

Assignment Project Exam Help Principles of Forttasting wooder.com Applications hat powcoder

Topic 7: Regression Models

Dr. Jason Ng

Outline

- Assignment Project Exam Help

 - Some useful predictors for linear models https://powcoder.com

 - Add WeChat powcoder

 - Correlation, causation and forecasting

Multiple regression and forecasting

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Assignment Projectic Example 1p

- Each $x_{j,t}$ is numerical and is called a "predictor". They are times.
- The coefficients β_1 , β_k measure the effect of each predictor after the model.

That is, the coefficients measure the marginal effects.

 $\mathbf{\varepsilon}_t$ is a white noise error term

tslm(Consumption ~ Income, data=uschange) %>% summary

Assignment Project Exam Help

```
##
  Residuals:
 -2. https://powsoder.com
##
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6026 on 185 degrees of freedom
  Multiple R-squared: 0.159, Adjusted R-squared: 0.1545
## F-statistic: 34.98 on 1 and 185 DF, p-value: 1.577e-08
```


F-statistic: 139.5 on 4 and 182 DF, p-value: < 2.2e-16

```
fit.consMR <- tslm(
 Consumption ~ Income + Production + Unemployment + Savings,
 data=uschange)
ssignment Project Exam Help
## Call:
## tslm(formula = Consumption ~ Income + Production + Unemployment +
     Savings, data = uschange)
##
                       powcoder.com
##
## -0.88296 -0.17638 -0.03679
                         0.15251
##
  Coefficients
                                nat: nowcoder
##
                                     < 24-16 ***
## Income
              0.71449
                       0.04219
                              16.934
## Production
              0.04589
                       0.02588
                               1.773 0.0778 .
## Unemployment -0.20477
                       0.10550 -1.941 0.0538 .
## Savings -0.04527
                       0.00278 -16.287
                                     < 2e-16 ***
## Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3286 on 182 degrees of freedom
## Multiple R-squared: 0.754, Adjusted R-squared: 0.7486
```


Outline

- The linear model with time series signments Project Exam Help

 - Some useful predictors for linear models https://powcoder.com

 - Add WeChat powcoder

 - Correlation, causation and forecasting

Multiple regression and forecasting

Assignment Project Exam Help

For forecasting purposes, we require the following assumptions:

- the the state of the state of
- lacksquare ε_t are uncorrelated with each $x_{j,t}$.

Add WeChat powcoder

Multiple regression and forecasting

Assignment Project Exam Help

For forecasting purposes, we require the following assumptions:

- the the state of the state of
- lacksquare ε_t are uncorrelated with each $x_{j,t}$.

It is **useful** to also have ε_t $N(0, \sigma^2)$ when producing prediction intervals of their statistical test at powcoder

Residual plots

Assignmenties mojectheixame Help appropriate.

- Statterplot of residuals against dash predictor xnt.
- Scatterplot residuals against the fitted values ŷ_t
- Expect to see scatterplots resembling a horizontal band with no value took for the tart approvate of the tart

Residual patterns

Assignmentidal rojectic Eixtam de Halp a pattern, then the relationship is nonlinear.

- If a plot of the residuals vs any predictor **not** in the model shows pattern, hen the predictor should be added to the model.
- If aplot of the residuals we fitted values shows a pattern, then there is neteroscedasticity in the errors. (Could try a transformation.)

Breusch-Godfrey test

OLS regression:

Assignment Project Exam Help

$$\hat{u}_t = \beta_0 + \beta_1 x_{t,1} + \dots + \beta_k x_{t,k} + \rho_1 \hat{u}_{t-1} + \dots + \rho_p \hat{u}_{t-p} + \varepsilon_t$$

If R² statistics calculated for this moder, then com

$$(T-p)R^2 \sim \chi_p^2$$

when there so self core to the place with of series.

 Breusch-Godfrey test better than Ljung-Box for regression models.

US consumption again

Assignment Project Exam Help ## Breusch-Godfrey test for serial correlation of order up to 8

```
##
 dath Rtspusts from the province of the com
```

- If the moviel fairs the Bret scir-Gorife rest ...

 The forcests are notwrong, but have alighe valiance manths need to
 - There is information in the residuals that we should exploit.
 - This is done with a regression model with ARMA errors.

