Processamento de Produtos ("X")

- Alternativas e suas estimativas de custo
 - A1: laço aninhado ("nested-loop")
 - A2: laço aninhado com índice ("indexed nestedloop")
 - A3: merge-junção ("balanced-line" ou "sortmerge")
 - A4: hash-junção ("hash-join")

Laço Aninhado (A1)

 Dois laços para varredura de blocos das relações a serem combinadas

```
para cada bloco B_R de R faça  \begin{array}{c} \text{para cada bloco } B_S \text{ de S faça} \\ \text{início} \\ \text{se uma tupla } t_R \in B_R \text{ satisfaz a condição de} \\ \text{junção com uma tupla } t_S \in B_S \text{ então} \\ \text{adicione } t_R \ ^* t_S \text{ ao resultado} \\ \text{fim} \end{array}
```

Laço Aninhado - Custo

- Pior caso
 - apenas um bloco de cada relação cabe na memória
 - custo = MIN($b_R + b_R * b_S$, $b_S + b_S * b_R$)

Exemplo

custo = MIN
$$(10+10*20, 20+20*10)$$

= 210 acessos

Laço Aninhado com Índice (A2)

- Aplicado se existir um índice para o atributo de junção do laço interno
- Custo
 - para cada tupla externa de R, pesquisa-se o índice para buscar a tupla de S
 - custo diretamente associado ao tipo de índice

Laço Aninhado com Índice (A2)

Exemplos

- índice <u>primário</u> árvore-B para atributo <u>chave</u> (ver caso A3 da Seleção) em S
 - custo = $b_R + n_R * (h_{ls} + 1)$
- índice <u>primário</u> árvore-B para atributo <u>não-chave</u>
 (ver caso A4 da Seleção) em S
 - custo = $\mathbf{b}_{R} + \mathbf{n}_{R} * (\mathbf{h}_{Is} + \lceil (C_{s}(a_{i}) / f_{s}) \rceil)$
- índice <u>secundário</u> árvore-B para atributo <u>não-</u>
 <u>chave</u> (ver caso A6 da Seleção) em S
 - custo = $\mathbf{b}_{R} + \mathbf{n}_{R} * (\mathbf{h}_{ls} + \mathbf{1} + \lceil C_{s}(a_{i}) \rceil)$

Merge-Junção (A3)

 Aplicada se R e S estiverem fisicamente ordenadas pelos atributos de junção

Resultado

ID-R	ID-S	 a _i	a _j

$$ptr_R.a_i = ptr_S.a_i$$
 ? NÃO

S		_
<u>ID-S</u>	 a _j	
С	 2	← ptr _s
Α	 3	
Е	 5	
В	 5	
D	 7	
F	 8	

Resultado

ID-R	ID-S	 \mathbf{a}_{i}	a _j

S		_
<u>ID-S</u>	 \mathbf{a}_{j}	
С	 2	← ptr _s
Α	 3	
Е	 5	
В	 5	
D	 7	
F	 8	

$$ptr_R.a_i = ptr_S.a_j$$
 ? **SIM**

$$ptr_R.a_i = ptr_S.a_j$$
 ? NÃO

5		_
<u>ID-S</u>	 a _j	
С	 2	
А	 3	\leftarrow ptr_S
Ш	 5	
В	 5	
D	 7	
F	 8	

Resultado

ID-R	ID-S	 a _i	\mathbf{a}_{j}
100	С	 2	2

S		_
<u>ID-S</u>	 \mathbf{a}_{j}	
С	 2	
Α	 3	
Е	 5	\leftarrow ptr_s
В	 5	
D	 7	
F	 8	

$ptr_R.a_i = ptr_S.a_j$? SIM

ID-R	ID-S	 a _i	a _j
100	С	 2	2
300	E	 5	5

5		_
<u>ID-S</u>	 a _j	
С	 2	
Α	 3	
Ш	 5	
В	 5	•
D	 7	
F	 8	

- ptr_s

$$ptr_R.a_i = ptr_S.a_j$$
 ? **SIM**

_,

1 1	
<u>ID-R</u>	 a _i
200	 1
100	 2
300	 5

S

<u> </u>		
ID-S	•••	\mathbf{a}_{j}
С		2
Α		3
Е		5
В		5
D		7
F		8

- ptr_{s}

Resultado Final

ID-R	ID-S	 a _i	a _j
100	С	 2	2
300	E	 5	5
300	В	 5	5

Merge-Junção - Custo

- Pressupõe que pelo menos um bloco de cada relação cabe na memória
 - geralmente isso é possível
 - exige uma única leitura de cada relação
 - $-\operatorname{custo}_{\mathsf{M}\text{-}\mathsf{J}} = b_{\mathsf{R}} + b_{\mathsf{S}}$
- Se R e/ou S não estiverem ordenadas, elas podem ser ordenadas
 - custo = custo ordenação R e/ou S + custo_{M-J}

