220128 CS224N Lecture 3,4

[Neural Network in NLP]

1. NER (Named Entity Recognition)

- 이름을 가진 개체를 인식하는 것 → 어떤 단어가 사람인지, 장소인지 파악하는 것
- 사람(PER), 장소(LOC), 날짜(DATE) 등 **고유명사를 분류**하는 방법론
 - → 문장은 고유명사를 기준으로 의미 형성 (NLP에서 문맥을 파악하고 글을 해석하는 데 있어 중요한 역할을 함)

Last night, Paris Hilton wowed in a sequin gown.

PER PER

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989.

PER PER

LOC LOC LOC DATE DATE

- 'paris' 라는 단어가 장소인지 사람인지 파악하기 위해서는 그 단어만 바라보는 것이 아 닌 context 필요
- NLTK 내 NER chunker 통해 간단하게 구현가능함

Window classification using binary logistic classfier

중심 단어와 주변 단어들을 함꼐 분류 문제에 활용하는 방법

 center word와 주변 context word를 함께 분류문제에 활용하는 방법 (window size= context word의 개수)

○ 'paris'가 사람 이름인지 장소인지 분류하기 위해 주변 단어 활용 (window =2)

- 。 5D 크기의 벡터 생성
- averge (window 내 word vector를 평균내고 평균 vector를 분류하는 방법)→ 단
 순 평균이기 떄문에 위치 정보를 잃어버릴 수 있음
- binary logistic classfier

: input으로 x 대신 x window가 들어갔다고 생각

1) input (X) \rightarrow 5D vector

$$x$$
 (input)
$$x = [x_{\text{museums}} x_{\text{in}} x_{\text{Paris}} x_{\text{are}} x_{\text{amazing}}]$$

- 2) hidden layer(input보다 크기 small) → activate function
- 각 x에 가중치 곱한 weighted sum에 bias합한 layer

$$\boldsymbol{h} = f(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b})$$

3) dot product → single vlaue

$$s = \boldsymbol{u}^T \boldsymbol{h}$$

- 4) 'Paris' 가 장소면 high score 출력하도록 train
- → sigmoid function 활용

$$J_t(\theta) = \sigma(s) = \frac{1}{1 + e^{-s}}$$

• softmax classifier도 많이 활용

Stochastic Gradient Descent

- Backpropagation(역전파)를 활용하여 손실함수(J(theta)) 최소화해야함
- 파라미터가 손실값에 얼마나 많은 기여를 했는지 확인하고 이에 따라 파라미터 조정 과 정 필요

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 α = step size or learning rate

• 계산 방법: By hand / 역전파 알고리즘 활용

2. Matrix calculus

• SGD 과정을 수식으로 이해하기 위해 여러 matrix 계산법을 알아보자!

Chain rule

one-varible → multiply derivatives

$$z = 3y$$

$$y = x^{2}$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = (3)(2x) = 6x$$

multiple variable → multiply Jacobians

$$egin{aligned} m{h} &= f(m{z}) \ m{z} &= m{W} m{x} + m{b} \ rac{\partial m{h}}{\partial m{z}} &= rac{\partial m{h}}{\partial m{z}} rac{\partial m{z}}{\partial m{x}} = ... \end{aligned}$$

Jacobian Matrix

- n input . m output → m*n matrix
- partial derivatives w/ respect to each input

$$rac{\partial oldsymbol{f}}{\partial oldsymbol{x}} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)_{ij} = \frac{\partial f_i}{\partial x_j}$$

examples

$$\left(\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}\right)_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \qquad \text{definition of Jacobian}$$

$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases} \qquad \text{regular 1-variable derivative}$$

definition of Jacobian

$$\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \begin{pmatrix} f'(z_1) & 0 \\ & \ddots & \\ 0 & f'(z_n) \end{pmatrix} = \operatorname{diag}(\boldsymbol{f}'(\boldsymbol{z}))$$

$$egin{aligned} & rac{\partial}{\partial oldsymbol{x}}(oldsymbol{W}oldsymbol{x}+oldsymbol{b}) = oldsymbol{W} \ & rac{\partial}{\partial oldsymbol{b}}(oldsymbol{W}oldsymbol{x}+oldsymbol{b}) = oldsymbol{I} \ \ & (ext{Identity matrix}) \ & rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{h}) = oldsymbol{h}^T \end{aligned}$$

loss function의 gradient 계산

1) Break up equations into simple pieces

Wx+b를 z로 치환하여 매개변수 하나 생성

$$h = f(\mathbf{W}\mathbf{x} + \mathbf{b})$$
 $h = f(\mathbf{z})$ $\mathbf{z} = \mathbf{W}\mathbf{x} + \mathbf{b}$

