Surface PDEs, Plates and Shells

Michael Neunteufel, Joachim Schöberl

2nd NGSolve User Meeting, Göttingen, July 4-6, 2018

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$ $J = \det(F)$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) |J| d\hat{x}$$

$$\int_{T} \nabla_{x} f(x) \nabla_{x} g(x) dx = \int_{\hat{T}} (F^{-T} \nabla_{\hat{x}} f) (\Phi(\hat{x})) (F^{-T} \nabla_{\hat{x}} g) (\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

$$\int_{T} f(x)g(x) dx = \int_{\hat{T}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) |J| d\hat{x}$$

$$\int_{\mathcal{T}} \nabla_{x} f(x) \nabla_{x} g(x) dx = \int_{\hat{\mathcal{T}}} (F^{-T} \nabla_{\hat{x}} f)(\Phi(\hat{x})) (F^{-T} \nabla_{\hat{x}} g)(\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

•
$$F = \nabla \Phi_{\hat{x}} \in \mathbb{R}^{3 \times 2}$$

•
$$J = \sqrt{\det(F^T F)}$$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) |J| d\hat{x}$$

$$\int_{\mathcal{T}} \nabla_{x} f(x) \nabla_{x} g(x) dx = \int_{\hat{\mathcal{T}}} (F^{-T} \nabla_{\hat{x}} f)(\Phi(\hat{x})) (F^{-T} \nabla_{\hat{x}} g)(\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

•
$$F = \nabla \Phi_{\hat{x}} \in \mathbb{R}^{3 \times 2}$$

•
$$J = \sqrt{\det(F^T F)}$$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) |J| d\hat{x}$$

$$\int_{\mathcal{T}} \nabla_{x} f(x) \nabla_{x} g(x) dx = \int_{\hat{\mathcal{T}}} (F^{-T} \nabla_{\hat{x}} f) (\Phi(\hat{x})) (F^{-T} \nabla_{\hat{x}} g) (\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

•
$$F = \nabla \Phi_{\hat{x}} \in \mathbb{R}^{3 \times 2}$$

•
$$J = \sqrt{\det(F^T F)}$$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) \, \, \mathbf{J} \, \, d\hat{x}$$

$$\int_{\mathcal{T}} \nabla_{x} f(x) \nabla_{x} g(x) dx = \int_{\hat{\mathcal{T}}} (F^{-T} \nabla_{\hat{x}} f)(\Phi(\hat{x})) (F^{-T} \nabla_{\hat{x}} g)(\Phi(\hat{x})) |J| d\hat{x}$$

- $F = \nabla_{\hat{x}} \Phi \in \mathbb{R}^{2 \times 2}$
- $J = \det(F)$

•
$$F = \nabla \Phi_{\hat{x}} \in \mathbb{R}^{3 \times 2}$$

•
$$J = \sqrt{\det(F^T F)}$$

$$\int_{\mathcal{T}} f(x)g(x) dx = \int_{\hat{\mathcal{T}}} f(\Phi(\hat{x}))g(\Phi(\hat{x})) J d\hat{x}$$

$$\int_{\mathcal{T}} \nabla_{\Gamma} f(x) \nabla_{\Gamma} g(x) \, dx = \int_{\hat{\mathcal{T}}} (F^{\dagger^{T}} \nabla_{\hat{x}} f) (\Phi(\hat{x})) (F^{\dagger^{T}} \nabla_{\hat{x}} g) (\Phi(\hat{x})) \, \mathsf{J} \, d\hat{x}$$

Plates and Shells

Deformation

$$\Phi:\Omega\to\mathbb{R}^3$$

Deformation	$\Phi:\Omega o \mathbb{R}^3$
Displacement	$u - \Phi - id$

Deformation $\Phi:\Omega\to\mathbb{R}^3$

Displacement $u := \Phi - id$

Deformation gradient $F := \nabla \Phi$

Deformation $\Phi:\Omega\to\mathbb{R}^3$

Displacement $u := \Phi - id$

Deformation gradient $F := I + \nabla u$

Deformation $\Phi: \Omega \to \mathbb{R}^3$

Displacement $u := \Phi - id$ Deformation gradient $F := I + \nabla u$

Cauchy-Green strain tensor $C := F^T F$

$$\frac{x}{\Phi(x)}$$

$$\frac{||\Phi(x + \Delta x) - \Phi(x)||^2}{||\Delta x||^2} = \frac{\Delta x^T F^T F \Delta x}{||\Delta x||^2} + \mathcal{O}(||\Delta x||)$$

