EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	61	behavior\$2 adj2 consistency	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 13:08
L2	31	language and 1	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 13:11
L3	6	vector and 2	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 13:11
S1	2	"20050071147"	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:39
S2	1	unwinding with bound with language	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR . ·	ON	2007/01/29 10:47
S3	1	unwinding with loop with language	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:40
S4	13	unwinding with language	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:40
S5	154	unwinding with bound	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:48

EAST Search History

					011	2007/04/20 40 50
S6	0	bahavior\$ adj4 consisten\$2	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:50
S7	1566	behavior\$ adj4 consisten\$2	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:50
S8	. 9	behavior\$ adj4 consisten\$2 with language	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:51
59	453625	vector	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 10:51
S10	2	S8 and S9	US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB	OR	ON	2007/01/29 13:08

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library O The Guide

+sat +"bit vector" +hdl +c

SEARCH

THE ACT DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used sat bit vector hdl c

Found 10 of 196,064

Sort results

by Display

results

relevance

expanded form

 \triangle

 ∇

Save results to a Binder

Search Tips

Open results in a new window

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 10 of 10

Relevance scale

MINCE: Matching INstructions Using Combinational Equivalence for Extensible

Processor

Newton Cheung, Sri Parameswaran, Jörg Henkel, Jeremy Chan

February 2004 Proceedings of the conference on Design, automation and test in **Europe - Volume 2 DATE '04**

Publisher: IEEE Computer Society

Full text available: pdf(254.00 KB) Additional Information: full citation, abstract, citings, index terms

Designing custom-extensible instructions for Extensible Processors1 is a computationally complex task because of the large design space. The task of automatically matching candidate instructions in an application (e.g. written in a high-level language) to a predesigned library of extensible instructions is especially challenging. Previous approaches have focused on identifying extensible instructions (e.g. through profiling), synthesizing extensible instructions, estimating expected performance ...

Symbolic simulation and verification: Hardware verification using ANSI-C programs

as a reference

Edmund Clarke, Daniel Kroening

January 2003 Proceedings of the 2003 conference on Asia South Pacific design automation ASPDAC

Publisher: ACM Press

Additional Information: full citation, abstract, references, citings Full text available: pdf(80.74 KB)

We describe an algorithm to verify a hardware design given in Verilog using an ANSI-C program as a specification. We use SAT based Bounded Model Checking [1] in order to reduce the equivalence problem to a bit vector logic decision problem. As a case study, we describe experimental results on a hardware and a software implementation of the data encryption standard (DES) algorithm.

RTL-Datapath Verification using Integer Linear Programming

Raik Brinkmann, Rolf Drechsler

January 2002 Proceedings of the 2002 conference on Asia South Pacific design automation/VLSI Design ASP-DAC '02

Publisher: IEEE Computer Society

Full text available: pdf(174.19 KB)

Publisher Site

Additional Information: full citation, abstract, citings

Satisfiability of complex word-level formulas often arises as a problem in formal verification of hardware designs described at the register transfer level (RTL). Even though most designs are described in a hardware description language (HDL), like Verilog or VHDL, usually this problem is solved in the Boolean domain, using Boolean solvers. These engines often show a poor performance for data path verification. Instead of