École Supérieure Privée d'Ingénierie et de Technologies

Session : Principale Documents et Internet **NON** autorisés Semestre : 2

Date: 29/05/2023 Heure: 15h Durée: 1h.30

*Les calculatrices sont autorisées. *La qualité de la rédaction sera prise en compte dans la notation.

Exercice 1: (4 points)

Soit X une variable aléatoire continue dont la fonction de répartition \mathbb{F}_X est représentée ci-dessous :

1. (1pt) Expliciter l'expression de la fonction de répartition \mathbb{F}_X . Il s'agit de la loi uniforme sur [a, b] où a = 4 et b = 6.

$$\mathbb{F}_X = \begin{cases} 0 & \text{si} & x < 4 \\ \frac{x-4}{6-4} & \text{si} & 4 \leqslant x \leqslant 6 \\ 1 & \text{si} & x > 6 \end{cases}$$

2. (1pt) Déterminer la fonction de densité f_X .

$$f_X(x) = \begin{cases} \frac{1}{6-4} & \text{si } 4 \leqslant x \leqslant 6\\ 0 & \text{sinon} \end{cases}$$

3. (1pt) Donner l'espérance et la variance de X.

$$E(X) = \frac{a+b}{2} = \frac{6+4}{2} = 5$$
$$Var(X) = \frac{(a-b)^2}{12} = \frac{(6-4)^2}{12} = \frac{4}{12} = \frac{1}{3}$$

4. (1pt) Sans faire le calcul, donner en justifiant les probabilités suivantes :

$$\mathbb{P}(X < 3)$$
 , $\mathbb{P}(X = 5)$, $\mathbb{P}(X < 7)$, $\mathbb{P}(X > 7)$

 $\mathbb{P}(X<3)=\mathbb{P}(X\leq 3)=\mathbb{F}_X(3)=0,$ $\mathbb{P}(X=5)=0, \text{ car pour une variable aléatoire réelle à densité } X \text{ on sait que pour tout } a\in\mathbb{R} \text{ on a } \mathbb{P}(X=a)=0.$ $\mathbb{P}(X<7)=\mathbb{P}(X\leq 7)=\mathbb{F}_X(7)=1.$ $\mathbb{P}(X>7)=1-\mathbb{P}(X\leq 7)=0.$

Exercice 2: (4 points)

Une étude statistique a montré que le temps passé dans l'un des rayons d'un supermarché peut être modélisée par une variable aléatoire T qui suit une loi normale. La courbe de la fonction de densité de cette loi normale est représentée ci-dessous et la probabilité représentée par la partie grisée est égale à 0.0392:

- 1. (1pt) Déterminer en justifiant, l'espérance m de cette variable aléatoire. La courbe est symétrique par rapport à 39, donc m=39
- 2. (1pt) Vérifier que $\sigma = 1, 7$. Comme

$$\mathbb{P}(T > 42) = 0,0392,$$

on a

$$\mathbb{P}(Z > \frac{42 - 39}{\sigma}) = 0,0392.$$

Par lecture inverse de la table de la loi normale centrée réduite on obtient :

$$\frac{3}{\sigma} = 1,76 \text{ et donc } \sigma = 1,704.$$

- 3. En utilisant le graphe, déterminer les probabilités suivantes, avec F la fonction de répartition de la variable T:
 - a. **(1pt)** 1 F(42). On a

$$F(42) = 1 - 0,0392 = 0,9608$$

Alors

$$1 - F(42) = 0,0392$$

b. **(1pt)**
$$F(42) - F(36)$$
. On a

$$F(36) = P(X < 36) = 0,0392.$$

Ainsi

$$F(39) - F(42) = 1 - 2 \times 0{,}0392.$$

Exercice 3: (12 points)

Au second tour de la présidentielle, les électeurs de la Turquie doivent choisir entre deux candidats C_1 et C_2 (on suppose que tous les électeurs se prononcent). On désigne par N_1 (resp. N_2) le nombre d'électeurs se prononçant en faveur de C_1 (resp. C_2), et p la proportion d'électeurs en faveur de C_1 dans la population totale. L'O.S.T (Organisme de Sondage Turque) désire évaluer p par sondage quelques jours avant l'élection.

