2022 NYCU EE VLSI Lab Report

Lab01 A CMOS Full Adder: Hspice Simulation

Student ID: 109611070 Name: 郭家均 Date: 2022/10/13

I. Summary of your Structure

1. picture

2. Design concept

~COUT logic:

 $COUT = A \cdot B + B \cdot CIN + A \cdot CIN$

 \sim COUT = \sim (A·B + CIN·(A + B)

~SUM logic:

if COUT = $0 \Rightarrow (A, B, CIN)$ could be (1,0,0) or (0,0,0) (in any order)

Case (1,0,0) ~sum = 0 pull low with (A + B + CIN)

Case (0,0,0) ~sum = 1 pull high with $(A' \cdot B' \cdot CIN')$

if COUT = 1 = > (A, B, CIN) could be (1,1,0) or (1,1,1) (in any order)

Case $(1,1,0) \sim \text{sum} = 1$ pull low with (A' + B' + CIN')

Case $(1,1,1) \sim \text{sum} = 0$ pull high with $(A \cdot B \cdot CIN)$

 \sim SUM = \sim (\sim COUT · (A + B + CIN) + A · B · CIN)

Two inverters: turn ~COUT, ~SUM to COUT, SUM

II. Output waveform

1. wp: 0.24 wn: 0.12

2. wp: 0.36 wn: 0.18

3. wp: 0.48 Implementation Group.

4. wp: 0.24 wn: 0.12 Output load: 15f

5. wp: 0.36 wn: 0.18 Output load: 15f

6. wp: 0.48 wn: 0.24

Output load: 15f

7. wp: 0.24 wn: 0.12

Output load: 20f

9. wp: 0.48 wn: 0.24

Output load: 20f

10. Observations

Distortion becomes greater when (TPD becomes greater when):

- a. MOS width is smaller (smaller current, slower to charge the output node)
- b. output load is higher (harder to push through the same amount of current)

III. Measurements

1. Table

(C,Wp,Wn)	AVG_PW	TPD	TRISE	TFALL
(10fF,0.24um,0.12um)	13.7980u	251.9758p	391.7264p	186.9915p
(10fF,0.36um,0.18um)	15.3040u	209.0278p	262.3329p	167.7282p
(10fF,0.48um,0.24um)	16.8445u	189.4119p	208.1128p	152.2583p
(15fF,0.24um,0.12um)	18.3719u	334.0522p	563.8529p	244.6797p
(15fF,0.36um,0.18um)	19.8595u	262.4846p	370.5688p	222.9373p
(15fF,0.48um,0.24um)	21.4026u	228.8002p	289.1403p	199.9067p
(20fF,0.24um,0.12um)	22.9263u	415.7790p	741.3519p	292.1455p
(20fF,0.36um,0.18um)	24.5012u	315.3306p	489.5666p	271.2786p
(20fF,0.48um,0.24um)	26.0399u	268.8313p	366.9256p	245.6471p

Integration

2. Code (please describe)

.meas tran avg_power avg power from 0.1n to 18n

measure average power from 0.1ns to 18ns

.meas tran tprop trig v(a) val='supply/2' rise=2mentation

+targ v(cout) val='supply/2' rise=1

measure TPD from A reaches 0.9v (2nd time) to COUT reaches 0.9v (1st time)

.meas tran tr trig v(cout) val='supply*0.1'cise=1

+targ v(cout) val='supply*0.9' rise=1

measure rise time from COUT reaches 0.18v to it reaches 1.62v (10% to 90%)

.meas tran tf trig v(cout) val='supply*0.9' fall=1

+targ v(cout) val='supply*0.1' fall=1

measure fall time where COUT drops from 0.62v to 0.18v (90% to 10%)

IV. Questions

1. Explain why there are glitches in FA combinational circuits sometimes, and how to fix it. Is it harmful for your overall design?

Different paths in the circuit might have different propagation delay causing signals to arrive at different times, thus leading to glitches (static-1, static-0, dynamic). To avoid this, either match up each of the input propagation delays (difficult), or connect a buffer at the end of the circuit to reduce glitches. However, the downside is it takes longer to process (addition of the buffer delay).

In my design, I first realize the inverse of SUM and COUT, then connect an inverter at the end, which works the same as adding a buffer to reduce glitches.

2. Explain how you decide MOSFETs' width with fixed channel length in your circuit (Hint: explain with mobility of PMOS NMOS, prove it with HSPICE)?

With the ratio of mobility \Rightarrow NMOS: PMOS = 2:1 (Approximate) we can set the width ratio Wn: Wp = 1:2, so that the pull up speed of p-network equals the pull down speed of the n-network towards the output node.

With the simulation waveform below we can see the width ratio with Wn: Wp = 1:2 has better results than 1:1. (upper 2 being 1:1 and lower 2 being 1:2)

V. Bonus

DFF structure

Glitch at the start:

At the initial state, cause the DFF has no reset, the outputs are wrong. Once the first positive edge of CLK hits, outputs of both DFFs drop to 0.

positive tuge of cell miss, curputs of cour elife unop to o.						
(C,Wn)	AVG_PW	TPD	TRISE	TFALL		
(10fF,0.12um) w/o DFF	13.7980u	251.9758p	391.7264p	186.9915p		
(10fF,0.12um) w/ DFF	73.6974u	1.2927n	381.5099p	146.9912p		
(10fF,0.18um) w/o DFF	15.3040u	209.0278p	262.3329p	167.7282p		
(10fF,0.18um) w/ DFF	99.4466u	1.2470n	258.0632p	138.3235p		
(10fF,0.24um) w/o DFF	16.8445u	189.4119p	208.1128p	152.2583p		
(10fF,0.24um) w/ DFF	124.8817u	1.2237n	199.5162p	124.0900p		

From the form above we observe:

- 1. This DFF model consumes large portion of power (about 5~8 times more power)
- 2. TPD inevitably adds [Half clk cycle] + [Tprop of DFF] ~ 1.04 ns
- 3. Shorter TRISE & TFALL