

Chapter 9

DESIGN OF SEQUENTIAL CIRCUITS

Design Procedure

Given the problem (a word description of the circuit behavior):

- Derive the state diagram
- Obtain the state table
- Reduce the number of states by state reduction method
- Determine the number of flip-flops needed
- Choose the type of flip-flops to be used
- Derive excitation equations
- Derive the output functions and the flip-flop input functions
- Draw the logic diagram

Example 1

Design a circuit whose state diagram is shown above. Use T flip-flop(s).

Number of rows in the state table: 2^n where n = no. of bits in a state + no. of inputs

Present State		input	Next State	
Α	В	Х	Α	В

Preser	Present State		Next	State
А	В	Х	А	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Present State		input	Next	State
А	В	X	А	В
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Steps 3-5:

- Step 3: State reduction
 - Goal: to design a circuit with less number of flipflops
- Step 4: Number of flip-flops
 - Binary numbers inside each circle identifies the state of the flip-flops
- Step 5: Type of flip-flop to be used in the design
 - In the example, use T flip-flops

Q(t)	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Flip-flop Excitation Tables

	sent ate	input	Next State		FF in	
Α	В	Х	Α	В	TA	ТВ
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	1	0		
1	0	1	1	1		
1	1	0	1	1		
1	1	1	0	0		

	sent ate	input	Next State		FF in	
Α	В	Х	Α	В	TA	ТВ
0	0	0	0	0		
0	0	1	0	1		
0	1	0	0	1		
0	1	1	1	0		
1	0	0	1	0		
1	0	1	1	1		
1	1	0	1	1		
1	1	1	0	0		

	sent ate	input	Next State		FF in	_
Α	В	X	Α	В	TA	ТВ
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	1	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	0	
1	1	1	0	0	1	

	sent ate	input	Next State				FF in funct	
Α	В	Х	Α	В	TA	ТВ		
0	0	0	0	0	0			
0	0	1	0	1	0			
0	1	0	0	1	0			
0	1	1	1	0	1			
1	0	0	1	0	0			
1	0	1	1	1	0			
1	1	0	1	1	0			
1	1	1	0	0	1			

	sent ate	input	Next State		FF input functions	
Α	В	X	Α	В	TA	ТВ
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	1	1	0	1
1	1	0	1	1	0	0
1	1	1	0	0	1	1

B× A	00	01	11	10
0				
1				

A×	00	01	11	10
0				
1				

TA =

TB =

B× A	00	01	11	10
0			1	
1			1	

B× A	00	01	11	10
0				
1				

$$TA =$$

$$TB =$$

A B×	00	01	11	10
0			1	
1			1	

A×	00	01	11	10
0				
1				

$$TA =$$

$$TB =$$

A A	00	01	11	10
0			1	
1			1	

A×	00	01	11	10
0				
1				

$$TA = Bx$$

$$TB =$$

A×	00	01	11	10
0		1	1	
1		1	1	

$$TA = Bx$$

$$TB =$$

B× A	00	01	11	10
0			1	
1			1	

B× A	00	01	11	10
0		1	1	
1		1	1	

$$TA = Bx$$

$$TB =$$

B× A	00	01	11	10
0		1	1	
1		1	1	

$$TA = Bx$$

$$TB = x$$

Step 8: Logic Diagram

$$TA = Bx$$
 $TB = x$

Step 8: Logic Diagram

$$TA = Bx$$

$$TB = x$$

Step 8: Logic Diagram

$$TA = Bx$$
 $TB = x$

Example 2

Design a circuit whose state diagram is shown above. Use JK flip-flop(s).

	sent ate	input		ext ate	output		
Α	В	Х	А	В	Υ	Z	
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

	sent ate	input		ext ate	output		
Α	В	Х	А	В	Υ	Z	
0	0	0	0	0	0	0	
0	0	1	0	1	0	0	
0	1	0	0	1	0	0	
0	1	1	1	0	1	0	
1	0	0	1	0	0	0	
1	0	1	1	1	0	0	
1	1	0	1	1	0	1	
1	1	1	0	0	1	1	

