

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2014)

PROVA DE MATEMÁTICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 38 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- 3. Para cada pergunta existem quatro alternativas de resposta. Só **uma** é que está correcta. Assinale **apenas** a alternativa correcta.
- 4. Para responder correctamente, basta marcar na alternativa escolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- 6. No fim da prova, entregue apenas a Folha de Respostas. Não será aceite qualquer folha adicional.
- 7. Não é permitido o uso de máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

PROVA DE MATEMÁTICA

Algebra

1.	Racionalizando o denominador da fracção	1	obtêm-se:
		$\sqrt{2}+\sqrt{3}+\sqrt{5}$,	

a) Não é possível;

c) $\frac{\sqrt{5} + \sqrt{2} + 4\sqrt{3}}{7}$;

b) $\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$;

d) $\frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{5}$.

- **2. O polinómio** $x^2 ax + 1$
 - a) tem sempre duas raízes reais, qualquer que seja o valor de a;
 - b) tem sempre uma raiz real, qualquer que seja o valor de a;
 - c) tem exactamente uma raiz real para $a = \pm 2$;
 - d) tem exactamente uma raiz real para a = 0.
- 3. O resto da divisão de $x^3 4x + 2$ por x + 2 é:
 - a) -3;
- **b**) -2; **c**) 1;

4. Para que o seguinte sistema seja possível e determinado
$$\begin{cases} ax - y + z = 0 \\ x - y = 1 \end{cases}$$
, então:
$$x - ay + z = b$$

- **a)** a = b = 1;
- **b)** $a \ne 1, b \in R$; **c)** $a \in R, b = 1$; **d)** $a \ne b$.
- 5. No Brasil, um litro de álcool custa, R\$0,75. O carro de Henrique percorre 25 km com 3 litros de álcool. Quantos reais serão gastos em álcool para percorrer 600 km?
 - a) 54;

- **b)** 72;
- c) 50;
- d) 52.
- 6. Quatro amigos vão visitar um museu e um deles resolve entrar sem pagar. Aparece um fiscal que quer saber qual deles entrou sem pagar.
 - -Eu não fui, diz o Benjamim.
 - -Foi o Carlos, diz o Mário.
 - -Foi o Pedro, diz o Carlos.
 - -O Mário não tem razão, diz o Pedro.

Só um deles mentiu. Quem não pagou a entrada do museu?

- a) Mário;
- b) Pedro;
- c) Benjamim;
- d) Carlos.
- 7. Se x e y são números reais positivos, qual dos números a seguir é o maior?
 - a) $\frac{x^3 + y^3}{x + y}$; b) $x^2 + y^2$; c) $(x + y)^2$; d) $x^2 + y(x + y)$.

- 8. Os valores reais de x que satisfazem a inequação $\sqrt{x} + \sqrt{\frac{1}{x}} \le 2$ são:
 - **a)** $-1 \le x \le 1$;

c) $x \le 1$;

b) x = 1:

d) $x \ge 1$.

9. Se x + y = 8 e xy = 15, o valor de $x^2 + 6xy + y^2$ é: a) 64; **b)** 109; c) 120;

 $a^2 - ab = 1$

10. Sejam a, b e c números tais que $b^2 - bc = 1$. O valor de $abc \cdot (a+b+c)$ é igual a:

 $c^2 - ac = 1$

- 0; a)
- b) 1;
- c) 2;
- **d)** -1.

d) 124.

- 11. Sejam a e b números reais positivos tais que $\frac{a}{b} < 1$. Então, $\frac{a+1}{b+1}$ é:
 - a) igual a $\frac{a}{h} + 1$;

c) menor que $\frac{a}{\iota}$;

b) igual a $\frac{a}{b}$;

d) maior que $\frac{a}{b}$ mas menor que 1.

