

EP 00/02005 04. 2000
BUNDESREPUBLIK DEUTSCHLAND

EP 00/02005.

REC'D 10 MAY 2000

WIPO EPO DG RCT

25. 04. 2000

Bescheinigung

4

Die SCHERING Aktiengesellschaft in Berlin/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Menschliche Nukleinsäure-Sequenzen aus Endothelzellen"

am 9. März 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 12 N und C 07 K der Internationalen Patentklassifikation erhalten.

München, den 30. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Joost

Aktenzeichen: 199 11 684.9

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161
06.90
11/98

105

Menschliche Nukleinsäure-Sequenzen aus Endothelzellen

Die Erfindung betrifft Nukleinsäure-Sequenzen -mRNA, cDNA, genomische Sequenzen- aus Gewebe menschlicher Endothelzellen, die für Genprodukte oder Teile davon kodieren und deren Verwendung. Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

Angiogenese ist ein Prozeß, der im adulten Lebewesen bei den zyklischen Prozessen der Reproduktion in der Frau, bei der Wundheilung und in verschiedenen pathologischen Situationen zu beobachten ist, wie z. B. Tumorwachstum, rheumatische Erkrankungen, Endometriose, bei der Kollateralenbildung im Herzen und in der Peripherie, etc.

Persistente Angiogenese kann die Ursache für verschiedene Erkrankungen wie Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen und Artheriosklerose sein oder zu einer Verschlimmerung dieser Erkrankungen führen.

Gelänge es, Angiogenese zu induzieren oder zu hemmen, so würden sich mehrere Erkrankungen grundlegend therapieren lassen. Hierzu müßte man die Gene bzw. die für die Angiogenese relevanten Nukleinsäure-Sequenzen kennen. Bisher ist nicht bekannt, welche Gene bzw. Nukleinsäure-Sequenzen oder Teile davon angiogeneserelevant sind.

Es konnten nun Nukleinsäure-Sequenzen gefunden werden, die angiogeneserelevant sind.

Diese Sequenzen sind entweder bisher nicht beschrieben worden oder sie sind nur als Nukleinsäure-Sequenzen aus Nagern bekannt, jedoch ohne Hinweis auf Angiogenese. Weitere Sequenzen sind als humane Gene oder Teile davon

beschrieben, jedoch nicht in bezug auf mögliche angiogeneserelevante Eigenschaften.

Zur Suche nach angiogeneserelevanten Genen wurden Endothelzellen aus

5 Vorhäuten adulter Personen gewonnen, die auf zweierlei Arten kultiviert wurden:

-
- a) auf einer Rattenschwanzkollagenmatrix in subkonfluenter Dichte

und

10

- b) auf einem Gel aus extrazellulärer Matrix (Matrikel).

Unter Kulturform a) bilden die Zellen die klassischen Kopfsteinpflasterartigen Monolayer.

15

Unter Kulturform b) bilden die Zellen netzartige Strukturen mit röhrenförmigen Gebilden.

20

Die Zellkulturform a) stellt einen frühen Angiogenesezustand mit vornehmlich proliferativem Phänotyp dar.

25

Die Zellkulturform b) stellt ein Modell für eine spätere Phase der Angiogenese dar, bei der die Differenzierung der Endothelzellen zu einer Bildung von schlauchförmigen Strukturen führt. Diese Strukturen sind eine Voraussetzung für einen Blutfluß, der von der Gewebsfläche separiert ist.

30

Aus beiden Zellkulturformen wird mRNA isoliert, in cDNA transkribiert, und mit einer Restriktionsendonuklease in Fragmente der Größe von 200 bis 1500 bp geschnitten. Mittels einer subtraktiven PCR-Technik wurden die differentiell vorkommenden Fragmente beider Zustände amplifiziert. Sie wurden in Vektoren eingebaut und kloniert. Die Klone wurden zunächst sequenziert und anschließend wurden ihre Sequenzen mit bioinformatischen Techniken komplettiert.

Mit Hilfe einer quantitativen, in der Literatur beschriebenen PCR-Technik (Pilarsky et al., 1998, s. Versuchsbeschreibung) wurde zunächst untersucht, ob die Gene in den beiden Kulturzuständen differentiell exprimiert sind. Zur Normierung wurde die
5 Expression des 23 kDalton Proteins (s. Versuchsbeschreibung) als interner Marker verwendet. In der differentiellen Expression traten Verhältnisse von 2-7 fach auf.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 gefunden werden, die als Kandidatengene bei der Angiogenese eine Rolle spielen.

10

Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der
15 Nukleinsäure-Sequenzen Seq ID Nos. 1 bis Seq. ID No. 59

b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen

20

oder

c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

25

Die Erfindung betrifft weiterhin Nukleinsäure-Sequenzen gemäß einer der Sequenzen Seq ID Nos. 1 bis Seq. ID No. 59 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95% ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweisen.

30

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, die in Endothelzellgewebe erhöht exprimiert sind

Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 hybridisieren.

5

Die erfindungsgemäß Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 3000 bp, vorzugsweise eine Länge von mindestens 150 bis 2800 bp, besonders bevorzugt eine Länge von 150 bis 2600 bp auf.

10

Mit den erfindungsgemäß Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäß Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäß Sequenzen können in sense oder antisense Orientierung eingefügt sein.

15

In der Literatur sind ist eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die verwendet werden können.

20

Unter Expressionskassetten bzw. Vektoren sind zu verstehen: 1. bakterielle, wie z. B., phagescript, pBs, φX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), 2. eukaryontische, wie z. B. pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

25

Unter Kontroll- oder regulatorischer Sequenz sind geignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda PR, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und Maus Metallothionein-I.

30

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

- 5 Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.
-

Die erfindungsgemäß Nukleinsäure-Sequenzen können auch zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

10

Die Erfindung betrifft auch die Verwendung der erfindungsgemäß Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhältlichen Gen-Fragmente.

15

Die erfindungsgemäß Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Sequenzen enthaltene genetischen Information befindet, die exprimiert wird.

20

Die die Nukleinsäure-Sequenzen enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung.

25

Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie *E. coli* oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Hefen.

30

Die erfindungsgemäß Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren. Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, die von den erfinderischen Teilsequenzen exprimiert werden.

5

Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den Polypeptiden aufweisen.

10 Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder ein Fragment gerichtet sind, welche von den erfindungsgemäßen Nukleinsäure-Sequenzen Seq.

ID No. 1 bis Seq. ID No. 59 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

15 Die von den erfindungsgemäßen Nukleinsäure-Sequenzen kodierten Polypeptide können auch als Tool zum Auffinden von Wirkstoffen bei angiogenen Erkrankungen verwendet werden, was ebenfalls Gegenstand der vorliegenden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen verwendet werden können.

25 Die Erfindung betrifft auch die Verwendung der von den erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 exprimierten Polypeptide als Arzneimittel in der Gentherapie zur Behandlung angiogener Erkrankungen, bzw. zur Herstellung eines Arzneimittels zur Behandlung angiogener Erkrankungen.

30 Die erfindungsgemäßen Nukleinsäuren bzw. die über diese Nukleinsäuren exprimierten Proteine können somit entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie,

Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und

5 Verletzungen des Nervengewebes zum Einsatz kommen.

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptidsequenz enthalten, die von den erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 exprimiert werden.

10 Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch genomische oder mRNA-Sequenzen sein.

Die Erfindung betrifft auch genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten Promotoren und/ oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische
20 BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen
25 Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden.

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle
30 Gene und ihre chromosomal Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 59, zur Verwendung als Vehikel zum Gentransfer.

Bedeutungen von Fachbegriffen und Abkürzungen

Nukleinsäuren= Unter Nukleinsäuren sind in der voliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und genomische Gene (Chromosomen).

5

ORF = ~~Open Reading Frame, eine definierte Abfolge von Aminosäuren,~~
die von der cDNA-Sequenz abgeleitet werden kann.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erfindung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

5

Beispiel 1

1. Suche nach angiogeneserelevanten Kandidatengenen

10 1.1 Verwendete Zellen

Primäre, humane, mikrovaskuläre Endothelzellen (MVEC) wurden aus menschlichen Vorhäuten präpariert und mittels biotinyliertem anti CD31 (PECAM) Antikörper selektioniert (Referenz).

15 Kulturbedingungen: 37°C, 5%CO₂

Medium: M199, 10% FCS, 10% Humanserum, 6µg/ml ECGF, 1mM Natriumpyruvat, 3 U/ml Heparin, 100 U/ml Penicillin, 100µg/ml Streptomycin, 1x nicht essentielle Aminosäuren

20

1.2 Kultivierung und RNA-Präparation

Für die Kulturform a) werden die Zellen auf mit Collagen I beschichtetem Plastik kultiviert. Für die Kulturform b) werden die Zellen auf einem Gel aus extrazellulären 25 Matrixproteinen ausgebracht. Das dazu verwendete Matrikel (Becton Dickinson) wurde 1 zu 1 mit M199 Medium verdünnt, in der Kälte in das verwendete Kulturgefäß gegossen (60µl/cm²) und bei 37°C für 30 min. gelöst. Anschließend wurden die Zellen ausgebracht.

Für Kulturform a) und b) wurden MVEC in einer Dichte von 2x10⁴/cm² ausgebracht 30 und für 7h bei 37°C, 5% CO₂ inkubiert.

Die Gesamt-RNA-Präparation wurde nach der Guanidinium Thiocyanat Methode mit anschließender Zentrifugation durch ein Caesiumchlorid-Kissen durchgeführt

(Sambrook J., Fritsch E. F., and Maniatis T.; 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press).

Die polyA⁺ RNA-Selektion wurde über oligo(dT)-Zellulosesäulen (mRNA Purification Kit, Pharmacia Biotech) durchgeführt.

5

1.3 Erstellen von subtraktiven cDNA-Banken

Die Subtraktion wurde nach der Methode von Diatchenko et al. (Proc. Natl. Acad.

10 Sci. U.S.A., 1996 Jun 11, 93:6025-30) mit Hilfe des PCR-Select cDNA Subtraction Kit durchgeführt.

Die polyA⁺ RNA, die die Zielsequenzen enthält, wird als Tester, die davon abzuziehende polyA⁺ RNA als Driver bezeichnet.

15 Es wurden 2 Subtraktionen durchgeführt, wobei einmal die polyA⁺ RNA der Kulturform a) und einmal die polyA⁺ RNA der Kulturform b) als Tester diente. Die folgende Versuchsbeschreibung stellt exemplarisch nur eine Subtraktion dar.

1.4 Synthese von doppelsträngiger cDNA (ds cDNA)

20

Sowohl für den Tester als auch für den Driver wird eine doppelsträngige cDNA-Synthese durchgeführt.

1. Strang-Synthese

25

Die Strangsynthese wird mit folgendem Ansatz durchgeführt:

polyA⁺ RNA 2µg

cDNA-Synthese Primer(10µM) 1µl

Wasser add 5µl

30

Die Reaktionen werden für 2 min. bei 70°C und anschließend 2 min auf Eis inkubiert.

Zu jeder Reaktion wurde folgendes zugegeben:

5x First-strand buffer (250mM Tris-HCL, pH8, 330mM Mg-Chlorid, 375mM KCl)	2µl
10mM dNTP	1µl
5 Wasser	1µl
<u>MMLV reverse transcriptase (200 U/µl)</u>	1µl

Die Reaktionen wurden für 90 Minuten bei 42°C und anschließend für 2 Minuten auf Eis inkubiert.

10

2. Strang-Synthese

Die 2. Strang-Synthese wurde mit folgendem Ansatz durchgeführt:

1. Strang-Synthese	10µl
--------------------	------

15

Wasser	48,4µl
--------	--------

5x Second-strand buffer(500mM KCL, 50mM Ammoniumsulfat,

25mM Mg-Chlorid, 0,75mM β-NAD, 100mM Tris-HCL, pH7,5,

0,25mg/ml BSA) 16µl

10mM dNTP 1,6µl

20

20x Second-strand enzyme cocktail (DNA Polymerase 1 6U/µl

Rnase H 0,2U/µl, *E. coli* DNA Ligase 1,2U/µl) 4µl

Die Reaktionen wurden für 2h bei 16°C inkubiert.

Zu jeder Reaktion wurde T4 DNA Polymerase wie folgt zugegeben:

25

T4 DNA Polymerase 3U/µl 2µl

Die Reaktionen wurden für 30 min bei 16°C inkubiert.

Die Reaktionen wurden mit EDTA abgestoppt, wobei die Lösung folgende

30

Zusammensetzung aufweist:

20x EDTA/Glykogen Mix (200mM EDTA, 1mg/ml Glykogen) 4µl

Es wurde für jede Reaktion eine Phenol/Chloroform-Extraktion und eine Ethanol-Präzipitation durchgeführt. Die Pellets wurden in je 50µl Wasser resuspendiert.

5 **1.5 Rsa I-Verdau der ds cDNA**

Sowohl für den Tester als auch für den Driver wurde ein Rsa I-Verdau durchgeführt. Hierzu wurden folgende Lösungen verwendet:

10	ds cDNA	43,5µl
	10x Rsa I Restriktionspuffer (100mM Bis Tris Propan-HCl, pH7,0, 100mM Mg-Clorid, 1mM DTT)	5µl
	Rsa I (10U/µl)	1,5µl

15 Die Reaktionen wurden für 90 min bei 37°C inkubiert.

Die Reaktionen wurden anschließend mit EDTA abgestoppt, wobei die Lösung folgende Zusammensetzung aufweist:

20x EDTA/Glykogen Mix (200mM EDTA	1mg/ml Glykogen)	2,5µl
-----------------------------------	------------------	-------

20

Anschließend wurde für jede Reaktion eine Phenol/Chloroform-Extraktion und eine Ethanol-Präzipitation durchgeführt. Die hierbei entstehenden Pellets wurden in je 5,5µl Wasser für die weitere Verarbeitung resuspendiert.

25

1.6 Adaptor-Ligation an Rsa I verdaute ds Tester cDNA

Die Tester-cDNA wurde in 2 Fraktionen aufgeteilt. An jede Tester-Fraktion wurde ein Adapter ligiert. Die Konzentrationen der verwendeten Substanzen für die beiden

30

Tester sind im einzelnen in der nachfolgenden Tabelle aufgeführt.

	<u>Tester-1</u>	<u>Tester-2</u>
Tester-cDNA	0,1µl	0,1µl
5x Ligationspuffer (250mM Tris-HCl, pH7,8 50mM MgCl2	2µl	2µl
10mM DTT 0,25mg/ml BSA)		
T4 DNA Ligase (400U/µl)	1µl	1µl
Adaptor 1 (10µM)	2µl	--
Adaptor 2 (10µM)	--	2µl
H2O	4,9µl	4,9µl
Gesamtvolumen	10µl	10µl

Die Reaktionen wurden über Nacht bei 16°C inkubiert und anschließend mit EDTA abgestoppt (20x EDTA/Glykogen Mix, 1µl (200mM EDTA,1mg/ml Glykogen)).

- 5 Die Reaktionen wurden für 5 min bei 72°C inkubiert.

1.7 Subtraktive Hybridisierungen

- 10 Die Driver und Tester wurden anschließend miteinander in zwei Schritten hybridisiert.

Hybridisierung

15

Die erste Hybridisierung wurde für die beiden Reaktionen mit den in der folgenden Tabelle aufgeführten Lösungen und Verbindungen durchgeführt.

	Reaktion 1	Reaktion 2
Rsa I verdaute Driver cDNA	1,5µl	1,5µl
Adaptor 1 ligerter Tester 1	1,5µl	--
Adaptor 2 ligerter Tester 2	--	1,5µl
4x Hybridisierungspuffer	1µl	1µl
Gesamtvolumen	4µl	4µl

Die Reaktionen wurden für 90 sek bei 98°C und anschließend direkt für 8h bei 68°C inkubiert.

1. Hybridisierung:

Für die 2. Hybridisierung wurden Reaktion 1 und 2 gemischt und frisch denaturierter Driver wie folgt zugegeben:

10

Driver	1µl
4x Hybridisierungspuffer	1µl
Wasser	2µl

1µl dieser Mischung wurde für 90 sek bei 98°C inkubiert und anschließend möglichst schnell mit Reaktion 1 und Reaktion 2 fusioniert.

Die 2. Hybridisierung wurde bei 68°C über Nacht inkubiert. Anschließend wurden zur 2. Hybridisierung 200µl Verdünnungspuffer (20mM HEPES-HCl (pH8,3), 50mM NaCl, 0,2mM EDTA (pH8,0)) zugegeben. Danach wurde die 2. Hybridisierung für 7 min bei 68°C inkubiert. Der so hergestellte Ansatz wurde dann für die PCR eingesetzt.

Differentiell exprimierte Fragmente in den subtrahierten cDNA Pools wurden über zwei aufeinanderfolgende PCRs selektiv amplifiziert.

Die 1. PCR wurde mit folgendem Ansatz durchgeführt:

25

10x PCR-Puffer (400mM Tricine-KOH, pH9,2, 150mM KOAc,	
35mM MG(OAc)2, 37,5µg/ml BSA)	2,5µl
10mM dNTP	0,5µl
PCR Primer 1 (10µM)	1µl
5 50x Advantage cDNA Polymerase	0,5µl
verdünnte 2. Hybridisierung	1µl
Wasser	19,5µl

Das PCR-Programm wurde wie folgt durchgeführt:	75°C, 5 min
10 Schleife	94°C, 30 sek
	66°C, 30 sek
	72°C, 90 sek

Insgesamt wurden 27 Zyklen durchgeführt.

15

Die zweite PCR wurde mit folgendem Ansatz durchgeführt:

10x PCR-Puffer	2,5µl
10mM dNTP	0,5µl
20 nested PCR-Primer 1 (10µM)	1µl
nested PCR Primer 2R (10µM)	1µl
50x Advantage cDNA Polymerase	0,5µl
PCR Produkt	0,1µl
H2O	19,4µl

25

Das PCR-Programm wurde wie folgt durchgeführt:	94°C, 30 sek
	68°C, 30 sek
	72°C, 90 sek

Insgesamt wurden 12 Zyklen durchgeführt.

30

Die Subtraktionseffizienz wurde durch eine semi-quantitative PCR für ein bekanntes nicht reguliertes Gen (SH3P18) überprüft. Es zeigte sich eine Reduktion in dem subtrahierten cDNA Pool um einen Faktor von 150- 200.

5

2. Ligation der subtrahierten cDNA Pools in pUC 18

Die vorwärts und rückwärts subtrahierten cDNA Pools wurden in pUC 18 Sma I/BAP ligiert (SureClone Ligation Kit, Pharmacia Biotech) und anschließend in chemisch kompetente E. coli DH5 α kloniert.

10

Die Fragmente der subtrahierten cDNA Pools wurden dazu zu Blunt-Enden aufgefüllt und phosphoryliert. Folgende Zusammensetzungen wurden hierfür verwendet:

15

Subtrahierter cDNA Pool		1,5µg
Klenow Fragment		1µl
10x Blunting/Kinasing Buffer		2µl
Polynucleotide Kinase		1µl
Wasser	add	20µl

20

Die Reaktionen wurden für 30 min bei 37°C inkubiert, anschließend über PCR Purification Columns aufgereinigt und in 30µl Wasser eluiert. Anschließend wurde die DNA-Konzentration wurde mittels OD-Messung bestimmt.

25

2.1 Ligation in pUC 18

Die Ligation in pUC 18 wurde mit folgendem Ansatz durchgeführt:

30

Blunt-ended cDNA Pool	50ng
pUC 18 Sma I/BAP (50ng/µl)	1µl

2x Ligationspuffer	10µl
DTT	1µl
T4 DNA Ligase (6U/µl)	3µl
Wasser	add 20µl

5

Die Reaktionen wurden über Nacht bei Raumtemperatur inkubiert.

