Artificial Intelligence II

CSC 720—Spring 2010

Jon Doyle

Department of Computer Science North Carolina State University

January 12, 2011

NC State University

1 / 400

Artificial Intelligence I

Course introduction

NC State University

14 / 400

Artificial Intelligence II

What is this course about again?

- Logical, economic, psychological, social, environmental, and mechanical conceptions of
 - Rationality and irrationality
 - Knowledge, belief, and uncertainty
 - Desire, preference, intention, and motivation
 - · Planning, deliberation, action, and self-management
 - Learning and knowledge acquisition
 - · Consciousness and personhood
 - Representation, embodiment, and self-government
- Understanding the structure and principles of artificial agents
 - Theoretical understanding and foundations
 - Illuminating applications

NC State University

15 / 400

Artificial Intelligence

Big problems

Big problems

Al as automation of all human knowledge and skills

- Big problems are the main problems of each field of knowledge
- Politics, economics, psychology, biology, philosophy, etc.
- For example, economics studies rational action (resource allocation), at both individual and group level

Big questions concerning

- Types, origins, and characteristics of intelligence
- · Effects of artificial intelligence

NC State University

16 / 400

Artificial Intelligence © 2010 by Jon Doyl Big problems Type

Types of intelligence

- Human
- Animal
- Plant?
- Inanimate?
- Machine?
 - Equal to any of these?
 - Possibly superhuman?
- Different kinds of human minds?
- Social and organizational

NC State University

17 / 400

Artificial Intelligence
© 2010 by Jon Doy

Big problem

Origins

Origins of intelligence

- Increasing size and complexity
- Increasing breadth and depth
- Nature versus nurture

NC State University

18 / 400

Artificial Intelligence

Big problems Origins

Increasing size and complexity

- Size alone?
 - · A bigger pile of sand is just a pile of sand
- Complexity alone?
 - · Erdös and Spencer random graph theorem

NC State University

19 / 400

Artificial Intelligence I

Big problem

Origins

Increasing breadth and depth

- Expert systems "smart" about one thing, dumb otherwise
- Add depth to narrow intelligence?
 - Still dumb?
- Add breadth (more narrow things)?
 - Ever get intelligence?
- Is intelligence approximable?
 - If so, by what sorts of limiting processes?
 - depth = closer approximation to particular human skills
 - breadth = closer approximation to variety of skills

NC State University

20 / 400

Artificial Intelligence
© 2010 by Jon Doyl

Nature versus nurture

- Locke's blank slate: initial structure knows nothing, learns all
 - Structure = knowledge?
 - Universal Turing Machines?
 - Minsky's 2 symbol, 7 state UTM
- Chomsky's innate knowledge of language structure
 - Infant language learning of ≈ 16 bits
- Reverse time; chisel away at an intelligent person
 - Remove eyes; still intelligent?
 - Remove all senses; still intelligent?
 - Even if from conception?
 - Paralyze all voluntary muscles; still intelligent?
 - Remove particular neurons or bits of brain
 - Old-age memory loss, stroke victims; still intelligent?

NC State University

21 / 400

Artificial Intelligence II

Characteristics of intelligence

- Rationality
- Knowledge and skills
- Consciousness?
 - Intelligence without consciousness?
 - · Consciousness without intelligence?
- Comprehensibility and content
 - Is there simple underlying structure we can uncover?
 - Or is intelligence a "kluge"?
 - Chaitin/Kolmogorov information content
 - Logic ≠ knowledge
 - Knowledge is nonlogical

NC State University

22 / 400

Big problems Characteristics

Characteristics of intelligence

- Personhood and humanity
 - Is an intelligent thing a person?
 - Do we need to care about it?
- Personality and character
- Adaptiveness
 - Is something that stops learning still intelligent?
 - That learns some things but not others?
- Emergence and reducibility
- · Computability?
 - With ordinary computers?
 - With hypercomputation?

NC State University

23 / 400

Artificial Intelligence I

Big problem

Effects

Effects of intelligence

- How do people change in the brave new world?
 - All technology changes how humans live and think
- Does it change human nature?
 - What if no one has to reason (plan, choose, etc.) any more?

Research methodology

General research questions

- What should we aim for?
 - What is desirable, computability aside?
- What can we aim for?
 - · What is feasible?
- How do we get there?
 - What are the subproblems and approximations?

NC State University

25 / 400

Artificial Intelligence II

Research methodology

Always ask

- What does it mean?
- Is it true?
- · Why should we be interested in that?
- Does it make a difference?
- What difference does it make?
- Do the details matter?
- Would infinite instantaneous computation solve the problem?

NC State University

26 / 400

Artificial Intelligence