

General information

Designation

Juglans regia

Typical uses

Cabinet and carved work; gun stocks; rifle butts; bent work; superior joinery; propeller blades; fittings;

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural
Base material	Wood (hardwood)
Renewable content	100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 3.04	- 4	4.88	USD/lb
-------	--------	-----	------	--------

Physical properties

Density	0.0224	-	0.0275	lb/in^3	
---------	--------	---	--------	---------	--

Mechanical properties

wechanical properties				
Young's modulus	* 1.71	-	2.09	10^6 psi
Yield strength (elastic limit)	* 8.05	-	9.83	ksi
Tensile strength	14.4	-	17.5	ksi
Elongation	* 2.27	-	2.77	% strain
Compressive strength	8.88	-	10.8	ksi
Flexural modulus	1.55	-	1.9	10^6 psi
Flexural strength (modulus of rupture)	18.5	-	22.7	ksi
Shear modulus	* 0.126	-	0.155	10^6 psi
Shear strength	1.04	-	1.28	ksi
Bulk modulus	* 0.145	-	0.162	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.1			
Hardness - Vickers	* 6.44	-	7.88	HV
Hardness - Brinell	7.83	-	9.57	ksi
Hardness - Janka	* 1.45e3	-	1.77e3	lbf
Fatigue strength at 10^7 cycles	* 5.55	-	6.8	ksi
Mechanical loss coefficient (tan delta)	* 0.0069	-	0.0084	

Walnut (juglans regia) (I)

Differential shrinkage (radial)		0.18	-	0.23	%	
Differential shrinkage (tangential)		0.25	-	0.3	%	
Radial shrinkage (green to oven-dry)		4.9	-	5.9	%	
Tangential shrinkage (green to oven-dry)		6.8	-	8.3	%	
Volumetric shrinkage (green to oven-dry)		12.3	-	15.1	%	
Work to maximum strength		0.381	-	0.465	ft.lbf/in^3	
Impact & fracture properties						
Fracture toughness	*	5.1	-	6.28	ksi.in^0.5	
Thermal properties						
Glass temperature		171	-	216	°F	
Maximum service temperature		248	-	284	°F	
Minimum service temperature	*	-99.4	-	-9.4	°F	
Thermal conductivity	*	0.173	-	0.214	BTU.ft/hr.ft^2.°F	
Specific heat capacity		0.396	-	0.408	BTU/lb.°F	
Thermal expansion coefficient	*	1.11	-	6.11	μstrain/°F	
Electrical properties						
Electrical properties Electrical resistivity	*	6e13	_	2e14	μohm.cm	
Dielectric constant (relative permittivity)		6.81	_	8.32	ропп.сп	
Dissipation factor (dielectric loss tangent)		0.01		0.097		
Dielectric strength (dielectric breakdown)		10.2		15.2	V/mil	
Diolocino chongui (diolocino bioditae mi)		10.2		10.2	V/IIII	
Magnetic properties						
Magnetic type		Non-magnetic				
Optical properties						
Transparency		Opaque				
Bio-data						
Food contact		Yes				
Restricted substances risk indicators						
RoHS (EU) compliant grades?		✓				
Durability						
Water (fresh)		Limited (use			
Water (salt)		Limited				
Weak acids		Limited				
Strong acids		Unaccep)		
Weak alkalis		Acceptable				
		Acceptable				

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2) CO2 footprint, primary production Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, NOx creation 0.00257 - 0.00284 lb/lb SOx creation 4.99e3 - 5.5e3 BTU/lb					
0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2); 27 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Hammond and Jones, 2008); 29 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Hammond and Jones, 2008); 29 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Hammond and Jones, 2008); 29 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Hammond and Jones, 2008); 29 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Hammond and Jones, 2008); 29 MJ/kg (Hubbard and Bowe, 2010); 29 MJ/kg (Ecoinvent v2.2); 28 MJ/kg (Ec	Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, NOx creation 0.00257 - 0.00284 lb/lb SOx creation 0.00656 - 0.00725 lb/lb	0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and	Jones, 2008); 1	1.6 N	lJ/kg (Hubbar	d and Bowe, 2010); 23.7
0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, NOx creation 0.00257 - 0.00284 lb/lb SOx creation 0.00656 - 0.00725 lb/lb	CO2 footprint, primary production	0.574	-	0.633	lb/lb
SOx creation 0.00656 - 0.00725 lb/lb		nd and Jones,	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
	NOx creation	0.00257	-	0.00284	lb/lb
Water usage * 1.94e4 2.03e4 in \(\) in \(\) in \(\)	SOx creation	0.00656	-	0.00725	lb/lb
Water usage 1.04e4 - 2.05e4 III 5/Ib	Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 607	-	671	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.106	-	0.117	lb/lb
Fine machining energy (per unit wt removed)	* 4.23e3	-	4.68e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.738	-	0.816	lb/lb
Grinding energy (per unit wt removed)	* 8.26e3	-	9.12e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.44	-	1.59	lb/lb

