NESVOJSTVENI INTEGRAL

22. april 2024.

MOTIVACIJA (geometrijska interpretacija)

 $\int\limits_a^T f(x)dx, \ f(x) \geq 0$ predstavlja površinu ravnog lika ograničenog x-osom, pravama $x=a, \ x=T$ i lukom krive y=f(x) nad intervalom [a,T]. Prirodno bi bilo površinu lika ograničenog x-osom, pravom x=a i lukom krive y=f(x) nad intervalom $[a,\infty)$ definisati kao $\int\limits_a^\infty f(x)dx$.

Definicija

Neka je funkcija f(x) definisana nad $[a,\infty)$ i integrabilna nad svakim zatvorenim intervalom $[a,T]\subset [a,\infty)$. Nesvojstveni integral funkcije f(x) nad intervalom $[a,\infty)$, u oznaci $\int\limits_{[a,\infty)} f(x)dx$ je funkcija F(T) definisana sa $[a,\infty)$

$$F(T) = \int_{a}^{T} f(x)dx, \quad T \geq a.$$

Ako postoji $A = \lim_{T \to \infty} F(T) = \lim_{T \to \infty} \int_a^T f(x) dx$, u oznaci $\int_a^\infty f(x) dx$, tada nesvojstveni integral $\int_{[a,\infty)} f(x) dx$ konvergira ka broju A. Ako granična vrednost $\lim_{T \to \infty} F(T)$ ne postoji, tada nesvojstveni integral $\int_{[a,\infty)} f(x) dx$ divergira.

Definicija

Neka je funkcija f(x) definisana nad $(-\infty, a]$ i integrabilna nad svakim zatvorenim intervalom $[T, a] \subset (-\infty, a]$. Nesvojstveni integral funkcije f(x) nad intervalom $(-\infty, a]$, u oznaci $\int\limits_{(-\infty, a]} f(x) dx$ je funkcija F(T)

definisana sa

$$F(T) = \int_{T}^{a} f(x)dx, \quad T \leq a.$$

Ako postoji $B = \lim_{T \to -\infty} F(T) = \lim_{T \to -\infty} \int_{T}^{a} f(x)$, u oznaci $\int_{-\infty}^{a} f(x) dx$, tada nesvojstveni integral $\int_{(-\infty,a]} f(x) dx$ konvergira ka broju B. Ako granična vrednost $\lim_{T \to -\infty} F(T)$ ne postoji, tada nesvojstveni integral $\int_{(-\infty,a]} f(x) dx$ divergira.

Definicija

```
Neka je funkcija f(x) definisana nad intervalom (-\infty,\infty) i integrabilna
 nad svakim zatvorenim intervalom [M, N] \subset (-\infty, \infty). Nesvojstveni
 integral funkcije f(x) nad intervalom (-\infty, \infty), u oznaci \int f(x)dx,
je uređen par \left(\int\limits_{(-\infty,a]} f(x)dx, \int\limits_{[a,\infty)} f(x)dx\right) nesvojstvenih integrala \int\limits_{(-\infty,a]} f(x)dx, \int\limits_{[a,\infty)} f(x)dx, gde je a proizvoljan realan broj. Ako oba ova (-\infty,a]
 nesvojstvena integrala konvergiraju tada nesvojstveni integral \int\limits_{-\infty}^{\infty} f(x) dx \text{ konvergira } i \text{ pišemo } \int\limits_{-\infty}^{\infty} f(x) dx = \int\limits_{-\infty}^{a} f(x) dx + \int\limits_{a}^{\infty} f(x) dx.
 (-\infty,\infty)
 Ukoliko bar jedan od ovih nesvojstvenih integrala divergira tada i
 nesvojstveni integral \int f(x)dx divergira.
                                     (-\infty,\infty)
```

Nesvojstvene integrale $\int\limits_{-\infty}^{\infty} f(x)dx$, $\int\limits_{-\infty}^{a} f(x)dx$, $\int\limits_{a}^{\infty} f(x)dx$ jednim imenom zovemo nesvojstveni integral prve vrste.

Primer.

