Определение 1. Пусть дана последовательность чисел $a_1, a_2, a_3 \dots$ Бесконечный числовой ряд (или просто pяд) — это формальное выражение $a_1 + a_2 + a_3 + \dots$ (краткое обозначение: $\sum_{k=1}^{\infty} a_k$).

Задача 1. Дайте определение суммы ряда. Всегда ли она существует?

Определение 2. Если у ряда есть сумма, то его называют сходящимся, а если нет — то расходящимся.

Задача 2. Восстановите ряд по последовательности его *частичных сумм* $a_1 + a_2 + \cdots + a_n =: \sum_{k=1}^n a_k$.

Задача 3. Верно ли, что:

а) если ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится, то $\lim_{n\to\infty} a_n = 0$; б) если $\lim_{n\to\infty} a_n = 0$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится?

Задача 4. Найдите сумму ряда $\sum_{n=0}^{\infty} x^n$.

Задача 5. Приведем примеры нахождения суммы ряда.

- 1) Пусть $S=1-1+1-1+\ldots$ Тогда $S=1-(1-1+1-1+\ldots)=1-S$, откуда S=1/2.
- 2) Пусть $S=1+1+1+\dots$ Тогда $S=1+(1+1+1+\dots)=1+S$, откуда 0=1.
- 3) Пусть $S = 1 + 1/2 + 1/4 + 1/8 + \dots$ Тогда $S = 1 + 1/2(1 + 1/2 + 1/4 + \dots) = 1 + S/2$, откуда S = 2. В каких случаях рассуждение корректно, а в каких допущена ошибка? Почему один и тот же способ вычисления иногда дает верный ответ, а иногда приводит к ошибке?

Задача 6. Выясните, какие из следующих рядов сходятся, и найдите их суммы:

a)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$
; 6)* $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$; B) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$; r) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$; Д)* $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)...(n+k)}$;

Определение 3. Обозначим за C_x^n число $\frac{x(x-1)...(x-n+1)}{n!}$, где число x — произвольное действительное чилсло.

$$\mathbf{e})^* \sum_{n=1}^{\infty} \frac{1}{C_{n+x}^n}$$

Теорема Кантора. Любая неубывающая ограниченная последовательность имеет предел 1 .

Задача 7. При каких натуральных k ряд $\sum_{n=1}^{\infty} \frac{1}{n^k}$ сходится?

Задача 8. а) Пусть ряд, составленный из положительных членов, сходится. Докажите, что ряд, полученный из него перестановкой членов, тоже сходится, и его сумма совпадает с суммой исходного ряда. **б)** Верно ли утверждение пункта а) для произвольного сходящегося ряда?

Задача 9. Дана бесконечная вправо и вниз таблица из положительных чисел. Пусть ряды, составленные из чисел каждой строчки этой таблицы, сходятся. Кроме того, пусть ряд, составленный из сумм этих рядов, тоже сходится и имеет сумму S. Докажите, что ряды, составленные из чисел каждого столбца, сходятся, и ряд, составленный из сумм этих рядов, также имеет сумму S.

Задача 10. Найдите суммы рядов: а) $\sum_{n=0}^{\infty} nx^n$; б) $\sum_{n=0}^{\infty} C_{n+k}^k x^n$; в) $\sum_{n=0}^{\infty} n^3 x^n$.

Задача 11. Даны два сходящихся ряда из положительных чисел: $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$. Рассмотрим таблицу чисел, у которой на месте с координатами (n,m) стоит число $a_n \cdot b_m$. Перенумеруем все числа в таблице произвольным образом и составим из них ряд. Докажите, что он сходится и его сумма равна произведению сумм двух исходных рядов.

Задача 12. (задача про экспоненту) Докажите, что: **a)** ряд $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ сходится при положительных x;

б)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$
 при положительных x ; **в)** $\sum_{n=0}^{\infty} \frac{x^n}{n!} \cdot \sum_{n=0}^{\infty} \frac{y^n}{n!} = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!}$ при положительных x и

$$y$$
; \mathbf{r}) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ при всех положительных рациональных x , где $e := \sum_{n=0}^{\infty} \frac{1}{n!}$.

¹при решении задач этого листка теоремой Кантора можно пользоваться без доказательства

Задача 13*. Пусть $p_k - k$ -ое по счёту простое число. Докажите, что $\lim_{n \to \infty} \left(\frac{1}{1 - \frac{1}{p_1^m}} \frac{1}{1 - \frac{1}{p_2^m}} \dots \frac{1}{1 - \frac{1}{p_n^m}} \right) = \sum_{n=1}^{\infty} \frac{1}{n^m}$, где m — натуральное число больше одного.

Задача 14*. В задаче 1 определена сумма счетного числа слагаемых. А что такое сумма несчетного числа слагаемых? Когда она может существовать? Чему равна сумма несчетного числа слагаемых, если она существует?

Определение 4. Назовём ряд $\sum_{n=0}^{\infty} a_n$ абсолютно сходящимся, если ряд $\sum_{n=0}^{\infty} |a_n|$ сходится.

Задача 15. Докажите, что абсолютно сходящийся ряд сходится.

Задача 16. Докажите, что если в абсолютно сходящемся ряду переставить его члены некоторым образом, то его сумма не изменится.

Задача 17. Пусть даны два абсолютно сходящихся ряда $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$. Рассмотрим таблицу чисел, у которой на месте с координатами (n,m) стоит число $a_n \cdot b_m$. Пронумеруем числа в таблице произвольным образом и составим ряд из них. Докажите, что его сумма равна произведению сумм двух данных рядов.

Задача 18. Обобщённый бином Ньютона. а) Докажите формулу $\sum_{k=0}^{n} C_{\alpha}^{k} C_{\beta}^{n-k} = C_{\alpha+\beta}^{n}$ для натуральных α и β .

- **б)** Докажите вышеуказанную формулу для любых α и β .
- в) Докажите, что ряд $\sum_{n=0}^{\infty} C_{\alpha}^{n} x^{n}$ абсолютно сходится при |x| < 1.
- **г)** По свойству абсолютно сходящихся рядов ряд из прошлого пункта сходится, обозначим его сумму $S(\alpha)$. Докажите, что $S(\alpha) \cdot S(\beta) = S(\alpha + \beta)$.
- д) Покажите, что сумма ряда $\sum\limits_{n=0}^{\infty}C_{\frac{1}{2}}^{n}x^{n}$ равна $\sqrt{1+x}.$
- **e)** Найдите S(-1).

Задача 19. Докажите, что в задаче про экспоненту x может быть отрицательным.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 6 6 7 7 д е	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$1 \begin{vmatrix} 12 & 12 & 12 & 12 & 13 & 14 \\ a & 6 & B & F & 14 & 14 & 14 & 14 & 14 & 14 & 14 $	$\frac{4 15 16 17 18 18 18 18 18 18 19 }{a 6 8 r _{\mathcal{H}}}$