

THE UNIVERSITY OF ILLINOIS

LIBRARY

540 V33 V3 cap.2

AGRICULTURALLY

BOS OLD AGRICULTURE BUILDING

2

Digitized by the Internet Archive in 2021 With funding from University of Illinois Urbana-Champaign

Henri Moissan

VAN NOSTRAND'S

dersite

DORN September at the Music of Pristing
Naturelles 1872-Assistant as the Effective
fory of Decaine and Delarant, 1870
Instructor and Desagnation in the laboratory of the Reche superious de Pharmacies 1883, Professor of National Chamistry
in Ecole de Philimacies 1992, Professor of Manacies 1992, Professor of Manacies 1992, Professor of Manacies 1992, Professor of Director of the Institutes of Applied Chemistry in the Sorboure and istry. 1900, Presidual International Congress of Applied Chemistry (Paris), 1969, Presidual Prize, Died February 1864, 1967,

Publications "Le Flour et ses Composes" ries Four Electrique," Editor Lacy de pedia of Chemistry, a Discoverdes Euritest papers ou Kampoungs of Chemisus, a Single Ladated Fluorine, "1897, Liquefied Fluorine 1992, Produced Calcumt Carbide in olocatic laurage. Produced Calcumt Carbide in olocatic laurage.

* 10 mm 20

HENRI MOISSAN, D.Sc.

BORN September 28, 1852 in Paris. Educated at the Musée de l'Histoire Naturelle. 1873, Assistant in the laboratory of Decaisne and Deherain. 1879, Instructor and Demonstrator in the laboratory of the Ecole superieure de Pharmacie. 1887, Professor of Toxicology and 1889, Professor of Mineralogical Chemistry in Ecole de Pharmacie. 1900, Professor of General Chemistry in the Sorbonne and Director of the Institute of Applied Chemistry. 1900, President International Congress of Applied Chemistry (Paris). 1906, Received Noble Prize. Died February 21, 1907.

Publications "Le Flour et ses Composes" 1897, "La Four Electrique," Editor Encyclopedia of Chemistry. Discoveries: Earliest papers on Compounds of Chromium. 1886, Isolated Fluorine. 1897, Liquefied Fluorine. 1892, Produced Calcium Carbide in electric furnace. 1893, Prepared Artificial Diamonds.

VAN NOSTRAND'S CHEMICAL ANNUAL

1913

A HAND-BOOK OF USEFUL DATA

FOR ANALYTICAL, MANUFACTURING, AND INVESTIGATING CHEMISTS, AND CHEMICAL STUDENTS

THIRD ISSUE

Revised with addition of new tables and a section on STOICHIOMETRY

EDITED BY

JOHN C. OLSEN, A.M., Ph.D.

Member of American Institute of Chemical Engineers; Professor of Analytical Chemistry, Polytechnic Institute, Brooklyn; Formerly Fellow Johns Hopkins University; Author of "Quantitative Chemical Analysis."

ASSISTANT EDITOR

ALFRED MELHADO, CH.E.

Polytechnic Institute of Brooklyn, N. Y.

NEW YORK D. VAN NOSTRAND COMPANY

25 PARK PLACE

1914

Copyright, 1909, by
D. VAN NOSTRAND COMPANY
Copyright, 1914, by
D. VAN NOSTRAND COMPANY

Stanbope Press
F. H. GILSON COMPANY
BOSTON, U.S.A.

REMOTE STORAGE

PREFACE TO THE FIRST ISSUE

THE amount of chemical literature published each year has steadily increased at a very rapid rate. It has become more and more difficult for the busy worker to gather from this mass of literature the facts which are of interest and use to him. Much valuable material is of little use because scattered through the literature and therefore inaccessible.

The publication of the Chemical Annual was undertaken as an attempt to overcome this difficulty, at least in part. It has been limited in its scope almost entirely to numerical data, inasmuch as other year books have not aimed to cover this field, and inasmuch as such data cannot generally be carried in the mind, but must be readily accessible for use. To republish all matter of this kind would be both unnecessary and impracticable. The attempt has been made to select and tabulate only that which is of fairly general interest and utility. The investigator in a special field would probably always prefer to go to the original source for the information he wishes. In the preparation of the Chemical Annual the attempt has been made to produce a convenient reference book of numerical data. All tables and numerical data have been quoted from the original source wherever possible, notwithstanding the labor which this work involved.

The tables useful in the calculation of analytical results were first compiled. It is believed that this portion of the Annual is quite complete and will meet all ordinary requirements. All molecular weights as well as the factors for the calculation of analytical results have been calculated from the International Atomic Weights of 1906. As most of the numbers have been calculated several times it is believed that few errors will be found. The molecular weights and other figures have been carried out further beyond the decimal point than is necessary for most calculations. It was thought that the tables would be of more general use if

each chemist were thus at liberty to round off the figures to suit the accuracy of the work in hand.

In collecting the specific gravity tables those most adapted to American practice have been selected. When the specific gravity is given in terms of the Baumé degrees, the so-called American standard as given in Table XXXIII has been adhered to. Where a different Baumé scale had been used in a table the figures have been recalculated to conform with the American standard.

In the review of chemical literature, which contains more than one thousand references to journal articles, the attempt has been made to tabulate and index the important articles of the year in such a manner that the progress made during the year on any given subject will be apparent and its literature easily and quickly found. Any attempt to give a synopsis of the articles would have made the Annual very bulky, and in any case is of doubtful utility.

In a similar manner a list has been made of the most important American and foreign books on chemical subjects which have been published during the year. While the preparation of this list has been somewhat difficult it is hoped that few if any important books have been omitted. Both this list and the list of journal articles include publications from January 1, 1905, to June 1, 1906.

The expense and labor involved in the publication of a book of this kind has been found to be very considerable, so that even with the assistance of a number of contributors, whose interest and coöperation it has been found possible to enlist, the scope of the first issue of the Annual is much more limited than it had been hoped possible to make it. If the demand for such a publication justifies it, the scope of the Annual will be considerably increased in future issues.

The editor desires to express his appreciation of the interest taken and encouragement given by many chemists who did not have the time to prepare matter for publication. He is especially grateful to those whose names appear on the list of contributors and who spared neither time nor labor in the effort to make their contributions accurate and complete.

November, 1906.

PREFACE TO THE SECOND ISSUE

The favorable reception accorded the first issue of "The Chemical Annual" has encouraged the publishers to make a thorough revision for the second issue, which they feel will increase its value as a work of reference and extend its use amongst chemists. The revision of the tables published in the first issue has required a great deal more labor than had been anticipated, because of the surprisingly large number of determinations of the physical constants of the chemical elements and compounds published each year. The large number of changes made in the international table of atomic weights for 1909 also necessitated the recalculation of most of the molecular weights as well as of the chemical factors.

As a thorough revision of this kind could not be made in a year, it seemed advisable to abandon, at least temporarily, the original intention of issuing the volume annually. A number of entirely new tables have been added in the present issue. A table of the physical constants of the alkaloids has been prepared by Dr. Atherton Seidell, and a similar one of the essential oils by Albert E. Seeker. A greal deal of labor was involved in the preparation of these tables, as it was necessary to collect the data from many widely scattered sources. Mr. Seeker has also revised the tables on fats and oils. The recently calculated table of the density of carbon dioxide by Professor Parr, a table giving the melting points and the composition of fusible alloys, as well as a number of other tables of minor importance, have been introduced. The Review of Chemical Literature, as well as the List of New Books, gives the important publications which have appeared since the first issue of "The Chemical Annual."

The table of Gravimetric Factors and their Logarithms has been entirely recalculated by Mr. M. C. Whipple, and it is hoped that this important table as well as the table of Molecular Weights and their Logarithms is free from error.

The editor desires to express his appreciation of the interest taken by many chemists who have called his attention to errors in the first issue, and who have made valuable suggestions of tables to be added. It is hoped that advantage can be taken in future editions of many of these suggestions which were not received early enough to be used in the present volume.

The editor desires to acknowledge the great obligation which he is under to the contributors who have prepared tables for the present issue. The greatest care and pains have been taken to secure accuracy and completeness of data.

The editor and publishers submit this volume with every confidence in its accuracy and value as a reference manual to the profession.

J. C. OLSEN.

June 21, 1909.

PREFACE TO THE THIRD ISSUE

In preparing the third issue of "The Chemical Annual" the standard adopted for the first and second issues has been maintained and the physical constants of the chemical elements and compounds have been revised in accordance with the new data published since the last issue. No change, however, has been made in the table of organic compounds. All other tables have been carefully revised and brought up to date. Molecular weights and factors have been recalculated in accordance with the 1913 table of atomic weights.

A considerable number of new tables have been added, such as the solubility of gases in water, fuming sulphuric acid, the alcohol tables of the Bureau of Standards, specific gravity tables of methyl alcohol, refractometer tables of methyl and ethyl alcohol and various other specific gravity tables.

The section on Thermochemistry has been increased by the addition of tables giving heats of formation solution, neutralization and avidity of acids.

The Review of Chemical Literature giving a list of the more important journal articles has been omitted because the field is now well covered by various abstract journals. At the suggestion of Dr. R. Harman Ashley a section on Stoichiometry has been added. The fundamental units of mass and weight, specific gravity and other physical constants have been defined and a full discussion given of the methods of solution of various problems often met by chemists. A considerable number of problems to be solved has been given, affording practice by students in chemical calculations involving the use of the tables published in the Chemical Annual. The entire field of chemical calculations has not been covered but additions may be made in future issues.

J. C. OLSEN.

CONTRIBUTORS

- Albert F. Seeker, B.S., Chemist United States Department of Agriculture. "Oils, Fats, and Waxes," Tables VI and XII-XXI, and "Physical and Chemical Constants of Essential Oils," Table XXXI.
- M. C. Whipple, Instructor in Sanitary Chemistry, Harvard University. "Gravimetric Factors and their Logarithms." Table V.
- E. Emmet Reid, Ph.D., Colgate and Co., formerly Professor of Chemistry, Baylor University, Waco, Texas, Johnson Scholar, Johns Hopkins University. "Physical Constants of Organic Compounds." Table XXIX.
- C. A. F. Kahlbaum, Chemische Fabrik, Berlin, Germany. "Physical Constants of Organic Compounds." Table XXIX.
- ATHERTON SEIDELL, Ph.D., Division of Pharmacology, Hygienic Laboratory, U.S. Public Health and Marine Hospital Service, Washington, D.C. "Physical Constants of Alkaloids." Table XXX.
- R. Harman Ashley, Ph.D., University of Maine. "Stoichiometry."
- Carl H. Lips, B.S., Ph.D., Brooklyn, N.Y. "Stoichiometry and Review of New Books, German."

CONTENTS

NO. OF TABLE		PAGE
I.	International Atomic Weights for 1913	1
II.	Mendeleeff's Periodic System of the Elements	2
III.	Specific Gravity of Gases	3
IV.	Physical Constants of the Elements	4
V.	GRAVIMETRIC FACTORS AND THEIR LOGARITHMS	10
VI.	FACTORS FOR THE CALCULATION OF INDIRECT GRAVI-	
	METRIC ANALYSES	37
VII.	MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOG-	
	ARITHMS	39
(CALCULATION OF VOLUMETRIC ANALYSES	
WIII	Basicity of Acids with Various Indicators Accord-	
V 111.		51
IV	VALUE OF NORMAL SOLUTIONS OF ACIDS AND BASES	52
	Value of Normal Solutions of Oxidizing and Reduc-	02
Δ.	ING AGENTS	54
ΥI	Value of Normal Solutions of Precipitation Reagents	56
	PHYSICAL AND CHEMICAL CONSTANTS OF OILS	57
	Physical and Chemical Constants of Fats and	01
21111.	WAXES	61
XIV	Physical Constants of Lubricating Oils	64
	Physical and Chemical Constants of Representative	0.1
25.4.	Samples of Lubricating Oils	65
XVI	TEMPERATURE CORRECTION FOR REFRACTIVE INDICES	00
21 / 1.	of Oils	67
XVII.	TEMPERATURE CORRECTION FOR SPECIFIC GRAVITY OF	0.
22,122,	Oils	67
XVIII.	Conversion of Acid Value into Oleic Acid	67
	Table for Calculating the Specific Gravity of Oils	
*****	AT 15.5°	68
XX	POLENSKE VALUE OF BUTTER FAT	68
	Conversion of Butyro-Refractometer Readings to	- 00
25251.	Indices of Refraction	- 69
		00

CALCULATION OF GAS A

NO. OF TABLE		PAGE
XXII.	REDUCTION OF GAS VOLUMES TO 0° AND 760 MM	70
XXIII.	Corrections of Barometer Readings for Temperature	72
VVIV	Coefficient of Expansion of Gases	73
	Solubility of Gases in Water	73a
	DENSITY OF NITROGEN	74
VVVII	DENSITY OF CARBON DIOXIDE	76
	*	80
AAVIII.	Logarithms	00
PHYS	SICAL CONSTANTS OF CHEMICAL COMPOUNDS	
XXIX.	Physical Constants of Inorganic Compounds	99
XXX.	Physical Constants of Organic Compounds	216
XXXI.	Physical Constants of Alkaloids	339
XXXII.	Physical and Chemical Constants of Essential Oils .	356
XXXIII.	MELTING POINT AND COMPOSITION OF FUSIBLE ALLOYS .	376
	SPECIFIC GRAVITY TABLES	
	(a). Equivalent of Degrees Baumé (American Standard) and Specific Gravity at 60° F. For Liquids Heavier than Water	379
	UIDS LIGHTER THAN WATER	383
VVVV	SULPHURIC ACID. FERGUSON AND TALBOT	388
	Fuming Sulphuric Acid at 20°. Winkler	392
	Sulphuric Acid 94–100%. Bishop	393
	Sulphuric Acid. Lunge and Isler	394
	Fuming Sulphuric Acid. Bishop	397
	Nitric Acid at 60° F. Ferguson	399
	NITRIC ACID AT 15°. LUNGE AND REY	401
	Hydrochloric Acid. Ferguson	403
	Hydrochloric Acid. Lunge and Marchlewski	405
	ACETIC ACID AT 15°. OUDEMANS	406
	Phosphoric Acid at 17.5°. Hager	407
	AQUA AMMONIA. FERGUSON	408
	Sodium Hydroxide at 15°. Lunge	410
	Potassium Hydroxide at 15°. Lunge	411
	SODIUM CARBONATE AT 15°. LUNGE	413
ZLIIZ.	CODIUM CAMBUNATE AT 10. LUNGE	TIO

		CONTENTS	xi
NO.	OF TABLE		PAGE
	L.	CONCENTRATED SOLIUM CARBONATE SOLUTION AT 30°. LUNGE	414
	LI.	Correction of Specific Gravity of Sodium Carbonate for \pm 1° C. Lunge	415
	LII.	Potassium Carbonate Solution at 15°. Calculated from Gerlach	416
	LIII.	Specific Gravity and Percentage of Alcohol by Volume. Squibb	417
	LIV.	PERCENTAGE OF ALCOHOL BY VOLUME AND BY WEIGHT. GILPIN, DRINKWATER, AND SQUIBB	418
	ALCOH	OL TABLES OF THE BUREAU OF STANDARDS	
		DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER DENSITY OF MIXTURES OF ETHYL ALCOHOL AND WATER	423
		at $\frac{20^{\circ}}{4^{\circ}}$ C	425
	LVII.	Specific Gravity of Mixtures of Ethyl Alcohol and Water at $\frac{60^{\circ}}{60^{\circ}}$ F. $\left(\frac{15.55^{\circ}}{15.56^{\circ}}$ C. $\right)$	428
	LVIII.	PER CENT OF ALCOHOL BY VOLUME AT 60° F., CORRE-	
	TIV	SPONDING TO VARIOUS PER CENTS BY WEIGHT IN MIX- TURES OF ETHYL ALCOHOL AND WATER	431
	LIX.	REDUCTION OF MIXTURES OF ETHYL ALCOHOL AND WATER FROM PER CENTS BY VOLUME TO PER CENTS BY WEIGHT	434
	LX. LXI.	Methyl Alcohol at 15.56° . Dittmar and Fawsitt Specific Gravity and Percentage by Weight and	435
	TVII	Volume of Methyl Alcohol	436
	LXII.	REFRACTOMETER READINGS OF METHYL AND ETHYL ALCOHOL	439
		CALCULATION OF THE AMOUNT OF ETHYL AND METHYL ALCOHOL IN DISTILLATES CONTAINING A MIXTURE OF	100
		THE Two	441
	LXIII.	Specific Gravity of Aqueous Solutions of Pure Gly-	1.10
	TVIV	CERENE. GERLACH AND SKALWEIT	442
		Ammonium Chloride Solution at 15°. Gerlach	443 444
		Available Chlorine in Bleaching Powder Solution	111
		AT 15°. LUNGE AND BACHOFFEN	444

LXVII. CUPRIC CHLORIDE SOLUTION AT 17.5°. FRANZ . .

LXVIII. CUPRIC SULPHATE SOLUTION AT 18°

LXIX. FERRIC CHLORIDE SOLUTION AT 17.5°. FRANZ

444

445

445

CONTENTS

NO. OF TABLE		PAGE
	Ferrous Sulphate at 15°. Gerlach	446
	Ferric Sulphate at 18°. Hager	446
	Potassium Chromate Solution at 19.5°. Schiff	447
LXXIII.	Potassium Dichromate Solution at 19.5°. Kremers	
	AND GERLACH	447
	Sodium Chloride Solution at 15°. Gerlach	447
	SODIUM DICHROMATE SOLUTION. STANLEY	448
	SODIUM HYPOSULPHITE. BISHOP	448
LXXVII.	SODIUM SULPHITE. BISHOP	450
LXXVIII.	SODIUM BISULPHITE. BISHOP	451
LXXIX.	STANNIC CHLORIDE SOLUTION AT 15°. GERLACH	453
LXXX.	Stannous Chloride Solution at 15°. Gerlach	454
LXXXI.	ZINC CHLORIDE. BISHOP	454
LXXXII.	ZINC, CADMIUM, AND LITHIUM CHLORIDE AT 19.5°.	
	Kramer	456
LXXXIII.	ZINC SULPHATE SOLUTION AT 15°	456
LXXXIV.	DENSITY OF WATER AT 0° TO 36°. THIESEN, SCHEEL,	
	AND DIESSELHORST	457
	Density of Water at 30° to 102°. Thiesen	458
LXXXVI.	DENSITY OF WATER AT 100° TO 320°. RAMSAY, YOUNG,	
	WATERSTON, AND HIRN	458
LXXXVII.	Volume of One Gram of Water at 0° to 36°. Thiesen,	
	Scheel, and Diesselhorst	459
LXXXVIII.	VOLUME OF ONE GRAM OF WATER AT 30° TO 102°.	
	THIESEN	460
LXXXIX.	Volume of One Gram of Water at 100° to 320°. Ram-	
	SAY, YOUNG, WATERSTON, AND HIRN	460
XC.	Tension of Water Vapor over Ice at -50° to 0° .	
	JUHLIN AND MARVIN	461
XCI.	Tension of Water Vapor over Water at -20° to 0° .	
	REGNAULT, BROCH AND JUHLIN	461
XCII.	Tension of Water Vapor over Water at -2° to 36° .	
	REGNAULT, BROCH AND WEIBE	462
XCIII.	Tension of Water Vapor over Water at 30° to 230°.	
	REGNAULT, BROCH AND WEIBE	463
XCIV.	Vapor Pressure of Water at 0° to 229°. Regnault.	464
XCV.	Boiling Point of Water at 680 to 800 mm. Pressure.	
	REGNAULT, BROCH AND WEIBE	467
XCVI.	Vapor Tension of Mercury at 40° to 520°. Ramsay	
	AND YOUNG	468
XCVII.	VAPOR TENSION OF MERCURY AT 400° TO 880°. CAIL-	
	LETET, CORLARDEAU AND RIVIÈRE	468

