

Disciplina: Fundamentos da Computação		Visto:
Professor: Abrantes Araújo Silva Filho		
Aluno:		
Turma:	Semestre:	Valor: —
Data:	Diário 1: Fundamentos da	Computação

Unidade 1: Fundamentos da Computação — Diário de Aprendizagem —

- Este Diário de Aprendizagem é uma das atividades integrantes da disciplina de Fundamentos da Computação do curso de Ciência da Computação, Universidade Vila Velha (UVV).
- A confecção do diário de aprendizagem é atividade **obrigatória** e **altamente recomentada** por três motivos: a) você aprenderá muito mais a matéria se mantiver o diário; b) ao entregar todos os diários ao professor você está cumprindo parte das atividades avaliativas que contam pontos na disciplina (10% da nota); e c) as provas bimestrais discursivas seguirão o formato e conteúdo das perguntas do diário.
- Se você tiver dificuldade em responder alguma questão do diário, estude novamente a matéria. Se você realmente entendeu a matéria, não deveria ter muita dificuldade para responder o diário.
- Responda com caneta ou lápis escuro (2B, 4B, 6B).
- Verifique no calendário de sua turma a **data de entrega**. Após uma rápida avaliação e visto pelo professor ou pelos monitores, seu diário será devolvido.
- O diário não será corrigido pelo professor: cabe a você estudar e dar a resposta correta para todas as questões. Obviamente o professor está à disposição para esclarecimento de dúvidas, e os monitores podem auxiliar caso você tenha dificuldade.
- Manter o diário de aprendizagem atualizado pode ser a diferença entre você aprender a matéria e ser aprovado, ou não aprender a matéria e não ser aprovado.
- Bons estudos!

1 Visão geral da unidade

1.	Analise o mapa mental da "Unidade 1: Fundamentos da Computação", no material da disciplina. Esse mapa mental detalhado mostra que os fundamentos da computação serão estudados em 5 grandes divisões (cada uma com subdivisões apropriadas). Quais são essas grandes divisões dos fundamentos da computação, de acordo com o mapa mental?
2	O que é ciência da computação?
2.	Pesquise sobre o Harold Abelson , um cientista da computação americano e professor do MIT, que tem diversas contribuições importantes na computação e, principalmente, no ensino da ciência da computação. Escreva um pequeno texto descrevendo as principais contribuições de Abelson (certifique-se de incluir na sua resposta uma breve explicação sobre o livro: <i>Structure and Interpretation of Computer Programs</i> — SICP —, a obra prima de Abelson juntamente com Gerald Jay Sussman (outro cientista da computação do MIT). Dica: para aprender sobre o SICP, talvez você queira assistir um pedaço do vídeo "Introdução à Série Pré-SICP" ¹ .
3.	Qual a essência da ciência da computação?
4.	Por que a ciência da computação não é somente sobre programação nem somente sobre computadores?
	https://cmprz.me/presicp1

Fur	ndamentos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
5.	Explique, com suas palavras, o	que é ciência da computação.	
6.	Explique, de modo informal, o origem ao termo?	o que é um algoritmo . Qual o no	me do matemático persa que deu
7.	putação para ajudar a pensar en		utiliza um modelo geral da com- m desenho ilustrando esse modelo computação.
8.		nto declarativo, e demonstre que olver um problema computaciona	esse tipo de conhecimento, apesar l.
9.		ento imperativo, e explique poro amento para a resolução de um pr	que a ciência da computação está oblema computacional.

10. Calcule a $\sqrt{43}$ utilizando o **Método de Newton**. Demonstre, passo a passo, os cálculos efetuados. Pare quando você chegar ao resultado correto com cinco casas decimais (cinco números 0 após a vírgula).

11. Calcule o máximo divisor comum entre os números 192 e 56, utilizando o **Método de Euclides**. Demonstre, passo a passo, os cálculos efetuados.

12. Para o cálculo da $\sqrt{43}$ e do máximo divisor comum entre 192 e 56 você utilizou que tipo de conhecimento? Por quê?

3 Representação de dados

13.	Pesquise sobre a Arquitetura de von Neumann e explique, brevemente, o que é e como funciona essa arquitetura.		
14.	Por que é importante encontrarmos uma representação correta para o problema que estamos tentando resolver?		
15.	Por que é importante encontrarmos uma representação correta para a solução que será apresentada como resposta para o problema que estamos tentando resolver?		
16.	O que é o sistema unário de numeração?		
17.	O que é o sistema binário de numeração?		
18.	O professor da CR6.100B tem um carro especial, com um hodômetro binário. Ao olhar tal hodômetro, você verificou que o carro já tinha percorrido 0000001010 km. Quantos quilômetros esse carro já andou (no sistema decimal)?		
19.	O que é um bit (b), um <i>binary digit</i> ?		

