- 19. Décomposition de l'eau oxygénée
 - (a) Par application de la loi de Hess,

$$\Delta_r H^{\circ} = \Delta_f H_1^{\circ} - \Delta_f H_2^{\circ} = -94.6 \text{ kJ/mol}$$
.

(b) i. Pour une transformaton isobare, adiabatique, sans travaux de forces non pressantes,

$$\Delta H = Q + W' = 0 + 0 .$$

La variation d'enthalpie peut être calculée pour une transformation fictive car H est une fonction d'état. Considérons alors deux étapes fictives successives.

Première étape : réaction supposée à température initiale T_0 . Dressons un tableau d'avancement :

	$\mathrm{H_2O_2}$	$\frac{1}{2}$ O ₂	H_2O
t = 0	n_0	0	0
t	$n = n_0 - \xi$	$\frac{1}{2}\xi = 0$	ξ

On trouve alors

$$\Delta H_1 = \Delta_r H^{\circ} \xi = \Delta_r H^{\circ} (n_0 - n) = \Delta_r H^{\circ} V(C_0 - C)$$
.

Seconde étape : échauffement de la solution assimilée à de l'eau pure

$$\Delta H_2 = C_P \Delta T = V \rho_e c_e \Delta T$$
.

De $\Delta H_1 + \Delta H_2 = 0$, on tire

$$\Delta T = -\frac{\Delta_r H^{\circ}(C_0 - C)V}{V \rho_e c_e} = \boxed{\frac{\Delta_r H^{\circ}(C - C_0)}{\rho_e c_e} = \Delta T}.$$

ii. Si la réaction est totale, en fin de réaction,

$$\Delta T = -\frac{\Delta_r H^{\circ} C_0}{\rho_e c_e} \, .$$

On calcule $\Delta T = 4.5 \text{ K}$.

(c) La résolution de l'équation différentielle conduit à

$$C = C_0 \exp(-k_1 t) ,$$

donc
$$\tau = 1/k_1 = 2.5.10^3 \text{ s}$$
.

- (e) On trouve $T_f = 302,5$ K, soit l'échaufement obtenu à la deuxième question. La durée de la réaction est environ $\Delta t = 1.10^4$ s (mais $\Delta t = 1,3.10^4$ s si on néglige l'influence de la température sur la cinétique, comme à la troisième question). La réaction est donc plus rapide, car l'élévation de T accélère la réaction.
- (f) L'augmentation de C_0 se traduit par une augmentation de ΔT et, si elle suffisamment importante, une hausse de k et une réduction de la durée de la réaction.

37