Lecture 4: LTSPICE

CSCI 5330 Digital CMOS VLSI Design

Instructor: Saraju P. Mohanty, Ph. D.

NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other sources for academic purpose only. The instructor does not claim any originality.

USEFUL LINKS

- LTPSICE software available at: <u>http://www.linear.com/designtools/software/switc</u>
 hercad.jsp
- 50nm model file available at: http://www.cmosedu.com/cmos1/book.htm
- More model files available at: <u>http://www.eas.asu.edu/~ptm/</u>

CMOS Inverter

Construct an Inverter using LTSPICE

- Discussion at Nano-CMOS: 50nm technology.
- PMOS: 20/1 (L = 50nm/ W = 1μ m)
- NMOS: 10/1 (L = 50nm/ W = 500nm)
- V_{DD} : Supply voltage ($V_{dc} = 1V$).
- V_{in}: changes depending upon analysis:
- DC analysis: DC voltage (1V).
- Transient analysis: Pulsed voltage (vpulse).
- Wire to connect components.
- Model file (cmosedu_models.txt).

What does a model file look like?

*** Short channel models from CMOS Circuit Design, Layout, and Simulation, 2e .model N_50n level = 14nmos +binunit mobmod paramchk= = 1 +capmod = 2 igcmod _ 1 igbmod geomod = 1= 1 rdsmod rbodymod= 1 rgatemod= 1 +permod acnqsmod= trngsmod= 0 = 27 = 1.4e - 009= 7e-010 = 1.4e - 009+tnom toxe toxp toxm +epsrox 3.9 wint 5e-009 lint 1.2e-008 - 0 _ +11 w1a 11n wln. = 1 6 0 $+1\omega$ 6969 1 wn wwn 1 +1w1 = 1.4e - 009wwl xpart +vth0 = 0.22 +k3h = 2.5e-006 Atub = 2.8 dut1 = 0.52= B ωß -0.032 +dvt2 dvt0w dot1w dvt2w = 2 = 0.05 = 1e-007 +dsub minv voff1 = G dvtp0 +dvtp1 = 0.05= 5.75e-008 1peb = 2.3e - 010×ί = 2e - 998lpe0 +ngate = 5e + 020ndep = 2.8e + 018= 1e + 020phin nsd +cdsc = 0.0002cdscb cdscd cit +voff = -0.15nfactor = 1.2eta0 = 0.15etab = -0.55= 1.6e-010 = 1.1e-017 +ufh m Ø = 0.032ша пb = 1.1e + 005= 1e-020 +uc = -3e - 011vsat a 0 ags = -1e-020 +a1 **a2** ЬØ **b1** +keta = 0.04dwa **=** 0 dwb - 6 DC1m = 0.18pdiblcb = -0.005+pdiblc1 = 0.028pdib1c2 = 0.022drout = 0.45pscbe1 = 1e - 020= 0.01 = 8.14e+008 pscbe2 = 1e - 997+pvaq delta +fprout 0.2 pdits 0.2 pditsd = 0.23 pditsl = 2.3e+006 = 150 = 15A = 150 rdw +rsh rdsw rsw +rdswmin = 0= 0 rswmin **=** 0 rdwmin prwg alpha0 = 0.074= 0.005+prwb = 6.8e - 0111 WP. alpha1 = 30 = 0.0002 +beta0 agidl = 0.0002 bgidl = 2.1e + 009cgidl +egidl = 0.8+aiqbacc = 0.012biqbacc = 0.0028ciqbacc = 0.002bigbinv = 0.004+nigbacc = 1 aigbinv = 0.014ciqbinv = 0.004+eigbinv = 1.1niqbinv = 3aigc = 0.017bigc = 0.0028= 0.002 aigsd = 0.017 = 0.0028 +ciqc biqsd ciqsd = 0.002poxedge = 1+nigc pigcd ntox +xrcra1 = 12 xrcra2 = 6.238e-010 = 6.238e-010 = 2.56e-011 +cgso cgdo cgbo cgdl = 2.495e-10 ckappas = 0.02 $c\bar{k}appad = 0.02$ +cgs1 = 2.495e-10acde +moin noff voffcv = 0.02 = -1.5 +kt1 = -0.21kt11 kt2 = -0.042= -3.5e - 019= 1e-889 = A +ma1 ub1 nc1 prt = 53000 +fnoimod = 1tnoimod = 0- 0.0001 = 1e-811 iswas = 1e-010 njs +ijthsfwd= 0.01 ijthsrev= 0.001 bvs = 10 xibus = 1 = 1e-818 homei = 1e - 011

Placing and connecting components

Where to get components from?

Discover the power of ideas

How to assign W/L?

Interpreting a pulsed waveform

How to assign Vin?

DC Analysis

View netlist

Transient (time) Analysis

Creating a symbol for Inverter

- Schematic files saved as *.asc
- Symbol files saved as *.asy

Simulation using symbol: workspace much cleaner!

One more example: NAND gate