Cl	1	A	TP	17	F.7	A.	TF	87	CY
	,	Μ		<i>l</i> .	М,	/Ν		Γ.	

xiii

E	QUIVALENTS OF WEIGHTS AND MEASURES	
NO. OF TABLE		PAGE
XCVIII.	Fundamental Equivalents of Metric and U. S.	
	Weights and Measures	470
XCIX.	Comparison of Metric and Customary (U. S.) Units	
	FROM 1 TO 10	471
C.	Conversion of Metric to British Imperial Weights	
	AND MEASURES	477
CI.	Conversion of British Imperial to Metric Weights	
	AND MEASURES	479
	THERMOCHEMISTRY	
CII.	THERMOCHEMICAL UNITS	481
CIII.	HEATS OF FORMATION	482
	HEATS OF SOLUTION	494
CV.	HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION	
	of Sodium Salts	500
	RELATIVE AVIDITY OF ACIDS	501
	Heat of Combustion of Various Substances	502
CVIII.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	
0.777	Anthracite Coal	504
CIX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	
CITE	BITUMINOUS COAL	505
CX.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	F0.0
CZZI	Oven Cokes	506
CAI.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	507
CXII.	LIGNITE	307
CAII.	Wood	508
CXIII	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	900
OZZIII.	Petroleum	508
CXIV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	000
0222 7 .	Natural Gas	509
CXV.	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	
	COAL GAS	510
	CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF	
	Water Gas	511
	STOICHIOMETRY	
	Mass	
	AVITY	519
PROBLEMS		533

VI	37
$\Delta 1$	v

CONTENTS

1	PAGE
GAS AND MERCURY THERMOMETERS	539
Atmosphere Pressure, Barometer	541
GAS CALCULATIONS	543
Problems	546
Successive Reactions	550
Problems	552
OLEUM ANALYSIS	555
FORMATION OF MIXTURES OF DEFINITE COMPOSITION	556
Problems	565
NEW BOOKS	
A LIST OF THE MORE IMPORTANT BOOKS WHICH HAVE BEEN PUBLISHED	
SINCE JULY, 1909	571
American and English Books	571
Foreign Books, mostly German	5 96

I:—INTERNATIONAL ATOMIC WEIGHTS 1 FOR 1913 *

0 = 16

Name.	Symbol.	Atomic Weight.	Name.	Symbol.	Atomic Weight.
Aluminium	A1	27.1	Molybdenum	Mo	96.0
Antimony	Sb	120.2	Neodymium	Nd	144.3
Argon	A	39.88	Neon	Ne	20.2
Arsenic	As	74.96	Nickel	Ni	58.68
Barium	Ba	137.37	Niton	Nt	222.4
Bismuth	Bi	208.0	Nitrogen	N	14.01
Boron	В	11.0	Osmium	Os	190.9
Bromine	Br	79.92	Oxygen	0	16.00
Cadmium	Cd	112.40	Palladium	Pd	106.7
Caesium	Cs	132.81	Phosphorus	P	31.04
Calcium	Ca	40.07	Platinum	Pt	195.2
Carbon	∂ C	12.00	Potassium	K	39.10
Cerium	Ce	140.25	Praseodymium	Pr	140.6
Chlorine	C1	35.46	Radium	Ra	226.4
Chromium	Cr	52.0	Rhodium	Rh	102.9
Cobalt	Co	58.97	Rubidium	Rb	85.45
Columbium	Cb	93.5	Ruthenium	Ru	101.7
Copper	Cu	63.57	Samarium	Sm	150.4
Dysprosium	Dy	162.5	Scandium	Sc	44.1
Erbium	Er	167.7	Selenium	Se	79.2
Europium	Eu	152.0	Silicon	Si	28.3
Fluorine	F	19.0	Silver	Ag	107.88
Gadolinium	Gd	157.3	Sodium	Na	23.00
Gallium	Ga	69.9	Strontium	Sr	87.63
Germanium	Ge	72.5	Sulphur	S	32.07
Glucinum	G1	9.1	Tantalum	Ta	181.5
Gold	Au	197.2	Tellurium	Te	127.5
Helium	He	3.99	Terbium	Tb	159.2
Holmium	Ho	163.5	Thallium	T1	204.0
Hydrogen	H	1.008	Thorium	Th	232.4
Indium	In	114.8	Thulium	Tm	168.5
Iodine	I	126.92	Tin	Sn	119.0
Iridium	Ir	193.1	Titanium	Ti	48.1
Iron	Fe	55.84	Tungsten	W	184.0
Krypton	Kr	82.92	Uranium	U	238.5
Lanthanum	La	139.0	Vanadium	V	51.0
Lead	Pb	207.10	Xenon	Xe	130.2
Lithium	Li	6.94	Ytterbium	Yb	172.0
Lutecium	Lu	174.0	(Neoytterbium)		
Magnesium	Mg	24.32	Yttrium	Yt	89.0
Manganese	Mn	54.93	Zinc	Zn	65.37
Mercury	Hg	200.6	Zirconium	Zr	90.6

^{*} Compiled by the International Committee on Atomic Weights consisting of F. W. Clarke, W. Ostwald, T. E. Thorpe, and G. Urbain.

ELEMENTS II. — MENDELEEFF'S PERIODIC SYSTEM OF THE

Rh = 102.9Gd = 157.3Ru = 101.7Pd=106.7 Co = 58.970s = 190.9Sa = 150.4 $\Gamma = 193.1$ Pt = 195.2Eu = 152Ni = 58. Fe = 55. (Ag) $(C_{\mathbf{n}})$ Cl = 35.46Br = 79.92I = 126.92Mn = 54.93 <F = 19Group VII. Se = 79.2Te = 127.50 = 16.00S = 32.07|Ce = 140.25|(Pr = 140.6)|(Nd = 144.3)Cr. = 52.0Mo = 96.0W = 184.0Group VI. U = 238.5Revised by CHARLES BASKERVILLE Ge = 72.5 As = 74.96 Ta = 181.5Yb = 172.0P = 31.04O N = 14.01Cb = 93.5Bi = 208Group V. V = 51.0Sn = 119.0 | Sb = 120.C = 12.00Si = 28.3TI=204.0 Pb=207.10 $\Gamma h = 232.4$ Zr = 90.6Ti = 48.1Group IV. Ga = 69.9In = 114.8B = 11.0Er = 167.7A1 = 27.1 $C_s = 132.81 |B_a = 137.37 |L_a = 139.0$ Yt = 89.0Sc = 44.1Group III. Cd = 112.4Cu=63.57 Zn=65.37 Au=197.2 Hg=200.0 Mg = 24.32Ca = 40.07Sr = 87.63Ra = 226.4Group II. G1 = 9.1Ag=107.88 H = 1.008Rb = 85.45Na = 23.00K = 39.10Group I. Li = 6.946|Kr = 82.928|Xe = 130.212 Nt = 222.4 2 | He = 3.993|Ne=20.2Zero Group. 4 A = 39.910 Series.

Rare earth metals not placed: — Dy = 162.5, Lu = 174, Tb = 159.2, Tm = 168.5.

Name.	Formula.	Molecu-	Specific G	Weight in Grams of 1 Liter at 0°.	
Name.	Formula.	Weight.	Calcu- lated.	Observed.	760 mm. at Sea Level, lat. 45°.
Acetylene	$C_2H_2\dots$	26.016	0.8988	0.92	1.1620
Air			1.0000		1.2926
Ammonia	NH_3	17.034	0.5895	0.5963	0.7708
Argon	A	39.88	1.379	1.3778	1.7828
Arsine	$\mathrm{AsH_3}$	77.984	2.696	2.695	3.485
Bromine	Br_2	159.84	5.5249	5.524(227.9°)	7.1426
Butane	C_4H_{10}	58.08	2.0065	2.01	2.594
Carbon dioxide	CO_2	44.00	1.5201	1.52932	1.9768
Carbon monoxide	CO	28.00	0.9673	0.96735	1.2504
Carbon oxysulphide	COS	60.07	2.0749	2.1046	2.6825
Chlorine	$Cl_2 \dots \dots$	70.92	2.489	2.491	3.1666
Cyanogen	C_2N_2	52.02	1.7993	1.8064	2.3261
Ethane	C_2H_6	30.048	1.0381	1.075	1.3421
Ethylene	$C_2H_4\dots$	28.032	0.9784	0.9852	1.2520
Fluorine	\overline{F}_2	38.0	1.313	1.26	1.697
Helium	He	3.99	0.1382	0.1368	0.1787
Hydrobromic acid	HBr	80.928	2.7973	2.71	3.6163
Hydrochloric acid.	HCl	36.468	1.2595	1.2686	1.6398
Hydrofluoric acid.	HF	20.008	0.691	0.7126	0.894
Hydroiodic acid	HI	127.928	4.4172	4.3757	5.7106
Hydrogen	H_2	2.016	0.06965	0.06953	0.089873
Hydrogen selenide.	H_{\circ} Se	81.216	2.806	2.795	3.627
Hydrogen sulphide.	H_2S	34.086	1.1773	1.1895	1.5392
Hydrogen telluride.	H, Te	129.516	4.478	4.489	5.789
Krypton	Kr	82.92	2.826	2.818	3.654
Methane	CH_4	16.032	0.5539	0.5576	0.7168
Neon	Ne	20.2	0.691	0.674	0.893
Nitric oxide	NO	30.01	1.0378	1.0368	1.3402
Nitrous oxide	N_2O	44.02	1.5229	1.5300	1.9777
Nitrogen	N_2	28.02	0.9701	0.96758	1.2507
atmospheric	No+A etc.			0.97209	1.25718
Nitrogen dioxide	$NO_2 \dots$	46.01	1.5906	1.60 (135°)	2.0563
"	$N_2\tilde{O_4}$	92.02	3.1812	2.65 (26.7°)	4.1126
Nitrosyl chloride	NOCI	65.47	2.2625	2.31	2.925
Oxygen	0,	32.00	1.1055	1.1055	1.4292
Phosphine	$PH_3 \dots$	34.064	1.175	1.214	1.520
Propylene	C_3H_6	42.048	1.4527	1.498	1.8780
Silicon fluoride	SiF ₄	104.3	3.607	3.60	4.663
Sulphur dioxide	SO_2	64.07	2.2131	2.2641	2.9266
Xenon	X	130.2	4.422	4.422	5.717

^{*} A considerable portion of this table is quoted from Landolt-Börnstein Phys-Chem. Tabellen, 1905, p. 222.

IV. — PHYSICAL CONSTANTS

_							
Number.	Name.	Sym- bol.	Atomic Weight. 0=16.	Molecu- lar Weight.	Specific Gravity Water = 1. Air = 1 (A). Hydrogen=1(D).	Atomic Vol. At. Wt. Sp. Gr.	Specific Heat at o° C.
1	Aluminium	Al	27.1		$\{2.708 \\ 2.72^{\frac{16}{4}}\}$	10.00	.2220
2	Antimony	Sb	120.2		6.62		.0495
3	Argon, gas	A	39.88	39.88	(1.379 A.) 19.96 D.		.1233
4	1	A	39.88		1.4046-186°		
	Arsenic, amorph.				4.716140		.0758 (21°-
6	cryst	As			5.727 ^{14°}		.0830 (65°
	Barium		137.37		3.75		
	Bismuth	Bi	208.		9.7474		.03013
	Boron, amorph	В	11.0				.3066
10	cryst	В	11.0				0.165(210)
	Bromine, gas	Br_2			5.8691 ^{60°} A.		.0555(83°)
12		Br_2			3.1883°°	25	.1071
	Cadmium	Cd	112.40	112.4	8.642170	13	.0548
	Caesium	Cs	132.81		1.87200		.04817
	Calcium	Ca	40.07				.1453
	Carbon, amorph	C	12.00				.241
17	graphite	C	12.00			5	.202
18	diamond	C	12.00				.1469
	Cerium	Се	140.25		$6.92^{25^{\circ}}$	20.2	.05112
20	Chlorine, gas	Cl	35.46	70.92	2.491°A.		.1241
21	liquid	Cl	35.46		1.4405°°	24.6	. 2262
22	Chromium	Cr	52.0		6.92^{20}	7.5	.10394
23	Cobalt [bium]	Co	58.97		8.71840	6.8	.1030
24	Columbium (Nio-	Cb	93.5		7.06150	13.3	
25	Copper	Cu	63.57		8.91-8.96	7.1	.0936
26	Erbium	Er	167.4		4.77	35.1	
	Fluorine, gas	F	19	38	1.31°A¹5.		
28		F	19	38	1.14-1870	16.7	
29	Gadolinium	Gd	157.3		1.31	120.1	
	Gallium	Ga ·	69.9		5.95 ^{24°}	11.8	.079
31	Germanium	Ge	72.5			13.3	.0737
	Glucinum (Beryl-	Gl	9.1		1.85 ^{20°}	4.9	
	Gold[lium]		197.2		19.32	-	.0316
	L .				(0.1368 A	21.1	
34	Helium, gas	He	3.99	$\frac{4}{}$	1.98 D.	20.1	
-							

^{*} K = the number of grams of water which can be raised from 0° to 1° C. by the heat which passes through a cubic centimeter of the substance in one † Reciprocal of the resistance in ohms of a centimeter cube of the

OF THE ELEMENTS

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number.	At. Heat Sp. Heat XAt. Wt.	Conduc- tivity †	Conductivity K* at o° C.	Coeffic	cient of	Melting Point, °C.	Boiling Point, °C.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						At °C.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6.02	324000	.3435	.0,245	40°	657°	>2200°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	5.95	27100	.0442	.041152	40°	630°	1500-1700
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	4.92		.0,3894			-187.9°	-186.1°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 6 7 8 9 10	6.23 6.27 3.37 1.82	9260		.0,1346	40°	sublimes at 850° 269° infusible (449½° vol. 950° 1435° sublimes at
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 13 14 15 16 17 18 19 20 21 22 23 24 25	8.57 6.16 6.41 5.83 2.89 2.22 1.76 6.28 4.40 8.02 5.42 6.08	25400 95000 13950		$.0_{3}39482$ $.0_{4}054$ $.0_{4}0786$ $.0_{4}0118$ $.0_{2}1978$ $.0_{4}1236$	27-100°	321° 26.37° 805° sublimes sublimes 635° -102° -1505° 1490° 1950° 1083°	778° 670°3500° 3500° 3500°33.6° 2200°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 28							
$ 34 \dots \dots 0_33386 \dots -269^{\circ} -268.5^{\circ}$	30 31 32 33	5.34	468000		.0,1470	0-100°	916° > 960° 1062°	vol. 1350° 2530°
	34			.0 ₃ 3386			-269°	-268.5°

second when the temperature of the opposite sides of the cube are maintained at a difference of 1° C.

substance.

Number.	Name.	Sym- bol.	Atomic Weight. O = 16.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A). Hydrogen=1(D).	Atomic Vol. At. Wt. Sp. Gr.	Specific Heat at 0° C.
2	Hydrogen, gas	H H	1.008	2.016	0.06949 A. 0.700 ^{-252.5°}	1.4	3.410 6.
	Indium	In	114.8		7.1213	16.1	.05695
	Iodine, gas	I	126.92	0	8.72 A.		. 0336208°
5		I Ir	126.92 193.1	255.84	4.948170	$25.7 \\ 12.2$.05412
7	Iridium, spongy	Ir	193.1		15.86 22.42	8.6	.0323
	Iron, pure	Fe	55.84		7.85-7.88	7.1	.1162
9	wrought	Fe	55.84		7.86	7.1	.1130
10		Fe	55.84		7.60-7.80	7.3	.1066
11	gray pig	Fe	55.84		7.03-7.13	7.9	
12	white pig	Fe	55.84		7.58-7.73	7.3	.1050
10		TZ	00 00	01 0	(2.818 A.		
13	Krypton, gas	Kr	82.92	81.8	40.78 D.		
14	liquid	Kr	82.92		2.155-1520	38.5	
15	Lanthanum	La	139.0		6.1545	22.6	.04485
16	Lead	Pb	207.10		11.34	18.2	.0310
17	Lithium	Li	6.94		0.534 ^{20°}	12.97	0.8366
	Magnesium	Mg	24.32		1.69-1.75	14.3	. 2456
	Manganese	Mn	54.93		7.42	7.4	.1217
	Mercury	Hg	200.6	200.6	13.59534	14.7	.03346
	Molybdenum	Mo	96.0		8.6-9.01	10.9	.0659
22	Neodymium	Nd	144.3		6.9563	20.7	
	Neon	Ne	20.2		0.674 A. 9.96 D.		
	Nickel	Ni	58.68		8.6-8.93	6.7	.1084
	Nitrogen, gas	N	14.01	28.00			.2438
26		N	14.01		0.8042-195.50	17.5	
	Osmium	Os	190.9		22.48	8.5	.03113
	Oxygen, gas	0	16	32	1.10535 A.		.2175
29	1	0	16	32	1.1181-182.50	14.3	
	Ozone	O_3	106 7	48	1.658 A.	9.2	0,500
	Palladium	Pd P	$\begin{vmatrix} 106.7 \\ 31.04 \end{vmatrix}$		11.4-11.9 1.8232 ^{20°}	$\frac{9.2}{17.0}$.0592
33 33	Phosphorus, yel	P	31.04		2.296160	13.5	.1829
34		P	31.04		1.76444.30	11.9	.1029
	Platinum	Pt	195.2		21.1624	9.2	.0323
	Potassium	K	39.10		0.875130	44.6	.1662
	Praseodymium	Pr	140.6		6.4754	21.6	
	Radium	Ra	226.4				
	Rhodium	Rh	102.9		12.1 -	8.5	.05803
	Rubidium	Rb	85.45		1.532 ²⁰ °	55.85	

