Notations et rappels

On désigne respectivement par \mathbb{N} , \mathbb{Z} et \mathbb{C} l'ensemble des entiers naturels, l'anneau des entiers relatifs et le corps des nombres complexes. On désigne par $\mathbb{C}[X]$ la \mathbb{C} -algèbre des polynômes à une indéterminée et à coefficients dans \mathbb{C} .

Pour i, j \in \mathbb{N} *avec i* \leq *j, on désigne par* $\llbracket i, j \rrbracket$ *l'ensemble des entiers naturels compris entre i et j.*

Soit E un \mathbb{C} -espace vectoriel de dimension finie. On note $\operatorname{End}(E)$ l'algèbre des endomorphismes linéaires de E et $\operatorname{GL}(E)$ le groupe des automorphismes linéaires de E. Pour $f \in \operatorname{End}(E)$, la trace de f est notée $\operatorname{Tr}(f)$.

Soit G un groupe fini. Son ordre (c'est-à-dire son cardinal) esr noté |G|.

Soient (G, \cdot) un groupe et x un élément de G. Le sous-groupe de G engendré par x est noté $\langle x \rangle$.

Soient (G, \cdot) un groupe et H un sous-groupe distingué de G. Le groupe quotient de G par H est noté G/H.

Pour n un entier naturel non nul, on désigne par \mathfrak{S}_n le n-ième groupe symétrique, c'est-à-dire le groupe des permutations de l'ensemble $\{1,\ldots,n\}$.

Dans tout le sujet, les éléments de \mathbb{C}^n , pour n entier naturel supérieur ou égal à 2, seront notés sous forme de vecteurs colonnes.

On rappelle le résultat suivant :

Lemme 1. (Lemme des noyaux). Soient E un \mathbb{C} -espace vectoriel, $f \in \operatorname{End}(E)$ et $P_1, \ldots, P_k \in \mathbb{C}[X]$ des polynômes deux-à-deux premiers entre eux. On pose

$$P = \prod_{i=1}^k P_i.$$

Alors

$$Ker(P(f)) = Ker(P_1(f)) \oplus ... \oplus Ker(P_k(f)).$$

Ce problème est découpé en six parties. La première partie est formée de trois exercices préliminaires. Les parties suivantes sont consacrées à l'étude des représentations des groupes finis et en particulier à l'établissement des théorèmes de Maschke et de Kronecker.

Première partie

Cette première partie contient trois exercices dont les résultats pourront être utilisés dans les parties suivantes.

Exercice 1

Dans tout cet exercice, E désigne un C-espace vectoriel de dimension finie.

- 1. Les assertions suivantes sont-elles vraies ou fausses? Les réponses devront être soigneusement justifiées.
 - (a) Tout endomorphisme de *E* est diagonalisable.
 - (b) Soient f un endomorphisme de E et F un sous-espace vectoriel de E stable par f. Il existe un sous-espace vectoriel F' de E stable par f tel que $E = F \oplus F'$.
 - (c) Soit f un endomorphisme de E diagonalisable. Alors f^2 est diagonalisable.
 - (d) Soit f un endomorphisme de E tel que f^2 est diagonalisable. Alors f est diagonalisable.
 - (e) Soient f et g deux endomorphismes de E. Alors $Tr(f \circ g) = Tr(g \circ f)$.

Exercice 2

Dans tout cet exercice, E désigne un \mathbb{C} -espace vectoriel de dimension finie et f désigne un endomorphisme de E.

- 2. (Question de cours). Montrer que les assertions suivantes sont équivalentes :
 - (a) *f* est diagonalisable.
 - (b) f est annulé par un polynôme P dont les racines sont toutes de multiplicité 1.
 - (c) Les racines du polynôme minimal de *f* sont toutes de multiplicité 1.
- 3. Soit F un sous-espace vectoriel de E stable par f. On considère l'endomorphisme $f_{|F}$ de F, défini par

$$f_{|F}: \left\{ \begin{array}{ccc} F & \longrightarrow & F \\ x & \longmapsto & f(x). \end{array} \right.$$

Montrer que si f est diagonalisable, alors $f_{|F}$ est diagonalisable.

