CSC 226

Algorithms and Data Structures: II
Rich Little
rlittle@uvic.ca
ECS 516

Sorting revisited

Overview of sorting algorithms

Different types of Sorting Algorithms

- Comparison Based Sorting
 - sorting algorithm that sorts based only on comparisons
 - elements to be sorted must satisfy total order properties
- Integer Sorting
 - sorting algorithm that sorts a collection of data values by numeric keys, each of which is an integer

Selection Sort

```
Algorithm selectionSort(A,n):
Input: Array A of size n
Output: Array A sorted
for k \leftarrow 0 to n-2 do
   \min \leftarrow k
   for j \leftarrow k+1 to n-1 do
      if A[j] < A[min] then
         min \leftarrow j
      end
   end
   swap(A[k], A[min])
end
end
```

Properties of Selection Sort

- Comparisons: Worst-case = best-case = average-case = $O(n^2)$
- exactly n-1 swaps
- Simple implementation
- *Not adaptive*: The input order has no effect on the efficiency of the algorithm
- *In-place*: only requires a constant amount of (additional) memory

Linear Insertion/Insertion Sort (Pseudocode)

```
Algorithm insertionSort(A,n):
  Input: Array A of size n
  Output: Array A sorted
  for k \leftarrow 1 to n-1 do
     val \leftarrow A[k]
    j \leftarrow k-1
     while j \ge 0 and A[j] > val do
        A[j+1] \leftarrow A[j]
        j \leftarrow j - 1
     end
     A[j+1] = val
  end
end
```

Complexity of Insertion Sort

- Comparisons:
 - Worst-case: $O(n^2)$
 - Best-case: O(n)
 - Average-case: $O(n^2)$
- O(n) space
- Swaps:
 - Worst-case: $O(n^2)$
 - Best-case: O(n)

Some Properties of Insertion Sort

- Simple implementation
- Efficient for
 - (quite) small data sets
 - data sets of already substantially sorted sequences: more efficient in practice than most other simple quadratic algorithms (*adaptive*)
- *In-place*: only requires a constant amount of (additional) memory
- Online: updates sort as elements are received
- Natural: people often use an insertion like sorting in practice

Quicksort

```
Algorithm quickSort(A, a, b)
   Input Array A, ranks a and b
  Output A with the elements ordered between a and b
    if a \ge b then return
   p \leftarrow A[b]
    1 ← a
    r \leftarrow b - 1
  while 7 \le r do
     while 1 \le r and A[1] \le p do
       1 \leftarrow 1 + 1
     while r \ge 1 and A(r) \ge p do
       r \leftarrow r - 1
     if 1 < r then
       swap(A[1], A[r])
   swap(A[1], A[b])
   quickSort(S, a, l - 1)
   quickSort(S, l + 1, b)
```

Properties of Quicksort

- Worst case time complexity: $O(n^2)$
- Expected: $O(n \log(n))$
 - since, when picked at random, the pivot is likely good and splits up the sequence pretty evenly ...
- Best-case: $O(n \log n)$
- Mergesort has $O(n \log(n))$ worst case time complexity, but quicksort is better in practice
- Usually the best choice unless the recursion gets too deep or stability is needed

Mergesort (Pseudocode)

```
Algorithm mergeSort (S):
  input: Sequence S
  ouput: Sequence S sorted
  if S.size() < 2 then
      return S
  S_1, S_2 \leftarrow \text{divide(S)}
  S_1 \leftarrow \text{mergeSort}(S_1)
  S_2 \leftarrow \text{mergeSort}(S_2)
  S \leftarrow \text{merge}(S_1, S_2)
  return S
```

Merge (Pseudocode)

```
Algorithm merge (S_1, S_2):
while not(S_1.isEmpty() or S_2.isEmpty()) do
  if S_1.first().key() < S_2.first().key() then
     S.insertLast(S_1.removeFirst())
  else
     S.insertLast (S_2.removeFirst()))
  end
end
while not(S_1.isEmpty()) do
  S.insertLast(S_1.removeFirst())
end
while not (S_2 is Empty()) do
  S.insertLast (S_2.removeFirst())
end
                                             13
return S
```

Properties of Mergesort

- Worst-case = best-case = average case = $O(n \log n)$
- O(n) extra space

Heapsort (Pseudocode)

```
Algorithm heapSort(Array A, int n)
input: array A of size n
output: array A sorted

heapify(A, n) //make A a maxHeap
end ← n-1
while end > 0 do
   swap(A[end], A[0])
   end ← end - 1
  bubbleDown(A, 0, end)
```

Properties of Heapsort

- Worst-case = best-case = average case = $O(n \log n)$
- In-place (constant extra space)
- Quick sort still outperforms it in most cases, why?

Radixsort LSD

- Take the least significant digit (or group of bits) of each key.
- Group the keys based on that digit into <u>buckets</u>, but otherwise keep the original order of keys.
- Concatenate the buckets together in order.
- Repeat the grouping process with each more significant digit.

Radixsort MSD

- Take the most significant digit of each key.
- Sort the list of elements based on that digit, grouping elements with the same digit into one <u>bucket</u>.
- Recursively sort each bucket, starting with the next digit to the right.
- Concatenate the buckets together in order.

Properties of Radixsort

- Repeated sorting by means of Bucket Sort on *n* keys
 - For each component of the key perform one Bucket Sort
- Implement buckets (*N* of them) as queues
- Let the number of components per key be d

• Theorem. The time complexity of Radix Sort is O(d(n+N)) or O(dn) for large n.

