Wahrscheinlichkeiten in der statistischen Physik Subjektivistische Interpretation

Alexander Wolf

Universität Augsburg

Sommerakademie Neubeuern, 18 August 2011

Objektive Wahrscheinlichkeiten

"Can anybody seriously think that our merely being *ignorant* of the exact microconditions of thermodynamic systems plays some part in *bringing it about*, in *making it the case*, that say *milk dissolves in coffee*? How could that be?" (Albert 2000, echoing Popper 1982)

Objektive Wahrscheinlichkeiten

"Can anybody seriously think that our merely being *ignorant* of the exact microconditions of thermodynamic systems plays some part in *bringing it about*, in *making it the case*, that say *milk dissolves in coffee*? How could that be?" (Albert 2000, echoing Popper 1982)

Objektivistischer Standpunkt: Wahrscheinlichkeiten als elementarer Bestandteil der physikalischen Dynamik in der Welt (Propensitäten).

Begriff: "objektiv"

- Ein Attribut eines physikalischen Systems heißt objektiv, wenn es einer inhärenten Eigenschaft des Systems entspricht.
- ▶ Beispiel: Ladung, Masse, Geschwindigkeit eines Teilchens

Interpretation, wie sie in der Ausbildung eines Physikers in statistischer Mechanik vermittelt wird.

Was ist statistische Mechanik?

Gegenstand der Theorie = Systeme, die aus sehr vielen ($N \sim 10^{23}$) Teilchen bestehen. Kanonisches Beispiel: ideales Gas (nicht-wechselwirkende Teilchen).

Kinetische Gastheorie (D. Bernoulli, 1738)

- obj., deterministische Berechnung der Bewegung jedes einzelnen Teilchens
- ▶ einfache Erklärungen: Druck=Stöße, Wärme=Bewegung
- ► Fazit: viel zu kompliziert um Aussagen über makrokopische Eigenschaften zu machen (Chaos)!

Was ist statistische Mechanik?

Gegenstand der Theorie = Systeme, die aus sehr vielen ($N \sim 10^{23}$) Teilchen bestehen. Kanonisches Beispiel: ideales Gas (nicht-wechselwirkende Teilchen).

Kinetische Gastheorie (D. Bernoulli, 1738)

- obj., deterministische Berechnung der Bewegung jedes einzelnen Teilchens
- einfache Erklärungen: Druck=Stöße, Wärme=Bewegung
- ► Fazit: viel zu kompliziert um Aussagen über makrokopische Eigenschaften zu machen (Chaos)!

Thermodynamik (Carnot, Clausius, J. R. Mayer, ~1850)

- rein phänomenlogische Theorie
- ightharpoonup setzt makroskopische Parameter T,p, Wärme Q, Entropie S,... in Zusammenhang
- berechnet Zustandsgleichungen, Wirkungsgrade,... ausgehend von einfachen Postulaten

Was ist statistische Mechanik?

Gegenstand der Theorie = Systeme, die aus sehr vielen ($N \sim 10^{23}$) Teilchen bestehen. Kanonisches Beispiel: ideales Gas (nicht-wechselwirkende Teilchen).

Stat. Mechanik (J. C. Maxwell, L. Boltzmann, J. W. Gibbs, 1860-1900)

- Berechnung der makroskop. Eigenschaft nur aus Kenntnis der mikroskop. Größen durch Anwendung der W-Rechnung.
- viel einfacher als kinet. Gastheorie
- bestätigt sehr erfolgreich Ergebnisse der Thermodynamik und liefert Resultate darüber hinaus z.B. Phasenübergänge, Elastizitäten,...

Maxwell (\sim 1860)

- aufgewachsen mit subjekt. W-Interpretation
- In "Illustrations of the dynamical theory of gases" dann aber objekt. (frequentistische) Def. von W:

$$P(\text{``Teilchen hat }v \in [v_1,v_2]\text{''}) = \frac{\# \text{ Teilchen mit }v \in [v_1,v_2]}{\# \text{ Teilchen insgesamt}}$$

Maxwell (\sim 1860)

- aufgewachsen mit subjekt. W-Interpretation
- In "Illustrations of the dynamical theory of gases" dann aber objekt. (frequentistische) Def. von W:

$$P(\text{``Teilchen hat }v \in [v_1, v_2]\text{''}) = \frac{\# \text{ Teilchen mit }v \in [v_1, v_2]}{\# \text{ Teilchen insgesamt}}$$

■ allerdings: zentrales Ergebnis mit subjektiv. Argument, nicht frequentistisch erklärbar → Maxwell Geschwindigkeitsvtlg.