Geometria

12. No triângulo ABC representado ao lado, a medida do ângulo \hat{C} é 60° e a bissectriz do ângulo \hat{B} forma 70° com a altura relativa ao vértice A. A medida do ângulo \hat{A} é:

a) 50°;

c) 40°;

b) 30°;

- d) 80°.
- 13. Dado um triângulo ABC onde $\hat{A} = 80^{\circ}$ e $\hat{C} = 40^{\circ}$, a medida do ângulo agudo formado pelas bissectrizes dos ângulos \hat{A} e \hat{B} é:
 - a) 40°;
- **b)** 60°;
- c) 70°;
- d) 80°.
- 14. Duas rectas paralelas r e s cortadas por uma recta transversal t formam os ângulos indicados na figura ao lado. Os ângulos 5x e x medem, respectivamente,
 - a) 75° e 15°;

- c) 50° e 10°;
- **b)** 150° e 30°;
- d) 100° e 20°.

- 15. O ponto D pertence ao lado BC do triângulo ABC. Sabendo que AB = AD = 2, BD = 1 e os ângulos BAD e CAD são congruentes, então a medida do segmento CD é:
- b) $\frac{4}{2}$;
- c) $\frac{5}{4}$;
- **d**) $\frac{6}{5}$.
- 16. Na figura ao lado temos que os triângulos ABC e A'B'C' são equiláteros e a região destacada é um hexágono regular. A razão entre a área da região destacada e a área do triângulo ABC é igual a:

- a) 1;
- b) $\frac{2}{3}$; c) $\frac{4}{5}$;

- 17. Se a área do rectângulo dado é 12, a área da figura sombreada é:
 - a) 3;
- b) 4:
- c) 5;
- **d)** 6.

- 18. Considere a recta R de equações y=2x. Das seguintes equações a equação para a recta S que passa pelo ponto (5,0) e é perpendicular à recta R é:
 - **a)** $y = -\frac{1}{2}x \frac{5}{2}$;

c) $y = \frac{1}{2}x + \frac{3}{2}$;

b) y = 2x + 4;

- **d)** $y = -\frac{1}{2}x + \frac{5}{2}$.
- 19. A área total de um cilíndro vale 48π m² e a soma das medidas do raio da base e da altura é igual a 8 m. Então, em m³, o volume do sólido é:
 - a) 45π ;
- **b)** 75π ;
- c) 25π
- **d)** 50π .
- 20. Na figura ao lado, as rectas r, s e t são tangentes à circunferência nos pontos A, C e E respectivamente. Sendo r paralela a s, |AB|=3, |CD|=8.

a) $\sqrt{11}$;

c) $6\sqrt{11}$;

b) $4\sqrt{3}$;

d) $4\sqrt{6}$.

21. Na circunferência da figura de centro O e raio igual a 5 m, sabe-se que a tangente |PB| = 1,5|PA|. A distância do ponto P à circunferência é:

- **b)** 8 m;
- c) 7 m;
- d)15 m.

- 22. Cada uma das arestas laterais de uma pirâmide regular mede 15 cm, e sua base é um quadrado cujos lados medem 18 cm. A altura dessa pirâmide, em centímetros, é igual a:
 - a) $3\sqrt{5}$;
- **b)** $3\sqrt{7}$;
- c) 2;
- **d)** $2\sqrt{7}$
- 23. Considere a recta de equação y = 2x + 1. A distância que vai do ponto (-2,2) à recta dada é igual a:
 - a) $\frac{1}{\sqrt{5}}$;
- **b)** $\frac{3}{\sqrt{5}}$;
- **c)** $\sqrt{5}$;
- **d)** $\frac{2}{\sqrt{5}}$.

