Graph Model Review

maxchenyuling

May 2021

Abstract

This is the review note of Graphical Models, by Yuling Chen. The original notes accredits to the lecture notes of *Grapical Models*, by Prof Robin Evans.

Contents

1	Cor	nditional Independence	2
	1.1	Conditional Independence and Its Properties	2
	1.2	Graphoid Axioms	3
	1.3	Functional Conditional Independence	
2	Exp	ponential Family and Contingency Table	4
	2.1	Properties of Exponential Families	5
		2.1.1 Empirical Moment Matching	5
		2.1.2 Multivariate Gaussian Distribution	5
	2.2	Contingency Table	6
	2.3	Log-Linear Model	7
3	Uno	directed Graphical Model	8
	3.1	Markov Properties	8
	3.2	Cliques and Factorization	
	3.3	Decomposability	
	3.4	Separator Sets	
	3.5	Non-Decomposable Models	
4	Gai	ussian Graphical Model	12
	4.1	Gaussian Graphical Models	13
	4.2	Maximum Likelihood Estimation	
5	Dir	ected Graphical Models	14
	5.1	Markov Properties	
	5.2	Ancestrality	
	5.3	Statistical Inference	
	5.4	Markov Equivalence	
		A CONTRACTOR OF THE CONTRACTOR	_

6	Jun	ction Trees and Message Passing	17
	6.1	Junction Trees	17
	6.2	Message Passing	19
	6.3	Junction Tree (Collection-Distribution) Algorithm (JTA)	20
	6.4	Directed Graphs and Triangulations	20
	6.5	Evidence	21
7	Cau	usal Inference	21
	7.1	Intervention	21
	7.2	Adjustment Sets and Back-Door Paths	22
	7.3	Back Door Adjustments	22
	7.4	Gaussian Causal Models	24
	7.5	Structural Equation Models	24
	7.6	Trek Rule	24

1 Conditional Independence

1.1 Conditional Independence and Its Properties

Def 2.1: Let X, Y be RV. w/ density p (or mass function). Then,

- (i) the **marginal density** for Y is $P(y) = \int_x P(x,y)dx$;
- (ii) the **conditional density** for x given Y is $P(x \mid y) \cdot P(y) = P(x, y)$, $\forall x \cdot y$, and;
- (iii) X and Y are **independent** if $p(x \mid y) = p(x), \forall x \in X, y \in y, p(y) > 0 \iff p(x,y) = p(x)p(y)$.

Def 2.2: Let X Y be RVs defined on a product space $\mathcal{X} \times \mathcal{Y}$, and Z another RV. Let the joint density be p(x,y,z). Then x is independent of Y conditional on Z, i.e. $(X \perp\!\!\!\perp Y \mid Z \mid [P])$ if: $P(x \mid y,z) = p(x \mid z) \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}, z \in \mathcal{Z}s.t. P(y,z) > 0$.

• If X, Y are marginally independent, write $X \perp \!\!\! \perp Y$.

Ex 2.3 (Markov chain): Let x_1, x_2, \ldots , be a Markov chain, then:

$$\mathbb{P}(x_k = x_k \mid X_1 = x_1, \dots, x_{k-1} = x_{k-1}) = \mathbb{P}(x_k = x_k \mid x_{k-1} = x_{k-1})$$

i.e. $X_k \perp \!\!\! \perp X_1, X_2 \ldots, X_{k-2}, X_{k-1}[\mathbb{P}].$

Ex 2.3.1: Suppose $X_v = (x_1 \dots x_p)^{\top}$ is a multivariate Gaussian distribution. Then:

$$f(x_v; \mu, \Sigma) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x_v - \mu)^\top \Sigma^{-1} (x_v - \mu)\right)$$

$$\implies x_p \mid x_1 = x_1, \dots, x_{p-1} = x_{p-1}$$

$$\sim N\left(\mu_p - \sum_{p, -p} \left(\sum_{-p, -p}\right)^{-1} (x_{-p} - \mu_{-p}), \sigma_{pp \cdot 1 \dots p-1}\right)$$

where $\Sigma_{p,-p}$ is the p-th row of the Σ with the p-th column removed; $\Sigma_{-p,-p}$ is the Σ with both p-th row and the p-th column removed, and; $\sigma_{aa\cdot B} = \sigma_{aa} - \Sigma_{aB}(\Sigma_{BB})^{-1}\Sigma_{Ba}$.

$$\implies x_p \perp \!\!\!\perp X_i \mid X_{V \setminus \{p,i\}} \text{ iff } \beta_i = \sum_{p,-p} \left(\sum_{-p,p}\right)^{-1} = 0.$$

Thm 2.4 (Properties of Conditional Independence): The followings are equivalent:

- (i) $p(x \mid y, z) = p(x \mid z)$ for all x, y, z such that p(y, z) > 0;
- (ii) $p(x, y \mid z) = p(x \mid z) \cdot p(y \mid z)$ for all x, y, z such that p(z) > 0;
- (iii) $p(x, y, z) = p(y, z) \cdot p(x \mid z)$ for all x, y, z;
- (iv) $p(z) \cdot p(x, y, z) = p(x, z) \cdot p(y, z)$ for all x, y, z;
- (v) $p(x, y, z) = f(x, z) \cdot g(y, z)$ for some functions f, g and all x, y, z.

<u>Proof of Thm 2.4</u>: (a) (i) \implies (iii): multiply both sides by P(y,z)

$$P(x \mid y, z) = P(x \mid z) \implies p(x, y, z) = P(x \mid z)P(y, z)$$

- (b) (iii) \implies (i): divided both sides by P(y, z).
- (c) $(iii) \implies (v)$: trivial.
- (d) $(v) \implies (iii)$:

$$\begin{split} P(x,y,z) &= f(x,z)g(y,z), \text{ integrate over x both sides.} \\ &\Longrightarrow p(y,z) = g(y,z) \int_x f(x,z) dx = g(y,z) \tilde{f}(z) \implies g(y,z) = \frac{p(y,z)}{\tilde{f}(z)} (*) \\ &\Longrightarrow p(z) = \tilde{f}(z) \int_y g(y,z) dy, \text{ integrate over y both sides.} \\ &= \tilde{f}(z) \widetilde{g}(z) \implies \text{ if } p(z) > 0, \tilde{f}, \tilde{g} \neq 0 \\ &\Longrightarrow p(x,y,z) = f(x,z) \cdot \frac{p(y,z)}{\tilde{f}(z)} \quad \text{by}(*) \\ &\Longrightarrow p(x \mid y,z) = \frac{f(x,z)}{f(\widetilde{z})} \end{split}$$

• Marginal independence has no implication to conditional independence, and vice versa, i.e. $X \perp\!\!\!\perp Y \implies X \perp\!\!\!\perp Y \mid Z \text{ or } X \perp\!\!\!\perp Y \iff X \perp\!\!\!\perp Y \mid Z.$

1.2 Graphoid Axioms

Thm 2.6 (Graphoid Axioms):

- (i) $X \perp \!\!\!\perp Y \mid Z \implies Y \perp \!\!\!\perp X \mid Z \ (symmetry)$
- (ii) $X \perp \!\!\!\perp Y, W \mid Z \implies X \perp \!\!\!\perp Y \mid Z \ (decomposition)$
- (iii) $X \perp \!\!\!\perp Y, W \mid Z \implies X \perp \!\!\!\perp W \mid Y, Z \ (weak \ union)$
- (iv) $X \perp \!\!\!\perp Y \mid Z$ and $X \perp \!\!\!\perp W \mid Y, Z \implies X \perp \!\!\!\!\perp Y, W \mid Z$ (contraction)
- (V) If p(x,t,w,z) > 0, then $X \perp \!\!\! \perp W \mid Y,Z$ and $X \perp \!\!\! \perp Y \mid W,Z \implies X \perp \!\!\! \perp Y,W \mid Z$ (intersection) Proof of Thm 2.6:
- (i) Follows from Thm 2.4.
- (ii) $X \perp \!\!\!\perp Y, W \mid Z \implies p(x, y, w, z) = p(x, z) \cdot p(y, w \mid z)$
- $\implies p(x,y,z) = p(x,z) \int_{w} p(y,w \mid z) ds = p(x,z) p(y \mid z).$
- (iii)/(iv) omitted, see PS1.

(v)
$$p(x,y,w,z) = f(x,w,z)g(y,w,z) \quad \because X \perp\!\!\!\perp Y \mid W,Z$$
$$= \tilde{f}(x,y,z)\tilde{g}(y,w,z) \quad \because X \perp\!\!\!\perp W \mid Y,Z$$
$$\Longrightarrow f(x,w,z) = \frac{\tilde{f}(x,y,z)\tilde{g}(y,w,z)}{g(y,w,z)} = a(x,z)b(w,z) \quad \because LHS \perp\!\!\!\perp Y$$
$$\Longrightarrow p(x,y,w,z) = a(x,z)b(w,z)g(y,w,z) = a(x,z)\tilde{g}(y,w,z)$$
$$\Longrightarrow X \perp\!\!\!\perp Y,W \mid Z \quad [\text{EOP}]$$

Remark 2.7: By (ii)-(iv), $X \perp \!\!\!\perp W \mid Y, Z$ and $X \perp \!\!\!\!\perp Y \mid Z \iff X \perp \!\!\!\!\perp Y, W \mid Z$.

1.3 Functional Conditional Independence

Remark 2.8: Since $\{Y = y\} \equiv \{Y = y, h(Y) = h(y)\}, \forall h \text{ measurable function, then:}$

(i) $p(x \mid y, z) = p(x \mid y, h(y), z)$, and hence;

(ii) $X \perp\!\!\!\perp Y \mid Z \implies X \perp\!\!\!\perp h(Y) \mid Z \text{ and } X \perp\!\!\!\perp Y \mid h(Y), Z.$

Ex 2.9 (Sufficient Statistics): $T \equiv t(x)$ is sufficient statistic of θ if: $L(\theta \mid X = x) = f_{\theta}(x) = g(t(x), \theta) \cdot h(x)$.

•
$$\pi(\theta \mid x) \propto L(\theta \mid x) \cdot \pi(\theta) = P_{\theta}(x) \cdot \pi(\theta) = \pi(\theta) f(t(x), \theta) \cdot g(x) \propto \pi(\theta \mid t(x)) \implies \theta \perp X \mid T(x)$$

2 Exponential Family and Contingency Table

 $\bullet X_V \equiv \{X_v : v \in V\}$ where $V = \{1, \dots, p\}$ is the index set of the nodes.

Def 3.1 (Exponential Family):

$$p(x;\theta) = \exp\left\{\sum_{i} \theta_{i} \phi_{i}(x) - A(\theta) - C(x)\right\} = \exp\left\{\langle \theta, \phi(x) \rangle - A(\theta) - C(x)\right\}$$

where:

- ϕ_i : sufficient statistic;
- θ_i : canonical/natural parameter.
- $A(\theta) = \log \int \exp\{\langle \theta, \phi(x) \rangle C(x)\} dx$: cumulant function;
- $Z(\theta) \equiv \exp(A(\theta))$: partition function.

Lemma 3.1 (Gradients of Expo-Family):

- (i) $\nabla_{\theta} A(\theta) = \mathbb{E}_{\theta} \phi(x)$;
- (ii) $\nabla \nabla_{\theta}^{+} A(\theta) = \operatorname{Cov}_{\theta} \phi(x);$
- (iii) A is convex, because $Cov_{\theta} \phi(x) \geq 0$.

