Adversarial Training for Weakly Supervised Event Detection

Xiaozhi Wang¹, Xu Han¹, Zhiyuan Liu¹, Maosong Sun¹, Peng Li²

¹Department of Computer Science and Technology, Tsinghua University ²Pattern Recognition Center, WeChat, Tencent Inc.

July 22, 2019

Introduction

• Event Detection: Detect event triggers and identify event types.

Mark Twain and Olivia Langdon *married* in 1870

- First stage of the Event Extraction.
- Important for downstream NLP applications.

Introduction Adversarial Training Distant Supervision Semi-supervision Summary

Challenge: data sparsity

Figure 1: Statistics of ACE 2005 English Data. Thanks Chen et al., 2017.

Introduction Adversarial Training Distant Supervision Semi-supervision Summary

Related Work: Distant Supervision

(a) Automatically Labeled Data Generation for Large Scale Event Extraction (Chen et al., 2017)

(b) Open-Domain Event Detection using Distant Supervision (Araki et al., 2018)

Introduction Adversarial Training Distant Supervision Semi-supervision Summary

Related Work: Semi-supervision

Figure 2: Bootstrapped Training of Event Extraction Classifiers (Huang et al., 2012)

Adversarial Training Distant Supervision Semi-supervision

Related Work: Weakness

Introduction

- Sophisticated pre-defined rules: topic bias.
- Existing instances in knowledge bases: low coverage.

Adversarial Training Distant Supervision Semi-supervision Summar

Our Model

Introduction

- Adversarial Training to unsupervisedly denoise data.
- **Trigger-based latent instance discovery strategy** to automatically construct large-scale candidate set with good coverage.

troduction Adversarial Training Distant Supervision Semi-supervision Summary

Overall architecture

Figure 3: The overall architecture. The event type is Contact.

Adversarial Training Distant Supervision Semi-supervision

Adversarial Training

Discriminator

- To detect events correctly.
- Should resist noise.

Generator

• To confuse the discriminators.

troduction Adversarial Training Distant Supervision Semi-supervision Summary

Overall architecture

Figure 4: The overall architecture. The event type is Contact.

troduction Adversarial Training Distant Supervision Semi-supervision Summar

Overall architecture

Figure 5: The overall architecture. The event type is Contact.

Adversarial Training

Discriminator

- $x \in \mathcal{R}$ as positive instances and $x \in \mathcal{U}$ as negative instances.
- $\phi_D = \max \left(E_{x \sim P_B} \left[\log \left(P(e|x, t) \right) \right] + E_{x \sim P_D} \left[\log \left(1 P(e|x, t) \right) \right] \right)$.

Generator

- Select most confusing $x \in \mathcal{U}$ to fool the discriminator.
- $\phi_G = \max E_{x \sim P_M} \lceil \log (P(e|x, t)) \rceil$.

Discriminator

- $x \in \mathcal{R}$ as positive instances and $x \in \mathcal{U}$ as negative instances.
- $\mathcal{L}_D = -\sum_{x \in \mathcal{R}} \frac{1}{|\mathcal{R}|} \log \left(P(e|x,t) \right) \sum_{x \in \mathcal{U}} P_{\mathcal{U}}(x) \log \left(1 P(e|x,t) \right).$

Generator

- Select most confusing $x \in \mathcal{U}$ to fool the discriminator.
- Confusing score: $P_{\mathcal{U}}(x) = \frac{\exp(f(x))}{\sum_{\hat{x} \in \mathcal{U}} \exp(f(\hat{x}))}$. $\mathcal{L}_{G} = -\sum_{x \in \mathcal{U}} P_{\mathcal{U}}(x) \log(P(e|x, t))$.

Adversarial Training Distant Supervision Semi-supervision Summary

Method

- Pre-train a normal model in the noisy dataset, and set a threshold for the confidence scores of the model.
- Reliable Set \mathcal{R} : instances with higher confidence.
- Unreliable Set \mathcal{U} : instances with lower confidence.
- Initialize the encoders with the pre-trained model, then conduct adversarial training.

troduction Adversarial Training **Distant Supervision** Semi-supervision Summary

Experiments

(a) Precision-Recall Curves for the CNN models.

(b) Precision-Recall Curves for the BERT models.

Adversarial Training Distant Supervision **Semi-supervision** Summary

Method

- Pre-train a model on the small high-quality dataset.
- Retrieve candidate instances from a large-scale raw dataset to construct a large candidate set.
- Automatically label the candidate set with a pre-trained model.
- Reliable Set \mathcal{R} : Small-scale human-annotated data.
- ullet Unreliable Set \mathcal{U} : Large-scale auto-labeled data.
- Adversarial training, then the instances recommend by the generator will be trusted.

Trigger-based latent instance discovery strategy

- Intuition: If a word serves as the trigger in a known instance, the raw sentences mentioning it may also express an event.
- Retrieve the sentences in NYT corpus which contains triggers in ACE 2005.
- Simple but effective.

Adversarial Training Distant Supervision **Semi-supervision** Summan

Experiments

Method	Trigger Identification +Classification		
	P	R	F1
Li's Joint	73.7	62.3	67.5
JRNN	66.0	73.0	69.3
ANN-FN	77.6	65.2	70.7
DLRNN	77.2	64.9	70.5
GMLATT	78.9	66.9	72.4
DMCNN+Chen's DS	75.7	66.0	70.5
Bi-LSTM+GAN	71.3	74.7	73.0
GCN-ED	77.9	68.8	73.1
DMCNN	75.6	63.6	69.1
DMCNN+Boot	77.7	65.1	70.8
DMBERT	77.6	71.8	74.6
DMBERT + Boot	77.9	72.5	75.1

Table 1: The overall performance (%) of different models on ACE-2005.

Manual Evaluation

Method	Average Precision	Fleiss's Kappa
chen2017automatically	88.9	-
zeng2018scale	91.0	-
Our First Iteration	91.7	61.3
Our Second Iteration	87.5	52.0

Table 2: The human evaluation results (%) of auto-labeled data.

Adversarial Training Distant Supervision Semi-supervision Summary

Case Study

Event-Type: Justice Subtype: Sue		
In ACE-2005	Dell sued for "bait and switch" and false promises.	
1. The lawyers for the four former state officials who biscovered have been sued told the jurors 2. But litigation held up the project until		

 $\label{thm:table 3: The examples with highlighting triggers.} \\$

ıction Adversarial Training Distant Supervision Semi-supervision **Summary**

Conclusion and Future work

- An effective adversarial training method for weakly supervised event detection.
 - Denoise and enhance distantly supervised models.
 - Automatically collect more diverse and accurate training data.
- Future work
 - Extract event arguments.
 - A large-scale dataset.

Adversarial Training Distant Supervision Semi-supervision **Summary**

The End

Thanks for listening. Questions are welcome.

