|                           | Utech                              |
|---------------------------|------------------------------------|
| Name:                     | (4)                                |
| Roll No.:                 | To Delaw (y' Exemple) and Explored |
| Invigilator's Signature : |                                    |

# CS/B.TECH (CE-OLD)/SEM-3/CE-302/2012-13 2012

### **FLUID MECHANICS**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### **GROUP - A**

# ( Multiple Choice Type Questions )

1. Choose the correct alternatives for the following:

 $10 \times 1 = 10$ 

- i) The centre of buoyancy of a submerged body
  - a) coincides with the centre of gravity of the body
  - b) coincides with the centroids of the displaced volume  $F_r(\mathbf{F}.\mathbf{No.})$  of the fluid
  - c) is always below the centre of gravity of the body
  - d) is always above the centre of the displaced volume of liquid.
- ii) In laminar flow through a pipe the Darcy-Weishbach friction factor *f* is given by *f* =
  - a) 64/Re

b) 24/Re

c) 16/Re

d) 3/16 Re,

where Re is Reynolds number.

3055 (O) [ Turn over

| 3.TECI | H (CE-OLD)/                                               | SEM-3/CE-302/20                 | 12-13      |                  |             | -    |  |
|--------|-----------------------------------------------------------|---------------------------------|------------|------------------|-------------|------|--|
| iii)   | The flow                                                  | in open chann                   | el is l    | aminar i         | if the Reyn | ølds |  |
|        | number is                                                 |                                 |            |                  |             |      |  |
|        | a) 2000                                                   |                                 | <b>b</b> ) | less tha         | an 2000     |      |  |
|        | ,                                                         | than 500                        | d)         | none of          | f these.    |      |  |
| iv)    | In open channels flow if $F_r > 1$ , the flow is          |                                 |            |                  |             |      |  |
|        | a) critic                                                 | al flow                         | <b>b</b> ) | sub-cri          | tical flow  |      |  |
|        |                                                           | rcritical flow<br>= Froude numb | d)<br>oer. | none of          | f these.    |      |  |
| v)     | A U-tube manometer measures                               |                                 |            |                  |             |      |  |
|        | a) absolute pressure at a point                           |                                 |            |                  |             |      |  |
|        | b) local atmospheric pressure                             |                                 |            |                  |             |      |  |
|        | c) difference in total energy between two points          |                                 |            |                  |             |      |  |
|        | d) difference in pressure between two points.             |                                 |            |                  |             |      |  |
| vi)    | · · · · · · · · · · · · · · · · · · ·                     |                                 |            |                  |             |      |  |
|        | a) $M^0 L$                                                | · <del>-</del>                  | <b>b</b> ) | $\boldsymbol{L}$ |             |      |  |
|        | c) $L^{1/2}$                                              | $T^{-1}$                        | d)         | $ML^{-1/3}$      | T.          |      |  |
| vii)   | The dimensions of Mannig's roughness coefficient are      |                                 |            |                  |             |      |  |
|        | a) $L^{-1/}$                                              | -                               | <b>b</b> ) |                  |             |      |  |
|        | c) $M^0 L$                                                | $L^{0} T^{0}$                   | d)         | $LT^{-1/3}$      | •           |      |  |
| viii)  | i) In a uniform steady flow of water through an o         |                                 |            |                  |             |      |  |
|        | channel, the depth of flow is 250 mm. The slope           |                                 |            |                  |             |      |  |
|        | _                                                         | he shear stress                 | at the     | wall in N        | N/m² is     |      |  |
|        | Take $g = 10 \text{ m/sec}^2$                             |                                 |            |                  |             |      |  |
|        | a) 1                                                      |                                 | <b>b</b> ) | 0.1              |             |      |  |
|        | c) 2.5                                                    |                                 | d)         | 0.4.             |             |      |  |
| ix)    | For a most hydraulically efficient trapezoidal channel    |                                 |            |                  |             |      |  |
|        | section, the wetted perimeter $P$ is given in terms of be |                                 |            |                  |             |      |  |
|        | width $b$ and depth of flow $h$ as                        |                                 |            |                  |             |      |  |
|        | a) $P = l$                                                | b + h                           | <b>b</b> ) | P = b +          | 2·31 h      |      |  |
|        | c) $P = I$                                                | 0+2h                            | d)         | P = b +          | 4h.         |      |  |
| x)     | The depth of flow in a rectangular channel is 2m. The     |                                 |            |                  |             |      |  |

3 m

1 m

a) c)

velocity head is 1m. The specific energy of flow is

d)

2 m

4 m.



#### **GROUP - B**

# (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$ 

- 2. The model of a boat is prepared to a scale 1:10 and towed in a water tunnel. If the speed of the boat is 20 m/sec., determine the towing speed of the model.
  - Assume that the boat is subjected to only wave resistance.
- 3. A rectangular channel carries water at the rate of 400 lit/sec when the bed slope is 1 in 2000. Find the most economical dimension of the channel if C = 50.
- 4. What is specific energy curve? Draw a specific energy curve, and then derive expressions for critical depth of flow.
- 5. A closed cylinder of radius 10 cm and height 30 cm is filled with water. If the cylinder is rotated about its vertical axis at a speed of 240 rpm, calculate the force exerted at the top and bottom covers of the cylinder.
- 6. An oil of sp. gravity 0.9 and viscosity 0.06 poise is flowing through a pipe of diameter 200 mm at the rate of 60 lit/sec. Find the head loss due to friction for a 500 m length of pipe. Also find the power required to maintain this flow.

#### **GROUP - C**

### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Prove that for the trapezoidal channel of most economic section "Half of the top width = length of one of the sloping sides".
  - b) A Trapezoidal channel to carry  $142 \text{ m}^3/\text{min}$  of water is designed to have a minimum cross-section. Find the bottom width and depth if the bed slope is 1 in 1200, the side slopes at  $45^\circ$  and Chezy's co-efficient, C=55.

head, which occur



- a) determine the rate of flow (Take f = 0.01 for both)
- b) draw the Hydraulic and total energy gradient.
- 9. a) Derive expression for discharge through a channel by Chezy's formula.
  - b) For a trapezoidal channel with bottom width 4 m, side slope 2 H : 1 V, Manning constant 0.015, bottom slope 0.0002, Q = 60 cumec, determine normal depth.
- 10. Differentiate between the following:

 $5 \times 3 = 15$ 

- i) Uniform and non-uniform flow
- ii) Steady and unsteady flow
- iii) Laminar and turbulent flow
- iv) Critical, supercritical and sub-critical flow
- v) Rapidly varied flow and gradually varied flow.
- 11. Using Buckingham  $\pi$  theorem, prove that the discharge over a weir is given by

$$Q = VL^2 \phi \left[ (gL)^{1/2} / V. \frac{H}{L} \right].$$

\_\_\_\_