

Comparison of Coulombic and Johnsen-Rahbek Electrostatic Chucking for EUV Lithography

M. R. Sogard
Nikon Research Corporation of America, Belmont, CA

A.R. Mikkelson, V. Ramaswamy, M. Nataraju, K.T. Turner and R.L. Engelstad *University of Wisconsin, Madison, WI*

Acknowledgments

Research funded by Nikon, SEMATECH, Intel, and SRC. Computer support provided by Intel and Microsoft.

Presentation Outline

- Motivation and objectives
- Characteristics of electrostatic chucking
- Finite element (FE) model description and simulation results
- Chuck comparisons and conclusions
 - Clamping performance
 - Effects of reticle non-flatness
 - Effects of particle entrapment

EUVL Flatness Requirements SEMI Standard P37 and P40

- The flatness of the EUVL mask is a key issue to minimize image placement errors due to non-telecentric illumination.
- Achieving this level of flatness requires the use of an electrostatic chuck to hold the reticle.

Specifications in the EUVL Mask Standard (SEMI P37):

Quality Area = 142 mm \times 142 mm

Frontside and Backside in Quality Area (QA):

~ 30 - 100 nm *p-v* flatness

Low Order Thickness Variation (LOTV) in QA:

~ 30 - 100 nm *p-v* flatness

Specifications in the EUVL Mask Chucking Standard (SEMI P40):

- -- stiffness ≥ 30 kN-m
- -- flatness ≈ 50 nm (*p-v*)

Electrostatic Chucking Types of Chucks

Coulomb Chuck Body t_D Insulator Chuck Body Electrode Dielectric Reticle Reticle

- Type of chuck is characterized by the dielectric material and the resulting mechanism of force generation.
- Chucks can be either monopolar or bipolar.
- Slab-type or pin-type based on the surface characteristics. A pin-type chuck is proposed to minimize the effects of particles.

Coulomb ChuckSchematic and Working Principle

Monopolar Chuck

$$P = \frac{F}{A} = \frac{\varepsilon_o V_o^2 K^2}{2(t_D + K\delta)^2} \qquad \boxed{V_o}$$

P = electrostatic pressure

F = electrostatic force

A = area of the electrode

 V_o = applied voltage

 $\varepsilon_{\rm o}$ = permittivity of free space (or air gap)

K = relative permittivity of the dielectric material

 t_D = the dielectric film thickness

 δ = total gap between the backside of the mask and the dielectric surface

Bipolar Chuck

$$P = \frac{F}{A} = \frac{\varepsilon_o V_o^2 K^2}{8(t_D + K\delta)^2}$$

Johnsen-Rahbek (J-R) Chuck **Schematic and Working Principle**

- The dielectric has a finite resistance.
- Current flowing through the dielectric and the substrate creates a charge layer at the dielectricsubstrate interface (contact layer thickness t_{CL}), yielding a strong attractive force.

 t_{CI} = contact layer thickness (mean charge separation distance)

 R_V = volume resistance of the dielectric

 R_{CL} = effective resistance of contact layer

 t_{CL} is related to surface roughness

Johnsen-Rahbek Chuck Phenomenological Model

Coulomb term

J-R term

 V_o : applied voltage

 t_D : dielectric layer thickness

 t_{CL} : contact layer thickness

$$P = \frac{\varepsilon_{0} V_{0}^{2}}{2} \left[\left(\frac{K}{t_{D} + K(\delta + t_{CL})} \right)^{2} + \alpha \left(\frac{(R_{CL} / R_{V})}{t_{CL} \{1 + (R_{CL} / R_{V})\}} \right)^{2} \right]$$

 ε_o : permittivity of free space

K: relative dielectric constant

 R_{CL} : resistance of the contact layer

 R_V : volume resistance of the dielectric material

 δ : physical gap between reticle and dielectric

 α : empirical factor of the nonuniform charge distribution on the interface

In practice, R_{CL} and R_V can be measured; t_{CL} is then obtained from a measurement of pressure at a given voltage.

Often the Coulomb term is negligible, because $t_D >> t_{CL}$ in many cases.

Contrasting Chuck Properties

Coulomb Characteristics

- Clamping pressure exists everywhere between reticle and chuck.
- Effects of nonflat substrates or particles don't affect the clamping force very much (for small gaps).

