Notas Orsay, Capítulo 4: Árvores de Hubbard

Eduardo Sodré

Abril de 2021

 $K\subset\mathbb{C}$ compacto full loc. conexo, $(U_i)_{i\in I}$ as componentes conexas de \mathring{K} :

- $\forall i \in I$, $\overline{U_i}$ é homeomorfo a $\overline{\mathbb{D}}$;
- $diam(U_i) \rightarrow 0$.

Escolhendo $\forall i$ ponto $w_i \in U_i$, existe homeomorfismo $\varphi_i : \overline{U_i} \to \overline{\mathbb{D}}$ tal que $\varphi_i(w_i) = 0$ e $\varphi_i|_{U_i}$ é conforme.

Arco permissível $\Gamma \subset K$ se $\forall i, \varphi_i(\Gamma \cap \overline{U_i})$ é contido na união de dois raios de $\overline{\mathbb{D}}$.

• $\forall x, y \in K$, existe único Γ arco permissível conectando x e y.

Noção de permissivelmente conexo e envoltória permissível.

•

envoltória permissível $[x_1, \ldots, x_n]$: é árvore topológica.

Ações nas Componentes de $\mathring{\mathcal{K}}_f$

 $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ polinômio de grau $d \geq 2$, $K_f = \mathcal{A}_f(\infty)^c$ conjunto de Julia cheio. Sejam $\{U_i\}_{i \in I} = \pi_0(\mathring{K}_f)$ as componentes de \mathring{K}_f , ou seja, as componentes limitadas do Fatou \mathcal{F} . São simplesmente conexas.

Mostra-se que f permuta as componentes de \mathring{K}_f ; $\forall i \in I$, $f(U_i) = U_j$, e é própria de grau d_i , sendo d_i a quantidade de pontos críticos de f em U_i contando multiplicidade. Portanto $\sum_i (d_i - 1) \leq d - 1$.

Proposição

Se f for sub-hiperbólica (Portanto K_f localmente conexo), então:

- a) Toda componente U_i é pré-periódica por f;
- b) Se *U_i* é periódica, ela contém ponto periódico atrator e é sua bacia imediata de atração;
- c) Todo ciclo de componentes de K_f contém ponto crítico.

Ações nas Componentes de \mathring{K}_f

Figura: K_f para f hiperbólico e componentes do interior

Ações nas Componentes de \mathring{K}_f

Demonstração.

a) Vale sem sub-hiperbolicidade: *Non-Wandering Theorem* de Sullivan (Carleson & Gamelin, cap. 4).

V vizinhança de J_f com métrica admissível μ , $\|T_x f\|_{\mu} \ge \lambda > 1$, $\forall x \in V' = f^{-1}(V)$. V_{ε} ε -vizinhança de J_f c.c. em V, e $V'_{\varepsilon} = f^{-1}(V_{\varepsilon})$.

 $L := K_f \setminus V'_{\varepsilon}$, e $f(L) = K_f \setminus V_{\varepsilon} \subset L$. Pensar como " ε -interior compacto" de K_f . Número finito de componentes U_i intersectam L, e são permutadas entre si; são pré-periódicas.

Dado $x \in U_i$, têm-se $d_{\mu}(f^n(x), J_f) \ge \lambda^n d(x, J_f)$; tomar n tal que $\lambda^n d(x, J_f) > \varepsilon$. Assim $f^n(x) \in L$, e U_i vai ser pré-periódica.

Ações nas Componentes de $\mathring{\mathcal{K}}_{\scriptscriptstyle f}$

Demonstração.

b) Se U_i é componente periódica, $f^k(U_i) = U_i$, $f^k(L \cap U_i) \subset L \cap U_i$. Portanto diam $f^k(L \cap U_i) < \text{diam}(L \cap U_i)$, tomando na métrica de Poincaré em U_i .

Então $f^k: U_i \to U_i$ não é isomorfismo: $\sup_{L \cap U_i} \|T_x f^k\|_{\mu} < 1$, fortemente atratora, vai ter ponto fixo α_i em $L \cap U_i$. (Pensar no Teorema de Pick). α_i atrai todo ponto em $L \cap U_i$; com $\varepsilon \to 0$, atrai todo ponto em U_i , U_i vai ser bacia imediata de α .

c) $f^k: U_i \to U_i$ holomorfo e próprio; grau d > 1, $d = \prod_{j=0}^{k-1} d_j > 1$, com d_j grau de $f: f^j(U_i) \to f^{j+1}(U_i)$. Terá $d_j > 1$, presença de ponto crítico.

Construir arcos permissíveis em K_f localmente conexo: escolha "canônica" para os isomorfismos $\varphi_i: U_i \to \mathbb{D}$?

Proposição

Se todo ponto crítico de f é periódico ou pré-periódico, então podemos escolher (simultaneamente!) mapas conformes $\varphi_i:U_i\to\mathbb{D}$ para todos $i\in I$ tais que, $\forall i$ com $f(U_i)=U_j$, tem-se

$$\varphi_j \circ f \circ \varphi_i^{-1} : \mathbb{D} \to \mathbb{D}$$

é da forma $z \mapsto z^{d_i}$. Se $d_i = 2$, a escolha é única.

