APOSTILA DE CALCULO I

REVISADO e FORMATADO por SILMAR CREPALDI

Limites

Diz-se que uma variável \mathbf{x} tende a um número real \mathbf{a} se a diferença em módulo de \mathbf{x} - \mathbf{a} tende a zero. ($\mathbf{x} \neq \mathbf{a}$). Escreve-se: $\mathbf{x} \to \mathbf{a}$ (\mathbf{x} tende a \mathbf{a}).

Exemplo: Se $x = \frac{1}{N}$, N = 1,2,3,4,... quando **N** aumenta, **x** diminui, tendendo a zero.

Definição:

 $\lim_{x\to a} \ f(x) \ \text{\'e igual a \textbf{L} se e somente se, dado } x\to a \quad e \ \epsilon \ \rangle \ 0 \,, \, \text{existe} \quad \delta \ \rangle \ 0 \,\, \text{tal que se}$

 $0 \langle |x-a| \langle \epsilon \text{ então} | f(x)-L | \langle \delta.$

Propriedades:

1.
$$\lim_{x\to a} C = C (C = constante)$$

$$2.\lim_{x\to a}\left[f\left(x\right)\pm g\left(x\right)\right]=\lim_{x\to a}f\left(x\right)\pm\lim_{x\to a}g\left(x\right)$$

3.
$$\lim_{x\to a} [f(x).g(x)] = \lim_{x\to a} f(x). \lim_{x\to a} g(x)$$

4.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

5.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$6. \underset{x \to a}{\lim} \sqrt[n]{f(x)} = \sqrt[n]{\underset{x \to a}{\lim} f(x)}$$

7.
$$\lim_{x\to a} C^{f(x)} = C^{\lim_{x\to a} f(x)}$$
, $C = Constante$

8.
$$\lim_{x\to a} \log_b f(x) = \log_b \lim_{x\to a} f(x)$$

9.
$$\lim_{x\to a} P(x) = P(a)$$
 onde $P(x)$ é uma função polinomial

$$10.\,Quando\,f\,(x)\,\leq\,h\,(x)\,\leq\,g\,(x)\,,\,\forall\,x\,\rightarrow\,a\quad e\quad \lim_{x\rightarrow a}f\,(x)\,=\,L\,=\,\lim_{x\rightarrow a}g\,(x)\,\,,\,ent\tilde{a}o\,\lim_{x\rightarrow a}h\,(x)\,=\,L$$

1)
$$\lim_{x\to 2} (3x+4) = 3.2+4=10$$

2)
$$\lim_{x\to 2} \frac{x^2-4}{x-2} = \frac{2^2-4}{2-2} = \frac{0}{0}$$
 indeterminado

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x + 2)(x - 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

3)
$$\lim_{x\to 0} \frac{\sqrt{(x+2)} - \sqrt{2}}{x} = \frac{\sqrt{0+2} - \sqrt{2}}{0} = \frac{\sqrt{2} - \sqrt{2}}{0} = \frac{0}{0}$$
 indeterminado

$$\lim_{x \to 0} \frac{\sqrt{(x+2)} - \sqrt{2}}{x} = \lim_{x \to 0} \left(\frac{\left(\sqrt{(x+2)} - \sqrt{2}\right)\left(\sqrt{(x+2)} + \sqrt{2}\right)}{x.\left(\sqrt{(x+2)} + \sqrt{2}\right)} \right) = \lim_{x \to 0} \frac{x+2-2}{x.\left(\sqrt{(x+2)} + \sqrt{2}\right)}$$

$$= \lim_{x \to 0} \frac{1}{\left(\sqrt{(x+2)} + \sqrt{2}\right)} = \frac{1}{\sqrt{2} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

Exercícios:

1) Calcular os limites:

a)
$$\lim_{x\to 1} \frac{x^2+4}{x+3}$$

b)
$$\lim_{x\to 2} \frac{8-2x+x^2}{1-x^3}$$

c)
$$\lim_{x\to 2} \frac{x^3-8}{x-2}$$

d)
$$\lim_{x\to 0} \frac{2-\sqrt{(4-x)}}{x}$$

e)
$$\lim_{x\to -2} \frac{y^3 + 8}{y + 2}$$

f)
$$\lim_{x\to 1} \frac{x^2 - 3x + 2}{2x - 2}$$

g)
$$\lim_{x\to 2} \frac{x^2 + 3x - 10}{2x^2 - x - 6}$$

h)
$$\lim_{x\to 5} \frac{\sqrt{x-3} - \sqrt{2}}{x-5}$$

i)
$$\lim_{x\to -1} \frac{x^3 - 2x^2}{-x + 3}$$

j)
$$\lim_{x\to 2} \frac{7-x^3-x}{4-x}$$

1)
$$\lim_{x\to 3} \frac{x^3-27}{x-3}$$

m)
$$\lim_{x\to 3} (3x^2 - 7x + 2)$$

n)
$$\lim_{x\to -1} \left[(x+4)^3 \cdot (x+2)^{-1} \right]$$

o)
$$\lim_{x\to 2} \frac{t^2 + 5t + 6}{t + 2}$$

p)
$$\lim_{x\to 2} \frac{t^2 - 5t + 6}{t - 2}$$

Limites Laterais

Suponha que, quando \mathbf{x} tende a \mathbf{a} pela **esquerda**, isto é, por valores menores que \mathbf{a} , f (x) tende ao número L_1 . Este fato é indicado por:

$$\lim_{x\to a^-} f(x) = L_1$$

Suponha que, quando \mathbf{x} tende a \mathbf{a} pela **direita**, isto é, por valores maiores que \mathbf{a} , f (x) tende ao número L_2 . Este fato é indicado por:

$$\lim_{x\to a^+}f(x)=L_2$$

Os números L_1 e L_2 são chamados, respectivamente, de limite à esquerda de f em a e limite à direita de f em a e referidos como **limites laterais** de f em a.

Exercícios:

1) Seja a função definida pelo gráfico abaixo. Intuitivamente, encontre se existir:

- a) $\lim_{x \to a} f(x)$
- b) $\lim_{x\to 3^+} f(x)$
- c) $\lim_{x \to a} f(x)$
- d) $\lim_{x \to a} f(x)$
- e) $\lim_{x \to \infty} f(x)$
- f) $\lim_{x \to \infty} f(x)$

2) Seja a função definida pelo gráfico abaixo. Intuitivamente, encontre se existir:

- a) $\lim_{x\to 1^+} f(x)$ b) $\lim_{x\to 1^-} f(x)$ c) $\lim_{x\to 1} f(x)$ d) $\lim_{x\to \infty} f(x)$ e) $\lim_{x\to -\infty} f(x)$.
- 3) Dada a função $f(x) = 1 + \sqrt{x-3}$, determinar, se possível, $\lim_{x \to 3^+} f(x)$ e $\lim_{x \to 3^+} f(x)$.

