

• Consider the +ve and –ve terms below, numbered 1 to 7 terms.

+
$$|A|$$
 (term #1)
+ $|B|$ (term #2)
+ $|C|$ (term #3)
- $|A \cap B|$ (term #4)
- $|A \cap C|$ (term #5)
- $|B \cap C|$ (term #6)
+ $|A \cap B \cap C|$ (term #7)

• In the above Venn Diagram, we have marked all areas as "-(4)" that are accounted for by the term #4: $-|A \cap B|$; here, "-" indicate that it is a -ve term and "(4)" indicates that it is accounted by term #4.

Problem.

- Fill the diagram by adding similar marks "+(i)" and "-(j)" etc. correpsonding to the other 6 terms.
- Show that the number of +ve marks for each part of $A \cup B \cup C$ (and only those parts) exceeds the number of -ve marks by eactly 1.
- This proves that the sum of all the terms above equals $|A \cup B \cup C|$.