TheGI 1: Grundlagen und Algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 12. Februar 2013

Schriftliche Leistungskontrolle (EK)

Studentenider	ntifikatio	n:				
Nachnam	Œ					
VORNAME						
MATRIKEL	NUMME	R				
STUDIENG	STUDIENGANG					
Tutor		☐ Grisc	ha, □ Henning, □ Tim	☐ Kirstin,	□ Christina,	
Aufgabenüber	rsicht:					
AUFGABE	SEITE	Punkte	THEMENBERE	ICH		
1	2	18	Verbände			
2	4	26	Monoide/Rin	ge		
3	6	23	Graphen			
4	9	22	Bäume			
5	12	11	11 Induktion			
Korrektur:						
AUFGABE		1 2	2 3	4	5	\sum
Punkte	1	8 20	26 23 22 11 100			100
ERREICHT						
Korrekto	R					
EINSICHT						

Matrikelnummer:	Nama	
viatrikeinummer:	Name:	

Aufgabe 1: Verbände

(18 Punkte)

a. Seien $X \triangleq \{a, b, c, d, e, f, g, h\}$ und

$$\leq \triangleq \mathsf{t}(\mathsf{r}(\{(a,b),(b,f),(f,d),(b,c),(c,d),(a,h),(h,c),(h,e),(e,d),(g,h)\})).$$

i) (2 *Punkte*) (*) *Gib an*: Das Hasse-Diagramm von ≤.

ii) (8 Punkte) (*) Gib an: das kleinste und das größte Element, die minimalen und maximalen Elemente, das Supremum und das Infimum, sowie die oberen und unteren Schranken von $\{e, c, h\}$ bezogen auf die oben gegebene Ordnung \leq .

kleinstes Element:

größtes Element:

minimale Elemente:

maximale Elemente:

untere Schranken:

obere Schranken:

Infimum:

Supremum:

Matrikelnummer: 🗕	Name:	
-------------------	-------	--

b. (8 Punkte) (**)

Seien (X, \sqcap) und (X, \sqcup) zwei Halbverbände und gelte

$$\forall a, b \in X . a \sqcap (a \sqcup b) = a \tag{\triangle}$$

$$\forall a, b, c \in X . a \sqcap (b \sqcup c) = (a \sqcap b) \sqcup (a \sqcap c) \tag{\triangle\triangle}$$

- i) Beweise: $\forall a, b \in X . a \sqcup (a \sqcap b) = a$
- ii) Beweise: $\forall a, b, c \in X . (a \sqcup b) \sqcap c = (a \sqcap c) \sqcup (b \sqcap c)$

Aufgabe 2: Monoide/Ringe

(26 Punkte)

a. (6 Punkte) (*)

Gib an: Vervollständige die folgenden Tabellen so, dass $\{a, b, c\}$, \oplus , \otimes , c, a, inv ein kommutativer Ring mit Eins ist:

inv		\oplus	а	b	С		\otimes	a	b	С
а		а		С		$neutral \rightarrow$	а			\overline{c}
b		b		а			b		a	
С	neutral $ ightarrow$	С	а				С		С	

Sei
$$\ominus: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 definiert als $x \ominus y \triangleq |x - y|$, wobei $|x| \triangleq \begin{cases} x & \text{, falls } x \ge 0 \\ -x & \text{, falls } x < 0 \end{cases}$ den

Betrag einer ganzen Zahl definiert.

b. (5 Punkte) (**)

Beweise: Beweise, dass für (
$$\mathbb{N}, \ominus$$
) das Kommutativ-Gesetz gilt.
Hinweis: Es darf benutzt werden: $\forall x,y \in \mathbb{N} \ . \ |x-y|=|y-x|$ (\triangle)

c. (5 Punkte) (**)

Beweise: Beweise, dass 0 neutral bzgl. (\mathbb{N} , \ominus) ist.

Matrikelnummer:	Name:	

Erinnerung: $\Theta: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ ist definiert als $x \ominus y \triangleq |x - y|$ und $|x| \triangleq \begin{cases} x & \text{, falls } x \geq 0 \\ -x & \text{, falls } x < 0 \end{cases}$. d. (5 *Punkte*) (**) *Beweise:* Es gibt eine Operation $^{-1}: \mathbb{N} \to \mathbb{N}$ so, dass x^{-1} invers zu x bzgl. (\mathbb{N} , \ominus , 0) ist.

e. (5 Punkte) (**) *Widerlege:* Widerlege, dass (\mathbb{N} , \ominus , 0, $^{-1}$) eine Gruppe ist.

Aufgabe 3: Graphen

(23 Punkte)

Gegeben sei der gerichtete Graph G:

a. (8 Punkte) (*)

Gib an: Bestimme alle Quellen, Senken, den längsten einfachen (Kanten-)Pfad und den längsten einfachen Zyklus (als Kantenpfad) in G.

	in G
Quellen	
Senken	
Längster einfacher	
Kanten-Pfad	
Längster einfacher	
Zyklus als Kanten-Pfad	

b. (2 *Punkte*) (*)

Gib an: Zeichne den größten Teilgraphen (größte Anzahl von Knoten und Kanten) von *G,* der stark zusammenhängend ist.

