

METHOD AND APPARATUS FOR AN ANODIC TREATMENT

BACKGROUND OF THE INVENTION

Field of the Invention

- [0001] This invention relates to a method and an apparatus for an anodic treatment on a surface of a piston used for an internal combustion engine. More particularly, the present invention relates to a method and an apparatus for anodizing an annular surface of the piston.

Description of the Related Art

- [0002] It is well known that a portion of the piston used in the internal combustion engine is placed close to a combustion zone. More particularly the portion of the piston is in contact with relatively hot gases, and therefore, is subject to high-thermal stresses that may cause deformations or changes in the metallurgical structure. This negatively affects functions of the portion.
- [0003] As a measure against such negative affections, a surface of the piston has been treated by an anodic treatment in order to develop an anodic oxide coating that protects a metal of the piston from undesirable affections of heat. One such apparatus that performs the anodic treatment is disclosed in, for example, a Japan Patent Publication (koukai) No. 9-217200 (incorporated herein by reference). According to the publication, as shown in Fig. 19, the apparatus includes a jacket 101, a lid member 102, a mask socket 103, an O-ring 105, an electrolyte bath 106, a nozzle system 107, a cathode 108, and an anode 109. The jacket bath 101 forms a part of a circulation circuit of electrolyte (reaction medium), and is substantially like a cup shape. The jacket 101 has an opening, which is closed by the lid member 102, at its upper end. A hole in which the mask socket 103 is fitted is formed at the center of the lid member 102. The mask socket 103 is substantially cylindrical in shape, and is provided its lower opening portion with an inwardly projected flange portion. A piston 104 is

inversely placed in the mask socket 103. Namely, the piston 104 is inserted into the mask socket 103 from its head portion (piston head).

- [0004] The O-ring 105 is placed on the flange portion. The O-ring 105 touches a surface of the piston head when the piston 104 is placed in the mask socket 103. Thereby, a portion of the piston not to be anodized is sealed. The nozzle system 107, through which the electrolyte is directed to the piston 104, is placed in the electrolyte bath 106 that is provided in the jacket 101. The cathode 108 is provided at an upper portion of the electrolyte bath 106. The anode 109 is in contact with the piston 104. The apparatus disclosed in the publication thus performs the anodic treatment on an end face of component (piston) that is cylindrical or columnar in shape.
- [0005] According to the publication, however, since the O-ring 105 touches the surface of the piston head, there is a difficulty in anodizing a limited area defined at a middle portion on a cylindrical surface. That is, for instance, where the anodic treatment on the end face of the component (piston) is unnecessary while the anodic treatment on the limited area at the middle portion on the cylindrical surface is carried out, a masking of a portion of the component (the end face) is required to prevent the end face from being anodized. However, to make a mask portion, a masking process to the end face of the component must be accomplished before putting the component in the apparatus. This causes a decline of working efficiency and processing ability.
- [0006] The electrolyte upwardly flows to the end face of the component through the nozzle system 107, and then, downwardly moves away from the end face to be drained from the electrolyte bath 106. The electrolyte supplied to the end face meets the electrolyte leaving from the surface, which causes an obstruction to a smooth circulation of the electrolyte. To provide the smooth circulation, a large area for flow of the electrolyte is necessary, and thereby, the size of the apparatus becomes large.

