分布式能源系统概论

相对传统供能系统采用大容量设备、集中生产,然后通过专门的输送设施(大电网、大热网等)将各种能量输送给较大范围内的众多用户而言,分布式能源系统是直接面向用户,按用户的需求就地生产并供应能量,具有多种功能,可满足多重目标的中、小型能量转换利用系统。

作为新一代供能模式,分布式能源系统如何担当集中式供能系统有力补充的这一作用?这自然会遇到如何高效匹配发电-供热-制冷三大系统的问题。本次作业即是围绕这一问题,对已有的分布式能源系统进行综合评价,最终选出最优的系统。

注:请参考附件1和2

目前多数的工程评价方法主要考虑经济性。在可持续发展的要求下,为了 更加科学地评价冷热电联供系统,需要综合考虑工程的多方面属性。任何冷热 由联供系统都具有多重属性,除了反映系统的经济性、性能参数等定量指标外, 还有反映系统对环境的污染程度、维护性能及舒适性等指标。

对冷热电联供系统的评价属于多目标决策优化问题。为了达到科学评 价的目的,可以利用层次分析原理(Analytical Hierarchy Process, AHP)对系 统加以研究。分层模型扩展性强,被研究的问题层次清晰。此外,评价系 统中的一些因素如社会性等定性指标需要定量化,才能得到方案最终评判 值。模糊逻辑(Fuzzy Logic)可以科学地将定性指标定量化。然而,在模糊 总体综合评判的过程中采用的是间接方法,在"特征化"处理中可能导致一 些定量数据丢失信息。灰色(Grey Theory)综合评判法是一种直接法,可充 分利用已有的白化信息,减少人为误差,并已广泛应用于各种系统的评判 与分析。针对目前冷热电联供系统方案评价方法的现状,综合了上述几种 方法的优点,一种新的评价方法——混合灰色关联多层次综合评价法 Mixed Grey Relation Analytical Hierarchy Comprehensive Evaluation Process, MG-AHP) 应运而生。这方法在分层模型的框架下,采用灰色关联进行方 案评价,并用模糊数学将定性指标定量化。

综合评价模型建立 4.5.2

1. 多层次评价结构

冷热电联供系统的分层评价模型如图 4-19 近示, 它是由 医 评价体系组 成的。第一层为基层,由各个具体的评价因素组成,包括定量和定性指标。由 它们的相互组合构成了第二层的各分类指标。第三层各个方案的最终评判值 山第二层因素决定。由于第二层着重考虑影响冷热电联供系统评价的各个主 要方面,具有很好的外延性,即可随着社会的发展对第二层次进行扩展与修改。 同时,第一层次分别就各方案的某一方面进行单一评价,问题处理更加方便,指 标重要度的确定将更趋合理。其中的性能评价指标选用了一次能耗率,是指系 统输人能量与输出能量的比值。

图 4-19 多层次评价结构模型

2. 构建评价矩阵

设冷热电联供系统优化决策的论域 P 是评价各具体方案的集合,于是 P = 合为F,则 $F = \{f_1, f_2, \dots, f_m\}$,其中 f_i, f_2, \dots, f_m 分别表示经济性、节能性、环 境性等各方面分类指标。通过研究优化决策论域 P 与因素指标集 F 之间的相 互作用,构造出第二层评价矩阵 $x_{m\times n}$ 。同理,可建立第一层评价矩阵。

3. 计算权重

在确定各个指标的权重值 $W = \{w_1, w_2, \dots, w_m\}$ 时,采用判断矩阵分析法, 得到m 阶对比矩阵 $A = (\alpha_{ij})_{m \times m}$ 。然后,采<u>用累积优势法求得权</u>相量为f

$$W = \left(\sum_{j=1}^{m} \alpha_{1j}, \sum_{j=1}^{m} \alpha_{2j}, \dots, \sum_{j=1}^{m} \alpha_{mj}\right)$$
 (4 - 35)

并对其进行归一化处理,得到各项指标的权重。

4. 定性指标定量化

在原始数据中,反映社会性等指标为定性指标,需要将其定量化才能用于 评价系统。这里构造一个影响环境的各定性因素的评语集 S, 其论域为 S= $\{ \mathcal{G}, \, \text{较好}, \, \mathbf{p}, \, \hat{\mathbf{v}} \hat{\mathbf{z}}, \, \hat{\mathbf{z}} \}$,给评语集赋值 $Q = \{1.0, \, 0.8, \, 0.6, \, 0.4, \, 0\}$ 。根 据实践和逻辑推理建立了各定性因素的评语集隶属度的模糊子集R,应用 U_{ik} = $R_{\iota}O^{\mathsf{T}}$ 得到各相应的定量指标。

