## Sujet 1

# Prépa Profs

Exercice 1 - Des polynômes

Soit  $E = \mathbb{R}_n[X]$  et soit f l'application définie sur E par f(P) = P(X+1) + P(X-1) - 2P(X).

- 1. Vérifier que f est un endomorphisme de E.
- 2. Pour p = 0, ..., n, déterminer le degré de  $f(X^p)$ ? En déduire  $\ker(f)$  et  $\operatorname{Im}(f)$ .
- 3. Soit Q un polynôme de Imf. Démontrer qu'il existe un unique polynôme P tel que f(P) = Q et P(0) = P'(0) = 0.

Exercice 2 - Noyau égal à l'image

Soit E un espace vectoriel de dimension finie. Montrer qu'il existe  $f \in \mathcal{L}(E)$  tel que  $\ker(f) = \operatorname{Im}(f)$  si et seulement si E est de dimension paire.

Exercice 3 - Composée et somme

Soient u et v deux endomorphismes d'un espace vectoriel E de dimension finie n.

1. Montrer que

$$|\operatorname{rg}(u) - \operatorname{rg}(v)| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v).$$

2. On suppose que  $u \circ v = 0$  et que u + v est inversible. Prouver que rg(u) + rg(v) = n.

Exercice 4 - Base donnée par un endomorphisme nilpotent

Soit E un espace vectoriel de dimension  $n, f \in \mathcal{L}(E)$  un opérateur tel que  $f^n = 0$  et  $f^{n-1} \neq 0$ .

- 1. Soit  $x \in E$  tel que  $f^{n-1}(x) \neq 0$ . Montrer que la famille  $(x, f(x), \dots, f^{n-1}(x))$  est une base de E.
- 2. Soit  $g \in \mathcal{L}(E)$ . Montrer que g commute avec f (ie fg = gf) si et seulement si  $g \in \text{vect}(Id, f, \dots, f^{n-1})$ .

#### **PROBLEME**

Soit E un K espace vectoriel ( $K = \mathbb{R}$  ou  $\mathbb{C}$ ) et u un endomorphisme de E. On désigne par Ker u le noyau de u et Im u l'image de u.

Pour tout entier k strictement positif,  $u^k$  désigne l'endomorphisme  $u \circ u \circ u \circ u \circ u$  (k fois) et  $u^0$  désigne l'application identique de E.

#### PREMIERE PARTIE

IA Dans cette partie, E désigne un espace vectoriel sur  $\mathbb{R}$  dont une base est  $B = (e_1, e_2, e_3, e_4)$ . Soit u l'endomorphisme de E tel que la matrice de u par rapport à cette base est :

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

- IA 1 Déterminer le rang de u et donner une base de  $\operatorname{Im} u$ , une base de  $\operatorname{Ker} u$  en fonction des vecteurs de la base B.
- IA 2 Calculer  $M^2$ ,  $M^3$  et montrer que pour tout entier  $p \ge 2$ , il existe un réel  $\alpha_p$  et une matrice A telle que :  $M^p = \alpha_p A$ . Expliciter alors  $M^p$ .
- IA 3a Donner une base, en fonction des vecteurs de la base B, de chacun des sous-espaces vectoriels suivants :  $\operatorname{Im} u^2$ ,  $\operatorname{Ker} u^2$ ,  $\operatorname{Im} u^3$ ,  $\operatorname{Ker} u^3$ .
- **IA 3b** Déterminer :  $\forall k \geq 2$ , Ker  $u^k$ , Im  $u^k$ .
- **IA 3c** Montrer que  $E = \operatorname{Ker} u^2 \oplus \operatorname{Im} u^2$ .

## Sujet 1



- IB Soit K[X] l'espace vectoriel des polynômes à coefficients dans le corps K et d l'endomorphisme de K[X] qui à un polynôme P associe son polynôme dérivé P'.
- **IB 1** d est-il injectif ? d est-il surjectif ? Comment peut-on en déduire que K[X] n'est pas de dimension finie ?
- **IB 2** Déterminer :  $\forall q \in \mathbb{N}^*$ , Ker  $d^q$ .

#### DEUXIEME PARTIE

Soit u un endomorphisme de E, pour tout entier naturel p, on notera  $I_p = \operatorname{Im} u^p$  et  $K_p = \operatorname{Ker} u^p$ .

- II 1 Montrer que :  $\forall p \in \mathbb{N}, K_p \subset K_{p+1} \text{ et } I_{p+1} \subset I_p.$
- II 2 On suppose que E est de dimension finie et u injectif. Déterminer :  $\forall p \in \mathbb{N}, I_p$  et  $K_p$ .
- II 3 On suppose que E est de dimension finie n non nulle et u non injectif.
- II 3a Montrer qu'il existe un plus petit entier naturel  $r \le n$  tel que :  $K_r = K_{r+1}$ .
- II 3b Montrer qu'alors :  $I_r = I_{r+1}$  et que :  $\forall p \in \mathbb{N}, K_r = K_{r+p}$  et  $I_r = I_{r+p}$ .
- II 3c Montrer que :  $E = K_r \oplus I_r$ .
- II 4 Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que  $K_r = K_{r+1}$ ?

## Sujet 1