SUMMARY OF THE INVENTION

- [0007] According to an embodiment of the present invention a method for anodizing a component is provided. The method includes placing the component in a container having first and second seal members and sealing an annular surface of the component to be anodized using the first and second seal members to thereby form a reaction chamber bounded by the annular surface, the seal members and an inner surface of the container. The method further includes supplying a reaction medium to the reaction chamber through a supply passage formed in the container to thereby anodize the annular cylindrical surface.
- [0008] In another embodiment, the method may further include the step of removing the reaction medium from the reaction chamber through a drain passage formed in the container. The steps of removing and supplying may be conducted simultaneously to thereby circulate the reaction medium through the reaction chamber.
- [0009] According to an alternative embodiment of the present invention, an apparatus for anodizing a component is provided. The apparatus includes a container having a receiving hole for receiving the component into the container. The apparatus further includes first and second seal members for sealing an annular surface of the component to thereby form a reaction chamber between the container and the annular surface of the component.
- [0010] The apparatus may further include a supply passage in the container for introducing a reaction medium into the reaction chamber and a drain passage for draining the reaction medium from the reaction chamber. The apparatus may also include a first electrode for energizing the component and a second electrode for energizing the container adjacent to the reaction chamber. Preferably, the container includes a passage plate having an opening for the component to extend through, wherein the passage plate includes a supply groove and a drain groove opening into the reaction chamber.

[0011] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0012] These and other features, aspects and advantages of the present invention will become apparent from the following description, appended claims, and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.
- [0013] Fig. 1 is a sectional view of an anodizing apparatus according to a first embodiment of the present invention.
- [0014] Fig. 2 is a front view of a passage plate according to the first embodiment of the present invention.
- [0015] Fig. 3(a) is an enlarged sectional view of the passage plate taken on line A-A of Fig. 2.
- [0016] Fig. 3(b) is an enlarged sectional view of an alternative embodiment of the passage plate taken on line A-A of Fig. 2.
- [0017] Fig. 4 is a sectional view of an anodizing apparatus according to a second embodiment of the present invention.
- [0018] Fig. 5 is a front view of a passage plate according to the second embodiment of the present invention.
- [0019] Fig. 6 is a bottom view of the passage plate according to the second embodiment of the present invention.
- [0020] Fig. 7 is a sectional view of the passage plate taken on line B-B of Fig. 5.
- [0021] Fig. 8 is a sectional view of an anodizing apparatus according to a third embodiment of the present invention.

- [0022] Fig. 9 is a sectional view of an anodizing apparatus according to a fourth embodiment of the present invention.
- [0023] Fig. 10 is a sectional view of an anodizing apparatus according to a fifth embodiment of the present invention.
- [0024] Fig. 11 is a sectional view of an anodizing apparatus according to a sixth embodiment of the present invention.
- [0025] Fig. 12 is a sectional view of an anodizing apparatus according to a seventh embodiment of the present invention.
- [0026] Fig. 13 is a sectional view of an anodizing apparatus according to an eighth embodiment of the present invention.
- [0027] Fig. 14 is a sectional view taken on line C-C of Fig. 13.
- [0028] Fig. 15 is a sectional view taken on line D-D of Fig. 13.
- [0029] Fig. 16 is a sectional view of an anodizing apparatus according to a ninth embodiment of the present invention.
- [0030] Fig. 17 is a sectional view of an anodizing apparatus according to a tenth embodiment of the present invention.
- [0031] Fig. 18 is a sectional view taken on line E-E of Fig. 10.
- [0032] Fig. 19 is a sectional view of an anodizing apparatus according to a conventional art.

DETAILED DESCRIPTION

- [0033] Accordingly, in view of above-described problems encountered in the conventional art, one object of the present invention is to provide a method and an apparatus for anodizing a component at a limited portion on its cylindrical surface made at a middle portion without requiring a masking procedure.

- [0034] According to an embodiment of the present invention a method for an anodic treatment that comprises the operations of putting a component in a container is provided. The container is provided therein with a first and a second seal members. The method includes sealing a boundary between a portion being treated and another portion on a surface of the component by the first and second seal members for defining an annular cylindrical surface at a middle portion on the surface of the component. The first and second seal members, the annular cylindrical surface and an inner surface of the container form a reaction chamber that holds a reaction medium therein. The method further includes supplying the reaction medium to the reaction chamber through a supply passage formed in the container, and draining the reaction chamber from the reaction medium through a drain passage formed in the container.
- [0035] According to another embodiment of the present invention, an apparatus for an anodic treatment includes a container that includes a receiving hole and a bottom portion. The container receives a component in the receiving hole thereof, and defines up and down directions and a horizontal direction. A first and a second seal members that is disposed in the receiving hole for sealing a boundary between a portion being treated and another portion on a surface of the component. The first and second seal members define an annular cylindrical surface at a middle portion on the surface of the component. A reaction chamber that is formed among the annular cylindrical surface, an inner surface of the container, and the first and second seal members. The reaction chamber holds a reaction medium therein. An inlet passage is formed in the container for introducing the reaction medium into the reaction chamber, an outlet passage formed in the container for draining the reaction chamber from the reaction chamber. The apparatus further includes a first electrode for conducting an electricity to the component, and a second electrode for conducting the electricity to the reaction medium.

