Statistics 200B: Introduction to Probability and Statistics at an Advanced Level

Soyeon Ahn <iamyeoni@berkeley.edu>
Department of Statistics

UC Berkeley, Spring 2019

The Big Picture

adapted from Wasserman, 2004

A Slightly Bigger Picture

from Kass, 2009

Probability Review

CDF
$$F_X: \mathbb{R} \to [0,1], F_X(x) = P(X \le x)$$

Properties:

- 1. Nondecreasing: $x_1 < x_2 \Rightarrow F(x_1) \leq F(x_2)$
- 2. Normalized: $\lim_{x\to-\infty}=0$ and $\lim_{x\to\infty}=1$
- 3. Right-continuous: $\lim_{y\downarrow x} F(y) = F(x)$

We write $X \sim F$ to denote that r.v. X has distribution F.

We write $X \stackrel{D}{=} Y$ to denote that X and Y are equal in distribution. This means that $F_X(x) = F_Y(x) \, \forall x$, not that X = Y.

X is continuous if its CDF F_X is continuous.

X is discrete if it takes countably many values.

There are random variables that are neither (e.g., F_X is discontinuous at a single point, assigning it non-zero probability), but they can usually be derived from these two main types.

The *density* of a r.v. X has a different definition, depending on whether X is discrete or continuous.

If X is discrete, its density or probability mass function (PMF)

$$f_X(x) = P(X = x)$$

When X is continuous, P(X = x) = 0 for all x.

When X is continuous, we define the probability density function (PDF) in terms of integration. It satisfies

1.
$$f_X(x) \ge 0 \,\forall x$$

$$2. \int_{-\infty}^{\infty} f_X(x) dx = 1$$

3.
$$P(a < X < b) = \int_a^b f_X(x) dx$$

We can go back and forth between the PDF and CDF:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$
 $f_X(x) = F_X'(x) \, \forall x \text{ s.t. } F_X(x) \text{ is differentiable}$

Example:

Let X be a continuous random variable with PDF f. Let A be a subset of the real line, and let $I_A(x)$ be the indicator function for A:

$$I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Let $Y = I_A(X)$. Find an expression for the CDF of Y.

Hint: First find the PDF for Y.

Bivariate distributions

Joint CDF
$$F(x,y) = P(X \le x, Y \le y)$$

When X and Y are discrete, their joint PMF is f(x,y) = P(X=x,Y=y). When X and Y are continuous, their joint PDF is f(x,y), satisfying

1.
$$f(x,y) \ge 0 \forall (x,y)$$

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$

3.
$$P((X,Y) \in A) = \int \int_A f(x,y) dx dy$$

We can compute marginal densities from the joint PDF.

When X is discrete, $f_X(x) = \sum_y f(x,y)$.

When X is continuous, $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$.

X and Y are independent if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Obvious analogues hold for more than two variables. We write $X_1, \ldots, X_n \stackrel{iid}{\sim} F$ (iid = independent and identically distributed) to denote that a collection of random variables are mutually independent with common distribution F. Then we may write

$$f(x_1, \dots, x_n) = \prod_{i=1}^n f_{X_1}(x_i)$$

Define the *conditional density*

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

When X and Y are discrete, $P(X = x | Y = y) = f_{X|Y}(x|y)$.

When X and Y are continuous, $P(X \in A|Y=y) = \int_A f_{X|Y}(x|y) dx$.

Bayes Theorem:

$$f_{Y|X}(y|x) = \frac{f_{X|Y}(x|y)f_Y(y)}{f_X(x)}$$

Transformations

Consider a new r.v. Y = r(X). We want to calculate the PDF and CDF of Y based on the PDF and CDF of X.

If X is discrete, it's easier to work directly with the PDFs

$$f_Y(y) = P(Y = y) = P(r(X) = y)$$

$$= P(\{x : r(x) = y\})$$

$$= P(X \in r^{-1}(y))$$

$$= \sum_{x \in r^{-1}(y)} f(x)$$

Then calculate the CDF based on the PDF.

If X is continuous, it's easier to reason about the CDFs

$$F_Y(y) = P(Y \le y) = P(r(X) \le y)$$

$$= P(\{x : r(x) \le y\})$$

$$= \int_{A_y} f_X(x) dx$$

where $A_y = \{x : r(x) \leq y\}$.

