The spherical cap discrepancy of HEALPix points

joint work with Julian Hofstadler and Michelle Mastrianni

Damir Ferizović

Institute of Analysis and Number Theory Graz University of Technology

August 18, 2021

The Spherical Cap Discrepancy

A spherical cap with center $w \in \mathbb{S}^2$ and height $t \in (-1,1)$ is given by the set

$$C(w,t) = \{x \in \mathbb{S}^2 : \langle x, w \rangle \ge t\}.$$

Local spherical cap discrepancy

Let $Z_N = \{z_1, \ldots, z_N\} \subset \mathbb{S}^2$.

$$\mathcal{D}_{sc}^{C(w,t)}(Z_N) = \left| \frac{1}{N} \sum_{i=1}^N \mathbb{1}_{C(w,t)}(z_j) - \sigma(C(w,t)) \right|.$$

Spherical cap discrepancy

$$\mathcal{D}_{sc}(Z_N) = \sup_{w \in \mathbb{S}^2} \sup_{-1 < t < 1} \mathcal{D}_{sc}^{C(w,t)}(Z_N).$$

Integration error

Let $P_N = \{x_1, \dots, x_N\} \subset [0, 1]^d$, and f be a function of bounded Variation*, then

$$\left|\frac{1}{N}\sum_{j=1}^N f(x_j) - \int f \, dx\right| \leq \mathcal{D}(P_N)\mathcal{V}(f).$$

Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Annali di Matematica Pura ed Applicata 54 - Hlawka (1961).

Beck showed that point sets ω_N^\star exist with constants c,C>0 independent of N, such that

$$cN^{-3/4} \leq \mathcal{D}_{sc}(\omega_N^{\star}) \leq CN^{-3/4}\sqrt{\log N}.$$

Sums of distances between points on a spherean application of the theory of irregularities of distribution to discrete geometry, Mathematika $31\ (1)$ -Beck (1984).

Some known spherical cap discrepancy

- i.i.d. Random points are of order $N^{-1/2}$,
- Fibonacci points F_N satisfy $\mathcal{D}_{sc}(F_N) \leq N^{-1/2}$
- for a certain Diamond ensemble D_N , $\mathcal{D}_{sc}(D_N) \sim N^{-1/2}$.

Point Sets on the Sphere \mathbb{S}^2 with Small Spherical Cap Discrepancy. Discrete Comput Geom 48 - Aistleitner, Brauchart, Dick (2012).

Spherical Cap Discrepancy of the Diamond Ensemble, Discrete Comput Geom - Etayo (2021).

The HEALPix Lattice

Hierarchical, Equal Area and iso-Latitude Pixelation.

HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, The Astrophysical Journal 622, pp. 759-771 - Górski, Hivon, Banday, Wandelt, Hansen, Reinecke and Bartelmann (2005).

The point set H_N Placing points at centers. In total $N=12*4^\ell$ many points at level ℓ .

Pixel boundaries in the equatorial belt

Let $L=2^\ell$ and $j\in\{0,1,\ldots,4L-1\}$

$$\begin{array}{cccc} \phi_j^\ell: I_j^\ell & \to & \left[0,\frac{\pi}{2}\right] \\ \phi & \mapsto & \phi - \frac{j}{L}\frac{\pi}{2} \end{array} \quad \text{with} \quad I_j^\ell:= \left[\frac{j}{L}\frac{\pi}{2},\frac{j+L}{L}\frac{\pi}{2}\right].$$

$$m^e_{j,\ell}\sim \cos(heta)=rac{2}{3}-rac{8}{3\pi}\phi^\ell_j \qquad ext{and} \qquad p^e_{j,\ell}\sim \cos(heta)=-rac{2}{3}+rac{8}{3\pi}\phi^\ell_j,$$

meaning $m_{j,\ell}^{e} = (\cos(\phi)\sin(\theta),\sin(\phi)\sin(\theta),\cos(\theta)).$

