Algoritmos e Estrutura de Dados II

Análise Assintótica de Algoritmos

prof. Frederico Santos de Oliveira

Universidade Federal de Mato Grosso Instituto de Engenharia

Agenda

Introdução

2 Exemplos

Classes Assintóticas

- Na última aula aprendemos a calcular a complexidade de um algoritmo contando o nº de vezes que as instruções são executadas.
- No entanto, é inviável medir a complexidade exata de um algoritmo, visto que alguns outros fatores podem influenciar nessa complexidade.
 - Linguagem de programação
 - Compilador
 - Hardware
- Precisamos saber a complexidade assintótica definida pelo termo dominante de uma função de crescimento.

Comparação algoritmo MaxMin

Ao analisar valores grandes de n percebe-se que as constantes faze pouca diferença...

Tabela: Comparativo MaxMin

Algoritmo	Melhor Caso	Pior Caso	Caso Médio
MinMax1	4n	4n	4n
MinMax2	$3n{+}1$	5n-1	$\frac{(7n-1)}{2}$
MinMax3	3n+6	4n+4	$\frac{7n}{2} + 4$
MinMax4	$3n{+}1$	4n-3	$\frac{7\bar{n}}{2} - 2$

Comportamento Assintótico

Quando observamos tamanhos de entrada grandes o suficiente para tornar relevante apenas a ordem de crescimento do tempo de execução, estamos estudando a **eficiência assintótica** dos algoritmos (Cormen et al., 2009).

- Na notação assintótica, representa-se uma função pelo termo que cresce mais rapidamente, ignorando fatores constantes.
- Analisa-se o algoritmo quando o valor tende ao infinito.
- Permite "simplificar" expressões, focando apenas nas **ordens de grandeza**.

Exemplo: Qual os termos dominates das equações a seguir:

•
$$T_1(n) = \frac{1}{2}n^2 - 3n$$

•
$$T_2(n) = n + 1$$

•
$$T_3(n) = n^5 + n^3 + 100$$

•
$$T_4(n) = 2^n - \frac{2}{3}n^3 + 5n^2 - 3n + 5000$$

•
$$T_5(n) = \sqrt{n} + 1$$

•
$$T_6(n) = n \log_2 n + 2n - 5$$

Relações de Domínio

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Exemplo: Qual os termos dominates das equações a seguir:

•
$$T_1(n) = \frac{1}{2}n^2 - 3n$$

► Resposta: n²

•
$$T_2(n) = n + 1$$

▶ Resposta: *n*

•
$$T_3(n) = n^5 + n^3 + 100$$

▶ Resposta: *n*⁵

•
$$T_4(n) = 2^n - \frac{2}{3}n^3 + 5n^2 - 3n + 5000$$

▶ Resposta: 2ⁿ

•
$$T_5(n) = \sqrt{n} + 1$$

▶ Resposta:
$$\sqrt{n}$$

•
$$T_6(n) = n \log_2 n + 2n - 5$$

▶ Resposta: $n \log_2 n$

Utiliza-se uma notação específica:

- Notação O
 - Representa um limite superior, relacionado ao pior caso.
- Notação Ω
 - ▶ Representa um limite inferior, relacionado ao melhor caso.
- Theta: Θ
 - ► Representa casos em que os **limites superiores e inferiores são iguais**.

BuscaVetor

Relembrando o tempo de execução do algoritmo que busca um elemento em um vetor:

- Melhor caso: T(n) = 3.
 - ▶ Portanto o algoritmo é $\Omega(1)$.
- Pior caso: T(n) = 2n + 3.
 - ▶ Portanto o algoritmo é O(n)

MaxVetor

Relembrando o tempo de execução do algoritmo que encontra o elemento **máximo de um vetor**:

- Melhor caso: T(n) = 2n + 1.
 - ▶ Portanto o algoritmo é $\Omega(n)$.
- Pior caso: T(n) = 3n
 - Portanto o algoritmo é O(n).
- Como o algoritmo é $\Omega(n)$ e O(n), ele também é $\Theta(n)$.

