Yoon Kim

Alexander M. Rush

HarvardNLP

Code: https://github.com/harvardnlp/seq2seq-attn

Sequence-to-Sequence

- Machine Translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015; Luong et al., 2015)
- Question Answering (Hermann et al., 2015)
- Conversation (Vinyals et al., 2015a; Serban et al., 2016; Li et al., 2016)
- Parsing (Vinyals and Le, 2015)
- Speech (Chorowski et al., 2015; Chan et al., 2015)
- Summarization (Rush et al., 2015)
- Caption Generation (Xu et al., 2015; Vinyals et al., 2015b)
- Video-Generation (Srivastava et al., 2015)
- NER/POS-Tagging (Gillick et al., 2016)

Sequence-to-Sequence

- Machine Translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2015; Luong et al., 2015)
- Question Answering (Hermann et al., 2015)
- Conversation (Vinyals et al., 2015a; Serban et al., 2016; Li et al., 2016)
- Parsing (Vinyals and Le, 2015)
- Speech (Chorowski et al., 2015; Chan et al., 2015)
- Summarization (Rush et al., 2015)
- Caption Generation (Xu et al., 2015; Vinyals et al., 2015b)
- Video-Generation (Srivastava et al., 2015)
- NER/POS-Tagging (Gillick et al., 2016)

Google unleashes deep learning tech on language with Neural ...

TechCrunch - Sep 27, 2016

Google has been working on a machine learning translation technique for years, and today is its official debut. The Google Neural Machine ...

Google Translate now converts Chinese into English with neural ...

VentureBeat - Sep 27, 2016

Google announces Neural Machine Translation The Stack - Sep 28, 2016

Google announces Neural Machine Translation to improve Google ...

Highly Cited - ZDNet - Sep 27, 2016

Google is using Neural Networks for Chinese to English machine ...

Opinion - Firstpost - Sep 28, 2016

Google announces neural network to improve machine translation In-Depth - Seeking Alpha - Sep 27, 2016

Ubergizmo

VentureBeat The Stack

Geektime

Science Mag...

ZDNet View all

SYSTRAN: 1st software provider to launch a Neural Machine ...

GlobeNewswire (press release) - Oct 17, 2016

In December, SYSTRAN will communicate the feedback received on Pure Neural TM Machine Translation, its roadmap and time to market plan ...

Iconic Integrates Custom Neural Machine Translation Into ...

Slator (press release) (subscription) - Oct 6, 2016

Dublin – October 6, 2016 – Iconic **Translation** Machines (Iconic), a leading Irish machine translation (MT) software and solutions provider, today ...

Neural Machine Translation

Excellent results on many language pairs, but need large models

- Original seq2seq paper (Sutskever et al., 2014): 4-layers/1000 units
- Deep Residual RNNs (Zhou et al., 2016): 16-layers/512 units
- Google's NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

⇒ Deployment is challenging!

Neural Machine Translation

Excellent results on many language pairs, but need large models

- Original seq2seq paper (Sutskever et al., 2014): 4-layers/1000 units
- Deep Residual RNNs (Zhou et al., 2016): 16-layers/512 units
- Google's NMT system (Wu et al., 2016): 8-layers/1024 units

Beam search + ensemble on top

⇒ Deployment is challenging!

- **Pruning**: Prune weights based on importance criterion (LeCun et al., 1990; Han et al., 2016; See et al., 2016)
- Knowledge Distillation: Train a student model to learn from a teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Kuncoro et al., 2016). (Sometimes called "dark knowledge")

Other methods

- low-rank matrix factorization of weight matrices (Denton et al., 2014)
- weight binarization (Lin et al., 2016)
- weight sharing (Chen et al., 2015)

- **Pruning**: Prune weights based on importance criterion (LeCun et al., 1990; Han et al., 2016; See et al., 2016)
- Knowledge Distillation: Train a student model to learn from a teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Kuncoro et al., 2016). (Sometimes called "dark knowledge")

Other methods

- low-rank matrix factorization of weight matrices (Denton et al., 2014)
- weight binarization (Lin et al., 2016)
- weight sharing (Chen et al., 2015)

- **Pruning**: Prune weights based on importance criterion (LeCun et al., 1990; Han et al., 2016; See et al., 2016)
- Knowledge Distillation: Train a student model to learn from a teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Kuncoro et al., 2016). (Sometimes called "dark knowledge")

Other methods

- low-rank matrix factorization of weight matrices (Denton et al., 2014)
- weight binarization (Lin et al., 2016)
- weight sharing (Chen et al., 2015)

