Econometria de Séries Temporais

Projeções com modelos ARIMA

João Ricardo Costa Filho

Projeções

If we could first know where we are and whither we are tending, we could better judge what to do and how to do it

Abraham Lincoln

• Quão bem entendemos os fatores que contribuem para o processo gerador dos dados (PGD)?

- Quão bem entendemos os fatores que contribuem para o processo gerador dos dados (PGD)?
- Qual é o volume de dados que está disponível?

- Quão bem entendemos os fatores que contribuem para o processo gerador dos dados (PGD)?
- Qual é o volume de dados que está disponível?
- Quão similar é o futuro em relação ao passado?

- Quão bem entendemos os fatores que contribuem para o processo gerador dos dados (PGD)?
- Qual é o volume de dados que está disponível?
- Quão similar é o futuro em relação ao passado?
- As previsões que realizamos afetam aquilo que queremos projetar?

• Temos que assumir que ambiente não muda?

■ Temos que assumir que ambiente não muda? Não!

- Temos que assumir que ambiente não muda? Não!
- O que assumimos é que a maneira como o ambiente muda vai continuar.

- Temos que assumir que ambiente não muda? Não!
- O que assumimos é que a maneira como o ambiente muda vai continuar.
 - i.e. ambientes de alta volatilidade seguem com alta volatilidade;

- Temos que assumir que ambiente não muda? Não!
- O que assumimos é que a maneira como o ambiente muda vai continuar.
 - i.e. ambientes de alta volatilidade seguem com alta volatilidade; recessões e expansões seguem existindo.

■ Temos informações "numéricas" sobre o passado.

- Temos informações "numéricas" sobre o passado.
- Podemos assumir que os padrões do passado vão permanecer.

- Temos informações "numéricas" sobre o passado.
- Podemos assumir que os padrões do passado vão permanecer.

Existem previsões **qualitativas**, mas não vamos trabalhar com elas no curso. Veja o capítulo 6 de Hyndman and Athanasopoulos (2021).

- Temos informações "numéricas" sobre o passado.
- Podemos assumir que os padrões do passado vão permanecer.

Existem previsões **qualitativas**, mas não vamos trabalhar com elas no curso. Veja o capítulo 6 de Hyndman and Athanasopoulos (2021). Ademais, vamos trabalhar com intevalos regulares de tempo (e.g. séries mensais, trimestrais ou anuais).

 Nowcast: projeção sobre dados que já estão sendo produzidos, mas apenas não foram divulgados.

- Nowcast: projeção sobre dados que já estão sendo produzidos, mas apenas não foram divulgados.
- Forecast: projeção sobre dados que ainda não estão sendo produzidos.

- Nowcast: projeção sobre dados que já estão sendo produzidos, mas apenas não foram divulgados.
- Forecast: projeção sobre dados que ainda não estão sendo produzidos.
- Postcast: projeção sobre dados que já foram sendo produzidos, mas apenas não foram divulgados.

- Nowcast: projeção sobre dados que já estão sendo produzidos, mas apenas não foram divulgados.
- Forecast: projeção sobre dados que ainda não estão sendo produzidos.
- Postcast: projeção sobre dados que já foram sendo produzidos, mas apenas não foram divulgados.

1) Defina o problema

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

 ${\sf Dados\ estat\'(sticos+conhecimento\ sobre\ o\ problema}.$

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

 ${\sf Dados\ estat\'(sticos+conhecimento\ sobre\ o\ problema}.$

3) Análise exploratória

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

 ${\sf Dados\ estat\'(sticos+conhecimento\ sobre\ o\ problema}.$

3) Análise exploratória

Olhe para os dados! Identifique padrões, (ausencia de) correlações, etc.

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

 ${\sf Dados\ estat\'(sticos+conhecimento\ sobre\ o\ problema}.$

3) Análise exploratória

Olhe para os dados! Identifique padrões, (ausencia de) correlações, etc.

4) Escolha e estime os modelos

1) Defina o problema

Não subestime essa etapa. Reflita sobre o objetivo da projeção, como coletar os dados, como manter e atualizar os dados, etc.

2) Colete os dados

 ${\sf Dados\ estat\'(sticos+conhecimento\ sobre\ o\ problema}.$

3) Análise exploratória

Olhe para os dados! Identifique padrões, (ausencia de) correlações, etc.

- 4) Escolha e estime os modelos
- 5) Avalie e use as previsões

Qual modelo escolher?

