nonlinear programming

goal: derive necessary & sufficient conditions for local optimality in unconstrained nonlinear programs (MLP)

refs: Stergel 1994 pg 29-41 Lewis, Vrabie, Syrmos 2012 Ch 1

owe want to minimize a given objective function $J:\mathbb{R}^m\to\mathbb{R}$: $u\mapsto J(u)$

i.e. find $u^* \in \mathbb{R}^m$ s.t. $\forall u \neq u^* : J(u^*) < J(u)$

idea: storting from $u \in \mathbb{R}^m$ where $DJ(u) \neq 0$ then $u^+ = u - v \cdot DJ(u)$ yields $J(u^+) < J(u)$ for all x > 0 small

-> so we can use gradients to:

1°. delect that we haven't family the minimum 2°. update / iterate to get closer to minimum

def. u. EIRM is stationary if DJ(u)=0 ex: u, uz, uy, uz

def: u* ERM is a local minimum if

there is an open neighborhood UCIRM

s.b. YUEU: J(u*) E) J(u)

s.b. tuell: J(u*) & J(u)
i.e. a "ball": {u: |u-u*||<r}

u* is a strict local min if O strict
ex: U, u5

thm: (sufficient conditions for optimality)

a stationary point $u_0 \in \mathbb{R}^m$ is a start local min if $D^2 T(u_0) > 0$ $=> D T(u_0) = 0 \in \mathbb{R}^{1 \times m}$ i.e. possitive-definite

aside: $D^2J(u_0)$ is symmetric if J is twice continuously differentiable because $D^2J(u_0) = \begin{bmatrix} 2 & 2 & 1 \\ 3u_i & 3u_j & 1 \\ u=u_0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 1 \\ 3u_j & 3u_i & 1 \\ u=u_0 & 1 \end{bmatrix}$

aside: if $S=S^T$ then all eigenvalues of S are real so $S>0 \iff$ all eigenvalues of S are positive

-> determine I s.t. U_=0 is a local min but DIJ(U_0) >0

 $-J(u)=0 -J(u)=u^{4} -J(u)=|u| \leftarrow \text{not differentiable}$

thm: (necessary conditions for optimality):
if u. EIRM is a local min, then:

- if I is continuously differentiable (JEC1) then DJ(u)=0

- if I is continuously differentiable (JEC1) then DJ(uo)=0 - if T is twice continuously diffiable ($T \in C^2$) then $D^2 J(u_0) \gg 0$ -> determine necessary conditions on bTEIRIXM, CT=C for U. EIRM to be local min of $J(u) = J(u_0) + bT(u - u_0) + \frac{1}{2}(u - u_0)TC(u - u_0)$ $-DJ(u) = bT + (u - u_0)TC$ so necessary that $DJ(u_0) = bT = 0$ $-D^2J(u)=C$, so we cassary $DJ(u_0)=C \ge 0$ -> if uo is a strict local min, solve for uo - if c>0 then 3 v, +0 st. Cv, =0 so $J(u) = J(u_0)$ for all $u - u_0 = \times \cdot v_0$, $x \in \mathbb{R}$ - carchde C>0 for us to be a strict local min - verify that $u_0 = u - (D^2 J(u))^{-1} DJ(u)^T$ Newton-Raphson iteration