Работа 1.3.1

Определение модуля Юнга на основе исследования деформаций растяжения и изгиба

Валеев Рауф Раушанович группа 825

28 ноября 2022 г.

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используется: прибор лермантова, проволока из исследуемого материала, зрительная трубка со шкалой, набор грузов, микрометр, рулетка; во второй части - стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

Определение модуля Юнга по измерениям растяжения проволоки (рис.1)

- 1. $d = (0.46 \pm 0.01)$ cm.
- 2. Измеряем площадь поперечного сечения проволоки

$$S = rac{\pi (\overline{d})^2}{4} = 0,166 \; ext{cm}^2$$
 $\sigma_S = S \sqrt{2 \left(rac{\sigma_d}{d}
ight)^2} = 0,005 \; ext{cm}^2$

$$S = (0.166 \pm 0.005) \text{ mm}^2$$

- 3. Измеряем длинну проволоки $l=176~{\rm cm}$
- 4. Направляем зрительную трубу на зеркальце так, чтобы мы четко видели шкалу, тогда свет от шкалы будет падать примерно перпендикулярно шкале на зеркало, поэтому

$$\Delta l = \frac{nr}{2h}$$

$$\sigma_{\Delta l} = \Delta l \sqrt{\left(\frac{\sigma_n}{n}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

где $r=15~{\rm cm}$ - длина рычага, разница показаний шкалы - n, расстояние от шкалы до проволоки - $h=(138\pm0,1)~{\rm cm}.$

- 5. Исходя из того, что $\sigma_{\text{предел}} = 900 \text{ H/мм}^2$ получаем, что предельный вес, который можно повесить, чтобы не выйти за пределы $P_{\text{предел}} = 0, 3\sigma_{\text{предел}} S \approx 44, 8H$.
- 6. Снимем зависимость удлинения проволоки от массы грузов при увеличении и уменьшении нагрузки 2-3 раза (табл.1).
- 7. Построим график зависимости удлинения проволоки от нагрузки. В недеформированном состоянии проволока, как правило, изогнута, и при малых нагрузках её "удлинение" определяется не растяжением, а выпрямлением. Найдем уравнение получившийся прямой по МНК. По наклону прямой определим жесткость проволоки, а по ней модуль Юнга (табл.2). Начальный участок графика при обработке следует исключить.
- 8. По найденной графически жёсткости проволоки найдем модуль Юнга по формуле

$$E = \frac{k * l_0}{S}$$

$$\sigma_E = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_S}{S}\right)^2 + \left(\frac{\sigma_{l_0}}{l_0}\right)^2}$$

Зависимость удлинения проволоки от нагрузки

Определение модуля Юнга по измерениям изгиба палки (рис.2)

1. Измеряем $l_{ab} = 50$ см.

2. Определяем ширину и толщину стержней (табл. 3).

3. Кладем балку так, чтобы Д было в середине и снимаем зависимость y_{max} от Р. Для этого смещаем Д на 2-3 мм в сторону и сравниваем с положением в середине: угол наклона примерно один и тот же.

4. Поворачиваем балку на 180 градусов вокруг горизонтальной оси и проделываем то же, что и в пункте 3. Сравниваем с пунктом 3: угол наклона примерно один и тот же.

5. Аналогично для 2-3 балок из дерева и 1 из метала.

6. Все данные записываем в табл. 4.

7. Для каждого образца строим графики при увеличении и уменьшении нагрузки.

8. По наклону графиков определяем средние значения модулей Юнга по формуле (табл.5)

$$E = \frac{Pl^3}{4ab^3y_{max}}$$

$$\sigma_E = \sqrt{3\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_{P/y_{max}}}{P/y_{max}}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + 3\left(\frac{\sigma_b}{b}\right)^2}$$

График табл.4

P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl , cm	0,326	0,641	0,897	1,168	1,440	1,440	1,163	0,902	0,641	0,342
$\sigma_{\Delta l}$	0,007	0,014	0,020	0,025	0,031	0,031	0,025	0,020	0,014	0,008
P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl , cm	0,331	0,630	0,886	1,152	1,429	1,429	1,152	0,886	0,630	0,326
$\sigma_{\Delta l}$	0,007	0,014	0,019	0,025	0,031	0,031	0,025	0,019	0,014	0,007
P, H	9,48	14,41	18,87	23,60	28,53	28,53	23,60	18,87	14,41	9,48
Δl	0,315	0,630	0,880	1,158	1,429	1,424	1,152	0,870	0,614	0,337
$\sigma_{\Delta l}$	0,007	0,014	0,019	0,025	0,031	0,031	0,025	0,019	0,013	0,008

