

Building Event Driven Systems at Scale with Azure Cosmos DB

Cloud Native Linz April 29th, 2025

In our hearts we are engineers.

We believe in technology to make a difference, thinking outside the box to achieve highest impact and partnerships beyond project boundaries.

> whoami

Shahab Ganji

Lead Coding Architect

MAIN FOCUS ON

- Software Architecture
- Software Transformation
- NET and C# enthusiast

TRIVIA

- **** Embracing Change
- Telling dad jokes (Proudly)
- Code Artisan

Check my blog and get in touch:

shahab-the-guy.dev

INTRODUCTION

What is an Event Driven Architecture?

- Has three main components
- **** Software components execute in response to events
- Uses events to communicate
- Promotes loose coupling

Type of Events

UNKEYED EVENT

Nescribes an event as a singular statement of a fact

ENTITY EVENT

- An entity is a unique thing and is keyed on the unique id of the thing
- Describes the properties and state of the entity at a given point in time

KEYED EVENT

- Contains a key, but does not represent an entity
- Used for partitioning the stream of events to guarantee data locality within a single partition of an event stream

Events vs Commands

EVENTS

- \ It's a fact, already happened
- \ It's over publish-subscribe channel
- ↑ The sender owns the contract
- Zero or many consumers
- **♦** One sender
- Nescribed in past tense

COMMANDS

- \ Invokes a behavior
- \ It's usually point-to-point
- ↑ The receiver owns the contract
- **♦** One consumer
- \ Many senders
- Note: The second of the second

WHAT IS AN EVENT DRIVEN ARCHITECTURE?

Related Patterns

CQRS

- Separate read and write models
- Enables optimized performance and scalability

EVENT SOURCING

- Captures every change to the state
- ↑ Provides full audit trail
- Easier handling of complex transactions
- Neplay what has happened in the system

Event Streams

AZURE COSMOS DB

Schema free, NoSQL Cloud Solution

- **♦** Globally Distributed
- \ Horizontally Scalable
- Provisioned throughput
- Multi model database
 ■
 Multi model database
 Multi model database

SCALABILITY

3 Dimensions of scaling

1

DATABASE PER APPLICATION

Y axis – Functional Decomposition

Scale by splitting different things

3

SHARDING

z axis – data partitioning

Scale by splitting similar things

2

REPLICATION

x axis – horizonal decomposition

Scale by cloning

https://microservices.io/articles/scalecube.htm

SCALABILITY

Sharding

A single logical database

Cluster of databases

Nodes have different data

PHYSICAL INSTANCES

LOGICAL DATABASE

PHYSICAL INSTANCES

LOGICAL DATABASE PHYSICAL INSTANCES OF THE PHYSICAL INSTANCES

SCALABILITY

Advantages

- **** Each Server deals with a subset of data
- \ Improves transaction scalability
- **** Fault Isolation
- \ Cache Utilization
- Neduces Memory & I/O usage

SCALABILITY

Disadvantages

- \ Increased application complexity
- Nesign a Partition Schema
- Ne-partitioning
- \ Improper Traffic Distribution
- Performance Issues with Queries Cross Partition

Containers, Partitions, Request Units

Transaction Scope

Transaction Scope

Dual Write Problem – Zombie Records

```
public async Task<CreateOrderResult> Handle(CreateOrder request, CancellationToken cancellationToken)
{
    var order = new Order(request.ProductId, request.Quantity);
    await _repository.StoreAsync(order, cancellationToken);
    await _eventEmitter.Emit(order.DomainEvents);
    return new CreateOrderResult { OrderId = order.Id };
}
```


Dual Write Problem – Ghost Messgaes

```
public async Task<CreateOrderResult> Handle(CreateOrder request, CancellationToken cancellationToken)
{
    var order = new Order(request.ProductId, request.Quantity);
    await _eventEmitter.Emit(order.DomainEvents);
    await _repository.StoreAsync(order, cancellationToken);
    return new CreateOrderResult { OrderId = order.Id };
}
```


Transactional Outbox

```
public async Task<CreateOrderResult> Handle(CreateOrder request, CancellationToken cancellationToken)
    var order = new Order(request.ProductId, request.Quantity);
    await _repository.StoreAsync(order, cancellationToken);
    await _eventEmitter.Emit(order.DomainEvents);
    await _unitOfWork.CommitAsync(cancellationToken);
    return new CreateOrderResult { OrderId = order.Id };
```


Dig deeper!

AZURE COSMOS DB

Globally Distributed

Configure the regions for reads, writes and availability zone (supported in selected regions and can only be configured when a new region is added).

Regions	Reads Enabled	Writes Enabled	Availability zone	Action
West Europe				Û
South Central US				Û

Globally Distributed

CAP theorem

Strong

CONSISTENCY LEVELS

Bounded Staleness

CONSISTENCY LEVELS

Session

CONSISTENCY LEVELS

Consistent Prefix

CONSISTENCY LEVELS

Eventual

CONSISTENCY LEVELS

Tradeoffs

FeedIterator<Customer> iteratorForPartitionKey = _container.GetChangeFeedIterator<Customer>(ChangeFeedStartFrom.Beginning(FeedRange.FromPartitionKey(new PartitionKey("stream-id"))), ChangeFeedMode.LatestVersion);

REGISTER YOUR TICKET

CodeCrafts on May 22nd

Listen to Renowned Speakers from Coding to Agile:

KENT BECK SUSANNE KAISER NEAL FORD MARK RICHARDS ADAM TORNHILL AVRAHAM POUPKO

SHAHAB GANJI CODECRAFTS

Write an email to us before 6th May and we will raffle two winners among all replies.

marketing@squer.io

Subject: Cloud Native Linz & CodeCrafts

Submission deadline: 6. Mai

Or: Use our discount code and save your seat directly:

DISCOUNT CODE → meetup-discount-4dsa

Check out our workshops at the 21st of May

KENO DRESSEL & ALFRED FELDMEYER

Hands-On GPT: From Training to Deployment

Explore GPT model training, transformer architecture, and deployment strategies to help you build and integrate AI-driven applications.

PAUL ROHORZKA & MARTIN TAMME

DDD Workshop from Strategy to Tactics

Learn more about key DDD concepts, strategic and tactical design, and collaborative modeling techniques to help you build software that aligns with business needs.

Check out our workshops at the 23rd of May

NEAL FORD

Software Architecture Fundamentals

In this hands-on workshop, you'll explore key architectural patterns, tradeoffs, and leadership skills to help you build software that truly fits business needs.

MARK RICHARDS

Software Architecture – The Hard Parts

Discover real-world strategies for tackling complex architectural decisions, particularly in microservices-based systems, where no two problems are the same.

Tickets and more info via...

Summary

CQRS EVENT SOURCING AZURE COSMOS DB \ High volume of events \ Separate read and write models \ Real-time processing \ Audit log \ Scalability is a primary concern \ Tracking state changes are critical \ Requires immediate reaction \ Multi-model and Multi-API support

Check our open positions – we are hiring!

Did you enjoy your time? Follow our Meetup Group and come back soon!

Get in touch

