

Devoir Surveillé

Matière: Architecture des ordinateurs

Enseignants : R.Tlili, A.Gueddena, I. Ben Slimen Date : 18/03/2016

Filière / Classe : Ingénieur Inf (1^{ère} année) Durée : 1h30

Section / Groupe : A, B, C, D, E,F Documents : non autorisés
Barème indicatif : Calculatrices : non autorisées
Nombre de pages : 6 A.U : 2015/2016

ETUDIANT(e)

Nom et Prénom : N°Carte :...... Groupe :...... N°Carte :.......

A RENDRE TOUTES LES FEUILLES MEME SI ELLES SONT BLANCHES

Exercice 1:

On considère la figure ci-dessous illustrant l'architecture d'un microprocesseur associé à une mémoire centrale :

- 1. Qu'appelle-t-on l'architecture de cette figure ?.. Modèle de Von Neumann.........
- 3. Déterminer la capacité de la mémoire centrale en MO.

On remarque que la case mémoire contient un mot de données de taille 4 hexadécimaux = 16 bits = 2 Ø.

Nombre de cases 2^{18} --> Capacité = $2 \cdot 2^{18} = 2^{19} \varnothing = 1/2 M\varnothing$

- 4. Enumérer les deux différences principales entre le bus d'adresse et le bus de données
 - (1) Contenu : le bus d'@ contient des adresses et le bus de données contient des données (2) le bus d'@ est unidirectionnel alors que le bus données est bidirectionnel.
- 5. Quel est l'avantage d'insérer une mémoire cache entre le microprocesseur et la mémoire centrale ?

Pour résoudre le problème de différence de vitesse entre le microprocesseur et la mémoire centrale (accélérer l'accès aux données).

- 6. On suppose que le compteur ordinal contient initialement la valeur (2A003)_h et que le code opération (0320)_h correspond à une instruction qui effectue la somme du contenu des deux cases d'adresses respectives (3FFFE)_h et (00002)_h
 - a) Décrire brièvement les étapes nécessaires à l'exécution de cette instruction
 - 1) Puisque le compteur ordinal contient l'@ (2A003)_H, le contenu de cette case en mémoire qui est (0320)_H va être chargé dans le Registre d'Instructions (RI) du microprocesseur.
 - 2) Le décodeur d'instruction décode l'instruction contenue dans RI et précise sa nature à travers son code opératoire (il va déduire qu'il s'agit d'une addition des deux nombres aux adresses (3FFFE)_H et (00002)_H. Il va générer les signaux logiques correspondant et les communiquer au séquenceur.
 - 3) Le séquenceur va gérer le séquencement (l'enchaînement) et générer les signaux de commande qui vont activer tous les éléments qui participeront à l'exécution de l'instruction, spécialement l'UAL.
 - 4) Chargement des données (2001)H et (AABE)H aux entrées de l'UAL.
 - 5) L'additionneur de l'UAL va effectuer l'opération d'addition.
 - 6) Le résultat de l'addition va être stocké dans l'accumulateur.
 - b) Déterminer la valeur contenue dans l'accumulateur après l'exécution de cette instruction

```
AABE + 2001 = CABF
```

c) Dans combien de temps en µs a été réalisée cette instruction sachant que la fréquence d'horloge est 10 MHz ?

Cycle d'instruction = 3 microcycle (par défaut)

1 microcyle = 1 période d'horloge(T)= $1/(10.10^6)=0.1\mu s$

Temps de réalisation = $3 * 0.1 = 0.3 \mu s$

Exercice 2:

Soit un microprocesseur avec les caractéristiques suivantes :

- La taille du registre d'instructions RI = 16 bits. Ce registre est relié à l'un des bus **bien choisi** avec le même nombre de bits.

- Le pointeur d'instructions IP = 21 bits. Ce registre est aussi relié à l'un des bus **bien choisi** avec le même nombre de bits.
- 1. Montrer que la capacité de la mémoire visible par ce microprocesseur est 4 Mbytes.

