Esercizi di Elettrotecnica

Circuiti in corrente continua Parte 1

$$R_1 = 10 \Omega$$

$$R_2=30\;\Omega$$

$$R_3=10\;\Omega$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=8\;\Omega$

Esercizio n. 2

$$R_1 = 14 \Omega$$

$$R_2 = 35 \Omega$$

$$R_3 = 20 \Omega$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=30\;\Omega$

Esercizio n. 3

$$R_1=6\;\Omega$$

$$R_2=20\;\Omega$$

$$R_3=15\;\Omega$$

$$R_4=20\;\Omega$$

$$R_5=60\;\Omega$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=4\;\Omega$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq} = 3 \Omega$

Esercizio n. 5

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=6\;\Omega$

Esercizio n. 6

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=10\;\Omega$

$$\begin{split} R_1 &= 2 \; \Omega & R_5 &= 4 \; \Omega \\ R_2 &= 3 \; \Omega & R_6 &= 3 \; \Omega \\ R_3 &= 3 \; \Omega & R_7 &= 2 \; \Omega \\ R_4 &= 6 \; \Omega & R_8 &= 4 \; \Omega \end{split}$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq}=4\;\Omega$

Esercizio n. 8

$$\begin{aligned} R_1 &= 2 \; \Omega & R_6 &= 4 \; \Omega \\ R_2 &= 4 \; \Omega & R_7 &= 8 \; \Omega \\ R_3 &= 3 \; \Omega & R_8 &= 4 \; \Omega \\ R_4 &= 8 \; \Omega & R_9 &= 9 \; \Omega \\ R_5 &= 6 \; \Omega & \end{aligned}$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq} = 2 \Omega$

Esercizio n. 9

$$R_1 = 12 \Omega$$

$$R_2 = 18 \Omega$$

$$R_3 = 6 \Omega$$

$$R_4 = 4 \Omega$$

$$R_5 = 3 \Omega$$

Determinare la resistenza equivalente del bipolo rappresentato in figura.

Risultato

 $R_{eq} = 9 \Omega$

Determinare le tensioni V_1 e V_2 , le potenze P_1 e P_2 assorbite dai resistori e le potenze P_{G1} e P_{G2} erogate dai generatori.

Risultati

$$V_1 = 10 \text{ V}, V_2 = -15 \text{ V}, P_1 = 50 \text{ W}, P_2 = 75 \text{ W}, P_{G1} = 75 \text{ W}, P_{G2} = 50 \text{ W}$$

Esercizio n. 11

Determinare le tensioni V_1 e V_2 , le potenze P_1 e P_2 assorbite dai resistori e le potenze P_{G1} e P_{G2} erogate dai generatori.

Risultati

$$V_1 = 2 \text{ V}, V_2 = -3 \text{ V}, P_1 = 2 \text{ W}, P_2 = 3 \text{ W}, P_{G1} = 15 \text{ W}, P_{G2} = -10 \text{ W}$$

Esercizio n. 12

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

$$\begin{split} V_1 &= 8 \ V & I_1 = 2 \ A \\ V_2 &= 4 \ V & I_2 = 2 \ A \\ V_3 &= 6 \ V & I_3 = 2 \ A \\ P_{G1} &= -12 \ W, \ P_{G2} = 24 \ W, \ P_{G3} = 24 \ W \end{split}$$

Determinare le tensioni V_{BE} e V_{DA} e la potenza P_{G} erogata dal generatore.

Risultati

$$V_{BE} = 8 \text{ V}, V_{DA} = -6 \text{ V}, P_G = 3.2 \text{ W}$$

Esercizio n. 14

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$\begin{split} V_1 &= 10 \ V & I_1 &= 2 \ A \\ V_2 &= 8 \ V & I_2 &= 4 \ A \\ P_{G1} &= -20 \ W & P_{G2} &= 72 \ W \end{split}$$

Esercizio n. 15

Determinare le tensioni e le correnti dei resistori e le potenze P_{G1} e P_{G2} erogate dai generatori.

