# Lösung von Übungsblatt 2

### Aufgabe 1 (Digitale Datenspeicher)

1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet.

Lochstreifen, Lochkarte, CD/DVD beim Pressen.

2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher.

Festplatte, Trommelspeicher, Diskette.

3. Nennen Sie zwei nichtrotierende magnetische digitale Datenspeicher.

Kernspeicher, Magnetband, Magnetstreifen, Magnetkarte, Compact Cassette (Datasette), Magnetblasenspeicher.

4. Nennen Sie vier Vorteile von Datenspeicher ohne bewegliche Teile gegenüber Datenspeichern mit beweglichen Teilen.

Weniger Energieverbrauch, weniger Abnutzung, weniger Abwärme, unempfindlichkeit gegen Stöße, keine Laufgeräusche.

5. Beschreiben Sie was wahlfreier Zugriff ist.

Wahlfreier Zugriff heißt, dass das Medium nicht - wie z.B. bei Bandlaufwerken - von Beginn an sequentiell durchsucht werden muss, um eine bestimmte Stelle (Datei) zu finden.

6. Nennen Sie einen nicht-persistenten Datenspeicher.

Hauptspeicher (DRAM).

7. Der Speicher eines Computersystems wird in die Kategorien Primärspeicher, Sekundärspeicher und Tertiärspeicher unterschieden. Auf welche Kategorie(n) kann der Prozessor direkt zugreifen?

Nur auf den Primärspeicher.

8. Nennen Sie die Kategorie(n) aus Teilaufgabe 7, auf die der Prozessor nur über einen Controller zugreifen kann.

Auf den Sekundärspeicher und den Tertiärspeicher.

9. Nennen Sie für jede Kategorie aus Teilaufgabe 7 zwei Beispiele.

Primärspeicher: Register, Cache, Hauptspeicher.

Sekundärspeicher: Festplatte, SSD, CF-Karte.

Tertiärspeicher: CD/DVD-Laufwerk, MO-Laufwerk, Magnetband.

Inhalt: Themen aus Foliensatz 2 Seite 1 von 10

### Aufgabe 2 (Cache-Schreibstrategien)

1. Nennen Sie die beiden grundsätzlichen Cache-Schreibstrategien.

Write-Through und Write-Back.

2. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der es zu Inkonsistenzen kommen kann.

Write-Back.

3. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der die System-Geschwindigkeit geringer ist.

Write-Through.

4. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der sogenannte "Dirty Bits" zum Einsatz kommen.

Write-Back.

passt?

5. Beschreiben Sie die Aufgabe der "Dirty Bits".

Für jede Seite im Cache wird ein Dirty Bit im Cache gespeichert, das angibt, ob die Seite geändert wurde.

## Aufgabe 3 (Speicherverwaltung)

| 1. | Bei welchen Konzepten der Speicherpartitionierung entsteht interne Fragmentierung?                                 |
|----|--------------------------------------------------------------------------------------------------------------------|
|    | <ul> <li></li></ul>                                                                                                |
| 2. | Bei welchen Konzepten der Speicherpartitionierung entsteht externe Fragmentierung?                                 |
|    | <ul> <li>□ Statische Partitionierung</li> <li>□ Dynamische Partitionierung</li> <li>□ Buddy-Algorithmus</li> </ul> |
| 3. | Beschreiben Sie wie externe Fragmentierung behoben werden kann.                                                    |
|    | Durch Defragmentierung des Speichers.                                                                              |
| 4. | Welches Konzept zur Speicherverwaltung sucht den freien Block, der am besten                                       |

