1 Úvod

Definice 1.1 (Metrika, metrický prostor)

M množina, $d: M \times M \to [0, \infty)$ je metrika, pokud $\forall x, y, z \in M$ platí:

$$d(x,y) = 0 \Leftrightarrow x = y,$$

$$d(y,x) = d(x,y),$$

$$d(x,y) < d(x,z) + d(z,y).$$

Dvojice (M, d) se pak nazývá metrický prostor.

Definice 1.2 (Norma a normovaný lineární prostor (NLP))

Ať V je vektorový prostor nad $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, pak $||\cdot|| : V \to [0, \infty)$ je norma, pokud $\forall x, y \in V$

$$||\mathbf{x}|| = 0 \Leftrightarrow \mathbf{x} = \mathbf{o},$$

$$\forall \lambda \in \mathbb{F} : ||\lambda \mathbf{x}|| = |\lambda| \cdot ||\mathbf{x}||,$$
$$||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}||.$$

Dvojice $(\mathbf{V}, ||\cdot||)$ se pak nazývá normovaný lineární prostor.

Definice 1.3 (Otevřená a uzavřená koule)

At (\mathbb{M},d) je MP, $x \in \mathbb{M}, r > 0$. Pak otevřená koule o středu x a poloměru r je množina $B(x,r) := \{y \in \mathbb{M}; d(x,y) < r\}$. Uzavřená koule o středu x a poloměru r je množina $\overline{B}(x,r) := \{y \in \mathbb{M}; d(x,y) \leq r\}$.

Věta 1.1

 $(\mathbb{R}^d, ||\cdot||_p)$ je NLP pro $d \in \mathbb{N}, p \in [1, \infty]$.

Důkaz

1. krok: $B=\left\{x\in\mathbb{R}^d;||x||_p\leq 1\right\}$ je konvexní množina (tj. $\forall\lambda\in(0,1)\ \forall x,y\in B:\lambda x+(1-\lambda)y\in B$). Pro $p=\infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i| \le \lambda |x_i| + (1 - \lambda)|y_i| \le \lambda \cdot 1 + (1 - \lambda) \cdot 1 = 1$$

Pro $p < \infty$:

$$\forall i \in [d] : |\lambda x_i + (1 - \lambda)y_i|^p \le \lambda |x_i|^p + (1 - \lambda)|y_i|^p,$$

protože $t\mapsto t^p$ je konvexní funkce. Dopočítáním obou nerovností získáme, že je to opravdu konvexní množina.

2. krok: Pokud $||\cdot||$ splňuje (i)+(ii) a B je konvexní, pak $||\cdot||$ je norma. Zvolme $\mathbf{x},\mathbf{y}\in\mathbf{V},$ BÚNO $\mathbf{x},\mathbf{y}\neq\mathbf{o},$ položme $\tilde{\mathbf{x}}:=\frac{\mathbf{x}}{||\mathbf{x}||},$ $\tilde{\mathbf{y}}:=\frac{\mathbf{y}}{||\mathbf{y}||},$ tedy:

$$\frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||} = \frac{||\mathbf{x}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{x}} + \frac{||\mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \tilde{\mathbf{y}} \in B \text{ (zlomky jsou } \lambda, 1 - \lambda).$$

$$||\frac{\mathbf{x} + \mathbf{y}}{||\mathbf{x}|| + ||\mathbf{y}||}|| \le 1 \implies \frac{||\mathbf{x} + \mathbf{y}||}{||\mathbf{x}|| + ||\mathbf{y}||} \le 1.$$

3. $||\cdot||_p$ zřejmě splní (i)+(ii) a B je konvexní podle 1. kroku. Tedy $||\cdot||_p$ je norma. \square

Poznámka (Značení)

$$l_p^d := (\mathbb{R}^d, ||\cdot||_p)$$
.

Definice 1.4 (Konvergence)

At (\mathbb{M}, d) je MP, $\{x_n\}_{n=1}^{\infty}$ posloupnost v $\mathbb{M}, x \in \mathbb{M}$. Pak (x_n) konverguje k x pokud $d(x_m, x)$ konverguje k x0. Píšeme $x_n \to x$ nebo také $\lim_{n \to \infty} x_n = x$.

