SVKM

D. J. Sanghvi College of Engineering

Programme: B.TECH (CHEM)/B.TECH (COMP)/B.TECH (DATA SCI.)/B.TECH (ELEX)/B.TECH (EXTC)/B.TECH (IT)/B.TECH (MECH)

Year: IV/Semester VII(Exam Year: 2023-2024)

Subject: Personal Finance Management

Time: 09:30 am to 12:30 pm (03:00 Hrs.) Date: 05 Jan 2024

Max. Marks: 75

FINAL EXAMINATION (Acad. Year:2023-2024)

Instructions:

- This question paper contains 2 pages.
 This question paper contains two pages.
 All Questions are Compulsory.
 All questions carry equal marks.

- 5. Answer to each new question is to be started on a fresh page.
- 6. Figures in the brackets on the right indicate full marks.
- 7. Assume suitable data wherever required, but justify it
- 8. Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1.	Attempt Any Three	[15]
a	What is the need of financial management?	[10]
b	Explain Equity shares	
c	Explain Money market as a Financial market	
d	What are the advantages and disadvantages of consumer credit?	
Q2	Attempt Any Three	[15]
a	What are different types of Mutual funds?	
b	What are the different government schemes for deposits? Explain anyone in detail	
c	Discus what is certificate of deposit	
d	What are the considerations during subscription of life insurance?	
Q3	Attempt Any Three	[15]
a	Give the tax slabs as per the current finance bill for individual and HUF.	()
b	What type of deductions are allowed from gross total income?	
c	How to Compute the Total Tax Liability?	
X	What type of deductions are allowed from gross total income?	
e	Write a note on computation of income in case of a house property which is in business or profession of the assesse?	
Q4	Attempt Any Three	[15]
a	What are the types of exemptions in GST?	. ,
b	Distinguish between GST and other taxes.	
c	Who are the persons to be considered as distinct persons under the concept of GST?	

- d How to decide time of supply of services? Explain with example.
- e Mr. Rohit is a retailer. He paid GST of ₹ 6500 at the time of purchase. He collected GST of ₹ 8000 at the time of sale. i. find his input tax and output tax. Ii. What is his input tax credit. Iii. Find his payable GST. Iv. Hence find the payable CGST and payable SGST.

Q5 Attempt Any Three

[15]

- a What is difference between microfinance institutions and commercial banks?
- b What are the reasons people take microcredit loans? Give example of each reason.
- c List the indicators for Good Self Help Group (SHG)
- d Explain Demand & Supply of Microfinance Services in India.

******* 2 *******

SVKM D. J. Sanghvi College of Engineering

Programme: B.Tech in Computer Engineering Year: IV/Semester VII(Exam Year: 2023-2024)

Subject: Deep Learning

Date: 08 Jan 2024

Time: 09:30 am to 12:30 pm (03:00 Hrs.)

Max. Marks: 75

FINAL EXAMINATION (Acad. Year:2023-2024)

Instructions:

1. This question paper contains 2 pages.

- Answer to each new question to be started on a fresh page.
 Figure in right hand side indicates full marks
 Assume suitable data wherever required

Question No.	Mar Mar								
Q1 (a)	What is the role of activation functions in deep learning? Explain softmax and ReLu functions in detail.								
	OR								
	What is the basic difference between a parameter and a hyper parameter? Why hyper parameter is important in deep learning. Correlate with an example.	[05]							
Q1 (b)	What is Batch Normalization? How a batch Norm is fit into a Neural Network?	[10]							
Q2 (a)	Explain the problem of exploding and vanishing gradients in RNN with an example. How to know if the model is suffering from the Exploding/Vanishing gradient problem? How can it be tackled?	[10]							
	OR Draw a simple representation of RNN block. Explain the working in detail. Illustrate the working with-an example.	[10]							
Q2 (b)	Differentiate between overcomplete and undercomplete autoencoders.	[05]							
Q3 (a)	Perform convolution of 5x5 input image (I) with 3x3 kernel (k) by considering Stride=1. What will be the size of resultant image?								
	2 4 7 6 5								
	9 7 1 2 6								
	8 3 4 5 7	[10]							
	4 3 3 8 4 3 x 3								
	5 2 1 1 2 Kernel								
	5 x 5 Input Image								