- 4. Soient E un \mathbb{C} -espace vectoriel de dimension finie et f_1, \ldots, f_k des endomorphismes de E, où k est un entier naturel non nul. On suppose que pour tout $i \in [\![1,k]\!]$, f_i est diagonalisable et que pour tous $i,j\in [\![1,k]\!]$, $f_i\circ f_j=f_j\circ f_i$.
 - (a) On suppose dans cette question que $k \ge 2$. Soit F un sous-espace propre de f_k . Montrer que F est stable par f_1, \ldots, f_{k-1} .
 - (b) On suppose dans cette question que $k \ge 2$. Montrer que pour tout $i \in [1, k-1]$, l'endomorphisme de F induit par f_i est diagonalisable.
 - (c) Montrer qu'il existe une base de E formée de vecteurs propres communs à f_1, \ldots, f_k .

Exercice 3

Définition 2. Soit (G, \cdot) un groupe abélien fini. L'exposant de G est le plus petit multiple commun (PPCM) des ordres des éléments de G. On le note $\exp(G)$.

Dans tout cet exercice, (G, \cdot) désigne un groupe abélien fini. Le but de l'exercice est de montrer que G possède un élément d'ordre $\exp(G)$.

- 5. Soit g un élément de G, dont l'ordre est noté n et soit $d \in \mathbb{N}$, divisant n. Déterminer l'ordre de g^d .
- 6. Soit g un élément de G, dont l'ordre est noté n et soit $d \in \mathbb{N}$. Déterminer l'ordre de g^d .
- 7. Soient *g* et *h* deux éléments de *G*, d'ordre respectif *k* et *l* premiers entre eux.
 - (a) Montrer que $\langle g \rangle \cap \langle h \rangle$ est réduit à l'élément neutre de G.
 - (b) En déduire l'ordre de $g \cdot h$.
- 8. Soient g_1, \ldots, g_n des éléments de G, d'ordre respectif k_1, \ldots, k_n deux-à-deux premiers entre eux. Montrer que l'ordre de $g_1 \cdot \ldots \cdot g_n$ est $k_1 \ldots k_n$.
- 9. On décompose l'exposant de G en produit de nombres premiers, sous la forme

$$\exp(G) = p_1^{\alpha_1} \dots p_n^{\alpha_n},$$

avec p_1, \ldots, p_n des nombres premiers deux-à-deux distincts et $\alpha_1, \ldots, \alpha_n$ des entiers supérieurs ou égaux à 1.

- (a) Soit $i \in \{1, ..., n\}$. Montrer que G possède un élément d'ordre un multiple de $p_i^{\alpha_i}$ puis que G possède un élément d'ordre $p_i^{\alpha_i}$.
- (b) Montrer que G a un élément d'ordre exp(G).

Deuxième partie : définition et exemples

Définition 3. Soient (G, \cdot) un groupe (non nécessairement fini) et E un \mathbb{C} -espace vectoriel **de dimension finie**. Une représentation de G d'espace E est un homomorphisme de groupes G de G dans GL(E).

On notera que les espaces des représentations que l'on considèrera par la suite sont toujours de dimension finie.

- 10. Quelques exemples.
 - (a) Soit θ une représentation d'un groupe (G, \cdot) d'espace E.
 - i. Déterminer $\theta(e_G)$, où e_G est l'élément neutre du groupe (G, \cdot) .
 - ii. Pour $g \in G$, déterminer $\theta(g^{-1})$ en fonction de $\theta(g)$.
 - (b) Soient E un \mathbb{C} -espace vectoriel et f un automorphisme de E. Montrer que l'application suivante est une représentation du groupe (\mathbb{Z} , +) d'espace E:

$$\theta_1: \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathrm{GL}(E) \\ k & \longmapsto & f^k. \end{array} \right.$$

