FIG.1

GGATCCCTGCTCCAGCAGCTGCAAGGTGCAAGAAGAAGAAGATCCCAGGGAGGAAAATGTG	120
<u>M C</u>	2
CTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCCTATCTGTCTTATGTTCAAGCAGT	180
WRPLCRFLWLWSYLSYV <u>QA</u> V	22
GCCTATCCAGAAAGTCCAGGATGACACCAAAACCCTCATCAAGACCATTGTCACCAGGAT	240
PIQKVQDDTKTLIKTIVTRI	42
CAATGACATTTCACACGCCAGTCGGTATCCGCCAAGCAGAGGGTCACTGGCTTGGACTT	300
N D I S H T Q S V S A K Q R V T G L D F	62
CATTCCTGGGCTTCACCCCATTCTGAGTTTGTCCAAGATGGACCAGACTCTGGCAGTCTA	360
I P G L H P I L S L S K M D Q T L A V Y	82
TCAACAGGTCCTCACCAGCCTGCCTTCCCAAAATGTGCTGCAGATAGCCAATGACCTGGA	420
Q Q V L T S L P S Q N V L Q I A N D L E	102
GAATCTCCGAGACCTCCTCCATCTGCTGGCCTTCTCCAAGAGCTGCTCCCTGCCTCAGAC	480
N L R D L L H L L A F S K S C S L P Q T	122
CAGTGGCCTGCAGAAGCCAGAGAGCCTGGATGGCGTCCTGGAAGCCTCACTCTACTCCAC	540
S G L O K P E S L D G V L E A S L Y S T	142
AGAGGTGGTGGCTTTGAGCAGGCTGCAGGGCTCTCTGCAGGACATTCTTCAACAGTTGGA	600
E V V A L S R L Q G S L Q D I L Q Q L D	162
TGTTAGCCCTGAATGCTGAAGTTTCAAAGGCCACCAGGCTCCCAAGAATCATGTAGAGGG	660
	167
V S P E C * AAGAAACCTTGGCTTCCAGGGGTCTTCAGGAGAAGAGAGCCATGTGCACACATCCATC	720
	780
TCATTTCTCTCCCTCCTGTAGACCACCCATCCAAAGGCATGACTCCACAATGCTTGACTC	840
AAGTTATCCACACAACTTCATGAGCACAAGGAGGGGCCAGCCTGCAGAGGGGACTCTCAC	900
CTAGTTCTTCAGCAAGTAGAGATAAGAGCCATCCCATCC	960
GGGTACATGTTCCTCCGTGGGTACACGCTTCGCTGCGCCCCAGGAGAGGTGAGGTAGGGA	1020
TGGGTAGAGCCTTTGGGCTGTCTCAGAGTCTTTGGGAGCACCGTGAAGGCTGCATCCACA	
CACAGCTGGAAACTCCCAAGCAGCACGATGGAAGCACTTATTTAT	1080
TATTTTGGATGGATCTGAAGCAAGGCATCAGCTTTTTCAGGCTTTGGGGGTCAGCCAGGA	1140
TGAGGAAGGCTCCTGGGGTGCTGCTTTCAATCCTATTGATGGGTCTGCCCGAGGCAAACC	1200
TAATTTTTGAGTGACTGGAAGGAAGGTTGGGATCTTCCAAACAAGAGTCTATGCAGGTAG	1260
CGCTCAAGATTGACCTCTGGTGACTGGTTTTGTTTCTATTGTGACTGAC	1320
ACGTTTGCAGCGGCATTGCCGGGAGCATAGGCTAGGTTATTATCAAAAGCAGATGAATTT	1380
TGTCAAGTGTAATATGTATCTATGTGCACCTGAGGGTAGAGGATGTGTTAGAGGGAGG	1440
GAAGGATCCGGAAGTGTTCTCTGAATTACATATGTGTGGTAGGCTTTTCTGAAAGGGTGA	1500
GGCATTTTCTTACCTCTGTGGCCACATAGTGTGGCTTTGTGAAAAGGACAAAGGAGTTGA	1560
CTCTTTCCGGAACATTTGGAGTGTACCAGGCACCCTTGGAGGGGGCTAAAGCTACAGGCCT	1620
TTTGTTGGCATATTGCTGAGCTCAGGGAGTGAGGCCCCACATTTGAGACAGTGAGCCCC	1680
AAGAAAAGGGTCCCTGGTGTAGATCTCCAAGGTTGTCCAGGGTTGATCTCACAATGCGTT	1740
TCTTAAGCAGGTAGACGTTTGCATGCCAATATGTGGTTCTCATCTGATTGGTTCATCCAA	1800
AGTAGAACCCTGTCTCCCACCCATTCTGTGGGGAGTTTTGTTCCAGTGGGAATGAGAAAT	1860
CACTTAGCAGATGGTCCTGAGCCCTGGGCCAGCACTGCTGAGGAAGTGCCAGGGCCCCAG	1920
GCCAGGCTGCCAGAATTGCCCTTCGGGCTGGAGGATGAACAAAGGGGCTTGGGTTTTTCC	1980
ATCACCCCTGCACCCTATGTCACCATCAAACTGGGGGGCAGATCAGTGAGAGGACACTTG	2040
ATGGAAAGCAATACACTTTAAGACTGAGCACAGTTTCGTGCTCAGCTCTGTCTG	2100
TGAGCTAGAGAAGCTCACCACATACATATAAAAATCAGAGGCTCATGTCCCTGTGGTTAG	2160
ACCCTACTCGCGGCGGTGTACTCCACCACAGCAGCACCGCACCGCTGGAAGTACAGTGCT	2220
GTCTTCAACAGGTGTGAAAGAACCTGAGCTGAGGGTGACAGTGCCCAGGGGAACCCTGCT	2280
TGCAGTCTATTGCATTTACATACCGCATTTCAGGGCACATTAGCATCCACTCCTATGGTA	2340
GCACACTGTTGACAATAGGACAAGGGATAGGGGTTGACTATCCCTTATCCAAAATGCTTG	2400
GGACTAGAAGAGTTTTGGATTTTAGAGTCTTTTCAGGCATAGGTATATTTGAGTATATAT	2460
AAAATGAGATATCTTGGGGATGGGGCCCAAGTATAAACATGAAGTTCATTTATATTTCAT	2520
AATACCGTATAGACACTGCTTGAAGTGTAGTTTTATACAGTGTTTTAAATAACGTTGTAT	2580
GCATGAAAGACGTTTTTACAGCATGAACCTGTCTACTCATGCCAGCACTCAAAAACCTTG	2640
GGGTTTTGGAGCAGTTTGGATCTTGGGTTTTCTGTTAAGAGATGGTTAGCTTATACCTAA	2700
AACCATAATGGCAAACAGGCTGCAGGACCAGACTGGATCCTCAGCCCTGAAGTGTGCCCT	2760
TCCAGCCAGGTCATACCCTGTGGAGGTGAGCGGGATCAGGTTTTGTGGTGCTAAGAGAGG	2820
AGTTGGAGGTAGATTTTGGAGGATCTGAGGGC	2852

