Multifunctional Nanocomposites for Aerospace Applications: Overview

CHEOL PARK

Advanced Materials and Processing Branch
NASA Langley Research Center
Hampton, VA 23681, USA

University of California, Merced March 13, 2015

Acknowledgements

NASA Langley Research Center

Catharine Fay, Sharon Lowther, Wanda Gresham, Joseph Lee, Hoa Luong, Peter Gnoffo, Paul Danehy, Jennifer Inman, Steve Jones, Sheila Thibeault, Kristopher Wise, Andy Newman, Robert Bryant, Crystal Topping, Dennis Working, Keith Gordon, Sang Choi

National Institute of Aerospace Vesselin Yamakov, Godfrey Sauti, Jin Ho Kang, Hyun Jung Kim, Sang-Hyon Chu, Luke Gibbons, Samantha Applin, Amanda Tiano

SUNY Binghamton Meng Zheng, Xiaoming Chen, Changhong Ke, Howard Wang

Rice University Mohammad Adnan, Matteo Pasquali

NASA Langley Research Center

NASA Langley Research Center Hampton, Virginia
Founded in 1917: first civil aeronautical research laboratory

Facilities: \$4 billion replacement value

People: 2000 Civil Servants; 1700 Contractors

Advanced Materials and Processing Branch

Materials Design

Innovative Materials Processing

Materials Testing

Advanced Material Systems

Materials for Extreme Environments

Critical Concerns for Aerospace Systems

Weight

- Reduced fuel consumption & emissions
- Reduced launch costs
- Enabler for many new vehicles designs

Functionality/Performance

- Reduced fuel or power consumption
- Multifunctionality additional reduced weight

Durability

- Safety and reliability
- Maintenance down-time and costs
- Extreme environments

Design Materials Properties

Materials Properties to be Tailored

- Electrical Conductivity
- Dielectric Permittivity
- Magnetic Permeability
- Thermal Conductivity/expansion coefficient
- Radiation Shielding
- Mechanical (modulus, strength, toughness...)
- Solar Absorptivity/Thermal Emissivity
- Band gap engineering
- Optical property (transparency, refractive index...)
- Piezoelectricity/Pyroelectricity/Electrostrictive
- Gas/Liquid Permeability
- Anisotropy/orientation

Design Parameters

- Nano Inclusion type and combination (CNT, BNNT, BCNNT, GP, hBN, NP...)
- Matrix type
- Composition
- Dispersion
- Orientation
- Geometry, Fabrication, Processing...

Specific Applications

- R2R Printing of Electroactive Polymer Composites: NSF/NASA
- Electroactive properties & Radiation Shielding of BNNT Composites: AFOSR/NASA C&I
- Radiation Detection and Conductivity Control: DOE (ORNL)/NASA
- Solar Absorption and Thermal Emission Control: NASA C&I
- Structural BNNT composites, BNNT fibers and mats: Rice Univ/NASA GCD, B&P, IRAD
- Multiple Metal Infusion for Multifunctionality (S2M2N): NASA IRAD
- Bandgap Engineering of nanotubes: NASA IRAD
- Doped Chiral Polymer Metamaterials (DCPM): NASA IRAD
- Radiation Shielding and Thermal Conduction (Electronic Packaging): NASA IRAD
- Ultralight Flexible Shielding Tension Shell: NASA IRAD

NASA

Outline

- Multifunctional Nanocomposites
 - Nanotube Synthesis: High Temperature-Pressure (HTP) BNNT and BCNNT Synthesis
 - Dispersion
 - Tailoring physical properties of nanocomposites for multifunctions
 - Metallized Nanotube Polymer Composites (MNPC)
 - Doped Chiral Polymer Metamaterials (DCPM)
 - Band Gap Engineering (B_xC_yN_z Nanotubes)
- Sensors/Actuators
- Radiation Shielding
- Summary

Properties of Materials for Vehicle Structure

Properties of Materials for Vehicle Structure

Nanotube Comparison (Theoretical)

	Carbon Nanotubes	Boron Nitride Nanotubes	
Electric Properties	Metallic or semiconducting	Wide band gap (about 6.0 eV band gap)	
Mechanical Properties (Young's Modulus)	1.33 TPa (very stiff)	1.18 TPa (very stiff)	
Thermal Conductivity	>3000 W/mK (highly conductive)	~300–3000 W/mK (highly conductive)	
Thermal Oxidation Resistance	Stable up to 300-400 °C in air	Stable to over 800 °C in air	
Neutron Absorption Cross-Section	C = 0.0035 barn	B = 767 barn (B ¹⁰ ~3800 barn) N = 1.9 barn (Excellent radiation shielding)	
Polarity	No dipole	Permanent dipole Piezoelectric (0.25-0.4 C/m²)	
Surface Morphology	Smooth	Corrugated (Provides better bonding for composites, ionic bonding)	
Color	Black	White (can be dyed to color)	
Coefficient of Thermal Expansion	-1 x10 ⁻⁶ K ⁻¹ (very low)	-1 x 10 ⁻⁶ K ⁻¹ (very low)	