Taille de RI = taille du bus de données = 16 bits

Taille de IP = taille du bus d'@ = 21 bits

Taille d'unité d'@ = 16 bits

Capacité = 2 . 2^{21} = 2^{22} Ø = 4 MØ

2. Déterminer l'adresse de début et l'adresse de fin visibles par ce microprocesseur en hexadécimal.

3. On connecte à ce microprocesseur trois mémoires dont la cartographie est la suivante :

DRAM: 1600 Kbytes

128 Kbytes

SRAM2: 1 Mbytes

SRAM1: 128 Kbytes

a) Comparer une SRAM et une DRAM de point de vue mode d'accès, coût et utilisation.

Vitesse: SRAM (à base de bascules) plus rapide que DRAM (à base de condensateurs).

Coût: SRAM plus coûteuse que DRAM.

Utilisation: SRAM pour les mémoires caches et DRAM pour les mémoires centrales.

- b) Chercher les adresses de début et de fin de chaque mémoire en hexadécimal, ainsi que le nombre de bits nécessaires pour adresser chacune. Justifier vos réponses
- Capacité de SRAM₁ = 128 KØ = $2^7 \cdot 2^{10} \circ 0 = 2^{17} \circ 0$

Nbr de cases =
$$2^{17}$$
 / $2 = \frac{2^{16} \text{ cases}}{2^{16} \text{ cases}} = (2^4)^4 = 16^4 = \frac{010\ 000\ \text{H}}{2^{16}\ \text{Donc le nbr de bits nécessaires}} = 16\ \text{bits}$

→ @ début = 000 000 H

→ @fin = 00F FFF H

• Capacité de SRAM₂ = 1 MØ = 2²⁰ Ø

Donc Nbr de cases =
$$2^{20}$$
 / $2 = \frac{2^{19} \text{ cases}}{5} = (2^4)^4 \cdot 2^3 = 16^4 \cdot 8 = \frac{080\ 000\ H}{5}$

Donc le nbr de bits nécessaires = 19 bits

- → @ début = 010 000 H
- \rightarrow (a)fin = 08F FFF H
- Capacité de DRAM = 1664 KØ

Donc Nbr de cases =
$$832 * 2^{10} = (512 + 256 + 64) * 2^{10}$$

= $(2^9 + 2^8 + 2^6) \cdot 2^{10} = 2^{19} + 2^{18} + 2^{16}$
= $(8+4+1) \cdot 2^{16} = D \cdot 16^4 = 0D0 \ 000 \ H$
Donc le nbr de bits nécessaires = $20 \ \text{bits}$

$$(2^3 \cdot 2^{16} < 13 \cdot 2^{16} < 2^4 \cdot 2^{16})$$

- → @ début = 090 000 + 010 000 = 0A0 000 H
- \rightarrow (afin = 0A0 000 + 0D0 000 1 = 170 000 1 = 16F FFF H
- 4. Interfacer ce microprocesseur aux différentes mémoires selon le modèle suivant :
- L'interfaçage de la DRAM doit être réalisé par seulement des portes logiques de base (sans décodeur).
- L'interfaçage de SRAM1 et SRAM2 doit être réalisé par un décodeur d'adresses dont les sorties sont activés à l'état bas.
- Les entrées chip select sont activées à l'état haut pour DRAM et SRAM1, à l'état bas pour SRAM2.

N'oublier pas de réaliser le montage complet.

Mémoires	@Hex	A20	A19	A18	A17	A16	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A9	A8	A ₇	A ₆	A5	A4	A3	A ₂	A ₁	A ₀
DD AM	0A0 000	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRAM	16F FFF	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Simplification de l'équation de sélection avec un tableau de Karnaugh à 5 variables :

$$CS = \overline{A_{20}}(A_{19}A_{18} + A_{19}A_{17}) + A_{20}(\overline{A}_{19}\overline{A}_{18} + \overline{A}_{19}\overline{A}_{17} + \overline{A}_{19}\overline{A}_{16})$$

Mémoires	@Hex	A20	A19	A18	A17	A16	A ₁₅	A ₁₄	A13	A ₁₂	A ₁₁	A ₁₀	A9	A8	A7	A ₆	A5	A4	A3	A ₂	A ₁	A ₀
SRAM 1	000 000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SKAWI I	00F FFF	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CDAM 2	010 000	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SRAM 2	08F FFF	0	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Donc un décodeur (5 - 32)

5. a) Combien peut-on ajouter de mémoires de taille 48 Kbytes ? Justifier.

