Estudo das Interações entre Objetos

José Augusto Fabri

Introdução

- Num sistema OO os serviços (Casos de Uso) são fornecidos através da colaboração de grupos de objetos;
- Os objetos interagem através de comunicações de forma que juntos, cada um com suas responsabilidades, eles realizem Casos de Uso;
- Objetivos da Aula apresentar a interação entre os Objetos:
 - Diagramas de Seqüência
 - Diagramas de Colaboração

Diagrama de Seqüência (DS)

 Um DS é um diagrama de objetos, ou seja, ele contém como primitiva principal um conjunto de objetos de diferentes classes.

Vantagens:

- Descrever as comunicações necessárias entre os objetos para a realização dos processos.
- Descrever ao longo de uma linha de tempo a sequência de comunicações entre objetos.
- Apresentar os relacionamentos necessários entre as classes, métodos e atributos.

Desvantagem:

 Consumir um tempo maior para o desenvolvimento para domínios complexos.

Diagrama de Seqüência (DS)

- A construção dos DS é norteada pelo modelo de caso de uso.
- Como construir um DS?
 - Tomar cada caso de uso;
 - Desenvolver a seqüência normal das comunicações entre objetos para a realização do caso de uso;
 - Desenvolver os diagramas complementares para tratamento das seqüências alternativas (foco no tratamento de erro).

Diagrama de Seqüência (DS)

- O DS está relacionado com o termo cenário.
- Cenário é a forma de ocorrência/realização de um caso de uso.
- Como um caso de uso pode ser realizado de diferentes formas, para descrever a realização deles pode ser necessário estudar vários cenários.
- Cada cenário é descrito por um diagrama de seqüência.
- Exemplo: Caso de uso Cadastrar Aluno do controle Acadêmico, considerar os seguintes cenários:
 - Incluir aluno;
 - Alterar aluno;
 - Excluir aluno.

- A notação apresenta um conjunto de objetos envolvidos em um determinado cenário.
- Tais objetos trocam mensagens ao longo da linha do tempo.
- Os objetos são colocados na parte superior do diagrama.
- Linhas verticais tracejadas são traçadas da base dos objetos, até parte inferior do diagrama representando o conceito de tempo.

- O ponto superior da linha indica um instante inicial.
- A medida que se avança para baixo evoluí-se o tempo.
- Retângulos colocados sobre as linhas de tempo dos objetos indicam os períodos de ativação do objeto.
- Durante o período de ativação o objeto está em execução realizando algum processamento.
- Nos períodos em que o objeto não está ativo, ele está alocado (ele existe) mas não está executando nenhuma instrução.

DS – Cenário: Inclusão de Aluno (Caso de Uso – Cadastrar Aluno)

- Outra primitiva importante dos diagramas de seqüência é a troca de mensagem.
- Tal troca indica o momento de interação ou comunicação entre os objetos.
- Notação: segmentos de retas direcionados da linha de tempo do objeto de origem para a linha de tempo do objeto destino. Uma seta é colocada na extremidade destino.

Troca de mensagens entre objetos e entre atores e objetos

- As mensagens trocadas entre um objeto e outro e um ator podem ter três significados:
 - Chamada de Função ou Procedimentos;
 - Envio de Mensagens;
 - Ocorrência de Eventos.

Mensagens: Chamada de Função ou Procedimento

- É uma das interações mais frequentes entre objetos;
- Significado: Um objeto está solicitando a execução de uma função (um método) de outro objeto;
- A idéia é a mesma de chamada de função das linguagens de programação;
- Importante: Para que um objeto, possa chamar um método de outro objeto é necessário que o método seja declarado como público na classe respectiva.

Mensagens: Envio de Mensagem

- Um objeto pode se comunicar com outro objeto, através do envio explícito de uma mensagem;
- Nesse caso não existe uma interação direta entre os dois objetos;
- Presença de um mecanismo roteador ou de entrega de mensagem;
- Tal tipo de serviço é prestado pelo sistema operacional;
- Exemplo: O objeto impressora informa ao SO que a mesma está desligada. O SO informa ao software que a impressora não está disponível.

