北京工业大学 2020——2021 学年第一学期 《 混凝土结构原理 》考试试卷 A 卷

考试说明: 考试时长: 95分钟, 考试方式: 闭卷, 适用专业: 土木工程专业, 考试工具: 钢笔、计算器

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承访	卷人:		学号	:	3	班号:	
00000							
沚.	木冠卷出	五 大駒	出 1/ 百		奉	須伸田巻 氏	5附加的统

注:本试卷共<u>力</u>大题,共<u>14</u>页,满分 100 分,考试时必须使用卷后附加的统一答题纸和草稿纸。

卷	面	成	绩	汇	总	表	(阅卷教师填写)
. 177	ш	MA	~~	11	700	\sim	

题号	1	11	111	四	五1	五2	总成绩
满分	15	20	15	25	15	10	
得分							
阅卷人							

得分

一、判断是非题(每题 1.5 分, 共 15 分。正确画"○", 错误画"×"。)

- 1. 混凝土的轴心抗压强度高于立方体抗压强度。()
- 2. 对钢筋混凝土大偏心受压构件,随着轴力的增加,构件的抗弯能力提高。

()

3. 按螺旋箍筋柱计算的受压承载力不应小于按普通箍筋柱计算的 1.5 倍。

()

- 4. 在剪力和扭矩共同作用下的构件,其承载力比剪力和扭矩单独作用下的相应 承载力要低。()
- 5. 钢筋混凝土梁中纵筋的截断位置, 在钢筋的理论不需要点处截断。()
- 6. 小偏心受拉构件是指轴力 N 作用在钢筋 A。与 A'。之间。()

7. 全预应力混凝土构件在使用条件下,构件截面混凝土不出现拉应力。()

8. 梁内受压区配受压钢筋可减少混凝土徐变及其挠度。(9. 钢筋混凝土梁受拉区外边缘的混凝土拉应力达到其抗拉强度时, 混凝土梁开 裂。() 10. σ_{com} 是预应力混凝土结构中, 先张法与后张法构件除去应力损失后的控制应 力。(二、单项选择题(每题2.0分,共20分。每小题选择一个 最适宜的正确答案。) 1. 我国《混凝土结构设计规范》规定的混凝土强度等级是根据()划分的。 A. 立方体抗压强度设计值 B. 立方体抗压强度平均值 C. 立方体抗压强度标准值 D. 棱柱体抗压强度设计值 2. 梁内弯起多排钢筋时,相邻上下弯点间距≤Smax,其目的是(A. 保证正截面受弯能力 B. 保证正截面受剪能力 C. 保证斜截面受弯能力 D. 保证斜截面受剪能力 3. 钢筋混凝土矩形截面双筋梁正截面承载力计算中,若 x<2a's,则说明()。 A. 受压钢筋配置过少 B. 梁会发生超筋破坏 C. 梁发生破坏时受压钢筋尚未屈服 D. 截面尺寸过小 4. 规范规定的受拉钢筋锚固长度 l_a ()。 A. 随混凝土强度等级的提高而增大 B. 随钢筋等级提高而降低 C. 随混凝土等级提高而减少, 随钢筋等级提高而增大 D. 随混凝土及钢筋等级提高而减小 5. 梁中腹筋是指 ()。 B. 纵筋和箍筋 A. 弯起钢筋 C. 纵筋和弯起钢筋 D. 弯起钢筋和箍筋 6. 截面相同的无腹筋梁,发生不同形式斜截面破坏时,其承载力按大小排序依次 为()。 A. 斜压破坏>斜拉破坏>剪压破坏 B. 剪压破坏>斜压破坏>斜拉破坏

