Proteção Radiológica

Cálculo de Blindagens

Dalila Mendonça

1 Introdução

A implementação de um serviço de Radioterapia passa pelas seguintes etapas:

- 1. Escolha e aquisição dos equipamentos;
- 2. Elaboração do projeto de blindagem;
- 3. Elaboração do RPAS Relatório Preliminar de Análise de Segurança contendo o Projeto de Blindagem;
- 4. Encaminhamento do RPAS para a CNEN (ANSN Agencia Nacional de Segurança Nuclear) para obter a autorização para a construção;
- 5. Elaboração do RFAS Relatório Final de Análise de Segurança após a conclusão da construção e realização dos testes de aceite. Neste documento está inserido o Plano de Proteção Radiológica (PPR)

A elaboração do RPAS é feita pelo Físico SPR (supervisor de proteção radiológica) e a coordenação da construção é feita pelo arquiteto com assistência direta do Físico Médico.

Uma construção de Radioterapia está integrada à serviços de energia elétrica, iluminação, condicionamento da ventilação e temperatura, fornecimento de água, drenagem, gases medicinais, acabamento e decoração; Todos realizados com ergonomia e segurança.

2 Aspectos do Projeto

A portaria 1884/1994 do Ministério da Saúde determina que um serviço de Radioterapia deve ter no mínimo:

- 1 consultório indiferenciado com 7.5 m²;
- 1 sala de preparo e observação dos pacientes com 6.5 m²;
- 1 Posto de enfermagem com 6 m²;
- 1 sala de serviços gerais com 6 m²;
- 1 oficina para confecção de moldes e máscaras com 10 m²;
- 1 sala para simulador, que pode ser a mesma da braquiterapia, com área e blindagens compatíveis com os equipamentos;
- 1 sala de planejamento e Física Médica com 10 m²;
- 1 sala de terapia para cada equipamento com área e blindagens compatíveis com a máquina;

- Sala de espera para pacientes e acompanhantes;
- Depósito para material de limpeza;
- Sanitários para funcionários;
- Vestiário para pacientes;
- Sala de utilidades:
- Copa;
- Câmara Escura:
- Sala administrativa;
- Depósito de eequipamentos; e
- Áreas para macas e cadeiras.

3 Detalhamento Do Projeto

- O Acesso as salas de tratamento devem ser largos para permitir a entrada da máquina, macas e cadeiras;
- O Piso deve suportar cargas pesadas;
- Deve haver uma porta na entrada das salas de tratamento mesmo que a radiação que chega na porta seja totalmente blindada pelo labirinto;
- A porta deve ter blindagem caso o labirinto não tenha tamanho suficiente para blindar a radiação à níveis do publico devido às limitações de tamanho da sala ou quando receber um equipamento com energia maior;
- Equipamentos com Beam-Stopper auxiliam na redução das blindagens;
- Equipamentos com energias de fótons maiores que 10 MV requerem uma blindagem de neutrons na porta;
- Portas motorizadas devem possuir mecanismo auxiliar para ser utilizado em caso de falhas mecânicas ou elétricas:
- A porta deve possuir um mecanismo que assegure que a porta esteja fechada enquanto ocorra a exposição e deve ser possível ser aberta por fora e por dentro;
- A blindagem da porta deve ser homogênea e se extender por alguns centímetros além do vão da porta para evitar a existência de frestas;
- São mandatórios mecanismos "corta-fogo" e intertravamento elétrico para que não haja exposição com a porta aberta;
- O comando deve ser próximo à entrada da porta para que seja mantido à vigilância da entrada pelos técnicos;
- Os cabos elétricos devem estar dentro de canaletas construídas no alicerce para correrem facilmente para dentro da sala;
- devem ser instalados dutos reservas para cabos, esgoto, água e ar-condicionado;

