ELECTRODE PROTECTIVE DEVICE FOR RESISTANCE SPOT WELDING

Patent number:

JP5192774

Publication date:

1993-08-03

Inventor:

NISHIMURA AKIHISA

Applicant:

TOYOTA MOTOR CORP

Classification:

- international:

B23K11/11; B23K11/16; B23K11/30; B23K11/11;

B23K11/16; B23K11/30; (IPC1-7): B23K11/11;

B23K11/16; B23K11/30

- european:

Application number: JP19920025885 19920117 Priority number(s): JP19920025885 19920117

Report a data error here

Abstract of JP5192774

PURPOSE: To prevent trouble on an automatic unmanned welding line by monitoring and controlling winding torque of beltlike electrically conductive- material for protecting electrodes of spot welding. CONSTITUTION:A first tapelike and beltlike electrically conductive material 21 is wound around the reel 23 side along the outside of an upper electrode 5 by a first guide means 41, plural rollers 42a-42f, etc., on the electrode protective device of a welding gun. A stepping motor 32 and a torque sensor 33 are arranged on a reel shaft 23 which detect and dispose of winding abnormality when the beltlike electrically conductive material 21 breaks in the middle and rotating torque is reduced or it is welded to material 10 to be welded and rotating torque increases.

Data supplied from the esp@cenet database - Worldwide

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平5-192774

(43)公開日 平成5年(1993)8月3日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	•	技術表示箇所
B 2 3 K	11/30	360	9265-4E	•		•
	11/11	541	9265-4E	•		
	11/16	1 0 1	9265-4E	•		

審査請求 未請求 請求項の数1(全10頁)

(21)出願番号	特願平4-25885	(71)出願人 000003207
		トヨタ自動車株式会社
(22)出願日	平成4年(1992)1月17日	愛知県豊田市トヨタ町1番地
	•	(72)発明者 西村 晃尚
		愛知県豊田市トヨタ町1番地 トヨタ自動
		車株式会社内
		(74)代理人 弁理士 田渕 経雄

(54) 【発明の名称】 抵抗スポット溶接用電極保護装置

(57)【要約】

【目的】 複雑な形状した被溶接物のスポット溶接にも 対応可能で、かつ電極と被溶接物との間に介装される金 属箔からなる帯状導電材の巻取りに異常が発生した場合 は迅速にこれに対応する。

【構成】 第1の帯状導電材21を第1のガイド手段4 1により上部電極5の外面に沿って案内するとともに、 第2の帯状導電材51を第2のガイド手段71により下 部電極7の外面に沿って案内し、第1の帯状導電材21 を巻取る第1の巻取り手段31と第2の帯状導電材51 を巻取る第2の巻取り手段62とを、巻取り時の回転ト ルク値に基づいて巻取り異常を検知する機能を有する制 御手段81によって制御する。

10

1

【特許請求の範囲】

上部電極側に設けられ金属箔からなる第 【請求項1】 1の帯状導電材と、前記上部電極側に設けられ前記第1 の帯状導電材を巻取る第1の巻取り手段と、

前記第1の帯状導電材を前記上部電極の外面に沿って案 内する第1のガイド手段と、

前記上部電極に対向して配置される下部電極側に設けら れ金属箔からなる第2の帯状導電材と、

前記上部電極側に設けられ前記第2の帯状導電材を巻取 る第2の巻取り手段と、

前記第2の帯状導電材を前記下部電極の外面に沿って案 内する第2のガイド手段と、

前記第1の巻取り手段と前記第2の巻取り手段の駆動制 御を行なうとともに、該第1の巻取り手段と第2の巻取 り手段のすなくともいずれか一方の回転トルク値から前 記帯状導電材の巻取り異常を検知する制御手段と、を具 備したことを特徴とする抵抗スポット溶接用電極保護装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、金属箔を介して連続的 に抵抗スポット溶接を行なうことが可能な装置に関し、 とくに複雑な形状をした被溶接物の抵抗スポット溶接を 可能にした装置に関する。

[0002]

【従来の技術】亜鉛メッキなどの表面処理が施された表 面処理鋼板を抵抗スポット溶接するに際し、金属箔を介 して電極を加圧するようにした溶接方法は、特開昭57 -17390号公報に開示されている。本公報に開示さ れた溶接方法では、帯状の銅箔を溶接する毎に巻取り、 常に新しい銅箔部分で溶接を行なうことが可能となって いる。