2.2 Transformation der Ligationen in E. coli DH5 α

10

Die Ligationen wurden in chemisch kompetente E. coli DH5 α transformiert.

Die transformierten Zellen wurden auf 2YT Agarose-Platten mit 100µg/ml Ampicilin, 625µM IPTG und 0,005% X-Gal ausgestrichen und über Nacht bei 37°C angezogen.

Auf 17 zufällig ausgewählten, weißen Klonen wurde eine Kolonie-PCR mit Vektor-
15 Primern (M13 Standardprimer) durchgeführt. 15-16 Klone zeigten dabei Inserts mit einer Größenverteilung, die der des verwendeten cDNA Pools entsprach.

Für jede Subtraktion wurden 1536 Klone in 384-well Platten mit 50µl 2YT, 1xHMF, 100µg/ml Ampicilin pro well transferiert. Die gefüllten 384-well Platten wurden über Nacht bei 37°C inkubiert und konnten dann bei -80°C gelagert werden.

20

3. Herstellung von Kolonie-Filtern:

Die 1536 Klone einer subtraktiven cDNA Bank wurden auf eine Hybond Nylon N+

25 Membran (Amersham) angeimpft. Die Membran wurde auf eine 2YT Agarose-Platte mit 100µg/ml Ampicilin gelegt und über Nacht bei 37°C inkubiert. Die Membran wurde mit der Kolonie-Seite nach oben für 4 min auf in Denaturierungslösung (0,5M NaOH, 1,5M NaCl) getränktes Whatman 3MM Papier gelegt. Anschließend wurde die Membran für 4 min auf in Neutralisierungslösung (1M Tris-HCl (pH7,5), 1,5M
30 NaCl) getränktes Whatman 3MM Papier inkubiert. Die Membran wurde dann für 1h bei 37°C mit Proteinase K behandelt. Die Membran wurde dazu in 300ml Proteinase K Puffer (50mM NaCl, 5mM EDTA, 10mM Tris-HCl (pH8), 50mg/ml Proteinase K)

getaucht. Schließlich wurde die Membran bei 80°C für 3h getrocknet und wurde dann für die Hybridisierungen verwendet.

5 4. Differentielle Hybridisierung:

Um die differentielle Expression der klonierten Fragmente nachzuweisen wurde mit Hilfe eines PCR-Select Differential Screening Kits eine differentielle Hybridisierung auf Kolonie-Filtern der subtraktiven cDNA-Banken durchgeführt.

- 10 Für eine spezifische Hybridisierung der vorwärts und rückwärts subtrahierten cDNA Pools auf die subtraktiven cDNA-Bank Kolonie-Filter war es notwendig die Adapter-Sequenzen in der Hybridisierungsprobe zu entfernen.

- 15 Als Hybridisierungsproben für die Rsa I-Restriktion der subtrahierten cDNA Pools wurden eingesetzt:

cDNA Pool	28µl
10x Rsa I Restriktionspuffer	(100mM Bis Tris Propan-HCl, pH7,0)
100mM Mg-Chlorid, 1mM DTT)	3µl
Rsa I (10U/µl)	2µl

Die Reaktionen wurden bei 37°C für 5h inkubiert und anschließend über PCR-Reinigungssäulen aufgereinigt und in 30µl Wasser eluiert. Die DNA-Konzentration wurde mittels OD-Messung bestimmt.

25

5. Radioaktive Markierung der subtrahierten cDNA Pools

- Die radioaktive Markierung der subtrahierten cDNA Pools wurde mit folgendem Ansatz durchgeführt:
- | | |
|-----------|--------------|
| cDNA Pool | 150ng in 9µl |
|-----------|--------------|

3. Berechnung einer Konsensus-Sequenz aus den assemblierten Sequenzen.

Nun wird versucht die Konsensus-Sequenz in gleicher Weise zu verlängern. Diese

- 5 Iteration wird mit der jeweils erhaltenen Konsensus-Sequenz fortgesetzt, bis keine
weitere Verlängerung mehr möglich ist.
-

10. Gefundene Nukleinsäure-Sequenzen

10

Analog der unter 1 bis 9 beschriebenen Verfahrensweise wurden z. B. folgende Sequenzen gefunden, von denen einige mehrfach in Kulturform a) oder Kulturform b) der Endothelzellen überexprimiert werden.

15

Diese Nukleinsäure-Sequenzen sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die mögliche Funktion dieser Genbereiche betrifft die Angiogenese.

20

Das Ergebnis ist in der folgenden Tabelle I dargestellt:

TABELLE I

Seq ID No	Expression	Funktion	Homologie
1	überexprimiert in a)	Assoziiert mit Proliferation	Keine
2	überexprimiert in a)	Assoziiert mit Proliferation	Keine
3	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
4	3-fach überexprimiert in b)	gap junction, assoziiert mit Differenzierung	connexin37; 96% Identität über 933 bp.
5	überexprimiert in a)	Assoziiert mit Proliferation	Keine
6	2-fach überexprimiert in b)	Assoziiert mit Differenzierung	Keine
7	überexprimiert in a)	Assoziiert mit Proliferation	Keine
8	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
9	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
10	überexprimiert in b)	Assoziiert mit Differenzierung	SPRY2; 99% Identität über 1489 bp.
11	überexprimiert in b)	assoziiert mit Differenzierung	Keine
12	überexprimiert in b)	assoziiert mit Differenzierung	mouse Gas5; 78% Identität über 121 bp.
13	überexprimiert in b)	assoziiert mit Differenzierung	Keine
14	überexprimiert in b)	assoziiert mit Differenzierung	Keine
15	überexprimiert in b)	assoziiert mit Differenzierung	Keine
16	überexprimiert in b)	assoziiert mit Differenzierung	Keine
17	überexprimiert in b)	assoziiert mit Differenzierung	Keine
18	überexprimiert in b)	assoziiert mit Differenzierung	Keine
19	überexprimiert in b)	assoziiert mit Differenzierung	Keine
20	überexprimiert in b)	assoziiert mit Differenzierung	Keine
21	überexprimiert in b)	assoziiert mit Differenzierung	Keine

Seq ID-No	Expression	Funktion	Homologie
22	überexprimiert in b)	assoziiert mit Differenzierung	Keine
23	5-fach überexprimiert in b)	assoziiert mit Differenzierung	mouse MMP; 83% Identität über 831 bp.
24	überexprimiert in b)	assoziiert mit Differenzierung	Keine
25	4-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
26	überexprimiert in b)	assoziiert mit Differenzierung	Keine
27	überexprimiert in b)	assoziiert mit Differenzierung	Keine
28	überexprimiert in b)	assoziiert mit Differenzierung	KIAA0255; 57% Identität über 326 bp.
29	überexprimiert in b)	assoziiert mit Differenzierung	thymic epithelial cell antigen; 68% Identität über 326 bp.
30	überexprimiert in b)	assoziiert mit Differenzierung	Keine
31	4-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
32	überexprimiert in b)	assoziiert mit Differenzierung	Keine
33	überexprimiert in b)	assoziiert mit Differenzierung	Keine
34	überexprimiert in b)	assoziiert mit Differenzierung	Keine
35	überexprimiert in b)	assoziiert mit Differenzierung	Keine
36	überexprimiert in a)	assoziiert mit Proliferation	Keine
37	überexprimiert in b)	assoziiert mit Differenzierung	CL-20; 87% Identität über 122 bp.
38	5-fach überexprimiert in b)	assoziiert mit Differenzierung	mouse Numb; 90% Identität über 310 bp.
39	überexprimiert in a)	assoziiert mit Proliferation	Keine
40	überexprimiert in b)	assoziiert mit Differenzierung	Keine
41	5-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
42	6-fach überexprimiert in a)	Coreprozessor, assoziiert mit Proliferation	SMRT; 99% Identität über 785 bp.
43	überexprimiert in a)	assoziiert mit Proliferation	Keine
44	überexprimiert in a)	assoziiert mit Proliferation	Keine
45	überexprimiert in a)	assoziiert mit Proliferation	Keine
46	überexprimiert in a)	assoziiert mit Proliferation	Keine

Seq ID-No	Expression	Funktion	Homologie
47	5-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
48	überexprimiert in a)	assoziiert mit Proliferation	MUC18; 99% Identität über 780 bp.
49	überexprimiert in a)	assoziiert mit Proliferation	Keine
50	überexprimiert in a)	assoziiert mit Proliferation	Keine
51	3-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
52	überexprimiert in a)	assoziiert mit Proliferation	Keine
53	überexprimiert in a)	assoziiert mit Proliferation	Keine
54	überexprimiert in a)	assoziiert mit Proliferation	Keine
55	7-fach überexprimiert in a)	assoziiert mit EC Proliferation und Migration	CYR61; 100% Identität über 2015 bp.
56	überexprimiert in a)	assoziiert mit Proliferation	Keine
57	überexprimiert in a)	assoziiert mit Proliferation	Keine
58	3-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
59	überexprimiert in b)	Assoziiert mit Differenzierung	Keine

a), b) = Kulturformen

5

Die erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 der ermittelten Kandidatengene werden in dem nachfolgenden Sequenzprotokoll beschrieben.

15

Sequenzprotokoll

5 (1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

- (A) NAME: Schering Aktiengesellschaft
(B) STRASSE: Müllerstraße 178
10 (C) STADT: Berlin
(E) LAND: Deutschland
(F) POST CODE (ZIP): D-13303
(G) TELEFON: (030)-4681 2085
(H) TELEFAX: (030)-4681 2058

15

(ii) TITEL DER ERFINDUNG: Menschliche Nukleinsäuresequenzen aus
humanen Endothelzellen

20

(iii) Anzahl der Sequenzen: 59

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
25 (B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

30 (2) INFORMATION ÜBER SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1835 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzeln
 (D) TOPOLOGIE: linear

5

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

10

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

15

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

20

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1:

25

```

ttttacagtt ttcctttct tcagagtttta tttgaattt tcattttgg ataaccaagc 60
agctcttaa gaagaatgca cagaagagt attctggcac tttggatag tacataagat 120
tttcttttt ttttttaaat ttttttaat agtcacattc agctcgctt ctc当地accag 180
actccacat tgggtgagca agatgagccc ataggattcc agagtaata cgtaaccgt 240
tatacaaaca gccaaaaaaaaac cataatggtg ccacaggat ggagcaggga agggcatctc 300
taacgtgtcc tctagtctat ctgcgttaaa cagaacccac gttacacatg ataactagag 360
agcacactgt gttgaaacga ggatgctgac cccaaatggc acttggcagc atgcagttt 420
aagcaaaaga gacatcctt aataactgta taaaatccag gcagttccat taaagggtt 480
aagaaaaacca acaacaacaa aaagcgaggg actgtctgtt gtcactgtca aaaaggcact 540
tggagttaat gggaccagga ttggaggact ctttagctgat acagattca gtacgatttc 600
attaaaaggc ttggatgtta agagaggaca ctcagcggtt cctgaaggga gacgctgaga 660
tggaccgctg agaagcggaa cagatgaaca caaaggaatc aaatcttac aaccaaattt 720
35      catttaagcg acaacaaaaa aaggcaaacc cccaaacgca acctaaccac agcaaaatct 780
aagcaaaatc agacaacgaa gcagcgatgc atagcttcc tttgagagaa cgcataacctt 840
gagacgctac gtgcacaccc taaagttctcaa cgacagcttc acagtaggat tatttgtata 900
aaaatgactc aagcgatgca aaaagttca tctgttccca gaatccgagg gagaactgag 960
gtgatcgta gagcatagcg acatcacgtg cggttctta atgtccctgg tggcggatac 1020
40      gccgagtcct cggaaggaca tctggacacc acttcagcc acctccttgc agggcgaca 1080

```

tccgccaag tcatccctta ttccgagtaa taacttaat tccttctaa catttacacg 1140
 gcaaacagga atgcagtaaa cgtccacgtc cgtcccacgg ctgggctgcc gttccgttc 1200
 ctccacgaac gggtagcgc ttccatgaga aaggatattt ggcaatttta tattccacag 1260
 5 tcaggtgggt ctgcgatagc tcatttaatg taaaacgcca tcaggggcct ctccctccgt 1320
 ttctgccagg ggctttctt gtcttctcct tggcgagctc gtggcagat cttctctgg 1380
 gggggctggc tgctggctcc gagggggcat ccgcagtccg tctggtcgtc tcctccgtca 1440
 ggctgggcag ctggccacca cttctccgac tcgaccctc caacaagcat cgcaaggcac 1500
 tgtcctcggg ggtacagacc gtggtcccac attcgctacc actctgttcc acgtcatcca 1560
 ggtacacgag ctgcgtgttag gccgtgctgt ctggggctcg aggctcttc tgctgggtg 1620
 10 ~~cgtggacggg cgggttagttc tgctgcagag acaaagcatc tcccccttccc ttccgggttg~~ 1680
 attttggttc attcatatct acgccagagt ccaaactggc atcattactt ccgttccttc 1740
 cagcttttg gagaatcaat gtatgaatgt ctaacctgac cggtggacct gccatccaag 1800
 gagacgaacc acgcccgggg gtgcggaagc ggct

15

(2) INFORMATION ÜBER SEQ ID NO: 2:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 581 Basenpaare
- 20 (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35 **(vii) SONSTIGE HERKUNFT:**

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 2:

5 gttctagatt gtttattca gtaattagct cttaaagaccc ctggggcctg tgctacccag 60
 acactaaca cagtcttat ccagttgtg gttctgggtg acgtgatctc cccatcatga 120
 tcaacttact tcctgtggcc cattaggaa gtggtgacct cgggagctat ttgcctgttg 180
 agtgcacaca cctggaaaca tactgctctc attttttcat ccacatcagt gagaaatgag 240
~~tggeeeegtta~~ ~~geaagatata~~ ~~actatgeaat~~ ~~cateaaaaa~~ ~~agetgeetaa~~ ~~taaeatttea~~ 300
 10 tttattacag gactaaaagt tcattattgt ttgttaaagga tgaattcata acctctgcag 360
 agttatagtt catacacagt tgatttccat ttataaaggc agaaagtctt tgttttctct 420
 aaatgtcaag ctttgactga aaactcccgt tttccagtc actggagtgt gtgcgtatga 480
 aagaaaatct ttagcaatta gatgggagag aaggaaata gtacttgaaa tgtagggccct 540
 cacctccccca tgacatcctc catgagcctc ctgatgtagt g

15

(2) INFORMATION ÜBER SEQ ID NO: 3:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 516 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzeln
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 3:

5 tagagatgtt ggttgatgac ccccgggatc tggagcagat gaatgaagag tctctggaag 60
 tcagcccaga catgtgcata tacatcacag aggacatgct catgtcgccg aacctaatt 120
~~gacactctgg gttgattgtg aaagaaattt ggtcttccac ctgcagctct tcagaaacag~~ 180
 ttgttaagct tcgtggccag agtactgatt ctcttccaca gactatatgt cgaaaccaa 240
 agacccac tgatcgacac agcttgagcc tcgatgacat cagactttac cagaaagact 300
 10 tcctgcgcac tgcaggctcg tgcaggaca ctgctcagag ttacacccctt ggatgtggcc 360
 atgaactgga tgaggaaggc ctcttattgca acagttgctt ggcccaagcag tgcataaca 420
 tccaagatgc ttttccagtc aaaagaacca gcaaataactt ttctctggat ctcactcatg 480
 atgaagttcc agagttgtt gtgtaaagtgc cgctcg

(2) INFORMATION ÜBER SEQ ID NO: 4:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1099 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4:

5

```

cccacaacac aggggcctg aaacacgcca gcctctcctc tgggtcagc ttggccagt 60
cctgctca ctggatcacagc ccattgttagg tggggcatgg tggggatcag ggccctggc 120
ccacggggag gtagaagaag acctggtccg tgtaagggtc tgagaagggtg ccctgggtcg 180
ggggtgcgtc ttggccttgc cgtgccctca tccccccgct gaggcagcga cacagcaggt 240
10 gcacccaactc cagcaggtta agcaccagg agatgagtcc aaccaccaac atgaagatga 300
tgaagatgg tttctccgtg gggcgagaga caaagcagtc cacgaggttag gggcagggtg 360
ctcgctggca cacaacacg ggctccatgg tccagccgt aaggcggccac tggccataga 420
ggaaggcctgc ctctagcaca ctcttgcaga gcacactggc gacataggtg cccatcagt 480
ctccgcggat gcgcaggcga ccatcttctg ccaccgagat cttggccatc tgacgctcta 540
cggccgcccag cgcccgtcc acctgtgggt cttggccgg cagtggccgc agctccccct 600
ccttctgccc cagccgtct tctcgccgag acaggtaaat gacatggccc aggttagacca 660
gggtgggtgt gctgacgaag aggaactgca gcacccagta gcggatgtgg gagatggga 720
aggcctggtc atagcagacg ttgggtcagc ctgctggc cgtgttacac tcgaaatctg 780
actgctcgtc accccacact gactcgccgg ccaggcccag gatgaggatg cggaagatga 840
20 agagcaccgt cagccagatc ttacccacca cggtcagtg ctcctggacc tggtccagca 900
acttctccac gaagccccag tcacccatgg ctccggggcc tccgtcggca aggagacaga 960
gcacgtcagt gtgtcagcat ggcatccctc tcgttcggcc agcaacaagc ctgcaggagg 1020
gtctgccacg cccgttctac cgcctgcctg ccggcggcc caggtggagg tggggacgat 1080
ggccggagtg acgcccgcg

```

25

(2) INFORMATION ÜBER SEQ ID NO: 5:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1015 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

5 (vii) SONSTIGE HERKUNFT:

- ~~(A) BIBLIOTHEK: cDNA library~~

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5:

10

gaggataggg agcctgggt caggagtgtg ggagacacag cgagactctg tctccaaaaaa 60
 aaaaagtgtctttgaaaat gttgagggttggaaatgtggg aaccaacatt ctttgaggatt 120
 agtggggagcataatagcaa acacccctt gttcgacatatgtacaggaa tgggaccagg 180
 ttggggcaca gccatggact tccccgcctt ggaatgtgtgtgcaaaagtggggccagg 240
 ccagacccaa gaggagaggg tggtccgcag acacccggg atgtcagcat ccccccggac 300
 gccttcggc ggcacccccc ggggtctgtt tgagtcagc aggcatgggg tgagagcctg 360
 gtatatgctggaaacagggt gcagggggca agcgttcctc cttcagccctt gacttgggcc 420
 atgcacccccc tctccccca acacaaacaa gcacttctcc agtatggtgc caggacaggt 480
 20 gtcccttcag tcctctggtt atgacactcaa gtcctacttg ggccctgcag cccagcctgt 540
 gttgtaacct ctgcgtcctc aagaccacac ctggaagatt cttcttcctt ttgaaggaga 600
 atcatcatttgc ttgctttatc acttctaaga cattttgtac ggcacggaca agttaaacag 660
 aatgtgcttc cttccctggg gtctcacacg ctcccacag aatgccacag gggccgtgca 720
 25 ctgggcaggcttctgttag aaccccagggg gttcgccccc agaccacagc gtcttgcctt 780
 gagcctagag cagggagttcc cgaacttctg cattcacaga ccacctccac aattgttata 840
 accaaaggcc tcctgttctg ttatttcaact taaatcaaca tgctattttgg ttttcaactca 900
 cttctgactt tagcctcgtt ctgagccgtt tatccatgca gtcatgttca cgtgcttagtt 960
 acgttttct tcttacacat gaaaataaat gcataagtgt tagaagaaaa aaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 6:

(i) SEQUENZ CHARAKTERISTIK:

- 35 (A) LÄNGE: 2313 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

40 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 6:

15

ccagagcagg	cctgggtgg	agcagggacg	gtgcaccgga	cggcggtatc	gagcaaatgg	60
gtctggccat	ggagcacgga	gggtcctacg	ctcgggcggg	gggcagctct	cggggctgct	120
20 ggtattacct	gcgctacttc	ttcccttctcg	tctccctcat	ccaattcctc	atcatcctgg	180
ggctcggtct	cttcatggtc	tatggcaacg	tgcacgttag	cacagagtcc	aacctgcagg	240
ccaccgagcg	ccgagccgag	ggcctataaca	gtcagctctt	agggctcact	gcctcccagt	300
ccaacttgac	caaggagctc	aacttcacca	cccgcgccaa	ggatgccatc	atgcagatgt	360
ggctgaatgc	tcgcccgcac	ctggaccgca	tcaatgccag	cttccgcccag	tgccagggtg	420
accgggtcat	ctacacgaaac	aatcagaggt	acatggctgc	catcatcttg	agtgagaagc	480
aatgcagaga	tcaattcaag	gacatgaaca	agagctgcga	tgccttgctc	ttcatgctga	540
25 atcagaaggt	gaagacgctg	gagggtggaga	tagccaagga	gaagaccatt	tgcactaagg	600
ataaggaaag	cgtgctgctg	aacaaacgcg	tggcggagga	acagctggtt	aatgcgtga	660
aaaccgggaa	gctgcagcac	caagagcgcc	actggccaag	gagcaactgc	aaaaggtgca	720
30 agccctctgc	ctggccctgg	acaaggacaa	gtttgagatg	gaccttcgta	acctgtggag	780
ggactccatt	atcccacgca	gcctggacaa	cctgggttac	aacctctacc	atcccctggg	840
ctcggattt	gcctccatcc	gcagagcctg	cgaccacatg	cccagccta	tgagctccaa	900
45 ggtggaggag	ctggccccga	gcctccgggc	ggatatcgaa	cgcgtggccc	gcgagaactc	960
agacctccaa	cgccagaagc	tgaaagccca	gcagggcctg	cgggcccagtc	aggaggcgaa	1020
acagaaggtg	gagaaggagg	ctcaggcccg	ggaggccaag	ctccaagctg	aatgctcccg	1080
35 gcagaccctag	ctagcgctgg	aggagaaggc	ggtgctgcgg	aaggaacgag	acaacctggc	1140
caaggagctg	gaagagaaga	agagggaggc	ggagcagctc	aggatggagc	tggccatcatcg	1200
aaactcagcc	ctggacacac	gcatcaagac	caagtcgcag	ccgatgatgc	cagtgtcaag	1260
gccccatgggc	cctgtccccca	accccccagcc	catcgaccac	gctagcctgg	aggagttcaa	1320
gaggaagatc	ctggagatccc	agaggcccccc	tgcaggcattc	cctgtagccc	catccagtgg	1380
40 ctgaggaggc	tccaggcctg	aggaccaagg	gatggcccg	ctcggcggtt	tgccggaggat	1440
gcagggatat	gctcacagcg	cccgacacaaa	ccccctcccg	ccgccccccaa	ccacccaggg	1500
ccaccatcag	acaactccct	gcatgcaaac	cccttagtacc	ctctcacacc	cgcaccccg	1560
cctcacgatc	cctcacccag	agcacacgc	cgcggagatg	acgtcacgc	agcaacgcgc	1620
ctgacgtcac	atatcaccgt	ggtgatggcg	tcacgtggcc	atgtagacgt	cacgaagaga	1680
45 tatagcgatg	gcgtcgatc	gatgcagcac	gtcgacacaca	gacatgggaa	acttggcatg	1740

acgtcacacc gagatgcagc aacgacgtca cggccatgt cgacgtaca catattaatg 1800
tcacacagac gcggcgatgg catcacacag acggtgatga tgtcacacac agacacagtg 1860
acaacacaca ccatgacaac gacacctata gatatggcac caacatcaca tgcacgcac 1920
5 cccttcaca cacacttct acccaattct caccctagtgt cacgttcccc cgaccctggc 1980
acacggggca aggtacccac aggatcccac cccctcccgac agacccctgg gccccagcac 2040
ctccctcct ccagcttcct gcctcccgac ccacttcctc acccccagtgcctggacc 2100
gaggtgagaa caggaagcca ttcacctccg ctccttgaggc gtgagtgtt ccaggacccc 2160
ctcgcccccc tgagccgggg gtgagggtca cctgttgtcg ggaggggagc cactccttct 2220
cccccaactc ccagccctgc ctgtggcccg ttgaaatgtt ggtggcactt aataaatatt 2280
10 agtaaatcct taaaaaaaaaaa aaaaaaaaaaaa aaa

(2) INFORMATION ÜBER SEQ ID NO: 7:

15 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 389 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

25 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 7:

5 gccaaaaaaga tggcttcaaa agtaagaatg aaacatttga tccattcagc tttaggctat 60
 gccactggat tcatgtctag aaaagatagg ataatttctg taaagaaaatg aagaccttgc 120
 tattctaaaa tcagatcctt acagatccag atttcaggaa acaaatacat aggggactaa 180
 ctttccttgt tcagattagt ttttctcctt tgcacccagc tatataatat gaggaagtat 240
 tgactttta aaagtgttt agtttccat ttcttgata tgaaaagtaa tatttcgga 300
 gaaccctgag ctattaataa tctatgtggc tagtgcgtat atattggct gaatttggc 360
 tcctttgtg gtgtccagtg ggtaacatc

10

(2) INFORMATION ÜBER SEQ ID NO: 8:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 157 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

20 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 8:

35

..

tgctttaaac agctgtgtca aaaactgaca tcagagagta aattgaattt ggtttttag 60
gaaggcaggaa gcaagccac tcaaacgtga aatttggcat gagggatcca gtaactttct 120
cctcaatctg tgaactatat gtgagtttga tattttg

5

(2) INFORMATION ÜBER SEQ ID NO: 9:

(i) SEQUENZ CHARAKTERISTIK:

- 10 (A) LÄNGE: 561 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

15 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

 (iii) HYPOTHETISCH: NEIN

20 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

25

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 9:

aatagtcaaa acataaaacaa aagctaatta actggcactg ttgtcacctg agactaagtg 60
gatgttgtg gctgacatac aggctcagcc agcagagaaa gaattctgaa ttccccttgc 120
35 tgaactgaac tattctgtta catatggtg acaaatctgt gtgttatttc ttttctacct 180

accatattta aatttatgag tatcaaccga ggacatagtc aaaccccgta tgatgaacat 240
 tcctgatttt ttgcctgatt aatctctgtt gagctctact tgtggtcatt caagatttt 300
 tgatgttcaa aggaaaagtg aatatgacct taaaaattt tattttgggt gatgatagtc 360
 5 tcaccactat aaaactgtca attattgcct aatgttaaag atatccatca ttgtgattaa 420
 ttaaacctat aatgagtatt ctaatggag aattcttaat ggatggatta tcccctgatc 480
 ttttctttaa aatttctctg cacacacagg acttctcatt ttccaataaa tgggtgtact 540
 ctgccccaat ttcttaggaaa a

10 (2) INFORMATION ÜBER SEQ ID NO: 10:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1508 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

30 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10:

35

cacaacacg agagactcca cggtctgcct gagcaccgcc agcctcctag gtcggcac 60

	tcgcagggtcc	attcttctgc	acgagcctct	ctgtccagat	ccataagcac	ggtcagctca	120
	gggtcgccga	gcagtagcag	gacaagtacc	agcagcagct	cctctgaaca	gagactgcta	180
	ggatcatcct	tctcctccgg	gcctgttgc	gatggcataaa	tccgggtgca	acccaaatct	240
5	gagctcaagc	caggtgagct	taagccactg	agaaggaaag	atttgggcct	gcacgcctac	300
	aggtgtgagg	actgtggcaa	gtgcaaatgt	aaggagtgc	cctacccaag	gcctctgcca	360
	tcagactgga	tctgcgacaa	gcagtgccct	tgctcgcccc	agaacgtgat	tgactatggg	420
	acttgttat	gctgtgtgaa	aggctcttc	tatcaactgtt	ctaatgatga	tgaggacaac	480
	tgtgctgaca	acccatgttc	ttgcagccag	tctcaactgtt	gtacacgtg	gtcagccatg	540
	ggtgtcatgt	ccctctttt	gccttgttta	tggtgttacc	ttccagccaa	gggttgcctt	600
10	<u>aaatttgtgcc</u>	<u>agggggttta</u>	<u>tgaccqqqtt</u>	<u>aacaqqqctq</u>	<u>gttggccqctq</u>	<u>taaaaactca</u>	660
	aacacagtt	gctgcaaagt	tcccactgtc	cccccttagga	acttggaaaa	accaacatag	720
	catcattaat	caggaatatt	acagtaatga	ggattttttc	tttctttttt	taatacacat	780
	atgcaaccaa	ctaaacagtt	ataatcttgg	cactgttaat	agaaaagttgg	gatagtctt	840
	gctgttgcg	gtgaaatgct	ttttgtccat	gtgccgtttt	aactgatatg	cttgttagaa	900
15	ctcagctaatt	ggagctcaaa	gtatgagata	cagaacttgg	tgaccatgt	attgcataag	960
	ctaaagcaac	acagacactc	ctaggcaaaag	ttttgttttgc	tgaatagttac	ttgcaaaaact	1020
	tgtaaattag	cagatgactt	tttccatttgc	ttttctccag	agagaatgtg	ctatattttt	1080
	gtatatacaa	taatatttgc	aactgtgaaa	aacaagtgg	gccatactac	atggcacaga	1140
	cacaaaatat	tatactaata	tgttgtacat	tcggaagaat	gtgaatcaat	cagtatgtt	1200
	ttagattgtt	ttttgcctta	cagaaaggcct	ttattgttaag	actctgattt	ccctttggac	1260
	ttcatgtata	ttgtacagtt	acagtaaaat	tcaaccttta	ttttctaattt	tttcaacat	1320
	attgtttagt	gtaaagaata	tttattttgaa	gttttatttt	tttataaaaaa	agaatattta	1380
	tttaaagagg	catcttacaa	attttgcccc	ttttatgagg	atgtgatagt	tgctgcaaatt	1440
25	gaggggttac	agatgcatat	gtccaatata	aaatagaaaa	tatattaacg	tttgaattta	1500
	aaaaaaaaaa						

(2) INFORMATION ÜBER SEQ ID NO: 11:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 389 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11:

10 gggcaggtga tcagggcaca catttcccgt ccattgagac agtagcattc ccggcaccca 60
tcgtgccagc tctcctcatt tttatgatga tgaccatcca cggtgagaca agtgccccac 120
aggatgggtg gcccagctga agcacaggcc gctctgcact tgcatataag acagccgtga 180
ctgtcctgct ggaaacccaa ggggcagatc ttactgcatg agagctctgg acatttctta 240
cagcgacaga tgtcacagcc gtgcttattc ttcatcaatc caagtggaca atacttgtca 300
cagattatgg gtctgcactt ctgggcctt gggcggact cacagatctc acagtttgg 360
acctcggccg cgaccacgct gggtaccga

(2) INFORMATION ÜBER SEQ ID NO: 12:

20

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 981 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(ii) MOLEKÜLTYPE: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

30

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

35

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12:

10 tttttttttt ttggattgca aaaatttatt aaaattggag acactgttt aatcttcttg 60
 tgccatgaga ctccatcagg cagtctacaa agaccactgg gaggctgagg atcacttgag 120
 cccagaagtt tgaggctgta gtaagcttca aaggccactg cactctagct tgggtgaggc 180
 aagaccctt caagcagtaa gctgcgtct tgcttgggt ggtcattaaa aacccttagtt 240
 taggataaca acatattaat cagggcaaaa tacaaatgtg tgatgcttg tagtagagta 300
 acctcagaat caaaaatggaa cggtttaca gtgatatcat tatatttcat ttggcagaat 360
 cattacatca ttggttcacac tgaaaatcat cacatgttacc aaaagctgac tcacctagtt 420
 taggataaca ggtctgcctg tttgaagatg aaaaataata cccatTTaaa atttgcctta 480
 ctcaatttcc ttctcagtca cattttact tttaaacagc taatcactcc catctacaga 540
 ttaaggtgta tatgccacca aaaccttttgc ccaccttaaa aatttccttc aaagtttaaa 600
 ctaatgcctg catttcctca atcatgaatt ctgagtcctt tgcttcttta aaacttgctc 660
 20 cacacagtgt agtcaagccg actctccata cccaaagcaag tcatccatgg ataaaaaacgt 720
 taccaggagc agaaccatta agctggtcca ggcaagttgg actccaccat ttcaacttcc 780
 agctttctgt ctaatgcctg tggccatg gcttgagttt ggcttgctct ttaggacttc 840
 agtagctatt ctcatccttc cttggggaca caactgtcca taaggtgcta tccagagcca 900
 25 cactgcacatc gcacccagca ccatacctca caggagtcga ctcccacgag ccgcctgtat 960
 ataagagttc ttttgatgac g

(2) INFORMATION ÜBER SEQ ID NO: 13:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 401 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 5 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

10

 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 13:

15 ataactacag cttcagcaga caactaaaga gactgcatta aggtgatttc tctggctata 60
 aagagagccc ggccgcagag catgtgactg ctgggacctc tggataggc aacactgcc 120
 tctctcccc agagcgaccc cccgggcagg tcggggccca aggaatgacc cagcaactgc 180
 tcccttaccca gcacactctc tttactgcca cctgcaatta tgctgtgaag atgactgggt 240
 gtggcatca cgattcagag aaatcaagat ctatgaccat tttaggcaaa gagagaaact 300
 tggagaattt ctgaggacta ctgaaccttg ttttgctttt ttaaaaaata ctaaatcctc 360
 20 acttcagcat atttagttgt cattaaaatt aagctgatat t

 (2) INFORMATION ÜBER SEQ ID NO: 14:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1002 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

30

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

35

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

5 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

10

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14:

15 gacaatataa aaagtggaaa caagcataaa ttgcagacat aaaataatct tctggtagaa 60
 acagttgtgg agaacagggtt gagtagagca acaacaacaa aagcttatgc agtcaccc 120
 tttgaaaatg ttaaatacaa gtcctattct ctttgtccag ctgggtttag ctagaggttag 180
 ccaattactt ctcttaaggt ccatggcatt cgccaggatt ctataaaagc caagtttaact 240
 gaagtaaata tctggggccc atgcaccccc cactaagtac tttgtcacca tggtgtatct 300
 taaaagtcat ttttcactgt ttgactcaga atttgggact tcagagtcaa acttcattgc 360
 20 ttactccaaa cccagttaa ttccccactt ttttaagtag gcttagctt gagtgatttt 420
 tggctataac cgaaatgtaa atccaccc 480
 tactgaaaac aatggtgcca tatgctccaa agacatttcc ccaagataac tgccaaagag 540
 ttttgagga ggacaatgt catttattt gttaggagcct tgatatctct gaaaaataga 600
 attaatacag ctcaaatgga gtagtaacca agctttctg cccaggaagt aacaaacatc 660
 25 actacgaaca tgagagtaca agaggaaact ttcataatgc attttttcat tcatacattc 720
 attcaataaa cattagccaa gctaattgtcc caagccactg tgccaggtat taacaatata 780
 acaacaataa aagacacagt ccttcctctc aagggtttca gtcttagttagg gaagatgatt 840
 attcattaaa atttttggtg catcagaatc atgaggagct tgtcaaaaat gtaaatttcct 900
 gcctatgttc tcagatattc tggtaggtc aggagtggga accccaaaatc aattcttta 960
 acaaacacta aaggtgattc taacacaggc ggtgtgagga cc

(2) INFORMATION ÜBER SEQ ID NO: 15:

35 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 280 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 15:

20

```
cgaggtgggc caccctgtc tggcttgaga tttttaatg aggattacat tatcctattt 60
ataatattcc tattctaattc tattgtattc ttacaattaa atgtatcaaa taattcttaa 120
aaacattatt agaaacaaac tgccataatac cttataagac taaaaaaaaatc accaagatga 180
aactgtatta tgactctcaa tatttaaaca tttaaaaaaaaa tgtagtgtt tgtaagcac 240
caatcttaac tatttcaccc gccccggcg  ccgctcgagg
```


(2) INFORMATION ÜBER SEQ ID NO: 16:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 2041 Basenpaare

30

(B) TYP: Nukleinsäure

(C) STRANG: einzeln

(D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16:

	ccccccgcag aactcccccc tggaatagga ttttaaaac cttgacaat tagaaatcct 60
	atagggtta gcattttta gtaaaaaata tggtgcccc tacagggatc atgcaacttc 120
	cttaaaaacca attcagcaca tatgtataaa gaacccttt taaaacatt tgtacttgaa 180
20	atacagacac agtgatgctg aagacactaa acaaaaactg aaaagtacta taccttgata 240
	aattttgtta ttgccttctt tagagacttt ataatctcta gttgatttc aaggacttga 300
	atthaataat gggtaatta cacaagacgt aaaggatttt taaaaacaa gtatTTTTT 360
	ttacctctag catcaattct tttataaaaga atgctaaata aattacattt ttgttcagt 420
	aaaactgaag atagaccatt taaatgcttc taccaaattt aacgcagctt aatttagggac 480
25	caggtacata ttttcttctg aacatttttgc gtcaagcatg tctaaccata aaagcaaatg 540
	gaattttaag aggtagattt ttttccatg atgcattttg ttaataatg tgtcaagaaa 600
	ataaaaaacaa gcactgagtg tggctcttg aagtataagg gtctaatacgaa aaataaaaga 660
	tagatatttg ttatagctg acattttaac agtcatagta ttagacgtt cgtgaccagt 720
	gcattttgga ctctctcagg atccaaatac gagtctgcc actgtattaa atccctcctcc 780
30	accccctcca ccagttggc cacagcttc tgggggtcg ttgtcatcaa atccattggg 840
	ccgaaatgaa catgaaggcag atgcagctg gagggcccg gctcgagcat tcaactcttg 900
	tccctgtaaa tatagtttat tgcctttgt tatagcatcc ataagttctt tctgttagagg 960
	tgggtctcca ttatccaga gtccacttgt tggtttatta ccacttaac cattagtaact 1020
	atgctgtttt ttataaaaaa gcacataaagc tggctcctt ggaaacctgc tcgtaatttt 1080
35	ctggactgac tgaaatgaag taaatgtcac tctactgtca taaaataaaa accccatttt 1140
	ttgacatttc cttatTTCC aaatcctgtt caaaaactgc actgggacta tctctcccta 1200
	gtaaatgact ctgggaggat gctaatacgca gagcctcaga ctgggtgtac atctgatatg 1260
	aagagtctgt acttgtgata ttctggcat aagaatagta atgcccactt tcagaggata 1320
	taccagagtg aaccacaacg gaacttaata gatagggcac caattttgtg caggaagctt 1380
40	catcagtccc tgaaggctt aatTTTTAG caaggttctc actaagatca gtgaagtcaa 1440
	catctacaga ccaactttct gacaatgaag agaaagaagt aattcttcta actggcaact 1500
	ccaaaaccag tggccagtga tacattgtct aaaatttcc ttctcacatg atacttctga 1560
	tcatatgaaa atctcaggag agtaagaata aggtattcag gttccctccgt gatttgata 1620
	gttttctcag cattttgcag agaggcacag ttttcacaat aatattggtt atcaccagta 1680
45	agaatctctg gagccaaaaa aataatttag taagttagtt actgaaggtg tggttcacc 1740

tcccggttgc tgaggtacat ctttattaaac aagaatcttg ttagattcgt tagggacaga 1800
 agtgtttca gaacagtaaa actcattagg aggactgcct atggttttt cattcacaag 1860
 tgagtacacag atgaaggcag ctgttgggg attataaact actggctctt ctgaaggacc 1920
 gggcacacac gcttgcatta gaccaccatc ttgtatactg ggtgatgtatg ctggatctt 1980
 5 gacagacatg ttttccaaag aagaggaagc aaaaaacgca agcgaaaatg ctgtaaaggc 2040
 t

