V - POTENCIAÇÃO

Considere uma folha de papel e dobre-a ao meio. Sem desdobrar, dobre-a ao meio pela segunda vez. Repita a operação até ter dobrado a folha cinco vezes. Agora, desdobre a folha. Os vincos dividem a folha em certo número de partes. Quantas são?

Como cada vez que você dobrou a folha, o número de partes dobrou. Isto é:

 3^a dobra: 2x2x2 = 8 5^a dobra: 2x2x2x2x2 = 32

 2^a dobra: 2x2 = 4 4^a dobra: 2x2x2x2 = 16

Este tipo de multiplicação, com fatores iguais, é uma outra operação matemática: POTENCIAÇÃO. Portanto,

POTENCIAÇÃO é a multiplicação de um número por ele mesmo "n" vezes, ou seja,

a.a.a....a.a.a =
$$a^n$$
 onde $a \notin a$ base $e n \notin o$ expoente

n vezes

LEMBRE-SE:

- Qualquer base elevada a expoente zero, o resultado da potência é 1.
- Quando o **expoente é par**, o resultado da potência é sempre **positivo**, independente do sinal da base.
- Quando o expoente é ímpar, o resultado da potência tem o mesmo sinal da base.

Propriedades da potência

- PRODUTO DE POTÊNCIAS DE MESMA BASE

Conserva-se a base e somam-se os expoentes.

Exemplo: $3^2 \cdot 3^4 = 3^{(2+4)} = 3^6$

- DIVISÃO DE POTÊNCIAS DE MESMA BASE

Conserva-se a base e diminuem-se os expoentes.

Exemplo: $2^5 \div 2^3 = 2^{(5-3)} = 2^2$

- POTÊNCIA DE POTÊNCIA

Conserva-se a base e multiplicam-se os expoentes.

Exemplo: $(2^5)^3 = 2^{(5.3)} = 2^{15}$

- POTÊNCIA DE UM PRODUTO

Eleva-se cada fator ao mesmo expoente.

Exemplo: $(2.5)^3 = 2^3.5^3$

- POTÊNCIA DE UM QUOCIENTE

Eleva-se o numerador e o denominador ao mesmo expoente.

Exemplo:
$$\left(\frac{1}{2}\right)^3 = \frac{1^3}{2^3} = \frac{1}{8}$$

- POTÊNCIA COM EXPOENTE NEGATIVO

Inverte-se a base e troca-se o sinal do expoente.

Exemplo:
$$3^{-3} = \left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3} = \frac{1}{27}$$

LEMBRE-SE:

Nas expressões numéricas, primeiro efetuamos os cálculos dentro dos parênteses; depois dentro dos colchetes; e depois, dentro das chaves. Dentro dos parênteses, colchetes ou chaves, primeiro as potências e raízes; depois as multiplicações e divisões; e, finalmente, as adições e subtrações.

Potências de 10 e notação científica

É usada para expressar medidas muito grandes ou muito pequenas, facilitando as operações matemáticas com esses números.

Exemplos: - A distância média da Terra ao Sol é de 149 600 000 Km;

"Um número está expresso em notação científica quando está escrito na forma de um produto de dois fatores. O primeiro fator é um número maior ou igual a 1 e menor que dez e o segundo fator, uma potência de base dez."

Relembrando as potências de 10:

```
10^{0} = 1

10^{1} = 10

10^{-1} = 1/10^{1} = 0,1

10^{2} = 100

10^{-2} = 1/10^{2} = 0,01

10^{3} = 1000

10^{-3} = 1/10^{3} = 0,001

10^{-4} = 1/10^{4} = 0,0001

: : : : :

10^{n} = 1 000 \dots 00

10^{-n} = 1/10^{n} = 0,000\dots 01

(n zeros) (n casas depois da vírgula)
```

podemos observar que:

Quando o expoente da base 10 é **negativo**, indica a quantidade de casas que devemos deslocar a vírgula para a **esquerda**, acrescentado tantos zeros à esquerda, quanto necessário.