【0003】車両のボデーを組立てる際には、多くの溶 接打点数が必要となり、それだけ抵抗スポット溶接機の 電極先端部の損耗が激しくなる。したがって、一定の溶 接品質を確保するためには、電極の交換頻度を高めて最 適な溶接電流密度を維持することが必要となったり、電 極先端の損耗による電極径の拡大に応じて溶接電流を増 加させるような複雑な制御も必要となる。

【0004】しかし、電極の交換頻度を高めることは装 40 置の稼動率を低下させることになり問題となる。また、 損耗による電極径の拡大に応じて溶接電流を増加させる 場合は、あくまでも電極の損耗度の推定に基づく溶接電 流制御となるため、複雑な制御の割には信頼性が低い。 そこで、上述した公報のように、電極と被溶接材との間 に金属箔を介装させて抵抗スポット溶接を行なうように すれば、電極の損耗を抑制でき、最適な溶接電流密度を 長期にわたって維持することが可能となる。

[0005]

57-17390号公報に示す溶接方法が電極消耗を抑 制し、電極寿命を向上させるのに有効な手法であるにも かかわらず、生産ラインで普及しないのには、つぎのよ うな理由がある。自動車の生産工場では多種少量生産が 行なわれており、多種多様の被溶接物が存在し、しかも 複雑な形状をした部材が多い。したがって、上記公報に 開示されているように、単なる平板の抵抗溶接にのみ対 応できる装置の場合は、使用できる分野がほとんどな く、実際の生産に導入することは困難である。このよう

に、従来技術では、多種多様の複雑な形状をした部材へ の対応は、技術的に困難であり、複雑な形状をした被溶 接物でも適用できる装置の開発が望まれている。

【0006】また、自動車の生産工場における車両ボデ 一等の溶接作業は、大部分が自動化または無人化されて おり、上述公報のような溶接作業の場合は、巻取られる 金属箔が途中で切れたり、被溶接物に溶着した場合は、 溶接を自動的に中断させる必要がある。したがって、金 属箔を電極と被溶接材との間に介在させて溶接をする場 合には、これらのトラブルにも対処できる機能が必要と 20 なる。

【0007】本発明は、上記の問題に着目し、多種多様 な複雑な形状の被溶接物のスポット溶接にも対応可能 で、かつ電極と被溶接物との間に介装される金属箔の巻 取りに異常が発生した場合でもこれに迅速に対処するこ とが可能な抵抗スポット溶接用電極保護装置を提供する ことを目的とする。

[8000]

【課題を解決するための手段】この目的に沿う本発明に 係る抵抗スポット溶接用電極保護装置は、上部電極側に 設けられ金属箔からなる第1の帯状導電材と、前記上部 電極側に設けられ前記第1の帯状導電材を巻取る第1の 巻取り手段と、前記第1の帯状導電材を前記上部電極の 外面に沿って案内する第1のガイド手段と、前記上部電 極に対向して配置される下部電極側に設けられ金属箔か らなる第2の帯状導電材と、前記上部電極側に設けられ 前記第2の帯状導電材を巻取る第2の巻取り手段と、前 記第2の帯状導電材を前記下部電極の外面に沿って案内 する第2のガイド手段と、前記第1の巻取り手段と前記 第2の巻取り手段の駆動制御を行なうとともに、該第1 の巻取り手段と前記第2の巻取り手段のすなくともいず れか一方の回転トルク値から前記帯状導電材の巻取り異 常を検知する制御手段と、を具備したものから成る。

[0009]

【作用】このように構成された抵抗スポット溶接用電極 保護装置においては、上部電極側に設けられた第1の帯 状導電材は第1の巻取り手段によって巻取られ、下部電 極側に設けられた第2の帯状導電材は第2の巻取り手段 によって巻取られる。第1の帯状導電材および第2の帯 状導電材が巻取られることにより、上部電極と被溶接材 【発明が解決しようとする課題】しかしながら、特開昭 50 との間および下部電極と被溶接材との間には、常に新規

30

な帯状導電材の部位が位置することになり、電極と被溶 接物との直接接触が回避され、各電極の損耗が抑制され る。

【0010】また、第1の帯状導電材は第1のガイド手 段によって上部電極の外面に沿うように案内され、第2 の帯状導電材は第2のガイド手段によって下部電極の外 面に沿うように案内されるので、被溶接物が複雑な形状 をしていても、上部電極および下部電極を被溶接物の所 望の接合部分に位置させることが可能となる。したがっ て、金属箔を用いても抵抗スポット溶接作業が被溶接物 10 の形状によって制限されることはなくなり、多種少量の 生産にも十分に対応可能となる。