(c) Soient E un \mathbb{C} -espace vectoriel, n un entier naturel supérieur ou égal à 2 et f un endomorphisme de E tel que $f^n = \mathrm{Id}_E$. Montrer que l'application suivante est une représentation du groupe ($\mathbb{Z}/n\mathbb{Z}$, +) d'espace E:

$$\theta_2: \left\{ \begin{array}{ccc} \mathbb{Z}/n\mathbb{Z} & \longrightarrow & \mathrm{GL}(E) \\ \overline{k} & \longmapsto & f^k. \end{array} \right.$$

(d) Pour $\lambda \in \mathbb{C}$, soit f_{λ} l'endomorphisme de \mathbb{C}^2 défini par

$$\forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{C}^2, \qquad f_{\lambda} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \lambda y \\ y \end{pmatrix}.$$

Montrer que l'application suivante est une représentation du groupe $(\mathbb{C},+)$ d'espace \mathbb{C}^2 :

$$\theta_3: \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathrm{GL}(\mathbb{C}^2) \\ \lambda & \longmapsto & f_{\lambda}. \end{array} \right.$$

(e) Soit $\sigma \in \mathfrak{S}_3$. On considère l'endomorphisme de \mathbb{C}^3 défini par

$$\forall \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{C}^3, \qquad \qquad g_{\sigma} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_{\sigma^{-1}(1)} \\ x_{\sigma^{-1}(2)} \\ x_{\sigma^{-1}(3)} \end{pmatrix}.$$

Montrer que l'application suivante est une représentation du groupe \mathfrak{S}_3 d'espace \mathbb{C}^3 :

$$\theta_4: \left\{ \begin{array}{ccc} \mathfrak{S}_3 & \longrightarrow & \mathrm{GL}(\mathbb{C}^3) \\ \sigma & \longmapsto & g_{\sigma}. \end{array} \right.$$

Définition 4. Soient E un \mathbb{C} -espace vectoriel de dimension finie, $\theta : G \longrightarrow GL(E)$ une représentation d'un groupe (G, \cdot) et F un sous-espace vectoriel de E. On dit que F est un sous-espace invariant de θ si pour tout $g \in G$,

$$\theta(g)(F) \subseteq F$$
.

- 11. (a) Montrer que si F est un sous-espace invariant de θ , alors pour tout $g \in G$, $\theta(g)$ induit une bijection de F dans F. Par abus de notation, cette bijection sera notée $\theta(g)|_F$.
 - (b) Montrer que si F est un sous-espace invariant de θ , alors l'application suivante est une représentation de G :

$$\theta_{|F}: \left\{ \begin{array}{ccc} G & \longrightarrow & \mathrm{GL}(F) \\ g & \longmapsto & \theta(g)_{|F}. \end{array} \right.$$

- (c) Déterminer les sous-espaces invariants de la représentation θ_3 du groupe \mathbb{C} . *Indication* : on pourra considérer les espaces propres de l'endomorphisme $\theta_3(1)$.
- (d) On considère la représentation θ_4 de \mathfrak{S}_3 .
 - i. Soit $F = \{(x, y, z) \in \mathbb{C}^3 \mid x + y + z = 0\}$. Montrer que F est sous-espace invariant de θ_4 .
 - ii. Déterminer une base de F et déterminer les matrices de $\theta_{4|F}(\sigma)$ dans cette base pour tout $\sigma \in \mathfrak{S}_3$.
 - iii. Déterminer un sous-espace F' invariant de θ , supplémentaire de F dans E.

Définition 5. Soient $\theta: G \longrightarrow \operatorname{GL}(E)$ et $\theta': G \longrightarrow \operatorname{GL}(E')$ deux représentations d'un même groupe G. Un homomorphisme de représentations de θ vers θ' est une application linéaire $f: E \longrightarrow E'$ telle que pour tout $g \in G$, $f \circ \theta(g) = \theta'(g) \circ f$. Si de plus f est bijective, on dira que f est un isomorphisme de représentations de θ vers θ' . Enfin, on dira que θ et θ' sont isomorphes s'il existe un isomorphisme de représentations de θ vers θ' .

