

# Constructing parsimonious hybridization networks using a SAT-solver

Vladimir Ulyantsev and Mikhail Melnik, presented by **Alexey Sergushichev** 

AlCoB 2015, Mexico

# Phylogenetic tree

- Binary tree with set of taxa as leaves
- Can be defined for a particular gene



# Hybridization network

- Directed acyclic graph with a single root
- Reticulation nodes: in-degree=2, out-degree=1
- Regular nodes: in-degree=1, out-degree=2
- Leaves: taxa



# Displaying a tree

- Select direction a reticulation nodes
- Collapse simple paths



# Hybridization network problem



### Most parsimonious network

- Find a hybridization network for a set of phylogenetic trees  $T_1$ ,  $T_2$ , ...  $T_t$  with the minimal number of reticulation nodes
- Is NP-complete even for *t*=2

# **Existing solutions**

#### For two trees:

- CASS (heuristic)
- MURPAR (heurisic)

#### For multiple trees:

- PIRN<sub>CH</sub> (heuristic)
- PIRN<sub>C</sub> (exact)

#### Reduction to SAT

- Fix hybridization number k
- Make Boolean formula f so that f ∈ SAT iff there is a hybridization network for k
- Check satisfiability with a SAT-solver
- Find minimal k with satisfiable formula
- Restore the network

#### SAT

Boolean formula f in CNF form:

$$f(v_1, v_2, ...) = (v_1 \lor \neg v_2 \lor ...) \land (...) \land ...$$

- Whether values for  $v_1, v_2, \dots$  exist that makes f true
- Can be seen as conjunction of multiple constraints
- Constraints can be of the form

$$(v_1 \land \neg v_2 \land \dots) \rightarrow v_3$$

#### Network structure

- 2n+ 2k 1 nodes
  - [1, n] leaves (L)
  - [n+1, 2n + k 1] regular nodes (V)
  - [2n+k, 2n+2k-1] reticulation nodes (R)

#### Network structure variables

- $l_{v,u}$  and  $r_{v,u}-u$  is a left (right) child of v for v in V
- $p_{v.u}-u$  is parent of v for v in L+V
- $p^l$ ,  $p^r$  and c parent child relations for reticulation nodes
- $O(n^2)$  variables

### Network consistency constraints

- Nodes have only one left child, right child, parent
- u is child of  $v \rightarrow v$  is parent of u
- u is parent of  $v \rightarrow v$  is left of right child of u
- $O(n^3)$  constraints

