Algoritmo Sarsa Evacuación de peatonal en ciudades

julio

30 de marzo de 2024

Índice general

Ι	Referencias
1.	Lista a detalle de comandos
	1.1. nodesFile
	1.2. linksFile
	1.3. populationsFile
	1.4. stopAt
	1.5. graphicPrintoutPeriod
	1.6. listingPrintoutPeriod
	1.7. pedestrianCountPeriod
	1.8. computationContinued
	1.9. previousComputationFile
	1.10. stopSimulationAt
II	Manuel de usuario
2.	Inputs y outputs
	2.1. Archivo de intersecciones
	2.2. Archivo de calles
	2.3. Archivo de personas
	2.4. Archivo de control
3.	Empezar el computo

$\begin{array}{c} \text{Parte I} \\ \\ \text{Referencias} \end{array}$

Capítulo 1

Lista a detalle de comandos

1.1. nodesFile

Tipo: string
Default Value: nodes.csv

Nombre del archivo de datos intersecciones de calles

1.2. linksFile

Tipo: string
Default Value: links.csv

Nombre del archivo de datos calles.

1.3. populationsFile

Tipo: string

Default Value: population.csv

Nombre del archivo de datos de personas.

1.4. stopAt

Tipo: string
Default Value: endTime

Opciones de terminar el tiempo de simulación. Solo implementado una forma, endTime.

1.5. graphicPrintoutPeriod

Tipo: Integer Default Value: 1

Determine cada cuanto tiempo se imprimira los resultados para el postprocesamiento.

1.6. listingPrintoutPeriod

Tipo: Integer

Default Value: 1

Determine cada cuanto tiempo se mostrará los resultados para el terminal. Permite visualizar en tiempo de ejecución.

1.7. pedestrianCountPeriod

Tipo: Integer

Default Value: 1

Determine cada cuanto tiempo se calculará en conteo de personas en las calles.

1.8. computationContinued

Tipo: Logical Default Value: No

Determina si los cálculos serán independientes a un resultado previo

1.9. previousComputationFile

Tipo: string

Default Value: population.csv

Nombre del archivo que contiene resultados de una simulación previa realizada en la misma ciudad. Esta última simulación provee de valores de estados experimentados para la nueva simulación.

1.10. stopSimulationAt

Tipo: string

Default Value: endNumberSimulation

Opciones de terminar las simulaciones. Implementadas dos formas:

- endNumberSimulation
- addNumberSimulation

Parte II Manuel de usuario

Capítulo 2

Inputs y outputs

Una lista de archivos son usados para el programa Sarsa, algunos de ellos son de entrada y otros de salida. Asimismo, algunos de ellos son opcionales. Los archivos de entrada son los siguientes:

- El archivo de calles (obligatorio), contiene la lista de calles de la cuidad y su ubicación.
- El archivo de interseciones (obligatorio), contiene información de las intersecciones de las calles.
- El archivo de personas (obligatorio), contiene información de los peatones y su posición de inicio.

2.1. Archivo de intersecciones

El usuario puede cambiar el nombre del archivo modificando el comando nodesFile. El archivo contiene lo siguiente:

- Id de la intersección, número único y no puede ser igual a otra intersección.
- Coordenada x
- Coordenada y

```
# Ejemplo del archivo nodes.csv

# id x y

0,0,0,0,1

1,20,0,0,1

2,40,0,0,1

3,60,0,0,1

4,80,0,0,1
```

El orden no es importante. Lineas que empiezan con # son tomados como comentarios. La cantidad de puntos es libre y no necesariamente deben ser las misma al ejemplo.

2.2. Archivo de calles

El usuario puede cambiar el nombre del archivo modificando el comando linksFile. El archivo contiene lo siguiente:

• Id de la calle, número único y no puede ser igual a otra calle.

- Id de la intersección de inicio.
- Id de la intersección de salida.

Ejemplo del archivo nodes.csv id,node1,node2,widht,

```
0,0,1,20,3
1,1,2,20,3
2,2,3,20,3
3,3,4,20,3
4,4,5,20,3
```

El orden no es importante. Lineas que empiezan con # son tomados como comentarios. La cantidad de calles es libre y no necesariamente deben ser las misma al ejemplo.

2.3. Archivo de personas

El usuario puede cambiar el nombre del archivo modificando el comando populationsFile. El archivo contiene lo siguiente:

- Edad de la persona
- Genero de la persona, si hombre es 1.
- Categoria HHType
- Categoria HHID
- Interseción de inicio de la persona.

```
# Ejemplo del archivo population.csv

# age,gender,HHType,HHID,closeNode

18,1,0,0,26

18,1,0,0,22

18,1,0,0,6
```

El orden no es importante. Lineas que empiezan con # son tomados como comentarios. La cantidad de personas es libre y no necesariamente deben ser las misma al ejemplo.

2.4. Archivo de control

El archivo representa un panel de control del código sarsa. Contiene un número de comandos donde los valores pueden ser asignados o usados con sus valores con default. Todos los comandos están definidos en manual de referencias.

```
nodesFile nodes.csv;
linksFile links.csv;
populationsFile population.csv;
stopAt endTime;
endTime 800;
deltaT 1;
graphicPrintoutPeriod 1;
listingPrintoutPeriod 1;
computationContinued no;
previousComputationFile sim_000006000.csv;
# stopSimulationAt endNumberSimulation;
# endNumberSimulation 6003;
readPedestrianMassState no;
stopSimulationAt addNumberSimulation;
addNumberSimulation 3;
```

Lineas que empiezan con # son tomados como comentarios.

Capítulo 3

Empezar el computo

Los calculos se mandan via el terminal mediante el comando sarsa. El comando activa la ejecución de un script principal de todos los módulos, funciones y variables del codigo. La sintaxis del comando es la siguiente:

sarsa