СИСТЕМЫ РАСПОЗНАВАНИЯ ЛИЧНОСТЕЙ ПО ГОЛОСУ

УДК 004.93+57.087.1

Ю. H. MATBEEB

ИССЛЕДОВАНИЕ ИНФОРМАТИВНОСТИ ПРИЗНАКОВ РЕЧИ ДЛЯ СИСТЕМ АВТОМАТИЧЕСКОЙ ИДЕНТИФИКАЦИИ ДИКТОРОВ

Исследуется информативность речевых признаков наиболее популярных при создании автоматических систем идентификации дикторов. Эксперименты проводились на речевой базе данных, собранной в различных акустических условиях (широком диапазоне отношений сигнал/шум и уровней реверберации) и с использованием различных каналов записи.

Ключевые слова: признаки речи, идентификация дикторов.

Введение. Речевой сигнал существенно отличается от других акустических сигналов, так как произносится человеком для человека и служит для обмена информацией между людьми. Поэтому в системах распознавания личностей по голосу (распознавания дикторов) целью первичной обработки речевого сигнала является выделение признаков речи, специфичных для отдельных дикторов.

Наиболее распространенными речевыми признаками для систем идентификации дикторов являются [1]:

- частота основного тона;
- частота формант;
- кепстральные коэффициенты.

Первые два признака используются в основном в экспертных и полуавтоматических системах идентификации дикторов. В большинстве автоматических систем идентификации дикторов в качестве признаков используются векторы кепстральных коэффициентов:

- линейно-частотных кепстральных коэффициентов (LFCC, Linear-Frequency Cepstral Coefficients) или мэл-частотных кепстральных коэффициентов (MFCC, Mel-Frequency Cepstral Coefficients), получаемых по спектру Фурье [2];
- коэффициентов линейного предсказания (LPCC, Linear Prediction Cepstral Coefficients) [3];
- коэффициентов перцептивного линейного предсказания (PLP, Perceptual Linear Prediction) [4].

Наилучшим из критериев эффективности признаков является критерий разделимости классов, который связан с вероятностями ошибок классификатора. Поэтому для оценки информативности признаков или компактности пространств признаков распознаваемых голосов дикторов будет использоваться вероятностный критерий, связанный с величиной равновероятной ошибки (EER, Equal Error Rate), т.е. точкой равенства ошибок первого и второго рода, определяемой по пересечению кривых распределений вероятностей этих ошибок.

Значение EER характеризует в данном случае информативность признаков для текстонезависимой автоматической системы идентификации личности по речевому сигналу. Чем меньше значение EER, тем меньше перекрытие между кривыми ошибок первого и второго рода и тем компактнее пространства признаков.

Целью предлагаемой работы является оценка информативности различных кепстральных признаков для автоматической системы идентификации дикторов.

Оценка информативности речевых признаков на тестовой базе данных. С целью оценки информативности различных признаков для автоматической системы идентификации дикторов была использована речевая база данных [5], характеристики которой приведены в табл. 1.

					Таблица 1			
Параметр		Канал						
		2	3	4	5			
Среднее значение ОСШ, дБ	35	20	40	8	4			
Средний уровень реверберации, мс	250	300	200	650	1000			
Количество фонограмм	377	548	398	352	817			
Количество дикторов	76	123	72	80	105			

В таблице 1 используются следующие обозначения каналов:

- 1) микрофонный канал (ближний микрофон гарнитура), микрофон расположен на расстоянии не более 30 см от рта говорящего;
 - 2) телефонный ІР-канал;
 - 3) телефонный GSM-канал;
- 4) микрофонный канал (удаленный микрофон), микрофон расположен на расстоянии 1—2 м от рта говорящего;
- 5) микрофонный канал (удаленный микрофон), микрофон расположен на расстоянии 2—4 м от рта говорящего.

Оценка информативности признаков проводилась с помощью автоматической системы идентификации дикторов, представленной на конкурс по распознаванию дикторов [6] NIST Speaker Recognition Evaluation (SRE) 2010, проведенный Институтом стандартов и технологий США (NIST).

