Minimization of DFA examples using Partition Method or Equivalence Theorem:

Minimization of DFA means reduction of states. If X & Y are two states in a DFA, we can combine these two states into single state $\{X,Y\}$ if they are not distinguishable i.e. equivalent or indistinguishable. Two states are said to be indistinguishable or equivalent state if δ (X, w) and δ (Y, w) are going to accepting /final states or going to non-accepting /non-final states. It is also called as State minimization.

Symbolically this can be represented as

1. $\delta(X, w) \in F$ and $\delta(Y, w) \in F$

OR

2. $\delta(X, w) \notin F \text{ and } \delta(Y, w) \notin F$

Minimization of DFA steps/rules of minimization of DFA in automata:

Minimization of DFA questions or problems using partition method can be solved by following steps(How to do minimization of DFA):

Step1: Try to delete all the states to which we cannot reach from initial state (unreachable state)

Step2: Draw state transition table

Step3: Find out equivalent set

Step4: Draw / Construct minimized DFA

Note:

0-Equivalent Set: Try to separate non-final states from final states.

n-Equivalent Set: We take information only from previous equivalent set i.e.(n-1)-Equivalent

Minimization of DFA Examples:

Example-2: Minimize the given DFA using partition method or construct minimized DFA using Equivalence method

Given DFA

Step-1: Try to delete all the states to which we cannot reach from initial state

DFA without unreachable state

Step-2: Draw state transition table of DFA:

Present State	Next State		
	Input a	Input b	
\rightarrow Q ₀	Q ₁	Q ₅	
Q ₁	Q ₆	*Q2	
*Q2	Q_0	*Q2	
Q ₄	Q ₇	Q ₅	
Q ₅	*Q2	Q ₆	
Q ₆	Q ₆	Q ₄	
Q 7	Q ₆	*Q2	

Step-3: Find out equivalent sets:

 $\begin{array}{l} \textbf{0-Equivalent Set:} \ [Q_0,\,Q_1,\,Q_4,\,Q_5\,\,,\,Q_6,\,Q_7] \ [Q_2] \\ \textbf{1-Equivalent Set:} \ [\ Q_0,\,Q_4,\,Q_6] \ [Q_1,\,Q_7] \ [Q_5] \ [Q_2] \\ \textbf{2-Equivalent Set:} \ [Q_0,\,Q_4] \ [Q_6] \ [Q_1,\,Q_7] \ [Q_5] \ [Q_2] \\ \textbf{3-Equivalent Set:} \ [Q_0,\,Q_4] \ [Q_6] \ [Q_1,\,Q_7] \ [Q_5] \ [Q_2] \\ \end{array}$

Minimization of DFA Examples:

Example-3: Minimize the given DFA using partition method or construct minimized DFA using Equivalence method

GIVE

Solution:

Step-1: Try to delete all the states to which we cannot reach from initial state

Step-2: Draw state transition table of DFA:

D	Next State		
Present State -	Input a	Input b	
→ Q ₀	*Q1	Q ₀	
*Q1	*Q2	*Q1	
*Q2	*Q1	*Q2	

Step-3: Find out equivalent sets:

0-Equivalent Set: [Q₀] [Q₁, Q₂]

1-Equivalent Set: [Q₀] [Q₁, Q₂]

Step-4: Draw minimized DFA:

Example 1:Construct a DFA, that accepts set of all strings over $\Sigma = \{a,b\}$ of length 2 i.e. |w| = 2

Example 2:Construct a DFA, that accepts set of all strings over $\Sigma = \{a,b\}$ of length at least 2 i.e. |w| > 2

Example 3: Construct a DFA, that accepts set of all strings over $\Sigma = \{a,b\}$ of length at most 2 i.e. |w| < 2

Example 4: Construct a DFA, that accepts string 'ab' over $\Sigma = \{a,b\}$

Example 5: Construct a DFA, accepting all strings ending with 'ab' over $\Sigma = \{a,b\}$

Example 6: Design DFA which checks whether a given binary number is divisible by 3 Example 7: Design DFA to accepts L, where L is set of strings in which 'a' always appears trippled over $\Sigma = \{a,b\}$

Example 8: Construct minimal DFA over $\Sigma = \{a,b\}$ which checks whether given

- a) Binary number is even
- b) Binary number is odd

Example 9: Construct minimal DFA which accepts set of all strings over $\Sigma = \{a,b\}$ in which every 'a' should never be followed by 'bb''.

