BÖLÜM 6. SÜRTÜNME KUVVETLERİ

6.1. Giriş

İki cismin birbirine etkide bulunmaları değişik şekillerde olabilir. Mafsallı ve yarık içinde kayma tipi etkileşmeler dışında bir de iki cismin aralarındaki itme kuvveti ile yüzeylerin birbirine dokunurken birbirlerine göre kaymaları söz konusu olabilir. İşte bu durumlarda sürtünme problemleri ortaya çıkar. Dokunma yüzeylerinde teğetsel kuvvet pasif bir kuvvet olup üst sınırı vardır. Üst sınıra varınca göreceli hareket başlar. Hareket başlayınca sürtünme dinamik sürtünme şekline dönüşür.

6.2. Sürtünme Katsayıları

İki cismin temasta olduğunu düşünelim

Şekil 6.1.

 R_1 C_1 cisminin C_2 cismine, R_2 C_2 cisminin C_1 cismine etkisidir. $\alpha \leq \Upsilon_S$ oldukça kayma olmaz. Bu Υ_S açısına statik sürtünme açısı denir. Görüldüğü gibi R_1 şiddetine hiçbir koşul konmamaktadır. Ancak genellikle cisimlerden biri hareketsizdir, diğerinin hareket edip etmeyeceği incelenir.

Yerdeki veya masa üstündeki bir kutuyu düşünelim

Şekil 6.2.

Eğer P'nin α açısı Υ_S den büyükse kayma olur. P dıştan etkilerle kutunun ağırlığı dahil tüm kuvvetlerin bileşkesidir. C_2 ye doğru olmalı ve Υ_S den küçük bir α açısı olmalıdır ki denge olabilsin. Aksi halde hareket olur.

Bileşke kuvvet koni dışında ise kayma olur. Düzlemde iki sınır konum vardır, fakat uzayda sonsuz sayıda seçenek vardır. Υ_S çok küçük ise yüzeye sürtünmesiz veya cilalı yüzey denir. Υ_S dokunan iki cismin yüzeylerinin fiziksel ve kimyasal özelliklerine bağlıdır.

Şekil 6.4.

 $\alpha \le \Upsilon_s$ olursa kayma olmaz. $\alpha = \Upsilon_s$ limit durum. Sürtünmeyi açıdan söz etmeden de inceleyebiliriz.

R'nin bileşenleri f ve N

P'nin Bileşenleri P_t ve P_n

Denge varsa R=P ve P_f =f ve P_n =N dir.

(dengede) $\alpha{\le}\Upsilon$ ise Υ_S ve $\alpha \le 90^0$ olup $tan\alpha \le tan\Upsilon_S$ olur.

$$f/N \leq tan \Upsilon_S \hspace{1cm} f \leq N^*tan \Upsilon_S \hspace{1cm} f \leq N^*\mu_s$$

 μ_s : Statik sürtünme katsayısı denir.

 μ_s : Boyutsuzdur.

Sınır durumda $f_m\!\!=\!\!N^*\mu_s$ olur.

aslında

Deneysel sonuçlar statik sürtünme için f_m sınır durum değerinin dokunma yüzeyine dik N bileşenin bir sabit değerle çarpımı olduğundan göstermektedir.

$$f_m=N*\mu_s$$

Bu statik sürtünme için f_{m} aşıldıktan sonra kayma başlar ve

 $f_d \!\!=\!\! N^* \mu_d$ sürtünme kuvveti cisme etki eder. $\mu_d < \mu_s$

6.3. Kuru Sürtünme Problemleri

Kuru sürtünme problemleri dört tipten olabilir.

Şekil 6.8.

Denge denkleminden f ve N bulunur $f < f_m = \mu N$

Statik denge denklemleri kullanılır. Kaymanın başlamak üzere olduğu yüzeylerde f=N* μ_s yazılır.

3-Hareket başlamak üzeredir fakat nerede başladığı bilinmemektedir.

Değişik olasılıklar ayrı ayrı ele alınır.

4-Kaymamı başlıyor devrilmemi oluyor bilinmemektedir.

Şekil 6.11.

Her iki olasılık ayrı ayrı incelenir.