LEMBRE-SE:

: Muda-se o expoente da base 10 deslocando-se a vírgula: para trás (direita) → o expoente diminui para frente (esquerda) → o expoente aumenta

```
Exemplo: 1,5 . 10^8 = 1500.10^5 = 150000000.10^0 = 150000000
3,5 . 10^{-8} = 0,0035.10^{-5} = 0,000000035.10^0 = 0,000000035
```

CURIOSIDADE: Na tabela a seguir estão alguns prefixos decimais mais utilizados, principalmente em física e química.

tera	T	10 ¹²		
giga	G	10 ⁹		
mega	М	10 ⁶		
quilo	k	10 ³		
hecto	h	10 ²		
deca	da	10 ¹		
deci	d	10 ⁻¹		
centi	С	10 ⁻²		
mili	m	10 ⁻³		
micro	μ	10-6		
nano	η	10 ⁻⁹		
pico	р	10 ⁻¹²		

EXERCÍCIOS

01. Escreva na forma de potência:

- a) 6.6.6.6.6 =
- b) a.a.a.a.a.a.a.a.a =
- c) 3.3 =
- d) a.a.a.a.a.b.b.b.b =
- e) a.b.a.b.a.b.a.b =

02. Calcule:

- a) 13²
- b) 5^3
- c) 12⁴
- d) 107²
- e) a quinta potência de 4
- f) o quadrado de 16
- g) o cubo de 11
- h) o cubo do produto "xy"
- i) a sexta potência de "a" vezes o quadrado de "b"

03. Reduza a uma só potência

- a) $3^6 \cdot 3^7$
- b) $4^3 \cdot 4^2 \div 4^5$
- c) $\frac{9^7 \cdot 9^{13}}{9^8}$
- d) $13^5 \cdot 13^{-2} \cdot 13^7 \div 13^2$
- e) $\frac{5^4 \cdot 5^{-8} \cdot 5}{5^{-2}}$

04. Qual a metade de 222?

05. Calcule o valor das expressões

- a) $9^2 6$
- b) $10 \cdot 8^2 3^6$
- c) $8^0 + 8^3 8^2$
- d) $25 + 2^2 \cdot 3 2 \cdot 3 + 1$
- e) $700: (7^3 7^2) + 51^0 + (18 7)^1$
- f) $[3.4^2 (3.5:8^0)].2$
- g) $30: (3.7+9)+2^3$
- h) $1024 \{2^8.16 \cdot [31 + (4^2 + 16 27^3)^0]\}$

06. Resolva as expressões:

a)
$$\left(7 + \frac{1}{5}\right) \div \frac{12}{35} - \left(30 \cdot \frac{1}{2}\right) + \left(\frac{3}{4}\right)^2 \cdot \left(\frac{2}{3}\right)^3 + 7^0$$

b)
$$\left[\left(\frac{5}{6} - \frac{1}{3} \right)^2 - \frac{1}{5} \right] \div \left\{ \frac{9}{4} - \left[\frac{1}{2} \cdot \left(2 - \frac{1}{3} \right) \right] \right\}$$

