3499_8011 08/20/02 10:51

> Each R3 is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

> > Each n is independently 1 or 2;

Each is independently 0, 1, 2, 3, or 4;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; haloalkyl; SR5; OR5; $OC(O)R^5; NR^5R^5; NR^5R^6; NR^5R^6; NR^5R^{16}; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5;$ $S(O)_{n}R^{5}:S(O)_{n}NR^{5}R^{5};\ NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}(COOR^{5});$ $NR^{5}C(O)R^{8};\ NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8};\ NR^{5}C(O)C(O)NR^{5}R^{5};$ $NR^{5}C(O)C(O)NR^{5}R^{6}; OC(O)NR^{5}R^{5}; QS(O)_{n}NR^{5}R^{5}; NR^{5}S(O)_{n}OR^{5}; P(O)(OR^{5})_{2}; C1-C10 \ alkyline (C1)(OR^{5})_{2}; C1-C10 \ alkyline (C1)(OR^{5}$ substituted with 1-3 independent aryl, R7 or R8; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1/3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=N R⁵) NR⁵R⁵, or $S(O)_n R^5$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(\Theta)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$ $(COOR^{10}), S(O)_{p}NR^{10}R^{10}; NR^{10}S(O)_{p}NR^{10}R^{10}; NR^{10}S(O)_{p}R^{10}; or P(O)(OR^{5})_{2};$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo;\sulfur; oxygen; CF3; SR5; $OR^5;\ OC(O)R^5;\ NR^5R^5;\ NR^5R^6;\ NR^6R^6;\ COOR^5;\ NO_2;\ CN;\ C(O)R^5;\ CO)NR^5R^5;\ S(O)_nNR^5R^5;$ NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_uR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

gl'

5 M2

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 19 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹, NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃. OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(Q)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_{a}R^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₅, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; haloalkyl; COOR⁵; C(O)R⁵;

 $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$; $S(O)_nNR^5R^5$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; haloalkyl; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nR⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each haloalkyl is independently a C1-C10 alkyl substituted with one or more halogen atoms, selected from F. Cl. Br, or I, including perhaloalkyl;

Each aryl is independently a 6-carbon monocyclic, 10-carbon bicyclic or 14-carbon tricyclic aromatic ring system optionally substituted with 1-3 independent C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; R9; halo; haloalkyl; OR10; SR10; NR10R10; NR10R11; COOR10; NO2; CN; C(O)R10; C(O)C(O)R10; C(O)NR10R10; N(R10)C(O)R10; N(R10)C(O)R10; N(R10)C(O)R10; N(R10)C(O)R10; N(R10)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; NR10C(O)C(O)R10; C1-C10 alkyl substituted with 1-3 independent R9, halo, CF3, OR10, SR10, OC(O)R10, NR11R11, NR10R10, NR10R11, COOR10, NO2, CN, C(O)R10, OC(O)NR10R10, C(O)NR10R10, N(R10)C(O)R10, N(R10) (COOR10, SC10, SC10, OC(O)R10, NR11R11, NR10R10, NCR10, SC10, SC10, OC(O)R10, NCR11R11, NR10R10, NCR10, SC10, OC(O)R10, NCR11R11, NR10R10, NCR10, SC10, OC(O)R10, NCR11R11, NR10R10, NCR10R10, SC10, OC(O)R10, NCR11R11, NR10R10, NCR10R10, NCR10R10, NCR10, N

Each heterocyclyl is independently a 3-8 membered nonaromatic monocyclic, 8-12 membered nonaromatic bicyclic, or 11-14 membered nonaromatic tricyclic, ring system having 1-4 heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

Each heteroaryl is independently a 5-8 membered aromatic monocyclic, 8-12 membered aromatic bicyclic, or 11-14 membered aromatic tricyclic ring system having 1-4

6499_8011 10:52

heteroatoms if monocyclic, 1-8 heteroatoms if bicyclic, or 1-10 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S;

provided R² and R² are not both 1-alkylpyridinium, both 4-pyridyl or both morpholino; further provided R1 is not NH2;

further provided R and R2 are not both hydroxy, methoxy, ethoxy or phenoxy;

further provided R¹ is not phenoxy, acetylamino, or methylamino when R² is morpholino;

further provided R¹ is not methoxy or hydroxy when R² is 4-chlorophenylamino;

further provided R1 is not phenoxy, methoxy or ethoxy when R2 is 4-

aminophenylsulfonylamino;

further provided R1 is not phenoxy when R2 is 4-methylthiophenylamino or sulfanilamido;

and further provided R¹ is not hydroxy when R² is hexylamino, phenylamino, 3methylphenylamino, 2-ethoxyphenylamino, 4 methylthiophenylamino, 2ethylsulfinylphenylamino, 3-propylsulfonylphenylamino, 4-acetylphenylamino, 4sulfamylphenylamino, 3-nitrophenylamino, 4-cyanophenylamino, 4-carboxyphenylamino, 4-(acetylamino)phenylamino, 4-biphenylamino, 1-naphthylamino, 4-pyridylamino, 2thiazolylamino, 4-quinolylamino, and 2-pyrimidinylamino,

