Force Control of a **Non-backdrivable**Robot **Without** a Force Sensor

Zihan Chen and Peter Kazanzides Johns Hopkins University, Baltimore MD, USA

DEMO

XY Stage
Non-backdrivable
Lead screw
NO Force Sensor

The Story

JHU Eye Robot 2

Image: https://ciis.lcsr.jhu.edu/dokuwiki/doku.php?id=research.eyerobots

Non-backdrivable

Backdrivable

Geomagic® Touch™

 Non-backdrivable joints prevent any motion in the event of power failure, ensuring total stability

Non-Backdrivable

RENISHAW

From neuro | mate datasheet

Move a Robot

Backdrivable

Non-Backdrivable

Move a Non-backdrivable Robot

- Master/Slave
 - o e.g. 3D Space Mouse
- Force Sensor

= \$5K =

Force Control of a **Non-backdrivable**Robot **Without** a Force Sensor

Previous Work

Because the system is non-backdriveable, the force estimation only works if the controller is actively trying to move the motor. It is interesting to note, however, that the force estimate is accurate even when the motor is moving slowly (Figure 9) or not at all (stall case, Figure 10). This suggests that it would be possible to obtain force feedback from motor currents in a non-backdriveable system with an appropriate control law. We plan to investigate this in our future work.

A. Kapoor et al. 2004

Hardware

Leadscrew (20 cm x 20 cm)

Nov 05, 2013 IROS 2013

- Change speed

Why NOT Model Based Solution?

- 1. Lead screw model
 - NO unique solution
- 2. Current feedback noise
- 3. Bad acceleration measurement
 - No tachometer installed
 - Bad synchronization

Maybe an Experimental Way?

Current

Negative Force

Solution

Direction

Force Direction (Dithering)

Force Direction (Dithering)

(b) Direction estimation logic. Blue zone indicates positive external force, where I_{pos} and I_{neg} are larger than zero force values and $I_{neg} > I_{pos}$. Red zone indicates a negative external force.

Speed

Force Magnitude

PM DC Motor

$$T_{m} = K_{T} \cdot I_{m}$$

$$T_{m} = I \dot{\theta} + T_{f} + T_{L}$$

$$T_{L} = f(N) = f(P)$$

$$K_T \cdot I_m = I \stackrel{\dot{\theta}}{\theta} + T_f + f(P)$$

$$\stackrel{\dot{\theta}}{\theta} = 0$$

Calibration (Why)

Calibration (How + Result)

4 Scan for 1 Speed Level 16 x 2 Scans in Total

Result: V = 500 deg/s

Speed Change

Solution Summary

Dithering

Conclusion & Future work

- Force control solution
 - Non-backdrivable
 - No Force Sensor
- Future work
 - Extend to Multi-axes Robot
 - Continuous Speed Change

Thank You!

zihanchen.com/iros13 zihan.chen@jhu.edu

