Odabrana poglavlja matematike, ispit - Modeliranje

Roko Čubrić

Lipanj 7, 2025

a) Određivanje Egzaktnog Rješenja

Zadan je Poissonov problem:

$$u''(x) = x(1-x), \quad x \in (0,1)$$

 $u(0) = 0$
 $u(1) = 0$

Prvo, zapišimo diferencijalnu jednadžbu kao:

$$u''(x) = x - x^2$$

Integriramo jednom da bismo dobili u'(x):

$$u'(x) = \int (x - x^2) dx$$
$$= \frac{x^2}{2} - \frac{x^3}{3} + C_1$$

Gdje je C_1 prva konstanta integracije.

Integriramo drugi put da bismo dobili u(x):

$$u(x) = \int \left(\frac{x^2}{2} - \frac{x^3}{3} + C_1\right) dx$$
$$= \frac{1}{2} \cdot \frac{x^3}{3} - \frac{1}{3} \cdot \frac{x^4}{4} + C_1 x + C_2$$
$$= \frac{x^3}{6} - \frac{x^4}{12} + C_1 x + C_2$$

Gdje je C_2 druga konstanta integracije.

Sada koristimo rubne uvjete da bismo odredili konstante C_1 i C_2 . Prvi rubni uvjet, u(0) = 0:

$$u(0) = \frac{0^3}{6} - \frac{0^4}{12} + C_1 \cdot 0 + C_2 = 0$$
$$0 - 0 + 0 + C_2 = 0$$
$$C_2 = 0$$

Sada znamo da je $u(x) = \frac{x^3}{6} - \frac{x^4}{12} + C_1 x$. Drugi rubni uvjet, u(1) = 0:

$$u(1) = \frac{1^3}{6} - \frac{1^4}{12} + C_1 \cdot 1 = 0$$

$$= \frac{1}{6} - \frac{1}{12} + C_1 = 0$$

$$= \frac{2}{12} - \frac{1}{12} + C_1 = 0$$

$$= \frac{1}{12} + C_1 = 0$$

$$C_1 = -\frac{1}{12}$$

Uvrštavanjem vrijednosti konstanti $C_1 = -\frac{1}{12}$ i $C_2 = 0$ u izraz za u(x), dobivamo egzaktno rješenje:

$$u(x) = -\frac{x^4}{12} + \frac{x^3}{6} - \frac{x}{12}$$

Sobolev Prostor

Sobolev prostor je vektorski prostor funkcija koje imaju dovoljno derivacija koje su integrabilne. Sobolev prostori se koriste u matematičkoj analizi, parcijalnim diferencijalnim jednadžbama i numeričkoj analizi. Za cijeli broj $k \geq 0$ i realni broj $p \geq 1$, Sobolev prostor $W^{k,p}(\Omega)$ definiran je kao:

$$W^{k,p}(\Omega) = \{ u \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega), |\alpha| \le k \}$$

gdje je:

- Ω otvoreni podskup od \mathbb{R}^n (domena).
- $L^p(\Omega)$ je Lebesgueov prostor funkcija koje su p-integrabilne na Ω .
- $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ je multi-indeks, gdje su α_i nenegativni cijeli brojevi.
- $|\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_n$ je red multi-indeksa.
- $D^{\alpha}u$ je slaba derivacija funkcije u reda α .

Norma u Sobolev prostoru $W^{k,p}(\Omega)$ definira se kao:

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{1/p}$$

Kada je p=2, Sobolev prostor se označava kao $H^k(\Omega)$ i naziva se Hilbertov prostor. Norma u $H^k(\Omega)$ je:

$$||u||_{H^k(\Omega)} = \left(\sum_{|\alpha| \le k} ||D^{\alpha}u||_{L^2(\Omega)}^2\right)^{1/2}$$

U našem slučaju, koristimo Sobolev prostor $H_0^1(0,1)$. Indeks 0 označava da funkcije u ovom prostoru zadovoljavaju homogene Dirichletove rubne uvjete, tj. u(0) = u(1) = 0. Prostor $H_0^1(0,1)$ sadrži funkcije koje su nula na rubu intervala (0,1) i imaju slabu derivaciju prvog reda koja je kvadratno integrabilna.