【0011】第1の巻取り手段と、第2の巻取り手段 は、制御手段によって駆動制御され、第1の巻取り手段 と第2の巻取り手段のいずれか一方の回転トルク値が正 常時に比べて大きく異なる場合は、制御手段によって帯 状導電材の巻取り異常が検知される。

【0012】巻取り異常が検知された場合は、帯状導電 材が途中で切れたり、または帯状導電材が被溶接物に溶 着している状態であり、この異常検知に基づき抵抗スポ 20 ット溶接作業を中断させることができる。したがって、 帯状導電材を介装することなく抵抗スポット溶接作業が 行なわれることはなくなり、溶接品質は一定に維持され る。

[0013]

【実施例】以下に、本発明に係る抵抗スポット溶接用電 極保護装置の望ましい実施例を、図面を参照して説明す る。

【0014】第1実施例

図1ないし図6は、本発明の第1実施例を示している。 図中、1は抵抗スポット溶接機の溶接ガンを示してい る。溶接ガン1はC型のフレームを有し、フレームの上 端部には電極加圧用の加圧シリンダ(図示略)が取付け られている。溶接ガン1は、本実施例では産業用ロボッ ト (図示略) により薄板鋼板10a、10bからなる被 溶接物10に沿って移動するようになっている。溶接ガ ン1のフレムの一方には、上部電極ホルダ2が設けられ ており、フレームの他方には下部電極ホルダ3が設けら れている。

【0015】上部電極ホルダ2には、シャンク4を介し 40 て銅系合金からなる上部電極5が装着されている。下部 電極ホルダ3には、同様にシャンク6を介して銅系合金 からなる下部電極7が装着されている。上部電極5およ び下部電極7の先端部は、略球面状に形成されている。

【0016】溶接ガン1には、電極保護装置11が設け られている。電極保護装置11は、第1の帯状導電材2 1、第1の巻取り手段31、第1のガイド手段41、第 2の帯状導電材51、第2の巻取り手段61、第2のガ イド手段71、制御手段81を有している。

金属箔からなり、一方がリール22に巻付けられており 他方がリール23に巻付けられている。リール22、2 3は、第1の導電材力セット24に回転自在に保持され ている。第1の導電材力セット24は、合成樹脂などの 絶縁体から構成されている。第1の導電材力セット24 には、第1のガイド手段41が取付けられている。

【0018】第1のガイド手段41は、複数のローラ4 2 a ないし4 2 f から構成されている。このうち、リー ル22、23側には、図3に示すように張力調整用のロ ーラとして機能するローラ42a、42b、42cが位 置しており、上部電極5側には案内用ローラとして機能 するローラ42d、42e、42fが位置している。案 内用ローラとして機能するローラ42d、42e、42 fは、上部電極5の左側と右側にそれぞれ配置されてい る。

【0019】ローラ42dは、上部電極5を保持するシ ャンク4の付根部分に配置されている。ローラ42e は、上部電極5の軸方向中央部に位置する外面近傍に配 置されている。ローラ42fは、上部電極5の先端面近 傍に配置されている。図3に示すように、シャンク4お よび上部電極5の外面近傍に複数のローラ42d、42 e、42fが配置されることにより、リール22側の第 1の帯状導電材21は、シャンク4および上部電極5の 外面に沿ってリール23側に巻取られるようになってい る。

【0020】本実施例では、第1の導電材力セット24 側に設けられる各ローラ42d、42e、42fと、溶 接ガン1側に設けられるシャンク4および上部電極5と の位置関係は一定となっている。したがって、第1の導 電材力セット24を溶接ガン1側に装着するだけで、第 1の帯状導電材21はシャンク4および上部電極5に対 して所定の位置に位置決めされる。

【0021】第2の帯状導電材51は、テープ状の銅系 金属箔からなり、一方がリール52に巻付けられており 他方がリール53に巻付けられている。リール52、5 3は、第2の導電材力セット54に回転自在に保持され ている。第2の導電材力セット54は、合成樹脂などの 絶縁体から構成されている。第2の導電材力セット54 には、第2のガイド手段71が取付けられている。

