The Little Handbook for MTPPR

Multi-Trait Point Pattern Reconstruction

Chris Wudel

2024-08-07

Table of contents

Welcome

Multi-Trait Point Pattern Reconstruction (MTPPR) is an advanced method for analyzing and modeling spatial patterns across various scientific disciplines such as ecology, biology, and geography. MTPPR allows the reconstruction of spatial point distributions, considering multiple associated traits or attributes. This handbook provides an overview of the key concepts, steps, and applications of MTPPR.

If you would like to find out more about multi-trait point pattern reconstruction, read Wudel et al. (2023) or consult the references.

1 Introduction

Multi-Trait Point Pattern Reconstruction (MTPPR) is a statistical method used to analyze and reconstruct spatial patterns. Unlike traditional methods, MTPPR enables the reconstruction of spatial point distributions while considering multiple associated traits (marks). Previous methods for reconstructing point patterns either only consider a single mark or multiple marks independently, neglecting their correlations. MTPPR employs various second-order summary statistics of point pattern analysis, such as the pair correlation function and the mark correlation function.

Figure: This illustration depicts the issue in reconstructing dot patterns where the correlations between the marks are not considered. This results in unrealistic proportions, as illustrated here by the disproportionate trees.

This method is crucial in fields like ecology, biology, and geography, where understanding the spatial distribution of entities and their traits is essential. By considering both the spatial locations and the various traits of points, MTPPR allows researchers to uncover complex interactions and dependencies that influence the arrangement and dynamics of the systems under study.

For example, in ecology, MTPPR can be used to reconstruct the distribution of different tree species in a forest, taking into account attributes such as age, height, and health status. This provides insights into ecological processes such as competition, habitat preferences, and the impact of environmental factors. Similarly, in epidemiology, MTPPR can help understand the spread of diseases by correlating spatial data with demographic and environmental traits.

Key Concepts

1. Point Patterns:

- Spatial data points representing the positions of objects or events within a defined area.
- Examples: Locations of trees in a forest, distribution of animal burrows, spread of disease cases.

2. Traits:

- Additional attributes or characteristics associated with each point.
- Examples: Tree species, age, height, health status.

3. Multi-Trait Analysis:

- Simultaneous consideration of multiple attributes to understand their influence on spatial arrangement.
- Can reveal complex interactions and dependencies between traits.

4. Reconstruction:

- Generation of statistically similar point patterns for various applications through reconstruction algorithms.
- Examples: Creating null model patterns for spatial point pattern analysis and constructing artificial datasets suitable for initializing forest ABMs and other stand simulators.

Steps in MTPPR

1. Data Collection:

• Gathering spatial data along with associated traits through field surveys, remote sensing, or other methods.

2. Spatial Analysis:

- Analyzing the spatial arrangement of points using techniques such as Ripley's K-function, pair correlation function, or spatial autocorrelation.
- Assessing the distribution (clustered, random, regular) and the influence of spatial scale.

3. Trait Analysis:

• Evaluating the distribution and correlation of traits using methods like the mark correlation function.

4. Model Construction:

- Developing models that integrate spatial and trait information using statistical models (e.g., spatial point process models).
- Aim: Reconstructing the underlying processes leading to the observed multi-trait point pattern.

5. Reconstruction and Validation:

- Reconstructing point patterns based on the developed models to predict spatial arrangements under various scenarios.
- Validating models by comparing simulated patterns with actual observations.

6. Interpretation:

• Interpreting results to gain insights into ecological, biological, or geographical processes.

Applications

• Ecology:

- Generating realistic and statistically similar spatial patterns.
- Understanding the coexistence and competition among plant species.
- Studying the spatial distribution of animal populations and their habitat preferences.

• Epidemiology:

 Analyzing the spread of diseases based on environmental factors and population characteristics.

• Urban Planning:

- Assessing the spatial distribution of urban features (e.g., green spaces, buildings) and their associated traits (e.g., building types, land use).

2 Simple application example

The following example demonstrates a simple application of Multi-Trait Point Pattern Reconstruction (MTPPR) by Wudel et al. (2023). It illustrates reconstruction using fictitious datasets that incorporate multiple traits simultaneously. The required libraries must be loaded beforehand.

```
source("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstructionsource("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstruction
```

Please note that the maximum number of iterations has been set to $max_steps = 10000$ and $n_repetitions = 3$ in this example to keep computation time low. No weighting of different summary statistics has been performed, which may be necessary for different applications (e.g., forest stands) to achieve optimal results. For real-world applications, it is advisable to adjust these parameters accordingly. Additionally, in the vignette, verbose = FALSE has been set to minimize print output. We recommend using the default setting verbose = TRUE when running the code to see progress reports.

The next step is to load the point pattern, here is an example of a random point pattern with several marks to show the structure of the data used.

```
xr <- 500
yr <- 1000
N <- 400
y <- runif(N, min = 0, max = yr)
x <- runif(N, min = 0, max = xr)
species <- sample(c("A","B"), N, replace = TRUE)
diameter <- runif(N, 0.1, 0.4)
random <- data.frame(x = x, y = y, dbh = diameter, species = factor(species))
marked_pattern <- as.ppp(random, W = owin(c(0, xr), c(0, yr)))</pre>
```

The point pattern must contain the following data An x and y coordinate, a metric mark (in metres) and a nominal mark defined as a factor. The order must be respected. Now the reconstruction with several marks can be started with the following code. Note that the maximum number of iterations has been set to $max_steps = 10000$ to keep the computation time for this example to a minimum. For an application, this value should be increased according to the number of points in the pattern.

```
reconstruction <- reconstruct_pattern_multi(marked_pattern, n_repetitions = 1, max_steps = 1
```

