Homework 7

- ** Problem 1. Determine whether for a closed set A and a single point x the distance d(x, A) is assumed for the following:
- 1) For $\ell_n^2(\mathbb{R})$.
- 2) For an arbitrary metric space, (X, d).

Proof. 1) Suppose that $a = d(x, A) = \inf\{d(x, y) \mid y \in A\}$ is not assumed. Then we can choose points of A which have a distance from x which is arbitrarily close to a. Consider the set $S = \{y \in \mathbb{R}^n \mid d(x, y) = a\}$. Since d(x, A) is not assumed, none of the points in S are in A. Also, since A is closed, none of these points are accumulation points of A. Thus for all $y \in A$ there exists $r_y \in \mathbb{R}$ such that $B_{r_y}(y) \cap A = \emptyset$. Let $s = \inf\{r_y \mid y \in S\}$. Then note that the set

$$T = \bigcup_{y \in S} B_s(y)$$

contains no points of A. Since d(x, A) is not assumed, there exists a point of $y \in A$ such that d(x, y) = a + s/2. But then $y \in T$ as well. This is a contradiction and so d(x, A) must be assumed.

- 2) Consider the $\mathbb{R}\setminus\{0\}$ with the usual metric. Then the set (0,1] is closed since it contains all it's accumulation points, but d(-1,(0,1]) is not assumed since 0 is not in the metric space.
- ** Problem 2. Given $p(x)/q(x) \in \mathbb{R}(x)$ with p(x)/q(x) > 0 show that there exists $N \in \mathbb{N}$ such that $1/x^N < p(x)/q(x)$.

Proof. Choose $N > \deg(q(x))$. Since $p(x)/q(x) \neq 0$ we have $\deg(p(x)) \geq 0$. Then $\deg(p(x)x^N) \geq N > \deg(q(x))$ which implies that $q(x) < p(x)x^N$ and so $1/x^N < p(x)/q(x)$.

** Problem 3. For $p(x)/q(x) \in \mathbb{R}(x)$ define $|p(x)/q(x)| = 2^{\deg(p(x)) - \deg(q(x))}$. Show that for $u, v \in \mathbb{R}(x)$ we have $|u+v| \leq \max(|u|,|v|)$ and equality holds if $|u| \neq |v|$.

Proof. Note that for polynomials p, q we have $\deg(p+q) \leq \max(\deg(p) + \deg(q))$. Let $u, v \in \mathbb{R}(x)$ such that u = p/q and v = r/s with $p, q, r, s \in \mathbb{R}[x]$. Then u + v = (ps - qr)/qs and so

$$\begin{aligned} |u+v| &= \left|\frac{ps - qr}{qs}\right| \\ &= 2^{\deg(ps - qr) - \deg(qs)} \\ &\leq 2^{\max(\deg(ps), \deg(qr)) - \deg(q) - \deg(s)} \\ &= 2^{\max(\deg(p) + \deg(s), \deg(q) + \deg(r)) - \deg(q) - \deg(s)} \\ &= \max(2^{\deg(p) + \deg(s) - \deg(q) - \deg(s)}, 2^{\deg(q) + \deg(r) - \deg(q) - \deg(s)}) \\ &= \max(|u|, |v|). \end{aligned}$$

Suppose that $|u| \neq |v|$ and without loss of generality suppose that |u| < |v|. Then

$$2^{\deg(p) - \deg(q)} < 2^{\deg(r) - \deg(s)}$$

and

$$\deg(p) + \deg(s) < \deg(r) + \deg(q).$$

Then in the above calculation note that

$$\max(\deg(p) + \deg(s), \deg(r), \deg(q)) = \deg(r) + \deg(q)$$

and so we have

$$|u+v| = 2^{\deg(r) + \deg(q) - \deg(q) - \deg(s)} = 2^{\deg(r) - \deg(s)} = |v| = \max(|u|, |v|).$$

** **Problem 4.** Let V be a vector space over \mathbb{R} or \mathbb{C} . Show that if we have a norm defined on V then for $u, v \in V$ d(u, v) = ||u - v|| is a metric on V.

