Analysis 1. Semester (WS2017/18)

Dozent: Prof. Dr. Friedemann Schuricht Kursassistenz: Moritz Schönherr

Mathematik besitzt eine Sonderrolle unter den Wissenschaften, da

- Resultate nicht empirisch gezeigt werden müssen
- Resultate nicht durch Experimente widerlegt werden können

Literatur

- Forster: Analysis 1 + 2, Vieweg
- Königsberger: Analysis 1 + 2, Springer
- Hildebrandt: Analysis 1 + 2, Springer
- Walter: Analysis 1 + 2, Springer
- \bullet Escher/Amann: Analysis 1+2, Birkhäuser
- Ebbinghaus: Einfühung in die Mengenlehre, BI-Wissenschaftsverlag
- Teubner-Taschenbuch der Mathematik, Teubner 1996
- Springer-Taschenbuch der Mathematik, Springer 2012

1 Grundlagen der Mathematik

1.1 Grundbegriffe aus Mengenlehre und Logik

Mengenlehre: Universalität von Aussagen

Logik: Regeln des Folgerns, wahre/falsche Aussagen

Definition Aussage: Sachverhalt, dem man entweder den Wahrheitswert "wahr" oder "falsch" zuordnen kann, aber nichts anders.

Beispiele:

- 5 ist eine Quadratzahl \rightarrow falsch (Aussage)
- Die Elbe fließt durch Dresden \rightarrow wahr (Aussage)
- Mathematik ist rot \rightarrow ??? (keine Aussage)

Definition Menge: Zusammenfassung von bestimmten wohlunterscheidbaren Objekten der Anschauung oder des Denkens, welche die Elemente der Menge genannt werden, zu einem Ganzen. (CANTOR, 1877)

Beispiele:

- $M_1 := \text{Menge aller Städte in Deutschland}$
- $M_2 := \{1; 2; 3\}$

Für ein Objekt m und eine Menge M gilt stets $m \in M$ oder $m \notin M$ Für die Mengen M und N gilt M = N, falls dieselben Elemente enthalten sind $\{1; 2; 3\} = \{3; 2; 1\} = \{1; 2; 2; 3\}$

- $N \subseteq M$, falls $n \in M$ für jedes $n \in N$
- $N \subset M$, falls zusätzlich $M \neq N$

Definition Aussageform: Sachverhalt mit Variablen, der durch geeignete Ersetzung der Variablen zur Aussage wird.

Beispiele:

- A(X) := Die Elbe fließt durch X
- B(X;Y;Z) := X + Y = Z
- aber A(Dresden), B(2; 3; 4) sind Aussagen, A(Mathematik) ist keine Aussage
- A(X) ist eine Aussage fü jedes $X \in M_1 \to \text{Generalisierung von Aussagen durch Mengen}$

Bildung und Verknüpfung von Aussagen

A	B	$\neg A$	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \iff B$
w	w	f	w	w	W	w
w	f	f	f	w	f	f
f	w	W	f	w	W	f
f	f	W	f	f	W	W

Beispiele:

- \neg (3 ist gerade) \rightarrow w
- (4 ist gerade) \wedge (4 ist Primzahl) \rightarrow f
- (3 ist gerade) \vee (3 ist Primzahl) \rightarrow w
- (3 ist gerade) \Rightarrow (Mond ist Würfel) \rightarrow w
- (Die Sonne ist heiß) \Rightarrow (es gibt Primzahlen) \rightarrow w

Auschließendes oder: (entweder A oder B) wird realisiert durch $\neg (A \iff B)$.

Aussageform A(X) sei für jedes $X \in M$ Aussage: neue Aussage mittels Quantoren

- ∀: "für alle"
- ∃: "es existiert"

Beispiele:

- $\forall n \in \mathbb{N} : n \text{ ist gerade} \to f$
- $\exists n \in \mathbb{N} : n \text{ ist gerade} \to \mathbf{w}$

Definition Tautologie bzw. Kontraduktion/Widerspruch: zusammengesetzte Aussage, die unabhängig vom Wahrheitsgehalt der Teilaussagen stest wahr bzw. falsch ist.