As a result, you will receive a list containing a variety of information, for example, the reference pattern, the reconstructed pattern, the number of successful actions, the energy development and much more. If you wish to perform several reconstructions of the same reference pattern, you must increase n_repetitions to the desired number.

```
reconstruction_2 <- reconstruct_pattern_multi(marked_pattern, n_repetitions = 2, max_steps =</pre>
```

```
> Progress: reconstruction_1 || iterations: 0 || Simulation progress: 0% || energy = 0.07468
> Progress: reconstruction_1 || iterations: 5000 || Simulation progress: 50% || energy = 0.000
> Progress: reconstruction_1 || iterations: 10000 || Simulation progress: 100% || energy = 0.000
> Progress: reconstruction_2 || iterations: 0 || Simulation progress: 0% || energy = 0.04211
> Progress: reconstruction_2 || iterations: 5000 || Simulation progress: 50% || energy = 0.0000
> Progress: reconstruction_2 || iterations: 10000 || Simulation progress: 100% || energy = 0.0000
```

To activate a visualisation of the reconstruction that shows the changes in the pattern at the relevant time, you must proceed as follows.

```
reconstruction_3 <- reconstruct_pattern_multi(marked_pattern, n_repetitions = 1, max_steps =
```

```
> Progress: || iterations: 0 || Simulation progress: 0% || energy = 0.06791 || energy impro-
> Progress: || iterations: 5000 || Simulation progress: 50% || energy = 0.00279 || energy impro-
> Progress: || iterations: 10000 || Simulation progress: 100% || energy = 0.00277 || energy
```


Finally, you can use the following function to view different summary statistics of the reference pattern (black line) compared to the reconstructed pattern (grey line). For this, however, the listed libraries must be loaded additionally.

plot(reconstruction)

Progress in the creation of the figures: 100%

K-function

Reference — Reconstructed — Reconstructed 0 10 20 30 40 50 r [m]

Pair correlation function

Mark Correlation Function (dbh)

Mark Correlation Function (species)

3 Further application examples

In the following, further examples of the simple application of Multi-Trait Point Pattern Reconstruction (MTPPR) by Wudel et al. (2023) are presented. These are standard applications, meaning that reconstructions are performed without enlargements or reductions of the reconstruction pattern and without edge correction.

First, the necessary functions and packages will be loaded. If individual R packages are not installed, install them as follows: install.packages("package name").

```
source("https://raw.githubusercontent.com/ChrisWudel/Multi-trait-point-pattern-reconstruction
```

Now you need to define which dataset you want to use. There are 2 real datasets and 4 generated datasets available. To select a dataset, define x with the name of the dataset you want to use (x <- 'Dataset Name'). The datasets are available under 'Records for download.

```
## "regular"
## "cluster_size5"
## "cluster_size5_and_random"
## to do this, declare x with the corresponding name in "
data <- data_import(x)
W <- data[[2]]
data <- data [[1]]</pre>
```

The following parameters are predefined and can be varied arbitrarily in an application file (Application of the Multi-trait Point pattern reconstruction.R) where you can use this code, available for download under the Application folder. It should be noted that for optimal results, the parameter max_steps should be at least approximately ten times the number of points in the pattern, and the parameter for weights (w_markcorr) of individual summary statistics needs to be adjusted according to different scenarios. Here, a small number of steps was chosen to save computation time.

```
marked_pattern <- as.ppp(data.frame(data), W = W)</pre>
marked_pattern$marks$dbh..mm.<-marked_pattern$marks$dbh..mm.*0.001
xr <- marked_pattern$window$xrange
yr <- marked_pattern$window$yrange</pre>
reconstruction <- reconstruct_pattern_multi(</pre>
  marked_pattern,
  n_repetitions
                    = 1,
                    = 10000,
  max_steps
  no_change
                     = 5,
                    = 250,
  rcount
  rmax
                    = 25,
                    = 1000,
  issue
                    = "r",
  divisor
                    = "epanechnikov",
  kernel_arg
                    = TRUE,
  timing
  energy_evaluation = TRUE,
  show_graphic
                    = FALSE,
  Lp
                     = 1,
  bw
                     = 0.5,
                     = "step",
  sd
                    = 1000,
  steps_tol
  tol
                     = 1e-4,
                    = c(m_m=1, one_one=0, all=1, m_all=1, all_all=1, m_m0=1, one_one0=0, all=
  w markcorr
                     = c(move_coordinate = 0.4, switch_coords = 0.1, exchange_mark_one = 0.1,
  prob_of_actions
                     = 1,
```

```
w_statistics = c(),
verbose = TRUE)
```

As a result, you will receive a list with a variety of information, such as the reference pattern, the reconstructed pattern, the number of successful actions, the energy development, and much more. To illustrate the results, first compare the reference pattern with the reconstructed pattern.

vis_pp(reconstruction)

Multi-trait point pattern reconstruction Reconstruction of two marks (dbh and tree species)

Finally, you can use the following function to compare various summary statistics of the reference pattern (black line) with the reconstructed pattern (grey line). Another function (plot_sum_stat) is capable of displaying these summary statistics in a single diagram for multiple repetitions of the reconstructions (n_repetitions > 1), and it is used in the previously mentioned application file (Application of the Multi-trait Point pattern reconstruction.R). For simplicity, this functionality has been omitted here.

plot(reconstruction)

K-function

Reference — Reconstructed 0 10 20 30 40 50 r [m]

Pair correlation function

Mark Correlation Function (dbh)

Mark Correlation Function (species)