J-R Characteristics

- J-R force depends on contact between substrate and dielectric.
- How effectively will it deal with non-flat substrates or the presence of particles?

entrapped particle

No J-R force here because no physical contact

Nonuniform Distribution of Charge

- The empirical factor α represents the effect of the nonuniform distribution of charge on the interface surfaces.
- A relationship for α as a function of gap has been assumed for modeling purposes and was initially introduced to help with FE model convergence.
- However, short range forces exist over a comparable distance:
 - van der Waals (∝ 1 / gap³) ਖ
 - Casimir (∞ 1 / gap⁴)
- So this gap dependence is physically reasonable.

FE Simulation of Electrostatic Chucking

- Full 3-D FE models developed for both Coulomb and J-R chucks.
- Nonflatness measurements of the frontside and backside surfaces of the reticle, as well as the top surface of the chuck, are used as input.
- The non-flatness values are consistent with SEMI P37, P40
- Models include:
 - -- gap-dependent pressures
 - -- contact friction ($\mu = 0.2$)
 - -- stiffness of the chuck
- FE simulations predict:
 - -- final flatness of reticle patterned surface
 - -- final flatness of reticle backside surface
 - -- final bow of the chuck
 - -- final gap between the reticle and chuck

Gravity neglected.

FE Electrostatic Chucking Models

Chuck with Pin Array (with no reticle)

Chuck Geometry and Stiffness

Dielectric Layer

J-R Chuck

Chuck Body (Bulk Layer)

Effective stiffness = 380 kN-m Elastic modulus = 380 GPa Poisson's ratio = 0.24

Pin Layout

Pin coverage area: 142 mm × 142 mm

Pin size: 2.5 mm \times 2.5 mm \times 10 μ m

Pin pitch: 12.67 mm

Pin coverage: 4%

Nonflatness of Electrostatic Chuck

- Nonflatness of a Coulomb chuck was measured interferometrically.
- Measured chuck data scaled to meet the flatness specified in the EUVL chucking standard.

Coulomb Pin Chuck

Interferometric Measurement of Chuck Surface

X (cm)

Mathematical Fit

Interferometric measurement of the chuck surface is represented by Legendre polynomials and used as input into the FE models.

nm

-30

Polished Nonflatness of Reticle

Example Case

Interferometric measurements represented by Legendre polynomials are used as input into the FE models.

p - v = 50 nm

p-v = 50 nm

flatness data.

Simulating Reticle Multi-layer Thin Film Deposition

- After generating the FE model of the EUV substrate with the FS and BS nonflatness, the deposition of the ideal (uniform stress and thickness) layers is simulated.
- For the Example Case, the out-of-plane distortion (OPD) of the FS is 1000 nm p-v. The shape is convex due to the net compressive stress.

FE Model illustrating OPD contours.

OPD Frontside (p-v = 1000 nm)

Pressure as a Function of Gap Ave. Pressure of 3 kPa

Coulomb Chuck Parameters (insulating dielectric)

$$t_D = 150 \; \mu \text{m}$$

$$V_o = 633 \text{ V}$$

$$t_{CL} = 1 \mu \text{m}$$

$$K = 10$$

Pin height = $10 \mu m$

J-R Chuck Parameters (finite resistance dielectric)

$$t_D = 2 \text{ mm}$$

$$V_{o} = 492 \text{ V}$$

$$t_{CL} = 1 \mu \text{m}$$

$$K = 10$$

Pin height = 10
$$\mu$$
m $R_{CL}/R_V = 0.2$

$$R_{CL}/R_V = 0.2$$

Final Resulting Gap After Chucking with P = 3 kPa

Coulomb

 $V_o = 633 \text{ V}$

Max gap = 6.8 nm

Johnsen-Rahbek

 $V_{o} = 492 \text{ V}$

Gap Before Chucking

Max gap = 6.3 nmMax: 1 µm

Note: Size of pin areas exaggerated for display purposes.