2 Otevřené a uzavřené množiny

Definice 2.1 (Vnitřek, vnějšek, hranice)

At (M, d) je MP. $A \subseteq M$. Pak $x_0 \in M$ je vnitřní bod $A \equiv \exists r > 0 : B(x_0, r) \subseteq A$. Dále vnitřek (interior) množiny A je množina

$$\operatorname{int}(a) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnitřní bod } A\}.$$

Dále $x_0 \in \mathbb{M}$ je vnější bod $A \equiv \exists r > 0 : \mathrm{B}(x_0, r) \subseteq \mathbb{M} \setminus A$. Vnějšek (exterior) množiny A je množina

$$\operatorname{ext}(a) = \{x_0 \in \mathbb{M} | x_0 \text{ je vnější bod } A\}.$$

Nakonec $x_0 \in \mathbb{M}$ je hraniční bod $A \equiv x \in \mathbb{M} \setminus (\operatorname{int}(A) \cup \operatorname{ext}(A))$. Hranice množiny A je množina

$$\partial A = \{x_0 \in \mathbb{M} | x_0 \text{ je hraniční bod } A\}.$$

Pozorování

Zřejmě $int(A) \subseteq A$.

Zřejmě $\operatorname{ext}(A) = \operatorname{int}(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A$.

Definice 2.2 (Otevřená a uzavřená množina)

Buď (M, d) MP a $A \subseteq M$. Pak A je otevřená $\equiv A \cap \partial A = \emptyset$.

Dále uzávěr množiny A je množina $\overline{A} = A \cup \partial A$. Množina A je poté uzavřená $\equiv \partial A \subseteq A$.

Pozorování

Zřejmě A je otevřená $\Leftrightarrow A = \operatorname{int}(A)$.

Otevřená koule je otevřená množina.

Lemma 2.1

At (M, d) je MP, $A \subseteq M$. $Pak x \in \overline{A} \Leftrightarrow \exists (x_n) \subseteq N \times A : x_n \to x$. Zároveň následující podmínky jsou ekvivalentní:

$$a)A \ je \ uzav \check{r}en\acute{a}, \qquad b)A = \overline{A}, \qquad \forall (x_n \in A) : x_n \to x \in \mathbb{M} \implies x \in A.$$

 $D\mathring{u}kaz$

 \Longrightarrow : At $x \in \overline{A}$. Pokud $x \in A$, polož $x_n = x$. Pokud $x \notin A$, pak $x \in \partial A$, tedy $\forall n \exists x_n \in B(x, \frac{1}{n}) \cap A$. Pak $x_n \to x \ (0 \le d(x_n, x) < \frac{1}{n} \to 0)$.

 \Leftarrow At (x_n) je posloupnost v A, $x_n \to x$. Pokud $x \in A$, jsme hotovi. Pokud $x \notin A$, pak $\forall \varepsilon > 0 \ \exists r_0 \forall n \geq n_0 : x_n \in B(x,\varepsilon) \cap A$. Tedy $x \in \overline{A}$.

 $(a) \Leftrightarrow b$) (A) je uzavřená $\overset{\text{def}}{\Leftrightarrow} \partial A \subseteq A \Leftrightarrow A = A \cup \partial A = \overline{A}$.

$$b) \implies c) \implies a) \ A = \overline{A} \implies \forall (x_n) : x_n \to x \implies x \in A \ \overline{\text{První část}} \Longrightarrow \partial A \subseteq A.$$

Věta 2.2 (Základní vlastnosti otevřených množin)

At(M,d) je MP. Pak

- (i) M a Ø jsou otevřené.
- (ii) Sjednocení libovolně mnoha otevřených je otevřený.

(iii) Průnik konečně mnoha otevřených je otevřený.

 $D\mathring{u}kaz$

(i) Triviální. (ii) $x \in \bigcup_i M_i$, pak $\exists j : x \in M_j$. Potom M_j je otevřená, tedy existuje r > 0: $B(x,r) \subseteq M_j \subseteq \bigcup_i M_i$. Tedy $\bigcup_i M_i$ je otevřená. (iii) $x \in \bigcap_i M_i$, pak $\forall i \; \exists r_i : B(x,r_i) \subseteq M_i$. Polož $r = \min_i r_i > 0$ (protože i je z konečné množiny, tedy existuje minimum a to je jistě jeden z těch poloměrů, tedy > 0), pak $B(x,r) \subseteq \bigcap_i M_i$. Tedy $\bigcap_i M_i$ je otevřená. \square

Věta 2.3 (Vztah otevřená a uzavřené množiny)

At(M,d) je MP, $A \subseteq M$. Pak A je otevřená $\Leftrightarrow M \setminus A$ je uzavřená.

 $D\mathring{u}kaz$

 \implies : Zvol (x_n) posloupnost v $\mathbb{M}\setminus A, x_n\to x$. Sporem. Nechť $x\in A$. Potom $\exists \varepsilon>0$: $\mathrm{B}(x,\varepsilon)\subseteq A,$ ale pak $\exists n:x_n\in A.$ 4.

