

Europäisches Patentamt
European Patent Office
Office européen des brevets

EP 0 770 103 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 27.03.2002 Bulletin 2002/13
- (21) Application number: 95922219.1
- (22) Date of filing: 16.06.1995

- (51) Int Ci.7: **C08G 59/42**, C09D 163/00, C08L 73/02
- (86) International application number: PCT/US95/07123

(11)

(87) International publication number: WO 96/01864 (25.01.1996 Gazette 1996/05)

(54) LOW VOC REFINISH COATING COMPOSITION

BESCHICHTUNGSZUSAMMENSETZUNG MIT NIEDRIGEM GEHALT AN FLÜCHTIGEN ORGANISCHEN VERBINDUNGEN

COMPOSITION SERVANT DE REVETEMENT DE FINITION A FAIBLE TENEUR EN COMPOSES ORGANIQUES VOLATILS

- (84) Designated Contracting States:
 BE CH DE DK ES FR GB IT LI NL SE
- (30) Priority: 08.07.1994 US 272343
- (43) Date of publication of application: 02.05.1997 Bulletin 1997/18
- (73) Proprietor: E.I. DU PONT DE NEMOURS AND COMPANY
 Wilmington Delaware 19898 (US)
- (72) Inventors:
 - BARSOTTI, Robert, J.
 Franklinville, NJ 08322-9517 (US)

- HARPER, Lee, R.
 Media, PA 19063-4751 (US)
- (74) Representative: Woodcraft, David Charles et al Brookes Batchellor 102-108 Clerkenwell Road London EC1M 5SA (GB)
- (56) References cited:

EP-A- 0 257 512 WO-A-94/11415 WO-A-95/18173 EP-A- 0 598 131 WO-A-95/18166

) 770 103 B1

Ш

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

20

25

30

35

40

45

50

55

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a curable coating composition particularly useful as a top coat in multi-layered

[0002] Base coat-clear coat systems have found wide acceptance in the past decade as automotive finishes. Concoating systems. tinuing effort has been directed to such coatings systems to improve the overall appearance, the clarity of the top coat, and the resistance to deterioration. Further effort has been directed to the development of coating compositions having low volatile organic content (VOC) and which cure at ambient temperature.

[0003] Previous efforts at improving the etch resistance and durability of coatings had suggested the use of anhydride resins having pendant non-cyclic anhydride moieties in combination with resins that react with the polyanhydride resins to cure under curing conditions. However, a continuing need exists for coating formulations which can be sprayed at low VOC and which exhibit outstanding performance characteristics after application, and particularly resistance to environmental etching, and which cure at room temperature or ambient conditions.

[0004] EP-A-0,598,131 discloses curable compositions that may contain two non-cyclic acid anhydride groups, not 3 groups as employed herein to insure branching.

[0005] WO 95/18173 (published after the filing date of this application) discloses coating compositions that cure at elevated temperatures comprising

(a) an anhydride resin having a weight average molecular weight of less than about 2000 that contains (1) a central moiety, and (2) on average, more than one pendant, non-cyclic anhydride moiety bonded to each central moiety; (b) an oligomer having epoxy functionality of at least 2 and having a weight average molecular weight of less than about 1500;

(c) a functional amount of at least one active catalyst; and

(d) 0.01 to 5%, by weight of the binder components (a) and (b), of at least one surface tension reducing agent in an amount sufficient to allow the coating composition to wet the surface onto which it is applied, the composition having a volatile organic content of less than about about 0.36Kg/litre (about 3.0 pounds per gallon), and wherein the ratio of equivalents of epoxy to anhydride is about from 0.7 to 1.4.

SUMMARY OF THE INVENTION

[0006] The present invention provides a sprayable coating composition which can be easily applied at high solids and which cures under ambient conditions, exhibiting outstanding appearance and durability after application and ease of maintenance.

[0007] In one aspect the present invention provides a coating method which comprises:

providing a composition comprising, by weight of composition, 10 - 70 percent organic solvent and 30 to 90 percent of a binder comprising:

(a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central moiety; (b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy function-

ality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality;

(c) a functional amount of at least one active catalyst; and

(d) optionally an isocyanate crosslinking agent;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and in the absence of isocyanate the ratio of equivalents of hydroxy to anhydride is 0.05 to 1.0 and in the presence of isocyanate the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate is 0.05 to 1.5;

coating a substrate with said composition; and allowing said composition to cure at a temperature of from 15.5-43.3°C (60-110°F).