Outline

- Assignments Project Exam Help

 - Some useful predictors for linear models https://powcoder.com
 - Add WeChat powcoder

 - Correlation, causation and forecasting

Assignment Project Exam Help

```
https://poweoder.com
```

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

 Add WeChat powcoder

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then and of the can be constructed taking value 1 if yes and 0 if no. This is called a dummy artables:// DOWCOC

Add WeChat p

		Α	В
	1	Yes	1
4	2	Yes	Help
Ţ		x am	Help
	4	Yes	1
	5	No	0
1	er	. com	0
•	7	Yes	1
	8	Yes	1
	9_	wcode	0
•	40	Mrou	
	11	No	0
	12	No	0
	13	Yes	1
	14	No	0
			21

Dummy variables

If there are more than two Monday categories, then the variable Tuesday Exam Help Assistantal Friday dummy variables (one fewer Monday than the total number of Tuesday categoriattps:// Friday Monday Tuesday Add We

Beware of the dummy variable trap!

Assignment Project Exam Help variables!

- The regression/with then the cineral and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coldinates provided mitted category.

Uses of dummy variables

Seasonal dummies

Assignment Gata: Use 3 dummies Exam Help

- For daily data: use 6 dummies
- https://powcoder.com

Add WeChat powcoder

Uses of dummy variables

Seasonal dummies

Assignment: Le l'alternées Exam Help

- For daily data: use 6 dummies
- Outliers What to do with weekly data? Outliers PowCoder.com
 - If there is an outlier, you can use a dummy variable (taking value) for that observation and a elsewhere) to remove its effect.

Uses of dummy variables

Seasonal dummies

Assignmenta: Let Olembies Exam Help

- For daily data: use 6 dummies
- Outliers What to do with weekly data? PowCoder.com
 - If there is an outlier, you can use a dummy variable (taking value) for that observation and a elsewhere) to remove its effect.

Public holidays

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Assignment Project Exam Help

Regression model nttps//popy/co.def_accom

• d_{i,t} = 1 if t is guarter i and 0 otherwise.
Add WeChat powcoder

```
fit.beer <- tslm(beer ~ trend + season)
summary(fit.beer)</pre>
```

Assignment Project Exam Help

```
##
  Residuals:
                S-1/4/pow@oder.com
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                         3.73353 118.333
## (Intercept) 441.80044
             -17.82164 4.02249 -4.430 3.45e-05 ***
  season3
  season4
             72,79641
                         4.02305 18.095 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
## Multiple R-squared: 0.9243, Adjusted R-squared: 0.9199
## F-statistic: 210.7 on 4 and 69 DF, p-value: < 2.2e-16
```


Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

Assignment Project Exam Help

$$y_t = a + bt + \sum_{k=1}^{K} [\alpha_k s_k(t) + \beta_k c_k(t)] + \varepsilon_t$$

- https://pokstycoder.com and cos terms for large enough K.
- Choose K by minimizing AICc.

 Called harmonic regressionat powcoder

Harmonic regression: beer production

```
fourier.beer <- tslm(beer ~ trend + fourier(beer, K=2))
summary(fourier.beer)</pre>
```

Assignment Project Exam Help ## tslm(formula = beer ~ trend + fourier(beer, K = 2))

```
##
  Residuals:
                  powed of power of the com
##
  Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
##
## fourier(beer, K = 2)C1-4 53.72807
                                      2.01125
                                               26.714 < 2e-16 ***
## fourier(beer, K = 2)C2-4 13.98958
                                      1,42256
                                                9.834 9.26e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.23 on 69 degrees of freedom
## Multiple R-squared: 0.9243, Adjusted R-squared: 0.9199
## F-statistic: 210.7 on 4 and 69 DF, p-value: < 2.2e-16
```

Fourier series

Assignment Project Exam Help With Fourier terms, we often need fewer predictors than

- With Fourier terms, we often need fewer predictors than with dummy variables, especially when m is large.
- Thentake Sthem province weeky tetr, for example, where m = 52.
- For short seasonal periods (e.g., quarterly data), there is little adapted in wing furing tarms prosessing them variables.