24. Quantos transístores, aproximadamente, existem hoje em um processador?

Fu	ndam	ientos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
25.	Exp	lique a frase: "os bits 0 e 1	não existem de verdade, são apena	as uma abstração".
26.			ositivos que podem ser utilizados cada dispositivo abaixo represent	-
		Transistor:	1 1	
	(b)	CD-ROM:		
	(c)	Cartão perfurado:		
	(d)	Cores de memória magnét	ica:	
	(e)	Disco rígido magnético:		
	(f)	Fibra óptica:		
27.	Por res?	=	reis podem ser utilizados para repr	resentar os 0 e 1 nos computado-
28.	— О q	ue é a base de um sistema 1	numérico?	
29. O que é o valor posicional de um algarismo?				
30.	pres	senta o algarismo e i repres	garismo qualquer em um número enta a posição desse algarismo (co firmar que esse número está em qu	ontada da direita para a esquerda,

31. Considere o número decimal 5566. Demonstre a decomposição numérica de cada algarismo e como encontrar o valor desse número.

32. Considere o número binário 110110110. Demonstre a decomposição numérica desse número binário e encontre seu valor em decimal.

33. considere o número hexadecimal FE9CAFE10. Demonstre a decomposição numérica desse número hexadecimal e encontre seu valor em decimal.

34.	Quando estamos trabalhando com diferentes sistemas numéricos ao mesmo tempo, costumamos colocar uma indicação visual ao final do número para não confundirmos os sistemas. Por exemplo:
	• O binário 101011 é representado por 101011_2 ou por $101011_{(2)}$
	• O octal 640023 é representado por 640023_8 ou por $640023_{(8)}$

- O hexadecimal 35FA89 é representado por $35FA89_{16}$ ou por $35FA89_{(16)}$

- O decimal 3510 é representado por 3510_{10} ou por $3510_{(10)}$

	Calo	cule o valor decimal dos seguintes números:
	(a)	$101011_{(2)}$
	(b)	$\overline{101011_{(8)}}$
	(c)	$\overline{101011_{(10)}}$
	(d)	$101011_{(16)}$
35.	O qı	ue é um <i>nibble</i> ?
36.	O qı	ue é um <i>Byte</i> ?
37.	Por	que o Byte (B) é uma unidade importante nos computadores?
38.		armazenar a palavra "banana", um computador precisa de: Quantos Bytes (B)?
	(b)	Quantos nibbles?
	(c)	Quantos bits (b)?
39.	biná	que os prefixos e símbolos do sistema decimal são diferentes dos prefixos e símbolos do sistema rio? Por exemplo: por que no sistema decimal o prefixo de milhão é "mega" (M) e no sistema mal o prefixo de milhão é "mebi" (Mi)?

Fur	ıdam	entos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos		
40.	. Se os computadores só entende e pontuação?		em 0 e 1, como eles conseguem re	presentar caracteres como letras		
41.	— О qı	ue é um "encoding" ?				
42.	O q	ue é e para que serve o pad	rão ASCII?			
43.	Um		to de texto encontrou o seguinte p			
	O qı	01001 ue esse programa exibiu na		100001		
44.	Qua	al a diferença entre o ASCII	original e o Extended ASCII?			
45.	Por	Por que o padrão Unicode foi criado? Explique porque o Unicode é melhor do que o ASCII.				
46.		relação ao padrão Unicode O que é o Unicode?	, responda:			
	(b)	O que é um "Unicode Cod	de Point"?			
	(c)	Por que os Unicode Code	Points não são um encoding como	o o ASCII?		

- 47. Por que podemos afirmar que os emojis são texto?
- 48. Seu colega percebeu que Code Point do emoji "Face with Tears of Joy", ilustrado abaixo, é U+1F602.

Figura 1: Face with Tears of Joy

	Seu colega também percebeu que o Code Point U+1F602 corresponde ao número decimal 128514. Ele transformou esse decimal em binário e encontrou o número 11111011000000010. Agora seu colega está afirmando que esse número binário é a representação correta desse emoji. Você sabe que ele está errado. Explique o motivo de seu colega estar errado.			
49.				
	e U'	rrês encodings mais utilizados para codificar os Code Points do Unicode são o UTF-8, UTF-16 TF-32. Explique o que é e quais as principais características de cada um desses encodings.		
	(a)	UTF-8:		
	(b)	UTF-16:		
	(c)	UTF-32:		
50.	Qua	al encoding UTF é compatível com o ASCII original de 7 bits?		

