4. PRISILNO TITRANJE. REZONANCIJA. SLAGANJE TITRANJA

4.3. SLAGANJE TITRANJA

4.3.1. VEZANI OSCILATORI

Dva matematička njihala povezana elastičnom vezom, npr. oprugom, čine Oberbeckovo njihalo – primjer vezanog titrajnog sustava. Titranja ovih njihala nisu neovisna već su povezana.

Oberbeckova njihala

Drugi primjer: dva harmonička oscilatora – dva tijela masa m_1 i m_2 na oprugama konstanti k_1 i k_2 , međusobno povezana oprugom konstante k.

Dva harmonička oscilatora

SLIKA: VEZANI OSCILATORI: a) OBERBECKOVA NJIHALA, b) DVA HARMONIČKA OSCILATORA – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.37. STR. 57

Za Oberbeckovo njihalo ćemo pretpostaviti da su $m_1 = m_2$ i $l_1 = l_2$. Prvo njihalo izvučemo iz položaja ravnoteže dok drugo miruje. Prvo njihalo preko opruge prenosi energiju na drugo njihalo i ono se počne njihati. Dok amplituda drugog njihala raste, amplituda prvog

se postupno smanjuje dok se potpuno ne umiri, a drugo titra amplitudom koju je prvo njihalo imalo na početku. Za to je potrebno T/2 vremena.

Pretpostavili smo idealni slučaj u kome su gubici zbog trenja zanemarivi.

U drugoj polovini perioda uloge su zamijenjene i drugo njihalo pobuđuje prvo. Proces se ponavlja s periodom *T*.

Jednadžbe gibanja za svaki oscilator:

- s_1 pomak tijela mase m_1 iz ravnoteže
- s_2 pomak tijela mase m_2 iz ravnoteže

Dogovor: pomaci su pozitivni ako se tijelo giba slijeva nadesno, a negativni za suprotni smjer.

$$m_{1} \frac{d^{2} s_{1}}{dt^{2}} = -k_{1} s_{1} + k(s_{2} - s_{1})$$

$$m_{2} \frac{d^{2} s_{2}}{dt^{2}} = -k_{2} s_{2} - k(s_{2} - s_{1})$$
(*)

 $(-k_1s_1)$ - sila opruge konstante k_1

 $(-k_2s_2)$ - sila opruge konstante k_2

 $k(s_2 - s_1)$ - sila opruge konstante k na masu m_1

 $-k(s_2-s_1)$ - sila opruge konstante k na masu m_2

Ovo su jednadžbe gibanja materijalnih točaka, a ako su amplitude male, jednadžbe vrijede i za Oberbeckovo njihalo.

Vidimo da su jednadžbe vezane jer se s_1 i s_2 javljaju u obje jednadžbe. Ako nema opruge koja veže sustave, onda svaki sustav za sebe predstavlja harmonički oscilator. Znači da će vezani sustav imati rješenje $s_1(t)$ i $s_2(t)$.

$$T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{m}{k}} \Rightarrow \frac{l}{g} = \frac{m}{k} \Rightarrow k = \frac{mg}{l} \Rightarrow k_1 = \frac{m_1 g}{l_1}, k_2 = \frac{m_2 g}{l_2}$$

Pretpostavljamo da su oba oscilatora jednaka: $m_1 = m_2$, $k_1 = k_2$

Pretpostavljamo da su rješenja harmoničke funkcije:

$$s_1(t) = A\sin(\omega_1 t + \varphi_{01})$$

$$s_2(t) = B\sin(\omega_2 t + \varphi_{02})$$

Uvrstimo u (*) nakon deriviranja:

$$\frac{ds_1}{dt} = A\omega_1 \cos(\omega_1 t + \varphi_{01}) \Rightarrow \frac{d^2 s_1}{dt^2} = -A\omega_1^2 \sin(\omega_1 t + \varphi_{01})$$

$$\frac{ds_2}{dt} = B\omega_2 \cos(\omega_2 t + \varphi_{02}) \Rightarrow \frac{d^2 s_2}{dt^2} = -B\omega_2^2 \sin(\omega_2 + \varphi_{02})$$

$$-m_{1}A\omega_{1}^{2}\sin(\omega_{1}t+\varphi_{01}) = -k_{1}A\sin(\omega_{1}t+\varphi_{01}) + k[B\sin(\omega_{2}t+\varphi_{02}) - A\sin(\omega_{1}t+\varphi_{01})]$$

$$-m_{2}B\omega_{2}^{2}\sin(\omega_{2}t+\varphi_{02}) = -k_{2}B\sin(\omega_{2}t+\varphi_{02}) - k[B\sin(\omega_{2}t+\varphi_{02}) - A\sin(\omega_{1}t+\varphi_{01})]$$

Između s_1 i s_2 postoji jednostavan odnos: ili su u fazi ili su u protufazi.

