Advanced Machine Learning – Deep Generative Models Exercise Sheet 01 Normalizing Flows

Problem 1: Consider the following transformation $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(oldsymbol{z}) = \left[egin{array}{c} 2z_1 \ e^{z_1}z_2 \ e^{-z_1-z_2}z_3 \end{array}
ight].$$

Prove or disprove whether the transformation f is invertible.

Problem 2: Consider the following transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$:

$$f(oldsymbol{z}) = \left[egin{array}{c} z_1^2 z_2 \ z_2^3 \end{array}
ight].$$

Prove or disprove whether the transformation f is invertible.

Problem 3: Consider the tranformation f(z) = Az + b from \mathbb{R}^2 to \mathbb{R}^2 , where $A \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^2$. Under what conditions on A and b is this tranformation invertible? Justify your answer.

Problem 4: We consider the following forward tranformation $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$m{x} = f(m{z}) = \left[egin{array}{c} z_1 \ e^{z_1} z_2 \ \sqrt[3]{e^{-z_1} z_3 + z_1^2} \end{array}
ight].$$

We assume a uniform base distribution $p_1(z) = U([0,2]^3)$. Evaluate the density $p_2(x)$ at the points $x^{(1)} = \begin{bmatrix} 0 \\ 1 \\ \frac{1}{2} \end{bmatrix}$ and $x^{(2)} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.

Problem 5: We consider the following forward transformation $x = f(z) = \sum_{k=1}^{K} \sigma(kz)$ from \mathbb{R} to (0, K) with $\sigma(z) = \frac{1}{1+e^{-z}}$. We assume a Gaussian base distribution $p_1(z) = \mathcal{N}(0, 1)$. We sampled one point from the base distribution $z^{(1)} = 0$. Compute the corresponding sample $x^{(1)}$ from the transformed distribution and evaluate its density $p_2(x^{(1)})$.