Objective

- The main objective of this project is to predict wine quality using machine learning algorithms and analyze which model provides better accuracy by comparing the results.
- The first step will be doing an Exploratory Data Analysis and preparing the dataset for ML algos by splitting the dataset into train and test datasets.
- Later, different ML algorithms will be trained on the training dataset and then used for prediction on the test dataset.
- Finally, all the results will be compared on the accuracy to identify the best-suited model to predict the wine quality.

1. Importing the required libraries and modules

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix, accuracy_score

import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

2. Loading the dataset and basic exploration

```
In [2]: df = pd.read_csv("QualityPrediction.csv")
    df.head() #verifying the dataset
```

Out[2]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
	4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

get the basic info about the dataset, such as no of records, no of features, and data type of the features

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

Observations:

• there are 1599 records and 11 (Independent Variables) + 1 (Target Variable) features.

• all features are numeric and in float expect quality which is the target variable.

based on info() it seems there are no missing values, lets's confirm it

In [4]:	df.isnull().sum()											
Out[4]:	volati citric residu chlori free s total densit pH sulpha alcoho qualit dtype:	ual sugar ides sulfur dioxi sulfur diox Ey ates ol										
In [5]:	ui ·ue:	scribe()										
In [5]: Out[5]:	ur .ue:	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
	count	fixed		citric acid 1599.000000		chlorides 1599.000000			density 1599.000000	pH 1599.000000	sulphates 1599.000000	alcohol 1599.000000
		fixed acidity	acidity		sugar		dioxide	dioxide				
	count	fixed acidity	acidity 1599.000000	1599.000000	sugar 1599.000000	1599.000000	dioxide 1599.000000	dioxide 1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
	count	fixed acidity 1599.000000 8.319637	acidity 1599.000000 0.527821	1599.000000 0.270976	sugar 1599.000000 2.538806	1599.000000 0.087467	dioxide 1599.000000 15.874922	dioxide 1599.000000 46.467792	1599.000000	1599.000000	1599.000000	1599.000000 10.422983
	count mean std	fixed acidity 1599.000000 8.319637 1.741096	acidity 1599.000000 0.527821 0.179060	1599.000000 0.270976 0.194801	sugar 1599.000000 2.538806 1.409928	1599.000000 0.087467 0.047065	dioxide 1599.000000 15.874922 10.460157	dioxide 1599.000000 46.467792 32.895324	1599.000000 0.996747 0.001887	1599.000000 3.311113 0.154386	1599.000000 0.658149 0.169507	1599.000000 10.422983 1.065668
	count mean std min	fixed acidity 1599.000000 8.319637 1.741096 4.600000	acidity 1599.000000 0.527821 0.179060 0.120000	1599.000000 0.270976 0.194801 0.000000	sugar 1599.000000 2.538806 1.409928 0.900000	1599.000000 0.087467 0.047065 0.012000	dioxide 1599.000000 15.874922 10.460157 1.000000	dioxide 1599.000000 46.467792 32.895324 6.000000	1599.000000 0.996747 0.001887 0.990070	1599.000000 3.311113 0.154386 2.740000	1599.000000 0.658149 0.169507 0.330000	1599.000000 10.422983 1.065668 8.400000
	count mean std min 25%	fixed acidity 1599.000000 8.319637 1.741096 4.600000 7.100000	acidity 1599.000000 0.527821 0.179060 0.120000 0.390000	1599.000000 0.270976 0.194801 0.000000 0.090000	sugar 1599.000000 2.538806 1.409928 0.900000 1.900000	1599.000000 0.087467 0.047065 0.012000 0.070000	dioxide 1599.000000 15.874922 10.460157 1.000000 7.000000	dioxide 1599.000000 46.467792 32.895324 6.000000 22.000000	1599.000000 0.996747 0.001887 0.990070 0.995600	1599.000000 3.311113 0.154386 2.740000 3.210000	1599.000000 0.658149 0.169507 0.330000 0.550000	1599.000000 10.422983 1.065668 8.400000 9.500000
	count mean std min 25% 50%	fixed acidity 1599.000000 8.319637 1.741096 4.600000 7.100000 7.900000	acidity 1599.000000 0.527821 0.179060 0.120000 0.390000 0.520000	1599.000000 0.270976 0.194801 0.000000 0.090000 0.260000	sugar 1599.000000 2.538806 1.409928 0.900000 1.900000	1599.000000 0.087467 0.047065 0.012000 0.070000 0.079000	dioxide 1599.000000 15.874922 10.460157 1.000000 7.000000 14.000000	dioxide 1599.000000 46.467792 32.895324 6.000000 22.000000 38.000000	1599.000000 0.996747 0.001887 0.990070 0.995600 0.996750	1599.000000 3.311113 0.154386 2.740000 3.210000 3.310000	1599.000000 0.658149 0.169507 0.330000 0.550000 0.620000	1599.000000 10.422983 1.065668 8.400000 9.500000 10.200000