Steps 3-5:

- Step 3: The circuit is already in reduced form.
 - Form state reduction, use the second form of the state table.
- Step 4: The circuit needs two flip-flops (A & B)
- Step 5: Use JK flip-flops

	sent ate	input	Next State		FF input functions	out	put
А	В	Х	А	В		Υ	Z
0	0	0	0	0		0	0
0	0	1	0	1		0	0
0	1	0	0	1		0	0
0	1	1	1	0		1	0
1	0	0	1	0		0	0
1	0	1	1	1		0	0
1	1	0	1	1		0	1
1	1	1	0	0		1	1

	sent ate	input		ext ate	FF input functions		out	put		
А	В	Х	А	В	JA	KA	JB	КВ	Υ	Z
0	0	0	0	0					0	0
0	0	1	0	1					0	0
0	1	0	0	1					0	0
0	1	1	1	0					1	0
1	0	0	1	0					0	0
1	0	1	1	1					0	0
1	1	0	1	1					0	1
1	1	1	0	0					1	1

Q(t)	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Q(t)	Q(†+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Flip-flop Excitation Tables

	sent ate	input		ext ate	FF input functions		out	put		
Α	В	X	Α	В	JA	KA	JB	KB	Υ	Z
0	0	0	0	0					0	0
0	0	1	0	1					0	0
0	1	0	0	1					0	0
0	1	1	1	0					1	0
1	0	0	1	0					0	0
1	0	1	1	1					0	0
1	1	0	1	1					0	1
1	1	1	0	0					1	1

	sent ate	input		Next FF State		FF input functions		out	put	
Α	В	Х	Α	В	JA	KA	JB	КВ	Υ	Z
0	0	0	0	0	0	Χ			0	0
0	0	1	0	1	0	Χ			0	0
0	1	0	0	1	0	Χ			0	0
0	1	1	1	0					1	0
1	0	0	1	0					0	0
1	0	1	1	1					0	0
1	1	0	1	1					0	1
1	1	1	0	0					1	1

	sent ate	input		Next State		FF input functions			out	put
Α	В	X	Α	В	JA	KA	JB	KB	Υ	Z
0	0	0	0	0	0	Χ			0	0
0	0	1	0	1	0	Χ			0	0
0	1	0	0	1	0	Χ			0	0
0	1	1	1	0	1	Χ			1	0
1	0	0	1	0					0	0
1	0	1	1	1					0	0
1	1	0	1	1					0	1
1	1	1	0	0					1	1

	sent ate	input		ext ate	FF input functions		out	put		
Α	В	Х	Α	В	JA	KA	JB	КВ	Υ	Z
0	0	0	0	0	0	Χ			0	0
0	0	1	0	1	0	Χ			0	0
0	1	0	0	1	0	X			0	0
0	1	1	1	0	1	X			1	0
1	0	0	1	0	X	0			0	0
1	0	1	1	1	X	0			0	0
1	1	0	1	1	X	0			0	1
1	1	1	0	0					1	1

Present State		input	Next State		FF input functions				output	
Α	В	Х	Α	В	JA	KA	JB	KB	Υ	Z
0	0	0	0	0	0	Χ			0	0
0	0	1	0	1	0	X			0	0
0	1	0	0	1	0	Χ			0	0
0	1	1	1	0	1	Χ			1	0
1	0	0	1	0	X	0			0	0
1	0	1	1	1	X	0			0	0
1	1	0	1	1	Х	0			0	1
1	1	1	0	0	Χ	1			1	1