5. 混合多层次灰色关联综合评价

完成以上关于层次结构的建立、构建评价矩阵、权重计算以及定性指标定 量化之后,采用灰色理论的数据处理方法,计算各方案的灰色关联度,从而得到 最终评价结果。

- (1) 确定最优指标集。设 $I_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n)$ 为所研究系 统内第j个方案中第i个指标的原始数值,原始数据以矩阵表示为 $I = (I_{ij})_{m \times n}$, 即 I 为 m 行 n 列矩阵。设 I_i^* 为第 i 个指标在各方案中的最优值,于是 I^* = $\{I_{i}^{*}\}=\{I_{1}^{*},I_{2}^{*},\cdots,I_{n}^{*}\}$ 为该系统内的最优指标集。
- (2) 进行指标集的标准化。由于指标有定性指标和定量指标,有些指标还 有量纲,为此必须对指标特征值进行标准化。冷热电联供的综合评价系统内存 在正指标和逆指标两种形式。在对这些不同类型的指标进行无量纲化处理时, 应采用不同的方法,具体处理方法如下。

正指标:
$$z_i(k) = \frac{X_i(k) - \min X_i(k)}{\max X_i(k) - \min X_i(k)}$$
 $(j = k)$ (4-36)

逆指标:
$$z_i(k) = \frac{\max X_i(k) - X_i(k)}{\max X_i(k) - \min X_i(k)}$$
 $(j = k)$ $(4-37)$

(3) 确定灰色关联系数。运用灰色系统中的灰色关联度分析,将经标准化 处理后的最优指标集 $Z_0 = (z_{10}, z_{20}, \cdots, z_{m0})^{\mathrm{T}} = (1, 1, \cdots, 1)^{\mathrm{T}}$ 作为参考数据 列。经标准化处理后的评价指标集 $Z_j = (z_{1j}, z_{2j}, \cdots, z_{mj})^T$,其中 $j = (1, 2, \cdots, z_{mj})^T$ n),作为被比较数据列,从而得到多层灰色关联系数为

数据列,从而每到3/20025334

$$\mu_{ij} = \frac{\min_{i} \min_{j} |z_{i0} - z_{ij}| + \rho \max_{i} \max_{j} |z_{i0} - z_{ij}|}{|z_{io} - z_{ij}| + \rho \max_{i} \max_{j} |z_{i0} - z_{ij}|}$$
(4 – 38)

式中,分辨系数 $\rho \in [0,1]$,一般取值 $\rho = 0.5$ 。

,分辨系数
$$\rho \in [0,1]$$
,一般取值 $\rho = 0.5$ 。
(4) 进行混合多层次灰色关联度综合评价计算。综合评价结果矩阵为
$$R = W \times U$$

$$R = W \times U$$
 (4 - 39)

式中, $\mathbf{R} = (r_1, r_2, \dots, r_n)$ 为n个方案综合评价结果矩阵; $\mathbf{W} = (w_1, w_2, \dots, w_m)$ 为m个评判指标的权重分配矩阵; $U = \{(\mu_{ij})_{m \times n}\}$ 为各指标的关联系数矩阵。 利用上述公式从第三层开始, 两尔二层平均如果构成第一层的评判矩阵,

重复上述评判过程,即可以求得最终各方案的评判结果 $\{R_1,R_2,\cdots,R_n\}$ 。

4.5.3 综合评价模型应用实例

以某幢典型五层住宅建筑的冷热电联供方案为例,论述模型的具体应用。 以来哩兴望山区山山之外,12h 冷负荷为65kW,另有7h 冷负荷为65kW,另有7h 冷负荷为12h 冷负荷为70kW,12h 冷负荷为65kW,另有7h 冷负荷为 58kW;冬季采暖热负荷为52.3kW。生活热水负荷需求为46kW。生活热水需求量为455kg/h。电负荷需求约为35kW。系统全年全天24h有效运行。夏季制冷期共3672h;冬季供热期共2640h;过渡期共8760h。在进行经济性评价时,采用动态与静态相结合的方法。进行动态经济性分析时,基准收益率取12%,其中安全收益率为8%,风险报酬率为4%。除了燃料电池寿命年限为10年外,其余方案均为20年。经济寿命期终了时的价值均为初投资的10%。