Risultati

 $\begin{array}{lll} V_1 = 5 \ V & I_1 = 1 \ A \\ V_2 = 15 \ V & I_2 = 3 \ A \\ V_3 = 10 \ V & I_3 = 1 \ A \\ P_{G1} = 30 \ W & P_{G2} = 30 \ W \end{array}$

Determinare la tensione V_{AB} .

Risultato

 $V_{AB}=2\ V$

Esercizio n. 17

Determinare le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$I_1 = 4 \text{ A}, I_2 = 3 \text{ A}, P_{G1} = 108 \text{ W}, P_{G2} = -24 \text{ W}$$

Esercizio n. 18

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

$$\begin{split} V_1 &= 20 \ V & I_1 &= 2 \ A \\ V_2 &= -10 & I_2 &= -2 \ A \\ P_{G1} &= 0 \ W, \ P_{G2} &= -20 \ W. \ P_{G3} &= 80 \ W \end{split}$$

Determinare le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$I_1 = 4 \text{ A}, I_2 = 6 \text{ A}, I_3 = -10 \text{ A}, P_{G1} = 20 \text{ W}, P_{G2} = 320 \text{ W}, P_{G3} = 420 \text{ W}$$

Esercizio n. 20

Determinare le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$I_1 = 5 \text{ A}, I_2 = 1 \text{ A}, I_3 = -8 \text{ A}, I_4 = 2 \text{ A}, P_{G1} = 45 \text{ W}, P_{G2} = 180 \text{ W}, P_{G3} = 200 \text{ W}, P_{G4} = 20 \text{ W}$$

Esercizio n. 21

Determinare le potenze erogate dai generatori.

$$P_{G1} = 20 \text{ W}, P_{G2} = 100 \text{ W}, P_{G3} = -15 \text{ W}, P_{G4} = -60 \text{ W}$$

Determinare le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$I_1 = 4.5 \text{ A}, I_2 = 1.5 \text{ A}, I_3 = 3 \text{ A}, I_4 = 3 \text{ A}, P_{G1} = 540 \text{ W}, P_{G2} = -45 \text{ W}$$

Esercizio n. 23

Determinale le tensioni V_{CB} e V_{BD} e la potenza erogata dal generatore.

Risultati

$$V_{BD} = -4 V$$
, $V_{CB} = 10 V$, $P_G = 192 W$

Esercizio n. 24

Determinare le correnti dei resistori e la potenza P_G erogata dal generatore.

$$I_1 = 5 \text{ A}, I_2 = 4 \text{ A}, I_3 = 1 \text{ A}, I_4 = 0.5 \text{ A}, I_5 = 2 \text{ A}, I_6 = 2.5 \text{ A}, P_G = 300 \text{ W}$$

Determinare le tensioni e le correnti dei resistori.

Risultati

$V_1 = 54 \text{ V}$	$I_1 = 9 A$
$V_2 = 27 \text{ V}$	$I_2 = 9 A$
$V_3 = 9 V$	$I_3 = 4.5 A$
$V_4 = 9 V$	$I_4 = 3 A$
$V_5 = 6 \text{ V}$	$I_5 = 1.5 A$
$V_6 = 3 V$	$I_6 = 1 A$
$V_7 = 3 V$	$I_7 = 0.5 A$

Esercizio n. 26

Determinare le tensioni e le correnti dei resistori.

Risultati

$V_1 = 12 V$	$I_1 = 1 A$
$V_2 = 6 V$	$I_2 = 3 A$
$V_3 = 6 V$	$I_3 = 1 A$
$V_4 = 6 A$	$I_4 = 2 A$

Esercizio n. 27

Determinare le tensioni e le correnti dei resistori.

