Veremautomaták

A) Elméleti háttér

A verem tartalma, csak a legfelső elem olvasható közvetlenül

Jelölés: ha X egy halmaz, jelölje $\mathcal{P}_{\text{véges}}(X)$ az X véges részhalmazainak halmazát. **Definíció** A **veremautomata** egy $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$, rendezett hetes, ahol

- Z a veremszimbólumok véges halmaza (veremábécé),
- Q az állapotok véges halmaza,
- T az inputszimbólumok véges halmaza (inputábécé),
- $\delta: Z \times Q \times (T \cup \{\epsilon\}) \to \mathcal{P}_{\text{véges}}(Z^* \times Q)$, az ún. átmeneti függvény,
- $z_0 \in Z$ a kezdeti (kezdő) veremszimbólum,
- $q_0 \in Q$ a kezdeti állapot (kezdőállapot),
- $F \subseteq Q$ az elfogadó állapotok vagy végállapotok halmaza.

Megjegyzések:

- alapértelmezetten nemdeterminisztikus
- Ha $\delta(z, q, \varepsilon)$ nem üres, akkor ún. ε -átmenet (ε -lépés, ε -mozgás) hajtható végre, ami lehetővé teszi, hogy a veremautomata anélkül változtassa meg az állapotát, hogy valamilyen szimbólumot olvasson az inputszalagról.
- ε-mozgásra lehetőség van már az első inputszimbólum elolvasása előtt is illetve még az utolsó inputszimbólum elolvasása után is.

Definíció A veremautomata **konfigurációja** alatt egy zqw alakú szót értünk, ahol $z \in Z^*$ a verem aktuális tartalma és $q \in Q$ az aktuális állapot és $w \in T^*$ az input még feldolgozatlan része.

- z első betűje van a verem alján, míg utolsó betűje a verem tetején.
- Az input olvasófeje w első betűjén áll.
- Így a q baloldalán lévő szimbólum van a verem tetején, míg a jobboldalán lévő szimbólum az input következő feldolgozandő betűje.

Definíció Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomata $w \in T^*$ bemenethez tartozó **kezdőkonfigurációja** z_0q_0w .

Alapvető veremműveletek megvalósítása

Legyen $t \in T \cup \{\varepsilon\}, q, r \in Q \text{ és } z \in Z$

- $(\varepsilon, r) \in \delta(z, q, t)$: a z elemet kivehetjük a veremből (POP művelet)
- $(z, r) \in \delta(z, q, t)$: a verem tartalma változatlan maradhat
- $(z', r) \in \delta(z, q, t)$: z-t lecserélhetjük z'-re a verem tetején $(z' \in Z)$
- $(zz',r) \in \delta(z,q,t)$: z'-t a verem tetejére (z-re rá) tehetjük $(z' \in Z)$ (PUSH művelet)
- Egyéb lehetőségek, például $(zz'z'',r) \in \delta(z,q,t)$: z'z''-t a verem tetejére tehetjük, z'' lesz a tetején $(z',z''\in Z)$.
- Általánosan $(w, r) \in \delta(z, q, t)$, ahol $w \in Z^*$ tetszőleges Z feletti szó. A w szó kerül z helyére és w utolsó betűje lesz a verem tetején.

Definíció Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja egy lépésben**, amelyet $\alpha \Rightarrow_A \beta$ -val jelölünk, ha létezik olyan $z \in Z, q, p \in Q, a \in T \cup \{\varepsilon\}, \quad r, u \in Z^*$ és $w \in T^*$, hogy $(u, p) \in \delta(z, q, a)$ és $\alpha = rzqaw$ és $\beta = rupw$ teljesül.

