import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import io
import seaborn as sns

df = pd.read_csv('drive/MyDrive/gold.csv')

df.head()

→		Date	Open	High	Low	Close	Volume	Currency	
	0	2000-01-04	289.5	289.5	280.0	283.7	21621	USD	
	1	2000-01-05	283.7	285.0	281.0	282.1	25448	USD	
	2	2000-01-06	281.6	282.8	280.2	282.4	19055	USD	
	3	2000-01-07	282.5	284.5	282.0	282.9	11266	USD	
	4	2000-01-10	282.4	283.9	281.8	282.7	30603	USD	

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

```
# 1. Basic Data Inspection
print("="*50)
print("DATA SHAPE:")
print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}")
print("\nCOLUMN NAMES:")
print(df.columns.tolist())
print("\nDATA TYPES:")
print(df.dtypes)
    _____
    DATA SHAPE:
    Rows: 5703, Columns: 7
    COLUMN NAMES:
    ['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Currency']
    DATA TYPES:
    Date
                object
               float64
    0pen
               float64
    High
               float64
    Low
    Close
               float64
    Volume
                 int64
    Currency
                object
    dtype: object
```

15/07/2025, 8:22 PM Gold_EDA.ipynb - Colab

```
# 2. Sample Data Inspection
print("\n" + "="*50)
print("FIRST 5 RECORDS:")
print(df.head())
print("\nRANDOM 5 RECORDS:")
print(df.sample(5))
print("\nBASIC STATISTICS:")
print(df.describe())
```


==:	===:		=====		======	===:			===	=		
FIRST 5 RECORDS:												
		Date	0pei	n Hi	gh L	OW	Close	Volu	me	Currenc	СУ	
0	20	00-01-04	289.5	5 289	.5 280	. 0	283.7	216	21	US	SD	
1		00-01-05	283.7				282.1	254		US		
2		00-01-06	281.6				282.4	190		US		
3		00-01-07	282.5				282.9	112		US		
4	20	00-01-10	282.4	4 283	.9 281	. 8	282.7	306	03	US	SD	
RAI	ND0I	M 5 RECOR	DS:									
			te	0pen	High		Low	Clos	e	Volume	Currency	
10	0	2000-05-	26 2	270 . 7	273.3		270.1	272.		30192	USĎ	
79	8	2003-03-	18 3	337.5	340.5		334.3	337.	7	29388	USD	
49	1	2001-12-	20 2	276.0	277.0		275.8	276.	5	11083	USD	
32		2012-11-		585 . 4	1720.9		683.5	1715.		187222	USD	
42	20	2016-10-	13 12	257.1	1263.9	1	254.7	1257.	6	150097	USD	
BASIC STATISTICS:												
			0pen		High		I	_OW		Close	9	Volume
CO	unt	5703.00	0000	5703.	000000	57	03.000	000 5	703	3.000000	5703	000000
me	an	1040.38	2816	1048.	339181	10	31.8633	169 1	040	298282	2 139141	669297
st	d	518.73	3377	522.	353946		14.4559		518	3.524020	102537	449058
mi		256.60			400000		55.1000			6.600000		.000000
259		459.85			900000		57 . 4500			500000		500000
509		1188.80			000000		79.7000			3.700000		.000000
759	%	1381.40	0000	1392.	750000	13	68.1000	000 1	383	3.050000	193109	.000000

2049.000000

2069.400000

2076.400000

max

2089.200000

816531.000000

```
# 3. Data Quality Checks
print("\n" + "="*50)
print("MISSING VALUES:")
print(df.isnull().sum())
print("\nDUPLICATED ROWS:", df.duplicated().sum())
```

MISSING VALUES:
Date 0
Open 0
High 0
Low 0
Close 0
Volume 0
Currency 0
dtype: int64

DUPLICATED ROWS: 0

```
# 4. Data Visualization
plt.figure(figsize=(15, 10))

# Price Trends
plt.subplot(2, 2, 1)
plt.plot(pd.to_datetime(df['Date']), df['Close'], color='royalblue')
plt.title('Gold Closing Price Trend (2000-2006)')
plt.xlabel('Date')
plt.ylabel('Price (USD)')
plt.grid(alpha=0.3)
```


