6 (a) Define electric potential difference (p.d.).

| <br> | <br> |  |
|------|------|--|
|      |      |  |

**(b)** A wire of cross-sectional area A is made from metal of resistivity  $\rho$ . The wire is extended. Assume that the volume V of the wire remains constant as it extends.

Show that the resistance R of the extending wire is inversely proportional to  $A^2$ .

[2]

**(c)** A battery of electromotive force (e.m.f.) *E* and internal resistance *r* is connected to a variable resistor of resistance *R*, as shown in Fig. 6.1.



Fig. 6.1

The current in the circuit is I.

Kirchhoff's second law to show that

$$R = \left(\frac{E}{I}\right) - r.$$

(d) An ammeter is used in the circuit in (c) to measure the current I as resistance R is varied. Fig. 6.2 is a graph of R against  $\frac{1}{I}$ .



Fig. 6.2

(i) Fig. 6.2 to determine the power dissipated in the variable resistor when there is a current of 2.0 A in the circuit.

- (ii) Fig. 6.2 and the equation in (c) to:
  - **1.** state the internal resistance *r* of the battery

$$r = \dots \Omega$$

**2.** determine the e.m.f. *E* of the battery.