Prerequisite:

Product of Two Vectors

The product of two vectors results in two different ways, the one is a number and the other is vector. So, there are two types of product of two vectors, namely scalar product and vector product. They are written as $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.

Scalar or Dot Product

The scalar, or dot product of two vectors \vec{a} and \vec{b} is defined to be $|\vec{a}| |\vec{b}| \cos \theta$ i.e.,

scalar where θ is the angle between \overrightarrow{a} and \overrightarrow{b} .

Symbolically,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

USEFUL RESULTS

$$\hat{i} \cdot \hat{i} = (1) \ (1) \cos 0^{\circ} = 1$$
 Similarly, $\hat{j} \cdot \hat{j} = 1$, $\hat{k} \cdot \hat{k} = 1$

$$\hat{i} \cdot \hat{j} = (1) (1) \cos 90^\circ = 0$$
 Similarly, $\hat{j} \cdot \hat{k} = 0$, $\hat{k} \cdot \hat{i} = 0$
Note. If the dot product of two vectors is zero then vectors are prependicular to each other.

Vector or Cross Product

Let $\hat{\eta}$ be a unit vector perpendicular to both the vectors \vec{a} and \vec{b} .

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \cdot \hat{\eta}$$

2. Useful results

Since \hat{i} , \hat{j} , \hat{k} are three mutually perpendicular unit vectors, then

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0$$

$$\hat{i} \times \hat{j} = -\hat{j} \times \hat{i} = \hat{k}$$

$$\hat{j} \times \hat{i} = -\hat{i} \times \hat{j}$$

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i}$$
and
$$\hat{k} \times \hat{j} = -\hat{j} \times \hat{k}$$

$$\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j}$$

$$\hat{i} \times \hat{k} = -\hat{k} \times \hat{i}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar Triple Product

If \overline{a} , \overline{b} , \overline{c} are three vectors then the scalar product $\overline{a} \cdot (\overline{b} \times \overline{c})$ is called scalar triple product of the vectors \overline{a} , \overline{b} and \overline{c} . It is denoted by $[\overline{a}, \overline{b}, \overline{c}]$.

Deductions: (These are based on the laws of determinants.)

- (i) $[\bar{a}, \bar{b}, \bar{c}] = [\bar{c}, \bar{a}, \bar{b}] = [\bar{b}, \bar{c}, \bar{a}]$ changing the order of vectors cyclically does not change the value of the product.
- (ii) $[\bar{a}, \bar{b}, \bar{c}] = -[\bar{a}, \bar{c}, \bar{b}] = -[\bar{b}, \bar{a}, \bar{c}] = -[\bar{c}, \bar{b}, \bar{a}]$ interchanging the positions of two vectors changes the sign of the product.
- (iii) $[\bar{a}, \bar{a}, \bar{b}] = [\bar{a}, \bar{b}, \bar{a}] = [\bar{b}, \bar{a}, \bar{a}] = 0$ if two vectors are same the value of the product is zero.
- (iv) $[k\overline{a}, \overline{b}, \overline{c}] = [\overline{a}, k\overline{b}, \overline{c}] = [\overline{a}, \overline{b}, k\overline{c}]$ multiplying any vector by k multiplies the product by k.
- (v) $\overline{a} \cdot (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \cdot \overline{c}$. Dot and cross can be interchanged.

Vector triple product:

- If \overline{a} , \overline{b} , \overline{c} are 3 vectors then vector triple product of these 3 vectors is given by
- $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \cdot \overline{c}) \overline{b} (\overline{a} \cdot \overline{b}) \overline{c}$
- Or $(\overline{a} \times \overline{b}) \times \overline{c} = (\overline{a} \cdot \overline{c}) \overline{b} (\overline{b} \cdot \overline{c}) \overline{a}$

Scalar product of 4 vectors:

- If \overline{a} , \overline{b} , \overline{c} , \overline{d} are 4 vectors then scalar product of these 4 vectors is given by
- $(\overline{a} \times \overline{b}) \cdot (\overline{c} \times \overline{d}) = \begin{vmatrix} \overline{a} \cdot \overline{c} & \overline{b} \cdot \overline{c} \\ \overline{a} \cdot \overline{d} & \overline{b} \cdot \overline{d} \end{vmatrix}$
- This result is known as Lagrange's identity.

