

TEMA 3.4. ALGORITMO SIMPLEX REVISADO + TÉCNICA DE LAS COTAS

3.4.1 Dado el siguiente modelo de programación lineal:

MAX
$$Z = X1 + 3X2 - 2X3$$

s.a [R1] $X2 - 2X3 \le 2$
[R2] $2X1 + X2 + 2X3 \le 8$
[R3] $X1 + \frac{1}{2}X2 \ge 2$
[C1] $0 \le X1 \le 1$
[C2] $0 \le X2 \le 3$
[C3] $1 \le X3 \le 2$

Obtener la solución óptima aplicando el algoritmo simplex revisado con variables acotadas y el método de las 2 fases. En cada iteración calcular los valores de los parámetros β , u_j , δ para justificar el cambio de solución. Indicar el valor de las variables y la función objetivo en la solución óptima.

3.4.2 Resolver el siguiente programa lineal aplicando el algoritmo del **Simplex** con variables acotadas:

MAX
$$Z = 3x1 + x2$$

s.a: $x1 + x2 \ge 4$
 $x1 + 2x2 \le 10$
 $2x1 + x2 = 6$
 $0 \le x1 \le 1$
 $x2 \ge 2$

En cada iteración, calcular el valor de β , uj y δ . Indicar claramente el valor de las variables decisión y de holgura en la solución óptima.

3.4.3 Resolver el siguiente programa lineal aplicando el algoritmo **Simplex** con variables acotadas:

Max
$$4 \times 1 + 5 \times 2$$

s.a: $2 \times 1 + 3 \times 2 \le 9$;
 $2 \times 1 + \times 2 \le 9$;
 $1 \le \times 1 \le 4$;
 $0 \le \times 2 \le 1$;

Soluciones Problemas Tema 3.4

3.4.1

En primer lugar, se transforma el modelo teniendo en cuenta la cota inferior definida sobre x_3 .

Dado que el modelo incluye restricciones de tipo ≥ para poder obtener la Solución Básica inicial factible es necesario definir variables artificiales. Al definir dichas variables se obtiene el siguiente MODELO AMPLIADO expresado en forma estándar:

- Para resolver el modelo ampliado aplicaremos el Método de las 2 Fases.
- Además, deberemos tener en cuenta las cotas superiores definidas sobre X1, X2 y \(\mathbb{A} \):

$$X1 = 1 - uX1$$
; $uX1 \le 1$
 $X2 = 3 - uX2$; $uX2 \le 3$
 $l3 = 1 - ul3$; $ul3 \le 1$

En cada una de las cotas superiores existentes las correspondientes variables auxiliares están acotadas superiormente por lo que trabajaremos con una u otra variable de cada una de las expresiones anteriores según que X1, X2 o \(\mathbb{3} \) estén o no en su cota superior.

FASE 1: MIN A3

SB0:

VARIABLES = (X1, X2, \(\)3, S1, S2, S3, A3)

v.básicas	B-1			XB
S1	1	0	0	4
S2	0	1	0	6
A3	0	0	1	2
c _B t B-1	0	0	1	Z=2

$$Cx1-Zx1 = -1$$

$$Cx2-Zx2 = -1/2$$

$$Cl3-Zl3 = 0$$

$$Cs3-Zs3 = 1$$

La variable que entre en la base (JE) es X1

Calculamos el vector y_{x1} :

$$y_{x1} = B^{-1}a_{x1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

Como X1 está acotada superiormente calculamos β , uj y δ para saber qué tipo de cambio de base se produce.

$$\beta$$
= min (bi/ α^+_{iJE})= 2

$$uj = 1$$

 δ no existe ya que ninguna de las var. básicas tienen cota superior

$$\theta j = \min (\beta, uj, \delta) = 1 (uj)$$

Es decir, antes de que ninguna variable básica se haga 0, la variable X1 alcanza su cota superior.

