Beyond AMLS: domain decomposition with rational filtering

Vassilis Kalantzis

Computer Science and Engineering Department University of Minnesota - Twin Cities, USA

Argonne National Laboratory, Lemont, IL 11-07-2017

University of Minnesota

Supercomputing Institute

Acknowledgments

- Joint work with Y. Xi (UMN), and Y. Saad (UMN).
- Special thanks to the University of Minnesota Supercomputing Institute for providing us with computational resources to perform our experiments.
- Work supported by NSF and DOE (DE-SC0008877).

Contents

- Introduction
- 2 The domain decomposition (DD) viewpoint and the AMLS approach
- 3 The Rational Filtering DD Eigenvalue Solver (RF-DDES)
- Experiments
 - Comparisons against rational filtering Krylov

3 / 33

VK (UMN) DD-KRYLOV 11-07-2017

Introduction

Our focus

- We consider the symmetric eigenvalue problem $Ax = \lambda Mx$, where A and M are sparse, and M is SPD.
- We are interested in computing all *nev* eigenvalues-eigenvectors located inside the real interval $[\alpha, \beta]$.
- In this talk: we combine domain decomposition with rational filtering

Contribution of this talk

We formulate an algorithm, abbreviated as RF-DDES, that features:

- Reduced orthogonalization costs compared to Krylov projection methods
- Enhanced accuracy compared to existing domain decomposition approaches
- Reduced complex arithmetic

Also: we discuss a parallel (PETSc) implementation of the proposed algorithm

Contents

- Introduction
- 2 The domain decomposition (DD) viewpoint and the AMLS approach
- The Rational Filtering DD Eigenvalue Solver (RF-DDES)
- Experiments
 - Comparisons against rational filtering Krylov

The main idea behind DD eigenvalue solvers (example for two subdomains)

DD decouples the original eigenvalue problem into two parts:

- The first part considers only interface (red) variables
- The second part considers only interior (green) variables

Reordering equations/unknowns ($p \ge 2$ subdomains)

$$A = \begin{pmatrix} B_1 & & & & E_1 \\ & B_2 & & & E_2 \\ & & \ddots & & \vdots \\ & & & B_p & E_p \\ E_1^T & E_2^T & \cdots & E_p^T & C \end{pmatrix},$$

$$M = \begin{pmatrix} M_B^{(1)} & & & & M_E^{(1)} \\ & M_B^{(2)} & & & M_E^{(2)} \\ & & \ddots & & \vdots \\ & & & M_B^{(p)} & M_E^{(p)} \\ & & & M_E^{(p)} & M_E^{(p)} \end{pmatrix}.$$

Reordering equations/unknowns ($p \ge 2$ subdomains)

$$A = \begin{pmatrix} B_1 & & & & E_1 \\ & B_2 & & E_2 \\ & & \ddots & & \vdots \\ & & B_p & E_p \\ E_1^T & E_2^T & \cdots & E_p^T & C \end{pmatrix}, \qquad \text{Notation: write as}$$

$$A = \begin{pmatrix} B & E \\ E^T & C \end{pmatrix}, M = \begin{pmatrix} M_B & M_E \\ M_E^T & M_C \end{pmatrix},$$

$$A = \begin{pmatrix} B & E \\ E^T & C \end{pmatrix}, M = \begin{pmatrix} M_B & M_E \\ M_E^T & M_C \end{pmatrix},$$

$$X^{(i)} = \begin{pmatrix} u^{(i)} \\ v^{(i)} \\ v^{(i)} \end{pmatrix} = \begin{pmatrix} u^{(i)} \\ \vdots \\ u^{(i)} \\ v^{(i)} \\ \vdots \\ v^{(i)} \\ v^{(i)} \end{pmatrix}$$

$$M_B^{(i)} & M_B^{(i)} & M_E^{(i)} \\ M_B^{(i)} & M_E^{(i)} \\ M_B^{(i)} & M_E^{(i)} \end{pmatrix}$$

$$M_B^{(i)} & M_E^{(i)} \\ M_B^{(i)} & M_E^{(i)} \end{pmatrix} T \qquad M_C$$

$$(M_E^{(1)})^T (M_E^{(2)})^T \dots (M_E^{(p)})^T$$

$$A = \begin{pmatrix} B & E \\ E^T & C \end{pmatrix}, M = \begin{pmatrix} M_B & M_E \\ M_E^T & M_C \end{pmatrix}$$

$$x^{(i)} = \begin{pmatrix} u^{(i)} \\ y^{(i)} \end{pmatrix} = \begin{pmatrix} \vdots \\ u_p^{(i)} \\ y_1^{(i)} \\ \vdots \\ y_l^{(i)} \end{pmatrix}$$

