# You keep using Coefficient of Variation I do not think it means what you think it means

Devan Allen McGranahan <sup>1</sup> Samuel D. Fuhlendorf <sup>2</sup>

<sup>1</sup>USDA Agricultural Research Service, Miles City, MT; <sup>2</sup>Oklahoma State University, Stillwater, OK

### Overview

- Variability—statistically, *variance*, the second data moment—can be a more important ecological property than the mean
- Coefficient of Variation is popular but problematic under multiple sources of variability
- We demonstrate *variance partitioning* as a spatially-explicit alternative to CV

# Defining variability

#### Coefficient of Variation

- Variability can be abstract—simple measures are understandable
- Coefficient of Variation is calculated as  $CV = \frac{\sigma}{\mu} \cdot 100$  where  $\sigma =$  standard deviation and  $\mu =$  mean

# Handling multiple sources of variability

- CV is only reliable when mean is constant
- When variability effects differences in both  $\mu$  and  $\sigma$ , CV is misleading
- Both inherent and disturbance-driven heterogeneity can case variability in  $\mu$  and  $\sigma$ :

#### Inherent environmental heterogeneity

Ecological sites summarize topoedaphic variability in soils that affect plant community composition and productivity



#### Disturbance-driven heterogeneity

Spatially-discrete burns create a mosaic of patches with asynchronous plant successional stages



Fig. 1: Examples of heterogeneity sources.

## Data and methods

Productivity Scenarios defined by quantiles of the range of productivity across US National Grasslands as determined by Rangeland Analysis Platform data on perennial + annual herbaceous biomass



Fig. 2: Productivity classes (kg ha<sup>-1</sup>).

| Productivity scenario | Mean | $\overline{SD}$ | $\overline{	ext{CV}}$ |
|-----------------------|------|-----------------|-----------------------|
| Very Low (VL)         | 553  | 78.8            | 0.14                  |
| Low(L)                | 739  | 42.3            | 0.06                  |
| Medium (M)            | 869  | 33.6            | 0.04                  |
| High (H)              | 993  | 39.4            | 0.04                  |
| Very High (VH)        | 1194 | 81.7            | 0.07                  |

#### Non-spatial simulations

Calculate CV for each productivity scenario:

- Actual mean  $(\mu)$  and standard deviation  $(\sigma)$  from data in Fig. 2.
- Constant  $\mu$  across productivity classes (VH & VL) with  $\sigma$  from each class
- Constant  $\sigma$  across productivity classes (VH & VL) with  $\mu$  from each class

#### Spatial simulations

Four landscape scenarios (Fig. 3):

- Randomly-distributed productivity
- Disturbance only: Time-since-fire gradient
- Inherent variability only: soil types
- Both disturbance gradient and soil types



Fig. 3: Four simulated landscapes.

## Problems with CV

## Non-spatial example

- When means vary, CV declines as mean increases
- Low mean, high CV relationship independent of SD



Fig. 4: CV calculations from non-spatial example. *Center*: CV with actual mean and SD for each productivity scenario (Fig. 2). *L* & *R*: CV with unique SD for each scenario and constant mean, highest and lowest classes. *Top* & *Bottom*: CV with unique mean for each scenario and constant SD, highest and lowest classes.

## **Spatial example**

- CV is not sensitive to landscape-level heterogeneity
- Similar trends as in Fig. 3 when homoscedastic



Fig. 5: Columns: CV across heterogeneous and homogeneous land-scapes (Fig. 3). Rows: Assuming the variance in productivity data remain constant as means increase (homoscedastic, and assumption of linear regression ) vs increasing variance with mean (heteroscedastic, a reality of many ecological data.)

## Solution: Variance Partitioning

- Random-effect regression parses variance into spatially-relevant scales
- Spatial heterogeneity quantified as patch contrast—the degree of difference among landscape units
- Coarse distinction between heterogeneous (patchy) and homogeneous (uniform) landscapes
- Fine distinction among degrees of variability among patches



Fig. 6: The proportion variance attributable to the patch term in a random-effect regression—*Patch Contrast*—within heterogeneous and homogeneous landscapes from Fig. 3.

## Avoid CV when means vary!

- CV is only useful to compare variability when mean values are constant.
- CV is not sensitive to spatial heterogeneity.
- Variance partitioning is robust for data with spatial structure—always a good idea when sampling heterogeneous environments.
- Variance partitioning can be accomplished with proc GLIMMIX in SAS, lme4::(g)lmer in R.
   The R package rptR also performs variance decomposition.