Study on increasing durability of wrap around black material for tiled displays

2024.08.21.

Nakcho Choi

Samsung Display

Contents

- 1. Introduction
- 2. Problem and Hypothesis
- 3. Experiment
- 4. Discussion
- 5. Conclusion

Introduction

1. Tield Display with Micro LED

The Wall: https://www.samsung.com

Seamless Design: Modular Flexibility

Crystal LED: https://pro.sony

Modular Display

Prior Art Search

2. Wrap Aroud Electrode Process

Hole Process (Through Glass VIA)

KR 10-2022-0054034

Dispensing Process

KR 10-2022-0039448

Pad Pringing Process

Pad Printing

Source : EC Printing Machine Factory Limited : https://www.ecpnp.com/
Display beyond Imagination

Wrap around Electrode and Black OC

Description of Problem and Analysis

1. Water Humidity Temperature Storage (WHTS, 85°C, 85%, 500h)

Initial State

Swelling and Delamination

2. Cross Sectional Analysis of Delamination

Description of Problem Phenomenon

3. Scratch Test

Sample	Scratch Crack Force(N)	0.01N — Scratch —	→ 2.0N
Before WHTS	0.78±0.03		
After WHTS	0.25±0.02		

(7/14)

Iingredient ratio (Ag Paste, Black OC)

Ag

AG PASTE COMPOSITION(WT%) other solvent ероху momomer_

BLACK OC COMPOSITION(WT%)

★ MSDS (material safety data sheet)

acryl

monomer

Hypothesis

1. Epoxy Binder + Amine → Polymerization (OC)

Poly(p-nydroxyl amine) nydrog

Polymers 2019, 11(9), 1491

3. CaCO3 filler with SiO2+H2O → C-S-H (OC)

Pozzolanic Reaction

$$CaCO_{3}(s) + heat \rightarrow CaO(s) + CO_{2}(g)$$

 $CaO(s) + \frac{H_{2}O(l)}{2} \rightarrow Ca(OH)_{2}(aq) + 280$ Kcal
 $3Ca(OH)_{2}(aq) + 2SiO_{2}(s) + \frac{3H_{2}O(l)}{2} \rightarrow 3CaO_{2}(s) + \frac{3}{2}(s)$ (s)

2. Esterification reaction (OC)

https://chem.libretexts.org/

4. Sillane adhesion promoter (Ag paste)

Experiments and Results

1. Composition Change (Black OC)

No.	Sample	Scratch Test after 85°C, 85% 72hours
1	reference	NG
2	Reference + amine hardener	NG
3	Reference + filler(CaCO ₃)	5B
4	Binder (epoxy -> ester)	4B

2. CaCO3 contents Change (Black OC)

3. Silane Coupling Agent(Ag paste)

Test Condition	0.8wt% added	1.5wt% added
Room temperature(24h)	Good	Good
boiling water storage(4h)	poor peeling	Good
boiling water storage(18h)	poor peeling	Good
Ag Resistance (Initial)	1.0 Ω	1.0 Ω

Experiments and Results

4. Peel off Test Results after WHTS

No.	Sample	Peeling Result
1	Ag paste + OC	3/3
2	Ag paste with 1.5wt% C.A. + OC	3/3
3	Ag paste + OC with 15wt% CaCO3	1/3
4	Ag paste with 1.5wt% C.A. +OC with 15wt% CaCO3	0/3

Side View of Glass

No.	Tapint Test Images		
1	Before	A T 3 T A T T T T T T T T T T T T T T T	2/2
	After		3/3
2 -	Before		
	After		3/3
3	Before		1/3
	After	iter	
4	Before		0/3
	After		

Discussion

Why does the improved material have increased adhesion?

Pozzolanic Reaction

EDS Aanlysis result (atomic percent) of OC

WHTS condition(8585, 500h) / before and after

Conclusion

- The novel approatch of integrating CaCO3 filler into Black OC material, coupled agent with Ag paste, significantly improves adhesion and durability
- This advancement paves the way for robust and reliable wrap-around electrode for micro LED tiled display, enabling the production of ultra-large premium TVs.
- We applied for a patent on the Black OC composition and evaluated its product application. (KR,US,CN)
- Further research on exploring alternative filler of Black OC and optimizing the Ag paste sintering process to achive even greater adhetion and durability

Thank you!

supplement

Displat beyond Imagination

