10. Нормално уравнение на права. Разстояние от тогка доправа.

Нека K = 0 е дотонормирана координатна система и де произволна права с общо уравнение g: ax + by + c = 0.

От $\vec{p}(-b,a)$ | у непосредствено получаване, \vec{e}_1 те векторът $\vec{n}(a,b)$ е перпендикулярен на g имаме $\vec{n} + \vec{o}$ и $\vec{n}, \vec{p} = -ab + ba = 0$.

Следователно единитен вектор \vec{n}_g , перпендикулярен на g има координати \vec{n}_g ($\frac{a}{Va'+b^2}$) както и \vec{n}_g ($\cos\theta$, $\sin\theta$).

Следователно g има уравнение $g: \cos\theta.x + \sin\theta y + c' = 0$ и това уравнение се нарита нормално уравнение на g.

Всяка права има точно два разлитни единични нормални вектора \vec{n}_g и противополонният му $-\vec{n}_g$. Следователно: Всяка права има точно две нормални уравнения $g: \frac{ax + by + c}{\pm \sqrt{a^2+b^2}} = 0$

Нека д е зададена с нормално уравнение от вида (**) 102 д: соя x + sin θ . y + c = 0, y . Срез него еднознатно е определена полуравнината, каято излужно съдърна лъта, зададен от θ . Нека $M_1(x_1, y_1)$ е произволна тогка и $M_0(x_0, y_0)$ е петата на перпендикупяра от M_1 към д. Векторите M_0M_1 и M_1 и M_2 са коминеарни. Следователно M_0M_1 = M_1 и M_2 са коминеарни. Следователно M_1 и M_2 в M_1 и M_2 са M_1 и M_2 са M_2 со M_2 со M_3 со M_4 и M_4 со M_4 со M

Ако $g \in c$ солдо уравнение от вида g: ax + by + c = 0, mo $(M_1, g) = \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$ За разстоянието от М, до д имане 1 М.м. 1= 15 11 пд 1 = 181 и 1M1,91= ax1+by1+c Va2+b2 С помолита на оргиентираного разстаяние можем да определим дами две тоски М, и NI пеная в една или в разлитни попуравнини AKO (M, 9) = 81 M (N1,9) = 82, TO MININI CO BEYMA MONY равнина с=> мом, и мом, са еднопососни => бого >0. Ми И са в разписни попуравничи спрямо д => МоМ, и МыМ, ca reportebonocochu (=> 8,82 LO