FILE 'MEDLINE, CAPLUS, EMBASE, JAPIO, BIOTECHNO' ENTERED AT 20:12:23 ON 22 JAN 2009

- L1 502128 S (FUSION PROTEIN OR CHIMERA OR HYBRID)
- L2 4563 S L1 AND (DNA BINDING DOMAIN)
- L3 0 S L2 AND POLYMERASE DOMAIN
- L4 876 S POLYMERASE DOMAIN
- L5 0 S L2 AND L4
- L6 457 S L2 AND POLYMERASE
- L7 3 S L6 AND PROCESSIVITY
- L8 2 DUP REM L7 (1 DUPLICATE REMOVED)
- L9 37 S L2 AND ENDONUCLEASE
- L10 24 DUP REM L9 (13 DUPLICATES REMOVED)
- L11 22 S L2 AND NON-SPECIFIC
- L12 10 DUP REM L11 (12 DUPLICATES REMOVED)
- L13 7 S NON-SPECIFIC DNA BINDING DOMAIN
- L14 3 DUP REM L13 (4 DUPLICATES REMOVED)
- L15 4 S L2 AND PROCESSIVITY
- L16 3 DUP REM L15 (1 DUPLICATE REMOVED)
- L8 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2009 ACS on STN
- AN 2004:353037 CAPLUS
- DN 140:369911
- TI Engineering DNA polymerase fusion with protein Sso7 DNA -binding domain for improved efficiency, processivity, and thermostability in PCR
- IN Wang, Yan
- PA MJ Bioworks Incorporated, USA

SO U.S. Pat. Appl. Publ., 20 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.					KIND					APPLICATION NO.								
		20040081963				A1										-			
PI	US							20040429			US 2002-280139						20021023		
	CA	2502335				Al		2004		CA 2003-2502335					20031020				
	WO	2004037979				A2		20040506			WO 2003-US32954						20031020		
	WO	2004037979				А3		20050506											
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	EG,	ES,	FI,	GB,	GD,	GE,	
			GH,	GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	
			LR,	LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	NZ,	
			OM,	PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	TJ,	TM,	
			TN,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW			
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,	
			KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
			FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
			BF,	ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	
	AU	2003284265				A1	A1 20040513				AU 2003-284265					20031020			
	AU	2003	2842	65		В2	B2 20080828												
	CN	1720324				A		20060111			CN 2003-80105035					20031020			
	JP	2006	5035	80		T		20060202			JP 2004-546895					20031020			
	EP	1660650				A2		2006	0531		EP 2003-776445					20031020			
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	

IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK

PRAI US 2002-280139 A 20021023

WO 2003-US32954 W 20031020

AB This invention provides protein Sso7-polymerase conjugates that exhibit improved activity in a polymerase reaction. This invention provides methods for engineering DNA polymerase fusion proteins with DNA-binding domain for improved efficiency, processivity, and thermostability in PCR applications. The face residue position selected from the group consisting of a tryptophan residue at position 24, a valine residue at position 26, and a methionine residue at position 29 of protein Sso7d

mutated. The three mutant proteins, \$so7d(G)-.DELTA.Taq, \$so7d(V)-.DELTA.Taq, and \$so7d(E)-.DELTA.Taq, showed 2,5-4-fold improvement over the wild type fusion protein. The invention further provides the protein sequence of \$so7d from Sulfolobus solfatarious.

- L8 ANSWER 2 OF 2 EMBASE COPYRIGHT (c) 2009 Elsevier B.V. All rights reserved on STN DUPLICATE 1
- AN 1999382411 EMBASE
- TI Cellular transcription factors recruit viral replication proteins to
 activate the Epstein-Barr virus origin of lytic DNA replication, oribyt.
- AU Baumann, Matthias; Feederle, Regina; Hammerschmidt, Wolfgang (correspondence)
- CS GSF Natl. Res. Ctr. Environ. Hlth., Inst. Clin. Molec. Biol. Tum. Genet., Department of Gene Vectors, Marchioninistrasse 25, D-81377 Munchen, Germany. hammerschmidt@gsf.de
- AU Kremmer, Elisabeth
- CS Institute of Molecular Immunology, Marchioninistrasse 25, D-81377 Munchen,

Germany.

- AU Hammerschmidt, Wolfgang (correspondence)
- CS GSF-Natl. Res. Ctr. Environ. Health, Inst. Clin. Mol. Biol. Tumor Genet..

Department of Gene Vectors, Marchioninistrasse 25, D-81377 Munchen, Germany. hammerschmidt@gsf.de

- SO EMBO Journal, (1 Nov 1999) Vol. 18, No. 21, pp. 6095-6105.

 Refs: 59

 ISSN: 0261-4189 CODEN: EMJODG
- CY United Kingdom
- DT Journal; Article
- FS 029 Clinical and Experimental Biochemistry

 004 Microbiology: Bacteriology, Mycology, Parasitology and Virology

 LA English
- SL English
- ED Entered STN: 2 Dec 1999

 Last Updated on STN: 2 Dec 1999
- AB DNA replication of Epstein-Barr virus (EBV) during the productive phase of

the life cycle of this herpesvirus depends on the cis-acting element oriLyt. It consists of two essential domains, the upstream and the downstream component. Whereas the upstream component contains several DNA-binding motifs for the viral activator protein BZLF1, the downstream component is known to be the binding site of several cellular proteins. We identified cellular transcription factors that bind synergistically

a functionally relevant subsequence of the downstream component, the TD element. Two of these transcription factors, ZBP-89 and Sp1, stimulate replication as shown by protein fusions with the GAL4 ***DNA*** -

binding domain and a single GAL4 DNA-binding motif
inserted into the TD element. In protein binding assays, we observed an
interaction of Sp1 and ZBP-89 with the viral DNA polymerase and
its processivity factor. Our data indicate that cellular
transcriptional activators tether viral replication proteins to the
lytic

origin via direct protein-protein interactions to assemble the viral replication complex at oriLyt.

=> d his

(FILE 'HOME' ENTERED AT 20:11:09 ON 22 JAN 2009)

FILE 'MEDLINE, CAPLUS, EMBASE, JAPIO, BIOTECHNO' ENTERED AT 20:12:23 ON 22 JAN 2009

L1 502128 S (FUSION PROTEIN OR CHIMERA OR HYBRID)

L2 4563 S L1 AND (DNA BINDING DOMAIN)

L3 0 S L2 AND POLYMERASE DOMAIN

L4 876 S POLYMERASE DOMAIN

L5 0 S L2 AND L4

L6 457 S L2 AND POLYMERASE

L7 3 S L6 AND PROCESSIVITY

L8 2 DUP REM L7 (1 DUPLICATE REMOVED)