

CH32V002 数据手册

V1.5

概述

CH32V002 是基于青稞 RISC-V 内核设计的工业级通用微控制器,支持 48MHz 系统主频,具有宽压、低功耗、单线调试等特点。其引脚和功能与 CH32V003 兼容。CH32V002 内置 1 组 12 位模数转换 ADC,采样率高达 3Msps;提供了 7 路 DMA 控制器、多组定时器、USART 串口、I2C、SPI 等丰富外设资源。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V2C 内核, RV32EmC 指令集
- 快速可编程中断控制器+硬件中断堆栈
- 支持2级中断嵌套
- 支持系统主频 48MHz

● 存储器:

- 4KB 易失数据存储区 SRAM
- 16KB 程序存储区 CodeFlash
- 3328B 系统引导程序存储区 BootLoader
- 256B 系统非易失配置信息存储区
- 256B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V₂ 额定电压: 2~5V
- 低功耗模式: 睡眠、待机

● 系统时钟和复位:

- 内置出厂调校的 24MHz 的 RC 振荡器
- 内置约 128KHz 的 RC 振荡器
- 外部支持 3~25MHz 高速振荡器
- 内置系统时钟监控(SCM)模块
- 上/下电复位、可编程电压监测器

● 7路通用 DMA 控制器:

- 7个通道,支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI

● 12 位模数转换 ADC:

- 模拟输入范围: Vss~V∞
- 8 路外部信号+3 路内部信号通道
- 支持 3M 采样率

● 多组定时器:

- 1 个 16 位高级定时器,提供死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- 1 个 16 位通用定时器,提供输入捕获、输出 比较、PWM、脉冲计数及增量编码器输入
- 2 个看门狗定时器: 独立和窗口型
- 系统时基定时器: 32 位计数器

● 1组 USART 串口:

- 支持 LIN, 支持多组引脚映射
- 1 个 I2C 接口
- 1 个 SPI 接口
- 快速 GPIO 端口:
- 3组 GPIO 端口, 18 个 I/O 口
- 映射 1 个外部中断
- 安全特性:芯片唯一 ID
- 调试模式:
- 支持串行单线调试模式
- 封装形式: QFN、TSSOP、SOP

型号	Code Flash	RAM	通 用 I/0	高级 定时 器	通用 定时 器	看门狗	ADC	串口	120	SPI	封装 形式
CH32V002F4P6	16K	4K	18	1	1	2	8+3	1	1	1	TSS0P20
CH32V002F4U6	16K	4K	18	1	1	2	8+3	1	1	1	QFN20
CH32V002A4M6	16K	4K	14	1	1	2	6+3	1	1	1	S0P16
CH32V002D4U6	16K	4K	11	1	1	2	4+3	1	1	_	QFN12
CH32V002J4M6	16K	4K	6	1	1	2	6+3	1	1	_	SOP8

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将青稞微处理器内核、仲裁单元、DMA 模块、SRAM 存储等部件通过多组总线实现交互。集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列芯片内部总体架构框图。

图 1-1 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统中引入 3 组时钟源: 内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)。其中,低频时钟源为独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 2 倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了 HB 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 RISC-V2C 处理器

RISC-V2C 支持 RISC-V 指令集 EmC (1) 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景。

- 支持机器模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 支持串行单/双线调试接口
- 自定义扩展指令

注: 1. EmC 中的 "m" 代表指令集中的乘法。

1.4.2 片上存储器

内置 4K 字节 SRAM 区,用于存放数据,掉电后数据丢失。

内置 16K 字节程序闪存存储区(Code FLASH),即用户区,用于用户的应用程序和常量数据存储。 内置 3328 字节系统存储区(System FLASH),即 B00T 区,用于系统引导程序存储,内置自举加载程序。

内置 256 字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置 256 字节用户自定义信息存储区,用于用户选择字存储。

1.4.3 供电方案

V₁₀ = 2.0~5.5V: 为 1/0 引脚以及内部调压器供电, 当使用 ADC 时, V₁₀不得小于 2.4V。

1.4.4 供电监控器

芯片内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,该电路始终处于工作状态,保证系统在供电超过 2.0V 时工作,当 V₁₀ 低于设定的阈值 (V_{POR/POR}) 时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较V₀₀供电与设定的阈值V_{PVD}的电压大小。打开PVD相应边沿中断,可在V₀₀下降到PVD阈值或上升到PVD阈值时,收到中断通知。 关于V₀₀P₁₀和V_{PVD}的值参考第3章。

1.4.5 系统电压调节器 LDO

复位后,系统电压调节器自动开启,根据应用方式有两种操作模式。

- 开启模式:正常的运行操作,提供稳定的内核电源。
- 低功耗模式: 当 CPU 进入待机模式后,调节器低功耗运行。

1.4.6 低功耗模式

系统支持两种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式(SLEEP)

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 待机模式(STANDBY)

在内核的深睡眠模式(SLEEPDEEP)基础上结合了外设的时钟控制机制,并让电压调节器的运行处

于更低功耗的状态。高频时钟(HSI/HSE/PLL)域被关闭, SRAM 和寄存器内容保持, I/0 引脚状态保持。该模式唤醒后系统可以继续运行, HSI 作为默认系统时钟。

退出条件:任意外部中断或唤醒事件(EXTI信号)、RST上的外部复位信号、IWDG复位,其中EXTI信号包括 18 个外部 I/O 口之一、AWU 自动唤醒等。

1.4.7 快速可编程中断控制器 (PFIC)

芯片内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前芯片管理了 4 个内核私有中断和 25 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NMI
- 支持硬件中断堆栈(HPE),无需指令开销
- 提供 2 路免表中断 (VTF)
- 向量表支持地址或指令模式
- 支持2级中断嵌套
- 支持中断尾部链接功能

