1. (20%) Teacher Forcing:

請嘗試移除 Teacher Forcing, 並分析結果。

可以觀察到完全沒有 teacher forcing 的話在 valid set 和 test set 最後的結果都會比較差。

2. (30%) Attention Mechanism:

請詳細說明實做 attention mechanism 的計算方式,並分析結果。

我實做的是 additive/concat attention,架構如上圖所示。訓練的結果如下:

	Full(with attn) no_attn	
Best valid BLEU	0.643	0.569
Test BLEU	0.623	0.549

可以觀察到 attention mechanism 可以大大提升 model 的表現(BLEU score)。

如果我們把 attention weight 畫出來的話(如上圖),可以發現 model 大概有抓到字的對應關係(「低估」對到 underestimate,「力量」對到 power)。

3. (30%) Beam Search:

請詳細說明實做 beam search 的方法及參數設定,並分析結果。

可以觀察到對於各種不同的 model·beam search 都可以些微提升原本的 BLEU score(exponential 在圖上較不明顯,但實際上有一點點);但隨著 beam size 的增大·marginal improvement 也逐漸變小,甚至小於零(full 2->3·linear 3->4 等等)。這可能是因為機率最大的句子不代表他的 BLEU score 一定比較好。

4. (20%) Schedule Sampling:

請至少實做 3 種 schedule sampling 的函數,並分析結果。

	full	linear	exponential	inv_sigmoid	none
Best valid BLEU	0.643	0.639	0.596	0.645	0.601
Test BLEU	0.623	0.619	0.580	0.615	0.591

其中 full 為全用 teacher forcing,none 為完全 沒有 teacher forcing。我這邊都有使用 attention mechanism。

可以觀察到三種不同的 function 都沒有表現的比 full 還來得好,其中 exp 甚至比 none 還來得差一些。我想原因有一部份是這個 dataset 不難 train(連 none 都可以 train 到 0.601)。而 exp 這麼差的原因我猜可能是因為 prob 降得太快,導致 model 還沒學到足夠多的東西就靠自己了,這樣比從剛開始就靠自己來得差(從上圖可以看到 exp 在大概 epoch 5 的時候有個陡降)。