Deformation $\Phi: \Omega \to \mathbb{R}^3$

Displacement $u := \Phi - id$

Deformation gradient $F := I + \nabla u$

Cauchy-Green strain tensor $C := F^T F$

Green strain tensor $E := \frac{1}{2}(C - I)$

Deformation	$\Phi:\Omega\to\mathbb{R}^3$
Displacement	$u := \Phi - id$
Deformation gradient	$F := I + \nabla u$
Cauchy-Green strain tensor	$C := F^T F$
Green strain tensor	$E := \frac{1}{2}(C - I) \qquad \Phi(x)$
Linearized strain tensor	$\epsilon(u) := \frac{1}{2}(\nabla u^T + \nabla u)$

 Discretization method for 4th order elliptic problems [Comodi, 1989]

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f$$

 Discretization method for 4th order elliptic problems [Comodi, 1989]

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$

 Discretization method for 4th order elliptic problems [Comodi, 1989]

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$

Variational problem

Find $u \in H_0^2(\Omega)$ s.t.

$$\int_{\Omega} \nabla^2 u : \nabla^2 v \, dx = \int_{\Omega} f \cdot v \, dx \qquad \forall v \in H_0^2(\Omega).$$

 Discretization method for 4th order elliptic problems [Comodi, 1989]

$$\operatorname{div}(\operatorname{div}(\nabla^2 u)) = f \quad \Rightarrow u \in H^2(\Omega)$$

Energy minimization problem

Find $u \in H_0^2(\Omega)$ s.t.

$$\mathcal{W}(u) = \frac{1}{2} \int_{\Omega} \nabla^2 u : \nabla^2 u \, dx - \int_{\Omega} f \cdot u \, dx \to \min!$$

$$\sigma = \nabla^2 u,$$

$$\operatorname{div}(\operatorname{div}(\sigma)) = f,$$

$$\sigma = \nabla^2 u, \quad \Rightarrow u \in H^1(\Omega)$$

$$\operatorname{div}(\operatorname{div}(\sigma)) = f, \quad \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$$

$$\sigma = \nabla^2 u, \quad \Rightarrow u \in H^1(\Omega)$$

 $\operatorname{div}(\operatorname{div}(\sigma)) = f, \quad \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$

Hellan-Herrmann-Johnson

Find $u \in H^1(\Omega)$ and $\sigma \in H(\text{divdiv}, \Omega)$ s.t.

$$-a(\sigma, \tau) + b(u, \tau) = 0$$
 $\forall \tau \in H(\operatorname{divdiv}, \Omega)$ $b(v, \tau) = -\int_{\Omega} f \cdot v \, dx$ $\forall v \in H^{1}(\Omega),$

$$a(\sigma,\tau) := \int_{\Omega} \sigma : \tau \, dx$$

$$b(u,\tau) := \sum_{T \in \mathcal{T}} \int_{T} \nabla u \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} \nabla_{t} u \cdot \tau_{n} \, ds$$

$$\sigma = \nabla^2 u, \quad \Rightarrow u \in H^1(\Omega)$$

 $\operatorname{div}(\operatorname{div}(\sigma)) = f, \quad \Rightarrow \sigma \in H(\operatorname{divdiv}, \Omega)$

Hellan-Herrmann-Johnson (Saddle point)

Find $u \in H^1(\Omega)$ and $\sigma \in H(\operatorname{divdiv}, \Omega)$ s.t. the saddle point problem

$$W(u,\sigma) = -\frac{1}{2}a(\sigma,\sigma) + b(u,\sigma) - \int_{\Omega} f \cdot u \, dx$$

is solved.

$$a(\sigma, \tau) := \int_{\Omega} \sigma : \tau \, dx$$

$$b(u, \tau) := \sum_{T \in \mathcal{T}} \int_{T} \nabla u \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} \nabla_{t} u \cdot \tau_{n} \, ds$$

$$M_h^k := \{ \sigma \in [\Pi^k(\mathcal{T}_h)]_{sym}^{d \times d} \mid n^T \sigma n \text{ is continuous over elements} \}$$

$$M_h^k := \{ \sigma \in [\Pi^k(\mathcal{T}_h)]_{sym}^{d \times d} \mid n^T \sigma n \text{ is continuous over elements} \}$$

 $M_h^k := \{ \sigma \in [\Pi^k(\mathcal{T}_h)]_{sym}^{d \times d} \mid n^T \sigma n \text{ is continuous over elements} \}$

 $M_h^k := \{ \sigma \in [\Pi^k(\mathcal{T}_h)]_{sym}^{d \times d} \mid n^T \sigma n \text{ is continuous over elements} \}$

• Model of reduced dimensions

• Model of reduced dimensions

•
$$\Omega = \left\{ \varphi(\xi) + z \hat{n}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2} \right] \right\}$$

• Model of reduced dimensions

• $\Omega = \{ \varphi(\xi) + z \hat{n}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2} \right] \}$

• $u(\hat{x}+z\hat{n}(\xi))=u_0(\hat{x})+z(n+\beta)(\hat{x})$

• Model of reduced dimensions

• $\Omega = \{ \varphi(\xi) + z \hat{n}(\xi) : \xi \in \omega, z \in \left[-\frac{t}{2}, \frac{t}{2} \right] \}$

