포트폴리오의 VaR 추정

금융통계 기말과제

통계학과 2018580028 정세린

포트폴리오 소개

- 분석기간: 2014년 5월 21일 ~ 2020년 5월 20일
- 구성 종목 : 하이트진로, 제일기획, 농심, NHN, 한국제지, 모나미 (데이터 출처 : 한국거래소)
- $V_{P,t} = 42 \times S_{1,t} + 52 \times S_{2,t} + 3 \times S_{3,t} + 14 \times S_{4,t} + 34 \times S_{5,t} + 253 \times S_{6,t}$
- 2017년 3월 23일부터 2020년 5월 20일까지의 VaR, ES를 추정하였다. (총 772일)

포트폴리오 소개

VaR 추정

• $-R_t = \sigma_t z_t$ 로 둘 때,

$$\widehat{VaR_t^{1-p}} = \widehat{\sigma}_t \widehat{z}_{1-p}, \qquad \widehat{ES_t^{1-p}} = \widehat{\sigma} \times \frac{1}{p} \int_{1-p}^1 \widehat{z}_u \, du$$

- 변동성 모형 : GARCH(1, 1), GJR-GARCH(1, 1)
- \hat{z}_{1-p} 추정 방법 : 표준정규분포, standardized t분포, asymmetric t분포 가정. 또는 Peak Over Threshold Model(EVT), FHS를 이용하여 추정.

Standard Normal Distribution

p = 0.05 \hat{z}_{1-p} : 표준정규분포로 가정, 추정

Standard Normal Distribution

个 GARCH(1, 1) 모형에서의 잔차 분석

lag

个 GJR-GARCH(1, 1) 모형에서의 잔차 분석

Standard Normal Distribution

Standardized t Distribution

p = 0.05

 \hat{z}_{1-p} : standardized t 분포로 가정, 추정

Standardized t Distribution

↑ GARCH(1, 1) 모형에서의 잔차 분석

lag

个 GJR-GARCH(1, 1) 모형에서의 잔차 분석

Standardized t Distribution

Asymmetric t Distribution

p = 0.05

 \hat{z}_{1-p} : asymmetric t 분포로 가정, 추정

Asymmetric t Distribution

个 GARCH(1, 1) 모형에서의 잔차 분석

个 GJR-GARCH(1, 1) 모형에서의 잔차 분석

Asymmetric t Distribution

Peak Over Threshold Model(EVT)

p = 0.05

 \hat{z}_{1-p} : Generalized Pareto Distribution이용, 추정

Peak Over Threshold Model(EVT)

↑ GARCH(1, 1) 모형에서의 QQ plot

↑ GJR-GARCH(1, 1) 모형에서의 QQ plot

Peak Over Threshold Model(EVT)

Filtered Historical Simulation(FHS)

p = 0.05

 \hat{z}_{1-p} : FHS with Moving Window Method를 이용, 추정(size = 700)

Filtered Historical Simulation(FHS)

• 초과손실 횟수

Model	Distribution	0.95 (38.6)	0.99 (7.72)	0.995 (3.86)
GARCH	Normal	41	17	10
	Standardized-t	46	10	3
	Asymmetric-t	42	8	3
	EVT	38	8	3
	FHS	45	11	6
GJR-GARCH	Normal	40	15	7
	Standardized-t	45	7	3
	Asymmetric-t	40	6	2
	EVT	37	6	2
	FHS	46	10	6

• 총 10가지 방법으로 추정한 VaR 중, 초과손실 횟수를 이용하여 선정한 6가지에 대해서 다음 네가지 test를 진행한다.

Unconditional coverage test
Independene test
Conditional coverage test
Dynamic quantile test

p-value

Model	Distribution	Test	0.95	0.99	0.995
GARCH	Standardized-t	LR_{uc}	0.235	0.430	0.648
		LR_{ind}	0.065	0.680	0.878
		LR_{cc}	0.091	0.642	0.890
		DQ	0.070	0.005	0.324
	Asymmetric-t	LR_{uc}	0.580	0.920	0.648
		LR_{ind}	0.027	0.682	0.878
		LR_{cc}	0.075	0.915	0.890
		DQ	0.011	0.004	0.324
	EVT	LR_{uc}	0.921	0.920	0.648
		LR_{ind}	0.010	0.682	0.878
		LR_{cc}	0.035	0.915	0.890
		DQ	0.049	0.004	0.324 21/23

• p-value

Model	Distribution	Test	0.95	0.99	0.995	
GJR-GARCH	Standardized-t	LR_{uc}	0.303	0.791	0.648	
		LR_{ind}	0.015	0.720	0.878	
		LR_{cc}	0.030	0.906	0.890	
		DQ	0.006	0.911	0.322	
	Asymmetric-t	LR_{uc}	0.818	0.517	0.295	
		LR_{ind}	0.016	0.759	0.919	
		LR_{cc}	0.055	0.774	0.576	
		DQ	0.033	0.877	0.994	
	EVT	LR_{uc}	0.790	0.517	0.295	
		LR_{ind}	0.007	0.759	0.919	
		LR_{cc}	0.026	0.774	0.576	
		DQ	0.030	0.878	0.994 227	/ 23

• 손실함수 비교

Model	Distribution	0.95	0.99	0.995
GARCH	Standardized-t	108.021	30.983	17.594
	Asymmetric-t	107.678	30.649	17.520
	EVT	107.409	30.631	17.526
GJR-GARCH	Standardized-t	106.8464	29.466	16.555
	Asymmetric-t	106.5567	29.511	16.744
	EVT	106.2216	29.492	16.689

• GJR-GARCH 모형에서 Asymmetric-t분포를 가정하여 추정한 VaR이 유의수준을 $\alpha = 0.01$ 로 둘 때 모든 검정을 통과하고, 대체로 낮은 손실함수 총합을 가진다.