Introdução à Predição de Séries Temporais

Prof. Jefferson T. Oliva

Aprendizado de Máquina e Reconhecimento de Padrões (AM28CP) Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

Sumário

- Séries Temporais
- Comparação de Séries Temporais
- Redução de Dimensionalidade
- Representação da Série Temporal no Domínio de Frequência
- Representação da Série Temporal no Domínio de Tempo-Frequência
- Predição de Séries Temporais
- Avaliação de Modelos de Predição de Séries Temporais

Introdução

- Diversos fenômenos podem ser observados e representados ao longo do tempo, tais como:
 - Sinais biológicos (e.g. batimentos cardíacos)
 - Negócios (e.g. demanda de produtos)
 - Sensoriamento (e.g. monitoramento sísmico)
 - Entre outros
- A análise desses dados tem diversas aplicações, tais como:
 - Compreensão do comportamento temporal
 - Classificação do comportamento temporal
 - Detecção de novidades
 - Predição

Introdução

- Os dados temporais são analisados em diversos campos:
 - Engenharia
 - Governo
 - Mercado financeiro
 - Meteorologia
 - Negócios
 - Saúde
- Esses dados s\u00e3o representados por s\u00e9ries temporais

Sumário

Séries Temporais

- Uma série temporal é um conjunto de observações ordenadas no tempo
 - $S = \{S_0, S_1, S_2, ..., S_n\}$, onde $S_t \in \mathbb{R}$ representa uma observação S_i em um instante de tempo i
- Uma série temporal pode ser:
 - Contínua: os dados são coletados de forma ininterrupta, isto é, continuamente no tempo
 - Discreta: os dados são obtidos em tempos específicos, ou seja, com interrupções
 - Uma série temporal discreta, geralmente, é um segmento de uma série temporal contínua

• Exemplo de série temporal

- Uma série temporal também pode ser representada pelos seguintes componentes:
 - Tendência: movimentos regulares desenvolvidos em intervalo de tempo
 - Esse componente possui comportamento unidirecional (crescente ou decrescente)
 - Sazonalidade: possui movimentos periódicos similares e ocorre de forma regular em um período fixo
 - São denominados como padrões
 - Resíduo: movimentos que não pertencentes à sazonalidade e à tendência
 - Comportamento aleatório ou irregular
 - Geralmente são considerados ruídos

Tendência

Sazonalidade

Resíduo

 Exemplo: ruído branco (sinal aleatório), que contém valores aleatórios

• Um componente de série temporal no instante *t* pode ser representado por meio da seguinte equação:

$$S_t = X_t + Y_t + Z_t$$

- X: tendência
- Y: sazonalidade
- Z: resíduo

Estacionariedade

- Uma série temporal é estacionária se os seus dados oscilam em uma média e variância constantes, ou seja, o comportamento da série não é alterado no decorrer do tempo
- Em algumas aplicações, a propriedade de estacionariedade é indispensável
- Caso a série temporal não seja estacionária, pode ser aplicada a função denominada primeira diferença para torná-la estacionária:

$$S_t' = S_t - S_{t-1}$$

- Alguns testes estatísticos foram propostos para verificar se uma série temporal é estacionária ou não
 - Exemplo: teste de Dickley-Fuller

- Séries temporais também podem ser utilizadas em processos relacionados à mineração de dados
 - Agrupamento: definição de grupos de séries temporais de acordo com grau de semelhança
 - Classificação: determinação o grupo em que a série temporal pertence
 - Regressão: relação entre variáveis e predição de valores de séries temporais
 - Regras de associação: descoberta de relações relevantes em bases dados e geração de regras de associação a partir de padrões relevantes de séries temporais

Sumário

- Uma das tarefas fundamentais para o processamento de séries temporais é a determinação de critérios para determinar quão similar são esses dados
- Diversas medidas de similaridade podem ser aplicadas em séries temporais, tais como:
 - Distância euclidiana
 - Distância de Manhattan
 - Distância de Minkowski (norma L_p)
 - Correlação-cruzada
 - Dynamic time warping (DTW)

- Distância euclidiana
 - Uma das técnicas de medida de similaridade mais utilizada
 - Determina o comprimento de dois pontos em linha reta

•
$$D_e(S1, S2) = \sum_{t=0}^{n-1} \sqrt{(S1_t - S2_t)^2}$$

- Distância de Manhattan
 - Também conhecida como geometria do taxi
 - Versão simplificada da distância euclidiana
 - Comumente utilizada em aplicações de tempo real

•
$$D_m(S1, S2) = \sum_{t=0}^{n-1} |S1_t - S2_t|$$

Distância de Minkowski (norma L_p)

