ST4238 Cheatsheet by Yiyang, AY22/23

1. Poisson Processes

Overview

Definition 1

A Poisson Process with rate $\lambda > 0$ is an integer-valued stochastic process $\{X(t), t \geq 0\}$ for which

• for any time points $t_0 = 0 < t_1 < t_2 < \dots < t_n$, increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), ..., X(t_n) - X(t_{n-1}) \\$$

are independent r.v.

- for $s \ge 0$ and t > 0, the r.v. $X(s + t) X(s) \sim Pois(\lambda t)$
- X(0) = 0

<u>Note</u>: The process above is **homogeneous**. If $\lambda = \lambda(t)$ varies with time, then the process is **non-homogeneous**, and replace the second property above with

$$X(s+t) - X(s) \sim Pois(\int_{s}^{s+t} \lambda(u)du)$$

Note: A Cox Process is where $\lambda(t)$ is a stochastic process itself.

To homogeniz a non-homogeneous Poisson Process:

- 1. Define $\Lambda(t) = \int_0^t \lambda(u) du$
- 2. Define a new process Y(s) = X(t) where $s = \Lambda(t)$
- 3. Now Y(s) is a homogeneous Poisson Process with rate 1.

Definition 2 - LRE

Let N((s,t]) be a r.v. counting number of occurrences in the interval (s,t]. Then N((s,t]) is a **Poisson Point Process** of intensity $\lambda > 0$ if

• for any time points $t_0 = 0 < t_1 < ... < t_n$, increments

$$N((t_0, t_1]), N((t_1, t_2]), ..., N((t_{n-1}, t_n])$$

are independent r.v.

- $\exists \lambda > 0$, s.t. as $h \to 0$, $P(N((t, t+h]) \ge 1) = \lambda h + o(h)$.
- as $h \to 0$, $P(N((t, t + h)) \ge 2) = \lambda + o(h)$.

Note: For non-homogeneous, $P(N((t, t + h)) \ge 1) = \lambda(t)h + o(h)$.

Law of Rare Events

Let $\epsilon_1, \epsilon_2, \ldots$ be independent Ber. r.v.'s with $P(\epsilon_i = 1) = p_i$ and let $S_n = \sum i = 1^n \epsilon_i$. The exact probability for S_n and Poisson probability with $\lambda = \sum_{i=1}^n p_i$ differ by at most

$$|P(S_n = k) - e^{-\lambda} \frac{\lambda^k}{k!}| \le \sum_i i = 1^n p_i^2$$

Note: In the case of $p_1 = ... = \lambda/n$, RHS becomes λ^2/n .

Definition 3 - Sojourn Time

Consider a sequence $\{S_n, n \ge 0\}$ of i.i.d. $Exp(\lambda)$. Define a counting process by specifying the occurrence time of n-th event

$$W_n = S_0 + S_1 + \dots + S_{n-1}$$

The new counting process will be a Poisson Process with rate λ .

Waiting & Sojourn Time

The Waiting Time, W_n of a Poisson Process X(t) is the time of n-th occurrence, for $n \in \mathbb{N}$. We set $W_0 = 0$.

The Sojourn Time, $S_n = W_{n+1} - W_n$ is the time where the process sojourns in state n, for $n \in \mathbb{Z}_{>0}$.

For homogeneous Poisson Processes, $S_n \sim Exp(\lambda)$ and $W_n \sim Gamma(n,\lambda)$

Properties

Arrival Time

Given X(t) = n, the joint distribution of waiting time $W_1, ..., W_n$ is

$$f(w_1, w_2, ..., w_n | X(t) = n) = \frac{n!}{t^n}, 0 \le w_1 \le w_2 \le ... \le 2_n \le t$$

It is the joint distribution of n **ranked** independent Unif(0,t) r.v.'s. Given X(t) = n, the distribution of the k-th waiting time has the same distribution as that of the k-th order statistic of n independent Unif(0,t) r.v.'s.

$$f_k(x) = \frac{n!}{(n-k)!(k-1)!} \frac{1}{t} (\frac{x}{t})^{k-1} (1 - \frac{x}{t})^{n-k}, 0 \le k \le n$$

Merging & Splitting Processes

For $\{N_1(t), t \geq 0\}, \{N_2(t), t \geq 0\}, ..., \{N_m(t), t \geq 0\}$ independent Poisson Processes with rates $\lambda_1, \lambda_2, ..., \lambda_m$, let $N(t) = \sum_{i=1}^m N_i(t), t \geq 0$ be the Merging Process. Then $\{N(t), t \geq 0\}$ is also a Poisson Process with rate $\lambda = \lambda_1 + \lambda_2 + ... + \lambda_m$.

