SRDP Standardisierte Reife- und Diplomprüfung

Alle Lösungen

Lösung: Ausbreitung von Licht * (B_428)

a) Der Nenner muss größer gleich dem Zähler sein, also: $0.5 \cdot \lambda \le d$.

$$\frac{(n+0.5)\cdot 632\cdot 10^{-9}}{0.01\cdot 10^{-3}} \leq 1 \quad \Rightarrow \quad n \leq 15.3...$$

Daher gibt es für n = 0, 1, 2, ..., 15 jeweils eine Lösung für α .

Lösung: BMX-Bahn * (B_497)

1) Berechnen Sie den Winkel α .

Lösung: Blutdruck * (B_448)

0

Die Funktion f wird beschrieben durch:

$$f(t) = a \cdot \sin\left(\frac{\pi}{12} \cdot t\right) + 135$$

t ... Zeit in h

f(t) ... systolischer Blutdruck zur Zeit t in Millimeter Quecksilbersäule (mmHg)

a ... Parameter

- 1) Tragen Sie in der obigen Abbildung die fehlende Zeitangabe in das dafür vorgesehene Kästchen ein.
- 2) Bestimmen Sie den Parameter a.

Der Graph der Funktion f_1 in der obigen Abbildung entsteht durch vertikale Verschiebung des Graphen von f.

3) Erstellen Sie ausgehend von f eine Funktionsgleichung für f_1 .

Lösung: Ebbe und Flut * (B_414)

a)
$$A = 6$$
, $B = 6$

(keine Ablesetoleranz)

Die Periodendauer T ist 12, daher ergibt sich:

$$\omega = \frac{2 \cdot \pi}{T} = \frac{2 \cdot \pi}{12} = \frac{\pi}{6}$$

 $t_0 = 3 \text{ h}$ und $\varphi = -t_0 \cdot \omega$, daher ergibt sich:

$$\varphi = -\frac{\pi}{2}$$

(Jeder Wert $\varphi = -\frac{\pi}{2} + 2 \cdot k \cdot \pi$ mit $k \in \mathbb{Z}$ ist als richtig zu werten.)

b) Im Durchschnitt beträgt die Wassertiefe im Hafenbecken 6 m.

8:20 Uhr entspricht
$$t = \frac{25}{3}$$

 $H\left(\frac{25}{3}\right) = 5,15...$

Die Wassertiefe um 8:20 Uhr beträgt rund 5,2 m.

Man berechnet diejenigen Zeitpunkte (in h nach Mitternacht), zu denen der Wasserstand maximal bzw. minimal ist.

Lösung: Federpendel * (B_431)

Aufgabennummer: B_431		
Technologieeinsatz:	möglich □	erforderlich 🗵

Ein an einer Feder befestigter Körper bewegt sich unter dem Einfluss der Federkraft.

a) Das nachstehende Beschleunigung-Zeit-Diagramm zeigt den sinusförmigen Verlauf der Beschleunigung eines Körpers durch die Federkraft. Es gilt: $a(t) = A \cdot \sin(\omega \cdot t + \varphi)$ mit A > 0.

Lösung: Flugbahnen * (B_389)

b) Koeffizientenvergleich:

$$0.03492 = \tan(\alpha) \Rightarrow \alpha = 1.99...^{\circ}$$

$$7,192 \cdot 10^5 = 2 \cdot v^2 \cdot \cos^2(1,99...^\circ) \Rightarrow v = 600,0... \approx 600$$

Die Abschussgeschwindigkeit beträgt rund 600 m/s.

c1)
$$cos(45^\circ) = \frac{13 - h_P}{10,62}$$

 $h_P = 5,49... \text{ m}$

Der Punkt P befindet sich rund 5,5 m über dem Boden.

c2)
$$a = 10,62$$
 $c = 13$

c3)
$$\omega = \frac{\pi}{5}$$

$$\varphi = -\frac{\pi}{4} \quad oder \quad \varphi = -\frac{\pi}{4} + 2 \cdot k \cdot \pi \quad mit \quad k \in \mathbb{Z}$$

Lösung: Im Möbelhaus * (B_427)

b)
$$g(x) = \sin(x) + 1,96$$
 oder $g(x) = f(x) + 1,46$

$$2,46 = a \cdot \sin(0) + b \Rightarrow b = 2,46$$

$$3.96 - 2.46 = 1.5 \Rightarrow a = 1.5$$

Lösung: Meerwasser und mehr Wasser * (B 509)

Meerwasser und mehr Wasser*

Aufgabennummer: B_509

Technologieeinsatz: möglich □ erforderlich ☑

a) Die Funktion *V* beschreibt näherungsweise den zeitlichen Verlauf des Wasservolumens eines bestimmten Sees. Dabei wird das Wasservolumen in Kubikmetern und die Zeit *t* in Tagen angegeben.

V erfüllt die folgende Differenzialgleichung:

$$\frac{dV}{dt} = 0.001 \cdot (350 - V) \text{ mit } V > 0$$

1) Argumentieren Sie anhand der Differenzialgleichung, für welche Werte von V das

Lösung: Nähmaschine * (B_591)

$\frac{dT}{dt} = k \cdot (100 - T)$	\boxtimes

c1)
$$a = 9.5$$
 $d = 10$

c2)
$$b = \frac{2 \cdot \pi}{30} = \frac{\pi}{15}$$

$$c = 0$$
 oder $c = 2 \cdot k \cdot \pi$ mit $k \in \mathbb{Z}^*$

c3)
$$f(x) = 9.5 \cdot \sin(\frac{\pi}{15} \cdot x) + 10$$

$$\int_0^{60} \sqrt{1 + f'(x)^2} dx = 100.33...$$

Die Länge des zurückgelegten Weges beträgt rund 100,3 m.