Proof. By definition of a norm $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0. Because of closure under addition, this directly implies that $d(u, v) \ge 0$ and d(u, v) = 0 if and only if u = v. Next, note that in a vector space we have commutativity of addition and so u - v = -v + u and from the definition of a norm for some $a \in \mathbb{R}$ we have $||av|| = |a| \cdot ||v||$. Then note that

$$d(u,v) = ||u-v|| = |1| \cdot ||u-v|| = |-1| \cdot ||u-v|| = ||-1(u-v)|| = ||-u+v|| = ||v-u|| = d(v,u).$$

Finally, let $w \in V$. From the definition of a norm we have $||u+v|| \le ||u|| + ||v||$ and so

$$d(u, w) = ||u - w|| = ||(u - v) + (v - w)|| < ||u - v|| + ||v - w||.$$

Thus d is a metric on V.

** Problem 5. $\mathbb{R}(x)$ is not complete.

Proof. Let

$$a_n = \sum_{i=0}^n \frac{1}{x^i}.$$

Then let $N \in \mathbb{N}$ so that we have $1/x^N > 0$. Choose $M \in \mathbb{N}$ such that M > N. Let m, n > M and without loss of generality suppose that m < n. Then we have

$$|a_n - a_m| = \left| \sum_{i=m+1}^n \frac{1}{x^i} \right| = \left| \sum_{i=m+1}^n \frac{x^i}{x^n} \right| < \left| \frac{1}{x^M} \right| < \left| \frac{1}{x^N} \right|$$

where the final sum is a ratio of a polynomial of degree m+1 over a polynomial of degree n with m < n and m, n > M. Thus, the sequence is a Cauchy sequence. Suppose that it converges to $p(x)/q(x) \in \mathbb{R}(x)$. Then consider

$$\left| a_n - \frac{p(x)}{q(x)} \right| = \left| \sum_{i=0}^n \frac{1}{x^i} - \frac{p(x)}{q(x)} \right| = \left| \sum_{i=0}^n \frac{x^i}{x^n} - \frac{p(x)}{q(x)} \right| = \left| \frac{q(x) \sum_{i=0}^n x^i - x^n p(x)}{x^n q(x)} \right| \ge 2^{n + \min(\deg(p(x), q(x)) - n - \deg(q(x))}.$$

Since we can bound the degree of the difference between the *n*th term and p(x)/q(x) below, we see that the sequence cannot converge. For it to converge, the difference in degrees of the numerator and the denominator would have to tend towards $-\infty$.

** **Problem 6.** A set $A \subseteq \mathbb{R}(x)$ is open in the order topology if and only if it is open in the metric topology.

Proof. Let $A \subseteq \mathbb{R}(x)$ be open in the order topology. Let u = p/q. Then there exists $N \in \mathbb{N}$ such that $(u - 1/x^N, u + 1/x^N) \subseteq A$. Note that this implies that $-1/x^N < u < 1/x^N$. Define

$$B_{2^{-N}}(u) = \{ a \in \mathbb{R}(x) \mid d(u, a) < 2^{-N} \}$$

and let $v \in B_{2-N}(a)$ such that v = r/s. Then $|u - v| < 2^{-N}$ and so

$$\deg(ps - qr) - \deg(qs) < -N.$$

This implies

$$\deg(ps - qr) + N < \deg(qs)$$

which means $(ps-qr)x^N < qs$. We then have $u-v < 1/x^N$. Thus $v \in (u-1/x^N, u+1/x^N)$ and so $B_{2^{-N}}(u) \subseteq (u-1/x^N, u+1/x^N) \subseteq A$. Therefore, if A is open in the order topology it is also open in the metric topology.

Conversely, assume that A is open in the metric topology. Then for all $u \in A$ with u = p/q there exists some $r \in \mathbb{R}$ such that $B_r(u) \subseteq A$. Note that we can replace r with 2^{-N} for some $N \in \mathbb{N}$ such that $2^{-N} < r$. Then $B_{2^{-N}}(u) \subseteq A$. Let $v \in (u-1/x^N, u+1/x^N)$ such that v = r/s. Then $-1/x^N < u - v < 1/x^N$ and

$$(ps - qr)x^N < qs.$$

This implies

$$\deg(ps-qr)+N<\deg(qs)$$

so

$$\deg(ps - qr) - \deg(qs) < -N.$$

Then $|u-v| < 2^{-N}$ and so $v \in B_{2^{-N}}(u)$. Therefore $(u-1/x^N, u+1/x^N) \subseteq B_{2^{-N}}(u)$. Therefore if A is open in the metric topology it is also open in the order topology.