

Algebra de Boole y puertas lógicas

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Índice

- Postulados y propiedades fundamentales del Álgebra de Boole
- Funciones y expresiones booleanas
- Puertas lógicas. Tecnologías digitales.
 Implementación de funciones lógicas
- Minimización de funciones lógicas

Álgebra de Boole

- Fundamentos matemáticos de los circuitos digitales
- Denominada Álgebra de Boole en honor de su inventor, George Boole
 - "An Investigation of the Laws of Thought" (1854)
- Un álgebra se define por un conjunto de elementos con unas operaciones. En nuestro caso:
 - B = {0, 1}
 - $\Phi = \{+, \bullet\}$

Postulados del Álgebra de Boole

- Ley de composición interna
 - \forall a, b \in B \Rightarrow a + b \in B, a b \in B
- Elementos neutros
 - ∀ a ∈ B ⇒ ∃ elementos neutros (0 y 1 respectivamente)
 a + 0 = a
 a 1 = a
- Propiedad conmutativa
 - \forall a, b \in B \Rightarrow a + b = b + a a b = b a
- Propiedad distributiva
 - \forall a, b, c \in B \Rightarrow a + b c = (a + b) (a + c) a • (b + c) = a • b + a • c

Postulados del Álgebra de Boole

Elemento inverso o complementario

•
$$\forall a \in B \Rightarrow \exists \bar{a} \in B$$

$$a + \overline{a} = 1$$

$$\mathbf{a} \bullet \mathbf{a} = 0$$

- Dualidad: Toda ley válida tiene una dual, que se obtiene cambiando 0 ↔ 1 y + ↔ •
- Idempotencia

•
$$\forall a \in B \Rightarrow a + a = a$$

 $a \bullet a = a$

Demostración:

$$a = a + 0 = a + a\overline{a} = (a + a)(a + \overline{a}) = (a + a) \cdot 1 = a + a$$

•
$$\forall$$
 $a \in B \Rightarrow$ $a + 1 = 1$
 $a \cdot 0 = 0$

De las propiedades anteriores se pueden definir las operaciones básicas

а	b	a+b	а	b	a∙b		а	a
		0	0	0	0	•	0	1
0	1	1	0	1	0		1	0
		1			0		·	
1	1	1	1	1	1			

 Tabla de verdad: proporciona el valor de una función para todas las posibles combinaciones de valores de las entradas

- Involución
 - $\forall a \in B \Rightarrow \stackrel{=}{a} = a$
- Absorción

•
$$\forall$$
 a, b \in B \Rightarrow a + ab = a
a (a+b) = a

Demostración:

$$a + ab = a \bullet 1 + ab = a(1 + b) = a \bullet 1 = a$$

Propiedad asociativa

•
$$\forall$$
 a, b, c \in B \Rightarrow (a + b) + c = a + (b + c)
(a • b) • c = a • (b • c)

Leyes de De Morgan:

●
$$\forall a, b \in B \Rightarrow \overline{a+b} = \overline{a} \overline{b}$$

 $\overline{a \bullet b} = \overline{a} + \overline{b}$

Demostración:

$$(a+b)+\overline{a}\ \overline{b}=(a+b+\overline{a})(a+b+\overline{b})=1\bullet 1$$

 $(a+b)\bullet \overline{a}\ \overline{b}=(a\overline{a}\overline{b})+(b\overline{a}\overline{b})=0+0$
luego (a+b) es el inverso de $\overline{a}\ \overline{b}$

Funciones y expresiones booleanas

- Definiciones:
 - Una variable lógica o booleana es cualquier elemento
 x ∈ B = {0, 1}
 - Un literal es una variable negada o sin negar
 - Función lógica o booleana:

$$f: B^n \to B$$
$$(x_1, x_2, ..., x_n) \to y$$

Representación de funciones lógicas

Expresión

Tabla de verdad

$$f(a, b) = a + b$$

а	b	f(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

Obtención de la tabla de verdad à partir de una expresión

 Basta evaluar la expresión para cada una de las combinaciones de valores de las entradas

$$f(a,b,c) = a + \overline{b}c$$

а	b	С	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Función mintérmino

- Expresión: un producto en el que aparecen todas las variables, negadas o no
- Tabla de verdad: tiene un 1 en una posición y 0 en todas las demás
- Ejemplo:

$$f(a,b,c) = \overline{a}b\overline{c} = m_2$$

$f(a,b,c) = abc = m_2$	$\longrightarrow \hspace{-0.5cm} \backslash$

- Regla para obtener la expresión:
 - 0 → variable negada
 - $1 \rightarrow \text{variable sin negar}$

