Exercises Set 2

Paul Dubois

September 14, 2023

Abstract

Only the questions with a * are compulsory (but do all of them!).

1 Systems of Linear Equations

Reduced Row Echelon Form Find the Reduced Row Echelon Form of the following matrix:

 $\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & 6 & 2 & 3 \\
0 & 0 & 0 & 10
\end{pmatrix}$

Gaussian Elimination (*) Solve the following linear system using Gaussian Elimination:

$$2x + y - z = 4$$

$$3x + 2y + z = 5$$

$$x - y + 3z = 7$$

Start by writing the augmented matrix for the system and perform the necessary row operations to find the solution.

2 Vector Spaces

Linear Independence Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v_1} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} 3\\5\\2 \end{bmatrix}$$

Show that $\mathbf{v_1},\,\mathbf{v_2},\,$ and $\mathbf{v_3}$ are linearly independent.

Space of Polynomials Let \mathbb{P}_2 be the space of polynomials of degree at most 2. Consider the following polynomials:

$$p_1(x) = 1$$
, $p_2(x) = 2x$, $p_3(x) = 3x^2 - 1$

Show that the polynomials $p_1(x)$, $p_2(x)$, and $p_3(x)$ form a spanning set for \mathbb{P}_2 . Express an arbitrary polynomial $q(x) \in \mathbb{P}_2$ as a linear combination of $p_1(x)$, $p_2(x)$, and $p_3(x)$.

3 Matrix Inverses

2x2 Matrices Let

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$

Determine whether matrix A is invertible. If it is, find its inverse A^{-1} . Verify your result by multiplying A by its inverse A^{-1} and showing that you get the identity matrix.

3x3 Matrices (*) Let

$$B = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ -1 & 3 & 1 \end{bmatrix}$$

Determine whether matrix B is invertible. If it is, find its inverse B^{-1} . Verify your result by multiplying B by its inverse B^{-1} and showing that you get the identity matrix.

4 Eigenvalues and Eigenvectors

Consider the matrix

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Find the eigenvalues of matrix A.

For each eigenvalue, find the corresponding eigenvector.

Consider the matrix

$$B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

Find the eigenvalues of matrix B.

For each eigenvalue, find the corresponding eigenvector.

Consider the matrix

$$C = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

Find the eigenvalues of matrix C.

For each eigenvalue, find the corresponding eigenvector.