Prototypical non-Euclidean objects

Manifolds

Graphs

Domain structure vs Data on a domain

Domain structure

Data on a domain

Known vs Unknown domain

Given graph

Given point cloud in feature space (graph metric has to be learnt)

Versey-wise classification

Community Detection

What this tutorial is about?

- Basics of Euclidean convolutional neural networks
- · Basics of graph theory
- Fourier analysis on graphs
- Spectral-domain methods
- Spatial-domain methods
- Applications: network analysis, recommender systems, computer graphics, chemistry, high-energy physics, ...

Key properties of CNNs.

- @ Convolutional (Translation invariance)
- Scale Separation (Compositionality)
- Filters localized in space (Deformation Stability)
- \odot $\mathcal{O}(1)$ parameters per filter (independent of input image size n)
- O(n) complexity per layer (filtering done in the spatial domain)
 - @ O(log n) layers in classification tasks

CNNs and Euclidean Geometry

CNNs are defined over Euclidean domains or Grids Ω . Two fundamental

- Translation Invariance (yielding convolutions).
- Multiscale sexucture (yielding downsampling).
- Inductive bias that exploits stationarity and deformation stability of

Roadmap: extend CNNs to non-Euclidean geometries by replacing filtering and pooling by appropriate operators

Graph theory in one minute

- Weighted undirected graph \mathcal{G} with vertices $\mathcal{V} = \{1,\dots,n\}$, edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ and edge weights $w_{ij} \geq 0$ for $(i,j) \in \mathcal{E}$
- Functions over the vertices $L^2(\mathcal{V}) = \{f: \mathcal{V} \to \mathbb{R}\} \text{ represented as }$ $\text{vectors } \mathbf{f} = (f_1, \dots, f_n)$

$$(f,g)_{L^2(V)} = \sum_{i \in V} f_i g_i = f^T g$$

Graph Laplacian

ullet Unnormalized Laplacian $\Delta:L^2(\mathcal{V}) o L^2(\mathcal{V})$

$$(\Delta f)_i = \sum_{j:(i,j)\in\mathcal{E}} w_{ij}(f_i - f_j)$$

(up to scale) difference between f and its local average.

- Represented as a positive semi-definite $n \times n$ matrix $\Delta = D - W$ where $\mathbf{W} = (w_{ij})$ and $\mathbf{D} = \operatorname{diag}(\sum_{j \neq i} w_{ij})$
 - Dirichlet energy of f

$$||f||_{\mathcal{G}}^2 = \frac{1}{2} \sum_{ij=1}^n w_{ij} (f_i - f_j)^2 = \mathbf{f}^\top \Delta \mathbf{f}$$

measures the smoothness of f (how fast it changes locally)

Riemannian manifolds in one minute

- Manifold $\mathcal{X}=$ topological space
- Tangent plane $T_x \mathcal{X} = \text{local}$ Euclidean representation of manifold \mathcal{X} around x
- Riemannian metric describes the local intrinsic structure at x

$$\langle \cdot, \cdot \rangle_{T_x \mathcal{X}} : T_x \mathcal{X} \times T_x \mathcal{X} \to \mathbb{R}$$

- Scalar fields $f: \mathcal{X} \to \mathbb{R}$ and vector fields $F: \mathcal{X} \to T\mathcal{X}$
- Hilbert spaces with inner products

$$\langle f,g\rangle_{L^2(\mathcal{X})} = \int_{\mathcal{X}} f(x)g(x)dx$$

$$\langle F,G\rangle_{L^2(T\mathcal{X})} = \int_{\mathcal{X}} \langle F(x),G(x)\rangle_{T_x\mathcal{X}}dx$$

Orthogonal bases on graphs

Find the smoothest orthogonal basis $\{\phi_1,\dots,\phi_n\}\subseteq L^2(\mathcal{V})$

 $\min_{\Phi \in \mathbb{R}^{n\times n}} \operatorname{trace}(\Phi^\top \Delta \Phi) \text{ s.t. } \Phi^\top \Phi = \mathbf{I}$

