XLIX Olimpíada Internacional e XXIII Olimpíada Iberoamericana Terceiro Teste de Seleção 26 de abril de 2008

▶PROBLEMA 1

Seja AB uma corda, não um diâmetro, de uma circunferência de centro O. O menor arco AB é dividido em três arcos congruentes AC, CD, DB. A corda AB também é dividida em três segmentos congruentes AC', C'D', D'B. Seja P o ponto de interseção entre as retas CC' e DD'. Prove que $\angle APB = \frac{1}{3}\angle AOB$.

Solução

Este é um trabalho para a Geometria Analítica e Trigonometria! Suponha sem perdas que o raio da circunferência é 3. Considere o sistema de coordenadas em que a origem é O e a corda AB é paralela ao eixo y. Sendo $C = (3\cos\alpha, 3\sin\alpha)$, temos $A = (3\cos3\alpha, 3\sin3\alpha)$ e $C' = (3\cos3\alpha, \sin3\alpha)$. Além disso, o eixo x é o eixo de simetria da figura, de modo que P = (p,0) para algum p real. Note que $\angle AOB = 6\alpha$, de modo que queremos provar que o coeficiente angular de AP é $\angle APB/2 = \alpha$.

Esse cálculo é bem rotineiro: primeiro, determinamos P (ou seja, p) e logo depois calculamos o coeficiente angular de PA, provando que este é igual a tg α .

Vamos começar as contas: o coeficiente angular de CC' é $\frac{3 \sin \alpha - \sin 3\alpha}{3 \cos \alpha - 3 \cos 3\alpha}$. Assim, como P pertence à reta CC',

$$\frac{ \sin 3\alpha - 0}{3\cos 3\alpha - p} = \frac{3 \sin \alpha - \sin 3\alpha}{3\cos \alpha - 3\cos 3\alpha}$$

Além disso, queremos calcular o coeficiente angular de AP, que é

$$m = \frac{3 \sin 3\alpha - 0}{3 \cos 3\alpha - p} = 3 \cdot \frac{\sin 3\alpha - 0}{3 \cos 3\alpha - p} = \frac{9 \sin \alpha - 3 \sin 3\alpha}{3 \cos \alpha - 3 \cos 3\alpha}$$

Lembrando que sen $3\alpha = \operatorname{sen}(\alpha + 2\alpha) = \operatorname{sen}\alpha \cos 2\alpha + \operatorname{sen}2\alpha \cos \alpha = \operatorname{sen}\alpha(\cos 2\alpha + 2\cos^2\alpha) = \operatorname{sen}\alpha(4\cos^2\alpha - 1)$ e $\cos 3\alpha = \cos(\alpha + 2\alpha) = \cos\alpha\cos 2\alpha - \sin\alpha\sin 2\alpha = \cos\alpha(\cos 2\alpha - 2\sin^2\alpha) = \cos\alpha(4\cos^2\alpha - 3)$,

$$m = \frac{\operatorname{sen} \alpha(9 - 12 \cos^2 \alpha + 3)}{\cos \alpha(3 - 12 \cos^2 \alpha + 9)} = \frac{\operatorname{sen} \alpha}{\cos \alpha} = \operatorname{tg} \alpha,$$

que é o que queríamos demonstrar.

Resumindo:

- Esse é um problema típico em que fazer contas leva à vitória: temos uma só circunferência; queremos provar uma relação entre ângulos; é tudo fácil de se calcular com geometria analítica. Complexos também caem bem.
- Mesmo assim, é bastante importante planejar o que deve ser feito para resolver o problema. Faça sempre um plano de resolução!
- Até a execução merece atenção: só faça as contas quando for estritamente necessário!
- Na verdade, não é muito difícil notar geometricamente que o coeficiente angular de AP é o triplo do de CC': basta notar que a ordenada de A é igual ao triplo da de C'. Isso facilita muito as contas, então vale a pena observar a figura enquanto se faz as contas também (além de facilitar as contas, ajudar a conferir também).
- Você conhece alguma solução sintética? Em caso positivo, conte-nos!

▶PROBLEMA 2

Seja n um inteiro positivo. Uma seqüência (a, b, c), com $a, b, c \in \{1, 2, ..., 2n\}$ é dita zoada se seu menor termo é ímpar e se apenas esse menor termo, ou nenhum termo, se repete. Por exemplo, as seqüências (4, 5, 3) e (3, 8, 3) são zoadas, mas (3, 2, 7) e (3, 8, 8) não o são. Determine o número de seqüências zoadas em função de n.

