高精度惯性导航模块 JY-901 说明书

1 产品概述

模块集成高精度的陀螺仪、加速度计、地磁场传感器,采用高性能的微处理器和先进的 动力学解算与卡尔曼动态滤波算法,能够快速求解出模块当前的实时运动姿态。

采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。

模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度 0.05 度,稳定性极高,性能甚至优于某些专业的倾角仪!

模块内部自带电压稳定电路,工作电压 3.3v~5v,引脚电平兼容 3.3V/5V 的嵌入式系统,连接方便。

支持串口和 IIC 两种数字接口。方便用户选择最佳的连接方式。串口速率 2400bps~921600bps 可调,IIC 接口支持全速 400K 速率。

最高 200Hz 数据输出速率。输入内容可以任意选择,输出速率可调节。

保留 4 路扩展端口,可以分别配置为模拟输入,数字输入,数字输出,PWM 输出等功能。

具备 GPS 连接能力。可接受符合 NMEA-0183 标准的串口 GPS 数据,形成 GPS-IMU 组合导航单元。

采用邮票孔镀金工艺,可嵌入用户的 PCB 板中。

4层 PCB 板工艺,更薄、更小、更可靠。

2 性能参数

- 1、电压: 3.3V~5V
- 2、电流: <40mA
- 3、体积: 15.24mm X 15.24mm X 2mm
- 4、焊盘间距:上下 100mil(2.54mm),左右 600mil(15.24mm)
- 5、测量维度: 加速度: 3 维, 角速度: 3 维, 磁场: 3 维, 角度: 3 维, 气压:1 维, GPS: 3 维
- 6、量程:加速度:±16g,角速度:±2000°/s,角度±180°。
- 7、分辨率:加速度: 6.1e-5g,角速度:7.6e-3°/s。
- 8、稳定性:加速度: 0.01g,角速度 0.05°/s。
- 9、姿态测量稳定度: 0.05°。
- 10、数据输出内容:时间、加速度、角速度、角度、磁场、端口状态、气压(JY-901B)、高度(JY-901B)、经纬度(需连接 GPS)、地速(需连接 GPS)。
- 10、数据输出频率 0.1Hz~200Hz。
- 11、数据接口: 串口 (TTL 电平, 波特率支持 2400、4800、9600、19200、38400、57600、115200、230400、460800、921600),I2C(最大支持高速 IIC 速率 400K)
- 12、扩展口功能:模拟输入($0\sim VCC$)、数字输入、数字输出、PWM 输出(周期 1us-65535us,分辨率 1us)

3 引脚说明

名称	功能
VCC	模块电源, 3.3V 或 5V 输入
RX	串行数据输入,TTL 电平
TX	串行数据输出,TTL 电平
GND	地线
SCL	I2C 时钟线
SDA	I2C 数据线
D0	扩展端口0
D1	扩展端口1
D2	扩展端口 2
D3	扩展端口3

4 轴向说明

如上图所示,模块的轴向在上图的右上角标示出来,向右为X轴,向上位Y轴,垂直与纸面向外为Z轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。

5 硬件连接方法

5.1 串口连接:

5.1.1 与计算机

与计算机连接,需要 USB 转 TTL 电平的串口模块。推荐以下两款 USB 转串口模块。

USB 串口模块连接 JY-901 模块的方法是: USB 串口模块的+5V, TXD, RXD, GND 接 6050 模块的 VCC, RX, TX, GND。注意 TXD 和 RXD 的交叉。

(注意: 六合一串口模块连接 6050 模块时需要将 2 号拨码开关拨到 OFF 端,如下图:)

5.1.2 连单片机

5.2 IIC 连接

JY-901 模块可以通过 IIC 接口连接 MCU,连接方法如下图所示。注意,为了能在 IIC 总线上面挂接多个模块,模块的 IIC 总线是开漏输出的,MCU 在连接模块时需要将 IIC 总线通过一个 4.7K 的电阻上拉到 VCC。

6 软件操作方法

- 4 -

6.1 基本操作

首先将模块通过 USB-TTL 模块连接到电脑,安装好 USB-TTL 模块对应的驱动以后,可以再设备管理器中查询到对应的串口号,如图所示:

打开上位机软件,先点击波特率菜单,选择模块的波特率,默认设置为9600。再点击串口设置菜单,选择刚才在设备管理器里面看到的串口号即可看到模块的数据。如下图所示。

如果打开串口以后,没有出现数据图像,先检查连线是否正确,再确认波特率是否设置正确,如果忘记模块波特率是多少了,可以点击菜单波特率->Auto。软件将自动搜索模块的波特率,自动搜索的前提条件是模块的输出速率大于5Hz,如果速率太低,将无法完成自动检测模块。此时可以尝试将模块恢复至出厂设置,再以9600的波特率连接模块。

点击记录按钮,软件可以讲模块采集到的数据记录到文本文件中,点击记录按钮后,需 点击停止以后,文件才会写入到硬盘,文件路径为上位机的根目录下以记录起始时间命名的 文本文件。