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 10 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI 可以检测到脉冲宽度小于内部 HB 的时钟周期。多达 18 个通用 I/0 口都可选择连接到同一个外部中断线。

1.4.9 通用 DMA 控制器

系统内置了通用 DMA 控制器,管理 7 个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个 或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、I2C、SPI。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.10 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 24MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

此外,为了提高系统的可靠性,还增加了系统时钟监控(System Clock Monitor, SCM)模块。当其使能位开启后,如果系统时钟失效,就会产生刹车信号给高级定时器 TIM1,同时会置位系统时钟失效中断标志。若提前使能相应中断使能,则会进入中断。

1.4.11 ADC(模拟/数字转换器)

芯片内置 12 位的模拟/数字转换器 (ADC),提供多达 8 个外部通道和 3 个内部通道采样,采样速率可高达 3Msps,提供可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门 狗功能允许非常精准地监控一路或多路选中的通道,用于监测通道信号电压,监测到电压超过设定的 阈值时,可配置产生复位,保护系统。

ADC 内部通道分别是 ADC_IN8~ADC_IN10。内部参考电压 Ver 被连接到 IN8 输入通道上。

1.4.12 定时器及看门狗

● 高级定时器(TIM1)

高级定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外,可以被看成是分配到 6 个通道的三相 PWM 发生器,具有带死区插入的互补 PWM 输出功能,允许在指定数目的计数器周期之后更新定时器进行重复计数周期,刹车功能等。高级定时器的很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与其他TIM 定时器协同操作,提供同步或事件链接功能。

● 通用定时器(TIM2)

通用定时器是一个 16 位的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。通过复用通道 3 和 4,通道 1 和 2 还具有带死区插入的互补 PWM 输出功能。此外,还能通过定时器链接功能与高级定时器 TIM1 共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,任意通用定时器都能用于产生 PWM 输出。

● 独立看门狗(IWDG)

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的约 128KHz 的 RC 振荡器(LSI)提供时钟; LSI 独立于主时钟,可运行于待机模式。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗(WWDG)

窗口看门狗是一个 7 位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SysTick)

青稞微处理器内核自带一个 32 位递增的计数器,用于产生 SYSTICK 异常(异常号: 15),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 32 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通用异步收发器(USART)

芯片提供了1组通用异步收发器(USART)。支持全双工异步串口通信以及半双工单线通信,也支持LIN(局部互连网),兼容IrDA SIR ENDEC 传输编解码规范,以及调制解调器(CTS/RTS 硬件流控)操作,还支持多处理器通信。其采用分数波特率发生器系统,支持DMA 操作连续通讯。

1.4.14 串行外设接口(SPI)

芯片提供 1 个串行外设 SPI 接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.15 I2C 总线

芯片提供 1 个 I 2C 总线接口,能够工作于多主机模式或从模式,完成所有 I 2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度。

I2C 接口提供 7 位或 10 位寻址,并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器 /校验器。

1.4.16 通用输入输出接口(GPIO)

系统提供了 3 组 GP10 端口(PA1~PA2、PC0~PC7、PD0~PD7), 共 18 个 GP10 引脚。多数引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。

当 PA1 和 PA2 为晶振引脚, 即 PA1PA2_RM = 1 时, PA1 和 PA2 不能做 GPIO 功能使用。

所有 GP10 引脚支持可控上拉和下拉电阻。PD7 作为复位引脚时,默认开启上拉电阻并关闭下拉电阻。

所有 GP10 引脚都与数字或模拟的复用外设共用。所有 GP10 引脚都有较大电流驱动能力。提供锁定机制冻结 1/0 配置,以避免意外的写入 1/0 寄存器。

系统中所有 I/0 引脚的电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 I/0 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.17 串行单线调试接口(1-wire SDI Serial Debug Interface)

内核自带一个串行单线调试接口,对应 SWIO 引脚(Single Wire Input Output)。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。在使用单线仿真调试接口时必须开启 HSI 时钟。

第2章 引脚信息

2.1 引脚排列

注:引脚图中复用功能均为缩写。

示例: A:ADC_ (A1:ADC_IN1、AET:ADC_RETR、AET2:ADC_IETR)

T1:TIM1_ (T1C1:TIM1_CH1, T1C1N:TIM1_CH1N, T1BK:TIM1_BKIN, T1E:TIM1_ETR)

T2:TIM2_ (T2C1:TIM2_CH1_ETR, T2C2:TIM2_CH2)

USART1_ (RX:USART1_RX, TX:USART1_TX)

12C_ (SDA:12C_SDA, SCL:12C_SCL)

SPI_ (SCK:SPI_SCK, NSS:SPI_NSS, MISO:SPI_MISO, MOSI:SPI_MOSI)

