This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Table 1: Matrix of Carbon Black Properties Imparted as a Result of Thermal Modification and Their Effect on Various Applications

Property	Wire &	Food	Moisture	Ba	Battery	Other
	Cable	Contact	Cured	1		Energy
William			Systems	Dry Cell	Alkaline	Systems
Moisture Pickup (MPU) Reduction	+46		+ve			
Poly Aromatic Hydrocarbons (PAH) Reduction		+ve				
Oxidation Resistance	+ve			+ve	+46	+
Increased Electrical Graphitic Order Conductivity/Volume Resistivity	₩ * *			+<6	+^6	9A+
Thermal						446
Sulfur Reduction	+ve			+ve	+ve	+ve
Reduced Volatile Metals	+<6		+ve	+	+46	ev ,
Improved Melt Flow	+ve		+ve			
Resiliency				4		
Electrolyte Absorption				•		
				+ve	+ve	+ve

TABLE 2: Moisture pick-up data for As-is and Heat-Treated Carbon Blacks

Sample	1 hr moisture pick-up (%)	Equilibrium moisture pick-up (%)
Medium Thermal Black	0.18	0.31
Heat-Treated Medium Thermal Black	0.02	0.04
CDX-975U	2.41	3.38
Heat-Treated CDX-975U	0.17	0.27
N220	1.48	2.72
Heat-Treated N220	0.08	45.0
N330	0,60	801
Heat-Treated N330	0.02	21.0
		C7.0

Table 3: Metal Impurities, Ash and Sulfur Content of As-Is and Heat-Treated Carbon Blacks

	T							
HT N330	90:0	55	33	21	2	65	0.13	
N330	0:30	84	72	52	87	607	1.23	
HT N220	0.09	6	15	26	2	31	0.10	
077 V	0.48	20	65	. 162	21	\$69	1.02	
	Ash (%)	Al (ppm)	Fe (ppm)	K (ppm)	Si (ppm)	Na (ppm)	S (%)	

Table 4: Colloidal Properties

90.8 71.9 165 10.0 0.0		CDX-975U	Heat-Treated CDX-0741	Acceptance Disc.
250.9 90.8 227 71.9 173 165 0.45 0.01 6.5 10.6 0.7 0.0				Acetylene Dlack
227 71.9 173 165 0.45 0.01 6.5 10.6 0.7 0.0	lodine (mg/g) ASTM D1510	250.9	8.06	86.3
173 165 0.45 0.01 6.5 10.6 0.7 0.0	NSA (m ² /g) ASTM D4820	227	71.9	73.1
0.45 165 0.45 0.01 6.5 10.6	DDDA /1/100-1 ACTER DA			7:07
0.45 0.01 6.5 10.6 0.7 0.0	DE A (mil 100g) AS I M D2414	173	165	207
6.5 0.01 0.7 0.0	Cultur (0/) A CTM Trice			
6.5 10.6 0.7 0.0	Sullar (%) AS I'M DIOLY	0.45	0.01	0.01
0.7 0.0	NH ACTM DIKES			
0.7	ALCIA MILCO HA	6.8	10.6	0.2
0.0	Molatina			
	aunterorat	0.7	0.0	0.0

Table 5: Structure Stability of Very High Structure (VHS) Blacks

-			STATE (CTT) ATTACK		
Property	Method	Unit	Acetylene Black	Heat-Treated CDX-975U	CDX-975U
Oil Absorption Number	ASTM D2414	ml/100g	189.1	159.1	177.9
COAN	ASTM D3493				
1" Compression		ml/100g	152.5	141.9	F.7.
2nd Compression				0.101	/61
in courbiession		mL/100g	132.8	142.7	144.6
3" Compression		ml/100g	123.2	136.3	137
4th Compression		m1/100-			104
		8007 7111	114.5	130.3	1303
				-	22.7

Table 6: Moisture pick-up (MPU) and Melt Flow Properties @ 30% Loading in 10MI LDPE

	CDX-975U	Heat-Treated CDX-975U	Acetylene Black
MPU 1-hour Carbon Black(%)	1.75	0.17	0.16
MPII Familibrium Carbon Dlast. 1911	• • •		67:0
(%) Saluminim Carpon Diack (%)	3.02	0.27	0.31
Mr. C. Equilibrium Masterbatch	0.1	0.01	0.03
Molt Flow Index (2/10 -1-)			
(umu or %) vanut more mari:	9.9	7.0	8.9

(1

Table 7: Volume Resistivity Versus Processability in Polyethylene

Table 8: Combustion rate and Activation Energy of CDX-975U - Before and After Heat-Treatment

