

Machine Learning

Linear regression with Medariable representati on

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training	SE	te	of
housing	pr	ic	es
(Portlan	d,	0	R)

Size in feet ²	Price (\$) in
(x)	1000's (y)
2104	460
1416	232
1534	315
852	178
	•••

Notation: ... $\mathbf{m} = \text{Number of training examples}$

x's = "input" variable / features

y's = "output" variable / "target" variable

How do we represent h?

Linear regression with one variable. Univariate linear regression.

Machine Learning

Linear regression with one variable Cost function

Training Set

Size in feet ² (x)		Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

8: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose,
$$\theta_1$$
 so that y is close to (x_0y) our training

Andrew No

Machine Learning

Linear regression with one variable Cost function intuition I

Simplified Hypothesis: $h_{\theta}(x) = \theta_1 x$ $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:

$$a_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(heta_0, heta_1)=rac{1}{2m}\sum_{i=1}^{n}\left(h_{ heta}(x^{(i)})-y^{(i)}
ight)^2$$
Goal: $\min_{ heta_0, heta_1}$ $J(heta_0, heta_1)$

$$h_{\theta}(x^{(i)}) - y^{(i)})^{-}$$

$$\min_{ heta_1} \sum_{i=1}^{2m} \sum_{i=1}^{2m} n_{ heta_i}$$

$$\frac{1}{n}\sum_{i=1}^{n}$$

$$\sum_{i=1}^{m} \left(h_{\theta} \right)$$

$$(h_{\theta}(x^{(i)})$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$(x^{(i)}) - y^{(i)}$$

Andrew No

Machine Learning

Linear regression with one variable Cost function intuition II

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

 $J(\theta_0,\theta_1)$

(for fixed θ_0, θ_1 this is a function of x) (function of the parameter θ_0, θ_1

 $J(\theta_0,\theta_1)$

(for fixed θ_0, θ_1 this is a function of x) (function of the parameter θ_0, θ_1

$J(\theta_0,\theta_1)$

(for fixed θ_0, θ_1 this is a function of x) (function of the parameter θ_0, θ_1

 $J(\theta_0,\theta_1)$ θ_0, θ_1 this is a function of x) (function of the parameter θ_0, θ_1

Machine Learning

Linear regression with one variable Gradient descent

Have some function θ_0, θ_1

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_1
- Keep changing, θ_1 to reduce until we hopefully end

up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(for } j = 0 \text{ and } j = 1 \text{)}$$
 }

Correct: Simultaneous updatencorrect:

$$\begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) & \theta_0 := \operatorname{temp0} \\ \theta_0 := \operatorname{temp0} & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} & \theta_1 := \operatorname{temp1} \end{array}$$

Machine Learning

Linear regression with one variable Gradient descent intuition

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1)}
```


$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

rate
$$\alpha$$
 fixed $\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$

As we approach a $J(\theta_1)$ local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α

avar tima

Machine Learning

Linear regression with one variable Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) =$$

$$j = 0 : \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) =$$

$$j=1: \frac{\partial}{\partial \theta_1} J(\theta_0,\theta_1) =$$

radient descent algorithm

 $\begin{array}{l} \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \end{array} \right] \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \end{array}$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.