CÁLCULO NUMÉRICO

Aula 15

Ajuste de Curvas - Matlab

Ajuste Linear

□ As equações (4) e (5) simplificam-se nas **EQUAÇÕES NORMAIS**:

$$\alpha_0 m + \alpha_1 \sum_{i=1}^{m} x_i = \sum_{i=1}^{m} y_i$$
 (6)

$$\alpha_0 \sum_{i=1}^{m} x_i + \alpha_1 \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} x_i y_i$$
 (7)

Passos

- 1. Construir o Diagrama de Dispersão;
- 2. Aplicar o Ajuste da Reta e de função não-linear;
- 3. Calcular o Coeficiente de Determinação;
- 4. Encontrar uma nova estimativa para y e para x;
- 5. Incluir nome dos eixos e Título no Diagrama de Dispersão;
- 6. Fazer programa para outros tipos de ajustes.

1. Construção do Diagrama de Dispersão

- □ <u>Dados de entrada</u>:
 - □ Valores de *x* e *y* e número de pontos (m).
- % Construção do Diagrama de Dispersão scatter (X,Y);
- % O ajuste é linear ou não linear?

 resp = input('O ajuste é linear? (S/N)','s');

```
if resp == 'N'
```

2. Aplicar o Ajuste

□ Agora, precisamos calcular:

$$\left(\sum_{i=1}^{m} x_i\right) \Longrightarrow \mathtt{SX} \qquad \left(\sum_{i=1}^{m} x_i y_i\right) \Longrightarrow \mathtt{SXY}$$

$$\left(\sum_{i=1}^{m} y_i\right) \longrightarrow \text{sy} \qquad \left(\sum_{i=1}^{m} x_i^2\right) \longrightarrow \text{sx2}$$

2. Aplicar o Ajuste

□ A solução para o sistema de equações do ajuste linear é:

$$\alpha_{0} = \frac{\left(\sum_{i=1}^{m} x_{i}^{2}\right) \left(\sum_{i=1}^{m} y_{i}\right) - \left(\sum_{i=1}^{m} x_{i} y_{i}\right) \left(\sum_{i=1}^{m} x_{i}\right)}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$
(8)

$$\alpha_{1} = \frac{m\left(\sum_{i=1}^{m} x_{i} y_{i}\right) - \left(\sum_{i=1}^{m} x_{i}\right) \left(\sum_{i=1}^{m} y_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

$$(9)$$

7/66

□ Considerando os dados da Tabela 1, e através do gráfico gerado, pode-se definir que tipo de curva melhor se ajusta aos dados.

Tabela 1

x_i	1	2	3	4	5	6	7	8	9	10
yi	1,3	3,5	4,2	5,0	7,0	8,8	10,1	12,5	13,0	15,6

Figura 1. Diagrama de Dispersão para os dados da Tabela 1

□ Considerando a Tabela 1, e os dados necessários para as equações (8) e (9), a Tabela 2 pode ser construída:

i	x_i	y_i	x_i^2	$x_i y_i$
1	1	1,3	1	1,3
2	2	3,5	4	7,0
3	3	4,2	9	12,6
4	4	5,0	16	20,0
5	5	7,0	25	35,0
6	6	8,8	36	52,8
7	7	10,1	59	70,7
8	8	12,5	64	100,0
9	9	13,0	81	117,0
10	10	15,6	100	156,0
Σ	55	81	385	572,4

 \Box Considerando os dados da Tabela 2, os parâmetros α_0 e α_1 podem ser calculados como:

$$\alpha_0 = -0.360$$

$$\alpha_1 = 1,538$$

□ Assim a reta a ser ajustada é determinada por:

$$y = 1,538x - 0,360$$

□ Na Figura 2, pode-se observar o ajuste através da reta:

Figura 2. Ajuste linear

Aula 15 – Ajuste de Curvas - Matlab
Cálculo Numérico

 \Box O coeficiente de determinação (r^2) nos fornece uma estimativa da qualidade do ajuste.

$$r^2 = \frac{S_t - S_r}{S_t}$$

onde:

- \Box S_t é a soma total dos quadrados dos desvios entre os pontos dados e a média;
- \Box S_r é a soma dos quadrados dos desvios entre o y medido e o y calculado (que chamamos aqui de E).

$$S_t = \sum_{k=1}^m (y_k - \overline{y})^2$$

 \Box S_t mede o quadrado da discrepância entre os dados e uma única estimativa da medida de tendência central — a média.

$$S_r = E = \sum_{k=1}^m \left[f(x_k) - \varphi(x_k) \right]^2$$

 \Box S_r mede o quadrado da distância vertical entre os dados e uma outra medida da tendência central (a curva ajustada).

