CHAPTER 2

Unsupervised Learning with SAS EM

Content

- Introduction to Unsupervised Learning
- K-means clustering
- Probabilistic clustering via EM algorithm
- Hierarchical clustering
- Unsupervised Learning by Python
- Unsupervised Learning with SAS EM
- Number of clusters by Python
- Density-based Spatial Clustering of Applications with Noise (DBSCAN)

SAS Enterprise Miner (SAS EM)

- SAS EM adopts a user-friendly interface and allow user to adopt the drag-and-drop approach to perform unsupervised d learning.
- To start SAS EM: Windows -> SAS -> SAS Enterprise Miner 14.2
- The files are saved in "Unsupervised Learning with SAS EM" Enterprise Miner

Step 1: Create a new project

- Step 2: Setup project name and directory
- Project name: test1
- Directory: C:\temp
- o Then, click 'Next' -> 'Finish'

- Step 3: Create a new diagram
- File->New->Diagram

Step 4: diagram name: clustering

- Step 5:Click onto the icon and drag to the diagram
- Icon: Sample-> File Import

- Step 6: Import file
 - Click "File Import" node
 - On the left panel, select train-> import file
 - Select the iris dataset from your computer

- Step 7: Import descriptive statistics tool
- Icon: Explore -> StatExplore

Drag and drop to the diagram

Step 8: Connect the two nodes

Step 9: Right-click onto StatExplore and select Run

Step 10: Click Results (or on the menu bar: Actions->View

Results)

Basics statistics of the data are shown.

13									
14		Measurement	Freq	uency					
15	Role	Level	Co	unt					
16									
17	INPUT	INTERVAL		4					
18	INPUT	NOMINAL		1					
19									
20									
21									
22	Class V	ariable Summan	ry Stati	stics					
23	(maximu	m 500 observat	tions pr	inted)					
24									
25	Data Ro	le=TRAIN							
26									
27				Number					
28	Data	Variable		of			Mode		Mode2
29	Role	Name	Role	Levels	Missing	Mode	Percentage	Mode2	Percentage
30									
31	TRAIN	species	INPUT	3	0	setosa	33.33	versicolor	33.33
32									

- Step 11: Add Clustering node
 - Icon: HPDM->HP Cluster

- Drag the icon and drop to the diagram
- Connect HP Cluster with File Import

- Step 12: Specify the number of clusters.
 - Click "HP Cluster" node.
 - On the left panel, "Number of Clusters Estimation">"Number of Clusters">"User Specify"
 - Specify Number of Clusters: 3

- Step 13: Add saved data node
- Icon: Utility -> Save Data

- Drag and drop to the diagram
- Connect it to HP Cluster

Step 14: Setup the output format

- Click "Save Data" node
- On the left panel, select "output format"
- Set File Format: Excel
- Directory: your path (the result will be stored in this directory)

Step 15: The output file is em_save_TRAIN.xlsx

		Inpu	t data				servatio s to whic		ster
	А	В	С	D	E	F		Н	
1	sepal_length	sepal_width	petal_length	petal_width	species	_WARN	CLUST R_ID_		
2	5.1	3.5	1.4	0.2	setosa		2		
3	4.9	3	1.4	0.2	setosa		2		
4	4.7	3.2	1.3	0.2	setosa		2		
5	4.6	3.1	1.5	0.2	setosa		2		
6	5	3.6	1.4	0.2	setosa		2		
7	5.4	3.9	1.7	0.4	setosa		2		
8	4.6	3.4	1.4	0.3	setosa		2		
9	5	3.4	1.5	0.2	setosa		2		
10	4.4	2.9	1.4	0.2	setosa		2		
11	4.9	3.1	1.5	0.1	setosa		2		
12	5.4	3.7	1.5	0.2	setosa		2		
13	4.8	3.4	1.6	0.2	setosa		2		
14	4.8	3	1.4	0.1	setosa		2		
15	4.3	3	1.1	0.1	setosa		2		
16	5.8	4	1.2	0.2	setosa		2		
17	5.7	4.4	1.5	0.4	setosa		2		
18	5.4	3 9	1 3	0.4	setosa		2		

Right-click onto the Save Data node and click Run

- Step 16: Step Construction of confusion matrix
- You may use the excel function (countifs) to construct the confusion matrix.

Confusion ma	trix		
	1	2	3
setosa	0	50	0
versicolor	48	0	2
virginica	14	0	36

Remarks

 Other clustering algorithms can be found in either "Model" or "HDPM".

