题目	时间限制 ms	内存限制 mb	代码名	输入	输出
准回文	1000	128	data	data.in	data.out
飞碟	1000	128	data	data.in	data.out
机器	1000	128	data	data.in	data.out
红蓝	1000	128	data	data.in	data.out

1 准回文

【题目描述】

如果字符串t从左到右和从右到左读取相同,那么t被称为回文字符串。

假设准回文数是这样的数字:即向其添加一些前导零(也可以不添加)产生一个回文字符串。

例如,数字131和2010200是准回文,它们可以分别转换为字符串"131"和"002010200",它们是回文。

给你一些整数 X。检查它是否是一个准回文数。

【输入格式】

- 有多组数据
- 每一行包含一个整数 x (1 ≤ x ≤ 10⁹)。这个数字没有任何前导零。
- 最多有 10^5 行数据

【输出格式】

如果数字 x 是准回文,则打印一行"YES"。否则,打印"NO"(不带引号)。

【输入样例】

131 2010200

【输出样例】

YES YES

2 飞碟

【题目描述】

有 2^*n 个外星人现在准备离开地球,现在一共有 n+1 个飞碟可供他们使用,每个飞碟最多从两个人。也就是说一定有两个外星人单独坐一个飞碟,有 n-1 个飞碟上有两个人。

如果有两个人在一个飞碟上,这两个外星人就会生气,影响飞碟的稳定性。这个值为两个外星人的怒气值 x 的差的绝对值。整个队伍的不稳定性由所有双人飞碟的值的和。现在你可以安排外星人如何乘坐飞碟,进而求出队伍的最小不稳定性。

【输入格式】

- 第一行,一个整数 n
- 第二行, 2*n 个值, 表示每个外星人的怒气值 xi

【输出格式】

一个整数,队伍的最小不稳定性。

【输入样例】

3

1 2 3 4 500 1000

【输出样例】

2

【数据范围】

• $2 \le n \le 50, 1 \le x_i \le 1000$

3 机器

【题目描述】

外星人有 n 个机器,其中的机器可能是好的,也可能是坏了。完好的机器回答的问题一定是对的,但坏了的机器回答的问题可能是对的,也可能是错的。

现在外星人询问每个机器问题,其中第 i 个机器问了 A_i 个问题,每个问题的形式如下:

• 第j个机器是好的,还是坏的,其中 $j \neq i$

注意不会询问同一个机器同样的问题!

问,现在你知道了每个问题和答案,最多可能有多少个机器是好的?

【输入格式】

- 第一行,整数 n,表示有 n 个机器
- 接下一个整数 A_1 表示问了第 1 个机器 A_1 个问题
- 接下来 A_1 行,每行两个整数 x,y,表示第 1 个机器回答 第 ${f x}$ 个机器是否是坏的 这个问题
 - 如果 y==1,则第1个机器认为第x个机器是好的
 - 如果 y==0,则第1个机器认为第x个机器是坏的
- 接下来是 $A_2, A_3 A_n$, 格式同上

【输出格式】

一个整数,最多可能好的机器的数量

【输入样例】1

```
3
1
2 1
1
1 1
1 2 0
```

【输出样例】1

2

如果机器 1,2 是好的,3 是坏的,不会产生冲突。所以最多有 2 好的机器。

【输入样例】2

```
3
2
2
1
3
0
2
3
1
1
0
2
1
1
2
0
```

【输出样例】2

0

无论哪个机器是好的都会有冲突,所以只可能有 0 个好的机器。

【输入样例】3

```
2
1
2 0
1
1 0
```

【输出样例】3

1

显然,只能有一个机器是好的

【数据范围】

- $1 \le n \le 15$
- $0 \leqslant A_i \leqslant n-1$

4红蓝

【题目描述】

在一个二维的平面上有两种数,红色数与蓝色数,分别有R个,B个.

你现在从 R_1 (第一个红色数) 开始,记录每个数,在你记录的数字序列中,红色数与蓝色数形成的子序列必须是有序的。也就是说,假如红蓝各有两个数,那么你记录的序列可以是 R_1,B_1,B_2,R_2 ,把红色数与蓝色数单独拿出来都是有序的。

当你从一个数移到到别一个数的时候,消耗两个数距离平方的能量。现在你要把所有的数记录下来,问所需要的 最小能量是多少?

【输入格式】

- 第一行,两个数 R,B 表示两种数的个数
- 接下来 R 行 两个整数 xi, yi 表示 第 i 个红色数的位置
- 接下来 B 行 两个整数 xi, yi 表示 第 i 个蓝色数的位置

【输出格式】

一行数,最小消耗能量

【输入样例】

2 2

0 0

1 0

0 3

1 3

【输出样例】

19

【数据范围】

- $1\leqslant R, B\leqslant 1,000$
- $0 \leqslant x_i, y_i \leqslant 1,000$