******* 1 *******

Q3 (a)		
	OR	
	Explain the backward propagation of convolution layer of CNN. Derive the equations for updating Kernel K, Bias B in back propagation.	[10]
Q3 (b)	Explain in brief Back Propagation through Time algorithm. (5 marks)	[05
04/-1		
Q4 (a)	Identify the deep learning model and elaborate the working of the models with respect to	[10
	following two applications	
	a) Image recognition	
	b) Language translation	
Q4 (b)	Describe VGG Architecture in detail.	105
	OR	[05
	What are denoising autoencoders.	[0=
Q5 (a)	Write a short note on the following. (Attempt any two)	[05
	i) AlexNet	
	ii) Dropout layer in CNN	[05
	iii) Deep Vs shallow Network	[05
Q5 (b)	Explain the architecture of GRU in detail	[05
- (-/	and distincectary of Oko in detail	[0:

********* 7 *******

.

SVKM

D. J. Sanghvi College of Engineering

Programme: B.Tech in Computer Engineering Year: IV/Semester VII(Exam Year: 2023-2024)

Subject: Digital Signal Processing and Applications

Date: 10 Jan 2024 Time: 09:30 am to 12:30 pm (03:00 Hrs.)

Max. Marks: 75

FINAL EXAMINATION (Acad. Year:2023-2024)

Instructions:

- This question paper contains 2 pages.
 Answer to each new question to be started on a fresh page.
 Figure in right hand side indicates full marks
- 4. All Questions are Compulsory

Question No.										Max. Marks	
Q1 (a)		Discuss First Derivative filters used for Edge Detection in detail with Advantages & Disadvantages									
	OR										
	Demo	nstra	te hov	w DC	T can	be u	sed ir	ı JPEC	G Compression Algorithm	[07]	
Q1 (b)						_			g Technique, consider predicate as,		
	1				-				s than or equal to 3 in each region. pixel is marked with *		
	Disci	155 UI:	sauva	mage	5 01 11	115 111	emou	. Seed	pixer is marked with		
	5	6	6	6	7	7	6	6			
	6	7	6	7	5	5	4	7			
	5	6	5	4	2	3	5	6		[80]	
	0	3	2	3	3*	2	4	7			
	0	0	0	0	2	2	5	6			
	1	1	0	1	0	3	4	4			
	1	0	1	0	2	3	5	4			
Q2 (a)		fy/ Co presei		lict: I	mage	Quali	ity de	pends	on number of pixels & number of bits used	[05]	
	10 10	preser	iit it								
								O	R		
				FT o	of an I	mage	:			[05]	
	0		2 1 3 2								
	2		4 3	-							
	1	-	3 2								
Q2 (b)	1		-	_					m Stretching & Sketch Output Histogram	[10]	
		_	_	_	Stret	ched	Imag	ge. Co	mment on results obtained		
	5	5	2	4	-						
	3	6	3	5							
	5	3	5	5							

******* 1 *******

Q3 (a)	2 1 2 3 1 4 0 7 2 3 3 4 0 1 6 4	[05]
	For given Image, Find Image after applying Grey level slicing with & without background considering band between a=3 b=5	
Q3 (b)	Find FFT of $x_1(n)=[1,2,3,4,1,2,3,4]$ signal using DIT FFT Algorithm for N=8 Hence find $X_2[k]$ if $x_2(n)=x_1(-n)$ without performing FFT	[10]
	OR	
	i.Find IDFT of X[K]=[9,-1+2j,1,-1-2j]	[10]
	ii. State Time Shift, Frequency Shift & Convolution Properties of DFT	
Q4 (a)	Examine if given system is Linear /NonLinear, Variant/Invariant, Causal/Noncausal, Static/Dynamic: $y(n)=x(n^2)$	[05]
	OR	
	i. Find Linear Convolution : $x(n) = \{1,3,2,2,-1\}$ & $h(n) = \{1,-1\}$ ii. Find Auto Correlation : $x1(n) = \{1,2,-1\}$	[05]
Q4 (b)	$x(n) = \{1,2,0,\frac{1}{2}3,4,5,2,-2\}$ Find $i.x(n-2) ii. \ x(2n-3) iii.x(-n+3) iv.x(-n)u(n) v. \ x\left[\frac{n}{3}\right]$ $i. \text{ Examine if given signal is Energy/Power } :x(n) = \left(\frac{1}{2}\right)^n$	[10]
Q5 (a)	i. Examine if given signal is Energy/Power : $x(n) = \left(\frac{1}{2}\right)^n$	[08]
	ii. Examine Periodic/Aperiodic, if periodic find Time period:	
	$x(n) = 4\sin(\frac{3\pi}{2}n) + 5\cos(\frac{3\pi}{4}n)$	
	iii. Find Even & Odd Part of Signal : $x(n) = \{-2,1,2,-1,3\}$	
	OR	
	Illustrate any 4 applications of Signal Processing in detail	[08]
Q5 (b)	Calculate Convolution by Overlap & Add, Overlap & Save method $x(n)=\{1,2,3,3,4,5\}$ and $h(n)=\{1,1,1\}$	[7]