55. O padrão RGB é um modelo aditivo. O que significa isso?

61. O que é um formato de arquivo?

62.	Cite dois formatos de arquivos comuns para imagens e suas aplicações comuns.
	Em que situação você iria preferir usar uma imagem no formato GIF ao invés de uma no formato JPEG?
64.	Em que situação você iria preferir usar uma imagem no formato JPEG ao invés de uma no formato GIF?

65. Considere as imagens abaixo, com as bandeiras da França e Alemanha:

Figura 2: Bandeiras da França e Alemanha

Vamos supor que essas imagens tenham a mesma resolução (300 pixels por 200 pixels), e ambas

sejam GIFs estáticos (sem vídeo/sem loop). No entanto, verifica-se que o GIF alemão é menor (ou seja, menos bytes) que o GIF francês. Faça uma hipótese sobre por que isso pode acontecer. Certifique-se de seguir esse pressuposto (ao baixar essas imagens você pode descobrir que o GIF alemão é maior por causa de, por exemplo, técnicas de codificação diferentes de GIF). No entanto, estipulamos que ambos tenham 300 x 200 pixels, e que a bandeira alemã é menor, e essa deve ser sua suposição em sua resposta.

- 66. Se uma imagem tem profundidade de 1 bit, ela pode armazenar duas cores, preto e branco. Assim:
 - (a) Se uma imagem tem profundidade de 8 bits, quantas cores ela pode suportar?
 - (b) Se uma imagem tem profundidade de 16 bits, quantas cores ela pode suportar?
 - (c) Se uma imagem tem profundidade de 24 bits, quantas cores ela pode suportar?
- 67. Assista ao vídeo abaixo no YouTube²:

Figura 3: Let's enhance!

	Por que tornar uma imagem maior não a torna mais nítida?
68	O que são arquivo MIDI de áudio? Para que eles servem?
00.	——————————————————————————————————————
69.	Cite dois formatos de arquivo de áudio, indicando as características desses arquivos.

Fur	ndamentos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
70.	Em que situação você iria pref de áudio no formato WAV?	erir usar um arquivo de áudio no forn	nato MP3 ao invés de um arquivo
71.	Como um arquivo MIDI é dif	erente de um arquivo MP3 para um	a mesma música?
72.		le gravação do som para sua represen xa de amostragem e a profundidade	
73.	O que é, basicamente, um arq	uivo de vídeo?	
74.	O que é o número de "quadro	os por segundo" (frames per second -	– FPS).
75.	Na compressão de vídeo são mes. Explique cada uma delas (a) Compressão intra-frames		o tempo: intra-frame e inter-fra-
	(b) Compressão inter-frames	S:	
76.	No contexto de armazenamer	nto de vídeos, o que é um <i>key frame</i> ?	
77.	Em relação aos formatos de a	rquivos de vídeo, diferencie os cont a	ainers dos codecs.

Fur	ndam	entos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
78.		amigo disse que fez a "cod errado? Por quê?	ificação de um vídeo usando o form	nato DivX". Seu amigo está certo
79.	Exp	lique como os vídeos são re	epresentados no computador.	
80.	Con	no o computador pode sab	er o que um determinado padrão d	e bits representa?
4	R	epresentação de d	ados: anexos numérico	os
81.		ontre o valor decimal dos r $1110110011101_{(2)}$:	números abaixo:	
	(b)	7243 ₍₈₎ :		
	(c)	$CAFE_{(16)}$:		
82.		nsforme o número $35789_{(1)}$ Em binário:	₀₎ em números nas seguintes bases	numéricas:
	(b)	Em octal:		
	(c)	Em hexadecimal:		
83.		nsforme o número 111000: Em octal:	$111000_{(2)}$ em números nas seguinte	es bases numéricas:
	(b)	Em hexadecimal:		

90. Qual a diferença do bit mais e menos significativo? Qual deles tem o maior valor posicional?

91. Considere que você tem um binário unsigned com 6 bits. Quantos números você consegue representar com esse número binário? Qual a faixa numérica desses números?

92. Faça a soma dos números 34 e 13, em binário unsigned.

93. Faça a multiplicação dos números 169 e 169, em binário unsigned.

94. Faça a subtração dos números 34 e 8, em binário unsigned.

95. Faça a divisão de 13 por 4, em binário unsigned, utilizando o método das subtrações sucessivas.

96. Faça a divisão de 210 por 8, em binário unsigned, utilizando o método do deslocamento.

Fundamentos da Computação		Diário de Aprendizagem	Unidade 1: Fundamentos	
97.	Como é possível trabalhar co que tem uma memória finita?	m os números matemáticos, que sã	o infinitos , em um computador	
98.	Explique como a memória de	um computador pode ser entendid	a, e como ela funciona.	
99.	Cite 6 características (caracte	rísticas) das células de memória.		
100	. Se cada célula de memória : números de 32 bits?	armazena apenas 8 bits (1 Byte), co	omo a memória pode armazenar	
101	O que é a palavra (<i>word</i>) de	um computador?		
102	. O que significa dizer que a a	rquitetura de um computador é de 6	64 bits?	
103.	O que é o overflow ?			

