CCDS

(prediction-oriented)

Ma ChengYuan

CCDS

interface : telegram

language: python

database : mongodb

motivation: To support doctor by prediction and possible factors

goal: To reduce the diagnosis time in order to offer faster and more accurate treatment and relieve labourious workload for medical staffs

pipeline accuracy new datas problem preprocessin feature analyze train model g engineering prediction tune model

detasets intro

datasets:

Based on epiz_inform_stationary_risks_10_events.csv

- 1.final_obj_hospitalization.txt
 - personal info
- 2.from all_epizodes_risks_strat.pkl -
 - operation code
 - diagnosis
- 3.all_analisis_risk_stratif.txt
 - test result

target disease :

- 1) Желудочковая тахикардия
- 2) Острый коронарный синдром
- 3) Медиастинит
- 4) OHMK

feature info

feature info:

Клинический_диагноз_рубрика: 723

Код_МЭС: 611

Код теста: 2469

patients number by target :

желудочковая_тахикардия: 1723

острый_коронарный_синдром :712

медиастинит: 46

онмк: 437

basic data distribution

order by target as below:

- желудочковая_тахикардия
- острый_коронарный_синдром
- медиастинит
- ОНМК

graph showed from top to bottom:

- gender
- age
- blood type

preprocessing

- select potential columns from each df
- find target disease from epiz_inform_stationary_risks_10_events , and insert extra column to classify patient's disease
- 3. convert categorization value to numerical value using one-hot encoding
- 4. merge dfs

all analisis risk stratif:

- Код_теста
- fill null cell in col('Значение_число') with average value from criteria ((lower + upper) / 2)

clinical_diag_293_strat_risk:

- Код_МЭС
- Клинический_диагноз_рубрика

model training

- all_analisis_risk_stratif:
 - Код_теста

test sets:

- 1) numerical value using col('Значение_число') with average value in null cell
- 2) classified into lower & higher of criteria
- 3) without value in null cell
- 4) numerical columns of echo data included, without value in null cell

- 2. clinical diag 293 strat risk:
- Код_МЭС
- Клинический_диагноз_рубрика

training result(1)

1)

row x column: 4909x3121

желудочковая_тахикардия

: 1359

острый коронарный синдром

: 595

медиастинит

: 36

ОНМК : 340 original

желудочковая тахикардия: Neural Net: f1: 0.567878

xgb: f1: 0.693428

острый коронарный синдром:

Neural Net: f1: 0.592496

xqb: f1: 0.759434

медиастинит:

Neural Net: f1: 0.498126

xgb: f1: 0.498126

онмк:

Neural Net: f1: 0.510228

xgb: f1: 0.599690

oversample

желудочковая тахикардия: Neural Net: f1: 0.566822

xgb: f1: 0.679563

cross validation желудочковая тахикардия:

xgb: f1: 0.684981

острый коронарный синдром:

острый коронарный синдром: xgb: f1: 0.742531

Neural Net: f1: 0.574827

xgb: f1: 0.754864

медиастинит:

медиастинит:

Neural Net: f1: 0.483158

xgb: f1: 0.498126

xgb: f1: 0.52202

OHMK:

OHMK:

Neural Net: f1: 0.420461

xgb: f1: 0.618609

training result(2)

2)

row x column :

4909x3435

желудочковая_тахикардия

: 1359

острый_коронарный_синдром

: 595

медиастинит

: 36

онмк : 340 2) original

желудочковая_тахикардия : Neural Net : f1 :0.671587

xgb: f1: 0.688900

острый_коронарный_синдром:

Neural Net: f1: 0.725524

xgb: f1: 0.691100

медиастинит:

Neural Net: f1: 0.497954

xgb: f1: 0.497954

онмк:

Neural Net: f1: 0.589569

xgb: f1: 0.602336

2) oversample

желудочковая_тахикардия : Neural Net : f1 : 0.636534

xgb: f1: 0.694334

острый коронарный синдром:

Neural Net: f1: 0.702459

xqb: f1: 0.684404

медиастинит:

Neural Net: f1:0.544369

xgb: f1: 0.569381

онмк :

Neural Net : f1 : 0.602206

xgb: f1: 0.589569

2) cross validation

желудочковая_тахикардия : xgb : f1 : 0.693104

острый коронарный синдром:

xgb: f1: 0.69856

медиастинит:

xgb: f1: 0.498106

онмк:

training result(3)

желудочковая тахикардия: xgb: f1: 0.693428 decsiontree: f1: 0.640268

LGB: f1: 0.686466 catboost:

f1: 0.667132

original from (1):