Inhalt: Themen aus Foliensatz 2 Seite 2 von 10

| etri | ebssysteme und                    | Rechnernetze (                       | SS2020)              | Frankfurt Univ. of Appl. Sciences    |
|------|-----------------------------------|--------------------------------------|----------------------|--------------------------------------|
|      |                                   |                                      |                      |                                      |
|      | $\square$ First Fit               | $\square$ Next Fit                   | $\boxtimes$ Best fit | $\square$ Random                     |
| 5.   | Welches Konzer<br>raums einen pa  | -                                    | _                    | sucht ab dem Anfang des Adress-      |
|      | ⊠ First Fit                       | ☐ Next Fit                           | ☐ Best fit           | $\square$ Random                     |
| 6.   | Welches Konzerreich freien Spe    | erstückelt schnell den großen Beums? |                      |                                      |
|      | $\square$ First Fit               | ⊠ Next Fit                           | ☐ Best fit           | $\square$ Random                     |
| 7.   | Welches Konzej<br>senden Block?   | ot zur Speicherv                     | verwaltung w         | ählt zufällig einen freien und pas-  |
|      | $\square$ First Fit               | ☐ Next Fit                           | ☐ Best fit           | $\boxtimes$ Random                   |
| 8.   | Welches Konzep<br>zuweisung einer |                                      | _                    | cht ab der Stelle der letzten Block- |
|      | $\square$ First Fit               | $\boxtimes$ Next Fit                 | ☐ Best fit           | $\square$ Random                     |
| 9.   | Welches Konzep<br>arbeitet am lan | _                                    | verwaltung p         | roduziert viele Minifragmente und    |
|      | ☐ First Fit                       | ☐ Next Fit                           | ⊠ Best fit           | $\square$ Random                     |
|      |                                   |                                      |                      |                                      |

FB 2: Informatik und Ingenieurwissenschaften

# Aufgabe 4 (Buddy-Verfahren)

Prof. Dr. Christian Baun

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen  $1024\,\mathrm{kB}$  großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an.

Inhalt: Themen aus Foliensatz 2 Seite 3 von 10

|                                                                        | 1024 KB |             |        |        |        |        |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|---------|-------------|--------|--------|--------|--------|--|--|--|--|--|--|--|
| 65 KB Anforderung => A                                                 | А       | 128 KB      | 256    | S KB   | 512 KB |        |  |  |  |  |  |  |  |
| 30 KB Anforderung => B                                                 | А       | B 32 64 KB  | 256    | S KB   | 512 KB |        |  |  |  |  |  |  |  |
| 90 KB Anforderung => C                                                 | А       | B 32 64 KB  | С      | 128 KB | 512    | КВ     |  |  |  |  |  |  |  |
| 34 KB Anforderung => D                                                 | А       | B 32 D      | С      | 128 KB | 512    | КВ     |  |  |  |  |  |  |  |
| 130 KB Anforderung => E                                                | А       | B 32 D      | С      | 128 KB | Е      | 256 KB |  |  |  |  |  |  |  |
| Freigabe C                                                             | А       | B 32 D      | 128 KB | 128 KB | Е      | 256 KB |  |  |  |  |  |  |  |
|                                                                        | Α       | B 32 D      | 256    | KB     | E      | 256 KB |  |  |  |  |  |  |  |
| Freigabe B                                                             | А       | 32 32 D     | 256    | S KB   | E      | 256 KB |  |  |  |  |  |  |  |
| •                                                                      | Α       | 64 KB D     | 256    | 5 КВ   | E      | 256 KB |  |  |  |  |  |  |  |
| 275 KB Anforderung => F Nicht möglich, weil keine 275 kB am Stück frei | А       | 64 KB D     | 256    | 5 KB   | Е      | 256 KB |  |  |  |  |  |  |  |
| 145 KB Anforderung => G                                                | А       | 64 KB D     | (      | G      | Е      | 256 KB |  |  |  |  |  |  |  |
| Freigabe D                                                             | А       | 64 KB 64 KB | (      | G      | Е      | 256 KB |  |  |  |  |  |  |  |
|                                                                        | А       | 128 KB      | (      | G      | E      | 256 KB |  |  |  |  |  |  |  |
| Freigabe A                                                             | 128 KB  | 128 KB      | (      | 3      | Е      | 256 KB |  |  |  |  |  |  |  |
|                                                                        | 256     | 5 KB        | (      | G      | E      | 256 KB |  |  |  |  |  |  |  |
| Freigabe G                                                             | 128 KB  | 128 KB      | 256    | 6 KB   | Е      | 256 KB |  |  |  |  |  |  |  |
|                                                                        |         | 512         | КВ     |        | E      | 256 KB |  |  |  |  |  |  |  |
| Freigabe E                                                             |         | 512         | KB     |        | 256 KB | 256 KB |  |  |  |  |  |  |  |
|                                                                        |         | 512         | КВ     |        | 512 KB |        |  |  |  |  |  |  |  |
|                                                                        | 1024 KB |             |        |        |        |        |  |  |  |  |  |  |  |

