Lista 4

Arruti, Sergio, Jesús

Ej 48. Sea $F \in Mod(R)$ un R-módulo libre con base X y $f: X \to N$ una función, con $N \in Mod(R)$. Entonces $\exists ! \ \overline{f}: F \to N \in Mod(R)$ tal que $\overline{f}|_X = f$.

 $\begin{array}{l} \textit{Demostraci\'on}. \ \ \text{Dado que } X \text{ es base de } F \text{ se tiene que } F = \bigoplus_{x \in X} Rx \text{ y as\'acada } a \in F \text{ se descompone de forma \'unica en } \sum_{x \in X} Rx \text{ como } a = \sum_{x \in X_a} r_x x, \\ \text{con } X_a \subseteq X \text{ finito y } r_x \in R; \text{ por lo tanto la aplicaci\'on} \end{array}$

$$\overline{f}: F \to N$$

$$a \mapsto \sum_{x \in X_a} r_x f(x)$$

es una función bien definida. Sean $r \in R$ y $m,n \in F$, con $\sum_{x \in X_m} r_x x$, $\sum_{x \in X_n} s_x x, \; X' := X_m \cup X_n \; y$

$$r_x = 0$$
, si $x \in X' \setminus X_m$,
 $s_x = 0$, si $x \in X' \setminus X_n$, (*)

entonces, por la unicidad de la descomposición en $\sum_{x\in X}Rx$, la descomposición de ra+b es $\sum_{x\in X'}(rr_x+s_x)x$. Así

$$\overline{f}(ra+b) = \sum_{x \in X'} (rr_x + s_x) f(x)$$

$$= \sum_{x \in X'} (rr_x) f(x) + \sum_{x \in X'} s_x f(x)$$

$$= r \sum_{x \in X_m} r_x f(x) + \sum_{x \in X_n} s_x f(x), \qquad (*)$$

$$= r \overline{f}(a) + \overline{f}(b).$$

$$\Longrightarrow \overline{f}: F \to N \in Mod(R).$$

Sea $x \in X,$ entonces la descomposición de x en $\sum_{x \in X} Rx$ es $1_R x,$ con lo

cual

$$\overline{f}(x) = \sum_{x \in \{x\}} 1_R f(x)$$
$$= f(x).$$
$$\implies \overline{f}|_X = f.$$

Finalmente, sea $g:F\to N$ un morfismo de R-módulos tal que $g|_X=f$ y $a\in F.$ Se tiene lo siguiente:

$$g(a) = g\left(\sum_{x \in X_a} r_x x\right)$$

$$= \sum_{x \in X_a} r_x g(x)$$

$$= \sum_{x \in X_a} r_x f(x)$$

$$= \overline{f}(x).$$

$$\Longrightarrow g = \overline{f}.$$

Ej 49.

Ej 50.

Ej 51. Sea $C \in Mod\left(Mod\left(R\right)\right)$ y ~ una relación en $Obj\left(Mod\left(R\right)\middle/C\right)$ dada por

$$f \sim f' \iff Hom(f, f') \neq \emptyset \neq Hom(f', f).$$

Entonces \sim es un relación de equivalencia en $Obj \left(Mod \left(R \right) / C \right)$.

Demostración. Reflexividad Sea $f: A \to C \in Obj (Mod(R)/C)$. Notemos que $Id_A \in Hom_R(A, A)$ y $f \circ Id_A = f$, así $Id_a \in Hom(f, f)$ y por lo tanto $Hom(f, f) \neq \emptyset$.

