Modéliser le comportement cinématique des systèmes mécaniques

Révision 2 - Modélisation cinématique

Sciences Industrielles de l'Ingénieur

Application 01

Centrifugeuse humaine

Xavier Pessoles

Savoirs et compétences :

Afin d'analyser les effets de l'accélération sur le corps humaine, le CNRS / MEDES a développé une centrifugeuse humaine. On donne ci-dessous la modélisation cinématique de la centrifugeuse.

Le paramétrage de la centrifugeuse est donnée ci dessous :

Les paramètres constants du système sont les suivants :

- $\overrightarrow{O_0 O_1} = a \overrightarrow{i_1}$; $\overrightarrow{O_1 G} = b \overrightarrow{i_2} + c \overrightarrow{k_2}$.

Trajectographie

Question 1 Donner la trajectoire du point G dans le repère \mathcal{R}_0 .

Correction La trajectoire du point G dans le repère \mathcal{R}_0 est donnée par le vecteur :

$$\overrightarrow{O_0G}(t) = \overrightarrow{O_0O_1} + \overrightarrow{O_1G} = a \overrightarrow{i_1} + b \overrightarrow{i_2} + c \overrightarrow{k_2}$$

1

Il faut alors projeter les vecteurs dans \mathcal{R}_0 :

$$\overrightarrow{O_0G}(t) = a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\overrightarrow{i_1} - \sin\beta(t)\overrightarrow{k_1}\right) + c\left(\cos\beta(t)\overrightarrow{k_1} + \sin\beta(t)\overrightarrow{i_1}\right)$$

$$= a\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) + b\left(\cos\beta(t)\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right) - \sin\beta(t)\overrightarrow{k_0}\right)$$

$$+ c\left(\cos\beta(t)\overrightarrow{k_0} + \sin\beta(t)\left(\cos\alpha(t)\overrightarrow{i_0} + \sin\alpha(t)\overrightarrow{j_0}\right)\right)$$

$$= \begin{bmatrix} a\cos\alpha(t) + b\cos\beta(t)\cos\alpha(t) + c\sin\beta(t)\cos\alpha(t) \\ a\sin\alpha(t) + b\cos\beta(t)\sin\alpha(t) + c\sin\beta(t)\sin\alpha(t) \\ -b\sin\beta(t) + c\cos\beta(t) \end{bmatrix}_{\mathcal{R}_0}$$

On a ainsi l'équation paramétrique de la position du point *G*.

Cinématique

Question 2 Calculer $V(G \in S_2/S_0)$.

Accélération

Question 3 Calculer $\Gamma(G \in S_2/S_0)$.

Correction Méthode 1 – PAS RECOMMANDE Par définition,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \left[\frac{\overrightarrow{dO_0O_1(t)}}{\overrightarrow{dt}} \right]_{\mathcal{R}_0} = \left[\frac{\overrightarrow{d(a\overrightarrow{i_1})}}{\overrightarrow{dt}} \right]_{\mathcal{R}_0} = a \left[\frac{\overrightarrow{di_1}}{\overrightarrow{dt}} \right]_{\mathcal{R}_0}$$

On a:

$$\begin{split} \left[\frac{\operatorname{d}\overrightarrow{i_{1}}}{\operatorname{d}t} \right]_{\mathcal{R}_{0}} &= \left[\frac{\operatorname{d} \left(\cos \alpha(t) \overrightarrow{i_{0}} + \sin \alpha(t) \overrightarrow{j_{0}} \right)}{\operatorname{d}t} \right]_{\mathcal{R}_{0}} = \left[\frac{\operatorname{d} \cos \alpha(t) \overrightarrow{i_{0}}}{\operatorname{d}t} \right]_{\mathcal{R}_{0}} + \left[\frac{\operatorname{d} \sin \alpha(t) \overrightarrow{j_{0}}}{\operatorname{d}t} \right]_{\mathcal{R}_{0}} \\ &= \frac{\operatorname{d} \cos \alpha(t)}{\operatorname{d}t} \overrightarrow{i_{0}} + \cos \alpha(t) \underbrace{\left[\frac{\operatorname{d} \overrightarrow{i_{0}}}{\operatorname{d}t} \right]_{\mathcal{R}_{0}}}_{\overrightarrow{0}} + \frac{\operatorname{d} \sin \alpha(t)}{\operatorname{d}t} \overrightarrow{i_{0}} + \sin(t) \underbrace{\left[\frac{\operatorname{d} \overrightarrow{j_{0}}}{\operatorname{d}t} \right]_{\mathcal{R}_{0}}}_{\overrightarrow{0}} \\ &= -\dot{\alpha}(t) \sin \alpha(t) \overrightarrow{i_{0}} + \dot{\alpha}(t) \cos \alpha(t) \overrightarrow{j_{0}} = \dot{\alpha}(t) \overrightarrow{j_{1}} \end{split}$$

Ainsi,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \begin{bmatrix} -a\dot{\alpha}(t)\sin\alpha(t) \\ a\dot{\alpha}(t)\cos\alpha(t) \\ 0 \end{bmatrix}_{\Re_0} = \begin{bmatrix} 0 \\ a\dot{\alpha}(t) \\ 0 \end{bmatrix}_{\Re_1}$$

