## **Task 3 - The sparks Foundation**

### name - smita Rautmare

## Perform Exploratory Data Analysis' on dataset 'SampleSuperstore'

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In [4]: df = pd.read_csv('./SampleSuperstore.csv')

In [5]: df.head()
```

#### Out[5]:

|   | Ship<br>Mode      | Segment   | Country          | City               | State      | Postal<br>Code | Region | Category           | Sub-<br>Category | Sales    | Quantity | Discount | Profit    |
|---|-------------------|-----------|------------------|--------------------|------------|----------------|--------|--------------------|------------------|----------|----------|----------|-----------|
| 0 | Second<br>Class   | Consumer  | United<br>States | Henderson          | Kentucky   | 42420          | South  | Furniture          | Bookcases        | 261.9600 | 2        | 0.00     | 41.9136   |
| 1 | Second<br>Class   | Consumer  | United<br>States | Henderson          | Kentucky   | 42420          | South  | Furniture          | Chairs           | 731.9400 | 3        | 0.00     | 219.5820  |
| 2 | Second<br>Class   | Corporate | United<br>States | Los<br>Angeles     | California | 90036          | West   | Office<br>Supplies | Labels           | 14.6200  | 2        | 0.00     | 6.8714    |
| 3 | Standard<br>Class | Consumer  | United<br>States | Fort<br>Lauderdale | Florida    | 33311          | South  | Furniture          | Tables           | 957.5775 | 5        | 0.45     | -383.0310 |
| 4 | Standard<br>Class | Consumer  | United<br>States | Fort<br>Lauderdale | Florida    | 33311          | South  | Office<br>Supplies | Storage          | 22.3680  | 2        | 0.20     | 2.5164    |

```
In [6]: df.dtypes
Out[6]: Ship Mode
                         object
        Segment
                         object
                         object
        Country
                         object
        City
        State
                         object
                          int64
        Postal Code
        Region
                         object
                         object
        Category
                         object
        Sub-Category
        Sales
                        float64
                          int64
        Quantity
```

dtype: object

float64

float64

Discount

Profit

In [7]: df.describe()

Out[7]:

|       | Postal Code  | Sales        | Quantity    | Discount    | Profit       |
|-------|--------------|--------------|-------------|-------------|--------------|
| count | 9994.000000  | 9994.000000  | 9994.000000 | 9994.000000 | 9994.000000  |
| mean  | 55190.379428 | 229.858001   | 3.789574    | 0.156203    | 28.656896    |
| std   | 32063.693350 | 623.245101   | 2.225110    | 0.206452    | 234.260108   |
| min   | 1040.000000  | 0.444000     | 1.000000    | 0.000000    | -6599.978000 |
| 25%   | 23223.000000 | 17.280000    | 2.000000    | 0.000000    | 1.728750     |
| 50%   | 56430.500000 | 54.490000    | 3.000000    | 0.200000    | 8.666500     |
| 75%   | 90008.000000 | 209.940000   | 5.000000    | 0.200000    | 29.364000    |
| max   | 99301.000000 | 22638.480000 | 14.000000   | 0.800000    | 8399.976000  |

In [8]: df.shape

Out[8]: (9994, 13)

In [9]: df.describe(include="all")

Out[9]:

|        | Ship<br>Mode      | Segment  | Country          | City                | State      | Postal Code  | Region | Category           | Sub-<br>Category | Sales        | Quantity    | Disco    |
|--------|-------------------|----------|------------------|---------------------|------------|--------------|--------|--------------------|------------------|--------------|-------------|----------|
| count  | 9994              | 9994     | 9994             | 9994                | 9994       | 9994.000000  | 9994   | 9994               | 9994             | 9994.000000  | 9994.000000 | 9994.000 |
| unique | 4                 | 3        | 1                | 531                 | 49         | NaN          | 4      | 3                  | 17               | NaN          | NaN         | 1        |
| top    | Standard<br>Class | Consumer | United<br>States | New<br>York<br>City | California | NaN          | West   | Office<br>Supplies | Binders          | NaN          | NaN         | 1        |
| freq   | 5968              | 5191     | 9994             | 915                 | 2001       | NaN          | 3203   | 6026               | 1523             | NaN          | NaN         | 1        |
| mean   | NaN               | NaN      | NaN              | NaN                 | NaN        | 55190.379428 | NaN    | NaN                | NaN              | 229.858001   | 3.789574    | 0.156    |
| std    | NaN               | NaN      | NaN              | NaN                 | NaN        | 32063.693350 | NaN    | NaN                | NaN              | 623.245101   | 2.225110    | 0.206    |
| min    | NaN               | NaN      | NaN              | NaN                 | NaN        | 1040.000000  | NaN    | NaN                | NaN              | 0.444000     | 1.000000    | 0.000    |
| 25%    | NaN               | NaN      | NaN              | NaN                 | NaN        | 23223.000000 | NaN    | NaN                | NaN              | 17.280000    | 2.000000    | 0.000    |
| 50%    | NaN               | NaN      | NaN              | NaN                 | NaN        | 56430.500000 | NaN    | NaN                | NaN              | 54.490000    | 3.000000    | 0.200    |
| 75%    | NaN               | NaN      | NaN              | NaN                 | NaN        | 90008.000000 | NaN    | NaN                | NaN              | 209.940000   | 5.000000    | 0.200    |
| max    | NaN               | NaN      | NaN              | NaN                 | NaN        | 99301.000000 | NaN    | NaN                | NaN              | 22638.480000 | 14.000000   | 0.800    |
| 4      |                   |          |                  |                     |            |              |        |                    |                  |              |             | •        |

# **Univariate Analysis**

In [10]: | df['Segment'].value\_counts()

Out[10]: Consumer 5191 Corporate 3020

Home Office 1783

Name: Segment, dtype: int64