7 / 33 VK (UMN) DD-KRYLOV 11-07-2017

An example of the sparsity pattern of A and M for p=4

 $\textbf{Figure: Different colors} \rightarrow \textbf{different subdomains}$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

$$(A - \lambda_i M) x^{(i)} = \begin{pmatrix} B - \lambda_i M_B & E - \lambda_i M_E \\ E^T - \lambda_i M_E^T & C - \lambda_i M_C \end{pmatrix} \begin{pmatrix} u^{(i)} \\ y^{(i)} \end{pmatrix} = 0.$$

$$(A - \lambda_i M) x^{(i)} = \begin{pmatrix} B - \lambda_i M_B & E - \lambda_i M_E \\ E^T - \lambda_i M_E^T & C - \lambda_i M_C \end{pmatrix} \begin{pmatrix} u^{(i)} \\ y^{(i)} \end{pmatrix} = 0.$$

A direct computation leads to:

$$S(\lambda_i)y^{(i)} = 0, \qquad u^{(i)} = -(B - \lambda_i M_B)^{-1}(E - \lambda_i M_E)y^{(i)},$$

$$(A - \lambda_i M) x^{(i)} = \begin{pmatrix} B - \lambda_i M_B & E - \lambda_i M_E \\ E^T - \lambda_i M_E^T & C - \lambda_i M_C \end{pmatrix} \begin{pmatrix} u^{(i)} \\ y^{(i)} \end{pmatrix} = 0.$$

A direct computation leads to:

$$S(\lambda_i)y^{(i)} = 0,$$
 $u^{(i)} = -(B - \lambda_i M_B)^{-1}(E - \lambda_i M_E)y^{(i)},$
 $S(\lambda_i) = C - \lambda_i M_C - (E - \lambda_i M_E)^T(B - \lambda_i M_B)^{-1}(E - \lambda_i M_E).$

◆ロト 4周ト 4 重ト 4 重ト 重 めなべ

$$(A - \lambda_i M) x^{(i)} = \begin{pmatrix} B - \lambda_i M_B & E - \lambda_i M_E \\ E^T - \lambda_i M_E^T & C - \lambda_i M_C \end{pmatrix} \begin{pmatrix} u^{(i)} \\ y^{(i)} \end{pmatrix} = 0.$$

A direct computation leads to:

$$S(\lambda_i)y^{(i)} = 0, u^{(i)} = -(B - \lambda_i M_B)^{-1}(E - \lambda_i M_E)y^{(i)},$$

$$S(\lambda_i) = C - \lambda_i M_C - (E - \lambda_i M_E)^T(B - \lambda_i M_B)^{-1}(E - \lambda_i M_E).$$

To recover the exact eigenpairs $(\lambda_i, x^{(i)})_{i=1,...,nev}$

Perform a Rayleigh-Ritz projection on $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$:

$$\begin{split} \mathcal{Y} &= \operatorname{span} \left\{ y^{(i)} \right\}_{i=1,\dots,nev}, \\ \mathcal{U} &= \operatorname{span} \left\{ -(B-\lambda_i M_B)^{-1} (E-\lambda_i M_E) y^{(i)} \right\}_{i=1,\dots,nev} \end{split}$$

4D + 4A + 4B + B + 900

9 / 33

VK (UMN) DD-KRYLOV

The Automated Multi-Level Substructuring (AMLS) approach

Truncation of the interface eigenvalue problem

- AMLS considers a first-order approximation of $S(\lambda_i), \ i=1,\ldots,nev$ around a fixed $\sigma \in \mathbb{R}$
- \mathcal{Y} is approximated by $\operatorname{span}\left\{\hat{y}^{(1)},\ldots,\hat{y}^{(k)}\right\}$, where $\hat{y}^{(1)},\ldots,\hat{y}^{(k)}$ denote the eigenvectors associated with the k smallest (in modulus) eigenvalues of $(S(\sigma),-S'(\sigma))$.
- Pros: reduced orthogonalization costs
- Cons: only moderate accuracy

Approximation of the solution associated with the interior variables

- ullet Similarly, ${\cal U}$ is approximated by ${
 m span}\left\{(B-\sigma M_B)^{-1}(E-\sigma M_E)\left[\hat{y}^{(1)},\ldots,\hat{y}^{(k)}
 ight]
 ight\}$
- This step is trivially parallel among the subdomains

40.40.45.45.5 5 000

Contents

- Introduction
- The domain decomposition (DD) viewpoint and the AMLS approach
- 3 The Rational Filtering DD Eigenvalue Solver (RF-DDES)
- Experiments
 - Comparisons against rational filtering Krylov

$$I_{[\alpha,\beta]}(\zeta) = \frac{1}{2\pi i} \int_{\Gamma_{[\alpha,\beta]}} \frac{1}{\nu - \zeta} d\nu.$$

$$I_{[\alpha,\beta]}(\zeta) = \frac{1}{2\pi i} \int_{\Gamma_{[\alpha,\beta]}} \frac{1}{\nu - \zeta} d\nu.$$

ullet We approximate - $I_{[lpha,eta]}(\zeta)$ by

$$\rho(\zeta) = \sum_{\ell=1}^{2N_c} \frac{\omega_\ell}{\zeta - \zeta_\ell}.$$

4□ > 4□ > 4□ > 4□ > 4□ > 9

$$I_{[\alpha,\beta]}(\zeta) = \frac{1}{2\pi i} \int_{\Gamma_{[\alpha,\beta]}} \frac{1}{\nu - \zeta} d\nu.$$

ullet We approximate - $I_{[lpha,eta]}(\zeta)$ by

$$\rho(\zeta) = \sum_{\ell=1}^{2N_c} \frac{\omega_\ell}{\zeta - \zeta_\ell}.$$

Applying the filter to the matrix pencil (A, M) gives:

$$\rho(M^{-1}A) = \sum_{\ell=1}^{2N_c} \omega_\ell (A - \zeta_\ell M)^{-1} M.$$

$$I_{[\alpha,\beta]}(\zeta) = \frac{1}{2\pi i} \int_{\Gamma_{[\alpha,\beta]}} \frac{1}{\nu - \zeta} d\nu.$$