В качестве исследуемых признаков были выбраны:

- 1) супервектор, составленный из 13 коэффициентов вектора MFCC, их 13 первых производных и их 13 вторых производных;
- 2) супервектор, составленный из 18 коэффициентов вектора LPCC и их 18 первых производных;
- 3) супервектор, составленный из 13 коэффициентов вектора PLP, их 13 первых производных и их 13 вторых производных.

В табл. 2 приведены результаты оценки информативности признаков на тестовой базе. Курсивом выделены минимальные значения EER, полужирным шрифтом — максимальные. Чем меньше значение EER, тем выше информативность признака.

				10	аолица 2	
Признак	Канал					
	1	2	3	4	5	
MFCC	4,0	5,5	5,0	10,0	21,5	
LPCC	3,0	8,5	4,5	6,0	26,5	
PLP	5,0	5,5	3,5	12,0	17,5	

Анализ коррелированности признаков речевых признаков. Опыт участия в конкурсе NIST SRE-2010 [6] показал, что большинство мировых лидеров в своих системах используют не отдельные признаки, а их комбинации. При этом наблюдалось повышение эффек-

тивности идентификации даже при наличии корреляции между смешиваемыми признаками. Таким образом, при совместном использовании различных наборов признаков дополнительным критерием информативности признаков может быть степень их некоррелированности с другими признаками набора.

Так, в работе [7] отмечается коррелированность различных кепстральных признаков. Исследовались производные этих признаков (дельта-характеристики) для учета временных изменений. Включение производных в вектор признаков позволяет снизить влияние мультипликативных искажений сигнала, в силу того что эти искажения обычно медленно изменяются во времени и аддитивны в кепстральной области.

Из табл. 3 следует, что LPCC-коэффициенты имеют сильную корреляцию с MFCC-коэффициентами. Как отмечается в работе [7], это ожидаемый результат, поскольку оба этих признака описывают огибающую спектра. Кроме того, производные параметры кепстра также имеют высокую корреляцию, что объясняется схожестью методов их вычисления: Δ LPCC есть производная LPCC.

Таблица 3 Корреляция наборов признаков

Признак	ΔMFCC	LPCC	ΔLPCC
MFCC	0,77	0,88	0,71
ΔMFCC		0,73	0,69
LPCC			0,85

В работе [7] приведены результаты экспериментов по сравнению ряда других признаков, в том числе MFCC и PLP. Эксперименты проводились с использованием классификатора на основе смесей гауссовых распределений различного порядка (в зависимости от объема обучающих данных). Результаты исследований, приведенные в табл. 4, показали, что PLP не имеет преимуществ перед MFCC.

Таблица 4 Надежность идентификации (в процентах правильно идентифицированных дикторов)

(F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	T	- I - /
Порядок модели	MFCC	PLP
2	95,36	82,26
4	97,14	93,93
8	98,33	96,79
16	99,52	98,10
32	99,05	98,45

В обзоре [8] сделан вывод о том, что различные кепстральные признаки, такие как MFCC, LFCC, LPCC и PLP, имеют сильную корреляцию. Однако возможно их комбинирование (смешивание) для повышения надежности идентификации [7].

В табл. 5 дана оценка средней корреляции (СКО = 0,01) признаков по каналам 1—4 тестовой базы данных (см. табл. 1). Наиболее коррелированными признаками снова оказались МГСС и LPCC, а наименее — LPCC и PLP. Полученное значение корреляции признаков МГСС и LPCC согласуется с полученным в работе [7] и приведенным в табл. 3.

		Таблица 5
Признак	LPCC	PLP
MFCC	0,84	0,81
LPCC		0,69

В табл. 6 дана оценка средней корреляции (СКО = 0,01) признаков по каналу 5 тестовой базы данных (см. табл. 1). Данный канал характеризуется высоким уровнем реверберации (более 1000 мс) и низким соотношением сигнал-шум (4 дБ). В таких акустических условиях наиболее коррелированными оказались признаки МFCC и PLP, а наименее — LPCC и PLP.