Simetría

$$f \sim f' \iff Hom(f, f') \neq \varnothing \neq Hom(f', f)$$
$$\iff Hom(f', f) \neq \varnothing \neq Hom(f, f')$$
$$\iff f' \sim f.$$

Transitividad Sean $f: A \to C, g: A' \to C, h: B \to C \in Obj \left(\stackrel{Mod(R)}{/}C \right)$ tales que $f \sim g$ y $g \sim h$. De la definición de \sim se sigue que $\exists p \in$

 $Hom_R(A,A'), q \in Hom_R(A',A), p' \in Hom_R(A',B), q' \in Hom_R(B,A')$ tales que

$$gp = f$$

$$fq = g.$$
(*)

$$hp' = g$$

$$gq' = h.$$
(**)

Así $p'p \in Hom_R(A, B), qq' \in Hom_R(B, A)$ y

$$h(p'p) = f$$
$$f(qq') = h,$$
$$\therefore f \sim h.$$

Ej 52.

Ej 53.

Definición 1. Decimos que una sucesión exacta en Mod(R), η ,

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0 .$$

se escinde, o bien que se parte, si f es un split-mono y g es un split-epi.

- **Ej 54.** Sea η : $0 \longrightarrow M_1 \xrightarrow{f} M \xrightarrow{g} M_2 \longrightarrow 0$ exacta en Mod(R). Las siguientes condiciones son equivalentes
 - a) η se escinde,
 - b) f es un split-mono,
 - c) g es un split epi
 - $d)\ Im\left(f\right) =Ker\left(g\right)$ y $Im\left(f\right)$ es un sumando directo de M.

Demostración. La demostración se realizará siguiendo el siguiente esquema:

 $a) \implies b)$ y $a) \implies c)$ se siguen en forma inmediata de la definición de sucesión exacta que se escinde.

En adelante, sean N := Im(f) y N' := Ker(g).

 $b \implies d$ N = N' se sigue del hecho de que η es una sucesión exacta. Sean i la inclusión de N en M, $\alpha: M \to M_1$ un morfismo de R-módulos tal que $\alpha f = Id_{M_1}$ (cuya existencia se tiene garantizada dado que f es un split-mono) y la función

$$\gamma: M \to N$$

$$m \mapsto f\alpha(m).$$

 γ es un morfismo de R-módulos pues f y α lo son, y más aún si $f\left(a\right)\in N$ se satisface que

$$\begin{split} \gamma i\left(f\left(a\right)\right) &= f\left(\alpha f\left(a\right)\right) \\ &= f\left(a\right). \\ &\Longrightarrow \gamma i = Id_{N}, \\ &\Longrightarrow i: N \to M \text{ es un split-mono.} \\ &\Longrightarrow N \text{ es un sumando directo de } M. \end{split}$$
 Teorema 1.12.5b)

 $c) \implies d$ Sean π el epimorfismo canónico de M sobre $N', \beta: M_2 \to M$ un morfismo de R-módulos tal que $g\beta = Id_{M_2}$ y la aplicación

$$\delta: N' \to M$$

$$m + N' \mapsto \beta q(m).$$

Afirmamos que δ es una función bien definida. En efecto: sean $m' \in m + N',$ así

$$m - m' \in N'$$

$$\implies g(m - m') = 0$$

$$\implies g(m) = g(m')$$

$$\implies hg(m) = hg(m').$$

Más aún, δ es un morfismo de R-m'odulos pues h y g lo son, y si $m\in M$ entonces

$$\pi\delta\left(m+N'\right) = \beta q\left(m\right) + N',$$

con

$$g(\beta g(m) - m) = g\beta(g(m)) - g(m)$$

$$= g(m) - g(m)$$

$$= 0.$$

$$\implies \beta g(m) - m \in N'$$

$$\implies \beta g(m) + N' = m + N'$$

$$\implies \pi \delta(m + N') = m + N'.$$

$$\implies \pi \delta = Id_{N'},$$

con lo cual π es un split-epi. Así, por el Teorema 1.12.5c) y dado que N=N' por ser η exacta, se tiene lo deseado.

