Versuchsbericht zu

E3 - Elektrische Resonanz

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 17.01.2018 betreut von Wladislaw Hartmann

Inhaltsverzeichnis

1	Kurzfassung	3
2	Methoden	3
3	Ergebnisse und Diskussion3.1 Beobachtung	3 3
4	Schlussfolgerung	3

1 Kurzfassung

Dinge schwingen.

2 Methoden

Als Erstes wurde eine Reihenschwingkreis aufgebaut (-> cref image). Mit dem Multimeter wurde die Spannung über den $10\,\Omega$ Widerstand gemessen, sodass sich daraus die Strokstärke bestimmen lässt. Mit dem Oszilloskop wurde die Frequenz des Wechselstorms auf 1 kHz und eine Peak-Peak-Spannung von 4 V.

Für 3 Widerstände $(200\,\Omega,\,500\,\Omega$ und $0\,\Omega)$ wurden die am Multimeter gemessenen Spannungen in Abhängigkeit von der eingestellten Kapazität aufgenommen . Diese Kapazität wurde in kleinen Schritten nahe dem Resonanzfall, also maximaler Spannung, abgetastet. Die im Resonanzfall angezeigte Peak-Peak-Spannung am Oszilloskop wurde ebenfalls erfasst. Zuletzt wurde der Widerstand der Spule mit dem Multimeter gemessen.

Die Untersuchung des Parrallelschwingkreises erfolgte analog, jedoch mit einer anderen Spule, anderen Widerständen $(2\,\mathrm{k}\Omega,\,10\,\mathrm{k}\Omega$ und $\infty\,\mathrm{k}\Omega)$ und einer Peak-Peak-Spannung von $10\,\mathrm{V}$. Ein weiterer Unterschied der Schwingkreise ist, dass im Parallelschwingkreis der Resonanzfall bei minimaler Spannung auftritt.

3 Ergebnisse und Diskussion

- 3.1 Beobachtung
- 3.2 Diskussion
- 4 Schlussfolgerung