AA203 Optimal and Learning-based Control

Constrained optimization

Preliminaries

- constrained set usually specified in terms of equality and inequality constraints
- sophisticated collections of optimality conditions, involving some auxiliary variables, called Lagrange multipliers

Viewpoints:

- <u>penalty viewpoint</u>: we disregard the constraints and we add to the cost a high penalty for violating them
- <u>feasibility direction viewpoint</u>: it relies on the fact that at a local minimum there can be no cost improvement when traveling a small distance along a direction that leads to feasibile points

Outline

- 1. Optimization with equality constraints
- 2. Optimization with inequality constraints

Outline

- 1. Optimization with equality constraints
- 2. Optimization with inequality constraints

Optimization with equality constraints

min
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$

- $f: \mathbb{R}^n \to \mathbb{R}$ and $h_i: \mathbb{R}^n \to \mathbb{R}$ are C^1
- notation: $\mathbf{h} \coloneqq (h_1, \dots, h_m)$

Lagrange multipliers

• Basic Lagrange multiplier theorem: for a given local minimum \mathbf{x}^* there exist scalars $\lambda_1, \dots, \lambda_m$ called Lagrange multipliers such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

• Example

min
$$x_1 + x_2$$
 subject to $x_1^2 + x_2^2 = 2$ Solution: \mathbf{x}^* = (-1, -1)

Lagrange multipliers

Interpretations:

- 1. The cost gradient $\nabla f(\mathbf{x}^*)$ belongs to the subspace spanned by the constraint gradients at \mathbf{x}^* . That is, the constrained solution will be at a point of tangency of the constrained cost curves and the constraint function
- 2. The cost gradient $\nabla f(\mathbf{x}^*)$ is orthogonal to the subspace of first order feasible variations

$$V(\mathbf{x}^*) = \left\{ \Delta \mathbf{x} \middle| \nabla h_i(\mathbf{x}^*)' \Delta \mathbf{x} = 0, \ i = 1, \dots, m \right\}$$

This is the subspace of variations $\Delta \mathbf{x}$ for which the vector $\mathbf{x} = \mathbf{x}^* + \Delta \mathbf{x}$ satisfies the constraint $\mathbf{h}(\mathbf{x}) = 0$ up to first order. Hence, at a local minimum, the first order cost variation $\nabla f(\mathbf{x}^*)' \Delta \mathbf{x}$ is zero for all variations $\Delta \mathbf{x}$ in this subspace

NOC

Theorem: NOC

Let \mathbf{x}^* be a local minimum of f subject to $\mathbf{h}(\mathbf{x}) = 0$ and assume that the constraint gradients $\nabla h_1(\mathbf{x}^*), \dots, \nabla h_m(\mathbf{x}^*)$ are linearly independent. Then there exists a <u>unique</u> vector $(\lambda_1, \dots, \lambda_m)$, called a Lagrange multiplier vector, such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

2nd order NOC and SOC are provided in the lecture notes

Discussion

- A feasible vector \mathbf{x} for which $\{\nabla h_i(\mathbf{x})\}_i$ are linearly independent is called regular
- Proof relies on transforming the constrained problem into an unconstrained one
 - penalty approach: we disregard the constraint while adding to the cost a high penalty for violating them → extends to inequality constraints
 - 2. elimination approach: we view the constraints as a system of m equations with n unknowns, and we express m of the variables in terms of the remaining n-m, thereby reducing the problem to an unconstrained problem
- There may not exist a Lagrange multiplier for a local minimum that is not regular

The Lagrangian function

• It is often convenient to write the necessary conditions in terms of the Lagrangian function $L: \mathbb{R}^{n+m} \to \mathbb{R}$

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

• Then, if \mathbf{x}^* is a local minimum which is regular, the NOC conditions are compactly written

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0$$
$$\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0$$

System of n + m equations with n + m unknowns

Outline

- 1. Optimization with equality constraints
- 2. Optimization with inequality constraints

Optimization with inequality constraints

min
$$f(\mathbf{x})$$

subject to $h_i(\mathbf{x}) = 0, \qquad i = 1, \dots, m$
 $g_j(\mathbf{x}) \le 0, \qquad j = 1, \dots, r$

- f, h_i, g_j are C^1
- In compact form (ICP problem)

min
$$f(\mathbf{x})$$

subject to $\mathbf{h}(\mathbf{x}) = 0$
 $\mathbf{g}(\mathbf{x}) \le 0$

Active constraints

For any feasible point, the set of active inequality constraints is denoted

$$A(\mathbf{x}) := \{ j | g_j(\mathbf{x}) = 0 \}$$

If $j \notin A(\mathbf{x})$, then the constraint is *inactive* at \mathbf{x} .

Key points

- if x* is a local minimum of the ICP, then x* is also a local minimum for the identical ICP without the inactive constraints
- at a local minimum, active inequality constraints can be treated to a large extent as equalities

Active constraints

• Hence, if \mathbf{x}^* is a local minimum of ICP, then \mathbf{x}^* is also a local minimum for the equality constrained problem

min
$$f(\mathbf{x})$$

subject to $\mathbf{h}(\mathbf{x}) = 0$
 $g_j(\mathbf{x}) = 0, \quad \forall j \in A(\mathbf{x}^*)$

Active constraints

• Thus if \mathbf{x}^* is regular, there exist Lagrange multipliers $(\lambda_1, \dots, \lambda_m)$ and $\mu_j^*, j \in A(\mathbf{x}^*)$, such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^n \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j \in A(\mathbf{x}^*)} \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$

or equivalently

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^n \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(\mathbf{x}^*) = 0$$
$$\mu_j^* = 0 \quad \forall j \notin A(\mathbf{x}^*) \quad \text{(indeed } \mu_j^* \ge 0)$$

Karush-Kuhn-Tucker NOC

Define the Lagrangian function

$$L(\mathbf{x}, \lambda, \mu) := f(\mathbf{x}) + \sum_{i=1}^{n} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x})$$

Theorem: KKT NOC

Let \mathbf{x}^* be a local minimum for ICP where f, h_i, g_j are \mathcal{C}^1 and assume \mathbf{x}^* is regular (equality + active inequality constraints gradients are linearly independent). Then, there exist <u>unique</u> Lagrange multiplier vectors $(\lambda_1^*, \dots, \lambda_m^*), (\mu_1^*, \dots, \mu_m^*)$ such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = 0$$

$$\mu_j^* \ge 0, \quad j = 1, \dots, r$$

$$\mu_j^* = 0 \quad \forall j \notin A(\mathbf{x}^*)$$

Example

$$\min \quad x_1^2 + x_2^2$$

subject to
$$2x + y \le 2$$

Solution: (0,0)

Next time

Dynamic programming

