```
In [1]: 1.Download the Dataset
 In [ ]: 2.Load the dataset
 In [6]:
    import numpy as np
    import pandas as pd
    df = pd.read_csv("Churn_Modelling.csv")
 In [ ]: 3.Univariate Analysis
 In [7]:
    import seaborn as sns
    sns.histplot(df.EstimatedSalary,kde=True)
 Out[7]:
                   500
                   300
                    200
                   100
 In [ ]: b. Bivariate Analysis
In [8]:
    import seaborn as sns
    import matplotlib.pyplot as plt
    sns.scatterplot(df.Balance,df.EstimatedSalary)
    plt.ylim(0,15000)
C:\anaconda\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[8]: (0.0, 15000.0)
              √0000
10000
                   12000
                    6000
                    4000
```

2000

In []: c. Multivariate Analysis

In [9]: import seaborn as sns sns.pairplot(df)

In []: 4. Perform descriptive statistics on the dataset

In [10]: df.describe(include='all')

t[10]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estim
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	100
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	NaN	NaN	NaN	
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	510
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	1999

In []: 5.Handle the missing values

In [11]:

from ast import increment_lineno import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set(color_codes=True) df.head()

```
RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
        0 1 15634602 Hargrave 619 France Female 42 2 0.00
1 2 15647311 Hill 608 Spain Female 41 1 83807.86
                                                                                                    1
                                                                                                             1
                                                                                                                           1
                                                                                                                                    101348.88
                                                                                                                                   112542.58
                                             502 France Female 42
                                                                                                   3
                                                                                                             1
                                                                                                                           0
         2
                   3 15619304 Onio
                                                                             8 159660.80
                                                                                                                                   113931.57
         3 4 15701354 Boni 699 France Female 39 1 0.00 2 0 0 93826.63 0
                 5 15737888 Mitchell 850 Spain Female 43
                                                                             2 125510.82
                                                                                                                                    79084.10
                                                                                                                                                0
 In [ ]: 6. Find the outliers and replace the outliers
import pandas as pd
import matplotlib
from matplotlib import pyplot as pyplot
%matplotlib inline
matplotlib.rcParams['figure.figsize']=(10,6)
df.sample(5)
           RowNumber Customerid Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

        5211
        5212
        15662263
        Castillo

        595
        596
        15680970
        Lombardi

                                              749 Germany Male 22
611 Germany Female 41
                                                                              4 94762.16
2 114206.84
                                                                                                     2
                                                                                                                                      42241.54
                                                                                                                1
                                                                                                                                                  0
                                                                                                                                     164061.60
                     137 15802381
                                                 461 Germany Female 34
                                                                                5 63663.93
                                                                                                                 0
                                                                                                                                      167784.28
          136
                                       Li
         2918 2919 15649487 Sal 578 Germany Female 38 4 113150.44
                                                                                                                           0 176712.59 1
         6294 6295 15742824 Isayeva 696 Germany Male 42
                                                                              7 162318.61
                                                                                               1 1
                                                                                                                              0
                                                                                                                                      121061.89
                                                                                                                                                  0
 In [ ]: 7. Check for Categorical columns and perform encoding
RowNumber Customerld Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
                                              619
                                                      France Female 42
                                                                                   0.00
         1 2 15647311 Hill 608 Spain Female 41 1 83807.86
                                                                                                                        1 112542.58 0
         2
                   3 15619304 Onio
                                            502 France Female 42
                                                                             8 159660.80
                                                                                                                           0
                                                                                                                                   113931.57
         3 4 15701354 Boni 699 France Female 39 1 0.00
                                                                                                  2 0 0 93826.63
                                                                                                                                              0
                   5 15737888 Mitchell
                                              850 Spain Female 43
                                                                             2 125510.82
                                                                                                                                    79084.10
                                                                                                                                                0
 In [ ]: 8. Split the data into dependent and independent variables
In [14]: x=df.iloc[:,:-1].values
          print(x)
y=df.iloc[:,-1]._values
print(y)
         [[1 15634602 'Hargraye' ... 1 1 101348.88]
          [2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
          ...

[9998 15584532 'Liu' ... 0 1 42085.58]

[9999 15682355 'Sabbatini' ... 1 0 92888.52]

[10000 15628319 'Walker' ... 1 0 38190.78]]
         [1 0 1 ... 1 1 0]
 In [ ]: 9. Scale the independent variables
In [15]:
    dff=df[['Balance','Age']]
    sns.heatmap(dff.corr(), annot=True)
    sns.set(rc={'figure.figsize':(40,40)})
                                                        0.028
          Age
                         0.028
 In [ ]: 10. Split the data into training and testing
Row count of x_train table->>8,000
Row count of y_train table->>8,000
Row count of x_test table->>2,000
Row count of y_test table->>2,000
```