# VE475 Introduction to Cryptography Homework 5

Jiang, Sifan jasperrice@sjtu.edu.cn 515370910040

June 23, 2019

#### Ex. 1 - RSA setup

1. In RSA encryption, we use

$$ed \equiv 1 \mod \varphi(n)$$

Then, based on Euler's theorem, let's assume m and n be two coprime integers, we would have

$$c^d \equiv m^{ed} \equiv m^{ed \mod \varphi(n)} \equiv m \mod n.$$

which is what expected in RSA decryption. So it is likely for n to be coprime with m.

- 2. Assume  $k = a\varphi(n)$ , where  $a \in \mathbb{N}$ .
  - a) With Euler's theorem, we have

$$m^k \equiv m^{a\varphi(n)} \equiv (m^{\varphi(n)})^a \equiv 1^a \equiv 1 \mod n$$

Since n = pq, we can have  $m^k \equiv 1 \mod p$  and  $m^k \equiv 1 \mod q$ .

b) If gcd(m, n) = 1, from the result of the above question, it is obvious that  $m^{k+1} \equiv m \mod p$  and  $m^{k+1} \equiv m \mod q$ .

If gcd(m, n) = p, we can have gcd(m/p, q) = 1, thus  $(m/p)^{\varphi(q)} \equiv 1 \mod q$ .

$$m^{k+1} \equiv p \left[ \left( \frac{m}{p} \right)^{k+1} \mod q \right] \mod n$$

$$\equiv p \left[ \left( \frac{m}{p} \right)^{a\varphi(p)\varphi(q)+1} \mod q \right] \mod n$$

$$\equiv p \cdot \frac{m}{p} \mod n$$

$$\equiv m \mod n$$

So,  $m^k \equiv 1 \mod p$  and  $m^k \equiv 1 \mod q$ .

If  $\gcd(m,n)=q$ , similar to the case of  $\gcd(m,n)=p$ , we would have  $m^k\equiv 1\mod p$  and  $m^k\equiv 1\mod q$ .

- 3. a) Since  $ed \equiv 1 \mod \varphi(n)$ , ed = k + 1. Then based on the previous result, we would have  $m^{ed} \equiv m \mod n$  for all m.
  - b) Based on the previous conclusion, no matter m and n are coprime or not, we would have  $c^d \equiv m^{ed} \equiv m \mod n$  in decryption. So there's no need for having  $\gcd(m,n)=1$ .

## Ex. 2 - RSA decryption

We have  $n=101\times 113$ , thus  $\varphi(n)=100\times 112=11200$ . By applying the extended Euclidean algorithm, we can have  $d=3=(11)_2$  such that  $ed\equiv 1\mod \varphi(n)$ . Then the plaintext m would given by calculating  $c^d\equiv m\mod n$ . We can apply modular exponentiation to find m.

So, m = 1415.

### Ex. 3 - Breaking RSA

- 1. When d is small, the calculation of  $c^d \equiv m \mod n$  with modular exponentiation would be faster.
- 2. Since  $ed \equiv 1 \mod \varphi(n)$ , we have

$$ed = K \times \varphi(pq) + 1$$
$$= K \times \operatorname{lcm}(p-1, q-1) + 1$$

Define  $G = \gcd(p-1, q-1)$ , the we would have

$$ed = \frac{K}{G}(p-1)(q-1) + 1$$

Then, define  $k = \frac{K}{\gcd(K,G)}$  and  $g = \frac{G}{\gcd(K,G)}$ , and we would have

$$ed = \frac{k}{g}(p-1)(q-1) + 1$$

$$\frac{ed}{dpq} = \frac{k}{dg}\frac{(p-1)(q-1)}{pq} + \frac{1}{dpq}$$

$$\frac{e}{pq} = \frac{k}{dg}(1-\delta),$$

where  $\delta=\frac{p+q-1-\frac{g}{k}}{pq}$ . Since p and q are two large primes,  $\delta$  would be small, then  $\frac{e}{pq}$  is slightly smaller than  $\frac{k}{dg}$ . Also, since  $ed=\frac{k}{g}(p-1)(q-1)+1$ , let  $k^*=\frac{k}{g}$  we can have

$$(p-1)(q-1) = \varphi(n) = \frac{ed-1}{k^*},$$

where  $\frac{e}{n}$  is slightly smaller than  $\frac{k^*}{d}$ . Then continued fractions is applied on  $\frac{e}{pq}$  to obtain multiple approximated  $\frac{k^*}{d}$  validate them and get the right d if the equation  $x^2-(n-\varphi(n)+1)x+n=0$ , where  $\varphi(n)=\frac{ed-1}{k^*}$ , has two valid solutions which are p and q.

