

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER OF PATENTS AND TRADEMARKS
Washington, D.C. 20231
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/842,694	04/27/2001	Isao Kobayashi	35.C13077 DI	9229

5514 7590 01/24/2003

FITZPATRICK CELLA HARPER & SCINTO
30 ROCKEFELLER PLAZA
NEW YORK, NY 10112

[REDACTED] EXAMINER

MONDT, JOHANNES P

[REDACTED] ART UNIT [REDACTED] PAPER NUMBER

2826

DATE MAILED: 01/24/2003

Please find below and/or attached an Office communication concerning this application or proceeding.

Offic Action Summary	Application No.	Applicant(s)
	09/842,694	KOBAYASHI ET AL.
	Examiner Johannes P Mondt	Art Unit 2826

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 03 January 2003.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.
- 4) Claim(s) 1-3 and 7-11 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-3 and 7-11 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
- 11) The proposed drawing correction filed on _____ is: a) approved b) disapproved by the Examiner.
If approved, corrected drawings are required in reply to this Office action.
- 12) The oath or declaration is objected to by the Examiner.

Priority under 35 U.S.C. §§ 119 and 120

- 13) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).
- * See the attached detailed Office action for a list of the certified copies not received.
- 14) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. § 119(e) (to a provisional application).
- a) The translation of the foreign language provisional application has been received.
- 15) Acknowledgment is made of a claim for domestic priority under 35 U.S.C. §§ 120 and/or 121.

Attachment(s)

- | | |
|--|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) Paper No(s). _____ |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449) Paper No(s) _____ | 6) <input type="checkbox"/> Other: _____ |

DETAILED ACTION***Continued Examination Under 37 CFR 1.114***

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 01/03/2003 has been entered.

Response to Amendment

Amendment D entered on 01/03/2003 as Paper No. 11 forms the basis of this office action. Applicant substantially amended all previously pending claims through substantial amendment of both independent claims 1 and 8 and added new claim 11. Therefore, claims 1-3 and 7-11 remain in the application.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. ***Claims 1-3 and 9*** are rejected under 35 U.S.C. 103(a) as being unpatentable over Endo et al (Japanese Patent Application Number 09-098970) in view of Takeda et al (5,591,963). Endo et al teach (cf. Drawing 6) a photoelectric converter (cf. title and

Art Unit: 2826

abstract) of a laminated structure (laminated regions 602, 607, 604, 605 and 606 are laminated) comprising:

- a first electrode layer 602 (G) (cf. section [0050], line 3);
- an insulation layer 607 (cf. section [0053], lines 5-6) inherently blocking the passage of electrons and holes;
- a photoelectric conversion semiconductor layer 604 (cf. section [0050], lines 5-9);
- an injection blocking layer 605 for blocking the injection of holes only (inherently so for this n-type semiconductor layer; cf. section [0050], lines 5-9) to the semiconductor photoelectric conversion layer at a time;
- a second electrode layer 606 (D) (cf. section [0050], lines 5-9); and
- a switching means for operating the photoelectric converter by switching through the following operation modes:
 - (a) a photoelectric conversion mode (cf. Drawing 6(b)) for accumulating holes in accordance with an amount of incident light (cf. section [0053], lines 1-17);
 - (b) a refresh mode (cf. Drawing 6(a)) for emitting holes from the photoelectric conversion element (cf. section [0052], lines 1-4).

Although Endo et al do not specifically distinguish an idling mode for emitting one of the holes or electrons from the photoelectric conversion element, it would have been obvious to include an idling mode according to this definition in the invention by Endo et al in view of Takeda et al, who, in exactly the same art (semiconductor photoelectric conversion device) allow both zero and positive values for the voltage V_{UB} in what they

call "refresh" mode (cf. column 9, lines 58-65), but which settings correspond to refresh mode and idling mode, respectively, in the nomenclature of Applicant.

Motivation to include the setting of small, positive values for said voltage V_{UB} is the availability of a wider range of voltage settings over which refreshing of the photoelectric conversion layer is achieved. The teaching by Takeda et al in this regard can be *combined* trivially with the invention taught by Endo et al by allowing a continuum around zero for the voltage setting V_{UB} . Success in implementing the combination can therefore be reasonably expected.

With regard to claim 2: as is evident from the explanation in Takeda et al, recombination as required for refresh mode is too rapid unless V_{UB} reaches a sufficiently large and positive value, upon which a photoelectric current can be detected, which is the essence of the photoelectric conversion mode (cf. column 10, lines 23-28). The further limitation as defined by claim 2 is the inherent property of photoelectric conversion in the device of claim 1 of the necessity of a minimum positive voltage. Therefore, hence claim 2 does not distinguish over the prior art.

