

MT5931 802.11n platform (2.4GHz) Technical Brief

Version: 1.0

Release date: September 8, 2014

Specifications are subject to change without notice.

© 2014 MediaTek Inc.

Table of Contents

1	Syst	tem Overview	4
	1.1	General Descriptions	4
	1.2	Features	
	1.3	Applications	5
	1.4	Block Diagram	5
2	Pro	duct Descriptions	6
	2.1	Pin Descriptions	6
	2.2	Package Information	11
	2.3	Ordering Information	16
3	Elec	ctrical Characteristics	17
	3.1	PMU Descriptions	17
	3.2	Absolute Maximum Ratings	17
	3.3	Recommended Operating Range	18
	3.4	PMU Electrical Characteristics	18
	3.5	XOSC32	19
	3.6	DC Electrical Characteristics for 2.8 Volts Operation	20
	3.7	DC Electrical Characteristics for 1.8 Volts Operation	21
4	Inte	erface	22
	4.1	Host Interface (HIF)	22
	4.2	EEPROM Interface	31
	4.3	EFUSE Function	33
5	Rad	lio Characteristics	34
	5.1	Tx/Rx Specifications	34
	5.2	Current Consumption	37

Lists of Tables and Figures

Table 1. Pin descriptions	10
Table 2. OSC/XTAL frequency selection	10
Table 5. Absolute maximum ratings	18
Table 6. Recommended operating range	
Table 7. PMU characteristics	
Figure 1. MT5931 block diagram	5
Figure 2. MT5931 TFBGA top marking	
Figure 3. MT5931 TFBGA POD (a)	
Figure 4. MT5931 TFBGA POD (b)	
Figure 5. MT5931 WLCSP marking	
Figure 6. MT5931 WLCSP POD (a)	
Figure 7. MT5931 WLCSP POD (b)	
Figure 8. MT5931 WLCSP POD (c)	
Figure 9. MT5931 WLCSP POD (d)	
Figure 10. Block diagram of XOSC32	
Figure 11. Signal connections to one 4-bit SDIO card and host interrupt	
Figure 12. Bus signal levels	
Figure 13. Bus timing diagram (default)	
Figure 14. High-speed timing diagram	
Figure 15. T-Mode SPI protocol	
Figure 16. M-Mode SPI protocol	
Figure 17. eHPI8 single write access	
Figure 18. eHPI8 single read access	
Figure 19. eHPI8 burst write access (data port)	
Figure 20. eHPI8 burst read access (data port)	
Figure 21. eHPI16 single write access	
Figure 22. eHPI16 single read access	
Figure 23. eHPI16 burst write access (data port)	
Figure 24. eHPI16 burst read access (data port)	
Figure 25. eHPI write cycle timing diagram	
Figure 26. eHPI read cycle timing diagram	
Figure 27. EEPROM configuration	
Figure 28. EEPROM CRC checksum diagram	
Figure 29. EEPROM interface connection	
Figure 30. EEPROM data timing	
Figure 31 2.4GHz Receiver Specifications	

1 System Overview

1.1 General Descriptions

MT5931 is a Wi-Fi device which includes

- 802.11 b/g/n
- PA
- LNA
- TR-Switch

MT5931 provides the best and most convenient connectivity functions. MT5931 implements advanced and sophisticated radio coexistence algorithms and hardware mechanisms. The enhanced overall quality for simultaneous voice, data, and audio/video transmission on mobile phone and Tablet PC can be achieved. The small package size with low power consumption reduces the PCB layout area.

1.2 Features

- Embedded RISC core for better system level management
- Coexistence: IEEE 802.15.2 external three-wire coexistence scheme to support additional wireless technologies such as 3G, GPS and WiMAX
- Self calibration.
- Integrated switching regulator enables direct connection to battery.
- Best-in-class current consumption performance
- Intelligent BT/WLAN coexistence scheme that goes beyond PTA signaling (for example, transmit window and duration that take into account of protocol exchange sequence, frequency, etc.)
- TFBGA (5.1x5.3mm²) and WLCSP (2.93x3.17mm²) packages
- 2.4GHz single stream 802.11 b/g/n MAC/BB/RF
- 802.11 d/h/k compliant
- Security: WFA WPA/WPA2 personal, WPS2.0, WAPI (hardware)
- QoS: WFA WMM, WMM PS
- Supports 802.11n optional features: STBC, A-MPDU, Blk-Ack, RIFS, MCS Feedback, 20/40 MHz coexistence (PCO), unscheduled PSMP
- Supports 802.11w protected managed frames
- Supports Wi-Fi Direct
- Interface: SDIO 2.0 (4-bit & 1-bit), SPI(TFBGA only), EHPI-8/16 (TFBGA only)
- Per packet Tx power control

1.3 Applications

- Smart phones
- Tablet PC
- Mobile Internet Device (MID)
- Portable Navigation Device (PND)
- Portable Media Player (PMP)
- Portable gaming devices