Proof of Lemma 3.1 (i): (else omitted.)

$$\begin{split} e^{A(\theta)} \frac{\partial}{\partial \theta_i} A(\theta) &= \frac{\partial}{\partial \theta_i} e^{A(\theta)} \\ &= \frac{\partial}{\partial \theta_i} \int \exp\{\langle \theta, \phi(x) \rangle - C(x)\} dx \\ &= \int \frac{\partial}{\partial \theta_i} \exp\{\langle \theta, \phi(x) \rangle - C(x)\} dx \\ &= \int \phi_i(x) \exp\{\langle \theta, \phi(x) \rangle - C(x)\} dx \\ &= e^{A(\theta)} \int \phi_i(x) \exp\{\langle \theta, \phi(x) \rangle - A(\theta) - C(x)\} dx \\ &= e^{A(\theta)} \mathbb{E}_{\theta} \phi_i(X) \end{split}$$

Ex 3.2:, omitted see P12 on the notes.

2.1 Properties of Exponential Families

2.1.1 Empirical Moment Matching

We have

$$\ell(\theta) = \log L(\theta) = \sum_{x_i} \langle \theta, \phi(x_i) \rangle - nA(\theta) + \text{ const.}$$

$$= \left\langle \theta, \sum_{x_i}^n \phi(x_i) \right\rangle - nA(\theta) + \text{ const.}$$

$$= n\langle \theta, \overline{\phi(x)} \rangle - nA(\theta) + \text{ const.}$$

$$\Rightarrow \nabla_{\theta} l(\theta) = n\overline{\phi(x)} - n\nabla_{\theta} A(\theta) \stackrel{\text{set}}{=} 0$$

$$\Rightarrow \nabla_{\theta} A(\theta) = \overline{\phi(x)} = \mathbb{E}[\phi(x)]$$

Hence MLE is given by $\hat{\theta}$ where $\mathbb{E}_{\hat{\theta}}[\phi(x)] = \overline{\phi(x)}$.

2.1.2 Multivariate Gaussian Distribution

$$f\left(X_{v};\mu,\Sigma\right) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}\left(X_{v}-\mu\right)^{\top} \Sigma^{-1}\left(X_{v}-\mu\right)\right), \forall X_{v} \in \mathbb{R}^{p}$$

$$= \frac{1}{(2\pi)^{p/2}} \exp\left\{-\frac{1}{2}x_{v}^{T}Kx_{v} + \mu^{T}Kx_{v} - \frac{1}{2}\mu^{T}K\mu + \frac{1}{2}\log|K|\right\}$$

$$\implies \log L(\theta,\Sigma) = \ell(\theta,\Sigma) \propto -\frac{1}{2}X_{v}^{\top}KX_{v} + \mu^{\top}KX_{v} - \frac{1}{2}\mu^{\top}K\mu, \text{ with } K \equiv \Sigma^{-1}$$

$$= -\frac{1}{2}\operatorname{tr}\left(X_{v}^{\top}KX_{v}\right) + \mu^{\top}kX_{v} + \operatorname{Const} \quad \because X_{v}^{T}KX_{v} \text{ is constant}$$

$$= -\frac{1}{2}\operatorname{tr}\left(KX_{v}X_{v}^{\top}\right) + \mu^{\top}KX_{v} + \operatorname{Const} \quad \because \operatorname{tr}(AB) = \operatorname{tr}(BA)$$

So, MV Gaussian is an Exponential family, with canonical parameters $\theta = (-K, \eta \equiv \mu^{\top} K)$ and $\phi(X_v) = (X_v X_v, X_v)$, hence we have:

$$2A(\theta) = 2A(K, \eta) = \eta^T K^{-1} \eta + \log | K$$

$$\Longrightarrow \nabla_{\eta} A(\theta) = K^{-1} \eta = \mu = E_{\theta} (X_v) = \bar{X}_v$$

$$2\nabla_K A(\theta) = K^{-T} \eta \eta^T K^{-1} + K^{-1} = \Sigma + \mu \mu^T = 2\mathbb{E}_{\theta} \left[\frac{1}{2} X_v X_v^T \right] = \overline{X_v X_v^T}$$

$$\Longrightarrow \hat{\mu} = \bar{X}_v$$

$$\bar{\Sigma} = \overline{X_v X_v^T} - \overline{X_v} \cdot \overline{X_v^T}$$

Prop 3.3: Let X_V have a multivariate Gaussian distribution with concentration matrix $K = \Sigma^{-1}$. Then $X_i \perp \!\!\! \perp X_j \mid X_{V\setminus\{i,j\}}$ if and only if $k_{ij}=0$, where k_{ij} is the corresponding entry in the concentration matrix.

Proof of Prop 3.3:

The log density is: $\log f(x_V) = -\frac{1}{2}(x_V - \mu)^T K(x_V - \mu) + \text{const}$, where the constant term does

The only term involves x_i and x_j is $-k_{ij}(x_i - \mu_i)(x_j - \mu_j)$, hence $k_{ij} = 0$ iff the density has separate terms for x_i and x_j . [EOP].

2.2 Contingency Table

Suppose:

- $\overline{\text{(i)}} \ x_v \equiv (x_0 : v \in V) \text{ for some set } V = \{1, \dots, P\};$ $\overline{\text{(ii)}} \ x_A \equiv (X_V : v \in A) \text{ for any } A \subseteq V;$
- (iii) $X_v \in \{1, \dots, d_v\}.$

Counts:

(i)
$$n(x_0) = \sum_{i=1}^n \mathbb{I}\left\{x_1^{(i)} = x_1, \dots, x_p^{(i)} = x_p\right\}$$

(ii) $n(x_A) = \sum_{i=1}^n \mathbb{I}\left\{X_a^{(i)} = x_a : a \in A\right\} = \sum_{X_{V \setminus A}} n(X_A, X_{V \setminus A})$ (marginal table).

Loglike:

$$\mathbb{P}\left(X_{v}^{(i)} = x_{0}\right) = p\left(x_{v}\right), \forall x_{v} \in \{1, \dots, d_{v}\}$$

$$\implies P\left(n\left(x_{v}\right) : x_{v} \in X_{v}\right) = \frac{n!}{\prod_{x \in X_{v}} \prod_{n} n\left(x_{v}\right)!} \prod_{x_{v} \in X_{v}}^{\pi} p\left(x_{v}\right)^{n\left(x_{v}\right)}, \forall p, \sum_{x_{v}} p\left(x_{v}\right) = 1$$

$$= \exp\left\{\sum_{x_{v}} n(x_{v}) \cdot \log p(x_{v}) + \operatorname{Const}\right\}$$

$$= \exp\left(\sum_{x_{v} \neq 0_{v}} \underbrace{n\left(x_{v}\right)}_{\phi(x_{i})} \underbrace{\log \frac{p\left(x_{v}\right)}{p\left(0_{v}\right)}}_{\theta(X_{v}) \in (-\infty, \infty)} + \underbrace{n \log p\left(0_{v}\right)}_{nA(\theta)} + \operatorname{Const}\right) \implies \operatorname{Exp} \operatorname{Family}$$

Save of computer memory: Suppose $V = A \cup B \cup S$ and $X_A \perp \!\!\! \perp X_B \mid X_S$. Then:

$$p(x_V) \to 2^{a+b+s} - 1$$

$$= p(x_S) \cdot p(x_A \mid x_S) \cdot p(x_B \mid x_S) \to (2^s - 1) + (2^{s+a} - 1) + (2^{s+b} - 1)$$

$$= P(x_A, x_S) P(x_B \mid x_S) \to (2^{a+s} - 1) + (2^b - 1) \times 2^s$$

2.3 Log-Linear Model

Def 3.5 (Log-Linear Model): Let $P(x_0) > 0$. then the log – linear parameters $\lambda_A(X_A) \cdot A \subseteq V$ are:

$$\log P\left(x_{v}\right) = \sum_{A \leq V} \lambda_{A}\left(X_{4}\right)$$
 subject to $\lambda_{A}\left(x_{A}\right) = 0$ if $X_{a} = 1, \forall a \in A$ (identifiability constraint)

Ex 3.5 (Binary case): omitted, see P15 on notes.

Prop 3.6 Let $X_i \sim \text{Poisson}(\mu_i)$ independently, and let $N = \sum_{i=1}^k X_i$. Then,

$$N \sim \text{Poisson}\left(\sum_{i} \mu_{i}\right)$$
 and $(X_{1}, \dots, X_{k})^{T} \mid N = n \sim \text{Multinom}\left(n, (\pi_{1}, \dots, \pi_{k})^{T}\right)$

where $\pi_i = \mu_i / \sum_j \mu_j$

Proof of Prop 3.6: Poisson likelihood is

$$L(\mu_{1}, \dots, \mu_{k}; x_{1}, \dots, x_{k}) = \prod_{i=1}^{k} e^{-\mu_{i}} \mu_{i}^{x_{i}} = \frac{k}{\pi_{1}} e^{-\mu \pi_{i}} \left(\sum_{j=1}^{k} \mu_{j} \right)^{x_{i}} \pi_{i}^{x_{i}}, \quad \because \pi_{i} = \frac{\mu_{i}}{\sum_{j=1}^{k} \mu_{j}}$$

$$= \left(\sum_{j=1}^{k} \mu_{j} \right)^{\sum_{i=1}^{k} x_{i}} e^{-(\sum_{j=1}^{k} \mu_{j}) \sum_{i=1}^{k} \pi_{i}} \prod_{i=1}^{k} \pi_{i}^{x_{i}}$$

$$= \left(\sum_{j=1}^{k} \mu_{j} \right)^{N} e^{-(\sum_{j=1}^{k} \mu_{j})} \cdot \prod_{i=1}^{k} \pi_{i}^{x_{i}}, \quad \because \sum_{i} \pi_{i} = 1$$

$$= L \left(\left(\sum_{j=1}^{k} \mu_{j} \right); N \right) \cdot L \left(\pi_{1}, \dots, \pi_{k}; x_{1}, \dots, x_{k} \mid N \right) \quad [EOP]$$
Conditional Multinomial

Thm 3.7 (Conditional Independence in Log-Linear Model): Let P > 0 discrete distribution on X_V with log-linear parameters $\lambda_C, C \subseteq V$. Then,

$$X_a \perp \!\!\! \perp X_b \mid X_{V \setminus \{a,b\}} \quad [P] \iff \lambda_{\{a,b\} \cup C} = 0, \forall C \subseteq V \setminus \{a,b\} \iff \lambda_W = 0, \forall \{a,b\} \subseteq W \subseteq V$$
Proof of Thm 3.7: omitted, see PS.

Corollary 3.7.1: Consider $A \cup B \cup S = V$ with $X_A \perp \!\!\!\perp X_B \mid S$, then by Thm 2.4 (iii), $p(x_S) \cdot p(x_A, x_B, x_S) = p(x_A, x_S) \cdot p(x_B, x_S)$. Hence, $\log p(x_A, x_B, x_S) = \log p(x_A, x_S) + \log p(x_B, x_S) - \log p(x_S)$ Applying log-linear expansion gives:

$$\sum_{W\subseteq V} \lambda_W\left(x_W\right) = \sum_{W\subseteq A\cup S} \lambda_W^{AS}\left(x_W\right) + \sum_{W\subseteq B\cup S} \lambda_W^{BS}\left(x_W\right) - \sum_{W\subseteq S} \lambda_W^{S}\left(x_W\right) \quad (*)$$

By equating the terms, we have:

$$\begin{array}{ll} \lambda_{W}\left(x_{W}\right)=\lambda_{W}^{AS}\left(x_{W}\right) & \text{for any } W\subseteq A\cup S \text{ with } W\cap A\neq\emptyset\\ \lambda_{W}\left(x_{W}\right)=\lambda_{W}^{BS}\left(x_{W}\right) & \text{for any } W\subseteq B\cup S \text{ with } W\cap B\neq\emptyset\\ \lambda_{W}\left(x_{W}\right)=\lambda_{W}^{AS}\left(x_{W}\right)+\lambda_{W}^{BS}\left(x_{W}\right)-\lambda_{W}^{S}\left(x_{W}\right) & \text{for any } W\subseteq S \end{array}$$

 \bullet Obviously, equation (*) does not include any λ_W^{ABS} term.

