PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-191641

(43) Date of publication of application: 13.07.1999

(51)Int.CI.

H01L 33/00

(21)Application number: 10-287623

(71)Applicant: MATSUSHITA ELECTRON CORP

(22)Date of filing:

09.10.1998

(72)Inventor: INOUE TOMIO

KOYA KENICHI

YAMASHITA NORIO

(30)Priority

Priority number: 09280108

Priority date: 14.10.1997

Priority country: JP

(54) SEMICONDUCTOR LIGHT-EMITTING ELEMENT, SEMICONDUCTOR LIGHT-EMITTING DEVICE USING THE SAME AND MANUFACTURE THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a flip-chip semiconductor lightemitting element of a structure, wherein light on its way from a luminous layer to a p side electrode is made to be reflected to the side of a light extracting surface with high reflection efficiency for obtaining a high luminous efficiency.

SOLUTION: A semiconductor laminated film, consisting of n-type and ptype layers is formed on a transparent sapphire substrate 1a and n side and p side electrodes 2 and 3 respectively are provided on the surface on the same side, which faces opposite the substrate 1a of the laminated film. The electrode 3 is formed into a laminated material consisting of an ohmic layer 3a, which is ohmic connectable to p side semiconductor laminated film and consists of a metallic material, and a reflecting layer 3b, which is made a laminate on this layer 3a, consisting of a silver white-colored and high-reflectivity metallic material, such as Al, Ag and Zn.

LEGAL STATUS

[Date of request for examination]

09.06.1999

[Date of sending the examiner's decision of rejection]

28.03.2000

[Kind of final disposal of application other than the examiner's decision of rejection or application

converted registration]

[Date of final disposal for application]

[Patent number]

3130292

[Date of registration]

17.11.2000

[Number of appeal against examiner's decision of 2000-06211 rejection]
[Date of requesting appeal against examiner's decision 27.04.2000 of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It has the semi-conductor laminating membrane structure into which n type layer and p type layer were grown up on the crystal substrate of transparence. It has n lateral electrode and p lateral electrode which carry out ohmic contact to n type layer and p type layer, respectively on the field of a crystal substrate and the opposite side. The contact layer are the semi-conductor light emitting device of the flip chip mold which made the n side, and p lateral electrode forming face and the field of the opposite side the optical ejection side, and according p lateral electrode to the metallic material in which ohmic contact is possible to the p side semi-conductor cascade screen, The flip chip mold semi-conductor light emitting device which comes on this contact layer as a layered product of the reflecting layer by the silver white system metallic material with a high reflection factor.

[Claim 2] For the thickness, said contact layer is a flip chip mold semi-conductor light emitting device according to claim 1 which is 500nm or less including one metallic element of nickel, Co, Mg, and Sb.

[Claim 3] It is the flip chip mold semi-conductor light emitting device according to claim 1 or 2 the thickness of whose said reflecting layer consists of one metallic element of aluminum, Ag, and Zn, and is 500nm or more. [Claim 4] The flip chip mold semi-conductor light emitting device according to claim 3 which uses said reflecting layer as the alloy of Ag and Pt, or the alloy of Ag and Pd when said reflecting layer is Ag.

[Claim 5] A flip chip mold semi-conductor light emitting device given in either of claims 1-4, It consists of a submounting component with the 1st principal plane by which two electrodes were formed in the location corresponding to the p side of said flip chip mold semi-conductor light emitting device, and n lateral electrode, and the 2nd principal plane in which the whole surface electrode was formed. Semi-conductor luminescence equipment which the p side of said flip chip mold semi-conductor light emitting device and n lateral electrode are confronted through a micro bump on two electrodes of the 1st principal plane of said submounting component, and comes to carry out flow loading.

[Claim 6] Semi-conductor luminescence equipment according to claim 5 which said flip chip mold semi-conductor light emitting device is a GaN system compound semiconductor light emitting device, said submounting component is Si diode component, and two electrodes on said 1st principal plane are the p side of said Si diode component, and an n lateral electrode, and p lateral electrode and n lateral electrode of said light emitting device stand face to face against n lateral electrode and p lateral electrode of said Si diode component, and comes to make flow connection through a micro bump.

[Claim 7] Semi-conductor luminescence equipment according to claim 5 or 6 characterized by covering the front face of said reflecting layer by the protective coat which consists of Pt, Pd, or nickel when said reflecting layer is Ag.

[Claim 8] Semi-conductor luminescence equipment characterized by having filled up the junction clearance between a flip chip mold semi-conductor light emitting device, said said leadframe, substrate, etc., or the junction clearance between said flip chip mold semi-conductor light emitting device and said submounting component with silicone resin in semi-conductor luminescence equipment given in seven from the semi-conductor luminescence equipment which carried out flow loading of the flip chip mold semi-conductor light emitting device given in four from claim 1 at the leadframe, the substrate, etc., or claim 5.

[Claim 9] Semi-conductor luminescence equipment characterized by said silicone resin having not covered on the optical ejection side of said flip chip mold semi-conductor light emitting device in semi-conductor luminescence equipment according to claim 8.

[Claim 10] In semi-conductor luminescence equipment according to claim 5, 6, or 7, are insulation as a flip chip

mold'semi-conductor light emitting device, and the laminating of n type layer and p type layer of a GaN system compound semiconductor is carried out on the substrate of a light transmission mold. It is the manufacture approach of said reflecting layer at the time of using the semi-conductor light emitting device which formed n lateral electrode in the front face of said n type layer, and formed p lateral electrode in the field of the front face of said p type layer which is on this transparent electrode and occupies a part of front face of said p type layer while forming the transparent electrode of a thin film in the whole surface mostly. After confronting the electrode of both components on the wafer with which said submounting component was formed in the shape of a matrix in said GaN system semi-conductor light emitting device and carrying out flow junction through a micro bump The manufacture approach of the semi-conductor luminescence equipment which is immersed in the electrolytic plating liquid which dissolved the metallic material of said reflecting layer with said light emitting device in said wafer, connects the electrode of said wafer to the negative electrode of the power source for electrolysis, and carries out adhesion formation of said metallic material on the front face of said transparent electrode with electrolysis plating.

[Claim 11] After confronting the electrode of both components on the wafer with which it is the manufacture approach of luminescence equipment according to claim 7, and said submounting component was formed in the shape of a matrix in said flip chip mold semi-conductor light emitting device and carrying out flow junction through a micro bump The manufacture approach of the semi-conductor luminescence equipment which is immersed in the electrolytic plating liquid which dissolved the metallic material of said protective coat with said light emitting device in said wafer, connects the electrode of said wafer to the negative electrode of the power source for electrolysis, and carries out adhesion formation of said metallic material on p lateral electrode front face of said light emitting device with electrolysis plating.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the semi-conductor luminescence equipment of the flip chip mold using the gallium nitride system compound used for optical devices, such as a blue light emitting diode, and relates to the semi-conductor light emitting device collects the reflected lights from P lateral electrode efficiently, and it was made to make emit light from an optical ejection side especially, semi-conductor luminescence equipment, and the manufacture approach of the equipment. [0002]

[Description of the Prior Art] GaN system compound semiconductors, such as GaN, GaAlN, InGaN, and InAlGaN, come to be used abundantly as a semiconductor material for a light luminescence device or elevated—temperature actuation electron devices, and expansion in the field of blue and green light emitting diode is progressing.

[0003] Generally in manufacture of the semi-conductor of this GaN system compound, insulating sapphire is used as a crystal substrate for growing up the semi-conductor film in that front face. In the case where an insulating crystal substrate like this sapphire is used, since an electrode cannot be taken out from a crystal substrate side, the electrode of p and n which are prepared in a semi-conductor layer will be formed in a crystal substrate and the whole surface of the side which counters.

[0004] The outline perspective view of the conventional GaN system semi-conductor light emitting device is shown in drawing 8. The GaN system semi-conductor light emitting device 50 forms n type layer 51 and p type layer 52 on it, using silicon-on-sapphire 50a as an insulating substrate, etches a part of p type layer 52, and exposes n type layer 51. And since n lateral electrode 51a for bonding is formed in n type layer 51 and p type layer 52 serves as a luminescence region, while forming transparent electrode 52a in the whole mostly, it is [of the top face] a fundamental configuration to prepare p lateral electrode 52b for bonding in the part. [0005] Here, that in which transparent electrode 52a considered as the cascade screen of nickel and Au or the cascade screen of Co and Au, and p lateral electrode 52b was also formed of the cascade screen of the same combination is almost the case. Moreover, generally what n lateral electrode 51a made the cascade screen of Ti and Au or the cascade screen of V and aluminum is used.

[0006] Each ingredient of transparent electrode 52a, p lateral electrode 52b, and n lateral electrode 51a is chosen considering fulfilling the conditions which can carry out ohmic contact to a GaN system as a major premise. That is, it is a suitable electrode material for nickel, Co, Ti, and V to carry out ohmic contact to a component side, and since Au cannot oxidize easily, it is used by the reason for the ability to aim at improvement in bonding nature.

[0007] In such a semi-conductor light emitting device 50, InGaN by which a laminating is carried out the p-n junction region between n type layer 51 and p type layer 52 or between them is made into a barrier layer, and it mounts on a leadframe etc. by making the front face of p type layer 52 into the main light drawing side. And luminescence from the main light drawing side is obtained by carrying out bonding of the Au wire (not shown) to each of n lateral electrode 51a and p lateral electrode 52b, and making it flow a leadframe side.

[0008] Moreover, since the electrodes 51a and 52b by the side of an optically transparent thing, n, and p are contained in the field of the same side, the assembly of a flip chip mold is possible for the sapphire used as substrate 50a. The bump electrode is formed in each of the electrodes 51a and 52b by the side of n and p, it joins to the electrode by the side of mounting of these by ultrasonic bonding etc., and this is taken as the assembly of wireless bonding. When carrying out an assembly as this flip chip mold, the top face of substrate 50a

at the time of the posture in which vertical reversal of the light emitting device shown in <u>drawing 8</u> was carried out turns into the main light drawing side.

[0009] It originates in a component ingredient, for example, physical constants and component structures, such as a dielectric constant epsilon, and the very weak thing is known for the light emitting device 50 which, on the other hand, carries out the laminating of the GaN system compound semiconductor layer to substrate 50a of such insulating sapphire to static electricity. For example, when making an LED lamp and the capacitor by which static electricity was charged counter in the case of the LED lamp which carried the light emitting device 50 in the mounting section of a leadframe, and was closed with the epoxy resin etc. and producing discharge among both, in hard flow, it will be destroyed [in the forward direction] with the static voltage of about 100 V at the static voltage of about 30 V.

[0010] On the other hand, in order to prevent destruction of the light emitting device 50 by overcurrents, such as static electricity, it is effective to have Si diode as an electrostatic-protection component. An applicant for this patent proposes this electrostatic-protection component previously, it can apply the thing of a publication to the specification and drawing for which it already applied as Japanese Patent Application No. No. 18782 [nine to], and considers it as the configuration connected while taking the flow so that it might become the relation between a light emitting device and reversed polarity about Si diode which used the silicon substrate of n mold as the base material.

[0011] <u>Drawing 9</u> is the example which carried and compound-device-ized the light emitting device 50 of <u>drawing 8</u> to the Si diode 53 for electrostatic protection, and (a) of this drawing is drawing of longitudinal section according [(b) of a top view and this drawing] to the C-C line view of this drawing (a).

