ÉQUATIONS DE DROITES

I) ÉQUATION D'UNE DROITE

1) Vecteur directeur d'une droite

Soit *d* une droite du plan.

On appelle vecteur directeur de d tout vecteur non nul \vec{u} qui possède la même direction que la droite d.

2) Équation réduite d'une droite « non verticale »

Soit d une droite quelconque, <u>non parallèle à l'axe des ordonnées</u>. Cette droite coupe donc l'axe des ordonnées en un point que l'on appellera B et elle a un vecteur directeur d'abscisse 1 que l'on appellera \vec{u} .

Appelons b l'ordonnée du point B et a celle de \vec{u} . On a :

Soit M(x; y) un point quelconque du plan.

$$M(x;y) \in d \Leftrightarrow$$

Conclusion:

- Toute droite non verticale est donc la représentation graphique d'une fonction affine. Elle une équation de la forme y = a x + b appelée « équation réduite » de la droite.
- b est l'ordonnée du point de d d'abscisse 0. On l'appelle « ordonnée à l'origine » de la droite d.
- *a* caractérise la direction de la droite *d*. On l'appelle « coefficient directeur » de *d*.
- Deux droites non verticales sont donc parallèles si et seulement si elles ont le même coefficient directeur.
- P et Q étant deux points distincts de d, déterminons $\frac{y_Q y_P}{x_Q x_P}$:

d n'est pas verticale donc $x_Q \neq x_P$ et :

$$\frac{y_Q - y_P}{x_Q - x_P} =$$

2-eqdroites-droite1.html 2-eqdroites-droite2.html

p200 : 34, 36 p201 : 49, 54

p202: 58, 60, 61, 63 p204: 86, 89, 90, 91

3) Équation cartésienne d'une droite « quelconque »

Soit d une droite quelconque passant par un point A et ayant un vecteur directeur \vec{u} dont on appellera les coordonnées -b et a.

Soit M(x; y) un point quelconque du plan.

$$M(x;y) \in d \Leftrightarrow$$

Conclusion:

- On remarque que $(-ax_A by_A)$ est un terme constant qui ne dépend que de A et de \vec{u} . Appelons ce terme « c ». L'équation d'une droite peut donc aussi s'écrire sous la forme ax + by + c = 0 appelée « équation cartésienne » de la droite.
- Une droite a une infinité d'équations cartésiennes équivalentes : $Ex : x + 2y - 1 = 0 \Leftrightarrow 2x + 4y - 2 = 0 \Leftrightarrow -x - 2y + 1 = 0$.

 Donc la droite d d'équation : x + 2y - 1 = 0a aussi pour équation : ou encore :

De plus , et sont des vecteurs directeurs de d.

- a et b ne peuvent pas être nuls en même temps car sinon $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$ serait nul et ne pourrait donc pas être un vecteur directeur d'une droite.
- Si b = 0, alors $a \ne 0$ donc $ax + by + c = 0 \Leftrightarrow$ La droite est l'ensemble des points Il s'agit d'une droite
- Si a=0,

La droite est l'ensemble des points Il s'agit d'une droite

p200:35

p201: 48, 52, 53

p203:71,73

II) DÉTERMINER L'ÉQUATION D'UNE DROITE

1) Connaissant deux points :

Ex: Soient A(-2; 0) et B(2; 2). Déterminer une équation de (AB).

1ère méthode : $x_A \neq x_B$ donc (AB) n'est pas verticale et a donc une équation de la forme y = a x + b.

(AB) a donc pour équation :

2ème méthode : Soit M(x; y) un point quelconque :

$$M \in (AB) \Leftrightarrow$$

(AB) a donc pour équation :

ou encore:

2) Connaissant un point et un vecteur directeur :

Ex: Déterminer l'équation de la droite d passant par A(-2; 0) et de vecteur directeur $\vec{u} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Soit M(x; y) un point quelconque:

$$M \in (AB) \Leftrightarrow$$

(AB) a donc pour équation :

3) Parallèle à une droite et passant par un point :

Ex: Déterminer l'équation de d' la parallèle à la droite d d'équation : $y = \frac{1}{2}x + 1$ passant par C(1; 0).

d et d' étant parallèles, elles ont le même coefficient directeur, donc l'équation de d' est de la forme :

d' a donc pour équation :

p200: 39, 43, 44 p201: 46, 50, 51, 55

p203: 68, 75, 77, 78, 79, 81, 84

p205:99,105

p206:109

p209:133

p210:140

algo

p204:85

p206:108

régressions avec calculatrice

p209:129

III) LIEN AVEC LES SYSTÈMES « 2 × 2 »

Dans le chapitre sur les systèmes de deux équations linéaires à deux inconnues, on a étudié les systèmes de la forme : $\begin{cases} a\,x+b\,y+c=0\\ a'\,x+b'\,y+c'=0 \end{cases}$

Comment ne pas faire l'analogie avec des équations cartésiennes de droites!

Conséquence:

De même que deux droites ont pour intersection :	De même un système 2×2 aura pour solutions :
• soit un unique point d'intersection	•
(les droites sont)	(cas général que nous rencontrerons dans les exercices)
• soit aucun point d'intersection	•
(les droites sont	(les 2 équations sont
))
• soit une infinité de points	•
d'intersection	(les 2 équations sont
(les droites sont)	

p200:37

p206:115

p207:118,119

p208:125

p210:139