Beweise der Nichtexistenz – Lösungen

1. Zeige dass

$$L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\} \not\in \mathcal{L}_{EA}$$

(Aufgabe 3.14 (a) aus dem Buch / Quiz 4)

Lösung:

Beweis mittels Lemma 3.3.

Angenommen L sei regulär. Es gibt also einen EA $A=(Q,\{a,b\},\hat{\delta}_A,q_0,F)$ mit L(A)=L. Beachten wir die Wörter

$$a, aa, \dots, a^{|Q|+1}$$

Es existieren also $i, j \in \{1, 2, \dots, |Q| + 1\}$ mit i < j und

$$\hat{\delta}_A(q_0, a^i) = \hat{\delta}_A(q_0, a^j)$$

(Schubfachprinzip)

Gemäss Lemma 3.3 im Buch gilt somit

$$a^i z \in L \iff a^j z \in L$$

für alle $z \in \{a, b\}^*$. Für $z = b^i$ haben wir aber einen Widerspruch: $a^i b^i \in L$ und $a^j b^i \notin L$. Das heisst also, dass L nicht regulär ist.

Mittels Pumping-Lemma:

Annahme L ist regulär. Betrachten wir nun das Wort

$$w = a^{n_0} b^{n_0}$$

Offensichtlich gilt $|w| = 2n_0 \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| \leq n_0$
- (ii) |x| > 1
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y = a^l$ und $x = a^m$ für $l, m \in \mathbb{N}$ mit $l + m \le n_0$. Nach (ii) gilt $m \ge 1$. Und weil $w = a^{n_0}b^{n_0} \in L$ ist, muss also $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ gelten. Dies ist aber ein Widerspruch, da $yx^0z = yz = a^{n_0-m}b^{n_0} \notin L$. Somit ist $L \notin \mathcal{L}_{EA}$

2. Beweise, dass der EA für L mindestens 8 Zustände braucht ($|Q| \ge 8$)

$$L = \{0, 01, 101, 10001\} \subseteq \{0, 1\}^*$$

Lösung:

Beweis.

Sei $A = (Q, \{0, 1\}, \delta, q_0, F)$ ein EA mit L(A) = L und angenommen |Q| < 8. Betrachten wir die Wörter

$$\lambda$$
, 0, 1, 10, 100, 1000, 10001, 11111

Auf Grund des Schubfachprinzipes gibt es also unter den Wörter ein Wort x und y mit x < y (kanonisch) und $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$.

Gemäss Lemma 3.3 gilt also für alle $z \in \{0, 1\}^*$

$$xz \in L(A) \iff yz \in L(A)$$

Wenn wir eine Fallunterscheidung durchführen, sehen wird jedoch, dass es jeweils zu einem Widerspruch kommt.

Fall $x = \lambda$

\mathbf{y}	${f z}$	$\mathbf{x}\mathbf{z}$	$\mathbf{y}\mathbf{z}$
0	10001	$10001 \in L$	$010001 \not\in L$
1	10001	$10001 \in L$	$110001 \not\in L$
10	10001	$10001 \in L$	$1010001 \not\in L$
100	10001	$10001 \in L$	$10010001 \not\in L$
1000	10001	$10001 \in L$	$100010001 \not\in L$
10001	10001	$10001 \in L$	$1000110001 \not\in L$
11111	10001	$10001 \in L$	$11111110001 \not\in L$

Fall x = 0

\mathbf{y}	\mathbf{z}	XZ	$\mathbf{y}\mathbf{z}$
1	1	$01 \in L$	$11 \not\in L$
10	001	$0001 \not\in L$	$10001 \in L$
100	1	$01 \in L$	$1001 \not\in L$
1000	λ	$0 \in L$	$1000 \not\in L$
10001	1	$01 \in L$	$100011 \not\in L$
11111	1	$01 \in L$	$1111111 \not\in L$

Fall x = 1

\mathbf{y}	\mathbf{z}	$\mathbf{x}\mathbf{z}$	$\mathbf{y}\mathbf{z}$
10	0001	$10001 \in L$	$100001 \not\in L$
100	0001	$10001 \in L$	$1000001 \not\in L$
1000	0001	$10001 \in L$	$10000001 \not\in L$
10001	0001	$10001 \in L$	$100010001 \not\in L$
11111	0001	$10001 \in L$	$1111110001 \not\in L$

Fall x = 10

\mathbf{y}	\mathbf{z}	$\mathbf{x}\mathbf{z}$	$\mathbf{y}\mathbf{z}$
100	001	$10001 \in L$	$100001 \not\in L$
1000	001	$10001 \in L$	$1000001 \not\in L$
10001	001	$10001 \in L$	$10001001 \not\in L$
11111	001	$10001 \in L$	$111111001 \not\in L$

