Duração: 1h30m

Mestrado em Engenharia Electrotécnica e de Computadores (MEEC) Instituto Superior Técnico

1. Considere a execução do seguinte troço de código num processador com ISA compatível com o MicroBlaze (i.e., correspondente ao processador do laboratório). O processador tem 5 andares de *pipeline* (IF, ID, EX, MEM e WB) e endereça uma memória com palavras de 8 bits e organização *big endian*.

Código Assembly			Resultado e	Resultado das instruções de controlo						
			(T -	(T - Taken; NT - Not Taken)						
CALC:	BGE	R4,CALC	T,T,T,T,NT	T,T,T,NT	T,T,T,NT	NT				
	BEQ	R1,R2,NEXT	NT	Т	NT	NT				
NEXT:	BLT SW	R2,CALC 8(R5),R6	Т	Т	Т	NT				

1.0 val.

(a) Considerando R5=00010128h e R6=0AB01234h, indique quais as posições de memória modificadas pela instrução SW 8(R5), R6 e qual o seu novo valor.

5.0 val.

(b) Para cada um dos mecanismos de predição de salto indicados em baixo, anote com um círculo os saltos correctamente preditos e a taxa de sucesso na predição de salto.

(Nota: considere todas as simplificações que achar convenientes anotando-as no enunciado.)

i. Preditor estático do tipo Not Taken

BGE	R4,CALC	T,T,T,T,NT	T,T,T,NT	T,T,T,NT	NT	Taxa de sucesso
BEQ	R1,R2,NEXT	NT	Т	NT	NT	
BLT	R2,CALC	Т	Т	Т	NT	

ii. Preditor dinâmico com Branch Predit Buffer (BPB) de 1 bit.

BGE	R4,CALC	T,T,T,T,NT	T,T,T,NT	T,T,T,NT	NT	Taxa de sucesso
BEQ	R1,R2,NEXT	NT	Т	NT	NT	
BLT	R2,CALC	Т	Т	Т	NT	

iii. Preditor dinâmico com Branch Predit Buffer (BPB) de 2 bits.

BGE	R4,CALC	T,T,T,T,NT	T,T,T,NT	T,T,T,NT	NT	Taxa de sucesso
BEQ	R1,R2,NEXT	NT	Т	NT	NT	
BLT	R2,CALC	Т	Т	Т	NT	

Duração: 1h30m

2. Considere a execução do seguinte troço de código num processador com ISA compatível com o MIPS.

120h:	loop:	L.D	F0,0(R1)	; $F0 \leftarrow M[R1+0]$
124h:		L.D	F2,0(R2)	; $F2 \leftarrow M[R2+0]$
128h:		MUL.D	F2,F0,F2	; $F2 \leftarrow F0 \times F2$
12Ch:		DADD.D	F2,F2,F4	; F4 ← F2 + F4
130h:		S.D	O(R4),F2	; $M[R4+0]$ ← $F4$
134h:		DADD	R1,R1,#-8	; R1 ← R1 - 8
138h:		DADD	R2,R2,#-8	; R2 ← R2 - 8
13Ch:		DADD	R4,R4,#-8	; R4 ← R4 - 8
140h:		BNE	R1,R0,loop	; $PC \leftarrow loop \ se \ R1 = R0$

Resolva as seguintes alíneas considerando todas as simplificações que achar convenientes (sempre que o fizer anote-as no enunciado).

3.0 val.

(a) Considerando um processador com 5 estágios de *pipeline* (IF, ID, EX, MEM, WB) sem *forwarding* de dados e resolução de saltos no andar de EX, indique na tabela os passos de execução de 1 iteração do troço de código.

			Ciclo de relógio					
Instrução		IF	ID	EX	MEM	WB	Observações	
loop:	L.D	F0,0(R1)						
	L.D	F2,0(R2)						
	MUL.D	F2,F0,F2						
	DADD.D	F2,F2,F4						
	S.D	0(R4),F2						
	DADD	R1,R1,#-8						
	DADD	R2,R2,#-8						
	DADD	R4,R4,#-8						
	BNE	R1,R0,loop						

3.0 val.

(b) Considerando a existência de forwarding de dados, indique na tabela os passos de execução de 1 iteração do troço de código.

				Cio	clo de r			
Instrução		IF	ID	EX	MEM	WB	Observações	
loop:	L.D	F0,0(R1)						
	L.D	F2,0(R2)						
	MUL.D	F2,F0,F2						
	DADD.D	F2,F2,F4						
	S.D	0(R4),F2						
	DADD	R1,R1,#-8						
	DADD	R2,R2,#-8						
	DADD	R4,R4,#-8						
	BNE	R1,R0,loop						

8 de Abril de 2013

Duração: 1h30m

Mestrado em Engenharia Electrotécnica e de Computadores (MEEC) Instituto Superior Técnico

3.0 val.

- (c) Considere um processador super-escalar com:
 - agendamento dinâmico usando o algoritmo Tomasulo;
 - execução especulativa (preditor de salto com uma taxa de sucesso de 100%);
 - issue simultâneo de duas instruções;
 - número suficientemente grande de estações de reserva e de entradas no ROB;
 - 1 CDB e commit simultâneo de 2 instruções;
 - unidades funcionais com as seguintes latências:

 $1 \times \text{ INT ALU}$ 1 ciclo

 $1 \times \text{ LOAD/STORE}$ 1 ciclo para cálculo do endereço + 1 ciclo para acesso à memória

 $1 \times \text{ FP ADD}$ 3 ciclos $1 \times \text{ FP MULT}$ 5 ciclos

Indique os passos de execução do troço de código, durante 2 iterações. (Faça todas as simplificações que achar convenientes, indicando-as junto da resposta.)

				Ciclo de relógio				
Instrução		IF	Issue	$\mathbf{E}\mathbf{X}$	CDB	Commit	Observações	
loop:	L.D	F0,0(R1)						
	L.D	F2,0(R2)						
	MUL.D	F2,F0,F2						
	DADD.D	F2,F2,F4						
	S.D	0(R4),F2						
	DADD	R1,R1,#-8						
	DADD	R2,R2,#-8						
	DADD	R4,R4,#-8						
	BNE	R1,R0,loop						
loop:	L.D	F0,0(R1)						
	L.D	F2,0(R2)						
	MUL.D	F2,F0,F2						
	DADD.D	F2,F2,F4						
	S.D	0(R4),F2						
	DADD	R1,R1,#-8						
	DADD	R2,R2,#-8						
	DADD	R4,R4,#-8						
	BNE	R1,R0,loop						

8 de Abril de 2013 Duração: 1h30m

3. Considere o seguinte troço de código em C:

3.0 val.

(a) Assumindo que os *arrays* são distintos e não sobrepostos, apresente um grafo com todas as inter-dependências existentes.

2.0 val.

(b) Diga, justificando, se o código apresentado é paralelizável ao nível de ciclo, i.e., se é possível executar cada iteração deste ciclo independentemente e em paralelo. Em caso afirmativo, reescreva-o por forma a que a sua execução possa ser efectuada em paralelo.