- 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1897
189

exterior member 61 and an interior member 62, and similarly, the upper wall member 6b comprises an exterior member 61 and an interior member 62. Each of the exterior members 61, 61 included in the lower and upper wall members 6a, 6b has a cylindrical section 61a, an outward flange section 61b, and an inward flange section 61c. More particularly, in an assembled state as shown in Figure 1, the outward flange section 61b is formed at a lower portion of the cylindrical section 61a of the lower wall member 6a, while the inward flange section 61c is provided at an upper portion. The inward flange section 61c of the exterior member 61 included in the lower wall member 6a positions and supports the first O-ring 4. The exterior member 61 is arranged in the annular groove of the outer cylindrical member 2 having an end face of the outward flange section 61b in an abutted contact with a stepped portion 24 formed on the flange section 22.

- [0039] The first sleeve 41 is disposed between the exterior member 61 of the lower wall member 6a and the bottom member 5, with a slidable contact in an axial direction of the outer cylindrical member 2, to push the first O-ring 4. The first push ring 42 is arranged between the flange section 22 and the outward flange section 61b of the exterior member 61 included in the lower wall member 6a with a slidable contact in a radial direction of the outer cylindrical member 2. The first push ring 42 is provided thereon with a tapered surface 42 that is in contact with a lower end portion of the first sleeve 41. Also, the first push ring 42 is arranged in a space defined between an upper surface of the flange section 22 and the end face of the outward flange section 61b of the lower wall member 6a. The push rods 43 are slidably received in holes radially formed in the cylindrical wall section 21, and are arranged to push the push ring 42 in an inward direction thereof.
- [0040] The interior member 62 included in the lower wall member 6a comprises, in the assembled state, a cylindrical section 62a, an inward flange section 62b formed at a lower portion of the cylindrical section 62a, and an outward flange

section 62c formed at an upper portion of the cylindrical section 62a. There are formed plural holes 62f in the cylindrical section 62a. Thereby, an inner space 62e and an outer space 62d communicate with each other. The inner space 62e is defined between the exterior member 61 and the interior member 62, and the outer space 62d is provided between the interior member 62 and the outer cylindrical member 2.

- [0041] Similarly to the lower wall member 6a, the upper wall member 6b also includes the exterior member 61 and the interior member 62, both of which are shaped approximately like inverted forms of the exterior and interior members 61, 62 of the lower wall member 6a, respectively. Namely, the exterior and interior members 61, 62 of the upper wall member include cylindrical sections 61a, 62a, outward flange sections 61b, 62c, and inward flange sections 61c, 62b, respectively, and are arranged above the lower wall member 6a so that the passage plate 3 is pinched between the outward flange sections 62c, 62c of the interior members 62, 62, thereby forming a reaction chamber 7 between the inward flange sections 61c, 61c of the exterior members 61, 61. Axial dimensions of the passage plate 3, the exterior members 61, 61, and the interior members 62, 62 are determined so as to form the reaction chamber 7.
- [0042] There are provided a first and a second sealing rings 63, 63 to seal contact surfaces between the outer cylindrical member 2 and the exterior members 61, 61 included in the lower and upper wall members 6a, 6b, respectively. The passage plate 3 has a main section 31 and an inner section 32 projecting inwardly from the main section 31 (shown in Figures 2 and 3(a)). The inner section 32 is formed integrally with the main section 31 having a thinner thickness than a thickness of the reaction chamber 7 in up and down directions thereof. As shown in Figure 1, the passage plate 3 is arranged so that a tip of the inner section 32 is placed at a middle portion of the reaction chamber 7 in a radial direction of the reaction chamber 7.

