Classic homothetic utility: cobb douglas
$u(x) = x_1 x_2 x_3 x_4 x_4 x_5 x_5 x_5 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6$
It is whog to assume $\alpha_1 + \dots + \alpha_n = 1$ why? say $\alpha_1 + \dots + \alpha_n = k$
Consider $\mathcal{C}(x) = (u(x))^{1/k}$ ub a represent same professes, $\mathcal{D}u(x) = x_1,$
$\left(\frac{\alpha_1 + \dots + \alpha_n}{k}\right) = \frac{1}{k} \left(\frac{\alpha_1 + \dots + \alpha_n}{k}\right) = \frac{1}{k}$
CD is a special case of more general class:- Constant clasticity of substitution (CES) $U(x) = [x, x, y] + (x, x, y)$
Can check this is hd-1 Special cases f=1 f-30 f-3-00
\geq Quasilinear (in \times_1) \Rightarrow

Mon-convex budget sets come up all the time.
· · · · · · · · · · · · · · · · · · ·
- Progremme taxation - Welfare payments - Non linear pricing-
- Non linear micha
price ug
Non-linear pricing.
· • •
Discount on x, if you purchase > x, units.
×~ r
mg -PI/PL not convex.
-6,167
<u> </u>
labor supply model.
labor supply model.
whith income
1 white
7'
cons (Imeritme)
"regularione"
income
24 leisure

"Classic" Utility Maximization Problem [UMP]
max u(x) xi >0
ρ- x ≤ m
Solution functions: $x(p, m) = arg max u(x)$ (Marshallian) Demand Correspondence $x_i > 0$
p x ≤ m
$V(p,m) = \max_{x_{\hat{c}} > 0} U(x)$ Indirect whility function
p. x & m (st question: existence?
Theorem: (i) If p>0, b u(·) is continuous, then the ump has a solution.
(ii) If in addition \geq are locally uncatioted then $p, x^* = m + x^* \in \times (p, m)$ (Walras Law)
Proof of (i):
Continuous for on compact ects have a maximum.
Proof of (i)
Assume p. $x^* < m$ Then x^* is in the interior of $B_{p,m}$. By LNS, \ni a $y \in B_{p,m}$ s.t. $u(y) > u(x^*)$ This contradicts that x^* is optimal.