Intervention variables

Spikes

Assignment Project hard xamuli Help account for the effect which lasts for only one period.

https://powcoder.com

Intervention variables

Spikes

Assignment Project than I warm til Help account for the effect which lasts for only one period.

https://powcoder.com Variable takes value 0 before the intervention and 1

 Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

Assignment Project than Lixer muli Help account for the effect which lasts for only one period.

https://powcoder.com Variable takes value 0 before the intervention and 1

Variable takes value 0 before the intervention and 1 afterwards.

change of the WeChat powcoder

■ Variables take values 0 before the intervention and values $\{1, 2, 3, ...\}$ afterwards; (See piecewise linear trend)

Assignment Project Exam Help

- Christmas: always in December so part of monthly seasonal effect PS://powcoder.com
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- that month, we observise.

 Remarkable and Chinese new Sear phone: WCOder

Trading days

With monthly data if the observations vary depending on how p many different types of days in the month, then trading day predictors can be useful.

https://powcoder.com

 z_2 = # Tuesdays in month;

Add WeChat powcoder

 z_7 = # Sundays in month.

Distributed lags

Assignment Project Exam Help

Example: x is advertising which has a delayed effect

https://poweader.com

 x_2 = advertising for two months previously;

Add WeChat powcoder

 x_m = advertising for m months previously.

Assignment Project Exam Help

Piecewise linear trend with bend at au

https://powcoder.com

Nonlinear trend

in time, the nonlinear trend can be constructed via a series of linear pieces.

linear pieces.

If the the state of the perfect of the property of the proper

then,

- β_1 = slope of trend before time τ . - β_1 = slope of trend late time τ .

Additional trends can be included in the relationship by adding further variables of the above form.

Assignment Project Exam Help

Quadratic phighes of the property of the phighes o

Assignment Project Exam Help

Quadratic phisher properties of the phisher phisher properties of the phisher phisher

fit.lin <- tslm(marathon ~ trend)</pre>


```
# Linear trend
fit.lin <- tslm(marathon ~ trend)</pre>
fcasts.lin <- forecast(fit.lin_h=10)</pre>
                      it Project Exam Help
fit.exp <- tslm(marathon ~ trend, lambda = 0)</pre>
fcasts.exp <- forecast(fit.exp, h=10)</pre>
t. break 1100 S. // powcoder.com
t <- time(marathon)
t1 <- ts(pmax(0, t-t.break1), start=1897)
t2 <- ts(pmax(4),
                     Le Chat powcoder
t1.new <- t1[length(t1)] + seg(10)
t2.new \leftarrow t2[length(t2)] + seq(10)
newdata <- cbind(t=t.new, t1=t1.new, t2=t2.new) %>%
  as.data.frame
fcasts.pw <- forecast(fit.pw, newdata = newdata)</pre>
```


Assignment Project Exam Help

A spline is a continuous function f(x) interpolating all points (κ_j, y_j) for $j = 1, \dots, K$ and consisting of polynomials between each consecutive pair of 'know κ_j and κ_j are κ_j and κ_j and κ_j and κ_j are κ_j and κ_j and κ_j are κ_j are κ_j are κ_j and κ_j are κ_j are κ_j are κ_j are κ_j are κ_j are κ_j and κ_j are κ_j are κ_j are κ_j and κ_j are κ_j are

Assignment Project Exam Help

A spline is a continuous function f(x) interpolating all points (κ_i, y_i) for $j = 1, \dots, K$ and consisting of polynomials between each consecutive pair of 'kn O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} and O_{k_i} and O_{k_i} and O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} and O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} and O_{k_i} are O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} and O_{k_i} are O_{k_i} are

- Parameters constrained so that f(x) is continuous.
 Further Constraint Compose 21 gip Ontmicro Continuous.

General linear regression splines

Assignment Project Exam Help

- $\begin{array}{c} \blacksquare \text{ Let } \kappa_1 < \kappa_2 < \text{//} < \kappa_K \text{ be "knots" in interval } (a,b). \\ \blacksquare \text{ Let } \Sigma_1 < \kappa_2 < \text{//} \times \text{Polytical Polytical } \Sigma_K \text{COM} \end{array}$
- Then the regression is piecewise linear with bends at the