点击语言菜单,可以进行界面语言的切换

点击清图按钮,可以清楚图表中显示的数据。当本次采集数据与上 次采集数据间隔时间较长时,图表更新会比较慢,此时可以点击清图按钮,加快数据刷新速率。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。启动三维模式以后,界面默认以全屏方式显示,如需切换回窗口方式,可以按【F】键进行切换,如果无法切换,请按 ctrl+空格关闭中文输入法,再按【F】键即可。

6.2 恢复出厂设置

恢复出厂设置的方法有两种、短路法和指令法。

短路法操作方法:将模块的 D2 引脚和 VCC 引脚用导线短路,然后给模块上电,模块 LED 灯长亮,持续 2 秒左右,LED 灯熄灭,完成恢复出厂设置操作。

指令法操作方法:将 JY-901 模块和电脑通过 USB-TTL 模块连接好,点击设置选项卡,点击恢复默认即可。恢复出厂设置以后,需对模块重新上电。(此方法需要提前知道模块的波特率,如果波特率不匹配指令将无法生效,请尝试使用短路法进行恢复)

6.3 模块校准

模块使用前,需要对模块进行校准。模块的校准包括陀螺/加计校准、磁场校准和高度置0。

陀螺/加计校准

陀螺/加计校准用于去除陀螺仪和加速度计的零偏。传感器在出厂时都会有不同程度的 零偏误差,需要手动进行校准后,测量才会准确。

陀螺/加计校准方法如下: 首先使模块保持水平, 然后点击设置选项卡, 进入设置页面,

点击"陀螺、加计校准"按钮,上位机会自动计算模块的零偏误差值,待 AxOffset、AyOffset、AzOffset、GxOffset、GyOffset、GzOffset 这几个数据稳定下来以后,再点击"正常模式"按钮,完成校准。再点击保存配置按钮,将零偏数据保存至模块内部 FLASH 中,以便掉电保存。此后,静止状态下,陀螺仪的输出将回到 0°/s 附近。

陀螺仪和加速度计的校准值也可以手动设置,将对应的值填入以后,点击前面的按钮 GxOffset 即可设置 X 轴陀螺仪的零偏,同理点击 GyOffset 可以设置 Y 轴陀螺仪的零偏。

保存:	保存配置	(3) 恢复默认	✓ LED		
校准:	正常模式	2	陀螺、加计村	進 (1)	磁场校准
	AxOffset:	-53	GxOffset:	-18	HxOffset:
	AyOffset:	-90	GyOffset:	-33	HyOffset:
	AzOffset:	-1784	GzOffset:	-5	HzOffset:

磁场校准

磁场校准用于去除磁场传感器的零偏。通常磁场传感器在制造时会有较大的零点误差,如果不进行校准,将会带来很大的测量误差,影响航向角测量的准确性。校准时,先连接好模块和电脑,将模块放置于远离干扰磁场的地方,再打开上位机软件。点击设置选项卡,进入设置页面。点击"磁场校准"按钮,先绕模块的 X 轴转动 360°,可以来回转几圈,再绕 Y 轴转 360°,再绕 Z 轴转 360°,再随意转动几圈,知道 HxOffset、HyOffset、HzOffset 这几个数字不再变化了,再点击"正常模式"按钮,完成校准。再点击保存配置按钮,将零偏数据保存至模块内部 FLASH 中,以便掉电保存。此后,模块才能够输出准确的航向角。

保存:	保存配置	4 恢复默认	✓ LED		绕X、Y、Z轴转 数字稳定。
校准:	正常模式	3	陀螺、加计校准	磁场校准	高度校准
	AxOffset:	-46	GxOffset: -1	HxOffset:	44
	AyOffset:	-34	GyOffset: -32	HyOffset:	-228
	AzOffset:	-1786	GzOffset: -5	HzOffset:	31

磁场的校准值也可以手动设置,将对应的值填入以后,点击前面的按钮 HxOffset 即可设置 X 轴磁场的零偏,同理点击 HyOffset 可以设置 Y 轴磁场的零偏。

高度置零

高度置零是对模块输出的高度进行归 0 的操作。仅对配置了气压传感器的 JY-901B 型有用。模块的高度输出是根据气压计算出来的,高度归 0 操作就是将当前气压值作为零高度位置进行计算。操作方法是点击设置选项卡,点击高度校准按钮即可。

注意: 陀螺、加计校准操作和磁场校准操作完成后,一定要点保存配置按钮,要不模块 掉电以后,将无法保存之前的校准值。高度校准值模块不做保存,所以不用点击保存配置按 钮。

6.4 设置回传内容

数据回传的内容可以根据用户需要进行定制,点击设置选项卡,在需要输出的数据内容

前面打钩即可。设置完成后,请点击保存配置按钮,否则设置内容掉电以后将丢失。

时间为模块内部的时间,默认是以上电初始时刻为 2015 年 1 月 1 日 0:0:0.0。如果连接 GPS 模块,将 GPS 接收到的时间作为模块的时间。注意 GPS 时间会比北京时间晚 8 小时。

气压数据仅支持配备了气压传感器的 JY-901B 型传感器,对没有配气压传感器的 JY-901 无效。

经纬度和地速信息仅在模块连接了 GPS 模块后有效。要获得正确的数据还需要将模块的 D1 扩展端口功能设置为 GPSRX, GPS 连接波特率设置为 GPS 模块数据输出的波特率。

