Decision-Focused Learning

Where we discover that things ain't that easy

The Main Challenge

We are now ready to tackled decision-focused learning

Let's start from the "holy grail" problem:

$$\operatorname{argmin}_{\omega} \left\{ \sum_{i=1}^{m} c(z^{*}(y_{i}), \hat{y}_{i}) \mid y = f(\hat{x}, \omega) \right\}$$

Unfortunately, the argmin used to define $z^*(y_i)$ is non-differentiable

- lacksquare A small change in the prediction vector y_i
- lacktriangleright ...May cause a large/discrete change in the optimal solution z_i

This is certainly the case for our example problem

How are we going to deal with this?

Sometimes...

Sometimes...

Sub-grandient!

Towards a Solution

A possible solution consists in using a surrogate loss

For the i-th example:

- lacksquare Since $z^*(\hat{y}_i)$ is the optimal solution for the true costs \hat{y}_i
- lacktriangle We expect that to remain optimal for a good vector y_i of predicted costs

In practice, we could train the model to minimize the regret:

$$r_i^*(y_i) = c(z^*(\hat{y}_i), y_i) - c(z^*(y_i), y_i)$$

- lacktriangle This quantity is always non-negative (since $z^*(y_i)$ is a cost minimizer w.r.t. y_i)
- It becomes 0 when the two solutions match
- It contains a naturally differentiable term, i.e. $y_i = f(\hat{x}_i)$

...But unfortunately also a non-differentiable term, i.e. $z^*(y_i)$

Towards a Solution

We can view the regret computation as a maximization problem

$$r_i^*(y_i) = \max_{z \in F(y_i)} r_i(z, y_i)$$

with:
$$r_i(z, y_i) = c(z^*(\hat{y}_i), y_i) - c(z, y_i)$$

This enables casting the "holy grail" problem as bi-level optimization:

$$\operatorname{argmin}_{\omega} \left\{ \sum_{i=1}^{m} \max_{z \in F(y_i)} r_i(z, y_i) \mid y = f(\hat{x}, \omega) \right\}$$

...And for bi-level optimization problem we can rely on two great results

- That are remarkably easy to use
- ...But have a mildly complicated proof and require some assumptions

Bi-level Optimization and Subgradient

First of all, let simplify the problem by assuming a fixed feasible set

$$F(y_i) = F$$

- This assumption limits the approach applicability
- ...But it remains useful on many real world problems

Then, let's focus on a single example

We have that, for a generic prediction vector y:

$$\max_{z \in F} r_i(z, y) \ge r_i(z_i, y)$$

- lacksquare Where z_i is a compact notation for $z^*(y_i)$
- \blacksquare The result stands since z_i is not necessarily optimal w.r.t. y

Bi-level Optimization and Subgradient

If $r_i(z, y)$ is differentiable, we can expand it via Taylor's theorem

We will use as a reference the current prediction vector y_i :

$$r_i(z_i, y) = r_i(z_i, y_i) + \nabla_y r_i(z_i, y_i)(y - y_i) + o(||y - y_i||)$$

- For $y \to y_i$, the $o(\|y y_i\|)$ term will become vanishingly small
- Therefore we will have:

$$\max_{z \in F} r_i(z, y) \ge r_i(z_i, y_i) + \nabla_y r_i(z_i, y_i)(y - y_i)$$

Which can be rewritten as:

$$\max_{z \in F} r_i(z, y) - \max_{z \in F} r_i(z, y_i) \ge \nabla_y r_i(z_i, y_i)(y - y_i)$$

Bi-level Optimization and Subgradient

Let's look again at the last inequality

$$\max_{z \in F} r_i(z, y) - \max_{z \in F} r_i(z, y_i) \ge \nabla_y r_i(z_i, y_i)(y - y_i)$$

- We are saying that the regret difference locally admits a linear under approximation
- lacksquare ...Which uses $abla_y r_i(z_i,y_i)$ as a coefficient vector

Formally, this means that $\nabla_y r_i(z_i, y_i)$ is a local subgradient

...But what is $\nabla_y r_i(z_i, y_i)$ exactly?

