Note del corso di Geometria 1

Gabriel Antonio Videtta

26 aprile 2023

Azioni di un gruppo e introduzione agli spazi affini

Questo avviso sta ad indicare che questo documento è ancora una bozza e non è da intendersi né completo, né revisionato.

Nota. Nel corso delle lezioni si è impiegata la notazione g.x per indicare l'azione di un gruppo su un dato elemento $x \in X$. Tuttavia si è preferito indicare g.x con $g \cdot x$ nel corso del documento.

Inoltre, con G si indicherà un generico gruppo, e con X un generico insieme, sul quale G agisce, qualora non indicato diversamente.

Definizione (azione di un gruppo su un insieme). Sia G un gruppo e sia X un insieme. Un'azione sinistra, comunemente detta solo **azione**, di G su X è un'applicazione da $G \times X$ in X tale che $(g,x) \mapsto g \cdot x$ e che:

- (i) $e \cdot x = x \ \forall x \in X$.
- (ii) $g \cdot (h \cdot x) = (gh) \cdot x \ \forall x \in X, \ \forall g, h \in G.$

Osservazione.

- ▶ Data un'azione di G su X, si può definire un'applicazione $f_g: X \to X$ tale che, dato $g \in G$, $f_g(x) = g \cdot x$.
- ▶ Tale applicazione f_g è bigettiva, dal momento che $f_{g^{-1}}$ è una sua inversa, sia destra che sinistra. Infatti $(f_g \circ f_{g^{-1}})(x) = g \cdot (g^{-1} \cdot x) = (gg^{-1}) \cdot x = e \cdot x = x$, e così il viceversa.

Definizione. L'azione di un gruppo G su un insieme X si dice **fedele** se l'omomorfismo φ_G da G in S(G), ossia nel gruppo delle bigezioni su G, che associa g a f_q è iniettiva.

Osservazione. Si osserva che dire che un'azione di un gruppo è fedele è equivalente a dire che Ker $\varphi_G = \{e\}$, ossia che $f_g = \text{Id} \iff g = e$.

Esempio. Si possono fare alcuni esempi di azioni classiche su alcuni gruppi.

- (i) S(X) agisce su X in modo tale che $f \cdot x = f(x) \ \forall f \in S(X), x \in X$.
- (ii) G agisce su G stesso tramite l'operazione del gruppo, ossia $g \cdot g' = gg'$ $\forall g, g' \in G$.
- (iii) Data un'azione sinistra di G su X tale che $(g,x) \mapsto g \cdot x$, si può definire naturalmente un'azione destra da $X \times G$ in X in modo tale che $(x,g) \mapsto x \cdot g = g^{-1} \cdot x$. Infatti $x \cdot e = e^{-1} \cdot x = e \cdot x = x$, e $(x \cdot g) \cdot g' = (g^{-1} \cdot x) \cdot g' = g'^{-1} \cdot (g^{-1} \cdot x) = (g'^{-1}g^{-1}) \cdot x = (gg')^{-1} \cdot x = x \cdot (gg')$.

Definizione (G-insieme). Se esiste un azione di G su X, si dice che X è un G-insieme.

Definizione (orbita di x). Sia \sim_G la relazione d'equivalenza tale che $x \sim_G y \stackrel{\text{def}}{\Longleftrightarrow} \exists g \in G \mid g \cdot x = y$. Allora le classi di equivalenza si dicono **orbite**, ed in particolare si indica l'orbita a cui appartiene un dato $x \in X$ come $\operatorname{Orb}(x) = O_x$, ed è detta *orbita di* x.

Esempio. Si possono individuare facilmente alcune orbite per alcune azioni classiche.

- (i) Se $G = GL(n, \mathbb{K})$ è il gruppo delle matrici invertibili su \mathbb{K} di taglia n rispetto all'operazione di moltiplicazione matriciale, G opera naturalmente su $M(n, \mathbb{K})$ tramite la similitudine, ossia G agisce in modo tale che $P \cdot M = PMP^{-1} \ \forall P \in GL(n, \mathbb{K}), \ M \in M(n, \mathbb{K})$. In particolare, data $M \in M(n, \mathbb{K})$, Orb(M) coincide esattamente con la classe di similitudine di M.
- (ii) Se $G = \operatorname{GL}(n, \mathbb{K})$, G opera naturalmente anche su $\operatorname{Sym}(n, \mathbb{K})$ tramite la congruenza, ossia tramite la mappa $(P, A) \mapsto P^{\top}AP$. L'orbita $\operatorname{Orb}(A)$ è la classe di congruenza delle matrice simmetria $A \in \operatorname{Sym}(n, \mathbb{K})$. Analogamente si può costruire un'azione per le matrici hermitiane.
- (iii) Se $G = O_n$, il gruppo delle matrici ortogonali di taglia n su \mathbb{K} , G opera su \mathbb{R}^n tramite la mappa $O \cdot \underline{v} \mapsto O\underline{v}$. L'orbita $Orb(\underline{v})$ è in particolare la sfera n-dimensionale di raggio ||x||.