2. The compound of claim 1 wherein,

R¹ is independently R³;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; NR^5R^{16}; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_0R^5; C(O)R^5; C(O)R^$ $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5(COOR^5)$; $NR^5C(O)R^8$; OC(O)NR⁵R⁵; OS(O)_uNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

AMGEN

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R^{10},$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted

3499_8011

with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, $NR^{13}R^{13}$, $COOR^{13}$, $NO_{2\tau}CN$, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkonyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl, C1-C10 alkyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴. SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^5R^5; NR^5R^6; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_nR^5; S(O)_nNR^5R^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^5; S(O)_nNR^$ $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5(COOR^5)$; $NR^5C(O)R^8$; $NR^5S(O)_nNR^5R^5$; $NR^{5}S(O)_{b}R^{5}; \ NR^{5}S(O)_{b}R^{8}; \ NR^{5}C(O)C(O)NR^{5}R^{5}; \ NR^{5}C(O)C(O)NR^{5}R^{6}; \ OC(O)NR^{5}R^{5};$ OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

3. The compound of claim 1 wherein,

R¹ is independently heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n R⁵:

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵: NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

10:54 \$499 8011

Each R⁰ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; SR¹⁰; OR¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

3499_801

 $C(O)NR^5R^5$; $S(O)_nR^5$; $S(O)_nNR^5R^5$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵ S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

4. The compound of claim 1 wherein,

 R^1 is independently phenyl optionally substituted with 1-5 independent R^4 ; R^2 is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O) R^5 ; NR5 R^5 ; NR5 R^6 ; NR5 R^6 ; NR5 R^6 ; NO2; CN; C(O) R^5 ; C(O)C(O) R^5 ; C(O)NR5 R^5 ; S(O)_aR5; S(O)_aR5; NR5C(O)NR5 R^5 ; NR5C(O)NR5 R^5 ; NR5C(O)R6; NR5C(O)

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

R⁵:

08/20/02 10:54 **23**498-8011

> Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}),\ S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nR^{10};\ or\ P(O)(OR^5)_2;$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; $OR^5; OC(O)R^5; NR^5R^5; NR^5R^6; NR^6R^6; COOR^5; NO_2; CN; C(O)R^5; C(O)NR^5R^5; S(O)_0NR^5R^5; S(O)_0NR^5; S(O)_0NR^5R^5; S(O)_0NR^5R^5; S(O)_0NR^5R^5;$ $NR^5C(O)NR^5R^5$; $NR^5C(O)R^9$; $NR^5S(O)_0NR^5R^5$; $NR^5S(O)_0R^9$; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR^{10} ; $NR^{10}R^{10}$; $NR^{10}R^{11}$; $NR^{11}R^{11}$; $COOR^{10}$; NO_2 ; CN; $C(O)R^{10}$; $S(O)_nR^{10}$; $S(O)_nNR^{10}R^{10}$; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 $cycloalkenyl, OR^{12}, SR^{12}, NR^{12}R^{12}, COOR^{12}, NO_2, CN, C(O)R^{12}, C(O)NR^{12}R^{12}, NR^{12}C(O)R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}R^{12}R^{12}, C(O)R^{12}R^{12}R^{12}, C(O)R^{12}R^{12}R^{12}R^{12}, C(O)R^{12}R^$ N(R¹²)(COOR¹²), S(O)_aNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$; Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl: C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C25 6498 301

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³. NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O)R5; NR5R5; NR5R6; COOR5; NO2; CN; C(O)R5; C(O)C(O)R5; C(O)NR5R5; S(O)nNR5R5; S(O)nNR5R5; NR5C(O)NR5R5; NR5C(O)C(O)R5; NR5C(O)R5; NR5C(O)R5; NR5C(O)R8; NR5C(O)R8; NR5C(O)nNR5R5; NR5C(O)R8; NR5C(O)NR5R5; NR5C(O)NR5R5; NR5C(O)C(O)NR5R5; NR5C(O)C(O)NR5R5; NR5C(O)C(O)NR5R5; OC(O)NR5R5; OC(O)N

