A Note for Abstract Algebra

Meterial List

- Lieback
- Rotman Group
- Rings Notes
- Midterm

Additional material: e-book from wechat group contribute by Fanlue. It might be useful when having no problem sheets and solutions.

Chapters and Contents

- 1. Lieback
 - o Chapter 19
 - Chapter 20
 - Chapter 25
 - Chapter 26
- 2. Rotman Groups
 - Subgroup
 - Lagrange
 - Cyclic Groups
 - Normal Groups
 - Isomorphism
 - Correspondence
 - Quotient Groups
 - Direct product
 - Conjugates
 - G_set
 - Symmetric Groups
 - Corollay Burnside
 - Burnside Lemma
 - Burnside Colouring Flag
 - Burnside 4×4
 - Burnside Bracelet
- 3. Ring Notes
 - o Rings 1 8
 - o Rings 2.3 2.12
 - Foctorisation
 - Ishort
 - Division in quadratic integers

Note that: *groups actions* and *Burnside's Lemma* (Section factorisation in integral domains) are not examinable!!!

Groups

This part is the most important and abundant part. Problems mainly have no solutions.

- 1. Permutation and cycles
- 2. Transportation
- 3. **Disjoint = Commute:** if lpha(x)
 eq x, then all eta(x) = x
- 4. **Cancellation Law:** if either $\alpha\beta=lpha\gamma$ or $\betalpha=\gammalpha$ $eta=\gamma$
- 5. **Regular permutation:** $\alpha = 1$ or α is a product of disjoint cycles.
- 6. **Even/odd permutation:** Even/Odd numbers of r-cycles, where r is an even number.
- 7. **Group:**
 - Closure Axiom: for any $\alpha, \beta \in G$, then $\alpha\beta \in G$
 - ullet Associative Axiom: for $orall lpha, eta \in G, (a*b)*c = a*(b*c)$
 - \circ Identity Axiom: for $\exists e \in G, ext{such that } a*e=e*a=a$, for all $a \in G$
 - ullet Inverse Axiom for $orall a \in G$ there exist $b \in G, \ s.t., \ a*b=b*a=e$
- 8. **Semi-group:** Associative Axiom
- 9. S_x S_n : *Symmitric Group* permutation groups A_x A_n : *Alternating Group*) even permutation groups
- 10. Comute=ablelian
- 11. \square Congruence Class $\mathbf{Z_m}$
- 12. **Unit** in Ring
- 13. Four Group
- 14. Multiplication table NB: $a_{row} st a_{colum}$
- 15. Homomorphism: $f(a*b) = f(a) \circ b$
- 16. *Isomorphism* \cong : Homomorphism & Bijection

Imbedded: S an be imebedded in $G \Leftrightarrow S \cong G'$, where $G' \leq G$

- 17. Subgroup: $S \leq G$ Determine:
 - 1. if $s,t\in S$, then $s^{-1}\in S$ and $st\in S\Rightarrow X\leq G$
 - 2. $1 \in S$ and if $s,t \in S$ then $st^{-1} \in S \Rightarrow S \leq G$
 - 3. G is a **finite** group and if $s,t\in G$ then $st\in S\Rightarrow S\leq G$
- 18. Cyclic (Sub)Group: < a >

Subgroup generated by a: < A >

19. Order: number of elements

Index: [G:S], number of (right) cosets of S in G

Exponent: $x^n=1$ for all $x\in G$

- 20. **Proper:** Subgroup \neq Group
- 21. *Trivial:* Subgroup 1
- 22. **Kernel:** $kerf=\{a\in G: f(a)=1\}$ **Image:** $Imf=\{h\in H: h=f(a)\}$ **NB:** For $G\to S$, $kerf\in G$ and $Imf\in H$
- 23. *Word:* A conception to build < X>, for a subset X of a group G, $w=x_1^{e1}x_2^{e2}x_3^{e3}x_4^{e4}\cdots x_n^{en}$, where $x_i\in X, e_n=\pm 1$, then < X> is either 1 if $X=\emptyset$, or < X>= {all words of X}
- 24. General linear GroupGL(n,k): N.B. k is a field. $GL(n,k)=(A,\times)$, where $A=\{n\times n\ matrix:\ all\ entries (or\ say\ elements)\ a\in k\}$

Special Linear GroupSL(n,k): matrices have determine 1.

N.B. for n=1,GL(n,k) is abelian and $n\geq 2,GL(n,k)$ is **NOT** Abelian

25. (Right) Coset of S: $St = \{st : s \in S\}$, t is called representative.

Rings

- 1. **Ring:** $(F,+,\cdot)$ is a ring if:
 - \circ (R,+) is a Group;
 - \circ (R,+) is a Semigroup;
 - ullet $\forall a,b,c,\ a(b+c)=ab+ac$ and (a+b)c=ac+bc
- 2. **Devision Ring:** $\forall a \neq 0, \exists b, s.t. ab = ba = 1$
- 3. Field: Commutative division ring.
- 4. Subring:
 - ullet R is a ring, $S\subset R$
 - \circ $0,1 \in S$
 - \circ for $orall s,t\in S$, $s+t,st,s-t\in S$
- 5. Integral domain:
 - 1. R is commutative
 - 2. $0 \neq 1$
 - 3. R has **NO** zero divisor
- 6. Examples:

Rings:

- $\circ \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $\circ \mathbb{R}[x]$ (polynomials with real coeffcients)
- $\circ \ M_n(R)$ (Matrix ring, considering GL(n,k)) e.g. $M_2(R), M_3(R)...$
- $\circ \ \ \mathbb{Z}/m\mathbb{Z}=\{[0]_m,[1]_m,...[m-1]_m\}$ (Residue Class Rings) **N.B.:** m>1 can be non-prime integer e.g. $\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/3\mathbb{Z},...$

Division Rings:

 $\circ \mathbb{C}, \mathbb{Q}, \mathbb{R}$

NOT Division Rings:

- o Z
- $\circ \mathbb{R}[x]$

Subrings

- $\circ \mathbb{Z} \text{ of } \mathbb{Q}$
- $\circ \mathbb{Q}$ of \mathbb{R}
- $\circ \mathbb{R}$ of \mathbb{C}
- $\circ \;\; \mathbb{Z}[\sqrt{d}] \; \mathsf{of} \; \mathbb{C}$
- $\circ \ \mathbb{Q}[\sqrt{d}]$ of \mathbb{C} (Also a field)
- 7. **Left/Right Zero Divisor:** a
 eq 0 is called left zero divisor if $\exists b
 eq 0, s.t. \, ab = 0$

8. *Unit*: ab=ba=1 no need for left/right

 R^st : group of units.

- 9. A finit integral domain is a field:
 - Proof: Find inverse.
 - \Rightarrow The ring $\mathbb{Z}/m\mathbb{Z}$ is a field iff m is prime.

10.

- 11. Ring homorphism:
 - $\circ \ \ \gamma(0)=0, \gamma(1)=1$
 - $\gamma(a+b) = \gamma(a) + \gamma(b)$ $\gamma(ab) = \gamma(a)\gamma(b)$