)_l$, $NR_1^1(CR_2^2)_m$, $NR_1^1CO(CR_2^2)_l$, $O(CR_2^2)_m$, or $OCO(CR_2^2)_l$, or

wherein Z is N or CH and wherein m is 0-4 and l is 0-3;

R¹ is H, alkyl or arylalkyl where the aryl moiety may be substituted by 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C);

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂,

-NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C); and R² is as defined in claim 1.

- 16. (Amended) The method of claim 1 wherein the compound of formula (1) is selected from group consisting of
- (a) the compounds listed in Table 2 below, wherein Z^5 - Z^8 are CH; Z^3 is N; R^1 in compound No. 11 is 2-propyl; R^1 in compound No. 12 is 4-methoxyphenyl, and R^1 in compound No. 41 is 4-methoxybenzyl; and wherein L, Ar' and R^3 are as shown in Table 2:

Table 2			
Compound No.	L	Ar'	R ³
1	NH	4-pyridyl	2-chlorophenyl
2	NH	4-pyridyl	2,6-dichlorophenyl
3	NH	4-pyridyl	2-methylphenyl
4	NH	4-pyridyl	2-bromophenyl
5	NH	4-pyridyl	2-fluorophenyl
6	NH	4-pyridyl	2,6-difluorophenyl
7	NH	4-pyridyl	phenyl
8	NH	4-pyridyl	4-fluorophenyl
9	NH	4-pyridyl	4-methoxyphenyl
10	NH	4-pyridyl	3-fluorophenyl
11	NR ¹	4-pyridyl	phenyl
12	NR ¹	4-pyridyl	phenyl
13.	NHCH ₂	4-pyridyl	phenyl
14	NHCH ₂	4-pyridyl	4-chlorophenyl
15	NH	3-pyridyl	phenyl
16	NHCH ₂	2-pyridyl	phenyl
17	NHCH ₂	3-pyridyl	phenyl
18	NHCH ₂	2-pyridyl	phenyl
19	NHCH ₂ CH ₂	2-pyridyl	phenyl
20	NH	6-pyrimidinyl	phenyl
21	NH	2-pyrimidinyl	phenyl
22	NH	Phenyl	phenyl
· 23	NHCH ₂	Phenyl	3-chlorophenyl
24	NH	3-hydroxyphenyl	phenyl
25	NH	2-hydroxyphenyl	phenyl

Table 2			
Compound No.	L	, Ar'	\mathbb{R}^3
26	NH	4-hydroxyphenyl	phenyl
27	NH	4-indolyl	phenyl
28	NH	5-indolyl	phenyl
29	NH	4-methoxyphenyl	phenyl
30	NH	3-methoxyphenyl	phenyl
31	NH	2-methoxyphenyl	phenyl
32	NH	4-(2-hydroxyethyl)phenyl	phenyl
33	NH	3-cyanophenyl	phenyl
. 34	NHCH ₂	2,5-difluorophenyl	phenyl
35	NH	4-(2-butyl)phenyl	phenyl
36	NHCH ₂	4-dimethylaminophenyl	phenyl
38	NH	2-pyridyl	phenyl
39	NHCH ₂	3-pyridyl	phenyl
40	NH	4-pyrimidyl	phenyl
41	NR ¹	4-pyridyl	phenyl
42	NH	p-aminomethylphenyl	phenyl
43	NHCH ₂	4-aminophenyl	phenyl
44	NH	4-pyridyl	3-chlorophenyl
45	NH	Phenyl	4-pyridyl
46	NH	N NH	phenyl
48	NH	2-benzylamino-3-pyridyl	phenyl
49	NH	2-benzylamino-4-pyridyl	phenyl
50	NH	3-benzyloxyphenyl	phenyl
51	NH	4-pyridyl	3-aminophenyl
52	NH	4-pyridyl	4-pyridyl
53	NH	4-pyridyl	2-naphthyl
54	—п —си-	4-pyridyl	phenyl
55	-ксн,-	Phenyl	phenyl
56		2-pyridyl	phenyl
61	NH	4-pyridyl	2-trifluoromethyl phenyl
62	NH	4-aminophenyl	phenyl
64	NH	3-methoxyphenyl	2-fluorophenyl
65	NH	4-methoxyphenyl	2-fluorophenyl

