CS704: Lecture 2 Lambda Calculus

Thomas Reps

[Based on notes taken by Emma Turetsky on January 22, 2010]

Abstract

This lecture introduces the lambda calculus (λ -calculus). It presents grammars for the abstract and concrete syntax of λ -calculus, and explains the notion of computation in the λ -calculus in terms of string rewriting and tree rewriting.

1 Introduction

Lambda-calculus (λ -calculus) is a model of computation invented by Alonzo Church in the 1930's. It is a stripped-down functional programming language—basically as stripped down as could possibly be: it has only *three* kinds of constructs. Nevertheless, λ -calculus is a Turing-complete language.

 λ -calculus is built on two concepts:

- abstraction: the forming of functional expressions (" λ -terms")
- application: the use of a functional expression by applying it to an argument

There is one λ -calculus construct for each; the third kind of λ -calculus construct consists of variables.

Programs are functional expressions; the data domain consists of functional expressions. In other words, every program can be operated on as a piece of data, and every piece of data can be interpreted as a program.

The λ -calculus has no other kinds of data (e.g., numbers, lists, strings); however, we can performing encodings in which certain subsets of λ -terms can be identified as representing, e.g., the natural numbers, and other λ -terms represent the familiar functions for operating on natural numbers (e.g., plus, times). In other words, we encode an "abstract data type" by designing λ -terms that operate in a way that mimics the data and functions of the abstract data type.

2 Syntax

П

2.1 String View of λ -Calculus

Definition 2.1 (λ -terms) Let V be a countably-infinite set of variables. The set of λ -terms are defined inductively as follows:

- 1. every variable $v \in V$ is a lambda-term
- 2. if M is a λ term, then so is the abstraction $(\lambda x.M)$
- 3. if M and N are λ -terms, then so is the application (MN)

Alternatively, we can express the concrete syntax of λ -calculus by means of the following grammar:

In this grammar, the left and right parenthesis symbols are part of the subject language (i.e., they are not meta-symbols of the grammar-defining formalism).

Example 2.2

```
(\lambda x.(\lambda y.(xy))) 
(\lambda x.((\lambda y.x)y)) 
(\lambda x.(x(\lambda y.(y(\lambda z.z))))) 
(((\lambda x.x)(\lambda y.y))(\lambda z.z))
```

Precedence Rules. Notation: We use small letters (such as x, y, z) for variables, and capital letters (such as M, N, P, and Q) as meta-variables standing for typical λ -terms.

We omit parentheses according to the following two precedence rules:

- 1. Application is left associative. For instance, MNPQ stands for (((MN)P)Q). In contrast, if you want the term (M(N(PQ))) you can only drop the outermost pair of parentheses: M(N(PQ)).
- 2. Application has higher precedence than abstraction. For instance, $\lambda x.yz$ is $(\lambda x.(yz))$, not $((\lambda x.y)z)$.

Example 2.3 Below on the left are some examples of λ -calculus terms in which some parentheses have been dropped. Their equivalent fully-parenthesized versions are shown on the right.

```
\begin{array}{rcl} \lambda x.\lambda y.xy & \equiv & (\lambda x.(\lambda y.(xy))) \\ \lambda x.(\lambda y.x)y & \equiv & (\lambda x.((\lambda y.x)y)) \\ \lambda x.x\lambda y.y\lambda z.z & \equiv & (\lambda x.(x(\lambda y.(y(\lambda z.z))))) \\ (\lambda x.x)(\lambda y.y)(\lambda z.z) & \equiv & (((\lambda x.x)(\lambda y.y))(\lambda z.z)) \end{array}
```

Given a λ -term in which parentheses may have been omitted, an algorithm for fully parenthesizing the λ -term is to repeatedly perform the following steps:

- 1. Find the rightmost dot (".")
- 2. Work through the terms to the right of the dot; insert parentheses to create a left-associative list
- 3. Move out to the λ that corresponds to the dot, and place a left parenthesis to the left of the λ and a right parenthesis to the right of the body processed in item 2

