Ственевим рядом за степенями $(x-x_0)$ (із центром у точці x_0) називають функціональний ряд вигляду

$$c_0 + c_1(x - x_0) + ... + c_n(x - x_0)^n + ... = \sum_{n=0}^{\infty} c_n(x - x_0)^n$$

де $c_n, n \in \mathbb{N},$ — коефіцієнти ряду.

Заміною змінної $t=x-x_0$ степеневий ряд із центром у точці x_0 зводиться до ряду із центром у точці $t_0=0$.

Теорема 5.1 (перша теорема Абеля). Якщо степеневий ряд $\Sigma c_n t^n$ збігається в точці $t_1 \neq 0$, то він абсолютно збіжний у всіх точках t, для яких $|t| < |t_1|$.

Якщо у точці t_2 ряд розбігається, то він розбіжний у всіх точках t, для яких $\left|t\right|>\left|t_2\right|$.

▶ За умовою ряд $\Sigma c_n t_1^n$ збігається. Отже, за необхідною ознакою збіжності ряду $\lim_{n\to\infty} c_n t_1^n = 0$. Звідси випливає, що існує таке число M>0, що виконано нерівність

$$\begin{vmatrix} c_nt_1^n \end{vmatrix} \leq M, n = 0, 1, 2, \dots$$
 Нехай $|t| < |t_1|$, тоді $q = \left|\frac{t}{t_1}\right| < 1$, отже
$$\left|c_nt^n\right| = \left|c_nt_1^n\right| \cdot \left|\frac{t^n}{t_1^n}\right| \leq Mq^n, n = 0, 1, 2, \dots,$$

тобто модуль кожного члена ряду $\Sigma c_n t^n$ не перевищує відповідного члена збіжного геометричного ряду. Тому за ознакою порівняння ряд $\Sigma c_n t^n$ абсолютно збігається для $|t| < |t_0|$. \blacktriangleleft

Будь-який степеневий ряд $\Sigma c_n t^n$ збіжний в точці t=0.

5.2. Область збіжності степеневого ряду

Теорема Абеля характеризує множини точок збіжності та розбіжності степеневого ряду.

Справді, якщо x_0 — точка збіжності ряду $\Sigma c_n x^n$, то весь інтервал $(-\left|x_0\right|;\left|x_0\right|)$ заповнено точками абсолютної збіжності цього ряду. Якщо x_1 — точка розбіжності ряду, то об'єднання нескінченних проміжків $(-\infty;-\left|x_1\right|)\cup \left(\left|x_1\right|;+\infty\right)$ утворено з точок розбіжності цього ряду.

Отже, для області збіжності степеневого ряду $\Sigma c_n x^n$ можливі три випадки:

- 1) ряд збіжний лише в точці x = 0;
- 2) ряд збіжний при всіх $x \in (-\infty; +\infty)$;
- 3) існує додатне число $R\in (0;+\infty),$ що при всіх $\left|x\right|< R$ степеневий ряд абсолютно збіжний, а при $\left|x\right|>R$ розбіжний.

Число R називають *радіусом збіжності* степеневого ряду, а інтервал (-R;R) — *інтервалом збіжності*.

Радіус збіжності степеневого ряду можна знаходити за формулою Коші — Адамара:

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|c_n|}}.$$

5.3. Властивості степеневих рядів

Властивість 1 (друга теорема Абеля). Степеневий ряд $\Sigma c_n x^n$ абсолютно й рівномірно збігається на будь-якому відрізку $[-\rho; \rho]$, який цілком міститься в інтервалі збіжності (-R; R).

Властивість 2. Сума степеневого ряду $\Sigma c_n x^n$ неперервна всередині його інтервалу збіжності.

Властивість 3. Якщо межі інтегрування α та β лежать усередині інтервалу збіжності (-R;R) ряду $\Sigma c_n x^n = S(x)$, то на відрізку $[\alpha;\beta]$ цей ряд можна почленно інтегрувати:

$$\int\limits_{0}^{x}S(t)dt=\sum\limits_{n=0}^{\infty}c_{n}\,\frac{x^{n+1}}{n+1},x\in\left[\alpha;\beta\right]\subset\left(-R;R\right).$$

Властивість 4. Степеневий ряд $\Sigma c_n x^n$ можна почленно диференціювати всередині інтервала збіжності (-R;R):

$$S'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}, x \in (-R; R).$$