NOM : Prénom :

Partiel Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (8 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

- Q1. Pour mesurer la tension aux bornes d'un générateur, on met le voltmètre :
 - a. En série avant le générateur
 - b. En série après le générateur
 - (c.) En parallèle avec le générateur
 - d. On ne peut pas mesurer la tension aux bornes d'un générateur
- Q2. Quelle est la résistance vue entre A et B?

a
$$\frac{5}{2}R$$

c.
$$\frac{3}{5}$$
. R

d.
$$\frac{2}{5}R$$

Q3. Soit le circuit ci-contre. Que vaut U?

Q4. Quelle est la bonne formule ?

a-
$$I_1 = 4.I$$

(b)
$$I_1 = \frac{I}{4}$$

c-
$$I_1 = \frac{3}{4} I$$

d-
$$I_1 = \frac{3R}{4}I$$

Soit le circuit ci-contre (Q5 à 7) :

- **Q5.** L'intensité du courant I est égale à :

- c. $\frac{3}{2} \cdot \frac{E}{R}$
- d. $\frac{3R}{2}$. E

- **©**. E

- La tension U_3 est égale à : Q6.

 - b. 3R.E
- La tension U_4 est égale à : Q7.

 - b. $\frac{3}{2}E$

- c. $-\frac{2}{3}E$
- d. -E
- Q8. Soit le circuit ci-contre. L'intensité du courant I_3 est égale
- à:

- b. $\frac{V_0}{8R}$ c. $\frac{1}{5} \cdot \frac{V_0}{R}$
- d. $I_1 + \frac{V_3}{2R}$

Exercice 2. Equivalences Thévenin/Norton (12 points)

1. Soient les 2 circuits ci-dessous.

a. Déterminer les expressions de I_N et de R_N tels que les 2 circuits ci-dessus soient équivalents.

b. En déduire l'expression de l'intensité du courant I' qui traverse R' en fonction de I, R et R'.

En utilizeur la formule du But Diviseur de Covraut:

$$T' = \frac{RN}{R' + RN} \cdot \overline{L}_{N} = \frac{\frac{1^{2}R}{5}R}{R' + \frac{1^{2}R}{5}R} \cdot \overline{L} = \frac{3!2R}{5R' + 12} \cdot \overline{L}$$

$$= n \quad \overline{L}' = \frac{3R}{5R' + 12R} \cdot \overline{L}$$

2. Soit le circuit ci-contre. Déterminer l'expression de la tension U en fonction de E, I et R. Vous pourrez utiliser les équivalences Thévenin/Norton.

Par équivalences Thérenin / Norbon:

Toutes les brouches sont en 11.60 peut donc associer les généraleurs de courant, ainsi pue les 3 résistances (tout en conservant la tension U

Teg =
$$\frac{1}{R} + \frac{E}{R} + \frac{E}{2R} = \frac{2RI + 3E}{2R}$$

Reg = $\frac{R/2 \times 2R}{R/2 + 2R} = \frac{2R}{5}$

Peis, la loi d'6hm permet d'écrire:

$$= SU = \frac{2RI + 3E}{5}$$