Synthesis Methods of Carbon Nanotubes

- Arc-discharge: solid state carbon precursor
- Laser ablation: solid state carbon precursor
- Chemical vapor deposition (CVD): gaseous carbon precursor/ HiPco (High pressure CO)
- Free Electron Laser (Jefferson Lab): funded by NASA-LaRC C&I
- RF Induction Thermal Plasma (Canadian NRC)

Arc-discharge

Laser ablation

Induction Plasma

Powder

Chemical vapor deposition (CVD)

Image credit: NASA

BNNT Synthesis History

- First Theoretical prediction: *PRB* **49** 5081–5084 (1994) (UC Berkeley, Cohen), computation
- First Synthesis Arc Discharge: Science 269 966 (1995) (UC Berkeley, Cohen/Zettl) BNNT by Arc Discharge
- Arc Discharge: PRL 76 4737 (1996) (ONERA France, Loiseau) Arc Discharge HfB2 with N2 gas
- Laser heating: APL 69 2045 (1996) (NIMS Japan, Golberg, Bando), Diamond Anvil, c-BN target laser heating High pressure
- Laser ablation: APL 72 1966 (1998) (Yu, BN powder with Co/Ni, first laser ablation
- Ball milling/thermal annealing: CPL 74 2782 (1999) (ASU Australia, Chen) Ball milling of B powder in NH3 gas
- CVD: Chem. Mater. 12 1808 (2000) (WA Univ, Lourie, Ruoff, Buhro) CVD Borazine (B3N3H6)
- Laser ablation, PRB **64** 121405(R) (2001) (ONERA Lee, Loiseau) CO2 laser, no catalyst
- CVD: Solid State Comm. 135 67 (2005) (NIMS, Zhi. Bando, Golberg) CVD NH3 B2O3 from MgO/B powder
- High Temp, High Pressure, Laser vaporization: Nanotechnology 20 505604 (2009) (NIA/NASA/Jlab) High Temperature, Pressure (HTP) BNNT, Free Electron Laser/CO2 Laser
- High Temp Induction Thermal Plasma: ACS Nano 8 6211 (2014) (NRC Canada, Kim, Kingston, Simard): 20g/hr, need H2
- High Temp, High Press Induction Thermal Plasma: NL 14 4881 (2014) (UC Berkeley, Zettl): 35g/hr

BNNT and **BCNNT** Synthesis

High Temperature-Pressure (HTP) BNNT and BCNNT

- Free Electron Laser or CO₂ laser
- No Catalyst, only B and N resource (and C for BCNNT)
- Very long, small diameter, highly crystalline BNNT, BCNNT

NASA LaRC BNNT Synthesis Lab

- 5 kW of infrared radiation @ 10.6μm
 Heat source for vaporizing Boron feed stock above 3500°C
- Pressurized with Nitrogen to 200 psi
- LaRC rig operating since May 2012 daily with two operators for 1 shift

Nanotechnology, **20** 505604 (2009) J. Thermophysics and Heat Transfer **27** 369 (2013) Proc. SPIE **9060** 906006 (2014)

Cotton-like High Pressure and Temperature (HPT)-BNNT

Benefits

- One-to-few-walled tubes with high crystallinity
- Very long, high-aspect ratio tubes
- High scale-up potential
- No toxic catalysts (only B and N as reactants)
- Standard industrial cutting/welding lasers
- High service temperature (over 800°C)
- Highly electroactive (due to the B-N polar bond)
- Neutron radiation shielding (due to their B content)

All images credit: NASA

Thermal Stability of BNNT vs. CNT: TGA

BNNT

(c)

STM tip

Current (nA) 1

Mechanical Properties of BNNT and BNNT Composites: Processing and Characterization Techniques

Individual BNNT and BNNT Bundles: compressive modulus, tensile modulus and strength, radial modulus

TEM-AFM, TEM-STM Holders Credit: NASA LaRC/NIA/Binghamton Credit: SUNY Binghamton

3D Nanomanipulator in SEM/FIB

AFM Credit: SUNY Binghamton

Small, 8, 116 (2012) ACS Nano, 6, 1814 (2012) Nanotechnology, 23, 095703 (2012)

deformation

No bending

Voltage (Volt)

Spun yarns: NASA LaRC/NIA (credit)

Wet spinning/Electrospinning Credit: NASA LaRC/NIA

Superacid Spinning Credit: Rice U

How to make strong, stiff, tough structural BNNT composite?

