IP PARIS

SELF-SUPERVISED LEARNING

FOR AUTOMATIC GESTURE RECOGNITION

ALLEMAND Fabien
MAZZELLA Alessio
VILLETTE Jun

Supervisors

TITUS Zaharia
ASPANDI LATIF Decky

Partners

THE PROBLEM AND OBJECTIVE

SIGN LANGUAGE RECOGNITION

- 1. The problem:
- Automatic gesture recognition is important for non-verbal communication, especially sign language.
- Can self-supervised learning improve recognition performances?
- 2. The objective: To classify gestures (signs) given some input data (moving 3D skeletons).

RESULTS AND TAKEAWAYS

SELF-SUPERVISED LEARNING PUT TO THE TEST

- 1. **Self-supervised** learning **leverages** small amount of **labeled data** for better results than supervised learning.
- 2. **Deep learning** methods are very powerful for **gesture recognition**.

3. Limitations:

- Binary classification is an 'easy' task on which simple models can excel. With more data and more complex labeling, we could provide better insight.
- Difficulties to learn two hands signs.

One hand movement (label: Mono)

Two hands movement (label: Bi)

METHODOLOGY

A DIVERSITY OF DEEP LEARNING MODELS

- 1. Working on professional high-quality **motion** capture data provided by Mocaplab (appropriation & visualization).
- 2. Three **supervised learning** models: Fully connected, CNN and LSTM.
- 3. A **self-supervised learning** model.

Training Method	Data utilisation T	est Accuracy
Supervised FC	60% train, 10% validation, 30% test	97%
Supervised CNN	60% train, 10% validation, 30% test	100%
Supervised LSTM	60% train, 10% validation, 30% test	100%
Supervised CNN (10% of data)	5% train, 5% validation, 90% test	83%
Self supervised CNN	90% for unsupervised learning, 5% train, 5% validation	93%
Note	e: data used for unsupervised training is also used for testi	ng
-30 ₋₂₀₋₁₀	40 30 20 Y 10 0 10 0 10 0 10 0 10 0 10 1	40 30 20 Y 10 0 25 0 25 Z -75
-30 -20 -10 0 -25 z -30 -20 -10 0	50 40 30 20 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	50 40 30 20 10 0 -10 50 25 -25 7

