# Model Development in MLOps

Understand and Implement Production-Grade Machine Learning Operations

# Where We Are? 2. Model **Engineering** 1. Data 3. Model **Define Problem & Plan** Engineering **Evaluation** MLOps Lifecycle 6. Monitoring 4. Model **Deployment** Maintenance 5. Operations

## Recap 1/

## **Stage 1: Business Understanding & Problem Definition**

- Identify the business problem.
- Define success metrics (e.g., accuracy, precision, recall).
- Understand constraints (data availability, computational resources).

## Recap 2/

## Stage 2: Data Engineering & Feature Engineering

- Data Collection: Gather relevant data from various sources (databases, APIs, logs).
- Data Preprocessing: Handle missing values, outliers, and inconsistencies.
- Feature Engineering: Transform raw data into meaningful features.
- Data Versioning: Use tools like DVC, LakeFS, or MLflow for data versioning.

## Recap 3/

#### **Stage 3: Model Development & Experimentation**

- Select Model Architecture: Choose between traditional ML models (e.g., Random Forest, XGBoost) or deep learning models (CNNs, RNNs).
- **Hyperparameter Tuning**: Optimize parameters using techniques like grid search, random search, or Bayesian optimization.
- Logging Experiments: Use MLflow, Weights & Biases, or TensorBoard to track experiments.
- Code Versioning: Store code in GitHub, GitLab, or Bitbucket.

# Recap 4/

#### **Stage 4: Model Training & Evaluation**

- Train Model: Use GPUs or TPUs for faster training.
- Evaluate Performance: Compute metrics like accuracy, RMSE, F1-score.
- A/B Testing: Compare different models on a validation set.
- Bias & Fairness Testing: Ensure the model does not introduce bias.

# Recap 5/

#### **Stage 5: Model Packaging & Versioning**

- Convert Model: Save models in formats like ONNX, TF SavedModel, or MLflow Model Format.
- Version Control: Use MLflow Model Registry or DVC for model versioning.
- Containerization: Package models using Docker for portability.

## Recap 6/

**Stage 6: Model Deployment** 

- Deploy as REST API: Use FastAPI, Flask, or TensorFlow Serving.
- Deploy to Cloud: Use AWS SageMaker, Azure ML, or Google Vertex Al.
- Deploy with Kubernetes: Use Kubeflow Serving for scalable deployment.

# Recap 7/

## **Stage 7: Model Monitoring & Retraining**

- Monitor Performance: Use Prometheus, Grafana, or EvidentlyAl.
- Detect Data Drift: Identify changes in data distribution.
- Automate Retraining: Set up pipelines for periodic model retraining.

# **Learning Objectives**

- MLOps Model Development
- Reproducibility of Experiments
- Hands-On Practice with MLflow for Experiment Tracking
- Use Git for Code Versioning
- Ensure Data Versioning Using Mlflow / DVC
- Best Practices

# Difficulties of machine learning - The "Why"

#### Complexity of the ML Lifecycle

The machine learning process involves multiple stages, from data preprocessing to model deployment and monitoring. Each stage requires careful management to ensure efficiency and reproducibility

#### **Experiment Management**

Data scientists often conduct numerous experiments with different parameters, datasets, and algorithms. Without a centralized system, tracking these experiments and their outcomes becomes cumbersome.

#### Reproducibility

Ensuring that experiments yield consistent results across different environments and runs is crucial. This involves managing code versions, parameters, and library dependencies.

## Difficulties of machine learning - The "Why"

#### **Deployment Consistency**

With many ML libraries available, deploying models consistently can be challenging. MLflow standardizes this process, ensuring models are packaged and deployed reliably.

#### **Model Management**

As teams produce multiple models, managing their lifecycle—versioning, testing, and deployment—becomes complex without a centralized platform

# Why Manage Experiments?

Managing experiments is crucial for several reasons:

- 1. Transparency and Comparison: By logging experiments, data scientists can compare different models' performance and identify the best approach.
- 2. Reproducibility: Experiment management ensures that results are consistent across runs, which is vital for validating findings and scaling models.
- 3. Collaboration: Centralized experiment tracking facilitates collaboration among team members by providing a clear overview of all experiments and their outcomes.
- 4. Efficiency: Managing experiments reduces the time spent on trial-and-error approaches and helps in optimizing resources by focusing on promising models.

## **Problems That Cause Data Scientists to Need MLflow**

- Lack of Standardization: Without a standardized tool, teams often work with different model versions stored in various locations, making it difficult to compare performance and manage models effectively.
- Inefficient Collaboration: Collaboration is hindered when team members cannot easily access or reproduce each other's work due to inconsistent environments or missing documentation.
- Difficulty in Scaling: As projects grow, managing and deploying models becomes increasingly complex without a scalable platform like MLflow.
- **Risk of Errors**: Manual tracking and deployment processes are prone to errors, which can lead to incorrect conclusions or model failures in production.

