IN THE CLAIMS

Claims 1-65 (canceled)

66. (previously presented) A process comprising:

applying a mixture comprising a resin and inorganic particles to a metallic substrate and drying to form a polymeric, corrosion-resistant, electrically conductive and electrically weldable dried coating;

wherein said inorganic particles comprise electrically conductive particles; wherein the mixture comprises at least 10 wt.% of the electrically conductive particles having an electrical conductivity better than that of particles of pure zinc and having a Mohs hardness of greater than 4, based on a total solids contents of the mixture; and

wherein the electrically conductive particles have a particle size distribution;

wherein the transfer value d_{99} relative to the transfer value d_{10} in a volume plot has a factor of at most 10;

wherein 3 to 22 vol.% of the electrically conductive particles, in a measured volume plot are larger than the average layer thickness of the dried coating, determined on scanning electron microscopy photograph;

wherein the coating has a thickness of less than 10 μm ;

wherein at least a portion of the electrically conductive particles project out of the polymeric coating; and

wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5.

67. (currently amended) A process comprising:

applying a mixture comprising a resin and inorganic particles to a metallic substrate and drying to form a polymeric, corrosion-resistant, electrically conductive and electrically weldable dried coating;

wherein said inorganic particles comprise electrically conductive particles; wherein the mixture comprises at least 10 wt.% of the electrically conductive particles, and the electrically conductive particles have having an electrical conductivity better than that of particles of pure zinc and having a Mohs hardness of greater than 4, based on a solids contents of the mixture; and

wherein an envelope curve of a particle size distribution for the electrically conductive particles, in a measured logarithmic volume plot is at least twin-peaked and is divided into individual Gauss distribution curves;

wherein a first minimum of the individual Gauss distribution curves between a main peak and a next larger peak of these distribution curves, determined in µm, is greater by a factor of 0.9 to 1.8 than the average dry film thickness of the coating, determined on scanning electron microscopy photographs;

wherein not more than 22 vol.% of the particle size distribution of the electrically conductive particles is larger than the average dry film thickness;

wherein the coating has a thickness of less than 10 μm;

wherein at least a portion of the electrically conductive particles project out of the polymeric coating; and

wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5.

55265067.1 -3-

- 68. (canceled)
- 69. (previously presented) The process according to claim 66, wherein the mixture comprises no electrically conductive particles having a particle size diameter greater than five times the value of an average dry coating thickness of the dried and optionally also cured coating.
- 70. (previously presented) The process according claim 66, wherein the mixture comprises 20 to 80 wt.% of electrically conductive particles having an electrical conductivity better than that of particles of zinc and having a Mohs hardness of greater than 4, based on the solids contents of the mixture.
- 71. (previously presented) The process according to claim 66, wherein the mixture comprises particles which slide or are a corrosion protection pigment.
- 72. (currently amended) The process according to claim 66, wherein the electrically conductive particles are selected from the group consisting of <u>an alloy</u>, an alloy a boride, a carbide, an oxide, a phosphide, a phosphate, a silicate and a silicide.
- 73. (previously presented) The process according to claim 66, wherein the mixture additionally comprises a curing agent, a photoinitiator, an additive, water, an organic solvent or 0.5 to 15 wt.% of a corrosion protection pigment.
- 74. (currently amended) The process according to claim 71, wherein the particles which slide are ground and mixed slide ground with before addition to the mixture.
- 75. (currently amended) The process according to claim 66, wherein some of the electrically conductive particles are ground and mixed with the remaining with other batches of electrically conductive particles.

55265067.1 -4-

- 76. (previously presented) The process according to claim 66, wherein a curing agent is added to the mixture.
- 77. (previously presented) The process according to claim 66, wherein the mixture, is at least one of irradiated with free radicals or heated in order to form a crosslinked, corrosion-resistant, viscoelastic coating.
- 79. (previously presented) The process according to claim 66, wherein the mixture is free or substantially free from organic lubricants, acids or heavy metals.
- 80. (previously presented) The process according to claim 73, wherein the substrate comprises at least one of a metal or a metal alloy selected from the group consisting of aluminum, iron, magnesium alloy and steel.
- 81. (previously presented) The process according to claim 73, wherein the metallic substrate is treated with a pretreatment coating.
 - 82. (canceled)
- 83. (previously presented) The process according to claim 67, wherein the mixture comprises no electrically conductive particles having a particle size diameter greater than five times the value of an average dry coating thickness of the coating.
- 84. (previously presented) The process according claim 67, wherein the mixture comprises 20 to 80 wt.% of electrically conductive particles having an electrical conductivity

55265067.1 -5-

better than that of particles of zinc and having a Mohs hardness of greater than 4, based on the solids contents of the mixture.

