Aula 2 – Boot e Kernel

Sistemas Operacionais

Elo entre o Hardware e o Usuário

- SO costuma está em uma memória não volátil
- Carga do SO
 - processo de copiar esse sistema para a memória e transferir o controle da CPU

- Processo de boot de um sistema baseado na arquitetura Intel x86.
 - BIOS Binary Input Output System
 - CMOS A memória não-volátil
 - POST Power On Self Test
 - Bootloader MBR (Master Boot Record)

- Boot process
 - https://www.youtube.com/watch?v=PSnGuvylWBI

- MBR → Registro Mestre de Inicialização
 - conceito de MBR foi introduzido ao público em 1983 com o PC DOS 2.0
 - contém 512 bytes de informação da estrutura organizacional do disco

• Estrutura do MBR

Estrutura do Master Boot Record:

Endereço Hex Dec			Descrição	
0000	0	Código de arranque do SO		440 (max. 446)
01B8	440	Assinatura opcional		4
01BC	444	normalmente nulo ; 0x0000		2
01BE	446	Tabela de partições primarias (Quatro entradas de 16 bytes (IBM Partition Table scheme))		64
01FE	510	55h	MBR signature; 0x55AA	2
01FF	511	AAh		
Tamanho total do MBR : 440 + 4 + 2 + 64 + 2 =				512

- Trocar de SO
 - a MBR é sobrescrita com um novo gerenciador de boot
- Ter dois ou mais SO's instalados
 - Boot manager
 - Programa instalado na trilha MBR
 - Windows NT/2000/XP traz o NTLDR
 - Linux traz Lilo e o GRUB

 Na maioria dos sistemas, é um dos primeiros programas carregados no boot

- Funções
 - Mediar acesso à CPU
 - Controlar memória RAM
 - armazena as instruções e os dados de programas
 - Gerenciar dispositivos de E/S

- Funções
 - Controlar privilégios
 - Usuários e permissões
 - Chamadas de sistema
 - Relacionado a hardware

•

- Chamadas de Sistema
 - 1. Controle de processos
 - encerrar, abortar
 - carregar, executar
 - criar processo, encerrar processo
 - obter/definir atributos do processo
 - esperar hora, esperar evento, sinalizar evento
 - alocar e liberar memória

- Chamada de Sistema
 - 2. Gerenciamento de arquivos
 - criar arquivo, excluir arquivo
 - abrir, fechar
 - ler, gravar, reposicionar
 - obter/definir atributos do arquivo

- Chamada de Sistema
 - 3. Gerenciamento de dispositivos
 - solicitar dispositivo, liberar dispositivo
 - ler, gravar, reposicionar
 - obter/definir atributos do dispositivo
 - conectar ou desconectar dispositivos logicamente

- Chamada de Sistema
 - 4. Manutenção de informações
 - obter/definir a hora ou a data
 - obter/definir dados do sistema
 - obter/definir atributos do processo, arquivo ou dispositivo

- Chamada de Sistema
 - 5. Comunicações
 - criar, excluir conexão de comunicações
 - enviar, receber mensagens
 - transferir informações de status
 - conectar ou desconectar dispositivos remotos

- Chamada de Sistema
 - 6. Proteção
 - obter/definir permissões de arquivos

- Abordagens de design
 - Kernel monolítico
 - Microkernel
 - Híbridos ou modulares

Monolítico

 É um programa único que contém todo o código necessário para executar todas as tarefas do kernel

Tradicionalmente utilizados pelos sistemas operacionais Unix-like

Monolítico

- Muitas chamadas do sistema são fornecidas
- Kernels monolíticos modernos (Linux e FreeBSD) possuem a capacidade de carregar módulos em tempo de execução

Monolítico

- Vantagens:
 - Menos software envolvido
 - Menor e mais eficiente
 - Menos bugs
 - Menos problemas de segurança

Monolítico

- Desvantagens
 - Erros têm efeitos colaterais fortes
 - Muitas vezes se tornam muito grande e difícil de manter
 - Integração dos módulos as vezes não é simples
 - Não portáteis
 - Específicos para cada nova arquitetura

Microkernel

 conjunto de "servidores" que se comunicam através de um kernel "mínimo"

Alguns sistemas que usam micro kernels são QNX e o Hurd

Microkernel

- Somente o que necessita estar em modo privilegiado estão no espaço do kernel
- Servidores ficam no espaço do usuário

Microkernel

- Vantagens
 - A manutenção é geralmente mais fácil
 - Desenvolvimento facilitado
 - Maior disponibilidade
 - Recuperação da falha de um servidor

Microkernel

- Desvantagens
 - Maior consumo de memória
 - Mais camadas de software
 - Possível perda de desempenho
 - Gestão de processos mais complicada

- maioria dos sistemas operacionais comerciais
- Microsoft Windows NT 3.1, NT 3.5, NT 3.51, NT 4.0, 2000, XP, Vista, 7, 8, 8.1 e 10.
- MacOS usa um núcleo híbrido chamado XNU que é baseada no OSFMK 7.3 e FreeBSD

- Semelhantes ao microkernel
- Com execução de alguns serviços no espaço do kernel para reduzir a sobrecarga
 - tais como a pilha de rede ou o sistema de arquivos
- incapazes de carregar módulos em tempo de execução por conta própria

- Vantagens
 - Desenvolvimento facilitado
 - Mais fácil a integração da tecnologia de terceiros

- Desvantagens
 - Mais interfaces → mais erros
 - Maior possibilidade de falhas de segurança
 - Manutenção pode ser mais difícil

Comparação

MINIX versus LINUX

Andrew S. Tanenbaum

Linus Torvalds