- 12. Soient $\theta: G \longrightarrow GL(E)$ et $\theta': G \longrightarrow GL(E')$ deux représentations d'un même groupe G et f un homomorphisme de représentations de θ vers θ' .
 - (a) Montrer que Ker(f) est un sous-espace invariant de θ .
 - (b) Montrer que Im(f) est un sous-espace invariant de θ' .
 - (c) On suppose que E = E' et que $\theta = \theta'$. Montrer que les espaces propres de f sont des sous-espaces invariants de θ .

Définition 6. Soit $\theta: G \longrightarrow GL(E)$ une représentation d'un groupe fini G. On dira que θ est irréductible si E est non nul et si les seuls espaces invariants de θ sont E et $\{0_E\}$.

- 13. Soient $\theta: G \longrightarrow GL(E)$ et $\theta': G \longrightarrow GL(E')$ deux représentations irréductibles d'un même groupe fini G et f un homomorphisme de représentations de θ vers θ' .
 - (a) (Lemme de Schur).
 - i. Montrer que *f* est soit nul, soit un isomorphisme.
 - ii. Dans le cas particulier où $\theta = \theta'$, montrer qu'il existe un nombre complexe λ tel que $f = \lambda \mathrm{Id}_E$.
 - (b) Soit $h: E \longrightarrow E'$ une application linéaire quelconque.
 - i. Montrer que l'application suivante est un homomorphisme de représentations de θ vers θ' :

$$f = \frac{1}{|G|} \sum_{g \in G} \theta'(g) \circ h \circ \theta(g^{-1}).$$

- ii. Montrer que si θ et θ' ne sont pas isomorphes, alors f = 0.
- iii. Dans le cas particulier où $\theta = \theta'$, montrer que

$$f = \frac{\operatorname{Tr}(h)}{\dim(E)}\operatorname{Id}_E.$$

Indication: on pourra d'abord montrer que f est un multiple de Id_E puis considérer sa trace.

Troisième partie : théorème de Maschke

Le but de cette partie est de démontrer le théorème suivant :

Théorème 7. (*Théorème de Maschke*). Soit $\theta : G \longrightarrow GL(E)$ une représentation d'un groupe fini d'espace E. Il existe des sous-espaces invariants F_1, \ldots, F_k de θ tels que :

- $--E = F_1 \oplus \ldots \oplus F_k$.
- Pour tout $i \in [1, k]$, la représentation $\theta_{|F_i}$ est irréductible.
- 14. Soient $\theta: G \longrightarrow GL(E)$ une représentation d'un groupe fini G et F un sous-espace invariant de θ .
 - (a) Justifier l'existence d'un supplémentaire F' de F dans E.
 - (b) Soit *p* la projection sur *F* parallèlement à *F'*. On considère l'endomorphisme de *E* défini par

$$q = \frac{1}{|G|} \sum_{g \in G} \theta(g) \circ p \circ \theta(g^{-1}).$$

- (c) Montrer que pour tout $x \in F$, q(x) = x.
- (d) Montrer que Im(q) = F puis que q est une projection sur F.
- (e) Montrer que q est un homomorphisme de représentations de θ vers elle-même.
- (f) Montrer que Ker(q) est un sous-espace invariant de θ et que $E = F \oplus Ker(q)$.
- 15. Soit $\theta: G \longrightarrow GL(E)$ une représentation de G dont l'espace E est de dimension 1. Montrer que θ est irréductible.
- 16. Démontrer le théorème de Maschke. *Indication* : on pourra procéder par récurrence sur la dimension de *E*.

Quatrième partie : le cas des groupes abéliens finis

Dans toute cette partie, G désigne un groupe abélien fini. Son ordre est noté N.

- 17. Soit $\theta: G \longrightarrow GL(E)$ une représentation irréductible de G d'espace E.
 - (a) Montrer que pour tout $g \in G$, $\theta(g)^N = \mathrm{Id}_E$. En déduire que pour tout $g \in G$, $\theta(g)$ est diagonalisable.
 - (b) Montrer que les endomorphismes $\theta(g)$ de E, où g parcourt G, ont un vecteur propre commun.
 - (c) En déduire que *E* est de dimension 1.
- 18. Justifier que lorsque E est de dimension 1, alors GL(E) est isomorphe au groupe \mathbb{C}^* .