Number.	At. Heat Sp. Heat X At. Wt.	Electrical Conduc- tivity at o° C.	Thermal Conductivity K* at o° C. Ag = 1.00.	Coeffi	near cient of nsion.	Melting Point, °C.	Boiling Point, °C.
_					At °C.		
1	3.44		$.0_{3}3270$			-259°	-252.5°
3	6.56	119500		0.417	40°	115°	700°
4	4.27						
5	6.86			$.0_{4}837$	-190-17	114.2°	184.35°
6						2250°	
7	00			$.0_{4}0700$	40°	1950°	
		131000	.1665	$.0_{4}1182$	0°-100°	1505°	2450°
1	6.32		.2070	$.0_{4}11$	0°-100°	1600°	
10	5.96	63000	.1300	.0411	0°-100°	1375°	
11		[10200-		.041061	40°	1275°	
12	5.87	(11300	.1490			1075°	
13						· -169°	-151.7°
14							
15	6.23					810°	
16	3.52	50400	.0836	$.0_{4}2924$	40°	327°	1525°
17	5.86	119000				186°	>1400°
1		230000	.3760	$.0_{4}2694$	40°	650°	1120°
	6.70					1225°	1900°
	6.69		.0148	$.0_{3}182$	0°-100°	-38.85°	357.33°
21	6.33					2500°	
22						840°	
23						-253°	-243°
24	6.36	144200	.1420	$.0_{4}1279$	40°	1450°	
25	3.42		.0,524	*		-213°	-195.5°
26							
27	5.95	105300		.040657	40°	2700°	
28	3.48		.04563			-227°	-182.7°
29							
30						decomp. 270°	-119°
31	6.32	97900	.1683	.0,1176	40°	1550°	
	6.26			.0,124	0°-44°	44.1°	290°
33	5.67					725°	350° (yel.)
34							
	6.29	91200	.1664	$.0_{4}0899$	40°	1753°	
	6.51	150500		.0483	0°-50°	62.5°	757.5°
37						940°	
						700°	
39	5.97			.040850	40°	1970°	
40						38.5°	696°
					and the same of th		

Number.	Name.	Sym- bol.	Atomic Weight 0 = 16.	Molecu- lar Weight.	Specific Gravity Water = 1. Air = 1 (A) Hydrogen=1(D).	Vol. At. Wt.	Specific
1	Duthonium anon	Ru	101.7		8.6	11 0	
2	Ruthenium, spon melted	Ru	101.7		11.4	8.9	
3	merced	Ru	101.7		12.268°		.0611
-	eryst Samarium	Sm 7	150.4		7.7-7.8		.0011
	Scandium	Sc	44.1		1.1-1.0	19.4	
	Selenium, amorph.		79.2	633.6	4.26-4.28250	10 5	.09533
7	monoclinic	Se	79.2	633.6	4.47250	17.7	
8	hexagonal	Se	79.2	633.6	4.8250	16.5	
	Silicon, amorph	Si	28.3	0.00.0	2.00		0.214210
10	cryst	Si	$\frac{28.3}{28.30}$		2.4910°		.1697220
	Silver		107.88		10.53		.0559
	Sodium	Na	23.00		$0.9735^{13.5}^{\circ}$.2934
	Strontium	Sr	87.63		2.54	34.5	
10	Sulphur,	101	01.00		2.04	04.0	
14	amorphous soft	Q	39 07	256.56	1.9556°°	16.4	
15	" vellow			256.56	$\frac{1.3330}{2.046}$	15.6	
16	rhombic	Sa		250.56	$2.05-2.07^{\circ\circ}$.1728
17	monoclinic			256.56	1.958		1809
18	plastic	S_{γ}		256.56	1.92	16.7	1902
	Tantalum	Ta	181.5	250.50	14.49160		.03017
	Tellurium, amorp.	Te	127.5	255.0	6.015 ^{20°}		.0525
21	cryst	Te	127.5	255.0	6.27		.0475
	Terbium	Tb	159.2	200.0	0.21	20.1	.0110
	Thallium	Tl	204.0		11.85	17.2	.0326
	Thorium, amorph.		232.40		11.00 ¹⁷ °	21.1	
25	cryst	Th	232.40		11.23	20.7	
	Thulium	Tm	168 5				
	Tin, gray	Sn	119.0		5.8466 ^{15°}	20.3	.0545
28	rhombic	Sn	119.0		6.53-6.56		.0559
29	tetragonal	Sn	119.0		7.2984150		.0559
30	Titanium	Ti	48.1		$4.50^{17.5^{\circ}}$	1	.1125
	Tungsten	W	184.0		18.77		.0336
	Uranium	U	238.5		18.685430		.0280
	Vanadium	V	51.0		6.025150		.1240
		**			(4.422 A.		
34	Xenon, gas	Xe	130.2		63.5 D		
35	liquid	Xe	130.2		3.52-109.19	37.0	
	Ytterbium	Yb	172.0%				
	Yttrium	Yt	89.0		3.80150	23.4	
	Zinc	Zn	65.37	65.37	7.142160		.09356
39	Zirconium, amorp.	1	90.6		4.15	21.8	
40	cryst	Zr	90.6		$6.40^{18^{\circ}}$.0660

- L	at Vt	Electrical	Thermal	т:		Melting	Boiling
Number	At. Heat Sp. Heat × At. Wt	Conduc- tivity at o° Wt.	Conductivity K* at o° C. Ag = 1.00.	Coeffi	Linear Coefficient of Expansion.		Point, °C.
					At °C.		
1						>1950°	
2						2000°	
3	6.21			.040963	40°	2000°	
4						1350°	
5						1200°	
6	7.55					50°	690°
7	6.65			.0₄3680	40°	170°-180°	690°
8						217°	690°
9	6.06						3500°
10	4.82	200-15600		.0,0763	40°	1450°	3500°
		681200	1.000	.0,1921	40°	961.5°	1955°
		211000	.365	.0472	0°-50°	97.6°	877.5°
13	0.,0	40300	.000	.04.2	0 00	900°	
		20000				2 SWEW	
14						>120°	444.6°
15						/ 120	444.6°
	5.54			.0,6413	40°	114.5°	444.6°
	5.80			.040415	10	119.25°	444.6°
	6.10					119.20	444.6°
	5.46	60600		0.007499		2900°	111.0
	6.69	, 00000		.0408	40°	446°	1390°
	6.09	10000		.041675	0°-20°	452°	1390°
22	0.07	46600		.043440	0°-20°	452	1390
	0 0 =	F0000		0.0001	400	00.00	1280°
23 24	6.65	56800		.043021	40°	302°	1280°
						>1700°	
25						• • • • • • • • • • •	
	6.49					stable $< 20^{\circ}$	
	6.65					stable>170°	>2200°
29	6.65	76600	.1528	.0,2234	40°	232°	1450-1600
	5.41					2200°	
	6.18					2800°	
32	6.68					800°	
33	5.90					1680°	
24						1400	100 10
34						-140°	-109.1°
35							
36						1800°	
37						1250°	
	3.12	186000	.2653	.0,2918	40°	419°	918°
39	5.12	100000	. 2000	.042010	10	110	010
	5.98					2350° 858	
10							

V.—GRAVIMETRIC FACTORS AND THEIR LOGARITHMS

A	Weighed or Found.	Required.	A	*	F	3†
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Alumi						
	27.1					
Al_2C)3	A1		1.72455		
		Al_4C_3		T.84909		
		AlCl ₃		0.41700		
		AlPO ₄		0.37834		
		$Al_2(SO_4)_3 \dots$		0.52509		
		$Al_2(SO_4)_3.18H_2O$	6.52350	0.81448	0.15330	1.18552
		$K_2SO_4.Al_2(SO_4)_3.$				
		24H ₂ O	9.28650	0.96785	0.10768	1.03215
		$(NH_4)_2SO_4.Al_2(SO_4)_3$				-
		. 24H ₂ O		0.94813		
AIP	04	Al		1.34621		
		Al_2O_3		T. 62166		
	2	AlF ₃	0.71817			
÷ 0		AlPO ₄	1.71895	0.23526	0.58175	T.76474
Ammo						
	=18.04					
Ag.		NH ₄ Br	0.90813			
		NH_4Cl	0.49592	1.69541	2.01640	0.30459
		$[\mathrm{NH_4I}\ldots\ldots]$	1.34400	0.12841	0.74403	T.87159
AgB	r	NH ₄ Br	0.52166			
	1	NH ₄ Cl	0.37323	T.57198	2.67930	0.42802
AgI.		NH ₄ I	0.61752	1.79065	1.61940	0.20935
	0,	$(NH_4)_2SO_4$	0.56613	1.75292	1.76630	0.24708
Br		NH ₄ Br	1.22580	0.08843	0.81577	T.91157
Cl		NH4	0.50874	T.70650	1.96560	0.29350
		NH ₄ Cl	1.50870	0.17861	0.66281	T.82139
HCl		NH ₄ Cl	1.46690	0.16641	0.68169	1.83359
		NH ₄ I	1.1425	0.05782	0.87535	T.94218
MgN	H ₄ PO ₄ .6H ₂ O	NH ₃	0.06936	2.84116	14.4160	T.15884
Ü	1 1 2	NH ₄	0.07347	2.86619	13.6085	T.13381
		$(N\dot{H}_4)_2O$	0.10607			
N		NH ₃	1.21530			
		NH ₄	1.28770			
		NH ₄ Cl	3.81870			
		$(NH_4)_2O$	1.85870			
		$(NH_4)_2SO_4$	4.71620			
		472 - 4				

A	Weighed or Found.	Required.	Į į	A	F	3
В	Required.	Weighed or Found.	Factor.	Loga-	Factor.	Loga-
				rithm.		rithm.
	nium	(3777) (30				
NH	3 · · · · · · · · · · · · · · · · ·	$(NH_4)_2CO_3$	2.8201		0.35460	
		NH ₄ HCO ₃	4.6419		0.21543	
		NH ₄ NO ₃	4.7005		0.21274	
		$(NH_4)_2O$	$1.5286 \\ 2.0582$		0.65418	
		NH_4OH	3.8787		$0.48587 \\ 0.25782$	
NIII	CI		0.31831			
NH	4Cl:	NH ₃		1.00200	$3.14150 \\ 2.96560$	0.49714
		NH ₄	0.33720	1.02709	2.96560 2.05450	0.4/211
		(NH ₄) ₂ O NH ₄ OH			1.52640	
(NI	$H_4)_2$ PtCl ₆	NH ₃			13.0372	
(141	14/21 (016	NH ₄	0.01010	2.00402	12.3068	1.11010
		NH ₄ Cl	0.00120	ī 38106	4.14995	0.61804
		NH ₄ NO ₃			2.77351	
		(NH ₄) ₂ O			8.52600	
		NH ₄ OH			6.33429	
		$(NH_4)_2SO_4$			3.36016	
N ₀ C)5,	NH ₃		_	3.17140	
2120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NH ₄ NO ₃	1		0.67470	0
		(NH ₄) ₂ O			2.07410	
Pt.		NH ₃			5.73113	
		NH4			5.41013	
		NH ₄ Cl			1.82429	
		NH ₄ NO ₃	0.82018	$\bar{1}.91391$	1.21925	0.08609
		$(NH_4)_2O$			3.74886	
		NH ₄ OH	0.35912	$\bar{1}.55524$	2.78458	0.44476
		$(NH_4)_2SO_4$	0.67698	$\bar{1}.83058$	1.47716	0.16942
SO_3		$\mathrm{NH_{3}}$			2.35020	
		$(NH_4)_2SO_4$	1.65040	0.21759	0.60591	$\bar{1}.78241$
Antim						
	= 120.2					_
Sb.		$\mathrm{Sb}_2\mathrm{O}_3\ldots\ldots$			0.83355	
		$\mathrm{Sb}_2\mathrm{O}_5$			0.75031	
~	^	$KSbOC_4H_4O_6.\frac{1}{2}H_2O$			0.36168	
Sb_2	O ₃	$\operatorname{Sb}_2\operatorname{O}_5$			0.90014	
		Sb_2S_5			0.71966	
C	2	$KSbOC_4H_4O_6$. $\frac{1}{2}$ H_2O			0.43390	
Sb ₂ (04	Sb			1.26623	
		Sb_2O_3			1.05550	
		Sb_2O_5			0.95006	
		$\mathrm{Sb}_{2}\mathrm{S}_{3}\ldots\ldots$	1.10580	0.04368	0.90431	1.95032

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Antimony						
	$_{2}O_{4}$	Sb ₂ S ₅	1.31650	0.11943	0.75952	I.88057
	2 - 4	KSbOC ₄ H ₄ O ₆ .½H ₂ O	2.1886			1.66083
Sb.	O ₅	Sb_2S_5	1.2507			I.90282
	$_{2}^{2}S_{3}$	Sb		T.85381		
	2-3	Sb,O,	0.8568			0.06712
		Sb_2O_5	0.95185			0.02143
		KSbOC ₄ H ₄ O ₆ . ½H ₂ O	1.97460			$\bar{1}.70452$
Sb	S ₅	Sb	0.59987	1.77806	1.66710	0.22194
Arser						
As:	=75					
As	O ₃	As	0.75748	T.87937	1.3202	0.12063
1		As ₂ O ₅		0.06508		
As.	O_{δ}	As	0.65203	$\bar{1}.81429$	1.5336	0.18571
	S_3	As	0.60911	I.78470	1.64170	0.21530
		As_2O_3	0.80293	Ī.90467	1.24545	0.09533
	1	As,O ₅	0.93414	T.97041	1.07050	0.02959
		As ₂ S ₅	1.26062	0.10058	0.79327	T.89942
As,	$S_5 \dots \dots$	As	0.48309	T.68402	2.06985	
		As_2O_3	0.63790	1.80475	1.56770	0.19526
		As_2O_5	0.74101	T. 86983	1.34947	0.13017
Ba	SO ₄	As	0.21408	T. 33060	4.6709	0.66940
		As_2O_3	0.28264	$\overline{1}.45123$	3.5381	0.54877
		As_2O_5	0.32833	1.51631	3.04565	0.48369
		AsO_3	0.35116	T.54553	2.8482	0.45457
		AsO ₄	0.39688	T.59866	2.51965	0.40134
Mg	NH ₄ AsO ₄ .					
1	H_2O	As		T.59532		0.40468
		As_2O_3		1.71595		0.28405
		AsO_3		1.81025		0.18975
		As_2O_5		T.78103		
		AsO ₄		1.86328		0.13672
Mg	$_{2}\mathrm{As}_{2}\mathrm{O}_{7}$	As		1.68371		
		As_2O_3		T.80435		0.19565
			0.79183			0.10136
		As ₂ O ₅		1.86943		0.13057
		AsO ₄		1.95177		
		As_2S_3	0.79253	1.89902	1.26176	0.10098
Bariu	,					
	= 137.37			T		
Ba	$CO_3 \dots \dots$	Ba		1.84261		
		$Ba(HCO_3)_2$	1.31420	0.11867	0.76090	1.88133

A	Weighed or Found.	Required.	I	A]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Barit	ım					
Ba	$CO_3 \dots \dots$	BaCl ₂	1.05510	0.02339	0.94757	I.97661
	-	BaO	0.77707	$\bar{1}.89046$	1.28690	0.10954
Ba	$CrO_4 \dots \dots$	Ba	0.54195	1.73396	1.84570	0.26604
		BaCl ₂	0.82175	1.91474	1.21700	0.08526
		BaCO ₃	0.77866	T.89135		
		BaO	0.60507		1.65260	
Ba	SiF ₆	Ba	0.49118	1.69124	2.03590	0.30876
		BaF_2		1.73909		
		BaO		1.79730		
Ba	$SO_4 \dots \dots$	Ba		1.76975		
		BaCl ₂		1.95054		
		BaCl ₂ .2H ₂ O		0.01982		
		BaCO ₃		T.92714		
		$Ba(NO_3)_2$		0.04915		
		BaO		1.81760		
		BaO_2		T.86070		
		BaS		1.86087		
CC)2			0.54229		
		BaCO ₃	4.48570	0.65183	0.22293	1.34817
	llium, $Be = 9.1$					
	See Glucinum					. ^~
Riem	uth, Bi = 208.0					
		Bi ₂ O ₃	1 11540	0.04743	0 89654	T 95257
	AsO ₄	Bi		1.77778		
201.	2.004	$ Bi_2O_3$		T.82521		
Bi	O3	Bi		I.95257		
171	203	BiONO ₃		0.09090		
		$Bi(NO_3)_3.5H_2O$		0.31946		
Bi	OC1	Bi		1.90399		
2.	0011111111111	BiONO ₃		0.04232		
		Bi(NO ₃) ₃ .5H ₂ O		0.27088		
		Bi ₂ O ₃		T.95142		
Bi.	$_{2}S_{3}$	Bi				0.09036
231	2.03	Bi_2O_3		1.95707		
Boro	n, B=11	2 3				1 1 1 2 2 3
	O_3	В	0.31428	T.49732	3.18186	0.50268
	- 5	H_3BO_3		0.24849		
		$Na_{2}B_{4}O_{7}.10H_{2}O$		0.43612		
KI	BF4	B		2.94067		
	4	$B_{\circ}O_{\circ}$		T.44335		
		2 3	1			

A	Weighed or Found.	Required.	4	A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Boro	n, B = 11					
	BF_4	H_3BO_3	0.49186	T.69184	2.03310	0.30816
		$Na_2B_4O_7.10H_2O$	0.75765	I.87947	1.31990	0.12053
Bron	nine,					
Br	=79.92					
Ag		Br	0.74083	I.86972	1.34980	0.13028
, para		BrO ₃		0.07400		
		HBr	0.75053	I.87537	1.33240	0.12463
Ag	Br	Br	0.42556	T.62896	2.34980	0.37104
		BrO_3		1.83324		
		HBr	0.43113	1.63461	2.31950	0.36539
Br		O	0.10009	T.00038	9.99130	0.99962
Cadn	nium,					
→ Cd	=112.4					
Cd		CdCl,		0.21239		
		$Cd(\tilde{NO}_3)_2$	2.10340	0.32292	0.47543	T. 67708
Cd	0	Cd		1.94220		
		CdCl,		0.15459		
		$Cd(NO_3), \ldots$		0.26512		
Cd	S	Cd	0.77802	T.89099	1.28530	0.10901
		$CdCl_2$	1.26870	0.10338	0.78817	T.89662
		$Cd(NO_3),\ldots$		0.21391		
h		CdÒ		1.94879		
Cd	SO4	Cd		T.73172		
	*	CdCl,		$\bar{1}.94411$		
		$Cd(NO_3), \ldots$		0.05464		
		CdO		1.78952		
Caesi	um.				1.02000	0.22010
	=132.81					
	:Cl	CsCl	1.17390	0.06964	0.85185	T. 93036
_		Cs		0.57349		
		CsCl		0.67627		
Cs		CsCl		0.10278		
		Cs ₂ CO ₂		0.08845		
		Cs _o O		0.02540		
Cs.	O	CsCl		0.07738		
		Cs.SO.		0.10868		
Cs.	PtCl ₆	Cs		1.59587		
		CsCl		T.69865		
-		Cs,CO,		1.68432		
		Cs_2O		1.62127		
			0.41005	1.86592	1 36170	0.3787
		00	0.10401	1.00092	1.001/0	10.1340