2) Apply the chain rule chain rule활용하여 s를 b로 미분한 값 도출

$$s = \mathbf{u}^T \mathbf{h}$$

$$\mathbf{h} = f(\mathbf{z})$$

$$\mathbf{z} = \mathbf{W}\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} \quad \text{(input)}$$

$$\frac{\partial s}{\partial \mathbf{b}} = \frac{\partial s}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{b}}$$

3) Write out the Jacobians 미분한 계산 과정 대입하여 최종 식 도출

3. Backpropagation (역전파)

- layer가 많아질 때의 학습 방법으로, gradient를 효과적으로 update하기 위한 계산법
- Goal: loss(cost)를 최소화시키는 parameter 찾기
- cost C를 줄여나가도록 parameter w를 update해나감
- Single layer
 - Forward Pass (FeedForward): weighted sum에 bias 더하고 활성화 함수 사용 하여 output vector 출력
 - input: X vector

- Backpropagation
 - output vector를 반대로 미분하면서 cost가 최소가 되도록 가중치를 업데 이트 하는 과정
 - chain rule 활용

Chain rule

computation Graph

- 값을 그래프 노드 위에 위치시키는 것
- Forward : topological sort로 정렬한 되 노드 지남
- Backward : output node에서 1로 gradient 시작, topological sort의 반 대 순서로 노드 지남
- 순전파 과정과 역전파 과정에 시간복잡 도는 동일

딥러닝 프레임워크들은 그래프 기반으로 연산 진행 → 그래프에 위치시켜 연산을 진행하면 효율적 연산 진행 가능

Numeric Gradient

- 아주 작은 값을 대입하여 순간 기울기를 구하는 것→ gradient를 잘 구했는지 체크 가능
- NN에서는 해당 방법으로 연산 진행하지는 않음 → 계산 과정이 너무 많아서 비효율적 으로 연산 진행

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

[Dependency Parsing]

1. Syntactic Structure: Consitituency and Dependency

Pharse (Constituency)

- 각 문장의 문법적인 구성, 구문을 분석하는 과정
- 문장의 의미를 보다 정확하게 파악하기 위해서 필수적인 과정
- 언어는 복잡한 단어의 구성을 통해 이루어진 → 문장 연결 구조에 대한 이해 필요
- 목적에 따라 Consitituency parsing과 Dependency parsing로 구분 가능
- Consitituency parsing(= structure grammar = context-free grammars (CFGs))
 - : 문장의 구성요소를 파악하여 구조 분석
 - 관형사 ,명사 등등 문장의 구성요소 파악 → 단어- 단어 / 구- 구 → 문장을 이룸

the cat
a dog
large in a crate
barking on the table
cuddly by the door
large barking

- 。 영어처럼 어순이 비교적 고정적인 언어에서 주로 사용됨
- Dependency parsing: 단어 간 의존 관계 파악하여 구조 분석
 - : 문장에 존재하는 단어 간의 의존 또는 수식 방향으로 관계를 파악하여 문장 구조 분석
 - 한국어처럼 자유 어순을 가지거나 문장 성분 생략 가능한 언어에서 선호, 최근 영어 에 적용하는 연구 활발히 진행
 - 수식하는 단어 : head or gorverner / 수식 받는 단어 : dependent or modifier

• Ambiguity (모호성)

• PP(Prepositional Parse) attachment Ambiguity : 형용사구, 동사구, 전치사구 등이 어떤 단어를 수식하는지에 따라 의미가 달라지는 모호성

과학자들이 우주에 고래를 세다 vs 과학자들이 우주에서 온 고래를 세다

coordination scope ambiguity: 특정 단어가 수식하는 대상의 범위가 달라짐에 따라 의미가 변하는 모호성

VP(Verb Pharse) attachment Ambiguity: 하나의 동사에 많은 뜻을 가지고 있음에 따른 모호성

⇒ 문장은 많은 단어가 복잡한 관계로 얽혀있으므로 문장 구성요소를 명확히 알고 분석 하는 것이 중요

2. Dependency Grammar and Treebanks

- 두가지 형태로 표현하는
- sequence

tree

- 두가지 형태의 output은 동일해야함
- ROOT: 가장의 노드, 문자 맨 처음에 추가 → head로 설정
 - → 모든 단어가 최소 한개의 node에 의존될 수 있도록 함
- 화살표는 순환하지 않으면 중복 관계 X, head에서 dependent하도록 방향 진행