(i)
$$p(\mathbf{v}) = p_1(v_x)p_1(v_y)p_1(v_z)$$
 ("Indifferenzprinzip 2")
(ii) $p(\mathbf{v}) = p(|\mathbf{v}|)$ (Symmetrie)
 $\Rightarrow p(\mathbf{v}) = Ae^{-B|\mathbf{v}|^2}$

"Indifferenzprinzip 2": Wenn wir keine Information über eine Korrelation zwischen Ereignissen haben, sollten wir sie als probabilistisch unabhängig ansehen.

Boltzmann (~1860)

verschiedene objektiv. W-Interpret. teilweise im gleichen Paper, z.B.:

- 1. Maxwells Definition
- 2. $P(\text{``Teilchen hat }v\in [v_1,v_2] \text{ während 1s''})=rac{ au_v}{1s}, \quad au_v: \mathsf{dyn}.$ Zeitskala
- 3. Betrachte ein Ensemble, d.h. eine Menge von Z Systemen, die alle den gleichen Bedingungen (T,V) unterliegen, dann

$$P(A) = \frac{\# \ \text{Systeme mit für} \ A \ \text{günstigem Mikrozust.}}{\# \ \text{Systeme insgesamt}}$$

Bemerkungen:

- zu 1.,2.: objektiv., da durch Dynamik begründbar
- zu 3.: Boltzmann denkt an faktisches Ensemble (System im thermodyn. Limes in Subsysteme unterteilen) — aber was hat das mit der obj. Dynamik zu tun?

Gibbs (~1900)

▶ Boltzmanns Ensembles sind nicht faktisch sondern hypothetisch und damit eine systematische Darstellung *unseres* Wissens/Unwissens über das vorliegende System \rightarrow epistemische Interpret. (Tolman 1938)

Gibbs (~1900)

▶ Boltzmanns Ensembles sind nicht faktisch sondern hypothetisch und damit eine systematische Darstellung *unseres* Wissens/Unwissens über das vorliegende System → epistemische Interpret. (Tolman 1938)

konkrete Konsequenzen:

▶ Def. Phasenraum PR: Raum der Mikrozustände

$$x = \{(r_1, v_1), ..., (r_N, v_N)\}$$

mit $r_i \in V \subset \mathbb{R}^3$. Also $PR \subset \mathbb{R}^{6N}$.

 Def. Mikrokanonisches Ensemble: Alle Realisierungen auf PR, die mit einer vorgegebenen Gesamtenergie E kompatibel sind

$$MIK(E) = \{x \in PR \mid E_x = E\}, \quad E_x = \sum_{i=1}^{N} \frac{m}{2} v_i^2$$

► Fundamentales Postulat der statistischen Mechanik: "Ein isoliertes System im Gleichgewicht befindet sich mit gleicher W in jedem zugänglichen Mikrozsutand." Zugänglich ist dabei jeder Mikrozustand x ∈ MIK(E). Damit ist

$$P(x) = \left\{ \begin{array}{ll} \frac{1}{Z} & \text{wenn } x \in \mathsf{MIK} \\ 0 & \text{sonst} \end{array} \right. \quad \text{und } Z = |\mathsf{MIK}| = \mathsf{Zustandssumme}$$

Def. Entropie mikroskopisch (mikrokanonisch)

$$S = k_B \ln Z$$
 (Boltzmann)

 \rightarrow vollständige Revolutionierung des Begriffs, intuitiv "Grad der Unordnung", "negative Information"

Edwin Jaynes (\sim 1957)

▶ Def. Maximum Entropy Principle (MEP): Geg. Menge M aller mögl. W.-Vtlg. und eine Teilmenge $B \subset M$ von Vtlg., die eine bestimmte Bedinung erfüllen. Dann ist diejenige Vtlg. p physikalisch realisiert, die die Entropie S maximiert, wobei

$$S(p) = -\sum_{x \in PR} p_x \log p_x, \quad p = (p_1, ..., p_{|PR|})$$

Edwin Jaynes (\sim 1957)

