PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1107 – Introducción al Cálculo

Solución Interrogación N° 3

1. Determine el mayor dominio posible para la siguiente regla de asignación:

$$f(x) = \sqrt{\sqrt{1 - 2x} + \sqrt{\frac{x}{x^2 + 1}}}.$$

Solución. En primer lugar, necesitamos que ninguna de las dos raíces interiores se indefina, por lo que

$$1 - 2x \geqslant 0 \quad \land \quad \frac{x}{x^2 + 1} \geqslant 0.$$

La primera condición es cierta si y solo si $x \in \left(-\infty, \frac{1}{2}\right]$, mientras que la segunda es cierta si y solo si $x \in [0, +\infty)$ (note que el denominador $x^2 + 1$ es siempre positivo). Necesitamos que ambas condiciones se cumplan a la vez, es decir, $x \in \left(-\infty, \frac{1}{2}\right] \cap [0, +\infty) = \left[0, \frac{1}{2}\right]$. Finalmente, note que si $x \in \left[0, \frac{1}{2}\right]$, entonces

$$\sqrt{1-2x} + \sqrt{\frac{x}{x^2+1}} \geqslant 0,$$

por lo que la raíz exterior no se indefine. Luego el mayor dominio posible es $\left[0,\frac{1}{2}\right]$.

Criterio de Corrección (CC) Pregunta 1.

CC 1. 2 puntos por fijar la condición $1-2x \ge 0$ y obtener el conjunto solución $(-\infty, \frac{1}{2}]$.

CC 2. 2 puntos por fijar la condición $\frac{x}{x^2+1} \ge 0$ y obtener el conjunto solución $[0,\infty)$.

CC 3. 2 puntos por obtener la intersección $\left(-\infty, \frac{1}{2}\right] \cap [0, +\infty)$ y notar que $\sqrt{1-2x} + \sqrt{\frac{x}{x^2+1}} \ge 0$.

2. Determine el mayor dominio posible para la regla de asignación

$$f(x) = x + \frac{1}{x},$$

y, para dicho dominio, determine el recorrido de la función resultante.

Solución. La única restricción es que el denominador no puede ser igual a 0, por lo que el mayor dominio posible es $(-\infty, 0) \cup (0, +\infty)$.

Ahora busquemos el recorrido de la función f con dominio $(-\infty, 0) \cup (0, +\infty)$ y codominio \mathbb{R} . Tenemos que un $y_0 \in \text{Rec}(f)$ si y solo si existe un $x_0 \in (-\infty, 0) \cup (0, +\infty)$ tal que $f(x_0) = y_0$, es decir, que

$$x_0 + \frac{1}{x_0} = y_0.$$

Como $x_0 \neq 0$, lo anterior es equivalente a

$$x_0^2 - y_0 x_0 + 1 = 0.$$

Recapitulando, tenemos que $y_0 \in \text{Rec}(f)$ si y solo si la ecuación cuadrática $x^2 - y_0x + 1 = 0$ tiene una solución distinta de 0. De hecho, la última condición es irrelevante, pues evaluar la función cuadrática $x^2 - y_0x + 1 = 0$ en x = 0 resulta en 1, independientemente del valor de y_0 . Por lo tanto, la equivalencia se reduce a que el discriminante de la cuadrática no sea negativo:

$$\Delta = y_0^2 - 4 \geqslant 0.$$

Aplicando raíz cuadrada a la desigualdad $y_0^2 \ge 4 > 0$, obtenemos que $|y_0| \ge 2$, es decir

$$y_0 \in (-\infty, -2] \cup [2, +\infty).$$

Luego este último es el recorrido de la función correspondiente.

Criterio de Corrección (CC) Pregunta 2.

CC 1. 1,5 puntos por determinar el dominio de f.

CC 2. 1,5 puntos por escribir la definición de recorrido:

$$y_0 \in \operatorname{Rec}(f) \iff (\exists x_0 \in \mathbb{R} - \{0\})(f(x_0) = y_0).$$

CC 3. 1,5 puntos por obtener la equivalencia $\Delta = y_0^2 - 4 \ge 0$.

CC 4. 1,5 puntos por resolver la inecuación y concluir que el recorrido de f es $(-\infty, -2] \cup [2, +\infty)$.