For $\{N(t), t \geq 0\}$ a Poisson Process with rate λ , if each event occurred can be of type A and B with probability p and 1-p independently, then let X(t) and Y(t) be the Splitting Processes counting number of type A and B occurrences. Then $\{X(t), t \geq 0\}$ and $\{Y(t), t \geq 0\}$ are Poisson Processes with rates λp and $\lambda (1-p)$, and they are independent.

Comparision of Two Processes

Consider $\{X(t), t \geq 0\}$ and $\{Y(t), t \geq 0\}$ two independent Poisson Processes with rates λ_1 and λ_2 . Define W_n^X and W_m^Y as the waiting time of the n-th and m-th waiting time of X(t) and Y(t) respectively.

$$P(W_n^X < W_m^Y) = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} (\frac{\lambda_1}{\lambda_1 + \lambda_2})^k (\frac{\lambda_2}{\lambda_1 + \lambda_2})^{n+m-1-k}$$

Analysis: It is equivalent as getting n or more heads in n+m-1 tosses where getting a head has probability $\lambda_1/(\lambda_1+\lambda_2)$.

Variants

Compound Poisson Process

A stochastic process $\{X(t), t \ge 0\}$ is a Compound Poisson Process if it can be represented as

$$X(t) = \sum_{i=1}^{N(t)} Y_i, \ t \ge 0$$

, where $\{N(t), t \ge 0\}$ is a Poisson Process with rate λ and $Y_i \sim F$ is a family of i.i.d. r.v.'s independent of $\{N(t), t \ge 0\}$.

Note: We need [1] rate λ , and [2] distribution F to specify a compound Poisson Process.

$$E[X(t)] = \lambda t E[Y_i]$$

$$Var[X(t)] = \lambda t \left(E[Y_i]^2 + Var(Y_i) \right)$$

To merge two compound Poisson Processes X(t) and Y(t) with parameters (λ_1, F_1) and (λ_2, F_2) as N(t) = X(t) + Y(t), the result is a compound Poisson Process with parameters

$$\lambda = \lambda_1 + \lambda_2$$

$$F(x) = \frac{\lambda_1}{\lambda_1 + \lambda_2} F_1(x) + \frac{\lambda_2}{\lambda_1 + \lambda_2} F_2(x)$$

Conditional Poisson Process

A stochastic process $\{N(t), t \geq 0\}$ is a **Conditional Poisson Process** if there is a positive r.v. L such that $\{N(t)|L=\lambda, t \geq 0\}$ is a Poisson Process with rate λ .

If *L* has pdf $g(\cdot)$, then pdf for increment of N(t) is

$$P(N(t+s) - N(s) = n) = \int_0^\infty e^{-\lambda t} \frac{(\lambda t)^n}{n!} g(\lambda) d\lambda$$

E[N(t)] = E(L)t $Var(N(t)) = tE(L) + t^{2}Var(L)$

Conditional probability of L given N(t) = n (posterior),

$$P(L \le x | N(t) = n) = \frac{\int_0^x e^{-\lambda t} (\lambda t)^n g(\lambda) d\lambda}{\int_0^\infty e^{-\lambda t} (\lambda t)^n g(\lambda) d\lambda}$$

Multi-Dimensional Poisson Process

Let S be a subset of \mathbb{R} , \mathbb{R}^2 , or \mathbb{R}^3 . Let A be the set of subsets of S and for any set $A \in A$, define |A| as the size of A. Then $\{N(A) : A \in A\}$ is a homogeneous Poisson process with A > 0 if,

- for each $A \in A$, $N(A) \sim Pois(\lambda |A|)$
- for every finite collection $\{A_1,...,A_n\}$ of disjoint subsets of S, r.v.'s $N(A_1),...,N(A_n)$ are independent.

2. Continusous Time Markov Chains Overview

For a stochastic process $\{X(t), t \ge 0\}$, if for all $s > u \ge 0, t > 0$,

$$P(X(s+t) = j|X(s) = i, X(u) = k) = P(X(s+t) = j|X(s) = i)$$

, then we call $\{X(t), t \ge 0\}$ a Continuous-Time Markov Chain, and the property Markovian Property.