	Weighed or			A		
A	Found.	Required.		A	В	
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Caesi		0.01	0.00040	T 00070	1 07470	0.00100
Cs.	$SO_4 \dots \dots$	CsCl	0.93046	$ar{1}.96870 \ ar{1}.95437$	1.07470	0.03130
		Cs_2CO_3 Cs_2O			1.28430	$0.04563 \\ 0.10868$
SO	2	Cs_2O		0.54619		$\overline{1.45381}$
	um, Ca = 40.07	0020	0.01710	0.01013	0.20100	1,10001
	$SO_4 \dots \dots$	CaS	0.30906	T. 49004	3.23568	0.50996
	4	$CaSO_4$		T.76584		0.23416
		$CaSO_4.2H_2O$		T.86781		0.13219
Ca		$CaCl_2 \dots \dots$	2.76989	0.44246	0.36103	T.55754
		CaO			0.714600	T.85406
Ca	$CO_3 \dots \dots$	Ca	0.40043	1.60252	2.49740	0.39748
		$CaCl_2 \dots \dots$		0.04498		1.95502
		$Ca(HCO_3)_2$		0.20945		1.79055
		CaO		T.74843		0.25157
		$CaSO_4$		0.13360		T.86640
		$CaSO_4.2H_2O$		0.23565		1.76435
0-	0	HCl		I.86267		0.13733
Ca	0	Ca		1.85409 0.29652		$0.14591 \ \overline{1.70345}$
		$CaCO_3$		$0.29052 \\ 0.25157$		T.74843
		$Ca(HCO_3)_2$		0.46102		T. 53898
		$CaSO_4$		0.38525		1.61475
		$CaSO_4.2H_2O$		0.48722		Ī.51298
Ca	$(PO_4)_2 \dots$	CaO		T.73407		0.26593
	3(- 4/2	CaSO ₄		0.11932		T.88068
Cal	SO ₄	Ca		1.46884		0.53116
		CaCl,	0.81528	1.91130	1.22659	0.08870
		$CaCO_3 \dots$	0.73519	1.86640	1.36019	0.13360
		CaF_2		I.75850		0.24150
		CaO		1.61475		0.38525
Cl.		Ca		T.75205		0.24795
		$\operatorname{CaCl}_2 \dots \dots$		0.19451		1.80549
00		CaO		T.89796		0.10204
CO	2 · · · · · · · · · · · ·	CaO		0.10528		Ī.89480
M~	100	$CaCO_3$		0.35685		1.64315 T 20207
	$_{2}As_{2}O_{7}O$	$\operatorname{Ca}_{3}(\operatorname{AsO}_{4})_{2}$		0.10793		1.89207 T 95670
	$_{2}P_{2}O_{7}$	$CaO \dots Ca_3(PO_4)_2 \dots$		$0.14321 \\ 0.14402$	0.719100	1.85679 1.85598
	H_4 ₃ PO_4 .	$Oa_3(1O_4)_2,\ldots$	1.09023	0.14402	0.71777	1.80098
(11)	$2\text{MoO}_3 \dots$	$Ca_3(PO_4)_2$	0.08265	9 01795	12 0080	1.08275
NO	O_5	$\operatorname{Ca}(\operatorname{NO}_3)_2 \dots$	1.51907			T.81842
112	5	04(1103)2	1.01907	0.10100	0.0000	1.01014

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Calci	ium					
P.,	O ₅	$Ca_3(PO_4),\ldots$	2.18400	0.33925	0.45787	I.66075
SC)3	CaO				
	o	CaSO ₄	1.70031	0.23053	0.58813	T.76947
		CaSO ₄ .2H ₂ O	2.15020	0.33248	0.46520	I.66764
W	0,	CaWO ₄			0.80530	
Carb	on, C=12.00	*				
	ζ	HCN	0.25061	1.39920	3.99027	0.60080
		KCN			1.65680	
Ag	CN	HCN	0.20202	T.30539	4.95000	0.69461
		KCN	0.48630	0.68690	2.05640	0.31310
Ba	${\rm aCO_3 \dots \dots }$	C	0.06080	2.78390	16.4480	1.21610
		CO_2	0.22293	Ī.34817	4.48570	0.65183
		CO ₃	0.30400	1.48287	3.28950	0.51713
Ba	O	CO_2	0.28689	T.45771	3.48570	0.54229
		CO_2	0.57377	T.75874	1.74280	0.24126
		(bicarbonate)				
Ca	O O	CO_2	0.78487	T.89480	1.27432	0.10528
		CO_2	1.56973	0.19575	0.63716	T.80425
		(bicarbonate)				
CC)2	$BaCO_3 \dots \dots$			0.22293	
		$Ba(HCO_3)_2$	2.94760	0.46947	0.33925	T.53053
		C	0.27273	1.43573	3.66676	0.56427
		$CaCO_3$	2.27431	0.35685	0.43969	Ī.64315
			1.84151			
		CO_3	1.36365	0.13470	0.73333	T.86530
		$Cs_2CO_3 \dots \dots$			0.13512	
		CsHCO ₃			0.22702	
		$FeCO_3$			0.37983	
		$\text{Fe}(\text{HCO}_3)_2$			0.49477	
		K_2CO_3	3.14090	0.49706	0.31838	T.50294
		$\mathrm{KHCO_3}$	[2.27520]	0.35702	0.43952	I.64298
		K_2O			0.46709	
		$\text{Li}_2\text{CO}_3 \dots \dots$			0.59468	
		LiHCO ₃			0.64753	
		$\text{Li}_2\text{O}\dots$			1.47254	
		$MgCO_3$			0.52182	
			1.66290			
		MgO	0.91637			
		$MnCO_3$	2.61210	0.41698	0.38284	T.58302
		$\operatorname{Mn}(\operatorname{HCO}_3)_2 \dots$	2.01080	0.30337	0.49731	1.69663
		MnO	[1.61210]	0.20738	0.62033	1.79262

-						
A	Weighed or Found.	Required.	A		F	
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Carbo						
CO	2 · · · · · · · · · · · ·	Na_2CO_3		0.38186		
		NaHCO ₃		0.28087		
		Na ₂ O		0.14894		
		$(NH_4)_2CO_3$		0.33918		
		NH_4HCO_3		0.25445		1 .
		$Pb_3CO_3 \dots$		0.78322		C73
		Rb_2CO_3		0.71997		
		$RbHCO_3$		0.52209		
		$Rb_2O \dots \dots$		0.62816		
		$SrCO_3$		0.52572		
		$Sr(HCO_3)_2$		0.37699		
		SrO	2.35533	0.37205	0.42457	1.62795
Ceriu	,					
	=140.25					
Ce.		$Ce(NO_3)_4$	2.76850	0.44225	0.36120	1.55775
		$Ce(NO_3)_4$				
		$(NH_4NO_3)_2.H_2O$		0.60624		
		Ce_2O_3		0.06861		
		CeO_2		0.08926		
		$Ce(SO_4)_3$	2.02750	0.30696		
Ce_2	O_3	$Ce(NO_3)_4$	2.36390	0.37364	0.42302	1.62636
		$Ce(NO_3)_4$				
		$(NH_4NO_3)_2.H_2O$	3.44850	0.53763	0.28998	1.46237
		CeO_2		0.02065		
		$Ce_2(SO_4)_3$		0.23835		
Ce(O_2	$Ce(NO_3)_4 \dots$	2.25420	0.35299	0.44362	T.64701
		$Ce(NO_3)_4$				
		$(NH_4NO_3)_2.H_2O$		0.51698		
Ce	$_{2}(C_{2}O_{4})_{3}.3H_{2}O$.	$Ce_2(SO_4)_3 \dots$		0.21770		
		Ce	0.46863	1.67083	2.13380	0.32917
Chlor	ine, $Cl = 35.46$					
Ag		C1		T.51680	4	
		HCl		1.52886		
Ag	Cl	Cl	0.24738	T.39337	4.04230	0.60663
		HCl	0.25435	1.40543	3.93160	0.59457
	$CrO_4 \dots$	Cl		1.44697		
Ca		Cl	1.76990	0.24795	0.56500	T.75205
K.		Cl		1.95756		
KC	1	Cl	0.47558	1.67723	2.10260	0.32277
Li.		Cl	5.10947	0.70838	0.19579	1.29162
Mg		Cl	2.91620	0.46481	0.34292	T.53519
Mg	Cl ₂	C1	0.74465	T.87195	1.34300	0.12805
	O_2	C1	0.81583	T.91160	1.22570	0.08840
-						

	Weighed or		I		1	
A	Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Chlor		C1				T 0
		Cl				T.81199
	O1	Cl				0.21712
	Cl	Cl		$\begin{bmatrix} 0.29350 \\ \overline{1}.83359 \end{bmatrix}$		
	$(H_4)_2SO_4$	HCl		1.74191		
	CrO_4	Cl		1.34143		
Chron		01	0.21500	1.01110	1.00001	0.00007
	= 52.0					
	CrO ₄	Cr	0.20529	T.31236	4.87122	0.68764
		Cr_2O_3		I.47707		
		CrO_3		$\overline{1.59626}$		
		CrO_4	0.45784	1.66072	2.18415	0.33928
		$Cr_2(SO_4)_3.18H_2O.$		0.15045		
Cr_2	$\mathcal{O}_3 \dots \dots$	Cr		T.83519		
		CrO_3		0.11919		
	CrO ₄	CrO_3		1.71175		
K_2	$\operatorname{Cr}_2\operatorname{O}_7$	CrO_3		1.83269		
Pb(CrO ₄	Cr		I. 20666		
		$\operatorname{Cr_2O_3}$		I.37147		
		CrO_3		T. 49066		
		Cr_{4}		1.55512 0.04485		
		$Cr_2(SO_4)_3.18H_2O$ K_2CrO_4		1.77891		
		$K_2Cr_2O_4$ $K_3Cr_2O_7$	0.00100	1.65797		
Cohali	t, $Co = 58.97$	$\mathbf{n}_2 \cup \mathbf{n}_2 \cup \mathbf{n}_3 \cup \mathbf{n}_4 \cup \mathbf$	0.40430	1.00191	4.19000	0.04200
	.,	CoO	1 27140	0 10426	0 78657	T 89574
		Co(NO ₃) ₂ .6H ₂ O				
		$CoSO_4.7H_2O$				
Co(NO,),	4 2				
(.	$\mathrm{KNO}_{\scriptscriptstyle 2})_3$	Co	0.13037	T.11517	7.67060	0.88483
		CoO		T.21943		
Co ₃	04	Co	0.73433	1.86589	1.36180	0.13411
		CoO		1.97015		
CoS	$O_4 \dots \dots$	Co	0.38036	T.58019	2.62920	0.41981
		CoO		1.68445		
(Co	$\mathrm{SO_4})_2(\mathrm{K_2SO_4})_3$	Co		1.15107		
0.1	[93.5]	CoO	0.18002	T.25533	5.55480	0.74467
	bium, Cb=	CI	0 =000	T 0.172		0 15.55
	O_5	Cb	0.70038	$\overline{1}.84533$	1.42780	0.15467
	r, $Cu = 63.57$	CuO	1 05170	0.00750	0 70001	T 00050
Cu.		CuO	1.25170	0.09750	0.79891	1.90250

A	Weighed or Found.	Required.		1	I	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Coppe						
Cu		$CuSO_4.5H_2O$	3.92830	0.59420	0.25457	1.40580
		$\operatorname{Cu}_{2}\left\{ egin{matrix} \operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \\ (\operatorname{AsO}_{2})_{3} \end{smallmatrix} \right\} \ldots$	3.98800	0.60076	0.25075	T.39924
Cu(CNS	Cu			1.91370	
		CuO			1.52880	
Cu(0	Cu			1.25170	
0		$CuSO_4.5H_2O$			0.31864	
	0	Cu			1.12580	
Cu_2	S	Cu			1.25220	
		CuO			1.00040	
		Cu_2O			1.11220	
		$CuSO_4.5H_2O$	1.56850	0.19548	0.03750	1.80452
	$_{2}\mathrm{As}_{2}\mathrm{O}_{7}$	$\operatorname{Cu}_{2}\left\{ egin{matrix} \operatorname{C}_{2} \operatorname{H}_{3} \operatorname{O}_{2} \\ (\operatorname{AsO}_{2})_{3} \end{smallmatrix} \right\} \ldots .$	1.08845	0.03681	0.91874	T.96319
	m, Er = 167.4			_		
	O_3	Er	0.87462	1.94182	1.14330	0.05818
Fluor						
$\mathbf{F} =$				now .		
Bak	SiF_6	BaF_2	0.62705	$\frac{1.79730}{7}$	1.59480	0.20270
		F				0.38975
		HF				0.36730
		H_2SiF_6				0.28733
		SiF_4				0.42837
		SiF_6				0.29345
Cal	F ₂	F				0.31270
		HF				0.29024
0.0	70	H_2SiF_6				1.78972
Car	SO ₄	F				0.55420
T/C S	2: E	HF				0.53174
1120	SiF_6	F			1.93420	0.26406
		HF H ₂ SiF ₆		T.81591		0.28400
		KF				0.13409
		SiF ₆			1.54950	
HS	SiF ₆	F				0.19021 0.10242
a.s. gh	6	2HF				0.10242
		6HF				0.07997
		SiF_4				0.14104
		SiF_6				0.14104
Gallin	m, Ga = 69.9	O.L. 6	0.00001	1.00000	1.01110	9.00012
	0	Ga	0 74441	T 87181	1 34340	0.12819
- 4	$S_2 \dots S_3$	Ga				
	3	G. G	0.00200	1.11200	11.00020	10.22112

A	Weighed or Found.	Required.		A]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Germa	anium,					
	=72.5			_		
	$0_2 \dots \dots $	Ge			1.44140	
K_2	$\mathrm{GeF}_6 \dots$	Ge	[0.27390]	1.43759	3.65100	0.56241
	num, $Gl = 9.1$	~*		T www.		
GIC)	Gl				
		$GlCl_2$				
C 11	A 107 0	$GISO_4.4H_2O$	7.06070	0.84885	0.14163	1.15115
	Au = 197.2	4 01	1 50040	0 10700	0 04050	TOTOGA
Au		AuCl ₃				
		HAuCl ₄ .4H ₂ O			0.47852	
TT-ud-	TT 1 000	$KAu(CN)_4 \cdot H_2O \dots$	1.81720	0.25941	0.55028	1.74059
	gen,H=1.008	H	0 11100	T 01001	8.93630	0.05116
	n, In = 114.8	11	0.11190	1.04004	0.95050	0.90110
	$D_3 \dots D_3$	In	0.82700	T 01755	1.20900	0 08945
	S_3	In			1.41870	
	$\mathbf{i}, \mathbf{I} = 126.92$	111	0.10112	1.01001	1.41070	0.10100
		HI	1 18590	0 07403	0.84328	T 92597
118		I			0.84998	
ΑøΙ		HI		77700	1.83540	
		I			1.85000	
		$IO_3 \dots \checkmark \dots$			1.34230	
		IO			1.22980	
		I_2O_5			1.40670	
		$I_{\mathfrak{d}}O_{7}$			1.28360	
Pd		ĤI			0.41703	
		I	2.37900	0.37640	0.42034	I.62360
PdI	2	HI	0.70965	T.85104	1.40920	0.14896
		I	0.70404	1.84760	1.42040	0.15240
		$IO_3 \dots \dots$			1.03060	
		$IO_4 \dots \dots$			0.94421	
		I_2O_5			1.07990	
		I_2O_7			0.98553	
TH		HI			2.58680	
		I			2.60740	
	•	$IO_3 \dots \dots$			1.89190	
		$IO_4 \dots \dots$			1.73330	
		$I_2O_5 \dots \dots$			1.98250	
Y	F. FF 04	$I_2O_7\ldots\ldots$	0.55275	1.74253	1.80910	0.25747
	Fe = 55.84	E. (CN)	0 44949	T CAPOO	0.0000	0.25410
Ag.		Fe ₇ (CN) ₁₈	0.44240	1.04582	2.26036	0.35418
CN		(Prussian blue)	1 92400	0 26262	0 54406	T 79697
OIV.		$\operatorname{Fe_7(CN)_{18}}$	1.00492	0.20302	0.04490	1.73037

					1	
A	Weighed or Found.	Required.	A	A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Iron						
CO_2		FeO			0.61238	
		$FeCO_3$			0.37978	
_		$Fe(HCO_3)_2$	1		0.49477	
Fe.		$Fe(HCO_3)_2$			0.31396	
		FeO			0.77727	
		Fe_2O_3			0.69940	
		$FeSO_4$			0.36758	
		$FeSO_4.7H_2O$			0.20083	
		$FeSO_4.(NH_4)_2SO_4.$ $6H_2O$			0.14239	
FeC)	Fe			1.28656	
		FeCO ₃			0.62017	
		$Fe(HCO_3)_2$			0.40392	
_		$\mathrm{Fe_2O_3}$			0.89980	
Fe_2	$O_3 \dots O_3 \dots$	Fe			1.42977	
		FeCl ₃			0.49211	
		$FeCO_3$			0.68924	
		$Fe(HCO_3)_2$			0.44889	
		FeO			1.11136	
		$\operatorname{Fe_3O_4}$			1.03460	
		FeSO ₄			0.52556	
		FeSO ₄ .7H ₂ O		0.54186		T.45814
		$FeSO_4.(NH_4)_2SO_4.$ $6H_2O$			0.20351	
		$\operatorname{Fe}_2(\operatorname{SO}_4)_3 \dots$			0.39940	
		FePO ₄			0:52920	
FeF	O ₄	Fe			2.70200	
TT 0		FeO			2.10019	
FeS		Fe			1.57425	
		FeO			1.22370	
3.5		$\operatorname{Fe_2O_3}$			1.10110	
C 2	As_2O_7	FeAsO ₄			0.79714	
SO_3		FeO			1.11450	
w .1		$FeSO_4$	1.89744	0.27812	0.52709	1.72188
Lantha				1		
	= 139.0	т.	0.000	T 00000	1 17070	0.00010
La ₂ (03	La	0.85275	1.93082	1.17270	0.06918
,	Pb = 207.1	DI Ó	1 07700	0.0000	0.00000	T 00700
Pb.		PbO				
		PbCO ₃				
		(PbCO ₃) ₂ Pb(OH) ₂				
		Pb(OH) ₂	1.16430	0.06606	0.85890	1.93394

