

Introduction to Bioinformatics online course: IBT

Bioinformatics resources and databases: Lecture 3: DNA sequence analysis Nicola Mulder

Learning Objectives

- Objective: Basic DNA sequence analysis finding sequence features
- Sub objectives:
 - Understand how to extract a DNA sequence from the database
 - Use online or local tools for simple DNA sequence analysis -finding features on the sequence and their applications

Learning Outcomes

- Understand how to find a DNA sequence and save it in the correct format
- Identify features on the sequence such as coding regions, restriction enzyme sites, etc.
- Design primers for amplification of a DNA sequence
- Interpret sequence analysis results and understand the biological impact of functional regions

Two major components to Bioinformatics

- Storing and retrieving data:
 - Biological databases
 - Querying these to retrieve data
- Manipulating the data –tools e.g.
 - Finding features on sequences
 - Sequence similarity searches
 - Protein families and function prediction
 - Comparing sequences –phylogenetics
 - Etc.

Aspects of sequence analysis

Overview

- Assume sequence is retrieved from the database
- General text/format manipulation and accession numbers
- DNA sequences
 - Restriction analysis
 - Primer design
 - Finding features –coding and non-coding
 - Gene prediction
- RNA sequence analysis
 - Summary of kinds of analyses possible

> [title] [sequence]

>seq1
GGAAAATTAGATGCATGGGAAAAAATTA
GGAAAATTAGACAAATGGGAAAAAATTA
>seq2
AAGTCCCTGGATTTACCCAATGCAGTCGA
CATCGCATTT

CBIO Computational Biology @ UCT

Sequence formats: GenBank

LOCUS 525-42 1588 bp DEFINITION 525-42 1588 bp

TITLE 525-42

FEATURES Location/Qualifiers

exon 39..70

/note="exon1 is believed to have an alternative splice donor site"

ORIGIN

1	ATGTT	AAGAG	GGGGA	AAATT	AGATG	CATGG	GAAAA	AATTA	GGTTA	AGGCC
51	AGGGG	GAAAG	AAATG	CTATA	NGATA	AAACA	CCTAG	TATGG	GCAAG	CAGGG
101	AGCTG	GAAAG	ATTTG	CACTT	AACCC	TGGCC	TTTTA	GAGAC	ATCAG	ANGGC
151	TGTAA	ACAAA	TAATG	NAACA	GATAC	AACCA	GCTCT	TCAGA	CAGGA	ACAGA

Converting between sequence formats (save options)

DNA sequence composition

- Nucleotide composition (% GC vs AT content)
- GC bonds are stronger than AT bonds
- Applications:
 - Horizontal gene transfer analysis
 - Gene prediction
 - Primer design

Accession numbers

- GenBank/EMBL/DDBJ: 1 letter & digits, e.g.: U12345 or 2 letters & 6 digits, e.g.: AY123456
- GenPept Sequence Records -3 letters & 5 digits,
 e.g.: AAA12345
- UniProt -All 6 characters: [A,B,O,P,Q] [0-9] [A-Z,0-9] [A-Z,0-9] [0-9], e.g.:
 P12345 and Q9JJS7

Cross-referencing identifiers

- So many different IDs for same thing, e.g.
 Ensembl, EMBL, HGNC, UniGene, UniProt, Affy ID, etc.
- Need mapping files to move between them to avoid having to parse every entry
- UniProt website mapper (www.uniprot.org)
- PICR (http://www.ebi.ac.uk/Tools/picr/) enables mapping between IDs

Example conversion

PRP Protein Identifier Cross-Reference

Home User Guide Implementation Webservice RESTful Contact Us

Input Accession	ENSEMBL	REFSEQ	UNIPROT_BEST_GUESS
O60260	ENSP00000343589 ENSP00000355860 ENSP00000355862 ENSP00000355863 ENSP00000434414 ENSG00000185345 ENSP00000343589 ENSP00000355860 ENSP00000355862 ENSP00000355863 ENSP00000355863 ENSP00000366894 ENST00000366894 ENST00000366897 ENST00000366897 ENST00000366898 ENST00000366898	NP 004553.2 NP 054642.2 NP 054643.2 XP 014201025.1 NM 004562.2 NM 013987.2 NM 013988.2	<u>060260.2</u>
P01130	ENSP00000397829 ENSP00000437639 ENSP00000440520 ENSP00000453346	NP 000518.1 NP 001182727.1 NP 001182728.1 NP 001182729.1	<u>P01130.1</u>

