Définition 1

Chapitre 2 : Trigonométrie

I. Cercle trigonométrique, cosinus, sinus

Le plan est muni d'un repère orthonormé (O, I, J). On appelle cercle trigonométrique le cercle \mathscr{C} de centre O de rayon 1.

En utilisant la même unité de longueur que celle du repère (O, I, J), on gradue le cercle \mathscr{C} , de $-\infty$ à $+\infty$, en plaçant la graduation 0 au point I et en tournant dans le sens inverse des aiguilles d'une montre = sens direct = sens trigonométrique.

Soit $x \in \mathbb{R}$ et soit N le point de \mathscr{C} situé à la graduation x. On dit alors que N est le point de \mathscr{C} associé à x.

La figure ci-contre montre toutes les valeurs remarquables du cercle trigonométrique:

$$0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi,$$

pour lesquelles on tourne de

$$0^{\circ}$$
 , 30° , 45° , 60° , 90° , 180°

dans le sens trigonométrique, à partir de la graduation 0.

À titre informatif, on a ajouté les valeurs $-\frac{\pi}{2}$, $-\frac{\pi}{4}$ et $\frac{3\pi}{4}$. On notera que le point associé à $\frac{\pi}{3}$ a pour abscisse $\frac{1}{2}$; tandis que celui associé à $\frac{\pi}{6}$ a pour ordonnée $\frac{1}{2}$.

Tout point du cercle trigonométrique est associé à une infinité de valeurs. Par exemple, le point associé à 0 est aussi associé à 2π (on fait 1 tour de cercle dans le sens direct), 4π (2 tours dans le sens direct), 6π (3 tours dans le sens direct), ..., -2π (1 tour dans le sens indirect), -4π (2 tours dans le sens indirect), -6π (3 tours dans le sens indirect), ...

Soit *x* un nombre réel et soit *N* le point du cercle trigonométrique $\mathscr C$ associé à x. On pose:

$$\cos x = x_N$$
 , $\sin x = y_N$.

Les valeurs remarquables du cos et du sin sont indiquées ci-dessous.

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	0

Exemple 1

On place les points associés à $\frac{3\pi}{4}$ et à $-\frac{\pi}{3}$. Par simple lecture du cercle trigonométrique on obtient:

•
$$\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$

•
$$\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$$
, $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$.
• $\cos \left(-\frac{\pi}{3}\right) = \frac{1}{2}$, $\sin \left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$.

Remarques.

Pour tout $x \in \mathbb{R}$:

$$-1 \le \cos x \le 1$$
, $-1 \le \sin x \le 1$.

Notre définition du cos et du sin étend aux nombres réels la définition du cos et du sin donnée au collège pour les angles géométriques. Notant par exemple N le point du cercle trigonométrique associé à $\frac{\pi}{3}$, on a :

$$\cos\left(60^{\circ}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.$$

Le radian est une unité de mesure des angles proportionnelle au degré. Par définition, un angle de 180° mesure π radians. Donc par exemple, sur la figure ci-contre:

$$\widehat{ION} = 60^{\circ} = \frac{\pi}{3}$$
 radians.

Lorsqu'on utilise la calculatrice, il faut mettre en mode degré ou en mode radian suivant la situation : pour calculer cos (60°), il faut mettre en mode degrés; et pour $\cos(\frac{\pi}{3})$, en mode radians.

Proposition 2 (angles associés)

Pour tout réel *x*:

$$\cos(\pi + x) = -\cos x \qquad \cos(\pi - x) = -\cos x \qquad \cos\left(\frac{\pi}{2} + x\right) = -\sin x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin(\pi + x) = -\sin x \qquad \sin(\pi - x) = \sin x \qquad \sin\left(\frac{\pi}{2} + x\right) = \cos x \qquad \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Venons-en à présent aux fonctions cos et sin. On commence par un rappel sur la parité et sur la périodicité.

Une fonction f dont l'ensemble de définition D_f est symétrique par rapport à 0 est dite :

- Paire si $\forall x \in D_f$, f(-x) = f(x).
 - Fonction paire.
- ▶ Impaire si $\forall x \in D_f$, f(-x) = -f(x).