Beispiele:

- Tautologie (immer wahr): $(A) \vee (\neg A), \neg (A \wedge (\neg A)), (A \wedge B) \Rightarrow A$
- Widerspruch (immer falsch): $A \wedge (\neg A), A \iff \neg A$
- besondere Tautologie: $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$

Satz (de Morgansche Regeln): Folgende Aussagen sind Tautologien:

- $\bullet \neg (A \land B) \iff \neg A \lor \neg B$
- $\neg (A \lor B) \iff \neg A \land \neg B$

Bildung von Mengen Seien M und N Mengen

- Aufzählung der Elemente: {1; 2; 3}
- mittels Eigenschaften: $\{X \in M \mid A(X)\}$
- \emptyset := Menge, die keine Elemente enthält
 - leere Menge ist immer Teilmenge jeder Menge M
 - Warnung: $\{\emptyset\} \neq \emptyset$
- Verknüpfung von Mengen wie bei Aussagen

Definition Mengensystem: Ein Mengensystem \mathcal{M} ist eine Menge, bestehend aus anderen Mengen.

- $|M| := |X| \exists M \in \mathcal{M} : X \in M|$ (Vereinigung aller Mengen in \mathcal{M})
- $\bigcap M := \{X \mid \forall M \in \mathcal{M} : X \in M\}$ (Durchschnitt aller Mengen in \mathcal{M})

Definition Potenzmenge: Die Potenzmenge \mathcal{P} enthält alle Teilmengen einer Menge M. $\mathcal{P}(X) := \{ \tilde{M} \mid \tilde{M} \subset M \}$

Beispiel:

•
$$M_3 := \{1; 3; 5\}$$

 $\rightarrow \mathcal{P}(M_3) = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1; 3\}, \{1; 5\}, \{3; 5\}, \{1; 3; 5\}\}$

Satz (de Morgansche Regeln für Mengen):

- $(\bigcup_{N \in \mathcal{N}} N)^C = \bigcap_{N \in \mathcal{N}} N^C$ $(\bigcap_{N \in \mathcal{N}} N)^C = \bigcup_{N \in \mathcal{N}} N^C$

Definition Kartesisches Produkt: $M \times N := \{m, n \mid m \in M \land n \in N\}$ (m,n) heißt geordnetes Paar (Reihenfolge wichtig!) allgemeiner: $M_1 \times ... \times M_k := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$ $M^k := M \times ... \times M := \{(m_1, ..., m_k) \mid m_j \in M_j, j = 1, ..., k\}$

Satz (Auswahlaxiom): Sei \mathcal{M} ein Mengensystem nichtleerer paarweise disjunkter Mengen M.

- Es existiert eine Auswahlmenge M, die mit jedem $M \in \mathcal{M}$ genau 1 Element gemeinsam
- beachte: Die Auswahl ist nicht konstruktiv!

1.2 Aufbau einer mathematischen Theorie

 $Axiome \rightarrow Beweise \rightarrow Sätze$ ("neue" wahre Aussagen) \rightarrow ergibt Ansammlung (Menge) wahrer Aussagen

Formulierung mathematischer Aussagen

- typische Form eines mathematischen Satzes: "Wenn A gilt, dann gilt auch B."
- formal: $A \Rightarrow B$ bzw. $A(X) \Rightarrow B(X)$ ist stets wahr (insbesondere falls A wahr ist)

Beispiel

- $X \in \mathbb{N}$ und ist durch 4 teilbar $\Rightarrow X$ ist durch 2 teilbar
- beachte: Implikation auch wahr, falls X = 5 oder X = 6, dieser Fall ist aber uninteressant
- \bullet genauer meint man sogar $A \wedge C \Rightarrow B,$ wobeiCaus allen bekannten wahren Aussagen besteht
- \bullet man sagt: B ist **notwendig** für A, da A nur wahr sein kann, wenn B wahr ist
- \bullet man sagt: A ist **hinreichend** für B, da B stets wahr ist, wenn A wahr ist

Mathematische Beweise

- **direkter Beweis:** finde Zwischenaussagen $A_1, ..., A_k$, sodass für A auch wahr: $(A \Rightarrow A_1) \land (A_1 \Rightarrow A_2) \land ... \land (A_k \Rightarrow B)$
- Beispiel: Zeige $x>2\Rightarrow x^2-3x+2>0$ $(x>2)\Rightarrow (x-2>0)\land (x-1>0)\Rightarrow (x-2)\cdot (x-1)\Rightarrow x^2-3x+2>0$
- indirekter Beweis: auf Grundlage der Tautologie $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$ führt man direkten Beweis $\neg B \Rightarrow \neg A$ (das heißt angenommen B falsch, dann auch A falsch)
- praktisch formuliert man das auch so: $(A \land \neg B) \Rightarrow ... \Rightarrow (A \land \neg A)$
- Beispiel: Zeige $x^2 3x + 2 \le 0$ sei wahr $\neg B \Rightarrow (x 2) \cdot (x 1) \le 0 \Rightarrow 1 \le x \le 2 \Rightarrow \neg A$

1.3 Relationen und Funktionen

Definition Relation: Seien M und N Mengen. Dann ist jede Teilmenge R von $M \times N$ eine Relation.