With regard to claim 3: in the directions for operation as taught by Takeda et al operation with V_{UB} small but >0 (idling mode) is preceded in Takeda et al by operation with $V_{UB}=0$ (refresh mode) (cf. column 11, lines 60-65). Furthermore, irregardless of this teaching, it is generally understood by those of ordinary skills in the art that when common voltage regulators are used the transition from zero to a specific minimum positive voltage necessarily involves ramping up the voltage from zero to said minimum

positive voltage, from which the further limitation as defined by claim 3 follows.

Therefore, claim 3 does not distinguish over the prior art.

With regard to claim 9: the potential V_{UB} in the primary reference (Takeda et al), which corresponds to the potential V_{dg} as defined by Applicant, can adopt zero, positive and negative values (cf. column 9, line 58 – column 10, line 2), which is understood by those of ordinary skills in the art to be a standard option in circuitry. Therefore, the further limitation as defined by claim 9 does not distinguish over the prior art.

4. ***Claim 7 is rejected*** under 35 U.S.C. 103(a) as being unpatentable over Endo et al (Japanese Patent Application Number 09-098970) in view of Takeda et al (5,591,963) as applied to claim 1, and further in view of Furukawa et al (5,591,960) and Arita (4,740,710). As detailed above, claim 1 is unpatentable over Endo et al in view of Takeda et al.

Takeda et al do not specifically teach the application of the photoelectric converter such that a plurality of said photoelectric elements are arranged one-dimensionally or two-dimensionally with a switching element connected for each of the photoelectric conversion elements according to the further limitation of claim 7.

However, one- and two-dimensional arrays of photoelectric elements of this kind have long been known in the art of photoelectric converter systems, as witnessed by Furukawa et al, who teach a structure consisting of a combination of pluralities of photoelectric element array sections *for the purpose of obtaining a high level signal with low noise* (cf. column 4, lines 48-55) comprising a plurality of photoelectric conversion

elements, arranged two-dimensionally (cf. column 6, lines 33-37) with a switching element connected for each of the photoelectric conversion elements (cf. column 6, lines 49-56) with all the photoelectric conversion elements being divided into a plurality of n blocs (n=3, the blocks being circuit sections 1002/1102, 2002/2102, and 4002/4102; cf. column 6, lines 49-59), a light signal of all the n x m photoelectric conversion elements (m being the number of photoelectric elements in each block; undefined in claim!) divided into n=3 blocks is output (inherent in any useful application of pluralities of photoelectric converters is their output) an intersection part of the matrix wiring, which when using the photoelectric converter essentially taught by Endo et al in view of Takeda et al comprises a laminated structure in which at least a first electrode layer, an insulating layer, a semiconductor layer and a second electrode layer are provided in this order. Furukawa et al do not necessarily teach that each layer of the laminated structure should be formed as prescribed by the further limitation of claim 7. However, *from a cost production point of view* it makes utter sense to form each said layer in this manner, because of ease of mass production; while Arita indeed teaches a photoelectric reading apparatus wherein a plurality of switches are each connected with one end of each of the photoelectric elements (diodes) (cf. column 7, lines 25-32 and Fig. 6). The teaching by Furukawa et al can be easily combined with the invention by Endo et al and Takeda et al, because creating arrays of photoelectric converters has long been considered standard in the art of photoelectric conversion apparatus, while *motivation* to include the teaching by Furukawa et al and Arita in the invention essentially taught by Endo et al and Takeda et al is prompted by the obvious advantage of high S/N ratio as obtained

through including the teaching by Furukawa et al, and, furthermore, the obvious advantage of lower manufacturing cost as obtained through including the teaching by Arita.

It thus would have been obvious to one of ordinary skills in the art to modify the invention at the time it was made so as to include the further limitation of claim 7.

5. **Claim 8** is rejected under 35 U.S.C. 103(a) as being unpatentable over Endo et al (Japanese Patent Application Number 09-098970) in view of Takeda et al (5,591,963) and Perez-Mendez (5,596,198), or, in the alternative, in view of Takeda et al (5,591,963) and Sashin (4,179,100). Endo et al teach (cf. Drawing 6) a photoelectric converter (cf. title and abstract) of a laminated structure (laminated regions 602, 607, 604, 605 and 606 are laminated) comprising:

- a first electrode layer 602 (G) (cf. section [0050], line 3);
- an insulation layer 607 (cf. section [0053], lines 5-6) inherently blocking the passage of electrons and holes;
- a photoelectric conversion semiconductor layer 604 (cf. section [0050], lines 5-9);
- an injection blocking layer 605 for blocking the injection of holes only (inherently so for this n-type semiconductor layer; cf. section [0050], lines 5-9) to the semiconductor photoelectric conversion layer at a time;
- a second electrode layer 606 (D) (cf. section [0050], lines 5-9); and
- a switching means for operating the photoelectric converter by switching through the following operation modes:

- (a) a photoelectric conversion mode (cf. Drawing 6(b)) for accumulating holes in accordance with an amount of incident light (cf. section [0053], lines 1-17);
- (b) a refresh mode (cf. Drawing 6(a)) for emitting holes from the photoelectric conversion element (cf. section [0052], lines 1-4).