 $d) \implies a$ Verificaremos primeramente que f es un split-mono. Se tiene que $\exists J \in \mathcal{L}(M)$ tal que $M = N \oplus J$, con lo cual para cada $m \in M \exists !$ $n_m \in N$ y $j_m \in J$ tales que $m = n_m + j_m$. Lo anterior en conjunto al hecho de que f es en partícular inyectiva, por ser η exacta, garantiza que

$$\forall m \in M \exists ! a_m \in M_1, j_m \in J \text{ tales que } m = f(a_m) + j_m.$$
 (*)

Así

$$\varphi: M \to M_1$$
$$m \mapsto a_m$$

es una función bien definida. Afirmamos que φ es un morfismo de R-módulos. En efecto, sean $r \in R$, $z,w \in M$, tales que $z=f(a_z)+j_z$ y $w=f(a_w)+j_w$, entonces

$$rz + w = r (f (a_z) + j_z) + f (a_w) + j_w$$

= $f (ra_z + a_w) + rj_z + j_w$.

Aplicando el hecho de que J es un submódulo de M y (*) a lo anterior se sigue que

$$\varphi(rz + w) = ra_z + a_w$$
$$= rf(z) + f(w).$$

Finalmente notemos que, si $a \in M_1$, $\varphi f(a) = \varphi(f(a) + 0) = a$, así que $\varphi f = Id_{M_1}$

 $\therefore f$ es un split-mono.

Por otro lado, como N=N', se tiene que $M=N'\oplus J$ y así

$$\begin{split} Ker\left(\left.g\right|_{J}\right) &= Ker\left(g\right) \cap J \\ &= N' \cap J = \left<0\right>_{R}, \end{split}$$

y como g es sobre

$$\begin{split} M_2 &= g\left(M\right) \\ &= g\left(\left\{g(a+b) \mid a \in Ker\left(g\right), b \in J\right\}\right) \\ &= g\left(\left\{g(b) \mid b \in J\right\}\right) \\ &= g\left(J\right) \\ &= g|_J\left(J\right), \\ &\Longrightarrow g|_J: J \to M_2 \text{ es un isomorfismo.} \end{split}$$

Por lo anterior $\exists h \in Hom_R(M_2, J)$ tal que $h g|_J = Id_J$ y $g|_J h = Id_{M_2}$, con lo cual Im(h) = J. Así $gh = g|_J h$ y por lo tanto g es un split-epi.

Ej 55.

Ej 56.

Ej 57. Sea \sim una relación en $Obj(Mod(R) \setminus A)$ dada por

$$f \sim f' \iff Hom(f, f') \neq \emptyset \neq Hom(f', f)$$
.

Entonces \sim es un relación de equivalencia en $Obj(Mod(R) \setminus A)$.

Demostración. La simetría de \sim se sigue inmediatamente de su definición, mientras que la reflexividad se sigue del hecho de que si $f:A\to B\in Obj\left(Mod\left(R\right)\backslash A\right)$ entonces $Id_{B}\in Hom_{R}\left(B,B\right)$ y $Id_{B}f=f.$ Así resta verificar que \sim es transitiva.

Sean $f: A \to B, g: A \to B', h: A \to C \in Obj(Mod(R) \setminus C)$ tales que $f \sim g$ y $g \sim h$, por lo tanto $\exists p \in Hom_R(B, B'), q \in Hom_R(B', B), p' \in Hom_R(B', C), q' \in Hom_R(C, B')$ tales que

$$pf = g$$
$$qg = f,$$

$$p'g = h$$
$$q'h = g.$$

Así $p'p \in Hom_R(B, C), qq' \in Hom_R(C, B)$ y

$$(p'p) f = h$$
$$(qq') h = f,$$

$$\therefore f \sim h.$$

Ej 58.

Ej 59.

Ej 60. Sea \mathcal{A} una categoría preaditiva y $A \in \mathcal{A}$. Entonces

- a) La correspondencia Hom-covariante $Hom_{\mathcal{A}}(A,-): \mathcal{A} \to Ab$ es un funtor covariante aditivo.
- b) La correspondencia Hom-contravariante $Hom_{\mathcal{A}}(-,A)\mathcal{A} \to Ab$ es un funtor contravariante aditivo.

