Orders

Alon Gurny

May 18, 2025

Contents

1	Preorders	2
2	Linear Orders	5
3	General Hausdorff Rank	10
4	ω -Hausdorff rank	12
5	Type Theory	14
6	Decidability of the rank	17
7	Everything Better	18

1 Preorders

We begin by studying the properties of preorders. Basically, we define a *property* as a class which is close under isomorphism. We then define the sum operation on preorders. This will be used to create new properties from old ones.

Definitions 1.1 ((Labeled) preorder). A preorder is a a set M together with a binary relation \leq on M such that \leq is reflexive and transitive.

A labeled preorder is a preorder M together with a labeling function $\gamma: M \to C$, where C is a set of labels (colors).

Definition 1.2 (Property of preorders). A property **P** of preorders is a class of labeled preorders which is closed under isomorphism.

Definition 1.3. A property \mathbf{P} of preorders is monotone if for every preorder M, $M \in \mathbf{P}$ implies that every suborder of M is in \mathbf{P} .

Definition 1.4. Let M be a (labeled) preorder.

Then M^* is the dual/reverse (labeled) preorder of M.

Definition 1.5 (Sum of preorders). Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of labeled preorders.

The sum $M = \sum_{i \in I} M_i$ is defined as follows:

The domain is $M = \biguplus_{i \in I} M_i$ (a disjoint union).

Let \leq_i be the preorder on M_i .

Let $x \in M_i$ and $y \in M_i$.

Then we define $x \leq y$ iff either i = j and $x \leq_i y$ or i < j.

The labels are defined naturally.

If I = 2, we define $M_1 + M_2 := \sum_{i \in 2} M_i$.

Lemma 1.6. Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders.

Then $M = \sum_{i \in I} M_i$ is a preorder.

Proof. Reflexivity is clear.

For transitivity, suppose $x \leq y$ and $y \leq z$.

Suppose $x \in M_i$, $y \in M_j$, $z \in M_k$.

Then $i \leq j$ and $j \leq k$, so $i \leq k$. If i = k, then necessarily i = j = k, and so $x \leq_i y$ and $y \leq_i z$, so $x \leq_i z$, so $x \leq_i z$, as required.

Otherwise, i < k, and thus $x \le z$, as required.

Definition 1.7. Let P_1 and P_2 be properties of preorders.

Then we define

$$\mathbf{P}_1 + \mathbf{P}_2 := \{ M_1 + M_2 : M_1 \in \mathbf{P}_1 \land M_2 \in \mathbf{P}_2 \}$$

Definition 1.8. A property \mathbf{P} of preorders is an additive property if for every preorders M_1 and M_2 , $M_1 + M_2 \in \mathbf{P}$ iff $M_1, M_2 \in \mathbf{P}$.

Definition 1.9 (Kleene plus). Let **P** be a property of preorders.

We define its Kleene plus as the smallest property of preorders \mathbf{P}^+ which contains \mathbf{P} and is closed under finite sums.

That is, $1^+ = \{1, 2, ...\}$, and $\mathbf{P}^+ = \sum_{1^+} \mathbf{P}$.

Definition 1.10 (Sum of a property over a preorder). Let I be a preorder.

Let Q be a property of preorders.

Then we define

$$\sum_{I} \mathbf{Q} := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q} \right\}$$

Definition 1.11 (Sum of a family of properties over a preorder). Let I be a preorder.

Let $\{\mathbf{Q}_i\}_{i\in I}$ be a family of properties of preorders.

Then we define

$$\sum_{i \in I} \mathbf{Q}_i := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q}_i \right\}$$

Note 1.12. By the previous two definitions,

$$\sum_I \mathbf{Q} = \sum_{i \in I} \mathbf{Q}$$

Definition 1.13 (Sum of properties over a labeled preorder). Let I be a labeled preorder, with a labeling function $\gamma: I \to C$, where C is a set of colors.

Let F be a function (or a lambda expression) assigning each color $c \in C$ a property of preorders.

Then we define

$$\sum_{I} F := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in F(\gamma(i)) \right\}$$

Notes 1.14. 1. We can see a sum over an unlabeled preorder I as a sum over a labeled preorder with a constant labeling function $\gamma: I \to \{1\}$.

2. We can see $P_1 + P_2$ as a sum over $I = \{1, 2\}$, colored with $\gamma(i) = i$.

Definition 1.15 (Sum of a property over a property). Let **P** be a property of unlabeled preorders.