6.5 设置回传速率

设置回传速率再设置选项卡中,选择需要的回传速率,再点击后面的更改按钮即可。设置是立即生效的,如需掉电保存设置,还需要点击保存配置按钮。

默认的回传速率是 10Hz, 回传的速率最高支持 200Hz。但如果回传内容较多,同时通信的波特率又较低的情况下,可能没法传输这么多数据,此时模块会自动降频,并以允许的最大输出速率进行输出。

6.6 设置通信波特率

模块支持多种波特率,默认波特率为9600。设置模块的波特率需要在软件与模块正确连接的基础上,在设置选项卡的通信速率下拉框中选择需要更改的波特率,再点后面的更改按钮。

注意: 更改以后,模块的波特率不会立即更改,需要重新上电以后,才会生效。

6.7 设置 IIC 地址

模块的 IIC 通信地址默认为 0x50,可以通过软件更改。设置模块的 IIC 地址需要在软件与模块正确连接的基础上,在设置选项卡的 IIC 地址文本框内输入新的 16 进制 IIC 地址,再点后面的更改按钮。

注意: 更改以后,模块的 IIC 地址不会立即更改,需要重新上电以后,才会生效。

6.8 设置 GPS 连接波特率

模块支持多种与 GPS 模块通信的波特率,默认的 GPS 波特率为 9600。设置模块连接 GPS 的波特率需要在软件与模块正确连接的基础上,在设置选项卡的 GPS 速率下拉框中选择需要更改的波特率,再点后面的更改按钮。

注意: 更改以后,模块的 GPS 连接波特率不会立即更改,需要重新上电以后,才会生效。

6.9 设置扩展端口

JY-901 模块拥有 4 个多功能扩展端口,可以根据需要分别设置为不同的功能。设置的扩展端口模式需要在软件与模块正确连接的基础上,改变端口模式后面的下拉框的内容即可。

扩展端口支持模拟量输入模式、数字量输入模式、数字量输出模式、PWM 输出模式。 D1 端口还支持 GPSRX 模式,端口状态默认是模拟量输入模式。

模块向外输出的端口状态数据包中,包含了扩展端口的状态信息。在不同模式下,端口

状态数据 DxStatus 的含义如下表:

模式	含义
模拟量输入模式	模拟电压
数字量输入模式	端口高低电平状态
数字量高电平输出模式	端口输出状态
数字量低电平输出模式	端口输出状态
PWM 输出模式	PWM 高电平的宽度
GPSRX (D1)	无意义

模拟量输入模式用于测量端口上的模拟电压,比如电位器或者模拟的传感器等等。实际电压的大小按照下面公式计算

U=DxStatus/1024*Uvcc

 U_{vcc} 为芯片的电源电压,由于片上有 LDO,如果模块供电电压大于 3.5V, U_{vcc} 为 3.3V。如果模块供电电压小于 3.5V, U_{vcc} =电源电压-0.2V。

数字量输入模式用于测量端口上的高低电平状态,如果是高电平,DxStatus=1,如果是低电平,DxStatus=1。

数字量高电平输出模式用于输出高电平, DxStatus=1。

数字量低电平输出模式用于输出低电平, DxStatus=0。

PWM 输出模式用于输出指定的 PWM 波,PWM 波的周期和高电平宽度可以通过设置选项卡的端口控制栏进行调节,单位均为 us。在 PWM 输出模式,端口状态数据用于指示 PWM 波的高电平宽度,单位 us。

6.10 设置 LED 灯

在某些特殊情况下,用户可能不需要让模块的 LED 灯闪烁,可以通过点击配置选项卡上的 LED 复选框,关闭 LED 灯。如需掉电保存设置,请点击保存配置按钮。

7 串口通信协议

电平: TTL 电平(非 RS232 电平, 若将模块错接到 RS232 电平可能造成模块损坏) 波特率: 2400、4800、9600(默认)、19200、38400、57600、115200、230400、460800、921600, 停止位 1, 校验位 0。

7.1 模块至上位机:

7.1.1 时间输出:

0x55 0x50 YY MM DD hh mm ss msL msH	
-------------------------------------	--

YY: 年, 20YY年

MM: 月

DD: 日 hh: 时 mm: 分 ss: 秒 ms: 毫秒

毫秒计算公式:

ms=((msH << 8)|msL)

Sum=0x55+0x50+YY+MM+DD+hh+mm+ss+msL+msH

7.1.2 加速度输出:

0x55	0x51	AxL	AxH	AyL	АуН	AzL	AzH	TL	TH	SUM	
------	------	-----	-----	-----	-----	-----	-----	----	----	-----	--

计算方法:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_z=((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

温度计算公式:

T=((TH<<8)|TL)/100 °C

校验和:

Sum=0x55+0x51+AxH+AxL+AyH+AyL+AzH+AzL+TH+TL

说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下:假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:Data=((short)DataH<<8)|DataL。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

7.1.3 角速度输出:

	0x55	0x52	wxL	wxH	wyL	wyH	wzL	wzH	TL	TH	SUM
--	------	------	-----	-----	-----	-----	-----	-----	----	----	-----

计算方法:

 $w_x = ((wxH << 8)|wxL)/32768*2000(°/s)$

 $w_y = ((wyH << 8)|wyL)/32768*2000(°/s)$

 $w_z = ((wzH \le 8)|wzL)/32768*2000(^{\circ}/s)$

温度计算公式:

