29 Sep 03

1) A thin airfoil at small angles of attack has a surface velocity very closely described by a power law.

$$u_e(x) \simeq u_\infty (x/c)^{\pm a}$$

The exponent a magnitude depends on the angle of attack, and its \pm sign corresponds to the pressure/suction sides.

1a) Compute the surface pressure coefficient $C_p(x)$ and lift coefficient c_ℓ as functions of a.

1b) Assume the chord Reynolds number $Re_c = u_{\infty}c/\nu$ is sufficiently small so that laminar flow is maintained. What is the maximum c_{ℓ} you expect this airfoil to have? (just before separation and stall)? Does this maximum c_{ℓ} depend on Re_c ? Explain.

1c) For $Re_c = 5000$, which might correspond to the wing of a dragonfly, determine the momentum thickness $\theta(x)/c$ and skin friction coefficient $C_f(x)$ on each of the two surfaces. Estimate the profile drag coefficient c_d and profile c_ℓ/c_d ratio. How might the size of the insect affect its flight efficiency?

2) The transformation $(x, y) \to (\xi, \eta)$:

$$\xi = x$$
 $\eta = \frac{y}{\Delta(x)}$

was shown to give similarity in (ξ, η) space if $u_e \sim x^m$, and $\Delta(x)$ is suitably chosen (e.g. as in the Falkner-Skan case $\Delta = \sqrt{\nu x/u_e}$).

Assuming that $u_e \sim x^m$, determine whether the following Δ definitions can or cannot produce similarity.

2a)
$$\Delta = \mu u_e/\tau_w$$

2b)
$$\Delta = \delta^*$$

1 2c)
$$\Delta = \theta + \delta^*$$

$$(\delta_{99})$$
 is the y location where $u = 0.99u_e$

2