Task-8

GO_STP_5247

Multiple Linear Regression

Predicting a Startups Profit/Success Rate using Multiple Linear Regression in Python-Download Data Set

Here 50 startups dataset containing 5 columns like "R&D Spend", "Administration", "Marketing Spend", "State", "Profit".

In this dataset first 3 columns provides you spending on Research , Administration and Marketing respectively. State indicates startup based on that state. Profit indicates how much profits earned by a startup.

Clearly, we can understand that it is a multiple linear regression problem, as the independent variables are more than one.

Prepare a prediction model for profit of 50_Startups data in Python

Prepare a prediction model for profit of 50_Startups data in Python

```
[1] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.linear model import LinearRegression
```

```
[2] print(df.head())
                 Administration Marketing Spend
       R&D Spend
    0 165349.20
                      136897.80
                                                   New York 192261.83
                                       443898.53 California 191792.06
                      101145.55
                                       407934.54
    3 144372.41
                                      383199.62
                                                   New York 182901.99
                                       366168.42
        R&D Spend Administration Marketing Spend
         1000.23
                       124153.04
                                         1903.93
                                                    New York 64926.08
                                       297114.46
                                                    New York 35673.41
                       116983.80
[4] print(df.shape)
```

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2 score, mean squared error

df = pd.read csv("/content/50 Startups.csv")

float64

float64

[5] print(df.dtypes)

R&D Spend

State

Administration

Marketing Spend

[6]	print(df.columns)					
	<pre>Index(['R&D Spend',</pre>	'Administration', 'Marketing Spend', 'State', 'Profit'], dtype='object')				
[7]	df.nunique()					
	Administration Sarketing Spend State	49 50 48 3 50				
[8]	df.isnull().sum()					
	Administration Marketing Spend State					
[9]	enc_df = pd.get_dum	mies(df, columns=["State"]) # get dummy values for State and converted it to binary values				
[10]	# removed one of the encoded columns as it can be deduced on the basis of the values in the other 2 columns # if both State_California and State_Florida =0 means it is State_New York					
[11]	enc_df.head()					

Profit

float64

[11]		R&D Spend	Admini	stration	Marke	ting Spend	Pro	fit	State_Cali	fornia.	State_Flo	rida	
	0	165349.20		136897.80		471784.10	19226	1.83		0		0	
	1	162597.70		151377.59		443898.53	19179	2.06		1		0	
	2	153441.51		101145.55		407934.54	19105	0.39		0			
	3	144372.41		118671.85		383199.62	18290	1.99		0		0	
	4	142107.34		91391.77		366168.42	16618	7.94		0			
[12]	pri	nt (enc_df.	corr())										
	Admi Marl Prod Stat Stat	te_Califor te_Florida rows x 6 c	1 n 0 nd 0 nia -0 0	.000000 .241955 .724248 .972900		0.241955 1.000000 0.032154 0.200717		tate_	_California -0.143165 -0.015478 -0.168875 -0.145837 1.000000 -0.492366	5 5 7) -	E_Florida 0.105711 0.010493 0.205685 0.116244 -0.492366 1.000000		
[13]	enc	_df.descri	be ()										
		R&D	Spend	Administ	cation	Marketing	Spend		Profit	State_C	alifornia	State_Flo	orida
	COL	ınt 50.	000000	50.	000000	50	.000000		50.000000		50.000000	50.00	00000
	me	an 73721.	615600	121344.	639600	211025	.097800	112	012.639200		0.340000	0.3	20000
	st	d 45902.	256482	28017.	802755	122290	.310726	40	306.180338		0.478518	0.4	71212
	mi	n 0.	000000	51283.	140000	0	.000000	14	681.400000		0.000000	0.0	00000
	25	% 39936.	370000	103730.	875000	129300	.132500	90	138.902500		0.000000	0.0	00000

[1]	50%	73051.080000	122699.795000	212716.240000	107978.190000	0.000000	0.000000
₽	75%	101602.800000	144842.180000	299469.085000	139765.977500	1.000000	0 1.000000
	max	165349.200000	182645.560000	471784.100000	192261.830000	1.000000	0 1.000000
[14]	type (e	enc_df)					
	pandas	s.core.frame.D)ataFrame				
[15]	y=enc_	_df['Profit']					
[16]	x=enc_	_df.drop(['Pro	ofit'],axis=1)				
[17]	print	(x.head())					
3	0 165 1 162 2 153 3 144	5349.20 2597.70 3441.51	151377.59 44 101145.55 40 118671.85 38	ng Spend State 171784.10 143898.53 107934.54 183199.62 186168.42	e_California 5 0 1 0 0 0	State_Florida 0 0 1 0 1	
[18]	print	(y.head())					
		192261.83 191792.06 191050.39 182901.99 166187.94 Profit, dtype	e: float64				

[19]	<pre>print(x.shape, y.shape)</pre>
	(50, 5) (50,)
[20]	<pre>x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=.25,random_state=5)</pre>
[21]	<pre>print(x_train.shape)</pre>
	(37 _, 5)
[22]	<pre>print(x_test.shape)</pre>
	(13, 5)
[23]	<pre>print(y_train.shape)</pre>
	(37,)
[24]	<pre>print(y_test.shape)</pre>
	(13,)
[25]	mvr=LinearRegression()
[26]	<pre>mvr.fit(x_train,y_train)</pre>
	LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) ↑ ↓ ⇔ ■ ❖ 및 盲 :
0	y_pred = mvr.predict(x_test) print(y pred)

```
y pred = mvr.predict(x test)
print (y pred)
print(y test)
print(x test)
 100180.12553441 128692.30008051 181975.81887461 57805.09379185
 172178.68837146 116394.29722332 94778.51265188 171783.69240153
  97372.029123341
      71498.49
     101004.64
     122776.86
     103282.38
     69758.98
Name: Profit, dtype: float64
    R&D Spend Administration Marketing Spend State California State Florida
6 134615.46
                   147198.87
                                    127716.82
                   182645.56
                                    118148.20
                                    407934.54
                                    383199.62
   78389.47
                                    299737.29
                                     88218.23
                                    366168.42
    63408.86
                   129219.61
                                     46085.25
```

```
array([ 7.81494897e-01, -2.84329206e-02, 3.85924982e-02, 1.77593125e+03,
[30] print("Accuracy is: ", r2_score(y_test,y_pred))
[31] print("MSE: ",mean_squared_error(y_test,y_pred))
```