Gold Closing Price Trend (2000-2006)


```
# Daily Price Distribution
plt.subplot(2, 2, 2)
plt.hist(df['Close'], bins=50, color='darkorange', edgecolor='black')
plt.title('Closing Price Distribution')
plt.xlabel('Price (USD)')
plt.ylabel('Frequency')
```

 \rightarrow

Text(0, 0.5, 'Frequency')


```
# Volatility Analysis
daily_returns = df['Close'].pct_change() * 100
plt.subplot(2, 2, 3)
plt.plot(pd.to_datetime(df['Date']), daily_returns, color='forestgreen', alpha=
plt.title('Daily Returns (%)')
plt.xlabel('Date')
plt.ylabel('Percentage Change')
plt.grid(alpha=0.3)
```



```
# Volume Analysis
plt.subplot(2, 2, 4)
plt.bar(pd.to_datetime(df['Date']), df['Volume'], color='purple', alpha=0.7)
plt.title('Trading Volume Over Time')
plt.xlabel('Date')
plt.ylabel('Volume')

plt.tight_layout()
plt.show()
```



```
# 5. Correlation Analysis
corr_matrix = df[['Open','High','Low','Close','Volume']].corr()
print("\n" + "="*50)
print("CORRELATION MATRIX:")
print(corr_matrix)
```

CORRELATION MATRIX:

	0pen	High	Low	Close	Volume
0pen	1.000000	0.999879	0.999825	0.999740	0.692123
High	0.999879	1.000000	0.999778	0.999861	0.693861
Low	0.999825	0.999778	1.000000	0.999893	0.688983
Close	0.999740	0.999861	0.999893	1.000000	0.690534
Volume	0.692123	0.693861	0.688983	0.690534	1.000000

```
# 6. Time Period Analysis
df['Year'] = pd.to_datetime(df['Date']).dt.year
annual_avg = df.groupby('Year')['Close'].mean()

plt.figure(figsize=(10, 5))
annual_avg.plot(kind='bar', color='teal')
plt.title('Average Annual Closing Price')
plt.xlabel('Year')
plt.ylabel('Average Price (USD)')
plt.xticks(rotation=0)
plt.grid(axis='y', alpha=0.3)
plt.show()
```


Data Cleaning

Price Outliers
plt.subplot(2, 2, 1)
sns.boxplot(x=df['Close'], color='skyblue')
plt.title('Closing Price Distribution')
plt.xlabel('Price (USD)')

→ Text(0.5, 0, 'Price (USD)')

Closing Price Distribution


```
# Volume Outliers
plt.subplot(2, 2, 2)
sns.boxplot(x=df['Volume'], color='lightgreen')
plt.title('Trading Volume Distribution')
plt.xlabel('Volume')
```


 \rightarrow Text(0.5, 0, 'Volume')

Trading Volume Distribution


```
# IOR Calculation for Volume
Q1 = df['Volume'].quantile(0.25)
Q3 = df['Volume'].quantile(0.75)
IQR = Q3 - Q1
volume_outlier_threshold = Q3 + (1.5 * IQR)
print(f"\nVolume outlier threshold (IQR method): {volume_outlier_threshold:.0f}
```


Volume outlier threshold (IOR method): 403300

→

<matplotlib.legend.Legend at 0x7af432a48310>


```
# Volume outliers visualization
volume_outliers = df[df['Volume'] > volume_outlier_threshold]
plt.subplot(2, 2, 4)
plt.plot(df['Date'], df['Volume'], alpha=0.6, label='Normal Volume')
plt.scatter(volume_outliers['Date'], volume_outliers['Volume'],
            color='red', label='Volume Outliers')
plt.title('Volume Outliers Detection')
plt.xlabel('Date')
plt.ylabel('Volume')
plt.legend()
plt.tight_layout()
plt.show()
\rightarrow
                 Volume Outliers Detection
        800000
                      Normal Volume
```



```
# Data validation checks
print("\nDATA VALIDATION CHECKS:")
# Check for high>low inconsistencies
high low errors = df[df['High'] < df['Low']]
print(f"Rows with High < Low: {len(high_low_errors)}")</pre>
df = df[df['High'] >= df['Low']] # Remove invalid rows
# Check for open/close outside high/low range
range_errors = df[
    (df['Open'] > df['High']) |
    (df['Open'] < df['Low'])
    (df['Close'] > df['High']) |
    (df['Close'] < df['Low'])</pre>
1
print(f"Rows with prices outside daily range: {len(range_errors)}")
\rightarrow
    DATA VALIDATION CHECKS:
    Rows with High < Low: 0
    Rows with prices outside daily range: 0
# Add volatility-adjusted z-scores
df['Volatility'] = df['Close'].rolling(window=30).std()
df['Price ZScore'] = (df['Close'] - df['Close'].rolling(window=30).mean()) / df
# Final cleaned dataset
print(f"\nFinal dataset shape: {df.shape}")
    Final dataset shape: (5693, 11)
```