•
$$D_L(S1, S2) = \sum_{t=0}^{n-1} (|S1_t - S2_t|^p) \frac{1}{p}$$

- p = 1: distância de Manhattan
- p=2: distância euclidiana
- $p = \infty$: distância suprema

- Correlação-cruzada
 - Para o cálculo de similaridade, na correlação-cruzada é um parâmetro de deslocamento $\Phi = \{-n, ..., -1, 0, 1, ..., n\}$, onde n é o comprimento de uma das séries temporais

$$\bullet CC(S1, S2, \Phi) = \left\{ \begin{array}{ll} \sum\limits_{t=0}^{n-\Phi-1} S1_{i+\Phi} * S2_i & \Phi \geq 0 \\ CC(S2, S1, -\Phi) & \Phi < 0 \end{array} \right.$$

- Correlação-cruzada
 - Exemplo de correlograma resultante da comparação entre duas séries temporais de tamanho 120 (correlação-cruzada para todos os parâmetros de deslocamento)

- Dynamic time warping (DTW)
 - Utilizado para mensurar a semelhança entre séries temporais independentemente do tamanho e da variação do tempo
 - É realizada uma busca do melhor alinhamento ponto-a-ponto entre séries temporais

Fonte: https://www.sflscientific.com/data-science-blog/2016/6/3/dynamic-time-warping-time-series-analysis-ii

- Dynamic time warping (DTW)
 - Dada duas séries temporais S1 e S2 de tamanho n1 e n2, respectivamente, o DTW é aplicado nas seguintes etapas:
 - ① Geração de uma matriz $n1 \times n2$ de distância (e.g. euclidiana)
 - 2 Busca pela rota W que minimize o custo de distância entre duas séries temporais

$$W = \{W_1, W_2, ..., W_L\}$$
 (1)

$$DTW = min_W \left\{ \frac{1}{L} * \sqrt{\sum_{i=1}^{L} W_i} \right\}$$
 (2)

onde L é o tamanho da rota e $max(n1, n2) \le L \le n1 + n2 - 1$

- Dynamic time warping (DTW)
 - Exemplo de matriz de distâncias, onde os pontos de cor vermelha pertencem à solução ótima

Time Series B

Fonte: http://ros-developer.com/2017/11/17/ros-packages-for-dynamic-time-warping/

Sumário

- Séries temporais são comumente caracterizadas pela sua alta dimensionalidade
- Grande quantidade de dados pode acarretar em custo elevado para armazenamento e processamento
- Séries temporais com alta dimensionalidade é um dos grandes obstáculos para a eficiência de vários algoritmos
- A redução da dimensionalidade das séries temporais pode ser desejável em várias aplicações
 - Por mais que os dados temporais sejam simplificados, a complexidade da análise é reduzida e as principais características são mantidas

- As principais vantagens da redução de dimensionalidade de séries temporais são:
 - Redução do tempo para o processamento dos dados
 - Diminuição das dimensões irrelevantes e redundantes
 - Possibilidade de Melhora no desempenho na detecção de padrões
- Diversos métodos de redução de dimensionalidade foram propostos, dos quais, o piecewise aggregate approximation (PAA) é um dos mais conhecidos
 - Várias outras técnicas são baseadas em PAA

- Piecewise aggregate approximation (PAA)
 - Reduz a dimensionalidade de uma série temporal de tamanho
 n para uma outra equivalente de tamanho n'
 - O método reduz a dimensionalidade por meio da separação da série temporal em segmentos de mesmo tamanho
 - Em cada segmento é calculada a média aritmética

$$S_i' = \frac{n'}{n} \sum_{j=\frac{n}{n'}*(i-1)+1}^{\frac{n}{n'}*i} S_j$$
 (3)

- Piecewise aggregate approximation (PAA)
 - Exemplo de série temporal e o respectivo resultado da aplicação do PAA

Sumário

Representação da Série Temporal no Domínio de Frequência

- Séries temporais podem conter informações relevantes que não são detectáveis no decorrer do tempo
- Uma alternativa é a representação desses dados temporais no domínio de frequência, no qual é possível analisar a proporção do sinal para cada faixa de frequência
- Para a análise de séries temporais no domínio de frequência, as mesmas deve ser convertidas por meio de métodos específicos
 - A transformada de Fourier é uma das técnicas comumente utilizadas para a conversão de dados no domínio do tempo para o domínio de frequência

