

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 1^η ΣΕΙΡΑ ΓΡΑΠΤΩΝ ΑΣΚΗΣΕΩΝ

Ειρήνη Δόντη

AM: 03119839

8ο εξάμηνο

Αθήνα 2023

Άσκηση 1

1. Hill Climbing

Βήμα	Μέτωπο	Κλειστό	Τρέχουσα	Παιδιά
	Αναζήτησης	Σύνολο	Κατάσταση	
1	(s, 10) ^s	{}	S	(c,2), (d,4),
				(b,5)
2	(c, 2) ^{sc}	{s}	С	(k,2), (d,4),
				(h,5)
3	(k, 2) ^{sck}	{s, c}	k	(g,0), (h, 5)
4	$(g,0)^{\text{sckg}}$	{s, c, k}	g	-

Βρέθηκε το μονοπάτι sckg με κόστος 11.

Best First

Βήμα	Μέτωπο	Κλειστό	Τρέχουσα	Παιδιά
	Αναζήτησης	Σύνολο	Κατάσταση	
1	$(s, 10)^s$	{}	S	(c,2), (d,4),
				(b,5)
2	$(c, 2)^{sc}, (d, 4)^{sd},$	{s}	С	(k,2), (d,4),
	(b, 5) ^{sb}			(h,5)
3	$(k, 2)^{sck}$,	{s,c}	k	(g, 0), (h, 5)
	$(d,4)^{sd}, (b,5)^{sb},$			
	(h, 5) ^{sch}			
4	$(g,0)^{\text{sckg}},(d,4)^{\text{sd}},$	{s,c,k}	g	-
	$(b, 5)^{sb},$			
	(h,5) ^{sch} ,			
	(h,5) ^{sckh}			

Βρέθηκε μονοπάτι sckg με κόστος 11.

Βήμα	Μέτωπο	Κλειστό	Τρέχουσα	Παιδιά
	Αναζήτησης	Σύνολο	Κατάσταση	
1	$(s,0;10)^s$	{}	S	(c,1;2),
				(d,2;4),
				(b,2;5)
2	(c,1;2) ^{sc} ,	{s}	С	(k,2;2),
	$(d,2;4)^{sd},(b,2;5)^{sb}$			(d,3;4),
				(h,7;5)
3	(k,2;2) ^{sck} ,	{s,c}	k	(h,3;5), (g,
	(d,2;4) ^{sd} ,			11;0)
	(b,2;5) ^{sb} ,			
	(h,7;5) ^{sch}			
4	(d,2;4) ^{sd} ,	{s,c,k}	d	(h,4;5),
	$(b,2;5)^{sb}$,			(i,12;2)
	(h,3;5) ^{sckh} ,			
	$(g,11;0)^{sckg}$			
5	(b,2;5) ^{sb} ,	{s,c,k,d}	b	(k,3;2),
	$(h,3;5)^{sckh}$,			(e,5;5)
	$(g,11;0)^{sckg}$,			
	(i,12;2) ^{sdi}			
6	(h,3;5) ^{sckh} ,	{s,c,k,d,b}	h	(i, 6;2),
	$(e,5;5)^{sbe},$			(g,12;0),
	$(g,11;0)^{sckg}$,			(j,10;6)
	(i,12;2) ^{sdi}			
7	(i,6;2) ^{sckhi} ,	{s,c,k,d,b,h}	i	(j, 13;6)
	$(e,5;5)^{sbe},$			
	$(g,11;0)^{sckg}$,			
	(j,10;6) ^{sckhj}			
8	(e,5;5) ^{sbe} ,	{s,c,k,d,b,h,i}	e	(g,11;0)

	(g,11;0) ^{sckg} , (j,10;6) ^{sckhj}			
9	(g, 11;0) ^{sckg} , (j,10;6) ^{sckhj} , (g,11;0) ^{sbeg}	{s,c,k,d,b,h,i, e}	g	-

Βρέθηκε μονοπάτι sckg (υπολογίστηκε πρώτο σε σχέση με το μονοπάτι sbeg) με κόστος 11.