- [0043] The second sleeve 41 is arranged on an inner side of the exterior member 61 included in the upper wall member 6b with a slidable contact in its axial direction, i.e., up and down directions of the component. The second sleeve pushes the second O-ring 4 downwardly. Also, the second push ring 42 is provided between the annular cover member 23 and the outward flange section 61b of the exterior member 61 included in the upper wall member 6b with a slidable contact in the radial direction of the outer cylindrical member 2. The second push ring 42 has a tapered surface 42a that is in contact with an upper end of the second sleeve 41, and is disposed in order to be pushed toward a center thereof by the push rods 43. The cylindrical wall section 21 of the outer cylindrical member 2 has an inlet 21a and an outlet 21b. The inlet 21a communicates with the outer space 62d at a lower portion of the outer space 62d, while the outlet 21b is in communication with the outer space 62d at an upper portion of the outer space 62d, in an axial direction of the piston P. Namely, as shown in Figure 1, an inlet passage X, which is in communication with the inlet 21a and the reaction chamber 7, is defined by lower portions of the outer and inner spaces 62d, 62e, and the holes 62f. On the other hand, an outlet passage Y, which is in communication with the reaction chamber 7 and the outlet hole 21b, is defined by upper portions of the outer and inner spaces 62d, 62e, and the holes 62f.
- [0044] Dimensions of above described elements are preferably determined that a position of a top ring groove 10 of the piston P becomes identical to that of the reaction chamber 7 in the axial direction of the piston P, having the first and second O-rings 4, 4 located nearby upper and lower edges of the top ring groove 10, respectively, when the receiving hole of the container 1 receives the piston P in the inverted state with a bottom surface of the piston P (piston head) abutting a concave portion 51 formed on an upper surface of the bottom member 5. Thereby, upper and lower boundary lines K, K, which define an area to be anodized, are determined.

- [0045] The outer cylindrical member 2 has a penetration hole 21c, which receives a push tube 25, at a portion that faces to an outer cylindrical surface of the passage plate 3. There is provided a sealing ring 26 in the penetration hole 21c. The push tube 25 exerts the sealing ring 26 to prevent a leakage of the reaction medium into the penetration hole 21c. A conductive rod 33 is inserted into the push tube 25 having an end portion thereof abutted the outer cylindrical surface of the passage plate 3 that acts as an electrode. Namely, the conductive rod 33 is arranged so as to abut the passage plate 3 at a portion not to be exposed in the reaction medium and an outside of passages of the reaction medium. The push tube 25 is fixed in the penetration hole 21c, with a pushed state toward the passage plate, by a screw tube 25a and a screw 25b. That is, the screw tube 25a is secured to the outer cylindrical member 2, and the screw 25b, in turn, is fixed to the screw tube 25a. A drain hole 52 is provided at a center of the concave portion 51 for draining the reaction medium that might leak from the reaction chamber 7 when the piston P is removed from the receiving hole. Also, another electrode 8 is provided so as to abut the piston P when the piston is received in the receiving hole.
- [0046] As described previously, according to the first embodiment of the present invention, when the first and second push rings 42, 42 are urged inwardly by the push rods 43, 43 having the piston P received in the receiving hole, the annular tapered surfaces 42a, 42a of the first and second push rings 42, 42 abut the upper end of the first sleeve 41 and the lower end of the second sleeve 41, respectively. Thus, the first and second sleeves 41, 41 move in those axial directions, and compress the first and second O-rings 4, 4, respectively. By virtue of the compression by the axial movement of the sleeves 41, 41, the O-rings 4, 4 shorten their inner diameters in the axial direction of the piston P. Thereby, the O-rings 4, 4 abut the boundary lines K, K providing a sealing function. The reaction chamber 7 that holds the reaction medium is formed among an annular surface of the piston P (a portion being anodized), the first

and second O-rings 4, 4 and an inner surface of the receiving hole. The annular cylindrical surface of the piston P includes a surface of the top ring groove 10.

