高中数学公式百问百答

升学咨询杨老师18167992085

一、集合与简易逻辑

1. 集合

- (1) 元素 a 属于 (不属于) 集合 A, 记为 $a \in A(a \notin A)$
- (2) 空集是任意集合的子集, 即 $\Phi \subset A$ (A 为任意集合); 空集是 任意非空集合的直子集.
- (3)含有n个元素的集合有 2^{n} 个子集,有 $2^{n}-1$ 个真子集,有 $2^{n}-2$ 个非空真子集.
- (4) $A \cap B = \{x \mid x \in A, \exists x \in B\}$ (交集取公共)
- (5) $A \cup B = \{x \mid x \in A, \exists x \in B\}$ (并集求所有)
- (6) C.A={x | x ∈ U, ∃x ∈ A} (补集似减法)
- (7) $A \cup B = A \Leftrightarrow B \subset A : A \cap B = A \Leftrightarrow A \subset B$
- (8) 特殊数集的记法

实数	有理数	整数	自然数	正整数	空集
R	Q	Z	N	N ₊ / N*	Φ

2.简易逻辑

- (1) 充分与必要条件(小充分,大必要,小推大) 若 $p \Rightarrow q$, 则 p 是 q 的充分条件, q 是 p 的必要条件 若 p ⇔ q , 则 p 是 q 的充要条件 (充分必要条件)
- (2) 含有量词的命题的否定: 改量词, 否结论

二、不等式

3 不等式的性质

- (1) $a > b \Leftrightarrow b < a$:
- (2) $a > b, b > c \Rightarrow a > c$:
- (3) $a > b \Leftrightarrow a+c > b+c$; (4) $a > b,c > d \Rightarrow a+c > b+d$;
- (5) $a > b, c > 0 \Rightarrow ac > bc$; (6) $a > b > 0, c > d > 0 \Rightarrow ac > bd$;
- (7) $a > b > 0 \Rightarrow a^n > b^n (n \in \mathbb{N}, n \ge 2)$;
- (8) $a > b > 0 \Rightarrow \sqrt[n]{a} > \sqrt[n]{b} (n \in \mathbb{N}, n \ge 2)$

4.常见不等式的解法

(1) 一元二次不等式及其解法(化正求根写解集)

$\Delta = b^2 - 4ac$	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
$ax^2 + bx + c > 0$ $(a > 0) \text{ in } $	$\{x \mid x < x_1, \vec{x} > x_2\}$ $(x_1 < x_2)$	$\{x \mid x \neq -\frac{b}{2a}\}$	R
$ax^2 + bx + c < 0$ $(a > 0)$ 的解集	$\{x \mid x_1 < x < x_2\}$ $(x_1 < x_2)$	Φ	Φ

- 备注: 不等式恒成立与能成立问题(∀小∃大,见等取等)
 - ① $\forall x \in R, ax^2 + bx + c > 0 \Rightarrow \begin{cases} a > 0 \\ A < 0 \end{cases}$ (注意讨论a = 0情况)
 - ② $\exists x \in R, ax^2 + bx + c \ge 0 \Rightarrow \begin{cases} a > 0 \\ A > 0 \end{cases}$ (注意讨论a = 0情况)
- (2) 分式不等式的解法(归零通分除化乘)
 - $(1) \frac{f(x)}{g(x)} > 0 (< 0) \Leftrightarrow f(x) \cdot g(x) > 0 (< 0);$
- (3) 绝对值不等式的解法(大干找两边,小干取中间)
- \bigcirc | f(x) | $< g(x) \Leftrightarrow -g(x) < f(x) < g(x)$;
- $2 \mid f(x) \mid g(x) \Leftrightarrow f(x) < -g(x), \vec{x} \neq g(x)$
- ③ $| f(x) | > | g(x) | \Leftrightarrow [f(x)]^2 > [g(x)]^2$;
- ④ 形如|x-a|+|x-b|< c的不等式可利用零点分段讨论求解

5.重要不等式(以下不等式当且仅当 a=b 时等号成立)

- (1) $a^2 + b^2 > 2ab$. 当目仅当 a = b 时等号成立.
- (2) 基本不等式: $a+b \ge 2\sqrt{ab}$. 当且仅当 a=b 时等号成立.
- (3) 重要不等式: $\frac{2}{\frac{1}{2} + \frac{1}{2}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}$
- (4) $a^2 + b^2 + c^2 \ge \frac{1}{2}(a+b+c)^2 \ge ab + ac + bc$

6.极值定理(已知 x. v > 0)

- (1) 和定积最大: 若 x+y=s (其中 s 为定值), 则当 x=y 时, 积 xy取得最大值 $\frac{s^2}{4}$ (备注: $xy \le \frac{(x+y)^2}{4} = \frac{s^2}{4}$).
- (2) 积定和最小: 若 xy = p (其中 p 为定值), 则当 x=y 时, 和 x+y取得最小值 $2\sqrt{p}$ (备注: $x+y \ge 2\sqrt{xy}=2\sqrt{p}$)

7.柯西不等式(子母同现加数乘,高次在前低次后)

- (1) 二维柯西: $(a^2+b^2)(x^2+y^2) \ge (ax+by)^2$
- (2) 三维柯西: $(a^2+b^2+c^2)(x^2+y^2+z^2) \ge (ax+by+cz)^2$
- **8.绝对值三角不等式:** ||a| |b| | < |a + b| < |a| + |b|

三、函数的定义及其性质

9.定义域的求法:

- (1) 分母不为零: $y = \frac{1}{x} (x \neq 0)$;
- (2) 偶次被开方数非负: $v = \sqrt{x}(x \ge 0)$;
- (3) 不能出现 0^0 : $y = x^0 (x \neq 0)$;
- (4) 对数式中, 真数大于零: $v = \log_a x(x > 0)$

10.值域的求法:

- (1) 图像法:二次函数: $y = 2x^2 4x 3, x \in [-2,3]$;
- (2) 分离常数: 分式函数: $y = \frac{4x-3}{2x-1}$;
- (3) 换元法: 出现根式: $v = x \sqrt{1 2x}$:

11.解析式的求法:

- (1) 待定系数法: 已知函数类型, 用待定系数法:
- (2) 换元法: f() 括号内不是x;
- (3) 方程组法: 出现 f(x), f(-x), f(-1), f(-1)

12.函数的单调性:

- (1) $\forall x_1 < x_2, f(x_1) < f(x_2) \Leftrightarrow \forall x_1, x_2, \frac{f(x_1) f(x_2)}{x_1 x_2} > 0 \Leftrightarrow$ 函数递增
- (2) $\forall x_1 < x_2, f(x_1) > f(x_2) \Leftrightarrow \forall x_1, x_2, \frac{f(x_1) f(x_2)}{x_1 x_2} < 0 \Leftrightarrow 函数递减$
- (3) 复合函数单调性判断: 同增异减
- 备注: ① 增+增=增: ② 减+减=减;
 - ④ 减-增=减; ③ 增-减=增;
- ⑤ 负号和倒数改变单调性,根号维持单调性.

