1 Algorithms

A sketch of a formal definition of an algorithm:

A computational method is a quadruple (Q, I, Ω, f) , where

- $I \subset Q$ is the *input*
- $\Omega \subset Q$ is the output
- $f: Q \to Q$ is the computational rule, which satisfies $f(\omega) = \omega \ \forall \omega \in \Omega$.

Each $x \in I$ defines a computational sequence x_0, x_1, \ldots, n , where $x_0 = x$ and $x_{k+1} = f(x_k)$. The sequence terminates in k steps if k is the smallest integer such that $x_k \in \Omega$. An algorithm is a computational method that terminates in some finite number of steps for all x in I.

As an example, we present Euclid's algorithm in this formalization: let Q be the set of all singletons $\{n\}$, all ordered pairs (m,n), and all ordered quadruples (m,n,r,1),(m,n,r,2),(m,n,p,3) where m,n,p are positive integers and r is a nonnegative integer. Let I be the ordered pairs (m,n) and Ω the set of singletons $\{n\}$. Define f by

$$f((m,n)) = (m,n,0,1); \ f((n)) = (n); \tag{1}$$

$$f((m, n, r, 1)) = (m, n, m \% n, 2); \tag{2}$$

$$f((m, n, r, 2)) = (n) \text{ if } r = 0, (m, n, r, 3) \text{ otherwise};$$
 (3)

$$f((m, n, p, 3)) = (n, p, p, 1) \tag{4}$$

2 Algorithms - solutions to exercises

- **1.1** $t \leftarrow a, a \leftarrow b, b \leftarrow c, c \leftarrow d, d \leftarrow t.$
 - **1.2** We have $m \leftarrow n$ and $n \leftarrow r$. Since r < n, after assignment n < m.
- **1.3 Algorithm F.** Given two positive integers m and n, find the greatest common divisor.
 - **F1** Divide m by n.
 - $\mathbf{F2}$ Set m equal to the remainder.
 - **F3** If m = 0 then the answer is n.
 - **F4** Otherwise divide n by m.
 - **F5** Set n equal to the remainder.
 - **F6** If n = 0 then the answer is m.
 - $\mathbf{F7}$ Go to $\mathbf{F1}$.
 - **1.4** $6099\%2166 = 1767 \Rightarrow 2166\%1767 = 399$
 - $\Rightarrow 1767\%399 = 171 \Rightarrow 399\$171 = 57 \Rightarrow 171\%57 = 0.$

So the GCD is 57.

1.5 Not finite, not definite, not effective.

```
1.6 n = 1: 1\%5 = 1 \Rightarrow 5\%1 = 0, 2 steps n = 2: 2\%5 = 2 \Rightarrow 5\%2 = 1 \Rightarrow 2\%1 = 0, 3 steps n = 3: 3\%5 = 3 \Rightarrow 5\%3 = 2 \Rightarrow 3\%2 = 1 \Rightarrow 2\%1 = 0, 4 steps n = 4: 4\%5 = 4 \Rightarrow 5\%4 = 4 \Rightarrow 4\%4 = 0, 3 steps n = 5: 5\%5 = 0, 1 step So T_5 = 2.6.
```

1.7 U_m is well-defined: if n > m, the first step of the Euclidean algorithm simply swaps n and m (since m % n = m) and $U_m = T_m + 1$. If n < m then there are only finitely many cases.

3 Mathematical Preliminaries - Induction

Algorithmic proof procedure:

Algorithm I - Construct a proof Given a positive integer n and proposition P(n), this algorithm will output a proof that P(n) is true (if it succeeds).

I1 [Prove P(1)] Set $k \leftarrow 1$ and use another algorithm to output a proof of P(1).

I2 [k = n] If k = n, terminate - the required proof was found in the previous step.

I3 [k < n] Otherwise k < n. Use another algorithm to output a proof of the following statement: "If $P(1), P(2), \ldots, P(k)$ is true, then P(k+1) is true." Then output the statement "We have already proved $P(1), \ldots, P(k)$, hence P(k+1) is true." Combine these statements.

I4 Set $k \leftarrow k + 1$. Go to step **I2**.

Here is an inductive proof of a fact about the Fibonacci sequence. Let $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Define $\phi = (1 + \sqrt{5})/2$. Then $F_n \le \phi^{n-1}$ for all positive n.

We proceed according to the algorithm above. This is clearly true for n=0 and n=1,l so we have obtained a proof of P(1). For P(2), $F_2=1$ and $\phi>1.6$, so we have a (computational) proof of P(2). Now assume our target is k+1 with k>1 and we have k proofs $P(1),\ldots,P(k)$. Since $F_{k+1}=F_k+F_{k-1}$, and by hypothesis $F_k\leq \phi^{k-1}$ and $F_{k-1}\leq \phi^{k-2}$,

$$F_{k+1} \le \phi^{k-1} + \phi^{k-2} = \phi^{k-2}(1+\phi).$$
 (5)

 ϕ is actually the positive solution to $1 + \phi = \phi^2$. So plugging this in gives $F_{k+1} \leq \phi^k$, as desired.

Note that our proof would have failed if we didn't have direct proofs of P(1) and P(2): P(1) would fail at the inductive step since the theorem is not true for n=0, and for P(2) we couldn't have applied the method at the $F_{k-1} \leq \phi^{k-2}$ step (since k=1).