

Agenda

- 1. Introduction to ecological / microbial networks
- 2. Association estimation
- 3. The SPIEC-EASI approach and R package
- 4. From associations to adjacencies
- 5. Network analysis

Networks and graphs

• The term **graph** is used in computer science and math

Graph with labeled **vertices** and **edges**

Directed graph

Undirected graph

The term **network** is used in physics, biology, and social sciences

Network with labeled nodes and links

Networks in cell / molecular biology

- Protein-protein interaction (PPI) networks
- Gene regulatory (co-expression) networks
- Metabolic networks
- Signaling networks
- Neuronal networks
- Microbial (ecological) interaction networks

Microbiome networks

→ Insights into the organizational structure of a microbial community

Association strength and direction:

Strongly positive

— Weakly positive

Strongly negative

Weakly negative

Layout:

Force-directed layout algorithm

Network comparison

→ Does the microbial composition change across different conditions?

Possible groups:

- Cases and controls
- Two environmental states
- Two time points
- ...

Typical network analysis workflow

From sequencing data to networks

Data characteristics:

- We observe only a sample of the true microbial composition
- Compositional (only relative information)
- Sequencing depth (total number of reads) varies across samples
- Zero-inflated
- High-dimensional (number of taxa p >> sample size n)

Association estimation

- Pseudo counts
- Methods from

zCompositions R package

(Martín-Fernández et al., 2011)

- Centered log-ratio (clr) transformation
- Variance stabilizing transformation (**VST**)
- \rightarrow (Badri et al., 2020)

- Correlation
- Conditional dependence
- **Proportionality**

Packages often include the preprocessing steps, e.g.,

- SparCC
- **SPRING**
- SpiecEasi

References:

- Badri M, Kurtz ZD, Bonneau R, et al. Shrinkage improves estimation of microbial associations under different normalization methods. NAR Genom Bioinform 2020. doi: 10.1093/nargab/lgaa100.
- Martín-Fernández JA, Palarea-Albaladejo J, Olea RA. Dealing with zeros. Compositional data analysis, 2011, 43–58.

Correlation as association measure

Source: Wikipedia

How to estimate the covariance matrix?

Covariance estimation problem

Let $x_1, ..., x_n$ be independent observations of a p-dimensional random vector $X \in \mathbb{R}^{px_1}$, and $p \gg n$.

We want to find an estimate $\hat{\Sigma}$ of the covariance matrix $\Sigma = \mathbb{E}\left[\left(x - \mathbb{E}(x)\right)\left(x - \mathbb{E}(x)\right)^T\right] \in S^{pxp}$

The sample covariance matrix *S* has entries

$$s_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

where $\bar{x}_i = \frac{1}{n} \sum_{k=1}^n x_{ki}$ and x_{ki} is the k-th observation of the variable X_i .

Properties:

- **S** is an **unbiased** estimator of Σ
- In the Gaussian case, S is the ML estimator of the covariance matrix

$p \gg n$ case:

- **S** has no full rank
- **S** singular (non-invertible)
- **S** not positive definite

S is no good approximation if $p \gg n!$

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & \cdots & x_{1p} \\ x_{21} & \cdots & \cdots & x_{2p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & \cdots & x_{np} \end{pmatrix}$$

$$\mathbf{S} = \begin{pmatrix} s_{11} & \dots & s_{1p} \\ s_{21} & \dots & s_{2p} \\ \vdots & \ddots & \vdots \\ s_{p1} & \dots & s_{pp} \end{pmatrix}$$

$$\widehat{\Omega} = \widehat{\Sigma}^{-1}$$

$$\widehat{\omega}_{11} \dots \widehat{\omega}_{1p}$$

$$\widehat{\omega}_{21} \dots \widehat{\omega}_{2p}$$

$$\vdots \dots \vdots$$

$$\widehat{\omega}_{p1} \dots \widehat{\omega}_{pp}$$

^[1] Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4(1), 1–30.

SparCC [2] (correlation)

SpiecEasi [3] (conditional dependence)

Sparse inverse covariance matri

 $\begin{pmatrix} \tilde{\rho}_{11} & \dots & \rho_{1p} \\ \hat{\tilde{\rho}}_{21} & & \hat{\tilde{\rho}}_{2p} \\ \vdots & \ddots & \vdots \\ \hat{\tilde{\rho}}_{p1} & \dots & \hat{\tilde{\rho}}_{pp} \end{pmatrix}$

Partial correlation

[2] Friedman, J., & Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey Data. PLoS Computational Biology, 8(9), 1–11.

