

Video – Parte 4a

Stabilizzazione

Stabilizzazione

- Un sistema di stabilizzazione dell'immagine ha come scopo quello di rimuovere i movimenti da una sequenza di immagini
 - Padding: movimenti intenzionali
 - Jitter: movimenti non intenzionali
- Sistemi di stabilizzazione analogici
 - Accelerometri, giroscopi, sensori di velocità angolare, ammortizzatori meccanici, ...
- Analizzeremo sistemi di stabilizzazione digitali (DIS)

Sistemi di Stabilizzazione Digitale

Esempio:

- La linea rettilinea, a differenza di quella curva, indica che la sequenza di frame è stabile
- Crop!

Sistemi di Stabilizzazione Digitale

- Distinguiamo i Digital Image Stabilization systems in:
 - DIS real-time
 - DIS post-processing
- 3 fasi principali:
 - Stima del movimento
 - 2. Filtraggio (correzione) del movimento
 - 3. Deformazione (post-processing) dell'immagine

Sistemi di Stabilizzazione Digitale Fase 1 – Stima del movimento

Vedi Video – Parte 3 =)

- Algoritmi di Block-Matching (BMA)
 - Criterio DFD
- Algoritmi di Features Extraction

Sistemi di Stabilizzazione Digitale Fase 2 – Filtraggio del movimento

- In questa fase si vuole riuscire a distinguere i movimenti intenzionali (padding) da quelli casuali (jitter), per poi tentare di correggere i secondi
- Vedremo 3 algoritmi di motion filtering:
 - MVI: Motion Vector Integration
 - FPS: Frame Position Smoothing
 - Filtro Kalman

Fase 2 – Filtraggio del movimento Motion Vector Integration (1)

- Idea di base:
 - Usare i metodi della Fase 1 per stimare dei MV locali (LMV) affidabili
 - Calcolare il MV globale (GMV)
 - Il GMV può essere calcolato a partire dai LMV
 - Chiamiamo $V_A(n)$ il GMV dell'anchor frame
 - "Integrare" (stimare) un MV che rappresenterà la variazione di movimento rispetto al target frame
 - $V_I(n) = \delta \cdot V_I(n-1) + V_A(n)$
 - □ $0 < \delta \le 1$ "damping factor": pesa il grado di casualità del movimento presente (di solito oscilla fra 0.875 e 0.995)

Fase 2 – Filtraggio del movimento Motion Vector Integration (2)

- Ridefiniamo $V_A(n)$ rispetto al punto X:
 - $V_A(n) = X_I(n) X_I(n-1)$
- Rispetto alla posizione Iniziale, X dovrebbe trovarsi nella posizione Corretta:
 - $Z_C(n) = X_I(n) V_I(n)$ nell'anchor frame
 - □ $X_C(n-1) = X_I(n-1) V_I(n-1)$ nel target frame
- Infine, definiamo il vettore di Correzione:

$$V_C(n) = X_C(n) - X_C(n-1) =$$

$$= V_A(n) - V_I(n) + V_I(n-1)$$

Fase 2 – Filtraggio del movimento Motion Vector Integration (3)

Fase 2 – Filtraggio del movimento Frame Position Smoothing (1)

- Idea di base per calcolare il MV correttore:

 - \square $X_A(n)$: posizione (assoluta, rispetto al primo frame)
 - \square $X_{LPF}(n)$: posizione corretta, ottenuta:
 - passando al dominio delle frequenze (DFT)
 - confrontando la fase rispetto ai frame precedenti
 - applicando un filtro passa basso (LPF), ad esempio una gaussiana

Fase 2 – Filtraggio del movimento Frame Position Smoothing (2)

- Il filtraggio nel dominio delle frequenze ha il problema di richiedere un'elaborazione offline
- In un eventuale dispositivo real-time si deve introdurre un delay, ad esempio:

$$V_C(n) = X_{LPF}(n+25) - X_A(n)$$

Scostamenti assoluti (rispetto al primo frame) nelle direzioni X e Y. Senza (a sinistra) e con (a destra) ritardo.

Fase 2 – Filtraggio del movimento Filtro di Kalman (1)

- Strumento molto potente che:
 - Prende in input una serie di misure osservate nel tempo
 - Tiene conto di un eventuale rumore casuale
 - □ **Predizione**: fissato un tempo t stima la misura Z_{t+1}
 - Correzione: osservata una misura può correggerla, eventualmente basandosi su una predizione

Fase 2 – Filtraggio del movimento Filtro di Kalman (2)

- La versione discreta del filtro si basa su due equazioni differenziali stocastiche (lineari):
 - \square Nel processo stocastico, lo stato x_k è dato da:
 - $x_t = Ax_{t-1} + Bu_t + w_t$
 - \blacksquare La misura z_k di x_k è data da:
 - $z_t = Hx_t + v_t$
 - Dove:
 - t: istante temporale; A, B, H: modelli transazionali; w, v: rumore gaussiano; u: controllo utente

Fase 2 – Filtraggio del movimento Filtro di Kalman (3)

- Affiancando il filtro di Kalman ad un tracciatore Bayesiano possiamo stimare le probabilità:
 - □ Predizione: $P(x_t|z_{t-1})$
 - □ Correzione (update): $P(x_t|z_t)$

Stabilizzazione Filtraggio del Movimento

- MotionDetectionBGScript.m
- KalmanPredictScript.m
 - Rilevare il movimento tramite sottrazione dello sfondo
 - Una volta individuato
 l'oggetto in movimento lo tracceremo con un filtro di Kalman
- StabilizationFeatureScript.m
- VideoStabilizationScript.m

Fase 3 – Post-processing: Deformazione dell'immagine (1)

- Una fase di post-processing dei frame è necessaria perché il crop dei frame fa perdere informazioni
 - Lo scopo principale è migliorare la qualità dei frame

Fase 3 – Post-processing: Deformazione dell'immagine (2)

 Si può agire anche sui valori di intensità nei pixel, qualora l'esposizione del video non sia uniforme

Sottoespozione

Sovraespozione

Stabilizzata