# Network consistency constraints: Actual clauses

|      | Clause                                             | Range                                                             |
|------|----------------------------------------------------|-------------------------------------------------------------------|
| 1.1  | $p_{v,u_1} \lor \cdots \lor p_{v,u_k}$             | $v \in V; u_1 \dots u_k \in PP(v)$                                |
| 1.2  | $p_{v,u} 	o \neg p_{v,w}$                          | $v \in V; u, w \in PP(v)$                                         |
| 2.1  | $l_{v,u_1} \lor \cdots \lor l_{v,u_k}$             | $a \in V$ : $a \in PC(a)$                                         |
| 2.2  | $ r_{v,u_1} \lor \cdots \lor r_{v,u_k} $           | $v \in V; u_1 \dots u_k \in PC(v)$                                |
| 2.3  | $l_{v,u} \to \neg l_{v,w}$                         | $v \in V; u, w \in PC(v)$                                         |
| 2.4  | $ r_{v,u} \to \neg r_{v,w} $                       | $v \in V, u, w \in FC(v)$                                         |
| 3.1  | $c_{v,u_1} \lor \cdots \lor c_{v,u_k}$             | $v \in R; u_1 \dots u_k \in PC(v)$                                |
| 3.2  | $ c_{v,u} \to \neg c_{v,w} $                       | $v \in R; u, w \in PC(v)$                                         |
| 4.1  | $p_{v,u_1}^l \lor \cdots \lor p_{v,u_k}^l$         | $v \in R; u_1 \dots u_k \in PP(v)$                                |
| 4.2  | $p_{v,u_1}^r \lor \cdots \lor p_{v,u_k}^r$         | $v \in I_1, u_1 \dots u_k \in I_I(v)$                             |
| 4.3  | $p_{v,u}^l 	o \neg p_{v,w}^l$                      | $a \in P$ , $a \in PP(a)$                                         |
| 4.4  | $p_{v,u}^r 	o \neg p_{v,w}^r$                      | $v \in R; u, w \in PP(v)$                                         |
| 5.1  | $l_{v,u} \to \neg r_{v,w}$                         | $v \in V; u, w \in PC(v) : u \ge w$                               |
| 5.2  | $p_{v,u}^l \to \neg p_{v,w}^r$                     | $v \in R; u, w \in PP(v) : u \ge w$                               |
| 6.1  | $l_{v,u} 	o p_{u,v}$                               |                                                                   |
| 6.2  | $r_{v,u} \to p_{u,v}$                              | $v \in V; u \in V \cap PC(v)$                                     |
| 6.3  | $p_{u,v} \to (l_{v,u} \vee r_{v,u})$               |                                                                   |
| 7.1  | $l_{v,u} \to (p_{u,v}^l \vee p_{u,v}^r)$           |                                                                   |
| 7.2  | $ r_{v,u} \rightarrow (p_{u,v}^l \vee p_{u,v}^r) $ | $v \in V; u \in R \cap PC(v)$                                     |
| 7.3  | $p_{u,v}^l \to (l_{v,u} \vee r_{v,u})$             | $[v \in V, u \in H \cap T \cup (v)]$                              |
| 7.4  | $p_{u,v}^r \to (l_{v,u} \vee r_{v,u})$             |                                                                   |
| 8.1  | $c_{v,u} \to p_{u,v}$                              | $v \in R; u \in V \cap PC(v)$                                     |
| 8.2  | $p_{u,v} \to c_{v,u}$                              | $[v \in \mathcal{U}, u \in V \cap \mathcal{U}(v)]$                |
| 9.1  | $c_{v,u} \to (p_{u,v}^l \vee p_{u,v}^r)$           |                                                                   |
|      | $p_{u,v}^l 	o c_{v,u}$                             | $v \in R; u \in R \cap PC(v)$                                     |
| 9.3  | $p_{u,v}^r 	o c_{v,u}$                             |                                                                   |
| 10.1 | $c_{v,u} 	o  eg p_{v,w}^l$                         | $a_1 \in P$ : $a_1 \in PC(a_1)$ : $a_1 \in PP(a_1)$ : $a_2 > a_3$ |
|      | $c_{v,u} 	o  eg p_{v,w}^r$                         | $v \in R; u \in PC(v); w \in PP(v) : u \ge w$                     |
|      |                                                    |                                                                   |

|     | Clause                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------|
| 1.1 | $p_{v,u_1} \lor \cdots \lor p_{v,u_k}$                                                                       |
| 1.2 | $\begin{vmatrix} p_{v,u_1} \lor \cdots \lor p_{v,u_k} \\ p_{v,u} \to \neg p_{v,w} \end{vmatrix}$             |
| 2.1 | $\begin{vmatrix} l_{v,u_1} \lor \cdots \lor l_{v,u_k} \\ r_{v,u_1} \lor \cdots \lor r_{v,u_k} \end{vmatrix}$ |
| 2.2 | $r_{v,u_1} \lor \cdots \lor r_{v,u_k}$                                                                       |
| 2.3 | $l_{v,u} 	o  egl_{v,w}$                                                                                      |
|     | $ r_{v,u}  ightarrow \neg r_{v,w} $                                                                          |

### Displaying structure

- For a tree T
- Choice of a parent for reticulation nodes
- Variables for correspondence between network and tree nodes
- Collapsing non-branching paths
  - Whether particular nodes were removed or not
  - Parent relations after collapsing
- $O(tn^2)$  variables

# Displaying consistency constraints

- All T nodes are uniquely mapped to network nodes
- Parent relations in the tree uniquely correspond to the network structure after selecting directions at reticulation points and collapsing paths
- Parent relations in the network are consistent
- $O(tn^3)$  constraints