### Aufgabe 5 (Real Mode und Protected Mode)

- 1. Beschreiben Sie wie der Real Mode arbeitet.
  - Jeder Prozess kann direkt auf den gesamten adressierbaren Speicher zugreifen.
- 2. Beschreiben Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.
  - Es gibt keinen Speicherschutz.
- 3. Beschreiben Sie wie der Protected Mode arbeitet.

Inhalt: Themen aus Foliensatz 2 Seite 4 von 10

Jeder Prozess darf nur auf seinen eigenen virtuellen Speicher zugreifen. Virtuelle Speicheradressen übersetzt die CPU mit Hilfe der MMU in physische Speicheradressen.

4. Beschreiben Sie was virtueller Speicher ist.

Jeder Prozess besitzt einen eigenen Adressraum. Der Adressraum ist eine Abstraktion des physischen Speichers. Es handelt sich dabei um virtuellen Speicher. Er besteht aus logischen Speicheradressen, die von der Adresse 0 aufwärts durchnummeriert sind und er ist unabhängig von der verwendeten Speichertechnologie und den gegebenen Ausbaumöglichkeiten.

5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.

Die Prozesse müssen nicht am Stück im Hauptspeicher liegen. Darum ist die Fragmentierung des Hauptspeichers kein Problem.

6. Beschreiben Sie was Mapping ist.

Abbilden des virtuellen Speichers auf den realen Speicher.

7. Beschreiben Sie was Swapping ist.

Prozess des Ein- und Auslagerns von Daten in den/vom Arbeitsspeicher vom/in den Hintergrundspeicher (Festplatten/SSDs).

8. Nennen Sie die Komponente der CPU, die virtuellen Speicher ermöglicht.

Memory Management Unit (MMU).

9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.

Virtuelle Speicheradressen übersetzt die CPU mit Hilfe der MMU in physische Speicheradressen.

10. Beschreiben Sie das Konzept des virtuellen Speichers mit dem Namen Paging.

Virtuelle Seiten der Prozesse werden auf physische Seiten im Hauptspeicher abgebildet. Alle Seiten haben die gleiche Länge. Die Seitenlänge ist üblicherweise 4kb. Das Betriebssystemen verwaltet für jeden Prozess eine Seitentabelle. In dieser steht, wo sich die einzelnen Seiten des Prozesses befinden. Prozesse arbeiten nur mit virtuellen Speicheradressen. Virtuelle Speicheradressen bestehen aus zwei Teilen. Der werthöhere Teil enthält die Seitennummer. Der wertniedrigere Teil enthält den Offset (Adresse innerhalb einer Seite). Die Länge der virtuellen Adressen ist architekturabhängig und darum 16, 32 oder 64 Bits.

11. Beschreiben Sie wo beim Paging interne Fragmentierung entsteht.

Nur in der letzten Seite eines Prozesses.

Inhalt: Themen aus Foliensatz 2 Seite 5 von 10

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2020) Frankfurt Univ. of Appl. Sciences

12. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.

Ein Programm versucht auf eine Seite zuzugreifen, die nicht im physischen Hauptspeicher ist.

13. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.

Das Betriebssystem behandelt die Ausnahme mit folgenden Schritten:

- Daten auf dem Sekundärspeicher (SDD/HDD) lokalisieren.
- Freie Seiten im Hauptspeicher lokalisieren.
- Die Daten in die Seiten laden.
- Seitentabelle aktualisieren.
- Kontrolle an das Programm zurückgeben. Dieses fährt die Anweisung, die zum Page Fault führte, erneut aus.
- 14. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.