1.4 Block Diagram

Figure 1. MT5931 block diagram

2 Product Descriptions

2.1 Pin Descriptions

Symbol WLCSP bump		TFBGA ball	Description	PU/PD	I/O
Power ground p	oin	-1		"	
CGND	F6	F4	Ground	NA	VSS
CGND	G6	F6	Ground	NA	VSS
PAD_VDDK	E5	G4	1.2V core power	NA	VDD
PAD_VDDK		G6	1.2V core power	NA	VDD
PAD_VDDK		G7	1.2V core power	NA	VDD
DVDDIO3	F3	H1	1.8/2.8V host interface I/O power	NA	VDD
CGND		F7	Ground	NA	VSS
CGND		K1	Ground	NA	VSS
DVDDIO0	G1	K10	1.8 / 2.8V I/O power	NA	VDD
DVDDIO2		J7	1.8/2.8V host interface or PTA I/O power	NA	VDD
DVDDIO1		K7	1.8/2.8V PTA I/O power	NA	VDD
PMU					
GND_REF	В7	B1	Ground	NA	
OUT_FB	C7	C3	Buck feedback	NA	
AVDD16_CLDO	C8	C2	CLDO feedback	NA	
CLDO	B8	C1	CLDO 1.2V output	NA	
REF	A8	A1	Bandgap reference point	NA	
AVDD43_REF	A7	A2	4.3V reference point	NA	
AGND43_SMPS	B6	В3	Ground	NA	
LXBK	A6	A3	Buck feedback	NA	
AVDD43_SMPS	B5	A4	Buck power	NA	
PALDO	A5	A5	PALDO output	NA	
GND_PALDO	C5	C5	Ground	NA	
PALDO_FB	C6	E5	PALDO remote sense feedback	NA	
PAD_EN D7 B5 PMU 6		PMU enable from host	NA	I	
RTC	•	•		•	•
X32K_IN	D6	D1	RTC 32 kHz clock input	NA	I
AVDDRTC	D8	D3	RTC power	NA	VDD
AVSSRTC		D4	RTC ground	NA	VSS
X32K_OUT	D5	D2	RTC 32K output	NA	О

Symbol	WLCSP bump	TFBGA ball	Description	PU/PD	I/O
RF	F				II.
AVDD33_XO	C4	A6	XO power	NA	VDD
PAD_ICAL_EXTR		F10	External ICAL input	NA	I
TRX_QN		E9	TRX Q signal	NA	I/O
TRX_QP		E8	TRX Q signal	NA	I/O
TRX_IN		E7	TRX I signal	NA	I/O
TRX_IP		E6	TRX I signal	NA	I/O
AVDD16_LF	D1	E10	LF power	NA	VDD
AVSS16_WF	C2	D6	Ground	NA	VSS
AVSS16_WF	D2	D7	Ground	NA	VSS
AVDD16_TRX	C1	D10	TRX power	NA	VDD
AVSS16_WF	В3	D9	Ground	NA	VSS
TRX_IO_N	B1	C10	TRX IO signal	NA	I/O
AVSS33_PA	A2	A10	Ground	NA	VSS
AVSS33_PA	B2	B9	Ground	NA	VSS
TRX_IO_P	A1	B10	TRX IO signal	NA	I/O
AVDD33_TX	A3	A9	WLAN power	NA	VDD
AVSS33_PA		C9	Ground	NA	VSS
AVSS16_VCO		B8	Ground	NA	VSS
AVDD16_SX	C3	A8	SX power	NA	VDD
AVSS16_WF		C6	Ground	NA	VSS
OSC_IN	A4	A7	XTAL/OSC input	NA	I
Digital	- 1	-1	1	1	1
FSOURCE	F7	E1	eFuse power pin	NA	VDD
WI-FI_INT_B	F5	E2	WI-FI_INT_B: Wi-Fi component interrupt output	None/SW	О
D15		J6	eHPI_DAT15: eHPI data bus bit 15	None/SW	I/O
			WX_REQ: WiMAX co-existence PTA interface	None/SW	I
D14		J5	eHPI_DAT14: eHPI data bus bit 14	None/SW	I/O
			WX_INFO: WiMAX co-existence PTA interface	None/SW	I
D13		K6	eHPI_DAT13: eHPI data bus bit 13	None/SW	I/O
			WX_NO_GRANT: WiMAX co-existence PTA interface	None/SW	О

Symbol	WLCSP TFBC bump ball		Description	PU/PD	I/O
D12		H6	eHPI DAT12: eHPI data bus bit 12	None/SW	I/O
			BT_FREQ: BT co-existence PTA interface	None/SW	I
D11		H5	eHPI_DAT11: eHPI data bus bit 11	None/SW	I/O
			BT_ACT: BT co-existence PTA interface	None/SW	I
D10		H4	eHPI_DAT10: eHPI data bus bit 10	None/SW	I/O
			WLAN_ACT: BT co-existence PTA interface	None/SW	О
D9		J4	eHPI_DAT9: eHPI data bus bit 9	None/SW	I/O
			GPIO0_16: GPIO0_16 in/out	None/SW	I/O
D8		K4	eHPI_DAT8: eHPI data bus bit 8	None/SW	I/O
			GPIO0_17: GPIO0_17 in/out	None/SW	I/O
D7		E3	eHPI_DAT7: eHPI data bus bit 7	None/SW	I/O
			EEDO: EEPROM interface	None/SW	I
			GPIO0_18: GPIO0_18 in/out	None/SW	I/O
D6		G3	eHPI_DAT6: eHPI data bus bit 6	None/SW	I/O
			EEDI: EEPROM interface	None/SW	O
			GPIO0_19: GPIO0_19 in/out	None/SW	I/O
D5		G2	eHPI_DAT5: eHPI data bus bit 5	None/SW	I/O
			EECS: EEPROM interface	None/SW	О
			GPIO0_20: GPIO0_20 in/out	None/SW	I/O
D4		G1	eHPI_DAT4: eHPI data bus bit 4	None/SW	I/O
			EESK: EEPROM interface	None/SW	O
			GPIO0_21: GPIO0_21 in/out	None/SW	I/O
D3	E8	K2	eHPI_DAT3: eHPI data bus bit 3	None/SW	I/O
			SDIO_DAT3: SDIO data bus bit 3	PU	I/O
			GPIO0_22: GPIO0_22 in/out	None/SW	I/O
D2	E7	H2	eHPI_DAT2: eHPI data bus bit 2	None/SW	I/O
			SDIO_DAT2: SDIO data bus bit 2	None/SW	I/O
			GPIO0_23: GPIO0_23 in/out	None/SW	I/O
D1	E6	Ј3	eHPI_DAT1: eHPI data bus bit 1	None/SW	I/O
			SDIO_DAT1: SDIO data bus bit 1	None/SW	I/O
			GPIO0_24: GPIO0_24 in/out	None/SW	I/O
D0	F8	НЗ	eHPI_DAT0: eHPI data bus bit 1	None/SW	I/O
			SDIO_DAT0: SDIO data bus bit 1	None/SW	I/O
			SPI_DIN: SPI interface DIN	None/SW	I