4) Seja
$$f(x) = \begin{cases} x^2 + 1 & \text{para} \quad x \leq 2 \\ 2 & \text{para} \quad x = 2 \end{cases}$$
. Determinar: $\lim_{x \to 2^-} f(x)$, $\lim_{x \to 2^+} f(x)$, $\lim_{x \to 2} f(x)$.

5) Seja f(x) =
$$\begin{cases} x-1 & \text{para} \quad x \leq 3 \\ & \text{... Determinar } \lim_{x \to 3^-} f(x) \ , \quad \lim_{x \to 3^+} f(x) \ , \lim_{x \to 3} f(x), \end{cases}$$

$$3x - 7 \quad \text{para} \quad x \geqslant 3$$

$$\lim_{x\to 5^{-}} f(x) , \lim_{x\to 5^{+}} f(x) , \lim_{x\to 5} f(x) .$$

Limites Infinitos

Ao investigarmos $\lim_{x\to a^-} f(x)$ ou $\lim_{x\to a^+} f(x)$ pode ocorrer que, ao tender x para a, o valor f(x) da função ou aumente sem limite, ou decresça sem limites.

Por exemplo:

$$f(x) = \frac{1}{x-2}.$$

Quando x se aproxima de 2 pela direita, f (x) aumenta sem limite:

x	2,1	2,01	2,001	2,0001	2,00001
f (x)	10	100	1.000	10.000	100.000

Quando x se aproxima de 2 pela esquerda, f (x) diminui sem limite:

х	1,9	1,99	1,999	1,9999	1,99999
f (x)	-10	-100	-1.000	-10.000	-100.000

Assim:
$$\lim_{x\to 2^+} \frac{1}{x-2} = \infty$$
 e $\lim_{x\to 2^-} \frac{1}{x-2} = -\infty$.

São consideradas indeterminações: $\frac{0}{0}$ $0.(\pm \infty)$ $\frac{\pm \infty}{\pm \infty}$ $(\pm \infty) \pm (\pm \infty)$

1)
$$\lim_{x \to +\infty} \frac{x^2}{x+1} = \frac{\infty}{\infty}$$
 indeterminado

$$\lim_{x \to +\infty} \frac{x^2}{x+1} = \lim_{x \to +\infty} \frac{\frac{x^2}{x^2}}{\frac{x+1}{x^2}} = \lim_{x \to +\infty} \frac{1}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{0} = \infty$$

2) $\lim_{x \to +\infty} \frac{2x+3}{x^3+x} = \frac{\infty}{\infty}$ indeterminado

$$\lim_{x \to +\infty} \frac{2x+3}{x^3+x} = \lim_{x \to +\infty} \frac{\frac{2x+3}{x^3}}{\frac{x^3+x}{x^3}} = \lim_{x \to +\infty} \frac{\frac{2}{x^2} + \frac{3}{x^3}}{1 + \frac{1}{x^2}} = \frac{0}{1} = 0$$

Exercícios:

1) Seja f (x) =
$$\frac{5+3x}{2x+1}$$
. Determinar:

- $a) \lim_{x \to +\infty} f\left(x\right) \qquad b) \lim_{x \to -\infty} f\left(x\right) \qquad c) \lim_{x \to \left(-\frac{1}{2}\right)^{+}} f\left(x\right) \qquad d) \lim_{x \to \left(-\frac{1}{2}\right)^{-}} f\left(x\right)$
- 2) Calcular:

a)
$$\lim_{x \to (2)^{+}} (1 + \sqrt{x-2})$$

a)
$$\lim_{x\to (2)^+} \left(1+\sqrt{x-2}\right)$$
 b) $\lim_{x\to (5)^+} \frac{\left(1+\sqrt{2x-10}\right)}{x+3}$ c) $\lim_{x\to (4)^-} \frac{1}{\left(x-4\right)^3}$

c)
$$\lim_{x\to (4)^{-}} \frac{1}{(x-4)^3}$$

d)
$$\lim_{x \to (4)^+} \frac{1}{(x-4)^3}$$

e)
$$\lim_{x \to -\infty} \frac{2x^2 - 5}{3x^2 + x + 2}$$

d)
$$\lim_{x \to (4)^+} \frac{1}{(x-4)^3}$$
 e) $\lim_{x \to -\infty} \frac{2x^2 - 5}{3x^2 + x + 2}$ f) $\lim_{x \to 2^+} \frac{x^2 - +3x + 1}{x^2 + x - 6}$

g)
$$\lim_{x\to 2^{-}} \frac{x^2 - +3x + 1}{x^2 + x - 6}$$

Continuidade

O conceito de continuidade está baseado na parte analítica, no estudo de limite, e na parte geométrica na interrupção no gráfico da função. Assim, as funções f(x), abaixo, são todas descontínuas:

Definição: Uma função é contínua em um ponto A se:

- a) f (a) é definida
- b) lim f (x) existe
- c) $\lim_{x\to a} f(x) = f(a)$

A descontinuidade no gráficos (2) é chamada po<u>r ponto</u> ou <u>removível</u>, a descontinuidade em (1) é <u>por salto</u> e em (3) é uma descontinuidade <u>infinita</u>.

Exemplos:

Estudar analiticamente a descontinuidade das funções:

a)
$$f(x) = \begin{cases} 1 - x^2 & x \langle 1 \\ 1 & x = 1 \\ 1 - |x| & x \rangle 1 \end{cases}$$
 em $x = 1$.

$$f(1) = 1 \qquad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 1 - x^{2} = 0 \qquad \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 1 - \left| x \right| = \lim_{x \to 1^{+}} 1 - x = 0$$

f é descontínua por ponto ou removível em x = 1. Para remover a descontinuidade basta fazer f(x)=0 para x = 1.

b)
$$f(x) = \begin{cases} 3x - 2 & x < 2 \\ 4 & x = 2 \\ 3x^2 - 8 & x > 2 \end{cases}$$
 no ponto x=2.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 3x - 2 = 4 = L1 \qquad \qquad \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} 3x^{2} - 8 = 4 = L2$$

como L1 = L2 =f(2) então a função é contínua.