T=((TH<<8)|TL)/100 °C

校验和:

Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL

7.1.4 角度输出:

0x55	0x53	RollL	RollH	PitchL	PitchH	YawL	YawH	TL	TH	SUM	
------	------	-------	-------	--------	--------	------	------	----	----	-----	--

计算方法:

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y轴)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

温度计算公式:

T=((TH<<8)|TL) /100 °C

校验和:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL

注:

- 1. 姿态角结算时所使用的坐标系为东北天坐标系,正方向放置模块,如下图所示向左为 X 轴,向前为 Y 轴,向上为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为为 z-y-x,即先绕 z 轴转,再绕 y 轴转,再绕 x 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X,在表示姿态的时候,俯仰角(Y轴)的范围只有±90度,超过90度后会变换到小于90度,同时让 X轴的角度大于180度。详细原理请大家自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 X 轴接近 90 度时,即使姿态只绕 X 轴转动,Y 轴的角度也 会跟着发生较大变化,这是欧拉角表示姿态的固有特性。

7.1.5 磁场输出:

0:	x55	0x54	HxL	HxH	HyL	НуН	HzL	HzH	TL	TH	SUM	l
----	-----	------	-----	-----	-----	-----	-----	-----	----	----	-----	---

计算方法:

磁场(x轴)Hx=((HxH<<8)|HxL)

磁场 (y 轴) Hy=((HyH <<8)| HyL)

磁场(z轴)Hz=((HzH<<8)|HzL)

温度计算公式:

T=((TH<<8)|TL) /100 °C

校验和:

Sum=0x55+0x54+HxH+HxL+HyH+HyL+HzH+HzL+TH+TL

7.1.6 端口状态数据输出:

0 55	0 55	DAT	DATE	DIT	DATE	DAT	DATE	DAT	DATE	CITIL
0x55	0x55	D0L	D0H	D1L	D1H	D2L	D2H	1 1) 3 1	D3H	SUM
UAJJ	UAJJ						12411		10011	I DOIVI

计算方法:

D0 = (D0H << 8)|D0L

D1 = (D1H << 8)|D1L

D2 = (D2H << 8)|D2L

D3 = (D3H << 8)|D3L

说明:

当端口模式设置为模拟输入时,端口状态数据表示模拟电压。实际电压的大小按照下面公式计算:

U=DxStatus/1024*Uvcc

U_{vcc} 为芯片的电源电压,由于片上有 LDO,如果模块供电电压大于 3.5V, U_{vcc} 为 3.3V。如果模块供电电压小于 3.5V, U_{vcc}=电源电压-0.2V。

当端口模式设置为数字量输入时,端口状态数据表示端口的数字电平状态,高电平为 1, 低电平为 0。

当端口模式设置为高电平输出模式时,端口状态数据为1。

当端口模式设置为低电平输出模式时,端口状态数据位 0。

当端口模式设置为 PWM 输出时,端口状态数据表示高电平宽度,以 us 为单位。

7.1.7 气压、高度输出:

0x55	0x56	P0	P1	P2	Р3	Н0	H1	H2	НЗ	SUM
					_		l	l	_	

计算方法:

气压 P = ((P3 << 24)|(P2 << 16)|(P1 << 8)|P0 (Pa)

高度 H = ((H3<<24)| (H2<<16)| (H1<<8)| H0 (cm)

校验和:

Sum=0x55+0x54+P0+P1+P2+P3+H0+H1+H2+H3

7.1.8 经纬度输出:

0x55	0x57	Lon0	Lon 1	Lon 2	Lon 3	Lat0	Lat 1	Lat 2	Lat 3	SUM
0/10/0	07157	Lono	Lon i	Lon 2	Long	Late	Lat 1	a	Lat	00111

计算方法:

经度 Lon = ((Lon 3<<24)| (Lon 2<<16)| (Lon 1<<8)| Lon 0

NMEA8013 标准规定 GPS 的经度输出格式为 ddmm.mmmmm(dd 为度, mm.mmmmm 为分), JY-901 输出时去掉了小数点, 因此经度的度数可以这样计算:

dd=Lon/100000000;

经度的分数可以这样计算:

mm.mmmm=(Lon%1000000)/100000; (%表示求余数运算)

纬度 Lat = ((Lat 3<<24)| (Lat 2<<16)| (Lat 1<<8)| Lat 0 (cm)

NMEA8013 标准规定 GPS 的纬度输出格式为 ddmm.mmmmm(dd 为度, mm.mmmmm 为分), JY-901 输出时去掉了小数点, 因此纬度的度数可以这样计算:

dd=Lat/100000000;

纬度的分数可以这样计算:

mm.mmmm=(Lat%10000000)/100000; (%表示求余数运算)

校验和:

Sum=0x55+0x54+ Lon 0+ Lon 1+ Lon 2+ Lon 3+ Lat 0+ Lat 1+ Lat 2+ Lat 3

7.1.9 地速输出:

0x55	0x58	GPSHeightL	GPSHeightH	GPSYawL	GPSYawH
GPSV0	GPSV 1	GPSV 2	GPSV 3	SUM	

计算公式:

GPSHeight = ((GPSHeightH << 8)|GPSHeightL)/10 (m)

GPSYaw = (GPSYawH << 8)|GPSYawL)/10 (°)

GPSV = (((Lat 3 << 24)) (Lat 2 << 16)) (Lat 1 << 8) | Lat 0)/1000 (km/h)

校验和:

Sum = 0x55 + 0x54 + GPSHeightL + GPSHeightH + GPSYawL + GPSYawH + GPSV0 + GPSV 1 + GPSV 2 + GPSV 3

7.1.10 四元素输出:

0x55	0x59	Q0L	Q0H	Q1L	Q1H	Q2L	Q2H	Q3L	Q3H	SUM
									· -	

计算方法:

Q0=((Q0H<<8)|Q0L)/32768

Q1=((Q1H<<8)|Q1L)/32768

Q2=((Q2H<<8)|Q2L)/32768

Q3=((Q3H<<8)|Q3L)/32768

校验和:

Sum=0x55+0x59+Q0L+Q0H+Q1L+Q1H+Q2L+Q2H+Q3L+Q3H

7.1.11 卫星定位精度输出:

0x55	0x5A	SNL	SNH	PDOPL	PDOPH	HDOPL	HDOPH	VDOPL	VDOPH	SUM
------	------	-----	-----	-------	-------	-------	-------	-------	-------	-----

计算方法:

卫星数: SN=((SNH<<8)|SNL)

位置定位精度: PDOP=((PDOPH<<8)|PDOPL)/32768 水平定位精度: HDOP=((HDOPH<<8)|HDOPL)/32768 垂直定位精度: VDOP=((VDOPH<<8)|VDOPL)/32768

校验和:

Sum=0x55+0x5A+ SNL + SNH + PDOPL + PDOPH + HDOPL + HDOPH + VDOPL + VDOPH

7.2 上位机至模块

说明:

- 1. 出厂默认设置使用串口,波特率 9600,帧率 10Hz。配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。
- 2. 数据格式

0xFF	0xAA	Address	DataL	DataH
	0.111			

7.2.1 寄存器地址表

地址	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	RSW	回传数据内容
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X轴加速度零偏
0x06	AYOFFSET	Y轴加速度零偏

0.07	AZOFFSET	7. 幼加油度要稳
0x07		Z轴加速度零偏
0x08	GXOFFSET	X轴角速度零偏
0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏
0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	D0PWMH	D0PWM 高电平宽度
0x13	D1PWMH	D1PWM 高电平宽度
0x14	D2PWMH	D2PWM 高电平宽度
0x15	D3PWMH	D3PWM 高电平宽度
0x16	D0PWMT	D0PWM 周期
0x17	D1PWMT	D1PWM 周期
0x18	D2PWMT	D2PWM 周期
0x19	D3PWMT	D3PWM 周期
0x1a	IICADDR	IIC 地址
0x1b	LEDOFF	关闭 LED 指示灯
0x1c	GPSBAUD	GPS 连接波特率
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	НҮ	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度
0x40	TEMP	模块温度
0x41	D0Status	端口 D0 状态
0x41 0x42	D1Status	端口 D1 状态
0x42 0x43	D2Status	端口 D2 状态
	DZSiaius	7川日 102 7八心
0x44	D3Status	端口 D3 状态

0x45	PressureL	气压低字
0x46	PressureH	气压高字
0x47	HeightL	高度低字
0x48	HeightH	高度高字
0x49	LonL	经度低字
0x4a	LonH	经度高字
0x4b	LatL	纬度低字
0x4c	LatH	纬度高字
0x4d	GPSHeight	GPS 高度
0x4e	GPSYaw	GPS 航向角
0x4f	GPSVL	GPS 地速低字
0x50	GPSVH	GPS 地速高字
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3

7.2.2 保持配置

0xFF 0xAA 0x00 SAVE 0x00

SAVE: 设置

0: 保持当前配置

1: 恢复默认配置并保存

7.2.3 设置校准

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CALSW: 设置校准模式

0: 退出校准模式

1: 进入陀螺仪加速度计校准模式

2: 进入磁场校准模式

3: 高度置 0

7.2.4 设置回传内容

		0xFF	0xAA	0x02	RSWL	RSWF	I	
RSV	WL 位定》	Z						
位	7	6	5	4	3	2	1	0
名称	0x57包	0x56 包	0x55 包	0x54 包	0x53 包	0x52 包	0x51 包	0x50 包
默认值	0	0	0	1	1	1	1	0

位	7	6	5	4	3	2	1	0
名称	X	X	X	X	X	0x5A 包	0x59 包	0x58 包
默认值	0	0	0	0	0	0	0	0

X为未定义名称。

0x50包:时间信息包

0: 不输出 0x50 数据包

1: 输出 0x50 数据包

0x51包:加速度信息包

0: 不输出 0x51 数据包

1: 输出 0x51 数据包

0x52 包: 角速度信息包

0: 不输出 0x52 数据包

1: 输出 0x52 数据包

0x53包:角度信息包

0: 不输出 0x53 数据包

1: 输出 0x53 数据包

0x54包: 磁场信息包

0: 不输出 0x54 数据包

1: 输出 0x54 数据包

0x55 包: 端口状态

0: 不输出 0x55 数据包

1: 输出 0x55 数据包

0x56 包: 气压&高度包

0: 不输出 0x56 数据包

1: 输出 0x56 数据包

0x57包: 经纬度包

0: 不输出 0x57 数据包

1: 输出 0x57 数据包

0x58包: 地速数据包

0: 不输出 0x58 数据包

1: 输出 0x58 数据包

0x59包:四元素输出包

0: 不输出 0x59 数据包

1: 输出 0x59 数据包

0x5A:卫星定位精度

0: 不输出 0x5A 数据包

1: 输出 0x5A 数据包

7.2.5 设置回传速率

RATE: 回传速率

0x01: 0.1Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz (默认)