 \Rightarrow : Zvol $x \in A$. Protože $\mathbb{M} \setminus A$ je uzavřená, tedy $\partial(\mathbb{M} \setminus A) \subseteq \mathbb{M} \setminus A$), $x \notin \partial(\mathbb{M} \setminus A)$, tedy $\exists \varepsilon > 0 : B(x, \varepsilon) \cap A = \emptyset$ (to nelze) nebo $B(x, \varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset$. Tedy $\exists \varepsilon > 0 : B(x, \varepsilon) \cap (\mathbb{M} \setminus A) = \emptyset$, tj. $B(x, \varepsilon) \subseteq A$, tedy A je otevřená.

Věta 2.4 (Základní vlastnosti uzavřených množin)

At(M,d) je MP, $A \subseteq M$. Pak

- (i) M a Ø jsou uzavřené.
- (ii) Průnik libovolně mnoha uzavřených množin je uzavřený.
- (iii) Sjednocení konečně mnoha uzavřených množin je uzavřené.

 $D\mathring{u}kaz$

Plyne z věty výše a de-Morganových pravidel.

Věta 2.5

 $At(\mathbb{M},d) \ je \ MP, \ A \subseteq \mathbb{M}. \ Pak \ int(A) = \bigcup \{G \subseteq A | G \ otev \check{r}en\acute{e}\}. \ \overline{A} = \bigcap \{F \supseteq A | F \ uzav \check{r}en\acute{e}\}.$

Důkaz

 \subseteq : $x \in \text{int}(A) \implies \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq A$, stačí položit $G = B(x, \varepsilon)$.

 \supseteq : At $G \subseteq A$ otevřená, pak $G = \operatorname{int}(G) \subseteq \operatorname{int}(A)$.

 $\subseteq: x \in \overline{A}$, pak $\exists (x_n)$ v $A: x_n \to x$. Zvol $F \supseteq A$ uzavřená, pak $x_n \to x \in F$ (z uzavřené se nedá vykonvergovat).

 \supseteq : Položme $F = \overline{A} \supseteq A$.

3 Spojitost v metrických prostorech

Definice 3.1 (Spojitost v bodě, spojitost, k-Lipschitzovskost, Lipschitzov-

At $(\mathbb{M},d),(\mathbb{N},e)$ jsou MP, $f:\mathbb{M}\to\mathbb{N},\ a\in\mathbb{M}.$ Potom f je spojitá v $a\equiv\forall\varepsilon>0\ \exists\delta>0\ \forall x\in\mathbb{M}:d(x,a)<\delta\implies e(f(x),f(a)<\varepsilon).$

f je spojitá na $\mathbb{M} \equiv \forall a \in \mathbb{M} : f$ je spojitá v a.

f je k-Lipschitzovská $(k > 0) \equiv \forall x, y \in \mathbb{M} : e(f(x), f(y)) \leq k \cdot d(x, y)$.

fje Lipschitzovská $\equiv \exists k>0: f$ je k-Lipschitzovská.

Pozorování

f je k-Lipschitzovská $\implies f$ je spojitá.

Definice 3.2 (Značení)

At (M, d) je MP, $A \subseteq M$, $x \in M$. Pak $dist(x, A) := \inf_{a \in A} d(x, a)$.

Lemma 3.1

At(M,d) je MP, $A \subseteq M$. Pak

$$(i)\forall x \in \mathbb{M} : d(x, A) = d(x, \overline{A}),$$

$$(ii) \forall x \in \mathbb{M} : d(x, A) = 0 \Leftrightarrow x \in \overline{A},$$

(iii) dist $(\cdot, A) : \mathbb{M} \to \mathbb{R}$ je 1-Lipschitzovská.

Důkaz

 $(i) \geq$: Jasné (infimum přes menší množinu). \leq : Pro $n \in \mathbb{N}$ zvolme $y_n \in \overline{A}$: $d(x,y_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$. Zvolme dále $x_n \in \operatorname{B}\left(y_n,\frac{1}{n}\right) \cap A$, pak $\operatorname{dist}(x,A) \leq d(x,x_n) \leq d(x,y_n) + d(y_n,x_n) < \operatorname{dist}(x,\overline{A}) + \frac{1}{n}$, celkem $\forall n \in \mathbb{N} : \operatorname{dist}(x,A) < \operatorname{dist}(x,\overline{A}) + \frac{2}{n} \Longrightarrow \operatorname{dist}(x,A) \leq \operatorname{dist}(x,\overline{A})$.

(ii): BÚNO A je uzavřená (jinak podle (i)). \Rightarrow : Jasné (do inf dosadíme x). $\Rightarrow \forall n \ \exists x_n \in B(x, \frac{1}{n}) \cap A$ protože d(x, A) = 0. Pak ale $x_n \to x$, tedy $x \in A$ z uzavřenosti.

