Balanced K-Means Clustering on an Adiabatic Quantum Computer

Applied Quantum Machine Learning Project

Politecnico di Milano

May 19, 2021

Authors:
Pierriccardo Olivieri
Francesco Piro
Matteo Sacco

Professors:
Cremonesi Paolo
Alessandro Luongo
Maurizio Ferrari Dacrema

Outline

Advantages over classical Outline approaches

- Better targets the global solution of the training problem
- Better theoretic scalability on large datasets

- QUBO formulation and theoretical analysis
- Empirical Analysis
- Conclusions and considerations

Lloyd's algorithm

- Complexity O(Nkdi) [13]
 - \circ N number of data points
 - \circ k number of clusters
 - \circ d number of features
 - \circ i number of iterations before the algorithm converges

Scikit-learn implementation

• Complexity O(Nkd) [18]

[13] J. A. Hartigan and M. A. Wong, "Algorithm As 136: A K-Means clustering algorithm" Ap-[18] "Scikit-learn: Machine learning in python," plied Statistics

Malinen et al.

 $t \leftarrow t + 1$

Output partitioning.

• Complexity $O(N^3)$ [13]

```
Algorithm 1. Balanced k-means
Input: dataset X, number of clusters k
Output: partitioning of dataset.

Initialize centroid locations C^0.

t \leftarrow 0
repeat

Assignment step:
Calculate edge weights.
Solve an Assignment problem.

Update step:
Calculate new centroid locations C^{t+1}
```

until centroid locations do not change.

^[21] Malinen, Mikko. (2014). Balanced K-Means for Clustering.

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}.$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x \in \Phi} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2 |\phi_j|} \sum_{x, y \in \phi_j} ||x - y||^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x,y \in \phi_j} ||x - y||^2$$

Distance matrix: DAssignment matrix: \hat{W}

$$\sum_{x,y \in \phi_j} \|x - y\|^2 = \hat{w}_j^{T} D \hat{w}_j^{t}$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes D \right) \hat{w}$$

$$\alpha \left(\hat{w}_{j}^{\prime T} \hat{w}_{j}^{\prime} - N/k\right)^{2}$$

$$\beta \left(\hat{w}_{i}^{T} \hat{w}_{i} - 1\right)^{2}$$

$$\hat{w}_{j}^{\prime T} \alpha F \hat{w}_{j}^{\prime}$$

$$\hat{w}_{i}^{T} \beta G \hat{w}_{i}$$

$$F = 1_{N} - \frac{2N}{k} I_{N}$$

$$G = 1_{k} - 2I_{k}$$

$$\min_{\hat{w}} \hat{w}^{T} \left(I_{k} \otimes (D + \alpha F)\right) \hat{w}$$

$$\hat{w}^{T} Q^{T} \left(I_{N} \otimes \beta G\right) Q \hat{w}$$

$$\min_{\hat{w}} \hat{w}^{T} \left(I_{k} \otimes (D + \alpha F) + Q^{T} \left(I_{N} \otimes \beta G\right) Q\right) \hat{w}$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

$$\alpha = \frac{\max(D)}{2(N/k) - 1} \qquad \beta = \max(D)$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes \left(D + \alpha F \right) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

$$\min_{W} \sum_{l=1}^{k} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{m=1}^{d} w_{il} (x_{im} - x_{jm})^{2} w_{jl}$$

$$+\alpha \sum_{l=1}^{k} \sum_{j=1}^{N} \sum_{i=1}^{N} w_{il} f_{ij} w_{jl} + \beta \sum_{l=1}^{N} \sum_{j=1}^{k} \sum_{i=1}^{k} w_{li} g_{ij} w_{lj}$$

• Complexity $O(N^2kd)$

Malinen et al.

• Complexity $O(N^3)$

Scikit-learn implementation

• Complexity O(Nkd)

Baselines 10

Algorithms used for comparisons

- balanced quantum k-means (case study)
- balanced classical k-means (authors implementation)
- classical k-means scikit-learn implementation

classical version of the k-means (non balanced) is used since, due to the structure of the dataset, constitute a valid comparison.