Lema

Seja $h: \mathbb{D} \to \mathbb{D}$ holomorfa, própria, de grau d e fixa o 0. Suponha ainda que os pontos críticos são periódicos ou pré-periódicos. Então h é da forma $h(z) = \lambda z^d$, $|\lambda| = 1$.

Suficiente mostrar que multiplicidade de 0 como crítico é d-1; nesse caso, $h(z)=u(z)z^d$, u holomorfa, própria e $|u(z)|\to 1$ com $z\to 1$, portanto $u\equiv \lambda$ constante.

Seja A órbitas dos pontos críticos, conjunto finito. Ideia de "laçar" A com loop γ , e $\gamma_n = h^n(\gamma)$; Para n grande, γ_n homotópico a loop pequeno, e liftar para recobrimento $h^n: \mathbb{D} \setminus h^{-n}(A) \to \mathbb{D} \setminus A$.

Demonstração da Proposição.

Ideia: construir primeiro para componentes periódicas, depois definir para pré-imagens recursivamente.

Seja U_i componente de período k, α_i ponto periódico atrator em U_i . Escolhe $\varphi_i: U_i \to \mathbb{D}$ com $\varphi_i(\alpha_i) = 0$ e $h = \varphi_i \circ f^k \circ \varphi_i^{-1}$. Do lema, $h(z) = \lambda z^d$; Possível escolher φ_i tal que $\lambda = 1$.

Notação: $f(U_i) = U_j$, defina $f_*: I \to I$ por $f_*(i) = j$. Para $0 \le \ell \le k - 1$, escolhe-se unicamente $\varphi_{f_*^{\ell}(i)}: U_{f_*^{\ell}(i)} \to \mathbb{D}$ tal que

$$\varphi_{f_*^{\ell}(i)} \circ f^{\ell} \circ \varphi_i^{-1} : \mathbb{D} \to \mathbb{D}$$

é da forma $z \mapsto z^{d'}$, com $d' \mid d$. Assim, nesse ciclo de componentes, $\varphi_{f_*(j)} \circ f \circ \varphi_i^{-1}$ é $z \mapsto z^{d_j}$.

Demonstração.

Constrói-se as φ_i para os ciclos periódicos; e sabemos que toda componente é pré-periódica. Recursivamente em n constrói para f_*^n periódico.

Passo recursivo: se $c \in U_i$ é ponto crítico, f(c) é centro de $U_{f_*(i)}$; pois é único ponto pré-periódico nesse aberto.

Os pontos $\varphi_i^{-1}(0)$ são os **centros** das componentes U_i ; são unicamente determinados, independente das escolha sobre os φ_i .

Assume f tal que os pontos críticos são periódicos ou pré-periódicos; portanto f sub-hiperbólica e K_f localmente conexo. Estamos munidos de isomorfismos $\varphi_i:U_i\to\mathbb{D}$ tais que

$$\varphi_{f_*(i)} \circ f \circ \varphi_i^{-1} : \mathbb{D} \to \mathbb{D}, \quad z \mapsto z^{d_i}$$

e centros $\alpha_i = \varphi_i^{-1}(0)$; permite definir arcos e envoltórias permissíveis em $\{U_i\}_{i\in I} = \pi_0(\mathring{\mathcal{K}}_f)!$

Lembre que $\forall x, y \in K_f$, existe único arco permissível $[x, y]_f$; e com $x_0, \ldots x_n \in K_f$, $\bigcup [x_0, x_i]_f$ é árvore topológica.

Árvore de Hubbard de f: envoltória permissível da órbita dos pontos críticos.

Figura: Exemplo de Árvore de Hubbard (que roubei do PDF)

Lema

Seja $\Gamma \subset K_f$ arco permissível que não contém pontos críticos, exceto nas extremidades. Então $f|_{\Gamma}$ é injetora e $f(\Gamma)$ é arco permissível.

 γ caminho com imagem Γ . Suficiente mostrar que $\eta=f\circ\gamma$ é injetora; raios internos de \overline{U}_i levados em raios internos de $\overline{U}_{f_*(i)}$. η é localmente injetora; Ideia de pensar na "menor" auto-interseção e gerar contradição.

 $S = \{(t_1,t_2) \mid t_1 < t_2, \eta(t_1) = \eta(t_2)\} \subset [0,1] \times [0,1]$ compacto; existe $(t_1,t_2) \in S$ com $|t_1-t_2|$ mínimo. Tome $t_1 < t_3 < t_2$; $[\eta(t_1),\eta(t_3)]_f = [\eta(t_3),\eta(t_2)]_f$, mesmo arco permissível, contradição com injetividade.