【0022】第2のガイド手段71は、複数のローラ7 2 a ないし 7 2 g から構成されている。このうち、リー ル52、53側には、図4に示すように張力調整用のロ ・一ラとして機能するローラ72a、72b、72cが位 置しており、下部電極7側には案内用ローラとして機能 するローラ72d、72e、72f、72gが位置して いる。案内用ローラとして機能するローラ72d、72 e、72f、72gは、下部電極7の左側と右側にそれ ぞれ配置されている。

【0023】ローラ72d、72eは、下部電極7を保 【0017】第1の帯状導電材21は、テープ状の銅系 50 持するシャンク6の付根部分に配置されている。ローラ に配置されている。ローラ72gは、下部電極7の先端

面近傍に配置されている。図4に示すように、シャンク

ルクセンサ33からの信号と、下部電極7側のトルクセ ンサ63からの信号とがそれぞれ入力されるようになっ

6 および上部電極7の外面近傍に複数のローラ72、7 2 e、72f、72gが配置されることにより、リール 52側の第2の帯状導電材51は、シャンク6および下 部電極7の外面に沿ってリール53側に巻取られるよう

になっている。 【0024】本実施例では、第2の導電材力セット54

gと溶接ガン1側に設けられるシャンク6および下部電

極7との位置関係は一定となっている。したがって、第 2の導電材力セット54を溶接ガン1側に装着するだけ

で、第2の帯状導電材51はシャンク6および下部電極 7に対して所定の位置に位置決めされる。

【0025】溶接ガン1の上部電極5側には、第1の巻 取り手段31が取付けられている。第1の巻取り手段3 1は、ステッピングモータ32、トルクセンサ33、連 結軸34、従動軸35とから構成されている。ステッピ ングモータ32の出力軸には、トルクセンサ33が連結 20 されている。トルクセンサ33の軸端には、第1の導電 材力セット24のリール23と軸心まわりに係合可能な 連結軸34が取付けられている。リール22は、ベアリ ング (図示略) によって回転自在に支持される従動軸3 **5と軸心まわりに係合可能となっている。ステッピング** モータ32は、後述する制御手段81によって駆動制御 されるようになっている。

【0026】溶接ガン1の下部電極7側には、第2の巻 取り手段61が取付けられている。第2の巻取り手段6 1は、ステッピングモータ62、トルクセンサ63、連 30 結軸64、従動軸65とから構成されている。ステッピ ングモータ62の出力軸には、トルクセンサ63が連結 されている。トルクセンサ63の軸端には、第2の導電 材力セット54のリール53と軸心まわりに係合可能な 連結軸64が取付けられている。リール52は、ベアリ ングによって回転自在に支持される従動軸65と軸心ま わりに係合可能となっている。ステッピングモータ62 は、後述する制御手段81によって駆動制御されるよう になっている。

【0027】図5は、第1の巻取り手段31と第2の巻 40 取り手段61の駆動制御を行なう制御手段81を示して いる。制御手段81は、プログラマブルロジックコント ローラ82、ステッピングモータ制御部83、トルク測 定部84を有している。ステッピングモータ制御部83 とトルク測定部84は、プログラマブルコントローラ8 2と電気的に接続されている。上部電極5側のステッピ ングモータ32と、下部電極7側のステッピングモータ 62は、ステッピングモータ制御部83からの出力信号 に基づいて回動駆動するようになっている。

【0028】トルク測定部84には、上部電極5側のト 50 と被溶接物10との間には第2の帯状導電材51が介在

ている。トルク測定部84は、各トルクセンサ33、6 3からの信号に基づく回転トルク値が設定値に対して大 幅に変動した場合は巻取り異常であると判定し、その旨 をプログラマブルロジックコントローラ82に出力する ようになっている。 【0029】このように、トルク測定部84は、各帯状

導電材21、51が途中で切れて回転トルクが小さくな 側に設けられる各ローラ72 ${f d}$ 、72 ${f e}$ 、72 ${f f}$ 、72 ${f 10}$ ったり、逆に各帯状導電材21、51が被溶接物10に 溶着して回転トルクが大きくなったときに、巻取り異常 を検知し、その旨の信号を出力する機能を有している。 巻取り異常判定基準となる最大回転トルク値Tmaxと 最小回転トルク値Tminは、予め実験で求められてお り、この基準値はトルク測定部84に記憶されている。