Mensagens: Ocorrência de Evento

- Forma padrão de interação entre atores e objetos;
- Evento: algum acontecimento externo ao software.
 Mas que é a ele notificado pois lhe diz respeito;
- A notificação é feita pelo SO;
- O software também pode notificar o SO, gerando eventos;
- Exemplo:
 - Saídas para dispositivos (monitor, porta serial, disco).
 Tais saídas são geradas pelo SO.

Mensagens: Ocorrência de Evento

Evento	Origem	Destino
Clique do mouse	mouse	algum objeto
Movimentação do mouse	mouse	algum objeto
Dados no <i>buffer</i> do teclado	teclado	algum objeto
Dados no buffer da serial	porta serial	algum objeto
Projeção de dados no monitor	algum objeto	monitor
Bip do autofalante	algum objeto	autofalante
Colocação de dados no buffer da serial	algum objeto	porta serial
Interrupção	dispositivo de hardware	algum objeto
Eventos do sistema operacional (timer)	sistema operacional	algum objeto

Alguns exemplos de Eventos

Mensagens em DS

Sintaxe das mensagens:

Predecessor/*[Condição] Seqüência: Retorno := Nome_Mensagem(Argumentos)

- Predecessor /
 - Numeração para indicar a ordem de ocorrência;
 - Toda mensagem para ser enviada depende de que a mensagem anterior tenha sido enviada, indicando assim, uma dependência temporal e que define a ordem de envio;
 - A msg anterior é o PREDECESSOR natural de cada msg e não precisa ser indicado pois esse sentido está implícito.

Predecessor /

- Algumas mensagens dependem de mais de um predecessor (processos concorrentes);
- Existência de mais de um objeto ativo, uma mensagem pode depender de seu predecessor imediato, mas também de algum outro predecessor associado à outro objeto ativo. Resultado um conjunto de mensagens que não seguem uma seqüência;
- Indicação:
 - A barra inclinada: 1,2,3/

Condição

Predecessor/*[Condição] Seqüência: Retorno := Nome_Mensagem(Argumentos)

- É opcional e aparece entre colchetes [....]
- Para que a mensagem seja enviada é necessário que a condição seja satisfeita;
- Exemplo:

```
[x < 10], [res = OK], [valor = 5], [flag = true].
```

- O asterisco * representa repetições, a mensagem será enviada várias vezes até o critério de parada ser satisfeito;
- Condição falsa na primeira vez a mensagem não é enviada.

```
*[x < 10] calcular (x)
```

Neste exemplo enquanto o valor de x for menor que 10, a mensagem calcular(x) será enviada.

Seqüência

- Ordem de aparecimento das mensagens no diagrama;
- Mensagens enviadas na ordem indicada por seus números de seqüência;
- Esta informação é, na maioria das vezes, desnecessária, pois o grafismo dos diagramas de seqüência já indica a cronologia de ocorrência das mensagens;
- No diagrama de colaboração a indicação pode ser útil;
- Notação
 número seguido de dois pontos antes do nome da mensagem 2:
- Possibilidade de se utilizar níveis de numeração 1.1:

Retorno

- Valor que deve ser retornado ao objeto que enviou a mensagem;
- Mais comum na chamada de funções;
- Objeto que recebe o retorno deve indicar uma variável para receber tal valor;
- Exemplo: res := registrar(codigo)
 - Obs1: o retorno está na função chamada
 - Obs 2: res pode ser um atributo do objeto, ou uma variável local.

Nome da mensagem

 Identificador da mensagem ou função que está sendo chamada.

Argumentos

- Valores enviados junto com a mensagem
- Valores são constantes e variáveis
- Os argumentos devem coincidir com os parâmetros definidos para função na classe do objeto destino.

DS – Tipos de Mensagens

- As mensagens podem ser:
 - Síncronas;
 - Assíncronas.
- Síncronas: implicam um sincronismo rígido entre os estados do objeto que envia a mensagem e os do objeto de destino da mensagem.
- Sincronismo: O objeto que enviou a mensagem deve aguardar a conclusão do processamento feito pelo objeto destino, para então prosseguir seu fluxo de execução.

- Mensagens Síncronas (exemplo):
 - Chamada de função
 - Objeto que faz a chamada é empilhado e fica neste estado até a conclusão do processamento da função chamada.
 - Notação: um segmento de reta com uma seta cheia em uma das extremidades.

