Chi-Square Tests:

Goodness of Fit Test

In this section, we consider experiments with *multiple outcomes*. The probability of each outcome is fixed.

<u>Definition</u>: A **chi-square goodness-of-fit test** is used to test whether a frequency distribution obtained experimentally fits an "expected" frequency distribution that is based on the theoretical or previously known probability of each outcome.

An experiment is conducted in which a *simple random sample* is taken from a population, and each member of the population is grouped into exactly one of k categories.

Step 1: The **observed frequencies** are calculated for the sample.

<u>Step 2</u>: The **expected frequencies** are obtained from previous knowledge (or belief) or probability theory. In order to proceed to the next step, it is necessary that each expected frequency is at least 5.

Step 3: A hypothesis test is performed:

- (i) The *null hypothesis* H_0 : the population frequencies are equal to the expected frequencies.
- (ii) The alternative hypothesis, H_a : the null hypothesis is false (what does this imply about the population frequencies?).
- (iii) α is the level of significance.
- (iv) The degrees of freedom: k-1.
- (v) A test statistic is calculated:

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O - E)^2}{E}$$

- (vi) From α and k-1, a *critical value* is determined from the chi-square table.
- (vii) Reject H_0 if χ^2 is larger than the *critical value* (right-tailed test).

Example 1: Researchers have conducted a survey of 1600 coffee drinkers asking how much coffee they drink in order to confirm previous studies. Previous studies have indicated that 72% of Americans drink coffee. The results of previous studies (left) and the survey (right) are below. At $\alpha = 0.05$, is there enough evidence to conclude that the distributions are the same?

Response	% of Coffee
reesponse	Drinkers
2 cups per week	15%
1 cup per week	13%
1 cup per day	27%
2+ cups per day	45%

Response	Frequency
2 cups per week	206
1 cup per week	193
1 cup per day	462
2+ cups per day	739

- (i) The *null hypothesis* H_0 :the population frequencies are equal to the expected frequencies (to be calculated below).
- (ii) The alternative hypothesis, H_a : the null hypothesis is false.
- (iii) $\alpha = 0.05$.
- (iv) The degrees of freedom: k-1=4-1=3.
- (v) The test statistic can be calculated using a table:

Response	% of Coffee Drinkers	E	0	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
2 cups per week	15%	$0.15 \times 1600 = 240$	206	-34	1156	4.817
1 cup per week	13%	$0.13 \times 1600 = 208$	193	-15	225	1.082
1 cup per day	27%	$0.27 \times 1600 = 432$	462	30	900	2.083
2+ cups per day	45%	$0.45 \times 1600 = 720$	739	19	361	0.5014

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O-E)^2}{E} = \underline{8.483}.$$

- (vi) From $\alpha = 0.05$ and k 1 = 3, the *critical value* is <u>7.815</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 8.483 > 7.815$, there is enough statistical evidence to reject the null hypothesis and to believe that the old percentages no longer hold.

Example 2: A department store, A, has four competitors: B,C,D, and E. Store A hires a consultant to determine if the percentage of shoppers who prefer each of the five stores is the same. A survey of 1100 randomly selected shoppers is conducted, and the results about which one of the stores shoppers prefer are below. Is there enough evidence using a significance level $\alpha = 0.05$ to conclude that the proportions are really the same?

Store	A	В	С	D	Е
Number of Shoppers	262	234	204	190	210

- (i) The *null hypothesis* H_0 :the population frequencies are equal to the expected frequencies (to be calculated below).
- (ii) The alternative hypothesis, H_a : the null hypothesis is false.
- (iii) $\alpha = 0.05$.
- (iv) The degrees of freedom: k-1=5-1=4.
- (v) The test statistic can be calculated using a table:

Preference	% of Shoppers	E	О	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
A	20%	$0.2 \times 1100 = 220$	262	42	1764	8.018
В	20%	$0.2 \times 1100 = 220$	234	14	196	0.891
С	20%	$0.2 \times 1100 = 220$	204	-16	256	1.163
D	20%	$0.2 \times 1100 = 220$	190	-30	900	4.091
Е	20%	$0.2 \times 1100 = 220$	210	-10	100	0.455

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O - E)^2}{E} = \underline{14.618}.$$

- (vi) From $\alpha = 0.05$ and k 1 = 4, the *critical value* is <u>9.488</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 14.618 > 9.488$, there is enough statistical evidence to reject the null hypothesis and to believe that customers do not prefer each of the five stores equally.

Independence

Recall that two events are *independent* if the occurrence of one of the events has no effect on the occurrence of the other event.

A chi-square independence test is used to test whether or not two variables are independent.