Corolário

Se H é a envoltória permissível de $\{x_0, \ldots, x_n\}$, então f(H) é a envoltória permissível de $\{f(x_0), \ldots, f(x_n)\} \cup f(H \cap C)$, C os pontos críticos de f.

Com C os pontos críticos de f, e $(H_{\sigma})_{\sigma}$ os fechos das componentes conexas de $H_f \setminus C$, vale:

Proposição

f induz um mapa contínuo de H_f em si mesmo cuja restrição a cada H_σ é injetora.

Figura: Fechos das Componentes H_{σ} indicadas

Caso simples: $f(z) = z^2 + c$, com 0 periódico ou pré-periódico. Sejam $a_n = f^n(0)$, e A a órbita do 0, conjunto finito.

Caso periódico: $A = \{a_0, \ldots, a_{k-1}\}$, São pontos superatratores, componentes conexas U_i contendo a_i , bacias imediatas de atração. Sendo d_i o grau de $f: U_i \to U_{f_*(i)}$, $d_0 = 2$ e $d_i = 1$ para $i = 1, \ldots, k-1$:

$$U_0 \xrightarrow[2\to 1]{f} U_1 \xrightarrow[1\to 1]{f} U_2 \xrightarrow[1\to 1]{f} \cdots \xrightarrow[1\to 1]{f} U_{k-1} \xrightarrow[1\to 1]{f} U_0$$

Toda $U \in \pi_0(\mathring{K_f})$ é pré-periódica; portanto eventualmente é mapeada isomorficamente num U_i .

Eduardo Sodré Árvores de Hubbard 2021

Caso estritamente pré-periódico (Mizurewicz):

$$A=\{a_0,\ldots,a_\ell,a_{\ell+1},\ldots,a_{\ell+k-1}\}$$
, com $\ell\geq 1$ e $a_\ell=a_{\ell+k}$. Como $a_{\ell-1}\neq a_{\ell+k-1}$, $\ell\geq 2$ e $a_{\ell-1}=-a_{\ell+k-1}$ (a outra pré-imagem).

 K_f tem interior vazio: Se $U \in \pi_0(\mathring{K_f})$, existiria ciclo de componentes periódicas; teriam pontos periódicos atratores, e 0 pertence a uma das componentes. Mas a componente do 0 não é periódica, contradição.

Dada árvore de Hubbard H_f , seja $\nu(i)$ a quantidade de ramos da árvore H_f em a_i (o grau de a_i como vértice do grafo).

Proposição

Seja
$$f(z) = z^2 + c$$
, $c \in C$.

- a) Caso periódico: Se k=1, então c=0, e $\nu(0)=0$. Se k>1, existe r, com $2\leq r\leq k$, tal que $\nu(i)=1$ para $1\leq i\leq r$ e $\nu(i)=2$ para $r< i\leq k$. Os ângulos internos dos ramos de a_i são 0, se $\nu(i)=1$, e $\{0,1/2\}$, se
- b) Caso estritamente pré-periódico: Tem-se que $\nu(0) = 1$, e $\{0, 1/2\}$, se $\nu(i) = 2$.
- $\nu(1) = \nu(2) = 1 e$

$$1 = \nu(1) = \nu(2) \le \nu(3) \le \ldots \le \nu(l) = \ldots = \nu(l+k-1).$$

Demonstração.

a) Como $f(H_f) \subset H_f$, ramos de a_i são mapeados em ramos de a_{i+1} ; Multiplicidade 1 se $i \neq 0$, e multiplicidade 2 se i = 0. Portanto

$$\nu(0) \le 2\nu(1), \quad \nu(i) \le \nu(i+1) \text{ se } i \ne 0.$$

Se $H_f \neq \{a_0\}$, árvore tem pelo menos 2 extremidades; existem dois *i* com $\nu(i) = 1$, então

$$1 = \nu(1) = \nu(2) \le \ldots \le \nu(0) \le 2.$$

Se
$$k = 2$$
, $\nu(0) = \nu(1) = 1$; se $k > 2$, $1 = \nu(1) = \nu(2) \le \nu(0) \le 2$.

Para os ângulos internos, ver $q: \mathbb{T} \to \mathbb{T}$, $t \mapsto 2t$, e como f age neles.

Eduardo Sodré Árvores de Hubbard

Demonstração.

b) Ainda temos que

$$\frac{1}{2}\nu(0) \leq \nu(1) = \nu(2) \leq \ldots \leq \nu(\ell) \leq \ldots \leq \nu(\ell+k-1) \leq \nu(\ell).$$

Se $\nu(0)=1$, Então $f:H_f\to H_f$ seria injetor; contradição com $f(a_{\ell+k-1})=f(a_{\ell-1})$. Como H_f ainda tem duas extremidades, $1=\nu(1)=\nu(2)$, então $\nu(0)=2$, e

$$1 = \nu(1) = \nu(2) \leq \ldots \leq \nu(\ell) = \ldots = \nu(\ell + k - 1).$$

Eduardo Sodré Árvores de Hubbard 2021

Obrigado!

