12.2.2020

END-OF-SEMESTER PLAN

- * on Friday we'll talk
 about artificial neural
 networks
- * on Monday we'll review for the final
 - * next Tuesday's office
 hours will also be
 available for final
 review

RECAP: PCA

- * Principal Components Analysis is an unsupervised method for finding structure in datasets
 - * (This is different from regression & classification, which are examples of supervised Learning. They learn a function f(X)=y. Here we only have X!)

RECAP: PCA

- * PCA "fits an ellipse" to a cloud of datapoints
- * The axes of the ellipse are the "principal components"

- * Another commonly-used type of unsupervised learning is clustering
- * Clustering involves assigning your data points to groups (aka clusters)

* Where points within a group are more similar than points in different groups

* Clustering is kind of like PCA (and other factor analysis methods), except that its output is **discrete** (i.e. 1, 2, 3) rather than continuous (i.e. -0.2, 0.7, 3.5)

Supervised (given X & y, learn X→y) Unsupervised (given X, learn its structure)

Continuous (output is real numbers)

Regression

PCA

Discrete (output is discrete classes)

Classification

Clustering

APPLICATION: SPIKE SORTING

- * Spikes from several neurons are recorded using a multi- electrode probe (e.g. a tetrode)
- * How do we figure out which spikes came from the same neuron?

APPLICATION: SPIKE SORTING

- * Step 1: Use PCA on the spike waveforms to represent the spikes in a lower-dimensional space
- * Step 2: Use clustering to group the spikes together into putative single units

APPLICATION: FINDING CELL TYPES

- * How many different types of neurons are there? What does each type do? How can we distinguish them?
- * The Allen Institute has been trying to answer this question using single-cell transcriptomics (aka RNA-seq)
 - * For each tested neuron they measure how often each of thousands of genes are transcribed in that neuron
 - * Then they use clustering to group the neurons into discrete types

APPLICATION: FINDING CELL TYPES

- * How can we do clustering? How does it work?
- * Let's talk about one clustering method:
 k-means
 - * k-means is pretty simple!

- 1. Randomly choose k datapoints to be the initial cluster "centroids"
- 2. Compute the distance from each datapoint to each centroid, then *assign* each datapoint to the closest one
- 3. Move each centroid to the mean location of its assigned datapoints
- 4. Go back to 2

- * Note: this is not guaranteed to work!
- * There are lots of ways for k-means to mess up, and it's very sensitive to initialization
- * So if you want to use it, you should use clever implementations like sklearn.cluster.KMeans

- * k-means also makes some assumptions:
 - * you chose the correct number, k
 - * all clusters are
 "round" (isotropic)
 - * all clusters have equal variance
- * If these assumptions are false, then it can give bad results

https://scikit-learn.org/stable/auto_examples/cluster/ plot_kmeans_assumptions.html

- * but there are many other clustering methods that can solve these problems!
 - * Gaussian mixture
 models (GMMs)
 - * Spectral clustering
 - * Hierarchical clustering

THANK YOU!