COMPLEX VARIABLES: STUDY GUIDE FOR EXAM 1

Complex Plane

- 1. How do we represent complex numbers geometrically?
- 2. What is meant under the following terms?
 - (a) Re(z);
 - (b) $\operatorname{Im}(z)$;
 - (c) |z|;
 - (d) \bar{z} ;
 - (e) arg(z);
 - (f) Arg(z).
- 3. Each of the following describes a region in the complex plane. Sketch them!
 - (a) $|z 2i| \le 3$;
 - (b) $|z+i| \ge 1$;
 - (c) $1 \le \text{Im}(z) \le 3$;
 - (d) $\operatorname{Re}(z) \leq 0$;
 - (e) $1 \le |2z 3| \le 3$.
- 4. There are some properties that modulus and conjugate obey in regards to addition, multiplication, etc. For instance, we have a property that states $|z_1z_2| = |z_1||z_2|$. Review such properties and get to a point where you can easily prove them.
- 5. What does the Triangle Inequality say, and what roughly speaking are the reasons why it holds?
- 6. Express the following complex numbers in the exponential form $z = |z| \exp(i\theta)$. Use the principle value θ of the argument of z. For each number provide a little drawing which illustrates both |z| and θ .
 - (a) z = 2 2i;
 - (b) z = -3i;
 - (c) z = -1 + i;
 - (d) z = -4.

7.	Exponential form of complex numbers yields a nice geometric interpretation of the prod-
	uct, the quotient, the n -th power and the n -th root of complex numbers. What is this
	interpretation? In particular, how can one most easily compute and visualize the follow-
	ing?

- (a) $(1+i)^5$;
- (b) The sequence $\xi_n = (1+i)^n$;
- (c) $8^{\frac{1}{3}}$;
- (d) $i^{\frac{1}{5}}$;
- (e) $(-1)^{\frac{1}{4}}$;
- (f) $(-1+\sqrt{3}i)^{\frac{1}{2}}$.
- 8. Let $n \geq 2$ be an integer, and let $\omega = \exp(\frac{2\pi i}{n})$. Argue that $1, \omega, \omega^2, \dots, \omega^{n-1}$ lists all n-th roots of 1.

Basic elementary functions

- 1. How did we, in this class, define the following?
 - (a) $\exp(z)$;
 - (b) $\log(z)$;
 - (c) Log(z);
 - (d) z^s ;
 - (e) $\sin(z)$;
 - (f) $\cos(z)$;
 - (g) $\sinh(z)$;
 - (h) $\cosh(z)$.
- 2. Both exponential and trigonometric functions are periodic. Make sure you understand this periodicity. Also make sure you understand what all we can say about z_1 and z_2 if $\exp(z_1) = \exp(z_2)$.
- 3. Compute the following:
 - (a) $\exp(-\frac{\pi i}{4});$
 - (b) $\exp(1+i\frac{\pi}{2});$
 - (c) $\exp(-1 \pi i)$;

- (d) $\sin(i)$;
- (e) $\sinh(i\pi)$;
- (f) $\sin(\frac{\pi}{2} + i)$;
- (g) $\cos(i\pi)$;
- (h) $\cosh(2\pi i)$;
- (i) $\tan(-\frac{\pi}{2} + 2i)$;
- (j) Log(-1);
- (k) Log(-i);
- (1) Log(-2-2i);
- (m) $\log(-1 + \sqrt{3}i)$;
- (n) $\log(3-4i)$;
- (o) Log(2+i);
- (p) $P.V(-1)^i$;
- (q) $(1-i)^{-i}$;
- (r) $P.V(-i)^{\frac{1}{\pi}}$;
- (s) $(-1+i)^{3i}$;
- (t) $P.V(\sqrt{3}+i)^{-3i}$.
- 4. What algebraic (i.e. pertaining to addition, multiplication etc) properties of $\exp(z)$, $\operatorname{Log}(z)$ and $\operatorname{log}(z)$ do you know? Get to a point where you can utilize these properties fluently.
- 5. Compute the following, assuming all complex powers refer to their principle values.

$$i^{\frac{3}{2}}, (i^3)^{\frac{1}{2}}, (i^{\frac{1}{2}})^3.$$

Comment on what you observe. What all can you say about the relationship between $(z^{s_1})^{s_2}$ and $z^{s_1s_2}$?

- 6. There are identities addressing $\sin(z \pm w)$, $\cos(z \pm w)$, $\sin(2z)$, etc. Get to a point where you are able to deduce these identities in a short amount of time.
- 7. The function Log(z) exhibits a discontinuity along the negative portion of the real axis. Get to a point where you understand the issue and are able to explain it to other people.
- 8. The principle value of the logarithm, Log(z), is discontinuous along the negative portion of the real axis. Comment on the continuity of $f(z) = P.Vz^s$. For what s is the power function continuous and for what s is it discontinuous (along the negative portion of the real axis)?