3. Let's explore target variable - quality

```
In [6]: df.quality.value_counts()
             681
Out[6]:
             638
             199
        7
              53
              18
              10
        Name: quality, dtype: int64
In [7]: #Calculating the percentages for each unique quality value
        df.quality.value counts()/len(df) * 100
             42,589118
Out[7]:
             39.899937
             12.445278
              3.314572
        8
              1.125704
              0.625391
        Name: quality, dtype: float64
```

Creating a function to plot histogram so that we can use it easily multiple times for diff features

```
In [8]:

def get_distplot(col):
    ax = sns.distplot(df[col], bins = 6)
    Q1 = np.percentile(df[col],25)
    Q3 = np.percentile(df[col],75)
    IQR=Q3-Q1
    lower_threshold = Q1 - 1.5*IQR
    upper_threshold = Q3 + 1.5*IQR

ax.axvline(Q1, color='red', linestyle='-', label="Q1")
    ax.axvline(Q3, color='blue', linestyle='-', label="Q3")
    ax.axvline(lower_threshold, color='yellow', linestyle='-', label="Lower threshold")
    ax.axvline(upper_threshold, color='green', linestyle='-', label="Upper threshold")
    ax.legend()
```

Visualization

```
In [9]: fig = plt.figure(figsize=(18,6))

ax1 = fig.add_subplot(121)
ax1 = sns.countplot(df['quality'])
ax2 = fig.add_subplot(122)
ax2 = get_distplot('quality')
plt.show()
```


- Almost most of the wine in the dataset is of 5 or 6 quality.
- A very small portion of the wine is rated 3 similarly small portions are rated 8
- there are no wines with quality 1,2,9 or 10
- there is an imbalance in the dataset, extreme values high or low both are underrepresented
- mean and median are very close to each other

4. Univariate Exploaration

Let's check the distribution of each of the features by using a histogram

```
In [10]: for i in df.columns:
    f, (ax1) = plt.subplots(1,1,figsize=(10,5))
    ax1 = get_distplot(i)
```


Let's check the outliers using boxplot

```
In [11]: # create box plots
fig, ax = plt.subplots(ncols=4, nrows=3, figsize=(12,12))
index = 0
ax = ax.flatten()

for col in df.columns:
    sns.boxplot(y=col, data=df, ax=ax[index], color='r')
    plt.subplots_adjust(wspace = .5)
    index += 1
```


- From the histogram, we can see that feature density and pH are normally distributed
- Most of the remaining features are right-skewed.
- From boxplot its observed that outliers can be observed in almost all the features
- alcohol, citric acid, and volatile acidity has a very small no of outliers so safe to assume it won't affect the model

5. Bivariate Exploaration

Analysing the features with respect to quality

```
In [12]: x = df.drop(columns="quality")
fig, axs = plt.subplots(4,3, figsize=(20,20))
fig.patch.set_facecolor('white')
attributes = x.columns
att = 0
for i in range(4):
    for j in range(3):
        try:
            sns.barplot(x="quality", y=attributes[att], data=df, estimator=np.mean, ax=axs[i][j])
        except: #to handle index value 11
            print()
        att += 1
```


- volatile acidity and chlorides shows downward trend hence inversely proportional to quality.
- Citric Acid, sulfate, and alcohol shows upward trend and are directly proportional to quality.
- Density, Residual sugar, and pH have no or little impact on quality
- free sulfur and total sulfur have similar kinds of impact

Correlation coefficient

```
In [13]: c = df.corr()
c
```

Out[13]:

:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668	0.124052
	volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288	-0.390558
	citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903	0.226373
	residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075	0.013732
	chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141	-0.128907
	free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408	-0.050656
	total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654	-0.185100
	density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180	-0.174919
	рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633	-0.057731
	sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595	0.251397
	alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.205633	0.093595	1.000000	0.476166
	quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.057731	0.251397	0.476166	1.000000

```
In [14]: plt.figure(figsize=(10, 8))
sns.heatmap(c, cmap = 'coolwarm', annot = True)
```

Out[14]: <AxesSubplot:>

- There is no strong correlation between quality and the other features. Notables are alcohol, sulfate, citric acid, and volatile acidity.
- Quality has a moderate positive correlation with alcohol and a weak positive correlation with fixed acidity, sulfate, and citric acid
- Quality has a moderate negative correlation with volatile acidity
- Free sulfur dioxide and total sulfur dioxide appear to be multicollinear we can drop one of them

6. Conclusion of EDA

- The dataset provided appears to be pretty clean, with no missing values observed.
- All independent variables are numeric and the target value is classification based so we can apply logistic regression algorithms
- To have a good quality, wine must contain a good portion of citric acid, sulfate, and alcohol. Volatile acidity and chlorides amount must be kept low.
- Free sulfur dioxide and total sulfur dioxide have an almost similar impact on quality hence are multicollinear thus one of them can be dropped during training and testing.
- Density, Residual Sugar and pH have no direct impact on quality but have correlations with other features so should be kept in the data as of now.

7. Preprocessing Data

```
In [15]: #first copy the original dataset to maintain backup

dfML = df.copy()
    dfML.head()
```

Out[15]:

0	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

Feature Encoding

Let's convert the target variable quality to the bivariate variable using feature encoding. This will help later to compare the confusion matrix for each applied model.

Train Test data splitting

- Here the dataset will first need to be separated into X = independent variables and y = target variable.
- Then dataset will be split into train and test datasets. We will use 80 20 split
- random_state = 42 is used for reproduction
- Fun Fact: Number 42 is used as an inside joke in the scientific and sci-fi community and it is derived from 'Hitchhiker's Guide to the Galaxy. The number 42 also has a Wikipedia page for many pop culture references.

```
In [18]: X = dfML.drop('quality', axis = 1)
y = dfML['quality']

In [19]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
```

Feature Scaling

Applying Standard scaling to get optimized result

```
In [20]: sc = StandardScaler()
In [21]: X_train = sc.fit_transform(X_train)
X_test = sc.fit_transform(X_test)
```

8. Applying ML models

Creating a function to do common tasks performed while applying the model so that we can reduce code repetition.

```
In [22]: # First initialize the list variables to store different outputs
         # We will use this later to compare all the different ML alorithms
         lst model = []
         lst accuracy = []
         lst accuracy train = []
         lst accuracy test = []
         lst cv score = []
         lst TP = []
         lst TN = []
         lst FP = []
         lst_FN = []
         # fuction : accepts input model which is nothing but object instantiated of an algos
         def applyMLmodel(model):
             # train the model
             model.fit(X train, y train)
             accuracy = model.score(X test, y test) * 100
             lst accuracy.append(accuracy)
             print("Accuracy :", accuracy)
             # cross-validation , y train.ravel() is similar to y train.reshape(-1)
             cv = cross val score(estimator = model, X = X train, y = y train.ravel(), cv = 10)
             lst cv score.append(cv.mean())
             print("CV Score :", cv.mean())
              # predicting accuracy for training data set
             y pred train = model.predict(X train)
              accuracy train = accuracy score(y train, y pred train)
             lst accuracy train.append(accuracy train)
              print("Accuracy(Training) :", accuracy train)
             # predicting accuracy for test data set
             y pred test = model.predict(X test)
             accuracy test = accuracy score(y test, y pred test)
             lst accuracy test.append(accuracy test)
             print("Accuracy(Test) :", accuracy_test)
```

```
# confusion matrix
cm = confusion_matrix(y_test, y_pred_test)
print("Confusion Matrix :")
print(cm)

# storing TN,TP,FN and FP as a part of list
lst_TN.append(cm[0,0])
lst_FP.append(cm[0,1])
lst_FN.append(cm[1,0])
lst_TP.append(cm[1,0])
```

