Univerzita Pardubice Fakulta elektrotechniky a informatiky

Zpracování dat pro předmět NMAST

Bc. Lukáš Milar, Bc. Tomáš Prudký

Semestrální práce

OBSAH

Se	eznam obrázků	4
Se	eznam tabulek	6
Ú۶	vod	7
1	Popis dat	8
2	Popisná statistika	9
3	Základní grafy	11
	3.1 Histogram	11
	3.2 Bodový graf	15
	3.3 Boxplot	20
	3.4 3D graf	22
	3.5 Hexbin	24
	3.6 Chernoff faces	26
	3.7 QQPlot	27
4	Testování statistických hypotéz	29
	4.1 Jednovýběrový Studentův test vůči střední hodnotě	29
	4.2 Dvouvýběrový Studentův test	33
	4.3 Wilcox test	37
	4.4 Fisherův test	38
	4.5 Shapiro Wilk test	38
5	ANOVA	40
6	Variance	44
7	Korelace	46
	7.1 Korelační matice	46

8	Kovariance		
	8.1 Kovarianční matice	49	
9	9 Testování v kontingenčních tabulkách	52	
	9.1 Pearsonův Chí-kvadrát test	52	
10	10 Regrese	53	
	10.1 Lineární regrese	53	
	10.2 Kvadratická regrese	54	
Zá	Závěr	55	
Po	Použitá literatura	56	
Sea	Seznam příloh	57	
Př	Příloha A	58	

SEZNAM OBRÁZKŮ

T	Klouzavy prumer nových pripadu v CR od 7. 3. 2020	11
2	Nové případy na milión v ČR od 7. 3. 2020	12
3	Klouzavý průměr nových případů na milión v ČR od 7. 3. 2020	12
4	Hospitalizovaní pacienti v ČR od 7. 3. 2020	13
5	Nově testovaní v ČR od 7. 3. 2020	13
6	Nové případy v ČR od 7. 3. 2020	14
7	Klouzavý průměr nových případů na milión pro Česko a Rakousko od 7. 3. 2020	14
8	Bodový graf zlogaritmovaných nových případů	15
9	Bodový graf nových testů	15
10	Bodový graf reprodukčního čísla	16
11	Bodový graf pacientů na icu	16
12	Bodový graf hospitalizovaných pacientů	17
13	Bodový graf týdenních přírůstků na icu	17
14	Bodový graf týdenních hospitalizací	18
15	Bodový graf pozitivity testů	18
16	Bodový graf nových očkování	19
17	Bodový graf smrtnosti	19
18	Boxplot graf pro nové případy na milión	20
19	Boxplot graf pro reprodukční číslo	20
20	Boxplot graf pro zlogaritmované nové smrti	21
21	3D graf počtu případů a počtu testů	22
22	3D graf zlogaritmovaných počtu případů a počtu testů	22
23	3D graf počtu případů a počtu nových očkování	23
24	3D graf počtu nových případů	23
25	3D graf reprodukčního čísla	24
26	Hexbin graf nových zlog. nových případů a nových úmrtí	24
27	Chernoff faces graf tabulky popisné statistiky	26
28	QQPlot graf nových případů a nových úmrtí	27
29	QQPlot graf nových testů a nových případů	28
30	Anova graf nových testů, případů a úmrtí	40

31	Anova graf nových testů, případů a úmrtí	41
32	Anova graf nových testů, případů a úmrtí	41
33	Anova graf nových testů, případů a úmrtí	42
34	Anova graf nových testů, případů a úmrtí	42
35	Anova graf nových testů, případů a úmrtí	43
36	Heatmap graf korelační matice	47
37	Heatmap graf korelační matice	50
38	Graf korelační matice	50
39	GGQQPlot graf korelační matice	51
40	Graf lineární regrese	53
41	Graf kvadraditcké regrese	54

SEZNAM TABULEK

1	Části popisné statistiky aplikované na data nových případů a jejich 7denního	
	klouzavého průměru v ČR od 7. 3. 2020	9
2	Části popisné statistiky aplikované na data nových případů na milión a jejich	
	7denního klouzavého průměru v ČR od 7. 3. 2020	9
3	Části popisné statistiky aplikované na data nových hospitalizací a nových hos-	
	pitalizací na milión v ČR od 7–3–2020	10

ÚVOD

V této semestrální práci jsou analyzována data týkající se vývoje pandemie nemoci Covid-19. Použitá data čerpají ze zdroje [1].

