TD 13: Espaces vectoriels

Connaître son cours:

- Soit e_1, \ldots, e_p des vecteurs d'un K-espace vectoriel E. Montrer que pour tous $\lambda \in \mathbb{K}$ et $i \neq j \in [1, p]$, $\text{Vect}(e_1, \ldots, e_p) = \text{Vect}(e_1, \ldots, e_i + \lambda e_j, \ldots, e_p)$.
- Montrer que la somme de deux sous-espaces vectoriels est directe si, et seulement si, leur intersection est égale à $\{0_E\}$. Ceci reste-t-il vrai pour plus de deux sous-espaces vectoriels? Donner un exemple de deux sous-espaces vectoriels de $E = \mathbb{R}^{\mathbb{R}}$ qui sont supplémentaires dans E.
- Soit u une application linéaire entre deux $\mathbb K$ espaces vectoriels E et $F.\mathsf{Montrer}$ que :
 - \square L'image directe par u d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.
 - \Box L'image réciproque par u d'un sous-espace vectoriel de F est un sous-espace vectoriel de E.
 - \square L'application u est injective si, et seulement si, $Ker(u) = \{0_E\}$. Cela reste-t-il vrai si l'application u n'est plus linéaire?
- Soit p un projecteur d'un espace vectoriel E. Montrer que Ker(p) et Im(p) sont supplémentaires et expliciter le projecteur complémentaire de p.
- Soit E un \mathbb{K} espace vectoriel et u un endomorphisme de E tel que, pour tout $x \in E$, il existe $\lambda_x \in \mathbb{K}$ tel que $u(x) = \lambda_x \cdot x$, montrer que u est une homothétie. En déduire que les endomorphismes de E commutant avec tous les endomorphismes de E sont les homothéties.

Structure d'espace vectoriel:

Exercice 1. (*)

Déterminer les quels des ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 .

$$E_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid 3x - 7y = z\}$$

$$E_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} - z^{2} = 0\}$$

$$E_{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x + y - z = x + y + z = 0\}$$

Exercice 2. (**)

Soit $E = \Delta(\mathbb{R}, \mathbb{R})$ l'espace des fonctions dérivables et $F = \{f \in E \mid f(0) = f'(0) = 0\}$. Montrer que F est un sous-espace vectoriel de E et déterminer un supplémentaire de F dans E.

Exercice 3. (**)

Soit $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_n \text{ converge } \}$. Montrer que l'ensemble des suites constantes et l'ensemble des suites convergeant vers 0 sont des sous-espaces supplémentaires dans E.

Exercice 4. (*)

- 1. Décrire les sous-espaces vectoriels de \mathbb{R} ; puis de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. Dans \mathbb{R}^3 donner un exemple de deux sous-espaces dont l'union n'est pas un sous-espace vectoriel.

Exercice 5. (**)

Soit E un espace vectoriel.

- Soient F et G deux sous-espaces de E.
 Montrer l'équivalence entre les points suivants :
 - $F \cup G$ est un sous-espace vectoriel de E.
 - $F \subset G$ ou $G \subset F$.
- 2. Soit H un troisième sous-espace vectoriel de E. Prouver que $G \subset F \Rightarrow F \cap (G + H) = G + (F \cap H)$.

Exercice 6. (*)

Déterminer si les parties suivantes sont des sous-espaces vectoriels de $M_2(\mathbb{R})$:

$$E_1 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) : ad - bc = 1 \right\};$$

$$E_2 = \left\{ A \in M_2(\mathbb{R}) : {}^t A = A \right\}.$$

Exercice 7. (*)

- 1. Dans $\mathbb{R}[X]$, $P(X) = 16X^3 7X^2 + 21X 4$ est-il combinaison linéaire de $P_1(X) = 8X^3 - 5X^2 + 1$ et $P_2(X) = X^2 + 7X - 2$?
- 2. Dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$, la fonction $x \mapsto \sin(2x)$ est-elle combinaison linéaire des fonctions sin et cos?

Exercice 8. (*)

Les sous-espaces vectoriels de \mathbb{R}^3 suivants sont-ils en somme directe ?

