ГДе $c_{i1} = x_{i1}, c_{i2} = x_{i2}, c_{i3} = x_{i3}, c_{i4} = x_{i4}, c_{i5} = x_{i1} \oplus x_{i2} \oplus x_{i3}, c_{i6} = x_{i2} \oplus x_{i3} \oplus x_{i4},$ $c_{i7} = x_{i1} \oplus x_{i2} \oplus x_{i4}.$

Рисунок 6.1. Кодер систематического кода (7,4).

Кодер использует 4-x битовый и 3-x битовый регистр сдвига, а также 3 сумматора по модулю 2.

Замечание. При m>1 для (n,k) кода Хемминга $d_{\min}=3$.

6.1.2. Оптимальное декодирование линейных блоковых кодов.

Блоковый (n,k) код способен обнаружить $d_{\min}-1$ ошибку и исправить $\left\lfloor \frac{1}{2} (d_{\min}-1) \right\rfloor$ ошибок, где $\lfloor \bullet \rfloor$ - наибольшее целое, содержащееся в аргументе.

Пусть C_i - переданное кодовое слово, $Y = C_i + e$ - принятое кодовое слово, где e - вектор ошибок. Тогда

$$YH^{T} = (C_{i} + e)H^{T} = C_{i}H^{T} + eH^{T} = eH^{T} = S$$
, T.K. $C_{i}H^{T} = 0_{1 \times (n-k)}$.

Произведение

$$YH^T = eH^T = S (6.8)$$

называется **синдромом**. S - характеристика образцов ошибок. Существует 2^n возможных образцов ошибок, но только 2^{n-k} синдромных. Следовательно, разные образцы ошибок приводят к одинаковым синдромам.

Для декодирования составляется таблица размером , $2^k \times 2^{n-k}$ которая называется стандартным расположением для заданного кода.