# Displaying consistency constraints: Actual clauses (1)

|     | Clause                                            | Range                                                                       |
|-----|---------------------------------------------------|-----------------------------------------------------------------------------|
| 1.1 | $a_{t,v,u_1} \lor \cdots \lor a_{t,v,u_k}$        | $t \in T; v \in V \cup L \cup R; u_1 \dots u_k \in PU(v)$                   |
| 1.2 | $ a_{t,v,u} \to \neg a_{t,v,w} $                  | $t \in T; v \in V \cup L \cup R; u, w \in PU(v)$                            |
| 2.1 | $x_{t,v_t,v_1} \lor \cdots \lor x_{t,v_t,v_k}$    | $t \in T; v_t \in V(t); v_1 \dots v_k \in V$                                |
| 2.2 | $ x_{t,v_t,v} \to \neg x_{t,v_t,w} $              | $t \in T; v_t \in V(t); v, w \in V$                                         |
| 2.3 | $ x_{t,v_t,v} \to \neg x_{t,u_t,v} $              | $t \in T; v_t, u_t \in V(t); v \in V$                                       |
| 3.1 | $x_{t,v_t,v} \to u_{t,v}$                         | $t \in T; v \in V; v_t \in V(t)$                                            |
| 3.2 | $ x_{t, ho_{t}, ho} $                             | $t \in T; \rho_t = \rho(t)$                                                 |
| 4.1 | $x_{t,u_t,u} \to a_{t,v,u}$                       | $t \in T; v \in L; u \in PP(v); u_t = p(v_t)$                               |
|     | $ a_{t,v,u} \to x_{t,u_t,u} $                     |                                                                             |
| 4.3 | $(x_{t,v_t,v} \land x_{t,u_t,u}) \to a_{t,v,u}$   | $t \in T; v \in V; u \in PP(v); v_t \in V(t); u_t = p(v_t)$                 |
| 4.4 | $ (x_{t,v_t,v} \land a_{t,v,u}) \to x_{t,u_t,u} $ | $[t \in T, v \in V, u \in FF(v), v_t \in V(t), u_t = p(v_t)$                |
| 4.5 | $x_{t,v_t,v} \to \neg x_{t,u_t,u}$                | $t \in T; v \in V; u \in V; v_t \in V(t); u_t = p(v_t) : u < v$             |
|     | $\neg x_{t,v_t,v}$                                | $t \in T; v \in V; v_t \in V(t) : v_t < \text{size}(\text{subtree}(v_t))$   |
| 5.2 | $\neg x_{t,v_t,v}$                                | $t \in T; v \in V; v_t \in V(t) : v_t > \text{size}(t) - \text{depth}(v_t)$ |
| 5.3 | $ \neg x_{t,v_t,v} \lor \neg x_{t',v_{t'},v} $    | $t, t' \in T; v \in V; v_t \in V(t); v_{t'} \in V(t'):$                     |
|     |                                                   | subtrees of $t$ and $t'$ have disjoint sets of taxa                         |

