행복은 장바구니를 타고

상어초밥팀 박이삭 이다경 김서연

INDEX.

● 데이터 전처리

모델 개발 및 분석과정 1. 물건기반 협업필터링 2. Word2Vec

최종 추천 방법

R package

데이터 전처리

겨울 데이터 제작

- 계절별로 구매물품에 차이 가 있을 거라 생각.
- 실제 분석 결과 오른쪽 그림 처럼 계절별 물품 구매횟수 차이 확인
- 이에 따라 겨울(12월, 1월 2월)에 물건을 구매한 사람 들에 대한 "겨울 데이터" 생성

계절별 구매 횟수 차이

데이터 전처리

겨울 데이터 제작: 계절별 구매물품 차이 검정

물품 구매 횟수에 계절별로 통계적 차이가 있음을 확인하기 위해 ANOVA 검정 실시

```
Df Sum Sq Mean Sq F value Pr(>F)
group 3 26 8.535 11.4 1.83e-07 ***
Residuals 17540 13132 0.749
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- 봄, 여름, 가을, 겨울 → DF = 4-1 = 3
- 귀무가설: Mean(봄) = Mean(여름) = Mean(가을) = Mean(겨울)
- P-value =1.83e-07 = 0.000000183 〈〈 0.05 이므로 계절별 차이가 있음을 확인

데이E 분석하기

데이터 전처리

분석하기 앞서 생성한 데이터

분석하기 앞서 생성한 데이터

- 물건기반협업필터링 & Word2Vec 알고리즘에 적용

구매횟수 데이터

고객별 해당 물품을 몇번 구매했는지 나타내는 데이터

구매목록 데이터

각 고객이 2년(겨울)동안 구매한 구매 목록을 순서대로 나열한 데이터

데이터 전처리

분석하기 앞서 생성한 데이터

1. 구매횟수 데이터 : 고객별 해당 물품을 몇번 구매했는지 나타내는 데이터

고객번호	A010101	A010102	A010103	A010104	A010105	A010106	A010201
3071	0	10	3	250	0	7	0
4074	1	2	0	1	0	0	6
10719	70	0	53	22	0	0	1
•••	•••	•••	•••	•••	•••	•••	•••
4825	0	0	0	0	1	0	2
17357	0	0	28	0	0	겨 울 에 ह	하나이상 구매함
18761	0	1	0	0	0		9372명의 총 둘

l한 고객: 19372명 19372명의 총 물품목록:4137개

•••

→ 고객별해당물품구매횟수매트릭스생성 *겨울에구매한물품이없는고객제거

데이터 전처리

분석하기 앞서 생성한 데이터

2. 구매목록 데이터 : 각 고객이 2년(겨울)동안 구매한

구매목록을 순서대로 나열한 데이터

고개번호	구매1	구매2	구매3	구매4	•••
17218	B150401	B160101	B160201	B180301	•••
17674	B050901	B150101	B050311	B050701	•••
14388	B100306	B430101	B540301	B340402	•••
•••	•••	•••	•••	•••	•••
2975	A011003	B520103			•••
7111	B340404				•••

겨울에하나이상 구매한고객: 19372명 19372명의사람중최다구매횟수: 488회

구매488

B550601

B380504

B140601

•••

→ 각고객별겨울기간동안구매한상품을나열한 구매목록매트릭스생성

구매487

B090402

B610202

B140607

구매486

B300601

B180204

B180303

•••

모델 개발 및 분석 과정 물품기반 협업필터링 & Word2Vec

모델 개발 과정

1.물품기반 협업필터링 내가 구매한 물품들과

유사한 물품 추천

2. Word2Vec

고객과 거리가 가까운 물품 추천

1. 물품기반 협업필터링

물품기반 협업필터링

물품기반 협업필터링의 정의

협업 필터링이란?

고객들의 프로파일정보를 활용하여 목표고객이 높게 평가할 것으로 예상되는 서비스나 아이템을 추천하는 기법.

(출처: 장르별 협업필터링을 이용한 영화 추천 시스템의 성능 향상, 이재식.박석두, 2007년 12월)

물품기반 협업필터링(item-based collaborative filtering) 이란?

