Pattern Recognition

Homework 1

王淮慕 學號: 606415050 系所: 電機系

November 9, 2017

0.1 Consider the minimax criterion for a two-category classification problem.

1. Assume $p(x|\omega_1)=\sim N(0,1)$ and $p(x|\omega_2)=\sim N(1/2,1/4)$ under a zero-one loss. Find the decision threshold x^* and the resulting overall risk

1-1 sol:

$$\begin{split} \int_{R_2} p(x|\omega_1) dx &= \int_{R_1} p(x|\omega_2) dx \\ \Rightarrow \int_{\theta}^{\infty} \frac{1}{\sqrt{2\pi}} \exp[\frac{-1}{2} x^2] dx &= \int_{-\infty}^{\theta} \frac{1}{\sqrt{2\pi} \times \frac{1}{2}} \exp[\frac{-1}{2 \times \frac{1}{2}} (x - \frac{1}{2})^2] dx \\ \Rightarrow \Phi(-\theta) &= \Phi(\frac{\theta - \frac{1}{2}}{\frac{1}{2}}) \\ \Rightarrow \theta &= \frac{\theta - \frac{1}{2}}{\frac{1}{2}} \\ \Rightarrow \theta &= \mathbf{1} \end{split}$$

1-2 sol:

$$R = \int_{R_1} p(x|\omega_2) dx$$
$$= \int_{-\infty}^{1} p(x|\omega_2) dx$$
$$= \Phi(\frac{1 - \frac{1}{2}}{\frac{1}{2}})$$
$$= \Phi(-1)$$
$$= 0.1587$$

0.2 Consider the Neyman-Person criterion for two univariate normal distributions:

$$p(x|\omega_1) \sim N(-1,2), p(x|\omega_2) \sim N(2,4)$$

and $P(\omega_1) = 0.6$.

1. Suppose the maximum acceptable error rate for classifying a pattern that is actually in ω_1 as if it were in ω_2 is 0.05. What is the resulting single-point decision boundary?

$$E_1 = 1 - \int_{-\infty}^{\theta} p(x|\omega_1) dx$$

$$\Rightarrow E_1 = 1 - \Phi(\frac{\theta - \mu_1}{\sigma_1})$$

$$E_1 = 0.05 = 1 - \Phi(\frac{\theta + 1}{\sqrt{2}})$$

$$\theta = \Phi^{-1}(0.95) \times \sqrt{2} - 1 = 1.326(by \ calculas)$$

2. For this boundary, what is the error rate for classifying ω_1 as ω_2

$$E_2 = \int_{\theta}^{-\infty} p(x|\omega_2) dx$$
$$= \Phi(\frac{\theta - \mu_2}{\sigma_2})$$
$$= \Phi(\frac{1.326 - 2}{2})$$
$$= \Phi(-0.337)$$
$$= 0.3681$$

$$error\ rate = E_2 \times P(\omega_2) = 0.3681 \times 0.4 = 0.14724$$

3. What is the overall error rate? Also, compare your result to the Bayes error rate.

Overall error rate of
$$NP = E_1 \times P(w_1) + E_2 \times P(\omega_2) = 0.17724$$

$$\begin{split} \frac{p(x|\omega_1)P(\omega_1)}{p(x|\omega_2)P(\omega_2)} &= \frac{\sigma_2 P(\omega_1) e^{-\frac{1}{2}(\frac{x+1}{\sigma_1})^2}}{\sigma_1 P(\omega_2) e^{-\frac{1}{2}(\frac{x-2}{\sigma_2})^2}} \\ &\Rightarrow \ln(\frac{\sigma_2 P(\omega_1)}{\sigma_1 P(\omega_2)}) - \frac{1}{2} [(\frac{x+1}{\sigma_1})^2 - (\frac{x-2}{\sigma_2})^2] \\ 0.752 - \frac{x^2 + 8x - 2}{8} &= 0 \qquad then, x = -8.474, 0.474 \end{split}$$