▶ Def. Maximum Entropy Principle (MEP): Geg. Menge M aller mögl. W.-Vtlg. und eine Teilmenge $B \subset M$ von Vtlg., die eine bestimmte Bedinung erfüllen. Dann ist diejenige Vtlg. p physikalisch realisiert, die die Entropie S maximiert, wobei

$$S(p) = -\sum_{x \in PR} p_x \log p_x, \quad p = (p_1, ..., p_{|PR|})$$

Bemerkungen

- neoklassischer Subjektivismus: Personen gleichen Wissens weisen gleiche W zu
- ▶ Def. von S aus der Informationstheorie
- ▶ falls B = M: MEP \Leftrightarrow Indifferenzprinzip
- aktueller Stand der Wissenschaft, höchsterfolgreich angewendet

Fazit

Es ist ungemein erfolgreich sein Nichtwissen zu systematisieren!

trotzdem: Physiker deuten mit der Formulierung "Entropie eines Systems" im Gegensatz zu "Der Grad meines Nichtwissen über das System" an, dass sie lieber Objektivisten wären.

Diskussion und Probleme

"Can anybody seriously think that our merely being *ignorant* of the exact microconditions of thermodynamic systems plays some part in *bringing it about*, in *making it the case*, that say *milk dissolves in coffee*? How could that be?" (Albert 2000, echoing Popper 1982)

Antwort von Frigg (2010)

Natürlich verursachen unsere Glaubensgrade nichts in der realen Welt, sie sagen uns lediglich, in welchen Fällen es vernünftig ist, ein Phänomen zu erwarten.

Ein Clou:

Viele Wahrscheinlichkeiten, mit denen wir es hier zu tun haben, sind auf Grund der großen Systemgrößen **sehr nahe** bei 1 oder 0. Unsere rationalen Glaubensgrade sind also höchstzuverlässig und erwecken deshalb umsomehr den Anschein von Objektivität.

Trotzdem, z.B. der 2. Hauptsatz gilt nur mit einer Wahrscheinlichkeit $1-\epsilon$, wenn wir nicht den thermodyn. Limes durchführen (Status eines Naturgestzes?).

Diskussion

Bringt uns die subjekt. Sicht weiter in der Lösung von Problemen?

- Jaynes sagt: Stat. Mechanik sei "Art of conjecturing" bzw. "statistical inference"
- gewagte Behauptung: mit dieser Sicht wäre die stat. Mechanik nicht 150
 Jahre jünger als die W-Theorie sondern annähernd genauso alt

2. Hauptsatz der Thermodynamik

- "Wärme fließt von warm nach kalt." oder "Die Entropie eines Systems kann in einem Prozess nie sinken."
- Naturgesetz verschiedene Subjektivisten meinen, sie könnten dieses Naturgesetz aus informationstheoretischen, subjektivistischen Grundlagen ableiten (Uffink z.B. aus MEP)
- Problem der Zeitumkehrinvarianz der mikroskop. Gleichung und der Zeitordnung, die durch den 2. Hauptsatz vorgegeben wird, ein subjektiv. Problem?

Diskussion

Ergodentheorem

$$\overline{A}_{\rm Zeit} = \langle A \rangle_{\rm Ensemble}$$

- ▶ liefert objektivistische Rechtfertigung der W-Vtlg. rein aus der Dynamik. Eine notwendige Bedingung: es gibt eine stationäre Vtlg., die durch $\langle A \rangle_{\sf Ensemble}$ gegeben ist.
- Objektivisten: Versuch dieses Theorem mathematisch für mehr und mehr Systeme zu bestätigen (nicht sehr erfolgreich). Subjektivisten: "Für uns ist das kein Problem!"

Ergodic Decomposition Theorem

Äquivlenz mit de Finettis Exchangeability Theorem

Probleme einer radikalen subjektivistischen Sicht

Es ist ungemein erfolgreich sein Nichtwissen zu systematisieren!

dennoch gibt es ein paar Probleme

- ▶ Was genau sind die Bedingungen B im MEP. Woher kommen diese Bedingungen? Aus der Empirik? (objektiv. Antwort: Erhaltungsgrößen)
- MEP und Bayesianismus inkompatibel.
- De Finetti und MEP inkompatibel.
- De Finetti und Bayes zwar formal kompatibel, aber widersprüchliche Interpretation.
- Rettung des Subjektvismus durch folgende Annahme: Wenn die Glaubensgrade eines Agenten bestimmte Symmetrien aufweisen, dann müssen sich diese in seiner W-Vtlg. wiederfinden (Verallgemeinerung des Exchangeability Theorem).

Deswegen beschränken sich Physiker auf das MEP.

Quelle: Subjective probability and statistical physics, J. Uffink, in Probabilities in physics, C. Beisbart and S. Hartmann, Oxford University Press (2011)

Vielen Dank für die Aufmerksamkeit!