Classification of Leukocytes with Deep Learning

Christian Geils

Dataset

Dataset - Unbalanced

Data Representation

Data Transformation(s)

Model Choice: ResNet Family

- Deep CNNs
 - 2D convolutions
 - Skip connections
 - Max 7 avg. pooling
- 3 models: 18, 34, 50
- Pre-training + transfer learning/fine-tuning
- Possible: much smaller CNN w/ grayscale input; efficiency

Model Architecture: Convolution

Model Architecture: Residual Block

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Figure 2. Residual learning: a building block.

Model Training Workflow Details

- Split: stratified, 75/15/10 train/validation/test
 - Select model based on minimum validation loss, all final evals on test
- Hardware: Nvidia V100 (16 Gb VRAM), 2 x Xeon Platinum 32-core 2.6GHz processors, 128 Gb RAM (my school's HPC cluster)
- Hyperparameters:
 - Learning rate: 1e-5
 - L2 penalty: 1e-4
 - 25 epochs
 - Batch size of 32
 - Optimizer: ADAM
 - Loss function: Cross-Entropy, weighted by (total samples / class count)
- Time to train: 8.93 min (ResNet-18),10.55 min (ResNet-34), 17.48 min (ResNet-50)

Model Training Results: Test Set Comparison: Performance of Validate

- Same splits for all models
- N=1, not very scientific. Ideally would repeat training over many trials and do a t-test for H₀: μ_{diff} = 0

Model Training Results – More Classification Metrics for ResNet-18

	Basophil	Neutrophil	Monocyte	Eosinophil	Lymphocyte	accuracy	macro avg	weighted avg
precision	1	0.888	0.967	0.971	0.995	0.981	0.964	0.981
<u>recall</u>	1	0.963	0.989	0.848	0.989	0.981	0.958	0.981
f1-score	1	0.924	0.978	0.905	0.992	0.981	0.960	0.981
support	30	107	361	79	1087	0.981	1664	1664

Model Inference via CLI - Python

...code...

Tech Stack

- Python
 - NumPy
 - PyTorch (+ torchvision)
 - Torchvision
 - Pandas
 - Scikit-Learn
 - Matplotlib + Seaborn
- My school's HPC system

The End!