• We approximate $-I_{[\alpha,\beta]}(\zeta)$ by

$$\rho(\zeta) = \sum_{\ell=1}^{2N_c} \frac{\omega_\ell}{\zeta - \zeta_\ell}.$$

• Applying the filter to the matrix pencil (A, M) gives:

$$\rho(M^{-1}A) = \sum_{\ell=1}^{2N_c} \omega_\ell (A - \zeta_\ell M)^{-1} M.$$

• Note that if $(\omega_{\ell}, \zeta_{\ell}) = \overline{(\omega_{\ell+N_c}, \zeta_{\ell+N_c})}$:

$$\frac{1}{\rho(M^{-1}A)} = \overline{(\omega_{\ell+N_c}, \zeta_{\ell+N_c})}:$$

$$\rho(M^{-1}A) = 2\Re e \left\{ \sum_{\ell=1}^{N_c} \omega_{\ell} (A - \zeta_{\ell}M)^{-1}M \right\}.$$

Figure: x-axis: ζ . y-axis: $\rho(\zeta)$.

How to approximate $\operatorname{span}\{y^{(1)},\ldots,y^{(nev)}\}$ (I)

Let $\zeta \in \mathbb{C}$ and define

$$B_{\zeta} = B - \zeta M_{B}, \qquad E_{\zeta} = E - \zeta M_{E},$$

$$C_{\zeta} = C - \zeta M_{C}, \qquad S_{\zeta} = C_{\zeta} - E_{\zeta}^{T} B_{\zeta}^{-1} E_{\zeta}.$$

Let $\zeta \in \mathbb{C}$ and define

$$B_{\zeta} = B - \zeta M_{B}, \qquad E_{\zeta} = E - \zeta M_{E},$$

$$C_{\zeta} = C - \zeta M_{C}, \qquad S_{\zeta} = C_{\zeta} - E_{\zeta}^{T} B_{\zeta}^{-1} E_{\zeta}.$$

Then,

$$(A - \zeta M)^{-1} = \begin{pmatrix} B_{\zeta}^{-1} + B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & -B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} \\ -S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & S_{\zeta}^{-1} \end{pmatrix}.$$

Let $\zeta \in \mathbb{C}$ and define

$$B_{\zeta} = B - \zeta M_{B}, \qquad E_{\zeta} = E - \zeta M_{E},$$

$$C_{\zeta} = C - \zeta M_{C}, \qquad S_{\zeta} = C_{\zeta} - E_{\zeta}^{T} B_{\zeta}^{-1} E_{\zeta}.$$

Then,

$$(A - \zeta M)^{-1} = \begin{pmatrix} B_{\zeta}^{-1} + B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & -B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} \\ -S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & S_{\zeta}^{-1} \end{pmatrix}.$$

Recall the partitioning $x^{(i)} = [(u^{(i)})^T, (y^{(i)})^T]^T$:

Let $\zeta \in \mathbb{C}$ and define

$$B_{\zeta} = B - \zeta M_{B}, \qquad E_{\zeta} = E - \zeta M_{E},$$

$$C_{\zeta} = C - \zeta M_{C}, \qquad S_{\zeta} = C_{\zeta} - E_{\zeta}^{T} B_{\zeta}^{-1} E_{\zeta}.$$

Then,

$$(A - \zeta M)^{-1} = \begin{pmatrix} B_{\zeta}^{-1} + B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & -B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} \\ -S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & S_{\zeta}^{-1} \end{pmatrix}.$$

Recall the partitioning $x^{(i)} = [(u^{(i)})^T, (y^{(i)})^T]^T$:

$$\rho(M^{-1}A) = 2\Re e \left\{ \sum_{\ell=1}^{N_c} \omega_{\ell} \begin{bmatrix} B_{\zeta_{\ell}}^{-1} + B_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}} S_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}}^T B_{\zeta_{\ell}}^{-1} & -B_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}} S_{\zeta_{\ell}}^{-1} \\ -S_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}}^T B_{\zeta_{\ell}}^{-1} & S_{\zeta_{\ell}}^{-1} \end{bmatrix} \right\} M$$

11-07-2017

13 / 33

VK (UMN) DD-KRYLOV

Let $\zeta \in \mathbb{C}$ and define

$$B_{\zeta} = B - \zeta M_{B}, \qquad E_{\zeta} = E - \zeta M_{E},$$

$$C_{\zeta} = C - \zeta M_{C}, \qquad S_{\zeta} = C_{\zeta} - E_{\zeta}^{T} B_{\zeta}^{-1} E_{\zeta}.$$