(2) INFORMATION ÜBER SEQ ID NO: 17:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 235 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 17:

35 cgccccgggc aggtgtcagg ggttccaaac cagcctgggg aaacacagcg tagacccttc 60
 acctctacaa ataaaaaatt aaaaaattag ccaggtgtgg cagcgaacaa ctgttagtctc 120

agatactcgagactgagc tggaaaggat cacttgagcc caagaagtgc aaggttacag 180
tggccacga tcgttcatt acactccagc ttgggtgaca aaatgagact gtcta

5 (2) INFORMATION ÜBER SEQ ID NO: 18:

(i) SEQUENZ-CHARAKTERISTIK:

- (A) LÄNGE: 2732 Basenpaare
- (B) TYP: Nukleinsäure
- 10 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

15 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

20 (iii) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

25 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18:

gtgtggagtt tcagctgcta ttgactataa gagctatggaa acagaaaaag ctggctggct 60
tcgttgtat aactactta tatggagctt catggacct gttaccttca ttattctgct 120
aaatattatc ttcttggta tcacattgtg caaaatggtg aagcattcaa acacttgaa 180
accagattct agcaggttgg aaaacattaa gtcttgggtg cttggcgctt tcgctttct 240
35 gtgtcttctt ggcctcacct ggtcctttgg gttgctttt attaatgagg agactattgt 300
gatggcatat ctttcacta tatttaatgc tttccaggga gtgttcattt tcattttca 360

	ctgtgctctc	caaaagaaaag	tacgaaaaga	atatggcaag	tgcttcagac	actcatactg	420
	ctgtggaggc	ctcccaactg	agagtcccc	cagttcagt	aaggcatcaa	ccaccagaac	480
	cagtgcgc	tattcctctg	gcacacagag	tcgtataaga	agaatgtgga	atgataactgt	540
	gagaaaacaa	tcagaatctt	cttttatctc	aggtgacatc	aatagcactt	caacacttaa	600
5	tcaagggtggc	ataaatctt	atataatttt	acaggactga	catcacatgg	tctgagagcc	660
	catcttcaag	atttatatca	tttagaggac	attcactgaa	caatgccagg	gataacaagtg	720
	ccatggatac	tctaccgcta	aatggtaatt	ttaacaacag	ctactcgctg	cacaagggtg	780
	actataatga	cagcgtgcaa	gttggact	gtggactaag	tctgaatgtat	actgcttttg	840
	agaaaaatgt	catttcagaa	ttagtgcaca	acaacttacg	gggcagcagc	aagactcaca	900
10	acctcgagct	cacgctacca	gtcaaaccctg	tgattggagg	tagcagcagt	gaagatgatg	960
	ctattgtggc	agatgcttca	tctttatgc	acagcgacaa	cccagggtcg	gagctccatc	1020
	acaaaagaact	cgaggcacca	cttattcctc	agcggactca	ctcccttctg	taccaacccc	1080
	agaagaaaagt	gaagtccgag	ggaactgaca	gctatgtctc	ccaactgaca	gcagaggctg	1140
	aagatcacct	acagtcccc	aacagagact	ctctttatac	aagcatgccc	aatcttagag	1200
15	actctcccta	tccggagagc	agccctgaca	tggaagaaga	cctctctccc	tccaggagga	1260
	gtgagaatga	ggacatttac	tataaaagca	tgccaaatct	tggagctggc	catcagcttc	1320
	agatgtgcta	ccagatcagc	aggggcaata	gtgatggta	tataatcccc	attaacaaag	1380
	aagggtgtat	tccagaagga	gatgttagag	aaggacaaat	gcagctggtt	acaagtctt	1440
	aatcatacag	ctaaggatt	ccaaggggca	catgcgagta	ttaataaata	aagacaccat	1500
	tggcctgacg	cagctccctc	aaactctgct	tgaagagatg	actcttgacc	tgtggttctc	1560
	tgggtgtaaaa	aagatgactg	aaccttgcag	ttctgtgaat	ttttataaaa	catacaaaaa	1620
	ctttgtatat	acacagagta	tactaaagt	aattatttgt	tacaaagaaa	agagatgcca	1680
	gccaggatt	ttaagattct	gctgctgtt	agagaaattg	tgaaacaagc	aaaacaaaac	1740
	tttccagcca	ttttactgca	gcagtctgt	aactaaattt	gtaaatatgg	ctgcaccatt	1800
25	tttgtaggcc	tgcattgtat	tatataacaag	acgtaggctt	taaaatcctg	tgggacaat	1860
	ttactgtacc	ttactattcc	tgacaagact	tggaaaagca	ggagagatat	tctgcattcag	1920
	tttgagttc	actgcaaattc	ttttacatta	aggcaaagat	tgaaaacatg	cttaaccact	1980
	agcaatcaag	ccacaggcct	tatttcatat	gtttcctcaa	ctgtacaatg	aactattctc	2040
	atgaaaaatg	gctaaagaaa	ttatattttg	ttctattgtct	agggtaaaat	aaatacattt	2100
30	gtgtccaaact	gaaatataat	tgtcattaaa	ataattttaa	agagtgaaga	aaatattgtg	2160
	aaaagctctt	ggttgcacat	gttatgaaat	gtttttctt	acactttgtc	atggtaagtt	2220
	ctactcattt	tcacttctt	tccactgtat	acagtgttct	gctttgacaa	agtttagtctt	2280
	tattacttac	atttaaattt	cttattgcca	aaagaacgtg	ttttatgggg	agaaacaaaac	2340
	tcttgaagc	cagttatgtc	atgccttgca	caaaagtgtat	gaaatctaga	aaagattgtg	2400
35	tgtcaccctt	gtttattctt	gaacagaggg	caaagagggc	actgggcact	tctcacaac	2460
	tttctagtga	acaaaaggtg	cctattctt	tttaaaaaaaaa	taaaataaaa	cataaaatatt	2520
	actcttccat	attccttctg	cctatattta	gtaattaatt	tatttatgtat	taaagttcta	2580
	atgaaatgtat	aattgtttca	gcaaaaattct	gctttttttt	catccctttg	tgtaaacacgt	2640
	ttaataatgtat	gcccatcact	aatatccagt	gtaaagtttta	acacggtttg	acagtaaataa	2700
	aatgtgaattt	ttttcaagtt	aaaaaaaaaaa	aa			

(2) INFORMATION ÜBER SEQ ID NO: 19:

45 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 276 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19:

20 ctccctaaat gattttaaaa taaaattggat aaacatatga tataaagtgg gtactttaga 60
aaccgccttt gcatattttt tatgtacaaa tctttgtata caattccgat gttccttata 120
tattccctat atagcaaacc aaaaccagga cctcccaact gcatgcctca agtccctgtg 180
gagcactctg gcaactggat ggccctactt gctttctgac aaaatagctg gaaaggagga 240
gggaccaatt aaatacctcg gccgcgacca cgctgg

(2) INFORMATION ÜBER SEQ ID NO: 20:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 2361 Basenpaare

30 (B) TYP: Nukleinsäure

(C) STRANG: einzeln

(D) TOPOLOGIE: linear

35 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 20:

15

20	attgtaccag ccttgatgaa cgtggccct gcttcgcctt tgagggccat aagctcattg 60 cccactggtt tagaggctac ctatcattg tctccgtga ccggaagggt tctcccaagt 120 cagagttac cagcaggat tcacagagct ccgacaagca gattctaaac atctatgacc 180 tgtgcaacaa gttcatagcc tatagcacccg tcttgagga tgttagtggat gtgcttgctg 240 agtggggctc cctgtacgtg ctgacgcggg atggcggtt ccacgcactg caggagaagg 300 acacacagac caaactggag atgctgtta agaagaacct atttgagatg gcgattaacc 360 ttgccaagag ccagcatctg gacagtgtg ggctggcca gatttcatg cagtatggag 420 accatctcta cagcaagggc aaccacgtg gggctgtcca gcaatatatc cgaaccattg 480 gaaagttgga gccatctac gtgatccgca agtttctgga tgcccagcgc attcacaacc 540 tgactgccta cctgcagacc ctgcaccgac aatccctggc caatgccgac cataccaccc 600 tgctcctcaa ctgctatacc aagctcaagg acagctcgaa gctggaggag ttcatcaaga 660 aaaagagtga gagtgaagtc cactttgtat tggagacagc catcaaggc tcctcggcagg 720 ctggctacta ctcccattgcc ctgttatctgg cggagaacca tgcacatcat gagtggtacc 780 30 tgaagatcca gctagaagac attaagaatt atcaggaagc cttcgatac atcggcaagc 840 tgcctttga gcagggcagag agcaacatga agcgctacgg caagatcctc atgcaccaca 900 taccagagca gacaactcag ttgctgaagg gactttgtac tgattatcgg cccagcctcg 960 aaggccgcag cgatagggag gccccaggct gcagggccaa ctctgaggag ttcatcccc 1020 tctttgccaa taacccgcga gagctgaaag ctttcctaga gcacatgagt gaagtgcagc 1080 35 cagactcacc ccaggggatc tacgacacac tccttgagct gcgactgcag aactgggccc 1140 acgagaagga tccacaggta aaagagaagc ttcaacgcaga ggccatttcc ctgctgaaga 1200 gtggtcgctt ctgcacgtc tttgacaagg ccctggctt gtgcagatg cacgacttcc 1260 aggatggtgt ctttacctt tatgagcagg ggaagctgtt ccagcagatc atgcactacc 1320 40 acatgcagca cgagcagtac cggcaggta tcagcgtgtg tgagcgcatt ggggagcagg 1380 acccttcctt gtgggagcag gccctcagct acttcgcctcg caaggaggag gactgcaagg 1440 agtatgtggc agctgtcctc aagcatatcg agaacaagaa cctcatgcctt cctcttctag 1500 tggtgcagac cctggccac aactccacag ccacactctc cgtcatcagg gactacctgg 1560 tccaaaaact acagaaacag agccagcaga ttgcacagga tgagctgcgg gtgcggcgg 1620 accgagagga gaccacccgt atccgcagg agatccaaga gctcaaggcc agtcctaaga 1680 45 ttttccaaaa gaccaagtgc agcatctgtt acagtgcctt ggagtgcgg tcagtccact 1740
----	--

tcctgtgtgg ccactccttc caccaacact gcttgagag ttactcgaa agtcatgctg 1800
 actgccccac ctgcctccct gaaaaccgga aggtcatgga tatgatccgg gcccaggaaac 1860
 agaaaacgaga tctccatgt caattccagc atcagctcaa gtgctccaat gacagcttt 1920
 5 ctgtgattgc tgactacttt ggcagaggtt tttcaacaa attgactctg ctgaccgacc 1980
 ctcccacagc cagactgacc tccagcctgg aggctggct gcaacgcgac ctactcatgc 2040
 actccaggag gggcacttaa gcagcctgga ggaagatgtg ggcaacagtg gaggaccaag 2100
 agaacagaca caatgggacc tgggcggggcg ttacacagaa ggctggctga catgcccagg 2160
 gctccactct catctaatgt cacagccctc acaagactaa agcggaaactt tttctttcc 2220
 ctggccttcc ttaatttaa gtcaagctt gcaatccctt cctcttaac taggcaggtt 2280
 10 ttagaatcat ttccagatta atggggggga agggaaacct caggcaaaacc tcctqaagtt 2340
 ttggaaaaaa aagctggttt c

(2) INFORMATION ÜBER SEQ ID NO: 21:

15

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 179 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 20 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 30 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21:

5 aggtgttaga tgctcttcaa aaagaaaactg catctaagct gtcagaaatg gattctttta 60
acaatcaact aaaggaactg agagaaaacct acaacacaca gcagtttagcc cttgaacagc 120
tttataagat caacgtgaca agttgaagga aattgaaagg aaaaaattag aactaatgc

(2) INFORMATION ÜBER SEQ ID NO: 22:

10 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 905 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

15

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

25

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22:

tttttttttt ttctttaacc gtgtggtctt tatttcagtg ccagtgttac agataacaaca 60

caaatgttcc agttagaagg aattcaaacg gaatgccaag gtccaaagcca ggctcaagaa 120
 ataaaaaggg aggtttggag taatagataa gatgactcca atactcactc ttcctaaggg 180
 caaaggtact tttgatacag agtctgatct ttgaaaactgg tgaactcctc ttccacccat 240
 taccatagtt caaacaggca agttatggc tttaggagcac tttaaaattt gtggtgggaa 300
 5 tagggtcatt aataactatg aatatatctt tttagaaggtg accatTTgc actttaaagg 360
 gaatcaattt tgaaaatcat ggagactatt catgactaca gctaaagaat ggcgagaaag 420
 gggagctgga agagccttgg aagtttctat tacaataga gcaccatata cttcatgcca 480
 aatctcaaca aaagctctt ttaactccat ctgtccagtg tttacaata aactcgcaag 540
 gtctgaccag ttcttggtaa caaacataca tgtgtgtgtc tgtgtgtata cagcaatgca 600
 10 ~~cagaaaaggc taccaggagc ctaatgcctc ttccaaacat tgggggaacc agtagaaaaaa~~ 660
 ggcagggctc cctaattgtcc attattacat ttccattccg aatgccagat gttaaaagtg 720
 cctgaagatg gtaaccacgc tagtgaggaa taaatacccc accttgccca gtccacacag 780
 aaacaacagt agaaaagaagg ggcaactctt tgctgcagag acaaagtgag tgtttttcg 840
 ccatggattt cagtcctctc ctccagacca gctgcttatt tcctcagggg cccagggaaat 900
 15 gttga

(2) INFORMATION ÜBER SEQ ID NO: 23:

20 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 213 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

25

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

30 (iii) HYPOTHETISCH: NEIN

30

(iii) ANTI-SENSE: NEIN

35 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 23:

5	ggctctttctt	tccctttttt	ttttccaaa	agtgttcttt	tatttcttagt	aacatataattt	60
	gtataaaatac	tctattttat	atgcacttcc	acaaaagcga	tataatttaa	aagttttttt	120
	cattagaaat	aaatgtataa	aaataaaatat	gttattatag	gcatttatta	ctaactataag	180
	tccttcttgg	aaggAACACC	caaaccAATA	cttataaagt	acatgtattt	tatAGTAACA	240
10	tatTTTACTA	tatacatATG	gaaaaAAATCA	tattctcaca	gaagAGCTGA	ACAGACATTc	300
	accaggatac	gactgttggA	ccagctgctg	gagatggacc	tgctaccCCT	cagcAGCCTC	360
	cccaccacAA	gacaAGTgat	ctcaatgtCC	ccaaacCtGT	gggaccCtGT	tctacacACC	420
	tcatttttgt	tccggcgTTT	catcctcCtt	gtgtgattgt	actgattttc	atgAGACACA	480
15	agttacttct	ttacatCCAT	attccAAAG	cagggttaca	tggtaggAAA	gaaAGGAAGT	540
	tggaggtact	aagctcATTG	tgtctcCTCT	agcttttacc	agcatctaAt	gcttcactGC	600
	ttttttcca	ttgtagactt	taatgcactt	gaataaatac	atggagttgt	ttttcctca	660
	aaatgaatta	cacAAATAAA	gactgagatG	gtccaaaaAA	gaaaAGAGGA	agccatttgc	720
	gttatttcac	gttgctgAGC	ctttctctca	tgttgaacAA	tctgaagttt	taattctcgg	780
	tagAAATAAT	gtataaacat	tctctgAAAC	catagcAGCC	ataaacAGTg	ctgtcaaAG	840
20	atccttatttG	tactccttTC	tccccccatt	gttagtgagg	taaaAGTAaaa	caggtcttag	900
	taaaatctca	cttttctcct	acttttcatt	tcccaaaaaC	catgatacta	agtatttgat	960
	aagtaccagg	aaacAGGGGT	tgtaatAGTT	ctaactttt	ttgacaatttG	cttGTTTTT	1020
	tctaaacttG	taatAGATGT	aacAAAGAA	ataataataa	taatGCCCGG	ggctttattA	1080
	tgctatATCA	ctgctcAGAG	gttaataatC	ctcaactaact	atccttatCAA	atttgcaact	1140
	ggcagtttac	tctgatgatt	caactcCttt	tctatctacc	cccatataatCC	cacCttactG	1200
25	atacacctca	ctggttactG	gcaAGATAcG	ctggatccct	ccagcCtttCt	tgctttccct	1260
	gcaccagccc	ttcctcactt	tgccttGCC	tcaaagctaa	caccacttAA	accacttaAC	1320
	tgcattctGc	cattgtgcaa	aagtctatGA	aatgtttagg	tttctttaaa	ggatCACAGC	1380
	tctcatgaga	taacACCCCT	ccatcatGGG	acagacactt	caagcttCtt	ttttgtAAC	1440
30	ccttcccaca	ggtcttagaa	catgatgacc	actccccCAG	ctgccactGG	gggcaggGAT	1500
	ggtctgcaca	aggctctggG	ctggctggct	tcacttCtt	tgcacactCG	gaagcaggct	1560
	gtccatttaat	gtctcgGCat	tctaccAGTC	ttctctGCCA	acccaaTTCA	catgacttag	1620
	aacattcGCC	ccactcttca	atgACCCatG	ctgaaaaAGT	ggggatAGCA	ttgaaAGATT	1680
	ccttcttCtt	ctttacgaaG	taggtgtatt	taattttagg	tgcAAGGGCA	ttgcccACAG	1740
35	taagaacctG	gatggtcaAG	ggcttTTGA	gagggctaaa	gctgcgaatt	cttccaAtG	1800
	ccgcagAGGA	gccgctgtac	ctcaagacAA	caccttTGta	cataatgttC	tgctctAAAG	1860
	tggacAAAGT	gtagtccacCA	ttaAGAAATAT	atgtgcCATC	agcagCTTtG	atggcaAGAA	1920
	agctGCCATT	gttcctggat	ccccctCTGgt	tccgctgttt	cacttcgatG	ttggTggCTC	1980
	cagttggAAAT	tgtgtatgata	tcatgatATC	caggTTTGC	actagtaact	gatccTgata	2040
40	tttttttaca	agttagatCCA	tttccccCGC	aaacaccACa	tttatcaaAC	ttctttttgg	2100
	agtctatGAT	gcgatcacAA	ccagtttta	caca			

(2) INFORMATION ÜBER SEQ ID NO: 24:

45 (i) SEQUENZ CHARAKTERISTIK

- (A) LÄNGE: 1626 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STRANG: einzeln

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

5

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

10 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

15 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

20 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 24:

