Business Case: Target SQL

1 Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1.1. Get number of rows in the data

1.2. Number of null or missing values in a column

1.3. Data type of columns in a table

1.4. Get the time period for which the data is given

1.5. Number of cities in our dataset

1.6. Number of states in our dataset

- 2. In-depth Exploration:
- **2.1.** How many orders do we have for each order status?

2.2. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario?

```
select order_purchase_year,
   sum(price) from
2
3
4
      select
5
     EXTRACT (YEAR FROM o.order_purchase_timestamp) as order_purchase_year,
6
     oi.price as price
     from 'sql-trail-1.target_dataset.order_items' oi
    inner join 'sql-trail-1.target_dataset.orders' o on oi.order_id=o.order_id
9
10 group by order_purchase_year
Query results
JOB INFORMATION
                      RESULTS
                                     JSON
                                                EXECUTION DETAILS
    order_purchase_year
    2018
                        7386050.8000076534
     2017
                        6155806.9800049355
     2016
                        49785.920000000326
```

2.3 On what day of week brazilians customers tend to do online purchasing?

2.4. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Dawn-4-6

Morning- 6-12

Afternoon - 12-19

Night-19-4

2.5.1 Through order_purchase_timestamp in "orders" dataset extract order_purchase_year

Results per page:

2.5.3 order_purchase_date

2.5.4 order_purchase_day

2.5.5 order_purchase_dayofweek

2.5.6 order_purchase_dayofweek_name

2.5.7 order_purchase_hour

3. Evolution of E-commerce orders in the Brazil region:

3.1. Get month on month orders by region

3.2. Total of customer orders by state

```
1  select c.customer_state, count(o.customer_id)
2  from 'sql-trail-1.target_dataset.orders' o
3  inner join 'sql-trail-1.target_dataset.customers' c
4  on o.customer_id=c.customer_id
5  group by c.customer_state
```

Query results

JOE	INFORMATION	RESULTS	JSON	EXECUTION DETAILS
ow	customer_state	f0_		
	RJ	12852		
	RS	5466		
	SP	41746		
	DF	2140		
	PR	5045		
	MT	907		
	MA	747		
	AL	413		
	MG	11635		
0	PE	1652		

3.3. Top 10 brazilian cities most no. of orders

```
1 select c.customer_city,count(c.customer_id)
2 from _sql-trail-1.target_dataset.orders' o
3 inner join _sql-trail-1.target_dataset.customers' c
4 on o.customer_id=c.customer_id
5 group by c.customer_city
6 order by count(distinct c.customer_id) desc
7 limit 10
```

Query results

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	customer_city	f0_		
1	sao paulo	15540		
2	rio de janeiro	6882		
3	belo horizonte	2773		
4	brasilia	2131		
5	curitiba	1521		
6	campinas	1444		
7	porto alegre	1379		
8	salvador	1245		
9	guarulhos	1189		
10	sao bernardo do camp	0 938		

3.4. How are customers distributed in Brazil

3.5 City wise number of unique customers

```
1 select c.customer_city, count(distinct c.customer_id)
2 from <u>`sql-trail-1.target_dataset.orders`</u> o
3 inner join <u>`sql-trail-1.target_dataset.customers`</u> c
4 on o.customer_id=c.customer_id
5 group by c.customer_city
```

Query results

JOB INFORMATION		RESULTS	JSON	EXECUTION DETAILS
Row	customer_city	f0_		
1	rio de janeiro	6882		
2	sao leopoldo	105		
3	general salgado	7		
4	brasilia	2131		
5	paranavai	47		
6	cuiaba	248		
7	sao luis	353		
8	maceio	247		
9	hortolandia	145		

4. Impact on Economy: Analyze the money movemented by e-commerce by looking at order prices, freight and others.

4.1 Step 1: Using CTE

- 1. "order_items" + "order" joined on order id where order_purchase timestamp is already divided into month & year
- 2. Group data by year and month, aggregation count(order_id), sum(price), sum(freight_value)
- 3. Create new columns:

```
price_per_order = sum(price) / count(order_id)
freight_per_order= sum(freight_value) / count(order_id)
```


4.2 Answer the following questions:

4.2.1. Total amount sold in 2017 between Jan to August

4.2.2. Total amount sold in 2018 between Jan to august

4.2.3. % increase from 2017 to 2018

- 4.3: Join (orders+order_items) table from previous step with "customers" table on Customer_id and find:
- 4.3.1. Mean & Sum of price by customer state