- Mensagens Assíncronas:
 - Mensagem enviada de um objeto a outro sem que haja dependência entre os estados dos dois processos.
 - O objeto de origem envia a mensagem e prossegue seu processamento, independentemente, do tratamento da mensagem feita no objeto destino.

• Exemplo:

- Mecanismo de envio de mensagem de um SO
- De modo geral todas as comunicações entre atores e objetos.
- Exemplo: Operação para execução de uma mensagem no vídeo. Um objeto executa a instrução printf e o sistema despacha a mensagem para o ator (o monitor). O objeto processe seu processamento, independentemente, do desfecho na operação.
 - O software não interrompe o processamento quando o monitor não apresenta a informação.
 - Notação: segmento de reta com uma meia seta em uma das extremidades.

Notação para mensagens síncronas, assíncronas e que consomem tempo.

DS

- Notação complementar:
 - Criação e Destruição de objetos:
 - Objetos podem ser criados e destruídos ao longo da execução de um caso de uso;
 - Ou seja: objetos podem ser criados (alocados) e destruídos (desalocados) ao longo da execução de um caso de uso.
 - 2 Formas de representação:
 - 1ª: Incluir o objeto no alinhamento na parte superior do diagrama de seqüência e indicando os eventos de criação e destruição através de mensagens síncronas.

Notação básica para a criação e destruição de objetos

DS

- Notação complementar Criação e Destruição de objetos
 - 2ª: Fazer com que o objeto apareça no diagrama somente após sua criação e eliminar sua linha de tempo após sua destruição. Utiliza-se neste caso um símbolo de X para indicar a o ponto de destruição do objeto.

Notação alternativa para a criação e destruição de objetos

Autodelegação:

- Envio do objeto para o próprio objeto.
- As mensagens podem ser síncronas e assíncronas.

Objeto Ativo:

- É um objeto que está em execução em uma thread;
- Objeto tem um fluxo de execução diferenciado do fluxo de execução dos demais objetos e está em execução concorrente;
- Típico de SO multitarefa;
- Notação: borda larga do objeto ativo.
- Comunicação entre o objeto ativo e outros objetos se faz através de diagramas de seqüência;
- Os diagramas passam a incluir concorrência. A comunicação entre o objeto ativo e outros objetos se faz através de mensagens assíncronas.

Exemplo de objeto ativo

Diagrama de Colaboração

- Derivam dos DS;
- Podem ser gerados automaticamente;
- Objetivos:
 - Descrever grupos de objetos que colaboram através de comunicações.

Diagrama de Colaboração - Utilização

- São diagramas de objetos;
- As primitivas são:
 - Objetos
 - Atores
 - Comunicações
- As comunicações são:
 - Conexões entre objetos
 - Conexões entre objetos e atores
- Indicação de que estes elementos se comunicam e relacionam as mensagens trocadas entre eles.

Diagrama de Colaboração - Utilização

 Pode-se considerar que o DC é um DS sem as linhas de tempo;

Objetivo:

- Agrupar as mensagens entre pares de objetos de forma a fazer-se um levantamento das necessidades de comunicação;
- Em seguida esta informação será utilizada para a definição das relações estruturais entre as classes de forma a estabelecer canais físicos de comunicação para os objetos;
- Através destes canais (relacionamentos) todas as mensagens serão trocadas entre os objetos das classes respectivas.

Notação para DC

- Inclui a notação para Objetos, Atores e Comunicações;
- Uma comunicação é especificada através de um segmento de reta ligando um objeto a outro ou um objeto a um ator;
- Sobre a reta relaciona-se, em separado, as mensagens enviadas em cada sentido;
- Observação: as mensagens podem ser uni ou bidirecionais conforme o sentido do conjunto de mensagens trocadas entre os objetos.

Exemplo de DC

- 1º)Observe que costuma-se numerar as mensagens de maneira a indicar a ordem da ocorrência.
- 2º)Nos DS costuma-se não fazer esta numeração pois o próprio diagrama já indica o ordenamento pelo seu grafismo.

Exemplos de Diagramas de Seqüência e Diagramas de Colaboração

DS para o caso de uso 'Cadastrar Disciplina' do sistema Controle Acadêmico

Cenário: Inclusão de uma Disciplina no Cadastro

DC – obtido do DS anterior

