Analyse spatiale et territoriale du logement social Formation Carthageo-Geoprisme 2021 / 1ere journée

Claude Grasland, Université de Paris (Diderot)

Section 1

Localisation territoriale

Le format sf (spatial features)

La cartographie et plus généralement les opérations géométriques sur des données spatiales dans R peuvent facilement être effectuées avec le **package sf** (spatial features) qui crée des objets uniques rassemblant à la fois

- un tableau de données (l'équivalent du fichier .dbf)
- une géométrie (l'équivalent du fichier .shp)
- une projection (l'équivalent du fichier .prj)

Lorsqu'on récupère des fonds de carte au format shapefile (.shp) ou dans d'autres formats standards comme GeoJson, la première tâche consiste donc à les convertir au formt sf afin de pouvoir les utiliser facilement dans R. L'importation se fait à l'aide de l'instruction st_read en indiquant juste le nom du fichier .shp à charger. Les autres fichiers (.dbf ou .proj) seront lus également et intégrés dans l'objet qui hérite de la double classe data.frame et sf.

Etapes de préparation des données

Dans notre exemple, nous allons suivre les étapes suivantes :

- 1 Préparer les données statistiques par IRIS dans un data.frame
- Charger un fonds de carte par IRIS au format sf
- 3 Effectuer une jointure entre les deux fichiers par le code IRIS
- Sauvegarder le résultat
- Sagréger les données statistiques et géométriques par commune
- Sauvegarder le résultat.

Préparer les données statistiques

On importe le fichier des individus :

programme

tab_ind<-readRDS("data/menag2018.RDS")</pre>

```
FALSE COMMUNE ARM IRIS ACHL AEMM FALSE 1 75056 75101 751010101 C114 2014 FALSE 2 75056 75101 751010101 A11 2008 FALSE 3 75056 75101 751010101 A11 2012
```

Agréger les données

On commence par créer un *tableau long* croisant les deux variables et leur effectif pondéré :

programme

```
tab_long<- tab_ind %>%
    filter(HLML != "Y")%>%
    group_by(IRIS,HLML)%>%
    summarise(NB=sum(IPONDL))
```

IRIS	HLML	NB
751010101	1	179.08
751010101	2	329.51
751010102	1	3.16
751010102	2	96.72
751010102	1	10.07

Pivoter le tableau

Puis on fait "pivoter" le tableau pour l'obtenir en format large :

IRIS	HLM1	HLM2
751010101	179.08	329.51
751010102	3.16	96.72
751010103	10.97	129.56
751010201	148.72	1182.91
751010202	16.34	923.22

Ajouter de nouvelles variables

On ajoute de nouvelles variables telles que le nombre total de ménage et le % de ménages en HLM :

IRIS	HLM1	HLM2	TOT	HLMpct
751010101	179.08	329.51	508.59	35.21
751010102	3.16	96.72	99.89	3.17
751010103	10.97	129.56	140.53	7.81
751010201	148.72	1182.91	1331.63	11.17
751010202	16.34	923.22	939.56	1.74

Examiner la distribution statistique

On examine l'histogramme donnant distribution statistique du % de ménages ordinaires résidant en HLM par IRIS.

Examiner la distribution statistique

Charger les données géométriques

On importe le fichier des iris du Val-de-Marne qui est au format sf en ne gardant que les colonnes utiles

programme

```
map_iris <- readRDS("data/map_iris.RDS")
map_iris<-map_iris[,c(4,5,1,2,7)]
names(map_iris)<-c("IRIS","NOM_IRIS","COM","NOM_COM","geometry</pre>
```

résultat

FALSE [1] "sf" "data.frame"

IRIS	NOM_IRIS	СОМ	NOM_COM
751176511 920240403			Paris 17e Arrondissement Clichy

Visualisation du fonds iris avec sf

On peut facilement produire une carte vierge des iris du Grand Paris en faisant un plot de la colonne geometry du fichier sf

plot(map_iris\$geometry,col="lightyellow")

Jointure des données IRIS et du fonds de carte

programme

résultat

IRIS NO	M_IRIS	COMNOM_COM	M HLM1HLM2TOT HLM	Ipgetometry
7510105011	nt-	7510 Paris 1er	179.0 8 29.5 \$ 08.5 9 5.2	1MULTIPOLYG
Geri	main	Ar-		(((651771.6
l'Au	xerrois	rondisse-		68
1		ment		
75101051.002	nt-	$7510\mathbf{P}$ aris 1 er	3.16 96.7299.893.17	MULTIPOLYG
Ger	main	Ar-		(((651668.7
l'Au	xerrois	rondisse-		68
_				

ment

Sauvegarde du fichier par IRIS

On sauvegarde notre fichier au format .RDS de R

```
saveRDS(map_iris_tab,"tmp/map_iris_hlm.RDS")
```

Agrégation statistique + géométriques

Grâce aux nouveaux packages de R (*dplyr* et *sf*) il est possible d'**agréger simultanément les statistiques et les géométries** après les avoir stockés dans un même objet de type "sf"

Du coup, on peut gagner beaucoup de temps dans les traitements et les analyses cartographiques, en particulier si l'on veut tester différents niveaux d'agrégation.

Agrégation des IRIS en communes

L'agrégation est très facile et elle concerne à la fois les variables (de stock) et les geometries

```
programme
```

16 / 21

Agrégation des iris en communes

résultat statistique						
COM	NOM_COM	HLM1	HLM2	ТОТ	HLMp	
75101	Paris 1er Arrondissement	952.20	8321.07	9273.27	10.2	
75102	Paris 2e Arrondissement	562.85	11696.77	12259.63	4.5	
75103	Paris 3e Arrondissement	1517.28	18267.52	19784.80	7.6	

Agrégation des iris en communes

résultat géométrique

Examiner la distribution statistique

On examine l'histogramme donnant distribution statistique du % de ménages ordinaires résidant en HLM par Commune.

Examiner la distribution statistique

Sauvegarde du fichier par commune

On sauvegarde notre fichier au format .RDS de R

```
saveRDS(map_com_tab,"tmp/map_com_hlm.RDS")
```