104. Considere que você está trabalhando em um programa e está usando variáveis inteiras com 8 bits, e apenas 8 bits. Demonstre, fazendo a soma binária unsigned, como ocorre overflow com a soma de 200 e 100.
105. Quais as 4 notações principais para armazenar binários inteiros negativos?
106. O que é a notação sinal/magnitude ?
107. Represente o número $-356_{(10)}$ em binário de 16 bits em notação sinal/magnitude.
108. Se o binário $1111_{(2)}$ está em notação sinal/magnitude, que número decimal ele representa?
109. Quais as vantagens e desvantagens da notação sinal/magnitude?

- 111. Represente o número $-89_{(10)}$ em binário em notação de complemento de 1.
- 112. Se o binário $10110101_{(2)}$ está em notação complemento de 1, que número decimal ele representa?

Fun	damentos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos	
113.	Quais as vantagens e desvantagens da notação complemento de 1?			
114.	O que é a notação compleme n	nto de 2?		
115.	Represente o número -235 en	n notação de complemento de 2.		
116.	Se o binário $10110101_{(2)}$ está e	m notação complemento de 2, que	e número decimal ele representa?	
117.	Quais as vantagens e desvanta	gens da notação complemento de	2?	
118.	<u>-</u>	lhando com números binários de dos números 4 e —3, em complem	· · · · · · · · · · · · · · · · · · ·	
119.	Quais as duas "formas rápidas	s" para encontrarmos o compleme	ento de 2 de um número binário?	
120		-6, considerando que você está tra . Demonstre que não ocorre overt		

(b) 27.09375₍₁₀₎:

Fundamentos da Computação		Diário de Aprendizagem	Unidade 1: Fundamentos
	O computador consegue repr de ponto fixo? Por quê?	esentar todos os números fracioná	rios, de modo exato, em notação
	Quando estamos trabalhando ções: (a) Up.f:	com números em notação de pon	to fixo, o que significam as nota-
	(b) Qp.f:		
137.	Represente o número -2.375	(10) em notação Q4.4.	
138.	O que é a resolução em uma	notação de ponto fixo? O que ela in	ndica?
139.	O que é o underflow ?		
140.	O que é a notação de ponto f	utuante?	
141.	O que é a notação científica?	Quando podemos dizer que ela est	á na forma normalizada?
142.	O que é o significando de un	n número em notação científica?	

Fun	damentos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
143.	Por que o ponto decimal, na i	notação de ponto flutuante, "flutua	"?
144.	Como é possível saber se um	número de ponto flutuante, na bas	e 2, está na forma normalizada?
145.	O que é o padrão IEEE-754?		
146.	O expoente, no padrão IEEE	-754, pode ter três funções diferent	es. Que funções são essas?
	Quando o padrão IEEE-754 precisão, o que isso quer dizer	diz que a precisão do formato "Si ?	ingle Precision" é de 24 bits de
148.	Represente o número $228.0_{(1)}$	₀₎ em ponto flutuante "Half Precis	ion".
	Que "macete" o padrão IEE nificando?	E-754 utiliza para ganhar 1 bit de p	orecisão na representação do sig-
	No padrão IEEE-754, que tiputilizado?	oo de notação é utilizada para repr	esentar o expoente? Qual o viés
151.	No padrão IEEE-754, há algu	m uso para a notação sinal/magnito	ude?
152.	Represente o número -0.75 (10) em ponto flutuante "Half Preci	sion".

Fundamentos da Computação	Diário de Aprendizagem	Unidade 1: Fundamentos
153. A notação de ponto flutuante Sim ou não? Por quê?	do padrão IEEE-754 consegue rep	resentar todos os números reais?
154. No padrão IEEE-754, o que u	um expoente que é formado totalmo	ente por bits "1" indica?
	s limites e as faixas de representação ouble e Quadruple precision. Você	
156. Quando ocorre underflow na	notação de ponto flutuante?	
arredondamentos são feitos. (ção de ponto flutuante é que os cálo Dutro problema é que algumas prop o valem em ponto flutuante. Quai	priedades matemáticas da adição
(a) Adição:		
(b) Multiplicação:		
158. Qual o método padrão de arr	edondamento definido pelo padrão	IEEE-754?
159. Cite um exemplo clássico de tuante.	um problema real causado pela imp	precisão da notação de ponto flu-
160. O que é a notação BCD?		