Aluno: Allan Cordeiro Rocha de Araújo

Disciplina: Análise de Algoritmo

Lista 2

Questão 1

Letra (A)

Complexidade da versão recursiva

	0
	-
data • •	0
<u>\$ 7 0 0 9 9 0</u>	-
	0
(6)/1	0
- (A(s)	0
	6
T(0) 5 1	6
T(2):1	-
T(m) + T(m-2) + T(m-2)	-
- control a reprade relonance homogent	
TO = 1 to a una equação de algundo	
your property	
T(2)=2 to $(2)=2$	0
T(4):5 4 calculardo ar rayon dema equação.	
n1:1+V5	
n1: 1+V5	
n1: 1-V5	
Tema que or addata 2	
a reduçõo;	-
$T(m) = a_1\left(\frac{1+\sqrt{5}}{2}\right) + a_2\left(\frac{1-\sqrt{5}}{2}\right)$	9
2 2	-
Unando m = 0 o m = 1, pón T(0) = 1 o T(1) = 1	9
	-
(15 a1 + a2	2
$\sqrt{1-a_2(2+\sqrt{5})}+a_2(2-\sqrt{5})$	7
	1
	~
· Resolvendo eme s'intera	2
- a1: V5+1 2 V3	9
2 4 5	9
15.1	1
az= V5-1	1
2 1/3	-
(landnis)	

Calculo da complexidade para a versão iterativa

line lib(m) {	
i=1 j=0 lo k=1 ate m	7-17
t = i+j i = j j = t	3 (25 E
retenný 3 m 2 = m 1-1 k=1	2 + 2
Logo a complexidade e O(m)	
TO DESCRIPTION OF THE PARTY OF	

O limite inferior para ele é O(log(n)), pois é a melhor complexidade entre os algoritmos de Fibonacci, neste caso é um algoritmo que usa exponenciação de matrizes.

Letra (B)Cálculo para complexidade da versão recursiva

Permeto (atr, k) { Vernão Precuriva if (k = i temans (atr)) - + 0(1) 0000000
if (k = = tunan/a (ata)) + 0(1) 0000000
else (i k ate tanando(str)) exclange haractere (str. K,i) 0 0(1) permete(str. K+1)
g exchange Capaters (atr, i, k) PO(1)
3 toxa (atolp 1), atolp 2)
$T(m) = \begin{cases} 0 & m = 0 \\ 1 & m = 1 \\ m = (T(m-1) + 2) \end{cases}$
T(m) = m.T(m-1) + 2m T(m-1) = m(mT(m-2) + 2m) + 2m $T(m-1) = m^2 T(m-2) + 2m^2 + 2m$ $T(m-2) = m^3 T(m-3) + 2m^3 + 2m^2 + 2m$
= n*. T(n-k) + 2(n++nk) pook=n = n~T(8) + 2(n++nk)
Jogando na formula da PG
$O\left(\frac{m^{n}-1}{m-1}\right)$

Questão 2

(A)

 \acute{E} um modelo matemático que representa relações entre objetos G=(V,E).

V é o número de vértices e E é o número de arestas.

(B)

Grafo conexo: Grafo que possui arestas

Grafo acíclico: Grafo que não possui ciclos, ou seja, uma árvore

Grafo direcionado: Grafo onde as arestas possuem uma direção definida

(C)

Adjacência em vértices é quando dois vértices x e y forem ligados por uma mesma aresta e=(x,y).

O vértice 6 é adjacente ao vértice 4

Já adjacência em arestas é quando duas arestas possuem o mesmo extremo (um mesmo vértice)

(6,4) é adjacente a (4,5)

(D)

Um grafo planar é quando um grafo é colocado em um plano onde suas arestas não se cruzem

(F)

Grafo Completo: Um grafo é completo quando todos os seus vértices forem adjacentes.

Um grafo completo Kn possui n(n-1)/2 arestas.

Clique: é um subgrafo de um grafo G, que é completo.

Grafo bipartido: Um grafo G=(V,E) é bipartido quando seu conjunto de vértices V pode ser dividido em dois subconjuntos de vértices tais que toda aresta conecta um vértice de um subconjunto com o do outro subconjunto.

(G)

Grafo Simples: É um grafo que não possui arestas múltiplas.

Multigrafo: Quando um grafo possui mais de uma aresta interligando os mesmos dois vértices dizem-se que esse grafo possui arestas múltiplas (ou arestas paralelas).

Dígrafo: quando o grafo é direcionado, ou seja, quando as arestas possuem direções.

Questão 3

Matriz de incidência: É a representação computacional de um grafo através de uma matriz bidimensional, uma dimensão são os vértices e a outra são as arestas. De forma geral ela guarda informações sobre a relação de cada vértice com cada aresta (a incidência de uma aresta sobre um vértice)

A Matriz de incidência abaixo é a representação do grafo acima.

$$\begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de adjacência: Seja um grafo com n vértices, a matriz de adjacência é uma matriz n x n. A matriz guarda informações sobre como o vértice v1 se relaciona com o vértice v2.