2.2 引脚描述

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-1 CH32V002 引脚定义

					川脚延り				
S0P8	아FN12	脚编 91d0S	QFN20	TSS0P20	引脚 名称	引脚 类型 ^⑴	主功能(复位后)	默认复用功能	重映射功能 ^⑵
-	0	ı	0	-	V_{ss}	Р	Vss		
8	11	8	18	1	PD4 ⁽⁴⁾	I/0/A	PD4	ADC_IN7/TIM2_CH1_ETR	TIM1_CH4_3/TIM1_ETR_1/ TIM1_ETR_4/TIM1_ETR_5/ TIM1_ETR_6/TIM2_CH2_7/ USART1_RTS_9/SPI_SCK_4
8	-	9	19	2	PD5 (4)	1/0/A	PD5	ADC_IN5/USART1_TX	TIM2_CH4_3/USART1_RX_1/ USART1_CTS_9/SPI_MISO_4
1	-	10	20	3	PD6 ⁽³⁾	1/0/A	PD6	ADC_IN6/USART1_RX	TIM2_CH3_3/USART1_TX_1/ SPI_MOSI_4
_	12	11	1	4	PD7	1/0	PD7	TIM2_CH4/RST	TIM2_CH4_1/USART1_CTS_4/ USART1_CTS_5
1	1	12	2	5	PA1 (3)	1/0/A	PA1	ADC_IN1/TIM1_CH2	XI/TIM1_CH2_1/TIM1_CH2_9/ TIM2_CH2_5/TIM2_CH2_6/ USART1_RX_8/SPI_SCK_5
3	2	13	3	6	PA2	1/0/A	PA2	ADC_INO/TIM1_CH2N	X0/TIM1_CH3_9/TIM1_CH2N_1/ TIM1_CH2N_4/TIM1_CH2N_5/ TIM1_CH2N_6/TIM2_CH3_5/ TIM2_CH3_6/TIM2_CH3_7/ SPI_MOSI_5/ADC_IETR_1
2	_	14	4	7	Vss	Р	Vss		
-	3	-	5	8	PD0	1/0	PD0	TIM1_CH1N	TIM1_CH1N_1/TIM1_CH3N_4/ TIM1_CH3N_5/TIM1_CH3N_6/ USART1_TX_2/I2C_SDA_1
4	4	15	6	9	V_{DD}	Р	V_{DD}		
-	5	16	7	10	PC0	1/0	PC0	TIM2_CH3	TIM1_CH3_2/TIM1_CH1N_7/ TIM1_CH1N_9/TIM2_CH1_ETR_4/ TIM2_CH3_1/USART1_TX_3/ SPI_NSS_1/SPI_MOSI_3
5	-	1	8	11	PC1	1/0	PC1	I2C_SDA/SPI_NSS	TIM1_CH2N_7/TIM1_CH2N_9/ TIM1_BKIN_2/TIM1_BKIN_3/ TIM2_CH1_ETR_1/TIM2_CH2_4/ TIM2_CH1_ETR_3/TIM2_CH4_2/ USART1_RX_3/SPI_NSS_5
6	-	2	9	12	PC2	1/0	PC2	TIM1_BKIN/USART1_RTS/ I2C_SCL	TIM1_CH3N_7/TIM1_CH3N_9/ TIM2_CH2_2/USART1_RTS_2/ TIM1_BKIN_1/TIM1_ETR_3/

	引	脚编	号						
S0P8	QFN12	S0P16	QFN20	TSS0P20	引脚 名称	引脚 类型 ^⑴	主功能 (复位 后)	默认复用功能	重映射功能 ^②
									ADC_RETR_1
-	6	3	10	13	PC3	1/0	PC3	TIM1_CH3	TIM1_CH3_1/TIM1_CH3_5/ TIM1_CH1N_2/TIM1_CH1N_3/ TIM2_CH3_4/USART1_CTS_2
7	7	4	11	14	PC4	1/0	PC4	ADC_IN2/TIM1_CH4/MCO	TIM1_CH1_3/TIM1_CH1_7/ TIM1_CH1_8/TIM1_CH4_1/ TIM1_CH2N_2/USART1_RX_9/ SPI_NSS_2/SPI_NSS_6/
_	_	_	12	15	PC5	1/0	PC5	TIM1_ETR/SPI_SCK	TIM1_CH2_7/TIM1_CH2_8/ TIM1_CH3_3/TIM1_ETR_2/ TIM2_CH1_ETR_2/USART1_TX_6/ I2C_SCL_2/SPI_SCK_1
_	8	5	13	16	PC6	1/0	PC6	SPI_MOSI	TIM1_CH1_2/TIM1_CH3_7/ TIM1_CH3_8/TIM1_CH3N_3/ USART1_RX_6/USART1_CTS_1/ USART1_CTS_3/SPI_MOSI_1/ I2C_SDA_2
-	9	6	14	17	PC7	1/0	PC7	SPI_MISO	TIM1_CH2_2/TIM1_CH2_3/ TIM1_CH4_7/TIM1_CH4_8/ TIM2_CH2_3/USART1_CTS_6/ USART1_CTS_7/USART1_RTS_1/ USART1_RTS_3/SPI_MISO_1/ SPI_MISO_6
8	10	7	15	18	PD1 ⁽⁴⁾	1/0/A	PD1	TIM1_CH3N/SWIO/ ADC_IETR	TIM1_CH4_4/TIM1_CH4_5/ TIM1_CH3N_1/TIM1_CH3N_2/ USART1_TX_4/USART1_RX_2/ USART1_RX_5/I2C_SCL_1/ I2C_SDA_4
_	-	-	16	19	PD2	1/0/A	PD2	ADC_IN3/TIM1_CH1	TIM1_CH1_1/TIM1_CH2N_3/ TIM2_CH3_2/USART1_CTS_8/ SPI_SCK_2
_	-	-	17	20	PD3	1/0/A	PD3	ADC_IN4/TIM2_CH2/ USART1_CTS/ADC_RETR	TIM1_CH4_2/TIM2_CH1_ETR_7/ TIM2_CH2_1/USART1_RTS_8/ SPI_NSS_4/SPI_MOSI_2

注1: 表格缩写解释:

- I = TTL/CMOS电平斯密特输入; 0 = CMOS电平三态输出;
- A = 模拟信号输入或输出; P = 电源。
- 注2: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: TIM1_CH4_3表示AFIO寄存器相应位配置为011b。
- 注3:对于CH32V002J4M6芯片,PA1与PD6引脚在芯片内部短接合封,禁止两个I/0均配置为输出功能。