1 POPIS DAT

Data použitá v této práci se zabývají veličinami ohledně nemoci Covid-19 a pochází od společnosti Our World in Data. Tato data jsou denně aktualizována a obsahují například informace o očkování, testech, hospitalizacích, nových případech, nových úmrtích či reprodukčním čísle. Veškeré hodnoty jsou pozorovány napříč mnoha státy. Pro bližší popis těchto dat vizte zdroj [1].

Vzhledem k velkému množství dat jsou v této práci použity zpravidla údaje pro Českou republiku, ze kterých je dále využit užší výčet dostupných veličin.

2 POPISNÁ STATISTIKA

V tabulkách níže jsou zobrazeny hodnoty popisné statistiky pro veličiny nových případů, 7denního klouzavého průměru nových případů, nových případů na milion, 7denního klouzavého průměru nových případů na milion, hospitalizovaných pacientů a hospitalizovaných pacientů na milion v České republice. Hodnoty 7denního klouzavého průměru lépe zachycují tyto veličiny v rámci dlouhodobých trendů, jelikož je eliminováno zkreslení v podobě menšího počtu uskutečněných testů například během víkendů.

	Nové případy	7denní klouzavý průměr nových případů
průměr	2940.58	2936.89
modus	75.00	57.57
medián	416.00	422.29
max	17773.00	12954.86
min	-2214.00	2.71
šikmost	1.55	1.16
špičatost	1.38	-0.07
odchylka	4277.10	3876.20
variance	18293577.15	15024928.55

Tabulka 1: Části popisné statistiky aplikované na data nových případů a jejich 7denního klouzavého průměru v ČR od 7. 3. 2020

	Nové případy na milión	7denní klouzavý průměr nových případů na milión
průměr	274.19	273.85
modus	6.99	5.37
medián	38.79	39.38
max	1657.22	1207.96
min	-206.44	0.25
šikmost	1.55	1.16
špičatost	1.38	-0.07
odchylka	398.81	361.43
variance	159052.40	130633.34

Tabulka 2: Části popisné statistiky aplikované na data nových případů na milión a jejich 7denního klouzavého průměru v ČR od 7. 3. 2020

	Hospitalizovaní pacienti	Hospitalizovaní pacienti na milión
průměr	2370.49	221.03
modus	69.00	6.43
medián	339.00	31.61
max	9509.00	886.66
min	0.00	0.00
šikmost	0.86	0.86
špičatost	-0.86	-0.86
odchylka	2973.01	277.22
variance	8838793.84	76848.36

Tabulka 3: Části popisné statistiky aplikované na data nových hospitalizací a nových hospitalizací na milión v ČR od 7. 3. 2020

3 ZÁKLADNÍ GRAFY

3.1 Histogram

Následující histogram zobrazuje četnost hodnot klouzavého průměru nových případů v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data zlogaritmována.

Obrázek 1: Klouzavý průměr nových případů v ČR od 7. 3. 2020

Následující histogram zobrazuje četnost hodnot nových případů na milión obyvatel v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 2: Nové případy na milión v ČR od 7. 3. 2020

Následující histogram zobrazuje četnost hodnot 7denního klouzavého průměru nových případů na milión obyvatel v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 3: Klouzavý průměr nových případů na milión v ČR od 7. 3. 2020

Následující histogram zobrazuje četnost hodnot hospitalizovaných pacientů v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 4: Hospitalizovaní pacienti v ČR od 7. 3. 2020

Následující histogram zobrazuje četnost hodnot nově testovaných v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 5: Nově testovaní v ČR od 7. 3. 2020

Následující histogram zobrazuje četnost hodnot nových případů v ČR od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 6: Nové případy v ČR od 7. 3. 2020

Následující histogram zobrazuje srovnání četnosti hodnot klouzavého průměru nových případů v ČR a Rakousku od 7. 3. 2020. Vzhledem k očividnému zešikmení dat vlevo byla pro lepší přehlednost data opět zlogaritmována.