13.函数的周期性(一减没):

- (1) $f(x+a) = f(x) \Rightarrow T = a$
- (2) $f(x+a) = -f(x) \Leftrightarrow T = 2a$
- (3) $f(x+a) = \frac{1}{f(x)} \Leftrightarrow T = 2a$
- (4) $f(x+a) = -\frac{1}{f(x)} \Leftrightarrow T = 2a$
- 14. 函数的对称性 (一加没):

- (1) $f(-x) = f(x) \Rightarrow f(x)$ 为偶函数 (关于 y 轴对称)
- (2) $f(-x) = -f(x) \Rightarrow f(x)$ 为奇函数 (关于原点中心对称)
- (3) $f(a-x) = f(x+b) \Rightarrow f(x)$ 关于 $x = \frac{a+b}{2}$ 轴对称
- (4) $f(x) = 2b f(2a x) \Rightarrow f(x) 关于 (a,b) 中心对称$ 备注: 奇偶函数的运算性质: ① 奇函数 \Rightarrow f(0) = 0;
 - ② 奇+奇=奇: 偶+偶=偶: 奇×奇=偶: 奇×偶=奇: 偶×偶=偶

15.常见奇偶函数:

- (1) $f(x) = a^x + a^{-x}$ (4); (2) $f(x) = a^x - a^{-x}$ 奇;
- (3) $f(x) = \frac{a^x 1}{a^x + 1} \stackrel{\text{fi}}{\Rightarrow};$ (4) $f(x) = \log_a \frac{b + x}{b} \stackrel{\text{fi}}{\Rightarrow};$
- (5) $f(x) = \log_{a}(\sqrt{x^2 + 1} \pm x)$ 奇;

16.对勾函数与飘带函数图像:

四、基本初等函数

17.指数

(1) 根式

$$(\sqrt[4]{a})^n = a(n \in N^*, \exists n > 1); \sqrt[n]{a^n} = \begin{cases} a & (n为大于1的奇数) \\ |a| & (n为大于0的偶数) \end{cases}$$

正分数指数幂:
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} (a > 0, m, n \in N^*, \exists n > 1)$$

负分数指数幂:
$$a^{\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}} (a > 0, m, n \in N^*, \exists n > 1)$$

备注:
$$\frac{1}{a} = a^{-1}; \sqrt{a} = a^{\frac{1}{2}}$$

- (3) 有理数指数幂的运管性质
 - (1) $a^r a^s = a^{r+s} (a > 0, r, s \in O)$
- (2) $(a^r)^s = a^{rs} (a > 0, r, s \in O)$
 - $(ab)^r = a^r b^r (a > 0, b > 0, r \in O)$

18.对数

- (1) 指数式与对数式的互化公式: $a^x = N \Leftrightarrow \log_a N = x$
- (2) 基本性质
- ①负数和零没有对数;
- ② $\log_a 1 = 0$; $\log_a a = 1(a > 0, a \neq 1)$
- (3) 常用对数 log,₀ N 记为 lg N; 自然对数 log, N 记为 ln N
- (4) 运算性质
 - 设 $M > 0, N > 0, a > 0, a \neq 1$,则有
 - (1) $\log MN = \log M + \log N$;

 - ③ $\log_{-}M^{n} = n\log_{-}M(n ∈ R)$;

对数恒等式: $a^{\log_a N} = N(N > 0, a > 0, a \neq 1)$:

换底公式:
$$\log_a b = \frac{\log_c b}{\log_a a} (a > 0, \exists a \neq 1, c > 0, \exists c \neq 1, b > 0)$$
;

特别地: $\log_a b = \frac{1}{\log_a a} (a > 0, b > 0, a \neq 1, b \neq 1)$.

19.指数函数与对数函数图像:

20.函数图像的变换

- (1) $y = f(x) \xrightarrow{\pm \text{Fill} \perp} y = |f(x)|$
- (2) $y = f(x) \xrightarrow{\pm \pm m\pi} y = f(|x|)$

五、三角函数

21.角度和弧度的换算

$$(1) \quad 1^{\circ} = \frac{\pi}{180} rad$$

②
$$1rad = (\frac{180}{\pi})^{\circ} = 57.3^{\circ} = 57^{\circ}18'$$

22.弧度制下扇形的弧长和面积公式

- 弧长公式: l=|α|r
- (2) 扇形面积公式: $S = \frac{1}{2} l r = \frac{1}{2} |\alpha| r^2$

其中: l为弧长, r为圆的半径, α 为圆心角的弧度数

23.三角函数定义:

①
$$\sin \alpha = \frac{y}{r}$$
; ② $\cos = \frac{x}{r}$; ③ $\tan = \frac{y}{x} (\sharp + r) = \sqrt{x^2 + y^2}$)

备注: 三角函数符号: 一全正,二正弦,三正切,四余弦

24.特殊角三角函数值

,4	<i>// -/ 4</i>	-/4	~ 144						
角度	0°	30°	45°	60°	90°	120°	135°	150°	180°
弧度	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	5π/6	π
sin	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1/2	$-\sqrt{2}/2$	$-\sqrt{3}/2$	-1
tan	0	$\sqrt{3}/3$	1	$\sqrt{3}$	×	$-\sqrt{3}$	-1	$-\sqrt{3}/3$	0

备注:
$$\sin 15^\circ = \cos 75^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}; \sin 75^\circ = \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$$

25.同角三角函数基本关系式

(1) 平方关系: $\sin^2 \alpha + \cos^2 \alpha = 1$

(2) 商数关系:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} (\cos \alpha \neq 0)$$
 (弦切互化)

(3) $(\sin x + \cos x)^2 = 1 + 2\sin x \cos x = 1 + \sin 2x$

(4) $(\sin x - \cos x)^2 = 1 - 2\sin x \cos x = 1 - \sin 2x$

26.三角函数的诱导公式(奇变偶不变,符号看象限)

 $\sin(k \cdot 360^{\circ} + \alpha) = \sin \alpha$ $\sin(-\alpha) = -\sin \alpha$ $\cos(k \cdot 360^{\circ} + \alpha) = \cos \alpha$ $\cos(-\alpha) = \cos \alpha$ $tan(-\alpha) = -tan \alpha$ $\tan(k \cdot 360^{\circ} + \alpha) = \tan \alpha$ $\sin(180^{\circ} \pm \alpha) = \mp \sin \alpha$ $\sin(90^{\circ} \pm \alpha) = \cos \alpha$ $\cos(180^{\circ} \pm \alpha) = -\cos \alpha$ $\cos(90^{\circ} \pm \alpha) = \mp \sin \alpha$ $tan(180^{\circ} \pm \alpha) = \pm tan \alpha$ $\tan(90^{\circ} \pm \alpha) = \mp \cot \alpha$