желудочковая тахикардия

xgb: f1: 0.693428

острый коронарный синдром:

xgb:

f1: 0.754944 decsiontree: f1: 0.652398

LGB:

f1: 0.768578 catboost:

f1: 0.743238

острый коронарный синдром:

xqb: f1: 0.759434

медиастинит: Neural Net:

f1: 0.498126

xgb: f1: 0.498297

decsiontree:

f1: 0.497784 LGB:

f1: 0.498297

catboost:

f1: 0.498297

медиастинит:

xgb: f1: 0.498126

онмк:

xgb:

f1: 0.619066 decsiontree:

f1: 0.659900

LGB:

f1: 0.614116 catboost:

f1: 0.536594

OHMK:

training result(4)

желудочковая тахикардия:

острый_коронарный_синдром:

xgb:

xgb: f1:0.708828

f1: 0.752493

медиастинит: Neural Net:

f1: 0.498297

онмк: xgb:

f1: 0.626451

original from (1):

xgb: f1: 0.693428

острый_коронарный_синдром: желудочковая_тахикардия

xgb: f1: 0.759434

медиастинит:

xgb: f1: 0.498126

онмк:

xgb: f1: 0.599690

16

feature importance (left xgb , right shap)

feature importance (shap)(black box model)

feature importance (decision tree)

model training with feature importances(shap)

extracting columns with more thna 0 shap value

original : after :

f1: 0.693428	precision	recall	f1-score	support	f1 : 0.701943	precision	recall	f1-score	support
0 1	0.81 0.65	0.91 0.45	0.86 0.53	1065 408	0 1	0.82 0.65	0.90 0.47	0.86 0.55	1065 408
accuracy macro avg weighted avg	0.73 0.77	0.68 0.78	0.78 0.69 0.77	1473 1473 1473	accuracy macro avg weighted avg	0.73 0.77	0.69 0.78	0.78 0.70 0.77	1473 1473 1473

feature selection(L2 regularization)

желудочковая_тахикардия:

total features: 3117

selected features: 963

f1:0.704869

compared with original from

test(1):

желудочковая_тахикардия:

xgb: f1: 0.693428

острый коронарный синдром:

total features: 3117

selected features: 811

f1:0.743238

острый коронарный синдром:

xqb: f1: 0.759434

медиастинит:

total features: 3117

selected features: 696

f1:0.498297

медиастинит:

xgb: f1: 0.498126

OHMK:

OHMK:

total features: 3117

f1:0.593904

selected features: 852

feature selection(pearson)

X : correlation rate used to remove features (higher rates means less feature removed)

Y: F1 score

желудочковая_тахикардия best at: 0.9

острый_коронарный_синдром best at 0.7

медиастинит best at 0.3

онмк best at 0.75

feature selection(L2 regularization after removal correlated columns)

желудочковая_тахикардия:

острый_коронарный_синдром:

медиастинит:

онмк:

total features: 2415

total features: 1870

total features: 802

total features: 2148

selected features: 776

selected features: 580

selected features: 226

selected features: 671

f1: 0.678326

f1: 0.739063

f1: 0.498126

f1: 0.599242

original from (1):

желудочковая_тахикардия:

острый_коронарный_синдром:

медиастинит:

онмк:

xgb: f1: 0.693428

xgb: f1: 0.759434

xgb: f1: 0.498126

related previous work

желудочковая тахикардия:

A Machine Learning-Based Approach for the Prediction of Acute Coronary Syndrome

медиастинит:

Replacement

Performance of a Machine

Outcomes of Aortic Valve

Learning Algorithm in Predicting

Performance Analysis of Machine Learning Approaches in Stroke Prediction

A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy

link:

https://www.sciencedirect.com/ science/article/pii/S0010482521 00442X

Requiring Revascularization

острый коронарный синдром:

link:

https://link.springer.com/article/ 10.1007/s10916-019-1359-5

link:

https://www.sciencedirect.com/ science/article/abs/pii/S000349 7520311565

link:

OHMK:

https://ieeexplore.ieee.org/abstrac t/document/9297525?casa token =TfM OTIj2BEAAAAA:vV39vNcK MpzQc9jl oopWu0eggmUj9CRo METefwiKE7d3W07qChFVqS8H mEnghtRvggkcX0FChDokA

database design

/help - to offer instruction

/prediction - main functionality to predict

/query - to offer the name of code

/your input - to showcase the current input

/feedback - to assess the prediction in order to trace the accuracy


```
diabeter
Fernando
negative to have желудочковая_тахикардия
T09.1 <= 0.00
Д0072 <= 5.50
108.2 <= 0.00
D37.7 <= 0.00
K57.2 <= 0.00
K83.1 <= 0.00
00073 <= 43.50
T82.8 <= 0.00
ЛБ0046 <= 5.41
st15.018 <= 0.00
Ц0022 <= 0.00
ПЭ0083 <= 40.83
00080 <= 19.62
Б0060 <= 0.00
M33.2 <= 0.00
```

furthre improvement

- 1) advice of treatment
- 2) implement CDS hooks
- 3) implement censorship to input in order to prevent abnormal input
- 4) implement more clear explanation instead of code
- 5) feature selection, remove correlated columns

End (thank you very much)

Ma ChengYuan