Obrázek 7: Klouzavý průměr nových případů na milión pro Česko a Rakousko od 7. 3. 2020

3.2 Bodový graf

Bodový graf vývoje nových případů v čase

Obrázek 8: Bodový graf zlogaritmovaných nových případů

Bodový graf vývoje nových testů v čase

Obrázek 9: Bodový graf nových testů

Bodový graf vývoje reprodukčního čísla v čase

Obrázek 10: Bodový graf reprodukčního čísla

Bodový graf vývoje pacientů na icu v čase

Obrázek 11: Bodový graf pacientů na icu

Bodový graf vývoje hospitalizovaných pacientů v čase

Obrázek 12: Bodový graf hospitalizovaných pacientů

Bodový graf vývoje týdenních přírůstků na icu v čase

Obrázek 13: Bodový graf týdenních přírůstků na icu

Obrázek 14: Bodový graf týdenních hospitalizací

Bodový graf vývoje pozitivity testů v čase

Počet dnů od 7. 3. 2020

Obrázek 15: Bodový graf pozitivity testů

Bodový graf vývoje nových očkování v čase

Obrázek 16: Bodový graf nových očkování

Bodový graf vývoje smrtnosti v čase

Obrázek 17: Bodový graf smrtnosti

3.3 Boxplot

Nové případy na milión

Obrázek 18: Boxplot graf pro nové případy na milión

Reprodukční číslo

Obrázek 19: Boxplot graf pro reprodukční číslo

Česko zlogaritmované nové smrti

Obrázek 20: Boxplot graf pro zlogaritmované nové smrti

3.4 3D graf

Graf počtu případů a počtu testů

Obrázek 21: 3D graf počtu případů a počtu testů

Graf zlogaritmovaného počtu případů a počtu testů

Obrázek 22: 3D graf zlogaritmovaných počtu případů a počtu testů

Graf počtu případů a počtu očkování

Obrázek 23: 3D graf počtu případů a počtu nových očkování

Graf počtu nových případů

Obrázek 24: 3D graf počtu nových případů

Graf vývoje reprodukčního čísla

Obrázek 25: 3D graf reprodukčního čísla

3.5 Hexbin

Graf zlog. nových případů a nových úmrtí

Obrázek 26: Hexbin graf nových zlog. nových případů a nových úmrtí

3.6 Chernoff faces

effect of variables:

modified item Var "height of face " "countriesMeanNewCases" "width of face " "countriesMeanTotalCases" "structure of face" "countriesPopulation" "height of mouth " "countriesMeanNewCases" "width of mouth " "countriesMeanTotalCases" "smiling " "countriesPopulation" "height of eyes " "countriesMeanNewCases" "width of eyes " "countriesMeanTotalCases" "height of hair " "countriesPopulation" "width of hair "countriesMeanNewCases" "countriesMeanTotalCases" "style of hair "height of nose "countriesPopulation" "width of nose "countriesMeanNewCases" "width of ear "countriesMeanTotalCases" "height of ear "countriesPopulation"

Obrázek 27: Chernoff faces graf tabulky popisné statistiky

3.7 QQPlot

Na základě následujícího QQPlot grafu je možné dojít k závěru, že počty nových úmrtí a počty nových případů v ČR se řídí dle podobného rozdělení pravděpodobnosti.

Obrázek 28: QQPlot graf nových případů a nových úmrtí

Nové případy

Na základě následujícího QQPlot grafu je možné dojít k závěru, že počty nových případů a počty nových testů v ČR se řídí dle podobného rozdělení pravděpodobnosti.

Graf nových testů a nových případů

Obrázek 29: QQPlot graf nových testů a nových případů

4 TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

4.1 Jednovýběrový Studentův test vůči střední hodnotě

Následující test testuje zda se střední hodnota nových případů v ČR rovná hodnotě 3300 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty -2.0168 při 575 stupních volnosti. Vzhledem k tomu, že hodnota p-value je nižší než hladina významnosti, tuto hypotézu zamítáme ve prospěch hypotézy alternativní, tudíž že se střední hodnota nových případů v ČR nerovná hodnotě 3300.

One Sample t-test

```
data: new_cases_czechia
```

t = -2.0168, df = 575, p-value = 0.04418

alternative hypothesis: true mean is not equal to 3300

95 percent confidence interval:

2590.550 3290.603

sample estimates:

mean of x

2940.576

Následující test testuje zda se střední hodnota 7denního klouzavého průměru nových případů v ČR rovná hodnotě 3300 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty -2.2482 při 575 stupních volnosti. Vzhledem k tomu, že hodnota p-value je nižší než hladina významnosti, tuto hypotézu zamítáme ve prospěch hypotézy alternativní, tudíž že se střední hodnota nových případů v ČR nerovná hodnotě 3300.