Exercícios:

Estudar analiticamente a descontinuidade das funções::

a)
$$f(x) = \begin{cases} \frac{x^3 - 27}{2x^2 - 3x - 9} & x < 3 \\ 2 & x = 3 \\ \frac{\sqrt{x - 2} - 1}{x - 3} & x > 3 \end{cases}$$
 em x = 3.

b)
$$f(x) =\begin{cases} 7 & x = 2\\ \frac{3x^2 - 5x - 2}{x - 2} & x \neq 2 \end{cases}$$

c)
$$f(x) = \begin{cases} \frac{sen x}{x} & x < 0 \\ 3 & x = 0 \\ \frac{\sqrt{x+4}-2}{x} & x > 0 \end{cases}$$

3) Determinar o(s) valor(es) de A para o(s) qual(is) existe $\lim_{x \to 1} f(x)$:

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} - 1 & x \ge 1 \\ (x - A)^2 & x < 1 \end{cases}$$

Derivada de uma Função

Acréscimo da variável independente

Dados x_0 e x_1 denominam incremento da variável x, à diferença:

$$\Delta x = x_1 - x_0$$

$$X_0$$

$$X_1$$

$$\Delta x = x_1 - x_0$$

Acréscimo de uma função

Seja y = f(x) contínua. Dados x_0 e x_1 podem-se obter f(x_0) e $f(x_1)$. À diferença $\Delta y = f(x_1) - f(x_0)$ chama-se acréscimo ou variação da função f(x). Como

$$\mathbf{x}_{_1} = \mathbf{x}_{_0} + \Delta \mathbf{x}$$
 , então:
$$\Delta \mathbf{y} = \mathbf{f}(\mathbf{x}_{_0} + \Delta \mathbf{x}) - \mathbf{f}(\mathbf{x}_{_0})$$

Graficamente: $\frac{\Delta y}{\Delta x} = \text{tg } \beta$

Razão Incremental

O quociente da variação da função $\Delta y\,$ pelo incremento da variável independente $\Delta x\,$ é chamado razão incremental.

$$\frac{\Delta y}{\Delta x} = \frac{f(x_{_{0}} + \Delta x) - f(x_{_{0}})}{\Delta x}$$

Trocando $\mathbf{x}_{\scriptscriptstyle 0}$ por \mathbf{x} (fixo momentaneamente), temos:

$$\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Observe que a razão incremental é o coeficiente angular ($tg\beta$) da reta secante s, que passa por P e Q.

Derivada de uma função num ponto x:

eja y = f(x) contínua. Calculamos a razão incremental $\frac{\Delta y}{\Delta x}$. O limite da razão incremental para o acréscimo Δx tendendo a zero é definido como a derivada da função f(x). Ela pode ser indicada como:

$$y' = f'(x)$$
 Lagrange

$$Dy = Df(x)$$
 Cauchy

$$\frac{dy}{dx} = \frac{df}{dx}$$
 Leibnitz

Então:

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \qquad \text{ou} \qquad f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Quando $\Delta x\to 0$, a reta secante s tende para a reta tangente t , $\,tg\,\beta\to tg\,\alpha$ e $\,f'(x)=tg\,\alpha$.

Geometricamente f'(x) mede a inclinação da reta tangente à curva y = f(x) no ponto P(x, f(x)).

Exemplo:

Sendo C uma constante e f(x) = C, calcular pela definição f'(x).

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f(x) = C$$

$$f(x+\Delta x)=C$$

$$\therefore \quad f'(x) = \lim_{\Delta x \to 0} \frac{C - C}{\Delta x} = \lim_{\Delta x \to 0} \frac{0}{\Delta x} = 0$$

Então se $f(x) = C \rightarrow f'(x) = 0$.

Propriedades

- 1. Propriedade $f(x) = C \rightarrow f'(x) = 0$.
- 2. Propriedade $f(x) = x^n \rightarrow f'(x) = n x^{n-1}$

Exemplos:

a)
$$f(x) = x^7 \rightarrow f'(x) = 7x^6$$

b)
$$f(x) = \sqrt{x}$$
 :: $f(x) = x^{\frac{1}{2}}$ \rightarrow $f'(x) = \frac{1}{2}x^{\left(\frac{1}{2}-1\right)} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

Exercícios: Calcular a derivada das funções:

a)
$$f(x) = 4x^3$$

b)
$$f(x) = 7x^9$$

c)
$$f(x) = x^{\frac{3}{4}}$$

- 3. Propriedade (f+g)'(x) = f'(x) + g'(x)
- 4. Propriedade (f-g)'(x) = f'(x) g'(x)

a)
$$f(x) = 2x^4 + 3x^7$$

 $f'(x) = 8x^3 + 21x^6$

b)
$$f(x) = 3x^9 - 10x^4$$

 $f'(x) = 27x^8 - 40x^3$

c)
$$f(x) = 3x^{\frac{1}{3}} - 4x^{\frac{2}{5}}$$

 $f'(x) = 3 \cdot \frac{1}{3} x^{\left(\frac{1}{3} - 1\right)} - 4 \cdot \frac{2}{5} x^{\left(\frac{2}{5} - 1\right)} = \frac{1}{x^{\frac{2}{3}}} - \frac{8}{5x^{\frac{3}{5}}}$

5. Propriedade (f.g)'(x) = f'(x).g(x) + f(x).g'(x)

a)
$$F(x) = x^3 \cdot (x^2 + 1)$$

$$f(x) = x^3 \longrightarrow f'(x) = 3x^2$$

$$g(x) = x^2 + 1 \rightarrow g'(x) = 2x$$

$$F'(x) = 3x^2.(x^2 + 1) + x^3.2x$$

$$F'(x) = 5x^4 + 3x^2$$

b)
$$F(x) = (x^3 + 2x).(x^{\frac{2}{3}} + 2x^2)$$

$$f(x) = (x^3 + 2x)$$
 \rightarrow $f'(x) = 3x^2 + 2$

$$g(x) = (x^{\frac{2}{3}} + 2x^2)$$
 \rightarrow $g'(x) = \frac{2}{3}x^{-\frac{1}{3}} + 4x$

$$F'(x) = (3x^2 + 2).(x^{\frac{2}{3}} + 2x^2) + (x^3 + 2x).(\frac{2}{3}x^{-\frac{1}{3}} + 4x)$$

$$F'(x) = \frac{11}{3}x^{\frac{8}{3}} + 10x^4 + \frac{10}{3}x^{\frac{2}{3}} + 12x^2$$

c)
$$F(x) = (x^2 + 4)(2 + x^9)$$

$$f(x) = x^2 + 4$$
 \rightarrow $f'(x) = 2x$

$$g(x) = 2 + x^9 \rightarrow g'(x) = 9x^8$$

$$F'(x) = 2x.(2 + x^9) + (x^2 + 4).(9x^8)$$

$$F'(x) = 11x^{10} + 36x^8 + 4x$$

6. Propriedade
$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

a)
$$y = \frac{1-x}{x^2}$$

$$f(x) = 1 - x \rightarrow f'(x) = -1$$

$$g(x) = x^2$$
 \rightarrow $g'(x) = 2x$

$$y' = \frac{(-1).(x^2) - (1-x).(2x)}{(x^2)^2} = \frac{-x^2 - 2x + x^2}{x^4} = \frac{x^2 - 2x}{x^4}$$

$$y' = \frac{x-2}{x^3}$$

b)
$$y = \frac{x+3}{1-x^2}$$

$$f(x) = x + 3 \rightarrow f'(x) = 1$$

$$g(x) = 1 - x^2$$
 \rightarrow $g'(x) = -2x$

$$y' = \frac{1.(1-x^2) - (x+3).(-2x)}{(1-x^2)^2}$$

$$y' = \frac{x^2 + 6x + 1}{(1 - x^2)^2}$$

a)
$$y = \frac{x^2 - 5x + 6}{x^2 - 7}$$

$$f(x) = x^2 - 5x + 6 \rightarrow f'(x) = 2x - 5$$

$$g(x) = x^2 - 7$$
 \rightarrow $g'(x) = 2x$

$$y' = \frac{(2x-5).(x^2-7) - (x^2-5x+6).(2x)}{(x^2-7)^2}$$

$$y' = \frac{5x^2 - 26x + 35}{(x^2 - 7)^2}$$

Exercícios:

Calcular as derivadas das funções:

1)
$$y = (1-t^2)t^4$$

2)
$$y = (z^3 - 2z^2 + 1)(z - 5)$$

3)
$$y = (x^3 - 2x)(x^{\frac{2}{3}} + 2x^2)$$

3)
$$y = \frac{x^{\frac{3}{2}} - 2}{\sqrt{x}}$$

4)
$$y = (x^2 + 3)(3x - 1)$$

5)
$$y = \frac{8 - z + 3z^2}{2 - 9z}$$

6)
$$y = \frac{\frac{3}{5}t - 1}{\frac{2}{t^2} + 7}$$

7)
$$y = \frac{1}{1 + x + x^2 + x^3}$$

8)
$$y = \frac{(3x^4 - 2x^2 + 1)}{(\frac{3}{4}x^2 + 5x)}$$

9)
$$y = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$$

10)
$$y = \frac{3}{x} - \frac{1}{x^2}$$

Significado Geométrico da Derivada

f'(x) = inclinação da tangente T no ponto P(x, f(x))

Ν = reta normal ao gráfico de y = f(x) no ponto P(x,f(x))

Exemplo:

Obter as equações das retas normal e tangente ao gráfico da função $y = f(x) = 4 - x^2$ nos pontos $P_1(2,0)$ e $P_2(-1,3)$.

No ponto (2,0)
$$f'(x) = 2$$
 $\therefore a = 2$ $a_n = -\frac{1}{2}$

$$f'(x) = 2$$

$$a_n = -\frac{1}{2}$$

Equação de T y = 2(x - 2)

$$y = 2(x - 2)$$

$$y = 2x - 2$$

$$y = -\frac{1}{2}(x-2)$$
 \rightarrow $y = -\frac{1}{2}x+1$

$$y = -\frac{1}{2}x + 1$$

No ponto (-1,3):
$$f'(x) = 2$$
 : $a = 2$

$$f'(x) = 2$$

$$\therefore$$
 a = 2

Equação de T
$$y-3=2(x+1)$$

$$y = 2x + 5$$

equação de N
$$y-3=-\frac{1}{2}(x+1)$$

$$y = -\frac{1}{2}x + \frac{5}{2}$$

Exercícios:

- 1) Dada a função $y = x^2 2\sqrt{x}$ e o ponto P(4,12), determine a equação das retas normal e tangente ao gráfico da função no ponto P.
- 2) Achar a equação da reta tangente ao gráfico da função no ponto de abcissa dada:

a)
$$f(x) = 2x^2 - 5$$
, $x = 1$

b)
$$f(x) = \frac{1}{x}$$
, $x = 2$

3) Achar os pontos onde a reta tangente ao gráfico da função dada é paralela ao eixo x:

a)
$$y = \frac{x^3}{3} - 3\frac{x^2}{2} - 4x$$

b)
$$y = x^3 + 10$$

c)
$$y = x^4 + 4x$$

4) Achar a equação da reta normal ao gráfico da função no ponto de abcissa dada:

a)
$$f(x) = x^3 + 2x - 1$$
, $x = -1$

b)
$$y = \sqrt{x}$$
 , $x = 4$

- 5) Determinar as abcissas dos pontos do gráfico $y = 2x^3 x^2 + 3x 1$ nos quais a tangente é:
- a) paralela à reta 3 y 9 x 4 = 0
- b) perpendicular à reta 7 y = -x + 21

Derivadas de Ordem Superior

$$y = f(x)$$

$$f'(x) = \frac{dy}{dx} = y'$$
 derivada primeira

$$f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2} = y^{"}$$
 derivada segunda

$$f'''(x) = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right) = \frac{d^3y}{dx^3} = y^{-}$$
 derivada terceira

De um modo geral

$$f^{n}(x) = \frac{d^{n}y}{dx^{n}} = y^{n}$$

Exemplos: Calcular y', y" e y"' ::

a)
$$y = x^8 - 4x^4 + 2x$$

$$v' = 8x^7 - 16x^3 + 2$$

$$y'' = 56x^6 - 48x^2$$

$$y''' = 336x^5 - 96x$$

b)
$$y = 4x^2 - 2x + 40x^3 - \sqrt{x}$$

$$y' = 8x - 2 + 120x^2 - \frac{1}{2}x^{-\frac{1}{2}}$$

$$y'' = 8 + 240x + \frac{1}{4}x^{-\frac{3}{2}}$$

$$y''' = 240 - \frac{3}{8}x^{-\frac{5}{2}}$$

Exercícios: Calcular y', y" e y"':

1)
$$y = 4x^7 - 5x^5 + 3x^{\frac{1}{6}} - 11$$

$$2)y = \frac{x^2 - 1}{x}$$

3)
$$y = x^8 + x^{-\frac{1}{2}} + 15x^{-1}$$

4)
$$y = \frac{x^3 - 4}{x^2}$$

5)
$$y = (x^2 + 3)(x - 1)$$

Regra da Cadeia

Se y = f(x) e u = g(x) e as derivadas dy/du e du/dx existem, ambas, então a função composta definida por y = f(g(x)) tem derivada dada por:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f(u) \cdot g(x)$$

Para derivar $y = (x^2 + 1)^2$ podemos expandir a função e depois derivar, ou seja:

$$y = f(x) = x^4 + 2x^2 + 1$$

$$y' = 4x^3 + 4x = 4x(x^2 + 1)$$

Se quisermos derivar a função $y = (x^2 + 1)^{100}$ só conseguiremos resolver através da regra da cadeia.