-Partie I-

1. a. (0.5 pt) Déterminer la taille de la population.

$$N = N_1 + N_2$$

b. (0.5 pt) Identifier le caractère étudié et préciser sa nature.

C'est un caractère qualitatif. Il présente l'intention de vote des électeurs.

c. (1 pt) Exprimer p en fonction de N_1 et N_2 .

$$p = \frac{N_1}{N_1 + N_2}$$

- 2. Par la suite, on note par Z la variable aléatoire qui vaut 1 si un électeur choisi au hasard est partisan de C_1 et 0 sinon.
 - a. (1 pt) Quelle est la loi de Z.

$$Z \sim \mathrm{Ber}(p)$$

b. (1 pt) Donner l'espérance et la variance de Z.

$$E(Z) = p$$
$$Var(Z) = p(1 - p)$$

-Partie II-

L'organisme commence par interroger 2n individus choisis au hasard de la popultaion, ce que l'on modélise par un 2n-échantillon $(Z_1...Z_{2n})$.

- 3. a. (0.5 pt) Rappeler les propriétés de cet 2n—échantillon. Un échantillon de taille 2n (ou 2n-échantillon) est une famille (X_1, \ldots, X_{2n}) de variables aléatoires indépendantes et identiquement distribuées (i.i.d) de même loi.
 - b. (1 pt) Soit $A_n = \frac{1}{2n} \sum_{i=1}^{2n} Z_i$, un estimateur de p. Calculer soigneusement son espérance et sa variance.

$$E(A_n) = E\left(\frac{1}{2n}\sum_{i=2}^{2n} Z_i\right) = \frac{1}{2n}\sum_{i=2}^{2n} E(Z_i)$$
$$= \frac{1}{2n}\sum_{i=2}^{2n} E(Z)$$
$$= \frac{1}{2n} \cdot 2n \cdot p$$
$$= p$$

$$\operatorname{Var}(A_n) = \operatorname{Var}\left(\frac{1}{2n}\sum_{i=2}^{2n} Z_i\right) = \frac{1}{4n^2}\sum_{i=2}^{2n} \operatorname{Var}(Z_i)$$
$$= \frac{1}{4n^2}\sum_{i=2}^{2n} \operatorname{Var}(Z)$$
$$= \frac{1}{4n^2} \cdot 2n \cdot p(1-p)$$
$$= \frac{1}{2n} \cdot p(1-p).$$

c. (1 pt) Déduire que cet estimateur est sans biais et convergent de p. On a $E(A_n) = p$, il s'agit donc d'un estimateur sans biais de p. Comme

$$\lim_{n \to +\infty} \operatorname{Var}(A_n) = \lim_{n \to +\infty} \frac{p(1-p)}{2n} = 0$$

Il est donc un estimateur convergent.

d. (1 pt) En pratique, comment choisir la taille d'échantillon 2n pour justifier l'approximation de la loi de A_n par la loi normale.

On doit choisir $2n \geq 30$ c'est à dire $n \geq 15$.

L'OST interroge 500 électeurs, dont 284 se prononcent pour le candidat C_1 .

4. a. (1.5 pts) Donner un intervalle de confiance de p au niveau de confiance 98%.

$$IC(p) = \left[A_n \pm z_{\frac{\alpha}{2}} \sqrt{\frac{A_n (1 - A_n)}{2n}} \right]$$
$$A_n = \frac{284}{500} = 0,568; \ 1 - \alpha = 0,98 \Rightarrow \frac{\alpha}{2} = 0,01$$

Ainsi

$$P\left(Z > z_{\frac{\alpha}{2}}\right) = 0,01.$$

Par lecture inverse de la table on a

$$z_{\frac{\alpha}{2}} = 2, 32.$$

Ainsi

$$IC(p) = \left[0,568 \pm 2,32\sqrt{\frac{0,568(1-0,568)}{500}}\right].$$

b. (0.5 pt) A l'issue de ce calcul, peut-on dire que le candidat C_1 est majoritaire? On a $0, 5 \in IC(p)$ ainsi C_1 est majoritaire.