Visualization of functions

- 1. Describe in geometric terms the effect of the following mappings.
 - (a) f(z) = iz;
 - (b) f(z) = -2 + (1+i)z;
 - (c) $f(z) = z^2$ for z in the right half-plane;
 - (d) $f(z) = iz^2 + 1$ for z in the right half-plane;
 - (e) $f(z) = P.Vz^{\frac{1}{2}}$
 - (f) $f(z) = z^3 \text{ near } z = 1 + i;$
 - (g) $f(z) = P.Vz^{\frac{1}{3}}$ near z = i;
 - (h) $f(z) = \frac{1}{z^2}$ near z = 1 + i;
 - (i) f(z) = Log(z) near z = i;
 - (j) $f(z) = \exp(z)$ on the left half-plane (Re(z) ≤ 0);
 - (k) $f(z) = \exp(z)$ on the rectangle given by $-1 \le \text{Re}(z) \le 1, -\frac{\pi}{2} \le \text{Im}(z) \le \frac{\pi}{2}$;
 - (l) $f(z) = -\frac{i}{2}\exp(z)$ on the rectangle $1 \le \text{Re}(z) \le 4$, $0 \le \text{Im}(z) \le \pi$;
 - (m) f(z) = Log(2z) on the unit disk centered at the origin;
 - (n) f(z) = 2iLog(z) + i on the first quadrant;
 - (o) $f(z) = (i\text{Log}(z) + \pi)^2$ on the first quadrant.
- 2. Consider the mapping $f(z) = P.V.(z^2 1)^{1/2}$ on the right half plane $Re(z) \ge 0$. Describe in geometric terms the effect of this map.
- 3. Consider the mapping $f(z) = \cos(z)$ on the vertical strip $0 \le \text{Re}(z) \le \pi$. Describe the geometric effect of this mapping.

Riemann surfaces and branches of multivalued functions

- 1. Get to a point where you can visualize and work with the Riemann surfaces for the multivalued roots and logarithm.
- 2. Consider complex logarithm as a function defined on its Riemann surface. Find the preimages, on the Riemann surface, of the following subsets of the complex plane. Please provide accompanying illustrations!
 - (a) The pre-image of the imaginary axis.

- (b) The pre-image of the vertical strip $-1 \le \text{Re}(w) \le 1$.
- (c) The pre-image of the real axis.
- (d) The pre-image of the vertical strip $0 \leq \text{Im}(w) \leq 4\pi$.
- 3. Find branches f(z) of the multivalued logarithmic function satisfying the following conditions; give an explicit (piece-wise) formula relating the branches to Log(z), and interpret in terms of the Riemann surface.
 - (a) f(z) is continuous at z = -1 and attains the value of πi there.
 - (b) f(z) is continuous at z=1 and attains the value of $4\pi i$ there.
 - (c) f is continuous at z=-i and attains the value of $-5\frac{\pi}{2}i$ there.
 - (d) f is continuous along the negative real axis and around z = 1 where it attains the value of $f(1) = -2\pi i$;
 - (e) f is continuous along the negative real axis and and around z = -i where it attains the value of $f(-i) = -\frac{\pi}{2}i$;
- 4. Find a branch f of the multivalued square root satisfying the following conditions. Give an explicit (piece-wise) formula relating the branches to $P.Vz^{\frac{1}{2}}$, sketch the range for your branch and emphasize the location of the branch cut.
 - (a) f is continuous at z = -1 and attains the value of -i there;
 - (b) f is continuous along both negative and positive parts of the real axis, and attains the value of f(1) = -1.
- 5. Find a branch f of the multivalued cube root satisfying the following conditions. Give an explicit (piece-wise) formula relating the branches to $P.Vz^{\frac{1}{3}}$, sketch the range for your branch and emphasize the location of the branch cut.
 - (a) f is continuous at z = -1 and attains the value of -1 there;
 - (b) f is continuous along both negative and positive parts of the real axis, and attains the value of f(i) = -i.

Functions of complex variable defined through series

- 1. For a sequence of complex numbers a_n the formula $f(z) = \sum_n a_n (z z_0)^n$ defines a function of complex variable. What can you say about the domain of such a function?
- 2. Find the domain of the following functions. (You are not expect to worry about the boundaries of the domains.)
 - (a) $f(z) = \sum_{n=0}^{\infty} \left(\frac{2z+1}{3}\right)^n$;

(b)
$$f(z) = \sum_{n=1}^{\infty} \frac{n}{2^n} (z+i)^n$$
;

(c)
$$f(z) = \sum_{n=1}^{\infty} n^2 (z - 2i)^{-n}$$
;

(d)
$$f(z) = \sum_{n=1}^{\infty} \frac{2^n + 1}{n} (z - 2)^{-n}$$
;

(e)
$$f(z) = \sum_{n=1}^{\infty} \frac{n!}{(2n)!} z^n$$
;

(f)
$$f(z) = \sum_{n=1}^{\infty} n! z^n$$
;

(g)
$$f(z) = \dots - \frac{1}{z^3} + \frac{1}{z^2} - \frac{1}{z} + 1 + \frac{z}{2} + \frac{z^2}{4} + \frac{z^3}{8} + \dots$$

3. Functions of the form $f(z) = \sum_k a_k (z - z_0)^k$ are holomorphic inside of their disk of convergence. How will you compute their derivatives?

Holomorphic functions and Cauchy-Riemann equations

- 1. Get to a point where you can summarize in two sentences the reasons why Cauchy-Riemann equations hold. Also, make sure you can very quickly recall what these equations state.
- 2. Investigate the existence of f'(z) for the following functions of the complex variable z = x + iy. When the derivative does exist, please find an expression for it.

(a)
$$f(z) = \bar{z};$$

(b)
$$f(z) = |z|^2$$
;

(c)
$$f(x+iy) = (x^2+y^2) + 2ixy;$$

(d)
$$f(x+iy) = (x^2 - y^2) - 2ixy;$$

(e)
$$f(x+iy) = (e^x + e^{-x})\cos(y) + i(e^x - e^{-x})\sin(y)$$
.

3. Find all holomorphic functions f(z) for which Re(f(z)) = ln(|z|).