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCCTCAT	150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G					701

FIG.2

©₩**⊘** Ĩ¥® $\mathbb{K}_{\mathbb{L}\mathbb{E}}$ ASP LEU @ @ @ Arg MET @ 80 LEU P 200 ASP ASP S Fr GLY Lys MET ARG Leu Val G G R ASN TMR Ser Ser ASR Ser Mis GLY ASP ILE I Val TMR OLU Glu Val Leu Cys GLY Tap Tap Lys arg Lys Tar LEU Ser LEU ALA GLR Tar GLR GLR LEU Val G-R] [E ASP P Ser Lys **9** ≪ ™ ILE I Val LYS ILE GLN ASM SER Trep Trep ASP Val GLY GLY 0 8 6 ĭ.e Ser **0** 80 GL R Ser PKE Ole Glu Leu Cys TMR SER Mis $\mathbb{I}_{Y\mathbb{R}}$] [E TMR ALA IVAL ALA IMR MET [YS GLR GLR S S Val Val OLU Glu Ser GLR SIR THR GLN GLN ILE Ser **GLY** ALA ILE I Val LEU Tyr GLY GLY GLN LEU GLY GLY Val **6**80 Mis LEW Val \mathbb{GLY} T @P Thr ILE I Thr **T**YR ASR S Er TKR SER Ser GLR Kis 9 7 7 LYS His 9 M Arg LEU ALA ALA GLY CYS Thr MET LEU Ser ASP ASP Ser ASP P TRP GLU GL R GLY 70 8 8 **6**1 8 106 121 136 151 166