[0008] In another aspect, the present invention provides a coating composition, for curing under ambient conditions, comprising, by weight of composition, 10 - 70 percent organic solvent and 30 to 90 percent of a binder comprising:

(a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central moiety;

(b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy functionality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality; and

(c) a functional amount of at least one active catalyst;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and the ratio of equivalents of hydroxy to anhydride is 0.05 to 1.0;

said composition being free from surface tension reducing agent.

[0009] In a further aspect, the present invention provides a coating composition for curing under ambient conditions comprising, by weight of composition, 10 - 70 percent organic solvent and 30 to 90 percent of a binder comprising:

10

15

5

(a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central moiety; (b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy functionality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality;

(c) a functional amount of at least one active catalyst; and

(d) an isocyanate crosslinking agent;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate is 0.05 to 1.5.

20

DETAILED DESCRIPTION OF THE INVENTION

[0010] The compositions according to the present invention comprise anhydride resins having a (weight average) molecular weight of less than 3000 and having a central moiety with more than one pendant, non-cyclic anhydride moiety bonded to each central moiety. This anhydride can suitably be used in the amount of 10 to 80 percent by weight of binder, preferably 35 to 60 percent. The anhydride is asymmetrical, and preferably contains a moiety represented by the following formula:

30

25

wherein (CM) is a central moiety, (R1) is an organic moiety, and n is a number of pendant anhydride groups that averages greater than three. [0011] The central moiety can be a simple organic moiety, such as an aliphatic, cycloaliphatic or aromatic moiety, with a plurality of anhydride groups bonded to it. Alternatively, it can contain a plurality of repeating units which are bonded to one or more pendant anhydride groups. Examples of suitable non-polymeric central moieties are those derived from multifunctional alcohols such as pentaerythritol, trimethylolpropane and neopentyl glycol. The multifunctional alcohols are reacted with cyclic, monomeric anhydride such as methyl hexahydrophthalic anhydride to give a multifunctional acid containing moiety. The resulting product is then reacted with ketene to form the linear pendant

[0012] The central moiety is linked to at least 3 non-cyclic anhydride groups on average. The anhydride equivalent weight (formula weight per anhydride group) is preferably at least about 200 and preferably no more than about 1000. [0013] Each anhydride moiety is typically terminated by an organic group (R1). This group is preferably aliphatic and more preferably alkyl. It preferably contains no more than about 6 carbon atoms, more preferably no more than about 4 carbon atoms, and most preferably methyl.

[0014] The oligomeric anhydride can optionally contain a polyvalent organic moiety (A) that is linked to a plurality of anhydride groups by a plurality of pendant linking groups (LG), as illustrated in the following formula:

55

The linking group (LG) can contain, for example, ester linkages, alkylene groups, ether linkages, urethane linkages and combinations of those. The polyvalent organic group can contain, for example a polyvalent alkyl or aromatic group. The combination of the polyvalent organic moiety (A) and the linking groups (LG) forms the central moiety (CM) as previously described.

[0015] The central molety can optionally contain other functional groups in addition to the pendant non-cyclic anhydride groups. For example, the central molety may contain pendant acid groups, so that the anhydride is represented by the formula:

10

20

40

Caspan

wherein m is the number of pendant acid groups and all others have the meaning previously given. The molar ratio of pendant non-cyclic anhydride groups to pendant acid groups in the oligomeric anhydride is preferably at least about 25:75, more preferably at least about 50:50, and more highly preferably at least about 75:25. Most preferably, the anhydride contains substantially no pendant acid groups. The central moiety can also contain minor quantities of cyclic anhydride moieties.

[0016] The molecular weight of the anhydride resin is an important feature of the present invention, and should be less than 3000. At molecular weights of the oligomeric anhydride greater than 3000, it is difficult to attain a sprayable composition with a volatile organic content of less than about 0.53 kg/litre [about 4.4 pounds (2kg) of organic solvent per gallon (3.8 litres)] of curable compositions. The molecular weight of the anhydride resin is preferably about from 400 to 1,000, and the anhydride resin preferably has 3 to 4 pendant, non-cyclic anhydride moieties bonded to each central moiety.

[0017] The oligomeric epoxy component contains at least two epoxy groups and should have a molecular weight of less than about 1500.

[0018] Typical epoxy components which may contain a hydroxy functionality or (OH) group include, among others, sorbitol polyglycidyl ether, mannitol polyglycidyl ether, pentaerythritol polyglycidyl ether, glycerol polyglycidyl ether, low molecular weight epoxy resins such as epoxy resins of epichlorohydrin and bisphenol-A, and polyglycidyl ethers of isocyanurates, for example, "Denecol" EX301 from Nagase and DCE-358® sorbitol polyglycidyl ether from Dixie Chemical.

