PROOF FOR LEMMA 1

here

$$T_{i} \triangleq \frac{N}{\log\left(1 + \frac{p_{i} \circ w}{p_{No}} + h_{i} \cdot l^{2}\right)},$$

$$R_n \leq \log\left(1 + \frac{P_n^{ow} |h_n|^2}{P_m^{ow} |h_m|^2 + P_N}\right)$$

$$\frac{\int_{0}^{\infty} \int_{0}^{\infty} \left(1 + \frac{\int_{0}^{\infty} \left(1 + \int_{0}^{\infty} \left(1$$

$$\frac{\int_{m}^{2} \left| \int_{m}^{2} \left| h_{m} \right|^{2}}{\int_{m}^{2} \left| h_{m} \right|^{2}} \right| \leq \frac{\int_{m}^{2} \left| h_{m} \right|^{2}}{\int_{m}^{2} \left| h_{m} \right|^{2}}$$

$$\frac{\int_{m}^{2} \left(|h_{m}|^{2} \right) \frac{\int_{m}^{2} |h_{m}|^{2} + \int_{m}^{2} |h_{m}|^{2}}{\int_{m}^{2} \int_{m}^{2} |h_{m}|^{2}}$$

	Date
	There is an implicit constraint,
	$\frac{ h_m ^2}{ h_m ^2}$
	So the event \[\left\{ h_m ^2 \geq \frac{g_m}{s_n} h_m ^2 + \frac{g_m}{s_n} h_m ^4 \right\} \] Can be divided into the following two events:
	I hn 12 2 Sm Ihm 12 + Sm Ihm 15 }
	$= \left\{ \frac{ h_{m} ^{2}}{ h_{m} ^{2}}, \frac{ h_{m} ^{2}}{ h_{m} ^{2}} \right\} \frac{ h_{m} ^{2}}{ h_{m} ^{2}} + \frac{ h_{m} ^{2}}{ h_{m} ^{2}} $
	t d 1 hm 12 > 5m (hm) + 5m (hm) 5 8n (hm) + 5m (hm) 5
	8m hm 2 + 8m hm 4 2 hm 2 m 2
	the case with In > Sm, where the results for the case with In < Sm can be obtained similarly.
	Pn=p(hm ²) Sm hm ² + Sm hm , hm >8n-8.
	+ P(1hn/2)/hm/2, 1hm/2/8n-8m
	T ₂
Street Street St.	

INNOVATIVE IDEA

Considering Mobility Primory User Secondary Urer static / Low mobility d, - Constant ohonging Elowly Su(t)dt, where u(t) follows log-normal distribution

For best pairing (ore of NOMA

Cerrong & weak wrest), we consider

one wer near to PU & other for from PU. PDF of SNR distribution -> From article, the correlated Naleagomi-n of arbitraily correlated Nakagomi-no (with mobility) for plan was is:- $P_{\chi_{i}}(\chi_{i}) = \left(\frac{\chi_{i}}{T}\right)^{d} \left(\frac{1}{T}\right)^{d} \left(\frac{1$ (1-det(A)) d.(L-1) T (Lm) -) For uson who is for, $P_{\mathcal{T}_{2}}(\mathcal{T}_{2}) = \left(\frac{\mathcal{T}_{2}m}{\mathcal{T}}\right)^{d(Lm-1)} \left(\frac{1}{\mathcal{T}_{x}}(\det(\Lambda))\right)^{d} \times \beta$ $= \left(\det(\Lambda)\right)^{d_{2}(L-1)} \left(d^{1}\right)$

For best pairing, we con uso those Joint Probability 1 = 16 Pg (8,) X Pg (72-) Considering idea independent among cadi other Intergration of above con find offloading for mobile were also. After double equation, we probability.