The projection map □

$$\Gamma: \mathbb{S}^2 \to [-\frac{1}{2}, \frac{1}{2}] \times [0, 2]$$

 $x \mapsto \Gamma(x)$

• If $|\cos(\theta)| \leq \frac{2}{3}$ and $\phi \in [0, 2\pi]$, then

$$x \mapsto \Gamma(x) = \begin{pmatrix} \phi/\pi \\ 3/8\cos(\theta) \end{pmatrix}.$$

• If $cos(\theta) > \frac{2}{3}$ and $\phi \in [0, 2\pi]$, then

$$x \mapsto \Gamma(x) = \frac{1}{\pi} \begin{pmatrix} \phi - \left(1 - \sqrt{1 - \cos(\theta)}\sqrt{3}\right) \cdot \left(\phi \mod \frac{\pi}{2} - \frac{\pi}{4}\right) \\ \frac{\pi}{4} \left(2 - \sqrt{1 - \cos(\theta)}\sqrt{3}\right) \end{pmatrix}.$$

In the equatorial belt we obtain with $\phi \in I_j^I$:

$$\Gamma(\textit{m}^{e}_{\textit{j},\textit{l}}) = \frac{1}{\pi} \left(\begin{array}{c} \phi \\ -\phi - \frac{\textit{j}}{\textit{L}} \frac{\pi}{2} + \frac{\pi}{4} \end{array} \right) \quad \text{ and } \quad \Gamma(\textit{p}^{e}_{\textit{j},\textit{l}}) = \frac{1}{\pi} \left(\begin{array}{c} \phi \\ \phi - \frac{\pi}{4} - \frac{\textit{j}}{\textit{L}} \frac{\pi}{2} \end{array} \right).$$

Given a base pixel B and an open set $A \subset B$, then

$$\frac{\operatorname{area}(A)}{\operatorname{area}(B)} = \frac{\operatorname{area}(\Gamma(A))}{\operatorname{area}(\Gamma(B))}.$$

Theorem (DF, Hofstadler, Mastrianni '21)

$$N^{-1/2} \le \mathcal{D}_{sc}(H_N) \le 1000 \ N^{-1/2}.$$

Let C=C(w,t) where $w\in\mathbb{S}^2$ and $t\in[0,1)$, then

$$\partial C = \Big\{ \gamma(\phi, \theta) : \sin(\theta) \sin(\theta_w) \cos(\phi - \phi_w) + \cos(\theta) \cos(\theta_w) = t \Big\}.$$

If $sin(\theta_w) \neq 0$, then

$$\phi = \phi_w + \arccos\left(\frac{t - \cos(\theta)\cos(\theta_w)}{\sin(\theta)\sin(\theta_w)}\right) \text{ and/or}$$
$$\phi = \phi_w - \arccos\left(\frac{t - \cos(\theta)\cos(\theta_w)}{\sin(\theta)\sin(\theta_w)}\right).$$

We calculate the signed curvature κ of the planar curve $\Gamma(\partial C)$

$$\kappa = \frac{x'y'' - y'x''}{((x')^2 + (y')^2)^{3/2}}$$

and find its zeros.

Pseudo-convex set

A set A (pink) is pseudo-convex if

- \bullet $\exists A_1, \ldots, A_p$ convex sets,
- $A_j \cap A_k = \emptyset,$
- $\bullet A \subseteq A_1 \cup \cdots \cup A_p,$
- either $A_j \subset A$ or $A_j \setminus A$ is convex.

Lemma (Aistleitner, Brauchart, Dick '12) For P_N , $A \subset [0,1]^2$ with A pseudo-convex,

$$\left|\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}_{A}(x_{n})-\lambda(A)\right|\leq (2p-q)J_{N}(P_{N}).$$

Isotropic discrepancy

$$J_N(P_N) = \sup_{F \in \mathcal{F}} \Big| \frac{\#\{n : 1 \le n \le N, \mathbf{x}_n \in F\}}{N} - \operatorname{area}(F) \Big|,$$

where \mathcal{F} is the family of all convex subsets of $[0,1]^2$.

Isotropic discrepancy of $\Gamma(H_N)$ For a given convex set K,

$$\left| \frac{\#\{\mathbf{x}_n \in \mathcal{K}\}}{N} - \operatorname{area}(\mathcal{K}) \right| \le 4N^{-1/2}.$$

Thank you for your Time