Problem Set 6

Name: Jianxiang Fan

Email: jianxiang.fan@colorado.edu

(a) Row-oriented LU factorization with partial row pivoting

```
1 function [ A, p ] = myLU( A, pivoting )
2 [n, ] = size(A);
3 p = 1:n;
4 \quad for \quad k=1:n
         if pivoting == 1
6
               for i=k+1:n
7
                    if A(p(i),k) > A(p(k), k)
8
                          t = p(i);
9
                          p(i) = p(k);
10
                          p(k) = t;
11
                     end
12
               end
13
         end
14
         for i=k+1:n
15
               A(p(i),k) = A(p(i),k)/A(p(k),k);
16
               for j=k+1:n
17
                    A(p(i),j) = A(p(i),j) - A(p(i),k) * A(p(k),j);
18
               end
19
          end
20 end
21
   end
   A = hilb(4);
   [A, p] = myLU(A, 1);
   p = \begin{bmatrix} 1 & 3 & 4 & 2 \end{bmatrix}
          [1.0000 \quad 0.5000]
                            0.3333
                                      0.2500
   A = \begin{bmatrix} 0.5000 & 1.0000 \\ 0.2355 & 1.0000 \end{bmatrix}
                            -1.6667
                                      0.0006
          0.3333 \quad 0.0833
                            0.0889
                                      0.0833
          0.2500 0.9000
                                      0.0054
                            0.0033
(b) Solve A\mathbf{x} = \mathbf{b}.
```

```
1 function [ x ] = solve( A, b )
2 [n,^{\sim}] = size(A);
```

```
3 [A, p] = myLU(A,1);
4 for i=1:n
        for j=1:i-1
            b(p(i)) = b(p(i)) - A(p(i),j) * b(p(j));
7
8
  end
9
  for i=n:-1:1
10
        for j=i+1:n
            b(p(i)) = b(p(i)) - A(p(i),j) * b(p(j));
11
12
        b(p(i)) = b(p(i)) / A(p(i), i);
13
14 \quad \mathtt{end}
15 x = b(p,:);
16 \, \text{end}
```

```
1 A = hilb(4);
2 b = [3/2; 5/6; 7/12; 9/20];
3 x = solve(A, b);
```

$$\mathbf{x} = \begin{bmatrix} 1.0000 \\ 1.0000 \\ 0.0000 \\ -0.0000 \end{bmatrix}$$

- 2. (a) See the code snippet in 1(a).
 - (b) i. Without partial pivoting:

n	$ A _{\infty}$	$\ L\ _{\infty}$	$ U _{\infty}$	$ LU - A _{\infty}$	$\frac{\ LU-A\ _{\infty}}{\ A\ _{\infty}}$
40	24.1031	617.5794	2.4889e + 03	6.5920e-13	2.7349e-14
80	46.3254	2.0808e+03	3.2513e+04	6.1507e-12	1.3277e-13
160	89.3349	1.7369e + 03	6.4817e + 04	1.0313e-11	1.1544e-13

From the table, we can see that

$$||L||_{\infty} ||U||_{\infty} \neq O(||A||_{\infty})$$

and

$$\frac{\|LU - A\|_{\infty}}{\|A\|_{\infty}} \neq O(\epsilon_{\text{machine}})$$

So the algorithm without partial pivoting is not backward stable.

n	$ A _{\infty}$	$ L _{\infty}$	$ U _{\infty}$	$ LU - PA _{\infty}$	$\frac{\ LU - PA\ _{\infty}}{\ A\ _{\infty}}$
40	24.1031	56.3254	111.5379	1.6730e-14	6.9411e-16
80	46.3254	74.3828	198.4236	2.7268e-14	5.8862e-16
160	89.3349	88.2208	242.2430	8.1456e-14	9.1181e-16

ii. With partial pivoting:

$$\frac{\|LU - PA\|_{\infty}}{\|A\|_{\infty}} = O(\epsilon_{\text{machine}})$$

The algorithm with partial pivoting is backward stable.

- (c) Let A be a random matrix whose (1,1) entry is always 10^{-13} .
 - i. Without partial pivoting:

n	$ A _{\infty}$	$ L _{\infty}$	$ U _{\infty}$	$ LU - A _{\infty}$	$\frac{\ LU-A\ _{\infty}}{\ A\ _{\infty}}$
40	23.8694	9.7706e+12	1.0196e+14	0.0081	3.4106e-04
80	46.0338	9.8800e + 12	2.2139e+14	0.0169	3.6618e-04
160	89.8639	9.9340e+12	4.6459e + 14	0.0334	3.7126e-04

ii. With partial pivoting:

n	$ A _{\infty}$	$ L _{\infty}$	$ U _{\infty}$	$ LU - PA _{\infty}$	$\frac{\ LU - PA\ _{\infty}}{\ A\ _{\infty}}$
40	23.8694	54.4380	109.8358	1.3291e-14	5.5683e-16
80	46.0338	90.3562	144.2268	3.3482e-14	7.2734e-16
160	89.8639	77.5250	240.8489	7.9720e-14	8.8712e-16

Compare these two tables, we can see that the LU factorization without partial pivoting is much less numerically accurate than the one with partial pivoting.