DOCUMENTO DE PROCESSOS

Versão 1.5

Centro Universitário Joaquim Nabuco Bacharelado em Sistemas de Informação

Equipe de Desenvolvimento

Claudiomildo Ventura Leonardo Belas Lucas Wallis William Andrey

SOFTWORK / 2019

Paulista - PE

Histórico de Revisões

Versão	Data	Autor	Descrição
1.0	05/05/2019	Lucas, William, Leonardo, Claudiomildo	Elaboração do documento
1.1	15/06/2019	Claudiomildo Ventura	Avaliações e modificações gerais do documento
1.2	30/06/2019	Claudiomildo Ventura	Avaliações e modificações gerais do documento
1.3	15/07/2019	Claudiomildo Ventura	Avaliações e modificações gerais do documento
1.4	20/08/2019	Claudiomildo Ventura	Avaliações e modificações gerais do documento
1.5	20/09/2019	William Andrey	Avaliações e modificações gerais do documento

Índice

1.	Jus	tific	ativaativa	1
	1.1.	Pro	ppósito	1
	1.2.	Púk	blico Alvo	1
	1.3.	Vis	ão Geral Do Documento	1
2.	Pro	cess	so De Desenvolvimento	2
2.1. Co			municação	3
	2.1	.1.	Apresentação Do Projeto	3
	2.1	.2.	Definição Dos Requisitos	4
	2.1	.3.	Confecção E Validação Das Estórias De Usuário	4
	2.2.	Pla	nejamento E Modelagem	4
	2.2	.1.	Definição Da Arquitetura	4
	2.2	.2.	Seleção Da Sprint	5
	2.3	. С	Construção	5
	2.3	.1.	Implementação	5
	2.3	.2.	Testes	5
	2.3	.3.	Integração	6
2.3.4.		.4.	Definição Do Time De Suporte	6
	2.3	.5.	Ações De Publicação	6
3.	Pro	cess	sos De Qualidade	6
	3.1.	Obj	jetivos	7
	3.2.	Pro	odutos Gerados	7
	3.3.	Ati	vidades E Ações	7
	3.4.	Rev	visões Técnicas Formais (Rtfs)	7
	3.5.	Que	estões A Serem Revisadas	8
	3.6.	Red	comendações Gerais	8
4.	Ges	stão	De Configuração	9
	41	Par	neis F Resnonsahilidades	a

1. JUSTIFICATIVA

O processo de desenvolvimento de software compreende um conjunto de atividades que engloba métodos, ferramentas e procedimentos, com o objetivo de produzir softwares que atendem aos requisitos especificados pelos usuários (clientes). A satisfação dos requisitos especificados pelos usuários é a pré-condição básica para o sucesso de um software. Um software que foi mal especificado, certamente irá desapontar o usuário e causar problemas à equipe de desenvolvimento, que terá de modificá-lo para se adequar às necessidades do usuário.

1.1. Propósito

Neste documento será descrito, o processo de desenvolvimento do sistema Staff Fitness e suas respectivas funcionalidades.

1.2. Público Alvo

Este documento é destinado aos colaboradores internos da fábrica, e a quem desejar usá-lo para fins acadêmicos, ou para melhor entender o funcionamento da SoftWork, que tem por objetivo resolver questões complexas, e que exige o uso de tecnologias.

1.3. Visão Geral do Documento

Estão descritos nos itens a seguir os processos que compõem o desenvolvimento do sistema Staff Fitness.

2. PROCESSO DE DESENVOLVIMENTO

Para o processo de desenvolvimento de software, o Staff Fitness irá utilizar a metodologia ágil XP (Extreme Programming), juntamente com a metodologia ágil de gerenciamento Scrum, tendo dessa forma duas metodologias tanto para o processo de análise, identificação e especificação dos requisitos dos sistemas, bem como para o gerenciamento das fases, processos e atividades de desenvolvimento do projeto.

Em conjunto com o documento de processos, seguiremos um passo a passo para dar conta de tudo dentro do tempo estimado para as entregas de documentos e gerenciamento das atividades, facilitando assim o entendimento das partes interessadas a respeito da responsabilidade importante que cada um desempenhará.