5. The compound of claim 1 wherein,

Each R^1 and R^2 is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O) R^5 ; NR5 R^5 ; NR5 R^6 ; NR5 R^6 ; NR5 R^6 ; NO2; CN; C(O) R^5 ; C(O)C(O) R^5 ; C(O)NR5 R^5 ; S(O) R^5 ; S(O) R^5 ; S(O) R^5 ; NR5 $R^$

 $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^5$; $NR^5S(O)_nR^8$; $NR^5C(O)C(O)NR^5R^5$; $NR^5C(O)C(O)NR^5R^6$; $OC(O)NR^5R^5$; $OS(O)_nNR^5R^5$; $NR^5S(O)_nOR^5$; $P(O)(OR^5)_2$; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 :

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃, SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶, NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsarurated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CP₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-

3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

R⁵:

 $\delta\hspace{-0.07cm} \setminus$ The compound of claim 1 wherein,

R¹ is independently NHR⁵;

R² is independently NHR³;

Each R³ is independently aryl; phonyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl, aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen: CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R° is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nR¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1 C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

Je.

50h)

C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5}; NR^{5}R^{6}; COOR^{5}; NO_{2}; CN; C(O)R^{5}; C(O)C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{0}R^{5}; S(O)_{n}NR^{5}R^{5};$ $NR^{5}C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)R^{5}$; $NR^{5}C(O)R^{5}$; $NR^{5}(COOR^{5})$; $NR^{5}C(O)R^{8}$; $NR^{5}S(O)_{0}NR^{5}R^{5}$; $NR^{5}S(O)_{n}R^{5}; NR^{5}S(O)_{n}R^{8}; NR^{5}C(O)C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)NR^{5}R^{6}; OC(O)NR^{5}R^{5};$ OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; Cl₂C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; provided R1 is not NH2.

7. The compound of claim 1 wherein,

R¹ is independently NHR⁶;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5};\ NR^{5}R^{6};\ NR^{5}R^{16};\ COOR^{5};\ NO_{2};\ CN;\ C(O)R^{5};\ C(O)C(O)R^{5};\ C(O)NR^{5}R^{5};\ S(O)_{n}R^{5}=0$ ${}^{5}(O)_{11}NR^{5}R^{5}; NR^{5}C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)R^{5}; NR^{5}C(O)R^{5}; NR^{5}(COOR^{5}); NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{6};\ NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_aNR⁵R⁵; NR⁵S(O)_aOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

R5:

08/20/02

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}), S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nNR^{10}R^{10}; NR^{10}S(O)_nR^{10}; or P(O)(OR^5)_2;$

AMGEN

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nNR^5R^5$; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF3; haloalkyl; SR 10, $OR^{10}; NR^{10}R^{10}; NR^{10}R^{11}; NR^{11}R^{11}; COOR^{10}; NO_2; CN; C(O)R^{10}; S(O)_{a}R^{10}; S(O)_{n}NR^{10}R^{10}; or$ C(O)NR10R10:

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 $cycloalkenyl, OR^{12}, SR^{12}, NR^{12}R^{12}, COOR^{12}, NO_2, CN, C(O)R^{12}, C(O)NR^{12}R^{12}, NR^{12}C(O)R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}R^{12}, C(O)R^{12}R^{12}, C(O)R^$ N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_{m}NR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2**3**499 80

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵, OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)₀NR⁵R⁵; NR⁵S(O)₀OR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

8. The compound of claim 1 wherein,

R¹ is independently OR⁵;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃. SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; COOR⁵; COOR⁵

 $S(O)_nNR^5R^5; NR^5C(O)NR^5R^5; NR^5C(O)C(O)R^5; NR^5C(O)R^5; NR^5(COOR^5); NR^5C(O)R^8; NR^5S(O)_nNR^5R^5; NR^5S(O)_nR^5; NR^5S(O)_nR^8; NR^5C(O)C(O)NR^5R^5; NR^5C(O)C(O)NR^5R^6; OC(O)NR^5R^5; OS(O)_nNR^5R^5; NR^5S(O)_nOR^5; P(O)(OR^5)_2; C1-C10 alkyl substituted with 1-3 independent aryl, <math>R^7$ or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

AMGEN

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_u$

R⁵;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂, CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic. 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heterostoms if monocyclic. 1-6 heterostoms if bicyclic, or 1-9 heterostoms if tricyclic, said heterostoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

