Lecture Notes in Category Theory

Paul Ossientis

December 8, 2019

Contents

1	Firs	et Chapter	2
	1.1	Category	2
	1.2	Functor	2
	1.3	Natural Transformation	2
	1.4	Adjunction	2
		1.4.1 Definition	2

Chapter 1

First Chapter

- 1.1 Category
- 1.2 Functor
- 1.3 Natural Transformation
- 1.4 Adjunction
- 1.4.1 Definition

Definition 1 We call adjunction an ordered pair (F, G) where F is a functor $F: \mathcal{C} \to \mathcal{D}$ and G is a functor $G: \mathcal{D} \to \mathcal{C}$ while \mathcal{C} and \mathcal{D} are two locally-small categories for which there exists a natural isomorphism:

$$\alpha: \mathcal{D} \circ (F \times I_{\mathcal{D}}) \Rightarrow \mathcal{C} \circ (I_{\mathcal{C}^{op}} \times G)$$

in the functor category $[\mathcal{C}^{op} \times \mathcal{D}, \mathcal{S}et]$, where F also denotes $F : \mathcal{C}^{op} \to \mathcal{D}^{op}$.