Assim:

$$u=x^2+1$$

$$y = u^{100}$$
 \Rightarrow $\frac{dy}{du} = 100u^{99}$

$$u = x^2 + 1 \implies \frac{du}{dx} = 2x$$

$$\frac{dy}{dx} = 100(x^2 + 1)^{99}.2x = 200 x (x^2 + 1)^{99}$$

Nesse caso a *propriedade* é:

$$y = u^n \Rightarrow y' = n \cdot u^{n-1} \cdot u'$$

Exemplos:

1)
$$y = \sqrt{x^2 + 2x + 4} = (x^2 + 2x + 4)^{\frac{1}{2}}$$

$$y' = \frac{1}{2}(x^2 + 2x + 4)^{-\frac{1}{2}}(2x + 2) = \frac{(x+1)}{\sqrt{x^2 + 2x + 4}}$$

2)
$$y = (8x + x^4 - 10)^{20}$$

$$y' = 20(8x + x^4 - 10)^{19}(8 + 4x^3) = 80(8x + x^4 - 10)^{19}(2 + x^3)$$

Exercícios: Calcular y' para a s funções:

1)
$$y = \frac{1}{\sqrt[5]{x^4 - x + 1}}$$

2)
$$y = \frac{x^2 + 3}{\sqrt[3]{x - 2}}$$

3)
$$y = \sqrt{\frac{x^2 - 1}{x + 1}}$$

4)
$$y = (x^2 - 4x + 2)^8$$

5)
$$y = \sqrt[3]{x^4 - 2x + 1}$$

6)
$$y = (3x+1)^6 \cdot \sqrt{2x-5}$$

7)
$$y = (8x - 7)^{-5}$$

8)
$$y = (w^4 - 8w^2 + 15)^4$$

9)
$$y = (6x-7)^3.(8x^2+9)^2$$

10)
$$y = \sqrt[3]{8r^3 + 27}$$

11)
$$y = \frac{1}{\sqrt{3s-4}}$$

12)
$$y = \frac{2x+3}{\sqrt{4x^2+9}}$$

13)
$$y = \frac{1}{x^3} + \frac{2}{x^4} + \frac{3}{x^5}$$

14)
$$y = \frac{1}{(x^2 + 3x + 5)^2}$$

15)
$$y = (4x^2 - 3)(\sqrt{2x + 1})$$

16)
$$y = \frac{\sqrt{5x-1}}{(3x+4)^3}$$

Derivada das Funções Trigonométricas

Derivada da função seno

Se
$$y = f(x) = \operatorname{sen} x$$
 \Rightarrow $y = \frac{dy}{dx} = \cos x$

Pela Regra da Cadeia: **Se** $y = sen u \Rightarrow y' = \frac{dy}{dx} = u' cos u$

Derivada da função cosseno

$$y = f(x) = \cos x$$

$$\operatorname{sen}^2 x + \cos^2 x = 1$$
 \rightarrow $\cos^2 x = 1 - \operatorname{sen}^2 x$ \rightarrow $\cos x = (1 - \operatorname{sen}^2 x)^{\frac{1}{2}}$

$$y = \cos x = \left(1 - \sin^2 x\right)^{\frac{1}{2}}$$

$$y' = \frac{1}{2} (1 - sen^2 x)^{-\frac{1}{2}} (-2senx.\cos x) = \frac{1}{2} (\cos^2 x)^{-\frac{1}{2}} (-2senx.\cos x) = -senx$$

$$\therefore$$
 Se $y = f(x) = \cos x$ \Rightarrow $y = \frac{dy}{dx} = -\sin x$

Pela Regra da Cadeia: **Se** $y = \cos u \implies y' = \frac{dy}{dx} = -u' \operatorname{sen} u$

Exemplos:

Calcular as derivadas de:

$$1) y = sen(x^2 + 1)$$

$$y' = \frac{dy}{dx} = \cos(x^2 + 1)2x$$

$$y' = 2x\cos(x^2 + 1)$$

2)
$$y = sen\sqrt{x}$$

$$y = \cos\sqrt{x} \cdot \frac{1}{2} x^{-\frac{1}{2}}$$

$$y' = \frac{1}{2\sqrt{x}}\cos\sqrt{x}$$

3)
$$y = (x^2 + 1)^{20} sen(x^3 + 2)$$

$$f = (x^2 + 1)^{20} \qquad \Rightarrow \qquad f' = 20(x^2 + 1)^{19}.2x$$

$$g = \operatorname{sen}(x^3 + 2) \qquad \Rightarrow \qquad g' = 3x^2.\cos(x^3 + 2)$$

$$y' = 40x(x^2 + 1)^{19} sen(x^3 + 2) + 3x^2(x^2 + 1)^{20} cos(x^3 + 2)$$

$$4) \ \ y = \frac{\cos x}{x^2}$$

$$f = \cos x$$
 \Rightarrow $f' = -\sin x$

$$g = x^2$$
 \Rightarrow $g' = 2x$

$$y' = \frac{-x^2 \sin x - 2x \cos x}{x^4} = \frac{-x \sin x - 2 \cos x}{x^3}$$

Derivada da função tangente

Se
$$y = f(x) = tg x$$
 \Rightarrow $y = \frac{\sin x}{\cos x}$

$$f = \operatorname{sen} x \qquad \Rightarrow \qquad f' = \cos x$$

$$g = \cos x \implies g' = -\sin x$$

$$y' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

Pela Regra da Cadeia: **Se** $y = tg u \implies y' = \frac{dy}{dx} = u' \sec^2 u$

Derivada da função cotangente

Se
$$y = f(x) = \cot g x$$
 \Rightarrow $y = \frac{\cos x}{\sin x}$

$$f = \cos x$$
 \Rightarrow $f' = -\sin x$

$$g = \operatorname{sen} x \qquad \Rightarrow \qquad g' = \cos x$$

$$y' = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = \frac{-1}{\sin^2 x} = -\cos \sec^2 x$$

Pela Regra da Cadeia: **Se** $y = \cot g u \Rightarrow y' = \frac{dy}{dx} = -u' \cos \sec^2 u$

Derivada da função secante

$$y = \sec x = \frac{1}{\cos x} = \cos^{-1} x$$

$$y' = -1\cos^{-2}x(-\sin x) = \frac{\sin x}{\cos^2 x} = \sec x.tgx$$

Pela Regra da Cadeia: Se $y = \sec u \implies y' = \sec u \cdot tgu \cdot u'$

Derivada da função cossecante

$$y = \cos \sec x = \frac{1}{\sin x} = \sin^{-1} x$$

$$y' = (-1) \operatorname{sen}^{-2} x (\cos x) = \frac{-\cos x}{\sin^2 x} = -\operatorname{cossecx.cotg} x$$

Pela Regra da Cadeia: Se $y = \cos \sec u \Rightarrow y' = -\cos \sec u \cdot \cot g \cdot u'$

Exemplos: Calcular as derivadas de:

1)
$$y = tg(x^2 + 2x + 1)$$

$$y' = [2x + 2]sec^{2}(x^{2} + 2x + 1)$$

2)
$$y = \frac{tgx}{\cos\sec x}$$

$$f = tg x$$
 \Rightarrow $f' = \sec^2 x$

$$g = \csc x \implies g^1 = -\csc x.\cot g x$$

$$y' = \frac{\sec^2 x \cdot \cos \sec x + \cos \sec x \cdot tgx \cdot \cot gx}{\cos \sec^2 x} = \frac{\sec^2 x + 1}{\cos \sec x}$$