Symbol	Symbol WLCSP TFBGA Description ball		PU/PD	I/O	
A0	G7	J1	eHPI_A0: eHPI interface A0	None/SW	I
			SDIO_CMD: SDIO interface CMD	None/SW	I/O
			SPI_DOUT: SPI interface DOUT	None/SW	О
CS_N		F3	eHPI_CSN: eHPI interface CS_N	None/SW	I
			GPIO0_27: GPIO0_27 in/out	None/SW	I/O
			SPI_CS: SPI interface CS	None/SW	I
WE_N		F2	eHPI_WEN: eHPI interface WE_N	None/SW	I
			GPIO0_28: GPIO0_28 in/out	None/SW	I/O
			SPI_MODE_SEL: SPI interface MODE_SEL	None/SW	I
OE_N	G8	J2	eHPI_OEN: eHPI interface OE_N	None/SW	I
			SDIO_CLK: SDIO interface SD_CLK	None/SW	I
			SPI_CLK: SPI interface SPI_CLK	None/SW	I
RF_I_CAL	D4		RF_I_CAL: Analog pin	NA	I
			OSC_EN: OSC enable in co-clocking platform	None/SW	О
			ICAP_TRIG_EXT: External trigger event for internal capture debugging	None/SW	I
OSC_EN		F9	OSC_EN: OSC enable in co-clocking platform	None/SW	О
			ICAP_TRIG_EXT: External trigger event for internal capture debugging	None/SW	I
GPIO_0		G10	ANTSEL_0: Antenna selection #0	PD/SW	О
			UART_DBG_RX: UART debug RXD	None/SW	I
			GPIO0_8: GPIO0_8 in/out	None/SW	I/O
GPIO_1		H9	ANTSEL_1: Antenna selection #1	PD/SW	О
			UART_DBG_TX: UART debug TXD	None/SW	О
			GPIO0_0: GPIO0_0 in/out	None/SW	I/O
BT_PRI	G4	H7	BT_PRI: BT co-existence PTA interface	PD	I/O
			GPIO0_9: GPIO0_9 in/out	PD	I/O
ANTSEL_0	G2	K8	ATNSEL_0: Antenna selection #0	PD/SW	О
ANTSEL_1	G3	Ј8	ATNSEL_1: Antenna selection #1	PU/SW	O
ANTSEL_2	E1	G9	EESK: EEPROM interface	PD/SW	O
			WLAN_ACT: BT co-existence PTA interface	None/SW	О

Symbol	WLCSP bump	TFBGA ball	Description	PU/PD	I/O
ANTSEL_3	E2	F8	EEDI: EEPROM interface	PD/SW	О
			GPIO0_7: GPIO0_7 in/out	None/SW	I/O
UART_DBG_TX	E3	J10	EECS: EEPROM interface	None/SW	О
			UART_DBG_TX: UART debug TXD	None/SW	О
UART_DBG_RX	F1 H10 EE		EEDO: EEPROM interface	PD/SW	I
			UART_DBG_RX: UART debug RXD	None/SW	I
EXT_INT_B	F2	Н8	ICAP_TRIG_EXT: External trigger event for internal capture debugging	None/SW	I
			WLAN_ACT: BT co-existence PTA interface	None/SW	О
			EXT_INT_B: External interrupt input from Host	None/SW	I
XTEST	F4	J9	Test mode enable	PD	I
SYSRST_B E4 K9 External		External system reset active low	nal system reset active low PU		

Table 1. Pin descriptions

2.1.1 Strapping Table

XTAL_SEL[0] (ANTSEL_0)	XTAL_SEL[1] (ANTSEL_1)	XTAL_SEL[2] (GPIO_1)	Description
0	0	0	24 MHz
1	0	0	19.2 MHz
0	1	0	26 MHz (default)
1	1	0	Reserved
0	0	1	Reserved
1	0	1	52 MHz
0	1	1	Reserved
1	1	1	Reserved

Table 2. OSC/XTAL frequency selection

WLCSP package only supports 26 MHz.

SLOW_SRC (GPIO_0)	Note
1	Internal
0	External

Table 3. Slow clock source selection

WLCSP package use SW select Slow clock source.