30 kg'lık bir merdiven sürtünmesiz bir duvara dayanmıştır. Döşeme üzerinde μ_s =0,3 olduğuna göre merdiven dengedemidir.

Şekil 6.12.

Şekil 6.13.

 $f \! < \! f_m \;\; kayma \; olmaz$

 $f_m = \mu N_A = 0.3*30 = 9 \text{ kg}$

300 N'luk bir kutu 30^0 eğimli yüzey üzerinde 200 N'luk bir kuvvet ile sabit hızla yukarı kaydırılabiliyor. μ =?

Sabit hız $\sum F = 0$

Şekil 6.14.

Şekil 6.15.

$$\rightarrow$$
 + $\sum F_x = 0$ (Sağ Yön Pozitif)
200-300sin30-f_m =0 f_m =50 N
 \uparrow + $\sum F_y = 0$ (Yukarı Yön Pozitif)
N-300cos30=0 N=259,8 N

$$f_m\!\!=\!\!\mu\;N \hspace{1.5cm} 50\!\!=\!\mu\;\!*\!259,\!8 \hspace{1.5cm}\mu\!\!=\!\!0,\!1924$$

Şekildeki 20 kg'lık merdiven için μ_A en az ne olmalıdırki 90 kg kütleli adam A'dan 2 m yukarı çıktığında kayma olmasın

Şekil 6.16.

A

Limit durum olduğu için:

$$f_A = \mu_A * N_{A...}(1)$$

$$f_B = 0.2*N_B....(2)$$

$$\sum M_A = 0$$
 (Saat Yönü Tersi Pozitif)

$$f_B*3\cos 60+N_B*3\sin 60-20*1,5\cos 60-90*2*\cos 60=0.....(3)$$

$$\rightarrow$$
 + $\sum F_{x} = 0$ (Sağ Yön Pozitif)

$$f_A-N_B=0$$
....(4)

$$\uparrow$$
 + $\sum F_y = 0$ (Yukarı Yön Pozitif)

$$N_A + f_B - 20 - 90 = 0$$
....(5)

Ortak çözümden

$$N_B=36,25 \text{ kg}$$
 $f_B=7,25 \text{ kg}$ $N_A=102,8 \text{ kg}$ $f_A=36,25 \text{ kg}$ $\mu_A=0,35$

Hareket için

Şekil 6.18.

Şekil 6.20.

$$T_1=0,3*10=3 \text{ kN}$$
 $T_2=0,1*40=4 \text{ kN}$

 $T_{min}=T_1=3 kN$

Şekil 6.21.

 $P_{min}=0,2*60+3=15 \text{ kN}$

ÖRNEK

Şekil 6.22.

500 kg'lık bir kutu bir halat ile çekilmektedir Kutunun hareketi için gereken kuvvet kutuyu devirirmi, kaydırırmı

Şekil 6.24.

Şekil 6.23.

 $P_1 \le P_2$ kayma olur

Kaymadan durabilecek en büyük yük nedir?

Şekil 6.26.

$$\sum M_A=0$$
 (Saat Yönü Tersi Pozitif) 5*N-8*5000=0 N=8000 N
$$\mu^* \text{N=}0,3*8000=2400 \text{ N}$$

Sistem dengede ise ipteki gerilme ne olur. Her yerde μ=0,3

Şekil 6.29.

1 de yerine konursa T=266 N

ÖDEV

w_A=2000 N, w_B=1000 N ise hareket için en küçük P=?

$$\rightarrow$$
 + $\sum F_x = N_1 - 0.2*N_2 \cos 20 - N_2 \sin 20 = 0$

$$\uparrow$$
 + $\sum F_y = N_2 \cos 20 - 0.2 * N_2 \sin 20 - 1000 = 0$

$$N_1 = 576 \text{ N}$$
 $N_2 = 1146 \text{ N}$

Şekil 6.31.

$$f_3=0,2*N_3$$

$$\rightarrow$$
 + $\sum F_x = -P + f_3 + 0.2(1146)\cos 20 + 1146\sin 20 = 0$

$$\uparrow$$
 + $\sum F_y = -2000 + N_3 - 1146\cos 20 + 0,2(1146)\sin 20 = 0$

Şekil 6.32.