

Why use deal.II (or any other PDE toolbox)?

- Applies to:
 - Users
 - Developers
- "The secret to good scientific software is (re)using existing libraries"

What is deal.II?

Differential Equation Analysis Library

- Flexible open-source finite element toolkit
 - All the support functionality required to describe and solve a FE problem (PDEs)
 - Optimized for speed
 - Heavily tested
 - Many error checks (debug mode)
 - +10,000 regression tests run continuously
 - Part of SPEC CPU 2017 benchmark
- Templated C++ library (Object Orientated)
 - Dimension independent programming
- Portable
 - OS, architecture, compiler

What is deal. 11?

- Heavily documented
 - Over 10000 pages of interface documentation
 - Numerous tutorials
 - Illustrate functionality
 - Present methods to solve problems
- Quite widely used, and growing
- Active community
 - Approachable developers
 - Helpful online forum

Classes of problems solved using deal.II

- Geomechanics
- Fluid and gas dynamics
- Porous media
- Fluid-structure interaction
- · Boundary element method
- Topology optimization
- Medical image reconstruction
- Structural mechanics
- Biomechanics
- Crystal growth
- · Gradient and crystal plasticity
- · Generalized continua
- Contact mechanics
- Atomistic-to-Continuum coupling
- Quantum mechanics
- Magneto- and electro-elasticity
- Thermo-plasticity

What deal. II is not

- A black box
 - Can't throw any problem at it
 - Won't do anything more than you ask it to
- Knows little* about
 - Numerical methods
 - Problem-specific details, i.e.
 - Preconditioners
 - Constitutive equations

How deal. II will help you

- Unified and well thought out data structure
 - Problem implementation
- Many tutorials
 - Baseline from which to build on
 - Demonstrate how to use features
- Comprehensive debugging support
 - Error messages everywhere!
- Some built in numerical tools
- Integration with advanced frameworks
 - Nonlinear solvers
 - Time integrators
 - Parallel sparse and dense linear algebra

Fundamental capabilities and frameworks

- Mesh adaptivity
- Dense and sparse linear algebra
 - Built in tensor, dense matrix/vector classes
 - BLAS and LAPACK integration; GSL
 - Built in linear solvers and preconditioners
 - Eigenvalue solvers
- Parallelization
 - MPI
 - Linear algebra libraries (PETSc, Trilinos)
 - Distributed meshes → Billion DoFs
 - Threading (Intel TBB)
 - Vectorized numbers (AVX extensions)
- Pre/post-processing

Advanced capabilities and frameworks

- hp-finite element support
- Meshworker
 - Assembly assistance
 - Functions to perform assembly for specific problem classes
- Geometric multi-grid
 - Using coarse grid as preconditioner to solution for finer grid
- Matrix-free
 - No explicit storing of matrix elements
 - Exchange memory transfer for computations
- Charts and manifolds
 - Accurate description of topologically complex objects

How deal. It is developed

- Open repository on GitHub
 - https://github.com/dealii/dealii
- Anyone can contribute!
 - We encourage all to participate

