Michael Painter

8 years of experience in machine learning, with projects in reinforcement learning, computer vision, image generation, natural language processing, and experience with parallel and distributed systems. Authored first open-source, parallelised implementation of trial-based heuristic tree search in C++. PhD student at the University of Oxford, with research focusing on Sequential Decision Making, Reinforcement Learning and Monte Carlo Tree Search.

EDUCATION

Oxford University, Oxford Robotics Institute

Oct 2018 - Current

DPhil Engineering Science (Robotics/Machine Learning) - Supervisors: Nick Hawes & Bruno Lacerda

- Developed THTS++ library: first open-source parallelised implementation of Trial-Based Heuristic Tree Search in C++
- Published papers on state-of-the-art methods for Monte Carlo Tree Search at NeurIPS and ICAPS
- Co-authored the Risk-Aware Probabilistic Planning fOr Robot Teams library used internally by GOALS research group
- Teaching: masters project supervision and teaching assistant for robotics and software engineering courses

Stanford University

Sep 2016 – Jun 2018

MS Computer Science (AI Specialisation)

- Main courses: AI, Machine Learning, Reinforcement Learning, Robotics, Computer Vision, NLP with Deep Learning, Randomised Algorithms, Data Mining, Principles of Computer Systems
- Teaching assistant for Probability, Reinforcement Learning and Principles of Computer Systems courses
- Research project using Variational Autoencoders for sequential image generation in the Ermon group (SAIL)

Cambridge University, Churchill College

Oct 2013 - Jun 2016

BA (Hons) Computer Science

• Main courses: Algorithms, AI, Computer Vision, Concurrent/Distributed Systems, Networks, Probability, Linear Algebra, Information Theory, Databases, Security, Computer Systems Modelling, Unix

Work Experience

${\bf Software\ Engineer\ Intern\ --\ Google\ (Mountain\ View,\ US)}$

Jul 2019 - Oct 2019

Display Ads Predictions Team

- Developed Generalised Linear Mixed Models to predict click-through rate (CTR) and conversion rate (CVR)
- Fitted models using variational inference on billions of data points to improve training efficiency and remove bias from gradient updates; built the training algorithm such that it could distributed to exploit data parallelism and model sparsity
- Technologies used: Python, TensorFlow, Google Borg

Applied Scientist Intern — Microsoft (Bellevue, US)

 $\mathbf{Jul}\ \mathbf{2018} - \mathbf{Sep}\ \mathbf{2018}$

- Deep Neural Networks (DNN) Frameworks Team
 - Trained Generative Adversarial Networks (GANs) to predict 3D human pose estimates from one RGB image
 - Used image data augmentation techniques to improve model robustness to "in the wild" images
 - Incorporated depth estimation networks to produce global 3D pose predictions, used by Kinect for Azure
 - Technologies used: Python, PyTorch, Horovod, NumPy, SciPy, ONNX

Software Development Engineer Intern — Amazon (Sunnyvale, US) Alexa Domains, Lab126

Jun 2017 – Sep 2017

- T 1 1 1 1 C 1 1
- Improved delivery of alarms by removing the necessity of sound files to be stored on devices
- Technologies used: Java, AWS services such as S3, DynamoDB, EC2

Software Engineering Intern — GeoSpock Ltd. (Cambridge, UK)

Jun 2015 - Sep 2015

- Developed an eventually consistent cache for a geo-spatial database that led to a 3x increase in throughput
- Technologies used: Java, Google App Engine, Javascrip, Go, React, NodeJS

SELECTED PROJECTS

THTS++

Oct 2022 – Ongoing

- First open-source parallelised implementation of *Trial-Based Heuristic Tree Search* in C++, a modular library which generalises *Monte Carlo Tree Search* methods such as *Upper Confidence bound applied to Trees* (UCT)
- ullet Enables multi-threaded tree-search and includes implementation of UCT and algorithms described in projects below
- (Ongoing) Implementing support for use as a Python package using PyBind11 and the Python/C API
- Technologies used: C++, GTest, PyBind11, Python/C API

Using Tree Search To Integrate Skills From Multiple Agents

Jun 2023 - Ongoing

- Training RL agents with policy gradient methods to perform specific skills in Rocket League
- Using AlphaZero-style algorithms for policy improvement to integrate knowledge from multiple agents into a single one
- Technologies used: Python, PyTorch, RLGym, RLBot