Fall x = 100

\mathbf{y}	\mathbf{z}	$\mathbf{x}\mathbf{z}$	$\mathbf{y}\mathbf{z}$
1000	01	$10001 \in L$	$100001 \not\in L$
10001	01	$10001 \in L$	$1000101 \not\in L$
11111	01	$10001 \in L$	$1111101 \not\in L$

Fall x = 1000

\mathbf{y}	\mathbf{z}	$\mathbf{x}\mathbf{z}$	$\mathbf{y}\mathbf{z}$
10001	1	$10001 \in L$	$100011 \not\in L$
11111	1	$10001 \in L$	$1111111 \not\in L$

Fall x = 10001

$$\begin{array}{c|cccc} \mathbf{y} & \mathbf{z} & \mathbf{xz} & \mathbf{yz} \\ \hline 11111 & \lambda & 10001 \in L & 11111 \not\in L \\ \end{array}$$

Es sieht nach mehr Arbeit aus, als es ist. Alle Fälle ausser x=0 verwenden immer ein z für jedes y. Es reicht (meiner Ansicht nach) vollkommen für jeden Fall ($x \neq 0$) jeweils nur z anzugeben und zu erwähnen, dass es offensichtlich zu einem Widerspruch führt.

3. Zeige, dass die Sprache L nicht regulär ist

$$L = \{ww \mid w \in (\Sigma_{\text{bool}})^*\}$$

Lösung:

Beweis mittels Lemma 3.3.

Angenommen L sei regulär. Es gibt also einen EA $A=(Q,\{0,1\},\hat{\delta}_A,q_0,F)$ mit L(A)=L. Beachten wir die Wörter

$$01,001,\ldots,0^{|Q|+1}1$$

Es existieren also $i, j \in \{1, 2, \dots, |Q| + 1\}$ mit i < j und

$$\hat{\delta}_A(q_0, 0^i 1) = \hat{\delta}_A(q_0, 0^j 1)$$

(Schubfachprinzip)

Gemäss Lemma 3.3 im Buch gilt somit

$$0^i 1z \in L \iff 0^j 1z \in L$$

für alle $z \in \{0,1\}^*$. Für $z = 0^i1$ haben wir aber einen Widerspruch: $0^i10^i1 \in L$ und $0^j10^i1 \notin L$, da i < j. Das heisst also, dass L nicht regulär ist.

Mittels Pumping-Lemma:

Angenommen L sei regulär. Betrachten wir nun das Wort

$$w = 0^{n_0} 10^{n_0} 1$$

Offensichtlich gilt $|w| = 2n_0 + 2 \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| \leq n_0$
- (ii) $|x| \ge 1$
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y=0^l$ und $x=0^m$ für $l,m\in\mathbb{N}$ mit $l+m\le n_0$. Nach (ii) gilt $m\ge 1$. Und weil $w=0^{n_0}10^{n_0}1\in L$ ist, muss also $\{yx^kz\mid k\in\mathbb{N}\}\subseteq L$ gelten. Dies ist aber ein Widerspruch, da $yx^0z=yz=0^{n_0-m}10^{n_0}1\not\in L$. Somit ist $L\not\in\mathcal{L}_{\mathrm{EA}}$

Beweis mittels der Methode der Kolmogorov-Komplexität.

Angenommen, L sei regulär. Für jedes $m \in \mathbb{N}$ ist 0^m1 das erste Wort in der Sprache

$$L_{0^m 1} = \{ y \mid 0^m 1 y \in L \}$$

Nach Satz 3.1 aus dem Buch existiert eine Konstante c, unabhängig von m, so dass

$$K(0^m 1) \le \lceil \log 2(1+1) \rceil + c = 1 + c$$

Da es nur endlich viele Programme der konstanten Länge kleiner gleich 1+c gibt, aber unendlich viele Wörter der Form 0^m1 , ist dies ein Widerspruch. Also ist die Annahme falsch und L ist nicht regulär.

4. Zeige, dass die Sprache L nicht regulär ist

$$L = \{0^{n^2} \mid n \in \mathbb{N}\}$$

Lösung:

Beweis mittels Lemma 3.3.

