Certamen 2 Pregunta 1

1st Angelo Quiroz

Ingenieria civil electrica
Universidad Técnica Federico Santa María
Valparaiso, Chile
angelo.quiroz@usm.cl

2nd Enrique Guzmán Ingenieria civil electrica Universidad Técnica Federico Santa María Valparaiso, Chile enrique.guzmano@usm.cl

I. Introducción

Se quiere analizar la linea de transmision que representa un tren el cual recorre un trayecto de 100 [km] a 100 [km/h], este se muestra en la figura:

Fig. 1. Linea de Transmision analizada

II. FORMULACIÓN MATEMÁTICA DEL PROBLEMA

Los valores calculados de Z e Y son de 10.05+34.75j $[\Omega]$ y $296.48\cdot 10^{-6}j$ [S] respectivamente.

Pr = 200[pasajeros] $\cdot 0.25$ [kWh/km $\cdot [pasajeros] \cdot 100$ [km]

Se asumirá un factor de potencia unitario.

III. VARIACIÓN DE LA MAGNITUD DE TENSIÓN

Se trabajo utilizando el modelo π de parametros concentrados ABCD para una linea media, luego tomando como referencia el receptor tenemos:

$$I_r = \frac{S^*}{V_r} = \frac{5 \cdot 10^6}{V_r} \angle 0^{\circ} [A]$$

$$V_s = A \cdot V_r + B \cdot I_r$$

Asi obtenemos:

$$V_r = 17308.2 \angle 0^{\circ} [V]$$

$$\Delta V = 5191.8[V]$$

IV. ESTABILIDAD TEÓRICA

La máxima potencia soportada por el sistema teóricamente se logra cuando $\beta = \delta$ llegando a la siguiente formula:

$$P_{r \text{ max}} = \left(\frac{|V_s| \cdot |V_r|}{|B|}\right) - \left(\frac{|A| \cdot |V_r|^2}{|B|}\right) \cdot \cos(\beta - \alpha)$$

$$P_{r \text{ max}} = 8.48871[\text{MW}]$$

El límite mínimo sería la potencia mínima necesaria para que funcione el SEP.

V. Compensación shunt

A. Método alternativo

Complicaría los cálculos que se deben hacer, se propone poner la compensación en la barra del emisor y/o receptor.

B. Compensación dinámica

Ocupando un Qr calculado de -2.56 [Mvar] y una compensación shunt Yc de jX [S]:

$$V_s = (A + B \cdot Yc) \cdot V_r + B \cdot Ir \; ; \; Yc = jX$$

$$X = 0.042706[S]$$

Reflejado a parametros fisicos es equivalente a 409 [μ F]