Esercizio 1. Calcolare la serie di Fourier in forma complessa delle seguenti funzioni e determinare spettro di ampiezza e spettro di fase.

1.

$$f(x) = \begin{cases} 0 & \text{se} & -\pi < x \le -\pi/2 \\ 1 & \text{se} & -\pi/2 < x \le \pi/2 \\ 0 & \text{se} & \pi/2 < x \le \pi \end{cases}$$

estesa per 2π -periodicità su \mathbb{R} .

2.

$$f(x) = x$$

 $\operatorname{con} -\pi < x \leq \pi$ ed estesa per 2π -periodicità.

3.

$$f(x) = \begin{cases} 0 & \text{se} & -\pi < x < 0 \\ x & \text{se} & 0 \le x \le \pi \end{cases}$$

estesa per 2π -periodicità a \mathbb{R} .

Esercizio 2. Sia $f : \mathbb{R} \to \mathbb{C}$ una funzione T-periodica e localmente integrabile. Provare la formula di cambio scale:

$$h(x) := f(ax) \qquad \text{con} \qquad a > 0 \,,$$

determinando periodo, frequenza angolare e i coefficienti $c_n(h)$ della funzione h. Con le informazioni ottenute, srivere infine la serie di Fourier di h.

Esercizio 3. Studiare convergenza puntuale, uniforme e in energia delle serie di Fourier delle seguenti funzioni.

1.

$$f_1(x) = \begin{cases} x(\pi + x) & \text{se} \quad -\pi < x \le 0 \\ x(\pi - x) & \text{se} \quad 0 < x \le \pi \end{cases}$$

estesa per 2π -periodicità a \mathbb{R} .

2.

$$g(x) := |f_1(x)|$$
.

3.

$$h(x) := \frac{1}{2}(f_1(x) + g(x)).$$

4.

$$f_2(x) = \begin{cases} \pi + x & \text{se} & -\pi < x < 0 \\ \pi - x & \text{se} & 0 \le x \le \pi \end{cases}$$

estesa per 2π -periodicità a \mathbb{R} .