nixt class

How to calculate total no of iterations.

1) Sum of N natural no.

$$5n = N(N+1)$$

3) heometric progression (hP)

dirst term: a

common ratio: 8

Sum of n terms =
$$a(x^n-1)$$
 $(x!=1)$

$$S_{n} = a \left(x^{n} - 1 \right)$$

$$= 5$$

$$= 5 \left(4^{5} - 1 \right)$$

$$= 5 \times 10^{23} = 1705$$

```
Q. 1 int Jun (int N) }
                                             [001 0] (i)
           int s = 0;
                                              101 iterations
           for (int i=0; i = 100; i++) }
                   S= S+i+i*i;
            3
           return s;
      3
                                           i: [3 50]
   int Jun (int N) }
0.2
          int s = 0;
                                              b-a+1= 50-3+1=48
          for (int i=3; i = 50; i++) }
                                              48 iterations
                 S= S+i+i*i;
           3
          return s;
      3
 0.3 int jun (int N) }
                                            Cu 1] : i
          int s=0;
           dor (int i= 1) i = 1) i++) }
                                                N iterations
                  s= s+i;
           return s;
       3
```

```
0-4 void Jun (int N, int M) {
              Jor (int i=1) (z=N), i++) }

if (i)-2==0) }

Sop (i);
              Jor (int i= 1; (z=M; i++) {

ij (i 1-2 == 0) {

Sop (i);
}
        3
                                                                 i*i <= N
         int Jun (int N) \frac{1}{i} = \frac{1}{1}

Jor (int i=1; \frac{1}{i} = \frac{1}{1} = \frac{1}{1}
                                                            )2 Z= N
0.5
                                                             take Sgrt on both sides
                         S= S+i*i;
                                                                 i <= 1N
                3
                                                              i -> [1 50]
                return s;
          3
                                                                JN iterations
          3 (M toi) rul, bior
 0 - 6
               for (int i=1', i <= 2"; i++) {
                        50P(i),
                3
           3
```

0.7 void Jun (int N) {

int i = N;

while (i > 1) {

i = i12;

3

loop break at i=1

|| assume loop breaks after K itx

i =
$$\frac{N}{2}$$
 $\frac{N}{8}$
 $\frac{N}{2}$
 $\frac{N}{2}$
 $\frac{N}{2}$
 $\frac{N}{4}$
 $\frac{N}{2}$
 $\frac{N}{2}$
 $\frac{N}{4}$
 $\frac{N}{2}$
 $\frac{N}{2}$
 $\frac{N}{8}$
 $\frac{N}{2}$
 $\frac{N}{2}$
 $\frac{N}{8}$
 $\frac{N}{2}$
 $\frac{N}{2$

10g2N = 1C

loop breaks at i=N

2	→ 2 ¹
Ч	→ 2 ¹
8	→ 2 ³
16	→ 2 ⁴
	ч 8

Il assume loop breaks after k its
$$i = 2^{K}$$

$$2^{K} = N$$

$$\log_{2} \text{ on both sides}$$

$$\log_{2} 2^{K} = \log_{2} N$$

$$K = \log_{2} N$$

log_N iterations

Nested Loops

a.10 void junc (int N) {	i	ö	itr
1 or (int i=1; i <= 3; i++) {	1	[1 4]	4
Jor (int j=1; j<=4; j++) { SOP (i+" "+j);	2	(1 47	+ 4 +
3	3	[1 47	ч
3 12 iterations			12

ain void junc (int N) {	ì	Ġ	i+r
} (++i < 01 == i +(i) rob	1	[100]	N +
for (int j=1; j<=N; j++) {	2	[1 2	N +
Sop (i+" "+ j);	3	[1 10]	N :
3	:		: :
	lo	[1 "]	N N
10 N iterations		l	10 N

a.12 void junc (int N) {	``	à	
Jor (int i=1; i = N; i++) { Jor (int j=1; j <= N; j++) {	1	[1 N] (1 N] (1 N)	N 4
Sop (i+" "+ j);	2	(1 N)	N
<u>3</u>	<i>3</i> :	[1 1]	N : :
3 N=N iterations	N .	נו אט	N
			N-N

