Technical Report for Assignment 2:

Building a single CNN network with multiclass classifier heads for 3 different classification tasks on the same data

Colab Notebook - OL_Assignment2.ipynb

Priyansh Saxena (B22EE075)

The report provides an in-depth analysis of the code, focusing on the **Main Assignment** and **Severity-Aware Bonus Implementation**.

The report is structured to cover the following aspects:

- 1. Model Architecture and Parameters
- 2. Training Dynamics
- 3. Performance Metrics
- 4. Severity-Aware Implementation
- 5. Comparative Analysis
- 6. Critical Observations
- 7. Recommendations for Improvement

1. Model Architecture and Parameters

1.1 Main Assignment Model

The **MultiHeadCNN** model is a custom convolutional neural network (CNN) designed for hierarchical classification on the CIFAR-100 dataset. It consists of:

• Feature Extractor:

- Three convolutional blocks, each with two convolutional layers, batch normalization, ReLU activation, and max pooling.
- Adaptive average pooling reduces spatial dimensions to 4x4.

Shared Fully Connected Layers:

• Two fully connected layers with dropout (0.5) for regularization.

Classification Heads:

Three separate heads for class (100), superclass (20), and group (9) predictions.

Parameter Count:

• Total Parameters: 5,933,505

• Trainable Parameters: 5,933,505

1.2 Severity-Aware Model

The **SeverityAwareCNN** model is a simplified version of the main model, focusing on class-level predictions with a custom severity-aware loss function. It consists of:

Feature Extractor:

Same as the main model.

Classifier:

 Two fully connected layers with dropout (0.5) and a final classification layer (100 classes).

Parameter Count:

• Total Parameters: 5,918,628

• Trainable Parameters: 5,918,628

2. Training Dynamics

2.1 Main Assignment

Training Splits: 70%, 80%, 90%

Epochs: 50Batch Size: 128

• Optimizer: Adam (lr=0.001)

• LR Scheduling: ReduceLROnPlateau (patience=5)

• Loss Function: Sum of cross-entropy losses for class, superclass, and group predictions.

Training Loss Trends:

• **70% Split**: Loss decreases from 8.59 to 1.61.

• 80% Split: Loss decreases from 2.33 to 1.10.

• 90% Split: Loss decreases from 1.73 to 0.86.

Validation Loss Trends:

• 70% Split: Loss decreases from 7.63 to 3.25.

• 80% Split: Loss decreases from 1.81 to 1.69.

• **90% Split**: Loss decreases from 1.67 to 1.25.

2.2 Severity-Aware Implementation

• Training Splits: 70%, 80%, 90%

Epochs: 50Batch Size: 128

• Optimizer: Adam (lr=0.001)

• LR Scheduling: ReduceLROnPlateau (patience=5)

 Loss Function: Custom severity-aware loss, weighting cross-entropy by error severity.

Training Loss Trends:

• 70% Split: Loss decreases from 11.65 to 2.25.

• **80% Split**: Loss decreases from 2.96 to 1.51.

• 90% Split: Loss decreases from 2.31 to 1.25.

Validation Loss Trends:

• **70% Split**: Loss decreases from 10.37 to 3.57.

• 80% Split: Loss decreases from 1.67 to 1.86.

• **90% Split**: Loss decreases from 1.67 to 1.43.

80% Split

3. Performance Metrics

3.1 Main Assignment

Training Set Results:

- 70% Split:
 - Class Accuracy: 77.65%
 - Superclass Accuracy: 92.51%
 - Group Accuracy: 95.98%
- 80% Split:
 - Class Accuracy: 83.63%
 - Superclass Accuracy: 95.59%
 - o Group Accuracy: 98.06%
- 90% Split:
 - Class Accuracy: 86.94%
 - Superclass Accuracy: 97.50%
 - Group Accuracy: 99.03%

Test Set Results:

- 70% Split:
 - Class Accuracy: 59.68%
 - o Superclass Accuracy: 74.72%
 - o Group Accuracy: 81.40%
- 80% Split:
 - o Class Accuracy: 64.61%
 - Superclass Accuracy: 78.68%
 - o Group Accuracy: 84.49%
- 90% Split:
 - o Class Accuracy: 66.14%
 - o Superclass Accuracy: 79.65%
 - o Group Accuracy: 84.86%