# Displaying consistency constraints: Actual clauses (2)

|     | Clause                                                                                                                                    | Range                                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1.1 | $(p_{v,u} \wedge u_{t,u}) \rightarrow a_{t,v,u}$                                                                                          | $t \in T; v \in V \cup L; u \in V \cap PP(v)$              |
| 1.2 | $(p_{v,u} \wedge a_{t,v,u}) \to u_{t,u}$                                                                                                  | $t \in T, t \in V \cup L, u \in V \cap TT(t)$              |
|     | $(p_{v,u} \land \neg u_{t,u} \land a_{t,u,w}) \to a_{t,v,w}$                                                                              | $t \in T; v \in V \cup L; u \in V \cap PP(v); w \in PP(u)$ |
|     | $(p_{v,u} \land \neg u_{t,u} \land a_{t,v,w}) \to a_{t,u,w}$                                                                              |                                                            |
| 2.1 | $(p_{v,u}^l \wedge d_{t,v} \wedge a_{t,u,w}) \to a_{t,v,w}$                                                                               |                                                            |
| 2.2 | $(p_{v,u}^t \wedge d_{t,v} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                                               | $t \in T; v \in R; u \in R \cap PP(v); w \in PU(u)$        |
| 2.3 | $(p_{v,u}^r \land \neg d_{t,v} \land a_{t,u,w}) \to a_{t,v,w}$                                                                            |                                                            |
|     | $(p_{v,u}^r \land \neg d_{t,v} \land a_{t,v,w}) \to a_{t,u,w}$                                                                            |                                                            |
|     | $(p_{v,u}^l \wedge d_{t,v} \wedge u_{t,u}) \to a_{t,v,u}$                                                                                 | $t \in T; v \in R; u \in V \cap PP(v)$                     |
|     | $(p_{v,u}^r \land \neg d_{t,v} \land u_{t,u}) \to a_{t,v,u}$                                                                              |                                                            |
|     | $(p_{v,u}^t \wedge d_{t,v} \wedge \neg u_{t,u} \wedge a_{t,u,w}) \to a_{t,v,w}$                                                           |                                                            |
| 2.8 | $(p_{v,u}^t \wedge d_{t,v} \wedge \neg u_{t,u} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                           | $t \in T; v \in R; u \in V \cap PP(v); w \in PU(u)$        |
| 2.9 | $(p_{v,u}^r \land \neg d_{t,v} \land \neg u_{t,u} \land a_{t,u,w}) \rightarrow a_{t,v,w}$                                                 |                                                            |
|     | $(p_{v,u}^r \land \neg d_{t,v} \land \neg u_{t,u} \land a_{t,v,w}) \rightarrow a_{t,u,w}$                                                 |                                                            |
|     | $ \begin{aligned} &(p_{v,u}^t \land \neg d_{t,v}) \to \neg u_{t,u}^r \\ &(p_{v,u}^r \land d_{t,v}) \to \neg u_{t,u}^r \end{aligned} $     | $t \in T; v \in R; u \in R \cap PP(v)$                     |
|     | $(p_{v,u} \land a_{t,v}) \rightarrow a_{t,u}$ $(p_{v,u} \land \neg d_{t,v}) \rightarrow \neg u_{t,u}$                                     |                                                            |
|     | $(p_{v,u} \land \land d_{t,v}) \rightarrow \lnot u_{t,u}$<br>$(p_{v,u} \land d_{t,v}) \rightarrow \lnot u_{t,u}$                          | $t \in T; v \in R; u \in V \cap PP(v)$                     |
|     | $(p_{v,u}^{l} \wedge d_{t,v}) \wedge u_{t,v}^{r}) \rightarrow u_{t,u}^{r}$                                                                |                                                            |
|     | $(p_{v,u}^r \land a_{t,v}^r \land a_{t,v}^r) \rightarrow a_{t,u}^r  (p_{v,u}^r \land \neg d_{t,v} \land u_{t,v}^r) \rightarrow u_{t,u}^r$ | $t \in T; v \in R; u \in R \cap PP(v)$                     |
|     | $(c_{u,v} \land \neg u_{t,v}^r) \to \neg u_{t,u}^r$                                                                                       |                                                            |
|     | $(p_{v,u}^l \wedge \neg u_{t,v}^r) \rightarrow \neg u_{t,u}$                                                                              | T - D - W - DD( )                                          |
|     | $(p_{v,u}^r \wedge \neg u_{t,v}^r) \rightarrow \neg u_{t,u}$                                                                              | $t \in T; v \in R; u \in V \cap PP(v)$                     |
| 4.6 | $c_{v,u} 	o u_{t,v}^r$                                                                                                                    | $t \in T; v \in R; u \in (V \cup L) \cap PC(v)$            |
|     | $p_{v,u} \rightarrow \neg a_{t,u,w}$                                                                                                      | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     | $(p_{v,u} \land a_{t,u,w}) \to a_{t,v,w}$                                                                                                 | $w \in PU(u) : w \le v$                                    |
|     |                                                                                                                                           | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     |                                                                                                                                           | $w \in PU(u) : w > v$                                      |
| 5.3 | $(p_{v,u} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                                                                | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     |                                                                                                                                           | $w \in PU(u) : w > v$                                      |
|     |                                                                                                                                           |                                                            |

|     | Clause                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| 1.1 | $(p_{v,u} \wedge u_{t,u}) \to a_{t,v,u}$                                                                                  |
| 1.2 | $(p_{v,u} \wedge u_{t,u}) \to a_{t,v,u}  (p_{v,u} \wedge a_{t,v,u}) \to u_{t,u}$                                          |
| 1.3 | $(p_{v,u} \land \neg u_{t,u} \land a_{t,u,w}) \to a_{t,v,w}$                                                              |
| 1.4 | $(p_{v,u} \land \neg u_{t,u} \land a_{t,u,w}) \to a_{t,v,w}$ $(p_{v,u} \land \neg u_{t,u} \land a_{t,v,w}) \to a_{t,u,w}$ |



