

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

Machine Problem No. 1					
Topic:	Propositional Logic	Week No.	2-3		
Course Code:	CSST101	Term:	1 st		
			Semester		
Course Title:	Advance Knowledge Representation and Reasoning	Academic Year:	2025-2026		
Student Name		Section			
Due date		Points			

University Logic Rules Application

I. Title

Assessment Task: Applying Propositional Logic in Real-World Scenarios through a **Mini Expert System**

II. Intended Learning Outcomes (ILOs)

At the end of this activity, students should be able to:

- 1. Translate real-world conditions into propositional logic expressions.
- 2. Apply logical implication $(P \rightarrow Q)$ to decision-making scenarios.
- 3. Develop a Python program that implements logic rules.
- 4. Record and analyze system results using CSV as a simple database.
- 5. Communicate findings through a short written report.

III. Instructions for Students

- 1. **Download or recreate the Mini Expert System** provided in class.
- 2. Run the program and test at least **3 different students** with different conditions for:
 - Attendance Rule
 - o Grading Rule
 - o Login System Rule
 - o Bonus Points Rule
- 3. Verify that all results are logged in the **CSV file (logic_results.csv)**.
- 4. Extend the program by **adding one new rule of your own**. Examples:
 - \circ Library borrowing (If ID is valid \rightarrow Allowed to borrow books).
 - \circ Enrollment clearance (If fees are paid \rightarrow Enrollment confirmed).
 - \circ Laboratory access (If safety gear is worn \rightarrow Access granted).

Republic of the Philippines

Laguna State Polytechnic University Province of Laguna

5. Submit the following:

- o Source code (.py file).
- o Generated **CSV file** with results from at least 3 students.
- A **short report (1–2 pages)** containing:
 - Explanation of rules tested.
 - Screenshots of program runs.
 - Description of the new rule you added.

IV. Assessment Criteria (Rubric)

Criteria	Excellent (100%)	Proficient (85%)	Developing (70%)	Beginning (50%)
Logic Translation	translated into		Some rules incorrectly expressed.	Little/no understanding of logic.
Implementation	with all rilles	Program runs with minor errors.	Program partially working.	Program does not run.
Extension Rule	implemented additional	Additional rule included but minor errors.	Additional rule unclear/incomplete.	No additional rule added.
CSV Logging & Data	llogged and organized in		CSV incomplete or inconsistent.	No CSV output.
Report & Presentation	with screenshots and	Clear but missing details.	Report incomplete or unclear.	No report submitted.

V. Sample Assessment Questions (for Written Part)

- 1. Represent the following in propositional logic:
 - a. "If a student is late, then they must bring an excuse letter."
 - b. "If a grade \geq 75, then the student passes."
- 2. Why is the rule $P \rightarrow Q$ considered satisfied when P is false?
- 3. Examine the following CSV excerpt:

```
2025-09-04 14:33:15, Juan Dela Cruz, Grading Rule, Satisfied 
2025-09-04 14:34:22, Ana Santos, Login Rule, Access denied 

X
```

- What does each row represent?
- Which logical implication failed and why?