(iii): Zvolme $x, y \in \mathbb{M}$. BÚNO $d(x, A) \ge d(y, A)$. Fixujeme $n \in \mathbb{N}$. Zvolme $y_n \in A$: $d(y, y_n) < \operatorname{dist}(y, A) + \frac{1}{n}$. Pak

$$|d(x,A) - d(y,A)| = d(x,A) - d(y,A) < d(x,y_n) - \left(d(y,y_n) - \frac{1}{n}\right) \le \frac{1}{n} + d(x,y).$$

 \implies (n bylo libovolné, přejdeme k limitě) $|d(x,A)-d(y,A)| \le 1 \cdot d(x,y)$.

Lemma 3.2

At(M,d) je MP. Pak

 $(i) \forall x \neq y \in \mathbb{M} \ \exists f : \mathbb{M} \to \mathbb{R} \ 1\text{-}Lipschitzovsk\acute{a}, \ \check{z}e \ f(x) \neq f(y),$

(ii) Projekce $\pi_i: (\mathbb{R}^d, ||\cdot||_p) \to \mathbb{R}, (x_1, \dots, x_d) \mapsto x_i \text{ jsou Lipschitzovsk\'e}, d \in \mathbb{N}, p \in [1, \infty].$

 \Box $D\mathring{u}kaz$

(i) Zvol $f := d(\cdot, \{x\})$.

 $(ii) \ \forall \vec{x}, \vec{y} \in \mathbb{R}^d : |\pi_i(x_1, \dots, x_d) - \pi_i(y_1, \dots, y_d)| = |x_i - y_i|$

$$\leq \begin{cases} p = \infty : & ||\vec{x} - \vec{y}||_{\infty} \\ p \neq \infty : & \sqrt[p]{\sum_{j=1}^{d} |x_j - y_j|^p} \end{cases}.$$

Tvrzení 3.3

 $At(\mathbb{M},d), (\mathbb{N},e)$ jsou MP, $f:\mathbb{M}\to\mathbb{N}.$ Pak následující tvrzení jsou ekvivalentní:

- (i) f je spojitá,
- (ii) $f^{-1}(U)$ je otevřená, kdykoliv $U \subseteq \mathbb{N}$ je otevřená,
- (iii) $f^{-1}(F)$ je uzavřená, kdykoliv $F \subseteq \mathbb{N}$ je uzavřená.

 $D\mathring{u}kaz$

- (ii) \Leftrightarrow (iii): Z věty o doplňcích a toho, že $f^{-1}(\mathbb{N} \setminus U) = \mathbb{M} \setminus f^{-1}(U)$.
- (i) \Longrightarrow (ii): Nechť $U\subseteq\mathbb{N}$ otevřená, $x\in f^{-1}(U)$. Pak $f(x)\in U\Longrightarrow\exists \varepsilon>0$: $\mathrm{B}(f(x),\varepsilon)\subseteq U.\Longrightarrow (f\mathrm{spojit\acute{a}})\;\exists \delta>0: y\in\mathrm{B}(x,\delta)\Longrightarrow f(y)\in\mathrm{B}(f(x),\varepsilon)\subseteq U,\;\mathrm{pak}\;\mathrm{B}(x,\delta)\subseteq f^{-1}(U).$
- (ii) \Longrightarrow (i): Nechť $x \in \mathbb{M}, \varepsilon > 0$. Pak $f^{-1}(B(f(x), \varepsilon))$ je otevřená dle (ii). $\Longrightarrow \exists \delta > 0$: $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$. Tedy $d(x, y) < \delta \Longrightarrow f(y) \in B(f(x), \varepsilon)$.

Definice 3.3 (Stejnoměrná spojitost)

Ať (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je stejnoměrně spojitá, pokud

$$\forall \varepsilon > 0 \exists \delta > 0 \ \forall x, y \in \mathbb{M} : d(x, y) < \delta \implies e(f(x), f(y)) < \varepsilon.$$

Důsledek

f je stejnoměrně spojitá $\implies f$ je spojitá. (Ale naopak to neplatí.)

f je Lipschitzovská $\implies f$ je stejnoměrně spojitá. (Stejně tak tohle naopak neplatí.)

Definice 3.4 (Izometrie)

At (\mathbb{M}, d) a (\mathbb{N}, e) jsou MP, $f : \mathbb{M} \to \mathbb{N}$. Pak f je izometrie, pokud $\forall x, y \in \mathbb{M} : d(x, y) = e(f(x), f(y))$.

Důsledek

Izometrie je 1-Lipschitzovská. (Ale ne naopak.)

Definice 3.5 (Homeomorfismus)

Ať (\mathbb{M},d) a (\mathbb{N},e) jsou MP, $f:\mathbb{M}\to\mathbb{N}$. Pak f je homeomorfismus, pokud f je spojitá bijekce a f^{-1} je spojitá.

