Lógica Fuzzy

Conceitos e Aplicações

William Sdayle Marins Silva

Universidade Tecnológica Federal do Paraná Departamento de Bioinformática

10 de março de 2021

Apresentação

- 1. Introdução
- 2. Conceitos
- 3. Conjuntos fuzzy
- 4. Exemplos

Introdução

- A lógica clássica, ou crisp, foi desenvolvida no século IV a.C por Aristóteles.
- Acreditava-se que o universo poderia ser definido por relações numéricas.
- Até o século XIX, a lógica Aristotélica era utilizada como base para qualquer pesquisa matemática na área. Até que foi desenvolvida a lógica aritmética booleana, lógica binária.

Introdução

- A lógica booleana ficou por muitas décadas no esquecimento.
- Até que foi redescoberta, ao lado dos circuitos integrados, trazendo luz aos microprocessadores e computadores modernos.
- Todos os estudos citados foram utilizados como base para os trabalhos de pesquisadores chegarem até a lógica Fuzzy.

Introdução

- Em 1960, Lotfi Zadeh inventou a lógica Fuzzy, "Information and control" (1965)
- Combinando conceitos da lógica crisp através de relações graduadas.
- Buscava ligar matemática e inteligência humana.

Problemas da lógica binária

- Nenhuma correlação com o mundo real, ou relações imprecisas
- Problemas de modelas e adequação ao problema a ser solucionado.

Lógica Nebulosa (Fuzzy)

Conceito

Fuzzy leva em consideração o aspecto da incerteza, por isso o nome nebulosidade. Trata-se de uma ambiguidade que pode ser encontrada na definição de um conceito ou no sentido da palavra.

Afirmação

A lógica Fuzzy, é basicamente, uma teoria de conceitos graduados, buscando encontrar elasticidade nas afirmações. Em geral, a lógica fuzzy, busca aumentar o domínio de conhecimento, que antes era estabelecido como Verdade ou Mentira, trazendo novas afirmações como "pode ser".

Lógica binária (clássica) vs Lógica fuzzy

- Lógica binária possui limites muito bem definidos, tais como verdadeiro ou falso. A lógica fuzzy não possi limites bem definidos.
- Lógica binária se baseia em valores específicos e bem estabelecidos, já a lógica fuzzy pode estabelecer a quantidade de um limite em outro.

Princípios básicos da lógica Fuzzy

- A lógica Fuzzy se baseia na percepção humana.
- Busca classificar seu pensamento em classes de objetos, onde algo pertencer ou não a essa classe é gradual e não abrupta.
- Enquanto a lógica clássica possuía fronteiras bem definidas, já a lógica Fuzzy apresenta nebulosidade, o qual busca se aproximar ao raciocínio humano.

Complexidade para processamento computacional

Uma pergunta simples para um ser humano pode ser uma pergunta extremamente complexa para um computador. Por exemplo, este jogador é alto?

Complexidade para processamento computacional

Como está o **clima** na sua cidade, está **muito frio** ou **muito quente**? **Onde** fica sua casa, é **muito longe** daqui? Ambas são perguntas **subjetivas**, buscando respostas do mesmo gênero.

Complexidade para processamento computacional

Possíveis soluções para problemas computacionais.

Figura: Linha do tempo de solução computacionais.

Características da lógica Fuzzy

- Alta quantidade de palavras e não números
 - termos linguísticos: rápido, ligeiro, devagar, lento, quente, morno, frio, alto
- Troca nos predicados
 - muito quente, pouco quente, mais ou menos quente
- Pertinência mapeada entre 0 e 1
 - a pertence ao conjunto X com um valor de pertinência entre 0 (não pertence) e 1 (pertence totalmente).
 - grau de pertinência não é probabilidade!!

Lógica Fuzzy x Probabilidade

- Lógica Fuzy → trabalhar com eventos que tenham grau de pertinência em possivelmente mais que um conjunto.
- ullet Probabilidade o descobrir se um determinado evento pode ou não acontecer.