- It's what you get by taking the regret expression r(z, y)
- lacksquare Plugging in z_i for z
- lacksquare Differentiating over y

Bi-level Optimization and Pseudo-convexity

If $r_i(z, y)$ is linear in y, then:

- The Taylor expansion becomes exact:
- ...And our main inequality holds everywhere:

$$\max_{z \in F} r_i(z, y) - \max_{z \in F} r_i(z, y_i) \ge \nabla_y r_i(z_i, y_i)(y - y_i)$$

This means our inner optimization function is pseudo-convex

A pseudo-convex function behaves as convex for the purpose of optimization

- I.e. If we could freely control y_i ...
- lacksquare ...Then we could optimally solve $\min_{y_i} \max_{z \in F} r_i(z, y_i)$
- ...Via simple sub-gradient descent

Both result hold for bi-level optimization in general!

Beyond Decision Focused Learning

These are general results

Given a bi-level optimization in the form:

$$\min_{y \in Y} \max_{x \in X} f(x, y)$$

With:

$$x^*(y) = \operatorname{argmin}_{x \in X} f(x, y)$$

Then:

- If f is differentiable, $\nabla_y f(x^*(y), y)$ is a valid subgradient w.r.t. y
- If f is linear, $f^*(y) = \max_{x \in X} f(x, y)$ is pseudo-convex

An Example on Our Market Problem

Let's use our market problem, for the i-th example

$$\operatorname{argmin}_{z} \{ y_{i}^{T} z \mid ||z||_{1} \ge r, z \in \{0, 1\}^{n} \}$$

- lacksquare The feasible space does not depend on the predicted costs, hence $F(y_i)=F$
- The regret expression is $r_i^*(z,y) = y^T z_i^*(\hat{y}_i) y^T z$
- ...Which is differentiable and linear

Therefore, we can get a valid subgradient:

- First we compute the optimal solution z_i ("in the forward pass")
- Then we compute $\nabla_y(y^Tz_i^*(\hat{y}_i) y^Tz_i) = z_i^*(\hat{y}_i) z_i$
- Since there is dependence on y, our subgradient is $z_i^*(\hat{y}_i) z_i$

...l.e. just the difference between optima w.r.t. the true and the predicted costs

Almost There...

Let's recap our plan

- When we evaluate our ML model, we need to solve the market problem
- ...So as to compute $z^*(y_i)$ for each example (in the mini-batch)
- Then we compute the loss:

$$L_{REG}(y, \hat{y}) = \sum_{i=1}^{m} y_i^T(z^*(\hat{y}_i) - z^*(y_i))$$

Finally we can use automatic differentiation (as usual) to get the subgradient

Except that with a linear cost this plan has a fatal flow

There, Finally!

The problem is that our loss admits a trivial solution

$$L_{REG}(y, \hat{y}) = \sum_{i=1}^{m} y_i^T(z^*(\hat{y}_i) - z^*(y_i))$$

- All regret terms are non-negative by definition
- lacktriangleright ...And it's easy to make them null by just predicting $y_i=0$ for all examples

A possible fix consists in using this modified function

$$L_{NCE}(y, \hat{y}) = \sum_{i=1}^{m} y_i^T(z^*(\hat{y}_i) - z^*(y_i)) + \hat{y}_i^T(z^*(y_i) - z^*(\hat{y}_i))$$

This is another surrogate loss (ready for subgradient computation)

There, Finally!

Let's examine the modified loss

$$L_{NCE}(y, \hat{y}) = \sum_{i=1}^{m} y_i^T(z^*(\hat{y}_i) - z^*(y_i)) + \hat{y}_i^T(z^*(y_i) - z^*(\hat{y}_i))$$

- The term $y_i^T(z^*(\hat{y}_i) z^*(y_i))$ is the regret w.r.t. the predicted costs y_i
- lacksquare The term $\hat{y}_i^T(z^*(y_i)-z^*(\hat{y}_i))$ is the regret w.r.t. the true costs \hat{y}_i
- Both terms are guaranteed non-negative and therefore $L_{NCE}(y, \hat{y}) \geq 0$

We wish both regrets to be small (hence the loss is valid)

- We did not use $\hat{y}_i^T(z^*(y_i) z^*(\hat{y}_i))$ before...
- ...Because it lack a naturally differentiable term

The corresponding subgradient would not lead to back-propagation

There, Finally!