 $(x,y) \in R$ heißt: x und y stehen in Relation zueinander

Beispiele

• M ist die Menge aller Menschen. Die Liebesbeziehung x liebt y sieht als geordnetes Paar geschrieben so aus: (x,y). Das heißt die Menge der Liebespaare ist das: $L := \{(x,y) \mid x \text{ liebt } y\}$. Und es gilt: $L \subset M \times M$.

Die Relation $R \subset M \times N$ heißt **Ordnungsrelation** (kurz. Ordnung) auf M, falls für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (antisymetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ (transitiv)
- z.B. $R = \{(X, Y) \in \mathcal{P}(Y) \times \mathcal{P}(Y) \mid X \subset Y\}$

Eine Ordnungsrelation heißt **Totalordnung**, wenn zusätzlich gilt: $(a,b) \in R \lor (b,a) \in R$

Beispiel

Seien m, n und o natürliche Zahlen, dann ist $R = \{(m, n) \in \mathbb{N} \times \mathbb{N} \mid x \leq y\}$ eine Totalordnung, da

- $m \leq m$ (reflexiv)
- $(m \le n \land n \le m) \Rightarrow m = n$ (antisymetrisch)
- $(m \le n \land n \le o) \Rightarrow m \le o \text{ (transitiv)}$

• $m \le n \lor n \le m$ (total)

Eine Relation auf M heißt Äquivalenzrelation, wenn für alle $a, b, c \in M$ gilt:

- $(a, a) \in R$ (reflexiv)
- $(a,b),(b,a) \in R$ (symetrisch)
- $(a,b),(b,c) \in R \Rightarrow (a,c) \in R \text{ (transitiv)}$

Obwohl Ordnungs- und Äquivalenzrelation die gleichen Eigenschaften haben, haben sie unterschiedliche Zwecke: Ordnungsrelationen ordnen Elemente in einer Menge (z.B. das Zeichen \leq ordnet die Menge der natürlichen Zahlen), während Äquivalenzrelationen eine Menge in disjunkte Teilmengen (Äquivalenzklassen) ohne Rest aufteilen.

Wenn R eine Ordnung auf M ist, so wird häufig geschrieben:

```
a \leq b bzw. a \geq b falls (a, b) \in \mathbb{R} a < b bzw. a > b falls zusätzlich a \neq b
```

Definition Abbildung/Funktion: Eine Funktion F von M nach N (kurz: $F: M \mapsto N$), ist eine Vorschrift, die jedem Argument/Urbild $m \in M$ genau einen Wert/Bild $F(m) \in N$ zuordnet.

```
D(F) := M \text{ heißt Definitionsbereich/Urbildmenge} \\ N \text{ heißt Zielbild}  F(M') := \{n \in N \mid n = F(m) \text{ für ein } m \in M'\} \text{ ist Bild von } M' \subset M \\ F^{-1}(N') := \{m \in M \mid n = F(m) \text{ für ein } N'\} \text{ ist Urbild von } N' \subset N \\ R(F) := F(M) \text{ heißt Wertebereich/Bildmenge} \\ graph(F) := \{(m,n) \in M \times N \mid n = F(m)\} \text{ heißt Graph von } F \\ F_{|M'} \text{ ist Einchränkungvon } F \text{ auf } M' \subset M
```

Unterschied Zielmenge und Wertebereich: f(x) = sin(x):

Zielmenge: \mathbb{R} Wertebereich: [-1;1]

Funktionen F und G sind gleich, wenn

- D(F) = D(G)
- $F(m) = G(m) \quad \forall m \in D(F)$

Manchaml wird auch die vereinfachende Schreibweise benutzt:

- $F: M \mapsto N$, obwohl $D(F) \subseteq M$ (z.B. $tan: \mathbb{R} \mapsto \mathbb{R}$, Probleme bei $\frac{\pi}{2}$)
- gelegentlich spricht man auch von "Funktion F(m)" statt Funktion F