注4: 对于CH32V002J4M6芯片, PD1、PD4与PD5引脚在芯片内部短接合封, 禁止这三个I/0中任意两个及以上I/0配置为输出功能。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-2 引脚复用和重映射功能

复用引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI
PA1	ADC_IN1	TIM1_CH2 TIM1_CH2_1 TIM1_CH2_9	TIM2_CH2_5 TIM2_CH2_6	USART1_RX_8	ΧI		SPI_SCK_5
PA2	ADC_INO ADC_IETR_1	TIM1_CH3_9 TIM1_CH2N TIM1_CH2N_1 TIM1_CH2N_4 TIM1_CH2N_5 TIM1_CH2N_6	TIM2_CH3_5 TIM2_CH3_6 TIM2_CH3_7		ХО		SPI_MOSI_5
PC0		TIM1_CH3_2 TIM1_CH1N_7 TIM1_CH1N_9	TIM2_CH1_ETR_4 TIM2_CH3 TIM2_CH3_1	USART1_TX_3			SPI_NSS_1 SPI_MOSI_3
PC1		TIM1_CH2N_7 TIM1_CH2N_9 TIM1_BKIN_2 TIM1_BKIN_3	TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 TIM2_CH2_4 TIM2_CH4_2	USART1_RX_3		12C_SDA	SPI_NSS SPI_NSS_5
PC2	ADC_RETR_1	TIM1_CH3N_7 TIM1_CH3N_9 TIM1_BKIN TIM1_BKIN_1 TIM1_ETR_3	T1M2_CH2_2	USART1_RTS USART1_RTS_2		12C_SCL	
PC3		TIM1_CH3 TIM1_CH3_1 TIM1_CH3_5 TIM1_CH1N_2 TIM1_CH1N_3	T1M2_CH3_4	USART1_CTS_2			
PC4	ADC_IN2	TIM1_CH1_3 TIM1_CH1_7 TIM1_CH1_8 TIM1_CH4 TIM1_CH4_1 TIM1_CH2_1		USART1_RX_9	MCO		SPI_NSS_2 SPI_NSS_6
PC5		TIM1_CH2_7 TIM1_CH2_8 TIM1_CH3_3 TIM1_ETR TIM1_ETR_2	TIM2_CH1_ETR_2	USART1_TX_6		12C_SCL_2	SPI_SCK SPI_SCK_1
PC6		TIM1_CH1_2 TIM1_CH3_7 TIM1_CH3_8 TIM1_CH3N_3		USART1_RX_6 USART1_CTS_1 USART1_CTS_3		12C_SDA_2	SPI_MOSI SPI_MOSI_1
PC7		TIM1_CH2_2 TIM1_CH2_3 TIM1_CH4_7 TIM1_CH4_8	T1M2_CH2_3	USART1_CTS_6 USART1_CTS_7 USART1_RTS_1 USART1_RTS_3			SPI_MISO SPI_MISO_1 SPI_MISO_6
PD0		TIM1_CH1N TIM1_CH1N_1 TIM1_CH3N_4 TIM1_CH3N_5 TIM1_CH3N_6		USART1_TX_2		12C_SDA_1	
PD1	ADC_IETR	TIM1_CH4_4 TIM1_CH4_5 TIM1_CH3N TIM1_CH3N_1 TIM1_CH3N_2		USART1_TX_4 USART1_RX_2 USART1_RX_5	SWIO SWDIO		
PD2	ADC_IN3	TIM1_CH1 TIM1_CH1_1 TIM1_CH2N_3	T1M2_CH3_2	USART1_CTS_8			SPI_SCK_2

复用 引脚	ADC	TIM1	TIM2	USART	SYS	120	SPI
PD3	ADC_IN4 ADC_RETR	TIM1_CH4_2	TIM2_CH1_ETR_7 TIM2_CH2 TIM2_CH2_1	USART1_CTS USART1_RTS_8			SPI_NSS_4 SPI_MOSI_2
PD4	ADC_IN7	TIM1_CH4_3 TIM1_ETR_1 TIM1_ETR_4 TIM1_ETR_5 TIM1_ETR_6	TIM2_CH1_ETR TIM2_CH2_7	USART1_RTS_9			SPI_SCK_4
PD5	ADC_IN5		T1M2_CH4_3	USART1_TX USART1_RX_1 USART1_CTS_9			SPI_MISO_4
PD6	ADC_IN6		T1M2_CH3_3	USART1_TX_1 USART1_RX			SPI_MOSI_4
PD7			TIM2_CH4 TIM2_CH4_1	USART1_CTS_4 USART1_CTS_5	RST		

第3章 电气特性

3.1 测试条件

除非特殊说明和标注,所有电压都以 Vss 为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 V_{DD} = 3. 3V 或 5V 的环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

图 3-1 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V_{DD} – V_{SS}	外部主供电引脚 V∞上的电压	-0. 3	5. 5	٧
V_{1N}	1/0 引脚上的电压	V _{ss} -0. 3	V _{DD} +0. 3	V
$ \triangle V_{DD_x} $	主供电引脚各 V∞之间的电压差		50	mV
$ \triangle V_{ss_{-x}} $	公共地引脚各 Vss 之间的电压差		50	mV
V _{ESD (HBM)}	普通 I/O 引脚的 ESD 静电放电电压(HBM) 4K			
I _{VDD}	所有 V∞主供电引脚的合计总电流		100	mA
I _{vss}	所有 Vss 公共地引脚的合计总电流		200	mA
I 10	任意 1/0 和控制引脚上的灌电流		30	
I 10	任意 1/0 和控制引脚上的源电流		-30	
	HSE 的 XI 引脚		+/-4	mA
I INJ (PIN)	其他引脚的注入电流		+/-4	
Σ I INJ (PIN)	所有 I/0 和控制引脚的总注入电流		+/-20	