27.两角和差公式

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$ $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{}$ $1 \mp \tan \alpha \tan \beta$

28.二倍角公式

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$ $\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$

29.降幂公式

30.辅助角公式

 $a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \sin(\alpha + \varphi) (\sharp + \tan \varphi = \frac{b}{\alpha}, a > 0)$

31.三角函数图像:

$y = \sin x$	$y = \cos x$	$y = \tan x$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & 3\pi \\ \hline 0 & \frac{3\pi}{2} & 2 x \\ \hline & x \end{array} $		

32.三角函数图像的伸缩与平移变换:

(1) $v = \sin x \xrightarrow{\frac{\pi}{6} \oplus \sqrt{\pi}} v = \sin \omega x \xrightarrow{\pm \pi/\pi} v = \sin[\omega(x + \omega)]$

(2) $y = \sin x - \frac{\pm i k \varphi}{\psi} \quad y = \sin(x + \varphi) - \frac{i k + \frac{1}{\varphi}}{\psi} \quad y = \sin(\omega x + \varphi)$

33 三角函数的奇偶性:

(1) $v = A\sin(\omega x + \varphi)$ $\xrightarrow{\text{奇函数}} \varphi = k\pi($ 余弦也成立);

(2) $y = A\sin(\omega x + \varphi)$ 一個商數 $\varphi = \frac{\pi}{2} + k\pi$ (余弦也成立)

34. 三角函数题型拆分:

(1) 三角函数化简问题:

例: ①化简 $f(x) = \sin x \sin(x + \frac{\pi}{2})$ (先拆后合 \rightarrow 降幂化同)

②化简 $f(x) = 2\sin x \sin(x + \frac{\pi}{2}) + 2\sqrt{3}\cos^2 x$ (诱导 \rightarrow 降幂化同)

备注: 先拆后合用诱导: 降幂化同辅助角

(2) 三角函数 $v = A\sin(\omega x + \varphi) + c(A > 0, \omega > 0)$ 图像性质:

①最小正周期: $T = \frac{2\pi}{2\pi}$

②单调区间:

令 $-\frac{\pi}{2} + 2k\pi \le \omega x + \varphi \le \frac{\pi}{2} + 2k\pi \Rightarrow m \le x \le n \Rightarrow [m,n]$ 为增区间

令 $\frac{\pi}{2} + 2k\pi \le \omega x + \varphi \le \frac{3\pi}{2} + 2k\pi \Rightarrow m \le x \le n \Rightarrow [m,n]$ 为减区间

令 $\omega x + \varphi = \frac{\pi}{2} + k\pi \Rightarrow x = m \Rightarrow x = m$ 为对称轴方程

 $\phi \omega x + \varphi = k\pi \Rightarrow x = n \Rightarrow (n,c)$ 为对称中心

⑤已知定义域求最值:

令 $a \le x \le b \Rightarrow m \le \omega x + \varphi \le n \Rightarrow f(x)$ 在 [m,n] 的值域

备注: 以上式子出现 k 时, 必须标注 $k \in \mathbb{Z}$.

六、平面向量

35.特殊向量

(1) 零向量: $\vec{a} = \vec{0} \Leftrightarrow |\vec{a}| = 0$;

(2) 单位向量: a为单位向量 ⇔ a = 1:

(3) 相等向量:长度相等目方向相同的向量 设 $\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2), 则 \vec{a} = \vec{b} \Leftrightarrow x_1 = x_2, y_1 = y_2$.

36.向量的模长: 若 $\vec{a} = (x, y)$, 则 $|\vec{a}| = \sqrt{x^2 + y^2}$ 37.向量的运算

(1) 向量的加减法

坐标运算:设 $\vec{a} = (x_1, y_1), \vec{b} = (x_2, y_2),$ 则 $\vec{a} \pm \vec{b} = (x_1 \pm x_2, y_1 \pm y_2)$ 备注: 距离公式:设 $A = (x_1, y_1), B = (x_2, y_2), 则 \overline{AB} = (x_2 - x_1, y_2 - y_1)$ $\mathbb{H} |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

(2) 实数与向量的数乘运算

定义: $\lambda \bar{a}$ 是一个向量:①当 $\lambda > 0$ 时, $\lambda \bar{a}$ 与 \bar{a} 同向;②当 $\lambda < 0$ 时, $\lambda \vec{a}$ 与 \vec{a} 反向;③当 $\lambda = 0$ 时, $\lambda \vec{a} = \vec{0}$. $|\lambda \vec{a}| = |\lambda| |\vec{a}|$

坐标运算: $\lambda \vec{a} = \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1)$.

38.平面向量基本定理: $\vec{a} = \lambda e_1 + \lambda e_2$, 其中 e_1, e_2 为基底(不共线)

39.非零向量共线(平行)的充要条件: $\vec{a}//\vec{b} \Leftrightarrow \vec{a} = \lambda \vec{b} \Leftrightarrow x, y, -x, y, = 0$

备注: A,B,P共线 $\Leftrightarrow \overrightarrow{AB} = \lambda \overrightarrow{AP} \Leftrightarrow \overrightarrow{OP} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB} \perp \lambda + \mu = 1$

40.非零向量垂直的充要条件: $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_1 x_2 + v_1 y_2 = 0$

41.数量积: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \theta = x_1 x_2 + y_1 y_2$.

42.夹角: $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}}$

备注: $\vec{a} \cdot \vec{b} > 0 \Rightarrow \theta$ 为锐角或 $0 \cdot \vec{a} \cdot \vec{b} < 0 \Rightarrow \theta$ 为钝角或 $180 \cdot \vec{a} \cdot \vec{b} < 0 \Rightarrow \theta$ 为钝角或 $180 \cdot \vec{a} \cdot \vec{b} < 0 \Rightarrow \theta$

43.投影: \vec{a} 在 \vec{b} 方向上的投影为 $\frac{\vec{a} \cdot \vec{b}}{\vec{b}}$

44.复数的一般形式: z = a + bi (其中 a 为实部, b 为虚部)