[0019] Optional additional epoxy components which typically do not contain significant hydroxy functionality include, among others, di- and polyglycidyl esters of polycarboxylic acids, and di- and polyglycidyl esters of acids, such as Araldite CY-184® from Ciba-Geigy, or XU-71950 from Dow Chemical are preferred since they form high quality finishes. Cycloaliphatic epoxies can also be used, such as ERL-4221 from Union Carbide.

[0020] Alternatively or additionally, the present compositions may) contain, a polymeric epoxy resin having a molecular weight of from about 1,000 to 20,000. The epoxy resin can comprise, in addition to epoxy-group-containing monomers, copolymerized monomers of alkyl methacrylates or alkyl acrylates or mixtures thereof, where the alkyl groups have 1-12 carbon atoms. Optionally, the acrylic polymer can contain other components such as styrene, alphamethyl styrene, acrylonitrile, and/or methacrylonitrile in amounts of about 0.1 to 50 percent by weight.

[0021] Typical alkyl acrylates and methacrylates that can be used to form the anhydride acrylic polymer are as follows: methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, decyl methacryate, lauryl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, octyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate and the like. Other components that can be used to form the acrylate polymer are acrylamide, methacrylamido, and acrylo alkoxy silanes such as gamma methacryloyl propyl trimethoxy silane. The polymer can optionally contain hydroxy functional copolymerized monomers such as hydroxyethyl acrylate, hydroxypropyl acrylate, and hydroxyethyl methacrylate.

[0022] Suitably the epoxy component can be present in the composition in the amount of 20 to 90 percent, by weight of binder, preferably 40 to 65 percent. However, a better determinative measure of the amount of each of the main or reactive components of the binder (which "binder" generally includes components other than solvent or carrier and pigments) is the equivalents ratio. In the compositions according to the present invention, the ratio of equivalents of hydroxy to anyhydride is at least 0.05, preferably at least 0.1 to 1.0, in the absense of isocyanate. In the presence of isocyanate, the range of the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate, however, isocyanate, the range of the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate, however, is 0.05 to 1.5, preferably about 0.1 to 1.0, and most preferably about 0.3 to 0.8. The equivalents ratio of epoxy to

anhydride is about 0.5 to 1.8, preferably about 0.7 to 1.4.

[0023] As mentioned earlier, the composition may optionally also contain an organic polyisocyanate crosslinking agent, for example in the amount of 0 to 25 percent by weight of binder, preferably 5 to 15 percent. Any of the convenagent, for example in the amount of 0 to 25 percent by weight of binder, preferably 5 to 15 percent.

tional aromatic, aliphatic, or cycloaliphatic isocyanates; trifunctional isocyanates and isocyanate functional adducts of a polyol and a diisocyanate can be used. Typically useful diisocyanates are 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-biphenylene diisocyanate, toluene diisocyanate, bis-cyclohexyl diisocyanate, tetramethylene xylene diisocyanate, ethyl ethylene diisocyanate, 2,3-dimethyl ethylene diisocyanate, 1-methyltrimethylene diisocyanate anate, 1,3-phenylene diisocyanate, 1,5-napthalene diisocyanate, bis-(4-isocyanatocyclohexyl)-methane, 4,4'-diisocyanate, 1,5-napthalene diisocyanate, bis-(4-isocyanatocyclohexyl)-methane, 4,4'-diisocyanate, bis-(4-isocyanatocyclohexyl)-methane, and bis-(4-isocyanatocyclohe anatodiphenyl ether and the like.

[0024] Typical trifunctional isocyanates that can be used are triphenylmethane triisocyanate, 1,3,5-benzene triisocyanate, 2,4,6-toluene triisocyanate and the like, Trimers of diisocyanates also can be used such as the trimer of hexamethylene diisocyanate which is sold under the tradename "Desmodur"® N-3390 and the trimer of isophorone diisocyanate. Trifunctional adducts of triols and diisocyanates may be used.

[0025] The present compositions contain a functional amount of at least one active catalyst. By functional amount is meant a quantity which will allow for curing at ambient conditions. Particularly beneficial in the present invention are tertiary amine catalysts such as triethylene diamine (1,4-diazabicyclo(2.2.2)octane), bis(2-dimethyl aminoethyl)ether and tetramethylethylenediamine. When the composition also comprises an isocyanate crosslinking agent, an additional catalyst, for example, a dibutyl tin dilaurate or dibutyl tin diacetate may be included.

[0026] The total amount of catalyst is suitably used in the amount of 0.05 to 5 percent by weight of binder.