As in previous section, an experiment is conducted in which the frequencies for two variables are determined. To use the test, the same assumptions must be satisfied: the observed frequencies are obtained through a simple random sample, and each expected frequency is at least 5. The frequencies are written down in a table: the columns contain outcomes for one variable, and the rows contain outcomes for the other variable.

The procedure for the hypothesis test is essentially the same. The differences are that:

- (i) H_0 is that the two variables are independent.
- (ii) H_a is that the two variables are not independent (they are dependent).
- (iii) The expected frequency $E_{r,c}$ for the entry in row r, column c is calculated using:

$$E_{r,c} = \frac{(\text{ Sum of row } r) \times (\text{ Sum of column } c)}{\text{Sample size}}$$

(iv) The degrees of freedom: (number of rows - 1)×(number of columns - 1).

Example 3: The results of a random sample of children with pain from musculoskeletal injuries treated with acetaminophen, ibuprofen, or codeine are shown in the table. At $\alpha = 0.10$, is there enough evidence to conclude that the treatment and result are independent?

	Acetaminophen (c. 1)	Ibuprofen (c. 2)	Codeine (c. 3)	Total
(r. 1) Significant	58 (66.7)	81 (66.7)	61 (66.7)	200
Improvement (r. 2) Slight				
Improvement	42 (33.3)	19 (33.3)	39 (33.3)	100
Total	100	100	100	300

First, calculate the column and row totals.

Then find the expected frequency for each item and write it in the parenthesis next to the observed frequency.

Now perform the hypothesis test.

(i) The null hypothesis H_0 : the treatment and response are independent.

- (ii) The alternative hypothesis, H_a : the treatment and response are dependent.
- (iii) $\alpha = 0.10$.
- (iv) The degrees of freedom: (number of rows 1)×(number of columns 1) = $(2-1) \times (3-1) = 1 \times 2 = 2$.
- (v) The test statistic can be calculated using a table:

Row, Column	E	О	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
1,1	$\frac{200\cdot100}{300} = 66.7$	58	-8.7	75.69	1.135
1,2	$\frac{200 \cdot 100}{300} = 66.7$	81	14.3	204.49	3.067
1,3	$\frac{200\cdot100}{300} = 66.7$	61	-5.7	32.49	0.487
2,1	$\frac{100\cdot100}{300} = 33.3$	42	8.7	75.69	2.271
2,2	$\frac{100.100}{300} = 33.3$	19	-14.3	204.49	6.135
2,3	$\frac{100.100}{300} = 33.3$	39	5.7	32.49	0.975

$$\chi^2 = \sum \frac{(\text{ observed } - \text{ expected })^2}{\text{expected}} = \sum \frac{(O - E)^2}{E} = \underline{14.07}.$$

- (vi) From $\alpha = 0.10$ and d.f = 2, the *critical value* is <u>4.605</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 14.07 > 4.605$, there is enough statistical evidence to reject the null hypothesis and to believe that there is a relationship between the treatment and response.

<u>Practice Problem 1:</u> A doctor believes that the proportions of births in this country on each day of the week are equal. A simple random sample of 700 births from a recent year is selected, and the results are below. At a significance level of 0.01, is there enough evidence to support the doctor's claim?

Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Frequency	65	103	114	116	115	112	75

- (i) The *null hypothesis* H_0 :the population frequencies are equal to the expected frequencies (to be calculated below).
- (ii) The alternative hypothesis, H_a : the null hypothesis is false.
- (iii) $\alpha = 0.01$.
- (iv) The degrees of freedom: k 1 = 7 1 = 6.
- (v) The test statistic can be calculated using a table:

Day	E	O	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
Sunday	700/7 = 100	65	-35	1225	12.25
Monday	700/7 = 100	103	3	9	0.09
Tuesday	700/7 = 100	114	14	196	1.96
Wednesday	700/7 = 100	116	16	256	2.56
Thursday	700/7 = 100	115	15	225	2.25
Friday	700/7 = 100	112	12	144	1.44
Saturday	700/7 = 100	75	-25	625	6.25

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O-E)^2}{E} = \underline{26.8}.$$

- (vi) From $\alpha = 0.01$ and k 1 = 6, the *critical value* is <u>16.812</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 26.8 > 16.812$, there is enough statistical evidence to reject the null hypothesis and to believe that the proportion of births is not the same for each day of the week.

<u>Practice Problem 2:</u> The side effects of a new drug are being tested against a placebo. A simple random sample of 565 patients yields the results below. At a significance level of $\alpha = 0.05$, is there enough evidence to conclude that the treatment is independent of the side effect of nausea?