EXEMPLO 2

□ Encontrar uma função exponencial que se ajusta aos valores da tabela abaixo:

X	y
-1,0	36,547
-0,7	17,267
-0,4	8,155
-0,1	3,852
0,2	1,82
0,5	0,86
0,8	0,406
1,0	0,246

Aula 15 – Ajuste de Curvas - Matlab Cálculo Numérico

 \Box Como o ajuste será realizado por uma função exponencial é necessário calcular: $Y = \ln y$

k	X	y	Y = ln(y)	x_k^2	$x_k Y_k$
1	-1,0	36,547	3,599	1,00	-3,599
2	-0,7	17,264	2,849	0,49	-1,994
3	-0,4	8,155	2,099	0,16	-0,839
4	-0,1	3,852	1,349	0,01	-0,135
5	0,2	1,820	0,599	0,04	0,120
6	0,5	0,860	-0,151	0,25	-0,075
7	0,8	0,406	-0,901	0,64	-0,721
8	1,0	0,246	-1,402	1,00	-1,402
Σ	0,3	69,15	8,041	3,59	-8,645

$$\alpha_0 = 1,099$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = -2,5$$

$$\alpha_1 = -b$$

$$a = 3,001$$

$$b = 2, 5$$

$$y = 3,001e^{-2,5x}$$

 \Box O coeficiente de determinação (r^2) nos fornece uma estimativa da qualidade do ajuste.

$$r^2 = \frac{S_t - S_r}{S_t}$$

onde:

- \Box S_t é a soma total dos quadrados dos desvios entre os pontos dados e a média;
- \Box S_r é a soma dos quadrados dos desvios entre o y medido e o y calculado (que chamamos aqui de E).

$$S_t = \sum_{k=1}^m (y_k - \overline{y})^2$$

 \Box S_t mede o quadrado da discrepância entre os dados e uma única estimativa da medida de tendência central — a média.

$$S_r = E = \sum_{k=1}^m \left[f(x_k) - \varphi(x_k) \right]^2$$

 \Box S_r mede o quadrado da distância vertical entre os dados e uma outra medida da tendência central (a curva ajustada).

□ Para o Exemplo 1:

$$r^2 = 0.9881$$

□ Para o Exemplo 2:

$$r^2 = 1$$

$$\begin{cases} \alpha_0 \sum_{k=1}^m x_k^2 + \alpha_1 \sum_{k=1}^m x_k \cos x_k = \sum_{k=1}^m x_k y_k \\ \alpha_0 \sum_{k=1}^m x_k \cos x_k + \alpha_1 \sum_{k=1}^m \cos^2 x_k = \sum_{k=1}^m y_k \cos x_k \end{cases}$$

□ EXEMPLO

k	x_k	y_k	x_k^2	$x_k \cos x_k$	$x_k y_k$	$\cos^2 x_k$	$y_k \cos x_k$
1	-2,5	-3					
2	-1,5	-0,1					
3	-0,5	2,7					
4	0,0	2,8					
5	0,5	2,9					
6	1,5	0,6					
7	2,5	-1,7					
Σ	-	-	17,5	0,0	4,4	3,8340	11,5152

$$\alpha_0 = 0.2514$$

$$\alpha_1 = 3,0034$$

□ Coeficiente de Determinação

$$\phi(x) = 0,2514x + 33,0034\cos x$$

k	x_k	${\mathcal Y}_k$	$(y_k - \overline{y})^2$	$\phi(x_k)$	$\left[y_k - \phi(x_k)\right]^2$
1	-2,5	-3		-3,035	
2	-1,5	-0,1		-0,165	
3	-0,5	2,7		2,510	
4	0,0	2,8		3,003	
5	0,5	2,9		2,761	
6	1,5	0,6		0,590	
7	2,5	-1,7		-1,778	
Σ	-	-	33,28	-	0,108

$$\overline{y} = 0.6$$

$$S_t = 33,28$$

e

$$S_t = 0.108$$

$$r^2 = 0,997$$

Referências

- Becker, A. J.; Silva, D. M. I.; Dias, F.H.S.; Pinheiro L. K.
 Noções Básicas de Programação em MATLAB. Universidade
 Federal de Santa Maria, Santa Maria, Outubro de 2010.
- □ BURDEN, Richard L.; FAIRES, J. Douglas. Análise numérica. São Paulo, SP: Cengage Learning, 2008. xiii, 721 p. ISBN 8522106010.
- □ RUGGIERO, Marcia A. Gomes; LOPES, Vera Lucia da Rocha. **Cálculo numérico:** aspectos teóricos e computacionais. 2. ed. São Paulo, SP: Makron, c1997. xvi, 406 p. ISBN 8534602042.
- □ CHAPRA, Steven C.; CANALE, Raymond P. **Métodos numéricos para engenharia**. 5. ed. São Paulo: McGraw-Hill, 2008. 809 p. ISBN 978-85-86804-87-8.