为满足上述应用场合的用能需求,设处5种系统方案来提供冷量、热量和 电量。各系统方案具体描述如下。

方案 A 为热气机+直燃型吸收式冷热水机组。系统首先由热气机利用天然气发电,缸套冷却水余热全年提供建筑物卫生热水,冬季还用来提供建筑物采暖热负荷。夏季冷负荷直接由吸收式冷热水机组提供。冬季不足采暖热负荷由溴化锂吸收式冷热水机组补充,不足电力从电网补充。

方案 B 为微型燃气轮机 + 余热补燃吸收式冷热水机组 + 余热锅炉。系统由微型燃气轮机利用天然气发电,高温烟气通入余热补燃吸收式冷热水机组和余热锅炉,由吸收式冷热水机组提供夏季制冷负荷和冬季采暖负荷,余热锅炉提供卫生热水,不足负荷由天然气补燃获得,不足电力从电网补充。

方案 C 为小型天然气内燃机 + 余热补燃型吸收式制冷机。系统由小型燃气内燃机利用天然气发电,烟气通人余热补燃吸收式冷热水机组,内燃机缸套冷却水通人容积式换热器,吸收式机组提供冷负荷,热负荷由换热器和吸收式机组承担,不足负荷由天然气在吸收式机组中补燃获得。

方案 D 为固体电解质型燃料电池(SOFC)+余热补燃型吸收式制冷机。系统由 SOFC 提供电力,高温烟气通入余热补燃吸收式制冷机,不足负荷由天然气补燃。

方案 E 为冷热电分供。作为比较方案,建筑物所需电力直接从公用电网购买,天然气驱动直燃式吸收式机组提供制冷或采暖负荷,燃气锅炉燃烧天然气提供卫生热水。

上述5种方案的经济性、环境性、社会性、热力性能、噪声等原始指标数据列于表4-15。

表 4-15 各系统方案的原始指标值

fr (4) (4) (4) (4) (4)		一种和特别的	A CONTRACTOR	547			
分类指标	基层评价指标	方案 A	方案 B	方案 C	方案 D	方案 E	指标性质
经济性f _i -	初投资 /元	535000	680000	504568	1580000	290000	. 🔻
	投资回收期 /年	6. 42	6. 63	4. 86	8.8	6. 73	▼
	总费用年值 /元	480137	481374	387851	530131	197179	▼.
	净现值 /元	52582	28108	546633	-403086	32136	A
	净现值 /元	52582	28108	546633	-403086	32136	

(续)

Obj. Charles, P.N., D., 198.						
基层评价指标	方案 A	方案 B	方案 C	方案 D	方案 E	指标性质
氮氧化物 /(g/kW・h)	0. 23	0. 223	0.7	0.007	3. 2	▼
CO / (g/kW·h)	0. 45	0.6	0.8	0.001	4	▼
CO ₂ /(g/kW·h)	400	589	430	362	700	V
技术先进性	0.8	0.8	0.6	0. 934	0.4	A
安全性	0. 80	0.8	0.6	0, 934	0.4	A
维护方便性	0.6	0.6	0.6	0.8	0. 934	A
一次能耗率	1. 969	1. 855	1. 594	1.4	13. 3	▼
噪声 /dB	65	65	80	60	56	▼
	 氦氧化物 /(g/kW・h) CO /(g/kW・h) CO₂/(g/kW・h) 技术先进性 安全性 维护方便性 一次能耗率 	 氦氧化物 /(g/kW・h) 0.23 CO /(g/kW・h) 0.45 CO₂/(g/kW・h) 400 技术先进性 0.8 安全性 0.80 维护方便性 0.6 一次能耗率 1.969 	 氦氧化物 / (g/kW・h) 0.23 0.223 CO / (g/kW・h) 0.45 0.6 CO₂/(g/kW・h) 400 589 技术先进性 0.8 0.8 安全性 0.80 0.8 维护方便性 0.6 0.6 一次能耗率 1.969 1.855 	類氧化物 / (g/kW・h) 0.23 0.223 0.7 CO / (g/kW・h) 0.45 0.6 0.8 CO ₂ / (g/kW・h) 400 589 430 技术先进性 0.8 0.8 0.6 安全性 0.80 0.8 0.6 维护方便性 0.6 0.6 0.6 一次能耗率 1.969 1.855 1.594	類氧化物 / (g/kW・h) 0.23 0.223 0.7 0.007 CO / (g/kW・h) 0.45 0.6 0.8 0.001 CO ₂ / (g/kW・h) 400 589 430 362 技术先进性 0.8 0.8 0.6 0.934 安全性 0.80 0.8 0.6 0.934 维护方便性 0.6 0.6 0.6 0.8 -次能耗率 1.969 1.855 1.594 1.4	類氧化物 / (g/kW・h) 0.23 0.223 0.7 0.007 3.2 CO / (g/kW・h) 0.45 0.6 0.8 0.001 4 CO ₂ / (g/kW・h) 400 589 430 362 700 技术先进性 0.8 0.8 0.6 0.934 0.4 安全性 0.80 0.8 0.6 0.934 0.4 维护方便性 0.6 0.6 0.6 0.8 0.934 - 次能耗率 1.969 1.855 1.594 1.4 13.3

