Reg. No.								

B.Tech. DEGREE EXAMINATION, MAY 2024

Fifth to Seventh Semester

18CSE355T - DATA MINING AND ANALYTICS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

(i) (ii)	Part - A should be answered in Or over to hall invigilator at the end of Part - B & Part - C should be answ		t shoul	d be	han	ded
Γime: 3	hours	ı	Max. N	/Iark	:s: 1	00
	PART – A (20	$\times 1 = 20 \text{ Marks}$	Marks	BL	со	PO
		LL Questions				
1	Data mining is best described as		1	1	1	1
1,		(B) Deducing relationships data				
	(C) Representing data	(D) Simulating trends in data				
2.		s 13 and the standard deviation is 5. Using	1	2	1	2
		orm the value 8, gives a new value of				
	(A) 0	(B) 1				
	(C) -1	(D) -1.5				
3.	allows the system to datasets on its own.	identify hidden pattern within unlabeled	1	1	1	1
	(A) Supervised learning	(B) Unsupervised learning				
	(C) Regression	(D) Pattern recognition				
4.	Identify which is not the ratio so	caled attribute among the given attribute	1	1	1	1
	(A) Money	(B) Weight				
	(C) Temperature in kelvin	(D) Grade of students				
5.	Which of the following are inter	resting measures for association rules?	1	1	2	2
	(A) Recall	(B) Lift				
	(C) Accuracy	(D) Compactness				
6.	Assume the minimum support is database is 5, then find the supp	s 60% and the number of transactions in the	1	4	2	2
	(A) 3	(B) 4				
	(C) 5	(D) 6				
7.	Which classifier has the minim classifiers?	num error rate in comparison with all other	1	1	2	2
	(A) Bayesian classifier	(B) Zero R classifier				
	(C) Filtered classifier	(D) One R classifier				

Note:

8.	Max	kimal frequent itemset is a			1	1	2	2
	(A)	Frequent itemset for which none of its immediate supersets are frequent		Frequent itemset for which none of its immediate subsets are frequent				8
	(C)	Frequent itemset for which none of its immediate supersets have the same count as itself	(D)					
9.	The	Grid based clustering algorithm	is		1	1	4	4
		k-means	$\overline{(B)}$	STING				
	(C)	COBWEB	(D)	DEN CLUE				
10.	Zero	probability value can be avoided	d usir	ng which technique?	1	1	3	1
		If-then rules		Decision tree				
		Naive Bayes classification	` '	Laplacian correction				
			(2)	Dapidolan confection				
11.		tive dichotomizer 3, uses	attri	ibute selection measure.	1.	1	3	1
	(A)	Information gain	(B)	Gini index				
	(C)	Gain ratio	(D)	Lift				
12	Door	ision tree suffers .			1	1	2	1
12.		Low bias and high variance	(D)	Tr:-1.1: 11: 1	1	I	3	1
		Low bias and low variance		High bias and high variance				
	(C)	Low bias and low variance	(D)	High bias and low variance				
13.	Let s	say $P_1 = (5,3)$ and $P_2 = (2,1)$, repr	esen	ts two objects, find the Euclidean	1	3	4	2
		ince among them.						
	(A)	5.0	(B)	3.65				
	(C)	2.23	(D)	2				
14	The	merge approach is used to constr	rat a	harden in the state of	1	1	4	1
17.		merge approach is used to construence Partitional		luster in clustering. k-means	1	1	4	1
	. ,	Hierarchical		Naive Bayes				
	(0)	Theraremeat	(D)	Naive Bayes				
15.	The	k-means clustering algorithm fail	s to p	provide good results when there is	1	1	4	4
	(A)	No outliers	(B)	Data points are in convex shape				
	(C)	Outliers and density spread of	(D)	No variation of density of data				
		data point varies in size		points				
16	Δ hi	ararchical acalemorative also with	i.		1	1	4	1
10.		erarchical agglomerative algorithmerative		DDCCAN	1	1	4	1
	(C)	STING	. ,	DBSCAN				
	(0)	Simo	(D)	k-means clustering				
17.	The	outlier requires the specific	cation	n of time and location to detect it.	1	1	5	1
	(A)			Collective outlier				
	(C)	Global outlier		No such outlier				
1.0								
18.	Ther	e is no requirement for class labe			1	2	5	6
				Unsupervised learning				
	(C)	Machine learning	(D)	Natural language processing				

