Mathematical Analysis

Inequalities

Inequality symbols

- Less Than
- > Greater Than
- ≤ Less Than or Equal to
- ≥ Greater Than or Equal to
- ≠ Not Equal

Exercise: Find $x \in \mathbb{R}$ such as $||x|-2| \le 1$

by second property of absolute value

$$||x|-2| \le 1 \iff 1 \le |x| \le 3 \iff |x| \le 3 \land |x| \ge 1$$
$$|x| \le 3 \iff x \in [-3,3]$$

third property of absolute value $|x| \ge 1 \Leftrightarrow x \in]-\infty, -1] \cup [1, +\infty[$ $[-3,3] \cap (]-\infty, -1] \cup [1, +\infty[) = [-3, -1] \cup [1, 3]$

Inequalities

- a > b if a is to the right of b
- a < b if a is to the left of b
- The inequality sign always points to the smaller value.

Examples:

Inequality Graph Interval

$$x < 2$$
 \longleftrightarrow $(-\infty, 2)$

$$x > 2$$
 $(2, \infty)$

$$x \le 2$$
 $(-\infty, -2]$

$$x \ge 2$$
 $(2, \infty)$

Open Interval

Half Open Intervals

$$1 \le x < 3$$

$$1 < x \le 3$$
 $\leftarrow \leftarrow \xrightarrow{1} \xrightarrow{3}$

Closed Intervals

$$1 \le x \le 3$$
 $\leftarrow \boxed{}$

Examples:

Inequality Graph Interval

$$3 < x < 7 \qquad \longleftrightarrow_{3 \longrightarrow 7} \qquad (3,7)$$

$$3 \le x < 7 \quad \xrightarrow{}_{3} \quad 7 \qquad [3,7)$$

$$3 < x \le 7 \qquad \xrightarrow{3 \qquad 7} \qquad (3,7]$$

$$3 \le X \le 7$$
 $\stackrel{\square}{\longrightarrow}$ [3,7]

Unbounded Intervals

$$X > 1$$
 $\leftarrow (1,\infty)$

$$X \ge 1$$
 $(1,\infty)$

$$x < 1 \qquad \qquad (-\infty, 1)$$

$$x \le 1$$
 $(-\infty, 1]$

$$-\infty < X < \infty$$
 $(-\infty, \infty)$

Compound Inequality "AND"

Addition and Subtraction

Adding **c** to both sides of an inequality just **shifts everything along**, and the inequality stays the same.

1.- If a < b, then a + c < b + c

Compound Inequality"OR"

$$x < -2 \text{ or } x > 3$$

Graph:

• Union of two graphs

Interval Notation:

$$(-\infty, -2) \cup [3, \infty)$$

Addition and Subtraction

Likewise:

- 2.- If a < b, then a c < b c
- 3.- If a > b, then a + c > b + c, and
- 4.- If a > b, then a c > b c

So adding (or subtracting) the same value to both a and b **will not change** the inequality

Additive Inverse

As we just saw, putting "minuses" in front of a and b **changes the direction** of the inequality. This is called the "Additive Inverse":

5.- If
$$a < b$$
 then $-a > -b$

6.- If
$$a > b$$
 then $-a < -b$

This is really the same as multiplying by (-1), and that is why it changes direction.

Why does multiplying by a negative reverse the sign?

Well, just look at the number line! For example, from 3 to 7 is **an increase**, but from -3 to -7 is **a decrease**.

Multiplication and Division

When you multiply both a and b by a **positive number**, the inequality **stays the same**.

But when you multiply both a and b by a **negative number**, the inequality **swaps over!**

Notice that **a**<**b** becomes **b**<**a** after multiplying by (-2) But the inequality stays the same when multiplying by +3 Here are the rules:

7.- If a < b, and c is positive, then ac < bc

8.- If a < b, and **c** is **negative**, then **ac > bc** (inequality swaps over!)

Multiplicative Inverse

Taking the reciprocal (1/value) of both a and b can change the direction of the inequality.

When a and b are both positive or both negative:

9.- If
$$a < b$$
 then $1/a > 1/b$

10.- If
$$a > b$$
 then $1/a < 1/b$

Summary

- A statement that two quantities are not equal is an inequality; 3 ± 7 (read "3 is not equal to 7").
- When two numbers are not equal, one must be less than the other.
 - ➤ the symbol < means "is less than"; 8 < 9, -2 < 5, and -9 < -4</p>
 - \blacktriangleright the symbol > means "is greater than"; 11>7, 2 > -3, and 34>0

Notice that in each case, the symbol "points toward the smaller number.

> The smaller of two numbers is always to the left of the other on a number line.

Inequalities on a Number Line

On a number line,

a < b if a is to the left of b; a > b if a is to the right of b;

Inequality Symbols

Symbol	Meaning	Example
#	is not equal to	3 ≠ 7
<	is less than	-5<-4
>	is greater than	2 > - 3
≤	is less than or equal to	4 ≤ 4
, ≥	is greater than or equal to	-3≥-5

Summary

- 1.- If a < b, then a + c < b + c
- 2.- If a < b, then a c < b c
- 3.- If a > b, then a + c > b + c
- 4.- If a > b, then a c > b c
- 5.- If a < b then -a > -b
- **6.-** If a > b then -a < -b
- 7.- If a < b, and c is positive, then ac < bc
- 8.- If a < b, and **c** is negative, then ac > bc (inequality swaps over!)
- 9.- If a < b then 1/a > 1/b
- 10.- If a > b then 1/a < 1/b

Summary

Graph sets of real numbers.

A compound inequality is two or more inequalities connected by the word and or or.

Set-builder notation	Interval notation	Туре	Graph
$\left\{x\mid x>\alpha\right\}$	(a, ∞)	Open	+ (-
$\{x\mid x<\alpha\}$	(-∞, a)	Open	←
$\{x\mid x\geq\alpha\}$	$[a,\infty)$	Half Open	• [
$\left\{x\mid x\leq a\right\}$	(-∞, a]	Half Open	4]
Real Numbers	(-∞,∞)	Open	
$ x \le a \text{ or } x >$	b $[-\infty, a] \cup (b, \infty)$	Compound Inequality	

Set-builder notation	Interval notation	Type	Graph	
$\{x \mid a < x < b\}$	(a,b)	Open	• ()	
$\{x \mid a \le x \le b\}$	[a,b]	Closed	• []	
$\{x \mid a \le x < b\}$	[a,b)	Half Open	4 [)	
$\{x \mid a < x \le b\}$	(a, b]	Half Open	• ()	