Univariate Analysis

```
axes[0,0].axvline(df['Close'].median(), color='navy', linestyle='-', label=f'Me
axes[0,0].set_title('Closing Price Distribution', fontsize=15)
axes[0,0].set_xlabel('Price (USD)')
axes[0,0].legend()
stats.probplot(df['Close'], plot=axes[0,1])
axes[0,1].set_title('Closing Price Q-Q Plot', fontsize=15)
# 2. Daily Returns Analysis
sns.histplot(df['Returns'].dropna(), kde=True, ax=axes[1,0], color='teal', bins
axes[1,0].axvline(df['Returns'].mean(), color='darkred', linestyle='--', label=
axes[1,0].set_title('Daily Returns Distribution', fontsize=15)
axes[1,0].set_xlabel('Daily Return (%)')
axes[1,0].set_xlim([-15, 15])
axes[1,0].legend()
sns.boxplot(x=df['Returns'], ax=axes[1,1], color='lightgreen')
axes[1,1].set_title('Daily Returns Boxplot', fontsize=15)
axes[1,1].set_xlabel('Daily Return (%)')
# 3. Trading Volume Analysis
sns.histplot(df['Volume'], kde=True, ax=axes[2,0], color='purple', bins=50)
axes[2,0].axvline(df['Volume'].mean(), color='darkred', linestyle='--', label=1
axes[2,0].axvline(df['Volume'].median(), color='navy', linestyle='-', label=f'№
axes[2,0].set_title('Trading Volume Distribution', fontsize=15)
axes[2,0].set_xlabel('Volume (Contracts)')
axes[2,0].legend()
sns.boxplot(x=df['Volume'], ax=axes[2,1], color='violet')
axes[2,1].set_title('Trading Volume Boxplot', fontsize=15)
axes[2,1].set_xlabel('Volume (Contracts)')
# 4. Volatility Analysis
sns.histplot(df['Volatility'].dropna(), kde=True, ax=axes[3,0], color='steelblu
axes[3,0].axvline(df['Volatility'].mean(), color='darkred', linestyle='--', lak
axes[3,0].set_title('30-Day Volatility Distribution', fontsize=15)
axes[3,0].set_xlabel('Standard Deviation')
axes[3,0].legend()
sns.lineplot(x=df['Date'], y=df['Volatility'], ax=axes[3,1], color='blue')
axes[3,1].set_title('Historical Volatility Trend', fontsize=15)
axes[3,1].set_xlabel('Date')
axes[3,1].set_ylabel('Volatility (30-day std dev)')
plt.tight_layout(rect=[0, 0, 1, 0.96])
```

plt.show()

Gold Market Univariate Analysis


```
# Numerical Summary Statistics
num_cols = ['Close', 'Returns', 'Volume', 'Volatility']
summary = df[num_cols].describe().T
summary['skewness'] = [df[c].skew() for c in num_cols]
summary['kurtosis'] = [df[c].kurtosis() for c in num_cols]
print("="*80)
print("COMPREHENSIVE NUMERICAL SUMMARY STATISTICS")
print(summary)
```


