Big 'O'... & Partial Order

Yue

Outline

- Asymptotic notation
- Master Method
- Partial Order basic

Asymptotic Notation

Application examples:

• P & NP

More formally, for a language L, we have $L \in P$ if there exists a polynomial-time algorithm D such that:

- ullet if $x\in L$, then D accepts x
- if $x \notin L$, then D rejects x

Similarly, we have $L \in \mathsf{NP}$ if there exists a polynomial-time algorithm V such that:

- ullet if $x\in L$, then V(x,c) accepts for at least one certificate c
- if $x \notin L$, then V(x,c) rejects for all certificates c
- Sorting algorithm

Sort	Best	Average	Worst	Memory
Bubble	Ω(n)	Θ(n ²)	O(n ²)	O(1)
Selection	$\Omega(n^2)$	Θ(n ²)	O(n ²)	O(1)
Insertion	Ω(n)	Θ(n ²)	O(n ²)	O(1)
Неар	Ω(n log n) (distinct keys)	Θ(n log n)	O(n log n)	O(1)
Merge	Ω(n log n)	Θ(n log n)	O(n log n)	O(n)
Quick	Ω(n log n)	Θ(n log n)	O(n ²)	O(log n)

Definition

	Notation	Formal definition	Limit definition
Asymptotic upper bound	f(n) = O(g(n))	exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$	$\lim_{n\to\infty} \sup\left(\frac{f(n)}{g(n)}\right) < \infty$
Asymptotic lower bound	$f(n) = \Omega(g(n))$	exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$	$\lim_{n \to \infty} \inf \left(\frac{f(n)}{g(n)} \right) > 0$
Asymptotic tight bound	$f(n) = \Theta(g(n))$	exist positive constants c1, c2, and n_0 such that $0 \le c1g(n) \le f(n) \le c2g(n)$ for all $n \ge n_0$	The two above

Stirling approximation:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

What's the time complexity of the following algorithm?

```
void insertionSort(int arr[], int n)

int i, key, j;

for (i = 1; i < n; i++) {

key = arr[i];
 j = i - 1;

while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j = j - 1;

arr[j + 1] = key;
}

arr[j + 1] = key;
}
```

```
int partition(int arr[], int low, int high)
    int pivot = arr[high];
    int i = (low - 1);
    for (int j = low; j <= high - 1; j++) {</pre>
    if (arr[j] < pivot) {</pre>
            i++;
            swap(&arr[i], &arr[j]);
    swap(&arr[i + 1], &arr[high]);
    return (i + 1);
void quickSort(int arr[], int low, int high)
    if (low < high) {</pre>
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
```


Master Theorem

What's the complexity of merge sort?

$$T(n) = 2T\left(rac{n}{2}
ight) + O(n)$$

Special case:

$$T(n) = kT\left(rac{n}{b}
ight) + \mathrm{O}(n^d\log^w n)$$
 $T(n) = kT\left(\left\lfloorrac{n}{b}
ight
floor
ight) + \mathrm{O}(n^d\log^w n)$ $T(n) = kT\left(\left\lceilrac{n}{b}
ight
ceil
ight) + \mathrm{O}(n^d\log^w n)$

$$T(n) = egin{cases} \mathrm{O}(n^d \log^w n) & ext{if } k/b^d < 1 \ \mathrm{O}(n^d \log^{w+1} n) & ext{if } k/b^d = 1 \ \mathrm{O}(n^{\log_b k}) & ext{if } k/b^d > 1 \end{cases}$$

```
 \begin{aligned} \textbf{Algorithm} \ \textit{MergeSort}(A[1..n]: \text{array of } n \text{ integers}): \\ \textbf{If} \ n &= 1 \text{ } \textbf{return} \ A \\ m &:= \lfloor n/2 \rfloor \\ L &:= MergeSort(A[1..m]) \\ R &:= MergeSort(A[m+1..n]) \\ \textbf{Return} \ merge(L,R) \end{aligned}   \begin{aligned} \textbf{Subroutine} \ merge(A[1..m],B[1..n]): \\ \textbf{If} \ m &= 0 \text{ } \textbf{return} \ B \\ \textbf{If} \ n &= 0 \text{ } \textbf{return} \ A \\ \textbf{If} \ A[1] &> B[1] \text{ } \textbf{return} \ B[1] + merge(A[1..m],B[2..n]) \\ \textbf{Return} \ A[1] + merge(A[2..m],B[1..n]) \end{aligned}
```

