UERJ - Universidade do Estado do Rio de Janeiro

Instituto de Matemática e Estatística

Departamento de Matemática Aplicada Disciplina: Otimização Combinatória

Professor: Marcos Roboredo

2015 - 2Lista de exercícios nº 3 (GABARITO)

1)

a) Sol ótima:
$$x_1 = \frac{45}{7}$$
, $x_2 = \frac{4}{7}$, $z = \frac{102}{7}$

b) Sol ótima:
$$x_1 = 3$$
, $x_3 = 4$, $z = -14$

c) Sol ótima:
$$x_1 = \frac{45}{7}$$
, $x_2 = \frac{4}{7}$, $z = \frac{53}{7}$

b) Sol ótima:
$$x_1 = \frac{7}{7}$$
, $x_2 = \frac{7}{7}$, $x_2 = \frac{45}{7}$, $x_3 = \frac{45}{7}$

2) Fase 1:

Min
$$r = R_1$$

 $s. a. 3x_1 + 2x_2 - S_1 + R_1 = 6$
 $2x_1 + x_2 + S_2 = 2$
 $x_1, x_2, S_1, S_2, R_1 \ge 0$

Resolvendo este PPL, vamos obter na sol ótima $R_1 = 2$. Como $R_1 \neq 0$, temos que o PPL original é inviável.

3)

a)

Tabela 2 do Simplex:

BASE	X1	X2	S1	S2	S3	Sol
Z:	-3	-2	0	0	0	0
S1:	4	-1	1	0	0	8
S2:	4	3	0	1	0	12
S3:	4	1	0	0	1	8

Se escolhermos X1 para entrar na base, ocorre a degeneração pois existe um empate na razão mínima. Assim, tanto S1 quanto S2 poderia sair da base. Escolhendo S1 teremos:

BASE X1	X2	S1	S2	S3	Sol
z 0	-2,75	0,75	0	0	6
X1 1	-0,25	0,25	0	0	2
S2 0	4	-1	1	0	4
S3 0	2	-1	0	1	0
Dage	V1 V	(2 C1	CO		

Base	X1	X2	S1	S2	S3	soL
Z	0	0	-0,63	0	1,38	6
x1	1	0	0,13	0	0,13	2
s2	0	0	1	1	-2	4
x2	0	1	-0,5	0	0,50	0

Base	X1	X2	S1	S2	S3	Sol
Z	0	0	0	0,63	0,13	8,5
X1	1	0	0	-0,125	0,38	1,5
S1	0	0	1	1	-2	4
X2	0	1	0	0,50	-0,5	2

b)

As retas pontilhadas representam a f.o. para vários valores de z. Note que a última vez que uma reta deste tipo toca o gráfico é no ponto extremo (x1,x2)=(1,5,2), que é a solução ótima.

OBS: Note que a restrição $4x1 - x2 \le 8$ é redundante. Tal fato já era esperado uma vez que a solução ficou parcialmente degenerada no item anterior.

4)

Usando o simplex, podemos encontrar 3 soluções ótimas:

(0,0,10/3), (0,5,0), (1,4,1/3)

Assim, uma expressão geral é:

$$x_2 = 5\lambda_2 + 4\lambda_3$$
$$x_3 = \frac{10}{3}\lambda_1 + \frac{1}{3}\lambda_3$$

Onde
$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

5)

Basic	×,	X ₂	S,	Sz	
Z	-2	-1	0	0	6
S,	1	1	1	0	10
_S₂	2	. 0	ø	1	40
_ Z	0	~3	2	0	20
X,	1		1	ø	10
_S ₂	0	2	-2	1	20
Z	0	D	1/1/	3/2	50
×ı	1	0	0	1/2	20
XZ	0	1	7/	1/2	10
	unbou	nded -	1		-

- a) X2 pode ser incluída indiscriminadamente na soluçãob) Solução ilimitada
- 7) (a) Os preços duais são 0,5 e 0,33 para M1 e M2 respectivamente. Faixas de viabilidade:

$$6 \le M1 \le 12$$
$$12 \le M2 \le 24$$

(b)

8 + 4 = 12, que está dentro de intervalo de M1. Recomendaria pois o custo é menor que o preço dual.

(c)

No máximo 0,50, que é o seu preço dual.

(d)

18 + 5 = 23, que está dentro da faixa de M2

Novo custo = Custo antigo + 5*0,33 = 10 + 1,65 = 11,65

(e)

$$0.5 \le \frac{C_A}{C_B} \le 1$$

(f)

$$C_A = 2$$
:

$$0.5 \le \frac{2}{C_B} \le 1 \Longrightarrow 2 \ge \frac{C_B}{2} \ge 1 \Longrightarrow 4 \ge C_B \ge 2$$

 $C_B = 3$:

$$0.5 \le \frac{C_A}{3} \le 1 \implies 1.5 \le C_A \le 3$$

(g)

 $C_A = 5$, $C_B = 4 \Longrightarrow \frac{C_A}{C_B} = 1,25$, que não está dentro da faixa de viabilidade.

