Machine Learning Basics and Usages in Bioinformatics

Burcin Buket OGUL burcinbo@uio.no Senior Engineer at USIT

What is Artificial Intelligence?

Refers to the ability to:

- acquire and apply knowledge,
- solve problems,
- learn from experience, and adapt to new situations.

Human intelligence encompasses a wide range of cognitive abilities, including reasoning, problem-solving, learning, perception, language understanding, and emotional intelligence.

What is Artificial Intelligence?

"Al is a field of science concerned with building computers and machines that can reason, learn, and act in such a way that would normally require human intelligence or that involves data whose scale exceeds what humans can analyze."

Google

"Al is the capability of a computer system to mimic human-like cognitive functions such as learning and problem-solving."

Microsoft

"Al leverages computers and machines to mimic the problem-solving and decision-making capabilities of the human mind"

IBM

"Al makes it possible for machines to **learn** from **experience**, adjust to new inputs and perform **human-like** tasks."

SAS

Al

- mimic human
- reasoning, problem solving, decision making
- learn from data/experience

What is Machine Learning?

• "the acquisition of knowledge or skills through experience, study, or by being taught."

What is Machine Learning?

- [Arthur Samuel, 1959]
 - Field of study that gives computers
 - the ability to learn without being explicitly programmed
- Instead of writing a program by hand, we collect lots of examples that specify the correct output for a given input

ARTIFICIAL INTELLIGENCE VS MACHINE LEARNING VS DEEP LEARNING

1 Artificial Intelligence

Development of smart systems and machines that can carry out tasks that typically require human intelligence

2 Machine Learning

Creates algorithms that can learn from data and make decisions based on patterns observed

Require human intervention when decision is incorrect

3 Deep Learning

Uses an artificial neural network to reach accurate conclusions without human intervention

Applications of Al

Two broad categories

Discriminative (Predictive) AI – More traditional

Generative AI – like ChatGPT

Discriminative/Predictive Al Main Problem: Classification

Example 1: Gender Classification from Image

Example 2: Spam Classification from E-mail

Example 3: Music Classification from Song

General Learning Model

Avocados	Mary Company	ANNIN ANNI	THE THE PARTY OF T	MANUAL MA	THE THE PARTY OF T
	Height (cm):	9	10	8	12
	Roughness:	4	6	5	4

Mangos	0		\bigcirc	0	0	
	Height (cm):	3.5	4	2	3	
	Roughness:	1	2	1	2	

Types of Learning

Supervised: Learning with a labeled training set

Example: email *classification* with already labeled emails

Unsupervised: Discover patterns in unlabeled data

Example: *cluster* similar documents based on text

Classification

Regression

Clustering

Anomaly Detection Sequence labeling

http://mbjoseph.github.io/2013/11/27/measure.html

. . .

Tasks

Supervised Learning

Unsupervised learning

Supervised learning

Pattern Classification

A pattern is an entity, vaguely defined, that could be given a name, e.g.

- Fingerprint image
- Handwritten word
- Face in a picture
- Speech signal
- E-mail text
- DNA sequence
- Protein sequence
- Gene expression data

Pattern classification (recognition) is the study of how machines can

- Learn how to distinguish patterns of interest
- Make reasonable decisions about the categories of the patterns

Machine Learning:

An example study

Subcellular Localization Prediction

Bioinformatics

 Analyzing current data to infer new biological knowledge using computational techniques

DATA?

- Sequence: DNA, RNA, Protein...
- Structure: Protein structure, RNA structures
- Interaction: Protein-protein interaction, TF binding, microRNA targets
- Experiment result: Gene expression, metabolomics...

Sequence Classification

- Whole sequence classification
- Sub-sequence classification
- Residue classification

Whole Sequence Classification

e.g.

- Structural classes: all-α, all-β, α+β,...
- Subcellular localizations: mito, cyst, ext,...
- Folds: globin-like, barstar-like, ferritin-like,...

An example study

Subcellular Localization Prediction

Motivation

Subcellular localization is a key property in functional annotation of proteins.

Automated categorization of proteins into their localizations based on sequence is an important challenge.

Training Data

2427 annotated eukaryotic proteins

4 known locations

- Nuclear
- Cytoplasmic
- Mitochondrial
- Extracellular

Pre-processing

Proteins that have ambiguous locations are removed

Feature Selection

Amino acid composition

Dipeptide composition

n-peptide compositions

Physicochemical properties

Sequence similarity scores with other known proteins

Sub-sequence similarity scores (first k residue at N-terminal)

Model Learning

Classification

Post-processing

Evaluate the outputs of the classifiers based on different feature sets

Decision

Select the most confident output

Results

Location	Amino acid composition	Dipeptide composition	Biochemical properties	Combination of a, b and c	n-peptide compositions
	(a)	(b)	(c)		
Nuclear	86.1	92.7	85.6	93.2	94.3
Cytoplasmic	76.9	80.2	74.6	80.6	84.5
Mitochondrial	55.5	58.8	59.2	65.1	66.4
Extracellular	76.0	79.0	76.6	83.4	88.9
Overall	78.1	82.9	78.8	84.6	87.1

Some remarks

Selection of

- training data
- feature representations
- learning models

"Deep Learning doesn't do different things, it does things differently"

Supervised Learning

 Traditional pattern recognition models work with hand crafted features and relatively simple trainable classifiers.

Limitations

- Very tedious and costly to develop hand crafted features.
- The hand-crafted features are usually highly dependents on one application.

Deep Learning

 Deep learning has an inbuilt automatic multi stage feature learning process that learns rich hierarchical representations (i.e. features).

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond in useful ways.

Machine Learning

Yes it works, but how?

Thank you...