3 Undirected Graphical Model

Def 4.1 (Undirected Graph): Let V be a finite set, then an **Undirected Graph** is $\mathcal{G} = \{V, E\}$, where,

- $\bullet V$ is the set of **vertex**;
- $\bullet E \subseteq \{i, j : i, j \in V, i \neq j\}$ is the **edge** set.

Def 4.2: j is a **neighbor** of i, i.e. $i \sim j$, if i, j are **adjacent** in the graph. The **boundary** of i is the set of neighbors of i, i.e. $\mathrm{bd}_{\mathcal{G}}(i) = \{j : i \sim j\}$.

Def 4.3 (Separation): For $A, B, S \subseteq V$, $A \perp_s B \mid S \mid \mathcal{G}$.

- $\forall a \in A, b \in B$, the path between a and b must include at least one vertex from S.
- $\bullet A \perp_s B \mid S \quad [\mathcal{G}] \iff A \perp_s B \mid \emptyset \mid \mathcal{G}_{V \setminus S}.$

Def 4.3.2 (Path): a sequence of adjacent vertices without repetition.

Def 4.3.2 (Induced Subgraph): For a subset $W \subseteq V$, \mathcal{G}_W is the **induced subgraph** of $\mathcal{G}(V, E)$ with vertex $W \subseteq V$ and edges $E_W = \{(i \sim j) \in E : i, j \in W\}$.

3.1 Markov Properties

Def 4.4 (Pairwise Markov Properties): Consider $p(X_v)$ be a distribution over $X_v \in \mathcal{X}_V$. p satisfies PMP if

$$i \not\sim j \quad [\mathcal{G}] \implies X_i \perp \!\!\!\perp X_j \mid X_{V \setminus \{i,j\}} \quad [p]$$

• Whenever an edge is missing in G there is a corresponding conditional independence in p.

Def 4.6 (Glabal Markov Properties): p satisfies GMP if: \forall disjoint set A, B, S,

$$A \perp_{s} B \mid S \mid [\mathcal{G}] \implies X_A \perp \!\!\!\perp X_B \mid X_S \mid [p]$$

Prop 4.7: GMP \Longrightarrow PMP.

Proof of Prop 4.7: If $i \not\sim j$ then obviously any path between i and j must have at least one vertex in $V\setminus\{i,j\}$, hence $\{i\}\perp_s \{j\}\mid V\setminus\{i,j\}\quad [\mathcal{G}]$ by Def 4.3. Further by GMP, $X_i\perp\!\!\!\perp X_j\mid X_{V\setminus\{i,j\}}\quad [p]$, which is automatically PMP. [EOP]

3.2 Cliques and Factorization

Def 4.8.1 (Completeness): C is complete if $i \sim j, \forall i, j \in C$.

Def 4.8.2 (Clique): a maximal complete set.

• $\mathcal{C}(\mathcal{G})$: the set of cliques in a graph \mathcal{G} .

Def 4.9 (Factorization): p factorizes according to graph \mathcal{G} if

$$p(x_V) = \prod_{C \in \mathcal{C}(\mathcal{G})} \psi_C(x_C)$$

for some **potential functions** ψ_C .

Thm 4.10: Factorization \implies GMP. Proof of Thm 4.10:

Suppose separation $A \perp_s B \mid S \mid [\mathcal{G}]$.

Construct $\tilde{A} = A \cup \mathrm{bd}_{\mathcal{G}_{V \setminus S}}(A)$ the set of vertex that are connected to A by paths in $\mathcal{G}_{V \setminus A}$. Then Construct $\tilde{B} = V \setminus (\tilde{A} \cup S)$. Therefore, we have:

- $B \cap \tilde{A} = \emptyset$;
- $-V = \tilde{A} \cup \tilde{B} \cup S;$
- $A \subseteq \tilde{A}$ and $B \subseteq \tilde{B}$;
- no edge between \tilde{A} and \tilde{B} .

By the last point, every clique in \mathcal{G} must be either in $\tilde{A} \cup S$ or $\tilde{B} \cup S$, so, let $\mathcal{C}_A(\mathcal{G}) = \{C \in \mathcal{C}(\mathcal{G}) : C \subseteq \tilde{A} \cup S\}$ and $\mathcal{C}_B(\mathcal{G}) = \mathcal{C}(\mathcal{G}) \setminus \mathcal{C}_A(\mathcal{G})$,

$$p(X_{V}) = \prod_{C \in \mathcal{C}} \psi_{C}(x_{C}) = \prod_{C \in \mathcal{C}_{A}} \psi_{C}(x_{C}) \cdot \prod_{C \in \mathcal{C}_{B}} \psi_{C}(x_{C}), \text{ by factorization}$$
$$= f\left(x_{\tilde{A}}, x_{S}\right) \cdot f\left(x_{\tilde{B}}, x_{S}\right) \implies X_{\tilde{A}} \perp_{s} X_{\tilde{B}} \mid S \quad [\mathcal{G}]$$

By Thm 2.6 (ii) (decomposition) and the third point above, we have $X_A \perp_s X_B \mid S \mid [\mathcal{G}]$. [EOP]

Thm 4.11 (Hammersley-Clifford Theorem): If $p(X_V) > 0$ obeys PMP, then p factorizes according to \mathcal{G} .

Remark 4.12: Factorization \implies GMP \implies PMP $\stackrel{p>0}{\implies}$ Factorization.

3.3 Decomposability

Def 4.13 (Decomposition): Consider disjoint sets A, B, S s.t. $A \cup B \cup S = V$, then (A, B, S) is a decomposition of \mathcal{G} if: \mathcal{G}_S is complete and $A \perp_S B \mid S \mid \mathcal{G}|$.

• The decomposition is **proper** if $A \neq \emptyset$ and $B \neq \emptyset$.

Def 4.15 (Decomposability): \mathcal{G} is decomposible if either:

- (i) \mathcal{G} is itself complete, OR;
- (ii) $\exists (A, B, S)$ a proper decomposition, and both $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ are decomposible.

Def 4.16 (Running Intersection Property): Consider $C = \{C : C \subseteq V\}$, C satisfies RIP if there is an ordering C_1, \ldots, C_k s.t. $\forall j = 2, \ldots, k, \exists \sigma(j) < j$ with:

$$C_j \cap \bigcup_{i=1}^{j-1} C_i = C_j \cap C_{\sigma(j)}$$

• Intersection of each set with all the previously seen objects is contained in a single set.

Prop 4.18: If C_1, \ldots, C_k satisfies RIP, then $\exists \mathcal{G}$ whose cliques are precisely (the inclusion maximal elements of) $\mathcal{C} = \{C_1, \ldots, C_k\}$.

Def 4.19: Consider an undirected graph \mathcal{G} ,

- (i) **Cycle** is a sequence of vertices $\langle v_1, \ldots, v_k \rangle$ $(k \ge 3)$ s.t. \exists paths $v_1 \sim v_2 \sim, \ldots, \sim v_k$ and an edge $v_k \sim v_1$.
- (ii) Chord on a cycle is any edge between 2 vertices that are not adjacent on the cycle.
- (iii) \mathcal{G} is chordal/triangulated if whenever there is cycle of length ≥ 4 , it contains a chord.

Thm 4.20: Consider an undirected graph \mathcal{G} , the followings are equivalent:

(i) \mathcal{G} is decomposable;

- (ii) \mathcal{G} is triangulated;
- (iii) every minimal (a, b)-separator is complete;
- (iv) cliques of \mathcal{G} satisfies RIP.

Proof of Thm 4.20:

(i) \Longrightarrow (ii): By induction.

Let p = |V| the number of vertices in the graph \mathcal{G} . Then if $p \leq 3$, the result is trivial. So only consider $p \geq 4$

If \mathcal{G} is complete, then \mathcal{G} is triangulated, then there is no chordless cycle, then result is trivial.

If \mathcal{G} is NOT complete, then \exists proper decomposition (A, B, S).

- $\implies \mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ are both decomposable (by Def 4.15) and have strictly less vertices than \mathcal{G} .
- $\implies \mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ are triangulated, by induction hypothesis.
- \implies Any cycle containing $a \in A$ and $b \in B$ must passes through S twice. Note that S is the separator which is complete, such cycle must contain at least 1 chord connecting the points in S.
- \implies By Def 4.19, \mathcal{G} is triangulated.
- (ii) \implies (iii): Show contrapositive.

Def 4.20.1 ((a,b)-minimal separator): S is the minimal separator of (a,b) if $a \perp_s b \mid S \implies a \not\perp_s b \mid T, \forall T \subseteq S$.

Suppose S is a minimal separator of (a, b) but S is NOT complete. Then $\exists s_1, s_2 : s_1 \not\sim s_2$ and we have a cycle $a \sim \ldots \sim s_1 \sim \ldots \sim s_2 \sim \ldots \sim a$.

Let a' be the vertex on the path $a \sim \ldots \sim s_1$ that is closest to s_1 and is adjacent to s_2 . Similarly, let b' be the vertex on the path $s_1 \sim \ldots \sim b$ that is closest to s_1 and is adjacent to s_2 . Then we have a chordless cycle $a' \sim \ldots \sim s_1 \sim \ldots \sim b \sim s_2 \sim a$ of length ≥ 4 . So, \mathcal{G} is not triangulated.

(iii) \implies (iv): By induction

 $\overline{p} = |V| = 1$, the result is trivial.

For p > 1, let $a \not\sim b$ with complete minimal separator S. Let $A = \{v \in V : v \not\perp_s a \mid S\}$ and $B = V \setminus (A \cup S)$. Since $A \neq \emptyset$ and $B \neq \emptyset$, (A, B, S) forms a proper decomposition, $A \perp_s B \mid S = [\mathcal{G}]$. By induction hypothesis, cliques of $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ satisfy RIP (because $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ have fewer vertices than \mathcal{G}). Taking (C_1^A, \ldots, C_k^A) and (C_1^B, \ldots, C_k^B) as the set of cliques of $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ respectively, the orderings $\mathcal{C}(\mathcal{G}_{A \cup S})$ and $\mathcal{C}(\mathcal{G}_{B \cup S})$ satisfy RIP.

Since $C(G) = C(G_{A \cup S}) \cup C(G_{B \cup S})$, done.

(iv) \Longrightarrow (i): By induction.

Suppose (C_1, \ldots, C_k) satisfy RIP. If $k = 1, C_1$ is complete, hence decomposible, done.

For k > 1, let $H_k = \bigcup_{i < k} C_i$ and $S_k = C_k \cap H_k = C_k \cap C_{\sigma(k)}$, for some $\sigma(k) < k$.