Good tubes:

highly crystalline, long, thin BNNTs → Excellent intrinsic BNNT properties

Longer tube (high aspect ratio)

→ Greater yarn strength

High interfacial strength

BNNT-epoxy and BNNT-PMMA interfacial strength are superior to CNT counterpart (*Small*, **9**, 3345 (2013)

High orientation

Hearle's Yarn Equation

 $\sigma_{\rm V} \approx \cos 2 \langle (1-k \cos e c \langle) \cdot \sigma_{\rm f} \rangle$

 σ_y : yarn strength, σ_f : fiber (tube) strength f: helix angle that fibers make with yarn axis

k: $(dQ/\mu)^{1/2}/3L$, d: fiber diameter

μ: coefficient of friction, L: fiber length

Q: fiber migration length

If $\sigma_f \uparrow$, $d \downarrow$, $L \uparrow$, $\mu \uparrow \rightarrow \sigma_y \uparrow$

BNNT Tensile Test Results (Only for comparison with CNT)

Diameter	Elastic modulus (GPa)	Breaking Strength (GPa)	
D = 2.5 nm	760-960	14-38	

Credit: Prof Ke (SUNY Binghamton)

Credit: Hearle, Structural mechanics of fibers, yarns, & fabrics, (1969)

NIA Research and Innovation Laboratories

First BNNT run successfully without optimization July 2013; excellent quality (long, thin, highly crystalline BNNT)

Successful pressure test up to 950 psi (higher pressure leads to better BNNT potentially)

In-situ diagnostic tools installed (planar laser induced fluorescence: PLIF); more tools coming (CARS, pyrography, high speed camera...)

Parallel computational study for nucleation and growth ongoing (both NIA and NASA)

First BNNT run for 10 sec 200 psi, 1kW SWBNNT Figure 3: TEM & SEM images: as grown BNNT

NIA BNNT Science Rig in a Safety Hutch

All images credit: NASA/NIA

NIA BNNT Science Chamber

NIA Science Rig HTP BNNT Run (Snapshots)

All images credit: NASA/NIA

Proc. SPIE 9060 906006 (2014)

In-situ Optical Diagnostics

- Understand chemistry and flow physics of nanotube generation
- Improve and validate simulation/modeling
- Optimize material properties, production rate
- Specific Goals:
 - Determine gas and melt-ball temperatures
 - Determine amount of B₂, B, BN, N and N₂
- In-situ, on-surface measurement:
 - High speed imaging; high speed (1 kHz) optical pyrometer being developed to study melt-ball dynamics
- Off-surface, gas phase measurement:
 - High-speed, high-resolution imaging
 - Shadowgraph and visible emission
 - Species sensitive imaging (BN PLIF)
 - Temperature measurements (CARS)

Jennifer Inman, Paul Danehy, Steve Jones, Joe Lee (NASA LaRC), Andrew Cuttler (GWU)

Modeling of Laser Ablation and Plume Chemistry in a Boron Nitride Nanotube Production Rig

Contour lines of temperatures and mass fraction of BN in the plume

Fig. 5 Contour lines of BN flow rates in the plume.

All images credit: NASA

0.41 0.37 0.33 0.29 0.25 0.21 0.17

0.13 0.09 0.05

Proc. SPIE **9060** 906006 (2014)

a) Total chamber pressure

J. Thermophysics and Heat Transfer 27 369 (2013)

Dispersion

Credit: Zhao, Park et al, Nanotechnology 36 085703 (2015)

How to disperse Nanotubes?

1) Kinetic Approach

High shear (stirring, homogenization, speedmix)

Sonication (cavitational force)

Melt mixing (twin screw mixer, extruder, calendering, capillary rheometer, fiber spinning)

In-situ polymerization

In-situ polymerization under simultaneous sonication & high shear (Chem. Phys. Lett.