45.复数的化简: $i^{4n+1} = i; i^{4n+2} = -1; i^{4n+3} = -i; i^{4n} = 1$

46.复数的分类。

(1) 当 z = a + bi 为实数时 $\Rightarrow b = 0$

(2) 当 z = a + bi 为虚数时 $\Rightarrow b \neq 0$

(3) 当 z = a + bi 为纯虑数时 $\Rightarrow a = 0, b \neq 0$

(4) 当 z = a + bi 为一般虚数时 $\Rightarrow a \neq 0, b \neq 0$

47.复平面的对应: 复数 z = a + bi 与复平面上的点 (a,b) ——对应 **备注:** 实轴即 x 轴, 虚轴即 v 轴

48.复数相等: $z_1 = a + bi, z_2 = c + di, z_1 = z_2 \Rightarrow a = c, b = d$

49.复数的模: $|z| = \sqrt{a^2 + b^2}$

50.共轭复数: z = a - bi

51.复数的运算性质: $|\frac{z_1}{z_1}| = \frac{|z_1|}{z_1}$

八、解三角形

52.角关系式

 $\sin A = \sin(B+C) = \sin B \cos C + \cos B \sin C$ $\sin B = \sin(A+C) = \sin A \cos C + \cos A \sin C$ $\sin C = \sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos A = -\cos(B+C) = \sin B \sin C - \cos B \cos C$ $\cos B = -\cos(A+C) = \sin A \sin C - \cos A \cos C$ $\cos C = -\cos(A+B) = \sin A \sin B - \cos A \cos B$ $\sin \frac{A}{2} = \cos \frac{B+C}{2}; \cos \frac{A}{2} = \sin \frac{B+C}{2}$

53.正弦定理

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R(其中R为\Delta ABC外接圆的半径)$

 $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac\cos B$ $c^2 = a^2 + b^2 - 2ab\cos C$

推论: $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$; $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$; $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

(1) $S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$

(2) 海伦公式: $S = \sqrt{p(p-a)(p-b)(p-c)}$ (其中 $p = \frac{a+b+c}{2}$)

(3) $S = \frac{1}{a}(a+b+c)r(r$ 为三角形内接圆半径)

备注: $S_{E=9R} = \frac{\sqrt{3}}{4}a^2$ (其中 a 为等边三角形边长)

56 解三角形常见顺型拆分。

(1) $\cos \left\{ \begin{array}{c} -\frac{\pi}{2} \rightarrow \text{边化角} \\ \text{②合并相同角} \end{array} \right.$

备注:二次齐次式,把 $\cos^2 A=1-\sin^2 A$ 后,角化边用余弦定理

(2) 求面积、周长、中线以及角平分线等问题 ①边、角混合运算:正弦定理边化角(一角一函数) ②面积问题:正弦定理边化角、均值定理(公式: $a^2 + b^2 \ge 2ab$

③周长问题:正弦定理边化角、均值定理(公式: $ab \le \frac{(a+b)^2}{ab}$

④中线问题:双余弦定理(公式: cos∠ADB+cos∠ADC=0) 向量的中线定理(公式: $2\overline{AD} = \overline{AB} + \overline{AC}$)

⑤角平分线: 等面积法 (公式: $S_{AARC} = S_{AADR} + S_{AADC}$)

备注:(1)三角形中,求解函数范围时,注意标明角的范围.

(2) 锐角: $A = \frac{\pi}{2} \Rightarrow \frac{\pi}{6} < B < \frac{\pi}{2}, \sqrt{3}a + a < l \le 3a, S \le \frac{\sqrt{3}a^2}{4}$;

(3) 任意: $A = \frac{\pi}{2} \Rightarrow 0 < B < \frac{2\pi}{2}, 2a < l \le 3a, S \le \frac{\sqrt{3}a^2}{4}$

九、立体几何

57.空间几何体的侧面积公式

(1) $S_{\text{mix}} = 2\pi r l$

(2) $S_{\text{min}} = \pi r l$

(3) $S_{micm} = \pi(r + r')l$

58.空间几何体的表面积公式

(1) $S_{min-m} = 2\pi r^2 + 2\pi r l$

(2) $S_{min.*} = \pi r^2 + \pi r l$

(3) $S_{mid-mi} = \pi r^2 + \pi r'^2 + \pi (r + r')l$ (4) $S_{min} = 4\pi R^2$

备注: ①长方体: $2R_{xx} = \sqrt{a^2 + b^2 + c^2}$; ②正方体: $2R_{xx} = \sqrt{3}a$; ③当出现三垂直或者对棱相等情况时注意还原成长方体

(1) $V_{ii} = Sh$

(2) $V_{\text{stt}} = \frac{1}{-}Sh$

(3) $V_{fi} = \frac{1}{2}(S + S' + \sqrt{SS'})h$ (4) $V_{iik} = \frac{4}{2}\pi R^3$

59.空间几何体的体积公式

备注: 正四面体的内切球的半径为 $\frac{\sqrt{6}}{12}a$, 外接球的半径为 $\frac{\sqrt{6}}{12}a$

60.平面的基本性质

公理 1: $A \in I, B \in I, \exists A \in \alpha, B \in \alpha \Rightarrow I \subset \alpha$

公理 2: $A, B, C \in \alpha, A, B, C \in \beta, \exists A, B, C$ 不共线 $\Rightarrow \alpha = \beta$ 重合

公理 3: $P \in \alpha$, 且 $P \in \beta \Rightarrow \alpha \cap \beta = l$, 且 $P \in l$

61.空间两直线平行的判定

(1) $\begin{pmatrix} a//b \\ b//c \end{pmatrix} \Rightarrow a//c$

(3) $a \subset \beta$ $\Rightarrow a//b$ $\alpha \cap \beta = b$

(4) $\alpha \cap \gamma = a \Rightarrow a//b$

62. 空间两直线垂直的判定

 $(1) \begin{array}{c} a \perp \alpha \\ b / / \alpha \end{array} \Rightarrow a \perp b$

(2) $\binom{a//b}{l+a} \Rightarrow l \perp b$

(3) 三垂线定理及其逆定理

63.直线与平面平行的判定

 $a \neq \alpha$ (1) $b \subset \alpha \Rightarrow a//\alpha$

(2) $\frac{\alpha/\beta}{\alpha-\alpha} \Rightarrow a/\beta$

64.直线与平面平行的性质

 $a//\beta$ (1) $a \subset \alpha$ $\Rightarrow a//b$ $\alpha \cap \beta = b$

65.平面与平面平行的判定

 $a \subset \beta, b \subset \beta$ (1) $a \cap b = P$ $\Rightarrow \alpha //\beta$ $a//\alpha,b//\alpha$

 $(2) \begin{array}{c} \alpha / / \gamma \\ \beta / / \gamma \end{array} \Rightarrow \alpha / / \beta$

66.平面与平面平行的性质

(1) $\alpha \cap \gamma = a \Rightarrow a / / b$ $\beta \cap \gamma = b$

67.直线与平面垂直的判定

 $a \subset \alpha, b \subset \alpha$ (1) $a \cap b = A \Rightarrow l \perp \alpha$ $l \perp a, l \perp b$

(2) a/b $\Rightarrow b \perp \alpha$

68.直线与平面垂直的性质

(1) $\begin{cases} a \perp \alpha \\ b = \alpha \end{cases} \Rightarrow a \perp b$

(2) $\begin{cases} l \perp \alpha \\ l \perp \beta \end{cases} \Rightarrow \alpha / / \beta$

