

With the support of the Erasmus+ Programme of the European Union

How reliable are SEN2 cloud detection algorithms? Global uncertainty estimation using Deep Kernel Learning.

Cesar Luis Aybar Camacho

Erasmus Mundus Joint Master Degree Programme
Copernicus Master in Digital Earth
Specialization track GeoData Science

Vannes, France, 2022

Acknowledge

With the support of the Erasmus+ Programme of the European Union

What is a cloud?

A cloud is a mass of water drops or ice crystals suspended in the atmosphere.

What is a cloud?

Figure: Geographical distribution reference cloud detection datasets for Sentinel-2 (Skakun et al. 2022).

 Cloud labels created by human photo-interpretation, active learning and ground-based camaras.

- Cloud labels created by human photo-interpretation, active learning and ground-based camaras.
- No temporal features.

- Cloud labels created by human photo-interpretation, active learning and ground-based camaras.
- No temporal features.
- High class imbalance.

- Cloud labels created by human photo-interpretation, active learning and ground-based camaras.
- No temporal features.
- High class imbalance.
- Created by closed science practices.

- Cloud labels created by human photo-interpretation, active learning and ground-based camaras.
- No temporal features.
- High class imbalance.
- Created by closed science practices.
- The quality of some datasets is poor.

Acknowledges Introduction Data Methods Results Conclusions

CloudSEN12 - I

https://cloudsen12.github.io/

Distribution of Sentinel-2 reference scenes

Figure: Geographical distribution reference cloud detection datasets for Sentinel-2 (Skakun et al. 2022).

CloudSEN12 - II

Figure: CloudSEN12 spatial distribution

Acknowledges Introduction Data Methods Results Conclusions

• The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.

- The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.
- bla, bla, bla...

Acknowledges Introduction Data Methods Results Conclusions

• The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.

- The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.
- bla, bla, bla...

Acknowledges Introduction Data Methods Results Conclusions

• The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.

- The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.
- bla, bla, bla...

Acknowledges Introduction Data Methods Results Conclusions

• The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.

- The trivial Set Cover algorithm has running time of $\mathcal{O}(2^n)$.
- bla, bla, bla...

References

Fomin FV, Grandoni F & Kratsch D, 2009, A note on the complexity of minimum dominating set. Journal of Discrete Algorithms, **4(2)**, pp. 209–214.

Grobler PJP & Mynhardt CM, 2009, *Secure domination critical graphs*, Discrete Mathematics, **309**, pp. 5820–5827.

Van Rooij JMM & Bodlaender HL, 2011, Exact algorithms for dominating set, Discrete Applied Mathematics, 159, pp. 2147–2164.