

NumPy & JAX NumPy:

Numerical Computing with Python

Familiar API, Powerful New Engine

- You know NumPy: The foundation of Python scientific computing (ndarray, rich function library).
- You've seen JAX: High-performance numerical computing, especially for ML research.
- jax.numpy is designed to feel like NumPy, but better.

NumPy/PyTorch = Eager, JAX = JIT Compiled

- NumPy/PyTorch (Default): Operations run immediately as Python encounters them. Easy debugging, intuitive flow.
- JAX: Uses jax.jit for Just-In-Time compilation via XLA (Accelerated Linear Algebra).
 - Tracing: JAX traces the function once for given input shapes/types.
 - Optimization: XLA optimizes and compiles the traced operations into efficient kernels (often fused).
 - Execution: Subsequent calls with compatible inputs use the fast, compiled code.

NumPy = Mutable, JAX = Immutable

NumPy: Arrays can be changed in-place. Standard Python behavior.

```
# NumPy Example
import numpy as np
a_np = np.arange(4.)
print("Original:", a_np)
a_np[0] = 100.0 # Modify in-place
print("Modified:", a_np)
# Output:
# Original: [0. 1. 2. 3.]
# Modified: [100. 1. 2. 3.]
```

JAX: Arrays cannot be changed in-place. Returns a new array. Functional style.

```
# JAX Example
import jax.numpy as jnp
a_jnp = jnp.arange(4.)
# a_jnp[0] = 100.0 # <-- This causes a TypeError!

# Use the .at[].set() syntax (or add, min, max...)
b_jnp = a_jnp.at[0].set(100.0) # New array
print(f'{a_jnp is b_jnp = }')
# Output:
# a_jnp is b_jnp = False</pre>
```

Subtle Differences in Memory Handling

NumPy: Operations like transpose(), reshape(), slicing often return views (sharing underlying data).

 Memory efficient, but changes through a view affect the original. **JAX**: Equivalent operations typically return copies.

- Consistent with immutability.
- Seems less memory efficient?
 But: jax.jit() often optimizes
 away intermediate copies.
 - "buffer donation"

JAX approach eliminates lurking side-effects

Explicit PRNG Keys are Key!

NumPy: Uses a global random state. Easy to use, but tricky for reproducibility in complex/parallel code.

JAX: Requires explicit PRNG keys. Ensures reproducibility. Functional style.

```
# NumPy RNG
np.random.seed(0)
print(np.random.normal()) # Call 1
print(np.random.normal()) # Call 2
# Output:
# 1.764052345967664
# 0.4001572083672233
```

```
# JAX RNG
from jax import random
key = random.PRNGKey(0) # Initial key
print(random.normal(key))
print(random.normal(key))
# Output:
# 1.6226422
# 1.6226422
```

Write for One, Run for Many

- NumPy: Relies on broadcasting and manually writing vectorized operations. Can be tricky for complex functions.
- **JAX**: **jax.vmap()** automatically transforms a function written for single data points to operate over batches/axes.

Write for One, Run for Many

```
import jax
import jax.numpy as jnp
from jax import vmap
def predict(W, b, x):
    return jnp.dot(W, x) + b
W = jnp.ones((3, 4))
b = jnp.ones(3)
batch_x = jnp.ones((10, 4)) # Batch of 10 data points
# Apply vmap() to predict the whole batch without a Python loop
batch_predict = vmap(predict, in_axes=(None, None, 0))
# Result is shape (10, 3) - one prediction per input in the batch
batch_result = batch_predict(W, b, batch_x)
```

Pytrees

- Tree-like nested Python containers (lists, tuples, dicts) holding JAX arrays (or other values) as "leaves"
- Ubiquitous in JAX for parameters, metrics, optimizer states and etc.
- Essential for initializing complex structures, applying updates, aggregating results

```
params = {
   "layer1":{
      "w":[1, 1],
      "b":2
   "layer2":{
      "w":3,
      "b":4
```