Proposition 3

Définition 3

- 1. La courbe d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- 2. La courbe d'une fonction impaire est symétrique par rapport à l'origine du repère.

Soit f une fonction et soit T > 0. On dit que f est T-périodique si :

- l'ensemble de définition D_f de f est invariant par un décalage de T en abscisse $(\forall x \in \mathbb{R}, x \in D_f \iff x + T \in D_f)$;
- $\forall x \in D_f$, f(x+T) = f(x).

La courbe d'une fonction T-périodique se reproduit identique à elle-même tous les T.

Proposition 4

1. La fonction cos est paire:

$$\forall x \in \mathbb{R}, \cos(-x) = \cos x.$$

2. La fonction sin est impaire :

$$\forall x \in \mathbb{R}, \sin(-x) = -\sin x.$$

3. Les fonctions cos et sin sont 2π – périodiques :

$$\forall x \in \mathbb{R}, \cos(x+2\pi) = \cos x, \sin(x+2\pi) = \sin x.$$

On trace les courbes représentatives des fonctions cos et sin, en trois étapes : on commence par tracer les courbes sur l'intervalle $[0;\pi]$, puis on complète par symétrie sur $[-\pi;0]$ grâce à la parité; enfin on trace les courbes sur $\mathbb R$ tout entier par périodicité.

Pour terminer cette section, on rappelle les dérivées des fonctions cos et sin.

Proposition 5

Les fonctions cos et sin sont dérivables sur \mathbb{R} et pour tout réel x:

1. $(\cos)'(x) = -\sin x$.

2. $(\sin)'(x) = \cos x$.

II. Formules d'addition, applications

Proposition 6 (formules d'addition)

Pour tous réels a, b:

- 1. cos(a-b) = cos a cos b + sin a sin b.
- 2. cos(a+b) = cos a cos b sin a sin b.
- 3. $\sin(a-b) = \sin a \cos b \sin b \cos a$.
- 4. $\sin(a+b) = \sin a \cos b + \sin b \cos a$.

Exemple 2

On calcule $\cos \frac{\pi}{12}$. Pour cela, on remarque que $\frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi}{12} - \frac{3\pi}{12} = \frac{\pi}{12}$. Donc d'après la 1^{re} formule d'addition :

$$\cos\frac{\pi}{12} = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.$$

Proposition 7 (formules de duplication)

Pour tout réel a :

- 1. $\cos(2a) = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$.
- 2. $\sin(2a) = 2\sin a \cos a$.

Exercices 6 à 9

Exemple 3 (transformation de Fresnel)

Soit x un réel. On transforme l'expression $\cos x + \sqrt{3} \sin x$ grâce aux formules de duplication. Comme $\cos x + \sqrt{3} \sin x = 1 \cos x + \sqrt{3} \sin x$, on commence par mettre $\sqrt{1^2 + \sqrt{3}^2} = 2$ en facteur :

$$\cos x + \sqrt{3}\sin x = 2\left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right).$$

On sait que $\cos \frac{\pi}{3} = \frac{1}{2}$ et $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, donc en utilisant $\cos(a-b) = \cos a \cos b + \sin a \sin b$:

$$\cos x + \sqrt{3}\sin x = 2\left(\cos\frac{\pi}{3}\cos x + \sin\frac{\pi}{3}\sin x\right) = 2\cos\left(\frac{\pi}{3} - x\right) = 2\cos\left(x - \frac{\pi}{3}\right)$$

a. Pour la dernière étape du calcul, on utilise la formule $\cos(-t) = \cos t$, et on remarque que $\frac{\pi}{3} - x$ et $x - \frac{\pi}{3}$ sont opposés.

La méthode se généralise :

Proposition 8 (transformation de Fresnel)

Soient a, b, x trois réels tels que $(a, b) \neq (0, 0)$. Alors

$$a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x - \theta),$$

où θ est un réel tel que $\begin{cases} \cos \theta &= \frac{a}{\sqrt{a^2 + b^2}} \\ \sin \theta &= \frac{b}{\sqrt{a^2 + b^2}} \end{cases}$.