Temperature., °C	Heat Tres	Heat-Treated CDX-975U		DX975U
		(%/ min)		(%/min)
	In Air	In Oxygen	In Air	In Oxygen
450	0.00008	0.00008	0.00454	0.01917
005	7 2000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0020
	+00000	0.0016	0.05988	0.2201
550	0.00213	0.01950	0 1100	A 2 C
007		>	0/100	7.40
000	0.05144	0.32100	1.260	17.81
650	034530	1 6470		*0: /*
	20000	1.36/0	3.466	28.24
	Actival	Activation Energy	Activation	Activation Energy (kcal/mole)
	(kc	(kcal/mole)		(a.a.a.) (A.
	73.2	70.7	40.8	8 17
			•	C

()

Table 9: PAH Compounds Regulated by FDA

	Γ-	1				 														_
	Boiling Point (°C)	218	280	279	204	342	CPE	393	303	000	400		448	481	780	493	496	407	536	524
FOR A DESIGNATION TO A DESIGNATION OF THE PROPERTY OF THE PROP	Molecular Weight	128.2	152.2	154.2	166.2	178.2	178.2	202.3	202.3	226.3	228.3	226	228.3	252.3	252.3	252.3	252.3	252.3	276.3	278.4
mandamon	PAH Compounds	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,I) fluoranthene	Benz(a) anthracene	Cyclo penta (c,d) pyrene	Chrysene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (e) pyrene	Benzo (a) pyrene	Perylene	Indeno (1,2,3,cd) pyrene	Dibenz (a,h) anthracene
•	Group		2		B	4		V 0		9				_					œ	

()

Table 10: PAH Content (ppb) of FDA Compliant Competitive Carbon Black, Heat-Treated CDX-975, Heat-Treated N700 Series Carbon Black and Control N700 Series Carbon Black

_				
	Competitive Carbon Black	CDX-975U	Heat Treated N700 Series Carbon Black	N700 Series Carbon Black
Naphthalene	137	CT DIRCK	67	
Acenaphthylene		1.5	43	2,761
Acenaphthene			∞	3.499
Fluorene	-	</td <td>2</td> <td>></td>	2	>
i icologie	· >		->	, , , , , , , , , , , , , , , , , , ,
rnenanthrene	7	7		70
Anthracene			0	6,065
Fluoranthene	œ	•	7	649
Pyrene	40	7	4.	12,251
Cyclopenta pyrene	Ž		50	71,282
Benzo (ghi) fluoranthene	~			901
Benz (a) anthracene	\ \ \		1>	 >
Chrysene	4			705
Benzo(b) fluoranthene	~		V	235
Benzo (k) fluoranthene				066
Benzo (e) pyrene	\ \ \ \	*	 V	>
Benzo (a) pyrene		-	2	3,912
Perylene		***	2	4,878
Indeno (1,2,3,cd) pyrene	>		∞ (830
Di benz(a,h) anthracene	4		\$	5,585
1, 12 Benz perylene	>		2	<1
Anthanthrene	 \ \		1>	~ [
Coronene	02			827
Total PAH, nnh	000	17	99	69,304
	097	4	205	184,741

 $(\dot{})$

<u>()</u>

Table 11: PAH (ppb) content of As-Is N220, N330, Heat-Treated N220 and Heat-Treated N330

	N220	N330	Hest-Treated N320	Victory Company
Naphthalene	201	180	1621-11631-11671	Ucer-1 reated N330
Acenaphthylene	614	764	133	47
Acenaphthene	~	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	17	İ>
Fluorene	->		0.0	! >
Phenanthrene	3000	767	5.1	1.8
Anthracene	V	00/1	\$1	5.1
Fluoranthene	870	0331	17.8	!>
Pyrene	1744	16400	20	4.9
Cyclopenta pyrene	\	786	85	32
Benzo (ghi) fluoranthene		007		2.6
Benz (a) anthracene	\ \ \		. ` `	
Chrysene	4075		12	; `
Benzo(b) fluoranthene			→:→	
Benzo (k) fluoranthene		701	iv	1>
Benzo (e) pyrene	V	100	∵	Ĭ
Benzo (a) pyrene	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	677	7.7	\
Perylene	· V	\$	∵	[>
Indeno (1,2,3,cd) pyrene	, V		▽	\
Di benz(a,h) anthracene	13306	130		</td
1, 12 Benz perviene	3063	1,750		·>
Anthanthrene	2025	24.62	\	! >
Coronene	7476	170	</td <td>[></td>	[>
Total DAU	0747	01601	1.1	₹
total f.Art, ppo	35310	34723	344.8	85.4