Npr. svaki od 3 člana jednadžbe za s_1 predstavlja fazor, tj. imamo 3 vektora (fazora) čiji zbroj daje 0.

Ako je rješenje s_1 sinusoidalna fja, onda s_1 i $\frac{d^2s_1}{dt^2}$ leže na istom pravcu, pa treći vektor može jedino ležati na istom pravcu u fazi ili protufazno s_1 .

Znači, imamo 2 rješenja:

titranje u fazi

protufazno titranje

SLIKA: DVA OSNOVNA NAČINA TITRANJA VEZANIH OSCILATORA: a) TITRANJE U FAZI, b) PROTUFAZNO TITRANJE – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.38. STR. 58

a)
$$A = B = A_1 \quad \omega_1 = \omega_0 = \sqrt{\frac{k}{m}}$$

$$s_1(t) = A_1 \sin(\omega_1 t + \varphi_{01})$$

$$s_2(t) = A_1 \sin(\omega_1 t + \varphi_{01})$$

Njihala titraju u fazi jednakim amplitudama, tj. kad se oba njihala gibaju zajedno lijevo, pa desno. Oscilatori titraju kao da nisu povezani i to vlastitom frekvencijom $\omega_1 = \omega_0 = \sqrt{\frac{k}{m}}$, kojom svaki od njih titra kad je sam.

$$A = -B = A_2$$
 $\omega_2 = \sqrt{\frac{k_1}{m_1} + \frac{2k}{m_1}} = \sqrt{\omega_0^2 + \frac{2k}{m_1}}$

$$s_1(t) = A_2 \sin(\omega_2 t + \varphi_{02})$$

$$s_2(t) = -A_2 \sin(\omega_2 t + \varphi_{02})$$

Oscilatori titraju protufazno, tj. jedan ide na lijevo, a drugi na desno i obrnuto. Oscilatori imaju jednake amplitude, ali im je frekvencija malo veća nego kad nisu vezani.

Općenito rješenje je zbroj ovih dvaju osnovnih načina titranja:

$$s_1(t) = A_1 \sin(\omega_1 t + \varphi_{01}) + A_2 \sin(\omega_2 t + \varphi_{02})$$

$$s_2(t) = A_1 \sin(\omega_1 t + \varphi_{01}) - A_2 \sin(\omega_2 t + \varphi_{02})$$

Ako su amplitude jednake, što pretpostavljamo radi jednostavnosti, onda nakon trigonometrijske transformacije dobijemo:

$$s_{1} = 2A\cos\left(\frac{\omega_{1} - \omega_{2}}{2}t + \frac{\varphi_{01} - \varphi_{02}}{2}\right)\sin\left(\frac{\omega_{1} + \omega_{2}}{2}t + \frac{\varphi_{01} + \varphi_{02}}{2}\right)$$

$$s_{2} = 2A\sin\left(\frac{\omega_{1} - \omega_{2}}{2}t + \frac{\varphi_{01} - \varphi_{02}}{2}\right)\cos\left(\frac{\omega_{1} + \omega_{2}}{2}t + \frac{\varphi_{01} + \varphi_{02}}{2}\right)$$
(**)

Vezani oscilatori titraju frekvencijom $(f_1+f_2)/2$.

Amplituda titranja je
$$2A\cos\left(\frac{\omega_1-\omega_2}{2}t+\frac{\varphi_{01}-\varphi_{02}}{2}\right)$$
, odn. $2A\sin\left(\frac{\omega_1-\omega_2}{2}t+\frac{\varphi_{01}-\varphi_{02}}{2}\right)$.

Amplituda se mijenja od maximalne 2A do 0 i varira u vremenu frekvencijom $f_a = (f_1 - f_2)/2$, odn. periodom $T_a = 1/f_a$.

Amplituda je MODULIRANA.

Suprotno osnovnim načinima titranja (a) i b)), titranje (**) NIJE HARMONIČKO.

Takvo se titranje naziva UDARIMA.

