Slide 9-Vectors I MAT2040 Linear Algebra

Definition 9.1 (Euclidean Vector Space) The set defined as

$$\mathbb{R}^m = \left\{ \left[\begin{array}{c} u_1 \\ \vdots \\ u_m \end{array} \right] \middle| u_i \in \mathbb{R} \right\}.$$

is called the Euclidean Vector Space.

() Slide 9–Vectors I 2 / 18

Definition 9.2 (Vector Equality, Addition/Subtraction, Scalar Multiplication)

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$, then

(1)
$$\mathbf{u} = \mathbf{v} \Leftrightarrow u_i = v_i, \forall i = 1, \cdots, m.$$

(2)
$$\mathbf{u} \pm \mathbf{v} = (u_i \pm v_i)_{m \times 1}$$
.

(3)
$$\alpha \mathbf{u} = (\alpha u_i)_{m \times 1}, \alpha \in \mathcal{R}$$

Zero vector
$$\mathbf{0} = (0)_{m \times 1}$$
.

3 / 18

) Slide 9–Vectors I

Connection with Geometry

First consider for \mathbb{R}^2 , we can associate each geometric point (x_1, x_2) in the plane with a column vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Geometrically, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ can be represented by a directed line segment

from (0,0) to (x_1,x_2) , the Euclidean length of the vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the length of the directed line segment from (0,0) to (x_1,x_2) . (This is actually called a **Cartesian coordinate system**.)

4□ > 4□ > 4 = > 4 = > = 90

Slide 9-Vectors I

Connection with Geometry

In addition, the vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ can also be represented by any directed line segment from (a,b) to $(a+x_1,b+x_2)$ since the directed line segment from (a,b) to $(a+x_1,b+x_2)$ has the same Euclidean length and direction as the directed line segment from (0,0) to (x_1,x_2) , that is $\sqrt{x_1^2+x_2^2}$.

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □

Geometric Interpretation of Vector Addition

The diagonal directed line segment in the parallelogram corresponding to the addition of two vectors \mathbf{u} and \mathbf{v} .

We can also do this with 3-dimensional vectors, 4-dimensional, etc. (Will be hard to draw in higher dimensions!)

Geometric Interpretation of Scaling a Vector

(picture from David Lay, Linear Algebra.)

Theorem 9.3 (Properties of Vector Operations)

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^m$, $\alpha, \beta \in \mathbb{R}$, then

- $(1)\mathbf{u} + \mathbf{v} \in \mathbb{R}^m$.
- (2) $\alpha \mathbf{u} \in \mathbb{R}^m$.
- (3) u + v = v + u.
- (4) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + \mathbf{v} + \mathbf{w}$.
- (5) u + 0 = 0 + u = u. (Zero vector exists)
- (6) If $-\mathbf{u} = (-1)\mathbf{u}$, then $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. (Additive Inverses)
- (7) $\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u}$.
- (8) $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$.
- (9) $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$.
- $(10) \ 1 \cdot \mathbf{u} = \mathbf{u}.$

Proof. Similar as Matrices operations.

Linear System Revisited: Solution in Parametric Vector Form

Example 9.4

$$2x_1 + x_2 + 7x_3 - 7x_4 = 8$$
$$-3x_1 + 4x_2 - 5x_3 - 6x_4 = -12$$
$$x_1 + x_2 + 4x_3 - 5x_4 = 4$$

Its augmented matrix can be reduced into reduced row-echelon form as

$$\left[\begin{array}{ccc|ccc}
1 & 0 & 3 & -2 & 4 \\
0 & 1 & 1 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

where $D = \{1, 2\}$ -indices for the pivot columns and $F = \{3, 4\}$ -indices for the non pivot columns(excluding the last column in the augmented matrix).

Slide 9–Vectors I 9 / 18

Linear System Revisited: Solution in Parametric Vector Form

The equivalent system is

$$x_1 + 3x_3 - 2x_4 = 4$$
$$x_2 + x_3 - 3x_4 = 0$$

Write the dependent variables in term of independent variables, the solution can be written as follows:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 & -3x_3 & +2x_4 \\ & -x_3 & +3x_4 \\ & x_3 & \\ & & x_4 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} + x_3 \begin{bmatrix} \\ \\ \end{bmatrix} + x_4 \begin{bmatrix} \\ \\ \end{bmatrix}$$

where these three vectors need to be filled.

