Lycée Joliot-Curie Rennes

FICHE DE COURS

Les bus informatiques 29 vi

CB-8

SIN

8 – Le bus KNX Konnex

Le bus KNX est un bus de terrain. protocole d'automatismes développé pour le bâtiment. KNX est le standard mondial ouvert pour toutes les applications domotiques et immotiques : éclairage, chauffage, ventilation, climatisation, ombrage, systèmes de sécurité, surveillance, alarmes, gestion énergétique, mesure, appareils, audio/vidéo et de nombreuses autres applications.

Couches physiques, nous travaillerons avec le bus "TP1" (Twisted Pair/ paire torsadée) : hérité d'EIB, permettant un débit de 9 600 bit/s. la transmission est assurée par un codage BBS (Balanced Baseband

Signal / signal symétrique en bande de base).

Valeur moyenne 29V

Trame KNX: codage d'un télégramme

Figure 3 : codage d'un télégramme KNX.

1 Premier octet : Octet de contrôle

1	0	R	1	P	P	0	0	Priorité de transmission
				0	0			Priorité système
				1	0			Priorité alarme
				0	1			Priorité haute
				1	1			Priorité basse
		0						Répétition
		1						Émission normale

② Décodage de l'adresse de l'expéditeur

Adresse physique

Chaque participant est identifié par une adresse unique de 16 bits du type :

															1 1 1 0 E			
	0	0		0	1	1	0	0	1	0	0	1	1	1	1	1	0	
1							Ç)			3	3		E				
		N°	de z	zone			N° de	ligne				N	° de pa	rticipa	nt			

Dans l'exemple ci-dessus, l'expéditeur est en zone 1, sur la ligne 9 et en position 62 sur cette ligne.

Le champ adresse expéditeur du télégramme est toujours une adresse physique.

3 Décodage de l'adresse du destinataire

L'adresse du destinataire est codée sur deux octets, mais un bit appartenant au quartet du compteur de routage (Fig. 3) permet de définir si le participant appartient à un groupe ou s'il s'agit d'une adresse physique.

Adresse de groupe

L'adresse de groupe peut être à :

- 2 niveaux avec un groupe principal sur 4 bits (0 à 15) et un groupe secondaire sur 11 bits (0 à 2047) 0 P P P S S S S S S S S S S S
- 3 niveaux avec un groupe principal sur 4 bits (0 à 15) un groupe médian sur 3 bits (0 à 7) et un groupe secondaire sur 8 bits (0 à 255). 0 P P P P M M M S S S S S S S S S

4 Compteur de routage et longueur

L'octet correspondant au compteur de routage et longueur de la donnée se décompose de la manière suivante :

		· · ·					
D7	D6	D5	D4	D3	D2	D1	D0
Adresse de grou	pe = 1	Comptour de	o routago		Longue	eur de la do	nnáo
Adresse physiqu	ue =0	Compteur de	e routage		Longu	eur de la do	illiee

5 Décodage des données

Les données sont codées sur 2 octets et on peut avoir 8 x 2 octets.

Les valeurs sont données par les constructeurs

Exemple:

00 80 : éteindre une lampe 00 81 : allumer une lampe

6 Décodage de l'octet de sécurité

L'octet de sécurité permet de vérifier la conformité de la réception du télégramme en détectant d'éventuelles erreurs. Cet octet est en parité impaire, on vérifie bit par bit le nombre de 1, ce qui nous donnera la valeur de l'octet de sécurité. Par exemple, si on considère le télégramme KNX suivant : BC 12 0A 33 03 E1 00 81 0B CC

BC	1	0	1	1	1	1	0	0	Octet de contrôle		
12	0	0	0	1	0	0	1	0	A dragge grap (diterra		
0A	0	0	0	0	1	0	1	0	Adresse expéditeur		
33	0	0	1	1	0	0	1	1	Adresse destinataire		
03	0	0	0	0	0	0	1	1	Adresse destinataire		
E1	1	1	1	0	0	0	0	1	Compteur de routage et longueur		
00	0	0	0	0	0	0	0	0	1 Donnée sur 16 bits		
81	1	0	0	0	0	0	0	1	1 Donnee sur 16 bits		
Nombre de 1	3	1	3	3	2	1	4	4	Nombre de bits à 1 par colonne		
Octet de sécurité	0	0	0	0	1	0	1	1	Parité impaire par colonne		
Code hexadécimal		()			F	3		Octet de sécurité en hexadécimal		

Validation d'un télégramme

Le tableau ci-dessous donne les trois codes possibles pour l'acquittement.