Důsledek

Izometrie na je homeomorfismus. (Ale opačně to neplatí.)

Lemma 3.4

 $I \text{ interval, } f: I \to \mathbb{R}, \text{ } \check{z}e \mid f'(x) \mid \leq C, \forall x \in \operatorname{int}(I) \implies f \text{ } je \text{ } C\text{-}Lipschitzovsk\'a.$

Důkaz

At $a < b \in I \implies (\text{Lagrange}) \ \exists \zeta \in (a,b) : |\frac{f(b)-f(a)}{b-a}| = |f'(\zeta)| \le C$, tj. $|f(b)-f(a)| \le C|b-a|$.

Definice 3.6 (Topologicky ekvivalentní)

Řekneme, že σ a σ_1 jsou topologicky ekvivalentní, pokud

 $\{A\subseteq \mathbb{Y}: A \text{ je otevřená v } (\mathbb{Y},\sigma)\} = \{A\subseteq \mathbb{Y}: A \text{ je otevřená v } (\mathbb{Y},\sigma_1)\}.$

Tvrzení 3.5

Buďte (\mathbb{X}, ϱ) , (\mathbb{Y}, σ) MP, $f: (\mathbb{X}, \varrho) \to (\mathbb{Y}, \sigma)$ homeomorfismus. Definujeme pro všechna $y, y' \in \mathbb{Y}$ zobrazení $\sigma_1 \mathbb{Y} \times \mathbb{Y} \to [0, \infty)$ předpisem

$$\sigma_1(y, y') = \varrho(f^{-1}(y), f^{-1}(y')).$$

Pak σ_1 je metrika na \mathbb{Y} , $f:(\mathbb{X},\varrho)\to(\mathbb{Y},\sigma_1)$ je izometrie a metriky σ a σ_1 jsou topologicky ekvivalentní.

 $D\mathring{u}kaz$

Metrika: Banální, cvičení pro nás. Izometrie: Nechť $x, x' \in \mathbb{X}$ jsou libovolné body.

$$\sigma_1(f(x), f(x')) = \varrho(f^{-1}(f(x)), f^{-1}(f(x'))) = \varrho(x, x'),$$

a tedy f je izometrie.

Topologická ekvivalence: Nechť $U \subseteq \mathbb{Y}$ je otevřená vzhledem k σ . Pak $f^{-1}(U)$ je otevřená (f je homeomorfismus), ale f je izometrie, tedy f^{-1} je izometrie, tudíž f^{-1} je spojitá. Tj.

$$U = f(f^{-1}(U)) = (f^{-1})^{-1}(f^{-1}(U))$$
 je otevřená.

Podobně pokud U je σ_1 -otevřená, je σ -otevřená.

Věta 3.6

Buďte ϱ_1 , ϱ_2 metriky na X. Pak ϱ_1 a ϱ_2 jsou topologicky ekvivalentní \Leftrightarrow

 $(\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_1(x,y) < \delta \implies \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon) \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \varphi \in \mathbb{X} : \varrho_2(x,y) < \varepsilon \land (\forall x \in \mathbb{X} \ \forall \varphi \in \mathbb{X})$

 $D\mathring{u}kaz$

Snadné cvičení.

Definice 3.7 (Diametr, omezená množína)

Buď (X, ϱ) MP, $A \subseteq X$. Definujeme diam $_{\varrho}(A) = \sup \{ \varrho(x, y) : x, y \in A \}$.

Řekneme, že A je omezená, pokud $\operatorname{diam}_{\rho}(A) < \infty$.

Definice 3.8 (Omezená metrika)

 ϱ je na $\mathbb X$ omezená pokud $\mathbb X$ je omezená.

4 Operace s metrickými prostory

Definice 4.1 (Operace)

Je-li (X, ϱ) MP, $Y \subseteq X$, pak metrický prostor $(Y, \varrho|_{Y \times Y})$ nazýváme podprostorem prostoru (X, ϱ) , značíme (Y, ϱ) .

 $D\mathring{u}kaz$

Že (\mathbb{Y}, ϱ) je MP je zřejmé.

Tvrzení 4.1

 $Bud'(X, \varrho) MP, Y \subseteq X. Pak:$

- 1) Pokud $G \subseteq \mathbb{X}$ je otevřená $v(\mathbb{X}, \varrho)$, pak $G' = G \cap \mathbb{Y}$ je otevřená $v(\mathbb{Y}, \varrho)$.
- 2) Pokud $G' \subseteq \mathbb{Y}$ je otevřená $v(\mathbb{Y}, \varrho)$, pak $\exists G \subseteq \mathbb{X}$ otevřená $v(\mathbb{X}, \varrho) : G' = G \cap \mathbb{Y}$.