364, 303 (2002))

2) Thermodynamic Approach (Minimizing free energy of mixing) Covalent bonding

Acid etching

Stirring, reflux, and soxhlet extraction with H₂SO₄, HNO₃, and HCI

Functionalization

Fluorination, reflux with amine, electrochemical (diazonium compound)

Non-covalent bonding

Amphiphilic (surfactant), hydrophobic interaction: Water soluble polymers

Wrapping: PmPV, Polyvinyl pyrrolidone, Polystyrene sulfonate, PPE

Charge Transfer (Donor-acceptor) (Chem. Phys. Lett. 391, 207 (2004))

Dispersion Interaction (London force, Permittivity matching)

Solvent or Co-solvent selection (Hansen solubility parameter, surface energy)

Similar size/structure to SWCNT

Zwitterion

Complex formation

Nonspecific interaction

 $\Delta G_{\text{mix}} = \Delta H_{\text{mix}} - T^* \Delta S_{\text{mix}}$

Encyclopedia of Nanoscience and Nanotechnology, 2nd Ed, Chapter: Polymer Nanocomposites and Functionalities, American Scientific Publishers, vol 21 171-218 (2011) (www.aspbs.com/enn)

Adhesion Between Nanotubes & Various Functional Groups

• Using Functionalized AFM tips interaction forces can be directly probed.

Alkyl-thiol Endgroup	Experiment Force/Molecule (pN)	Modeling (pN)
-ОН	9.6 ± 2	
-perfluoro	8.7 ± 3	
–SH	9.2 ± 3	
-CH=CH ₂	8.1 ± 2	
-CH ₃	7.6 ± 2	1.92
-СООН	12.2 ± 3	
$-NH_2$	23.4 ± 4	2.98
Aryl-thiol Endgroup		
4-methylbenzene	18.9 ± 5.7	
4-nitrobenzene	21.8 ± 5.3	
4-aminebenzene	22.6 ± 4.7	
4-bromobenzene	26.9 ± 3.6	
4-hydroxybenzene	32.0 ± 8.4	
4-fluorobenzene	39.5 ± 8.8	
4-methoxybenzene	41.5 ± 10.9	
H-benzene	46.8 ± 11.8	
4-Nitrilebenzene	56.9 ±15.5	

Hansen and Hilderbrand Solubility 3D Plot for BNNT

Hanson and Hilderbrand Solubility:

$$O_t^2 = O_d^2 + O_p^2 + O_h^2$$

 δ_d : dispersion component

 δ_p : polar

 δ_h : hydrogen bond

Code written to plot coordinates (δ_d , δ_p , δ_h) for each solvent and solute and color code good, poor, and unknown solvents

- DMF DMAc
- PMMA
- vinylpyrrolidone
- * tetrahγdrofuran
- water
- PVA
- pyridine
- acetic acid
- tetrachloromethane
- acetone
- toluene
- ethanol
- methanol
- isopropanol
- cyclohexane
- butanol
- CNT
- graphene
- polystyrene
- NMP
- DMSO
- diiodomethane
- hexadecane
- n-heptane
- 4vp

Michelle Tsui (UC Berkeley, LARSS)

2-D Hansen Plot (δ_p , δ_h only): Select Good Solvents/Co-Solvents

Hanson and Hilderbrand Solubility:

$$O_t^2 = O_d^2 + O_p^2 + O_h^2$$

- 1) DMF
- 2) DMAc
- 3) PMMA
- 4) vinylpyrrolidone
- * 5) tetrahydrofuran
- 6) water
- 7) PVA
- 8) pyridine
- 9) acetic acid
 - 10) tetrachloromethane
- 11) acetone
- 12)toluene
- 13) ethanol
- 14) methanol
- 14) Illettialioi
- 15) isopropanol
- 16) cyclohexane
- 17) butanol
- 18) CNT
- 19) graphene
 - 20) polystyrene
- 21) NMP
- 22) DMSO
- 23) diiodomethane
- 24) hexadecane
- 25) n-heptane
- 26) 4vp

Building Blocks: SWCNT/Polymer Nanocomposites

Electroactive High Performance Polyimide

- Dispersion Interaction
- Donor-Acceptor interaction
- In-situ Polymerization under sonication and shear

 $(\beta$ -CN)APB/ODPA $(T_q = 220$ °C)

Polyimide + SWNT

Park et al, *Chem. Phys. Lett.*, 364 303 (2002) Wise et al, *Chem. Phys. Lett.* 391 207 (2004)

HRSEM: Well Dispersed SWCNT in Polyimide (2D & 3D)

Tailoring Physical Property for Multifunctions

Materials Properties to be Tailored

- Electrical Conductivity
- Dielectric Permittivity
- Magnetic Permeability
- Thermal Conductivity/expansion coefficient
- Radiation Shielding
- Mechanical (modulus, strength, toughness...)
- Solar Absorptivity
- Thermal Emissivity
- Band gap engineering
- Optical property (transparency, refractive index...)
- Piezoelectricity/Pyroelectricity/Electrostrictive
- Gas/Liquid Permeability
- Anisotropy/orientation

Design Parameters

- Nano Inclusion type and combination (CNT, BNNT, BCNNT, GP, hBN, NP...)
- Matrix type
- Composition
- Dispersion
- Orientation
- · Geometry, Fabrication, Processing...

