CS 4602

Introduction to Machine Learning

Linear Classifiers

Instructor: Po-Chih Kuo

Roadmap

- Introduction and Basic Concepts
- Regression
- Bayesian Classifiers
- Decision Trees
- KNN
- Linear Classifier
- Neural Networks
- Deep learning
- Convolutional Neural Networks
- RNN/Transformer
- Reinforcement Learning
- Model Selection and Evaluation
- Clustering
- Data Exploration & Dimensionality reduction

- Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Support Vector Machines

CS4602

Recall

- In classification, the input variable x may still be continuous, but the target variable is discrete (blue and green).
 - Linear or Non-linear?

CS4602

Linear Models for Classification

- Linear models for classification separate input vectors into classes using linear (hyperplane) decision boundaries.
- Example:
 - 2D Input vector x = (x1, x2)
 - Two discrete classes C1 (blue) and C2 (green)

Hyperplane

- Decision boundary g(x) is a hyperplane
- A hyperplane is
 - a point in 1D
 - a line in 2D
 - a plane in 3D

Two-Class Discriminant Function

$$y(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x} + W_0$$

 $y(\mathbf{x}) \ge 0$ **x** assigned to C_1

 $y(\mathbf{x}) < 0 \mathbf{x}$ assigned to C_2

 $y(\mathbf{x}) = 0$ defines the decision boundary

Let

$$\mathbf{w} = \begin{bmatrix} w_0 & w_1 & \dots & w_M \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} 1 & x_1 & \dots & x_M \end{bmatrix}$$

$$y(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$$

Check list

- Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Support Vector Machines

CS4602

- The perceptron algorithm was invented by Frank Rosenblatt (1962).
- The strategy is to start with a random guess at the weights w, and to then iteratively change the weights to move the hyperplane in a direction that lowers the classification error.

- As we change the weights continuously, the classification error changes in discontinuous.
- Thus we cannot use the classification error as our objective function to minimize.
- What would be a better objective function?

CS4602

we seek w such that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} \ge 0$$
 when $t = +1$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x} < 0$ when $t = -1$

In other words, we would like

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{n}}\mathbf{t}_{\mathrm{n}} \geq 0$$
, $\forall \mathrm{n}$

Thus we seek to minimize

$$E(\mathbf{w}) = -\sum_{n \in M} \mathbf{w}^{T} \mathbf{x}_{n} \mathbf{t}_{n}$$

M is the set of misclassified inputs

- E(w) is always non-negative.
- E(w) is continues and piecewise linear, and thus easier to minimize.

Again, we can use gradient descent!

$$\mathbf{w}^{\theta+1} = \mathbf{w}^{\theta} - \eta \nabla E(\mathbf{w}) = \mathbf{w}^{\theta} + \eta \sum_{n \in M} \mathbf{x}_n t_n$$

If an input from $C_1(t=+1)$ is misclassified, we need to make its projection on **w** more positive.

```
// Initialize \vec{w}. \vec{w} = \vec{0} misclassifies everything.
Initialize \vec{w} = \vec{0}
while TRUE do
                                                              // Keep looping
   m = 0
                                                              // Count the number of misclassifications, m
   for (x_i, y_i) \in D do
                                                              // Loop over each (data, label) pair in the dataset, D
       if y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0 then
                                                              // If the pair (\vec{x_i}, y_i) is misclassified
           \vec{w} \leftarrow \vec{w} + y\vec{x}
                                                              // Update the weight vector \vec{w}
           m \leftarrow m + 1
                                                              // Counter the number of misclassification
       end if
   end for
   if m=0 then
                                                              // If the most recent \vec{w} gave 0 misclassifications
                                                              // Break out of the while-loop
        break
   end if
end while
                                                              // Otherwise, keep looping!
```


https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

Example

Not Monotonic

- While updating with respect to a misclassified input n will lower the error for that input, the error for other misclassified inputs may increase.
- Inputs that had been classified correctly may now be misclassified.
- The perceptron algorithm is not guaranteed to reduce the total error monotonically at each stage.

Source: https://en.wikipedia.org/wiki/Monotonic_function

Rosenblatt

if the data are linearly separable, then the algorithm is guaranteed to find an exact solution in a finite number of steps

Mark 1 Perceptron Hardware (1960)

Limitation

- Convergence may be slow.
- If the data are not separable, the algorithm will not converge.
- We will know that the data are separable once the algorithm converges.
- The solution will depend upon initialization, scheduling of input vectors, and the learning rate η.

