Course <u>Progress</u>

Resources

K-Nearest Neighbor Method

Our goal in the movie recommender system problem is to predict the movie ranking that a user would give on a movie that (s)he has not seen.

Let m be the number of movies and n the number of users. The ranking Y_{ai} of a movie $i \in \{1, \dots, m\}$ by a user $a \in \{1, \dots, n\}$ may already exist or not. Our goal is to predict Y_{ai} in the case when Y_{ai} does not exist.

K-Nearest Neighbour

The K-Nearest Neighbor method makes use of ratings by K other "similar" users when predicting Y_{ai} .

Let $\mathrm{KNN}\,(a)$ be the set of K users "similar to" user a, and let $\mathrm{sim}\,(a,b)$ be a **similarity measure** between users a and $b\in\mathrm{KNN}\,(a)$. The K-Nearest Neighbor method predicts a ranking Y_{ai} to be :

$$\widehat{Y}_{ai} = rac{\displaystyle\sum_{b \in ext{KNN}(a)} \sin\left(a,b
ight) Y_{bi}}{\displaystyle\sum_{b \in ext{KNN}(a)} \sin\left(a,b
ight)}.$$

The similarity measure $\sin{(a,b)}$ could be any distance function between the feature vectors x_a and x_b of users a and b, e.g. the euclidean distance $\|x_a - x_b\|$ and the cosine similarity $\cos{\theta} = \frac{x_a \cdot x_b}{\|x_a\| \|x_b\|}$. We will use these similarity measures again in *Unit 4 Unsupervised Learning*.

A drawback of this method is that the success of the K-Nearest Neighbor method depends heavily on the choice of the similarity measure. In the next section, we will discuss collaborative filtering, which will free us from the need to define a good similarity measure.

Discussion

© All Rights Reserved

edX

About

weeks):Lecture 7. Recommender Systems / 3. K-Nearest Neighbor Method

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

