

Grafos e Algoritmos Computacionais

Passeios, Caminhos e Trilhas

Prof. André Britto modificada por: Prof. Breno Piva

- Um **passeio** em um grafo é uma sequência finita não vazia $P:=(v_0, a_1, v_1,..., a_i, v_i, a_{i+1},..., v_k)$ cujos são alternadamente vértices e arestas tal que, para todo i, $1 \le i \le k$, os extremos de a_i são v_{i-1} e v_i .
 - **Origem** *V0*.
 - Término (Destino) Vk.
 - Vértices internos do passeio V_i , $1 \le i \le k$.
 - Comprimento do Passeio k (número de arestas do passeio).
 - P passa pelos vértices de VP e pelas arestas de EP.
 - Trilha (ou cadeia) passeio sem arestas repetidas.
 - Caminho passeio sem vértices repetidos.

Exemplo

- $P = (V1, \alpha1, V2, \alpha2, V3, \alpha3, V4, \alpha7, V2, \alpha6, V5, \alpha6, V2)$
- $T = (V_1, \alpha_1, V_2, \alpha_2, V_3, \alpha_3, V_4, \alpha_7, V_2, \alpha_6, V_5)$

Uma seção de P é um passeio que é uma subsequência de termos consecutivos de P.

- Se $P = (u_0, a_1, u_1,...,a_k, u_k)$ e $Q = (v_0, b_1, v_1,...,b_j, v_j)$ são passeios com $u_k = v_0$, então a **concatenação** de P e Q, denotada por PQ é o passeio $(u_0, a_1, u_1,...,a_k, u_k = v_0, b_1, v_1,...,b_j, v_j)$.
 - Reverso de P, P $^{-1}P = (u, a_1, u_1, a_1, u_0)$

Exemplo

- $P = (V_1, a_1, V_2, a_2, V_3)$
- Q = (V3, a3, V4, a4, V5)
- $SP = (V_1, a_1, V_2)$
- $PQ = (V_1, a_1, V_2, a_2, V_3, a_3, V_4, a_4, V_5)$

Proposição

Se em um grafo *G* existe um passeio de *u* para *v*, então em *G* existe um caminho de *u* para *v*.

Prova

Seja P o passeio mais curto de u para v, $P = (u, a_1, u_1,...,a_k, u_k = v)$. Se P é um caminho então não há o que provar. Suponha, por absurdo, que P não seja um caminho de u para v. Então existem i e j tais que i < j e $u_i = u_j$, ou seja, existe uma repetição de vértices em P. Neste caso construa $Q = (u, a_1, u_1,..., u_i, a_{j+1}, u_{j+1},..., u_k)$. Ora, Q é um passeio em G de comprimento menor que P, contradição.

Proposição

Mostre que se G é simples e $g(v) \ge k$, $\forall v \in VG$, então G tem um caminho de tamanho k.

Prova

Suponha por absurdo que *G* não tem um caminho de tamanho k. Seja $P = (v_0, a_1, v_1,...,v_j)$ o caminho mais longo em G. Sem perda de generalidade suponha que |P| = k-1. Mas, todo vértice $v \in VG$ é tal que $g(v) \ge k$. Assim, como v_0 é no máximo adjacente a k-1 vértices de P, pois G é simples, então existe um vértice $w \in VG \setminus VP$ que também é adjacente a v_0 . Logo, o caminho (w, v_0) • P é um caminho mais longo em G, de tamanho k, contradição.

- Um passeio é fechado se tem comprimento diferente de zero e sua origem e término coincidem.
- Uma trilha é fechada, se é um passeio fechado.

Um caminho fechado é chamado de ciclo.

Ex.:

- Um ciclo com três vértices é chamado de triângulo.
- Grafo acíclico não contém ciclos

Ex.: Árvore

Proposição

Se G é um grafo não vazio, tal que $g(v) \ge 2$ para todo $v \in VG$, então G contém um ciclo.

Prova

Se *G* tem laços e arestas múltiplas a prova é imediata.

Suponha então que *G* é um grafo simples. Seja *P* um caminho mais longo em *G*. Sejam *u* e *v* origem e término, respectivamente, deste caminho. Não existe em *VG\VP* nenhum vértice adjacente a *u* pois senão *P* não seria um dos caminhos mais longos.

Como $g(v) \ge 2$, existem pelo menos 2 vértices adjacentes a u em VP. Seja x o último vértice em P adjacente a u. Seja P' a seção de P de u a x. Neste caso $P' \bullet (u,x)$ é um ciclo em G.

Proposição

Mostre que se uma aresta pertence a uma trilha fechada de *G*, então pertence a um ciclo de *G*.

