CLAIMS

6

7

What is claimed is:

Ţ	1. An apparatus comprising:
2	a processor core including data paths;
3	a plurality of peripheral devices having associated parallel scan registers
4	coupled to the processor core; and
5	

operating logic for generating pseudo-random test patterns for the peripheral devices, employing a mixed congruential generation scheme, and using the data paths of the processor core.

- 2. The apparatus as set forth in claim 1, wherein the operating logic includes operating 2. logic for multiplying n least significant bits of a 2n-bit pseudo-random number generated 3 in an immediately preceding iteration and stored in a first register, with an n-bit 4 multiplier constant stored in a second register to produce a 2n-bit product, adding the 5 2n-bit product to n most significant bits of the 2n-bit pseudo-random number stored in n 6 least significant locations of an accumulator with 2n locations to produce a new 2n-bit 7 pseudo-random number for a current iteration, and outputting n least significant bits of 8 the new 2n-bit pseudo-random number as an n-bit pseudo-random test vector for the 9 peripheral devices.
- 3. The apparatus as set forth in claim 2, wherein the operating logic further includes operating logic for copy the n least significant bits of the new 2n-bit pseudo-random number into the first register, and right shifting the 2n-bit new pseudo-random number in the accumulator by n-bits.

- 1 4. The apparatus as set forth in claim 3, wherein the operating logic further includes
- 2 operating logic for repeating said multiplying, adding, outputting, copying and right
- 3 shifting sufficient number of times to generate a sufficiently large pseudo-random test
- 4 pattern to fill the parallel scan registers.
- 1 5. The apparatus as set forth in claim 2, wherein the operating logic further includes
- 2 operating logic for storing a 2n-bit initial value into the accumulator, and storing the n-bit
- 3 multiplier constant in the second register.
- 1 6. The apparatus as set forth in claim 5, wherein the variable n, the 2n-bit initial value
- 2 and the n-bit multiplier constant are equal to (3, 6, 1), (3, 6, 5), (4, 15, 1), (4, 15, 7), (5,
- 3 27, 1), (5, 27, 5), (6, 45, 1), (6, 45, 7), (7, 126, 1), (7, 126, 5), (8, 249, 1), (8, 249, 5), (9,
- 4 507, 1) (9, 507, 5), (10, 1020, 1), (10, 1020, 5), (11, 2016, 1), (11, 2016, 5), (12, 4077,
- 5 1), (12, 4077, 7), (13, 8175, 1), (13, 8175, 7), (14, 16371, 1), (14, 16371, 5), (15,
- 6 32766, 1), (15, 32766, 5), (16, 65514, 1), or (16, 65514, 5) respectively.
- 1 7. The apparatus as set forth in claim 2, wherein the apparatus further comprises a test
- 2 port register through which the parallel scan registers are coupled to the processor
- 3 core, and the operating logic further includes operating logic for moving a pseudo-
- 4 random test vector from the processor core to the test port register, and then moving
- 5 the pseudo-random test vector in parallel to the parallel scan registers.
- 1 8. An apparatus comprising:

- 2 a processor core including data paths;
- 3 a plurality of peripheral devices having associated parallel scan registers
- 4 coupled to the processor core; and

5	operating logic for generating deterministic test patterns for the peripheral		
devices, emulating a plurality of linear feedback shift register (LFSR) - base			
7	interconnected by a network of linear functions, and using the data paths of the		
3	processor core.		