Definition Komposition/Verknüpfung: Die Funktionen $F:M\mapsto N$ und $G:N\mapsto P$ sind verknüpft, wenn

```
F \circ G : M \mapsto P \text{ mit } (F \circ G)(m) := G(F(m))
```

Eigenschaften von Funktionen:

- injektiv: Zuordnung ist eineindeutig $\rightarrow F(m_1) = F(m_2) \Rightarrow m_1 = m_2$
- Beispiel: x^2 ist nicht injektiv, da F(2) = F(-2) = 4
- surjektiv: $F(M) = N \quad \forall n \in N \ \exists m \in M : F(m) = n$
- Beispiel: sin(x) ist nicht surjektiv, da es kein x für y = 27 gibt
- bijektiv: injektiv und surjektiv

Für bijektive Abbildung $F: M \mapsto N$ ist Umkehrabbildung/inverse Abbildung $F^{-1}: N \mapsto M$ definiert durch: $F^{-1}(n) = m \iff F(m) = n$

Hinweis: Die Notation $F^{-1}(N')$ für Urbild bedeutet nicht, dass die inverse Abbildung F^{-1} existiert.

Satz: Sei $F: M \to N$ surjektiv. Dann existiert die Abbildung $G: N \to M$, sodass $F \circ G = id_N$ (d.h. $F(G(n)) = n \quad \forall n \in N$)

Definition Rechenoperation/Verknüpfung: Eine Rechenoperation auf einer Menge M ist die Abbildung $*: M \times M \mapsto M$ d.h. $(m, n) \in M$ wird das Ergbnis $m * n \in M$ zugeordnet.

Eigenschaften von Rechenoperationen:

- hat neutrales Element $e \in M : m * e = m$
- ist kommutativ m * n = n * m
- ist assotiativ k * (m * n) = (k * m) * n
- hat ein inverses Element $m' \in M$ zu $m \in M : m * m' = e$

e ist stets eindeutig, m' ist eindeutig, wenn die Operation * assoziativ ist.

Beispiele:

- \bullet Addition +: $(m,n)\mapsto m+n$ Summe, neutrales Element heißt Nullelement, inverses Element -m
- Multiplikation :: $(m, n) \mapsto m \cdot n$ Produkt, neutrales Element Eins, inverses Element m^{-1} Addition und Multiplikation sind distributiv, falls $k(m+n) = k \cdot m + k \cdot n$

Definition Körper: Eine Menge M ist ein Körper K, wenn man auf K eine Addition und eine Multiplikation mit folgenden Eigenschaften durchführen kann:

- es gibt neutrale Elemente 0 und $1 \in K$
- Addition und Multiplikation sind jeweils kommutativ und assoziativ
- Addition und Multiplikation sind distributiv
- es gibt Inverse -k und $k^{-1} \in K$
 - \rightarrow die reellen Zahlen sind ein solcher Körper

Eine Menge M habe die Ordnung " \leq " und diese erlaubt die Addition und Multiplikation, wenn

- $a \le b \iff a + c \le b + c$
- $a \le b \iff a \cdot c \le b \cdot c \quad c > 0$
 - \rightarrow Man kann die Gleichungen in gewohnter Weise umformen.

Ein Körper K heißt angeordnet, wenn er eine Totalordnung besitzt, die mit Addition und Multiplikation verträglich ist.

Isomorphismus bezüglich einer Struktur ist die bijektive Abbildung $I: M_1 \mapsto M_2$, die die vorhandene Struktur auf M_1 und M_2 erhält, z.B.

- Ordnung \leq_1 auf M_1 , falls $a \leq_1 b \iff I(a) \leq_2 I(b)$
- Abbildung $F_i: M_i \mapsto M_i$, falls $I(F_1(a)) = F_2(I(a))$
- Rechemoperation $*_i: M_i \times M_i \mapsto M_i$, falls $I(a *_1 b) = I(a) *_2 I(b)$
- spezielles Element $a_i \in M_i$, falls $I(a_1) = a_2$

"Es gibt 2 verschiedene Arten von reellen Zahlen, meine und Prof. Schurichts. Wenn wir einen Isomorphismus finden, dann bedeutet das, dass unsere Zahlen strukturell die selben sind."