물품에 대한 선호도를 기반으로 물품들사이의 유사도를 구하여, 고객에게 물품을 추천해주는 협업필터링의 한 기법.

물품기반 협업필터링

적용 방법, 과정

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화: 고객별 물품에 대한 선호도 점수화

물품 점수화

- 물품기반 협업필터링을 진행하기 위해서는 고객별 '물품에 대한 선호도' 필요
- 구매횟수 데이터에서 TF-IDF 기법을 이용하여 물품점수화. 다음장에 예를 들어 설명
- 0점부터 765.1점까지

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화 : TF-IDF란?

TF-IDF란?

정보 검색과 텍스트 마이닝에서 이용하는 가중치로, 여러 문서로 이루어진 문서군이 있을 때 어떤 단어가 특정 문서 내에서 얼마나 중요한 것인지를 나타내는 통계적 수치

TF: Term Frequency

DF: Document Frequency

*IDF = 1/DF

다음장에 예를 들어 설명

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화 : TF-IDF란?

물품 점수화

문서 = 고객한명한명의 구매목록

단어 = 구매물품들

TF: 특정단어(term)가 하나의 문서(document)내에 나타난 빈도

DF: 전체 문서군(global document) 중에서 특정단어(term)를 포함하는 문서 빈도

TF-IDF 예시

고객번호	구매목록1	구매목록2	구매목록3	구매 목록 4
1	사과	배	사과	배
2	자전거	껌	빵	딸기
3	사과	딸기	맥주	오렌지
4	배	사과	술	쉐이빙크림
5	사과	떡	오렌지	껌
6	전기면도기	쉐이빙크림	맥주	자전거
7	사과	맥주	떡	딸기

전체 문서 수(전체 고객 수) = 7

사과의 DF

= (전체 고객 중 사과를 포함하고 있는 고객 수)

= 5 (1번, 3번, 4번, 5번, 7번고객)

배의 DF

= (전체 고객 중 배를 포함하고 있는 고객 수)

= 2 (1번, 4번고객)

〈구매목록 예시〉

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화 : TF-IDF란?

고객번호	구매목록1	구매목록2	구매목록3	구매목록4
1	사과	배	사과	배
2	자전거	껌	빵	딸기
3	사과	딸기	맥주	오렌지
4	배	사과	술	쉐이빙크림
5	사과	떡	오렌지	껌
6	전기면도기	쉐이빙크림	맥주	자전거
7	사과	맥주	떡	딸기

〈구매목록 예시〉

1번 고객에 대한 설명

사과의 TF

= (고객의 구매목록 중 사과의 개수)

= 2

사과에 대한 TF-IDF

= TF/DF

= 2/5 = 0.4

배의TF

= (고객의 구매목록 중 배의 개수)

= 2

배에 대한 TF-IDF

= TF/DF

= 2/2 = 1

1번고객의 사과 점수 < 배 점수

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화 : TF-IDF란?

1번 고객에 대한 설명

LITLOLTE

					사파의 IF - (그개이 그메모르 ᄌ 내고(이 게스)
고객번호	구매목록1	구매목록2	구매목록3	구매목록4	= (고객의 구매목록 중 사과의 개수) = 2
1	사과	배	사과	배	
2	자전거	77-			사과에 대한 TF-IDF
3	사과				많아/등작하나,
4	7.7-1-		一章元	. 세이비그리.	
5	사소				
6	전기면도기	쉐이빙크림	맥주	<u> </u>	= (고객의 구매목록 중 배의 개수) -
7	사과	맥주	떡		
			/ —		베에 대한 TF-IDF
			⟨+	매목록예시〉	= TF/DF
					= 2/2 = 1

T번고객의 사과 점수 < 배 점수

물품기반 협업필터링

적용 방법, 과정

1. 물품 점수화 : TF-IDF란?

1번 고객에 대한 설명

ALTICOTE

고객번호	구매목록1	구매목록2	구매목록3	구매목록4	= (고객의 구매 목록 중 사과의 개수) = 2
1	사과	배	사과	배	
2 -	> 12777				
3	사과	딸기	맥주	오레지	1101=26570 (-1
4	배	사과	4	7 10 12:	火の音学書
5	사과	떡	[[우렌지]	774	
6	전기면도기	쉐이빙크림			중 교
7	사과	맥주	떡	딸기	여러 고객에게 일반적으로 등장하지 않고