# All clauses

|     | Clause                                                                                                                                  | Range                                                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1.1 | $(p_{v,u} \wedge u_{t,u}) \to a_{t,v,u}$                                                                                                | $t \in T; v \in V \cup L; u \in V \cap PP(v)$              |
| 1.2 | $(p_{v,u} \wedge a_{t,v,u}) \to u_{t,u}$                                                                                                | te1, te v 0 L, te v 1111 (t)                               |
| 1.3 | $(p_{v,u} \land \neg u_{t,u} \land a_{t,u,w}) \to a_{t,v,w}$                                                                            | $t \in T; v \in V \cup L; u \in V \cap PP(v); w \in PP(u)$ |
| 1.4 | $(p_{v,u} \land \neg u_{t,u} \land a_{t,v,w}) \to a_{t,u,w}$                                                                            | v C 1, v C 7 0 2, u C 7 111 (v), u C 1 1 (u)               |
| 2.1 | $(p_{v,u}^l \wedge d_{t,v} \wedge a_{t,u,w}) \to a_{t,v,w}$                                                                             |                                                            |
| 2.2 | $(p_{v,u}^l \wedge d_{t,v} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                                             | $t \in T; v \in R; u \in R \cap PP(v); w \in PU(u)$        |
| 2.3 | $(p_{v,u}^r \land \neg d_{t,v} \land a_{t,u,w}) \to a_{t,v,w}$                                                                          | (2), (2)                                                   |
| 2.4 | $(p_{v,u}^r \wedge \neg d_{t,v} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                                        |                                                            |
| 2.5 | $(p_{v,u}^t \wedge d_{t,v} \wedge u_{t,u}) \to a_{t,v,u}$                                                                               | $t \in T; v \in R; u \in V \cap PP(v)$                     |
| 2.6 | $(p_{v,u}^r \wedge \neg d_{t,v} \wedge u_{t,u}) \to a_{t,v,u}$                                                                          | - , - , -                                                  |
| 2.7 | $(p_{v,u}^l \wedge d_{t,v} \wedge \neg u_{t,u} \wedge a_{t,u,w}) \to a_{t,v,w}$                                                         |                                                            |
| 2.8 | $(p_{v,u}^t \wedge d_{t,v} \wedge \neg u_{t,u} \wedge a_{t,v,w}) \to a_{t,u,w}$                                                         | $t \in T; v \in R; u \in V \cap PP(v); w \in PU(u)$        |
| 2.9 | $(p_{v,u}^r \wedge \neg d_{t,v} \wedge \neg u_{t,u} \wedge a_{t,u,w}) \to a_{t,v,w}$                                                    |                                                            |
|     | $(p_{v,u}^r \land \neg d_{t,v} \land \neg u_{t,u} \land a_{t,v,w}) \to a_{t,u,w}$                                                       |                                                            |
| 3.1 | $(p_{v,u}^t \land \neg d_{t,v}) \rightarrow \neg u_{t,u}^r$                                                                             | $t \in T; v \in R; u \in R \cap PP(v)$                     |
|     | $ \begin{aligned} & (p_{v,u}^r \wedge d_{t,v}) \to \neg u_{t,u}^r \\ & (p_{v,u}^l \wedge \neg d_{t,v}) \to \neg u_{t,u} \end{aligned} $ |                                                            |
|     | $(p_{v,u} \land \neg u_{t,v}) \to \neg u_{t,u}$ $(p_{v,u}^r \land d_{t,v}) \to \neg u_{t,u}$                                            | $t \in T; v \in R; u \in V \cap PP(v)$                     |
| 4.1 | $(p_{v,u}^l \land d_{t,v}) \xrightarrow{r} d_{t,u}$ $(p_{v,u}^l \land d_{t,v} \land u_{t,v}^r) \xrightarrow{r} u_{t,u}^r$               |                                                            |
| 4.2 | $(p_{v,u}^r \land a_{t,v} \land a_{t,v}) \to a_{t,u}$ $(p_{v,u}^r \land \neg d_{t,v} \land u_{t,v}^r) \to u_{t,u}^r$                    | $t \in T; v \in R; u \in R \cap PP(v)$                     |
|     | $(c_{u,v} \land \neg u_{t,v}^r) \rightarrow \neg u_{t,u}^r$ $(c_{u,v} \land \neg u_{t,v}^r) \rightarrow \neg u_{t,u}^r$                 |                                                            |
|     | $(p_{v,u}^l \wedge \neg u_{t,v}^r) \rightarrow \neg u_{t,u}$                                                                            |                                                            |
| 4.5 | $(p_{v,u}^r \wedge \neg u_{t,v}^r) \rightarrow \neg u_{t,u}$                                                                            | $t \in T; v \in R; u \in V \cap PP(v)$                     |
|     | $c_{v,u}  ightarrow u_{t,v}^{r}$                                                                                                        | $t \in T; v \in R; u \in (V \cup L) \cap PC(v)$            |
|     | $p_{v,u} \rightarrow \neg a_{t,u,w}$                                                                                                    | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     | r 0,0                                                                                                                                   | $w \in PU(u) : w \le v$                                    |
| 5.2 | $(p_{v,u} \wedge a_{t,u,w}) \rightarrow a_{t,v,w}$                                                                                      | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     |                                                                                                                                         | $w \in PU(u) : w > v$                                      |
| 5.3 | $(p_{v,u} \wedge a_{t,v,w}) \rightarrow a_{t,u,w}$                                                                                      | $t \in T; v \in V \cup L; u \in R \cap PP(v);$             |
|     |                                                                                                                                         | $w \in PU(u) : w > v$                                      |
|     |                                                                                                                                         |                                                            |