Adjusted Rand Index (ARI)

- compare the similarity of two partitions of a dataset
- range from -1 to 1 (high values indicates the two partitions are similar)
- used to compare the target partitions to the partitions produced by clustering

Total Computing time in quantum approach

$$t = t_{QUBO_convertion} + t_e + t_a + t_{postprocessing}$$
 (1)

- \bullet $t_{QUBOconvertion}$ time to convert the problem in QUBO
- t_e time to embed the QUBO on hardware
- t_a time to solve the QUBO (anealing time)
- $t_{postprocessing}$ extract clustering from binary solution

synthetic classification datasets created with $make_classification$ (Scikit-learn)

Datasets structure

- N points
- k classes
- 1 cluster per class
- d features
- clusters centered on a *d*-dimensional hypercube (with side length 2.0)
- points generated from a normal dist. about their cluster center (std 1.0)
- each class made of $\frac{N}{k}$ points

Classical Machine

- 2.7 GHz Dual-Core Intel i5
- 8 GB 1.867 MHz DDR3 memory

Quantum Machine

- D-Wave 2000Q quantum computer
- 2048 qubits, 5600 inter-qubit connections

Technical Aspects

- quantum approach pre/post-processing done via the above classical machine
- quantum anealing operation perfored 100 times for each experiment
- only ground state is used

Experiments Setup

- clustering quality of the 3 algorithms is compared
- each algorithm evaluated on different **problem types**
 - o total of 9 problem types
 - o defined by (num. of points, num. of clusters)
- for each problem type:
 - all the 3 algorithm evaluated on 50 synthetic datasets

Commenting Results for Quantum Approach

- performances drop for k=2
 - less way to cluster means a local solution is more likely to be the correct one
- performances drop as the problem size increase
 - reflection of the quantum hardware

Limitations faced

- Variable limitation D-Wave 2000Q qubit limitation for problems Nk > 64 var.
- Qubit connectivity limitation => higher embedding time

Approximations

- Quantum run time for larger problems (Nk > 64)
 - used to evaluate scalability of the Quantum Approach
 - \circ measure $t_{QUBO_convertion}$ (measurable)
 - \circ estimate embedding time t_e (from smaller problems)
 - \circ estimate anealing time t_a (costant, averaging smaller problems)
 - \circ measure $t_{postprocessing}$

According to the embedding algorithms choosed by authors which scales quadratically in the number of binary variables of the QUBO

$$t_e = 1.887 \times 10^{-6} (Nk)^2 + 4.632 \times 10^{-6} (Nk) + 4.022 \times 10^{-4}$$
 (2)

$$t_a = 0.03481 \pm 0.00008 \tag{3}$$

Experiments to assess scalability

- baselines evaluated on the three variables:
 - \circ N data points
 - \circ k clusters
 - \circ d features
- ∀ problem type baselines runned on 50 synthetic datasets

Setup and Considerations

- baselines evaluated on increasing data points
- fixed cluster k=4 and features d=2
- considerations:
 - quantum is outperformed (due to embedding time)
 - future embedding time improvements may surpass classical balanced ($N \ge 1024$)
 - o classical k-means scales the best expected since its time complexity O(Nkd) vs quantum balanced $O(N^2kd)$

Setup and Considerations

- baselines evaluated on increasing cluster size
- fixed data points N = 256 and features d = 8
- considerations:
 - quantum scales worse on cluster size w.r.t. to other approaches
 - \circ expected: third term on QUBO has $O(Nk^2)$ time complexity

Setup and Considerations

- baselines evaluated on increasing **features number**
- fixed data points N = 1024 and cluster k = 4
- considerations:
 - o quantum is the worse on time
 - quantum is promising in a future perspective, depending on embedding process optimizations
 - \circ quantum approach scales better w.r.t. to classical k-means on d
 - expected: QUBO formulation only requires one comput. related to the dimension of the dataset
 - \circ classical balanced k-means scales better in d w.r.t. to quantum approach
 - expected: quantum balanced $O(N^2kd)$ vs classical balanced $O(N^3)$

The Iris Dataset

- Reduced due to qubit limitations on modern hardware
- Pick N/k points from $2 \le k \le 3$ of the data set's classes

Experiments Run

- All the 3 clustering algorithms were tested
- Experiments are run on 50 subsets of the dataset

Results

- k = 2
 - Trivial case, points are linearly separable
 - Classical algorithms perform better than quantum
 - Evident as the number of binary variables (Nk) increases

- *k* = 3
 - time to extract rforms **Scikit-Learn** implementation
 - Performance of the QA degrades as the problem size increases

- Enhancements provided by adiabatic computers for solving **NP**-Hard or **NP**-Complete problems
- Promising result for Quantum Machine Learning
- The approach targets the global solution of the training problem **better** than the classic alternatives
- The **D-Wave 2000Q** machine
- Quantum approach partitions data with similar accuracy to the classical approaches
- The approach assumes viability as the quantum hardware improves

- Bring the QUBO formulation to the generic k-means training problem
- Use elements of the approach to formulate quantum algorithms for similar clustering models
 - k-medoids clustering
 - fuzzy C-means clustering
- Cluster larger datasets

Can we cluster larger datasets on Advantage?

D-Wave 2000Q

- 2048 qubits
- 6,016 couplers
- 128,472 JJs

Advantage

- 5640 qubits
- 40,484 couplers
- 1,030,000 JJs

Thanks for your Attention