Table 12: Summary of Maximum Discharge Capacity of as is and Heat-treated Carbon Black Samples at Three Discharge Rates

Sample	Cathode Mixture		Cathode Ceseits:	4 L
		Discharge Current	Discharge Current D	Discharge Current 25
		100 mA	50 mA	A E
Commercial Sample		745	908	
Carbon Black A		340	600	010
(NSA 77 m'g')			2	<u> </u>
(OAN 174 ml/100 g)				
Carbon Black B		486	840	toc
(NSA 173 m'g'')				/88
(OAN 192 ml/100 g)	Graphite: 2%			
Carbon Black C	Ī	535	786	o c
(NSA 62 m'g')	_		00/	616
(OAN 185 ml/100 g)				
A-20961	MnO ₂ : 87.5%	679	613	
Acetylene Black	Carbon Black: 10.5%		710	6/6
	Graphite: 2%			
HT Carbon Black B	MnO ₂ : 87.5%	641	788	0.0
(NSA 109 m'g')	Carbon Black: 10.5%		000	A5A
(OAN 199 ml/100 g)	Graphite: 2%			
HT Carbon Black A	MnO ₂ : 87.5%	626	750	, 00
(NSA 72 m'g'')	Carbon Black: 10.5%		2	106
(OAN 182 ml/100 g)	Graphite: 2%			
HT Carbon Black C	MnO ₂ : 87.5%	636	780	410
(NSA 54 E 8')	Carbon Black: 10.5%		00	515
(OAN 171 ml/100 g)	Graphite . 2%			
770	01 4 . Attition 0			

<u>()</u>

Table 13

Colloidal Properties

	Method	Acetylene	A	В	N-330
OAN, mV100g	D2414	179	159	177	101
COAN, ml/100g	D3493	115	130		86
lodine No., mg/g	D1510	96	91	70	80
NSA, m ² /g	D6556	67	69	52	77
STSA, m ² /g	D6556	67	69	52	77

Table 14

Curing Bladder Formulations

PHR	Acetylene/ N330	A N330	B N330	
Acetylene	48			
A		54		
В			60	
N-330	12	12	12	

Base Formula

Butyl 301	95			
Neoprene W	5			
Carbon Black	See Above			
Castor Oil	6			
Zinc Oxide	5			
Stearic Acid	2			
SP-1045	8			

Table 15

Processing Characteristics

ASTM	Acetylene	Α	В
@ 160°C	N330	N330	N330
Mooney Viscosity			
MU	61	72	72
Garlock Flow Com	parator @ 20	0°C and 20p	
Inches	3.0	2.8	2.5

Table 16

Capillary Rheometer Processability Characteristics ASTM D5099, 115°C, 20L/D, 60°Entrance Angle

	Acetylene N330	A N330	B N330
Shear Viscos	ity, Pa-sec		·
20, sec-1	15840	17190	18090
100, sec-1	4360	4740	5160
500, sec-1	1460	1780	2000
2000, sec	610	750	900
2000, sec-1	37	43	31

Table 17

MDR Curing Profiles

1		.	ŀ
ML, dNm	3.5	4.3	. 4.6
MH, dNm	9.0	10.2	11.6
MH-ML, dNm	5.5	6.0	7.0
Ts1, minutes	2.0	2.0	1.6
T50, minutes	4.7	4.7	4.9
T90, minutes	10.1	11.1	12.7

Table 18

Surface Analyzer Dispersion Properties

D2663	Acetylene N330	A N330	B N330
Index	99.7	99.8	99.5
F, p/cm	5	5 .	8
H, µm	5	4	4

Table 19

Stress-Strain, Aged and Unaged, Properties

ASTM D412 D573	Acetylene N330	A N330	B N330
Unaged			
100% M, MPa	1.7	1.4	1.7
200% M, MPa	3.0	2.0	2.4
300% M, MPa	4.6	2.9	3.4
Tensile, MPa	9.7	9.6	9.8
Elongation, %	808	865	849

Table 20

Performance Properties

Performance Properties			
~	Acetylene N330	A N330	B N330
Thermal Cond	uctivity, D518		
W/m-K	0.299	0.388	0.377
Fatigue Life, D	4482, kilocycle	:\$. •
Characteristic	571	1068	595
10%	406	684	361
Compression S	et, 24hr @ 150	°C, D395	
% Set	74	77	78
Tear Die C, D6	24		
kN/m	41	38	40
DIN Abrasion,	DIN53516		
mm³ Loss	231	238	220