Ein Prozess versucht auf eine virtuelle Speicheradresse zuzugreifen, auf die er nicht zugreifen darf.

15. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Crash des Betriebssystems.

Den aktuell ausgeführten Prozess, der um den Erweiterungsspeicher ("Swap", Windows: "Page-File") vergrößert wird.

#### Aufgabe 6 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

| 1. | Real Mode ist    | für Multitasking-Systeme geeignet.                                                                          |
|----|------------------|-------------------------------------------------------------------------------------------------------------|
|    | $\square$ Wahr   | ⊠ Falsch                                                                                                    |
| 2. |                  | l Mode läuft jeder Prozess in seiner eigenen, von anderen Pro-<br>otteten Kopie des physischen Adressraums. |
|    | ⊠ Wahr           | ☐ Falsch                                                                                                    |
| 3. | Bei statischer I | Partitionierung entsteht interne Fragmentierung.                                                            |
|    | ⊠ Wahr           | $\square$ Falsch                                                                                            |
|    |                  |                                                                                                             |

Inhalt: Themen aus Foliensatz 2 Seite 6 von 10

| 4. | Bei dynamisch                    | er Partitionierung ist externe Fragmentierung unmöglich.                   |
|----|----------------------------------|----------------------------------------------------------------------------|
|    | $\square$ Wahr                   | ⊠ Falsch                                                                   |
| 5. | Beim Paging h                    | aben alle Seiten die gleiche Länge.                                        |
|    | ⊠ Wahr                           | ☐ Falsch                                                                   |
| 6. | Ein Vorteil lan                  | ger Seiten beim Paging ist geringe interne Fragmentierung.                 |
|    | $\square$ Wahr                   | ⊠ Falsch                                                                   |
| 7. | Ein Nachteil k<br>werden kann.   | urzer Seiten beim Paging ist, dass die Seitentabelle sehr groß             |
|    | $\boxtimes$ Wahr                 | ☐ Falsch                                                                   |
| 8. | Die MMU über<br>belle in physiso | rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen. |
|    | ⊠ Wahr                           | ☐ Falsch                                                                   |
| 9. | Moderne Betriden Paging.         | ebssysteme (für x86) arbeiten im Protected Mode und verwen-                |
|    | ⊠ Wahr                           | □ Falsch                                                                   |

FB 2: Informatik und Ingenieurwissenschaften

Frankfurt Univ. of Appl. Sciences

Prof. Dr. Christian Baun

Betriebssysteme und Rechnernetze (SS2020)

### Aufgabe 7 (Seiten-Ersetzungsstrategien)

1. Begründen Sie warum die optimale Ersetzungsstrategie OPT nicht implementiert werden kann.

Weil man nicht in die Zukunft schauen kann und damit ist die zukünftige Zugriffsfolge unbekannt.

2. Führen Sie die gegebene Zugriffsfolge mit den Ersetzungsstrategien Optimal, LRU, LFU und FIFO einmal mit einem Datencache mit einer Kapazität von 4 Seiten und einmal mit 5 Seiten durch. Berechnen Sie auch die Hitrate und die Missrate für alle Szenarien.

Inhalt: Themen aus Foliensatz 2 Seite 7 von 10

#### Optimale Ersetzungsstrategie (OPT):

Hinweis: Wenn bei der optimalen Ersetzungsstrategie eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am längsten in der Zukunft nicht zugegriffen wird.



Hitrate: 15/24 = 0.625%Missrate: 9/24 = 0.375%



Hitrate: 17/24 = 0,7083333%Missrate: 7/24 = 0,2916666%

#### Ersetzungsstrategie Least Recently Used (LRU):

Hinweis: Wenn bei der Ersetzungsstrategie LRU eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am längsten nicht zugegriffen wurde.