Remarque. Dans le cours de physique, la formule s'utilise sous la forme $a\cos(\omega t) + b\sin(\omega t) =$ $A\cos(\omega t + \varphi)$, ou bien sous la forme $a\cos(\omega t) + b\sin(\omega t) = A\sin(\omega t + \varphi)$ (avec les mêmes A > 0et $\omega > 0$ dans les deux cas, mais des valeurs de φ différentes).

Les formules ci-dessous découlent des formules d'addition :

Proposition 9 (formules de factorisation)

Pour tous réels p, q:

1.
$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
.

3.
$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

1.
$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$
.
2. $\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$.
4. $\sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p-q}{2}\right)$.

4.
$$\sin p - \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

Exemple 4

Soit *x* un réel. On transforme une somme en produit :

$$\cos(3x) - \cos x = -2\sin\left(\frac{3x+x}{2}\right)\sin\left(\frac{3x-x}{2}\right)$$
$$= -2\sin(2x)\sin x$$

Soit θ un angle aigu (entre 0° inclus et 90° exclu) et soit N le point du cercle trigonométrique $\mathscr C$ d'ordonnée positive et tel que $\widehat{ION} = \theta$. La tangente à $\mathscr C$ au point I coupe la demi-droite [ON) en M. On pose

$$\tan \theta = IM$$
.

Remarques.

• Comme OI = 1, dans OIM rectangle en I:

$$\tan \theta = IM = \frac{IM}{OI} = \frac{\text{opp}}{\text{adj}}.$$

On retrouve ainsi la formule du collège.

D'après le théorème de Thalès :

$$\frac{\sin \theta}{\cos \theta} = \frac{HN}{OH} = \frac{IM}{OI} = IM = \tan \theta.$$

En pratique, c'est avec cette formule que l'on calcule les tangentes d'angles géométriques.

Exemple 5

$$\tan{(60^\circ)} = \frac{\sin(60^\circ)}{\cos(60^\circ)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{\sqrt{3}}{2} \times \frac{2}{1} = \sqrt{3}.$$

Par analogie, on définit la tangente d'un nombre réel :

Déf.6

Soit $x \in \mathbb{R}$. Si $\cos x \neq 0$, on pose

$$\tan x = \frac{\sin x}{\cos x}.$$

Remarques.

- Les solutions de l'équation $\cos x = 0$ sont les $\frac{\pi}{2} + k\pi$, avec $k \in \mathbb{Z}$, donc l'ensemble de définition de la fonction tan est $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$.
- On a donné l'ensemble de définition « en compréhension ». Autres exemples : $\{2n \mid n \in \mathbb{N}\}$ désigne l'ensemble des entiers naturels pairs, et $\{x \in \mathbb{R} \mid x \geq 0\}$ désigne l'ensemble des réels positifs.

Exemple 6

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan x	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	non défini

Pour conclure, on s'intéresse à la parité et à la périodicité de la fonction tan (on note D son ensemble de définition) et on trace sa courbe représentative :

- $\forall x \in D$: $\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan x$, donc tan est impaire. Sa courbe représentative est symétrique par rapport à O.
- $\forall x \in D$: $\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin x}{-\cos x} = \tan x$, donc $\tan \cot \pi$ -périodique.

On trace la courbe représentative sur $[0; \frac{\pi}{2}[$, puis on complète par symétrie et par périodicité. Sur le graphique, on a ajouté des lignes en pointillés au niveau des valeurs interdites.

Proposition 10

La fonction tan est dérivable sur son ensemble de définition D, et

$$\forall x \in D, (\tan)'(x) = \frac{1}{\cos^2 x} = 1 + \tan^2 x.$$

8

Démonstration

Pour tout $x \in D$, $\tan x = \frac{\sin x}{\cos x}$. On applique la formule pour la dérivée d'un quotient ^a, avec

$$u(x) = \sin x$$

$$v(x) = \cos x,$$

$$u'(x) = \cos x$$

$$v'(x) = -\sin x.$$

On obtient, pour tout $x \in D$:

$$(\tan)'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{(v(x))^2}$$

$$= \frac{\cos x \times \cos x - \sin x \times (-\sin x)}{(\cos x)^2}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}.$$

Mais on a aussi:

$$(\tan)'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} = 1 + \tan^2 x.$$

a. Rappel:
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
.