|     | Clause                                            | Range                                                                       |
|-----|---------------------------------------------------|-----------------------------------------------------------------------------|
| 1.1 | $a_{t,v,u_1} \lor \cdots \lor a_{t,v,u_k}$        | $t \in T; v \in V \cup L \cup R; u_1 \dots u_k \in PU(v)$                   |
| 1.2 | $ a_{t,v,u} \to \neg a_{t,v,w} $                  | $t \in T; v \in V \cup L \cup R; u, w \in PU(v)$                            |
| 2.1 | $x_{t,v_t,v_1} \lor \cdots \lor x_{t,v_t,v_k}$    | $t \in T; v_t \in V(t); v_1 \dots v_k \in V$                                |
| 2.2 | $ x_{t,v_t,v} \to \neg x_{t,v_t,w} $              | $t \in T; v_t \in V(t); v, w \in V$                                         |
| 2.3 | $x_{t,v_t,v} \to \neg x_{t,u_t,v}$                | $t \in T; v_t, u_t \in V(t); v \in V$                                       |
| 3.1 | $x_{t,v_t,v} \to u_{t,v}$                         | $t \in T; v \in V; v_t \in V(t)$                                            |
| 3.2 | $x_{t, ho_t, ho}$                                 | $t \in T; \rho_t = \rho(t)$                                                 |
| 4.1 | $x_{t,u_t,u} \to a_{t,v,u}$                       | $t \in T; v \in L; u \in PP(v); u_t = p(v_t)$                               |
| 4.2 | $ a_{t,v,u} \to x_{t,u_t,u} $                     | $l \in I, l \in L, u \in III(l), u_l = p(l_l)$                              |
| 4.3 | $(x_{t,v_t,v} \land x_{t,u_t,u}) \to a_{t,v,u}$   | $t \in T; v \in V; u \in PP(v); v_t \in V(t); u_t = p(v_t)$                 |
| 4.4 | $ (x_{t,v_t,v} \land a_{t,v,u}) \to x_{t,u_t,u} $ | $[c \in I, c \in V, a \in I \mid (c), c_t \in V(c), a_t = p(c_t)$           |
| 4.5 | $x_{t,v_t,v} \to \neg x_{t,u_t,u}$                | $t \in T; v \in V; u \in V; v_t \in V(t); u_t = p(v_t) : u < v$             |
| 5.1 | $\neg x_{t,v_t,v}$                                | $t \in T; v \in V; v_t \in V(t) : v_t < \text{size}(\text{subtree}(v_t))$   |
| 5.2 | $\neg x_{t,v_t,v}$                                | $t \in T; v \in V; v_t \in V(t) : v_t > \text{size}(t) - \text{depth}(v_t)$ |
| 5.3 | $ \neg x_{t,v_t,v} \lor \neg x_{t',v_{t'},v} $    | $t, t' \in T; v \in V; v_t \in V(t); v_{t'} \in V(t')$ :                    |
|     | ľ                                                 | subtrees of $t$ and $t'$ have disjoint sets of taxa                         |