[0012] The Si diode 53 is the thing made from n mold silicon substrate 53a, pours in and diffuses impurity ion from the top-face side of the location which inclined toward the right end side in (a) of <u>drawing 9</u>, and forms p type semiconductor field 53b partially. And the p lateral electrode 55 was formed in the part which is equivalent to the part equivalent to a n-type-semiconductor field at the n lateral electrode 54 and p type semiconductor field 53b, respectively, and the n electrode 56 for making it flow electrically with a leadframe etc. is further formed in the inferior surface of tongue. Here, the resistance between the n lateral electrode 54 of the Si diode 53 and the n electrode 56 works as protective resistance.

[0013] The n lateral electrode 54 of the Si diode 53 is connected to p lateral electrode 52b of a light emitting device 50 through the micro bump 57, the p lateral electrode 55 is connected to n lateral electrode 51a through the micro bump 58, and a light emitting device 50 and the Si diode 53 are connected with reversed polarity. And some p lateral electrodes 55 are the bonding area of the wire connected between leadframes etc.

[0014] When the overcurrent by the high voltage is impressed by connection of such reversed polarity, and a bypass opens the reverse voltage impressed to a light emitting device 50 near the forward voltage of the Si diode 53 (0.9V [i.e.,]), and a bypass opens the forward voltage impressed to a light emitting device 50 a part for a voltage drop and near zener voltage Vz (for example, 10V) the Si diode 53, an overcurrent is passed, respectively. [by the resistance component] Therefore, destruction of the light emitting device 50 by static electricity can be prevented certainly.

[0015] Here, in the semi-conductor light emitting device of a flip chip mold, since a luminous layer is formed in the transparent electrode 52a bottom, the light from this luminous layer has what escapes from silicon-on-sapphire 50a, and emits light considering that top face as an optical ejection side, and the thing which goes to the transparent electrode 52a side. For this reason, if it is made to reflect the light which goes to this transparent electrode 52a with the thick-film electrode with a high reflection factor which replaces a transparent electrode, the luminous efficiency from an optical ejection side can be gathered. In this case, a thick-film electrode turns into p lateral electrode also including the bonding pad section. Also in this case, there is no change in the ohmic contact to the semi-conductor cascade screen of a GaN system being possible as conditions for selection of an electrode material, and optimization will be attained if considering as the ingredient made to reflect the light from a luminous layer in selection of an electrode material efficiently in addition to the conditions of this ohmic contact also contains in conditions.

[0016]

[Problem(s) to be Solved by the Invention] When it considers as a thick-film electrode instead of transparent electrode 52a and considers as p lateral electrode also including a bonding pad, ohmic contact with the same ingredient as what showed this p lateral electrode by <u>drawing 8</u>, i.e., the cascade screen of nickel and Au, or the cascade screen of Co and Au, then the semi-conductor cascade screen of p mold is possible, and, moreover,

what also has the micro bump's 57 good junction nature is obtained.

[0017] However, in the cascade screen of nickel and Au, the layer of nickel which generally takes ohmic contact is very thin, and Au is thickly formed compared with this. Co is thin similarly in the combination of Co and Au, and Au is thick. The relation of such thickness comes from the conditions for making the smallest contact resistance with the optimal ohmic nature, i.e., an electrode, and the optimal semi-conductor (p mold GaN layer). [0018] Thus, when the Au is thicker than nickel and Co, it is alloyed after heat-treating, and it becomes golden and the golden layer on which p lateral electrode wore gold or yellow and on which the semi-conductor cascade screen of p mold and the interface of p lateral electrode wore such gold or yellow will be formed. [0019] Here, it is known that the reflection factor when projecting the light of various wavelength on the fresh front face which carried out vacuum deposition of the metal and formed it perpendicularly will change with wavelength. This is shown as a table of the spectral reflectance of the metal side of the 519th page printing of the "science chronology" of Heisei 8 editions. In the case where light is irradiated in the vacuum evaporationo side of Au according to this table, if wavelength is more than 0.550 micrometer (considerable green) and wavelength will be set to 0.500 micrometers to a reflection factor being 80% or more, the reflection factor will fall to 50% or less rapidly. And if wavelength is 0.450 micrometers (considerable blue), it turns out that the reflection factor is decreased greatly as it falls to 40% or less and wavelength becomes short.

[0020] Therefore, if the golden layer which wore gold or yellow is in the semi-conductor cascade screen of p mold, and the interface of p lateral electrode, the amount of the light from a luminous layer absorbed will be larger, and the effectiveness of the reflective recovery to an optical drawing side side will fall sharply.

[0021] Thus, when using Au as an electrode material, the effectiveness is not enough, even if it is also going to collect the reflected lights from p lateral electrode to an optical drawing side side and they tend to gather luminous efficiency like a flip chip mold.

[0022] It is the 1st technical problem to offer the semi-conductor light emitting device of the flip chip mold with which the technical problem which should be solved in this invention reflects in an optical drawing side side the light which faces to p lateral electrode from a luminous layer at high reflective effectiveness, and high luminous efficiency is acquired.

[0023] According to the table of the spectral reflectance of the metal side of the 519th page printing of the "science chronology" of Heisei 8 editions furthermore described above, in a light field, the metallic material with the highest reflection factor is Ag. However, in the field of a semiconductor device, to use Ag as an electrode material, it is required to prevent generating of the migration. It generates, when Ag ionizes about moisture, electric field, etc. at the time of some specific conditions, and this migration becomes the cause which causes the short circuit of a circuit etc.

[0024] If Ag is used for p lateral electrode also in this light emitting device, in the LED lamp closed with the epoxy resin, the problem that the poor leak between a lifting, p lateral electrode of a light emitting device, and n lateral electrode generates Ag migration in short—time energization will arise with the electric field impressed to a light emitting device, and the moisture which has permeated the inside of an epoxy resin.

[0025] The 2nd technical problem which should be solved in this invention is offering the semi-conductor light emitting device, the semi-conductor luminescence equipment, and its manufacture approach of the flip chip mold which can use Ag with the highest reflection factor for p lateral electrode, without generating migration. [0026]

[Means for Solving the Problem] This invention has the semi-conductor laminating membrane structure into which n type layer and p type layer were grown up on the crystal substrate of transparence. It has n lateral electrode and p lateral electrode which carry out ohmic contact to n type layer and p type layer, respectively on the field of a crystal substrate and the opposite side. The contact layer are the semi-conductor light emitting device of the flip chip mold which made the n side, and p lateral electrode forming face and the field of the opposite side the optical drawing side, and according p lateral electrode to the metallic material in which ohmic contact is possible to the p side semi-conductor cascade screen, It is characterized by coming on this contact layer as a layered product of the reflecting layer by the silver white system metallic material with a high reflection factor.

[0027] With such a configuration, it can be made to be able to reflect in the optical drawing side side of a crystal substrate efficiently, and the light which faces to p lateral electrode from the luminous layer of a semi-conductor cascade screen can be made to emit light from the field where it is a silver white system and the laminating of the metallic material with a high reflection factor was carried out.

[0028] Moreover, this invention is characterized by covering the front face of said reflecting layer by the protective coat which consists of Pt, Pd, or nickel, when said reflecting layer is Ag.

[0029] By alloying with Ag, Pt or Pd has the work which controls the migration of Ag, and can intercept moisture by covering the front face of Ag completely by the protective coat by electrolytic plating etc., and can control the migration by ionization of Ag.

[0030] Furthermore, this invention is characterized by having filled up the junction clearance between a flip chip mold semi-conductor light emitting device, a leadframe, a substrate, etc., or the junction clearance between a flip chip mold semi-conductor light emitting device and a submounting component with silicone resin in the semi-conductor luminescence equipment which carried out flow loading of the flip chip mold semi-conductor light emitting device at the leadframe, the substrate, etc., or the semi-conductor luminescence equipment which carried out flow loading of the flip chip mold semi-conductor light emitting device at the submounting component.

[0031] By filling up said junction clearance with silicone resin, there is work which controls the migration by ionization of Ag, and poor leak mode can be controlled.

[0032]

[Embodiment of the Invention] Invention according to claim 1 has the semi-conductor laminating membrane structure into which n type layer and p type layer were grown up on the crystal substrate of transparence. It has n lateral electrode and p lateral electrode which carry out ohmic contact to n type layer and p type layer, respectively on the field of a crystal substrate and the opposite side. The contact layer are the semi-conductor light emitting device of the flip chip mold which made the n side, and p lateral electrode forming face and the field of the opposite side the optical drawing side, and according p lateral electrode to the metallic material in which ohmic contact is possible to the p side semi-conductor cascade screen, It is that which comes on this contact layer as a layered product of the reflecting layer by the silver white system metallic material with a high reflection factor. It has an operation of reflecting efficiently in the optical drawing side side of a crystal substrate the light which faces to p lateral electrode from the luminous layer of a semi-conductor cascade screen from the field where it is a silver white system and the laminating of the metallic material with a high reflection factor was carried out. Moreover, it also has an operation of stabilizing connectability, by using the metallic material in which the ohmic junction to the p side semi-conductor cascade screen is possible as a contact layer. [0033] Said contact layer is a semi-conductor light emitting device according to claim 1 the thickness of whose is 500nm or less including one metallic element of nickel, Co, Mg, and Sb, and the GaN layer of p mold and the good ohmic contact of invention according to claim 2 are possible for the above-mentioned metallic element. However, from the blue of this metallic element, since the reflection factor to a green light is not necessarily good, thickness has the operation which can penetrate light of setting 500nm or less to 100nm or less more preferably, and making it not bar the effectiveness of a reflecting layer.

[0034] In invention according to claim 3, said reflecting layer consists of one metallic element of aluminum, Ag, and Zn, and the thickness is a semi-conductor light emitting device according to claim 1 or 2 which is 500nm or more, and can reflect efficiently in an optical ejection side side the light which the above-mentioned element has especially a high reflection factor to a green light from blue, and progresses to an electrode side. Moreover, the thickness has only the thickness which achieves the function as a reflector, i.e., operation of setting 500nm or more to 1 micrometers or more preferably, and gathering reflective effectiveness.

[0035] It has an operation of stabilizing ohmic contact and also raising reflective effectiveness by claims 2 and 3.

[0036] Invention according to claim 4 is a flip chip mold semi-conductor light emitting device according to claim 3 which uses said reflecting layer as the alloy of Ag and Pt, or the alloy of Ag and Pd when said reflecting layer is Ag, and in using Ag for p lateral electrode, Ag migration has an operation that it can control, by considering as the alloy of Ag, Pt, or Ag and Pd. The rate of Pt or Pd has desirable extent from which the reflection factor of Ag is seldom dropped on 10wt(s)% or about 30wt%, respectively.

[0037] Invention according to claim 5 A flip chip mold semi-conductor light emitting device given in either of claims 1-4, It consists of a submounting component with the 1st principal plane by which two electrodes were formed in the location corresponding to the p side of said flip chip mold semi-conductor light emitting device, and n lateral electrode, and the 2nd principal plane in which the whole surface electrode was formed. It is semi-conductor luminescence equipment which the p side of said flip chip mold semi-conductor light emitting device and n lateral electrode are confronted through a micro bump on two electrodes of the 1st principal plane of said

submounting component, and comes to carry out flow loading. By using the compound device in which the light which progresses contrary to an optical ejection side is efficiently reflected by the above-mentioned reflecting layer, it has an operation that semi-conductor luminescence equipment excellent in external quantum efficiency is obtained.