- Os materiais dos dutos devem ser compatíveis com a sua utilização: Para cabos(PVC) e para água (Cobre);
- Deve ser fixado na porta o trifólio com as escritas "Cuidado Radiação" e os nomes dos responsáveis com seus respectivos telefones para casos de emergência;
- É necessário um sinal luminoso que indique quando há presença de radiação (luz vermelha) e quando o equipamento está de prontidão para irradiar (luz verde);
- Teleterapia com ⁶⁰Co e Braquiterapia HDR exigem que dentro da sala exista um monitor de área independente que sinalize a exposição à radiação de dentro da sala e no comando;
- Devem ser instalados botões de emergência dentro das áreas supervisionadas e das salas de tratamento para serem acionados em casos de exposição acidental;
- É necessário a intalação de sistemas de água dentro da sala de tratamento para o resfriamento do acelerador linear; E água para a higienização de mãos e dosimetria;
- É necessário a instalação de um sistema de Ar-condicionado;
- Pode ser necessária a instalação de gases medicinais para anestesias e recuperação do paciente;
- Pisos e recessos devem ser impermeabilizados;
- A drenagem do solo deve ser um dos primeiros itens da construção, que exige técnica apurada. Deve-se atentar à hidrografia do solo e a existência de lençóis freaticos. Caso forem superficiais, podem inundar a sala de tratamento em um dia de chuva intensa e causar danos irreparáveis à máquina;
- O sistema de ar condicionado deve climatizar adequadamente o ambiente e proporcionar recirculação do ar. Para isto podem ser utilizados:
 - Um sistema central: Nesses casos é indicado a entrada pela barreira da porta, tomando cuidado para evitar a saída de radiação secundária. O duto de entrada deve ser blindado com lâminas de chumbo e/ou absorvedores de neutrons e deve ser feito de forma que sua entrada seja curva;
 - Sistema tipo Split: Sistema cuja canalização é feita com tubos de pequenos diâmetros que entram na sala fazendo curvaturas para eliminar o escape de radiação. Como não possuem recirculador, é necessário o provisionamento da renovação do ar. A melhor rota dentro da sala é moir meio de um teto rebaixado seguindo o labirinto;
 - Obs: Sistemas individuais não são recomendados por exigirem uma grande abertura na blindagem que requer uma blindagem adicional complicada
- Caso os lasers sejam embutidos nas paredes blindadas, eles devem ser fixados em placas de aço fundifas no concreto com dimensões de 4 cm de espessura e 2.5 cm de margem extra em relação a caixa do laser;
- A visualização do paciente deve ser feita com duas câmeras: uma focada no isocentro e outra dando uma visão panorâmica da sala de tratamento;
- Deve ser instalado um dispositivo de comunicação oral que permita a comunicação entre a sala de tratamento e o comando:
- Deve existir um mobiliário capaz de armazenar todos os dispositivos utilizados no serviço, como: Acessórios de imobilização; blocos, máscaras, aplicadores de elétrons, etc...

• Um item importante e muita vezes negligenciado é a instalação de dutos apropriados para a passagem dos cabos de dosimetria. Eles devem sair do comando e atravessar a parede para a sala de tratamento de forma que minimize a radiação secundária e impeça a passagem de radiação primária.

4 Relatório Preliminar de Análise de Segurança

4.1 Formato e Apresentação

Todo processo inicia-se com a abertura de um SCRA (Solicitação de Conceção de Licenças e Autorizações) juntamente com um documento elaborado pelo Titular da Instalação apresentando o serviço e descrevendo resumidamente o objetivo do serviço.

A elaboração do RPAS deve ser estruturada da seguinte maneira:

- Devem ser enviadas duas cópias do RPAS contendo o sumário geral, o índice de tópicos e definições de siglas, abreviações, símbolos e termos especiais; Ambos devem ser utilizados de forma consistente;
- 2. Deve conter um capítulo exclusivo referente a transporte e rejeitos de materiais radioativos quando for aplicável;
- 3. As informações devem ser apresentadas de forma clara e concisa, sempre que possível utilizando tabelas, gráficos, esquemas, diagramas e plantas;
- 4. Devem obedecer as seguintes recomendações gráficas:
 - (a) Folhas de texto: A4
 - (b) Esquemas e Gráficos: A4 (Podem ser com tamanhos maiores contanto que dobradas não ultrapasse o tamanho A4)
 - (c) Plantas: Tamanho A0 ou A1
 - Escala 1:50 para detalhes;
 - Escala 1:100 para planta baixas
 - Escala 1:500 para situações

As folhas deverão ser dobradas para o tamanho A4 contendo carimbo de identificação com o endereço do serviço, assinatura e CREA do engenheiro ou arquiteto responsável pela obra. É recomendado ter a assinatura e o RT do SPR, porém não é obrigatório.

4.2 Conteúdo do RPAS

1. Identificação do Serviço na Folha de Rosto

Deve conter o nome oficial, nome fantasia, endereço, telefone, e-mail, nome e qualificação do titular, registro do Responsável Técnico e seu nome, nome e registro do SPR se ja tiver sido contratado

2. Descrição dos Equipamentos Emissores de Radiação

Fabricante, modelo, tipo, radiações emitidas, energias, técnica isocêntrica ou não, taxa de dose nominal, campo máximo de radiação, fuga máxima pelo cabeçote, transmissão pelo "beam-Stopper", ambos parâmetros certificados pelo fabricante. TVL de feixe largo para concreto comum e demais materiais utilizados na blindagem, tanto para feixe primário quanto para radiação de fuga e para a radiação espalhada em todas as energias de fótons.

