# Motor Control and Reinforcement Learning

Computational Cognitive Neuroscience
Randall O'Reilly

|     |     | -   |         |
|-----|-----|-----|---------|
|     | +++ |     |         |
| +++ | +++ |     |         |
| ++  |     | +++ | +++     |
|     |     | +++ | *** *** |

### Primitive, Basic Learning..

|                            | Learning Signal |       |          | Dynamics  |            |           |
|----------------------------|-----------------|-------|----------|-----------|------------|-----------|
| Area                       | Reward          | Error | Self Org | Separator | Integrator | Attractor |
| Primitive<br>Basal Ganglia | +++             |       |          | ++        | -          |           |
| Cerebellum                 |                 | +++   |          | +++       |            |           |

- Reward & Error = most basic learning signals (self organized learning is a luxury..)
- Simplest general solution to any learning problem is a lookup table = separator

# 

# Cerebellar Error-driven Learning



- Granule cells = high-dimensional encoding (separation)
- Purkinje/Olive = delta-rule error-driven learning
- Classic ideas from Marr (1969) & Albus (1971)

# Cerebellum is Feed Forward Feedforward circuit: Input (PN) -> granules -> Purkinje -> Output (DCN) Inhibitory interactions - no attractor dynamics Key idea: does delta-rule learning bridging small temporal gap: S(t-100) -> R(t) \* Error(t+100)



















# **BG + Cerebellum Capacities**

- Learn what satisfies basic needs, and what to avoid (BG reward learning)
  - And what information to maintain in working memory (PFC) to support successful behavior
- Learn basic Sensory -> Motor mappings accurately (Cerebellum error-driven learning)
  - Sensory -> Sensory mappings? (what is going to happen next..)

6

# **BG + Cerebellum Incapacities**

- Generalize knowledge to novel situations
  - Lookup tables don't generalize well..
- · Learn abstract semantics
  - Statistical regularities, higher-order categories, etc
- Encode episodic memories (specific events)
  - Useful for instance-based reasoning
- Plan, anticipate, simulate, etc..
  - Requires robust working memory

17