# Uvod v geometrijsko topologijo

3. marec 2025

## Uvod

Cilj topologije Razumeti prostore in preslikave med njimi.

#### Preslikave

- Vedno zvezne;
- Pomembne: Homeomorfizmi, vložitve;
- Odprte ali zaprte.

#### Prostori

- Osnovni interes so metrični prostori;
- Različne konstrukcije dajo prostore, ki niso nujno metrični ali pa ne takoj jasno da so zato si pomagamo s
  topološkimi lastnostmi.

#### Konstrukcije prostorov

• **Podprostor**. Naj bo  $(X, \mathcal{T})$  topološki prostor in  $A \subseteq X$ . Potem

$$\mathcal{T}_A = \{ A \cap U \mid U \in \mathcal{T} \}$$

topologija na A in  $(A, \mathcal{T}_A)$  topološki prostor.

• Vsota (oz. disjunktna unija). Naj bodo  $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$  topološki prostori in  $X = \bigcup_{\lambda \in \Lambda} X_{\lambda} \times \{\lambda\}$ . Potem

$$\mathcal{T} = \{ U \subseteq X \mid \forall \lambda \in \Lambda \, . \, U \cap X_{\lambda} \text{ odprta v } X_{\lambda} \}$$

je topologija na X porojena z bazo  $\bigcup_{\lambda \in \Lambda} \mathcal{T}_{\lambda}$ .

- **Produkt**. Naj bodo  $\{(X_{\lambda}, \mathcal{T}_{\lambda}) \mid \lambda \in \Lambda\}$  topološki prostori in  $\prod_{\lambda \in \Lambda} X_{\lambda} = \{(x_{\lambda})_{\lambda \in \Lambda} \mid x_{\lambda} \in X_{\lambda}\}.$ 
  - Na  $X \times Y$  definiramo bazo

$$\mathcal{B} = \left\{ U \times V \mid U^{\text{odp}} \subseteq X, \ V^{\text{odp}} \subseteq Y \right\}.$$

Topologija  $\mathcal{T}_{A\times B}$  na množici  $X\times Y$  je topologija porojena z bazo  $\mathcal{B}.$ 

Opomba. Baza  $\mathcal B$  pride iz predbaze, ki je določena z pogojem, da so projekcije na faktorje zvezne.

- Množico  $\prod_{\lambda \in \Lambda} X_{\lambda} = \{(x_{\lambda})_{\lambda \in \Lambda} \mid x_{\lambda} \in X_{\lambda}\}$  opremimo z najslabšo topologijo, glede na katero so vse projekcije

$$\gamma_{\mu}: \prod_{\lambda \in \Lambda} X_{\lambda} \to X_{\mu}, \ \mu \in \Lambda$$

zvezni.

Predbazo sestavljajo

$$\gamma_{\mu}^*(U_{\mu}) = U_{\mu} \times \prod_{\lambda \neq \mu} X_{\lambda}, \text{ kjer } U_{\mu}^{\text{odp}} \subseteq X_{\mu}.$$

Bazne množice so

$$U_{\mu_1} \times U_{\mu_2} \times \ldots \times U_{\mu_k} \times \prod_{\lambda \neq \mu_1, \ldots, \mu_k} X_{\lambda}.$$

- Kompaktifikacija z 1 točko.
- "Slika prostora pri zvezni preslikavi". Naj bo  $f: X \to Y$  preslikava. Gledamo  $f_*(X)$ .  $f_*(X)$  dobi topologijo iz Y. Problem, da topologijo na Y lahko menjamo. Hočemo jo dobiti odvisno od X.

Družina  $\{f^*(y) \mid y \in f_*(X)\}$  je **razdelitev** množice X. V tej družine so množice paroma disjunktne. Torej ta družina določa ekvivalenčno relacijo na X in obratno, vsaka ekvivalenčna relacija na X določna razdelitev na ekvivalenčne razrede.

# 1 Kvocientni prostori

#### 1.1 Kvocientna topologija

**Definicija.** Naj bo X množica,  $\sim$  ekvivalenčna relacija na X.

- Za poljuben  $x \in X$  označimo  $[x] = \{y \in X \mid y \sim x\}$  ekvivalenčni razred, ki pripada x.
- Kvocientna množica množica X po relacije  $\sim$  je množica vseh ekvivalenčnih razredov  $\{[x] \mid x \in X\} =: X/_{\sim}$ .
- Preslikava  $q: X \to X/_{\sim}$ , q(x) = [x] je kvocientna projekcija.

*Opomba*. Ekvivalenčni razredi predstavljamo kot točke.

*Primer*. Naj bo X = [0, 1]. Ekvivalenčna relacija  $\sim$  določna z

$$0 \sim 1 \quad (1 \sim 0, \forall x \in X . x \sim x).$$

Kako si lahko predstavljamo kvocientno množico  $X/_{\sim}$ ? Bodisi kot interval [0,1) bodisi kot krožnico.