CBIO Computational Biology @ UCT

DNA sequence analysis

- Restriction analysis e.g. for cloning –looks for recognition sites
- Primer design
- Finding features on a sequence
- Gene prediction:
 - Translation
 - Promoter prediction

Bioinformatics and cloning

- Retrieving sequence of interest
- Identifying restriction enzyme sites
- Matching these to RE sites in cloning vector

Restriction enzyme analysis

 Restriction enzymes recognize specific or defined 4 to 8 base pair sequences on DNA and cut

Microorganism	Enzyme	Sequences	Notes
Haemophilus aegitius	HaeIII	5'GG CC3' 3'CC GG5'	Blunt end
Haemophilus haemolytica	<i>Hha</i> I	5'GC G C3' 3'GG C G5'	3' single strand
Escherichia coli	<i>Eco</i> RI	5'GAATT C3' 3'C TTAA G5'	5' single strand

5'	GG CC	3° CC GG
		G C
		AATTC

Restriction map

Restriction Enzyme Map:

Restric	tion Enzyme Map:	
1	TACATGCATGTTCATGGTAGCATTATTCACAAAGCCCAAAAGATGCAAAACGCCCCAATGTCCATAGATGAATAAACTGTG ATGTACGTACAAGATACCATCGTAATAAGTGTTTCGGTTTTCTACGTTTTGTCGGGGTTACAGGTATCTACTTATTTGACAC NspI BfrBI NsiI NspI MslI	80 80
81	GCATACATGATACACACACACACACACACACACACATATACATATACACACACAAACACTATTCAGTCATAAAAAAGGAATAA	160
81	CGTATGTACTATGTGTGTGTGTGTGTGTGTATATGTATATGTGTGTTTTTGTGATAAGTCAGTATTTTTCCTTATT TspDTI	160
161	AGTCTGTTACATGCTACCTGAGGATGAACCTCGAAAACATGCTAAGTGAAAGACACAAAAGTCCACACACTGTGATTCCG	240
161	TCAGACAATGTACGATGGACTCCTACTTGGAGCTTTTGTACGATTCACTTTCTGTGTTTTCAGGTGTGACACTAAGGC	240
	BseMII Bsu36I BstF5I TspDTI DrdI TspGWI BspCNI FokI NspI Hpy8I DraIII	
	NspI MnlI TspRI MnlI	
241	TTTATATGAAGTATCTAAAGTAAGTAAATATAGAGACAGAAGTAGACTGGTAATTGCCAGGGGCTGGGGGGGAAGAGGGC	320
241	AAATATACTTCATAGATTTCATTTATATCTCTGTCTTCATCTGACCATTAACGGTCCCCGACCCCCCTTCTCCCG	320
	TspDTI AccI BsrI BsaJI EarI	
	BsmAI Hpy8I BslI	
	Pf1MI AlwNI	
	BseYI	

MnlI

Removing vector sequence

- Vector contamination can be identified by searching your sequence against a database of vector sequences (UniVec) e.g. http://www.ncbi.nlm.nih.gov/VecScreen/VecS creen.html –uses BLASTN
- Need to hope vector is only at extremities and not in insert (contamination!)

PCR and primer design

- Can engineer restriction sites
- Primers should be similar length and Tm
- Should amplify only required piece from genome

Example with Primer BLAST

H	H3AB <mark>i</mark> oNet							
7	IMER-BLAST	A tool for finding specific primers						
31/	/ Primer-BLAST: Finding primers specific to your PCR template (using Primer3 and BLAST).							
	PCR Template Re	set page Save search parameters Retrieve recent results Publication Tips for finding specific primers						
	Enter accession, gi, or FASTA s	equence (A refseq record is preferred) Clear Range						
	Or, upload FASTA file	From To Forward primer Reverse primer Browse No file selected.						
	Primer Parameters							
	Use my own forward primer (5'>3' on plus strand) Use my own reverse primer (5'>3' on minus strand) PCR product size # of primers to return	(i) Clear (ii) Clear (iii) Cle						
	Primer melting temperatures (Tm)	Min Opt Max Max Tm difference 57.0 60.0 63.0 3						
	Exon/intron selection	A refseq mRNA sequence as PCR template input is required for options in the section						
	Exon junction span	No preference ▼ ②						
	Exon junction match	Exon at 5' side Exon at 3' side 7 4 Minimal number of bases that must anneal to exons at the 5' or 3' side of the junction						
	Intron inclusion	Primer pair must be separated by at least one intron on the corresponding genomic DNA 🕢						
	Intron length range	Min Max 1000 1000000 ⊌						

