

□□□□□ " □□□□□

Fig. 1

GAG TCT CGG CGA GAC TCA ATG
 GAA GTG ACG CTG GTC GAG TCT CGG CGA GAC TCA GTG AAC CCT GCA CGG TCC CTG AAA CTC
 CTT CAC TGC GAC GAC CTC AGA CCC CCT CTG AGT CAC TTC GCA CCT CGG AGC CAC TTT CAC
 CAA Vn Thr Lys Val Glu Ser Gly Asp Ser Val Lys Pro Ser Gly Ser Lys Lys Lys
 FR1

TCC TGT CGA CGC TCT CGA TTC ACT TTA AGT CGT GAA ACC ATG TCT TCG CTT CGG CAG ACT
 CCC ACA CGT CGG AGA CCT AAC TCA ATT TCA CGA CTT TCG TAC AGA ACC CGA CGG CTC TGA
 GAA Vn Ala Ser Ser Gly Phe Thr Lys Ser Ser Gly Ser Gly Ser Val Arg Gln Tyr
 FR2

COR1

CCG GAG AAC CGG CTG CAC TCG GTC CGA ACC ACT CTT AGT CGT CCT CGT TTC ACC TTC TAT
 CCC CTC TTC TCC GAC CTC ACC CAG CGT TGG TGA CGA TCA CGA CGA CGA AAC TGG AAC ATA
 Phe Gln Lys Arg Lys Glu Thr Vn Ala Thr Lys Lys Ser Gly Glu Glu Phe Thr Phe Tyr
 COR2

TCA CGC ACT CTG AAC CGT CGT TTC ACC ATC TCC AGA GAC ATT CGG CGA AAC AAC CTC TAT
 ACT CGG TCA CAC TTC CGA AAC TGG TAG AGG TCT CTG TTA CGG GTC TTC TTC GAG ATA
 Ser Ala Ser Val Lys Glu Arg Phe Thr Ile Ser Arg Asp Asn Ala Gln Asn Asn Lys Tyr
 FR3

CTA CGA CTG ATT ACT CTG AGG TCT GAC GAC AGG CGG TTS TAT TTC TGT CGA AGT CAT CGG
 CAT GTT GAC TTA TCA GAC TCC AGA CTC CTG TCC CGG AAC ATA AAC AGA CGT TCA GTA CGC
 Lys Gln Lys Asn Ser Lys Arg Ser Gln Asp Thr Ala Lys Tyr Phe Gln Ala Ser His Arg
 COR3

TTT CGT CGC TCG CGC CGC ACT CTG GTC ACT GTC TCT CGA CGC AAA AGC AGA CCC CGA
 AAA CGA GTG ACC CGG CGG CGA CGC CGA CGA CGA CGA CGT CGG TTT TCC TGT CGG CGT
 Pro Val His Ser Gly His Glu Thr Lys Val Thr Val Ser Ala Ala Lys Thr Thr Pro Pro
 CH1

FR4

Fig. 2

CTCAACCC

ACT GTC CTC ACT CTC GTC

CCT GTT GTC ACT CGC CAA TET GCA CTC ACC ACA TCA CCT CCT GAA ACA GTC ACA CTC ACT
 CGA CAA CAC TCA CTC CCT ACA CCT CGC TCA CCT TGT ACT CGA CCA CCT TGT CAG TGT CAG TCA
 Ala Val Val Thr Glu Glu Ser Ala Leu Thr Thr Ser Pro Gly Glu Thr Val Thr Leu Thr

FR1

TGT CCC TCA ACT ATT CGG CCT GTT ACA ACT AGT AAC TAT CCT AAC TCG CTC CAA CAA AAA
 GCA CGG ACT TCA TAA CCC CGA CAA TGT TCA TCA TTG ATA CGG TTG ACC CAG CCT TTT
 Cys Arg Ser Ser Ile Gly Ala Val Thr Thr Ser Asn Tyr Ala Asn | Trp Val Glu Glu Lys

FR2

COR1

CCA CAT CAT TTA TTC ACT CCT CTA ATA CCT CCT ACC AAC TAT CCT CGG CCT CCT GTT CCT
 CCT CTA ATA ATT AAC TCA CCA CAT TAT CCA CCA TGG TTA TTG GGC CCA GGC CCA CAA CCT
 Pro Asp His Leu Phe Thr Gly Leu Asn Asn Arg Ala Pro | Gly Val Pro

FR3

COR2

GCC AGA TTC TCA CGG TCC CTC ATT CGA CGC AAC CCT CCT CGC CTC ACC ATC ACA CGG CCT CGC
 CGG TCT AAC ACT CGG CGC TAA CCT CTC CGA CGG GAG TGG TAG TGT CCT CGT GTC
 Ala Arg Phe Ser Gly Ser Leu Leu Gly Asp Lys Ala Ala Leu Thr Ile Tyr Gly Ala Glu