C. 斜压破坏>剪压破坏>斜拉破坏 D. 斜拉破坏>剪压破坏>斜压破坏

7.	钢筋混凝土梁在正常使用期间的状态	泛通常是()。	
	A. 混凝土未开裂 B.	带裂缝工作	
	C. 受拉钢筋屈服 D.	压区混凝土到达极限强度	
8.	防止梁发生斜压破坏最有效的措施是	1 ()。	
	A. 增加纵筋	B. 增加弯起钢筋	
	C. 增加腹筋	D. 增加截面尺寸	
9.	钢筋混凝土受扭构件, 若 0.6< ζ <1.7	7 ,说明当构件破坏时,()。
	A. 纵筋和箍筋都能达到屈服	B. 仅箍筋达到屈服	
	C. 仅纵筋达到屈服	D. 纵筋和箍筋都不能	比达到屈服
10.	M_R 图必须包住 M 图,才能保证梁的	()。	
	A. 正截面抗弯承载力	B. 斜截面抗弯承载力	
	C. 斜截面抗剪承载力	D. 正、斜截面抗弯承载	戈力
	三、填空题(每空1.5分		
	为简化计算,把适筋梁正截面承载力的		
	力图形来代替,其等效条件有:		
2.	极限状态设计方法中的极限状态分为	两类,即	_极限状态和
	极限状态。		
3.	粘结强度主要由、、	、机械咬合力三部。	分组成。
4.	适筋梁的三个受力阶段是计算受弯构	件的依据,其中第	阶段是变形
和多	裂缝宽度验算的依据,IIIa 阶段是	的依据。	
5.	在混凝土梁的弯剪区段,由剪力和弯	矩复合作用下引起的	应力超过
混	疑土抗拉强度时,将出现斜裂缝。		
6.	受弯构件正截面承载力中,T	` 形截面划分为两类	战 面 的 依 据
是_	o		

得分

四、简答题(共25分)

1. 钢筋与混凝土共同工作的基础条件是什么?

2. 简述普通钢筋混凝土结构与预应力混凝土结构各自的优缺点。

3. 请列出3种预应力损失,发生的原因及相应的各自减少预应力损失的措施。

4. 简述适筋梁、超筋梁、少筋梁的破坏特征,在设计中如何防止超筋破坏和少筋破坏?

5. 简述同时承受弯矩、剪力和扭矩作用时构件的纵筋和箍筋配置量计算方法与布置原则。

得 分

五、计算题(共25分,请在答题纸答此部分题)

1. 某矩形截面钢筋混凝土偏心受压柱,截面尺寸 b=300 mm, h=600 mm, a_s=a_s'=40 mm。结构的安全等级为二级。柱承受轴压力设计值 N=800 kN,两端弯矩设计值 分别为 M₁=420 kN m,M₂=460 kN m(平行于截面长边方向作用,柱挠度变形为单曲率)。弯矩作用平面内柱上下两端的支撑长度为 l_c =5.0 m,弯矩作用平面外柱 的计算长度 l_0 =7.5 m。采用 C30 级混凝土(f_c =14.3 N/mm², f_c =1.43 N/mm²)和 HRB400 级钢筋(f_y = f_y '=360 N/mm², ξ_b =0.518, $\alpha_{s,max}$ =0.384)。试按<u>非对称配筋</u>计算 纵向受力钢筋,并画出截面配筋草图(可近似取(e_{ib})min=0.3h₀)。(15 分)

2. 承受均布荷载的矩形简支梁, 计算跨度 l_0 =6.0m, 按准永久组合计算的跨中最大弯矩值 M_q =60kN·m, 截面尺寸为 $b \times h$ =200mm×400mm, 混凝土等级为 C30 (f_{tk} =2.01N/mm², E_c =3.0×10⁴ N/mm²), 纵向受拉钢筋采用 4 根直径为 16mm 的 HRB400 级钢筋(E_s =2.0×10⁵ N/mm²),混凝土保护层厚度为 20mm,箍筋直径 8mm。试验算梁的跨中最大挠度是否符合挠度限值 l_0 /200。(10 分)

(注:均布荷载作用下简支梁挠度计算:
$$f = \frac{5}{48} \cdot \frac{M_q l_0^2}{B}$$
)

附录:

一、钢筋混凝土偏心受压基本公式

(当同一主轴方向的杆端 $M_1/M_2 > 0.9$,且 $N/(Af_c) > 0.9$ 时,若 $\frac{l_0}{i} \le 34 - 12 \left(\frac{M_1}{M_2}\right)$,可忽略附