OSC_SRC [WI-FI_INT_B]	Note
0	OSC / Co-clocking
1	XTAL

Table 4. Clock source selection

HOST[0] (ANTSEL_2)	HOST[1] (ANTSEL_3)	Note
0	0	eHPI-8
1	0	eHPI-16
0	1	SPI
1	1	SDIO

Table 5. Host interface selection

WLCSP package only supports SDIO.

2.2 Package Information

2.2.1 TFBGA Packaging

TOP VIEW

Figure 2. MT5931 TFBGA top marking

Figure 3. MT5931 TFBGA POD (a)

Dimension in mm.

		Symbol	Common Dimensions
Package :			TFBGA
Body Size:	X	E D	5.100 5.300
Ball Pitch :	X	eE eD	0.500 0.500
Total Thickness :		A	1.200 MAX.
Ball Diameter :			0.300
Stand Off :		A1	0.160 ~ 0.260
Ball Width :		b	0.250 ~ 0.350
Package Edge Tolerance :		aaa	0.100
Mold Flatness :		bbb	0.100
Coplanarity:		ddd	0.080
Ball Offset (Package) :	Ball Offset (Package) :		
Ball Offset (Ball) :	fff	0.050	
Ball Count :	n	84	
Edge Ball Center to Center : X		E1 D1	4.500 4.500

Figure 4. MT5931 TFBGA POD (b)

2.2.2 WLCSP Packaging

Figure 5. MT5931 WLCSP marking

Figure 6. MT5931 WLCSP POD (a)

Figure 7. MT5931 WLCSP POD (b)

	[)imension	in mm	Dir	mension in	inch
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.490	0.530	0.571	0.019	0.021	0.022
A1	0.185	0.200	0.215	0.007	0.008	0.008
С	0.305	0.330	0.356	0.012	0.013	0.014
D	3.169	3.224	3.249	0.125	0.127	0.128
Е	2.931	2.986	3.011	0.115	0.118	0.119
D1		2.835			0.112	
D2		0.196			0.008	
D3		0.193			800.0	
E1		2.600			0.102	
E2		0.193	-		800.0	
E3		0.193	-		0.008	
ь	0.216	0.270	0.324	0.009	0.011	0.013
aaa		0.10			0.004	
bbb		0.10			0.004	
ccc		0.03		0.001		
ddd		0.15		0.006		
eee		0.05			0.002	

Figure 8. MT5931 WLCSP POD (c)

A1 -1.419 1.300 EI -1.419 A2 -1.019 1.300 E2 -1.019 A3 -0.619 1.300 E3 -0.619 A4 -0.219 1.301 E4 -0.219 A5 0.181 1.300 E5 0.181 A6 0.581 1.300 E6 0.581 A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F7 0.981	
A3 -0.619 1.300 E3 -0.619 A4 -0.219 1.301 E4 -0.219 A5 0.181 1.300 E5 0.181 A6 0.581 1.300 E6 0.581 A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
A4 -0.219 1.301 E4 -0.219 A5 0.181 1.300 E5 0.181 A6 0.581 1.300 E6 0.581 A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
A5 0.181 1.300 E5 0.181 A6 0.581 1.300 E6 0.581 A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
A6 0.581 1.300 E6 0.581 A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
A7 0.981 1.300 E7 0.981 A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
A8 1.381 1.300 E8 1.381 B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
B1 -1.419 0.900 F1 -1.419 B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
B2 -1.019 0.900 F2 -1.019 B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.500
B3 -0.619 0.900 F3 -0.619 B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.900
B5 0.259 0.700 F4 -0.219 B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.900
B6 0.616 0.900 F5 0.181 B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.900
B7 1.016 0.900 F6 0.581 B8 1.416 0.900 F7 0.981	-0.900
B8 1.416 0.900 F7 0.981	-0.900
	-0.900
	-0.900
Cl -1.419 0.300 F8 1.381	-0.900
C2 -1.019 0.300 G1 -1.419	-1.300
C3 -0.619 0.300 G2 -1.019	-1.300
C4 -0.219 0.300 G3 -0.619	-1.300
C5 0.259 0.300 G4 -0.219	-1.300
C6 0.616 0.500 G6 0.581	-1.300
C7 1.016 0.500 G7 0.981	-1.300
C8 1.416 0.500 G8 1.381	-1.300
DI -1.419 -0.100	
D2 -1.019 -0.100	
D4 -0.219 -0.100	
D5 0.181 -0.100	
D6 0.581 -0.100	
D7 0.981 -0.100	
D8 1.381 0.000	

Figure 9. MT5931 WLCSP POD (d)

2.3 Ordering Information

Part number	Package
MT5931A/B	TFBGA
MT5931P/B	WLCSP

3 Electrical Characteristics

3.1 PMU Descriptions

MT5931 integrates the Power Management Unit (PMU) which generates power supplies required by the internal circuitry from the battery.

PMU mainly contains Low Dropout Regulators (LDOs), buck converter and control circuits such as Under-Voltage Lockout (UVLO), thermal protection and power-on/off sequencer.

3.1.1 PALDO

PALDO converts the battery input to a 3.3V supply for the use of Wi-Fi RF PA circuits. It is optimized for the given functions by balancing the quiescent current, dropout voltage, line/load regulation, ripple rejection and output noise.

3.1.2 CLDO

One CLDO is integrated in PMU to supply digital core. It converts 1.8V input to 1.2V output which is suited for the digital circuits. The input is typically connected to the buck's output.

