Multidimensional Scaling with the smacof package

Barbara Jancewicz

OBM UW
barbara@jancewicz.net

Multidimensional scaling (MDS) is often used to visualise data, to reduce the number of dimensions, and to find patterns.

In its simplest form Multidimensional Scaling turns distances into "maps".

	Szczecin	Gdańsk	Olsztyn	Biały- stok	Warszawa	Poznań	Gorzów	Zielona Góra
Szczecin	0							
Gdańsk	287,5	0						
Olsztyn	393,2	135,8	0					
Biały- stok	574,1	327,1	192,2	0				
Warszawa	454,3	283,9	175,8	176,9	0,0			
Poznań	195,7	244,9	282,2	428,1	278,8	0		
Gorzów	90,0	288,7	367,7	533,8	395,4	119,8	0	
Zielona Góra	178,2	340,8	391,6	535,2	377,8	109,9	90,5	0

Basic mds is conducted by smacofSym()

```
> library(smacof)
> miasta_mds <- smacofSym(odleglosci_miast)</pre>
> miasta mds
Call: smacofSym(delta = odleglosci miast,
ndim = 2, type = "ratio", init = "torgerson")
Model: Symmetric SMACOF
Number of objects: 16
Stress-1 value: 0
Number of iterations: 1
> plot(miasta_mds)
```

Configuration Plot

In ggplot make sure to keep the scales unchanged!

Opole Katowice Kraków

In ggplot make sure to keep the scales unchanged!

In ggplot make sure to keep the scales unchanged!

The configuration and distances stay the same when we flip or rotate the plot.

If we interpret distances as differences between objects, we can apply Multidimensional Scaling to variety of situations.

Differences can take many forms

- Correlations
- Items confused with one another
- Direct answers on differences between products
- Groupings
- •

An example

Please evaluate the following elements of socioeconomic reality in Germany compared to Poland?

	definitely better in Germany	slightly better in Germany	no difference	slightly better in Poland	definitely better in Poland
	1	2	3	4	5
Easiness of finding a job					
Easiness of having own business					
Earnings level					
Social benefits system					
Healthcare system					
Expected pension					

```
> oceny_Kendall <- cor(oceny_data,
    method = "kendall",
    use = "pairwise.complete.obs")</pre>
```

	finding a	Easiness_of _having_o wn_buisnes s	Earnings_le vel	Social_ben efits_syste m	Healthcare _system	Expected_p ension	Functioning _of_admini stration	Nurseries_a nd_kinderg ardens	Quality_of_ schools	Higher_edu cation	Public_tran sport	Road_infra structure	Real_estat e_market	Customs_a nd_behavio ur_of_local s
Easiness_of _finding_a_ job	1	0.216674	0.207112	0.222064	0.07024	0.20594	0.211718	0.192332	0.059487	0.125124	0.15219	0.161621	0.206793	0.084884
Easiness_of _having_o wn_buisnes s	0.216674	1	0.106796	0.14789	0.041625	0.173403	0.209076	0.12935	0.145311	0.179453	0.08848	0.03914	0.231637	0.145842
Earnings_le vel	0.207112	0.106796	1	0.214672	0.173334	0.168041	0.144054	0.130552	0.037516	0.049917	0.15056	0.170623	0.106151	0.093622
Social_ben efits_syste m	0.222064	0.14789	0.214672	1	0.1679	0.207044	0.214064	0.254282	0.068309	0.140152	0.134588	0.282446	0.222151	0.123249
Healthcare _system	0.07024	0.041625	0.173334	0.1679	1	0.185011	0.124701	0.219342	0.109609	0.140885	0.156531	0.166522	0.127965	0.1111
Expected_p ension	0.20594	0.173403	0.168041	0.207044	0.185011	1	0.136402	0.174423	0.058555	0.164121	0.137651	0.157079	0.162311	0.182901
Functioning _of_admini stration	0.211718	0.209076	0.144054	0.214064	0.124701	0.136402	1	0.158916	0.196198	0.142755	0.145781	0.148435	0.231367	0.239064
Nurseries_a nd_kinderg ardens	0.192332	0.12935	0.130552	0.254282	0.219342	0.174423	0.158916	1	0.172537	0.238438	0.11618	0.15588	0.263137	0.142839
Quality_of_ schools	0.059487	0.145311	0.037516	0.068309	0.109609	0.058555	0.196198	0.172537	1	0.272562	0.159541	0.071233	0.145073	0.189328
Higher_edu cation	0.125124	0.179453	0.049917	0.140152	0.140885	0.164121	0.142755	0.238438	0.272562	1	0.137474	0.100736	0.145202	0.173508
Public_tran sport	0.15219	0.08848	0.15056	0.134588	0.156531	0.137651	0.145781	0.11618	0.159541	0.137474	1	0.158627	0.134822	0.082599
Road_infra structure	0.161621	0.03914	0.170623	0.282446	0.166522	0.157079	0.148435	0.15588	0.071233	0.100736	0.158627	1	0.133316	0.081694
Real_estat e_market	0.206793	0.231637	0.106151	0.222151	0.127965	0.162311	0.231367	0.263137	0.145073	0.145202	0.134822	0.133316	1	0.214489
Customs_a nd_behavio ur_of_local s	0.084884	0.145842	0.093622	0.123249	0.1111	0.182901	0.239064	0.142839	0.189328	0.173508	0.082599	0.081694	0.214489	1