Simplex Maps For Multi-Objective Monte Carlo Tree Search

Aug 2023 - Ongoing

• Developed simplex map data structure to overcome scalability issues in prior multi-objective planners

- Integrating the data structure with the algorithms developed in MCTS with Boltzmann Exploration
- Improved scalability with respect to size and number of objectives on baseline environments
- Technologies used: C++, qhull, THTS++, MO-Gymnasium

MCTS with Boltzmann Exploration (NeurIPS2023)

Jan 2022 - May 2023

- Developed two Monte Carlo Tree Search (MCTS) algorithms using Boltzmann search policies
- Proved exponential convergence bounds for the performance of both algorithms using simple regret
- Used the Alias method for faster sampling and improving the asymptotic complexity of the algorithms
- Technologies used: C++, KataGo

Convex Hull Monte-Carlo Tree Search (ICAPS2020)

Apr 2019 – Jan 2020

- Adapted Monte Carlo Tree Search for multi-objective planning using convex hull backups
- Novel analysis of sample based multi-objective planning algorithms using contextual regret
- Improved scalability over prior works, demonstrated with Generalised Deep Sea Treasure environments
- Technologies used: Python, NumPy, SciPy

Sequential Variational Autoencoders — SAIL/Ermon Group

Jan 2018 - Jun 2018

- Work on applying Variational Autoencoders (VAEs) sequentially to generate "sharper" images
- Developed novel objective functions and used multiple VAE architectures to improve image quality
- Technologies used: Python, TensorFlow, NumPy

Efficient Architecture Search — Stanford CS231N Project

Apr 2018 - Jun 2018

- Implemented novel network preserving transformations for Convolutional Neural Networks
- Demonstrated networks can be trained using fewer floating-point operations by first training a smaller network and using the transformations to increase the number of model parameter
- Used the transformations with neuroevolution and parameter sharing in an efficient architecture search
- Technologies used: Python, PyTorch, NumPy

BiDAF for Reading Comprehension — Stanford CS224N Project

Jan 2017 - Mar 2017

- Implemented the Bidirectional Attention Flow model for the SQuAD reading comprehension task
- Explored various modifications to the model, such as using stacked BiLSTMs and Quasi-RNNs
- Technologies used: Python, TensorFlow, NumPy

MapReduce Framework — Stanford CS110 Final Project

Dec 2016

• Implemented map-reduce framework in C++ to run a distributed word count program

Teaching

University of Oxford — Teaching Assistant & Project Supervisor

Oct 2018 - Apr 2023

- ullet Teaching assistant for the $Autonomous\ Robotics$ course in the $AIMS\ CDT$ program (new course in 2020)
- Developed and ran a day's worth of course material, including lecture material, coding practicals on planning
- Lab demonstrations (office hours) for Engineering Science course on Software Engineering
- Supervised a Fourth Year Project titled: Learning How Best to Recover from Failures

Stanford University — Course Assistant

Jan 2017 - Jun 2018

- \bullet Courses: Probability, Reinforcement Learning and Computer Systems (Concurrent & Distributed Systems)
- Duties included: holding office hours and labs, writing questions for assignments and exams, organizing lecture note creation (Reinforcement Learning), grading and code reviewing

Public Speaking

Research Updates, Oxford University

Oct 2018 – Ongoing

• Delivered frequent research updates to the Oxford Robotics Institute and GOALS research group and regularly led reading group presentations and discussions on relevant research topics

Conference Presentations

- \bullet NeurIPS2023: Poster presentation on MCTS with Boltzmann Exploration
- ICAPS2020: 15-minute oral presentation on Convex Hull Monte Carlo Tree Search in the main conference and poster presentation at the doctoral consortium

Churchill Computer Science Talk Series, Cambridge University

Oct 2014, Mar 2016

- Don't like the sound of your voice? You can do something about that! 30-minute talk covering auto-tune
- An Introduction to Computerised Tomographic Imaging 30-minute talk covering tomographic imaging,

MISCELLANEOUS

Languages: Python, C/C++, Java, Cython, Matlab, SQL, Javascript, HTML

Packages: PyTorch, NumPy, SciPy, TensorFlow, PyBind11, GTest, Git, SKLearn, Microsoft Azure, AWS

Activities/Interests: Keen hiker; Ex-competitive track and field athlete; Picking up skills, such as juggling, slacklining

and cocktail making; Getting lost in a novel; Struggling to find shoes that fit