|      | Clause                                             | Range                                                     |
|------|----------------------------------------------------|-----------------------------------------------------------|
| 1.1  | $p_{v,u_1} \lor \cdots \lor p_{v,u_k}$             | $v \in V; u_1 \dots u_k \in PP(v)$                        |
| 1.2  | $p_{v,u} \to \neg p_{v,w}$                         | $v \in V; u, w \in PP(v)$                                 |
| 2.1  | $l_{v,u_1} \lor \cdots \lor l_{v,u_k}$             | $\alpha \in V_{rot}$ $\alpha \in DC(\alpha)$              |
| 2.2  | $ r_{v,u_1} \lor \cdots \lor r_{v,u_k} $           | $v \in V; u_1 \dots u_k \in PC(v)$                        |
| 2.3  | $l_{v,u} \to \neg l_{v,w}$                         | $v \in V; u, w \in PC(v)$                                 |
| 2.4  | $ r_{v,u} \rightarrow \neg r_{v,w} $               | $v \in V; u, w \in FC(v)$                                 |
| 3.1  | $c_{v,u_1} \lor \cdots \lor c_{v,u_k}$             | $v \in R; u_1 \dots u_k \in PC(v)$                        |
| 3.2  | $ c_{v,u} \to \neg c_{v,w} $                       | $v \in R; u, w \in PC(v)$                                 |
| 4.1  | $ p_{v,u_1}^l \lor \cdots \lor p_{v,u_k}^l $       | $v \in R; u_1 \dots u_k \in PP(v)$                        |
| 4.2  | $p_{v,u_1}^r \lor \cdots \lor p_{v,u_k}^r$         | $v \in R, u_1 \dots u_k \in FF(v)$                        |
| 4.3  | $p_{v,u}^l 	o \neg p_{v,w}^l$                      | $a \in P$ , $a \in PP(a)$                                 |
| 4.4  | $p_{v,u}^r 	o  eg p_{v,w}^r$                       | $v \in R; u, w \in PP(v)$                                 |
| 5.1  | $l_{v,u} \rightarrow \neg r_{v,w}$                 | $v \in V; u, w \in PC(v) : u \ge w$                       |
| 5.2  | $p_{v,u}^l 	o  eg p_{v,w}^r$                       | $v \in R; u, w \in PP(v) : u \ge w$                       |
| 6.1  | $l_{v,u} 	o p_{u,v}$                               |                                                           |
| 6.2  | $r_{v,u} \to p_{u,v}$                              | $v \in V; u \in V \cap PC(v)$                             |
| 6.3  | $p_{u,v} \to (l_{v,u} \vee r_{v,u})$               |                                                           |
| 7.1  | $l_{v,u} \to (p_{u,v}^l \vee p_{u,v}^r)$           |                                                           |
| 7.2  | $ r_{v,u} \rightarrow (p_{u,v}^l \vee p_{u,v}^r) $ | $v \in V; u \in R \cap PC(v)$                             |
| 7.3  | $p_{u,v}^l \to (l_{v,u} \vee r_{v,u})$             | $[v \in V, u \in H \cap T \cup (v)]$                      |
| 7.4  | $p_{u,v}^r \to (l_{v,u} \vee r_{v,u})$             |                                                           |
| 8.1  | $c_{v,u} \to p_{u,v}$                              | $v \in R; u \in V \cap PC(v)$                             |
| 8.2  | $p_{u,v} \to c_{v,u}$                              | $[v \in R, u \in V \cap T \cup (v)]$                      |
| 9.1  | $c_{v,u} \to (p_{u,v}^l \vee p_{u,v}^r)$           |                                                           |
| 9.2  | $p_{u,v}^l 	o c_{v,u}$                             | $v \in R; u \in R \cap PC(v)$                             |
| 9.3  | $p_{u,v}^r 	o c_{v,u}$                             |                                                           |
| 10.1 | $c_{v,u} 	o  eg p_{v,w}^l$                         | $a \in P$ : $a \in PC(a)$ : $a \in PP(a)$ : $a \in PP(a)$ |
|      | $c_{v,u} \to \neg p_{v,w}^r$                       | $v \in R; u \in PC(v); w \in PP(v) : u \ge w$             |

