

Learning to Segment Actions from Visual and Language Instructions via Differentiable Weak Sequence Alignment

Yuhan Shen ¹

e-mail: shen.yuh@northeastern.edu

Lu Wang²

Ehsan Elhamifar ¹

e-mail: e.elhamifar@norrtheastern.edu

¹ Northeastern University, Boston, USA ² University of Michigan, Ann Arbor, USA

e-mail: wangluxy@umich.edu

Motivation

Unsupervised Action Segmentation in instructional/procedureal videos: localize task-relevant actions (key-steps).

- Visual demonstrations often have **narrations** describing actions.
- The key-steps in videos and narrations are weakly-aligned.
- One may describe one or few key-steps before or after performing them.
- Some key-steps may be missing in either modality.

Prior Work

- Visual-only unsupervised methods: consider visual similarity for segmentation.
- -Limitation: cannot use the rich information from narrations.
- Visual-textual unsupervised methods: use both visual data and narrations.
- **Limitations**: *i) assume temporal alignment between two modalities, which is often violated; ii) mainly rely on one modality; iii) use pre-computed features, cannot perform feature learning.*

Contributions

- Address task-relevant action (key-step) localization and multimodal feature learning in instructional videos using visual and language data.
- Develop a **Soft Ordered Prototype Learning** method to recover the sequences of visual and linguistic prototypes, representing key-steps.
- Develop a **Differentiable Weak Sequence Alignment** loss that finds the weak one-to-at-most-one alignment between modalities and enables feature learning.
- Outperform the state-of-the-art unsupervised methods by about 4.7% in F1 score on two datasets.

Soft Ordered Prototype Learning

- Assumption: key-steps in different videos occur roughly around the same time.
- Objective:

$$\min_{\{\boldsymbol{c}_k,\tau_k\}} \sum_{n} \sum_{i} -\beta \log \left(\sum_{k} e^{-d_{nik}/\beta} \right), \text{ where } d_{nik} \triangleq \left\| \boldsymbol{y}_{n,i} - \boldsymbol{c}_k \right\|^2 + \gamma \left(\frac{t_{n,i}}{T_n} - \tau_k \right)^2$$
 (1)

• A soft clustering method that considers both feature vectors and time-stamps.

Algorithm 1: Soft Ordered Prototype Learning (SOPL)

Input : $\{(\boldsymbol{y}_{n,i},t_{n,i})\}_{n,i}, K, \beta \geq 0$ I Initialize prototypes, $\{\boldsymbol{c}_k,\tau_k\}_{k=1}^K$ Input : $\{(\boldsymbol{y}_{n,i},t_{n,i})\}_{n,i}, K, \beta \geq 0$ Compute $\{\boldsymbol{c}_k,\tau_k\}_{k=1}^K$ Compute $\{\boldsymbol{d}_{nik}\}$ via (1) and soft assignments $s_{nik} = \frac{\exp{(-d_{nik}/\beta)}}{\sum_{j=1}^K \exp{(-d_{nij}/\beta)}}$ Update prototypes $[\boldsymbol{c}_k,\tau_k] = \frac{\sum_n \sum_i s_{nik}[\boldsymbol{y}_{n,i},t_{n,i}/T_n]}{\sum_n \sum_i s_{nik}[\boldsymbol{y}_{n,i},t_{n,i}/T_n]}$

Output: Feature and time prototypes $\{c_k, \tau_k\} = \frac{\sum_{n = 1}^{k} c_{nn} t_{nn} t_{nn} t_{nn} t_{nn}}{\sum_{n = 1}^{k} c_{nn} t_{nn} t_{nn} t_{nn} t_{nn}}$

Differentiable Weak Sequence Alignment

- Allow weak sequence alignment and multimodal feature learning.
- Weak sequence alignment: find one-to-one alignment while allowing some items to be unmatched.

Consider two symbolic sequences: $\mathcal{O} = (a, c, d, e, h, f)$ and $\mathcal{O}' = (a, b, c, d, f, g)$.

- Step 1: insert empty slots in either sequence;
- Step 2: compute pairwise alignment cost;
- Step 3: dynamic program to update cumulative cost matrix.

	Ø	a	Ø	b	Ø	c	Ø	d	Ø	f	Ø	g	Ø		Ø	a	Ø	b	Ø	c	Ø	d	Ø	f	Ø	g	Ø		
a	0	-1	0	1	0	1	0	1	0	1	0	1	0	а	0	-1	0	1	0	1	0	1	0	1	0	1	0		\emptyset b
\mathcal{C}	Ö	1	0	1	0	-1	0		Ö	1	0	1	0	С	0	1	-1	0	-1	-2	-1	0	-1	0	-1	0	-1		c c
d	0	1	0	1	0	1	0	-1	0	1	0	1	0	d	0	1	-1	0	-1	0	-2	-3	-2	-1	-2	-1	-2		d d
e	0	1	0	1	0	1	0	1	0	1	0	1	0	e	0	1	-1	0	-1	0	-2	-1	-3	-2	-3	-2	-3		e Ø
h	0	1	0	1	0	1	0	1	0	1	0	1	0	h	0	1	-1	0	-1	0	-2	-1	-3	-2	-3	-2	-3		$\begin{array}{ c c c c }\hline h & \emptyset \\\hline f & f \end{array}$
f	0	1	0	1	0	1	0	1	0	-1	0	1	0	\int	0	1	-1	0	-1	0	-2	-1	-3	-4	-3	-2	-3		
Pairwise Cost									•				Cu	ımı	ulat	tive	C	ost					\ \lig	nment					

• Differentiable Weak Sequence Alignment:

$$\Delta(\mathcal{O}, \mathcal{O}') \triangleq \left[e^{\delta_{i,j}} / \sum_{j'} e^{\delta_{i,j'}} \right], \quad \delta_{i,j} \triangleq \begin{cases} \ell(\boldsymbol{o}_i, \boldsymbol{o}_j') & , j : \text{ even}, \\ \delta_e & , j : \text{ odd}, \end{cases}$$
(2)

$$\min_{\beta} \{\alpha_1, \alpha_2, \ldots\} = -\beta \log \sum_{k} e^{-\alpha_k/\beta}$$
 (3)

Experiments

- Datasets: ProceL (Elhamifar et al. ICCV'19) and CrossTask (Zhukov et al. CVPR'19).
- Evaluation Metrics: Frame-wise F1, precision, recall, MoF (Mean over Frame).
- Quantitative Results: improve F1 score by about 4.7% on both datasets.

		ProceL		CrossTask						
	F1 (%)	Recall (%)	Precision (%)	F1 (%)	Recall (%)	Precision (%)				
Uniform	10.28	9.36	12.41	9.03	9.75	8.69				
Alayrac et al.	5.54	3.73	12.25	4.46	3.43	6.80				
Kukleva et al.	16.39	30.19	11.69	15.27	35.90	9.82				
Elhamifar et al.	14.00	26.70	9.49	16.30	41.60	10.14				
Ours	21.07 ±0.25	31.78 ±0.37	16.51 ±0.09	21.00 ±0.09	35.46 ± 0.14	15.21 ±0.07				

• **Ablation Study:** Variants of our method (left), effect of time-stamp weight γ (right).

• Alignment between visual and linguistic prototypes before/after learning via DWSA:

• Learned visual and linguistic prototype distances using DWSA and Soft-DTW:

Localization results of different methods:

