# UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CHAPECÓ CIRCUITOS DIGITAIS

RELATÓRIO BANCO DE REGISTRADORES E ULA

**ANDREI DANELLI** 

CHAPECÓ 2021

#### **RELATÓRIO**

O presente trabalho consiste em implementar um circuito onde o mesmo tenha um banco de registradores contendo quatro registradores no mesmo e também uma ULA responsável por realizar 8 operações aritméticas e no final do projeto simular operações com 1 equação do 1° grau e 1 equação do 2° grau.

**Registradores:** No circuito desenvolvido, foi criado um registrador com o total de 8 Flip-Flops do tipo D, uma entrada de 8 bits, e uma saída também de 8 bits. No mesmo, foi implementado o comando Write de 1 Bits para escrever a informação de entrada no registrador.



BancoRegistradores: Já no circuito BancoRegistradores foi implementado 4 Registradores feito no item anterior, dois Multiplexadores, um Demultiplexador e três pinos de entradas com 2 bits cada, responsáveis para os comandos de Write, RW (Selecionar em quais registradores os dados de entrada serão gravados), RA (Selecionar o registrador e exibir o dado contido nele na saída VA) e o RB (Selecionar o registrador e exibir o dado contido nele na saída VB). No final deste circuito o programa irá exibir duas saídas de 8 bits cada, de acordo com o que foi selecionado nos pinos RA e RB.



**Multiplicador:** Já neste circuito, foi utilizado 2 entradas 8 bits cada, e um módulo pronto multiplicador, fazendo assim o cálculo necessário para a saída de 8 bits.



**~B**: Neste circuito foi utilizado 1 entrada de 8 bits cada, um distribuidor e mais 8 portas NOT para negar a entrada de B.



**AXORB:** No circuito A XOR B, foi utilizado 2 entradas de 8 bits cada, sendo a entrada A e B, também foi utilizado 8 portas XOR. Esse circuito exibe o valor 1 na saída, quando se tem dois valores diferentes entre si e 0 quando forem iguais.



**Soma8Bits:** Já nesse circuito, foi utilizado duas entradas de 8 bits cada, 2 distribuidores, um módulo **MS** e mais 7 portas **SC.** As entradas passam nos Subcircuitos para verificar a soma deles e assim gera um valor de saída ou também pode mandar um resultado para o próximo Subcircuito.

# Circuito (MS)



## Circuito (SC)



#### **Circuito Soma8Bits**



**ANORB:** No circuito A NOR B, foi utilizado 2 entradas de 8 bits cada, sendo a entrada A e B, e dois distribuidores, também foi utilizado 8 portas NOR. Esse circuito é encarregado de realizar a operação OR entre A e B e nega o resultado delas.



**Divisor:** Já neste circuito, foi utilizado 2 entradas 8 bits cada, e um módulo pronto Divisor, fazendo assim o cálculo necessário para a saída de 8 bits.



**Subtracao8Bits:** Recebe dois valores de entrada de 8 bits cada um e dois distribuidores, passa dentro dos 8 Subcircuitos de **Subtracao** e retorna os valores de saída, nos Subcircuitos de subtração, foi utilizado 7 portas AND, 2 portas OR, 8 portas NOT e três pinos de entrada.

#### Circuito Subtracao



#### **Circuito Subtracao8Bits**



**ANANDB:** Neste circuito, foi utilizado 2 entradas de 8 bits cada, 2 distribuidores, e 8 portas NAND, a função do circuito é encarregado de comprar A AND B e negar o resultado e exibir na saída.



Unidade Lógica e Aritmética (ULA): No circuito de "Selecao", foi implementado com duas entradas de 8 bits cada, ou seja, a entrada A e B, que vai receber os valores fornecidos pela saída VA e VB. Esses valores são enviados diretamente aos módulos onde serão responsáveis para realizar a operação de A\*B, ~B, A XOR B, A NOR B, A/B, A-B e A NAND B. Após isso, serão enviados os resultado dentro do Multiplexador, conforme a operação de 3 bits for selecionada, o resultado exibido será de acordo com o que foi selecionado, sendo assim, se na operação for selecionado "000", a saída será A\*B.





Após termos a operação selecionada e os dados de entrada e saída já selecionados também, basta acompanharmos o resultado que a saída irá exibir. Podemos também deixar a opção de guardar o resultado exibido em um registrador, ou gravar somente novos dados, basta deixarmos no Sel\_valor a operação 1 para gravar novos dados de entrada, ou 0 para gravar o dado de saída dentro de um registrador. Podemos ver os exemplos realizados com uma equação do primeiro grau e do segundo grau, a qual o sistema retornou o resultado correspondente das equações.