COMPREHENSIVE NUMERICAL SUMMARY STATISTICS									
	count		mean		std	min	25%		
Close	5693.0	1041	.375988	518	.023065	256.600000	465.800000		
Returns	5692.0	0	.037634	1	.101965	-9.344612	-0.482957		
Volume	5693.0	139386	.077639	102461	.342795	1.000000	53268.000000		
Volatility	5664.0	22	.218251	16	.112562	1.717085	9.725781		
		50%		75%		max ske	wness kurtosis		
Close	1189.	800000	1383.	100000	2069.	400000 -0.0	87728 -1.246077		
Returns	0.	038450	0.	606358	8.	968610 -0.1	31925 5.503014		
Volume	126384.	000000	193281.	000000	816531.	000000 1.2	34134 2.572365		
Volatility	19.	069546	29.	992401	97.	892747 1.4	59736 2.950868		

```
# Target Variable Analysis (Closing Price)
print("\n" + "="*80)
print("TARGET VARIABLE ANALYSIS (CLOSING PRICE)")
print(f"- Long-term trend: ${df['Close'].iloc[0]:.2f} → ${df['Close'].iloc[-1]:
print(f"- Maximum single-day gain: {df['Returns'].max():.2f}%")
print(f"- Maximum single-day loss: {df['Returns'].min():.2f}%")
print(f"- Days with >5% moves: {len(df[df['Returns'].abs() > 5])} ({len(df[df['Neturns'].abs() > 5])})
```

TARGET VARIABLE ANALYSIS (CLOSING PRICE)

- Long-term trend: \$283.70 → \$1709.30
- Maximum single-day gain: 8.97%
- Maximum single-day loss: -9.34%
- Days with >5% moves: 18 (0.3% of days)

```
# Price Movement Analysis
plt.figure(figsize=(10, 6))
direction = df['Returns'].apply(lambda x: 'Up' if x > 0 else 'Down' if x < 0 el
direction.value_counts().plot.pie(autopct='%1.1f%%', colors=['forestgreen', 'da
plt.title('Daily Price Movement Direction')
plt.ylabel('')
plt.show()</pre>
```


Daily Price Movement Direction

Bivariate Analysis

```
# 1. Correlation Analysis
plt.figure(figsize=(14, 12))
corr = df[['Close', 'Volume', 'Volatility', 'Returns']].corr()

# Pearson Correlation
plt.subplot(2, 2, 1)
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f', vmin=-1, vmax=1)
plt.title('Pearson Correlation Matrix')

# Spearman Correlation
plt.subplot(2, 2, 2)
spearman_corr = df[['Close', 'Volume', 'Volatility', 'Returns']].corr(method='s
sns.heatmap(spearman_corr, annot=True, cmap='viridis', fmt='.2f', vmin=-1, vmax
plt.title('Spearman Rank Correlation Matrix')
```

→ Text(0.5, 1.0, 'Spearman Rank Correlation Matrix')


```
plt.subplot(2, 2, 3)
scatter = sns.scatterplot(
    x=df['Close'],
    y=df['Volume'],
    alpha=0.6,
    hue=df['Returns'].abs(),
    palette='viridis',
    size=df['Volatility'],
    legend='full' # Ensure legend shows both color and size info
)
plt.title('Price vs Volume (Colored by Absolute Return)')
plt.xlabel('Price (USD)')
plt.ylabel('Volume (Contracts)')
plt.yscale('log')
# Add label to the hue portion of the legend
scatter.legend_.texts[0].set_text('Absolute Return (%)')
plt.show()
    /usr/local/lib/python3.11/dist-packages/IPython/core/pylabtools.py:151: Use
      fig.canvas.print figure(bytes io, **kw)
```

```
# 3. Lagged Return Analysis
plt.subplot(2, 2, 4)
for lag in [1, 5, 20]:
    df[f'Return_lag_{lag}'] = df['Returns'].shift(lag)
    plt.scatter(df['Returns'], df[f'Return_lag_{lag}'], alpha=0.3, label=f'Lag

plt.axhline(0, color='black', linestyle='--')
plt.axvline(0, color='black', linestyle='--')
plt.xlabel('Current Return')
plt.ylabel('Lagged Return')
plt.title('Current vs Lagged Returns')
plt.legend()
plt.grid(alpha=0.3)

plt.tight_layout()
plt.show()
```


Current vs Lagged Returns 5 Lag 1 Lag 5 Lag 20 Current Return

import matplotlib.gridspec as gridspec

fig = plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(2, 2) # Creates a 2x2 grid layout

ax2 = plt.subplot(gs[1]) # Targets the second cell (indexing starts at 0)