0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

a b c f

Función maxtérmino

- Expresión: una suma en la que aparecen todas las variables, negadas o no
- Tabla de verdad: tiene un 0 en una posición y 1 en todas las demás

$$f(a,b,c) = (a + \overline{b} + c) = M_2$$

<u>a</u>	D	С	
0	0	0	1
0	0	1	1

0 1 0 0

- Regla para obtener la expresión:
 - 0 → variable sin negar
 - 1 → variable negada

CUIDADO: al contrario que los mintérminos!

Teorema de Expansión de Shannon

 Toda función booleana se puede descomponer de las siguientes formas

$$\begin{split} f(x_1,x_2,...,x_n) &= \overline{x}_i \, f(x_1,...,x_{i-1},0,x_{i+1},...,x_n) + x_i \, f(x_1,...,x_{i-1},1,x_{i+1},...,x_n) \\ f(x_1,x_2,...,x_n) &= \left[\overline{x}_i + f(x_1,...,x_{i-1},1,x_{i+1},...,x_n) \right] \left[x_i + f(x_1,...,x_{i-1},0,x_{i+1},...,x_n) \right] \end{split}$$

Demostración

$$\begin{aligned} x_i &= 0 \Rightarrow f(x_1, x_2, ..., x_n) = 1 \bullet f(x_1, ..., 0, ..., x_n) + 0 \bullet f(x_1, ..., 1, ..., x_n) = \\ &= f(x_1, ..., 0, ..., x_n) \\ x_i &= 1 \Rightarrow f(x_1, x_2, ..., x_n) = 0 \bullet f(x_1, ..., 0, ..., x_n) + 1 \bullet f(x_1, ..., 1, ..., x_n) = \\ &= f(x_1, ..., 1, ..., x_n) \end{aligned}$$

La otra forma se demuestra por dualidad

Corolario del Teorema de Expansión de Shannon

Aplicando recursivamente el Teorema:

$$\begin{split} f(a,b,c) &= \overline{a}f(0,b,c) + af(1,b,c) = \\ &= \overline{a}(\overline{b}f(0,0,c) + bf(0,1,c)) + a(\overline{b}f(1,0,c) + bf(0,1,c)) = \\ &= \overline{a}\overline{b}f(0,0,c) + \overline{a}bf(0,1,c)) + a\overline{b}f(1,0,c) + abf(0,1,c) = \\ &= \overline{a}\overline{b}\overline{c}f(0,0,0) + \overline{a}\overline{b}cf(0,0,1) + \overline{a}\overline{b}\overline{c}f(0,1,0) + \overline{a}bcf(0,1,1) + \\ &+ a\overline{b}\overline{c}f(1,0,0) + a\overline{b}cf(1,0,1) + ab\overline{c}f(1,1,0) + abcf(1,1,1) = \\ &= \sum_{3} m_{i}k_{i} \end{split}$$

Una función es igual a la suma de todos los mintérminos (m_i) afectados por un coeficiente (k_i) igual al valor que toma la función al sustituir cada variable por un 0 o un 1 según que en el mintérmino aparezca la variable negada o sin negar, respectivamente

Primera forma canónica

 Una función se puede expresar como la suma de los mintérminos para los que la función vale 1

Segunda forma canónica

 Una función se puede expresar como el producto de los maxtérminos para los que la función vale 0

CUIDADO: al contrario que los mintérminos!

