

Circuit Analysis

1

G V V Sharma*

CONTENTS

1	Filter					
	1.1	Node Analysis .				
	1.2	Circuit Analysis				

Abstract—This manual provides a quick introduction to Fourier series and Low Pass Filters (LPF), besides facilitating the use of Python for Signals & Systems.

1 Filter

1.1 Node Analysis

Problem 1.1. Refer to the circuit in Fig. 1.1. Suppose you are told that C has a resistance given by $\frac{1}{sC}$. Find the ratio H(s) of the output voltage and input voltage using node analysis. The above circuit is known as a low pass filter and H(s) is known as the transfer function.

Fig. 1.1: Three stage R - C low pass filter circuit

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. This work was funded by the PMMMNMTT, MHRD, Govt. of India. All content in this manuscript is released under GNU GPL. Free to use for all.

Solution: The equations at the nodes are given by

$$\frac{V_1 - V_i}{R} + sCV_1 + \frac{V_1 - V_2}{R} = 0 {(1.1)}$$

$$\frac{V_2 - V_1}{R} + sCV_2 + \frac{V_2 - V_o}{R} = 0 ag{1.2}$$

$$\frac{V_o - V_2}{R} + sCV_o = 0 {(1.3)}$$

which can be expressed as

$$\begin{pmatrix}
sC + \frac{2}{R} & -\frac{1}{R} & 0 \\
-\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\
0 & -\frac{1}{R} & sC + \frac{1}{R}
\end{pmatrix}
\begin{pmatrix}
\frac{V_1}{V_i} \\
\frac{V_2}{V_i} \\
\frac{V_2}{V_i}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{R} \\
0 \\
0
\end{pmatrix} (1.4)$$

Thus,

$$H(s) = \frac{V_o}{V_i} = \frac{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & \frac{1}{R} \\ -\frac{1}{R} & sC + \frac{2}{R} & 0 \\ 0 & -\frac{1}{R} & 0 \end{vmatrix}}{\begin{vmatrix} sC + \frac{2}{R} & -\frac{1}{R} & 0 \\ -\frac{1}{R} & sC + \frac{2}{R} & -\frac{1}{R} \\ 0 & -\frac{1}{R} & sC + \frac{1}{R} \end{vmatrix}} = \frac{1/R^3}{\left(sC + \frac{1}{R}\right)\left\{\left(sC + \frac{2}{R}\right)^2 - \frac{1}{R^2}\right\} - \frac{1}{R^2}\left(sC + \frac{2}{R}\right)}$$
(1.6)

which can be expressed as

$$H(s) = \frac{1}{(sCR+1)\{(sCR+2)^2 - 1\} - (sCR+2)}$$

$$= \frac{1}{(sCR+2)^3 - (sCR+2)^2 - 2(sCR+2) + 1}$$

$$= \frac{1}{(sCR)^3 - 5(sCR)^2 + 6sCR + 1}$$
(1.9)

Problem 1.2. Substitute $s = J2\pi f$, $J = \sqrt{-1}$ in (1.9) to obtain H(f). H(f) is known as the frequency response. Plot |H(f)| in python for -20 < f < 20,

given that $R = 1 k\Omega$ and $C = 10 \mu F$.

Solution: Type the following code to get Fig. 1.2. You will find that H(f) is a low pass filter.

import numpy as np import matplotlib.pyplot as plt

#Filter Characteristics

R = 1e3; #10K ohm resistance C = 10e-6;#10 uF capacitance

#Plotting the filter amplitude response

T = 0.02;

f = 0 = 1/T;

 $f = np. linspace(-1.5*f_0, 1.5*f_0, 1$ e2)

s = 1j*2*np. pi*f

den = np. polyval([1,-5, 6, 1], s*C*R);

H = 1/den;

 $plt.\, \boldsymbol{plot}\, (\,f\,\,, \boldsymbol{abs}\, (H)\,)$

plt.grid()# minor

plt.xlabel('\$f\$ \((Hz)')

plt.ylabel('\$H(f)\$')

#Save figure

plt.savefig('../figs/2.2.eps')

plt.show()

Problem 1.3. Find the frequency at which $|H(f)|^2 = \frac{1}{2}$. This frequency is known as the 3-dB bandwidth of H(f).

Solution: Substituting sCR = 1x in (1.9),

$$\left| H(\mathbf{j}x) \right| = \frac{1}{\sqrt{2}} \tag{1.10}$$

$$\Rightarrow -jx^3 + 5x^2 + j6x + 1 = \sqrt{2} \tag{1.11}$$

$$\Rightarrow x^2(6-x^2)^2 + (1+5x^2)^2 = 2 \tag{1.12}$$

$$\Rightarrow x^6 + 13x^4 + 46x^2 - 1 = 0 \tag{1.13}$$

Letting $y = x^2$, we obtain the cubic equation

$$y^3 + 13y^2 + 46y - 1 = 0 (1.14)$$

The following script gives the 3 dB bandwidth for

Fig. 1.2: Frequency response of the R-C filter

the filter H by choosing the real root.

import numpy as np
#Filter Characteristics
R = 1e3; #IK ohm resistance
C = 10e-6;#10 uF capacitance

#finding 3 dB bandwidth
 numerically
print(np.sqrt(np.roots([1, 13,
46, -1]))/(2*np.pi*R*C))

This yields the value $f_{3dB} = 2.3395$ Hz.

Problem 1.4. Obtain the 3 dB bandwidth by solving the cubic equation in the previous problem

Solution: In the above, let $y = z - \frac{13}{3}$. Then the equation becomes

$$\Rightarrow z^3 - (31/3)z - 1015/27 = 0 \tag{1.15}$$

This equation has the theoretical solution evaluated by the following script

import numpy as np

#Filter Characteristics

 $R = 1e3; \#1K \ ohm \ resistance$

C = 10e-6;#10 uF capacitance

#finding 3 dB bandwidth theoretically

```
 \begin{array}{l} q = -31/3; \\ r = -1015/27; \\ \\ \textbf{print}(\text{np.sqrt}((-r/2 + \text{np.sqrt}(r \\ **2/4 + q **3/27)) **(1/3) + (-r/2 \\ - \text{np.sqrt}(r **2/4 + q **3/27)) \\ **(1/3) - 13/3)/(2*\text{np.pi}*R*C)) \\ \end{array}
```

Note that this script gives the same result as the one in the previous problem.

1.2 Circuit Analysis

Problem 1.5. Obtain the expression for H(s) using mesh analysis.

Problem 1.6. Repeat the above exercise using Thevenin's theorem.

Problem 1.7. Repeat the above exercise using Norton's theorem.

Problem 1.8. Repeat the above exercise using $Y-\Delta$ transformation.

Problem 1.9. Obtain all the two port network parameters for the circuit in Fig. 1.1.