Conditional Returns
ax2 = plt.subplot(gs[1])
high_vol = df[df['Volatility'] > df['Volatility'].quantile(0.75)]
low_vol = df[df['Volatility'] < df['Volatility'].quantile(0.25)]
sns.kdeplot(high_vol['Returns'], color='red', label='High Volatility')
sns.kdeplot(low_vol['Returns'], color='green', label='Low Volatility')
plt.title('Return Distribution by Volatility Regime')
plt.xlabel('Daily Return (%)')</pre>

→

plt.legend()

<matplotlib.legend.Legend at 0x7af42a7e9b10>


```
# Rolling Correlation: Price vs Volume
ax3 = plt.subplot(gs[2])
df['Rolling_Corr'] = df['Close'].rolling(window=90).corr(df['Volume'])
plt.plot(df['Date'], df['Rolling_Corr'], color='purple')
plt.axhline(0, color='black', linestyle='--')
plt.fill_between(df['Date'], df['Rolling_Corr'], 0, where=df['Rolling_Corr']>=@
                 color='green', alpha=0.3, interpolate=True)
plt.fill_between(df['Date'], df['Rolling_Corr'], 0, where=df['Rolling_Corr']<0,
                 color='red', alpha=0.3, interpolate=True)
plt.title('90-Day Rolling Correlation: Price vs Volume')
plt.xlabel('Date')
plt.ylabel('Correlation Coefficient')
```

Text(0, 0.5, 'Correlation Coefficient')

90-Day Rolling Correlation: Price vs Volume


```
# Candlestick Chart for Key Period (2008 Financial Crisis)
ax4 = plt.subplot(qs[3])
crisis = df[(df['Date'] > '2008-08-01') & (df['Date'] < '2009-03-31')]
for i in range(len(crisis)):
    color = 'green' if crisis['Close'].iloc[i] >= crisis['Open'].iloc[i] else '
    plt.plot([crisis['Date'].iloc[i], crisis['Date'].iloc[i]],
             [crisis['Low'].iloc[i], crisis['High'].iloc[i]],
             color=color, linewidth=1)
    plt.plot([crisis['Date'].iloc[i], crisis['Date'].iloc[i]],
             [crisis['Open'].iloc[i], crisis['Close'].iloc[i]],
             color=color, linewidth=3)
plt.title('Gold Prices During 2008 Financial Crisis')
plt.xlabel('Date')
plt.ylabel('Price (USD)')
plt.grid(alpha=0.3)
plt.tight_layout()
plt.show()
```

\rightarrow

Gold Prices During 2008 Financial Crisis


```
# 5. Directional Movement Analysis
plt.figure(figsize=(14, 6))
```

```
# Up/Down Days vs Volume
plt.subplot(1, 2, 1)
direction = np.sign(df['Returns']).map({1: 'Up', -1: 'Down', 0: 'Flat'})
sns.boxplot(x=direction, y=np.log(df['Volume']), palette=['red', 'green', 'gray
plt.title('Volume Distribution by Price Direction')
plt.xlabel('Price Movement')
plt.ylabel('Log Volume')
```

```
# Up/Down Days vs Volatility
plt.subplot(1, 2, 2)
sns.boxplot(x=direction, y=df['Volatility'], palette=['red', 'green', 'gray'])
plt.title('Volatility Distribution by Price Direction')
plt.xlabel('Price Movement')
plt.ylabel('30-Day Volatility')

plt.tight_layout()
plt.show()
```