	1 ficha vermelha vale 1 ficha azul vale 10 v					
	1 ficha azul vale 10 verdes 1 ficha verde vale 10 pretas					
	1 ficha preta vale 10					
Responda com uma	potência: uma ficha vo	ermelha pode ser troc	ada por quantas dessa	as fichas:		
a) verdesb) pretasc) brancas						
 08. Uma escola tem 364 alunos. Um deles inventou uma fofoca sobre o diretor da escola e, em um minuto, contou a 3 colegas. Pelo jeito, a fofoca era boa porque, no minuto seguinte, cada um desses 3 contou a novidade a 3 colegas que ainda não a conheciam. Assim, cada um que recebia a notícia sempre a transmitia a 3 colegas desinformados, gastando, para isso, um minuto. Responda: a) Quantos alunos ficaram sabendo do boato no terceiro minuto? b) Quantos alunos ficaram sabendo do boato nos três primeiros minutos? c) Em quantos minutos todos os alunos ficaram sabendo do boato? 						
 09. Responda: a) Calculando-se 10⁵ obtém-se um número natural que termina com quantos zeros? b) Dividindo-se 10²⁰ por 10⁸ obtém-se um número natural que termina com quantos zeros? c) Multiplicando-se 10¹⁵ por 10⁻¹⁰ obtém-se um número natural que termina com quantos zeros? d) Dividindo-se 10⁴ por 10⁰ obtém-se um número natural que termina com quantos zeros? e) Multiplicando-se 10²⁵ por 10⁻²⁵ obtém-se um número natural que termina com quantos zeros? f) Calculando-se 10⁻⁴ obtém-se um número decimal com quantas casas decimais? g) Multiplicando-se 10⁻³ por 10⁻³ obtém-se um número decimal com quantas casas decimais? h) Dividindo-se 10⁸ por 10¹³ obtém-se um número decimal com quantas casas decimais? 						
10. (UFCE) Se a = $\left(1 + \frac{2}{3}\right)^{-1}$ e b é tal que ab = 1, então o valor de b será:						
	b) $\frac{3}{5}$			e) $\frac{2}{3}$		
11 (FUVEST) O valo	or de (0,2) ³ + (0,16) ² é	, .				
a) 0,0264	b) 0,0336		d) 0,2568	e) 0,6356		
12. (ACAFE - 92) Simplificando a expressão $\frac{10^{-3} \cdot 10^5 \cdot (0,01)^{-2}}{0,001}$, temos:						
a) 10 ⁹	b) 10 ⁵	c) 10 ³	d) 10 ²	e) 10		
13. Simplificando a expressão $\frac{3^{2n+1}-9^n}{3^{2n}}$, com $n \in \mathbb{N}$, obtemos o valor:						
a) 1	b) 3	c) 2	d) 0	e) 9		
14. (FUVEST) Dividir um número por 0,0125 equivale a multiplicá-lo por:						
a) $\frac{1}{125}$	b) $\frac{1}{8}$	c) 8	d) 12,5	e) 80		

07. Veja o valor das fichas de um certo jogo:

15. (CEFET-BA) O valor da expressão 6 ⁶ + 6 ⁶ é:								
a)	66	b) 6 ⁷	c)	7 ⁶	d)	6 ³⁶	e)	36 ⁶
16.	Se 10 ^{2,5} = a, ent	ão 10 ^{3,5} vale:						

d) 100a

e) 1000a

17. (UFSM) Efetuando-se a divisão de $e^x \div e^{x-2}$ teremos:

a)
$$e^{-2}$$
 b) e^{x^2-2x} c) e^2 d) $e^{\frac{x}{x-2}}$ e) e^x

c) 10a

18. (CEFET-BA) Se $5^{3a} = 64$, o valor de 5^{-a} é:

b) 5a

a)
$$-\frac{1}{4}$$
 b) $\frac{1}{40}$ c) $\frac{1}{120}$ d) $\frac{1}{8}$ e) $\frac{1}{4}$

19. (UFRGS) Considere as desigualdades abaixo.

I)
$$3^{2000} < 2^{3000}$$
 III) $-\frac{1}{3} < \left(-\frac{1}{3}\right)^2$ III) $\frac{2}{3} < \left(-\frac{2}{3}\right)^2$

Quais são verdadeiras?

c) Apenas I e II.

a) a

- a) Apenas I.
 b) Apenas II.
 c) Apenas II e III.
 e) Apenas II e III.
- **20.** (UFSC) Dados a = $(0,01)^5$, b = $(0,1)^{10}$ e c = $(0,001)^7$, calcule o valor numérico da expressão : $9 \cdot \left(\frac{a \cdot b}{a \cdot b}\right)$

21.(VUNESP) Se x =
$$10^{-3}$$
, então $\frac{(0,1) \cdot (0,001) \cdot 10^{-1}}{10 \cdot (0,0001)}$ é igual a:
a) $100x$ b) $10x$ c) x d) $\frac{x}{10}$ e) $\frac{x}{100}$

- 22. Escreva em notação científica os seguintes números:
- a) Atualmente a população do nosso planeta é de aproximadamente 5 300 000 000 habitantes.
- b) Um vírus pequeno mede aproximadamente 0,000015 mm.