- 85. (previously presented) The process according to claim 67, wherein the mixture additionally comprises particles which slide.
- 86. (previously presented) The process according to claim 67, wherein the electrically conductive particles are selected from the group consisting of an alloy, a boride, a carbide, an oxide, a phosphide, a phosphate, a silicate and a silicide.
- 87. (previously presented) The process according to claim 67, wherein the mixture further comprises a curing agent, a photoinitiator, an additive, water, an organic solvent or 0.5 to 15 wt.% of corrosion protection pigment.
- 88. (previously presented) The process according to claim 86, wherein the particles which slide are ground before addition to the mixture.
- 89. (currently amended) The process according to claim 67, wherein <u>some of the</u> electrically conductive particles are ground and mixed with <u>the rest of batches</u> of electrically conductive particles.
- 90. (currently amended) The process according to claim 67, wherein a curing agent is added to the <u>mixture</u>.
- 91. (currently amended) The process according to claim 67, wherein the mixture is at least one of irradiated with free radicals or heated in order to form a crosslinked, corrosion-resistant, viscoelastic coating.

55265067.1 -6-

preferably of less than 4 µm, measured in the dry state on scanning electron microscopy photographs, is produced.

- 93. (previously presented) The process according to claim 67, wherein the mixture is free or substantially free from organic lubricants, acids, or heavy metals.
- 94. (previously presented) The process according to claim 88, wherein the substrate comprises aluminum, iron, magnesium alloy or steel.
- 95. (currently amended) The process according to claim 88, wherein the substrate is coated with a pretreatment coating.
- 96. (currently amended) A coated substrate comprising a corrosion-resistant, electrically conductive and electrically weldable dried coating on a metallic strip or a metallic sheet, wherein the coating comprises a resin and inorganic particles, wherein the inorganic particles comprise electrically conductive particles, wherein the mixture comprises at least 10 wt.% of electrically conductive particles having an electrical conductivity better than that of particles of pure zinc and having a Mohs hardness of greater than 4, based on a solid contents of the mixture, wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5, wherein the coating has an average dry film thickness of less than 10 microns, wherein electrically conductive <u>particles particle</u> project from the coating and, wherein the transfer value d₉₉ relative to the transfer value d₁₀ in a volume plot has a factor of at most 10.
- 97. (currently amended) A coated substrate comprising a substrate that is a metallic strip or a metallic sheet and a corrosion-resistant, electrically conductive and electrically weldable dried coating, wherein said coating comprises a resin and inorganic particles and has an average dry film thickness of at least 4 µm and less than 10 µm, wherein the inorganic particles comprise electrically conductive particles, wherein a mixture comprising at least 10 wt.% of

55265067.1 -7-

electrically conductive particles is applied to the substrate and dried to form the coated substrate, wherein the electrically conductive particles have an electrical conductivity better than that of particles of pure zinc and having a Mohs hardness of greater than 4, based on the solids contents of the mixture, wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5, and wherein by resistance spot welding of at least 1,000 welding points can be set through two of the coated substrates under—welding conditions in the automobile industry, without replacement or reworking of welding electrodes and without smoke traces wherein electrically conductive particle project from the coating and, wherein the transfer value d₉₉ relative to the transfer value d₁₀ in a volume plot has a factor of at most 10.