Ispitati konvergenciju nesvojstvenog integrala
$$I_{\alpha} = \int\limits_{[1,\infty)} \frac{dx}{x^{\alpha}}, \ \alpha \in \mathbb{R}.$$

Po definiciji treba posmatrati

$$\lim_{T \to \infty} \int_{1}^{T} \frac{dx}{x^{\alpha}} = \frac{1}{1 - \alpha} \left(\lim_{T \to \infty} T^{1 - \alpha} - 1 \right), \quad \alpha \neq 1.$$

Dakle, I_{α} konvergira za $\alpha > 1$, a divergira za $\alpha \leq 1$.

Ako postoji, granična vrednost

$$\lim_{T \to \infty} \int_{-T}^{T} f(x) dx = V.P. \int_{(-\infty, \infty)} f(x) dx$$

naziva se glavna vrednost integrala.

• Ako nesvojstveni integral $\int\limits_{(-\infty,\infty)} f(x)dx$ konvergira, tada postoji

 $V.P.\int\limits_{(-\infty,\infty)}f(x)dx$ i važi jednakost

$$\int_{-\infty}^{\infty} f(x)dx = V.P. \int_{(-\infty,\infty)} f(x)dx.$$

• Može da postoji V.P. $\int_{(-\infty,\infty)} f(x)dx$, a da nesvojstveni integral $\int_{(-\infty,\infty)} f(x)dx$ divergira (sledeći primer).

Primer

Ispitati konvergenciju nesvojstvenog integrala $I=\int\limits_{(-\infty,\infty)} \frac{2x}{1+x^2} dx.$

$$I = \left(\int\limits_{(-\infty,a]} \frac{2x}{1+x^2} dx, \quad \int\limits_{[a,\infty)} \frac{2x}{1+x^2} dx\right) = (I_1,I_2).$$

Kako je

$$\lim_{T\to\infty}\int_{a}^{T}\frac{2x}{1+x^{2}}dx=\lim_{T\to\infty}\ln(1+T^{2})-\ln(1+a^{2})=\infty,$$

to I_2 divergira, pa I divergira. Za glavnu vrednost se dobija

$$V.P. \int_{(-\infty,\infty)} \frac{2x}{1+x^2} dx = \lim_{T \to \infty} \int_{-T}^{T} \frac{2x}{1+x^2} dx$$
$$= \lim_{T \to \infty} (\ln(1+T^2) - \ln(1+T^2))$$
$$= 0.$$

Definicija

Neka je f(x) definisana nad konačnim intervalom [a,b) i integrabilna nad svakim zatvorenim intervalom $[a,b-\varepsilon]\subset [a,b), \varepsilon>0$.

Nesvojstveni integral druge vrste funkcije f(x) nad intervalom [a,b) u oznaci $\int f(x)dx$ je funkcija $F(\varepsilon)$ definisana sa [a,b)

$$F(\varepsilon) = \int_{a}^{b-\varepsilon} f(x)dx, \quad a < b - \varepsilon < b.$$

Ako postoji $\lim_{\varepsilon \to 0^+} F(\varepsilon) = \lim_{\varepsilon \to 0^+} \int_a^{b-\varepsilon} f(x) dx = A$, tada nesvojstveni integral

$$\int_{[a,b)} f(x)dx \text{ konvergira ka } A. \text{ Piše se } \int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx = A.$$

Ukoliko $\lim_{\varepsilon \to 0^+} F(\varepsilon)$ ne postoji, nesvojstveni integral $\int_{[a,b)} f(x) dx$ divergira.

Primer

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}?$$

$$\lim_{\varepsilon \to 0^+} \int_{0}^{1-\varepsilon} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to 0^+} (\arcsin(1-\varepsilon) - 0)$$

$$= \frac{\pi}{2}$$
pa nesvojstveni integral $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$ konvergira ka $\frac{\pi}{2}$.

Definicija

Neka je f(x) definisana nad konačnim intervalom (a, b] i integrabilna nad svakim zatvorenim intervalom $[a + \varepsilon, b] \subset (a, b], \varepsilon > 0$.