Versatility of SWCNT Electroactive Polymer Nanocomposites

DC Conductivity

- In the vicinity of percolation, the composite acts as a dielectric material and yields an enhanced sensor response
- Above percolation, the composite is conductive (anti-static) and can be used as an electrostatic actuator
- Well above percolation, the composite is very conductive

Alignment Approach

Wet spun fiber 1%SWCNT

- SWCNT Reinforced Functional Polymer Composites
- Alignment
 - High Shear Alignment (Passive)
 - Extrusion, Pultrusion, Calendering
 - Fiber spinning (melt and wet spinning)
 - Electrospinning
 - Electric Field Alignment (Active)
 - AC & DC in a solvent
 - CNT growth w/EF
 - Magnetic Field Alignment (Active)
 - MF in a solvent

Aligned SWCNT-Functional Polymer Composites Using Dielectrophoresis
 Tailoring Physical Properties (Mechanical, Electrical, Dielectric, Thermal...)

Shear Alignment: Extruded Fibers and Films

Composites: B, 35 439 (2004)

Dry-jet wet spinning

Dry-jet wet spiriting				
Georgia Tech Fiber	Yield streng	th Tensile mod	Elongation	Conductivity
	(GPa)	(GPa)	(%)	(S/cm)
PBO	2.6	138	2.0	insulating
5wt% SWCNT/PBO	3.2	156	2.3	insulating
10wt% SWCNT/PBC	4.2	167	2.8	insulating

Macromolecules 35 9039 (2002)

Percolation concentration of well dispersed SWCNT in a polyimide ≈ 0.05vol% Comp. Sci. Tech. 63 (2003) 1637 Chem. Phys. Lett., 364 (2002) 303.

Volume Fraction Percolation (Conductivity)

Orientation increase

All images credit: NASA

Dielectrophoretic Alignment: Spheres, Platelets, Fibers... AC Electric Field Alignment

Spheres

Model for longitudinal and lateral aggregation of inclusions

Fibers

Figure 14. Optical micrograph of thin section of aligned glass fibers (4.5 vol%). Polymerized after 30 s under 0.81 kV/mm AC.

$$| = \frac{pe_0e_1a^3(bE)^2}{k_BT} > 1 \text{ for Alignment}$$

$$\beta = (\varepsilon_2 - \varepsilon_1)/(\varepsilon_2 + 2\varepsilon_1) \text{ or } (\sigma_2 - \sigma_1)/(\sigma_2 + 2\sigma_1)$$

Davis, *J. Appl. Phys.* 72, 1334 (1992)
Park and Robertson, *J. Mater. Sci.*, 33, 3541 (1998)
Images Credit: Park and Robertson, *Mater. Sci. Eng.*, A257, 295 (1998)

Aligned SWCNT/Polymer Composites: OM and SEM

Cured without electric field

SWCNT loading: 0.03wt%

Cured with electric field (200V_{p-p}, 10Hz, 10min)

Park et al, *J. Poly. Sci: Poly. Phys.* 44 1751 (2006)

Conductivity (S/cm)

Effect of Alignment of 0.03%SWCNT/Polymer Composites

 $0.03\% < \phi_{c}$

Degree of SWCNT Alignment ==>> Tailor Physical Properties

Metallized Nanotube Polymer Composite (MNPC) Metal Infusion Process into SWCNT/Polyimide Film

SWCNT/polyimide film formation: good dispersion

Metal-MNPC (Metal/SWCNT/polyimide) film formation: SCF Metal impregnation

All images credit: NASA

Park et al, J. Poly. Sci.: Poly. Phys., 50, 394 (2012)

Ag-MNPC Films with various SWCNT Concentration

All images credit: NASA

Park et al, *J. Poly. Sci.: Poly. Phys.*, 50, 394 (2012)

Tunneling AFM & HRSEM: Ag-MNPC: Ag/10%SWNT/βCN AO

Above: Topograph and tunneling AFM images of 10 wt.% SWNT/□-CN AO/Ag prepared by 20 % metallization solution.

Conductivity & Toughness increased

Left: HRSEM micrograph of 10 wt.% SWNT/□-CN AO/Ag prepared by 20 % metallization solution.