[0027] The coating compositions of the present invention are usually formulated into high solids coating systems dissolved in at least one solvent. The solvent is usually essentially all organic and comprises 10 to 70 percent, preferably 20 to 60 percent by weight of the composition. Preferred solvents include aromatic hydrocarbons such as petroleum naphtha or xylenes; ketones such as methyl amyl ketone, methyl isobutyl ketone, methyl ethyl ketone or acetone; esters such as butyl acetate or hexyl acetate; and glycol ether esters such as propylene glycol monomethyl ether

[0028] The coating compositions of the present invention can also contain conventional additives such as pigments, stabilizers, rheology control agents, surface tension reducing agents, flow agents, toughening agents and fillers. Such additional additives will, of course, depend on the intended use of the coating composition. Fillers, pigments, and other additives that would adversely effect the clarity of the cured coating will not be included if the composition is intended

[0029] The compositions of the present invention usually have a volatile organic content of less than about 0.53 kg/ litre [about 4.4 pounds (2kg) of organic solvent per gallon (3.8 litres)] of curable composition. The coating compositions are typically applied to a substrate by conventional techniques such as spraying, electrostatic spraying, roller coating, dipping or brushing. The present formulations are particularly useful as a clear coating for outdoor articles, such as automobile and other vehicle body parts. The substrate is generally prepared with a primer and or a color coat or other surface preparation prior to coating with the present compositions. The present coating compositions can be applied using conventional techniques such as wet-on-wet applications over solvent bome basecoats, or over dried waterborne basecoats. The ability to apply the present compositions by spraying techniques with the unusually low VOC content

[0030] After application to a substrate, the present compositions are cured at ambient conditions (about 15.5 - 43.3°C (60 - 110°F), depending on the geographical location, usually 18.3 - 32.2°C (65 - 90°F)).

[0031] The performance characteristics of the final cured coating composition are excellent, providing a combination of excellent gloss and durability to abrasion, sunlight and acidic rain. At the same time, the compositions provide low volatile organic content and ease of handling.

[0032] The present invention is further illustrated by the following specific examples, in which parts and percentages are by weight unless otherwise indicated.

EXAMPLE 1 45

[0033] This example illustrates the synthesis of a tetra-functional half-acid ester. The following constituents were charged to a reaction vessel equipped with a heating mantle, reflux condenser, thermometer, nitrogen inlet, and stirrer:

Portion 1	Parts by Weight
Pentaerythritol	478.0
Methyl hexahydrophthalic anhydride	2250.0
Triethylamine	0.5
Portion 2	
Xylol (135-145°C)	2250.0
Total	4978.5

55

50

20

30

[0034] Portion 1 was charged into the reaction vessel, heated to 180°C under a nitrogen blanket and held for 30 minutes. After the hold period, the reaction mixture was cooled and Portion 2 added.

EXAMPLE 2

10

15

20

25

30

35

40

45

[0035] This example illustrates the preparation of a linear pendant anhydride (hereafter referred to as LPA). The solution prepared in example 1 was charged into a 5 liter flask equipped with a stirrer and a gas inlet tube. The gas inlet tube was attached to a ketene generator similar to the one described by Williams et al in the Journal of Organic Chemistry 5, 112, 1940. Ketene is bubbled through the solution until all of the acid groups have been converted to anhydride groups. Reaction progress is monitored via FTIR. Solvent was then removed under vacuum to give a linear pendant anhydride with the following characteristics:

Percent weight solids: 78.0

Anhydride eq. wt.: 329 ± 4 (on solution basis) Acid eq. wt.: 6176 ± 1323 (on solution basis)

[0036] This example illustrates the preparation of a polymeric epoxy resin containing hydroxy functionality. A skewed structure epoxy polymer was synthesized consisting of trimethyl silane protected hydroxy ethyl methacrylate / isobutyl methacrylate / glycidyl methacrylate in the mole ratio of 1 / 5 / 5. The following ingredients were dried over molecular sieves. The materials were charged to a clean, dry reactor.

[O	Parts by Weight
Component Computations	714.428
Tetrahydrofuran (anhydrous) 1-(2-trimethylsiloxy) ethoxy-1- trimethylsiloxy-2-methyl propene	80.143
Glycidyl methacrylate monomer	154.143
Iso-butyl methacrylate	51.285

[0037] The above solution was cooled to -5 degrees C. Cooling of the reaction mixture was stopped for the start of the exothermic reaction. The following solution was added over 30 minutes, stopping when the reaction begins to exotherm. Cooling was resumed when the exotherm raised the temperature to 10-15 degrees C. The next step was started when the charged monomer was 75% converted.

