Scientific Data Analysis Application

CU Capstone Project

Group of 6 senior computer science students working to create a python based data analysis web application.

Project Sponsor: Brian Bonnlander
Visualization and Enabling Technologies Section

- Hannah Keller
- · Seongmin Choi
- Robert Crimi
- Connor Guerrieri
- Bo Han
- Hannah Thomas

Reproducibility without expertise

"Many users of climate model outputs need to make decisions on how or whether to respond to climate change, in some cases within institutions where the reality or importance of climate change is not universally acknowledged."

> Committee on a National Strategy for Advancing Clim Modelins

Project Goal

Create a web application that allows users to easily and intuitively:

- · Create visual data workflows
- · Reproduce workflows
- · Automate scientific expertise
- · Access intermediate workflow results
- Utilize multiple analysis languages

- · Implement other steps
 - Unit Conversion
 - Thresholds
- Download
 Load existing workflow
- Delete step
- Save options

Scientific Data Analysis Application

CU Capstone Project

Group of 6 senior computer science students working to create a python based data analysis web application.

Project Sponsor: Brian Bonnlander
Visualization and Enabling Technologies Section

- Hannah Keller
- · Seongmin Choi
- Robert Crimi
- Connor Guerrieri
- Bo Han
- Hannah Thomas

Reproducibility without expertise

"Many users of climate model outputs need to make decisions on how or whether to respond to climate change, in some cases within institutions where the reality or importance of climate change is not universally acknowledged."

> Committee on a National Strategy for Advancing Clim Modelins

Project Goal

Create a web application that allows users to easily and intuitively:

- · Create visual data workflows
- · Reproduce workflows
- · Automate scientific expertise
- · Access intermediate workflow results
- Utilize multiple analysis languages

- · Implement other steps
 - Unit Conversion
 - Thresholds
- Download
 Load existing workflow
- Delete step
- Save options

Scientific Data Anatysis App

CU Capstone Project

Group of 6 senior computer science students working to create a python based data analysis web application.

Project Sponsor: Brian Bonnlander

Visualization and Enabling Technologies Section

- Hannah Keller
- Seongmin Choi
- Robert Crimi
- Connor Guerrieri
- Bo Han
- Hannah Thomas

Reproducibility without expertise

"Many users of climate model outputs need to make decisions on how or whether to respond to climate change, in some cases within institutions where the reality or importance of climate change is not universally acknowledged."

Committee on a National Strategy for Advancing Climate Modeling

Project Goal

Create a web application that allows users to easily and intuitively:

- Create visual data workflows
- Reproduce workflows
- Automate scientific expertise
- Access intermediate workflow results
- Utilize multiple analysis languages

Tool Research

Web Frameworks

Analysis tools

Workflow Builders

First Attempt

Second Attempt

Final Design

Architecture

- Nodelink
- Pyutilib.workflow
- NCL
- R
- MongoDB

- Implement other steps
 - Unit Conversion
 - Thresholds
 - Download
- Load existing workflow
- Delete step
- Save options

DEMO

Thank You

Hannah Keller keller.hannah6**@**gmail.com

Scientific Data Analysis Application

CU Capstone Project

Group of 6 senior computer science students working to create a python based data analysis web application.

Project Sponsor: Brian Bonnlander
Visualization and Enabling Technologies Section

- Hannah Keller
- · Seongmin Choi
- Robert Crimi
- Connor Guerrieri
- Bo Han
- Hannah Thomas

Reproducibility without expertise

"Many users of climate model outputs need to make decisions on how or whether to respond to climate change, in some cases within institutions where the reality or importance of climate change is not universally acknowledged."

> Committee on a National Strategy for Advancing Clim Modelins

Project Goal

Create a web application that allows users to easily and intuitively:

- · Create visual data workflows
- · Reproduce workflows
- · Automate scientific expertise
- · Access intermediate workflow results
- Utilize multiple analysis languages

- · Implement other steps
 - Unit Conversion
 - Thresholds
- Download
 Load existing workflow
- Delete step
- Save options

