Shallow Water Equations

assume f=cond., H<<

flow with a free surface:

Maul V. 4 = 0

Xmm Du = - + 3x

19 man Pr = + dr

JZ MM JZ - Pg

4 equations in u, v, w, p

Also: because $f_{x} + f_{y}$ are independent of ξ then no shear develops = if $\xi U = \frac{2V}{2\xi} = 0$ initially
then will always be zero!

To find an equation for M, consider flow with horizontal convergence

transport in transport out

=
$$(hu)|dy$$
 $= (hu)|dy$
 $= (hu)|dx$

in the limit dx 30

$$\frac{\partial M}{\partial t} = -\frac{2}{\partial x}(hu)$$

then including v:

this is really [mass] and may be derived directly from $\sqrt{\cdot} u = 0$

Jummarizing:

Our Shallow Water (H/L <<1) Equations are:

$$[mass] \quad \eta_t + (hu)_x + (hv)_{\eta} = 0$$

3 equality in 4, V, M

Q: What does N look like?

 $\frac{\partial x}{\partial x} < 0$