DM7, à rendre lundi 6 novembre 2023

Problème 1 Étude de fonction.

I. Étude d'une fonction auxiliaire

On note f la fonction définie par $x \mapsto f(x) = \frac{2x}{1+x^2}$.

- 1. Déterminer le domaine de définition de f et étudier sa dérivabilité.
- 2. Etudier rapidement la fonction f: variations, limites aux bornes de son domaine de définition. Tracer l'allure du graphe de f.
- 3. Déterminer soigneusement son image $f(D_f) = \{f(x); x \in D_f\}.$
- 4. (a) On note f_1 la restriction de f à l'intervalle $[1, +\infty[$. Montrer que f_1 admet une fonction réciproque continue f_1^{-1} .
 - (b) Que peut-on dire de la dérivabilité de f_1^{-1} ?
 - (c) Tracer le graphe de f_1^{-1} .
 - (d) Déterminer explicitement la fonction f_1^{-1} .

II. Étude de la fonction
$$h: x \longmapsto \operatorname{Arcsin}\left(\frac{2x}{1+x^2}\right) - 2\operatorname{Arctan} x$$

- 1. Déterminer le domaine de définition D_h de h.
- 2. La fonction *h* est-elle paire? impaire?
- 3. Calculer les valeurs h(0), h(1), $h(\sqrt{3})$, h(-1) et $h(-\sqrt{3})$ et les limites de h aux bornes de D_h .
- 4. Que peut-on dire de la continuité de *h*?
- 5. Justifier la dérivabilité de h sur tout intervalle ne contenant ni 1 ni -1.
- 6. Calculer la dérivée de h et en déduire des expressions simples de h sur les intervalles $]-\infty,-1]$, [-1,1], et $[1,+\infty[$.
- 7. Tracer l'allure du graphe de *h*.

Problème 2 Réciproque pour une primitive.

- 1. Montrer que $\forall v \in \mathbb{R}_+, \text{ sh}(v) = \sqrt{\cosh^2(v) 1}$.
- 2. Montrer que $\forall x \in]1, +\infty[, x \sqrt{x^2 1} < 1.$
- 3. Montrer que la restriction de la fonction ch à l'intervalle \mathbb{R}_+ , $g = \operatorname{ch}|_{\mathbb{R}_+}$, admet une fonction réciproque continue, dont on précisera l'intervalle de définition. Discuter la dérivabilité de cette réciproque.
- 4. Exprimer $\int \sqrt{x^2 1} \, dx$ pour $x \in]1, +\infty[$ à l'aide de g^{-1} , par le changement de variables x = g(u). On pourra utiliser sans démonstration les égalités suivantes, pour $v \in \mathbb{R}$:

$$ch(2v) = 1 + 2sh^{2}(v)$$
 et $sh(2v) = 2sh(v)ch(v)$.

5. Pour $x \in [1, +\infty[$, résoudre l'équation d'inconnue $u \in \mathbb{R}_+$: $e^u + e^{-u} = 2x$ et en déduire une formule pour la fonction g^{-1} .

(Se ramener à une équation du second degré en e^u et utiliser la question 2 pour écarter une des racines le cas échéant.)

- 6. Exprimer $\int \sqrt{x^2 1} \, dx$ à l'aide des fonctions usuelles du cours, pour $x \in]1, +\infty[$.
- 7. Exprimer $\int \sqrt{x^2 1} \, dx$ à l'aide des fonctions usuelles du cours, pour $x \in]-\infty, -1[$.