Then,

$$(A - \zeta M)^{-1} = \begin{pmatrix} B_{\zeta}^{-1} + B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & -B_{\zeta}^{-1} E_{\zeta} S_{\zeta}^{-1} \\ -S_{\zeta}^{-1} E_{\zeta}^{T} B_{\zeta}^{-1} & S_{\zeta}^{-1} \end{pmatrix}.$$

Recall the partitioning $x^{(i)} = [(u^{(i)})^T, (y^{(i)})^T]^T$:

$$\rho(M^{-1}A) = 2\Re e \left\{ \sum_{\ell=1}^{N_c} \omega_{\ell} \begin{bmatrix} B_{\zeta_{\ell}}^{-1} + B_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}} S_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}}^{T} B_{\zeta_{\ell}}^{-1} & -B_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}} S_{\zeta_{\ell}}^{-1} \\ -S_{\zeta_{\ell}}^{-1} E_{\zeta_{\ell}}^{T} B_{\zeta_{\ell}}^{-1} & S_{\zeta_{\ell}}^{-1} \end{bmatrix} \right\} M$$

$$= \sum_{i=1}^{n} \rho(\lambda_{i}) \begin{bmatrix} u^{(i)} (u^{(i)})^{T} & u^{(i)} (y^{(i)})^{T} \\ y^{(i)} (u^{(i)})^{T} & y^{(i)} (y^{(i)})^{T} \end{bmatrix} M.$$

→□▶→□▶→■▶→■ 990

Equating blocks leads to:

$$2\Re \operatorname{e}\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}\right\} = \sum_{i=1}^n \rho(\lambda_i) y^{(i)} (y^{(i)})^T.$$

Since $\rho(\lambda_1), \ldots, \rho(\lambda_{nev}) \neq 0$:

$$\operatorname{span}\{y^{(1)},\ldots,y^{(nev)}\}\subseteq\operatorname{range}\left(2\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}\right\}\right).$$

Equating blocks leads to:

$$2\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}\right\} = \sum_{i=1}^n \rho(\lambda_i) y^{(i)} (y^{(i)})^T.$$

Since $\rho(\lambda_1), \ldots, \rho(\lambda_{nev}) \neq 0$:

$$\operatorname{span}\{y^{(1)},\ldots,y^{(\mathsf{nev})}\}\subseteq\operatorname{range}\left(2\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}\right\}\right).$$

Capture range $\left(\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}\right\}\right)$ by a Krylov projection scheme!

15. Return $Q_{\mu} = [q^{(1)}, \dots, q^{(\mu)}]$

Algorithm 3.1: Krylov restricted to the interface variables

Algorithm

```
Start with q^{(1)} \in \mathbb{R}^s, s.t. ||q^{(1)}||_2 = 1, q_0 := 0, b_1 = 0, tol \in \mathbb{R}
      For \mu = 1, 2, ...
          Compute w=\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S_{\zeta_\ell}^{-1}q^{(\mu)}
ight\}-b_\mu q^{(\mu-1)}
          a_{\mu} = \mathbf{w}^T \mathbf{a}^{(\mu)}
3.
4.
        For \kappa = 1, \ldots, \mu
5.
             w = w - q^{(\kappa)}(w^T q^{(\kappa)})
6.
           Fnd
7.
           b_{n+1} := \|w\|_2
8.
          If b_{u+1} = 0
              generate a unit-norm q^{(\mu+1)} orthogonal to q^{(1)}, \ldots, q^{(\mu)}
9.
10.
           Flse
             a^{(\mu+1)} = w/b_{\mu+1}
11.
           FndIf
12
13.
           If the sum of eigenvalue of T_{\mu} remains unchanged (up to tol)
           during the last few iterations; BREAK; EndIf
14. End
```


Figure: Leading singular values of $\Re \left\{\sum_{\ell=1}^{N_c} \omega_\ell S(\zeta_\ell)^{-1}\right\} ([\alpha, \beta] = [\lambda_1, \lambda_{100}]).$

4D> 4@> 4E> 4E> E 900

Figure: Leading singular values of $\Re e \left\{ \sum_{\ell=1}^{N_c} \omega_\ell S(\zeta_\ell)^{-1} \right\} ([\alpha, \beta] = [\lambda_1, \lambda_{100}]).$

- ullet Only vectors of length s (# of interface variables) need be orthonormalized
- Moreover, solve(A, M, ζ_{ℓ}) \approx solve($S(\zeta_{\ell})$) + 2 \times solve(B, M_B, ζ_{ℓ})

4 D > 4 D > 4 E > 4 E > E 904

Figure: Leading singular values of $\Re \left\{\sum_{\ell=1}^{N_c} \omega_\ell S(\zeta_\ell)^{-1}\right\}$ ($[\alpha, \beta] = [\lambda_1, \lambda_{100}]$).

