EEE 443/543 - Spring 2025 - Project #4 Due: 03/07/2025, 11:00pm.

Note: It may be a good idea to attempt this project before our first quiz as a way to study for the quiz. **Note:** Upload codes and reports as usual.

- Q1 (100 pts) In this computer project, we will use a neural network for curve fitting.
 - 1. Draw n = 300 real numbers uniformly at random on [0, 1], call them x_1, \ldots, x_n .
 - 2. Draw *n* real numbers uniformly at random on $\left[-\frac{1}{10}, \frac{1}{10}\right]$, call them ν_1, \ldots, ν_n .
 - 3. Let $d_i = \sin(20x_i) + 3x_i + \nu_i$, i = 1, ..., n. Plot the points (x_i, d_i) , i = 1, ..., n. We will consider a $1 \times N \times 1$ neural network with one input, N = 24 hidden neurons, and 1 output neuron. The network will thus have 3N + 1 weights including biases. Let \mathbf{w} denote the vector of all these 3N + 1 weights. The output neuron will use the activation function $\phi(v) = v$; all other neurons will use the activation function $\phi(v) = \tanh v$. Given input x, we use the notation $f(x, \mathbf{w})$ to represent the network output.
 - 4. Use the backpropagation algorithm with online learning to find the optimal weights/network that minimize the mean-squared error $(MSE) \frac{1}{n} \sum_{i=1}^{n} (d_i f(x_i, \mathbf{w}))^2$. Use some η of your choice. Plot the number of epochs vs the MSE in the backpropagation algorithm. Hint: Since this is a very simple network, you can manually derive the derivatives without using the BP algorithm. Hint: As discussed in class, for a given fixed η , the algorithm may not always result in a mono-
 - Hint: As discussed in class, for a given fixed η , the algorithm may not always result in a monotonically decreasing MSE (the descent may overshoot the locally optimal point). You may have to modify the gradient descent algorithm in such a way that you decrease η (e.g. via $\eta \leftarrow 0.9\eta$) whenever you detect that the MSE has increased. Also, beginning with a very large η may result in an immediate divergence of the weights.
 - 5. Let us call the weights resulting from the backpropagation algorithm (when it converges) as \mathbf{w}_0 . The curve $(x, f(x, \mathbf{w}_0)), x \in [0, 1]$ will then be a fit to the points $(x_i, d_i), i = 1, \ldots, n$. Plot the curve $f(x, \mathbf{w}_0)$ as x ranges from 0 to 1 on top of the plot of points in (c). The fit should be a "good" fit. If you are not getting good fit, try different hyperparameters until you do.
 - 6. Your report should include a pseudocode of your training algorithm including all gradient descent update equations written out explicitly. The pseudocode should be written in such a way that anyone would be able to implement your algorithm without knowing anything about neural networks. As usual, upload a copy of your code to box with the filename 04-IDNumber-LastName.py.