Credit: J. Poly. Sci.: Poly. Phys., 50, 394 (2012)

Hydrogen Storage BNNT

Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Systematic Computational and Experimental Study

Electroactive properties of BNNT

BNNT (12 0) Polarization in Stretching Induced Electric charge (e)

TEM, EELS, and Raman spectra of BCNNT.

B_xC_yN_z Nanotube (BCNNT) Development

All images credit: NASA

Band Gap Measurement: Low Energy EELS (modified BNNT)

Bandgap measurement of C₆₀/BNNT (Low-loss region)

Superimposed Low Loss EEL spectra of multi walled Boron nanotubes shown in previous pages

Endo-Doped BNNNT (C₆₀/BNNT, Gd/GNNT) UC Berkeley

Credit: UC Berkeley; Zettl

Doped Chiral Polymer Metamaterials (DCPM)

What is Metamaterial? & Challenges

Plasmas

$$\varepsilon<0, \mu>0$$

Negative Index Materials

$$\varepsilon < 0, \mu < 0$$

$$n = -\sqrt{\varepsilon \mu}$$

Conventional Materials

$$\varepsilon > 0, \mu > 0$$

 $n = +\sqrt{\varepsilon\mu}$

Split Rings

$$\varepsilon > 0, \mu < 0$$

 $n < 1 \rightarrow$ Metamaterials

 μ

Credit: APL 78 489 (2001)

Approaches

Metamaterials without special architecture or design (negative permeability) possible for optical ranges?

$$n_{eff} = \sqrt{em} - k$$

Problems of SOA Split Resonance Ring (SRR)

- Special architecture and complex design required
- Difficult to build SRR crystalline structures
- Difficult to scale-up
- Not flexible and difficult to apply for complex structures
- Difficult to reach optical ranges
- Lack of resonance frequency tunability

Novel Approach: Metamaterial without special architecture and negative permeability

Chiral Metamaterials $n_{eff} = \sqrt{\varepsilon \mu}$ **Our Novel Approach** $n_{\text{eff}} = n_{\text{composite}} - \kappa_{\text{composite}}$ $n_{\text{composite}} = n_{\text{host}} - \Delta n_{\text{plasmonic}}$

Credit: IEEE Journal of selected topics in quantum electronics, 10 1154 (2004)

- The size of the helical chiral polymer is of the order of wavelengths in the optical range
- Self-organization of helical polymer chains
- Incorporating plasmonic inclusions lowers the permittivity
- Electronic coupling between plasmonic particles and helical polymer chains enhances chirality

Plasmon NP infusion: in situ Direct Mixing & SCF infusion

In-situ Direct mixing

$$\begin{array}{c|c}
\begin{pmatrix}
H & H & C \\
 & C_2H_4
\end{pmatrix}$$

$$\begin{array}{c|c}
C_2H_4
\end{array}$$

$$\begin{array}{c|c}
PBLG$$

Or $H = \begin{bmatrix} O \\ CH_3 \end{bmatrix}$ CH_3 Poly(L-lactide)

+
$$Ag$$
 $O = CF_3$
 CF_3
Ag salt

CHCl₃

Direct mixing cast

Ag/PBLG Film

Supercritical fluid (SCF) CO₂ Ag impregnation

PBLG Film

+

Ag/PBLG Film
All images credit: NASA

Ellipsometry (Index of Refraction): PBLG, DCPM

Drawing of chiral polymer \rightarrow Reduction of index of refraction $n_{PBLG} \approx 1.55$ in visible range Addition of Ag or Au plasmonic nanoparticles \rightarrow Reduction of index of refraction

Piezoelectric and Electrostrictive Properties for Sensors/Actuators (SWCNT and BNNT Composites)

Actuation Response: SWCNT/Polyimide Composite

Out-of-plane strain

Using Fiber Optic Displacement Measurement

Acousto-Optic Sensors model 201 Angstrom ResolverTM

Dilatometer with cantilever

Actuation: Out-of Plane Strain: SWCNT Polymer Composite

 $10^3 - 10^4$ times higher

Electrostrictive coefficient

SWCNT/Polyimide $M_{33} = -3.6 \times 10^{-15} \sim -1.2 \times 10^{-13} \text{ m}^2/\text{V}^2$ Polyurethane $M_{33} = -4.6 \times 10^{-18} \sim -1.6 \times 10^{-17} \text{ m}^2/\text{V}^2$

$$S_{33} = S_E$$
 (Electrostriction)
+ S_M (Maxwell effect)

$$S_M = -\frac{1}{2Y}e_0e_rE^2(1+2n) < 0.01\%$$

Park et al, *Adv Mater*, 20 2074 (2008)

