1 Prova de MC 722 - abril de 2009

Nom e:

RA

OBS - TODAS AS RESPOSATAS SÓ SERÃO ACEITAS COM JUSTIFICAJIIVAS E CÓDIGO COM COMENTÁRIOS.

Suponha que você tenha que 2 processadores, P1 com 500 Mhz e P2 com 600 Mhz.
Para um determinado compilador, cada processador produziu as quantidades de instruções de uma determinada classe com os respectivos CP1: (2,0)

PI		
CLASSE DE INSTRUÇÕES	CPI	FREQUÊNCIA
Α	2	40%
	3	30%
c	4	20%
D	5	10%
P2		

CLASSE DE INSTRUÇÕES	CPI	FREQUÊNCIA
A	2	25%
B		20%
C	3	25%
D	2	30%

Com base nestas informações pede-se:

a) A CPI de cada uma das máquinas.

b) Quantas vezes that é mais rápida que Mas. 1

Suponha ainda que se leve em consideração a máquina P1 só que com uma nova implementação do compilador, onde o número de instruções executadas de uma determinada classe para um determinado teste cairia segundo a tabela abaixo:

CLASSE DE INSTRUÇÕES	Porcentagem de instruções executadas com releção à Mags	
Α	80%	
	95%	
C .	85%	
D	95%	

A) - Se com e compilador antigo, para um determinado teste Mbas executava 500 instruções da classe A, com e novo compilador, ela executa 0,9 X 506 = 450 instruções.

Pergunta-se: qual a CPI deste novo conjunto (Mbas+compilador otimizado) ?

	Performance _X = (1/tempo de execução _X)					
3	Performancex>Performancey -> Tempo execuçãoy>Tempo execuçãox					
	(Performancex/Performancey)=(Tempo execuçãoy/Tempo execuçãox)					
1	Elepsed time = tempo de tudo (CPU + I/O + etc.)					
(CPU time - user CPU time + system CPU time					
7	Cru(para programa) = periodos de clock da CPU X periodo do clock					
7	Гери(para programa) = períodos de clock da CPU/freqüência do clock					
,	s. de períodos da CPU (para programa) - n. de instrações X n. médio de períodos por instrução (CPI)					
	Cons(para um programa) = (n. de instruções X CPI) / fet					
1	Toro(para um programa) = (a. de instruções XCPI) X t _{ek}					
1	Periodos de clock da CPU = \(\sum_{Pl}^{a} \) (CPI, X C1)					
ī	MIPS- n. de instruções / (tempo de execução X 10°)					

- Escreva uma rotina recursiva em MIPS que calcule o n-ésimo elemento da série de Fibonacci. Fibo(n) = Fibo(n-1) + Fibo(n-2) ou Fibo = 1, 1, 2, 3, 5, 8, 13,...
 (3,0)
- 3. Encontre a menor sequencia de instruções MIPS que faça adição de números de precisão dupla. Assuma que um dos números de 64 bits (em complemento de 2) esteja em \$t4 e \$t5 e o outro em \$t6 e \$t7. A soma deverá ser colocada em \$t2 e \$t3. A parte

mais significativa deverá estar nos registradores pares e a menos nos impares. (4 instruções). (2,0)

 Dado o datapath abaixo, complete-o, se necessário, para que ele execute a instrução call endereço (Tipo J). Mostre também a execução desta instrução com relação aos sinais de controle. (call endereço: SP← SP-4, [SP]←PC+4, PC ←ENDEREÇO) (3,0)