- [0047] When a pump (not shown) is started, the reaction medium is supplied to the reaction chamber 7 through the inlet 21a and the inlet passage X, i.e., the outer space 62d, the holes 62f and the inner space 62e. Then, the reaction medium is directed to the surface of the top ring groove 10 passing through a lower side of the inner section 32 of the passage plate 3. Through an upper side of the inner section 32 of the passage plate 3, the reaction medium leaves the reaction chamber 7, and then, flows to the outlet passage Y, i.e., the inner space 62e, the holes 62f, the outer space 62d and the outlet 21b. At this time, direct current is supplied to the passage plate 3 and the electrode 8 in order to carry out an anodizing reaction. Thereby, the anodic treatment on a limited portion of the piston P including the surface of the top ring 10 can be annularly provided.
- [0048] As detailed above, after the piston P is placed in the receiving hole, the O-rings 4, 4 abut the cylindrical surface of the piston P providing the boundary lines K, K that determine the annular cylindrical surface, by axial movements of the first and second sleeves 41, 41 caused by inward movements of the push rods 43. Thus, the anodic treatment at the middle portion on the cylindrical surface of the piston P is provided without requiring a masking procedure. This brings a reduced working efficiency and a processing capability. Further, according to the first embodiment of the present invention, the area that is exposed to the reaction medium is made narrower by the O-rings 4, 4, so that less electric power is necessary, as compared to the conventional apparatus for anodizing the piston top surface. Thereby, a heat generation is reduced. Also, since volume of the reaction chamber 7 is small and a flow of the reaction medium is formed in the horizontal direction of the passage plate 3, a flow velocity of the reaction medium is obtained with a smooth flow. This provides an improvement in a cooling efficiency of the reaction medium. By this

reason, a lower capability of a cooling machine for the reaction medium is required. Also, a volume of the reaction medium necessary for the anodic treatment of the piston is reduced.

- [0049] A volume of the reaction chamber 7 is dimensioned in accordance with an area of the annular cylindrical surface, so that the reaction chamber circulates in the reaction chamber with high-efficiency. Thus, it becomes possible to downsize the apparatus. Also, because of the area of the annular cylindrical surface that is dimensioned narrowly, the amount of harmful gases, such as hydrocarbon, that might adhere to an anodized surface is reduced. The reaction medium is supplied uniformly and simultaneously to the annular cylindrical surface from its periphery, so that a uniform treatment of the anodization is performed in the circumferential direction of the piston P. Furthermore, the outlet 21b is provided at a higher position than that of the outlet passage Y, and thus an air mixed in the reaction medium is efficiently exhausted when the reaction medium leaves the container through the outlet 21b. Therefore, an uneven reaction of the anodic treatment may be caused by the air mixed in the reaction medium. The inner section 32 is placed in the reaction chamber 7 in order to divide the reaction chamber 7 in up and down directions thereof. Thereby, in a high efficiency, the reaction medium circulates in the reaction chamber 7 that is reasonably dimensioned in accordance with the area of the annular cylindrical surface, and thus, downsizing of the apparatus is obtained.
- [0050] One of electrodes exposed to the reaction medium may comprise the passage plate 3 that is arranged in the reaction chamber 7, so that the electrode is located nearby the piston P within a narrow area. By virtue of this arrangement, a reaction efficiency is improved. Moreover, the conductive rod 33 provided for carrying an electricity to the passage plate 3 is disposed outside the reaction chamber 7 so as not to be exposed to the reaction medium, thereby preventing a corrosion of a point of the conductive rod 33 and the passage plate 3 that might be caused by the reaction medium.