Let **Q** be a property of preorders.

Then we define,

$$\sum_{\mathbf{P}} \mathbf{Q} := \left\{ \sum_{I} \mathbf{Q} : I \in \mathbf{P} \right\}$$

Definition 1.16 (Sum of a property over a labeled property). Let P be a property of labeled preorders, over a set of colors \vec{C} .

Let F be a function (or a lambda expression) assigning each color $c \in C$ a property of preorders.

Then we define,

$$\sum_{\mathbf{P}} F := \left\{ \sum_{I} F : I \in \mathbf{P} \right\}$$

2 Linear Orders

Definitions 2.1 ((Labeled) linear order). A (labeled) linear order a (labeled) preorder which is symmetric and total.

Definition 2.2 (Property of linear orders). A property **P** of linear orders is a class of labeled linear orders which is closed under isomorphism.

Definition 2.3. Subintervals Let M be a linear order, and let $x, y \in M$, such that $x \leq y$.

Then we define the bounded subintervals [x, y], (x, y], [x, y) and (x, y) as usual.

We also define the semi-bounded subintervals $(-\infty, x]$, $[x, \infty)$, $(-\infty, x)$ and (x, ∞) as usual.

We also define the unbounded subinterval $(-\infty, \infty)$ as the whole linear order M, as usual.

 $A \ {\rm subinterval} \ is \ either \ a \ bounded \ subinterval, \ a \ semi-bounded \ subinterval \ or \ the \ unbounded \ subinterval.$

If x > y then we define the intervals as follows:

$$[x, y] := [y, x]$$

 $(x, y] := (y, x]$
 $[x, y) := [y, x)$
 $(x, y) := (y, x)$

Definition 2.4. Let M be a linear order.

A set $A \subseteq M$ is left cofinal in M if for every $x \in M$, there exists $y \in A$ such that y < x.

A set $A \subseteq M$ is right cofinal in M if for every $x \in M$, there exists $y \in A$ such that x < y.

A set $A \subseteq M$ is bi-directionally cofinal in M if it is both left and right cofinal.

Lemma 2.5. Let P be an additive property of linear orders.

Let $M \in \mathbf{P}$ be a linear order.

Let $x, y \in M$ be any two points in a linear order M.

Then, $[x,y] \in \mathbf{P}$.

Proof. WLOG, suppose $x \leq y$.

Note that,

$$M = (-\infty, \infty) = (-\infty, x) + [x, y] + (y, \infty)$$

when $(-\infty, x)$ and/or (y, ∞) may be empty.

Since **P** is an additive property, we conclude that $[x, y] \in \mathbf{P}$.

Corollary 2.6. Let \mathbf{P} be a nontrivial additive property of linear orders. Then $1 \in \mathbf{P}$.

Proof. Let $M \in \mathbf{P}$ be any linear order and let $x \in M$ be any point in M.

Apply lemma 2.5 to the linear order M, and the points x and x, to conclude that $[x, x] \equiv 1 \in \mathbf{P}$.

Note 2.7. Note that corollary 2.6 is false if we do not restrict ourselves to linear orders.

For example, $(1 \uplus 1)^+$ is a property of preorders which is additive, but does not contain 1.

Corollary 2.8. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y \in M$ be any two points in a linear order M. Then the following are equivalent:

- 1. $(x, y) \in \mathbf{P}$
- 2. $(x,y] \in \mathbf{P}$
- 3. $[x,y) \in {\bf P}$
- 4. $[x, y] \in \mathbf{P}$

Proof. This is just applying the definition of an additive property to the orders [x, y] and 1.

Corollary 2.9. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y, z \in M$ be any three points in a linear order M, such that $[x, y] \in \mathbf{P}$ and $[y, z] \in \mathbf{P}$.

Then $[x,z] \in \mathbf{P}$.

Proof. If $y \in [x, z]$, then [x, z] = [x, y] + (y, z], and $(y, z] \in \mathbf{P}$ by corollary 2.8. Otherwise, either $x \in [y, z]$ or $z \in [x, y]$. WLOG, suppose $z \in [x, y]$. Then [x, y] = [x, z] + (z, y], so $[x, z] \in \mathbf{P}$ by the fact that \mathbf{P} is additive. \square

Definitions 2.10. Let **P** be a property of linear orders.

