1. Stability of Rankings (Quantitative Agreement)

CMAPSS

- Random Forest: 1-trial and 25-trial results are almost identical, with 9 out of 10 features the same (90% overlap). Only Sensors 12 and 14 switch positions, showing the model is very stable.
- **XGBoost**: Also stable with 9 out of 10 features identical (90% overlap). Sensor 13 drops in the 25-trial average, indicating only minor volatility.

SECOM

- Random Forest: Extremely unstable, with only 2 out of 10 features overlapping between 1-trial and 25-trial (20% overlap). Feature rankings reshuffle drastically.
- XGBoost: Slightly better but still unstable, with only 3 out of 10 features overlapping (30% overlap). Multi-trial averaging is clearly required.

NASA Bearings

- Random Forest: Mostly stable, with 7 out of 8 features matching between 1-trial and 25-trial (87.5% overlap). Timestamp_index disappears in the 25-trial average, confirming it was a spurious single-trial feature.
- XGBoost: Moderately stable, with 5 out of 7 features overlapping (~71%). Single-trial
 overemphasizes Timestamp_index and misses RMS and Peak_to-Peak, while 25-trial averaging
 recovers all of the physics-driven vibration features.

2. Feature Order Shifts (Importance Volatility)

- **CMAPSS**: The top 3–4 sensors stay consistent for both models, showing a stable signal.
- **SECOM**: Only Feature 59 consistently remains on top, while the rest reshuffle heavily. This indicates the dataset is noisy and unstable.
- NASA Bearings: Standard deviation remains the top feature, serving as a reliable health indicator. Timestamp_index drops after averaging, confirming it was a spurious single-trial signal. RMS and Peak-to-Peak only appear in 25-trial SHAP, showing that multi-trial averaging recovers the true vibration health features.

3. Quantitative Insights

- When **feature overlap exceeds 80%**, 1-trial SHAP is likely sufficient for operational decision-making. This applies to CMAPSS (RF and XGB) and NASA Bearings (RF).
- When **feature overlap is below 50%**, multi-trial averaging becomes mandatory. This applies to SECOM (RF and XGB) and, to a lesser extent, NASA Bearings (XGB).
- Random Forest is consistently more stable than XGBoost, likely due to its lower sensitivity to noise. This also aligns with its stronger predictive performance observed in prior experiments.

4. Operational and Business Implications

- **Stable datasets** like CMAPSS and NASA Bearings with RF models allow 1-trial SHAP to provide fast, cost-effective maintenance insights.
- Noisy datasets like SECOM or Bearings with XGBoost require multi-trial SHAP (25 or more runs) to prevent misleading interpretations.
- Multi-trial averaging recovers domain-aligned features such as standard deviation, RMS, and kurtosis, increasing trust for engineers and operations teams when using model-driven maintenance strategies.