0x07: 20Hz

0x08: 50Hz

0x09: 100Hz

0x0a: 200Hz

0x0c: 单次输出

0x0d: 不输出

设置完成以后需要点保存配置按钮,再给模块重新上电后生效

7.2.6 设置串口波特率

|--|

BAUD: 时间信息包

0x00: 2400

0x01: 4800

0x02: 9600 (默认)

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600

7.2.7 设置 X 轴加速度零偏

0xFF	0xAA	0x05	AXOFFSETL	AXOFFSETH
------	------	------	-----------	-----------

AXOFFSETL: X 轴加速度零偏低字节

AXOFFSETH: X 轴加速度零偏高字节

AXOFFSET= (AXOFFSETH <<8) | AXOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.8 设置 Y 轴加速度零偏

0xFF	0xAA	0x06	AYOFFSETL	AYOFFSETH
------	------	------	-----------	-----------

AYOFFSETL: Y 轴加速度零偏低字节

AYOFFSETH: Y 轴加速度零偏高字节

AYOFFSET= (AYOFFSETH <<8) | AYOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.9 设置 Z 轴加速度零偏

0xFF 0xAA 0x07 AZOFFSETL AZOFFSETH

AZOFFSETL: Z 轴加速度零偏低字节 AZOFFSETH: Z 轴加速度零偏高字节

AZOFFSET= (AZOFFSETH <<8) | AZOFFSETL

说明:设置加速度零偏以后,加速度的输出值为传感器测量值减去零偏值。

7.2.10 设置 X 轴角速度零偏

 0xFF
 0xAA
 0x08
 GXOFFSETL
 GXOFFSETH

GXOFFSETL: X 轴角速度零偏低字节 GXOFFSETH: X 轴角速度零偏高字节

GXOFFSET= (GXOFFSETH <<8) | GXOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.11 设置 Y 轴角速度零偏

0xFF 0xAA 0x09 GYOFFSETL GYOFFSETH

GYOFFSETL: Y 轴角速度零偏低字节

GYOFFSETH: Y轴角速度零偏高字节

GYOFFSET= (GYOFFSETH <<8) | GYOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.12 设置 Z 轴角速度零偏

0xFF 0xAA 0x0A GXOFFSETL GXOFFSETH

GZOFFSETL: Z 轴角速度零偏低字节

GZOFFSETH: Z 轴角速度零偏高字节

GZOFFSET= (GZOFFSETH <<8) | GZOFFSETL

说明:设置角速度零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.13 设置 X 轴磁场零偏

 0xFF
 0xAA
 0x0b
 HXOFFSETL
 HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.14 设置 Y 轴磁场零偏

 0xFF
 0xAA
 0x0c
 HXOFFSETL
 HXOFFSETH

HXOFFSETL: X 轴磁场零偏低字节 HXOFFSETH: X 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,角速度的输出值为传感器测量值减去零偏值。

7.2.15 设置 Z 轴磁场零偏

0xFF 0xAA 0x0d HXOFFSETL HXOFFSETH

HXOFFSETL: Z 轴磁场零偏低字节 HXOFFSETH: Z 轴磁场零偏高字节

HXOFFSET= (HXOFFSETH <<8) | HXOFFSETL

说明:设置磁场零偏以后,磁场的输出值为传感器测量值减去零偏值。

7.2.16 设置端口 D0 模式

0xFF 0xAA 0x0e D0MODE 0x00

D0MODE: 时间信息包

0x00: 模拟输入(默认)

0x01: 数字输入

0x02: 输出数字高电平 0x03: 输出数字低电平 0x04: 输出 PWM

7.2.17 设置端口 D1 模式

D1MODE: 时间信息包

0x00: 模拟输入(默认)

0x01: 数字输入

0x02: 输出数字高电平 0x03: 输出数字低电平 0x04: 输出 PWM

0x05: 连接 GPS 的 TX

7.2.18 设置端口 D2 模式

_				
0xFF	0x A A	0x10	D2MODE	0x00
UALT	UAAA	UAIU		UAUU

D2MODE: 时间信息包

0x00: 模拟输入(默认)

0x01: 数字输入

0x02: 输出数字高电平 0x03: 输出数字低电平

0x04: 输出 PWM

7.2.19 设置端口 D3 模式

D3MODE: 时间信息包

0x00: 模拟输入(默认)