#### Equação do Primeiro Grau;

|       | Equação: 5.x + 3                         |                                                    |                                                                                                                |  |  |
|-------|------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|
|       | Entrada x10 para a variável x: 10        |                                                    |                                                                                                                |  |  |
|       | Resultado da equação: y = 53 ou 00110101 |                                                    |                                                                                                                |  |  |
| Passo | so Entrada Controle Resultado            |                                                    |                                                                                                                |  |  |
| 1     | Insere_valor = 5                         | Sel_valor = 1<br>Sel_RW = 00;<br>Escreve = 0->1->0 | Coloca 'a' em R0: R0 = 5                                                                                       |  |  |
| 2     | Insere_valor = 10                        | Sel_valor = 1<br>Sel_RW = 01<br>Escreve = 0->1->0  | Coloca 'x' em R1: R1 = 10                                                                                      |  |  |
| 3     | Insere_valor = 50                        | Sel_valor = 0<br>Sel_RW = 10<br>Escreve = 0->1->0  | Coloca o resultado de a.x em R2: R2 = 50                                                                       |  |  |
| 4     | Insere_valor = 3                         | Sel_valor = 1<br>Sel_RW = 11<br>Escreve = 0->1->0  | Coloca 'b' em R3: R3 = 3, após isso, soma<br>o valor presente em R2 + R3 e o resultado<br>será 00110101 ou 53; |  |  |

# Equação do Segundo Grau;

|       | Equação: 5.3 <sup>2</sup> +3.3+5         |                                                     |                                                                    |  |
|-------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|--|
|       | Entrada x3² para a variável x: 3² = 9    |                                                     |                                                                    |  |
|       | Resultado da equação: y = 59 ou 00111011 |                                                     |                                                                    |  |
| Passo | Entrada                                  | Controle                                            | Resultado                                                          |  |
| 1     | Insere_ valor = 3 <sup>2</sup>           | Sel_ Valor = 1<br>Sel_ RW = 00<br>Escreve = 0->1->0 | Coloca 'x' em R0: R0 = 3 <sup>2</sup>                              |  |
| 2     | Insere_ valor = 9                        | Sel_ Valor = 0<br>Sel_ RW = 00<br>Escreve = 0->1->0 | Coloca 'x' em R0: R0 = 9                                           |  |
| 3     | Insere_valor = 5                         | Sel_ Valor = 1<br>Sel_ RW = 01<br>Escreve = 0->1->0 | Coloca 'a' em R1: R1 = 5                                           |  |
| 4     | Insere_ valor = 45                       | Sel_ Valor = 0<br>Sel_ RW = 00<br>Escreve = 0->1->0 | Coloca 'a'.'x' em R0: R0 = 45                                      |  |
| 5     | Insere_valor = 3                         | Sel_ Valor = 1<br>Sel_ RW = 01<br>Escreve = 0->1->0 | Coloca 'b' em R1: R1 = 3                                           |  |
| 6     | Insere_ valor = 3                        | Sel_ Valor = 1<br>Sel_ RW = 10<br>Escreve = 0->1->0 | Coloca 'x' em R2: R2 = 3                                           |  |
| 7     | Insere_ valor = 9                        | Sel_ valor = 0<br>Sel_ RW = 01<br>Escreve = 0->1->0 | Coloca 'b'.'x' em R1: R1 = 9                                       |  |
| 8     | Insere_ valor = 54                       | Sel_ valor = 0<br>Sel_ RW = 11<br>Escreve = 0->1->0 | Coloca 'a.x²' + 'b.x' em R3: R3 = 54                               |  |
| 9     | Insere_ valor = 5                        | Sel_ valor = 1<br>Sel_ RW = 01<br>Escreve = 0->1->0 | Coloca 'c' em R0: R0 = 5                                           |  |
| 10    | Insere_ valor = 59                       | Sel_ valor = 0<br>Sel_ RW = 10<br>Escreve = 0->1->0 | Coloca o resultado de toda a equação no<br>R0: R0 = 59 ou 00111011 |  |

### **TABELA VERDADE DOS CIRCUITOS**

Flip-Flop do Tipo D

| Tabela Verdade Flip-Flop D |   |   |    |  |
|----------------------------|---|---|----|--|
| J                          | K | D | QF |  |
| 0                          | 0 | х | Х  |  |
| 0                          | 1 | 0 | 0  |  |
| 1                          | 0 | 1 | 1  |  |
| 1                          | 1 | х | Х  |  |

Circuito MS (Meio Somador)

| Tabela Verdade (MS) |   |   |   |
|---------------------|---|---|---|
| Α                   | В | С | S |
| 0                   | 0 | 0 | 0 |
| 0                   | 1 | 0 | 1 |
| 1                   | 0 | 0 | 1 |
| 1                   | 1 | 1 | 0 |

Circuito SC (Somador Completo)

| Tabela Verdade (SC) |   |   |     |      |
|---------------------|---|---|-----|------|
| Α                   | В | С | SUM | Cout |
| 0                   | 0 | 0 | 0   | 0    |
| 0                   | 0 | 1 | 1   | 0    |
| 0                   | 1 | 0 | 1   | 0    |
| 0                   | 1 | 1 | 0   | 1    |
| 1                   | 0 | 0 | 1   | 0    |
| 1                   | 0 | 1 | 0   | 1    |
| 1                   | 1 | 0 | 0   | 1    |
| 1                   | 1 | 1 | 1   | 1    |

#### LISTA DE ABREVIATURAS USADAS

MS Meio Somador

SC Somador Completo

B Negado

Registrador Circuito Registrador

BancoRegistradores Circuito Banco de Registradores

Soma8Bits Circuito de Soma de 8 Bits

Subtracao8Bits Circuito de Subtração de 8 Bits

Divisor Circuito de Divisão

Multiplicador Circuito de Multiplicação

Subtracao Circuito de Subtração

AXORB Circuito Responsável pela operação A XOR B

ANORB Circuito Responsável pela operação A NOR B

ANANDB Circuito Responsável pela operação A NAND B

Selecao Circuito Seleção ULA