It is convenient to rewrite the loss as:

$$L_{NCE}(y, \hat{y}) = \sum_{i=1}^{m} (y_i - \hat{y}_i)^T (z^*(\hat{y}_i) - z^*(y_i))$$

This clarifies that the loss can be minimized in two ways:

- Either by making the two solutions as similar as possible, i.e. $z^*(\hat{y}_i) \simeq z^*(y_i)$
- lacksquare ...Or by making the two costs as similar as possible, i.e. $y_i \simeq \hat{y}_i$

Importantly, $y_i = 0$, $\forall i = 1..m$ is no longer a minimizer

- \blacksquare There are other viable surrogate losses (e.g. SPO+ from this paper)
- ...But we will limit our analysis to this one

For those who, like me, understand code better

An implementation of the method is available in the util module

The code relies (again) on subclassing the keras. Model class

```
class DFLModel(keras.Model):
    def __init__(self, prb, ..., **params):
        super(DFLModel, self).__init__(**params)
        self.prb = prb
        ...
```

At model construction time, we need to specify the optimization problem

```
nnin = keras.Input(input_size)
nnout = nnin

for h in hidden:
    nnout = layers.Dense(h, activation='relu')(nnout)
nnout = layers.Dense(output_size, activation=output_activation)(nnout)
model = DFLModel(problem, inputs=nnin, outputs=nnout, ...)
```


The fit function was overloaded

- lacksquare We compute all the optimal solutions w.r.t. the true costs, i.e. $z^*(\hat{y}_i)$
- Then we calling the usual fit function

```
def fit(self, X, y, **kwargs):
    # Precompute all solutions for the true costs
    self.sol_store = []
    for c in y:
        sol, closed = self.prb.solve(c, tlim=self.tlim)
        self.sol_store.append(sol)
    self.sol_store = np.array(self.sol_store)
    # Call the normal fit method
    return super(DFLModel, self).fit(X, y, **kwargs)
```


In the train_step method, we compute the surrogate loss

```
def train step(self, data):
    x, costs true = data
    with tf.GradientTape() as tape:
        costs = self(x, training=True) # obtain predictions
        sols, tsols = [], []
        for c, tc in zip(costs.numpy(), costs true.numpy()):
            sol, closed = prb.solve(c, ...) # Best w.r.t. predictions
            sols.append(sol)
            tsol = self. find best(tc) # Best w.r.t. true costs
            tsols.append(tsol)
        sols, tsols = np.array(sols), np.array(tsols)
        cdiff = costs - costs true # cost difference
        sdiff = tsols - sols # solution difference
        loss = tf.reduce mean(tf.reduce sum(cdiff * sdiff, axis=1))
```


Early Training

Let's train our decision-focused model for a few epochs

```
In [4]: dfm early = util.build dfl ml model(input_size=1, output_size=nitems, problem=prb, hidden=[], national dfl ml model(input_size=1) and the size=nitems are described by the size in the size is a size in the size in the size is a size in the size in the size is a size in the size in the size is a size in the size in the size is a size in the size in the size is a size in the siz
                 %time history = util.train dfo model(dfm early, tr in, tr out, epochs=30, verbose=1, validation)
                 Epoch 1/30
                 Epoch 2/30
                 Epoch 3/30
                 Epoch 4/30
                 Epoch 5/30
                 Epoch 6/30
                 Epoch 7/30
                 Epoch 8/30
                 Epoch 9/30
                 Epoch 10/30
                 Epoch 11/30
```

What We Loose

It works, but there are some issues

We will highlight them now and address one of them later

What We Loose

We also loose a lot in terms of accuracy

These are the results for our previous "early" training model

```
In [6]: r2, mae, rmse = util.get_ml_metrics(fsm_early, tr_in, tr_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (training)')
    r2, mae, rmse = util.get_ml_metrics(fsm_early, ts_in, ts_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (test)')

R2: -1.39, MAE: 0.3, RMSE: 0.41 (training)
    R2: -1.46, MAE: 0.3, RMSE: 0.41 (test)
```

...And these are the results for the decision-focused model

```
In [7]: r2, mae, rmse = util.get_ml_metrics(dfm_early, tr_in, tr_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (training)')
    r2, mae, rmse = util.get_ml_metrics(dfm_early, ts_in, ts_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (test)')

R2: -6.45, MAE: 0.62, RMSE: 0.70 (training)
    R2: -6.64, MAE: 0.63, RMSE: 0.70 (test)
```


What We Gain

But in terms of regret, we are doing much better

```
In [8]: r_ts_fsm_early = util.compute_regret(prb, fsm_early, ts_in, ts_out)
         r ts dfm early = util.compute regret(prb, dfm early, ts in, ts out)
         util.plot_histogram(r_ts_dfm_early, figsize=figsize, label='decision-focused', data2=r_ts_fsm_early
                                                                                                 decision-focused
          0.7
          0.6
          0.5
          0.4
          0.3
          0.2
          0.1
          0.0
                0.0
                             0.2
                                           0.4
                                                        0.6
                                                                      0.8
                                                                                   1.0
                                                       decision-focused
         Mean: 0.142 (decision-focused), 0.785 (two stage)
```