- ullet Only vectors of length s (# of interface variables) need be orthonormalized
- Moreover, solve $(A, M, \zeta_{\ell}) \approx \text{solve}(S(\zeta_{\ell})) + 2 \times \text{solve}(B, M_B, \zeta_{\ell})$
- What if nev > s, or $rank[y^{(1)}, \ldots, y^{(nev)}] < nev$?

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

4□ > 4□ > 4 □ > 4 □ > 3 = 40

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

• Issue #1: Needs access to both $\lambda_i,\ y^{(i)}$

4 D > 4 P > 4 E > 4 E > E 900

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

- Issue #1: Needs access to both $\lambda_i, y^{(i)}$
- Issue #2: Impractical for large values of nev

The alternative: approximate the action of $B_{\lambda_i}^{-1},\ E_{\lambda_i}$

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

- Issue #1: Needs access to both $\lambda_i, y^{(i)}$
- Issue #2: Impractical for large values of nev

The alternative: approximate the action of $B_{\lambda_i}^{-1},\ E_{\lambda_i}$

Assume that $y^{(i)}$ is known:

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

- Issue #1: Needs access to both $\lambda_i, y^{(i)}$
- Issue #2: Impractical for large values of nev

The alternative: approximate the action of $B_{\lambda_i}^{-1},\ E_{\lambda_i}$

Assume that $y^{(i)}$ is known:

 \bullet Let $\sigma \in \mathbb{R}$ and start with a "basic" approximation:

$$\hat{u}^{(i)} = -B_{\sigma}^{-1} E_{\sigma} y^{(i)}$$

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

- Issue #1: Needs access to both λ_i , $y^{(i)}$
- Issue #2: Impractical for large values of nev

The alternative: approximate the action of $B_{\lambda_i}^{-1},\ E_{\lambda_i}$

Assume that $y^{(i)}$ is known:

ullet Let $\sigma \in \mathbb{R}$ and start with a "basic" approximation:

$$\hat{u}^{(i)} = -B_{\sigma}^{-1} E_{\sigma} y^{(i)}$$

• The error is of the form:

$$u^{(i)} - \hat{u}^{(i)} = -[B_{\lambda_i}^{-1} - B_{\sigma}^{-1}]E_{\sigma}y^{(i)} + (\lambda_i - \sigma)B_{\lambda_i}^{-1}M_Ey^{(i)}.$$

How to approximate span $\{u^{(1)}, \dots, u^{(nev)}\}$ (I)

Standard approach

Compute
$$u^{(i)} = -(B - \lambda_i M_B)^{-1} (E - \lambda_i M_E) y^{(i)} = -B_{\lambda_i}^{-1} E_{\lambda_i} y^{(i)}, \ i = 1, \dots, nev.$$

- Issue #1: Needs access to both λ_i , $y^{(i)}$
- Issue #2: Impractical for large values of nev

The alternative: approximate the action of $B_{\lambda_i}^{-1},\ E_{\lambda_i}$

Assume that $y^{(i)}$ is known:

ullet Let $\sigma \in \mathbb{R}$ and start with a "basic" approximation:

$$\hat{u}^{(i)} = -B_{\sigma}^{-1} E_{\sigma} y^{(i)}$$

• The error is of the form:

$$u^{(i)} - \hat{u}^{(i)} = -[B_{\lambda_i}^{-1} - B_{\sigma}^{-1}]E_{\sigma}y^{(i)} + (\lambda_i - \sigma)B_{\lambda_i}^{-1}M_Ey^{(i)}.$$

ullet To improve accuracy: extract $\hat{u}^{(i)}$ from a subspace, i.e. $\hat{u}^{(i)} \in \mathcal{U}$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

How to approximate span $\{u^{(1)}, \dots, u^{(nev)}\}\ (II)$

Let $(\delta_{\ell}, v^{(\ell)}), \ \ell = 1, \dots, d$, denote the eigenpairs of (B, M_B) .

Higher-order resolvent expansions

• Exploit $\psi \geq 1$ terms of the formula $B_{\lambda}^{-1} = B_{\sigma}^{-1} \sum_{\theta=0} \left[(\lambda - \sigma) M_B B_{\sigma}^{-1} \right]^{\theta}$:

$$\|u^{(i)} - \hat{u}^{(i)}\|_{M_B} \leq \left\|\sum_{\ell=1}^{\ell=d} \frac{\gamma_{\ell}(\lambda - \sigma)^{\psi+1} - \epsilon_{\ell}(\lambda - \sigma)^{\psi}}{(\delta_{\ell} - \lambda)(\delta_{\ell} - \sigma)^{\psi}} v^{(\ell)}\right\|_{M_B}$$

◆ロト ◆園 → ◆園 → ◆園 → ● ・ 夕 ○ ○

VK (UMN) DD-KRYLOV 11-07-2017 18 / 33

How to approximate span $\{u^{(1)}, \dots, u^{(nev)}\}\ (II)$

Let $(\delta_{\ell}, v^{(\ell)})$, $\ell = 1, \dots, d$, denote the eigenpairs of (B, M_B) .