注:▲ 表示为正指标,即该指标值越大越好;▼ 表示为逆指标,即该指标值越小越好

由此,可得最优指标集 I^* = {290000, 4.86, 197**77**9, 546633, 0.007, 0.001, 362, 0.934, 0.934, 0.934, 1.4, 56}。按模型的评价步骤,运用式(4-36)和式(4-37)将原始数据标准化;利用式(4-38)将标准化后的数据结合权重矩阵进行多层次灰色关联计算,最终得到各个层次的综合评价结果,如表 4-16 所列。

表 4-16 系统方案各层次综合评价结果

层次	评价指标	方案 A	方案 B	方案 C	方案 D	方案 E
	/ 初投资	0. 725	0. 623	0. 750	0. 333	1. 000
	投资回收期	0. 561	0. 530	1. 000	0. 333	0. 513
1.0	总费用年值	0. 370	0. 369	0. 466	0. 333	1. 000
	净现值	0. 490	0. 478	1. 000	0. 333	0. 480
	/ 氮氧化物	0. 877	0. 881	0. 697	1. 000	0. 333
第一层	СО	0.817	0. 769	0.714	1.000	0. 333
失联系数	CO ₂	0.816	0. 427	0.713	1.000	0. 333
	/ 技术先进性	0, 666	0. 666	0. 444	1,000	0. 333
	安全性	0. 666	0. 666	0. 444	1.000	0. 333
	维护方便性	0. 444	0. 444	0. 333	0. 666	1.000
	一次能耗率	0. 912	0. 928	0. 968	1.000	0. 333
	噪声	0. 571	0. 571	0. 333	0. 750	1.000

(续)

层次	评价指标	方案 A	方案 B	方案 C	方案 D	方案 E
v g	全济性	0. 560	0. 530	0. 992	0. 333	0. 522
数一日	环境性	0. 851	0. 773	0. 705	1. 000	0. 333
第二层 关联系数	社会性	0. 539	0. 539	0. 381	0. 809	0. 713
1	性能	0. 912	0. 928	0. 968	1. 000	0. 333
, i	噪声	0. 571	0. 571	0. 333	0.750	1. 000
第三层	综合评价结果	0. 513	0. 456	0. 810	0. 583	0.422

从第二层关联系数,也可以比较各方案的单项指标,如经济性指标,方案 C>方案 A>方案 B>方案 E>方案 D。由第三层综合评价结果可知,方案 C为最优,冷热电分供方案最差。这主要是因为以天然气内燃机为发动机的冷热电联产系统,发动机可以国产化,初投资低,充分利用了其余热中低品位部分(缸套冷却水)和高品位部分(烟气),并且内燃机发电效率较高,而且排放指标相对较好。因此,其综合评价结果的分值较高。此外,燃料电池驱动冷热电联供系统也取得了较高的综合分值。由于燃料电池冷热电联供系统初投资高的缘故,经济性能差;但因为燃料电池的排放极低,热电比高,故其综合评分仍然较高。相信随着燃料电池商业化深入,成本的降低,以燃料电池为动力设备的冷热电联供系统将得到日益广泛的重视。

