Задача 10-4

Элементы X и Y образуют ряд бинарных соединений A - E. Для анализа веществ A - C на содержание Y навеску каждого из них сплавили с избытком хлората и гидроксида натрия (p-uuu 1-3). После завершения реакции плав охладили, растворили в воде 1 , полученный раствор

подкислили раствором серной кислоты (р-ция 4), перенесли в мерную колбу

¹ Полученный раствор не даёт нерастворимого в кислотах осадка при добавлении хлорида бария.

на 100 мл и довели до метки. Для анализа **D** навеску вещества растворили в разбавленном растворе серной кислоты, раствор перенесли в колбу на 100 мл и довели до метки. Далее во всех случаях к аликвоте 10 мл добавляли избыток иодида натрия (p- μ uя 5) и титровали коричневый раствор стандартным раствором тиосульфата натрия (C = 0.100 моль/л) (p- μ uя 6). Вещество **E** чёрного цвета реагирует с соляной кислотой с выделением жёлто -зелёного газа (p- μ uя 7).

Массы исходных навесок и средний объём тиосульфата натрия, пошедший на титрование одной аликвоты, приведены в таблице:

	A	В	C	D	E
T _{nn} , K	разлагается (<i>p-ция</i> 8)	~2700	разлагается	470	разлагается
Масса навески, мг	187.0	228.5	232.6	305.0	
Средний объём раствора тиосульфата натрия, мл	8.25	9.02	8.58	9.15	

Вопросы:

- 1. Определите неизвестные элементы ${\bf X}$ и ${\bf Y}$, вещества ${\bf A} {\bf E}$. Ответ подтвердите расчётом.
- 2. Запишите уравнения реакций 1-8, если известно, что в реакци и 8 не образуется газообразных продуктов.

Решение задачи 10-4 (автор: Долженко В.Д.)

1. При анализе веществ $\mathbf{A} - \mathbf{D}$ на стадии щелочного сплавления происходит окисление, при добавлении иодида натрия образуется коричневый раствор вследствие окисления иодид-иона: $3I^- - 2e^- \rightarrow I_3^-$.

В реакции с иодом тиосульфат является одноэлектронным восстановителем:

$$2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$$

Вычислим количество вещества тиосульфата натрия, пошедшего на титрование, по формуле: $v(Na_2S_2O_3) = C \cdot V$.

Вещества анализируют на содержание **Y**, скорее всего именно этот элемент меняет степень окисления. Так как мы не знаем изменение степени окисления **Y** при добавлении иодида натрия, возможно вычислить только $\boldsymbol{n} \cdot v(\mathbf{Y}) = v(Na_2S_2O_3)$ (здесь \boldsymbol{n} – изменение степени окисления).

Так как количество вещества определяли в 10 мл, а навеску после сплавления переносили в колбу на 100 мл, количество вещества следует умножить на 10, и молярная масса веществ в расчёте на один атом **Y** может быть определена по формуле:

$$M(s-sa) = \frac{m(\mu asec\kappa u)}{v(\mathbf{Y}) \cdot 10} = \frac{m \cdot \mathbf{n}}{10 \cdot v(Na_2 S_2 O_3)} = \frac{m \cdot \mathbf{n}}{10 \cdot C \cdot V} :$$

	A	В	C	D
M/ n , г/моль	22.67	25.33	27.11	33.33

Для получения целых чисел умножим полученные значения на 3:

	A	В	C	D
3·М/ n , г/моль	68.00	76.00	81.33	100.00

Так как все молярные массы приведены на 1 атом Y, состав соединений можно представить в виде X_mY . Вычтем из всех полученных молярных масс молярную массу A:

	A	В	C	D
ΔM , г/моль	0	8.00	13.33	32.00

Полученные значения 8 и 32 позволяют предположить, что элемент \mathbf{X} – это кислород ($\mathbf{M}=16$ $^{\mathrm{r}}/_{\mathrm{моль}}$) или сера ($\mathbf{M}=32$ $^{\mathrm{r}}/_{\mathrm{моль}}$).