El cambio de solución implica no cambiar de base y pasar a trabajar con un modelo en el que $X1=1- ux_1 y ux_1$ es variable no básica:

MODELO SOLUCIÓN BÁSICA 1
MAX -2+ (1-
$$u_{X1}$$
) + 3X2 - 2 l_{3}
X2 - 2 l_{3} + S1 = 4
2(1- u_{X1}) + X2 + 2 l_{3} + S2 = 6
(1- u_{X1}) + 1/2 X2 - S3 + A3 = 2

SB 1:

VARIABLES = (₹1, X2, \$3, S1, S2, S3, A3)

v.básicas		XB		
S1	1	0	0	4
S2	0	1	0	4
A3	0	0	1	1
c _B t B-1	0	0	1	Z=1

$$C_{UX1}-Z_{UX1} = 1$$

 $Cx2-Zx2 = -1/2$
 C \$\mathbb{L}3-Z\$\mathbb{L}3 = 0

Cs3-Zs3 = 1

Por tanto, JE: X2

Calculamos el vector y_{x2}:

$$y_{x2} = B^{-1}a_{x2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1/2 \end{pmatrix}$$

Como X2 está acotada superiormente calculamos β , uj y δ para saber qué tipo de cambio de base se produce.

$$\beta$$
= min (bi/ α^+_{iJE})= 2

uj= 3

 δ no existe ya que ninguna de las var. básicas tienen cota superior

$$\theta j = \min (\beta, uj, \delta) = 2 (\beta)$$

por tanto se produce un cambio de base cuando entra X2 y la variable A3 alcanza el valor 0.

La variable con menor ratio (Xb/ $y_{x2,i}^+$) es A3, por lo que la variable que sale de la base (IS) es A3

La nueva solución básica es:

SB2:

VARIABLES = $(u_{X1}, X2, 13, S1, S2, S3, A3)$

v.básicas	B-1			XB	
S1	1	0	-2	2	
S2	0	1	-2	2	
X2	0	0	2	2	
c _B t B-1	0	0	0	Z=0	

Esta es la solución óptima de la FASE 1. Pasamos por tanto a la FASE 2 del método.

FASE 2: MAX
$$-2 + (1 - u_{X1}) + 3x2 - 2 13$$

La tabla del simplex actualizada con la actual función objetivo es:

VARIABLES =
$$(u_{X1}, X2, 13, S1, S2, S3)$$

			· ·	
v.básicas	B-1			XB
S1	1	0	-2	2
S2	0	1	-2	2
X2	0	0	2	2
c _B t B-1	0	0	6	Z=5

$$\mathbf{C}\mathbf{u}_{X1}\mathbf{-}\mathbf{Z}\mathbf{u}_{X1}=\mathbf{5}$$

$$Cl3-Zl3 = -2$$

$$Cs3-Zs3 = 6$$

La solución actual todavía no es solución óptima y se elige JE: S3.

Calculamos el vector y_{s3}:

$$y_{S3} = B^{-1}a_{S3} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -2 \end{pmatrix}$$

y calculamos los parámetros β , uj y δ para saber qué tipo de cambio de base se produce.

 β = min (bi/ α^+_{iJE})= 1

uj no existe ya que S3 no está acotada superiormente

 δ =min ((bi-cota superior Xi)/ α $_{iJE}$)= (2 - 3) / -2 = 1/2

$$\theta j = \min (\beta, uj, \delta) = 1/2 (\delta)$$

por tanto, se trata de un cambio de base porque la variable básica X2 alcanza su cota superior:

JE: S3 y IS: X2.

Trabajamos con un modelo en el que $X2=3-u_{X2}$ y en la nueva solución u_{X2} es variable no básica:

MAX
$$-2+1-u_{X1}+3(3-u_{X2})-2 13$$

$$(3-u_{X2})-2 13+S1=4$$

$$-2 u_{X1} + (3 - u_{X2}) + 2 l 3 + S2 = 4$$

$$-u_{X1} + 1/2 (3 - u_{X2}) - S3 + A3 = 1$$

La nueva solución es la de la siguiente tabla:

SB3:

VARIABLES =
$$(u_{X1}, u_{X2}, 13, S1, S2, S3)$$

v.básicas		XB		
S1	1	0	0	1
S2	0	1	0	1
S3	0	0	-1	1/2
c _B t B-1	0	0	0	Z=8

$$Cu_{X1}$$
- $Zu_{X1} = -1$

$$Cu_{X2}$$
- Zu_{X2} = -3

$$Cl3-Zl3 = -2$$

Como Cj - Zj <= 0 para todo j, la solución actual es SOLUCIÓN OPTIMA.