- **Pruning**: Prune weights based on importance criterion (LeCun et al., 1990; Han et al., 2016; See et al., 2016)
- Knowledge Distillation: Train a student model to learn from a teacher model (Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Kuncoro et al., 2016). (Sometimes called "dark knowledge")

Other methods:

- low-rank matrix factorization of weight matrices (Denton et al., 2014)
- weight binarization (Lin et al., 2016)
- weight sharing (Chen et al., 2015)

Standard Setup

Minimize NLL

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid \mathbf{y}_{1:t-1}, \mathbf{x}; \theta)$$

 $w_t = {\sf random\ variable\ for\ the\ } t$ -th target token with support ${\cal V}$ $y_t = {\sf ground\ truth\ } t$ -th target token ${\bf y}_{1:t-1} = {\sf target\ sentence\ up\ to\ } t-1$

 $\mathbf{y}_{1:t-1}$ — target sentence up to v

 $\mathbf{x} = \mathsf{source} \; \mathsf{sentence}$

 $p(\cdot | \mathbf{x}; \theta) = \text{model distribution, parameterized with } \theta$

(conditioning on source x dropped from now on)

Knowledge Distillation (Bucila et al., 2006; Hinton et al., 2015)

- \bullet Train a larger teacher model first to obtain teacher distribution $q(\cdot)$
- Train a *smaller student* model $p(\cdot)$ to mimic the teacher

Teacher distribution: $q(w_t | \mathbf{y}_{1:t-1}; \theta_T)$

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid \mathbf{y}_{1:t-1}; \theta)$$

$$\mathsf{D-KD} = -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \mid \mathbf{y}_{1:t-1}; \theta_T) \log p(w_t = k \mid \mathbf{y}_{1:t-1}; \theta)$$

Teacher distribution: $q(w_t | \mathbf{y}_{1:t-1}; \theta_T)$

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid \mathbf{y}_{1:t-1}; \theta)$$

$$\mathcal{L}_{\mathsf{WORD\text{-}KD}} = -\sum_t \sum_{k \in \mathcal{V}} q(w_t = k \,|\, \mathbf{y}_{1:t-1}; \theta_T) \log p(w_t = k \,|\, \mathbf{y}_{1:t-1}; \theta)$$

No Knowledge Distillation

$$\mathcal{L} = \alpha \mathcal{L}_{\text{WORD-KD}} + (1 - \alpha) \mathcal{L}_{\text{NLL}}$$

Word-Level Knowledge Distillation Results

English → German (WMT 2014)

Model	BLEU
4×1000 Teacher	19.5
2×500 Baseline (No-KD)	17.6
2×500 Student (Word-KD)	17.7
2×300 Baseline (No-KD)	16.9
2×300 Student (Word-KD)	17.6

This Work

Generalize single-class knowledge distillation to the sequence-level.

- Sequence-Level Knowledge Distillation (Seq-KD): Train towards the teacher's sequence-level distribution.
- **Sequence-Level Interpolation (Seq-Inter)**: Train on a mixture of the teacher's distribution and the data.

Recall word-level knowledge distillation:

$$\begin{split} \mathcal{L}_{\text{NLL}} &= -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \,|\, \mathbf{y}_{1:t-1}; \theta) \\ \mathcal{L}_{\text{WORD-KD}} &= -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \,|\, \mathbf{y}_{1:t-1}; \theta_T) \log p(w_t = k \,|\, \mathbf{y}_{1:t-1}; \theta) \end{split}$$

Instead of word-level cross-entropy, minimize cross-entropy between q and p implied $\emph{sequence}\text{-}\emph{distributions}$

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{\mathbf{w} \in \mathcal{T}} \mathbb{1}\{\mathbf{w} = \mathbf{y}\} \log p(\mathbf{w} \,|\, \mathbf{x}; \theta)$$
$$\mathcal{L}_{\mathsf{SEQ-KD}} = -\sum_{\mathbf{w} \in \mathcal{T}} q(\mathbf{w} \,|\, \mathbf{x}; \theta_T) \log p(\mathbf{w} \,|\, \mathbf{x}; \theta)$$

Sum over an exponentially-sized set \mathcal{T} .

