Prova de Física 1 (A) Llicenciatura de Químiques Universitat Autònoma de Barcelona 11 de Desembre 2008

Qüestions

- 1. Digueu quina d'aquestes afirmacions és correcta
 - a) Una força conservativa té associada una energia potencial (*)
 - b) El fregament cinètic és una força conservativa
 - c) Totes les forces són conservatives
 - d) Una força central no es una força conservativa
- 2. Un saltador de trampolí fa un salt amb dos mortals i un tirabuixó. La trajectòria del seu centre de masses...
 - a) és una paràbola (*)
 - b) és una recta vertical
 - c) és molt complicada, perquè fa moltes contorsions
 - d) cap de les anteriors
- 3. La segona llei de Kepler és consequència de la...
 - a) conservació del moment lineal
 - b) conservació del moment angular (*)
 - c) conservació de la energia cinètica
 - d) conservació de la energia potencial
- 4. La distància d'enllaç a la molècula de BrH, és d=1,41 Å (1 Å = 10^{-10} m). Les masses dels àtoms són, respectivament 79,9 g/mol i 1,0 g/mol. La distància del centre de masses de la molècula respecte al centre del nucli del brom és...
 - a) 1.41 Å
 - b) 1,74 10⁻¹² m (*)
 - c) 139 10⁻¹² m
 - d) No es pot calcular perquè falten més dades.

Exercici 1

Una massa de 3 kg es deixa anar sense velocitat inicial des d'un punt A de la superfície de la figura. Si sabem que passa pel punt B amb una velocitat de 1 m/s i que s'atura en arribar al punt C. (Preneu g=10m/s²)

- 5. Fent un estudi energètic entre A i B, constatem que ...
 - a) En els dos punts, la massa té la mateixa energia mecànica
 - b) En els dos punts, la massa té la mateixa energia cinètica
 - c) En els dos punts, la massa té la mateixa energia potencial
 - d) cap de les anteriors *
- 6. L'energia dissipada mentre el cos llisca des de A fins B val ...
 - a) 12 J
 - b) 1.5 J
 - c) 0 J
 - d) cap de les anteriors *
- 7. Fent un estudi energètic entre B i C, constatem que ...
 - a) En els dos punts, la massa té la mateixa energia mecànica
 - b) En els dos punts, la massa té la mateixa energia cinètica
 - c) En els dos punts, la massa té la mateixa energia potencial *
 - d) cap de les anteriors
- 8. El coeficient de fregament sobre la superfície horitzontal val...
 - a) 0.4
 - b) 0.3
 - c) 0.2
 - d) 0.1 *
- 9. Si no hi hagués fregament des del punt A fins al C, l'energia cinètica del cos al punt C seria...
 - a) 12 J *
 - b) 1.5 J
 - c) 0 J
 - d) cap de les anteriors

Exercici 2

Una partícula es troba en un regió de l'espai sotmès a una força descrita per la corba d'energia potencial mostrada a la figura.

- 10. Si la partícula es troba en el punt x = 0 m, experimenta una força de...
 - a) -3 N
 - b) 0 N *
 - c) no es pot calcular doncs la força no és conservativa
 - d) cap de les anteriors
- 11. Si la partícula té una energia total de 0 J, els punts de retorn són...
 - a) No hi ha punts de retorn perquè la partícula és lliure
 - b) -1 m i 1 m
 - c) -2 m i 2 m *
 - d) -3 m i 3 m

- 12. La partícula es troba a x = 3 m i te una energia total de 3 J. La seva energia cinètica val ...
 - a) 3 J
 - b) 2 J
 - c) 1J*
 - d) cap de les anteriors

Exercici 3

Dues masses de 3 i 5 kg es troben inicialment en repòs sobre una superfície horitzontal sense fregament. Entre elles hi ha una molla de constant elàstica 100 N/m, comprimida però sense estar enganxada a cap de les masses. Quan aquestes s'alliberen, la massa de 3 kg surt cap a l'esquerra (sentit negatiu) amb una velocitat de 2 m/s.

- 13. La velocitat de la massa de 5 kg és...
 - a) 1 m/s
 - b) 2 m/s
 - c) 1,2 m/s (*)
 - d) -0.9 m/s
- 14. La longitud que s'ha comprimit la molla inicialment és aproximadament...
 - a) 0,82 m
 - b) 0,44 m (*)
 - c) 1,1 m
 - d) 0,25 m
- 15. La quantitat de moviment total del sistema...
 - a) es conserva (*)
 - b) no es conserva, perquè la força de la molla la fa variar
 - c) no es conserva, perquè la força d'atracció terrestre la fa variar
 - d) cap de les anteriors és correcta

Exercici 4

El 19 d'octubre es va llençar un satèl·lit de la família Meteosat, el MetOp-A. Aquest satèl·lit té una massa m de 4085 kg i descriu una òrbita polar (passa pels pols i és perpendicular al pla de l'equador) a una altura de 800 km sobre la superfície de la Terra.

Dades: Massa de la Terra, $M_T = 5.98 \cdot 10^{24} \text{ kg}$; $R_T = 6400 \text{ km}$; $G = 6.67 \cdot 10^{-11} \text{ (SI)}$

- 16. Les unitats de la constant de gravitació G són...
 - a) N/m
 - b) $N m^2/kg^2$ (*)
 - c) $N kg^2/m^2$
 - d) J/m
- 17. La velocitat del satèl·lit val...
 - a) $(G M_T/R)^{1/2}$, on R és el radi de la Terra b) $(G M_T/2R)^{1/2}$, on R es el radi de la Terra c) $(G M_T/R)^{1/2}$, on R val 7200 km (*) d) $(G m/2R)^{1/2}$, on R val 7200 km

- 18. El temps que triga a donar una volta completa és aproximadament...
 - a) 3000 s
 - b) 55 minuts
 - c) 1.7 hores (*)
 - d) 11 hores
- 19. L'energia potencial del satèl·lit ve descrit per...
 - a) $(G M_T/R)^{1/2}$, on R és el radi de la Terra
 - b) -G M_T/R, on R és el radi de la Terra
 - c) $-G M_T m/R$, on R val 7200 km (*)
 - d) $G M_T m/R^2$, on R val 7200 km
- 20. ...i el seu valor numèric és ...
 - a) -2.2 10¹¹ J (*) b) -1.1 10¹¹ J c) -1.1 10¹⁴ J

 - d) Cap de les anteriors
- 21. L'energia mecànica del satèl·lit val...
 - a) $-2.2 \cdot 10^{11} \text{ J}$
 - b) -1.1 10¹¹ J (*)
 - c) $-1.1 \cdot 10^{14} \text{ J}$
 - d) Cap de les anteriors