TEMPLATE FOR A PROJECT REPORT

Author Name, Affiliation

Report for a project within the course CS-E4740 - Federated Learning.

ABSTRACT

Instructions (Remove before submission). Provide a concise summary of the project, including the FL application, how you modelled it as a FL network, the GTV minimization on top of it and the FL algorithms used.

Index Terms— Federated Learning, Networks, Personalized Machine Learning, Trustworthy AI

1. INTRODUCTION

Instructions (Remove before submission) This section introduces the background and motivation of your FL project. It should include:

- A real-life scenario motivating your FL application, consisting of networked devices that train personalized models (see Lecture "FL Networks").
- A summary of state-of-the-art methods relevant to your project.
- A brief outline of the structure of your report.

2. PROBLEM FORMULATION

Instructions (Remove before submission). A core task for the project is the modelling of your FL application as an federated learning (FL) network (see Lecture "FL Networks" and [2, Ch. 3]). This section must clearly state and explain:

- Nodes: How many and what real-world devices (smartphones, smart light-bulbs, smart meters, a fitness tracker or a desktop computer) do they represent.
- Local Models: Describe the models used at each node. You can also state several different candidate models for a node.
- Loss Functions: For each node, specify the local loss functions for training the corresponding local model.
- Edges: How do you choose the edges and their weights? (see [2, Sec. 7])

3. METHODS

Instructions (Remove before submission). Design FL algorithms for your application by formulating FL as GTVMin which is solved using distributed optimization methods. Clearly state and explain:

- Your choice for the variation measure. For example, when using parametric local models you can use $\phi(\mathbf{w}^{(i)} \mathbf{w}^{(i')})$ to measure the variation across edge $\{i, i'\}$ (see Lecture "FL Design Principle" and [2, Ch. 3])..
- Your choice for FL algorithm, which must be implemented as message passing across the edges of the FL network (see Lecture "FL Algorithms" and [2, Ch. 5]).

4. NUMERICAL EXPERIMENTS

Instructions (Remove before submission). Provide details on the implementation of the FL algorithms and analyze the results. Clearly state and explain

- the used data sources. One example for a data source is the open data interface of the Finnish Meteorological institute [3].
- Your approach to model validation, selection and diagnosis (see [1, Sec. 6.6]). In particular,
 - how did you implement model validation?
 - If you have considered different options for the local model used by some node i, how did you choose between those options?
 - how happy are you with the performance of the resulting trained local models? can you think of a baseline to compare against?
- for each trained local model, state and compare the average loss on the training set and the validation set
- how you obtained the final trained local models.
 This includes

- the choice of FL network (including choice for local model and edge set)
- the choice for the variation measure (penalty function for parametric models).
- the FL algorithm (which must be implemented as message passing)
- For the finally obtained trained local models, report the average loss on a test set (which has neither been used for training or validation of local models).

Important: Your report must be accompanied by a Python notebook that allows reproduce the numerical results. Try to use only basic libraries such that the notebook can be executed without hassle on https://jupyter.cs.aalto.fi/.

5. CONCLUSION

Instructions (Remove before submission):

- Discuss whether the obtained numerical results suggest that the problem is solved satisfactorily or if there is room for improvement.
- Identify limitations of the methods used and suggest potential improvements.

6. REFERENCES

- [1] A. Jung, Machine Learning: The Basics, Springer Singapore, 1st edition, Feb. 2022. working draft: https://github.com/alexjungaalto/MachineLearningTheBasics/blob/master/MLBasicsBook.pdf
- [2] A. Jung, "Federated Learning: From Theory to Practice," Aalto, 2025. https://github.com/ alexjungaalto/FederatedLearning/blob/ main/material/FLBook.pdf
- [3] Finnish Meteorological Institute, "Open Data," 2025, https://en.ilmatieteenlaitos.fi/open-data, Accessed: 2025-02-27.