Table 2			
Compound No.	L	Ar'	\mathbb{R}^3
66	NH	4-pyrimidinyl	2-fluorophenyl
67	NH	3-amino-4-pyridyl	phenyl
68	NH	4-pyridyl	2-benzylaminophenyl
69	NH	2-benzylaminophenyl	phenyl
70	NH	2-benzylaminophenyl	4-cyanophenyl
71	NH	3'-cyano-2- benzylaminophenyl	phenyl

(b) the compounds listed in Table 3, below, wherein L is NH; Z^3 is N; Z^6 and Z^7 are CH and Z^5 , Z^8 , Ar' and R^3 are as shown in Table 3:

Table 3				
Compound No.	\mathbf{Z}^5	Z ⁸	Ar'	\mathbb{R}^3
72	CH	N	4-pyridyl	2-fluorophenyl
73	CH	N	4-pyridyl	2-chlorophenyl
74	CH	N	4-pyridyl	phenyl
75	N	N	4-pyridyl	phenyl
76	N	СН	4-pyridyl	phenyl

and

(c) the quinazoline derivatives listed in Table 4 below, wherein L is NH; Ar is 4-pyridyl; Z^3 , Z^5 , and Z^8 are N; Z^6 or Z^7 are CR^2 as shown and each is otherwise N and wherein R^3 and R^2 are as shown in Table 4:

	Table 4			
Compound No.	R ³	\mathbb{R}^2		
77	2-chlorophenyl	6,7-dimethoxy		
78	2-fluorophenyl	6-nitro		
79	2-fluorophenyl	6-amino		
80	2-fluorophenyl	7-amino		
81	2-fluorophenyl	6-(3-methoxybenzylamino)		
82	2-fluorophenyl	6-(4-methoxybenzylamino)		
83	2-fluorophenyl	6-(2-isobutylamino)		
84	2-fluorophenyl	6-(4-methylmercaptobenzylamino)		
85 .	2-fluorophenyl	6-(4-methoxybenzoyl amino)		
86	4-fluorophenyl	7-amino		
87	4-fluorophenyl	7-(3-methoxybenzylamino)		

17. (Amended) The method of claim 1 wherein the compound of formula (1) is selected from the group consisting of the following compounds:

Serial No. Not yet assigned Docket No. 219002028402

Serial No. Not yet assigned Docket No. 219002028402

13

Serial No. Not yet assigned Docket No. 219002028402

14

Serial No. Not yet assigned Docket No. 219002028402

18

Serial No. Not yet assigned Docket No. 219002028402

βl

COOVERN TOOL

HOUDDH. HOUDDH

DSGYESSE LOOSOL

DOGVETAR 100501

COSYMBE LICOSOL

18. (Amended) A pharmaceutical composition for treating conditions characterized by enhanced p38 α kinase activity which composition comprises

an amount of a compound of the formula

$$Z^{6} \xrightarrow{Z^{5}} A \xrightarrow{B} Z^{3}$$

$$Z^{7} \xrightarrow{Z^{8}} R^{3}$$

$$(1)$$

or the pharmaceutically acceptable salts thereof

wherein R³;

each Z;

each R²;

L;

n; and

Ar' are as defined in claim 1 which is effective to inhibit p38 α kinase activity in admixture with at least one pharmaceutically acceptable excipient appropriate for administering to a subject exhibiting enhanced p38 α kinase activity.

- 19. The composition of claim 18 which further contains an additional therapeutic agent.
- 20. The composition of claim 19 wherein said additional therapeutic agent is a corticosteroid, a monoclonal antibody, or an inhibitor of cell division.

