Change point detection in mobile advertising

Nina Golyandina, Kliment Merzlyakov

Saint Petersburg State University Statistical modeling department

Statistical methods and Machine Learning in Internet Advertising
London
17.10.2018

Content

- Change point detection
 - What is change point detection?
 - Real world examples of change point detection
 - Reasons to detect change points
- Change point detection techniques
- Airpush cases
 - Fraud elimination
 - Trend extraction
 - Smart alerts

Change point detection Change point detection techniques Airpush cases

Change point detection

What is change point detection?

- Change point point in time series where some significant change occurred
- Change point detection group of methods to find change points in time series
- Change points can be two types:
 - Local single change or outlier
 - Global change of time series structure

Local change point

Global change point

Why do we care?

When it helps:

- Forecasting
- Extracting trend more accurately
- Searching issues in historical data
- Reacting on changes quickly

Without CP detection

With CP detection

What can we do:

- Remove/change outliers or use robust methods
- Split time series and analyze separately

Types of change points

- Trend change
- Mean change
- Variance change
- Single point change
- Periodic component change

Common graph

Common graph with trend

Common graph without trend

Common graph periodic frequency

Mean change

Variance change

Trend change

Point change

Structure change

Change point detection
Change point detection techniques
Airpush cases

Change point detection techniques

SSA for change point detection

Singular spectrum analysis (SSA) method can be used to allocate change points. Let $x_1,x_2,...$ be a time series and N,L,l,p,q be fixed integers so that $0 \le l < L \le N/2$ and $0 \le p < q$. The SSA change point detection algorithm is as follows. For each n=0,1,... we compute:

- the base matrix $\mathbb{X}^{(n)}$,
- the lag-covariance matrix $\mathbb{R}_n = \mathbb{X}^{(n)}(\mathbb{X}^{(n)})^{\top}$,
- the SVD of \mathbb{R}_n ,
- $\nu_{n,I,p,q}$, the sum of the squared Euclidean distances between the vectors $\mathbb{X}_{j}^{(n)}(j=p+1,...,q)$ and the I-dimensional subspace $L_{n,I}$, and
- S_n , the normalized squared distance.

Large values of S_n indicate a change in the time series.

This method has the following parameters:

- \bullet N window size for base matrix
- \bullet L, I SSA window and number of eigenvectors
- p, q window size for test matrix
- threshold

SSA in action. Mean change

Let's try to apply SSA algorithm to real time series mentioned above. With manually settled parameters.

Mean change

Detection
$$N = 48$$
, $L = 24$, $I = 5$, p

$$= 49, q = L, threshold = 0.15$$

Works good for mean change

SSA in action. Variance change

$$N = 48$$
, $L = 24$, $I = 5$, $p = 49$, $q = L$, threshold

= 0.15

Works good for variance change

SSA in action. Period change

$$N = 48$$
, $L = 24$, $I = 5$, $p = 49$, $q = L$, threshold

= 0.1

Works well for period change

SSA in action. Point change

$$N = 48$$
, $L = 24$, $I = 5$, $p = 49$, $q = L$, threshold

Doesn't work for point change. The reason is that we always move window from left to the right.

= 0.1

SSA in action. Point change

Let's try to reverse the time series each time we find change point.

$$N = 48$$
, $L = 24$, $I = 5$, $p = 49$, $q = L$, threshold

Using this upgrade we make SSA algorithm working for point change as well

= 0.1

Long time series

- We have 5 time series 2856 points each. It is impressions time series for different countries hourly for 17 weeks.
- We have tagged change points manually in all these time series

Country A

Country A we manually detected 6 change points. First one - mean change along with variance change. Second one - variance change. Third one - point change. Fourth one - variance change. Fifth and sixth - points change.

Country B

observed by the series for the serie

Country C

Country C we manually detected 5 change points. First, second and fifth - mean change along with variance change (similar to country A). Third - variance change. Fourth - point change

Country D

Country D only one change point was manually detected - mean change along with variance change.

Country E

In time series for

Country E there is only one change point - mean change.