Exercícios:

$$1)y = \cot g(x^3 + 3)\sec(\sqrt{x} + 1)$$

$$2)y = x^2.\cos\sec(5x)$$

$$3)y = \cot^3 \left(3x^5 + 1\right)$$

$$4)y = sen(8x + 3)$$

5)y =
$$tg\sqrt[3]{5-6x}$$

$$6)y = \cos\left(3x^5 - 5x^3\right)$$

$$7)y = tg(\sqrt[8]{x} - \sqrt[5]{x})$$

$$8)y = \frac{\operatorname{sen} x}{1 + \cos x}$$

$$9)y = \frac{\sec 2x}{tg2x - 1}$$

10)
$$y = \sec x.tg(x^2 + 1)$$

11)
$$y = \frac{1}{\cos x \cdot \cot x}$$

12)
$$y = \frac{1 + \sec x}{tg(3x - 1) + \sec^2 x}$$

13)
$$y = 2 x \cot g x + x^2 tg x$$

14)
$$y = sen(-x) + cos(-x)$$

15)
$$y = (sen (4x) + cos (2x))^2$$

$$16) y = \frac{x + \cos 3x}{\sin 2x}$$

17)
$$y = (x^2 - 1) tg x - x sen 2x$$

18)
$$y = tg(-2x)(x^2 - 2x + 1)$$

19)
$$y = \cos \sec 5x \cdot tg \sqrt{x}$$

20)
$$y = \cos^2(x^2 - 2x + 1)$$

21)
$$(sen x + cos 3x)^3$$

Derivada da Função Inversa

Vimos a regra da cadeia para a composição de duas funções f(x) = g(x):

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Para a função inversa $g = f^{-1}$

Portanto:

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \qquad \text{ou} \qquad \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

Derivada da Função Exponencial

Se
$$y = a^x \implies y' = a^x \ln a$$

Pela Regra da Cadeia: Se
$$y = a^u$$
 \Rightarrow $y' = u'.a^u \ln a$

Exemplos: Derivar:

1)
$$y = 2^x$$
 \Rightarrow $y' = 2^x \ln 2$

2)
$$y = 2^{x^2}$$
 \Rightarrow $y' = 2^{x^2} \ln 2 \cdot 2x = 2x \cdot 2^{x^2} \cdot \ln 2$

Para
$$a = e \cong 2,71828$$

$$y = e^{x}$$
 \Rightarrow $y' = e^{x}$

Pela Regra da Cadeia: **Se**
$$y = e^u$$
 \Rightarrow $y' = e^u u'$

Exemplos: Derivar

1)
$$y = e^{x^2 + 1}$$
 \Rightarrow $y' = e^{x^{2+1}}.(2x)$

2)
$$y = e^{\sqrt{x}}$$
 \Rightarrow $y' = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}$

3)
$$y = e^{sen x}$$
 \Rightarrow $y' = e^{sen x}.cos x$

4)
$$y = e^{\frac{x^2+1}{x}}$$
 \Rightarrow $y' = e^{\frac{x^2+1}{x}} \left(\frac{2x \cdot x - 1 \cdot (x^2+1)}{x^2} \right) = e^{\frac{x^2+1}{x}} \left(\frac{x^2-1}{x^2} \right)$

Derivada da Função Logaritmo

$$y = log_a x$$
 \Rightarrow $a^y = x$ \Rightarrow $\frac{dx}{dy} = a^y . ln a = x. ln a$

Como:
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \implies \frac{dy}{dx} = \frac{1}{x \cdot \ln a}$$

Se
$$y = log_z x$$
 \Rightarrow $y' = \frac{1}{x \ln a}$

Pela Regra da Cadeia: Se
$$y = log_a u$$
 \Rightarrow $y' = \frac{u'}{u \ln a}$

Para a=e
$$\Rightarrow \log_a x = \ln x$$

Pela Regra da Cadeia: Se y = In u
$$\Rightarrow$$
 y' = $\frac{u'}{u}$

Exemplos: Derivar

1)
$$y = \ln x^2$$
 \Rightarrow $y' = \frac{2x}{x^2} = \frac{2}{x}$

2)
$$y = \ln \sqrt{x}$$
 \Rightarrow $y' = \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x}} = \frac{1}{2x}$

3)
$$\log_3 \sqrt{x}$$
 \Rightarrow $y' = \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x} \ln 3} = \frac{1}{2 \ln 3}$

Lembrar que :

$$ln (p . q) = ln p + ln q$$

$$\ln \frac{p}{q} = \ln p - \ln q$$

$$\ln p^r = r \cdot \ln p$$

Exercícios: Derivar

1)
$$y = \ln \left[\sqrt{6x - 1} \cdot (4x + 5)^3 \right]$$

2)
$$y = \ln \sqrt[3]{\frac{x^2 - 1}{x^2 + 1}}$$

3)
$$y = \ln \frac{x^2(2x-1)^3}{(x+5)^2}$$

4)
$$y = \ln\left(x + \sqrt{x^2 - 1}\right)$$

5)
$$y = e^{-2x}.tg(4x)$$

Derivadas de Funções na Forma Implícita

Considere a expressão:

$$x^2 + y^2 = 49$$

Podemos isolar y em função de x:

$$y^2 = 49 - x^2 \qquad \Rightarrow \qquad y = \pm \sqrt{49 - x^2}$$

Ficam definidas duas funções:

$$y = f(x) = \sqrt{49 - x^2}$$
 $e(x) = -\sqrt{49 - x^2}$

Diz-se que $y=f(x)=\sqrt{49-x^2}$ e $y=f(x)=-\sqrt{49-x^2}$ são funções na forma explícita (y em função de x) , enquanto $x^2+y^2=49$ é uma função na forma implícita.

Seja $x^2 + y^2 = 49$. Usando a Regra da Cadeia :

$$(u^n)' = n. u^{n-1}u'$$
, a derivada de y^2 com relação a x é 2.y. y'.

