Если амплитуда сигналов принимает ряд дискретных значений $\left\{(2m-1-M)d,\ m=\overline{1:M}\right\}$, то $d_{km\min}^{(e)}=d\sqrt{2Eg}$ и совпадает с тем же параметром для AM.

Чем сильнее различаемые сигналы, т.е. чем больше $d_{km}^{(e)}$, тем легче принимать их с нужным качеством.

3.2. Методы модуляции с памятью.

3.2.1. Линейная модуляция с памятью.

Ограничим рассмотрение базовыми сигналами (низкочастотными). Рассмотрим два базовых сигнала, которые представлены на рисунке 3.5.:

Рисунок 3.5. Временная диаграмма базовых низкочастотных сигналов.

Первый сигнал NRZ (двоичный сигнал без возвращения к нулевому уровню — ДБН) — простейший. NRZ отображает модуляцию без памяти. Он эквивалентен двоичной AM или двоичной ЧМ ($\Theta_{I,2}$ =0; π) в системе с модулированной несущей. Второй — NRZI отличается от NRZ тем, что переход от одного уровня амплитуды к другому имеет место только при передаче «1». Уровень амплитуды не меняется, когда передается «0». Этот тип преобразования называется дифференциальным кодированием. Операция кодирования математически записывается в следующем виде:

$$b_k = a_k \oplus b_{k-1} , \qquad (3.9)$$

где $\{a_k\}$ — двоичная информационная последовательность на входе кодера, $\{b_k\}$ — последовательность на выходе кодера, \oplus — суммирование по модулю 2. Далее, если $b_k=1$, то передаваемый сигнал — прямоугольный импульс с амплитудой A, если $b_k=0$, то передаваемый сигнал — прямоугольный импульс с амплитудой —A. Операция дифференциального кодирования вводит память в сигнал.