- Existem diversos tipos de transformada de Fourier, os quais são utilizados de acordo com as características dos dados
- Para séries temporais discretas, por exemplo, pode ser utilizada a transformada discreta de Fourier (TDF), que pode ser computada por meio da seguinte equação:

$$X_k = \sum_{j=1}^n S_j e^{-i2\pi k \frac{j}{n}}$$

onde:

- X_k é o k-ésimo componente de Fourier
- ullet S é a série temporal
- ullet $2\pi k$ é a frequência angular
- i é a unidade imaginária
- $e^{-i2\pi k\frac{j}{n}} = \cos(-2\pi k\frac{j}{n}) + i\sin(-2\pi k\frac{j}{n})$ é a fórmula de Euller
- A função acima é equivalente à operação de correlação-cruzada entre uma série temporal e uma senoide de frequência k

- A transformada de Fourier resulta em números complexos denominados como coeficientes de Fourier
 - Para evitar o uso de números complexos em processos computacionais, os componentes de Fourier podem ser utilizados para a geração do espectro de potência
 - O espectro de potência representa a distribuição de energia do sinal em componentes de frequência
 - O *i*-ésimo valor de um espectro de potência pode ser obtido pela seguinte equação:

$$P_i = |X_i|^2$$

• Exemplo de espectro de potência

Sumário

Representação da Série Temporal no Domínio de Tempo-Frequência

- A principal desvantagem do espectro de potência é a ausência de resolução temporal
- Uma solução para problema da resolução temporal pode ser a divisão da série temporal em diversas partes
 - Para cada parte pode ser aplicada a transformada de Fourier
 - Para evitar o problema conhecido como vazamento (leakage),
 que pode ser definido como "manchas" em imagens, pode ser
 utilizada uma função janela deslizante
- Com a aplicação do procedimento acima, uma série temporal pode ser representada no domínio tempo-frequência, onde é possível verificar os componentes de frequência para cada instante de tempo

Representação da Série Temporal no Domínio de Tempo-Frequência

- Para a representação de dados temporais no domínio de tempo-frequência pode ser aplicada a transformada de Fourier de curto termo
 - Para séries temporais discretas: transformada discreta de Fourier de curto termo (TDFC)

$$X_{t,k} = \sum_{j=t}^{l} S_j W_{(j-t)} e^{-i2\pi k \frac{j}{n}}$$

onde:

- W é a função janela deslizante
- I é o comprimento da janela
- $X_{t,k}$ é o coeficiente de Fourier para a frequência k e instante de tempo t

Representação da Série Temporal no Domínio de Tempo-Frequência

• A partir dos coeficientes $X_{t,k}$ pode ser gerado um espectrograma:

•
$$E_{t,k} = |X_{t,k}|^2$$

• Exemplo de espectrograma:

Sumário

- Métodos para construção de modelos preditivos a partir de séries temporais podem ser divididos em:
 - Paramétricos: esses métodos assumem que uma série temporal pode ser descrita utilizando um conjunto limitado de parâmetros (e.g. média, desvio-padrão)
 - Não-paramétricos: os parâmetros são estimados sem a consideração de que a série temporal tem alguma estrutura particular
- Exemplos de métodos paramétricos: modelo autorregressivo, médias móveis, ARMA (autoregressive-moving-average),
 ARIMA (autoregressive integrated moving average)
- Exemplos de métodos não-paramétricos: máquina de vetores de suporte, redes neurais artificiais, vizinhos mais próximos

- Modelo autorregressivo (AR)
 - A partir de um instante t, esse modelo especifica que a saída depende linearmente dos valores anteriores
 - Por exemplo, em um modelo autorregressivo de ordem 1 (p = 1), o valor de S_t depende de S_{t-1}
 - Um modelo autorregressivo de ordem p, ou AR(p), pode ser definido pela seguinte equação:

$$S_t = c + \epsilon_t + \sum_{i=1}^{p} (S_{t-i} * \varphi_i)$$

onde c é uma constante, ϵ é um número aleatório (representação do ruído branco), e φ_i é o i-ésimo parâmetro

- Modelo autorregressivo
 - Comparação entre um segmento da série temporal e o resultado de predição pelo modelo autorregressivo

- Médias móveis simples (MM)
 - Esse modelo utiliza os q últimos dados da série temporal para a predição do próximo valor
 - O valor de q também define a ordem do modelo, que pode ser definido por MM(q)
 - Um modelo de médias móveis simples pode ser definido pela seguinte equação:

$$S_t = \frac{1}{q} \sum_{i=t-q}^{t-1} S_i$$

- Médias móveis simples (MA moving average)
 - Outra equação para a construção de modelos por médias móveis simples:

$$S_t = \mu + \epsilon_t + \sum_{i=1}^{q} (\epsilon_{t-i} * \theta_i)$$

onde μ é o valor esperado (geralmente é atribuído um valor igual a zero) de X_t e θ é o i-ésimo parâmetro do modelo