-Partie III-

Pour valider le jugement de la question précédente, l'OST a fait recours à un test d'hypothèses statistique sur un autre échantillon de taille 1000 d'une autre région du pays, dont 622 électeurs se prononcent pour le candidat C_1 .

5. a. (1.5 pts) Au seuil de risque de 2%, peut-on conclure que la proportion des électeurs qui comptent voter pour le candidat C_1 est supérieure à 50% pour pouvoir confirmer que C_1 est majoritaire?

Etape 1 : Choix d'hypothèses

$$\begin{cases} \mathbf{H}_0: & p_0 = 0, 5 \\ \mathbf{H}_1: & p_0 > 0, 5. \end{cases}$$

Etape 2 : Variable de décision et écart réduit. On a

$$p_n = \frac{622}{100} = 0,622, \ \alpha = 0,02$$

et

$$n \geqslant 30, \ np > 5, \ n(1-p) > 5.$$

Ainsi

$$\hat{p}_n \sim N\left(p_0, \sqrt{\frac{p_0\left(1-p_0\right)}{n}}\right)$$

Par la suite, l'écart réduit est :

$$Z = \frac{\hat{p}_n - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim N(0,1).$$

Etape 3 : Régions critiques. On calcule la valeur z_0 prise par Z

$$z_0 = \frac{\hat{p}_n - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0,122}{\sqrt{0,00025}} = 7,721$$

On détermine z_{α} à partir du tableau de la loi normale centrée réduite,

$$\alpha = 0.02 \quad \Rightarrow z_{\alpha} = 2,05$$

Étape 4 : Décision

$$z_0 = 7,716 > z_{\alpha} = 2,05$$

On est dans la zone d'acceptation de \mathbf{H}_1 et de rejet de \mathbf{H}_0 , et on peut ainsi conclure que C_1 est majoritaire.

b. (1 pt) Au seuil de risque de 2%, au dessous de quelle proportion échantillonnale, le candidat C_1 n'est plus majoritaire dans cette région.

 C_1 n'est plus majoritaire, on va effectuer un test unilatéral à gauche et accepter H_1 .

$$\begin{cases} \mathbf{H}_0: & p_0 = 0, 5 \\ \mathbf{H}_1: & p_0 < 0, 5 \end{cases}$$