Deshacemos los cambios de variables para conocer el valor de las variables del modelo original. El valor de las variables decisión y el de la función objetivo son los siguientes:

$$X1 = 1 - u_{X1} = 1$$

$$X2 = 3 - u_{X2} = 3$$

$$X3 = 1 + 13 = 1$$

FUNCIÓN OBJETIVO: 8

3.4.2

En primer lugar, se transforma el modelo teniendo en cuenta la cota inferior definida sobre X2:

Dado que el modelo incluye restricciones de tipo $\geq y$ = , para poder obtener la Solución Básica inicial factible es necesario definir variables artificiales. Al definir dichas variables se obtiene el siguiente MODELO AMPLIADO expresado en forma estándar:

MODELO AMPLIADO (forma Estándar) MAX 2 + 3X1 + 12

$$X1 + l_2 - X3 + Xa = 2$$

 $X1 + 2 l_2 + X4 = 6$
 $2X1 + l_2 + Xb = 4$
 $0 \le X1 \le 1$
 $l_2 \ge 0$

- Para resolver el modelo ampliado aplicaremos el Método de las 2 Fases.
- Además deberemos tener en cuenta la cota superior definida sobre X1. Para ello se define la variable X1' como:

$$X1 + u_1 = 1$$

a su vez $\mathbf{u}_1 \leq 1$, por lo que trabajaremos con ambas variables utilizando una u otra según que X1 esté o no en su cota superior.

FASE 1: MIN Xa + Xb

SOLUCIÓN BASICA INICIAL

Tabla SBo (Variables: x1, 12, x3, x4, Xa, Xb)

v.básicas		XB		
xa	1	0	0	2
x4	0	1	0	6
xb	0	0	1	4
c _B t B-1	1	0	1	Z = 6

$$z_j = c^{t_B} y_j = (c^{t_B} B^{-1}) a_j$$

$$\mathbf{z}_{x1} = \mathbf{c}^{t_B} \mathbf{y}_{x1} = (\mathbf{c}^{t_B} \mathbf{B}^{-1}) \mathbf{a}_{x1} = (1,0,1) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 3; \ \mathbf{c}_{x1} - \mathbf{z}_{x1} = -3$$

$$z_{12} = c^{t_B} y_{Y2} = (c^{t_B} B^{-1}) a_{12} = (1,0,1) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2; c_{Y2} - z_{Y2} = -2$$

$$z_{x1} = c_{B} y_{x1} = (c_{B} B^{-1}) a_{x1} = (1,0,1) \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = 3; c_{x1} - z_{x1} = -3$$

$$z_{12} = c_{B} y_{Y2} = (c_{B} B^{-1}) a_{12} = (1,0,1) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2; c_{Y2} - z_{Y2} = -2$$

$$z_{x3} = c_{B} y_{x3} = (c_{B} B^{-1}) a_{x3} = (1,0,1) \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = -1; c_{x3} - z_{x3} = 1$$

JE: x1

$$y_{x1} = B^{-1} a_{x1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

Tabla SB₀ (Variables: x1, 12, x3, x4, Xa, Xb)

v.básicas		B-1		XB	y _{x1}	x_B
						y_{x1}
xa	1	0	0	2	1	2
x4	0	1	0	6	1	6
xb	0	0	1	4	2	2
c _B t B-1	1	0	1	Z = 6		_

Como X1 está acotada superiormente calculamos β , uj y δ para saber qué tipo de cambio de base se produce.

$$\beta = \min (bi/\alpha_{i,j^+}) = 2$$

 $uj = 1$

 δ no existe ya que ninguna de las var. Básicas tienen cota superior

$$\theta$$
j = min (β , uj, δ) = uj

- No hay cambio de variables básicas
- Recalcular el valor de las variables y de la función objetivo. Pasamos a trabajar con un modelo en el que aparece \mathbf{u}_1 en lugar de X1.

$$\mathbf{X}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$$

$$Z = c^{t_B} X_B = 3$$

Tabla SB₁ (Variables: u₁, l₂, x3, x4, xa, xb)

v.básicas		B-1		XB
xa	1	0	0	1
x4	0	1	0	5
xb	0	0	1	2
c _B t B-1	1	0	1	Z = 3

$$z_{x1'} = (1,0,1) \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = -3;$$
 $c_{x1} - z_{x1} = 3$

$$z_{12} = 2$$
; c_{12} - z_{12} = - 2

$$z_{x3} = -1;$$
 $c_{x3} - z_{x3} = 1$

JE: L2

$$Y_{12} = B^{-1} a_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

 ^{x}B y_{y2} 1 5/2

Problemas Resueltos

Tabla SB₁ (Variables: u1, 12, x3, x4, xa, xb)

v.básicas	B-1			XB	Y ₁₂
xa	1	0	0	1	(1)
x4	0	1	0	5	2
xb	0	0	1	2	1
CBt B-1	1	0	1	Z = 3	

