Math 136 - Linear Algebra

Winter 2016

Lecture 14: February 3, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

14.1 Linear Mappings

Definition 14.1 If A is a $m \times n$ matrix, then we can define the function $f : \mathbb{R}^n \to \mathbb{R}^m$ as $f(\vec{x}) = A\vec{x}$ this is called a matrix mapping

Matrix Mapping Notation:

$$f(\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}) = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$f(x_1 \dots x_n) = (y_1 \dots y_n)$$

Theorem 14.2 If A is a $m \times n$ matrix and $f : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $f(\vec{x}) = A\vec{x}$, then for all $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $\vec{b}, \vec{c} \in \mathbb{R}$ we have :

$$f(b\vec{x} + c\vec{y}) = bf(\vec{x}) + cf(\vec{y})$$

Definition 14.3 A function $A: \mathbb{R}^n \to \mathbb{R}^m$ is said to be a **Linear mapping** is forevery $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $b, c \in \mathbb{R}$ we have :

$$L(b\vec{x} + c\vec{y}) = bL(\vec{x}) + cL(\vec{y})$$

Remarks

- If two linear mappings (L & M) are said to be equal for all $\vec{x} \in \mathbb{R}^n$, we write L = M
- A linear mapping $L: \mathbb{R}^n \to \mathbb{R}^n$ is called a linear operator

Theorem 14.4 Every linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$ can be repersented as a matrix mapping with a matrix whose i-th column is the image of the i-th standard basis vector of \mathbb{R}^n under L for all $1 \le i \le n$. That is, $L(\vec{x}) = [L]\vec{x}$ where,

$$[L] = [L(\vec{e_1}) \dots L(\vec{e_2})]$$

End of Lecture Notes Notes By: Harsh Mistry