

UNIVERSIDADE DO VALE DO ITAJAÍ ESCOLA DO MAR, CIÊNCIA E TECNOLOGIA - EMCT CURSO DE ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE ELETRÔNICA APLICADA Prof. Walter Gontijo

Alunos:

Lucas José da Cunha — lucas_cunha@edu.univali.br
Luiz Alberto Zimmermann Zabel Martins Pinto — luizzimmermann@edu.univali.br

REGULADOR DE TENSÃO Relatório de Aula Prática

27/08/2019

Itajaí – Santa Catarina

1. Objetivos:

- 1.1. Avaliar o funcionamento de circuitos discretos e integrados de regulação de tensão;
- 1.2. Verificar na prática a regulação da tensão de saída dos circuitos;

2. Introdução:

Um regulador de tensão é um dispositivo, geralmente formado por semicondutores, tais como diodos e circuitos integrados, que tem por finalidade a manutenção da tensão de saída de um circuito elétrico. Sua função principal é manter a tensão produzida pelo gerador dentro dos limites exigidos pela bateria ou sistema elétrico que está alimentando. Um regulador de tensão é incapaz de gerar energia. A tensão de entrada deve ser sempre superior à sua tensão de regulagem nominal. Dependendo do projeto, ele pode ser usado para regular uma ou mais tensões AC ou DC.

No experimento será realizado a mensuração das tensões elétricas de três circuitos, sendo eles:

- o Circuito Regulador Zener
- o Circuito Regulador Série
- o Circuito Regulador Completo

3. <u>Desenvolvimento:</u>

- 3.1. As tensões na fonte variavam de 10v à 15v.
- 3.2. Foram utilizados um Transistor TIP31 com beta = 60 e um Transistor BC548 com beta = 467.
- 3.3. Circuito Regulador Zener:

 $R_S = 82\Omega$; $R_L = 100\Omega$; Zener 4733;

Figura 1. Circuito Regulador Zener (Teórico)

 $Figura\ 2.\ Circuito\ Regulador\ Zener\ (Real)$

Vi = 10v	Teórico	Medido
$ m V_{RS}$	4,856	4,84v
V_{Z}	4,856	5,16v
$ m V_{RL}$	5,144	5,16v
V_{O}	4,856	4,84v
Vi = 12v		
$ m V_{RS}$	6,996	6,88v
V_{Z}	5,004	5,27v
$ m V_{RL}$	5,004	5,27v
V_{O}	5,004	6,88v
Vi = 14v		
$ m V_{RS}$	8,848	8,7v
$V_{\rm Z}$	5,152	5,33v
$ m V_{RL}$	5,152	5,33v
Vo	5,152	8,7v

3.4. Circuito Regulador Série:

 $R_S = 82\Omega$; $R_L = 100\Omega$; Zener 4733; Transistor TIP31;

Figura 3. Circuito Regulador Série (Teórico)

Figura 4. Circuito Regulador Série (Real)

Vi = 10v	Teórico	Medido
$ m V_{RS}$	4,834	4,7v
V_{Z}	5,166	5,23v
$ m V_{CE}$	5,528	5,33v
V_{O}	4,472	4,6v
Vi = 12v		
$ m V_{RS}$	6,677	6,7v
V_{Z}	5,323	5,26v
$ m V_{CE}$	7,372	7,34v
V_{O}	4,628	4,63v
Vi = 14v		
V_{RS}	8,52	8,71v
$V_{\rm Z}$	5,48	5,28v
V_{CE}	9,215	9,33v
V_{O}	4,785	4,66v

3.5. Circuito Regulador Completo:

 $R_1=330\Omega;\, R_2=180\Omega;\, R_L=82\Omega;\, R_a=330\Omega;\, R_b=390\Omega;\, Zener\,4733;\, T1=TIP31;\, T2=BC548;$

Figura 5. Circuito Regulador Completo (Teórico)

Figura 6. Circuito Regulador Completo (Real)

Vi = 10v	Teórico	Medido
V_{R1}	5,134	4,79v
V_{R2}	289,272mV	0,26v
V_{Z}	4,866	5,21v
V_{CET1}	1,009	0,95v
$V_{\rm CET2}$	4,845	4,5v
$ m V_{RL}$	8,991	8,92v
V_{Rb}	4,87	4,92v
V_{Ra}	4,121	4,09v
Vi = 12v		
V_{R1}	7,063	6,8v
V_{R2}	1,002	0,42v
V_{Z}	4,933	5,26v

V_{CET1}	1,725	0,7v
V_{CET2}	6,064	6,14v
V_{RL}	10,275	10,65v
$V_{ m Rb}$	5,563	5,83v
V_{Ra}	4,712	4,86v

3.6. Circuito Integrado Regulador de Tensão:

Vi = 10v	Teórico	Medido
V_{O}	5v	5v
Vi = 12v		
V_{O}	5v	4,98v
Vi = 15v		
V_{O}	5v	4,92v

4. Conclusão:

Ao final do experimento percebe-se que os valores calculados foram próximos dos medidos, e tendo em base a introdução do experimento, a base do circuito de regular a tensão de entrava e controlar a tensão de saída foi entendida.