Solution: $\Phi=$ Laplacian eigenvectors

Laplacian eigenvectors and eigenvalues

Eigendecomposition of a graph Laplacian

$$\Delta = \Phi \Lambda \Phi$$

where $\Phi=(\phi_1,\Diamond_{\cdot},\phi_n)$ are orthogonal eigenvectors $(\Phi^{\top}\Phi=\mathbf{I})$ and $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ the corresponding non-negative eigenvalues

First eigenfunctions of 1D Euclidean Laplacian

Warmup: sets as inputs

- how can we make a network that respects the notion of "set"?
 - invariant to permutations
 - dynamic resizing

Patch operators

Image

Manifold

Spatial convolution on manifolds

Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,y), \theta(x,y))$$

Set of weighting functions

$$w_1(\mathbf{u}), \dots, w_J(\mathbf{u})$$

Spatial convolution

$$(f \star g)(x) = \sum_{j=1}^{J} g_j \int_{\mathcal{X}} w_j(\mathbf{u}(x, x')) f(x') dx'$$
patch operator $\mathcal{D}_j(x) f$

where g1....g, are the spatial filter coefficients

Mixture Model Network (MoNet)

Geodesic polar coordinates

$$\mathbf{u}(x,y) = (\rho(x,y),\theta(x,y))$$

Gaussian weighting functions

• Gaussian weighting
$$w_{\mu,\Sigma}(\mathbf{u}) = \exp\left(-\frac{1}{2}(\mathbf{u}-\mu)^{\mathsf{T}}\Sigma^{-1}(\mathbf{u}-\mu)\right)$$

with learnable covariance Σ and mean μ

Spatial convolution

$$(f \star g)(x) = (\mathbf{u}(x, x')) f(x') dx'$$

mistan mixture

where g_1, \ldots, g_J are the $\Sigma_1, \ldots, \Sigma_J$ are patch open

er coefficients and μ_1, \dots, μ_J and Leters

Monti, Boscaini, Rodota, Sa

Patch operator weighting functions on manifolds

¹Masci, Boscaini, Bronstein, Vandergheynst 2015; ²Boscaini, Masci, Rodolá, Bronstein 2016; ³Monti, Boscaini, Rodolá, Svoboda, Bronstein 2017

Isometric

Non-isometric

Partial

Correspondence II: Labeling

- Groundtruth correspondence
 ±*: X' → Y' from query shape X'
 to some reference shape Y'
 (discretized with n vertices)
- Correspondence = label each query vertex x as reference vertex y
- Net output at x after softmax layer
 f_Θ(x) = (f_{Θ,1}(x),...,f_{Θ,n}(x))
 = probability distribution on Y

Minimize on training set the cross entropy between groundtruth correspondence and output probability distribution w.r.t. net parameters Θ

$$\min_{\Theta} \sum_{x} H(\delta_{\pi * (x)}, \mathbf{f}_{\Theta}(x))$$

Correspondence evaluation: Princeton benchmark

Query A'

Pointwise correspondence error = geodesic distance from the groundtruth

$$\epsilon(x) = dy(\pi^*(x),\pi(x))$$

Correspondence on range images: MoNet

Pointwise correspondence error (geodesic distance from groundtruth)

Monti, Boscaini, Masci, Rodola, Svoboda, Bronstein 2017.

Soft correspondence error

Query X

Reference 3

Soft correspondence error = probability-weighted geodesic distance from the groundtruth $\tilde{\epsilon}(x) = \int_{\mathcal{Y}} p(x, y) dy(\pi^*(x), y) dy$

Kovnatsky, Bronstein, Bresson, Vandergheynst 2015

Matrix completion: 'Netflix challenge'

 $\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \operatorname{rank}(\mathbf{X})$ s.t. $x_{ij} = a_{ij} \ \forall ij \in \Omega$