Důkaz

- 1) Necht $y \in G'$. Protože G je otevřená v \mathbb{X} , tak $\exists r > 0 : \mathcal{B}_{\mathbb{X},\varrho}(y,r) \subseteq G$. Tedy $\mathcal{B}_{\mathbb{Y},\varrho}(y,r) = \mathcal{B}_{\mathbb{X},\varrho}(y,r) \cap \mathbb{Y} \subseteq G \cap \mathbb{Y} = G'$.
- 2) Nechť je dána G' otevřená v (\mathbb{Y},ϱ) . Pak $\forall x\in G'\ \exists \varepsilon(x)>0: \mathrm{B}_{\mathbb{Y},\varrho}(x,\varepsilon(x))\subseteq G'.$ Zřejmě $G'=\bigcup_{x\in G'}\mathrm{B}_{\mathbb{Y},\varrho}(x,\varepsilon(x)).$

Položme $G=\bigcup_{x\in G'}\mathrm{B}_{\mathbb{X},\varrho}(x,\varepsilon(x))$. Potom je $G\cap\mathbb{Y}=G'$. G je otevřená, jelikož je sjednocením otevřených množin.

Definice 4.2 (Součet MP)

Mějme MP $\{\mathbb{X}_{\alpha}, \varrho_{\alpha}\}_{\alpha \in I}$, které splňují $\forall \alpha \in I \ \forall x, y \in \mathbb{X}_{\alpha} : \varrho_{\alpha}(x, y) \leq 1$. Sumou prostorů $(\mathbb{X}_{\alpha}, \varrho_{\alpha})$ nazýváme prostor

$$\sum_{\alpha \in I} (\mathbb{X}_{\alpha}, \varrho) = (\mathbb{X}, \varrho),$$

kde

$$\mathbb{X} = \coprod_{\alpha \in I} \mathbb{X}_{\alpha} = \{(x, \alpha) | x \in \mathbb{X}_{\alpha}, \alpha \in I\},$$

 $\varrho((x,\alpha),(y,\beta)) = 1$, pokud $\alpha \neq \beta, \varrho_{\alpha}(x,y)$, pokud $\alpha = \beta$.

Definice 4.3 (Součin (spočetně mnoha) MP)

Buďte $\{X_i, \varrho_i\}_{i \in \mathbb{N}}$ MP, že $\forall i \in \mathbb{N} : \operatorname{diam}(X_i) \leq 1$. Součinem prostorů (X_i, ϱ_i) nazýváme metrický prostor (je nutno, ale jednoduché dokázat)

$$\prod_{i\in\mathbb{N}}:=(\mathbb{X},\varrho),\qquad \mathbb{X}=\prod_{i\in\mathbb{N}}\mathbb{X}_i\wedge \forall f,g\in\mathbb{X}:\varrho(f,g)=\sum_{i=1}^*\frac{\varrho_i(f(i),g(i))}{2^i}.$$

Tvrzení 4.2

Budte (X_i, ϱ_i) , $i \in \mathbb{N}$, MP, kde diam $X_i \leq 1$. Necht $(X, \varrho) = \prod_{i \in \mathbb{N}} (X_i, \varrho_i)$ a budiž $\{f_n\}_{n=1}^{\infty} \subseteq X$ posloupnost bodů $v \times f \in X$. Pak $\lim_{n \to \infty} f_n = f(v) \times f(x)$ $v \times f$

 \Box $D\mathring{u}kaz$

 \implies : Nechť $f_n \to f$. Budiž dáno libovolné $i_0 \in \mathbb{N}$. Nechť $\varepsilon > 0$. Najdeme $n_0 \in \mathbb{N}$, že $\forall n \geq n_0 : \varrho(f_n, f) < \varepsilon \cdot 2^{-i_0}$. Tedy pro

$$n \ge n_0 : \varepsilon \cdot 2^{-i_0} > \varrho(f_n, f) = \sum_{i=1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} \ge \frac{\varrho_{i_0}(f_n(i_0), f(i_0))}{2^{i_0}},$$

tj. $\varrho_{i_0}(f_n(i_0), f(i_0)) < \varepsilon$. tedy $\lim_{n \to \infty} f_n(i_0) = f(i_0)$.