 Essa equação é utilizada na implementação dos dois próximos métodos de predição

- Médias móveis simples (MA moving average)
 - Comparação entre um segmento da série temporal e o resultado de predição pelo modelo médias móveis

- ARMA (autoregressive-moving-average)
 - Modelo auto-regressivo de médias móveis
 - Esse modelo consiste na combinação entre autorregressão e médias móveis
 - Desse modo, ARMA é composto por dois parâmetros: p (ordem da autorregressão) e q (ordem da médias móveis)
 - O modelo ARMA de ordem p e q, ou ARMA(p, q) pode ser definido pela seguinte equação:

$$S_t = c + \epsilon_t + \sum_{i=1}^{p} (S_{t-i} * \varphi_i) + \sum_{i=1}^{q} (\epsilon_{t-i} * \theta_i)$$

- ARMA (autoregressive-moving-average)
 - Para ARMA(p, q), temos as seguintes relações:
 - ARMA(p, 0) = AR(p)
 - ARMA(0,q) = MM(p)
 - No ARMA, os componentes AR e MM se complementam para a geração de um modelo preditivo
 - A principal vantagem do ARMA é a possibilidade de geração de modelos ajustáveis à série temporal utilizando menor quantidade de parâmetros em relação aos métodos AR e MM

- ARMA (autoregressive-moving-average)
 - Comparação entre um segmento da série temporal e o resultado de predição pelo modelo ARIMA

- ARIMA (autoregressive integrated moving average)
 - Modelo auto-regressivo integrado de médias móveis
 - Generalização do modelo ARMA
 - Um modelo ARIMA é resultado da combinação entre autorregressão de ordem p, integração (operação de diferenciação sucessiva) de ordem d, médias móveis de ordem q
 - Exemplo operação de integração de ordem d: $I_t(d) = (S_t - S_{t-1}) - (S_{t-1} - S_{t-2}) - ... - (S_{t-d+1} - S_{t-d})$
 - Desse modo, um modelo ARIMA(p, q, d) pode ser estimado pela seguinte equação:

$$S_t = c + \epsilon_t + \sum_{i=1}^{p} (I_{t-i}(d) * \varphi_i) + \sum_{i=1}^{q} (\epsilon_{t-i} * \theta_i)$$

- ARIMA (autoregressive integrated moving average)
 - Para ARIMA(p, d, q), temos as seguintes relações:
 - ARIMA(p, 0, 0) = AR(p)
 - ARIMA(0, d, 0) = I(d)
 - ARIMA(0,0,q) = MM(q)
 - ARIMA(p, 0, q) = ARMA(p, q)
 - É importante ressaltar que AR(p), MM(q) e ARMA(p,q) são apropriados para séries temporais estacionárias
 - Para lidar com séries não estacionárias, no ARIMA é utilizado um procedimento de integração para assegurar a propriedade de estacionariedade dos dados temporais

- ARIMA (autoregressive integrated moving average)
 - Comparação entre um segmento da série temporal e o resultado de predição pelo modelo ARIMA

 Comparações entre um segmento de série temporal e resultados de modelos preditivos

Sumário

Avaliação de Modelos de Predição de Séries Temporais

Avaliação de Modelos de Predição de Séries Temporais

- Diversas medidas são utilizadas para a avaliação de modelos de predição de séries temporais
- Exemplos de métricas:
 - Erro quadrático médio (EQM)

$$EQM = \frac{1}{N} \sum_{i}^{N} (\overline{Y}_{i} - Y_{i})^{2}$$

- Raiz quadrada do EQM (root-mean-square error RMSE) $RMSE = \sqrt{EQM}$
- Erro médio absoluto (EMA)

$$EMA = \frac{1}{N} \sum_{i}^{N} (\overline{\mathbf{Y}}_{i} - Y_{i})$$

onde Y_i é o i-ésimo dado temporal, \bar{Y}_i é o i-ésimo resultado da predição e N é a quantidade dados utilizados na predição

Avaliação de Modelos de Predição de Séries Temporais

- Os exemplos de medidas apresentados no slide anterior também são comumente utilizadas para a avaliação de modelos construídos para problemas de regressão
- Para a avaliação de modelos de predição de séries temporais, também pode ser aplicada a validação cruzada

Avaliação de Modelos de Predição de Séries Temporais Validação Cruzada em Séries Temporais