Check list

- Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Support Vector Machines

Dealing with Non-Linearly Separable Inputs

- The perceptron algorithm fails when the training data are not perfectly linearly separable.
- Let's turn to methods for learning the vector w of a perceptron even when the training data are not linearly separable.

Learning w with least-squares

$$y(X) = W^T X$$

Training dataset $(\mathbf{x}_n, \mathbf{t}_n)$, n = 1, ..., N, where we use the 1-of-K coding scheme for \mathbf{t}_n

Let **T** be the $N \times K$ matrix whose n^{th} row is label \mathbf{t}_n

Let **X** be the $N \times D$ matrix whose n^{th} row is data \mathbf{x}_n

Let R(W)=XW-T

Define the error as $E(\mathbf{W}) = \frac{1}{2} \sum_{i,j} R_{i,j}^2 = \frac{1}{2} \operatorname{Tr} \{ R(\mathbf{W})^T R(\mathbf{W}) \}$

Setting derivative wrt **W** to 0 yields:

$$\mathbf{W} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{T}$$

Check list

- Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Support Vector Machines

Best separation?

Fisher's Linear Discriminant

- Another way to view linear discriminants: find the 1D subspace that maximizes the separation between the two classes.
- Let $\mathbf{m}_1 = \frac{1}{N_1} \sum_{n \in C_1} \mathbf{x}_n$, $\mathbf{m}_2 = \frac{1}{N_2} \sum_{n \in C_2} \mathbf{x}_n$
- We might choose w to maximize $\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2-\mathbf{m}_1)$, subject to $||\mathbf{w}||=1$

22

Not optimal if conditional distributions are not isotropic!

Fisher's Linear Discriminant

Let $m_1 = \mathbf{w}^T \mathbf{m}_1$, $m_2 = \mathbf{w}^T \mathbf{m}_2$ be the conditional means on the 1D subspace.

Let $s_k^2 = \sum_{n \in C_k} (y_n - m_k)^2$ be the within-class variance on the subspace for class C_k

The Fisher criterion is then $J(\mathbf{w}) = \frac{\left(m_2 - m_1\right)^2}{s_1^2 + s_2^2}$

This can be rewritten as $J(\mathbf{w}) = \frac{\mathbf{w}^t \mathbf{S}_B \mathbf{w}}{\mathbf{w}^t \mathbf{S}_W \mathbf{w}}$

where

$$\mathbf{S}_{B} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{t}$$
 is the between-class variance

$$\mathbf{S}_{W} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1}) (\mathbf{x}_{n} - \mathbf{m}_{1})^{t} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2}) (\mathbf{x}_{n} - \mathbf{m}_{2})^{t} \text{ is the within-class variance}$$

$$J(\mathbf{w})$$
 is maximized for $\mathbf{w} \propto \mathbf{S}_W^{-1} \left(\mathbf{m}_2 - \mathbf{m}_1 \right)$

Limitation

Sensitivity to outliers

Perceptron vs LD

W^TX is the projection of X into a 1-dimensional subspace spanned by W

25

Check list

- Perceptron Algorithm
- Least-Squares Classifiers
- Fisher's Linear Discriminant
- Support Vector Machines

SVM: Motivation

- The perceptron algorithm is guaranteed to provide a linear decision surface that separates the training data, if one exists
- What if it doesn't exist? (back to this later)
- There are an infinite number of solutions, and the solution returned by the perceptron algorithm depends on the <u>initial conditions</u>, the <u>learning rate</u> and the order in which training data are processed.
- While all solutions achieve a <u>perfect</u> score on the training data, they won't all necessarily generalize as well to new inputs.

Linear Classifiers

• +1

-1

f(x, w, b) = sign(w x + b)

How would you classify this data?

Linear Classifiers

Support Vector Machine

- Which hyperplane to "best" separate data?
- What if it is impossible to separate the data by a hyperplane?

