Feuille d'exercice n° 03 : Sommes et calculs

Soient $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$. Quelles sont les expressions toujours égales entre elles?

1)
$$\sum_{k=1}^{n} a_k b_k$$
, $\sum_{k=1}^{n} a_{n+1-k} b_{n+1-k}$, $\frac{1}{4} \left(\sum_{k=1}^{n} (a_k + b_k)^2 - \sum_{k=1}^{n} (a_k - b_k)^2 \right)$

2)
$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} b_k\right), \quad \left(\sum_{k=1}^{n} a_k\right) \left(\sum_{p=1}^{n} b_p\right), \quad \sum_{k=1}^{n} \sum_{p=1}^{n} (a_k b_p), \quad \sum_{k=1}^{n} \left(a_k \sum_{p=1}^{n} b_p\right), \quad \sum_{k=1}^{n} a_k b_k$$

Exercice 2 (%) Montrer que pour toute famille $(z_k)_{1 \leq k \leq n} \in \mathbb{C}^n$, on a :

$$\left(\sum_{k=1}^{n} z_k\right)^2 = \sum_{k=1}^{n} z_k^2 + 2 \sum_{1 \le i < j \le n} z_i z_j.$$

Quel résultat bien connu cette formule généralise-t-elle?

Montrer que, pour tout $n \in \mathbb{N}^*$, $\sum_{i=1}^n k \cdot k! = (n+1)! - 1$. Exercice 3

Exercice 4 ()

- 1) Soit $k \in \mathbb{N}$. Écrire $(1+k)^4 k^4$ sous la forme d'un polynôme de degré 3 en k.
- 2) Soit $n \in \mathbb{N}$. En s'inspirant de la démonstration du cours donnant la valeur de $\sum_{i=1}^{n} k^2$, calculer la valeur de $\sum_{i=0}^{\infty} k^3$ (on donnera cette valeur sous la forme la plus factorisée possible).

Exercice 5 (%) Donner une expression simplifiée des quantités suivantes.

$$1) \sum_{1 \le i,j \le n} i.j$$

2)
$$\sum_{1 \le i,j \le n} i + j$$

3)
$$\sum_{1 \le i, j \le n} i - j$$

1)
$$\sum_{1 \le i,j \le n} i.j$$
 2) $\sum_{1 \le i,j \le n} i+j$ 3) $\sum_{1 \le i,j \le n} i-j$ 4) $\sum_{1 \le i,j \le n} \min(i,j)$

Même question en remplaçant $\sum_{1 \le i,j \le n}$ par $\sum_{1 \le i \le j \le n}$ puis par $\sum_{1 \le i \le j \le n}$.

En considérant $(1+1)^n$ et $(1-1)^n$, calculer les sommes $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k}$ et $\sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1}$, où Exercice 6 $|\cdot|$ est la fonction « partie entière ».

Remarque : ces sommes sont souvent notées $\sum_{0 \le 2k \le n} \binom{n}{2k}$ et $\sum_{0 \le 2k+1 \le n} \binom{n}{2k+1}$.

Écrire avec des factorielles les quantités suivantes. Exercice 7 (%)

1)
$$\prod_{k=n}^{m} k$$
 pour $n, m \in \mathbb{N}^*$ t.q. $n < m$.

3)
$$\prod_{k=1}^{p} \frac{n-p+k}{k}$$
 pour $n \ge 2$ et $1 \le p \le n-1$.

2)
$$\prod_{k=1}^{p} n - p + k$$
 pour $(n, p) \in \mathbb{N}^2$ t.q. $p \le n$.

4) $\prod_{k=1}^{n} \frac{2k+1}{2k}$ pour $n \in \mathbb{N}^*$.

4)
$$\prod_{k=1}^{n} \frac{2k+1}{2k} \text{ pour } n \in \mathbb{N}^*.$$

Exercice 8 (%)

1) Démontrer que, pour tout
$$n \in \mathbb{N}^*$$
, $T_n = \sum_{k=1}^n ki^{k-1} = \frac{i - ni^n - (n+1)i^{(n+1)}}{2}$

2) Soit $p \in \mathbb{N}$. En déduire les valeurs des deux sommes :

$$S_1(p) = 1 - 3 + 5 - 7 + \dots + (-1)^p (2p+1),$$

 $S_2(p) = 2 - 4 + 6 - 8 + \dots + (-1)^{(p+1)} 2p.$

Exercice 9 Soit $n \in \mathbb{N}$. En utilisant la fonction $f: x \mapsto (1+x)^n$, calculer les quantités suivantes.

$$1) \sum_{k=0}^{n} \binom{n}{k}$$

$$2) \sum_{k=1}^{n} k \binom{n}{k}$$

$$3) \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$$

Exercice 10 Soit a un nombre réel. On étudie le système linéaire suivant.

$$S_a : \begin{cases} x - 2y + 3z = 2 \\ x + 3y - 2z = 5 \\ 2x - y + az = 1 \end{cases}$$

- 1) En fonction des valeurs du paramètre a, déterminer si le système \mathcal{S}_a peut :
 - a) n'admettre aucune solution;
 - b) admettre exactement une solution;
 - c) admettre une infinité de solutions.
- 2) Résoudre le système S_a lorsque celui-ci admet une (des) solution(s).

Exercice 11 Discuter et résoudre suivant les valeurs des réels λ , a, b, c, d le système suivant.

(S)
$$\begin{cases} (1+\lambda)x + y + z + t = a \\ x + (1+\lambda)y + z + t = b \\ x + y + (1+\lambda)z + t = c \\ x + y + z + (1+\lambda)t = d \end{cases}$$

2