We define the following properties of linear orders:

- $\mathcal{B}[\mathbf{P}]$ is the class of linear orders M such that for every $x, y \in M$, the bounded subinterval [x, y] is in \mathbf{P} .
- $\mathcal{L}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the left-bounded ray $[x, \infty) = \{y \in M : x \leq y\}$ is in \mathbf{P} .
- $\mathcal{R}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the right-bounded ray $(-\infty, x] = \{y \in M : y \leq x\}$ is in \mathbf{P} .

Definition 2.11. A property \mathbf{P} of linear orders is a star property if for every linear orders M, and every family $\mathcal{F} \subseteq \mathbf{P}$ of subintervals of M such that $J_1 \cap J_2 \neq \emptyset$ for every $J_1, J_2 \in \mathcal{F}$, we have that $\bigcup \mathcal{F} \in \mathbf{P}$.

Lemma 2.12. Let P be a star property.

Then for every linear order M, and every point $x \in M$, there exists a largest subinterval $J \subseteq M$ such that $J \in \mathbf{P}$.

Equivalently, we can define a convex equivalence relation $\sim_{\mathbf{P}}$ on M such that $x \sim_{\mathbf{P}} y$ iff $[x, y] \in \mathbf{P}$.

That is, $x \sim_{\mathbf{P}} y$ iff x and y are in the same largest **P**-subinterval.

Proof. Let $J \subseteq M$ be the union of all $\mathcal{B}[\mathbf{P}]$ -subintervals containing x. All such subintervals intersect at x.

Therefore, by the star lemma, J is in $\mathcal{B}[\mathbf{P}]$, and by definition J is the largest \mathbf{P} -subinterval containing x.

Thus we can define the equivalence relation $\sim_{\mathbf{P}}$ as above.

Lemma 2.13 (Star Lemma). Let \mathbf{P} be an additive property of linear orders. Then the property $\mathcal{B}[\mathbf{P}]$ is a star property.

Proof. Let M be a linear order, and let $\mathcal{F} \subseteq \mathcal{B}[\mathbf{P}]$ be a family of subintervals of M.

Let $[x, y] \subseteq \bigcup \mathcal{F}$ be any bounded subinterval. We need to prove it is in **P**. Suppose $x \in J_1$ and $y \in J_2$ for $J_1, J_2 \in \mathcal{F}$.

Since $J_1 \cap J_2 \neq \emptyset$, we can take $z \in J_1 \cap J_2$.

Then $[x, z] \subseteq J_1$ and $[z, y] \subseteq J_2$, and thus by the definition of $\mathcal{B}[\mathbf{P}]$, $[x, z], [z, y] \in \mathbf{P}$. Since \mathbf{P} is additive, by corollary 2.9, we have $[x, y] \in \mathbf{P}$.

Lemma 2.14. Let P be an additive property of linear orders.

Then,

- 1. $\mathcal{L}[\mathbf{P}] = \{M : M + 1 \in \mathcal{B}[\mathbf{P}]\}$
- 2. $\mathcal{R}[\mathbf{P}] = \{M : 1 + M \in \mathcal{B}[\mathbf{P}]\}$
- 3. $P = \mathcal{L}[P] \cap \mathcal{R}[P] = \{M : 1 + M + 1 \in \mathcal{B}[P]\}$

Proof. Let M be a linear order.

1. Suppose $M + \{\infty\} \in \mathcal{B}[\mathbf{P}]$. Then for every $x \in M$, we have $[x, \infty] \in \mathbf{P}$, and thus $[x, \infty) \in \mathbf{P}$. Therefore, $M \in \mathcal{L}[\mathbf{P}]$.

Conversely, if $M \in \mathcal{L}[\mathbf{P}]$, let $x, y \in M$ be any two points in M + 1.

If $y < \infty$, then $[x,y] \subseteq [x,\infty)$. Since $[x,\infty) \in \mathbf{P}$, we conclude that $[x,y] \in \mathbf{P}$. Otherwise, if $y = \infty$, then $[x,y] = [x,\infty] = [x,\infty) + \{\infty\}$, and thus $[x,y] \in \mathbf{P}$.

- 2. The second case is dual to the first case.
- 3. We will show a triple inclusion.

If $M \in \mathbf{P}$, then by additivity, $1 + M \in \mathbf{P}$ and $M + 1 \in \mathbf{P}$, and thus $M \in \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$.

If $M \in \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$, then by lemma 2.13, $1 + M + 1 \in \mathcal{B}[\mathbf{P}]$.