Pour accepter H_1 ; il faut que

$$z_0 < -z_\alpha$$
 où $\alpha = 0,02$

On a

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)}} < -2, 0.5.$$

Ainsi

$$\hat{p} < -2,05\sqrt{\frac{0,5(1-0,5)}{1000}} + 0,5.$$

Et donc

$$\hat{p} < 0,4652.$$

Loi normale réduite : probabilités unilatérales

Cette table donne p tel que P(Z > a) = p, où Z est la loi normale réduite

a 0,00 0,01 0,02 0,03	0,04	0,05	0,06	0,07	0,08	0,09
					-,	0,00
0,00 0,50000 0,49601 0,49202 0,48803	0,48405	0,48006	0,47608	0,47210	0,46812	0,46414
0,10 0,46017 0,45620 0,45224 0,44828	0,44433	0,44038	0,43644	0,43251	0,42858	0,42465
0,20 0,42074 0,41683 0,41294 0,40905	0,40517	0,40129	0,39743	0,39358	0,38974	0,38591
0,30 0,38209 0,37828 0,37448 0,37070	0,36693	0,36317	0,35942	0,35569	0,35197	0,34827
0,40 0,34458 0,34090 0,33724 0,33360	0,32997	0,32636	0,32276	0,31918	0,31561	0,31207
0,50 0,30854 0,30503 0,30153 0,29806	0,29460	0,29116	0,28774	0,28434	0,28096	0,27760
0,60 0,27425 0,27093 0,26763 0,26435	0,26109	0,25785	0,25463	0,25143	0,24825	0,24510
0,70 0,24196 0,23885 0,23576 0,23270	0,22965	0,22663	0,22363	0,22065	0,21770	0,21476
0,80 0,21186 0,20897 0,20611 0,20327	0,20045	0,19766	0,19489	0,19215	0,18943	0,18673
0,90 0,18406 0,18141 0,17879 0,17619	0,17361	0,17106	0,16853	0,16602	0,16354	0,16109
1,00 0,15866 0,15625 0,15386 0,15151	0,14917	0,14686	0,14457	0,14231	0,14007	0,13786
1,10 0,13567 0,13350 0,13136 0,12924	0,12714	0,12507	0,12302	0,12100	0,11900	0,11702
1,20 0,11507 0,11314 0,11123 0,10935	0,10749	0,10565	0,10383	0,10204	0,10027	0,09853
1,30 0,09680 0,09510 0,09342 0,09176	0,09012	0,08851	0,08691	0,08534	0,08379	0,08226
1,40 0,08076 0,07927 0,07780 0,07636	0,07493	0,07353	0,07215	0,07078	0,06944	0,06811
1,50 0,06681 0,06552 0,06426 0,06301	0,06178	0,06057	0,05938	0,05821	0,05705	0,05592
1,60 0,05480 0,05370 0,05262 0,05155	0,05050	0,04947	0,04846	0,04746	0,04648	0,04551
1,70 0,04457 0,04363 0,04272 0,04182	0,04093	0,04006	0,03920	0,03836	0,03754	0,03673
1,80 0,03593 0,03515 0,03438 0,03362	0,03288	0,03216	0,03144	0,03074	0,03005	0,02938
1,90 0,02872 0,02807 0,02743 0,02680	0,02619	0,02559	0,02500	0,02442	0,02385	0,02330
2,00 0,02275 0,02222 0,02169 0,02118	0,02068	0,02018	0,01970	0,01923	0,01876	0,01831
2,10 0,01786 0,01743 0,01700 0,01659	0,01618	0,01578	0,01539	0,01500	0,01463	0,01426
2,20 0,01390 0,01355 0,01321 0,01287	0,01255	0,01222	0,01191	0,01160	0,01130	0,01101
2,30 0,01072 0,01044 0,01017 0,00990	0,00964	0,00939	0,00914	0,00889	0,00866	0,00842
2,40 0,00820 0,00798 0,00776 0,00755	0,00734	0,00714	0,00695	0,00676	0,00657	0,00639
2,50 0,00621 0,00604 0,00587 0,00570	0,00554	0,00539	0,00523	0,00508	0,00494	0,00480
2,60 0,00466 0,00453 0,00440 0,00427	0,00415	0,00402	0,00391	0,00379	0,00368	0,00357
2,70 0,00347 0,00336 0,00326 0,00317	0,00307	0,00298	0,00289	0,00280	0,00272	0,00264
2,80 0,00256 0,00248 0,00240 0,00233	0,00226	0,00219	0,00212	0,00205	0,00199	0,00193
2,90 0,00187 0,00181 0,00175 0,00169			0,00154	0,00149	0,00144	
3,00 0,00135 0,00131 0,00126 0,00122						
3,10 0,00097 0,00094 0,00090 0,00087			0,00079	0,00076	0,00074	0,00071
3,20 0,00069 0,00066 0,00064 0,00062				0,00054	0,00052	0,00050
3,30 0,00048 0,00047 0,00045 0,00043	-		_	0,00038		
3,40 0,00034 0,00032 0,00031 0,00030				0,00026	0,00025	
3,50 0,00023 0,00022 0,00022 0,00021				0,00018	0,00017	0,00017
3,60 0,00016 0,00015 0,00015 0,00014			0,00013	0,00012	0,00012	0,00011
3,70 0,00011 0,00010 0,00010 0,00010	_	0,00009	0,00008	0,00008	0,00008	0,00008
3,80 0,00007 0,00007 0,00007 0,00006			0,00006	0,00005	0,00005	0,00005
3,90 0,00005 0,00005 0,00004 0,00004			0,00004	0,00004	0,00003	0,00003
4,00 0,00003 0,00003 0,00003 0,00003	0,00003	0,00003	0,00002	0,00002	0,00002	0,00002