Até aqui, trabalhamos com diversos modelos e com uma análise mais "qualitativa" sobre o desempenho de cada um deles ao observarmos o comportamento dos resíduos. Nós podemos (deveríamos) fazer melhor do que isso.

Por que eu não posso simplesmente usar os resíduos?

Amostra de treinamento vs Amostra de teste

Amostra

- Amostra de teste: geralmente, 20-30% da amostra total (Hyndman and Athanasopoulos 2021).
 - Pode variar com (i) o tamanho da amostra e (ii) o horizonte de projeção.

Estimativa Pontual

Horizontes de previsão e erro

• Projeção 1 período à frente: menos incerteza.

Horizontes de previsão e erro

- Projeção 1 período à frente: menos incerteza.
- Mais passos à frente: precisamos construir cenários.
 - Erros podem se acumular.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T}, \tag{1}$$

onde $\{y_1, \ldots, y_T\}$ é a amostra de treinamento e $\{y_{T+1}, y_{T+2}, \ldots\}$ a amostra de teste.

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$
 (1)

onde $\{y_1, \ldots, y_T\}$ é a amostra de treinamento e $\{y_{T+1}, y_{T+2}, \ldots\}$ a amostra de teste.

■ Erros de previsão ≠ Resíduos

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$
 (1)

onde $\{y_1, \ldots, y_T\}$ é a amostra de treinamento e $\{y_{T+1}, y_{T+2}, \ldots\}$ a amostra de teste.

- Erros de previsão ≠ Resíduos
 - Os resíduos são calculados na amostra de treinamento.
 (Envolvem apenas o "fit" do modelo para um período).

$$e_{T+h} = y_{T+h} - \hat{y}_{T+h|T},$$
 (1)

onde $\{y_1, \ldots, y_T\}$ é a amostra de treinamento e $\{y_{T+1}, y_{T+2}, \ldots\}$ a amostra de teste.

- Erros de previsão ≠ Resíduos
 - Os resíduos são calculados na amostra de treinamento.
 (Envolvem apenas o "fit" do modelo para um período).
 - Os erros de previsão são calculados na amostra de teste.
 (Podem envolver multiplas projeções).

Mean absolute error:

Mean absolute error:

$$\mathrm{MAE} = \mathsf{m\'edia}\left(|\mathit{e}_t|\right)$$

Mean absolute error:

$$MAE = média(|e_t|)$$

Root mean squared error:

Mean absolute error:

$$\mathrm{MAE} = \mathrm{m\'edia}\left(|e_t|\right)$$

Root mean squared error:

$$\mathsf{RMSE} = \sqrt{\mathsf{mean}\left(e_t^2\right)}$$

Mean absolute percentage error:

Mean absolute percentage error:

$$\mathsf{MAPE} = \mathsf{mean}\left(|p_t|\right)$$

onde $p_t = 100e_t/y_t$.

Mean absolute percentage error:

$$\mathsf{MAPE} = \mathsf{mean}\left(|p_t|\right)$$

onde $p_t = 100e_t/y_t$.

Mean absolute scaled error:

$$MASE = mean(|q_i|)$$

onde
$$q_j = \frac{e_j}{\frac{1}{T-m}\sum_{t=m+1}^T |y_t-y_{t-m}|}$$
.

Estimativa Intervalar

As estatísticas anteriores servem para avaliar estimativas pontuais. Como podemos gerar distribuições das previsões, a avaliação deve ser feita com outras métricas

 Quantile Score: de acordo com os autores, essa estatística pode ser interpretada como um erro absoluto.

- Quantile Score: de acordo com os autores, essa estatística pode ser interpretada como um erro absoluto.
- Winkler Score: avalia intervalos de previsão, não apenas alguns quantis.

- Quantile Score: de acordo com os autores, essa estatística pode ser interpretada como um erro absoluto.
- Winkler Score: avalia intervalos de previsão, não apenas alguns quantis.
- Continuous Ranked Probability Score: avalia toda a distribuição de previsões, não apeans quantis ou intervalos. É como um erro asboluto ponderado.

- Quantile Score: de acordo com os autores, essa estatística pode ser interpretada como um erro absoluto.
- Winkler Score: avalia intervalos de previsão, não apenas alguns quantis.
- Continuous Ranked Probability Score: avalia toda a distribuição de previsões, não apeans quantis ou intervalos. É como um erro asboluto ponderado.
- Scale-free comparisons using skill scores: comparação de métodos diferentes com escalas distintas.

Referências i

Hyndman, Rob J, and George Athanasopoulos. 2021. *Forecasting: Principles and Practice*. Third. OTexts.