Component	rts by Weight
Tetrabutyi ammonium chlorobenzoate Tetrahydrofuran	0.286 0.571

[0038] The addition of both of the following solutions was started simultaneously. Solution 1 was added over 40 minutes and solution 2 was added over 30 minutes.

Component (Solution 1)	Parts by Weight
Tetrahydrofuran	2.143
Tetrabutyl ammonium chlorobenzoate	0.286

Component (Solution 2)	Parts by Weight
Glycidyl methacrylate	51.286
Iso-butyl methacrylate	154.143

[0039] Once complete conversion of the monomers occurred, the following ingredients were added in the order listed, distilling off 428.571 parts of excess solvent to give a yield of 800.0 parts of a polymer solution at 61% solids.

Component	Parts by Weight
Methanol	13.714
Glacial acetic acid	6.143

[0040] The intermediate was concentrated as follows:

Parts by Weight
800
189.8
4.25

[0041] Finally, 313 parts of this reaction product was distilled out for a resulting solution of 65% solids.

EXAMPLE 4

5

10

20

25

30

35

40

55

[0042] This example illustrates an ambient cured LPA/ sorbitol ether epoxy composition system according to the present invention. Two separate parts or packages were formed and the parts mixed in a pot to obtain an ambient curing coating for application to a substrate.

Part I	
Component	Parts by Weight
LPA (Example 2 above)	49.0
15% triethylene diamine / PM acetate	8.84
5% BYK-301® (silicone) / PM acetate	0.66
Butyl acetate	12.2

Part II	
Component	Parts by Weight
DCE-358® sorbitol ether epoxy from Dixie Chem.	29.3

[0043] PM acetate is propylene glycol monomethyl ether. Parts I and II were combined in the amounts shown (total 100 parts), applied as a film to a substrate, and cured at ambient conditions. The coating showed good appearance, cure, and film properties.

EXAMPLE 5

[0044] This example illustrates the preparation of a coating composition comprising an LPA/sorbitol ether epoxy and diglycidyl ester blend. Two separate parts or packages were formed and the parts mixed in a pot to obtain an ambient curing coating for application to a substrate.

Part I	
	Parts by Weight
Component	56.64
LPA	0.7
5% BYK®-301 / PM acetate	8.69
25% Niax® A-99® (tertiary amine from Union Carbide) in PM acetate	2.7
PM acetate	L

Part II	
Component	Parts by Weight
DCE-358® sorbitol ether epoxy from Dixie Chem. XU-71950® diglycidyl ester from Dow	17.12 14.15

[0045] Parts I and II were combined in the amounts shown (total 100 parts), applied as a film to a substrate, and cured at ambient conditions. The coating showed good appearance, cure, and film properties.

EXAMPLE 6

[0046] This example illustrates a coating composition comprising LPA/ diglycidyl ester polymeric epoxy blend. Two separate parts or packages were formed as follows, for subsequent mixture in a pot to obtain an ambient curing coating composition.

Part I	
Component	Parts by Weight
LPA (Example 2 above)	45.3
5% BYK®-301 in PM acetate	0.56
15% triethylene diamine in PM acetate	9.06

Part II	
Component	Parts by Weight
XU-71950	11.31
GMA Epoxy (Example 3 above)	33.77

[0047] Parts I and II were combined in the amounts shown (total 100 parts), applied as a film to a substrate, and cured at ambient conditions. The coating showed good appearance, cure, and film properties.

35 EXAMPLE 7

[0048] This example illustrates the preparation of an ambient curing coating composition comprising an LPA/sorbitol ether epoxy/isocyanate blend. Three separate parts or packages were formed and the parts were mixed in a pot to obtain an ambient curing coating for application to a substrate.

Part I	
Component	Parts by Weight
LPA (Example 2 above)	47.44
15% triethylene diamine in PM acetate	12.85
1% Dibutyl tin dilaurate in MEK (methyl ethyl ketone)	1.39
1% BYK®-301 in PM acetate	3.53

Part II	
Component	Parts by Weight
DCE-358 sorbitol ether epoxy from Dixie Chem.	28.37

Part III	
Component	Parts by Weight
Tolonate HDT-isocyanate from Rhone Poulenc	6.42

[0049] Parts I, II and III were combined in the amounts shown (total 100 parts), applied as a film to a substrate, and cured at ambient conditions. The coating showed good appearance, cure, and film properties.

10 EXAMPLES 8 - 10

[0050] These examples illustrate a refinish clearcoat according to the present invention comprising a blend of LPA with sorbitol glycidyl ether and dighycidyl cyclohexane dicarboxylate and epoxy resin and HMDI isocyanate trimer.

