

Self-Organising Systems

Rudolf Mayer

Institut für Softwaretechnik & Interaktive Systeme (mayer@ifs.tuwien.ac.at)

SBA Research (www.sba-research.org)

Exercises – topics

- Group Work
- Two types
 - Using self-organising systems for problem solving
 - Pick your algorithms and problems
 - |algorithms| + |problems| >= 5
 - Custom topics (see document in TUWEL for more details)
 - (A custom topic by yourself, if it fits within the scope and is approved by me; contact me in due time)

GA/Ants/Agents: Comparative experimentation

- Take 2-3 self-organising techniques presented so far (Ants, CAs, GAs, ...)
 - Can (shall!) re-use existing implementations
- Find a set of 2-3 different problem tasks, and compare how these techniques fit to solve them
 - Compare relative runtimes in regard to size of the problem
 - Compare time needed to find (good) solutions
 - Analyse for which type of problem which solution works better
 - Focus is on representing the problem domain & analysis
 - E.g combinatorial problems.: TSP, Vehicle Routing, Knapsack problem, Cutting Stock, Nurse scheduling..
 - Also: Rastrigin function (specific evaluation problem)

GA/Ants/Agents: Comparative experimentation

- Also some custom, specialised topics available, solving problems in e.g. Machine Learning:
 - Finding optimal subsets in a data anonymisation task
 - Finding optimal combination of data exchange in a federated machine learning setting
 - Optimising synthetic data generation
 - 🚠 See provided details in TUWEL

EAs for ML (IP Protection, attacks, ..)

- Trained machine learning models are valuable IP
- Stealing them, or preventing theft, gains attention
- Evolutionary algorithms are used in some approaches
 - Finding better ways how to steal these models
 - Optimising the querying, ...
 - Finding ways how to detect theft
 - Optimising watermarking patterns, ...
- EAs also used e.g. for finding adversarial examples,

EAs for optimising other aspects

- E.g. optimising
 - Finding bayesian network structures
 - Optimal local anonymisation subsets

— ...

- Topics will be provided in TUWEL
- Custom topics based on your ideas also possible!

Finding optimal subset for anonymisation

- K-anonymous datasets provide anonymity for persons whose informations are contained
 - There are multiple ways to achieve the same level of k-anonymity!
- Motivation: distribute k-anonymous datasets in such a way that each recipient gets a different instance of the dataset
- Datasets differ with regard to data utility, therefore we want datasets:
 - With low information loss
 - That are mutually very similar
- The goal: find such a subset while optimizing:
 - Average information loss of the subset
 - Variance of information loss of the subset
 - Size of the subset

Information Loss