Example with Primer BLAST

Primer-BLAST

Primer Pair Specificity Checking Para

Pan African Bioinformatics Network

A tool for finding specific primers

glutathione synthetase

BI/ Primer-BLAST: Finding primers specific to your PCR template (using Primer3 and BLAST). Sa Detailed primer reports PCR Template Enter accession, gi, or FASTA sequence (A re Primer pair 1 Sequence (5'->3') Tm GC% Self complementarity Length Forward primer ATGAGGCCAAGGCCCAAGAC 62.08 57.14 4.00 Reverse primer GATGAGGGGCTGACAGGAGTGG 64.35 63.64 5.00 Or, upload FASTA file Browse... Products on target templates >NC 000020.11 Homo sapiens chromosome 20, GRCh38.p7 Primary Assembly **Primer Parameters** Use my own forward primer product length = 690 (5'->3' on plus strand) Features associated with this product: Use my own reverse primer glutathione synthetase (5'->3' on minus strand) glutathione synthetase Min PCR product size 70 Forward primer 1 ATGAGGCCAAGGACCCAAGAC 21 Template 34929242 34929222 # of primers to return 10 Reverse primer 1 GATGAGGGGCTGACAGGAGTGG 22 Template 34928553 34928574 Min Primer melting temperatures 57.0 (Tm) product length = 1995 Features flanking this product: Exon/intron selection 62286 bp at 5' side: zinc finger protein 217 A refseq mRI 297816 bp at 3' side: breast carcinoma-amplified sequence 1 isoform 1 Exon junction span No preferer ATGAGGCCAAGGACCCAAGAC 21 Forward primer 1 Exon junction match Template Exon at 5' sid ATGAGGCCAAGGACCCAAGAC 21 Forward primer 1 53647105 C.....A.T.A......G 53647085 Template Minimal num Intron inclusion Primer pa >NC_018931.2 Homo sapiens chromosome 20, alternate assembly CHM1_1.1, whole genome shotgun sequence Intron length range Min 1000 product length = 690 Features associated with this product: glutathione synthetase

Gene Prediction

Wikipedia: A **gene** is a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions and/or other functional sequence regions

- Look for gene structures
- Move along sequence looking for coding regions and intergenic regions
- Check reading frame -translate
- Look for promoters and poly-adenylation signals
- In eukaryotes look for introns and exons
- Use EST or BLAST support (reduce pseudogenes)

Translation

- Can choose frame if you know it
- Otherwise 6-frame translation:
 - Choose start codon ATG
 - Otherwise lists all codons between stop codons
- Results –usually the longest ORF starting with Met and ending in stop, & no stop codons inside
- Can confirm this with promoter prediction
- Should use appropriate codon usage table

Open reading frame

- String of in-frame combinations/triplets of bases that specify an amino acid
- Starts with ATG (Meth) or Val
- Ends with stop codon
- One base insertion or deletion –out of frame/frameshift

Genetic code

- Each amino acid is specified by a triplet of 3 bases
- 4 bases:
 A,C,G,T = 64
 possible
 codons.
 Actually 61
 codons + 3
 stop codons

		Second Position					
		U	С	Α	G		
	U	UUU } Phe UUC } Leu UUG }	UCU UCC UCA UCG Ser	UAU }Tyr UAA UAA Stop	UGU Cys UGC Stop UGG Trp	UCAG	
on (5' end)	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG	CGU CGC CGA CGG	UCAG	Third Posit
First Position (5' end)	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU Asn AAA Lys AAG	AGU Ser AGA AGA AGG	UCAG	Third Position (3' end)
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG GIU	GGU GGC GGA GGG	UCAG	
	= Chain-terminating codon= Initiation codon						

6 possible reading frames, 3 in each direction

Ser Arg Leu

AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+1

Reverse complement

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

6 possible reading frames, 3 in each direction

Val Gly Stop
AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+2

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

6 possible reading frames, 3 in each direction

Ser Ala Asp

AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+3

AAGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

6 possible reading frames, 3 in each direction

Arg Leu Thr

AGTCGGCTGACTGCGTTTACGAATGCGATTACTCCCTT

+1

Reverse complement

AAGGGAGTAATCGCATTCGTAAACGCAGTCAGCCGACT

Getting the final protein

- Six-frame translation
- Find longest ORF with initiation site, start codon and ending with stop codon