Példák:

- ha A-ban $\delta(c,q_1,a) = \{(dd,q_2),(\varepsilon,q_4)\}$ és $z_0cddcq_1ababba$ egy konfiguráció, akkor $z_0cddcq_1ababba \Rightarrow_A z_0cdddq_2babba$ és $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ is teljesül,
- ha *A*-ban $\delta(c, q_3, \varepsilon) = \{(dd, q_2)\}$ és $z_0cddcq_3ababba$ egy konfiguráció, akkor $z_0cddcq_3ababba \Rightarrow_A z_0cddddq_2ababba$
- ha *A*-ban $\delta(c, q_5, \varepsilon) = \emptyset$ és $\delta(c, q_5, a) = \emptyset$, akkor nem létezik olyan *C* konfiguráció, melyre $z_0ccq_5aab \Rightarrow_A C$

Definíció: Az A veremautomata az $\alpha \in Z^*QT^*$ konfigurációt a $\beta \in Z^*QT^*$ konfigurációra **redukálja**, amelyet $\alpha \Rightarrow_A^* \beta$ -val jelölünk, ha vagy $\alpha = \beta$, vagy létezik olyan $\alpha_1, \ldots, \alpha_n$ szavakból álló véges sorozat, ahol $\alpha = \alpha_1, \beta = \alpha_n$ és $\alpha_i \Rightarrow_A \alpha_{i+1}, 1 \le i \le n-1$.

Tehát $\Rightarrow_A^* \subseteq Z^*QT^* \times Z^*QT^*$ a \Rightarrow_A reláció reflexív, tranzitív lezártja.

Példa:

```
Ha \delta(d,q_6,b) = \{(\varepsilon,q_5)\} és \delta(d,q_5,\varepsilon) = \{(dd,q_2),(\varepsilon,q_4)\} akkor \#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cddq_2ab és \#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cq_4ab. Tehát \#cddq_6bab \Rightarrow_A^* \#cddq_2ab és \#cddq_6bab \Rightarrow_A^* \#cq_4ab.
```

Definíció Az A veremautomata által **elfogadó állapottal (végállapottal) elfogadott nyelv** $L(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* up$, ahol $u \in Z^*, p \in F\}$.

Definíció Az $A = \langle Z, Q, T, \delta, z_0, q_0, F \rangle$ veremautomatát **determinisztikusnak** nevezzük, ha minden $(z, q, a) \in Z \times Q \times T$ esetén $|\delta(z, q, a)| + |\delta(z, q, \varepsilon)| = 1$.

Tehát minden $q \in Q$ és $z \in Z$ esetén

- vagy $\delta(z, q, a)$ pontosan egy elemet tartalmaz minden $a \in T$ inputszimbólumra és $\delta(z, q, \varepsilon) = \emptyset$,
- vagy $\delta(z, q, \varepsilon)$ pontosan egy elemet tartalmaz és $\delta(z, q, a) = \emptyset$ minden $a \in T$ inputszimbólumra.

Tétel A determinisztikus veremautomaták számítási ereje kisebb, mint a (nemdeterminisztikus) veremautomatáké, de nagyobb a véges automatáknál, azaz van olyan nyelv, amelyik felismerhető veremautomatával, de nem ismerhető fel determinisztikus veremautomatával.

Definíció Az A veremautomata által **üres veremmel elfogadott nyelv** $N(A) = \{w \in T^* \mid z_0 q_0 w \Rightarrow_A^* p$, ahol $p \in Q\}$.

Tétel Bármely L nyelvre ekivalensek a következő állítások

- L környezetfüggetlen, azaz környezetfüggetlen (2-es típusú) grammatikával generálható
- L (nemdeterminisztikus) veremautomatával végállapottal felismerhető
- L (nemdeterminisztikus) veremautomatával üres veremmel felismerhető

Alternatív reprezentációk

• Átírási szabályokkal:

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_{δ} -val jelöljük. Tehát ezzel az alternatív jelöléssel:

$$zqa \to up :\in M_{\delta} \iff (u, p) \in \delta(z, q, a),$$

 $zq \to up :\in M_{\delta} \iff (u, p) \in \delta(z, q, \varepsilon).$
 $(p, q \in Q, a \in T, z \in Z, u \in Z^*)$

• Átmenetdiagrammal:

$$p, q \in Q, a \in T \cup \{\varepsilon\}, z \in Z, u \in Z^*$$
 esetén:

$$q \longrightarrow a; z \to u \longrightarrow p \qquad \iff (u, p) \in \delta(z, q, a)$$

A végállapotokat duplán karikázzuk. A kezdőállapotot → jelöli.

