Vaja 40: Wheatstonov most

Matevž Demšar

21. april 2024

Povzetek. Pri vaji smo z Wheatstonovom mostom merili upor danega upornika in žice.

Uvod. Upor upornika določimo tako, da z drsnikom potujemo po uporovni žici, dokler se razmerje uporov obravnavanega upornika in upornika z znanim uporom ne ujema z razmerjem dolžin delov žice. Tedaj skozi galvanometer etok ne teče.

Slika 1: Shema vezave.

Ko drsnik nastavimo tako, da skozi galvanometer tok ne teče, neznani upor R_x izračunamo po enačbi

$$R_x = R_0 \, \frac{a}{l-a}$$

Na podoben način lahko izmerimo tudi upor v uporovni žici.

Meritve. Najprej moramo izmeriti dolžino in debelino žice. Nato za neko vrednost upora R_0 izmerimo dolžino a, pri kateri je tok skozi galvanometer enak 0. Meritev ponovimo z nasprotno smerjo toka in kot končni rezultat vzamemo povprečno vrednost obeh meritev. Podatki so zapisani v Tabeli 1.

$$l = 1, 0 \ m$$

$$S = 0.3 \ mm^2 \pm 0.1 \ mm^2$$

Pri drugem delu meritev namesto upornika uporabimo kar žico samo - njen upor označimo z R_w . Podatki so zapisani v Tabeli 2.

Smer 1			Smer 2		
$R_0 [k\Omega]$	a [cm]	l-a [cm]	$R_0 [k\Omega]$	l-a [cm]	a [cm]
1	83,0	17,0	1	17,2	82,8
2	70,4	29,6	2	29,9	70,1
3	61,1	38,4	3	39,3	60,7
4	54,4	45,6	4	45,7	54,3
5	49,8	50,2	5	51,3	48,7
6	44,4	55,6	6	56,1	43,9
7	40,3	59,7	7	59,7	40,3
8	37,7	62,3	9	63,1	36,9

Tabela 1: Meritve a in l-a v odvisnosti od upora R_0 za obe smeri toka skozi upornik.

$R_0 [\Omega]$	a [cm]	l-a $[cm]$
1	79,4	20,6
2	69,3	30,7
3	63,1	37,9
4	56,3	43,7
5	51,1	48,9
6	47,1	52,9
7	43,5	56,5
8	40,6	59,4

Tabela 2: Namesto upornika lahko uporabimo kar žico samo, seveda pa bo upor v tem primeru bistveno manjši.

Izračuni. Za vsako vrednost R_0 po formuli $R_x=R_0\,a/(l-a)$ izračunamo vrednosti R_1 in R_2 , pri čemer R_1 predstavlja izračunani upor pri eni smeri toka, R_2 pa pri nasprotni smeri. Najzanesljivejšo vrednost dobimo tako, da vzamemo njuno povprečje: $\overline{R}=(R_1+R_2)/2$. Skozi žico je tok tekel le v eno smer, kar pomeni, da bo končna vrednost manj zanesljiva, poleg upora pa lahko izračunamo še specifično upornost žice po formuli $\zeta=RS/l$. Izračuni za upornik so zapisani v Tabeli 3, izračuni za upor žice pa v Tabeli 4.

$R_0 [k\Omega]$	$R_1 [k\Omega]$	$R_2 [k\Omega]$	\overline{R} $[k\Omega]$
1	4,88	4,81	4,85
2	4,76	4,69	4,73
3	4,77	4,63	4,70
4	4,77	4,75	4,76
5	4,96	4,74	4,85
6	4,79	4,70	4,74
7	4,72	4,72	4,72
8	4,84	4,68	4,76

Tabela 3: Povprečna vrednost izmerjenih uporov je 4,76 $k\Omega$.

$R_0 [\Omega]$	$R_w [\Omega]$
1	3,85
2	4,51
3	4,99
4	5,15
5	5,22
6	5,34
7	5,39
8	5,46

Tabela 4: Izračunani upor žice. Opazimo, da je pri majhnih vrednostih R_0 izmerjeni upor žice bistveno manjši. To ni posebej presenetljivo, saj žica nima nujno na vseh odsekih enakega upora, kar se najbolj pozna, ko je vrednost a ali l-a majhna. Pri uporniku do te težave kakopak ni moglo priti, saj je upor žice v primerjavi z uporom upornika zanemarljiv. Povprečna vrednost izmerjenih uporov je 4,99 $[\Omega]$, specifična upornost žice pa potemtakem $1,5\times 10^{-6}~\Omega m$.

Ocena napake. Do napake je prihajalo pri odčitavanju vrednosti a in merjenju premera žice, za druge vrednosti pa predpostavimo, da je velikost napake zanemarljiva. Ocenimo:

$$\Delta a = 0, 1 \ cm$$

$$\Delta S = 0, 1 \ mm^2$$

$$\begin{split} \Delta(l-a) &= \Delta a \\ \frac{\Delta\left(\frac{a}{l-a}\right)}{\frac{a}{l-a}} &= \left(\frac{\Delta a}{a} + \frac{\Delta a}{l-a}\right) \\ &= \frac{l\Delta a}{a(l-a)} \end{split}$$

Z odvodom ugotovimo, da je relativna napaka meritve največja pri a=l/2, in sicer tam znaša okoli 0,4%. V primeru upora je to okoli 20 Ω , v primeru žice pa 0,02 Ω . Sledi:

$$R_x = 4,76 \ k\Omega \pm 0,02 \ k\Omega$$

$$R_w = 4,99 \ \Omega \pm 0,02 \ \Omega$$

$$\zeta = 1,5 \ \Omega m \pm 0,5 \ \Omega m$$