- 1 9. The apparatus as set forth in claim 8, wherein the operating logic includes operating
- 2 logic for modifying n x L storage locations of a circular buffer formed with L registers
- 3 with n storage locations each of processor core, emulating shifting of the content of the
- 4 LFSR-based segments, and outputting the content of a head one of the L registers as a
- 5 portion of a deterministic test pattern being generated for the peripheral devices.
- 1 10. The apparatus as set forth in claim 9, wherein the operating logic further includes
- 2 operating logic for repeating said modification and outputting sufficient number of times
- 3 to generate a sufficiently large deterministic test pattern to fill the parallel scan
- 4 registers.
- 1 11. The apparatus as set forth in claim 9, wherein the operating logic further includes
- 2 operating logic for advancing a head pointer for identifying the head one of the L
- 3 registers.
- 1 12. The apparatus as set forth in claim 8, wherein the operating logic generates the
- 2 deterministic test patterns emulating LFSR-based segments interconnected with a
- 3 network of linear functions that implements an identical feedback polynomial for each of
- 4 the LFSR-based segments.
- 1 13. The apparatus as set forth in claim 8, wherein the operating logic generates the
- 2 deterministic test patterns emulating LFSR-based segments interconnected with a

- 3 network of linear functions that provides inter-segment feedback at identical tap
- 4 positions of the LFSR-based segments.
- 1 14. The apparatus as set forth in claim 8, wherein the apparatus further comprises a
- 2 test port register through which the parallel scan registers are coupled to the processor
- 3 core, and the operating logic further includes operating logic for moving a deterministic
- 4 test vector from the processor core to the test port register, and then moving the
- 5 pseudo-random test vector in parallel to the parallel scan registers.
- 1 15. An apparatus comprising:
- a processor core including data paths;
- a plurality of peripheral devices having associated parallel scan registers
- 4 coupled to the processor core; and
- 5 operating logic for compacting test responses the peripheral devices, employing
- 6 a cascaded approach, and using the data paths of the processor core.
- 1 16. The apparatus as set forth in claim 15, wherein the operating logic includes
- 2 operating logic for moving a first test response into a first accumulator, adding a first
- 3 signature to the first accumulator, moving a second test response into a second
- 4 accumulator, outputting the content of the first accumulator and adding the output of
- 5 the first accumulator into the second accumulator.
- 1 17. The apparatus as set forth in claim 16, wherein the operating logic further includes
- 2 operating logic for moving the second test response into the first accumulator, adding a
- 3 second signature that includes the first test response into the first accumulator, moving
- 4 a third test response into the second accumulator, outputting the content of the first
- 5 accumulator, and adding the output of the first accumulator to the second accumulator.

- 1 18. The apparatus as set forth in claim 17, wherein the operating logic adds the output
- 2 of the first accumulator into the second accumulator in accordance with a 1's
- 3 complement convention.
- 1 19. The apparatus as set forth in claim 17, wherein the operating logic adds the output
- 2 of the first accumulator into the second accumulator using a rotate carry scheme.
- 1 20. The apparatus as set forth in claim 15, wherein the apparatus further comprises a
- 2 test port register through which the parallel scan registers are coupled to the processor
- 3 core, and the operating logic further includes operating logic for moving a test response
- 4 of the peripheral devices from the test port register to the processor core.
- 1 21. The apparatus as set forth in claim 20, wherein the test response of the peripheral
- 2 devices is recovered in the test port register as an integral part of storing a test vector
- 3 in parallel into the parallel scan registers.
 - 22. An apparatus comprising:

- 2 a processor core including data paths;
- a plurality of peripheral devices having associated parallel scan registers; and
- 4 a test port register coupled to the processor core and the parallel scan registers
- 5 for loading the parallel scan registers with test patterns generated by the data paths of
- 6 the processor core for testing the peripheral devices, and for recovering test responses
- of the peripheral devices to application of the test patterns from the parallel scan
- 8 registers for the processor core.

