Segunda Prova/Solução do professor

 $1^{\underline{O}}$ semestre de 2016 DCC/ICEx/UFMG 19/5/2016

- 1. Sejam $L_1 = \{0^n \mid n \ge 1000\}$ (regular), e $L_2 = \{0^n \mid n \text{ \'e n\'umero primo}\}$ (não regular). Para cada linguagem a seguir, mostre que ela \'e regular ou que não \'e:
 - (a) $L_2 L_1$;
 - (b) $L_1 \cap L_2$.

Solução:

- (a) $L_2 L_1 = \{0^n \mid n \text{ \'e número primo e } n < 1000\}$. Tal conjunto $\acute{\text{e}}$ finito, logo $\acute{\text{e}}$ regular.
- (b) $L_1 \cap L_2 = \{0^n \mid n \text{ \'e n\'umero primo e } n \geq 1000\}$. Suponha que tal conjunto seja regular. Como as linguagens regulares são fechadas sob união, a linguagem $(L_1 \cap L_2) \cup (L_2 L_1)$ deve ser regular. Mas $(L_1 \cap L_2) \cup (L_2 L_1) = L_2$, que não é regular, Portanto, $L_1 \cap L_2$ não é regular.
- 2. Obtenha expressões regulares que denotem as linguagens:
 - (a) $\{w \in \{0,1\}^* | w \text{ inicia com } 0 \in |w| \text{ \'e par}\}.$
 - (b) $\{w \in \{0,1\}^* \mid |w| > 0 \text{ e } w \text{ tem um único 0 nas posições ímpares}\}$. Exemplos, sublinhando o zero na posição ímpar: $\underline{0}, \underline{00}, \underline{01}, \underline{001}, \underline{011}, \underline{100}, \underline{110}, \underline{00}\underline{10}$ etc.

Solução:

- (a) $0(0+1)((0+1)(0+1))^*$.
- (b) $(1(0+1))*0((0+1)1)*(\lambda+0+1)$.
- 3. Construa:
 - (a) Um APD que reconheça $\{a^n(cba)^n \mid n \in \mathbb{N}\}.$
 - (b) Um APN que reconheça $\{a^n(abc)^n \mid n \in \mathbb{N}\}.$

Solução:

(a) Um APD para $\{a^n(cba)^n \mid n \in \mathbb{N}\}:$

$$\begin{array}{c|c} a, \lambda/C \\ \hline & c, C/B \\ \hline & b, B/A \\ c, C/B \end{array}$$

(b) Um APN para $\{a^n(abc)^n \mid n \in \mathbb{N}\}:$

$$\begin{array}{c|c} \mathbf{a},\lambda/\mathbf{A} \\ \hline & \mathbf{a},\mathbf{A}/\mathbf{B} \\ \hline & \mathbf{b},\mathbf{B}/\mathbf{C} \\ \mathbf{c},\mathbf{C}/\lambda \end{array}$$

- 4. Construa GLCs para as linguagens:
 - (a) $\{xby \mid x, y \in \{a, b\}^* \text{ e } |x| = |y|\}.$
 - (b) $\{a^m b^k c^n \mid k > m+n\}.$

Solução:

(a) GLC para $\{xby \mid x, y \in \{a, b\}^* \in |x| = |y|\}$:

$$P \to XPX \mid b$$

 $X \to a \mid b$

(b) GLC para $\{a^mb^kc^n \mid k>m+n\}$:

$$P \rightarrow ABC$$

$$A \rightarrow aAb \mid \lambda$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow bCc \mid \lambda$$

5. Mostre que a gramática a seguir é ambígua:

$$\begin{array}{c} A \rightarrow \text{ 0}A1 \,|\, B \\ B \rightarrow \text{ 0}B11 \,|\, C \\ C \rightarrow \text{ 0}C111 \,|\, \lambda \end{array}$$

Solução:

Duas DMEs para 001111:

$$A \Rightarrow 0A1 \Rightarrow 0B1 \Rightarrow 0C1 \Rightarrow 00C11111 \Rightarrow 001111$$

 $A \Rightarrow B \Rightarrow 0B11 \Rightarrow 00B11111 \Rightarrow 00C11111 \Rightarrow 0011111$

6. Transforme a GLC a seguir em uma equivalente na forma normal de Chomsky.

$$P
ightarrow\mathtt{a}P\mathtt{b}\,|\,A \ A
ightarrow B\mathtt{a}B\,|\,\mathtt{a}B \ B
ightarrow\mathtt{a}B\mathtt{c}\,|\,\lambda$$

Primeiro elimine regras λ , depois unitárias, etc., como preconiza o método visto.

Solução:

(a) Como $VA = \{B\}$, ao eliminar regras λ obtém-se:

$$P \rightarrow aPb \mid A$$

 $A \rightarrow BaB \mid aB \mid Ba \mid a$
 $B \rightarrow aBc \mid ac$

(b) Como $enc(P) = \{P, A\}$, $enc(A) = \{A\}$ e $enc(B) = \{B\}$, ao eliminar regras unitárias obtém-se:

$$P
ightarrow aP$$
b $|BaB|aB|Ba|a$
 $A
ightarrow BaB|aB|Ba|a$
 $B
ightarrow aBc|ac$

(c) Como A é inútil:

$$P
ightarrow {\tt a}P{\tt b}\,|\,B{\tt a}B\,|\,{\tt a}B\,|\,B{\tt a}\,|\,{\tt a}$$
 $B
ightarrow {\tt a}B{\tt c}\,|\,{\tt a}{\tt c}$

(d) Terminais por variáveis em regras com lado direito maior do que um:

$$\begin{array}{l} P \,\to\, XPY\,|\,BXB\,|\,XB\,|\,BX\,|\,{\rm a}\\ B \,\to\, XBZ\,|\,XZ\\ X \,\to\, {\rm a}\\ Y \,\to\, {\rm b}\\ Z \,\to\, {\rm c} \end{array}$$

(e) Quebrando lado direito maior do que dois:

$$P
ightarrow XR_1 \, | \, BR_2 \, | \, XB \, | \, BX \, | \, \mathbf{a}$$
 $B
ightarrow XR_3 \, | \, XZ$ $X
ightarrow \mathbf{a}$ $Y
ightarrow \mathbf{b}$ $Z
ightarrow \mathbf{c}$ $R_1
ightarrow PY$ $R_2
ightarrow XB$ $R_3
ightarrow BZ$