69.平面与平面垂直的判定

 $(1) \begin{array}{c} l \perp \alpha \\ l = \beta \end{array} \Rightarrow \alpha \perp \beta$

(2) 二面角的平面角θ=90

70.平面与平面垂直的性质(面面垂直找交线)

 $(1) \quad \begin{cases} \alpha \perp \beta, \alpha \cap \beta = l \\ a \subset \beta, a \perp l \end{cases} \Rightarrow a \perp \alpha$

71.空间直角坐标系*

- (1) 空间两点间的距离公式:
 - ①空间中的任意一点 P(x,y,z) 与原点的距离:

$$|OP| = \sqrt{x^2 + y^2 + z^2}$$

②空间中任意两点 $P_1(x_1, y_1, z_1), P_2(x_2, y_2, z_2)$ 间的距离:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(2) 空间线段的中点坐标:

在空间直角坐标系中, 若 $A(x_1, y_1, z_1), B(x_2, y_3, z_4)$, 则线段 AB 的

中点坐标是 $M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2})$

72.空间角的向量求法:

- (1) 线线角: $\cos\theta = |\cos\langle \vec{m}, \vec{n} \rangle| = \frac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| ||\vec{n}|}$
- (2) 线面角: $\sin \theta = |\cos \langle \vec{m}, \vec{n} \rangle| = \frac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot |\vec{n}|}$
- (3) 面面角: $\cos \theta = ?\cos < m, n > = ?\frac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot |\vec{n}|}$
- (4) 点 P 到平面的距离: $d = \frac{|\overrightarrow{PA} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$

73.立体几何题型拆分:

- (1) 线线平行证明方法:
 - ①中位线:
- ②平四:
- ③对应成比例;
- ④线面平行的性质定理

异面直线

(2) 线线垂直证明方法:				
		等腰三角形三线合一		
	三角形	勾股定理逆定理		
		全等		
共面直线		正、矩邻边		
	四边形	正、菱对角线		
		特定四边形		
	圆形	直径所对圆周角		

久注,(1) 三垂线空理及甘道空理 三全改空理

线面垂直性质定理

ale: (2) alexander analex					
三垂线定理	三垂线定理逆定理	三余弦定理			
P	P O O	A D D D			
$ PO \perp \alpha, O \in \alpha $ $ PA \cap \alpha = A $ $ a \subset \alpha, a \perp OA \Rightarrow a \perp PA $	$ PO \perp \alpha, O \in \alpha $ $PA \cap \alpha = A$ $a \subset \alpha, a \perp AP $ $\Rightarrow a \perp AO$	$\cos\theta = \cos\theta_1\cos\theta_2$			

(2) 面积射影定理: $\cos\theta = \frac{S'}{S} = \frac{S_{\text{st}}}{S}$.

十、数列

74.数列的通项公式与前 n 项和的关系:

$$a_n = \begin{cases} S_1 & (n=1) \\ S_n - S_{n-1} & (n \ge 2) \end{cases}$$

75.等差数列

- (1) 定义: $a_{n+1} a_n = d(n \in \mathbb{N}^*, d$ 为常数)
- (2) 通项公式: $a_n = a_1 + (n-1)d$
- (3) 等差中项: a,A,b成等差数列 ⇔ 2A = a + b
- (4) 前 n 项和: $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{1}{2}n(n-1)d$
- (5) 性质: ① a_ = a_ + (n-m)d
 - (2) $m+n=k+l \Leftrightarrow a_{-}+a_{-}=a_{+}+a_{+}$
 - ③ S_,S_,-S_,-S_, 成等差数列
 - $\textcircled{4} \ a_n = An + B, \ S_n = an^2 + bn$
 - (5) $S_{2n-1} = (2n-1)a_n$

76.等比数列

- (1) 定义: $\frac{a_{n+1}}{a} = q(n \in \mathbb{N}^*, q$ 为非零常数)
- (2) 通项公式: $a = a \times a^{n-1}$
- (3) 等比中项: a, A, b 成等比数列 ⇔ A² = ab

(4) 前
$$n$$
 琐和: $S_n = \begin{cases} na_1 & (q=1) \\ \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q} & (q \neq 1) \end{cases}$

- (5) 性质: ① $a_{n} = a_{n} \times q^{n-m}$
 - (2) $m + n = k + l \Leftrightarrow a_- \cdot a_- = a_k \cdot a_l$
 - ③ S_,S_, -S_,S_, -S_, 成等比数列
 - $(4) S_n = A Aq^n$

77.常用裂项公式

(1) $a_n = \frac{1}{n^2 + n} = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$

(2)
$$a_n = \frac{1}{4n^2 - 1} = \frac{1}{(2n+1)(2n-1)} = \frac{1}{2} (\frac{1}{2n-1} - \frac{1}{2n+1})$$

(3*)
$$a_n = \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - \sqrt{n}$$

$$(4^*) \quad a_n = \frac{n+2}{n(n+1)2^{n+1}} = \frac{1}{n2^n} - \frac{1}{(n+1)2^{n+1}}$$

(5*)
$$a_n = \frac{2^n}{(2^{n+1}-1)(2^n-1)} = \frac{1}{2^n-1} - \frac{1}{2^{n+1}-1}$$

78.常用求和公式

(1)
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

(2)
$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

79.数列解答题常见题型拆分

- (1) 数列证明:
 - ①等差数列: $a_{n} a_{n+1} = d$ (两项) 或 $2a_{n} = a_{n+1} + a_{n+1}$ (三项)
 - ②等比数列: $\frac{a_n}{a_{n-1}} = q$ 或 $a_n^2 = a_{n-1} \cdot a_{n+1}$
- - ①公式法: 等差数列或者等比数列
 - ②累和法: $a_n a_{n-1} = f(n)$ 或 $a_{n-1} a_n = f(n)$ (n-1 项)
 - ③累积法: $\frac{a_n}{a_{n-1}} = f(n)$ 或 $\frac{a_{n+1}}{a_n} = f(n)$ (n-1项)
 - ④关系式法: 题干同时出现 a_1 和 S_2 : $4S_2 = (a_2 + 1)^2 \Rightarrow a_2$
 - ⑤构造法*:

- a) 同取倒数: $a_1 = 1, a_{n+1} = \frac{a_n}{2a_n+1} \Rightarrow a_n$
- b) 构造等比: $a_1 = 1, a_{n+1} = 2a_n + 1 \Rightarrow a_n$ (不动点法)
- c) 构造等差: $a_1 = 1, a_{n+1} = 2a_n + 3^{n+} \Rightarrow a_n$ (同除 2^{n+1})
- (3) 求和方法(欲想求和,先求通项):
- ①分组求和法: a = 等差 + 等比
- ②裂项相消法: $a_n = \frac{1}{\text{等美文等美}}$
- ③错位相减法: a =等差×等比
- 备注: 求和后,注意验证 $S_{i} = a_{i}$?