0x01: 数字输入

0x02: 输出数字高电平 0x03: 输出数字低电平 0x04: 输出 PWM

7.2.20 设置端口 D0 的 PWM 高电平宽度

0xFF 0xAA 0x12 D0PWMHL D0PWMHH

D0PWMHL: D0 端口的高电平宽度低字节 D0PWMH: D0 端口的高电平宽度高字节 D0PWMH = (D0PWMHH<<8) | D0PWMHL

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us, 只需要将 D0PWMH 设置为 1500。

7.2.21 设置端口 D1 的 PWM 高电平宽度

0xFF	0xAA	0x13	D1PWMHL	D1PWMHL
------	------	------	---------	---------

D1PWMHL: D1 端口的高电平宽度低字节 D1PWMHH: D1 端口的高电平宽度高字节 D1PWMH = (D1PWMHH<<8) | D1PWMHL

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D1PWMH 设置为 1500 即可。

7.2.22 设置端口 D2 的 PWM 高电平宽度

0xFF	0xAA	0x14	D2PWMHL	D2PWMHL

D2PWMHL: D2 端口的高电平宽度低字节 D2PWMHH: D2 端口的高电平宽度高字节 D2PWMH = (D2PWMHH<<8) | D2PWMHL

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D2PWMH 设置为 1500 即可。

7.2.23 设置端口 D3 的 PWM 高电平宽度

0xFF	0xAA	0x15	D3PWMHL	D3PWMHL
------	------	------	---------	---------

D3PWMHL: D3 端口的高电平宽度低字节 D3PWMHH: D3 端口的高电平宽度高字节 D3PWMH = (D3PWMHH<<<8) | D3PWMHL

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D3PWMH 设置为 1500 即可。

7.2.24 设置端口 D0 的 PWM 周期

D0PWMTL: D0 端口的 PWM 信号周期宽度低字节 D0PWMTH: D0 端口的 PWM 信号周期宽度高字节

 $D0PWMT = (D0PWMTH << 8) \mid D0PWMTL$

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D0PWMH 设置为 1500, D0PWMT 设置为 20000 即可。

7.2.25 设置端口 D1 的 PWM 周期

0xFF 0xAA	0x17	D1PWMTH	D1PWMTL
-----------	------	---------	---------

D1PWMTL: D1 端口的 PWM 信号周期宽度低字节

D1PWMTH: D1 端口的 PWM 信号周期宽度高字节

 $D1PWMT = (D1PWMTH << 8) \mid D1PWMTL$

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D1PWMH 设置为 1500, D1PWMT 设置为 20000 即可。

7.2.26 设置端口 D2 的 PWM 周期

0xFF 0xAA 0x18	D2PWMTH	D2PWMTL
----------------	---------	---------

D2PWMTL: D2 端口的 PWM 信号周期宽度低字节

D2PWMTH: D2 端口的 PWM 信号周期宽度高字节

 $D2PWMT = (D2PWMTH << 8) \mid D2PWMTL$

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D2PWMH 设置为 1500, D2PWMT 设置为 20000 即可。

7.2.27 设置端口 D3 的 PWM 周期

0xFF 0xA	A 0x19	D3PWMTH	D3PWMTL
----------	--------	---------	---------

D3PWMTL: D3 端口的 PWM 信号周期宽度低字节

D3PWMTH: D3 端口的 PWM 信号周期宽度高字节

 $D3PWMT = (D3PWMTH << 8) \mid D3PWMTL$

说明: PWM 的高电平宽度和周期都以 us 为单位,例如高电平宽度 1500us,周期 20000us 的舵机控制信号,只需要将 D3PWMH 设置为 1500, D3PWMT 设置为 20000 即可。

7.2.28 设置 IIC 地址

0xFF	0xAA	0x1a	IICADDR	0x00

IICADDR:模块的 IIC 地址,默认是 0x50。IIC 地址采用 7bit 地址,最大不能超过 0x7f。设置完成以后需要点保存配置按钮,再给模块重新上电后生效

7.2.29 设置 LED 指示灯

LEDOFF: 关闭 LED 指示灯

0x01: 关闭 LED 指示灯 0x00: 开启 LED 指示灯

7.2.30 设置 GPS 通信速率

0xFF 0xAA	0x1c	GPSBAUD	0x00
-----------	------	---------	------

GPSBAUD: GPS 通信速率

BAUD: 时间信息包

0x00: 2400 0x01: 4800

0x02: 9600 (默认)

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600

设置完成以后需要点保存配置按钮,再给模块重新上电后生效。

8 IIC 通信协议:

JY-901 模块可以完全通过 IIC 进行访问, IIC 通信速率最大支持 400khz, 从机地址为为7bit, 默认地址为 0x50, 可以通过串口指令或者 IIC 写地址的方式更改。IIC 总线上面可以 挂多个 GY-901 模块, 但需提前将模块的 IIC 地址修改为不同的地址。

模块的 IIC 协议采用寄存器地址访问的方式。每个地址内的数据均为 16 位数据,占 2 个字节。寄存器的地址及含义如下表:

地址 RegAddr	符号	含义
0x00	SAVE	保存当前配置
0x01	CALSW	校准
0x02	RSW	回传数据内容
0x03	RATE	回传数据速率
0x04	BAUD	串口波特率
0x05	AXOFFSET	X轴加速度零偏
0x06	AYOFFSET	Y轴加速度零偏
0x07	AZOFFSET	Z轴加速度零偏
0x08	GXOFFSET	X轴角速度零偏
0x09	GYOFFSET	Y轴角速度零偏
0x0a	GZOFFSET	Z轴角速度零偏