Risultati

$V_1 = 10 \text{ V}$	$I_1 = 2.5 A$
$V_2 = 15 \text{ V}$	$I_2 = 1 A$
$V_3 = 9 V$	$I_3 = 1.5 A$
$V_4 = 6 V$	$I_4 = 1.2 A$
$V_5 = 6 \text{ V}$	$I_3 = 0.3 A$

Esercizio n. 28

Determinare le correnti dei resistori e la potenza erogata dal generatore.

Risultati

$$I_1 = 6 \text{ A}, I_2 = 3 \text{ A}, I_3 = 1 \text{ A}, I_4 = 2 \text{ A}, I_5 = 1 \text{ A}, I_6 = 1 \text{ A}, P_G = 144 \text{ W}$$

Esercizio n. 29

Determinare la corrente I.

Risultato

I = 0.75 A

Esercizio n. 30

Determinare la corrente I.

Risultato

I = 3 A

Determinare le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$I_1 = 2 \text{ A}, I_2 = 8 \text{ A}, I_3 = 6 \text{ A}, P_{G1} = 300 \text{W}, P_{G2} = 1200 \text{ W}, P_{G3} = 1200 \text{ W}$$

Esercizio n. 32

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$V_1 = -3 V$$
 $I_1 = -1 A$
 $V_2 = 6 V$ $I_2 = 3 A$
 $V_3 = 12 V$ $I_3 = 2 A$
 $P_{G1} = -9W$ $P_{G2} = 54 W$

Esercizio n. 33

Determinare le correnti dei resistori e le potenze erogate dai generatori.

$$I_1 = 3 \text{ A}, I_2 = 4 \text{ A}, I_3 = 2 \text{ A}, P_{G1} = 36 \text{ W}, P_{G2} = 120 \text{ W}, P_{G3} = 60 \text{ W}$$

Determinare le tensioni dei resistori e le potenze erogate dai generatori.

Risultati

$$V_1 = 15 \text{ V}, V_2 = 15 \text{ V}, V_3 = -5 \text{ V}, V_4 = 5 \text{ V}, P_{G1} = 90 \text{ W}, P_{G2} = 30 \text{ W}, P_{G3} = -10 \text{ W}, P_{G4} = 20 \text{ W}$$

Esercizio n. 35

Determinare le tensioni dei resistori e le potenze erogate dai generatori.

Risultati

$$V_1 = 6V$$
, $V_2 = 16 V$, $P_{G1} = 24 W$, $P_{G2} = 48 W$, $P_{G3} = 10 W$

Esercizio n. 36

Determinare le tensioni dei resistori e le potenze erogate dai generatori.

$$V_1 = 9 \text{ V}, V_2 = -4 \text{ V}, V_3 = 10 \text{ V}, V_4 = 8 \text{ V}, P_{G1} = 18 \text{ W}, P_{G2} = 12 \text{ W}, P_{G3} = 30 \text{ W}, P_{G4} = -3 \text{ W}$$

Determinare le tensioni e le correnti dei resistori.

Risultati

$V_1 = 18 \text{ V}$	$I_1 = 3 A$
$V_2 = 24 \text{ V}$	$I_2 = 1 A$
$V_3 = -6 \text{ V}$	$I_3 = -1 A$
$V_4 = 12 V$	$I_4 = 2 A$
$V_5 = 18 \text{ V}$	$I_5 = 2 A$

Esercizio n. 38

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

$$\begin{array}{lll} V_1 = 12 \ V & I_1 = 2 \ A \\ V_2 = 6 \ V & I_2 = 1 \ A \\ V_3 = 10 \ V & I_3 = 5 \ A \\ V_4 = 12 \ V & I_4 = 6 \ A \\ V_5 = 18 \ V & I_5 = 1 \ A \\ P_{G1} = 48 \ W, P_{G2} = -18 \ W, P_{G3} = 140 \ W \end{array}$$