A matriz de adjacência abaixo é a representação do Grafo acima.

$$A = egin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Lista de adjacência: É a representação computacional de um Grafo em uma estrutura de dados de lista de listas (ou vetor de listas).

A lista de adjacência a seguir é a representação do grafo acima.

A vantagem da matriz de adjacência é sua velocidade de busca, para buscar qualquer informação nela o custo é O(1). Já a desvantagen é que o gasto de memória talvez não compense isso, pois ele sempre vai armazenar um matriz n x n (n é o número de vértices), logo se o grafo possuir poucas arestas talvez não valha pena.

A vantagem da lista de adjacência é que caso o grafo possua poucas arestas o custo para a lista será baixo, por exemplo, caso possua nenhuma aresta a lista de adjacência será basicamente um vetor. A desvantagem é caso o grafo seja um grafo completo, ou seja, todos os seus vértices estão ligados entre si.

Questão 4

Tabela hash / tabela de dispersão / tabela de espalhamento é uma estrutura de dados que associa chaves aos elementos. Com esta chave será feito a busca do elemento. Existe vários métodos para o cálculo do espalhamento dos elementos (calcular sua posição na tabela), o mais conhecido é usar resto da divisão do elemento pelo tamanho da tabela (tamanho da tabela normalmente é um número primo).

A complexidade da inserção e remoção no pior caso é O(n).

A complexidade da busca é O(1).

Estrutura do hash com lista encadeada

```
#include <stdio.h>
#include <stdlib.h> //para uso da função calloc
#include <math.h>

typedef struct modlista {
   int valor;
```

```
//ponteiro para o proximo elemento
     struct modlista *prox;
}*vetor,lista, *elo;
                             //um vetor de ponteiro para a struct, a estrutura,
ponteiro para a struct
void inicio(vetor *v,int n){
                             elo novo;
                             int i;
                             for(i=0;i< n;i++){
                                   novo = (elo)calloc(1,sizeof(lista));
                                   novo->valor = i;
                                   novo->prox = NULL;
                                   v[i] = novo;
                             }
}
int calculoHash(int x,int m){
                             return (x%m);
}
int inserir(vetor *v,int valor,int m){
                              elo aux, novo;
                              int posicao = calculoHash(valor,m);
                              aux = v[posicao];
                              while(1){
                                   if(aux->prox == NULL)
                                          break;
                                   aux = aux->prox;
                              }
```

```
novo = (elo)calloc(1,sizeof(lista));
                             novo->valor = valor;
                             novo->prox = NULL;
                             aux->prox = novo;
}
void imprimir(vetor *v,int m){
                             elo aux;
                             int i;
                             for(i=0;i< m;i++){
                                  aux = v[i];
                                  while(1){
                                         if(aux == NULL)
                                                break;
                                         printf("%d -> ",aux->valor);
                                         aux = aux->prox;
                                  }
                                  printf("\\\n");
                             }
}
```

Questão 5

Enumeração explicita: é a famosa resolução por força bruta, onde é feita todas as comparações possíveis em um conjunto de dados para se obter a resposta desejada.

Exemplo: algoritmos de força bruta.

Enumeração implícita: Quando apenas uma parte dos dados é realmente analisada, sem necessidade de se analisar todos os casos possíveis.

Exemplo: Algoritmos gulosos.

Programação dinâmica: É a técnica de resolução de problemas onde os subresultados são armazenados em tabelas para consulta, por exemplo, em uma resolução recursiva normalmente a mesma operação é feita mais de uma vez, nesses casos essas respostas repetidas não são calculadas mais de uma vez, pois já estão armazenadas em tabelas.

Exemplos: algoritmo de Dijkstra, algoritmo para o problema da mochila booleana.

Algoritmo Guloso: é uma resolução baseada em achar a melhor escolha local com a esperança de achar a melhor escolha global, ou seja, o primeiro resultado que satisfaz a condição ele já aceita e desconsidera as outras possíveis possibilidades.

Exemplos: problema da mochila fracionaria, problema do escalonamento de intervalos.

BackTracking: é um refinamento de busca por força bruta, onde varias soluções porem ser descartadas sem serem necessariamente analisadas.

Exemplos: N-rainhas, Caixeiro Viajante.