 \Leftarrow : Necht $\forall i \in \mathbb{N} : f_n(i) \to f(i)$. Necht $\varepsilon > 0$. Najděme $i_0 \in \mathbb{N}$, že $\sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2}$. Pro všechna $i \in \{1, 2, \dots, i_0\}$ najdeme n_i , že $\forall n \geq n_i : \varrho_i(f_n(i), f(i)) < \frac{\varepsilon}{i_0}$. Položme $\tilde{n} := \max\{n_1, n_2, \dots, n_{i_0}\}$. Pak $n \geq \tilde{n}$: jest

$$\varrho(f_n, f) = \sum_{i=1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} = \sum_{i=1}^{i_0} \frac{\varrho_i(f_n(i), f(i))}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{\varrho_i(f_n(i), f(i))}{2^i} \le \sum_{i=1}^{i_0} \frac{\varepsilon/i_0}{2} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{\varepsilon}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{1}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2^i} + \frac{\varepsilon}{2^i} = \sum_{i=0}^{\infty} \frac{1}{2^i} + \sum_{i=i_0+1}^{\infty} \frac{1}{2^i} + \sum_{i=i$$

5 Totálně omezené a separabilní MP

Definice 5.1 (ε -sít, ε -separovanost, totální omezenost)

Buď (\mathbb{M} , d) MP, $A \subseteq \mathbb{M}$, $\varepsilon > 0$. Řekneme, že A je ε -sít pro \mathbb{M} , jestliže $\forall x \in \mathbb{M} \ \exists a \in A \ \forall x \in \mathbb{B}(a,\varepsilon) : d(x,a) < \varepsilon$.

A je ε -separovaná, pokud $\forall x, y \in A : d(x, y) \geq \varepsilon$.

 $\mathbb M$ je totálně omezený, jestliže $\forall \varepsilon>0\ \exists A\subseteq \mathbb M: A$ je konečná $\varepsilon\text{-sít}$ pro $\mathbb M.$

 $\mathbb M$ je separabilní, pokud $\exists A\subseteq \mathbb M$ spočetná: $\overline A=\mathbb M.$ (Tj. Aje hustá v $\mathbb M.)$

Věta 5.1

 $MP\left(\mathbb{M},d\right)$ je totálně omezený, právě $když\ \forall \varepsilon>0$ je každá ε -separovaná množina konečná.

□ Důkaz

 \Longrightarrow : Necht $\varepsilon>0,\ B\subseteq\mathbb{M}$ je ε -separovaná. Chceme B je konečná. Protože \mathbb{M} je TO, existuje konečná $\frac{\varepsilon}{4}$ -sít $A\subseteq\mathbb{M}$. Pro každé $x\in B$ zvolíme nějaký bod $a_x\in A:d(x,a_x)<\frac{\varepsilon}{4}$. Pak pro $x\neq y,\, x,y\in B$ platí $a_x\neq a_y\colon d(a_x,a_y)\geq d(x,y)-d(x,a_x)-d(y,a_y)\geq \varepsilon-\frac{\varepsilon}{4}-\frac{\varepsilon}{4}=\frac{\varepsilon}{2}>0$. Tj. zobrazení $B\to A:x\mapsto a_x$ je prosté. Ale A je konečná tedy B je konečná.

 \Leftarrow Necht $\varepsilon > 0$; chceme najít konečnou ε -sít. Vezmeme si $B \subseteq M$ ε -separovaná, která je maximální (co do inkluze). Tvrdíme, že B je automaticky ε sít: Zvolme $x \in \mathbb{M}$. Pak existuje $b \in B : d(x,b) < \varepsilon$. Kdyby ne: $\forall b \in B : d(x,b) \geq \varepsilon$. To by znamenalo, že $B \cup \{x\} \supset B$ je ε -separovaná, což je spor s maximalitoui B. Tj. B je opravdu ε -sít pro \mathbb{M} .

Druhá část důkazu však potřebuje tzv. Zornovo lemma, abychom mohli brát B maximální. $\hfill \square$

Věta 5.2

 $Bud'(\mathbb{M},d)$ MP, $\mathbb{N}\subseteq\mathbb{M}$. $Pokud(\mathbb{M},d)$ je TO, $pak\ i(\mathbb{N},d)$ je TO. (Tedy TO se zachovává na podprostory.)

 $D\mathring{u}kaz$

Nechť $A\subseteq\mathbb{N}$ je ε -separovaná. Ch
ceme: A je konečná. (Pak (\mathbb{N},d) je TO podle V18). Ale $A\subseteq\mathbb{N}\subseteq\mathbb{M}$, ted
y $A\subseteq\mathbb{M}$ je ε -separovaná v \mathbb{M} . Ale \mathbb{M} je TO, takže A musí být konečná.