One Sample t-test

```
data: new_cases_smoothed_czechia

t = -2.2482, df = 575, p-value = 0.02494

alternative hypothesis: true mean is not equal to 3300

95 percent confidence interval:
   2619.672 3254.109

sample estimates:
mean of x
   2936.89
```

Následující test testuje zda se střední hodnota nových případů na milión v ČR rovná hodnotě 300 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty -1.5531 při 575 stupních volnosti. Vzhledem k tomu, že hodnota p-value je vyšší než hladina významnosti, tuto hypotézu nemůžeme zamítnout ve prospěch hypotézy alternativní.

One Sample t-test

```
data: new_cases_per_million_czechia
t = -1.5531, df = 575, p-value = 0.1209
alternative hypothesis: true mean is not equal to 300
95 percent confidence interval:
   241.5531 306.8289
sample estimates:
mean of x
   274.191
```

Následující test testuje zda se střední hodnota 7denního klouzavého průměru nových případů na milión v ČR rovná hodnotě 300 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty -1.7366 při 575 stupních volnosti. Vzhledem k tomu, že hodnota p-value je vyšší než hladina významnosti, tuto hypotézu nemůžeme zamítnout ve prospěch hypotézy alternativní.

One Sample t-test

data: new_cases_smoothed_per_million_czechia
t = -1.7366, df = 575, p-value = 0.08299
alternative hypothesis: true mean is not equal to 300
95 percent confidence interval:
 244.2687 303.4260
sample estimates:
mean of x
 273.8474

Následující test testuje zda se střední hodnota nových hospitalizovaných pacientů v ČR rovná hodnotě 2000 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty 2.9726 při 568 stupních volnosti. Vzhledem k tomu, že hodnota p-value je nižší než hladina významnosti, tuto hypotézu zamítáme ve prospěch hypotézy alternativní, tudíž že se střední hodnota nových hospitalizovaných pacientů v ČR nerovná hodnotě 2000.

One Sample t-test

data: hosp_patients_czechia
t = 2.9726, df = 568, p-value = 0.003078
alternative hypothesis: true mean is not equal to 2000
95 percent confidence interval:
 2125.690 2615.294
sample estimates:
mean of x
 2370.492

Následující test testuje zda se střední hodnota nových hospitalizovaných pacientů na milión v ČR rovná hodnotě 200 s hladinou významnosti $\alpha=0.05$. Testová statistika nabývá hodnoty 1.8099 při 568 stupních volnosti. Vzhledem k tomu, že hodnota p-value je vyšší než hladina významnosti, tuto hypotézu nemůžeme zamítnout ve prospěch hypotézy alternativní.

One Sample t-test

data: hosp_patients_per_million_czechia
t = 1.8099, df = 568, p-value = 0.07083
alternative hypothesis: true mean is not equal to 200
95 percent confidence interval:
 198.2078 243.8604
sample estimates:
mean of x
 221.0341

4.2 Dvouvýběrový Studentův test

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů v první části dat z ČR je rovna střední hodnotě v druhé části. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů v první části dat z ČR se nerovná střední hodnotě z druhé části.

Welch Two Sample t-test

```
data: new_cases_czechia_p1 and new_cases_czechia_p2
t = -4.518, df = 537.03, p-value = 7.683e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -2272.4359  -895.1752
sample estimates:
mean of x mean of y
2148.674  3732.479
```

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů v ČR je rovna střední hodnotě nových případů v Německu. Testová statistika nabývá hodnoty -11,133 při 843,1 stupních volnosti. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů v Německu se nerovná střední hodnotě nových případů v ČR.

Welch Two Sample t-test

```
data: new_cases_czechia and new_cases_germany
t = -11.133, df = 843.1, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -5240.394 -3669.509
sample estimates:
mean of x mean of y
2940.576 7395.528</pre>
```

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión na Slovensku. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión na Slovensku se nerovná střední hodnotě nových případů na milión v ČR.

Welch Two Sample t-test

```
data: new_cases_per_million_czechia and new_cases_per_million_slovakia
t = 7.7283, df = 817.84, p-value = 3.194e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
105.8863 177.9857
sample estimates:
mean of x mean of y
274.191 132.255
```

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión v Německu. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión v Německu se nerovná střední hodnotě nových případů na milión v ČR.