23. Escreva na forma decimal

c)
$$3,47.10^3$$

24. Complete com o sinal de > < ou =.

25. Escreva os números a seguir nas potências de 10 solicitadas.

- a) $0.0002 = ____ 10^{-4}$
- b) 20000 = _____ 10³
- c) $3.6.10^{-1} = ____ 10^2$
- d) $50.10^3 =$ 10⁵
- e) 1,05 = _____10²
- f) $9,63 = ____ 10^{-3}$

26. Efetue as operações:

- a) $1,25.10^5 + 4.10^3 =$
- b) $0.25.10^{-1} 1.5.10^{-2} =$
- c) $27.10^3 \times 3.10^{-1} =$
- d) $\frac{4500}{9.10^2}$ =
- e) $\frac{70.10^{-2}}{49.10^2}$ =
- f) $(8.10^{-1})^2 =$
- g) $(5.10^{-2})^{-2}$ =
- h) $\frac{1}{25.10^{-2}} + \frac{1}{125.10^{-4}} =$
- i) $\frac{5.10^3}{60.10^5} + \frac{0.2.10^2}{12.10^4} =$
- 27. Se o volume de uma gota de água é de 5.10-4 litros, quantas gotas existem em um litro de água?
- **28.** Supondo que o próton tenha a forma de um cubo, cuja aresta é 10⁻¹³ cm, calcule seu volume (aresta ao cubo), e sua densidade, sabendo que a massa do próton é 10⁻²⁴ g (lembre-se que densidade de um corpo é obtida dividindo-se sua massa por seu volume).

DESAFIO: Suponha que cada casal de hamsters produza 8 descendentes, 4 de cada sexo. Considerando que este fato seja constante, quantos hamsters teremos após 4 novas gerações se nenhum morrer?

VI - RADICIAÇÃO

Para calcularmos a área de um retângulo, devemos multiplicar as medidas dos seus lados. Sabemos que um quadrado é um retângulo com todos lados iguais, logo a área desse quadrado será a medida do lado multiplicada por ela mesma, isto é, a medida do lado ao quadrado.

Agora, se conhecemos a área de um quadrado, como poderemos calcular a medida do lado deste quadrado?

Note que a segunda situação é o inverso da primeira. Dizemos na matemática, que se calculou uma raiz quadrada.

Logo,

Exemplos: $\sqrt[2]{64} = 8$, $\sqrt[3]{8} = 2$, $\sqrt[4]{81} = 3$

Para extrair uma raiz podemos usar o método da decomposição de um número (radicando) em fatores primos.

Se um ou mais fatores do radicando têm o expoente igual ao índice do radical, esses fatores podem ser extraídos do radicando e escritos como fatores externos (sem o expoente).

Exemplo: calcular a raiz cúbica de 216.($\sqrt[3]{216} = ?$)

Decompondo o radicando 216

Quando o resultado não é um número natural, às vezes não se extrai a raiz. Faz-se apenas uma simplificação.

Exemplo: calcular a raiz quadrada de 44 ($\sqrt{44}$ = ?) Decompondo o radicando 44

44 | 2 | 2 | 2 | 44 =
$$2^2 \cdot 11$$
 | Logo, $\sqrt{44} = \sqrt{2^2 \cdot 11} = \sqrt{2^2} \cdot \sqrt{11} = 2 \cdot \sqrt{11}$ | 11 | 1

LEMBR E-SE:

Quando o índice é **par**, só existe raiz real se o radicando é maior que zero. Quando o índice é **ímpar**, existe raiz real para qualquer radicando.

QUADRADO ou CUBO PERFEITO

Um número é chamado de QUADRADO PERFEITO quando é o produto de dois fatores iguais. São assim chamados porque admitem raiz quadrada exata.

Exemplo: Os números 1, 4, 9, 16, 25, ... são quadrados perfeitos.

Um número é chamado de CUBO PERFEITO quando é o produto de três fatores iguais. São assim chamados porque admitem raiz cúbica perfeita

Exemplo: 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... são cubos perfeitos.

Propriedades da radiciação

- RAIZ DE UM PRODUTO \rightarrow Faz-se o produto das raízes de cada fator.

