

The team

Luigi Bonati

Simone Perego

Pedro Buigues

Pietro Novelli

Riccardo Grazzi

Massimiliano Pontil

Atomistic Simulations

Machine Learning

Italian Institute of Technology, Genoa, Italy

- 1. Search candidate configurations
- 2. Improve *energy* estimation
- 3. Take the lowest minima

- 1. Search candidate configurations
- 2. Improve energy estimation
- Take the lowest minima

Local and global optimization schemes with different ML potentials ¹

¹ EquiformerV2, GemNet-OC and eSCN (OC20 2M)

(Constrained) Minima Hopping

- (High temperature) molecular dynamics
- BFGS to minimize

Constraints are needed to avoid changing the molecular identity

(Constrained) Minima Hopping

- (High temperature) molecular dynamics
- BFGS to minimize

Constraints are needed to avoid changing the molecular identity

(Constrained) Minima Hopping

- (High temperature) molecular dynamics
- BFGS to minimize

Constraints are needed to avoid changing the molecular identity

General constraints to preserve molecular identity

Steer optimization towards physically relevant configurations

Dissociation

Desorption and Intercalation

Surface Reconstruction

Generalized Hookean constraints based on contact matrix built from covalent radii

General constraints to preserve molecular identity

Steer optimization towards physically relevant configurations.

Model	Anomalies	Dissociated	Desorbed	Intercalated	Reconstructed
Baseline	19.3%	0.3%	10.1%	2.3%	8.8%
Our approach	12.4%	0.0%	2.9%	2.0%	8.7 %

- 1. Search candidate configurations
- 2. Improve energy estimation
- Take the lowest minima

# systems $E_{ML}(x) < E_{DFT} + 0.1 \text{ eV}$					
BFGS	79.5 %				
BFGS + constraints	82.1 %				
BFGS + Constraints + Minima Hopping	87 .2 %				

Local and global optimization schemes with different ML potentials ¹

Results on the (balanced) validation dataset.

- 1. Search candidate configurations
- 2. Improve energy estimation
- 3. Take the lowest minima

Original idea:

Fine-tune a pre-trained ML model.

(discarded - too costly)

- Search candidate configurations
- 2. Improve energy estimation
- 3. Take the lowest minima

Our approach:

ML models are wrong in different ways

Ensembling

Uncertainty filtering

Improving energy estimation

Improving energy estimation via ensembling

Assumption: the spread of ML predictions is a proxy of their quality

Standard deviation Range (*max - min*)

 $|E_{
m ML}-E_{
m DFT}|$

Assumption: the spread of ML predictions is a proxy of their quality

Standard deviation Range (*max - min*)

 $|E_{\mathrm{ML}} - E_{\mathrm{DFT}}|$

Assumption: the spread of ML predictions is a proxy of their quality

Standard deviation Range (max - min) $|E_{
m ML} - E_{
m DFT}|$

On validation, around 60 % correlation between spread and DFT error.

Improving energy estimation via ensembling

- 1. Search candidate configurations
- 2. Improve energy estimation
- 3. Take the lowest minima

# configs. $ E_{ML} - E_{DFT} < 0.1 \text{ eV}$				
EquiformerV2	75.1 %			
Ensembling	77.5 %			
Ensembling +Filtering	92.4 %			

Our approach:

ML models are wrong in different ways

Ensembling

Uncertainty filtering

- 1. Search candidate configurations
- 2. Improve energy estimation
- 3. Take the lowest minima

- 1. Search candidate configurations
- 2. Improve energy estimation
- 3. Take the lowest minima

Thank you!