		Таблица 6
Признак	LPCC	PLP
MFCC	0,70	0,82
LPCC		0,57

В табл. 7 приведены результаты экспериментов по комбинированию признаков, которые согласуются с приведенными выше оценками.

Таблица 7

Признак	Канал									
	1		2		3		4		5	
	Bec	EER, %	Bec	EER, %						
MFCC	0,004	4,0	0,465	5,5	0,034	10,0	0,240	5,0	0,174	21,5
LPCC	0,790	3,0	0,005	8,5	0,766	6,0	0,220	4,5	0,136	26,0
PLP	0,206	5,0	0,530	5,5	0,200	12,0	0,542	3,5	0,690	17,5
Комбинация (смесь)	1	2,5	1	4,5	1	6,0	1	3,0	1	17,0

Из полученных результатов можно сделать следующие выводы:

- 1) комбинирование (смешивание) признаков всегда обеспечивает наименьшее значение EER;
- 2) признак, имеющий наименьшее значение EER, всегда имеет наибольший весовой коэффициент (вес);
- 3) признак PLP менее коррелирован с MFCC и LPCC, чем MFCC и LPCC между собой, поэтому он всегда имеет значимый вес;
- 4) признаки MFCC и LPCC имеют высокую степень корреляции, поэтому один из них часто вносит очень мало дополнительной информации в обобщенное решение.

Заключение. В настоящей работе исследована информативность широко известных наборов речевых признаков, таких как MFCC, LFCC, LPCC и PLP. В качестве критерия информативности для отбора признаков в системе идентификации дикторов по голосу использовалось значение EER.

Показано, что MFCC, LPCC и PLP имеют сильную корреляцию, а также, что ни один из рассмотренных признаков не дает преимуществ по сравнению с другими по уровню информативности в различных акустических условиях и в различных каналах записи. Однако возможно их комбинирование для повышения надежности идентификации дикторов по голосу. Результат смешивания признаков всегда обеспечивает наименьшее значение EER.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Матвеев Ю. Н.* Технологии биометрической идентификации личности по голосу и другим модальностям // Вестн. МГТУ им. Н. Э. Баумана. Сер. Приборостроение. Специальный выпуск. Биометрические технологии. 2012. № 3(3). С. 46—61.
- 2. *Huang X., Acero A., Hon H.* Spoken Language Processing: A guide to theory, algorithm, and system development. Prentice Hall, 2001. 1008 p.
- 3. Zheng F., Zhang G., Song Z. Comparison of Different Implementations of MFCC // J. Computer Sci. and Techn. 2001. Vol. 16, N 6. P. 582—589.
- 4. *Hermansky H., Malayath N.* Speaker Verification Using Speaker-Specific Mappings // Proc. of the Workshop on Speaker Recognition and its Commercial and Forensic Applications. Avignon, 1998. P. 111—114.
- 5. База данных для идентификации говорящего по голосу "RUASTEN". Регистрационное свидетельство № 2010620533 от 20.09.2010.

- 6. *Матвеев Ю. Н., Симончик К. К.* Система идентификации дикторов по голосу для конкурса NIST SRE 2010 // Тр. 20-й Междунар. конф. по компьютерной графике и зрению "ГрафиКон'2010". СПб: СПбГУ ИТМО, 2010. С. 315—319.
- 7. *He W., Hong P.* The Application of Fusion Technology for Speaker Recognition // Intern. J. of Computer Science and Network Security. 2007. Vol. 7, N 12. P. 300—303.
- 8. *Kinnunen T., Li H.* An overview of text-independent speaker recognition: From features to supervectors // Speech Communication. 2010. Vol. 52, N 1. P. 12—40.

Сведения об авторе

Юрий Николаевич Матвеев

д-р техн. наук; ООО "ЦРТ-инновации", Санкт-Петербург; главный научный сотрудник; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра речевых информационных систем; профессор;

E-mail: matveev@mail.ifmo.ru

Рекомендована кафедрой речевых информационных систем

Поступила в редакцию 22.10.12 г.