Exemplos: $\sqrt{16 \cdot 9} = \sqrt{16} \cdot \sqrt{9} = 4 \cdot 3 = 12$

- RAIZ DE UM QUOCIENTE \rightarrow Faz-se o quociente das raízes do numerador e denominador.

Exemplos: $\sqrt[4]{\frac{81}{16}} = \frac{\sqrt[4]{81}}{\sqrt[4]{16}} = \frac{3}{2}$

- RAIZ DE UMA RAIZ → Multiplicam-se os índices.

Exemplo: $\sqrt[4]{\sqrt[2]{16}} = \sqrt[8]{16} = \sqrt[8]{2^4} = \sqrt{2}$

- ADIÇÃO E SUBTRAÇÃO DE RADICAIS

Somar ou subtrair algebricamente dois ou mais radicais só é possível se estes forem semelhantes (mesmo índice e mesmo radicando), e consiste em somar ou subtrair os fatores externos (coeficientes) destes radicais.

Exemplo: $12\sqrt{a} + 5\sqrt{b} + 2\sqrt{a} - 8\sqrt{b} = 14\sqrt{a} - 3\sqrt{b}$

- MULTIPLICAÇÃO E DIVISÃO DE RADICAIS

 $\frac{\text{Para} \quad \text{radicais} \quad \text{de} \quad \text{mesmo} \quad \text{índice}}{\text{produto dos radicandos}} \Rightarrow \quad \text{mantém-se} \quad \text{o} \quad \text{índice} \quad \text{e} \quad \text{faz-se} \quad \text{a} \quad \text{raiz} \quad \text{do}$

Exemplo: $\sqrt[3]{a} \cdot \sqrt[3]{a \cdot b} = \sqrt[3]{a^2 \cdot b}$

 $\underline{\text{Para radicais de indices diferentes}} \Rightarrow \text{calcula-se o m.m.c. dos indices, divide-se o m.m.c. pelo indice de cada radical e multiplica-se pelo expoente do radicando.}$

Exemplo: $\sqrt[3]{a^2} \cdot \sqrt[2]{a} = \sqrt[6]{a^{2\cdot 2} \cdot a^{1\cdot 3}} = \sqrt[6]{a^7} = \sqrt[6]{a^6 \cdot a} = a \cdot \sqrt[6]{a}$

- TRANSFORMAÇÃO DE RAIZ EM POTÊNCIA

A base da potência é igual ao radicando e o expoente é o número fracionário onde o numerador é o expoente do radicando e o denominador é o índice do radical.

Exemplo: $\sqrt[5]{a^3} = a^{3 \div 5} = a^{\frac{3}{5}}$

LEMBRE-SE:

Quando o expoente do radicando for igual ao índice do radical, elimina-se o radical.

Exemplo: $\sqrt[5]{a^5} = a^{\frac{5}{5}} = a^1 = a$

Racionalização de denominadores

Utiliza-se a propriedade fundamental das frações, ou seja, multiplica-se o numerador e o denominador por um mesmo número (fator racionalizante).

Exemplo: $\frac{5}{\sqrt{3}} = \frac{5 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}} = \frac{5\sqrt{3}}{\sqrt{3 \cdot 3}} = \frac{5\sqrt{3}}{\sqrt{3^2}} = \frac{5\sqrt{3}}{3}$

LEMBRE-SE:

Se o denominador é do tipo $\sqrt[n]{a^p}$ o fator racionalizante é do tipo $\sqrt[n]{a^{(n-p)}}$.

Se o denominador é do tipo $\sqrt{a} \pm \sqrt{b}$ o fator racionalizante é do tipo $\sqrt{a} \mp \sqrt{b}$.