Définition 8. Soit G un groupe abélien fini. L'ensemble des homomorphismes de G dans \mathbb{C}^* est noté \hat{G} . Les éléments de \hat{G} sont appelés les caractères de G.

Ainsi, les représentations irréductibles de G s'identifient aux caractères de G.

19. Montrer que l'application suivante munit \hat{G} d'une loi de groupe abélien :

$$\begin{cases}
\hat{G} \times \hat{G} & \longrightarrow & \hat{G} \\
(\alpha, \beta) & \longmapsto & \alpha \cdot \beta : \begin{cases}
G & \longrightarrow & \mathbb{C}^* \\
g & \longmapsto & \alpha(g)\beta(g).
\end{cases}$$

Ainsi, (\hat{G},\cdot) est un groupe abélien, appelé groupe des caractères de G.

- 20. On suppose dans cette question que G est le groupe $\mathbb{Z}/n\mathbb{Z}$.
 - (a) Montrer que l'application suivante est un élément de \hat{G} :

$$\alpha_1: \left\{ \begin{array}{ccc} G & \longrightarrow & \mathbb{C}^* \\ \overline{k} & \longmapsto & \mathrm{e}^{\frac{2\mathrm{i}\pi k}{n}}. \end{array} \right.$$

- (b) Montrer que \hat{G} est un groupe cyclique d'ordre n, engendré par α_1 . *Indication* : si $\alpha \in \hat{G}$, on pourra considérer $\alpha(\overline{1})$.
- 21. Déterminer \hat{G} lorsque G est le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Cinquième partie : prolongement des caractères et théorème de Kronecker

Dans toute cette partie, G désigne un groupe abélien fini.

- 22. Soit H un sous-groupe de G et soit $\alpha \in \widehat{H}$. Le but de cette question est de montrer qu'il existe $\alpha' \in \widehat{G}$ tel que $\alpha'_{|H} = \alpha$.
 - (a) On supppose H est différent de G. Soit alors x un élement de G n'appartenant pas à H. On considère le sous-groupe K de G engendré par les éléments de H et par x. Montrer que

$$K = \{ hx^p \mid h \in H, \ p \in \mathbb{Z} \}$$

et en déduire que K/H est un groupe cyclique non nul. L'ordre de K/H sera noté r.

(b) Montrer que tout élément g de K s'écrit de façon unique $g = hx^p$, avec $h \in H$ et $p \in [0, r-1]$.

- (c) Justifier que $x^r \in H$. On pose alors $z = \alpha(x^r)$.
- (d) Soit $\omega \in \mathbb{C}^*$ tel que $\omega^r = z$. Pour $h \in H$ et $p \in [0, r-1]$, on pose $\tilde{\alpha}(hx^p) = \alpha(h)\omega^p$. Montrer que cela définit un caractère $\tilde{\alpha} \in \hat{K}$ prolongeant α de H à K.
- (e) Conclure. *Indication*: on pourra raisonner par récurrence sur $[G:H] = \frac{|G|}{|H|}$.
- 23. Le but de cette question est de démontrer que $|G| = |\hat{G}|$.
 - (a) Conclure lorsque *G* est cyclique.
 - (b) On suppose G non cyclique. Soit x un élément de G différent de l'élément neutre et soit $H=\langle x\rangle$. Montrer que l'application suivante est un homomorphisme surjectif de groupes :

$$\theta: \left\{ \begin{array}{ccc} \hat{G} & \longrightarrow & \hat{H} \\ \alpha & \longmapsto & \alpha_{|H}. \end{array} \right.$$

(c) Soit $\alpha \in \text{Ker}(\theta)$. On pose

$$\overline{\alpha}: \left\{ \begin{array}{ccc} G/H & \longrightarrow & \mathbb{C}^* \\ \overline{g} & \longmapsto & \alpha(g). \end{array} \right.$$

Montrer que $\overline{\alpha}$ est une application bien définie et qu'il s'agit d'un élément de $\widehat{G/H}$.