Vector product of 4 vectors:

- If \overline{a} , \overline{b} , \overline{c} , \overline{d} are 4 vectors then vector product of these 4 vectors is given by
- $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [\overline{a} \ \overline{c} \ \overline{d}] \overline{b} [\overline{b} \ \overline{c} \ \overline{d}] \overline{a}$
- Or $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) = [\overline{a} \ \overline{b} \ \overline{d}] \overline{c} [\overline{a} \ \overline{b} \ \overline{c}] \overline{d}$

Vector differentiation

Point Functions

(a) Scalar Valued Point Functions

Consider any region R of space and suppose that to each point P of R there corresponds by some law a scalar quantity denoted by $\Phi(P)$. Then Φ is called a scalar point function defined for the region R.

Levie newscommado

Illustrations: Consider a material body occupying some region R. If $\Phi(P)$ denotes the density of the material at P, temperature at P or charge at P then Φ is a scalar point function over R.

(b) Vector Valued Point Functions

Consider any region R of space and suppose that to each point P of R there corresponds by some law a vector quantity $\overline{f}(P)$. Then \overline{f} is called a vector point function defined for the region R.

Illustrations: Consider a fluid in motion. At any time t if $\overline{f}(P)$ denotes velocity at a point P which varies from point to point or acceleration at a point P which varies from point to point then \overline{f} is a vector point function.

Vector operator Del (∇)

- Define an operator del (or nabla) as follows
- $\nabla = i \frac{\partial}{\partial x} + j \frac{\partial}{\partial y} + k \frac{\partial}{\partial z}$
- Gradient
- If ϕ is a scalar point function then a vector point function $abla \phi$ is given by
- $\nabla \phi = i \frac{\partial \phi}{\partial x} + j \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{\partial z}$
- Standard result:
- (1) $\nabla(\phi \pm \psi) = \nabla\phi \pm \nabla\psi$
- (2)) $\nabla(\phi \psi) = \phi \nabla \psi + \psi \nabla \phi$
- (3) $\nabla f(u) = i \frac{\partial f(u)}{\partial x} + j \frac{\partial f(u)}{\partial y} + k \frac{\partial f(u)}{\partial z} = f'(u) \nabla u$

Geometrical Meaning of Grad Φ

Consider a scalar point function and let

$$\bar{r} = xi + yi + zk$$

be the position vector of a point P on the surface $\Phi(x, y, z) = c$.

Such a surface for which the value of the function is constant is called a **level** surface.

Now, $\overline{dr} = dx i + dy j + dz k$ and it lies in the plane tangential to the surface $\Phi(x, y, z) = c$.

 $\Phi = 0$

Also
$$d\Phi = \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy + \frac{\partial \Phi}{\partial z} dz$$
.

Since
$$\Phi(x, y, z) = c, d\Phi = 0$$

$$\therefore \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy + \frac{\partial \Phi}{\partial z} dz = 0$$

Hence,
$$\nabla \Phi \cdot \overline{dr} = \left(i \frac{\partial \Phi}{\partial x} + j \frac{\partial \Phi}{\partial y} + k \frac{\partial \Phi}{\partial z} \right) \cdot (dx \, i + dy \, j + dz \, k)$$

$$= \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy + \frac{\partial \Phi}{\partial z} dz = 0$$

 $\nabla\Phi$ is a vector perpendicular to \overline{dr} . But since \overline{dr} lies in the tangent plane, $\nabla\Phi$ is a vector perpendicular to the tangent plane to the surface. $\Phi(x, y, z) = c$.