Prova

Seja T uma trilha fechada em G que contém $\alpha = (u,v)$. Assim $T - \alpha$ é uma trilha aberta em G. Claramente $T - \alpha$ é um passeio em G, levando U a V. Por proposição anterior, existe em G um caminho P de U a V. Portanto P \bullet (u,v) é um ciclo em G. \Box

Proposição

Um grafo é bipartido se, e somente se, todos os seus ciclos possuem comprimento par.

Prova

Prova Seja $v_1,...,v_k,v_1$ um ciclo de comprimento k do grafo bipartido G e seja $v_1 \in V_1$. Logo, $v_2 \in V_2$, $v_3 \in V_1$, $v_4 \in V_2$, e assim por diante. Como $(v_k, v_1) \in VE$ implica $v_k \in V_2$. Portanto k é par, o que mostra a necessidade. A prova da suficiência consiste em exibir os subconjuntos V₁, V₂ que biparticionam o conjunto de vértices do grafo G, no qual todos os ciclos possuem comprimento par. Selecione arbitrariamente um vértice $v_1 \in V$. Defina V_1 como contendo v_1 e todos os vértices que se encontram à distância par de v_1 . Defina $V_2 = V - V_1$. Suponha que exista uma aresta (a,b) entre dois vértices a, b \in V₁. Então os caminhos mais curtos entre v_1 e a, e entre v_1 e b unidos com a aresta (a, b) formam um ciclo de comprimento ímpar, uma contradição. As demais possibilidades são tratadas de forma análoga.

- Um caminho ou ciclo é chamado hamiltoniano se contém cada um dos vértices do grafo exatamente uma vez.
- Um caminho ou ciclo é chamado de euleriano, se contém cada uma das arestas do grafo exatamente uma vez.
- Se um grafo G contém um ciclo euleriano ou hamiltoniano, ele é chamado de grafo euleriano ou grafo hamiltoniano, respectivamente.

- Um grafo hamiltoniano é aquele que possui ciclo hamiltoniano, isto é, um ciclo que contém cada vértice do grafo exatamente uma vez.
- Não é conhecida uma caracterização satisfatória, em termos de condições necessárias e suficientes para a existência de tal ciclo.
- Não se conhece algoritmo eficiente para resolver o problema de reconhecer grafos hamiltonianos.

Proposição

Seja G(V, E) um grafo com pelo menos 3 vértices e tal que $g(v) \ge n/2$, para todo vértice $v \in V$. Então G é hamiltoniano.

Maximalidade e Minimalidade

- Seja S um conjunto e S' \subseteq S e seja P uma propriedade.
- S' é maximal em relação a P quando a satisfaz e não existe S" ⊃ S' que também satisfaz P.
- Analogamente, S' é minimal se satisfaz P e não existe S" ⊂ S' que também satisfaz P.
- Note que maximal ≠ máximo e minimal ≠ mínimo.

Proposição

Seja G(V, E) um grafo com pelo menos 3 vértices e tal que $g(v) \ge n/2$, para todo vértice $v \in V$. Então G é hamiltoniano.

Prova

Suponha o teorema falso. Então existe um grafo G maximal não hamiltoniano que satisfaz às condições da hipótese. Como n ≥ 3 , G não é completo. Existem portanto v, $w \in V$ não adjacentes. Como G é maximal, G + (v, w) é hamiltoniano. Por isso e porque G é não hamiltoniano, todo ciclo hamiltoniano de G + (v, w) contém a aresta (v, w). Então G possui um caminho hamiltoniano $v_1, v_2, ..., v_n$ entre $v_1 = v$ e $v_n = w$. Porque g(v), $g(w) \geq n/2$, existem necessariamente vértices v_j e v_{j+1} , para algum $1 \leq j < n$, tais que (v, v_{j+1}) , $(w, v_j) \in E$. Retirando do ciclo a aresta (v_j, v_{j+1}) e acrescentando (v, v_{j+1}) e (w, v_j) , transforma o caminho em ciclo hamiltoniano. Isto contradiz G ser não hamiltoniano. \Box

Exercícios recomendados

- Bondy e Murty: 1.6.1, 1.6.3, 1.7.1, 1.7.2, 1.7.3.
- 1 Se a distância d(u, v) entre dois vértices u e v que podem ser conectados por um caminho em um grafo for definida como o comprimento do caminho mais curto que os conecta, então prove que a função de distância satisfaz a desigualdade do triângulo : $d(u, v) + d(v, w) \ge d(u, w)$.

Referências

- Seção 1.6 1 do Bondy J. A. e Murty U. S. R., Graph Theory with Applications, Elsevier, 1976.
- Seção 1.2 do Grafos: conceitos, algoritmos e aplicações. Goldbarg, E. e Goldbarg M. Elsevier, 2012
- Adaptado do material de aula da Profa. Leila Silva