百度智能手环硬件设计

模块名称	百度智能手环硬件	
所属系统		
模块负责人	唐皓、赵阳	
项目负责人	孙鹤飞	
文档提交日期	2014年8月	
版本号	1.0	

百度在线网络技术(北京)有限公司

目录

1.	硬件方案总体介绍3					
2.	MCU 和蓝牙模块5					
3.	G-sensor 模块					
4.	按键输入模块8					
5.	LED 显示	模块	8			
	5.1	LED 灯控制模块	8			
	5.2	LED 点阵列控制模块	9			
6.	马达控制	模块	11			
	6.1	普通马达模块	11			
	6.2	线性马达模块	11			
7.	电量检测	模块	12			
8.	外部复位模块13					
9.	充电电路模块14					
10.	系统电源模块14					
11.	电池保护模块					
12.	调试接口16					
13.	手环 layo	ut 建议	16			
	13.1	天线	16			
	13.2	射频电路	17			
	13.3	传输线阻抗匹配	18			
	13.4	晶振走线	20			
	13.5	地平面	20			
	13.6	电源	20			
	13.7	Buck 芯片走线	22			
附表	∮ 1		22			

1. 硬件方案总体介绍

百度智能手环基于 Nordic 公司 nRF51822 芯片开发,芯片集成 BLE 蓝牙 4.0 协议。 使用 LIS3DH 作为加速度传感器,进行运动和睡眠监测。

开源遵循 Apache License, Version 2.0, 详情参见:

http://www.apache.org/licenses/LICENSE-2.0

手环硬件电路设计部分,包括一颗集成 BLE 功能的 MCU (nrf51822),和由 MCU 控制的各种外设:

- 蓝牙射频电路;
- 使用 SPI 接口的 G-sensor;
- 使用 I2C 接口的线性马达驱动电路;
- 使用 I2C 接口的 LED 点阵驱动,与线性马达共用总线;
- 使用 GPIO 的按键输入;
- 使用 GPIO 的 LED 灯;
- 使用 GPIO 的普通马达驱动电路;
- 外部复位电路。

下图是百度智能手环公版的结构图:

在公版基础上,各家厂商可以根据自己的需求自定义版本,比如 LED 显示模块以及马达控制模块的选择。

除了上述公版结构图涉及的功能模块以外, 手环电源部分的总体设计方案:

- 充电电路完成 5V 到电池电压的转换,不充电时保持低功耗;
- DCDC 完成高效率的电池电压到系统电压(2.8V)的转换;
- 电池保护电路用于完成过流关断、欠压保护等功能;

后面章节对 MCU 芯片以及其控制的外设模块的电路设计做出详细的介绍,以及设计中遇到的一些注意点。

2. MCU 和蓝牙模块

nRF51822 是一款为超低功耗无线应用(ULP wireless applications)设计的的多协议单芯片解决方案。芯片支持 BLE4.0 和 2.4GHZ 协议栈,整合了射频发射电路,一个 ARM Cortex M0 核以及 256KB 的 flash + 16KB 的 RAM。

- nRF51822 的 IO 配置十分灵活,除了 ADC 必须配置在 8 个规定的 PIN 脚上外,SPI、I2C 等功能可以灵活配置在 31 个 GPIO 上,便于设计接近尺寸极限的设备;
- nRF51822 内部电源工作在 LDO 模式下(虽然内置了 DCDC 模式,但是因为芯片本身的 bug,功耗过大,放弃使用),外部可以输入 1.8V 到 3.6V 供给芯片;
- nRF51822 使用一个 16MHz 的外置高频晶振和一个 32.768kHz 的外置低频晶振。芯片内 部有 32.768kHz 的 RC 振荡器,但是因为振荡器的精度无法满足计时要求(内部 RC 振荡器的精度如下图所示),所以我们加入了外部低频晶振,占用了 2 个 PIN 脚(P0.26、P0.27);

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
f _{NOM,RC32k}	Nominal frequency			32.768		kHz	N/A
f _{TOL,RC32k}	Frequency tolerance			±2		%	3
f _{TOL,CAL,RC32k}	Frequency tolerance for 32.768 kHz RC oscillator after calibration	Calibration interval 4 s at constant temperature			±250	ppm	1

- ▶ 内部 RC 振荡器的误差是 2% (30 分钟/天),即使校准后只能达到 250ppm (22 秒/天);
- ▶ 外部晶振,一般能达到 40ppm (3 秒/天),误差非常小;
- 蓝牙 BALUN 可以使用分立器件,也可以使用 ST 定制的 BAL-01D3。设计中我们使用了定制器件 BAL-01D3,保证了信号的性能以及减小了的板卡尺寸。注意:如果更改 nRF51822 的封装,需要将定制器件型号改成 BAL-02D3;
- BALUN 电路输出端,需要一个 π 形电路 (起到阻抗匹配的作用),需要根据实际情况在三个位置上增加电容或者电感。调整的依据是根据史密斯圆图(如下图所示),把阻抗调整到中心点,达到最大的功率输出效果。