6499_8011 10:58

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent &1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR\2, SR12, NR12R12, COOR12, NO2, CN, C(O)R12, C(O)NR12R12, NR12C(O)R12, $N(R^{12})(COOR^{12})$, $S(O)_aNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COQR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8, and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5}; NR^{5}R^{6}; COOR^{5}; NO_{2}; CN; C(O)R^{5}; C(O)C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{h}R^{5}: S(O)_{h}NR^{5}R^{5};$ $NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}C(O)R^{5};\$ $NR^5S(O)_nR^5;\ NR^5S(O)_nR^8;\ NR^5C(O)C(O)NR^5R^5;\ NR^5C(O)C(O)NR^5R^6;\ \Diamond C(O)NR^5R^5;$

OS(O), NR5R5; NR5S(O), OR5; P(O)(OR5)2; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

provided R is not methoxy or hydroxy when R2 is 4-chlorophenylamino; further provided R^1 is not phenoxy, methoxy or ethoxy when R^2 is 4-aminophenylsulfonylamino; and

further provided R^1 is not phenoxy when R^2 is 4-methylthiophenylamino or sulfanilamide.

9. The compound of claim 1 wherein,

3499_8011

R1 is independently SR5;

R² is independently NHR³;

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_4 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5$: $S(O)_{b}NR^{5}R^{5}; NR^{5}C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)R^{5}; NR^{5}C(O)R^{5}; NR^{5}(COOR^{5}); NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5};\ NR^{5}S(O)_{n}R^{5};\ NR^{5}S(O)_{n}R^{8}\backslash NR^{5}C(O)C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)NR^{5}R^{6};$ $OC(O)NR^5R^5$; $OS(O)_aNR^5R^5$; $NR^5S(O)_nOR^5$; $P(O)(OR^5)_2$; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R°; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each \mathbb{R}^6 is independently $C(O)\mathbb{R}^5$, $C(O)\mathbb{N}\mathbb{R}^5\mathbb{R}^5$, $C(=\mathbb{N}\mathbb{R}^5)\mathbb{N}\mathbb{R}^5\mathbb{R}^5$, or

 $S(O)_{\pi}R^{5};$

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}), S(O)_{n}NR^{10}R^{10}; NR^{10}S(O)_{n}NR^{10}R^{10}; NR^{10}S(O)_{n}R^{10}; or \ P(O)(OR^{5})_{2};$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, r 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR5; OC(O)R5; NR5R6; NR6R6; COOR5; NO2; CN; C(O)R5; C(O)NR5R5; S(O)_nNR5R5; NR5C(O)NR5R5; NR5C(O)R9; NR5S(O)_nNR5R5; NR5S(O)_nR9; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³.

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl; Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸, and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵S(O)₀R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)₀NR⁵R⁵; NR⁵S(O)₀OR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

10. The compound of claim 1 wherein:

R² is independently NHR³;

R1 is one of the following groups:

$$R^4$$
 R^4
 R^4
 R^4
 R^4

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵ NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n
R⁵:

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰;

08/20/02

OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵;

 $NR^5C(O)NR^5R^5; NR^5C(O)C(O)R^5; NR^5C(O)R^5; NR^5(COOR^5); NR^5C(O)R^8; NR^5S(O)_nNR^5R^5; NR^5S(O)_nR^5; NR^5S(O)_nR^5; NR^5C(O)C(O)NR^5R^5; NR^5C(O)C(O)NR^5R^6; OC(O)NR^5R^5; OS(O)_nNR^5R^5; NR^5S(O)_nOR^5; P(O)(OR^5)_2; C1-C10 alkyl substituted with 1-3 independent aryl, <math>R^7$ or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

11. The compound of claim 1 wherein,

R¹ is independently heterocyclyl optionally substituted with 1-4 independent R⁴ on each ring, wherein said heterocyclyl is not unsubstituted piperidine;

R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be

6499_8011

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_uNR^5R^5$; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R7, R9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R7, R9 or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0. 1. 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur, oxygen; CF3; haloalkyl; SR10; $OR^{10}; NR^{10}R^{10}; NR^{10}R^{11}; NR^{11}R^{11}; COOR^{10}; NO_2; CN; C(O)R^{10}; S(O)_nR^{10}; S(O)_nNR^{10}R^{10}; or$ C(O)NR¹⁰R¹⁰:

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyloop optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

C(O)NR⁵R⁵: S(O)_nR⁵ S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

12. The compound of claim 1 wherein,

substituted with 1-3 independent aryl, R7 or R8; and

Each R¹ is independently heteroaryl substituted with 1-4 independent R⁴ on each ring, wherein said heteroaryl comprises at least one nitrogen heteroatom and said heteroaryl is attached at said nitrogen heteroatom;

Each R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵, P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; cor R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 ;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3

independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

13. The compound of claim 1 wherein,

8499 8011

Each R¹ is independently heterocyclyl substituted with 1-4 independent R⁴ on each ring, wherein said heterocyclyl is not unsubstituted piperidine, and said heterocyclyl comprises at least one nitrogen heteroatom and said heterocyclyl is attached at said nitrogen heteroatom;

