Universidade do Minho

Departamento de Matemática e Aplicações

Calculo Vectorial

Exame época especial

Física e Eng Física 2015/2016

23 de Julho de 2016

Duração: 120 minutos

Atenção: Todas as respostas devem ser justificadas.

- 1. Considere a função $F(x, y, z) = z\sqrt{x^2 + y} + 2\frac{y}{z}$.
 - (a) O ponto $P_0 = (1, 2, 3)$ está na superfície de nível F(x, y, z) = 7. Determine a equação do plano tangente à superfície F = 7 no ponto P_0 .
 - (b) Se, iniciando em P_0 , fizessemos apenas uma pequena alteração NUMA SO das variáveis, qual iria produzir uma maior alteração (em valor absoluto) em F? Se a variação fosse de 0,1 qual seria o valor dessa alteração?
- 2. Seja $f(x,y) = x + 4y + \frac{2}{xy}$.
 - (a) Determine o(s) ponto(s) críticos de f(x, y).
 - (b) Classifique um ponto crítico da função, ou explique como o poderia fazer, usando o teste das segundas derivadas.
- 3. Determine em que pontos existe $\frac{\partial x}{\partial z}$ sabendo que $x^2 \sin 2y 5z = 1 + y \cos(6zx)$.
- 4. Seja $\vec{F}(x,y,z)$ uma função diferenciável definida em \mathbb{R}^3 . Sabendo que $\nabla \vec{F}(1,-1,\sqrt{2}) =$ (1,2,-2). Use a regra da derivação da função composta para determinar $D\vec{F}(\rho,\phi,\theta)$ no ponto $(\rho, \phi, \theta) = (2, \frac{\pi}{4}, -\frac{\pi}{4})$, sabendo que $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi$, $\sin \theta$ e $z = \rho \cos \theta$.

best des sofantes deriverdes.

- 3. Determine em que pontos existe $\frac{\partial x}{\partial z}$ sabendo que $x^2 \sin 2y 5z = 1 + y \cos(6zx)$.
- 4. Seja $\vec{F}(x, y, z)$ uma função diferenciável definida em \mathbb{R}^3 . Sabendo que $\nabla \vec{F}(1, -1, \sqrt{2}) = (1, 2, -2)$. Use a regra da derivação da função composta para determinar $D\vec{F}(\rho, \phi, \theta)$ no ponto $(\rho, \phi, \theta) = (2, \frac{\pi}{4}, -\frac{\pi}{4})$, sabendo que $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$ e $z = \rho \cos \theta$.
- 5. Considere o $\iint_R f dA = \int_0^2 \int_{x^2}^{2\sqrt{2x}} f(x,y) dy dx$.
 - (a) Desenhe a região R.
 - (b) Escreva um integral novo cujo valor é igual ao dado mas trocando a ordem de integração.
- 6. Considere o integral $\int \int_R f dA$, em que R é a região do plano delimitada pelas seguintes curvas $x^2y=4$, $x^2y=9$, y/x=1, y/x=2. Escreva um integral cujo valor valor seja igual a este mas que resulte da mudança de variável definida por $u=x^2y$ e v=y/x. (A transformação inversa é dada por $x=u^{\frac{1}{3}}v^{-\frac{1}{3}}$, $y=u^{\frac{1}{3}}v^{\frac{2}{3}}$).
- 7. Seja $\vec{F}(x, y_*) = (x, x)$ e seja C a curva fechada do plano definida pelo triângulo de vértices na origem e nos pontos (1, 0) e (0, 1).
 - (a) Faça um esboço do campo vectorial no primeiro quadrante. Determine a divergência do campo vectorial. Interprete o significado do sinal da divergência. É coerente com o esboço que fez?
 - (b) Calcule o integral $\int_C \vec{F} \cdot \vec{n} ds$ directamente.
 - (c) Calcule o integral anterior usando o teorema da divergência para o plano.