注: 文档最后附录了 nRF51822 中 IO 口的使用表

3. G-sensor 模块

G-sensor 中文是重力传感器的意思(英文全称是 Gravity-sensor),它能够感知到加速力的变化,加速力就是当物体在加速过程中作用在物体上的力,比如晃动、跌落、上升、下降等各种移动变化都能被 G-sensor 转化为电信号,然后通过微处理器的计算分析后,就能够完成程序设计好的功能,比如 MP3 能根据使用者的甩动方向,前后更换歌曲,放进衣袋的时候也能够计算出使用者的前进步伐。

百度智能手环中使用的三轴加速度计是 ST 出品的 LIS3DH,输入电压支持 1.71V 到 3.6V。 16bit 精度输出,内置数据 FIFO。

G-sensor 模块电路接口比较简单,需要注意以下几点:

- 芯片本身支持 SPI 或者 I2C 接口,实际使用时选择 SPI。因为 SPI 的速度远超过 I2C (目前 nRF51822 的 SPI 接口最高速率 8Mbps, I2C 是 400kbps),能减少 CPU 运行的时间,从而降低功耗:
- 芯片加速度部分的供电虽然和数字 IO 的供电电压相等。但是需要保证 IO 部分先于加速度部分工作,否则芯片初始化会有问题,因此 VDD 引脚(加速度部分的供电)另外并联了一个大电容保证足够的上电时间;
- ADC1 和 ADC2 脚不使用,需要接到固定电平。之所以分别接到不同的电平上,是 为了和升级版 LSI3DSH(内置计步算法)保持引脚兼容,在升级版芯片中,这两个 位置需要作为供电和参考地脚;

4. 按键输入模块

按键作为输入,只需要提供一个电平信号给 MCU 的 GPIO 口。电容是为了减缓电平下降的速度,避免有些 CPU 会因此卡死,TVS 管(D4)是为了防止静电对电路寿命的影响。

5. LED 显示模块

LED 显示是手环与用户之间进行数据交互的模块,主要用于数据显示以及用户交互。根据厂家的不同需求,提供了两种设计方案:

- 1、LED 灯控制显示: 以多个 LED 指示灯的组合形式进行简单的信息呈现。
- 2、LED 点阵列显示: 以 LED 点阵列的形式显示手环的数据信息: 时间、步数、卡路里消耗等。

5.1 LED 灯控制模块

LED 控制十分简单,GPIO 输出电平就可以控制。输出低电平点亮 LED,输出高电平熄灭 LED。LED 的供电电压是 2.8V,这是白色 LED 点亮的极限电压。

以下为常用颜色单颗 LED 的驱动电压要求:

```
红色=1.8-2.2V;
蓝色=2.6-3.2V;
翠绿=2.6-3.2V;
黄色=1.8-2.2V;
黄色=1.8-2.2V;
色=2.6-3.2V;
粉色=2.6-3.2V;
紫色=3.0-3.4V;
```

5.2 LED 点阵列控制模块

首先说明 LED 点亮的条件: LED 阳极接正电压,阴极接负电压,即可点亮。

所以

```
if(阴极==负电压)
{

If(阳极==正电压) light=on;

Else light=off;
}

Else light = off;
```

即使阳极接负电压,阴极接正电压,这种 LED 反接的情况下,LED 不会点亮,也不会损坏灯。如果有一极是高阻(不输出能量),LED 也不点亮。

所以 LED 点阵按照下图这个巧妙的排列方法, 132 个 LED 只需要 12 根线控制:

12 根线只有 CSO 为低电平,这样只有第一排"有可能"点亮;第一排的点亮与否,决定于 其他 11 根线:其他 11 根线除了控制自己这一排的点亮"可能性",也控制第一排这 11 个灯 是否点亮:如果输出为高电平,对应的 LED 就必然点亮;如果输出为高阻,因为没有能量供给,LED 灭。

如此设计,除了减少控制引脚,更重要的是可以降低功耗:

因为每一排只点亮 1/12 的时间,利用人眼的视觉暂留,可以大大降低功耗。当然,为了保证人眼看起来亮度不是太暗,点亮瞬间的 LED 电流比长时间点亮的情况下略微增加。在点亮的瞬间,芯片通过 PWM 控制,不输出百分之百的高电平,进一步降低了功耗。具体细节和参数请参阅低功耗方面的介绍文档。