If $1 + M + 1 \in \mathcal{B}[\mathbf{P}]$, then M is a bounded subinterval of 1 + M + 1, so $M \in \mathcal{B}[\mathbf{P}]$.

4. TBC.

Lemma 2.15. Let P be an additive property of linear orders.

Then

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \mathbf{P} \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Proof. By lemma 2.14, we conclude that $\mathcal{L}[\mathbf{P}]$, $\mathcal{R}[\mathbf{P}] \subseteq \mathcal{B}[\mathbf{P}]$, since $M+1 \in \mathbf{P}$ and $1+M \in \mathbf{P}$ both imply $1+M+1 \in \mathbf{P}$.

Thus,

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \left(\mathcal{L}\left[\mathbf{P}\right] \cap \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Since by lemma 2.14 $\mathbf{P} = \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$, we conclude what we wanted to prove.

Lemma 2.16. Let P be a property of linear orders.

Let $M \in \mathcal{B}[\mathbf{P}]$ be a linear order.

Let $x \in M$ be a non-extreme point in M.

Then $[x, \infty) \in \mathcal{L}[\mathbf{P}]$ and $(-\infty, x] \in \mathcal{R}[\mathbf{P}]$.

Furthermore, $[x, \infty) \in \mathcal{R}[\mathbf{P}]$ iff $M \in \mathcal{R}[\mathbf{P}]$, and $(-\infty, x] \in \mathcal{L}[\mathbf{P}]$ iff $M \in \mathcal{L}[\mathbf{P}]$.

Proof. This follows immediately from definitions 2.10.

Corollary 2.17.

$$\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right) = \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) + \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right)$$

Lemma 2.18 (Associativity of sum). Let \mathbf{P}_1 , \mathbf{P}_2 and \mathbf{P}_3 be properties.

Then
$$\sum_{\mathbf{P}_1} \sum_{\mathbf{P}_2} \mathbf{P}_3 = \sum_{\sum_{\mathbf{P}_1} \mathbf{P}_2} \mathbf{P}_3$$
.

Proof. It follows directly from the associativity of the sum operation on linear orders. Actually, it generalizes to any algebraic equation which holds on linear orders. \Box

Lemma 2.19 (Sum and union commute). Let \mathcal{P} be a family of properties.

Let **Q** be a property.

Then
$$\sum_{\bigcup \mathcal{P}} \mathbf{Q} = \bigcup_{\mathbf{P} \in \mathcal{P}} \sum_{\mathbf{P}} \mathbf{Q}$$
.

Proof. This is obvious from the definition of the sum operation. \Box

Definition 2.20. We define CNT as the class of all countable linear orders.

Definition 2.21. Let
$$\gamma \geq \omega$$
 be a limit ordinal. We define $\Gamma_{\gamma} := \{\beta : \beta \subseteq \gamma^* + \gamma\}^+$. We define $\Omega := \Gamma_{\omega}$.

Example 2.22.

$$\Omega = \{1, \omega, \omega^*\}^+$$

Observation 2.23. Let $\gamma \geq \omega$ be a limit ordinal. Then Γ_{γ} is a monotone, additive property of linear orders.

3 General Hausdorff Rank

Definition 3.1. Let \mathbf{Q} be a property of linear orders. We define a property \mathbf{Q}^{α} for every ordinal α as follows:

- For $\alpha = 0$, $\mathbf{Q}^0 = \{1\}$.
- For $\alpha = \gamma + 1$,

$$\mathbf{Q}^{\alpha} = \sum_{\mathbf{Q}} \mathbf{Q}^{\gamma}$$

• For α a limit ordinal,

$$\mathbf{Q}^\alpha = \bigcup_{\beta < \alpha} \mathbf{Q}^\beta$$

Example 3.2. Let \mathbf{Q} be a property of linear orders. Then $\mathbf{Q}^1 = \mathbf{Q}$.