$$\begin{split} R_1 &= 3 \; \Omega \\ R_2 &= 3 \; \Omega \\ R_3 &= 3 \; \Omega \\ R_4 &= 1 \; \Omega \\ R_5 &= 1 \; \Omega \\ R_6 &= 4 \; \Omega \\ V_{G2} &= 18 \; V \\ V_{G4} &= 18 \; V \\ V_{G6} &= 3 \; V \end{split}$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$\begin{array}{lll} V_1 = 9 \ V & I_1 = 3 \ A \\ V_2 = 3 \ V & I_2 = 1 \ A \\ V_3 = -6 \ V & I_3 = -2 \ A \\ V_4 = 2 \ V & I_4 = 2 \ A \\ V_5 = 1 \ V & I_5 = 1 \ A \\ V_6 = -4 \ V & I_6 = -1 \ A \\ P_{G2} = 18 \ W, P_{G4} = 36 \ W, P_{G6} = -3 \ W \end{array}$$

Esercizio n. 40

$$R_1 = 10 \Omega$$

$$R_2 = 5 \Omega$$

$$R_3 = 10 \Omega$$

$$R_4 = 10 \Omega$$

$$R_5 = 2 \Omega$$

$$R_6 = 10 \Omega$$

$$I_{G1} = 7 A$$

$$I_{G4} = 9 A$$

$$V_{G6} = 20 V$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

$V_1 = 20 \text{ V}$	$I_1 = 2 A$
$V_2 = 10 \text{ V}$	$I_2 = 2 A$
$V_3 = -30 \text{ V}$	$I_3 = -3 A$
$V_4 = 20 \text{ V}$	$I_4 = 2 A$
$V_5 = 10 \text{ V}$	$I_5 = 5 A$
$V_6 = -20 \text{ V}$	$I_6 = -2 A$
$P_{G1} = 140 \text{ W}, P_{G4} = 18$	$80 \text{ W}, P_{G6} = -40 \text{ W}$

$$R_1 = 4 \Omega R_2 = 3 \Omega R_4 = 3 \Omega R_5 = 1 \Omega R_6 = 2 \Omega I_{G1} = 5 A I_{G3} = 4 A$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$\begin{array}{lll} V_1 = 12 \ V & I_1 = 3 \ A \\ V_2 = 3 \ V & I_2 = 1 \ A \\ V_4 = 9 \ V & I_4 = 3 \ A \\ V_5 = 6 \ V & I_5 = 6 \ A \\ V_6 = 6 \ V & I_6 = 3 \ A \\ P_{G1} = 60 \ W & P_{G3} = 60 \ W \end{array}$$

Esercizio n. 42

$$R_1 = 10 \ \Omega$$

$$R_2 = 2 \ \Omega$$

$$R_3 = 10 \ \Omega$$

$$R_4 = 20 \ \Omega$$

$$V_{G5} = 20 \ V$$

$$V_{G6} = 30 \ V$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$\begin{array}{lll} V_1 = 10 \ V & I_1 = 1 \ A \\ V_2 = 10 \ V & I_2 = 5 \ A \\ V_3 = -20 \ V & I_3 = -2 \ A \\ V_4 = 40 \ V & I_4 = 2 \ A \\ P_{G5} = 60 \ W & P_{G6} = 120 \ W \end{array}$$

Esercizio n. 43

$$R_{1} = 3 \Omega$$

$$R_{2} = 3 \Omega$$

$$R_{3} = 3 \Omega$$

$$R_{4} = 3 \Omega$$

$$V_{G1} = 18 V$$

$$V_{G4} = 18 V$$

$$V_{G5} = 6 V$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$V_1 = 6 V$	$I_1 = 2 A$
$V_2 = 12 \text{ V}$	$I_2 = 4 A$
$V_3 = 6 V$	$I_3 = 2 A$
$V_4 = 12 V$	$I_4 = 4 A$
$P_{G1} = 36 \text{ W}, P_{G4} =$	$72 \text{ W}, P_{G5} = 12 \text{ W}$

