3. Linear Classifiers

GEV6135 Deep Learning for Visual Recognition and Applications

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Sep 15, 2022

How to Contact Us

- via CLASSUM
 - All questions about the course should go here.
 - Students are encouraged to ask and answer each other.
 - We will also use this to communicate with you.

• Email: Only for sensitive and/or confidential issues

Assignment 2

• Due Monday 9/26, 11:59pm KST

K-Nearest Neighbors classification

- Please read the instruction carefully!
 - Do not write or modify any code outside of the designated blocks.
 - Do not add or delete cells from the notebook.
 - Do not import additional libraries.
 - + Do not use torch.nn unless instructed.
 - Run all cells, and do not clear out the outputs, before submitting.
 - Do not zip by yourself, run the provided code.

Last time: Image Classification

Input: image

This image by Nikita is licensed under CC-BY 2.0

Output: Assign image to one of a fixed set of categories

Last time: Challenges of Recognition

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Last time: Data-Drive Approach, kNN

Today: Linear Classifiers

Neural Network

This image is CC0 1.0 public domain

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Parametric Approach

Image

10 numbers giving class scores

or weights

Parametric Approach: Linear Classifier (3072,)

Image

f(x,W) = Wx(10,) (10, 3072)

→ f(x,W) ———

10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

VVparameters
or weights

Parametric Approach: Linear Classifier

(3072,)**Image** (10, 3072)

f(x,W)

Array of 32x32x3 numbers (3072 numbers total)

10 numbers giving class scores

parameters or weights

Example for 2x2 image, 3 classes (cat/dog/ship)

$$f(x,W) = Wx + b$$

Example for 2x2 image, 3 classes (cat/dog/ship)

Linear Classifier: Algebraic Viewpoint

Linear Classifier: Bias Trick

Add extra one to data vector; bias is absorbed into last column of weight matrix

Stretch pixels into column

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Linear Classifier: Predictions are Linear!

$$f(x, W) = Wx$$
 (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Kibok Lee

Interpreting a Linear Classifier

Instead of stretching pixels into columns, we can equivalently stretch rows of W into images!

$$f(x,W) = Wx + b$$

Interpreting a Linear Classifier

Interpreting a Linear Classifier: Visual Viewpoint

Interpreting a Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data

e.g., horse template has 2 heads!

bird

plane

Interpreting a Linear Classifier: Geometric Viewpoint

Decision Regions

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Kibok Lee

Interpreting a Linear Classifier: Geometric Viewpoint

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

Interpreting a Linear Classifier: Geometric Viewpoint

Hard Cases for a Linear Classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Recall: Perceptron couldn't learn XOR

X	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

So Far: Defined a linear score function

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

Given a W, we can compute class scores for an image x.

But how can we actually choose a good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CCO 1.0 public domain; Frog image is in the public domain

Choosing a good W

$$f(x,W) = Wx + b$$

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

-0.51	3.42
6.04	4.64
5.31	2.65
-4.22	5.1
-4.19	2.64
3.58	5.55
4.49	-4.34
-4.37	-1.5
-2.09	-4.79
-2.93	6.14

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (optimization)

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called reward function, profit function, utility function, fitness function, etc

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

Loss for a single example is

$$L_i(f(x_i, W), y_i)$$

Loss for the dataset is average of per-example losses:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$
 $P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$ Softmax function

cat **3.2**

car 5.1

frog -1.7

Want to interpret raw classifier scores as probabilities

Want to interpret raw classifier scores as probabilities

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Softmax

$$L_i = -10g(0.13)$$

= **2.04**

Maximum Likelihood Estimation Choose weights to maximize the likelihood of the observed data

Want to interpret raw classifier scores as probabilities

Kibok Lee

Want to interpret raw classifier scores as probabilities

Cross-Entropy Loss (Multinomial Logistic Regression)

3.2

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

5.1 car

cat

frog

Q: What is the min / max possible loss L_i?

A: Min 0, max +infinity

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$S = f(x_i; W)$$

$$P(Y = k \mid X = x_i) = \frac{\exp(s_k)}{\sum_j \exp(s_j)}$$
 Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y = y_i \mid X = x_i)$$

Putting it all together:

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

3.2 cat

5.1 car

frog

Q: If all scores are small random values, what is the loss?

A:
$$-\log(1/C)$$
 $\log(10) \approx 2.3$

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat

car

frog

Loss

3.2

5.1

-1.7

1.3

4.9

2.0

2.5

2.2

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

= 2.9

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 5.1 - 3.2 + 1)$$

$$+ \max(0, -1.7 - 3.2 + 1)$$

$$= \max(0, 2.9) + \max(0, -3.9)$$

$$= 2.9 + 0$$

cat **3.2**

5.1

frog -1.7

car

Loss 2.9

1.3

4.9

2.0

0

2.2

2.5

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

$$L_{i} = \sum_{\substack{j \neq y_{i} \\ = \max(0, 1.3 - 4.9 + 1) \\ +\max(0, 2.0 - 4.9 + 1) \\ = \max(0, -2.6) + \max(0, -1.9) \\ = 0 + 0 \\ = 0$$

cat

3.2

car

frog

5.1

-1.7

2.9 Loss

1.3

4.9

2.0

2.2

2.5

-3.1

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

= 12.9

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1)$$

$$+ \max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 6.3) + \max(0, 6.6)$$

$$= 6.3 + 6.6$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over the dataset is:

$$L = (2.9 + 0.0 + 12.9) / 3$$

= 5.27

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to the loss if the scores for the car image change a bit?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: What are the min and max possible loss?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: If all the scores were random, what loss would we expect?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What would happen if the sum were over all classes? (including $j = y_i$)

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if the loss used a mean instead of a sum?

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Given an example (x_i, y_i) $(x_i \text{ is image, } y_i \text{ is label})$

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used this loss instead?

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

Cross-Entropy vs SVM Loss

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

$$[10, -100, -100]$$

and

$$y_i = 0$$

Q: What is cross-entropy loss? What is SVM loss?

Cross-Entropy vs SVM Loss

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

$$y_i = 0$$

Q: What happens to each loss if I slightly change the scores of the last data point?

A: Cross-entropy loss will change; SVM loss will stay the same

DL for Visual Recognition and Applications

Cross-Entropy vs SVM Loss

$$L_{i} = -\log\left(\frac{\exp(s_{y_{i}})}{\sum_{j} \exp(s_{j})}\right)$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

[10, -2, 3]

[10, 9, 9]

[10, -100, -100]

and

$$y_i = 0$$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function**:
- We have a loss function:

Q: How do we find the best W, b?

$$s = f(x; W, b) = Wx + b$$

Linear classifier

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM:
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Next: Regularization, Optimization