0.13 void June (int 10) {	ì	ć	itr
for (int i=1; i = N; i++) {	1	[1 N) j=2x5	1092 N
Jor (înt j=1; j <n; "+j);="" (i+"="" j="j=2)" sop="" td="" {="" }<=""><td>2</td><td>$\begin{bmatrix} 1 & N \end{pmatrix} \dot{j} = \dot{j}^{*2}$ $\begin{bmatrix} 1 & N \end{pmatrix} \dot{j} = \dot{j}^{*2}$</td><td>1092 N +</td></n;>	2	$\begin{bmatrix} 1 & N \end{pmatrix} \dot{j} = \dot{j}^{*2}$ $\begin{bmatrix} 1 & N \end{pmatrix} \dot{j} = \dot{j}^{*2}$	1092 N +
3	3	[1 N) j=j*2	1092 N
3		[1 N) j=j=2	: : +
Nlog2N iterations	2	[1 N) j=j=2	109210
			N=1092N

0.14 roid Junc (int N) {

1 3 [0 i] its

1 or (int i=0; i < N; i++) {

1 or (int j=0; j <= i; j++) {

2 [0 1]
$$\frac{2}{1}$$

3 $\frac{1}{1}$

Sop (i+" "+3);

3 $\frac{1}{1}$

N-1 [0 N-1] N

1+ 2+3+4+...+N

=) Sum of N rodural no. = N(N+1)

$$2 + 4 + 8 + \dots + 2^{N}$$

$$Sam of t terms = a (x^{t} - 1)$$

$$= 2 (2^{N} - 1) = 2 (2^{N} - 1) \text{ if } x$$

$$= 2 (2^{N} - 1) = 2 (2^{N} - 1) \text{ if } x$$

Comparing terms

 $log_2 N \times JN \times N \times Nlog_2 N \times NJN \times N^2 \times 2^N$ (Specially for large value of N)

Big 0 notation why J next class

how to gind Big O

- 1) find total no. of iterations.
- 2) discard lower order terms [keep the highest order term)
 - 3) discard constant coefficient.

its:
$$10 N^2 + 5 N \log_2 N + 6 N$$

Big $0 \rightarrow 0 (N^2)$

i+x:
$$100 \text{ NJN} + 502^{\text{N}} + 60 \text{ N}^2$$

Big $0 \rightarrow 0 (2^{\text{N}})$

its:
$$59 N^2 + 64 N^3 + 38NJN + 490 N log_2 N$$

big $0 \rightarrow 0 (N^3)$

it 8: 101

Note: when no of iterations are constant (independent of N)

Big 0: 0(1)

$$i+y$$
: $4N^2 + 3N + 10^6$

$$\thetaig o \rightarrow O(N^2)$$

its:
$$\frac{N(N+1)}{2}$$
 \Rightarrow $\frac{N^2+N}{2} = \frac{N^2}{2} + \frac{N}{2}$

Big
$$0 \rightarrow 0 (N^2)$$

Dowlets =

Range Sum query

 $A = \begin{bmatrix} 10 & 2 & 5 & 9 & 1 & 0 & 8 \end{bmatrix}$

6 = [0,3], ans = [26 17 15] [1,4], 0 to 3 [2,5], 1 to 4 2 to 5

Jor (int i=0; i < b. length; i+4) $\frac{3}{2}$ int S= B[i][0]; B=[0,3], int C= B[i][1]; [1,4], Jor (S to C) $\frac{3}{2}$ [2,5]Il Jind Sum of Array

i=0, S=0 e=3 i=1, S=1 e=4 i=2, S=2 e=5