Recall word-level knowledge distillation:

$$\mathcal{L}_{\text{NLL}} = -\sum_{t} \sum_{k \in \mathcal{V}} \mathbb{1}\{y_t = k\} \log p(w_t = k \mid \mathbf{y}_{1:t-1}; \theta)$$

$$\mathcal{L}_{\text{WORD-KD}} = -\sum_{t} \sum_{k \in \mathcal{V}} q(w_t = k \mid \mathbf{y}_{1:t-1}; \theta_T) \log p(w_t = k \mid \mathbf{y}_{1:t-1}; \theta)$$

Instead of word-level cross-entropy, minimize cross-entropy between q and p implied $\emph{sequence}\text{-}\emph{distributions}$

$$\mathcal{L}_{\mathsf{NLL}} = -\sum_{\mathbf{w} \in \mathcal{T}} \mathbb{1}\{\mathbf{w} = \mathbf{y}\} \log p(\mathbf{w} \,|\, \mathbf{x}; \theta)$$
$$\mathcal{L}_{\mathsf{SEQ-KD}} = -\sum_{\mathbf{w} \in \mathcal{T}} q(\mathbf{w} \,|\, \mathbf{x}; \theta_T) \log p(\mathbf{w} \,|\, \mathbf{x}; \theta)$$

Sum over an exponentially-sized set \mathcal{T} .

Approximate $q(\mathbf{w} \mid \mathbf{x})$ with mode

$$q(\mathbf{w} \,|\, \mathbf{x}) \approx \mathbb{1}\{\arg\max_{\mathbf{w}} q(\mathbf{w} \,|\, \mathbf{x})\}$$

Approximate mode with beam search

$$\hat{\mathbf{y}} \approx \arg\max_{\mathbf{w}} q(\mathbf{w} \mid \mathbf{x})$$

Simple model: train the student model on $\hat{\mathbf{y}}$ with NLL

Approximate $q(\mathbf{w} \mid \mathbf{x})$ with mode

$$q(\mathbf{w} \mid \mathbf{x}) \approx \mathbb{1}\{\arg\max_{\mathbf{w}} q(\mathbf{w} \mid \mathbf{x})\}$$

Approximate mode with beam search

$$\hat{\mathbf{y}} \approx \arg\max_{\mathbf{w}} q(\mathbf{w} \mid \mathbf{x})$$

Simple model: train the student model on $\hat{\mathbf{y}}$ with NLL

Approximate $q(\mathbf{w} \mid \mathbf{x})$ with mode

$$q(\mathbf{w} \mid \mathbf{x}) \approx \mathbb{1}\{\arg\max_{\mathbf{w}} q(\mathbf{w} \mid \mathbf{x})\}$$

Approximate mode with beam search

$$\hat{\mathbf{y}} \approx \arg\max_{\mathbf{w}} q(\mathbf{w} \mid \mathbf{x})$$

Simple model: train the student model on $\hat{\mathbf{y}}$ with NLL

Word-level knowledge distillation

$$\mathcal{L} = \alpha \mathcal{L}_{WORD-KD} + (1 - \alpha) \mathcal{L}_{NLL}$$

Essentially training the student towards the mixture of teacher/data distributions.

How can we incorporate ground truth data at the sequence-level?

Naively, could train on both y (ground truth sequence) and \hat{y} (beam search output from teacher).

This is non-ideal:

- Doubles size of training set
- \bullet $\, {\bf y}$ could be very different from $\hat{\bf y}$

Consider a single-sequence approximation

Take the sequence that is on the beam but highest similarity function sim (e.g. BLEU) to ground truth

$$\tilde{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{T}}{\arg \max} sim(\mathbf{y}, \mathbf{w}) q(\mathbf{w} \mid \mathbf{x})$$

$$\approx \underset{\mathbf{y} \in \mathcal{T}_K}{\arg \max} sim(\mathbf{y}, \mathbf{w})$$

 $\mathcal{T}_K: K$ -best sequences from beam search.

Similar to local updating (Liang et al., 2006)

Train the student model on $\tilde{\mathbf{y}}$ with NLL.

Take the sequence that is on the beam but highest similarity function sim (e.g. BLEU) to ground truth

$$\begin{split} \tilde{\mathbf{y}} &= \operatorname*{arg\,max} sim(\mathbf{y}, \mathbf{w}) q(\mathbf{w} \mid \mathbf{x}) \\ \mathbf{y} \in \mathcal{T} &\approx \operatorname*{arg\,max} sim(\mathbf{y}, \mathbf{w}) \\ \mathbf{y} \in \mathcal{T}_K & \end{split}$$

 $\mathcal{T}_K: K$ -best sequences from beam search.

Similar to local updating (Liang et al., 2006)

Train the student model on $\tilde{\mathbf{y}}$ with NLL.