Please cancel claims 21-22.

Please add the following claims:

A7

23. (New) The method of claim 1 wherein

L is $-R^1N(CH_2)_n$ - wherein R^1 is H or is alkyl (1-6C) or arylalkyl optionally substituted on the aryl group with 1-3 substituents independently selected from alkyl (1-6C), halo, OR, NR_2 ,

SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C) and n.is 0, 1 or 2; and

(a) Ar' is phenyl, substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C), or pyridyl, indolyl, or pyrimidyl, each optionally substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(b) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or

(c) Ar' is phenyl substituted with a group selected from the group consisting of optionally substituted NR₂, SR, -NROCR, RCO, -CONR₂, SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or pyridyl substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or indolyl or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR,

-CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(d) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C).

24. (New) The method of claim 1 wherein the compound of formula 1 is selected from the group consisting of

- 2-phenyl-4-(4-pyridylamino)-quinazoline;
- 2-(2-bromophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-chlorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-methylphenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(4-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(3-methoxyanilyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2.6-dichlorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2,6-dibromophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2,6-difluorophenyl)-4-(4-pyridylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
- 2-(4-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-nitroquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino -6-aminoquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-7-aminoquinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(3-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(2-isobutylamino)-quinazoline; and
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methylmercaptobenzylamino)-quinazoline.

- 25. (New) The composition of claim 18 wherein any substituents on the aromatic or heteroaromatic moiety of R³ are independently selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).
- 26. (New) The composition of claim 18 wherein said substituents on substituted Ar' are independently selected from the group consisting of optionally substituted alkyl, alkenyl, alkynyl, aryl, alkylaryl, NH-aryl, NH-aroyl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C),

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).

- 27. (New) The composition of claim 26 wherein Ar' is phenyl, 2-, 3-, or 4-pyridyl, 2- or 4-pyrimidyl, indolyl, isoquinolyl, quinolyl, benzimidazolyl, benzotriazolyl, benzotriazolyl, benzotriazolyl, benzotriazolyl, pyridyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, or imidazolyl, all of which may optionally be substituted.
- 28. (New) The composition of claim 18 wherein said optional substituents on R² are independently selected from the group consisting of R⁴, halo, OR⁴, NR⁴₂, SR⁴, -OOCR⁴, -NROCR⁴, -COOR⁴, R⁴CO, -CONR⁴₂, -SO₂NR⁴₂, CN, CF₃, and NO₂, wherein each R⁴ is independently H, or optionally substituted alkyl (1-6C), or optionally substituted arylalkyl (7-12C) and wherein two R⁴ or two substituents on said alkyl or arylalkyl taken together may form a fused aliphatic ring of 5-7 members.

29. (New) The composition of claim 18 wherein L is $S(CR^2_2)_m$, $-NR^1SO_2(CR^2_2)_l$, $SO_2(CR^2_2)_m$, $SO_2NR^1(CR^2_2)_l$, $NR^1(CR^2_2)_m$, $NR^1CO(CR^2_2)_l$, $O(CR^2_2)_m$, or $OCO(CR^2_2)_l$, or

$$-N$$
 $(CR_2^2)_1$ Z $(CR_2^2)_1$

wherein Z is N or CH and wherein m is 0-4 and 1 is 0-3;

 R^1 is H, alkyl or arylalkyl where the aryl moiety may be substituted by 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCOR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C);

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR $_2$, SR, -SOR, -SO $_2$ R, -OCOR, -NRCOR, -NRCONR $_2$, -NRCOOR, -NRSOR, -NRSO $_2$ R, -OCONR $_2$, RCO, -COOR, -SO $_3$ R, -CONR $_2$, SO $_2$ NR $_2$, CN, CF $_3$, and NO $_2$, wherein each R is independently H or alkyl (1-4C); and

R² is as defined in claim 18.