Matrikelnummer:	Name:
-----------------	-------

c. (2 Punkte) (*)

Gib an: Zeichne einen einfachen, bipartiten, ungerichteten Graphen mit 5 Knoten und 6 Kanten.

d. (3 *Punkte*) (**)

Gib an: Wie viele Knotenpfade, in denen kein Knoten doppelt vorkommt, kann es in einem Graphen mit n Knoten maximal geben? Gib eine Berechnungsvorschrift mit Hilfe von $K_{oW}(\cdot,\cdot)$, $K_{mW}(\cdot,\cdot)$, $V_{oW}(\cdot,\cdot)$ oder $V_{mW}(\cdot,\cdot)$ an. Vereinfachen ist nicht nötig.

Matrikelnummer:	Name:
-----------------	-------

e. (8 Punkte) (***)

Beweise: Beweise, dass ein einfacher, ungerichteter Graph G=(V,E) mit n Knoten zusammenhängend ist, wenn er mehr als $\frac{(n-1)(n-2)}{2}$ Kanten hat. Hinweis: Induktion ist hier nicht nötig oder zielführend.

Die Knoten eines nicht zusammenhängenden Graphen lassen sich so in zwei nicht leere Mengen V₁, V₂ partitionieren, dass es keine Kanten zwischen diesen Mengen gibt $(\forall e \in E . e \subseteq V_1 \lor e \subseteq V_2).$

$$\forall n \in \mathbb{N} : \forall k \in [1, (n-1)] : n^2 + 2k^2 - 2nk - n \le (n-1)(n-2)$$
 (\triangle)

Aufgabe 4: Bäume

(22 Punkte)

Gegeben sei der Baum B:

a. (6 Punkte) (*)

 $\it Gib~an:$ Die preorder-, inorder- und postorder-Traversierungen für $\it B.$

Hinweis: Es reicht, das Ergebnis anzugeben.

preorder:

inorder:

postorder:

b. (6 Punkte) (*)

Gib explizit an:

- i) Alle Geschwisterknoten von f.
- ii) Alle Knoten, deren Tiefe größer als die von e ist.
- iii) Alle Kinder von Geschwistern von j.
- iv) Alle Nachfahren von a, die keine Kinder von a sind.
- v) Den direkten Unterbaum von *B* mit Wurzel d (in Mengenschreibweise).

Matrikelnummer:	Name:	_
-----------------	-------	---

c. (3 Punkte) (**) Sei B ein voll m-stelliger Baum mit k > 1 Knoten.

Gib explizit an: Wie viele Teilbäume von B gibt es, die keine direkten Unterbäume von B sind.

Matrikelnummer:	Name:
(VI)	1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

d. (7 Punkte) (***)

Sei $V \triangleq \{ v_1, v_2, ..., v_9, v_{10} \}.$

 $Gib\ explizit\ an:$ Eine Formel, die berechnet, wie viele verschiedene voll 3-stellige ungeordnete Bäume es mit der Knotenmenge V gibt.

Begründe kurz und stichpunktartig den Aufbau der Formel.

Verwende wenn möglich die Prädikate $V_{oW}(\cdot,\cdot)$, $K_{oW}(\cdot,\cdot)$, $V_{mW}(\cdot,\cdot)$ und/oder $K_{mW}(\cdot,\cdot)$. Hinweis: Das Ergebnis der Formel muss nicht berechnet werden. Es reicht die Angabe der Formel mit Begründung.

Matrikelnummer: 🗕	Name:	
-------------------	-------	--

Aufgabe 5: Induktion

(11 Punkte)

(11 Punkte) (**)

Die Folge der Binärbäume BIN¹, BIN², BIN³, . . . ist definiert als Folge binärer Bäume, so dass in Baum BINⁱ alle Blätter die Tiefe i-1 haben.

Die Funktion bin : $\mathbb{N} \to \mathbb{N}^+$ ist definiert durch bin $(n) \triangleq 2^n$. Mit BL (BIN^n) bezeichnen wir die Menge aller Blätter des Binärbaumes BIN^n . Mit E^n bezeichnen wir die Kantenmenge von BIN^n .

Beweise: $\forall n \in \mathbb{N}^+$. # (BL (BINⁿ)) = bin(n - 1)

Hinweis: Die folgenden Lemmata dürfen benutzt werden:

$$E^1 = \emptyset$$
 (\triangle)

$$\forall n \in \mathbb{N}^+ . n \ge 2 \to \#(BL(BIN^n)) = \#(BL(BIN^{n-1})) + \#(BL(BIN^{n-1}))$$
 ($\triangle \triangle$)

$$\forall n \in \mathbb{N}^+ . E^n = \emptyset \to \#(BL(BIN^n)) = 1$$
 ($\triangle \triangle \triangle$)

Matrikelnummer:	_ Name:
Auf dieser Seite löse ich einen Teil der	r Aufoahe :
	rangube = .
Teilaufgabe:	