Если **X** – кислород, а состав **A** = **Y**O, тогда **B** = $\mathbf{Y}_2\mathbf{O}_3$, **D** = $\mathbf{Y}\mathbf{O}_3$.

Если X – сера, тогда $A = Y_2S$, $B = Y_4S_3$, $D = Y_2S_3$.

Рассчитаем молярную массу **Y**. Если **X** – кислород, то M(**Y**) = $52 \, ^{\Gamma}/_{\text{моль}}$ (Cr), если **X** – сера, тогда M(**Y**) = $52 \, ^{\Gamma}/_{\text{моль}}$ (Cr). Для нестехиометричного Cr₄S₃ трудно ожидать температуру плавления ~2700 °C. Кроме того в условии указано, что щелочной расплав после окисления не содержит сульфат-ионов. Таким образом, **X** – кислород, а **Y** – хром.

Установим состав \mathbf{C} . $\mathbf{M}(\mathbf{C}) = \mathbf{M}(\mathbf{Cr}_p\mathbf{O}_q) = 52p + 16q = 81.33p \Longrightarrow 29.33p = 16q$. Умножим левую и правую часть на 3: $88p = 48q \Longrightarrow p: q = 48: 88 = 6: 11$. Таким образом, состав $\mathbf{C} = \mathbf{Cr}_6\mathbf{O}_{11}$.

ИТОГО:

A	В	C	D
CrO	Cr ₂ O ₃	Cr_6O_{11}	CrO ₃

В приведённой элементарной ячейке содержится 4 чёрных атома и 2 белых.

Атомы в вершинах принадлежат данной ячейке на 1/8, атомы на гранях — на 1/2, а атомы в объёме ячейки принадлежат ей полностью:

Таким образом, состав Cr : O = 2 : 4, т.е. состав оксида $\mathbf{E} = CrO_2$.

2. Уравнения реакций:

1) 3 CrO + 2 NaClO₃ + 6 NaOH
$$\xrightarrow{t^{\circ}C}$$
 3 Na₂CrO₄ + 2 NaCl + 3 H₂O

2)
$$Cr_2O_3 + NaClO_3 + 4 NaOH \xrightarrow{t^{\circ}C}$$
 2 $Na_2CrO_4 + NaCl + 2 H_2O$

3)
$$3 \operatorname{Cr}_6 O_{11} + 7 \operatorname{NaClO}_3 + 36 \operatorname{NaOH} \xrightarrow{t^{\circ}C} 18 \operatorname{Na}_2 \operatorname{CrO}_4 + 7 \operatorname{NaCl} + 18 \operatorname{H}_2 O_{11}$$

4)
$$2 \text{ Na}_2\text{CrO}_4 + \text{H}_2\text{SO}_4 = \text{Na}_2\text{Cr}_2\text{O}_7 + \text{Na}_2\text{SO}_4 + \text{H}_2\text{O}$$

5)
$$Na_2Cr_2O_7 + 9 NaI + 7 H_2SO_4 = 4 Na_2SO_4 + Cr_2(SO_4)_3 + 3 NaI_3 + 7 H_2O_4$$

Eсли в качестве продукта указан I_2 , то за уравнение выставляется только половина баллов.

$$Na_2Cr_2O_7 + 6 NaI + 7 H_2SO_4 = 4 Na_2SO_4 + Cr_2(SO_4)_3 + I_2 + 7 H_2O_4$$

6)
$$NaI_3 + 2 Na_2S_2O_3 = 3 NaI + Na_2S_4O_6$$

7)
$$2 \text{ CrO}_2 + 8 \text{ HCl} = 2 \text{ CrCl}_3 + 4 \text{ H}_2 \text{O} + \text{Cl}_2$$

8)
$$3\text{CrO} \xrightarrow{t^{\circ}\text{C}} \text{Cr}_2\text{O}_3 + \text{Cr}$$

Система оценивания:

1	Элементы Х и У по 1 баллу	7 баллов
	Вещества А – Е по 1 баллу	
2	Уравнения реакций 1 – 8 по 1 баллу	8 баллов
	Итого:	15 баллов