Тригонометрия

α	0°	30°	45°	60°
$\sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\operatorname{tg}(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Таблица 1: Тригонометрическая таблица (Обязательно запомнить)

Задачи:

- Вычислите значение выражение $\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ}$.
- $\boxed{2}$ Вычислите значение выражение $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}$.
- $\boxed{3}$ Упростите выражение $\cos(a) \cdot \cos(2a) \cdot \cos(4a) \cdot \ldots \cdot \cos(2^{n-1}a)$.
- 4 Известно, что $\operatorname{tg} \alpha + \operatorname{tg} \beta = 2$ и $\operatorname{ctg} \alpha + \operatorname{ctg} \beta = 3$. Найдите $\operatorname{tg}(\alpha + \beta)$.
- $\boxed{5}$ Найдите $\sin(15^\circ)$ и $\cos(15^\circ)$
- $\boxed{7}$ Что больше $\frac{\sin 1^\circ}{\sin 2^\circ}$ или $\frac{\sin 3^\circ}{\sin 4^\circ}$
- 8 При каких значениях c числа $\sin \alpha$ и $\cos \alpha$ являются корнями квадратного уравнения $5x^2 3x + c = 0$ (α некоторый угол)?