2. Οι λύσεις του προβλήματος είναι 20 και η βέλτιστη είναι η sbeg & sckg με κόστος 11.

Λύση	Κόστος
sbeg	11
sbkg	12
sbkhg	13
sbkhjg	14
sbkhijg	17
sckg	11
sckhijg	16
sckhjg	13
sckhg	12
schg	16
schjg	17
schijg	20
scdhg	14
scdhijg	18
scdhjg	15
sdijg	22
sdhg	13
sdhjg	14

sdhijg	17
scdijg	23

Όλοι οι αλγόριθμοι βρήκαν τη βέλτιστη διαδρομή sckg. Ο αλγόριθμος A^* δίνει πάντα τη βέλτιστη λύση αν η ευρετική απόσταση είναι μικρότερη ή ίση της πραγματικής για κάθε κόμβο. Στην προκειμένη περίπτωση, ο αλγόριθμος A^* δεν μπορεί να γνωρίζει εκ των προτέρων αν θα καταλήξει σε βέλτιστο μονοπάτι, καθώς ο κόμβος j έχει πραγματική απόσταση από τον στόχο 3, αλλά τιμή ευρετικής 6. Ο αλγόριθμος Hill Climbing μπορεί να μην τελειώσει την αναζήτηση, επειδή κάποιοι κόμβοι έχουν μεγαλύτερη ευρετική από τον προηγούμενό τους. Επίσης, ο αλγόριθμος Best First δε δίνει ποτέ εγγύηση αν θα βρει το βέλτιστο μονοπάτι.

3. Στην προκειμένη περίπτωση, ο A^* αλγόριθμος βρίσκει τη βέλτιστη λύση, καθώς η ευρετική στο συγκεκριμένο μονοπάτι είναι συνεπής. Για να μη βρίσκει τη βέλτιστη λύση, τροποποιούμε την ευρετική μόνο στα βέλτιστα μονοπάτια ώστε h(k) > c(k,k') + h(k').

H h(k) είναι συνεπής όταν $h(k) \le c(k, k') + h(k')$, όπου το c(k, k') είναι το κόστος μετάβασης από το k στο k'.

Για παράδειγμα, τροποποιούμε το δέντρο ως εξής:

 Παραθέτουμε, σε πίνακα, τα ζεύγη κόμβων στα οποία δεν τηρείται η σχέση h(k)≤c(k, k') + h(k'), όπου το c(k, k') είναι το κόστος μετάβασης από το k στο k'το ζεύγος.

Ζεύγος (k, k')	h(k)	c(k, k') + h(k')	$h(k) \le c(k, k') +$
			h(k')
(s,b)	10	7	Όχι
(s,c)	10	3	Όχι
(s,d)	10	6	Όχι
(b,k)	5	3	Όχι
(j,g)	6	3	Όχι

Πρέπει να αλλάξουμε τις ευρετικές του κόμβου s, b και j, για να είναι συνεπείς όλες οι ευρετικές.

Παρακάτω, παρουσιάζουμε τον χώρο αναζήτησης με τις ζητούμενες αλλαγές.

Με αυτόν τον τρόπο, τηρείται η σχέση $h(k) \le c(k, k') + h(k')$ για όλα τα ζεύγη κόμβων και συνεπώς η εκάστοτε ευρετική είναι συνεπής.

