

Welcome

Roadmap

What we will explore today?

Database

- What is RDBMS?
- What is DBMS?
- Database Schema
- Database Instance

Entity Relation Model

- What is ER Model?
- What is Entity?
- Cardinality?
- Relationships
- Convert ER model to schema

Database is an organized collection of data, typically store & accessed electronically from a computer system or electronic device.

Database example

A database that stores student

and course information

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Student_number Section_identifier	
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

What kind of data is store in DB?

- Username, Password, Email, Address, Salary...
- o Image, Videos...
- Almost everything "digital" can be storage on database

What is **DBMS?**

- A database management system is software for managing databases
- Control access to the databases
- Create, modify, delete databases
- Manipulate data (storage, retrieve, report)

Type of DBMS

- Relational database.
- Object oriented database.
- Hierarchical database.
- Network database.

What is **RDBMS?**

- RDBMS store data in form of table, table contains many columns & rows.
- Use "Query" to comunicate with DBMS we can insert,
 delete, update data in Database.

It's all about table

Relational database have many

tables. Table contains many

columns & rows

Database **Schema**

Singer (<u>ID</u>, Name, Address, Show)

<u>ID</u>	Name	Address	Price
1	Sơn Tùng	Thủ Đức	10,000\$
2	Binz	Qu ậ n 9	10,000\$
3	Mono	Quận 3	7,000\$
4	Mỹ Tâm	Quận 1	12,000\$

Schema is describe how the data should look like

It's **not hold any data**

Instance

The data in the database: database state or snapshot or instance

<u>ID</u>	Name	Address	Price
1	S ơ n Tùng	Thủ Đức	10,000\$
2	Binz	Qu ậ n 9	10,000\$
3	Mono	Qu ậ n 3	7,000\$
4	Mỹ Tâm	Qu ậ n 1	12,000\$

Relational database concept

Database Schema

Singer

Show

<u>ID</u>	Name	Price
Singer1	S ơ n Tùng	10,000\$
Singer2	Binz	10,000\$
Singer3	Mono	7,000\$
Singer4	Mỹ Tâm	12,000\$

ShowID	PerformAt	SingerID
Show1	TP. HCM	Singer1
Show2	TP. HN	Singer1
Show3	TP. HCM	Singer3
Show4	TP. Nha Trang	Singer4

Singer(ID, Name, Price)

Show(ShowID, PerformAt, SingerID)

Why don't we just use one table? Software

<u>ID</u>	Name	Price
Singer1	S ơ n Tùng	10,000\$
Singer2	Binz	10,000\$
Singer3	Mono	7,000\$
Singer4	Mỹ Tâm	12,000\$

ShowID	PerformAt	SingerID
Show1	TP. HCM	Singer1
Show2	TP. HN	Singer1
Show3	TP. HCM	Singer3
Show4	TP. Nha Trang	Singer4

ShowID	PerformAt	SingerID	Name	Price
Show1	TP. HCM	Singer1	S ơ n Tùng	10,000\$
Show2	TP. HN	Singer1	S ơ n Tùng	10,000\$
Show3	TP. HCM	Singer3	Mono	7,000\$
Show4	TP. Nha Trang	Singer4	Mỹ Tâm	12,000\$

Some specific system use RDBMS

- o MySQL
- PostgreSQL
- MariaDB
- Microsoft SQL Server
- Oracle Database
- o etc...

What is **ER Model?**

The ER model describes data as entities, relationships, and attributes

What is **ER Model?**

ER model is a **conceptual design** for the database. Representation of **relationships between data.**

Why we need it?

ER Model visualize the

design and form the

overall view of the

database

ER Model

ER Model - Entity

Strong Entity

- Has primary key
- NOT depend on other entity

Strong Entity

Week Entity

- Has partial discriminator key
- Depend on other entity

Week Entity

Entity

Initialisation

ER Notation

- It describes the characteristics of an entity
- Ex: Student: Name, Phone, Grade,...