Problems on Gradient:

Ex 1.If
$$\phi=x^2+y^2+z^2$$
, $\psi=x^2y^2+y^2z^2+z^2x^2$ Find $\nabla[\nabla\phi\cdot\nabla\psi]$

Solution:

$$\nabla \Phi = 2xi + 2yj + 2zk$$

$$\nabla \Psi = (2xy^2 + 2xz^2)i + (2yx^2 + 2yz^2)j + (2zx^2 + 2zy^2)k$$

$$: \nabla (\nabla \Phi \cdot \nabla \Psi) = 16x(y^2 + z^2)i + 16y(z^2 + x^2)j + 16z(x^2 + y^2)k$$

Ex 2. If
$$\phi = (x^2 + y^2 + z^2)e^{-\sqrt{x^2 + y^2 + z^2}}$$
 Find $\nabla \phi$
Solution:
$$\frac{\partial \Phi}{\partial x} = (x^2 + y^2 + z^2) \cdot e^{-\sqrt{x^2 + y^2 + z^2}}$$

$$\times \frac{-1}{2\sqrt{x^2 + y^2 + z^2}} \cdot 2x + e^{-\sqrt{x^2 + y^2 + z^2}} \cdot (2x)$$

$$= -r \cdot e^{-r} x + e^{-r} \cdot 2x$$

$$= e^{-r} (2x - xr)$$
Similarly,
$$\frac{\partial \Phi}{\partial y} = e^{-r} (2y - yr)$$

$$\frac{\partial \Phi}{\partial z} = e^{-r} (2z - zr)$$

Hence,
$$\nabla \Phi = i \frac{\partial \Phi}{\partial x} + j \frac{\partial \Phi}{\partial y} + k \frac{\partial \Phi}{\partial z}$$
$$= e^{-r} (2 - r) [xi + yj + zk]$$
$$= e^{-r} (2 - r) \bar{r}.$$

EX 3: If
$$u=x+y+z, v=x+y, w=-2xz-2yz-z^2$$

Show that $\nabla u \cdot [\nabla v \times \nabla w]=0$

Solution:

$$\nabla u = i + j + k, \ \nabla v = i + j$$

$$\nabla w = -2zi - 2zj - (2x + 2y + 2z)k$$

$$\nabla u \cdot [\nabla v \times \nabla w] = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ -2z & -2z & -2x - 2y - 2z \end{vmatrix} = 0$$

(Since first two columns are identical.)

EX4: Prove that $\nabla f(r) = f'(r) \frac{\overline{r}}{r}$. Hence find f if $\nabla f = 2r^4\overline{r}$

Solution:

We have,
$$\nabla \Phi = i \frac{\partial \Phi}{\partial x} + j \frac{\partial \Phi}{\partial y} + k \frac{\partial \Phi}{\partial z}$$

Here, $\Phi = f(r)$ and f is a function of r and r is a function of (x, y, z).

$$\therefore \nabla f(r) = i \frac{df}{dr} \frac{\partial r}{\partial x} + j \frac{df}{dr} \frac{\partial r}{\partial y} + k \frac{df}{dr} \frac{\partial r}{\partial z}$$

But
$$r^2 = x^2 + y^2 + z^2$$
 $\therefore 2r = \frac{\partial r}{\partial x} = 2x$

$$\therefore \frac{\partial r}{\partial x} = \frac{x}{r}, \quad \frac{\partial r}{\partial y} = \frac{y}{r}, \quad \frac{\partial r}{\partial z} = \frac{z}{r}$$

$$\therefore \quad \nabla f(r) = \frac{f'(r)}{r} \left[xi + yj + zk \right] = \frac{f'(r)}{r} \, \overline{r}$$

Comparing this with the given expression. i.e., comparing

$$\nabla f(r) = f'(r) \frac{\overline{r}}{r} \quad \text{with} \quad \nabla f(r) = 2r^4 \overline{r} = 2r^5 \frac{\overline{r}}{r}$$

$$f'(r) = 2r^5.$$
by integration

we see that $f'(r) = 2r^5$.

Here, by integration

$$\therefore f(r) = \frac{2r^6}{6} + C = \frac{r^6}{3} + C$$