A CTMC $\{X(t), t \ge 0\}$ has **Stationary / Homogeneous Transition Probabilities** if for all $s \ge 0$, t > 0 and states i, j,

$$P(X(s+t) = j|X(s) = i)$$
 is independent of s

A CTMC $\{X(t), t \geq 0\}$ can be specified with: [1] State Space S, [2] Waiting Time Rate Vector \vec{v} , where the time X(t) stays in state $i \in S$ follows $Exp(\nu_i)$, & [3] Jump Probabilities P_{ij} , the probability of X(t) currently in state $i \in S$ and moves to $j \in S$ at first transition. Note: By definition, $P_{ii} = 0$ and $\sum_{j \neq i} P_{ij} = 1$ for all $i \in S$.

Note: For an absorbing state i (e.g. i=0 in Birth & Death Process), we may set $\nu_i=0$.

Transition Probability Function

Define the **Transition Probabilities** of a CTMC X(t) as

$$P_{ij}(t) := P(X(t+s) = j|X(s) = i)$$

Note: A transition probability matrix can uniquely specify a CTMC. Note: $P_{ij} \neq P_{ij}(t)$ since there might not be exactly one transition.

Chapman-Kolmogorov Equation

$$P_{ij}(t+s) = \sum_{k \in S} P_{ik}(t) P_{kj}(s)$$

Discretisation of CTMC

For a CTMC $\{X(t), t \ge 0\}$, $\{Y_1(n)\}_{n \ge 0}$ discretises it at equal intervals if for some constant l > 0,

$$Y_1(n) = X(nl), n = 0, 1, 2, ...$$

Analysis: $Y_1(n)$ has state space S and transition matrix P(l).

For a CTMC $\{X(t), t \ge 0\}$, $\{Y_2(n)\}_{n \ge 0}$ is the Embedded Chain if it only considers the states visited by X(t).

Analysis: $Y_2(n)$ has state space S and transition matrix P.

Infinitesimal Generator

Lemma: Transition Rates, for a CTMC,

•
$$\lim_{h\to 0} \frac{P_{ii}(h)-P_{ii}(0)}{h} = -\nu_i$$

•
$$\lim_{h\to 0} \frac{P_{ij}(h)-P_{ij}(0)}{h} = \nu_i P_{ij}$$
, for all $i\neq j$

The **Infinitesimal Generator** *G* of a CTMC is defined as

$$G = (G_{ij})_{S \times S} = P'(0)$$
, where $G_{ij} = \begin{cases} -\nu_i, & i = j \\ \nu_i P_{ii}, & i \neq j \end{cases}$

Kolmogorov's Forward & Backward Equations respectively:

$$P'(t) = P(t)G \iff P'_{ij}(t) = \sum_{k \neq i} P_{ik}(t) q_{kj} - \nu_j P_{ij}(t)$$

$$P'(t) = GP(t) \iff P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - \nu_i P_{ij}(t)$$

CTMC Long-Term Properties

Stationary Distribution

For a CTMC $\{X(t), t \geq 0\}$, a row vector $\boldsymbol{\pi} = (\pi_i)_{i \in S}$ with $\pi_i \geq 0$ and $\sum_i \pi_i = 1$ is a **Stationary Distribution** if for all $t \geq 0$,

$$\pi = \pi P(t)$$
,

Global Balancing Equations

$$\boldsymbol{\pi}G = \mathbf{0} \iff \equiv \sum_{j \neq i} \pi_i q_{ij} = v_j \pi_j, \ \forall j$$

Limiting Distribution

For a CTMC $\{X(t), t \ge 0\}$, its Limiting Distribution, $\{P_i, j \in S\}$, is:

$$P_j = \lim_{t \to \infty} P_{ij}(t)$$

Note: [1] For each j, the limit needs to exist and be the same for all i. [2] When both π and P exists, $\pi = P$.

If X(t) satisfies conditions below, it is **Ergodic** (converse not true):

- All states of X(t) communicate.
- X(t) is **positive recurrent**, i.e. for all $i, j \in S$,

$$\mathbb{E}[\min_{t>0}\{X(t)=j|X(0)=i\}]<\infty$$

An ergodic chain has stationary & limiting distributions & equal. Suppose the embedded chain of $\{X(t), t \geq 0\}$, $\{E(n)\}_{n=0}^{\infty}$ has stationary distribution ψ . Then for all state i,

$$\psi_i = \frac{\pi_i \nu_i}{\sum_i \pi_i \nu_i} \iff \pi_i = \frac{\psi_i / \nu_i}{\sum_i \psi_i / \nu_i}$$

Time Reversibility

For an **ergodic** CTMC $\{X(t), t \ge 0\}$ and a sufficiently large t, define reversed process $\{Y(t), t \ge 0\}$

$$Y(0) = X(t), Y(s) = X(t-s), 0 < s < t$$

 $\{X(t), t \ge 0\}$ is **Time-Reversible** if X(t) and Y(t) has the same probability structure: [1] Same ν , and [2] Same jump matrix.