Each R² is independently NHR³;

Each R^3 is independently aryl; phenyl optionally substituted with 1-5 independent R^4 on each ring; or heteroaryl optionally substituted with 1-4 independent R^4 on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶: COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 :

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R^{10},$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵;

2499 801

NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

4 2499 8011

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O)R5; NR5R5; NR5R6; COOR5; NO2; CN; C(O)R5; C(O)C(O)R5; C(O)NR5R5; S(O)nR5R5; S(O)nNR5R5; NR5C(O)NR5R5; NR5C(O)C(O)R5; NR5C(O)R5; NR5C(O)R6; NR5C(O

14. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each R¹ is independently of the formula:

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nR⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸, NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶;

OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; r C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ **R**⁵;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11},COOR^{10},NO_2,CN,C(O)R^{10},OC(O)NR^{10}R^{10},C(O)NR^{10}R^{10},N(R^{10})C(O)R^{10},N(R^$ $(COOR^{10}),\ S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nNR^{10}R^{10};\ NR^{10}S(O)_nR^{10};\ or\ P(O)(OR^5)_2;$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; halo; sulfur; oxygen; CF3; SR5; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nNR^5R^5$; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF3; haloalkyl; SR10; $OR^{10}; NR^{10}R^{10}; NR^{10}R^{11}; NR^{11}R^{11}; COOR^{10}; NO_2; CN; C(O)R^{10}; S(O)_nR^{10}; S(O)_nNR^{10}R^{10}; or$ C(O)NR10R10;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10

3499 8011

cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹⁵, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_uR⁵ S(O)_uNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_uNR⁵R⁵; NR⁵S(O)_uR⁸; NR⁵S(O)_uR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OS(O)_uNR⁵R⁵; NR⁵S(O)_uOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

15. The compound of claim 1 wherein,

23499 8011

Each R² is independently NHR³;

Each R¹ is independently of the formula:

Each X is independently O or S;

Each R3 is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 : NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_0R^{51}$ $S(O)_bNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)C(O)R^5$; $NR^5C(O)R^5$; $NR^5C(O)R^5$; $NR^5C(O)R^8$; $NR^{5}S(O)_{n}NR^{5}R^{5}; NR^{5}S(O)_{n}R^{5}; NR^{5}S(O)_{n}R^{8}; NR^{5}C(O)C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n

R5;

L:06 **3**499 8011

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo: sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

16. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each R1 is independently of the formula:

Each X is independently O or S;

2499_8011

Each R³ is independently aryl: phenyl optionally substituted with 1-5 independent R4 on each ring; or heteroaryl optionally substituted with 1-4 independent R4 on each ring;

Each R4 is independently selected from H. C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; NR^5R^{16} ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^{5}$; $S(O)_{n}NR^{5}R^{5}$; $NR^{5}C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)R^{5}$; $NR^{5}C(O)R^{5}$; $NR^{5}(COOR^{5})$; $NR^{5}C(O)R^{8}$; $NR^{5}S(O)_{n}NR^{5}R^{5}$; $NR^{5}S(O)_{n}R^{5}$; $NR^{5}S(O)_{n}R^{8}$; $NR^{5}C(O)C(O)NR^{5}R^{5}$; $NR^{5}C(O)C(O)NR^{5}R^{6}$; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R8; or C2-C10 alkenyl substituted with 1-3 independent aryl, R7 or R8;

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or S(O)_n R5;

Each R⁷ is independently halo. CF₃, SR¹⁰, OR¹⁰, OC(O)R¹⁰, NR¹⁰R¹⁰, NR¹⁰R¹¹, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ $(COOR^{10})$, $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_0R^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O. N. or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^9 ; halo; sulfur; oxygen; CF_3 ; SR^5 ; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nNR^5R^5$; $NR^5C(O)NR^5R^5$; $NR^5C(O)NR^5$; NR^5

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_uR¹⁰; S(O)_uNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂. CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴,

SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently II; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)₀R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

17. The compound of claim 1 wherein,

Each R² is independently NHR³;

Each \mathbb{R}^1 is independently of the formula:

Each R³ is independently aryl; phenyl optionally substituted with 1-5 independent R⁴ on each ring; or heteroaryl optionally substituted with 1-4 independent R⁴ on each ring;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R¹⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nR⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)R⁶; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_n$ R^5 :

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵S⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substitutent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰;

 OR^{10} ; $NR^{10}R^{10}$; $NR^{10}R^{11}$; $NR^{11}R^{11}$; $COOR^{10}$; NO_2 ; CN; $C(O)R^{10}$; $S(O)_nR^{10}$; $S(O)_nNR^{10}R^{10}$; or $C(O)NR^{10}R^{10}$;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰.