EXERCÍCIOS

- 01. Descubra o número que:
- a) Elevado ao quadrado dá 144.
- b) Elevado ao cubo dá 512.
- c) Elevado ao cubo da 729.
- d) Elevado a quinta potência dá 32.
- 02. Determine a raiz quadrada ou simplifique:
- a) √225
- b) √1369
- c) √9216
- d) √5929
- 03. Calcule as raízes abaixo ou simplifique:
- a) $\sqrt[3]{64}$
- b) $\sqrt[4]{2401}$
- c) √2187
- d) \$\sqrt{59049}
- 04. Reduza a uma raiz apenas

a)
$$\sqrt{3} \cdot \sqrt{2} \cdot \sqrt{6} \cdot \sqrt{5} =$$

b)
$$\sqrt[3]{2} \cdot \sqrt[5]{3} =$$

c)
$$\sqrt[5]{2} \cdot \sqrt[3]{2} \cdot \sqrt{2} =$$

d)
$$\sqrt{10} \cdot \sqrt{5} \div \sqrt{2} =$$

e)
$$\sqrt[3]{2} \cdot \sqrt[5]{5} \div \sqrt{3} =$$

- **05.** Se x = $\sqrt{100}$ e y = $\sqrt{4} + \sqrt{9} \sqrt{1}$, então:
- a) x = y
- b) x > y
- c) x < y
- d) x = 2y
- e) y = 2x

- **06.** Calcule o valor da expressão $\sqrt{5^2 4^2}$.
- **07.** Calcule $8^{\frac{2}{3}} + 9^{0.5}$.
- 7
- **08.** (FMJ-SP) Calculando 4^{-0,666...} obtemos:
- a) $\frac{\sqrt[3]{2}}{4}$
- b) $\frac{\sqrt[3]{2}}{2}$
- c) $\sqrt[3]{4}$
- d) $\frac{\sqrt[3]{4}}{2}$
- e) $\frac{\sqrt[3]{4}}{4}$

- **09.** Se 2 + \sqrt{n} = 5, qual é o valor de n?
- **10.** Um número natural x que satisfaz a desigualdade $\sqrt{49} < x < \sqrt{100}$ é:
- a) 6
- b) 8
- c) 10
- d) 50
- e) 75

11. (PUC-SP) Simplificando	$\sqrt{\frac{75}{12}}$	obtemos
· · · (· · · · ·) · · · · · · · · · ·	V 12	0.01001

a)
$$\frac{5}{2}$$

b)
$$\frac{5}{3}$$

c)
$$\sqrt{\frac{5}{3}}$$

d)
$$\frac{2}{5}$$

e)
$$\sqrt{\frac{5}{2}}$$

15. A expressão
$$3\sqrt{75}$$
 - 2 $\sqrt{48}$ - $\sqrt{27}$ + 3 $\sqrt{12}$ é igual a:

a)
$$10\sqrt{3}$$

b)
$$\sqrt{15}$$

c) 4
$$\sqrt{3}$$

d)
$$6\sqrt{3}$$

e)
$$12\sqrt{3}$$

17. (UNIP-SP) Se
$$\begin{cases} x = \sqrt{2} \\ y = \sqrt{98} - \sqrt{32} - \sqrt{8} \end{cases}$$
 então:

a)
$$y = 7x$$

b)
$$y = 5x$$

c)
$$y = 3x$$

d)
$$y = x$$

e)
$$x = 3y$$

12. (UFU-MG) O número real : A =
$$\frac{\left(\frac{2}{3}\right)^{-2} - \left(-\frac{1}{2}\right)^{-1} + \left(-\frac{1}{4}\right)^{-2}}{\left(\frac{4}{9}\right)^{-1/2} - \left(-\frac{2}{5}\right)^{-1} + \left(\frac{3}{2}\right)^{-1}}$$

a)
$$\frac{140}{3}$$

b)
$$\frac{81}{4}$$

c)
$$\frac{243}{56}$$

e)
$$\frac{1}{35}$$

13. (UFJF-MG) O valor da expressão
$$\{(-2)^3 + [(-2)^2 - 3 + (-3) \cdot \sqrt{49}] : [\sqrt{256} : (-4)]\} : (-3) \text{ \'e igual a:}$$

b)
$$\frac{13}{2}$$
 c) -1

d)
$$-\frac{3}{2}$$

14. (ACAFE - 92) Calculando o valor numérico da expressão
$$\sqrt{a + \left(2a - \sqrt{3a^2 - b}\right)}$$
, sendo $a = 8$ 6 $b = 128$, encontramos:

18. (ALFENAS-MG) Calculando
$$a \cdot \sqrt{a^{-1} \sqrt{a^{-1}} \sqrt{a^{-1}}}$$
 obtém-se:

a)
$$\sqrt[6]{\frac{1}{a}}$$

e)
$$\sqrt{a^{-1}}$$

$$01. \ \sqrt{137^2 - 26^2} = 137 - 26$$

02.
$$\frac{2(2+\sqrt{2})-2(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})} = 2\sqrt{2}$$

04.
$$\sqrt{3} + \sqrt{8} = \sqrt{11}$$

08.
$$\sqrt[3]{\sqrt{64}} = 2$$

16.
$$\sqrt[3]{1} - \sqrt[3]{-125} = 6$$

32.
$$\sqrt[3]{2} \cdot \sqrt[2]{5} = \sqrt[6]{10}$$

64.
$$625^{-0.5} = \frac{1}{25}$$

20.(Fameca) Simplificando-se o radical $\sqrt{\frac{3^{13}+3^{12}}{2^5\cdot 2^3}}$, obtém-se:

- a) $\frac{243}{2}$
- b) $\frac{81}{2}$
- c) 729
- d) 243
- e) $\frac{729}{2}$

21. (FUVEST-adaptada) Se X = $\sqrt[3]{\frac{2^{28} + 2^{30}}{10}}$, X é igual a:

- a) $\frac{2^8}{5}$
- b) $\frac{2^9}{5}$
- c) 28
- d) 2⁹
- e) $\left(\frac{2^{58}}{10}\right)^{\frac{1}{3}}$

22. (MACK-SP) Se A = $\sqrt{\sqrt{5}-1} \cdot \sqrt{1+\sqrt{5}}$, então o valor de \sqrt{A} é:

a) 1

- b) $\sqrt{2}$
- c) 2
- d) $\sqrt{5}$
- e) 5

23. Racionalize o denominador das seguintes frações:

- a) $\frac{1}{\sqrt{3}}$
- b) $\frac{4}{5\sqrt{5}}$
- c) $\frac{\sqrt{3}}{2\sqrt{2}}$
- d) $\frac{5}{\sqrt[4]{3}}$
- e) $\frac{2}{2+\sqrt{5}}$
- $f) \qquad \frac{2}{\sqrt{12} 3}$
- $g) \quad \frac{\sqrt{3}}{12 2\sqrt{3}}$
- h) $\frac{1}{\sqrt{3}-\sqrt{5}}$
- $i) \qquad \frac{2-\sqrt{2}}{\sqrt{2}-1}$
- $j) \qquad \frac{\sqrt{7}-1}{\sqrt{7}+1}$

24.(PUC-MG) Se a = $\frac{4\sqrt{3}}{\sqrt{2}}$ e b = $\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}$ então a – b é igual a:

- a) $\sqrt{6} 3$
- b) $\sqrt{6} + 3$
- c) $\sqrt{3} \sqrt{2}$
- d) $\sqrt{3} + \sqrt{2}$

e)
$$\sqrt{2}(\sqrt{3}-\sqrt{2})$$

- **25.** (FUVEST) Qual o valor da expressão $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{3}-1}{\sqrt{3}+1}$?
- a) $\sqrt{3}$
- b) 4
- d) 2
- e) $\sqrt{2}$

- **26.** (UEL-PR) O valor da expressão $\frac{1}{\sqrt{2}} \frac{1}{1+\sqrt{2}} \frac{1}{2+\sqrt{2}}$ é:
- a) $-\sqrt{2}$

- b) $-\frac{1}{2}$ c) 0 d) $\frac{\sqrt{2}}{2}$
- e) 2

DESAFIO

- 1. Qual é o menor número natural que devemos multiplicar por 56 para obter um quadrado perfeito?
- 2. Ao abrir um livro, um antropólogo encontrou a seguinte mensagem:
- "O ano em que nasceu era um cubo perfeito.
- O ano em que morreu era um quadrado perfeito.
- O quanto viveu também era um quadrado perfeito."

Sabendo que o enigma refere-se ao século XVIII, quais são as datas do enigma?

PARA REFLETIR

" Querendo, mentalizamos; agimos; agindo, atraímos; e atraindo, realizamos."