> **【0030】プログラマブルロジックコントローラ82** は、第1の帯状導電材21と第2の帯状導電材51の巻 取り量を求める機能を有している。各帯状導電材21、 51の巻取り制御では、各帯状導電材21、51の総長 さを1回当りの巻取り量で割った値、すなわち総巻取り 回数Nr を求めておき、溶接毎の巻取り回数Nが総巻取 り回数Nrに達した時に巻取りが完了したと判断するよ うになっている。

> 【0031】巻取り回数Nが総巻取り回数N: に達した 場合は、プログラマブルロジックコントローラ82から ステッピングモータ制御部83に巻取り完了信号が出力 され、各ステッピングモータ32、62による各帯状導 電材21、51の巻取りが停止されるとともに、ロボッ トによる抵抗スポット溶接作業が中断されるようになっ ている。また、プログラマブルロジックコントローラ8 2には、外部操作スイッチ91からの信号が入力可能と なっており、回転トルク値以外の情報により帯状導電材 21、51の巻取りを行なったり、非常の場合は巻取り を中断させることも可能になっている。

【0032】つぎに、本実施例における作用について図 6を参照しつつ説明する。車両ボデーなどの被溶接物1 0が所定の位置まで搬送されてくると、溶接ガン1は図 示されないロボットによって被溶接物10に向って移動 される。被溶接物10に対する溶接ガン1の位置決めが 完了すると、溶接起動信号が出力され抵抗スポット溶接 が開始される。

【0033】溶接起動信号が出力されると、溶接ガン1 に取付けられた図示されない加圧シリンダによって上部 電極5が下降し、被溶接物10は上部電極5と下部電極 7によって加圧される。この状態で上部電極5と下部電 極7との間に溶接電流が流され、たとえば亜鉛メッキさ れた薄板鋼板10a、10bからなる被溶接物10の接 合が行なわれる。ここで、上部電極5と被溶接物10と の間には第1の帯状導電材21が介在され、下部電極7

されているので、上部電極5および下部電極7は被溶接 物10と直接接触することがなくなり、各電極5、7の 損耗が抑制される。

【0034】特定部分のスポット溶接が完了すると、加 圧シリンダ (図示略) によって上部電極5が引き上げら れる。上部電極5が引き上げられると、第1の帯状導電 材21がステッピングモータ32によってリール23側 に巻取られるとともに、第2の帯状導電材51がステッ ピングモータ62によってリール53側に巻取られる。 したがって、上部電極5には常に新規な第1の帯状導電 10 材21の部位が接触することになり、下部電極7には常 に新規な第2の帯状導電材51が接触することになる。 各ステッピングモータ32、62による帯状導電材2 1、51の巻取り回数Nは、プログラマブルロジックコ ントローラ82によってカウントされる。

【0035】特定部分の溶接が完了すると、ロボットに よって溶接ガン1はつぎの接合個所まで移動される。こ の場合、第1の帯状導電材21は第1のガイド手段41 によってシャンク4および上部電極5の外面に沿うよう に案内され、第2の帯状導電材51は第2のガイド手段 20 71によってシャンク6および下部電極7の外面に沿う ように案内されるので、被溶接物10が複雑な形状をし ていても、上部電極5および下部電極7を被溶接物10 の所望の接合部位に位置させることが可能となる。

【0036】図6は、第1の巻取り手段31および第2 の巻取り手段61による各帯状導電材の巻取り制御の処 理手順を示している。図6のステップ101において、 制御処理が開始され、ステップ102に進んで巻取り回 数Nが0にセットされる。巻取り回数Nが0にセットさ れると、ステップ103に進み、巻取り回数Nに1がプ 30 ラスされる。つぎに、ステップ104に進み、溶接完了 信号としての加圧ガン開放信号が入力される。

【0037】加圧ガン開放信号が入力されると、ステッ プ105に進み、制御手段81から各ステッピングモー タ32、62に回転起動信号が出力され、各帯状導電材 21、51の巻取りが行なわれる。つぎに、ステップ1 06に進み、各トルクセンサ33、63からの信号に基 づき、トルク測定部84において回転トルクTの大小の 判定が行なわれる。

【0038】ここで、少なくともいずれか一方のトルク 40 センサからの信号に基づく回転トルク値が最小回転トル ク値Tminよりも小さいと判断された場合は、帯状導 電材が途中で切れたと推定し、ステップ109に進む。 ステップ109では、帯状導電材が途中で切れた旨の信 号がトルク測定部84からプログラマブルロジックコン トローラ82に出力され、ステップモータ32、62に よる帯状導電材の巻取りが停止される。

