

AMENDMENTS TO THE SPECIFICATION

Please amend the specification, as follows:

Replace paragraph [0005] with the following amended paragraph [0005]:

A Montgomery modular multiplication algorithm, known as the most effective modular multiplication algorithm, can be expressed in pseudo code, as in Algorithm 1 below:

[Algorithm 1]

Stimulus:

$A = (a_{n-1} a_{n-2} \dots a_1 a_0)_2$, and $A < M$

$B = (b_{n-1} b_{n-2} \dots b_1 b_0)_2$, and $B < M$

$M = (m_{n-1} m_{n-2} \dots m_1 m_0)_2$, and M is odd[[.]]

Response:

$S = (\underline{s_n} \underline{s_{n-1}} \underline{s_{n-2}} \dots \underline{s_1} \underline{s_0}) (\underline{s_n} \underline{s_{n-1}} \underline{s_{n-2}} \dots \underline{s_1} \underline{s_0})_2 \equiv ABR^{-1} \pmod{M}$

Method:

$S := 0$

For $i := 0$ to $n-1$ do

$[[q_i]] q_i := s_0 \text{ XOR } (b_i \text{ AND } a_0)$

$S := (S + b_i A + q_i M)/2$

endfor

Replace paragraph [0018] with the following amended paragraph [0018]:

The q_i calculation logic circuit solves a Boolean logic equation “ $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ”, where s_0 is the least significant bit (LSB) of a sum S , c_0 is the LSB of a carry C , b_i is the bit value of the number B , and a_0 is the LSB of the number A , to obtain a bit value q_i (where ‘ i ’ denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$).

Replace paragraph [0030] with the following amended paragraph [0030]:

Another exemplary embodiment of the present invention[.] provides a method of performing a Montgomery modular multiplication in a Montgomery modular multiplier, which includes registers for storing bit values a_i , b_i , m_i , c_i , and s_i (where ‘ i ’ denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of a word A , a word B , a modulus M , a carry C , and a sum S , respectively, and calculates a value congruent to “ $ABR^{-1} \pmod M$ ”, where A and B are input n -bit numbers, R^{-1} is an inverse number of R modular-multiplied for “ $\pmod M$ ”, and M is a modulus. In the method, the number A , the number B , and the modulus M are received. The number A is multiplied by a bit value b_i to obtain each bit of b_iA . A Boolean logic equation “ $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ”, where s_0 is the least significant bit (LSB) of a sum S , c_0 is the LSB of a carry C , b_i is the bit value of the number B , and a_0 is the LSB of the number A , is obtained to obtain a bit value q_i (where ‘ i ’ denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$). The number M is multiplied by the bit value q_i to obtain each bit of q_iM . Then, ‘ n ’ additions are performed on the carry C , the sum S , the b_iA , and the q_iM to obtain interim values for each bit of the sum S and the carry C in a carry save adder structure, in response to a carry propagation adder signal.

The interim values are summed to obtain the final results of the sum S and carry C in a carry propagation adder structure, in response to the carry propagation adder signal.

Replace paragraph [0045] with the following amended paragraph [0045]:

The A-register 110 stores the bit value a_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of the number A, which is smaller than the modulus M. The number A denotes a word representing an input n-bit number, and a_i is the value of each of the bits a_0 to a_{n-1} that constitute the number A.

Replace paragraph [0046] with the following amended paragraph [0046]:

The B-register 120 stores the bit value b_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of the number B, which is smaller than the modulus M. The number B denotes a word representing an input n-bit number, and b_i is the value of each of the bits b_0 to b_{n-1} that constitute the number B.

Replace paragraph [0047] with the following amended paragraph [0047]:

The M-register 130 stores the bit value m_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of the modulus M, which is an odd number. The modulus M denotes a word representing an input n-bit number, and m_i is the value of each of the bits m_0 to m_{n-1} that constitute the modulus M.

Replace paragraph [0048] with the following amended paragraph [0048]:

The b_iA calculation logic circuit 140 calculates each bit of b_iA by multiplying the number A by the bit value b_i . Consequently, the values of the ' n ' bits b_ia_0 to b_ia_{n-1} are output. At this time, since ' i ' varies from 0 to $[[n*1]] n-1$ in the "for" loop included in Algorithm 1, the value b_i is obtained from the position of the least significant bit (LSB) of the B-register 120, which is right shifted by one bit every time an algorithm in the "for" loop is performed, as shown in FIG. 1.

Replace paragraph [0049] with the following amended paragraph [0049]:

The q_i calculation logic circuit 150 calculates the value q_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] n-1$) used in the "for" loop of Algorithm 1 by solving the Boolean logic equation " $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ". Here, s_0 is the LSB of a sum S, c_0 is the LSB of a carry C, b_i is a bit value of the number B, and a_0 is the LSB of the number A. At this time, since ' i ' varies from 0 to $[[n*1]] n-1$ in the "for" loop included in Algorithm 1, a value b_i is obtained from the position of the LSB of the B-register 120, which is right shifted by one bit every time an algorithm in the "for" loop is performed, as shown in FIG. 1.