Two Sample t-test

data: new_cases_per_million_czechia and new_cases_per_million_germany
t = 10.844, df = 1150, p-value < 2.2e-16</pre>

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

152.3817 219.7075

sample estimates:

mean of x mean of y

274.19103 88.14644

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión v Polsku. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión v Polsku se nerovná střední hodnotě nových případů na milión v ČR.

Two Sample t-test

```
data: new_cases_per_million_czechia and new_cases_per_million_poland
t = 7.5404, df = 1150, p-value = 9.477e-14
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
103.9326 177.0431
sample estimates:
mean of x mean of y
274.1910 133.7032
```

Následující dvouvýběrový t-test testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión v Rakousku. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión v Rakousku se nerovná střední hodnotě nových případů na milión v ČR.

Two Sample t-test

```
data: new_cases_per_million_czechia and new_cases_per_million_austria
t = 7.2242, df = 1150, p-value = 9.157e-13
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    95.01377 165.86690
sample estimates:
mean of x mean of y
    274.1910 143.7507
```

4.3 Wilcox test

Následující Wilcoxonův testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión na Slovensku. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión na Slovensku se nerovná střední hodnotě nových případů na milión v ČR. Vzhledem k zešikmení dat poskytuje tento test přesnější výsledky oproti dvouvýběrovému t-testu.

Wilcoxon rank sum test with continuity correction

data: new_cases_per_million_czechia and new_cases_per_million_slovakia
W = 205293, p-value = 2.97e-12
alternative hypothesis: true location shift is not equal to 0

Následující Wilcoxonův testuje hypotézu, že střední hodnota nových případů na milión v ČR je rovna střední hodnotě nových případů na milión v Německu. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní. Při této hladině významnosti tudíž můžeme tvrdit, že střední hodnota nových případů na milión v Německu se nerovná střední hodnotě nových případů na milión v ČR. Vzhledem k zešikmení dat poskytuje tento test přesnější výsledky oproti dvouvýběrovému t-testu.

Wilcoxon rank sum test with continuity correction

data: new_cases_per_million_czechia and new_cases_per_million_germany
W = 188720, p-value = 5.261e-05
alternative hypothesis: true location shift is not equal to 0

4.4 Fisherův test

Následující Fisherův test zkoumá zda jsou rozptyly hodnot nových případů na milión v ČR a na Slovensku stejné. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha=0.05$), zamítáme tuto hypotézu ve prospěch alternativní, tudíž že jsou rozptyly těchto dat různé.

F test to compare two variances

data: new_cases_per_million_czechia and new_cases_per_million_slovakia
F = 4.5141, num df = 575, denom df = 575, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 3.832723 5.316656
sample estimates:
ratio of variances
 4.514119</pre>

4.5 Shapiro Wilk test

Následující Shapiro Wilk test testuje zda je veličina nových případů v ČR nabývá normálního rozdělení. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha = 0.05$), zamítáme tuto hypotézu ve prospěch alternativní, tudíž že tato veličina nenabývá normálního rozdělení.

Shapiro-Wilk normality test

data: new_cases_czechia
W = 0.72003, p-value < 2.2e-16</pre>

Následující Shapiro Wilk test testuje zda je veličina nových testů v ČR nabývá normálního rozdělení. Vzhledem ke skutečnosti, že p-value je menší než hladina významnosti ($\alpha = 0.05$), zamítáme tuto hypotézu ve prospěch alternativní, tudíž že tato veličina nenabývá normálního rozdělení.

Shapiro-Wilk normality test

data: new_tests_czechia

W = 0.82915, p-value < 2.2e-16

5 ANOVA

Df Sum Sq Mean Sq F value Pr(>F)

new_cases_czechia 1 6.973e+10 6.973e+10 10.81 0.0011 **

new_deaths_czechia 1 1.218e+11 1.218e+11 18.88 1.78e-05 ***

Residuals 391 2.522e+12 6.451e+09

--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

182 observations deleted due to missingness

Fitted values aov(new_tests_czechia ~ new_cases_czechia + new_deaths_czechia)

Obrázek 30: Anova graf nových testů, případů a úmrtí

Obrázek 31: Anova graf nových testů, případů a úmrtí

Obrázek 32: Anova graf nových testů, případů a úmrtí

Obrázek 33: Anova graf nových testů, případů a úmrtí

Obrázek 34: Anova graf nových testů, případů a úmrtí

Obrázek 35: Anova graf nových testů, případů a úmrtí

6 VARIANCE

Níže jsou popsány střední hodnoty kvadrátů odchylek od střední hodnoty nových testů a nových případů v ČR.

