Технология измерений

«Хронометраж»

```
# find maximum value in a list
def find max(nums):
    return max (nums)
import time
# choose n to get t = 0.1 ... 1.0 sec
n = 4 000 000
\# nums = n * [1] \# best case
nums = range(n) # worst case
t = time.perf counter()
x max = find max(nums)
dt = time.perf counter() - t
print(n, dt)
```

Подбираем размер задачи (от 0.1 до 1 сек)

C:\11>python maxx.py 40000000 1.1377638000003572

Худший случай

C:\11>python maxx.py 4000000 0.10536360000014611

C:\11>python maxx.py 4000000 0.053779100000610924

C:\11>python maxx.py 40000000 0.5737364999995407 Лучший случай

Подбираем n

```
C:\00\bin\x64\Release\net9.0>00
10000000000 0,5927914
```

C:\00\bin\x64\Release\net9.0>00 2000000000 0,1241308

```
C:\00\bin\x64\Release\net9.0>00
2000000000 0,1226144
```

C:\00\bin\x64\Release\net9.0>00 10000000000 0,5975981

```
using System;
using System.Diagnostics;
using System.Ling;
class Program
    // find maximum in array (built-in)
    static int FindMax(int[] nums)
        return nums.Max();
    static void Main(string[] args)
        // Choose array size (0.1 ... 1 sec)
        int n = 200_{-}000_{-}000;
        int[] nums = new int[n];
        for (int i = 0; i < n; i++)
            // nums[i] = 1; // Best case
            nums[i] = i; // Worst case
        Stopwatch stopwatch = Stopwatch.StartNew();
        int x_max = FindMax(nums);
        stopwatch.Stop();
        double t = stopwatch.Elapsed.TotalSeconds;
        Console.WriteLine($"{n} {t}");
```

Организуем цикл

- Внешний цикл размер задачи n
 - 5 значений = 5 точек на графике
 - от 8_000_000 до 40_000_000 шаг 8_000_000

- Внутренний цикл повторение опытов
 - 10 прогонов
 - «Усреднение» удалить выбросы и случайный разброс

Py: EN/RU

- Проверяем работоспособность
- [Ctrl + C]

```
C:\11>python maxx csv.py
n;T(n)
8000000;0,2113006000
8000000;0,2074640000
8000000;0,2112839000
8000000;0,2089632000
8000000;0,2089441000
8000000;0,2096931000
8000000;0,2148051000
8000000;0,2087375000
8000000;0,2146122000
8000000;0,2180566000
```

Перенаправляем вывод в файл

• Перенаправляем стандартный вывод в файл – ждем завершения

```
C:\11>python maxx_csv.py > maxx_py_worst.csv
C:\11>_
```

- Стандартный вывод на экран и в файл наблюдаем работу
 - «Т-образное соединение»

```
C:\11>python maxx_csv.py | tee maxx_py_worst.csv
n;T(n)
8000000;0,2171052000
8000000;0,2149020000
8000000;0,2277043000
8000000;0,2214901000
```

C#: EN/RU

```
using System;
using System.Diagnostics;
using System.Ling;
class Program
    // find maximum in array (built-in)
    static int FindMax(int[] nums)
        return nums. Max();
    static void Main()
        Console.WriteLine("n;T(n)");
        for (int n = 200_000_000; n \le 1_000_000_000; n += 200_000_000)
            int[] nums = new int[n];
            for (int i = 0; i < n; i++)
                nums[i] = i; // Worst: i
                                             Best: 1
            for (int i = 0; i < 10; i++)
                Stopwatch stopwatch = Stopwatch.StartNew();
                int x_max = FindMax(nums);
                stopwatch.Stop();
                double t = stopwatch.Elapsed.TotalSeconds;
                Console.WriteLine($"{n};{t:F10}".Replace(',', '.'));
        © Арьков В.Ю.
```

C#: Вывод на экран и в файл CSV

```
C:\00\bin\x64\Release\net9.0>00
n;T(n)
200000000;0.1276321000
200000000;0.1185067000
```

C:\00\bin\x64\Release\net9.0>00 > maxx_cs.csv

```
C:\00\bin\x64\Release\net9.0>00 | tee maxx_cs_worst.csv
n;T(n)
20000000;0.1233352000
20000000;0.1205683000
```



```
Maxx.java
import java.util.Arrays;
public class Maxx {
   // Find maximum in array (built-in)
   static int findMax(int[] nums) {
        return Arrays.stream(nums).max().orElse(Integer.MIN VALUE);
   public static void main(String[] args) {
       int n = 40 000 000;
       int[] nums = new int[n];
       for (int i = 0; i < n; i++) {
           nums[i] = 1; // Best: 1 Worst: i
       long t0 = System.nanoTime();
       int x max = findMax(nums);
       long t1 = System.nanoTime();
       double t = (t1 - t0) / 1 000 000 000.0;
       System.out.println(n + " " + t);
         © Арьков В.Ю.
```

Открываем CSV в Excel

- Worst.csv
- Best.csv

- Текст прижат влево
- Числа прижаты вправо

Проблемы загрузки

• Разделитель полей (столбцов)

Диаграмма

- Строим график
 - Диаграмма разброса
 - Диаграмма рассеяния
 - Корреляционное поле
 - Поле корреляции
 - «Диаграмма X Y»
 - Scatter Plot
- Выделяем столбцы
- Вставка Диаграмма Точечная Точечная

Сводная таблица

- Выделяем диапазон
- Таблица с заголовками
 - [Ctrl + Home]
 - [Shift + Right]
 - [Ctrl + Shift + Down]

- Вставка Сводная таблица
- Insert Pivot Table

Адрес ячейки для вывода

Настроим сводную таблицу

• Строки: п

• Значения: Т

• Минимальное T(n)

Названия строк	Минимум по полю T(n)
8000000	0,1075582
16000000	0,2170472
24000000	0,3240958
32000000	0,4340132
4000000	0,5415516

Сводная таблица1

Чтобы построить отчет, выберите поля из списка полей сводной таблицы

Агрегируем: Минимальное значение

Данные для диаграммы

Добавляем «ряд данных» на график

Оформление диаграммы

Python built-in max

