Задача 1. Однажды утром (в 9:00) турист вышел из лагеря к вершине горы и добрался туда в 20:00. В 9:00 следующего дня он начал спуск с вершины (по той же тропе, что и поднимался) и в 20:00 вернулся в лагерь. Найдётся ли на тропе точка, которую турист проходил в одно и то же время в день подъёма и в день спуска?

Задача 2. а) Пусть функция f непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), и $f'(x_0) > 0$ в некоторой точке $x_0 \in (a,b)$. Докажите, что найдется такая окрестность U точки x_0 , что для всех $x \in U$ если $x > x_0$, то $f(x) > f(x_0)$, а если $x < x_0$, то $f(x) < f(x_0)$? **6)*** Верно ли, что f из пункта а) монотонно возрастает в некоторой окрестности точки x_0 ?

Определение 1. Точка x_0 называется точкой *локального максимума* функции f, если $f(x_0) \geqslant f(x)$ для всех x из некоторой окрестности x_0 . Аналогично определяется точка *локального минимума*.

Задача 3. Докажите, что у любой функции f, непрерывной на отрезке [a,b] и дифференцируемой на интервале (a,b), существует точка локального максимума и точка локального минимума.

Задача 4. (*Теорема Ферма*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если $x \in (a,b)$ — точка локального максимума (минимума) f, то f'(x) = 0. Верно ли обратное?

Задача 5. Докажите для всех x: **a)** $x^4 + x^3 \geqslant -\frac{3^3}{4^4}$; **б)** $x^6 - 6x + 5 \geqslant 0$; **в)** $x^4 - 4x^3 + 10x^2 - 12x + 5 \geqslant 0$.

Задача 6. Найдите наибольшее и наименьшее значение функций из задачи 5 при $x \in [0,1]$.

Задача 7. Найдите наименьшее значение функций при x > 0: **a)** $x + \frac{1}{x}$; **б)** $x + \frac{1}{x^2}$; **в)** $x^2 + 2x + \frac{4}{x}$.

Задача 8. Какую наибольшую площадь может иметь трапеция, три стороны которой равны 1?

Задача 9. Даны две точки A и B по разные стороны от прямой l, разделяющей две среды. Требуется найти такую точку D на прямой l, чтобы время преодоления светом пути ADB было минимальным при условии, что скорость распространения света в верхней среде v_1 , а в нижней $-v_2$. Докажите, что такая точка D существует и определяется условием $\sin \alpha_1/\sin \alpha_2 = v_1/v_2$, где α_1 и α_2 — углы, образованные прямыми AD и BD с прямой, проходящей через точку D перпендикулярно l.

Задача 10. Найдите точку параболы $y = x^2$, ближайшую к точке (-1; 2).

Задача 11. (*Теорема Ролля*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b), и, кроме того, f(a) = f(b). Докажите, что найдётся такая точка $x \in (a,b)$, что f'(x) = 0.

Задача 12. (*Теорема Лагранжа*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что найдётся такое $x \in (a,b)$, что $f'(x) = \frac{f(b)-f(a)}{b-a}$ и объясните геометрический смысл этой теоремы.

Задача 13. Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если для всех $x \in (a,b)$ выполнено: **a)** f'(x) = 0, то f постоянна на [a,b]. **6)** f'(x) > 0, то f возрастает на [a,b].

Задача 14. Функции f и g непрерывны на [a,b] и дифференцируемы на (a,b), причём f(a)=g(a) и $\forall \, x \in (a,b) \colon f'(x) \geqslant g'(x)$. Докажите, что $\forall \, x \in [a,b] \colon f(x) \geqslant g(x)$.

Задача 15. Докажите для всех x>0: **a)** $\sin x>x-\frac{x^3}{6}$; **6)** $1-\frac{x^2}{2}<\cos x<1-\frac{x^2}{2!}+\frac{x^4}{4!}$; **в)*** $e^x>1+x+\frac{x^2}{2}+\ldots+\frac{x^n}{n!}$, где $n\in\mathbb{N}$.

Задача 16. а) Докажите, что двигаясь по прямой со скоростью, не большей v, нельзя за время t уехать дальше, чем на vt. **б)*** Докажите, что двигаясь по плоскости со скоростью, не большей v, нельзя за время t уехать дальше, чем на vt.

Задача 17*. Пусть f определена и дифференцируема на (a, b). **а)** Верно ли, что f' непрерывна на (a, b)?

б) Пусть у f' существуют пределы слева и справа в точке $x_0 \in (a,b)$. Верно ли, что они совпадают?

в) (*Теорема Дарбу*) Пусть $[c,d] \subset (a,b)$. Докажите, что f' принимает на [c,d] все значения между f'(c) и f'(d).

Задача 18*. Среди ровной степи стоит гора. На вершину ведут две тропы (считаем их графиками непрерывных функций), не опускающиеся ниже уровня степи. Два альпиниста одновременно начали подъём (по разным тропам), соблюдая условие: всё время быть на одинаковой высоте. Смогут ли они достичь вершины, двигаясь непрерывно, если а) тропы состоят из конечного числа подъёмов и спусков;

б) в общем случае?

Задача 19*. Из A в B ведут две дороги, не пересекающие друг друга и сами себя. Две машины, связанные верёвкой длины 15 м, проехали из A в B по разным дорогам, не порвав верёвки. Два круглых воза радиуса 8 м выезжают одновременно по разным дорогам, один из A в B, другой из B в A. Могут ли они разминуться?

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	3	4	5 a	5 6	5 B	6	7 a	7 б	7 B	8	9	10	11	12	13 a	13 б	14	15 a	15 б	15 B	16 a	16 ნ	17 a	17 б	17 B	18 a	18 б	19