B) Mintapéldák:

1. Feladat:

Legyen $L_1 = \{wcw^{-1} \mid w \in \{a,b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_1$.

Megoldás:

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b, c\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, c) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

2. Feladat:

Legyen $L_2 = \{ww^{-1} \mid w \in \{a,b\}^+\}$. Készítsünk egy A veremautomatát, melyre $L(A) = L_2$.

Megoldás:

$$A = \langle \{q_0, q_1, q_2, q_3\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_3\} \rangle, \text{ ahol:}$$

$$(\#t, q_1) \in \delta(\#, q_0, t) \quad \forall t \in \{a, b\}$$

$$(zt, q_1) \in \delta(z, q_1, t) \quad \forall z, t \in \{a, b\}$$

$$(z, q_2) \in \delta(z, q_1, \varepsilon) \quad \forall z \in \{a, b\}$$

$$(\varepsilon, q_2) \in \delta(t, q_2, t) \quad \forall t \in \{a, b\}$$

$$(\#, q_3) \in \delta(\#, q_2, \varepsilon)$$

3. Feladat: Adjunk meg egy az $L = \{a^nb^n \mid n \ge 1\}$ nyelvet üres veremmel felismerő veremautomatát!

Megoldás: Az alábbi $A = \langle \{\$, a\} \{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\} \rangle$ veremautomata esetén $N(A) = \{a^n b^n \mid n \ge 1\}.$

 M_{δ} :

 $$q_0a \rightarrow aq_0

 $aq_0a \rightarrow aaq_0$

 $aq_0b \rightarrow q_1$

 $aq_1b\to q_1$

 $q_1 \rightarrow q_1$.

A determinisztikus, a^2b^3 -re:

 $q_0aabbb \Rightarrow q_0abbb \Rightarrow q_1bb \Rightarrow q_1bb \Rightarrow q_1bb \Rightarrow q_1b$

A elutasítja aabbb-t, mivel hiába lett üres a verem, még volt hátra az inputból.

Jelölje $|u|_t$ az u szó t betűinek a számát.

- **4. Feladat:** Adjunk meg egy az $L = \{u \in \{a,b\}^* \mid |u|_a = |u|_b\}$ nyelvet felismerő veremautomatát!
- 1. Megoldás: üres veremmel

$$A = \langle \{\#, +, -\}\{q_0\}, \{a, b\}, \delta, \#, q_0, \{\} \rangle$$

$$M_{\delta} :$$

$$q_0 a \rightarrow \# + q_0$$

$q_0 b \rightarrow \# - q_0$
+ $q_0 a \rightarrow + + q_0$
+ $q_0 b \rightarrow q_0$
- $q_0 a \rightarrow q_0$
- $q_0 b \rightarrow - - q_0$
$q_0 \rightarrow q_0$.

2. Megoldás: végállapottal

$$A = \langle \{\#, +, -\}\{q_0, q_1\}, \{a, b\}, \delta, \#, q_0, \{q_1\} \rangle$$

$$M_{\delta} :$$

$$\# q_0 a \to \# + q_0$$

$$\# q_0 b \to \# - q_0$$

$$+ q_0 a \to + + q_0$$

$$+ q_0 b \to q_0$$

$$- q_0 a \to q_0$$

$$- q_0 b \to - - q_0$$

 $#q_0$ miatt mindkét verzió nemdeterminisztikus. A veremben a # fölött aktuálisan annyi + illetve - van amennyivel több a-t illetve b-t tartalmazott a már feldolgozott prefix.