COR3

ACT CAA CAT CGC CCA ACA TAT TTC TGT CCT CTC TCA TCG TAC III AAC CTC TGG GTC TTC CGT
 TCA CCT CTA CTC CCT TCT ATA AAC ACA CAA CAT ACC ATC AAC TTG GAG ACC CGC AAC CCT
 Thr Glu Asp Glu Ala Arg Tyr Phe Cys Ala | Leu Trp Tyr Cys Asn Leu Trp Val Phe Gly

FR4

COR4

CGA CGA ACC AAA CTG ACT GTC CTC ACC CGG AAC CCT TCG CCT TCA GTC ACC CTC TTT
 CCT CCT TCG TTT GAG TCA CGG CAT TCG CTC CGG TTC ACA AAC ACC CCT ACT CGG TGG GAG AAA
 Gly Gly Thr Lys Leu Thr Val Leu Ser | Glu Pro Lys Ser Ser Phe Ser Val Thr Leu Phe

III FAC TCA CTC CCT III

CTAACCC
BAMH

CGG CGC TCC TCT GAA GAA CTC ACT GCA ATA GCA TTC CGG CGG
 CGG CGA AGG AGA CCT CTC GAT TGT AAC CCT TAG CCT AAC CGC CC
 Pro Pro Ser Ser CGA CGA Leu Ser Leu Gly Ds Gly Phe Pro Gly

Fig. 3

Fig. 4

□□□□□ " □□□□□

a. $\text{BrCH}_2\text{CO}_2\text{t-Bu}$, DIPEA, KI, DMF ; b. H_2 , Pd/C, MeOH ; c. acryloyl chloride, DIPEA, CH_2Cl_2 ; d. TFA.

Fig. 5

Fig. 6

Fig. 7

AGATCTGAAGTACGCTGGTGGAGTCTAGGGGAGACTCAGTGAAGCCTGGAGGGTT
CCTGAAACTCTCCTGTGCAGCCTCTGGATTCACTTAAGTGGTGAAACCATGTCTTG
GGTCGCCAGACTCCGGAGAAGAGGGCTGGAGTGGGTACAACCACTTTAGTGGTG
GTGGTTTACCTTCTATTAGCCAGTGTGAAGGGTCGTTCACCATCTCCAGAGACA
ATGCCAGAACAAACCTCTATCTACAACCTGAATAGTCTGAGGTCTGAGGACACGGCT
TGTATTTCTGTGCAAGTCATCGGTTGTTCACTGGGCCACGGGACTCTGGTCACTGT
CTCTGCAGCCAAAACGACGGGCCATCGGTCTTCCCCCTGGCACCCCTCCAAGAG
CACCTCTGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACC
GGTACGGTGTGGAACTCAGGCCTGACCAGCGCGTGCACACCTTCCCGG
CTGTCTACAGTCCTCAAGACTCTACTCCTCAGCAGCGTGGTACCGTGCCCTCA
ACAGCTTGGCACCCAGACCTACATCTGCAACGTGAATACAAGCCCAGCAACACC
AAGGTGGACAAGAAAGCAGAGCCAAATCTTGTGACAAATCTAGAGGGCCCTCGA
AGGTAGCCTATCCCTAACCCCTCTCCTCGGTCTCGATTCTACGCGTACCGGTACATCAT
CACCATCACCAATTGA

Fig. 8

AGATCTGCTGTTGTGACTCAGGAATCTGCACTCACCATCACCTGGTGAACAGTC
ACACTCACTGTCGCTCAAGTATTGGGGCTGTTACAACTAGTAACATGCCAACTGG
GTCCAAGAAAAACCAGATCATTATTCACTGGTCTAATAGGTGGTACCAATAACCGG
GCTCCGGGTGTTCCCTGCCAGATTCTCAGGCTCCCTGATTGGAGACAAGGCTGCCCTC
ACCATCACAGGGGCACAGACTGAAGATGAGGCAAGATATTCTGTGCTCTATGGTA
CTCCTGCCTCTGGGRTTCCGGTGGAGGAACCAAACACTGACTGTCCTAACGCCGWACKGT
GGCTGCACCATCTGCTTCATCTTCCGCCATCTGATGAGCAGTTGAAATCTGGAAC
TGCCTCTGTTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTG
GAAGGTGGATAACGCCCTCCAATGGGTAACTCCCAGGAGAGTGTACAGAGCAGG
ACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGAC
TACGAGAAACACAAAGTCTACGCCCTGCGAAGTCACCCATCAGGGCCTGAGYTYGCC
CGTCACAAAGAGCTCAACAGGGAGAGTGTAA

Fig. 9

AGATCTGCTTGTGACTCAGGAATCTGCACTCACCATCACCTGGTGAAACAGTC
ACACTCACTGTCGCTCAAGTATTGGGGCTGTTACAACTAGTAACATGCCAAGTGG
GTCCAAGAAAAACCAGATCATTATTCACTGGTCTAATAGGTGGTACCAATAACCGG
GCTCCGGGTGTTCCCTGCCAGATTCTCAGGCTCCCTGATTGGAGACAAGGCTGCCCTC
>ACCATCACAGGGGCACAGACTGAAGATGAGGCAAGATATTCTGTGCTATGGTA
CTCCAACCTCTGGGTRTCGGTGGAGGAACCAAACGTACTGTCCTAACGCCGWACKG
TGGCTGCACCATCTGTCTTCATCTTCCCACATCTGATGAGCAGTTGAAATCTGGAA
CTGCCTCTGTTGTGCCTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTACAGT
GGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTACAGAGCAG
GACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGA
CTACGAGAAACACAAAGTCTACGCCCTGCGAAGTCACCCATCAGGGCCTGAGTYGC
CCGTACAAAGAGCTTCAACAGGGAGAGTGTAA

Fig. 10

AGATCTGCTGTTGACTCAGGAATCTGCACTCACCATCACCTGGTGAACAGTC
ACACTCACTTGTGCGCTCAAGTATTGGGGCTGTTACAACTAGTAACATGCCAACTGG
GTCCAAGAAAAACCAGATCATTATTCACTGGTCTAATAAGGTGGTACCAATAACCGG
GCTCCGGGTGTTCTGCCAGATTCTCAGGCTCCCTGATTGGAGACAAGGCTGCCCTC
ACCATCACAGGGGCACAGACTGAAGATGAGGCAAGATATTCTGTGCTATGGTA
CTGCAACCTCTGGGTRTCGGTGGAGGAACCAAACGTGACTGTCTAACGCCGWACKG
TGGCTGCACCCTCTGTCTTCATCTCCCCGCCATCTGATGAGCAGTTGAAATCTGGAA
CTGCCTCTGTTGTGCCTGCTGAATAACCTCTATCCCAGAGAGGCCAAAGTACAGT
GGAAGGTGGATAACGCCCTCCAATCGGGTAACCTCCCAGGAGAGTGTACAGAGCAG
GACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGA
CTACGAGAAACACAAAGTCTACGCCCTGCGAAGTCACCCATCAGGGCCTGAGTYGC
CCGTCACAAAGAGCTTCAACAGGGGAGAGTGTAA

09671953-096700

Fig. 11

RSAAVTQESALTSPGETVLTCSRSSIGAVTTSNYANWVQEKPDLHLFTGLIGGTNNRAPG
VPARFSGSLIGDKAALTITGAQTEDEARYFCALWYSCLWVFGGGTKLTVLSRTVAAPSV
FIFPPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTTLSKADYEHKVYACEVTHQGLSXPVTKSFNRGEC

00X2601-259T2360

Fig. 12

RSAVVTQESALTTSPGETVLTCSRSSIGAVTTSNYANWVQEKPDLHLFTGLIGGTNNRAPG
VPARFSGSLIGDKAALTITGAQTEDEARYFCALWYSNLWVFGGGTKLTVLSRTVAAPSV
FIFPPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTTLSKADYEHKVYACEVTHQGLSXPVTKSFNRGEC

00X260 "E55T4550

Fig. 13

RSAVVTQESALTSPGETVLTCSRSSIGAVTTSNYANWVQEKPDLHLFTGLIGGTNNRAGP
VPARFSGSLIGDKAALTITGAQTEDEARYFCALWYCNLWVFGGGTKLTVLSRTVAAPSV
FIFPPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS
LSSTTLSKADYEHKVYACEVTHQGLSXPVTKSFNRGEC

□
00022600 "00022600

Fig. 14

RSEVTLVESRGDSVKPGFLKLSACAASGFTLSGETMSWVRQTPEKRLEWVTTLSGGGF
TFYSASVKGRTISRDN
AQNNLYLQLNSLRSEDTALYFCASHRFVHWGHGTLVTVSAAKTTGPSVFPLAPSSKSTS
GGTAALGCLVKDYFPEP
VTWSWNSGALTSGVHTFPAVLQSSRLYFLSSVVTVPFNLSGTQTYICNVNHKPSNTKVD
KKAEPKSCDKSRGPFEG
KPIPPLLGLDSTRTGHHHHHH

□ १२६ ३१८३३ - □ ३९२७२००

Fig. 15

Fig. 16

Fig. 17

□□□□□□□□□□□□□□□□□□

Fig. 18