- 3. According to Wiener's theorem, if  $d < \frac{1}{3}n^{\frac{1}{4}}$ , the attacker can efficiently recover d. So, d should be larger than  $\frac{1}{3}n^{\frac{1}{4}}$ .
- 4. By applying continued fractions on  $\frac{e}{n}$ , we have

$$\frac{77537081}{317940011} = 0 + \frac{1}{4 + \frac{1}{9 + \frac{1}{1 + \frac{1}{19 + \dots}}}}$$

Then we have convergent  $\frac{k^*}{d}$ :  $0, \frac{1}{4}, \frac{9}{37}, \frac{10}{41}, \frac{199}{816}, \cdots$ . And according to Wiener's theorem,  $d < \frac{1}{3}n^{\frac{1}{4}} < 45$ , we can start with  $\frac{1}{4}$  and have

$$(n - \varphi(n) + 1)^{2} - 4n = (n - \frac{ed - 1}{k^{*}} + 1)^{2} - 4n = 60709145712677,$$

which is not a square number.

Then try next possible  $\frac{k^*}{d}$ , and when  $\frac{k^*}{d} = \frac{10}{41}$ , we have

$$(n - \varphi(n) + 1)^2 - 4n = (n - \frac{ed - 1}{k^*} + 1)^2 - 4n = 170720356 = 13066^2,$$

so 
$$p=\frac{37980+13066}{2}=25523$$
 and  $q=\frac{37980-13066}{2}=12457$ , thus  $n=12457\times 25523$ .

#### Ex. 5 - Simple questions

1.

- 2. No, this double encryption isn't adding any security. The nature of breaking RSA is to factorize *n*, using double exponents won't make it more secure.
- 3. Since n = 642401, we have

$$4 \cdot 516107^2 - 187722^2 \equiv 0 \mod n$$

$$(2 \cdot 516107 - 187722)(2 \cdot 516107 + 187722) \equiv 0 \mod n$$

$$844492 \cdot 1219936 \equiv 0 \mod n$$

$$(-440310) \cdot (-64866) \equiv 0 \mod n$$

$$(2 \cdot 3 \cdot 5 \cdot 13 \cdot 1129) \cdot (2 \cdot 3 \cdot 19 \cdot 569) \equiv 0 \mod n$$

So, we would get  $n = 642401 = 569 \times 1129$ .

4. With three primes p, q, and r, n = pqr and  $\varphi(n) = (p-1)(q-1)(r-1)$ . Find e such that  $\gcd(e, \varphi(n)) = 1$ , and then find d such that

$$ed \equiv 1 \mod \varphi(n)$$

Then

$$c \equiv m^e \mod n$$

$$m \equiv c^d \equiv m^{ed} \equiv m^{\varphi(n)+1} \mod n$$

If the length of the public keys are same in both cases, it would result in short separate primes, making the factorization easier.

5. Since  $97-1=96=2^5\times 3$ , then a  $\alpha$  is a generator if  $\alpha^{48}\not\equiv 1\mod 97$  and  $\alpha^{32}\not\equiv 1\mod 97$ . Or, since  $32=2\times 16$  and  $48=3\times 16$ , we can first calculate 2

$$\alpha^{16} \not\equiv \pm 1, 35, 61 \mod 97$$

We can take the numbers in consequence and have

$$2^{16} \equiv 61 \mod 97$$
  
 $3^{16} \equiv 61 \mod 97$   
 $4^{16} \equiv 1 \mod 97$   
 $5^{16} \equiv 36 \mod 97$ 

So, 5 is the smallest generator of the group.