Step 6: Excitation equation(s)

	sent ate	input	Next FF input functions out		FF input functions		put			
А	В	X	Α	В	JA	KA	JB	KB	Υ	Z
0	0	0	0	0	0	X	0	X	0	0
0	0	1	0	1	0	X	1	X	0	0
0	1	0	0	1	0	X	Χ	0	0	0
0	1	1	1	0	1	X	X	1	1	0
1	0	0	1	0	X	0	0	Χ	0	0
1	0	1	1	1	X	0	1	X	0	0
1	1	0	1	1	X	0	Χ	0	0	1
1	1	1	0	0	Х	1	Χ	1	1	1

Step 7: Simplification of Expressions

A ^{Bx}	00	01	11	10			
0	Χ	Χ	(\mathbf{x})	X			
1			\mathbb{N}_{1}				
KA = Bx							

Step 7: Simplification of Expressions

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

$$JA = Bx$$

$$KA = Bx$$

$$JB = x$$

$$KB = x$$

$$Y = Bx$$

$$Z = AB$$

Example 3

Design a circuit whose state diagram is shown above. Use JK flip-flop(s).

Step 2: State Table

State table will look like:

Present State		input	Next	State
А	В	X	А	В
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Steps 3-5:

- Step 3: State reduction
 - Goal: to design a circuit with less number of flip-flops
- Step 4: Number of flip-flops
 - Binary numbers inside each circle identifies the state of the flip-flops
- Step 5: Type of flip-flop to be used in the design
 - In the example, use JK flip-flops

Step 6: Excitation equation

Q(t)	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Χ	0

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0

Q(t)	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

Flip-flop Excitation Tables

Step 6: Excitation equation for JK flip-flops

Present State		input	Next State		FF i	nput f	unctio	ons
Α	В	X	А	В	JA	KA	JB	KB
0	0	0	0	0				
0	0	1	0	1				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	О	0				

Step 6: Excitation equation for JK flip-flops

	sent ate	input		ext ate	FF input		unctio	ons
Α	В	Х	Α	В	JA	KA	JB	KB
0	0	0	0	0	0	Χ	0	Χ
0	0	1	0	1	0	Χ	1	Χ
0	1	0	1	0	1	X	Χ	1
0	1	1	0	1	0	Χ	Χ	0
1	0	0	1	0	X	0	0	Χ
1	0	1	1	1	X	0	1	Χ
1	1	0	1	1	X	0	Χ	0
1	1	1	0	0	X	1	Χ	1

Step 7: Simplification of Expressions

A A	00	01	11	10
0				1
1	X	Х	Х	X

B× A	00	01	11	10
0		1	X	Х
1		1	X	Х

JB=x

A A	00	01	11	10
0	X	X	X	X
1			1	

$$KA=Bx$$

$$KB = A \odot x$$

Example 4

Design using D Flip-flops

	sent ate	input		Next FF input State functions		output	
А	В	X	А	В	DA	DB	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	0	0			o
0	1	1	1	0			0
1	0	0	1	1			o
1	0	1	1	0			0
1	1	0	0	0			0
1	1	1	0	1			1

Example 4

Design using D Flip-flops

	sent ate	input	Ne Sta		FF input functions		output
Α	В	Х	Α	В	DA	DB	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	О
0	1	О	0	0	0	0	О
0	1	1	1	0	1	0	0
1	0	О	1	1	1	1	0
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Simplification of Expressions

A A	00	01	11	10
0			1	
1	1	1		

A B×	00	01	11	10
0		1		
1	1		1	

B× A	00	01	11	10
0				
1			1	

Simplification of Expressions

B× A	00	01	11	10
0				
1	1		1	

Simplification of Expressions

DA	$\Delta = \lambda$	ΔR'	+	Δ'	Ry
					$oldsymbol{D}$ $oldsymbol{\Lambda}$

B× A	00	01	11	10
0				
1	1		1	

B× A	00	01	11	10
0				
1			1	

$$Z = ABx$$

Logic Diagram

Quiz

Given the state diagram, how many ...

- 1. rows in the state table?
- 2. input variables?
- 3. output variables?
- 4. FF input functions (if SR FFs will be used)?
- 5. SR flip-flops?