- [0051] As shown in Fig. 3(b) the passage plate 3' may be formed so that the inner section 32' is not energized by the electrode (i.e., remains de-energized). The main section 31' is in contact with the conductive rod 33 and is energized during the anodic treatment of the component to function as the required electrode for anodization (i.e., the cathode).
- [0052] It is possible for sparks to be generated between anodization electrodes located in close proximity (i.e. between the piston and the passage plate). The occurrence of sparks is detrimental to the formation of a high-quality anodization layer at the top ring groove of the piston. As described above, an embodiment of the present invention provides for the separation of the passage plate into conductive and non-conductive sections. This arrangement helps to prevent the formation of sparks. The piston (anode) and the conductive or main section of the passage plate (cathode) are separated by the inner or non-conductive section of the passage plate. The main section 32' is arranged to contact the reaction medium in the inlet passage and not in the reaction chamber. The non-conductive or inner section 32' extends into the reaction chamber adjacent the piston thereby separating the electrodes and inhibiting the generation of sparks around the top ring groove of the piston.
- [0053] The lower and upper wall members 6a, 6b, which are separable in up and down directions based on the treating area (the surface of the top ring groove 10), and the bottom member 5 include a portion that forms at least the receiving hole of the container 1. The first and second O-rings 4, 4 are provided on the lower and upper wall members 6a, 6b. The passage plate 3 that constitutes one of electrode exposed to the reaction medium is disposed between the lower and upper wall members 6a, 6b, being pinched therebetween. The lower and upper wall members 6a, 6b, the passage plate 3 and the annular cylindrical surface of the piston P cooperatively define the reaction chamber 7. Also, the inlet passage X that communicates with the reaction chamber 7 is formed on the lower wall member 6a, whereas the outlet

passage Y is formed on the upper wall member 6b. Thus, the container 1 that has the inlet and outlet passages X, Y, both communicating with the reaction chamber 7, is assembled easily by stacking those elements in up and down directions.

- [0054] Next, an anodizing apparatus according to a second embodiment will be described. In this embodiment, the same or similar references used to denote elements in the anodizing apparatus of the first embodiments will be applied to the corresponding elements used in the second embodiment, and only the significant differences from the first embodiment will be described. Figure 4 shows a sectional view of the second embodiment of the present invention.
- [0055] The anodizing apparatus of the second embodiment is similar to the first embodiment shown in Figures 1-3, except that it provides an alternative structure for the passage plate 30 and the lower wall member 6a. Namely, the lower wall member 6a comprises only the exterior member 61. Also, except at an upper end portion thereof, the cylindrical section 61a is provided with a heavier wall thickness than that of the first embodiment so that a stepped portion 61d is formed thereon. According to the second embodiment of the present invention, only the outer space 61e is defined in the lower wall member 6a, whereas the lower wall member 6a of the first embodiment defines the outer and inner spaces 62d, 62e.
- [0056] As shown in Figures 5-7, the passage plate 30 includes six supply grooves 30a and six drain grooves 30b. Each of the supply grooves 30a constitutes a part of the inlet passage X, and is preferably formed on a lower face of the passage plate 30. Similarly, each of the drain grooves 30b constitutes a part of the outlet passage Y, and is formed on an upper face of the passage plate 30. The supply grooves 30a are provided in the same interval. The drain grooves 30b are also arranged in the same interval. The supply grooves 30a and the drain grooves 30b are formed alternately together in the circumferential direction of

the passage plate 30 so that each supply groove 30a does not overlap with any of drain grooves 30b in an axial direction of the passage plate 30.