Calculamos β , uj y δ para saber qué tipo de cambio de base se produce.

$$\beta = \min \left(bi/\alpha_{i,j}^+ \right) = 1$$

Uj no existe

 δ no existe ya que ninguna de las var. Básicas tienen cota superior

Cambio de base por Beta

IS: xa

Tabla SB₂ (Variables: u_1 , l_2 , x_3 , x_4 , x_4 , x_6 , x_9)

v.básicas		B-1		XB
l 2	1	0	0	1
x4	-2	1	0	3
Xb	-1	0	1	1
c _B t B-1	-1	0	1	Z = 1

$$z_{\mathbf{u}^1} = (-1,0,1) \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = -1; \qquad c_{\mathbf{u}^{1}} - z_{\mathbf{u}^{1}} = 1$$

$$z_{u^{1}} = (-1,0,1) \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = -1;$$
 $c_{u^{1}} - z_{u^{1}} = 1$

$$z_{x3} = (-1,0,1) \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = 1;$$
 $c_{x3} - z_{x3} = -1$

$$Y_{x3} = B^{-1} a_{x3} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$$

Tabla SB₂ (Variables: u₁, l₂, x3, x4, xa, xb)

v.básicas		B-1		XB	Y _{x3}	x_B
						$\frac{x_B}{yx3}$
<u>l</u> 2	1	0	0	1	-1	
x4	-2	1	0	3	2	3/2
Xb	-1	0	1	1	(1)	1
c _B t B-1	-1	0	1	Z = 1		

Calculamos β , uj y δ para saber qué tipo de cambio de base se produce.

 $\beta = \min \left(bi/\alpha_{i,j}^+ \right) = 1$

Uj no existe

 δ no existe ya que ninguna de las var. Básicas tienen cota superior

Cambio de base por Beta

IS: xb

La nueva solución Básica es:

Tabla SB₃ (Variables: u₁, l₂, x3, x4, xa, xb)

v.básicas		B-1		XB
12	0	0	1	2
x4	0	1	-2	1
x3	-1	0	1	1
c _B t B-1	0	0	0	Z = 0

SOLUCIÓN ÓPTIMA FASE 1

FASE 2: MAX $2 + 3X1 + 1_2$

- Recalcular el valor de c_B^t B⁻¹
- Recalcular el valor de la función objetivo

$$c^{t_{B}} B^{-1} = (1,0,0) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$Z = 2 + 3 + c_B x_B = 7$$

Fase 2: Tabla SB₃ (Variables: u₁, l₂, x3, x4, xa, xb)

v.básicas		B-1		XB
12	0	0	1	2
x4	0	1	-2	1
x3	-1	0	1	1
c _B t B-1	0	0	1	Z = 7

$$z_{u^{1}} = (0,0,1) \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix} = -2;$$
 $c_{u^{1}} - z_{u^{1}} = -3 + 2 = -1$

por tanto la solución actual es SOLUCIÓN ÓPTIMA.

El valor de las variables decisión y de la función objetivo es:

$$x1=1-u_1 \rightarrow x1=1$$
; $x2=2+l_2=2+2=4$
FUNCIÓN OBJETIVO Z = 7

** etsinf

Problemas Resueltos

3.4.3

Max
$$4 \times 1 + 5 \times 2$$

s.a: $2 \times 1 + 3 \times 2 \le 9$;
 $2 \times 1 + \times 2 \le 9$;
 $1 \le \times 1 \le 4$;
 $0 \le \times 2 \le 1$;

TÉCNICA COTA INFERIOR:

$$x1 = 1 + \ell x1$$

Max 4 (1 + $\ell x1$) + 5 x2

s.a: 2 (1 + $\ell x1$) + 3 x2 \le 9;
2 (1 + $\ell x1$) + x2 \le 9;
 $\ell x1 \le 3$;
 $0 \le x2 \le 1$;

Max 4 + 4
$$\ell x1$$
 + 5 x2
s.a: $2 \ell x1$ + 3 x2 \leq 7;
 $2 \ell x1$ + x2 \leq 7;
 $\ell x1 \leq 3$;
 $0 \leq x2 \leq 1$;

TÉCNICA COTA SUPERIOR:

$$\ell_{X1} \leq 3 \rightarrow \ell_{X1} = 3 - \mathcal{U}_{\ell_{X1}}; \ \mathcal{U}_{\ell_{X1}} \leq 3$$

$$x2 \le 1 \rightarrow x2 = 1 - \mathcal{U}_{x2}; \ \mathcal{U}_{x2} \le 1$$

MODELO AMPLIADO:

Max 4 + 4
$$\ell x1$$
 + 5 x2
s.a: 2 $\ell x1$ + 3 x2 + h1 = 7;
2 $\ell x1$ + x2 + h2 = 7;

Tabla SBF0:

Modelo (ℓ X1, x2, h1, h2) <mark>v.básicas</mark>B_inversaXB Yx2XB/Yx h1 h2 CtBBinv

*Variables no básicas: (x1,x2

 $C \ell X 1 - Z \ell X 1 = 4$ Cx2 - Zx2 = 5

Beta: 7/3

Ux2: 1

Delta: Infinito

Mínimo: Ux2 (SI cambio de modelo, NO cambio de base)

(x2 alcanza su cota)

Max 4 + 4 ℓ x1 + 5 (1 - ℓ x2) s.a: $2\ell x_1 + 3(1 - \ell x_2) + h_1 = 7$; $2\ell x_1 + (1 - \mathcal{U}x_2) + h_2 = 7;$

Max 9 + 4 ℓ x1 - 5 \mathcal{U} x2 s.a: $2 \ell x1 - 3 \mathcal{U} x2 + h1 = 4$: $2 \ell x_1 - \mathcal{U}_{x2} + h_2 = 6$:

Tabla SBF1:

Modelo (ℓ_{x1} , \mathcal{U}_{x2} , h1, h2)

v.básicas B_inversa XB y**(x1** XB/Yx

v.babicab E_inversa ne ital

 h1
 1 0
 4 2 2

 h2
 0 1
 6 2 3

CtBBinv 0 0 Z=9

*Variables no básicas: ℓ x1, ℓ ℓ x2

 $Clx1 - zlx1 = 4 \leftarrow JE$

 $c\mathcal{U}_{\times 2} - z\mathcal{U}_{\times 2} = -5$

Beta: 2
U**(x1**: 3

Delta: Infinito

Mínimo: Beta (NO cambio de modelo, SI cambio de base)

IS = h1

Tabla SBF2:

Modelo (ℓ x1, \mathcal{U} x2, h1, h2)

v.básicas B_inversa XB Y u_{x2} XB/Yx

V.Dasicas B_inversa AB YMX2 AB/ IX

CtBBinv 20 Z=17

*Variables no básicas: h1, u_{x2}

Ch1 - Zh1 = -2

 $c\mathcal{U}_{x2} - z\mathcal{U}_{x2} = 1 \leftarrow JE$

Beta: 1 U_{x2} : 1

Delta: 2/3

Mínimo: Beta (SI cambio de modelo, SI cambio de base) (LX1 alcanza su cota)

Max 9 + 4 (3 -
$$\mathcal{U}_{x1}$$
) - 5 \mathcal{U}_{x2}
s.a: 2 (3 - \mathcal{U}_{x1}) - 3 \mathcal{U}_{x2} + h1 = 4;
2 (3 - \mathcal{U}_{x1}) - \mathcal{U}_{x2} + h2 = 6;

Max 21 - 4
$$\mathcal{U}_{\ell x_1}$$
 - 5 \mathcal{U}_{x_2}
s.a: -2 $\mathcal{U}_{\ell x_1}$ - 3 \mathcal{U}_{x_2} + h1 = -2;
-2 $\mathcal{U}_{\ell x_1}$ - \mathcal{U}_{x_2} + h2 = 0;

Tabla SBF3:

Modelo (\mathcal{U}_{x1} , \mathcal{U}_{x2} , h1, h2)

<mark>v.básicas</mark>B inversa XB

 u_{x2}

-1/3 0

2/3

<mark>h2</mark>

1/3 1

2/3

CtBBinv

5/30

Z = 53/3

*Variables no básicas: u_{x1} , h1

$$CU_{0x1} - z U_{0x1} = -2/3$$

Ch1 - Zh1 = -5/3

SOLUCIÓN ÓPTIMA ENCONTRADA

Deshacemos los cambios:

$$\mathbf{x1} = 1 + \ell \mathbf{x1} = 1 + (3 - 2\ell \mathbf{x1}) = 1 + (3 - 0) = 4$$
 $\mathbf{x2} = 1 - 2\ell \mathbf{x2} = 1 - 2\ell \mathbf{x3} = 1/3$
 $\mathbf{z*} = 53/3$