3.1.3 Buck Converter

The regulator is a DC-DC step-down converter (buck converter) which produces programmable power supply from the battery input. Typically it supplies power for the core LDO and RF circuits. The buck converter is optimized for high efficiency, low EMI and low quiescent current.

3.2 Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
DVDDIO0 DVDDIO1 DVDDIO2	1.8V or 2.8V digital power supply	-0.3 to 3.6	V
DVDDIO3 (VIO_HOST)	1.8V or 2.8V SDIO digital IO power supply	-0.3 to 3.6	V
DVDD	Digital 1.2V power supply	-0.3 to 3.6	V
AVDD_CLDO	Internal CLDO power supply	-0.3 to 3.6	V
AVDD28_* AVDD33_*	RF power supply	-0.3 to 3.6	V
AVDD13_*	RF power supply	-0.3 to 1.8	V
AVDD_SMPS	BUCK and PALDO power supply	-0.3 to 4.7	V

Symbol	Parameter	Rating	Unit
AVDD_MISC	PMU power supply	-0.3 to 4.7	V
T_{STG}	Storage temperature	-45 to +135	°C

Table 3. Absolute maximum ratings

3.3 Recommended Operating Range

Symbol	Parameter	Min.	Тур,.	Max.	Unit
DVDDIO0 DVDDIO1	2.8V digital power supply	2.0	2.8	3.6	V
DVDDIO2 DVDDIO3	1.8V digital power supply	1.6	1.8	2.0	V
DVDD	Digital core power supply	1.08	1.2	1.32	V
AVDD13_*	RF power supply	1.28	1.35	1.4	V
AVDD28_*	RF power supply	2.66	2.8	2.94	V
AVDD33_*	RF power supply	3.14	3.3	3.46	V
AVDD_SMPS	BUCK and PALDO power supply	2.9	3.8	4.3	V
AVDD_MISC	PMU power supply	2.3	3.8	4.3	V
Tambient	Ambient temperature	-40	25	85	°C

Table 4. Recommended operating range

3.4 PMU Electrical Characteristics

3.4.1 PMU Characteristics

Parameter	Conditions	Min.	Typ.	Max.	Unit
PMU_EN = 0: Shut down cur	rent				
VBAT < 2.3V	VBAT = 2.3V		15		μΑ
2.3V < VBAT < 4.3V	VBAT = 3.8V		20		μА
PMU_EN = 1: Quiescent current					
All outputs on	VBAT = 4.2V		100		μΑ
PALDO off, CORE LDO and buck converter on	VBAT = 4.2V		56		μΑ
Under Voltage Lock-Out (UV)	LO)				
Under voltage rising threshold			2.25		V
Under voltage falling threshold			2.15		V
PMU_EN voltage level					
High voltage		1.4			V
Low voltage				1.0	V

Parameter	Conditions	Min.	Typ.	Max.	Unit
Thermal shutdown		•	•	•	
Threshold			150		°C
Hysteresis			40		°C
LDO enable response time			250		μs
SMPS voltage		<u>.</u>	•		
Output voltage (V_BUCK)			1.65		V
Digital core voltage				•	
Output voltage (V_D)			1.2		V
WLAN PA voltage					
Output voltage (V_PALDO)			3.3		V

Table 5. PMU characteristics

3.5 XOSC32

3.5.1 Block Descriptions

The low-power 32-kHz crystal oscillator, XOSC32, is designed to work with an external piezoelectric 32.768 kHz crystal and a load composed of two functional capacitors. See the figure below.

Figure 10. Block diagram of XOSC32

3.5.2 Function Specification of XOSC32

Symbol	Parameter	Min.	Тур.	Max.	Unit
AVDDRTC	Analog power supply	1	2.8	3	V
Tosc	Start-up time			1	Sec.
Deyc	Duty cycle	30	50	70	%
	Current consumption		5		μA

Table 8. Function specification of XOSC32

3.5.3 Recommendations for Crystal Parameters for XOSC32

Symbol	Parameter	Min.	Тур.	Max.	Unit
F	Frequency range		32,768		Hz
GL	Drive level			5	uW
$\Delta f/f$	Frequency tolerance		+/- 20		ppm
ESR	Series resistance			50	ΚΩ
C0	Static capacitance			1.6	pF
CL.1	Load capacitance	6		12.5	pF

Table 9. Recommended parameters of the 32 kHz crystal

3.6 DC Electrical Characteristics for 2.8 Volts Operation

Symbol	Parameter	Conditions	Min.	Max.	Unit
VIL	Input low voltage	LVTTL	-0.28	0.6	V
V_{IH}	Input high voltage		2.0	3.08	V
V_{T-}	Schmitt trigger negative going threshold voltage	1	0.68	1.36	V
V_{T+}	Schmitt trigger positive going threshold voltage	LVTTL	1.36	1.7	V
Vol	Output low voltage	$ I_{OL} =1.6\sim14 \text{ mA}$	-0.28	0.4	V
Vон	Output high voltage	I _{OH} =1.6~14 mA	2.4	VDD28 + 0.28	V
R_{PU}	Input pull-up resistance	PU=high, PD=low	40	190	ΚΩ
R_{PD}	Input pull-down resistance	PU=low, PD=high	40	190	ΚΩ

Table 10. 2.8V DC descriptions

 $^{^{\, 1}}$ CL is the parallel combination of C1 and C2 in the block diagram.