 $(\tan)'(0) = 1 + \tan^2 0 = 1 + 0^2 = 1$ est la pente de la tangente au point d'abscisse 0 :

Déf.7

Soit $y \in \mathbb{R}$. Il existe un unique $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ tel que $\tan x = y$. On note alors

$$x = \arctan y$$
.

Exemple 7

- $\arctan 1 = \frac{\pi}{4}$, $\arctan 0 = 0$,
- $\arctan\left(-\sqrt{3}\right) = -\frac{\pi}{3}.$

IV. Étude d'une fonction trigonométrique

Exemple 8

On pose $g(x) = \sin^2 x + \cos x = (\sin x)^2 + \cos x$ pour $x \in \mathbb{R}$. Nous allons successivement :

- **Étape 1.** Étudier la parité de g et sa périodicité. On pourra alors réduire l'intervalle d'étude.
- **Étape 2.** Calculer la dérivée et étudier les variations de g sur l'intervalle réduit.
- **Étape 3.** Construire la courbe représentative de *g*.

Étape 1.

La fonction cos est paire et la fonction sin est impaire, donc pour tout réel x:

$$g(-x) = (\sin(-x))^2 + \cos(-x) = (-\sin x)^2 + \cos x = (\sin x)^2 + \cos x = g(x).$$

La fonction g est donc paire.

Les fonctions cos et sin sont 2π -périodiques, donc pour tout réel x:

$$g(x+2\pi) = (\sin(x+2\pi))^2 + \cos(x+2\pi) = (\sin x)^2 + \cos x = g(x).$$

La fonction g est donc 2π -périodique.

Comme g est 2π -périodique, on peut l'étudier sur $[-\pi;\pi]$ uniquement; et comme elle est paire, on peut même réduire l'étude à l'intervalle $[0;\pi]$.

Étape 2.

D'après la formule $(u^2)' = 2 \times u' \times u$, pour tout $x \in [0; \pi]$:

$$g'(x) = 2\sin'(x) \times \sin x + \cos'(x) = 2\cos x \sin x - \sin x = \sin x (2\cos x - 1)$$
.

Pour étudier les variations, on résout les équations $\sin x = 0$ et $2\cos x - 1 = 0$ dans $[0;\pi]$:

$$\sin x = 0 \iff x = 0 \text{ ou } x = \pi$$

$$SIN \qquad x = \frac{\pi}{2}$$

$$0.5 \qquad 0.5 \qquad 0.5 \qquad 1.0 \quad x = 0$$

$$2\cos x - 1 = 0 \iff \cos x = \frac{1}{2} \iff x = \frac{\pi}{3}$$

On peut donc construire le tableau de variations :

Exemple 8 – Suite

x	0		$\frac{\pi}{3}$		π
$\sin x$	0	+		+	0
$2\cos x-1$		+	0	_	
g'(x)	0	+	0	-	0
g(x)	1		5 4		-1

Pour obtenir le signe de $\sin x$ et de $2\cos x - 1$ sur chaque intervalle, on remplace par des valeurs de x. Par exemple, pour la ligne $2\cos x - 1$:

- $2\cos 0 1 = 2 \times 1 1 = 1 \oplus$,
- $2\cos\pi 1 = 2 \times (-1) 1 = -3 \ominus$

d'où les signes $2\cos x - 1 + \phi - 1$

De plus:

- $g(0) = (\sin 0)^2 + \cos 0 = 0^2 + 1 = 1$;
- $g\left(\frac{\pi}{3}\right) = \left(\sin\frac{\pi}{3}\right)^2 + \cos\left(\frac{\pi}{3}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{2} = \frac{3}{4} + \frac{1}{2} = \frac{5}{4}$;
- $g(\pi) = (\sin \pi)^2 + \cos \pi = 0^2 + (-1) = -1$.

