

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Time plots: autoplot()

```
maxtemp <- vic_elec  
  index_by(Day = date(Time))  
  summarise(Temperature = max(Temperature))
maxtemp  
  autoplot(Temperature) +
  labs(x = "Week", y = "Max temperature")</pre>
```


ansett ▷ autoplot(Passengers)


```
ansett ▷
  filter(Class = "Economy") ▷
  autoplot(Passengers)
```


Week [1W]

```
ansett ▷
  filter(Airports = "MEL-SYD") ▷
  autoplot(Passengers)
```



```
ansett ▷
  filter(Airports = "MEL-SYD") ▷
  autoplot(Passengers)
```


Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Seasonal plots: gg_season()

- Data plotted against the individual "seasons" in which the data were observed.
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.

Quarterly Australian Beer Production

```
beer <- aus_production ▷
  select(Quarter, Beer) ▷
  filter(year(Quarter) ≥ 1992)
beer ▷ autoplot(Beer)</pre>
```


Quarterly Australian Beer Production

vic_elec

```
# A tsibble: 52,608 x 5 [30m] <Australia/Melbourne>
###
     Time
                          Demand Temperature Date
                                                        Holiday
##
     <dttm>
                           <dbl>
                                       <dbl> <date>
                                                        <lql>
                                        21.4 2012-01-01 TRUE
###
    1 2012-01-01 00:00:00 4383.
    2 2012-01-01 00:30:00
                           4263.
                                        21.0 2012-01-01 TRUE
###
###
    3 2012-01-01 01:00:00
                           4049.
                                        20.7 2012-01-01 TRUE
    4 2012-01-01 01:30:00
                           3878
                                        20.6 2012-01-01 TRUE
###
                                        20.4 2012-01-01 TRUE
###
    5 2012-01-01 02:00:00
                           4036.
###
   6 2012-01-01 02:30:00
                           3866.
                                        20.2 2012-01-01 TRUE
###
   7 2012-01-01 03:00:00
                           3694.
                                        20.1 2012-01-01 TRUE
###
   8 2012-01-01 03:30:00
                           3562.
                                        19.6 2012-01-01 TRUE
###
   9 2012-01-01 04:00:00 3433.
                                        19.1 2012-01-01 TRUE
  10 2012-01-01 04:30:00 3359.
                                        19.0 2012-01-01 TRUE
## # ... with 52,598 more rows
```

vic_elec ▷ gg_season(Demand)

vic_elec > gg_season(Demand, period = "week")

vic_elec ▷ gg_season(Demand, period = "day")

Seasonal subseries plots: gg_subseries()

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.

Quarterly Australian Beer Production

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Lab Session 2

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- tourism ▷
filter(Region = "Snowy Mountains")</pre>
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Time series decomposition

Trend-Cycle aperiodic changes in level over time.

Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Additive decomposition

$$y_t = S_t + T_t + R_t$$

where $y_t = \text{data at period } t$

 $T_t = \text{trend-cycle component at period } t$

 $S_t =$ seasonal component at period t

 $R_t = \text{remainder component at period } t$

```
us retail employment <- us employment ▷
 filter(year(Month) ≥ 1990, Title = "Retail Trade") ▷
 select(-Series ID)
us retail employment
## # A tsibble: 357 x 3 [1M]
###
         Month Title
                             Employed
##
         <mth> <chr>
                                <dbl>
##
   1 1990 Jan Retail Trade
                               13256.
    2 1990 Feb Retail Trade
                               12966.
###
    3 1990 Mar Retail Trade
                               12938.
###
    4 1990 Apr Retail Trade
                               13012.
###
```

13108.

12112

6 1990 Jun Retail Trade 13183.
7 1990 Jul Retail Trade 13170.

5 1990 May Retail Trade

O 1000 Can Datail Trada

###

7 1990 Jul Retail Trade 13170. ## 8 1990 Aug Retail Trade 13160.

24

```
us_retail_employment ▷
  autoplot(Employed) +
  labs(y = "Persons (thousands)", title = "Total employment in US retail")
```



```
dcmp <- us_retail_employment >
  model(stl = STL(Employed))
dcmp

## # A mable: 1 x 1
## stl
## <model>
## 1 <STL>
```

```
dcmp <- us_retail_employment >
  model(stl = STL(Employed))
dcmp

## # A mable: 1 x 1
## stl
## <model>
## 1 <STL>
```

STL: "Seasonal and Trend decomposition using Loess"

components(dcmp)

```
## # A dable: 357 x 7 [1M]
## # Kev:
             .model [1]
## # :
             Employed = trend + season_year + remainder
     .model
               Month Employed trend season year remainder season adjust
###
     <chr>
               <mth>
                        <dbl> <dbl>
                                          <dbl>
                                                    <dbl>
                                                                  <dbl>
###
                                                    0.836
##
   1 stl
            1990 Jan 13256, 13288,
                                         -33.0
                                                                 13289.
                                                                 13224.
###
   2 stl
            1990 Feb 12966, 13269, -258,
                                                  -44.6
            1990 Mar
                     12938, 13250,
                                    -290.
                                                  -22.1
                                                                 13228.
###
   3 stl
###
   4 stl
            1990 Apr
                      13012. 13231.
                                        -220.
                                                  1.05
                                                                 13232.
            1990 May
                                        -114.
                                                                 13223.
###
   5 stl
                       13108. 13211.
                                                   11.3
   6 stl
            1990 Jun
                       13183. 13192.
                                         -24.3
                                                   15.5
                                                                 13207.
###
   7 stl
            1990 Jul
                       13170. 13172.
                                         -23.2
                                                   21.6
                                                                 13193.
###
###
   8 st1
            1990 Aug
                       13160. 13151.
                                          -9.52
                                                   17.8
                                                                 13169.
                                                                 13153.
##
   9 stl
            1990 Sep
                       13113. 13131.
                                         -39.5
                                                   22.0
```

components(dcmp) ▷ autoplot()


```
us_retail_employment D
autoplot(Employed, color = "gray") +
autolayer(components(dcmp), trend, color = "#D55E00") +
labs(y = "Persons (thousands)", title = "Total employment in US retail")
```



```
us_retail_employment ▷
  autoplot(Employed, color = "gray") +
  autolayer(components(dcmp), season_adjust, color = "#0072B2") +
  labs(y = "Persons (thousands)", title = "Total employment in US retail")
```



```
us_retail_employment >
  autoplot(Employed, color = "gray") +
  autolayer(components(dcmp), season_adjust, color = "#0072B2") +
  labs(y = "Persons (thousands)", title = "Total employment in US retail")
```


STL decomposition

STL decomposition

```
us_retail_employment >
  model(STL(Employed ~ trend(window = 21) + season(window = 13),
    robust = TRUE
  )) >
  components()
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- season(window = 'periodic') is equivalent to an infinite window.

STL decomposition

- Algorithm that updates trend and seasonal components iteratively.
- Starts with $\hat{T}_t = 0$
- Uses a mixture of loess and moving averages to successively refine the trend and seasonal estimates.
- trend window controls loess bandwidth on deasonalised values.
- season window controls loess bandwidth on detrended subseries.
- Robustness weights based on remainder.
- Default season: window = 13
- window values should be odd numbers for symmetry.

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Lab Session 2
- 4 Time series decompositions
- 5 Lab Session 3

Lab Session 3

- Produce an STL decomposition of the Snowy Mountains data.
- Experiment with different values of the two window arguments.
- Plot the seasonally adjusted series.