Tools for Stat Theory HW2

Lemma 4.1.2

Let B represent an m \times n matrix, and let V represent a linear space of m \times n matrices. Then, for any matrix A in V, $A + B \in V$ if and only if $B \in V$.

Part 1: Suppose A in V and $B \in V \to \text{Show } A + B \in V$

Since A and B both are in V, by definition its sum will also be in V. B can be represented as B = A + B - B

Part 2: Suppose A in V and $A + B \in V \to \text{Show } B \in V$

Linear combinations of matrices in V are still in V by definition. Suppose A+B=C The linear combination $C-A\in V$ so $(B+A)-A\in V$ and therefore $B\in V$.

Lemma 4.2.2 (for column space)

For any m \times n matrix A and m \times p matrix B, $C(B) \subset C(A)$ if and only if there exists an n \times p matrix F such that B = AF.

Part 1: If F exists such that B = AF, show $C(B) \subset C(A)$.

 $B = [a_1, ..., a_k][f_1, ..., f_k] = Af_i$ Since B can be represented as a linear combination of A, it must be a subspace of A.

This notation is weird.

Part 2: If $C(B) \subset C(A)$, show F exists such that B = AF. By definition, if $C(B) \subset C(A)$, B can be represented by A in a linear combination, so F must exist. It's correct, but you should write you detailed proof.

Lemma 4.2.2 (for row space)

For any m × n matrix A and q × n matrix C, $R(C) \subset R(A)$ if and only if there exists a q × m matrix L such that C = LA.

Part 1: If L exists such that C = LA, show $R(C) \subset R(A)$.

 $C = [l_1^T, ..., l_k^T][a_1^T, ..., a_k^T] = Al_i^T$ Since C can be represented as a linear combination of A, it must be a subspace of A.

This notation is weird.

Part 2: If $R(C) \subset R(A)$, show L exists such that C = LA. By definition, if $R(C) \subset R(A)$, C can be represented by A in a linear combination, so L must exist.