			⟨¬	매목록 예시〉	소수의 고객에게만 등장하는 정도
			\ 1		= 2/2 = 1

T번고객의 사과 점수 < 배 점수

물품기반 협업필터링

석용 방법, 과정

2. 물품별 유사도 행렬 : 물품별 거리를 측정하여

유사도 행렬 생성

	A010101	A010102	•••	D080302	D080401
A010101	1	0.8124	••• II르 드어	0.003	0.006
A010102	0.8124	1	•••	0	0.007
•••	•••	•••	•••	•••	•••
D080302	0.003	0	•••	1	0.308
D080401	0.006	0.007	•••	0.308	1

물품별 유사도 행렬

- 물품을 점수화한 데이터를 바탕으로 각 물건별 <mark>유사도 매트릭스</mark> 생성.
- "코사인유사도"와 "유클리디안 거리" 중 코사인 유사도를 이용하여 유사도 계산 23페이지 참조
- 물품 x와 y의 코사인 유사도: cosSimilarity(x, y) = (x · y) / (||x|| * ||y||)

물품기반 협업필터링

적용 방법, 과정

2. 물품별 유사도 행렬 : 물품 유사도 계산 예시

A010101 & A010102 물품의 유사도 예시

물품 A010101와 A010102의 코사인 유사도:
cosSimilarity(A010101, A010102)
= (A010101 · A010102) / (||A010101|| * ||A010102||)

$$= \frac{(1x0 + 9x5 + 4x10 + 5x7 + 3x8)}{\sqrt{(1^2 + 9^2 + 4^2 + 5^2 + 3^2) \times (0^2 + 5^2 + 10^2 + 7^2 + 8^2)}}$$

= 0.8124

고객 물품	1번고객	2번고객	3번고객	4번고객	5번고객
A010101	1	9	4	5	3
A010102	0	5	10	7	8

	A010101	A010102
A010101	1	0.8124
	/ — ·	

〈물품별 유사도 행렬〉

〈물품 점수 행렬 -물품 x 고객〉

물품기반 협업필터링

적용 방법, 과정 3. 고객별 물품 추천 점수 행렬 : 고객별 물품 추천 점수 행렬 생성

물품 고객	A010101	A010102	•••	D080302	D080401
3071	0.028	0.031 3071번 고객어	 A01010	0.031)1 물품을 추천할 점	0.0317
4704	0.04	0.0506	•••	0.049	0.05
•••	•••	•••	•••	•••	•••
18901	0.00178	0.0016	•••	0.0013	0.0015
18154	0.0002	0.00019	•••	0.00019	0.00018

고객별 물품추천 점수행렬

앞서 만든 유사도 행렬을 바탕으로
 고객별 모든 물품에 추천 점수 유도

다음장에 예를 들어 설명

- 점수가 가장 높은 3개의 물품 추천

물품기반 협업필터링

석용 방법, 과성 3. 고객별 물품 추천 점수 행렬 : 점수행렬 계산 식

점수행렬 계산 식

4137개의 모든 아이템: item(1), item(2), ···, item(4137)

유저 i가 구매한 M(i)개의 아이템: record(i, 1), record(i, 2), ..., record(i, M(i))

유저 i에 대한 아이템 x의 추천 점수 score(i, x): score(i, x) = (itemsSimilarity(x, record(i, 1)) + ··· + itemsSimilarity(x, record(i, M(i)))) / (itemsSimilarity(x, item(1)) + ··· + itemsSimilarity(x, item(K))) (출처: Code Sprint 2015 Round 2 - 협업 필터링으로 유저 기호 예측하기,김재겸, 2015년 9월)

다음장에 예를 들어 설명

고객번호

물품기반 협업필터링

적용 방법, 과정

구매목록1

3. 고객별 물품 추천 점수 행렬: 점수행렬 계산 예

점수행렬 계산 예

〈1번 고객의 구매목록 데이터〉

구매목록2 구매목록3

사과 배 자전거

〈물품별 유사도 행렬〉

	사과	배	•••	껌	자전거	합
사과	1	0.78	•••	0.53	0.006	79.24
배	0.89	1	•••	0.308	0.007	