```
In [12]: df['Segment'].value_counts()/len(df['Segment'])*100
```

Out[12]: Consumer 51.941165 Corporate 30.218131 Home Office 17.840704

Name: Segment, dtype: float64

In [13]: S=(df["Segment"].value\_counts()/len(df["Segment"])\*100).plot(kind='bar',color='r')



```
In [14]: M=(df['Ship Mode'].value_counts())/len(df["Ship Mode"])*100
M
```

Out[14]: Standard Class 59.715829 Second Class 19.461677 First Class 15.389234 Same Day 5.433260 Name: Ship Mode, dtype: float64

```
In [15]: M.plot(kind='bar')
```

Out[15]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21542cbd648>



In [16]: df['Category'].value\_counts()

Out[16]: Office Supplies 6026 Furniture 2121 Technology 1847

Name: Category, dtype: int64

Out[17]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21542d31688>



```
In [18]: ((df['Sub-Category'].value_counts())/len(df["Sub-Category"])*100).plot(kind='bar')
```

Out[18]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21542d98148>



## **Bivariate Analysis**

```
In [22]: fig,a=plt.subplots()
    colors = {'Consumer':'blue', 'Corporate':'red', 'Home Office':'green'}
    a.scatter(df['Sales'],df['Profit'],c=df["Segment"].apply(lambda x: colors[x]))
    plt.show()
```



```
In [24]: tem_df=df.loc[(df['Segment']=='Consumer')&(df["Discount"]==0.1)]
    tem_df['Profit'].plot.hist(bins=50)
```

Out[24]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21543f05988>



```
In [25]: tem_df=df.loc[(df['Segment']=='Consumer')&(df["Discount"]==0.2)]
tem_df['Profit'].plot.hist(bins=50)
```

Out[25]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21543feea48>



```
In [27]: tem_df=df.loc[(df['Segment']=='Consumer')&(df["Discount"]==0.7)]
tem_df['Profit'].plot.hist(bins=50)
```

Out[27]: <matplotlib.axes.\_subplots.AxesSubplot at 0x21544125d08>



```
In [32]: tem_df=df.loc[(df['Category']=='Office Supplies')&(df["Discount"]<=0.3)]
    tem_df['Profit'].plot.hist(bins=50)</pre>
```

Out[32]: <matplotlib.axes.\_subplots.AxesSubplot at 0x215440c7f08>



```
In [37]: tem_df=df.loc[(df['Category']=='Technology')&(df["Discount"]>=0.3)]
tem_df['Profit'].plot.hist(bins=50)
```

Out[37]: <matplotlib.axes.\_subplots.AxesSubplot at 0x2154422dfc8>



```
In [38]: tem_df=df.loc[(df['Category']=='Technology')&(df["Discount"]<=0.3)]
tem_df['Profit'].plot.hist(bins=50)</pre>
```

Out[38]: <matplotlib.axes.\_subplots.AxesSubplot at 0x2154198bdc8>



from all observation it is conclude that

when discount<=30% then sales was going to profit

when discount>=30% then superstore has huge loss

```
In [41]: ans= df.groupby(["Segment","Discount"]).Profit.median()
ans.plot(kind='bar',stacked=True)
```

Out[41]: <matplotlib.axes.\_subplots.AxesSubplot at 0x215445f5248>



this shows exact scenario of profit of all segment when following discount offerd

In [ ]: