- Lineare Abbildungen respektieren Linearkombinationen
- F: $\mathbb{R}^n > \mathbb{R}^m$, $\vec{x} > \vec{y} = A \vec{x}$
 - F ist linear, wenn
 - * $\overrightarrow{x} + \overrightarrow{x'} > F(x) + F(x')$
 - * $\lambda \vec{x} > \lambda F(x)$
 - $* \ \lambda \overrightarrow{x} + \mu \overrightarrow{x'} -> \lambda F(x) + \mu F(x')$

Rieszsche Darstellungsgesetz d. lin. Alg.

• F: $V^n -> \mathbb{R}$, $\vec{v} -> y = F(\vec{v})$ - ==> $F(\vec{v}) =< \vec{b}, \vec{v}>$ - eindeutig bestimmt

Eigenschaften von linearen Abbildungen

- $\vec{0} > \vec{0}$
- $\vec{a} \vec{b} > F(a) F(b)$

Kern und Bild

- $\operatorname{Kern}(F) := \{ \vec{v} \in V : \vec{v} > \vec{0} \}$
 - Kern von F = Menge aller Elemente, welche Null abbilden
- $\bullet \ \operatorname{Bild}(\mathbf{F}) {:=} \{F(\vec{v}) : \vec{v} \in V\}$
 - Bild von F = Menge aller Elemente in V erreichbar durch Abbildung F

Menge linearer Abbildungen von V und W

• $L(V, W) := \{F : V -> W : F \ linear\}$

Spezielle Abbildungen

- Nullabbildung:
 - jeder Vektor bildet den Nullvektor ab
- $\bullet\,$ identische Abbildung
 - -V > V
 - jeder Vektor bildet sich selber ab
- Gerade
 - F: ℝ->ℝ
 - $-\lambda -> \lambda \vec{v}$
 - Fallunterscheidung:
 - $* \ \vec{v} = \vec{0}$
 - $\operatorname{Kern}(F) = \mathbb{R}$
 - Bild(F)= $\{\vec{0}\}$

- * $\vec{v} \neq \vec{0}$
 - $\operatorname{Kern}(F) = \{\vec{0}\}\$
 - Bild(F)=Span($\{\vec{v}\}$)
- Ebene
 - $F: \mathbb{R} \longrightarrow \mathbb{R}$
 - $-\lambda -> \lambda \vec{v}$
 - Fallunterscheidungen
- Matrix
 - $-A \in \mathbb{R}m \times n$
 - F: \mathbb{R} n–> \mathbb{R} m
 - $-\vec{v}->y=A\vec{v}$
 - * Kern(F)=Kern(A)=Lösungsmenge des homogenen linearen xGLS

Isomorphismus

• isomorph, wenn F bijektiv und linear

Konstruktion

- Für F: V->W linear mit n Dimensionen benötigen wir
 - b1 -> w1 = F(b1)
 - ...
 - $-\ bn \to wn = F(bn)$
 - b-Vektoren bilden Basis in V
- lineare Fortsetzung
 - $v = \alpha 1b1,..., \alpha nbn -> \alpha 1F(b)1,..., \alpha nF(b)n$
 - $Bild(F)=Span(\{F(b1),...,F(bn)\})$
 - Bild von F wird von Bildern der Basis-Vektoren aufgespannt

Projektion

- Abbildung von höherer auf niedrigere Dimension
- nie injektiv
- F: $\mathbb{R}3 \to \mathbb{R}2$, $(x,y,z) \to (x,y)$
- $Kern(F) = span(\{0,0,t\}) \neq Nullvektor$
 - t freie Variable
 - nicht injektiv
- $Bild(F) = span(\{(0,1), (1,0), (0,0)\})$
 - Erzeugendensystem
 - Basis ohne letzten Vektor

Verknüpfungen linearer Abbildungen

Koordinatenabbildung

- Koordinaten c brauchen Basis B
- \bullet Kordinaten-Vektor, von V bezüglich $\mathbf{B}=\mathbf{c}\mathbf{B}$

[[Allgemeine Vektorräume]]