1. Data Collection

2. Data Exploration

- Correlation
- Distribution
- Feature engineering

3. Data Processing

- Numeric value (missing value)
 - Interpolation
 - Scaling problem
- Non-Numeric value (Categorical variable)
 - o Drop
 - o Label Encoding
 - o One-Hot Encoding

4. Train and Evaluating

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning

5. Fine-Tune

Optimal hyperparameter

Skill:

- Sklearn, numpy, pandas
- python

ML:

- Algorithm
- Cost function (utility function)
- Evaluation

Linear Regression – linear datasets

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$y = h_{\theta}(\mathbf{x}) = \theta \cdot \mathbf{x}$$

Essentiality: weight * features+ bias

Performance measure:

• MSE

$$MSE(X, h_{\theta}) = \frac{1}{m_i} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} - \boldsymbol{y}^{(i)})^2$$

- RMSE(Root Mean Square Error)
- R2

Two way to train:

- a direct "closed-form" equation
 - o the model parameters that minimize **the cost function** over the training set
 - o Normal Equation
 - $\bullet \quad \hat{\theta} = (X^T X^{-1}) X^T y$
 - SVD (Singular Value Decomposition)
 - an iterative optimization approach (Gradient Descent)
 - tweak parameters iteratively in order to minimize a cost function
 - lacktriangle measures the local gradient of the error function with regards to the parameter vector $oldsymbol{\theta}$,
 - goes in the direction of descending gradient
 - the gradient is zero = reach a minimum (global or local)

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

$$\theta$$
 (next step) = $\theta - \eta \nabla_{\theta}$ MSE (θ)

- o notice
 - learning rate how far a step will take
 - gradient the direction at which the variable varies fastest
 - use grid search to find a good learning rate
 - o tolerance almost converge (minimum)
 - features scale
 - normalization

- standardization
- zero-centered

- o Batch GD, Mini-batch GD, Stochastic GD
 - Batch GD -- the whole training set to compute the gradients at every step
 - Stochastic GD -- a random instance in the training set at every step
 - Mini-batch GD -- small random sets of instances

Algorithm	Large m	Out-of-core support	Large n	Hyperparams	Scaling required	Scikit-Learn
Normal Equation	Fast	No	Slow	0	No	n/a
SVD	Fast	No	Slow	0	No	LinearRegression
Batch GD	Slow	No	Fast	2	Yes	SGDRegressor
Stochastic GD	Fast	Yes	Fast	≥2	Yes	SGDRegressor
Mini-batch GD	Fast	Yes	Fast	≥2	Yes	SGDRegressor

Cross-validation

Polynomial Regression – non-linear datasets

Essence: add power of each feature as new features, then train a linear model on the augmented data set.

Drawback:

- Prone to be overfitting the training data
 - Learning curves
 - Regularization techniques

Tradeoff: bias, variance and irreducible error(noisiness)

Fine-Tune: search the optimal hyperparameter of the models

- **Grid Search:** evaluate all the listed combinations of hyperparameter values, using cross-validation
- **Randomized Search:** evaluate a given number of random combinations by selecting a random value for each hyperparameter at every iteration

Learning Curves: evaluate the model's generalization ability

- Underfitting: both curves reach a plateau, close and fairly high
- Overfitting: gap between the curves, error lower

Regularized Linear Models:

- o the fewer degrees of freedom it has, the harder it will be for it to overfit the data
- o Ridge Regression, Lasso Regression and Elastic Net
 - o Ridge Regression
 - $cost function: J(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$
 - regularized term(L_2): $\alpha \frac{1}{2} \sum_{i=1}^n \theta_i^2 = \frac{1}{2} (||w||_2)^2$
 - bias, variance and irreducible error(noisiness)
 - α reduced variance, increase bias
 - Sensitive to the scale of the input features (StandardScaler)
 - Lasso Regression
 - $cost\ function: J(\theta) = MSE(\theta) + \alpha \sum_{i=1}^{n} |\theta_i|$
 - regularized term (L₁): $\alpha \sum_{i=1}^{n} |\theta_i|$

- tend to completely eliminate the weights of the least important features
- performs feature selection and outputs a *sparse model*
- Elastic Net
 - cost function: $J(\theta) = MSE(\theta) + r\alpha \sum_{i=1}^{n} |\theta_i| + \frac{1-r}{2} \alpha \sum_{i=1}^{n} \theta_i^2$
 - A middle ground between Ridge Regression and Lasso
- Plain Linear Regression < Ridge(regularized) < Lasso(feature selection, but erratically when number of features greater or some features strongly correlated) < Elastic Net

0

Early Stopping: prevent the model from overfitting, get the best model

