#### **EL2450 Hybrid and Embedded Control**

#### **Lecture 5: Implementation aspects**

- Modeling and compensation for jitter, delay, loss
- Quantization and packet losses in state feedback

## Today's Goal

#### You should be able to

- Derive models for delay, jitter and loss
- Modify controllers to compensate for known and unknown delays
- Model and analyze packet losses and quantization effect in state feedback

## **Implementation Aspects**

Computations and communications introduce imperfections, e.g.,

- Delays
- Packet Losses
- Quantization

Where do they appear in the control loop:



## **Time Delays**

- ullet Delays au in communications and computations
- Delays are bad for control loops (avoid if possible)
- Delays can be known or unknown (influence control)
- Delay variation is denoted jitter
- Data loss (e.g., lost packet) can be interpreted as  $au=\infty$



## **Communication Influence on Control Loop**

#### Communication impose uncertainties

- Transmission delays
  - Data are delayed due to buffering and propagation delays
  - Delays are varying due to varying network load
- Data drops
  - Data are lost due to network protocol
  - · Bit-errors in wireless links
  - Sudden loss of connection



## **Control Systems with Unknown Delays**

**Nyquist Criterion:** Control system with phase margin  $\varphi_m$  at  $\omega_c$  can have maximum (fixed) time delay

$$au < \varphi_m/\omega_c$$

**Example**  $P(s)=1/s^2$  with  $C(s)=K(1+T_ds)$ , K=1,  $T_d=1.4$ , gives phase margin  $\varphi_m=1.13=65$  deg at  $\omega_c=1.54$ . Then,

$$\tau < \varphi_m/\omega_c = 0.73$$

# Stability under Unknown Time-Varying Delay

**Theorem:** Consider linear feedback system with  $\Delta$  representing a delay  $0 \le \tau(t) \le \tau_{\text{max}}$ . Closed-loop system stable if

$$\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right|<\frac{1}{\tau_{\max}\omega},\,\forall\omega\in[0,\infty]$$



Proof is based on small gain theorem (see [L, paper 3])

#### Relations to Nyquist Criterion

At  $\omega = \omega_c$ ,

$$\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right| = \frac{1}{|1-e^{i\varphi_m}|} \approx \frac{1}{\varphi_m}$$

Hence, closed-loop stability if

$$\frac{1}{\varphi_{\mathit{m}}} < \frac{1}{\tau_{\mathsf{max}}\omega_{\mathit{c}}}$$

Corresponds to Nyquist criterion for constant  $au(t) = au_{\mathsf{max}}$ 



#### **Control Systems with Known Delays**

Known time delays can be compensated with **Smith predictor**:



Closed-loop system with  $\hat{P}=P$  and  $\hat{\tau}=\tau$ :  $y=\frac{PG}{1+PG}e^{-s\tau}r$  Design controller as if there were no time delay and then implement structure above

## **Example**

Consider control design for

$$P(s)e^{-s\tau} = \frac{e^{-s\tau}}{s^2}$$

 $G(s) = K(1 + T_d s)$ , K = 1,  $T_d = 1.4$ , gives performance worse than the Smith Predictor.

Controller with Smith predictor (from u to r - y) is then given by

$$C(s) = \frac{G(s)}{1 - P(s)G(s)(e^{-s\tau} - 1)}$$

$$= \frac{Ks^2(1 + T_d s)}{s^2 + K(1 + T_d s) - K(1 + T_d s)e^{-s\tau}}$$

#### **Interpretation of Smith Predictor**

Compared to conventional PID control, the Smith predictor estimates old responses *y*. Alternative block diagram of Smith predictor:



#### Time Stamps

Delays can be estimated from **time stamped data**, each node transmits data together with sampling time, e.g., (y(t), t)

If the receiving node is synchronized, it can determine and compensate time delay



# **Time Stamped Sensor Measurements**

Suppose sensor measurements are delayed unknown and varying time  $\tau(t)$  If sensor data  $(y(t_s),t_s)$  is received at controller at time  $t=t_c$ , the current delay is  $\tau(t)=t_c-t_s$ , which can then be used in the control algorithm (cf., Smith predictor)



Important to take *all* delays into account (buffering, computation, propagation etc.)

## **Compensating Delays in State Feedback**

Consider plant with state feedback

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Sensor node sends x(kh) to control node.

Suppose delay  $\tau_k = \tau(kh) < h$  in  $\Delta$ .

