Lecture 5.2: Language model

Language models

- Probability of a sentence to be English (or French... or Korean)
- In English: P("sleepy the house in cat") <
 P("sleepy cat in the house")
- Useful in machine translation: useful for scoring all possible sentences

How do we build language models

- Machine learning
- On monolingual data

...The tale will appeal my children, especially those with a sleepy cat in the house. Those who can read small texts and enjoy illustrations...

- Counting words, bigrams, ... ngrams and infer probabilities
- ... Or using Neural Network language models

LM using probabilities, how?

 Can we compute P("this story will appeal my children, especially as they have a sleepy cat in the house") ? → too costly

$$P(w_1w_2 ... w_n) = \prod_{i=1}^n P(w_i|w_1w_2 ... w_{i-1})$$

Markov assumption (limit the history to few words):

e.g. 4:
$$P(w_1 w_2 \dots w_n) \approx \prod_{i=1}^n P(w_i | w_{i-4} w_{i-3} w_{i-2} w_{i-1})$$

Estimating N-Gram Probabilities

Maximum likelihood estimation

$$p(w_2|w_1) = \frac{\text{count}(w_1, w_2)}{\text{count}(w_1)}$$

- Collect counts over a large text corpus
- Millions to billions of words are easy to get (trillions of English words available on the web)

Example: 3-grams

Counts for trigrams and estimated word probabilities

the green (total: 1748)				
word	c.	prob.		
paper	801	0.458		
group	640	0.367		
light	110	0.063		
party	27	0.015		
ecu	21	0.012		

the red (total: 225)				
word	C.	prob.		
cross	123	0.547		
tape	31	0.138		
army	9	0.040		
card	7	0.031		
,	5	0.022		

the blue (total: 54)				
word	c.	prob.		
box	16	0.296		
	6	0.111		
flag	6	0.111		
,	3	0.056		
angel	3	0.056		

the blue (total, E4)

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

• Previously, we approximated

$$p(W) = p(w_1, w_2, ..., w_n)$$

... by applying the chain rule

$$p(W) = \sum_{i} p(w_i|w_1, ..., w_{i-1})$$

... and limiting the history (Markov order)

$$p(w_i|w_1,...,w_{i-1}) \simeq p(w_i|w_{i-4},w_{i-3},w_{i-2},w_{i-1})$$

- $\bullet \; \text{Each} \; p(w_i|w_{i-4},w_{i-3},w_{i-2},w_{i-1}) \; \text{may not have enough statistics to estimate}$
 - \rightarrow we back off to $p(w_i|w_{i-3},w_{i-2},w_{i-1})$, $p(w_i|w_{i-2},w_{i-1})$, etc., all the way to $p(w_i)$
 - exact details of backing off get complicated "interpolated Kneser-Ney"

Refinements of back-off

- A whole family of back-off schemes
- Skip-n gram models that may back off to $p(w_i|w_{i-2})$
- Class-based models $p(C(w_i)|C(w_{i-4}), C(w_{i-3}), C(w_{i-2}), C(w_{i-1}))$
- ⇒ We are wrestling here with
 - using as much relevant evidence as possible
 - pooling evidence between words

How good is the LM?

- A good model assigns a text of real English W a high probability
- This can be also measured with cross entropy:

$$H(W) = \frac{1}{n} \log p(W_1^n)$$

Or, perplexity

perplexity
$$(W) = 2^{H(W)}$$

Example: 3 gram

prediction	p_{LM}	$-\log_2 p_{LM}$
$p_{LM}(i)$	0.109	3.197
$p_{LM}(would <\!\!\mathrm{s}\!\!>\!\!\mathrm{i})$	0.144	2.791
$p_{LM}(like iwould)$	0.489	1.031
$p_{LM}(to would\;like)$	0.905	0.144
$p_{LM}(commend like\;to)$	0.002	8.794
$p_{LM}(the to\;commend)$	0.472	1.084
p_{LM} (rapporteur commend the)	0.147	2.763
$p_{LM}(on the\;rapporteur)$	0.056	4.150
$p_{LM}(his rapporteur\;on)$	0.194	2.367
$p_{LM}(work on\;his)$	0.089	3.498
$p_{LM}(. his\:work)$	0.290	1.785
$p_{LM}(work.)$	0.99999	0.000014
	average	2.634

Count smoothing

- We have seen i like to in our corpus
- We have never seen i like to smooth in our corpus
- $\rightarrow p(\text{smooth}|\text{i like to}) = 0$
- Any sentence that includes i like to smooth will be assigned probability 0

Count smoothing

- Many methods
 - Add one smoothing
 - Add- α smoothing
 - Deleted estimation
 - Good-Turing smoothing
 - Katz smoothing
 - **...**
 - See
 http://www.cs.cornell.edu/courses/cs674/2005sp/H
 andouts/DShultz-chen-goodman-smoothing.pdf

Back-off

- In given corpus, we may never observe
 - Scottish beer drinkers
 - Scottish beer eaters
- Both have count 0
 - ightarrow our smoothing methods will assign them same probability
- Better: backoff to bigrams:
 - beer drinkers
 - beer eaters

Interpolation

- Higher and lower order n-gram models have different strengths and weaknesses
 - high-order n-grams are sensitive to more context, but have sparse counts
 - low-order n-grams consider only very limited context, but have robust counts
- Combine them

$$p_{I}(w_{3}|w_{1}, w_{2}) = \lambda_{1} p_{1}(w_{3}) + \lambda_{2} p_{2}(w_{3}|w_{2}) + \lambda_{3} p_{3}(w_{3}|w_{1}, w_{2})$$

Interpolation and backoff techniques:

- Good Turing
- Witten-Bell
- Kneser-Ney

Size of the model

- Millions of (English) words are easy to get
- But building 7-gram models on big corpus needs huge amount of RAM
- Solutions:
 - Reduce n
 - Store on disk (e.g. using kenlm software)
 - → In Wipo a 5-gram English model would require 23Gb or RAM, with kenlm, it now needs 4Gb

— ...

Neural language models

 Idea: generate the 5th word knowing the preceding 4

Neural networks work with vectors...

- Words are represented with a one-hot vector, e.g.,
 - dog = (0,0,0,0,1,0,0,0,0,...)
 - cat = (0,0,0,0,0,0,0,1,0,...)
 - eat = (0,1,0,0,0,0,0,0,0,0,...)
- That's a large vector!
- Remedies
 - limit to, say, 20,000 most frequent words, rest are OTHER
 - place words in \sqrt{n} classes, so each word is represented by
 - * 1 class label
 - * 1 word in class label

Word embeddings

Add a new hidden layer, contains smaller vector representative of each word, learned by NN

- Map each word first into a lower-dimensional real-valued space
- Shared weight matrix C

Embeddings...

- By-product: embedding of word into continuous space
- Similar contexts → similar embedding
- Recall: distributional semantics

Embedding have

Embeddings contain a lot of information

- Morphosyntactic regularities (Mikolov et al., 2013)
 - adjectives base form vs. comparative, e.g., good, better
 - nouns singular vs. plural, e.g., year, years
 - verbs present tense vs. past tense, e.g., see, saw
- Semantic regularities
 - clothing is to shirt as dish is to bowl
 - evaluated on human judgment data of semantic similarities

Reccurent neural networks

- Start: predict second word from first
- Mystery layer with nodes all with value 1

Reccurent neural networks

Reccurent neural networks

- Use LSTMs instead of "simple" RNNs to keep memory of past words
- These RNN LMs can handle sequences of n words while still "remembering" the first(s) word(s)