Assignment Project Exam Help

- Let $x_1 = x$, $x_2 = x^2$, $x_3 = x^3$, $x_j = (x \kappa_{j-3})^3$ for j = 4, ..., K + 3.
- Then the regression is nice ewise clicic but smooth at the knots.
- Choice of knots can be difficult and arbitrary.
- AAndid kn Weetichlatithpoewsooder

```
# Spline trend
library(splines)
t <- time(marathon)
sisting in the project Exam Help
##
## Call:
## lm(formula = marathon \sim ns(t, df = 6))
                         powcoder.com
##
## Coefficients:
                                   late Dowcoder
## ns(t, df = 6)2 -28.856
                          3.416 -8.448 1.16e - 3 ***
## ns(t, df = 6)3 -35.081
                          3.045 -11.522 < 2e-16 ***
## ns(t, df = 6)4 -32.563
                          2.652 -12.279 < 2e-16 ***
## ns(t, df = 6)5 -64.847
                          5.322 -12.184 < 2e-16 ***
## ns(t. df = 6)6 -21.002
                          2.403 -8.741 2.46e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.834 on 113 degrees of freedom
## Multiple R-squared: 0.8418, Adjusted R-squared: 0.8334
```


splinef

A slightly different type of spline is provided by splinef

Assigniment Project Exam Help

Assignment Project ExaminHelp splines).

- Still piecewise cubic, but with many more knots (one at each observation). / powcoder.com
- Coefficients constrained to prevent the curve becoming too
- Degreed freedom Chatut photosycoder
- Equivalent to ARIMA(0,2,2) and Holt's method.

Outline

Assignments Project Exam Help

- Some useful predictors for linear models
- https://powcoder.com
- Forecasting with regression Add WeChat powcoder
- Correlation, causation and forecasting

Selecting predictors

Assignment? Project Exam Help

We need a way of comparing two competing models.

https://powcoder.com

Selecting predictors

Assignment? Project Exam Help

We need a way of comparing two competing models.

What https://powcoder.com

- Plot y against a particular predictor (x_j) and if it shows no noticeable relationship, drop it.
- Do a multiple line of regression to part of productions of the disregard all variables whose p values are greater than 0.05.
- Maximize R² or minimize MSE

A Somputer output for registron yill always vive the R2 yalle This p is a useful summary of the model.

- It is equal to the square of the correlation between y and \hat{y} .
- It I to the Siled to Cook it is not be in the siled of the siled of
- It can also be calculated as follows:

It is the proportion of variance accounted for (explained) by the predictors.

However ...

ASS landing and calculate tend of lackage the value of R², even in partial that variable is irrelevant.

https://powcoder.com

However ...

Assignment allow for "degrees of freedom".

Assignment of the control of the cont

To overcome this problem, we can use adjusted
$$R^2$$
:
$$\frac{1}{N} \frac{1}{N} \frac{1}{N}$$

However ...

ASSIAGING AND Calculate tend Of Secretary Calculations of the Case the Value of R², even in particular that variable is irrelevant.

To overcome this problem, we can use adjusted R^2 : $\frac{1}{R^2} = 1 - (1 - R^2) \frac{1}{T - k - 1}$

where k = np. predictors and T = np. observations.

Add Wellhat nowcoder

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} \sum_{t=1}^{T} \varepsilon_t^2$$

ssignment Project Exam Help

(Assuming future predictors are known)

- Shettqnesobse/varion two test of entruse remaining observations in training set. Compute error on test observation.
- Redeative ng each essible observation as the test setr
 Compute accuracy measure over all errors.

Traditional evaluation

Assignment Project Exam Heilp

https://powcoder.com

Traditional evaluation

Assignment Project Exam Heip Leave-one-out cross-validation

A Leave-ane-out-cross-validation for regression can be carried but 1p using the following steps.

- Remove observation t from the data set, and fit the model unit tipe G_t in G_t to G_t G_t
- Repeat step $\underline{1}$ for $t = 1, \dots, T$.
- CARO Che WEET (121, 17) WY TO CV.

The best model is the one with minimum CV.

Five-fold cross-validation

Five-fold cross-validation

Assignment Project Exam Help

- Randomly split data into 10 parts.
- Shettquegart fortestst, endus cemaining parts as training set. Compute accuracy measures on test observations.
- RAddeWeChat powcoder
- Average over all measures.

