UAS IS655 BDA-II Theory WillibrordusBayu-00000034000

Creation Date: Friday, June 3, 2022 05:09:45 PM Author: willi.brordus@student.umn.ac.id

UAS IS655 BDA-II Theory WillibrordusBayu-00000034000

Contents

UAS IS655 BDA-II Theory WillibrordusBayu-00000034000

Gradient Boosting	1
Gradient boosting - type 1	1.1
Variable Importance 1	1.2
Iteration Plot	1.3
Confusion Matrix	1.4
Neural Network	2
Neural network - type 1 · · · · · · · · · · · · · · · · · ·	2.1
Network · · · · · · · · · · · · · · · · · · ·	2.2
Iteration Plot 2	2.3
Confusion Matrix	2.4
MODEL SELECTION & SCORING	3
Model comparison 1 · · · · · · · · · · · · · · · · · ·	3.1
Header	3.2
Fit Statistic	3.3
Relative Importance 3	3.4
Lift	3.5
Expanded Pages	4
Gradient boosting - type 1 Supplement 1	4
Gradient boosting - type 1 Supplement 2	5
Gradient boosting - type 1 Supplement 3	6
Gradient boosting - type 1 Supplement 4	7
Gradient boosting - type 1 Supplement 5	8
Gradient boosting - type 1 Supplement 6	9
Gradient boosting - type 1 Supplement 7	10
Gradient boosting - type 1 Supplement 8	11
Neural network - type 1 Supplement 1	12
Neural network - type 1 Supplement 2	13
Neural network - type 1 Supplement 3	14
Neural network - type 1 Supplement 4	15

Contents

Ε	Expanded Pages	• •	• •	 ۰	• •	 ۰	• •	۰	 •	۰	•	۰	۰	۰	۰	۰	۰	4
	Neural network - type 1 Supplement 5					 ٠		۰		٠			•	•	٠		•	16
	Neural network - type 1 Supplement 6					 ٠		٠		٠		 ۰	۰	۰	•	۰	•	17
	Neural network - type 1 Supplement 7					 ٠		٠		٠		 ۰	۰	۰	•	۰	•	18
	Neural network - type 1 Supplement 8					 ٠		٠		٠		 ۰	۰	۰	•	۰	•	19
	Neural network - type 1 Supplement 9					 ٠		٠		٠		 ۰	۰	۰	•	۰	•	20
	Model comparison 1 Supplement 1					 ۰		۰		٠		 ۰	۰	۰	۰	۰		21
	Model comparison 1 Supplement 2					 ۰		۰		٠		 ۰	۰	۰	۰	۰		22
	Model comparison 1 Supplement 3					 ۰		۰		٠		 ۰	۰	۰	۰	۰		23
	Model comparison 1 Supplement 4			 ٠		 ٠		٠		٠		 ۰	۰	۰	۰	۰		24

Gradient Boosting type (event=organic) Validation F1 Score 0.969 Observations Used 18,249

Neural Network type (event=organic) Validation F1 Score 0.820 Observations Used 18,249

Model Comparison type (event=organic)

Variable
TotalVolume

Standard Deviation

309.3621

28.4736

26.5493

7.7386

5.2090

6.7932

Importance

322.0358

34.6993

33.0451

10.4722

7.6942

7.3199

Gradient boosting - type 1 Supplement 1

XLargeBags

AveragePrice

TotalBags

LargeBags

SmallBags

Validation Misclassification Rate	Misclassification Rate	Number of Trees
0.0515	0.0528	1
0.0497	0.0524	2
0.0491	0.0515	3
0.0486	0.0516	4
0.0477	0.0511	5
0.0477	0.0507	6
0.0471	0.0503	7
0.0471	0.0494	8
0.0471	0.0495	9
0.0468	0.0488	10
0.0462	0.0488	11
0.0460	0.0480	12
0.0457	0.0481	13
0.0458	0.0478	14
0.0462	0.0475	15
0.0444	0.0467	16
0.0440	0.0461	17
0.0431	0.0459	18
0.0433	0.0459	19
0.0427	0.0456	20
0.0426	0.0456	21
0.0426	0.0453	22
0.0422	0.0447	23
0.0420	0.0438	24
0.0409	0.0439	25
0.0404	0.0425	26
0.0400	0.0429	27
0.0391	0.0409	28
0.0391	0.0408	29
0.0380	0.0402	30
0.0373	0.0400	31
0.0378	0.0400	32
0.0365	0.0395	33
0.0365	0.0373	34
0.0356	0.0394	35
0.0360	0.0397	36
0.0356	0.0391	37
0.0356	0.0371	38
0.0330	0.0373	39
0.0345	0.0380	40
0.0340	0.0377	41
0.0338	0.0375	42
0.0334	0.0378	43
0.0334	0.0374	44
0.0332	0.0375	45
0.0327	0.0368	46
0.0323	0.0367	47
0.0312	0.0362	48
0.0309 0.0311	0.0359 0.0359	49 50