1 0 1 1

Puertas lógicas

- Las puertas lógicas son circuitos electrónicos que realizan las funciones básicas del Álgebra de Boole
- Para cada puerta utilizaremos un símbolo
- Identidad

$$z = a$$

Puerta NOT o inversor

$$z = \bar{a}$$

Puertas AND y OR

Puerta AND
 z = a • b

а	b	a∙b
0	0	0
0	1	0
1	0	0
1	1	1

Puerta OR
 z = a + b

Puertas NAND y NOR

Puerta NAND

$$z = \overline{a \bullet b} = \overline{a} + \overline{b}$$

а	b	a∙b
0	0	1
0	1	1
1	0	1
1	1	0

Puerta NOR

$$z = \overline{a + b} = \overline{a} \overline{b}$$

а	b	$\overline{a+b}$
0	0	1
0	1	0
1	0	0
1	1	0

Puertas XOR y XNOR

Puerta XOR (OR-Exclusiva)

$$z = a \oplus b = \overline{ab} + a\overline{b} = (\overline{a} + \overline{b})(a + b)$$

xclusiva)

$$z = a \oplus b = \overline{ab} + a\overline{b} = (\overline{a} + \overline{b})(a + b)$$
 $z = \overline{a \oplus b} = ab + \overline{a}\overline{b} = (\overline{a} + b)(a + \overline{b})$

а	b	a⊕b
0	0	0
0	1	1
1	0	1
1	1	0

а	b	a⊕b
0	0	1
0	1	0
1	0	0
1	1	1

Generalización a n entradas

	Valor de la salida	
Puerta	0	1
AND	Alguna entrada = 0	Todas las entradas = 1
OR	Todas las entradas = 0	Alguna entrada = 1
NAND	Todas las entradas = 1	Alguna entrada = 0
NOR	Alguna entrada = 1	Todas las entradas = 0
XOR	Hay un nº par de entradas = 1	Hay un nº impar de entradas = 1
XNOR	Hay un nº impar de entradas = 1	Hay un nº par de entradas = 1

Otros símbolos

 Un círculo en una entrada o una salida indica negación

Buffer triestado

 Un tipo especial de puerta lógica que puede poner su salida en alta impedancia

е	а	S
0	0	Z
0	1	Z
1	0	0
1	1	1

Buffer triestado

 Los buffers triestado son útiles para permitir múltiples conexiones a un mismo punto evitando cortocircuitos

Realización de una función lógica con puertas lógicas

- A partir de la expresión de la función, sustituimos las operaciones lógicas por puertas lógicas
- Ejemplo:

$$f(a,b,c) = a + \overline{b}c$$

$$b$$

$$c$$

Conjuntos completos

- Un conjunto de funciones es funcionalmente completo si cualquier función lógica puede realizarse con las funciones del conjunto solamente
 - {AND} no es un conjunto completo
 - {AND, NOT} es un conjunto completo
 - {OR, NOT} es un conjunto completo
 - {NAND} es un conjunto completo
 - {NOR} es un conjunto completo
- Los conjuntos {NAND} y {NOR} tienen la ventaja de que permiten realizar cualquier función lógica con un sólo tipo de puerta lógica

Realización de circuitos con puertas NAND

- Aplicación directa de las leyes de De Morgan
- Ejemplo: $f(a,b,c) = a\overline{b} + cd =$ $= \overline{a}\overline{b} + cd = \overline{a}\overline{b} \bullet \overline{c}\overline{d}$

Realización de circuitos con puertas NOR

- Aplicación directa de las leyes de De Morgan
- Ejemplo: $f(a,b,c) = a\overline{b} + cd =$

Minimización de funciones lógicas

- Una función lógica tiene múltiples expresiones equivalentes
 - La forma más sencilla dará lugar a una implementación mejor
- Criterios de optimización:
 - En tamaño o área:
 - Menor número de puertas lógicas
 - Puertas lógicas con el menor número de entradas
 - En velocidad o retardo:
 - Menor número de puertas lógicas desde una entrada hasta la salida
- Nos centraremos en la optimización en área