Solução

Contaremos o número de seqüências zoadas cujo menor termo é 2n-2k+1, $k=1,2,\ldots,n$ e somaremos o total. Primeiro, há a seqüência zoada (2n-2k+1,2n-2k+1,2n-2k+1). As que têm duas ocorrências de 2n-2k+1 são as 3 permutações das seqüências da forma (2n-2k+1,2n-2k+1,a), com $2n-2k+2\leqslant a\leqslant 2n$, e são no total de $3\cdot(2k-1)$. As que têm somente uma ocorrência de 2n-2k+1 são as 3!=6 permutações das seqüências da forma (2n-2k+1,a,b) com $2n-2k+2\leqslant a\leqslant b\leqslant 2n$, que são $6\binom{2k-1}{2}=6(2k-1)(k-1)$.

Assim, há $1 + 3(2k - 1) + 6(2k - 1)(k - 1) = 3(2k - 1)(1 + 2k - 2) + 1 = 3(2k - 1)^2 + 1 = 12k^2 - 12k + 4 = 4(3k^2 - 3k + 1) = 4(k^3 - (k - 1)^3)$ seqüências zoadas com 2n - 2k + 1 como menor termo.

Com isso, o total de seqüências zoadas é

$$\sum_{k=1}^{n} 4(k^3 - (k-1)^3) = 4((1^3 - 0^3) + (2^3 - 1^3) + (3^3 - 2^3) + \dots + (n^3 - (n-1)^3)) = 4n^3$$

Resumindo:

- Um problema de contagem! Para resolvê-lo, nada é mais importante do que organização.
- Contagens podem ser feitas basicamente de quatro maneiras: (a) contando diretamente, (b) utilizando recursões, (c) utilizando funções geratrizes, (d) utilizando bijeções.
- O primeiro modo, que é o mais simples, já dá conta do recado. Muitas vezes caímos em somatórios, e nesses casos, nos resta torcer para que ele seja fácil de calcular.
- Devemos algumas explicações nos nossos procedimentos, mesmo assim. Primeiro: por que o menor termo é 2n-2k+1 e não, 2k-1?
- Essa pergunta fica mais fácil de responder se você estudar um caso pequeno, digamos n = 4. A tendência que temos quando calculamos somatórios é começarmos do menor termo e aumentarmos aos poucos; e olhando esse caso (e, em retrospecto, pensando na natureza do problema) vemos que há menos seqüências zoadas com menor termo grande do que com menor termo pequeno.
- Outro aspecto peculiar na nossa solução é termos chegado em 3k² − 3k + 1 = k³ − (k − 1)³. Há duas observações nesse sentido: a primeira é que poderíamos calcular as somas das quantidades de seqüências de cada tipo (tudo repetido, uma repetição, sem repetição). Optamos por somar por partes para ver se a conta sai mais "bonitinha". E a segunda é ficar atento a possíveis oportunidades de "telescopar" uma soma. Poderíamos muito bem ter utilizado as fórmulas ∑ⁿ_{k=1} k = n(n + 1)/2 e ∑ⁿ_{k=1} k² = n(n + 1)/6, mas somas telescópicas são mais rápidas de calcular.
- Se você tiver uma bijeção que resolva o problema, conte-nos!

▶ PROBLEMA 3

Se a, b, c e d são números reais positivos tais que a + b + c + d = 2, prove que

$$\frac{a^2}{(a^2+1)^2} + \frac{b^2}{(b^2+1)^2} + \frac{c^2}{(c^2+1)^2} + \frac{d^2}{(d^2+1)^2} \leqslant \frac{16}{25}$$

