Aprendizagem Profunda - Módulo 1

Grupo 2

Hugo Ramos João Vale Leonardo Barroso Luís Borges Tomás Oliveira

Índice

- Construção do dataset
- Metodologia para avaliar resultados dos modelos
- Modelos com implementação própria
- Modelos com implementação em Tensorflow
- Análise dos resultados obtidos
- Trabalho futuro

Construção do dataset

Dataset 1: Construir dataset manualmente

- Entradas humanas: Web Scraping de papers científicos do site ARXIV.org com Beautiful
 Soup e extração do seu texto e processamento de dados
- Entradas de IA: Gerar entradas através de várias LLMs (ChatGPT, Claude, etc)

Problemas:

- Dificuldade em gerar grandes quantidades de prompts de IA sem repetições e com contextos diferentes
- Demasiada dificuldade em aprender padrões
- Dados difíceis de filtrar e limpar

Construção do dataset

Dataset 2: Optimizar um dataset existente

- Dataset inicial com 2 milhões de entradas do Kaggle
- Filtrar apenas pelo conteúdo científico (campo lexical) e dividir as entradas de 80 a 120 palavras
- Balancear as entradas de Al e Humano

Problemas:

- Filtragem de dados requer keywords inseridas manualmente
- Entradas muito similares entre si
- Demasiada dificuldade em aprender padrões

Construção do dataset

Dataset 3: Utilizar dataset existente

- Dataset do hugging face
- Com apenas 4000 entradas
- Fazer limpeza do dataset (remover erros de formatação, tabs, etc)

Vantagens:

- Modelos demoram pouco tempo para executar as previsões
- Bons resultados nas previsões

Metodologia para avaliar resultados dos modelos

- 1. Accuracy de teste e validação do modelo
- 2. Performance do modelo com as previsões do dataset fornecidos pelo professor (80 entradas até ao momento)
- 3. Performance com testes manuais
 - Gerar frases em várias LLMs com cerca de 100 palavras
 - Gerar entradas humanas no Quora e Wikipedia com cerca de 100 palavras

Que fatores ter em consideração para performance em **2** e **3**?

- A precisão em prever os dados (accuracy final percentual)
- O grau de confiança (intervalo 0 a 1) com que prevê determinada entrada

Accurac	y: 0.7375	0.7375				
Correct	ly Classified	y Classified Samples:				
Lab	el Prediction	n Source	Label_actual			
0 Hum	an 0.123358	B Quora	Human			
1 Hum	an 0.133760	3 Sitepost	Human			
2	AI 0.63227	GPT	AI			

Modelos com implementação própria Preparação dos dados

SimpleTokenizer

- Separação por espaços
- Converte todo o texto para minúsculas
- Mapeamento palavra-índice
- Padding com 0

RobustTokenizer

Regex para tokenização

AdvancedTokenizer

- Gera unigrams
- Remoção de stopwords
- Filtro por frequência mínima
- Padding manual

Modelos com implementação própria DNN (Deep Neural Network)

Embedding Layer

- Converte tokens numéricos em representações vetoriais

GRU Layer

- Identifica padrões sequenciais

GlobalAveragePooling

- Reduz a dimensionalidade das matrizes

LeakyReLU

- Evita neurónios "mortos"

Adam Optimizer

Learning Rate adaptativo

Modelos com implementação própria DNN (Deep Neural Network) - Resultados

- Estrutura do melhor modelo (DNN):
 - Camada Embedding
 - o 1 Camada GRU
 - 1 Camada GlobalAveragePooling
 - 1 Camada Dense

- Compilação e treino do modelo:
 - Learning Rate = 0.0001 Adam
 - Epochs = 25
 - EarlyStop = 10
 - Batch_Size = 32

Modelo	Accuracy	Accuracy	Accuracy Validação
	Teste	Validação	(Dataset professor)
DNN Simples	0.67	0.6815	0.4750

Modelos com implementação própria RNN (Recurrent Neural Network)

Mais eficientes para processamento sequencial - capturam melhor dependências

Foram criadas duas layers: RNN e LSTM

RNN:

- Usa a técnica de Xavier/Glorot para inicialização
- Usa a tangente hiperbólica para calcular o output na forward_propagation
- Calcula erros e atualiza pesos na backward_propagation
- Usa bptt_trunc para limitar o número de timesteps usados

LSTM:

- Usa um cell state para armazenar informação importante a longo prazo
- Implementa 3 gates: forget, input e output, cada uma com os seus pesos
- forget gate: decide que informação remover do cell state
- input gate: decide que nova informação guardar no cell state
- output gate: decide que informação do cell state usar como output

Modelos com implementação própria RNN (Recurrent Neural Network) - Resultados

- Estrutura do melhor modelo (RNN):
 - Camada Embedding
 - 1 Camada RNN
 - 1 Camada Dropout
 - 1 Camada Dense

- Compilação e treino do modelo:
 - Learning Rate = 0.0001
 - \circ Epochs = 5
 - o Batch_Size = 32

Modelo	Accuracy Teste	Accuracy Validação	Accuracy Validação (Dataset professor)
RNN Simples	0.6831	0.6705	0.5750
RNN LSTM	0.6573	0.7028	0.5375

Modelos com implementação em Tensorflow Preparação dos dados

Tokenizer (Keras)

- Converte o texto em sequências de inteiros com base na frequência de palavras.
- Utilização de padding para que todas as sequências tenham o mesmo comprimento
- Necessário para usar camadas de Embedding

TF-IDF (TfidfVectorizer sklearn)

- o Converte o texto em vetores com base na frequência das palavras pela sua importância
- Não guarda a ordem das palavras

• Embeddings

- Keras Embedding Layer
- BERT (SentenceTransformer)

Modelos com implementação em Tensorflow -DNN (Deep Neural Network)

- Estrutura do modelo:
 - Camada Embedding
 - 1 Camada AveragePooling1D -Downscaling
 - 4 Camadas Dropout
 - BatchNormalization para estabilizar o treino
 - o 5 Camadas Dense

- Compilação e treino do modelo:
 - Otimizador Adam
 - EarlyStopping
 - ReduceLROnPlateau
 - o 20 epochs

Accuracy	Accuracy	Accuracy Validação
Teste	Validação	(Dataset professor)
0.9618	0.9676	0.65

Modelos com implementação em Tensorflow RNN (Recurrent Neural Network)

- Estrutura do melhor modelo (LSTM):
 - Camada Embedding
 - o 2 Camadas LSTM
 - o 3 Camadas Dropout
 - BatchNormalization para establizar o treino
 - o 2 Camadas Dense

- Compilação e treino do modelo:
 - Otimizador Adam
 - EarlyStopping
 - ReduceLROnPlateau
 - o 15 epochs

Modelo	Accuracy Teste	Accuracy Validação	Accuracy Validação (Dataset professor)
RNN Simples	0.9630	0.9753	0.6250
RNN LSTM	0.9433	0.9522	0.7375
RNN LSTM (BERT)	0.8187	0.8336	0.5875
RNN GRU	0.8841	0.8891	0.7125

Modelos com implementação em Tensorflow - CNN (Convolutional Neural Network)

- Estrutura do modelo:
 - Camada Embedding
 - 2 Camadas Conv1D
 - 2 Camadas MaxPooling1D
 - 2 Camadas Dropout
 - Camada Flatten para transformar a saída 2D em 1D para a camada Dense
 - BatchNormalization para estabilizar o treino
 - 3 Camadas Dense

- Compilação e treino do modelo:
 - Otimizador AdamW
 - EarlyStopping
 - ReduceLROnPlateau
 - o 50 epochs

Accuracy	Accuracy	Accuracy Validação
Teste	Validação	(Dataset professor)
0.9766	0.9661	0.6125

Trabalho Futuro

- Melhorar os modelos manuais
- Utilizar LLMs para prever os resultados (se aplicável)
- Melhorar accuracy nos modelos com o Tensorflow
 - Modelo com dificuldades em prever, principalmente, as frases geradas pelo Claude

Accuracy: 0.7250						
Mis	Misclassified Samples:					
	Label	Prediction	Source	Label_actual		
5	Human	0.089927	Claude	AI		
6	Human	0.295848	GPT	AI		
7	AI	0.587474	Wikipedia	Human		
9	Human	0.274408	Claude	AI		
12	Human	0.228653	Claude	AI		
13	Human	0.345124	Claude	AI		
20	AI	0.636160	Wikipedia	Human		
22	Human	0.240277	Claude	AI		
23	AI	0.662945	Quora	Human		
28	Human	0.447925	Claude	AI		
32	AI	0.575411	Paper	Human		
42	Human	0.359312	Claude	AI		
46	AI	0.835760	Quora	Human		
48	AI	0.793478	Paper	Human		