Perturbations and causality in Gaussian latent variable models

Armeen Taeb

ETH Zürich

Collaborators

Peter Bühlmann

Juan Gamella

Christina Heinze-Deml

CA water reservoir network

Reservoirs: central source of water

- o buffer against severe drought
- o hydroelectric power, agriculture, etc.

Water managers must assess:

- likelihood of system-wide failure
- o effectiveness of potential policies

Shasta lake

CA reservoir system

Highly interconnected network

Understand reservoir interdependencies

 $\Rightarrow \mathsf{Graphical} \ \mathsf{models}$

Challenge

Many driving factors are latent

Challenge

Policy decisions based on models without latent variables $\rightarrow {\sf sub\text{-}optimal\ management}$

Accounting for latent variables

Undirected Gaussian graphical model with latent variables:

o Taeb et al., Water Resources Research, 2017

Causal inference with latent variables?

Causal questions

Causal questions are about the mechanism generating the data or predictions after external interventions

E.g. how does change in water level of one reservoir affects water levels of other reservoirs?

Directed acyclic graphs

o Directed acyclic graphs (DAGs) represent causal relations

 Pearl, Spirtes-Glymour-Scheines, Bollen, Dawid, Robins, Richardson, Didelez, Maathuis, . . .

DAGs are useful

- o Encode conditional dependency relationships
- o Causal interpretation: extrapolate to unseen environments

DAGs are useful

o Encode conditional dependency relationships

o Causal interpretation: extrapolate to unseen environments

DAGs are typically unknown and must be learned from data

Objective in a nutshell

Using data, find the causal relations (DAG) among observed X with latent confounding H

i.e. identify solid edges

Linear structural causal models (SCM)

• Generating process for *X* via SCM [Pearl, 2000]:

$$X_j \leftarrow b_j^* X_{\mathsf{pa}(j)} + \gamma_j^* H + \epsilon_j$$
 for all j

i.e. each X_i is expressed as a linear combination of its parents

o Example:

 X_3 is a linear combination of X_1, X_2, H

Linear structural causal models (SCM)

Compact description:

$$X \leftarrow B^*X + \Gamma^*H + \epsilon$$
 ; $B_{i,i}^* = 0 \ \forall \ i$

 \circ B^* : lower triangular (assuming X ordered) with

$$X_k$$
 parent of $X_j \iff B_{j,k}^{\star} \neq 0$

- Γ*: effect of latent variables
- \circ ϵ : noise term with independent components; $\epsilon \perp \!\!\! \perp H$

Goal: identify B^* from data of X

Challenging with observational data alone

$$X \leftarrow B^*X + \Gamma^*H + \epsilon$$

 \circ $\Gamma^{\star}=0$ (i.e. no latent effects): identifiability up to a "Markov equivalence class" [Pearl, 2000]

Challenging with observational data alone

$$X \leftarrow B^*X + \Gamma^*H + \epsilon$$

∘ $\Gamma^* \neq 0$: even harder to identify B^*

 If dense latent effects and sparse DAG, identifiability up to "Markov equivalence class" [Frot et al., 2019]

Interventions

Direct external perturbations on the variables

Exploiting perturbations can be very useful

Improve identifiability and robustness to distributional changes [Bühlmann, Meinshausen, Eberhardt, Schölkopf, Uhler, . . .]

Model and exploit perturbations with unknown strengths and locations

Perturbation model

- ∘ Data (X^e, H^e) from observed environments, experimental conditions or sub-populations $e \in \mathcal{E}$
- Example: reservoir volumes in different "time blocks"

Perturbation model

For every $e \in \mathcal{E}$, X^e is generated according to the SCM:

$$X^{e} \leftarrow B^{*}X^{e} + \Gamma^{*}H^{e} + \epsilon + \delta^{e}$$

$$(H^{e}, \delta^{e}, \epsilon) \text{ jointly independent}$$

 \circ δ^{e} : additive noise interventions independent across coordinates

Why should perturbations help?

$$\text{for all } e \in \mathcal{E}:$$

$$X^e \leftarrow \textit{B*}X^e + \textit{\Gamma*}H^e + \epsilon + \delta^e$$

 B^*, Γ^* are invariant across all $e \in \mathcal{E}$,

 \circ same B^\star, Γ^\star fit data equally well for all $e \in \mathcal{E}$

Data across all $e \in \mathcal{E}$ substantially improves identifiability

Previous work

Method	Perturbed response	Perturbed latents
Imbens, 1997 Peters et al., 2015 Rothenhäusler et al., 2019	×	×
Rothenhäusler et al., 2015	✓	х
Taeb and Bühlmann, 2021	✓	✓

Previously: output a single causal structure \Rightarrow do not give an equivalence class when non-identifiable

Previously: do not directly model the latent effects \Rightarrow reduced identifiability and worse small sample performance

Modeling simplifications

$$\text{for all } e \in \mathcal{E}:$$

$$X^e \leftarrow B^*X^e + \Gamma^*H^e + \epsilon + \delta^e$$

$$\circ \ \epsilon + \delta^e \sim \mathcal{N}(0, \mathsf{diag}(w^{e,\star}))$$

$$\circ$$
 $H^e \sim \mathcal{N}(0, \psi^{e,\star}\mathcal{I})$: i.i.d. latent variables

Marginal of
$$X^e$$
 specified by: (B^*, Γ^*) , $(w^{e,*}, \psi^{e,*})$
invariant parameters perturbation parameters