Demostración. a) $Hom_{\mathcal{A}}(A,-)$ está dado por la siguiente correspondencia

$$\mathcal{A} \xrightarrow{Hom_{\mathcal{A}}(A,-)} Ab$$

$$B \xrightarrow{f} C \longmapsto Hom_{\mathcal{A}}(A,B) \xrightarrow{Ff} Hom_{\mathcal{A}}(A,C)$$

con

$$Ff: Hom_{\mathcal{A}}(A, B) \to Hom_{\mathcal{A}}(A, C)$$

 $\alpha \mapsto f\alpha.$

Notemos que $f \in Hom_{\mathcal{A}}(B,C)$, $\alpha \in Hom_{\mathcal{A}}(A,B)$, de lo cual se sigue que $f\alpha \in Hom_{\mathcal{A}}(A,C)$ y por lo tanto Ff está bien definida. Por otro lado como \mathcal{A} es preaditiva entonces $Hom_{\mathcal{A}}(A,B)$ y $Hom_{\mathcal{A}}(A,C)$ son grupos abelianos aditivos. Finalmente si $\alpha,\beta \in Hom_{\mathcal{A}}(A,B)$ como la composición de morfismos en $Hom(\mathcal{A})$ es \mathbb{Z} -bilineal, entonces

$$\begin{split} Ff\left(\alpha+\beta\right) &= f\left(\alpha+\beta\right) \\ &= f\alpha + f\beta \\ &= Ff(\alpha) + Ff(\beta), \\ &\Longrightarrow Ff \text{ es un morfismo de grupos abelianos.} \end{split}$$

Por todo lo anterior $Hom_{\mathcal{A}}(A,-)$ es una correspondencia bien definida. Afirmamos que $Hom_{\mathcal{A}}(A,-)$ es un funtor covariante. En efecto, sean

$$f \in Hom_{\mathcal{A}}(B, C),$$

 $\eta \in Hom_{\mathcal{A}b}(Z, Hom_{\mathcal{A}}(A, B)),$
 $\mu \in Hom_{\mathcal{A}b}(Hom_{\mathcal{A}}(A, B), Z).$

Asi si $z \in \mathbb{Z}$, entonces

$$Hom_{\mathcal{A}}(A, -) (Id_{B}) \eta(z) = FId_{B} (\eta(z))$$

$$= Id_{B} \eta(z)$$

$$= \eta(z), \qquad \eta(z) \in Hom_{\mathcal{A}}(A, B)$$

$$\Longrightarrow Hom_{\mathcal{A}}(A, -) (Id_{B}) = \eta.$$

Por su parte

$$\mu Hom_{\mathcal{A}}(A,-)(Id_{B})(\alpha) = \mu (FId_{B}(\alpha))$$

$$= \mu (Id_{B}\alpha) Id_{B}\eta (z)$$

$$= \mu (\alpha), \qquad \alpha \in Hom_{\mathcal{A}}(A,B)$$

$$\implies \mu Hom_{\mathcal{A}}(A,-)(Id_{B}) = \mu.$$

$$\therefore Hom_{\mathcal{A}}(A,-)(Id_{B}) = Id_{Hom_{\mathcal{A}}(A,B)} = Id_{Hom_{\mathcal{A}}(A,-)(B)}$$

Por su parte

$$Hom_{\mathcal{A}}(A, -) (gf) (\alpha) = (Fgf) (\alpha)$$

$$= gf (\alpha) = g (f\alpha)$$

$$= Fg (Ff(\alpha)), \qquad f\alpha \in Hom_{\mathcal{A}}(A, C)$$

$$= FgFf (\alpha)$$

$$\therefore Hom_{\mathcal{A}}(A,-)(gf) = Hom_{\mathcal{A}}(A,-)(g)Hom_{\mathcal{A}}(A,-)(f).$$