Lemma 3.3. Let \mathbf{Q} be a property of linear orders. Let α, δ be ordinals. Then,

$$\mathbf{Q}^{\alpha+\delta} = \sum_{\mathbf{Q}^{\delta}} \mathbf{Q}^{\alpha}$$

Proof. We shall prove this by induction on $\delta \geq 0$. For $\delta = 0$ we need to prove

$$\mathbf{Q}^{\alpha} = \sum_{\mathbf{Q}^0} \mathbf{Q}^{\alpha}.$$

Which is true by definition, since $\mathbf{Q}^0 = \{1\}$. For $\delta = \gamma + 1$, using the induction hypothesis,

$$\begin{aligned} \mathbf{Q}^{\alpha+\delta} &= \mathbf{Q}^{\alpha+\gamma+1} \\ &= \sum_{\mathbf{Q}} \mathbf{Q}^{\alpha+\gamma} \\ &= \sum_{\mathbf{Q}} \sum_{\mathbf{Q}^{\gamma}} \mathbf{Q}^{\alpha} \\ &= \sum_{\sum_{\mathbf{Q}} \mathbf{Q}^{\gamma}} \mathbf{Q}^{\alpha} \\ &= \sum_{\mathbf{Q}^{\gamma+1}} \mathbf{Q}^{\alpha} \\ &= \sum_{\mathbf{Q}^{\delta}} \mathbf{Q}^{\alpha} \end{aligned}$$

For δ a limit ordinal, using the induction hypothesis,

$$\mathbf{Q}^{\alpha+\delta} = \bigcup_{\gamma < \delta} \mathbf{Q}^{\alpha+\gamma}$$

$$= \bigcup_{\gamma < \delta} \sum_{\mathbf{Q}^{\gamma}} \mathbf{Q}^{\alpha}$$

$$= \sum_{\mathbf{U}_{\gamma < \delta} \mathbf{Q}^{\gamma}} \mathbf{Q}^{\alpha}$$

$$= \sum_{\mathbf{Q}^{\delta}} \mathbf{Q}^{\alpha}$$

Definition 3.4. Let Q be a property of linear orders.

Let α be an ordinal.

We define $\mathbf{Q}^{=\alpha} := \mathbf{Q}^{\alpha+1} \setminus \mathbf{Q}^{\alpha}$.

Definition 3.5. Let \mathbf{Q} be a property of linear orders.

Let M be a linear order, such that $M \in (\mathbf{Q}^{\alpha})^+$ for some ordinal α .

We define the \mathbf{Q} -Hausdorff rank of M as

$$\mathbf{hrank}_{\mathbf{Q}}\left(M\right)=\sup\left\{ \beta:M\notin\left(\mathbf{Q}^{\beta}\right)^{+}\right\}$$

where the supremum is taken over all ordinals β . (Recall that the supremum of the empty set is defined to be 0.)

Example 3.6. Let Q be a property of linear orders.

Let M be a linear order.

Then $\mathbf{hrank}_{\mathbf{Q}}(M) = 0$ if and only M is finite.

4 ω -Hausdorff rank

Definitions 4.1. Let $\alpha > 0$ be an ordinal.

We define:

1.
$$\mathcal{S}^1_{\alpha} := \mathcal{B}\left[\Omega^{\alpha}\right]$$

2.
$$\mathcal{S}^{\omega}_{\alpha} := \mathcal{L}\left[\Omega^{\alpha}\right] \setminus \mathcal{R}\left[\Omega^{\alpha}\right]$$

3.
$$\mathcal{S}_{\alpha}^{\omega^*} := \mathcal{R}\left[\Omega^{\alpha}\right] \setminus \mathcal{L}\left[\Omega^{\alpha}\right]$$

4.
$$S_{\alpha}^{\omega^* + \omega} := \mathcal{B}\left[\Omega^{\alpha}\right] \setminus \left(\mathcal{L}\left[\Omega^{\alpha}\right] \cup \mathcal{R}\left[\Omega^{\alpha}\right]\right)$$

The names will soon be justified.

Lemma 4.2. Let $\alpha > 0$ be an ordinal.

Then,

1.
$$\mathcal{L}[\Omega^{\alpha}] = \sum_{\omega} \Omega^{\alpha}$$
.

2.
$$\mathcal{R}\left[\Omega^{\alpha}\right] = \sum_{\omega^*} \Omega^{\alpha}$$
.

3.
$$\mathcal{B}\left[\Omega^{\alpha}\right] = \sum_{\omega^* + \omega} \Omega^{\alpha}$$
.

Proof. Let us prove the first part. (\supseteq) Let $M \in \sum_{\omega} \Omega^{\alpha}$ be a linear order.

Let $M = \sum_{i \in \omega} M_i$ be the decomposition of M, where $M_i \in \Omega^{\alpha}$.

Let $x, y \in M$ be any two points in M. WLOG $x \leq y$.

Suppose $x \in M_i$ and $y \in M_j$ for $i, j \in \omega$.