Classifier Margin

f(x, w, b) = sign(w x + b)

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Linear SVM Mathematically

What we know:

•
$$w x^+ + b = +1$$

•
$$w x^- + b = -1$$

•
$$\mathbf{w} (\mathbf{x}^+ - \mathbf{x}^-) = 2$$

$$M = \frac{(x^+ - x^-) \cdot w}{|w|} = \frac{2}{|w|}$$

Linear SVM Mathematically

Goal: 1) Correctly classify all training data

$$wx_i + b \ge 1$$
 if $y_i = +1$ $wx_i + b \le -1$ if $y_i = -1$ $y_i(wx_i + b) \ge 1$ for all i $mize$ the Margin $mize$ mix mix

2) Maximize the Margin same as minimize

$$M = \frac{2}{w^T w}$$

We can formulate a Quadratic Optimization Problem and solve for w and b

CS4602

Minimize $\Phi(w) = \frac{1}{2}w^T w$ $y_i(wx_i+b)\geq 1$ subject to

The Dual Problem

max.
$$W(\alpha) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^n \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^n \alpha_i y_i = 0$

- This is a quadratic programming (QP) problem
 - A global maximum of α_{i} can always be found
- w can be recovered by

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Support Vector Machine

- Which hyperplane to separate data?
- What if it is impossible to separate the data by a hyperplane?

Linear SVM Mathematically

Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

What if we add a dimension which represents the distance to the origin?

The "Kernel Trick"

Avoids the **explicit mapping** to learn a nonlinear function or decision boundary!

- The linear classifier relies on dot product between vectors $K(x_i, x_j) = x_i^T x_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $x \to \phi(x)$, the dot product becomes:

$$K(x_i,x_j) = \varphi(x_i)^T \varphi(x_j)$$

- A kernel function is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^\mathsf{T} \mathbf{x}_j)^2$, Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^\mathsf{T} \phi(\mathbf{x}_i)$:

$$K(x_{i},x_{j})=(1+x_{i}^{T}x_{j})^{2},$$

$$=1+x_{i1}^{2}x_{j1}^{2}+2x_{i1}x_{j1}x_{i2}x_{j2}+x_{i2}^{2}x_{j2}^{2}+2x_{i1}x_{j1}+2x_{i2}x_{j2}$$

$$=[1 x_{i1}^{2} \sqrt{2} x_{i1}x_{i2} x_{i2}^{2} \sqrt{2} x_{i1}\sqrt{2} x_{i2}]^{T}[1 x_{j1}^{2} \sqrt{2} x_{j1}x_{j2} x_{j2}^{2} \sqrt{2} x_{j1}\sqrt{2} x_{j2}]$$

$$=\varphi(x_{i})^{T}\varphi(x_{i}), \text{ where } \varphi(x)=[1 x_{1}^{2} \sqrt{2} x_{1}x_{2} x_{2}^{2} \sqrt{2} x_{1}\sqrt{2} x_{2}]$$

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
- Polynomial of power p: $K(\mathbf{x_i}, \mathbf{x_j}) = (1 + \mathbf{x_i}^T \mathbf{x_j})^p$
- Gaussian (radial-basis function network):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

• Sigmoid: $K(\mathbf{x_i}, \mathbf{x_j}) = \tanh(\beta_0 \mathbf{x_i}^T \mathbf{x_j} + \beta_1)$

Nonlinear!

Nonlinear SVM

- SVM locates a separating hyperplane in the feature space and classify points in that space.
- It does not need to represent the space explicitly, simply by defining a kernel function.
- The kernel function plays the role of the dot product in the feature space.

Data noise

Hard Margin:

- We require all data points be classified correctly
- No training error
- What if the training set is noisy?
 - use very powerful kernels

Soft Margin Classification

Slack variables ξi can be added to allow misclassification of difficult or noisy examples.

What should our quadratic optimization criterion be?

Minimize

$$\frac{1}{2}W \cdot W + C \sum_{k=1}^{M} \xi_k$$

The old formulation:

Find w and b such that
$$\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text{ is minimized and for all } \{(\mathbf{x_i}, y_i)\}$$
$$y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + \mathbf{b}) \ge 1$$

The new formulation incorporating slack variables:

```
Find w and b such that  \Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i} \xi_{i}  is minimized and for all \{(\mathbf{x_i}, y_i)\}  y_i (\mathbf{w}^{\mathrm{T}} \mathbf{x_i} + b) \ge 1 - \xi_i  and \xi_i \ge 0 for all i
```

 Parameter C can be viewed as a way to control overfitting.

Some Issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Questions?

https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/05.07-Support-Vector-Machines.ipynb#scrollTo=pYH2boXfHt-O