A	Weighed or Found.	Required.		A	F	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Lead						
PbC	12	Pb			1.34240	
		PbO			1.24610	
PbC	CrO4	Pb			1.56011	
		$Pb(C_2H_3O_2)_2.3H_2O$			0.85206	
		$(PbCO_3)_2Pb(OH)_2$			1.19980	
		PbO			1.44823	
		Pb ₃ O ₄			1.41424	
DhO		PbSO ₄			1.06574 1.07720	
FDC	·····	Pb PbCO ₃			0.83528	
		$Pb(NO_3)_2$			0.67377	
PhO)2	Pb		_	1.15450	
100	2				0.72209	
PbS	04				1.29880	
		Pb		-	1.46390	
		$Pb(C_2H_3O_2)_2.3H_2O$	1.25070	0.09718	0.79947	1.90282
			0.88101	1.94498	1.13510	0.05502
					1.17310	
		$Pb(NO_3)_2$			0.91559	
		PbO	1		1.35890	
		PbO_2		_	1.26790	
		Pb ₃ O ₄			1.32720	
PbS				-	1.15490	
		PbO			1.07200	
T	T. 0.04	PbSO ₄	1.26760	0.40298	0.78890	1.89702
	m, $Li = 6.94$	1.00	1 (0100	0.00700	0 50555	77400
CO_2		Li ₂ CO ₃	1		0.59555	
		LiHCO ₃			$\begin{bmatrix} 0.64753 \\ 1.47255 \end{bmatrix}$	
T;C					6.10958	
LICI		$\mathrm{Li}_2\mathrm{O}$			2.83807	
LioC	O ₃				5.32273	
23120		LiCl			0.87124	
					0.54366	
					2.46300	
LiH	CO3				4.54821	
					2.15389	
					0.27176	
Li ₃ P	O ₄				5.56287	
		LiCl			0.91052	
			0.95689	1.98084	1.04510	0.01916
		LiHCO ₃	1.76008	0.24553	0.56815	.75447

Α,	Weighed or Found.	Required.		A	1	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Lithiu	ım					
Li ₃ I	PO_4	Li ₂ O		T.58769	2.58419	
		Li ₂ SO ₄		0.15351	0.70225	
		Li ₂ SO ₄ .H ₂ O		0.21942	0.60337	
Li ₂ S	SO ₄	Li		1.10119		0.89881
~~		LiCl		I.88720		0.11280
SO ₃		Li ₂ O	0.37317		2.67974	
3/		Li ₂ SO ₄	1.37319	0.13773	0.72823	1.86227
Magne	= 24.32					
	= 24.32 $80_4 \dots \dots$	MgSO ₄	0 51576	T 71945	1.93890	0 22755
Dak	04	MgSO ₄ .7H ₂ O			0.94693	
Br.		Mg			6.57320	
2-11		MgBr,			0.86806	
		MgBr ₂ .6H ₂ O			0.54698	
Cl		Mg			2.91620	
		MgCl ₂			0.74465	
		$MgCl_2.6H_2O$	2.86720	0.45746	0.34877	T.54254
CO_2		$MgCO_3$			0.52182	
		MgO			1.09130	
Ι		Mg			10.4380	
7.5		MgI ₂			0.91258	
		$MgCO_3$			0.28842	
	CO_3	$Mg(HCO_3)_2$			0.57619	T.76057
mg	0	Mg			1.65790 0.47818	
		$Mg(HCO_3)_2$			0.47513	
		$MgSO_4$			0.33491	
Mø.	P_2O_7	Mg		Time .	4.57900	
	207	MgCl ₂			1.16924	
		MgCl ₂ .6H ₂ O			0.54765	
		MgCl, KCl.6H,O			0.40072	
		$MgCO_3$	0.75719	$\bar{1}.87920$	1.32062	
		$Mg(HCO_3)_2$	1.31406	0.11862	0.76097	T.88137
		MgO		1.55879		
		$MgSO_4$			0.92479	
7.5		$MgSO_4.7H_2O$			0.45176	
Mgs	SO ₄	Mg			4.94502	
22		MgO			2.98590	
SO ₃		MgO			1.98580	
		MgSO ₄			0.66509 0.32483	
		$MgSO_4.7H_2O$	5.07800	0.48835	0.32483	1.01100

	1					
A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Mang	anese,					
Mn	=54.93					
Bas	SO ₄	MnSO ₄	0.64690	T.81084	1.54580	0.18916
CO	2	MnGO ₃	2.61210	0.41698	0.38284	1.58302
		MnO	1.61210			1.79262
Mn		$MnCO_3$	2.09230	0.32062	0.47795	T.67938
		MnO	1.29130	0.11102		
		Mn_2O_3	1.43690			T.84256
Mn	$(HCO_3)_2$	$MnCO_3$	0.64950			0.18742
Mn	00	$MnCO_3$	1.62030			1.79040
		$Mn(HCO_3)_2$	2.49470			1.60298
		Mn_2O_3	1.11280			T. 95359
Mn	$_{3}O_{4}$	Mn	0.72026	1	1.38840	L
		$MnCO_3$	1.50700			1.82189
		$\operatorname{Mn}(\operatorname{HCO}_3)_2 \dots$	2.32030	1		1.63447
		MnO	0.93006			0.03149
		Mn_2O_3	1.03490	1		T. 98508
		MnO_2	1.13980			I.94315
	- 0	$MnSO_4$	1.98000			1.70334
Mn	$_{2}P_{2}O_{7}$	Mn	0.38691			0.41239
		$MnCO_3 \dots$	0.80952			0.09177
		MnO	0.49961			0.30137
		MnO_2				0.21303
		MnSO ₄	1.06344			1.97322
Mn	S	Mn	0.63138			0.19971
		$MnCO_3$			1	1.87909
		MnO				0.08869
~~		MnSO ₄				1.76054
SO	3	MnO				0.05264
3/		MnSO ₄	1.88580	0.27551	0.53026	T.72449
Merci						
0	= 200.6	HaCl	1 25252	0 19147	0 72000	T.86853
ng		HgCl ₂	1.35353			T.96667
		$\begin{array}{c} \operatorname{HgO} \dots & \\ \operatorname{HgS} \dots & \end{array}$	1.156825			T. 93673
Ha	Cl	Hg	0.84978			0.07069
IIB	01	$ \stackrel{\mathrm{Hg}}{\mathrm{HgCl}_2} \dots $				T.93922
		$ \begin{array}{c} \operatorname{HgOI}_2 \\ \operatorname{HgNO}_3 \\ \ldots \end{array} $	1.11015			T. 95462
		$Hg_{\circ}O$	0.88364			0.05371
		HgO				0.03716
		HgS				0.03130
Ha	S	HgCl,				T. 93180
118	~	$Hg(CN)_2$				T. 96313
		1 11g(ON)2	1.00000	10.00087	0.91000	11.9031

Found.	A	Weighed or	Required.		A		В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Found.					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hg	S					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Molvi	hdenum.	116004	1.21010	0.10010	0.10002	1.00122
$\begin{array}{c} \text{MoS}_3 & (NH_4)_2 \text{MoO}_4 1.36170 0.13408 0.73437 T.86 \\ \text{Mo}_3 & (Ne)_4 0.49946 T.69850 2.00220 0.30 \\ \text{MoO}_3 0.74919 T.87459 1.33480 0.12 \\ (NH_4)_2 \text{MoO}_4 1.02020 0.00867 0.98024 T.99 \\ (NH_4)_2 \text{MoO}_4 1.02020 0.00867 0.98024 T.99 \\ \text{MoO}_3 0.92053 T.96404 1.08630 0.03 \\ (NH_4)_2 \text{MoO}_4 1.25350 0.09812 0.79778 T.90 \\ \text{MoO}_3 0.26151 T.41749 3.82390 0.58 \\ \text{MoO}_3 0.39226 T.59358 2.54936 0.40 \\ (NH_4)_2 \text{MoO}_4 0.53414 T.72766 1.87220 0.27 \\ \text{Neodymium}, \\ \text{Nd}_2 \text{O}_3 = 143.3 \text{Nd} 0.85655 T.93275 1.16740 0.06 \\ \text{Nichel, Ni} = 58.68 \\ \text{Ni} Ni (NO_3)_2.6H_2 \text{O} $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo	O ₃	Mo	0.66667	T.82391	1.50000	0.17609
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo	S_3					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			MoO_3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/3T	TT \ DO	$(NH_4)_2MoO_4$	1.02020	0.00867	0.98024	1.99133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			W. O.	0.000	TOCADA	1 00000	0.00500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	($(MOO_3)_{12} \dots$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ph	MoO					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1000_4	MoO	0.20101	T 59358	2 54936	0.30231
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(NH ₄) ₂ M ₀ O ₄	0.53414	I.72766	1.87220	0.27234
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Neod	ymium,	(-,4)2	0,00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Nd	0.85655	I.93275	1.16740	0.06725
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nicke	el, $Ni = 58.68$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	271						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nı	0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NT:	20					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11/1/	504					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nitro	gen, $N = 14.01$	21100411-2011111	1.0100	0.2000		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag	NO2	HNO,	0.30554	T.48507	3.27290	0.51493
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.24699	1.39269	4.04870	0.60731
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.53417	T.72768	1.87210	0.27232
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N.						
$egin{array}{cccccccccccccccccccccccccccccccccccc$,						
$N_2\tilde{O_5}$ $3.85510 0.58603 0.25940 $ $\overline{1}.41$	1	- 10°	N_2O_3	2.71310	0.43346	0.36858	1.56654
1 an U ₃ 1 1 0.10481 1.21097 0.00780 0.78	NT.	NO					
	INS	11 O 3	AV	0.10481	1.21097	0.00780	0.70000

A	Weighed or Found.	Required.		A]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Nitrog	en					
	VO3	N_2O_5	0.63533	T.80300	1.57400	0.19700
	3	$\tilde{\text{HNO}}_3$	3.70060	0.56827	0.27023	T. 43173
		N		T. 91523		
		N_2O_5		0.50126		
NH	4Cl	HNO_3		0.07113		
		N		T. 41809		
(NI	$H_4)_2 PtCl_6$	HNO ₃		T. 45309		
		N		$\frac{2.80005}{1.80005}$		
	- 1	N_2O_5		T.38608		
(NF	$H_4)_2SO_4$	N		I.32641		
704		N_2O_5		I. 91244		
Pt.		HNO ₃		T.81003		
		N		I.15699		
~~		N_2O_5		T.74302		
SO_3		HNO_3		0.19704		
		N		T. 54400 0.13003		
	100.0	N_2O_5	1.34910	0.13003	0.74120	1.80997
	m, Os = 190.9	Os	0 74902	T.87444	1 22520	0 19556
) ₄	US	0.74893	1.8/444	1.33330	0.12550
Pallad	= 106.7					
	${}^{\circ}dCl_6$	Pd	0 26921	T.42864	2 79700	0 57126
1121	uC1 ₆	PdCl,.2H,O		T.73018		
Pd		PdCl ₂ .2H ₂ O				
Iu.				0.33493		
PdI		Pd	0.29594	I.47120	3 37910	0.52880
Phosp		2 0000000000000000000000000000000000000	0.20001	~.1,120	0.01010	0.02000
	31.04					
	PO_4	P	0.07414	2.87004	13.4884	1.12996
00	*	PO4	0.22700	T.35603	4.40520	0.64397
		P_2O_5		T.22962		
Ag_4	P_2O_7	P	0.10251	T.01077	9.75500	0.98923
	~ '	PO ₄	0.31388	1.49676	3.18600	0.50324
		P_2O_5	0.23461	1.37035	4.26229	0.62965
Al ₂ ($O_3 \dots \dots$	P_2O_5		0.14308		
AlF	O ₄	PO ₄	0.77830	T.89115	1.28453	0.10885
		P_2O_5		1.76474		
	$(PO_4)_2 \dots$	P_2O_5				
Fel	PO₄	PO_4				
		P_2O_5				
Mg	$_{2}P_{2}O_{7}$	Na ₂ HPO ₄				
		$Na_2HPO_4.12H_2O$.	3.21638	0.50744	0.31006	1.49256

		•				
A	Weighed or Found.	Required.		A]	В
В	Required.	Weighed or Found.	Factor	Loga- rithm.	Factor.	Loga- rithm.
Phos	phorus					
Mg	P ₂ P ₂ O ₇	NaNH ₄ HPO ₄ .				
		4H ₂ O	1.8771	$3 \mid 0.27373$	0.53244	T.72627
		P	0.2786	1 I.44511	3.58766	0.55481
		PO ₄		4 I.93138		
		P_2O_5	[0.6385]	$2 \bar{1}.80517$	1.56615	0.19483
	H_4) ₃ PO_4					
1	$(MoO_3)_{12}$	P		$4 \overline{2}.21842$		
		PO ₄		$3 \overline{2}.70441$		
		P_2O_5		4 2.57800		
P_2	O_5	Na ₂ HPO ₄		0 0.30094		
		$Na_2HPO_4.12H_2O$		$2 \mid 0.70267$		
		NaNH ₄ HPO ₄ .4H ₂ O		40.46896		
	2000 P.OT T	P		$4 \bar{1}.64042$		
U_2	$P_2O_1 \dots$	P		$2 \overline{2}.93860$		
		PO ₄		$2 \underline{1}.42459$		
		P_2O_5	[0.1986]	9 1.29817	5.03300	0.70183
Platin						
	= 195.0					7
K_2	PtCl ₆	H_2 PtCl ₆ .6 H_2 O		$4 \underline{0.02761}$		
		Pt		1 I. 60370		
		PtCl ₄		6 1.84090		
	**	PtCl ₄ .5H ₂ O		$6 \underline{1}.94377$		
(N	$H_4)_2 PtCl_6 \dots$	Pt		$0\ \overline{1}.64306$		
		PtCl ₄		4 T. 88026		
T		PtCl ₆		6 I. 96320		
Pt.		H_2 PtCl ₆ .6 H_2 O		0 0 . 42419		
		PtCl ₄		30.23720		
ъ.		$PtCl_4.5H_2O$	[2.1881]	0.34007	0.45701	1.65993
	sium, = 39.10					
Ag		KBr	1.1033	0.04268	0.90640	1.95732
		KCl	0.6911	4 I.83957	1.44690	0.16043
		KClO ₃	1.1361	10.05541	0.88022	1.94459
		KClO ₄ ······	1.2844	0.10870	0.77857	T.89130
		KCN		1 T.78071		
		KI		0.18722		
Ag	Br	KBr		5 1.80192		
		KBrO ₃	0.8893	1.94907	1.12440	0.05093
Ag	Cl	KCl		7 7.71614		
			0.8550	$3 \bar{1}.93198 $	1.16960	0.06802
		$KClO_4$		1.98527		
Age	CN	KCN	0.4863	T.68690	2.05640	0.31310

	Weighed or	Deminal		A		
A	Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Potas	sium					
Agl	[KI			1.41430	
		KIO ₃			1.09710	
Bac	$CrO_4 \dots \dots$	K_2CrO_4			1.30453	
TO (20	$K_2Cr_2O_7$			1.72359	
Bas	SO ₄	KHSO ₄		1.76597		
		K_2S			2.11640	
D.		${ m K_2SO_4$	0.74059 0.48924	eren.	$1.33950 \\ 2.04400$	0.12092 0.31048
Dr,		KBr				1.82704
Col	F ₂	KF.2H ₂ O			0.41480	
	804	KF.2H ₂ O			0.72325	I.85929
		K	1	0.04244		T. 95756
01.		KCl			0.47558	
		KClO,		0.53861		T.46139
		KClO			0.25592	T.40810
		K ₂ O	1.32820	0.12328	0.75287	T.87672
CO	2	K ₂ O			0.46709	T.66940
		K_2CO_3			0.31838	1.50294
Ι		KI			0.76448	
~-		KIO ₃	1.68630	0.22692	0.59304	1.77308
K.		K_2O			0.83015	
77.7	·	KNO ₃		0.41261 T.51050		1.58739
KE	3r	K K ₀ O			$3.04400 \\ 2.52700$	
KC	1	K			1.90690	
17.0	4	K ₂ CO ₂			1.07900	
		$K_{2}Cr_{2}O_{7}$			0.50699	
		KHCO ₃			0.74480	and a
		KNO ₃			0.73742	1.86772
		K ₂ O	0.63169	T.80051	1.58300	
KC	1	K ₂ SO ₄	1.16860	0.06768	0.85570	T.93232
KI		K			4.24600	
		K_2O	1	4	3.52480	
KC	ЭН	K_2CO_3			0.81201	
T7. /		K_2O			1.19130	
K_2	0	K		1	1.20460	_
		K_2CO_3			$0.68161 \\ 0.32019$	
		$K_2Cr_2O_7$			0.32019 0.94098	
		$ \text{KHCO}_3 \dots \text{KNO}_2 \dots $			0.94098 0.46583	
		$K_{2}SO_{4}$			0.54055	
K.1	PtCl _a	\mathbf{K}_{2}				
	6		10.10001	1 - 20010		0.70001

A	Weighed or Found.	Required.		A		В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Potass						
K_2F	PtCl ₈	K_2CO_3	0.28427	1.45373	3.51781	0.54627
		KCl		1.48676		
		KHCO ₃		$\bar{1}.31369$		
		$KNO_3 \dots \dots$		T.61904		
		K ₂ O		I.28727		
		$K_2SO_4K_2SO_4.Al_2(SO_4)_3.$	0.35846	1.55444	2.78971	0.44556
		$24 H_2 O \dots$	1.95218	0.29052	0.51225	T.70948
		$K_2SO_4.Cr_2(SO_4)_3$	9 05547	0 21202	0 49661	T 60710
TZ 0	10	$24 H_2 O \dots$		0.31282		
N ₂ S	SO ₄	K		1.65199		
		K_2CO_3		I.89929		
		KCl		1.93232		
		KHCO ₃		0.06028		
		KHSO ₄		0.19393 T. 00000		
		KNO ₂		T.98980		
		KNO ₃		0.06460		
		K_2O		T.73283		
3.5	4 0	K_2S		T.80134		
Mg_2	As_2O_7	K_3AsO_4		0.21756		
3.5	^	K ₂ HAsO ₄		0.14768		1000
Mn ₃	₃ O ₃	K_2MnO_4		0.41244		
3.5	~	KMnO ₄		0.31642		
Mns	S	K_2MnO_4		0.35524		
		KMnO ₄		0.25922		most.
		KNO ₃		0.85835		
	3	KNO_3		0.77358		
NO		KNO ₃		0.52752		
)3	KNO_2		0.35008		
\cdot N ₂ C)5	K_2O		T.94055		
		KNO_3		0.27232		
Pt.		K		T.60273		
		KCl		1.88306		
SiO	2	K_2SiO_3		0.40861		
SO_3		K_2SO_4	2.17650	0.33775	0.45946	1.66225
	odymium,					
Pr=	= 140.6					
	03	Pr	0.85420	T.93156	1.17070	0.06844
Rhodi	um,					
	=102.9					
Rh		Na ₃ RhCl ₆	3.73820	0.57266	0.26751	T.42734
		RhCl ₃	2.03380	0.30831	0.49169	I.69169
						·

