CS 188: Artificial Intelligence

Search with other Agents II

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Recap: Minimax

Resource Limits

Resource Limits

- o Problem: In realistic games, cannot search to leaves!
- o Solution: Depth-limited search
 - o Instead, search only to a limited depth in the tree
 - o Replace terminal utilities with an evaluation function for non-terminal positions
- o Example:
 - o Suppose we have 100 seconds, can explore 10K nodes / sec
 - o So can check 1M nodes per move
 - o α - β reaches about depth 8 decent chess program
- o Guarantee of optimal play is gone
- o More plies makes a BIG difference
- o Use iterative deepening for an anytime algorithm

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

o Evaluation functions score non-terminals in depth-limited search

- o Ideal function: returns the actual minimax value of the position
- o In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

o e.g. $f_1(s)$ = (num white queens - num black queens), etc.

Evaluation for Pacman

Video of Demo Thrashing (d=2)

Why Pacman Starves

- o A danger of replanning agents!
 - o He knows his score will go up by eating the dot now (west, east)
 - o He knows his score will go up just as much by eating the dot later (east, west)
 - o There are no point-scoring opportunities after eating the dot (within the horizon, two here)
 - o Therefore, waiting seems just as good as eating: he may go east, then back

Video of Demo Thrashing -- Fixed (d=2)

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) - Zoomed In

Evaluation Functions

Depth Matters

- o Evaluation functions are always imperfect
- o The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Other Game Types

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - o Explicit randomness: rolling dice
 - o Unpredictable opponents: the ghosts respond randomly
 - o Unpredictable humans: humans are not perfect
 - o Actions can fail: when moving a robot, wheels might slip
- o Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - o Max nodes as in minimax search
 - o Chance nodes are like min nodes but the outcome is uncertain
 - o Calculate their expected utilities
 - o I.e. take weighted average (expectation) of children

[Demo: min vs exp (L7D1,2)]

o Later, we'll learn how to formalize the underlying

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

```
def value(state):
                   if the state is a terminal state: return the
                     state's utility
                   if the next agent is MAX: return max-value(state)
                   if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                     def exp-value(state):
   initialize v = -\infty
                                                         initialize v = 0
   for each successor of state:
                                                         for each successor of state:
      v = max(v, value(successor))
                                                             p = probability(successor)
                                                            v += p * value(successor)
   return v
                                                         return v
```

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- o A random variable represents an event whose outcome is unknown
- o A probability distribution is an assignment of weights to outcomes
- o Example: Traffic on freeway
 - o Random variable: T = whether there's traffic
 - o Outcomes: T in {none, light, heavy}
 - o Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =
- Some laws of probability (more later):
 - o Probabilities are always non-negative
 - o Probabilities over all possible outcomes sum to one
- o As we get more evidence, probabilities may change:
 - o P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
 - o We'll talk about methods for reasoning and updating probabilities

0.50

0.25

Reminder: Expectations

The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

Time:

Probability:

20 min

0.25

30 min

0.50

60 min

Χ

0.25

35 min

What Probabilities to Use?

o In expectimax search, we have a probabilistic model of how the opponent environment) will behave in any state

o Model could be a simple uniform distribution (roll a die)

o Model could be sophisticated and require a great deal of computation

o We have a chance node for any outcome out of our control: opponent or environment

- o The model might say that adversarial actions are likely!
- o For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

o Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise

o Question: What tree search should you use? Answer: Expectimax!

- - To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

This is basically how you would model a human, except for their utility: their utility might be the same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a slightly different utility (like another person navigating in the office)

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions Random Ghost - Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost - Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost - Expectimax Pacman

Video of Demo World Assumptions Random Ghost - Minimax Pacman

Why not minimax?

- o Worst case reasoning is too conservative
- o Need average case reasoning

Mixed Layer Types

- o E. g. Backgammon
- o Expectiminimax
 - o Environment is an extra "random agent" player that moves after each min/max agent
 - o Each node
 computes the
 appropriate
 combination of
 its children

Example: Backgammon

- o Dice rolls increase b: 21 possible rolls with 2 dice
 - o Backgammon ≈ 20 legal moves
 - o Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - o So usefulness of search is diminished
 - o So limiting depth is less damaging
 - o But pruning is trickier…
- O Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play

Image: Wikipedia

Utilities

Utilities

- O Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - o In a game, may be simple (+1/-1)
 - o Utilities summarize the agent's goals
 - o Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - o Why don't we let agents pick utilities?
 - o Why don't we prescribe behaviors?

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

o A rational agent should chose the action that maximizes its expected utility, given its knowledge

Questions:

- o Where do utilities come from?
- o How do we know such utilities even exist?
- o How do we know that averaging even makes sense?
- o What if our behavior (preferences) can't be described by utilities?

What Utilities to Use?