3.7 DC Electrical Characteristics for 1.8 Volts Operation

Symbol	Parameter	Conditions	Min.	Max.	Unit
V_{IL}	Input lower voltage	LVTTL	-0.18	0.4	V
V_{IH}	Input high voltage	LVIIL	1.5	1.98	V
V _T -	Schmitt trigger negative going threshold voltage	I V/PPI	0.44	0.88	V
V_{T+}	Schmitt trigger positive going threshold voltage	LVTTL	0.88	1.1	V
Vol	Output low voltage	I _{OL} =1.6~14 mA	-0.18	0.4	V
Vон	Output high voltage	I _{OH} =1.6~14 mA	1.4	VDD18 + 0.18	V
R _{PU}	Input pull-up resistance	PU=high, PD=low	40	190	ΚΩ
R _{PD}	Input pull-down resistance	PU=low, PD=high	40	190	ΚΩ

Table 11. 1.8V DC description

4 Interface

4.1 Host Interface (HIF)

MT5931 HIF module provides 3 interfaces to connect to the host, which are one SDIO card interface, one SPI interface and one eHPI interface.

SDIO provides high-speed data I/O with low power consumption for mobile electronic devices. During normal initialization and interrogation by the SDIO host, the SDIO client identifies itself as an SDIO card. The host software obtains the card information in a tuple (linked list) format and determines if the I/O functions of the card are acceptable to be activated.

For the SDIO bus driver provided by OS, it simply maintains a single First-In-First-Out queue for processing the SDIO bus requested from different client drivers. For the client driver operated on the OS, its function is registered to OS and will be invoked by OS in its thread priority.

In the assumption of the host interface is the performance limitation for the functions attached to the HIF. Several bus access management approaches can be taken toward differentiating the high and low priority traffic. However, the performance limitation may also exist under different user scenarios.

4.1.1 Signal Pins

Figure 11. Signal connections to one 4-bit SDIO card and host interrupt

4.1.2 SDIO Timing Waveform

Figure 12. Bus signal levels

Parameter	Symbol	Min.	Max.	Unit	Conditions
Output high voltage	VOH	0.75*VDD		V	IOH = -100uA VDD min
Output low voltage	VOL		0.125*VDD	V	IOL = 100uA VDD min
Input high voltage	VIH	0.625*VDD	VDD+0.3	V	
Input low voltage	VIL	Vss-0.3	0.25*VDD	V	

Table 13. Bus signal voltage

Figure 13. Bus timing diagram (default)

Parameter	Symbol	Min.	Max.	Unit	Remark		
Clock CLK (All values are ref	erred to mi	n (Vін) а	nd max	(Vil)			
Clock frequency data transfer mode	\mathbf{f}_{PP}	0	25	MHz	Ccard ≤ 10 pF (1 card)		
Clock frequency identification mode	fod	0/100	400	kHz	Ccard ≤ 10 pF (1 card)		
Clock low time	twl	10		ns	Ccard ≤ 10 pF (1 card)		
Clock high time	twн	10		ns	$C_{CARD} \le 10 \text{ pF (1 card)}$		
Clock rise time	t tlh		10	ns	$C_{CARD} \le 10 \text{ pF (1 card)}$		
Clock fall time	t thl		10	ns	$C_{CARD} \le 10 \text{ pF (1 card)}$		
Inputs CMD, DAT (reference	d to CLK)						
Input set-up time	tisu	5		ns	Ccard ≤ 10 pF (1 card)		
Input hold time	t _{IH}	5		ns	Ccard ≤ 10 pF (1 card)		
Outputs CMD, DAT (referenced to CLK)							
Output delay time during data transfer mode	toldy	0	14	ns	C _L ≤ 10 pF (1 card)		
Output delay time during identification mode	toldy	0	50	ns	C _L ≤ 10 pF (1 card)		

Table 14. Bus timing parameter values (default)

Figure 14. High-speed timing diagram

Parameter	Symbol	Min.	Max.	Unit	Remark
Clock CLK (All values are refer	red to min	(Vін) aı	nd max	(Vil)	
Clock frequency data transfer mode	fрр	0	50	MHz	$C_{CARD} \le 10 \text{ pF (1 card)}$
Clock low time	twl	7		ns	$C_{CARD} \le 10 \text{ pF (1 card)}$
Clock high time	twн	7		ns	$C_{CARD} \leq 10 \text{ pF (1 card)}$
Clock rise time	t tlh		3	ns	$C_{CARD} \leq 10 \text{ pF (1 card)}$
Clock fall time	t THL		3	ns	$C_{CARD} \leq 10 \text{ pF (1 card)}$
Inputs CMD, DAT (referenced t	o CLK)				
Input set-up time	tisu	6		ns	Ccard ≤ 10 pF (1 card)
Input hold time	tıн	2		ns	$C_{CARD} \leq 10 \text{ pF (1 card)}$
Outputs CMD, DAT (referenced	to CLK)				
Output delay time during data transfer mode	toldy		14	ns	C _L ≤ 10 pF (1 card)
Output hold time	tон	2.5		ns	C _L ≥ 10 pF (1 card)
Total system capacitance for each line*	CL		40	pF	1 card

^{*}In order to satisfy serve timing, the host shall drive only one card.

Table 15. High-speed timing parameter values

4.1.3 SPI Timing Waveform

MT5931 supports SPI with T-mode and M-mode, 8-/16-/32-bit mode and big/little endian.

Select pin (SPI_MODE_SEL)	Mode
0	M-Mode
1	T-Mode

Table 16. SPI mode selection

T - mode

Figure 15. T-Mode SPI protocol

© 2014 MediaTek Inc.