LogisticRegression

DecisionTreeClassifier

RandomForestClassifier

KNearest

[12 261]]

```
In [26]: model =KNeighborsClassifier()
applyMLmodel(model)
lst_model.append("KNeighborsClassifier")

Accuracy : 87.5
CV Score : 0.8725701279527559
Accuracy(Training) : 0.9124315871774824
Accuracy(Test) : 0.875
Confusion Matrix :
[[ 19  28]
```

GaussianNB - Naive Bayes

```
In [27]: model = GaussianNB()
    applyMLmodel(model)
    lst_model.append("GaussianNB")

Accuracy : 85.3125
    CV Score : 0.8373462106299213
    Accuracy(Training) : 0.8389366692728695
    Accuracy(Test) : 0.853125
    Confusion Matrix :
    [[ 35     12]
        [ 35     238]]
```

9. Comparing the results of ML algorithms

We will first convert all the list of outputs into dataframe which will be easy to compare and visuallize

Out[28]:		Model	Accuracy	Accuracy(Training)	Accuracy(Test)	CV Score	True Positive	True Negative	False Positive	False Negative
	0	LogisticRegression	87.5000	0.885848	0.875000	0.885858	268	12	35	5
	1	DecisionTreeClassifier	84.3750	1.000000	0.843750	0.869470	248	22	25	25
	2	RandomForestClassifier	88.7500	1.000000	0.887500	0.910107	264	20	27	9
	3	KNeighborsClassifier	87.5000	0.912432	0.875000	0.872570	261	19	28	12
	4	GaussianNB	85.3125	0.838937	0.853125	0.837346	238	35	12	35

Comparing the outputs using visalization

```
In [29]: fig, ax = plt.subplots(2,2, figsize=(24,14))
plt.subplots_adjust(wspace = .25, hspace = .25)
#comparing CV score
predictiondf.sort_values(by=['CV Score'], ascending=False, inplace=True)

sns.barplot(x='CV Score', y='Model', data = predictiondf, ax = ax[0][0])
ax[0][0].set_xlabel('Cross-Validaton Score', size=16)
ax[0][0].set_ylabel('Model')
ax[0][0].set_xlim(0,1.0)
ax[0][0].set_xticks(np.arange(0, 1.1, 0.1))
```

```
#comparing accuracy
predictiondf.sort values(by=['Accuracy'], ascending=False, inplace=True)
sns.barplot(x='Accuracy', y='Model', data = predictiondf, ax = ax[0][1])
ax[0][1].set xlabel('Accuracy', size=16)
ax[0][1].set vlabel('Model')
#comparing accuracy(training)
predictiondf.sort values(by=['Accuracy(Training)'], ascending=False, inplace=True)
sns.barplot(x='Accuracy(Training)', y='Model', data = predictiondf, palette='Blues d', ax = ax[1][0])
ax[1][0].set xlabel('Accuracy(Training)', size=16)
ax[1][0].set ylabel('Model')
ax[1][0].set xlim(0,1.0)
ax[1][0].set xticks(np.arange(0, 1.1, 0.1))
#comparing accuracy(testing)
predictiondf.sort values(by=['Accuracy(Test)'], ascending=False, inplace=True)
sns.barplot(x='Accuracy(Test)', y='Model', data = predictiondf, palette='Reds d', ax = ax[1][1])
ax[1][1].set xlabel('Accuracy(Test)', size=16)
ax[1][1].set_ylabel('Model')
ax[1][1].set xlim(0,1.0)
ax[1][1].set xticks(np.arange(0, 1.1, 0.1))
plt.show()
```



```
In [30]: # Comparing how many false prediction made by each model
predictiondf.sort_values(by=(['Accuracy(Test)']), ascending=True, inplace=True)

f, axe = plt.subplots(1,1, figsize=(10,8))
sns.barplot(x = predictiondf['Model'], y=predictiondf['False Positive'] + predictiondf['False Negative'], ax = axe)
axe.set_xlabel('Model', size=16)
axe.set_ylabel('False Observations', size=16)

plt.show()
```


- The random Forest algorithm gives the highest CV score and highest accuracy
- K-Neighbor performs consistently across the accuracy but has scored a little low on CV score than other algos.
- GaussianNB model is poor performing on every aspect when compared to other algos.
- The Decision Tree predicts a higher percentage of false predictions, and logistic regression has the least number of false predictions.
- All of the model has accuracy in the range of 84-88, so pretty accurate.