Solução

Seja $f(x) = \frac{x^2}{(x^2+1)^2}$. Note que, sendo $f(x) = \frac{1}{(x+\frac{1}{x})^2} = f\left(\frac{1}{x}\right)$ e f crescente em [0,1], podemos supor, sem perda de generalidade, que $a,b,c,d\leqslant 1$. De fato, se por exemplo a>1 trocamos a por $\frac{1}{a}< a$, e $\frac{1}{a}+b+c+d<2$, de modo que $f(a)+f(b)+f(c)+f(d)=f\left(\frac{1}{a}\right)+f(b)+f(c)+f(d)< f(x)+f(y)+f(z)+f(w)$, em que substituímos a,b,c,d por x,y,z,w tais que $1\geqslant x\geqslant \min(a,\frac{1}{a}),\ 1\geqslant y\geqslant \min(b,\frac{1}{b}),\ 1\geqslant z\geqslant \min(c,\frac{1}{c}),\ w\geqslant \min(d,\frac{1}{d})\ e\ x+y+z+w=2$. Para cada x_0 considere a reta tangente ao gráfico de f em $(x_0,f(x_0))$, ou seja, $g(x)=f(x_0)+f'(x_0)(x-x_0)$. Vejamos quando $f(x)\leqslant g(x)$. Notando que $x=x_0$ é raiz dupla de f(x)-g(x), temos

$$\begin{split} f(x) - g(x) &= \frac{x^2}{(x^2 + 1)^2} - \frac{x_0^2}{(x_0^2 + 1)^2} - \frac{2x_0(x_0^2 + 1) - x_0^2 \cdot 2 \cdot 2x_0}{(x_0^2 + 1)^3} (x - x_0) \\ &= \frac{(x + x_0)(xx_0 + 1)(x - x_0)(-xx_0 + 1)}{(x^2 + 1)^2(x_0^2 + 1)^2} - \frac{2x_0 - 2x_0^3}{(x_0^2 + 1)^3} (x - x_0) \\ &= \frac{x - x_0}{(x^2 + 1)^2(x_0^2 + 1)^3} \left((x + x_0)(xx_0 + 1)(-xx_0 + 1)(x_0^2 + 1) - 2x_0(1 - x_0^2)(x^2 + 1)^2 \right) \\ &= \frac{(x - x_0)^2}{(x^2 + 1)^2(x_0^2 + 1)^3} \left((1 - x^2x_0^2)(x_0^2 + 1) + 2x_0(x + x_0)(x_0^2x^2 - x^2 - 2) \right) \\ &= \frac{(x - x_0)^2}{(x^2 + 1)^2(x_0^2 + 1)^3} \left(-2x_0(1 - x_0^2)x^3 - x_0^2(3 - x_0^2)x^2 - 4x_0x + 1 - 3x_0^2 \right) \end{split}$$

O sinal de f(x) - g(x) é o mesmo que o sinal de

$$h(x) = -2x_0(1 - x_0^2)x^3 - x_0^2(3 - x_0^2)x^2 - 4x_0x + 1 - 3x_0^2$$

Como estamos trabalhando somente com $x_0 \in (0, 1]$, todos os coeficientes de h, com a possível exceção de $1 - 3x_0^2$, são negativos.

O caso de igualdade no problema é $a=b=c=d=\frac{1}{2}$, então $x_0=\frac{1}{2}$ é uma escolha natural. Nesse caso, $g(x)=\frac{4}{25}+\frac{48}{125}\left(x-\frac{1}{2}\right)$ e $h(x)=-\frac{3}{4}x^3-\frac{11}{16}x^2-2x+\frac{1}{4}$. Note que $h(x)\leqslant 0$ para $x\geqslant \frac{1}{8}$. Então, se $a,b,c,d\geqslant \frac{1}{8}$ então

$$f(a) + f(b) + f(c) + f(d) \leqslant g(a) + g(b) + g(c) + g(d) = 4 \cdot \frac{4}{25} + \frac{48}{25} \left(a + b + c + d - 4 \cdot \frac{1}{2} \right) = \frac{16}{25}$$

Resta então os casos em que um ou mais números são menores do que $\frac{1}{8}$. Note que, como a+b+c+d=2 e $a,b,c,d\leqslant 1$ então no máximo dois números são menores do que $\frac{1}{8}$.

