Multiplexers

Students are advised to write down the notes for every lecture

Multiplexer

- Multiplexer is an useful MSI device and are also called as data selectors.
- Multiplexer selects one of its 2^n input line and directs it to a single output line .
- n-bit select lines decide which input line is to be selected.
- Examples: 2-to-1 line MUX, 4-to-1 line MUX, 8-to-1 line MUX, 16-to-line MUX.

```
2": /, n=> select lines
2;1
4;1
8:1
```

2-to-1 line MUX

- S- selection input, y is the output, I1 and I0 are inputs
- Symbol/block diagram, function table, output expressions and circuit is given:

2-to-1 line MUX

4-to-1 line multiplexer

• Write the Symbol/block diagram, Function table, output expressions

So

Frame
$$J_3 = 1$$
 $J_2 = 1$
 $J_3 = 0$
 $J_5 = 0$
 $J_5 = 0$
 $J_5 = 0$

$$Y = 5.50.10 + 5.501$$

+ $5.50.12 + 5.5013$

4-to-1 line multiplexer

8-to-1 line multiplexer

 Write the Symbol/block diagram, function table, output expressions and circuit

Select Lives:
$$S_2S_1S_0$$

 $Y = \overline{S_2S_1S_0}$ To $+\overline{S_2S_1S_0}$ I, $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ Is $+\overline{S_2S_1S_0}$ If $+\overline{S_2S_1S_0}$ If

Realize 4:1 using only 2:1 MUXs (Multiplexer tree)

Realize 8:1 using only 2:1 MUXs (Multiplexer tree)

Realize 8:1 using only 4:1 MUXs and 2:1 MUX

Select Lives: 525,50 Y= 525,50 IO + 525,50 I, + 525, 50 I2 + 525,50 I3 + S25,50 I4 + 525,50 I5 + 525,50 I6 + 525,50 I4 = S2 (S, So Jo + S, So I, + S, So I2 + S, So I3) + 52 (S,S,J4 + S,S,J5 + S,S,J6+S,S,J4) 4:1 MOX II B

Realize each of the basic logic gates using 2:1 MUX

$$\begin{array}{c|c} AND & Y = AB \\ \hline AB & Y \\ \hline OO & OO \\ \hline OO & Y = O \\ \hline OO & OO \\ \hline OO & Y = B \\ \hline OO & OO \\ \hline OO & Y = B \\ \hline \end{array}$$

NAND gate using 2:1 MUXS $Y = \overline{A \cdot B}$

Realize NOR, XOR

16-to-1 line multiplexer----Exercise for you

 Write the Symbol/block diagram, function table, output expressions and circuit

Multiplexer application in logic design

• Implement the function $F(a,b,c) = \Sigma m(0,1,3,6,7)$ using • 8:1 MUX only

Minimum no. of 4:1 MUXs only

	abc	F	
ab:00	000	125-1	
	001		0 3
ab =01	010	07 (F=C	T 4
	011	-15-	17 63 S
96210	001	0}	52
	101	0 F=0	Vec/1
ab=11	0 11	13	a b
	1 1 1	1762	6.1 mux

Implement the function $F(a,b,c) = \Sigma m(0,1,3,6,7)$ using bc as selection lines for 4:1 mux

Implement the function $F(a,b,c,d) = \Sigma m(2,4,6,8,9,11,14,15)$

$F(a,b,c,d) = \Sigma m(2,4,6,8,9,11,14,15)$

 $F(a,b,c,d) = \Sigma m(2,4,6,8,9,11,14,15)$ realization contd...

Nibble Multiplexer

• A and B are two 4-bit numbers. Design a combinational circuit using suitable multiplexers according to following requirements.

Multiplexer ICs:

74151-8:1 MUX

74153- 4:1 MUXs

74157 Quad 2:1 MUX IC

4,

Design a full subtractor using 74153 IC and one external gate.

Full subtractor using 74153 IC and one external gate contd...

Design a full adder/ subtractor using 74153 IC and two external gates

if
$$m=0$$
 adder $F=a+b+cin=0$
clse

Substractor $F=a-b$
 $F=a-b$

Full adder/subtractor using 74153 IC and two external gates contd...

Full adder/subtractor using 74153 IC and two external gates contd..

Exercise:

- Realize the Boolean expression $f(w,x,y,z) = \Sigma m(4,5,7,8,10,12,15)$ using
 - 74151 multiplexer and external gate
 - 74153 IC and external gates
 - Refer the prescribed book for additional problems