A Weighed or Found.		Required.		A	В		
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.	
Rubid	ium,						
	= 85.45						
AgC	31	Rb	0.59612	T.77534	1.67750	0.22466	
		RbCl		T.92610			
Cl		Rb		0.38197			
		RbCl		0.53273			
Rb		RbCl	1.41500	0.15076	0.70671	I.84924	
		Rb_2CO_3		0.13068			
		Rb_2O		0.03887			
		Rb_2SO_4		0.19372			
Rb(1	Rb_2CO_3		T.97992			
		Rb_2SO_4	1.10400	0.04296	0.90581	1.95704	
Rb_2	$CO_3 \dots \dots$	$RbHCO_3$	1.26860	0.10333	0.78826	T.89667	
Rb_2	0	RbCl	1.2939	0.11189	0.77288	T.88811	
		Rb_2SO_4		0.15484			
Rb_2	PtCl ₆	Rb		1.47016			
		RbCl		1.62092			
		$Rb_2CO \dots$		T.60084	2.50706	0.39916	
		RbHCO ₃	0.50602	T.70417			
		Rb_2O	0.32287	T.50903	3.09721	0.49097	
Rb_2	$SO_4 \dots \dots$	Rb_2CO_3		1.93696			
		RbHCO ₃	1.09720	0.04029	0.91140	1.95971	
Seleni	um, Se $= 79.2$						
Se.		H_2SeO_3		0.21258			
		H_2SeO_4	1.83360	0.26329	0.54539	T.73671	
		SeO_2		0.14737			
		SeO_3	1.60600	0.20576	0.62265	I.79424	
Silicor	n, Si = 28.3						
Bas	SiF 6	SiF_4	0.37294	I.57163	2.68140	0.42837	
		$SiO_2 \dots \dots$	0.21561	1.33367	4.63800	0.66633	
K_2S	iF ₆	SiF4		I.67487			
		SiO_2	0.27347	T.43691	3.65670	0.56309	
SiO	2	H_2SiO_3		0.11355			
		Si		1.67147			
		SiF_4		0.23796			
		SiO_3	1.26530	0.10220			
		SiO_4		0.18488			
		Si ₂ O		0.14551			
		Si(OH)4		0.20344	0.62598	1.79656	
Silver	Ag = 107.88						
Ag		AgNO ₃	1.57480	0.19723	0.63499	$\bar{1}.80277$	
		Ag ₂ O	1 07490	0.03107	0.03005	T 06803	

A	Weighed or Found.	Required.		A	В		
В	Required.	Weighed or Found.	Factor.	Loga-	Factor.	Loga-	
						Tithin.	
ilver	D	A	0 57440	T 77004	1 74000	0.04070	
	3r	Ag			1.74080		
Agt	21	Ag			1.32870		
		$AgNO_3$			$0.84372 \\ 1.23700$		
Λ αν(TAP	Ag_2O			1.23700 1.24110		
Agt	ON	Ag			2.17650		
	PO_4	Ag			1.29318		
	$P_2O_7 \dots$	Ag			1.40342		
		Ag			0.74083		
DI.		Ag			0.42556		
CI		. 0		$0.37104 \\ 0.48320$		T.51680	
OI.		Ag			0.32370 0.24738		
т		AgCl			1.17650		
1		AgI			0.54055		
odin	n, Na = 23.00	Ag1	1.00000	0.20717	0.04000	1.10200	
	n, Na 25.00	NaBr	0.05622	T 08056	1.04580	0 01044	
11g.		NaCl			1.84530		
		NaI			0.71958		
ΔαT	Br	NaBr			1.82470		
	21	NaCl			2.45200		
		NaI			1.56610		
	SO ₄	NaHSO ₄			1.94400		
Duc	,04	NaHSO ₄ .H ₂ O		- I	1.69040		
		Na ₃ S			2.99010		
		Na_2SO_3			1.85150		
		$Na_2SO_3.7H_2O$			0.92568		
		Na_2SO_4			1.64320		
		$Na_2SO_4.10H_2O$			0.72444		
B.O	3	$Na_2B_4O_7$			0.69308		
\mathcal{L}_2	3	Na ₂ B ₄ O ₇ .10H ₂ O			0.36634		
Br		Na			3.47480		
		NaBr			0.77654		
		Na ₂ O			2.57810		
CaC	O ₃	Na ₂ CO ₃			0.94423		
	2	NaF		1	0.92965		
		Na ₂ CO ₂			0.52915		
	0,	Na ₂ CO ₂			1.28450		
		Na			1.54170		
		NaCl			0.60657		
		Na ₂ O			1.14390		
~~		Na ₂ CO ₃			0.41509		

A	Weighed or Found.	Required.		A]	В
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sodiu						
CO ₂		Na ₂ O	1.40910	0.14894	0.70968	T.85106
H_3 E	3O ₃	$Na_2B_4O_7$	0.81420	T.91073	1.22820	0.08927
		$Na_2B_4O_7.10H_2O$	1.54040	0.18763	0.64918	T.81237
Ι		Na	0.18122	1.25820	5.51820	0.74180
		NaI	1.18120	0.07233	0.84659	I.92767
		Na ₂ O	0.24425	1.38783	4.09420	0.61217
KB	F_4	$Na_2B_4O_7$	0.40047	T.60257	2.49710	0.39743
		$Na_2B_4O_7.10H_2O$	0.75765		1.31990	
Mg_{2}	As_2O_7	Na ₂ HAsO ₃	1.09471	0.03930	0.91348	0.96070
		Na ₂ HAsO ₄	1.19777		0.83490	
Mg_2	P_2O_7	Na ₂ HPO ₄	1.27559		0.78395	
		$Na_2HPO_4.12H_2O$	3.21689			
		$Na_4P_2O_7.10H_2O$		0.30181		I.69820
		NH ₄ NaHPO ₄ .4H ₂ O	1.87813			T.72627
NaE	3r	Na		1.34923		
		Na ₂ O		T.47886		
NaC	1	Na		T.59487		
		Na ₂ CO ₃		T.95742		
		NaHCO ₃		0.15746		
		Na_2HPO_4		0.08456		
		Na_2O		T.72451		
DT (20	Na ₂ SO ₄		0.08462		
Na ₂ ($CO_3 \dots$	Na		T.63745	1.	
		NaHCO ₃		0.2004		
		Na ₂ O		1.76708		
NT - T	TOO	NaOH		I.87787		
Nan	$ICO_3 \dots$	Na		T. 43741		
Mat		Na_2O		T.56704		
Nai		Na		T.18587 T.31550	6.51830	
NoN	0,	Na ₂ O		T.56189		
	\bigcirc_3	Na	0.30407 0.74194		1.34780	
1102		Na ₂ HPO ₄		0.36005		
		NaOH		0.30003	1.	
Na I	P ₂ O ₇	Na ₂ HPO ₄		0.02846		
11441	207	Na ₂ HPO ₄ .12H ₂ O	1	0.02840		
Na S	804	Na		1.51026		
1102	4	Na_2CO_3		$\vec{1}.87281$		
		Na ₂ CO ₃ .10H ₂ O		0.30411		
		$Na_2OO_3.1011_2O$ Na_3O		T.63989		
N		$NaNO_3$		0.78303		
		NaNO ₃		0.69826		
* (II 3		21.021.03	1.00100	0.00020	7.20000	1.50174

A	Weighed or Found.	Required.	4	A	E	3
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sodiu						
NH	[3	NaNH ₄ HPO ₄ .				
37.0		$4H_2O$			0.08144	
		NaNO ₃			0.35302	
N ₂ C	$0_5 \ldots \ldots$	NaNO ₃			0.63533	
D.C) _e	$Na_2O \dots Na_2HPO_4 \dots$	0.57397		$\begin{bmatrix} 1.74220 \\ 0.50010 \end{bmatrix}$	
1 20	15 · · · · · · · · · · · · · · · · · · ·	$Na_2HPO_4.12H_2O$			0.30010	
		NaNH ₄ HPO ₄ .4H ₂ O	1		$0.13050 \\ 0.33966$	
SO.	· · · · · · · · · · · · · · · · · · ·	NaHSO ₃	1		1	I.78929
200		Na ₂ SO ₃		0.29399		T.70601
		Na ₂ SO ₃ .7H ₂ O			0.25406	
SO.	,	Na ₂ O			1.29140	
		Na ₂ SO ₄				I.75097
Stront	tium,	2 4				
Sr=	= 87.62					
CO	2	SrCO ₃	3.35523	0.52572	0.29804	T.47428
SO,	3	SrO			0.77262	I.88797
		SrSO ₄	2.29421	0.36063	0.43588	I.63937
SrC	${\rm SO_3}$	Sr		1.77348		0.22652
		$SrCl_2$		0.03100		1.96900
		$Sr(HCO_3)_2 \dots$		0.15232		1.84768
		$Sr(NO_3)_2$		0.15645		T.84355
0.0		SrO		I.84633		0.15367
Sru)	Sr		T.92715		0.07285
		SrCl ₂		0.18467	0.65363 0.49432	I.81533
929	O ₄	$Sr(HCO_3)_2 \dots$		$\frac{0.30599}{1.67855}$		$ar{1}.69401 \\ 0.32145$
616	O ₄	Sr		T.93607		$0.32143 \\ 0.06393$
		$SrCO_3$		I.90507		0.00393
		$Sr(NO_3)_2$		0.06152		T.93848
		SrO		T.75140		0.24860
Sulph	ur, S = 32.07	0.0	0.00110	2.,0110	1.11201	0.21000
	S_3	H,S	0.41539	T.61845	2.40740	0.38155
	-3	S		T.59192		0.40808
Bas	SO ₄	H_2S		T.16446		0.83554
		$H_2^{\circ}SO_3$	0.35166	I.54612	2.84370	0.45388
		H_2SO_4	0.42020	1.62345	2.37990	0.37655
		S		1.13793		0.86207
		SO_2		I.43848		0.56152
		SO_3			2.91540	0.46470
		SO_4	0.41155	1.61442	2.42980	0.38558
				1		

A	Weighed or Found.	Required.		A		В
-	Found.	-		T		T
В	Required.	Weighed or Found.	Factor.	Loga- rithm.	Factor.	Loga- rithm.
Sulph						
Cds	3	H_2S				0.62715
(NT)	II) 80	SO_3				0.65368
(14)	H_4) ₂ SO ₄	H_2SO_4				
SO.	2	$_{\mathrm{H_2S}}^{\mathrm{H_2SO_4}}$				
20;	3	H_2SO_4		0.08815		
Tanta	lum,Ta=181.5					
Ta		Ta_2O_5				
		TaCl ₅				
Ta_2	O ₅	TaCl ₅				
Tellur		Ta_2O_4	0.96472	1.98440	1.03037	0.01560
	= 127.5					
		H_2TeO_4	1.51770	0.18121	0.65886	T.81879
		$H_2^2 TeO_4.2H_2O$	1.80030	0.25536	0.55544	T.74464
		TeO_2	1.25090	0.09725	0.79935	I.90274
		TeO_3				
(Te	$O_2)_2SO_3$	Te	0.63898	1.80549	1.5649	0.19451
Thalli	um					
	= 204.0					
		T1C1	1.17380	0.06960	0.85192	T. 93040
		Tl_2CO_3		0.05959		
		TlI		0.21010		
		TlNO ₃		0.11527		
mi (Tl_2O		0.01671		
T1 ₂ (CrO ₄	Tl	0.77864			
	ISO ₄	T1	$0.67755 \\ 0.61645$			
	PtCl _s	Tl	0.50002			
2-	6	TlCl	0.58695	T 76859	1.70375	0.23141
		Tl_2CO_3				
		TlI	0.81114	1.90909	1.23285	0.09091
		TlNO ₃	0.65202	T.81426	1.53370	0.18574
		Tl ₂ O				
(D) (70	Tl_2SO_4				
Thoris	SO ₄ .,	Tl	0.80939	1.90816	1.23550	0.09184
	= 2 32.40					
	0,	Th	0 87898	T 94398	1 13793	0.05602
	2	ThCl_4				
		$Th(NO_3)_4.6H_2O$	2.22260	0.34752	0.44924	T 65248

A	Weighed or Found.	Required.			A		I	3
В	Required.	Weighed or Found.		Factor.	Loga- rithm.	F	actor.	Loga- rithm.
Tin, S	n = 119.0							
Sn.		$SnCl_2 \dots \dots$	1	. 59600	0.20303	0.	62657	T.79697
		$SnCl_2.2H_2O$			0.27847			1.72153
		$SnCl_4$			0.34083			1.65917
		$SnCl_4.(NH_4Cl)_2$			0.49011			1.50989
		SnO			0.05478			
0 (SnO_2			0.10343			
SnC)2	Sn			I.89657			0.10343
		SnCl ₂			0.09960			
		$\operatorname{SnCl}_2.2H_2O$			0.17504			
		SnCl ₄			0.23740			
		$\operatorname{SnCl}_4.(\operatorname{NH}_4\operatorname{Cl})_2$			0.38668			
T	TT* 10 1	SnO	U	.89402	1.95135	1.	11894	0.04800
	um, Ti = 48.1	T:		60051	T.77852	1	66590	0 99149
Tunas	\mathbf{v}_2	Ti	U	.00051	1.77002	1.	00320	0.22140
) ₂	W	0	95197	T.93037	1	17300	0 06063
),	W			T.89933			
	um, U = 238.5	**	0	. 1 3310	1.00000	1.	20030	0.10001
	200.0	U	0	88170	T.94532	1	13420	0.05468
)8	U			T. 92852			
030	8	$UO_2 \dots \dots$			T. 98320			
		$UO_2(NO_3)_2.6H_2O$.			0.25227			
U.F	P ₂ O ₁₁	$U \dots U$			T.82421			
- 2-	2011	UO ₃			Ī.87889			
Vanad	lium.		ľ					
	51.0							
V ₂ C)5	V	0	.56045	$\overline{1.74853}$	1.	78428	0.25147
-		VO ₄	1	.26376	0.10166	0.	79130	1.89834
Ytterb	ium,							
	= 172							
	${}_{2}\mathrm{O}_{3}\ldots\ldots$	Yb	0	.87754	1.94327	1.	13960	0.05673
	m, Y = 89				_			
)3	Y	0	.78761	T.89631	1.	26974	[0.10369]
	Zn = 65.37							T
	SO ₄	$ZnSO_4.7H_2O$			0.09055			
		ZnO			0.09508			
Zn(0	$ZnCO_3$			0.18773			
		ZnCl ₂			0.22401			
	D.O.	$ZnSO_4.7H_2O$			0.54826			
Zn_2	P_2O_7	Zn			I.63237			
		ZnO	U	. ၁၁૩೪೮	T.72746	1.	01/30	0.27254

A	Weighed or Found.	Required.	A		В		
В	Required.	Weighed or Found.	Factor. Loga- rithm.		Factor.	Loga- rithm.	
Zinc,	,						
ZnS		BaSO ₄	2.39570	0.37943	0.41742	T.62057	
		Zn	0.67087	T.82664	1.49060	0.17336	
		ZnO	0.83507	I.92172	1.19750	0.07828	
		$ZnSO_4.7H_2O$	2.95100	0.46998	0.33886	Ī.53002	
Zircor	nium,						
Zr=	=90.6						
ZrO	2	Zr	0.73899	T.86864	1.35320	0.13136	

^{*} The factors and logarithms in this column are used when the substances given in the first column are weighed or found, while those in the second column are required.

[†] The factors and logarithms in this column are used when the substances given in the second column are weighed or found, and those in the first column are required.