Confusion Matrix

70% Split - Class Wise

70% Split - Superclass Wise

							9	Supe	rclas	s Co	nfus	ion N	1atrix	<								
0 -	349	34	1	0	0	3	0	1	10	2	6	6	15	7	7	18	36	1	2	2		
н -	29	382	5	2	5	1	0	6	0	1	3	6	2	10	4	25	15	0	1	3	Н	
7 -	0	5	460	2	5	2	0	8	1	1	0	0	1	8	1	5	0	0	0	1	8-	400
m -	1	5	4	399	10	32	12	2	0	3	0	2	1	9	4	5	2	0	1	8		
4 -	2	1	19	4	431	4	1	3	7	2	0	5	3	7	2	3	5	1	0	0		
٦ -	1	3	0	31	2	391	16	2	0	5	2	0	1	11	15	5	1	3	4	7		
9 -	3	2	2	15	1	20	420	4	1	8	1	0	1	3	5	2	1	1	2	8	ы	
7 -	3	7	12	3	6	0	0	388	3	2	0	3	2	30	2	27	10	1	0	1		300
ω -	30	1	1	0	3	3	2	4	371	0	2	25	16	1	1	12	26	1	0	1		
ი -	0	1	0	1	0	3	3	0	0	446	15	1	1	2	0	1	1	1	8	16		
10	4	9	3	1	1	2	2	1	4	9	430	2	0	2	0	6	5	16	1	2		
11 -	16	1	1	4	0	0	0	1	34	2	2	361	13	0	8	22	27	1	2	5	-	200
12	15	3	1	0	2	0	1	3	18	1	0	16	358	5	3	19	51	0	3	1		
13	8	8	6	10	5	2	0	32	3	2	3	1	4	357	6	37	12	2	0	2		
14	5	4	8	2	3	4	3	2	2	1	0	7	2	5	439	4	7	0	2	0		
15	33	28	1	0	1	2	6	15	7	10	2	7	15	40	4	300	21	0	3	5		100
16	28	5	1	4	0	0	4	7	9	1	1	15	32	8	7	19	357	2	0	0		.0.55.05.05.0
17	1	1	2	0	0	2	1	3	2	6	12	0	2	1	0	4	1	460	1	1		
		1	0	2	0	3	4	0	1	10	1	0	2	3	0	2	0	0	439	32		
19		1	0	2	1	3	5	8	1	14	4	6	1	6	1	4	0	2	40	397		
1575	ó	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	-	0

70% Split - Group Wise

				Group	Confusion	Matrix				
0 -	1373	4	30	9	11	24	3	31	15	- 1750
н-	3	912	16	3	6	44	1	10	5	- 1500
7 -	30	3	803	27	7	22	8	98	2	- 1250
m -	11	9	22	787	21	13	11	117	9	- 1000
4 -	5	8	7	41	796	9	6	124	4	
rv -	25	52	36	15	5	1801	19	29	18	- 750
ω -	11	2	7	8	12	13	434	13	0	- 500
7 -	10	12	77	98	71	31	9	1190	2	- 250
ω -	20	4	2	13	7	11	0	11	432	
	ó	i	2	3	4	5	6	7	8	- 0