Minimización de funciones lógicas

- Métodos de optimización
 - Manual: aplicación directa de las leyes del Álgebra de Boole
 - Muy difícil, no sistemático
 - En dos niveles: el objetivo es obtener una expresión óptima en forma de suma de productos o productos de sumas
 - Existen soluciones sistemáticas y óptimas
 - Aplicable manualmente (para pocas variables) o con ayuda de un computador
 - Multinivel
 - Mejor solución, aunque mucho más difícil
 - Sólo posible con ayuda de un computador

Métodos de los mapas de Karnaugh

- Método de optimización en dos niveles
- Se puede realizar manualmente hasta 6 variables
- Se basa en la Propiedad de adyacencia

•
$$\forall E, X \in B \Rightarrow EX + EX = E(X + X) = E$$

$$(E + X)(E + X) = E + (X • X) = E \qquad (dual)$$

- Dos términos son adyacentes si son idénticos excepto por un literal, que aparece negado en un término y no negado en el otro
- Los dos términos se simplifican en uno sólo con eliminación del literal que los diferencia

Aplicación de la propiedad de adyacencia

Ejemplo:

$$f(a,b,c) = \sum_{3} (0,1,2,3,7) = \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} c + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} c + \overline{a}$$

 La observación de las adyacencias puede ser difícil en la práctica

Mapas de Karnaugh

- Mapa que presenta la tabla de verdad de una función de manera que los términos adyacentes son contiguos:
 - Una casilla para cada combinación o término
 - Las casillas se numeran en código Gray
 - En un mapa de n variables, cada casilla tiene n casillas adyacentes que se corresponden con las combinaciones que resultan de invertir el valor de cada una de las n variables

Mapas de Karnaugh: adyacencias

Dos variables

Tres variables

Mapas de Karnaugh: adyacencias

Cuatro variables

Mapas de Karnaugh: adyacencias

Cinco variables

Mapas de Karnaugh: numeración de las casillas

Dos variables

Tres variables

a b	C	01	11	10
0	0	1	3	2
1	4	5	7	6

Cuatro variables

ab ^C	d	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

Mapas de Karnaugh: numeración de las casillas

Cinco variables

bc\d	e 00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

$$a = 0$$

bc\d	e	01	11	10
00	16	17	19	18
01	20	21	23	22
00	28	29	31	30
01	24	25	27	26

$$a = 1$$

Representación de una función en el Mapa de Karnaugh

- Se marcan las casillas que corresponden a los mintérminos o los maxtérminos de la función
- Ejemplo:

b		0.4	4.4	40
a\	00	01	11	10
0	1	1	1	1
1			1	

$$f(a,b,c) = \sum_{3} (0,1,2,3,7) =$$

$$= \prod_{3} (4,5,6)$$

a b	C	01	11	10
0				
1	0	0		0

Obtención de una expresión a partir del Mapa de Karnaugh

- Se siguen las reglas para mintérminos y maxtérminos
 - Regla para mintérminos
 - 0 → variable negada
 - 1 → variable sin negar

- Regla para maxtérminos
 - 0 → variable sin negar
 - 1 → variable negada

Simplificación mediante Mapas de Karnaugh

- Dos opciones
 - Por mintérminos (unos): se obtiene una suma de productos
 - Por maxtérminos (ceros): se obtiene un producto de sumas
- Buscar grupos de casillas adyacentes
 - Un grupo de 2 casillas adyacentes elimina 1 variable
 - Un grupo de 4 casillas adyacentes elimina 2 variables
 - Un grupo de 8 casillas adyacentes elimina 3 variables
 - Un grupo de 16 casillas adyacentes elimina 4 variables
 - •
- Objetivo: cubrir todos los mintérminos (maxtérminos) con los grupos más grandes posibles y con el menor número de grupos
 - Se pueden repetir términos, si es necesario (propiedad de absorción)

Simplificación: formación de grupos

Simplificación mediante Mapas de Karnaugh: Algoritmo

- Algoritmo sistemático
 - 1. Cubrir las casillas que no pueden formar grupos de 2
 - 2. Cubrir las casillas que pueden formar grupos de 2, pero no de 4
 - 3. Cubrir las casillas que pueden formar grupos de 4, pero no de 8
 - 4. Cubrir las casillas que pueden formar grupos de 8, pero no de 16
 - 5. ...
- Si en algún paso hay más de una opción:
 - Comenzar siempre cubriendo las casillas que tienen menos opciones

