1.Structuri algebrice

1. Grupuri

Fie M o mulțime nevidă. Se numește lege de compoziție pe M orice funcție $*: M \times M \to M$.

O submulțime nevidă H a lui M se numește **parte stabilă** a lui M în raport cu operația ,*" dacă $\forall x,y \in H \Rightarrow x*y \in H$.

Operația "*" se numește **asociativă** dacă $(x * y) * z = x * (y * z) \forall x, y, z \in M$.

Operația "*" se numește **comutativă** dacă $x * y = y * x \forall x, y \in M$.

Operația "*" admite element neutru dacă $\exists \ e \in M$ astfel încât $x * e = e * x = x \ \forall x \in M$.

Toate elementele lui M sunt simetrizabile dacă $\forall x \in M$, $\exists x' \in M$ astfel încât x * x' = x' * x = e.

Perechea (M,*), se numește **monoid** dacă:

- 1) "*" este lege de compoziție pe M
- 2) "*" este asociativă
- 3) "*" are element neutru

Dacă are loc 4) "*" este comutativă, atunci (M,*) este monoid comutativ.

Perechea (G,*), se numește **grup** dacă:

- 1) "*" este <u>lege de compoziție</u> pe G
- 2) "*" este <u>asociativă</u>
- 3) "*" are element neutru
- 4) orice element din G este simetric

Dacă are loc 5) "*" este comutativă, atunci (G,*) este grup comutativ sau grup abelian.

O submulțime $H \subseteq G$ se numește **subgrup** a lui (G,*) dacă:

- 1) $\forall x, y \in H \Rightarrow x * y \in H$
- $2) \forall x \in H \Rightarrow x' \in H.$

Fie (G,*) și (G_1,\circ) două grupuri. O funcție $f:G\to G_1$ se numește **morfism** de grupuri dacă $f(x*y)=f(x)\circ f(y)$, $\forall x,y\in G$. Dacă f este și bijectivă, atunci f este **izomorfism** de grupuri și se notează $G\sim G_1$, adică G izomorf cu G_1 .

Dacă (G,*) și (G_1,\circ) sunt două grupuri și $f:G\to G_1$ morfism de grupuri, atunci:

- 1) $f(e) = e_1$, unde e, e_1 sunt elementele neutre ale celor două grupuri
- 2) $f(x') = (f(x))' \forall x \in G$, unde x' simetricul lui x în G, iar (f(x))' este simetricul lui f(x) în G.

Un morfism (izomorfism) $f: G \to G$ se numește endomorfism (automorfism) al grupului G.

Fie (G,\cdot) un grup. Se numește **ordinul grupului** cardinalul mulțimii G. Cel ma mic număr natural nenul k cu proprietatea $x^k=e$ se numește **ordinul lui x** în G, notat ord(x).

Teorema lui Lagrange. Dacă H este un subgrup al lui G, atunci numărul elementelor lui H divide numărul elementelor lui G.

2. Inele și corpuri

Tripletul $(A, +, \cdot)$, $A \neq \emptyset$ se numște **inel** dacă:

- 1) (A, +) grup abelian
- 2) (A, ·) monoid
- 3) Înmulțirea este distributivă față de adunare:

$$\forall x, y, z \in A, \ x \cdot (y+z) = x \cdot y + x \cdot z \text{ și } (y+z) \cdot x = y \cdot x + z \cdot x$$

 $(A, +, \cdot)$ se numește **inel comutativ** dacă legea "·" este comutativă.

Elementul neutru al operației "+", se numește **elementul** nul și se notează 0_A .

Inelul $(A, +, \cdot)$ nu are divizori ai lui zero, dacă $x \neq 0_A$ ș $i y \neq 0_A$ implică $x \cdot y \neq 0_A$.

Un inel comutativ, cu cel puţin două elemente şi fără divizori ai lui zero se numeşte **domeniu de integritate**.

Elementul neutru al "·" se notează 1_A .

Inelul $(A, +, \cdot)$ se numește **corp** dacă $0_A \neq 1_A$ și orice $x \in A, x \neq 0_A$ este simetrizabil în raport cu "·".