Then calculate the PDF based on the CDF.

In the special case that r is strictly monotone, with $s=r^{-1}$,

$$f_Y(y) = f_X(s(y)) \left| \frac{ds(y)}{dy} \right|$$

Example

Let X be a r.v. with PDF $f_X(x) = e^{-x}$ for x > 0. Let $Y = r(X) = \log X$.

- 1. Calculate the CDF of X.
- 2. Calculate the CDF of Y.
- 3. Calculate the PDF of Y by differentiating the CDF.
- 4. Calculate the PDF of Y directly from the PDF of X.

Example

Let $X,Y\overset{iid}{\sim}Unif(0,1).$ That is X and Y are independent and both have pdf

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & otherwise \end{cases}$$

Let $Z = \max\{X, Y\}$. Find the density of Z.

Hint: First calculate the CDF of Z, followed by its PDF.

Expectation, variance, and covariance

$$E[X] = \int x dF(x) = \left\{ \begin{array}{ll} \sum_{x} x f(x) & X \text{ discrete} \\ \int x f(x) dx & X \text{ continuous} \end{array} \right.$$

When $E[X] = \mu$,

$$V[X] = E[(X - \mu)^{2}] = \int (x - \mu)^{2} dF(x)$$

When $E[X] = \mu_X$ and $E[Y] = \mu_Y$,

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

Some properties

1. For r.v. X_1, \ldots, X_n and constants a_1, \ldots, a_n ,

$$E\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i} E[X_{i}]$$

$$V\left(\sum_{i} a_{i} X_{i}\right) = \sum_{i} a_{i}^{2} V(X_{i}) + 2 \sum_{i < j} \sum_{a_{i} < j} a_{i} a_{j} Cov(X_{i}, X_{j})$$

- 2. $V[X] = E[X^2] (EX)^2$; Cov(X, Y) = E(XY) E(X)E(Y)
- 3. If X and Y are independent, E[XY] = E[X]E[Y] and Cov(X,Y) = 0.

"Law of the Lazy Statistician": If Y=r(X), then

$$E[Y] = \int r(x)dF_X(x)$$

Special case: $E[I_A(x)] = \int I_A(x) dF(x) = \int_A dF(x) = P(X \in A)$

Note
$$\int_A dF(x) = \left\{ \begin{array}{ll} \sum_{x \in A} f(x) & X \text{ discrete} \\ \int_A f(x) dx & X \text{ continuous} \end{array} \right.$$

Don't confuse the mean and variance (which I'll often denote by μ and σ^2) with the sample mean and sample variance.

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$

Conditional expectation

$$E(X|Y=y) = \left\{ \begin{array}{ll} \sum_x x f_{X|Y}(x|y) & \text{discrete case} \\ \int x f_{X|Y}(x|y) dx & \text{continuous case} \end{array} \right.$$

Note! E(X|Y=y) is a function of y. Therefore E(X|Y) is a r.v.

Iterated expectations and variances

$$E[Y] = E[E[Y|X]]$$

$$V[Y] = E[V[Y|X]] + V[E[Y|X]]$$

Moment generating function (MGF) $\phi_X(t) = E[e^{tX}] = \int e^{tX} dF(x)$

$$E[X^k] = \phi^{(k)}(0)$$

Markov's inequality: Let X be a non-negative r.v. with finite mean. Then

$$P(X>t) \leq \frac{E[X]}{t} \text{ for any } t>0$$

Chebyshev's inequality: Let $E[X] = \mu$ and $V[X] = \sigma^2$. Then

$$P(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \text{ for any } t > 0$$

Cauchy-Schwartz inequality: If X and Y have finite variances, then

$$|E|XY| \le \sqrt{E[X^2]E[Y^2]}$$

Jensen's inequality: If g is convex, then $E[g(X)] \ge g(E[X])$

Convergence of random variables

Let X_1, X_2, \ldots be a sequence of r.v.'s and let X be another r.v. Let F_n be the CDF of X_n and F be the CDF of X.