Higher-order resolvent expansions

• Exploit $\psi \ge 1$ terms of the formula $B_{\lambda}^{-1} = B_{\sigma}^{-1} \sum_{\theta=0} \left[(\lambda - \sigma) M_B B_{\sigma}^{-1} \right]^{\theta}$:

$$\|u^{(i)} - \hat{u}^{(i)}\|_{M_B} \leq \left\|\sum_{\ell=1}^{\ell=d} \frac{\gamma_{\ell}(\lambda - \sigma)^{\psi+1} - \epsilon_{\ell}(\lambda - \sigma)^{\psi}}{(\delta_{\ell} - \lambda)(\delta_{\ell} - \sigma)^{\psi}} v^{(\ell)}\right\|_{M_B}$$

Include eigenvectors of (B, M_B) in \mathcal{U}

• If we also include the eigenvectors associated with the κ eigenvalues of (B, M_B) lying the closest to σ :

$$\|u^{(i)} - \hat{u}^{(i)}\|_{M_B} \leq \left\| \sum_{\ell=\kappa+1}^{\ell=d} \frac{\gamma_{\ell}(\lambda - \sigma)^{\psi+1} - \epsilon_{\ell}(\lambda - \sigma)^{\psi}}{(\delta_{\ell} - \lambda)(\delta_{\ell} - \sigma)^{\psi}} v^{(\ell)} \right\|_{M_E}$$

←□ → ←□ → ← □ → ← □ → ← ○ ○

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

• $\mathcal{Y} = \mathrm{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \mathrm{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell S_{\zeta_\ell}^{-1}\right\}$.

VK (UMN) DD-KRYLOV 11-07-2017 19 / 33

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

- $\mathcal{Y} = \mathrm{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \mathrm{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell \mathcal{S}_{\zeta_\ell}^{-1}\right\}$.
- $\mathcal{U} = \operatorname{range}\{\bar{V}, \textit{U}_1, \textit{U}_2\}$ where

$$U_1 = -\left[B_{\sigma}^{-1}EQ,\ldots,\left(B_{\sigma}M_B\right)^{\psi-1}B_{\sigma}^{-1}EQ\right],$$

$$U_2 = \left[B_{\sigma}^{-1} M_E Q, \dots, (B_{\sigma} M_B)^{\psi-1} B_{\sigma}^{-1} M_E Q\right],$$

4 D > 4 D > 4 E > 4 E > E = 900

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

- $\mathcal{Y} = \mathrm{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \mathrm{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell \mathcal{S}_{\zeta_\ell}^{-1}\right\}$.
- ullet $\mathcal{U} = \mathrm{range}\{ar{V}, \emph{U}_1, \emph{U}_2\}$ where

$$U_1 = -\left[B_{\sigma}^{-1}EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}EQ\right],$$

$$U_2 = \left[B_{\sigma}^{-1}M_EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}M_EQ\right],$$

• \bar{V} includes the eigenvectors associated with the nev_B eigenvalues lying the closest to σ for each $(B_{\sigma}^{(j)}, M_B^{(j)}), j = 1, \ldots, p$

VK (UMN) DD-KRYLOV 11-07-2017 19 / 33

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

- $\mathcal{Y} = \mathrm{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \mathrm{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell \mathcal{S}_{\zeta_\ell}^{-1}\right\}$.
- $\mathcal{U} = \operatorname{range}\{\bar{V}, \textit{U}_1, \textit{U}_2\}$ where

$$U_1 = -\left[B_{\sigma}^{-1}EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}EQ\right],$$

$$U_2 = \left[B_{\sigma}^{-1}M_EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}M_EQ\right],$$

- \bar{V} includes the eigenvectors associated with the nev_B eigenvalues lying the closest to σ for each $(B_{\sigma}^{(j)}, M_B^{(j)}), j = 1, \ldots, p$
- ullet The subspace ${\mathcal U}$ is formed independently in each one of the p subdomains

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

- $\mathcal{Y} = \operatorname{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \operatorname{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell S_{\zeta_\ell}^{-1}\right\}$.
- $\mathcal{U} = \operatorname{range}\{\bar{V}, U_1, U_2\}$ where

$$U_1 = -\left[B_{\sigma}^{-1}EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}EQ\right],$$

$$U_2 = \left[B_{\sigma}^{-1}M_EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}M_EQ\right],$$

- \bar{V} includes the eigenvectors associated with the nev_B eigenvalues lying the closest to σ for each $(B^{(j)}_{\sigma}, M^{(j)}_{B}), j = 1, \ldots, p$
- ullet The subspace ${\cal U}$ is formed independently in each one of the p subdomains
- ullet Only real arithmetic need be exploited to form ${\cal U}$

RF-DDES is a RR approach on a basis of the subspace $\mathcal{Z} = \mathcal{U} \oplus \mathcal{Y}$

- $\mathcal{Y} = \mathrm{range}\{Q\}$, where Q is the Krylov basis formed by applying Lanczos to $\Re \mathrm{e}\left\{\sum_{\ell=1}^{N_c} \omega_\ell \mathcal{S}_{\zeta_\ell}^{-1}\right\}$.
- $\bullet~\mathcal{U} = \mathrm{range}\{\bar{V}, \textit{U}_{1}, \textit{U}_{2}\}$ where

$$U_1 = -\left[B_{\sigma}^{-1}EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}EQ\right],$$

$$U_2 = \left[B_{\sigma}^{-1}M_EQ, \dots, (B_{\sigma}M_B)^{\psi-1}B_{\sigma}^{-1}M_EQ\right],$$