Local Balanced Equations

$$\pi_i q_{ii} = \pi_i q_{ii}, \ \forall i, j$$

If it is satisfied, X(t) is time reversible with limiting distribution π .

Proposition: Time Reversibility Subset

Truncate a time-reversible CTMC X(t) from S to $A \subseteq S$, then it remains time-reversible and has limiting distribution

$$\pi_j^A = \frac{\pi_j}{\sum_{i \in A} \pi_i}, \ \forall j \in A$$

Proposition: Time Reversibility Vectors

For CTMCs $\{X_i(t), t \ge 0\}$, i = 1, 2, ..., n time reversible, the vector process $\{(X_1(t), ..., X_n(t)), t \ge 0\}$ is also time reversible.

CTMC Techniques

Uniformization

For a CTMC $\{X(t), t \ge 0\}$, where $\exists \nu \in \mathbb{R}$ s.t. $\nu_i \le \nu, \forall i \in S$,

$$P_{ij}(t) = \sum_{n=0}^{\infty} (P^*)_{ij} \frac{(\nu t)^n}{n!} e^{-\nu t} \text{ ,where } P^*_{ij} = \begin{cases} 1 - \nu_i/\nu, & i=j \\ (\nu_i/\nu) P_{ij}, & i\neq j \end{cases}$$

<u>Intuition</u>: P^* is the jump matrix after <u>Uniformisation</u>. A CTMC with identical ν_i is a Poisson Process with rate ν_i .

CTMC with Absorbing States

For a CTMC $\{X(t), t \ge 0\}$, if there is a state *i* s.t. $\forall t > 0, s \ge 0$,

$$P(X(t+s) = i|X(s) = i) = 1$$

, (or $P_{ii}(t) = 1, \forall t > 0$,) then we call i an Absorbing State.

Assume state 0 is absorbing, **probability of absorbing** $u_i = \lim_{t\to\infty} P(X(t) = 0|X(0) = i)$ from state i by CTMC is the same as that based on its embedded chain.

Define **expected time of absorption** w_i for starting at state i. Case 1 When i=0, $w_i=0$. Case 2a When $u_i<1$, $w_i=\infty$. Case 2b When $u_i=1$, $w_i=\mathbb{E}[\text{time till 1st jump}] + \sum_{i\neq i} P_{ij}w_i$.

3. Renewal Process

Overview

A Renewal Process is a counting process $\{N(t), t \geq 0\}$ for a sequence of non-negative r.v.s $\{X_1, X_2, ...\}$ that are iid. with a distribution F.

- $F(x) = P(X_k \le x), k = 1, 2, ..., CDF$ of sojourn time
- $F_k(x) = P(W_k \le x), k = 1, 2, ..., CDF$ of waiting time W_k .
- M(t) = E[N(t)], Renewal Function, expected # of renewals

Properties

- $N(t) > k \iff W_k < t$
- $W_{N(t)} \le t < W_{N(t)+1}$
- $P(N(t) = k) = F_k(t) F_{k+1}(t)$
- $F_k(t) = \int_0^t F_{k-1}(t-y)dF(y)$, one-step analysis

The Renewal Equation - For a renewal process with sojourn times distributed as F, let M(t) = E[X(t)], then

$$M(t) = F(t) + \int_0^t M(t - x)f(x)dx$$

Waiting time in Renewal Process:

$$\mathbb{E}[W_{N(t)+1}] = \mathbb{E}[X_1](M(t)+1)$$

Note: Not a Random Sum as N(t) + 1 not independent with X_i .