Then there is a proper decomposition $(C_k \setminus S_k, S_k, H_k \setminus S_k)$, because C_k connects all previous vertices via S_k . Now, we have

- $\mathcal{G}_{C_k} = \mathcal{G}_{C_k \setminus S_k \cup S_k}$ is complete so decomposable;
- $\mathcal{G}_{H_k} = \mathcal{G}_{H_k \setminus S_k \cup S_k}$ has k-1 cliques satisfying RIP, hence decomposable by induction hypothesis. Therefore, \mathcal{G} is decomposable, by Def 4.15.

Corollary 4.21.1: Consider \mathcal{G} decomposable and (A, B, S) a proper decomposition, then $\mathcal{G}_{A \cup S}$ and $\mathcal{G}_{B \cup S}$ are also decomposable.

<u>Proof of Corollary 4.21.1</u>: \mathcal{G} decomposable $\Longrightarrow \mathcal{G}$ triangulated (by Thm 4.20), and so is its any subgraphs. [EOP]

Remark 4.21.2: \mathcal{G} triangulated $\iff \mathcal{G}$ decomposable $\implies \mathcal{G}_W(W \subseteq V)$ decomposable $\iff \mathcal{G}_W$

triangulated.

Def 4.22 (Forest): a graph with no cycle.

• Connected forest is a **tree**.

3.4 Separator Sets

Def 4.23.1 (Separator Set): j-th Separator Set for $j \ge 2$ is:

$$S_j \equiv C_j \cap \bigcup_{i=1}^{j-1} C_i = C_j \cap C_{\sigma(j)}$$

with $S_1 = \emptyset$.

Lemma 4.23.2: Consider a decomposition (A, B, S) on the undirected graph \mathcal{G} , then: p factorizes according to $\mathcal{G} \iff \text{marginals } p(x_{A \cup S}) \text{ and } p(x_{B \cup S}) \text{ factorizes according to } \mathcal{G}_{A \cup S} \text{ and } \mathcal{G}_{B \cup S}, \text{ and } p(x_V) \cdot p(x_S) = p(x_{A \cup S}) \cdot p(x_{B \cup S}).$

Proof of Lemma 4.23.2:

 (\Leftarrow)

$$p(x_v) = \frac{P(x_A, x_S) P(x_B, x_S)}{P(x_S)}$$

$$= \prod_{C \in \mathcal{C}(\mathcal{G}_{A \cup S})} \psi_C(x_C) \cdot \prod_{D \in \mathcal{C}(\mathcal{G}_{B \cup S})} \psi_D(x_D) \cdot \frac{1}{P(x_S)}$$

$$= \prod_{C \in \mathcal{C}(\mathcal{G})} \tilde{\psi}(x_C) \quad \therefore \text{ Thm } 4.10$$

Since (A, B, S) is a decomposition, every clique of \mathcal{G} is either in $\mathcal{G}_{A \cup S}$ or $\mathcal{G}_{B \cup S}$. $\Longrightarrow p$ factorizes according to \mathcal{G} .

 (\Longrightarrow) Suppose p factorizes according to \mathcal{G} , then p obeys GMP wrt \mathcal{G} . So,

$$A \perp_s B \mid S \quad [\mathcal{G}] \overset{GMP}{\Longrightarrow} X_A \perp \!\!\!\perp X_B \mid X_S \quad [p] \overset{Thm:2.4}{\Longrightarrow} p(x_V) p(x_S) = p(x_A, x_S) p(x_B, x_S)$$

Also factorization gives:

$$p(x_v) = \prod_{C \in d(g)} \psi_C(x_C)$$

$$= \prod_{C \in \mathcal{C}_B(\mathcal{G})} \psi_C(x_C) \prod_{D \in \mathcal{C}_B(\mathcal{G})} \psi_D(x_D)$$

$$\stackrel{\int dx_A}{\Longrightarrow} P(x_B, x_S) = \prod_{D \in \mathcal{C}_B(\mathcal{G})} \psi_D(x_D) \cdot \int \prod_{c \in \mathcal{C}_A(\mathcal{G})} \psi_C(x_C) dx_A$$

$$= \prod_{D \in \mathcal{C}(\mathcal{G}_{B \cup S})} \tilde{\psi}_D(x_D) \cdot f(x_S) = \prod_{C \in \mathcal{C}(\mathcal{G}_{B \cup S})} \hat{\psi}_C(x_C)$$

Hence, $p(x_B, x_S)$ factorizes wrt the induced subgraph $\mathcal{G}_{B \cup A}$. Similar proof for $p(x_A, x_S)$. [EOP]

Thm 4.24: Let \mathcal{G} be decomposable graph with cliques C_1, \ldots, C_k , then p factorizes wrt \mathcal{G} iff:

$$p(x_V) = \prod_{i=1}^{k} p(x_{C_i \setminus S_i} \mid x_{S_i}) = \prod_{i=1}^{k} \frac{p(x_{C_i})}{p(x_{S_i})}$$

• $p\left(x_{C_i\setminus S_i}\mid x_{S_i}\right)$ is variation independent, so inference over $p(x_V)$ can be based on separate inferences for each $p(x_{C_i})$ individually.

Proof of Thm 4.24:

 (\Leftarrow) if p factorizes wrt \mathcal{G} , then the setting satisfies the factorization property, done.

(\Longrightarrow) by induction. If k=1, result holds trivially. For $k\geq 2$, let $H_k\equiv \left(\bigcup_{i< k}C_i\right)\backslash S_i$. Then we have: $C_k\backslash S_i\perp_s H_k\mid S_k\mid [\mathcal{G}]$, and hence $(C_k\backslash S_i,H_k,S_k)$ is a proper decomposition of the graph \mathcal{G} . Note that $\mathcal{G}_{H_k\cup S_k}$ has k-1 cliques. By Lemma 4.23.2,

$$p(x_{S_k}) \cdot p(x_V) = p(x_{C_k}) \cdot p(x_{H_k}, x_{S_k}) = p(x_{C_k}) \cdot \prod_{i=1}^{k-1} \frac{p(x_{C_i})}{p(x_{S_i})}$$

because $p(H_k, S_k)$ factorizes $\mathcal{G}_{H_k \cup S_k}$ and by induction hypothesis. [EOP]

3.5 Non-Decomposable Models

Thm 4.25: Let \mathcal{G} be an undirected graph, and suppose we have counts $n(x_V)$. Then the MLE \hat{p} under the set of distributions that are Markov to \mathcal{G} is the unique element: $\hat{p}(x_C) = \frac{n(x_C)}{n}, \forall C \in \mathcal{C}(\mathcal{G})$.

Iterative Proportional Fitting (IPF) algorithm:

Algorithm 1: Iterative Proportional Fitting (IPF) algorithm

```
Input: a collection of consistent margins q(x_{C_i}) for the cliques C_1, \ldots, C_k.
Initialize p(x_V) as uniform distribution.
```

for $t = 1, \dots, T$ do

while
$$\max_{i} \max_{C_{i}} |p^{(t)}(x_{C_{i}}) - q^{(t)}(x_{C_{i}})| > tol \ \mathbf{do}$$

| for $i = 1, ..., k \ \mathbf{do}$

| Update $p^{(t+1)}(x_{V}) = p^{(t)}(x_{V}) \cdot \frac{p(x_{C_{i}})}{p^{(t)}(x_{C_{i}})} = p^{(t)}(x_{V \setminus C_{i}} \mid x_{C_{i}}) \cdot p(x_{C_{i}})$

| end

end

nd

<u>Return</u>: distribution p with margins $p^{(t)}(x_{C_i}) = q^{(t)}(x_{C_i})$.

4 Gaussian Graphical Model

Def 5.0 (Multivariate Gaussian): $X_V \sim N_p(\mu, \Sigma)$ with

$$f(x_V) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2} (x_V - \mu)^T \Sigma^{-1} (x_V - \mu)\right\}, \quad x_V \in \mathbb{R}^p$$

Prop 5.1: $X_V \sim N_p(\mu, \Sigma)$ and let A be a $q \times p$ matrix of full rank q, then:

$$AX_V \sim N_q \left(A\mu, A\Sigma A^T \right)$$

 $\bullet \forall U \subseteq V, X_U \sim N_q(\Sigma_{UU}).$

4.1 Gaussian Graphical Models

- • Σ are positive definite, hence by the Hammersley-Clifford Theorem, PMP/GMP/factorization all lead to the same conditional inde- pendence restrictions, and we say that Σ is "Markov wrt \mathcal{G} ".
- $\bullet X_A \perp \!\!\!\perp X_B \iff \Sigma_{AB} = 0.$
- $\bullet X \perp\!\!\!\perp Y$ and $X \perp\!\!\!\perp Z \implies X \perp\!\!\!\perp Y, Z$ for jointly Gaussian random variables.

Thm 5.2: $X_V \sim N_p(\mu, \Sigma)$ for positive definite Σ . Then $p(X_V)$ is Markov wrt \mathcal{G} iff $k_{ab} = K_{a,b} \equiv (\Sigma)_{a,b}^{-1} = 0, \forall a \not\sim b \text{ in } \mathcal{G}$.

Lemma 5.3: Consider undirected graph \mathcal{G} with decomposition (A, B, S) and $X_V \sim N_p(0, \Sigma)$, then $p(X_V)$ is Markov wrt \mathcal{G} iff

$$\Sigma^{-1} = \left\{ (\Sigma_{A \cup S, A \cup S})^{-1} \right\}_{A \cup S, A \cup S} + \left\{ (\Sigma_{B \cup S, B \cup S})^{-1} \right\}_{B \cup S, B \cup S} - \left\{ (\Sigma_{S, S})^{-1} \right\}_{S, S}$$

and $\Sigma_{A\cup S,A\cup S}$ and $\Sigma_{B\cup S,B\cup S}$ are Markov with respect to $\mathcal{G}_{A\cup S}$ and $\mathcal{G}_{B\cup S}$ respectively.

• With $A \subseteq V$, denote $\{M\}_{A,A}$ as the $|V| \times |V|$ matrix indexed by V, whose A - A entries are M and the rest are zeros.

Proof of Lemma 5.3:

By Lemma 4.23.2, $X_a \perp \!\!\!\perp X_B \mid X_S \implies p(x_V)p(x_S) = p(x_{A \cup S}p(x_{B \cup S})), \forall x_V \in X_V$. Substituting p with Gaussian distribution and take log, we have:

$$-\frac{1}{2}x_{V}^{T}\Sigma^{-1}x_{V} - \frac{1}{2}x_{S}^{T}(\Sigma_{SS})^{-1}x_{S} = -\frac{1}{2}x_{AS}^{T}(\Sigma_{AS,AS})^{-1}x_{AS} - \frac{1}{2}x_{BS}^{T}(\Sigma_{BS,BS})^{-1}x_{BS} + \text{const}$$

$$\stackrel{(*)}{\Longrightarrow} x_{V}^{T}\Sigma^{-1}x_{V} + x_{S}^{T}(\Sigma_{SS})^{-1}x_{S} = x_{AS}^{T}(\Sigma_{AS,AS})^{-1}x_{AS} + x_{BS}^{T}(\Sigma_{BS,BS})^{-1}x_{BS}$$

$$\stackrel{(**)}{\Longrightarrow} x_{V}^{T}\{\Sigma\}^{-1}x_{V} + x_{V}^{T}\{(\Sigma_{SS})^{-1}\}_{SS} x_{V} = x_{V}^{T}\{(\Sigma_{AS,AS})^{-1}\}_{AS,AS} x_{V} + x_{V}^{T}\{(\Sigma_{BS,BS})^{-1}\}_{BS,BS} x_{V}$$

$$\Longrightarrow \{\Sigma\}^{-1} + \{(\Sigma_{SS})^{-1}\}_{SS} = \{(\Sigma_{AS,AS})^{-1}\}_{AS,AS} + \{(\Sigma_{BS,BS})^{-1}\}_{BS,BS}$$

(*): We can get rid of the constant term because if we set $x_V = 0$, then both the left and right hand side of the equation equal to 0.