Each R¹² is independently H: C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl, C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₅; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R¹⁷ is independently NR⁵R¹⁶; OR⁵; SR⁵; or halo; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycl alkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵;

 $NR^5R^5; NR^5R^6; COOR^5; NO_2; CN; C(O)R^5; C(O)C(O)R^5; C(O)NR^5R^5; S(O)_nR^5; S(O)_nNR^5R^5; NR^5C(O)NR^5R^5; NR^5C(O)R^5; NR^5C(O)R^5; NR^5C(O)R^5; NR^5C(O)R^8; NR^5S(O)_nNR^5R^5; NR^5S(O)_nR^5; NR^5S(O)_nR^6; NR^5C(O)C(O)NR^5R^5; NR^5C(O)C(O)NR^5R^6; OC(O)NR^5R^5; OS(O)_nNR^5R^5; NR^5S(O)_nOR^5; P(O)(OR^5)_2; C1-C10 alkyl substituted with 1-3 independent aryl, <math>R^7$ or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 .

 a^{\prime}

18. The compound of claim 1 wherein,

Each R is independently one of the following groups:

wherein m is 0, 1, 2, 3 or 4;

Each R⁴ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵C(O)R⁶; NR⁵S(O)_nR⁵; NR⁵S(O)_nR⁶; NR⁵S(O)_nR⁶; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

3499_8011

Each R^6 is independently $C(O)R^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_uR^5$;

AMGEN

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})C(O)$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)₀R¹⁰; S(O)₀NR¹⁰R¹⁰; or C(O)R¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_nR^{10}$;

3499_8011

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF3, OR13, SR13, $NR^{13}R^{13}$, $COOR^{13}$, NO_2 , CN, $C(O)R^{13}$, $C(O)NR^{13}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, $C(O)R^{13}$, $C(O)NR^{15}R^{13}$, $NR^{13}C(O)R^{13}$, or $OC(O)R^{13}$;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR14, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; COOR5; C(O)R5; C(O)C(O)R5; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R²² is independently C2-C9 alkyl substituted with 1-2 independent aryl, R⁷. or R8; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; NR^5R^5 ; NR^5R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nR^5: S(O)_nNR^5R^5$; $NR^{5}C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)R^{5}; NR^{5}C(O)R^{5}; NR^{5}(COOR^{5}); NR^{5}C(O)R^{8}; NR^{5}S(O)_{n}NR^{5}R^{5};$ $NR^{5}S(O)_{h}R^{5}; NR^{5}S(O)_{h}R^{8}; NR^{5}C(O)C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)NR^{5}R^{6}; OC(O)NR^{5}R^{5};$ OS(O), NR⁵R⁵; NR⁵S(O), OR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

19. The compound of claim I wherein, Each R¹ is independently

wherein m is 0, 1, 2, 3 or 4;

Each R4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R8; halo; CF3; SR5; OR5; OC(O)R5; $NR^{5}R^{5}; NR^{5}R^{6}; NR^{5}R^{16}; COOR^{5}; NO_{2}; CN; C(O)R^{5}; C(O)C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{n}R^{5}; C(O)R^{5}; C(O)NR^{5}R^{5}; S(O)_{n}R^{5}; C(O)R^{5}; C(O)R^{5};$ $S(O)_{n}NR^{5}R^{5};\ NR^{5}C(O)NR^{5}R^{5};\ NR^{5}C(O)C(O)R^{5};\ NR^{5}C(O)R^{5};\ NR^{5}(COOR^{5});\ NR^{5}C(O)R^{8};$ $NR^{5}S(O)_{n}NR^{5}R^{5}; NR^{5}S(O)_{n}R^{5}; NR^{5}S(O)_{n}R^{8}; NR^{5}C(O)C(O)NR^{5}R^{5}; NR^{5}C(O)C(O)NR^{5}R^{6};$ OC(O)NR⁵R⁵; OS(O)₀NR⁵R⁵; NR⁵S(O)₀OR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R5 is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R9; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R7 or R9 groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R7 or R⁹ groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R⁶ is independently C(O)R⁵, COOR⁵, C(O)NR⁵R⁵, C(=NR⁵)NR⁵R⁵, or $S(O)_{D}R^{5}$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{10}R^{11}$, $NR^{10}R^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)₀NR⁵R⁵; NR⁵C(O)R⁹; NR⁵S(O)₀NR⁵R⁵; NR⁵S(O)₀R⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R^{10} is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF_3 , OR^{12} , SR^{12} , $NR^{12}R^{12}$, $COOR^{12}$, NO_2 , CN, $C(O)R^{12}$, $C(O)NR^{12}R^{12}$, $NR^{12}C(O)R^{12}$, $N(R^{12})(COOR^{12})$, $S(O)_nNR^{12}R^{12}$, or $OC(O)R^{12}$;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10