[0038] Said flip chip mold semi-conductor light emitting device of invention according to claim 6 is a GaN system compound semiconductor light emitting device. Said submounting component is Si diode component, and two electrodes on said 1st principal plane are the p side of said Si diode component, and an n lateral electrode. It is semi-conductor luminescence equipment according to claim 5 which p lateral electrode and n lateral electrode of said light emitting device stand face to face against n lateral electrode and p lateral electrode of said Si diode component, and comes to make flow connection through a micro bump. By using Si diode for a GaN system compound semiconductor element weak to static electricity as a submounting component, electrostatic protection becomes possible and it has an operation that semi-conductor luminescence equipment excellent in the static electricity pressure-proofing and external quantum efficiency is obtained.

[0039] It is semi-conductor luminescence equipment according to claim 5 or 6 characterized by invention according to claim 7 covering the front face of said reflecting layer by the protective coat which consists of Pt, Pd, or nickel when said reflecting layer is Ag. Pt or Pd has the work which controls the migration of Ag by alloying with Ag. Moreover, by covering the front face of Ag completely by the protective coat by electrolytic plating etc., moisture is intercepted and it has an operation that the migration by ionization of Ag can be controlled.

[0040] In the semi-conductor luminescence equipment with which invention according to claim 8 carried out flow loading of the flip chip mold semi-conductor light emitting device given in four from claim 1 at the leadframe, the substrate, etc., or semi-conductor luminescence equipment given in seven from claim 5 It is semi-conductor luminescence equipment characterized by having filled up the junction clearance between a flip chip mold semi-conductor light emitting device, said said leadframe, substrate, etc., or the junction clearance between said flip chip mold semi-conductor light emitting device and said submounting component with silicone resin. In order that silicone resin may carry out the trap of the Ag ion by filling up said junction clearance with silicone resin, it has an operation that the migration by ionization of Ag can be controlled.

[0041] By using claims 7 and 8 together, the effectiveness of the cure against Ag migration at the time of using Ag for a reflecting layer becomes a more positive thing.

[0042] Invention according to claim 9 is set to semi-conductor luminescence equipment according to claim 8. It is semi-conductor luminescence equipment characterized by said silicone resin having not covered on the optical ejection side of said flip chip mold semi-conductor light emitting device. For example, it sets about the combination which uses as restoration resin the liquefied silicone resin which contains Pt compound in a curing catalyst, and uses an epoxy resin as mold resin. When said silicone resin has not covered on the optical ejection side of said flip chip mold semi-conductor light emitting device, an optical ejection loss can be mitigated and it has an operation that brightness improves. Moreover, when using as restoration resin the liquefied silicone resin which carries out flow loading of said luminescence equipment at the leadframe which has the parabola section, for example, contains Pt compound in a curing catalyst and using an epoxy resin as mold resin, it sets. although the stress to said Au wire is large, and Au line will be turned off, or the probability for a ball to separate from an electrode will be markedly alike compared with the conventional LED and will become large, if the spreading side of restoration resin is near the parabola upper part by making the top face of said restoration resin into near the neck of said Au wire, it has an operation that the stress to Au wire can be boiled markedly and it can mitigate. [0043] Invention according to claim 10 is set to semi-conductor luminescence equipment according to claim 5, 6, or 7. Are insulation as a flip chip mold semi-conductor light emitting device, and the laminating of n type layer and p type layer of a GaN system compound semiconductor is carried out on the substrate of a light transmission mold. It is the manufacture approach of said reflecting layer at the time of using the semiconductor light emitting device which formed n lateral electrode in the front face of said n type layer, and formed p lateral electrode in the field of the front face of said p type layer which is on this transparent electrode and occupies a part of front face of said p type layer while forming the transparent electrode of a thin film in the whole surface mostly. After confronting the electrode of both components on the wafer with which said submounting component was formed in the shape of a matrix in said GaN system semi-conductor light emitting device and carrying out flow junction through a micro bump Said wafer is immersed in the electrolytic plating liquid which dissolved the metallic material of said reflecting layer with said light emitting device. It is the

manufacture approach of the semi-conductor luminescence equipment which connects the electrode of said wafer to the negative electrode of the power source for electrolysis, and carries out adhesion formation of said metallic material on the front face of said transparent electrode with electrolysis plating. By using electrolysis plating after carrying in the wafer with which the submounting component was formed in the shape of a matrix even if p lateral electrode was a light emitting device [that it continues being a transparent electrode] Adhesion formation of the reflecting layer can be carried out easily at a transparent electrode, and it has an operation that it can provide as the compound device excellent in external quantum efficiency, and a compound device which was excellent also in electrostatic pressure—proofing by using a submounting component as Si diode.

[0044] Invention according to claim 11 is the manufacture approach of luminescence equipment according to claim 7. After confronting the electrode of both components on the wafer with which said submounting component was formed in the shape of a matrix in said flip chip mold semi-conductor light emitting device and carrying out flow junction through a micro bump Said wafer is immersed in the electrolytic plating liquid which dissolved the metallic material of said protective coat with said light emitting device. By connecting the electrode of said wafer to the negative electrode of the power source for electrolysis, being the manufacture approach of the semi-conductor luminescence equipment which carries out adhesion formation of said metallic material on p lateral electrode front face of said light emitting device with electrolysis plating, and using electrolysis plating A protective coat can be covered to the exposure of Ag which is a reflecting layer easily. Moreover, after carrying a light emitting device on the wafer with which the submounting component was formed in the shape of a matrix, since a protective coat is formed in the exposure of Ag which is a reflecting layer, there is no fear of damaging a protective coat after formation, and it has an operation that effectiveness of a protective coat can be ensured.

[0045] Below, the example of the gestalt of operation of this invention is explained, referring to a drawing.

Drawing 1 is the outline of the GaN system compound semiconductor light emitting device by the gestalt of operation of the 1st of this invention, and (a) of this drawing is drawing of longitudinal section according [(b) of a top view and this drawing] to the A-A line view of this drawing (a).

[0046] In (a) of drawing 1, and (b), a light emitting device 1 forms two or more semi-conductor thin film layers by well-known metal-organic chemical vapor deposition conventionally on the front face of transparent insulating silicon-on-sapphire 1a. The layered product of this thin film considers as GaN buffer layer 1b, n mold GaN layer 1c, 1d of InGaN barrier layers, p mold AlGaN layer 1e, and 1f of p mold GaN layers from the bottom at order, and has double hetero structure or quantum well structure.

[0047] The top face of the one corner section of n mold GaN layer 1c is removed by etching in the shape of a level difference, and forms the n lateral electrode 2 in this removed part with vacuum deposition. Moreover, the p lateral electrode 3 is similarly formed in the top face of 1f of p mold GaN layers of the maximum upper layer except the excision part by etching by vacuum deposition. And on these n lateral electrodes 2 and the p lateral electrode 3, the micro bumps 4 and 5 are formed, respectively. However, the micro bumps 4 and 5 may be formed on the electrode by the side of a submounting component.

[0048] <u>Drawing 2</u> is the schematic diagram of semi-conductor luminescence equipment equipped with the light emitting device 1. In mounting section 6a formed in the upper limit of a leadframe 6, Si diode component 7 for electrostatic protection is carried as a submounting component, and adhesion immobilization of this is carried out with suitable Ag paste at it. And it arranges as a posture which carried out vertical reversal of the light emitting device 1 shown in the top face of this Si diode component 7 at (b) of <u>drawing 1</u>.

[0049] The micro bumps 4 and 5 of a light emitting device 1 make p lateral electrode 7b of Si diode component 7, and n lateral electrode 7a flow electrically, respectively, with the epoxy resin 8, the closure is carried out and the top face of silicon—on—sapphire 1a is made into the optical drawing side in the posture of illustration.
[0050] When there is energization to a light emitting device 1, 1d of InGaN barrier layers in a semi—conductor cascade screen turns into a luminous layer, and as the conventional example also showed, the light from this luminous layer faces to the optical ejection side side of silicon—on—sapphire 1a, and the p lateral electrode 3. And although what is necessary is making it just reflect efficiently the light which faces to this p lateral electrode 3, the reflection factor of a blue light became small what contains Au as an electrode material of this p lateral electrode 3.

[0051] On the other hand, in this invention, in order to gather the reflective effectiveness from the p lateral electrode 3, nickel, and Co or Sb is formed by 50nm thickness as contact layer 3a which contacts 1f of p mold

GaN layers in the ingredient, and the laminating of aluminum or Zn of a silver white system metal with a high reflection factor is carried out by 1.5-micrometer thickness to a light blue as reflecting layer 3b, and green on it. To blue or a green light, in order that the reason for making contact layer 3a thin may take good ohmic contact to a p mold GaN layer here, since the reflection factor is not necessarily good, the metal used for it is for making it the thinness which can penetrate the great portion of light, and is made the configuration which reflects light by reflecting layer 3b with the high reflection factor by which the laminating was carried out on it. Moreover, it is necessary to make this reflecting layer 3b into sufficient thickness so that light cannot be penetrated. Thereby, the light which faces to the p lateral electrode 3 can be reflected efficiently. Moreover, when reflecting layer 3b is Zn, in order to improve junction nature with the micro bumps 4 and 5, the layer of Au is formed on reflecting layer 3b.

[0052] Moreover, when using Ag with the highest reflection factor for reflecting layer 3b to blue or a green light, a migration phenomenon accompanies. And in the case of semi-conductor light emitting device [this flip chip type of], since the p lateral electrode 3 and the n lateral electrode 2 adjoin the same field, it becomes the situation that a migration phenomenon tends to happen, and there is a disadvantageous field that inter-electrode poor leak mode occurs by short-time energization.

[0053] On the other hand, in this invention, when using Ag for reflecting layer 3b, reflecting layer 3b is formed as an alloy of Pd or Pt. The migration of Ag is controlled although a little reflection factor falls by mixing Pd or Pt with Ag. In the case of Pd, about 30wt% and in Pt, the proper value of that mixing forms the thickness of this reflecting layer 3b by 1.5 micrometers about 10wt%.

[0054] <u>Drawing 3</u> is the outline of the part of the compound device which consists of the light emitting device and submounting component of semi-conductor luminescence equipment by the gestalt of operation of the 2nd of this invention, and (a) of this drawing is drawing of longitudinal section according [(b) of the outline top view and this drawing] to the B-B line view of this drawing (a).

[0055] The GaN system compound semiconductor light emitting device used here is the light emitting device 50 with the conventional transparent electrode 52a, and after being joined through a micro bump on the submounting component (Si diode) 7 and considering as a compound device, it forms Ag or Zn of a silver white system metallic material with a high reflection factor for a reflecting layer 10 with electrolysis plating by 1.5—micrometer thickness to a blue and green light on a transparent electrode. In this case, since a reflecting layer 10 is formed after considering as a compound device, that cross—section configuration differs from drawing 2. That is, in the case of drawing 2, reflecting layer 3b is formed only in the part of the p lateral electrode 3 of a light emitting device 1, but in the case of drawing 3, a reflecting layer 10 is formed in the whole front face of n lateral electrode 7a of transparent electrode 52a of a light emitting device 50, p lateral electrode 52b, the micro bump 5, and Si diode, but the part formed on transparent electrode 52a achieves the function as a reflecting layer. It is the same configuration as drawing 2 except p lateral electrode parts of this reflecting layer 10 and a light emitting device 50.

[0056] Moreover, to use Ag as a reflecting layer 10 also in this gestalt, the cure against migration is required. In this case, the protective coat 11 which consists of a deposit of Pt, Pd, or nickel is formed in the front face of Ag deposit which is a reflecting layer 10 as shown in <u>drawing 4</u> (a). This severs contact to the moisture and Ag which permeate in resin, and migration can be controlled. Moreover, the reason set to Pt or Pd is because it has the effectiveness that the metallic element itself controls Ag migration. Moreover, the reason set to nickel is because the uniform plating stratification can carry out easily. By formation of the above—mentioned protective coat, the inter-electrode poor leak mode by Ag migration decreases by leaps and bounds.