加弯矩影响。其中回转半径 $i = \sqrt{I/A}$, $I = bh^3/12$,A = bh)

$$M = C_m \eta_{ns} M_2$$
 , $\sharp + C_m \eta_{ns} \ge 1.0$

$$C_m = 0.7 + 0.3 \frac{M_1}{M_2} \ge 0.7$$

$$\eta_{ns} = 1 + \frac{1}{1300 \frac{(M_2 / N + e_a)}{h_o}} \left(\frac{l_c}{h}\right)^2 \zeta_c \quad \sharp \div \quad \zeta_c = \frac{0.5 f_c A}{N} \le 1$$

$$e_i = e_0 + e_a$$
, $e_0 = M / N$, $e_a = \max\{20mm, h/30\}$

$$e = e_i + 0.5h - a_s$$

1、大偏心受压基本公式

$$N = \alpha_{1} f_{c} b x + f_{y} \dot{A_{s}} - f_{y} A_{s}$$

$$Ne = \alpha_{1} f_{c} b x (h_{0} - \frac{x}{2}) + f_{y} \dot{A_{s}} (h_{0} - a_{s})$$

- 1) 对称配筋时,上述第 1 式为: $N = \alpha_1 f_c bx$
- 2) 当 $x < 2a_s$ '时, $x = 2a_s$ '
- 2、小偏心受压基本公式

$$N = \alpha_1 f_c \xi b h_0 + f_y A_s' - f_y \frac{\xi - \beta_1}{\xi_b - \beta_1} A_s$$

$$Ne = \alpha_1 f_c b h_0^2 \xi (1 - 0.5 \xi) + f_y A_s' (h_0 - a_s')$$

1) 适用于 $\xi_h < \xi \le 2\beta_1 - \xi_h$; 如果 $\xi > 2\beta_1 - \xi_h$, 则上述第 1 式为:

$$N = \alpha_1 f_c \xi b h_0 + f_y A_s' + f_y A_s$$

2) 当 $N > \alpha$, f, bh 时, 还要求:

$$A_{s} = \frac{Ne' - \alpha_{1} f_{c} b h (h'_{0} - \frac{h}{2})}{f'_{v} (h'_{0} - a_{s})}; \qquad e' = \frac{h}{2} - a'_{s} - (e_{0} - e_{a})$$

3) 对称配筋时, x 近似公式:

$$\xi = \frac{N - \xi_b \alpha_1 f_c b h_0}{\frac{Ne - 0.43 \alpha_1 f_c b h_0^2}{(\beta_1 - \xi_b)(h_0 - a_s')} + \alpha_1 f_c b h_0} + \xi_b$$

3、受压构件最小配筋率:

全部纵向钢筋最小配筋率 0.6% (HRB335 级)、0.55% (HRB400 级);

- 一侧纵向钢筋最小配筋率 0.2%
- 4. 混凝土强度等级≤C50 时, α_1 =1.0、 β_1 =0.8

二、钢筋混凝土轴心受压基本公式

$$N_u = 0.9 \varphi \left(f_c A + f_v A_s \right)$$

当纵向钢筋配筋率大于 3%,上式中的 A 改用 $(A-A'_s)$ 代替。

附表 1 钢筋混凝土轴心受压构件的稳定系数 φ

Ī	l_0 / b	≤8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Ī	φ	1.0	0.98	0.95	0.92	0.87	0.81	0.75	0.70	0.65	0.60	0.56	0.52	0.48	0.44	0.40	0.36	0.32

三、求挠度值的有关公式

短期刚度:
$$B_s = \frac{E_s A_s h_0^2}{1.15\psi + 0.2 + 6\alpha_E \rho}$$

长期刚度:
$$B = \frac{B_s}{\theta}$$

$$\theta = 2.0 - 0.4 \frac{\rho'}{\rho}$$

$$ρ_{te} = \frac{A_s}{0.5bh}$$
 $β ρ te < 0.01,$
 $ℜ ρ te = 0.01$

$$\rho = \frac{A_s}{bh_0} \qquad \alpha_E = \frac{E_s}{E_s}$$

$$\sigma_s = \frac{M_q}{0.87 A_s h_0}$$
 $\psi = 1.1 - \frac{0.65 f_{ik}}{\rho_{ie} \sigma_s}$ $(0.2 \le \psi \le 1.0)$

附表 2 单根钢筋面积

直径	6	8	10	12	14	16	18	20	22	25	28
截面积	28.3	50.3	78.5	113.1	153.9	201.1	254.5	314.2	380.1	490.9	615.3
(mm^2)	20.3	20.3	70.5	115.1	100.9	201.1	20	312	200.1	1,50.5	015.5

草稿纸

草稿纸