General Relativity

Class 11 — February 14, 2020

Rabia Husain

E-mail: r.husain@utexas.edu

Contents

Ι	More on One Forms	1
1	One Forms and the Gradient	1
2	Kinds of One Forms	1
II	The Metric Tensor	3
3	Raising and Lowering Indices	4
4	The Dot Product	4
5	Distance	4
6	Transformations	7

More on One Forms

PART

Ι

1 One Forms and the Gradient

In 3D, vectors can be decomposed via the Helmholtz decomposition into:

$$\bar{V} = \bar{\nabla}\Phi + \bar{\nabla} \times \bar{A} \tag{1.1}$$

¹ So, one forms are not uniquely represented by the gradient of some function since there is a component that is the curl of a field. However, we do not yet have a definition for the cross product in higher dimensions.

 1 (1.1) Where Φ is some scalar function and \bar{A} is some vector field.

An example of a one form is the gradient:

$$\omega = df \tag{1.2}$$

This can be used to build a more general definition for a one form:

$$\dot{\omega} = = \omega_{\mu} dx^{\mu} \tag{1.3}$$

in which dx^{μ} is the coordinate basis. Now, consider if $\omega_{\mu} = \partial_{\mu} f$. Then,

$$\partial_{\mu}\omega_{\nu} - \partial_{\nu}\omega_{\mu} = \partial_{\mu}\partial_{\nu}f - \partial_{\nu}\partial_{\mu}f = 0 \tag{1.4}$$

This shows that not all one forms can be written as the gradient of a function.

2 Kinds of One Forms

• A "rotation-free" one form is defined as:

$$\omega = hdf \tag{2.1}$$

for h and f as some other functions on the manifold. This type of one form can no longer be written as a gradient of a function. It is possible to show that $\omega_{[\mu}\partial_{\nu}\omega_{\rho]}=0$, meaning that all indices are fully antisymmetrized 2 , where ω^{μ} is perpendicular to some hypersurface.

$$\begin{split} A_{[\mu\nu]} &= \frac{1}{2} (A_{\mu\nu} - A_{\nu\mu}) \\ A_{[\mu\nu\rho]} &= \frac{1}{6} (A_{\mu\nu\rho} + A_{\rho\mu\nu} + A_{\nu\rho\mu} - A_{\rho\nu\mu} - A_{\mu\rho\nu} - A_{\nu\mu\rho}) \\ and \ so \ on. \end{split}$$

² Recall the definition of antisymmetrization:

KINDS OF ONE FORMS

Figure 1. A vector field (in black) normal to some weirdly shaped surface (in red). It is possible to check if a vector field is normal to a hypersurface using $\omega_{[\mu}\partial_{\nu}\omega_{\rho]}$

• A "curl-free" one form is a special type of one form defined as:

$$\omega = df \tag{2.2}$$

If a one form is "curl-free", then it obeys equation (1.4). So, does every one form which obeys equation (1.4) have the form $\omega_{\mu} = \partial_{\mu} f$? The answer is no, not always. This depends on the space that you are in. If you are looking locally, meaning in the neighborhood of the point, then yes, $\omega_{\mu} = \partial_{\mu} f$ holds. We call this a closed form, which implies that the form is exact. If you are looking globally, however, $\omega_{\mu} = \partial_{\mu} f$ does not hold, meaning that in some spaces, not all closed forms are exact.

³ Some properties of $g_{\mu\nu}$: $g_{(\mu\nu)} = g_{\mu\nu}$ (symmetric)

 $g_{\mu\nu}$ has 10 degrees of freedom.

The Metric Tensor

The metric tensor in curved spacetime is:

$$g = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu} \tag{2.3}$$

where $g_{\mu\nu}$ represents the components of g. This should not be confused with $\eta_{\mu\nu}$, which was used previously to represent the metric for flat space. While it is appropriate to use $g_{\mu\nu}$ as the metric for flat space as well as for curved space, $\eta_{\mu\nu}$ is reserved solely for flat space. ³

Figure 2. The manifold \mathcal{M} on which we have a point x^{μ} . The metric $g_{\mu\nu}$ at that point is defined by $g_{\mu\nu}(x^{\mu})$.

We can define the determinant of the metric tensor as the following.

$$det(g_{\mu\nu}) = g \tag{2.4}$$

If $g \neq 0$, then the inverse matrix of $g_{\mu\nu}$, called $g^{\mu\nu}$, exists. $g^{\mu\nu}$ has the property that $g^{\mu\alpha}g_{\alpha\nu} = \delta^{\mu}_{\ \nu}$.

DISTANCE 4

3 Raising and Lowering Indices

Since the metric tensor forms an invertible map between one forms and vectors, we can now define a way to raise and lower the indices of one forms and vectors,

$$\omega^{\mu} = g^{\mu\alpha}\omega_{\alpha} \tag{3.1}$$

$$V_{\mu} = g_{\mu\alpha}V^{\alpha} \tag{3.2}$$

Equation (3.1) defines a way to raise indices, going from one forms to vectors. Equation (3.2) defines a way to lower indices, going from vectors to one forms.