******* 2 *******

, >

SVKM D. J. Sanghvi College of Engineering

Programme: B.Tech in Computer Engineering Year: IV/Semester VII(Exam Year: 2023-2024)

Subject: Distributed Computing

Date: 12 Jan 2024 Time: 09:30 am to 12:30 pm (03:00 Hrs.)

Max. Marks: 75

FINAL EXAMINATION (Acad. Year:2023-2024)

Instructions:

1. This question paper contains 1 pages.

2. Answer to each new question to be started on a fresh page.

3. Figure in right hand side indicates full marks

4. Draw neat and labelled diagrams wherever applicable.

Question No.		Max. Marks
Q1 (a)	What is the role of middleware in a distributed system?	[05]
	OR	
	Differentiate between Network Operating System (NOS) and Distributed Operating Systems (DOS).	[05]
Q1 (b)	Explain the working of RPC.	[10]
Q2 (a)	Explain Ricart-Agrawala's algorithm in detail with examples.	[10]
	OR	
	Explain Group Communication.	[10]
Q2 (b)	List desirable features of the global scheduling algorithm.	[05]
Q3 (a)	Discuss desirable features of the process migration mechanism.	[05]
	OR	
	Explain Static Load Balancing algorithm.	[05]
Q3 (b)	Explain Data-centric consistency models with examples.	[10]
	OR	
	Explain Client-centric consistency models with examples.	[10]
Q4 (a)	Explain the Bully Election Algorithm.	[05]
	OR	
	Explain Raymond's tree-based algorithm.	[05]
Q4 (b)	Explain file caching schemes in detail.	[10]
Q5 (a)	Solve any two.	
	i. Compare message-oriented and stream-oriented communication.	[05]
	ii. Compare DFS and NFS.	[05]
	iii. Explain task assignment approaches in resource management.	[05]
Q5 (b)	Write a short note on Andrew File System (AFS).	[05]

******* 1 *******

SVKM D. J. Sanghvi College of Engineering

Programme: B.Tech in Computer Engineering Year: IV/Semester VII(Exam Year: 2023-2024)

Subject: Bayesian Computing

Date: 15 Jan 2024

Time: 09:30 am to 12:30 pm (03:00 Hrs.)

Max. Marks: 75

FINAL EXAMINATION (Acad. Year:2023-2024)

Instructions:

1. This question paper contains 5 pages.

Answer to each new question to be started on a fresh page.
 Figure in right hand side indicates full marks

4. Assume suitable data wherever required.

Question										
No.						Max.				
Q1 (a)	For Bet	a distribut	ion with	shape parameter a	scale parameter β, mean μ and	Marks				
	standar	d deviatior	σ, prove	that $lpha=rac{\mu^2-\mu^3}{\sigma^2}-\mu$	l.	[08]				
Q1 (b)		uppose you have a dataset of exam scores for a class of students:								
				02, 100, 89, 91, 402	and or orace.	[07]				
				02, 100, 89, 85, 302						
				an outlier in the datas	et (402). Compute					
			raditional N							
			obust Med							
02 (2)	A ====	iii. C	ompare ab	ove two values and pr	ovide your analysis on it.					
Q2 (a)					ean income of its card holders. It	[10]				
					s in mean income between males					
					olders and 190 female card holders					
	was dra	awn, and th		g results were obtained	ed: 1					
			Mean	Standard Deviation	,					
		Males	\$ 16450							
		Females	·	•						
					an income for males and females.	1				
	Is there	any eviden	ice to sugg	est that, on average, r	males' and females' income differ?					
	If so, de	scribe the	difference							
				OR						
	In my to	own, it's rai	ny one thi	rd of the days. Given	that it is rainy, there will be heavy	[10]				
	traffic v	with probab	oility 0.5 , a	and given that it is no	t rainy, there will be heavy traffic					
	with pro	obability 0.	25 . If it's ra	ainy and there is heav	y traffic, I arrive late for work with					
	probabi	ility 0.5 . On	the other	hand, the probability	of being late is reduced to 0.125 if					
it is not rainy and there is no heavy traffic. In other situations, (rainy a										
	not rair	ny and traff	ic) the pro	bability of being late i	is 0.25 . You pick a random day.					
	i.	What is the am not late	•	ty that it's not raining	and there is heavy traffic and I					
	ii.			ty that I am late?						
	iii.	Given that day?	l arrived la	ate at work, what is th	ne probability that it rained that					