Entity

Relationship

Indentifying Relationship

Attribute

Key Attribute

Multivalued Attribute

Composite Attribute

Derived Attribute

Practice

Requirement: Define the Customer entity with the following attributes:

- Address (City, District, Street)
- Multiple Phone Numbers
- Full Name (First Name, Last Name)
- Date of Birth
- Age

Practice

The Customer entity:

- Address (City, District, Street)
- Multiple Phone Numbers
- Full Name (First Name, Last Name)
- Date of Birth
- Age

Relationship

 Describe the number of entities involved in the system and explain their relationships

Unary/ Recursive Relationship

There only one entity participating in the relationship

Binary Relationship

There 2 different entities participating in the relationship

Ternary Relationship

There 3 different entities participating in the relationship

N-nary Relationship

There N different entities participating in the relationship

Cardinality

Cardinality describes a relationship between two entities, representing the minimum and maximum number of occurrences of one entity that can be associated with an occurrence of a related entity

- one to one
- many to one
- one to many
- o many to many

One to One

Person has one ID Card

Person has one Heart

Many-to-One or One-to-Many

Person has 0 or many BankAccount, a BankAccount
 belongs to one Person

Class has 1 or many Students, Student must be in one

Class

Many-to-Many

Student must study 1 or many Courses, Course can learn
 by 0 or many Students

Practice 1

Ex1: Customer can have one or many Addresses, one

Address can belong to zero or many customers

Practice 2

Ex2: Users can send zero or many messages to other Users. Users can receive zero or many messages from other Users

Shopee ER Model to database chema

Design Shopee ER Model

- Customers have information such as name, address, phone number, email, date of birth, etc.
- Customers can have multiple orders.
- Each order consists of attributes like total amount, delivery address, and delivery date.
- Orders can contain multiple products, each with attributes including product name, quantity, price, and discount.
- Products can belong to multiple orders.

Convert ER Model to database schema?

Simple attribute entity

<u>StudentID</u>	FullName	DateOfBirth
1	Snoop Dog	2/19/2000
2	The Rock	2/16/1999

Student(StudentID, FullName, DateOfBirth)

Multiple value attribute

Student(StudentID, FullName, DateOfBirth)

StudentEmail(StudentID, Email)

Multiple value attribute

Student(StudentID), FullName,
DateOfBirth)

StudentEmail(StudentID), Email)

<u>StudentID</u>	FullName	DateOfBirth	
1	Snoop Dog	2/19/2000	
2	The Rock	2/16/1999	

<u>StudentID</u>	<u>Email</u>	
1	snoop@high.com	
1	snoop@low.com	
2	power@man.com	
2	supper@man.com	

3 test@man.com

Unary one to one (optional)

Student(StudentID, FullName, DateOfBirth, ManageID)

Unary one to many

Employee(EmployeeID, Name, Address, ManagerID)

Employee(EmployeeID, Name, Address, ManagerID)

EmployeeID	Name	Address	ManagerID
1	Việt CEO	98833 Cardinal Park	NULL
2	Nam CTO	21289 Susan Crossing	1
3	Tiến COO	25519 Hermina Alley	1
4	Huy Culi	936 Michigan Alley	2

Binary one to one (optional)

Student (StudentID, Name)

Class (ClassID, ManagerID, Grade)

Binary one to one (optional)

Binary one to many

Person(ID, Name)

BankAccount(Number, PersonID, ValidDate)

Person(ID, Name)

BankAccount(<u>Number</u>, PersonID, ValidDate)

I	<u>ID</u>	Name
\rightarrow	1	Huy
\rightarrow	2	Dũng
	3	Hùng

<u>Number</u>	PersonID	ValidDate
111111	1	4/27/1999
222222	1	8/26/1994
123456	2	2/13/1998

Binary many to many

Unary many to many

Make you easy to see

<u>ID</u>	Name
1	Nam
2	Dũng
3	Huy

FromEmployeeID	ToEmployeeID	Content	Date
1	2	Hi, How it's going?	2/19/2023
2	1	Oh hello, I'm good, how about you?	2/19/2023
1	2	Yeah, I'm great.	2/19/2023
2	1	Oke, bye ;>	2/19/2023

EMPLOYEE

Thank you!

Any questions?