5. Θεωρούμε τον χώρο αναζήτησης του προηγούμενου ερωτήματος. Οπότε, θα προσπαθήσουμε μεταβάλουμε τις τιμές ευρετικής κάποιων κόμβων από τους παραπάνω, ώστε ο αλγόριθμος Α* να επισκέπτεται τους λιγότερους κόμβους, δηλαδή να επισκέπτεται απευθείας το μονοπάτι sckg, διατηρώντας τις ευρετικές συνεπείς. Τροποποιούμε τον χώρο αναζήτησης ως εξής:

Οπότε, ο Α* αλγόριθμος του τροποποιημένου χώρου αναζήτησης εκτελείται παρακάτω:

Βήμα	Μέτωπο	Κλειστό	Τρέχουσα	Παιδιά
	Αναζήτησης	Σύνολο	Κατάσταση	
1	$(s,0;3)^s$	{}	S	(c,1;2),
				(b,2;10),
				(d,2;10)
2	(c,1;2) ^{sc} ,	{s}	С	(k,2;2),
	$(b,2;10)^{sb},$			(d,3;10),
	(d,2;10) ^{sd}			(h,7;9)
3	$(k,2;2)^{sck}$,	{s,c}	k	(h,3;9),
	(b,2;10) ^{sb} ,			(g,11;0)
	(d,2;10) ^{sd} ,			
	(h,7;9) ^{sch}			

4	$(g,11;0)^{sckg},$	{s,c,k}	g	-
	(b,2;10) ^{sb} ,			
	(d,2;10) ^{sd} ,			
	(h,3;9) ^{sckh}			

Συνεπώς, με τις παραπάνω αλλαγές, είναι ο μόνος τρόπος ο αλγόριθμος A^* να επισκέπτεται τους λιγότερους κόμβους, καθώς υπολογίζει απευθείας το μονοπάτι sckg, χωρίς να ελέγχει ενδιάμεσους κόμβους. Όμως, παρατηρούμε ότι δεν τηρείται η σχέση $h(k) \le c(k, k') + h(k')$ για όλα τα ζεύγη κόμβων k, k', ώστε να τηρείται η συνέπεια της ευρετικής. Για παράδειγμα, για το ζεύγος κόμβων b, e ισχύει ότι $10 \le 3 + 5$ άτοπο. Ο κόμβος e μπορεί να πάρει τιμή ευρετικής το πολύ ως e0, καθώς πρέπει να ισχύει e1, e2, e3 από τον χώρο αναζήτησης, για να τηρείται η συνέπεια της ευρετικής. Οπότε, για το ζεύγος κόμβων e4, ισχύει το πολύ ότι e3 από τον λύρος e4, ενδιάτερη συνεπή ευρετική για την οποία ο αλγόριθμος επισκέπτεται λιγότερους κόμβους.

Ασκηση 2

1. MinMax

2. Alpha-Beta

Μετρώντας τους κόμβους από πάνω προς τα κάτω και από αριστερά προς τα δεξιά, ο αλγόριθμος θα επισκεφθεί, με τη σειρά, τους κόμβους: 1, 2, 5, 11, 22, 23, 12, 24, 6, 13, 27, 28, 14, 29, 3, 7, 15, 31, 4, 9, 17, 36, 37, 18, 39, 40, 10, 19, 41, 42.

Ο αλγόριθμος δε θα επισκεφθεί τους κόμβους 8, 16, 20, 21, 25, 26, 30, 32, 33, 34, 35, 38, 43, 44, 45, 46, 47.

Άσκηση 3

1. Υπολογίζουμε την προσαρμοστικότητα κάθε ατόμου:

$$f(x1) = (6+5) - (4+1) + (3+5) - (3+2) = 9$$

$$f(x2) = (8+7) - (1+2) + (6+6) - (0+1) = 23$$

$$f(x3) = (2+3) - (9+2) + (1+2) - (8+5) = -16$$

$$f(x4) = (4+1) - (8+5) + (2+0) - (9+4) = -19$$

Συνολική προσαρμοστικότητα = 9 + 23 - 16 - 19 = -3

Ταξινομούμε τα 4 άτομα σε φθίνουσα σειρά προσαρμοστικότητας:

$$x2 > x1 > x3 > x4$$
.

