

Cálculo 1 - HONORS - CM311

Apresentação da disciplina - Módulo - Limites

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

Equipe Teams

• Acesse a equipe através do QR Code abaixo (use email UFPR):

- Ementa:
 - 1. Limites e Continuidade.
 - 2. Derivadas.
 - 3. Integrais.
- Avaliações:
 - Prova 1 (P1): 11/04 (quinta)
 - Prova 2 (P2): 16/05 (quinta)
 - Prova 3 (P3): 20/06 (quinta)
 - ► Exame Final (E): 02/07 (terça)
 - ▶ Atividades (A): lista de exercícios, mini projetos, UFPR Virtual, etc.
- Média (M), Nota Final (NF), Condições para Aprovação

$$M = \frac{P_1 + P_2 + P_3 + A}{4}.$$

- ▶ Se M > 70 está aprovado e NF = M.
- ▶ Se M < 40, está reprovado e NF = M.
- ▶ Se $40 \le M < 70$, é necessário fazer exame final, e

$$NF = \frac{M + Ex}{2}$$

- Ementa:
 - 1. Limites e Continuidade.
 - 2. Derivadas.
 - 3. Integrais.
- Avaliações:
 - Prova 1 (P1): 11/04 (quinta)
 - Prova 2 (P2): 16/05 (quinta)
 - Prova 3 (P3): 20/06 (quinta)
 - Exame Final (E): 02/07 (terça)
 - ▶ Atividades (A): lista de exercícios, mini projetos, UFPR Virtual, etc.
- Média (M), Nota Final (NF), Condições para Aprovação

$$M = \frac{P_1 + P_2 + P_3 + A}{4}.$$

- ▶ Se $M \ge 70$ está aprovado e NF = M.
- ▶ Se M < 40, está reprovado e NF = M.
- ightharpoonup Se $40 \le M < 70$, é necessário fazer exame final, e

$$NF = \frac{M + Ex}{2}$$

- Ementa:
 - 1. Limites e Continuidade.
 - 2. Derivadas.
 - 3. Integrais.
- Avaliações:
 - Prova 1 (P1): 11/04 (quinta)
 - Prova 2 (P2): 16/05 (quinta)
 - Prova 3 (P3): 20/06 (quinta)
 - Exame Final (E): 02/07 (terça)
 - ▶ Atividades (A): lista de exercícios, mini projetos, UFPR Virtual, etc.
- Média (M), Nota Final (NF), Condições para Aprovação

$$M = \frac{P_1 + P_2 + P_3 + A}{4}.$$

- ▶ Se $M \ge 70$ está aprovado e NF = M.
- Se M < 40, está reprovado e NF = M.
- ▶ Se $40 \le M < 70$, é necessário fazer exame final, e

$$NF = \frac{M + Ex}{2}.$$

Bibliografia:

- ▶ H. L. GUIDORIZZI. Um curso de Cálculo, vol. 1, LTC.
- J. STEWART. Cálculo, vol. 1, Cengage Learning.
- M. SPIVAK. Calculus, Addison Wesley.
- ► T.M. APOSTOL. Calculus, vol. 1, John Wiley.
- W. RUDIN. Principles of Mathematical Analysis, McGraw-Hill.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Objetivos: Aprender conceitos e resultados aprofundados de Cálculo 1.
- Motivações: ideias introduzidas na aula passada.
- Definição formal de limites e propriedades.
- Teoremas "óbvios", mas não tão fáceis de serem provados.
- Conceito de derivadas e aplicações.
- Integrais e o Teorema Fundamental do Cálculo.

- Sendo $x \in \mathbb{R}$, definimos o módulo, ou valor absoluto, como a distância de x até 0.
- Notação: |x|.
- Temos

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

- Propriedades:
 - a) $|x| \ge 0$.
 - b) $|x| = 0 \Leftrightarrow x = 0$.
 - c) $-|x| \le x \le |x|$.
 - d) $|x| = a \Leftrightarrow x = a \text{ ou } -a$.

- e) $|x| < a \Leftrightarrow -a < x < a$.
- f) $|x| > a \Leftrightarrow x > a$ ou x < -a
- g) $|x| = \sqrt{x^2}$
- h) |x.y| = |x|.|y|.
- Designaldade Triangular: $|x+y| \le |x| + |y|$. A igualdade vale se, e somente se, $x,y \ge 0$.

- Sendo $x \in \mathbb{R}$, definimos o módulo, ou valor absoluto, como a distância de x até 0.
- Notação: |x|.
- Temos

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

- Propriedades:
 - a) $|x| \ge 0$.
 - b) $|x| = 0 \Leftrightarrow x = 0$.
 - c) $-|x| \le x \le |x|$.
 - d) $|x| = a \Leftrightarrow x = a \text{ ou } -a$.

