Национальный исследовательский университет «МЭИ» Институт Радиотехники и электроники им. В.А. Котельникова Кафедра Формирования и обработки радиосигналов

ОТЧЁТ

по лабораторной работе №1 «Усилитель мощности класса А на полевом транзисторе» По курсу: Формирование радиосигналов

Группа: ЭР-13-21

Бригада: 1

Выполнили: Алдошин Е.А.

Кон Р.А.

Проверил: Удалов Н.Н.

Москва

Цель работы: Исследование режимов работы транзисторного усилителя мошности класса А

Домашняя подготовка

Таблица 1 – Исходные данные для расчёта режима УМ

f_0 , М Γ ц	$P_{\scriptscriptstyle \mathrm{H}},\mathrm{Br}$	$P_{\scriptscriptstyle m H},{ m д}{ m E}{}_{ m M}$	E_{π} , B	θ , град	$\xi_{ m \kappa p}$	S , $\mathrm{A/B}$	E', B
10	2	33	9	180	0.96	1,5	2,25

$$r_{\rm KD} = 0.4 \; {\rm Om}$$

Выразим значение мощности, отдаваемой в нагрузку, в дБм:

$$P_{\text{H.ДБM}} = 10 \lg \left(\frac{2 \text{ BT}}{1 \text{ MBT}} \right) = 10 \lg \left(\frac{2000}{1} \right) = 10 [\lg(10^3) + \lg(2)] = 10 [3 + \lg(2)] \approx 33$$

Коэффициент использования напряжения питания рассчитаем по формуле:

$$\zeta_{\text{Kp}} = \frac{1}{2} + \frac{1}{2} \sqrt{1 - 8 \frac{P_{\text{H}} r_{\text{Kp}}}{\alpha_1 E_{\Pi}^2}} = \frac{1}{2} + \frac{1}{2} \sqrt{1 - 8 \frac{2 \cdot 0.4}{0.5 \cdot 9^2}} = 0.96$$

Расчёты режима УМ:

$$U_1 = \zeta_{KD} \cdot E_{\Pi} = 0.96 \cdot 9 = 8.64 \text{ B}$$

$$I_{c1} = \frac{2P_{\text{H}}}{U_{1}} = \frac{2 \cdot 2}{8.64} = 0.463 \text{ A} = 463 \text{ MA}$$

$$i_{c.max} = \frac{I_{c1}}{\alpha_1} = \frac{0.463}{0.5} = 0.926 \text{ A} = 926 \text{ mA}$$

$$I_{\rm c0} = \alpha_0 \cdot i_{{\rm c.}max} = 0.5 \cdot 926 = 463 \, {\rm mA}$$

$$P_{\text{ип}} = I_{\text{c0}} \cdot E_{\text{п}} = 0.463 \cdot 9 = 4.167 \text{ BT}$$

$$\eta_{\text{KP}}, \% = \frac{P_{\text{H}}}{P_{\text{MI}}} \cdot 100\% = \frac{2}{4.167} \cdot 100\% = 48\%$$

$$r_1 = \frac{2P_{\rm H}}{I_{c1}^2} = \frac{2 \cdot 2}{0.463^2} = 18.66 \, \text{Om}$$

В соответствии с описанием лабораторной работы при значении $r_1 = 18.66 \, \mathrm{Om} \, \mathrm{B}$ цепи связи нужно использовать следующие ёмкостные элементы:

$$C_a = C_{a0} + C_{a1} = 330 + 160 = 490 \text{ m}\Phi$$

$$C_b = C_{b0} + C_{b1} = 430 + 390 = 820 \text{ m}$$

Управление током ПТ:

$$U_{\scriptscriptstyle \mathrm{3H}} = rac{i_{\mathrm{c.}max}}{2 \cdot S} = rac{0.926}{2 \cdot 1.5} = 0.309 \ \mathrm{B} = 309 \ \mathrm{мB}$$