0x0b	HXOFFSET	X轴磁场零偏
0x0c	HYOFFSET	Y轴磁场零偏
0x0d	HZOFFSET	Z轴磁场零偏
0x0e	D0MODE	D0 模式
0x0f	D1MODE	D1 模式
0x10	D2MODE	D2 模式
0x11	D3MODE	D3 模式
0x12	D0PWMH	D0PWM 高电平宽度
0x13	D1PWMH	D1PWM 高电平宽度
0x14	D2PWMH	D2PWM 高电平宽度
0x15	D3PWMH	D3PWM 高电平宽度
0x16	D0PWMT	D0PWM 周期
0x17	D1PWMT	D1PWM 周期
0x18	D2PWMT	D2PWM 周期
0x19	D3PWMT	D3PWM 周期
0x1a	IICADDR	IIC 地址
0x1b	LEDOFF	关闭 LED 指示灯
0x1c	GPSBAUD	GPS 连接波特率
0x30	YYMM	年、月
0x31	DDHH	日、时
0x32	MMSS	分、秒
0x33	MS	毫秒
0x34	AX	X轴加速度
0x35	AY	Y轴加速度
0x36	AZ	Z轴加速度
0x37	GX	X轴角速度
0x38	GY	Y轴角速度
0x39	GZ	Z轴角速度
0x3a	HX	X轴磁场
0x3b	HY	Y轴磁场
0x3c	HZ	Z轴磁场
0x3d	Roll	X轴角度
0x3e	Pitch	Y轴角度
0x3f	Yaw	Z轴角度
0x40	TEMP	模块温度
0x41	D0Status	端口 D0 状态
0x42	D1Status	端口 D1 状态
0x43	D2Status	端口 D2 状态
0x44	D3Status	端口 D3 状态
0x45	PressureL	气压低字
0x46	PressureH	气压高字
0x47	HeightL	高度低字
0x48	HeightH	高度高字

0x49	LonL	经度低字
0x4a	LonH	经度高字
0x4b	LatL	纬度低字
0x4c	LatH	纬度高字
0x4d	GPSHeight	GPS 高度
0x4e	GPSYaw	GPS 航向角
0x4f	GPSVL	GPS 地速低字
0x50	GPSVH	GPS 地速高字
0x51	Q0	四元素 Q0
0x52	Q1	四元素 Q1
0x53	Q2	四元素 Q2
0x54	Q3	四元素 Q3

8.1 IIC 写入

IIC 写入的时序数据格式如下

IICAddr<<1 RegAddr Data1L	Data1H	Data2L	Data2H	•••••
---------------------------	--------	--------	--------	-------

首先 IIC 主机向 JY-901 模块发送一个 Start 信号,在将模块的 IIC 地址 IICAddr 写入,在写入寄存器地址 RegAddr,在顺序写入第一个数据的低字节,第一个数据的高字节,如果还有数据,可以继续按照先低字节后高字节的顺序写入,当最后一个数据写完以后,主机向模块发送一个停止信号,让出 IIC 总线。

当高字节数据传入 JY-901 模块以后,模块内部的寄存器将更新并执行相应的指令,同时模块内部的寄存器地址自动加 1,地址指针指向下一个需要写入的寄存器地址,这样可以实现连续写入。

以设置端口 0 为高电平输出模式为例,RegAddr 为 0x0e,DataL 为 0x02,DataH 为 0x00。逻辑分析仪捕获的波形如下图所示:

通过寄存器对模块进行设置的方法与串口协议一致,寄存器说明参考7.1节。

8.2 IIC 读取

IIC 写入的时序数据格式如下

IICAddr<<1	RegAddr	(IICAddr<<1) 1	Data1L	Data1H	Data2L	Data2H	••••
首先 IIC 主机向 JY-901 模块发送一个 Start 信号,在将模块的 IIC 地址 IICAddr 写入,							
在写入寄存器地址 RegAddr,主机再向模块发送一个读信号(IICAddr<<1) 1,如果是默认							
地址 0x51,	那么发送的	数据为 0xa1,此	后模块将接	医照先低字	节,后高与	字节的顺序	输出数

地址 0x51,那么友送的数据为 0xa1,此后模块将按照先低字节,后高字节的顺序输出数据,主机需在收到每一个字节后,拉低 SDA 总线,向模块发出一个应答信号,待接收完指定数量的数据以后,主机不再向模块回馈应答信号,此后模块将不再输出数据,主机向模块再发送一个停止信号,以结束本次操作。

以读出模块的角度数据为例,RedAddr 为 0x3d,连续读取 6 个字节,逻辑分析仪捕获的波形如下图所示:

从 0x3d 开始读取出来的数据依次为 0x9C,0x82,0x28,0xFF,0xE6,0x24。也就是说 X 轴的角度为 0x829C,Y 轴的角度为 0xFF28,Z 轴的角度为 0x24E6。按照 7.2.4 节的公式可以求出转化出来的角度为: X 轴角度-176.33°,Y 轴角度为-1.19°,Z 轴角度为 51.89°。