0C	NACK réception incorrecte	0	0	0	0	1	1	0	0
C0	BUSY occupé	1	1	0	0	0	0	0	0
CC	ACK réception correcte	1	1	0	0	1	1	0	0

Exercice

Le télégramme à étudier est le suivant : BC 12 0A 33 03 E1 00 81 0B CC

Commenter chaque octet, précisez son nom, rôle et valeur

Valeur en		1		ile			n		Commentaires						
hexadécimal			ט	in	dI	re									
BC	1	0	1	1	1	1	0	0	caractère de contrôle, émission normale, priorité basse						
12	0	0	0	1	0	0	1	0	adresse physique de l'expéditeur zone 1, ligne 2, participant 10						
0A	0	0	0	0	1	0	1	0	auresse physique de rexpediteur zone 1, fight 2, participant 10						
33	0	0	1	1	0	0	1	1	adresse du destinataire (Lampe L4), le bit de poids fort du						
03	0	0	0	0	0	0	1	1	caractère suivant (E1) est 1, donc cette adresse est une adresse de						
									groupe: 6/771 sur 2 niveaux ou 6/3/3 sur 3 niveaux						
E1	1	1	1	0	0	0	0	1	1 poids fort voir au dessus, compteur de routage 0b110= 6, 0b0001 : longueur de la donnée = 1, soit 2 octets						
00	0	0	0	0	0	0	0	0	00 81 : donnée qui correspond à l'allumage de L4						
81	1	0	0	0	0	0	0	1	00 01 : dofffee qui correspond à l'andinage de L4						
Nombre de 1	3	1	3	3	2	1	4	4	On fait la somme des bits par colonne						
Octet de sécurité	0	0	0	0	1	0	1	1	Parité impaire par colonne						
Code hexadécimal	0 B]	3		Valeur de l'octet de sécurité en hexadécimal							

Voici la capsule de contrôle :

Torer in caponic ac	controle .												
Octet de contrôle	Bit de start	D_0	\mathbf{D}_1	D_2	D_3	D_4	\mathbf{D}_5	D_6	\mathbf{D}_7	Bit de parité	Bit de stop	Pause	Pause
Binaire	0	0	0	1	1	1	1	0	1	1	1	1	1
Hexadécimal			(()			I	3					

Voici le chronogramme de cette capsule de contrôle :

Pour un octet de contrôle (8 bits utiles)

→ Combien de bits sont transmis dans la capsule de contrôle ?

Pour chaque octet utile du télégramme, on envoie une capsule.

→ Calculer le nombres d'octet du télégramme, le nombre de capsules et enfin le nombres de bits transmis.

Voici la capsule du décodage de l'adresse du destinataire :

1 ^{er} Octet	Bit de start	D_0	D_1	D_2	D_3	D ₄	D_5	D_6	D_7	Bit de parité	Bit de stop	Pause	Pause
Binaire	0	0	0	0	1	0	0	0	0	1	1	1	1
Hexadécimal			8	3			()					

2 nd Octet	Bit de start	D_0	D_1	D_2	D_3	D_4	D_5	D_6	\mathbf{D}_7	Bit de parité	Bit de stop	Pause	Pause
Binaire	0	1	0	0	0	0	0	0	0	0	1	1	1
Hexadécimal			-	1			()					

Préciser l'adresse du destinataire (adresse de groupe) 01 08 : 0/1/8 (3 niveaux) ou 0/264 (2 niveaux)