Predicted Observed

conventional

conventional

organic

organic

Gradient boosting - type 1 Supplement 3

conventional
conventional

conventional

organic

organic

Training Frequency

6,213

183

276

6,102

Training Percentage

97.14%

2.86%

4.33%

95.67%

Validation Percentage

97.66%

2.34%

3.86%

96.14%

Validation Frequency

2,666

64

106

2,639

Gradient boosting - type 1 Supplement 4

	Training Observations	Training Events	Training Lift	Training Lift Best	Training Cumulative Lift	Training Cumulative Lift Best	Validation Observations	Validation Events	Validation Lift	Validation Lift Best	Validation Cumulative Lift	Validation Cumulatives Lift Best
5.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
10.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
15.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
20.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
25.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
30.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
35.00	639	639	2.0038	2.0038	2.0038	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
40.00	639	638	2.0006	2.0038	2.0034	2.0038	274	274	1.9964	1.9964	1.9964	1.9964
45.00	639	618	1.9379	2.0038	1.9961	2.0038	274	265	1.9308	1.9964	1.9891	1.9964
50.00	639	438	1.3735	1.9661	1.9338	2.0000	274	208	1.5155	1.9964	1.9417	1.9964
55.00	639	181	0.5676	0.0000	1.8096	1.8182	274	70	0.5100	0.0364	1.8116	1.8182
60.00	639	22	0.0690	0.0000	1.6646	1.6667	274	7	0.0510	0.0000	1.6648	1.6667
65.00	639	7	0.0220	0.0000	1.5382	1.5385	274	3	0.0219	0.0000	1.5385	1.5385
70.00	639	1	0.0031	0.0000	1.4286	1.4286	274	0	0.0000	0.0000	1.4286	1.4286
75.00	639	0	0.0000	0.0000	1.3333	1.3333	274	0	0.0000	0.0000	1.3333	1.3333
80.00	639	0	0.0000	0.0000	1.2500	1.2500	274	0	0.0000	0.0000	1.2500	1.2500
85.00	639	0	0.0000	0.0000	1.1765	1.1765	274	0	0.0000	0.0000	1.1765	1.1765
90.00	639	0	0.0000	0.0000	1.1111	1.1111	274	0	0.0000	0.0000	1.1111	1.1111
95.00	639	0	0.0000	0.0000	1.0526	1.0526	274	0	0.0000	0.0000	1.0526	1.0526
100.00	633	0	0.0000	0.0000	1.0000	1.0000	269	0	0.0000	0.0000	1.0000	1.0000

