Diskrete Mathematik

Zahlenmengen

 $\mathbb N$ natürliche Zahlen

 \mathbb{N}_0 natürliche Zahlen mit 0

Z ganze Zahlen

© rationale Zahlen

 $\mathbb{R} \quad \text{ reelle Zahlen}$

C komplexe Zahlen

Aussagenlogik

	\sim		_					
Aussage		Ein	Satz,	${\rm der}$	entw	$_{\mathrm{eder}}$	wahr	(w)
		oder	falsch	n (f)	ist.			
Prädikat		Eine	Aus	sage	$_{ m mit}$	Var	iablen.	n-

stellige Prädikate.

Grundidee

Aus gegebenen Prädikaten/Aussagen lassen sich durch Junktoren neue Aussagen bilden. (z. B. Kombinationen mit $\land, \lor, \neg, \Rightarrow, \Leftrightarrow$).

Definitionen

- Negation: $\neg A$ ist genau dann wahr, wenn A falsch ist. (Doppelte Negation: $A \Leftrightarrow \neg \neg A$.)
- Konjunktion: $A \wedge B$ ist wahr genau dann, wenn A und B wahr sind. (assoziativ, kommutativ, idempotent)
- Disjunktion: A ∨ B ist wahr, wenn mindestens eine der Aussagen wahr ist. (assoziativ, kommutativ, idempotent)
- Implikation: $A \Rightarrow B$ ist äquivalent zu $\neg A \lor B$. (Kontraposition: $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$.)
- Äquivalenz: $A \Leftrightarrow B$ genau dann, wenn $A \Rightarrow B \land B \Rightarrow A$.

Wichtige Regeln

- De Morgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
- Distributivität: $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- Syntaktische Bindung: ¬ bindet stärker als ∧, ∨; diese binden stärker als ⇒, ⇔.
- Modus Ponens: Aus $A \wedge (A \Rightarrow B)$ folgt B.
- Transitivität: Aus $(A \Rightarrow B) \land (B \Rightarrow C)$ folgt $A \Rightarrow C$.

Hinweis zur Redundanz

Jeder Ausdruck mit den Junktoren $\neg, \land, \lor, \Rightarrow$ lässt sich ausschliesslich mit \neg und \lor darstellen. z.B.

$$A \wedge B \Leftrightarrow \neg (\neg A \vee \neg B)$$

Quantoren

Quantoren dienen zur Formalisierung von Aussagen wie:

- $\forall x \, A(x)$: Für alle x gilt A(x)
- $\exists x \, A(x)$: Es existiert ein x mit A(x)

 $\label{eq:Mehrere gleichartige Quantoren: Quantoren: Quantor Quantor$

$$\forall x, y \, A(x, y)$$
 statt $\forall x \, \forall y \, A(x, y)$

Eingeschränkte Quantoren

 $\forall x \in M \ A(x) : \text{Für alle } x \in M \ \text{gilt } A(x)$ $\exists x \in M \ A(x) : \text{Es gibt } x \in M \ \text{mit } A(x)$

Auch möglich mit Relationen:

$$\forall x < y A(x) \quad \text{oder} \quad \exists x \le y A(x)$$

Als Junktoren

Für endliche Mengen $M = \{x_1, \dots, x_n\}$ gilt:

$$\forall x \in M \, A(x) \Leftrightarrow A(x_1) \wedge \cdots \wedge A(x_n)$$

$$\exists x \in M \, A(x) \Leftrightarrow A(x_1) \vee \cdots \vee A(x_n)$$

Als Makros

$$\exists x \in M \ A(x) \Leftrightarrow \exists x \ (x \in M \land A(x))$$
$$\forall x \in M \ A(x) \Leftrightarrow \forall x \ (x \in M \Rightarrow A(x))$$

Zusammenhang mit Junktoren

$$\neg \forall x \, A(x) \Leftrightarrow \exists x \, \neg A(x) \quad \text{und} \quad \neg \exists x \, A(x) \Leftrightarrow \forall x \, \neg A(x)$$
$$\forall x \, (A(x) \land B(x)) \Leftrightarrow (\forall x \, A(x)) \land (\forall x \, B(x))$$
$$\exists x \, (A(x) \lor B(x)) \Leftrightarrow (\exists x \, A(x)) \lor (\exists x \, B(x))$$

Leere Quantoren

Wenn x in B nicht vorkommt:

$$\forall x \, B \Leftrightarrow B, \quad \exists x \, B \Leftrightarrow B$$

Mengen

- Menge / Element: Eine Menge fasst mathematische Objekte (Elemente) zu einem Ganzen zusammen. Für Menge X und Element y gilt $y \in X$ bzw. $y \notin X$.
- Aufzählende Schreibweise: $\{x_1, \ldots, x_n\}$ bezeichnet die Menge, die genau die genannten Elemente enthält. Die leere Menge heisst \varnothing .
- Extensionalitätsprinzip: Zwei Mengen sind genau dann gleich, wenn sie dieselben Elemente haben:

$$A = B \iff \forall x (x \in A \Leftrightarrow x \in B).$$

- Teilmenge: $A \subseteq B$ genau dann, wenn $\forall x (x \in A \Rightarrow x \in B)$. Ist $A \subseteq B$ und $A \neq B$, so ist A eine echte Teilmenge, geschrieben $A \subseteq B$.
- Folgerungen: Mengen sind ungeordnet;
 Mehrfachaufzählung desselben Elements ändert die
 Menge nicht. Für jede Menge A gilt Ø ⊆ A.

Eindeutigkeit der leeren Menge

Seien e_1, e_2 leere Mengen. Dann ist für alle x die Aussage $x \in e_1$ falsch, also ist die Implikation $x \in e_1 \Rightarrow x \in e_2$ wahr; somit $e_1 \subseteq e_2$. Analog $e_2 \subseteq e_1$. Nach Extensionalität folgt $e_1 = e_2$.