(**): Reconstruct the covariance matrices by matching the dimensions, with $\{\Sigma_{CC}\}_{CC}$ is a $|V| \times |V|$ matrix where the C-C entries take the value of the matrix Σ_{CC} and all else entries are 0. [EOP]

Corollary 5.3.1: X_V is Markov wrt \mathcal{G} iff:

$$\Sigma^{-1} = \sum_{i=1}^{k} \left\{ (\Sigma_{C_i, C_i})^{-1} \right\}_{C_i, C_i} - \sum_{i=2}^{k} \left\{ (\Sigma_{S_i, S_i})^{-1} \right\}_{S_i, S_i}$$

4.2 Maximum Likelihood Estimation

Def 5.4: Sufficient statistic for Σ is $W \equiv \frac{1}{n} \sum_{i=1}^{n} X_{V}^{(i)} X_{V}^{(i)T}$, where $X_{V}^{(1)}, \dots, X_{V}^{(n)} \stackrel{iid}{\sim} N_{p}(0, \Sigma)$. For decomposable graph \mathcal{G} with cliques C_{1}, \dots, C_{k} , the MLE is:

$$\left(\hat{\Sigma}^{\mathcal{G}}\right)^{-1} = \sum_{i=1}^{k} \left\{ (W_{C_i, C_i})^{-1} \right\}_{C_i, C_i} - \sum_{i=2}^{k} \left\{ (W_{S_i, S_i})^{-1} \right\}_{S_i, S_i}$$

5 Directed Graphical Models

Def 6.1 (Directed Graph): A directed graph \mathcal{G} is a pair (V, D), where:

- (i) V is a finite set of vertices; and
- (ii) $D \equiv \{(v, w) : v \to w, v, w \in V, v \neq w\} \subseteq V \times V$ is a collection of edges, which are ordered pairs of vertices. Loops (i.e. edges of the form (v, v)) are not allowed.

Def 6.1.1:

- (i) $v \to w$: v is the **parent** $(v \in pa_{\mathcal{G}}(w))$ and w is the **child** $(w \in ch_{\mathcal{G}}(v))$;
- (ii) v, w are adjacent if $v \to w$ or $w \to v$;
- (iii) A **path** in \mathcal{G} is a sequence of distinct vertices such that each adjacent pair in the sequence is adjacent in \mathcal{G} ;
- (iv) The path is **directed** if all the edges point away from the beginning of the path.

Def 6.2: A graph contains a **directed cycle** if there is a directed path from v to w together with an edge $w \to v$.

Def 6.2.1 (Directed Acyclic Graphs): a directed graph with no directed cycle.

Def 6.2.2 (Topological Ordering): an ordering (1, ..., k) of the vertices of the graph s.t. $i \in pa_{\mathcal{G}}(j) \implies i < j$.

Def 6.2.3:

- (i) a is an **ancestor** of v ($a \in \operatorname{an}_{\mathcal{G}}(v)$) if either a = v or \exists a directed path $a \to \cdots \to v$;
- (ii) b is an **descendant** of v ($b \in \operatorname{an}_{\mathcal{G}}(v)$) if either b = v or \exists a directed path $v \to \cdots \to b$;
- (iii) non-descendant $\operatorname{nd}_{\mathcal{C}}(v) \equiv V \setminus \operatorname{de}_{\mathcal{C}}(v)$.

5.1 Markov Properties

Def 6.3 (Factorization Property): Let \mathcal{G} be DAG with vertices V. Then $p(x_V)$ factorizes wrt \mathcal{G} if:

$$p(x_V) = \prod_{v \in V} p\left(x_v \mid x_{\text{pa}_{\mathcal{G}}(v)}\right), \quad x_V \in \mathcal{X}_V$$

Def 6.3.1 (Local Markov Property): X_v obeys LMP if:

$$X_v \perp \!\!\! \perp X_{\mathrm{nd}_{\mathcal{G}}(v) \backslash \, \mathrm{pa}_{\mathcal{G}}(v)} \mid X_{\mathrm{pa}_{\mathcal{G}}(v)}[p]$$

Def 6.3.2 (Ordered Markov Property): X_v obeys OMP if:

$$X_v \perp \!\!\! \perp X_{\operatorname{pre}_{\mathcal{G}}(v) \setminus \operatorname{pa}_{\mathcal{G}}(v)} \mid X_{\operatorname{pa}_{\mathcal{G}}(v)}[p]$$

where $\operatorname{pre}_{\mathcal{C}}(v) = \{i \in V : i < v\}.$

• Under the topological ordering, LMP and OMP are equivalent.

5.2 Ancestrality

Def 6.4.0 (Ancestrality): $A \subseteq V$ is ancestral if it contains all its ancestors.

Prop 6.4: Let A be an ancestral set in \mathcal{G} . Then $p(x_V)$ factorizes wrt \mathcal{G} iff $p(x_A)$ factorizes wrt \mathcal{G}_A , i.e.

$$X_A \perp \!\!\!\perp X_B \mid X_C \quad [p] \iff X_A \perp \!\!\!\perp X_B \mid X_C \quad [p(X_{\operatorname{an}_{\mathcal{G}}(A,B,C)})]$$

Proof of Prop 6.4: omitted, see PS3.

Def 6.5: A **v-structure** is a triple $i \to k \leftarrow j$ such that $i \nsim j$.

Def 6.5.1: The **moral graph** \mathcal{G}^m of a DAG \mathcal{G} is form from \mathcal{G} by joining any non-adjacent parents and dropping the direction of edges.

• The moral graph removes all the v-structures in a DAG.

Prop 6.6: $p(X_V)$ factorizes wrt DAG $\mathcal{G} \implies p(X_V)$ factorizes wrt undirected graph \mathcal{G}^m .

Def 6.7 (Global Markov Property): $p(x_V)$ satisfies GMP wrt DAG \mathcal{G} if:

$$\forall A, B, C \subseteq V : A \perp_s B \mid C \quad \left[\left(\mathcal{G}_{\operatorname{an}(A \cup B \cup C)} \right)^m \right] \implies X_A \perp \!\!\!\perp X_B \mid X_C \quad [p]$$

Thm 6.8 (Completeness of global Markov property): Let \mathcal{G} be a DAG. There exists a probability distribution p s.t.:

$$X_A \perp \!\!\!\perp X_B \mid X_C \quad [p] \iff A \perp_s B \mid C \quad [(\mathcal{G}_{\operatorname{an}(A \cup B \cup C)})^m]$$

• GMP gives all conditional independences that are implied by the DAG model.

Thm 6.9: Let \mathcal{G} be a DAG and p a probability distribution. Then the following are equivalent:

- (i) p factorizes according to \mathcal{G} ;
- (ii) p is globally Markov with respect to \mathcal{G} ;
- (iii) p is locally Markov with respect to \mathcal{G} .

Proof of Thm 6.9:

- (i) \implies (ii): Let $W = \operatorname{an}_{\mathcal{G}}(A \cup B \cup C)$ and suppose \exists a separation $A \perp_s B \mid C \quad [(\mathcal{G}_w)^m]$.
- $\implies p(x_w) = \prod_{i \in W} P(x_i \mid X_{pa(i)}), \forall x_W.$
- By Prop 6.6, $p(x_W)$ also factorizes according to $(\mathcal{G}_W)^m$.
- By Thm 4.10, $p(x_W)$ satisfies $X_A \perp \!\!\!\perp X_B \mid X_C \mid [p]$.
- (ii) \Longrightarrow (iii): Moralizing $\mathcal{G}_{\{i\}\cup \mathrm{nd}(i)}$ will not add any edge, hence $i\perp_s \mathrm{nd}(i)\setminus \mathrm{pa}(i)\mid \mathrm{pa}(i)\mid \left[\left(\mathcal{G}_{\{i\}\cup \mathrm{nd}(i)}\right)^m\right]$.
- By GMP, we have $X_i \perp \!\!\! \perp X_{\mathrm{nd}(i)\backslash \mathrm{pa}(i)} \mid X_{\mathrm{pa}(i)} = [p]$.
- $\implies p$ is locally Markov wrt \mathcal{G} .
- (iii) \implies (i): GMP $\implies X_i \perp \!\!\!\perp X_{\operatorname{nd}(i)\backslash \operatorname{pa}(i)} \mid X_{\operatorname{pa}(i)} \mid p$].
- Let $1, \ldots, k$ be a topological ordering, note that $X_i \perp \!\!\!\perp X_{\operatorname{pre}(i) \setminus \operatorname{pa}(i)} \mid X_{\operatorname{pa}(i)} = [p], \forall i \in V.$
- By definition of Conditional Independence, $p(x_i \mid x_{\text{pre}(i)}) = p(x_i \mid x_{\text{pa}(i)}), \forall x_i \in X_V$, because $p_{\mathbf{a}(i)} \subseteq \text{pre}(i)$ in topological ordering.
- $pa(i) \subseteq pre(i)$ in topological ordering. $\implies p(x_v) = \prod_{i=1}^k p(x_i \mid x_{pre(i)}) = \prod_{i=1}^k p(x_i \mid x_{pa(i)})$ [EOP]

5.3 Statistical Inference

The likelihood for a DAG:

$$l(p; n) = \sum_{x_V} n(x_V) \log p(x_V)$$

$$= \sum_{x_V} n(x_V) \sum_{v \in V} \log p(x_v \mid x_{pa(v)})$$

$$= \sum_{v \in V} \sum_{x_v, x_{pa(v)}} n(x_v, x_{pa(v)}) \log p(x_v \mid x_{pa(v)})$$

$$= \sum_{v \in V} \sum_{pa(v)} \sum_{x_v} n(x_v, x_{pa(v)}) \log p(x_v \mid x_{pa(v)})$$

Hence the MLE:

$$\hat{p}\left(x_{v}\mid x_{\mathrm{pa}(v)}\right) = \frac{n\left(x_{v}, x_{\mathrm{pa}(v)}\right)}{n\left(x_{\mathrm{pa}(v)}\right)} \implies \hat{p}\left(x_{V}\right) = \prod_{v \in V} \hat{p}\left(x_{v}\mid x_{\mathrm{pa}(v)}\right) = \prod_{v \in V} \frac{n\left(x_{v}, x_{\mathrm{pa}(v)}\right)}{n\left(x_{\mathrm{pa}(v)}\right)}$$

Suppose each $v \in V$ has a model for $p(x_v|x_{pa(v)})$, and we have independent prior $\pi(\theta) = \prod_{v \in V} \pi(\theta_v)$, then:

$$\pi (\theta \mid x_{V}) \propto \pi(\theta) \cdot p (x_{V} \mid \theta)$$

$$= \prod_{v} \pi (\theta_{v}) \cdot p (x_{v} \mid x_{\text{pa}(v)}, \theta_{v})$$

$$\Longrightarrow \theta_{i} \perp X_{V \setminus (\{i\} \cup \text{pa}(i))}, \theta_{-i} \mid X_{i}, X_{\text{pa}(i)}$$

5.4 Markov Equivalence

Def 6.10 (Markov Equivalence): DAGs \mathcal{G} and \mathcal{G}' are **Markov Equivalent** if $\forall p$ Markov wrt \mathcal{G} , it is also Markov wrt \mathcal{G}' , and vice versa.

