SOLUTIONS

1. PROVE or **DISPROVE** (Circle your choice). If $\{g_1, g_2, g_3\}$ is a Gröbner basis for the ideal I in $k[x_1, x_2, ..., x_n]$, then so is $\{g_1, g_2 - g_1, g_3\}$.

Counterexample. Let $(g_1, g_2, g_3) = (x, y, z)$ with lex order. $\langle g_1, g_2, g_3 \rangle$ is the ideal of polynomials which vanish at (0,0,0) whereas $\langle g_1, g_2 - g_1, g_3 \rangle$ is the same ideal, but is not a Gröbner basis in lex order. (there is no element in the basis whose leading term is a power of y.

2. PROVE or DISPROVE (Circle your choice). If $\{g_1, g_2, g_3\}$ is a Gröbner basis for the ideal I in $k[x_1, x_2, \dots, x_n]$ and $h \in I$, then $\{g_1, g_2, g_3, h\}$ is also a Gröbner basis for I.

Since $h \in \langle g_1, g_2, g_3 \rangle$

$$\langle LT(I) \rangle = \langle LT(g_1), LT(g_2), LT(g_3) \rangle = \langle LT(g_1), LT(g_2), LT(g_3), LT(h) \rangle.$$

3. PROVE or **DISPROVE** (Circle your choice). If $\{g_1, g_2, g_3\}$ is a Gröbner basis for the ideal I in $k[x_1, x_2, ..., x_n]$ and $h \in I$, then $\{g_1, g_1 + hg_2, g_3\}$ is also a Gröbner basis for I.

Counterexample. Let $(g_1, g_2, g_3) = (x, y, z)$ with lex order and $h = g_1$.

$$\langle x, y, z \rangle = \langle x, y + xy, z \rangle$$

but $\langle x, y + xy, z \rangle$ is not a Gröbner basis.

4. PROVE or **DISPROVE** (Circle your choice). If $\{g_1, g_2, g_3\}$ is a Gröbner basis for the ideal I in $k[x_1, x_2, \dots, x_n]$, and $h \in k[x_1, \dots, x_n]$ then $\{g_1, g_2 - hg_1, g_3\}$ is also a Gröbner basis for I..

Use the same counterexample as in problem 1 above.

In the problems below: $f_1 = x + y^2$, $f_2 = x^2 + y^2$, $\mathbf{V} = \langle f_1, f_2 \rangle$ and $V_2 = \{f_1, f_2\}$.

In 5 and 6 use the grlex monomial order (with x > y)

5. Use the Buchsberger algorithm starting with f_1, f_2 to construct a Gröbner basis for V.

Buchsberger Gröbner basis =
$$[x + y^2, x^2 + y^2]$$
.

Your answer should be a sequence of polynomials (the elements of this basis) and your work should contain evaluations of all S(f,g)'s and their remainders $\overline{S(f,g)}^F$'s, where F is an initial segment of your basis.

6. Your answer in the preceding may not be a reduced Gröbner basis. If not explain why not and show how the basis above can be refined to a reduced Gröbner basis. Give below this reduced Gröbner basis. (It may be the same as the basis you found above.) The above Gröbner basis is not reduced because $y^2 = LT(f_1)$ divides the monomial y^2 in f_2 . Dividing f_2 by f_1 and using the remainder to replace the f_2 in the preceding basis gives gives

Reduced Gröbner basis =
$$[x + y^2, -x + x^2]$$
.

In 7 and 8 use the lex monomial order (with x > y)

7. Use the Buchsberger algorithm starting with f_1, f_2 to construct a Gröbner basis for V. We get

Buchsberger Gröbner basis =
$$[\{x+y^2, x^2+y^2, -y^2-y^4\}]$$

Your answer should be a sequence of polynomials (the elements of this basis) and your work should contain evaluations of all S(f,g)'s and their remainders $\overline{S(f,g)}^F$'s, where F is an initial segment of your basis.

8. Your answer in the preceding may not be a reduced Gröbner basis. If not explain why not and show how the basis above can be refined to a reduced Gröbner basis. Give below this reduced Gröbner basis. (It may be the same as the basis you found above.) Here $LT(f_1) = x$ divides $LT(f_2) = x^2$. Dividing f_2 by f_1 gives a remainder of $y^2 + y^4$ which is f_3 and already in the basis; so f_2 can be dropped from the preceding basis. The result is that

Reduced Gröbner basis =
$$[x + y^2, y^2 + y^4]$$
.

In 9 and 10 use the invlex monomial order (lex order with y > x)

9. Use the Buchsberger algorithm starting with f_1, f_2 to construct a Gröbner basis for **V**.

Buchsberger Gröbner basis =
$$[\{x+y^2, x^2+y^2, -x+x^2\}]$$
.

This basis isn't reduced either since $f_2 = 1 \cdot f_1 + (-x + x^2)$. Using this we can remove f_2 from the preceding basis and get

10. Your answer in the preceding may not be a reduced Gröbner basis. If not explain why not and show how the basis above can be refined to a reduced Gröbner basis. Give below this reduced Gröbner basis. (It may be the same as the basis you found above.)

Reduced Gröbner basis =
$$[{x + y^2, -x + x^2}]$$
.