[0057] The same of the effectiveness of this protective coat 11 is said of the case of the light emitting device which formed reflecting layer 3b of p lateral electrode of the thick film shown in <u>drawing 4</u> (b) using Ag. [0058] Thus, the light from a barrier layer is reflected in the main light ejection side side by the reflecting layer 10 by forming the reflecting layer 10 to which metals, such as Ag, were made to adhere with plating in the front face of transparent electrode 52a. Therefore, compared with structure, attenuation of luminescence energy can be suppressed small conventionally from which light makes it pass again and collects what came out of the light emitting device 50, and improvement in luminescence brightness is achieved.

[0059] Moreover, transparent electrode 52a used as a luminescence region tends to become an elevated temperature from other parts, and since transparent electrode 52a of the thermal conductivity is also very thinly small, the effect to the heat of luminescence brightness cannot be disregarded. On the other hand, since the laminating of the reflecting layer 10 by Ag plating is carried out to transparent electrode 52a and it is made thick,

heat release also increases with the high thermal conductivity of Ag. Therefore, not only the improvement in the luminescence brightness by Ag but overheating is prevented, and improvement in resistance can also be aimed at. And since a reflecting layer 10 is formed not only in the front face of transparent electrode 52a but in the front face of n lateral electrode 7a of the bump electrode 5 or the Si diode 7, it can raise heat dissipation nature further using heat conduction by expansion and Ag of surface area.

[0060] Moreover, since-izing of the front face of transparent electrode 52a can be further carried out [thick film] by putting a protective coat 11 further, an increment and heat dissipation nature of the heat capacity improve further, and the resistance of a light emitting device 50 is improved.

[0061] <u>Drawing 5</u> is the schematic diagram showing the process of the reflecting layer 10 of the semi-conductor luminescence equipment of this invention, and the manufacture approach of a protective coat 11.

[0062] In drawing, the thing in which the pattern of the Si diode 7 was formed is prepared as an ingredient for the wafer 12 made from the silicon of n mold. This wafer 12 forms the pattern of the electrodes 7a and 7b by the side of n and p in a whole surface side, and, on the other hand, forms n electrode 7c in a side while it forms p type semiconductor field 7e of Si diode component shown in drawing 3.

[0063] The simple substance of the light emitting device 50 which carried out dicing to the electrodes 51a and 52b by the side of n and p on the other hand from the wafer which formed the micro bumps 4 and 5 with the plating method or the stud method is arranged in on an expanded sheet. And the adsorption pickup of the light emitting device 50 is carried out by the collet, according to the pattern of the electrodes 7a and 7b by the side of n of a wafer 12, and p, the micro bumps 5 and 4 are contacted, fused junction is carried out with a load, heat, and a supersonic wave, and it fixes on a wafer 12. In this case, a micro bump may form in the electrode 7a [by the side of n of a wafer 12, and p], and 7b side.

[0064] Subsequently, the wafer 12 which carried the light emitting device 50 is immersed into the electrolytic plating liquid 14 in the electrolysis plating bath 13. The plating liquid in the electrolysis plating bath 13 is electrolyzed by arranging positive electrode 13a for plating in the location which stands face to face against a wafer 12, preparing for this electrolysis plating bath 13 as a cathode of plating of n electrode 7c of the rear face of a wafer 12, and connecting a power source between such positive electrode 13a and n electrode 7c. Thereby, first, deposit adhesion of the case of Ag plating of a reflecting layer is carried out on the front face of p lateral electrode 52b and transparent electrode 52a of n lateral electrode 7a through which Ag ion in plating liquid flows in n electrode 7c of a wafer 12, the micro bump 5, and a light emitting device 50, and as shown in drawing 3, the reflecting layer 10 of Ag is formed.

[0065] Then, after taking out a wafer 12 and washing enough, dicing is carried out by the dicer and the compound device by the light emitting device 50 and the Si diode 7 which formed the reflecting layer 10 of Ag in the part which contains transparent electrode 52a of a light emitting device 50 by this is obtained.

[0066] In addition, what is necessary is in the case of the example which forms the protective coat 11 shown in drawing 4 (a), to be immersed into the metal plating liquid for protective coat 11 in another electrolysis plating bath, and just to form a protective coat 11 with electrolysis plating by same actuation, after forming the reflecting layer 10 of Ag. Moreover, when using Ag for the p lateral electrode 3 also in the light emitting device 1 which has the p lateral electrode 3 of a thick film as shown in drawing 4 (b), it can be immersed in a wafer 12 into the metal plating liquid for protective coat 11 in the electrolysis plating bath after junction, and a protective coat 11 can be formed with electrolysis plating by same actuation.

[0067] Drawing 6 is drawing showing the pattern of n lateral electrode 7a formed in the wafer 12 for manufacturing the Si diode 7, and p lateral electrode 7b, and flow structure with n electrode 7c. [0068] As shown in drawing 6 (a), since plating forming faces are n lateral electrode 7a, the bump 5 of this potential, p lateral electrode 52b of a light emitting device 50, and transparent electrode 52a, as a cathode, not n electrode 7c on the back but its n lateral electrode 7a is desirable. Because, since the resistance R of several ohms per unit area exists between n electrode 7c on the back and surface n lateral electrode 7a, in order to make plating easy to attach to transparent electrode 52a, it is desirable to take the cathode of plating to n lateral electrode 7a. In order to make it this potential, as for n lateral electrode 7a which adjoins as furthermore shown in drawing 6 (b), it is desirable to make it flow through all with the connection electrode 9. [0069] However, since the currents passed to plating inter-electrode are about [0.03mA //mm] 2 and a small current, it does not produce un-arranging as a cathode of plating of rear-face electrode 7c. [0070] Since the reflecting layer 10 by Ag plating was formed in the whole surface of transparent electrode 52a

of the above, as it explained previously, since it is reflected by the reflecting layer 10, luminescence brightness

of light which escapes from transparent electrode 52a from a barrier layer improves. Moreover, since Ag plating adheres also to n lateral electrode 7a of p lateral electrode 52b, the micro bump 5, and the Si diode 7, it is urged to heat dissipation of each part, and can suppress the effect of the heat to luminescence.

[0071] In addition, although considered as combination with the Si diode 7 for electrostatic protection in the example of illustration, it is good for the substrate with which it has the electrode which flows in the electrodes 51a and 52b by the side of n of a light emitting device 50, and p, and the flow structure for electrolytic plating is acquired.

[0072] <u>Drawing 7</u> is semi-conductor luminescence equipment by the gestalt of operation of the 3rd of this invention, and is drawing of longitudinal section of the LED lamp which carried out loading junction and carried out the mold of the compound device in which the protective coat 11 was formed on the front face of a reflecting layer 10 to the leadframe with silicone resin and an epoxy resin.

[0073] If this structure is explained in detail, after making flow connection of the compound device in which the protective coat 11 was formed on the front face of a reflecting layer 10 shown in mounting section 6a of a leadframe at (a) of drawing 4, the junction clearance between the flip chip mold semi-conductor light emitting device 50 and Si diode component 7 is filled up with silicone resin 15. And the mold of the tip of a leadframe 6 is carried out with an epoxy resin 8 including this mounting section. However, it is made not to cover silicone resin on the optical ejection side of the flip chip mold semi-conductor light emitting device 50. The reason is because optical ejection effectiveness worsens worse than the epoxy resin for mold in the light transmittance of silicone resin since the refractive index is smaller than an epoxy resin.

[0074] The gestalt of this operation shows how to prevent still more certainly Ag migration produced when Ag is used for a reflecting layer. That is, in the gestalt of the 2nd operation, although Ag migration can be controlled since the moisture which permeates resin is intercepted when the front face of the reflecting layer 10 of Ag is covered by the protective coat 11 of nickel, the part which cannot cover Ag front faces, such as a pinhole, with the formation process of a protective coat 11 may arise. In that case, moisture invades from a pinhole, heat and electric field are added, Ag ionizes and solves, and the poor leak mode by broth Ag migration occurs. If the junction clearance between the compound devices which show silicone resin to drawing 7 is filled up even when such a pinhole should exist, the migration of Ag will be controlled certainly and poor leak mode will not be generated.

[0075] What summarized the result of the acceleration reliability trial of Ag migration by the following three kinds of cases is shown in Table 1.

[0076]

[Table 1]

	構成			加速試験(リーク不良発生率)		
	反射層	保護膜	シリコーン樹脂	24 時間	240 時間	500 時間
①	Ag	なし	なし	100%		
2	Ag	Ni	なし	30%	60%	
3	Ag	Ni	あり	0%	0%	0%

[0077] ** a reflecting layer 10 — Ag, protective coat nothing, silicone resin nothing, and ** — a reflecting layer is filled up with Ag and, as for nickel, silicone resin nothing, and **, a protective coat is filled [a reflecting layer 10] up with nickel and silicone resin by Ag and the protective coat. As for the conditions of an accelerated test, temperature is [85 degrees C and humidity of energization] Vf=3.3V and If=12mA 85%.

[0078] As shown in Table 1, even if, as for **, one third of samples do not generate poor leak mode in 240 hours or more and ** leaves for 500 hours or more to poor leak mode generating ** 100% in 24 hours, it turns out that poor leak mode is not generated at all.

[0079]

[Effect of the Invention] In the light emitting device of this invention, since it is made to reflect in the optical ejection side side of a crystal substrate efficiently from the field (reflecting layer) where it is a silver white system and the laminating of the high metallic material of a reflection factor, i.e., Ag, aluminum, and Zn, was especially carried out from blue to a green light, improvement in luminous efficiency of the light which faces to p lateral electrode from the luminous layer of a semi-conductor cascade screen is attained. Moreover, since the metallic material, i.e., nickel, Co, and Sb, in which the ohmic junction to the p side semi-conductor cascade screen is possible as a contact layer is used, the assembly stabilized by connectability is obtained.

[0080] moreover, by using a contact layer as the thin thin film which can penetrate light, by considering as a thick film, a reflecting layer can be conventionally boiled markedly compared with structure, and can raise luminescence reinforcement.

[0081] Moreover, although the poor leak mode by the inter-electrode short circuit by Ag migration occurs when using Ag with the highest reflection factor from green as a reflecting layer to a blue light, it can control by using a reflecting layer as Ag, Pt, or the alloy of Ag and Pd.

[0082] Moreover, since the front face of Ag reflecting layer can be covered by the protective coat by the electrolysis galvanizer method after a submounting component carries out loading junction of the light emitting device on the wafer formed in the shape of a matrix when loading junction is carried out and the light emitting device of this invention is compound—device—ized for submounting components, such as Si diode, through a micro bump, moisture is intercepted, Ag migration can be controlled and the luminescence equipment of high brightness and high—reliability is obtained.

[0083] Moreover, since a reflecting layer with a high reflection factor can be formed easily on the transparent electrode of a light emitting device with electrolysis plating after a submounting component carries out loading junction of the GaN system compound semiconductor light emitting device with the conventional transparent electrode in this invention on the wafer formed in the shape of a matrix, improvement in brightness is possible using the conventional chip. Moreover, even when Ag is used for a reflecting layer, since a protective coat can be easily formed on it, control of Ag migration is also possible, and the luminescence equipment of high brightness is obtained. Moreover, since a deposit is formed a transparent electrode and near the in the shape of thickness, heat dissipation of a luminescence side is also promoted and improvement in resistance also becomes possible.