Special Random Variables

- Excess Time / Residual Time: $\gamma_t = W_{N(t)+1} t$
- Current Life / Age: $\delta_t = t W_{N(t)} \ge 0$
- Total Life: $\beta_t = \gamma_t + \delta_t$

Special Case: Poission Distribution

- $\gamma_t \sim Exp(\lambda)$
- δ_t follows $Exp(\lambda)$ truncated at t.
- $\mathbb{E}[\beta_t] = 1/\lambda + (1 \exp(-\lambda t))/\lambda$

Limiting Behaviours

Elementary Renewal Theorem

$$\lim_{t \to \infty} \frac{N(t)}{t} = \frac{1}{\mathbb{E}[X_k]}$$

Central Limit Theorem for Renewal Process Let $\mu = E(X_k)$, $\sigma^2 = \text{Var}(X_k)$, then as $t \to \infty$, $\frac{\text{Var}(N(t))}{t} \to \frac{\sigma^2}{u^3}$ and

$$N(t) \sim \mathcal{N}(\frac{t}{\mu}, \frac{t\sigma^2}{\mu^3})$$
 approximately

Generalisation

Renewal Reward Process

Given a renewal process N(t) with interarrival times X_n , $n \ge 1$ and suppose there is a reward for each renewal R_n that are i.i.d., the **Renewal Reward Process** $\{R(t), t \ge 0\}$ is

$$R(t) = \sum_{n=1}^{N(t)} R_n$$

Note: [1] R_n can depend on X_n , time. [2] Rewards can occur between/along renewals.

Limiting Theorems for Renewal Reward Process For $E[R_n] < \infty$ and $E[X_n] < \infty$,

$$\lim_{t \to \infty} \frac{E[R(t)]}{t} = \frac{E[R_n]}{E[X_n]}$$

Example: Avg. Current Life $\lim_{t\to\infty} (\int_0^t \delta(s)ds)/t = E[X^2]/2E[X]$.

Regenerative Process

A stochastic process $\{X(t), t \geq 0\}$ is a Regenerative Process if there exists time pts when the process probabilistically restarts itself. Note: [1] "Restart" includes both same transition & whether current state is same as initial. [2] Neither of MC & RegenProc \subseteq the other.

Delayed Renewal Process

A Delayed Renewal Process is one when the component in operation at t = 0 is not new, but all subsequent ones are. Analysis: Same set of parameters & limiting behaviours.

4. Brownian Motion

Multi-Normal Distribution

A k-dim random vector $\mathbf{X} = (X_1, ..., X_k)'$ with mean vector $\boldsymbol{\mu} \in \mathbb{R}_{k \times 1}$ and covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}_{k \times k}$ is multivariate normally distributed $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if the joint density function is

$$f(x_1, ..., x_k) = \frac{1}{\sqrt{2\pi \|\Sigma\|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

For any $\mathbf{a} \in \mathbf{R}_{1 \times k}$, $aX \sim \mathcal{N}(a\mu, a\Sigma a')$.

For any matrix $\mathbf{Q} \in \mathbf{R}_{m \times k}$ with rank $m \le k$, $QX \sim \mathcal{N}(Q\mu, Q\Sigma Q')$. For any parition,

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \sim \mathcal{N}(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix})$$

And the conditional distribution is still normal:

$$\pmb{X}_1|\pmb{X}_2 \sim \mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}(\pmb{X}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

Overview

(Standard) Brown Motion

Process $\{X(t), t \ge 0\}$ is a **Brownian Motion** with parameter σ if

- X(0) = 0,
- $\{X(t), t \ge 0\}$ has stationary & independent increments,
- For every t > 0, $X(t) \sim \mathcal{N}(0, \sigma^2 t)$.

A Standard Brownian Motion $\{B(t), t \ge 0\}$ has $\sigma = 0$.

For time $t_1 \leq t_2$,

$$\begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \sim \mathcal{N}(\mathbf{0},,\begin{pmatrix} \sigma^2 t_1 & \sigma^2 t_1 \\ \sigma^2 t_1 & \sigma^2 t_2 \end{pmatrix})$$

For any time s, t > 0,

- If $s \ge t$, $X(s)|X(t) \sim \mathcal{N}(X(t), \sigma^2(s-t))$.
- If s < t, $X(s)|X(t) \sim \mathcal{N}(\frac{s}{t}X(t), \sigma^2 s^2 \sigma^2 s^2/t^2)$

Brownian Motion with Drift

A Brownian Motion with Drift $\{X(t), t \geq 0\}$ with parameters μ and σ satisfies

- X(0) = 0,
- $\{X(t), t \ge 0\}$ has stationary & independent increments,
- For every t > 0, $X(t) \sim \mathcal{N}(\mu t, \sigma^2 t)$.

Note: $X(t) = \sigma B(t) + \mu t$.