Controller has x(kh) available and derives (draw time axis)

$$\bar{x}(kh+\tau_k) = e^{A\tau_k}x(kh) + \int_{kh}^{kh+\tau_k} e^{A(kh+\tau_k-s)}Bu(s)ds$$

and then

$$u(kh + \tau_k) = -L\bar{x}(kh + \tau_k)$$

## Compensating Delays in Output Feedback

Consider plant

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad y(t) = Cx(t)$$

Sensor node sends y(kh) to control node with transmission delay  $\tau_k = \tau(kh) < h$ . Perform estimation and control in the following order:

$$\begin{split} \bar{x}(kh) &= \hat{x}(kh) + K[y(kh) - C\hat{x}(kh)] \\ \bar{x}(kh + \tau_k) &= e^{A\tau_k} \bar{x}(kh) + \int_{kh}^{kh + \tau_k} e^{A(kh + \tau_k - s)} Bu(s) ds \\ u(kh + \tau_k) &= -L\bar{x}(kh + \tau_k) \\ \hat{x}(kh + h) &= e^{A(h - \tau_k)} \bar{x}(kh + \tau_k) + \int_{kh + \tau_k}^{kh + h} e^{A(kh + h - s)} Bu(s) ds \end{split}$$

#### **Delays Larger Than** h

- Similar scheme can be applied for a large (known) delay  $\tau(t) > h$ , by extending the state of the estimator (cf., sampling of systems with delay in Lecture 2)
- Buffers can be introduced to handle out-of-order delivery
- It is possible to use late data to adjust old estimates
- But buffers may introduce time delay



#### **Jitter**

Jitter  $\delta t$  is max deviation in time delay

$$\delta \tau = \tau_{\mathsf{max}} - \tau_{\mathsf{min}}$$

Introduce mean  $\bar{\tau} = (\tau_{\mathsf{max}} + \tau_{\mathsf{min}})/2$ 



#### Stability with Jitter

**Theorem:** Consider linear feedback system with  $\Delta$  representing a delay

$$0 \le \bar{\tau} - \delta \tau / 2 \le \tau(t) \le \bar{\tau} + \delta \tau / 2$$

Closed-loop system stable if

$$\left| \frac{P(i\omega)C(i\omega)}{1 + P(i\omega)C(i\omega)e^{-i\omega\bar{\tau}}} \right| < \frac{\sqrt{2}}{\delta\tau \cdot \omega}$$



#### **Data Loss Model**

Let d(k) be binary a stochastic variable,  $y_s(k)$  the data packet transmitted at sensor node, and  $y_c(k)$  received data packet d(k) = 1 corresponds to packet loss and d(k) = 0 to no loss



#### **Observer with Loss**

An observer handling data loss:

$$\hat{x}(k+1) = \Phi \hat{x}(k) + \Gamma u(k) + egin{cases} K[y(k) - C\hat{x}(k)], & d(k) = 0 \\ 0, & d(k) = 1 \end{cases}$$

Similar adjustments can be made to the (stochastic) Kalman filter, in which K = K(k) is time varying

## State Feedback Stability with Packet Losses



Plant dynamics:  $x((k+1)h) = \Phi x(kh) + \Gamma u(kh)$ Controller:  $u(kh) = -K\bar{x}(kh)$ , where  $\bar{x}(kh) = x(kh)$  if packet is transmitted,  $\bar{x}(kh) = \bar{x}((k-1)h)$  otherwise.

#### State Feedback Stability with Packet Losses



**Theorem** Suppose that the closed-loop system without packet losses is stable, ie, the eigenvalues of  $\Phi - \Gamma K$  are inside the unit circle. Let r be the successful packet reception rate. Then

• if the open-loop system is marginally stable, then the system is exponentially stable for all  $0 < r \le 1$ .

# State Feedback Stability with Packet Losses (cont.ed)

 if the open-loop system is unstable, then the system is exponentially stable for all

$$\frac{1}{1 - \gamma_1/\gamma_2} < r \le 1,$$

where  $\gamma_1 = \log[\lambda_{\max}^2(\Phi - \Gamma K)], \ \gamma_2 = \log[\lambda_{\max}^2(\Phi)]$ 

Proofs in [ZBP]

#### **Error Correction**

- Data drops are naturally handled through coding
- By introducing parity bits (redundancy), it is possible to reconstruct data at the receiver node even if some packets are lost
- The amount of redundancy r(k) should be minimized in order to maximize data transmission, but still large enough to counteract data drops
- Redundancy r(k) can be controlled based on feedback information on varying network load and other operating conditions



#### **Delay or Loss**

- There is a floating boundary between delay and drop
- TCP considers a packet to be lost after a specified time denoted timeout
- It can be better to drop data, than use old information for control
- Feedback is forgiving in the sense that communication drops and noise is often attenuated by controller



#### Quantization

- Quantization in AD converters
- Quantization of controller parameters
- Roundoff, overflow, and underflow in operations (addition etc.)
- Quantization in DA converters



- Quantization affects stability properties of nominal closed loop system.
- Can be analyzed in certain cases using Lyapunov techniques.
- Quantization induces error: compensated by feedback in some cases.