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK} 或 F _{SYS}	内部系统总线频率 或微处理器主频			48	MHz
V _{DD}	标准工作电压	未使用 ADC 功能	2. 0	5. 5	V
V DD	秋/E上1F电压	使用 ADC 功能	2. 4	5. 5	V
T _A	环境温度		-40	85	°C
TJ	结温度范围		-40	105	°C

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
+	V₀上升速率		0	∞	ue/V
t _{VDD}	V∞下降速率		40	∞	us/V

3.3.2 内置复位和电源控制模块特性

表 3-4 复位及电压监测

符号	参数	条件	最小值	典型值	最大值	单位	
		PLS[1:0] = 00 上升沿		1. 86		٧	
		PLS[1:0] = 00 下降沿		1. 85]	
		PLS[1:0] = 01 上升沿		2. 22		V	
v	可编程电压检测器的	PLS[1:0] = 01 下降沿		2. 21]	
$V_{ ext{PVD}}$	电平选择	PLS[1:0] = 10 上升沿		2. 42		l v	
		PLS[1:0] = 10 下降沿		2. 4		V	
		PLS[1:0] = 11 上升沿		2. 64		v	
		PLS[1:0] = 11 下降沿		2. 59			
$V_{ t PVDhyst}$	PVD 迟滞		5	20	60	mV	
\ \ \	· · 上电/掉电复位阈值	上升沿	1. 7	1. 85	2. 0	V	
V _{POR/PDR}	工电/ 挥电发性侧阻	下降沿	1. 6	1. 75	1. 9	V	
$V_{\sf PDRhyst}$	PDR 迟滞		60	80	100	mV	
+	上电复位	RST_MODE[1:0] = 11		2		ms	
t _{rsttempo}	其他复位			300		us	

注: 1. 常温测试值。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 18	1. 2	1. 22	٧
$T_{S_vrefint}$	当读出内部参考电压时, ADC 的采样时间	建议慢速采样	3		240	1/f _{ADC}

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 VDD = 3. 3V 或 5V 情况下,测试时:所有 I/0 端口配置下拉输入,HSI = 24MHz(已校准),寄存器 PWR_CTLR 的位 LDO_MODE = 10。使能或关闭所有外设时钟的功耗。

表 3-6 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

	~171///	*关至时电加油机,	メルベエーい	- 200 CL 2 Hel. 2 L2 L	~13		
符号	参数		条件		典型	值	单位
117.5	多奴	HSI/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	半江
		运行于高速外部		F _{HCLK} = 48MHz	4. 3	3. 4	
		时钟(HSE)		$F_{HCLK} = 24MHz$	3. 2	2. 7	
		(HSE SI = 00,	Х	F _{HCLK} = 16MHz	2. 7	2. 4	
	运行模式	HSE LP = 1)		$F_{HCLK} = 8MHz$	2. 4	2. 3	
		IIOL_LI - I/		F _{HCLK} = 750KHz	1. 7	1. 7	
I _{DD} (1)	下的供应			$F_{HCLK} = 48MHz$	3. 6	2. 7	mA
	电流			$F_{HCLK} = 24MHz$	2. 4	1. 9	
		运行于高速内部	0	$F_{HCLK} = 16MHz$	2. 0	1.6	
		RC振荡器(HSI)		$F_{HCLK} = 8MHz$	1. 7	1.5	
				F _{HCLK} = 750KHz	0. 9	0. 9	
			1	$F_{HCLK} = 40KHz$	0. 6	0.6	

注:以上为实测参数。

表 3-7 睡眠模式下典型的电流消耗,数据处理代码从内部闪存或 SRAM 中运行

符号	\$	条件			典型	<u>!</u> 值	举 / ÷						
付写	参数	HSI/HSE	HSI_LP	F _{HCLK}	使能所有外设	关闭所有外设	単位						
		运行于高速外		$F_{HCLK} = 48MHz$	2. 9	2. 0							
		部时钟(HSE)		$F_{HCLK} = 24MHz$	2. 2	1. 7							
	SLEEP睡眠	При три (пое) (ное) (HSE SI = 00,	Х	$F_{HCLK} = 16MHz$	2. 1	1.8							
	模式下的供	$HSE_SI = 00,$ $HSE_LP = 1)$		$F_{HCLK} = 8MHz$	1.8	1. 7							
(1)	应电流(此	IIOL_LI = 17		F _{HCLK} = 750KHz	1. 6	1.6	_m A						
I DD	时外设供电			$F_{HCLK} = 48MHz$	2. 2	1. 3	IIIA						
	和时钟保	运行于高速内		$F_{HCLK} = 24MHz$	1. 5	1. 0							
	持)	部 RC 振 荡 器	0	0	0	0	0	0	0	F _{HCLK} = 16MHz	1. 3	1. 0	
		(HSI)		F _{HCLK} = 8MHz	1. 1	0. 9							
				F _{HCLK} = 750KHz	0. 9	0. 9							

		1	$F_{HCLK} = 40KHz$	0. 6	0.6	

注: 以上为实测参数。

表 3-8 待机模式下典型的电流消耗

符号	参数		条件		典型值	单位	
1975	多数	独立看门狗	LSI	$V_{ extsf{DD}}$	兴 空祖	半江	
		开启	т ф	3. 3V	10. 6		
	STANDBY 待机 模式下的供 应电流	开归	开启	5 V	11. 6		
١,		关闭	关闭	3. 3V	10. 1		
l _{DD}				5 V	11. 0	uA	
		 关闭	开启	3. 3V	10. 6		
		ZNJ	Л <i>Г</i>	5 V	11. 5		

