COMP 5630/6630:Machine Learning

Course Administration

- Instructor
 - Dr. Tin Nguyen
 - Email: tinn@auburn.edu
 - Office hours: after class or by appointment

- Teaching Assistants
 - Shubham Trehan, Email: szt0113@auburn.edu
 - Giang Nguyen, Email: <u>vzn0025@auburn.edu</u>

About Me

- BS and MS in CS
 - Eotvos Lorand University, Budapest, Hungary, 2008
- Ph.D. in Computer Science
 - Wayne State University, Detroit, MI, 2011 2017
- Assistant Professor in CSSE
 - University of Nevada, Reno, NV, 2017-2023
- Associate Professor in CSSE
 - Auburn University, AL, 2023- Present

My Research

https://tinnguyen-lab.com/home

Bioinformatics Lab

This is the website for Bioinformatics Lab at Auburn University. Although it is a new lab, we have been involved in developing state of the art solutions to help tackle problems in the ever-evolving world of Bioinformatics. Much of the research in our lab builds on collaborations with others, both at the AU and also further field.

We have a diverse group focusing on different aspects of Bioinformatics. With the aim of solving different problems in the world that ranges from finding subtypes of diseases to research in single cell, we do not know what the future holds for the lab but it is certainly going to be interesting!

Interests

- Data Science
- Machine Learning
- Disease Subtyping
- Pathway Analysis
- Single-cell Analysis

Education

Ph.D., Computer Science, 2017

Wayne State University

M.S., Computer Science, 2008

Eotvos Lorand University

B.S., Computer Science, 2004

Eotvos Lorand University

Course Administration

- Textbook:
 - No particular book is required for this course. Recommended
 - Textbook 1: Christopher M Bishop, Pattern Recognition and Machine Learning
 - Textbook 2: Introduction to Machine Learning, Third Edition by Ethem Alpaydin.
- Supplementary material will be posted on Canvas as needed.

Grading Information (5600)

Exams (20%)

One Midterm Exam

Quizzes (25%)

- One quiz at the end of every week on Canvas.
- Open book and open notes

Assignments (35%)

- Four (4) /Five (5) assignments One every two weeks
- Typically contains two (2) to three (3) problems and one (1) bonus problem

Final Exam (20%)

- A Comprehensive final exam at the end of the semester
- Talk to us about any concerns about projects/exams

Grading Information (6600)

Midterm (20%)

One Midterm Exam

Quizzes (20%)

- One quiz at the end of every week on Canvas.
- Open book and open notes

Assignments (25%)

- Four (4) assignments One every two weeks
- Typically contains two (2) to three (3) problems and one (1) bonus problem Final Project (15%)
 - Team effort (2-3 students per team)
 - Proposal due at the end of 6th week
 - Project report and presentation due at the end of the course
 - Only for graduate section (6600)

Final Exam (20%)

- A Comprehensive final exam at the end of the semester
- Talk to us about any concerns about projects/exams

Grading Policies

Percentage	Grade	GPA Quality Points
90 - 100	A	4.0
80 - 89	В	3.0
70 - 79	C	2.0
60 - 69	D	1.0

Tentative Schedule

Week 1	Syllabus, Course policies, What is ML?, ML Basics				
Week 2	Linear Regression, Logistic Regression,				
Week 3	Model Selection, Evaluation Metrics				
Week 4	Evaluation Metrics, Neural Networks				
Week 5	Deep Learning - Convolutional Neural Networks				
Week 6	Deep Learning - Sequence Learning Project Proposal Due: Oct 1 (COMP: 6630)				
Week 7	Deep Learning - Recent Advances:NLP				
Week 8	Midterm , Naïve bayes				

Tentative Schedule

Week 9	Naïve Bayes, Decision Trees				
Week 10	Project Interim Report: Status, Issue, and Changes. Due: Oct 31, Decision Trees				
Week 11	KNN, Intro to SVM: kernel, Support Vector Machines				
Week 12	Unsupervised Learning: clustering: Kmeans, Hierarcheal, Dimensionality reduction				
Week 13	Data visualization, Dimensionality Reduction: PCA, Autoencoder				
Week 14	Thanksgiving Break				
Week 15	Project Final Report Due: Dec 2, 2024 Ethics in ML/ Advanced Topics				
Week 16	Final Exam Week				

What is Machine Learning

Artificial Intelligence?

Machine Learning?

Deep Learning?

What is Machine Learning

Task: Digit Recognition

Hard way: Understand each digit

• Easy way: Learn from data!

Example: Netflix Challenge

• Task: Predicting how a viewer will rate a movie

• 10% improvement = 1 million dollars

Example: Netflix Challenge

• Task: Predicting how a viewer will rate a movie

• 10% improvement = 1 million dollars

- Machine Learning Basics:
 - A pattern exists
 - Formulate the problem with example data

Comparison

 Computer Programming Input • Data Program Output

What is Machine Learning?

• [Arthur Samuel, 1959]: popularized the term "machine learning"

"Field of study that gives computers the ability to learn without being explicitly programmed"

- [Tom Mitchell] algorithms that
 - improve their performance (P)
 - at some task (T)
 - with experience (E)

Machine Learning (ML) Applications

What is Machine Learning (ML)?

- Input: x (email)
- Output: y (spam or non-spam...)
- (Unknown) Target Function
 - f: X → Y (the "true" mapping / reality)
- Data
 - $(x_1,y_1), (x_2,y_2), ..., (x_N,y_N)$
- ML
 - Learn a "mapping" from input to output f: X → Y
 - Learning objective: minimize the loss between "learned mapping" and "true mapping"

ML Algorithm Components

1. Representation

2. Evaluation / Objective Function

3. Optimization

Representation

Decision Tree

Support Vector Machines

• Deep Neural Network

Embedding

Evaluation / Objective Function

- Accuracy
- Precision
- Recall
- Mean Squared Error
- Entropy

Optimization

Greedy search

Beam search

Convex/non-convex optimization

Types of Learning

- Supervised learning
 - Training data includes labelled outputs
- Unsupervised learning
 - Training data does not include labelled outputs
- Semi-supervised learning
 - Training data includes a few labelled outputs
- Reinforcement learning
 - Rewards from sequence of actions

Supervised Learning

Unsupervised Learning

Supervised Learning: Classification

Supervised Learning: Classification

- Predicting letter grade of a course
 - Input (x): scores of assignments, quizzes, and exam
 - Output (y): Letter grade

Supervised Learning: Regression

Supervised Learning: Regression

- Predicting temperature
 - Input (x): humidity, speed of the wind, precipitation
 - Output(y): Temperature

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering

- Market Segmentation
 - Input (x): purchasing behavior, demographic
 - Output (y): Groups of customers based on similarity
 - Example:
 - College student discounts

Unsupervised Learning: Clustering

- Data preprocessing stage to select relevant features
- Task: Predict customer demands of room types

Customer	Date of birth	Customer age	Country	Marital status	Room service breakfast	Single room	Double bedroom	Twin room	Suite
Customer A	2/14/1998	23	US	Single	yes	2		1940	84
Customer B	4/13/1965	56	US	Married	no	11-11	3	88 - 8	1
Customer C	9/28/1984	36	US	Married	yes	0(2)	8	6	12
Customer D	3/8/1972	49	US	Single	no	2	14	1944	3

- Country: same across all inputs
- Age and Date of Birth: can be merged