

Ch.6 Registers and Counters - part B

Counters

clock cycle마다 하나씩 count up 하는 specific type of sequential circuit.

- → register처럼 별도의 output 필요 없이 state 자체를 output으로!
- → 가장 큰 값에 도달하면 0인 state로 돌아옴

	Presen	t State	Next State		
	Α	В	Α	В	
0	0	0	0	1	
(0	1	1	0	
2	1	0	1	1	
3	1	1	0	0	

- counter는 **시계**처럼 사용 가능
 - 。 실행 시간 측정 가능
 - 。 모든 processor들은 program counter, PC를 가지고 있음
 - 몇번째 명령어인지 check

Ripple Counter > (例 冲性を)がよ counter

다른 ff를 triggering 하기 위한 ff output transition server

→ 자신의 하위 bit가 1→0으로 바뀌면 자신은 complement

(settes connection of complementing ff)

①Ao: 用与 Complement > T inputor 1号分/

② A1: A07+ logich 0=3 bttlz cett → A1 complement (negative edge)

커 A(의 C(K어) Ao을 note2 연결

④ A,도 동일

1

4bit Binary Ripple

Counter

- → clock을 변경하는 회로
- → 바람직하지 x

*Tff: 0 T=0 → no change © T=1 → complement

(144) = 4244 State

- two-bit counter → slightly fancier
 - × = 0 → count up(increment)
 - X = 1 → count down(decrement)

Presen	t State	Inputs	Next State		
Q_1	Qo	X	Q_1	Qo	
0	0	0	0	1	
0	0	1	1	1	
0	1	0	1	0	
0	1	1	0	0	
1	0	0	1	1	
1	0	1	0	1	
1	1	0	0	0	
1	1	1	1	0	

o D ff inputs

- nomal output, complemented output → Q'0에 inverter 없이 직접 접근 가능
- Reset = 1 → count
- Reset = 0 → 00으로 초기화
- input 한 개만 필요

• JK ff inputs

TOTALE 211日李文

Presen	t State	Inputs	Next State		Flip flop inputs			
Q_1	Qo	X	Q_1	Q ₀	J_1	K ₁	Jo	K ₀
0	0	0	0	1	0	×	1	X
0	0	1	1	1	1	×	1	×
0	1	0	1	0	1	×	×	1
0	1	1	0	0	0	×	×	1
1	0	0	1	1	×	0	1	×
1	0	1	0	1	×	1	1	×
1	1	0	0	0	X	1	X	1
1	1	1	1	0	X	0	×	1

■ JK ff n.i. RS 사용

• n.i. RS : input R, S에 non-inverted, or active high

- Reset = 0 → count
- Reset = (→ 00으로 초기화

Unused states

2^n개의 state가 있을 때 n개의 ff이 사용되지만 몇몇 state들이 unused

- P 67H의 상EH → 37H의 仟 필인함 example
 - 。 0(000), 5(101) unused → don't care condition으로 변경! (더 간단한 회로)
 - 。 (but) unused에서 계속 머무르고 빠져나올 수 없을 수도 있음 (성능이 보장되도록)
 - → self-starting counter: don't care를 starting state로 수정!
 - → unused state에 들어갔다는 것을 예측 가능

ndon't care

	Pres	ent St	tate	Next State			
	Q₂	Q_1	Q_0	Q₂	Q_1	Q_0	
	0	0	0	0	0	1	
	0	0	1	0	1	0	
	0	1	0	0	1	1	
	0	1	1	1	0	0	
	1	0	0	1	0	1	
	1	0	1	0	0	0	
F	1	1	0	×	×	×	
64	1	1	1	×	×	×	
22H= Ot@f2H 2							

@ self stating

Pres	ent St	tate	Next State			
Q ₂	Q_1	Q ₀	Q2	Q_1	Qo	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	0	0	0	
1	1	1	0	0	0	

More complex counters

- Counter-4 (0 ~ 何か以 (oun+ 가능)
 - UP input
 - 1 \rightarrow count up/0 \rightarrow count down
 - CLR input
 - 1 → 0000으로 setting (asynchronously clear)
 - · LD input (active (ow)
 - 0 → 새로운 input load 👄 Count シほんりも
 - EN input
 - enable, or disable
 - counter가 disable되면 output이 계속 같은 값만 출력
 - o D3-D0 output

- CO output
 - 0 → 최댓값(1111)에 도달, 1 → normal

· 8-bit counter

- o two 4-bit counters
- 아래쪽(하위비트) counter가 1111에 도달(CO=0)
 - → 위쪽(상위비트) counter enable ←
- 。 clock, clear signal 공유화여 사용
- Hex(16bit)도 이와 같이 사용

· restricted 4-bit counter

1. start : 초기값을 결정할 수 있는 제한된 counter

2. **count up** : 최댓값이 제한된 counter → 최대에 도달하면 0000으로 돌아옴

