ОЦЕНКА ЭФФЕКТИВНОСТИ ВЕДЕНИЯ АВТОМАТИЗИРОВАННОГО БУХГАЛТЕРСКОГО УЧЕТА В УЧРЕЖДЕНИИ

Камилова Р.Ш., к.э.н., доцент Муртилова К.М-К., к.э.н., ст.преп. Дагестанский государственный университет email:kamilova.raisa@mail.ru Россия ,Махачкала

Ничто не характеризует финансовое состояние предприятия лучше, как бухгалтерская отчетность. Внедрение ЭВМ позволяет прежде всего уменьшить затраты времени и трудоемкость при анализе финансовых результатов работы предприятия при одновременном сокращении специалистов. К тому же работа становится более привлекательной и не столь напряженной для персонала, хотя по началу и встречает со стороны работников определенные психологические проблемы, связанные c отсутствием навыков работы с ЭВМ. На данном этапе другого выхода для предприятия нет.

Научно-технический уровень проектируемой системы представляет собой комплексный показатель определяемый в баллах, включающий:

- 1. Показатель надежности функционирования процесса обработки данных (B).
 - 2. Показатель уровня экономической эффективности системы (Д).
 - 3. Показатель уровня системотехнической части системы (С).
 - 4.Показатель уровня функциональной части системы (Ф).

Научно-технический уровень системы (У) в баллах определяется по формуле:

y = A/Amax

А - расчетная величина комплексного показателя системы.

Amax - постоянная величина, равная max значению комплексного показателя качества (принята 6 баллам).

Определение научно- технического уровня системы в зависимости от балльной оценки

Таблица 1 **Научно- технический уровень системы**

Значение	балльной	оценки	Характеристика	научно-технического
научно-технического уров		уровня	уровня системы	
системы (У)				
0,75 - 1,00		Высокий		
0,35 - 0,74			Достаточный	
0,00 - 0,34			Низкий	

Определение комплексного показателя производится по формуле:

$$A = B (0.5 \Pi + 0.3 C + 0.2 \Phi)$$

Показатель уровня экономической эффективности системы определяется разностью между расчетным коэффициентом (Ер) и нормативным коэффициентом эффективности капитальных вложений от внедрения вычислительной техники (Ен) в следующей зависимости:

$$Ep - EH < 0 = 0$$
 баллов
 $0 < Ep - EH < 0.06 = 2$ баллам
 $0.06 < Ep - EH < 0.12 = 4$ баллам
 $Ep - EH > 0.12 = 6$ баллам

При определении годового экономического эффекта принимается действующий в отрасли нормативный коэффициент эффективности капитальных вложений (Ен). При отсутствии такого Ен принимается равным 0,15. Для отрасли вычислительной техники Ен = 0,33.

Э- годовой прирост прибыли;

К-единовременные затраты на создание системы.

Показатель уровня системотехнической части системы определяется по формуле:

С = КсіСі, где

Ксі - коэффициент весомости і- го показателя;

Сі - балльная оценка і- го показателя системотехнического уровня системы.

Таблица 2
Показатели оценки научно-технического уровня
системотехнической части проекта

Показатель	К-т	Оценка в баллах					
	Весомо						
	сти						
		0	2	4	6		
1	2	3	4	5	6		
1.Систем	0,3	Проект на	Проект на	Проект на	Проект на		
ность		отдельную	комплекс	подсистему	АСУ в		
подхода к		задачу	задач	АСУ	целом		
проблеме							
2.Прогрессив	0,25	Основные	Основные	Основные	Основные		
ность		ВС-ВПМ	ВС-ЭВМ 2	ВС-ЭВМ 3	ВС: мини		
основных		ВКМ			ЭВМ,		
вычислитель					микроЭВМ,		
ных средств					суперЭВМ,		
(BC).					ВЦ КП		
3. Условия	0,05	Взаимосвяз	Взаимосвяз	Взаимосвяз	Взаимосвяз		
взаимосвя		ь не	ь засчет	ь засчет	ьс		
зи со сторон		предусматр	передачи	передачи	помощью		
ними АСУ		ивается	документов	МП	каналов		
			курьером	курьером	связи		

Список литературы:

1. Бунова Е.В. Бусляева О.С. Оценка эффективности внедрения информационных систем // Вестник Астраханского государственного

технического университета. Серия: Управление, вычислительная техника и информатика № 1 / 2012

2. Титоренко Г.А. Автоматизированные информационные технологии в экономике. / М.: ЮНИТИ-ДАНА, 2009.