The Bellman-Ford Algorithm (2/3)

- Allows negative-weight edges.
- Computes v.d and $v.\pi$ for all $v \in V$.
- Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

Jen-Wei Hsieh, CSIE, NTUST

The Bellman-Ford Algorithm (3/3)

BELLMAN-FORD (G, w, s)1 INITIALIZE-SINGLE-SOURCE (G, s)2 **for** i = 1 **to** |G, V| - 13 **for** each edge $(u, v) \in G.E$ 4 RELAX (u, v, w)5 **for** each edge $(u, v) \in G.E$ 6 **if** v.d > u.d + w(u, v)7 **return** FALSE

8 **return** TRUE

Jen-Wei Hsieh, CSIE, NTUST

Example (1/5)

Example (2/5)

Example (3/5)

Jen-Wei Hsieh, CSIE, NTUST

Example (4/5)

Jen-Wei Hsieh, CSIE, NTUST

Example (5/5)

Analysis of Bellman-Ford Algorithm

- The Bellman-Ford algorithm runs in time *O(VE)*
 - The initialization in $\underline{\text{line 1}}$ takes $\Theta(V)$ time.
 - Each of the |V|-1 passes over the edges in lines 2–4 takes $\Theta(E)$ time.
 - The **for** loop of lines 5-7 takes O(E) time.

Outline

- Shortest Paths
- Shortest-Paths Properties
- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths

Jen-Wei Hsieh, CSIE, NTUST

Single-Source Shortest Paths in DAG (1/3)

Jen-Wei Hsieh, CSIE, NTUST

Single-Source Shortest Paths in DAG (2/3)

- Shortest paths are always well defined in a dag (directed acyclic graph), since even if there are negative-weight edges, no negative-weight cycles can exist.
- By relaxing the edges of a weighted dag G = (V, E) according to a topological sort of its vertices, we can compute shortest paths from a single source in Θ(V + E) time.

Single-Source Shortest Paths in DAG (3/3)

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- for each vertex u, taken in topologically sorted order
- for each vertex $v \in G.Adj[u]$
- 5 RELAX(u, v, w)

Example (1/7)

Jen-Wei Hsieh, CSIE, NTUST

Example (2/7)

Jen-Wei Hsieh, CSIE, NTUST

Example (3/7)

TAKWAN TECH 35 National Takwan University of Science and Technology

Example (4/7)

Example (5/7)

Jen-Wei Hsieh, CSIE, NTUST

Example (6/7)

Jen-Wei Hsieh, CSIE, NTUST

Example (7/7)

Correctness

- Because we process vertices in topologically sorted order, edges of any path must be relaxed in order of appearance in the path.
- ⇒ Edges on any shortest path are relaxed in order.
- ⇒ By path-relaxation property, correct.

Outline

- Shortest Paths
- Shortest-Paths Properties
- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths

Jen-Wei Hsieh, CSIE, NTUST

Dijkstra's Algorithm (1/3)

- No negative-weight edges.
- Essentially a weighted version of breadth-first search.
 - Instead of a FIFO queue, uses a priority queue.
 - Keys are shortest-path weights (v.d).
- Have two sets of vertices:
 - S = vertices whose final shortest-path weights are determined,
 - -Q = priority queue = V S.

Jen-Wei Hsieh, CSIE, NTUST

Dijkstra's Algorithm (2/3)

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

Dijkstra's Algorithm (3/3)

- Looks a lot like Prim's algorithm, but computing *v.d*, and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" ("closest"?) vertex in V – S to add to S.

