Atelier Collecte de données Outils

Animé par Sylvain Labasse

DIAE505 – Atelier collecte de données (outils)

AU TERME DU MODULE, VOUS SAUREZ...

Enumérer les méthodes de collecte d'information Identifier les sources répondant à un besoin Utiliser Python pour constituer un jeu de données Importer des jeux de données de toute source

PRE-REQUIS

Public

Développeuses/développeurs

Nécessaire

Formats de données

Fonctionnement des API restful

Python

DEROULEMENT

Support

Drive: Diapos, ateliers, vidéos, ...

Notes de cours, Réalisation des ateliers

Drive: https://bit.ly/3ZIZ88k

Evaluations

Ateliers sur 4
Quiz individuel

i majuscule

0	1	2	3	4
Non	Hors	<	=	>
remis	sujet	attentes		

Figure 1 - Barème des ateliers

L'ENVIRONNEMENT

Matériel

Mac / PC sous Windows ou Linux Connexion Internet

Outils

Editeur/IDE Python
Compte Hugging Face

COLLECTE DE DONNEES (OUTILS)

Enjeux

Analyse

Architectures

Sources

Techniques et outils

Aspect légal

Formats, API

Scrapping

ENJEUX

OBJECTIFS

Besoins des entreprises en collecte de données Architectures de collecte et mise à disposition Sources de données publiques et privées

ENJEUX

- → Analyses
 - Architectures
 - Sources
 - Synthèse

ANALYSES

BUSINESS INTELLIGENCE / DECISIONNEL

Décisionnel ≠ Opérationnel

Tableau de bord activité / marché Interne ET externe Prise de décision

Figure 2 - src: https://www.laboiteverte.fr/21-cockpits-davions/

Mise en œuvre

Inventaire et synthèse des données de toutes les applis Agrégation selon de nombreuses dimensions (temps, géo., ...) Contraintes : Rapide, qualifié, fiable, ...

MACHINE LEARNING

But des jeux de données

Entrainement Test/Validation

Caractéristiques

Discret / Continu Littérales / Numériques

Pertinentes (lien), Représentatives, Complètes Nombreuses et variées

Figure 3 - Autopilot Tesla – Démo novembre 2016

ENJEUX

- ✓ Analyses
- → Architectures
 - Sources
 - Synthèse

ARCHITECTURE BI CLASSIQUE

Chaîne

Src: https://www.xplenty.com/blog/etl-vs-elt/

Composants

ETL: Extract Transform Load = 80% de l'effort

DataWarehouse: Entrepôt avec magasins/domaine (datamarts)

Requêteurs ou Rapports = Dataviz

EXTRACT TRANSFORM LOADING

Extraction

Ciblage/profiling des données Capture des valeurs ET modifications

Nettoyage et normalisation

Nettoyage, suivi des erreurs Dédoublonnage et mise en conformité

Livraison et fourniture

Créateur de faits, dimensions, cubes Générateur de clé de substitution

OUTILS

ETL "classiques"

Microsoft SSIS, Oracle DI, Talend, Pentaho DI, OpenRefine, ... Cloud: AirByte, AWS Glue, Azure Fabric, Google DataFlow, ...

Langages

Python: dbt, Pandas (T)

R: dplyr (E), tidyr (T)

Intégrés

Excel/PowerBI, Google Data Studio, ...

Chaîne

Src: https://www.xplenty.com/blog/etl-vs-elt/

Composants (type ELK)

E: Collecte avec traitement minimal (Beats, LogStash)

Data Lake: Stockage bigdata faiblement structuré

Requêteurs ou Rapports (Elastic, Kibana)

« ETL TEMPS REEL »

Flux

Stockage de flux de données, tolérance de panne (réparti)

Publish/Suscribe : File de Message, RabbitMQ

Producteur/consommateur: Apache Kafka

Serverless

Déclenché par évènement Traitement éphémère sans état AWS lambda, Azure functions, ...

ENJEUX

- ✓ Analyses
- ✓ Architectures
- → Sources
 - Synthèse

SOURCES PRIVEES

Patrimoine informationnel

Fichiers, bases de données, applications Prestataires de données / Numérisation

Utilisateurs

Manuel: Formulaires, saisie (peu normalisé)

Automatique : Carte fidélité, analytics, app, IoT, service gratuit

Ludification¹: BLAP vs RECIPE

SOURCES PUBLIQUES

Open data (BI)

Nations: data.gouv.fr, data.europa.eu, data.gov, ...

Organisations: data.worldbank, census.gov, ...