MaxMin

Relembre as funções:

Tabela: Comparativo MaxMin

Algoritmo	Melhor Caso	Pior Caso	Caso Médio
MinMax1	4n	4n	4n
MinMax2	3n+1	5n-1	$\frac{(7n-1)}{2}$
MinMax3	3n+6	4n+4	$\frac{7n}{2} + 4$
MinMax4	3n+1	4n-3	$\frac{7\bar{n}}{2} - 2$

- Observe que todos os algoritmos tem a mesma complexidade assintótica.
- Todos são O(n) e $\Omega(n)$. Portanto, são $\Theta(n)$.

Classes Assintóticas

- Em geral, é interessante agrupar os algoritmos/problemas em Classes de Comportamento Assintótico.
- Quando dois algoritmos fazem parte da mesma classe de comportamento assintótico, eles são ditos equivalentes

Classes Assintóticas

$$T(n) = O(1)$$

- Algoritmos de complexidade O(1) são ditos de **complexidade constante**.
- Uso do algoritmo independe de n.
- As instruções do algoritmo são executadas um número fixo de vezes

Classes Assintóticas $O(\log n)$

$$T(n) = O(\log n)$$

- Um algoritmo de complexidade $O(\log n)$ é dito ter **complexidade logarítmica**.
- Típico em algoritmos que transformam um problema em outros menores.
- Pode-se considerar o tempo de execução como menor que uma constante grande.
 - Quando $n = 10^3$, $\log_2 n \approx 10$; quando $n = 10^6$, $\log_2 n \approx 20$.
 - ▶ Para dobrar o valor de log *n* temos de considerar o quadrado de *n*.
 - ▶ A base do logaritmo muda pouco estes valores: quando $n = 10^3$, $\log_2 n \approx 20$ e $\log_{10} n$ é 6.

Classes Assintóticas O(n)

$$T(n) = O(n)$$

- Um algoritmo de complexidade O(n) é dito ter complexidade linear.
- Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
- É a melhor situação possível para um algoritmo que tem de processar/produzir *n* elementos de entrada/saída.
- Cada vez que ndobra de tamanho, o tempo de execução dobra

Classes Assintóticas

 $O(n \log n)$

$$T(n) = O(n \log n)$$

- Típico em algoritmos que quebram um problema em outros menores, resolvem cada um deles independentemente e ajuntando as soluções depois.
- Quando n = 1 milhão, $n \log_2 n \approx 20$ milhões.
- Quando n = 2 milhões, $n \log_2 n$ é cerca de 42 milhões, pouco mais do que o dobro.

Classes Assintóticas $O(n^2)$

$$T(n) = O(n^2)$$

- Um algoritmo de complexidade $O(n^2)$ é dito ter **complexidade quadrática**.
- Ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro de outro.
- Quando *n* é mil, o número de operações é da ordem de 1 milhão.
- Sempre que *n* dobra, o tempo de execução é multiplicado por 4.
- Úteis para resolver problemas de tamanhos relativamente pequenos.

Classes Assintóticas $O(n^3)$

$$T(n) = O(n^3)$$

- Um algoritmo de complexidade $O(n^3)$ é dito ter **complexidade cúbica**.
- Úteis apenas para resolver pequenos problemas.
- Quando n = 100, o número de operações é da ordem de 1 milhão.
- Sempre que *n* dobra, o tempo de execução fica multiplicado por 8.

Classes Assintóticas $O(2^n)$

$$T(n) = O(2^n)$$

- Um algoritmode complexidade $O(2^n)$ é dito ter **complexidade exponencial**.
- Geralmente não são úteis sob o ponto de vista prático.
- Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
- Quando n=20, o tempo de execução é cercade 1 milhão. Quando n dobra, o tempo fica elevado ao quadrado.

Classes Assintóticas O(n!)

$$T(n) = O(n!)$$

- Um algoritmode complexidade O(n!) é dito ter **complexidade exponencial**, apesar de O(n!) ter comportamento muito pior do que $O(2^n)$.
- Geralmente ocorrem quando se usa força bruta para solução do problema.
- Ocorrem na solução de problemas quando se usa força bruta para resolvê-los.
- $n = 20 \rightarrow 20! = 2432902008176640000$, um número com 19 dígitos.
- $n = 40 \rightarrow \text{um número com } 48 \text{ dígitos.}$

FIM

Fim

Algoritmos e Estrutura de Dados II

Análise Assintótica de Algoritmos

prof. Frederico Santos de Oliveira

Universidade Federal de Mato Grosso Instituto de Engenharia