- 1. Probar que los valores λ_1 y λ_2 son autovalores de T. Calcular el espacio de autovectores asociado a cada autovalor y dar una base del mismo.
 - (a) $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, T(A) = A^t, \lambda_1 = 1, \lambda_2 = -1.$
 - (b) $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x], T(ax^2 + bx + c) = ax^2, \lambda_1 = 1, \lambda_2 = 0$
- 2. Sea $\delta: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ la transformación lineal derivación, esto es

$$\delta f(x) = f'(x)$$
, para $x \in \mathbb{R}$.

Mostrar que todo número real es un autovalor de δ y exhibir un autovector correspondiente.

- 3. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes ítems. Analizar por separado los casos $\mathbf{F} = \mathbb{R}$ y $\mathbf{F} = \mathbb{C}$.
 - (a) $A = \begin{pmatrix} 3 & 1 \\ 3 & 5 \end{pmatrix}$,
 - (b) $A = \begin{pmatrix} 1 & 3 \\ -3 & -1 \end{pmatrix}$,
 - (c) $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,
 - (d) $A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,
 - (e) $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$,

- (f) $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$,
- (g) $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$,
- (h) $A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
- (i) $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$
- 4. Determinar cuáles de las matrices del Ejercicio 3 son semejantes a una matriz diagonal. En caso afirmativo, dar una matriz diagonal D y una matriz invertible P tal que $D = P^{-1}AP$.
- 5. Pruebe que las siguientes matrices $A \in \mathbb{C}^{n \times n}$ son diagonalizables y dé una matriz diagonal D y una matriz invertible P tal que $D = P^{-1}AP$.

(a)
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{pmatrix}$, (c) $A = \begin{pmatrix} -7 & -16 & 4 \\ 6 & 13 & -2 \\ 12 & 16 & 1 \end{pmatrix}$.

6. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal definida por:

$$T(x, y, z) = (-x - 2y + 2z, -y, -x - 3y - 4z).$$

- (a) Encontrar una base \mathfrak{B} de \mathbb{R}^3 tal que $[T]_{\mathfrak{B}}$ sea diagonal.
- (b) Sea $A = \begin{pmatrix} -1 & -2 & 2 \\ 0 & -1 & 0 \\ -1 & -3 & -4 \end{pmatrix}$. Calcular A^n para todo $n \in \mathbb{N}$.
- 7. Sea $A \in \mathbf{F}^{n \times n}$.
 - (a) Probar que A y A^t tienen los mismos autovalores.
 - (b) Dar un ejemplo en el que los autovectores sean distintos.
- 8. (a) Sea $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in \mathbf{F}^{2\times 2}$. Determinar todos los $a, b, c \in \mathbf{F}$ para los que A es diagonalizable.

- (b) Probar que toda matriz $A \in \mathbf{F}^{2\times 2}$ como en el ítem anterior es diagonalizable o bien es semejante a una matriz del tipo $\begin{pmatrix} \alpha & 0 \\ 1 & \alpha \end{pmatrix}$.
- 9. Analizar la validez de las siguientes afirmaciones:
 - (a) Si $A \in \mathbb{R}^{n \times n}$ es inversible, entonces 0 no es autovalor de A.
 - (b) Si $A \in \mathbb{R}^{n \times n}$ es inversible y v autovector de A, entonces v es un autovector de A^{-1} .
 - (c) Si $A \in \mathbb{R}^{n \times n}$ con n impar, entonces A admite un autovalor real.
- 10. Sea $A \in \mathbb{R}^{n \times n}$ que verifica $A^2 + I_n = 0$, donde I_n denota a la matriz identidad de tamaño $n \times n$. Probar que A es inversible, que no tiene autovalores reales y que n debe ser par.
- 11. Sea $A \in \mathbb{C}^{n \times n}$ y sean $\lambda_1, \dots, \lambda_n$ las raíces de χ_A contadas con su multiplicidad. Probar que:
 - (a) $\det(A) = \prod_{i=1}^{n} \lambda_i$,
 - (b) $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$.
- 12. Sea V un espacio vectorial de dimensión finita y sea $T:V\to V$ una transformación lineal tal que $\dim(\operatorname{Im}(T))=1$. Probar que T es diagonalizable si y sólo si $\ker(T)\cap\operatorname{Im}(T)=\{0\}$.
- 13. Hallar el polinomio minimal de las siguientes matrices (comparar con el polinomio característico):

- 14. Calcular el polinomio minimal para cada una de las siguientes transformaciones lineales:
 - (a) $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x], Tp(x) = p'(x) + 2p(x),$
 - (b) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, T(A) = A^t$.
- 15. Utilizando el Teorema de Cayley-Hamilton:
 - (a) Calcular $A^4 4A^3 A^2 + 2A 5I_2$ para $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$.
 - (b) Dada $A = \begin{pmatrix} 1 & 3 \\ -1 & 4 \end{pmatrix}$, expresar a A^{-1} como combinación lineal de A y de I_2 .

- (c) Dada $A = \begin{pmatrix} 1 & -1 \\ 2 & 5 \end{pmatrix}$, expresar a $(2A^4 12A^3 + 19A^2 29A 37I_2)^{-1}$ como combinación lineal de A y de I_2 .
- (d) Dada $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, calcular A^{-1} y A^3 .
- 16. Sea V un \mathbf{F} -espacio vectorial de dimensión finita y sea $T:V\to V$ una transformación lineal. Probar que T es un isomorfismo si y sólo si el término constante de χ_T es no nulo. En dicho caso, hallar la expresión general de T^{-1} como polinomio en T.