Shellsort (Pseudocode)

```
Algorithm Shellsort (A, n)
   input: array A of size n
   output: A sorted
   h \leftarrow 1
   while h < n/3 do h \leftarrow 3h +1
   while h \ge 1 do
      for i = h to n-1 do
         j \leftarrow i
         while j \ge h and A[j] < A[j-h] do
            swap (A[j], A[j-h])
      h \leftarrow h/3
```

Properties of Shellsort

- The analysis of Shellsort is dependent on the numeric properties of *n*, the size of *h* and the step size and in some cases is still an open question
- This algorithm decreases h by the sequence $(3^k 1)/2$ which has a worst-case time of $O(n^{3/2})$
- Is this better than $O(n \log n)$?

Bubble Sort (Pseudocode)

```
Algorithm bubbleSort (A, n):
  Input: Array A of size n
  Output: Array A sorted
 repeat
   swapped ← false
   for i = 1 to n-1 do
     if A[i-1] > A[i] then
       swap(A[i-1], A[i])
       swapped ← true
   n \leftarrow n-1
 until not swapped
```

Complexity of Bubble Sort

- Worst-case = average-case = $O(n^2)$
- Best-case = O(n)

Shakersort

- Variation of bubble sort: sorts in both directions instead of just one as in bubble sort
- slightly better performance than bubble sort
- worse than insertion sort in practice

	Type of Sorting Algorithm	Worst Case Time	Best Case Performance	Average Case Performance	Properties
Insertion Sort	Comparison Based Sorting	O(n ²)	O(n)	O(n²)	adaptive, in place, stable, online
Bubblesort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	in place
Selection Sort	Comparison Based Sorting	O(n ²)	O(n ²)	O(n²)	in place
Binary Insertion	Comparison Based Sorting	O(n²)	O(n)	O(n²)	adaptive, in place
Shakersort	Comparison Based Sorting	O(n²)	O(n)	O(n²)	stable, in place
Shellsort	Comparison Based Sorting	O(n²)	O(n log n)		in place
Quicksort	Comparison Based Sorting	O(n²)	O(n log n)	O(n log n)	in place
Heapsort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	in place
Mergesort	Comparison Based Sorting	O(n log n)	O(n log n)	O(n log n)	not in place
Bucketsort	Integer Sorting	O(n+k)		O(n+k)	can be implemented such that stable
Radixsort	Integer Sorting	O(dn)			stable

Sorting out Sorting

- Visualization and Comparison of Sorting Algorithms
- https://www.youtube.com/watch?v=ZZuD6iUe3Pc

How fast can we sort? A lower bound for comparison based sorting

- We prove: using a comparison based sorting algorithm, we cannot do better than $O(n \log(n))$ worst case time complexity
- Therefore, $\Omega(n \log(n))$ denotes the **lower bound** for comparison based sorting

Theorem: No comparison based sorting algorithm for n distinct elements has a worst case running time that is better than $O(n \log n)$

Proof:

- Consider a sequence S containing n distinct elements, say $x_0, x_1, x_2, ..., x_{n-1}$
- To decide the order of elements, a comparison-based algorithm compares elements pairwise—a sufficient number of times
- In particular, to decide which element of x_i and x_j is smaller, it answers "is $x_i < x_j$?"
- Depending on the outcome—i.e., yes or no—the algorithm performs either no further comparisons or it continues with more comparisons

Proof (continued)

- We want to know: how good is the best of all comparison-based sorting algorithms? (Let's call it the *optimal* algorithm)
- This optimal sorting algorithm requires a certain number of comparisons (at least) to sort *any* sequence (not just the easiest input)
- We ask: How many comparisons are required for an optimal sorting algorithm to sort *n* elements?

Proof (continued)

- How many comparisons are required for an optimal sorting algorithm to sort *n* elements?
- We consider our sequence $S: x_0, x_1, x_2, ..., x_{n-1}$
- The optimal algorithm will pick two elements for a first comparison, and, based on the outcome choose a second, etc.
- This can be depicted in a decision tree

Decision tree of an optimal sorting algorithm that is sorting a general sequence of elements

Since we don't know what *S* looks like, any permutation of *S* could be the sorted one. Thus, every permutation of *S* has to be represented by a path from the root to a leaf in the decision tree. Therefore:

Decision tree of an optimal sorting algorithm sorting a general sequence of elements

Decision tree of an optimal sorting algorithm sorting a general sequence of elements

- # leaves $\geq n!$
- tree is binary
- height is $\ge \log(n!)$; can't be less, since the shortest binary tree that has n! leaves has a height of $\log(n!)$ [definition of \log]

Proof (continued)

- Since the height of the tree is at least log(n!), we know that
 - at least log(n!) worst case comparisons are required by an optimal comparison based sorting algorithm
 - at least log(n!) worst case comparisons are required by any comparison based algorithm

Proof (continued)

• What is $\Omega(\log(n!))$?

```
• \log(n!) \ge \log(n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 \cdot 1)

\ge \log(n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n/2) \cdot \dots \cdot 3 \cdot 2 \cdot 1)

\ge \log((n/2) \cdot \dots \cdot (n/2))

\ge \log((n/2)^{(n/2)}) = (n/2) \log(n/2)
```

- and therefore $\log(n!) \in \Omega(n \log(n))$
- We conclude: there is no comparison-based sorting algorithm that has a worst-case time complexity that is better than $O(n \log(n))$