Motivation

- [[Erwartungswert]] zeigt durchschnittliche Resultat
- Wie weit weicht die ZV durchschnittlich vom Erwartungswert ab?
- Varrianz $Var(X) = E((x \mu)^2)$
 - sei $E(X) = \mu$
 - Abstand $E(|x \mu|)$
- Standardabweichung $sd(X) = \sqrt{Var(X)}$
- Varianz ist 2. zentrale [[Moment]]

Eigenschaften

Lemma

Sei $X \in L^2$. Dann gilt

- (a) $Var(X) \ge 0$. Var(X) = 0 impliziert $X = \mu$.
- (b) $Var(X) = E(X^2) (E(X))^2$.

Daraus folgt mit (a), dass $E(X^2) \ge (E(X))^2$.

Beweis. Da $(X - \mu)^2 \ge 0$, folgt $Var(X) \ge 0$ wegen der Monotonie. Mit der Markov-Ungleichung folgt für alle $\varepsilon > 0$

$$P(|X - \mu| > \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

Damit ist (a) gezeigt.

Dann, $E(X - \mu)^2 = E(X^2 + \mu^2 - 2\mu X)$. Der Beweis folgt dann mit der Linearität des Erwartungswerts.

Mit $Var(X) = E(X^2) - (E(X))^2$ folgt für

➤ X ~ Unif(a, b):

$$Var(X) = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{(b \perp a)^2}{12}.$$

X ~ Exp(λ):

$$\operatorname{Var}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

► *X* ~ N(0, 1):

$$Var(X) = 1^2 - 0^2 = 1.$$

Beispiel

 $\bullet \ \ {\bf Binomial verteilung}$

Sei $X \sim B_{1,p}$. Bestimme die Varianz von X.

$$X \sim B_{n,p}$$
 $V_{ox}(X) = ?$
 $V_{ox}(X) = E(X^2) - (E(X))^2$
 $= EX^2 - p^2$
 $EX^2 = EX = p$
 $= p - p^2 = p(1-p) = p.q$