Since i and j have a finite distance in ω , we conclude $[x, y] \subseteq M_i + \ldots + M_j$, and thus $[x, y] \subseteq (\Omega^{\alpha})^+ = \Omega^{\alpha}$.

 (\subseteq) Let $M \in \mathcal{B}[\Omega^{\alpha}]$ be a linear order.

Since M is countable, let $\{x_i\}_{i\in\omega}$ M be a bidirectionally cofinal ω -sequence in M.

Then $M = \sum_{i \in \omega} M_i$ where $M_i = [x_i, x_{i'}]$ for i' the successor of i in I.

But M_i is a bounded interval and thus $M_i \in \Omega^{\alpha}$, so $M \in \sum_{\omega} \Omega^{\alpha}$.

The second part is symmetric.

The third part follows from corollary 2.17:

$$\begin{split} \mathcal{B}\left[\Omega^{\alpha}\right] &= \mathcal{R}\left[\Omega^{\alpha}\right] + \mathcal{L}\left[\Omega^{\alpha}\right] \\ &= \sum_{\omega^{*}} \Omega^{\alpha} + \sum_{\omega} \Omega^{\alpha} \\ &= \sum_{\omega^{*} + \omega} \Omega^{\alpha} \end{split}$$

Lemma 4.3. Let $\alpha > 0$ be an ordinal.

Let
$$s \in \{\omega, \omega^*, \omega^* + \omega\}$$
.

Suppose that $\alpha = \sup_{i \in s} (\alpha_i + 1)$ for ordinals $\{\alpha_i\}_{i \in s}$.

Then, we have the following:

$$\mathcal{S}^s_{\alpha} = \sum_{i \in s} \Omega^{\alpha_i}$$

Note 4.4. For the proof of this lemma, we actually use the fact that we work over Ω . This proof would not have worked over Γ_{β} for $\beta > \omega$.

Proof.

Corollary 4.5. Let $\alpha, \delta > 0$ be ordinals.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ Then,

$$\mathcal{S}^s_{lpha+\delta} = \sum_{\mathcal{S}^s_\delta} \Omega^lpha$$

Proof. For s = 1, it follows from lemma 3.3.

Otherwise, suppose that $\delta = \sup_{i \in s} (\delta_i + 1)$.

Then $\alpha + \delta = \sup_{i \in s} (\alpha_i + \delta_i + 1)$.

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{i \in s} \mathcal{S}^s_{\alpha+\delta_i+1} = \sum_{i \in s} \sum_{\Omega^{\delta_i+1}} \Omega^{\alpha} = \sum_{\sum_{i \in s} \Omega^{\delta_i+1}} \Omega^{\alpha} = \sum_{\mathcal{S}^s_{\delta}} \Omega^{\alpha}$$

5 Type Theory

Definition 5.1. Let **P** be a property of preorders.

Let $n \in \mathbb{N}$.

We define $\mathbf{type}_n[\mathbf{P}]$ as the set of all n-types satisfiable in \mathbf{P} .

Lemma 5.2. Let \mathbf{Q} be a property of preorders, labeled with finitely many colors. There exists a computable function $f_{\mathbf{Q}} = f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, and all $a \in \mathbb{N}$ such that $a \geq f(n)$, $\mathbf{type}_n[\mathbf{Q}^a] = \mathbf{type}_n[\mathbf{Q}^{f(n)}]$.

Proof. Since there are only finitely many n-types, and the ω -sequence

$$\left\{ \mathbf{type}_{n}\left[\mathbf{Q}^{k}
ight]
ight\} _{k\in\omega}$$

is monotone, there must be some k where the sequence stabilizes.

This point k is computable as a function of n, because $\mathbf{type}_n\left[\mathbf{Q}^k\right]$ is computable for every finite k.

Lemma 5.3. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c_1}\right] = \mathbf{type}_n\left[\mathbf{Q}^{=c_2}\right]$$

Proof. Let $n \in \mathbb{N}$.

Since there are only finitely many sets of n-types, there exist (and can be computed) some $a(n) \ge f(n)$, a(n) + b(n) such that

$$\mathbf{type}_n \left[\mathbf{Q}^{=a(n)} \right] = \mathbf{type}_n \left[\mathbf{Q}^{=a(n)+b(n)} \right]$$

We shall prove by induction that for all $c \geq a(n)$,

$$\mathbf{type}_{n}\left[\mathbf{Q}^{=c}\right] = \mathbf{type}_{n}\left[\mathbf{Q}^{=c+b(n)}\right]$$

This will complete the proof.