VI.—FACTORS FOR THE CALCULATION OF IN-DIRECT GRAVIMETRIC ANALYSES

Four	Found.		Factors and Their Logarithms.			
a.	b.	Sought.				
AgBr+AgCl	Ag	Br Cl	1.7993 (log .25511) $a-2.3884$ (log .37811) b 1.3884 (log .14252) $b79930$ (log $\overline{1}.90142$) a			
	AgCl	Br Cl	1.3884 (log .14232) $b = .73930$ (log 1.90142) a 1.7993 (log .25511) $(a - b)$ 1.0552 (log .02334) $b = 0.7995$ (log T.90282) a			
AgBr+AgI	Ag	Br	$\begin{vmatrix} 3.7005 & (\log .56826) & b - 1.7022 & (\log .23101) & a \end{vmatrix}$			
	AgCl	I Br I	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
AgCl+AgI	Ag	Cl	.84380 (log $\overline{1}$,92624) b – .38739 (log $\overline{1}$.58815) a 1.38777(log .14230) a – 1.84380(log .26571) b			
	AgCl	Cl I	1.33777 (log $\bar{1}.4230$) $a = 1.34330$ (log $\bar{1}.58815$) $a = 1.38777$ (log $\bar{1}.80281$) $b = .38739$ (log $\bar{1}.58815$) $a = 1.38777$ (log $.14230$) $(a - b)$			
KCl+NaCl	AgCl	K Na	2.43195(log .38595) a – .99225 (log $\overline{1}$,99662) b .74490 (log $\overline{1}$.87210) b – 1.4318 (log .15589) a			
	Cl	K Na	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	$K_2SO_4 + Na_2SO_4$		13.752 (log 1.13837) $a-11.3201(\log 1.05386) b$ 8.4900 (log .92891) $b-9.9260$ (log .99677) a			
KCl+KBr	AgCl+ AgBr		1.3803 (log .13991) $b-2.1811$ (log .33867) a 3.7461 (log .57358) $a-1.9486$ (log .28972) b			
	AgCl	Cl	.66173 (log $\bar{1}.82067$) $b7993$ (log $\bar{1}.90271$) a 1.7993 (log $.25511$) $a93476$ (log $\bar{1}.97070$) b			
	KCl	Br	1.27213(\log .10506) b – .7992 (\log T.90270) a 1.7995 (\log .25510) a – 1.79930(\log .25510) b			
	K_2SO_4		1.08792(log .03659) $b79928$ (log $\overline{1}.90270$) a 1.7993 (log .25511) $a - 1.5923$ (log .18725) b			
KCl+KI	AgCl+ AgI		.93678 (log T.97164) $b-1.3178$ (log .11985) a 2.8921 (log .46122) $a-1.5055$ (log .17769) b			
		Cl	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
		CI	.86230 (log $\overline{1}$.93566) b – .38777 (log $\overline{1}$.58858) a 1.3878 (log .14231) a – 1.38777 (log .14230) b			

Found.		Sought.	Factors and Their Logarithms.
a.	b.	Sou	
KCl+KI	K_2SO_4	Cl	7.3810(log T.86812) b 38746 (log T.58825) a 1.3875(log .14222) a - 1.18723(log .07455) b
KBr+KI	$\begin{bmatrix} \mathrm{AgBr} + \\ \mathrm{AgI} \end{bmatrix}$	Br I	$\begin{array}{c} 4.1052 (\log .61333) \ b - 5.8071 \ (\log .76396) \ a \\ 7.3764 (\log .86784) \ a - 4.6757 \ (\log .66984) \ b \end{array}$
	AgCl	Br	1.9710(log .29469) $b-1.7011$ (log .23073) a 2.7020(log .43169) $a-2.2441$ (log .35111) b
	KCl	Br I	3.7881(log .57842) b - 1.7011 (log .23073) a 2.7020(log .43169) a - 4.3127 (log .63475) b
	$ m K_2SO_4$	Br I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$K_2SO_4 + Na_2SO_4$	BaSO ₄	K Na	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\mathrm{Na_2SO_4} + \mathrm{Li_2SO_4}$	BaSO ₄	Na Li	$\begin{array}{c} 1.39603(\log\ .14488)\ a65754\ (\log\ \overline{\rm L}.81793)b \\ .256355(\log\ \overline{\rm L}.40885)\ b42112\ (\log\ \overline{\rm L}.62441)a \end{array}$
LiCl + NaCl	AgCl	Li Na	.17616(log $\overline{1}$.24591) b 43195 (log $\overline{1}$,63543) a 1 .4322(log .15600) a 42363 (log $\overline{1}$,62699) b
$\begin{matrix} K_2PtCl_6 + \\ Rb_2PtCl_6 \end{matrix}$	$K_2SO_4 + Rb_2SO_4$	K Rb K	2.5106(log .39978) b 84720 (log $\overline{1}$.92798) a 1.8502(log .26721) a - 4.6080 (log .66351) b .72295(log $\overline{1}$.85911) a - 1.5680 (log .19537) b
$\begin{array}{c} {\rm Rb_2PtCl_6} + \\ {\rm Cs_2PtCl_6} \end{array}$	Pt Rb ₂ SO ₄ +	Rb Cs Rb	$ \begin{array}{c} 2.8780(\log .45910) \ b-1.0315 \ (\log .01354) \ a \\ 6.2232(\log .79402) \ b-1.8047 \ (\log .25642) \ a \\ 2.8050(\log .44793) \ a-8.3123 \ (\log .91973) \ b \\ 2.0915(\log .32048) \ a-3.8964 \ (\log .59066) \ b \end{array} $
CaCO ₃ +SrCO ₃	Cs_2SO_4 CO_2	Ca Sr	$\begin{array}{c} 5.2044 (\log \ .71637) \ b - 2.3994 \ (\log \ .38011) \ a \\ 2.8230 (\log \ .45071) \ b84252 \ (\log \ T.92558) a \\ 1.8469 (\log \ .26643) \ a - 4.1905 \ (\log \ .62226) \ b \end{array}$
	$CaSO_4+ SrSO_4$	Ca Sr	$ \begin{array}{c} 3.4548 (\log .53844) \ b-4.2995 \ (\log .63341) \ a \\ 6.9660 (\log .84304) \ a-5.1220 \ (\log .70944) \ b \end{array} $
CaCO ₃ +BaCO ₃	CO ₂	Ca Ba	1.8395(log .26470) b – .41010 (log $\overline{1}$.61287) a 1.4065(log .14804) a – 3.1980 (log .50489) b
	${\rm CaSO_4+}\atop {\rm BaSO_4}$	Ca Ba	$\begin{array}{c} 2.2447 (\log .35116) \ b - 2.6684 \ (\log .42625) \ a \\ 5.3247 (\log .72630) \ a - 3.9329 \ (\log .59471) \ b \end{array}$
BaCO ₃ +SrCO ₃	CO_2	Ba Sr	$\begin{array}{c} 2.7485(\log .43909)\ a - 9.2694\ (\log .96705)\ b \\ 7.8961(\log .89736)\ b - 1.7603\ (\log .24559)\ a \end{array}$
	BaSO ₄ + SrSO ₄	Ba	14.085 ($\log 1.14895$) $a - 11.341$ ($\log 1.05465$) $b - 6371$ ($\log .98395$) $b - 11.435$ ($\log 1.05824$) a

VII.—MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOGARITHMS

D	Formula Weight.			Formula Weight.	
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm
Ag	107.88	2.03294	AsCl ₃	181.34	2.25849
Ag ₂	215.76	2.33397	12As2O3	98.96	1.99546
Ag_3AsO_4	462.60	2.66521	As_2O_3	197.92	2.29649
AgBr	187.80	2.27370	AsO ₃	122.96	2.08976
AgCN	133.89	2.12675	$(AsO_3)_2$	245.92	2.39079
AgCl	143.34	2.15637	As ₂ O ₅	229.92	2.36157
AgI	234.80	2.37070	AsO ₄	138.96	2.14289
$AgIO_3$	282.80	2.45148	$(AsO_4)_2$	277.92	2.44392
AgNO ₂	153.89	2.18721	As_2S_3	246.13	2.39116
AgNO ₃	169.89	2.23017	As_2S_5	310.27	2.49174
$\frac{1}{2}$ Ag ₂ O	115.88	2.06401			
Ag_2O	231.76	2.36504	Au	197.2	2.29491
Ag_3PO_4	418.68	2.62188	AuCl ₃	303.58	2.48227
$\frac{1}{2}$ Ag ₄ P ₂ O ₇	302.80	2.48115	AuCl ₃ .2H ₂ O	339.61	2.53098
$Ag_4P_2O_7$	605.60	2.78219	0 2		
Ag_2S	247.83	2.39415	В	11.0	1.04139
4.7	07 1	1 49007	В,	22.0	1.34242
A1	27.1	1.43297	B ₂ O ₃	70.0	1.84510
Al_2	54.2	1.73400	$(\mathring{B}_{2}\mathring{O}_{3})_{2}\dots\dots$	140.0	2.14613
Al_4C_3	144.4	2.15957	2 3/2		
AlCl ₃	133.48 266.96	2.12542	⅓Ba	68.68	1.83683
$(AlCl_3)_2 \dots \dots$	241.58	2.42645 2.38306	Ba	137.37	2.13789
$AlCl_3.6H_2O$			BaCl ₂	208.29	2.31867
AIF ₃	84.1 168.2	1.92480 2.22583	BaCl ₂ .2H ₂ O	244.32	2.38796
$(AlF_3)_2$	108.2	2.44000	BaCO ₃	197.37	2.29528
$AlK(SO_4)_2$.	474 59	2.67627	BaCrO ₄	253.37	2.40374
12H ₂ O	474.53	2.01021	BaF ₂	175.37	2.24395
$AINH_4(SO_4)_2$. $12H_2O$	453.47	2.65655	Ba(HCO ₃) ₂	259.39	2.41395
$AlNa_3F_6$	210.10	2.32243	Ba(NO ₃) ₂	261.39	2.41729
$\frac{1}{2}\text{Al}_2\text{O}_3$	51.1	1.70842	BaO	153.37	2.18574
	102.2	2.00945	BaO,	169.37	2.22884
Al_2O_3	102.2 122.14	2.00945	$BaO_2.8H_2O$	313.50	2.49624
$AlPO_4$ $(AlPO_4)_2$	244.28	2.38789	$Ba(OH)_2$	171.386	2.23398
$Al_2(SO_4)_3$	342.41	2.53454	Ba(OH) ₂ .8H ₂ O	315.52	2.49903
$Al_2(SO_4)_3$ $Al_2(SO_4)_3.18H_2O$	666.70	2.82393	BaS	169.44	2.22901
1112(1004)3.101120	000.70	2.02090	BaSiF ₆	279.67	2.44665
As	74.96	1.87483	BaSO ₄	233.44	2.36814
As ₂	149.92	2.17586	$(BaSO_4)_2 \dots$	466.88	2.66920

	Formula Weight.		Formula	Formula Weight.	
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.
(BaSO ₄) ₃	700.32	2.84529	Ca	40.07	1.60282
$BaS_2O_3.H_2O$	267.53	2.42737	$Ca_3(AsO_4)_2$	398.17	2.60007
~	0 1	0.05004	CaC_2	64.07	1.80665
Be	9.1	0.95904	CaCl ₂	110.99	2.04528
BeCl_2	80.02	1.90320	CaCl ₂ .6H ₂ O	219.09	2.34062
BeO	25.1	$1.39967 \\ 2.24852$	CaCO ₃	100.07	2.00030
$BeSO_4.4H_2O$	177.234	4.4±004	CaF_2	78.07 156.14	1.89248 2.19351
Bi	208.0	2.31806	$(\operatorname{CaF}_2)_2$ $(\operatorname{CaF}_2)_3$	234.21	2.36960
$Bi_2 \dots Bi_2$	416.0	2.61909	$Ca(HCO_3)_2$	162.09	2.20975
$BiAsO_4 \dots$	346.96	2.54028	$Ca(NO_3)_2$	164.09	2.21508
$Bi(NO_3)_3.5H_2O$.	484.11	2.68495	CaO	56.07	1.74873
$\frac{1}{2}\mathrm{Bi}_2\mathrm{O}_3\ldots\ldots$	232.0	2.36549	(CaO) ₂	112.14	2.04976
· Bi ₂ O ₃ · · · · · · · ·	464.0	2.66652	(CaO)3	168.21	2.22585
BiOCl	259.46	2.41407	CaOCl ₂	126.98	2.10374
BiONO ₃	286.01	2.45639	$Ca(OH)_2$	74.096	1.86979
Bi_2S_3	512.21	2.70945	$\operatorname{Ca}_3(\operatorname{PO}_4)_2 \dots$	310.29	2.49178
_			CaS	72.14	1.85818
Br	79.92	1.90266	$Caso_4 \dots$	136.14	2.13398
Br_2	159.84	2.20369	$(CaSO_4)_2 \dots$	272.28	2.43501
Br_3	239.76	2.37978 2.50472	$(CaSO_4)_3 \dots$	408.42	2.61107
Br ₄	$319.68 \\ 127.92$	2.10694	$CaSO_4.2H_2O$ $CaSiO_3$	172.17 116.37	2.23595 2.06584
$\mathrm{BrO}_3 \dots \dots$	121.92	2.10034	$CaSiO_3$ $CaWO_4$	288.07	2.45950
C	12.00	1.07918			
$C_2 \dots \dots$	24.00	1.38021	Cd	112.4	2.05077
$CH_3 \dots \dots$	15.024	1.17689	$CdCl_2 \dots$	183.32	2.26316
CH_4	16.032	1.20498	$CdCl_2.2H_2O$	219.33	2.34110
$C_2H_2\dots$	26.016	1.41524	$CdCO_3 \dots$	172.4	2.23654
C_2H_4	28.032	1.44765	$Cd(NO_3)_2$	236.42	2.37369
C_2H_5	29.04	1.46300	$Cd(NO_3)_2.4H_2O$	308.48	2.48922
C_2H_6	30.048	1.47781	CdO	128.4 144.46	2.10857 2.15978
C_6H_6	$78.05 \\ 26.01$	1.89237 1.41514	CdS $CdSO_4$	208.47	2.13978
CNS	58.08	1.76403	$CdSO_4.2\frac{2}{3}H_2O$.	256.51	2.40911
0115	30.00	1.70100	04504.231120.	200.01	2.40011
CO	28.00	1.44716	Ce	140.25	2.14691
$CO_2 \dots$	44.00	1.64345	Ce ₂	280.5	2.44793
$(CO_2)_2 \dots \dots$	88.00	1.94448	$Ce(NO_3)_4$	388.29	2.58916
CO_3	60.00	1.77815	Ce(NO ₃) ₄ .(NH ₄	F00 11	0 85040
CS_2	76.14	1.88161	$(NO_3)_2.H_2O$	566.41	2.75313
10-	20. 04	1 20100	CeO_2	172.25 344.5	2.23616 2.53719
½Ca	20.04	1.30190	$(CeO_2)_2$	344.0	2.00/19

Formula.	Formul	a Weight.	Formula.	Formula	Weight.			
Pormula.	Number.	Logarithm.	Formula.	Number.	Logarithm.			
Ce_2O_3	328.5	2.51654	$\ (CsCl)_2 \dots \ $	336.54	2.52704			
$Ce_2(SO_4)_3$	568.71	2.75489	Cs_2CO_3	325.62	2.51271			
CI	25 46	1 54074	CsHCO ₃	193.82	2.28739			
Cl	35.46 70.92	1.54974	Cs_2O	281.62	2.44966			
Cl_2	106.38	2.02686	Cs_2PtCl_6	673.58	2.82839			
$Cl_4 \dots \dots$	141.84	2.15180	Cs_2SO_4	361.69	2.55834			
$Cl_5 \dots \dots$	177.30	2.24871	Cu	63.57	1.80325			
Cl_2O_5	150.92	2.17875	Cu,	127.14	2.10429			
ClO_3	83.46	1.92148	(C.H.O.)					
Cl_2O_7	182.92	2.26226	$\frac{1}{2}\mathrm{Cu}_2\left\{egin{matrix} \mathrm{C}_2\mathrm{H}_3\mathrm{O}_2\\ \mathrm{As}_3\mathrm{O}_6 \end{smallmatrix} ight\}$	253.52	2.40401			
ClO4	99.46	1.99765	CuCl	99.03	1.99577			
4			CuCl ₂	134.49	2.12869			
Co	58.97	1.77063	CuCl ₂ .2H ₂ O	170.52	2.23177			
Co_2	117.94	2.07166	CuCNS	121.65	2.08511			
Co_3	176.91	2.24775	CuI	190.49	2.27988			
$CoCl_2.6H_2O$	238.00	2.37658	$CuFeS_2$	183.56	2.26378			
$Co(NO_3)_2.6H_2O$	291.09	2.46402	$Cu(NO_3)_2.6H_2O$	295.69	2.47083			
$Co(NO_2)_3$.			Cu ₂ O	143.14	2.15576			
$(KNO_2)_3$	452.33	2.65546	CuO	79.57	1.90075			
CoO	74.97	1.87489	Cu ₂ S	159.21	2.20197			
$(CoO)_2 \dots \dots$	149.94	2.17592	CuSO ₄	159.64	2.20314			
Co_3O_4	240.91	2.38186	CuSO ₄ .5H ₂ O	249.72	2.39745			
$CoSO_4$	155.04	2.19044	F	19	1.27875			
$CoSO_4.7H_2O$ ($CoSO_4$) ₂ .	281.15	2.44894	£	13	1.2/0/0			
$(K_2SO_4)_3$	832.89	2.92059	Fe	55.84	1.74695			
(112004/3	002.03	2.02000	Fe ₂	111.68	2.04798			
Cr	52.0	1.71600	FeAsO ₄	194.81	2.28960			
Cr_2	104.0	2.01703	FeCl ₃	162.22	2.21010			
$\frac{1}{2}Cr_2O_3$	76.0	1.88081	FeCl ₃ .6H ₂ O	270.32	2.43189			
Cr_2O_3	152.0	2.18184	$\operatorname{Fe}_{7}(\operatorname{CN})_{18}$	859.06	2.93403			
CrO_3	100.0	2.00000	FeCO ₃	115.84	2.06386			
$(CrO)_2 \dots \dots$	200.0	2.30103	$\frac{1}{2}$ Fe(HCO ₃) ₂	88.93	1.94905			
CrO_4	116.0	2.06446	$Fe(HCO_3)_2$	177.86	2.25008			
$\operatorname{Cr_2O_7}$	216.0	2.33445	FeO	71.84	1.85637			
$\frac{1}{2}\mathrm{Cr}_2(\mathrm{SO}_4)_3$.			$\frac{1}{2}$ Fe ₂ O ₃	79.84	1.90222			
18H ₂ O	358.25	2.55419	$\operatorname{Fe_2O_3}$	159.68	2.20325			
Cs	132.81	2.12323	$\frac{1}{3}$ Fe ₃ O ₄	77.17 231.52	1.88745 2.36459			
Cs	265.62	2.12323	$\operatorname{Fe_3O_4}$	4				
$CsAl(SO_4)_2$.	200.02	2.42420	FeS	150.88 87.91	2.17863 1.94403			
$12\text{H}_2\text{O}$	568.24	2.75453	FeS	119.99	2.07914			
CsCl	168.27	2.22601	$FeSO_4$	151.91	2. 18159			
000211111111111111111111111111111111111	100.21	2.22001	10004	101.91	4.18139			

