

1/7

FIG.1FIG.2

BEST AVAILABLE COPY

FIG.4

2/7

FIG.3

3/7

	$k_a \times 10^3$ (1/Ms)	$k_d \times 10^3$ (s ⁻¹)	$K_D \times 10^6$ (M)
scFv 40	0.80 ± 0.06	3.44 ± 0.02	4.30 ± 0.43
scFv 69	0.24 ± 0.02	1.22 ± 0.02	5.13 ± 0.33

FIG.5

4/7

FIG.6

5/7

FIG. 7

6/T

FIG. 8

7/7

ScFv 40

FR1 CDR1 FR2
EVQLLESGGGLVQPGGSLRLSCAASGFTFS S YAMS WVRQAPGKGLEWVS AISG

CDR2 FR3 CDR3
SGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK NYQIHP

FR4 Linker FR1
FDYWGGTQLTVSR GGGGGGGGGGGGS SELTQDPAVSVALGQTVRITC QG

CDR1 FR2 CDR2 FR3
DSLRSYAS WYQQKPGQAPVLYI GKNNRPS GIPDRFSGSSSGNTASLTITGAQAEDE

CDR3 FR4
ADYYC NSSDPDQLL VVFGGGTKLTVLG

ScFv 69

FR1 CDR1 FR2
EVQLLESGGGLVQPGGSLRLSCAASGFTFS S YAMS WVRQAPGKGLEWVS AISG

CDR2 FR3 CDR3
SGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK NVHIQP

FR4 Linker FR1
FDYWGGTQLTVSR GGGGGGGGGGGGS SELTQDPAVSVALGQTVRITC QG

CDR1 FR2 CDR2 FR3
DSLRSYAS WYQQKPGQAPVLYI GKNNRPS GIPDRFSGSSSGNTASLTITGAQAEDE

CDR3 FR4
ADYYC NSSEPTPPR VVFGGGTKLTVLG

FIG.9