Table 3. Parameter estimates, standard errors (SE) and random effect predictions for the year $2020~(\mathrm{RE})$, for the LMMs referring to the fittings in Figs 5-6 and Table 3 of the paper

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Race/G		hite	Race/C		rown
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													RE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β_0	13831.89	120.58	18.92	10682.42	78.04	0.85	12510.27	102.67	-9.67	8961.15	114.68	35.98
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β_{11}	-545.79	81.85	47.44	-548.32	62.83	2.50	-883.22	70.30	-14.31	-165.63	58.40	23.45
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			51.18	-0.17	-503.96	61.19	0.24	-512.36	78.70	-9.30	-304.32	41.07	-0.04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		60.42	46.69		89.90	42.71		126.34	51.80				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										0.29			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1				4.09	0.50		3.31	0.65		3.81	0.69	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1									l		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1							1			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							1			0.02		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											233 75		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ψ			lack			Sian		lor: Indi	genous			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Par	,											RE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						1		0.52			-41.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						1			l		_11 31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-50.91	9.02	2.13	-4.11	1.70		-4.20	0.13		-0.70	3.04	-11.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 22	0.07		0.46	3 37		15.73	2.62		0.75	0.19	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1						1	2.02		l	0.12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											l		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.40			1.01			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1				3 16						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1										10.75		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1							0.01			19 01		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			12.22			0.91			45.61		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ψ	1			_	40.50	2	-	CO 70		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D.									Age: 80+			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											6047 22	75 50	E 07
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{vmatrix} \beta_{12} \\ \beta_{22} \\ \beta_{3} \\ \omega \end{vmatrix} $	1										l		
$ \begin{vmatrix} \beta_{22} \\ \beta_3 \\ \omega \end{vmatrix} $		1.54	13.56		-93.06	21.27	21.07			-0.03	1		-0.08
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										0.01	1		0.15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.01	0.00		0.00	0.00				-0.01	1		-2.17
$ \sigma_b $ 48.42 60.13 45.28 58.78	1					0.33		1	0.41		1	0.47	
								1			1		
		48.42						1			l		
$ \sigma_{b11} $ 25.46 8.82 61.81								8.82			l		
$ \sigma_{b21} $ 47.51 6.69	σ_{b21}				47.51						6.69		
$ \sigma_{b12} $ 5.50	σ_{b12}							5.50					
$ \sigma_{b22} $ 69.54	σ_{b22}	1									1		
σ 96.37 121.96 228.99 245.32								I			1		
ϕ 0.52 0.51 0.55 0.58	ϕ	0.52			0.51			0.55			0.58		