Na equação inicial se derivarmos todos os termos com relação a x, temos:

$$2 x + 2 y y' = 0 \qquad \Rightarrow \qquad y' = -\frac{2x}{2y} = -\frac{x}{y}$$

Exemplos: Calcular y para as funções abaixo:

1)
$$x^3 + 3y^4 = 0$$

$$3x^2 + 12y^3y' = 0$$
 \Rightarrow $y' = \frac{-3x^2}{12y^3} = \frac{-x^2}{4y^3}$

2)
$$x^2y + y^4 = 4$$

$$f = x^2$$
 \Rightarrow $f' = 2x$

$$g = y$$
 \Rightarrow $g' = y'$

$$2 x y + x^2 y' + 4 y^3 y' = 0$$

$$y' = \frac{-2 x y}{x^2 + 4 y^3}$$

3)
$$\operatorname{sen}^4 x + x \cos y = e^x$$

$$4 \operatorname{sen}^3 x \cos x + \cos y + x \text{ (-sen y) } y' = e^x$$

$$y' = \frac{-e^x + 4 \operatorname{sen}^3 x \cos x + \cos y}{x \operatorname{sen} y}$$

4) Encontrar as equações das retas tangente e normal ao gráfico da curva

$$\frac{x^2}{4} + \frac{y^2}{9} = 1 \quad \text{no ponto} \left(1, \frac{\sqrt{27}}{2}\right).$$

Derivando com relação a x , temos:

$$\frac{1}{4}$$
. 2x + $\frac{1}{9}$. 2y. y' = 0

$$\frac{x}{2} + \frac{2}{9} y.y' = 0$$

$$y' = \frac{\frac{-x}{2}}{\frac{2}{9}y}$$

No ponto
$$\left(1, \frac{\sqrt{27}}{2}\right)$$
 \Rightarrow $a = y'|_P = \frac{-9}{2\sqrt{27}}$ $a_N = \frac{2\sqrt{27}}{9}$

Reta Tangente T
$$\Rightarrow$$
 $y - \frac{\sqrt{27}}{2} = \frac{-9}{2\sqrt{27}}(x-1)$

Reta Normal N
$$\Rightarrow$$
 $y - \frac{\sqrt{27}}{2} = \frac{2\sqrt{27}}{9}(x-1)$

Exercícios:

1) Calcular y para:

a)
$$3x^2 + 5x^4 - xy = 4$$

a)
$$3x^2 + 5x^4 - xy = 4$$
 b) $sen y + x^2y^3 = tg x$ c) $y = x^2 sen y$

c)
$$y = x^2 sen y$$

2) Encontrar as equações das retas tangente e normal ao gráfico da curva $y^4 + 3y - 4x^3 = -5x + 1$ no ponto (1, 0).

Diferenciais de uma Função

Dada uma função y = f(x), define-se diferencial de y = f(x) como:

$$dy = f'(x) \Delta x$$

onde Δx é o acréscimo da variável independente x e dy é o diferencial de y.

Define-se então a diferencial da variável dependente como :

$$dy = f'(x) dx$$

Lembrando o significado geométrico da derivada, temos:

$$\Delta y = f(x + \Delta x) - f(x)$$

$$\therefore f(x + \Delta x) - f(x) \cong f'(x) \Delta x$$

$$f(x + \Delta x) \cong f(x) + f'(x) \Delta x$$

Exemplos:

1) Obter um valor aproximado para $\sqrt{37}$.

escolhendo
$$f(x) = \sqrt{x}$$

$$x = 36$$

$$\Delta x = 1$$

$$x + \Delta x = 37$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f(x + \Delta x) = f(x) + f'(x)\Delta x$$

$$\sqrt{37} = \sqrt{36} + \frac{1}{2\sqrt{36}}.1$$

$$\sqrt{37}\cong 6+\frac{1}{12}\cong 6,08333$$

2) Obter um valor aproximado para sen31⁰

$$f(x) = sen x$$

$$x = 30^0 = \frac{\pi}{6}$$

$$\Delta x = 1^0 = \frac{\pi}{180}$$

$$f(x + \Delta x) = f(x) + f'(x)\Delta x$$

$$sen 31^0 = sen \frac{\pi}{6} + cos \frac{\pi}{6} \cdot \frac{\pi}{180}$$

$$sen 31^0 \cong 0,51511$$

Exercícios:

- 1) Obter um valor aproximado para

- a) $\sqrt[3]{63}$ b) $(3,1)^4$ c) $\sqrt[4]{15}$ d) $(2,03)^3$ e) $\cos 44^0$
- 2) Calcular os diferenciais de:

a)
$$y = (x^3 - 5x^2 + 2)^4$$

b)
$$y = sen(3x^2)$$

c)
$$y = \frac{\text{sen } x}{\sqrt{x}}$$

Aplicações da Derivada

Máximos e Mínimos de uma Função

Considere a função cujo gráfico é:

- f(x) é crescente nos intervalos $(a, x_1)(x_2.x_3)(x_4.x_5)$
- f(x) é decrescente nos intervalos $(x_1.x_2)$, $(x_3.x_4)$
- f(x) é constante no intervalo (x_5, b)

Seja um trecho de f(x) crescente:

$$f'(x) = tg \alpha$$

se f (x) é crescente, temos 0 $\langle \alpha \langle \frac{\pi}{2} \rangle$

$$\therefore tg\alpha \rangle 0$$
 e $f'(x) \rangle 0$

Seja um trecho de f(x) decrescente:

$$f'(x) = tg \alpha$$

se f (x) é decrescente, temos $\frac{\pi}{2}\langle \ \alpha \ \langle \ \pi$

$$\therefore tg\alpha \langle 0 \quad e \quad f'(x) \langle 0$$

Se f(x) é constante, f'(x) = 0.

Exemplos:

1) Determinar os intervalos em que a função $f(x) = 4 - x^2$ é crescente e onde é decrescente.

$$f(x) = 4 - x^2$$

$$-2x \rangle 0 \qquad \text{se} \qquad x \langle 0 \quad \therefore \quad f(x) \text{ \'e crescente para} \quad x \langle 0$$

$$f'(x) = -2x$$

$$-2x \langle 0 \qquad \text{se} \qquad x \rangle 0 \quad \therefore \quad f(x) \text{ \'e decrescente para} \quad x \rangle 0$$

2) Determinar os intervalos em que a função $f(x) = x^2 + 5x + 4$ é crescente e onde é decrescente.

$$f(x) = x^2 + 5x + 4$$

$$2x+5 > 0$$
 se $x > -\frac{5}{2}$ \therefore f(x) é crescente para $x > -\frac{5}{2}$ f'(x) = 2x+5
$$2x+5 < 0$$
 se $x < -\frac{5}{2}$ \therefore f(x) é decrescente para $x < -\frac{5}{2}$

Máximos e Mínimos Relativos ou Locais

Seja f(x) definida no domínio D.

 $x_0 \in D$ é ponto de mínimo local de f (x) se f (x_0) \leq f (x) para x pertencente a qualquer intervalo aberto que o contenha.

 $x_0 \in D$ é ponto de máximo local de f (x) se f (x_0) \geq f (x) para x pertencente a qualquer intervalo aberto que o contenha.

Resultado:

Se f (x) existe e é contínua , então num ponto de máximo ou mínimo local temos f $(x_0) = 0$. Esse ponto é chamado **ponto crítico de** f(x).

Estudo do Sinal da Derivada Segunda

Para se caracterizar máximos e mínimos locais é necessário uma análise do sinal da derivada segunda da função f (x).