Esercizio n. 44

$$R_{1} = 2 \Omega$$

$$R_{2} = 4 \Omega$$

$$R_{3} = 4 \Omega$$

$$R_{4} = 4 \Omega$$

$$R_{5} = 3 \Omega$$

$$V_{G1} = 18 V$$

$$V_{G5} = 16 V$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$V_1 = 10 \text{ V}$	$I_1 = 5 A$
$V_2 = 8 V$	$I_2 = 2 A$
$V_3 = 12 V$	$I_3 = 3 A$
$V_4 = -4 V$	$I_4 = -1 A$
$V_5 = 12 \text{ V}$	$I_5 = 4 A$
$P_{G1} = 90 \text{ W}$	$P_{G5} = 64 \text{ W}$

Esercizio n. 45

$$R_{1} = 4 \Omega$$

$$R_{2} = 6 \Omega$$

$$R_{3} = 12 \Omega$$

$$R_{4} = 2 \Omega$$

$$R_{5} = 4 \Omega$$

$$V_{G1} = 8 V$$

$$V_{G2} = 12 V$$

$$I_{G5} = 3 A$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

$V_1 = 5 V$	$I_1 = 1.25 A$
$V_2 = 9 V$	$I_2 = 1.5 A$
$V_3 = 3 V$	$I_3 = 0.25 A$
$V_4 = 5 V$	$I_4 = 2.5 A$
$V_5 = -2 V$	$I_5 = -0.5 A$
$P_{G1} = 10 \text{ W}, P_{G2} = 1$	$8 \text{ W}, P_{G5} = 6 \text{ W}$

$$R_1 = 4 \Omega$$

$$R_2 = 6 \Omega$$

$$R_3 = 2 \Omega$$

$$R_4 = 3 \Omega$$

$$V_{G1} = 12 V$$

$$V_{G2} = 24 V$$

$$I_{G5} = 3 A$$

Determinare le correnti dei resistori.

Risultati

$$I_1 = -1 A$$
, $I_2 = 2 A$, $I_3 = 2 A$, $I_4 = 4 A$

Esercizio n. 47

$$R_{1} = 6 \Omega$$

$$R_{2} = 6 \Omega$$

$$R_{3} = 6 \Omega$$

$$R_{4} = 6 \Omega$$

$$V_{G1} = 30 V$$

$$I_{G2} = 5 A$$

Determinare le tensioni e le correnti dei resistori e le potenze erogate dai generatori.

Risultati

$$\begin{array}{lll} V_1 = 24 \ V & I_1 = 4 \ A \\ V_2 = 6V & I_2 = 1 \ A \\ V_3 = 18V & I_3 = 3 \ A \\ V_4 = -12 \ V & I_4 = -2 \ A \\ P_{G1} = -30 \ W & P_{G2} = 210 \ W \end{array}$$

Esercizio n. 48

$$R_1 = 2 \Omega$$

$$R_2 = 4 \Omega$$

$$R_3 = 4 \Omega$$

$$R_4 = 2 \Omega$$

$$I_{G1} = 1 \Lambda$$

$$I_{G2} = 2 \Lambda$$

$$V_{G3} = 12 V$$

$$V_{G4} = 6 V$$

Determinare le potenze erogate dai generatori.

$$P_{G1} = 2 \text{ W}, P_{G2} = -4 \text{ W}, P_{G3} = 24 \text{ W}, P_{G4} = 0 \text{ W}$$

Determinare le tensioni dei resistori.

Risultati

$$V_1 = 9 V$$
, $V_2 = 13 V$, $V_3 = -11 V$, $V_4 = -2 V$

Esercizio n. 50

Determinare le potenze erogate dai generatori.

$$P_{G1} = -24 \text{ W}, P_{G2} = 64 \text{ W}, P_{G3} = 24 \text{ W}, P_{G4} = -24 \text{ W}$$