Logo a solução ótima será modificada. Através do método gráfico, a nova solução será $x_1=4, x_2=0, z=20$

(h)

1ª alteração: $C_A = 4 e C_B = 3$

 $\frac{C_A}{C_B} = 1,3333$, que não está dentro da faixa de viabilidade.

Logo a solução ótima será modificada. Através do método gráfico, a nova solução será

$$x_1 = 4, x_2 = 0, z = 20$$

1ª alteração: $C_A = 2 e C_B = 4$

 $\frac{C_A}{C_B}$ = 0,5, que está dentro da faixa de viabilidade.

Logo a solução ótima $x_1=2, x_2=2$ será mantida. O que muda é o custo ótimo que passa a ser $z=2\times 2+4\times 2=12$

- 8) (a) Sim, porque a receita adicional por min = \$1 (para até 10 minutos de horas extras) é maior do que o custo adicional de \$0.83/min.
 - (b) Receita adicional é \$2/min (para até 400 minuitos de horas extras) = \$240 para 2 horas. Custo adicional para 2 horas = \$110. Receita líquida = \$130
 - (c) Não, seu preço dual é zero porque o recurso já é abundante.
 - (d) $D_1 = 10 \text{ min.}$ Preço dual =\$1/min para $D_1 \le 10$. $x_1 = 0$, $x_2 = 105$, $x_3 = 230$, receita líquida = (\$1350 + 1x10) (40/60 x 10) = \$1353,33.
 - (e) $D_2 = -15$. Preço dual = \$2/min para $D_2 \ge -20$. Decréscimo na receita = \$30. Decréscimo no custo = \$7.50. Não recomendada

9)

a)
$$x_1 = x_2 = 40$$
, $x_3 = 0$, $z = 2800$

b) preço dual pedido: 35/3

faixa permissível: $-240 \le D_3 \le 210$.

 $D_3 = 120$ está dentro da faixa permissível. A nova solução será:

$$x_1 = x_2 = 60, x_3 = 0, z = 4200$$

c) + ou - 10 unidades estão na faixa permissível para D2 mas não causam efeito pois o preço dual é zero

10)

From Section 3.6.3, we have the following optimality conditions for the TOYCO model:

$$X_i: 4-\frac{1}{4}d_2+\frac{3}{2}d_3-d_i\geq 0$$
 $X_y: 1+\frac{1}{2}d_2\geq 0$
 $X_5: 2-\frac{1}{4}d_2+\frac{1}{2}d_3\geq 0$

(i) $Z=2X_1+X_2+4X_3$
 $d_1=2-3=-1, d_2=1-2=-1, d_3=4-5=-1$
 $X_i: 4-\frac{1}{4}(-1)+\frac{3}{2}(-1)-(-1)=3.75>0$
 $X_4: 1+\frac{1}{2}(-1)=.5>0$
 $X_5: 2-\frac{1}{4}(-1)+\frac{1}{2}(-1)=1.75>0$

Conclusion: Solution is unchanged

(ii) $Z=3X_1+6X_2+X_3$
 $d_1=3-3=0, d_2=6-2=4, d_3=1-5=-4$
 $X_i: 4-\frac{1}{4}(4)+\frac{3}{2}(4)-(0)=-3<0$

Conclusion: Solution changes

(iii)
$$Z = 8X_1 + 3X_2 + 9X_3$$

 $d_1 = 8 - 3 = 5$, $d_2 = 3 - 2 = 1$, $d_3 = 9 - 5 = 4$
 $X_1: 4 - \frac{1}{4}(1) + \frac{3}{2}(4) - (5) = 4.7570$
 $X_4: 1 + \frac{1}{2}(1) = 1.5 > 0$
 $X_5: 2 - \frac{1}{4}(1) + \frac{1}{2}(4) = 3.75 > 0$
Eanchreign: Solution is unchanged

(a)

Modelo

$$x_1 \rightarrow \text{Latas de A1}$$

$$x_2 \rightarrow \text{Latas de A2}$$

$$x_3 \rightarrow \text{Latas de BK}$$

$$\text{Max } z = 80x_1 + 70x_2 + 60x_3$$

s.a

$$x_1 + x_2 + x_3 \le 500$$

$$x_1 \ge 100$$

$$4x_1 - 2x_2 - 2x_3 \le 0$$

Sol ótima: $x_1 = 166,67, x_2 = 333,33, x_3 = 0, z = 36666,67$

(b)

Custo reduzido (coeficiente na linha z ótima) de x_3 :

 $x_3=10+1d_2-d_3$ (Esta equação tem que ser encontrada através

Como a receita do produto 2 não será alterada,

$$x_3 = 10 - d_3$$

Assim, o custo reduzido passa a ser negativo (a variável poderá entrar na base) se $d_3>10$

(c)

Custos reduzidos:

$$F_1 = \frac{220}{3} + \frac{2}{3}d_2 + \frac{1}{3}d_1$$

$$x_3 = 10 + 1d_2 - d_3$$

$$F_3 = \frac{5}{3} - \frac{1}{6}d_2 + \frac{1}{6}d_1$$

Substituindo $d_1=d_2=d_3=-5$ em cada uma das equações elas ficam não negativas. Logo, a solução ótima não mudará. O que mudará é só o custo.