- e) $|x| < a \Leftrightarrow -a < x < a$.
- f) $|x| > a \Leftrightarrow x > a$ ou x < -a
- g) $|x| = \sqrt{x^2}$
- h) |x.y| = |x|.|y|.
- Designaldade Triangular: $|x+y| \le |x| + |y|$. A igualdade vale se, e somente se, $x,y \ge 0$.

- Sendo $x \in \mathbb{R}$, definimos o módulo, ou valor absoluto, como a distância de x até 0.
- Notação: |x|.
- Temos

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

- Propriedades:
 - a) $|x| \ge 0$.
 - b) $|x| = 0 \Leftrightarrow x = 0$.
 - c) $-|x| \le x \le |x|$.
 - d) $|x| = a \Leftrightarrow x = a \text{ ou } -a$.

- e) $|x| < a \Leftrightarrow -a < x < a$.
- f) $|x| > a \Leftrightarrow x > a$ ou x < -a.
- g) $|x| = \sqrt{x^2}$
- h) |x.y| = |x|.|y|.
- Designaldade Triangular: $|x+y| \le |x| + |y|$. A igualdade vale se, e somente se, $x,y \ge 0$.

- Sendo $x \in \mathbb{R}$, definimos o módulo, ou valor absoluto, como a distância de x até 0.
- Notação: |x|.
- Temos

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

- Propriedades:
 - a) |x| > 0.
 - b) $|x| = 0 \Leftrightarrow x = 0$.
 - c) -|x| < x < |x|.
 - d) $|x| = a \Leftrightarrow x = a \text{ ou } -a$. h) $|x \cdot y| = |x| \cdot |y|$.
- e) $|x| < a \Leftrightarrow -a < x < a$.
- f) $|x| > a \Leftrightarrow x > a$ ou x < -a.
- g) $|x| = \sqrt{x^2}$.
- Designaldade Triangular: $|x+y| \le |x| + |y|$. A igualdade vale se, e

- Sendo $x \in \mathbb{R}$, definimos o módulo, ou valor absoluto, como a distância de x até 0.
- Notação: |x|.
- Temos

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0. \end{cases}$$

- Propriedades:
 - a) |x| > 0.
 - b) $|x| = 0 \Leftrightarrow x = 0$.
 - c) $-|x| \le x \le |x|$.
- g) $|x| = \sqrt{x^2}$.

e) $|x| < a \Leftrightarrow -a < x < a$.

f) $|x| > a \Leftrightarrow x > a$ ou x < -a.

- d) $|x| = a \Leftrightarrow x = a \text{ ou } -a$.
- Designaldade Triangular: $|x+y| \le |x| + |y|$. A igualdade vale se, e somente se, $x.y \ge 0$.

Outras Desigualdades

•
$$|x - y| \le |x| + |y|$$
.

•
$$|x| - |y| \le |x - y|$$
.

• Distância dist
$$(x, y) = |x - y|$$
.

- Propriedades:
 - a) $dist(x, y) \ge 0$
 - b) $dist(x, y) = 0 \Leftrightarrow x = y$
 - c) $dist(x, y) \le dist(x, z) + dist(z, y)$

•
$$||x| - |y|| \le |x - y|$$
.

•
$$|x + y + z| \le |x| + |y| + |z|$$
.

Outras Desigualdades

•
$$|x - y| \le |x| + |y|$$
.

•
$$|x| - |y| \le |x - y|$$
.

• Distância dist
$$(x, y) = |x - y|$$
.

- Propriedades:
 - a) $dist(x, y) \ge 0$
 - b) $dist(x, y) = 0 \Leftrightarrow x = y$
 - c) $dist(x, y) \le dist(x, z) + dist(z, y)$

- $||x| |y|| \le |x y|$.
- $|x + y + z| \le |x| + |y| + |z|$.

Outras Desigualdades

•
$$|x - y| \le |x| + |y|$$
.

•
$$|x| - |y| \le |x - y|$$
.

• Distância dist
$$(x, y) = |x - y|$$
.

- Propriedades:
 - a) dist $(x, y) \ge 0$.
 - b) $dist(x, y) = 0 \Leftrightarrow x = y$.
 - c) $dist(x, y) \leq dist(x, z) + dist(z, y)$.

•
$$||x| - |y|| \le |x - y|$$
.

•
$$|x + y + z| \le |x| + |y| + |z|$$
.