Gradient boosting	- type 1 Supplement 5					
Cutoff	Training Sensitivity	Training 1 - Specificity	Training KS (Youden)			Validation KS (Youden)
0.00	1.0000 1.0000	1.000 0.579		1.0000 1.0000	1.000 0.584	
0.02	1.0000	0.389		1.0000	0.400	
0.03	0.9998	0.303		1.0000	0.306	
0.04	0.9997 0.9994	0.263		0.9993 0.9989	0.266	
0.06	0.9989	0.211		0.9989	0.203	
0.07	0.9984	0.192		0.9989	0.178	
0.08	0.9984 0.9984	0.174 0.164		0.9982 0.9982	0.166 0.157	
0.10	0.9980	0.156		0.9978	0.149	
0.11	0.9973	0.148		0.9974	0.141	
0.12	0.9973 0.9967	0.144		0.9971 0.9964	0.134	
0.13	0.9958	0.138		0.9964	0.127	
0.15	0.9956	0.123		0.9964	0.109	
0.16	0.9955	0.113		0.9964	0.100	
0.17 0.18	0.9950 0.9948	0.105		0.9956 0.9949	0.092	
0.19	0.9944	0.096		0.9945	0.085	
0.20	0.9937 0.9936	0.091 0.087		0.9942 0.9920	0.079	
0.21	0.9938	0.087		0.9920	0.078	
0.23	0.9918	0.078		0.9920	0.071	
0.24	0.9915	0.076		0.9916	0.068	
0.25	0.9915 0.9909	0.073 0.072		0.9909 0.9898	0.067 0.064	
0.27	0.9903	0.069		0.9894	0.061	
0.28	0.9881	0.066		0.9872	0.058	
0.29	0.9878 0.9864	0.063		0.9869 0.9869	0.056 0.052	
0.31	0.9857	0.059		0.9858	0.050	
0.32	0.9849	0.056		0.9851	0.049	
0.33	0.9824 0.9810	0.054 0.051		0.9818 0.9811	0.046	
0.35	0.9795	0.050		0.9796	0.043	
0.36	0.9779	0.047		0.9781	0.041	
0.37	0.9771 0.9759	0.045 0.044		0.9778 0.9770	0.040	
0.39	0.9744	0.042		0.9760	0.036	
0.40	0.9735	0.040	Yes	0.9760	0.033	
0.41	0.9716 0.9705	0.038		0.9745 0.9745	0.032	
0.43	0.9697	0.036		0.9730	0.030	
0.44	0.9683	0.035		0.9716	0.029	
0.45 0.46	0.9664 0.9647	0.034		0.9709 0.9690	0.028	
0.47	0.9633	0.033		0.9672	0.027	
0.48	0.9613	0.030		0.9665	0.026	
0.49	0.9599 0.9567	0.030		0.9628 0.9614	0.025	
0.51	0.9555	0.028		0.9581	0.023	
0.52	0.9542	0.026		0.9566	0.022	
0.53	0.9525 0.9508	0.025		0.9545 0.9526	0.021	
0.55	0.9495	0.021		0.9505	0.019	
0.56	0.9479	0.020		0.9490	0.018	
0.57	0.9476 0.9454	0.019		0.9464 0.9435	0.017	
0.59	0.9436	0.017		0.9413	0.015	
0.60	0.9425	0.016		0.9395	0.014	
0.61	0.9407 0.9392	0.016 0.015		0.9384 0.9344	0.014	
0.63	0.9381	0.014		0.9330	0.012	
0.64	0.9343	0.013		0.9311	0.012	
0.65	0.9338 0.9318	0.013		0.9304 0.9271	0.012	
0.67	0.9299	0.012		0.9260	0.011	
0.68	0.9271	0.010		0.9202	0.010	
0.69	0.9249 0.9225	0.009		0.9191 0.9162	0.010	
0.71	0.9210	0.007		0.9148	0.008	
0.72	0.9169	0.006		0.9104	0.007	
0.73	0.9153 0.9127	0.006 0.005		0.9067 0.9046	0.006	
0.75	0.9077	0.005		0.9024	0.006	
0.76	0.9045	0.005		0.9005	0.005	
0.77	0.9011 0.8989	0.004		0.8984 0.8958	0.004	
0.79	0.8956	0.003		0.8922	0.003	
0.80	0.8937	0.003		0.8874	0.003	
0.81	0.8882 0.8863	0.003		0.8838 0.8816	0.003	
0.83	0.8832	0.002		0.8783	0.003	
0.84	0.8788	0.002		0.8732	0.003	
0.85	0.8752 0.8700	0.002		0.8718 0.8667	0.003	
0.87	0.8634	0.001		0.8619	0.001	
0.88	0.8584	0.001		0.8521	0.001	
0.89	0.8534 0.8463	0.001		0.8459 0.8383	0.001	
0.91	0.8391	0.001		0.8299	0.000	
0.92	0.8300	0.000		0.8226	0.000	
0.93 0.94	0.8236 0.8114	0.000		0.8164 0.8058	0.000	
0.95	0.8032	0.000		0.7964	0.000	
0.96	0.7923	0.000		0.7869	0.000	
0.97 0.98	0.7836 0.7714	0.000		0.7763 0.7628	0.000	
0.99	0.7526	0.000		0.7435	0.000	

