

Modellierung und Vorhersage der Routen Binnenvertriebener: Ein agentenbasierter Ansatz unter Verwendung des MARS-Frameworks im Kontext der syrischen Flüchtlingskrise

Kolloquium zur Bachelorarbeit zum Studiengang Angewandte Informatik im Department Informatik Viviam Ribeiro

Agenda

Syrien: Die größte Flüchtlingskrise

Vorzüge eines Vorhersagesystems

HAW HAMBURG

Agent: autonomes System

Umwelt: dynamisch, unvorhersehbar

Vorzüge von Agentenbasierter Modellierung (ABM) (2)

Individuelle Entscheidungsfindung

Soziale Interaktionen

Agenda

Stand der Forschung

Stand der Forschung (2): Vorzüge von Richey's Modell

Suleimenova, Bell (2017)

FLEE Modell
 Mangelhafte Validierung
 Benötigt Camps

Richey (2020)

Skalierbares ABM
 Empirisch validiert (Fehler 0.07)

 Soziale Netzwerke

Forschungsziel

Methoden und Material

ABM

Richey (2020)

Abb. 3: MARS Framework

Abb. 4: Jupyter Notebook

Methoden und Material: Richey's Modell

Abb. 5: Simulationsumgebung

Methoden und Material: Richey's Modell (2)

Location Score ist die gewichtete Summe von:

- Flüchtlingspopulation
- Distanz zu Europa
- Anzahl Camps
- Anzahl Konflikte über gesamten Simulationszeitraum

Methoden und Material: Richey's Modell (3)

Option-Auswertung anhand von:

- Location Score
- Anzahl sozialer Kontakte

Methoden und Material: MARS

Layers

- Abschnitt der Umgebung
- Eingabedaten über Layers integriert
- Ein Layer pro Datenquelle
- Können georeferenziert sein
- Können einen Verhaltensablauf haben

- Thread
- Attribute
- Verhaltensablauf

Agenda

Simulation Engineering Prozess

SE: Anforderungen - Einordnung

SE: Anforderungen - Überblick

SE: Anforderungen (1)

SE: Anforderungen (2)

SE: Anforderungen (3)

SE: Anforderungen (4)

SE: Konzeptmodell - Einordung

SE: Konzeptmodell (1)

SE: Konzeptmodell (2)

SE: Design - Einordnung

SE: Design in MARS – Migrant (1)

SE: Design in MARS – Map (1)

SE: Design in MARS - Beziehungen

SE: Design – Eingabedaten

Quellen:

- Richey's Repo
- Humanitarian Data Exhange
- ACLED (Armed Conflict Location And Event Data)
- Einwohnerdaten aus 2004

SE: Design in MARS - Konfiguration

Türkei-Modus

Simulationszeitraum

 Parameter der Entscheidungslogik

Eingabedaten

config.json

Syrien-Modus

SE: Design in MARS – Output

SE: Implementierung - Einordnung

SE: Implementierung: MigrantLayer

MigrantLayer

- + agentDistributionData: Pair<String, int> [1..*]
- + numAgentsToSpawn: int
- InitAgents(): void
- + SpawnNewRefs(): void
- + SpawnNewIDPs():void
- InitSocialNetwork(List<MigrantAgents>):void

SE: Implementierung: LocationLayer (1)

LocationLayer

- populationWeight: double
- campWeight: double
- conflictWeight: double
- locationWeight: double
- anchorCoordinates: Coordinate
- environment: GeoHashEnvironment
- CalcScore(LocationNode): void
- + GetLocationByName(String):Location
- + GetLocationsInProvince(String): Location [1..*]
- + InitLocationParams():void
- + PreTick(): void
- + PostTick(): void

SE: Implementierung: LocationLayer (2)

LocationLayer

- populationWeight: double
- campWeight: double
- conflictWeight: double
- locationWeight: double
- anchorCoordinates: Coordinate
- environment: GeoHashEnvironment
- CalcScore(LocationNode): void
- + GetLocationByName(String):Location
- + GetLocationsInProvince(String): Location [1..*]
- + InitLocationParams():void
- + PreTick(): void
- + PostTick(): void

SE: Implementierung: MigrantAgent (1)

SE: Verifikation - Einordnung

SE: Verifikation

SE: Validierung - Einordnung

SE: Validierung

Modellverhalten entspricht Zielverhalten

SE: Validierung - Türkei

- Modellvergleich
- Graphische Gültigkeit

MARS-Modell-Ausgabe

Abb. 6: Output von Richey Time Step 40

SE: Validierung – Syrien (1)

Empirische Validierung

 Output mit Echtdaten verglichen

MAPE

 Mittlerer absoluter prozentualer Fehler

Kalibrierung

- Lokale Minima von Parametern ermitteln
- Anpassen an Anwendungsfall

Anzahl Agenten

- Erst 170560
- Dann 2048183

SE: Validierung – Syrien (2)