[0084] Moreover, Ag migration can control still more certainly and highly reliable luminescence equipment is obtained by filling up the junction clearance between a flip chip mold semi-conductor light emitting device, a leadframe, a substrate, etc., or the junction clearance between a flip chip mold semi-conductor light emitting device and a submounting component with silicone resin in the semi-conductor luminescence equipment which carried out flow loading of the flip chip mold semi-conductor light emitting device at the leadframe, the substrate, etc., or the semi-conductor luminescence equipment which carried out flow loading of the flip chip mold semi-conductor light emitting device at the submounting component.

[0085] Moreover, when carrying out flow loading of a flip chip mold semi-conductor light emitting device and the submounting component using Au wire etc., reduction of the stress to Au wire can be aimed at by applying so that silicone resin may not be covered to the optical ejection side of a flip chip mold semi-conductor light emitting device, and highly reliable luminescence equipment is obtained.

[0086] moreover, it is easy to treat silicone resin, and also to change of environments, such as vibration, stress relaxation, durable adhesion, a heatproof, and ozone proof, since it is stable, it can boil dependability markedly and can raise it. Moreover, by the thing equipped with an electrostatic-protection component, electrostatic pressure-proofing also improves as a submounting component.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-191641

(43)公開日 平成11年(1999)7月13日

(51) Int.Cl.6

識別記号

H01L 33/00

FΙ

H01L 33/00

L

審査請求 未請求 請求項の数11 OL (全 13 頁)

(21)出願番号	特願平10-287623	(71)出願人	000005843
			松下電子工業株式会社
(22)出顧日	平成10年(1998)10月9日		大阪府高槻市幸町1番1号
		(72)発明者	井上 登美男
(31)優先権主張番号	特願平9-280108		大阪府高槻市幸町1番1号 松下電子工業
(32)優先日	平 9 (1997)10月14日		株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	小屋 實一
			大阪府高槻市幸町1番1号 松下電子工業
			株式会社内
		(72)発明者	山下 憲男
			大阪府高槻市幸町1番1号 松下電子工業
			株式会社内
		(74)代理人	弁理士 岩橋 文雄 (外2名)

(54) 【発明の名称】 半導体発光素子とこれを用いた半導体発光装置及びその製造方法

(57)【要約】

【課題】 発光層からp側電極に向かう光を高い反射効率で光取り出し面側に反射させて高い発光効率が得られるフリップチップ型の半導体発光素子の提供。

【解決手段】 透明のサファイア基板1aの上にn型層及びp型層の半導体積層膜を形成し、基板1aと対向する同一側の面にn側電極2及びp側電極3を備え、p側電極3を、p側半導体積層膜にオーミック接続可能な金属材料によるオーミック層3aと、これに積層された銀白色系の反射率の高いたとえばA1やAg及びZn等の金属材料による反射層3bの積層体とする。

【特許請求の範囲】

【請求項1】 透明の結晶基板の上に n型層及び p型層 を成長させた半導体積層膜構造を持ち、結晶基板と反対 側の面上に n型層及び p型層とそれぞれオーミック接続 する n側電極及び p側電極を備え、 n側及び p側電極形 成面と反対側の面を光取り出し面としたフリップチップ型の半導体発光素子であって、 p側電極を p側半導体積層膜にオーミック接続可能な金属材料によるコンタクト層と、このコンタクト層の上に反射率の高い銀白色系金属材料による反射層の積層体としてなるフリップチップ型半導体発光素子。

【請求項2】 前記コンタクト層は、Ni, Co, Mg, Sbのいずれかの金属元素を含み、その膜厚は500nm以下である請求項1記載のフリップチップ型半導体発光素子。

【請求項3】 前記反射層は、A1, Ag, Znのいずれかの金属元素からなり、その膜厚は500nm以上である請求項1または2記載のフリップチップ型半導体発光素子。

【請求項4】 前記反射層がAgの場合、前記反射層をAgとPtの合金またはAgとPdの合金とする請求項3記載のフリップチップ型半導体発光素子。

【請求項5】 請求項1から4のいずれかに記載のフリップチップ型半導体発光素子と、前記フリップチップ型半導体発光素子のp側及びn側電極に対応する位置に2つの電極が形成された第1の主面と全面電極が形成された第2の主面を持つサブマウント素子からなり、前記サブマウント素子の第1の主面の2つの電極上にマイクロバンプを介して前記フリップチップ型半導体発光素子のp側及びn側電極を対峙させて導通搭載してなる半導体発光装置。

【請求項6】 前記フリップチップ型半導体発光素子が GaN系化合物半導体発光素子であり、前記サブマウント素子がSiダイオード素子であり、前記第1の主面上の2つの電極が前記Siダイオード素子のp側及びn側電極であり、マイクロバンプを介して前記発光素子のp側電極とn側電極が前記Siダイオード素子のn側電極とp側電極に対峙して導通接続してなる請求項5記載の半導体発光装置。

【請求項7】 前記反射層がAgの場合、前記反射層の表面をPt, PdまたはNiからなる保護膜で覆うことを特徴とする請求項5または6記載の半導体発光装置。

【請求項8】 請求項1から4記載のフリップチップ型 半導体発光素子をリードフレームや基板などに導通搭載 した半導体発光装置、または請求項5から7記載の半導 体発光装置において、前記フリップチップ型半導体発光 素子と前記リードフレームや基板などとの接合隙間また は前記フリップチップ型半導体発光素子と前記サブマウント素子の接合隙間にシリコーン樹脂を充填していることを特徴とする半導体発光装置。 【請求項9】 請求項8記載の半導体発光装置において、前記シリコーン樹脂が前記フリップチップ型半導体発光素子の光取り出し面上に被覆していないことを特徴とする半導体発光装置。

【請求項10】 請求項5,6または7記載の半導体発 光装置において、フリップチップ型半導体発光素子とし て絶縁性であって光透過型の基板の上にGaN系化合物 にn側電極を形成し、前記p型層の表面のほぼ全面に薄 膜の透明電極を形成するとともにこの透明電極の上であ って前記p型層の表面の一部を占める領域にp側電極を 形成した半導体発光素子を用いた場合の前記反射層の製 造方法であって、前記GaN系半導体発光素子を前記サ ブマウント素子が行列状に形成されたウエハーの上に両 素子の電極を対峙させマイクロバンプを介して導通接合 させた後に、前記ウエハーを前記発光素子とともに前記 反射層の金属材料を溶解した電解メッキ液に浸漬し、前 記ウエハーの電極を電解用電源の負電極に接続し、電解 メッキ法により前記金属材料を前記透明電極の表面に付 着形成する半導体発光装置の製造方法。

【請求項11】 請求項7記載の発光装置の製造方法であって、前記フリップチップ型半導体発光素子を前記サブマウント素子が行列状に形成されたウエハーの上に両素子の電極を対峙させマイクロバンプを介して導通接合させた後に、前記ウエハーを前記発光素子とともに前記保護膜の金属材料を溶解した電解メッキ液に浸漬し、前記ウエハーの電極を電解用電源の負電極に接続し、電解メッキ法により前記金属材料を前記発光素子のp側電極表面に付着形成する半導体発光装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、たとえば青色発光ダイオード等の光デバイスに利用される窒化ガリウム系化合物を利用したフリップチップ型の半導体発光装置に係り、特にP側電極からの反射光を効率よく回収して光取り出し面から発光させるようにした半導体発光素子と半導体発光装置及びその装置の製造方法に関する。

[0002]

【従来の技術】GaN, GaAlN, InGaN及びInAlGaN等のGaN系化合物半導体は、可視光発光デバイスや高温動作電子デバイス用の半導体材料として多用されるようになり、青色及び緑色の発光ダイオードの分野での展開が進んでいる。

【0003】このGaN系化合物の半導体の製造では、その表面において半導体膜を成長させるための結晶基板として、一般的には絶縁性のサファイアが利用される。このサファイアのような絶縁性の結晶基板を用いる場合では、結晶基板側から電極を出すことができないので、半導体層に設けるp, nの電極は結晶基板と対向する側の一面に形成されることになる。

【0004】図8に従来のGaN系半導体発光素子の概略斜視図を示す。GaN系半導体発光素子50は、絶縁性の基板としてサファイア基板50aを用いてその上に n型層51とp型層52を形成し、p型層52の一部をエッチングしてn型層51を露出したものである。そして、n型層51にはボンディングのためのn側電極51 aを形成し、p型層52は発光域となるためその上面のほぼ全体に透明電極52aを形成すると共にその一部にボンディングのためのp側電極52bを設けるというのが基本的な構成である。

【0005】ここで、透明電極52aはNiとAuの積層膜またはCoとAuの積層膜としたものであり、p側電極52bも同様の組み合わせの積層膜によって形成されたものが殆どである。また、n側電極51aはTiとAuの積層膜またはVとAlとの積層膜としたものが一般に利用されている。

【0006】透明電極52a,p側電極52b及びn側電極51aのそれぞれの材料は、GaN系にオーミック接続できる条件を満たすことを大前提として選択されたものである。すなわち、Ni,Co,Ti及びVが素子側に対してオーミック接続するのに好適な電極材料であり、Auは酸化され難いのでボンディング性の向上が図れるという理由で利用されている。

【0007】このような半導体発光素子50では、n型層51とp型層52との間のp-n接合域またはその間に積層されるInGaNを活性層とし、p型層52の表面を主光取出し面としてリードフレーム等にマウントされる。そして、n側電極51a及びp側電極52bのそれぞれにAuワイヤ(図示せず)をボンディングしてリードフレーム側と導通させることにより、主光取出し面からの発光が得られる。

【0008】また、基板50aとして用いるサファイアは光学的に透明であることとn側及びp側の電極51a、52bが同じ側の面に含まれていることから、フリップチップ型のアセンブリが可能である。これは、n側及びp側の電極51a、52bのそれぞれにバンプ電極を形成しておき、これらをマウント側の電極に超音波圧着法等によって接合し、ワイヤレスボンディングのアセンブリとしたものである。このフリップチップ型としてアセンブリするときは、図8に示す発光素子を上下反転させた姿勢のときの基板50aの上面が主光取出し面となる。

【0009】一方、このような絶縁性のサファイアの基板50aにGaN系化合物半導体層を積層する発光素子50では、素子材料のたとえば誘電率 ε等の物理定数や素子構造に起因して、静電気に対して非常に弱いことが知られている。たとえば、発光素子50をリードフレームのマウント部に搭載してエポキシ樹脂等によって封止したLEDランプの場合では、LEDランプと静電気がチャージされたコンデンサとを対向させて両者間に放電

を生じさせたとき、順方向でおよそ100Vの静電圧 で、逆方向ではおよそ30Vの静電圧で破壊されてしま う。

【0010】これに対し、静電気等の過電流による発光素子50の破壊を防止するためには、静電気保護素子としてSiダイオードを備えることが有効である。この静電気保護素子は、本願出願人が先に提案して、特願平9-18782号として既に出願した明細書及び図面に記載のものが適用でき、n型のシリコン基板を基材としたSiダイオードを発光素子と逆極性の関係になるように導通をとりながら接続した構成としたものである。

【0011】図9は図8の発光素子50を静電気保護用のSiダイオード53に搭載して複合素子化した例であって、同図の(a)は平面図、同図の(b)は同図(a)のC-C線矢視による縦断面図である。

【0012】Siダイオード53はn型シリコン基板53aを素材としたもので、図9の(a)において右端側に偏った位置の上面側から不純物イオンを注入して拡散させて、p型半導体領域53bを部分的に形成したものである。そして、n型半導体領域に相当する部分にn側電極54及びp型半導体領域53bに相当する部分にp側電極55をそれぞれ形成し、更に下面にはリードフレーム等と電気的に導通させるためのn電極56を設けている。ここで、Siダイオード53のn側電極54とn電極56との間の抵抗は保護抵抗として働く。