## Introduction to MLflow

MLflow is an open-source platform created by Databricks to streamline the machine learning lifecycle. It provides tools for managing experiments, packaging code into reproducible runs, and deploying models in a consistent, scalable, and easy-to-monitor manner.



## **Core Components of MLflow**

MLflow consists of several core components that work together to manage the ML workflow:



mlflow

**Tracking** 

mlflow

**Projects** 

mlflow

Models

mlflow

**Model Registry** 

## **Core Components of Mlflow - Tracking**

#### 1. MLflow Tracking

- Purposes:
  - Logs and tracks machine learning experiments, including parameters, metrics, and artifacts.
  - Query data from experiment.
  - Store models, artifacts and code.
- **Features**: Allows data scientists to visualize and compare different runs to identify the best-performing model. It can be used locally or remotely via the MLflow server.
- APIs: Supports Java, Python, R, and REST APIs for recording and querying runs.

## **Core Components of Mlflow - Projects**

### 2. MLflow Projects

- Purpose:
  - Packages machine learning code into a reusable form that can be easily reproduced and shared.
- **Features**: Each project is a directory with code or a Git repository, using a descriptor file to specify dependencies and execution methods. Projects can be chained into multi-step workflows.
- **Example**: A project might include a conda.yaml file for specifying a Python environment.

## **Core Components of Mlflow - Models**

#### 3. MLflow Models

- Purpose:
  - Standardize models for deployment.
  - Build customized models.
- **Features**: Models are saved as directories with a descriptor file listing supported flavors (e.g., TensorFlow, Python function). Supports deployment to platforms like AWS SageMaker and Azure ML.

# **Core Components of Mlflow - Model Registry**

#### 4. MLflow Model Registry

- Purpose:
  - Provides a centralized model store for managing the lifecycle of MLflow models (Store and version ML models)
  - Load and deploy ML models.
- **Features**: Offers model lineage, versioning, stage transitions (e.g., staging to production), and annotations. Facilitates collaboration and governance.

## Mlflow - Additional Components & Features

#### 5. MLflow Deployments for LLMs

- Purpose: Streamlines access to SaaS and OSS Large Language Models (LLMs) through standardized APIs.
- Features: Enhances security with authenticated access and provides a common API interface for prominent LLMs.

#### 6. Evaluate

- Purpose: Facilitates in-depth model analysis and comparison.
- Features: Supports objective comparison of traditional ML algorithms and cutting-edge LLMs.

#### 7. Prompt Engineering UI

- Purpose: Offers a dedicated environment for prompt experimentation, refinement, evaluation, testing, and deployment.
- Features: Ideal for working with LLMs and other models requiring precise input crafting.

## Mlflow - Additional Components & Features

#### 8. Recipes

- Purpose: Guides the structuring of ML projects for real-world deployment scenarios.
- Features: Provides recommendations to ensure functional end results.

#### **Advanced Features and Use Cases**

- Nested Runs: Organize experiments in a hierarchical structure for more structured experimentation.
- Rich Metric Visualization: Utilize advanced tools to analyze metrics over time and across different runs.
- Automated ML Pipelines: Use predefined templates for common tasks and dynamic step execution to adapt workflows based on data or previous results.
- Multi-Model Endpoints: Serve multiple models or versions from a single endpoint to optimize resource usage.
- Plugin Ecosystem: Extend MLflow's functionality with custom plugins for storage, authentication, etc..

## **Mlflow - Integrations**

















**RAPIDS** 



















































# **Practice: Setup Environment**

Execute following commands (Linux required)

- 1. cd ~/dev
- 2. mkdir mlflow-practice
- 3. python –m venv venv
- 4. echo mlflow > requirements.txt
- 5. source venv/bin/activate
- 6. pip install –r requirements.txst
- 7. mkdir logs
- 8. mlflow ui >> logs/log\_file.txt 2>&1 &

## **MIflow Experiments**



## **Working with Experiments**

## **MLflow Client**

• Create Experiments

```
client.create_experiment("Name")
```

Tag Experiments

```
client.set_experiment_tag("Name",
k, v)
```

• Delete Experiments

```
client.delete_experiment("Name")
```

## MLflow module

• Create Experiments

```
mlflow.create_experiment("Name")
```

Tag Experiments

```
mlflow.set_experiment_tag(k, v)
```

Delete Experiments

```
mlflow.delete_experiment("Name")
```

Set Experiment

```
mlflow.set_experiment("Name")
```

## **Starting a New Experiment**

```
import mlflow
# Create new Experiment
mlflow.create_experiment("My Experiment")
# Tag new experiment
mlflow.set_experiment_tag("scikit-learn", "lr")
# Set the experiment
mlflow.set_experiment("My Experiment")
```

