

Présentation

Apprentissage Sécurisé

Sommaire

Introduction

- Contexte
- Objectifs du projet

Méthodologie

- Organisation du projet
- Etat de l'art

Développement réalisé

- Base de données
- Type d'apprentissage
- Type de chiffrement
- Modèles d'apprentissage
- o Démo web

• Bilan

- Nos difficultés
- Conclusion

INTRODUCTION

- Contexte
- Présentation du projet

Contexte

Scénario 1 : Lutte contre la Criminalité

- Détection de contenu illégal chiffré grâce à l'IA
- Prévention de l'exposition directe des enquêteurs
- Maintien de la confidentialité des données et permettre l'identification d'activités illégales.

Scénario 2 : Confidentialité Médicale

- Données chiffrées pour préserver la confidentialité des patients.
- Fournir des résultats sans accéder aux données sensibles.
- Chiffrement de données entre l'IA et le médecin grâce aux clés publiques/privées

Présentation du projet proposé par le département SAFE, du laboratoire GREYC

Développement d'une IA sur des données chiffrées

- Deux questions principales:
 - Peut-on réaliser des tâches de prédiction à partir de données protégées, sans compromettre leur intégrité?
 - Quel est l'impact sur la performance (précision et temps de calcul) ?

- Effectuer un état de l'art scientifique
 - Synthèse des travaux de recherche
 - Identification des méthodes et techniques
- Création de nos Bases de Données
 - Animaux
- Développer un modèle de prédiction
- Évaluer les performances
 - Précision
 - Temps
 - Mémoire
- Effectuer une démonstration web

Organisation du projet

Utilisation de Gitlab

Serveur Discord privé

Apprentissage sécurisée

Gestion de projet à jalon Méthodologie Waterfall (Cascade)

Réunion avec les tuteurs

Etat de l'art

Article	Année	Principes	Base de données	Précision
CryptoNets: Apply-ing Neural Networks to Encrypted Data with High Throughput and Accuracy	2016	Leveled Homomorphic Encryption and Neural Networks	MNIST database	99% accuracy and around 59000 predictions per hour
Privacy Preserving Training and Evaluation with Homomorphic Encryption	2021	Implementation and test machine learning algorithms, including Logistic Regression(LR), Fully Connected Neural Network(FCNN), and Convolutional Neural Network(CNN).	MNIST database	about 98% accuracy with EncFCNN on 50 images and 100% with EncCNN on 100 images
Privacy-Preserving Classification on Deep Neural Network	2017	Application of secure computation in the context of machine learning	MNIST database	99.59% accuracy

Solutions de Modèle de réseaux neurones:

- Fully Connected Neural Network
- ConvolutionalNeural Network
- IBMFHE

Bases de données

Kaggle

Structure de notre BDD:

- Deux classes: chat et chien
- Dossier entraînement: 25000 images
- Dossier validation: 2000 images

Entrainement : Les images sont transformées (rotation, zoom,...) et sont labellisées (chat ou chien)

Validation : L'IA est évaluée sur une nouvelle base de données sans les transformations

Source: CNIL

Prétraitement

Chat

Apprentissage sur données en clair

- Apprentissage supervisé
- Préparation des données
- Construction et entraînement du modèle
- Validation et test du modèle
- Prédiction et interprétation des résultats

source: SuperAnnotate

source: Analytics Vidhya

Rappel de nos objectifs et organisation

Objectifs

- Exploiter plusieurs techniques de chiffrement et d'implémentation de modèle d'apprentissage
- Identifier les modèles les plus performants (précision, temps, mémoire)
- Ajustement de notre modèle afin d'avoir une prédiction chiffrée (scénario 2)

Protocole

- Base de données commune à chaque modèle
- Adaptation de modèles existant pour répondre à notre problématique
- Evaluation des performances sur chaque modèle
- Comparaison des résultats
- Optimisation des performances

Types de chiffrement

Bibliothèque TENSEAL

-> Accès à une large gamme d'opérations

• Chiffrement homomorphe: schéma CKKS

-> Permet d'effectuer des calculs sur des données chiffrées sans les déchiffrer, préservant ainsi la confidentialité.

Avantage: Performance

Inconvénient : Limitation des opérations

• Fully Homomorphic Encryption (FHE)

-> Permet l'évaluation de fonctions arbitraires sur données chiffrées. Contrairement au CKKS, FHE n'est pas limité en terme d'opérateurs.

Avantage: Expressivité (plus d'opérations)

Inconvénient : Complexité et performance

Modèle CNN encrypted

- Modèle EncCNN basé sur CNN
 - -> Développement manuel d'un CNN
- Chiffrement des poids avec CKKS
- Evaluation homomorphe
 - -> Prédictions sur des données chiffrées
- Déchiffrement et interprétation

Comparaison des performances des différents modèles

Accuracy over epoch of FCNN model

Model	CNN	EncCNN	FCNN	EncFCNN	HElayer
Accuracy	97%	97%	98%	50%	~70%
Prediction Time	0.43 s	2.4 s	0.41 s	19 s	0,48 s

Accuracy over epoch of CNN model

Accuracy over epoch of HElayer model

Options d'optimisation pour le CNN

1. Réglage Hyperparamètres

2. Optimisation de l'Architecture

3. Ajustement de la Précision du Chiffrement

4. Optimisation des Opérations Homomorphe

Difficulté:

Problème matériels

Nos difficultées

Compréhension du sujet difficile au démarrage

Ordinateurs pas assez puissants, limités.

Compréhension des Gits difficile à cause du manque de simplifications/explications dans la doc.

• Implémentation des différents modèles sur notre base de données.

Objectifs non atteints:

- Évaluer nos performances en mémoire
- Optimiser notre modèle en temps et en mémoire

Conclusion

Points clés:

- Développement d'un modèle d'apprentissage chiffré
- Réalisation d'une démonstration web

Bilan:

- Satisfait de notre projet
- Communication très importante
- Complémentarité des deux filières
- Mauvaise estimation du matériel nécessaire

Perspective:

Développement de nouveaux modèles associés à de nouveaux chiffrements

Question: Est-ce viable sur des données illégales/confidentielles même si le temps est long ?

pour votre écoute

ANNEXES

Développement d'un modèle d'apprentissage sur données chiffrées

Démonstration Web

Objectif: Visualisation pédagogique de notre projet

Mise en place de la démo web : Bibliothèque streamlit de Python

Fonctionnement: Choix d'une image, choix chiffrement, choix du modèle et prédiction.