6.8 6.0 5.3 4.5 3.8 3.0 2.2 1.5 8.0 0

Finite Element Reticle Pattern Surface

Nonflatness after Chucking with P = 3 kPa

19 10

Coulomb

 $V_o = 633 \text{ V}$

p-v = 87.8 nmQA p-v = 75.2 nm

Johnsen-Rahbek

 $V_{o} = 492 \text{ V}$

p-v = 86.7 nmQA p-v: 74.8 nm

Before Chucking $p-v=1.0 \mu m$

Finite Element Reticle Chucking Surface

Nonflatness after Chucking with P = 3 kPa

Coulomb

 $V_o = 633 \text{ V}$

p-v = 88.3 nmQA p-v: 47.8 nm

Johnsen-Rahbek

 $V_o = 492 \text{ V}$

p-v: 85.5 nm QA *p-v*: 47.2 nm

Before Chucking $p-v=1.0 \mu m$

Reticle Pattern Surface From Analytical Prediction

Thickness Variation

Chuck Nonflatness

Reticle Flatness Prediction

-30

Complete Chucking Final Flatness (from interferometer measurements only)

40 30 -20

J-R Chuck Final Flatness (from FE model)

$$p-v = 94.9 \text{ nm}$$

$$p-v = 86.7 \text{ nm}$$

Summary of Simulation Results

• Conclude there is little difference in basic clamping properties between Coulomb and Johnsen-Rahbek chucks

Reticle Nonflatness Results

- The effects of reticle blank non-flatness (before application of the multilayers) were also studied.
- Non-flat blanks were simulated using 2D Legendre polynomials. Below is Legendre mode (5,5).

Legendre Mode (5,5); p-v: 100 nm

JR Chuck Model

Final Chuck Shape

Residual Gap

Max gap: 12.0 nm

Final Reticle Pattern Surface

p-v: 123.9 nm qa p-v: 51.9 nm

Coulomb Chuck Model

Max gap: 12.1 nm

p-v: 54.0 nm

UW - Madison Computational Mechanics Center

p-v: 126.2 nm

qa p-v: 52.9 nm

Effects of Particle Entrapment: Coulomb vs. Johnsen-Rahbek Electrostatic Chucks

Coulomb Chuck

J-R Chuck

entrapped particle

Force generated everywhere

No J-R force here because no physical contact

 Do entrapped particles have similar effects on both types of chuck?

Particle Macro-Scale Model Details

- Reticle is assumed to be of ULE® material and initially bowl shaped
- Chuck is perfectly flat and rigid
- Effective particle height (h) is the residual height of the deformed particle (neglecting local deformation of the chuck and reticle surfaces). Pressure loading (P) is gap dependent with a maximum pressure of 15 kPa occurring at zero gap. Note: in this model the effective particle height says nothing about the original particle size.
- r is the radial coordinate from the location of the particle

Effective Particle Height: 30 nm

Initial Reticle Profile: Bowl

Half Symmetry Model

Results reported are for nodes along $0 \le x \le 76$ mm on the top surface of the reticle

Effective Particle Height: 60 nm

Initial Reticle Profile: Bowl

Effective Particle Height: 100 nm

Initial Reticle Profile: Bowl

Effective Particle Height: 500 nm

Initial Reticle Profile: Bowl

- The larger separation gap means the J-R chuck doesn't clamp as strongly.
- •But the IPD is significantly smaller than for the Coulomb chuck.

Conclusions

- The J-R chuck is not as effective in "flattening" trapped particles as the Coulomb chuck for large effective heights, but the associated IPD is smaller.
- However for effective particle heights comparable to the SEMI non-flatness specs (< 100 nm), there is little difference between the two types of chuck.
- Effective particle height can be significantly less than real particle size.
- The quantitative effects of particle and chuck/substrate deformation are being investigated.

Chuck Comparison

	Coulomb		Johnsen-Rahbek	
	Advantages	Disadvantages	Advantages	Disadvantages
Lithography industry experience	considerable			limited
Applied voltage		limited clamping force - requires high voltage	higher force per volt in contact areas	
Force	force insensitive to gap, spatially uniform	some distortion of reticle between pins	no distortion of reticle between pins	force highly dependent on gap, not spatially uniform
Tolerance to particles	force not dependent on particle presence	needs tall pins to tolerate particles – this reduces force	pin height is irrelevant – more particle tolerant	less able to handle particles on pins
Heat generation				some ohmic heating due to leakage current; not serious problem

Summary and Conclusions

- The successful implementation of EUV lithography requires the use of an electrostatic chuck to support and flatten the mask during scanning exposure.
- A phenomenological model describing the force-gap relationship for a J-R chuck is presented and compared to the Coulomb response.
- Full 3-D FE structural models have been developed to compare the clamping performance of the two types of chucks. The relative advantages and disadvantages of both have been identified.
- The effects of entrapped particles on the clamping performance of the two kinds of chuck have been examined in a global model.
- FE simulation results are currently being used to establish specifications for chuck geometry and to identify the range of flatness variations that can be accommodated with electrostatic chucking.