CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Basics of Linear Algebra

By $x \in \mathbb{R}^n$, we denote a vector with n entries

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & | & | \end{bmatrix}$$

the *i*th row of A by a_i^T

Mathematical representation of data

- Examples
 - Training, validation, and test examples
- Features
 - Target(s) versus features
- Data matrix, data vector
 - Index of the examples

Matrix Multiplication

The product of two matrices

$$A \in \mathbb{R}^{m \times n} \text{ and } B \in \mathbb{R}^{n \times p}$$

$$C = AB \in \mathbb{R}^{m \times p},$$
where $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$

Special case: vector-vector product, matrix-vector product

Matrix Multiplication

 C_{ij} is equal to the inner product of the ith row of A and the jth row of B

$$C = AB = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & | & & | \\ b_1 & b_2 & \cdots & b_p \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_p \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_p \end{bmatrix}.$$

C is sum of outer products.

$$C = AB = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} - & b_1^T & - \\ - & b_2^T & - \\ & \vdots & \\ - & b_n^T & - \end{bmatrix} = \sum_{i=1}^n a_i b_i^T$$

Rules of Matrix Multiplication

- Matrix multiplication is associative: (AB)C = A(BC).
- Matrix multiplication is distributive: A(B+C) = AB + AC.
- Matrix multiplication is, in general, not commutative;
 AB \neq BA.

Orthogonal Matrix

 $U \in \Re^{m \times m}$ is orthogonal, if and only if $UU^T = I_m$. (I_m is the identity matrix) $\Rightarrow U^{-1} = U^T$

The columns of $V \in \Re^{m \times n} (m > n)$ are orthormal, if and only if $V^T V = I$.

Square Matrix – EigenValue, EigenVector

a square matrix $A \in \mathbb{R}^{n \times n}$

 (λ, x) is an eigen-pair of A, if and only if $Ax = \lambda x$. λ is the eigenvalue x is the eigenvector

write all the eigenvector equations

$$AX = X\Lambda$$
 where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
$$X \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & \cdots & x_n \\ | & | & | \end{bmatrix}$$

 $A = X\Lambda X^{-1}$ eigen-decomposition of A

Symmetric Matrix – EigenValue EigenVector

A is symmetric, if
$$A = A^T$$

$$X^{-1} = X^T$$

 $A = X\Lambda X^T$ eigen-decomposition of A

 $A \in \mathbb{R}^{n \times n}$ is symmetric and positive semi-definite, if $x^T A x \ge 0$, for any $x \in \mathbb{R}^n$.

$$\lambda_i \geq 0, i = 1, \dots, n$$

 $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, if $x^T Ax > 0$, for any nonzero $x \in \mathbb{R}^n$.

$$\lambda_i > 0, i = 1, \dots, n$$

Singular Value Decomposition

Singular Value Decomposition (SVD): $A = U\Sigma V^T$, where $A \in \Re^{m \times n}$, $U \in \Re^{m \times m}$ and $V \in \Re^{n \times n}$ are orthogonal, and $\Sigma = diag(\sigma_1, \dots, \sigma_r)$ is diagonal with $\sigma_1 \ge \dots \ge \sigma_r$ and $r = \min(m, n)$.

 $AA^{T} = U\Sigma\Sigma^{T}U^{T}$: U forms the eigenvectors of AA^{T} .

 $A^{T}A = V\Sigma^{T}\Sigma V^{T}$: V forms the eigenvectors of $A^{T}A$.

Vector Norm

• l_2 -norm

$$\|\mathbf{v}\|_2 = \sqrt{\sum_i v_i^2}$$

• l_1 -norm

$$\|\mathbf{v}\|_1 = \sum_i |v_i|$$

 \bullet l_0 -norm

 $\|\mathbf{v}\|_0 = \text{No. of none zero elements in } \mathbf{v}$

Matrix Norms and Trace

Matrix norm:

2 - norm: $||A||_2$ = the square root of the largest eigenvalue of AA^T .

F-norm:
$$||A||_{F} = \sqrt{\sum_{i,j} A_{ij}^{2}}$$
. Frobenius norm

1 - norm:
$$||A||_1 = \sum_{i,j} |A_{ij}|$$
.

trace(A) = $\sum_{i=1}^{m} A_{ii}$, for a square matrix A of size m by m.

$$||A||_F^2 = \operatorname{trace}(AA^T) = \operatorname{trace}(A^TA), \operatorname{trace}(AB) = \operatorname{trace}(BA).$$

$$||QA||_F = ||A||_F$$
, if Q has orthonormal columns.

References

- SC_linearAlg_basics.pdf (necessary)
- SVD_basics.pdf

loaded to Blackboard