	Parts by Weight		
	8	9	10
Part 1			
Linear Pendant Anhydride	106.37	53.08	105.35
(Example 2)			
BYK® 306 flow additive	0.40	0.40	0.40
PM Acetate	5.31	3.55	5.67
Tinuvin® 1130 from Ciba	4.65	4.47	4.64
Tinuvin® 123 from Ciba	3.10	2.98	3.10
Part 2			
DCE-358® epoxy from Dixie	33.72	0.00	26.76
Tolonate HDT®	0.00	0.00	13.38
Polymeric epoxy as in Ex. 3	0.00	70.58	0.00
except a 1/8/8 ratio of			
HEMA/IBMA/GMA		<u>-</u>	
XU-71950® epoxy from Dow	27.87	47.05	22.12
Part 3			-
, 4	18.58	17.89	18.57
25% triethylene diamine in PM acetate	18.56	17.03	,5.57
Total	200.00	200.00	200.00

[0051] The compositions prepared above were tested as films drawn down on glass or on glass previously coated with a blue Chromabase® (from DuPont) solventborne basecoat. The properties were as follows:

Appearance	ок	ок	ок
Dry time (in hours)			
Bk Dry Time #1 (free from dust)	1.0	0.50	1.25
Bk Dry Time #2 (dry to touch)	23	7.375	22
Bk Dry Time #3 (hard dry)	22.5	22.5	22.5
Bk Dry Time #4 (through dry)	23+	23+	23+
Persoz 5 day/7 day (hardness)			
on glass	92/143	15/45	67/93
on chromabase	41/51	37/52	38/48

(continued)

Appearance	ок	ок	ок
Tukon 7 Day (hardness) on glass on chromabase MEK Double Rubs (solvent resistance)	4.80	1.10	2.13
	1.60	1.12	1.40
on glass	200+	200+	200+
on Chromabase® basecoat	200+	30	200+

Claims

10

20

25

30

35

40

45

50

55

1. A coating method which comprises: 15

providing a composition comprising, by weight of composition, 10 - 70 percent organic solvent and 30 to 90 percent of a binder comprising:

- (a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central
- (b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy functionality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality;
- (c) a functional amount of at least one active catalyst; and
- (d) optionally an isocyanate crosslinking agent;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and in the absence of isocyanate the ratio of equivalents of hydroxy to anhydride is 0.05 to 1.0 and in the presence of isocyanate the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate is 0.05 to 1.5; and

coating a substrate with said composition; allowing said composition to cure at a temperature of form 15.5-43.3°C (60-110°F).

- A coating composition, for curing under ambient conditions, comprising, by weight of composition, 10 70 percent organic solvent and 30 to 90 percent of a binder comprising:
 - (a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central moiety; (b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy function-
 - ality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality; and
 - (c) a functional amount of at least one active catalyst;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and the ratio of equivalents of hydroxy to anhydride is 0.05 to 1.0;

- said composition being free from surface tension reducing agent.
- 3. A coating composition, for curing under ambient conditions, comprising, by weight of composition, 10 70 percent organic solvent and 30 to 90 percent of a binder comprising:
 - (a) an anhydride resin having a weight average molecular weight of less than 3000 that contains (1) a central moiety, and (2) on average, at least 3 pendant, non-cyclic anhydride moieties bonded to the central moiety;
 - (b) an oligomer or polymer crosslinker having a molecular weight of 150 to 20,000 and having epoxy functionality of at least 2, at least a portion of which crosslinker has at least one hydroxy functionality;
 - (c) a functional amount of at least one active catalyst; and
 - (d) an isocyanate crosslinking agent;

wherein the ratio of equivalents of epoxy to anhydride is 0.5 to 1.8 and the ratio of equivalents of hydroxy to the combination of anhydride and isocyanate is 0.05 to 1.5.

- 4. A coated substrate comprising a curable coating composition of claim 2 or 3 applied to a substrate.
- 5. A coated substrate of claim 4, wherein the substrate is coated with a pigmented base coat.
- A coated substrate of claim 4, wherein the applied curable composition is substantially free from pigment.
 - A coated substrate of claim 5, wherein the base coat is a water based coating composition.
- 8. The composition of claim 2 or 3 in multi-pack form, in which component (a) is in a pack which is separate from component (b) and component (d) when present.