Frekvencija, kojom se ponavlja maksimalna amplituda, tj. FREKVENCIJA UDARA je:

$$f_u = \frac{\omega_1 - \omega_2}{2\pi} = f_1 - f_2$$

Frekvencija udara je 2 puta veća od frekvencije mijenjanja amplituda: $f_u = 2f_a$

Amplituda prvog oscilatora je:

$$2A\cos\left(\frac{\omega_1-\omega_2}{2}t+\frac{\varphi_{01}-\varphi_{02}}{2}\right).$$

Amplituda drugog oscilatora je:

$$2A\sin\left(\frac{\omega_{1}-\omega_{2}}{2}t+\frac{\varphi_{01}-\varphi_{02}}{2}\right)=2A\cos\left(\frac{\omega_{1}-\omega_{2}}{2}t+\frac{\varphi_{01}-\varphi_{02}}{2}-\frac{\pi}{2}\right)$$

Razlika u fazi između applitude prvog i drugog oscilatora je $\left(\frac{\pi}{2}\right)$.

SLIKA: ELONGACIJE VEZANIH OSCILATORA KAO FUNKCIJE VREMENA – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.39. STR. 60

Kad amplituda prolazi kroz 0, funkcija cosinus mijenja predznak, a njihalo fazu za π . Njihalo, koje prima energiju, uvijek zaostaje u fazi $\pi/2$ iza njihala koje daje energiju. To postižemo tako da njihalu, kad mu je amplituda minimalna (odn. 0), promijenimo fazu titranja za π .

Funkcije na slici su izračunate uz početne uvjete: $t=0, s_1=A, s_2=0$. U poč. trenutku prvo njihalo smo izvukli iz ravnotežnog položaja za max. elongaciju i pustili da njiše, a drugo njihalo je mirovalo. Slijedi da je $\varphi_{01}=\pi/2, \varphi_{02}=\pi/2$, odn.

$$s_1 = A(\cos \omega_1 t + \cos \omega_2 t)$$

$$s_2 = A(\cos \omega_1 t - \cos \omega_2 t)$$

Drugi početni uvjeti daju drugačija rješenja s_1 i s_2 , ali frekvencija ostaje ista.

4.3.2. ZBRAJANJE HARMONIČKIH TITRAJA NA ISTOM PRAVCU

Ako na česticu istovremeno djeluju 2 harmoničke sile na istom pravcu i ona izvodi 2 jednostavna titranja, rezultantno titranje je njihova superpozicija (interferencija).

a) ZBRAJANJE DVAJU RAZLIČITIH HARMONIČKIH TITRAJA JEDNAKE FREKVENCIJE

Oba titranja imaju jednaku frekvenciju, a razlika u fazi između njih ne mijenja se cijelo vrijeme gibanja:

$$s_1(t) = A_1 \sin(\omega t + \varphi_{01})$$

KOHERENTNA TITRANJA

$$s_2(t) = A_2 \sin(\omega t + \varphi_{02})$$

Rezultantni pomak čestice je zbroj tih pomaka:

$$s = s_1 + s_2 = A_1 \sin(\omega t + \varphi_{01}) + A_2 \sin(\omega t + \varphi_{02})$$

Titranja zbrajamo metodom rotirajućeg vektora.

SLIKA: ZBRAJANJE DVAJU PARALELNIH HARMONIČKIH TITRAJA JEDNAKE FREKVENCIJE – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.40. STR. 62

Prvo titranje – fazor $\overrightarrow{OP_1}$

Drugo titranje – fazor $\overrightarrow{OP_2}$

Rezultanta -
$$\overrightarrow{OP} = \overrightarrow{OP_1} + \overrightarrow{OP_2}$$

Zbrajanjem paralelnih harm. titranja jednake frekvencije ponovo dobijemo harm. titranje jednake frekvencije: $s(t) = A \sin(\omega t + \varphi_0)$

Amplitudu rezultante određujemo iz trokuta OP₁P:

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_{02} - \varphi_{01})}$$

Poč. faza rezultantnog titranja je:

$$tg\,\varphi_0 = \frac{A_1 \sin\varphi_{01} + A_2 \sin\varphi_{02}}{A_1 \cos\varphi_{02} + A_2 \cos\varphi_{02}}$$

Amplituda A rezultante ovisi o amplitudi pojedinih titranja i razlici u fazi: $\Delta \varphi = \varphi_{02} - \varphi_{01}$

- ako je $\Delta \varphi = 0, 2\pi, 4\pi...$, rezultantna amplituda A je najveća: $A = A_1 + A_2$

KONSTRUKTIVNA INTERFERENCIJA

- ako je
$$\Delta \varphi = \pi, 3\pi, 5\pi...$$
, tada je: $A = A_1 - A_2$

DESTRUKTIVNA INTERFERENCIJA

SLIKA: KONSTRUKTIVNA I DESTRUKTIVNA INTERFERENCIJA – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.41. STR. 63

b) ZBRAJANJE DVAJU PARALELNIH HARMONIČKIH TITRAJA RAZLIČITIH FREKVENCIJA

$$s_1(t) = A\sin(\omega_1 t + \varphi_{01})$$

$$s_2(t) = A\sin(\omega_2 t + \varphi_{02})$$

Pretpostavili smo da su amplitude jednake radi jednostavnosti.