Working with pytrees

- Most JAX functions (jit, grad, vmap, optimizers) operate transparently over pytrees
- jax.tree.map() works similarly to Python map(), but operates over pytrees

```
params = {
   "layer1":{
      "w":[1, 1],
      "b":2
   "layer2":{
      "w":3,
      "b":4
jax.tree.map(lambda x: x*2, params)
# {'layer1': {'b': 4, 'w': [2, 2]}, 'layer2': {'b':
8, 'w': 6}}
```

JAX Strength: Explicit Parallelism (shard_map) aka "shmap"

- Manual Control: Provides explicit, manual control over multi-device parallelism, complementing jit's automatic partitioning.
- **SPMD Approach**: You write the code from a device-local perspective (Single-Program Multiple-Data).

JAX Strength: Explicit Parallelism (shard_map) aka "shmap"

- Explicit Communication: Requires users to explicitly write collective communication operations (e.g., all_gather, psum) needed between devices/shards.
- **Expressive & Debuggable**: Offers more expressiveness and can work eagerly, aiding debugging.

JAX Strength: shard_map() (aka "shmap")

```
import jax
import jax.numpy as jnp
# jax.P is also a direct alias of PartitionSpec
from jax.sharding import Mesh, PartitionSpec as P
mesh = jax.make_mesh((8,), ('x',))
@jax.jit
def f_elementwise(x):
  return 2 * jnp.sin(x) + 1
```

JAX Strength: shard_map() (aka "shmap")

```
f_elementwise_sharded = jax.shard_map(f_elementwise,# From previous
    mesh=mesh, in_specs=P('x'), out_specs=P('x'))

arr = jnp.arange(32)
sharded = f_elementwise_sharded(arr)
sharded
```

JAX Strength: shard_map() (aka "shmap")

jax.debug.visualize_array_sharding(sharded)

CPU, GPU, TPU - Write Once, Run Anywhere (Fast!)

- NumPy: Primarily CPU-bound. GPU/TPU require other libraries (CuPy, Numba, etc.) often with code changes.
- JAX: Built on XLA. Runs seamlessly on GPUs and TPUs without changing your jax.numpy code.
 - JAX detects available hardware.
 - jax.jit() compiles code optimized for the specific accelerator.
- Benefit: Massive speedups for large-scale computation (deep learning, physics simulations) with minimal effort. Just run your script on a machine with the hardware!

Hardware Portability: JAX v PyTorch v TF Failure Rates

	Comparison of TPU and GPU Failure and Success Rates						
	\mathbf{GPUs}			TPUs			
	Success		ilure	Success	Failure		
	Pass	Partial	Complete	Pass	Partial	Complete	
TensorFlow	78%	8%	14%	71%	15%	14%	
PyTorch	92%	3%	5%	57%	27%	17%	
JAX	98%	0%	2%	97%	0%	3%	

Source:

The Grand Illusion: The Myth of Software Portability and Implications for ML Progress (Cohere/MIT Sept 2023)

Key Differences at a Glance

Feature	NumPy	JAX NumPy	Why It Matters
Mutability	Mutable (in-place)	Immutable	Functional style, JAX transforms
Execution	Eager	JIT Compiled (via XLA)	Performance (esp. accelerators)
In-place Ops	a[i] = x	a.at[i].set(x) (new array)	Immutability requirement
Views/Copies	Often Views	Typically Copies	JIT optimizes copies away
RNG	Global State (np.random)	Explicit Keys (jax.random)	Reproducibility, parallelism
Autodiff (grad)	External Libs	Built-in (jax.grad)	Foundational for ML
Auto-vectorize (vmap)	Manual / Broadcasting	Built-in (jax.vmap)	Easier batching
Hardware	CPU (mostly)	CPU, GPU, TPU	Performance scaling

Learning Resources

Code Exercises, Quick References, and Slides

https://goo.gle/learning-jax

More videos for learning JAX

https://goo.gle/learn-jax-videos

Learn JAX

Community and Docs

Community:

https://goo.gle/jax-community

Docs

- JAX AI Stack: https://jaxstack.ai
- JAX: https://jax.dev
- Flax NNX: https://flax.readthedocs.io