【0013】Siダイオード53のn側電極54は発光素子50のp側電極52bにマイクロバンプ57を介して接続され、p側電極55はn側電極51aにマイクロバンプ58を介して接続され、発光素子50とSiダイオード53とは逆極性によって接続されている。そして、p側電極55の一部はリードフレーム等との間に接続するワイヤのボンディングエリアである。

【0014】このような逆極性の接続によって、高電圧による過電流が印加されたときには、発光素子50に印加される逆方向電圧はSiダイオード53の順方向電圧付近すなわち0.9Vでバイパスが開くことによって、発光素子50に印加される順方向電圧はSiダイオード53の抵抗成分による電圧降下分とツェナー電圧Vz付近(例えば10V)でバイパスが開くことにより、それぞれ過電流が流される。したがって、静電気による発光素子50の破壊を確実に防ぐことができる。

【0015】ここで、フリップチップ型の半導体発光素子では、透明電極52aの上側に発光層が形成されるので、この発光層からの光はサファイア基板50aを抜けてその上面を光取り出し面として発光するものと、透明電極52a側に向かうものとがある。このため、この透明電極52aへ向かう光を透明電極に代わる反射率の高い厚膜電極で反射させるようにすれば、光取り出し面からの発光効率を上げることができる。この場合、厚膜電極がボンディングパッド部も含めてp側電極となる。こ

の場合も、電極材料の選定の条件としてGaN系の半導体積層膜へのオーミック接続が可能であることに変わりはなく、電極材料の選択にはこのオーミック接続の条件に加えて、発光層からの光を効率よく反射させる材料とすることも条件に含めば、最適化が図られることになる。

[0016]

【発明が解決しようとする課題】透明電極52aの代わりに厚膜電極とし、ボンディングパッドも含めてp側電極とした場合、このp側電極を図8で示したものと同じ材料すなわちNiとAuの積層膜またはCoとAuの積層膜とすれば、p型の半導体積層膜とのオーミック接続が可能でしかもマイクロバンプ57の接合性もよいものが得られる。

【0017】ところが、NiとAuとの積層膜では、一般にオーミックコンタクトをとるNiの層はきわめて薄く、Auはこれに比べると厚く形成される。CoとAuとの組み合わせでも同様にCoは薄くてAuは厚い。このような厚さの関係は、最適なオーミック性すなわち電極と半導体(p型GaN層)との接触抵抗を最も小さくするための条件からくるものである。

【0018】このようにAuのほうがNiやCoよりも厚いと、熱処理された後には合金化されて、p側電極は金色または黄色を帯びた金色となってしまい、p型の半導体積層膜とp側電極の界面がこのような金色または黄色を帯びた金色の層が形成されることになる。

【0019】ここで、金属を真空蒸着して形成した新鮮な表面に種々の波長の光を垂直に投射したときの反射率は波長によって変化することが知られている。これは、たとえば平成8年版の「理科年表」の第519頁所載の金属面の分光反射率の表として示されている。この表によれば、Auの蒸着面に光を照射した場合では、波長が0.550μm(緑色に相当)以上であれば反射率は80%以上であるのに対し、波長が0.500μmになると反射率は50%以下に急激に低下している。そして、波長が0.450μm(青色に相当)であれば、40%以下にまで下がり、波長が短くなるにつれて反射率は大きく減衰していることが判る。

【0020】したがって、p型の半導体積層膜とp側電極の界面に金色または黄色を帯びた金色の層があると、発光層からの光は吸収される量のほうが大きく、光取出し面側への反射回収の効率は大幅に低下してしまう。

【0021】このように、電極材料としてAuを使用する場合、フリップチップ型のようにp側電極からの反射光も光取出し面側に回収して発光効率を上げようとしても、その効果は十分ではない。

【0022】本発明において解決すべき課題は、発光層からp側電極に向かう光を高い反射効率で光取出し面側に反射させて高い発光効率が得られるフリップチップ型の半導体発光素子を提供することが第1の課題である。

【0023】さらに前記した平成8年版の「理科年表」の第519頁所載の金属面の分光反射率の表によれば、可視光領域において、最も反射率の高い金属材料は、Agである。しかし、半導体デバイスの分野において、電極材料としてAgを使用する場合にはそのマイグレーションの発生を防止することが必要である。このマイグレーションは水分や電場等について或る特定の条件のときにAgがイオン化することによって発生するもので、回路の短絡等を引き起こす原因となる。

【0024】この発光素子の場合もAgをp側電極に使用すれば、エポキシ樹脂で封止したLEDランプにおいて、発光素子に印加される電場とエポキシ樹脂内を浸透してきた水分によって、Agマイグレーションを起こし、発光素子のp側電極とn側電極間のリーク不良が短時間の通電で発生するといった問題が生じる。

【0025】本発明において解決すべき第2の課題は、 反射率が最も高いAgをマイグレーションを発生させる ことなくp側電極に使用することができるフリップチッ プ型の半導体発光素子と半導体発光装置及びその製造方 法を提供することである。

[0026]

【課題を解決するための手段】本発明は、透明の結晶基板の上にn型層及びp型層を成長させた半導体積層膜構造を持ち、結晶基板と反対側の面上にn型層及びp型層とそれぞれオーミック接続するn側電極及びp側電極を備え、n側及びp側電極形成面と反対側の面を光取出し面としたフリップチップ型の半導体発光素子であって、p側電極をp側半導体積層膜にオーミック接続可能な金属材料によるコンタクト層と、このコンタクト層の上に反射率の高い銀白色系金属材料による反射層の積層体としてなることを特徴とする。

【0027】このような構成であれば、半導体積層膜の発光層からp側電極に向かう光は、銀白色系であって反射率の高い金属材料が積層された面から効率よく結晶基板の光取出し面側に反射させて発光させることができる。

【0028】また、本発明は、前記反射層がAgの場合、前記反射層の表面をPt, PdまたはNiからなる保護膜で覆うことを特徴とする。

【0029】PもまたはPdは、Agと合金化することにより、Agのマイグレーションを抑制する働きがあり、またAgの表面を電解メッキ等による保護膜で完全に覆うことにより水分を遮断し、Agのイオン化によるマイグレーションを抑制することができる。

【0030】さらに本発明は、フリップチップ型半導体発光素子をリードフレームや基板などに導通搭載した半導体発光装置、またはフリップチップ型半導体発光素子をサブマウント素子に導通搭載した半導体発光装置において、フリップチップ型半導体発光素子とリードフレームや基板などとの接合隙間またはフリップチップ型半導

体発光素子とサブマウント素子の接合隙間にシリコーン 樹脂を充填していることを特徴とする。

【0031】シリコーン樹脂を前記接合隙間に充填することにより、Agのイオン化によるマイグレーションを抑制する働きがあり、リークモード不良を抑制することができる。

[0032]

【発明の実施の形態】請求項1に記載の発明は、透明の 結晶基板の上にn型層及びp型層を成長させた半導体積 層膜構造を持ち、結晶基板と反対側の面上にn型層及び p型層とそれぞれオーミック接続するn側電極及びp側 電極を備え、n側及びp側電極形成面と反対側の面を光 取出し面としたフリップチップ型の半導体発光素子であ って、p側電極をp側半導体積層膜にオーミック接続可 能な金属材料によるコンタクト層と、このコンタクト層 の上に反射率の高い銀白色系金属材料による反射層の積 層体としてなるものであり、半導体積層膜の発光層から p側電極に向かう光を、銀白色系であって反射率の高い 金属材料が積層された面から効率よく結晶基板の光取出 し面側に反射させるという作用を有する。また、コンタ クト層としてp側半導体積層膜にオーミック接合可能な 金属材料を用いることで、接続性を安定させるという作 用も有する。

【0033】請求項2に記載の発明は、前記コンタクト層は、Ni,Co,Mg,Sbのいずれかの金属元素を含み、その膜厚は500nm以下である請求項1記載の半導体発光素子であり、上記の金属元素は、p型のGaN層と良好なオーミック接続が可能である。しかし、この金属元素の青色から緑色の光に対する反射率は必ずしも良好なものではないため、膜厚は光が透過可能な500nm以下、もっと好ましくは、100nm以下にし、反射層の効果を妨げないようにするという作用を有する。

【0034】請求項3に記載の発明は、前記反射層は、A1,Ag,Znのいずれかの金属元素からなり、その膜厚は500nm以上である請求項1または2に記載の半導体発光素子であり、上記元素は、青色から緑色の光に対する反射率が特に高く、電極側に進む光を効率よく光取り出し面側に反射させることができる。また、その膜厚は反射面としての機能を果たすだけの膜厚、すなわち500nm以上、好ましくは1μm以上にし、反射効率をあげるという作用を有する。

【0035】請求項2,3により、オーミック接続を安定化させ反射効率も向上させるという作用を有する。

【0036】請求項4に記載の発明は、前記反射層がAgの場合、前記反射層をAgとPtの合金またはAgとPdの合金とする請求項3記載のフリップチップ型半導体発光素子であり、P側電極にAgを用いる場合には、AgとPtまたはAgとPdの合金とすることにより、Agマイグレーションは抑制できるという作用を有す

る。PtまたはPdの割合は、それぞれ10wt%または30wt%程度でAgの反射率をあまり落とさない程度が好ましい。

【0037】請求項5に記載の発明は、請求項1から4のいずれかに記載のフリップチップ型半導体発光素子と、前記フリップチップ型半導体発光素子のp側及びn側電極に対応する位置に2つの電極が形成された第1の主面と全面電極が形成された第2の主面を持つサブマウント素子からなり、前記サブマウント素子の第1の主面の2つの電極上にマイクロバンプを介して前記フリップチップ型半導体発光素子のp側及びn側電極を対峙させて導通搭載してなる半導体発光装置であり、光取り出し面とは反対に進む光を上記反射層で効率よく反射させる複合素子を用いることにより、外部量子効率に優れた半導体発光装置が得られるという作用を有する。

【0038】請求項6に記載の発明は、前記フリップチップ型半導体発光素子がGaN系化合物半導体発光素子であり、前記サブマウント素子がSiダイオード素子であり、前記第1主面上の2つの電極が前記Siダイオード素子のp側を極であり、マイクロバンプを介して前記発光素子のp側電極とp側電極が前記Siダイオード素子のn側電極とp側電極に対峙して導通接続してなる請求項5記載の半導体発光装置であり、静電気に弱いGaN系化合物半導体素子にサブマウント素子としてSiダイオードを用いることにより静電気保護が可能となり、静電気耐圧及び外部量子効率に優れた半導体発光装置が得られるという作用を有する。

【0039】請求項7に記載の発明は、前記反射層がAgの場合、前記反射層の表面をPt,PdまたはNiからなる保護膜で覆うことを特徴とする請求項5または6記載の半導体発光装置であり、PtまたはPdは、Agと合金化することにより、Agのマイグレーションを抑制する働きがあり、またAgの表面を電解メッキ等による保護膜で完全に覆うことにより水分を遮断し、Agのイオン化によるマイグレーションを抑制することができるという作用を有する。

【0040】請求項8に記載の発明は、請求項1から4記載のフリップチップ型半導体発光素子をリードフレームや基板などに導通搭載した半導体発光装置、または請求項5から7記載の半導体発光装置において、前記フリップチップ型半導体発光素子と前記リードフレームや基板などとの接合隙間または前記フリップチップ型半導体発光素子と前記サブマウント素子の接合隙間にシリコーン樹脂を充填していることを特徴とする半導体発光装置であり、シリコーン樹脂を前記接合隙間に充填することにより、Agイオンをシリコーン樹脂がトラップするため、Agのイオン化によるマイグレーションを抑制することができるという作用を有する。