Observe que para $x \langle x_0 \text{ temos } f^{'}(x) \rangle 0$. Para $x = x_0 \text{ temos}$ $f^{'}(x) = 0$ e para $x \rangle x_0$ temos $f^{'}(x) \langle 0$. Logo $f^{'}(x)$ é decrescente e portanto sua derivada $f^{''}(x) \langle 0$.

Conclusão:

Dada uma função f (x):

- a) Calcular a derivada primeira f'(x).
- b) Obter os pontos críticos x_0 para os quais f'(x) = 0.
- c) Calcular a derivada segunda:

Se f''(x_0) $\langle 0 \text{ temos que } x_0 \text{ é ponto de máximo relativo.}$

Se f''(x_0) > 0 temos que x_0 é ponto de mínimo relativo

Exemplos:

1) Determinar os pontos de máximos e mínimos locais da função $f(x) = 4 - x^2$

pontos críticos (f'(x) = 0)

$$f'(x) = -2x$$
 $-2x = 0$ $x_0 = 0$

f''(x) = -2 .: x_0 é ponto de máximo relativo

 $f(x_0) = f(0) = 4$ é o valor máximo relativo de f(x).

2) Idem para $y = f(x) = 2x^3 - 12x^2 + 18x - 2$ pontos críticos f'(x) = 0

$$f'(x) = 6x^2 - 24x + 18 = 0$$

$$\begin{cases} x = 1 \\ x = 3 \end{cases}$$

$$f''(x) = 12x - 24$$

 $f''(1) = -12 \langle 0$ \therefore $x_0 = 1$ é abcissa do ponto de máximo relativo

f (1) = 6 é o valor do máximo relativo

 $f''(3) = 12 \rangle 0$: $x_0 = 3$ é abcissa do ponto de mínimo relativo

f (3) = -2 é o valor do mínimo relativo

Estudo da Concavidade de uma Função

A concavidade de uma curva f (x) é identificada pelo sinal da derivada segunda.

Se f''(x) > 0 num intervalo do domínio D temos concavidade voltada para cima. Se f''(x) < 0 num intervalo do domínio D temos concavidade voltada para baixo.

Um ponto do gráfico de y = f(x) onde há mudança no sinal da derivada segunda f''(x) é chamado ponto de inflexão f''(x) = 0.

Exemplo:

Seja
$$y = f(x) = \frac{x^3}{3} - \frac{5}{2}x^2 + 6x + 2$$
. Determine:

- a) o intervalo onde f(x) é crescente e onde é decrescente.
- b) pontos de máximo e mínimo relativos.
- c) Pontos de inflexão.

Solução:

a)
$$f(x) = x^2 - 5x + 6$$

$$\begin{cases} x = 2 \\ x = 3 \end{cases}$$

Estudo do sinal:

1. linha: x-2

2. linha: x-3

3. linha: (x-2) (x-3)

2	3	
-	+	+
-	-	+
+	-	+

 $\therefore \qquad f'(x) \ \rangle \ 0 \quad \text{para} \quad x \ \langle \ 2 \ \text{ou} \ x \ \rangle \ 3 \quad \Rightarrow \ f \ \text{crescente}$

 $f'(x) \langle 0 \text{ para } 2 \langle x \langle 3 \rangle \Rightarrow f \text{ decrescente}$

b) pontos críticos

 $f'(x) = 0 \qquad \begin{cases} x = 2 \\ x = 3 \end{cases}$

$$f''(x) = 2 x - 5$$

$$\begin{cases} x = 2 \implies f''(x) < 0 \\ f(2) = \frac{20}{3} \therefore \text{ ponto}\left(2, \frac{20}{3}\right) \text{ \'e de m\'aximo relativo} \\ x = 3 \implies f''(x) > 0 \end{cases}$$

$$f(3) = \frac{13}{2} \therefore \text{ ponto}\left(3, \frac{13}{2}\right) \text{\'e de m\'inimo relativo}$$

c) inflexão

f''(x) = 0 2x-5 x =
$$\frac{5}{2}$$
 $\frac{5}{2}$

:. f (x) passa de - para +

Máximos e Mínimos Absolutos

Se y = f (x) é contínua e definida num intervalo fechado [a,b], derivável em [a,b] então existem pontos \mathbf{x}_0 e \mathbf{x}_1 tais que:

1)
$$f(x_0) \ge f(x)$$
, $\forall x \in [a,b]$ e

$$2) \ f\left(x_{1}\right) \leq f\left(x\right) \ , \ \forall \ x \in \left[a,b\right]$$

 X_0 = ponto de mínimo absoluto de f(x)

 X_1 = ponto de máximo absoluto de f(x)

Para se obter os pontos de mínimo e máximo absoluto determina-se inicialmente os pontos de mínimo e máximo relativos. Compara-se esses valores com os da função no extremo do intervalo.

Exemplo:

Seja y = f (x) = 16 -
$$x^2$$
 no intervalo [-1, 4]

Pontos de máximo e mínimo relativos

$$f'(x) = 0$$
 \Rightarrow $-2x = 0$ \Rightarrow $x = 0$ $\in [-1, 4]$

 $f^{''}(x)=-2\quad como\quad f^{''}(x)\ \langle\ 0\quad então\ x=0\ \ \acute{e}\ ponto\ de\ máximo\ local$ e o valor máximo da função f (0)=16.

Calculando f (x) nos extremos f (-1)=15 e f (4) =0

Por comparação f (x) = 0 é ponto de máximo absoluto e x = 4 é ponto de mínimo absoluto.

Exercícios:

- 1) Dada a função $y = f(x) = \frac{x^3}{3} 3x^2 + 9x + 1$ verifique os intervalos para os quais a função é crescente e decrescente. Determine os pontos críticos, verificando se são de máximo ou mínimo. Determine o ponto de inflexão, se houver.
- 2) Idem para $y = f(x) = -\frac{x^3}{3} + 3x^2 5x$
- Determinar números positivos x e y,cujo produto seja igual a 12 e cuja soma seja a menor possível.
- 4) Determinar números positivos x e y,cuja soma seja igual a 12 e cujo produto seja o maior possível.
- 5) Encontre os pontos críticos, indicando se são máximos ou mínimos locais para $y = (x^2 1)^3$.

- 6) Uma fábrica produz x milhares de unidades mensais de um determinado artigo. Se o custo da produção é dado por $C = 2x^3 + 6x^2 + 18x + 60 \, e$ o valor obtido na venda é dado por $V = 60x 12x^2, \ determinar o número ótimo de unidades mensais que maximiza o lucro L = V -C..$
- 7) Um fazendeiro deve cercar dois pastos retangulares de dimensões a e b, com um lado comum a. Se cada pasto deve medir 400 m² de área, determinar as dimensões a e b de forma que o comprimento da cerca seja mínimo.
- 8) Um fio de comprimento I é cortado em dois pedaços. Com um deles se fará um círculo e com o outro um quadrado. Como devemos cortar o fio a fim de que a soma das duas áreas compreendidas pela figura seja mínima?