Making Inferences about Features DATA 202 21FA

Logistics

- Final projects
- Midterm 2??
- Discussions
- Quizzes and Homework

What's your goal?

- Predict unseen labels
 - How much will this house sell for?
 - Does this child have autism?
 - Is this a positive or negative movie review?
- Infer relationships between features and labels
 - How much does home size affect price?
 - Is DNA methylation a marker of autism?
 - Does "sick" indicate a positive or negative review?
- Understand the causal effect of interventions
 - How much will building an addition increase the price of my home?
 - Will antioxidants prevent autism?
 - Will cutting this scene make my movie get better reviews?

Techniques for Inference

- Classical statistical inference
 - 2-sample t tests, chi squared tests, ANOVA, ...
 - inference about model parameters (coefficient standard errors etc.)
- Variable importance plots
- Benefit of adding each feature

Objectives for Today

- Identify several different approaches for drawing conclusions about features
- Recognize potential challenges in making those inferences

Palmer Penguins

library(palmerpenguins)
penguins <- palmerpenguins::pe
 filter(!is.na(bill_length_mm</pre>

How does bill length relate to bill depth?

Penguin bill dimensions

Palmer Station LTER

How does bill length relate to bill depth?

Penguin bill dimensions

Bill length and depth for Adelie, Chinstrap and Gentoo Penguins at Palme

One big model

Fit Model Coefficients Predictions

Parallel slopes

4 speci... -5.11

Fit Model Coefficients Predictions

parallel_slopes_model <- linear_reg() %>%

3 speci... -1.93 0.224 -8.62 2.55e-16 -2.37 -1.49

0.191 -26.7 3.65e-85 -5.48 -4.73

Interactions

Fit Model Coefficients Predictions

interaction_model <- linear_reg() %>%

```
fit(bill_depth_mm ~ bill_length_mm
     * species,
     data = penguins)
tidy(interaction_model, conf.int = TRUE)
# A tibble: 6 \times 7
 term estimate std.error statistic p.value conf.low conf.high
 <chr> <dbl> <dbl>
                          <dbl>
                                  <dbl>
                                         <dbl>
                                                  <dbl>
1 (Inte... 11.4
                 1.14
                         10.0 7.28e-21 9.17
                                                 13.6
2 bill_... 0.179 0.0293 6.11 2.76e- 9 0.121 0.236
3 speci... -3.84 2.05 -1.87 6.24e- 2 -7.88 0.200
4 speci... -6.16
                 1.75 -3.51 5.09e- 4 -9.61 -2.71
5 bill_... 0.0434 0.0456 0.952 3.42e- 1 -0.0463 0.133
6 bill ... 0.0260 0.0405 0.642 5.22e- 1 -0.0537 0.106
```

LINE Assumptions for making inference

- Linearity: there's actually a linear relationship
- Independence: there's no pattern to the errors
- Normality of residuals: no major outliers
- Equal variance of residuals: variability doesn't change systematically

These are colloquial wordings. See textbook section E.4 for technical and how to verify.

Examples of broken assumptions

- Linearity: the hotter the temperature, the more each degree of temperature matters
- Independence: ridership for adjacent hours is similar
- Normality of residuals: spike in demand after championship game
- Equal variance of residuals: bigger variability in demand on weekends vs weekdays

Variable Importance Plots

```
regresion_workflow <- workflow() %>% add_model(decision_tree(mode = "regression") %>% set_e
model <- regresion_workflow %>%
  add_recipe(recipe(Sale_Price ~ ., data = ames_train)) %>%
  fit(data = ames_train)
model %>% extract_fit_engine() %>% vip::vip(num_features = 15L)
```


How much does it help to have a feature in?

```
regresion_workflow %>%
  add_recipe(recipe(Sale_Price ~ ., data = ames_train)) %>%
  fit resamples (resamples = resamples, metrics = metric set(mae, rmse)) %>% collect metrics(
# A tibble: 2 \times 6
                             n std_err .config
  .metric .estimator mean
 <chr>
        <chr>
                   <dbl> <int> <dbl> <chr>
         standard 25.7
                            10 0.438 Preprocessor1_Model1
1 mae
         standard
                    36.1
                            10 1.16 Preprocessor1_Model1
2 rmse
regresion_workflow %>%
  add recipe(recipe(Sale Price ~ ., data = ames train) %>% step rm(ends with("Qual"))) %>%
  fit resamples (resamples = resamples, metrics = metric set(mae, rmse)) %>% collect metrics(
# A tibble: 2 \times 6
  .metric .estimator mean
                             n std_err .config
                   <dbl> <int> <dbl> <chr>
 <chr> <chr>
         standard 25.6
                            10 0.627 Preprocessor1_Model1
1 mae
2 rmse standard
                    36.5
                            10
                                1.10 Preprocessor1_Model1
```

Variable Importance without the Quality Features

```
regresion_workflow %>%
  add_recipe(Sale_Price ~ ., data = ames_train) %>% step_
  fit(data = ames_train) %>%
  extract_fit_engine() %>% vip::vip(num_features = 15L)
```


Appendix: code

```
include graphics("https://raw.githubusercontent.com/allisonhorst/palmerpenguins/master/man/f
include graphics("https://raw.githubusercontent.com/allisonhorst/palmerpenguins/master/man/f
ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
  geom point() +
  geom_smooth(method = "lm") +
  labs(title = "Penguin bill dimensions", subtitle = "Palmer Station LTER", x = "Bill length
ggplot(penguins, aes(x = bill length mm, y = bill depth mm, color = species, shape = species
  geom point() +
  geom smooth(method = "lm") +
  scale color manual(values = c("darkorange","purple","cyan4")) +
  labs(title = "Penguin bill dimensions",
       subtitle = "Bill length and depth for Adelie, Chinstrap and Gentoo Penguins at Palmer
       x = "Bill length (mm)",
       y = "Bill depth (mm)",
       color = "Penguin species",
       shape = "Penguin species") +
  theme(legend.position = c(0.85, 0.15),
        legend.background = element rect(fill = "white", color = NA))
#data(ames, package = "modeldata")
ames <- AmesHousing::make_ames()</pre>
ames_all <- ames %>%
 filter(Gr Liv Area < 4000, Sale Condition == "Normal") %>%
 mutate(across(where(is.integer), as.double)) %>%
 mutate(Sale_Price = Sale_Price / 1000)
rm(ames)
set.seed(10) # Seed the random number generator
ames_split <- initial_split(ames_all, prop = 2 / 3)</pre>
ames_train <- training(ames_split)</pre>
ames_test <- testing(ames_split)</pre>
set.seed(0)
resamples <- vfold_cv(ames_train, v = 10)
```