Akaike's Information Criterion

Assignment Project Exam Help

where L is the likelihood and k is the number of predictors in the mode https://powcoder.com

Akaike's Information Criterion

Assignment Project Exam Help

where L is the likelihood and k is the number of predictors in the mode https://powcoder.com
This is a penalized likelihood approach.

- Minimizing the AIC gives the best model for prediction.
- Applicative WCOder
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation.

Assignment Project Exam Help

For small values of T, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed. $\frac{\text{AIC}_{\text{C}} = \text{AIC} + \frac{2(k+2)(k+3)}{T-k-3}}{T-k-3}$

$$AIC_C = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

As with Andre the Mie Sport atmip for the Coder

Bayesian Information Criterion

Assignment Project, Exam Help

where L is the likelihood and k is the number of predictors in the mode $\frac{https://powcoder.com}{}$

Bayesian Information Criterion

Assignment Project, Exam Help

where L is the likelihood and k is the number of predictors in the mode https://powcoder.com

- BIC penalizes terms more heavily than AIC
- Also called Spic and Schat powcoder
 Minimizing BIC is asymptotically equivalent to leave-v-out
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when v = T[1 1/(log(T) 1)].

Assignment Project Fxame Help predictors.

Choose the best/model based on the of the measures of predictive ability RV, AIC, AIC).

Assignment Project Fxame Help predictors.

Choose the best/model based on the of the measures of predictive ability PV, AIC, AIC).

Warning!

- If the date a large Coulomb a trep to ty, the Ode sible.
- For example, 44 predictors leads to 18 trillion possible models!

Backwards stepwise regression

As Start with a model entaining all variables, an Help has lower CV or AICc.

• Iterate until po further improvement.com

Backwards stepwise regression

As Start with a model extaining all variables, am Help subtracting one variable at a time. Keep the model if it is has lower CV or AICc.

Iterate until po/further improvement.
Notes

Iterate until po/further improvement.

Notes

- Stepwise regression is not guaranteed to lead to the best position of the control of the cont
- Inference on coefficients of final model will be wrong. Any procedure involving selecting predictors first will invalidate the assumptions behind the p-values.

##

```
tslm(Consumption ~ Income + Production + Unemployment + Savings,
      data=uschange) %>% CV()
Assignment Project Exam Help
    tslm(Consumption ~ Income + Production + Unemployment,
      data=uschange) %>% CV()
                    s://pow.coder.com
    ##
    ##
                      .1635677 -242.8320760 -227.0080246
    tslm(Consumption ~ Income + Production + Savings,
    ##
                                                      0.7447840
    ##
         0.1178681 -407.4669279 -407.1354362 -391.3113848
    tslm(Consumption ~ Income + Unemployment + Savings,
      data=uschange) %>% CV()
    ##
               CV
                          ATC
                                    ATCc
                                                          AdiR2
                                                BTC
```

0.1160223 -408.0941325 -407.7626408 -391.9385894

0.7456386

Outline

Assignments Project Exam Help

- Some useful predictors for linear models https://powcoder.com
- Forecasting with regression Add WeChat powcoder
- Correlation, causation and forecasting

Ex-ante versus ex-post forecasts

Assignmente Projecty i Toxaima lei padvance.

For example, ex-ante forecasts for the percentage change in the Sumption of the sample, should only use information that was available up to and including 2016 Q3.

A The are with for the state of the time.

Require forecasts of predictors

Ex-ante versus ex-post forecasts

Assignment Project Exam Help

- For example, ex-post forecasts of consumption may use the
- https://powcoder.com
 - These are not genuine forecasts.
- useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast. In such cases, there is no difference between ex post and ex ante forecasts.

Example: Beer production

Example: US Consumption

```
SSISPIMENTE Projecto Francisco Help
h < -4
newdata <- data.frame(</pre>
   https://pow.co.der.com
   Unemployment = \mathbf{c}(\overline{0}, 0, 0, 0)
fcast.up <- forecast(fit.consBest, newdata = newdata)</pre>
newdata <- jath. Trang(_
   in Add We Chat powcoder
   Savings = rep(-0.5, h),
   Unemployment = rep(0, h))
fcast.down <- forecast(fit.consBest, newdata = newdata)</pre>
```

Example: US Consumption

Building a predictive regression model

If getting forecasts of predictors is difficult, you can use

Assignment Paroject Exam Help

- A different model for each forecast horizon h.
- Irating Size of a leavithe policies costs polymake the model operational for easily generating forecasts, it also makes it intuitively appealing.
- Forestile, we dect chadic plans with a lagging effect.

