Tópicos - Física I

MRUV - Movimento Retilíneo Uniformemente Variado

- aceleração = cte
- velocidade = dx/dt e a= dv/d
- gráficos de velocidade e aceleração

Vetores

- Produto Escalar ($|a|.|b|\cos\Theta$)
- Vetor posição: xi + yj +zk
- Lançamentos Oblíquos

MCU - Movimento Circular Uniforme

- $-X(t) = R \cos(w.t)$
- Velocidade angular
- Aceleração Centrípeta
- Vetor velocidade sempre oposto ao de posição

Leis de Newton

- 1a. Lei : Velocidade constante se a resultante é nula, em um referencial inercial
- 2a. Lei: F = m . a
 - * F resultante = F1+F2 +... + Fn
 - * Força Peso, Gravitacional
- 3a. Lei: Ação e Reação
 - * Forças de Atrito: Estático e Cinético
 - * Resistência de um Fluido

Forças

- Trabalho : $T = F \cdot \Delta S \cdot \cos \Theta$
- Potência: P Δ W / Δ t

Energia

- Energia Cinética
 - $K = 1/2 \text{ m v}^2$
 - Trabalho da F Resultante = Variação da Energia Cinética : W = K2 K1
- Energia Potencial
 - Se F conservativo -> W independe do caminho
 - Se F também resultante -> DeltaK + DeltaU = 0
 - Teorema da Conservação de Energia: K + U = E, cte
 - Gravitacional: mga
 - Elástica: 1/2 k. x^2

- Oscilador Harmônico Simples
- Gráficos: área = Trabalho , pontos de equilíbrio estáveis e instáveis
- F = GradienteU

Momento Linear (Quantidade de Movimento)

- -p = mv
- F = ... = dp/dt : Força é a derivada do momento em relação ao tempo
- Impulso : I = p2 p1
- Força Média = I / deltaT
- Conservação do Momento Linear : p1 + p2 + .. + pn = cte
- Colisões:
 - * Elástica: K1 = K2
 - * Inelástica: K1 != K2
 - * Totalmente Inelástica: P2 = (m1 + m2) . v2
- Centro de Massa
 - * r = 1/M Somatório(mr)
 - * Vcm = 1/M Somatório (mv)
 - * SomatórioFext = 0 -> Vcm constante, num sistema como um todo
 - * Massa variável -> ex: exercícios de foguete
 - * Decaimento Radioativo

Rotação de Corpos Rígidos

- Velocidade Angular: w = dtheta/dt
- Aceleração Angular: alpha = dw/dt
- Velocidade Escalar: v = w.R
- Aceleração Radial: w^2.R
- Energia Cinética de Rotação: 1/2 . I . w^2
- Momento de Inércia: I = somatório(m.R^2)
- Teorema dos Eixos Paralelos: I = Icm + Md^2
- Ex: Hélices, Ventiladores
- Torque: Tal = r x F ou I . alpha
 - * Regra da mão esquerda
- Combinando dinâmica do movimento + rotação
 - * somatórioFext = M . acm
 - * somatórioTorqueext = Icm . alpha
 - * hipótese: eixo de simetria que não muda de direção

Momento Angular

- -L=rxp
- Direção perpendicular a r e p
- Sentido: Regra da mão direita
- Tal = dL/dt
- -L = I.w (v angular)

- Exercícios: Barras em rotação, Halteres, Patinadores

Gravitação

- $-F = (G.m1.m2) / r^2$, G cte
- Princípio da Superposição: F = somatórioF
- F Potencial Gravitacional = -(G.m1.m2) / r
- Velocidade de Escape: não depende de m, nem direção
- Órbitas Circulares
- Leis de Kepler
 - * Órbitas Elípticas com o Sol em um dos focos
 - * Áreas iguais em tempos iguais
 - * T ~ a^(3/2)
 - * Excentricidade: d/a , 0 <= E <= 1
- Buraco Negro: v escape > v luz
- Campo Gravitacional

(fonte: caderno bcc2006)

Links

http://www.youtube.com/watch?v=t8g-iYGHpEA : Video que mostra algoritmos de ordenação com som.

http://hotruby.yukoba.jp/index.html: Site com framework de animação com javascript e flash, utiliza leis físicas como gravidade e colisões.

http://www.ruby-lang.org/en/LICENSE.txt - A licença

http://www.youtube.com/watch?v=5s5EvhHy7eQ

http://www.youtube.com/watch?v=2-hmJKgvpUA: vídeos que mostram como transformar qualquer superfície em multitouch usando um controle do Wii

http://johnnylee.net/projects/wii/ - Site do kra do video!

http://www.youtube.com/watch?v=QLT_AKqYJYk: Winners of the 2010 AlgoViz.org Awards

algoviz.org - Site com frameworks, softwares e animações de algoritmos

http://rubyforge.org/projects/rxlib/

http://rubyforge.org/projects/xrvg/

http://rubyforge.org/projects/agg4r/: projetos em desenvolvimento para ruby

http://code.google.com/p/chipmunk-physics/ Site com engine de fisica! http://www.opensource.org/licenses/mit-license.php Lincença da engine

<u>http://sebleedelisle.com/games/moonlander/</u> - Games de aterrisagem lunar http://lander.dunnbypaul.net/

http://code.google.com/p/gosu/w/list - Gosu com tutorial de integração do chipmunk

http://www.ruby-doc.org/docs/ProgrammingRuby/ - Ruby & Rails

http://tryruby.org/

http://railsforzombies.org

http://rubyinline.rubyforge.org/RubyInline/ - Permite ler e executar funções em C e rodar em Ruby

http://www.alexandre-gomes.com/articles/chipmunk/basicconcepts.php - Tutorial para ChipMunk

Cronograma T

http://www.ime.usp.br/~coelho/fisica

• Janeiro

- 29/01
- Decidir a disciplina (decidir junto com o Coelho) OK
- Fazer documento de acompanhamento do projeto OK
- Rever principais tópicos da disciplina OK
- Estudar conceitos básicos Ruby ok

Fevereiro

- 05/02
- Pesquisar ferramentas para animação (Ruby) OK
- 12/02
- Definir a estrutura do programa OK
- Criar repositório SVN OK

- 19/02

- Estrutura da monografia - OK

- 26/02

- Site com a proposta - OK

<<Linha do tempo de atividades>>

• Março

- 19/03
- Implementar programa simples de simulação (ex: aterrissagem)
- Relembrar comandos SVN