T12

1. Considera las funciones $F: \mathbb{R}^3 \to \mathbb{R}^2$ y $G: \mathbb{R}^3 \to \mathbb{R}^3$ dadas por

$$F(x,y,z) = (x^2+y+z, 2x+y+z^2), \quad G(u,v,w) = (2uv^2w^2, w^2 \operatorname{sen}(v), u^2e^v)$$

- (a) Encuentra la matriz de derivadas parciales $D_{(x,y,z)}F$ y $D_{(u,v,w)}G$.
- (b) Define $H = F \circ G$. Usa la regla de la cadena para calcular la matriz derivada parciales $D_{(u,0,w)}H$.
- 2. Hallar la ecuación del plano tangente a las superficies dadas en los puntos indicados.
 - (a) $x^2 + 2y^2 + 3xz = 10$ en (1, 2, 1/3),
 - (b) $y^2 x^2 = 3$ en (1, 2, 8),
 - (c) xyz = 1 en (1, 1, 1).
- 3. Recuerda que, para una superficie de nivel $S \subset \mathbb{R}^3$, de la función g(x,y,z), la ecuación del plano tangente es

$$\langle \nabla_{(x_0,y_0,z_0)} g, (x-x_0,y-y_0,z-z_0) \rangle = 0$$

donde $(x_0, y_0 z_0)$ es un punto en la superficie S.

Demuestra que, como caso especial, la fórmula del plano tangente a la gráfica de la función f(x,y), se puede obtener de la ecuación anterior si se considera a la gráfica como una superficie de nivel de F(x,y,z) = f(x,y) - z.

- 4. Considera la función $f(x,y) = -(1-x^2-y^2)^{1/2}$, definida para los puntos (x,y) con $x^2 + y^2 < 1$. Prueba que el plano tangente a la gráfica de f, en el punto $(x_0, y_0, f(x_0, y_0))$ es ortogonal al vector $(x_0, y_0, f(x_0, y_0))$.
- 5. Usa la regla de la cadena para probar que, si $g:U\to\mathbb{R}$ es de clase C^1 en U, con U un abierto de \mathbb{R}^n , entonces

$$\nabla_p(1/g) = -\frac{1}{q(p)^2} \nabla_p g$$

donde suponemos que $g(p) \neq 0$, para toda $p \in U$.

6. Sean $G: \mathbb{R}^m \to \mathbb{R}^n$, una función de clase C^1 en \mathbb{R}^m , con funciones coordenadas $G(q) = (g_1(q), \dots, g_n(q))$ y sea $f: \mathbb{R}^n \to \mathbb{R}$ una función de clase C^1 en \mathbb{R}^n y sea $h = f \circ G$. Usa la regla de la cadena para demostrar que el gradiente de h es una combinación lineal de los gradientes de las g_k , en específico:

$$\nabla_{q_0} h = \sum_{k=1}^n \partial_{p_k} f(G(q_0)) \nabla_{q_0} g_k$$

nota que $\partial_{p_k} f(g(q_0))$ es escalar y $\nabla_{q_0} g_k$ es vector.

7. Encuentra el conjunto de puntos (a,b,c) en \mathbb{R}^3 , para los cuales las dos esferas: $(x-a)^2+(y-b)^2+(z-c)^2=1$ y $x^2+y^2+z^2=1$, se intersectan ortogonalmente.

Nota: Dos superficies se intersectan ortogonalmente si, para todo punto en su intersección, los planos tangentes son ortogonales.

Sugerencia: ve las esferas como superficies de nivel y utiliza gradientes.

8. (a) Considera la función $I:\mathbb{R}^3\to\mathbb{R}^3$ dada por I(x,y,z)=(x,y,z). Demuestra que

$$D_{(x,y,z)}I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

(b) Encuentra todas las funciones diferenciables en \mathbb{R}^3 , $F:\mathbb{R}^3\to\mathbb{R}^3$, para las cuales

$$D_{(x,y,z)}F = \left[\begin{array}{ccc} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & x \end{array} \right]$$

(c) Sean $p,q,r:\mathbb{R}\to\mathbb{R}$ funciones continuas en todo \mathbb{R} . Encuentra todas la funciones diferenciables en \mathbb{R}^3 , $G:\mathbb{R}^3\to\mathbb{R}^3$, para las cuales

$$D_{(x,y,z)}G = \begin{bmatrix} p(x) & 0 & 0\\ 0 & q(y) & 0\\ 0 & 0 & r(z) \end{bmatrix}$$