Таблица 1: Зависимость удлинения проволоки от нагрузки

	Значение	σ	ε
k	$1,73*10^3 \text{ H/m}$	$0,027*10^3 \text{ H/M}$	0,016
Е	$18,3*10^{10} \Pi\text{a}$	$0,7*10^{10} \text{ Ha}$	0,04

Таблица 2: Значения к и Е

таолица 2. Она илия к и Б												
	1	2	3	4	5	6	7	8	9	10	Ср.знач.	σ
	1 балка											
а, см	0,4	0,4	0,39	0,38	0,35	0,37	0,38	0,39	0,38	0,37	0,381	0,01
b, см	2,1	2,1	2,12	2,12	2,09	2,09	2,07	2,12	2,08	2,08	2,097	0,01
2 балка												
а, см	0,46	0,51	0,41	0,46	0,46	0,46	0,47	0,48	0,46	0,47	0,464	0,01
b, см	2,15	2,14	2,15	2,15	2,12	2,15	2,15	2,14	2,14	2,15	2,144	0,01
3 балка												
а, см	0,95	0,94	0,94	0,93	0,92	0,95	0,94	0,92	0,93	0,92	0,934	0,004
ь, см	2,02	2,07	2,04	2,02	2,02	2	2	2,02	2,01	2,04	2,024	0,006

Таблица 3: Значения а и b

Сталь, несмещенная										
P, H	4,973	9,521	14,197	18,92	18,92	14,197	9,521	4,973		
y_{max} , MM	0,67	1,28	1,91	2,51	2,6	1,97	1,38	0,76		
Сталь, несмещенная, перевернутая										
P, H	4,973	9,521	14,244	18,92	18,92	14,244	9,521	4,973		
y_{max} , MM	0,63	1,24	1,94	2,52	2,58	1,97	1,33	0,7		
	Сталь, смещенная									
P, H	4,973	9,696	14,241	18,92	18,92	14,241	9,696	4,973		
y_{max} , MM	0,69	1,31	1,93	2,55	2,54	1,94	1,33	0,71		
Сталь, смещенная, перевернутая										
P, H	4,973	9,521	14,244	18,92	18,92	14,244	9,521	4,973		
y_{max} , MM	0,58	1,21	1,92	2,55	2,58	1,94	1,31	0,68		
	Латунь									
P, H	4,973	9,519	14,244	18,92	18,92	14,244	9,519	4,973		
y_{max} , MM	0,69	1,42	2,09	2,78	2,82	2,11	1,39	0,7		
			Латунь, і	перевері	нутая					
P, H	4,973	9,519	14,244	18,92	18,92	14,244	9,519	4,973		
y_{max} , MM	0,72	1,4	2,13	2,8	2,81	2,12	1,45	0,72		
Дерево										
P, H	4,973	9,519	14,244	18,92	18,92	14,244	9,519	4,973		
y_{max} , MM	0,71	1,37	2,06	2,73	2,74	2,08	1,43	0,74		
Дерево, перевернутая										
P, H	4,973	9,519	14,244	18,92	18,92	14,244	9,519	4,973		
y_{max} , MM	0,65	1,34	2,03	2,75	2,76	2,06	1,4	0,75		

Таблица 4: Зависимость Р от y_{max} для разных балок в разном положении

1 балка										
	Значение	σ	ε							
P/y_{max}	7393,58 Н/м	74,53 Н/м	0,01							
Е	$20,05*10^{10} \text{ H/M}$	$0,03*10^{10} \text{ H/m}$	0,014							
	2 балка									
	Значение	σ	ε							
P/y_{max}	6665,41 Н/м	41,89 Н/м	0,01							
Е	$9,72*10^{10} \text{ H/M}$	$0,464*10^{10} \text{ H/m}$	0,048							
	3 балка									
	Значение	σ	ε							
P/y_{max}	6868,97 Н/м	64,24 Н/м	0,01							
Е	$1,31*10^{10} \text{ H/m}$	$0.0221 * 10^{10} \text{ H/m}$	0,017							

Таблица 5: Вычисляемые значения для балок