Merge-Junção - Custo

 Se ambas as relações (R e S) estão ordenadas

```
- custo = b_R + b_S
```

Se uma delas (R) não está ordenada

- custo = 2 *
$$b_R$$
 (log n_{buf} (b_R / n_{buf}) + 1) + b_R + b_S

Se ambas as relações não estão ordenadas

```
- custo = 2 * b_R (log n_{buf} (b_R / n_{buf}) + 1) +

2 * b_S (log n_{buf} (b_S / n_{buf}) + 1) +

b_R + b_S
```

Hash-Junção (A4)

- Aplicada se existir um <u>índice hash com a</u> <u>mesma função</u> definido para os atributos de junção das relações R e S
- Executa em 2 etapas

1. Particionamento

 separa em partições (conjunto de 1 ou mais blocos) as tuplas de R e S que possuem o mesmo valor para a função de *hash*

1. Junção

 analisa e combina as tuplas de uma mesma partição

Hash-Junção - Funcionamento

Hash-Junção - Custo

- Fase de Particionamento
 - lê as relações R e S e as reescreve, organizadas em partições
 - sempre que um conjunto de tuplas com o mesmo valor de hash adquire o tamanho de um bloco, este bloco é anexado a um arquivo temporário para a partição
 - para fins de simplificação de cálculo, considera-se que a função *hash* distribui uniformemente os valores das tuplas
 - evita escrita de muitas pequenas partições (difícil estimar na prática). Assim, assume-se custo "W" = custo "R" e não custo "W" > custo "R"
 - custo = $2 * b_R + 2 * b_S = 2 * (b_R + b_S)$

Hash-Junção - Custo

- Fase de Junção
 - lê as partições de mesmo hash e combina as tuplas
 - novamente, para fins de simplificação de cálculos, considera-se uma nova leitura de todos os blocos de R e S organizados nas partições
 - na prática, é possível que alguns blocos de R ou de S sejam lidos mais de uma vez para serem combinados com outros blocos, porém, tal situação é muito dinâmica, dependendo dos dados existentes em R e S
 - custo = $(b_R + b_S)$
- Custo Total

- custo =
$$2 * (b_R + b_S) + (b_R + b_S) = 3 * (b_R + b_S)$$

- Produto cartesiano (R X S)
 - $tamanho = n_R * n_S$
- Junção por igualdade ("equi-join" natural ou theta)
 - junção natural sem atributo em comum
 - tamanho = $n_R * n_S$

- Junção por igualdade ("equi-join")
 - junção por referência (fk(R) = pk(S))
 - tamanho estimado <= n_R ("<" devido a eventuais nulos)
 - na prática, assume-se tamanho = n_R

3
·

<u>ID-R</u>	 ID-S
100	 1
200	 2
300	 2

S

ID-S	
1	
2	
3	
4	
5	

R "X" S (supondo join theta)

ID-R	R.ID-S	• • •	S.ID-S	
100	1		1	
200	2	• • •	2	
300	2		2	

- Junção por igualdade ("equi-join")
 - junção entre chaves candidatas (atributos unique)
 - tamanho \leq MIN (n_R , n_S) ("<": nem todos podem casar)
 - na prática, assume-se tamanho = $MIN(n_R, n_S)$

<u>R</u>	
<u>ID-R</u>	 CPF
100	 1
200	 2
300	 5

<u>S</u>	
	CPF
	1
	2
	3
	4
	5
·	-

R "X" S (supondo join theta)

ID-R	 R.CPF	 S.CPF
100	 1	 1
200	 2	 2
300	 5	 5

- Junção por igualdade ("equi-join")
 - junção entre <u>atributos não-chave</u> $(a_i(R) = a_j(S))$
 - cada tupla de R associa-se com C_s (a_i) de S
 - se tenho n_R tuplas $\Rightarrow n_R * C_S(a_i)$
 - idem para as tuplas de S: n_s * C_R (a_i)
 - tamanho estimado = MIN($\lceil n_R * C_S(a_i) \rceil$, $\lceil n_S * C_R(a_i) \rceil$)
 - menor estimativa geralmente está mais próxima do real

R "X" S (supondo join theta)