注: 以上为实测参数。

3.3.5 外部时钟源特性

表 3-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{HSE_ext}	外部时钟频率		3	24	32	MHz
V _{HSEH} ⁽¹⁾	XI 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	٧
V _{HSEL} ⁽¹⁾	XI 输入引脚低电平电压		0		0. 2V _{DD}	٧
$C_{in(HSE)}$	XI 输入电容			5		рF
DuCy (HSE)	占空比(Duty cycle)		40	50	60	%
Iι	XI 输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图 3-3 外部提供高频时钟源电路

表 3-10 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
Fxı	谐振器频率		3	24	32	MHz
$R_{\scriptscriptstyle F}$	反馈电阻 (无需外置)			250		kΩ
C_{LOAD}	建议的负载电容与对应晶体 串行阻抗 R。	$R_{s} = 60 \Omega^{(1)}$		20		pF
	HSF 纵动田治	HSE_LP = 0, 20p 负载		1. 6		mA
HSE		HSE_LP = 1, 20p 负载		0.8		mA
g _m	振荡器的跨导	启动		21		mA/V

- 1					
	t _{su (HSE)}	启动时间	V∞是稳定	1. 5 (2)	ms

- 注: 1.25M 晶体 ESR 建议不超过 80 欧, 低于 25M 可适当放宽。
 - 2. 启动时间指从 HSEON 开启到 HSERDY 被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1 = CL2。

图 3-4 外接 24M 晶体典型电路

3.3.6 内部时钟源特性

表 3-11 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)	HSI_LP = 0		24		MHz
FHSI		HSI_LP = 1	30	42	58	KHz
DuCy _{HS1}	占空比(Duty cycle)		45	50	55	%
	HSI 振荡器的精度(校准后)	HSI_LP = 0,	-2. 1		2. 1	%
ACC _{HS1}		$T_A = -10^{\circ}C \sim 70^{\circ}C$	2. 1		2. 1	/0
AUGHST		$HSI_{LP} = 0,$	-3		3	%
		$T_A = -40^{\circ}C \sim 85^{\circ}C$	3		3	/0
t _{SU(HSI)} (1)	HSI 振荡器启动稳定时间			3	8	us
	HSI 振荡器功耗	HSI_LP = 0		200		uA
DD (HSI)	1131 70以7の百百少1个七	HSI_LP = 1		8. 5		uA

注: 1. 寄存器 RCC_CTLR HSION 置 1, 等待 HSIRDY 置 1。

表 3-12 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
FLSI	频率		90	128	172	KHz
DuCy _{LS1}	占空比(Duty cycle)		45	50	55	%
t _{SU(LSI)} (1)	LSI 振荡器启动稳定时间			30	100	us
I DD (LSI) (1)	LSI 振荡器功耗			550		nA

注: 1. 寄存器 RCC_CTLR LSION 置 1, 等待 LSIRDY 置 1。

3.3.7 从低功耗模式唤醒的时间

表 3-13 低功耗模式唤醒的时间

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	10	us
twustdby	从待机模式唤醒	LDO 稳定时间+使用 HSI RC 时钟唤醒	250	us

注:以上为实测参数。

3.3.8 存储器特性

表 3-14 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog_page}	页(256 字节)编程时间			1. 5	2. 0	ms
t _{erase_page}	页(256 字节)擦除时间			2. 5	3. 1	ms
t _{erase_sec}	扇区(1K 字节)擦除时间			2. 7	3. 3	ms

表 3-15 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	擦写次数	$T_A = 25^{\circ}C$	100K			次
t _{RET}	数据保存期限		10			年

3.3.9 I/0 端口特性

表 3-16 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	标准 I/0 引脚,输入高电平电压		0. 3*V _{DD} +0. 7		$V_{ exttt{DD}}$	٧
V _{IL}	标准 I/0 引脚,输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
V_{hys}	标准 I/0 施密特触发器电压迟滞		150			mV
I Ikg	标准 I/0 引脚输入漏电流				1	uA
R_{PU}	上拉等效电阻		35	45	55	kΩ
R_{PD}	下拉等效电组		35	45	55	kΩ
C 10	1/0 引脚电容			5		рF

输出驱动电流特性

GP10(通用输入/输出端口)可以吸收或输出多达 \pm 8mA 电流,并且吸收或输出 \pm 20mA 电流(不严格达到 V_{ol}/V_{oh})。在用户应用中,所有 1/0 引脚驱动总电流不能超过 3.2 节给出的绝对最大额定值。

表 3-17 输出电压特性

符号	参数	条件	最小值	最大值	单位
V _{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀ = +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -0. 4		v
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀ = +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	2. 3		v
V_{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		1. 3	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <5. 5V	V _{DD} -1.3		v

注:以上条件中如果多个 I/0 引脚同时驱动,电流总和不能超过表 3.2 节给出的绝对最大额定值。另外多个 I/0 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 I/0 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-18 输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{max(10)out}	最大频率	$CL = 50pF, V_{DD} = 2.7-5.5V$		30	MHz
t _{f(I0)out}	输出高至低电平的下降时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns
t _{r (10) out}	输出低至高电平的上升时间	$CL = 50pF, V_{DD} = 2.7-5.5V$		10	ns