Angenommen L sei regulär. Es gibt also einen EA $A=(Q,\{0,1\},\hat{\delta}_A,q_0,F)$ mit L(A)=L. Beachten wir die Wörter

$$0,0000,0^{3^2}\dots,0^{(|Q|+1)^2}$$

Es existieren also $i, j \in \{1, 2, \dots, |Q| + 1\}$ mit i < j und

$$\hat{\delta}_A(q_0, 0^{i^2}) = \hat{\delta}_A(q_0, 0^{j^2})$$

(Schubfachprinzip)

Gemäss Lemma 3.3 im Buch gilt somit

$$0^{i^2}z \in L \iff 0^{j^2}z \in L$$

für alle $z \in \{0,1\}^*$. Für $z = 0^{2i+1}$ haben wir aber einen Widerspruch: $0^{i^2}0^{2i+1} = 0^{(i+1)^2} \in L$ und $0^{j^2}0^{2i+1} \notin L$, da $j^2 < j^2 + 2i + 1 < (j+1)^2$. Das heisst also, dass L nicht regulär ist.

Mittels Pumping-Lemma:

Angenommen L sei regulär. Betrachten wir nun das Wort

$$w = 0^{n_0^2}$$

Offensichtlich gilt $|w| = n_0^2 \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| < n_0$
- (ii) $|x| \ge 1$
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y = 0^l$ und $x = 0^m$ für $l, m \in \mathbb{N}$ mit $l + m \le n_0$. Nach (ii) gilt $m \ge 1$. Und weil $w = 0^{n_0^2} \in L$ ist, muss also $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ gelten. Dies ist aber ein Widerspruch, da $yx^2z = 0^{n_0^2+m} \notin L$, weil $n_0^2 < n_0^2 + m < (n_0 + 1)^2$. Somit ist $L \notin \mathcal{L}_{EA}$

Beweis mittels der Methode der Kolmogorov-Komplexität.

Angenommen, L sei regulär. Für jedes $m \in \mathbb{N}$ ist 0^{2m} das erste Wort in der Sprache

$$L_{0^{m^2+1}} = \{ y \mid 0^{m^2+1} y \in L \}$$

da $0^{(m+1)^2}=0^{m^2+1}0^{2m}$ Nach Satz 3.1 aus dem Buch existiert eine Konstante $c\in\mathbb{N},$ unabhängig von m, so dass

$$K(0^{2m}) \le \lceil \log 2(1+1) \rceil + c = 1 + c$$

Da es nur endlich viele Programme der konstanten Länge kleiner gleich 1+c gibt, aber unendlich viele Wörter der Form 0^{2m} , ist dies ein Widerspruch. Also ist die Annahme falsch und L ist nicht regulär.

5. Zeige, dass die Sprache L nicht regulär ist

$$L = \{ w \in \{a, b\}^* \mid |v|_a \le |v|_b \text{ für alle Präfixe } v \text{ von } w \}$$

Lösung:

Beweis mittels Lemma 3.3.

Angenommen L sei regulär. Es gibt also einen EA $A=(Q,\{a,b\},\hat{\delta}_A,q_0,F)$ mit L(A)=L. Beachten wir die Wörter

$$b, b^2, \dots, b^{|Q|+1}$$

Es existieren also $i, j \in \{1, 2, \dots, |Q| + 1\}$ mit i < j und

$$\hat{\delta}_A(q_0, b^i) = \hat{\delta}_A(q_0, b^j)$$

(Schubfachprinzip)

Gemäss Lemma 3.3 im Buch gilt somit

$$b^i z \in L \iff b^j z \in L$$

für alle $z \in \{a, b\}^*$. Für $z = a^j$ haben wir aber einen Widerspruch: $b^i a^j \notin L$ und $b^j a^j \in L$, da i < j und jedes Wort auch ein Präfix von sich selbst ist. Das heisst also, dass L nicht regulär ist.

Mittels Pumping-Lemma:

Angenommen L sei regulär. Betrachten wir nun das Wort

$$w = b^{n_0} a^{n_0}$$

Offensichtlich gilt $|w| = 2n_0 \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| \leq n_0$
- (ii) $|x| \geq 1$

(iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y = b^l$ und $x = b^m$ für $l, m \in \mathbb{N}$ mit $l + m \le n_0$. Nach (ii) gilt $m \ge 1$. Und weil $w = b^{n_0}a^{n_0} \in L$ ist, muss also $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ gelten. Dies ist aber ein Widerspruch, da $yx^0z = b^{n_0-m}a^{n_0} \notin L$, weil $n_0 - m < n_0$ und jedes Wort auch ein Präfix von sich selbst ist. Somit ist $L \notin \mathcal{L}_{EA}$

6. Zeige, dass die Sprache L nicht regulär ist

$$L = \{0^{n!} \mid n \in \mathbb{N}\}$$

Lösung:

Beweis mittels Lemma 3.3.