******** 1 *******

					- Inda				[05]
Q2 (b)	Discuss Bayesia	an Robusti	ness along	g with its k	ey points.				[10]
Q3 (a)	Explain Gibbs s	ampling a	lgorithm.						[20]
Q3 (a)				OR					[10]
	What is the ne	ed of MCN	ЛС algorit	hm? Expla	in MCMC a	lgorithm	١.		•
Q3 (b)	Write a short n	ote on 'M	lodeling d	lata with C	auchy erro	rs'.			[05]
	Consider again						in 2002	for all adults	[10]
Q4 (a)	of 203. Suppose	e a new dr	ug is prop	osed to lo	wer total ch	olestero	l. A stud	y is designed	
	to evaluate the	e efficacy	of the d	rug in low	ering chole	sterol.	Fifteen	patients are	
	enrolled in the	study an	d asked t	o take the	new drug	for 6 we	eks. At	the end of 6	
	weeks, each pa	atient's to	tal chole	sterol leve	l is measu	red and	the sam	ple statistics	
	are as follows:	n=15, \bar{X} =	195.9 an	d s=28.7. Is	there stati	istical ev	idence (of a reduction	
	in mean total o	holestero	l in patie	nts after us	sing the nev	w drug fo	or 6 wee	eks? (X=57.)	
				OR					
	A food service:	s manage	r for a ba	seball park	wants to k	now if t	here is	a relationship	
	between gend	er (male	or female	e) and the	preferred o	condime	nt on a	hot dog. The	[10]
	following tabl	e summa	arizes the	e results.	Test the l	nypothe	sis that	gender and	
	condiment are	independ	dent with			10%.		1	
				Co	ndiment				
				Ketchup	Mustard	Relish	Total		
		Gender	Male	15	23	10	48		
			Female	25	19	8	52		
			Total	40	42	18	100		
Q4 (b)	Explain Exchar	ngeability	with its t						[05]
				OR					[05]
	Explain Bayesi					· D:			[05]
Q5 (a)	Derive Bayesia			Iormal Line	ear Kegress	ion. Disc	uss its t	ise in the	[10]
05.413	Survival Mode			1:1.0	NI	-1 1:	*****		
Q5 (b)	Suggest any to used.	wo applica	ations in \	which Baye	sian Norm	ai iinear	regressi	on can be	[05]

********* 2 ********

Table A.1

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

=	A(z)	
1.645	0.9500	Lower limit of right 5% tail
1.960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

:	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	0.9893	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.4	0.9918	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9951
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997-
	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.8	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2.9	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.0		0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0 999
3.1	0.9990. 0.9993	0.9991	0.9991	0.9991	0.9992	0.9992	0.9994	0.9995	0.9995	0.9995
3.2			0.9994	0.9994	0.9996	0.9996	0.9996	0.9996	0.9996	0.999
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9997	0.9997	0.9997	0.9997	0.9998
3.4	0.9997	0.9997	0.9997	0.9997	0.9998	0.9998	0.9998	0.9998	0.9998	0.9995
3.5	0.9998	0.9998	0.9998	0.9998	0.7778	0.7776	0.7776	0.7770	0.2270	