Response

Correct

Incorrect

Correct

Incorrect

Gradient boosting - type 1 Supplement 6

Event

organic

conventional

conventional

	Value
organic	True Positive

Value

False Negative

True Negative

False Positive

Validation Frequency

2,639

106

64

2,666

Training Frequency

6,102

6,213

276

183

Partition	KS (Youden)	Misclassification Rate	Misclassification Rat	C Statistic	FPR	FDR	F1 Score	Lift	Cumulative Lift	Cumulative % Events	Cumulative % Captu	Gain	Gini	Gamma	Tau	Observations Used l	Unused
Training	0.9336	0.0359	0.0359	0.996	0.029	0.029	0.964	2.004	2.004	100.000	10.019	1.004	ე.993	0.993	0.497	12,774	0

1.996

100.000

9.982 0.996 0.994 0.994 0.497

0.969 1.996

0.997 0.023 0.024

0.0311

Gradient boosting - type 1 Supplement 7

0.9437

Plot	Summary
Confusion Matrix	The confusion matrix plot displays the number of observations predicting each response level. A greater number of observations where the observed level and predicted level are the same indicates a better model. For this data, the percentages of each observed value that are correctly predicted in the validation partition are as follows: conventional - 97.66%, and organic - 96.14%.
Lift	The lift plot measures the ratio of percent captured response to the baseline percent response. The validation partition has a lift of 2.0 at the 5% quantile meaning there are about 1.996 times more events in that quantile than expected by random (5% of the total number of events).
Cumulative Lift ROC	Cumulative lift measures the ratio of percent captured response to the baseline percent response, up to and including the specified quantile.
	The validation partition has a cumulative lift of 2.0 in the 10% quantile meaning there are about 1.996 times more events in the first two quantiles than expected by random (10% of the total number of events). Because this value is greater than 1, it is better to use your model to identify responders than no model, based on the validation partition.
	The receiver operator characteristic (ROC) is a plot of sensitivity (the true positive rate) against 1-specificity (the false positive rate), which are both measures of classification based on the confusion matrix. These measures are calculated at various cutoff values. To help identify the best cutoff to use when scoring your data, the KS cutoff reference line is drawn at the value of 1-specificity where the greatest difference between sensitivity and 1-specificity is observed for the validation partition. The KS cutoff line is drawn at the cutoff value 0.42 where the 1-specificity value is 0.031 and the sensitivity value is 0.974.
	Cutoff values range from 0 to 0.99, inclusive, in increments of 0.01. At each cutoff value, the predicted response classification is determined by whether the predicted probability of the response type being organic is greater than or equal to the cutoff value. When the predicted probability of the event is greater than or equal to the cutoff value, then the predicted classification is organic, otherwise it is NOT organic.
	The misclassification plot is a visual representation of the accuracy of the prediction at the specified cutoff value, 0.50. The plot displays the number of true positives for events that are correctly classified, false positives for NOT events that are classified as events, false negatives for events that are classified as NOT events. True negatives include NOT event classifications that predict a different level from observed, as long as both are NOT events.
Misclassification	The predicted response classification is determined by whether the predicted probability of the level organic for the response type is greater than or equal to the cutoff value. When it is greater than or equal to the cutoff value, the predicted classification is an event, otherwise it is a NOT event.
	For this data, for the bar corresponding to the event level of type, organic, the segment of the bar colored as "Correct" corresponds to true positives.

Number of Hidden Neurons

Number of Weight Parameters

Misclassification Error for Validation (%)

Number of Hidden Layers

Number of Bias Parameters

Number of Neural Nets

Architecture

Objective Value

Model	Neural Net
Number of Observations Used for Training	12,774
Number of Observations Read for Training	12,774
Target/Response Variable	type
Number of Neurons	18
Number of Input Neurons	6
Number of Output Neurons	2

