$\mathcal{S} = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau \left(\Delta + \mathcal{K} \right)_{\alpha\beta} - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{i} \mathcal{A}_{\beta \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta i} \, \partial_{\theta} \mathcal{A}_{\beta i}^{\ \theta} \right) - \frac{1}{2} r_{\bullet} \left(\partial_{\beta} \mathcal{A}_{i \theta}^{\ \theta} \, \partial^{i} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial_{\alpha} \mathcal{A}^{\alpha\beta}_{\ \alpha} + \partial$ $2\,\partial^{\prime}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\theta}\mathcal{R}_{\beta}^{\theta}{}_{}+\partial_{\alpha}\mathcal{R}^{\alpha\beta}_{}\partial_{\theta}\mathcal{R}_{\beta}^{\theta}-2\,\partial^{\prime}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\theta}\mathcal{R}_{\beta}^{\theta}+8\,\partial_{\beta}\mathcal{R}_{\alpha\alpha}\,\partial^{\theta}\mathcal{R}^{\alpha\beta}_{})+$ $r \cdot \left(\partial_{i} \mathcal{R}_{\kappa}^{\kappa} \partial^{\theta} \mathcal{R}^{\alpha_{i}}_{\alpha} - \partial_{\theta} \mathcal{R}_{i\kappa}^{\kappa} \partial^{\theta} \mathcal{R}^{\alpha_{i}}_{\alpha} - \left(\partial_{\alpha} \mathcal{R}^{\alpha_{i}\theta} - 2 \partial^{\theta} \mathcal{R}^{\alpha_{i}}_{\alpha} \right) \left(\partial_{\kappa} \mathcal{R}_{i\theta}^{\kappa} - \partial_{\kappa} \mathcal{R}_{\theta}^{\kappa} \right) \right) \left[t, x, y, z \right] dz dy dx dt$ **Wave operator**

^{0⁺} \mathcal{A}^{\parallel} † 0 $0^+f^{\parallel} + 0 0 0$ $^{0^+}f^{\perp}$ † 0 0 0

PSALTer results panel

• /)			Ö										
^{⊙-} Æ [∥] †	0	0	0	0	${}^{1^+}_{ullet}\mathcal{H}^{\parallel}_{lphaeta}$	${\stackrel{1^{+}}{\cdot}}\mathcal{H}^{\perp}{}_{\alpha\beta}$	$\ f\ _{\alpha\beta}$	$\left\ \mathbf{\mathcal{H}} \right\ _{lpha}$	$^{1}_{\cdot}\mathcal{A}^{\perp}{}_{\alpha}$	$1^{-}f^{\parallel}\alpha$	$\int_{\bullet}^{1} f^{\perp}_{\alpha}$			
				$^{1^{+}}_{\bullet}\mathcal{R}^{\parallel}$ † lphaeta	$k^2 \left(2 r_{\bullet} + r_{\bullet}\right)$	0	0	0	0	0	0			
				${\stackrel{1^{+}}{\cdot}}\mathcal{H}^{\perp} \stackrel{\alpha\beta}{+}$		0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0			
				$^{1}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lpha}$	0	0	0	$\frac{1}{2} k^2 \left(r_{\bullet} + 2 r_{\bullet} \right)$	0	0	0			
				$^{1}_{\cdot}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$f^{\perp}f^{\perp}$	0	0	0	0	0	0	0	$\mathcal{A}^{\circ}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta}$	$f^{2^+}f^{\parallel}_{\alpha\beta}$	$\mathcal{F}^{-}_{\bullet}\mathcal{F}^{\parallel}_{\alpha\beta\chi}$
											${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † ${}^{\alpha\beta}$	$-\frac{3 k^2 r_{\cdot 3}}{2}$	0	0
											$f^{\parallel} \uparrow^{\alpha\beta}$		0	0
											${}^{2^{-}}\mathcal{A}^{\parallel}$ † ${}^{\alpha\beta\chi}$	0	0	0
Sat	Saturated propagator													

⁰⁺τ[⊥] † 0 0 0

°· σ + 0 0 0

°- σ^{||} † 0 0 0

		\ 3 5/										
1.	$\sigma^{\perp} \uparrow^{\alpha\beta}$	0	0	0	0	0	0	0				
1.	$\tau^{\parallel} + \alpha^{\beta}$	0	0	0	0	0	Θ	0				
1	$^{1}\cdot\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{2}{k^2 \left(r_{3}+2 r_{5}\right)}$	0	0	0				
1	$^{1^{-}}\sigma^{\perp}$ $^{\alpha}$	Θ	0	0	Θ	0	0	0				
	$^{1^{-}}\tau^{\parallel}$ $^{\alpha}$	Θ	0	0	Θ	0	0	0				
:	1^{-} τ^{\perp} $+^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$	
								$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{2}{3 k^2 r_{\cdot 3}}$	0	0	
								$^{2^{+}}_{\bullet}\tau^{\parallel}$ † $^{\alpha\beta}$	0	0	0	
								$^{2^{-}}\sigma^{\parallel} + ^{\alpha\beta\chi}$	0	0	0	
Source constraints												
Spin-parity form Covariant form Multip									Multiplicities			
^{0−} σ == 0	€n	$\partial^{\delta} \sigma^{\alpha\beta\chi} =$	0									1

[⊙] • σ == ⊙	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} = 0$	1			
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta} == 0$	1			
^{Θ+} τ == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1			
⁰⁺ σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1			
1- _τ [⊥] α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3			
1 ⁻ τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
1 ⁻ σ ¹ == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3			
$\frac{1^+_{\tau}}{\tau}\ ^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==$	3			
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$				
1 ⁺ .σ [±] αβ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5			
	$2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$				
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\delta} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\delta} = $				
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$				
	$2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$				
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta} {}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$				
$2^+_{\bullet \tau} \parallel^{\alpha \beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} +$	5			
	$2 \ \eta^{\alpha\beta} \ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\tau \left(\Delta+\mathcal{K}\right)^{\chi\delta} = 3 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} + 3 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\chi\beta} +$				
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} (\Delta + \mathcal{K})^{\chi}_{\chi}$				
Total expected gauge generators: 29					

(No particles)

Massive spectrum

Massless spectrum

	3 3 5 3 5						
Polarisations:	2						
Unitarity conditions							

 $\left(r_{\frac{1}{3}}<0 \,\&\&\left(r_{\frac{1}{5}}<-\frac{r_{\frac{3}{2}}}{2} \parallel r_{\frac{1}{5}}>-2\,r_{\frac{3}{3}}\right)\right) \parallel \left(r_{\frac{3}{3}}>0 \,\&\&\,-2\,r_{\frac{3}{3}}< r_{\frac{1}{5}}<-\frac{r_{\frac{3}{3}}}{2}\right)$