1.
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}$$
 et
$$G = \{(x, y, z) \in \mathbb{R}^3 \mid \begin{cases} 2x + y + 3z = 0 \\ x - 2y - z = 0 \end{cases} \};$$

2.
$$H = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + 2z = 0\}$$
 et
$$I = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{cases} 2x + y + 3z = 0 \\ x - 2y - z = 0 \end{cases} \right\}.$$

Exercice 9. (**)

Soit E l'espace vectoriel des fonctions de $\mathbb R$ dans $\mathbb R$, F le sous-espace vectoriel des fonctions périodiques de période 1 et G le sous-espace vectoriel des fonctions f telles que $\lim_{t\to\infty} f=0$. Démontrer que $F\cap G=\{0\}$. Est-ce que F et G sont supplémentaires ?

Exercice 10. (**)

Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E tels que F+G=E. Soit F' un supplémentaire de $F\cap G$ dans F. Montrer que $F'\oplus G=E$.

Exercice 11. (*)

Déterminer parmi les ensembles suivants ceux qui sont des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{R}}$.

- L'ensemble des fonctions réelles
 lipschitziennes.
- 2. L'ensemble des fonctions réelles f telles que $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ |f(x)| \le k|x|.$
- 3. L'ensemble des fonctions réelles f telles que $\exists k \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ |f(x)| \ge k|x|.$

Exercice 12. (**)

1. Montrer par des opérations sur les Vect les égalités :

$$\mathbb{R}_2[X] = \text{Vect}((X-1)^2, (X-1)(X+1), (X+1)^2).$$

2. Montrer que pour tout $n \in \mathbb{N}$:

$$\operatorname{Vect}_{0 \le k \le n} \Big(\big(x \mapsto \cos(kx) \big) \Big) = \operatorname{Vect}_{0 \le k \le n} \Big(\big(x \mapsto \cos^k(x) \big) \Big).$$

Exercice 13. (*)

Montrer que a = (1,2,3) et b = (2,-1,1) engendrent le même sous espace de \mathbb{R}^3 que c = (1,0,1) et d = (0,1,1).

Exercice 14. (*)

Soit F le sous-espace vectoriel de \mathbb{R}^4 engendré par u = (1, 2, -5, 3) et v = (2, -1, 4, 7). Déterminer λ et μ réels tels que $(\lambda, \mu, -37, -3)$ appartienne à F.

Exercice 15. (***)

Soit E un espace vectoriel dans lequel tout sous-espace vectoriel admet un supplémentaire. Soit F un sous-espace vectoriel propre de E (c'est-à-dire que $F \neq \{0\}$ et que $F \neq E$). Démontrer que F admet au moins deux supplémentaires distincts.

Applications linéaires:

Exercice 16. (*)

Dire si les applications suivantes sont des applications linéaires :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x + y, x 2y, 0)$;
- 2. $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (x+y, x-2y, 1)$;
- 3. $f: \mathbb{R}[X] \to \mathbb{R}^2$, $P \mapsto (P(0), P'(1))$;
- 4. $f: \mathbb{R}[X] \to \mathbb{R}[X], P \mapsto AP$, où $A \in \mathbb{R}[X]$ est un polynôme fixé;

Exercice 17. (*)

On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^4 définie par f(x, y, z) = (x + z, y - x, z + y, x + y + 2z). L'application f est-elle injective? surjective?

Exercice 18. (*)

Soit $E = \mathcal{C}^{\infty}(\mathbb{R})$ et $\phi \in \mathcal{L}(E)$ définie par $\phi(f) = f'$. Quel est le noyau de ϕ ? Quelle est son image? ϕ est-elle injective? surjective?

Exercice 19. (**)

Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . On note $L: E \to E$ l'application qui à $f \in E$ associe L(f) définie par $L(f): x \mapsto f(x) - f(-x)$.

- 1. Montrer que L est un endomorphisme de E.
- 2. Préciser le noyau et l'image de L.
- 3. L'application L est-elle injective? surjective?

Exercice 20. (***)

Soit $E = \mathbb{C}[X]$, p un entier naturel et f l'application de E dans E définie par $f(P) = (1 - pX)P + X^2P'$. f est-elle injective? surjective?