For any time s, t > 0,

$$X(s)|X(t) \sim \mathcal{N}(\mu, \frac{\min(s,t)}{t}[X(t) - \mu t], \sigma^2 s - \sigma^2[\min(s,t)]^2/t)$$

Geometric Brownian Motion

A Geometric Brownian Motion Y(t) with parameters μ and σ is:

$$Y(t) = e^{\sigma B(t) + \mu t}$$

Note: Y(0) = 1 and $Y(t) \ge 0$, $\forall t$.

For any time s < t,

$$\begin{split} \mathbb{E}[Y(t)] &= M_{X(t)}(1) = e^{\mu t + \sigma^2 t/2} \\ \text{Var}(Y(t)) &= M_{X(t)}(2) - (M_{X(t)}(1))^2 = e^{2\mu t + \sigma^2 t} (e^{\sigma^2 t} - 1) \\ \mathbb{E}[Y(t)|Y(s)] &= Y(s) \exp\left(\mu (t-s) + \sigma^2 (t-s)/2\right) \end{split}$$

$$\mathrm{Cov}(Y(s),Y(t)) = \exp \left(\mu(t+s) + \sigma^2(t+s)/2\right) (\exp\left(\sigma^2s\right) - 1)$$

Intermediate Results & Others

From Lecture & Tutorials

For **Birh & Death Process** with +1 λ_i & -1 μ_i , limiting distribution:

$$\pi_n = \pi_0 \prod_{i=1}^n \frac{\lambda_{i-1}}{\mu_i}$$
, subject to $\sum_{n=0}^{\infty} \pi_n = 1$

Delay Renewal Example: Consider $Y_1, Y_2, ...$ iid. A **Pattern** is a r-dim vector $(y_1, ..., y_r)$. Every time $(Y_{n-r+1}, ..., Y_n) = (y_1, ..., y_r)$, a renewal occurs at n, denoted as I(n) = 1. The counting process N(n) is a Delayed Renewal Process.

Define Overlapping $k = \max\{j < r : (y_{r-j+1}, ..., y_r) = (y_1, ..., y_j)\}$ how much two renewals overlap. Let p = P(I(n) = 1).

When k = 0: $E[X_1] = 1/p$, $Var(X_1) = 1/p^2 - (2r - 1)/p$.

When k > 0: $E[X_1] = E[X_{y_1,...,y_k}] + 1/p$, and $Var(X_1) = I(X_1,...,Y_k) = I(X_1,...,X_k)$

 $\text{Var}(X_{y_1,...,y_k}) + p^{-2} - (2r-1)/p + 2p^{-3} \textstyle\sum_{j=r-k}^{r-1} E[I(r)I(r+j)].$

Appendix: Probability Theory

Gamma Distribution

 $X \sim Gamma(\alpha, \lambda)$ for shape α , and rate $\lambda > 0$. $(1/\lambda \text{ scale param.})$

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \ge 0$$

Statistics: $E(X) = \frac{\alpha}{\lambda}$, $var(X) = \frac{\alpha}{\lambda^2}$

MGF:
$$M_X(t) = \left(1 - \frac{t}{\lambda}\right)^{-\alpha}, \quad t < \beta$$

Special case: $Exp(\lambda) = Gamma(1,\lambda), \chi_n^2 = Gamma(\frac{n}{2},\frac{1}{2})$ Properties: $Gamma(a,\lambda) + Gamma(b,\lambda) = Gamma(a+b,\lambda)$, and $cX \sim Gamma(\alpha,\frac{\lambda}{n})$

Gamma function $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$

$$\Gamma(1) = 1$$
, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\Gamma(n) = (n-1)!$, $n \in \mathbb{Z}^+$

Beta Distribution

 $X \sim B(a, b)$ where a > 0, b > 0 has support [0, 1]

$$f(X) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, 0 \le x \le 1$$

Statistics: $E(X) = \frac{1}{1+\beta/\alpha}$, $var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Special case: Unif(0,1) = B(1,1)

Beta function $B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Common MGFs

Binomial: $M_X(t) = (1-p+pe^t)^n$ Poisson: $M_X(t) = \exp\left(\lambda(e^t-1)\right)$ Exponential: $M_X(t) = \frac{\lambda}{\lambda-t}$ for $t < \lambda$ Normal: $M_X(t) = \exp\left(\mu t + \sigma^2 t^2/2\right)$

Others

$$E[(X - \mu)^4] = 3\sigma^4 \text{ for } X \sim \mathcal{N}(\mu, \sigma^2)$$

$$E[(\int_0^T B(s)ds)^2] = \int_0^T \int_0^T E[B(s)B(t)]dtds$$