- o For worst-case minimax reasoning, terminal function scale doesn't matter
 - o We just want better states to have higher evaluations (get the ordering right)
 - o We call this insensitivity to monotonic transformations
- o For average-case expectimax reasoning, we need *magnitudes* to be

Preferences

- An agent must have preferences among:
 - o Prizes: A, B, etc.
 - o Lotteries: situations with uncertain

prizeL = [p, A; (1-p), B]

A Prize

A Lottery

$$A \succ B$$

- o Notation: $A \sim B$
 - o Preference:
 - o Indifference:

Rationality

Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

Axiom of Transitivity: $(A \succ B) \land (B \succ C) \Longrightarrow (A \succ C)$

o For example: an agent with intransitive preferences be induced to give away all of its money

o If B > C, then an agent with C would pay (say) 1 cent to get B

o If A > B, then an agent with B would pay (say) 1 cent to get A

o If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

o Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

o Given any preferences satisfying these constraints, there exists a function U such that:

$$U(A) \ge U(B) \Leftrightarrow A \succeq B$$

$$U([p_1, S_1; \ldots; p_n, S_n]) = \sum_i p_i U(S_i)$$

o I.e. values assigned by U preserve preferences of both prizes and lotter

- o Maximum expected utility (MEU) principle:
 - o Choose the action that maximizes expected utility
 - o Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities
 - o E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner

Human Utilities

Utility Scales

- o Normalized utilities: $u_{+} = 1.0$, $u_{-} = 0.0$
- o Micromorts: one-millionth chance of death, useful for paying to reduce product risks, etc.
- o QALYs: quality-adjusted life years, useful for medical decisions involving substantial risk
- O Note: behavior is invariant under positive linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

o With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes

Human Utilities

- o Utilities map states to real numbers. Which numbers?
- o Standard approach to assessment (elicitation) of human
 - o Compare a prize A to a standard lottery L_p between
 - o "best possible prize" u₊ with probability p
 - o "worst possible catastrophe" u_ with probability
 - o Adjust lottery probability p until indifference: A
 - o Resulting p is a utility in [0, 1]

Money

- o Money <u>does not</u> behave as a utility function, but we can talk about the utility of having money (or being in debt)
- o Given a lottery L = [p, \$X; (1-p), \$Y]
 - o The expected monetary value EMV(L) is p*X + (1-p)*Y
 - O U(L) = p*U(\$X) + (1-p)*U(\$Y)
 - o Typically, U(L) < U(EMV(L))
 - o In this sense, people are risk-averse
 - o When deep in debt, people are risk-prone

Example: Insurance

- Consider the lottery [0.5, \$1000;0.5, \$0]
 - o What is its expected monetary value? (\$500)
 - o What is its certainty equivalent?
 - o Monetary value acceptable in lieu of lottery
 - o \$400 for most people
 - o Difference of \$100 is the insurance premium
 - o There's an insurance industry because people will pay to reduce their risk
 - o If everyone were risk-neutral, no insurance needed!
 - o It's win-win: you'd rather have the \$400 and the insurance company would rather have the lottery (their utility curve is

Example: Human Rationality?

o Famous example of Allais (1953)

```
o A: [0.8, $4k; 0., $0]
o B: [1.0, $3k; 0.0, $0]
```

- o C: [0.2, \$4k; 0.8, \$0]
- o D: [0.25, \$3k; 0.75, \$0]
- o Most people prefer B > A, C > D
- o But if U(\$0) = 0, then o B > A \Rightarrow U(\\$3k) > 0.8 U(\\$4k) o C > D \Rightarrow 0.8 U(\\$4k) > U(\\$3k)

Next Time: MDPs!

What are Probabilities?

o Objectivist / frequentist answer:

- o Averages over repeated experiments
- o E.g. empirically estimating P(rain) from historical observation
- o Assertion about how future experiments will go (in the limit)
- o New evidence changes the reference class
- o Makes one think of *inherently random* events, like rolling dice

o Subjectivist / Bayesian answer:

- o Degrees of belief about unobserved variables
- o E.g. an agent's belief that it's raining, given the temperature
- o E.g. pacman's belief that the ghost will turn left, given the state

Uncertainty Everywhere

- o Not just for games of chance!
 - o I'm sick: will I sneeze this minute?
 - o Email contains "FREE!": is it spam?
 - o Tooth hurts: have cavity?
 - o 60 min enough to get to the airport?
 - o Robot rotated wheel three times, how far did it advance?
 - o Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables:
 - o Inherently random process (dice, etc)
 - o Insufficient or weak evidence
 - o Ignorance of underlying processes
 - o Unmodeled variables
 - o The world's just noisy it doesn't behave according to plan!
- Compare to fuzzy logic, which has degrees of truth, rather than just degrees of belief