Given: i.i.d. data of
$$\{X^e:e\in\mathcal{E}\}$$
 with $|\mathcal{E}|=m$

Given: candidate DAGs \mathcal{D}_{cand}

Solve the regularized MLE:

$$\text{arg min} \quad \sum_{e=1}^m \ell(\cdot; X^e \text{ data}) + \lambda \text{ complexity}(\mathcal{D})$$

$$\text{subject-to} \quad \mathcal{D} \in \mathcal{D}_{\mathsf{cand}}$$

Given: i.i.d. data of
$$\{X^e:e\in\mathcal{E}\}$$
 with $|\mathcal{E}|=m$

Given: candidate DAGs $\mathcal{D}_{\mathsf{cand}}$

Solve the regularized MLE:

$$\begin{array}{ll} \text{arg min} & \sum_{e=1}^m \ell(\cdot; X^e \text{ data}) + \lambda \text{ complexity}(\mathcal{D}) \\ \\ \text{subject-to} & \mathcal{D} \in \mathcal{D}_{\mathsf{cand}} \end{array}$$

searching among candidate DAGs

Given: i.i.d. data of
$$\{X^e:e\in\mathcal{E}\}$$
 with $|\mathcal{E}|=m$

Given: candidate DAGs \mathcal{D}_{cand}

Solve the regularized MLE:

$$\begin{array}{ll} \mathop{\sf arg\,min} & \sum_{e=1}^m \ell(\cdot; X^e \; \mathsf{data}) + \lambda \; \mathsf{complexity}(\mathcal{D}) \\ \\ \mathsf{subject\text{-}to} & \mathcal{D} \in \mathcal{D}_{\mathsf{cand}} \end{array}$$

 \circ complexity(\mathcal{D}): # edges in the moral graph of \mathcal{D} (undirected)

Given: i.i.d. data of
$$\{X^e : e \in \mathcal{E}\}$$
 with $|\mathcal{E}| = m$

Given: candidate DAGs $\mathcal{D}_{\mathsf{cand}}$

Solve the regularized MLE:

$$\label{eq:local_equation} \mathop{\rm arg\,min} \quad \sum_{e=1}^{\infty} \ell(\cdot; X^e \ \mathsf{data}) + \frac{\lambda}{\lambda} \ \mathsf{complexity}(\mathcal{D})$$
 subject-to
$$\mathcal{D} \in \mathcal{D}_{\mathsf{cand}}$$

Tuning parameters: λ , # columns in Γ (# latent variables)

How do we obtain candidate DAGs?

- o domain expertise
- o DAG learning algorithm on the pooled data

How do we solve MLE?

o alternating minimization: convex w.r.t. B (fixing other parameters)

Remarks:

- $\circ\,$ candidate DAGs may be dense \to greedy backward deletion
- \circ under dense latents + sparse DAG, our algorithm obtains B^* as one of the solution asymptotically

Impossibility results

Thm. [Taeb et al, 2021]: Without constraining the latent effects, the problem is ill-posed:

$$\mathcal{D}_{\mathsf{opt}} = \{\mathsf{all} \; \mathsf{DAGs}\}$$

Result holds regardless of amount or size of interventions on the observed variables

Sufficient conditions for identifiability

1. latent variables induce some spurious dependencies

Sufficient conditions for identifiability

1. latent variables induce some spurious dependencies

Two environments where:

- 3. heterogeneous perturbations across environments

Identifiability guarantees

 B_{opt} : optimal solution(s) of MLE in population

Thm. [Taeb et al, 2021]: under Assumptions 1-4:

$$B^\star = \operatorname*{\mathsf{arg\,min}}_B \ \# \ \mathsf{edges[moral}(B)] \ \ \mathsf{subject\text{-to}} \ \ B \in B_\mathsf{opt}$$

Identifiability guarantees

 B_{opt} : optimal solution(s) of MLE in population

Corr: regularized MLE is consistent

Corr: consistent with linear (non-Gaussian) SCM

Corr: B^* minimizes the worst-case risk over distributional shifts

Equivalence classes

If assumptions are not satisfied \Rightarrow equivalence class of DAGs

DAGs in the equivalence have the same likelihood score \Rightarrow can be determined by finding best scoring DAGs

Equivalence classes

If assumptions are not satisfied \Rightarrow equivalence class of DAGs

DAGs in the equivalence have the same likelihood score

⇒ can be determined by finding best scoring DAGs

Thm. [**Taeb** et al] Graphical characterization^{ab}:

Equivalence Class =
$$\{\mathcal{D} \in \text{MEC} : PA_{\mathcal{D}}(i) = PA_{\mathcal{D}^*}(i) \text{ for all } i \in I^*\}$$

where:

- \circ MEC: Markov equivalence class of population DAG \mathcal{D}^{\star}
- o I*: intervened variables

^aAssumes dense latent effects and sparse underlying DAG

^bGenerally: equivalence class \supseteq {D ∈ MEC : $PA_D(i) = PA_{D^*}(i)$ for all $i ∈ I^*$ }

Reservoirs

10 largest reservoirs in California with monthly volume data

4 environments corresponding to drought severity:

condition	period
normal	2003-2006, 2010-2012, 2016
abnormally dry	2007, 2013
moderate drought	2008-2009
extreme drought	2014-2015

Reservoirs

Interventions on the latent variables in all environments

Interventions on: FOL, NML, ORO (strongest in the extreme drought environment)

In 2014-2015:

- o NML released large amount of water to farmers
- o FOL released large amount of cold water for salmon-spawning

Summary

This talk: perturbation model for Gaussian observed and latent variables

- o regularized maximum-likelihood estimator
- o identifiability guarantees and equivalence class characterizations

Ongoing work:

- o more efficient algorithms (e.g. greedy methods)?
- o high-dimensional consistency guarantees?
- o designing active intervention strategies?

paper: arXiv 2101.06950