Úloha 1 [5 bodů]

Nalezněte lineární zobrazení $\mathbf{A}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, pro které platí $\operatorname{def}(\mathbf{A}) = 2$, a dokažte, že je vaše volba správná.

Úloha 2 [5 bodů]

Mějme lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, nechť $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ je báze \mathbb{R}^3 , a ať $\mathbf{f}(\mathbf{b}_1) = \mathbf{b}_1$, $\mathbf{f}(\mathbf{b}_2) = \mathbf{b}_1$, $\mathbf{f}(\mathbf{b}_3) = \mathbf{b}_2$. Rozhodněte, jakých hodnot může nabývat rank (\mathbf{f}) , a své tvrzení dokažte.

Úloha 3 [10 bodů]

Rozhodněte, zda pro zobrazení $f:\mathbb{R}^2\longrightarrow\mathbb{R},\,f\begin{pmatrix}x\\y\end{pmatrix}=x\cdot y$ platí:

- 1. $f(\mathbf{o}) = 0$,
- 2. $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$ pro všechny dvojice vektorů $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$,
- 3. $f(a \cdot \mathbf{u}) = a \cdot f(\mathbf{u})$ pro každý vektor $\mathbf{u} \in \mathbb{R}^2$ a každé $a \in \mathbb{R}$.

Pro množinu $M \subseteq \mathbb{R}^2$ rozhodněte, zda

- 1. obsahuje nulový vektor,
- 2. je uzavřená na sčítání vektorů,
- 3. je uzavřená na násobení skalárem.

$$M = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid \max(x, y) = x \right\}$$

(Funkce max počítá maximum ze dvou čísel.)