$$E_{_{3H}} = E' + U_{_{3H}} = 2.25 + 0.309 = 2.559 \text{ B}$$

Таблица 2 – Результаты расчёта режима УМ

Баланс	величина	$P_{\scriptscriptstyle m M\Pi},{ m B}_{ m T}$	$P_{\scriptscriptstyle \mathrm{H}},\mathrm{B}_{\mathrm{T}}$	$\eta_{ ext{ iny Kp}},\%$	
мощностей	значение	4.167	2	48	
Ток стока	величина	$I_{ m c0},~{ m mA}$	$I_{ m c1},\ { m MA}$	$i_{\mathrm{c}_{max}},\ \mathrm{mA}$	
Tok Cloka	значение	463	463	926	
Цепь связи	величина	r_1 , Ом	C_a , п Φ	C_b , п Φ	
(Рисунок 8)	значение	18.66	490	820	

Лабораторное задание

1. Настройка усилителя мощности

Настроим усилитель мощности на заданную мощность, измерим параметры характеризующие режим усилителя мощности и занесем в таблицу.

Таблица 3 – Режим работы УМ при настройке на заданную мощность

Ези, В	$U_{\scriptscriptstyle 3$ и $},\mathrm{B}$	$E_{\scriptscriptstyle \Pi},\mathrm{B}$	<i>I</i> _{c0} , мА	Р _н , дБм	$P_{\scriptscriptstyle m H}$, ${ m BT}$	$\eta,\%$
2.56	0.024	8.96	468	30	1	23.8

Сохраним полученные в данном режиме осциллограммы $u_{cu}(t)$ и $i_{c}(t)$.

Рисунок 1 — Осциллограмма $u_{cu}(t)$

Рисунок 2 — Осциллограмма $i_{c\sim}(t)$

2. Нагрузочные характеристики

При неизменном положении ручек $E_{3\mu}$ и $U_{3\mu}$, будем изменять положение переключателей в поле ЦЕПЬ СВЯЗИ от 1 до 12. Измерим величины, характеризующие режим работы усилителя мощности и занесем в таблицу.

Таблица 4 – Зависимость режима УМ от состояния приведённой нагрузки

Положение переключателей	<i>I</i> _{c0} , мА	Р _н , дБм	<i>P</i> _н , Вт	η, %
1	519	23.86	0.243	5.2
2	522	25.05	0.32	6.8
3	519	25.63	0.366	7.87
4	517	26.42	0.439	9.5
5	513	27.65	0.582	12.7
6	506	28.52	0.711	15.7
7	498	29.2	0.832	18.65
8	488	30.13	1.03	23.6
9	470	30.82	1.208	28.7
10	451	30.88	1.225	30.3
11	431	30.78	1.197	31
12	400	30.25	1.06	29.6

Построим нагрузочные характеристики для P_{H} [Вт], I_{c0} , η .

Рисунок 3 — Нагрузочная характеристика $P_{\rm H}$ [Вт]

Рисунок 4 — Нагрузочная характеристика I_{c0} [мА]

Рисунок 5 — Нагрузочная характеристика η [%]

Сохраним осциллограммы $u_{cu}(t)$ и $i_{c}(t)$ в недонапряженном режиме (положение 3) и перенапряженном режиме (положение 12).

Рисунок 6 – Осциллограмма $u_{cu}(t)$ в недонапряженном режиме

Рисунок 7 — Осциллограмма $i_{c\sim}(t)$ в недонапряженном режиме

Рисунок 8 — Осциллограмма $u_{cu}(t)$ в перенапряженном режиме

Рисунок 9 — Осциллограмма $i_{\rm c\sim}({\rm t})$ в перенапряженном режиме

Выводы: В ходе выполнения лабораторной работы исследовали усилитель мощности класса A в различных режимах работы. В ходе проведения эксперимента, со временем ПТ нагрелся и поэтому при одном и том же положении переключателя в табл.3 и табл.4 мы видим разные значения. Отметили что возможно было установить U_{3u} и E_{3u} такими, чтобы $P_{\rm H}$ соответствовала расчетам, но тогда на осциллограмме $i_{\rm c}(t)$ наблюдаются сильные нелинейные искажения.