19.	Identify, which of the following is not a data mining application?				
	(A) Fraud detection (B) Image recognition				
	(C) Customer segmentation (D) Speech recognition				
20	Which of the following is not a type of recommendation system?	1	1	5	2
20.	(A) Content-based filtering (B) Collaborative filtering				
	(C) Hybrid filtering (D) Clustering				
	DADE D (5 4 20 Manles)	Marks	BL	со	PO
	$PART - B (5 \times 4 = 20 Marks)$				
	Answer ANY FIVE Questions				
		4	2	1	1
21.	Discuss the activities involved in data preprocessing.	7	2	1	1
	المراجع والمراجع والأسرار والواصوف والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		,		0
22.	Examine the following age attribute data and find out the five number	4	4	1	2
	summary. The age values of the data tuples are 13, 15, 16, 16, 19, 20, 20, 21,				
	22, 22, 35, 35, 36, 60, 72, 80.				
	22, 22, 33, 33, 30, 40, 12, 40,				
22	Define maximum frequent itemset and closed frequent itemset. Give	4	1	2	2
25.					
	examples.				
	TITL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	1	2	1
24.	What do you mean by market basket analysis and how it can help in a		_		
	supermarket?				
				2	
25.	List out the advantages and disadvantages of decision tree over other	4	1	3	1
	classification methods.				
26	For the one dimensional dataset {8,11,21,29,36}, perform hierarchical	4	3	4	3
۵.	clustering and plot the dendogram to visualize it using complete linkage.				
	clustering and plot the delidogram to violatize it doing complete manage.				
27	Justify how data mining applications are used for financial data analysis.	4	2	6	4
21.	Justify flow data filling applications are used for fillational data afterysis.				
	DADE CONTACTO	Marks	BL	co	РО
	$PART - C (5 \times 12 = 60 Marks)$	2,242,140			
	Answer ALL Questions				
		12	4	1	1
28. a.	With a neat sketch, explain the steps in the process of knowledge discovery	12	4	1	1
	in databases.				
	(OR)				
b.	Can call kinds of data be mined. Discuss about what kinds of data can be	12	2	1	1
0.	mined.				
	illinod.				
29. a.	A database has five transactions. Let the minimum support and confidence,	12	3	2	1
29. a.	min-sup = 60%, min-confidence = 80%. Find the frequent itemset and				
	generate the association rules using Apriori algorithm.				
	TID Items				
	$T_1 = \{1,2,3,4,5,6\}$				
	$T_2 = \{7,2,3,4,5,6\}$				
	$T_3 = \{1,8,4,5\}$				
	T ₄ {1,9,0,4,6}				
	$T_5 = \{0.2.2.4.5\}$				

(OR)

b. A database has eight transactions. Let the minimum support, min-sup = 30%. 12 3 2 1 Find the frequent item sets using FP growth algorithm.

TID	Items
T_1	{E,A,D,B}
T ₂	$\{D,A,C,E,B\}$
T_3	{C,A,B,E}
T ₄	{B,A,D}
T_5	{D}
T ₆	{D,B}
T_7	{A,D,E}
T ₈	{B,C}

30. a. Describe Naive Bayesian classification. Illustrate with an example of how the labels are predicted using Naïve Bayesian classification.

(OR)

b. What is decision tree induction? Determine the root for the given dataset 12 4 3 using information gain.

S.no	Outlook	Company	Sailboat	Class sail
1	Sunny	Big	Small	Yes
2	Sunny	Medium	Small	Yes
3	Sunny	Medium	Big	Yes
4	Sunny	No	Small	Yes
5	Sunny	Big	Big	Yes
6	Rainy	No	Small	No
7	Rainy	Medium	Small	Yes
8	Rainy	Big	Big	Yes
9	Rainy	No	Big	No
10	Rainy	Medium	Big	No

31. a. Explain k-means algorithm in detail and apply k-means algorithm for the following five points (with (x,y) representing locations) into two clusters:

A1 (3, 10), A2 (7, 5), A3 (10, 4), A4 (5, 9), A5(8, 5)

(OR)

b. Illustrate the DBSCAN techniques with an example.

32. a. Discuss in detail about the supervised, semi supervised and unsupervised 12 2 5 2 method for detecting the outlier.

(OR)

b. Explain in detail, how data mining algorithm can be used for intrusion 12 2 6 4 detection and prevention.

* * * * *

12