Лекція 4

Властивості відношень і відношення еквівалентності

План лекції

1. Спеціальні властивості відношень

- 1.1. Рефлексивність
- 1.2. Антирефлексивність
- 1.3. Симетричність
- 1.4. Асимметричність
- 1.5. Антисиметричність
- 1.6. Транзитивність
- 1.7. Антитранзитивність

2. Види відношень

- 2.1. Відношення еквівалентності
- 2.1.1. Властивості еквівалентних відношень
- 2.1.2. Класи еквівалентності

1. Спеціальні властивості відношень

1.1. Рефлексивність

Відношення R на множині X називають *рефлексивним*, якщо для будь-якого $x \in X$ має місце xRx, тобто, кожний елемент $x \in X$ перебуває у відношенні R до самого себе.

Приклад.

$$R_1 = \{(a,b) | a \le b$$
 – на множині дійсних чисел $\}$,

$$R_2 = \{(a,b) | a \ i \ b$$
 — мають спільний дільник на множині цілих чисел $\}$

Для рефлексивного відношення всі діагональні елементи *матриці* дорівнюють 1.

При задаванні відношення *графом* кожний елемент має петлю – дугу (x, x).

Приклад задавання рефлексивних відношень

Нехай задане відношення $R \subset A \times A$.

$$R = \{(a_1, a_1), (a_1, a_2), (a_2, a_1), (a_2, a_2), (a_3, a_3),$$

$$(a_4,a_1),(a_4,a_2)(a_4,a_3),(a_4,a_4),$$

$$(a_5,a_2),(a_5,a_3),(a_5,a_5)$$

	a ₁	a_2	a ₃	a_4	a ₅
a_1	1	1			
a_2	1	1			
a ₃			1		
a_4	1	1	1	1	
a ₅		1	1		1

1.2. Антирефлексивність

Нехай задане відношення $R \subset X \times X$

Відношення R на множині X називають *антирефлексивним*, якщо з x_1Rx_2 випливає, що $x_1 \neq x_2$.

Приклад.

$$R_1 = \{(a,b) | a < b - на множині дійсних чисел \}$$

 $R_2 = \{(a,b) | a \in сином b на множині людей. \}$

Представлення булевою матрицею:

Усі діагональні елементи є нульовими.

Представлення графом:

Жодна вершина не має петлі — немає дуг виду (x_i, x_i).

1.3. Симетричність

Нехай задане відношення $R \subseteq X \times X$

Відношення R на множині X називається *симетричним*, якщо для пари $(x_1,x_2)\in R$ з x_1Rx_2 випливає x_2Rx_1

(інакше кажучи, для будь-якої пари відношення R виконується або в обидва боки, або не виконується взагалі).

Задавання матрицею

Матриця симетричного відношення ϵ симетричною відносно головної діагоналі.

Задавання графом

У графі для кожної дуги від x_i до x_k існує протилежно спрямована дуга від x_k до x_i .

Приклад задавання симетричних відношень

Нехай задано відношення $R \subset A \times A$.

$$R = \{(a_1, a_4), (a_2, a_2), (a_2, a_3), (a_2, a_5), (a_3, a_5), (a_3, a_2), (a_4, a_4), (a_4, a_1), (a_5, a_2), (a_5, a_3)\}$$

	a_1	a_2	a_3	a_4	a_5
a_1				1	
a_2		1	1		1
a_3		Į.		and the second	1
a_4	1	ar.v)1 <u>(</u>	
a_5		1	1		

1.4. Асиметричність

Відношення R називають *асиметричним*, якщо для пари $(x_1, x_2) \in R$ з того, що $x_1 R x_2$ випливає, що не виконується $x_2 R x_1$.

(інакше кажучи, для будь-якої пари відношення \mathbf{R} виконується або в одну сторону, або не виконується взагалі).

Приклад.

$$R_1 = \{(a,b) | a > b$$
 – на множині дійсних чисел $\}$
 $R_2 = \{(a,b) | a \in \text{сином } b \text{ на множині людей.}\}$

Задавання матрицею

Матриця асиметричного відношення не містить одиничних елементів, симетричних відносно головної діагоналі.

Задавання графом

У графі повністю відсутні протилежно спрямовані дуги.

1.5. Антисиметричність

Нехай задано відношення $R \subseteq X \times X$

Відношення R називають *антисиметричним*, якщо з x_1Rx_2 і x_2Rx_1 випливає, що x_1 = x_2 .

Приклад

$$R_1 = \{(a,b) | a \le b$$
 – на множині дійсних чисел $\}$ $R_2 = \{(a,b) | a \in д$ ільником b на множині дійсних чисел $\}$

Транзитивність

Нехай задано відношення $R \subseteq X \times X$

Відношення R називають *тальна на пранзитивним*, якщо для будь-яких x_1, x_2, x_3 з x_1Rx_2 і x_2Rx_3 випливає x_1Rx_3 .

Приклад.

$$R_1 = \{(a,b) | a \le b$$
 – на множині дійсних чисел $\}$
 $R_1 = \{(a,b) | a < b$ – на множині дійсних чисел $\}$

Задавання графом

У графі, що задає транзитивне відношення \mathbf{R} , для всякої пари дуг таких, що кінець першої збігається з початком другої, існує третя дуга, що має початок в спільній вершині з першою і кінець у спільній вершині з другою.