Angenommen L sei regulär. Es gibt also einen EA $A=(Q,\{0,1\},\hat{\delta}_A,q_0,F)$ mit L(A)=L. Beachten wir die Wörter

$$0,00,0^{3!}\ldots,0^{(|Q|+1)!}$$

Es existieren also $i, j \in \{1, 2, \dots, |Q| + 1\}$ mit i < j und

$$\hat{\delta}_A(q_0, 0^{i!}) = \hat{\delta}_A(q_0, 0^{j!})$$

(Schubfachprinzip)

Gemäss Lemma 3.3 im Buch gilt somit

$$0^{i!}z \in L \iff 0^{j!}z \in L$$

für alle $z \in \{0,1\}^*$. Für $z = 0^{i \cdot i!}$ haben wir aber einen Widerspruch: $0^{i!}0^{i \cdot i!} = 0^{(i+1)!} \in L$ und $0^{j!}0^{i \cdot i!} \notin L$, da $j! < j! + i \cdot i! < j! + j \cdot j! = (j+1)!$. Das heisst also, dass L nicht regulär ist.

Mittels Pumping-Lemma:

Angenommen L sei regulär. Betrachten wir nun das Wort

$$w = 0^{n_0!}$$

Offensichtlich gilt $|w| = n_0! \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| \leq n_0$
- (ii) $|x| \ge 1$
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y=0^l$ und $x=0^m$ für $l,m\in\mathbb{N}$ mit $l+m\leq n_0$. Nach (ii) gilt $m\geq 1$. Und weil $w=0^{n_0!}\in L$ ist, muss also $\{yx^kz\mid k\in\mathbb{N}\}\subseteq L$ gelten. Dies ist aber ein Widerspruch, da $yx^2z=0^{n_0!+m}\not\in L$, weil $n_0!< n_0!+m\leq n_0!+n_0< (n_0+1)!$. Somit ist $L\not\in\mathcal{L}_{\mathrm{EA}}$

Beweis mittels der Methode der Kolmogorov-Komplexität.

Angenommen, L sei regulär. Für jedes $m \in \mathbb{N}$ ist $0^{m \cdot m! - 1}$ das erste Wort in der Sprache

$$L_{0^{m!+1}} = \{ y \mid 0^{m!+1} y \in L \}$$

da $(m+1)! = m \cdot m! + m! = m! + 1 + m \cdot m! - 1$. Nach Satz 3.1 aus dem Buch existiert eine Konstante $c \in \mathbb{N}$, unabhängig von m, so dass

$$K(0^{0^{m \cdot m! - 1}}) \le \lceil \log 2(1+1) \rceil + c = 1 + c$$

Da es nur endlich viele Programme der konstanten Länge kleiner gleich 1+c gibt, aber unendlich viele Wörter der Form $0^{m \cdot m!-1}$, ist dies ein Widerspruch. Also ist die Annahme falsch und L ist nicht regulär.

7. Verwende das Pumping Lemma um zu zeigen, dass die Sprache ${\cal L}$ nicht regulär ist

$$L = \{0^p \mid p \text{ ist eine Primzahl}\}$$

Lösung:

Mittels Pumping-Lemma:

Angenommen L sei regulär. Betrachten wir nun das Wort

$$w = 0^p$$

für eine Primzahl $p \ge n_0$, somit gilt $|w| = p \ge n_0$. Folglich gibt es gemäss dem Pumping-Lemma, für das Wort w, eine Zerlegung w = yxz, wobei

- (i) $|yx| \leq n_0$
- (ii) $|x| \geq 1$
- (iii) entweder $\{yx^kz \mid k \in \mathbb{N}\} \subseteq L$ oder $\{yx^kz \mid k \in \mathbb{N}\} \cap L = \emptyset$

Nach (i) gibt es $y=0^l$ und $x=0^m$ für $l,m\in\mathbb{N}$ mit $l+m\le n_0$. Nach (ii) gilt $m\ge 1$. Und weil $w=0^p\in L$ ist, muss also $\{yx^kz\mid k\in\mathbb{N}\}=\{0^{p+(k-1)m}\mid k\in\mathbb{N}\}\subseteq L$ gelten. Dies ist aber ein Widerspruch, denn falls wir k=p+1 wählen, ist $yx^kz=0^{p+p\cdot m}=0^{p\cdot (m+1)}\not\in L$, da p(m+1) offensichtlich keine Primzahl ist! Somit ist $L\not\in\mathcal{L}_{\mathrm{EA}}$