Patentansprüche

20

25

35

50

55

Beschichtungsverfahren, welches Verfahren umfasst:

Bereitstellen einer Zusammensetzung, die auf Gewicht der Zusammensetzung bezogen aufweist: 10 bis 70 Prozent organisches Lösemittel und 30 bis 90 Prozent eines Bindemittels, aufweisend:

- (a) ein Anhydridharz mit einer massegemittelten relativen Molekülmasse von weniger als 3.000, wobei das Harz enthält: (1) eine zentrale Gruppe; und (2) im Mittel mindestens drei an der zentralen Gruppe gebundene, nichtcyclische Anhydrid-Seitengruppen;
- (b) einen Oligomer- oder Polymer-Vernetzer mit einer relativen Molekülmasse von 150 bis 20.000 und mit einer Epoxy-Funktionalität von mindestens zwei, wobei mindestens ein Teil des Vernetzers mindestens eine Hydroxy-Funktionalität hat;
- (c) eine funktionelle Menge von mindestens einem aktiven Katalysator; und
- 30 (d) wahlweise ein Isocyanat-Vemetzungsmittel;

wobei das Äquivalentverhältnis von Epoxy zu Anhydrid 0,5 bis 1,8 beträgt und in Abwesenheit von Isocyanat das Äquivalentverhältnis von Hydroxy zu Anhydrid 0,05 bis 1,0 beträgt und bei Anwesenheit von Isocyanat das Äquivalentverhältnis von Hydroxy zur Kombination von Anhydrid und Isocyanat 0,05 bis 1,5 beträgt; sowie

Beschichten eines Substrats mit dieser Zusammensetzung;

diese Zusammensetzung bei einer Temperatur von 15,5° bis 43,3°C (60-110°F) vernetzen lassen.

- Beschichtungszusammensetzung zum Vernetzen unter Umgebungsbedingungen, aufweisend bezogen auf das Gewicht der Zusammensetzung: 10 bis 70 Prozent organisches Lösemittel und 30 bis 90 Prozent eines Bindemittels, aufweisend:
- (a) ein Anhydridharz mit einer massegemittelten relativen Molekülmasse von weniger als 3.000, wobei das Harz enthält: (1) eine zentrale Gruppe; und (2) im Mittel mindestens drei an der zentralen Gruppe gebundene, nichtcyclische Anhydrid-Seitengruppen;
 - (b) einen Oligomer- oder Polymer-Vernetzer mit einer relativen Molekülmasse von 150 bis 20.000 und mit einer Epoxy-Funktionalität von mindestens zwei, wobei mindestens ein Teil des Vernetzers mindestens eine Hydroxy-Funktionalität hat;
 - (c) eine funktionelle Menge von mindestens einem aktiven Katalysator;

wobel das Āquivalentverhältnis von Epoxy zu Anhydrid 0,5 bis 1,8 beträgt und das Āquivalentverhältnis von Hydroxy zu Anhydrid 0,05 bis 1,0 beträgt; welche Zusammensetzung frei ist von einem die Oberflächenspannung herabsetzenden Mittel.

 Beschichtungszusammensetzung zum Vernetzen unter Umgebungsbedingungen, aufweisend bezogen auf das Gewicht der Zusammensetzung: 10 bis 70 Prozent organisches Lösemittel und 30 bis 90 Prozent eines Bindemittels, aufweisend:

- (a) ein Anhydridharz mit einer relativen Molekülmasse von weniger als 3.000, wobei das Harz enthält: (1) eine zentrale Gruppe; und (2) im Mittel mindestens drei an der zentralen Gruppe gebundene, nichtcyclische Anhydrid-Seitengruppen;
- (b) einen Oligomer- oder Polymer-Vernetzer mit einer massegemittelten relativen Molekülmasse von 150 bis 20.000 und mit einer Epoxy-Funktionalität von mindestens zwei, wobei mindestens ein Teil des Vernetzers mindestens eine Hydroxy-Funktionalität hat;
 - (c) eine funktionelle Menge von mindestens einem aktiven Katalysator; und

(d) ein Isocyanat-Vernetzungsmittel;

wobei das Āquivalentverhältnis von Epoxy zu Anhydrid 0,5 bis 1,8 beträgt und in Abwesenheit von Isocyanat das Äquivalentverhältnis von Hydroxy zur Kombination von Anhydrid und Isocyanat 0,05 bis 1,5 beträgt.