•••	•••	•••	•••	•••	•••	
껌	0.53	0.308	•••	1	0.003	
자전거	0.006	0.007	•••	0.003	1	

사과, 배, 자전거를 구매한 1번 고객의 사과 추천 점수는?

score(1,사과)

= ((**사과**, <mark>사과</mark> 유사도) + (**사과**, 배 유사도) + (**사과**, 자전거 유사도))

/ (사과와 모든 물품들의 유사도 합)

$$= (1 + 0.78 + 0.006) / 79.24 = 0.0225$$

〈물품 추천 점수 행렬〉

고객번호

물품기반 협업필터링

적용 방법, 과정

구매목록1

사과

3. 고객별 물품 추천 점수 행렬: 점수행렬 계산 예

점수행렬 계산 예

〈1번 고객의 구매목록 데이터〉

내목록 2	구매목록3
배	자전거

자전거

〈물품별 유사도 행렬〉

	사과	배	•••	껌	자전거	합
사과	1	0.78	•••	0.53	0.006	
배	0.89	1	•••	0.308	0.007	
•••	•••	•••	•••	•••	•••	
··· 껌	0.53	0.308	•••	 1	0.003	83

사과, 배, 자전거를 구매한 1번 고객의 껌 추천 점수는?

score(1,껌)

$$= (0.53 + 0.308 + 0.003) / 83 = 0.01$$

물품 고객	사과	검
1	0.0225	0.01
	/0:	프 支칭 저人 해려\

〈굴품 수선 섬수 앵덜〉

물품기반 협업필터링

적용 방법, 과정 여러 모델 학습 후 검증 2014년 데이터로 모델 학습, 2015년 구매 예측 → 정답률 확인 후 비교

겨울 구매 데이터로 물품간 코사인 유사도를 구하여 최종 모델 생성

2. Word 2 Vec

2 -2 Word2Vec의정의

Word2Vec이란?

- 구글의 연구원들이 "Efficient Estimation of Word Representations in Vector Space"라는 논문에서 제안하여 구현된 알고리즘
- 인공신경망의 한 종류로, 단어를 벡터로 표현
- 텍스트 문서를 학습시키는 과정을 통하여 비슷한 의미를 갖고 있는 단어들끼리 더 가까운 벡터를 갖고,
 상반된 의미를 갖고 있는 경우 더 멀리 떨어지도록 학습

The
Sicilian
gelato
was
extremely
rich.

(출처: ICT Portal Media, 〈Word2Vec, 자연어 기계학습의 혁명적 진화, 2014년11월20일)

2 -2 Word2Vec Word2Vec의 ব্ৰঞ্চাম্ম, মস্ত

학습

→ 고객과 물품간 거리 확인

유사한 물품 확인

Word2Vec
Word2Vec의 적용방법, 과정
1. Word2Vec 학습:
고객별 구매 물품 Word2Vec 알고리즘 학습

- 한 문장 속에서 단어를 찾아 벡터로 표현하는 Word2Vec의 원리를 응용
- '고객들이 구입한 물품들은 서로 연관성이 있다'

한 고객이 구매한 전체 구매목록을 하나의 문장으로 인식

각 구매물품들을 단어로 보고 학습함

Word2Vec Word2Vec의 적용방법, 과정 1. Word2Vec 학습: 학습 효과

Word2Vec Word2Vec의 적용방법, 과정 1. Word2Vec 학습 : 학습 효과

Word2Vec Word2Vec의 적용방법, 과정 1. Word2Vec 학습 : 차원이란?

차원이란?

- Word2Vec 알고리즘을 학습시킬 공간의 차원

Word2Vec

Word2Vec의 적용방법, 과정 1. Word2Vec 학습: 차원이란?

(출처: Computer vision for dummies, 〈The Curse of Dimensionality in classification〉, 2014년4월16일)

하지만 차원이 일정이상 증가하면 데이터의 대부분이 꼭지에 분포하게 되어 정확한 측정 불가

Word2Vec

Word2Vec의 적용방법, 과정 1. Word2Vec 학습 : 차원이란?

<실제 학습 결과 - 3차원>

Word2Vec

Word2Vec의 적용방법, 과정
1. Word2Vec 학습: 차원에 따른 모델 학습 & 검증

2014년 데이터로 모델 학습, 2015년 구매 예측 → 정답률 확인 후 비교

차원에 따른 모델 학습 & 검증

20차원 공간에 Word2Vec 알고리즘 학습시킨 모델 사용