2.1. Comunicação

Neste documento será descrito, o processo de desenvolvimento do sistema Staff Fitness e suas respectivas funcionalidades.

2.1.1. Apresentação do Projeto

Como especificado na figura 3 na primeira reunião sobre o produto, foi feita uma reunião com a equipe completa da SoftWork, com todos os membros presentes, definimos as diretrizes, diante das ideias que foram abordados e discutidos em relação ao software.

2.1.2. Definição dos Requisitos

Segundo a figura 3 e com reuniões sendo definidas sequencialmente, o gerente de projeto e o analista de requisitos devem compreender o escopo do projeto e forma o *product backlog*, escrevendo-os de forma clara, para uma melhor compreensão, tanto dos envolvidos no projeto, quanto dos clientes. O engenheiro de software também participa desta reunião.

2.1.3. Confecção e Validação das Estórias de Usuário

No momento em que for definido o *product backlog*, posteriormente será repassado aos desenvolvedores para aprovação e validação do mesmo junto com o *product owner*, sendo esse processo de aprovação com o objetivo de identificar se o que esta sendo feito está de acordo com o que foi proposto, se tudo está descrito com total clareza do que precisa ser feito, isso em comparação também com o escopo do projeto, apresentando os resultados ao cliente para total definição e concordância do que deve ser desenvolvido.

Tendo as estórias validadas, o *product owner* passa a dar prioridade aos itens do backlog, dos mais críticos aos menos importantes.

Se o escopo do projeto mudar, sempre haverá nova reunião e atualização do documento de estória de usuário, matriz de estórias de usuário e de plano de projeto.

É obrigação do gerente de projeto enviar as estórias de usuário validado à equipe, que deve anotar possíveis dúvidas.

2.2. Planejamento e Modelagem

2.2.1. Definição da Arquitetura

Após o processo de validação e priorização das estórias de usuário, os engenheiros de configuração irão elaborar a arquitetura de software que será utilizada para o projeto de acordo com a complexidade do mesmo, gerando assim o documento de configuração, contendo os detalhes da arquitetura do sistema que será gerado, assim como os padrões de projetos que serão utilizados.

2.2.2. Seleção da Sprint

Engenheiros de Software e Scrum Master iniciarão a reunião para expor as estimativas das estórias de usuário, que terá como intuito descrever o esforço que a equipe terá para desenvolver todos os itens contidos no backlog.

Antes de estimar as estórias as mesmas serão avaliadas pela equipe com relação a sua complexidade, a fim de se ter um menor tempo de desenvolvimento, tendo como media máxima de 3 dias.

Todos os colaboradores terão a mesma carga horaria de trabalho para executar as tarefas definidas. Dessa forma, teremos todo o esforço voltado para o desenvolvimento, assim como para cada sprint a ser iniciada, avaliando também o comprometimento de toda equipe em relação a realização das tarefas em menos ou mais dias estimados.

2.3. Construção

Após a seleção e validação da Sprint o ciclo se inicia e as tarefas passam a ser desenvolvidas.

2.3.1. Implementação

O desenvolvedor escolherá qual tarefa será desenvolvida por ele, a partir dos dados do Sprint Backlog. Ele deverá comunicar qual funcionalidade, plataforma e linguagem que será escolhida, e o gerente colocará seu nome na respectiva funcionalidade dentro do documento de Sprint Backlog. Então, dar-se-á início à implementação.

2.3.2. Testes

Os testes necessários para cada estória de usuário serão descritos nas mesmas de forma resumida e com bastante clareza, porem esses casos de testes serão descritos com mais detalhes no desenvolvimento de plano de teste.

2.3.3. Integração

Durante as sprints, a equipe de desenvolvimento fará seus testes individuais para cada tarefa construída, tendo como objetivo, avaliar de maneira precoce algumas falhas e bugs aplicando correções de forma imediata, diminuindo as correções a serem realizadas nos resultados de falha na fase rígida de teste.

Entretanto, a cada sprint, é iniciado um período de teste de no máximo cinco dias, para assegurar a qualidade da implementação finalizada, dependendo dos erros levantados, um ou mais de um membro fará a correção dos erros encontrados.