Definizione (stabilizzatore di x). Lo stabilizzatore di un punto $x \in X$ è l'insieme degli elementi di G che agiscono su x lasciandolo invariato, ossia lo stabilizzatore $\operatorname{Stab}_G(X)$ è il sottogruppo di G tale che:

$$Stab_G(X) = \{ g \in G \mid g \cdot x = x \}.$$

Esempio. Sia $H \subseteq G$ e sia X = G/H. X è un G-insieme tramite l'azione g'.(gH) = g'gH. Vale in particolare che $\operatorname{Stab}_G(eH) = H$.

Proposizione. Sia X un G-insieme. Sia $x \in X$. $H = \operatorname{Stab}_G(x)$ e sia O_x l'orbita di x. Allora esiste un'applicazione bigettiva naturale $G/H \to O_x$.

Dimostrazione. Sia φ tale che $\varphi(gH) = g.x$. Si mostra che φ è ben definita: g' = gh, $\varphi(g'H) = (gh).x = g.(h.x) = g.x$. Chiaramente φ è anche surgettiva. Inoltre, $g.x = g'.x \implies x = (g^{-1}g').x \implies g^{-1}g' = h \in H \implies gH = g'H$, e pertanto φ è iniettiva. Allora φ è bigettiva.

Definizione. Si dice che G opera liberamente su X se $\forall x \in X$, l'applicazione $G \to O_x$ tale che $g \mapsto g.x$, ossia se $\operatorname{Stab}_G(x) = \{e\}$:

Definizione. G opera transitivamente su X se $x \sim_G y \ \forall x, y \in X$, cioè se c'è un'unica orbita, che coincide con X. In tal caso si dice che X è **omogeneo** per l'azione di G.

Esempio. (i) O_n opera su $S^{n-1} \subseteq \mathbb{R}^n$ transitivamente.

(ii) $\operatorname{Gr}_k(\mathbb{R}^n) = \{W \subseteq \mathbb{R}^n \mid \dim W = k\}$ (Grassmanniana). O_n opera transitivamente su $\operatorname{Gr}_K(\mathbb{R}^n)$.

Definizione. G opera in maniera semplicemente transitiva su X se $\exists x \in X$ tale che $g \mapsto g.x$ è una bigezione, ossia se G opera transitivamente e liberamente.

Definizione. Un insieme X con un'azione semplicemente transitiva di G è detto un G-insieme omogeneo principale.

- **Esempio.** (i) X = G. L'azione naturale di G su X per moltiplicazione è semplicemente transitivo (per $g, g' \in G$, esiste un unico $h \in G$ tale che g = h.g' = hg'). Quindi X è G-omogeneo principale.
- (ii) Se X è G-omogeneo principale, l'azione è fedele.
- (iii) Se X è omogeneo per un gruppo G commutativo, allora G agisce fedelmente su $X \implies X$ è un G-insieme omogeneo principale.

Definizione (spazio affine). Sia V uno spazio vettoriale su un campo \mathbb{K} qualsiasi. Allora uno spazio affine E associato a V è un qualunque V-insieme omogeneo principale.

Pertanto, $\forall P, Q \in E$, esiste un unico vettore $\underline{v} \in V$ tale che $Q = \underline{v}.P$, denotato come $Q = P + \underline{v} = \underline{v} + P$. Si osserva che $\underline{v} + (\underline{w} + P) = (\underline{v} + \underline{w}) + P$. Essendo v unico, si scrive $v = Q - P = \overrightarrow{PQ}$.

Fissato $O \in E$, l'applicazione $\underline{v} \mapsto \underline{v} + O$, $V \to E$ è una bigezione.

Osservazione.

$$P - P = 0 \in V, P - Q = -(Q - P), (P_3 - P_2) + (P_2 - P_1) = P_3 - P_1.$$

 $ightharpoonup O \in E$ l'applicazione $P \mapsto P - O$ è una bigezione di E su V.

Siano $P_1, ..., P_n \in E. \ \forall \lambda_1, ..., \lambda_k \in \mathbb{K}. \ \forall O \in E$ possiamo individuare il

punto
$$P = O + \sum_{i=1}^{n} \lambda_i (P_i - O)$$
.
 $P = P' = \iff O + \sum_{i=1}^{n} \lambda_i (P_i - O) = O' + \sum_{i=1}^{n} \lambda_i (P_i - O') \iff O + \sum_{i=1}^{n} \lambda_i (O' - O) = O' \iff (\sum \lambda_i)(O' - O) = O' - O \iff \sum \lambda_i = 1$.

Definizione. Un punto $P \in E$ è combinazione affine dei punti $P_1, ...,$ P_k se $P = O + \sum \lambda_i (P_i - O)$ se $\sum \lambda_i = 1$. Si scriverà, in particolare, che $P = \sum \lambda_i P_i$.

Si chiama retta affine l'insieme dei punti che sono combinazione affine di due punti. Analogamente si fa per un piano e uno spazio.

Definizione. Un sottoinsieme $D \subseteq E$ si dirà sottospazio affine se è chiuso per combinazioni affini (finite).

Definizione. Il sottospazio affine $D \subseteq E$ generato da un sottoinsieme $S \subseteq$ E è l'insieme delle combinazioni affini (finite) di punti di S, detto D = Aff(S).