Value

10

70

12 MLP

2.086877

17.9178

MК

N K

Validation Erro	Loss	Objective	ural network - type 1 Supplement 2 Iterations
0.483	2.7299	3.0781	1
0.345	2.6730	3.0202	2
0.444	2.6228	2.9692	3
0.446	2.5030	2.8525	4
0.253	2.3547	2.7055	5
0.221	2.1127	2.4849	6
0.195	1.9617	2.3618	7
0.197	1.8470	2.3139	8
0.195	1.8102	2.2666	9
0.195	1.7951	2.2598	10
0.192	1.7909	2.2390	11
0.195	1.7784	2.2296	12
0.189	1.7748	2.2224	13
0.190	1.7697	2.2167	14
0.191	1.7591	2.1984	15
0.191	1.7566	2.1824	16
0.192	1.7559	2.1753	17
0.191	1.7576	2.1696	18
0.190	1.7551	2.1646	19
0.193	1.7597	2.1563	20
0.193	1.7574	2.1518	21
0.192	1.7473	2.1378	22
0.191	1.7416	2.1332	23
0.187	1.7324	2.1313	24
0.189	1.7359	2.1297	25
0.190	1.7378	2.1291	26
0.190	1.7396	2.1226	27
0.190	1.7406	2.1156	28
0.188	1.7436	2.1129	29
0.185	1.7376	2.1105	30
0.184	1.7283	2.1091	31
0.184	1.7268	2.1072	32
0.187	1.7196	2.1032	33
0.183	1.7145	2.1019	34
0.183	1.7069	2.1009	35
0.183	1.7051	2.1005	36
0.184	1.7023	2.0997	37
0.183	1.6960	2.0975	38
0.181	1.6911	2.0961	39
0.182	1.6852	2.0942	40
0.180	1.6794	2.0928	41
0.179	1.6806	2.0925	42
0.179	1.6815	2.0922	43
0.180	1.6809	2.0916	44
0.179	1.6789	2.0914	45
0.179	1.6767	2.0912	46
0.179	1.6758	2.0911	47
0.179	1.6753	2.0910	48
0.179	1.6755	2.0908	49
0.180	1.6756	2.0908	50
0.181	1.6756	2.0907	51
0.180	1.6750	2.0905	52
0.180	1.6721	2.0904	53
0.179	1.6711	2.0903	54
0.179	1.6717	2.0902	55
0.179	1.6721	2.0902	56
0.179	1.6728	2.0901	57
0.179	1.6716	2.0899	58
0.179	1.6707	2.0898	59
0.179	1.6684	2.0896	60
0.177	1.6671	2.0895	61
0.177	1.6666	2.0894	62
0.178	1.6631	2.0893	63
0.178	1.6644	2.0892	64
0.179	1.6656	2.0891	65
0.178	1.6647	2.0890	66
0.178	1.6655	2.0890	67
0.179	1.6658	2.0889	68
0.179	1.6648	2.0887	69
0.179	1.6658	2.0885	70
0.177	1.6645	2.0881	71
0.178	1.6635	2.0880	72
0.178	1.6650	2.0880	73
0.179	1.6675	2.0879	74
0.178	1.6663	2.0878	75
0.178	1.6653	2.0876	76
0.178	1.6653	2.0873	77
0.179	1.6673	2.0871	78
0.177		2.0870	79
0.179	1.6685	2.0070	79
	1.6685 1.6705	2.0869	80
0.179			

The optimization achieved the desired objective value.