E com os testes finalizados e as correções aplicadas, uma parte do sistema é entregue ao cliente como parte do produto final, onde, essa parte executável do produto é exposta para o cliente ao final de cada sprint.

2.3.4. Definição do Time de Suporte

Devido ao número reduzido de envolvidos, todos os desenvolvedores serão responsáveis pelo suporte ao sistema.

2.3.5. Ações de Publicação

O sistema Staff Fitness será publicado em site próprio e na plataforma Android pela Google Play

3. PROCESSOS DE QUALIDADE

Para os critérios de qualidade, todas as funcionalidades devem estar em conformidade com relação às estórias de usuários, todos os artefatos serão gerados da forma objetiva e de fácil compreensão do que foi acordado para todo o processo de construção do projeto, assim como a alta performance do sistema como sendo uma das grandes metas de qualidade da equipe SoftWork.

Contudo, temos o nosso plano de qualidade estabelecido pela gerente de qualidade, aplicando ações para garantir o sucesso do produto de forma padronizada por meio dos resultados encontrados, melhorias para o nosso processo de desenvolvimento de software.

3.1. Objetivos

Temos como principal prioridade desenvolver um plano de qualidade a fim de garantir a excelência dos nossos serviços e produtos gerados.

3.2. Produtos Gerados

Com base nas aplicações de ações de qualidade em nossos processos, temos como produtos gerados, relatórios que servirão como uma forma de revisar e identificar o que tivemos de melhoria e o que podemos melhorar diante dos problemas levantados.

3.3. Atividades e Ações

Identificar, documentar e acompanhar desvios do processo.

- Avaliar os produtos de trabalho de software;
- Garantir documentação dos desvios;
- Registrar não satisfações.

Tanto durante as revisões técnicas formais quanto em momentos independentes.

Gerenciar Configurações

Este processo será tratado separadamente.x'

3.4. Revisões Técnicas Formais (RTFs)

As revisões técnicas formais são reuniões nas quais serão discutidas as questões de qualidade que terá os principais objetivos listados logo abaixo.

- Descobrir erros na função lógica ou na implementação do software.
- Verificar se o software satisfaz os requisitos.
- Garantir que o software segue os padrões de projeto e processos definidos.
- Conseguir que o software seja desenvolvido uniformemente.
- Tornar projetos mais facilmente administráveis.

3.5. Questões a Serem Revisadas

- O produto em revisão está de acordo com as necessidades do usuário. Satisfaz o cliente?
- Os padrões de projetos foram seguidos?
- Os processos de configuração, desenvolvimento e testes foram seguidos?
- A comunicação tem fluído entre os stakeholders?

O produto da reunião será o Relatório de Revisões Técnicas, que deve conter obrigatoriamente:

- O que foi revisado.
- Quem revisou.
- Descobertas e conclusões relevantes sobre a reunião.

3.6. Recomendações Gerais

- As reuniões ocorrerão de 8 em 8 dais todos os finais de semana.
- Os códigos e documentos a serem analisados devem ser entregues com antecedência, que será combinada na reunião, e entregue ao seu revisor, que anotará os problemas encontrados para que a reunião flua sem pausas.
- Problemas e erros devem ser descritos também.
- O líder da reunião é o responsável por acompanhar as alterações e erros que ficarem pendentes.
- Ao final da reunião, os participantes deverão aceitar ou não os produtos revisados, votando da seguinte maneira: Aceito, não aceito, ou aceito sob condições, e apresentando formas de melhorá-la.

- RTF não soluciona problemas, apenas identifica-os.
- Os resultados da RTF devem ser repassados pelo gerente de qualidade ao gerente de projeto.

4. GESTÃO DE CONFIGURAÇÃO

O que tiver relacionado a gerência de configuração, estará contido no documento de configurações e de modo resumido no documento de plano de projetos.

4.1. Papeis e Responsabilidades

É obrigação de todos cumprir com os prazos estabelecidos, procurando zelar pela qualidade seguindo os processos da fábrica.

Os papéis específicos de qualidade são:

- Líder das reuniões (responsável por acompanhar problemas relatados).
- Redator das reuniões.
- Revisor de produtos.