Overall error rate of Bayes = $E_1 \times P(\omega_1) + E_2 \times P(\omega_2)$

$$\Rightarrow (1 - \int_{-8.474}^{0.474} p(x|\omega_1)dx) \times P(\omega_1) + \int_{-8.474}^{0.474} p(x|\omega_2)dx \times P(\omega_2) = 0.17824$$

0.3 Consider the problem of classifying 10 samples from Table 1. Assume that the underlying distributions are normal. For each category, the mean and the covariance matrix are given by

$$\mu = \frac{1}{10} \sum_{k=1}^{10} x_k$$

$$\sum = \frac{1}{10} \sum_{k=1}^{10} (x_k - \mu)(x_k - \mu)^t$$

where x_k denotes the k-th samples in that category

- 1. Assume that the prior probabilities for the first two categories are equal $p(\omega_1)=p(\omega_2)=1/2$ and $p(\omega_3)=0$. Determine mean vectors and covariance matrices for these two categories using x_1 and x_2 feature values.
- 3-1 sol:

We substituted $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$ to the $\mu=\frac{1}{10}\sum_{k=1}^{10}x_k$, then find $\mu_1,\ \mu_2,\ \mu_3.$

$$\mu_1 = \begin{bmatrix} -0.4400 \\ -1.7490 \end{bmatrix} \quad \mu_2 = \begin{bmatrix} -0.5430 \\ -0.7620 \end{bmatrix} \quad \mu_3 = \begin{bmatrix} 3.8330 \\ 1.3760 \end{bmatrix}$$

According to the formula : $\sum = \frac{1}{10} \sum_{k=1}^{10} (x_k - \mu) (x_k - \mu)^t$ to find $\sum_1, \; \sum_2, \; \sum_3,$

$$\sum_{1} = \left[\begin{array}{cc} 12.942 & 6.9258 \\ 6.9258 & 13.161 \end{array} \right] \quad \sum_{2} = \left[\begin{array}{cc} 33.146 & 8.9828 \\ 8.9828 & 11.852 \end{array} \right] \quad \sum_{3} = \left[\begin{array}{cc} 7.4743 & 6.7005 \\ 6.7005 & 7.7044 \end{array} \right]$$

- 2. Calculate the percentage of misclassified samples.
- 3-2 sol: According to the below formula

$$g_i(x) = \mathbf{X}^{\mathsf{t}} \mathbf{W}_{\mathsf{i}} \mathbf{X} + \mathbf{W}_{\mathsf{i}}^{\mathsf{t}} \mathbf{X} + \mathbf{W}_{\mathsf{i}0}$$

$$\mathbf{W}_i = \frac{-1}{2} \sum_{i}^{-1}$$

$$\begin{aligned} \mathbf{W}_i &= \sum_i^{-1} \mu_i \\ w_{i0} &= \frac{-1}{2} \mu_i^t \sum_i^{-1} \mu_i - \frac{1}{2} \ln |\sum_i| + \ln P(\omega_i) \\ error\ rate &= 1 - \frac{correct\ sample}{total\ sample} \end{aligned}$$

 $\begin{array}{l} \textit{error rate } \omega_1 = 0.3 \\ \textit{error rate } \omega_2 = 0.7 \\ \textit{error rate } \omega_3 \text{ isn't exist ,because } p(\omega_3) = 0 \\ \textit{so the } \textit{total error rate} = \frac{0.3 + 0.7}{3} = 0.5 \end{array}$

- 3. Repeat all of the above, but now use three feature values (i.e., x_1 , x_2 , and x_3)
- 3-3 sol : We re-calculate $\mu_1, \mu_2, \mu_3, \sum_1, \sum_2, \sum_3$

$$\mu_1 = \begin{bmatrix} -0.4400 \\ -1.7490 \\ -0.7660 \end{bmatrix} \quad \mu_2 = \begin{bmatrix} -0.5430 \\ -0.7620 \\ -0.5420 \end{bmatrix} \quad \mu_3 = \begin{bmatrix} 3.8330 \\ 1.3760 \\ 1.5800 \end{bmatrix}$$