- > oceny <- 1 oceny_Kendall</pre>
- > library(smacof)
- > mds_oceny <- smacofSym(oceny)</pre>

> plot(mds_oceny)

Dissimilarities: levels of measurement

- Ratio
- Interval
- Ordinal: monotonne regression or splines

$$\delta_{i,j} = 1 - \tau_B(v_i, v_j)$$

> mds_oceny <- smacofSym(oceny)</pre>

The "best" map

Multidimensional Scaling chooses the map that reflects given dissimilarities best.

$$\sigma^{2}(\hat{\mathbf{D}}, \mathbf{X}) = \sum_{i < j} w_{ij} (\hat{d}_{ij} - d_{ij}(\mathbf{X}))^{2}$$

$$\hat{d}_{i,j} = f(\delta_{i,j})$$

A normalised version of the stress function: stress-1

$$\sigma_1(\hat{\mathbf{D}}, \mathbf{X}) = \sqrt{\frac{\sum_{i < j} w_{ij} (\hat{d}_{ij} - d_{ij}(\mathbf{X}))^2}{n(n-1)/2}}$$

Multidimensional scaling is an iterative algorithm that uses majorization to make each new step (map) better than the previous one.


```
> smacofSym(oceny,
           ndim = 2,
           type = "interval",
           init = "torgerson")
Call:
mds(delta = oceny, type =
"interval")
Model: Symmetric SMACOF
Number of objects: 14
Stress-1 value: 0.211
Number of iterations: 26
```

```
> set.seed(123)
> smacofSym(oceny,
           ndim = 2,
           type = "ratio",
           init = "random" )
Call:
mds(delta = oceny)
Model: Symmetric SMACOF
Number of objects: 14
Stress-1 value: 0.238
Number of iterations: 193
```

```
> smacofSym(oceny,
           ndim = 2,
           type = "ratio",
           init = "random" )
Call:
mds(delta = oceny)
Model: Symmetric SMACOF
Number of objects: 14
Stress-1 value: 0.266
Number of iterations: 193
```

```
set.seed(123)
stress one <- NULL
low stress mds <- NULL
for(i in 1:100) {
  oceny mds <- smacofSym(oceny,
                        type = "interval",
                        init = "random")
  stress one[i] <- oceny mds$stress
  if (i == 1) low stress mds <- oceny mds
  if (low stress mds$stress >
oceny mds$stress ) {
      low stress mds <- oceny mds
```