┃ t _{ехтірж} │ EXT I 控制器检测到外部信号的脉冲宽度 │

注: 以上均为设计参数保证。

3.3.10 RST 引脚特性

表 3-19 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH(RST)}	RST 输入高电平电压		0. 3*V _{DD} +0. 7		$V_{ exttt{DD}}$	٧
V _{IL (RST)}	RST 输入低电平电压		0		0. 15*V _{DD} +0. 3	٧
V _{hys (RST)}	RST 施密特触发器电压迟滞		150			mV
R _{PU}	上拉等效电阻		35	45	55	kΩ
$V_{\text{F(RST)}}$	RST 输入可被滤波脉宽				100	ns
V _{NF (RST)}	RST 输入无法滤波脉宽		300			ns

电路参考设计及要求:

图 3-5 外部复位引脚典型电路

注:图中的电容是可选的,可以用于滤除按键抖动。

3.3.11 TIM 定时器特性

表 3-20 TIMx 特性

符号	参数	条件	最小值	最大值	单位
+	字时哭其准时钟		1		t _{TIM×CLK}
t _{res(TIM)} 定时器基准时钟		$f_{TIMxCLK} = 48MHz$	20.8		ns
F _{EXT} CH1 至 CH4 的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz	
	661 至 664 的延时船外部时钟频率	$f_{TIM\times CLK} = 48MHz$	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时, 16 位计数		1	65536	t _{TIMxCLK}
t _{counter}	器时钟周期	f _{TIMxCLK} = 48MHz	0. 0208	1363	us
t _{MAX_COUNT}	最大可能的计数			65535	t _{TIM×CLK}
		f _{TIMxCLK} = 48MHz		1363	us

3.3.12 I2C 接口特性

图 3-6 120 总线时序图

表 3-21 120 接口特性

符号	↔ ₩ ₁	标准 I2C		快速 120		光 / ÷
	· 参数 	最小值	最大值	最小值	最大值	単位
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w (SCKH)}	SCL 时钟高电平时间	4. 0		0. 6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns
t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h(STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0. 6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0. 6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	рF

3.3.13 SPI 接口特性

图 3-7 SPI 主模式时序图

图 3-8-1 SPI 从模式时序图(CPHA=0, CPOL=0)

图 3-8-2 SPI 从模式时序图 (CPHA=0, CPOL=1)

图 3-9-1 SPI 从模式时序图 (CPHA=1, CPOL=0)

图 3-9-2 SPI 从模式时序图 (CPHA=1, CPOL=1)

表 3-22 SPI 接口特性

符号	参数		条件	最小值	最大值	单位		
f _{sck} /t _{sck}	SPI 时钟频率	主模式			24	MHz		
I SCK/ LSCK	OPT IN ITH WIPE	从模式			24	MHz		
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容	字: C = 30pF		10	ns		
t _{su (NSS)}	NSS 建立时间	从模式		2t _{HCLK}		ns		
t _{h (NSS)}	NSS 保持时间	从模式		2t _{HCLK}		ns		
+ /+	SCK 高电平和低电平时间	主模式,	$f_{HCLK} = 24MHz$,	70	97	ns		
$t_{w(SCKH)}/t_{w(SCKL)}$	30% 同电十种似电十时间	预分频系	系数=4	70	71	ris		
_		主模式	HSRXEN = 0	15		20		
t _{su(MI)}	数据输入建立时间	工铁八	HSRXEN = 1	15-0. 5t _{scк}		ns		
t _{su(si)}		从模式		4		ns		
_		→ ## -+	HSRXEN = 0	-4				
t _{h(MI)}	数据输入保持时间	主模式	HSRXEN = 1	0. 5t _{sck} -4		ns		
t _{h(SI)}	从模式	从模式		从模式		4		ns
t _{a (S0)}	数据输出访问时间	从模式,	f _{HCLK} = 20MHz	0	1t _{HCLK}	ns		
t _{dis(SO)}	数据输出禁止时间	从模式		0	10	ns		
t _{v(S0)}	*************************************	从模式	(使能边沿之后)		15	ns		
t _{v (MO)}	· 数据输出有效时间 ·	主模式(使能边沿之后)			5	ns		
t _{h (S0)}	** 据绘山伊林叶词	从模式	(使能边沿之后)	6		ns		
t _{h (MO)}	· 数据输出保持时间 · · · · · · · · · · · · · · · · · · ·	主模式	(使能边沿之后)	0		ns		

3. 3. 14 12 位 ADC 特性

表 3-23 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
.,	<i>m</i> + + =	f _s < 1MHz	2. 4		5. 5	٧
$V_{ exttt{DD}}$	供电电压	$f_s = 3MHz$	4. 5		5. 5	٧
	ADC 供电电流	$f_s = 3MHz$		1. 34		mA
l _{dda}	(不含 buffer)	$f_s = 1MHz$		0. 42		mA
	ADO Lff 白白由法	ADC_LP = 0		0. 68		mA
l _{BUF}	ADC buffer 自身电流	ADC_LP = 1		0. 13		mA
f _{ADC}	ADC 时钟频率			16	48	MHz
fs	采样速率		0. 06		3	MHz
	外部触发频率	$f_{ADC} = 16MHz$			900	KHz
f _{TRIG}		$f_{ADC} = 48MHz$			2. 7	MHz
					18	1/f _{ADC}
V _{AIN}	转换电压范围		0		V _{DD}	٧
R _{AIN}	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0. 6	1.5	kΩ
C _{ADC}	内部采样和保持电容			4		pF
	拉 华时间	$f_{ADC} = 16MHz$			6. 25	us
t _{CAL}	校准时间				100	1/f _{ADC}
+	(六) 备h ++2 ±+46 p+3 4	$f_{ADC} = 16MHz$			0. 125	us
t _{lat}	注入触发转换时延	$f_{ADC} = 48MHz$			0. 042	us