十一、统计与概率

80.抽样方法

- (1) 简单随机抽样: ①抽签法; ②随机数表法
- (2) 系统抽样*: 又叫等距抽样, 第n组样本号: $l_{n} = l_{n} + (n-1)k$
- (3) 分层抽样: 按比例抽样

81.样本数字特征

- (1) 平均数 $\bar{x} = \frac{1}{x_1}(x_1 + x_2 + x_3 + \dots + x_n) = p_1x_1 + p_2x_2 + \dots + p_nx_n$
- (2) 方差: $s^2 = \frac{1}{2}[(x_1 \overline{x})^2 + (x_2 \overline{x})^2 + \dots + (x_n \overline{x})^2]$ $= p_1(x_1 - \overline{x})^2 + p_2(x_2 - \overline{x})^2 + \dots + p_n(x_n - \overline{x})^2$
- (3) 标准差: $s = \sqrt{\frac{1}{1-[(x_1 \bar{x})^2 + (x_2 \bar{x})^2 + \dots + (x_n \bar{x})^2]}}$
- (4) 极差=最大值 最小值

82.同归官线方程

- (1) 回归直线恒过样本点的中心 (x, v)
- (2) 相关系数 $r:(1) r>0 \Rightarrow$ 正相关: $r<0 \Rightarrow$ 负相关: $|r|\rightarrow 1 \Rightarrow$ 相关性强

83.概率公式

- (1) 概率的加法公式 如果事件 A 与事件 B 互斥,则 $P(A \cup B) = P(A) + P(B)$ 若事件 A 与事件 B 为对立事件,则 P(A) = 1 - P(B)
- (2) 古典概型的概率公式: $P(A) = \frac{\text{事件} \cdot 4 \text{包含的基本事件数}}{\text{基本事件 .05}} = \frac{m}{n}$
- (3) 几何概型的概率公式: P(A) = 构成事件4的几何度量 试验的全部结里所构成的几何度量
- (4) 条件概率*: $P(B|A) = \frac{P(AB)}{P(A)} = \frac{n(AB)}{n(A)}$,其中P(A) > 0

84.特殊分布的数学期望与方差

- (1) 超几何分布*: $P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_M^n} (k=0,1,2,\cdots,m)$
- (2) 二项分布*: $X \sim N(n, p)$, 则 E(X) = np, D(X) = np(1-p) \mathbb{H} $P(X = k) = C_n^k p^k (1-p)^{n-k}, k = 0,1,2,\dots,n$
- (3) 正态分布*: $X \sim N(\mu, \delta^2)$ (其中 μ 为均值, δ 为标准差)
- (4) 两点分布 (0-1分布)*: P(X=0)=1-p, P(X=1)=p且 E(X) = p, D(X) = pq (其中q = 1 - p)
- **备注:** ① E(aX + b) = aE(x) + b(a,b为常数): ② $D(\mathcal{E}) = E\mathcal{E}^2 (E\mathcal{E})^2$
 - **③**分层抽样方差*: $D(\xi) = \sum_{i=1}^{n} \omega_{i} [\sigma_{i}^{2} + (x_{i} \overline{x})^{2}]$

十二、直线、圆与方程

85.直线与方程

- (1) 直线方程
 - ①点斜式: $y y_0 = k(x x_0)$

- ②斜截式: v = kx + b
- ③两点式: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} (x_1 \neq x_2, y_1 \neq y_2)$
- ④截距式: $\frac{x}{a} + \frac{y}{b} = 1$
- ⑤一般式: Ax + By + C = 0(A, B不同时为0)
- (2) 直线的斜率公式

经过两点 $A(x_1, y_1), B(x_2, y_2)(x_1 \neq x_2)$ 的直线的斜率公式:

$$k = \tan \theta = \frac{y_2 - y_1}{x_2 - x_1} (x_1 \neq x_2)$$

- (3) 两直线的位置关系
 - ① $l_1: y = k_1x + b_1 = l_2: y = k_2x + b_2$ 平行: $k_1 = k_2, b_1 \neq b_2$
 - ② $l_1: v = k, x + b, \exists l_2: v = k, x + b,$ 垂直: $k_1 \cdot k_2 = -1$
 - ③ $l_1: A_1x + B_1y + C_1z = 0 与 l_2: A_2x + B_2y + C_2z = 0$ 平行:

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2} (A_2 B_2 C_2 \neq 0)$$

④ $l_1: A_1x + B_1y + C_1z = 0$ 与 $l_2: A_2x + B_2y + C_2z = 0$ 垂直:

$$A_1A_2 + B_1B_2 = 0$$

(4) 距离公式

①两点 $P_1(x_1, y_1), P_2(x_2, y_2)$ 间的距离:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
.

特别地,原点 O 与任意一点 P(x,y) 的距离 $|OP| = \sqrt{x^2 + y^2}$.

②点 $P(x_0, y_0)$ 到直线 l: Ax + By + C = 0 的距离:

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

③两平行直线 $l_1: Ax + By + C_1 = 0$ 和 $l_2: Ax + By + C_2 = 0$ 间的距离:

$$d = \frac{|C_1 - C_2|}{\sqrt{A^2 + B^2}}.$$

86.圆与方程

- (1) 圆与方程
 - ① 圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2$, 圆心为 (a,b) 半径为 r
 - ② 圆的一般方程: $x^2 + y^2 + Dx + Ey + F = 0$, 其中 $D^2 + E^2 4F > 0$

圆心为
$$(-\frac{D}{2}, -\frac{E}{2})$$
 , 半径为 $r = \frac{1}{2}\sqrt{D^2 + E^2 - 4F}$

(2) 直线与圆的位置关系

设直线 l: Ax + By + C = 0, 圆 $(x-a)^2 + (y-b)^2 = r^2$, 圆心 (a,b) 到 直线的距离为 d ,则 $d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}$:

- d>r⇔ 直线与圆相离:
- ② d = r ⇔ 直线与圆相切:
- ③ d < r ⇔ 直线与圆相交</p>
- (3) 过圆上一点的切线方程
 - ①与圆 $x^2 + y^2 = r^2$ 相切于点 (x_0, y_0) 的切线方程:

$$xx_0 + vy_0 = r^2$$

②与圆 $(x-a)^2 + (y-b)^2 = r^2$ 相切于点 (x_0, y_0) 的切线方程:

 $(x-a)(x_0-a)+(y-b)(y_0-b)=r^2$

(4) 圆与圆的位置关系

设两圆 $C_1:(x-a_1)^2+(y-b_1)^2=r_1^2, C_2:(x-a_2)^2+(y-b_2)^2=r_2^2$, 圆 心距 $d = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2}$, 则

- ① *d > r*; + *r*, ⇔ 两圆相离;
- ② $d = r_i + r_s \Leftrightarrow$ 两圆外切;
- ③ | r, -r, |< d < r, +r, ⇔ 两圆相交;