Def 6.11 (skeleton): The skeleton of DAG $\mathcal{G} = (V, D)$ is the undirected graph $\text{skel}(\mathcal{G}) = (V, E)$, where $\{i, j\} \in E$ if and only if either $(i, j) \in D$ or $(j, i) \in D$.

• Drop the orientations of edges in \mathcal{G} .

Lemma 6.12: $skel(\mathcal{G}) \neq skel(\mathcal{G}') \implies \mathcal{G}$ and \mathcal{G}' are not Markov equivalent.

<u>Proof of Lemma 6.12</u>: Suppse we have $i \to j$ in \mathcal{G} but not \mathcal{G}' .

Then for \mathcal{G} , we have $p(x_v) = p(x_j | x_i) \prod_{k \neq j} p(x_k)$. Note that i and j cannot be conditional independent, given any other subset of $V \setminus \{i, j\}$.

For \mathcal{G}' , the LMP implies:

$$X_{j} \perp \perp X_{\operatorname{nd}(j) \setminus \operatorname{pa}(j))} \mid X_{\operatorname{pa}(j)}$$

$$X_{i} \perp \perp X_{\operatorname{nd}(i) \setminus \operatorname{pa}(i))} \mid X_{\operatorname{pa}(i)}$$

$$\Longrightarrow X_{i} \perp \perp X_{j} \mid X_{\operatorname{pa}(j)} \quad \because i \in \operatorname{nd}(j) \setminus \operatorname{pa}(j) \text{ in } \mathcal{G}'$$

However $p(X_v)$ (for \mathcal{G}) does not implies such independence between X_i and X_j . Hence \mathcal{G} , \mathcal{G}' not Markov Equiv. [EOP]

Thm 6.13: 2 DAGs $\mathcal{G}, \mathcal{G}'$ are Markov Equivalent iff:

• $\operatorname{skel}(\mathcal{G}) = \operatorname{skel}(\mathcal{G}')$ and;

• v-struc(\mathcal{G}) = v-struc(\mathcal{G}').

Proof of Thm 6.13 (\iff): proof of (\implies) is omitted.

If $skel(\mathcal{G}) \neq skel(\mathcal{G}')$, then by Lemma 6.12 $\mathcal{G}, \mathcal{G}'$ are not Markov Equiv.

So only need to show $\text{skel}(\mathcal{G}) = \text{skel}(\mathcal{G}')$ and $\text{v-struc}(\mathcal{G}) \neq \text{v-struc}(\mathcal{G}') \Longrightarrow \text{Not Markov Equiv.}$

Suppose WLOG, \mathcal{G} has a v-structure $a \to c \leftarrow b$, which is not contained in \mathcal{G}' .

Let p be a distribution in which all variables other than X_a, X_b, X_c are independent to each other, by factorization property, it is:

$$p(x_V) = p(x_c \mid x_a, x_b) \prod_{v \in V \setminus \{c\}} p(x_v)$$

Since $\text{skel}(\mathcal{G}) = \text{skel}(\mathcal{G}')$, there must exists either $a \to c \to b$, $a \leftarrow c \to b$, or $a \leftarrow c \leftarrow b$ in \mathcal{G}' , i.e. at least one of a or b is the child of c.

Let $A = \operatorname{an}_{\mathcal{C}'}(a,b,c)$. Then claim that $\not\exists d \in A : a \to d \leftarrow b$ (does not exists d that forms a v-structure with a and b). This is because, as $d \in A$, d is a ancestor of one of (a, b, c). And if $a \to d \leftarrow b$, then d is a descendant of a, b and c, which forms a cycle, which should never happen in a DAG.

Now that a, b does not have common child, there is no edge between a and b in the moral graph $(\mathcal{G}'_A)^m$. So,

$$a \perp_s b \mid A \setminus \{a, b\} \quad [(\mathcal{G}'_A)^m]$$

But $p(x_c|x_a,x_b)$ in p does not factorizes, so p does not factorize wrt \mathcal{G}' . Hence \mathcal{G},\mathcal{G}' not Markov Equiv. [EOP]

Thm 6.14: A DAG \mathcal{G} is Markov Equiv to its undirected (moral) graph iff it has no v-structure. Proof of Thm 6.14:

- (\Longrightarrow) p factorizes wrt DAG \mathcal{G} implies it factorizes wrt \mathcal{G}^m , by Prop 6.6
- (\Leftarrow) Suppose p is Markov wrt \mathcal{G}^m . Let v be a vertex in \mathcal{G} with no child. Then neighbor $\mathcal{G}^m(v) = \mathcal{G}^m(v)$ $\operatorname{pa}_{\mathcal{C}}(v)$. So, $(v, \operatorname{pa}_{\mathcal{C}}(v), V \setminus (\{v\} \cup \operatorname{pa}_{\mathcal{C}}(v)))$ is a proper decomposition in \mathcal{G}^m . By Lemma 4.23.2, we
- (i) $X_v \perp \!\!\! \perp X_{V \setminus (\{v\} \cup \mathrm{pa}_{\mathcal{G}}(v))} \mid X_{\mathrm{pa}_{\mathcal{G}}(v)} \quad [p]$ (hence p satisfies LMP wrt \mathcal{G}), and; (ii) $p(x_{V \setminus \{v\}})$ is Markov wrt $(\mathcal{G}^m)_{V \setminus \{v\}}$.

Since \mathcal{G} has no v-structure, $(\mathcal{G}^m)_{V\setminus\{v\}} = (\mathcal{G}_{V\setminus\{v\}})^m \implies p(x_{V\setminus\{v\}})$ is Markov wrt $(\mathcal{G}_{V\setminus\{v\}})^m$. Also note $|(\mathcal{G}_{V\setminus\{v\}})^m| < |\mathcal{G}^m| \implies p(x_{V\setminus\{v\}})$ is Markov wrt $\mathcal{G}_{V\setminus\{v\}}$, by induction hypothesis. [EOP]

Corollary 6.15: A undirected graph is Markov equivalent to a directed graph iff it is decomposable.

6 Junction Trees and Message Passing

• Given a large network of variables, how to efficiently evaluate conditional and marginal probabilities? And how to update our beliefs given new information?

6.1Junction Trees

• Arrange potential functions to achieve computational convenience.

Def 7.1 (Junction Tree): \mathcal{T} is a junction tree if,

- (i) it is a connected, undirected graph without cycles (i.e. it is a tree), and;
- (ii) each vertex is a subset of V, i.e. $C_i \subseteq V$, and;
- (iii) whenever we have $C_i, C_j \in \mathcal{V}$ with $C_i \cap C_j \neq \emptyset$, there is a (unique) path π in \mathcal{T} from C_i to C_j such that for every vertex C on the path, $C_i \cap C_j \subseteq C$.
- (iii) $\iff \mathcal{T}$ satisfies RIP, i.e. $C_i \cap \bigcup_{j < i} C_j = C_i \cap C_{\sigma(i)}$.

Figure 1: (a) A decomposable graph and (b) a possible junction tree of its cliques. (c) The same junction tree with separator sets explicitly marked.

Prop 7.2: If \mathcal{T} is a junction tree then its vertices \mathcal{V} can be ordered to satisfy the RIP.

• Conversely, if a collection of sets satisfies the RIP they can be arranged into a junction tree. Proof of Prop 7.2: omitted, see P41-42 on the notes or P44 on the hand notes, with the help of the following corollary.

Corollary 7.2.1: If C_1, \ldots, C_k in a junction tree satisfy RIP, then they satisfy RIP starting with any node C_i .

Def 7.3: For any nodes $C, D \in \mathcal{T}$, the associated potentials ψ_C, ψ_D are **consistent** if the marginal over $C \cap D$ are the same, i.e.

$$\sum_{x_{C \setminus D}} \psi_C (x_C) = f (x_{C \cap D}) = \sum_{x_{D \setminus C}} \psi_D (x_D)$$

Prop 7.4: Let C_1, \ldots, C_k satisfy the RIP with separator sets S_2, \ldots, S_k , and let

$$p(x_V) = \prod_{i=1}^{k} \frac{\psi_{C_i}(x_{C_i})}{\psi_{S_i}(x_{S_i})}, \text{ by Thm } 4.24$$

(where $S_1 = \emptyset$ and $\psi_{\emptyset} = 1$ by convention). Then each pair of potentials is consistent iff:

- $\psi_{C_i}(x_{C_i}) = p(x_{C_i}), \forall i = 1, ..., k \text{ and};$
- $-\psi_{S_i}(x_{S_i}) = p(x_{S_i}), \forall i = 2, ..., k.$

Proof of Prop 7.4: (\() is trivial as matched potentials are automatically consistent.

 (\Longrightarrow) By induction, if k=1, done.

For k > 1, let $R_k = C_k \setminus S_k$ with $S_k = C_k \setminus \bigcup_{i \le k} C_i$, so $R_k = C_k \cap (\bigcup_{i \le k} C_i)$ and

$$p(x_{V \setminus R_k}) = \sum_{x_{R_k}} p(x_V) = \prod_{i=1}^{k-1} \frac{\psi_{C_i}(x_{C_i})}{\psi_{S_i}(x_{S_i})} \times \frac{\sum_{x_{R_k}} \psi_{C_k}(x_{C_k})}{\psi_{S_k}(x_{S_k})}$$
$$= \prod_{i=1}^{k-1} \frac{\psi_{C_i}(x_{C_i})}{\psi_{S_i}(x_{S_i})} \times \underbrace{\frac{\psi_{C_k \cap S_k}(x_{S_k})}{\psi_{S_k}(x_{S_k})}}_{=1, :: C_k \cap S_k = S_k} = \prod_{i=1}^{k-1} \frac{\psi_{C_i}(x_{C_i})}{\psi_{S_i}(x_{S_i})}$$

Since there are only k-1 cliques in $x_{V\setminus R_k}$, by induction hypothesis, $\psi_{C_i}(x_{C_i}) = p(x_{C_i})$ and $\psi_{S_i}(x_{S_i}) = p(x_{S_i}), \forall i < k.$

Further by RIP, $S_k = C_k \cap C_{\sigma(k)}, \sigma(k) < k$. Then by consistency,

$$\psi_{S_k}\left(x_{S_k}\right) = \sum_{x_{C_{\sigma(k)}} \setminus S_k} \psi_{C_{\sigma(k)}}\left(x_{C_{\sigma(k)}}\right) = \sum_{x_{C_{\sigma(k)}} \setminus S_k} p\left(x_{C_{\sigma(k)}}\right) = p\left(x_{S_k}\right)$$

Now that
$$p(x_V) = p\left(x_{V \setminus R_k}\right) \frac{\psi_{C_k}(x_{C_k})}{\psi_{S_k}(x_{S_k})} = p\left(x_{V \setminus R_k}\right) \frac{\psi_{C_k}(x_{C_k})}{p(x_{S_k})},$$

$$\Rightarrow \frac{\psi_{C_k}(x_{C_k})}{p(x_{S_k})} = p\left(x_{R_k} \mid x_{V \setminus R_k}\right) = p(x_{R_k} \mid x_{S_k}), \text{ as the LHS only depends on } x_{C_k}.$$

$$\Rightarrow \psi_{C_k}(x_{C_k}) = p\left(x_{R_k} \mid x_{S_k}\right) \cdot p\left(x_{S_k}\right) = p\left(x_{C_k}\right) \text{ [EOP]}$$

$$\implies \psi_{C_k}(x_{C_k}) = p(x_{R_k} \mid x_{S_k}) \cdot p(x_{S_k}) = p(x_{C_k})$$
 [EOP

6.2Message Passing

• To arrive at the consistent margins.