6. a) Since  $101 - 1 = 100 = 2^2 \times 5^2$ , we would have

$$2^{\frac{100}{2}} \equiv 2^{50} \equiv 100 \not\equiv \mod 101$$

Also,

$$2^{\frac{100}{5}} \equiv 2^{20} \equiv 95 \not\equiv 1 \mod 101$$

So, 2 is a generator of G.

b) Since  $\log_2 2 = 1$ , we would have

$$\log_2 24 = \log_2 3 + 3\log_2 2 = 69 + 3 = 72$$

c) Since in group *G*,

$$\log_2 24 = \log_2(24 + 101) = \log_2(125) = 3\log_5 = 3 \times 24 = 72$$

7. Since  $\gcd(3,137)=1$ , we have  $3^{\varphi(137)}\equiv 3^{136}\equiv \mod 137$ . Also, notice that  $44=2^2\times 11$ , we would have

$$3^6 \equiv 3^{136+6} \equiv 3^{142} \equiv 44 \equiv 2^2 \times 11 \equiv (3^{10})^2 \times 3^x \mod 137$$

So, 
$$x = 142 - 2 \times 10 = 122$$
.

- 8. a) Since  $6^5 \equiv 10 \mod 11$ ,  $6^5 \text{ in } G \text{ is } 10$ .
  - b) For  $q|(p-1), q \in \{2, 5\}.$

$$2^{\frac{10}{2}} \equiv 10 \not\equiv 1 \mod 11$$
$$2^{\frac{10}{5}} \equiv 4 \not\equiv 1 \mod 11$$

So 2 is a generator of G.

c) From previous result, we have

$$2^{5x} \equiv 10^x \equiv (-1)^x \mod 11$$

Also,

$$2^{5x} \equiv 6^5 \equiv -1 \mod 11$$

So,  $(-1)^x = -1$ , thus *x* is odd.

#### Ex. 6 - DLP

1. From what we known, we can have

$$3^x \equiv 2 \mod 65537$$
$$3^{16x} \equiv -1 \mod 65537$$
$$3^{32x} \equiv 1 \mod 65537$$

Since 3 and 65537 are coprime integers and  $\varphi(65537) = 65536$ , we would also have

$$3^{65536} \equiv 1 \mod 65537$$

So  $65536 \mid 32x$  and  $65536 \nmid 16x$ , which gives that 2048 divides x, while 4096 does not.

- 2. Let  $x = (2k+1) \cdot 2048$ , where  $k \in \mathbb{N}$ . And there are 16 possible choices for k, which are  $0, 1, 2, \dots, 15$ . And when k = 13 (x = 55296), we have  $3^x \equiv 2 \mod 65537$ .
- 3. Since x|2048 and  $x \nmid 4096$ , we can apply the Pohlig-Hellman algorithm by using

$$x = 2^{11} + a_{12}2^{12} + a_{13}2^{13} + a_{14}2^{14} + a_{15}2^{15}$$

For  $a_{12}$ ,

$$\left(\frac{3^x}{3^{2^{11}}}\right)^{2^{15-12}} \equiv (2^{14})^8 \equiv -1 \mod 65537$$

So,  $a_{12} = 1$ .

For  $a_{13}$ ,

$$\left(\frac{3^x}{3^{2^{11}+2^{12}}}\right)^{2^{15-13}} \equiv (2^8)^4 \equiv 1 \mod 65537$$

So,  $a_{13} = 0$ .

Similarly, we would have  $a_{14} = 1$  and  $a_{15} = 1$ , which gives

$$x = 2^{11} + 2^{12} + 2^{14} + 2^{15} = 55296.$$

4. 65537 is a prime but in the form  $p^k+1$ . If  $c^x\equiv p\mod p^k+1$ , in order to find x, we can find a generator of the group and since  $c^{2k}\equiv p^{2k}\equiv 1\mod p^k+1$ , we can find  $\frac{p^k}{2k}|x$  and  $\frac{p^k}{k}\nmid x$ . Then there would only be k possible choices for x.

5