An example Latex document

Author A^{*1} , Author $B^{\dagger 1}$, Author $C^{\ddagger 1}$, Author $D^{\S 2}$, and Author $E^{\P 2}$

 $^1\mathrm{Department}$ of Computer Science, LATEX University $^2\mathrm{Department}$ of Mechanical Engineering, LATEX University

February 2, 2019

Abstract

Here is where you would put your Abstract. This analysis examines data from 1995 to 2018.

^{*}A.A@university.edu

 $^{^{\}dagger}B.B@university.edu$

[‡]C.C@university.edu

 $[\]S D.D @university.edu$

 $[\]P$ E.E@university.edu

1 Introduction

Here is where you would put your Introduction¹.

Here is an example of a citation to the Lacum $et\ al\ (2014)$ paper that describes the seven key elements of scientific paper [1]. Other papers on this theme are References [2, 3].

Here is an example of how to insert an extra positive (or negative) vertical space in the text:

This space is separated 1cm below the preceding line.

Here is an example of how to insert an extra positive (or negative) horizontal space in the text.

2 Methods and Materials

2.1 Data

If your analysis involves data, here is where you would thoroughly describe it.

This is an example of a bulletted itemized list:

- Item 1
- Item 2
- Item 3

Here is an example of an enumerated itemized list:

- 1. Item 1
- 2. Item 2
- 3. Item 3

Here is an example of an descriptive itemized list:

Item 1: describe item 1

¹This is an example of a footnote

Item 2: describe item 2

Item 3: describe item 3

2.2 Mathematical Model

If your analysis involves a mathematical model, here is where you would describe it.

This is an example of a set of equations:

$$S' = -\beta SI/N$$

$$I' = +\beta SI/N - \gamma I$$

$$R' = +\gamma I$$
(1)

Here is an example of an inline equation $S' = -\beta SI/N$.

Here is a reference to Equation 1 in the text. Note that when you reference specific equations, tables, or paper sections in the text, you always capitalise those nouns. Here is a reference to Section 2.2.

2.3 Statistical methods

If your analysis involves any kind of specialised statistical methodology, here is where you would describe it.

To account for potential over-dispersion in count data involved our analyses, we utilized Negative Binomial likelihood fits [4]. The probability mass function (PMF) of the Negative Binomial distribution for observing k counts when λ are expected is [4]

$$f(k|\lambda,\alpha) = \frac{\Gamma(\alpha+k)}{k!\Gamma(\alpha)} \left(\frac{\lambda}{\lambda+\alpha}\right)^k \left(1+\frac{\lambda}{\alpha}\right)^{-\alpha} \qquad \lambda > 0, \alpha > 0, \quad (2)$$

where α is the over-dispersion parameter. The mean of the PMF is λ . When $\alpha \to \infty$ the Poisson distribution is obtained, and when $\alpha \to 0$ (i.e. highly over-dispersed data) the log-series distribution is obtained [4]. The Akaike Information Criterion (AIC) was used for selection of the appropriate model [5].

Given a set of M observations of the number of violent crimes per day, k_i , with i = 1, ..., M the likelihood of the observations is

$$\mathcal{L} = \prod_{i=1}^{M} f(k_i | \lambda(t_i), \alpha), \tag{3}$$

Table 1: Here is an example of a table delimited by vertical lines.

	Percentage increase in casualties	p-value
Effect A	17% [16%, 18%]	(p < 0.001)
Effect B	74% [53%, 97%]	(p < 0.001)
Effect C	141% [93%, 197%]	(p < 0.001)

where $\lambda(t_i)$ is the expected number of counts on day t_i . The best-fit model values used in the calculation of the $\lambda(t_i)$ are the values that maximize this likelihood [6].

3 Results

Here, without discussion, is where you present your results, either within a paragraph, or as a figure, or a table.

Here is an example of a reference to Figure 1 in the text. Here is an example to a reference to Table 1, which is delimited by vertical lines. Table 2 is a rotated table in landscape format, with every second line coloured blue to aid in readability.

The one standard deviation uncertainty in my data was 0.998.

 \circ

Table $\underline{2}$: This is an example of a sideways table, with every second row coloured blue.

r			
	Percentage increase in casualties	p-value	
Each extra firearm used by perpetrator	12% [7%, 17%]	(p < 0.001)	
Use of assault rifle by perpetrator	83% [59%, 109%]	(p < 0.001)	
Perpetrator mental illness	129% [83%, 184%]	(p < 0.001)	
End of FAWB	$176\% \ [57\%, 352\%]$	(p < 0.001)	
Beginning of changed response tactics	$-49\% \ [-71\%, -16\%]$	(p = 0.010)	

Figure 1: Histogram of Normally distributed data

4 Discussion

Here is where you would discuss your results, putting them in context of past research. You would also discuss the weaknesses of the study methodology.

5 Summary

Here is where you would briefly summarise the results of the study and the conclusions and implications that can be drawn.

References

- [1] Edwin B Van Lacum, Miriam A Ossevoort, and Martin J Goedhart. A teaching strategy with a focus on argumentation to improve undergraduate students ability to read research articles. *CBELife Sciences Education*, 13(2):253–264, 2014.
- [2] Edwin van Lacum, Marcel Koeneman, Miriam Ossevoort, and Martin Goedhart. Scientific argumentation model (sam): A heuristic for reading research articles by science students. In *Insights from Research in Science Teaching and Learning*, pages 169–183. Springer, 2016.
- [3] Emmanouela Seiradakis and Ioannis Spantidakis. Training undergraduate engineering students to read research articles: A qualitative think-aloud study. In *Global Engineering Education Conference (EDUCON)*, 2018 IEEE, pages 1208–1213. IEEE, 2018.
- [4] James O Lloyd-Smith. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. *PloS one*, 2(2):e180, 2007.
- [5] Hirotugu Akaike. A new look at the statistical model identification. *IEEE transactions on automatic control*, 19(6):716–723, 1974.
- [6] Glen Cowan. Statistical data analysis. Oxford university press, 1998.