The Augmented Social Scientist

How to Automatically Annotate Millions of Texts with Human-Level Accuracy

Salomé Do^{1,3}, Étienne Ollion², Rubing Shen^{1,2}

¹Sciences-Po (Medialab), ²CNRS (CREST), ³ENS (LATTICE)

- INTRODUCTION : A Problem of Abundance
- The Experiment : Investigating the Narration of Politics
 - The Question
 - Data and Indicators
 - Design of the Experiment
- Results
- 4 Conclusion
 - An Immense Promise
 - Limitations and Challenges

- An Avalanche of Digital Data
 - Born digital data
 - Digitized data
 - Including loads of textual data

- ► How to extract meaning from this large trove?
 - And old question, two responses

▶ The massive availability of textual data

How to extract meaning from this large trove?

And Old Question, two classic responses

- Human annotation
 - Researcher, Research assistants, and now microworkers (Appen, AMT, TaskRabbit...)
 - Issues: costs, ethics, and even quality.

- ▶ The massive availability of textual data
- How to extract meaning from this large trove? And old question, two classic responses
 - Human annotation
 - Quantitative Text Analysis
 "Distant reading", from Bible indexes to Machine Learning
 - Merits and limits well-known
 - But could not until now reach the same level of precision as humans

- ► The massive availability of textual data
- ▶ What to do with Massive Textual Data?
- Ideally, we could create an in-silico replica of an expert
 - Training a model to replicate our own coding
 - This is what supervised methods are for
 - But until recently, relatively disappointing results

- The massive availability of textual data
- How to extract meaning from this large trove?
- Ideally, we could create an in-silico replica of an expert
- This is exactly the promise of Large Language Models
 - ▶ Recent developments (LLMs) claim to do away with this problem
 - But can they really do as well as humans?
 - Still begs questions: Amount of training data? Role of quality?

Two questions

- Can a social scientist train an efficient algorithm to replicate her fine-grained annotations (or is it too long/not as good)?
- What is the trade-off between expert and profane annotation?

An Experiment

- INTRODUCTION: A Problem of Abundance
- 2 The Experiment : Investigating the Narration of Politics
 - The Question
 - Data and Indicators
 - Design of the Experiment
- Results
- 4 Conclusion
 - An Immense Promise
 - Limitations and Challenges

The Question

- Assessing the rise of "strategic news coverage"
 - Political games over political measures
 - Revelation of backstage maneuvers
 - Evocation of the strategies of politicians

Data and Indicators

LeMonde

- All articles about politics from the French daily Le Monde
 - ► High-brow newspaper
 - Long Reluctant to adopt SNC (Kaciaf, 2013), yet did it (Saitta, 2005)

Years	Number of articles	Number of words	Number of journalists
1945-2018	61,511	38,497,810	113

Data and indicators

- ► Two tasks
 - Task 1 Policy vs. Politics Content of a measure vs. Actions of politicians Complexity: high

Data and Indicators

- ► Two tasks
 - ► Task 2 "Unattributed Quotes"

 Prompts introducing unattributed speech

 Complexity: average+

Intuition

- Supervised ML applied to text
 - Training an algorithm to mimic human annotation

Language Models

- ▶ Language models: Large pre-trained neural networks using Transformers such as BERT (Devlin et al., 2019) and CamemBERT for French (Martin et al., 2020)
- Pre-training: self-supervised "Masked Language Model" task, on French corpus OSCAR
- Fine-tuning: our tasks of text classification (Policy/Politics) and sequence labelling (Unattributed).

Design of the experiment

Annotators:

- **Social Scientist (SS)** An expert in her field. Often designs the indicators. Her time is limited
 - In this case: one of the authors of the paper.
- **Research assistants (RAs)** Trained, qualified students, but not experts. Interactions with the researcher. In this case: 3 Master's level RAs carefully trained by us.
- Microworkers (MW) Limited training, limited connections to the researcher. In this case: 34 BA students from a class. [Note: most likely better than gig workers]

Design of the Experiment

Experiment:

- ► For each task
 - A sample is annotated by a given group, for model training (train set, less than 1% of the whole corpus)
 - Experts defines a gold standard to validate the annotations (human or not)

Design of the Experiment

Design of the Experiment

		Social Scientist	Research Assistants	Microworkers
Number of annotators Level of expertise		1	3	34
		High	Moderate	Low
Train set size	Task 1	63 articles 383 000 characters (0.12% of the corpus)		
Train Set Size	Task 2	6274 excerpts (3 sentences of an article) 3,1 millions characters (0.91% of the corpus)		
Time spent (in minutes)	Task 1	480	1051	1243
i iiie speiit (iii iiiiiutes)	Task 2	2220	1869	2654