- 30. (New) The composition of claim 18 wherein the compound of formula (1) is selected from the group consisting of
- (a) the compounds listed in Table 2 below, wherein Z^5 - Z^8 are CH; Z^3 is N; R^1 in compound No. 11 is 2-propyl; R^1 in compound No. 12 is 4-methoxyphenyl, and R^1 in compound No. 41 is 4-methoxybenzyl; and wherein L, Ar' and R^3 are as shown in Table 2:

Table 2			
Compound No.	L	Ar'	\mathbb{R}^3
1	NH	4-pyridyl	2-chlorophenyl
2	NH	4-pyridyl	2,6-dichlorophenyl
3	NH	4-pyridyl	2-methylphenyl
4	NH	4-pyridyl	2-bromophenyl
5	NH	4-pyridyl	2-fluorophenyl
6	NH	4-pyridyl	2,6-difluorophenyl

Table 2			
Compound No.	L	Ar'	R ³
7	NH	4-pyridyl	phenyl
8	NH	4-pyridyl	4-fluorophenyl
9	NH	4-pyridyl	4-methoxyphenyl
10	NH	4-pyridyl	3-fluorophenyl
11	NR ¹	4-pyridyl	phenyl
12	NR ¹	4-pyridyl	phenyl
13	NHCH ₂	4-pyridyl	phenyl
14	NHCH ₂	4-pyridyl	4-chlorophenyl
15	NH	3-pyridyl	phenyl
16	NHCH ₂	2-pyridyl	phenyl
17	NHCH ₂	3-pyridyl	phenyl
18	NHCH ₂	2-pyridyl	phenyl
19	NHCH ₂ CH ₂	2-pyridyl	phenyl
20	NH	6-pyrimidinyl	phenyl
21	NH	2-pyrimidinyl	phenyl
22	NH	Phenyl	phenyl
23	NHCH ₂	Phenyl	3-chlorophenyl
24	NH	3-hydroxyphenyl	phenyl
25 .	NH	2-hydroxyphenyl	phenyl
26	NH	4-hydroxyphenyl	phenyl
27	NH	4-indolyl	phenyl
28	NH	5-indolyl	phenyl
29	NH	4-methoxyphenyl	phenyl
30	NH	3-methoxyphenyl	phenyl
31	NH	2-methoxyphenyl	phenyl
32	NH	4-(2-hydroxyethyl)phenyl	phenyl
33	NH	3-cyanophenyl	phenyl
34	NHCH ₂	2,5-difluorophenyl	phenyl
35	NH	4-(2-butyl)phenyl	phenyl
36	NHCH ₂	4-dimethylaminophenyl	phenyl
38	NH	2-pyridyl	phenyl
39	NHCH ₂	3-pyridyl	phenyi
40	NH	4-pyrimidyl	phenyl
41	NR ¹	4-pyridyl	phenyl
42	NH	p-aminomethylphenyl	phenyl
43	NHCH ₂	4-aminophenyl	phenyl

	Table 2			
Compound No.	L	Ar'	R ³	
44	NH	4-pyridyl	3-chlorophenyl	
45	NH	Phenyl	4-pyridyl	
46	NH	N	phenyl	
48	NH	2-benzylamino-3-pyridyl	phenyl	
49	NH	2-benzylamino-4-pyridyl	phenyl	
50	NH	3-benzyloxyphenyl	phenyl	
51	NH	4-pyridyl	3-aminophenyl	
52	NH	4-pyridyl	4-pyridyl	
53	NH	4-pyridyl	2-naphthyl	
54	_NCH ₂	4-pyridyl	phenyl	
55	—к	Phenyl	phenyl	
56		2-pyridyl	phenyl	
61	NH	4-pyridyl	2-trifluoromethyl phenyl	
62	NH	4-aminophenyl	phenyl	
64	NH	3-methoxyphenyl	2-fluorophenyl	
65	NH	4-methoxyphenyl	2-fluorophenyl	
66	NH	4-pyrimidinyl	2-fluorophenyl	
67	NH	3-amino-4-pyridyl	phenyl	
68	NH	4-pyridyl	2-benzylaminophenyl	
69	NH	2-benzylaminophenyl	phenyl	
70	NH	2-benzylaminophenyl	4-cyanophenyl	
71	NH	3'-cyano-2- benzylaminophenyl	phenyl	