Beispiele: $M_1 = \mathbb{N}$ und $M_2 = \{\text{gerade Zahlen}\}$, jeweils mit Addition, Multiplikation und Ordnung $\to I: M_2 \mapsto M_2$ mit $I(k) = 2k \quad \forall k \in \mathbb{N}$

 \rightarrow Isomorphismus, der die Addition, Ordnung und die Null, aber nicht die Multiplikation erhält

1.4 Bemerkungen zum Fundament der Mathematik

Forderungen an eine mathematische Theorie:

- widerspruchsfrei: Satz und Negation nicht gleichzeitig herleitbar
- vollständig: alle Aussagen innerhalb der Theorie sind als wahr oder falsch beweisbar

2 Unvollständigkeitssätze:

- jedes System ist nicht gleichzeitig widerspruchsfrei und vollständig
- in einem System kann man nicht die eigene Widerspruchsfreiheit zeigen

2 Zahlenbereiche

2.1 Natürliche Zahlen

N sei diejenige Menge, die die **Peano-Axiome** erfüllt, das heißt

- \mathbb{N} sei induktiv, d.h. es existiert ein Nullelement und eine injektive Abbildung $\mathbb{N} \mapsto \mathbb{N}$ mit $\nu(n) \neq 0 \quad \forall n$
- Falls $N \subset \mathbb{N}$ induktiv in \mathbb{N} $(0, \nu(n) \in N \text{ falls } n \in N \Rightarrow N = \mathbb{N}$
- $\rightarrow \mathbb{N}$ ist die kleinste induktive Menge

Nach der Mengenlehre ZF (Zermelo-Fraenkel) existiert eine solche Menge $\mathbb N$ der natürlichen Zahlen. Mit den üblichen Symbolen hat man:

- \bullet 0 := \emptyset
- $1 := \nu(0) := \{\emptyset\}$
- $2 := \nu(1) := \{\emptyset, \{\emptyset\}\}\$
- $3 := \nu(2) := \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$

Damit ergibt sich in gewohnter Weise $\mathbb{N} = \{1; 2; 3; ...\}$ anschauliche Notation $\nu(n) = n + 1$ (beachte: noch keine Addition definiert!)

Theorem: Falls \mathbb{N} und \mathbb{N}' die Peano-Axiome erfüllen, sind sie isomorph bezüglich Nachfolgerbildung und Nullelement. Das heißt alle solche \mathbb{N}' sind strukturell gleich und können mit obigem \mathbb{N} identifiziert werden.

Satz (Prinzip der vollständigen Induktion): Sei $\{A_n \mid n \in N\}$ eine Menge von Aussagen A_n mit der Eigenschaft

IA: A_0 ist wahr

IS: $\forall n \in \mathbb{N} \text{ gilt } A_n \Rightarrow A_{n+1}$

 A_n ist wahr für alle $n \in \mathbb{N}$

Lemma: Es gilt:

- $\nu(n) \cup \{0\} = \mathbb{N}$
- $\nu(n) \neq n \quad \forall n \in \mathbb{N}$

Satz (rekursive Definition/Rekursion): Sei B eine Menge und $b \in B$. Sei F eine Abbildung mit $F: B \times \mathbb{N} \mapsto B$. Dann liefert nach Vorschrift: f(0) := b und $f(n+1) = F(f(n), n) \quad \forall n \in \mathbb{N}$ genau eine Abbildung $f: \mathbb{N} \mapsto B$. Das heißt eine solche Abbildung exstiert und ist eindeutig.

Rechenoperationen:

- Definition Addition '+': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch n + 0 := n, $n + \nu(m) := \nu(n + m) \quad \forall n, m \in \mathbb{N}$
- Definition Multiplikation '.': $\mathbb{N} \times \mathbb{N} \mapsto \mathbb{N}$ auf \mathbb{N} durch $n \cdot 0 := 0$, $n \cdot \nu(m) := n \cdot m + n \quad \forall n, m \in \mathbb{N}$

Für jedes feste $n \in \mathbb{N}$ sind beide Definitionen rekursiv und eindeutig definiert.

 $\forall n \in \mathbb{N} \text{ gilt: } n+1 = n + \nu(0) = \nu(n+0) = \nu(n)$

Satz: Addition und Multiplikation haben folgende Eigenschaften:

- es existiert jeweils ein neutrales Element
- kommutativ
- assoziativ
- distributiv

Es gilt $\forall k, m, n \in \mathbb{N}$:

- $m \neq 0 \Rightarrow m + n \neq 0$
- $m \cdot n = 0 \Rightarrow n = 0$ oder m = 0
- $m + k = n + k \Rightarrow m = n$ (Kürzungsregel der Addition)
- $m \cdot k = n \cdot k \Rightarrow m = n$ (Kürzungsregel der Multiplikation)