Homework 4—due by 9:00 PM, Friday, Feb 5

There is no late deadline due to the Midterm next week.

1. A plane wave of frequency ω is incident normally from vacuum (see figure below) on a semi-infinite slab of material with a complex index of refraction $n(\omega)$, where $n^2(\omega) = \epsilon(\omega)/\epsilon_0$.

Show that the reflection coefficient is given by

$$R = \left| \frac{1 - n(\omega)}{1 + n(\omega)} \right|^2$$

whereas the transmission coefficient is given by

$$T = \frac{4 \operatorname{Re} n(\omega)}{|1 + n(\omega)|^2}$$

2. In class we discussed a static model for a substance in the presence of an electric field. The polarization of neighboring molecules gives rise to an internal field \vec{E}_i in addition to the average macroscopic field \vec{E} , so that the dipole moment is modified to

$$\left\langle \vec{p}_{\mathrm{mol}} \right\rangle = \epsilon_0 \gamma_{\mathrm{mol}} \left(\vec{E} + \vec{E}_i \right)$$

where $\gamma_{\rm mol}$ is the molecular polarizability. Jackson finds that $E_i = \vec{P}/3\epsilon_0$.

Starting from the definition that $\vec{P} = N \langle \vec{p}_{\text{mol}} \rangle$, where N is the number of molecules per unit volume, derive the Clausius-Mossotti equation

$$\gamma_{\text{mol}} = \frac{3}{N} \frac{(\epsilon/\epsilon_0 - 1)}{(\epsilon/\epsilon_0 + 2)}$$

3. Consider the following experimental data for nitrogen.

Temperature (K)	296.9	296.9	296.9	296.9
Pressure (Pa)	1.0200×10^5	57.50×10^5	221.6×10^{5}	1011.6×10^5
Density (kg m^{-3})	1.180	66.04	236.1	578.0
Dielectric constant	1.00052	1.03109	1.11413	1.29633

- (a) Calculate $\gamma_{\rm mol}$ for each of the four sets of data given above.
- (b) In principle, $\gamma_{\rm mol}$ is a function of the electric field, but for a wide range of field strengths, it is a constant that characterizes the response of the molecules to an applied field. Did you find that $\gamma_{\rm mol}$ is constant in all the four instances that you calculated above? Comment.

4. Answer the following. You must support your answer with appropriate calculations and explanations if you want full credit. In both parts (a) and (b) below, a yes/no answer that is not supported by calculations and explanations will be awarded zero credit.

The electron density in the ionosphere reaches a maximum value of $1.5 \times 10^{12} \ \mathrm{m}^{-3}$.

- (a) Can a 2 MHz wave be used to communicate with a satellite?
- (b) Can a 2 GHz wave be used to communicate with a satellite?