Min. 1st Qu. Median Mean 3rd Qu. Max. -61749419 -61749419 -61749419 -61749419 -61749419

7 KORELACE

7.1 Korelační matice

```
[,1]
                     [,2]
                                [,3]
                                            [,4]
                                                      [,5]
                                                                 [,6]
[1,] 1.00000000 -0.62274409 -0.129186615 -0.285154793 0.66579693 0.57478261
[2,] -0.62274409 1.00000000 0.151838159 0.209449286 -0.43366681 -0.44705372
[3,] -0.12918662 0.15183816 1.000000000 0.250435635 -0.36067001 -0.33492826
[4,] -0.28515479 0.20944929 0.250435635 1.000000000 -0.10668415 -0.03613412
[5,] 0.66579693 -0.43366681 -0.360670011 -0.106684148 1.00000000 0.50445750
[6,] 0.57478261 -0.44705372 -0.334928261 -0.036134119 0.50445750 1.00000000
[7,] 0.05132667 -0.14357190 -0.163185379 0.386541958 0.15705896 -0.13049153
[8,] 0.89739130 -0.55838227 0.004784689 -0.171528226 0.57403785 0.69391304
[9,] 0.30782609 -0.09088933 -0.482383691 0.227688483 0.39791260 0.43652174
    0.72869565 -0.63448577 0.187472832 -0.359599784 0.45966516 0.17739130
[10,]
[11,] -0.66869565  0.54794522 -0.131361474  0.079233851 -0.46488368 -0.32956522
[12,] 0.42782609 -0.34007394 0.016093955 0.404005569 0.37442923 0.02869565
[13,] 0.38695652 -0.12002610 -0.172683792 -0.201567434 0.10784954 0.64347826
[14,] -0.27478261 0.13785606 -0.133971305 0.135394108 -0.09306371 -0.34956522
[15,] 0.61043478 -0.47358122 0.410613349 -0.280365934 0.17612525 0.16434783
[17,] -0.31652174   0.21743858   0.533710359   0.180235243 -0.17090672 -0.62434783
[18,] -0.59478261 0.47271147 -0.263157920 0.048323942 -0.32398348 -0.08000000
[21,] 0.32347826 -0.23265928 -0.586341943 -0.168916121 0.30876278 0.09043478
[22,] 0.23483367 -0.11048282 0.382423329 -0.190289684 -0.11439756 0.20656665
[23,] 0.25701240 -0.24880383 -0.511638037 0.139995729 0.47498913 0.25179387
[24.] 0.59143293 -0.52522836 0.291929526 0.050729401 0.30230535 0.09088933
           [,7]
                                  [,9]
                      [,8]
                                            [,10]
                                                       [.11]
[1,] 0.05132667
                [2,] -0.14357190 -0.558382270 -0.0908893259 -0.63448577 0.547945218
[3,] -0.16318538   0.004784689   -0.4823836907   0.18747283   -0.131361474
[4,] 0.38654196 -0.171528226 0.2276884833 -0.35959978 0.079233851
                          0.3979125991 0.45966516 -0.464883681
[5,] 0.15705896 0.574037848
[6,] -0.13049153  0.693913043  0.4365217391  0.17739130 -0.329565217
[7,] 1.00000000 -0.029578080 0.2801218186 -0.05480644 -0.334058318
```