Se dois números são menores do que $\frac{1}{8}$, como f é crescente então

$$f(a) + f(b) + f(c) + f(d) \leqslant 2f\left(\frac{1}{8}\right) + 2f(1) = 2 \cdot \frac{64}{65^2} + 2 \cdot \frac{1}{4} < 2 \cdot \frac{1}{64} + \frac{1}{2} < \frac{16}{25}$$

Se exatamente um número é menor do que $\frac{1}{8}$, digamos a, então tomamos $x_0 = \frac{2}{3}$. Nesse caso, o termo independente de h(x) é $1-3\cdot\left(\frac{2}{3}\right)^2 < 0$, o que quer dizer que h(x) < 0 para todo $x \in [0,1]$. Sendo $g(x) = \frac{36}{169} + \frac{540}{13^3}\left(x - \frac{1}{8}\right)$,

$$f(a) + f(b) + f(c) + f(d) \leqslant f(a) + 3 \cdot \frac{36}{169} + \frac{540}{13^3} \left(b + c + d - 3 \cdot \frac{2}{3} \right) = f(a) + \frac{108}{169} - \frac{540}{13^3} a$$

Sendo $f''(x) = \frac{2(3x^4 - 8x^2 + 1)}{(1 + x^2)^4} > 0$ para $0 < x \le \frac{1}{8}$, f'(x) é crescente nesse intervalo, de modo que $f'(a) \le f'\left(\frac{1}{8}\right) = \frac{2 \cdot \frac{1}{8}\left(1 - \left(\frac{1}{8}\right)^2\right)}{\left(1 + \left(\frac{1}{8}\right)^2\right)^3} = \frac{63 \cdot 16 \cdot 64}{5^3 \cdot 13^3} = \frac{12 \cdot 21 \cdot 4 \cdot 64}{125 \cdot 13^3} < \frac{2 \cdot 1 \cdot 4 \cdot 64}{13^3} = \frac{537 \cdot 6}{13^3} < \frac{540}{13^3}$. Logo o lado direito da última desigualdade é crescente em a, de modo que

$$f(\alpha) + f(b) + f(c) + f(d) \leqslant f\left(\frac{1}{8}\right) + \frac{108}{169} - \frac{540}{13^3} \cdot \frac{1}{8} = \frac{64}{65^2} + \frac{108}{169} - \frac{135}{2 \cdot 13^3} < \frac{1}{64} + \frac{108 \cdot 26 - 135}{2 \cdot 2197} = \frac{1}{64} + \frac{11 \cdot 3^5}{2 \cdot 2197} < \frac{16}{25} + \frac{1}{25} + \frac$$

A última desigualdade pode ser verificada notando que $\frac{16}{25} - \frac{1}{16} = \frac{999}{1600}$ e

$$\frac{11 \cdot 3^5}{2 \cdot 2197} < \frac{999}{1600} \iff \frac{11 \cdot 3^2}{2197} < \frac{37}{800} \iff 99 \cdot 800 < 37 \cdot 2197,$$

que é verdadeiro pois $37 \cdot 2197 = 81289 > 80000 > 800 \cdot 99$

Resumindo:

- Esse é uma daquelas desigualdades do tipo $\sum f(a) \leqslant c$. Então é natural queremos estudar a função f.
- A primeira reação é tentar utilizar Jensen, mas infelizmente a função f não é côncava, nem mesmo em [0,1]. De fato, ela muda de concavidade em $x=\sqrt{\frac{4-\sqrt{13}}{3}}$.
- Embora seja possível trabalhar com concavidade e dividindo em casos, vale a pena procurar ideias alternativas. De fato, tentar estimar f a partir de uma função afim pode dar certo. Infelizmente, não dá diretamente...
- ...então dividimos novamente em casos! Note que os dois primeiros casos foram bem simples: no primeiro, a estimativa linear dá conta do recado; no segundo, só o fato de f ser crescente mata o problema.
- O problema está no terceiro caso; uma opção seria considerar $x_0 = \frac{2-\alpha}{3}$; mas isso dá mais conta (ainda), e tende a ser intratável. Mesmo as contas no final não dão muito espaço para "acochambradas": ainda que podemos trocar $\frac{64}{65^2}$ por $\frac{1}{64}$, não dá para melhorar muito as outras.
- Note que só precisamos de duas retas ($x_0 = \frac{1}{2}$ e $x_0 = \frac{2}{3}$. Talvez a conta ficasse menor se só fizéssemos as derivadas nesses dois pontos; mas ter o resultado geral é bastante reconfortante, no sentido que h(x) é razoavelmente favorável nos nossos cálculos.
- Em outros problemas, você pode tentar usar outras curvas, como parábolas, funções de terceiro grau, funções trigonométricas... Nesse problema, o melhor é usar funções côncavas. Mas um esboço rápido de f e da tangente em x₀ = ½ nos mostra que o melhor a fazer é usar a reta mesmo, já que funções côncavas tornariam a diferença f(x) g(x) menor ainda.