 X_n converges to X in probability, written $X_n \stackrel{P}{\to} X$, if, for every $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) \to 0$$

 X_n converges to X in distribution, written $X_n \stackrel{D}{\to} X$, if

 $\lim_{n\to\infty}F_n(t)=F(t)$ at all t for which F is continuous

Sometimes I'll abuse notation and put F on the right hand side of the arrow, e.g. $X_n \stackrel{D}{\to} N(0,1)$ instead of $X_n \stackrel{D}{\to} Z$ where $Z \sim N(0,1)$.

Example

Suppose Y_1, Y_2, \ldots are iid Unif(0,1) r.v. and let $X_n = \max_{1 \le i \le n} X_i$.

- 1. Show that $X_n \stackrel{P}{\rightarrow} 1$.
- 2. Show that the r.v. $n(1-X_n) \stackrel{D}{\rightarrow} Exponential(1)$.

 X_n converges to X in quadratic mean (also called convergence in mean square or convergence in L_2), written $X_n \stackrel{qm}{\to} X$, if

$$E[(X_n - X)^2] \to 0 \text{ as } n \to \infty$$

 $X_n \stackrel{qm}{\to} b$ if and only if $E[X_n] \to b$ and $V[X_n] \to 0$.

 X_n converges to X almost surely, written $X_n \stackrel{as}{\to} X$, if

$$P(X_n \to X \text{ as } n \to \infty) = 1$$

Example

Let X_1, X_2, \ldots be a sequence of r.v.'s such that

$$P\left(X_n = \frac{1}{n}\right) = 1 - \frac{1}{n^2}$$
 and $P(X_n = n) = \frac{1}{n^2}$

- 1. Does X_n converge in probability?
- 2. Does X_n converge in quadratic mean?

Relationships

- 1. $X_n \stackrel{qm}{\to} X$ implies that $X_n \stackrel{P}{\to} X$
- 2. $X_n \stackrel{as}{\to} X$ implies that $X_n \stackrel{P}{\to} X$
- 3. $X_n \stackrel{P}{\to} X$ implies that $X_n \stackrel{D}{\to} X$
- 4. $X_n \stackrel{D}{\to} c$ (point mass) implies that $X_n \stackrel{P}{\to} c$

Slutsky's Theorem

Let X_n , X, and Y_n be random variables and c be a constant. If $X_n \stackrel{D}{\to} X$ and $Y_n \stackrel{D}{\to} c$, then

1.
$$X_n + Y_n \stackrel{D}{\to} X + c$$

2.
$$X_n Y_n \stackrel{D}{\rightarrow} cX$$

Questions to consider: What types of convergence are preserved under addition? Under multiplication? Under continuous mappings?

The Weak Law of Large Numbers

Let X_1, X_2, \ldots be an *iid* sample, with $\mu = E[X_1]$ and $\sigma^2 = V[X_1] < \infty$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\bar{X}_n \stackrel{P}{\to} \mu$ as $n \to \infty$.

Flash forward: In the context of statistics, this property (convergence in probability of a sequence of estimators to a parameter) is known as consistency.

The Strong Law of Large Numbers

Under the same conditions above, $\bar{X}_n \stackrel{as}{\to} \mu$ as $n \to \infty$.

The Central Limit Theorem

Let X_1, X_2, \ldots be an *iid* sample, with $\mu = E[X_1]$ and $\sigma^2 = V[X_1] < \infty$. Let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$Z_n \equiv \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{D}{\to} N(0, 1)$$

We may also write $Z_n \approx N(0,1), \, \bar{X}_n \approx N(\mu, \sigma^2/n)$, etc.

Note that this result still holds if we replace σ by S_n , where

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

The Delta Method

Suppose that

$$\frac{\sqrt{n}(Y_n - \mu)}{\sigma} \xrightarrow{D} N(0, 1)$$

and that g is a differentiable function s.t. $g'(\mu) \neq 0$. Then

$$\frac{\sqrt{n}[g(Y_n) - g(\mu)]}{|g'(\mu)|\sigma} \stackrel{D}{\to} N(0, 1)$$

In other words,

$$Y_n pprox N\left(\mu, \frac{\sigma^2}{n}\right)$$
 implies that $g(Y_n) pprox N\left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n}\right)$

Example

Let X_1, X_2, \ldots be an *iid* sample, with $\mu = E[X_1]$ and $\sigma^2 = V[X_1] < \infty$. Use the Delta Method to find a function of X_1, \ldots, X_n (also known as a statistic) to approximate the variance of $1/\bar{X}_n$.