DEEP IMAGE PRIOR

DMITRY ULYANOV · ANDREA VEDALDI · VICTOR LEMPITSKY

SUPERVISOR: Dr. Pascal Peter

PRESENTER: Harsh Agarwal

BACKGROUND

- Deep Learning generally comprises of
- Network

Dataset

Learning Procedure

- While Deep Image Prior comprises of
- Network

Learning Procedure

OVERVIEW

- 1. Mathematically What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

NOISING & DE-NOISING

$$x^* = argmax_x \ p(x|\hat{x}) \quad [MAP]$$

$$p(x|\hat{x}) = \frac{p(\hat{x}|x).p(x)}{p(\hat{x})} \propto p(\hat{x}|x).p(x)$$
Likelihood Prior

NOISING & DE-NOISING

$$\hat{\mathbf{x}} = \mathbf{x} + \epsilon, \, \epsilon \sim N(0, \sigma^2) \qquad \mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} p(\mathbf{x} | \hat{\mathbf{x}})$$
$$p(\hat{\mathbf{x}} | \mathbf{x}) = N(\hat{\mathbf{x}}; \mathbf{x}, \sigma^2) \qquad \mathbf{x}^* = \operatorname{argmax}_{\mathbf{x}} p(\hat{\mathbf{x}} | \mathbf{x}) p(\mathbf{x})$$

NOISING & DE-NOISING

$$x^* = argmax_x p(x|\hat{x}) = argmax_x p(\hat{x}|x).p(x)$$

Assuming we do not need any Prior:

$$\mathbf{x}^* = argmax_{\mathbf{x}}p(\hat{\mathbf{x}}|\mathbf{x}) = argmax_{\mathbf{x}}N(\hat{\mathbf{x}};\mathbf{x},\sigma^2) = \hat{\mathbf{x}}$$

DEGRADATION & RESTORATION

```
x - Clean Image

\hat{x} - Degraged Image

x^* - Restored Image

x^* = argmax_x p(x|\hat{x}) = argmax_x p(\hat{x}|x)p(x)
= argmin_x \left(-\log(p(\hat{x}|x)) - \log(p(x))\right)
```

Expressing this as an Energy Minimization Problem:

$$x^* = argmin_x E(x, \hat{x}) + R(x)$$
Task-Dependent Term Prior

TASK DEPENDENT DATA TERM

 $x - Clean\ Image$ $\hat{x} - Degraged\ Image$ $x^* - Restored\ Image$ $m - Binary\ Image\ Mask$

$$\mathbf{x}^* = argmin_{\mathbf{x}} E(\mathbf{x}, \hat{\mathbf{x}})$$

Denoising
$$E(x, \hat{x}) = ||x - \hat{x}||^2$$

Super-Resolution $E(x, \hat{x}) = ||d(x) - \hat{x}||^2$
Inpainting $E(x, \hat{x}) = ||(x - \hat{x}) \cdot m||^2$

OVERVIEW

- 1. Mathematically: What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

USE OF PRIOR

TYPES OF PRIORS

Learned Prior

Low-Resolution Images

High-Resolution Images

Explicit Prior

$$\min_{x} ||d(x) - \hat{x}||$$

Given, x is a woman's face shot in natural lighting

Deep Image Prior

$$\min_{x} ||d(x) - \hat{x}||$$

Here, x is the output of a Deep Learning Network

RESULTS

OVERVIEW

- 1. Mathematically: What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

PARAMETERIZATION

```
x - Clean Image

\hat{x} - Degraged Image

x^* - Restored Image
```

In Image Space: $argmin_x E(x, \hat{x}) + R(x)$

REGULAR IMAGE SPACE

 $argmin_x E(x, \hat{x}) + R(x)$

PARAMETERIZATION

```
x — Clean Image \hat{x} — Degraged Image
```

 x^* – Restored Image

In Image Space: $argmin_x E(x, \hat{x}) + R(x)$

$$g(\theta) = x$$

In Some Parameter Space: $argmin_{\theta}E(g(\theta), \hat{x}) + R(g(\theta))$

Task-Dependent Term Prior

PARAMETER SPACE

 $argmin_{\theta}E(g(\theta), \hat{\mathbf{x}}) + R(g(\theta))$

WHY PARAMETERIZATION?

- Here the mapping function g acts as a tunable hyperparameter
- ullet g(heta) acts as a prior o helps choose the best parameter o maps to the best output image
- Instead of optimizing both the components, we just optimize the data term now
 - Easy to optimize
 - Contains implicit prior while also being Task-Dependent

In Theory: If g is surjective (g: $\theta \to x$) The solutions from the two equations are: $g(\theta) = x$

In Practice: This is not the case as it would be a local optimization, so the results may differ

OVERVIEW

- 1. Mathematically: What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

NEURAL NETWORK PARAMETERIZATION

In Some Parameter Space: $argmin_{\theta}E(g(\theta), \hat{x}) + R(g(\theta))$

$$x = g(\theta) \equiv f_{\theta}(z)$$

 $f_{ heta} \; o \;$ Chosen Deep Learning Network with weights heta

 $z \rightarrow$ Fixed Input Image

NEURAL NETWORK PARAMETER SPACE

 $argmin_{\theta}E(f_{\theta}(z), \hat{x}) + R(f_{\theta}(z))$

METHODOLOGY

Parameter optimization process using Deep Image Prior

OPTIMIZATION WITH PRIORS

Denoising a noisy image

With Prior: Good image at t_3 , but after further optimization returns corrupted image

No Prior: Corrupted image is the restored image

Super-Resolution

With Prior: When fully optimized, the restored image

would be close to the actual image x

No Prior: Restored image is far from actual image

OVERVIEW

- 1. Mathematically: What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

DENOISING

Corrupted Image

Generated Image

DENOISING

Iteration 0

Iteration 300

Iteration 900

Iteration 1900

DENOISING

Problems of Overfitting

INPAINTING

Corrupted Image

Generated Image

INPAINTING

Iteration 0

lteration 300

Iteration 1450

lteration 2000

SUPER RESOLUTION

Original Image

Downsampled Image

Generated Image

SUPER RESOLUTION

Iteration 0

Iteration 150

Iteration 700

Iteration 1600

OVERVIEW

- 1. Mathematically: What is Prior?
- 2. Intuitively: What is a Prior?
- 3. Implicit and Explicit Prior
- 4. Deep Image Prior
- 5. Results
- 6. Conclusion

CONCLUSION

- The paper suggests
 - Huge dataset is not the only factor that helps networks learn the features
 - Even the network architecture holds capability to capture prior information
- The current model does not have direct practical applications
 - It takes many iterations to perform any restoration task
 - Models trained with huge datasets can perform inference in just one forward pass
- The author does not claim this to be a SOTA model for image restoration
 - Instead, this paper opens new research areas in deep learning which have not been explored before

BIBLIOGRAPHY

Ulyanov Dmitry, Andrea Vedaldi, and Victor Lempitsky. "Deep image prior."
 Proceedings of the IEEE conference on computer vision and pattern recognition. 2018

Deep Image Prior [https://dmitryulyanov.github.io/deep_image_prior]

Pratik Katte. "Demystifying - Deep Image Prior." 2019
 [https://towardsdatascience.com/demystifying-deep-image-prior-7076e777e5ba]