【0039】ステップ106において、少なくともいず れか一方のトルクセンサからの信号に基づく回転トルク

た場合は、いずれかの帯状導電材21、51が被溶接物 10に溶着したと推定し、ステップ110に進む。ステ ップ110では帯状導電材が溶着した旨の信号がトルク 測定部84からプログラマブルロジックコントローラ8 2に出力され、ステップモータ32、62による帯状導

電材の巻取りが停止される。

【0040】ステップ106において、各トルクセンサ 33、63からの信号に基づく回転トルク値Tが最小回 転トルク値Tminと最大回転トルク値Tmaxとの間 にあると判断された場合は、ステップ107に進む。ス テップ107では、ステップモータ32、62による巻 取り回数Nが総巻取り回数Trに達したか否かの判断が 行なわれる。ここで、巻取回数Nが総巻取り回数 N_r に 達していない場合は、ステップ103に戻り、上述の処 理が繰返えされる。

【0041】ステップ107において、巻取り回数Nが 総巻取り回数N: に達したと判断された場合は、ステッ プ108に進み、巻取りを完了する旨の信号がプログラ マブルロジックコントローラ82からステッピングモー 夕制御部83に出力される。これにより、ステッピング モータ32、62による各帯状導電材21、51の巻取 りが停止され、ステップ111に進んで巻取り制御の処 理は終了する。

【0042】巻取り完了により、各帯状導電材21、5 1の巻取りが停止されると、溶接ガン1側に装着された 第1の導電材力セット24と第2の導電材力セット54 とが外され、新しい第1の導電材力セット24と第2の 導電材力セット54が装着される。各導電材力セット2 4、54が装着されると再び抵抗スポット溶接が開始さ れ、各帯状導電材21、51巻取りが行なわれる。

【0043】ここで、第1の導電材力セット24側に設 けられる第1のガイド手段41のローラ42d、42 e、42fと、溶接ガン1側に設けられるシャンク4お よび上部電極5との位置関係が一定となっているので、 第1の導電材力セット24のセット作業は単なる装着作 業のみでよく、シャンク4および上部電極5に対する第 1の帯状導電材21の新たな位置調整は不要となる。第 2の導電材力セット54のセット作業についても、第1 の導電材力セット24と同様に単なる装着作業のみでよ く、第2の帯状導電材51の位置調整は不要となる。

【0044】図7は、アルミニウム系金属の溶接に本発 明の電極保護装置を適用した場合を示している。図7の 特徴1に示すように、電極保護装置を使用しない場合 は、溶接打点数が増加するにつれて、電極の先端径が損 耗によって大きくなるので、溶接電流密度が小さくな り、溶接強度に悪影響を与えることになる。

【0045】これに対し、本発明のように各電極5、7 と被溶接物10との間に、帯状導電材21、51を介在 させた場合は、各電極5、7の先端径は、図7に示すよ 値が最大回転トルク値Tmaxよりも大きいと判断され 50 うに、溶接打点数が増加しても、ほとんど変化すること る。 [0051]

がなくなる。したがって、電極の長期間の使用に対して も溶接電流密度をほぼ一定に保つことが可能となり、溶 接品質の向上がはかれる。なお、とくに亜鉛メッキなど 表面処理が施された表面処理鋼板に適用する場合は、電 極先端部への亜鉛の付着が完全に回避され、電極先端部 の合金化による電極寿命の著しい低下を防止することが できる。

【0046】第2実施例

図8は、本発明の第2実施例を示している。第2実施例 が第1実施例と異なるところは、上部電極および下部電 10 極の形状と、帯状導電材を案内するガイド手段のローラ の配置のみであり、その他の部分は第1実施例に準じる ので、準じる部分に第1実施例と同一の符号を付すこと により準じる部分の説明を省略し、異なる部分について のみ説明する。後述する他の実施例も同様とする。

【0047】第1実施例では、上部電極5および下部電 極7の先端形状は球面状に形成されていたが、本実施例 では、上部電極5の先端部がエッジ状に形成されてい る。すなわち、上部電極5の先端部の一方の面は垂直面 に形成され、他方の面は斜面に形成されている。同様に 20 下部電極7の先端部もエッジ状に形成されている。第1 のガイド手段41のローラ42e、42fは上部電極5 の斜面に沿って配置されている。第2のガイド手段71 のローラ72 f、72gも下部電極7の斜面に沿って配 置されている。