3. Descrição Resumida do Funcionamento do Equipamento

Anexar catálogos

4. Apresentação dos Trabalhadores e suas Respectivas Qualificações

Identificar o titular, responsável técnico e seu substituto, SPR e seu substituto, descrevendo suas atribuições, responsabilidades e horários de trabalho; Para os demais funcionários é necessário apenas definir suas atribuições;

5. Descrição dos Instrumentos de Detecção e Monitoração da Radiação que serão Adquiridos

Deverão ser identificados os monitores de área e os dosímetros clínicos.

6. Descrever as Instalações do Serviço

Deverão ser descritas as salas blindadas e as salas de apoio, demonstrando as classificação das áreas como livres, supervisionadas ou controladas. Descrever o laboratório de preparação das fontes para braquiterapia sem afterloading remoto; Descrever as salas de tratamento, simulação, comnandos, salas de espera, de exames, banheiros; Identificar acessos, portas, gaps, overlaps, materiais da parede, tubulações, interlocks, botões de emergência, sinalização de advertência, intercomunicação visual e oral, etc...

7. Plantas da Instalação

Deverá conter no mínimo 3 plantas:

- (a) **Planta de Situação:** Contendo a localização do serviço de Radioterapia e do Hospital em relação à vizinhança. Deverá estar em uma escala de 1:200 ou 1:500;
- (b) **Planta do Serviço de Radioterapia:** Contendo todas as instalações do serviço com suas respectivas identificações, realçando as áreas blindadas. Deverá estar em uma escala de 1:50 ou 1:100;
- (c) Prancha Detalhada das Áreas Blindadas: Contendo a planta e os cortes de elevação lateral e elevação frontal para cada equipamento de radioterapia da instalação. As plantas deverão:
 - Incluir as dimensões das blindagens e a posição dos pontos de cálculo das blindagens;
 - Conter o desenho da máquina e dos dispositivos auxiliares nas suas posições, incluindo o feixe primário em todas as direções;
 - Indicar a posição da porta, armários, pia, sistemas hidráulicos, tubulações, etc ...
 - Incluir quadro contendo a identificação da máquina, carga de trabalho, limites de dose; E para cada ponto de cálculo de blindagem deverá ser apresentada a classificação da área, fatores de uso, ocupação e distância.
 - Deverá estar em uma escala de 1:20 ou 1:50

5 Cálculo de Blindagens

5.1 Limites Autorizados e Classificação das Áreas

As dimensões das blindagens devem ser tais que estejam em conformidade com os limites definidos pela CNEN e pelo princípio de otimização. Primeiro deve ser calculado os valores de espessura da barreira para os limites primários de dose efetiva e na sequência determina-se as espessuras da barreira utilizando o princípio de otimização. As áreas com radiação e as áreas

circunvizinhas devem ser classificadas como áreas restritas (aos trabalhadores) e áreas livres (para indivíduos do público).

A CNEN dispensa a demonstração dos cálculos de otimização no RPAS quando o projeto assegura que, em condições normais de operação, as três seguintes condições sejam garantidas simultaneamente:

- 1. A dose efetiva anual para trabalhadores não exceda 1 mSv
- 2. A dose efetiva anual para indivíduos do grupo crítico não exceda 10 μSv
- 3. A dose efetiva coletiva anual não exceda o valor de 1 $pessoa \cdot Sv$

Os limites de dose efetiva para fins de cálculo de blindagem são:

- Para trabalhadores: $20 \ mSv/ano$
- Para indivíduos do público: 1 mSv/ano

Os limites derivados semanais utilizados nos cálculos de blindagem, admitindo o total de 50 semanas em 1 ano são:

- Para trabalhadores: $0.4 \, mSv/semana$
- Para indivíduos do público: $0.02 \ mSv/semana$

Para a determinação das blindagens, deverão ser feitas as seguintes considerações:

- A Sala de tratamento deve ser classificada como área controlada;
- As salas de comando devem ser classificadas como salas supervisionadas;
- As salas de espera, vestiários e banheiros devem ser classificadas como área livre, pois os pacientes são considerados indivíduos do público quando estão fora da sala de tratamento;
- Salas de tratamento anexas à sala em que está sendo feito o cálculo de blindagens é considerada como área livre, pois o paciente presente na sala é considerado como um indivíduo do público para a outra sala de tratamento;
- No cálculo de barreira primária não é considerada a atenuação do feixe pelo paciente;
- Os cálculos devem sempre assumir uma incidência perpendicular da radiação na parede;
- Os valores para a radiação de fuga devem respeitar os limites impostos pela CNEN na norma NN 6.10;

Referências

- [1] Tuan Quoc Tran, Sanggeol Jeong, Khang Nhat Hoang Nguyen, et al. Ncrp report 151 structural shielding design and evaluation for megavoltage x-and gamma-ray radiotherapy facilities, 2006.
- [2] EUGENIO DEL FALCÃO VIGNA FILHO and C ROSSANA. Blindagem em radioterapia: Técnica e normas. *Rio de Janeiro: Inca*, 2000.