Referenzwert

- Vor der Kalibrierung
- Fehler: 144%

Kalibrierung

Tiefwert:130%

Fehler-Wert

- lokaleMinima
- 2048183Agenten
- 66.7%

Forschungsziel - Einordnung

Szenarien

Szenario 1

Verwaltungsebene1

Szenario 2

Verwaltungsebene2

Szenario 3

Verwaltungsebene3

Szenario 4

Routen

Ergebnisse: Szenario 1 (1)

Output

Echtdaten

Ergebnisse: Szenario 1 (2)

Output

Echtdaten

Ergebnisse: Szenario 2

37
175000
150000
125000
36
100000
37
75000
50000
25000
0

Output

Echtdaten

Ergebnisse: Szenario 3

Output

Echtdaten

Ergebnisse: Szenario 4

Output

Echtdaten

Diskussion: Nützlichkeit

Nützlich auf der Landesebene

Zu unpräzise auf Kreisebene

Routen nicht reproduziert

Diskussion: Fehlerquellen

Agentenanzahl

Infrastrukturdaten

Soziales Netzwerk

Anfangsverteilung von Agenten

Veraltete Einwohnerdaten

Fazit

Ausblick

Erhöhung der Anzahl von Agenten Bewältigung von Fehlerquellen Anwendung in anderen Konfliktzonen

Abbildungsverzeichnis

Abb. 1: https://www.ibanet.org/Syria-devastating-decade-of-civil-war

Abb. 2: https://lareviewofbooks.org/article/this-should-not-be-repeated-civilian-devastation-from-syria-to-ukraine/

Abb. 3: https://www.mars-group.org/

Abb. 4: https://jupyter.org/

Abb. 5, 6: Richey Melonie K. Scalable Agent-Based Modeling of Forced Migration. Fairfax, 2020.

Literaturverzeichnis (1)

- 1. Bungartz Hans-Joachim, Zimmer Stefan, Buchholz Martin, Pflüger Dirk. Modellbildung und Simulation Eine anwendungsorientierte Einführung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. Second Edition.
- 2. Doocy Shannon, Lyles Emily, Delbiso Tefera D., Robinson Courtland W. Internal displacement and the Syrian crisis: an analysis of trends from 2011-2014 // Conflict and health. 2015. 9. 33.
- 3. Gilbert Nigel, Troitzsch Klaus G. Simulation for the social scientist. Berkshire: Open University Press, 2005. Second Edition
- 4. Guizzardi Giancarlo, Wagner Gerd. Tutorial: Conceptual simulation modeling with Onto-UML // 2012 Winter Simulation Conference. 2012. 1–15.
- 5. Harrison Ethan. Modeling Syrian Internally Displaced Person Movements: A Case Study of Conflict, Travel, Accessibility, and Resource Availability. 2016. (Student Writing).
- 6. Hinsch Martin, Bijak Jakub. Rumours lead to self-organized migration routes // The 2019 Conference on Artificial Life: How Can Artificial Life Help Solve Societal Challenges? 2019.
- 7. Klabunde Anna, Willekens Frans. Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges // European journal of population = Revue europeenne de demographie. 2016. 32, 1. 73–97.
- 8. MARS-Group . Hello from MARS. 2023. Available online at https://www.marsgroup.org/, checked on 10/06/2023.

Literaturverzeichnis (2)

- 9. Niazi Muaz A., Hussain Amir, Kolberg Mario. Verification & Validation of Agent Based Simulations using the VOMAS (Virtual Overlay Multi-agent System) approach. 2017.
- 10. Padgham . Developing Intelligent Agent Systems. Chicester: John Wiley and Sons, 2004.
- 11. Richey Melonie K. Scalable Agent-Based Modeling of Forced Migration. Fairfax, 2020.
- 12. StatisticsHowTo. Mean Absolute Percentage Error (MAPE). 2022. Available online at https://www.statisticshowto.com/mean-absolute-percentageerror-mape/, checked on 10/13/2023.
- 13. Suleimenova Diana, Bell David, Groen Derek. A generalized simulation development approach for predicting refugee destinations // Scientific reports. 2017. 7, 1. 13377.
- 14. Thibos Cameron. Half a Country Displaced: the Syrian Refugee and IDP Crisis // IEMed (ed.), IEMed Mediterranean Yearbook 2014, Barcelona: IEMed, 2014. [Migration Policy Centre]. 2014. 54–60.
- 15. UNHCR . Syria Refugee Crisis Explained. 2023. Available online at https://www.unrefugees.org/news/syria-refugee-crisis-explained/, checked on 09/19/2023.
- 16. Xiaorong Xiang, Ryan Kennedy, Gregory Madey, Steve Cabaniss. Verification and Validation of Agent-based Scientific Simulation Models // Agent-directed simulation conference. 47. San Diego, 2005.