- $\mathcal{O}_2 = \left[\mathcal{O}_{\sigma} \mid \mathcal{M}_{\mathsf{E}} \mathbf{\mathsf{Q}}, \dots, \left(\mathcal{O}_{\sigma} \mathcal{M}_{\mathsf{B}}\right) \mid \mathcal{O}_{\sigma} \mid \mathcal{M}_{\mathsf{E}} \mathbf{\mathsf{Q}}\right],$
- \bar{V} includes the eigenvectors associated with the *nev_B* eigenvalues lying the closest to σ for each $(B_{\sigma}^{(j)}, M_{B}^{(j)}), \ j=1,\ldots,p$
- ullet The subspace ${\mathcal U}$ is formed independently in each one of the p subdomains
- ullet Only real arithmetic need be exploited to form ${\cal U}$
- ullet When ψ resolvent terms are kept, we will write RF-DDES(ψ)

- **← □ → ← □ → ← 글 → ← 글 → ∽ へ ○**

Contents

- Introduction
- 2 The domain decomposition (DD) viewpoint and the AMLS approach
- 3 The Rational Filtering DD Eigenvalue Solver (RF-DDES)
- Experiments
 - Comparisons against rational filtering Krylov

20 / 33

VK (UMN) DD-KRYLOV

Implementation and computing environment

Hardware

- Experiments performed at the mesabi linux cluster at Minnesota Supercomputing Institute
- 741 two-socket nodes, each socket equipped with an Intel Haswell E5-2680v3 processor and 32 GB of memory

Software

- All methods were implemented in C++ and on top of PETSc (MPI)
- Linked to METIS, PARDISO, MUMPS, and MKL
- Compiled with mpiicpc (-O3)

Parameters and details

- Default values: p=2, $N_c=2$, $nev_B=100$, and $\sigma=0$
- All times are listed in seconds
- All experiments are performed in 64-bit arithmetic

Approximation of the nev = 100 algebraically smallest eigenvalues of matrix bcsstk39

Approximation of the nev = 100 algebraically smallest eigenvalues of pencil qa8fk/qafm

VK (UMN) DD-KRYLOV 11-07-2017 23 / 33

Number of iterations performed by Algorithm 3.1

Figure: Matrix: "FDmesh1" (2D Laplacian of size $n=160\times150$). Results are reported for all different combinations of $p=2,\ 4,\ 8$ and $p=16,\$ and $N_c=1,\ 2,\ 4,\ 8$ and $N_c=16.$ Interval: $[\alpha,\beta]=[\lambda_1,\lambda_{200}].$

4 - - - 4 - - - - - - - - - - - - - -

Figure: The leading 250 singular values of $\Re e\left\{\sum_{\ell=1}^{N_c}\omega_\ell S(\zeta_\ell)^{-1}\right\}$ for matrix "FDmesh1". Left: p=2. Right: p=8.

VK (UMN) DD-KRYLOV 11-07-2017 25 / 33

12. Return Ritz values located inside $[\alpha, \beta]$ and associated Ritz vectors

Rational Filtering Krylov (RF-KRYLOV)

Algorithm

11. Fnd

```
0. Start with q^{(1)} \in \mathbb{R}^n s.t. ||q^{(1)}||_2 = 1

1. For \mu = 1, 2, ...

2. Compute w = \Re e \left\{ \sum_{\ell=1}^{N_c} \omega_\ell (A - \zeta_\ell M)^{-1} M q^{(\mu)} \right\}

3. For \kappa = 1, ..., \mu

4. h_{\kappa,\mu} = w^T q^{(\kappa)}, w = w - h_{\kappa,\mu} q^{(\kappa)}

5. End

6. h_{\mu+1,\mu} = ||w||_2

7. If h_{\mu+1,\mu} \neq 0

8. q^{(\mu+1)} = w/h_{\mu+1,\mu}

9. EndIf

10. Check convergence
```

4 D > 4 A > 4 B > 4 B > 9 9 0

VK (UMN) DD-KRYLOV 11-07-2017 26 / 33

A comparison of RF-KRYLOV and RF-DDES (I)

Table: Wall-clock times of RF-KRYLOV and RF-DDES using $\tau=2, 4, 8, 16$ and $\tau=32$ computational cores. RFD(2) and RFD(4) denote RF-DDES with p=2 and p=4 subdomains, respectively.

	nev = 100				nev = 2	00	nev = 300		
Matrix	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)
$shipsec8(\tau=2)$	114	195	-	195	207	-	279	213	-
(au=4)	76	129	93	123	133	103	168	139	107
(au=8)	65	74	56	90	75	62	127	79	68
(au=16)	40	51	36	66	55	41	92	57	45
$(\tau = 32)$	40	36	28	62	41	30	75	43	34
boneS01(au=2)	94	292	-	194	356	-	260	424	-
(au=4)	68	182	162	131	230	213	179	277	260
(au=8)	49	115	113	94	148	152	121	180	187
(au=16)	44	86	82	80	112	109	93	137	132
$(\tau = 32)$	51	66	60	74	86	71	89	105	79