Rezultantno titranje:

$$s = s_1 + s_2 = A(\sin(\omega_1 t + \varphi_{01}) + \sin(\omega_2 t + \varphi_{02}))$$

Nakon transformacije:

$$s = 2A\cos\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\varphi_{01} - \varphi_{02}}{2}\right)\sin\left(\frac{\omega_1 + \omega_2}{2}t + \frac{\varphi_{01} + \varphi_{02}}{2}\right)$$

Čestica titra kružnom frekvencijom $\frac{\omega_1 + \omega_2}{2}$ i amplitudom $2A\cos\left(\frac{\omega_1 - \omega_2}{2}t + \frac{\varphi_{01} - \varphi_{02}}{2}\right)$.

Amplituda je modulirana i mijenja se od 2*A* max do 0. Frekvencija kojom se ponavlja maksimalna amplituda je:

$$f_u = \frac{\omega_1 - \omega_2}{2\pi} = f_1 - f_2$$
 FREKVENCIJA UDARA

SLIKA: ZBRAJANJE DVAJU PARALELNIH HARMONIČKIH TITRAJA RAZLIČITIH FREKVENCIJA, KOJIMA SE FREKVENCIJE NEZNATNO RAZLIKUJU – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.42. STR. 64

4.3.2. ZBRAJANJE DVAJU MEĐUSOBNO OKOMITIH HARMONIČKIH TITRAJA. LISSAJOUSOVE KRIVULJE

Na materijalnu točku djeluju 2 međusobno okomite harm. sile i ona obavlja 2 međusobno okomita harm. titranja:

$$x = A_1 \sin \omega_1 t$$
 $y = A_2 \sin(\omega_2 t + \Delta \varphi)$

 $\Delta \varphi$ je fazna razlika između titranja u smjeru y i x-osi.

Putanja čestice je 2D krivulja zadana ovim parametarskim jednadžbama.

Čestica ne može biti udaljenija od ishodišta više nego amplitude A_1 i A_2 pa je putanja upisana u pravokutnih stranica $2A_1$ i $2A_2$.

Oblik putanje ovisi o međusobnom odnosu frekvencija ω_1/ω_2 i o faznoj razlici $\Delta \varphi$.

Ovakve putanje se nazivaju Lissajousove krivulje prema francuskom fizičaru Lissajousu koji je prvi proučavao tu vrstu harm. gibanja.

a) FREKVENCIJE OBAJU GIBANJA JEDNAKE

Oba titranja u fazi ($\Delta \varphi = 0$): $x = A_1 \sin \omega t$ $y = A_2 \sin \omega t$

Eliminiranjem parametra t dobijemo: $y = (A_2 / A_1)x$, što je jednadžba pravca (a).

Ako je $\Delta \varphi = \pi$, jednadžba putanje $y = -(A_2/A_1)x$, što je pravac sa suprotnim koeficijentom smjera (d).

Ako je $\Delta \varphi = \pi/2$, onda je: $x = A_1 \sin \omega t$ $y = A_2 \sin(\omega t + \frac{\pi}{2}) = A_2 \cos \omega t$

Eliminacijom parametra t dobijemo jednadžbu elipse: $\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$ (b) (gibanje u smjeru kazaljke na satu).

Ako je $\Delta \varphi = 3\pi/2$, onda opet imamo elipsu, ali je gibanje suprotno smjeru kazaljke na satu. (c)

Interferencijom dvaju međusobno okomitih harm. titranja jednake frekvencije nastaje ELIPTIČKI POLARIZIRANO TITRANJE.

SLIKA: LISSAJOUSOVE KRIVULJE – HENČ-BARTOLIĆ, KULIŠIĆ – SL. 1.47. STR. 71

b) FREKVENCIJE OBAJU TITRANJA NISU JEDNAKE

Važni su slučajevi kad se frekvencije odnose kao prirodni brojevi.

Primjer: $\omega_1 : \omega_2 = 1:2$

Parametarska jednadžba putanje:

 $x = A_1 \sin \omega_1 t$

 $y = A_2 \sin(2\omega_1 t + \Delta \varphi)$

Oblik krivulje ovisi o $\Delta \varphi$.

STR. 72

Lissajousovim krivuljama se koristimo za točno određivanje frekvencije u krugovima izmjenične struje.