Questão 6

Pseudocódigo da multiplicação de matrizes usando programação dinâmica MATRIXCHAINORDER (p,n)

```
    1 para i ← 1 até n faça
    m[i,i] ← 0
    3 para l ← 2 até n faça
    para i ← 1 até n − l + 1 faça
    j ← i + l − 1
    m[i, j] ← ∞
    para k ← i até j − 1 faça
```

```
8
              q \leftarrow m[i, k] + p[i-1] p[k]p[j] + m[k+1, j]
9
              se q < m[i, j]
10
                 então m[i, j] \leftarrow q
11 devolva m[1, n]
Questão 7
// algoritmo de Dijkstra /CAMINHO MINIMO
void dijkstra (Graph G,int Vi,int *dis){
//calcula as distancias e armazena no VETOR dis[]
/*
Ele irá calcular a distancia da raiz Vi até todos os outros vértices armazenados
no vetor dis[]
*/
char vis[G->v];
memset (vis, 0, sizeof (vis));
memset (dis, 0x7f, sizeof (dis));
dis[Vi] = 0;
int t, i;
for (t = 0; t < G > v; t++){
   int v = -1;
   for (i = 0; i < G > v; i++)
      if (!vis[i] \&\& (v < 0 || dis[i] < dis[v]))
         v = i;
    }
   vis[v] = 1;
```

for $(i = 0; i < G -> v; i++){$

Questão 8

(A)

A teoria NP-Completude abrange os problemas NP-Completos, que são problemas que são um subconjunto de NP e são computacionalmente difíceis de se resolver, no caso problemas que são resolvidos em tempo exponencial.

Já o problema SAT é um problema NP-Completo, mais precisamente foi o primeiro identificado como pertencente à classe NP-Completo. O problema SAT é pra determinar se existe uma valor (positivo ou negativo) para um expressão booleana.

(B)

Classe P: É o conjunto de problemas que podem ser resolvidos em tempo polinomial por uma máquina de Turing determinística.

Exemplo: cálculo do máximo divisor comum.

Classe NP: É o conjunto de problemas que são decidíveis em tempo polinomial por uma máquina de Turing não-determinística.

Exemplo: problema do caixeiro viajante.

Classe NP-Difícil: um problema H é NP-Difícil se e somente se existe um problema NP-Completo L que é Turing-redutivel em tempo polinomial para H.

Exemplo: problema de decisão da soma de subconjuntos.

NP-Completo: São problemas que são um subconjunto de NP e são computacionalmente difíceis de se resolver.

Exemplo: Problema do caminho mais longo.

Questão 10

Uma redução (ou redução polinomial) é reduzir um problema x em um problema y onde um algoritmo 1 que resolve x usando uma subrotina hipotética

algoritmo 2 que resolve y, tal que, se algoritmo 2 é um algoritmo polinomial, então algoritmo 1 é um algoritmo polinomial também.

A notação: x <=p y. Significa que existe uma redução de x a y.

Se x <=p y e y está em P, então x está em P.

Para mostrar que SAT <=p Clique primeiro mostraremos que SAT <=p 3-SAT e que 3-SAT <=p Clique.

SAT <=p 3-SAT

Legenda

Quando se diz 3 literais por clausula significa isso:

 $\emptyset = (x1 \ v \ !x1 \ v \ !x2) \land (x3 \ v \ x2 \ v \ x4)$

Um literal são as variáveis x1,x2.. e sua negação é !x1,!x2...

Uma clausula é (x1 v !x1 v !x2)...

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana \emptyset e devolve uma fórmula booleana \emptyset ' com exatamente 3 literais por cláusulas tais que:

Ø é satisfazível se e somente se Ø' é satisfazível

A transformação consiste em substituir cada clausula de \emptyset por uma coleção de claúsulas com exatamente 3 literais cada e equivalente a \emptyset ;

Seja (l1 v l2 v · · · v lk) uma claúsula de Ø .

Caso 1. k = 1

Troque (I1)

por ($|1 \lor y1 \lor y2)$ ($|1 \lor \neg y1 \lor y2)$ ($|1 \lor y1 \lor \neg y2)$ ($|1 \lor \neg y1 \lor \neg y2)$ onde y1 e y2 são variáveis novas.

Caso 2. k = 2

Troque ($|1 \lor |2)$ por ($|1 \lor |2 \lor y)$ ($|1 \lor |2 \lor \neg y$). onde y é uma variáveis nova.

Caso 3. k = 3

Mantenha (l1 v l2 v l3).

Caso 4. k > 3

Troque ($11 \lor 12 \lor \cdots \lor 1k$) por

 $(11 \vee 12 \vee y1)$

 $(\neg y 1 \lor 13 \lor y 2) (\neg y 2 \lor 14 \lor y 3) (\neg y 3 \lor 15 \lor y 4) \dots$

$$(\neg yk - 3 \lor lk - 1 \lor lk)$$

onde y 1, y 2, . . . , y k - 3 são variáveis novas

Verifique que \emptyset é satisfazível se e somente se nova fórmula é satisfazível. O tamanho da nova claúsula é O(m), onde m é o número de literais que ocorrem em \emptyset (contando-se as repetições).

Agora para 3-SAT <=p Clique

Descreveremos um algoritmo polinomial T que recebe uma fórmula booleana \varnothing com k clausulas e exatamente 3 literais por clausula e devolve um grafo G tais que

Ø é satisfativel se e somente se G possui um clique >= k

Para cada clausula o grafo G terá 3 vértices, um correspondente a cada literal da clausula, Logo G terá 3k vértices. Teremos arestas ligando vértices u e v se u e v são vértices que correspondem a literais em diferentes clausulas; e se u corresponde a um literal x então v não corresponde ao literal !x.