<u> </u>		<u> </u>		<u>R "X</u>	." S (supor
• • •	a _i		a _j		a _i	a _j
	1		1		1	1
	2		1		1	1
	2		2		2	2
			4		2	2
			5			

$$C_{R}(a_{i}) = 3/2 = 1,5$$
 $C_{S}(a_{j}) = 5/4 = 1,3$
 $\left[n_{R} * C_{S}(a_{j})\right] = 4$
 $\left[n_{S} * C_{R}(a_{i})\right] = 8$

Tamanho estimado = 4

- Junção theta por desigualdade (a, (R) > a, (S), por exemplo)
 - estimativa: cada tupla de R > n_s / 2 tuplas de S e viceversa
 - tamanho estimado (caso médio) =

$$\left[AVG(n_R * (n_s / 2), n_S * (n_R / 2)) \right] =
 \left[n_R * (n_s / 2) \right] OU \left[n_S * (n_R / 2) \right]$$

<u>K</u>		<u> </u>	
• • •	a _i		a
	2		1
	3		2
			3
			4
			5

		. • (30
• • •	\mathbf{a}_{j}	 \mathbf{a}_{i}	
	1		
	•	 2	
	2		
	_	 3	
	3		
		3	
	4		
		·	

R "X" S (supondo join theta)

n_R *	$(n_s / 2) = 2*2,5 = 5$
n _s *	$(n_R / 2) = 5*1 = 5$

Tamanho estimado = 5

Junções Complexas - Custo

- Estimativas de custo apresentadas até agora consideram uma única condição de junção
 - na prática, várias condições podem ser definidas
- Dada uma junção complexa conjuntiva

R "X"
$$\theta = \sigma c1 \wedge c2 \wedge ... \wedge cn$$
 S

- estima-se o custo de junção de cada condição c_i
 - R "X" $\theta = \sigma ci$ S
- escolhe-se a condição c_i de menor custo para ser implementada
 - as demais condições c₁, c₂, ..., c_{i-1}, c_{i-1}, ..., c_n são verificadas a medida que as tuplas de R "X" θ = σ ci S são geradas

Junções Complexas - Custo

- Dada uma junção complexa disjuntiva
 R "X"_{θ = σ c1 ∨ c2 ∨ ... ∨ cn} S, tem-se as seguintes
 alternativas (escolhe-se a de menor custo)
 - aplica-se o algoritmo de laço aninhado
 - mais simples e independente de condição de junção
 - aplica-se (R "X" $_{\theta = \sigma c1}$ S) \cup (R "X" $_{\theta = \sigma c2}$ S) \cup ... \cup (R "X" $_{\theta = \sigma cn}$ S)
 - custo total é a soma dos menores custos de cada junção individual
 - tamanho do resultado é dado pela estimativa de tamanho de operações de união (a ser visto)

Junções Complexas - Tamanho

- Dada uma junção R "X"
 _{θ = σ c1 ∧ c2 ∧ ... ∧ cn} S
 - estima-se a cardinalidade (tamanho) de cada condição c;
 - $C(C_i)$
 - aplica-se a fórmula adequada de cálculo de tamanho, dentre as definidas para seleção (σ)
 - considera-se $n_R * n_S$ o tamanho da relação de entrada (produto cartesiano de R e S)
 - para o exemplo acima:

Tamanho =
$$\lceil (\mathbf{n_R} * \mathbf{n_S}) \cdot (C(c_1) \cdot C(c_2) \cdot \dots \cdot C(c_n)) / (\mathbf{n_R} * \mathbf{n_S})^n \rceil$$

Tamanho Junções Complexas - Exemplo

```
n_{Med} = 100 \text{ tuplas}; V_{Med}(nome) = 100; V_{Med}(cidade) = 50; n_{Pac} =
500 tuplas; V_{Pac}(nome) = 500; V_{Pac}(cidade) = 150
e
Pac \text{ "X"}_{\theta = \sigma \text{ Pac.idade} > \text{Med.idade} \land \text{Pac.cidade} = \text{Med.cidade} \land \text{Pac.nome} = \text{Med.nome} \text{ Med.nome} 
C(Pac.idade > Med.idade) = n_{Pac}(n_{Med}/2) = 25000 \text{ tuplas}
C(Pac.cidade = Med.cidade) = MIN(n_{Pac}. C_{Med}(cidade), n_{Med}.
C_{Pac}(cidade)) = MIN(500.100/50,100.500/150) = 333,33 tuplas
C(Pac.nome = Med.nome) = MIN(n_{Pac}, C_{Med}(nome), n_{Med}, C_{Pac}(nome)) =
MIN(500.100/100,100.500/500) = 100 \text{ tuplas}
Tamanho = \lceil (500 * 100). (25000. 333,33. 100) / (500 * 100)<sup>3</sup> \rceil = 1 \text{ tupla}
```