Predicted

conventional

conventional

organic

organic

Neural network - type 1 Supplement 4

0.000.00	
conventional	

conventional

organic

organic

Training Percentage

81.47%

18.53%

18.22%

81.78%

Training Frequency

5,211

1,185

1,162

5,216

Validation Frequency

2,258

472

509

2,236

Observed

Validation Percentage

82.71%

17.29%

18.54%

81.46%

Neural network - type 1 Supplement 5

Percentile	Training Observations	Training Events	Training Lift	Training Lift Best	Training Cumulative Lift	Training Cumulative Lift Best	Validation Observations	Validation Events	Validation Lift	Validation Lift Best	Validation Cumulative Lift	Validation Cumulative Lift Best
5.00	639	636	1.9944	2.0038	1.9944	2.0038	274	273	1.9891	1.9964	1.9891	1.9964
10.00	639	621	1.9473	2.0038	1.9708	2.0038	274	263	1.9162	1.9964	1.9526	1.9964
15.00	639	613	1.9222	2.0038	1.9546	2.0038	274	252	1.8361	1.9964	1.9138	1.9964
20.00	639	570	1.7874	2.0038	1.9128	2.0038	274	248	1.8069	1.9964	1.8871	1.9964
25.00	639	541	1.6965	2.0038	1.8696	2.0038	274	239	1.7413	1.9964	1.8579	1.9964
30.00	639	500	1.5679	2.0038	1.8193	2.0038	274	230	1.6758	1.9964	1.8276	1.9964
35.00	639	488	1.5303	2.0038	1.7780	2.0038	274	209	1.5228	1.9964	1.7840	1.9964
40.00	639	462	1.4487	2.0038	1.7368	2.0038	274	206	1.5009	1.9964	1.7486	1.9964
45.00	639	415	1.3013	2.0038	1.6884	2.0038	274	174	1.2678	1.9964	1.6952	1.9964
50.00	639	364	1.1414	1.9661	1.6337	2.0000	274	160	1.1658	1.9964	1.6423	1.9964
55.00	639	317	0.9940	0.0000	1.5756	1.8182	274	121	0.8816	0.0364	1.5731	1.8182
60.00	639	232	0.7275	0.0000	1.5049	1.6667	274	105	0.7650	0.0000	1.5058	1.6667
65.00	639	168	0.5268	0.0000	1.4297	1.5385	274	74	0.5392	0.0000	1.4314	1.5385
70.00	639	112	0.3512	0.0000	1.3526	1.4286	274	51	0.3716	0.0000	1.3557	1.4286
75.00	639	94	0.2948	0.0000	1.2821	1.3333	274	45	0.3279	0.0000	1.2872	1.3333
80.00	639	70	0.2195	0.0000	1.2157	1.2500	274	34	0.2477	0.0000	1.2222	1.2500
85.00	639	61	0.1913	0.0000	1.1554	1.1765	274	26	0.1894	0.0000	1.1615	1.1765
90.00	639	72	0.2258	0.0000	1.1038	1.1111	274	19	0.1384	0.0000	1.1046	1.1111
95.00	639	31	0.0972	0.0000	1.0508	1.0526	274	13	0.0947	0.0000	1.0515	1.0526
100.00	633	11	0.0345	0.0000	1.0000	1.0000	269	3	0.0219	0.0000	1.0000	1.0000