Nesvojstveni integral druge vrste funkcije f(x) nad intervalom (a, b] u oznaci $\int f(x)dx$ je funkcija $F(\varepsilon)$ definisana sa (a,b]

$$F(\varepsilon) = \int_{a+\varepsilon}^{b} f(x)dx, \quad a < a + \varepsilon < b.$$

Ako postoji $\lim_{\varepsilon \to 0^+} F(\varepsilon) = \lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^b f(x) dx = B$, tada nesvojstveni integral

$$\int_{(a,b]} f(x)dx \text{ konvergira ka B. Piše se } \int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x)dx = B.$$

Ukoliko $\lim_{\varepsilon \to 0^+} F(\varepsilon)$ ne postoji, nesvojstveni integral $\int_{(a,b]} f(x) dx$ divergira.

Definicija

Neka je f(x) definisana nad konačnim intervalom (a, b) i integrabilna nad svakim zatvorenim intervalom $[m, M] \subset (a, b)$. Nesvojstveni integral druge vrste funkcije f(x) nad intervalom (a,b) u oznaci $\int\limits_{(a,b)} f(x)dx$ je uređen par $\left(\int\limits_{(a,c]} f(x)dx, \int\limits_{[c,b)} f(x)dx\right)$ nesvojstvenih integrala $\int f(x)dx$ i $\int f(x)dx$, gde je $c \in (a,b)$ proizvoljan realan broj. Ako svaki od nesvojstvenih integrala $\int f(x)dx$ i $\int f(x)dx$ konvergira, onda nesvojstveni integral $\int f(x)dx$ konvergira i pišemo $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, \text{ a ukoliko bar jedan od njih divergira,}$ nesvojstveni integral $\int_{c}^{c} f(x)dx$ divergira.

Definicija

Ako je
$$f(x)$$
 definisana u svim tačkama intervala (a,b) osim u tački $c \in (a,b)$ i ako su definisani nesvojstveni integrali $\int\limits_{(a,c)} f(x)dx$ i $\int\limits_{(a,c)} f(x)dx$ tada je nesvojstveni integral druge vrste funkcije $f(x)$ nad intervalom (a,b) u oznaci $\int\limits_{(a,b)} f(x)dx$ uređen par $\left(\int\limits_{(a,c)} f(x)dx, \int\limits_{(c,b)} f(x)dx\right)$ nesvojstvenih integrala $\int\limits_{(a,c)} f(x)dx$ i $\int\limits_{(c,b)} f(x)dx$. Ako oba nesvojstvena integrala $\int\limits_{(a,c)} f(x)dx$ konvergiraju, onda nesvojstveni integral $\int\limits_{(a,c)} f(x)dx$ konvergira i pišemo $\int\limits_a^b f(x)dx = \int\limits_a^c f(x)dx + \int\limits_c^b f(x)dx$, a ukoliko bar jedan od njih divergira, nesvojstveni integral $\int\limits_{(a,b)} f(x)dx$ divergira.

Definicija

Ako za nesvojstveni integral $\int_{(a,b)} f(x)dx$ postoji granična vrednost

$$\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^{b-\varepsilon} f(x) \ dx = V.P. \int_{(a,b)} f(x) \ dx$$

to je glavna vrednost nesvojstvenog integrala $\int_{(a,b)} f(x)dx$.

• Slično se definiše i nesvojstveni integral $\int\limits_{(a,b)} f(x)dx$ kada funkcija f(x) nije definisana u konačnom broju tačaka intervala (a,b).

Napomena

Pri definiciji $\int\limits_{[a,b)} f(x)dx$ nismo ništa pretpostavili o ponašanju funkcije f(x) u tački b!

- ako $f(x) \to \pm \infty$, kad $x \to b^-$, nesvojstveni integral može da konvergira ili da divergira
- ullet ako postoji $\lim_{x o b^-}f(x)=L,$ nesvojstveni integral može samo da

konvergira i to ka Rimanovom integralu $\int_{a}^{b} f_1(x)dx$ funkcije

$$f_1(x) = \begin{cases} f(x) &, & x \in [a,b) \\ L &, & x = b \end{cases}$$

pa važi jednakost
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f_{1}(x)dx$$
.