VK (UMN) DD-KRYLOV 27 / 33 11-07-2017

A comparison of RF-KRYLOV and RF-DDES (II)

Table: Wall-clock times of RF-KRYLOV and RF-DDES using $\tau=2,\,4,\,8,\,16$ and $\tau=32$ computational cores. RFD(2) and RFD(4) denote RF-DDES with p=2 and p=4 subdomains, respectively.

	nev = 100				nev = 2	00	nev = 300		
Matrix	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)
$FDmesh2(\tau=2)$	241	85	-	480	99	-	731	116	-
(au=4)	159	34	63	305	37	78	473	43	85
(au=8)	126	22	23	228	24	27	358	27	31
(au=16)	89	16	15	171	17	18	256	20	21
$(\tau = 32)$	51	12	12	94	13	14	138	15	20
$FDmesh3(\tau=2)$	1021	446	-	2062	502	-	3328	564	-
(au=4)	718	201	281	1281	217	338	1844	237	362
(au=8)	423	119	111	825	132	126	1250	143	141
(au=16)	355	70	66	684	77	81	1038	88	93
$(\tau = 32)$	177	47	49	343	51	58	706	62	82

VK (UMN) DD-KRYLOV 11-07-2017 28 / 33

Table: Number of iterations performed by RF-KRYLOV (denoted as RFK) and RF-DDES (denoted as RFD(p)).

	nev = 100				nev = 20	00	nev = 300			
	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)	RFK	RFD(2)	RFD(4)	
shipsec8	280	170	180	500	180	280	720	190	290	
boneS01	240	350	410	480	520	600	620	640	740	
FDmesh2	200	100	170	450	130	230	680	160	270	
FDmesh3	280	150	230	460	180	290	690	200	380	

 ${\color{red}{\sf Table:}}\ {\color{blue}{\sf Maximum}}\ {\color{red}{\sf relative}}\ {\color{blue}{\sf errors}}\ {\color{blue}{\sf returned}}\ {\color{blue}{\sf by}}\ {\color{blue}{\sf RF-DDES}}.$

		nev = 10	0	ı	nev = 200	0	nev = 300			
nev _B	25	50	100	25	50	100	25	50	100	
shipsec8	1.4e-3	2.2e-5	2.4e-6	3.4e-3	1.9e-3	1.3e-5	4.2e-3	1.9e-3	5.6e-4	
boneS01	5.2e-3	7.1e-4	2.2e-4	3.8e-3	5.9e-4	4.1e-4	3.4e-3	9.1e-4	5.1e-4	
FDmesh2	4.0e-5	2.5e-6	1.9e-7	3.5e-4	9.6e-5	2.6e-6	3.2e-4	2.0e-4	2.6e-5	
FDmesh3	6.2e-5	8.5e-6	4.3e-6	6.3e-4	1.1e-4	3.1e-5	9.1e-4	5.3e-4	5.3e-5	

29 / 33

VK (UMN) DD-KRYLOV 11-07-2017

Amount of time spent on orthonormalization

Figure: Left: "FDmesh2" (n = 250,000). Right: "FDmesh3" (n = 1,000,000).

(ロ) (回) (回) (目) (目) (目) (の)

VK (UMN) DD-KRYLOV 11-07-2017 30 / 33

Runtimes for MPI-only implementation (nev = 300)

Figure: Left: "shipsec8". Right: "FDmesh2".

4 D > 4 P > 4 B > 4 B > B 9 9 P

VK (UMN) DD-KRYLOV 11-07-2017 31 / 33

Conclusion

Summary

The main features of RF-DDFS:

- No estimation of nev is needed
- Orthogonalization is applied to vectors whose length is equal to the number of interface variables
- The part of the solution associated with the interior variables is computed in real arithmetic
- Ability to exploit a possible low-rank of $y^{(1)}, \dots, y^{(nev)}$
- Typically, not as accurate as RF-KRYLOV (do we always need high accuracy?)

Considerations

- RF-DDES is well-suited for 2D problems. What about 3D?
- Multi-MPI implementations are possible

4 D > 4 B > 4 B > 4 B > 9 Q P

VK (UMN) DD-KRYLOV 11-07-2017 32 / 33

Technical reports related to this talk

Main reference:

• V. Kalantzis, Y. Xi, and Y. Saad, "Domain decomposition Krylov rational filtering techniques for symmetric generalized eigenvalue problems".

See also:

- J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad, "PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers".
 In Proceedings of the ACM/IEEE Supercomputing Conference, 2016.
- V. Kalantzis, J. Kestyn, E. Polizzi, and Y. Saad, "Domain Decomposition Approaches for Accelerating Contour Integration Eigenvalue Solvers for Symmetric Eigenvalue Problems".

http://www-users.cs.umn.edu/kalantzi/

←□ → ←□ → ← □ → □ → ○○○