- Na validação cruzada, os dados são divididos em conjuntos de teste e de treinamento
 - ullet O k-fold, por exemplo, divide o conjunto de dados em k conjuntos, sendo um para teste e os k-1 restantes para treinamento do modelo em um processo que é repetido k vezes
 - Ilustração de um exemplo para k = 10 (10-fold cross-validation)

Avaliação de Modelos de Predição de Séries Temporais Validação Cruzada em Séries Temporais

- Entretanto, durante a aplicação da validação cruzada, geralmente não é considerada a ordem dos dados, os quais são amostrados aleatoriamente em conjuntos de teste e de treinamento
 - Essa abordagem n\u00e3o recomendada para algumas aplica\u00f3\u00f3es em dados temporais, como a predi\u00e7\u00e3o de s\u00e9ries temporais
- As séries temporais não devem ter os seus valores amostrados aleatoriamente, pois não faria sentido para a predição de valores futuros, que é dependente de séries históricas (dados sequenciais)
- Em outras palavras, para a predição de valores futuros, há a dependência temporal entre os dados

Avaliação de Modelos de Predição de Séries Temporais Validação Cruzada em Séries Temporais

- A validação cruzada pode ser aplicada em modelos de forma incremental
 - O conjunto de dados é dividido em k partições, mas mantendo a ordem temporal entre as observações
 - Na primeira etapa (iteração), o primeiro conjunto é utilizado para treinamento e o segundo, para teste
 - Na segunda etapa, os dois primeiros conjuntos são usados para treinamento e o terceiro, para teste
 - ullet Na última etapa, os k-1 primeiros conjuntos são utilizados para treinamento e o k-ésimo para teste

Avaliação de Modelos de Predição de Séries Temporais Validação Cruzada em Séries Temporais

 Ilustração de exemplo validação cruzada de 10 folds para séries temporais

Avaliação de Modelos de Predição de Séries Temporais Validação Cruzada em Séries Temporais

- Outras abordagens de validação cruzada também podem ser aplicadas em séries temporais
 - Por exemplo: validação cruzada "bloqueada" (blocked cross-validation)
 - O conjunto de dados é dividido em k folds, onde, para cada fold, uma porcentagem dos dados é utilizado para treinamento e o restante, para teste
 - No entanto, essa abordagem pode acarretar na discrepância ("leakage") de resultados

Referências I

C. Chatfield.

The analysis of time series: an introduction.

Boca Raton: Taylor & Francis, 2003.

D. C. Montgomery; C. L. Jennings; M. Kulahci. Introduction to time series analysis and forecasting. Nova Jérsei: John Wiley & Sons, 2015.

E. Galdino.

Análise e previsão de séries temporais.

Acesso em 11 de janeiro de 2021. Disponível em: https://www.cin.ufpe.br/~psgmn/Series%20Temporais/Aula_01.pdf

G. E. P. Box, G. M. Jenkins. Time series analysis: forecasting and control. São Francisco: Holden-Day, 2015.

Referências II

Geração automática de laudos médicos para o diagnóstico de epilepsia por meio do processamento de eletroencefalogramas utilizando aprendizado de máquina.

Tese de Doutorado. Universidade de São Paulo.

P. A. Morettin; C. Toloi.

Análise de séries temporais: Modelos lineares univariados.

São Paulo, SP: Blucher, 2018.

P. J. Brockwell; R. A. Davis. Introduction to time series and forecasting.

Nova lorque: Springer-Verlag, 2002.

🔋 R. J. Hyndman.

Cross Validation for Time Series.

Disponível em:

https://robjhyndman.com/hyndsight/tscv/, 2016.

Referências III

S. Shrivastava.

Cross Validation in Time Series.

Disponível em: https://medium.com/@soumyachess1496/ cross-validation-in-time-series-566ae4981ce4, 2020.

Apêndice

- Exemplo de definição de parâmetros: modelo autorregressivo
 - Os parâmetros podem ser definidos através de diversas abordagens
 - Por exemplo: mínimos quadrados na equação de Yule-Walker

$$\begin{bmatrix} 1 & a_{1} & a_{2} & a_{3} & \dots & a_{n-1} \\ a_{1} & 1 & a_{1} & a_{2} & \dots & a_{n-2} \\ a_{2} & a_{1} & 1 & a_{1} & \dots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & a_{n-4} & \dots & 1 \end{bmatrix} \begin{bmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \\ \vdots \\ \varphi_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ \vdots \\ \vdots \\ \varphi_{n} \end{bmatrix}$$
(4)

onde a_d é o coeficiente de autocorrelação com parâmetro de deslocamento d

 Para médias móveis, no ARIMA, os parâmetros também são ajustados por meio da regressão por mínimos quadrados