HW Set 7 (Due day: Nov 25, 12pm)

- 1. Show that $s(x) = \frac{\sin x}{x}$ is improperly Riemann integrable on $(0, \infty)$ and show that it is not in \mathcal{L} on $(0, \infty)$.
- 2. The following simple computation yields a good approximation to Stirling's formula. For $m=1,2,3,\cdots$, define

$$f(x) = (m+1-x)\log m + (x-m)\log(m+1)$$

if $m \le x \le m+1$, and define

$$g(x) = \frac{x}{m} - 1 + \log m$$

if $m-\frac{1}{2} \le x < m+\frac{1}{2}.$ Draw the graphs of f and g. Note that $f(x) \le \log x \le g(x)$ if $x \ge 1$ and that

$$\int_{1}^{n} f(x) \ dx = \log(n!) - \frac{1}{2} \log n > -\frac{1}{8} + \int_{1}^{n} g(x) \ dx.$$

Integrate $\log x$ over [1, n]. Conclude that

$$\frac{7}{8} < \log(n!) - \left(n + \frac{1}{2}\right) \log n + n < 1$$

for $n=2,3,4,\cdots$ (Note: $\log \sqrt{2\pi} \sim 0.918...$). Thus

$$e^{7/8} < \frac{n!}{(n/e)^n \sqrt{n}} < e.$$

- 3. If $f \in \mathcal{R}$ on [a,b] and if $F(x) = \int_a^x f(t) \ dt$, prove that F'(x) = f(x) almost everywhere on [a,b].
- 4. Let $f\in\mathcal{L}$ on [a,b]. Prove that the function $F(x)=\int_a^x f(t)\ dt$ is continuous on [a,b].
- 5. If $f,g\in\mathcal{L}(\mu)$ on X, define the distance between f and g by

$$\int_X |f - g| \ d\mu.$$

Prove that $\mathcal{L}(\mu)$ is a complete metric space. (Note that f=g in $\mathcal{L}(\mu)$ means that f=g a.e. in X with respect to the measure μ .)

- 6. Let (X,F,μ) be a measure space and $f_n,g_n:X\to\mathbb{R}$ be measurable functions. Suppose that $|f_n|\leq |g_n|, \lim_{n\to\infty}g_n=g$ a.e. in $X,g_n,g\in\mathcal{L}$, and $\lim_{n\to\infty}\int_Xg_n\,d\mu=\int_Xg\,d\mu.$ Prove that $\lim_{n\to\infty}\int_Xf_n\,d\mu=\int_Xf\,d\mu$ provided that $\lim_{n\to\infty}f_n=f$ a.e. in X with respect to the measure $\mu.$
- 7. Let (X, F, μ) be a measure space and $f_n, f: X \to \mathbb{R}$ be measurable functions with $f_n, f \in \mathcal{L}(\mu)$ for each $n \in \mathbb{N}$ and $\lim_{n \to \infty} f_n = f$ a.e in X with respect to the measure μ . Prove that

$$\int_X |f_n - f| \, d\mu \to 0 \quad \text{if and only if} \quad \int_X |f_n| \, d\mu \to \int_X |f| \, d\mu.$$

(Hint: Use the result in the problem 6.)