/tmp/ipython-input-33-4220807140.py:7: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed sns.boxplot(x=direction, y=np.log(df['Volume']), palette=['red', 'green', /tmp/ipython-input-33-4220807140.py:14: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed

sns.boxplot(x=direction, y=df['Volatility'], palette=['red', 'green', 'gr

6. Advanced Analysis: Lead-Lag Relationships
fig, ax = plt.subplots(3, 1, figsize=(14, 12))

```
# Cross-correlation analysis
max_lag = 10
correlations = [df['Returns'].corr(df['Returns'].shift(lag)) for lag in range(n
ax[0].bar(range(max_lag+1), correlations, color='teal')
ax[0].set_title('Autocorrelation of Daily Returns')
ax[0].set xlabel('Lag (Days)')
ax[0].set_ylabel('Correlation')
ax[0].set_xticks(range(max_lag+1))
# Volume-Volatility Relationship
sns.regplot(x=np.log(df['Volume']), y=df['Volatility'], ax=ax[1],
            scatter_kws={'alpha':0.3}, line_kws={'color':'red'})
ax[1].set title('Volume vs Volatility Relationship')
ax[1].set xlabel('Log Volume')
ax[1].set_ylabel('30-Day Volatility')
# Cumulative Returns by Volatility Regime
df['Cumulative_Return'] = (1 + df['Returns']/100).cumprod()
for regime, color in [('High', 'red'), ('Medium', 'gray'), ('Low', 'green')]:
    if regime == 'High':
        subset = df[df['Volatility'] > df['Volatility'].quantile(0.75)]
    elif regime == 'Low':
        subset = df[df['Volatility'] < df['Volatility'].quantile(0.25)]</pre>
    else:
        subset = df[(df['Volatility'] >= df['Volatility'].quantile(0.25)) &
                    (df['Volatility'] <= df['Volatility'].quantile(0.75))]</pre>
    ax[2].plot(subset['Date'], subset['Cumulative Return'], color=color, label=
ax[2].set_title('Cumulative Returns by Volatility Regime')
ax[2].set xlabel('Date')
ax[2].set_ylabel('Cumulative Return')
ax[2].set_yscale('log')
ax[2].legend()
plt.tight_layout()
plt.show()
```


Multivariate Analysis

```
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from pandas.plotting import parallel_coordinates
import plotly.express as px

df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# Create time-based features
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month
df['Day'] = df['Date'].dt.day
df['Weekday'] = df['Date'].dt.weekday
df['Quarter'] = df['Date'].dt.quarter
```

₹

<matplotlib.colorbar.Colorbar at 0x7af3eda1d990>

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

```
# Create the figure and 3D subplot
fig = plt.figure(figsize=(12, 8))
ax2 = fig.add_subplot(111, projection='3d') # or (232) if part of a larger gri
# Ensure Year is numeric
df['Year'] = df['Year'].astype(int)
# Plot each year's data
for year in sorted(df['Year'].unique()):
    year_data = df[df['Year'] == year]
    ax2.scatter(
        year_data['Year'],
        year_data['Volatility'],
        year_data['Returns'],
        alpha=0.5,
        label=str(year)
    )
# Set axis labels and title
ax2.set xlabel('Year')
ax2.set_ylabel('Volatility')
ax2.set_zlabel('Daily Return (%)')
ax2.set_title('Temporal Evolution of Volatility-Return Relationship')
# Optional: limit legend to fewer entries
# handles, labels = ax2.get_legend_handles_labels()
# ax2.legend(handles[:5], labels[:5], loc='best')
# Show full legend or turn off if too crowded
ax2.legend(loc='upper left', bbox_to_anchor=(1.05, 1))
plt.tight_layout()
plt.show()
```

Temporal Evolution of Volatility-Return Relationship

→

<Figure size 1200x1000 with 0 Axes>

Multivariate Relationships by Market Regime


```
# 3. Principal Component Analysis (PCA)
features = ['Close', 'Volume', 'Returns', 'Volatility']
X = df[features].dropna()
X_scaled = StandardScaler().fit_transform(X)
pca = PCA(n_components=2)
principal_components = pca.fit_transform(X_scaled)
df pca = pd.DataFrame(data=principal components, columns=['PC1', 'PC2'])
df_pca['Market_Regime'] = df.loc[X.index, 'Market_Regime']
# PCA Visualization
plt.figure(figsize=(14, 10))
sns.scatterplot(x='PC1', y='PC2', hue='Market_Regime', data=df_pca,
                palette='Set1', alpha=0.7, s=80)
plt.title('PCA of Gold Market Features', fontsize=16)
plt.xlabel(f'PC1 ({pca.explained_variance_ratio_[0]*100:.1f}% Variance)')
plt.ylabel(f'PC2 ({pca.explained_variance_ratio_[1]*100:.1f}% Variance)')
plt.legend(title='Market Regime')
plt.grid(alpha=0.3)
# Add loadings
loadings = pca.components_.T * np.sqrt(pca.explained_variance_)
for i, feature in enumerate(features):
    plt.arrow(0, 0, loadings[i, 0], loadings[i, 1],
              color='black', alpha=0.7, head_width=0.1)
    plt.text(loadings[i, 0]*1.2, loadings[i, 1]*1.2,
             feature, color='black', ha='center', va='center')
plt.show()
```