Neural network - to	type 1 Supplement 6					
Cutoff	Training Sensitivity	Training 1 - Specificity	Training KS (Youden)			Validation KS (Youden)
0.00	1.0000 1.0000	1.000 0.976		1.0000 1.0000	1.000 0.975	
0.02	1.0000	0.959		1.0000	0.956	
0.03	1.0000 0.9994	0.943		0.9996 0.9993	0.942	
0.05	0.9983	0.898		0.9989	0.898	
0.06	0.9961 0.9950	0.875 0.849		0.9985 0.9971	0.877 0.853	
0.08	0.9948	0.828		0.9949	0.830	
0.09	0.9929 0.9911	0.802 0.785		0.9942 0.9927	0.806 0.783	
0.10	0.9882	0.763		0.9913	0.764	
0.12	0.9860	0.741 0.718		0.9891 0.9876	0.744 0.718	
0.13	0.9821 0.9796	0.696		0.9847	0.693	
0.15	0.9770	0.672		0.9811	0.670	
0.16	0.9740 0.9715	0.647 0.622		0.9796 0.9763	0.640 0.612	
0.18	0.9694	0.597		0.9727	0.587	
0.19	0.9668 0.9638	0.574 0.553		0.9672 0.9650	0.558 0.534	
0.21	0.9595	0.532		0.9603	0.511	
0.22	0.9561	0.511		0.9559	0.488	
0.23	0.9528 0.9490	0.494 0.475		0.9530 0.9490	0.469 0.451	
0.25	0.9472	0.456		0.9468	0.433	
0.26 0.27	0.9429 0.9403	0.440 0.422		0.9446 0.9388	0.416 0.401	
0.28	0.9367	0.404		0.9359	0.388	
0.29	0.9327 0.9296	0.388 0.375		0.9308 0.9264	0.373 0.358	
0.31	0.9255	0.361		0.9231	0.344	
0.32 0.33	0.9213 0.9177	0.349 0.337		0.9202 0.9162	0.333 0.320	
0.33	0.9177	0.337		0.9162	0.320	
0.35	0.9084	0.312		0.9035	0.298	
0.36	0.9036 0.8976	0.301 0.290		0.9002 0.8951	0.288 0.278	
0.38	0.8920	0.279		0.8889	0.267	
0.39	0.8859 0.8796	0.267 0.258		0.8845 0.8776	0.259	
0.41	0.8733	0.249		0.8710	0.238	
0.42	0.8677 0.8619	0.241		0.8648 0.8594	0.233	
0.44	0.8559	0.222		0.8539	0.216	
0.45	0.8506	0.216		0.8481	0.209	
0.46	0.8470 0.8404	0.211 0.204	Yes	0.8441 0.8397	0.203 0.194	Yes
0.48	0.8341	0.197		0.8306	0.188	
0.49	0.8264 0.8178	0.191 0.185		0.8240 0.8146	0.180 0.173	
0.51	0.8075	0.177		0.8029	0.165	
0.52	0.7985 0.7916	0.170 0.163		0.7913 0.7789	0.157 0.147	
0.54	0.7817	0.157		0.7723	0.141	
0.55	0.7717 0.7612	0.151		0.7639 0.7563	0.138 0.134	
0.57	0.7535	0.137		0.7486	0.128	
0.58 0.59	0.7468 0.7372	0.130 0.125		0.7392 0.7315	0.122 0.117	
0.60	0.7256	0.119		0.7188	0.108	
0.61	0.7139	0.113		0.7064	0.103	
0.62	0.7016 0.6919	0.108 0.103		0.6987 0.6903	0.099	
0.64	0.6794	0.099		0.6801	0.090	
0.65	0.6665 0.6522	0.094		0.6681 0.6565	0.085	
0.67	0.6397	0.085		0.6441	0.078	
0.68	0.6287 0.6149	0.080 0.076		0.6295 0.6189	0.075 0.072	
0.70	0.6016	0.070		0.6058	0.068	
0.71	0.5848	0.066		0.5913	0.064	
0.72 0.73	0.5663 0.5553	0.062 0.058		0.5727 0.5592	0.060 0.054	
0.74	0.5414	0.054		0.5461	0.050	
0.75 0.76	0.5265 0.5119	0.049 0.044		0.5268 0.5097	0.046 0.043	
0.77	0.4945	0.040		0.4914	0.040	
0.78 0.79	0.4828 0.4672	0.037 0.033		0.4791 0.4638	0.038 0.035	
0.79	0.4478	0.033		0.4448	0.033	
0.81 0.82	0.4354 0.4156	0.027 0.023		0.4284 0.4084	0.030 0.026	
0.82	0.4156	0.023		0.4084	0.026	
0.84	0.3871	0.018		0.3756	0.022	
0.85	0.3725 0.3547	0.016 0.013		0.3548 0.3359	0.020 0.018	
0.87	0.3373	0.010		0.3177	0.015	
0.88	0.3112 0.2816	0.008		0.2944 0.2623	0.013	
0.90	0.2579	0.005		0.2434	0.007	
0.91 0.92	0.2327 0.2013	0.004		0.2153 0.1880	0.005 0.004	
0.92	0.1789	0.003		0.1654	0.004	
0.94	0.1524	0.001		0.1403	0.003	
0.95 0.96	0.1270 0.0978	0.001 0.000		0.1162 0.0922	0.001 0.000	
0.97	0.0696	0.000		0.0703	0.000	
0.98	0.0419 0.0174	0.000		0.0419 0.0138	0.000	
	3.317 =	0.000	1	5.5155	0.000	

Response

Correct

Incorrect

Correct

Incorrect

Neural network - type 1 Supplement 7

Event

organic

conventional

conventional

Value

True Positive

False Negative

True Negative

False Positive

Validation Frequency

2,236

2,258

509

472

Training Frequency

5,216

1.162

5,211

1,185

Partition	KS (Youden)	Misclassification Rate	Misclassification Rat	C Statistic	FPR	FDR	F1 Score	Lift	Cumulative Lift	Cumulative % Events	Cumulative % Captu	Gain Gi	ni Gamma	Tau	Observations Used Un	nused
Training	0.6368	0.1837	0.1837	0.893	0.185	0.185	0.816	1.994	1.994	99.531	9.972	0.994 0.78	0.791	0.393	12,774	0

Training 0.6368 0.1837 0.1837 0.893 0.185 0.185 0.816 1.994 1.994 99.531 9.972 0.994 0.787 0.791 0.393 12,7

Validation 0.6459 0.1792 0.1792 0.896 0.173 0.174 0.820 1.989 1.989 99.635 9.945 0.989 0.793 0.797 0.397 5,4