Replace paragraph [0050] with the following amended paragraph [0050]:

The q_iM calculation logic circuit 160 calculates each bit of q_iM by multiplying the modulus M by the bit value q_i . Consequently, the values of the ' n ' bits $q_{i}m_0$ to $q_{i}m_{n-1}$ are output. At this time, since ' i ' varies from 0 to $[[n*1]] \underline{n-1}$ in the "for" loop included in Algorithm 1, ' i ' increases by one every time an algorithm in the "for" loop is performed, as shown in FIG. 1. Consequently, the values of the ' n ' bits q_0 to q_{n-1} are output.

Replace paragraph [0052] with the following amended paragraph [0052]:

The S-register 180 updates and stores the bit value s_i of the sum S (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$). In other words, sum S denotes a word representing an n-bit number that is output as a sum, and s_i denotes the value of each of the bits s_0 to s_{n-1} that constitute the word S. The word S is updated every time an addition is performed in the carry save adder or carry propagation adder included in the 4-2 compressor 170.

Replace paragraph [0053] with the following amended paragraph [0053]:

The C-register 190 updates and stores the bit value c_i of the carry C (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$). In other words, carry C denotes a word representing an n-bit number that is output as a carry, and c_i denotes the value of each of the bits c_0 to c_{n-1} that constitute the word C. The word C is updated every time an addition is performed in the carry save adder or carry propagation adder included in the 4-2 compressor 170.

Replace paragraph [0061] with the following amended paragraph [0061]:

The Montgomery modular multiplier according to an embodiment of the present invention includes registers, which store bit values a_i , b_i , m_i , c_i , and s_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of a word A, a word B, a modulus M, a carry C, and a sum S, respectively, and calculates a value congruent to " ABR^{-1} " ($\text{mod } M$). Here, A and B are input n-bit numbers, and R^{-1} is an inverse number of R modular-multiplied for " $\text{mod } M [[A]]$ ".

Replace paragraph [0063] with the following amended paragraph [0063]:

Thereafter, in step S315 to S319, the q_i calculation logic circuit 150 of the Montgomery modular multiplier obtains a value q_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) used in the "for" loop of Algorithm 1, by solving the Boolean logic equation " $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ". Here, s_0 is the LSB of a sum S, c_0 is the LSB of a carry C, b_i is a bit value of the number B, and a_0 is the LSB of the number A. Also, in steps S315 to S319, the b_iA calculation logic circuit 140 multiplies the number A by the bit value b_i to obtain each bit of b_iA , and the q_iM calculation logic circuit 160 calculates each bit of q_iM by multiplying the modulus M by the bit value q_i . Also, in steps S315 to S319, the 4-2 compressor 170 performs ' n ' additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim values for each bit of the sum S and the carry C, in a carry save adder structure, which is formed when the carry propagation adder signal ONCPA is in an inactive state, that is, is in a first logic state ("0").

Replace paragraph [0069] with the following amended paragraph [0069]:

As described above, the Montgomery modular multiplier according to an embodiment of the present invention includes registers, which store bit values a_i , b_i , m_i , c_i , and s_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) of a word A, a word B, a modulus M, a carry C, and a sum S, respectively, and calculates a value congruent to " $ABR^{-1} \pmod{M}$ ". Here, A and B are input n-bit numbers, and R^{-1} is an inverse number of R modular-multiplied for "mod A". The b_iA calculation logic circuit 140 calculates each bit of b_iA by multiplying the number A by the bit value b_i . At this time, the q_i calculation logic circuit 150 calculates a value q_i (where ' i ' denotes an integer in the range of 0 to $[[n*1]] \underline{n-1}$) by solving a Boolean logic equation " $s_0 \text{ XOR } c_0 \text{ XOR } (b_i \text{ AND } a_0)$ ". Here, s_0 is the LSB of a sum S, c_0 is the LSB of a carry C, b_i is a bit value of the number B, and a_0 is the LSB of the number A. The q_iM calculation logic circuit 160 calculates each bit of q_iM by multiplying the modulus M by the bit value q_i . In response to the carry propagation adder signal ONCPA, the 4-2 compressor 170 performs ' n ' additions on the carry C, the sum S, the b_iA , and the q_iM to obtain interim calculated values for each bit of the sum S and the carry C, in a carry save adder structure. Then, the 4-2 compressor 170 sums the interim calculated values to obtain the final results of the sum S and carry C in a carry propagation adder structure. The final results of the sum S and carry C are output to the S- and C-registers 180 and 190, respectively.