b) Izvođenje Slabe Formulacije

Zadan je Poissonov problem:

$$u''(x) = x(1-x), \quad x \in (0,1)$$

 $u(0) = 0$
 $u(1) = 0$

Da bismo izveli slabu formulaciju, prvo pomnožimo diferencijalnu jednadžbu s proizvoljnom testnom funkcijom v(x). Testna funkcija v mora pripadati prostoru funkcija u kojem tražimo rješenje u, i mora zadovoljavati homogene Dirichletove rubne uvjete, tj. v(0) = v(1) = 0. Prostor za u i v je tipično Sobolevov prostor $H_0^1(0,1)$.

Jednadžbu možemo napisati kao:

$$-u''(x) = -x(1-x) = x^2 - x$$

Množimo sv(x)i integriramo po domeni $\Omega=(0,1)$:

$$\int_0^1 -u''(x)v(x)dx = \int_0^1 (x^2 - x)v(x)dx$$

Sada primjenjujemo parcijalnu integraciju (integraciju po dijelovima) na lijevu stranu. Sjetimo se formule $\int_a^b fg'dx = [fg]_a^b - \int_a^b f'gdx$. U našem slučaju, neka f = v(x) i g' = -u''(x), pa je f' = v'(x) i g = -u'(x).

$$\int_0^1 -u''(x)v(x)dx = [-u'(x)v(x)]_0^1 - \int_0^1 (-u'(x))v'(x)dx$$
$$= [-u'(x)v(x)]_0^1 + \int_0^1 u'(x)v'(x)dx$$

Rubni član $[-u'(x)v(x)]_0^1 = -u'(1)v(1) - (-u'(0)v(0))$. Budući da testna funkcija v zadovoljava v(0) = 0 i v(1) = 0 (jer pripada $H_0^1(0,1)$), ovaj rubni član postaje nula:

$$-u'(1) \cdot 0 + u'(0) \cdot 0 = 0$$

Stoga, lijeva strana postaje:

$$\int_0^1 u'(x)v'(x)dx$$

Izjednačavanjem s desnom stranom dobivamo slabu formulaciju problema: Naći $u \in H_0^1(0,1)$ tako da za svaku $v \in H_0^1(0,1)$ vrijedi:

$$\int_0^1 u'(x)v'(x)dx = \int_0^1 (x^2 - x)v(x)dx$$

Ovo je slaba formulacija koja se koristi za metodu konačnih elemenata. U terminologiji koja se često koristi:

- $a(u,v) = \int_0^1 u'(x)v'(x)dx$ je bilinearna forma.
- $L(v) = \int_0^1 (x^2 x)v(x)dx$ je linearni funkcional.

Tada slaba formulacija glasi: naći $u \in H^1_0(0,1)$ tako da je a(u,v) = L(v) za sve $v \in H^1_0(0,1)$.

Što je Slaba Formulacija?

Slaba formulacija je preoblikovanje originalne diferencijalne jednadžbe u integralni oblik. Umjesto da tražimo funkciju u koja zadovoljava diferencijalnu jednadžbu u svakoj točki domene, tražimo funkciju u koja zadovoljava integralnu jednadžbu u "slabijem" smislu. To znači da jednadžba ne mora biti zadovoljena točno u svakoj točki, već samo u prosjeku, nakon integracije s testnom funkcijom.

Glavni koraci u izvođenju slabe formulacije su:

- 1. Pomnožiti diferencijalnu jednadžbu s testnom funkcijom v.
- 2. Integrirati rezultirajuću jednadžbu po domeni.
- 3. Primijeniti parcijalnu integraciju na članove koji sadrže derivacije višeg reda, kako bi se derivacije prebacile s trial funkcije u na testnu funkciju v.
- 4. Iskoristiti rubne uvjete za pojednostavljenje rubnih integrala koji se pojavljuju nakon parcijalne integracije.

