Retrieval Augmented Generation (RAG)

CS450: Modern Software Engineering

Vector Embeddings & Semantic Search

Today's Topics

- 1. The Problem: LLM Knowledge Limits
- 2. Vector Embeddings Explained
- 3. Semantic Similarity & Search
- 4. Building RAG Systems
- 5. When to Use RAG

The LLM Knowledge Problem

Challenge: LLMs have fixed knowledge cutoff dates

```
# LLM without RAG
Q: "When was WWU founded?"
A: "I'm not sure about the specific date..."
```

Solution: Give LLMs access to external knowledge

```
# LLM with RAG
Q: "When was WWU founded?"
→ Retrieve: "WWU was founded in 1892..."
A: "Walla Walla University was founded in 1892."
```

What Are Vector Embeddings?

Embeddings = Dense numerical representations of text

- Text → Vector of numbers
- Capture semantic meaning
- Similar meanings → Similar vectors

```
"cat" \rightarrow [0.2, -0.5, 0.8, ..., 0.3] # 768 dimensions "dog" \rightarrow [0.3, -0.4, 0.7, ..., 0.2] # Similar! "car" \rightarrow [-0.8, 0.9, -0.1, ..., 0.7] # Different!
```

How Embeddings Capture Meaning

Traditional approach: Exact word matching

- "cat" matches "cat" only
- Misses "feline", "kitten", etc.

Embedding approach: Semantic similarity

- "cat" ≈ "feline" ≈ "kitten"
- Captures relationships and context

Embedding Example

```
import ollama

client = ollama.Client(host='http://localhost:11434')
response = client.embeddings(
    model='nomic-embed-text',
    prompt="The cat sat on the mat"
)

embedding = response['embedding']
print(len(embedding))  # 768 dimensions
```

Result: Array of 768 floating-point numbers

Visualizing Embeddings

Real embeddings are high-dimensional (768+)

Let's visualize in 2D for intuition:

```
cat •
kitten • • feline
• car
• truck
```

Similar concepts cluster together!

Cosine Similarity

How to measure similarity between vectors?

Cosine Similarity = angle between vectors

```
Score range: -1 to 1
1.0 = Identical
0.0 = Unrelated
-1.0 = Opposite
```

Formula: $cos(\theta) = (A \cdot B) / (||A|| \times ||B||)$

Cosine Similarity Example

```
from sklearn.metrics.pairwise import cosine_similarity
emb1 = get_embedding("The cat sat on the mat")
emb2 = get_embedding("A feline rested on a rug")
emb3 = get_embedding("Python programming language")

sim_1_2 = cosine_similarity([emb1], [emb2])[0][0]
# Result: 0.85 (very similar!)

sim_1_3 = cosine_similarity([emb1], [emb3])[0][0]
# Result: 0.12 (not similar)
```

Semantic Search Process

- 1. Index documents: Convert all docs to embeddings
- 2. Query conversion: Convert question to embedding
- 3. Similarity search: Find closest document embeddings
- 4. Return results: Ranked by similarity score

```
Query: "Python usage" → [0.3, 0.7, ...]

↓ compare

Documents: [doc1_emb, doc2_emb, doc3_emb, ...]

↓ rank

Results: [doc3 (0.92), doc1 (0.78), ...]
```

RAG Architecture

RAG Prompt Structure

```
prompt = f"""Answer the question based on the context below.
If the answer is not in the context, say "I don't know."

Context:
{retrieved_documents}

Question: {user_question}

Answer:"""
```

Key: Provide retrieved context before the question

RAG vs Direct LLM

Direct LLM:

- Limited to training data
- May hallucinate facts
- Can't access private data

RAG:

- Uses current documents
- Grounds responses in sources
- Works with private knowledge
- More accurate for specific domains

When to Use RAG

Good for:

- Frequently updated information
- Domain-specific knowledge
- Private/proprietary data
- Need for source attribution

Not ideal for:

- General knowledge tasks
- Creative writing
- Real-time computation
- When latency is critical

RAG Limitations

1. Quality depends on retrieval

Bad retrieval → Bad answers

2. Context window limits

Can only include top-k documents

3. Latency

Embedding + search + generation

4. Relevance threshold

Must decide when to say "I don't know"

Lab time!