	_	T'
_	41	CCAAAATCGCCTTTTGCTG TATATACTCACAGCATAACT
Promoter		CCAA -35 -10 TATACT >
1101110001	81	TATA TACAC CCAGGGGGGGGGAATGAAAGCGTTAACGGCC
		+10 GGGGG Ribosomal binding sit
	121	GGCAACAAGAGGTGTTTGATCTCATCCGTGATCACATCA
Start codon	161	CCAGACAGGTATGCCGCCGACGCGTGCGGAAATCGCGCA
Start Codon	201	CGTTTGGGGTTCCGTTCCCCAAACGCGGCTGAAGAACAT
	241	TGAAGGCGCTGGCACGCAAAGGCGTTATTGAAATTGTTT
	281	CGGCGCATCACGCGGGATTCGTCTGTTGCAGGAAGAGGA
	321	GAAGGGTTGCCGCTGGTAGGTCGTGTGGCTGCCGGTGAA
	361	CACTTCTGGCGCAACAGCATATTGAAGGTCATTATCAGG
	401	CGATCCTTCCTTATTCAAGCCGAATGCTGATTTCCTGCT
CDC	441	CGCGTCAGCGGGATGTCGATGAAAGATATCGGCATTATG
CDS	481	ATGGTGACTTGCTGGCAGTGCATAAAACTCAGGATGTAC
	521	TAACGGTCAGGTCGTTGTCGCACGTATTGATGACGAAGT
	561	ACCGTTAAGCGCCTGAAAAAAACAGGGCAATAAAGTCGAA
	601	TGTTGCCAGAAAATAGCGAGTTTAAACCAATTGTCGTTG
C. I	641	CCTTCGTCAGCAGAGCTTCACCATTGAAGGGCTGGCGGT
Stop codon	681	GGGGTTATTCGCAACGGCGACTGGCTGTAACATATCTCTC
	721	AGACCGCGATGCCGCCTGGCGTCGCGGTTTGTTTTCAT
	761	TCTCTTCATCAGGCTTGTCTGCATGGCATTCCTCACTTC
	801	TCTGATAAAGCACTCTGGCATCTCGCCTTACCCATGATT
	841	TCTCCAATATCACCGTTCCGTTGCTGGGACTGGTCGATA
	881	GGCGGTAATTGGTCATCTTGATAGCCCGGTTTATTTGGG
	921	GGCGTGGCGGTTGGCGCAACGGCGGACCAGCT

Complex Eukaryotic systems

gene

Human introns and exons

CBIO Computational Biology @ UCT

Gene prediction in eukaryotes

- Identifying features (sometimes by PSSMs):
 - splice sites
 - start and stop sites
- Predict exons based on these signals
- Score exons based on signals and exon characteristics (coding sequences may have compositional biases)
- Use composition and homology information
- Assemble components into predicted gene structure
- Some methods use HMMs -features are states
- Use EST info

Using EST data: mRNA against genomic sequence

Gene Prediction software

- GeneMark –gene prediction for prokaryotes, eukaryotes and viruses: http://opal.biology.gatech.edu/GeneMark/
- GENSCAN –for vertebrate, maize and Arabidopsis sequences: http://genes.mit.edu/GENSCAN.html
- Microbial Gene Prediction System <u>http://compbio.ornl.gov/generation/</u>
- Glimmer –bacteria, archae and viruses http://www.tigr.org/software/glimmer/
- GRAIL –for eukaryotes, includes splice info, homology, etc. http://compbio.ornl.gov/grailexp/

Other translators and promoter prediction

- NCBI ORF Finder: (http://www.ncbi.nlm.nih.gov/gorf/gorf.htm)
- Promoter 2.0 Prediction Server (http://www.cbs.dtu.dk/services/Promoter/)
- MCPromoter MM:II (http://genes.mit.edu/McPromoter.html)
- BPROM -prediction of bacterial promoters, etc.

RNA sequence analysis

- Many different types of RNA e.g. tRNA, rRNA, mRNA etc.
- Some have activities e.g. ribozymes
- Many new programs for identification of noncoding RNA, miRNAs etc and their targets
- Secondary structure of RNA is NB for stability and often function
- RNA levels are NB for final protein levels, they measure gene expression –ESTs, microarrays

Summary and conclusions

- Basic sequence analysis is finding features on a sequence
- This could be small features
 - Restriction sites -> cloning
 - Primer sites -> PCR
- Or combinations of features:
 - Gene signals -> gene prediction
- Features found by nature of their "conservation" or pattern matching