F. S.

Mouse	MCMRPLCRFL	MCMRPLCRFL WLWSYLSYVO AVPIOKYODD TKTLIKTIVT RINDISHTOS	AVPIOKVODO	TKTLIKTIVT	RINDISHTOS	20
Human	MAWGILCGFL	HERE E HUMPYLFYVQ AVPIQKYQDD TKTLIKTIVT RINDISHTQS	AVPIOKVODD	TKTLIKTIVT	RINDISHTOS	
Mouse Human	VSAKORVTGL * VSSKOKVTGL	VSAKORVTGL DFIPGLHPIL SLSKWDOTLA VYOQVLTSLP SONVLOIAND * VSSKOKVTGL DFIPGLHPIL TLSKWDOTLA VYOQILTSMP SRNVIQISND	SLSKWDOTLA TLSKWDOTLA	VYQQVLTSLP VYQQILTSMP	SONVLOIAND * SRNVIOISND	100
Mouse Human	LENLROLLHL	LENLRDLLHL LAFSKSCSLP OTSGLOKPES LDGVLEASLY STEVVALSRL * ** ********************************	OTSGLOKPES ** ***- WASGLETLOS	LDGVLEASLY * LGGVLEASGY	STEVVALSRL STEVVALSRL	150
Mouse Human	OGSLODILOO LDVSPEC	LDVSPEC - * LDLSPGC				167

7. U L Tyr ILE Ser ASP ASP ASP **SS** E E ورر GLR GR وارو SER ASP ASP Leu MET Arg Leu **0** 80 @ & & LEU @ | |} Trep GLN GLN ASN **GLY** Lys r I Arg SER LEU Val LEU] [e THR Ser SER ASR SER **GLY** Ser Res Val Val 9 9 9 OLU Gru ARG THR ASP ASP Lys Val CYS LEU LEU GLN THR ARG S Fr S Fr Leu ALA () 도 교 GLN A S P ILE Val LEU Lys SER GL B Val Val 9 80 ASR R S F R ARG I.E Lys I.E GLR G G R Val Cys THR 9 8 GLR GLR ALA 0 8 9 GLU Val ALA P 저 때 ALA S Fr His TYR ILE ALA Lys TMR ILE E 9 80 GLN GL R] [e G G Val LEU Val Ser ASP ARG GLY GLY S E GLR ALA [X Val GLY GLY Tyr THR TMR LEU Z Z S **0** 20 Val SER ASR CYS Tar **S** F S F Lys Mis ILE SER 2 2 2 2 MET GLR LEU Tar SER P K E G.R Thr ALA GLY CYS 70 8 9/2 106 136 **6**1 9 166 121 151 31

k. U L

TY® ASP ILE M ASP ASP SER GLR ASP T R P er G والا **0** 88 6 ASP MET ARG ASP **0** 8 @ & 9 8 Trap @ FA G G R S ASR MET [\X Val are Ser ASR GLY LEU) [[E Val Thr S Er S Fig Mis S R R LEU GLY ASP Z Z A R G Val THR CYS THR LEU GLR GLR [YS I K LEU LEU S F R ALA LEU 9 전 제 I LE VAL G G R ASP P] [e [YS S F Val G G N GLY GLY GLN ASS S Val **0** 8 [YS I Le S E ASP T R P I E CAS **0** G G R VAL **S** E S Fr OLU Glu Z Z <u>С</u> Ж MET LEU ALA Z Z Z Z [Y R TRE SER ALA] [e THR LEU GLR GR I LE GLR GLR OLO Glu Val SER Val ASP . GLY LEU GLY GLY VAL ALA S E I Le VAL GL R Tyr 8 18 18 Tyr Tar THR @ & His GLY GLY **GLY** Val ZIS S X Le THR ASR M X 0-0-[<u>4</u>S Mis S F SER Ser E R R ARG MET GLR GR TAR Ser () 도 된 LEU GLY GLY CYS 70 3 **\$** 61 9/2 6 106 136 166 121 151

9. 9. 11.

