

```
KOLIKO NAJMANJ ČASA JE POTREBNEGA?
  -rintml -) cakternest problema. Usak verec in [t] moramo prebrat
  5(n+m) = 0 (n+ m)
                                         111 = n
 T(n+m) = Gradnja) + fraznomava)
f(m)
f(m)
                                     (p) = m
RESITEV -) KONENI AVTOMAT -) rozpoznova v O(n)
5(T) -) Josina najdaljse (-) gradnja O(m³ [E]) -) ne moremo sprovit na O(m predpore niza 5, ki je pripona (m problemationo, saj je niza 1
                                                        sprovit na O(m)
                                              veore p ponovadi majken.
 ( CCAC ) = 0
 GCA (CCAC) = 1
 (cccA) = 2
  I delta funkcija za deterministični korini automat.
                                                        to RACUNAMO
a) Ivori I (p)
        m= Inli
                                               -) [Tr Lo. 1 (n [o. 8] a)]
      - for & .... m
m

E for a in \Sigma:

k = \min(m+1, g+2)

repeat

k = k-1
                entil p[0....k] ni pripona p[0....s]a
               5[x, a] = R
       T (gradnje) = m. E. m. m = 0 (m3/21)
```

Parromaj (t, r)

n = t. length

T = Tvori T(r)

g = 0

for i = 0 ... n - 1

g = T(g, t [i])

n if g = m

report i = m

-) za nobjubno itevilo besed lahko isracunamo vorce. Vsorce pomorro v naprej, besedila pa ne

 $O(m^3|\Sigma|+n)$ veliko veliko fot Σ f(m) Σ holje kot naivni pristop.

iskalna beseda je ponavadi selo preprosta in prajša od Besedila.

primer DNK:

T = DNK ~ 4-109

noimi pristop: O(n·m) # ~ 10¹²
bonini ovtonat ~ (10⁹ + 10⁷) ~ 2072 20 1,01.10⁹
4= 10⁹

- · ce imamo procesor, hi ima frehrenco 16H2 =) 1 operacija se izvede v
 - 2a naimi prixtor bi potrebovali $(10^{10}, 10^{10})$ s = 1000 s ≈ 17 min borini avtonat bi potreboval $(401,01\cdot10^9\cdot10^{10})$ ls $\approx 1,07$ s
- =) MISLIM DA JE RAZVIDNO DA VELIKO HITREJE DELAMO
 IN ISCEMO VZOREC S KONCNIM AVTOMATOM KOT Z
 NAIVNIM PRISTUPOM

input																	
state	a	b	C	P													
0	1	0	0	a													
1	1	2	0	b													
2	3	0	0	a													
2	1	4	0	b													
4	5	0	0	a													
5	1	4	6	C	i	_	1	2	3	4	5	6	7	8	9	10	11
6	7	0	0	a	T[i]	-	a	b	a	b	a	b	a	C	a	b	a
7	1	2	0		state $\phi(T_i)$	0	1	2	3	4	5	4	5	6	7	2	3
		(b)								(c)							