• $u(\hat{x} + z\hat{n}(\xi)) = u_0(\hat{x}) + z_n(\hat{x})$

$$\mathcal{W}(\mathbf{u}) = \|E_{\tau\tau}(\mathbf{u})\|^2 + \frac{t^2}{2} \|\hat{\kappa}(\mathbf{u}) - \kappa_R\|^2$$

$$\mathcal{W}(\mathbf{u}) = \|\mathbf{E}_{\tau\tau}(\mathbf{u})\|^2 + \frac{t^2}{2} \|\hat{\kappa}(\mathbf{u}) - \kappa_R\|^2$$

Membrane energy

$$\mathcal{W}(\mathbf{u}) = \|E_{\tau\tau}(\mathbf{u})\|^2 + \frac{t^2}{2} \|\hat{\kappa}(\mathbf{u}) - \kappa_R\|^2$$

- Membrane energy
- Bending energy

$$\mathcal{W}(\mathbf{u}) = \|E_{\tau\tau}(\mathbf{u})\|^2 + \frac{t^2}{2} \|\hat{\kappa}(\mathbf{u}) - \kappa_R\|^2$$

- Membrane energy
- Bending energy
- Shearing energy

$$\mathcal{W}(\mathbf{u},\sigma) = \|E_{\tau\tau}(\mathbf{u})\|^2 - \frac{1}{2t^2}a(\sigma,\sigma) + b(\mathbf{u},\sigma)$$

- Membrane energy
- Bending energy
- Shearing energy

$$\mathcal{W}(\mathbf{u}, \sigma) = \|E_{\tau\tau}(\mathbf{u})\|^2 - \frac{1}{2t^2}a(\sigma, \sigma) + b(\mathbf{u}, \sigma)$$
$$a(\sigma, \tau) := \int_{S} \sigma : \tau \, dx$$
$$b(\mathbf{u}, \tau) := \sum_{T \in \mathcal{T}} \int_{T} (\mathbf{n}^T \nabla \mathbf{u}) \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} (\mathbf{n}^T \nabla \mathbf{u})_t \cdot \tau_n \, ds$$

$$\mathcal{W}(\mathbf{u}, \sigma, \boldsymbol{\beta}) = \|E_{\tau\tau}(\mathbf{u})\|^2 - \frac{1}{2t^2}a(\sigma, \sigma) + b(\boldsymbol{\beta}, \sigma) + c(\mathbf{u}, \boldsymbol{\beta})$$
$$a(\sigma, \tau) := \int_{S} \sigma : \tau \, dx$$
$$b(\boldsymbol{\beta}, \tau) := \sum_{T \in \mathcal{T}} \int_{T} \boldsymbol{\beta} \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} \boldsymbol{\beta}_{t} \cdot \tau_{n} \, ds$$

$$\mathcal{W}(\mathbf{u}, \sigma, \beta) = \|E_{\tau\tau}(\mathbf{u})\|^2 - \frac{1}{2t^2} a(\sigma, \sigma) + b(\beta, \sigma) + c(\mathbf{u}, \beta)$$

$$a(\sigma, \tau) := \int_{S} \sigma : \tau \, dx$$

$$b(\beta, \tau) := \sum_{T \in \mathcal{T}} \int_{T} \beta \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} \beta_t \cdot \tau_n \, ds$$

$$c(\mathbf{u}, \beta) := \int_{S} (n^T \nabla \mathbf{u} - \beta) \cdot (n^T \nabla \mathbf{u} - \beta) \, dx = \|n^T \nabla \mathbf{u} - \beta\|_{L^2(S)}^2$$

$$\mathcal{W}(\mathbf{u}, \sigma, \beta) = \|E_{\tau\tau}(\mathbf{u})\|^2 - \frac{1}{2t^2} a(\sigma, \sigma) + b(\beta, \sigma) + c(\mathbf{u}, \beta)$$

$$a(\sigma, \tau) := \int_{S} \sigma : \tau \, dx$$

$$b(\beta, \tau) := \sum_{T \in \mathcal{T}} \int_{T} \beta \cdot \operatorname{div}(\tau) \, dx - \int_{\partial T} \beta_t \cdot \tau_n \, ds$$

$$c(\mathbf{u}, \beta) := \int_{S} (n^T \nabla \mathbf{u} - \beta) \cdot (n^T \nabla \mathbf{u} - \beta) \, dx = \|n^T \nabla \mathbf{u} - \beta\|_{L^2(S)}^2$$

Rotation

Shear stress

Finite element spaces

Finite Element Space M_{Surf} :

 2D elements of M_h as face-elements

Finite Element Space V_h and B_h :

• Traces of 3D elements

Nonlinear Shells

Example