Con lo cual se ha verificado que $Hom_{\mathcal{A}}\left(A,-\right)$ es un funtor covariante. Finalmente, dado que la composición en $Hom\left(\mathcal{A}\right)$ es \mathbb{Z} -bilineal se tiene que

$$Hom_{\mathcal{A}}(A, -) (f + g) (\alpha) = F (f + g) (\alpha)$$

$$= (f + g) \alpha = f\alpha + g\alpha$$

$$= Ff (\alpha) + Fg (\alpha)$$

$$\Longrightarrow Hom_{\mathcal{A}}(A, -) (f + g) = Hom_{\mathcal{A}}(A, -) (f) + Hom_{\mathcal{A}}(A, -) (g)$$

De modo que

$$Hom_A(A, -): Hom_A(B, C) \rightarrow Hom_{Ab}(Hom_A(A, B), Hom_A(A, C))$$

es un morfismo de grupos abelianos. Con lo cual, dado que Ab es una categoría preaditiva (esto ya que la composición de morfismos de grupos abelianos es \mathbb{Z} -bilineal), se tiene que $Hom_{\mathcal{A}}(A,-)$ es un funtor aditivo. La demostración de b) se realiza en forma análoga.

Ej 61.

Ej 62.

Ej 63. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\coprod_{i\in I}M_i$ es proyectivo si y sólo si \forall $i\in I$ M_i es proyectivo.

Demostración. Sea C un coproducto para $\{M_i\}_{i\in I}$ por medio de las funciones $\{\mu_i\}_{i\in I}$. \Longrightarrow Sean $f:X\to Y$ un epimorfismo en Mod(R) y, para cada $i\in I$, $g_i\in Hom_R(M_i,Y)$. Por la propiedad universal del coproducto

 $\exists ! \ g: C \to Y \ \text{tal que}, \forall \ i \in I, g\mu_i = g_i.$ Dado que C es proyectivo entonces $\exists \ h: C \to X \ \text{en } Mod(R) \ \text{tal que} \ fh = g, \text{con lo cual si} \ h_i := h\mu_i \ \text{entonces}$

$$fh_i = f(h\mu_i)$$

$$= (fh) \mu_i$$

$$= g\mu_i$$

$$= g_i.$$

 $\implies g_i$ se factoriza a través de f, $\forall i \in I$.

 M_i es proyectivo, $\forall i \in I$.

← Verifcaremos primeramente los siguientes resultados:

Lema 1. Sean $\{X_i\}_{i\in I}$, $\{Y_i\}_{i\in I}$ y $\{Z_i\}_{i\in I}$ familias en Mod(R) tales que $\forall i\in I$

$$0 \longrightarrow X_i \xrightarrow{f_i} Y_i \xrightarrow{g_i} Z_i \longrightarrow 0 \tag{L1A}$$

es una sucesión exacta. Entonces $\exists f, g \in Hom(Mod(R))$ tales que

$$0 \longrightarrow \coprod_{i \in I} X_i \stackrel{f}{\longrightarrow} \coprod_{i \in I} Y_i \stackrel{g}{\longrightarrow} \coprod_{i \in I} Z_i \longrightarrow 0$$
 (L1B)

es una sucesión exacta. Los coproductos que aparecen en la expresión anterior son aquellos cuyos elementos son i-adas.

Demostración. Sean

$$f: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$$
$$(x_i)_{i \in I} \mapsto (f(x_i))_{i \in I}$$

у

$$g: \prod_{i \in I} Y_i \to \prod_{i \in I} Z_i$$
$$(y_i)_{i \in I} \mapsto (g(y_i))_{i \in I}.$$

 $f \in Hom\left(Mod(R)\right)$ pues $\forall i \in I$ $f_i \in Hom\left(Mod(R)\right)$, similarmente se tiene que g es un morfismo de R-módulos.

f es inyectiva Sea $(x_i)_{i\in I} \in Ker(f)$, entonces $\forall i \in I \ f_i(x_i) = 0$ y por lo tanto $\forall i \in I \ x_i = 0$, pues $\{f_i\}_{i\in I}$ es una familia de monomorfismos en Mod(R).

g es sobre Sea $(z_i)_{i\in I} \in \coprod_{i\in I} Z_i$. Como $\{g_i\}_{i\in I}$ es una familia de epimor-

fismos en Mod(R), entonces $\forall i \in I \exists y_i \in Y_i$ tal que $g_i(y_i) = z_i$ y por lo tanto $g(y_i)_{i \in I} = (z_i)_{i \in I}$.