Prednosti slabe formulacije:

- Smanjuje zahtjeve za glatkoćom rješenja. U jakoj formulaciji, rješenje mora imati derivacije koje se pojavljuju u jednadžbi. U slaboj formulaciji, derivacije se prebacuju na testnu funkciju, pa rješenje može biti manje glatko.
- Omogućuje korištenje metode konačnih elemenata (FEM) za numeričko rješavanje problema. FEM
 se temelji na traženju približnog rješenja u konačno-dimenzionalnom prostoru funkcija, a slaba formulacija daje prirodan način za definirati taj prostor i postaviti jednadžbe za određivanje približnog
 rješenja.

U našem slučaju, slaba formulacija Poissonovog problema je: Naći $u \in H_0^1(0,1)$ tako da za svaku $v \in H_0^1(0,1)$ vrijedi:

$$\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx$$

gdje je f(x) poznata funkcija (izvor), a $H_0^1(0,1)$ je Sobolev prostor funkcija koje su nula na rubu intervala (0,1).

Diskretizacija i određivanje koeficijenata

Rješenje u aproksimiramo funkcijom u_h iz konačnodimenzionalnog prostora V_h , koji je razapet baznim (pilastim) funkcijama φ_i , $i=1,\ldots,N$. Dakle:

$$u_h(x) = \sum_{i=1}^{N} \alpha_i \varphi_i(x),$$

gdje su α_i nepoznati koeficijenti koje želimo odrediti. Funkcije φ_i su definirane tako da vrijedi $\varphi_i(x_j) = \delta_{ij}$, tj. imaju vrijednost 1 u točki x_i , a nulu u ostalim čvorovima.

Slabu formulaciju problema zapisujemo u obliku: nađi $u_h \in V_h$ takav da za sve $v_h \in V_h$ vrijedi:

$$a(u_h, v_h) = \ell(v_h),$$

gdje je

$$a(u_h, v_h) = \int_0^1 u_h'(x)v_h'(x) dx, \quad \ell(v_h) = \int_0^1 f(x)v_h(x) dx.$$

Uvrštavanjem aproksimacije $u_h = \sum_{i=1}^{N} \alpha_i \varphi_i$ dobivamo:

$$\int_0^1 \left(\sum_{j=1}^N \alpha_j \varphi_j'(x) \right) \varphi_i'(x) \, dx = \int_0^1 f(x) \varphi_i(x) \, dx, \quad \text{za svaki } i = 1, \dots, N.$$

Zbog linearnosti integrala, možemo izvući koeficijente iz sume:

$$\sum_{i=1}^{N} \alpha_j \int_0^1 \varphi_j'(x) \varphi_i'(x) dx = \int_0^1 f(x) \varphi_i(x) dx.$$

To možemo zapisati u matričnom obliku:

$$A\alpha = \mathbf{b},$$

gdje je

$$A_{ij} = \int_0^1 \varphi_j'(x)\varphi_i'(x) dx, \quad b_i = \int_0^1 f(x)\varphi_i(x) dx, \quad \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_N)^T.$$

Na taj način svaki element matrice A i vektora \mathbf{b} dobivamo integracijom proizvoda baznih funkcija (i njihovih derivacija), a rješenje sustava daje aproksimaciju $u_h(x)$.

L2 Norma

L2 norma funkcije f na domeni Ω definirana je kao:

$$||f||_{L_2} = \sqrt{\int_{\Omega} |f(x)|^2 dx}$$

Ona mjeri "veličinu" ili "energiju" funkcije.

Mjerenje Pogreške u L2 Normi

Kada mjerimo pogrešku numeričkog rješenja u_h u odnosu na egzaktno rješenje u u L2 normi, računamo L2 normu njihove razlike:

$$E_{L_2} = ||u - u_h||_{L_2} = \sqrt{\int_{\Omega} |u(x) - u_h(x)|^2 dx}$$

Ova vrijednost nam govori koliko numeričko rješenje odstupa od egzaktnog rješenja u prosjeku preko cijele domene, dajući veći značaj većim odstupanjima (zbog kvadriranja).