Geometric matrix completion

 $\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \ \mu \| \Omega \circ (\mathbf{X} - \mathbf{A}) \|_{\mathrm{F}}^2 + \mu_{\mathrm{c}} \operatorname{tr} (\mathbf{X} \Delta_{\mathrm{c}} \mathbf{X}^{\mathsf{T}})$

Kalofolius, Bresson, Bronstein, Vandergheynst 2014

Geometric matrix completion

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times n}} \mu \|\Omega \circ (\mathbf{X} - \mathbf{A})\|_{\mathrm{F}}^{2} + \mu_{\mathrm{c}} \underbrace{\mathrm{tr}(\mathbf{X} \Delta_{\mathrm{c}} \mathbf{X}^{\top})}_{\|\mathbf{X}\|_{\Phi_{\mathrm{c}}}^{2}} + \mu_{\mathrm{r}} \underbrace{\mathrm{tr}(\mathbf{X}^{\top} \Delta_{\mathrm{r}} \mathbf{X})}_{\|\mathbf{X}\|_{\Phi_{\mathrm{r}}}^{2}}$$

Kalofolias, Bresson, Bronstein, Vandergheynst 2014

Factorized matrix completion models

were.

 $\boldsymbol{\mu} \|\boldsymbol{\Omega} \circ (\mathbf{X} - \mathbf{A})\|_{\mathrm{F}}^2 + \boldsymbol{\mu}_{\mathrm{c}} \|\mathbf{W}\|_{\mathrm{F}}^2 + \boldsymbol{\mu}_{\mathrm{r}} \|\mathbf{H}\|_{\mathrm{F}}^2$

Multi-graph Fourier transform

Multi-graph Fourier transform

$$\dot{\mathbf{x}} = \boldsymbol{\Phi}, \boldsymbol{\nabla} \boldsymbol{\Phi}_c$$

where Φ_c and Φ_r are the eigenvectors of the column- and row-graph Laplacians Δ_c and Δ_r , respectively

Monti, Bresson, Bronstein 2017

Matrix completion with Recurrent Multi-Graph CNN

Recurrent multigraph CNN (RMCNN) architecture for matrix completion

$$\min_{\Theta,\sigma} \|\mathbf{X}_{\Theta,\sigma}^{(T)}\|_{\mathcal{G}_r}^2 + \|\mathbf{X}_{\Theta,\sigma}^{(T)}\|_{\mathcal{G}_c}^2 + \frac{\mu}{2}\|\boldsymbol{\Omega}\circ(\mathbf{X}_{\Theta,\sigma}^{(T)} - \mathbf{A})\|_{\mathrm{F}}^2$$

Matrix completion methods comparison

		Flixster	Douban	Yahoo
	MovieLens			
	1.653			
	0.996			38.042
GMAC		1.245	0.833	22,415
		0.926	0.801	
	0.929			
RGCNN (Cheb)	0,922			
RGCNN (Cayley)				

Accuracy (RMS error) of matrix completion methods on real data

Duta: ¹Miller et al. 2003; ²Jamali, Ester 2010; ³Ma et al. 2011; ⁴Dror et al. 2012 Methods: ⁵Jain, Dhillon 2013; ⁶Kalofolias, Bresson, Bronstein, Vandergheynst 2014; ⁷Candès, Recht 2012; ⁸Rao et al. 2015; ⁹Monti, Bresson, Bronstein 2017; ¹⁰Levie, Monti, Bresson, Bronstein 2017

Quadratic Assignment Problem

Find a node correspondence that minimizes a transportation cost between two graphs \mathcal{G}_1 , \mathcal{G}_2

 $\min_{\mathbf{P} \in \Pi_n} \operatorname{tr}(\mathbf{W}_1 \mathbf{P} \mathbf{W}_2 \mathbf{P}^{\mathsf{T}}), \ \mathbf{W}_i = \operatorname{adjacency\ matrix}\ \operatorname{of\ graph}\ \mathcal{G}_i$

 $\Pi_n = \text{space of } n \times n \text{ permutation matrices}$