Example 10: Construct minimal DFA over $\Sigma = \{a,b\}$ which accepts $L = \{a^n b^n | n, m > = 1\}$

Example 11: Construct minimal DFA over $\Sigma = \{a,b\}$ which accepts $L = \{a^n b^n | n, m > = 0\}$

Example 12: Construct a transition system which can accept strings over the alphabet a,b,.....,z containing either cat or rat.

Example 13: Design DFA for the following languages shown below over $\Sigma = \{a,b\}$

- a) L={w | w does not contains substring ab}
- b) L={ w | w contains neither substring ab or ba}
- c) L={ w | w is any string that does not contain exactly two a's}
- d) L={ w | w is any string except a & b}

Example 14: Consider below transition and verify whether the following strings will be accepted or not. Explain

a. 010101

b.0011

c. 111100

Fig: Tranaition diagram

Example 1: Construct a DFA, that accepts set of all strings over $\Sigma=\{a,b\}$ of length 2 i.e. |w|=2

SOLUTION:

 $\Sigma = \{a,b\}$

L = {All the strings of length 2}

 $L = \{ aa, ab, ba, bb \}$

> So DFA can be Q={ q_0 , q_1 , q_2 }, Σ ={a,b}, q_0 ={ q_0 }, F={ q_2 } and δ is given by the table

1)Transition diagram:

2)Transition Table:

D	Next State		
Present State -	Input a	Input b	
→ q ₀	q 1	q 1	
Q 1	q 2	q 2	
* q ₂	D	D	
D	D	D	

3)Transition function:

$$\delta(q_0, a) = q_1$$
 , $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_2$, $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = D$, $\delta(q_2, b) = D$
 $\delta(D, a) = D$, $\delta(D, b) = D$

Construct a DFA, that accepts set of all strings over $\Sigma = \{a,b\}$ of length at least 2 i.e. |w| > 2

SOLUTION:

 $\Sigma = \{a,b\}$

L = {All the strings of length at least 2}

 $L = \{aa, ab, ba, bb, aaa, \dots, bbb, \dots\}$

 \triangleright So DFA can be Q={ q₀ , q₁ , q₂},∑={a,b}, q₀={ q₀},F={ q₂} and δ is given by the table

1)Transition diagram:

2)Transition Table:

D	Next State		
Present State	Input a	Input b	
→ q ₀	Q1	Q 1	
q 1	q 2	92	
* q ₂	q ₂	q 2	

3)Transition function:

$$\delta(q_0, a) = q_1$$
 , $\delta(q_0, b) = q_1$

$$\delta(q_1, a) = q_2$$
 , $\delta(q_1, b) = q_2$

$$\delta(q_2, a) = q_2$$
, $\delta(q_2, b) = q_2$

Construct a DFA, that accepts set of all strings over $\Sigma = \{a,b\}$ of length at most 2 i.e. |w| < 2

SOLUTION:

$$\Sigma = \{a,b\}$$

L = {All the strings of length at most 2}

$$L = \{ \in, a, b, aa, ab, ba, bb \}$$

> So DFA can be Q={ q_0 , q_1 , q_2 }, Σ ={a,b}, q_0 ={ q_0 }, F={ q_0 , q_1 , q_2 } and δ is given by the table

1)Transition diagram:

2)Transition Table:

D	Next State		
Present State -	Input a	Input b	
→ *q ₀	q 1	q 1	
* q1	q 2	92	
* q ₂	D	D	
D	D	D	

3)Transition function:

$$\delta(q_0, a) = q_1$$
 , $\delta(q_0, b) = q_1$

$$\delta(q_1, a) = q_2$$
, $\delta(q_1, b) = q_2$

$$\delta(q_2, a) = D$$
, $\delta(q_2, b) = D$

$$\delta(D, a) = D$$
 $\delta(D, b) = D$