Věta 5.3

 $(\mathbb{M},d) \ je \ MP, \ \mathbb{N} \subseteq \mathbb{M}. \ Je\text{-li} \ (\mathbb{N},d) \ TO, \ pak \ (\overline{\mathbb{N}},d) \ je \ TO. \ (TO \ se \ zachovává \ na \ uzávěr.)$

 $D\mathring{u}kaz$

 $\varepsilon > 0$ dáno, chceme konečnou ε -síť v prostoru $(\overline{\mathbb{N}}, d)$. Nechť $A \subseteq \mathbb{N}$ je konečná $\varepsilon/2$ -síť pro \mathbb{N} (ta existuje, neboť (\mathbb{N}, d) je TO). Chceme je ε -síť pro $(\overline{\mathbb{N}}, d)$. Zvolme libovolný bod $x \in \overline{\mathbb{N}}$. Chceme $\exists y \in A : d(x, y) < \varepsilon$.

Protože $x \in \overline{\mathbb{N}}$, existuje $z \in \mathbb{N}: d(x,z) < \frac{\varepsilon}{2}$. Protože A je $\varepsilon/2$ -síť pro \mathbb{N} , existuje $y \in A: d(y,z) < \frac{\varepsilon}{2}$. Tedy $d(x,y) \leq d(x,z) + d(y,z) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Tudíž A je ε -síť pro $\overline{\mathbb{N}}$.

Věta 5.4

Nechť $(\mathbb{M}_{\alpha}, d_{\alpha})$, $\alpha \in I$ jsou MP, diam $M_{\alpha} \leq 1$, $\forall \alpha \in I$. Pak $\sum_{\alpha \in I} (\mathbb{M}_{\alpha}, d_{\alpha})$ je $TO \Leftrightarrow I$ je konečná a $\forall \alpha \in I : (\mathbb{M}_{\alpha}, d_{\alpha})$ je TO.

$D\mathring{u}kaz$

 \Longrightarrow : Nechť Σ je TO. Nechť $\varepsilon > 0$. Pokud $\varepsilon \ge 1$, pak libovolná jednobodová množina je ε -síť. $\varepsilon < 1$. Nechť $A \subseteq \Sigma(\mathbb{M}_{\alpha}, d_{\alpha})$ je konečná ε -síť. Položme $A_{\alpha} := \{x \in \mathbb{M}_{\alpha} | (x, \alpha) \in A\}$. Potom A_{α} je zřejmě ε -síť $(\mathbb{M}_{\alpha}, d_{\alpha})$.

 \Leftarrow : Podle předpokladů, pro dané $\varepsilon > 0$, $\forall \alpha \in I \ \exists A_{\alpha} \subseteq \mathbb{M}_{\alpha} : A_{\alpha}$ je konečná ε -sít (protože ($\mathbb{M}_{\alpha}, d_{\alpha}$) jsou TO). $A \bigcup_{\alpha \in I} A_{\alpha} \times \{\alpha\}$ je ε -sít pro $\sum_{\alpha \in I} (\mathbb{M}_{\alpha}, d_{\alpha})$.

Věta 5.5

Nechť (\mathbb{M}_i, d_i) jsou MP, $i \in \mathbb{N}$, a nechť $\forall i : \text{diam } \mathbb{M}_i \leq 1$. Pak $(\mathbb{M}, d) = \prod_{i \in \mathbb{N}} (\mathbb{M}_i, d_i)$ je TO $\Leftrightarrow \forall i \in \mathbb{N} : (\mathbb{M}_i, d_i)$ je TO.

Důkaz

 \Longrightarrow : (Lze provést i důkaz přímo z definic) Zvolme $a=(a_i)_{i=1}^\infty\in\mathbb{M}$. Definujeme zobrazení $\varphi:(\mathbb{M}_i,d_i)\to(\mathbb{M},d)$ tak, že $\varphi(x)=(a_1,a_2,\ldots,a_{i-1},x,a_{i+1},a_{i+2},\ldots)\in\mathbb{M}$. Pak φ je izometrie. Tedy $(\mathbb{M}_i,\frac{d_i}{2^i})$ lze chápat jako podprostor (neboli izometrickou kopii podprostoru) (\mathbb{M},d) . Ale \mathbb{M} je TO, tedy i jeho podprostor je TO.

 \Leftarrow : Necht $\varepsilon > 0$ je dáno. Zvolíme $i_0 \in \mathbb{N} : \sum_{i=i_0}^{\infty} \frac{1}{2^i} < \frac{\varepsilon}{2}$. Pro $i \in \{1, \dots, i_0 - 1\}$ najdeme konečné $\varepsilon / 2$ -sítě A_i pro \mathbb{M}_i . $S = \{(x_i) \in \mathbb{M} | x_i \in A_i, i \in \{1, \dots, i_0 - 1\} \lor x_i = a_i, i \ge i_0\}$. S je konečná, nebot $|S| \prod_{i=1}^{i_0-1} |A_i|$. S je ε -sít pro \mathbb{M} .