# Let's Practice – MLflow experiments



# **Training runs**

- How MLflow is organized
- New run equals new model training
- A run is placed within an experiment
- Invoked via mlflow.start\_run()

# **Training runs**

```
# Split the data into features and target and drop irrelevant date field and target field
                X = data.drop(columns=["date", "demand"])
                y = data["demand"]
                # Split the data into training and validation sets
                X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
                params = {
                    "n estimators": 100,
                    "max depth": 6,
                    "min samples split": 10,
                    "min samples leaf": 4,
                    "bootstrap": True,
                    "oob score": False,
                                                     We define parameters
                    "random state": 888,
                                                          for training
                # Train the RandomForestRegressor
                rf = RandomForestRegressor(**params)
                # Fit the model on the training data
                rf.fit(X train, y train)
                                                             We generate
                # Predict on the validation set
                                                             predictions
                                                                                                  We log our
                y pred = rf.predict(X val)
                                                                                                 trained mode
                                                                          We calculate error
                # Calculate error metrics
                                                                           metrics based on
                mae = mean absolute error(y val, y pred)
                                                                               predictions
                mse = mean squared error(y val, y pred)
                                                                                We construct
                rmse = np.sqrt(mse)
We log the
                r2 = r2 score(y val, y pred)
                                                                              a collection of our
parameters
                                                                                    metrics
used to train
                # Assemble the metrics we're going to write into a collection
 the model
                metrics = {"mae": mae, "mse": mse, "rmse": rmse, "r2": r2}
                # Initiate the MLflow run context
                with mlflow.start run(run name=run name) as run:
                                                                                       We log our
                                                                         We create
                                                                                        metrics
                    # Log the parameters used for the model fit
                                                                        an MLFlow run
                    mlflow.log_params(params)
                    # Log the error metrics that were calculated during validation
                    mlflow.log metrics(metrics)
                    # Log an instance of the trained model for later use
                    mlflow.sklearn.log model(sk model=rf, input_example=X val, artifact_path=artifact_path)
```

## Start a training run

```
import mlflow

# Start a run
mlflow.start_run()
```

## <ActiveRun: >

```
# End a run
mlflow.end_run()
```

## Setting a training run variable

```
import mlflow
# Set experiment
mlflow.set_experiment("My Experiment")
# Start a run
run = mlflow.start_run()
# Print run info
run.info
```

```
<RunInfo: artifact_uri='./mlruns/0/9de5df4d19994546b03dce09aefb58af/artifacts',
  end_time=None, experiment_id='31', lifecycle_stage='active',
  run_id='9de5df4d19994546b03dce09aefb58af', run_name='big-owl-145',
  run_uuid='9de5df4d19994546b03dce09aefb58af', start_time=1676838126924,
  status='RUNNING', user_id='user'>
```

## Logging to MLflow Tracking

#### Metrics

```
o log_metric("accuracy", 0.90)
```

```
o log_metrics({"accuracy": 0.90, "loss": 0.50})
```

#### Parameters

```
o log_param("n_jobs", 1)
```

```
o log_params({"n_jobs": 1, "fit_intercept": False})
```

#### Artifacts

```
o log_artifact("file.py")
```

```
o log_artifacts("./directory/")
```

## Logging a run

```
import mlflow
# Set Experiment
mlflow.set_experiment("LR Experiment")
# Start a run
mlflow.start_run()
# Model Training Code here
lr = LogisticRegression(n_jobs=1)
# Model evaluation Code here
lr.fit(X, y)
score = lr.score(X, y)
```

```
# Log a metric
mlflow.log_metric("score", score)

# Log a parameter
mlflow.log_param("n_jobs", 1)

# Log an artifact
mlflow.log_artifact("train_code.py")
```

Searching runs

mlflow.search\_runs()

## Searching runs – Filter searches

- max\_results maximum number of results to return.
- order\_by column(s) to sort in ASC ending or DESC ending order.
- filter\_string string based query.
- experiment\_names name(s) of experiments to query.

# Searching runs – examples

```
import mlflow
# Filter string
f1_score_filter = "metrics.f1_score > 0.60"
# Search runs
mlflow.search_runs(experiment_names=["Insurance Experiment"],
    filter_string=f1_score_filter,
    order_by=["metrics.precision_score DESC"])
```

# Let's Practice – MLflow tracking runs