<u>₹498</u>8011

alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

a

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R²² is independently C2-C9 alkyl substituted with 1-2 independent aryl, R⁷, or R⁸;

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵ S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸; and

Each R^{24} is independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^9 ; halo; sulfur, oxygen; CF_3 ; SR^5 ; OR^5 ; $OC(O)R^5$; NR^5R^5 ; NR^5R^6 ; NR^6R^6 ; $COOR^5$; NO_2 ; CN; $C(O)R^5$; $C(O)NR^5R^5$; $S(O)_nNR^5R^5$; $NR^5C(O)R^9$; $NR^5S(O)_nNR^5R^5$; $NR^5S(O)_nR^9$; C1-C10 alkyl substituted with 1-3 independent R^7 , R^9 or aryl; or C2-C10 alkenyl substituted with 1-3 independent R^7 , R^9 or aryl.

20. The compound of claim 1 wherein,

Each R is independently one of the following:

$$R^{19}$$
 or R^4 or R^4

wherein

Each halo is selected from fluoro, chloro, bromo and iodo;

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF3; SR5; OR5; OC(O) R^5 ; NR5 R^5 ; NR5 R^6 ; NR5 R^6 ; NR5 R^6 ; NO2; CN; C(O) R^5 ; C(O)C(O) R^5 ; C(O)NR5 R^5 ; S(O)_nR5; S(O)_nR5; S(O)_nR5; NR5C(O)C(O)R5; NR5C(O)R5; NR5C(O)R8; NR5C(O)C(O)NR5R6; NR5C(O)C(O)C(O)NR5R6; NR5C(O)C(O)C(O)NR5R6; NR5C(O)C(O)C(O)NR5R6; NR5C(O)C(O)C(O)C(O)C(O)C(O)C(O)C(O

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; groups; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_0R^5$;

Each R^7 is independently halo, CF_3 , SR^{10} , OR^{10} , $OC(O)R^{10}$, $NR^{10}R^{10}$, $NR^{10}R^{11}$, $NR^{11}R^{11}$, $COOR^{10}$, NO_2 , CN, $C(O)R^{10}$, $OC(O)NR^{10}R^{10}$, $C(O)NR^{10}R^{10}$, $N(R^{10})C(O)R^{10}$, $N(R^{10})$ ($COOR^{10}$), $S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nNR^{10}R^{10}$; $NR^{10}S(O)_nR^{10}$; or $P(O)(OR^5)_2$;

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl, C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R³; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be

substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_nR¹⁰; S(O)_nNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

a'

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)_nNR¹²R¹², or OC(O)R¹²;

Each R^{11} is independently $C(O)R^{10}$, $COOR^{10}$, $C(O)NR^{10}R^{10}$ or $S(O)_{a}R^{10}$;

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R^{16} is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R^7 , R^8 , or phenyl optionally substituted with substituted with 1-4 independent R^{23} ; or C2-C10 alkenyl substituted with 1-3 independent aryl, R^7 or R^8 ;

Each R¹⁹ is independently H or C1-C6 alkyl; and

Each R^{23} is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁶; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵

The compound of claim 1 wherein,
 Each R¹ is independently

Each R^4 is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R^8 ; halo; CF₃; SR⁵; OR⁵; OC(O) R^5 ; NR⁵R⁵; NR⁵R⁶; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nR⁵: S(O)_nR⁵R⁵; NR⁵C(O)NR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵C(O)R⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OC(O)NR⁵R⁵; NR⁵S(O)_nR⁵; NR⁵S(O)_nOR⁵; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁶; OS(O)_nNR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R⁵ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; haloalkyl; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁹ groups; C3-C10 cycloalkyl substituted with 1-3 independent aryl, R⁷ or R⁹; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁹;

Each R^6 is independently $C(O)R^5$, $COOR^5$, $C(O)NR^5R^5$, $C(=NR^5)NR^5R^5$, or $S(O)_0R^5$;

 $Each\ R^7\ is\ independently\ halo,\ CF_3,\ SR^{10},\ OR^{10},\ OC(O)R^{10},\ NR^{10}R^{10},\ NR^{10}R^{11},\\ NR^{11}R^{11},\ COOR^{10},\ NO_2,\ CN,\ C(O)R^{10},\ OC(O)NR^{10}R^{10},\ C(O)NR^{10}R^{10},\ N(R^{10})C(O)R^{10},\ N(R^{10})C(O)R$

