

802.11n-HT40

Ch3

Fraguanov/MUz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2389.550	62.1	-38.8	27.7	73.200	Н
17868.750	62.1	-18.5	45.6	35.000	V
17952.188	61.0	-17.7	45.6	33.100	V
17916.563	60.8	-17.7	45.6	32.900	Н
17881.875	60.8	-18.5	45.6	33.700	V
17873.438	60.8	-18.5	45.6	33.700	Н

Ch6

Frequency(MHz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHZ)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
17895.000	61.8	-18.5	45.6	34.700	V
17909.063	61.2	-18.5	45.6	34.100	Н
17994.375	61.1	-17.7	45.6	33.200	V
17902.500	61.1	-18.5	45.6	34.000	V
17949.375	61.1	-17.7	45.6	33.200	Н
17874.375	61.0	-18.5	45.6	33.900	V

Ch9

Eroguanov/MUz)	Result	Cable	Antenna	P _{Mea}	Polarization
Frequency(MHz)	(dBuV/m)	Loss(dB)	Factor	(dBuV/m)	
2483.600	61.5	-38.9	27.7	72.700	V
17898.750	60.8	-18.5	45.6	33.700	Н
17884.688	60.8	-18.5	45.6	33.700	V
17816.250	60.7	-18.5	45.6	33.600	V
17888.438	60.6	-18.5	45.6	33.500	V
17882.813	60.6	-18.5	45.6	33.500	Н

Test graphs as below:

Fig.A.6.2.1 Transmitter Spurious Emission - Radiated (Power): 802.11b, ch1, 2.38 GHz - 2.45GHz

Fig.A.6.2.2 Transmitter Spurious Emission - Radiated (802.11b, Ch1, 1 GHz-3 GHz)

Fig.A.6.2.3 Transmitter Spurious Emission - Radiated (802.11b, Ch1, 3 GHz-18 GHz)

Fig.A.6.2.4 Transmitter Spurious Emission - Radiated (802.11b, Ch6, 9kHz-30 MHz)

Fig.A.6.2.5 Transmitter Spurious Emission - Radiated (802.11b, Ch6, 30 MHz-1 GHz)

Fig.A.6.2.6 Transmitter Spurious Emission - Radiated (802.11b, Ch6, 1 GHz-3 GHz)

Fig.A.6.2.7 Transmitter Spurious Emission - Radiated (802.11b, Ch6, 3 GHz-18 GHz)

Fig.A.6.2.8 Transmitter Spurious Emission - Radiated (802.11b, Ch6, 18GHz – 26.5GHz)

Fig.A.6.2.9 Transmitter Spurious Emission - Radiated (Power): 802.11b, ch11, 2.45 GHz - 2.50GHz

Fig.A.6.2.10 Transmitter Spurious Emission - Radiated (802.11b, Ch11, 1 GHz-3 GHz)

Fig.A.6.2.11 Transmitter Spurious Emission - Radiated (802.11b, Ch11, 3 GHz-18 GHz)

Fig.A.6.2.12 Transmitter Spurious Emission - Radiated (Power): 802.11g, ch1, 2.38 GHz - 2.45GHz

Fig.A.6.2.13 Transmitter Spurious Emission - Radiated (802.11g, Ch1, 1 GHz-3 GHz)

Fig.A.6.2.14 Transmitter Spurious Emission - Radiated (802.11g, Ch1, 3 GHz-18 GHz)

Fig.A.6.2.15 Transmitter Spurious Emission - Radiated (802.11g, Ch6, 30 MHz-1 GHz)

Fig.A.6.2.16 Transmitter Spurious Emission - Radiated (802.11g, Ch6, 1 GHz-3 GHz)

Fig.A.6.2.17 Transmitter Spurious Emission - Radiated (802.11g, Ch6, 3 GHz-18 GHz)

Fig.A.6.2.18 Transmitter Spurious Emission - Radiated (802.11g, Ch6, 18GHz – 26.5GHz)

Fig.A.6.2.19 Transmitter Spurious Emission - Radiated (Power): 802.11g, ch11, 2.45 GHz - 2.50GHz

Fig.A.6.2.20 Transmitter Spurious Emission - Radiated (802.11g, Ch11, 1 GHz-3 GHz)

Fig.A.6.2.21 Transmitter Spurious Emission - Radiated (802.11g, Ch11, 3 GHz-18 GHz)

Fig.A.6.2.22 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT20, ch1, 2.38 GHz - 2.45GHz

Fig.A.6.2.23 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch1, 1 GHz-3 GHz)

Fig.A.6.2.24 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch1, 3 GHz-18 GHz)

Fig.A.6.2.25 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch6, 30 MHz-1 GHz)

Fig.A.6.2.26 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch6, 1 GHz-3 GHz)

Fig.A.6.2.27 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch6, 3 GHz-18 GHz)

Fig.A.6.2.28 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch6, 18GHz – 26.5GHz)

Fig.A.6.2.29 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT20, ch11, 2.45 GHz - 2.50GHz

Fig.A.6.2.30 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch11, 1 GHz-3 GHz)

