AEEM4058 - Homework 1

Slade Brooks

09.07.2023

Question 1

Figure 1 shows a 1D bar of uniform cross-section fixed at the left-end. It has length l=1 m and section area $A=0.0002~\mathrm{m}^2$. It is subjected to a uniform body force F_x and a concentrated force F_s at the right end. The young's modulus of the material is $E=1.0*10^{10}~\mathrm{N/m}^2$. Using analytical (exact) method, obtain the distribution and the maximum value of the displacement, strain and stress, for the following cases.

Part 1

$$F_x = 1000 \text{ N/m}, F_s = 1000 \text{ N}$$

Boundary Conditions:

@
$$x = 0$$
: $u = 0$ m, $V = 1000$ N

$$\begin{split} \epsilon &= \frac{\partial u}{\partial x} = \frac{F_s}{EA} \\ \sigma &= \frac{F_s}{A} = \epsilon E \\ EA \frac{\partial^2 u}{\partial x^2} + F_x &= 0 \\ u(x) &= \int \frac{-F_x}{EA} \, dx = \frac{-F_x}{2EA} x^2 + C_1 x + C_2 \end{split}$$

apply boundary condition:

$$u(0) = 0 = C_2$$

$$\epsilon = \frac{\partial u}{\partial x} = \frac{-F_x}{EA}x + C_1$$

$$\epsilon(l) = \frac{F}{EA} = \frac{-F_x}{EA}l + C_1$$

$$C_1 = \frac{F_s + F_x l}{EA}$$

plug constants back in: $u(x) = \frac{-F_x}{2EA}x^2 + \frac{F_s + F_x l}{EA}x$

max displacement:
$$u(l) = u(1) = \frac{-1000}{2(1*10^{10})(0.0002)}(1)^2 + \frac{1000+1000(1)}{(1*10^{10})(0.0002)}(1)$$
$$u_{max} = 0.00075 \text{ m}$$

$$\sigma_{max} = \frac{F_{max}}{A} = \frac{1000 + 1000}{0.0002}$$
 $\sigma_{max} = 10 * 10^6 \text{ Pa}$

 \max strain:

$$\epsilon_{max} = \frac{\sigma_{max}}{E} = \frac{10*10^6}{1*10^{10}}$$

$$\epsilon_{max} = 0.001$$

Part 2

$$F_x = (100x + 1000) \text{ N/m}, F_s = 0 \text{ N}$$

using same equation for displacement:
$$u(x) = \frac{-F_x}{2EA}x^2 + \frac{0+F_xl}{EA}x$$

$$u(l) = u(1) = \frac{-(100(1)+1000)}{2(1*10^{10})(0.0002)}(1)^2 + \frac{(100(1)+1000)(1)}{(1*10^{10})(0.0002)}(1)$$

$$u_{max} = 0.000275 \text{ m}$$

max stress:

$$\sigma_{max} = \frac{F_{max}}{A} = \frac{100(1) + 1000}{0.0002}$$

 $\sigma_{max} = 5.5 * 10^6 \text{ Pa}$

$$\begin{array}{l} \text{max strain:} \\ \epsilon_{max} = \frac{\sigma_{max}}{E} = \frac{5.5*10^6}{1*10^{10}} \\ \hline \epsilon_{max} = 0.00055 \end{array}$$

