ANÁLISE E PROJETO DE ALGORITMOS - REAVALIAÇÃO

Prof. Thiago Cavalcante

- Não use celular/computador e não converse com ninguém, a prova é individual.
- Sinta-se à vontade para tirar dúvidas (razoáveis) ou pedir esclarecimentos sobre as questões.
- Use letra legível! não posso dar nota para algo que não consigo ler.
- Lembre-se de assinar seu nome nas suas folhas. Se usar mais de uma folha, enumere cada página.
- **Seja organizado:** especifique número e letra da questão que você está respondendo e deixe um espaço entre as respostas, para não ficar tudo amontoado. Você pode pegar mais folhas, se precisar.

NOME: _

- 1. (3,0 pt) Use o princípio da indução para provar as afirmações a seguir.
 - (a) (0,8 pt) $6^n + 4$ é divisível por 5, para todo $n \ge 0$.
 - (b) (1,0 pt) $5^{2n+1}+2^{2n+1}$ é divisível por 7, para todo $n\geq 0.$
 - (c) (1,2 pt)

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1},$$

para todo $n \ge 1$.

2. (2,0 pt) Considere o pseudocódigo abaixo:

- (a) (0,5 pt) Expresse como um somatório a quantidade de vezes que a linha Comando é executada.
- (b) (1,0 pt) Simplifique o somatório até chegar a uma fórmula em função de n. Para isso, use a expressão abaixo:

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}$$

- (c) (0,5 pt) De acordo a fórmula, qual é o tempo de execução de pior caso em notação Big-Oh?
- 3. (1,5 pt) Ordene as funções a seguir por sua dominância, da mais dominante para a menos dominante:
 - n^3
 - n
 - \sqrt{n}
 - $n \log n$
 - $\log n$
 - n²
 - n!
 - cⁿ
 - 1
- 4. (1,5 pt) Mostre, usando as definições de O(f(n)) e $\Omega(f(n))$ que:
 - (a) Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n))
 - (b) Se $f(n) = \Omega(g(n))$, então g(n) = O(f(n))

- 5. (1,0 pt) Relacione cada complexidade de tempo com uma operação em um algoritmo.
 - (a) $O(n^2)$
 - (b) O(1)
 - (c) O(n!)
 - (d) $O(\log n)$
 - (e) O(n)
 - () Percorrer um array do início ao fim
 - () Extrair de um array um elemento de índice x
 - () Percorrer uma matriz do início ao fim
 - () Gerar todas as permutações de um conjunto de dados
 - () Fazer uma busca binária em um array ordenado
- 6. (1,0 pt) Para cada par de funções, especifique se f(n)=O(g(n)) ou $f(n)=\Omega(g(n))$. Lembre-se das relações de dominância.

(a)
$$f(n) = \sqrt{n},$$
 $g(n) = \log(n^2)$

(b)
$$f(n) = 6n^2$$
, $g(n) = n^2 \log n$

(c)
$$f(n) = n \log n + n, g(n) = \log n$$

(d)
$$f(n) = 10n^2$$
, $g(n) = 2^n$

(e)
$$f(n) = (\log n)^2$$
, $g(n) = \log n$