(b) the compounds listed in Table 3, below, wherein L is NH; Z^3 is N; Z^6 and Z^7 are CH and Z^5 , Z^8 , Ar and R^3 are as shown in Table 3:

Table 3					
Compound No.	Z ⁵	\mathbf{Z}^{8}	Ar'	R ³	
72	СН	N	4-pyridyl	2-fluorophenyl	
73	СН	N	4-pyridyl	2-chlorophenyl	
74	СН	N	4-pyridyl	phenyl	
75	N	N	4-pyridyl	phenyl	
76	N	СН	4-pyridyl	phenyl	

and

(c) the quinazoline derivatives listed in Table 4 below, wherein L is NH; Ar' is 4-pyridyl; Z^3 , Z^5 , and Z^8 are N; Z^6 or Z^7 are CR^2 as shown and each is otherwise N and wherein R^3 and R^2 are as shown in Table 4:

Table 4				
Compound No.	\mathbb{R}^3	R ²		
77	2-chlorophenyl	6,7-dimethoxy		
.78	2-fluorophenyl	6-nitro		
79	2-fluorophenyl	6-amino		
80	2-fluorophenyl	7-amino		
81	2-fluorophenyl	6-(3-methoxybenzylamino)		
82	2-fluorophenyl	6-(4-methoxybenzylamino)		
83	2-fluorophenyl	6-(2-isobutylamino)		
84	2-fluorophenyl	6-(4-methylmercaptobenzylamino)		
85	2-fluorophenyl	6-(4-methoxybenzoyl amino)		
86	4-fluorophenyl	7-amino		
87	4-fluorophenyl	7-(3-methoxybenzylamino)		

31. (New) The composition of claim 18 wherein the compound of formula (1) is selected from the group consisting of the following compounds:

NH CH,

H₃C_{-N} NH

ONH.

AT

AT

A7

A7

/ 17

32. (New) The composition of claim 18 wherein L is -R¹N(CH₂)_n-;

L is -R¹N(CH₂)_n- wherein R¹ is H or is alkyl (1-6C) or arylalkyl optionally substituted on the aryl group with 1-3 substituents independently selected from alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C) and n is 0, 1 or 2; and

(a) Ar' is phenyl, substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C), or pyridyl, indolyl, or pyrimidyl, each optionally substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(b) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or

(c) Ar' is phenyl substituted with a group selected from the group consisting of optionally substituted NR₂, SR, -NROCR, RCO, -CONR₂, SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or pyridyl substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or indolyl or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR,

-NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(d) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C).

- 33. (New) The composition of claim 18 wherein the compound of formula 1 is selected from the group consisting of
 - 2-phenyl-4-(4-pyridylamino)-quinazoline;
 - 2-(2-bromophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-chlorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-methylphenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(4-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(3-methoxyanilyl)-4-(4-pyridylamino)-quinazoline;
 - $\hbox{$2$-(2,6$-dichlorophenyl)-4-(4-pyridylamino)-quinazoline;}$
 - 2-(2,6-dibromophenyl)-4-(4-pyridylamino)-quinazoline;
 - $\hbox{$2$-(2,6-difluor ophenyl)-4-(4-pyridy lamino)-quinazo line;}\\$
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
 - 2-(4-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-nitroquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino -6-aminoquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-7-aminoquinazoline;

- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(3-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methoxybenzylamino)-quinazoline;
- 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(2-isobutylamino)-quinazoline; and
- $\hbox{$2$-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methylmercaptobenzylamino)-quinazoline.}$