- ④ d = r₁ r₂ |⇔ 两圆内切;
- ⑤ d ⊲ r, -r, |⇔ 两圆内含;
- (5) 直线与圆所截弦的问题

设直线与圆相交于两点 $A(x_1, y_1), B(x_2, y_2)$, 则弦

 $|AB| = 2\sqrt{r^2 - d^2}$ (r为圆的半径, d为弦心距)

十三、圆锥曲线方程

87.椭圆的标准方程及几何性质

标准方程:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$
或 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$

顶点: $(\pm a,0),(0,\pm b)$ 或 $(\pm b,0),(0,\pm a)$

焦点: $(\pm c,0)$ 或 $(0,\pm c)$ $(c^2 = a^2 - b^2)$

离心率:
$$e = \frac{c}{a}$$
(或者 $e^2 = 1 - \frac{b^2}{a^2}$)

通径: $|AB| = \frac{2b^2}{a}$

焦点三角形: ①周长 l=2a+2c

②面积
$$S = c \mid y_p \mid = b^2 \cdot \tan \frac{\theta}{2} = (a+c)r$$

弦中点:
$$k_{AB} \cdot k_{OM} = k_{AB} \cdot \frac{y_0}{x_0} = -\frac{b^2}{a^2}$$

88.双曲线的标准方程及几何性质

标准方程:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = l(a > 0, b > 0)$$
或 $\frac{y^2}{a^2} - \frac{x^2}{b^2} = l(a > 0, b > 0)$

顶点: (+a,0) 或 (0,+a)

焦点: $(\pm c,0)$ 或 $(0,\pm c)$ $(c^2 = a^2 + b^2)$

渐近线:
$$y = \pm \frac{b}{a} x \vec{y} = \pm \frac{a}{b} x$$

备注: 焦点到渐近线的距离等于 b

离心率:
$$e = \frac{c}{a}$$
(或者 $e^2 = 1 + \frac{b^2}{a^2}$)

通径: $|AB| = \frac{2b^2}{a}$

焦点三角形: 面积 $S = c \mid y_p \mid = \frac{b^2}{\tan \frac{\theta}{r}}$

弦中点: $k_{AB} \cdot k_{OM} = k_{AB} \cdot \frac{y_0}{r} = \frac{b^2}{a^2}$

等轴双曲线: $a=b; e=\sqrt{2}$;渐近线 $y=\pm x$

89.抛物线的标准方程及几何性质

标准方程: $y^2 = 2px$ 或 $x^2 = 2py$

焦点: $(\frac{p}{2},0)$ 或 $(0,\frac{p}{2})$

准线方程: $x = -\frac{p}{2}$ 或 $y = -\frac{p}{2}$

焦半径: $|PF| = x_0 + \frac{p}{2}$

焦点弦: ① $|AF| = \frac{p}{1-\cos\alpha}$; $|BF| = \frac{p}{1+\cos\alpha}$ ② $|AB| = \frac{2p}{\sin^2\alpha}$

备注: $x_1x_2 = \frac{p^2}{4}, y_1y_2 = -p^2$

90. 圆锥曲线中统一公式:

$$k^2 = (\frac{\lambda+1}{\lambda-1})^2 e^2 - 1(\cancel{\sharp} + \cancel{h} \lambda = \frac{|AF|}{|BF|})$$

91. 直线截圆锥曲线的弦长

设弦 AB 的端点坐标为 $A(x_1, y_1), B(x_2, y_2)$ 直线 AB 的斜率为 k ,则

$$|AB| = \sqrt{k^2 + 1} |x_2 - x_1| = \sqrt{k^2 + 1} \sqrt{(x_1 + x_2)^2 - 4x_1x_2}$$

十四、导数及其应用

92.几种常见函数的导数

- (1) C' = 0
- (2) $(x^n)' = nx^{n-1}$
- (3) $(\sin x)' = \cos x$
- $(4) (\cos x)' = -\sin x$
- $(5) (e^x)' = e^x$
- (6) $(a^x)' = a^x \ln a$
- (7) $(\ln x)' = \frac{1}{1}$
- (8) $(\log_a x)' = \frac{1}{\log_a x}$
- $(9) \ (\frac{1}{2})' = -\frac{1}{2}$
- (10) $(\sqrt{x})' = \frac{1}{\sqrt{x}}$

93.导数四则运算法则

- (1) $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
- (2) $[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$

94.复合函数求导

若函数 u = g(x) 在 x 处可导, v = f(u) 在 u 处可导,则复合函 数 y = f[g(x)] 在 x 处可导,且 $y'_x = y'_x \cdot u'_x$

95.常见题型拆分

- (1) 曲线切线方程的求法(欲求切线先求切点):
 - ①函数 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程的求法:

第一步: 求导; 求 f'(x);

第二步: 求斜率: $k = f'(x_o)$;

第三步: 写方程: $y - f(x_0) = f'(x_0)(x - x_0)$;

第四步: 化简: 写成一般式或者斜截式.

备注: 切点在切线上, 也在曲线上: 导数值就是斜率

②函数 v = f(x) 过点 (a,b) 处的切线方程的求法:

第一步: 设切点: 设切点坐标为 $(x_0, f(x_0))$;

第二步: 求导; 求 f'(x);

第三步: 求斜率: $k = f'(x_0)$;

第四步: 写方程: $l: y - f(x_0) = f'(x_0)(x - x_0)$;

第五步: 求切点: 将点 (a,b) 代入直线方程, 并解 x_0 ;

第六步: 化简: 将 x₀ 代入 l , 并化简

- (2) 导数与单调性
 - ①已知函数 v = f(x) 解析式, 求增减区间

第一步: 求导 f'(x) (注意标明定义域,尤其注意 $\ln x$)

令 $f'(x_s) < 0$ ⇒ 减区间

第三步: 下结论

②已知函数 f(x) 单调性, 求参数的取值范围

若 f(x) 在 [a,b] 上递增,则 $f'(x) \ge 0$ 在 [a,b] 上恒成立;

若 f(x) 在 [a,b] 上递减,则 $f'(x) \le 0$ 在 [a,b] 上恒成立;

③若函数有增区间 \Rightarrow $f'(x_0) > 0$ 有解

- ④若函数有减区间 \Rightarrow $f'(x_0) < 0$ 有解
- ⑤若函数不单调 ⇒ f'(x_o)=0 有解

备注:参数二次函数讨论临界找寻规则:定次、定向、定量

- a) 二次项系数=0; b) △=0; c) $x_1 = x_2$;

 - d) 根与定义域端点比较
- (3) 导数与极值、最值(极值点双解问题注意验证)
 - ①求函数极值与最值的一般步骤:

第一步: 求导 f'(x) (注意标明定义域)

第三步,列表

第四步: 下结论

②若函数有极值 $\Rightarrow f'(x_0) = 0$ 有解 (不可反推)