Datasets (ML)

Répertoires : Liste dans Wikipedia²

Moteurs: Google data search, Kaggle, VisualData

Universités/Recherche: UCI, CMU, Laion (240TB laion-5b)

ENJEUX

- ✓ Analyses
- ✓ Architectures
- √ Sources
- → Synthèse

RESUME

Besoins des entreprises en collecte de données Architectures de collecte et mise à disposition Sources de données publiques et privées

TECHNIQUES ET OUTILS

OBJECTIFS

Droits et contraintes légales sur les données Formats de mise à disposition « prêts à l'emploi » Contraintes et bonnes pratiques de scraping

TECHNIQUES ET OUTILS

→ Aspect légal

Formats, API

Scrapping

Synthèse

CADRE

Copyright / Droit « sui generis » des bases

Domaine publique (~> 70 ans) / CCO

EU³: Exceptions pour institutions publiques sans but lucratif

US: « Fair Use » favorable à l'utilisation technique

RGPD / Ccpa

Accord explicite pour le traitement de données personnelles Solution : Anonymisation⁴

https://eur-lex.europa.eu/legal-content/FR/TXT/HTML/?uri=CELEX:32019L0790&from=EN#d1e976-92-1

⁴ https://www.cnil.fr/fr/lanonymisation-de-donnees-personnelles

JURISPRUDENCE

Etats-Unis

Linkedin/hiQ Labs (2019) : Plusieurs cours dont cour suprême Autorise scraping de données publiques (malgré CGU)

UE

Ryanair/**Opodo** (2010): Transf. suffisante, invest. substantiel **LeBonCoin**/EntreParticuliers (2021): Invest. subst. du plaignant

TECHNIQUES ET OUTILS

- ✓ Aspect légal
- → Formats, API
 - Scrapping
 - Synthèse

FICHIERS

Texte standard

CSV, INI, ...

XML avec notion de schéma XSD et transformation XSL JSON, YAML

Bureautique

Excel (Open XML), ODS (Open Document = XML)

Formulaire PDF (AcroForms)

Bdd fichier: Access, SQLLite, ...

SERVEUR DE DONNEES

Relationnel

SQL: tables, colonnes, enregistrements

Accès centralisé, structure rigide

Ex: MySQL, Oracle, SQLServeur, Snowflake

Figure 4 - Théorème CAP (http://www.abramsimon.com)

NoSQL

Orientés: Document, colonne, graphe, objets, flux (dsms)

3V : Volume, Variété, Vitesse

Ex: MongoDB, CouchDB, HBase, Neo4j

APPLICATIF

RPC et ORB

Appel de composants applicatifs à distance

Procédures : Remote Procedure Call

Objet: Object Request Broker: Corba, DCOM (Microsoft)

Services Web

2000 - Service Web XML (W3C): SOAP, WSDL et UDDI

2010 – API Rest: http, json/xml + WebHooks

2015 – GRPC basé sur HTTP2, IDL Protobuf

DONNEES NON STRUCTUREES

Texte

Métadonnées : Source, titre, auteur, ...

Contenu: Structure (html), NLP (cf Apache Open NLP)

Media

Métadonnées : XMP, EXIF / Dates, Géolocalisation, Auteur, Tag

Image: Dimensions, couleurs, prétraitements

Son: Taux d'échantillonnage, canaux, durée

TECHNIQUES ET OUTILS

- ✓ Aspect légal
- ✓ Formats, API
- → Scrapping
 - Synthèse

SCRAPING

Mise en œuvre

Python - BeautifulSoup⁵

Ethique: robots.txt/cgu, stricte nécessaire, rgpd, republication

Cloud

Proxy, supervision, captchas, ...

Paiement au volume⁶

⁵ https://www.crummy.com/software/BeautifulSoup/bs4/doc/

⁶ https://research.aimultiple.com/web-scraping-tools/

TECHNIQUES ET OUTILS

- ✓ Aspect légal
- √ Formats, API
- ✓ Scrapping
- → Synthèse

RESUME

Droits et contraintes légales sur les données Formats de mise à disposition « prêts à l'emploi » Contraintes et bonnes pratiques de scraping

BILAN

VOUS SAVEZ MAINTENANT...

Enumérer les méthodes de collecte d'information Identifier les sources répondant à un besoin Utiliser Python pour constituer un jeu de données Importer des jeux de données de toute source

POUR ALLER PLUS LOIN...

DIAE506 - Conception des modèles de données IA

DIAE504 - Machine learning et IA