Dans les deux cas, $\overrightarrow{O_0O_1}(t)$ est dérivé par rapport \mathcal{R}_0 mais il s'exprime différemment dans \mathcal{R}_0 et \mathcal{R}_1 :

- $\overrightarrow{V(O_1 \in S_1/S_0)} = -a\dot{\alpha}(t)\sin{\alpha(t)}\overrightarrow{i_0} + a\dot{\alpha}(t)\cos{\alpha(t)}\overrightarrow{j_0}$: ici la base de **projection** et de **dérivation** est la base \mathscr{B}_0 ;
- $\overrightarrow{V(O_1 \in S_1/S_0)} = a\dot{\alpha}(t)\overrightarrow{j_1}$: ici la base de dérivation est la base \mathscr{B}_0 et la base de projection est \mathscr{B}_1 .

Méthode 2 - Utilisation de la dérivation vectorielle.

Calcul de $V(O_1 \in S_1/S_0)$.

On rappelle que:

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a \left[\frac{d\overrightarrow{i_1}}{dt} \right]_{\mathcal{R}_0}$$

2

Le calcul de $\left[\frac{d\overrightarrow{i_1}}{dt}\right]_{\mathcal{R}_0}$ peut donc être réalisé ainsi :

$$\left[\frac{\operatorname{d}\overrightarrow{i_1}}{\operatorname{d}t}\right]_{\mathcal{R}_0} = \underbrace{\left[\frac{\operatorname{d}\overrightarrow{i_1}}{\operatorname{d}t}\right]_{\mathcal{R}_1}}_{\Omega} + \underbrace{\Omega(S_1/S_0)} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\alpha} \overrightarrow{j_1}$$

Ainsi

$$\overrightarrow{V(O_1 \in S_1/S_0)} = a\dot{\alpha}\overrightarrow{j_1}$$

Méthode 3 – Calcul de $\overrightarrow{V(O_1 \in S_1/S_0)}$.

 S_1 et S_0 sont en liaison pivot de centre O_0 , on a donc : $\overrightarrow{V(O_0 \in S_1/S_0)} = \overrightarrow{0}$. En conséquence,

$$\overrightarrow{V(O_1 \in S_1/S_0)} = \overrightarrow{V(O_0 \in S_1/S_0)} + \overrightarrow{O_1O_0} \wedge \overrightarrow{\Omega(S_1/S_0)} = \overrightarrow{0} - a \overrightarrow{i_1} \wedge \left(\dot{\alpha} \overrightarrow{k_0} \right) = a \dot{\alpha} \overrightarrow{j_1}$$

Correction Calcul de $V(G \in S_2/S_0)$.

On a:

$$\overrightarrow{V(G \in S_2/S_0)} = \overrightarrow{V(G \in S_2/S_1)} + \overrightarrow{V(G \in S_1/S_0)}$$

Calculons $\overrightarrow{V(G \in S_1/S_0)}$:

$$\overrightarrow{V(G \in S_1/S_0)} = \overrightarrow{V(O_1 \in S_1/S_0)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_1/S_0)} = a \dot{\alpha} \overrightarrow{j_1} - \left(b \overrightarrow{i_2} + c \overrightarrow{k_2}\right) \wedge \left(\dot{\alpha} \overrightarrow{k_0}\right)$$

$$\overrightarrow{V(G \in S_1/S_0)} = a\dot{\alpha}\overrightarrow{j_1} + b\dot{\alpha}\sin(\beta + \pi/2)\overrightarrow{j_1} + c\dot{\alpha}\sin\beta\overrightarrow{j_1} = \dot{\alpha}(a + b\cos\beta + c\sin\beta)\overrightarrow{j_1}$$

Par ailleurs calculons $\overrightarrow{V(G \in S_2/S_1)}$:

$$\overrightarrow{V(G \in S_2/S_1)} = \overrightarrow{V(O_1 \in S_2/S_1)} + \overrightarrow{GO_1} \wedge \overrightarrow{\Omega(S_2/S_1)} = -\left(\overrightarrow{b} \overrightarrow{i_2} + \overrightarrow{c} \overrightarrow{k_2}\right) \wedge \left(\overrightarrow{\beta} \overrightarrow{j_1}\right) = -\overrightarrow{\beta} \left(\overrightarrow{b} \overrightarrow{k_2} - \overrightarrow{c} \overrightarrow{i_2}\right)$$

Au final,

$$\overrightarrow{V(G \in S_2/S_0)} = \dot{\alpha} \left(a + b \cos \beta + c \sin \beta \right) \overrightarrow{j_1} - \dot{\beta} \left(b \overrightarrow{k_2} - c \overrightarrow{i_2} \right)$$

Il est aussi possible de calculer $\overrightarrow{V(G \in S_2/S_0)}$ ainsi :

$$\overrightarrow{V(G \in S_2/S_0)} = \left[\frac{d\overrightarrow{O_0G}}{dt}\right]_{\mathcal{R}_0}$$