SparCC [2] (correlation)

SpiecEasi [3] (conditional dependence

[3] Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. A. (2015). Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Computational Biology, 11(5), 1–25. https://doi.org/10.1371/journal.pcbi.1004226

Sparse inverse covariance matrix

Partial correlation

SparCC [2] (correlation)

[3] Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. A. (2015). Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Computational Biology, 11(5), 1–25. https://doi.org/10.1371/journal.pcbi.1004226

Sparse inverse covariance matrix

Partial correlation matrix

Key hypothesis for network inference

The inverse covariance matrix among transformed microbial relative abundances is sparse.

Key hypothesis for network inference

The network of interactions between the different microbes is sparse.

Conditional dependence vs. correlation

Reference:

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. A. (2015). Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Computational Biology, 11(5), 1–25.

SPIEC-EASI (SParse Inverse Covariance Estimation for Ecological Association Inference)

Ecological network and regularized covariance matrix

- [1] Meinshausen N, Bühlmann P (2006) High Dimensional Graphs and Variable Selection with the Lasso. The Annals of Statistics 34: 1436–1462.
- [2] Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics (Oxford, England) 9: 432–441.
- [3] Liu H, Roeder K, Wasserman L (2010) Stability approach to regularization selection (stars) for high dimensional graphical models. Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS): 1–14.

27

Sparse neighborhood selection (MB)

- Uses sparse linear regression
- Proposed by Meinshausen and Bühlmann, 2006 (MB) [1]
- Idea: Find a sparse weighted graph by node-wise linear regression:
 Use each column as response and solve the LASSO problem

[1] Meinshausen N, Bühlmann P (2006) High Dimensional Graphs and Variable Selection with the Lasso. The Annals of Statistics 34: 1436–1462.

28

Sparse neighborhood selection (MB)

- Uses sparse linear regression
- Proposed by Meinshausen and Bühlmann, 2006 (MB) [1]
- Idea: Find a sparse weighted graph by node-wise linear regression:
 Use each column as response and solve the LASSO problem

- [1] Meinshausen N, Bühlmann P (2006) High Dimensional Graphs and Variable Selection with the Lasso. The Annals of Statistics 34: 1436–1462.
- [2] Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Source: Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.

Sparse neighborhood selection (MB)

Sparse neighborhood selection (MB)

Sparse neighborhood selection (MB)

Sparse graphical model inference (GLASSO)

- Sparsity of the underlying network means that the inverse \mathcal{C}^{-1} of the correlation (covariance) matrix C is sparse: sparse Gaussian graphical model.
- Given: the sample correlation (covariance) matrix S
- Goal: Finding a sparse C^{-1} by convex optimization

How to choose the tuning parameter λ ?

- Draw N random subsamples $S_1, ..., S_N$
- For each subsample, estimate the graph using a sequence of λ values: $\{\lambda_1, \dots, \lambda_K\}$

Liu, H., Roeder, K., & Wasserman, L. (2010). Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010. https://doi.org/10.48550/arxiv.1006.3316

- For each lambda we estimate the matrix of edge probabilities
- For each lambda value sum up the **variances** of edge probabilities and call it $\hat{D}_N(\lambda_k)$
- Select the lambda where the sum of variances $\hat{D}_N(\lambda_k)$ is below a certain threshold β .

- For each lambda we estimate the matrix of edge probabilities
- For each lambda value sum up the **variances** of edge probabilities and call it $\hat{D}_N(\lambda_k)$
- Select the lambda where the sum of variances $\hat{D}_N(\lambda_k)$ is below a certain threshold β .

Matrix of edge probabilities

Fig 1. Comparison of different methods on the data from the neighborhood graphs (n = 400, p = 100).

Liu, H., Roeder, K., & Wasserman, L. (2010). Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. https://doi.org/10.48550/arxiv.1006.3316

Further sparsification methods

- Thresholding
- Statistical tests
 - Student's t-test
 - Bootstrapping

→ Applicable to other association measures, e.g., correlation

Inferring the adjacency matrix

Sparse association matrix

with entries r_{ij} in [-1,1]

$$d_{ij} = ?$$

Dissimilarity matrix (values in [0,1])

Similarity matrix

Adjacency matrix

- "unsigned": $d_{ij} = \sqrt{1 r_{ij}^2}$
 - → low distance between strongly associated taxa (positively as well as negatively)
- "signed": $d_{ij} = \sqrt{0.5(1 r_{ij})}$
 - → distance is high for strongly negative associated taxa

Typical network analysis workflow

Layout

How to place nodes in the two-dimensional space?

Force-directed layout algorithm:

- Based on physical concepts: mechanical springs or electric repulsion
- E.g., Fruchterman-Reingold Layout

Network analysis

Centrality measures

Degree

Betweenness centrality

Closeness centrality

Eigenvector centrality

Global network properties

Modularity

Global clustering coefficient

Visualization

Network properties highlighted

Visualization

Data features highlighted

Phylum:

- Actinobacteria
- Bacteroidetes
- Chloroflexi
- Fibrobacteres
- Firmicutes
- NA
- Proteobacteria
- Tenericutes