【0041】請求項7と8を併用することにより、反射層にAgを用いた場合のAgマイグレーション対策の効

果はより確実なものとなる。

【0042】請求項9に記載の発明は、請求項8記載の 半導体発光装置において、前記シリコーン樹脂が前記フ リップチップ型半導体発光素子の光取り出し面上に被覆 していないことを特徴とする半導体発光装置であり、た とえば硬化触媒にPt化合物を含有する液状シリコーン 樹脂を充填樹脂、エポキシ樹脂をモールド樹脂とする組 み合わせにおいて、前記フリップチップ型半導体発光素 子の光取り出し面上に前記シリコーン樹脂が被覆してい ないことにより、光取り出しロスが軽減でき輝度が向上 するという作用を有する。また、パラボラ部を有するリ ードフレームなどに前記発光装置を導通搭載し、たとえ ば硬化触媒にPt化合物を含有する液状シリコーン樹脂 を充填樹脂、エポキシ樹脂をモールド樹脂とするような 場合において、充填樹脂の塗布面がパラボラ上部付近に あると前記Auワイヤへのストレスが大きく、Au線が 切れたり、ボールが電極から剥がれる確率が従来のLE Dに比べて格段に大きくなるが、前記充填樹脂の上面を 前記Auワイヤのネック付近とすることにより、Auワ イヤへのストレスを格段に軽減することができるという 作用を有する。

【0043】請求項10に記載の発明は、請求項5,6 または7記載の半導体発光装置において、フリップチッ プ型半導体発光素子として絶縁性であって光透過型の基 板の上にGaN系化合物半導体のn型層及びp型層を積 層し、前記n型層の表面にn側電極を形成し、前記p型 層の表面のほぼ全面に薄膜の透明電極を形成するととも にこの透明電極の上であって前記p型層の表面の一部を 占める領域にp側電極を形成した半導体発光素子を用い た場合の前記反射層の製造方法であって、前記GaN系 半導体発光素子を前記サブマウント素子が行列状に形成 されたウエハーの上に両素子の電極を対峙させマイクロ バンプを介して導通接合させた後に、前記ウエハーを前 記発光素子とともに前記反射層の金属材料を溶解した電 解メッキ液に浸漬し、前記ウエハーの電極を電解用電源 の負電極に接続し、電解メッキ法により前記金属材料を 前記透明電極の表面に付着形成する半導体発光装置の製 造方法であり、p側電極が透明電極のままの発光素子で あってもサブマウント素子が行列状に形成されたウエハ ーに搭載後、電解メッキ法を用いることによって、透明 電極に反射層を簡単に付着形成することができ、外部量 子効率に優れた複合素子として、また、サブマウント素 子をSiダイオードとすることにより、静電耐圧にも優 れた複合素子として提供できるという作用を有する。

【0044】請求項11に記載の発明は、請求項7記載の発光装置の製造方法であって、前記フリップチップ型半導体発光素子を前記サブマウント素子が行列状に形成されたウエハーの上に両素子の電極を対峙させマイクロバンプを介して導通接合させた後に、前記ウエハーを前記発光素子とともに前記保護膜の金属材料を溶解した電

解メッキ液に浸漬し、前記ウエハーの電極を電解用電源の負電極に接続し、電解メッキ法により前記金属材料を前記発光素子のp側電極表面に付着形成する半導体発光装置の製造方法であり、電解メッキ法を用いることにより、容易に反射層であるAgの露出面に保護膜を覆うことができる。また、発光素子をサブマウント素子が行列状に形成されたウエハー上に搭載後、反射層であるAgの露出面に保護膜を形成するので、形成後、保護膜を傷つける心配がなく、保護膜の効果を確実にすることができるという作用を有する。

【0045】以下に、本発明の実施の形態の具体例を図面を参照しながら説明する。図1は本発明の第1の実施の形態によるGaN系化合物半導体発光素子の概要であって、同図の(a)は平面図、同図の(b)は同図(a)のA-A線矢視による縦断面図である。

【0046】図1の(a)及び(b)において、発光素子1は、絶縁性の透明なサファイア基板1aの表面に複数の半導体薄膜層を従来周知の有機金属気相成長法によって成膜したものである。この薄膜の積層体は、たとえば下から順にGaNバッファ層1b,n型GaN層1c,InGaN活性層1d,p型A1GaN層1e及びp型GaN層1fとしたものであり、ダブルヘテロ構造または量子井戸構造となっている。

【0047】n型GaN層1cの一つのコーナー部の上面はエッチングによって段差状に除去され、この除去された部分にn側電極2を蒸着法によって形成している。また、エッチングによる切除部分を除いた最上層のp型GaN層1fの上面には、p側電極3が同様に蒸着法によって形成されている。そして、これらのn側電極2及びp側電極3の上にはそれぞれマイクロバンプ4,5を形成している。ただし、マイクロバンプ4,5を形成している。ただし、マイクロバンプ4,5は、サブマウント素子側の電極上に形成される場合もある。

【0048】図2は発光素子1を備えた半導体発光装置の概略図である。リードフレーム6の上端に形成されたマウント部6aには、静電気保護用のSiダイオード素子7をサブマウント素子として搭載して、これを適切なAgペーストによって接着固定している。そして、このSiダイオード素子7の上面に、図1の(b)に示した発光素子1を上下反転した姿勢として配置している。

【0049】発光素子1のマイクロバンプ4,5は、それぞれSiダイオード素子7のp側電極7b及びn側電極7aに電気的に導通させてエポキシ樹脂8によって封止され、図示の姿勢においてサファイア基板1aの上面を光取出し面としている。

【0050】発光素子1への通電があるときには、半導体積層膜中のInGaN活性層1dが発光層となり、従来例でも示したようにこの発光層からの光がサファイア基板1aの光取り出し面側及びp側電極3に向かう。そして、このp側電極3に向かう光を効率よく反射させるようにすればよいが、このp側電極3の電極材料として

Auを含むものでは青色の光の反射率が小さくなるというものであった。

【0051】これに対し、本発明では、p側電極3から の反射効率を上げるためにその材料をp型GaN層1f に接触するコンタクト層3aとしてNiやCoまたはS bを50nmの膜厚で形成し、その上に反射層3bとし て青色及び緑色の光に対して反射率の高い銀白色系金属 のA1またはZnを1.5μmの膜厚で積層している。 ここで、コンタクト層3aを薄くする理由は、p型Ga N層に対して良好なオーミックコンタクトをとるため と、それに用いられる金属は、青色や緑色の光に対して 反射率が必ずしも良好ではないために、光の大部分が透 過できる薄さにするためで、その上に積層された反射率 の高い反射層3bで光を反射する構成にしている。ま た、この反射層3bは、光が透過できないように十分な 膜厚にする必要がある。これにより、p側電極3に向か う光を効率よく反射させることができる。また、反射層 3bがZnの場合は、マイクロバンプ4,5との接合性 を良くするために反射層3bの上にAuの層を形成す

【0052】また、反射層3bに青色や緑色の光に対して反射率が最も高いAgを用いる場合は、マイグレーション現象が付随する。しかも、このフリップチップ型の半導体発光素子の場合では、p側電極3bn側電極2が同一面に隣接しているので、マイグレーション現象が起こりやすい状況となり、短時間の通電により電極間のリークモード不良が発生するという不利な面がある。

【0053】これに対し、本発明では、反射層3bにAgを用いる場合は、Pd又はPtの合金として反射層3bを形成する。AgにPdまたはPtを混ぜることにより反射率は少し低下するがAgのマイグレーションは抑制される。その混合の適正値はPdの場合30wt%程度、Ptの場合は10wt%程度で、この反射層3bの膜厚を1.5μmで形成する。

【0054】図3は本発明の第2の実施の形態による半導体発光装置の発光素子とサブマウント素子からなる複合素子の部分の概要であって、同図の(a)はその概略平面図、同図の(b)は同図(a)のB-B線矢視による縦断面図である。

【0055】ここで用いるGaN系化合物半導体発光素子は、従来の透明電極52aを持つ発光素子50であり、サブマウント素子(Siダイオード)7上にマイクロバンプを介して接合され、複合素子とした後に、反射層10を透明電極上に青色及び緑色の光に対して反射率の高い銀白色系金属材料のAgまたはZnを1.5μmの膜厚で電解メッキ法により形成したものである。この場合、複合素子とした後に反射層10を形成するので、その断面形状は図2と異なっている。つまり、図2の場合は、発光素子1のp側電極3の部分にのみ反射層3bが形成されているが、図3の場合は、発光素子50の透

明電極52a、p側電極52b、マイクロバンプ5及び Siダイオードのn側電極7aの表面全体に反射層10 が形成されるが、反射層としての機能を果たすのは透明電極52a上に形成された部分である。この反射層10と発光素子50のp側電極部分以外は図2と同じ構成である。

【0056】また、この形態においても反射層10としてAgを用いる場合は、マイグレーション対策が必要である。この場合、図4(a)に示すように反射層10であるAgメッキ層の表面にPt,PdまたはNiのメッキ層からなる保護膜11を形成する。これにより、樹脂内に浸透してくる水分とAgとの接触を断ちマイグレーションが抑制できる。また、PtやPdにする理由は、その金属元素自体がAgマイグレーションを抑制する効果を持つためである。また、Niにする理由は、均一なメッキ層形成が容易に行えるためである。上記保護膜の形成により、Agマイグレーションによる電極間のリークモード不良は飛躍的に減少する。

【0057】この保護膜11の効果は、図4(b)に示す厚膜のp側電極の反射層3bをAgを用いて形成した発光素子の場合も同様である。

【0058】このように、透明電極52aの表面にAg等の金属をメッキ法によって付着させた反射層10を設けることによって、活性層からの光は反射層10によって主光取り出し面側に反射される。したがって、光が発光素子50の外に出たものを再度通過させて回収する従来構造に比べると、発光エネルギーの減衰を小さく抑えることができ、発光輝度の向上が図られる。

【0059】また、発光域となる透明電極52aは他の部分よりも高温となる傾向にあり、透明電極52aは極めて薄くその熱伝導率も小さいので、発光輝度の熱に対する影響は無視できない。これに対し、透明電極52aにはAgメッキによる反射層10が積層されて肉厚化されているので、Agの高い熱伝導率によって放熱量も増える。したがって、Agによる発光輝度の向上だけでなく、過熱を防いで耐性の向上も図れる。そして、反射層10は透明電極52aの表面だけでなく、バンプ電極5やSiダイオード7のn側電極7aの表面にも形成されるので、表面積の拡大とAgによる熱伝導を利用して放熱性を更に向上させることができる。

【0060】また、保護膜11を更に被せることによって、透明電極52aの表面を更に厚膜化できるので、その熱容量の増加と放熱性が更に向上し、発光素子50の耐性が改善される。

【0061】図5は本発明の半導体発光装置の反射層1 0及び保護膜11の製造方法の工程を示す概略図である。

【0062】図において、n型のシリコンを材料としたウエハー12にSiダイオード7のパターンを形成したものを材料として準備する。このウエハー12は、図3

に示すSiダイオード素子のp型半導体領域7eを形成するとともに、n側及びp側の電極7a,7bのパターンを一面側に形成し、他面側にはn電極7cを形成したものである。