- (d) Montrer que $\operatorname{Ker}(\theta)$ est isomorphe à $\widehat{G/H}$.
- (e) Conclure.

Le but de la question 24 est de démontrer le théorème suivant :

Théorème 9. (Théorème de Kronecker). Si G est un groupe abélien fini non réduit à son élément neutre, alors il existe des entiers naturels $N_1, \ldots, N_k \ge 2$, avec N_k divisant N_{k-1}, \ldots, N_2 divisant N_1 , tels que G est isomorphe au groupe

$$\mathbb{Z}/N_1\mathbb{Z}\times\ldots\mathbb{Z}/N_k\mathbb{Z}$$

Une telle écriture (dont on peut montrer qu'elle est unique) s'appelle décomposition de Kronecker de G.

- 24. On considère dans cette question un groupe abélien G fini. Son exposant (voir la première partie) est noté N. D'après la première partie, G possède un élément x d'ordre N. On pose $H = \langle x \rangle$.
 - (a) Justifier que H possède un caractère $\alpha \in \hat{H}$ injectif.
 - (b) Justifier qu'il existe $\beta \in \hat{G}$ tel que $\beta_{|H} = \alpha$.
 - (c) Monter que $\beta(G) = \alpha(H) = \{z \in \mathbb{C} \mid z^N = 1\}.$
 - (d) Justifier que l'exposant de $Ker(\beta)$ divise N.
 - (e) Montrer G est isomorphe à $H \times \text{Ker}(\beta)$.
 - (f) Conclure.
- 25. Donner une décomposition de Kronecker du groupe abélien $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z}$.

Sixième partie : applications centrales

Définition 10. *Soit* (G, \cdot) *un groupe fini. Une application* λ *de* G *dans* \mathbb{C} *est dite centrale si pour tous* $g, h \in G, \lambda(g \cdot h) = \lambda(h \cdot g)$. L'ensemble des applications centrales de G est noté C(G).

Dans toute cette partie, on considère un groupe fini (G, \cdot) .

- 26. (a) Montrer que C(G) est un sous-espace vectoriel de l'espace vectoriel des applications de G dans \mathbb{C} .
 - (b) Soit $\lambda: G \longrightarrow \mathbb{C}$ une application. Montrer que λ est centrale si, et seulement si, elle est constante sur chaque classe de conjugaison de G.
 - (c) Soit C une classe de conjugaison de G. On considère l'application

$$\iota_C: \left\{ \begin{array}{ccc} G & \longrightarrow & \mathbb{C} \\ g & \longmapsto & \begin{cases} 1 \text{ si } g \in C, \\ 0 \text{ sinon.} \end{array} \right.$$

Montrer que ces applications forment une base de C(G). En déduire la dimension de C(G).

- 27. Soit $\theta: G \longrightarrow GL(E)$ une représentation de G.
 - (a) Montrer que l'application suivante est centrale :

$$\chi_{\theta}: \left\{ \begin{array}{ccc} G & \longrightarrow & \mathbb{C} \\ g & \longmapsto & \operatorname{Tr}(\theta(g)). \end{array} \right.$$

- (b) Montrer que pour tout $g \in G$, $\theta(g)$ est diagonalisable et que ses valeurs propres sont des racines de l'unité.
- (c) En déduire que pour tout $g \in G$, $\chi_{\theta}(g^{-1}) = \overline{\chi_{\theta}(g)}$.
- 28. Pour tous λ , $\mu \in C(G)$, on pose

$$\langle \lambda, \mu \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\lambda(g)} \mu(g).$$

Montrer que cela définit une forme hermitienne définie positive sur C(G).