Primer

Ispitati konvergenciju nesvojstvenog integrala $I_{eta} = \int\limits_{(0,1]} rac{dx}{x^{eta}}.$

Za
$$\beta>0,\ f(x)=\frac{1}{x^{\beta}}\to\infty,\ x\to 0^+.$$
 Po definiciji je
$$\lim_{\varepsilon\to 0}\int\limits_{\varepsilon}^1\frac{dx}{x^{\beta}}=\frac{1}{1-\beta}\big(1-\lim_{\varepsilon\to 0}\varepsilon^{-\beta+1}\big).$$

$$-\beta+1>0\ \Rightarrow\ \varepsilon^{-\beta+1}\to 0, \varepsilon\to 0 \qquad \Rightarrow\ I_{\beta} \ \text{konvergira ka}\ \frac{1}{1-\beta}$$

$$-\beta+1<0\ \Rightarrow\ \varepsilon^{-\beta+1}\to\infty, \varepsilon\to 0 \qquad \Rightarrow\ I_{\beta} \ \text{divergira}$$

$$\beta=1 \qquad \Rightarrow\ \int\limits_{\varepsilon}^1\frac{dx}{x}=-\ln\varepsilon\to\infty, \varepsilon\to 0 \qquad \Rightarrow\ I_{\beta} \ \text{divergira}$$

Dakle, I_{β} konvergira za $\beta < 1$, a divergira za $\beta \ge 1$.

Definicija

Neka je funkcija
$$f(x)$$
 integrabilna nad svakim zatvorenim intervalom $[a+\varepsilon,T],\ \varepsilon>0,\ T>0,\ a+\varepsilon< T<\infty.$ Po definiciji je
$$\int\limits_{(a,\infty)} f(x)dx = \left(\int\limits_{(a,c]} f(x)dx, \int\limits_{[c,\infty)} f(x)dx\right), c\in (a,\infty) \text{ nesvojstveni}$$
 integral treće vrste funkcije $f(x)$ nad intervalom (a,b) . Ako oba nesvojstvena integrala $\int\limits_{(a,c]} f(x)dx$ i $\int\limits_{(c,\infty)} f(x)dx$ (druge i prve vrste, respektivno) konvergiraju, onda nesvojstveni integral $\int\limits_{(a,\infty)} f(x)dx$ konvergira i pišemo $\int\limits_{a}^{\infty} f(x)dx = \int\limits_{a}^{c} f(x)dx + \int\limits_{c}^{\infty} f(x)dx.$

• Slično se definiše ostali slučajevi nesvojstvenog integrala treće vrste.

Osnovne osobine nesvojstvenog integrala

Linearnost nesvojstvenog integrala:

Teorema

Ako $\int\limits_{[a,\infty)} f(x) dx$ i $\int\limits_{[a,\infty)} g(x) dx$ konvergiraju tada za svako $\alpha,\beta \in \mathbb{R}$ važi

$$\int_{a}^{\infty} (\alpha f(x) \pm \beta g(x)) dx = \alpha \int_{a}^{\infty} f(x) dx \pm \beta \int_{a}^{\infty} g(x) dx$$

Parcijalna integracija u nesvojstvenom integralu:

Teorema

Pretpostavimo da $\int\limits_{[a,\infty)} u(x)v'(x)dx$ i $\int\limits_{[a,\infty)} v(x)u'(x)dx$ konvergiraju. Tada

važi:

$$\int_{a}^{\infty} u(x)v'(x)dx = \lim_{T \to \infty} u(T)v(T) - u(a)v(a) - \int_{a}^{\infty} v(x)u'(x)dx.$$

Osnovne osobine nesvojstvenog integrala

Smena promenljive u nesvojstvenom integralu:

Teorema

Neka funkcija $t = \varphi(x)$ ima neprekidan prvi izvod različit od nule nad $[a,\infty)$ i neka nesvojstveni integral $\int\limits_{[a,\infty)} f(x) dx$ konvergira. Tada važi

$$\int_{a}^{\infty} f(x)dx = \int_{A}^{B} f(\phi(t))\phi'(t)dt,$$

$$A = \varphi(a), B = \lim_{x \to \infty} \varphi(x), \phi(t) = \varphi^{-1}(x)$$

Kriterijumi konvergencije nesvojstvenog integrala

Košijev kriterijum

Nesvojstveni integral $\int f(x)dx$ konvergira ako i samo ako za svako $\varepsilon > 0$ postoji realan broj $T_0 > a$ takav da za svako T, T' takve da je

 $T'>T>T_0$ važi

$$\left|\int_{T}^{T'} f(x) dx\right| < \varepsilon.$$

Navešćemo još neke od kriterijuma konvergencije i to samo za slučaj kad je podintegralna funkcija f(x) stalnog znaka za $x \ge x_0$.