1	23. The apparatus as set forth in claim 22, wherein the test port register comprises a	
2	plurality of output ports correspondingly coupled to first cells of the parallel scan	
3	registers, and a plurality of input ports correspondingly coupled to last cells of the	
4	parallel scan registers.	
1	24. An apparatus comprising:	
2	a processor core including data paths;	
3	a plurality of peripheral devices having associated parallel scan registers;	
4	a test port register coupled to the processor core and the parallel scan registers	
5	and	
6	operating logic for moving a test pattern generated by the data paths of the	
7	processor core to the test port register, and then to the parallel scan registers.	
1	25. The apparatus as set forth in claim 24, wherein the operating logic further includes	
2	operating logic for applying one or more clock cycles to the peripheral devices to app	
3	the test pattern in the parallel scan registers to the peripheral devices.	
1	26. The apparatus as set forth in claim 24, wherein the operating logic further includes	
2	operating logic for moving test responses of the peripheral devices from the test port	
3	register to the processor core.	
1	26. An apparatus comprising:	
2	a processor core including data paths;	
3	a plurality of peripheral devices having associated parallel scan registers	
4	coupled to the processor core; and	
5	operating logic for placing the processor core in a test mode, saving a pre-test	
6	state of the parallel scan registers, applying a plurality of test patterns to the peripheral	

7	devices using the data paths of the processor core, and resto	oring the pre-test state of
8	the parallel scan registers.	χ.

- 1 27. The apparatus as set forth in claim 26, wherein the operating logic for applying a
- 2 plurality of test patterns to the peripheral devices includes operating logic for generating
- 3 one or more test vectors for the peripheral devices using the data paths of the
- 4 processor core, and compacting test responses of the peripheral devices using the
- 5 data paths of the processor core.
- 1 28. An apparatus comprising:
- 2 a processor core including data paths;
- a plurality of peripheral devices coupled to the processor core; and
- 4 operating logic for generating one or more test vectors for the peripheral devices
- 5 using the data paths of the processor core, and compacting test responses of the
- 6 peripheral devices using the data paths of the processor core.

2

29. A method for generating pseudo-random test patterns comprising the steps of: 1 2 multiplying n least significant bits of a 2n-bit pseudo-random number generated in an immediately preceding iteration and stored in a first register, with an n-3 4 bit multiplier constant stored in a second register to produce a 2n-bit product, 5 adding the 2n-bit product to n most significant bits of the 2n-bit pseudorandom number stored in n least significant locations of an accumulator with 2n 6 7 locations to produce a new 2n-bit pseudo-random number for a current iteration, and 8 outputting n least significant bits of the new 2n-bit pseudo-random 9 number as an n-bit pseudo-random test vector for the peripheral devices. 30. The method as set forth in claim 29, wherein the method further includes the step of 1 copying the n least significant bits of the new 2n-bit pseudo-random number into the 2 3 first register, and right shifting the 2n-bit new pseudo-random number in the 4 accumulator by n-bits. 31. The method as set forth in claim 30, wherein the method further includes the step of 1 repeating said multiplying, adding, outputting, copying and right shifting steps sufficient 2 3 number of times to generate a sufficiently large pseudo-random test pattern to fill a 4 parallel scan registers. 32. The method as set forth in claim 29, wherein the method further includes the step of 1 2 storing a 2n-bit initial value into the accumulator, and storing the n-bit multiplier 3 constant in the second register.

33. The method as set forth in claim 32, wherein the variable n, the 2n-bit initial value

and the n-bit multiplier constant are equal to (3, 6, 1), (3, 6, 5), (4, 15, 1), (4, 15, 7), (5,