Dada uma função y = f(x) e $p \in \mathbb{R}$ dizemos que

o limite de f quando x tende a p é igual à $L \in \mathbb{R}$

se

conseguirmos deixar f(x) tão próximo de L quanto quisermos ao tomar x suficiente próximo de p, mas diferente de p.

$$\lim_{x \to p} f(x) = L$$

- O limite é um conceito local, isto é, depende apenas do comportamento da função ao redor do ponto p.
- Para o cálculo do limite não nos importamos com o valor da função f(p).

Dada uma função y = f(x) e $p \in \mathbb{R}$ dizemos que

o limite de f quando x tende a p é igual à $L \in \mathbb{R}$

se

conseguirmos deixar f(x) tão próximo de L quanto quisermos ao tomar x suficiente próximo de p, mas diferente de p.

$$\lim_{x \to p} f(x) = L$$

- O limite é um conceito local, isto é, depende apenas do comportamento da função ao redor do ponto p.
- Para o cálculo do limite não nos importamos com o valor da função f(p).

Dada uma função y = f(x) e $p \in \mathbb{R}$ dizemos que

o limite de f quando x tende a p é igual à $L \in \mathbb{R}$

se

conseguirmos deixar f(x) tão próximo de L quanto quisermos ao tomar x suficiente próximo de p, mas diferente de p.

$$\lim_{x\to p} f(x) = L$$

- O limite é um conceito local, isto é, depende apenas do comportamento da função ao redor do ponto p.
- Para o cálculo do limite não nos importamos com o valor da função f(p).

Dada uma função y = f(x) e $p \in \mathbb{R}$ dizemos que

o limite de f quando x tende a p é igual à $L \in \mathbb{R}$

se

conseguirmos deixar f(x) tão próximo de L quanto quisermos ao tomar x suficiente próximo de p, mas diferente de p.

$$\lim_{x\to p} f(x) = L$$

- O limite é um conceito local, isto é, depende apenas do comportamento da função ao redor do ponto p.
- Para o cálculo do limite não nos importamos com o valor da função f(p).

Dada uma função y = f(x) e $p \in \mathbb{R}$ dizemos que

o limite de f quando x tende a p é igual à $L \in \mathbb{R}$

se

conseguirmos deixar f(x) tão próximo de L quanto quisermos ao tomar x suficiente próximo de p, mas diferente de p.

$$\lim_{x\to p} f(x) = L$$

- O limite é um conceito local, isto é, depende apenas do comportamento da função ao redor do ponto p.
- Para o cálculo do limite não nos importamos com o valor da função f(p).

Limites

Exemplo 3.1.

a)
$$\lim_{x \to 3} 2x - 5$$

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2}$$

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2}$$

d)
$$\lim_{t\to 0} 10 \frac{\sqrt{t^2+9}-3}{t^2}$$

e)
$$\lim_{t\to 0} \frac{\operatorname{sen} h}{h}$$

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	2,9	2,99	2,999		3,001	
2x - 5				X (= 1)		
	2.5	1			/	
	- 2			,	/	
	1.5			/		
	- 1			/ 1	j = 2x - 5	
	0.5			_/_		
	0	0.5	1 1,5	<u>.</u> 25 3 :	1.5 4 4.5	
	-0.5					
	-1		/	/		

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

X	2,9	2,99	2,999	3	3,001	3,01	3,1
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

X	2,9	2,99	2,999	3	3,001	3,01	3,1
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	-,-	-,	2,999	_	- /	- , -	- /
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	0.0	0.00	0.000		0.001	0.01	0.1
			2,999		3,001	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	_,-	-,	2,999	_	,	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

10 / 15

Exemplo 3.2.

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	_,-	_,-,-	2,999	_	,	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	_,-	_,-	2,999	_	,	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	_,-	_,-	2,999	_	,	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

a)
$$\lim_{x \to 3} 2x - 5 = 1$$

	-,-	_,-,	2,999	_	3,001	-,	-,-
2x - 5	0,8	0,98	0,998	X (= 1)	1,002	1,02	1,2

Exemplo 3.3.

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

Exemplo 3.3.

Calcule os limites abaixo

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

	1,5	1,55	1,555		2,001	2,01	_, _
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3
		2					
		1					
_	-1	0 1	2 3		4 5	6 7	
		1					
		2			-3x + 6	3	
				<i>y</i> =	$= \frac{-3x + 6}{x - 2}$		
-		•	<u> </u>				

1.9 1.99 1.999 2 2.001 2.01 2.1

Exemplo 3.3.

Calcule os limites abaixo

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

^	1,5	1,55	1,555	_	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Х	-3	-3	-3
		2					
		1					
		0 1	2 3		4 5	6 7	
		1					
		2			-3x + 6	3	
				<i>y</i> =	$= \frac{-3x + 6}{x - 2}$		
		3	·				

1.9 1.99 1.999 2 2.001 2.01 2.1

Exemplo 3.3.