80% Split - Class Wise

80% Split - Superclass Wise

							!	Supe	rclas	s Co	nfus	ion M	1atrix	(
0 -	349	34	1	0	0	3	0	1	10	2	6	6	15	7	7	18	36	1	2	2		
н -	29	382	5	2	5	1	0	6	0	1	3	6	2	10	4	25	15	0	1	3	н	
7 -	0	5	460	2	5	2	0	8	1	1	0	0	1	8	1	5	0	0	0	1		400
m -	1	5	4	399	10	32	12	2	0	3	0	2	1	9	4	5	2	0	1	8		
4 -	2	1	19	4	431	4	1	3	7	2	0	5	3	7	2	3	5	1	0	0		
ω -	1	3	0	31	2	391	16	2	0	5	2	0	1	11	15	5	1	3	4	7		
φ-	3	2	2	15	1	20	420	4	1	8	1	0	1	3	5	2	1	1	2	8		200
۲ -	3	7	12	3	6	0	0	388	3	2	0	3	2	30	2	27	10	1	0	1		300
ω -	30	1	1	0	3	3	2	4	371	0	2	25	16	1	1	12	26	1	0	1		
ი -	0	1	0	1	0	3	3	0	0	446	15	1	1	2	0	1	1	1	8	16		
10	4	9	3	1	1	2	2	1	4	9	430	2	0	2	0	6	5	16	1	2		
ㅁ-	16	1	1	4	0	0	0	1	34	2	2	361	13	0	8	22	27	1	2	5		200
17	15	3	1	0	2	0	1	3	18	1	0	16	358	5	3	19	51	0	3	1		
13	8	8	6	10	5	2	0	32	3	2	3	1	4	357	6	37	12	2	0	2		
14 -	5	4	8	2	3	4	3	2	2	1	0	7	2	5	439	4	7	0	2	0		
15	33	28	1	0	1	2	6	15	7	10	2	7	15	40	4	300	21	0	3	5	_	100
16	28	5	1	4	0	0	4	7	9	1	1	15	32	8	7	19	357	2	0	0		
17	1	1	2	0	0	2	1	3	2	6	12	0	2	1	0	4	1	460	1	1		
18	0	1	0	2	0	3	4	0	1	10	1	0	2	3	0	2	0	0	439	32		
19	4	1	0	2	1	3	5	8	1	14	4	6	1	6	1	4	0	2	40	397		
	Ó	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	-	0

80% Split - Group Wise

				Group	Confusion	Matrix				_	_
0 -	1373	4	30	9	11	24	3	31	15		- 1750
н-	3	912	16	3	6	44	1	10	5		- 1500
7 -	30	3	803	27	7	22	8	98	2		- 1250
m -	11	9	22	787	21	13	11	117	9		- 1000
4 -	5	8	7	41	796	9	6	124	4		
ι ν -	25	52	36	15	5	1801	19	29	18		- 750
φ-	11	2	7	8	12	13	434	13	0		- 500
7 -	10	12	77	98	71	31	9	1190	2		- 250
ω -	20	4	2	13	7	11	0	11	432		
	ó	i	2	3	4	5	6	7	8		- 0

90% Split - Class Wise

90% Split - Superclass Wise

								Supe	rclas	s Co	nfus	ion N	1atri:	<							
o -	349	34	1	0	0	3	0	1	10	2	6	6	15	7	7	18	36	1	2	2	
- -	29	382	5	2	5	1	0	6	0	1	3	6	2	10	4	25	15	0	1	3	
v -	0	5	460	2	5	2	0	8	1	1	0	0	1	8	1	5	0	0	0	1	E
n -	1	5	4	399	10	32	12	2	0	3	0	2	1	9	4	5	2	0	1	8	
4 -	2	1	19	4	431	4	1	3	7	2	0	5	3	7	2	3	5	1	0	0	
n -	1	3	0	31	2	391	16	2	0	5	2	0	1	11	15	5	1	3	4	7	
o -	3	2	2	15	1	20	420	4	1	8	1	0	1	3	5	2	1	1	2	8	
	3	7	12	3	6	0	0	388	3	2	0	3	2	30	2	27	10	1	0	1	
o -	30	1	1	0	3	3	2	4	371	0	2	25	16	1	1	12	26	1	0	1	
n -	0	1	0	1	0	3	3	0	0	446	15	1	1	2	0	1	1	1	8	16	
3 -	4	9	3	1	1	2	2	1	4	9	430	2	0	2	0	6	5	16	1	2	
: -	16	1	1	4	0	0	0	1	34	2	2	361	13	0	8	22	27	1	2	5	
7 -	15	3	1	0	2	0	1	3	18	1	0	16	358	5	3	19	51	0	3	1	
ე -	8	8	6	10	5	2	0	32	3	2	3	1	4	357	6	37	12	2	0	2	
1 -	5	4	8	2	3	4	3	2	2	1	0	7	2	5	439	4	7	0	2	0	
ე -	33	28	1	0	1	2	6	15	7	10	2	7	15	40	4	300	21	0	3	5	
9 -	28	5	1	4	0	0	4	7	9	1	1	15	32	8	7	19	357	2	0	0	
i -	1	1	2	0	0	2	1	3	2	6	12	0	2	1	0	4	1	460	1	1	
o -	0	1	0	2	0	3	4	0	1	10	1	0	2	3	0	2	0	0	439	32	
ন -	4	1	0	2	1	3	5	8	1	14	4	6	1	6	1	4	0	2	40	397	
	_	1	_	-	1	1	-	4	_		10	1,	10	1	7.0	1	10	1	10	10	