Remarque.

Comme la dérivée s'annule, on a des tangentes horizontales aux points de la courbe d'abscisses $0, \frac{\pi}{3}$ et π (tracées en rouge sur la courbe à l'étape 3).

Étape 3.

On trace la courbe sur $[0;\pi]$ à partir du tableau de variations, puis on complète par parité et par périodicité.

V. Exercices

Exercice 1.

Calculer le cos et le sin de :

1.
$$\pi$$
, $\frac{\pi}{2}$, 0, -5π , $\frac{31\pi}{2}$

3.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, $\frac{11\pi}{6}$.

2.
$$\frac{\pi}{3}$$
, $\frac{2\pi}{3}$, $-\frac{\pi}{3}$.

1.
$$\pi$$
, $\frac{\pi}{2}$, 0, -5π , $\frac{31\pi}{2}$.

3. $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{11\pi}{6}$.

2. $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $-\frac{\pi}{3}$.

4. $\frac{\pi}{4}$, $-\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{2023\pi}{4}$.

Exercice 2 $(\hat{\mathbf{m}})$.

Résoudre chaque (in)équation dans l'intervalle

1.
$$\cos x = \frac{1}{2}$$
, dans $[0; \frac{\pi}{2}]$.

2.
$$2\sin x - 1 = 0$$
, dans $[0; \pi]$.

3.
$$2\sin x - 1 \ge 0$$
, dans $[0; \pi]$.

4.
$$(2\cos x - \sqrt{3})\cos x = 0$$
, dans $[-\pi; \pi]$.

5.
$$2 \sin x \cos x = -\sin x$$
, dans $[0; \pi]$.

6.
$$|\sin x| = \frac{\sqrt{2}}{2}$$
, dans $[0; 2\pi]$.

7.
$$|\sin x| < \frac{\sqrt{2}}{2}$$
, dans $[0; 2\pi]$.

8.
$$2\sin^2 x + \sin x - 1 = 0$$
, dans $[0; \pi]$.

9.
$$2\cos^2 x + 3\sqrt{2}\cos x + 2 = 0$$
, dans $[0; 2\pi]$.

10.
$$\sin x = 0$$
, dans \mathbb{R} .

11.
$$\cos x = 0$$
, dans \mathbb{R} .

12.
$$|\sin x| = \frac{\sqrt{2}}{2}$$
, dans \mathbb{R} .

Exercice 3 $(\hat{\mathbf{m}})$.

Dans chaque question, tracer dans un même repère, sur l'intervalle $[-2\pi; 2\pi]$, les courbes dont on vous donne l'équation.

1.
$$y = \cos x$$
, $y = 2\cos(x) + 1$

1.
$$y = \cos x$$
, $y = 2\cos(x) + 1$.
2. $y = \sin x$, $y = \sin\left(x - \frac{\pi}{3}\right)$.

3.
$$y = \sin x$$
, $y = \sin(2x)$.

Exercice 4 (6).

On a tracé ci-dessous une courbe d'équation y = $A\sin(\omega t - \varphi)$, où A, ω et φ sont trois réels (A > 0), $\omega > 0$).

Déterminer les valeurs de A, ω et φ .

Exercice 5 ($\widehat{\underline{\mathbb{m}}}$). Calculer les dérivées des fonctions définies sur $\mathbb R$:

1.
$$f: x \mapsto \sin(2x)$$
.

1.
$$f: x \mapsto \sin(2x)$$
. **3.** $h: x \mapsto \cos(-x + \frac{\pi}{3})$.

2.
$$g: x \mapsto \sin(-3x+4)$$
. **4.** $i: x \mapsto \sin x \cos x$.

4.
$$i: x \mapsto \sin x \cos x$$
.

Exercice 6 $(\hat{\mathbf{m}})$.

Calculer $\frac{\pi}{6} + \frac{\pi}{4}$, puis donner les valeurs exactes de $\cos \frac{5\pi}{12}$ et $\sin \frac{5\pi}{12}$.

