INDIAN INSTITUTEOF TECHNOLOGY, KHARAGPUR

Date :- FN/AN Time: -2 Hrs. Full Marks :- 30 Dept. :- Mathematics

No. of Students: - 88 Mid Term (Autumn) Semester Examination 2016-17

Sub. No. :- MA41007 Sub. Name :- Functional Analysis

Course :-1st Yr. M.Sc. (Dual) Mathematics & 4th Yr. M.Sc. (Int.), Mathematics & Computing Instruction :- Attempt ALL questions.

- 1(a). Let (X,d) be a metric space and Y be a separable subspace of (X,d). If closure of Y is X i.e. $\overline{Y} = X$, then prove that (X,d) is separable. [2 M]
- 1(b). Let $d_1 = \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a mapping defined by

$$d_1(x,y) = \begin{cases} 1 + |y - x| & \text{if one and only one of the real numbers } x \& y \text{ is positive} \\ |y - x| & \text{otherwise} \end{cases}$$

Prove that d_1 is a metric on \mathbb{R}

[2M]

- 1(c). Show that, by given an example, that a complete and incomplete metric space may be Homeomorphic.
- 2(a). Let X be the set of all continuous real valued functions on J = [0,1], and let

$$d(x,y) = \int_{0}^{1} |x(t) - y(t)| dt. \text{ Show that } (x_n) \text{ where } x_n(t) = \begin{cases} n, & \text{if } 0 \le t \le \frac{1}{n^2} \\ t^{-\frac{1}{2}}, & n^{-2} \le t \le 1 \end{cases}$$
 is a Cauchy sequence in (X,d) but is not convergent.

is a season, sequence in (17, a) but is not convergent.

[3M]

- 2(b). Show that the space C of all convergent sequences $x = (\xi_i)$ of complex numbers, with the metric induced from the space l_{∞} is complete. [3 M]
- 3(a). A normed space $(X, \|.\|)$ is complete if every absolutely convergent series in $(X, \|.\|)$ is convergent .Prove it.
- 3(b). Let X denote the linear space of all polynomials p(t) in one variable t with coefficients in \mathbb{R} or \mathbb{C} . For $p \in X$ with $p(t) = a_0 + a_1 t + \dots + a_n t^n$, let $\|p\| = \sup\{|p(t)| : 0 \le t \le 1\}$ & $\|p\|_1 = |a_0| + |a_1| + \dots + |a_n|$

Are these equivalent norms .Justify.

[2M]

3(c). If a Cauchy sequence has a convergent subsequence, then prove that the whole	
sequence is convergent.	2 M]
4(a). Prove that every finite dimensional subspace Y of a normed space $(X, \ .\)$ is	
complete.	2 M]
4(b). Let (C_0, d) be the space of null sequences (x_n) of complex numbers converging	g
to zero with $d(x, y) = \sup x_n - y_n $. Show that the space C_0 is unbounded.	[2M]
4 (c). Give an example of a metric space which is not a normed space.	[2M]
5(a). In a finite dimensional normed space , prove that any subset $M \subset X$ is comparation	act
if it is closed and bounded.	[2M]
5(b). Prove that set of integers $\mathbb Z$ are nowhere dense set in $\mathbb R$.	[2M]
$5(c)$. Show that \mathbb{R}^n is locally compact but not compact.	[2M]

----- X -----