Outline

- Assignments Project Exam Help

 - Some useful predictors for linear models https://powcoder.com

 - Add We Chat powcoder
 - Correlation, causation and forecasting

Assignment Project Extam Help

https://powcoder.com

Assignment Project Exam Help

Let
$$\mathbf{y} = (y_1, \dots, y_7)'$$
, $\varepsilon = (\varepsilon_1, \dots, \varepsilon_7)'$, $\beta = (\beta_0, \beta_1, \dots, \beta_k)'$ and

https://powcoder.acm

 $\mathbf{x} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ \mathbf{po}_1 \mathbf{w} & \mathbf{coder}_2 \end{bmatrix}$

Add WeChat powcoder

Then

$$y = X\beta + \varepsilon$$
.

Assignment-Project Exam Help

https://powcoder.com

A solution Project Exam Help

Differentiate wrt β gives

https://powooder.com

A solution Project Exam Help Differentiate wrt β gives

https://powooder.com

(The "normal equation".)

A Singenment-Project Exam Help Differentiate wrt β gives

https://powooder.com

(The "normal equation".)

$$Add_{\hat{\sigma}^2} \underline{\underline{WeChat}}_{T-k-1} \underline{pows} oder$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

https://powcoder.com

So the like tipos is /powcoder.com $L = \frac{1}{\sigma^{T}(2\pi)^{T/2}} \exp\left(-\frac{1}{2\sigma^{2}}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$ which is making ized when $(\mathbf{y}' + \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ is principle to $(\mathbf{y}' + \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Optimal forecasts

Assignment Project Exam Help

where \mathbf{x}^* is a row vector containing the values of the predictors for

the forecasts (in the same format as X), https://powcoder.com

Optimal forecasts

Assignment Project Exam Help

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast var artice // powcoder.com

 $Var(y^*|X, x^*) = \sigma^2 \left[1 + x^*(X'X)^{-1}(x^*)'\right]$

Optimal forecasts

Assignment Project Exam Help

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as X).

Forecast var affice // powcoder.com

$$Var(y^*|X, x^*) = \sigma^2 \left[1 + x^*(X'X)^{-1}(x^*)'\right]$$

- 95% prediction intervals assuming normal errors:

$$\hat{\mathbf{y}}^* \pm 1.96 \sqrt{\mathsf{Var}(\mathbf{y}^* | \mathbf{X}, \mathbf{x}^*)}$$
.

Fitted values

Assignment Project Exam Help where $H = X(X'X)^{-1}X'$ is the "hat matrix".

https://powcoder.com

Fitted values

Assignment Project Exam Help

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the "hat matrix".

Let h_1, \dots, h_p be the dagena value of h_1, \dots, h_p the dagena value of h_1, \dots, h_p cross-validation statistic is

Add We Chat powcoder

where e_t is the residual obtained from fitting the model to all T observations.

Outline

- Assignments Project Exam Help

 - Some useful predictors for linear models https://powcoder.com

 - Add WeChat powcoder
 - Correlation, causation and forecasting

Correlation is not causation

Assignmentor Projects Examis Holp

- e.g., predict number of drownings y using number of idea transold x powcoder.com
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

Multicollinearity

Assignment Project Exam Help

- Two predictors are highly correlated (i.e., the correlation between them/is close to ± 1).
- between them, is close to ±1).

 Alinear combination of write Order led ctors Talighly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of whother subset of predictors.

Multicollinearity

If multicollinearity exists. Project Exam Help The numerical estimates of coefficients may be wrong (worse)

- in Excel than in a statistics package)
- dpittely onthe pyalues to determine significance.
 there is no problem with model predictions provided the
- predictors used for forecasting are within the range used for fitand WeChat powcoder omitting variables can help.
- combining variables can help.

Outliers and influential observations

Assignment Project Exam Help

- Outliers: observations that produce large residuals.
- Influential observations: removing them would markedly charge the coefficients. Worker Culter in the wariable).
- Lurking variable: a predictor not included in the regression but which has an important effect on the response.
- Point Guld Not Comain at the podwithout Gesti explanation of why they are different.