NAS-VQA summary

DANG ANH CHUONG

Outline:

- I. NAS-VQA project summary
 - 1. First attempt
 - 2. Second attempt
 - 3. Third attempt
 - 4. New publish on NAS-VQA vs ours
 - 5. Brief results summary

I. NAS-VQA summary

1. First attempt

- The first attempt for applying NAS in VQA task
 - Utilizing SNAS search strategy with Gumbel Softmax, note: by changing this does not improve performance:'(
 - Utilizing MCAN & DenseCoAttention model
 - Operations: SA, SGA, modified CoA
 - > Operation pool: SA-SA, ID-SGA, SGA-ID, SA-ID, ID-SA ... permutations of pair-operation
 - Search whole attention network topology
 - ✓ Best performance on validation set: **67.08**%
 - ✓ Not bad but not yet giving good result

(b) Guided-Attention (GA)

2. Second attempt

- Rethinking about why DARTS yields improvement in classification task
 - Keeping search strategy as SNAS
 - Maybe it is about search proxy:
 - Which operations?
 - Connection between operations ...
 - > Needed for more appropriate operations and connections proxy:
 - Breaking down & utilizing MCAN operations: SA, GA, FF
 - Operation pool: SA, GA, FF, ID (a.k.a: skip-connect), None
 - Adding connection operations from DARTS: Identity, None

$$Z = LN\big(X + SA(X)\big) = LN(X + MHA(X,X,X,0)) \qquad Z = LN(X + GA(X)) = LN(X + MHA(X,Y,Y,0))$$

$$Z = LN(X + GA(X)) = LN(X + MHA(X,Y,Y,0))$$

Feed Forward

$$Z = LN(X + FF(X))$$

$$FF(X) = FC_{d \to 4d} \to ReLU \to Drop(0.1) \to FC_{4d \to d}$$

Where;

LN: LayerNorm

MHA: multi-head attention

2. Second attempt

- How about connection proxy?
 - Utilizing two proxy from DARTS (however, both are stack-style connection)
 - Proxy for CNN (best on val set: 66.60%)
 - Proxy for RNN (best on val set: 66.69% ... improved a bit with way less parameters)
 - In both implementation, I was confused about how to generate output for each cell, after all I took average features from intermediate nodes.
 - Input of each node are 2 features, while output is 1 specific feature (either image or language)

3. Third attempt

- Reconsidering about MCAN model and why it is good
- Language feature may be weak compare to image feature from Faster-RCNN
- Try to implement search on Language feature extractor:
 - ✓ Utilizing DARTS search for RNN model
 - ✓ Initial results:
 - > RNN-search + Attention search = **66.44%** (not yet carefully tuned)
 - > RNN-search + MCAN_ed = 67.03% ± 0.02% (not yet carefully tuned)

4. New publish and differences in our model

- Last month, the same group of authors of MCAN paper published one paper about NAS on VQA, the solution in the paper somehow similar to my approach
 - ➤ By utilizing NAS algorithm, they improve their model performance <u>0.6%</u> (from **67.2%** to **67.8%**) very minimal improvement
 - > Paper title: Deep Multimodal Neural Architecture Search (a.k.a MMnasNet)

4. New publish and differences in our model

- Brief summary about differences between their proposed method and ours
 - ➤ Encoder-Decoder proxy vs Stack approach
 - > Slightly different in operations pool and structure of each operation

4. New publish and differences in our model

- A bit more details about new publish
 - Specifically, main different is that they have no add_norm layer in their operation primitives comparing to mine
 - They use design of encoder and decoder for their search proxy while I used stackable design
 - Their operation pool are more specific for encoder-decoder while mine is same for both image and language
 - I utilized SNAS search algorithm while they used more optimized one from ProxylessNAS (ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware)

Result architecture of MMnasNet for each task

5. Brief performance comparison

Model	Best validation accuracy (%)
DCN (paper)	65.50
BAN (paper)	66.04
Ours (2nd)	66.69
Ours (3rd)	67.03
Ours (1st)	67.08
MCAN (paper)	67.20
MMnasNet (paper)	67.80

References:

- Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. 2018. Bilinear attention networks. In Advances in Neural Information Processing Systems (NIPS)
- Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. 2019. Deep Modular Co-Attention Networks for Visual Question Answering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Duy-Kien Nguyen and Takayuki Okatani. 2018. Improved fusion of visual and language representations by dense symmetric co-attention for visual question answering. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Zhou Yu, Yuhao Cui, Jun Yu, Meng Wang, Dacheng Tao, and Qi Tian. 2020. Deep Multimodal Neural Architecture Search. In Proceedings of ACM Conference (ACM).