The base case c = a(n) is by the definition of a(n) and b(n).

Suppose the induction hypothesis holds for c.

Let $M \in \mathbf{Q}^{=c+1}$.

Write $M = \sum_{i \in I} M_i$ where $M_i \in \mathbf{Q}^{< c+1}$, and $M_i \in \mathbf{Q}^{=c}$ infinitely many times.

By the induction hypothesis, if $M_i \in \mathbf{Q}^{=c}$, we can find $N_i \equiv_n M_i$ with $N_i \in \mathbf{Q}^{=c+b(n)}$. Setting $N_i := M_i$ for all other i, we conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to M.

However, clearly $N \in \mathbf{Q}^{=c+b(n)+1}$. So overall,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c+1}\right] \subseteq \mathbf{type}_n\left[\mathbf{Q}^{=c+b(n)+1}\right]$$

Conversely, suppose $M \in \mathbf{Q}^{=c+b(n)+1}$. Write $M = \sum_{i \in I} M_i$ where $M_i \in \mathbf{Q}^{< c+b(n)+1}$, and $M_i \in \mathbf{Q}^{=c+b(n)}$ infinitely many times.

By the induction hypothesis, we can find for all i such that $M_i \in \mathbf{Q}^{=c+b(n)}$ some $N_i \equiv_n M_i$ with $N_i \in \mathbf{Q}^{=c}$. Furthermore, since $c \geq a(n) \geq f(n)$, we can find $N_i \equiv_n M_i$ with $N_i \in \mathbf{Q}^{f(n)} \subseteq \mathbf{Q}^c$ for all other i.

We conclude that $N:=\sum_{i\in I} N_i$ is n-equivalent to M. However, clearly $N\in \mathbf{Q}^{=c+1}$. So overall,

$$\mathbf{type}_n \left[\mathbf{Q}^{=c+b(n)+1} \right] \subseteq \mathbf{type}_n \left[\mathbf{Q}^{=c+1} \right]$$

So we have proven the induction step, and the lemma follows. \Box

Corollary 5.4. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

Then there exists a computable function b(n) such that for all $c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$, we have

$$\mathbf{type}_n\left[\mathcal{S}^s_{c_1}\right] = \mathbf{type}_n\left[\mathcal{S}^s_{c_2}\right]$$

Proof. For s=1, it follows from lemma 5.2, since $\mathcal{S}_c^1=\mathbf{Q}^c$ and $c\geq a(n)\geq f(n)$ for $c\in\{c_1,c_2\}$.

For $s \in \{\omega, \omega^*, \omega^* + \omega\}$, it follows easily from lemma 4.3 and lemma 5.3. \square

Lemma 5.5. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

$$\mathbf{type}_n\left[\mathcal{S}^1_lpha
ight] = \mathbf{type}_n\left[igcup_{c < a(n) + b(n)} \Omega^{=c}
ight]$$

In particular, $\mathbf{type}_n\left[\mathcal{S}^1_{\alpha}\right]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. TBC.
$$\Box$$

Lemma 5.6. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$ be a shape.

$$ext{type}_n\left[\mathcal{S}^s_lpha
ight] = ext{type}_n\left[\sum_s igcup_{c < b(n)} \Omega^{=a(n)+c}
ight]$$

In particular, $\mathbf{type}_n[S^s_{\alpha}]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. TBC.
$$\Box$$

Lemma 5.7. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $\delta > 0$ be an ordinal.

$$\mathbf{type}_n \left[\mathcal{S}^1_{\alpha + \delta} \right] = \mathbf{type}_n \left[\bigcup_{c < a(n) + b(n)} \Omega^{=c} \right]$$

In particular, $\mathbf{type}_n\left[\mathcal{S}^1_{\alpha}\right]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. TBC. \Box

6 Decidability of the rank

Definition 6.1. Let α be an ordinal.

Let M be a linear order and $x \in M$.

We define the convex equivalence relation:

$$\sim_{\alpha}:=\sim_{\mathcal{B}[\Omega^{\alpha}]}$$

and $[x]_{\alpha} := [x]_{\mathcal{B}[\Omega^{\alpha}]}$.

That is, $[x]_{\alpha}$ is the largest $\mathcal{B}[\Omega^{\alpha}]$ -subinterval containing x in M.