- (4) 不等式证明常见思路
 - ①将不等式证明转化为求函数最值问题

备注: a) $\forall x, f(x) \ge a \Rightarrow f(x)_{min} \ge a$

- b) $\exists x, f(x) \ge a \Rightarrow f(x)_{---} \ge a$
- c) $\forall x, f(x) \ge g(x) \Rightarrow [f(x) g(x)]_{\min} \ge 0$
- d) $\exists x, f(x) \ge g(x) \Rightarrow [f(x) g(x)]_{max} \ge 0$
- e) $\forall x_1 x_2, f(x_1) \ge g(x_2) \Rightarrow f(x)_{\min} \ge g(x)_{\max}$
- f) $\forall x_1, \exists x_2, f(x_1) \ge g(x_2) \Rightarrow f(x)_{\min} \ge g(x)_{\min}$
- g) $\exists x_1 x_2, f(x_1) \ge g(x_2) \Rightarrow f(x)_{max} \ge g(x)_{min}$
- h) $\forall x_1, \exists x_2, f(x_1) = g(x_2) \Rightarrow A \subset B(A: f(x))$ 值域; B: g(x)值域)
- i) $\exists x_1 x_2, f(x_1) = g(x_2) \Rightarrow A \cap B \neq \Phi(A: f(x))$ 值域; B: g(x)值域)
- ②参变分离, 构造新函数
- (5) 洛必达法则: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ (注意使用条件)
- (6) 常见泰勒展开式:
- ①対数放缩: $\ln x \le x 1$: $\ln (x+1) \le x$: $\ln x < x$
- ②指数放缩: $e^x \ge x+1$; $e^x \ge ex$; $e^x > x$

十五、极坐标与参数方程

96、直参代曲普

使用条件:已知定点 $P(x_0, y_0)$, 求 |PA| |PB| 相关运算:

- (1) 常见消参方式:
 - ①加减消元法; ② $\sin^2 \alpha + \cos^2 \alpha = 1$; ③平方相加减
- (2) 直线的参数方程: $l:\begin{cases} x=x_0+t\cos\alpha\\ y=y_0+t\sin\alpha \end{cases}$ (α 为直线倾斜角, $k=\tan\alpha$)
- (3) 直线参数方程的标准化: $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases} \Rightarrow \begin{cases} x = x_0 + \frac{a}{\sqrt{a^2 + b^2}}t \\ y = y_0 + \frac{b}{\sqrt{a^2 + b^2}}t \end{cases}$
- (4) 直参代曲普的解题思路
 - ①写出直线的参数方程或者将直线参数方程标准化;
 - ②将直线参数方程代入到曲线的普通方程中并整理成如下形式
 - $at^2 + bt + c = 0$
 - ③根据韦达定理求出 t, +t,,t,t,(注意正负)
 - ④计算问题中表达式的值
 - 备注: ① 韦达定理: $t_1 + t_2 = -\frac{b}{2}; t_1 t_2 = \frac{c}{2};$
 - ② $|PA| + |PB| = |t_1| + |t_2| = \begin{cases} |t_1 + t_2|, t_1 t_2 > 0 \\ |t_1 t_2|, t_1 t_2 < 0 \end{cases}$
 - ③线段 AB 中点 M 对应参数为 t_0 ,则 $|PM| = |t_0| = \frac{t_1 + t_2}{2}$
 - ④弦长 | $AB = |t_1 t_2| = \sqrt{(t_1 + t_2)^2 4t_1t_2}$

97、曲参到直普

使用条件:已知点 P(x,y) 为曲线 C 上一动点, 求点 P 到直线 曲线等的距离或求 mx+nv 的取值范围

- (1) 圆的参数方程: $l:\begin{cases} x = a + r\cos\theta \\ y = b + r\sin\theta \end{cases}$
- (2) 椭圆的参数方程: $C:\begin{cases} x = x_0 + a\cos\theta \\ y = y_0 + b\sin\theta \end{cases}$
- ①写出曲线 C 的参数方程, 并设点 P 坐标;

②根据问题,构造关于 θ 的三角函数;

③求解三角函数的取值范围.

98、原点用极径

使用条件: 过原点的直线与曲线 C 交于两点,或求 |OM|,|ON|的混合运算问题 $\rho^2 = x^2 + y^2$

- (1) 直角坐标化成极坐标:
 - $\tan \theta = \frac{y}{}$
- (2) 极坐标化成直角坐标:
- (3) 题型拆分
 - ①设点 M,N 的极坐标分别为 $M(\rho_1,\theta_1),N(\rho_2,\theta_2)$ (通常用一个 θ)
 - ②将问题中的线段分别用 ρ, ρ, 代换;
 - ③构造关于 θ 的函数:
 - ④ 求解三角函数的值或范围。

十六*、排列组合与二项展开式定理

99.排列组合

- (1) 计算公式
 - ①排列数: $A_n^m = n(n-1)\cdots(n-m+1) = \frac{n!}{(n-m)!}$
 - ②组合数: $C_n^m = \frac{A_n^m}{A^m} = \frac{n!}{m!(n-m)!} = \frac{n(n-1)\cdots(n-m+1)}{1\times 2\times \cdots \times m}$
 - (3) $C_{-}^{m} = C_{-}^{n-m}$; $C_{-}^{m-1} + C_{-}^{m} = C_{-+1}^{n}$
- (2) 常见顯型
 - ①特殊元素、特殊位置: 优先法
- ②相邻问题:捆绑法 ③不相邻问题: 插空法
- ④定序问题: 除序法
- ⑤排列组合混合问题: 先选后排
- ⑥元素相同问题:隔板法
- ⑦复杂问题: 正难则反 ⑧平均分组:除法策略(平均分 m 组,除以 A™)

100.二项展开式定理

- (1) $\triangle \exists$: $(a+b)^n = C_-^0 a^n b^0 + C_-^1 a^{n-1} b^1 + \dots + C_-^k a^{n-k} b^k + \dots + C_-^n a^0 b^n$
- (2) 通项公式: $T_{k,i} = C_{-}^{k} a^{n-k} b^{k}$
- (3) 二项式系数:
 - ①所有项: $C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n = 2^n$ ②奇数项: $C_n^0 + C_n^2 + C_n^4 + \cdots = 2^{n-1}$
 - ③偶数项: $C_n^1 + C_n^3 + C_n^5 + \cdots = 2^{n-1}$

- (4) 项的系数: 设 $(x+2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{10}x^{10}$
- (5) 换元法: 设 $(x+2)^{10} = a_0 + a_1(x+1) + a_2(x+1)^2 + \cdots + a_{10}(x+1)^{10}$ $\Rightarrow t = x + 1 \Rightarrow (t + 1)^{10} = a_0 + a_1 + a_2 + \cdots + a_m t^{10}$