Bending Actuation of SWNT Polymer Nanocomposite

No EF

 $M_{31} = 2.86 \times 10^{-15} (m^2/V^2)$

Sonic fatigue abatement Noise transmission attenuation Wing and panel flutter control Tail buffet alleviation control Surface shape control

All images credit: NASA Park et al, *Adv Mater*, 20 2074 (2008)

Multifunctional BNNT Polymer Composites

- Electroactive Properties
- Radiation Shielding Properties

Piezoelectric Properties of BNNTs

Piezoelectric Effect

Induced polarization, \vec{p} , under strain e_{jk} : $p_i = e_{ijk}e_{jk}$ where e_{ijk} - piezoelectric tensor with symmetry: $e_{xxx} = -e_{xyy} = -e_{yxy} = -e_{yyx}$; $e_{xxx} = 0.086 - 0.12 \, e/Bohr$

The MD model has to reproduce this behavior!

Molecular Dynamics

 Define forces between atoms using a given interatomic potential (energy)

$$U_{r} = \mathop{\text{ch}}_{i} \oint V_{R}(r_{ij}) - B_{ij}V_{A}(r_{ij}) \dot{\mathcal{F}}_{i}, \quad \vec{F}_{i} = - \P U_{r} / \P \vec{r}_{i}$$

• Evolve atoms according to Newton's law: $\vec{a}_i = \vec{F}_i / m_i$

Piezoelectric MD

 Introduce dipole term to the interatomic potential (energy)

$$\begin{split} U &= U_r + U_p; \quad U_p = \mathop{\aa}_{i=\{B\},j=\{N\}} U \Big(\vec{p}_{BN,\,ij} \Big) \\ \vec{p}_{BN,\,ij} &= p_0 \mathop{\aa}_{\grave{\theta}}^{\acute{e}} \frac{r_{BN,\,ij} - r_0}{r_0} + \mathop{\aa}_{k^1i,j} \mathop{\aa}_{\dot{\theta}}^{2} \frac{1}{2} + \cos q_{ijk} \mathop{\aa}_{\dot{\theta}}^{\grave{U}} \Big) \end{split}$$

Elementary dipole unit

Results: Piezoelectricity under Deformation

The MD model is successful in representing the piezoelectric properties of BNNTs

Yamakov, Park et al., Comp. Mater. Sci., 95 362 (2014)

Experiment Displacement Study

Polymer Matrix:

- Polyimides [CP2, (β-CN)AMPB/ODPA (bCNAO), (β-CN)APB/PMDA (bCNAP)]
- Polyurethane
- PMMA
- Nylon 6,10

Inclusions:

- h-BN (hexagonal boron nitride powders)
- BNNT (purchased CVD, large, fat tubes, low quality)
- BNNT (high pressure, high temp, CO2 laser as grown)

Alignment (stretched)

No alignment (no stretched) and stretched (up to 100%)

Polyimide (CP2)

Polyimide (bCNAO)

Polyimide (bCNAM) (unstreched and stretched 100%)

5wt%hBN/polyimide (stretched 110%)

5wt%BNNT(CVD)/polyimide

2wt%BNNT(laser)/polyimide (unstreched and stretched 100%)

Study of Origin of Actuation: Stretched Films Actuation of Unstretched/Stretched Pristine Polyimide

Unstretched

100% Stretched @225°C, Annealing

Electric Field (MV/m)

Field induced strain (ε_{33})

$$\varepsilon_{33} = d_{33} \cdot \boldsymbol{E} + M_{33} \cdot \boldsymbol{E}^2 + \dots$$

d₃₃: piezoelectric (PE)

 M_{33} : mostly electrostrictive (ES)

Pristine and composite films are stretched with a tensile tester (Instron microtest) in an oven at above Tg

All images credit: NASA

Stretched BNNT-Polyimide Nanocomposite

225°C slightly above Tg

Actuation of Unstretched/Stretched 2% BNNT/Polyimide

_angley All-Nanotubes Actuator/Sensor (LaRC-ANAS) Film

Goal: Flexible, transparent, large actuation, high sensitivity, Mechanically Durable

All-Nanotubes Actuator/Sensor Film: In-Plane Strain

Field induced strain (ε_{33})

$$\varepsilon_{33} = d_{33} \cdot \mathbf{E} + M_{33} \cdot \mathbf{E}^2 + \dots$$

 $d_{33:}$ piezoelectric coefficient $M_{33:}$ electrostrictive coefficient E: applied electric field

