

Cassia.ai: Better Power/Performance with Approximate Arithmetic for ML

Use arithmetic approximate from Cassia.ai to increase performance and reduce power in your ML accelerator with no loss accuracy. Cassia.ai hyper-optimizes key operations (e.g. multiplication, GeLU, sigmoid, etc) with almost no loss in model-level accuracy.

Figure 1: Layout comparison of standard FP32 multiplier with Cassia.ai CaFP32 multiplier in 45nm. We realize 6.85x improvement in TOPs/W and 18.6x improvement in TOPs/um2. Other quantization format (e.g. FP8, BF16, FP16, etc. are possible).

Figure 2: Size comparison of an 8x8 systolic array synthesized to different multiplier data types.

Figure 3: Fully placed 8x8 systolic arrays with standard multipliers on left versus Cassia multipliers on right.

	FP16	CaFP16	Cassia
Latency (ps)	*	*	1.2x
Power (W)	*	*	2.1x
Area (um2)	*	*	1.5x
GOPs/W	*	*	2.5x

Table 1a: Comparison of estimated latency, power, area, and efficiency for FP16 vs CaFP16 placed layouts. *available under NDA.

	FP8	CaFP8	Cassia
Latency (ps)	*	*	1.2x
Power (W)	*	*	2.2x
Area (um2)	*	*	1.2x
GOPs/W	*	*	2.6x

Table 1b: Comparison of estimated latency, power, area, and efficiency for FP8 vs CaFP8 layouts. *available under NDA.

Post Training Inference Model Accuracy

Model	Dataset	Float32 Accuracy	CFloat32 Accuracy	Accuracy Loss
FC+Sigmoid	MNIST	87.50%	87.40%	0.10%
LeNet	MNIST	98.60%	98.50%	0.10%
MobileNetV1	MNIST	98.46%	98.19%	0.27%
ResNet18	ImageNet	69.76% / 89.08%	69.22% / 88.79%	0.54%
ResNet50	ImageNet	76.13% / 92.86%	75.22% / 92.56%	0.91%

Table 2: Shows popular models and their errors with Cassia technology utilized. **Accuracy can be recovered by minor re-training with Cassia.ai arithmetic.**

Keep your Architecture with Cassia

With Cassia approximate arithmetic, your architecture does not change and you keep the standard integer and floating-point data formats. The only changes are to the core arithmetic operations: **multiplication**, division, exponentiation, and logarithms. Some key benefits:

- No need to transform the memory layout of your tensors.
- No need to increase the number of scatter-gather operations to and from memory.
- No special preparation of data either on-chip or off-chip.
- No constraints on tensor sizing or formatting (e.g. dimensions or channels).
- No special DMA requirements.

Engagement

- 1. Initial Cassia IP is delivered to customer with an NDA and Evaluation agreement.
- 2. Collaboration between Cassia and customer's engineers in Systems Architecture, VLSI design, Validation and Software departments to understand and integrate Cassia IP
- 3. Customer may want to pay consulting fees to adapt Cassia IP and minimally required Software modifications to their engineering flow.
- Customer signs a Production agreement with a tape-out and licensing fees when they have validated their design with an emulated system and decided to proceed with usage of Cassia IP.