$$\sum_{1} = \begin{bmatrix} 12.942 & 6.9258 & 3.7101 \\ 6.9258 & 13.161 & 3.5162 \\ 3.7101 & 3.5162 & 17.7521 \end{bmatrix} \quad \sum_{2} = \begin{bmatrix} 33.146 & 8.9828 & -14.7301 \\ 8.9828 & 11.852 & 0.3681 \\ -14.7301 & 0.3681 & 16.5791 \end{bmatrix}$$

$$\sum_{3} = \begin{bmatrix} 7.4743 & 6.7005 & 11.8346 \\ 6.7005 & 7.7044 & 10.4478 \\ 11.8346 & 10.4478 & 42.5586 \end{bmatrix}$$

error rate $\omega_1 = 0.4$ error rate $\omega_2 = 0.6$

so the $\ total\ error\ rate = \frac{0.4 + 0.6}{3} = 0.5$

Table 1: Computer exercise 2 relies on the following data.

	ω_1	ω_2	ω_3			
sample	$x_1 \qquad x_2 \qquad x_3$	$x_1 \qquad x_2 \qquad x_3$	$x_1 \qquad x_2 \qquad x_3$			
1	-5.01 - 8.12 - 3.68	-0.91 - 0.18 - 0.05	+5.35 + 2.26 + 8.13			
2	-5.43 - 3.48 - 3.54	+1.30 - 2.06 - 3.53	+5.12 + 3.22 - 2.66			
3	+1.08 - 5.52 + 1.66	-7.75 - 4.54 - 0.95	-1.34 - 5.31 - 9.87			
4	+0.86 - 3.78 - 4.11	-5.47 + 0.50 + 3.92	+4.48 + 3.42 + 5.19			
5	-2.67 + 0.63 + 7.39	+6.14 + 5.72 - 4.85	+7.11 + 2.39 + 9.21			
6	+4.94 + 3.29 + 2.08	+3.60 + 1.26 + 4.36	+7.17 + 4.33 - 0.98			
7	-2.51 + 2.09 - 2.59	+5.37 - 4.63 - 3.65	+5.75 + 3.97 + 6.65			
8	-2.25 - 2.13 - 6.94	+7.18 + 1.46 - 6.66	+0.77 + 0.27 + 2.41			
9	+5.56 + 2.86 - 2.26	-7.39 + 1.17 + 6.30	+0.90 - 0.43 - 8.71			
10	+1.03 - 3.33 + 4.33	-7.50 - 6.32 - 0.31	+3.52 - 0.36 + 6.43			

0.4 Consider the data points generated from two categories as shown in Table 2.

- 1. Write your own code to plot the receiver operating characteristic (ROC) curve.
- 2. Write your own code to determine the area under the ROC curve (often referred to as AUC).

Table 2: Data points generated from two categories.

sample	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
ω_1	-8.1	-3.48	-5.52	-3.78	+0.63	+3.29	+2.09	-2.13	+2.86	-3.33
ω_2	+5.35	+5.12	-1.34	+4.48	+7.11	+7.17	+5.75	+0.77	+0.90	+3.52

Mathlab code:

```
clear all;

x = -8:0.1:8;

len = length(x);

omega 1=[-8.1,-3.48,-5.52,-3.78,0.63,3.29,2.09,-2.13,2.86,-3.33];

omega 2=[5.35,5.12,-1.34,4.48,7.11,7.17,5.75,0.77,0.90,3.52];

x axis = zeros(1,len);

y axis = zeros(1,len);

for i=1:len

x start=double([(x(1,i)*ones(1,length(omega 2)))>=omega 2]);

sum x=sum(x start);

x axis(1,i)=sum x/length(omega 2);

y start=double([(x(1,i)*ones(1,length(omega 1)))>=omega 1]);
```

```
sum y=sum(y start);
y axis(1,i)=sum y/length(omega 1);
end
plot(x axis,y axis,'-');
xlabel('false alarm rate');
ylabel('sensitive');
auc area = 0.0;
for i=2:length(y axis)
auc area = ((y axis(1,i)+y axis(1,i-1)) * (x axis(1,i)-x axis(1,i-1))/2)+auc area;
end
auc area=abs(auc area);
disp('AUC=');
disp(auc area);
```


AUC(area under curve)=0.900