TEMA 3: FÍSICA DE SEMICONDUCTORES

- 3.1.- Introducción a los semiconductores: conductores, aislantes y semiconductores
- 3.2.- Nociones de teoría de bandas. Semiconductores intrínsecos y extrínsecos. Semiconductores tipo n y p
- 3.3.- Generación y recombinación de portadores

Los materiales pueden clasificarse por sus propiedades físicas, como la **conductividad eléctrica** (σ) o su inverso, la **resistividad** (ρ):

Material:	CONDUCTOR	SEMICONDUCTOR	AISLANTE
Resistividad típica ρ (Ω/cm)	10 ⁻¹⁰ ~ 10 ⁻⁸	10 ⁻⁶ ~ 10 ⁶	$10^{10} \sim 10^{20}$

Estas propiedades están relacionadas con:

- La estructura electrónica de los átomos
- La interacción entre átomos cuando están próximos

Estructura electrónica de los átomos

		# of Electrons			ons			
		1		2	2 3		3	
Z	Name	1s	2s	2p	3s	Зр	3d	Notation
1	Н	1						1s ¹
2	Не	2						1s ²
3	Li	2	1					1s ² 2s ¹
4	Ве	2	2					$1s^2 2s^2$
5	В	2	2	1				1s ² 2s ² 2p ¹
6	С	2	2	2				$1s^2 2s^2 2p^2$
7	Ν	2	2	3				$1s^2 2s^2 2p^3$
8	0	2	2	4				$1s^2 2s^2 2p^4$
9	F	2	2	5				$1s^2 2s^2 2p^5$
10	Ne	2	2	6				$1s^2 2s^2 2p^6$
11	Na	2	2	6	1			$1s^2 2s^2 2p^6 3s^1$
12	Mg	2	2	6	2			$1s^2 2s^2 2p^6 3s^2$
13	Al	2	2	6	2	1		$1s^2 2s^2 2p^6 3s^2 3p^1$
14	Si	2	2	6	2	2		$1s^2 2s^2 2p^6 3s^2 3p^2$
15	Р	2	2	6	2	3		$1s^2 2s^2 2p^6 3s^2 3p^3$
16	S	2	2	6	2	4		$1s^2 2s^2 2p^6 3s^2 3p^4$
17	Cl	2	2	6	2	5		$1s^2 2s^2 2p^6 3s^2 3p^5$
18	Ar	2	2	6	2	6		$1s^2 2s^2 2p^6 3s^2 3p^6$

Ej.: Silicio

10 electrones interiores: 1s² 2s² 2p⁶ 4 electrones de valencia: 3s² 3p²

Principio de exclusión de Pauli: no puede haber dos electrones con el mismo conjunto de números cuánticos (n, l, m y s)

A mayor n, menor atracción de los electrones por el núcleo

- ⇒ Electrones de capas interiores, fuertemente ligados
- ⇒ Electrones de la última capa (e. de valencia) menos atraídos por el núcleo Responsables del tipo de enlace entre átomos
 - Tipos de enlace:
 - E. iónico: cesión de e- de val. de un átomo a otro. Los iones de distinto signo se atraen entre sí. Ej.: Cloruro sódico (Na: 1 e- de valencia, Cl: 7 e- de valencia)
 - E. metálico: formado por átomos que presentan entre 1 y 3 e- de valencia. La nube de electrones libres mantiene unidos los iones positivos. Ej: Sodio
 - E. covalente: compartición de e- de valencia entre átomos. Ej.: diamante, silicio
 - Muchos materiales presentan enlaces de carácter mixto entre sus átomos
 - La clasificación por el tipo de enlace sólo permite distinguir conductores y aislantes

Interacción entre niveles de energía electrónicos de átomos próximos

Para entender la diferencia entre aislantes, conductores y semiconductores es necesario conocer cómo se ven afectados los niveles (orbitales) de los electrones de valencia de los átomos individuales cuando se acercar entre sí:

Dos átomos idénticos. Ej.: Sodio: 1s² 2s² 2p⁶ 3s¹

Niveles en el átomo aislado

Niveles de energía de dos átomos próximos

- A medida que se aproximan, más interfieren entre sí los electrones más externos (Po de exclusión de Pauli)
- Los nuevos niveles de energía no pertenecen a ninguno de los átomos, sino a ambos en conjunto. Los electrones ocupan normalmente el nivel de menor energía

Varios átomos idénticos. Ej.: Carbono: 1s² 2s² 2p²

- Al acercar N átomos, a partir de cada nivel atómico se generan N niveles próximos
- En un material macroscópico, N $\sim 10^{24}!!! \Rightarrow$ niveles adyacentes con energías muy próximas