Im(f) = Ker(g) Sea $(x_i)_{i \in I} \in \coprod_{i \in I} X_i$. Dado que (??) es exacta se tiene que $\forall i \in I \ Im(f_i) = Ker(g_i)$ y que, en partícular, $g_i f_i = 0$. Así

$$gf((x_i)_{i \in I}) = (g_i f_i(x_i))_{i \in I}$$

$$= 0.$$

$$\implies gf = 0$$

$$\implies Im(f) \subseteq Ker(g).$$

Por su parte, si $(y_i)_{i\in I} \in Ker(g)$, entonces $\forall i\in I \ y_i\in Ker(g_i)=Im(f_i)$, con lo cual para cada $i\in I \ \exists \ x_i\in X_i$ tal que $y_i=f_i(x_i)$. De modo que $(y_i)_{i\in I}=f\left((x_i)_{i\in I}\right)$, y por lo tanto $Ker(g)\subseteq Im(f)$. Por todo lo anterior $(\ref{eq:substantial})$ es exacta.

Lema 2. Sean $\{A_i\}_{i=1}^3$, $\{B_i\}_{i=1}^3$ en Mod(R) tales que $\forall i \ in[1,3] \ A_i \simeq B_i$ y

$$0 \longrightarrow A_1 \stackrel{f}{\longrightarrow} A_2 \stackrel{g}{\longrightarrow} A_3 \longrightarrow 0 \tag{L2A}$$

una sucesión exacta. Entonces $\exists \overline{f}, \overline{g} \in Hom(Mod(R))$ tales que

$$0 \longrightarrow B_1 \stackrel{\overline{f}}{\longrightarrow} B_2 \stackrel{\overline{g}}{\longrightarrow} B_3 \longrightarrow 0 \tag{L2B}$$

es una sucesión exacta.

Demostración. Sean $\varphi_i: A_i \to B_i$ isomorfismo $\forall i \in [1,3], \overline{f} := \varphi_2 f \varphi_1^{-1}$ y $\overline{g} := \varphi_3 g \varphi_2^{-1}$. Dado que f, φ_1 y φ_2 son monomorfismos en Mod(R), entonces \overline{f} lo es; análogamente \overline{g} es un epimorfismo puesto que φ_2 , g y φ_3 lo son.

Notemos que

$$\overline{g}\overline{f} = \varphi_3 g \varphi_2^{-1} \varphi_2 f \varphi_1^{-1}$$

$$= \varphi_3 g f \varphi_1^{-1}$$

$$= \varphi_3 0 \varphi_1^{-1}$$

$$= 0,$$

$$\Longrightarrow Im(\overline{f}) \subseteq Ker(\overline{g}).$$

Por su parte, si $v \in Ker(\overline{g})$ se tiene que

$$0 = \overline{g}(v) = \varphi_3 \left(g \varphi_2^{-1}(v) \right)$$

$$\implies g \left(\varphi_2^{-1}(v) \right) = 0, \qquad \varphi_3 \text{ es inyectiva}$$

$$\implies \varphi_2^{-1}(v) \in Ker(g) = Im(f).$$

Con lo cual $\exists u \in B_1$ tal que $\varphi_2^{-1}(v) = f(u)$, y así

$$v = \varphi_2 f(u)$$

$$= \varphi_2 f {\varphi_1}^{-1} (\varphi_1(u))$$

$$= \overline{f} (\overline{u}), \qquad \overline{u} := \varphi_1(u)$$

$$\implies Ker (\overline{g}) \subseteq Im (\overline{f}).$$

$$\therefore (L2B) \text{ es exacta.}$$

Lema 3. Sean $M, N \in Mod(R)$ tales que M es proyectivo y $M \simeq N$. Entonces N es proyectivo.