2. (a) Επιλέγουμε τα δύο πιο προσαρμοστικά άτομα, δηλαδή τα x2 και x1. Οπότε, τα σημεία διασταύρωσης στο μέσο του γρωμοσώματος είναι:

$$x1' = 65416601$$

$$x2' = 87123532$$

(b) Επιλέγουμε το δεύτερο και τρίτο πιο προσαρμοστικό άτομο, δηλαδή τα x1 και x3. Οπότε, τα σημεία διασταύρωσης μεταξύ των b και f (θεωρούμε ανταλλαγή cdef γονιδίων):

$$x3' = 65921232$$

$$x4' = 23413585$$

(c) Επιλέγουμε τυχαία τρία γονίδια από το κάθε χρωμόσωμα και τα ανταλλάσσουμε μεταξύ τους. Έστω ότι επιλέγουμε το 1°, 4°, 6° γονίδιο από το πρώτο χρωμόσωμα και το τρίτο χρωμόσωμα σε σειρά προσαρμοστικότητας. Οπότε, τα νέα χρωμοσώματα που θα προκύψουν είναι:

$$x5' = 27126201$$

$$x6' = 83921685$$

3. Υπολογίζουμε την προσαρμοστικότητα του κάθε ατόμου:

$$f(x1') = (6+5) - (4+1) + (6+6) - (0+1) = 17$$

$$f(x2') = (8+7) - (1+2) + (3+5) - (3+2) = 15$$

$$f(x3') = (6+5) - (9+2) + (1+2) - (3+2) = -2$$

$$f(x4') = (2+3) - (4+1) + (3+5) - (8+5) = -5$$

$$f(x5') = (2+7) - (1+2) + (6+2) - (0+1) = 13$$

$$f(x6') = (8+3) - (9+2) + (1+6) - (8+5) = -6$$

Συνολική προσαρμοστικότητα = 17 + 15 - 2 - 5 + 13 - 6 = 32 > -3

Αρα, έχει βελτιωθεί η συνολική προσαρμοστικότητα σε σχέση με τον παλιό πληθυσμό.

- 4. Η μέγιστη προσαρμοστικότητα που μπορεί να έχει ένα χρωμόσωμα της μορφής x = abcdefgh είναι f(x) = (a+b) (c+d) + (e+f) (g+h) = 36 με c, d, g, h ίσα με μηδέν (min τιμή) και a, b, e, f ίσα με εννιά (max τιμή), ώστε οι αρνητικοί όροι να μηδενίζονται και τα αθροίσματα να είναι τα μέγιστα δυνατά. Οπότε, το βέλτιστο χρωμόσωμα είναι: x = 99009900.
- 5. Ο αρχικός πληθυσμός δεν μπορεί να φτάσει στη βέλτιστη λύση χωρίς να γίνει χρήση του τελεστή μετάλλαξης. Η βέλτιστη λύση είναι x = 99009900, όπως είδαμε παραπάνω. Σε περίπτωση που δε συμβεί μετάλλαξη, τότε η αλλαγή των γονιδίων μπορεί να γίνει με εφαρμογή του τελεστή διασταύρωσης. Ανεξάρτητα από τον τρόπο με τον οποίο εκτελείται η διασταύρωση, το αποτέλεσμα είναι η ανταλλαγή των γονιδίων των γονέων σε συγκεκριμένες θέσεις στο χρωμόσωμα. Συνεπώς, το πρώτο γονίδιο στα χρωμοσώματα των παιδιών μπορεί να είναι μόνο 6, 8, 2 ή 4 (όπως τα πρώτα γονίδια των x1, x2, x3 και x4). Επειδή κανένα από τα άτομα, στον αρχικό πληθυσμό, δεν ξεκινά με το γονίδιο 9, ο τελεστής διασταύρωσης δεν μπορεί να παραγάγει απόγονο με γονίδιο 9 στο πρώτο γονίδιο. Παρόμοια, το πρόβλημα αυτό επανεμφανίζεται και σε άλλες θέσεις γονιδίων του χρωμοσώματος. Οπότε, ο αρχικός πληθυσμός δεν μπορεί να φτάσει στη βέλτιστη λύση χωρίς να γίνει χρήση του τελεστή μετάλλαξης.