If T(n) = aT(n/b) + f(n) (for constants $a \ge 1$, b > 1), then

```
    T(n) = Θ(n<sup>log<sub>b</sub> a</sup>) if f(n) = O(n<sup>log<sub>b</sub> a-ε</sup>) for some constant ε > 0.
    T(n) = Θ(n<sup>log<sub>b</sub> a</sup> lg n) if f(n) = Θ(n<sup>log<sub>b</sub> a</sup>).
    T(n) = Θ(f(n)), if f(n) = Ω(n<sup>log<sub>b</sub> a+ε</sup>) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large n (regularity condition).</li>
```


$$T(n) = kT\left(rac{n}{b}
ight) + \mathrm{O}(n^d) \ T(n) = kT\left(\left\lfloorrac{n}{b}
ight
floor
ight) + \mathrm{O}(n^d) \ T(n) = kT\left(\left\lceilrac{n}{b}
ight
ceil
ight) + \mathrm{O}(n^d)$$

$$T(n) = egin{cases} \mathrm{O}(n^d) & ext{if } k/b^d < 1 \ \mathrm{O}(n^d \log n) & ext{if } k/b^d = 1 \ \mathrm{O}(n^{\log_b k}) & ext{if } k/b^d > 1 \end{cases}$$

Divide and conquer "分而治之"

there are
$$1 + \log_b n$$
 total levels in the recursion.

$$O\left(\left(\frac{n}{b^i}\right)^d\right) = O\left(\frac{n^d}{b^{id}}\right)$$

$$= b^{-id} \cdot O(n^d)$$

With
$$k^i$$
 subproblems at level i, the total work T_i at level i is $T_i = \frac{k^i}{b^{id}} \cdot O(n^d)$
= $\left(\frac{k}{b^d}\right)^i \cdot O(n^d)$

$$T = \sum_{i=0}^{\log_b n} T_i$$

Examples

$$T(n) = 3T(n/2) + n^2$$

$$T(n) = 4T(n/2) + n^2$$

$$T(n) = T(n/2) + 2^n$$

$$T(n) = 16T(n/4) + n$$

Answer:

$$T(n) = 3T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2)$$

$$T(n) = 4T(n/2) + n^2 \Longrightarrow T(n) = \Theta(n^2 \log n)$$

$$T(n) = T(n/2) + 2^n \Longrightarrow \Theta(2^n)$$

$$T(n) = 16T(n/4) + n \Longrightarrow T(n) = \Theta(n^2)$$

Partial Order

Poset (P, \leq)

- Reflexive: $\forall x \in P, x \leq x$
- Antisymmetric: $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$
- Transitive: $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$

(maybe for some x, y no relation between them)

+ dichotomy $\forall x, y \in P (x \le y \text{ or } y \le x)$ and if original order relation kept

=> Linear order

linear extention

Minimal/maximal: no larger/smaller element (may not unique)

e.g.: (all subset of a set X, \subset);

A directed graph without cycle

Comparable with every element

Minimum/maximum(unique if exist)

Example

We naturally order the numbers in Am= $\{1,2,...,m\}$ with "less than or equal to," which is a partial ordering. We define an ordering, \leq on the elements of Am×An by

$$(a,b) \leq (a',b') \Leftrightarrow a \leq a' \text{ and } b \leq b'$$

- 1. Prove that \leq is a partial ordering on Am \times An.
- 2. Draw the Hasse diagrams for \leq on A2×A2, A2×A3
- 3. What is the minimal element? What is the minimum element?

- 1. (L, |(divisibility)) is a poset
- 2. What is the minimal element? What is the minimum element?

End QAQQ&A

Reference

• Umich EECS376 Notes