We define $\sigma_{\alpha}(x)$ as the α -shape of $[x]_{\alpha}$.

Theorem 6.2. Let P be a computable property of linear orders, labeled with finitely many colors C.

Let F be a function assigning to each color in C a computable property of linear orders, labeled with finitely many colors.

Then the sum $\sum_{\mathbf{P}} F$ is a computable property of linear orders.

Proof. We will use the decomposition theorem. Let $\tau(X_1, \ldots, X_m)$ be an *n*-type.

Then we can compute a formula $\psi(\xi)$ (where ξ has the type of a coloring whose range is the set of n-types) such that for any linear order $M = \sum_{i \in I} M_i$, and any given $A_1, \ldots, A_m \subseteq M$,

$$M \models \tau(A_1, \dots, A_m) \iff I \models \psi(\Xi)$$

where Ξ is the coloring assigning $i \in I$ the *n*-type of M_i . TBC.

Theorem 6.3. Let α be an ordinal.

Let C be the class of all countable linear orders labeled with $[\cdot]_{\alpha}$ and σ_{α} .

Let D_s for $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be the class S_{α}^s , labeled (trivially) with $[\cdot]_{\alpha}$ and σ_{α} .

Let **G** be the class of all countable linear orders I, labeled with a coloring function γ whose range is $\{1, \omega, \omega^*, \omega^* + \omega\}$, such that for pair $i, j \in I$ such that j is the successor of i, either $\gamma(i) \in \{\omega, \omega^* + \omega\}$ or $\gamma(j) \in \{\omega^*, \omega^* + \omega\}$.

Then,
$$C = \sum_{\mathbf{G}} [s \mapsto D_s].$$

Proof. TBC.
$$\Box$$

Theorem 6.4. Let $\alpha, \delta_1, \ldots, \delta_k$ be ordinals.

Let $\alpha_i = \alpha + \delta_i$ for $i = 1, \dots, k$.

Let C be the class of all countable linear orders labeled with $[\cdot]_{\alpha}$ and σ_{α} , and $[\cdot]_{\alpha_i}$ and σ_{α_i} for i = 1, ..., k.

Let **G** be the class of all countable linear orders I, labeled with a coloring function γ whose range is $\{1, \omega, \omega^*, \omega^* + \omega\}$, such that for pair $i, j \in I$ such that j is the successor of i, either $\gamma(i) \in \{\omega, \omega^* + \omega\}$ or $\gamma(j) \in \{\omega^*, \omega^* + \omega\}$.

Proof. TBC.
$$\Box$$

7 Everything Better

Theorem 7.1. Let C be a computable property of linear orders, such that C is closed under taking subintervals, projections and inverse-projections (i.e, of one of the colors), and all finite-sums and C-sums.

Let $\mathbf{P}_1, \ldots, \mathbf{P}_k \subseteq \mathcal{C}$ be computable properties of linear orders.

Let $\mathbf{MSO}[P_1, \ldots, P_k]$ be monadic second order logic of order over \mathcal{C} , with P_1, \ldots, P_k as monadic predicates whose semantics are: $P_i(X)$ holds iff X is a subinterval which satisfies \mathbf{P}_i .

Given ϕ a formula of $\mathbf{MSO}[P_1, \dots, P_k]$ (possibly with free variables) we define

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

(Note that M above may be a labeled linear order.) Then \mathcal{C}_{ϕ} is a computable property of linear orders.

Proof. By structural induction on ϕ .

Suppose ϕ is an atomic formula. If ϕ is of the form $X \subseteq Y$ or $X \leq Y$,

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

and thus,

$$\mathbf{type}_{n}\left[\mathcal{C}_{\phi}\right] = \left\{\tau \in \mathbf{type}_{n}\left[\mathcal{C}\right] : \tau \models \phi\right\}$$

which is computable since $\mathbf{type}_n[\mathcal{C}]$ is computable, and we can then compute whether $\tau \models \phi$ for each $\tau \in \mathbf{type}_n[\mathcal{C}]$.

If ϕ is of the form $P_i(X)$, then

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models P_i(X) \}$$

and thus.

$$\mathbf{type}_n\left[\mathcal{C}_{\phi}\right] = \mathbf{type}_n\left[\mathbf{P}_i\right]$$

which is computable since \mathbf{P}_i is computable.

If $\phi = \neg \phi_1$, then

$$\mathcal{C}_{\phi} = \mathcal{C} \setminus \mathcal{C}_{\phi_1}$$