A qualitative assessment of the predictions

Politics vs. policy in Le Monde

- INTRODUCTION: A Problem of Abundance
- 2 The Experiment : Investigating the Narration of Politics
 - The Question
 - Data and Indicators
 - Design of the Experiment
- Results
- 4 Conclusion
 - An Immense Promise
 - Limitations and Challenges

	Policy vs. Politics	Unattributed
Human - Microworkers	0.65	0.7
Human - RAs	0.80	0.86

Table: F-1 Score for human annotation

Comparison to a Gold Standard annotated with care by experts

	Policy vs. Politics	Unattributed
Human - Microworkers Human - RAs	0.65 0.80	0.70 0.86
"Classic" supervised models	0.67	0.41
(LSTM, SVM)	[0.671, 0.673]	[0.390, 0.437]
Augmented Social Scientist	0.78	0.82
(camemBERT)	[0.781, 0.792]	[0.816, 0.834]

Table: F-1 Score for human annotation vs. Model trained by the expert

A qualitative assessment of the predictions

Manual classification of the Unattributed predictions

Туре	Frequency
(Quasi-) agreement	76%
Partial agreement	2%
In gold standard, but not predicted	10%
(= false negative)	
Predicted correctly by the algorithm,	8%
but not noticed by the expert	
Predicted incorrectly	4%
(= false positive $)$	

Result2: Trade-Off

What is the role of expertise in training a model?

Result2: Trade-Off

Result2: Trade-Off

Figure: Sample-efficiency curves (F-1 score)

- INTRODUCTION: A Problem of Abundance
- 2 The Experiment : Investigating the Narration of Politics
 - The Question
 - Data and Indicators
 - Design of the Experiment
- Results
- 4 Conclusion
 - An Immense Promise
 - Limitations and Challenges

4 D > 4 D > 4 E > 4 E > E 990

An Immense Promise

More than satisfactory results, in a limited amount of time Time spent (in minutes):

	Task 1	Task 2
Social Scientist	480	2220
	1218	2190
Research Assistants	mean=406	mean=730
	sd=191	sd=407
	2014	2851
Microwokers	mean=59	mean=84
	sd=24	sd=36

Keep in mind: There are even more ways to cut down on annotation

An Immense Promise

- An Improvement with respect to classic methods
 - Qualitative Methods
 - Outsourced hand annotation
 - Non-supervised models
- ► Ability to fully annotate a vast data set
 - Comprehensive AND fine-grained annotation (at the level of the article, or even below)
 - Forces conceptual clarification
 - Avoid classic pitfalls of hand-annotation (fatigue effect, learning effect) (Rousson et al., 2002)
 - Several good validation criteria

Limitations and Challenges

- Computer time and hardware
 - Hard without a GPU
 - Colab and its problems
 - Ask your institution for resources
- ▶ When to use it? And who should annotate?
- ▶ Still cannot replace humans, in many ways.

Conclusion

SML, STL, and Human Augmentation

- ▶ And old debate: machines to replace, or machine to augment individuals?
- Doug Engelbart, the Internet and "The Augmentation Research Lab" "Increasing the capability of a man to approach a complex problem situation, to gain comprehension to suit his particular needs, and to derive solutions to problems." (Engelbart, Augmenting Human Intellect, 1962).

References I

- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.
- Engelbart, D. C. (1962). Augmenting Human Intellect: A Conceptual Framework. Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578 for Air Force Office of Scientific Research. Menlo Park, Ca., Stanford Research Institute.
- Kaciaf, N. (2013). Les pages "Politique". Histoire du journalisme politique dans la presse française (1945-2006). Presses universitaires de Rennes.
- Martin, L., Muller, B., Ortiz Suárez, P. J., Dupont, Y., Romary, L., de la Clergerie, É., Seddah, D., and Sagot, B. (2020). CamemBERT: a tasty French language model. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7203–7219. Association for Computational Linguistics.
- Rousson, V., Gasser, T., and Seifert, B. (2002). Assessing intrarater, interrater and test-retest reliability of continuous measurements. Statistics in medicine, 21(22):3431–3446.
- Saitta, E. (2005). Le Monde, vingt ans après. Réseaux, 131(3):189-225.