

TFT-LCD工艺技术概要

SVA-NEC

主要内容

- 一、TFT的基本构造
- 二、4Mask与5Mask工艺对比
- 三、ARRAY基板的工艺流程
- 四、TN与SFT工艺对比
- 五、其他

TFT的基本构造

TFT的基本构造

二、4Mask与5Mask工艺对比

二、4Mask与5Mask工艺对比

1.节省时间: 1462-1398=64min

2.节省设备: 1套 InlinePR+曝光机

二、4Mask与5Mask工艺对比

三、ARRAY基板的工艺流程

工艺名称	工艺目的			
洗净	清洁基板表面,防止成膜不良			
溅射(SPUTTER)	成AI膜、Cr膜和ITO膜			
P-CVD	成a-Si膜、n+a-Si膜和SiNx膜			
PR/曝光	形成与MASK图案相一致的光刻胶图案			
湿刻(WE)	刻蚀掉未被光刻胶掩蔽的金属膜			
干刻(DE)	刻蚀掉未被光刻胶掩蔽的非金属膜			
剥离	去掉残余的光刻胶			

洗净

洗净

Sputter

■ TFT中Sputter薄膜的种类和作用

类型	名称	作用
G配线	MoNb/AINd	传递扫描信号
D配线	Cr	传递数据信号
像素电极	ITO	存储数据信号

技术部 Array科

11

Sputter设备

- 整体图 (SMD-1200)
 - □ 基板搬入(加热)/ 搬出(冷却)室 (**L1、L2**)
 - □ 搬送室(Tr)
 - □ 成膜室(X1、X3)

PECVD

注: S1所用设备加热装置放在工艺室中,且只有两个工艺室

PECVD

14

InlinePR

InlinePR

曝光

显影

湿刻

干刻

干刻

剥离

四、TN与SFT工艺对比

	G工程 (Gate)	I 工程 (Island)	D工程 (Drain)	C工程 (Contact)	PI工程 (Pixel)
T N 4 Mask Process		I工程和D工程 一起进行			
SFT 5Mask Process				← C-Pattern 在周边部位	← P I -Pattern 在周边部

23

四、TN与SFT工艺对比

- 构造简单
- · PR数少,成本低,LT短
- 开口率大
- 开态时液晶分子不能 完全直立,视角较小
- · 常白模式,不良点多 为明点,易成为点缺陷

SFT:

- 液晶分子水平排列,视角大
- 常黑模式,不良点为暗点, 不易发现
- 电极面积大导致开口率小
- Pattern密度高,易受异物 影响
- · 为了增加亮度必须增大背光 源辉度,功耗较大

五、其他-玻璃尺寸比较

五、其他-玻璃尺寸比较

五、其他-

TFT-LCD产业特性与半导体的异同

- TFT-LCD产业与半导体产业最相似之处:在于前段阵列制程,都是设备投资金额昂贵以及进行一连串高精细度的半导体制程。
- 不同的是:
- 1. TFT是在玻璃上加工,半导体则是在硅晶圆上加工。
- 2. 半导体产业的材料成本比例大约仅在8到10%左右;但是TFT的材料成本高达五至六成。所以,DRAM价格可能下杀到原来的一成以下,但TFT面板的价格走势相对较为平稳。
- 3. 半导体产品(如: DRAM)属标准产品,相容性相当高;但是TFT面板不同客户要求的产品亮度,电路接点等几乎都不尽相同。
- 4. 半导体产品的上游材料产业供应链相对地短,但是TFT的上下游产业供应链相当长。
- 5. 半导体产业的发展历程较长,欧美日韩台,都具生产半导体相关产品的能力;但TFT目前仅有日韩台厂商有能力生产。

谢 谢!