### Opomba.

- Pri opisu ekvivalenčne relacije bomo običajno navedli le netrivialne relacije, ki generirajo ekvivalenčno relacijo, ob upoštevanju lastnosti ekvivalenčnih relacij.
- Ekvivalenčna relacija ~ na X določna razdelitev množice X na ekvivalenčne razrede. To razdelitev označimo z  $\mathcal{R} = \{[x] \mid x \in X\} \subseteq P(X)$ . Kvocientno množico lahko označimo z  $X/_{\sim} = X/_{\mathcal{R}}$ .
- Če  $\sim$  določna le en netrivialen ekvivalenčni razred  $A \subseteq X$ ,  $|A| \neq 1$ , potem kvocientno množico označimo z  $X/_A$ .

Če je X topološki prostor in  $\sim$  ekvivalenčna relacija na X, želimo  $X/_{\sim}$  opremiti z topologijo tako, da bo ta odražala lastnosti prostora X. Posebej želimo, da je kvocientna projekcija  $q: X \to X/_{\sim}$  zvezna. Pogoj

$$\forall V^{\text{odp}} \subset X/_{\sim} . q^*(V)^{\text{odp}} \subset X$$

topologije na  $X/_{\sim}$  ne določna enolično – če neka topologija na  $X/_{\sim}$  temu ustreza, ustreza tudi vsaka šibkejša. Zato je  $X/_{\sim}$  smiselno opremiti z najmočnejšo topologijo, pri kateri je q zvezna. Torej za odprte množice v  $X/_{\sim}$  vzamemo vse, ki imajo odprte praslike v X.

**Definicija.** Naj bo  $(X, \mathcal{T})$  topološki prostor in  $\sim$  ekvivalenčna relacija na X.

• Kvocientna topologija na  $X/_{\sim}$  je

$$\mathcal{T}_{\sim} = \{ V \subseteq X/_{\sim} \mid q^*(V) \subseteq X \text{ odprta} \}.$$

**Trditev.**  $\mathcal{T}_{\sim}$  je topologija na  $X/_{\sim}$ .

*Opomba*. V kvocientni topologiji na  $X/_{\sim}$  velja:

$$V^{\text{odp}} \subseteq X/_{\sim} \Leftrightarrow q^*(V)^{\text{odp}} \subseteq X.$$

- $(\Rightarrow)$  je zveznost preslikave q;
- $(\Leftarrow)$  je največjost  $\mathcal{T}_{\sim}$ .

Velja tudi:

$$Z^{\operatorname{zap}} \subset X/_{\sim} \Leftrightarrow q^*(Z)^{\operatorname{zap}} \subset X.$$

*Primer*. Ali je torej q odprta in zaprta? Ni nujno!

- Naj bo  $X = [0, 1], \mathcal{R} = \{[0, 1), 1\}$ . Kaj je  $X/\mathcal{R}$ ? Ali sta  $\{[0]\}$  in  $\{[1]\}$  odprti? Ali je q zaprta?
- Naj bo X = [0, 2], [1, 2] edini netrivialni ekvivalenčni razred. Kaj je  $X/_{[1,2]}$ ? Ali je q odprta?
- Naj bo  $X = [0,1], A = X \cap \mathbb{Q}, B = X \setminus \mathbb{Q}$ . Kaj je  $X/_{\{A,B\}}$ ? Kaj je kvocientna topologija?

**Definicija.** Naj bo X množica in  $\sim$  ekvivalenčna relacija.

• Za  $A \subseteq X$  je njeno **nasičenje** enako

$$q^*(q_*(A)) = \bigcup \{ B \in X/_{\sim} \mid A \cap B \neq \emptyset \}.$$

**Trditev.** Naj bo X topološki prostor,  $\sim$  ekvivalenčna relacija,  $A \subseteq X$ . Velja:

- $q_*(A)$  je odprta/zaprta  $\Leftrightarrow$  nasičenje  $q^*(q_*(A))$  odprto/zaprto.
- $\forall U^{\text{odp}} \subseteq X \cdot q^*(q_*(U)) \text{ odprto/zaprto} \Rightarrow q \text{ je odprta/zaprta}.$

 ${f Cilj}$  Imamo nek topološki prostor X in ekvivalenčno relacijo  $\sim$ . Če je to mogoče, želimo poiskati nek geometrični model Y za kvocient  $X/_{\sim}$  in jasno pokazati, da je  $X/_{\sim} \approx Y.$ 

- Naj bo  $X = \mathbb{R}$ ,  $A = \mathbb{Z}$ . Kaj je  $\mathbb{R}/_A$ ?
- Naj bo  $X = [0, 1], A = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ . Kaj je  $\mathbb{R}/A$ ? Ali je kompakten? V obeh primerih imamo števno mnogo krožnic, spetih v eni točki. Ali sta ta prostora homeomorfna?

# Kvocientne preslikave

Cili Razumeti preslikave iz kvocientov.

