Diszkrét matematika 1.

1. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Matematikai logika – emlékezetető

"Definíció"

A logika a helyes következtetések és bizonyítások tudománya. Alkalmazási területek:

- matematika
- informatika
- ...

Definíció

A predikátum olyan változóktól függő definiálatlan alapfogalom, amelyhez a változóik értékétől függően valamilyen igazságérték tartozik: igaz (I,\uparrow) , hamis (H,\downarrow) , és a kettő egyidejűleg nem teljesül.

Axiomatikus módszer

Közismert, nem definiált alapfogalmakból és bizonyos feltevésekből (axiómákból) következtetések vonunk le a logika szabályai alapján.

Logikai jelek

Logikai jelek

A predikátumokat logikai jelekkel köthetjük össze. Példák:

- tagadás (negáció), jele: $\neg A$
- és (konjunkció), jele: $A \wedge B$
- vagy (diszjunkció), megengedő vagy, jele: A ∨ B
- ha, ..., akkor ... (implikáció), jele: $A \Rightarrow B$
- akkor és csak akkor (ekvivalencia), jele: $A \Leftrightarrow B$

Igazságtáblák

Α	В	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
I	ı	Н	ı	ı	I	I
ı	Н	Н	Н	I	Н	Н
Н	I	I	Н	I	I	Н
Н	Н	ı	Н	Н	I	I

Logikai jelek tulajdonságai

- $(A \vee (B \vee C)) \Leftrightarrow ((A \vee B) \vee C), \ (A \wedge (B \wedge C)) \Leftrightarrow ((A \wedge B) \wedge C)$ (asszociativitás);
- $(A \lor B) \Leftrightarrow (B \lor A), \ (A \land B) \Leftrightarrow (B \land A) \ (kommutativitás);$
- $(A \land (B \lor C)) \Leftrightarrow ((A \land B) \lor (A \land C)), \ (A \lor (B \land C)) \Leftrightarrow \\ ((A \lor B) \land (A \lor C)) \ \text{(disztributivitás)};$
- $(\neg (A \lor B)) \Leftrightarrow (\neg A \land \neg B), \ (\neg (A \land B)) \Leftrightarrow (\neg A \lor \neg B) \ (\mathsf{De} \ \mathsf{Morgan});$
- **5** $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (a kontrapozíció tétele);
- $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ (szillogizmus);

Kvantorok, logikai formulák

Kvantorok

- egzisztenciális kvantor: "létezik", "van olyan", jele: ∃
- univerzális kvantor: "minden", jele: ∀

Formulák

A logikai formulák egy adott elmélet predikátumaiból épülnek fel a $\neg, \lor, \land, \Rightarrow, \Leftrightarrow$ logikai jelek, valamint a \exists, \forall kvantorok segítségével.

Halmazok

Halmazelmélet predikátumai

- A halmaz: valamilyen módon definiált tulajdonság
- eleme: $x \in A$: az x elem hozzátartozik az A halmazhoz

A halmazok néhány alapvető tulajdonságát axiómákkal írjuk le. Példa:

Meghatározottsági axióma

Egy halmazt az elemei egyértelműen meghatároznak.

- két halmaz pontosan akkor egyenlő, ha ugyanazok az elemeik
- egy halmaznak egy elem csak egyszer lehet eleme

Halmazok 2 - részhalmazok

Definíció

Az A halmaz részhalmaza a B halmaznak: $A \subset B$, ha

$$\forall x (x \in A \Rightarrow x \in B).$$

Ha $A \subset B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subseteq B$.

Állítás (Részhalmazok tulajdonságai)

- \bullet $\forall A \ A \subset A \ (reflexivitás).$

Megjegyzés

Halmazok egyenlősége egy további tulajdonságot is teljesít:

• $\forall A, B \quad A = B \Rightarrow B = A$ (szimmetria).

Halmazok 3 - speciális halmazok

Definíció

A halmaz és $\mathcal{F}(x)$ formula esetén $\{x \in A : \mathcal{F}(x)\}$ halmaz elemei pontosan azon elemei A-nak, melyre $\mathcal{F}(x)$ igaz.

Üres halmaz

Egy olyan halmaz, aminek nincs eleme. Jele ∅.

Halmaz megadása az elemeivel

Ha egy halmaznak csak az a elem az eleme, akkor $\{a\}$ -val jelöljük. Ha egy halmaznak pontosan a és b az elemei, akkor a jele $\{a,b\}$, stb.

Műveletek halmazokkal

Definíció

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan az A és a B elemeit tartalmazza: $x \in A \cup B \Leftrightarrow x \in A \vee x \in B$. Legyen A egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cup A = \cup \{A : A \in A\} = \cup_{A \in \mathcal{A}} A$ az a halmaz, mely az A összes elemének elemeit tartalmazza. Speciálisan: $A \cup B = \cup \{A, B\}$.

- 2 $A \cup (B \cup C) = (A \cup B) \cup C$ (asszociativitás)
- \bullet $A \cup B = B \cup A$ (kommutativitás)
- $A \cup A = A$ (idempotencia)

Műveletek halmazokkal - metszet

Definíció

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és a B közös elemeit tartalmazza:

```
x \in A \cap B \Leftrightarrow x \in A \land x \in B.
```

 \mathcal{A} halmazrendszer esetén $\cap \mathcal{A} = \{x : x \in A, \forall A \in \mathcal{A}\}.$

Speciálisan: $A \cap B = \cap \{A, B\}$.

A és *B* diszjunktak, ha $A \cap B = \emptyset$.

Egy A halmazrendszer diszjunkt, ha $\cap A = \emptyset$.

Egy A halmazrendszer elemei páronként diszjunktak, ha

 $\forall A, B \in \mathcal{A} : A \cap B = \emptyset$, ha $A \neq B$.

Metszet tulajdonságai

Állítás

- $A \cap (B \cap C) = (A \cap B) \cap C$ (asszociativitás)
- \bullet $A \cap B = B \cap A$ (kommutativitás)
- $A \cap A = A$ (idempotencia)

Állítás (Disztributivitási szabályok)

HaA,B,C halmazok, akkor

Különbség, komplementer

Definíció

Az A és B halmazok különbsége: $A \setminus B$ az a halmaz, ami A azon elemeit tartalmazza, melyek nem elemei B-nek:

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B$$
.

Egy X alaphalmaz és $A \subset X$ esetén az A halmaz X-re vonatkozó komplementere az $\overline{A} = X \setminus A$.

$$A \setminus B = A \cap \overline{B}.$$

Komplementer tulajdonságai

Állítás

Legyen $A, B \subset X$. Ekkor igazak az alábbiak:

$$\mathbf{0} \quad \overline{\overline{A}} = A$$

$$\overline{X} = \emptyset$$

$$A \cap \overline{A} = \emptyset$$

$$\bullet A \subset B \Leftrightarrow \overline{B} \subset \overline{A}$$

$$\bullet$$
 $A \subset D \Leftrightarrow D \subset A$

Az utolsó kettőt de Morgan-szabályoknak nevezzük.

Egyéb halmazok

Definíció

Az A és B halmazok szimmetrikus differenciája

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

Állítás

$$A \triangle B = (A \cup B) \setminus (A \cap B).$$

Definíció

Ha A halmaz, akkor azt a halmazrendszert, amelynek elemei pontosan A részhalmazai, az A hatványhalmazának nevezzük: $2^A = \{B : B \subset A\}.$

$$|2^A| = 2^{|A|}$$
.