25

ggacaatttc tagaatctat agtagtatca ggatatattt tgctttaaaa tatattttgg 60
ttattttgaa tacagacatt ggctccaaat tttcatctt gcacaatagt atgactttc 120
actagaacctt ctcaacattt gggactttg caaatatgag catcatatgt gttaaggctg 180
tatcatttaa tgctatgaga tacattgtt tctccatgt ccaaacaggt gaacaaacgt 240
agttgtttt tactgatact aaatgttggc tacctgtat tttatagtt gcacatgtca 300
gaaaaaggca agacaaatgg cctcttgac tgaatacttc ggcaactta ttgggtcttc 360
atttctgac agacaggatt tgactcaata ttttagagc ttgcgttagaa tggattacat 420
ggtagtgatg cactggtaga aatggttttt agttattgac tcagaattca tctcaggatg 480
aatctttat gtcttttat tctaagcata tctgaattta ctttataaag atggtttttag 540
25 aaagctttgt ctaaaaattt ggccttagaa tggtaacttc atttcagtt gccaagggg 600
agaaaaataa tatgtgtgtt gttatgttt tggtaacata ttatttagta ctatctatga 660
atgtatttaa atattttca tattctgtga caagcattt taatttgc当地 caagtggagt 720
ccatttagcc cagtggaaa gtcttggAAC tcaggttacc cttgaaggat atgctggcag 780
ccatctctt gatctgtgct taaactgtaa tttatagacc agctaaatcc ctaacttgaa 840
30 tctggaatgc attagttatg cttgttacca ttcccagaat ttcagggca tcgtgggtt 900
ggtctagtga ttgaaaacac aagaacagag agatccagct gaaaaagagt gatcctcaat 960
atcctaacta actggtcctc aactcaagca gagtttctt actctggcac tgtgatcatg 1020
aaacttagta gaggggattt tggatattt atacaaattt aatacaatgt cttacatgt 1080
taaaattctt aaagagcaaa actgcatttt atttctgtat ccacattcca atcatattag 1140
40 aactaagata ttatctatg aagatataaa tggatcgatg agactttcat ctgtggattt 1200
cgttgtttct tagggttcct agcaactgtat cctgcacaag catgtatgtat gtgaaataaa 1260
atggattctt ctatagctaa atgagttccc tctggggaga gttctggatc tgcaatcaca 1320

atgccagatg gtgttatgg gctattgtg taagtaagtg gtaagatgct atgaagtaag 1380
 tggtttgg ttcatcttat gaaaactctt gatgcatttg cttttgtatg gaataaattt 1440
 tggtcaata tgatgtcatt caacttgca ttgaattgaa ttttgggtgt atttatatgt 1500
 attatacctg tcacgcttct agttgcttca accatttat aaccatttt gtacatattt 1560
 tactgaaaa tattttaaat gaaaatttaa ataaacattt gatagttac ataataaaaa 1620
 aaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 25:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1420 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 25:

35 gttcagcatt gtttctgctt ctgaaatctg tatagtacac tggtttgtaa tcattatgtc 60
 ttcatggaaa tccttgctac ttctttcct cctcaatgaa agacacgaga gacaagagcg 120

acacaagctt aagaaaaaacg agcaaggaag agtatcttca ttatttctcat tttctctgag 180
 ttggaaacaa aaacatgaag gactccaact agaagacaga tatttacatt taaatagatt 240
 agtggaaaaa cttaaagagt ttccacatat tagtttcat ttttgagtc aagagactgc 300
 tccttgtact gggagacact agtagtatat gttttaatg ttactttaaa attatcttt 360
 5 tattttataa ggcccataaa tactggttaa actctgttaa aagtgggcct tctatctgg 420
 atggttcac tgccatcagc catgctgata tatttagaaat ggcatcccta tctacttact 480
 ttaatgctta aaattataca taaaatgctt tatttagaaa acctacatga tacagtggtg 540
 tcagccttgc catgtatcag tttcaacttga aatttgagac caattaaatt tcaactgttt 600
 10 agggtggaga aagaggtaact gaaaaacatg cagatgagga tatctttat gtgcaacagt 660
 atcccttgca ~~tgggaggaga~~ ~~gttactctg~~ ~~aaaggeagge~~ ~~agettaagtg~~ ~~gaeaatgtt~~ 720
 tgtatatagt tgagaatttt acgacacttt taaaaattgt gtaattgtta aatgtccagt 780
 tttgctctgt tttgcctgaa gtttttagtat ttgttttcta ggtggacctc taaaaaccua 840
 accagtacct gggggaggtta gatgtgtgtt tcaggcctgg agtgtatgag tggtttgct 900
 tgtatttcc tccagagatt ttgaacttta ataattgcgt gtgtgtttt ttttttttaa 960
 15 gtggctttgt tttttttctt caagtaaaat tggtaacata tttccctttat aggggcaggg 1020
 catgagttag ggagactgaa gaggatttta gactgtacat gtgccttctt aatgtgttc 1080
 tcgacacatt ttttttcagt aacttgaaaa ttcaaaaggg acatttggtt aggttactgt 1140
 acatcaatct atgcataaaat ggcagcttg tttcttgagc cactgtctaa atttgtttt 1200
 tataaaaaatt ttttataactg attggttcat agatggtcag ttttgacac agactgaaca 1260
 atacagcact ttgccaaaaaa tgagtgttagc attgtttaaa cattgtgtgt taacacctgt 1320
 tcttgtaat tgggttgtgg tgcattttgc actacctgga gttacagtt tcaatctgtc 1380
 agtaaataaa gtgccttta acttcaaaaa aaaaaaaaaaa

25 (2) INFORMATION ÜBER SEQ ID NO: 26:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 689 Basenpaare

(B) TYP: Nukleinsäure

30 (C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

35

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

40 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

~~(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 26:~~

aaacaaaaca aaaaaaaagtt agtactgtat atgtaaatac tagctttca atgtgctata 60
 10 caaacaatta tagcacatcc ttcctttac tctgtctcac ctcctttagg tgagtacttc 120
 cttaaaataag tgctaaaacat acatataacgg aacctgaaag ctttggttag cttgcctta 180
 ggtaatcagc ctagttaca ctgtttccag ggagttagtt aattactata aaccattagc 240
 cacttgtctc tgccccattt atcacaccag gacagggtct ctcacacctgg gcgctactgt 300
 catttgggc caggtgattc ttccttgcaa gggctgtcct gtacctgccc gggcgccccgc 360
 tcgaagcgtg gtcgcggccg aggtactgaa aggaccaagg agctctggct gccctcagga 420
 attccaaatg accgaaggaa caaagctta gggctctggg tgggtctcc cactattcag 480
 gaggtggctg gaggttaacgc agcttcattt cgtccagtc tttccagtt taaaagttgt 540
 tgtcaagatg ctgcattaaa tcaggcaggt ctacaaaggc atcccaagca tcaaacatgt 600
 20 ctgtgatgaa gtaatcaatg aaacaccgga acctccgacc acctcctgaa tagtgggaga 660
 cacacccaga gcctgaagtt tgcccttcg

(2) INFORMATION ÜBER SEQ ID NO: 27:

25 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 471 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

30

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

35 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

5

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27:

10

```
tcccagcggc atgaagtttg agattggcca ggcctgtac ctgggcttca ttccttcgt 60
ccctctcgct cattggggc accctgttt gcctgtcctg ccaggacgag gcaccctaca 120
agccctaacc caggccccgc ccagggccac cacgaccact gcaaacacccg cacctgccta 180
ccagccacca gctgcctaca aagacaatcg ggccccctca gtgacctcg ccaccacagc 240
15 gggtacaggc tgaacgacta cgtgtgagtc cccacagcct gcttctcccc tgggctgctg 300
tgggctggtt cccggccggga ctgtcaatgg aggcaagggt tccagcacaa agtttacttc 360
tgggcaattt ttgtatccaa gaaaataatg tgaatgcgag gaaatgtctt tagagcacag 420
ggacagaggg gaaaataaga ggaggagaaa gctctctata ccaaagactg a
```

20

(2) INFORMATION ÜBER SEQ ID NO: 28:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 929 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

30

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

35

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

5 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 28:

10

15

20

25

ggtaactca	gtgcattggg	ccaatggttc	gacacaggct	ctgccagcca	caaccatcct	60
gctgcttctg	acgggttggc	tgtgggtggg	ctttcccctc	actgtcattg	gaggcatctt	120
tggaaagaac	aacgccagcc	ccttgatgc	accctgtcgc	accaagaaca	tcgccccgga	180
gattccaccc	cagcccttgt	acaagtctac	tgtcatccac	atgactgtt	gaggcttctt	240
gcctttcagt	gccatctctg	tggagctgta	ctacatctt	gccacagtat	ggggtcggga	300
gcagtagacact	ttgtacggca	tccttttctt	tgtttcgcc	atcctgctga	gtgtggggc	360
ttgcattctcc	attgcactca	cctacttcca	gttgtctggg	gaggattacc	gctgggtgt	420
gcgatctgt	ctgagtggt	gctccaccgg	cctttcatac	ttcctctact	cagtttcta	480
ttatgcccgg	cgctccaaca	tgtctggggc	agtacagaca	gtagagttct	tcggctactc	540
cttactca	ggttatgtct	tcttcctcat	gctgggcacc	atctcccttt	tttctccct	600
aaagttcata	cggtatatact	atgttaacct	caagatggac	tgagttctgt	atggcagaac	660
tattgctgtt	ctctcccttt	cttcatgcc	tgttgaactc	tcctaccagc	ttctcttctg	720
attgactgaa	ttgtgtgtat	gcattgttgc	cttccctttt	tccctttggg	cattccttcc	780
ccagagaggg	cctggaaatt	ataaaatctct	atcacataag	gattatatat	ttgaactttt	840
taagttgcct	ttagtttgg	tcctgatttt	tcttttaca	attaccaaaa	aaaaatttat	900
taaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				

(2) INFORMATION ÜBER SEQ ID NO: 29:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1775 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29:

15

```

gaacgtgatg ggaactttgg gaggatgtct gagaaaaatgt ccgaagggat tttggccaac 60
accagaaaaac gccaaatgtcc taggaattcc ctcccaaaaat gtttcccaa aaattactca 120
ttgacaattc aaattgcact tggctggcgg cagcccggc ggccttcagt ccgtgtgggg 180
cgccccgtg gccttctcct cgttaggactc cccaaactcg ttcactctgc gtttatccac 240
aggataaagc caccgctggt acaggttagac cagaaacacc acgtcgccc ggaagcaggc 300
cagccggta gacgtgggca tggtgatgat gaaggcaaag acgtcatcaa tgaaggtgtt 360
gaaaggcttg taggtgaagg ccttccaggg cagatgtgcc actgacttca acttgttagtt 420
cacaagagc tggggcagca tgaagaggaa accaaaggca tagacccgt tgacgaagct 480
gttgatttaac caggagtacc agctcttata tttgatattc aggagtgaat agacagcacc 540
25 cccgacacag agagggtaca gcaggtatga caagtacttc atggcctgag tatcgtaatc 600
ctcggttttc ctctcagatt cgctgttaatg gccaaactga aattcggca tcaggcctct 660
ccaaaaaaata gtcatcttca atgccttctt cacttccac agctcaatgg cggctccaac 720
acccggccggg accagcacca gcaggctcgt ctgctgtcc agcaggaaca gaaagatgac 780
cacggtgctg aagcagcgcc agagcactgc cttgggtggac atgcccgtca tgctcttctt 840
30 cttcttccag aaactgtatgt cattttaaa ggccaggaaa tcaaagagaa gatggaacgc 900
tgcgacaaag aaggtcagcg ccaggaagta taagttggta tctacaaaaa ttcccttcac 960
ctcatcagca tctttctctg aaaacccgaa ctgctgcagg gagtacacgg cgtcctgcat 1020
gtggatccag aagcgcagcc gccccagtga gacctgtcg taggacacgg tgaggggcag 1080
ctcggtggtg gagcggttta tgaccatcag gtccttcacg cggttgcgtga gctggtcgt 1140
35 gaacaggatg ggcaggtaat gcacggttt cccagctgg atcatttca tgtaccatg 1200
cacatcgca ggcaggagg acccgtaaa gacaaagtt tccgcacatca cgttcagcgc 1260
cagccgcgtt cgccagtggg acactggctc atccaggggca ctcgtcggt tcttctccgc 1320
ctcgatctgc tgtgtatcag actccccgtt gagcagggtt atttcttctg gcttggggac 1380
catgttaggtg gtcagaggac tgaccaggtt cacctgttc cctgtgtgcc acggcaggac 1440
40 cccagctga tggaggaaga ttaggcata cagcgtccca ttgttctcg ttttcttgg 1500
tacagaaaaca ttaactgtcc ttcaattt ggactccaca tcaaagtctt ccacattcaa 1560
gaccaggtcg atgttgttct cagcacccag gtgggacctc gtcgtgtgt acacgctcag 1620
ctgcagcttgc ggccgcccgcg ccaggttaggg ctggatgcag ttggcgtcgc cggagcacgg 1680
gcgggtgttag acgatgcccgt acatgaccca gcaggtgtgc accacgtaga ccacgaacac 1740
45 gcccaccacc aagctggta aggagctcgccccc

```

(2) INFORMATION ÜBER SEQ ID NO: 30:

(i) SEQUENZ CHARAKTERISTIK:

- 5 (A) LÄNGE: 1546 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzeln
 (D) TOPOLOGIE: linear

10 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

 (iii) HYPOTHETISCH: NEIN

15 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

20 (vii) SONSTIGE HERKUNFT:
 (A) BIBLIOTHEK: cDNA library

25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 30:

aaaataagta ggaatgggca gtgggtattc acattcacta cacctttcc atttgctaat 60
30 aaggcccctgc caggctgggaa gggattgtc cctgcctgct tctggagaaa gaagatattg 120
acaccatcta cgggcaccat ggaactgctt caagtgacca ttcttttct tctgccctgt 180
atttgcagca gtaacagcac aggtgttta gagggcagcta ataattcact tgttgttact 240
acaacaaaac catctataac aacaccaaac acagaatcat tacagaaaaa tgttgtcaca 300
ccaacaactg gaacaactcc taaaggaaca atcacaatg aattacttaa aatgtctcg 360
35 atgtcaacag ctactttttt aacaagtaaa gatgaaggat tgaaagccac aaccactgtat 420
gtcaggaaga atgactccat catttcaaac gtaacagtaa caagtgttac acttccaaat 480
gctgtttcaa cattacaaag ttccaaaccc aagactgaaa ctcagagttc aattaaaaca 540

acagaaaatac caggtagtgt tctacaacca gatgcacac cttctaaaac tggcacatta 600
 acctcaatac cagttacaat tccagaaaaac acctcacagt ctcaagtaat aggcaactgag 660
 ggtggaaaaaa atgcaaggcac ttcagcaacc agccggctt attccagttat tattttgccg 720
 5 atgtgctgga aggcagatcc gggcacacca gaaaatggaa atgatcaacc tcagtcgtat 840
 aaagagagcg tgaagcttct taccgttaag acaatttctc atgagtcgttg tgagcactct 900
 gcacaaggaa aaaccaagaa ctgacagctt gagaattctt ctccacacctt aggcaataat 960
 tacgcttaat cttcagcttc tatgcacccaa gcgtggaaaa ggagaaagtc ctgcagaatc 1020
 aatcccgact tccatacctg ctgctggact gtaccagacg tctgtcccag taaagtgtat 1080
 10 tccagctgac atgcaataat ttgatggaaat caaaaagaac cccggggctc tctgttete 1140
 tcacatttaa aaattccatt actccattta caggagcggtt ccttagaaaa ggaatttttag 1200
 gaggagaatt tgtgagcagt gaatctgaca gccaggagg tggcgtcgct gataggcatg 1260
 acttcctta atgtttaaag tttccgggc caagaatttt tatccatgaa gactttccta 1320
 ctttctcggtt gttcttata ttacctactg ttagtattta ttgtttacca ctatgttaat 1380
 15 gcagggaaaa gttgcacgtg tattattaaa tatttagtag aaatcataacc atgctacttt 1440
 gtacatataa gtattttattt cctgctttcg tttttttttt aataaataac tactgtactc 1500
 aatactctaa aaatactata acatgactgt gaaaatggca aaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 31:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 750 Basenpaare
- (B) TYP: Nukleinsäure
- 25 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

35 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

40 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 31:

5

```

eacttgggea cccccatttt etaaaaaaaaat ggaaatetgg agggcaaaaa aggttgtctg 60
aagggaagtg cctctgatgg cccaaaaacc ttcttc当地 ctatgttagg aatggaatgg 120
atagcaaatg gatcctttt ggccctc当地 ggagcatgcc ttccctatct tattctggc 180
cccactaaag cagaacgtta cgatatttc tgttttgcc attggatgcc tatctggca 240
10 aacaggcctt ccctaattgg aaaatgcagt cctgttaaa accttgatt tacgactact 300
tgtacatgct tgctcattac aattttgaca tttttacat agtgaagacc ccaaacatat 360
cagtgaaaca tgacaagatc ataaagaaca gtatcatatt attatttagt cgctttaca 420
gtggcaagcc aattttggaaa tatctcatt aaaactcaga cccaattcac tgagttatac 480
tttaatagc ttcctcagca cactattcc catgcattaa atatgataaa ataatctatc 540
actgcccatac ggtttgtaa aaaggaagtc tgaatacaga gcccacaca ctaaaattgt 600
ttttctagct acaaagtata gcatcatcaa cacagacacg atttggactc cctgacaggt 660
ggatttggaaa acgggtttt aagagaagag aacattttaa cataaatgtc attaagaatc 720
ccaaaggcct tatttgcac caccgtcccg

```

20

(2) INFORMATION ÜBER SEQ ID NO: 32:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1620 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

30 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

35

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

~~(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 32:~~

10	gcaattcccc cctcccacta aacgactccc agtaattatg tttacaaccc attggatgca 60
	gtgcagccat tcataagaac ctggtgccc cagaaaaatc tgtcctttt ggtaccaaac 120
	ctgaggcttt ttggaagata atgttagaaaa ccactaccta ttgaaggcct gtttggcta 180
	atctgtcaa actctgatga tacctgcctt atgtggattc tttcccacac tgcttcatt 240
	tttaagtata aagacttaga aaactagaat aatgctttt caaataatta aaagtatgtg 300
	atgttctggg tttttcctt ctttttagaa cccgcctcc attaaaaaaaaa ttaaaaaaaaaa 360
	aaaaaaaaact tttaacattt aaaaaataaa aattaacaaa atticactta ttccaggaca 420
	cgttggcatt tggactcaat gaaaaggcca cctaaagaaa ataaggctga ctgaatgtt 480
	tccataattt tcacacaata acagtcctt tctatccagc ttgccttcca tttatctcta 540
	gggttagctt ttcaggcaac atccttggtc attgcccaga aagtacctga gctatcagtg 600
	attggaatgg cacagggaaac cgaatcacat gggtgccctc cccttggtt tcaagtatct 660
20	tggagttgtc cacaaaaatt aggtcatgcc ttcagtgtct tggtctttaa acctaccctt 720
	tgacaatcag gtgctaatga ttgtatacta ttaaaaaccag cacataagta ttgtaaatgt 780
	gtgttccctcc taggttgaa gaaatgtctt tccttctatc tgggtcctgt taaagcggtt 840
	gtcagttgtg tcttttacc tcgatttgc aattaataga attggggga gagggaaatga 900
	tgtatgtcaat taagtttcag gtttggcatg atcatcattc tcgatgatat tctcacttg 960
25	tcgcaaatct gcccttatcg taagaacaag tttcagaatt ttccctccac tatacgactc 1020
	cagtattatg ttacaatcc attggatgag tgcaacatc taagacctt gtgcggagaa 1080
	aaatctgtcc tttttggtaa caaacctgag gtcttttggaa agataatgt aaaaaccact 1140
	acctattgaa ggcctgttt ggctaattcg tgcaaactct gatgataacct gcttatgtgg 1200
	attctttcc acactgcctt cattttaaag tataaagact tagaaaaacta gaataatgct 1260
30	tttacaaata attaaaagta tttgtatgttc tgggtttttt cttttttt agaaccctgt 1320
	atttaaacaa gccttcttt taagtcttgt ttgaaattta agtctcagat cttctggata 1380
	ccaaatcaaa aacccaacgc gtaaaacagg gcagtattt tgttcctaattt tttaaaaagc 1440
	tttatgtata ctctataaat atagatgcattt aaacaacact tcccttgag tagcacatca 1500
	acatacagca ttgtacattt caatgaaaat gtgtactta agggattat atatataaat 1560
35	acatatatac ctttgtaacc ttatactgt aaataaaaaa gttgctttag tcaaaaaaaaaa 1620