【0048】このように構成された第2実施例において は、上部電極5および下部電極7の先端部がエッジ状に 形成され、かつ帯状導電材21、51が各電極の外面に 沿って案内されるため、被溶接物10の接合部が図8に 示すように、垂直壁面10c、10dに隣接している場 30 合でも、溶接は十分可能となる。

【0049】第3実施例

図9は、本発明の第3実施例を示している。本実施例 は、下部電極7のみが第1実施例と異なっている。本実 施例では、下部電極7が被溶接物10の凹部に進入可能 な形状に形成されている。下部電極7の先端部は、小径 の円柱部に形成されており、円柱の付根側はテーパ部に 形成されている。第2のガイド手段71のローラ72 f、72gは、下部電極7の円柱部およびテーパ部に沿 うように配置されている。

【0050】このように構成された第3実施例において は、下部電極7の先端部が小径化され、かつ帯状導電材 51が下部電極7の先端部に沿って案内されるので、被 溶接物10が複雑な形状をしていても、下部電極7を狭 い部分に入り込ませることができる。したがって、被溶 接物10が車両ボデーのような起伏のある形状であって も、これに十分に対応することが可能となる。また、下 部電極7と同様に上部電極5の先端部をさらに小径化 し、これに沿って第1の帯状導電材を案内するようにす れば、さらに位置決めに対する柔軟な対応が可能とな 50 電極保護装置の要部断面図である。

【発明の効果】本発明によれば、つぎのような効果が得

10

【0052】(1)上部電極と被溶接物との間に第1の 巻取り手段によって巻取られる第1の帯状導電材を介在 させ、下部電極と被溶接物との間に第2の巻取り手段に よって巻取られる第2の帯状導電材を介在させるように したので、常に帯状導電材の新規な部分を介在させた状 態で抵抗スポット溶接を行なうことが可能となり、上部 電極と下部電極との損耗を抑制することができる。した がって、溶接打点数が著しく増加しても、各電極の先端 径はほとんど変化せず、溶接電流密度をほぼ一定に維持 することができる。その結果、長時間にわたり溶接品質 を均一に維持することができ、従来のように電極の損耗 に伴なう溶接電流の複雑な補正制御も不要となる。

【0053】(2)第1の帯状導電材を第1のガイド手 段によって上部電極の外面に沿うように案内し、第2の 帯状導電材を第2のガイド手段によって下部電極の外面 に沿うように案内するようにしたので、被溶接物が複雑 な形状をしている場合でも、上部電極および下部電極を 被溶接物の所望の接合部位に位置させることが可能とな る。したがって、被溶接物の形状によってスポット溶接 作業が不可能となることはほとんどなくなり、とくに溶 接ガンを用いたスポット溶接においては、十分にその能 力を発揮することができる。

【0054】(3)第1の巻取り手段と第2の巻取り手 段のいずれか一方の回転トルク値が正常時に比べて大き く異なる場合は、制御手段によって帯状導電材の巻取り 異常が検知されるので、異常を検知した場合は抵抗スポ ット溶接作業を自動的に停止させることができる。その ため、帯状導電材が介在されない状態でのスポット溶接 を回避することができ、装置の信頼性を高めることがで きる。

【図面の簡単な説明】

【図1】本発明の第1実施例に係る抵抗スポット溶接用 電極の保護装置の要部斜視図である。

【図2】図1の側面図である。

【図3】図1における上部電極近傍の正面図である。

【図4】図1における下部電極近傍の正面図である。

【図5】図1の装置の制御を行なう制御手段の概略構成 図である。

【図6】図5の制御手段における制御処理手順を示した フローチャートである。

【図7】本発明および従来装置における溶接打点数と電 極の先端径との関係を示す特性図である。

【図8】本発明の第2実施例に係る抵抗スポット溶接用 電極保護装置の要部断面図である。

【図9】本発明の第3実施例に係る抵抗スポット溶接用

【符号の説明】

- 1 溶接ガン
- 5 上部電極
- 7 下部電極
- 10 被溶接物
- 11 電極保護装置
- 21 第1の帯状導電材

31 第1の巻取り手段

- 41 第1のガイド手段
- 51 第2の帯状導電材
- 61 第2の巻取り手段
- 71 第2のガイド手段
- 81 制御手段

[図1]

[図8]

【図2】

12

24 第1の導電 4 | 第1のガイド手段

【図4】

【図5】

【図9】