Fie $(A, +, \cdot)$ și $(A', \bigoplus, \bigcirc)$ două inele. O funcție $f: A \to A'$ se numește **morfism de inele** dacă:

1)
$$f(x + y) = f(x) \oplus f(y), \forall x, y \in A$$

2)
$$f(x \cdot y) = f(x) \odot f(y), \forall x, y \in A$$

3)
$$f(1_A) = 1_{A_1}$$

Dacă A și A_1 sunt corpuri, f se numește **morfism de corpuri.** Dacă f este bijectivă, atunci f este **izomorfism** de inele (corpuri).

Orice morfism de corpuri este injectiv.

Un corp nu are divizori ai lui zero.

Orice domeniu de integritate este finit.

3. Inelul claselor de resturi modulo n

Pentru orice număr natural n, $n \geq 2$ și un număr întreg a, se notează (a mod n) restul împărțirii lui a la n. Notăm $\hat{k} = \{a \in \mathbb{Z} \mid a \bmod n = k\}$ și $\mathbb{Z}_n = \{\hat{0}, \hat{1}, ..., \widehat{n-1}\}.$

Inelul $(\mathbb{Z}_n, +, \cdot)$, unde $\hat{a} + \hat{b} = \widehat{a + b}$ ș $i \hat{a} \cdot \hat{b} = \widehat{a \cdot b}$, $\forall a, b \in \mathbb{Z}_n$ se numește **inelul claselor de resturi modulo n**.

Fie $n \in \mathbb{N}$, $n \ge 2$ și $a \in \mathbb{Z}$. Elementul \hat{a} este **inversabil** în $\mathbb{Z}_n \Leftrightarrow (\hat{a}, \hat{n}) = 1$.

Mulțimea elementelor inversabile se notează $U(\mathbb{Z}_n)$.

 $(\mathbb{Z}_n, +, \cdot)$ este corp \Leftrightarrow n număr prim. (dacă n nu este prim nu rezultă că $(\mathbb{Z}_n, +, \cdot)$ nu este corp)

2.Polinoame

Fie k unul din din corpurile \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p , p prim.

Expresia $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X^1+a_0$, unde $a_i\in K, n\in\mathbb{N}$ se numește **polinom** în nedeterminare X și cu coeficienți în K.

Mulţimea acestor polinoame se notează K[X].

Dacă $f \in K[X]$, atunci $f = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X^1 + a_0$ se numește **forma algebrică** a polinomului f; $a_0, a_1, a_2, \ldots, a_n \in K$ se numesc **coeficienții** polinomului f.

Fie $(K[X], +, \cdot)$ inelul polinoamelor în nedeterminatele X cu coeficienți din K.

Dacă f=0 spunem că f are gradul $-\infty$, iar dacă $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X^1+a_0,\ a_n\neq 0$, spunem că f are **gradul** n, notat grad f=n.

- $grad(f + g) \le \max(grad f, grad g)$
- $grad(f \cdot g) = grad f + grad g, \forall f, g \in K[X]$
- Dacă K[X] domeniu de integritate, atunci grad(f + g) = grad f

<u>Teorema împărțirii cu rest</u>. Fie $f,g \in K[X],g \neq 0$ și K corp comutativ. Atunci există și sunt unic determinante polinoamele $q,r \in K[X]$ astfel încât f=gq+r, cu grad r < grad g.

Fie $f, g \in K[X]$.

Spunem că g divide pe f dacă există $h \in K[X]$ astfel încât f = gh.

Polinomul $d \in K[X]$ este **cel mai mare divizor comun** al lui $f \not si g$ dacă:

- $d|f \approx i d|g$
- $d_1|f \neq i d_1|g \Rightarrow d_1|d \forall d_1 \in K[X]$

Polinomul $m \in K[X]$ este **cel mai mic multiplu comun** al lui $f \not i g$ dacă:

- f|m și g|m
- $f|m_1 \neq g|m_1 \Rightarrow m|m_1 \forall m_1 \in K[X]$

Numărul $a \in K$ este **rădăcină** a lui $f \in K[X]$, dacă f(a) = 0

<u>Teorema lui Bezout.</u> Dacă $f \in K[X]$ ș $i \ a \in K$, atunci a este rădăcină a lui $f \Leftrightarrow (X - a)|f$. Restul împărțirii lui $f \ la \ X - a$ este f(a).

