

PSO201/PHY204: Assignment 2 Jan-Apr 2025

- 1) Consider the wavefunction $\psi(x) = N$ for $-\frac{a}{2} \le x \le \frac{a}{2}$ and zero otherwise. This is just a step function centred on the origin.
 - a) Determine the normalization constant N.
 - b) Calculate $\langle x \rangle$ and $\langle x^2 \rangle$ and the uncertainty Δx .
 - c) Calculate $\langle p \rangle$ and $\langle p^2 \rangle$ and the uncertainty Δp .
 - d) Interpret your result. The wavefunction is normalisable and yet there is a problem!
- 2) Prove the following statements regarding energy eigenfunctions:
 - a) We can always choose the energy eigenstates $\varphi_E(x)$ we work with to be purely real functions (unlike the physical wavefunction $\psi(x,t)$, which is necessarily complex).
 - b) If V(x) is an even function [i.e. V(-x) = V(x)], then the energy eigenfunctions $\varphi_E(x)$ can always be taken to be either even or odd.
 - c) The lowest energy eigenvalue, E_0 , corresponding to a normalizable eigenfunction is strictly greater then the minimum value V_{min} of the potential, V(x).
- 3) Consider a particle of mass m in one dimension due to the short-range potential $V = -V_0 \delta(x)$.
 - a) Write down the boundary conditions on $\psi(x)$ and $\frac{d\psi}{dx}$ with justifications.
 - b) How many bound states are possible?
 - c) Obtain the binding energy of the particle.
 - d) Find the corresponding wave function.
 - e) Find the value of x_0 such that the probability of finding the particle with $|x| < x_0$ is exactly equal to 1/2.
- 4) Consider the following yet to be normalized wavefunction for a particle moving in one dimension: $\psi(x) = Ne^{-(x-x_0)^2/a^2}e^{ik_0x}$.
 - a) Determine the normalization constant N up to an overall phase.
 - b) Sketch the real part of the wavefunction and the corresponding probability distribution.
 - c) Compute the Fourier transform $\phi(k)$. Sketch the function and corresponding probability distribution.
 - d) Where is the particle most likely be found? What is the most likely momentum?
 - e) Calculate the expectation values $\langle x \rangle$ and $\langle p \rangle$ and the uncertainties Δx and Δp in this state. Do these values satisfy the uncertainty principle? If so, how efficiently? Comment on what this says about wavefunctions of this form.
 - f) What happens to the shape of the wavefunction as $a \to 0$? What happens to $\phi(k)$? What happens to both in the limit $a \to \infty$? How do Δx and Δp behave in these limits? Does this make sense?
- 5) A particle of mass m moves in one dimension under the influence of a potential V(x). Suppose it is in an energy eigenstate $\psi(x) = (\alpha^2/\pi)^{1/4} \exp(-\alpha^2 x^2/2)$ with energy $E = \frac{\hbar^2 \alpha^2}{2m}$
 - a) Find the mean position of the particle.
 - b) Find the mean momentum of the particle.
 - c) Find V(x)
 - d) Find the probability that the particle's momentum is between p and p + dp.
- 6) A wave packet at t=0 is given by, $\psi(x,0)=C\exp\left(-\frac{x^2}{4\alpha^2}+ik_0x\right)$. Assume the relation $\omega(k)=\frac{\hbar k^2}{2m}$.
 - a) Find the wave function in k-space.
 - b) Calculate $\psi(x,t)$.

- c) Plot $|\psi(x,t)|^2$ as a function of x for different values of $t_1 < t_2 < t_3$.
- 7) Consider a wave packet localized in k-space about k_0 with $\Phi(k) = e^{-\alpha(k-k_0)^2}$, α being a constant. Discuss the motion of the wave packet in a non-dispersive and a dispersive medium. Calculate $|\psi(x,t)|^2$ in each case.
- 8) A particle of mass m moves in a one-dimensional infinite square well of length L (V=0 for 0 < x < L. At a certain instant, say t=0, the wave function of this particle is given by $\psi = Ax(1-x)$, for 0 < x < L and zero elsewhere. Write down an expression for $\psi(x, t > 0)$ as a series along with expressions for the coefficients in the series.
- 9) Consider the one dimensional motion of a particle of mass m in a potential, $V = \infty$ for $x \le 0$; V = 0 for 0 < x < L, and $V = V_0$ for $x \ge L$.
 - a) Find the condition that the bound state energies are obtained $(E < V_0)$.
 - b) What is the minimum value of V_0 so that at least one bound state is obtained.
 - c) Sketch the ground state wave function using physical reasoning.
- 10) A particle of mass m undergoes one dimensional motion in the potential $V = -V_0[\delta(x-a) + \delta(x+a)]$ where $V_0 > 0$ is a constant. Find the ground state wavefunction. Sketch the ground state wave function primarily using physical reasoning as well.