Take the sequence that is on the beam but highest similarity function sim (e.g. BLEU) to ground truth

$$\begin{split} \tilde{\mathbf{y}} &= \operatorname*{arg\,max} sim(\mathbf{y}, \mathbf{w}) q(\mathbf{w} \mid \mathbf{x}) \\ \mathbf{y} \in \mathcal{T} &\approx \operatorname*{arg\,max} sim(\mathbf{y}, \mathbf{w}) \\ \mathbf{y} \in \mathcal{T}_K & \end{split}$$

 $\mathcal{T}_K: K$ -best sequences from beam search.

Similar to local updating (Liang et al., 2006)

Train the student model on $\tilde{\mathbf{y}}$ with NLL.

Experiments on English → German (WMT 2014)

- Word-KD: Word-level Knowledge Distillation
- \bullet Seq-KD: Sequence-level Knowledge Distillation with beam size K=5
- Seq-Inter: Sequence-level Interpolation with beam size K=35. Fine-tune from pretrained Seq-KD (or baseline) model with smaller learning rate.

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500 Student	14.7	_	17.6	_	8.2	0.9%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500 Student Word-KD	14.7 15.4	- +0.7	17.6 17.7	- +0.1	8.2 8.0	0.9% 1.0%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000 Teacher	17.7	_	19.5	_	6.7	1.3%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
$Word ext{-}KD$	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4 × 1000						
Teacher	17.7	_	19.5	_	6.7	1.3%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000						
Teacher	17.7	_	19.5	_	6.7	1.3%
Seq-Inter	19.6	+1.9	19.8	+0.3	10.4	8.2%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

Results: English \rightarrow German (WMT 2014)

Model	$BLEU_{K=1}$	$\Delta_{K=1}$	$BLEU_{K=5}$	$\Delta_{K=5}$	PPL	$p(\hat{\mathbf{y}})$
4×1000						
Teacher	17.7	_	19.5	_	6.7	1.3%
Seq-Inter	19.6	+1.9	19.8	+0.3	10.4	8.2%
2×500						
Student	14.7	_	17.6	_	8.2	0.9%
Word-KD	15.4	+0.7	17.7	+0.1	8.0	1.0%
Seq-KD	18.9	+4.2	19.0	+1.4	22.7	16.9%
Seq-Inter	18.9	+4.2	19.3	+1.7	15.8	7.6%

More experiments (different language pairs, combining configurations, different sizes etc.) in paper

An Application

Seq KD (arxiv.org/abs/1606.07947): learn small LSTMs for fast translation. Runs on a phone (nlp.seas.harvard.edu/translation.apk)

Decoding Speed

Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to word embedding tables)

• 4×1000 : 221 million

• 2×500 : 84 million

• 2×300 : 49 million

Prune student model: Same methodology as See et al. (2016)

- Prune x% of weights based on absolute value
- Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

Number of parameters still large for student models (mostly due to word embedding tables)

• 4×1000 : 221 million

• 2×500 : 84 million

• 2×300 : 49 million

Prune student model: Same methodology as See et al. (2016)

- Prune x% of weights based on absolute value
- Fine-tune pruned model (crucial!)

Combining Knowledge Distillation and Pruning

Conclusion

Introduced sequence-level versions of knowledge distillation to compress NMT models.

Observations:

- Can similarly compress an ensemble into a single model (Kuncoro et al., 2016)
- No beam search

 we no longer need the softmax at each step: opens up window into approximate inner product methods.

Live deployment: (greedy) student outperforms (beam search) teacher! (Crego et al., 2016)

Conclusion

Introduced sequence-level versions of knowledge distillation to compress NMT models.

Observations:

- Can similarly compress an ensemble into a single model (Kuncoro et al., 2016)
- ullet No beam search \Longrightarrow we no longer need the softmax at each step: opens up window into approximate inner product methods.

Live deployment: (greedy) student outperforms (beam search) teacher! (Crego et al., 2016)

Conclusion

Introduced sequence-level versions of knowledge distillation to compress NMT models.

Observations:

- Can similarly compress an ensemble into a single model (Kuncoro et al., 2016)
- No beam search

 we no longer need the softmax at each step:
 opens up window into approximate inner product methods.

Live deployment: (greedy) student outperforms (beam search) teacher! (Crego et al., 2016)

https://github.com/harvardnlp/seq2seq-attn

Thank you

harvardnlp #

Appendix: Decoding Speed

Model Size	GPU	CPU	Android	
Beam = 1 (Greedy)				
4×1000	425.5	15.0	_	
2×500	1051.3	63.6	8.8	
2×300	1267.8	104.3	15.8	
Beam = 5				
4×1000	101.9	7.9	_	
2×500	181.9	22.1	1.9	
2×300	189.1	38.4	3.4	

Source words translated per second.

