Honors Linear Algebra: : Class 03

January 18, 2024

Ahmed Saad Sabit, Rice University

1 Finite Dimensional Vector Spaces

Finitely many vectors spanning over a space makes the Vector Space Finite dimensional.

Definition 1. Spanning Set:

Theorem 1. Linear Dependence Lemma: Suppose v_1, \ldots, v_m is a linearly dependent list of vectors in the vector space V. Then there exists v_k such that $v_k \in span(v_1, \ldots, v_n)$, and $span(v_1, \ldots, v_m) = span(v_1, \ldots, v_m)$, without having v_k)

Theorem 2. Then length of any linearly independent list is less than or equal to the length of any spanning list. **Proof.** Let's prove it through induction. Namely, suppose linearly independent list of m vectors and spanning list of n vectors, assuming a contradiction n < m.

$$n = 4, m = 5$$

Linearly independent vectors $v_1, v, 2, v_3, v_4, v_5$. Spanning vectors w_1, w_2, w_3, w_4 . Technique is we adjoin a vector u_1 into w_1, w_2, w_3, w_4 . We can can remove w_4 and the system will still span, u_1, w_1, w_2, w_3 by Lemma. u_1, u_2, u_3, w_1 still spans.

Definition 2. Let V be a finite dimensional vector space. A basis for V is a list which is both linearly independent and spanning.

An observation is in this case the length of the basis for V is independent of the choice of the basis. Then length is called the dimension of V. Examples of dimension: Here \mathbb{P}_n is the set of polynomials of degree $\leq n$.

Vector Space	Dimension
\mathbb{R}^n	n
\mathbb{C}^n	n
\mathbb{P}_n	n+1
$V \oplus W$	$\dim(V) + \dim(W)$

Theorem 3. 2.30: Let V have a spanning set w_1, w_2, \ldots, w_n . This spanning set contains a basis for the vector space.

Proof. When can I not use w_1 for my linearly independent set? If it's stupid, if $w_1 = 0$, then don't use it. If $w_1 = 0$, delete it and go on. If not zero, choose it! So my first element of linearly independent set,

 w_{\cdot}

If w_2 is a multiple of w_1 , I better not use it. $w_2 \neq aw_1$. Then we pick w_3 to not be a linear combination of

 w_1, w_2 and keep going. And eventually we will get the result, which is a spanning list w_1, w_2, \dots, w_n . By the process they are linearly independent.

We can also have a reverse theorem,

Theorem 4. Every linearly independent list extends to a basis.

Theorem 5. If V is a finite dimensional vector space and U is a subspace of V, then, U is finite dimensional. Kind of crazy this needs a proof so I won't go into that - Frank Jones, 2024.

Theorem 6. V be a finite dimension. $U \subset V$. Then, there exists, another subspace such that $W \subset V$ such that $U \oplus W$ is V.

Proof. Choose a basis for $U: w_1, w_2, \ldots$ In the usual way, extend the list to get a basis for the vector space. We will have $w_1, \ldots, w_n, u_1, w_n$ will form basis for U and u_n will form basis for W.

Theorem 7. 2.42 V is finite dimensional. A spanning set of the right length is automatically a basis. An independent list of the correct length is also a basis.

Theorem 8. 2.42 Let V_1 , V_2 be subspaces of a finite dimensional vector space. Then we can form $V_1 \cap V_2$, and we can form $V_1 + V_2$. These have dimensions,

$$\dim(V_1 + V_2) + \dim(V_1 \cap V_2) = \dim V_1 + \dim V_2$$

Proof. Axler is proper

2 Section 1C Problem 12

Problem 1. Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspace contains the other. In that case $V_1 \cup V_2$ is simply V.

Union of three subspaces is a subspace if one of the three contains the other two.

3 Soul less problem given soul

Problem 2. Derivation of formula for $\sum_{k=1}^{n} k^2$

Solution. Start with $\sum_{k=1}^{n} k^3$ (bro!)

$$\sum_{1}^{n} k^{3} = n^{3} + \sum_{1}^{n-1} k^{3} = n^{3} + \sum_{k=1}^{n} (k-1)^{3} = n^{3} + \sum_{k=1}^{n} (k^{3} - 3k^{2} + 3k - 1)$$

The $\sum_{k=1}^{n} k^3$ cancels both side.

$$0 = n^3 + \sum_{k=1}^{n} (-3k^2 + 3k - 1)$$

Turns out

$$3\sum_{k=1}^{n} k^2 = n^3 + \sum_{k=1}^{n} (3k - 1)$$

Using the idea of Arithmatic progression, we get,

$$= n^3 + \frac{3n^2 + n}{2} = \frac{2n^3 + 3n^2 + n}{2}$$

Proves,

$$\sum_{n=1}^{n} n^2 = \frac{n(2n^2 + 3n + 1)}{6}$$