Simplificación mediante Mapas de Karnaugh: Ejemplo

Funciones incompletas

- Una función incompletamente especificada (o simplemente incompleta) es aquella que no está especificada para alguna combinación de valores de sus entradas
- Las funciones incompletas se dan en la práctica:
 - Cuando las entradas provienen de otro circuito que no puede producir determinadas combinaciones por construcción
 - Cuando existen casos en que el valor de la función no tiene sentido o es indiferente
- Notación:
 - Un valor indiferente se representa con 'X' ó '-'
 - El conjunto de términos indiferentes ("don't cares") se denota con la letra Δ

Funciones incompletas

- Ejemplo: Función que determina si un número BCD es impar
 - Los números del 10 al 15 no tienen sentido en BCD

$$f(b3,b2,b1,b0) = \sum_{4} (1,3,5,7,9) + \Delta_{4} (10,11,12,13,14,15) =$$

$$= \prod_{4} (0,2,4,6,8) + \Delta_{4} (10,11,12,13,14,15)$$

Combinaciones indiferentes

b3	b2	b1	b0	f	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	0	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	Х	
1	0	1	1	X X	
1	1	0	0	Х	
1	1	0	1	х	
1	1	1	0	Х	
1	1	1	1	X/	

Minimización de funciones incompletas

 Los términos indiferentes son "comodines": se pueden cubrir o no, según convenga para formar grupos más grandes

$$f(b_3,b_2,b_1,b_0) = \overline{b_3} \, b_0 + \overline{b_2} \, \overline{b_1} \, b_0$$

$$f(b_3,b_2,b_1,b_0) = b_0$$

$$f(b_3,b_2,b_1,b_0) = b_0$$

Correcto

Funciones múltiples

- En los circuitos digitales se implementan generalmente funciones múltiples: varias funciones a la vez o una función de múltiples salidas
- Las funciones múltiples se pueden implementar de forma óptima al considerarlas conjuntamente
 - Se pueden compartir términos o partes comunes para ahorrar lógica
- La descomposición de funciones múltiples de manera que se maximicen los términos comunes es difícil
 - Los algoritmos son difíciles de aplicar manualmente
 - Generalmente lo haremos por inspección

Funciones múltiples: Ejemplo

Funciones múltiples: Ejemplo

Es posible encontrar más términos comunes

$$f1(a,b,c,d) = \overline{ac} + abc + acd = \overline{ac} + abc\overline{d} + acd$$

$$f2(a,b,c,d) = \overline{ac} + a\overline{bc} + ac\overline{d} = \overline{ac} + abc\overline{d} + a\overline{bc}$$

- Las expresiones de las funciones no son óptimas por separado, pero sí son óptimas en conjunto!
- Las herramientas de diseño incluyen algoritmos para minimizar funciones múltiples

Funciones múltiples: Ejemplo

Síntesis multinivel

- Si eliminamos la restricción a dos niveles, se pueden encontrar mejores soluciones
 - Se utilizan algoritmos heurísticos, con ayuda de un ordenador
- Ejemplo: f(a,b,c,d,e) = abc+ad+ae = a(bc+d+e)

Herramientas de optimización

- Métodos manuales:
 - Sólo en 2 niveles, pocas variables
- Herramientas software
 - Multinivel, múltiples funciones, muchas variables
 - Optimización en área o en retardo
 - Generalmente incorporadas en herramientas de síntesis lógica
- Herramientas de síntesis lógica
 - Funcionan como un compilador, a partir de la descripción del diseño en forma esquemática o mediante un Lenguaje de Descripción de Hardware
 - Optimizan el diseño y generan las puertas lógicas en una tecnología determinada

Referencias

- "Introducción al diseño lógico digital". J. P. Hayes.
 Ed. Addison-Wesley
- "Circuitos y sistemas digitales". J. E. García Sánchez, D. G. Tomás, M. Martínez Iniesta. Ed. Tebar-Flores