Appendix: Knowledge Distillation and Pruning

Model	Prune $\%$	Params	BLEU	Ratio (Params)
4×1000	0%	$221~\mathrm{m}$	19.5	$1 \times$
2×500	0%	$84\ \mathrm{m}$	19.3	$3 \times$
2×500	50%	$42 \; m$	19.3	$5 \times$
2×500	80%	$17~\mathrm{m}$	19.1	$13 \times$
2×500	85%	$13\ \mathrm{m}$	18.8	$18 \times$
2×500	90%	8 m	18.5	$26 \times$

References I

- Ba, L. J. and Caruana, R. (2014). Do Deep Nets Really Need to be Deep? In Proceedings of NIPS.
- Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In *Proceedings of ICLR*.
- Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model Compression. In *Proceedings of KDD*.
- Chan, W., Jaitly, N., Le, Q., and Vinyals, O. (2015). Listen, Attend and Spell. arXiv:1508.01211.
- Chen, X., Xu, L., Liu, Z., Sun, M., and Luan, H. (2015). Joint learning of Character and Word Embeddings. In *Proceedings of IJCAI*.

References II

- Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In *Proceedings* of *EMNLP*.
- Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., and Bengio, Y. (2015). Attention-Based Models for Speech Recognition. *arXiv:1506.07503*.
- Crego, J., Kim, J., and Senellart, J. (2016). Systran's pure neural machine translation system. *arXiv preprint arXiv:1602.06023*.
- Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014).
 Exploiting Linear Structure within Convolutional Neural Networks for
 Efficient Evaluation. In *Proceedings of NIPS*.
- Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A. (2016). Multilingual Language Processing from Bytes. In *Proceedings of NAACL*.

References III

- Han, S., Mao, H., and Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In *Proceedings of ICLR*.
- Hermann, K. M., Kcisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching Machines to Read and Comprehend. In *Proceedings of NIPS*.
- Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv:1503.0253.
- Kuncoro, A., Ballesteros, M., Kong, L., Dyer, C., and Smith, N. A. (2016).
 Distilling an Ensemble of Greedy Dependency Parsers into One MST Parser.
 In *Proceedings of EMNLP*.
- LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In *Proceedings of NIPS*.

References IV

- Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. (2016). A Diversity-Promoting Objective Function for Neural Conversational Models. In *Proceedings of NAACL 2016*.
- Liang, P., Bouchard-Cote, A., Klein, D., and Taskar, B. (2006). An End-to-End Discriminative Approach to Machine Translation. In Proceedings of COLING-ACL.
- Lin, Z., Coubariaux, M., Memisevic, R., and Bengio, Y. (2016). Neural Networks with Few Multiplications. In *Proceedings of ICLR*.
- Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to Attention-based Neural Machine Translation. In *Proceedings of EMNLP*.
- Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model for Abstractive Sentence Summarization. In *Proceedings of EMNLP*.
- See, A., Luong, M.-T., and Manning, C. D. (2016). Compression of Neural Machine Translation via Pruning. In *Proceedings of CoNLL*.

References V

- Serban, I. V., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016).
 Building End-to-End Dialogue Systems Using Generative Hierarchical Neural Network Models. In *Proceedings of AAAI*.
- Srivastava, N., Mansimov, E., and Salakhutdinov, R. (2015). Unsupervised Learning of Video Representations using LSTMs. *Proceedings of ICML*.
- Sutskever, I., Vinyals, O., and Le, Q. (2014). Sequence to Sequence Learning with Neural Networks. In *Proceedings of NIPS*.
- Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2015a). Grammar as a Foreign Language. In *Proceedings of NIPS*.
- Vinyals, O. and Le, Q. (2015). A Neural Conversational Model. In *Proceedings* of *ICML Deep Learning Workshop*.
- Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015b). Show and Tell: A Neural Image Caption Generator. In *Proceedings of CVPR*.

References VI

- Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W.,
 Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A.,
 Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa,
 H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J.,
 Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., and Dean, J.
 (2016). Google's Neural Machine Translation System: Bridging the Gap
 between Human and Machine Translation. arXiv:1606.09.08144.
- Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In *Proceedings of ICML*.
- Zhou, J., Cao, Y., Wang, X., Li, P., and Xu, W. (2016). Deep Recurrent Models with Fast-Forward Connections for Neural Machine Translation. In Proceedings of TACL.