Fie $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X^1+a_0\in\mathbb{C}[X]$, $a_n\neq 0$. Notând $x_1,x_2,\ldots,x_n\in\mathbb{C}$ rădăcinile lui f, au loc **relațiile** lui Viete:

$$s_{1} = x_{1} + x_{2} + \dots + x_{n} = -\frac{a_{n-1}}{a_{n}}$$

$$s_{2} = x_{1}x_{2} + x_{1}x_{3} + \dots + x_{n-1}x_{n} = \frac{a_{n-2}}{a_{n}}$$

$$s_{3} = x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + \dots + x_{n-2}x_{n-1}x_{n} = -\frac{a_{n-3}}{a_{n}}$$

$$\vdots$$

$$s_{n} = x_{1}x_{2} \dots x_{n} = (-1)^{n} \frac{a_{0}}{a_{n}}$$

Dacă $x_1, x_2, \dots, x_n \in \mathbb{C}$, atunci ele sunt soluțiile ecuației

$$X^{n} - s_{1}X^{n-1} + s_{2}X^{n-2} + \dots + (-1)^{n}s_{n} = 0$$

Spunem că $\alpha \in \mathbb{C}$ este **rădăcină multiplă** de ordin r pentru $f \in \mathbb{C}[X]$, dacă $(X - \alpha)^r | f$ și $(X - \alpha)^{r+1} \nmid f$ sau $f(\alpha) = f'(\alpha) = \cdots = f^{(r-1)}(\alpha) = 0$ și $f^{(r)}(\alpha) \neq 0$.

Fie $f \in \mathbb{R}[X]$, un polinom nenul cu coeficienți reali și $\alpha = a + bi$ o rădăcină a lui f.

Atunci:

- 1) $\bar{\alpha} = a bi$ este rădăcină a lui f
- 2) α , $\bar{\alpha}$ au același ordin de multiplicitate

Fie f un polinom nenul cu coeficienți raționali și $\alpha = a + b\sqrt{d} \ (a,b,d \in \mathbb{Q}, d>0, \sqrt{d} \notin \mathbb{Q})$ o rădăcină a lui f.

Atunci:

1) $a - b\sqrt{d}$ este rădăcină a lui f

2) $a+b\sqrt{d}$ și $a-b\sqrt{d}$ au aceleași ordin de multiplicitate

Fie f un polinom nenul cu coeficienți întregi și $\alpha = \frac{p}{q}$ o rădăcină rațională a lui $f, p, q \in \mathbb{Z}, q \neq 0, (p, q) = 1$.

Atunci:

- 1) p divide coeficientul termenului liber a_0
- 2) q divide coeficientul dominant a_n

3. Primitive. Integrala definită

1. Primitive

Fie $I \subseteq \mathbb{R}$ un interval. Spunem că $f: I \to \mathbb{R}$ admite primitive dacă există o funcție derivabilă $F: I \to \mathbb{R}$ astfel încât F'(x) = f(x).

Mulțimea primitivelor unei funcții se notează $\int f(x)dx$.

Dacă $F: I \to \mathbb{R}$ este o primitivă a funcției f, atunci $\int f(x)dx = F(x) + C$.

Orice funcție continuă admite primitive.

Orice funcție care admite primitive are prorpietatea lui Darboux. Dacă f nu are proprietatea lui Darboux pe I, atunci f nu admite primitive pe I.

Dacă $f: I \to \mathbb{R}$ are un punct de discontinuitate de speța I, atunci f nu admite primitive.

Formula de integrare prin părți: Dacă $f,g:I\to\mathbb{R}$ sunt două funcții derivabile, iar $f'\cdot g$ are primitive, atunci și $f\cdot g'$ are primitive și $\int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x)dx$.

Formula de schimbare de variabilă: Fie funcțiile $u: I \to J$, $f: J \to \mathbb{R}$. Dacă u este derivabilă, iar f are primitiva F, atunci $(f \circ u)u'$ are primitiva $F \circ u$, adică $\int f(u(x)) \cdot u'(x) dx = F(u(x) + C$.

