THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Practice Class 5

MATH2069: Discrete Mathematics and Graph Theory

Semester 1, 2023

- 1. Consider the recurrence relation $a_n = 4a_{n-1} 4a_{n-2} + 3n + 2$, for $n \ge 2$.
 - (a) If p_n is a particular solution of this recurrence, the general solution is

 $a_n =$

where b_n is a general solution of the homogeneous recurrence relation, i.e. $b_n = 4b_{n-1} - 4b_{n-2}$.

(b) The characteristic polynomial of the homogeneous recurrence is $x^2 - 4x + 4$. Hence

 $b_n =$

(c) A particular solution of the form $p_n = An + B$ is

 $p_n =$

(d) Find the solution of the original recurrence when $a_0 = 15$, $a_1 = 21$:

 $a_n =$

- 2. Write down the general solution of each of the following recurrence relations, by finding a particular solution of the stated form.
 - (a) $a_n = 3a_{n-1} + 2$ for $n \ge 1$; $p_n = A$.

 $a_n =$

(b) $a_n = 2a_{n-1} + n + 1$ for $n \ge 1$; $p_n = An + B$.

 $a_n =$

(c) $a_n = 3a_{n-1} - 2^n$ for $n \ge 1$; $p_n = A2^n$.

 $a_n =$

3. If $A(z) = \sum_{n=0}^{\infty} a_n z^n$ and $B(z) = \sum_{n=0}^{\infty} b_n z^n$ are two formal power series, complete the definitions of the following formal power series:

A(z) + B(z) =

A(z)B(z) =

A'(z) =

4. For each of the sequences (a)-(g), write the number (i)-(vii) of its generating function.

(a) $1, 2, 2^2, 2^3, \cdots$

(f) $0, 0, 1, 2, 3, 4, \cdots$

(b) $1, 1, 1, 1, \dots$

(g) $2, 3, 4, 5, 6, \cdots$

(c) $3, 2, 1, 0, 0, 0, \cdots$

(i) $\frac{1}{1-z}$ (iv) $\frac{z^2}{(1-z)^2}$ (ii) $\frac{1}{(1-z)^2}$ (v) $3+2z+z^2$ (iii) $\frac{1}{1-2z}$ (vi) $\frac{z}{(1-z)^2}$ (vii) $\frac{2-z}{(1-z)^2}$

(d) $1, 2, 3, 4, 5, \cdots$

(e) $0, 1, 2, 3, 4, \cdots$

- **5.** For each of the following power series, give a formula for the coefficient of z^n .
 - (a) $\frac{3}{1-z}$
 - (b) $\frac{1}{1-3z}$
 - (c) $\frac{3}{1+z}$
 - (d) $\frac{3}{(1+z)^2}$
 - (e) $\frac{1}{(1-3z)^2}$

- **6.** Give formulas for the following power series in terms of $A(z) = \sum_{n=0}^{\infty} a_n z^n$.
 - (a) $\sum_{n=0}^{\infty} (a_0 a_n + a_1 a_{n-1} + \dots + a_{n-1} a_1 + a_n a_0) z^n$
 - (b) $\sum_{n=0}^{\infty} (a_0 + a_1 + \dots + a_n) z^n$
 - (c) $\sum_{n=0}^{\infty} (n+1)a_{n+1}z^n$
 - (d) $\sum_{n=0}^{\infty} \left(\frac{a_0}{n!} + \frac{a_1}{(n-1)!} + \dots + \frac{a_{n-1}}{1!} + \frac{a_n}{0!} \right) z^n$

- 7. For each of the following statements, write T for true or F for false.
 - (a) The sequence $3, -3, 3, -3, \cdots$ has generating function $\frac{3}{1+z}$.
 - (b) 3+z is an example of a formal power series.
 - (c) $\sum_{n=1}^{\infty} a_{n-1} z^n = \sum_{n=0}^{\infty} a_n z^{n+1}$.
 - (d) $\frac{1}{1+3z} = \sum_{n=0}^{\infty} 3^n z^n$.
 - (e) $\frac{1}{(1-2z)^2} = \sum_{n=0}^{\infty} (n+1)2^n z^n$.
 - (f) $\frac{1}{(1-z)^3} = \sum_{n=0}^{\infty} \binom{n}{2} z^n$.
 - (g) If $\sum_{n=0}^{\infty} a_n z^n = \frac{z}{1-3z}$, then $a_{900} = 3^{901}$.
 - (h) If A'(z) = 0, then $A(z) = a_0$ for some constant a_0 .
 - (i) For $n \ge 1$, the coefficient of z^n in $\frac{4-6z}{1-2z}$ is 2^n .
 - (j) For $n \ge 2$, the coefficient of z^n in $\frac{1-z^2}{1-z}$ is 1.