RF EXPOSURE REPORT

Report No.: 16020308-FCC-H1 Supersede Report No.: N/A

autoroac report non turt				
Applicant	Beijing Jia An Electronics Technology Co.,Ltd.			
Product Name	BLE module			
Model No.	BTRS-Uart			
Test Standard	FCC 2.1091			
Test Date	April 12 to April 21, 2016			
Issue Date	April 27, 2016			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Amos Xia Hove Doko				
Amos Xia Test Engineer		Herve Idoko Checked By		
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				

Issued by: SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Test Report No.	16020308-FCC-H1
Page	2 of 8

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	16020308-FCC-H1
Page	3 of 8

This page has been left blank intentionally.

Test Report No.	16020308-FCC-H1
Page	4 of 8

CONTENTS

1	REPORT REVISION HISTORY	5
	CUSTOMER INFORMATION	
3	TEST SITE INFORMATION	5
4	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
	FCC §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	

Test Report No.	16020308-FCC-H1
Page	5 of 8

1 Report Revision History

Report No.	Report Version	Description	Issue Date
16020308-FCC-H1	NONE	Original	April 27, 2016

2 Customer information

Applicant Name	Beijing Jia An Electronics Technology Co.,Ltd.	
Applicant Add	No.19 GuCheng West Street, Shi Jing Shan District, Beijing 100043, China	
Manufacturer	Beijing Jia An Electronics Technology Co.,Ltd.	
Manufacturer Add	No.19 GuCheng West Street, Shi Jing Shan District, Beijing 100043, China	

3 Test site information

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Addrass	2-1 Longcang Avenue Yuhua Economic and
Lab Address	Technology Development Park, Nanjing, China
FCC Test Site No.	986914
IC Test Site No.	4842B-1
Test Software	Labview of SIEMIC version 1.0

Test Report No.	16020308-FCC-H1
Page	6 of 8

4 Equipment under Test (EUT) Information

Description of EUT:	BLE module
Main Model:	BTRS-Uart
Serial Model:	N/A
Date EUT received:	April 08,2016
Test Date(s):	April 12 to April 21, 2016
Antenna Gain:	BLE: -2.3 dBi
Type of Modulation:	BLE: GFSK
RF Operating Frequency (ies):	BLE: 2402-2480 MHz
Number of Channels:	BLE: 40CH
Port:	N/A
Input Power:	DC 5-15V
Trade Name :	N/A
FCC ID:	VVJ-BTRS

Test Report No.	16020308-FCC-H1
Page	7 of 8

5 FCC §2.1091 - MaximuM Permissible exposure (MPE)

Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)			Power Density (mW/cm²)	Averaging Time (minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	1	1	f/1500	30			
1500-100,000	1	1	1.0	30			

f = frequency in MHz

Test Data

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

^{* =} Plane-wave equivalent power density

Test Report No.	16020308-FCC-H1
Page	8 of 8

Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Tune Up Power (dBm)
Output power	BLE	Low	2402	-1.165	
		Mid	2440	-0.348	-1±1
		High	2480	-0.154	

For the antenna manufacturer provide only used limited to ERP/EIRP or radiated spurious emission test. The MPE evaluation as below:

BLE

The maximum peak output power (turn-up power) in low channel of BLE is 0dBm Maximum peak output power (turn-up power) at antenna input terminal: <u>1 (mW)</u>

Prediction distance: >20 (cm)

Predication frequency: <u>2402(MHz) lowest frequency</u>

Antenna Gain (typical): -2.3 (dBi)

Antenna Gain (typical): 0.59 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.00012 (mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

 $0 \text{ (mW/cm}^2) < 1 \text{ (mW/cm}^2)$

The maximum peak output power (turn-up power) in Middle channel of BLE is 0dBm Maximum peak output power (turn-up power) at antenna input terminal: <u>1 (mW)</u>

Prediction distance: >20 (cm)

Predication frequency: 2440(MHz) lowest frequency

Antenna Gain (typical): -2.3 (dBi)

Antenna Gain (typical): 0.59 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.00012 (mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

 $0 \text{ (mW/cm}^2) < 1 \text{ (mW/cm}^2)$

The maximum peak output power (turn-up power) in High channel of BLE is 0dBm Maximum peak output power (turn-up power) at antenna input terminal: 1 (mW)

Prediction distance: >20 (cm)

Predication frequency: 2480(MHz) lowest frequency

Antenna Gain (typical): -2.3 (dBi)

Antenna Gain (typical): 0.59 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.00012 (mW/cm²)

MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

 $0 \text{ (mW/cm}^2) < 1 \text{ (mW/cm}^2)$

Result: Pass