- [0057] As shown in Figures 5 and 6, the supply grooves 30a and the drain grooves 30b have angles by which the reaction medium is directed or leaves the annular cylindrical surface of the piston P having a predetermined angle. The angles of the supply and drain grooves 30a, 30b are determined so that the angle of a supply groove relative to the tangent to the piston P at the supply groove is opposite to the angle of a drain groove relative to the tangent to the piston P at the drain groove. The angles of the drain and supply grooves are symmetrical about a line perpendicular to the surface to be anodized. The direction of each supply groove 30a is angled toward an opposite direction to that of each drain passage 30b. The passage plate 30 is disposed between the outward flange section 62c of the interior member 62 and the stepped portion 61d of the exterior member 61, being pinched therebetween.
- [0058] When the pump starts to operate, the reaction medium is introduced, through the supply grooves 30a and the supply passage X (namely, the outer space 61e), into the reaction chamber 7 in which the reaction medium is directed toward the piston P at the predetermined angle. Then, the reaction medium leaves the reaction chamber 7 having at the predetermined angle through the drain grooves 30b, and flows to the outlet 21b through the drain passage Y (namely, the outer space 62e of the upper wall member 6b, the holes 62f, and the outer space 62d).
- [0059] Thus, according to the second embodiment of the present invention, an increased velocity and a smooth flow of the reaction chamber is obtained by virtue of following features, which requires a lesser performance of a cooling machine for cooling the reaction medium, as compared to the conventional art. First, the axial directions of the supply grooves 30a and drain grooves 30b are in a horizontal direction of the passage plate 30, and are substantially the same level as that of the top ring groove 10 in the axial direction of the piston P.

Second, plural supply grooves 30a and drain grooves 30b (in this embodiment, six supply grooves and drain grooves) are arranged on both sides of the passage plate 30 having those arranged alternately with each other. Third, directions of the supply grooves 30a are at a pre-determined angle to the surface of the piston P, while directions of the drain grooves 30b are at an angle opposite to that of the supply grooves 30a.

- [0060] Next, an anodizing apparatus according to a third embodiment of the present invention now will be described. Figure 8 is a cross sectional view of the third embodiment. As will be appreciated, this embodiment is similar to the second embodiment, except that a rigid member 44 is used in place of one part of the first and second push rings 42, 42, and that the push rods 43, 43 are provided on only one side of the container 1. Therefore, the number of parts and a cost of the apparatus are both reduced.
- [0061] Figure 9 is a cross sectional view of a fourth embodiment of the present invention. As will be appreciated, the third embodiment is substantially the same as the second embodiment. The main difference from the second embodiment is that one of the electrodes that is exposed to the reaction medium comprises an electrode rod 9a whereas the electrode of the second embodiment comprises the passage plate 30. Namely, the electrode rod 9a passes through the outer cylindrical member 2 in the radial direction of the container 1, so that an end portion of the electrode rod 9a is exposed to the reaction medium.
- [0062] Figure 10 is a cross sectional view of a fifth embodiment of the present invention. Similarly to the fourth embodiment, one of electrodes that is exposed to the reaction medium comprises an electrode rod 9b. The difference in this embodiment from the fourth embodiment is that the electrode rod 9b penetrates annular cover member 23, the rigid member 44, and the upper wall member 6b, having its bottom end exposed to the reaction medium. Both the fourth and fifth embodiments provide, in addition to the features described in

the second embodiment of the present invention, a simplified structure of the apparatus.

- [0063] Figure 11 is a cross sectional view of a sixth embodiment of the present invention. As shown in Figure 11, this embodiment is substantially the same as the second embodiment, except that a part of the exterior member 61 included in the upper wall member 6b and the lower wall member 6a abut with each other at a place other than which the supply and drain grooves 30a, 30b are formed. Since the lower and upper wall members 6a, 6b abut with each other, the width of the reaction chamber 7 in the axial direction of the piston P is secured. Also, the annular cylindrical surface may be freely selected in the radial direction of the piston P by selecting a radial position of the abutting portion of the lower and upper wall members 6a, 6b.
- [0064] Figure 12 shows a bottom view of the passage plate 30 of a seventh embodiment of the present invention. As shown in Figure 12, the supply and drain grooves 30a, 30b are formed so that those axial lines are parallel with the tangents to the piston P. Thus, the reaction medium is introduced into the reaction chamber 7 having at angle of approximately 0 degrees. In this case, a capability of the anodic treatment is improved by virtue of the smooth flow of the reaction medium obtained by this embodiment.
- [0065] Figures 13-15 show a eighth embodiment of the present invention. As shown in Figure 13, plural apparatuses that are substantially the same as the second embodiment are coupled together. That is, as shown in Figure 15, the outer spaces 61d, 61a of adjoining apparatuses are connected with each other, while the upper outer spaces 62d, 62d are coupled together at a connecting portion between adjoining apparatuses. Thereby, plural apparatuses are coupled together in a compact shape.
- [0066] In Figure 16, there is shown a ninth embodiment. As will be appreciated, the ninth embodiment is substantially the same as the second embodiment of the