Another change point detection approach

- Apart from SSA there is another approach to find change points
- We can define change point detection problem as minimizing contrast function:

$$\mathbb{V}(\mathbf{t}, \mathbf{X}) := \sum_{i=1}^{K} c(x_{t_i} ... x_{t+1})$$

, where c() — some cost function, and $x_{t_i}...x_{t+1}$ — sub series of initial time series

ullet When quantity of change points K is known the problem is:

$$\min_t \mathbb{V}(\mathbf{t}, \mathbf{X})$$

 When quantity of change points unknown, then additional parameter penalty is added:

$$\min_{t} \mathbb{V}(\mathbf{t}, \mathbf{X}) + pen(\mathbf{t}, \mathbf{X})$$

Thus, such approach can be described as follows steps:

- Choosing cost function
- Minimizing contrast function
- Searching for change points quantity (when unknown beforehand)

Cost functions

There could be plenty of cost functions. Let's describe the most popular

• Mean absolute deviation. It finds changes in medians.

$$c(\mathbf{X}_I) = \sum_{t \in I} ||\mathbf{X}_t - \bar{\mathbf{X}}||_1$$

Mean squared deviation. It finds changes in means.

$$c(\mathbf{X}_I) = \sum_{t \in I} ||\mathbf{X}_t - \bar{\mathbf{X}}||_2^2$$

Kernel based method

$$c(\mathbf{X}_I) = \sum_{t \in I} ||\Phi(\mathbf{X}_t) - \bar{\mu}||_{\mathcal{H}}^2$$

Autoregression

$$c(\mathbf{X}_I) = \min_{\delta \in \mathbb{R}_n} \sum ||\mathbf{X}_t - \delta' z_t||_2^2$$

Cost functions. Continue

We can also create our own cost function. Fore example, according to understanding of our time series we can assume that it can be described with such model:

$$X = a + C\cos(2\pi \frac{n}{24}) + S\sin(2\pi \frac{n}{24}) + \epsilon$$

Then cost function can be:

$$c(\mathbf{X}_I) = \sum_{t \in I} ||\mathbf{X}_t - (a + C\cos(2\pi \frac{n}{24}) + S\sin(2\pi \frac{n}{24}))||_2^2$$

Search method

Apart from cost function we need to choose method of search change points. There are several well researched methods, we will use one of them — window method. Idea is straightforward:

- ullet Choosing wide of the window w
- Then algorithm slides across the time series with this window
- On each iteration it splits time series into two sub series
- Then for each sub series special metric is calculated:

$$d(x_{u..v}, x_{v..w}) = c(x_{u..w}) - c(x_{u..v}) - c(x_{v..w})$$

Applying approach to the real data

Let's try to apply all of the mentioned cost functions to the time series described above

	custom function	L1	L2	RBF	Autoregression
Country A	1.3582	0.2507	1.305	0.6877	2.3939
Country B	0.3312	0.0942	0.3312	0.8267	0.4111
Country C	1.2686	0.3407	1.1478	0.4265	1.6971
Country D	0.0007	0.0007	0.0007	0.0011	0.0025
Country E	0.4982	0.013	0.7521	0.0042	0.3022

The best result shows L_1 cost function (mean absolute deviation).

Applying approach to the real data. Contine

Let's take a look on the data

Most of the time looks pretty good.

Applying approach to the real data. Contine

Above case was when we defined number of change points in advance. But in real life problems most of the time do not know it. Thus let's try to calculate quantity of change points, using following penalty function:

$$pen_{BIC,L_2}(t) := \sigma \log T,$$

Here is the results on number of change points:

Country A — Actual amount: 8; Predicted amount: 5

Country B — Actual amount: 2; Predicted amount: 2

Country C — Actual amount: 6; Predicted amount: 6

Country D — Actual amount: 1; Predicted amount: 2

Country E — Actual amount: 1; Predicted amount: 1

Airpush cases

- Apps minutely requests data
- Red flag: strong pattern.
- Can be a automated bots behind pattern

- Goal: to be able to find such apps automatically
- We can reach this goal using frequency analysis

The framework can be described as follows:

- Apply logarithm to time series to stabilyze amplitude
- 2 Remove trend (low frequent part) from time series
- Apply Fourier transform to time series
- Estimate the distribution of periodogram values
- Compare distributions of each application with a distribution of white noise (which is exponential) using Kullback-Leibler divergence
- If divergence > threshold, then application is marked as suspicious

Airpush cases. Fraud elimination 1. Apply logarithm

. WA

Clean application

Managamana

Fraud application

2. Remove trend

3. Apply Fourier transform

Clean application

Fraud application

4. Estimate the distribution of periodogram values

5. Compare distributions

• Clean app score: 0.09

• Fraud app score: 1.87