

Simple Satellite Overview

Simple Sat (SimSat) Objectives

- SimSat is a fictional spacecraft that provides a reference mission context
- Provide a complete application suite illustrating
 - What apps are required to meet a mission's requirements
 - How they are configured and integrated as a system
- Provide example scripts
 - Integration test script
 - Operational script
- Provide context for training exercises

This slide deck does not cover OSK or the cFS.
See OSK Quick Start Guide or User's Guide for OSK and cFS descriptions.

SimSat

Low Earth Orbit (LEO)

- -90 minute orbit
- One 15 minute ground contact per orbit with bi-directional comm

One science instrument, iSim

- Detector's 1Hz scan produces 10 bytes of data
- Power on sequence
 - Apply power, wait for instrument warm up (~20s), then enable science
- Power off sequence
 - Disable power

SimSat Ops Concepts & Requirements

Science team requires

- A 1Hz auxiliary spacecraft data containing time, attitude, orbit data, and instrument status
- Start science during a ground contact. Can be automated but ops prefers to monitor instrument health.
- Ground contact resources/schedule are preplanned
 - Implies autonomous operations can be loaded on board using stored commands
- Each pass can either be a low or high downlink rate
- FSW must autonomously monitor instrument health and power off the instrument in the event of a fault

SimSat Applications

SimSat Applications (1 of 3)

- The previous slide shows a cFS "bubble" chart where each app is a bubble and they communicate via messages on the software bus.
 - The blue cFS apps are reusable open source apps that are available on https://github.com/nasa/xx where 'xx' is the abbreviated app name
 - The green OSK apps were written specifically for OSK
 - The external COSMOS and 42 interfaces use UDP and TCP respectively
- Apps are designed to perform a dedicated function with clear interfaces and they operate in groups to achieve higher level mission objectives

Runtime Environment Apps

- Kit Command Ingest (KIT_CI) receives CCSDS command packets from COSMOS and sends them on the Software Bus
- Kit Telemetry Output (KIT_TO) reads CCSDS telemetry packets from the Software Bus and sends them to COSMOS
- Kit Scheduler (KIT_SCH) contains tables that define when to send messages on the Software Bus
 - Apps can use these messages to perform synchronous activities, e.g. sending their housekeeping status packet

SimSat Applications (2 of 3)

Data/File Management

- File Manager (FM) provides a ground interface for performing common directory and file operations
- Data Storage (DS) reads packets from the software bus and writes them to files according to table-defined
- Housekeeping (HK) creates new telemetry packets from pieces of other telemetry packets. The new packets are written to the SB and can be stored and/or telemetered.
- Trivial File Transfer Protocol (TFTP) transfers files between the flight and ground COSMOS. There's an open source CCSDS File Delivery Protocol (CFDP) app that will be added in a future release.

Autonomy

- Limit Checker (LC) monitors one or more telemetry values and start stored command relative time sequences (RTSs) in response to limit violations
- Stored Command (SC) Provides services to execute preloaded, table-defined command sequences at predetermined absolute or relative time intervals

SimSat Applications (3 of 3)

Attitude Determination and Control Apps

- 42 Interface (I42) manages a TCP/IP connection to 42 and transfers actuators/sensor packets to/from 42
- 42 FSW (F42) Implements the "ThreeAxisFsw" attitude control algorithm defined in
 42

Maintenance

- Memory Dwell (MD) creates telemetry packets containing contents of memory location specified in dwell tables
- Memory Manager (MM) provides read/write access to memory

Health & Safety

- Checksum (CS) monitors checksums across table-defined static code/data regions and reports errors
- Health & Safety (HS) monitors table-defined application check-in and event messages and reporting errors and/or starting a RTS to address the issue

SimSat App Solution (1 of 5)

iSim App

- Simulate science instrument data
- Creates science data files and moves them to downlink directory
- Commands
 - Power instrument on/off
 - Start/stop science data
 - Set/clear fault
- Telemetry
 - Instrument status: Off, Initializing, Ready
 - Science data: Enabled, disabled
 - Fault: True, False
- Use informational events to trace behavior.

SimSat App Solution (1 of 5)

OSK – Making Space for Everyone

Contact Activities

Assess health

Retrieve Data

Upload

- Create and load stored command sequences to run a demo
- Use OpenSatKit exercises to work through an example

SimSat Application Configuration

SimSat Application Configuration (1 of 4)

Housekeeping (HK)

- HK Combo packet 1 (0x089C) comes predefined with HK and contains HK data from each cFE app
 - Scheduler Slot 6, Activity 6
- Create a new auxiliary science data packet using HK combo packet 2 (0x089D) that combines instrument status telemetry and ADC data
 - Scheduler Slot 6, Activity

Data Storage (DS)

- Configure file & filter tables to create:
 - Event message file: DS filter 6, file 0
 - Auxiliary data file: DS filter 15, file 6

SimSat Application Configuration (2 of 4)

Telemetry Output (KIT_TO)

- Doesn't support filter tables
- Create low/high tables that define which packets will be output for each scenario
- Load low/high rate tables using stored commands

Limit Checker

- Monitor instrument status for the ready state and start RTS to enable science
- Monitor instrument for a fault and start RTS to power off instrument if a fault persists for 3 seconds
 - WP #12 Monitor ISIM fault
 - AP #2 Start RTS 6 to stop science and power off the instrument

SimSat Application Configuration (3 of 4)

Stored Command (SC)

 Create Relative Time Sequences (RTS) to perform specific operational functions

RTS Definitions

6 - Power off science instrument

TODO

- Load KIT_TO low rate table
- Load KIT_TO high rate table
- Power on science instrument
- Start science
- Stop science
- Start pass
- End pass

Absolute Time Sequence (ATS)

- Create an ATS to manage 24 hours of operations
- For periodic operations such as bSat the duration of an ATS should be much longer than the ATS upload frequency to account for contingencies

SimSat Application Configuration (4 of 4)

File Manager (FM) & Trivial File Transfer Protocol (TFTP)

- Use FM to perform directory listing of files to downlink
- Transfer files from flight to ground using TFTP

Checksum

Configure checksum to monitor the stored command table checksums

CCSDS File Delivery Protocol (CF)

- Currently not in the kit
- CF could significantly change the operational scenarios. Most of the file transfer and onboard file deletion activities could be automated if CF's "hot directory" and Class 2 mode are used

Contact Planning

For each ground contact

- 1. Assess health of spacecraft
 - a. Take action if needed
- 2. Manage onboard data files
- 3. Uplink new ATS if needed

Assess Health of Spacecraft

Verify expected spacecraft state

- This is mission specific, includes items such as
 - Expected control mode, clear LC flags, etc.

Dump, transfer, and display event log

- Event log should not fill up with informational events if you're judicious on how you define events. See cFE training module for guidelines
- Clear log after log transferred to the ground

OSK – Making Space for Everyone cFS Training- Page 18

Manage Onboard Data Files

- 1. Use FM to list directory to a file
- 2. Transfer directory file to the ground
- 3. Sort files in priority order
- 4. Transfer files in priority order
 - a. Delete each file after successful transfer

Reference

