Data Mining: Classification

CS4821 – CS5831 Laura Brown

Some slides adapted from: A. Moore, E. Alpaydin, G. Piatetsky-Shapiro; Han, Kamber, & Pei; C.F. Aliferis; S. Russell; D. Klein; L. Kaebling; A. Mueller; P. Smyth; C. Volinsky; Tan, Steinbach, & Kumar; J. Taylor; G. Dong;

Supervised Learning

Training Examples

$$\mathcal{D} = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$$

- Identical independent distributed (i.i.d.) assumption
- Binary classification $\mathcal{Y} = \{-1, +1\}$
- Multi-class classification $\mathcal{Y} = \{1, 2, ..., C\}$
- Regression $y \in \mathbb{R}$

Classification Process

Given a collection of records (training set)

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)\}$$
 where

$$\mathbf{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip})$$

- Each record contains a vector of attributes, and a class label, y ∈ Y
- Use the data, D, to find a model for the class label as a function of the attributes

$$\hat{f}(\mathbf{x}): \mathbb{R}^p \mapsto \mathcal{Y}$$

• Use the model, \hat{f} , to predict class for new data $\hat{y} = \hat{f}(x_n)$

Split Data

training set

test set

Classification Process

Test Set

Classification Models / Algorithms

- Memory-based reasoning
- Rule-based methods
- Probabilistic-based
 - Naïve Bayes
 - Bayesian Networks
- Regression-based
 - Logistic regression
 - Neural Network
- Discriminative
 - Decision Trees
 - Support Vector Machines (SVMs)
 - Neural Networks

LAZY LEARNER

Instance-based Learners
K Nearest Neighbors (KNN)

Lazy Learners

- Lazy learning (instance-based learners)
 Simply stores training data (or performs only minor preprocessing) and waits for test samples
- Eager learning (upcoming methods)
 Given a set of training samples, construct a classification model before receiving test data
- Lazy
 - Less time less time in training a model, may be longer time in predicting class of test sample

Nearest Neighbors (NN)

- Each training sample is a vector
- Remember (keep) all the training data
- When queried for new test sample's class
 - Find the nearest point(s), and return class based on the neighbor(s)

What is "Nearest"?

- Need to calculate or measure the distance between the test sample and the input records
- Often, Euclidean distance is used
 - Other distance measures can be used depending on the problem.

Nearest Neighbors

- 2-class classification (red/blue)
- 2 features
- 3 new samples (stars)
- Prediction for new x

$$\hat{f}^{1-NN}(\boldsymbol{x}) = y_i,$$

$$i = \operatorname{argmin}_j \|\boldsymbol{x}_i - \boldsymbol{x}\|_2$$

Nearest Neighbors

- 2-class classification (red/blue)
- 2 features
- 3 new samples (stars)
- Prediction for new x

$$\hat{f}^{1-NN}(\boldsymbol{x}) = y_i,$$

$$i = \operatorname{argmin}_j \|\boldsymbol{x}_i - \boldsymbol{x}\|_2$$

Noisy Data?

If the boundary between data classes is not clear, how is the prediction made with 1-NN?

- Expand to consider the k nearest neighbors
 - Predict given the majority values of the k nearest neighbors
- For example, with *k*=3 with classes of "+", "-", and "+", model would predict: "+"

KNN Algorithm

Given: training sample $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1,...,n}$ distance function, k, and new input \mathbf{x}

- Find the k closest examples with respect to the distance function, $\{j_1, ..., j_k\}$
- Return majority of class labels

KNN

- 2-class classification (red/blue)
- 2 features
- 3 new samples (stars)
- Prediction for new x
 k = 1

KNN

- 2-class classification (red/blue)
- 2 features
- 3 new samples (stars)
- Prediction for new x
 k = 3

How to select k?

Overfitting and Underfitting

Model complexity

Overfitting and Underfitting

Model complexity

Overfitting and Underfitting

Model complexity

Nearest Neighbor Summary

- Prediction is slow as training data grows
 - Fit: no time
 - Memory: O(n*p)
 - Predict: O(n*p)
- Memory over time
 - Keeps all training data in memory
 - Solution: Can store data in clever data structures
 - What if the training data grows (you continue to see points and keep adding them to memory), may run out
 - Solution delete points far away from boundaries