Result	Drug (c.1)	Placebo (c.2)	Total
Nausea (r.1)	36	13	49
No nausea (r.2)	254	262	516
Total	290	275	565

- (i) The null hypothesis H_0 : the treatment and response are independent.
- (ii) The alternative hypothesis, H_a : the treatment and response are dependent.
- (iii) $\alpha = 0.01$.
- (iv) The degrees of freedom: (number of rows 1)×(number of columns 1) = $(2-1) \times (2-1) = 1 \times 1 = 1$.
- (v) The test statistic can be calculated using a table:

Row, Column	E	О	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
1,1	$\frac{49\cdot290}{565} = 25.15$	36	10.85	117.72	4.681
1,2	$\frac{49.275}{565} = 23.85$	13	-10.85	117.72	4.936
2,1	$\frac{516\cdot290}{565} = 264.85$	254	-10.85	117.72	0.444
2,2	$\frac{516.275}{565} = 251.15$	262	10.85	117.72	0.469

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O - E)^2}{E} = \underline{10.53}.$$

- (vi) From $\alpha = 0.10$ and d.f = 1, the *critical value* is <u>2.706</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 10.53 > 2.706$, there is enough statistical evidence to reject the null hypothesis and to believe that there is a relationship between the treatment and response.

<u>Practice Problem 3:</u> Suppose that we have a 6-sided die. We assume that the die is unbiased (upon rolling the die, each outcome is equally likely). An experiment is conducted in which the die is rolled 240 times. The outcomes are in the table below. At a significance level of $\alpha = 0.05$, is there enough evidence to support the hypothesis that the die is unbiased?

Outcome	1	2	3	4	5	6
Frequency	34	44	30	46	51	35

- (i) The null hypothesis H_0 : each face is equally likely to be the outcome of a single roll.
- (ii) The alternative hypothesis, H_a : the null hypothesis is false.
- (iii) $\alpha = 0.05$.
- (iv) The degrees of freedom: k-1=6-1=5.
- (v) The test statistic can be calculated using a table:

Face	E	O	O-E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
1	240/6 = 40	34	-6	36	0.9
2	240/6 = 40	44	4	16	0.4
3	240/6 = 40	30	-10	100	2.5
4	240/6 = 40	46	6	36	0.9
5	240/6 = 40	51	11	121	3.025
6	240/6 = 40	35	-5	25	0.625

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}} = \sum \frac{(O-E)^2}{E} = \underline{8.35}.$$

- (vi) From $\alpha = 0.01$ and k 1 = 6, the *critical value* is <u>15.086</u>.
- (vii) Is there enough evidence to reject H_0 ? Since $\chi^2 \approx 8.35 < 15.086$, we fail to reject the null hypothesis, that the die is fair.

	Upper Tail Areas (α)											
Degrees of Freedom	.995	.99	.975	.95	.90	.75	.25	.10	.05	.025	.01	.005
1		51-451000	0.001	0.004	0.016	0.102	1.323	2.706	3.841	5.024	6.635	7,879
2	0.010	0.020	0.051	0.103	0.211	0.575	2.773	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	1.213	4.108	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	1.923	5.385	7.779	9.488	11,143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	2.675	6.626	9.236	11.071	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	3.455	7.841	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	4.255	9.037	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	5,071	10.219	13.362	15.507	17,535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	5.899	11.389	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	6.737	12.549	15.987	18.307	20.483	23,209	25.188
11.	2.603	3.053	3.816	4.575	5.578	7.584	13.701	17.275	19,675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	8.438	14.845	18.549	21.026	23.337	26.217	28,299
13	3.565	4.107	5.009	5.892	7.042	9.299	15.984	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	10.165	17.117	21.064	23,685	26.119	29,141	31,319
15	4.601	5.229	6.262	7.261	8.547	11.037	18.245	22.307	24.996	27.488	30.578	32.80
16	5.142	5.812	6,908	7,962	9.312	11.912	19,369	23.542	26.296	28.845	32,000	34.26
17	5.697	6.408	7.564	8.672	10.085	12.792	20,489	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	13.675	21.605	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	14.562	22.718	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	15.452	23.828	28,412	31.410	34.170	37.566	39,997
21	8.034	8.897	10.283	11.591	13.240	16.344	24.935	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.042	17.240	26.039	30.813	33.924	36.781	40.289	42.796
23	9.260	10,196	11.689	13.091	14.848	18.137	27.141	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	19.037	28.241	33.196	36.415	39.364	42.980	45.555
25	10.520	11.524	13.120	14.611	16.473	19.939	29.339	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	20.843	30.435	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	21.749	31.528	36.741	40,113	43.194	46,963	49.645
28	12.461	13.565	15.308	16.928	18.939	22.657	32.620	37.916	41.337	44.461	48.278	50.993
29	13.121	14.257	16.047	17.708	19.768	23.567	33.711	39.087	42.557	45.722	49.588	52.336
30	13.787	14.954	16,791	18,493	20.599	24.478	34,800	40.256	43.773	46,979	50.892	53,672