1.6. Антитранзитивність

Відношення R називають *антитранзитивним*, якщо для будь-яких x_1,x_2,x_3 з x_1Rx_2 і x_2Rx_3 випливає, що x_1Rx_3 не виконується.

Приклад.

$$R_1 = \{(a,b) | a \ \epsilon \ наступним \ pоком за b на множині \ pоків \}$$
 $R_1 = \{(a,b) | a \ \epsilon \ батьком b на множині людей \}$

Приклад визначення властивостей відношення

Нехай
$$X = \{\alpha, \beta, \gamma, \delta\}$$
. Нехай $R \subseteq X \times X$ визначене у вигляді $R = \{(\alpha, \alpha), (\alpha, \beta), (\alpha, \delta), (\beta, \alpha), (\delta, \alpha), (\delta, \delta), (\gamma, \delta), (\gamma, \gamma)\}$.

- 1. R не ϵ рефлексивним, оскільки $\beta \in X$, але $(\beta, \beta) \notin R$.
- 2. R не ϵ симетричним, оскільки $(\gamma, \delta) \in R$, але $(\delta, \gamma) \notin R$.
- 3. R не ϵ антисиметричним, оскільки $(\alpha,\beta) \in R$ й $(\beta,\alpha) \in R$, але $\alpha \neq \beta$.
- 4. R не ϵ транзитивним, оскільки $(\beta, \alpha) \in R$, $(\alpha, \delta) \in R$, але $(\beta, \delta) \notin R$.

2. Види відношень

2.1. Відношення еквівалентності

Деякі елементи множини можна розглядати як еквівалентні в тому випадку, коли кожний із цих елементів при деякому розгляді може бути замінений іншим. У цьому випадку говорять, що дані елементи перебувають у відношенні еквівалентності.

Відношення R на множині X ϵ відношенням еквівалентності, якщо воно рефлексивне, симетричне й транзитивне.

2.1.1.Властивості еквівалентних відношень

- 1. Властивість **рефлексивності** проявляється в тому, що кожний елемент еквівалентний самому собі або $x \equiv x$.
- 2. Висловлювання про те, що два елементи є еквівалентними, не вимагає уточнення, який з елементів розглядається першим, який другим, тобто має місце $x \equiv y \to y \equiv x$ властивість **симетричності.**

3. Два елементи, еквівалентні третьому, еквівалентні між собою, або має місце $x \equiv y$ і $y \equiv z \to z \equiv z$ – властивість **транзитивності.**

Як загальний символ відношення еквівалентності використовується символ « \equiv » (іноді символ « \sim »). Для окремих відношень еквівалентності використовуються інші символи:

«=» – для позначення рівності;

« » – для позначення паралельності;

 $\ll \to$ » або $\ll \to$ » — для позначення логічної еквівалентності.

Приклад. Нехай $A = \{1, 2, 3, 4, 5, 6\}$ і дано відношення R на A:

$$R = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,4),(2,1),(2,4),(3,5),(5,3),(4,1),(4,2)\}$$

Легко перевірити, що дане відношення рефлексивне, симетричне і транзитивне. Тому воно ϵ відношенням еквівалентності на множині A.

2.1.2. Класи еквівалентності

Відношення еквівалентності R на множині A розбиває його на підмножини, елементи яких еквівалентні один одному й не еквівалентні елементам інших підмножин. У контексті відношень еквівалентності ці підмножини називаються *класами еквівалентності* по R.

Це розбиття можна уявляти собі в такий спосіб.

Нехай множина A — це набір різнобарвних куль, а відношення R задають умовою: $(a,b) \in R$ тоді й тільки тоді, коли a й b мають однаковий колір. Оскільки R — відношення еквівалентності, кожний клас еквівалентності буде складатися з куль, що мають однаковий колір. Якщо визначити відношення R умовою: $(a,b) \in R$ тоді й тільки тоді, коли кулі a й b мають однаковий діаметр, то кожний клас еквівалентності буде складатися з куль однакового розміру.

Нехай $a \in A$ і R — відношення еквівалентності на $A \times A$. Нехай $\begin{bmatrix} a \end{bmatrix}$ позначає множину $\{x \big| xRa\} = \{x \big| (x,a) \in R\}$, яку називають **класом** еквівалентності, який містить a . Символ $\begin{bmatrix} A \end{bmatrix}_R$ позначає множину всіх класів еквівалентності множини A по відношенню R.

Приклад. Нехай $A = \{1,2,3,4,5,6\}$ і дане відношення еквівалентності: $R = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,4),(2,1),(2,4),(3,5),(5,3),(4,1),(4,2)\}$

Класи еквівалентності по відношенню R були отримані шляхом визначення класу еквівалентності кожного елемента множини A:

 $\begin{bmatrix}1\end{bmatrix} = \big\{x \, \big| \, \big(x,1\big) \in R\big\} = \big\{x \, \big| \, xR1\big\} = \big\{1,2,4\big\}$ де $1 \in \begin{bmatrix}1\end{bmatrix}$, оскільки $(1,1) \in R$, $2 \in \begin{bmatrix}1\end{bmatrix}$ тому що $(2,1) \in R$, $4 \in \begin{bmatrix}1\end{bmatrix}$ оскільки $(4,1) \in R$, і не існує ніякого іншого x з A такого, що $(x,1) \in R$. Точно так само, одержуємо