7. Ç. /

FIG.8

1 2 3 4 5 6 7

FIG.9

	GTGCAAGAAG 	GTGCAAGAAG AAGAAGATC <u>C CAGGGCAGGA AAATGTG</u> CTG GAGACCCCTG 	+20 CAGGGCAGGA GTCCCGTCCT	+30 AAATGTGCTG TTTACACGAC	+40 GAGACCCTG CTCTGGGGAC
21	TGTCGGGTCC	TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC	*20 GTCCTATCTG GTCCTATCTG	÷30 TCTTATGTNC	*40 AAGCAGTGCC
101	TATCCAGAAA	*10 GTCCAGGATG CAGGTCCTAG	+20 B ACACCAAAG B TGTGGTTTTC	+30 CCTCATCAAG	+40 ACCATTGTCA TGGTAACAGT
151	NCAGGATCAC ?	TGANATTTCK		÷	♦ ₽

FIG. 10

FIG.11A

small intestine
stomach
pancreas
lung
testis
heart
spleen
liver

28S —

white fat

brain

18S —

FIG.11B

FIG.12A

FIG.12B

FIG.13

FIG.14

FIG.15A

BgIII Digests

FIG.15B

FIG.16

17 promoter primer 69348-1

BGLII AGATCICGATCCCGCGAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTACA

<u>rbs</u> aataatiitigittaaciittaagaagatatata<mark>ccatggggggggcagc<u>catcatcatcatcatcat</u>agggggg</mark> MetGlySerSerHisHisHisHisHisKisSerSerGly Mrs. Tag

<u>Noei</u> <u>Xhoi Bamhi</u> Ctggtgccgcgcgcagccatatgctcgaggatcccgctgctaacaaagcccgaaaggaggtgggt <u>LeuvalproargglySer</u>hisMetLeugluaspProalaalaanlysalaarglysglualagluleuala

THROMBIN

BPUI1021 GCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGGTCTTGAGGGGTTTTTTG AlahlaThrahlagluglnEnd

17 terminator primer #69337-1

FIG. 17

FIG.18A

FIG.18B

FIG.19A

FIG.19B

FIG.20A-1

300	GCCAGGCACC	350	ACTCTTTCTG	400	GGTTAGNGGT	450		200	CCTAGGGAAA
290	CCTCCTGAAT	07E	ACAGGGCTCC	98 98	AGATNCCAGG	440 440	JENCE (~1.4	490	AAGGAATTGA
280	TTATTGAACG	330	TITGGATAGC	380	CICCIGCIG	430	GAP OF SEQUENCE (~1.4	480	ATGTAAGAGA
270	CCAGATAGIC CAAGAACAT TTATTGAACG CCTCCTGAAT GCCAGGCACC	320	TACTEGAAGE TGAGAAGGAT TITGGATAGE ACAGGGCTCE ACTETTICTG	370	NIGGCCCCCT CIGCTGCTG AGATNCCAGG	420	TAMA	470 	GGITCITICA GGAAGAGGCC ATGTAAGAGA AAGGAATTGA CCTAGGGAAA
260	CCAGATAGIC	310	TACTGGAAGC	360	GITGITICIT	410	TCTTAATTCC TAAA-	98 98	CETTETTER

FIG.20A - 2

55 55 -	GCAGGAATCT	009	GANACAAGGG	650	CAGAGAATGA	00%	ATTCCTCCCA	750	GTCAGTCTCC
540	TGTGGGAAAA	0 0 0	CTGGGTGCAG	640 	GGAGACAGCC	069	GGCAGAGGGC TCTGAGAGCG ATTCCTCCCA 3' of 1st intron<	740	CTNCATAGCA
530	GAACGGATGG	580	TGGCAGTCAC	630	GAGGGTGGAA	089	GGCAGAGGGC 3 of 1st	730	CCTCTTCCTC
520	ATTGGCCTGG GAAGTGGAGG	570	CGGAGACCAG CTTAGAGGCT	620	AGTGGTGAGG	670	CCACGGGGAA	720	CATGCTGAGC ACTIGITCTC CCTCTTCCTC CTNCATAGCA HOB 2G F
510	ATTGGCCTGG	560	CGGAGACCAG	610	CCTGAGCCAA	099	CCCTCCATGC	710	CATGCTGAGC HOB 2G F