4.3.2. Mean & Sum of freight value by customer state

- 5. Analysis on sales, freight and delivery time
- 5.1. Calculating days between purchasing, delivering and estimated delivery

5.2. Create columns:

time_to_delivery = order_purchase_timestamp-order_delivered_customer_date diff_estimated_delivery = order_estimated_delivery_dateorder_delivered_customer_date

5. 3. Grouping data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
With order item blus orders AS
   select
   o.customer_id as c_id,
   EXTRACT (DATE FROM o.order_purchase_timestamp) as order_purchase_timestamp,
  EXTRACT (DATE FROM o.order_delivered_customer_date) as order_delivered_customer_date, EXTRACT (DATE FROM o.order_estimated_delivery_date) as order_estimated_delivery_date,
   EXTRACT (DATE FROM o.order_purchase_timestamp) as purchase_date,
   o.order_id as order_id,oi.price as price,oi.freight_value as freight_value,o.customer_id as customer_id,
   from 'sql-trail-1.target_dataset.order_items' gi
inner join 'sql-trail-1.target_dataset.orders' o on oi.order_id=o.order_id
 AVG(freight_value) as mean_freight_value,
 AVG(time_to_delivery) as mean_tod,
 AVG(diff_estimated_delivery) as mean_ded
  from (
   select c.customer_state as customer_state,op.freight_value as freight_value,
     DATE_DIFF(op.order_purchase_timestamp,op.order_delivered_customer_date,DAY) AS time_to_delivery,
     DATE_DIFF(op.order_estimated_delivery_date,op.order_delivered_customer_date,DAY) as diff_estimated_delivery,
    from order_item_plus_orders op
inner join target_dataset.customers c on op.c_id=c.customer_id
 ) group by customer_state
ery results
INFORMATION
                     RESULTS
                                    JSON
                                             EXECUTION DETAILS
 mean_freight_value mean_tod
                                              mean_ded
 28.1662843601896
                       -17.907425265188039 14.571841851494709
  38.25700242718446
                       -21.589999999999982
                                             9.9062499999999999
 35.843671171171152 -24.447306791569098 8.73536299765808
  15.147275390419248 -8.66225265379071
                                             11 207910772344571
 20.630166806306541 -11.920724626461224 13.342649221955588
```

5. 4. Sort the data to get the following:

5. 4 .a. Top 5 states with highest/lowest average freight value

5. 4.b. Top 5 states with highest/lowest average time to delivery

5. 4. c. Top 5 states where delivery is really fast/ not so fast compared to estimated date

- 6. Payment type analysis: Join "payments" dataset with the existing data on order_id
- 6.1. Count of orders for different payment types

```
1 select p.payment_type,count(o.order_id)
  2 from _isql-trail-1.target_dataset.paymentsi p
  3 inner join 'sql-trail-1.target_dataset.orders' o
  4 on p.order_id=o.order_id
  5 group by p.payment_type
 Query results
                         RESULTS
                                       JSON
                                                   EXECUTION DETAILS
 JOB INFORMATION
Row
       payment_type
                     f0_
1
                     76795
       credit_card
2
                     5775
3
      not_defined
                     3
                     1529
4
       debit_card
5
       UPI
                     19784
```

6.2. Distribution of payment installments and count of orders

6.3. Count of orders for different payment types Month over Month

```
select pur_month,pur_year,payment_type,
count(distinct order_id) as order_count

from

select extract (month from o.order_purchase_timestamp) as pur_month,|
extract (year from o.order_purchase_timestamp) as pur_year,
o.order_id as order_id,p.payment_type as payment_type,p.payment_value as payment_value
from _sql-trail-1.target_dataset.orders_o
inner_join _sql-trail-1.target_dataset.payments_p
on o.order_id=p.order_id

group by pur_month,pur_year,payment_type
order by pur_month,pur_year
```

Query results

JOB	INFORMATION	N RE	SULTS	JSON	EXECUTION DETAILS	
w	pur_month	pur_year	payment_typ	e order_co	punt	
	1	2017	credit_card	582		
	1	2017	UPI	197		
	1	2017	voucher	33		
	1	2017	debit_card	9		
	1	2018	credit_card	5511		
	1	2018	UPI	1518		
	1	2018	voucher	304		