Themen der Arbeit am 12.12.2024

- Kombinatorik (Übungen S. 72-73; TEST S. 98)
 - Zufallsversuche mit/ohne Reihenfolge und mit/ohne Zurücklegen → die drei Formeln kennen (Binomialkoeffizient)
 - Wahrscheinlichkeiten damit wie z.B. beim Lottomodell berechnen
- Bedingte Wahrscheinlichkeit (Übungen S. 76-77, S. 81, S. 84, S. 92-93; TEST S. 98)
 - Baumdiagramme / Vier-Felder-Tafeln aufstellen und damit gesuchte Wahrscheinlichkeiten ausrechen, entweder über Wahrscheinlichkeiten oder absolute Häufigkeiten (z.B. mit Pfadregeln, Satz der totalen WK oder Satz von Bayes)
 - Ereignisse auf stochastische Unabhängigkeit prüfen → Bedeutung bedingter Ereignisse erklären
- Wahrscheinlichkeitsverteilungen (Übungen S. 101ff.)
 - Wahrscheinlichkeitsverteilungen für Zufallsvariablen aufstellen
 - Erwartungswert, Varianz und Standardabweichung einer Zufallsvariable berechnen
 - Glücksspiel auf Fairness überprüfen und ggf. anpassen

6) Zufallsgrößen und Wahrscheinlichkeitsverteilungen

6.1) Zufallsgrößen

 Bei Glücksspielen kann man bekanntlich Gewinne machen, aber auch Verluste. Dies hängt natürlich vom Zufall ab, daher kann man auch den Gewinn bei deinem Glücksspiel als eine Zufallsgröße betrachten.

Beispiel: "Einserwurf"

Beim Würfelspiel "Einserwurf" wird mit zwei Würfeln gleichzeitig geworfen. Der Einsatz beträgt 1 €. Man erhält 5 € Auszahlung bei zwei Einsen und 3 € bei einer Eins.

Die Größe X sei der Gewinn/Verlust in diesem Spiel.

- a) Welche Werte x_i kann X annehmen. Welche Würfelergebnisse gehören zu diesen Werten?
- b) Bestimmen Sie die Wahrscheinlichkeiten der Werte x_i von X. Zeichnen Sie ein Diagramm.
- c) Ist das Spiel fair?

6.1.1) Beispiel

Vervollständigen Sie die "Gewinntabelle".

Einsatz:1€

Auszahlung: Zwei Einsen: 5€
Eine Eins: 3€

a) Welche Werte x_i kann X annehmen. Welche Würfelergebnisse gehören zu diesen Werten?

Augen- zahlen	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Die **Zufallsgröße Gewinn** wird mit **S** abgekürzt, **x**_i steht für die **möglichen Werte des Gewinns**.

Gewinn = Auszahlung - Einsatz

6 1 1) Baichial

b) Bestimmen Sie die Wahrscheinlichkeiten der Werte x_i von X. Zeichnen Sie ein Diagramm.

Die Wahrscheinlichkeitsverteilung der Zufallsgröße X entspricht demnach:

Χi	-1	2	4
P(X=xi)	<u>25</u> 36	<u>_/10</u> 36	36

Diese Verteilung lässt sich graphisch durch ein Verteilungsdiagramm, auch Histogramm genannt, darstellen:

6.1.2) Mathematische Definition

Definition III.1: Die Wahrscheinlichkeitsverteilung einer Zufallsgröße

- Eine Größe X, die jedem Ergebnis eines Zufallsversuchs genau eine reelle Zahl zuordnet, heißt Zufallsgröße oder Zufallsvariable.
 - Im Beispiel oben ordnet die Zufallsgröße X (Gewinn) jedem Ergebnis den zugehörigen Gewinn zu, also eine der drei Zahlen −1, 2 und 4.
- Mit X = x_i wird das Ereignis bezeichnet, dessen Ergebnisse alle dazu führen, dass die Zufallsgröße X den Wert x_i annimmt.
 Im Beispiel oben gibt es drei solcher Ereignisse: X = −1, X = 2 und X = 4.
- Ordnet man jedem möglichen Wert x_i, den die Zufallsgröße X annehmen kann, die Wahrscheinlichkeit P(X = x_i) zu, so erhält man eine Zuordnungstabelle, die man als Wahrscheinlichkeitsverteilung von X bezeichnet.

Ihre graphische Darstellung heißt *Histogramm* oder Verteilungsdiagramm.

c) Ist das Spiel fair?

6.1.1) Beispiel

Annahme: man spielt 36-mal

Bei 36 Spielen:

4€: 1mal = 4€

2€: 10 mal = 20 €

-1€: 25 mal = - 25€

-1€ in 36 Spielen

Bei einem Spiel also -1€:36 ≈ -2,8 ct

-> Das Spiel ist für den Spielenden nur wenig unfair.

 Alternativ über die einzelnen Wahrscheinlichkeiten P(X=x_i) der Werte x_i den Erwartungswert berechnen:

$$E(X) = x_1 \cdot P(X = x_1) + x_2 \cdot P(X = x_2) + x_3 \cdot P(X = x_3)$$

$$E(X) = 4 \cdot \frac{1}{36} + 2 \cdot \frac{10}{36} + (-1) \cdot \frac{25}{36} = -\frac{1}{36}$$