90% Split - Group Wise

				Group	Confusion	Matrix				
0 -	1373	4	30	9	11	24	3	31	15	- 1750
н-	3	912	16	3	6	44	1	10	5	- 1500
7 -	30	3	803	27	7	22	8	98	2	- 1250
m -	11	9	22	787	21	13	11	117	9	- 1000
4 -	5	8	7	41	796	9	6	124	4	
rv -	25	52	36	15	5	1801	19	29	18	- 750
6 -	11	2	7	8	12	13	434	13	0	- 500
7 .	10	12	77	98	71	31	9	1190	2	- 250
ω -	20	4	2	13	7	11	0	11	432	
	Ó	i	2	3	4	5	6	7	8	- 0

3.2 Severity-Aware Implementation

Training Set Results:

- 70% Split:
 - o Accuracy: 62.41%
 - o Average Severity: 1.0783
- 80% Split:
 - Accuracy: 71.56%
 - Average Severity: 0.8173
- 90% Split:
 - Accuracy: 74.76%
 - o Average Severity: 0.7256

Test Set Results:

- 70% Split:
 - Accuracy: 56.71%
 - o Average Severity: 1.2389
- 80% Split:
 - o Accuracy: 62.34%
 - Average Severity: 1.0757
- 90% Split:
 - Accuracy: 63.36%
 - o Average Severity: 1.0499

4. Severity-Aware Implementation

4.1 Severity Matrix Design

The severity matrix assigns penalties based on the hierarchical relationships between classes:

• Same Class: Severity = 0

• Same Superclass: Severity = 1

• **Same Group**: Severity = 2

• **Different Group**: Severity = 3

4.2 Custom Loss Function

The **SeverityAwareLoss** function:

- Computes standard cross-entropy loss.
- Multiplies the loss by the severity weight for each misclassification.
- Encourages the model to make "less severe" errors.

4.3 Training Metrics

- **Severity Tracking**: Average severity per batch is tracked during training and validation.
- Accuracy vs. Severity Trade-off: The model balances accuracy and error severity, prioritizing less severe misclassifications.

Confusion Matrix for Bonus

5. Comparative Analysis

5.1 Accuracy

- Main Model: Higher accuracy across all splits (59.68%–66.14%).
- **Severity-Aware Model**: Lower accuracy (56.71%–63.36%) but with controlled error severity.

5.2 Error Severity

- Main Model: No control over error severity.
- **Severity-Aware Model**: Explicitly minimizes severe errors, achieving lower average severity (1.2389–1.0499).

5.3 Training Dynamics

- Main Model: Faster convergence due to multi-task learning.
- Severity-Aware Model: Slower convergence due to the complexity of the severity-aware loss.

6. Critical Observations

1. Overfitting:

- The main model shows significant overfitting, especially with larger training splits (e.g., 90% split).
- The severity-aware model exhibits less overfitting, likely due to the regularization effect of the severity penalty.

2. Severity Matrix Limitations:

- Fixed severity weights may not capture the true semantic relationships between classes.
- o The matrix assumes a strict hierarchy, which may not always hold.

3. Confusion Matrix Visualization:

 The main model's confusion matrices are sorted by superclass, but the severity-aware model lacks this feature.

4. Training Time:

 The severity-aware model requires more epochs to converge due to the additional complexity of the loss function.

7. Recommendations for Improvement

1. Dynamic Severity Weights:

Make the severity matrix learnable to adapt to the data.

2. Advanced Architectures:

Use pre-trained models (e.g., ResNet) as feature extractors.

3. Enhanced Regularization:

 Add weight decay or dropout to the severity-aware model to reduce overfitting.

4. Hierarchical Consistency Loss:

 Introduce a loss term to enforce consistency between class, superclass, and group predictions.

5. Interactive Visualization:

 Develop interactive confusion matrices with tooltips for better error analysis.

6. Hyperparameter Tuning:

 Perform a grid search for optimal learning rates, batch sizes, and severity weights.

Conclusion

The Main Assignment and Severity-Aware Bonus Implementation

demonstrate two distinct approaches to hierarchical classification on CIFAR-100. The main model achieves higher accuracy but lacks control over error severity, while the severity-aware model trades some accuracy for more semantically meaningful errors. Future work should focus on improving the severity-aware loss and leveraging advanced architectures for better performance.