Exercice 7.

1. Calculer cos(2x) dans chacun des cas suivants :

•
$$\cos x = \frac{3}{5}$$

•
$$\sin x = \frac{2}{3}$$
.

2. Soit $x \in \left[0; \frac{\pi}{2}\right]$ tel que $\cos x = \frac{1}{4}$. Calculer $\sin(2x)$

Exercice 8.

Trois carrés sont disposés comme l'indique la figure ci-dessous.

1. Calculer $\cos \alpha$, $\sin \alpha$, $\cos \beta$ et $\sin \beta$.

2. Prouver que $\cos(\alpha + \beta) = \frac{\sqrt{2}}{2}$.

3. Donner un encadrement de $\alpha + \beta$.

4. En déduire $\alpha + \beta$.

Exercice 9 $(\hat{\mathbf{m}})$.

1. Calculer $\frac{\pi}{3} - \frac{\pi}{4}$, puis donner la valeur exacte de

2. En prenant $a = \frac{\pi}{12}$ dans la formule $\cos(2a) = 1 - 2\sin^2 a$, calculer la valeur exacte de $\sin \frac{\pi}{12}$ d'une autre manière.

3. Dans les questions 1 et 2, on a trouvé deux résultats différents pour $\sin\frac{\pi}{12}$. Qu'en pensezvous?

Exercice 10.

En utilisant la transformation de Fresnel, donner l'allure de la courbe d'équation

$$y = \sqrt{2}\cos x + \sqrt{2}\sin x$$

sur l'intervalle $[-\pi;\pi]$.

Exercice 11 $(\hat{\mathbf{1}})$.

Résoudre dans R les équations :

- 1. $\sqrt{6}\cos x + \sqrt{2}\sin x = 0$.

Exercice 12 (6).

En utilisant les formules de duplication, démontrer que pour tous réels *p*, *q* :

- $\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$. $\sin p \sin q = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$.

Exercice 13 $(\hat{\mathbf{1}})$.

- **1.** Soit $x \in \mathbb{R}$. Transformer la somme $\sin(5x) + \sin x$ en produit.
- **2.** Résoudre dans \mathbb{R} l'équation $\sin(5x) + \sin x = 0$.

Exercice 14 $(\hat{\mathbf{m}})$.

Calculer la tan de π , $\frac{2\pi}{3}$, $-\frac{\pi}{6}$, $\frac{5\pi}{4}$

Exercice 15 $(\hat{\mathbf{1}})$.

Déterminer:

- arctan $\left(\frac{1}{\sqrt{2}}\right)$
- arctan(-1)

Exercice 16.

Construire le cercle trigonométrique $\mathscr C$ et placer $sur \mathscr{C}$:

- arctan2
- arctan(−3)

Exercice 17 $(\hat{\mathbf{m}})$.

Démontrer que pour tout $t \in \mathbb{R} \setminus \left\{ \frac{k\pi}{2} \mid k \in \mathbb{Z} \right\}$:

$$\tan\left(\frac{\pi}{2}-t\right)=\frac{1}{\tan t}.$$

Exercice 18 $(\hat{\mathbf{m}})$.

Démontrer que pour tout $t \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$:

$$\sin(2t) = \frac{2\tan t}{1 + \tan^2 t}, \cos(2t) = \frac{1 - \tan^2 t}{1 + \tan^2 t}.$$

Exercice 19 $(\hat{\mathbf{m}})$.

On définit une fonction f par

$$\forall x \in \mathbb{R}, \ f(x) = \sin(2x) - 2\sin x.$$

On note \mathscr{C} sa courbe représentative.

- 1. Étudier la parité et la périodicité de f. En déduire un intervalle d'étude réduit I.
- **2.** Prouver que $f'(x) = 4\cos^2 x 2\cos x 2$ pour tout $x \in I$.
- **3.** Étudier les variations de f sur I.
- 4. Déterminer le coefficient directeur de la tangente à \mathscr{C} au point d'abscisse π .
- **5.** Construire la courbe \mathscr{C} .