Integrarea funcțiilor raționale:

$$\int (a_n x^n + \dots + a_1 x + a_0) \, dx = a_n \frac{x^{n+1}}{n+1} + \dots + a_0 x + C$$

$$\int \frac{A}{(x-a)^n dx} = -\frac{\frac{1}{n-1} A}{(x-a)^{n+1}} + C, \forall n \ge 2$$

$$\int \frac{A}{x-a} dx = A \cdot \ln|x-a| + C$$

ir.	Integrale nedefinite
1	$\int dx = x + C$
2	$\int x dx = \frac{x^2}{2} + C$
3	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
4	$\int \sqrt{x} dx = \frac{2}{3} x \sqrt{x} + C$
5	$\int e^x dx = e^x + C$
6	$\int a^x dx = \frac{a^x}{\ln a} + C$
7	$\int \frac{1}{x} dx = \ln x + C$
8	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
9	$\int \frac{1}{x^2 + 1} dx = \operatorname{arctg} x + C$
0	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$
1	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left x + \sqrt{x^2 - a^2} \right + C$
2	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + C$
3	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$
4	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$
5	$\int \sin x dx = -\cos x + C$
6	$\int \cos x dx = \sin x + C$
7	$\int \operatorname{tg} x dx = -\ln \cos x + C$
3	$\int ctgxdx = \ln \sin x + C$
9	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$
0	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C$
1	$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$
2	$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + C$
3	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$

2. Funcții integrabile

Fie $a,b \in \mathbb{R}, a < b, \ \Delta = (a = x_0 < x_1 < \cdots < x_n = b)$ o **diviziune** a intervalului [a,b] și $\xi = (\xi_1, \xi_2, \dots, \xi_n) cu \ \xi_i \in [x_{i-1}, x_i], i = \overline{1,n}$ un **sistem de puncte intermediare** asociate diviziunii Δ .

Notăm $|\Delta| = \max\{|x_i - x_{i-1}|, i = \overline{1,n}\}$ norma diviziunii Δ . Pentru funcția $f: [a,b] \to \mathbb{R}$ notăm $\sigma_{\Delta}(f,\xi) = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$ suma Riemann asociată funcției f, diviziunii Δ și sistemului de puncte intermediare.

 $f\colon [a,b] o \mathbb{R}$ este intregrabilă pe [a,b] dacă $\lim_{|\Delta|\to 0} \sigma_{\Delta}(f,\xi)$ este finită.

În acest caz notăm
$$\lim_{|\Delta|\to 0} \sigma_{\Delta}(f,\xi) = \int_a^b f(x) dx$$
.

Formula lui Leibnitz-Newton. Dacă $f:[a,b] \to \mathbb{R}$ este o funcție intregrabilă care admite primitive, atunci $\int_a^b f(x) dx = F(b) - F(a)$, unde F este o primitivă a lui f.

Orice funcție continuă pe un interval [a,b] este integrabilă.

Orice funcție monotonă pe un interval [a,b] este integrabilă.

Orice funcție continuă pe un interval [a,b], cu excepția unui număr finit de puncte de discontinuitate de speța I, este integrabilă.

Orice funcție integrabilă pe un interval [a,b] este mărginită.

Proprietăți

Dacă $f,g:[a,b]\to\mathbb{R}$ sunt integrabile și $f(x)\leq g(x), \forall x\in[a,b]$, atunci $\int_a^b f(x)dx\leq \int_a^b g(x)dx$.

Dacă $f:[a,b]\to\mathbb{R}$ este integrabilă și $m\le f(x)\le M,\ \forall x\in[a,b]$, atunci $m(b-a)\le\int_a^bf(x)dx\le M(b-a).$

4. Aplicații ale integralei

definite

Aria suprafeței plane cuprinsă între graficul lui f, axa Ox și dreptele de ecuații x=a și x=b este $A_{\Gamma f} = \int_a^b |f(x)| dx$.

Aria suprafeței plane cuprinsă între graficele funcțiilor $f,g:[a,b]\to\mathbb{R}$ este $A_{\Gamma f,g}=\int_a^b |f(x)-g(x)|dx$.

Volumul corpului obținut prin rotația graficului funcției f în jurul axei Ox este $V_f = \pi \int_a^b f^2(x) dx$.