FIG.20A-3

760	770	780	062	008
TCCAAACAGA	TCCAAACAGA AAGTCACCGG TTTGGACTTC ATTCCTGGGC	TTTGGACTTC	ATTCCTGGGC	TCCACCCCAT
8210 -	820	83 0-	0 分裂	89
CCTGACCTTA	CCIGACCITA TCCAAGATGG ACCAGACACT GGCAGTCTAC	ACCAGACACT	GGCAGTCTAC	CAACAGATCC
098	878	80	0- 60 80	005
TCACCAGTAT	TCACCAGTAT GCCTTCCAGA AACGTGATCC AAATATCCAA CGACCTGGAG	AACGTGATCC	AAATATCCAA	CGACCTGGAG
010	0 20	086	0 7 8	9 92 9-
AACCTCCGGG	AACCICCGGG AICTICTICA CGIGCTGGCC TICTCTAAGA	CGTGCTGGCC	TTCTCTAAGA	GCTGCCACTT
096	070	086	0- 66	1000
CCCTGGGCC	GCCCTGGGCC AGTGGCCTGG AGACCTTGGA CAGCCTGGGG	AGACCTTGGA	CAGCCTGGGG	GGTGTCCTGG

FIG.20A-4

1050	GAGGTGGTGG CCCTGAGCAG GCTGCAGGGG	1100	GGTGCTGAGG STOP	1150 	AGGAACTCTĞ	1200	ATCTCCAGGA TTGAAGAGCA TTGCATGGAC ACCCCTTATC NOB 2G R	1250	TCCAMGG
1040	CCCTGAGCAG	1090	GCAGCTGGAC CTCAGCCCTG	1140	CGTTAAGGGA	1190	TTGCATGGAC	1240 	AAGCCACTCT
1030	GAGGTGGTGG	1080	GCAGCTGGAC	1130	GCAAGGACTA	1180	TTGAAGAGCA	1230	
1020	CTACTCCACA	1070	TCTCTGCAGG ACATGCTGTG	1120	CACTETTEET	1170		1220	CAGGACTCTG TCAATTTCCC TGACTCCTCT
1010	AAGCTTCAGG	1060	TCTCTGCAGG	1110	CCTTGAAGGT	1160 	GCTTCCAGGT	1210	CAGGACTCTG

FIG.20A-5

MOUSE OB STRUCTURE

!st ex	1st intr	2nd ex	2nd intr	3rd exon	
	_/////////////	ATG			TGA
		start	•		stop

FIG.20B

HUMAN OB STRUCTURE

	1st exon	1st intr	2nd exon		
•••••	_ATG			TGA	
	start			stop	_

FIG.20C

FIG.21A

FIG.21B

FIG. 21C

ob	(FOLLOWING THROMBIN	QO	
HIS. TAG THROMBIN CLEAVAGE		GLY · SER · PRO · [
	ASE STE-13 AGE CLEAVAGE		
&-MF SIG SEQ GLU-ALA	A KEX-2 CLEAVAGE		

FIG.22B

FIG.23A

FIG.23B

FIG.24A

FIG.24B

FIG.24C

FIG.24D

FIG.25A

FIG.25B

FIG.26A

Human ob

<u>Peptide</u>	Mass(Da)	
	Expected	Observed
22-167	16,024	16,024 ± 3
22-75	5936.9	5936.6 ± 1
76-89	1562.7	N.D.
90-167	8434.5	8435.6 ± 1
158-167	1131.9	N.D.

FIG.26 B

FIG.27

FIG.28A

FIG.28B

FIG.28C

FIG.28D

FIG.28E

FIG.28F

FIG.30

FIG.31.

1 2 3 4

FIG.32A

FIG.33

FIG.34

FIG. 35A

FIG. 35B