(2) INFORMATION ÜBER SEQ ID NO: 33:

40 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2968 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

5 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

10 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

15 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

20 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33:

20	gaaaaagtag aaggaaacac agttcatata gaagtaaaag aaaaccctga agaggaggag 60
	gaggaggaag aagaggaaga agaagatgaa gaaagtgaag aggaggagga agaggaggga 120
	gaaagtgaag gcagtgaagg tgatgagggaa gatgaaaagg tgtcagatga gaaggattca 180
	gggaagacat tagataaaaaa gccaaagtaaa gaaatgagct cagattctga atatgactct 240
	gatgtatgtc ggactaaaga agaaagggtt tatgacaaag caaaacggag gattgagaaa 300
	cggcgacttg aacatagtaa aaatgtaaac accgaaaagc taagagcccc tattatctgc 360
	gtacttgggc atgtggacac agggaaagaca aaaattctag ataagctccg tcacacacat 420
	gtacaagatg gtgaagcagg tggtatcaca caacaaattt gggccaccaa tggccctt 480
	gaagctatta atgaacacac taagatgatt aaaaattttt atagagagaa tttttttttt 540
	ccaggaatgc taattattga tactcctggg catgaatctt tcagtaatct gaaaaataga 600
30	ggaagctctc tttgtgacat tgccattttt gtttgtata ttatgcattttt tttttttttt 660
	cagacaattt agtctatcaa ccttctcaaa tctaaaaat gtcccttcat tttttttttt 720
	aataagattt ataggttata tgattggaaa aagagtctt actctgtatgt ggctgtact 780
	ttaaaaagac agaaaaaaagaa tacaaaagat gaatttgagg agcgagcaaa ggctattatt 840
	gtagaatttt cacagcaggg ttgtaatgtt gctttttttt atgagaataa agatccccgc 900
35	acttttgtt ctttggtacc tacctctgca catactgggtt atggcatggg aagtctgtatgt 960
	taccttcttg tagagttaac tcagaccatg ttgagcaaga gacttgcaca ctgtgaagag 1020
	ctgagagcac aggtgtatgg gtttaaagct ctcccggggta tggccaccat tatagatgtc 1080
	atcttgcattt atgggcgttt gaaggaagga gatacaatca ttgttccctgg agttagaagg 1140
	cccatgttaa ctcagattcg aggccctccgtt tacctccctc ctatgaagga attacgagt 1200
40	aagaaccagt atgaaaagca taaaagaagta gaagcagctc aggggttaaa gattcttgg 1260
	aaagacacctgg agaaaaacatt ggctggttt cccctccctt gggcttataa agaagatgaa 1320
	atccctgttc ttaaaatgttattt attgatccat gagttaaagc agacactaaa tgcttatcaaa 1380
	ttagaagaaa aaggagtcta tgtccaggca tctacactgg gttctttggaa agctctactg 1440

	gaatttctga aaacatcaga agtgcctat gcaggaatta acattggccc agtgcataaa	1500
	aaagatgtta tgaaggcttc agtgatgtt gAACATGACC CTCAGTATGC AGTAATTGG	1560
	gccttcgatg tgagaattga acgagatgca caagaaatgg ctgatagttt aggagttaga	1620
5	attttagtg cagaaaattat ttatcattha tttgatgcct ttacaaaata tagacaagac	1680
	tacaagaaac agaaaacaaga agaatttaag cacatgcag tattccctg caagataaaa	1740
	atcctccctc agtacattt taattctcgat gatccgatag tgatgggggt gacggggaa	1800
	gcaggtcagg tgaaacaggg gacacccatg tgggtcccaa gcaaaaattt tggacatc	1860
	ggaatagtaa caagtattga aataaaaccat aaacaagtgg atgttgc当地 1920	
10	gaagtttgtg taaaaataga acctatccct ggtgagtcac ccaaaatgtt tggagacat	1980
	<u>tttgaagcta cagatattct tgtagtaag atcagccggc agtccattga tgcactcaaa</u>	2040
	gactgggtca gagatgaaat gcagaagagt gactggcagc ttatgtgga gctgaagaaa	2100
	gtatttgaaa tcatctaatt tttcacatg gaggcagaa tggagtaat gcaatactgt	2160
	gttgtatat cccaaacaaa atcagacaaa aaatggaca gacgtatttg gacactgatg	2220
15	gacttaagta tggaaaggaag aaaaataggt gtataaaatg tttccatga gaaacccaaga	2280
	aacttacact ggtttgacag tggtcagtt catgtccccca cagttccat gtgcctgttc	2340
	actcacctct cccttccccca acccttctct acttggctgc tggtttaaag tttcccttc	2400
	cccaaatttg gattttattt acagatctaa agctcttcg attttataact gattaaatca	2460
	gtactgcagt atttgattaa aaaaaaaaaa gcagattttg tgattcttg gactttttg	2520
	acgtaagaaa tacttctta tttatgcata ttcttccac agtgattttt ccagcattct	2580
	tctgccatat gcctttaggg cttttataaa atagaaaattt aggcatctg atattttttt	2640
	agctgcttg tggaaacca tgggttaaaa gcacagctgg ctgctttta ctgcttgtgt	2700
	agtcacgagt ccattgtaat catcacaatt ctaaaccaaa ctaccaataa agaaaacaga	2760
	catccaccag taagcaagct ctgttaggct tccatggta gtggtagctt ctctccacaca	2820
25	agttgtcctc ctaggacaag gaattatctt aacaaactaa actatccatc acactacctt	2880
	ggtatgccag cacctggta acagtaggag attttataca ttaatctgat ctgttaatc	2940
	tgatcggtt agtagagatt ttatacat	

(2) INFORMATION ÜBER SEQ ID NO: 34:

30

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 899 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

35 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

40 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

5

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 34:

10

```

aaatttaaag accctccccc gaatcaatac tttcctggat ttgggttaact gcgtcatgta 60
ttaagggag gcaccgaaag ccatcatgac tgggtgtgct ttgaaacaca ctatgttgc 120
tagtgctgg ccaacagcat cttctttgct gacctatatg ttcattttc cagatcaacc 180
tttcggcct tccttgc(cc) gcaataacag cgtaccta(t) tactgcaaaa atgatgaagg 240
15 g(g)atataattc ctggcagctg agccctggaa ccctgacg(t) tgtaccagct gcatctgcat 300
tgatagcgta attagctgtt tctctgagtc ctgcccttct gtatcctgtg aaagacctgt 360
ctttagaaaa ggccagtg(t) gtccctactg cataaaagac acaattccaa agaagg(t)gt 420
gtgcacttc agtggaaagg cctatgccga cgaggagcgg tgggaccttgc acagctgcac 480
ccactgctac tgcctgcagg gccagaccct ctgctcgacc gtcagctgcc cccctctgccc 540
20 ctgtgtttag cccatcaacg tggaaaggaag ttgctgccc aatgttccag aatgttatgt 600
cccagaacca accaatatac ccattgagaa gacaaaccat cgaggagagg ttgacctgga 660
ggttccctg tggcccacgc ctatgaaaa tgatatcg(t) acatctccct agagatatgg 720
gtcacctgccc aggtagatta cagagataac aggctgcacc caagtgaaga ttcttcactg 780
gactccatttgc cctcagttgt gttccata attatatgcc tcttattat aatagcattc 840
25 ctattcatca atcagaagaa acagtggata ccactgctt gctggatcg aacaccaac

```

(2) INFORMATION ÜBER SEQ ID NO: 35:

30

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 716 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 5 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle
-

(vii) SONSTIGE HERKUNFT:

- 10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35:

15	gcagtacctg gagtgtcctg cagggggaaa gcgaaccggg ccctgaagtc cggggcagtc 60 acccggggct cctggggcgc tctgccggc tggggcttag cagcgatcct gctttgtccc 120 agaagtccag agggatcagc cccagaacac accctcctcc ccgggacgccc gcagcttct 180 ggaggcttag gaggcatga agagtggct ccacctgctg gccgacttag aaaagaattt 240 ccagaactcg gtcctatttt acagatttag aaactatggt tcaagaagag aggacggggc 300
20	ttgagggaat ctcctgattc tccttatatg acctcaaact gaccatacta aacagtgttag 360 aaggctttt taaggctcta aatgtcaggg tctccatcc cctgatgcct gacttgtaca 420 gtcagtgtgg agtagacggt ttccctccacc cagggttgac tcagggggat gatctgggtc 480 ccattctggt cttaagaccc caaaacaaggg tttttcagc tccaggatct ggagcctcta 540
25	tctggtagt gtcgtaacct ctgtgtgcct cccgttaccc catctgtcca gtgagctcag 600 ccccatcca cctaacaggg tggccacagg gattacttag ggttaagacc ttagaactgg 660 gtcttagcacc cgataagagc tcaataaatg ttgttcctt ccacatcaaa aaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 36:

- 30 (i) SEQUENZ CHARAKTERISTIK:
 (A) LÄNGE: 395 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 35 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36:

15

ccaataacttc attcttcatt ggtggagaag atttagact tctaaggcatt ttccaaataa 60
aaaagctatg atttgatttc caactttaa acattgcatt tccttgcca tttactacat 120
tctccaaaaa aaccttgaaa tgaagaaggc cacccttaaa atacttcaga ggctgaaaat 180
20 atgattatta cattggaatc cttagccta tgttatattt cttaacttt gcactttcac 240
gcccagtaaa accaaagtca ggtaaccaa tgtcattta caaatgtta aaaccctaat 300
tgcatgttcct ttttaaattt atttaaaga ttacttaaca acattagaca gtgcaaaaaa 360
agaagcaagg aaagcattct taattctacc atcct

(2) INFORMATION ÜBER SEQ ID NO: 37:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 134 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

35 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 37:

15

ccctcgagcg gcccgggg caggtacttt taccaccgaa ttgttcactt gactttaaga 60
aaccataaa gctgcctggc tttcagcaac aggcttatca acaccatggt gagtctccat 120
aaggcacacc gtgt

20

(2) INFORMATION ÜBER SEQ ID NO: 38:

(i) SEQUENZ CHARAKTERISTIK:

- 25
- (A) LÄNGE: 644 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STRANG: einzel
 - (D) TOPOLOGIE: linear

30 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 5 (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

10

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38:

15 aagcctgttg tcatggggga ggtgggtggcg ctgggtggcc actggcggcc gaggttagagg 60
 cagtggcgct tgagttggtc gggggcagcg gcagattga ggcttaagca acttcttccg 120
 gggaaagagtg ccagtgcagc cactgttaca attcaagatc ttgatctata tccatagatt 180
 ggaatattgg tgggccagca atcctcagac gcctcactta ggacaaatga ggaaactgag 240
 gcttggtgaa gttacgaaaac ttgtccaaaa tcacacaaact tgtaaaggc acagccaaga 300
 20 ttcagagcca ggctgtaaaaa attaaaatga acaaattacg gcaaagtttt aggagaaaaga 360
 aggatgttta tgccatcgag gccagtcgtc cacatcgtg gcagacagat gaagaaggcg 420
 ttcgcaccgg aaaatgttagc ttcccggta agtacccgtt ccatgttagaa gttgatgaat 480
 caagaggaat gcacatctgt gaagatgctg taaaaagatt gaaagctgaa aggaagtct 540
 tcaaaggctt ctttggaaaa actggaaaaga aagcagttaa agcagttct gtgggtctaa 600
 25 gcagatggac tcagaggttt tggatgaaaa actaaggacc tcat

(2) INFORMATION ÜBER SEQ ID NO: 39:

(i) SEQUENZ CHARAKTERISTIK:

- 30 (A) LÄNGE: 657 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

35 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39:

15

ctttttgttt gggtttcca atgttagatgt ctcaagtaaa tgtgcagata tactttgttc 60
cttatatatggt caccagggtt aattatggac aaatacatta aaacaagggt tcctggccca 120
gcctcccatc taatctcttt gataactctg gaatctaagt ctgaggagcg atttctgaat 180
tagccagggt tgcaccaact ttctgtttagg aattgttatta gaataacctt tcttttcag 240
acctgctcag tgagacatct tggggaatga agtaggaaaa tagacatttg gtggaaaaaac 300
agcaaaatga gaacattaaa aagactcatt caagtatgag tataaaggc atggaaattc 360
tggtcctttg agcaaaatga gaagaaaaaa ttctgctcag cagtattcac tgcgttaaga 420
tttttgttt tttacacgaa tggaaaaatg atgtgttaagt ggtatagatt ttaatcagct 480
aacagtcact ccagagattt tgatcagcac caattcctat agtagtaagt attaaaaagt 540
taagaaatac tactacattt aacattataa agtagatgtc tggacataac tgaaaattag 600
atgttgctt caatagaaat ttgttcccac ttgtatatttc aacaaaatta tcggaac

(2) INFORMATION ÜBER SEQ ID NO: 40:

30

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1328 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

35 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 40:

20	acaattttaa aataaacttagc aattaatcac agcatatcag gaaaaagtac acagttagtt 60 ctggtagtt tttgtaggct cattatgggt agggtcgta agatgtatat aagaacctac 120 ctatcatgct gtatgtatca ctcattccat tttcatgttc catgcatact cgggcattcat 180 gctaataatgt atccctttaa gcactctcaa ggaaacaaaaa gggccttta tttttataaa 240 ggtaaaaaaaa attccccaaa tattttgcac tgaatgtacc aaaggtgaag ggacattaca 300 atatgactaa cagcaactcc atcacttgag aagtataata gaaaatagct tctaaatcaa 360 acttccttca cagtgccgtg tctaccacta caaggactgt gcatctaagt aataatttt 420 taagattcac tatatgtgat agtatgatat gcatttattt aaaatgcatt agactcttt 480 ccatccatca aataactttac aggatggcat ttaatacaga tatttcgtat ttccccact 540 gcttttatt tgtacagcat cattaaacac taagctcagt taaggagcca tcagcaacac 600 tgaagagatc agtagtaaga attccattt ccctcatcag tgaagacacc acaaattgaa 660
30	actcagaact atatttctaa gcctgcatt tcactgtatc ataattttct tagtaatatt 720 aagagacagt ttttctatgg catctccaaa actgcattgc atcactagtc ttacttctgc 780 ttaattttat gagaaggat tcttcatttt aattgctttt gggattactc cacatcttg 840 tttatttctt gactaatcag atttcaata gagtgaagtt aaattggggg tcataaaagc 900 attggattga catatggttt gccagccat gggtttacag gcattgccc aacatttctt 960
35	tgagatctat atttataagc agccatggaa ttccttattt gggatgttgg caatcttaca 1020 ttttatagag gtcataatgca tagtttcat aggtgtttt gtaagaactga ttgctctcct 1080 gtgagttaaag ctatgtttac tactgggacc ctcaagagga ataccacttata tgttacactc 1140 ctgcactaaa ggcacgtact gcagtgtgaa gaaatgttct gaaaaagggt tatagaaaatc 1200 tggaaataag aaaggaagag ctctctgtat tctataattt gaaagaaaaaa aaagaaaaaac 1260
40	tttaactgg aaatgttagt ttgtacttat tgatcatgaa tacaagtata tatttaattt 1320 tgaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 41:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 987 Basenpaare

5 (B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

10 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

15 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

20 (vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41:

25

	aacagagact ggcacaggac ctcttcattg caggaagatg gtatgttagg caggtaacat	60
	ttagctctt tcaaaaaagg agagctctc ttcaagataa ggaagtggta gttatggtag	120
	taaccccccgg ctatcagtcc ggatgggtgc cacccttcct gctgttaggat ggaagcagcc	180
30	atggagtgaa agggaggcgcc aataagacac ccctccacag agcttggcat catgggaagc	240
	tggttctacc tcttcctggc tcctttgttt aaaggcctgg ctgggagcct tcctttggg	300
	tgtcttcctc ttctccaacc aacagaaaag actgctctc aaagggtggag ggtcttcatg	360
	aaacacagct gccaggagcc caggcacagg gctggggcc tggaaaaagg agggcacaca	420
	ggaggaggga ggagctggta gggagatgct ggcttacct aaggctcga aacaaggagg	480
35	gcagaatagg cagaggcctc tccgtccccag gcccattttt gacagatggc gggacggaaa	540
	tgcaatagac cagcctgcaa gaaagacatg tgttttgatg acaggcagtg tggccgggtg	600
	gaacaagcac aggccttggaa atccaatgga ctgaatcaga accctaggcc tgccatctgt	660

cagccgggtg acctgggtca attttagcct ctaaaaggct cagtccctt atctgcaaaa 720
 tgaggcttgt gatacctgtt ttgaagggtt gctgagaaaa ttaaagataa gggtatccaa 780
 aatagtctac gccatacca ccctgaacgt gcctaatttc gtaagctaag cagggtcagg 840
 cctggtagt acctggatgg ggagagttatg gaaaacatac ctgcccgcag ttggagttgg 900
 5 actctgtctt aacagtagcg tggcacacag aaggcactca gtaaatactt gttgaataaa 960
 tgaagtagcg atttggtgtg aaaaaaaaa

(2) INFORMATION UBER SEQ ID NO: 42:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 956 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

20 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 42:

35 cgacgggtgg ggcggacgcg tgggtgcagg agcagggcgg ctgccgactg ccccaaccaa 60
 ggaaggagcc cctgagtcgg cctgcgcctc catccatctg tccggccaga gccggcatcc 120

ttgcctgtct aaagccttaa ctaagactcc cgccccggc tggccctgtg cagaccttac 180
 tcagggatg tttaccttgt gctcgaaag ggagggaag gggccgggaa gggggcacgg 240
 caggcgtgtg gcagccacac gcaggcgccc agggcggcca gggacccaaa gcaggatgac 300
 cacgcaccc 5 cacgccactg cctcccccga atgcatttg aaccaaagtca aactgagc 360
 tcgcagcccc 10 cgccctcc ctccgcctcc catcccgctt agcgctctgg acagatggac 420
 gcaggccctg tccagcccc agtgcgctcg ttccggtccc cacagactgc cccagccaac 480
 gagattgctg gaaaccaagt caggccaggt gggcggacaa aagggccagg tgccctgg 540
 ggggaacgga tgctccgagg actggactgt tttttcaca catcggtgcc gcagcggtgg 600
 gaaggaaagg cagatgtaaa tgatgtgtg gtttacaggg tatattttg ataccttcaa 660
 tgaattaatt 15 cagatgtttt acgcaaggaa ggaattttttt agtattactg ctgttgc 720
 tttgatctct gcttaccgtt caagaggcgt gtgcaggccg acagtcggtg accccatcac 780
 tcgcaggacc aagggggcgg ggactgctgg ctcacgcccc gctgtgtcct ccctccctc 840
 cttcccttgg gcagaatgaa ttgcgtgcgtt attctgtggc cgccatctgc gcagggttgtt 900
 ggtattctgt catttacaca cgtcggtcta attaaaaagc gaattataact ccaaaa

(2) INFORMATION ÜBER SEQ ID NO: 43:

(i) SEQUENZ CHARÄKTERISTIK:

- 20 (A) LÄNGE: 536 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

25 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

30 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

35

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43:

5 aaataaacac ttccataaca tttgtttc gaagtctatt aatgcaatcc cacttttc 60
 cccctagtt ctaaatgtta aagagagggg aaaaaaggct caggatagtt ttcacccac 120
 agttagtgc gtctttatt ttactcttg aaatagagac tccattaggg ttttgacatt 180
 ttggaaacctt agtttacca ttgtgtcaataaaacaataa gatagttga gagcatatga 240
 tctaaataaa gacatttggaa gggttagttt gaattctaaa agtaggtat agccaaatag 300
 10 cattctcatc ccttaacaga caaaaactta tttgtcaaaa gaatttagaaa aggtgaaaat 360
 atttttcca gatgaaactt gtgccacttc caattgacta atgaaataca aggagacaga 420
 ctggaaaaag tgggttatgc cacctttaaa acccttctg gtaaatatta tggtagctaa 480
 agggtggttt ccccggcacc tggacctgga cagtagggt tccgtggta accagt

(2) INFORMATION ÜBER SEQ ID NO: 44:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1630 Basenpaare
- (B) TYP: Nukleinsäure
- 20 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

35

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 44:

5 ggggaggggac gagtatggaa ccctgaaggt agcaagtcca ggcactggcc tgaccatccg 60
gctccctggg caccaagtcc caggcaggag cagctgttt ccattcccttc ccagacaagc 120
~~tetattttta teacaatgac ettttagagag gteteeeagg eeageteaag gtgteeeact~~ 180
atccccctcg gagggaagag gcaggaaaat tctcccccggg tccctgtcat gctactttct 240
ccatcccagt tcagactgtc caggacatct tatctgcagc cataagagaa ttataaggca 300
10 gtgatttccc ttaggcccag gacttggggc tccagctcat ctgttcccttc tgggcccatt 360
catggcaggt tctgggctca aagctgaact ggggagagaa gagatacaga gctaccatgt 420
gactttacct gattgcctc agtttgggt tgcttattgg gaaagagaga gacaaagagt 480
tacttgttac gggaaatatg aaaagcatgg ccaggatgca tagaggat tctagcaggg 540
gacaggattg gctcagatga cccctgaggg ctcttcaggc cttgaaatgc attccatgtat 600
15 attaggaagt cgggggtggg tgggtgggtt gggctagttt gtttgaatt taggggccga 660
tgagcttggg tacgtgagca ggggtttaag ttagggctg cctgtatttc tggtcccatt 720
ggaaatgtcc ctttcttcag tgcagaccc ctttccatcg tgcccatatcg tgcccagaaa 780
agtagacatt atcctgcccc atcccttccc cagtgcaactc tgaccttagct agtgccttgt 840
20 gcccagtgtac ctgggggagc ctggctgcag gccctcaactg gttccctaaa ctttgggtggc 900
tgtgattcag tttttttttt gggactcagg gaggaaatatg gctgagtttct gtatttcca 960
gagttggctg ttagagcctt ctagagggtc agaatattag cttcaggatc agctgggggt 1020
atggaaattgg ctgaggatca aacgtatgta ggtgaaagga taccaggatg ttgctaaagg 1080
tgagggacag tttttttttt ggacttacca gggtgatgtt agatctggaa cccccaagtg 1140
aggctggagg gagtttaaggt cagttatggaa gatagggttgg acagggttgc ttggaaatg 1200
25 aaagagtgtac ctttagagggc tccttggggc tcaggaatgc tcctgctgt gtgaagatga 1260
gaaggtgctc ttactcagtt aatgatgagt gactatattt accaaagccc ctacctgctg 1320
ctgggtccct ttagcacac gagaactgggg ctaaggggccc ctcccaggaa agggacaccca 1380
tcaggcctct ggctgaggca ttagcataga ggttccattt ctacctgcat ttcccagagg 1440
actagcagga ggcagcctt agaaaaccggc agttcccaag ccagcgcctg gctgttctct 1500
30 cattgtcaact gcccctccc caacctctcc tctaaccac tagagattgc ctgtgtcctg 1560
cctcttgccct tttttagaaat gcagctctgg ccctcaataa atgcttcctg cattcatctg 1620
aaaaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 45:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 169 Basenpaare
(B) TYP: Nukleinsäure
40 (C) STRANG: einzel
(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 45:

15

tcttttgctt ttagctttt atttttgtat taacaggagt cttattacac ataggtctga 60
taaaaactggt ttatgatctt cagtctgatt ccagtgcgtc ataacttagat aacgtatgaa 120
ggaaaaaacga cgacgaacaa aaaagtaagt gcttgaaaga cttagttga

20

(2) INFORMATION ÜBER SEQ ID NO: 46:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 769 Basenpaare

25

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

30

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

5

~~(vii) SONSTIGE HERKUNFT:~~

- (A) BIBLIOTHEK: cDNA library

10 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 46:

```

tgcaggtcat atttactatc ggcaataaaa ggaagcaaag cagtattaag cagcggtgg 60
atttgcgct ttcactttt ataaagtgt acataaaatg tcataattcc aaatttaaaa 120
15 acataactcc agttcttacc atgagaacag catggtgatc acgaaggatc ttcttgaaaa 180
aaacaaaaac aaaaacaaaa aacaatgatc tcttctgggt atcacatcaa atgagataca 240
aaggtgtact aggcaatctt agagatctgg caacttattt tatatataag gcatctgtga 300
ccaagagacg ttatgaatta aatgtacaaa tgtattatgt ataaatgtat taaatgcaag 360
cttcataataa tgacaccaat gtctctaagt tgctcagaga tcttgactgg ctgtggccct 420
20 ggccagctcc tttcctgata gtctgattct gccttcataat ataggcagct cctgatcatc 480
catgccagtg aatgagaaaa caagcatgga atatataaac tttaacattt aaaaatgttt 540
tatTTTgtaa taaaatcaaa ttcccattt aaaccttcaa aaacttgca gaatgaggtt 600
ttgatatatg tgtacaagta gtaccttctt agtgcaagaa aacatcattt tttctgtctg 660
cctgcctttt tgTTTTaaa aatgaagact atcattgaaa caagtttgc ttcagtatca 720
25 ggacatgttg acggagagga aaggtaggaa aggttaggg atagaagcc

```

(2) INFORMATION ÜBER SEQ ID NO: 47:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2529 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 47:

15

	tttagttcat	agtaatgtaa	aaccatttgt	ttaattctaa	atcaaatcac	tttcacaaca	60
	gtgaaaatta	gtgactggtt	aagggtgtcc	actgtacata	tcatcatttt	ctgactgggg	120
	tcaggacctg	gtcctagtcc	acaagggtgg	caggaggagg	gtggaggcta	agaacacaga	180
	aaacacacaa	aagaaaggaa	agctgcctg	gcagaaggat	gaggtggta	gcttgcgcag	240
20	ggatgggtgg	aagggggctc	cctgttgccc	ccgagccagg	agtcccaagt	cagctctcct	300
	gccttactta	gctcctggca	gagggtgagt	ggggacctac	gaggttcaaa	atcaaatggc	360
	atttggccag	cctggcttta	ctaacaggtt	cccagagtgc	ctctgttggc	tgagctctcc	420
	tgggctca	ccatttcatt	gaagagtc	aatgattcat	tttccttaccc	acaactttc	480
	attattcttc	tggaaaccca	tttctgttga	gtccatctga	cttaagtct	ctctccctcc	540
25	actagttggg	gccactgcac	tgagggggggt	cccaccaatt	ctctctagag	aagagacact	600
	ccagaggccc	ctgcaacttt	gcggatttcc	agaaggtgat	aaaaagagca	ctcttgagtg	660
	ggtgcccagg	aatgtttaaa	atctatcagg	cacactataa	agctgggtgt	ttcttcctac	720
	caagtggatt	cggcatatga	accaccta	caatacttta	tattttgtct	gtttaaacac	780
	tgaactctgg	tgttgacagg	tacaaaggag	aagagatggg	gactgtgaag	agggggaggc	840
30	ttccctcatc	ttcctcaaga	tctttgttcc	cataaaactat	gcagtcataa	ttgagaaaaaa	900
	gcaatagatg	gggcttccta	ccatttggtg	gttattgctg	gggttagcca	ggagcagtgt	960
	ggatggcaaa	gtaggagaga	ggcccagagg	aaagcccattc	tccctccagc	tttggggct	1020
	ccagaaaagag	gctggatttc	tgggatgaag	cctagaaggc	agagcaagaa	ctgttccacc	1080
	aggtgaacag	tcctacactgc	ttggtaccat	agtccctcaa	taagattcag	aggaagaagc	1140
35	ttatgaaact	gaaaatcaaa	tcaaggtatt	gggaagaata	atttcccctc	gattccacag	1200
	gagggaagac	cacacaatat	cattgtgctg	gggctccccca	aggccctgcc	acctggctt	1260
	acaaatcatc	aggggttgcc	tgcttggcag	tcacatgctt	ccctggttt	agcacacata	1320
	caaggagttt	tcagggaaact	ctatcaagcc	ataccaaaat	cagggtcaca	tgtgggttc	1380
	cccttcctt	gcctcttcat	aaaagacaac	ttggcttctg	aggatggtgg	tctttgcatt	1440
40	gcagttggc	tgacctgaca	aagccccca	tttcctgtgg	caggttctgg	gagaggatgc	1500
	attcaagctt	ctgcagccta	ggggacagagg	ctgcttgc	agttattact	gcctcggagc	1560
	tccaaatccc	accaaagtcc	tgactccagg	tctttcctaa	tgcacagtag	tcagtctcag	1620
	cttcggcagt	attctcggt	gtatgttctc	tggcagagag	aggcagatga	acatagttt	1680
	agggagaaag	ctgatggaa	acctgtgagt	taagccacat	gtctcaccag	gaataattta	1740
45	tgccagaaaa	ccaggaagtc	attcaagttg	ttctctgagg	ccaaagacac	tgagcacacg	1800
	ccagagccaa	taaaagatct	ttgagtct	ggtgaattca	cgaagtgacc	ccagctttag	1860

ctactgcaat tatgat~~ttttt~~ atggacagc aatttcttgc atctctacag aggaagaaga 1920
 gggggagtgg gaggggaagg aaagagaaca gagcggcact gggattgaa aggggaacct 1980
 ctctatctga ggagccccca ctggcttcag aagcaactta ccaagggtta tttaaagaca 2040
 tgaaaatttc cagaaatacc atttggtgca tccctttgtt tctgtaatat taaactcagg 2100
 5 tgaaaattata ctctgacagt ttctctctt ctgcctcttc cctctgcaga gtcaggacct 2160
 gcagaactgg ctgaaacaag atttcatggt gtcacccatg agagatgact caatgccaag 2220
 gcctgaagtt atagagtgtt tacagcggtg gcgatattca ggggtcatcg ccaactggc 2280
 tcgagttcca aagctctgat gaagaaacaa gactccttga tgtgttactg atcccactga 2340
 ttccaggagt caagattagc caggaagcca aacaccagga gttgggtgg cacgtcacca 2400
 10 gtccagagcc ctgccacgga ~~tgtacgcagg agcccagcat taggcaatca ggagccagaa~~ 2460
 catgatcacc agggccacaa ataggaagag gcgtgacagg aactgctcgt ccacataacct 2520
 ggggtgtcc

15 (2) INFORMATION ÜBER SEQ ID NO: 48:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1553 Basenpaare
- (B) TYP: Nukleinsäure
- 20 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 48:

	ttttttttt ttttgattt ctgggacaat taagcttat tttcatata tatatatatt 60
5	ttcatatata tatatacata catatataaa gaaacaatt tgcaaattt cacacctgac 120
	aaaaccatat atacacacat atgtatgcat acacacagac agacacacac acccgaaagct 180
	ctagccaggc ccgtttcca tccctaagta ccattcttc atttggccc ttctagggtt 240
	ggggccctga gcttggttg tagaagttt gtgctaataat aaccatagct ttaatcccc 300
	tgaaggacag tgttagacctc atctttgtct gctccccgt gccttcagt ttacgtgat 360
	ccatcaagag ggctatggga gccaagtgaa cacggggat tgaggcta at tcacctgaac 420
	<u>tcgaaaacag cgcccaagctt ctcacccgc ggcacgcgtc tttctttt tttccctcga 480</u>
10	gacggagtct cgctgtgtt cccaggctgg agtgcagtgg cacggctcg gctcaactgca 540
	agctccacct cctggattca taccattctc ctgcctcagc cttccgagta gctggacta 600
	taggtccaa ccactacgcc tagctaattt tttttgtat ttttagtaga gacagggttt 660
	caccgtgtt gccaggatgg ttcgtcctg actttgtat ccggccgcct cggccctccca 720
15	aagtgtctggg attacaggcg ttagccacca cacctggccc cggcacgtat ctttaagga 780
	atgacacccag ttccctggctt ctgacccaaag aaaaaatgtc acaggagact ttgaagaggc 840
	agacaggagg gtgggtggcag caacactgca gctgctctg gatgctgctg ggggtgctc 900
	cgagcgggt gtgaacagcg cactcaaca tgagcaggcg cttggctccg gtgtgtcctc 960
	acttcagtgg tgcaccttgg tggtaaggc cagccttgg ggcaggaaac cagtcagag 1020
	aggctaccca gtcagctgc tgcaggagc caggtattt cagccataat gtgtgtaaag 1080
	aaaaaacacq ttctgcaaga aactctccca cccgctcggg agactgggc tccttgctt 1140
	ggatgagctt cactcaacgt ggagatggg gtggactggg ccctgaaaag cgggccttgc 1200
	agggccaagt gaggtccctca ggtcctaacc ccagtggccc tctgaaaggg ggtgtgcagg 1260
	cgaggggagc aggaggcttc tctctagtcc ctggggaggc ttggctgag agaagagtga 1320
25	gcagggagct gggaatggc caggcaggga agggagctga agtgatcgg gctaatgcc 1380
	tcaagatcgat gtatttctct ccctggctc ccggagccct ctgtcaccg ctgctgcct 1440
	gcaggaggcc catctcttctt ggagcttat ctgacttaac ttcaactaca agttcgctct 1500
	tacgagaccg gggtagcgt gatctcctgc ttccctgagc gcctgcacgg cag

30 (2) INFORMATION ÜBER SEQ ID NO: 49:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 921 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

40

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

35

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

5 (vii) SONSTIGE HERKUNFT:

- ~~(A) BIBLIOTHEK: cDNA library~~

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 49:

10

```

ctgtggtccc agctactcg gaggctgagg cgggaggatt gcttgagccc aggagttgga 60
tgttcagtgc agccaagatc gcaccattgc cttccactct gggccacgga gcaataccct 120
gtctcagaaa acaaacaaca aaaagcagaa acgctgaagg ggtcggttta cgggaaaacc 180
15 gcctgtcaga acacttggct actccttaccc cagatcagtg gacctggaa tgagggttgg 240
tccccggagg ctttctcca agctgttgc accagaccgg ccatgggaac cctggccaca 300
gaaggcctccc ggggagtgag ccagagcctg gaccgctgtg ctgatgtgtc tgggggtggag 360
ggagggtggg gagtgtaaa gggtgtgtgt gtggccgggg ggtgttcatg ggcaagcatg 420
20 tgcgtgcctg tgtgtgtgcg tgccccctccc ctgcagccgt cggtgttata tccctccagc 480
cccttcgccta cttctcgagc attgtctgtc cacgtgagac tgccccagaga cagcagagct 540
ccacgtgggt ttaaggggag acctttccct ggacctgggg gtctcgccgt atctcatgac 600
caggtgctaa atgaccgcac atgcatttca tgcctttcga tgaccaacct ccctgtcccc 660
25 gtcccgctga cctgcccccg tggcgtctca cggtgatgcc tgctcctgac attgggttgc 720
actgttagcaa actacattct ggatggaaat ttcatgtac atgtgtggca tgtggaaaat 780
ttcaaataaa atggacttga tttagaaagc caaaaagctg tgtggcctt ccagcacgg 840
tactttgacc tcttgcttac aacccttcc ttgggtccga ggctggtagc tttgttcaact 900
ttagatggtt gggggcggtt g

```

(2) INFORMATION ÜBER SEQ ID NO: 50:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 338 Basenpaare
 (B) TYP: Nukleinsäure
 35 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50:

atgatctatac tagatgcctt accgtaaaat caaaacacaa aaccctactg actcattccc 60
 tcccttccag atattacccc atttctctac ttcccatgtt agccaaactt tccaaaaatt 120
 catgttctgt cttcatttcc tcattgttcaa cccaccctgt cttagctacc acccctca 180
 20 aacgacctag cctgggtaga aacaaatgtc agcatgatac catactcaat gatccttcgt 240
 cactgttgta attgtcatca ttccatggcc ttactttccc tctcagcgcc atttgctaca 300
 gtaagaaaact ttctttcttg aattcttggt tctcttgg

(2) INFORMATION ÜBER SEQ ID NO: 51:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1191 Basenpaare
- (B) TYP: Nukleinsäure
- 30 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

35

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 51:

15

```

ctagcaagca ggttaaacgag ctttgtacaa acacacacag accaacacat ccggggatgg 60
ctgtgttgtc ctagagcaga ggctgattaa acactcagtg tgttggctct ctgtgccact 120
cctggaaaat aatgaattgg gtaaggaaca gttaataaga aaatgtgcct tgctaactgt 180
gcacattaca acaaagagct ggcagctctt gaaggaaaag ggcttgcctt gctgccgttc 240
aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctccccagc acaccctcat 300
tacatgtgtc tgtctggcct gatctgtgca tctgctcgga gacgctcctg acaagtccgg 360
aatttctcta tttctccact ggtgcaaaga gcggatttct ccctgcttct cttctgtcac 420
ccccgctcctt ctccccccagg aggctccttg atttatggta gctttggact tgcttccccg 480
tctgactgtc cttgacttctt aagaatggaaag aagctgagct ggtgaaggga agactccagg 540
ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
aagacaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaa tggcttctag 660
atggaatcag cagcggaaaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagc 720
accagatcca ggttcttagaa caaagtatcc tcaggcttga gaaagagatc caagatctt 780
aaaaaagctga actgcaaatac tcaacgaagg aagaggccat tttaaagaaa ctaaagtcaa 840
ttgagcggac aacagaagac attataagat ctgtgaaagt ggaaagagaa gaaagagac 900
aagagtcaat tgaggacatc tatgctaata tccctgaccc tccaaagtcc tacataacctt 960
ctaggttaag gaaggagata aatgaagaaa aagaagatga tgaacaaaat aggaaagctt 1020
tatatgccat ggaaattaaa gttgaaaaag acttgaagac tggagaaaagt acagttctgt 1080
cttccaatac ctctggccat cagatgactt taaaaggtac aggagaaaa gtttaagatg 1140
atgggcaaaa gtccagtgtt ttcagtaaag tgctaatcac aagttggagg t

```

(2) INFORMATION ÜBER SEQ ID NO: 52:

40 (i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1200 Basenpaare

- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

5 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

10 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

15

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

20

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52:

aacagggact	ctcactctat	caaccccaagg	ctggagtcgg	gtgcggccac	cctggctccc	60
tgcaacacctcc	gcctcccaagg	ctcaagcaac	tctcctgcct	cagtcgtct	agttagctggg	120
actacaggca	cacaccacca	tgcccagcca	atttttgcatt	tttttgtaga	gacagggttt	180
cgccttctgt	ccaggccggc	atcatataact	ttaaatcatg	cccagatgac	ttaataacct	240
aataacaatat	atcaggttgg	tttaaaaaata	attgtttttt	tattattttt	gcatttttgc	300
accaaccta	atgctatgtt	aatagttgtt	atactgttgc	ttaacaacag	tatgacaatt	360
ttggcttttt	ctttgtatta	ttttgtattt	ttttttttta	ttgtgtggtc	tttttttttt	420
ttctcagtgt	tttcaattcc	tccttgggtt	aatccatgg	tgcaaaaccc	acagatatga	480
agggctggct	atatatgcat	tgatgattgt	cctatttat	tagttataaa	gtgtcattta	540
atatgtatgt	aaagttatgg	tacagtggaa	agagtagttt	aaaacataaa	catttggacc	600
tttcaagaaa	ggtagttgg	tgaagttttt	caccccaaa	ctatgtccca	gtcagggctc	660
tgctactaat	tagctataat	ctttgcacaa	attacatcac	ctttgagtct	cagttgcctc	720
acctgtaaaa	tgaaagaact	ggataactctc	taaggtcact	tccagccctg	tcattctata	780
actctgttat	gctgaggaag	aaattcacat	tgtgttaact	gtatgagtca	aactgaaaat	840
gattattaaa	gtgggaaaaaa	gccaaattgt	tctcttagaa	agctcaacta	aatttgagaa	900
gaataatctt	ttcaattttt	taagaattta	aatatttttta	agggttgac	ctatttattt	960
agagatgggg	tctcactctg	tcacccagac	tggagtacag	tggcacaatc	atagctcact	1020
40 gtcgcctcaa	attcatggc	tcaagtgate	ctcctgcctc	tgcctccaga	gtagctgcga	1080

ctatgggcat gtgccaccac gcctggctaa catttgtatt gacctattta tttattgtga 1140
 ttatatctt tttttttttt tcctttttttt ttttttacaa aatcagaaaat acttattttg 1200

5 (2) INFORMATION ÜBER SEQ ID NO: 53:

(i) SEQUENZ-CHARAKTERISTIK:

- (A) LÄNGE: 989 Basenpaare
- (B) TYP: Nukleinsäure
- 10 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:
 (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

25 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 53:

30 aagccaccac tcaaaaacttc ctatacattt tcacagcaga gacaagtcaa cattttttttt 60
 tatgcctttc ttccttatgtg tatttcaagt cttttcaaa acaaggcccc aggactctcc 120
 gattcaatta gtccttgccc tggtcgactg tgcaggagtc cagggagcct ctacaaatgc 180
 agagtgactc tttaccaaca taaaccctag atacatgcaa aaagcaggac ctttcctcca 240
 35 ggaatgtgcc atttcagatg cacagcaccc atgcagaaaa gctggaattt tccttgaaac 300
 cgactgtgat agaggtgctt acatgaacat tgctactgtc tttctttttt tttgagacag 360

gtttcgcttg tgcccaggct gagtgcaatg cgtgatctca ctcactgcaa ttccacacctc 420
 aggttcaagc attctctgc tcagcctcct agtagctggg ttacaggcac tgccaccatg 480
 ccggctaatt ttgtatTTT gtagagatgg atttctccat ttggcaggc ggtctcgAAC 540
 cccaacctca gtgatctGCC acctcagcct cctaagtgtt ggattacagg atgagccacc 600
 5 cgaccggcca ctactgtctt tctttgacCC ttccAGTTTC gaagataaAG aggaaATAAT 660
 ttctctgaag tacttgataa aatttccaaa caaaACACAT gtccacttca ctgataaaaa 720
 atttaccgca gtttggcacc taagagtatg acaacagcaa taaaaAGTAA tttcaAGAG 780
 ttaagatttc ttcaGCAAAA tagatgatTC acatCTTCAA gtccttttg aaatcAGTTA 840
 ttaatattat tctttcctca ttccatctg aatgactgca gcaatAGTTT tttttttttt 900
 10 ~~tttttttttt ttgcgagatg gaatctcgct ctgtcgccca gccccggatgc actgggegeaa~~ 960
 gcccggctca ccgcaatctc tgccaccccg

(2) INFORMATION ÜBER SEQ ID NO: 54:

15

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 250 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 20 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 30 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 54:

5 catttccccca ttggtcctga tggtaagat ttagttaaag aggctgtaag tcaggttcga 60
gcagaggcta ctacaagaag taggaaatca agtccctcac atgggctatt aaaacttaggt 120
agtggtgag tagtaaaaaa gaaatctgag caacttcata acgtaactgc ctttcaggaa 180
aaagggcatt ctttaggaac tgcatcttgt aaccacacc ttgatccaag agctaggaa 240
acttcagttg

10 (2) INFORMATION ÜBER SEQ ID NO: 55:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2270 Basenpaare
- (B) TYP: Nukleinsäure
- 15 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 55:

	gcgcccccg a	gcagcggccg	cgcctccgc	gccttctccg	ccgggacctc	gagcgaaaga	60
	ggcccgcg	ccgcccagcc	ctcgccctccc	tgcccacccg	gcacaccccg	ccgccacccc	120
	gaccggctg	cgcacggcct	gtccgctgca	caccagctt	ttggcgctt	cgtcgccc	180
5	ctcgccccgg	gctactcctg	cgcgccacaa	tgagctccc	catcgccagg	gcgctcgct	240
	tagtgcgtac	ccttctccac	ttgaccagggc	tggcgcttc	cacctgcccc	gctgcctgcc	300
	actgccccct	ggaggcgc	aagtgcgc	cgggagtcgg	gctggccgg	gacggctg	360
	gctgctgtaa	ggtctgcgc	aagcagctca	acgaggactg	cagcaaaaacg	cagccctg	420
	accacaccaa	ggggctggaa	tgcaacttc	gcccacatc	caccgctctg	aaggggatct	480
10	gcagagctca	gtcagagggc	agaccctgt	aatataactc	cagaatctac	aaaaacgggg	540
	aaagttcca	gcccacatgt	aaacatcagt	gcacatgtat	tgatggcg	gtgggctgca	600
	ttcctctgt	tcccaagaa	ctatctctcc	ccaaacttggg	ctgtcccaac	cctcggt	660
	tcaaagtac	cgggcagtgc	tgcgaggagt	gggtctgtga	cgaggatagt	atcaaggacc	720
	ccatggagga	ccaggacggc	ctccttggca	aggagctggg	attcgatgcc	tccgagg	780
15	agttgacgag	aaacaatgaa	ttgatttgcag	ttggaaaagg	cagctactg	aagcggctcc	840
	ctgttttgg	aatggagcct	cgcatttat	acaacccttt	acaaggccag	aatgtattt	900
	ttcaaaacaac	ttcatgttcc	cagtgc	agacactgtgg	aactgttac	tccacacgag	960
	ttaccaatga	caaccctgag	tgccgcctt	tgaaagaaac	ccggattt	gaggtgcggc	1020
	cttgtggaca	gccagtgtac	agcagcctg	aaaagggcaa	gaaatgc	aagaccaaga	1080
	aatcccccg	accagttagg	tttacttacg	ctggatgttt	gagtgtgaag	aaataccggc	1140
	ccaagta	cgttctgc	gtggacggcc	gatgctgcac	gcccagctg	accaggactg	1200
	tgaagatgcg	gttccgtgc	gaagatgggg	agacattttc	caagaacgtc	atgatgatcc	1260
	agtcctgca	atgcaactac	aactgccc	atgcaatga	agcagcg	cccttctaca	1320
	ggctgttcaa	tgacatttac	aaatttaggg	actaaatgt	acctggg	ccagggcaca	1380
	cctagacaaa	caaggagaa	gagtgtcaga	atcagaatca	tggaaaaat	gggcgggggt	1440
25	ggtgtgggt	atgggactca	ttgttagaaag	gaagccttgc	tcatttctga	ggagcattaa	1500
	ggtatttcg	aactgccaag	gggtctggg	cgatggaca	ctaattgc	cacgatttga	1560
	gaataactt	cttcata	ttggagcaca	tggtactgt	tcattttt	gcttgtggag	1620
	ttgatgactt	tctgttttct	gtttgtaaat	tatttgc	gcatattttc	tctaggctt	1680
	tttccctttt	gggttctaca	gtcgtaaaag	agataataag	attagtt	cagttaaag	1740
30	cttttattcg	tccttgc	aaagtaat	ggagggcatt	ccatcccttc	ctgaaggggg	1800
	acactccatg	agtgtctgt	agaggcag	atctgcactc	taaactgc	acagaaatca	1860
	ggtgtttaa	gactgaatgt	tttattt	aaaatgt	tttggggag	ggaggggaaa	1920
	tgtaatactg	gaataattt	taatgtatt	taatttata	ttcagt	agattttatt	1980
	tatggatta	accatttaat	aaagaaat	ttacctaata	tctgagt	tgccattcg	2040
35	tatttttaga	ggtgtccaa	agtcattt	aacaacctag	ctcacgt	caatttattca	2100
	aacaggactt	atgggatac	agcagt	taagctt	aaataagata	atgattgtt	2160
	ttatacc	agttagagaaa	agtcttgc	tataaagtaa	tgtttaaaaa	acatgtattt	2220
	aacacgacat	tgtatga	acaataaaga	ttctga	aaaaaaa	aaaaaaa	

(2) INFORMATION ÜBER SEQ ID NO: 56:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1636 Basenpaare

45 (B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

~~(iii) ANTI-SENSE: NEIN~~

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 56:

20	cttgaatgaa gctgacacca agaaccgcgg gaagagcttg ggcccaaagc aggaaaggga 60 agcgctcgag ttggaaagga accgctgctg ctggccgaac tcaagcccgg gcgcccccac 120 cagtttgatt ggaagtccag ctgtgaaacc tggagcgtcg cttctcccccc agatggctcc 180 tggtttgctt ggtctcaagg acactgcatt gtcaactgta tcccctggcc gttggaggag 240 cagttcatcc ctaaagggtt tgaagccaaa agccgaagta gcaaaaatga gacgaaaggg 300 cggggcagcc caaaagagaa gacgctggac tgtggtcaga ttgtctgggg gctggcccttc 360 agcccgtggc cttccccacc cagcaggaag ctctggcac gcccaccacc ccaagtgcc 420 gatgtctctt gcctggttct tgctacggga ctcaacgatg ggcagatcaa gatctggag 480 gtgcagacag ggctcctgct tttgaatctt tccggccacc aagatgtcgt gagagatctg 540 agcttcacac ccagtggcag tttgattttg gtctccgcgt cacggataa gactcttcgc 600 atctgggacc tgaataaaaca cgtaaacag attcaagtgt tatcggcca cctgcagtgg 660
30	gtttactgct gttccatctc cccagactgc agcatgctgt gctctgcagc tggagagaag 720 tcgggttttc tatggagcat gaggtcctac acgttaattc ggaagctaga gggccatcaa 780 agcagtgttg tctcttgta ctctcccccc gactctgccc tgcttgtcac ggcttcttac 840 gataccaatg tgattatgtg ggaccctac accggcgaaa ggctgaggc actccaccac 900 acccaggttg accccgccat ggatgacagt gacgtccaca tttagctcaact gagatctgtg 960
35	tgcttcctc cagaaggctt gtaccttgcc acgggtgcag atgacagact cctcaggatc 1020 tggccctgg aactgaaaac tcccattgca tttgctcccta tgaccaatgg gctttgtcgc 1080 acattttttc cacatggtgg agtcattgcc acagggacaa gagatggcca cgtccagttc 1140 tggacagctc ctagggtcct gtccctactg aagcaacttat gccggaaagc ctttcgaagt 1200 ttcctaacaac ttaccaagt cctagcactg ccaatccccca agaaaatgaa agagttcctc 1260
40	acatacagga cttttaagc aacaccacat cttgtgcttc tttgttagcag ggtaaatcgt 1320 cctgtcaaag ggagttgtcga aataatggg ccaaacatct ggtcttgcat taaaatagca 1380 tttcttggtt attgtgata gaatgttagca aaaccagatt ccagtgtaca taaaagaatt 1440 tttttgtctt taaatagata caaatgtcta tcaactttaa tcaagttgta acttataattg 1500 aagacaattt gatacataat aaaaaattat gacaatgtcc tggaaaaaaa aaaatgtaga 1560

aagatggta agggatggat ggatgaggag cgtggtgacg ggggcctgca gcgggttggg 1620
gaccctgtgc tgcgtt

5 (2) INFORMATION ÜBER SEQ ID NO: 57:

(i) SEQUENZ-CHARAKTERISTIK:

- (A) LÄNGE: 460 Basenpaare
- (B) TYP: Nukleinsäure
- 10 (C) STRANG: einzeln
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

25 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 57:

30 ccatgtgt atgagagaga gagagattgg gagggagagg gagctcacta ggcataatgt 60
gcctccaggg ggctgcagat gtgtctgagg gtgaggctgg tgaaagagaa gacaaaagaa 120
tggaatgagc taaagcagcc gcctggggtg ggaggccgag cccatttgta tgcagcaggg 180
ggcaggagcc cagcaaggga gcctccatc ccaggactct ggagggagct gagaccatcc 240
35 atgcccgcag agccctccct cacactccat cctgtccagc cctaatttgtc caggtgggaa 300
aactgaggct gggaaagtac atagcaagt actggcagag ctggactgg aacccaacca 360

gcctcctaga ccacggttct tcccatcaat ggaatgctag agactccagc caggtggta 420
 ccgagctcgat attcgtaatc atggtcatacg ctgttccctg

5 (2) INFORMATION ÜBER SEQ ID NO: 58:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1049 Basenpaare
- (B) TYP: Nukleinsäure
- 10 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
 hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

25 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 58:

30

atctgatcaa gaataacctgc cctggtaact ctgcggatgt ttctgtccac ttgttcacat 60
 tgaggaccaa gatatccctt tttacagagg cacttggtcg gtctaacaaca gacaccccca 120
 tgacgacatg ctggctcaca ttttgcagtt ctgcagaagt ccccccccca gcctggacta 180
 cagcagcact ttcccgtggg ggtgcagtag ccgtttcgac agagcctgga gcactctgaa 240
 35 gtcagtgct gtgcagggtt acccggtgc ctgcattccct caggcattaa aggtcttttg 300
 ggatctacaa ttttgttagag tttccattt tgagtctggg tcatactttt actgcttgat 360

aaaatgtaaa cttcacctag ttcatcttct ccaaataccca agatgtgacc ggaaaagttag 420
 cctctacagg acccactagt gccgacacag agtggtttt cttgccactg ctttgtcaca 480
 ggactttgct ggagagttag gaaattccca ttacgatctc caaacacgta gcttccatac 540
 5 aatcttctg actggcagcc ccggatataca aatccaccaa ccaaaggacc attactgaat 600
 ggcttgaatt ctaaaagtga tgcttcactt tcataatctt tcccctttat tatctgtaga 660
 attctggctg atgatctgtt ttttccattt gagtctgaac acagtatcgtaaaatttgatg 720
 tttatatcatcg tggatgtct atccacagca catctgcctg gatcgtagg cccatgagca 780
 aacacttcgg ggggctgggt ggtgctgtt aagtgtgggt tgctccttgg tatggaataa 840
 ggcacgttgc acatgtctgt gtccacatcc agccgttagca ctgagcctgt gaaatcactt 900
 10 ~~aacccatcca tttcttccat atcatccagt gtaatcatcc catcaccaag aatgatgtac 960~~
 aaaaacccgt cagggccaaa gaggcgttgc cctccagat gctttctgtg gagttctgca 1020
 acttcaagaa agactctggc ttttctcaa

15 (2) INFORMATION ÜBER SEQ ID NO: 59:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 747 Basenpaare
- (B) TYP: Nukleinsäure
- 20 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

35

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4:

5 ttttcaaata cacatatggc ttcttgacc ccatcaaata actttattca cacaaacgtc 60
ccttaattta caaaggctca gtcattcata cacattaggg gatccacagt gttcaaggaa 120
cttaaatata atgtatcata ccaacccaag taaaccaagt aaaaaaaaata ttcatataaa 180
gttgttcaca cgttaggtcct agattaccag cttctgtgca aaaaaaggaa atgaagaaaa 240
atagatttat taacttagtat tgaaaactaa ctttgcct ggcttaaaac ctccctcacg 300
ctcgctgtc ccacacaaat gttaagaag tcactgcaat gtactccccg gctctgatga 360
aaagaagccc ctggcacaaa agattccagt gccctgaag aggctccctt ctcctgtgg 420

10 gctctcttag aaaaccagcg ggacggcctc cctgctgata ccgtctataa ccttaggggg 480
ccctcgggca ggcaacggca gtggactcat ctcggtgatg gctgtagatg ctaacactgg 540
ccaattcaat gccacaccta ctggttaccc tttgagggca tttctccaga cagaagcccc 600
ttgaagccta ggtagggcag gatcagagat acaccgtgt ttgtctcgaa gggctccaca 660
gcccagtacg acatgctgc agaagtagta tctctggact tctgcctcca gtcgaccggc 720

15 cgcgaaattta tagtaatag cgccgc

Patentansprüche

1. Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend

5

a) ~~eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe Seq ID No.~~
1 bis Seq. ID No. 59

b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen

10

oder

c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

15

2. Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID No. 1 bis Seq. ID No. 59 oder eine komplementäre oder allelische Variante davon.

20

3. Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, dadurch gekennzeichnet, daß sie in Endothelzellgewebe erhöht exprimiert sind.

25

4. BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 59, zur Verwendung als Vehikel zum Gentransfer.

30

5. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.

- 5
6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.

- 10
-
7. ~~Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisieren.~~

- 15
8. Ein Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 3000 bp aufweist.

- 20
9. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 2800 bp aufweist.

- 25
10. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 2600 bp aufweist.

- 30
11. Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 10, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert.

12. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprüche 1 bis 10, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz.

13. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß Anspruch 12, worin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist.

5

-
14. Eine Expressionskassette gemäß einem der Ansprüche 12 und 13, dadurch gekennzeichnet, daß die auf der Kassette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

10

15. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 11 zur Herstellung von Vollängen-Genen.

15

16. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 15 erhältlich ist.

20

17. Wirtszelle, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 11.

25

18. Wirtszelle gemäß Anspruch 17, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.

30

19. Wirtszelle gemäß einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.

- 100
20. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 17 bis 19 kultiviert werden.

5

-
21. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 kodiert wird, das gemäß Anspruch 20 erhältlich ist.

10

22. Ein Antikörper gemäß Anspruch 21, dadurch gekennzeichnet, daß er monoklonal ist.

15

23. Polypeptidsequenz, exprimiert von einer der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59.

20

24. Polypeptidsequenzen gemäß Anspruch 23, mit mindestens 80%iger Homologie zu diesen Sequenzen.

25

25. Polypeptidsequenzen gemäß Anspruch 23, mit mindestens 90%iger Homologie zu diesen Sequenzen.

30

26. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 25 als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen.

27. Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen verwendet werden können.

5

-
28. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 in sense oder antisense Form.

10

29. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 25 als Arzneimittel in der Gentherapie zur Behandlung angiogenetischer Erkrankungen.

15

30. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 25 zur Herstellung eines Arzneimittels zur Behandlung angiogenetischer Erkrankungen.

20

31. Arzneimittel, enthaltend mindestens eine Polypeptidsequenz gemäß den Ansprüchen 23 bis 25.

25

32. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.

30

33. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist.

34. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59.

5

-
35. Verwendung der genomischen Gene gemäß Anspruch 34, zusammen mit geeigneten regulativen Elementen.

- 10 36. Verwendung gemäß Anspruch 35, dadurch gekennzeichnet, daß das regulative Element ein geeigneter Promotor und/ oder Enhancer ist.

- 15 37. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 11 und der Peptide gemäß den Ansprüchen 23 bis 25, entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, 20 thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes.

Zusammenfassung

Es werden Nukleinsäure-Sequenzen -mRNA, cDNA, genomische Sequenzen- aus Gewebe menschlicher Endothelzellen, die für Genprodukte oder Teile davon 5 kodieren und deren Verwendung beschrieben. Es werden weiterhin die über die ~~Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.~~