Recycling and end of life

× 8.55 -	9.45	
8.55 -	0.45	
	9.40	%
✓		
✓		
* 8.49e3 -	9.16e3	BTU/lb
* 1.69 -	1.78	lb/lb
✓		
./		
	√ √	

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Walnut (juglans regia) (I)

Links	
ProcessUniverse	
Reference	
Shape	

General information

Designation

Juglans nigra

Typical uses

Lumber for boxes; pallets; crates; baskets & furniture; veneer; pulpwood; sleepers; slack

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 3.04	-	4.88	USD/lb	
-------	--------	---	------	--------	--

Physical properties

Density	0.0199	-	0.0246	lb/in^3	
---------	--------	---	--------	---------	--

Mechanical properties

wechanical properties				
Young's modulus	* 1.67	-	2.03	10^6 psi
Yield strength (elastic limit)	* 6.67	-	8.15	ksi
Tensile strength	* 12.2	-	14.9	ksi
Elongation	* 1.99	-	2.43	% strain
Compressive strength	6.82	-	8.34	ksi
Flexural modulus	1.51	-	1.84	10^6 psi
Flexural strength (modulus of rupture)	13.1	-	16.1	ksi
Shear modulus	* 0.123	-	0.151	10^6 psi
Shear strength	1.23	-	1.51	ksi
Bulk modulus	* 0.104	-	0.117	10^6 psi
Poisson's ratio	* 0.35	-	0.4	
Shape factor	5.2			
Hardness - Vickers	* 4.99	-	6.1	HV
Hardness - Brinell	* 7.14	-	8.72	ksi
Hardness - Janka	* 1.12e3	-	1.37e3	lbf
Fatigue strength at 10^7 cycles	* 3.95	-	4.82	ksi
Mechanical loss coefficient (tan delta)	* 0.007	-	0.0086	

BEDOFIACK					
Differential shrinkage (radial)		0.19	-	0.22	%
Differential shrinkage (tangential)		0.28	-	0.33	%
Radial shrinkage (green to oven-dry)		5	-	6.1	%
Tangential shrinkage (green to oven-dry)		7	-	8.6	%
Volumetric shrinkage (green to oven-dry)		11.5	-	14.1	%
Work to maximum strength		0.803	-	0.981	ft.lbf/in^3
Impact & fracture properties					
Fracture toughness		* 4.28	-	5.28	ksi.in^0.5
The amount is a					
Thermal properties		171		216	°F
Glass temperature			-		
Maximum service temperature		248	-	284	°F
Minimum service temperature		* -99.4	-	-9.4	°F
Thermal conductivity		* 0.156	-	0.191	BTU.ft/hr.ft^2.°F
Specific heat capacity		0.396	-	0.408	BTU/lb.°F
Thermal expansion coefficient		* 1.11	-	6.11	µstrain/°F
Electrical properties					
Electrical resistivity		1.1e14	-	1.34e14	µohm.cm
Dielectric constant (relative permittivity)		* 6.14	-	7.5	
Dissipation factor (dielectric loss tangent)		* 0.071	-	0.086	
Dielectric strength (dielectric breakdown)		* 10.2	-	15.2	V/mil
Magnetic properties					
Magnetic type	Non-magnetic				
Optical properties		•			
Transparency		Opaque			
Bio-data					
Food contact		Yes			
Restricted substances risk indicators					
RoHS (EU) compliant grades?		✓			
Durability		11. 14. 1			
Water (fresh)		Limited u			
Water (salt)		Limited u			
Weak acids		Limited u			
Strong acids		Unaccept)	
Weak alkalis		Acceptable			

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

rimary production energy, occurre trater				
Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	Jones, 2008); 1	1.6 N	lJ/kg (Hubbar	d and Bowe, 2010); 23.7
CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones,	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 551	-	609	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0962	-	0.106	lb/lb
Fine machining energy (per unit wt removed)	* 3.68e3	-	4.06e3	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.641	-	0.709	lb/lb
Grinding energy (per unit wt removed)	* 7.15e3	-	7.9e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 1.25	-	1.38	lb/lb

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	✓
Biodegrade	✓

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Walnut (juglans nigra) (l)

Links	
ProcessUniverse	
Reference	
Shape	