- 4. Beschichtetes Substrat, aufweisend eine vernetzungsfähige Beschichtungszusammensetzung nach Anspruch 2 oder 3, die auf ein Substrat aufgetragen ist.
- 5. Beschichtetes Substrat nach Anspruch 4, wobei das Substrat mit einer pigmentierten Grundschicht beschichtet ist.
 - Beschichtetes Substrat nach Anspruch 4, wobei die aufgebrachte, vernetzungsfähige Zusammensetzung weitgehend frei ist von Pigment.
- 7. Beschichtetes Substrat nach Anspruch 5, wobei die Grundschicht eine Beschichtungszusammensetzung auf Wasserbasis ist.
 - 8. Zusammensetzung nach Anspruch 2 oder 3 in Multipack-Form, in welcher sich die Komponente (a) in einem Pack befindet, das getrennt ist von der Komponente (b) und Komponente (d), sofern vorhanden.

Revendications

10

15

20

30

35

40

45

50

55

1. Procédé de revêtement qui comprend :

la fourniture d'une composition comprenant, en poids de la composition, 10-70% de solvant organique et 30 à 90% d'un liant comprenant :

- (a) une résine d'anhydride ayant un poids moléculaire moyen en poids de moins de 3000 qui contient (1) une partie centrale et (2) en moyenne, au moins 3 parties d'anhydride non cycliques pendantes liées à la partie centrale ;
- (b) un agent de réticulation oligomère ou polymère ayant un poids moléculaire de 150 à 20 000 et ayant une fonctionnalité époxy d'au moins 2, dont au moins une portion de l'agent de réticulation a au moins une fonctionnalité hydroxy;
- (c) une quantité fonctionnelle d'au moins un catalyseur actif, et
- (d) facultativement un agent de réticulation d'isocyanate ;

dans lequel le rapport d'équivalents d'époxy à anhydride est de 0,5 à 1,8 et en l'absence d'isocyanate, le rapport d'équivalents d'hydroxy à anhydride est de 0,05 à 1,0 et en présence d'isocyanate, le rapport d'équivalents d'hydroxy à la combinaison d'anhydride et d'isocyanate est de.0,05 à 1,5 ; et

revêtement d'un substrat avec ladite composition ; laisser ladite composition durcir à une température de 15,5-43,3°C (60-110°F).

- Composition de revêtement, pour durcir sous des conditions ambiantes, comprenant, en poids de la composition, 10-70% de solvant organique et 30 à 90% d'un liant comprenant :
 - (a) une résine d'anhydride ayant un poids moléculaire moyen en poids de moins de 3000 qui contient (1) une partie centrale, et (2) en moyenne, au moins 3 parties d'anhydride non cycliques pendantes liées à la partie

centrale:

5

10

15

20

25

30

35

40

45

50

55

(b) un agent de réticulation oligomère ou polymère ayant un poids moléculaire de 150 à 20 000 et ayant une fonctionnalité époxy d'au moins 2, dont au moins une portion de l'agent de réticulation a au moins une fonctionnalité hydroxy; et

(c) une quantité fonctionnelle d'au moins un catalyseur actif ;

dans laquelle le rapport d'équivalents d'époxy à anhydride est de 0,5 à 1,8 et le rapport d'équivalents d'hydroxy à anhydride est de 0,05 à 0,1;

ladite composition étant exempte d'agent réduisant la tension superficielle.

3. Composition de revêtement, pour durcir sous des conditions ambiantes, comprenant, en poids de la composition, 10-70% de solvant organique et 30 à 90% d'un liant comprenant :

(a) une résine d'anhydride ayant un poids moléculaire moyen en poids de moins de 3000 qui contient (1) une partie centrale et (2) en moyenne, au moins 3 parties d'anhydride non cycliques pendantes, liées à la partie

(b) un agent de réticulation oligomère ou polymère ayant un poids moléculaire de 150 à 20 000 et ayant une fonctionnalité époxy d'au moins 2, dont au moins une portion de l'agent de réticulation a au moins une fonctionnalité hydroxy;

(c) une quantité fonctionnelle d'au moins un catalyseur actif ; et

(d) un agent de réticulation d'isocyanate ;

dans laquelle le rapport des équivalents d'époxy à anhydride est de 0,5 à 1,8 et le rapport d'équivalents d'hydroxy à la combinaison d'anhydride et d'isocyanate est de 0,05 à 1,5.

Substrat enduit comprenant une composition de revêtement durcissable selon la revendication 2 ou 3 appliquée à un substrat.

Substrat enduit selon la revendication 4, dans lequel le substrat est enduit avec une couche de base pigmentée.

Substrat enduit selon la revendication 4, dans lequel la composition durcissable appliquée est substantiellement exempte de pigment.

7. Substrat enduit selon la revendication 5, dans lequel la couche enduite est une composition de revêtement à base

8. Composition selon la revendication 2 ou 3 dans une forme d'emballage multiple dans laquelle le composant (a) est un élément qui est séparé du composant (b) et du composant (d) quand il est présent.