Example 2.4

```
\begin{array}{ccccc} \lambda x.\lambda y.\lambda x.xy\lambda z.z & \to & \lambda x.\lambda y.\lambda x.xy(\lambda z.z) & \text{items 1, 2, and 3} \\ & \to & \lambda x.\lambda y.\lambda x.((xy)(\lambda z.z)) & \text{items 1 and 2} \\ & \to & \lambda x.\lambda y.(\lambda x.((xy)(\lambda z.z))) & \text{item 3} \\ & \to & \lambda x.(\lambda y.(\lambda x.((xy)(\lambda z.z)))) & \text{items 1, 2, and 3} \\ & \to & (\lambda x.(\lambda y.(\lambda x.((xy)(\lambda z.z))))) & \text{items 1, 2, and 3} \end{array}
```

The abstract syntax of λ -calculus is defined by the following grammar:

```
\begin{array}{ccc} \operatorname{term} & ::= & \operatorname{Var}(\operatorname{var}) \\ & | & \operatorname{Lambda}(\operatorname{var} \operatorname{term}) \\ & | & \operatorname{App}(\operatorname{term} \operatorname{term}) \end{array}
```

This can be considered to be a grammar that generates a language of trees. (Technically, it is called a regular tree grammar.) In this grammar, Var, Lambda, and App are the operators (or

alphabet symbols) from which trees are constructed. (As a shorthand, in diagrams of abstract-syntax trees, we often use the symbol " λ " in place of the operator "Lambda".) The left and right parenthesis symbols are meta-symbols of the grammar-defining formalism; i.e., they are part of the meta-language, not the subject language.

2.2 Tree View of λ -Calculus

Recall that the abstract syntax gives us a tree view of λ -terms. That is, we can convert (((MN)P)Q) from string form to the following tree:

The parentheses to insert (when converting back to fully-parenthesized string form) are implied by the tree structure:

When applying rewrite rules, its usually less mistake-prone to process a λ -term as follows:

string-representation \rightarrow tree-representation

 \rightarrow normal-form in tree-representation

 \rightarrow normal-form in string-representation.

3 Semantics

The intended semantics is that

- An abstraction represents a 1-argument function
- \bullet An application represents the application of a term M to input "data" N

Note that there is not a separate notion of "data" in λ -calculus. That is, all data items are themselves functional expressions: the λ -calculus consists of functional expressions that operate on functional expressions. In particular, we can look at the following λ -term:

$$(\lambda x.M)N$$

and interpret it as the application of the function $\lambda x.M$, which has formal parameter x and function body M, to actual parameter N.

3.1 β -Reduction Rule of λ -Calculus

The β -reduction rule of λ -calculus allows us to resolve applications. Applications are resolved ("reduced") by replacing the formals that occur in the function body by *copies* of the actual parameter. (Thus, β -reduction is similar to the familiar programming-language notion of *call-by name*.)

Definition 3.1 (Imprecise version of the β -reduction rule)

 $(\lambda x.M)N \rightarrow_{\beta} M'$, where M' is M with all occurrences of x in M replaced by N.

In a tree view this converts

Definition 3.2 In $(\lambda x.M)N \to M'$, an occurrence of the left-hand side pattern (i.e., $(\lambda x.M)N$) is called a redex; after the reduction, the corresponding occurrence of the right-hand side pattern (i.e., M') is called the contractum. \square

Example 3.3 To give a concrete example, consider the β -reduction

$$(\lambda x (\lambda y.x))(\lambda z.z) \to \lambda y.\lambda z.z$$

In tree form, the reduction takes

4 λ-Calculus Syntax Redux: De Bruijn Representation

De Bruijn introduced an alternative representation for λ -terms in which variables are replaced by indexes (natural numbers). There is a convention that the index represents the number of levels of enclosing λ s that need to be traversed along the path to the root to find the λ with which the index (variable) is associated. The abstract syntax is changed to

$$\begin{array}{ccc} \operatorname{term} & ::= & \operatorname{Var}'(\operatorname{nat}) \\ & | & \operatorname{Lambda}'(\operatorname{term}) \\ & | & \operatorname{App}(\operatorname{term} \operatorname{term}) \end{array}$$

A tree generated by this grammar is a λ -calculus term in De Bruijn representation. The grammar generates trees of the following form, where the λ that a variable is attached to is determined by climbing up the tree towards the root, counting occurrences of λ s along the way.

Example 4.1 The following figure shows (part) of a λ -term in De Bruijn representation, and in particular, shows how a sub-term that represents a variable occurrence is associated with an enclosing occurrence of a λ (i.e., Lambda) operator.

As shown by the dashed arrow, the leaf marked with the index 2 corresponds to a variable that is bound to the top λ , because that is two levels up (where counts start from 1). \square