Although Endo et al do not specifically distinguish an idling mode for emitting one of the holes or electrons from the photoelectric conversion element, it would have been obvious to include an idling mode according to this definition in the invention by Endo et al in view of Takeda et al, who, in exactly the same art (semiconductor photoelectric conversion device) allow both zero and positive values for the voltage V_{UB} in what they call "refresh" mode (cf. column 9, lines 58-65), but which settings correspond to refresh mode and idling mode, respectively, in the nomenclature of Applicant.

Motivation to include the setting of small, positive values for said voltage V_{UB} is the availability of a wider range of voltage settings over which refreshing of the photoelectric conversion layer is achieved. The teaching by Takeda et al in this regard can be *combined* trivially with the invention taught by Endo et al by allowing a continuum around zero for the voltage setting V_{UB} . Success in implementing the combination can therefore be reasonably expected.

Endo et al nor Takeda et al necessarily teach the photoelectric converter to comprise a signal processing means, display means, electric transmission means and radiation source as further defined by claim 8.

However, the use of signal processing for the purpose of generating corresponding image signals to various peripherals, signal recording for video/data

recorder use, signal display for interactive video display are standard in the art of photoelectric imaging, as shown for instance by Perez-Mendez (cf. column 6, lines 28-36). Alternatively, the use of signal processing for the purpose of generating corresponding image signals to various peripherals, signal recording for video/data recorder use, signal display for interactive video display are standard in the art of photoelectric imaging, as shown by Sashin (4,179,100) (cf. Fig. 23 and column 15, line 64 – column 65, line 15). The examiner takes official notice that the use of electrical transmission for the transmission of data to other locations for remote processing or analysis is standard in the field. Finally, any photoelectric converter needs a radiation source for photon input, hence this aspect is inherent in a photoelectric converter system. Finally, any photoelectric converter needs a radiation source for input, hence this aspect is inherent in a photoelectric converter system.

6. ***Claim 10*** is rejected under 35 U.S.C. 103(a) as being unpatentable over Endo in view of Takeda et al and Perez-Mendez, or, in the alternative, in view of Takeda et al and Sashin et al as applied claim 8 above, and further in view of Takeuchi et al (JP363250634A; no images available on the PTO Data Base). As detailed above, claim 8 is unpatentable over Endo et al in view of Takeda et al and Perez-Mendez, or, in the alternative, over in view of Takeda et al and Sashin et al, none of whom, however, necessarily teach the use of phosphorus as a converter of wavelength of radiation as input into a photoelectric conversion element has long been known in the art as witnessed for instance by Japanese Patent to Takeuchi et al, who teach the conversion

of X-rays to light in the visible range through the use of phosphorus prior to undergoing photoelectric conversion (cf. abstract and constitution), for the purpose of making it easier to read X-ray images through said conversion.

Motivation to include this teaching by Takeuchi et al is to reduce cost by making the system more easily operable (it is understood in the art that the radiation to be investigated for the case for which the invention by Takeuchi et al is intended, i.e., X-rays, is potentially a health risk). The teaching in this regard by Takeuchi et al can be easily *combined* with the invention of claim 8 through inclusion of a phosphorous or phosphorescent layer, which is standard in the light detection art. Success in combining the inventions can therefore be *reasonably expected*.

7. **Claim 11** is rejected under 35 U.S.C. 103(a) as being unpatentable over Endo et al and Takeda et al as applied above to claim 1, and further in view of Hikiji et al (JP406029510A). As detailed above, claim 1 is unpatentable over Endo et al in view of Takeda et al.

Neither Endo et al nor Takeda et al necessarily teach the further limitation as defined by claim 11. However, TFT-driven photoelectric converters have long been known in the art of semiconductor image sensors, as witnessed for example by Hikiji et al, who teach the TFT-driven photoelectric converter (image sensor) to be made on the same substrate and with the same layer construction (cf. English Abstract, "Purpose", lines 1-4 and "Constitution", lines 1-7), thus increasing the compactness of the device. *Motivation* to include the teaching by Hikiji et al stems from the synergistic inclusion of

Art Unit: 2826

the driver in the detector. *Combinability* is evident from the description of the formation of the TFT by Hikiji et al (see Abstract, "Constitution"). Success in implementing the combination can therefore be reasonably expected.

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Johannes P Mondt whose telephone number is 703-306-0531. The examiner can normally be reached on 8:00 - 18:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nathan J Flynn can be reached on 703-308-6601. The fax phone numbers for the organization where this application or proceeding is assigned are 703-308-7722 for regular communications and 703-308-7724 for After Final communications.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is 703-308-0956.

JPM
January 14, 2003

NATHAN J. FLYNN
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2800