Algorithm 2: Message Passing from ψ_C to ψ_D

Input: potential function ψ_C, ψ_D, ψ_S with $S = C \cap D$.

Pass the message of $\psi'_S(x_S)$ from C to D involves 2 steps:

(a)
$$\psi_S'(x_S) = \sum_{x_{C \setminus S}} \psi_C(x_C)$$

(b)
$$\psi'_D(x_D) = \frac{\psi'_S(x_S)}{\psi_S(x_S)} \psi_D(x_D)$$

Checking Consistency:

- (i) After the 2 update steps, ψ_C and ψ_S' are consistent, by (a) step.
- (ii) If ψ_D and ψ_S are consistent, then ψ_D' and ψ_S' are also consistent:

$$\sum_{x_{D\setminus S}} \psi_D'(x_D) \stackrel{(b)}{=} \sum_{x_{D\setminus S}} \frac{\psi_S'(x_S)}{\psi_S(x_S)} \psi_D(x_D) = \frac{\psi_S'(x_S)}{\psi_S(x_S)} \underbrace{\sum_{x_{D\setminus S}} \psi_D(x_D)}_{=\psi_S(x_S)} = \psi_S'(x_S)$$

(iii) The product over all clique potentials is unchanged = $\frac{\prod_{C \in \mathcal{C}} \psi_C(x_C)}{\prod_{S \in \mathcal{S}} \psi_S(x_S)}$. The only terms that are changed are $\psi_D \to \psi_D'$ and $\psi_S \to \psi_S'$, but the ratio is unchanged by (b) step: $\frac{\psi_D'(x_D)}{\psi_S'(x_S)} = \frac{\psi_D(x_D)}{\psi_S(x_S)}$

6.3 Junction Tree (Collection-Distribution) Algorithm (JTA)

Algorithm 3: Junction Tree (Collection-Distribution) Algorithm

```
\begin{array}{l} \underline{\textbf{Collection}} \colon \\ \underline{\textbf{Inputs}} \colon \text{rooted tree } \mathcal{T}, \text{ potentials } \psi_t. \\ \underline{\textbf{Let } 1 < \ldots < k} \text{ be a topological ordering of } \mathcal{T}. \\ \textbf{for } t = k, \ldots, 2 \textbf{ do} \\ | \text{ pass message from } \psi_t \text{ to } \psi_{\sigma(t)} \\ \textbf{end} \\ \underline{\textbf{Output}} \colon \text{ updated potentials } \psi_t \\ \underline{\textbf{Distribution}} \colon \\ \underline{\textbf{Inputs}} \colon \text{ rooted tree } \mathcal{T}, \text{ potentials } \psi_t. \\ \underline{\textbf{Let } 1 < \ldots < k} \text{ be a topological ordering of } \mathcal{T}. \\ \textbf{for } t = 2, \ldots, k \textbf{ do} \\ | \text{ pass message from } \psi_{\sigma(t)} \text{ to } \psi_t \\ \textbf{end} \\ \underline{\textbf{Output}} \colon \text{ updated potentials } \psi_t \\ \end{array}
```

Thm 7.5: Let \mathcal{T} be a junction tree with potentials ψ_{C_i} . Then after JTA, all potentials of \mathcal{T} are (pairwise) consistent.

Proof of Thm 7.5: Omitted, see P44 on the notes.

Remark 7.6: If all potentials update simultaneously then the potentials will converge to a consistent solution in at most d steps, where d is the width (i.e. the length of the longest path) of the tree.

Ex 7.7: omitted, see P47 on the notes.

6.4 Directed Graphs and Triangulations

Embed the directed graphical model within a decomposable undirected graph via:

- (i) convert to the moral graph;
- (ii) triangulate the moral graph (by adding chords) until it is decomposable.
- "optimal" triangulation gives the smallest cliques.

Initialization:

Suppose we have a directed graphical model embedded within a decomposable model C_1, \ldots, C_k . For each vertex v, the set $\{v\} \cup \operatorname{pa}_{\mathcal{G}}(v)$ is contained within at least one of these cliques. Assigning each vertex arbitrarily to one such clique, let v(C) be the vertices assigned to C. Then set $\psi_C(x_C) = \prod_{v \in v(C)} p\left(x_v \mid x_{\operatorname{pa}(v)}\right)$ and $\psi_S(x_S) = 1$, and we have

$$\prod_{i=1}^{k} \frac{\psi_{C_{i}}\left(x_{C_{i}}\right)}{\psi_{S_{i}}\left(x_{S_{i}}\right)} = \prod_{v \in V} p\left(x_{v} \mid x_{\operatorname{pa}\left(v\right)}\right) = p\left(x_{V}\right)$$

• After JTA, the consistent potentials are the marginals for each clique.

6.5 Evidence

• How to incorporate additional information?

Introducing Evidence:

$$p(x_{V\setminus E} \mid X_E = x_E^*) = \frac{p(x_{V\setminus E}, x_E^*)}{p(x_E^*)} = \frac{1}{p(x_E^*)} \prod_{i=1}^k \frac{\psi_{C_i}(x_{C_i})}{\psi_{S_i}(x_{S_i})}$$

$$\implies \psi'_{C_j}(x_{C_j}) \leftarrow \frac{\psi_{C_j}(x_{C_j})}{p(x_E^*)}, \text{ if } E \subseteq C_j$$

Prop 7.8: Suppose that potentials Ψ of a junction tree \mathcal{T} with root C is consistent everywhere expect for ψ_C , then running JTA-Distribution (\mathcal{T}, Ψ) starting from C will make everywhere consistent.

Remark 7.9: If we want to introduce multiple evidence in different places, we have to propagate in between by each time running JTa-Distribution step, rooted at which the evidence is introduced.

• The conditional distribution can go wrong if we failed to propagate in between the introductions of the evidences, omitted, see P48 on the nodes for an example.

7 Causal Inference

Def 8.1 (Intervened distribution): $P(Y = y \mid do(X = x))$, the resulting distribution if we intervene the system by setting X = x, e.g.

smoking causes cancer but not conversely, then:

- $P(\{ \text{ cancer } \} \mid do(\{ \text{ smokes } \})) = P(\{ \text{ cancer } \} \mid \{ \text{ smokes } \})$
- $P(\{ \text{ smokes } \} | do(\{ \text{ cancer } \})) = P(\{ \text{ smokes } \}).$

7.1 Intervention

Def 8.2 (Intervention): An **Intervention** on $w \in V$ in a DAG \mathcal{G} with $p(x_V)$ does 2 things:

- (i) **graphically**: remove all edges pointing to w, i.e. $v \not\to w, \forall v$;
- (ii) **probabilistically**: replace the factorization from $p(x_V) = \prod_{v \in V} p(x_v \mid x_{pa(v)})$ to

$$p\left(x_{V\setminus\{w\}}\mid do\left(x_{w}\right)\right) = \frac{p\left(x_{V}\right)}{p\left(x_{w}\mid x_{\mathrm{pa}\left(w\right)}\right)} = \prod_{v\in V\setminus\{w\}} p\left(x_{v}\mid x_{\mathrm{pa}\left(v\right)}\right)$$

• $p(x_w|x_{pa(w)}) \to \mathbb{I}\{X_w = x_w\}$ i.e. w no longer depend on its parents.

Def 8.2.1: If a graph and its associated probability distribution is **causal**, then an intervention will cause changes both graphically and probabilistically, as in Def 8.2.

Def 8.3 (Confounder): Common cause, e.g. c is a confounder of a and b if $a \leftarrow c \rightarrow b$.

Ex 8.3-8.4: omitted, see P51-52 on the notes, and P50 on the hand notes.

7.2 Adjustment Sets and Back-Door Paths

Lemma 8.5: Let \mathcal{G} be a causal DAG. Then the adjustment formula gives:

$$p(y \mid do(z)) = \sum_{x_W} \frac{p(y, z, x_W)}{p(z \mid x_{pa(z)})} = \sum_{x_{pa(z)}} p(y \mid z, x_{pa(z)}) \cdot p(x_{pa(z)})$$

where $X_W = X_V \setminus \{Y, Z\}$.

<u>Proof of Lemma 8.5</u>: Devide X_V into $(Y, Z, X_{pa(z)}, X_W)$, where X_W is everything remaining. Then:

$$\begin{split} p\left(y, x_{\mathrm{pa}(z)}, x_{W} \mid do(z)\right) &= \frac{p\left(y, z, x_{\mathrm{pa}(z)}, x_{W}\right)}{p\left(z \mid x_{\mathrm{pa}(z)}\right)}, \text{ by Def 8.2 (ii)} \\ &= p\left(y, x_{W} \mid z, x_{\mathrm{pa}(z)}\right) \cdot p\left(x_{\mathrm{pa}(z)}\right) \\ &\Longrightarrow p(y \mid do(z)) = \sum_{x_{W}, x_{\mathrm{pa}(z)}} p\left(y, x_{W} \mid z, x_{\mathrm{pa}(z)}\right) \cdot p\left(x_{\mathrm{pa}(z)}\right) \\ &= \sum_{x_{\mathrm{pa}(z)}} p\left(x_{\mathrm{pa}(z)}\right) \sum_{x_{W}} p\left(y, x_{W} \mid z, x_{\mathrm{pa}(z)}\right) \\ &= \sum_{x_{\mathrm{pa}(z)}} p\left(x_{\mathrm{pa}(z)}\right) p\left(y \mid z, x_{\mathrm{pa}(z)}\right) \quad [\text{EOP}] \end{split}$$

Def 8.6 (collider): Let \mathcal{G} be a directed graph and π a path in \mathcal{G} . Then **collider** is an internal vertex t on π if the edges adjacent to t meet as $\to t \leftarrow$.

• Otherwise, t is a **non-collider**: $(\rightarrow t \rightarrow, \leftarrow t \leftarrow, \text{ or } \leftarrow t \rightarrow)$.

Def 8.7: A path π from a to b is **open** given $C \subseteq V \setminus \{a, b\}$ if:

- (i) all colliders on π are in $\operatorname{an}_{\mathcal{G}}(C)$;
- (ii) all non-colliders are outside C.

Def 8.7.1: A path is **blocked** by C if it is not open given C.

Def 8.9 (d-separated): Let A, B, C be disjoint sets of vertices in $\mathcal{G}(C)$ may be empty). We say that A and B are d-separated given C (i.e. $A \perp_d B \mid C \mid [\mathcal{G}]$), if every path from $a \in A$ to $b \in B$ is blocked by C.

Thm 8.10: Let \mathcal{G} be a DAG and let A, B, C be disjoint subsets of \mathcal{G} . Then A is d-separated from B by C in \mathcal{G} iff A is separated from B by C in $\left(\mathcal{G}_{\operatorname{an}(A \cup B \cup C)}\right)^m$, i.e.

$$A \perp_d B \mid C \quad [\mathcal{G}] \iff A \perp_s B \mid C \quad [\left(\mathcal{G}_{\operatorname{an}(A \cup B \cup C)}\right)^m]$$

<u>Proof of Thm 8.10</u>: omitted, see P54 on the notes and P55 on the hand notes.

7.3 Back Door Adjustments

Def 8.11 (Back-Door Adjustment Set): C is the back-door adjustment set for the order pair (v, w) if:

- no vertex in the C is a descendant of v;

- every path from v to w with an arrow into v (i.e. starting $v \leftarrow \cdots$) is blocked by C.

