CURSO ONLINE - PROVAS DE MATEMÁTICA BÁSICA ALTERNATIVAS E INVESTIGATIVAS

Material elaborado por:

Jenifer C. da S. Oliveira - jenifer.09.oliveira@gmail.com

Material do Vídeo 1 - Iniciando o estudo das demonstrações diretas

Abaixo segue o enunciado do exemplo 1, sua resolução e algumas observações.

Enunciado do Exemplo 1: Mostre, utilizando demonstração direta, que a soma de quaisquer dois números naturais pares resulta em um número natural par.

Demonstração:

Para demonstrar o Exemplo 1, vamos relembrar a definição de números pares:

<u>Definição de números pares</u>: Um número natural é par se: quando dividido por dois, deixa resto zero na divisão euclidiana e tem como quociente um número natural.

A definição de números pares acima nos permite afirmar que para um número natural ser par ele precisa também ser múltiplo por 2. Sabendo que todo número par é múltiplo de dois, podemos expressar (escrever) de forma genérica um número par como sendo da forma 2n, com n sendo um número natural.

A fim de contemplar na nossa demonstração a soma de números pares iguais e distintos, vamos considerar quaisquer dois números pares 2n e 2k, com n,k pertencentes aos números naturais. Assim, ao somarmos dois números pares quaisquer teremos:

$$2n + 2k =$$
 (somamos dois números pares genéricos)

$$2n + 2k = 2(n + k)$$
 (colocamos o fator 2 em evidência)

Observe que o conjunto dos números naturais é fechado com relação a operação de adição, por isso, quando somamos dois números naturais o resultado obrigatoriamente será um número natural também. Isso nos permite afirmar que (n + k) = g, onde g é um número natural. Assim, segue que:

$$2n + 2k = 2(n + k)$$
 (definimos que $(n + k) = g$)

$$2n + 2k = 2(n + k) = 2g$$
 (substituímos $(n + k)$ por g)

Observe que 2g, onde g é um número natural, é um número par, isso porque, como mencionado anteriormente, os números pares são múltiplos de dois.

Por isso, e a partir da linha acima, ou seja, da igualdade [2n + 2k = 2(n + k) = 2g], mostramos que a soma de dois números pares quaisquer resulta em um número par.

Observação 1) Note que, no decorrer da demonstração acima, quando acrescentamos letras para representar números naturais genéricos, definimos que as mesmas representavam números que pertenciam aos números naturais. Definir o que essas letras representam é extremamente importante e necessário ao realizar demonstrações.

Observação 2) Note também que ao longo desta demonstração utilizamos uma definição matemática (definição de números pares). Além disso, utilizamos a informação de "somar dois números pares e ver o que resulta". A partir dessas duas informações, buscamos construir uma igualdade que nos permitiu concluir que a soma desses números também é um número par. Observe que na demonstração acima não afirmamos inicialmente que dois números pares somados resultam em um número par, mas sim somamos dois números pares genéricos e, utilizando definições e manipulações algébricas, conseguimos concluir que o resultado sempre será um número par.