Neural network - type 1 Supplement 8

Plot	Summary
Confusion Matrix	The confusion matrix plot displays the number of observations predicting each response level. A greater number of observations where the observed level and predicted level are the same indicates a better model. For this data, the percentages of each observed value that are correctly predicted in the validation partition are as follows: conventional - 82.71%, and organic - 81.46%.
Lift	The lift plot measures the ratio of percent captured response to the baseline percent response. The validation partition has a lift of 1.99 at the 5% quantile meaning there are about 1.989 times more events in that quantile than expected by random (5% of the total number of events).
	Cumulative lift measures the ratio of percent captured response to the baseline percent response, up to and including the specified quantile.
Cumulative Lift	The validation partition has a cumulative lift of 1.95 in the 10% quantile meaning there are about 1.953 times more events in the first two quantiles than expected by random (10% of the total number of events). Because this value is greater than 1, it is better to use your model to identify responders than no model, based on the validation partition.
ROC	The receiver operator characteristic (ROC) is a plot of sensitivity (the true positive rate) against 1-specificity (the false positive rate), which are both measures of classification based on the confusion matrix. These measures are calculated at various cutoff values. To help identify the best cutoff to use when scoring your data, the KS cutoff reference line is drawn at the value of 1-specificity where the greatest difference between sensitivity and 1-specificity is observed for the validation partition. The KS cutoff line is drawn at the cutoff value 0.47 where the 1-specificity value is 0.194 and the sensitivity value is 0.84.
	Cutoff values range from 0 to 0.99, inclusive, in increments of 0.01. At each cutoff value, the predicted response classification is determined by whether the predicted probability of the response type being organic is greater than or equal to the cutoff value. When the predicted probability of the event is greater than or equal to the cutoff value, then the predicted classification is organic, otherwise it is NOT organic.
	The misclassification plot is a visual representation of the accuracy of the prediction at the specified cutoff value, 0.50. The plot displays the number of true positives for events that are correctly classified, false positives for NOT events that are classified as events, false negatives for events that are classified as NOT events. True negatives include NOT event classifications that predict a different level from observed, as long as both are NOT events.
Misclassification	The predicted response classification is determined by whether the predicted probability of the level organic for the response type is greater than or equal to the cutoff value. When it is greater than or equal to the cutoff value, the predicted classification is an event, otherwise it is a NOT event.
	For this data, for the bar corresponding to the event level of type, organic, the segment of the bar colored as "Correct" corresponds to true positives.

Model comparison 1 Supplement 1

Selected	Model	Visualization Type	Number Of Observa	Percentile I	Prediction cutoff	C Statistic	Cumulative % Captu	Cumulative % Events	Cumulative Lift	F1 Score	FDR FPR	Gain Gamma	Gini	KS (Youden)	Lift Misclassification Rate	Misclassification Rat Tau
Yes	Gradient boosting - type 1	Gradient Boosting	18,249	5	0.5	0.997	10.008	100.000	2.0015	0.966	0.027 0.027 1	.002 0.993	0.993	0.937 2.	.0015 0.033	0.033 0.497

99.452

1.9906 0.817 0.184 0.184 0.991 0.788 0.784

0.634 1.9906

0.183

9.953

0.5 0.892

Neural network - type 1 Neural Network

Variable

TotalVolume

XLargeBags AveragePrice

TotalBags

LargeBags

SmallBags

Model comparison 1 Supplement 2

		1

Gradient boosting - type 1 Rank

Neural network - type 1 Rank

Neural network - type

Importance

Gradient boosting - type 1

Importance

460.171712 49.397103

46.067248

16.837841

10.026202

9.831606

Model comparison 1 Supplement 3

Variable

TotalBags

SmallBags

LargeBags

XLargeBags

AveragePrice TotalVolume

TotalBags

SmallBags

LargeBags XLargeBags

AveragePrice TotalVolume MK

N K

Importance Model

1.0000 Gradient boosting - type 1

0.4536 Gradient boosting - type 1

0.3566 Gradient boosting - type 1

0.3530 Gradient boosting - type 1

0.2582 Gradient boosting - type 1

0.1804 Gradient boosting - type 11.0000 Neural network - type 1

0.1632 Neural network - type 1

0.1440 Neural network - type 1

0.1302 Neural network - type 10.1145 Neural network - type 1

0.0521 Neural network - type 1

Champion Model Summary

The champion model is Gradient boosting - type 1. The model was chosen based on F1 Score cutoff 0.5 (0.97). 96.65% of the data was correctly classified using the Gradient boosting - type 1 model with a prediction cutoff value of 0.5. The six most important factors with greater than 10% relative importance are AveragePrice, TotalVolume, TotalBags, SmallBags, LargeBags, and XLargeBags.