Figure 16. M-Mode SPI protocol

Symbol	Parameter	Min.	Тур.	Max.	Unit
Tclk	SPI clock period	40			ns
Tcr/Tcf	Clock Rise/Fall time			2.5	ns
Tcss	CS setup time	7.86			ns
Tins	Din setup time	5			ns
Tinh	Din hold time	5			ns
Tod	Dout output delay			14	ns

Note: This timing spec criterion is VIO = 1.8V. It will gain better performance if stronger VIO is set.

4.1.4 eHPI Timing Waveform

Use the strapping method in section 2.1.1 to set up eHPI-8 or eHPI-16. With eHPI-8 being selected, we need 4 input control pins and 8 data pins, and with eHPI-16 being selected, we need 4 input control pins and 16 data pins. However eHPI-16 can achieve almost twice the data rate for large amount burst data access.

Figure 17. eHPI8 single write access

Figure 18. eHPI8 single read access

Figure 19. eHPI8 burst write access (data port)

Figure 20. eHPI8 burst read access (data port)

Figure 21. eHPI16 single write access

Figure 22. eHPI16 single read access

Figure 23. eHPI16 burst write access (data port)

Figure 24. eHPI16 burst read access (data port)

Figure 25. eHPI write cycle timing diagram

Symbol	Parameter	Min	Тур	Max	Units
Twr	Write pulse width	40			ns
Twrsu	CS_N vs WE_N setup time	0			ns
Twrh	CS_N vs WE_N hold time	0			ns
Tdwrsu	Data & A_0 vs WE_N setup time	10			ns
Tdwrh	Data & A_0 vs WE_N hold time	10			ns
Tidle	Twice Access cycle space Time	40			ns
Trise/Tfall	Control & Data signals' Rise/Fall time			5	ns

Table 17. Timing parameter of eHPI write cycle

Figure 26. eHPI read cycle timing diagram

Symbol	Parameter	Min	Тур	Max	Units
Twr	Write pulse width	40			ns
Twrsu	CS_N vs WE_N setup time	0			ns
Twrh	CS_N vs WE_N hold time	0			ns
Tdwrsu	Data & A_0 vs WE_N setup time	10			ns
Tdwrh	Data & A_0 vs WE_N hold time	10			ns
Tidle*	Twice access cycle space Time	40			ns
Trd	Read pulse width	40			ns
Trdsu	CS_N vs OE_N setup time	0			ns
Trdh	CS_N vs OE_N hold time	0			ns
Tdo	Output data delay time			20	ns
Tdh	Output data hold time	0			ns
Tdis	Output disable time			20	ns
Trise/Tfall	Control & data signals' rise/fall time			5	ns

Table 18. Timing parameter of eHPI read cycle

4.2 EEPROM Interface

4.2.1 EEPROM Controller Introduction

MT5931 supports 3-wire serial EEPROM of which the size range is from 128 to 2,048 bytes. The controller operates on the 16-bit data protocol.

4.2.2 EEPROM Content

Word offset	Byte offset	Content	Description	Default
0x00	0x00	Signature	EEPROM signature. MAC will automatically load the contents in EEPROM to the corresponding registers if the EEPROM signature is right after being powered on; otherwise, the default values will be used.	0x5931
0x01~0x1B	0x002~0x036	MT5931.CIS0. CISTPL_VERS_1	Content of MT5931 CIS0. Reserved 54 bytes for CISTPL_VERS_1 field.	
0x1C	0x38	Checksum	Checksum (bit 15 ~ 8) The check sum of data is from word offset 0x01 to word offset 0x1C. The sum from byte 0x2 to byte 0x38 should be 0xFF.	

Table 19. EEPROM content

ADR(Word)	EEPROM
0x00	Signature (16'h5931)
0x01~0x1B	5931 CIS 0 CISTPL_VERS_1
0x1C	Checksum

Figure 27. EEPROM configuration

4.2.3 EEPROM Checksum Function

Figure 28. EEPROM CRC checksum diagram

After passing the signature of EEPROM controller check, the data will be read from EEPROM. The checksum function will continue until the address reaches 0x1C.

4.2.4 EEPROM Interface Connection

Figure 29. EEPROM interface connection

4.2.5 EEPROM Interface Timing

Figure 30. EEPROM data timing

Description	Symbol	Min.	Max.	Unit	Notes
I2C serial clock	tsk		2500	ns	1
Data input setup time	tDIS	0.5T - 20	0.5T + 20	ns	
Data input hold time	tDIH	0.5T - 20	0.5T + 20	ns	
Data output delay to "0"	tPD0		500	ns	2
Data output delay to "1"	tPD1		500	ns	2

Table 20. EEPROM AC characteristics

Note:

- 1 It supports I2C fast mode up to 400 kHz.
- 2 The data output direction is from EEPROM slave to MT5931 master. This parameter depends on the EEPROM device.

4.3 EFUSE Function

There are some EFUSE macros inside MT5931. EFUSE macro is a one-time-programming (OTP) non-volatile memory used to store sensitive and important data. The EFUSE controller delivers EFUSE status and re-initializes EFUSE macro. Users can program EFUSE via the EFUSE controller by proper configuration and sequences.

5 Radio Characteristics

5.1 Tx/Rx Specifications

5.1.1 2.4GHz Receiver Specifications

Figure 31 2.4GHz Receiver Specifications

Note: All specifications are measured at the antenna port unless otherwise specified.