6. 马达控制模块

根据不同的体验需求,手环提供了两种马达控制电路:普通马达和线性马达。其中前者的电路设计简单,功耗低;后者的控制驱动电路复杂,但震动体验效果较佳。

6.1 普通马达模块

因为马达的导通电流可能高达 100mA,不能通过 GPIO 直接供电控制(驱动电流不够), 所以使用一个 MOS 管作为功率放大电路。串联的 24 欧姆电阻用来调节马达震动强度,减少功耗。在 0 欧姆时,马达的启动电流为 100mA 左右,目前配置的实测电流为 36mA。

MOS 管输入端的下拉电阻是保证在重启瞬间马达保持静止,因为芯片上电后引脚为高电平,MOS 处于导通状态,从而使马达存在短暂的震动。

6.2 线性马达模块

线性马达控制复杂,需要用专用的芯片完成(设计中采用了 DRV2605 驱动芯片)。芯片与 MCU 通过 I2C 总线通信。线性马达的功能由驱动芯片控制,驱动芯片本身的输入电压范

围是 2.5V-5.5V。

给驱动芯片的供电电压,设计中使用的是电池供电,而不是 DCDC 输出的系统电压。

理由是:驱动芯片的工作电压是使用内部的 DCDC 完成电压转换。假设 DCDC 转换效率 均为 90%,那么使用电池供电,能量效率为 90%;使用系统电压供电,效率为 90%*90%=81%。

7. 电量检测模块

电池的电量和电压有对应关系,系统只要检测到电池电压,即可映射成电池剩余电量。 电路如下:

电池电压在 0-4.2V 之间变化,经过四分之一的分压电路,输出电压会在 0-1.05V 之间变化。充分利用了 nRF51822 的 ADC 量程 0-1.2V,并联的电阻用于稳定电压值。

通过仿真可知(蓝色-IN: 电池电压、黄色-OUT: 测量电压):

电池接入瞬间,大约半秒时间即可完成电容充电,输出的测量电压才是稳定的正确值, 所以 ROM 初始化代码中需要延时一秒后采集电池电压。

8. 外部复位模块

考虑到防水,外部的复位不能采用低电平复位,否则浸水(包括汗水)就会引起复位脚和系统地短路,触发系统复位。

所以外部复位的功能就是起到电平反转和静电保护。输入信号通过 TVS 管(D1) 防止静电击穿电路,而后的电容电阻网络用于吸收静电未达击穿电压(6V 左右)时的能量。

而后接入的复位芯片完成复位信号延时: 当复位信号保持 0.4s 以上, 才向后端输

出复位信号,保证系统静电不复位。这恰恰利用了静电的特性:大电流,高电压,但是 持续时间非常短。

9. 充电电路模块

充电芯片采用了 TI 的 BQ24040,选取该款型号的目的是,能够向 MCU 提供是否正在充电 (CHG_STATE) 和是否插入充电器 (PG_STATE) 的信息 (大多数充电 IC 不提供后者信息)。 充电电流可控,预充电与快速电流比例可控。

目前的参考方案按照 18mAh 的电池, 预充电电流为快速充电电流的 40%设计。

充电电压的输入端的 TVS 管(D2)用于静电保护,齐纳二极管(D3)用于反插保护: 一旦电源接反,电流从 D3 旁路出去,不损坏系统。

10. 系统电源模块

为了保证足够的电源效率,设计使用了高效率,带轻载优化的 DCDC 芯片 TPS62260,而不是传统的 LDO。因为 nRF51822 内部有 LDO,为了提高效率,系统电压应该越低越好,而马达的正常工作电压是 3V, 白色 LED 最低工作电压是 2.8V, 其他 IC 的最低系统电压是 1.8V。因此最终确定的系统电压是 2.8V。

电源芯片的选择:

● 传统 LDO 的静态功耗有优势,但是输入-输出压差越大,效率越低。电池电压如果是 3.9V,输出电压为 2.8V,效率为 2.8/3.9=71%;

● DCDC 静态电流大,但是输入电流在 1mA 以上时,效率能够达到 90%以上;

需要注意 DCDC 的走线,否则电源会出现谐振。输出端的磁珠用于进一步去除噪声。

11. 电池保护模块

电池保护电路控制了电池负极和系统地的连接,一旦电流过大、电池电压过低,则中断电池负极和系统地的连接,保护电池。

电池保护电路一般放置在电池中,因为手环的锂电池容量尺寸很小,放在电池中,对电池尺寸和整个手环尺寸影响很大。所以我们的设计中把保护电路放在 PCB 上,利用剩余空间。

12. 调试接口

调试接口主要有:

- 时钟检测点:系统无法运行时,先检测时钟;也可以测试偏频等问题;
- 下载口:包括 2.54mm 间距(适合通用 JLINK 烧写器)和 1.27 间距(适合 Nordic 官方烧写器);
- 串口:用于 LOG 输出等;

13. 手环 layout 建议

13.1 天线

- Layout 最先考虑摆放位置,而考虑天线的匹配电路
- 周围净空区尽量的大,下面是参考的三种方法:

(1——片式天线; 2——天线馈端标记; 3——匹配电路焊盘; 4——50 欧姆传输线)

● 最小净空尺寸:

天线尺寸 (mm)	无敷地区域(min) L×W(mm)	图示
3.2×1.6	3.6×6.8	W ∠No Ground Area
5.0×2.0	5.6×6.8	
6.0×2.0	6.4×6.8	
7.2×2.0	7.4×6.8	
8.0×1.0	8.4×6.8	
9.0×2.0	9.4×6.8	
35.0x5.0	35.4x9.8	

● 天线匹配电路附近的 GND 尽量多打过孔或者镭射孔

13.2 射频电路

- 器件之间尽量近,减短走线(1mm 走线相当于 1nH 电感; 更长的线会增加对地电容)
- 不要用过孔(过孔相当于电感)
- 匹配电路周围要被 GND 包裹以减小对地电容
- 匹配网络的下方不要走线或者放置器件,造成匹配网络和参考地之间的一个"黑洞"
- 建议板厚不超过 1.6mm, 否则射频性能会下降
- 大功率和噪声源信号走线要与射频线垂直

● LED 相比射频是大功率信号,如果不是外观设计要求,强烈建议不要像该 PCB 方案把 LED 放置在天线附近(虽然 PCB 中 LED 走线已经尽量垂直于天线) 这是另一种 layout 方案,天线周围很干净:

13.3 传输线阻抗匹配

- 达到 50 欧姆
- HDI 工艺下,一二层之间太薄(0.1mm),如果第二层做参考地,那么达到 50 欧姆需要的走线太细(0.16mm)无法实现。所以参考 PCB 中的 Layer Stack 是:

● 普通 PCB 工艺,因为一二层厚度足够,可以使用第二层作为参考地

- 主芯片输出的差分信号走线必须严格对称
- 射频电路尽量和主芯片接近,减少寄生电感

错误走线和等效电路

正确走线和等效电路

● 集成器件的参考尺寸: (注意,如果主控的封装改变,需要把 NRF01D3 换成 NRF02D3)

13.4 晶振走线

- 晶振走线不能与敏感线(射频)平行,最好是和敏感线垂直
- 晶振走线周围最好包地

13.5 地平面

- PCB 工艺:信号线尽量走顶层和底层;第二三层 GND 和电源
- HDI 工艺:信号线尽量走第二层;第三层走 GND 和电源
- 必须有完整的地平面
- 多个地平面需要良好的连接。对于大面积铺地,每 0.5 到 1cm 需要一个过孔

13.6 电源

- 把噪声源(比如 LED 灯)分割,远离敏感电路(比如射频);
- 在电源芯片输出端就开始分离:

建议走线方式:

● 参考方案是把 LED 和偏心马达单独供电; MCU 另走一条线路: (线性马达电池供电)

● 其他常用途径:使用电阻(100hm)或者磁珠隔离;去耦电容尽量接近芯片

13.7 Buck 芯片走线

- FB 信号取电处应该是在 2.8V 输出端的电容脚,同时走线尽量远离噪声源(SW 脚)
- 注意 GND 平面的质量和去耦电容

附表 1: nRF51822 中 IO 口的使用

参考设计 I0 定义表

功能	IO 名称	说明
NC	P0. 0	
电池电量检测	P0. 1	ADC 电压/电池电压=1/4
LED3	P0. 2	指示灯
SENSOR_SDA_SDI	P0. 3	SPI DATAIN
SENSOR_SCL_SPC	P0. 4	SPI CLK
LED2	P0. 5	指示灯
LED1	P0. 6	指示灯
LED0	P0. 7	指示灯

SENSOR_INT1	P0.8	Gsensor 中断输出
NC	P0. 9	
NC	P0. 10	
PG_STAT	P0. 11	充电插入检测(power good)
CHG_STAT	P0. 12	充电状态检测
LRA_EN	P0. 13	DRV2605 使能
LRA_PWM	P0. 14	DRV2605 外部模拟驱动效果输入
LRA_SCL	P0. 15	IIC 总线: DRV2605 CLK
LRA_SDA	P0. 16	IIC 总线: DRV2606 DATA
NC	P0. 17	
LED4	P0. 18	指示灯
NC	P0. 19	
NC	P0. 20	
SENSOR_SDO	P0. 21	SPI DATAOUT
SENSOR_CS	P0. 22	SPI CS
UART_TX	P0. 23	
NC	P0. 24	
UART_RX	P0. 25	
XL1	P0. 26	32. 768КНZ
XL2	P0. 27	
SENSOR_INT2	P0. 28	Gsensor 中断输出
MOTOR	P0. 29	普通马达的驱动接口
KEY_IN	P0. 30	