Espacement entre SRAM₂ et DRAM = 128 KBytes
$$\rightarrow \left\lfloor \frac{128}{48} \right\rfloor$$
 = 2

Espace vacant après DRAM =
$$4M\emptyset$$
- $(2*128+1664+1024)$
= 4096 - $(256+1024+1664)$ = $1152 K\emptyset$

$$\Rightarrow \left| \frac{1152}{48} \right| = 24$$
 mémoires.

On peut ajouter 26 mémoires.

b) Combien peut-on ajouter de mémoires de taille 200 Kbytes ? Justifier.

Le premier espace vacant ne supporte pas.

Pour le deuxième
$$espace$$
 $\left[\frac{1152}{200}\right] = 5$ mémoires.

Exercice 3:

Etant donné un microprocesseur possédant 12 broches pour les adresses (A_0 , ..., A_{11}). Quatre boitiers mémoire M_A , M_B , M_C , M_D ont été connectés à ce microprocesseur à l'aide d'un décodeur '2 to 4' et d'un décodeur '3 to 8' dont leurs sorties sont activées à l'état bas. Chacun de ces deux décodeurs dispose d'une entrée d'activation \overline{EN} .

1. Spécifier les adresses de début et de fin de chacune de ces quatre mémoires.

Mémoires	@Hex	A11	A10	A9	A8	A7	A6	A5	A4	A3	A ₂	A 1	A0
M	@début = <mark>00</mark> 0	0	0	0	0	0	0	0	0	0	0	0	0
M_{A}	@fin = <mark>7F</mark> F	0	1	1	1	1	1	1	1	1	1	1	1
M	@début = <mark>80</mark> 0	1	0	0	0	0	0	0	0	0	0	0	0
M_{B}	@fin = <mark>BFF</mark>	1	0	1	1	1	1	1	1	1	1	1	1
M	@début = <mark>C0</mark> 0	1	1	0	0	0	0	0	0	0	0	0	0
$M_{ m C}$	@fin = <mark>D7</mark> F	1	1	0	1	0	1	1	1	1	1	1	1
M	@début = <mark>E0</mark> 0	1	1	1	0	0	0	0	0	0	0	0	0
M_{D}	@fin = F7F	1	1	1	1	0	1	1	1	1	1	1	1

2. Sachant que l'unité d'adressage est sur 32 bits, déterminer la capacité en Koctets de chacune de ces quatre mémoires

M_A: 7FF - 000 + 1 = 800 = 8 * 16² cases
Capacité = 4 *2³ * 2⁸ = 2¹³
$$\emptyset$$
 = 8 K \emptyset

$$M_B: BFF - 800 + 1 = 400 = 4* 16^2 cases$$

$$Capacité = 4 *2^2 * 2^8 = 2^{12} \emptyset = 4 K\emptyset$$

$$M_C: DF7 - E00 + 1 = 180 = 16^2 + 8 * 16 cases$$

Capacité = $2^2.2^8 + 2^2.2^3.2^4 = 2^{10} + 2^9 = 1.5 \text{ K}\%$

$$M_D$$
: FF7 - E00 + 1 = 180 = 16² + 8 * 16 cases
Capacité = 2².2⁸ + 2².2³.2⁴ = 2¹⁰ + 2⁹ = 1.5 KØ

3. Calculer la capacité en Koctets de l'espace d'adressage vacant. Peut-on connecter une mémoire de 2 Koctets ? justifier votre réponse.

Capacité vue par le
$$\mu p$$
 = 4 .2¹² Ø= 2¹⁴ Ø = 16 KØ

On ne peut pas connecter une mémoire de taille 1 KØ même si l'espace vacant le permet car cet espace est divisé séparément.