- (ロ) (個) (差) (差) (差) (2) (2) (2)

10 / 18

Slide 9

Copying the coefficients in the column directly, we can get

$$\mathbf{x} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}$$

The solution is a fixed vector $\begin{bmatrix} 7 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ plus any linear combination of two

vectors:
$$\begin{vmatrix} -3 \\ -1 \\ 1 \\ 0 \end{vmatrix}$$
, $\begin{vmatrix} 2 \\ 3 \\ 0 \\ 1 \end{vmatrix}$.

We call this type of description of the solution of $A\mathbf{x} = \mathbf{b}$, a description in parametric vector form.

Slic

One can check that $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ satisfies the linear system, we can treat it as a

particular solution.

While

$$x_3 \begin{bmatrix} -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ 3 \\ 0 \\ 1 \end{bmatrix}$$

is the solution for the homogeneous linear system

$$2x_1 + x_2 + 7x_3 - 7x_4 = 0$$
$$-3x_1 + 4x_2 - 5x_3 - 6x_4 = 0$$
$$x_1 + x_2 + 4x_3 - 5x_4 = 0$$

Definition 9.5 (Particular Solution and Homogeneous Solution) If \mathbf{w}_0 is one solution of the linear system $A\mathbf{x} = \mathbf{b}$, then we can treat \mathbf{w}_0 as a particular solution for $A\mathbf{x} = \mathbf{b}$. The solution(s) of $A\mathbf{x} = \mathbf{0}$ are called the homogeneous solutions for the corresponding linear system $A\mathbf{x} = \mathbf{b}$.

Theorem 9.6 (Solution Structure of the Linear System)

Suppose \mathbf{w}_0 is a particular solution to $A\mathbf{x} = \mathbf{b}$, and S_h is the solution set of $A\mathbf{x} = \mathbf{0}$. Then $S = \{\mathbf{s} | \mathbf{s} = \mathbf{w}_0 + \mathbf{s}_h, \text{ for } \mathbf{s}_h \in S_h\}$ is the solution set of $A\mathbf{x} = \mathbf{b}$.

Proof. By assumption, $A\mathbf{w_0} = \mathbf{b}$. Hence, take any solution \mathbf{y} of $A\mathbf{x} = \mathbf{b}$, then $A\mathbf{y} = \mathbf{b}$. Thus, $A(\mathbf{y} - \mathbf{w_0}) = A\mathbf{y} - A\mathbf{w_0} = \mathbf{b} - \mathbf{b} = \mathbf{0}$, therefore, $\mathbf{y} - \mathbf{w_0}$ is a homogeneous solution and $\mathbf{y} - \mathbf{w_0} \in \mathcal{S}_h$.

Remark

Any solution \mathbf{p} of $A\mathbf{x} = \mathbf{b}$ can be written as $\mathbf{p} = \mathbf{w}_0 + \mathbf{y}$, where \mathbf{w}_0 is a particular solution of $A\mathbf{x} = \mathbf{b}$ and \mathbf{y} is the homogeneous solution(\mathbf{y} is the solution of $A\mathbf{x} = \mathbf{0}$).

Example 9.7

Suppose a linear system's augmented matrix can be reduced into reduced row-echelon form as

$$\begin{bmatrix}
1 & 0 & 1 & 0 & -4 & 0 & 7 \\
0 & 1 & -2 & 0 & 0 & 0 & -5 \\
0 & 0 & 0 & 1 & 3 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

where columns 1,2,4,6 are pivot columns. The original system is equivalent to the following system:

Slide 9–\

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 7 & -x_3 & +4x_5 \\ -5 & 2x_3 & +0x_5 \\ 0 & x_3 & 0x_5 \\ 2 & 0x_3 & -3x_5 \\ 0 & 0x_3 & x_5 \\ 9 & 0x_3 & 0x_5 \end{bmatrix}$$

$$= \begin{bmatrix} 7 \\ -5 \\ 0 \\ 2 \\ 0 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 4 \\ 0 \\ 0 \\ -3 \\ 1 \\ 0 \end{bmatrix}$$

16 / 18

Slide 9–Vectors I

Where
$$\begin{bmatrix} 7 \\ -5 \\ 0 \\ 2 \\ 0 \\ 9 \end{bmatrix}$$
 is the particular solution.

$$x_3 \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 4 \\ 0 \\ 0 \\ -3 \\ 1 \\ 0 \end{bmatrix}$$
 is the homogeneous solution.

Remark

One can show that
$$\begin{bmatrix} -1\\2\\1\\0\\0\\0 \end{bmatrix}$$
 and
$$\begin{bmatrix} 4\\0\\0\\-3\\1\\0 \end{bmatrix}$$
 are **linearly independent** (the

concept will be introduced in next slide).