Thm 8.12: Let C be a back-door adjustment set for (v, w), then

$$p(x_w \mid do(x_v)) = \sum_{x_C} p(x_C) \cdot p(x_w \mid x_v, x_C)$$

i.e. C is a valid adjustment set for the causal distribution.

Proof of Thm 8.12:

First show $v \perp_d C \mid \operatorname{pa}(v)$ (i). Since no vertex in C is a descendant of v, we have that $X_v \perp \!\!\! \perp X_C \mid X_{\operatorname{pa}(v)} \quad [p]$, by LMP. By Thm 8.10, (i) holds.

Then need to show $w \perp_d \operatorname{pa}(v) \mid C \cup \{v\}$ (ii). By contradiction, suppose \exists open path π from w to $t \in \operatorname{pa}(v)$ given $C \cup \{v\}$.

- If it is open given C, then including the edge $t \to v$ gives an open path from w to v.
- If it is not open given C, then this can only because \exists collider s on π s.t. $s \in \operatorname{an}(v)$ but $s \notin \operatorname{an}(C)$. (Note C does not contain non-colliders.) Hence \exists a directed path from s to v that does not contain any element of C. Then concatenate this directed path with the proportion of π from w to s.

Both ways give an open path from w to v given C, which contradicts that C is a valid back-door adjustment set.

Now, (ii) joint with GMP gives $X_w \perp \!\!\! \perp X_{\mathrm{pa}(v)} \mid X_C, X_v$, then:

$$p(x_{w} \mid do(x_{v})) = \sum_{x_{pa(v)}} p(x_{pa(v)}) \cdot p(x_{w} \mid x_{v}, x_{pa(v)})$$

$$= \sum_{x_{pa(v)}} p(x_{pa(v)}) \sum_{x_{C}} p(x_{w}, x_{C} \mid x_{v}, x_{pa(v)})$$

$$= \sum_{x_{pa(v)}} p(x_{pa(v)}) \sum_{x_{C}} p(x_{w} \mid x_{C}, x_{v}, x_{pa(v)}) \cdot p(x_{C} \mid x_{v}, x_{pa(v)})$$

$$= \sum_{x_{pa(v)}} p(x_{pa(v)}) \sum_{x_{C}} p(x_{w} \mid x_{C}, x_{v}) \cdot p(x_{C} \mid x_{pa(v)})$$

$$= \sum_{x_{C}} p(x_{w} \mid x_{C}, x_{v}) \sum_{pa(v)} p(x_{pa(v)}) \cdot p(x_{C} \mid x_{pa(v)})$$

$$= \sum_{x_{C}} p(x_{C}) \cdot p(x_{w} \mid x_{v}, x_{C}) \quad [EOP]$$

Prop 8.13: pa(v) is always a back-door adjustment set.

<u>Proof of Prop 8.13</u>: By Def 8.11, every back-door path starts with $v \leftarrow t \cdots$, where $t \in pa_{\mathcal{G}}(v)$ is a non-collider on the path. Hence the paths are blocked. [EOP]

• If a variable does not have parent, then ordinary conditional distribution is the same as the causal distribution.

Gaussian Causal Models

$$\begin{split} \mathbb{E}[Y \mid do(z)] &= \sum_{x_C} p\left(x_C\right) \cdot \mathbb{E}\left[Y \mid z, x_C\right] \\ &= \int_{\mathcal{X}_C} p\left(x_C\right) \cdot \left(\beta_0 + \beta_z z + \sum_{c \in C} \alpha_c x_c\right) dx_C, \text{ by simple linear model.} \\ &= \beta_0 + \beta_z z + \sum_{c \in C} \alpha_c \mathbb{E} X_c \\ &= \beta_0 + \beta_z z \quad \because \text{ X are standardized s.t. mean} = 0. \end{split}$$

• β_z is the same for all X_C , hence we can forget the averaging in the adjustment formula and just look at a suitable regression to obtain the causal effect.

7.5Structural Equation Models

Def 8.14: (\mathcal{G}, p) is a structural equation model if (\mathcal{G}, p) is causal and p is a multivariate Gaussian distribution.

Prop 8.14.1: $X_V \sim N_p(0, \Sigma)$ is Markov wrt DAG \mathcal{G} iff

$$X_{i} = \sum_{j \in \operatorname{pa}_{\mathcal{G}}(i)} \beta_{ij} X_{j} + \varepsilon_{i}, \quad \epsilon_{i} \sim N(0, d_{ii}), \quad \forall i \in V$$

$$\Longrightarrow \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{p} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ \beta_{21} & 0 & 0 & \dots & 0 \\ \beta_{31} & \beta_{32} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \beta_{p1} & \beta_{p2} & \dots & \beta_{p-1} & 0 \end{pmatrix}_{p \times p} \begin{pmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{p} \end{pmatrix} + \begin{pmatrix} \epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ X_{p} \end{pmatrix}$$

$$\Longrightarrow X = BX + \epsilon, \quad \epsilon \sim N_{p}(\mathbf{0}, D), \text{ with } \operatorname{diag}(D) = (d_{ii})_{i=1}^{p} \text{ a diagonal matrix}$$

$$\Longrightarrow X = (I - B)^{-1} \epsilon \Longrightarrow Cov(X) = (I - B)^{-1} D(I - B)^{-T}$$

- Note that B has the following features:
- (i) lower triangular and;
- (ii) $\beta_{ij} \neq 0 \iff \exists (j \to i) \in \mathcal{G};$
- (iii) nilpotent $\Longrightarrow (I-B)^{-1} = I + B + B^2 + \dots + B^{p-1}$. (iv) $(B^2)_{ij} = \sum_k \beta_{ik}\beta_{kj}$ with $\beta_{ik}\beta_{kj} \neq 0 \iff (j \to k \to i) \in \mathcal{G}$, and $(B^3)_{ij} = \sum_k \sum_l \beta_{ik}\beta_{kl}\beta_{lj}$ with $\beta_{ik}\beta_{kl}\beta_{lj} \neq 0 \iff (j \to l \to k \to i) \in \mathcal{G}$;
- (v) $B^p = 0$ because the max length of the paths in \mathcal{G} is at most p-1.

7.6Trek Rule

Def 8.16 (Trek): A trek from i to j with source k is a pair of paths, (π_l, π_r) , where

- (i) **left trek** π_l is a directed path from k to i, and;
- (ii) **right trek** π_r is a directed path from k to j.
- A trek is a path without colliders, but may have repetition of vertices.
- A single vertex can be a trek from itself to itself with source itself, i.e. it is possible to have k=ior k = j or both. (see P58 on the notes for examples.)

Def 8.18 (Trek Covariance): given a trek (π_l, π_r) with source k, the **trek covariance** is:

$$c(\tau) = d_{kk} \prod_{i \to j \in \pi_l} b_{ji} \prod_{i \to j \in \pi_r} b_{ji}$$

where d_{kk} is the variance of the error term corresponding to the vertex k.

Ex 8.19: with the directed graph with edge coefficients,

Treks from Z to Z:

$$Z \qquad \qquad Z \leftarrow Y \rightarrow Z \qquad \qquad Z \leftarrow X \rightarrow Z \\ Z \leftarrow Y \leftarrow X \rightarrow Z \quad Z \leftarrow X \rightarrow Y \rightarrow Z \quad Z \leftarrow Y \leftarrow X \rightarrow Y \rightarrow Z$$

Trek coefficients:

$$c(Z) = 1 \qquad c(Z \leftarrow Y) = \gamma$$

$$c(Z \leftarrow X) = \beta \quad c(Z \leftarrow X \rightarrow Y \rightarrow Z) = \beta \alpha \gamma$$

$$\implies \sigma_{ZZ}^2 = 1 + \gamma^2 + \beta^2 + 2\alpha\beta\gamma + \alpha^2\gamma^2$$

Thm 8.20 (Trek Rule): Let $\Sigma = (I - B)^{-1}D(I - B)^{-T}$ be a covariance matrix that is Markov with respect to a DAG \mathcal{G} . Then

$$\sigma_{ij} = \sum_{\tau \in \mathcal{T}_{ij}} c(\tau)$$

where \mathcal{T}_{ij} is the set of treks from i to j.

<u>Proof of Thm 8.20</u>: By induction.

For $p = 1, \sigma_{11} = 1 \cdot d_{11} = d_{11}$, done.

For p > 1, assume the result holds for |V| < p, hence it holds on any ancestral subgraphs. Suppose $p \in V$ is a vertex with no child, and X_p is the associated random variable. Then, $X_p = \sum_{j \in \text{pa}_{\mathcal{G}}(p)} b_{pj} X_j + \varepsilon_p$, where $\epsilon_p \perp \!\!\! \perp X_1, \ldots, X_{p-1}$. So, for i < p, we have:

$$Cov(X_i, X_p) = \sum_{j \in pa_{\mathcal{C}}(p)} b_{pj} Cov(X_i, X_j)$$

with $Cov(X_i, X_j) = \sum_{\tau \in \mathcal{T}_{ij}} c(\tau), \forall i, j$

So, any trek from i to p must consists of a trek from i to j where $j \in pa_{\mathcal{G}}(p)$, i.e. $j \to p$. If i = p, then we include an extra covariance term of X_p and the corresponding error ϵ_p :

$$\operatorname{Cov}(X_{p}, X_{p}) = \sum_{j \in \operatorname{pa}_{\mathcal{G}}(p)} b_{pj} \operatorname{Cov}(X_{p}, X_{j}) + \underbrace{\operatorname{Cov}(X_{p}, \varepsilon_{p})}_{=Var(\epsilon_{p}) = d_{pp}}$$

where the first term corresponds to the trek covariance for treks with lengths ≥ 1 , and the last term corresponds to the trek covariance for the trek of length 0. [EOP]

Ex 8.21: take the following graph,

Treks from 3 to 3 and the corresponding trek covariance:

$$\begin{array}{cccc} 3 & 3 \leftarrow 2 \rightarrow 3 & 3 \leftarrow 1 \rightarrow 3 \\ d_{33} & d_{22}b_{23}^2 & d_{11}b_{13}^2 \end{array}$$

$$\implies \operatorname{Var}(X_3) = \sigma_{33} = d_{33} + d_{22}b_{23}^2 + d_{11}b_{13}^2$$

Treks from 3 to 4 and the corresponding trek covariance:

$$3 \to 4 \quad 3 \leftarrow 2 \to 4 \quad 3 \leftarrow 2 \to 3 \to 4 \quad 3 \leftarrow 1 \to 3 \to 4$$
$$d_{33}b_{34} \quad d_{22}b_{23}b_{24} \quad d_{22}b_{23}^2b_{34} \quad d_{11}b_{13}^2b_{34}$$
$$X_3, X_4) = \sigma_{34} = d_{33}b_{34} + d_{22}b_{23}b_{24} + d_{22}b_{23}^2b_{34} + d_{11}b_{13}^2b_{34}$$

$$\implies \operatorname{Cov}(X_3, X_4) = \sigma_{34} = d_{33}b_{34} + d_{22}b_{23}b_{24} + d_{22}b_{23}^2b_{34} + d_{11}b_{13}^2b_{34}$$
$$= \left(d_{33} + d_{22}b_{23}^2 + d_{11}b_{13}^2\right)b_{34} + d_{22}b_{23}b_{24}$$
$$= \operatorname{Var}(X_3)b_{34} + \operatorname{Var}(X_2)b_{23}b_{24}$$