Actuation of Unstretched/Stretched h-BN/BNNT Materials

Materials	Inclusions	Polymer	Actuation
Polyimide (PI)	None	Polyimide	None
5%hBN/Polyimide (100% stretched)	5%hBN	Polyimide	None
5%BNNT (CVD)/Polyimide	5%BNNT (CVD)	Polyimide	None
Polyimide (100% stretched)	None	Polyimide	None
2%BNNT (laser)/Polyimide 2% BNNT	2%BNNT	Polyimide	✓
(laser)/Polyimide (100% stretched)	2%BNNT	Polyimide	\ \ \ \ \ \ \ \ \ \
20%BNNT/Polyurethane	>20% BNNT	Polyurethane	111111111111

h-BN → No Actuation Commercial BNNT (CVD) → No Actuation Polymer → No Actuation Stretched Polymer → No Actuation BNNT (high pressure, high temp laser) → Origin of the Actuation

Radiation Shielding Properties

Modeling

Register | Forgot my password | Change password

Science 340 1080 (2013) Welcome to OLTARIS, the On-Line Tool for the Assessment of Radiation in Space. OLTARIS is an integrated tool set utilizing HZETRN (High Charge and Energy Transport). These tools are intended to help scientists and engineers study the effects of space production on shielding materials, electronics, and biological systems.

Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory

C. Zeitlin, ¹* D. M. Hassler, ¹ F. A. Cucinotta, ² B. Ehresmann, ¹ R. F. Wimmer-Schweingruber, ³ D. E. Brinza, ⁴ S. Kang, ⁴ G. Weigle, ⁵ S. Böttcher, ³ E. Böhm, ³ S. Burmeister, ³ J. Guo, ² J. Köhler, ³ C. Martin, ³ A. Posner, ⁶ S. Rafkin, ¹ G. Reitz ⁷

The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

Spacecraft data nails down radiation risk for humans going to Mars

Nature News, May 30, 2013, Ron Cowan Interviewed Sheila Thibeault at NASA Langley about the study published in *Science*

Mars Science Laboratory (MSL) during its cruise to Mars between 6 December 2011 and 14 July 2012 (253 days)

Mars Round Trip Dose Equivalent is around 0.66 Sievert

Image credit: NASA

Neutron Radiation Shielding Study

Materials

- Hydrogen, Boron, Nitrogen
- BN, BNNT, Gd
- Low density polyethylene (LDPE), polyimide (Kapton, CP2, (β-CN)APB/ODPA), polyurethane

Radiation Shielding Structural Materials

- In-situ polymerization under simultaneous sonication and shear
- Supercritical Fluid Infusion

Characterization

- Neutron Radiation Exposure Lab: Source: Am/Be 1Curie
- Moderated by borated polyethylene cylinder block (44mm thick):
 45 mrem/hr thermal neutrons
- Sample: 2 x 2" polymer and BN polymer composites
- Detection Foil: 1.25" Indium [ail (0 fmm 10 harms)
- RSMES: Radiation Shielding

Modeling

OLTARIS

Geiger-Mueller Tube

All images credit: NASA

Advanced Radiation Shielding Materials Containing Hydrogen, Boron, and Nitrogen: Preliminary Results

Am/Be 1Curie & moderated by borated PE

$$^{241}_{95}Am \rightarrow ^{237}_{93}Np + ^{4}_{2}He(\alpha)$$

 $^{4}_{2}He(\alpha) + ^{9}_{4}Be \rightarrow ^{12}_{6}C + ^{1}_{0}n + \gamma(5.71MeV)$

0.1 μ Ci Sr-90: β (Synthesized Apr 2009)

$$^{90}_{38}Sr \rightarrow ^{90}_{39}Y + \beta^{-}; t_{half} = 28.8 \text{ y}$$

Materials assumed to have common 30 cm thickness.

BN materials perform better than LH2 and water. BN+5%H performs better than state of art polyethylene.

Summary

- B_xC_yN_z Nanotubes (BNNT, BCNNT) were successfully synthesized with High Temperature-Pressure Laser Synthesis method.
- Development of multifunctional nanotube polymer nanocomposites with uniform dispersion.
- Ne Physical properties of nanocomposites can be tailored over a wide range by fine tuning the type of tubes, concentration, and degree of the alignment of nanotubes.
- In-situ diagnostics and modeling were implemented to support study of the BNNT and BCNNT nucleation and growth mechanism.
- Multifunctional Nanocomposites can sense strain, stress, pressure, damage, temperature.
- Multifunctional Nanocomposites can actuate through piezoelectrical and electrostrictive phenomena and generate large strain at low electric fields.
- Multifunctional Nanocomposites can shield radiation and high heat flux.

Thank You