Calcule os limites abaixo

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

X	1,9	1,99	1,999	_	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3
		2					
		1					
_	-1	0 1	2 3		5 5	6 7	
		2		<i>y</i> =	$= \frac{-3x + 6}{x - 2}$	3	
			-	,	x-2		

1 0 | 1 00 | 1 000 | 2 | 2 001 | 2 01 | 2 1

Exemplo 3.3.

Calcule os limites abaixo

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

^	1,5	1,55	1,555	~	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3
		2					
		1					
	-1	0 1	2 3		5	6 7	
		1					
		2		u =	$= \frac{-3x + 6}{x - 2}$	3	
				9	x-2		
			Ŭ.				

1 9 | 1 99 | 1 999 | 2 | 2 001 | 2 01 | 2 1

Exemplo 3.3.

b)
$$\lim_{x\to 2} \frac{-3x+6}{x-2} = -3$$

X	1,9	1,99	1,999	2	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3

Exemplo 3.3.

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

<i>x</i> 1	1,9	1,99	1,999	2	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3

Exemplo 3.3.

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

Х	1,9	1,99	1,999	2	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3

Exemplo 3.3.

b)
$$\lim_{x \to 2} \frac{-3x + 6}{x - 2} = -3$$

Х	1,9	1,99	1,999	2	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3

Exemplo 3.3.

b)
$$\lim_{x\to 2} \frac{-3x+6}{x-2} = -3$$

X	1,9	1,99	1,999	2	2,001	2,01	2,1
$\frac{-3x+6}{x-2}$	-3	-3	-3	Χ	-3	-3	-3

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X	-1,1	-1,01	-1,001	-1		
				Χ		

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4,5$$

X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X		-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
<u>-3</u>	$\frac{x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

	X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
ĺ	$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

Exemplo 3.4.

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4,5$$

X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X	,	, -	-1,001		- ,	- /	- / -
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4.5$$

X	,	, -	-1,001		- ,	- /	- / -
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

c)
$$\lim_{x \to -1} \frac{-3x^2 + 3x + 6}{2x + 2} = 4,5$$

X	-1,1	-1,01	-1,001	-1	-0,999	-0,99	-0,9
$\frac{-3x^2+3x+6}{2x+2}$	4,65	4,515	4,502	Χ	4,499	4,485	4,35

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

t	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Х	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

t		'	,	-0,001		1 '	,	,
1	$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

ſ	t	'	,	-0,001		· '	,	'
ſ	$10^{\frac{\sqrt{t^2+9}-3}{t^2}}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

t	'	,	-0,001		· ·	,	'
$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

t	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Х	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

[t	- ,	- / -	- ,	-	-,	0,01	- /
	$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

	t	'	,			,	0,01	'
ſ	$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

	t	'	,			,	0,01	'
ſ	$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.5.

d)
$$\lim_{t \to 0} 10 \frac{\sqrt{t^2 + 9} - 3}{t^2} = \frac{10}{6}$$

t	- ,	- / -	- ,	-	-,	0,01	- /
$10\frac{\sqrt{t^2+9}-3}{t^2}$	1,6662	1,6666	1,6666	Χ	1,6666	1,6666	1,6662

Exemplo 3.6.

e)
$$\lim_{h\to 0} \frac{\operatorname{sen} h}{h} = 1$$

Exemplo 3.6.

$$e) \lim_{h\to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

$$e) \lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Х	0,9999	0,9999	0,9983

Exemplo 3.6.

$$e) \lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	- , -	-0,001	0	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

$$e) \lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	- , -	-0,001	-	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

e)
$$\lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$$

ſ	h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
ſ	sen h	0,9983	0,9999	0,9999	Х	0,9999	0,9999	0,9983

Exemplo 3.6.

e)
$$\lim_{h \to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	- , -	-0,001	-	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

$$e) \lim_{h\to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

$$e) \lim_{h\to 0} \frac{\operatorname{sen} h}{h} = 1$$

h	-0,1	-0,01	-0,001	0	0,001	0,01	0,1
sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Exemplo 3.6.

e)
$$\lim_{h\to 0}\frac{\operatorname{sen} h}{h}=1$$

ſ	h	- ,	- , -	- /	-	0,001	- , -	0,1
ſ	sen h	0,9983	0,9999	0,9999	Χ	0,9999	0,9999	0,9983

Limites - Definição Formal

• Seja
$$f:(a,b) o \mathbb{R}$$
 e $x_0 \in (a,b)$. Dizemos que $\lim_{x o x_0} f(x) = L$

se

$$\forall \varepsilon > 0 \,\exists \delta > 0$$
, tal que se $0 < |x - x_0| < \delta$ então $|f(x) - L| < \varepsilon$.