Each R⁸ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O. N. or S, which may be saturated or unsaturated, and wherein 0. 1, 2, 3 or 4 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁹; halo; sulfur; oxygen; CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁶; NR⁶R⁶; NR⁶R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)NR⁵R⁵; S(O)_nNR⁵R⁵; NR⁵C(O)R⁹; NR⁵C(O)R⁹; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁹; C1-C10 alkyl substituted with 1-3 independent R⁷, R⁹ or aryl; or C2-C10 alkenyl substituted with 1-3 independent R⁷, R⁹ or aryl;

Each R⁹ is independently a 3-8 membered monocyclic, 7-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms independently selected from O, N, or S, which may be saturated or unsaturated, and wherein 0, 1, 2 or 3 atoms of each ring may be substituted by a substituent independently selected from C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; halo; sulfur; oxygen; CF₃; haloalkyl; SR¹⁰; OR¹⁰; NR¹⁰R¹⁰; NR¹⁰R¹¹; NR¹¹R¹¹; COOR¹⁰; NO₂; CN; C(O)R¹⁰; S(O)_BR¹⁰; S(O)_BNR¹⁰R¹⁰; or C(O)NR¹⁰R¹⁰;

Each R¹⁰ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; haloalkyl; C1-C10 alkyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹², SR¹², NR¹²R¹², COOR¹², NO₂, CN, C(O)R¹², C(O)NR¹²R¹², NR¹²C(O)R¹², N(R¹²)(COOR¹²), S(O)₀NR¹²R¹², or OC(O)R¹²;

Each R¹¹ is independently C(O)R¹⁰, COOR¹⁰, C(O)NR¹⁰R¹⁰ or S(O)_nR¹⁰,

Each R¹² is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl substituted with 1-3 independent C2-

11:12 2 499 8011

C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³; or phenyl optionally substituted with 1-3 independent C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C10 cycloalkyl, C4-C10 cycloalkenyl, halo, CF₃, OR¹³, SR¹³, NR¹³R¹³, COOR¹³, NO₂, CN, C(O)R¹³, C(O)NR¹³R¹³, NR¹³C(O)R¹³, or OC(O)R¹³;

Each R¹³ is independently H; C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; C1-C10 alkyl optionally substituted with halo, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN; or phenyl optionally substituted with halo, CF₃, OR¹⁴, SR¹⁴, NR¹⁴R¹⁴, COOR¹⁴, NO₂, CN;

Each R¹⁴ is independently H; C1-C10 alkyl; C3-C10 cycloalkyl or phenyl;

Each R¹⁶ is independently H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl;

C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo; CF₃; COOR⁵; C(O)R⁵; C(O)C(O)R⁵;

C(O)NR⁵R⁵; S(O)_nR⁵: S(O)_nNR⁵R⁵; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷, R⁸, or phenyl optionally substituted with substituted with 1-4 independent R²³; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸;

Each R¹⁹ is independently H or C1-C6 alkyl; and

Each R²³ is independently selected from H, C1-C10 alkyl; C2-C10 alkenyl; C2-C10 alkynyl; C3-C10 cycloalkyl; C4-C10 cycloalkenyl; aryl; R⁸; halo: CF₃; SR⁵; OR⁵; OC(O)R⁵; NR⁵R⁵; NR⁵R⁶; COOR⁵; NO₂; CN; C(O)R⁵; C(O)C(O)R⁵; C(O)NR⁵R⁵; S(O)_nR⁵; S(O)_nNR⁵R⁵; NR⁵C(O)C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁵; NR⁵C(O)R⁸; NR⁵S(O)_nNR⁵R⁵; NR⁵S(O)_nR⁸; NR⁵S(O)_nR⁸; NR⁵C(O)C(O)NR⁵R⁵; NR⁵C(O)C(O)NR⁵R⁵; OC(O)NR⁵R⁵; OC(O)NR⁵R⁵; NR⁵S(O)_nOR⁵; P(O)(OR⁵)₂; C1-C10 alkyl substituted with 1-3 independent aryl, R⁷ or R⁸; or C2-C10 alkenyl substituted with 1-3 independent aryl, R⁷ or R⁸.

- 24. A method of treating kinase-mediated disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.
- 25. A method of inhibiting kinase activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.

SJh BY

26. A method of treating disease or disease symptoms in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.

27. A method of inhibiting angiogenesis or vasculogenesis activity in a mammal comprising administration of a composition comprising an effective amount of a compound of any of claims 1-21.