Kriterijumi konvergencije nesvojstvenog integrala

Uporedni kriterijum

Neka je
$$0 \le f(x) \le Mg(x)$$
 za $x \ge a, M > 0$.
Ako $\int g(x)dx$ konvergira, onda konvergira i integral $\int f(x)dx$ i važi a,∞ da je

$$\int_{a}^{\infty} f(x)dx \leq M \int_{a}^{\infty} g(x)dx.$$

Obrnuto, ako je $0 \le mg(x) \le f(x)$, za $x \ge a$, m > 0 i integral $\int g(x)dx$ divergira tada divergira i $\int f(x)dx$. $[a,\infty)$

Kriterijumi konvergencije nesvojstvenog integrala

Pogodnije za upotrebu:

Teorema

Neko je
$$f(x)>0$$
 i $g(x)>0$ i $f(x)\approx g(x)$, kada $x\to\infty$, tj. $\lim_{x\to\infty}\frac{f(x)}{g(x)}=1$. Tada nesvojstveni integrali $\int\limits_{[a,\infty)}f(x)dx$ i $\int\limits_{[a,\infty)}g(x)dx$ istovremeno konvergiraju ili divergiraju.

Primer

Ispitati konvergenciju nesvojstvenog integrala
$$\int\limits_{[1,\infty)} \frac{x^5+x^3+8x^2}{x^6+2x+1} dx$$
.

Rešenje.
$$\frac{x^5+x^3+8x^2}{x^6+2x+1}\approx \frac{1}{x},\ x\to\infty,\ \text{a kako}\ \int\limits_{[1,\infty)}\frac{1}{x}dx$$
 divergira, to i
$$\int\limits_{[1,\infty)}\frac{x^5+x^3+8x^2}{x^6+2x+1}dx$$
 divergira.

Neke funkcije definisane nesvojstvenim integralom

Ojlerova gama funkcija:

$$\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$$

definisana je za one $x\in\mathbb{R}$ za koje nesvojstveni integral $\int\limits_{(0,\infty)}e^{-t}t^{x-1}dt$ konvergira, odnosno za x>0.

Funkcionalna jednačina za gama funkciju:

$$\Gamma(x+1)=x\Gamma(x),\quad x>0.$$

pokazuje smisao uvođenja gama funkcije - proširuje n! na skup pozitivnih realnih brojeva; ako stavimo redom $x=n,n-1,\dots,2,1$ i imamo u vidu da je $\Gamma(1)=\int\limits_0^\infty e^{-t}dt=1,$ dobija se $\Gamma(n+1)=n!.$

Neke funkcije definisane nesvojstvenim integralom

Beta funkcija:

$$\mathbf{B}(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

definisana je za one vrednosti $a,b\in\mathbb{R}$ za koje nesvojstveni integral $\int\limits_{(0,1)}x^{a-1}(1-x)^{b-1}dx$ konvergira, odnosno za a>0 i b>0.

Veza beta i gama funkcije:

$$\mathbf{B}(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

Apsolutna konvergencija nesvojstvenog integrala

Definicija

Nesvojstveni integral prve vrste $\int f(x)dx$ konvergira apsolutno ako $\int_{[a,\infty)} |f(x)|dx$ konvergira. Nesvojstveni integral koji je konvergentan, ali ne $[a,\infty)$ apsolutno konvergentan konvergira uslovno.

 definicija je data za nesvojstveni integral prve vrste, slično se može uraditi za nesvojstveni integral druge i treće vrste

Teorema

Svaki apsolutno konvergentan integral je i konvergentan (u običnom smislu). Obrnuto ne mora da važi.