Naj bo X topološki prostor,  $\sim$  ekvivalenčna relacija.

$$X \\ q \downarrow \qquad f := g \circ q \\ X/_{\sim} \xrightarrow{q} Y$$

Zvezna preslikava  $g: X/_{\sim} \to Y$  določa zvezno preslikavo  $f = g \circ q: X \to Y$ .

Če je  $x \sim y$  v X, je [x] = q(x) = q(y) = [y] in zato je f(x) = g(q(x)) = g(q(y)) = f(y). Torej ta f je konstantna na ekvivalenčnih razredih, tj. ekvivalentne točke slika v iste.

Želimo obratno: za preslikavo  $f: X \to Y$  poiskati pogoje, da določa preslikavo iz  $X/_{\sim}$  v Y.

$$X \xrightarrow{f} Y$$

$$\downarrow q \qquad \qquad \downarrow \uparrow$$

$$X/_{\sim}$$

Če naj diagram komutira, mora biti f konstantna na ekvivalenčnih razredih:

$$\forall x, y \in X . x \sim y \Rightarrow f(x) = f(y).$$

Če to velja, potem definiramo

$$\overline{f}([x]) := f(x).$$

 $\overline{f}$  je preslikava, inducirana s f.

**Trditev.** Naj bo X topološki prostor,  $\sim$  ekvivalenčna relacija,  $f:X\to Y$  zvezna preslikava, ki je konstantna na ekvivalenčnih razredih. Potem f določa dobro definirano preslikavo

$$\overline{f}: X/_{\sim} \to Y$$

za katero velja:

$$\overline{f} \circ q = f.$$

Poleg tega velia:

- Če je f zvezna, potem je tudi  $\overline{f}$  zvezna.
- Če je f surjektivna, je  $\overline{f}$  surjektivna.
- Če za  $\forall x, y \in X . x \nsim y \Rightarrow f(x) \neq f(y)$ , potem je  $\overline{f}$  injektivna, tj. f loči ekvivalenčne razrede.

Dokaz. Definicija kvocientne topologije.

Zanima nas, kdaj bo  $\overline{f}$  homeomorfizem. Velja:

 $\overline{f}: X/_{\sim} \to Y$  je homeomorfizem, če

- zvezna, bijektivna in inverz zvezen oz.
- bijekcija iz  $X/_{\sim}$  v Y in porodi bijekcijo med topologiji na  $X/_{\sim}$  in Y.

Torej NTSE

- $\overline{f}$  je homeomorfizem.
- $\overline{f}$  je bijekcija iz  $X/_{\sim}$  v Y in porodi bijekcijo med odprtimi množici.
- $\overline{f}$  je bijekcija in velja:

$$\forall V \subseteq Y . V \text{ je odprta} \Leftrightarrow \overline{f}^*(V)^{\text{odp}} \subseteq X/_{\sim} \Leftrightarrow f^*(V)^{\text{odp}} = q^*(\overline{f}^*(V))^{\text{odp}} \subseteq X.$$

**Definicija.** Naj bosta X,Y topološka prostora in  $f:X\to Y$  preslikava. Če je f surjektivna in če

$$\forall V \subseteq Y . V$$
 je odprta  $\Leftrightarrow f^*(V) \subseteq X$  je odprta,

potem f imenujemo kvocientna preslikava.

#### Opomba.

- Po definiciji kvocientne topologiji, je kvocientna projekcija kvocientna preslikava. Obratno: vsako kvocientno preslikavo  $f: X \to Y$  lahko obravnavamo kot kvocientno projekcijo pri ekvivalenčni relaciji, določeni z razbitjem X na praslike točk.
- Kvocientna preslikava je vedno zvezna, ni pa nujno odprta niti zaprta.
- Implikacija (⇐) v definiciji kvocientne preslikave je posebna lastnost, tej včasih rečemo kvocient v ožjem smislu.
   Za zvezno surjekcijo je za njeno kvocientnost potrebno preveriti le ta pogoj.
- $\bullet$  Surjektivna preslikava f je kvicientna natanko tedaj, ko

$$\forall Z \subseteq Y . Z$$
 je zaprta  $\Leftrightarrow f^*(Z) \subseteq X$  je zaprta,

**Lema.** Naj bo  $f: X \to Y$  zvezna in surjektivna. Če je f odprta ali zaprta, je kvocientna.

Dokaz. Preveriti je treba le kvocientnost v ožjem smislu.

**Izrek** (O prepoznavi kvocienta). Naj bosta X,Y topološka prostora in  $\sim$  ekvivalenčna relacija na X. Naj bo $f:X\to Y$  kvocientna preslikava, ki naredi enake identifikacije kot  $\sim$ , tj. f je konstantna na ekvivalenčnih razredih in loči ekvivalenčne razrede:

$$\forall x, y \in X . x \sim y \Leftrightarrow f(x) = f(y).$$

Potem je inducirana preslikava  $\overline{f}: X/_{\sim} \to Y$  homeomorfizem.