

TUTORIAL 1 (BASIC LAWS)

UES 013 ELECTRICAL AND ELECTRONICS ENGINERING

FIRST YEAR (CSE)

Course Instructor: Dr. Shakti Singh, Dr. Asim Aftab

1. Use the KVL and KCL method to find how much power the 20-V source extracts from the circuit in Fig (60W)

Figure 1

- 2. Referring to Figure 2
 - a. Using KVL and KCL, find the branch currents i_a through i_e in the circuit.
 - b. Find the total power developed in the circuit. (ans: a) 5.6 A, 0.6 A, 5 A, 0.2 A, 4.8 A b) 2048 W
- 3. Using KCL and KVL Analysis, find v in Fig 3. (20 V)

Figure 3

4. Find current in 100 ohms resistor in Figure 4, using KVL and KCL.

Figure 2

Figure 4

TUTORIAL 2 (NODAL & MESH ANLYSIS)

UES 013 ELECTRICAL AND ELECTRONICS ENGINERING

FIRST YEAR (CSE

Course Instructor: Dr. Shakti Singh, Dr. Asim Aftab

Q1.Use the node-voltage method to find how much power the 20-V source extracts from the circuit in Fig 1 (60W)

Q2.Use the node-voltage method to find v_1 and v_2 in Fig 2 (100 V, 50 V)

Q3.Use the node-voltage method to find the power delivered by the dependent voltage source in Fig 3. (Ans: -750W)

Q4.Find v and i in Fig 4 using Nodal Analysis.

(ans: 0.46V, 2.23A)

Figure 1

Figure 3

Figure 2

Figure 4

Q5. Using mesh analysis finds mesh currents in Figure 3 and 4.

Q6. Use Mesh analysis to find the power dissipated in the 1Ω resistor. (Ans: 36W)

Figure 6

TUTORIAL 3, 4 (CIRCUIT THEOREMS)

UES 013 ELECTRICAL AND ELECTRONICS ENGINERING

FIRST YEAR (CSE

Course Instructor: Dr. Shakti Singh, Dr. Asim Aftab

Superposition

- 1. Using Superposition theorem (figure 1), find the current I in 16ohm. (2A)
- 2. Using Superposition (Figure 2), find the voltage, V. (32 V)

Figure 2

Thevenin Theorem

3. Find the Thevenin equivalent circuit with respect to terminal ab for figure 3. (60 V, 10 Ω)

- 4. Find the Thevenin equivalent circuit with respect terminal ab for figure 4. (-84 V, 20 Ω)
- 5. Find the Thevenin equivalent circuit with respect to terminal ab for figure 5. (30 V, 20 Ω)

Figure 5

Norton Theorem

6. Find the Norton equivalent circuit with respect to terminals ab for figure 6 . (- 4 mA, 4 k Ω)

7. Find the Norton equivalent circuit with ab for figure 7. (1.67 A, 2.4 Ω)

respect to terminals

Figure 7

Source-Transformation (Thevenin & Norton)

8. Find the Thevenin and Norton equivalent for the network shown below.

((i) -22.65V, -15.95A, 1.42
$$\Omega$$
 (ii) 73 V, 6.64A, 11 Ω)

(i) (ii)

Maximum Power Transfer

9. The load resistance in figure below is adjusted until maximum power is delivered. Find the power delivered and the value of $R_{\rm L}$.

((i) 600Ω , 38.4 mW (ii) 21.7Ω , 0.8 W)

(i) (ii)

Figure9(i)

Figure 9(ii)

TUTORIAL 5 (THEOREMS)

UES 013 ELECTRICAL AND ELECTRONICS ENGINERING

FIRST YEAR (CSE)

Course Instructor: Dr. Shakti Singh, Dr. Asim

1. Calculate the effective resistance between points A and B as given in Fig. 1.

[Ans. 3.69 Ω]

- 2. In the circuit shown in Fig. 2, calculate current through 1 Ω resistance connected between A-B, using Thevenin's theorem. Verify your answer using superposition theorem. [Ans. 14 A]
- 3. For the circuit shown in Fig. 3, find the voltage across 4Ω resistance by source transformation.

[Ans. 7.112 V]

- 4. Using superposition theorem, find the value of output voltage V_0 in the circuit of Fig. 4. [Ans. 2 V]
- **5.** Determine the Thevenin's equivalent circuit as viewed from the open-circuit terminals **a** and **b** of the network shown in Fig. 5. All resistances are in ohms.

[Ans. $V_{oc} = 3 \text{ V}, R_{TH} = 5 \Omega$]

[Ans. $i_0 = -0.4706 A$]

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6