# Review Lyapunov functions for continuous systems

A differentiable function  $V: \mathbb{R}^n \to \mathbb{R}$  is a *Lyapunov function* for  $\dot{x} = f(x), f(0) = 0$  if

1. 
$$V(0) = 0$$
 and  $V(x) > 0$ ,  $\forall x \neq 0$ 

2. 
$$\dot{V}(x) := \frac{\partial V}{\partial x} f(x) \le 0, \forall x \ne 0$$

**Linear Systems**  $V(x) = x^T P x$ , P positive definite, is a (quadratic) Lyapunov function for  $\dot{x} = A x$ , if (and only if)

$$A^T P + PA = -Q$$
, Q positive semidefinite

because 
$$\dot{V}(x) = x^T (A^T P + PA)x = -x^T Qx \le 0$$
.

## **Stability Test**

The solution  $x^*(t) = 0$  for  $\dot{x}(t) = f(x(t))$  is stable if there exists a Lyapunov function. It is asymptotically stable if, moreover,  $\dot{V}(x)$  is negative definite.

**Linear Systems** A linear system  $\dot{x}(t) = Ax(t)$  is asymptotically stable if (and only if) for any positive definite Q, there exists positive definite P such that

$$A^T P + PA = -Q$$

## Stability LTI systems with errors

- Consider  $\dot{x} = Ax + Bu$ . Assume that u = Kx is a stabilizing controller.
- Now assume measurement errors in the feedback, so that control input is u = K(x + e).
- Fact: There exists a quadratic Lyapunov function V and a, b > 0 for which

$$\dot{V} \le -a||x||^2 + b||x||||e||$$

#### **Quantization Modelling**



In general, a quantizer  $q: \mathbb{R}^n \to \mathcal{Q}$ .

- Quantization regions are the sets  $\{z \in \mathbb{R}^n | q(z) = i \in \mathcal{Q}\}.$
- Quantization range: highest value of signal that can be mapped to the quantizer.

#### **Quantization Error Modelling**



- Quantization error: e(x(t)) = q(x(t)) x(t).
- Uniform quantization:  $||q(x(t)) x(t)|| \le \delta_u$ .
- Logarithmic quantization:  $||q(x(t)) x(t)|| \le \delta_I ||x(t)||$ .



Here we consider state quantization. Input and output quantization is also possible.

- Plant:  $\dot{x} = Ax + Bu$ . Assume that u = Kx is a stabilizing controller.
- Controller with quantization: u = Kq(x). ("certainty equivalence controller").

**Theorem** Suppose that the closed-loop system without quantization is asymptotically stable. Then there exist sufficiently small  $\delta_u$ ,  $\delta_I$  for which the quantized closed-loop system (i)is asymptotically stable, for the case of logarithmic quantizers, (ii) converges to a region around the equilibrium point, whose size depends on  $\delta_u$ , for the case of uniform quantizers.

Note: proof based on Fact of slide 30.

- Can be extended to input (u = q(Kx)) and output quantization.
- Worst-case approach:maximum error is considered in the analysis.
- Alternative to consider stochastic approach (cf. Lecture 4).

#### **Computer Arithmetics**

- Control design and analysis are mainly based on high resolution and large range (floating-point) arithmetics: x, y, u supposed to be real valued
- Microcomputers in embedded systems may have fixed-point arithmetic

#### Analysis and design problems:

- What are the influences of limited word lengths (16 or 32 bits)?
- Is special attention needed in computations (overflow, roundoff)?
- Word length can sometimes be a choice, e.g., special-purpose VLSI circuits in consumer electronics

#### **Floating-Point Arithmetics**

IEEE 754 Standard: Numbers represented as

$$\pm a \cdot 2^b$$

where  $0 \le a < 2$  is the *significand*, and b the *exponent* 

- Short real: 32 bits (Java/C: float)
  - 1 sign + 8 exponent + 23 significand
  - Range  $2^{-126}$ – $2^{128}$
- Long real: 64 bits (Java/C: double)
  - $1 \operatorname{sign} + 11 \operatorname{exponent} + 52 \operatorname{significand}$
  - Range  $2^{-1022}$ – $2^{1024}$

Supports infinity and NaN. Used by most processors, except some digital signal processors (DSP's)

#### **Fixed-Point Arithmetics**

- Word given in binary format
- Typical word lengths are 8, 16, and 32 bits
- 16 bits correspond to  $\{-2^{15}, \dots, 2^{15} 1\} = \{-32768, \dots, 32767\}$

#### Computation properties:

- Result depends on order of computations
- Overflow risk
- Put attention to overflow characteristics (saturation)

#### **Next Lecture**

#### Event-based control and real-time systems

- Event-based control
- Real-time systems and scheduling