Fig.A.6.2.31 Transmitter Spurious Emission - Radiated (802.11n-HT20, Ch11, 3 GHz-18 GHz)

Fig.A.6.2.32 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT40, ch3, 2.38 GHz - 2.45GHz

Fig.A.6.2.33 Transmitter Spurious Emission - Radiated (802.11n-HT40, ch3, 1 GHz-3 GHz)

Fig.A.6.2.34 Transmitter Spurious Emission - Radiated (802.11n-HT40, ch3, 3 GHz-18 GHz)

Fig.A.6.2.35 Transmitter Spurious Emission - Radiated (802.11n-HT40, Ch6, 30 MHz-1 GHz)

Fig.A.6.2.36 Transmitter Spurious Emission - Radiated (802.11n-HT40, Ch6, 1 GHz-3 GHz)

Fig.A.6.2.37 Transmitter Spurious Emission - Radiated (802.11n-HT40, Ch6, 3 GHz-18 GHz)

Fig.A.6.2.38 Transmitter Spurious Emission - Radiated (802.11n-HT40, Ch6, 18GHz – 26.5GHz)

Fig.A.6.2.39 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT40, ch9, 2.45 GHz - 2.50GHz

Fig.A.6.2.40 Transmitter Spurious Emission - Radiated (802.11n-HT40, ch9, 1 GHz-3 GHz)

Fig.A.6.2.41 Transmitter Spurious Emission - Radiated (802.11n-HT40, ch9, 3 GHz-18 GHz)

A.7. AC Power-line Conducted Emission

Method of Measurement: See ANSI C63.10-2013-clause 6.2

- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2 If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.
- If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

Voltage (V)	Frequency (Hz)			
120	60			

Measurement Result and limit:

WLAN (Quasi-peak Limit)

_		Result (
Frequency range (MHz)	Quasi-peak Limit (dBμV)	With ch	Conclusion	
(11112)	Emilit (αΒμν)	802.11b	ldle	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.A.7.1	Fig.A.7.2	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit)

Frequency range	Average Limit		Result (dB _µ V) With charger			
(MHz)	(dBμV)	802.11b	ldle			
0.15 to 0.5	56 to 46					
0.5 to 5	46	Fig.A.7.1	Fig.A.7.2	Р		
5 to 30	50					

NOTE: The limit decreases linearly with the logarithm of the frequency in the range $0.15\,\mathrm{MHz}$ to $0.5\,\mathrm{MHz}$.

Conclusion: Pass

Test graphs as below:

Fig.A.7.1 AC Powerline Conducted Emission-802.11b

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.388500	37.9	2000.0	9.000	On	N	20.0	20.2	58.1
0.694500	31.2	2000.0	9.000	On	L1	19.9	24.8	56.0
0.825000	30.9	2000.0	9.000	On	L1	19.9	25.1	56.0
2.107500	32.4	2000.0	9.000	On	L1	19.7	23.6	56.0
2.260500	27.1	2000.0	9.000	On	L1	19.7	28.9	56.0
18.820500	30.7	2000.0	9.000	On	L1	19.9	29.3	60.0

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.388500	34.0	2000.0	9.000	On	N	20.0	14.1	48.1
0.694500	21.4	2000.0	9.000	On	L1	19.9	24.6	46.0
0.825000	18.1	2000.0	9.000	On	L1	19.9	27.9	46.0
1.536000	23.3	2000.0	9.000	On	L1	19.7	22.7	46.0
2.220000	20.1	2000.0	9.000	On	L1	19.7	25.9	46.0
10.770000	25.6	2000.0	9.000	On	L1	19.8	24.4	50.0

Fig.A.7.2 AC Powerline Conducted Emission-Idle

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.388500	36.5	2000.0	9.000	On	L1	19.9	21.6	58.1
0.564000	30.5	2000.0	9.000	On	L1	20.0	25.5	56.0
1.018500	28.2	2000.0	9.000	On	L1	19.7	27.8	56.0
2.094000	34.2	2000.0	9.000	On	L1	19.7	21.8	56.0
3.142500	27.3	2000.0	9.000	On	L1	19.7	28.7	56.0
4.227000	24.2	2000.0	9.000	On	L1	19.7	31.8	56.0

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)
		(ms)						
0.388500	33.3	2000.0	9.000	On	N	20.0	14.8	48.1
0.721500	19.1	2000.0	9.000	On	L1	19.9	26.9	46.0
1.077000	22.0	2000.0	9.000	On	N	19.8	24.0	46.0
1.887000	21.5	2000.0	9.000	On	N	19.7	24.5	46.0
2.593500	21.0	2000.0	9.000	On	L1	19.7	25.0	46.0
16.215000	18.2	2000.0	9.000	On	L1	19.8	31.8	50.0

ANNEX B: Accreditation Certificate

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L0570)

Telecommunication Technology Labs,

Academy of Telecommunication Research, MIIT

No.52, Huayuan North Road, Haidian District, Beijing, China No.51, Xueyuan Road, Haidian District, Beijing, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2014-10-29
Date of Expiry: 2017-06-19

Date of Initial Accreditation: 1998-07-03

Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).

No.CNASAL2

0011149