- 3 27, 1), (5, 27, 5), (6, 45, 1), (6, 45, 7), (7, 126, 1), (7, 126, 5), (8, 249, 1), (8, 249, 5), (9,
- 4 507, 1) (9, 507, 5), (10, 1020, 1), (10, 1020, 5), (11, 2016, 1), (11, 2016, 5), (12, 4077,
- 5 1), (12, 4077, 7), (13, 8175, 1), (13, 8175, 7), (14, 16371, 1), (14, 16371, 5), (15,
- 6 32766, 1), (15, 32766, 5), (16, 65514, 1), or (16, 65514, 5) respectively.
- 1 34. The method as set forth in claim 29, wherein the method further comprises the step
- 2 moving a pseudo-random test vector to a test port register, and then moving the
- 3 pseudo-random test vector in parallel to a plurality of parallel scan registers.
- 1 35. A method for generating deterministic test patterns comprising the steps of:
- 2 modifying n x L storage locations of a circular buffer formed with L
- 3 registers, each having n storage locations,
- 4 emulating shifting of the content of a plurality of LFSR-based segments,
- 5 and
- 6 outputting the content of a head one of the L registers as a portion of a
- 7 deterministic test pattern being generated.
- 1 36. The method as set forth in claim 35, wherein the method further includes the step of
- 2 repeating said modification and outputting sufficient number of times to generate a
- 3 sufficiently large deterministic test pattern to fill a plurality of parallel scan registers.
- 1 37. The method as set forth in claim 35, wherein the method further includes the step of
- 2 advancing a head pointer for identifying the head one of the L registers.
- 1 38. The method as set forth in claim 35, wherein the emulation step emulates shifting of
- 2 LFSR-based segments interconnected with a network of linear functions that
- 3 implements an identical feedback polynomial for each of the LFSR-based segments.

1	39. The method as set forth in claim 35, wherein the emulation step emulates shifting of	
2	LFSR-based segments interconnected with a network of linear functions that provides	
3	inter-segment feedback at identical tap positions of the LFSR-based segments.	
1	40. The method as set forth in claim 35, wherein the method further comprises the	
2	steps of moving a deterministic test vector to a test port register, and then moving the	
3	pseudo-random test vector in parallel to a plurality of parallel scan registers.	
1	41. A method comprising the steps of:	
2	moving a first test response into a first accumulator,	
3	adding a first signature to the first accumulator,	
4	moving a second test response into a second accumulator,	
5	outputting the content of the first accumulator and	
6	adding the output of the first accumulator into the second accumulator.	
•		
1	42. The method as set forth in claim 41, wherein the method further includes the step	
2	of:	
3	moving the second test response into the first accumulator,	
4	adding a second signature that includes the first test response into the	
5	first accumulator,	
6	moving a third test response into the second accumulator,	
7	outputting the content of the first accumulator, and	
8	adding the output of the first accumulator to the second accumulator.	

9

responses into a signature.

	·	
1	43. The method as set forth in claim 42, wherein the step of adding of the output of the	
2	first accumulator into the second accumulator is performed in accordance with a 1's	
3	complement convention.	
1	44. The method as set forth in claim 42, wherein the step of adding the output of the	
2	first accumulator into the second accumulator is performed using a rotate carry	
3	scheme.	
•		
1	45. The method as set forth in claim 41, wherein the method further comprises the step	
2	of moving a partial test response from a test port register.	
1	46. The method as set forth in claim 45, wherein the step of moving the partial test	
2	response is performed as an integral part of a step of providing a test vector from the	
3	test port register.	
1	47. A method for testing peripheral devices of an integrated circuit, the method	
2	comprising the steps of:	
3	generating first test patterns using mission datapaths of a processor core;	
4	loading a plurality of parallel scan registers with the first test patterns from a test	
5	port register, one bit slice for each scan register at a time, and simultaneously	
6	recovering test responses for previously generated second test patterns from the	
7	parallel scan registers into the test port register; one bit slice per scan register a time;	

moving the test responses into the processor core, and compacting the test

1	48. The method as set forth in claim 47, wherein the method further includes the step of	
2	applying one or more clock cycles to the peripheral devices to apply the first test	
3	patterns in the parallel scan registers to the peripheral devices.	
1	49. A method for testing an integrated circuit, comprising the steps of:	
2	placing a processor core in a test mode;	
3	saving a pre-test state of a plurality of parallel scan registers,	
4	generating and applying a plurality of test patterns to a plurality of	
5	peripheral devices using the data paths of the processor core and the parallel scan	
6	registers, and	
7	restoring the pre-test state of the parallel scan registers.	
1	50. The method as set forth in claim 49, wherein the generating and applying step	
2	includes generating one or more test vectors for the peripheral devices using the data	
3	paths of the processor core, and compacting test responses of the peripheral devices	
4	using the data paths of the processor core.	