▶PROBLEMA 4

Ache todos os inteiros ímpares n para os quais

$$\frac{2^{\phi(n)}-1}{n}$$

é um quadrado perfeito.

Observação: dado um inteiro positivo n, $\varphi(n)$ denota a quantidade de elementos do conjunto

$$\{a \in Z \mid 1 \leqslant a \leqslant n \text{ e } mdc(a,n) = 1\}.$$

Solução

Primeiro, note que n=1 é solução e, sendo n>1 ímpar, $\phi(n)$ é par, pois $\phi(n)=n\prod_{p\mid n}\left(1-\frac{1}{p}\right)=n\prod_{p\mid n}\frac{p-1}{p}$. Então, sendo $k=\phi(n)/2$, a fração em questão é

$$\frac{(2^k - 1)(2^k + 1)}{n} = m^2$$

Afirmamos que $n \mid 2^k + 1$ ou $n \mid 2^k - 1$. De fato, note que $mdc(2^k + 1, 2^k - 1) = 1$, pois a diferença entre os dois números, que são ímpares, é 2. Assim, se n é potência de primo, n deve dividir um dos números $2^k + 1$ e $2^k - 1$. Se n não é potência de primo, n = ab com a e b inteiros maiores do que 1 e mdc(a,b) = 1. Sendo a e b ímpares, $\phi(a)$ e $\phi(b)$ são pares, de modo que $k = \phi(n)/2 = \phi(ab)/2 = \phi(a)\frac{\phi(b)}{2} = \frac{\phi(a)}{2}\phi(b)$. Isto quer dizer que $\phi(a)$ e $\phi(b)$ dividem k, e, pelo teorema de Euler-Fermat, $2^k \equiv 1 \pmod{a}$ e $2^k \equiv 1 \pmod{b} \implies 2^k \equiv 1 \pmod{ab} \iff n \mid 2^k - 1$.

Deste modo, $\frac{2^k+1}{n}$ ou $\frac{2^k-1}{n}$ é inteiro. Assim,

$$m^2 = \frac{2^k - 1}{n} \cdot (2^k + 1) = \frac{2^k + 1}{n} \cdot (2^k - 1)$$

e, lembrando que $mdc(2^k-1,2^k+1)=1$, concluímos que 2^k+1 ou 2^k-1 é quadrado perfeito. O segundo caso só pode ocorrer para k=1, pois se k>1 $2^k-1\equiv -1\pmod 4$ não pode ser quadrado perfeito; assim, $k=1\Longrightarrow n\mid 2^1+1\iff n=1$ ou n=3. Estudemos o primeiro caso: temos $2^k+1=t^2\iff 2^k=(t-1)(t+1)$, o que implica t-1 e t+1 serem ambos potências de 2. Mas a diferença entre os dois números é 2 e as duas únicas potências de 2 cuja diferença é 2 são 2 e 4. Logo t=3 e $2^k+1=3^2\iff k=3\implies n\mid 2^3-1\iff n=1$ ou n=7. Testando os casos n=3 e n=7, vemos que eles satisfazem o enunciado e, portanto, as únicas soluções são 1, 3 e 7.

Resumindo:

- Caso você não conheça o teorema de Euler-Fermat, conheça-o já: se $\mathrm{mdc}(\mathfrak{a},\mathfrak{m})=1$, então $\mathfrak{a}^{\varphi(\mathfrak{m})}\equiv 1$ (mód. \mathfrak{m}). A fórmula para $\varphi(\mathfrak{m})$ está na solução; procure-a!
- As idéias que resolvem o problema se baseiam em algumas das idéias utilizadas para provar o fato já bem conhecido de que os únicos valores de n que admitem raiz primitiva são 2, 4, p^k e 2p^k, sendo p primo ímpar. Caso você não saiba ou não se lembre, raiz primitiva de um número inteiro n é um número g tal que o menor expoente positivo t tal que g^t ≡ 1 (mód. n) é φ(n).
- Aqui, essencialmente provamos que números ímpares que não são potências de primos não admitem raízes primitivas. Essa demonstração é bastante clássica e pode ser encontrada em diversos lugares, em particular na Olimpédia: http://erdos.ime.usp.br/.
- Note como, ao fatorar, tirar o mdc dos fatores foi novamente decisivo (duas vezes!) na resolução do problema. Veja também o problema 1 do segundo teste.