Histogram of stress_one


```
> low_stress_mds
Call: smacofSym(delta = oceny, type =
"interval", init = "random")
Model: Symmetric SMACOF
```

Number of objects: 14

Stress-1 value: 0.211

Number of iterations: 78

```
> low stress mds
Call: smacofSym(delta = oceny, type =
"interval", init = "random")
Model: Symmetric SMACOF
Number of objects: 14
Stress-1 value: 0.211
Number of iterations: 78
>smacofSym(delta = oceny, ,
         type = "interval",
         init = ,,torgerson")
```

Stress-1 value: 0.211

•••

icExplore function tests multiple solutions and compares the map for you.

```
> set.seed(123)
> icExplore(oceny, type = "interval",nrep =
100, ndim = 2)
Call: icExplore(delta = oceny, nrep = 100,
ndim = 2, type = "interval")
Number of replications: 100
Best stress value: 0.2115
Average stress value: 0.2824
Stress quantiles:
```

2.5% 25% 50% 75% 97.5%

0.2115 0.2434 0.3005 0.3163 0.3297

How many dimensions should my perception map have?

```
stress of oceny <- NULL
for(i in 1:10) {
 stress_of_oceny <- c(stress_of_oceny,</pre>
                 smacofSym(oceny,
                 type = "interval",
                 ndim=i)$stress)
```


How good is my solution?


```
> mds_oceny <-
    smacofSym(oceny, type = "interval",ndim=2)</pre>
```



```
Call: permtest.smacof(object = mds_oceny, nrep =
100, verbose = FALSE)
```

```
SMACOF Permutation Test
Number of objects: 14
Number of replications (permutations): 100
```

Observed stress value: 0.211 p-value: <0.001

Summary

> plot(mds_oceny)

Thank you for your attention!

Barbara Jancewicz barbara@jancewicz.net

More reading

Borg I, Groenen PJF (2005). *Modern Multidimensional Scaling: Theory and Applications*. 2nd edition. Springer, New York.

Borg I, Groenen PJF, Mair P (2018). *Applied Multidimensional Scaling and Unfolding*. 2ndedition. Springer, New York

Cox TF, Cox MAA (1991). Multidimensional Scaling. 2nd edition. Chapman & Hall/CRC, Boca Raton

De Leeuw J, Mair P (2009b). "Multidimensional Scaling Using Majorization: SMACOF in R." *Journal of Statistical Software*, 31(3), 1-30.

Package 'smacof'

June 6, 2019

Type Package

Title Multidimensional Scaling

Version 2.0-0

Date 2019-06-05

Description

Implements the following approaches for multidimensional scaling (MDS) based on stress minimization using majorization (smacof): ratio/interval/ordinal/spline MDS on symmetric dissimilarity matrices, MDS with external constraints on the configuration, individual differences scaling (idioscal, indscal), MDS with spherical restrictions, and ratio/interval/ordinal/spline unfolding (circular restrictions, row-conditional). Various tools and extensions like jack-knife MDS, bootstrap MDS, permutation tests, MDS biplots, gravity models, unidimensional scaling, drift vectors (asymmetric MDS), classical scaling, and Procrustes are implemented as well.

Imports graphics, stats, polynom, Hmisc, colorspace, nnls, grDevices, MASS, weights, ellipse, wordcloud, candisc, parallel, foreach, doParallel

Depends R (>= 3.2.0), plotrix

License GPL-3

Suggests knitr, prefmod, MPsychoR, calibrate

VignetteBuilder knitr

LazyData yes

LazyLoad yes

ByteCompile yes

NeedsCompilation yes

Author Patrick Mair [aut, cre], Jan De Leeuw [aut],

Patrick J. F. Groenen [aut],

Ingwer Borg [ctb]

Maintainer Patrick Mair <mair@fas.harvard.edu>

Repository CRAN