PCA of Gold Market Features Market Regime Crash Days 7.5 Normal Surge Days Low Volatility High Volatility 5.0 2.5 PC2 (25.1% Variance) 0.0 -2.5 -5.0-7.5 -2 PC1 (54.3% Variance)

```
# 4. Time-Evolving Relationships
# Rolling correlations
window_size = 90  # Quarterly window
df['Rolling_Corr_Price_Volume'] = df['Close'].rolling(window_size).corr(df['Voldf['Rolling_Corr_Return_Volatility'] = df['Returns'].rolling(window_size).corr(
```

```
# Create 2x2 grid for time evolution plots
fig, axs = plt.subplots(2, 2, figsize=(18, 12), sharex=True)
# Plot 1: Rolling Correlations
axs[0, 0].plot(df['Date'], df['Rolling_Corr_Price_Volume'], 'b-', label='Price
axs[0, 0].plot(df['Date'], df['Rolling_Corr_Return_Volatility'], 'r-', label='F
axs[0, 0].axhline(0, color='black', linestyle='--', alpha=0.3)
axs[0, 0].set_title('Rolling 90-Day Correlations', fontsize=14)
axs[0, 0].set_ylabel('Correlation Coefficient')
axs[0, 0].legend()
axs[0, 0].grid(alpha=0.3)
# Plot 2: Volatility Clusters
for regime in ['High Volatility', 'Normal', 'Low Volatility']:
    subset = df[df['Market_Regime'] == regime]
    axs[0, 1].scatter(subset['Date'], subset['Volatility'],
                     label=regime, alpha=0.5, s=15)
axs[0, 1].set_title('Volatility Regimes Over Time', fontsize=14)
axs[0, 1].set_ylabel('Volatility')
axs[0, 1].legend()
axs[0, 1].grid(alpha=0.3)
# Plot 3: Volume Anomalies
axs[1, 0].bar(df['Date'], df['Volume'], color='purple', alpha=0.6)
axs[1, 0].set_title('Trading Volume with Market Regimes', fontsize=14)
axs[1, 0].set ylabel('Volume (Contracts)')
# Add regime overlays
for regime, color in zip(['High Volatility', 'Crash Days', 'Surge Days'],
                         ['red', 'darkred', 'green']):
    regime_dates = df[df['Market_Regime'] == regime]['Date']
    for date in regime_dates:
        axs[1, 0].axvline(date, color=color, alpha=0.1)
# Plot 4: Cumulative Returns by Regime
for regime, color in zip(['Low Volatility', 'Normal', 'High Volatility'],
                         ['green', 'blue', 'red']):
    subset = df[df['Market_Regime'] == regime]
    cumulative return = (1 + subset['Returns']/100).cumprod()
    axs[1, 1].plot(subset['Date'], cumulative_return,
                  color=color, label=regime)
axs[1, 1].set_title('Cumulative Returns by Market Regime', fontsize=14)
axs[1, 1].set_ylabel('Cumulative Return')
axs[1, 1].set_yscale('log')
axs[1, 1].legend()
axs[1, 1].grid(alpha=0.3)
```

plt.tight_layout()
plt.show()


```
# 5. Parallel Coordinates for Market Regimes
plt.figure(figsize=(14, 8))
parallel_cols = ['Close', 'Volume', 'Returns', 'Volatility', 'Market_Regime']
parallel_df = df[parallel_cols].copy()
parallel_df['Volume'] = np.log(parallel_df['Volume']) # Normalize volume
```

/tmp/ipython-input-48-3182872735.py:8: DeprecationWarning: DataFrameGroupBy
sampled_df = parallel_df.groupby('Market_Regime').apply(

Start coding or generate with AI.