Braitenberg Vehivles

de Abril de 2011

Conteúdo

1	Intr	roduction	3	
2	\mathbf{Bre}	reve Libraries		
	2.1	Constructors with parameters	4	
	2.2	Object distance	4	
		2.2.1 Point - Sphere	4	
		2.2.2 Point - Box	4	
	2.3	Activators	4	
	2.4	Sensor rotation and initialization	5	
	2.5	Multibody collision handlers (Proxies, and Real's parents)	5	
3	Sen	Sensors 7		
	3.1	Light	7	
	3.2	Distance		
	3.3	Proximity		
	3.4	Smell		
	3.5	Sound	7	
4	Vehicles 10			
	4.1	Eight	10	
	4.2	Ellipse		
	4.3	Braitenberg 3c		
5	Pro	ject	11	

1 Introduction

2 Breve Libraries

Como referenciado na documentação da biblioteca Breve, o código Python fornecido é obtido através da compilação de código Steve. Assim, esta biblioteca está pouco optimizada na medida em que não utiliza todas as potencialidades da linguagem. Por isso decidimos efectuar algumas alterações

2.1 Constructors with parameters

2.2 Object distance

Para implementar correctamente os sensores, é necessário calcular a distância entre dois objectos. Para o cálculo desta distância as bibliotecas originais apenas teem em conta a distância euclidiana entre os centros. No entanto esta aproximação não é suficiente quando os objectos teem dimensões elevadas.

2.2.1 Point - Sphere

Por definição todos os pontos da superficie esférica estão à mesma distância do centro. Desta forma a solução para o caso das esferas é apenas considerar a distância entre os centros e subtrair o raio da esfera.

2.2.2 Point - Box

Uma solução eficiente para este caso consiste em utilizar o algoritmo de Arvo como descrito em 1 . No entanto este algoritmo necessita que a Box esteja alinhada com os eixos. Como este não é originalmente o caso é necessário transformar as coordenadas do ponto no referencial original O para o referencial da box B. Esta transformação é obtida através do produto de matrizes:

$$\begin{bmatrix} P'_x \\ P'_y \\ P'_z \\ 1 \end{bmatrix} = \begin{bmatrix} x_x & x_y & x_z & & O_x \\ y_x & y_y & y_z & & O_y \\ z_x & z_y & z_z & & O_z \\ 0 & 0 & 0 & & 1 \end{bmatrix} * \begin{bmatrix} P_x \\ P_y \\ P_z \\ 1 \end{bmatrix}$$

Onde x,y,z são os versores do referencial B em relação ao referencial O e O_x,O_y,O_z são as coordenadas da origem do rerefencial O nas coordenadas do referencial O.

2.3 Activators

O veiculos de Braitenberg como definidos na literatura apenas permitem relacionar um sensor directamente com uma roda. Esta abordagem necessita a replicação de sensores

http://www.gamasutra.com/view/feature/3383/simple_intersection_tests_for_games.php?page=4

quando se pretende que tenha influência em mais que uma roda. Para evitar esta duplicação introduzimos o conceito de Activador

- 2.4 Sensor rotation and initialization
- 2.5 Multibody collision handlers (Proxies, and Real's parents)

3 Sensors

3.1 Light

3.2 Distance

Figura 1: Light: $bias = 50 \ \alpha = \pi/2$

3.3 Proximity

Figura 2: Distance: $\alpha = \pi/4$

3.4 Smell

Figura 3: Proximity: $bias = 50 \ \alpha = \pi/4$

3.5 Sound

Figura 4: Smell: bias = 50

•

Figura 5: Sound: bias = 50

4 Vehicles

- 4.1 Eight
- 4.2 Ellipse

Figura 6: Trail of the eight vehicle

4.3 Braitenberg 3c

Figura 7: Trail of the ellipse vehicle

5 Project