Speeding Up the Process

Training speed is a major bottleneck for decision-focused learning

One possibility is to <u>use a relaxation</u> that is easier to solve

- For a MILP, this would be the LP relaxation
- lacksquare In general, given a relaxed feasible space $ilde{F}$, we compute $z^*(y_i)$ as:

$$z^*(y_i) = \operatorname{argmin}_{z \in \tilde{F}} c(z, y_i)$$

Another possibility consists in <u>keeping a solution cache</u>

- lacksquare We store all computed solutions in a set S
- Then we compute $z^*(y_i)$ via a simple enumeration step:

$$z^*(y_i) = \operatorname{argmin}_{z \in S} c(z, y_i)$$

Occasionaly, we may compute a new solution and update the cache

Speeding Up the Process

For MILPs, the two approaches have a nice interpretation

Image from this paper

Given the true feasible space (discrete points in the polytope in the figure)

- The relaxation leads to an outer approximation (green), hence a lower bound
- The cache provides an inner approximation (blue), hence an upper bound

Implementing Solution Caching

A solution caching mechanism is implemented in our code

The computation of $z^*(y_i)$ is triggered with a controllable probability

```
def train step(self, data):
    with tf.GradientTape() as tape:
        for c, tc in zip(costs.numpy(), costs true.numpy()):
            if np.random.rand() < self.recompute chance: # guard</pre>
                sol, closed = prb.solve(c, tlim=self.tlim) # recompute
                if self.recompute chance < 1: # update cache</pre>
                     if not (self.sol store == sol).all(axis=1).any():
                         self.sol store = np.vstack((self.sol store, sol))
            else:
                sol = self. find best(c) # look up in the cache
```


Training With Solution Caching

Let's train the model with a solution cache and 5% recomputation chance

```
In [9]: dfm late = util.build dfl ml model(input size=1, output size=nitems, problem=prb, recompute char
        %time history = util.train_dfo_model(dfm_late, tr_in, tr_out, epochs=150, verbose=0, validation
        util.plot training history(history, figsize=figsize)
        CPU times: user 20.3 s, sys: 1.03 s, total: 21.3 s
        Wall time: 20.9 s
         3.0
         2.5
         2.0
         1.5
         1.0
         0.5
         0.0
                                                                   100
                                                     epochs
```


Accuracy Comparison

Since we manage to train the model to (approximate) convergence

...It makes sense to compare with the "late" linear regression approach

```
In [10]: r2, mae, rmse = util.get_ml_metrics(fsm_late, tr_in, tr_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (training)')
    r2, mae, rmse = util.get_ml_metrics(fsm_late, ts_in, ts_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (test)')

R2: 0.79, MAE: 0.097, RMSE: 0.12 (training)
    R2: 0.78, MAE: 0.1, RMSE: 0.12 (test)
```

In terms of accuracy we are doing still quite poorly

```
In [11]: r2, mae, rmse = util.get_ml_metrics(dfm_late, tr_in, tr_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (training)')
    r2, mae, rmse = util.get_ml_metrics(dfm_late, ts_in, ts_out)
    print(f'R2: {r2:.2f}, MAE: {mae:.2}, RMSE: {rmse:.2f} (test)')
R2: -5.70, MAE: 0.61, RMSE: 0.69 (training)
R2: -5.87, MAE: 0.62, RMSE: 0.69 (test)
```


Regret Comparison

Both approaches work well, but we beat LR by a factor of at least 2

```
In [12]: r ts fsm late = util.compute_regret(prb, fsm_late, ts_in, ts_out)
          r ts dfm late = util.compute_regret(prb, dfm_late, ts_in, ts_out)
          util.plot histogram(r ts dfm late, figsize=figsize, label='decision-focused', data2=r ts fsm lat
                                                                                                  decision-focused
           0.8
           0.6
           0.4
           0.2
           0.0
                 0.00
                              0.05
                                           0.10
                                                        0.15
                                                                      0.20
                                                                                   0.25
                                                                                                0.30
                                                        decision-focused
          Mean: 0.009 (decision-focused), 0.020 (two stage)
```


A Deeper Look at the Predictions

It's interesting to the check the predictions for the "late" LR model

A Deeper Look at the Predictions

It's interesting to the check the predictions for the "late" LR model