98. (currently amended) A coated substrate comprising a substrate coated with a corrosion-resistant, electrically conductive and electrically weldable dried coating, wherein said coating comprises a resin and inorganic particles and has an average dry film thickness of at least 4 µm and less than 10 µm, wherein the substrate is a strip or a sheet of steel 0.8 mm thick and comprises at least one layer of zinc or of a zinc-containing alloy precoated thereon; wherein the inorganic particles comprise electrically conductive particles, wherein the coating is formed on the substrate wherein by resistance spot welding at least 1,000 welding points, can be set through two substrates coating in this manner under welding conditions in the automobile industry, without replacement or reworking of welding electrodes and without smoke traces, the eoating by applying a mixture which comprises at least 10 wt.% of the electrically conductive particles, wherein the electrically conductive particles have an electrical conductivity better than that of particles of pure zinc and a Mohs hardness of greater than 4, based on the solids contents of the mixture, wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5, wherein at least a portion of the electrically conductive particles project

55265067.1 -8-

from the dried coating, and wherein the transfer value d_{99} relative to the transfer value d_{10} in a volume plot has a factor of at most 10.

- A coated substrate comprising a substrate coated with a 99. (currently amended) corrosion-resistant, electrically conductive and electrically weldable dried coating, wherein the dried coating comprises a resin and inorganic particles and have an average dry film thickness of at least 2 µm and less than 10 µm, wherein the substrate is a strip or a sheet of 0.8 mm thick of steel that is precoated on both sides thereof with at least one layer of zinc or of a zinc-containing alloy, wherein the inorganic particles comprise electrically conductive particles, wherein by resistance spot welding at least 1,800 welding points can be set through two substrates under welding conditions in the automobile industry without replacement or reworking of welding electrodes and without smoke traces, wherein the dried coating is produced by applying a mixture which comprises at least 10 wt.% of the electrically conductive particles to the substrate and drying to form the dried coating, wherein the electrically conductive particles have an electrically conductivity better than that of particles of pure zinc and a Mohs hardness of greater than 4, based on the solids contents of the mixture, and wherein at least a portion of the electrically conductive particles have a Mohs hardness of at least 5.5, wherein electrically conductive particle project from the coating and wherein the transfer value d₉₉ relative to the transfer value d_{10} in a volume plot has a factor of at most 10.
- 100. (previously presented) A polymeric, electrically conductive and electrically weldable coating on a substrate, produced by the process according to claim 66.
- 101. (previously presented) A composition comprising steel and a coating produced according to the process of claim 66, wherein the coating is subjected to thermal curing at a temperature not above 160 °C.

55265067.1

- 102. (previously presented) A polymeric, electrically conductive and electrically weldable coating on a substrate produced by the process of claim 67.
- 103. (previously presented) A composition comprising steel and the coating produced according to the process of claim 67, wherein the applied mixture is cured with thermal curing at a temperature not above 160 °C.
 - 104. (previously presented) The process of claim 66, wherein the coating is crosslinked.
 - 105. (previously presented) The process of claim 67, wherein the coating is crosslinked.
- 106. (previously presented)A process comprising producing a coated substrate comprising a metallic substrate coated with a dried corrosion-resistant, electrically conductive and electrically weldable coating, on a metallic substrate by:

applying a mixture comprising a resin and inorganic particles to the metallic substrate and drying to form a dried coating,

wherein the inorganic particles comprise electrically conductive particles, wherein the mixture comprises at least 10 wt.% of the electrically conductive particles have an electrical conductivity better than that of particles of pure zinc and a Mohs hardness of greater than 4, based on a total solids contents of the mixture, and

wherein the electrically conductive particles have a particle size distribution;

wherein a transfer value d_{99} relative to a transfer value d_{10} in a volume plot has a factor of at most 10;

wherein 3 to 22 vol.% of the electrically conductive particles, in a measured volume plot are larger than the average layer thickness of the dried and optionally also cured coating, determined on scanning electron microscopy photograph;

55265067.1 -10-

wherein the dried coating has a thickness of less than 10 μm ; and wherein at least some of the electrically conductive particles project out of the polymeric coating.

- 107. (previously presented) The process of claim 66, wherein the electroconductive particles are alloys of molybdenum, niobium, tantalum, tungsten or tin.
- 108. (previously presented) The process of claim 67, wherein a substantial portion of the electroconductive particles are alloys of molybdenum, niobium, tantalum, tungsten or tin.

55265067.1 -11-