【0063】一方、n側及びp側の電極51a,52bにマイクロバンプ4,5をメッキ方式またはスタッド方式によって形成したウエハーからダイシングした発光素子50の単体をエキスパンドシート上に並べておく。そして、発光素子50をコレットにより吸着ピックアップし、ウエハー12のn側及びp側の電極7a,7bのパターンに合わせて、マイクロバンプ5,4を接触させ加重、熱、超音波により溶融接合させウエハー12上に固定する。この場合、マイクロバンプはウエハー12のn側及びp側の電極7a,7b側に形成しておいても良い。

【0064】次いで、発光素子50を搭載したウエハー12を電解メッキ槽13の中の電解メッキ液14の中に浸漬する。この電解メッキ槽13にはメッキのための陽電極13aをウエハー12と対峙する位置に配置し、ウエハー12の裏面のn電極7cをメッキの陰電極として備え、これらの陽電極13aとn電極7cとの間に電源を接続することによって、電解メッキ槽13の中のメッキ液を電気分解する。これによりまず反射層のAgメッキの場合は、メッキ液中のAgイオンがウエハー12のn電極7cに導通するn側電極7a,マイクロバンプ5,発光素子50のp側電極52b及び透明電極52aの表面に析出付着され、図3に示したようにAgの反射層10が形成される。

【0065】その後、ウエハー12を取り出して十分洗浄した後、ダイサーによりダイシングし、これによって発光素子50の透明電極52aを含む部分にAgの反射層10を形成した発光素子50とSiダイオード7とによる複合素子が得られる。

【0066】なお、図4(a)に示した保護膜11を設ける例の場合では、Agの反射層10を形成した後に、別の電解メッキ槽の中の保護膜11用の金属メッキ液中に浸漬し、同様の操作によって保護膜11を電解メッキ法によって形成すればよい。また、図4(b)に示すように厚膜のp側電極3をもつ発光素子1においても、p側電極3にAgを用いる場合は、ウエハー12に接合後電解メッキ槽の中の保護膜11用の金属メッキ液中に浸漬し、同様の操作によって保護膜11を電解メッキ法によって形成することができる。

【0067】図6はSiダイオード7を製造するためのウエハー12に形成されたn側電極7aとp側電極7bのパターン及びn電極7cとの導通構造を示す図である。

【0068】図6(a)に示すように、メッキ形成面は n側電極7aと同電位のバンプ5と発光素子50のp側 電極52bと透明電極52aであるので、陰電極として は裏面のn電極7cではなく、n側電極7aが好ましい。というのは、裏面のn電極7cと表面のn側電極7aとの間には単位面積当たり数オームの抵抗Rが存在するので、透明電極52aにメッキをつきやすくするためにはn側電極7aにメッキの陰電極を取るのが好ましいのである。さらに図6(b)に示すように隣接するn側電極7aは同電位にするために接続電極9によって全て導通させるのが好ましいのである。

【0069】しかし、メッキ電極間に流す電流は、0.03mA/mm²程度と小電流であるため、裏面電極7cをメッキの陰電極としても不都合は生じない。

【0070】以上により、透明電極52aの全面にAgメッキによる反射層10が形成されるので、先に説明したように、活性層から透明電極52aを抜ける光は反射層10によって反射されるので、発光輝度が向上する。また、Agメッキはp側電極52b,マイクロバンプ5及びSiダイオード7のn側電極7aにも付着するので、各部の放熱が促され、発光への熱の影響を抑えることができる。

【0071】なお、図示の例では静電気保護用のSiダイオード7との組み合わせとしたが、発光素子50のn側及びp側の電極51a,52bに導通する電極を備えていて、電解メッキのための導通構造が得られる基板等を対象としてもよい。

【 0 0 7 2 】図7は本発明の第3の実施の形態による半導体発光装置であり、反射層10の表面に保護膜11を形成した複合素子をリードフレームに搭載接合し、シリコーン樹脂とエポキシ樹脂でモールドしたLEDランプの縦断面図である。

【0073】この構造を詳しく説明すると、リードフレームのマウント部6aに図4の(a)に示す反射層10の表面に保護膜11を形成した複合素子を導通接続した後に、フリップチップ型半導体発光素子50とSiダイオード素子7の接合隙間にシリコーン樹脂15を充填する。そして、このマウント部を含めてリードフレーム6の先端をエポキシ樹脂8でモールドする。ただし、フリップチップ型半導体発光素子50の光取り出し面上にはシリコーン樹脂は被覆しないようにする。その理由は、シリコーン樹脂の光透過率がモールド用のエポキシ樹脂より悪く、また屈折率がエポキシ樹脂より小さいため光取り出し効率が悪くなるためである。

【0074】この実施の形態は、反射層にAgを用いた場合に生じるAgマイグレーションをさらに確実に防止できる方法を示すものである。すなわち、第2の実施の形態において、Agの反射層10の表面をNiの保護膜11で覆った場合、樹脂を浸透してくる水分を遮断するのでAgマイグレーションは抑制可能であるが、保護膜11の形成工程でピンホールなどAg表面を被覆できない部分が生じる場合がある。その場合、ピンホールから水分が侵入し、熱と電場が加わってAgがイオン化して

とけだしAgマイグレーションによるリークモード不良が発生する。このようなピンホールが万一存在する場合でも、シリコーン樹脂を図7に示す複合素子の接合隙間に充填していれば、Agのマイグレーションは確実に抑制されリークモード不良は発生しない。

【0075】A gマイグレーションの加速信頼性試験の結果を次の3通りの場合でまとめたものを表1に示す。 【0076】

【表1】

	構成			加速試験(リーク不良発生率)		
	反射層	保護膜	シリコーン樹脂	24 時間	240 時間	500 時間
<u> </u>	Ag	なし	なし	100%		
2	Ag	Ni	なし	30%	60%	
<u></u>	Ag	Ni	あり	0%	0%	0%

【0077】 \mathbf{O} は、反射層10がAg、保護膜なし、シリコーン樹脂なし、 \mathbf{O} は、反射層10がAg、保護膜がNi、シリコーン樹脂なし、 \mathbf{O} は、反射層がAg、保護膜がNi、シリコーン樹脂を充填したものである。加速試験の条件は、温度が85 \mathbb{C} 、湿度が85%、通電は、Vf=3.3 \mathbb{V} 、If=12m \mathbb{A} である。

【0078】表1に示すように、①は24時間でリークモード不良が100%発生するのに対し、②は、1/3のサンプルが240時間以上でリークモード不良は発生しておらず、また、③は、500時間以上たってもリークモード不良は全く発生していないことが分かる。

【0079】 【発明の効果

【発明の効果】本発明の発光素子では、半導体積層膜の発光層からp側電極に向かう光は、銀白色系であって、特に青色から緑色の光に対して反射率の高い金属材料すなわちAg、AlやZnが積層された面(反射層)から効率よく結晶基板の光取り出し面側に反射させるので、発光効率の向上が可能となる。また、コンタクト層としてp側半導体積層膜にオーミック接合可能な金属材料すなわちNi、CoやSbを用いるので、接続性も安定したアセンブリが得られる。

【0080】また、コンタクト層は薄く光が透過可能な 薄膜とし、反射層は厚膜とすることにより、従来構造に 比べると格段に発光強度を上げることができる。

【0081】また、緑色から青色の光に対して最も反射率の高いAgを反射層として用いる場合は、Agマイグレーションによる電極間短絡によるリークモード不良が発生するが、反射層をAgとPtやAgとPdの合金とすることにより抑制できる。

【0082】また、本発明の発光素子をマイクロバンプを介してSiダイオード等のサブマウント素子に搭載接合して複合素子化した場合、サブマウント素子が行列状に形成されたウエハー上に発光素子を搭載接合した後に、電解メッキ工法によりAg反射層の表面を保護膜で覆うことができるので、水分を遮断しAgマイグレーションを抑制でき高輝度・高信頼性の発光装置が得られる。

【0083】また、本発明では、従来の透明電極を持つ GaN系化合物半導体発光素子をサブマウント素子が行 列状に形成されたウエハー上に搭載接合した後に、電解メッキ法によって発光素子の透明電極上に簡単に反射率の高い反射層が形成できるので、従来のチップを用いて輝度の向上が可能である。また、反射層にAgを用いた場合でも、その上に保護膜を簡単に形成できるのでAgマイグレーションの抑制も可能であり、高輝度の発光装置が得られる。また、透明電極及びその付近に肉厚状にメッキ層が形成されるので、発光面の放熱も促進され、耐性の向上も可能となる。

【0084】また、フリップチップ型半導体発光素子をリードフレームや基板などに導通搭載した半導体発光装置、またはフリップチップ型半導体発光素子をサブマウント素子に導通搭載した半導体発光装置において、フリップチップ型半導体発光素子とリードフレームや基板などとの接合隙間またはフリップチップ型半導体発光素子とサブマウント素子の接合隙間にシリコーン樹脂を充填することにより、さらに確実にAgマイグレーションを抑制することができ高信頼性の発光装置が得られる。

【0085】また、フリップチップ型半導体発光素子とサブマウント素子をAuワイヤなどを利用して導通搭載するような場合において、シリコーン樹脂をフリップチップ型半導体発光素子の光取り出し面に被覆しないように塗布することでAuワイヤへのストレスの低減が図れ、高信頼性の発光装置が得られる。

【0086】また、シリコーン樹脂は扱いやすく、振動、ストレス緩和、耐久接着、耐熱、耐オゾンなどの環境の変化に対しても安定であるため、信頼性を格段に向上させることができる。また、サブマウント素子として、静電気保護素子を備えるものでは静電耐圧も向上する。

【図面の簡単な説明】

【図1】本発明の一実施の形態によるフリップチップ型 の半導体発光素子であって、

(a)は平面図

(b)は同図(a)のA-A線矢視による概略縦断面図 【図2】図1の発光素子を備えたLEDランプの概略図 【図3】本発明の一実施の形態による半導体発光装置の 複合素子部の概略であって、

(a)は平面図

- (b)は同図(a)のB-B線矢視による縦断面図
- 【図4】反射層の表面に保護層を形成した例を示す縦断面図であって、
- (a) は電解メッキ法で形成された反射層の場合を示す 縦断面図
- (b) は厚膜p側電極の反射層の場合を示す縦断面図
- 【図5】本発明の製造方法における工程の概略図
- 【図6】本発明のメッキ工程を説明する図であって、
- (a)は、電解メッキの導通構造を示す図
- (b) はSiダイオードウエハーに形成されたn側電極とp側電極のパターンの平面図
- 【図7】複合素子をリードフレームに搭載接合してモールドした例を示す縦断面図
- 【図8】GaN系化合物半導体の発光素子の例を示す斜 視図
- 【図9】図8の発光素子をSiダイオードに搭載して複合素子化した例であって、
- (a)は平面図
- (b)は同図(a)C-C線矢視による縦断面図 【符号の説明】
- 1 発光素子
- 1 a 結晶基板
- 1b GaNバッファ層
- 1c n型GaN層
- 1d InGaN活性層

1e p型AlGaN層

- 1f p型GaN層
- 2 n側電極
- 3. p側電極
- 3a オーミック接合層
- 3b 反射層
- 4,5 マイクロバンプ
- 6 リードフレーム
- 6a マウント部
- 7 Siダイオード素子
- 7a n側電極
- 7b p側電極
- 7 c n電極
- 7d n型シリコン基板
- 7 e p型半導体領域
- 8 エポキシ樹脂
- 9 接続電極
- 10 反射層
- 11 保護膜
- 12 ウエハー
- 13 電解槽
- 13a 陽電極
- 14 電解メッキ液
- 15 シリコーン樹脂

[図1]

【図2】

【図3】

【図4】

【図5】

【図6】 【図7】 (a) 130 52a 50 12. 7c -R -526 50. 7a' 10' 4' 10. 1/-76 15 -6a (6)

【図9】