• N átomos idénticos ~10²⁴: Bandas de energía

- Un orbital ocupado da lugar a una banda llena de electrones
- Un orbital desocupado da lugar a una banda vacía de electrones
- Un orbital parcialmente ocupado (p. ej. en átomos de la 1º columna, dos estados con la misma energía y diferente spin, ocupado sólo uno de ellos) da lugar a una banda parcialmente llena
- Una banda completamente llena de electrones no contribuye a la conducción de corriente: hay tantos electrones con velocidad en una dirección como en la opuesta, y no hay más estados a los que los electrones puedan ser acelerados

- Los electrones de niveles de energías más profundos se ven mucho menos afectados y están completamente llenos
- La distancia de equilibrio entre átomos a₀ es propia de cada material

Metales, aislantes y semiconductores

El concepto de banda de energía nos permite distinguir tres casos, dependiendo de la anchura de la banda de energía prohibida que "ven" los electrones más externos:

⇒ Otro posible criterio para clasificar los materiales: la energía de la banda prohibida o energía del "gap":

Material:	CONDUCTOR	SEMICONDUCTOR	AISLANTE
Energía del gap Eg (eV):	No tiene	~0,5-2	~5-10

Además, aparece un nuevo concepto relacionado: la energía de Fermi, **E**_F:

- En un metal, la energía de Fermi es la mayor energía que pueden tener los electrones
- En los semiconductores también se define la energía de Fermi, como se verá más adelante

Materiales con mismos electrones de valencia

Una misma configuración electrónica externa puede resultar en materiales de distinto tipo:

Carbono (aislante): 1s² 2s² 2p²

Silicio (semiconductor): 1s² 2s² 2p² 3s² 3p²

- Los orbitales s y p de la última capa se mezclan inicialmente en 2N+6N = 8N estados sp, que dan lugar a 4N+4N estados semiocupados agrupados en dos bandas separadas.
- En ambos casos, cada átomo está enlazado con otros cuatro de forma covalente.

C	Si	Sn		
	Ge			

	С	Si	Ge	Sn
Constante de red (Å)	(3,565)	(5,43)	(5,65)	(6,46)
Longitud de enlace (Å)	1,54	2,33	2,43	2,80
Energía del gap a T=300K (eV)	5,47	1,12	0,66	-
Id. a T=0K (eV)	5,48	1,17	0,74	0,082

TEMA 3: FÍSICA DE SEMICONDUCTORES, 3.2.- Nociones de teoría de bandas

Semiconductores intrínsecos y extrínsecos

Un semiconductor <u>intrínseco</u> es aquel que no tiene impurezas. Puede tener un solo tipo de átomos o varios:

- Semiconductores <u>elementales</u>: germanio (Ge), silicio (Si) ₁₃ ₁₄ ₁₅ ₁₆
- Compuestos IV: SiC, SiGe
- Compuestos III-V:
 - Binarios: GaAs, GaP, GaSb, GaN, AlAs, AlP, AlSb, InAs, InP, InSb
 - Ternarios: GaAsP, AlGaAs
 - Cuaternarios: InGaAsP

<u>Compuestos II-VI</u>: ZnS, ZnSe, ZnTe, ZnO, CdS, CdSe, CdTe

Semiconductores intrínsecos

Son aislantes a bajas temperaturas, al no haber apenas enlaces rotos térmicamente

- Ej.: Silicio 1s² 2s² 2p² 3s² 3p²

(Por sencillez, sólo se representan los electrones de valencia, y se explicita la carga positiva correspondiente del núcleo que requiere los compensa)

Portadores de carga: huecos y electrones

$$\begin{split} n_0 &= p_0 = n_i \\ &= A \cdot T^{3/2} \ exp \left(-\frac{E_G}{2kT} \right) \end{split}$$

Temperaturas bajas

Temperaturas elevadas

Los huecos que aparecen por efecto de la temperatura pueden pasar a ser ocupados por electrones de valencia próximos

TEMA 3: FÍSICA DE SEMICONDUCTORES. 3.2.- Nociones de teoría de bandas

Semiconductores extrínsecos

Se fabrican introduciendo determinadas impurezas, que pueden ser donantes o aceptoras

- Semiconductores tipo n: impurezas donantes
- Ej.: Silicio 1s² 2s² 2p² 3s² 3p² dopado con fósforo 1s² 2s² 2p² 3s² 3p³

Cada átomo de impureza donante aporta un electrón libre extra:

Concentración de portadores:

$$n = n_i + N_D$$
; $p = n_i$
 \Rightarrow Si $N_D >> n_i$, $n \approx N_D$ y $n >> p$

e- libres: mayoritarios; huecos: minoritarios

- El material sigue siendo neutro
- Controlando N_D se puede controlar la resistividad del semiconductor

TEMA 3: FÍSICA DE SEMICONDUCTORES. 3.2.- Nociones de teoría de bandas

Semiconductores extrínsecos

Se fabrican introduciendo determinadas impurezas, que pueden ser donantes o aceptoras

- Semiconductores tipo p: impurezas aceptoras
- Ej.: Silicio 1s² 2s² 2p² 3s² 3p² dopado con boro 1s² 2s² 2p¹

Cada átomo de impureza aceptora aporta un hueco de electrón extra:

• Concentración de portadores:

$$p = n_i + N_A$$
; $n = n_i$
 \Rightarrow Si $N_A >> n_i$, $p \approx N_A$ y $p >> n$

huecos: mayoritarios; e- libres: minoritarios

- El material sigue siendo neutro
- Controlando N_A se puede controlar la resistividad/conductividad del semiconductor, pues las vacantes que se generan también contribuyen a la conducción al aplicar un campo eléctrico al material

TEMA 3: FÍSICA DE SEMICONDUCTORES, 3.2.- Nociones de teoría de bandas

Diagramas de energía en semiconductores. Nivel de Fermi

Esquemáticamente, mediante diagramas de energía simplificados:

Semiconductores extrínsecos (T amb.)

TEMA 3: FÍSICA DE SEMICONDUCTORES. 3.2.- Nociones de teoría de bandas

Diagramas de energía en semiconductores. Nivel de Fermi

Energía de Fermi: aquella a la que la probabilidad de encontrar un e- es de 0,5

Semiconductor intrínseco (T~0)

Semiconductores extrínsecos (T amb.)

TEMA 3: FÍSICA DE SEMICONDUCTORES. 3.3.- Generación y recombinación de portadores

Interacción entre electrones y huecos

- Generación: creación de huecos y electrones de conducción
- Recombinación: combinación (aniquilación) de huecos con electrones de conducción

- Son procesos continuos y simultáneos, de carácter aleatorio
- La concentración de electrones de conducción y huecos se mantiene constante en el tiempo, siempre que la temperatura no cambie

Algunos procesos que alteran el equilibrio:

- Fotones: exceso de creación de pares h-e
- Calentamiento térmico

TEMA 3: FÍSICA DE SEMICONDUCTORES. 3.3.- Generación y recombinación de portadores

Otros procesos de generación y recombinación con niveles intermedios

- Los defectos y las impurezas introducen estados de E permitidos en el gap
- Algunos procesos de generación y recombinación involucran a estos estados:

- (a) Captura de un e- de conducción por una trampa inicialmente neutra
- (b) Emisión de un e- a la B.C. por una trampa inicialmente cargada (ej.: impureza donante)
- (c) Captura de un e- de la B.V. por una trampa inicialmente neutra (ej.: impureza aceptora)

18

(d) Emisión de un e- a la B.V. por una trampa inicialmente cargada

TEMA 3: FÍSICA DE SEMICONDUCTORES

Algunas conclusiones importantes:

- ♣ Un semiconductor intrínseco como el Silicio (5x10²² átomos/cm⁻³) presenta a temp. ambiente unos 10¹⁰ e- de conducción/cm⁻³, muy inferior a la de un metal (~10²² e-/cm⁻³)
- ♣ Si el semiconductor se dopa con 1 impureza donante/ 10^6 átomos de Si, a temperatura ambiente presentará ~ $10^{22}/10^6$ = 10^{16} e- en la banda de conducción (portadores mayoritarios) y seguirá siendo neutro
- ♣ Si el semiconductor se dopa con 1 impureza aceptora/ 10^6 átomos de Si, a temperatura ambiente presentará ~ $10^{22}/10^6$ = 10^{16} huecos de e- en la banda de valencia (portadores mayoritarios) y seguirá siendo neutro
- ♣ La energía de Fermi es un indicador del desbalance entre electrones y huecos en un semiconductor
- A Continuamente electrones y huecos se están recombinando y generando, aunque la concentración de electrones y huecos en el equilibrio no cambie en el tiempo
- ♣ Pueden aniquilarse o generarse electrones en la B.C. por efecto de los niveles de trampas o de impurezas. Pueden aniquilarse o generarse huecos en la B.V. por efecto de los niveles de trampas o de impurezas