# Additional optimizations

Splitting into independent problems



Symmetry breaking

#### Experiments

- 57 grasses dataset by Group G.P.W. et al
- CryptoMiniSAT solver
- 1000 s time limit
- Comparison with PIRNs

#### Experiments

- 57 grasses datasets by Group G.P.W. et al Grass Phylogeny Working Group
- CryptoMiniSAT solver
- 1000s time limit
- Comparison with PIRNs

#### Results

- Exact solution (out of 57)
  - PhyloSAT: 36
  - − PIRN<sub>c</sub>: 29
- Non-exact
  - PhyloSAT: 48 (40 optimal)
  - PIRN<sub>CH</sub>: 43 (36 optimal)

#### Results for $k \ge 6$

| Test instance     | PhyloSAT  | $\mathrm{PIRN}_{\mathrm{CH}}$ | Optimal solution |
|-------------------|-----------|-------------------------------|------------------|
| 2NdhfPhyt         | 6 (9)     | 6 (6)                         | 6                |
| 3NdhfPhytRpoc     | 8 (1000)  | 8 (28)                        | 6                |
| 3PhytRbclRpoc     | 6 (11)    | 6(3)                          | 6                |
| 3RbclWaxyIts      | 6 (1000)  | 7(4)                          | 6                |
| 4NdhfRbclWaxyIts  | 7 (1000)  | 7(35)                         | $\geq 6$         |
| 4PhytRbclRpocIts  | 9 (1000)  | 8 (377)                       | $\geq 6$         |
| 2RbclRpoc         | 7 (1000)  | 7(42)                         | 7                |
| 3NdhfWaxyIts      | 8 (1000)  | 8 (90)                        | $\geq 7$         |
| 3PhytRbclIts      | 11 (1000) | 8 (120)                       | $\geq 7$         |
| 3PhytRpocIts      | 7 (1000)  | 7(59)                         | 7                |
| 4NdhfPhytRbclRpoc | 10 (1000) | 10(287)                       | $\geq 7$         |
| 4NdhfPhytRpocIts  | 10 (1000) | -                             | $\geq 7$         |
| 2NdhfPhyt         | 8 (12)    | -                             | 8                |
| 2NdhfRbcl         | 8 (1)     | 8 (851)                       | 8                |
| 2PhytIts          | 8 (41)    | 8 (372)                       | 8                |
| 3NdhfPhytRbcl     | 9 (123)   | -                             | 9                |
| 2NdhfRpoc         | 9 (954)   | 9 (484)                       | 9                |
| 3NdhfRbclRpoc     | 13 (1000) | -                             | $\geq 10$        |
| 3NdhfPhytIts      | 13 (1000) | -                             | ≥ 11             |

#### Future work

- Different SAT-solvers
- Improving reduction
- Using upper and lower bounds on k

Searching for all minimal solutions

#### Conclusions

- Constructing parsimonious hybridization networks can be approached with reducing to SAT
- This approach outperforms known exact solver and compares well with heuristic solver
- Solving bigger instances is still challenging

#### The End

https://github.com/ctlab/PhyloSAT Vladimir Ulyantsev (ulyntsev@rain.ifmo.ru)