Hitrate: 11/24 = 0,4583333%Missrate: 13/24 = 0,5416666%

| Anfragen: | 1 | 3 | 5 | 4 | 2 | 4 | 3 | 2 | 1 | 0 | 5 | 3 | 5 | 0 | 4 | 3 | 5 | 4 | 3 | 2 | 1 | 3 | 4 | 5 |
|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Seite 1:  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 4 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 5 | 5 | 5 | 2 |
| Seite 2:  |   | 3 | 3 | 3 | 3 | 3 | 5 | 5 | 4 | 3 | 2 | 1 | 1 | 1 | З | 5 | 0 | 0 | 0 | 5 | 4 | 4 | 2 | 1 |
| Seite 3:  |   |   | 5 | 5 | 5 | 5 | 2 | 4 | 3 | 2 | 1 | 0 | 0 | 3 | 5 | 0 | 4 | З | 5 | 4 | 3 | 2 | 1 | 3 |
| Seite 4:  |   |   |   | 4 | 4 | 2 | 4 | 3 | 2 | 1 | 0 | 5 | 3 | 5 | 0 | 4 | 3 | 5 | 4 | 3 | 2 | 1 | 3 | 4 |
| Seite 5:  |   |   |   |   | 2 | 4 | 3 | 2 | 1 | 0 | 5 | 3 | 5 | 0 | 4 | 3 | 5 | 4 | 3 | 2 | 1 | 3 | 4 | 5 |

Hitrate: 14/24 = 0.583333%Missrate: 10/24 = 0.416666%

#### Ersetzungsstrategie Least Frequently Used (LFU):

Hinweis: Wenn bei der Ersetzungsstrategie LFU eine Seite verdrängt werden muss, wird die Seite verdrängt, auf die am wenigsten zugegriffen wurde. Es wird für jede Seite in der Seitentabelle ein Referenzzähler geführt, der die Anzahl der Zugriffe speichert. Ist der Speicher voll und kommt es zum Miss, wird die Seite entfernt, deren Referenzzähler den niedrigsten Wert hat.



Hitrate: 12/24 = 0.5%Missrate: 12/24 = 0.5%



Hitrate: 9/24 = 0.375%Missrate: 15/24 = 0.625%

#### Ersetzungsstrategie FIFO:

Hinweis: Wenn bei der Ersetzungsstrategie FIFO eine Seite verdrängt werden muss, wird die Seite verdrängt, die sich am längsten im Speicher befindet.

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5 2 2 2 3 2 2 2 3 l 3 3 3 3 3 3 Seite 1: 1 1 1 Seite 2: 3 3 3 3 3 1 1 1 1 4 4 4 4 4 3 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 5 2 2 2 2 Seite 3: 4 4 4 4 4 4 5 5 5 5 5 Seite 4: 5 5 5 5 5

> Hitrate: 11/24 = 0,4583333% Missrate: 13/24 = 0,5416666%

1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5 Anfragen: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Seite 1: 0 3 3 3 3 3 3 3 Seite 2: 3 3 3 3 3 3 | 3 3 5 5 5 5 5 5 Seite 3: 5 5 5 5 5 5 **5** 5 5 | 5 5 5 3 | 3 Seite 4: 4 | 4 4 4 | 4 | 4 | 4 | 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 Seite 5:

> Hitrate: 15/24 = 0,625%Missrate: 9/24 = 0,375%

- 3. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady. FIFO führt bei bestimmten Zugriffsmustern bei einem vergrößerten Speicher zu schlechteren Ergebnissen.
- 4. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

Hitrate: 3/12 = 25%Missrate: 9/12 = 75%

Anfragen: 3 2 1 0 3 2 4 3 2 1 0 4 Seite 1: 3 3 3 4 2 3 3 Seite 2: 2 2 2 3 3 2 Seite 3: 1 | 1 1 | 1 | 1 | 2 2 2 2 0 0 0 0 0 0 Seite 4:

Hitrate: 2/12 = 16,66%Missrate: 10/12 = 83,33%