				2	1/f _{ADC}
		$f_{ADC} = 16MHz$		0. 125	us
t _{latr}	常规触发转换时延	$f_{ADC} = 48MHz$		0. 042	us
				2	1/f _{ADC}
		$f_{ADC} = 16MHz$	0. 218	14. 97	us
t。 采样时间			3. 5	239. 5	1/f _{ADC}
	木件印印 	$f_{ADC} = 48MHz$	0. 073	0. 739	us
			3. 5	35. 5	1/f _{ADC}
t _{stab}	上电时间			1	us
	总的转换时间(包括采样时间)	$f_{ADC} = 16MHz$	1	15. 75	us
t _{conv}			16	252	1/f _{ADC}
		f _{ADC} = 48MHz	0. 33	1	us
			16	48	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗, 使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。

表 3-24-1 f_{ADC} = 16MHz 时的最大 R_{AIN}

T _s (周期)	t _s (us)	最大 R _{AIN} (kΩ)
3. 5	0. 22	4
7. 5	0. 47	10
13. 5	0. 84	20
28. 5	1. 78	45
41. 5	2. 59	65
55. 5	3. 47	/
71. 5	4. 47	/
239. 5	14. 97	/

表 3-24-2 f_{ADC} = 48MHz 时的最大 R_{AIN}(高速模式)

Ts(周期) ts(us)		最大 R _{AIN} (kΩ)
3. 5	0. 073	1. 5
7. 5	0. 16	3
11. 5	0. 24	5
19. 5	0. 41	9
35. 5	0. 74	17
55. 5	1. 16	28
71. 5	1. 49	37
239. 5	4. 99	/

表 3-25 ADC 误差(f_{ADC} = 16MHz, ADC_LP = 1)

符号	参数	条件	最小值	典型值	最大值	单位
E0	偏移误差	D / 101 O		±2	±6	
ED	微分非线性误差	$R_{AIN} < 10k \Omega$, $V_{DD} = 5V$		±2	±8	LSB
EL	积分非线性误差	$V_{DD} = 5V$		±2	±8	

注: 以上均为设计参数保证。

 C_p 表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p 数值将降低转换精度,解决办法是降低 f_{ADC} 值。

图 3-10 ADC 典型连接图

图 3-11 模拟电源及退耦电路参考

第4章 封装及订货信息

芯片封装

封装形式	塑体尺寸	引脚节距		封装说明	订货型号
TSS0P20	4. 4*6. 5mm	0. 65mm	25.6mil	薄小型的 20 脚贴片	CH32V002F4P6
QFN20	3*3mm	0. 4mm	15.7mil	四边无引线 20 脚	CH32V002F4U6
S0P16	3. 9*10. 0mm	1. 27mm	50mil	标准的 16 脚贴片	CH32V002A4M6
QFN12	2*2mm	0. 4mm	15.7mil	四边无引线 12 脚	CH32V002D4U6
SOP8	3. 9*5. 0mm	1. 27mm	50mil	标准的 8 脚贴片	CH32V002J4M6

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-1 TSSOP20 封装

图 4-2 QFN20 封装 3.0 ± 0.1 0.2 ± 0.05 U #10 \Box 1.75 ± 0.2 ö į. Top View **Bottom View** က #20 #6 #1 #5 #1 0.35 ± 0.1 0.025 ± 0.025 (0.15 ± 0.05) 0.4 0.2 ± 0.05 0.75 ± 0.05 (0.55 ± 0.05)

图 4-3 SOP16 封装

图 4-4 QFN12 封装

图 4-5 SOP8 封装

系列产品命名规则

F = Arm 内核, 通用 MCU

V = 青稞 RISC-V 内核, 通用 MCU

L = 青稞 RISC-V 内核, 低功耗 MCU

X = 青稞 RISC-V 内核, 专用或特殊外设 MCU

M = 青稞 RISC-V 内核,内置预驱的电机 MCU

产品类型(*)+产品子系列(**)

产品类型	产品子系列
0 = 青稞 V2/V4 内核,	02 = 16K 闪存超值通用型
超值版,主频<=48M	03 = 16K 闪存基础通用型, OPA
	05 = 32K 闪存增强通用型,OPA、双串口
	06 = 64K 闪存多能通用型,OPA、双串口、TKey
	07 = 基础电机应用型, OPA+CMP
	35 = 连接型, USB、USB PD/Type-C
	33 = 连接型, USB
1 = M3/青稞 V3/V4 内核,	03 = 连接型, USB
基本版,主频<=96M	05 = 连接型, USB HS、SDIO、CAN
2 = M3/青稞 V4 非浮点内核,	07 = 互联型, USB HS、CAN、以太网、SDIO、FSMC
增强版,主频<=144M	08 = 无线型, BLE5.x、CAN、USB、以太网
3 = 青稞 V4F 浮点内核,	17 = 互联型, USB HS、CAN、以太网(内置 PHY)、
增强版,主频<=144M	SDIO, FSMC

引脚数目

 J = 8 脚
 D = 12 脚
 A = 16 脚
 F = 20 脚
 E = 24 脚

 G = 28 脚
 K = 32 脚
 T = 36 脚
 C = 48 脚
 R = 64 脚

W = 68 脚 V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器 6 = 32K 闪存存储器 7 = 48K 闪存存储器

8 = 64K 闪存存储器 B = 128K 闪存存储器 C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

6 = -40°C~85°C(工业级) 7 = -40°C~105°C(汽车 2 级)

 $3 = -40^{\circ}C \sim 125^{\circ}C$ (汽车 1 级) $D = -40^{\circ}C \sim 150^{\circ}C$ (汽车 0 级)