3. Megoldás:

 $\# q_0 \rightarrow \# q_1$.

"Még nemdeterminisztikusabb" megoldást kapunk ha a veremtartalomtól függetlenül írhatunk a verembe + -t illetve - -t a-ra illetve b-re. A következő 2 szabályt hozzá-adhatjuk:

$$+q_0 b \rightarrow + -q_0$$

 $-q_0 a \rightarrow - +q_0$

5. Feladat: Készítsünk üres veremmel elfogadó veremautomatát a csak az *a* változót tartalmazó helyes kifejezések nyelvéhez!

Megoldás:

```
Példák jó szavakra: a+(a-a), ((a+a)-a*a)+a, (((a)))+a.

Példák rossz szavakra: (a+a)a, a((, )a+a, ((a-a))+a), a++A=\langle\{\#,(\},\{q_0,q_1\},\{a,+,-,*,/,(,)\},\delta,q_0,\#,\{\}\rangle).

\delta(\sigma,q_0,a)\ni(\sigma,q_1)\quad\forall\sigma\in\{\#,(\}\\\delta(\sigma,q_0,()\ni(\sigma,q_0)\quad\forall\sigma\in\{\#,(\}\\\delta(\sigma,q_1,t)\ni(\sigma,q_0)\quad\forall\sigma\in\{\#,(\},t\in\{+,-,*,/\}\\\delta((,q_1,))\ni(\varepsilon,q_1)
\delta(\#,q_1,\varepsilon)\ni(\varepsilon,q_1)
```

Mivel $\delta(\#, q_1, \varepsilon)$ és $\delta(\#, q_1, -)$ nem üres a veremautomata nemdeterminisztikus.

A helyes zárójelezést a veremben, a helyes rákövetkezést (pl. műveleti jelet nem kövehet műveleti jel) az állapotokkal ellenőrizzük.

C) Gyakorló feladatok:

1.
$$L = \{a^n b^n | n \ge 0\}$$

2.
$$L = \{a^n b^{2n} \mid n \ge 0\}$$

3.
$$L = \{a^{2n}b^n \mid n \ge 0\}$$

4.
$$L = \{a^n b^k \mid n \ge k\}$$

5.
$$L = \{a^n b^k \mid n < k\}$$

6.
$$L = \{a^n b^k \mid n < 2k\}$$

7.
$$L = \{a^n b^k \mid n > 2k\}$$

8.
$$L = \{ u \in \{a, b\}^* \mid |u|_a < |u|_b \}$$

9.
$$L = \{ u \in \{a, b\}^* \mid |u|_a \le |u|_b \}$$

10.
$$L = \{ u \in \{a, b\}^* \mid |u|_a = 2 \cdot |u|_b \}$$

11.
$$L = \{ u \in \{a, b\}^* \mid |u|_a < 2 \cdot |u|_b \}$$

12.
$$L = \{ u \in \{a, b\}^* \mid |u|_a \le 2 \cdot |u|_b \}$$

13.
$$L = \{ u \in \{a, b\}^* \mid |u|_a > 2 \cdot |u|_b \}$$

14.
$$L = \{ u \in \{a, b\}^* \mid |u|_a \ge 2 \cdot |u|_b \}$$

15.
$$L = \{a^{2n}ba^kb^{n+1} \mid n, k \ge 0\}$$

16.
$$L = \{a^n b^k c^k d^n \mid n, k \ge 0\}$$

17.
$$L = \{w \in \{a, b\}^* \mid w = w^{-1} \land |w| \equiv 0 \pmod{3} \}$$

18.
$$L = \{w \in \{a, b\}^* \mid w = w^{-1} \land |w| \equiv 1 \pmod{3}\}$$

19.
$$L = \{w \in \{a, b\}^* \mid w = w^{-1} \land |w|_a \equiv 0 \pmod{3}\}$$