******** 3 ********

Table A.2

† Distribution: Critical Values of t

				Significan	ice level		
	4:	10%	500	2%	1%	0.2%	0.1%
Degrees of freedom	Two-tailed test: One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12.706	31 821	63.657	318.309	636.619
2		2 920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2 015	2 571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1 894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
11		1.796	2 201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13		1.771	2.160	2.650	3.012	3.852	4.221
14		1.761	2.145	2.624	2.977	3.787	4.140
15		1.753	2.131	2 602	2.947	3.733	4.073
16		1.746	2.120	2.583	2 921	3 686	4.015
17		1.740	2.110	2 567	2.898	3.646	3 965
18		1 734	2 101	2 552	2.878	3.610	3.922
19		1.729	2.093	2 539	2 861	3.579	3.883
20		1.725	2 086	2 528	2 845	3.552	3.850
21		1.721	2.080	2 518	2 831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792 3.768
23		1.714	2.069	2.500	2.807	3.485 3.467	3.745
24		1.711	2.064	2.492 2.485	2.797 2.787	3.467 3.450	3.725
25		1.708	2.060				
26		1.706	2.056	2.479	2.779 2.771	3.435 3.421	3.707 3.690
27		1.703	2.052	2.473	2.771	3.408	3.674
28		1 701	2.048	2 467 2 462	2.756	3.396	3.659
29		1.699 1.697	2.045 2.042	2.457	2.750	3.385	3.646
30					2.738	3.365	3.622
32		1.694	2.037	2.449 2.441	2.728	3.348	3.601
34		1.691	2.032 2.028	2.434	2.719	3.333	3.582
36		1.688	2.028	2.429	2.712	3.319	3.566
38		1.684	2.021	2.423	2.704	3.307	3.551
40				2.418	2 698	3.296	3.538
42		1.682 1.680	2.018 2.015	2.414	2.692	3.286	3.526
44		1.679	2.013	2.410	2.687	3.277	3.515
46		1.677	2.013	2.407	2.682	3.269	3.505
48 50		1.676	2.009	2.403	2.678	3.261	3.496
		1.671	2 000	2.390	2.660	3.232	3.460
60 70		1.667	1.994	2.381	2 648	3.211	3.435
70 80		1.664	1.990	2.374	2 639	3.195	3 416
90		1 662	1.987	2 368	2.632	3.183	3 402
100		1.660	1.984	2 364	2 626	3.174	3 390
120		1.658	1 980	2 358	2 617	3.160	3 373
150		1 655	1.976	2 351	2.609	3.145	3 357
200		1653	1 972	2 345	2 601	3 131	3 340
300		1 650	1 968	2 339	2 592	3 118	3 323
400		1.649	1 966	2 336	2.588	3.111	3 315
500		1.648	1.965	2 334	2.586	3.107	3.310
600		1.647	1 964	2 333	2 584	3.104	3 307
•		1.645	1 960	2 326	2 576	3.090	3.291

******* 4 *******

Chi-square Distribution Table

d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19
20	7.43	8.26	9.59	10.85	12.44	28.41	31.41	34.17	37.57
22	1	9.54	10.98	12.34	14.04	30.81	33.92	36.78	40.29
24	1	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98
26		12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64
28		13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28
30		14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89
32		16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49
34	1	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06
38			22.88	24.88	27.34	49.51	53.38	56.90	61.16
42	1	23.65	26.00	28.14	30.77	54.09	58.12	61.78	66.21
46	1	26.66	29.16	31.44	34.22	58.64	62.83	66.62	71.20
50	1	29.71	32.36	34.76	37.69	63.17	67.50	71.42	76.15
55	31.73	33.57	36.40	38.96	42.06	68.80	73.31	77.38	82.29
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38 94.42
65	39.38	41.44	44.60	47.45	50.88	79.97	84.82	89.18	
70	43.28	45.44	48.76	51.74	55.33	85.53	90.53	95.02	100.43
75	47.21	49.48	52.94	56.05	59.79	91.06	96.22	100.84	106.39
80	51.17	53.54	57.15	60.39	64.28	96.58	101.88	106.63	112.33
85	55.17	57.63	61.39	64.75	68.78	102.08	107.52	112.39	118.24
90	59.20	61.75	65.65	69.13	73.29	107.57	113.15	118.14	124.12
95	63.25	65.90	69.92	73.52	77.82	113.04	118.75	123.86	129.97
100	67.33	70.06	74.22	77.93	82.36	118.50	124.34	129.56	135.81

******* 5 *******