参考文献

- [1] 吴仲华. 能的梯级利用与燃气轮机总能系统,北京:机械工业出版社,1988.
- [2] 金红光,林汝谋,能的综合梯级利用与燃气轮机总能系统,北京:科学出版社,2008.
- [3] 王存诚,工业动力系统与节能原理讲义,北京;清华大学热能工程系,1993.
- [4] 严俊杰, 黄锦涛, 何茂刚. 冷热电联产技术. 北京: 化学工业出版社, 2006.
- [5] 王如竹,丁国良等. 最新制冷空调技术. 北京:科学出版社,2002.
- [6] 任泽霈,蔡睿贤. 热工手册. 北京:机械工业出版社,2002.
- [7] 金红光,张国强,高林,等. 总能系统理论研究进展与展望. 机械工程学报,2009,45(3):39-48.
- [8] 李喜先. 21 世纪 100 个交叉科学难题. 北京:科学出版社,2005.
- [9] 周邦宁, 燃气空调, 北京:中国建筑工业出版社,2005.
- [10] 吴存真, 张诗针, 孙志坚. 热力过程, 热力过程, 机州:浙江大学出版社, 2000.

附件2 定性指标定量化及指标权重计算

定性指标定量化!

模糊指标的量化处理方法

在实际中,很多问题都涉及到定性,或 模糊指标的定量处理问题。

诸如:教学质量、科研水平、工作政绩 、人员素质、各种满意度、信誉、态度、意 识、观念、能力等因素有关的政治、社会、 人文等领域的问题。

如何对有关问题给出定量分析呢?

按国家的评价标准,评价因素一般分为五个等级,如A,B,C,D,E。

如何将其量化?若 A^- , B^+ , C^- , D^+ 等又如何合理量化?

根据实际问题,构造模糊隶属函数的量化方法是一种可行有效的方法。

假设有多个评价人对某项因素评价为A,B,C,D, E共5个等级: $\{v_1, v_2, v_3, v_4, v_5\}$ 。

譬如:评价人对某事件"满意度"的评价可分为 {很满意,满意,较满意,不太满意,很不满意} 将其5个等级依次对应为5,4,3,2,1。

这里为连续量化,取偏大型柯西分布和对数函数作为隶属函数:

$$f(x) = \begin{cases} [1 + \alpha(x - \beta)^{-2}]^{-1}, 1 \le x \le 3\\ a \ln x + b , 3 \le x \le 5 \end{cases}$$

其中 α, β, a, b 为待定常数.

SOUND THE THE PARTY OF THE PART

冷热电联供系统综合评价

当"很满意"时,则隶属度为 1 ,即 f(5)=1; 当"较满意"时,则隶属度为 0.8,即 f(3)=0.8; 当"很不满意"时,则隶属度为 0.01,即 f(1)=0.01. 计算得 $\alpha=1.1086$, $\beta=0.8942$, $\alpha=0.3915$, b=0.3699 。 则 $f(x)=\begin{cases} [1+1.1086(x-0.8942)^{-2}]^{-1}, 1 \le x \le 3\\ 0.3915 \ln x + 0.3699 \end{cases}$, $3 < x \le 5$

$$f(x) = \begin{cases} \left[1 + 1.1086(x - 0.8942)^{-2}\right]^{-1}, 1 \le x \le 3\\ 0.3915 \ln x + 0.3699 , 3 < x \le 5 \end{cases}$$

根据这个规律, 对于任何一个评价值, 都可给出一个合适的量化值。

据实际情况可构 造其他的隶属函数。 如取偏大型正态分布

计算权重!

表 3-1 元素两两对比时的重要性赋值

序号	重要程度	说明	f(x, y)	f(y, x)
1	x 和 y 同等重要	x 与 y 对总目标有相 同的贡献	1	1
2	x稍微重要	x 的贡献稍大于 y, 但 不明显	3	1/3
3	x 明显重要	x 的贡献明显大于 y, 但不十分明显	5	1/5
4	x 非常重要	x 的贡献十分明显大 于 y, 但不特别突出	7	1/7
5	x 绝对重要	x 的贡献以压倒性优势大于 y	9	1/9
6	各等级的中间状态	序号 1-5 中相邻每两 个等级的折中状态	2, 4, 6, 8	1/2, 1/4, 1/6, 1/8

表 5 判断矩阵及权重

Table 5 Judgement matrix and subjective weight

F	\boldsymbol{F}_1	F_2	F_3	F_{45}	权重
\boldsymbol{F}_1	1	7	4	5	0.553 7
$\boldsymbol{F_2}$	1/6	1	1/4	1/3	0.057 0
\boldsymbol{F}_3	1/4	4	1	2	0.236 2
F_{45}	1/5	3	1/2	1	0.153 1