present invention, except that another way is employed for the push mechanism for compressing the first and second O-rings 4, 4. Namely, the apparatus in this embodiment does not include the first and second push rings 42, 42. Instead of this, the push rods 43, 43 directly press the first and second sleeves 41, 41 in the axial directions of the first and second sleeves 41, 41, respectively. Furthermore, the exterior member 61 included in the upper wall member 6b is formed integrally with the annular cover member 23. Therefore, in addition to the feature obtained by the second embodiment of the present invention, simplicity in the structure of the apparatus is obtained. Moreover, where the passage plate 30, the interior member 62, the exterior member 61, and the annular cover member 23 are assembled together as an unified unit, an easy attachment and detachment of the unit is obtained with a reduced time in changing the unit. The first and second sleeves 41, 41 may be assembled together with the unified unit.

- [0067] Figures 17 and 18 show a tenth embodiment of the present invention. As shown in both Figures, as a modified example of the fifth embodiment of the present invention the electrode rod 9b of which is arranged separately with the passage plate 30, this embodiment does not include the passage plate 30. Namely, according to the tenth embodiment of the present invention, the container 1 is provided with the supply passage X and the drain passage Y. The supply and drain passages X, Y are placed at opposing positions with respect to each other in the radial direction of the container 1. As shown in Figure 17, the supply and drain passages X, Y have narrow portions 11, 12, both working as orifices, respectively. The height of both portions 11, 12 in the axial direction of the piston P is smaller than the height of the supply and drain passages X, Y, respectively. As shown in Fig. 18, the circumferential widths are dimensioned so that the width increases toward the reaction chamber 7. This arrangement prevents an increase in temperature of the reaction medium caused by concentrations of the reaction medium that occur

at places where the supply and drain passages X, Y have opening portions to the reaction chamber 7.

- [0068] The increase in the temperature of the reaction medium is more marked on a drain passage side than a supply passage side. Thus, the narrow portions 11, 12 are dimensioned that a width of the narrow portion 12 is wider than that of the narrow portion 11. Although not required, it is preferable that the ratio of the circumferential width at the opening portion of the narrow portion 11 to that of the narrow portion 12 is determined from the range of between 1:1.5 through 1:3. In brief, the ratio may be determined so that the reaction medium in the reaction chamber 7 introduced through the supply passage X smoothly leaves the reaction chamber 7 without being stuck.
- [0069] As described above, the flow of the reaction medium in the supply passage X is narrowed in a vertical direction of the supply passage X while broadened in the circumferential direction. This provides the smooth flow of the reaction medium in the reaction chamber 7 by which uniformity in contact of the reaction medium with the annular cylindrical surface is efficiently obtained. Thus, according to the tenth embodiment of the present invention, simplicity in the structure of the apparatus is obtained by an omission of the passage plate 30 and a structure of the supply and drain passages X, Y.
- [0070] While the present invention is described on the basis of certain preferred embodiments, it is not limited thereto, but is defined by the appended claims as interpreted in accordance with applicable law. For example, according to the previously described preferred embodiments of the present invention, although the piston is used as an object for anodization, all metal products that have a middle portion to be anodized on an outer surface in those axial directions may be anodized.

- [0071] This application relates to and incorporates herein by reference Japanese Patent application No. 2001-238157 filed on Aug. 5, 2001, and No. 2001-6525 filed on Jan. 15, 2001 from which priority is claimed.

2025 RELEASE UNDER E.O. 14176