Cuarto Seminario de Estructuras Algebraicas

Andoni Latorre Galarraga

Orden 11

Sea G grupo de orden 11. Sea $a \in G - \{1\}$, como $o(a) \neq 1$ y $o(a) \mid 11$ se tiene que o(a) = 11, ahora $\mid \langle a \rangle \mid = 11$ y como $\langle a \rangle \leq G$ y $\mid \langle a \rangle \mid = \mid G \mid$ se tiene que $\langle a \rangle = G$ y por lo tanto $G \simeq C_{11}$.

Orden 22

Sea G grupo de orden 22. Por el primer teorema de Sylow sabemos que existen un 11-Sylow y un 2-Sylow. Estos grupos son de orden primo y por lo tanto cíclicos, sean a,b sus generadores respectivos. Tenemos que $|< a,b>| \in \{1,2,11,22\}$, 1 no puede ser porque $a \neq 1$ y por lo tanto el grupo se no trivial. 2 no puede ser ya que o(a)=11 y 11 no divide a 2. 11 no puede ser ya que o(b)=2 y 2 no divide a 11. Se tiene que G=< a,b>. Por el tercer teorema de Sylow $\nu_{11}(G)\mid 2$ y $\nu_{11}(G)\equiv 1$ mód 11 por lo tanto $\nu_{11}(G)=1$ y por el segundo teorema de Sylow el unico grupo de orden 11, < a>, y es normal. Ahora tenemos que $bab^{-1}=a^i$ para algun i, con $1 \leq i \leq 10$ ahora $a=(b^2)^{-1}ab^2=b^{-1}a^ib=\underbrace{(b^{-1}ab)\cdots(b^{-1}ab)}=(a^i)^i=a^{i^2}$ y $a^{i^2-1}=1$ y 11 divide a

 $i^2-1=(i-1)(i+1)$ entonces i=1 o i=10. Cuando i=1 $bab^{-1}=a$ y el grupo es abeliano e isomorfo a C_{22} . Cuando i=10, $bab^{-1}=a^{p-1}=a^{-1}$ y se tiene $G=< a,b \mid a^{11}=b^2=1, b=a^{-1}>$ que es isomorfo a D_{11} .

Orden 35

Sea G grupo de orden 35. Sabemos que existen un único 5-Sylow que es normal y un único 7-Sylow que es normal, su intersección es trivial ya que los elementos no identidad son de orden 5 y 7 respectivamente y por tanto distintos. Por definición de producto directo y sabiendo que los Sylow son ciclicos $G \simeq C_5 \times C_7 \simeq C_{35}$.

Orden 49

Sea G grupo de orden 49. Veamos que |Z(G)|=49, sabemos que |Z(G)| divide a 49 por lo que tiene que ser 1, 7 o 49. Como $49=7^2$ tenemos que G es p-grupo y por lo tanto |Z(G)|>1 entonces |Z(G)| solo puede ser 7 o 49. Si es 7 entonces |G/Z(G)|=7 y G/Z(G) seria cíclico, teniendose que G es abeliano. Esto es contradictorio ya que si G es abeliano $G/Z(G)\simeq 1$ y $1\neq 7$. Por lo tanto |Z(G)|=49=|G| y G es abeliano. Ahora sabemos que $G\simeq C_{49}$ o $G\simeq C_7\times C_7$. Estos no son isomorfos ya que en C_{49} existen elementos de orden 49 y en $C_7|\times C_7$ todos los elementos tienen orden menor o igual que 7.

$$\forall (g, g') \in C_7 \times C_7 \quad (g, g')^7 = 1 \quad \therefore g, g' \in C_7 \Rightarrow \begin{cases} 1 = g^{|C_7|} = g^7 \\ 1 = g^{|C_7|} = g'^7 \end{cases}$$