4 The Dot Product

We can also use the metric tensor to define the dot product.

$$\bar{U} \cdot \bar{V} = g(\bar{U}, \bar{V}) = g_{\mu\nu} U^{\mu} V^{\nu} \tag{4.1}$$

Using this definition of the dot product, we can define the magnitude of vectors.

$$V_{\mu}V^{\mu} = \begin{cases} <0 & "timelike" \\ >0 & "spacelike" \\ =0 & "null"/"lightlike" \end{cases}$$

$$(4.2)$$

⁴ for some $\bar{V}(f)=\frac{df}{d\lambda}$ where $\bar{V}=\frac{\bar{d}}{d\lambda}$. \bar{V} is a directional derivative that can act on a function. It is fine to think about $\bar{V}=V^{\mu}\bar{e}_{(\mu)}$, but $\bar{e}_{(\mu)}$ is just a directional derivative now. For the one form $\bar{\psi}\colon T_p\to\mathbb{R}$ acting on $\bar{V},\ \bar{\psi}(\bar{V})=w_{\mu}V^{\mu}$. This one form is acting via contraction to map a derivative to the real numbers.

⁴ This is similar to our previous definitions of "timelike separated", "spacelike separated", and "lightlike separated" when we were discussing the spacetime interval Δs^2 in special relativity.

5 Distance

We can also write down a definition for distance using the metric. For a spacelike curve, we define distance as proper distance s.

$$s = \int_{\lambda_a}^{\lambda_b} \sqrt{g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}} d\lambda \tag{5.1}$$

DISTANCE 5

Figure 3. The manifold \mathcal{M} on which we have a spacelike curve from points a to b. The curve is parameterized by λ .

For a timelike curve, we define distance as proper time τ .

$$\tau = \int_{\lambda_a}^{\lambda_b} \sqrt{-g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}} d\lambda \tag{5.2}$$

Figure 4. The manifold \mathcal{M} on which we have a timelike curve from points a to b. The curve is parameterized by λ .

In both cases, we have assumed nothing about the parameterization λ . It is important to note that the proper time and proper distance along a specified curve between two points is invariant under coordinate changes.

$$V^{\mu}V_{\mu} = V^{\mu'}V_{\mu'} \tag{5.3}$$

A convenient shorthand for distance, ds, can be written as follows:

$$ds^{2} = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$$

$$= g_{\mu\nu} dx^{\mu} dx^{\nu}$$
(5.4)

While the second line of equation (5.4) is an abuse of notation, this is safe to use if one acts as though dx^{μ} and dx^{ν} are just differential objects.

DISTANCE 6

Example. Let us consider cartesian coordinates in 3D flat space. In this space,

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{5.5}$$

We can write the distance as:

$$ds^{2} = \underline{d}x \otimes \underline{d}x + \underline{d}y \otimes \underline{d}y + \underline{d}z \otimes \underline{d}z$$

$$= dx^{2} + dy^{2} + dz^{2}$$
(5.6)

This is just the Pythagorean theorem!

Figure 5. Two points a and b separated by a distance ds^2 in 3D flat space.

Now, we will transform coordinates from $(x, y, z) \to (r, \theta, \phi)$. Let us denote (x, y, z) with x^i and (r, θ, ϕ) with $x^{i'}$. We will perform this transformation using the Jacobian transformation matrices $\frac{\partial x^{i'}}{\partial x^i}$. For i = 1:

$$\frac{\partial x^{1'}}{\partial x^1} = \frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{x}{r}$$
 (5.7)

This same process can be done for i=2 and i=3. The distance in spherical polar coordinates is as follows:

$$ds^{2} = dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}$$
 (5.8)

Transformations 7

Now, we can write the metric and its inverse for this coordinate system.

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \theta \end{pmatrix}$$
 (5.9)

$$g^{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \theta} \end{pmatrix}$$
 (5.10)

Example. Another example that we can consider is the 4D Friedmann–Lemaître–Robertson–Walker (FLRW) metric.

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$
(5.11)

This looks like our spacetime interval Δs^2 for flat 4D spacetime except for the $a^2(t)$ term, which is called the "scale factor".

Figure 6. Two points in 4D spacetime separated by a distance in space, dx.

For Figure 6 above, $ds^2 = a^2(t)dx^2 = a^2dx^2 \rightarrow ds = adx$. This means that observers at fixed coordinates see the distance between themselves grow or shrink in time depending on the value of a, the scale factor.

6 Transformations

For a tensor T, the transformation of its components is defined as follows:

$$T_{\mu'\nu'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu}}{\partial x^{\nu'}} T^{\mu\nu} \tag{6.1}$$

Transformations 8

The components of the tensor change under transformation, however the tensor itself is invariant under coordinate transformation.

Example. Let us consider an example which is **not** a tensor: $\tilde{\epsilon}_{\mu\nu\rho\sigma}$.

$$\tilde{\epsilon}_{\mu'\nu'\rho'\sigma'} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} \frac{\partial x^{\nu}}{\partial x^{\nu'}} \frac{\partial x^{\rho}}{\partial x^{\rho'}} \frac{\partial x^{\sigma}}{\partial x^{\sigma'}} \tilde{\epsilon}_{\mu\nu\rho\sigma}
= \det \left| \frac{\partial x^{\mu}}{\partial x^{\mu'}} \right| \tilde{\epsilon}_{\mu\nu\rho\sigma}$$
(6.2)

There is a "scaling factor", $\left|\frac{\partial x^{\mu}}{\partial x^{\mu'}}\right|$, multiplying $\tilde{\epsilon}_{\mu\nu\rho\sigma}$ which shows that $\tilde{\epsilon}_{\mu\nu\rho\sigma}$ is not invariant under coordinate transformation. Thus, $\tilde{\epsilon}_{\mu\nu\rho\sigma}$ is not a tensor.