Exercice 21. (***)

Soit u un endomorphisme de E, $\lambda \neq \mu$ deux scalaires. Montrer que les sous-espaces $\operatorname{Ker}(u - \lambda \operatorname{Id})^2$ et $\operatorname{Ker}(u - \mu \operatorname{Id})^2$ sont en somme directe.

Exercice 22. (**)

Soit E un e.v., F un s.e.v. de E et $u \in \mathcal{L}(E)$.

- 1. Montrer que $u^{-1}(u(F)) = F + \text{Ker}(u)$.
- 2. Déterminer $u(u^{-1}(F))$.

Exercice 23. (**)

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par

$$u(P) = P + (1 - X)P'$$
.

- 1. Montrer que u est un endomorphisme de E.
- 2. L'application u est-elle injective? surjective?

Exercice 24. (**)

Soit E un espace vectoriel et $u, v \in \mathcal{L}(E)$. On suppose que $u \circ v = v \circ u$. Démontrer que $\ker(u)$ et $\operatorname{Im}(u)$ sont stables par v, c'est-à-dire que

$$v(\ker(u)) \subset \ker(u) \text{ et } v(\operatorname{Im}(u)) \subset \operatorname{Im}(u).$$

Exercice 25. (**)

Soit E un espace vectoriel et $f, g \in \mathcal{L}(E)$. Démontrer que

$$E = \operatorname{Im}(f) + \ker(g) \iff \operatorname{Im}(g \circ f) = \operatorname{Im}(g).$$

Exercice 26. (***)

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$.

1. Montrer que

$$\ker(f) = \ker(f^2) \iff \operatorname{Im} f \cap \ker(f) = \{0\}.$$

- 2. On suppose que E est de dimension finie. Montrer que conditions suivantes sont équivalentes :
 - $\square \ker(f) = \ker(f^2)$
 - \square Im $f \oplus \ker(f) = E$
 - \square Im(f) = Im (f^2)

Endomorphismes remarquables:

Exercice 27. (**)

On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (2x - 2z, y, x - z). f est-elle une symétrie? une projection?

Exercice 28. (**)

Soit $A \in \mathbb{R}[X]$ non nul, et $\phi : \mathbb{R}[X] \to \mathbb{R}[X]$ l'application qui à un polynôme P associe son reste dans la division euclidienne par A. Démontrer que ϕ est un projecteur et préciser ses éléments caractéristiques.

Exercice 29. (***)

Soit E un \mathbb{R} -espace vectoriel. Soient p et q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Montrer que, dans ce cas, on a $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$ et $\ker(p+q) = \ker p \cap \ker q$.

Exercice 30. (**)

Considérons deux projections p et q sur le même sous-espace G (mais de directions différentes) et $\lambda \in \mathbb{R}$. Montrer que $\lambda p + (1 - \lambda)q$ est une projection sur G.

Exercice 31. (*)

On considère l'endomorphisme $s \colon \mathbb{R}^3 \to \mathbb{R}^3$ défini par

$$s(x, y, z) = (-x - 4y - 2z, 4x + 9y + 4z, -8x - 16y - 7z).$$

Montrer que s est une symétrie.

Exercice 32. (***)

Soit E un \mathbb{K} -espace vectoriel.

1. Par définition, un endomorphisme p de E est un projecteur si et seulement si $p^2 = p$.

Montrer que

 $\label{eq:projecteur} \left[p \text{ projecteur} \right]$ puis que

$$[p \text{ projecteur} \Rightarrow \text{Im} p = \text{Ker}(Id - p)]$$

$$[p \text{ projecteur} \Rightarrow \text{Ker} p = \text{Im}(Id - p)]$$

$$[p \text{ projecteur} \Rightarrow E = \text{Ker} p \oplus \text{Im} p]$$

- 2. Soient p et q deux projecteurs, montrer que : [Kerp = Ker $q \Leftrightarrow p = p \circ q$ et $q = q \circ p$].
- 3. p et q étant deux projecteurs vérifiant $p \circ q + q \circ p = 0$, montrer que $p \circ q = q \circ p = 0$. Donner une condition nécessaire et suffisante pour que p + q soit un projecteur lorsque p et q le sont. Dans ce cas, déterminer Im(p+q) et Ker(p+q) en fonction de Kerp, Kerq, Imp et Imq.