Lösung: Piratenschiff * (B_572)

b1)
$$\alpha = \arccos\left(\frac{r}{b_1}\right) + \arccos\left(\frac{r}{b_2}\right)$$

b2)
$$d = \sqrt{4.5^2 + 3^2 - 2 \cdot 4.5 \cdot 3 \cdot \cos(131^\circ)}$$

 $d = 6.85...$ m

Lösung: Schulklassen* (B_624)

a1)
$$y = \sqrt{v^2 + (h + 220)^2}$$

a2)
$$\alpha = \arccos\left(\frac{x^2 + y^2 - 220^2}{2 \cdot x \cdot y}\right)$$

a3)

Ein Einzeichnen eines anderen Winkels mit dem gleichen Winkelmaß ist ebenfalls als richtig zu werten.

a4)
$$\beta = \arctan\left(\frac{250}{275 + 220}\right) = 26,79...^{\circ}$$

Lösung: Sightseeing in London (B_361)

Möglicher Lösungsweg

a) Der Radius des Rades entspricht der Amplitude a der Sinusfunktion: $a=\frac{121}{2}=60,5$ b ist die Kreisfrequenz: $b=\frac{2\pi}{40}=\frac{\pi}{20}$

c ist der Nullphasenwinkel. Die Funktion h soll bei t=0 ein Minimum haben. Als Werte für c kommen daher alle Minimumstellen der Funktion f mit $f(x)=\sin(x)$ infrage: $c=-\frac{\pi}{2}$ oder $c=\frac{3\pi}{2}$ oder ...

d bewirkt eine vertikale Verschiebung des Graphen. Mit d = 0 wäre h(0) = -60,5, da jedoch h(0) = 14 sein muss, ist d = 14 + 60,5 = 74,5.

$$a = 60,5$$
; $b = \frac{\pi}{20}$; $c = -\frac{\pi}{2}$; $d = 74,5$

Die Amplitude a (Radius des Kreises), die Kreisfrequenz b (Drehgeschwindigkeit) und der Abstand d bleiben gleich.

Befindet sich der Aufhängepunkt zum Zeitpunkt t=0 im höchsten Punkt, ändert sich nur der Nullphasenwinkel, wodurch eine Verschiebung des Graphen in horizontaler Richtung bewirkt wird.

b)
$$\sin(90^{\circ} - \alpha) = \frac{2}{h_1}$$

Lösung: Sinusfunktionen * (B 437)

Aufgabennummer: B_437

Technologieeinsatz: möglich ⊠ erforderlich □

a) Eine Glimmlampe beginnt zu leuchten, sobald die angelegte Spannung eine Zündspannung $U_{\rm Z}$ übersteigt. Sie erlischt wieder, sobald die angelegte Spannung die Löschspannung $U_{\rm L}$ unterschreitet. Für eine bestimmte Glimmlampe gilt:

$$U_z = 150 \text{ V}$$

 $U_1 = 100 \text{ V}$

Die angelegte Spannung kann näherungsweise durch die Funktion u beschrieben werden:

$$u(t) = 325 \cdot \sin(2\pi \cdot 50 \cdot t)$$

t ... Zeit in s

u(t) ... Spannung zur Zeit t in Volt (V)

1) Veranschaulichen Sie im nachstehenden Koordinatensystem den Funktionsgraphen von u und kennzeichnen Sie dasjenige Zeitintervall $[t_1; t_2]$, in dem die Glimmlampe leuchtet.

2) Berechnen Sie, wie viel Prozent der Zeit die Glimmlampe im Zeitintervall [0; 0,01] leuchtet.

.....

Lösung: Skispringen (2) * (B_380)

b)
$$\sin\left(\frac{\alpha}{2}\right) = \frac{2}{r} = \frac{21.7}{105.6}$$

 $\alpha = 23.716$ °

Kreisbogen b von A nach B:

$$b = \frac{\alpha \cdot r \cdot \pi}{180^{\circ}}$$

$$b = \frac{23,716...^{\circ} \cdot 105,6 \cdot \pi}{180^{\circ}} = 43,711...$$

prozentueller Unterschied zwischen der Länge der Strecke AB und dem Kreisbogen b: $\frac{43,711...-43,4}{43,711...} = 0,00712... \approx 0,71 \%$

Die Streckenlänge \overline{AB} ist um rund 0,71 % kürzer als der Kreisbogen b.

Lösung: Tischplatte * (B_554)

a1)
$$h = r \cdot \sin\left(\frac{180^\circ - \alpha}{2}\right)$$
 oder $h = r \cdot \cos\left(\frac{\alpha}{2}\right)$

a2)

Lösung: Tunnelvortrieb * (B_521)

b1)
$$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$$

 $\tan(32^\circ) = \frac{h}{r} \Rightarrow h = r \cdot \tan(32^\circ)$
 $200 = \frac{1}{3} \cdot \pi \cdot r^2 \cdot r \cdot \tan(32^\circ)$

$$r = 6,73...$$
 m

Lösung: Wasserski-Wettbewerb (2) * (B_471)

c1)

[]	
[]	
[]	
[]	