Análise Matemática

- 24. Seja f uma função real que tem as seguintes propriedades: Para todos x, y reais, f(x + y) = x + f(y); f(0) = 2. Quanto vale f(2000)?
 - a) 2002;
- **b)** 2;
- c) 1998;
- **d)** 2000.
- 25. Dada a função $f(x) = (x^2 6x + 5) \cdot x$, os valores de x para os quais f(x) > 0 são:
 - a) 0 < x < 1 ou x > 6;

c) $0 < x < \frac{1}{2}$ ou x > 6;

b) $0 < x < 1$	ou	x > 7;	
------------------------	----	--------	--

d)
$$0 < x < 1$$
 ou $x > 5$:

26. Considere a sequência oscilante: 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, ... O 2003° termo desta sequência é:

27. O gráfico de $y = x^2 - 5x + 9$ é rodado 180° em torno da origem. Qual é a equação da nova curva obtida?

a)
$$y = x^2 + 5x + 9$$
;

c)
$$y = -x^2 + 5x - 9$$
:

b)
$$y = x^2 - 5x - 9$$
;

d)
$$y = -x^2 - 5x - 9$$
.

28. O valor de n que torna a sequência 2+3n, -5n, 1-4n uma Progressão Aritmética pertence ao intervalo:

a)
$$[-2;-1];$$

b)
$$[-1;0];$$

29. Numa sequência, cada termo, a partir do terceiro, é a soma dos dois termos anteriores mais próximos. O segundo termo é igual a 1 e o quinto termo vale 2005. Qual é o sexto termo?

30. $\lim_{x \to +\infty} (2x^5 e^{-x})$ **é:**

a)
$$+\infty$$
;

d)
$$+\infty$$
.

31. Uma função real de variável real f é tal que f(x) = f'(x), para qualquer valor de x. Qual das seguintes expressões pode definir a função f:

a)
$$3x^2$$
;

b)
$$sen x$$
;

c)
$$e^{5x}$$
;

d)
$$2e^{x}$$
.

32. A recta r é normal ao gráfico de $g(x) = e^x$ no ponto A de abcissa $\ln 2$. Uma equação de r pode ser:

a)
$$y = -2x + \ln 4 + 2$$
;

c)
$$y = -\frac{1}{2}x + \ln(e^2\sqrt{2})$$
;

b)
$$y = -\frac{1}{2}x + 2\ln\sqrt{2}$$
;

d)
$$y = 2x + \frac{1}{2} \ln 2 + e^2$$
.

33. Um projéctil é lançado verticalmente de baixo para cima. Admita que sua altitude h em metros, t segundos após ter sido lançado, é dada pela expressão $h(t) = 100t - 5t^2$. A velocidade (em metros por segundo) do projéctil dois segundos após o lançamento é:

- a) 80;
- b) 130;
- **c)** 170;
- **d**) 230.

34. Seja $f: R \to R$ definida por $f(x) = x^3 sen(3x^2)$. A função derivada de f é?

a)
$$3x^2 sen(3x^2) cos(3x^2)$$
;

c)
$$3x^2 sen(3x^2) + x^3 cos(3x^2)$$
;

b)
$$3x^2\cos(3x^2)$$
;

d)
$$3x^2 sen(3x^2) + 6x^4 cos(3x^2)$$
.

35. Na figura ao lado, a recta $y = \frac{1}{4}x + b$ é tangente

ao gráfico $y = \sqrt{x}$. Os valores de a e b são respectivamente.

a) 4 e 1;

c) 1 e 4;

b) 1 e 2;

d) 2 e 4.

Análise Combinatória

- 36. Numa reunião após terem se cumprimentado uma vez cada um, verificou-se que foram trocados 45 cumprimentos. O número de pessoas presentes é:
 - a) 45;
- b) C_2^{45} ;
- c) 10;
- 37. Com 5 homens e 5 mulheres, de quantos modos se pode formar um casal
 - a) 5;
- **b)** 10;
- c) 20;
- d) 25.
- 38. Para vencer um jogo de dados Cristina deveria ao lançar um dado obter um número par. Qual é a "chance" disso acontecer?
- c) $\frac{4}{6}$; d) $\frac{6}{6}$.

FIM