Obrázek 36: Heatmap graf korelační matice

8 KOVARIANCE

8.1 Kovarianční matice

V1	V2	V3	V4								
Min. :-33.435	Min. :-31.717	Min. :-29.3043	Min. :-17.957								
1st Qu.:-16.168	1st Qu.:-21.842	1st Qu.:-13.8859	1st Qu.: -8.467								
Median : 12.293	Median : -5.761	Median : -3.1087	Median : 2.473								
Mean : 5.465	Mean : -2.097	Mean : 0.1916	Mean : 3.088								
3rd Qu.: 28.946	3rd Qu.: 12.046	3rd Qu.: 13.0217	3rd Qu.: 9.364								
Max. : 50.000	Max. : 49.978	Max. : 49.9565	Max. : 49.870								
V 5	V6	V7	V8								
Min. :-23.435	Min. :-34.304	Min. :-29.1739	Min. :-33.217								
1st Qu.:-16.016	1st Qu.:-13.087	1st Qu.:-10.8207	1st Qu.:-17.967								
Median : 6.620	Median : 4.533	Median: 0.5435	Median : 8.315								
Mean : 4.815	Mean : 3.619	Mean : 2.1472	Mean : 5.156								
3rd Qu.: 20.663	3rd Qu.: 14.897	3rd Qu.: 14.7663	3rd Qu.: 25.891								
Max. : 49.978	Max. : 50.000	Max. : 49.9565	Max. : 50.000								
V9	V10	V11	V12								
Min. :-34.435	Min. :-36.435	Min. :-33.435	Min. :-31.174								
1st Qu.:-10.658	1st Qu.:-17.337	1st Qu.:-23.321	1st Qu.:-14.668								
Median : 8.826	Median : 6.196	Median : -1.522	Median : 10.457								
Mean : 4.632	Mean : 3.081	Mean : -1.861	Mean : 4.583								
3rd Qu.: 16.087	3rd Qu.: 23.522	3rd Qu.: 9.120	3rd Qu.: 16.321								
Max. : 50.000	Max. : 50.000	Max. : 50.000	Max. : 50.000								
V13	V14	V15	V16								
Min. :-35.739	Min. :-25.9348	Min. :-30.8696	Min. :-33.783								
1st Qu.: -8.989	1st Qu.:-17.0652	1st Qu.:-17.2446	1st Qu.:-17.913								
Median : 3.685	Median : -3.0435	Median: 0.4348	Median : -5.250								
Mean : 2.385	Mean : 0.5525	Mean : 2.7237	Mean : -2.403								
3rd Qu.: 17.924	3rd Qu.: 14.1957	3rd Qu.: 21.7337	3rd Qu.: 8.435								
Max. : 50.000	Max. : 50.0000	Max. : 50.0000	Max. : 50.000								
V17	V18	V19	V20								
Min. :-34.4348	Min. :-36.435	Min. :-35.739	Min. :-27.087								
1st Qu.:-17.0543	1st Qu.:-19.696	1st Qu.:-19.120	1st Qu.:-19.397								
Median : -0.6956	Median : -5.652	49 Median : -3.815	Median : -2.185								
Mean : -1.3895	Mean : -3.584	Mean : -3.570	Mean : -2.415								

Obrázek 37: Heatmap graf korelační matice

Obrázek 38: Graf korelační matice

Obrázek 39: GGQQPlot graf korelační matice

9 TESTOVÁNÍ V KONTINGENČNÍCH TAB-ULKÁCH

9.1 Pearsonův Chí-kvadrát test

Následující chí-kvadrát test zkoumá zda má veličina nových případů v ČR stejné rozdělení jako veličina nových případů v ČR. Vzhledem ke skutečnosti, že p-value je vyšší než hladina významnosti ($\alpha=0.05$), tuto hypotézu nemůžeme zamítnout.

Pearson's Chi-squared test

data: new_tests_czechia and new_cases_czechia
X-squared = 147356, df = 146982, p-value = 0.245

10 REGRESE

10.1 Lineární regrese

Následující graf zobrazuje jakých hodnot bude s 95% pravděpodobností nabývat hodnota pacientů na ICU na milión v ČR v závislosti na počtu nově hospitalizovaných pacientů na milión v ČR. Tato závislost je zde vyjádřena jako lineární funkce y = -0.7746 + 0.1826x.

Lineární regrese Noví pacienti na milión Lineární regrese Lineární regrese Noví pacienti na milión

Obrázek 40: Graf lineární regrese

10.2 Kvadratická regrese

Následující graf zobrazuje jakých hodnot bude s 95% pravděpodobností nabývat hodnota pacientů na ICU na milión v ČR v závislosti na počtu nově hospitalizovaných pacientů na milión v ČR. Tato závislost je zde vyjádřena jako kvadratická funkce $y=1.9982244+0.1074610x+0.0001102x^2$.

Kvadratická regrese

Obrázek 41: Graf kvadraditcké regrese

ZÁVĚR

POUŽITÁ LITERATURA

[1] Our World in Data Data on COVID-19 (coronavirus) [online]. 2021 [cit. 2021-11-18]. Dostupné z: https://github.com/owid/covid-19-data/tree/master/public/data

SEZNAM PŘÍLOH

Příloha A																				?	9
т попа л	 		 	 	 		 		•												

PŘÍLOHA A

Příloha A zahrnuje ZIP soubor, který obsahuje:

- Zdrojové kódy
- Zdrojová data použitá v práci