Pattern Recognition

- S. S. Samant

K-means Clustering

- Given k, the k-means algorithm consists of four steps:
 - Select initial centroids at random.
 - Assign each object to the cluster with the nearest centroid.
 - Compute each centroid as the mean of the objects assigned to it.
 - Repeat previous 2 steps until there is no change.

K-means Clustering

Example

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	marviduai	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

- Thus, we obtain two clusters containing: {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

$$=(4.12,5.38)$$

individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

 Now using these centroids we compute the Euclidean distance of each object, as shown in table.

• Therefore, the new clusters are:

```
{1,2} and {3,4,5,6,7}
```

• Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

The clusters obtained are:

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt
 - Final result consist of 2 clusters {1,2} and {3,4,5,6,7}

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3,5	4.5

Measuring Cluster Quality: Cohesion and Separation

- A proximity graph based approach can be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clustering
- For an individual point i
 - Calculate α = average distance of i to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a)/max(a,b)$$

- Varies between -1 and 1.
- The closer to 1 the better.

Can calculate the Average Silhouette coefficient for a cluster or a clustering

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point

$$s = (b - a)/max(a,b)$$

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2}

Cluster 2: {P3, P4}

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2}

Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Using the distance matrix in the following table, compute the silhouette coefficient for each point and each of the two clusters

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2}

Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Using the distance matrix in the following table, compute the silhouette coefficient for each point and each of the two clusters

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point, each of the two clusters, and **overall clustering**

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Using the distance matrix in the following table, compute the **silhouette coefficient** for each point, each of the two clusters, and **overall clustering**

	P1	P2	P3	P4
P1	0	0.10	0.65	0.55
P2	0.10	0	0.70	0.60
P3	0.65	0.70	0	0.30
P4	0.55	0.60	0.30	0

Cluster 1: {P1, P2} Cluster 2: {P3, P4}

Let a indicate the average distance of a point to other points in its cluster. Let b indicate the minimum of the average distance of a point to points in another cluster.

Point P1: SC = 1- a/b = 1 - 0.1/((0.65+0.55)/2) = 5/6 = 0.833

Point P2: SC = 1- a/b = 1 - 0.1/((0.7+0.6)/2) = 0.846

Point P2; SC = 1- a/b = 1 - 0.3/((0.65+0.7)/2) = 0.556

Point P2: SC = 1- a/b = 1 - 0.3/((0.55+0.6)/2) = 0.478

Cluster 1 Average SC = (0.833+0.846)/2 = 0.84

Cluster 2 Average SC = (0.556+0.478)/2 = 0.52

Overall Average SC = (0.840+0.517)/2 = 0.68

K-means with scikit-learn

from sklearn import datasets import matplotlib.pyplot as plt import pandas as pd from sklearn.cluster import KMeans from sklearn import metrics

Iris Versicolor

Iris Setosa

Iris Virginica

```
iris = datasets.load iris()
X = iris.data
v = iris.target
plt.scatter(X[:,0], X[:,2], c=y, cmap='spring', s=100)
plt.title('Actual',fontsize=25, fontweight='bold')
plt.xlabel('Sepal Length', fontsize=20)
plt.ylabel('Petal Length',fontsize=20)
plt.figure()
cls = KMeans(n clusters = 3, random state=42)
cls.fit(X)
print 'Final centroids:'
print cls.cluster centers
km labels = cls.labels
print metrics.silhouette score(X, km labels)
plt.scatter(X[:,0], X[:,2],c=km labels, cmap='spring', s=100)
plt.xlabel('Sepal Length', fontsize=20)
plt.ylabel('Petal Length',fontsize=20)
plt.title('Predicted clusters',fontsize=25, fontweight='bold')
plt.show()
```

Birla Institute of Applied Sciences बिरला इंस्टिट्यूट ऑफ़ अप्लाइड साइंसेस Bhimtal, Distt: Nainital, Uttarakhand- 263136

Classification-oriented measures

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27		
2	4	7	280	29	39	2		3 .
3	1	1	1	7	4	671	- 600	·-
4	10	162	3	119	73	2		·-
5	331	22	5	70	13	23		_
6	5	358	12	212	48	13	- 12	-
Total	354	555	341	943	273	738		

Calculate Entropy, purity, precision, recall, F-score of each of the clusters above.

Classification-oriented measures

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Birla Institute of Applied Sciences विरला इंस्टिट्यूट ऑफ़ अप्लाइड साइंसेस Bhimtal, Distt: Nainital, Uttarakhand- 263136

Classification-oriented measures

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Classification-oriented measures

Cluster	Enter- tainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

What is the precision and recall of Cluster-1 wrt Metro class

Precision = 0.74

Recall = 0.53

Thank You!