Parameter	Description	Min.	Тур.	Max.	Unit
Frequency range		2412	-	2,484	MHz
	1 Mbps DSSS		-96		dBm
Rx sensitivity*	2 Mbps DSSS		-94		dBm
	5.5 Mbps DSSS		-91		dBm
	11 Mbps DSSS		-88.5	2,484 6 6 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	dBm
	6 Mbps OFDM		-92.5		dBm
	9 Mbps OFDM		-90.5		dBm
	12 Mbps OFDM		-89.5		dBm
Dr. gamaiticitus	18 Mbps OFDM		-87		dBm
	24 Mbps OFDM		-84		dBm
	36 Mbps OFDM		-80		dBm
	48 Mbps OFDM		-76.5		dBm
	54 Mbps OFDM		- 2,484 -96 -94 -91 -88.5 -92.5 -90.5 -89.5 -87 -84 -80	dBm	
	MCS 0		-92		dBm
	MCS 1		-88.5		dBm
	MCS 2		-86.5		dBm
	MCS 3		-83.5		dBm
	MCS 4		-80.5		dBm
	MCS 5		-76		dBm
	MCS 6		-74.5		dBm
	MCS 7		-73		dBm
Rx sensitivity*	MCS 0		-89		dBm

Parameter	Description	Min.	Тур.	Max.	Unit
BW = 40 MHz	MCS 1		-85.5		dBm
BW = 40 MHz Green field 800ns guard interval Non-STBC Maximum receive level Adjacent channel rejection (30 MHz offset) Adjacent channel rejection (25 MHz offset), BW = 20 MHz Adjacent channel rejection (40 MHz	MCS 2		-83.5		dBm
	MCS 3		-80.5		dBm
Non-SIBC	MCS 4		-77.5		dBm
	MCS 5		-73		dBm
	MCS 6		-71.5		dBm
	MCS 7		-69.5		dBm
	11 Mbps DSSS			-3	dBm
	6 Mbps OFDM			-3	dBm
	54 Mbps OFDM			-3	dBm
ic ver	MCS0			-3	dBm
	MCS7			-3	dBm
rejection (30 MHz	1 Mbps DSSS			40	dB
rejection (25 MHz	11 Mbps DSSS			40	dB
	6 Mbps OFDM			37	dB
	54 Mbps OFDM			25	dB
	MCS 0			33	dB
rejection (25 MHz offset), BW = 20 MHz	MCS 7			18	dB
	MCS 0			33	dB
rejection (40 MHz offset), BW = 40 MHz	MCS 7			18	dB
	848.8 MHz GSM	28			dBm
	914.8 MHz GSM	28			dBm
	1784.8 MHz GSM			5	dBm
level Adjacent channel rejection (30 MHz offset) Adjacent channel rejection (25 MHz offset), BW = 20 MHz Adjacent channel rejection (40 MHz	1909.8 MHz GSM			5	dBm
	1907.6 MHz WCDMA	17			dBm
	1977.6 MHz WCDMA	17			dBm

 $^{^{\}ast}$ Rx sensitivity degradation 1.5dB drops by WLCSP package type.

Table 21. 2.4GHz receiver specification

5.1.2 2.4GHz Transmitter Specifications

Parameter	Description	Min.	Typ.	Max.	Unit
Frequency range		2412	-	2,484	MHz
Output power	802.11b, 1~11 Mbps DSSS			18.5	dBm
	802.11g, 6 ~ 54Mbps OFDM		15.5		dBm
	802.11n, HT20 MCS0 ~ 7		15.5		dBm
	802.11n, HT40 MCS0 ~ 7		13.5		dBm
Tx power accuracy				±1.5	dB
Carrier suppression				30	dBc
Return loss			8		dB
Transmitted power	76 ~ 108 MHz			-143	dBm/Hz
	776 ~ 794 MHz			-143	dBm/Hz
	869 ~ 960 MHz			-143	dBm/Hz
	925 ~ 960 MHz			-143	dBm/Hz
	1570 ~ 1,580 MHz			-143	dBm/Hz
	1,805 ~ 1,880 MHz			-143	dBm/Hz
	1,930 ~ 1,990 MHz			-143	dBm/Hz
	2,110 ~ 2,170 MHz			-143	dBm/Hz
Harmonic output power	2 nd harmonic			-44	dBm/MH z
	3 rd harmonic			-58	dBm/MH z

Table 22. 2.4GHz transmitter specification

5.2 Current Consumption

Note: All results are measured at the antenna port and VBAT is 3.6V.

Description	Performance		
Description	TYP	UNITS	
Off	15	μΑ	
Rx active, BW40, HT40 MCS7	53.8	mA	
Rx active, BW20, all supported rates	48.9	mA	
Rx listen	36.2	mA	
Sleep mode	74	μΑ	
Rx power saving, DTIM = 1	0.54	mA	
TX HT40, MCS7@11dBm	164	mA	
TX HT20, MCS7@14dBm	170	mA	
TX OFDM, 54M@15.5dBm	187	mA	
TX CCK, 11M@18.5dBm	190	mA	

Table 23. WLAN 2.4GHz current consumption

ESD CAUTION

MT5931 is ESD (electrostatic discharge) sensitive device and may be damaged with ESD or spike voltage. Although MT5931 is with built-in ESD protection circuitry, please handle with care to avoid the permanent malfunction or the performance degradation.