29. Soient $\theta: G \longrightarrow \operatorname{GL}(E)$ et $\theta': G \longrightarrow \operatorname{GL}(E')$ deux représentations irréductibles d'un même groupe G. La dimension de E est notée n et la dimension de E' est notée n'. On fixe des bases \mathcal{B} et \mathcal{B}' de E et E'. Pour tout $g \in G$, la matrice de $\theta(g)$ dans la base \mathcal{B} est notée $M_{\mathcal{B}}(\theta(g))$, la matrice de $\theta'(g)$ dans la base \mathcal{B}' est notée $M_{\mathcal{B}'}(\theta'(g))$ et on pose

$$M_{\mathcal{B}}(\theta(g)) = (a_{i,j}(g))_{1 \leq i,j \leq n}, \qquad M_{\mathcal{B}'}(\theta'(g)) = (a'_{k,l}(g))_{1 \leq k,l \leq n'}.$$

- (a) Exprimer $\langle \chi_{\theta'}, \chi_{\theta} \rangle$ en fonction des coefficients $a_{i,j}(g)$ et $a'_{k,l}(g)$ des matrices $M_{\mathcal{B}}(\theta(g))$ et $M_{\mathcal{B}'}(\theta'(g))$.
- (b) Soit $X = (x_{i,j})_{1 \le i \le n'} \in M_{n',n}(\mathbb{C})$ une matrice et $h : E \longrightarrow E'$ l'application linéaire dont $1 \le j \le n$

la matrice dans les bases \mathcal{B} et \mathcal{B}' est X. On pose

$$f = \frac{1}{|G|} \sum_{g \in G} \theta'(g) \circ h \circ \theta(g^{-1}).$$

Exprimer les coefficients de la matrice $Y=(y_{i,l})_{\substack{1\leq i\leq n',\\1\leq l\leq n}}$ de la matrice de f dans les bases \mathcal{B} et \mathcal{B}' .

(c) On suppose que θ et θ' ne sont pas isomorphes. Montrer que pour tous $i, j \in [1, n']$, pour tous $k, l \in [1, n]$,

$$\frac{1}{|G|} \sum_{g \in G} a'_{i,j}(g) a_{k,l}(g^{-1}) = 0.$$

En déduire que $\langle \chi_{\theta}, \chi_{\theta'} \rangle = 0$. *Indication* : on pourra utiliser le lemme de Schur.

- (d) On suppose que E = E' et que $\theta = \theta'$. Dans ce cas, on prend $\mathcal{B} = \mathcal{B}'$.
 - i. Montrer que pour $i, j, k, l \in [1, n]$,

$$\frac{1}{|G|} \sum_{g \in G} a'_{i,j}(g) a_{k,l}(g^{-1}) = \begin{cases} \frac{1}{n} \text{ si } i = l \text{ et } j = k, \\ 0 \text{ sinon.} \end{cases}$$

Indication: on pourra utiliser le lemme de Schur.

- ii. En déduire que $\langle \chi_{\theta}, \chi_{\theta'} \rangle = 1$.
- (e) Soient $\theta_1, \ldots, \theta_k$ des représentations irréductibles de G, deux-à-deux non isomorphes. Montrer que $(\chi_{\theta_i})_{1 \le i \le k}$ est une famille libre de C(G) et en déduire une majoration de k.

Ainsi, le nombre de représentations irréductibles de G à isomorphisme près est fini.

- 30. Montrer que si G est abélien, le nombre de représentations irréductibles à isomorphisme près de G est égal à |G|.
- 31. Montrer que si θ et θ' sont isomorphes, alors $\langle \chi_{\theta}, \chi_{\theta'} \rangle = 1$.
- 32. Soient $\theta: G \longrightarrow GL(E)$ une représentation d'un groupe fini G et soit $E = F_1 \oplus ... \oplus F_k$ une décomposition de E en sous-espaces invariants irréductibles, obtenue avec le théorème de Maschke.
 - (a) Exprimer χ_{θ} en fonction des $\chi_{\theta|_{F_z}}$.
 - (b) Soit $\theta': G \longrightarrow GL(E')$ une représentation irréductible de G. Montrer que le nombre de F_i tels que θ' et $\theta_{|F_i}$ sont isomorphes est égal à $\langle \chi_{\theta'}, \chi_{\theta} \rangle$.
- 33. Soient θ et θ' deux représentations de G. Montrer que θ et θ' sont isomorphes si et seulement si $\chi_{\theta} = \chi_{\theta'}$.