12.3: Calculus in Polar Coordinates

Theorem 12.2: Slope of a Tangent Line

Let f be a differentiable function at θ_0 . The slope of the line tangent to the curve $r = f(\theta)$ at the point $(f(\theta_0), \theta_0)$ is

$$\frac{dy}{dx}\bigg|_{\theta=\theta_0} = \frac{f'(\theta_0)\sin(\theta_0) + f(\theta_0)\cos(\theta_0)}{f'(\theta_0)\cos(\theta_0) - f(\theta_0)\sin(\theta_0)},$$

provided the denominator is nonzero at the point. At angles θ_0 for which $f(\theta_0) = 0$, $f'(\theta_0) \neq 0$, and $\cos(\theta_0) \neq 0$, the tangent line is $\theta = \theta_0$ with slope $\tan(\theta_0)$.

Example. Compute the slope of the line tangent to the polar curve $r = e^{-\theta}$ at $\theta = \pi$.

Example (LC 34.1-34.3). Consider the polar curve $r = 2\sin(\theta)$.

Express this polar curve in Cartesian coordinates

Locate all points (r, θ) , where this	curve has a horizontal tang	gent line
Locate all points (r, θ) , where this	curve has a vertical tangen	t line
12.3: Calculus in Polar Coordinates	234	Math 1080 Class notes Fall 2021

Definition. (Area of Regions in Polar Coordinates)

Let R be the region bounded by the graphs of $r = f(\theta)$ and $r = g(\theta)$, between $\theta = \alpha$ and $\theta = \beta$, where f and g are continuous and $f(\theta) \ge g(\theta) \ge 0$ on $[\alpha, \beta]$. The area of R is

$$\int_{\alpha}^{\beta} \frac{1}{2} (f(\theta)^2 - g(\theta)^2) d\theta.$$

Example (LC 34.5-34.6). Find the area enclosed by the polar curve $r = 3 + 2\cos(\theta)$.

Example (LC 34.7-34.9). Find the area of the region inside the polar curve r=2 and outside of the polar curve $r=3+2\sin(\theta)$.

Example. Consider the polar curves $r = 1 + \cos(\theta)$ and $r = 1 - \cos(\theta)$.

Setup the integral(s) that finds the area of area 1.

Setup and solve the integral(s) that finds the area of area 2.

Arc Length of a Polar Curve

Let f have a continuous derivative on the interval $[\alpha, \beta]$. The **arc length** of the polar curve $r = f(\theta)$ on $[\alpha, \beta]$ is

$$L = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta.$$

Example (LC 34.13). Find the length of the polar curve $r = e^{-a\theta}$ for $\theta \ge 0$ and a > 0 (a is constant).