Lógica Fuzzy x Probabilidade

Escolha entre duas garrafas:

- 1. O rótulo da garrafa 1 diz que o líquido dentro dela pertence com grau de 90% ao conjunto de águas potáveis e 10% ao conjunto dos venenos.
- 2. O rótulo diz que tem 90% de chance de ser água potável e 10% de chance de ser veneno

Primeira

Água da Nestlé ou Cianeto

Primeira

Você tem 10% de chance de morrer, pois há chance de o líquido ser um veneno puro.

Conjuntos fuzzy

- Conjuntos fuzzy possuem elementos que têm graus de pertinência.
- Na teoria clássica dos conjuntos, a pertinência é avaliada como ser ou não ser de um determinado conjunto.
- Na teoria dos conjuntos fuzzy, permite a avaliação gradual da associação de elementos em um conjunto.
- Para isso, usa-se a função de pertinência valorada, podendo variar em um valor real nos limites [0,1].

- Um conjunto fuzzy é um par (U, m), sendo que U é um conjunto e $m: U \rightarrow [0, 1]$
- $\forall_x \in U$, o valor de m(x) é chamado de grau de pertinência de x em (U, m).
- Sendo que, em um conjunto finito $U = \{x_1, ..., x_n\}$, o conjunto fuzzy é denotado na maioria das vezes por $\{m(x_1)/x_1, ..., m(x_n)/x_n\}$
- A função m é chamada de função de pertinência de um conjunto fuzzy (U, m)

ullet Um conjunto Fuzzy A em X é expresso como um conjunto de pares ordenados

$$A = \{(x, m_A(x)) | x \in X\} \tag{1}$$

- A → conjunto fuzzy
- $m_A(x) \rightarrow$ função de pertinência (MF)
- $X \rightarrow$ universo ou universo de discurso

Um conjunto Fuzzy é totalmente caracterizado por sua função de pertinência (MF)

- Lógica Clássica: um determinado elemento pode ou não pertencer a um conjunto
 - ullet conjunto o alto
 - Curry é alto; Curry não é alto
- Lógica Fuzzy: o elemento pertence totalmente, não pertence ou está parcialmente presente em um conjunto.
 - Curry é um pouco alto

Não Alto

Lógica Fuzzy

Alto

Como encher o copo da melhor forma possível??

Métodos de otimização da funções...

Carros autônomos..

Valores Crisp e Fuzzy

Valor Crisp

Número muito preciso que representa o estado de um fenômeno associado.

Ex: Uma Lamborghini pode acelerar de <u>0</u> a <u>100</u> km/h em <u>4</u> segundos.

Valor Fuzzy

Colocação ambígua que pode caracterizar um fenômeno impreciso ou não compreendido.

Ex: Leopardos correm muito rápido.

Fuzificação

- Valores crisp \rightarrow \rightarrow valores fuzzy
- Função de pertinência
 - Ex: temperatura, x=40 (valor crisp)
 - Conjunto fuzzy = frio, morno, quente
 - $mT(x) \rightarrow função de pertinência de x em T$
 - $mT(40) \rightarrow 0.2/frio$, 0.4/morno, 0.8/quente

Fuzificação

Função de pertinência

- mT(23) até mT(27) = 1
 - temperatura ambiente
- mT(21) até mT(29)
 - temperatura quase ambiente
- mT(0) até mT(50)
 - temperatura não ambiente

Fuzificação

O jogador Stephen Curry mede 1.90, ele é alto?

Considere:

- Jogador mais alto da história da NBA media 2.31;
- Shaquille O'Neal mede 2.16 e ele é muito alto!!
- 1. 0.1 = muito baixo
- 2. 0.2 = baixo
- 3. 0.3 = meio baixo
- 4. 0.4 e 0.5 = médio
- 5. 0.6 = meio alto
- 6. 0.7 e 0.8 = alto
- 7. 0.9 = muito alto
- 8. 1.0 = gigante

Fuzificando

$$f(x) = x/\max (2)$$

$$f(x) = 190(cm)/231(cm)(max)$$
 (3)

$$f(x) = 0.8225 (4)$$

Fuzificando as relações de medida e altura, curry é alto.

Código

Link para COLAB