2進数とその簡単な計算

情報ネットワーク工学入門

只木進一 (理工学部)

10進数とその演算

- ▶ {0,1,2,3,4,5,6,7,8,9}の10種類の記号
- →加法
 - ■10×10通りの加法規則と桁上がり
- ●乗法
 - ■10×10通りの乗算規則
- ■減法・徐法
 - ■加法・乗法の逆演算

2進数とその演算

- ▶ {0,1}の2種類の記号
- ■加法・乗法
 - ■2×2の演算規則
- ■減法・除法
 - ■補数を使った加算への置き換え
- ■規則が単純
- ■論理回路で容易に実装可能

コンピュータ内でのデータの取り扱い

- **■**2進数
- ■2進数一けた[0,1]をbitと呼ぶ
- ■2進数8桁[0,255]をbyteと呼ぶ
 - ►ASCIIコード:7bitで数字やアルファベットを表現
 - ■日本語コード: JIS、SJIS、EUCは2バイト
 - ■多言語混在:UTF-8など

$$53 = 32 + 16 + 4 + 1 = 2^{5} + 2^{4} + 2^{2} + 2^{0}$$

$$= (00110101)_{2}$$

$$130 = 128 + 2 = 2^{7} + 2^{1}$$

$$= (10000010)_{2}$$

$$163 = 128 + 32 + 2 + 1 = 2^{7} + 2^{5} + 2^{1} + 2^{0}$$

$$= (10100011)_{2}$$

2ⁿはある程度覚えよう

$$2^0 = 1$$
$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^5 = 32$$

$$2^6 = 64$$

$$2^7 = 128$$

$$2^8 = 256$$

$$2^9 = 512$$

$$2^{10} = 1024$$

なぜ、コンピュータは2進数を 使うのか

- ▶素子が簡単にできる
 - ▶状態はオンとオフの二つ
- ■演算規則が簡素

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	10

a	b	$a \times b$
0	0	0
0	1	0
1	0	0
1	1	1

二進数の計算の例 加法・乗法

$$(101)_2 + (11)_2 = (1000)_2$$

$$(101)_2 \times (11)_2 = (101)_2 \times (1)_2 + (101)_2 \times (10)_2$$

$$= (101)_2 + (1010)_2 = (1111)_2$$

▶8ビットと考える[0,256)

- $-7 4 = (00000111)_2 (00000100)_2$
- ●引き算は、上の桁から「借りる」操作 が必要
 - ▶処理が複雑になる

減法:続き

- ■4に対して「2の補数」を計算
 - ▶4の2進表現:(00000100)2
 - ■ビットを反転: (11111011), = (256-1)-4
 - ▶1を加算:

$$(111111011)_2 + 1 = (111111100)_2$$

= $((256-1)-4)+1$

減法:続き

■ 4の「2の補数」を7に加算して8ビット部分を計算

$$(00000111)_{2} + (111111100)_{2} = (100000011)_{2}$$

$$= (100000000)_{2} + (00000011)_{2}$$

$$= 256 + 3$$

$$7 + ((256 - 1) - 4) + 1) = 256 + (7 - 4)$$

12

徐算

- ▶ 2進のため、順次、減算を 行う
- 減算の際に、補数を利用 する
- 例: $65 \div 11 =$ $(01000001)_2 \div$ $(00001011)_2$
- $(01000001)_2 = (01000001)_2 \times (00000101)_2 + (00001010)_2 = 11 \times 5 + 10$

	101
1011)	01000001
ŕ	1011
	10101
	1011
	1010

- ■8bitのうち、最上位を符号として扱う
- ■例: $0-1=(111111111)_2$
 - ■1の「2の補数」に相当
- ■プログラミング言語では (java)
 - ■int型:32bit
 - ■最上位は符号bit

- $(0.101)_2 = 2^{-1} + 2^{-3} = \frac{1}{2} + \frac{1}{8} = \frac{5}{8} = 0.625$
- ■コンピュータは、浮動小数(floating point numbers)として保持している
 - $-(0.101)_2 = 2^{-1} \times (1 + (0.01)_2)$

接頭辞:3桁每

- $1k = 10^3$, $1M = 10^3k$, $1G = 10^3M$, $1T = 10^3G$, $1P = 10^3T$
- $-1m = 10^{-3}$, $1\mu = 10^{-3}m$, $1n = 10^{-3}\mu$

接頭辞:3桁每

- = 2進の場合には、1000の代わりに $2^{10} = 1024$ を使う
- ■正確に2¹⁰毎の場合
 - ■1ki (kilobinary), 1Mi (Megabinary)などと使う

10進数、2進数、8進数、16進 数

- <u>n</u>進数:使える記号がn個
- ▶ 10進数: {0,1,2,3,4,5,6,7,8,9}
 - -9+1=10
- ▶ 2進数: {0,1}
 - -1+1=10
- ▶ 8進数: {0,1,2,3,4,5,6,7}
 - -7+1=10
- 16進数: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
 - -F+1=10

- ■16進数は良く利用される
- ▶文字コード
 - 1Byte⇔8bit⇔[0,255]⇔[00,ff]
 - ●日本語は2Byte
 - http://www.unicodetables.com/
- ■MACアドレス
 - ■8bit×6, 16進で表記

16進の例

- ▶ 「佐」のUnicodeは4F50
 - $-0x4F = 4 \times 16 + 15 = 64 + 15 = 79$
 - $-0x50 = 5 \times 16 + 0 = 80$
 - "Ox"は16進であることを表す記号