Word2Vec

Word2Vec의 적용방법, 과정

2. 공간상 유사 물품 확인 :

물품별 공간상 거리를 측정하여 유사한 물품 확인

<실제 학습 결과 - 20차원>

공간상 유사한 물품 확인

일용갑화 일반가공식품 즉석반찬 농산가공 즉석반찬 유제품 수입식품 채소 위생세제 청과 양념육 음료 유기농채송 우육 건과 주류 돈육

- A제휴사 물품
- 대분류가 모두 "01"로 동일
- 대부분 식품군

〈실제 학습 후 - 20차원〉

Word2Vec Word2Vec의 적용방법, 과정 2. 공간상 유사 물품 확인 : 물품별 공간상 거리를 측정하여 유사한 물품 확인

Word2Vec 학습 결과로 물품별 공간상 거리를 측정하여 유사한 물품 확인

사과 - 딸기 거리

= 1-(사과, 딸기 코사인 유사도)

= 1-
$$(((1 \times 5) + (2 \times 7) + (1 \times 2))/\sqrt{(1^2 + 2^2 + 1^2) \times (5^2 + 7^2 + 2^2)})$$

= 1-0.97 = 0.03

사과 - 자전거 거리

= 1-(사과, 자전거 코사인 유사도)

$$= 1 - (((1 \times 9) + (2 \times 1) + (1 \times 5)) / \sqrt{(1^2 + 2^2 + 1^2) \times (9^2 + 1^2 + 5^2)})$$

= 1-0.63 = 0.37

사과 - 딸기의 유사도 > 사과 - 자전거의 유사도

Word2Vec

Word2Vec의 적용방법, 과정

3. 고객별 물품 추천 좌표계 : 고객별 물품 추천 좌표계 생성 → 고객과 물품간 거리 확인

고객과 거리가 가까운 물품 추천

Word2Vec Word2Vec의 적용방법, 과정 3. 고객별 물품 추천 좌표계 : X축

나의 점수

TF-IDF점수가 높은 상위 \sqrt{i} (i개를 \sqrt{i} 로 줄여 불필요한 좌표를 줄임)가 나열 (최고점수가 원점에 가깝도록)

Word2Vec

Word2Vec의 적용방법, 과정 3. 고객별 물품 추천 좌표계 : Y축

Y축: Word2Vec 알고리즘에 의해 확인한 물품별 공간상 거리를 활용하여 구매한 물품들과 가까운 순서대로 나열 (구매한 물품과 유사할수록 원점에 가깝도록)

사과, 복숭아의 거리 🕻 사과, 밤의 거리

 Word2Vec

 Word2Vec의 적용방법, 과정

 3. 고객별 물품 추천 좌표계 : Z축

Z축: 물품별 TF-IDF 값을 모두 더하여 높은 순서대로 나열 (높은 점수가 원점에 가깝도록)

	1번고객	2번고객	3번고객	4번고객	5번고객	합
사과	1	9	4	5	3	22
복숭아	0	5	10	7	8	30
밤	2	0	9	0	6	17

〈물품 점수 행렬 -물품 x 고객〉

Word2Vec

Word2Vec의 적용방법, 과정

3. 고객별 물품 추천 좌표계 : 고객별 물품 추천 좌표계 생성 → 고객과 물품간 거리 확인

고객과 거리가 가까운 물품 추천

3. 최종 추천 방법

최종 추천 방법

물품기반 협업필터링 & Word2Vec 에서 최종 물품 추천

한 고객에게 총 3개의 물품 추천

- 1) 물품기반 협업필터링과 Word2Vec 모두에게 나온 추천물품
- 2) 물품기반 협업필터링에서만 나온, 높은 점수의 물품
- 3) Word2Vec에서만 나온, 고객과 거리가 가까운 물품
- 물품기반 협업필터링과 Word2Vec 에서 공통된 부분이 없다면, 더 높은 정답률을 가졌던 Word2Vec(66%) 에서 두개, 물품기반 협업 필터링(51%) 에서 하나 추천

4. R package

R package R 에서 사용한 package

data.table complier stringr microbenchmark ggplot2, rgl devtools wordVectors

"구매상품TR" 과 같이 용량이 큰 데이터를 불러오기 위해 사용한 패키지

반복문의 실행 속도를 빠르게 하기 위해 사용한 패키지

문자열 처리를 위해 사용한 패키지

function이 다 실행 되는데 시간이 얼마나 걸리는지 알려주는 패키지

시각화를 위해 사용한 패키지

git-hub 에서 wordVectors 패키지를 다운받을 수 있도록 도와주는 패키지

Word2Vec 알고리즘에 사용한 패키지