Demostración. Sean $\varphi: M \to N$ un isomorfismo en Mod(R), $f: X \to Y$ un epimorfismo en Mod(R) y $g \in Hom_R(N,Y)$. Como $g\varphi \in Hom_R(M,Y)$ y M es proyectivo, entonces $\exists \ h \in Hom_R(M,X)$ tal que $fh = g\varphi$, luego $f\left(h\varphi^{-1}\right) = g$, con lo cual g se factoriza a través de f. Por lo tanto N es proyectivo.

Ahora, sean $\coprod_{i\in I} M_i$ el coproducto para $\{M_i\}_{i\in I}$ cuyos elementos son i

adas de soporte finito, $0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ una sucesión exacta en Mod(R) y, para cada $i \in I$, $F_i := Hom_R(M_i, -)$ funtor covariante definido como en el Ej. 60. Por el Ej. 62 d) \forall $i \in I$ se tiene que

$$0 \longrightarrow F_i(X) \xrightarrow{F_i(f)} F_i(Y) \xrightarrow{F_i(g)} F_i(Z) \longrightarrow 0$$

es una sucesión exacta en $Mod(\mathbb{Z})$ y así, por el Lema 1,

$$0 \longrightarrow \prod_{i \in I} F_i(X) \longrightarrow \prod_{i \in I} F_i(Y) \longrightarrow \prod_{i \in I} F_i(Z) \longrightarrow 0$$

es una sucesión exacta. Se tiene que

$$\prod_{i \in I} F_i(X) = \prod_{i \in I} Hom_R(M_i, X)$$

$$\simeq Hom_R\left(\coprod_{i \in I} M_i, X\right).$$
 Ej. 32

Similarmente se encuentra que

$$\prod_{i \in I} F_i(Y) \simeq Hom_R \left(\coprod_{i \in I} M_i, Y \right),$$

$$\prod_{i \in I} F_i(Z) \simeq Hom_R \left(\coprod_{i \in I} M_i, Z \right).$$

Con lo cual, por el Lema 2,

$$0 \longrightarrow \operatorname{Hom}_R\left(\coprod_{i \in I} M_i, X\right) \longrightarrow \operatorname{Hom}_R\left(\coprod_{i \in I} M_i, Y\right) \longrightarrow \operatorname{Hom}_R\left(\coprod_{i \in I} M_i, Z\right) \longrightarrow 0$$

es una sucesión exacta y así $\coprod_{i\in I}M_i$ es un módulo proyectivo. Finalmente como $C\simeq\coprod_{i\in I}M_i$ en Mod(R), por el Lema 3, se sigue que C es proyectivo y así se tiene lo deseado.

Ej 64.

Ej 65.

Ej 66. Sea $\{M_i\}_{i\in I}$ en Mod(R). Entonces $\prod_{i\in I}M_i$ es inyectivo si y sólo si, \forall $i\in I$, M_i es inyectivo.

 $\begin{array}{ll} \textit{Demostraci\'on}. \text{ La demostraci\'on es an\'aloga a lo realizado en el Ej. 63: se} \\ \text{emplea la propiedad universal del producto para verificar la necesidad,} \\ \text{mientras que los lemas 1 a 3 probados en el Ej. 63, en conjunto a que} \\ \forall \ H \in Mod(R) \text{ se tiene que} \prod_{i \in I} Hom_R\left(H, M_i\right) \simeq Hom_R\left(H, \prod_{i \in I} M_i\right) \text{ (ver Ej. 35), verifican la suficiencia.} \\ \\ \Box$

Ej 67.