

CAB: A Reactive Wildcard Rule Caching System for Software-Defined Networks

Bo Yan, Yang Xu, Hongya Xing Kang Xi, H. Jonathan Chao

August 22, 2014

Switch

Caching Wildcard Rules

Wildcard rules enables:

- Natural intention of managing flows aggregately
- Higher reusability for each rule
- Easy update of policies

NYC Dept.Edu (DoE) Data Center Traces

Caching Wildcard Rules

Wildcard rules enables:

- Natural intention of managing flows aggregately
- Higher reusability for each rule
- Easy update of policies

Locality of Traffic

NYC Dept.Edu (DoE) Data Center Traces

Caching Wildcard Rules

Wildcard rules enables:

- Natural intention of managing flows aggregately
- Higher reusability for each rule
- Easy update of policies

Locality of Traffic

NYC Dept.Edu (DoE) Data Center Traces

<u>Dependency</u> <u>has chain</u> reaction

Wrong matching!

<u>Dependency</u> <u>has chain</u> reaction

<u>Dependency</u> <u>has chain</u> reaction

Cache all dependent rules

- Memory explosion

Cache all dependent rules

- Memory explosion

Cache all dependent rules

- Memory explosion

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Split rule set and cache micro rules [Smart Rule Cache][DIFANE]

- Significantly larger rule set

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Split rule set and cache micro rules [Smart Rule Cache][DIFANE]

- Significantly larger rule set

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Split rule set and cache micro rules [Smart Rule Cache][DIFANE]

- Significantly larger rule set

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Split rule set and cache micro rules [Smart Rule Cache][DIFANE]

- Significantly larger rule set

Switch Mem

Lack of efficiency in switch memory use

- more cache miss at switch
- higher controller load, control bandwidth
- longer flow setup delay

Cache all dependent rules

- Memory explosion

Cache exact match rules [DevoFlow][Ethane]

- Frequent rule installations

Split rule set and cache micro rules [Smart Rule Cache][DIFANE]

- Significantly larger rule set

Switch Mem

Problem: how to accommodate rule dependency with efficient mem use?

Cache Miss at Bucket Filter

Switch Mem

Cache Miss at Bucket Filter Install bucket F and rule 3 & 4

Switch Melli

Cache Miss at Bucket Filter Install bucket F and rule 3 & 4 f₁ is set up

Matched Bucket F, and Rule 3

Switch Mem

Matched Bucket F, and Rule 3 f₂ is set up

Switch Mem

Solution: <u>CA</u>ching rules in <u>Buckets</u> (CAB)

Solution: <u>CA</u>ching rules in <u>Buckets</u> (CAB)

Cache Miss at Bucket Filter
Install bucket C and rule 2 (&3)
f₃ is set up

Solution: <u>CA</u>ching rules in <u>Buckets</u> (CAB)

Now no more 100s dependent rules Only rules within requested bucket

8/24/2014

Larger buckets (2x2)

Larger buckets (2x2)

Larger buckets (2x2)

- •More rules cached each time
- •Unmatched rules cached

Larger buckets (2x2)

- •More rules cached each time
- •Unmatched rules cached

Smaller buckets (4x4)

Larger buckets (2x2)

- •More rules cached each time
- •Unmatched rules cached

Smaller buckets (4x4)

Larger buckets (2x2)

- •More rules cached each time
- •Unmatched rules cached

Smaller buckets (4x4)

More buckets cached

Larger buckets (2x2)

- More rules cached each time
- •Unmatched rules cached

Smaller buckets (4x4)

More buckets cached

Choosing bucket size affects switch memory efficiency

8/24/2014

Bucket Generation Decision Tree

Decision tree based generation algorithm [HyperCut]

No. of associate rules in each bucket is bounded

Technical problems:

How to select the fields to partition? [see paper]

Preliminary Simulation Setup

Performance Evaluation

- Cache miss rate
- Bandwidth Consumption
- Flow setup latency (see paper)

Parameter Setting

Effects of Tuning bucket size

Comparison

- CAching rules in Buckets (CAB)
- Caching exact match rules (CEM)
- Caching micro rules (CMR)
- Caching dependent rules (CDR)

Cache Miss and Control Bandwidth Performance

Cache Miss and Control Bandwidth Performance

Effect of tuning bucket size

CAB is a novel wildcard rule caching system which

Resolves **rule dependency** in wildcard rule caching

Achieves <u>efficient switch memory use</u> helps reducing control network bandwidth flow setup latency controller load

Is **<u>fully compatible</u>** with the latest OpenFlow standards

Thank you! Q&A

8/24/2014