Binning and Binarization | Discretization Techniques

These techniques help us turn continuous numerical values into simpler, structured categories — making data easier to understand or use in models.

Why Do We Use Binning and Binarization?

- Machine learning models sometimes perform better with categorized (discretized) data.
- Binning **groups** continuous numbers into **bins/intervals** (like age groups: 0–18, 19–30...).
- Binarization converts values into **0 or 1**, making data **simpler and more uniform**.

What is Discretization (Binning)?

Discretization = Converting continuous numerical values into **discrete categories or bins**. **E.g.**,

- Ages: 12, 21, 35 → "Teen", "Adult", "Senior"
- Incomes: Grouped into "Low", "Medium", "High"

> Types of Binning

1 Equal Width Binning (Uniform Binning)

- Divides the range of values into equal-sized intervals
- Simple but can result in imbalanced bins

Example: Income 0-100k split into 5 bins of width 20k each

[2] Equal Frequency Binning (Quantile Binning)

- Each bin has roughly the same number of data points
- Based on percentiles (25%, 50%, etc.)

Better for keeping distribution even

[3] KMeans Binning

- Uses KMeans clustering to group similar values into bins
- More data-driven, adapts to natural clusters
- Often more accurate but computationally heavier

[4] Custom/Domain-Based Binning

- Manual bins based on expert knowledge or business rules
- E.g., Medical risk categories based on blood pressure ranges

> After Binning: Encoding

After creating bins, we often need to **encode** them into numbers so ML models can use them:

- Label encoding: Bin A → 0, Bin B → 1...
- One-hot encoding: Each bin gets its own binary column

4 What is Binarization?

- Converts numerical values into binary format (0 or 1)
- Based on a threshold
 - 1. If value > threshold \rightarrow 1
 - 2. Else \rightarrow 0

Example: Turn all temperatures > 30°C to 1 (hot), rest to 0

This is useful for:

- Creating flags
- Simplifying features
- Preparing data for binary classifiers

Summary Table

Technique	Purpose	Example
Equal Width Binning	Uniform intervals	0–20, 21–40, 41–60
Quantile Binning	Same number of items in each bin	Quartiles, Deciles
KMeans Binning	Data-based bin grouping	Clustering-based categories
Custom Binning	Manual or domain-specific groups	"Low", "Medium", "High"
Binarization	Convert to 0 or 1	Above 50 = 1, else 0