Formula.	Formula	Weight.	Formula.	Formula Weight.	
Formula.	Number.	Logarithm.	Pormula.	Number.	Logarithm.
FeSO ₄ .7H ₂ O	278.02	2.44408	HNO_2	47.02	1.67228
$FeSO_4.(NH_4)_2$			HNO_3	63.02	1.79948
$SO_4.6H_2O$	392.16	2.59346	$(HNO_3)_2$	126.04	2.10051
$\frac{1}{2}$ Fe ₂ (SO ₄) ₃	199.95	2.30092	HNaCO ₃	84.08	1.92432
$\text{Fe}_2(\text{SO}_4)_3$	399.89	2.60194	HNa ₂ PO ₄ .		
			$12H_2O$	358.24	2.55417
Ga	69.9	1.84448	HO	17.008	1.23065
Ga_2O_3	187.8	2.27370	H_2O	18.016	1.25565
Ga_2S_3	236.01	2.37293	H_2O_2	34.016	1.53168
			H_3PO_4	98.06	1.99149
Ge	72.5	1.86034	H_2 PtCl ₆ .6 H_2 O	518.072	2.71439
GeO_2	104.5	2.01912	$\parallel \mathrm{H_2S}$	34.09	1.53263
			H_2SO_3	82.09	1.91429
H	1.008	0.00346	$\mathrm{H_{2}SO_{4}}$	98.09	1.99162
$H_2 \dots \dots$	2.016	0.30449	$\frac{1}{2}$ H ₂ SO ₄	49.04	1.69055
$H_3 \dots \dots$	3.024	0.48058	H_2SeO_3	129.22	2.11131
$H_4 \dots \dots$	4.032	0.60552	H_2SeO_4	145.22	2.16202
H_5	5.040	0.70243	H_2SiF_6	144.32	2.15932
$H_6 \dots \dots$	6.048	0.78161	H_2SiO_3	78.32	1.89387
H_3AsO_3	125.984	2.10032	$H_2 TeO_4 \dots$	193.52	2.28672
H_3AsO_4	141.98	2.15235	$H_2 TeO_4.2 H_2 O$	299.55	2.36087
HAuCl ₄ .4H ₂ O	412.11	2.61501			
H_3BO_3	62.024	1.79256	Hg	200.6	2.30233
$(H_3BO_3)_2$	124.05	2.09359	HgCl	236.06	2.37302
$(H_3BO_3)_3$	186.07	2.26968	$HgCl_2$	271.52	2.43380
$(H_3BO_3)_4$	248.10	2.39462	$Hg(CN)_2 \dots$	252.62	2.40247
HBr	80.93	1.90811	HgI_2	454.44	2.65748
$\frac{1}{2}$ $\mathrm{H}_2\mathrm{C}_2\mathrm{O}_4\ldots\ldots$	45.008	1.65329	HgNO ₃	262.61	2.41840
$H_2C_2O_4$	90.016	1.95432	$\operatorname{Hg}(\operatorname{NO}_3)_2 \dots$	324.62	2.51062
$\frac{1}{2}$ H ₂ C ₂ O ₄ .2H ₂ O .	63.025	1.79952	$Hg(NO_3)_2.H_2O.$	342.64	2.53410
$H_2C_2O_4.2H_2O$	126.05	2.10054	½Hg ₂ O	208.6	2.31931
$H.C_2H_3O_2$	60.032	1.77838	Hg ₂ O	417.2	2.62034
$H.C_3H_5O_3$	90.05	1.95447	HgO	216.6	2.33566
$H_2.C_4H_4O_6$	150.05	2.17623	HgS	232.67	2.36560
H_3 . C_6 H_5 O_7	192.06	2.28345	$\mathrm{HgSO_4}$	296.67	2.47138
HČI	36.47	1.56194	0 4		
HClO,	84.47	1.92670	I	126.92	2.10353
HCN	27.02	1.43169	$I_2 \dots \dots$	253.84	2.40456
HCO_2	45.008	1.65329	\vec{I}_3	380.76	2.58065
HF	20.008	1.30121	$ec{ ilde{ ilde{I}}}_4^3\dots\dots$	507.68	2.70559
HI	127.93	2.10697	IO_3	174.92	2.24284
(HI),	255.86	2.40800	$(IO_3),\ldots$	349.84	2.54387
$HKCO_3$	100.11	2.00047	3/2	166.92	2.22251

Formula.	Formula	Weight.	Formula.	Formula	Weight.
i ormaia.	Number.	Logarithm.		Number.	Logarithm.
I ₂ O ₅	333.84	2.52354	KHCO3	100.11	2.00047
IO_4	190.92	2.28086	(KHCO ₃),	200.22	2.30150
(IO ₄) ₂	381.84	2.58189	$\mathrm{KH_3(C_2O_4)_2}.$		
$\frac{1}{2}I_2O_7$	182.92	2.26226	2H ₂ O	254.16	2.40510
I_2O_7	365.84	2.56329	$\mathrm{KH}(\mathrm{IO_3})_2,\ldots$	389.95	2.59101
1207	000.01	2.00020	KHSO ₄	136.18	2.13411
т	1140	0.07004	(KHSO ₄) ₂	272.36	2.43515
In	114.8	2.05994	KI	166.02	2.22016
In_2	229.6	2.36097	16 KIO₃	35.67	1.55230
$\operatorname{In}_{{}_{2}}\operatorname{O}_{{}_{3}}\ldots\ldots$	277.6	2.44342	$\mathrm{KIO_3}$	214.02	2.33045
In_2S_3	325.81	2.51296	$\frac{1}{5}$ KMnO ₄	31.61	1.49982
			KMnO ₄	158.03	2.19874
K	39.10	1.59218	K_2MnO_4	197.13	2.29476
K	78.20	1.89321	KNO_2	85.13	1.93008
$KAl(SO_4)_2$.			$(KNO_2)_2$	170.22	2.23101
12H ₂ O	474.53	2.67627	KNO_3	101.11	2.23101
K_3AsO_4	256.26	2.40868		210.15	2.32253
KAu(CN) ₄ .H ₂ O	358.36	2.55432	$KNaC_4H_4O_6$	47.10	
KBF4	126.10	2.10072	$\begin{array}{c} \frac{1}{2}K_2O \dots K_2O \dots K_2O \dots \end{array}$		1.67302
$(KBF_4)_4$	504.40	2.70278		94.20	1.97405
KBr	119.02	2.07562	KOH	56.11	1.74904
$KBrO_3$	167.02	2.22277	K_2 PdCl ₆	397.66	2.59952
$K_2C_4H_4O_6$	226.23	2.35455	K_2 PtCl ₆	486.16	2.68678
KCl	74.56	1.87251	K ₂ S	110.27	2.04256
$(KCl)_2$	149.12	2.17354	K_2SO_4	174.27	2.24122
KClO ₃	122.56	2.08835	KSbOC ₄ H ₄ O ₆ .	000 04	0 *01*0
KClO ₄	138.56	2.14164	$\frac{1}{2}$ H ₂ O	332.34	2.52158
KCN	65.11	1.81365	K_2SiF_6	220.50	2.34341
KCNS	97.18	1.98758	K_2SiO_3	154.50	2.18893
K_2CO_3	138.20	2.14051			
K_2CrO_4	194.2	2.28825	La	139.0	2.14301
$\frac{1}{6}$ K ₂ Cr ₂ O ₇	49.04	1.69055	La ₂ O ₃	326.0	2.51322
$\frac{6}{2}$ K ₂ Cr ₂ O ₇	147.10	2.16731			
$K_{2}Cr_{3}O_{7}$	294.2	2.46864	Li	6.94	0.84136
$\mathrm{KCr}(\mathrm{SO}_4)_2$.	254.2	2.40004	Li ₂	13.88	1.14239
$12\mathrm{H}_2\mathrm{O}\dots$	499.43	2.69847	LiCl	42.40	1.62737
$KF.2H_2O$	94.13	1.97373	Li ₂ CO ₃	73.88	1
	329.20	2.51746		67.95	1.86853
K_3 Fe(CN) ₆	368.33	2.51740 2.56624	LiHCO ₃	14.94	1.83219
K_4 Fe(CN) ₆	000.00	2.0024	$\frac{1}{2} \text{Li}_2 \text{O} \dots$	29.88	1.17435
K_4 Fe(CN) ₆ .	100 25	0 60567	$\operatorname{Li}_2\mathrm{O}$		1.47538
$3H_2O$	422.35	2.62567	Li ₃ PO ₄ ······	115.82	2.06378
K_2GeF_6	264.7	2.42275	$\text{Li}_2\text{SO}_4\dots\dots$	109.95	2.04120
K ₂ HAsO ₄	218.17	2.33880	$\text{Li}_2\text{SO}_4.\text{H}_2\text{O}\dots$	127.97	2.10711
$KHC_4H_4O_6$	188.14	2.27448	$\frac{1}{2}$ Li ₂ SO ₄ .H ₂ O	63.98	1.80608
					1

Formula.	Formul	a Weight.	Formula.	Formula Weight.	
roiman.	Number.	Logarithm.		Number.	Logarithm.
Mg	24.36	1.38596	MoO ₃	144	2.15836
Mg ₂	48.64	1.68699	MoS ₃	192.21	2.28377
$\frac{1}{2}$ Mg ₂ As ₂ O ₇	155.28	2.19112	3		
$Mg_2As_2O_7$	310.56	2,49214	N	14.01	1.14644
$MgBr_2$	184.16	2.26519	N ₂	28.02	1.44747
$MgBr_2.6H_2O$	292.26	2.46577	NH_2	16.03	1.20493
$MgCl_2$	95.24	1.97882	NH ₃	17.03	1.23121
MgCl ₂ .6H ₂ O	203.34	2.30823	$(NH_3)_2$	34.07	1.53237
MgCl ₂ .KCl			NH ₄	18.04	1.25624
6H ₂ O	277.90	2.44389	$(NH_4)_2$	36.08	1.55727
$MgCO_3$	84.32	1.92593	NH ₄ Al(SO ₄) ₂ .		
$Mg(HCO_3)_2$	146.34	2.16536	12H ₂ O	453.47	2.65655
MgI ₂	278.16	2.44429	NH ₄ Br	97.96	1.99109
MgNH ₄ AsO ₄ .			NH ₄ Cl	53.50	1.72835
½H,O	190.33	2.27951	(NH ₄ Cl) ₂	107.00	2.02938
[MgNH ₄ AsO ₄ .			$(NH_4)_2CO_3$	96.08	1.98263
½H ₂ O] ₂	380.66	2.58054	$(NH_4)_2C_2O_4$.		
MgNH,PO.			2H,O	160.11	2.20442
6Н,О	245.50	2.39005	NH ₄ HCO ₃	79.05	1.89790
MgO	40.32	1.60552	$NH_4Fe(SO_4)_2$.		
$\frac{1}{2}$ Mg ₂ P ₂ O ₇	111.36	2.04673	12H ₂ O	482.21	2.68324
$Mg_2P_2O_7$	222.72	2.34776	$(NH_4)_2 \text{Fe}(SO_4)_2$.		
MgSO ₄	120.39	2.08059	$6\mathrm{H}_2\mathrm{O}\dots$	392.16	2.59346
MgSO4.7H,O	246.50	2.39182	NH_4I	144.96	2.16135
MgSiO ₃	100.62	2.00269	$(NH_4)_2MoO_4$	196.08	2.29244
			NH ₄ NO ₃	80.05	1.90336
Mn	54.93	1.73981	$(NH_4NO_3)_2$	160.10	2.20439
Mn ₂	109.86	2.04084	NH ₄ NaHPO ₄ .		
MnCO ₃	114.93	2.06043	$4H_2O$	209.15	2.32046
MnCl ₂ .4H ₂ O	197.91	2.29647	$(NH_4)_2O$	52.08	1.71667
$Mn(HCO_3)_2$	176.95	2.24785	NH₄OH	35.05	1.54469
MnO	70.93	1.85083	$\frac{1}{12}(NH_4)_3PO_4.$		
$\mathrm{MnO}_2\ldots\ldots$	86.93	1.93917	$12 \text{MoO}_3 \dots$	156.43	2.19432
Mn_2O_3	157.86	2.19828	$(NH_4)_3PO_4$.		
$\mathrm{Mn_3O_4}$	228.79	2.35944	$12 \text{MoO}_3 \dots$	1877.17	3.27350
$\frac{1}{2}$ Mn ₂ P ₂ O ₇	141.97	2.15220	$\frac{1}{2}(NH_4)_2PtCl_6$	222.02	2.34639
$Mn_2P_2O_7$	283.94	2.45323	$(NH_4)_2$ PtCl ₆	444.04	2.64742
MnS	87.00	1.93952	NH ₄ CNS	76.12	1.88150
$MnSO_4$	151.00	2.17898	$(NH_4)_2SO_4$	132.15	2.12106
$MnSO_4.4H_2O$	223.06	2.34842	N_2O	44.02	1.64365
$MnSO_4.7H_2O$	277.11	2.44266	NO	30.01	1.47727
	0.0	1 0000	NO ₂	46.01	1.66285
Mo	96	1.98227	$\frac{1}{2}$ N ₂ O ₃	38.01	1.57990

	Formula Weight.			Formula Weight.	
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.
N_2O_3	76.02	1.88093	$Na_4P_2O_7$	266.08	2.42501
NO_3	62.01	1.79246	$\frac{1}{2}$ Na ₄ P ₂ O ₇ .10H ₂ O	223.12	2.34854
$\frac{1}{2}$ N ₂ O ₅	54.01	1.73247	Na ₃ RhCl ₆	384.66	2.58508
N_2O_5	108.02	2.03350	Na_2S	78.07	1.89248
7.7	00.00	1 001 50	Na ₂ SO ₃	126.07	2.10064
Na	23.00	1.36173	$Na_2SO_3.7H_2O$	252.18	2.40171
Na ₂	46.00	1.66276	$Na_2S_2O_3.5H_2O$	248.22	2.39483
Na ₃ AlF ₆	210.10	2.32243	Na ₂ SO ₄	142.07	2.15250
Na ₂ B ₄ O ₇	202.00	2.30535	$Na_2SO_4.10H_2O$.	322.23	2.50817
Na ₂ B ₄ O ₇ .10H ₂ O	382.16	2.58225	AT.	KO: 00	1 50010
NaBr	102.92	2.01250	Ni	58.68	1.76849
$NaC_2H_3O_2$	82.02	1.91392	NiCl ₂ .6H ₂ O	237.68	2.37603
$NaC_2H_3O_2.3H_2O$	136.07	2.13376	$Ni(NO_3)_2.6H_2O$	290.80	2.46359
NaCl	58.46	1.76686	NiO	74.68	1.87320 2.18963
(NaCl) ₂	116.92 122.46	$2.06788 \\ 2.08799$	NiSO ₄ .6H ₂ O	154.75 262.85	2.13903
$NaClO_4$ $NaCN$	49.01	1.69028	NiSO ₄ .0H ₂ O	280.86	2.41371
Nacro	53.00	1.72428	141504.71120	200.00	2.11010
Na_2CO_3	106.00	2.02531	0	16.00	1.20412
Na ₂ CO ₃ .10H ₂ O	286.16	2.45661	O_2	32.00	1.50515
NaF	42.00	1.62325	O_3	48.00	1.68124
(NaF),	84.00	1.92428	O_4	64.00	1.80618
Na ₄ Fe(CN) ₆	303.90	2.48273	O ₅	80.00	1.90309
Na ₂ HAsO ₃	169.99	2.23042	O ₆	96.00	1.98227
Na ₂ HAsO ₄	185.99	2.26949	о́н	17.008	1.23065
NaHCO ₃	84.01	1.92432			
Na ₂ HPO ₄	142.05	2.15244	Os	190.9	2.28081
Na ₂ HPO ₄ .			OsO ₄	254.9	2.40637
12H ₂ O	358.24	2.55417	*		
NaHSO ₃	104.08	2.01736	P	31.04	1.49192
NaHSO ₄	120.08	2.07947	P ₂	62.08	1.79295
NaHSO ₄ .H ₂ O	138.09	2.14016	PCl ₃	137.42	2.13806
NaI	149.92	2.17586	PCl_5	208.34	2.31867
NaNH ₄ HPO ₄ .			$\frac{1}{2}P_2O_5$	71.04	1.85150
$4H_2O$	209.15	2.32046	P_2O_5	142.08	2.15253
NaNO ₂	69.01	1.83891	PO ₄	95.04	1.97791
NaNO ₃	85.01	1.92947	2PO ₄	190.08	2.27894
$\frac{1}{2}$ Na ₂ O	31.00	1.49136	P_2O_3	110.08	2.04171
Na ₂ O	62.00	1.79239	7.		
Na_2O_2	78.00	1.89209	Pb	207.1	2.31618
NaOH	40.01	1.60215	$Pb(C_2H_3O_2)_2$.	0=0 0=	
NaPO ₃	102.04	2.00877	$3H_2O$	379.20	2.57887
Na ₃ PO ₄	164.04	2.21495	$ \operatorname{PbCl}_2 \dots $	277.02	2.44407

	Formula	a Weight.		Formula	Weight.
Formula.	Number.	Logarithm.	Formula.	Number.	Logarithm.
$PbCO_3$	267.1	2.42667	SCN	58.08	1.76403
$\frac{1}{3}(\text{PbCO}_3)_2$.			SO_2	64.07	1.80665
$Pb(OH)_2$	258.44	2.41236	SO_3	80.07	1.90347
$(PbCO_3)_2$.	775 01	0 00040	SO ₄	96.07	1.98259
$Pb(OH)_2$	775.31	2.88948	CIL	100.0	0.07000
PbCrO ₄	323.1	2.50934 2.66365	Sb	$\begin{vmatrix} 120.2 \\ 240.4 \end{vmatrix}$	$\begin{bmatrix} 2.07990 \\ 2.38093 \end{bmatrix}$
PbI_2 $PbMoO_4$	367.1	2.56478	Sb_2	226.58	2.35522
$Pb(NO_3)_2$	331.12	2.51999	SbCl ₅	297.50	2.47349
PbO	223.1	2.34850	$\frac{1}{2}Sb_2O_3$	144.2	2.15897
$PbO_2 \dots \dots$	239.1	2.37858	Sb ₂ O ₃	288.4	2.46000
Pb_3O_4	685.3	2.83588	Sb_2O_4	304.4	2.48344
PbS	239.17	2.37871	$\frac{1}{2}S\hat{b}_2\hat{O}_5\dots$	160.2	2.20466
PbSO ₄	303.17	2.48169	$\mathrm{Sb}_{2}\mathrm{O}_{5}$	320.4	2.50569
•			SbOCl	171.66	2.23467
Pd	106.7	2.02816	SbOKC ₄ H ₄ O ₆ .		
PdCl ₂ .2H ₂ O	213.65	2.32970	$\frac{1}{2}$ H ₂ O	332.34	2.52158
PdI_2	360.54	2.55696	Sb_2S_3	336.61	2.52712
$Pd(NO_3)_2$	230.72	2.36309	$\parallel \operatorname{Sb}_2 \operatorname{S}_5 \dots \dots$	400.75	2.60287
Pt	195.2	2.29048	Se	79.2	1.89873
PtCl ₄	337.04	2.52768	SeO_2	111.2	2.04610
$PtCl_4.5H_2O$	427.12	2.63055	SeO_3	127.2	2.10449
PtCl ₆	407.96	2.61062	013	20.0	
70.1	0	1 00171	Si	28.3	1.45179
Rb	85.45	1.93171	Si_2	56.6	1.75282
Rb_2	170.90	2.23274	SiF_4	104.3	2.01828
$RbAl(SO_4)_2$.	520.98	2.71682	SiF_6	$142.3 \\ 60.3$	2.15320 1.78032
12H ₂ O	120.98	2.08247	SiO_2	76.3	1.88252
$RbCl$ $(RbCl)_2$	241.82	2.38350	SiO_4	92.3	1.96520
Rb_2CO_3	230.9	2.36342	Si_2O_7	168.6	2.22686
Rb_2CO_3 $RbHCO_3$	146.46	2.36542 2.16554	$Si_{2}O_{7}$	96.33	1.98376
$(RbHCO_3)_2$	292.92	2.46675	01(011)4	00.00	1.000.0
Rb ₂ O	186.9	2.27161	Sn	119.0	2.07555
Rb_2PtCl_6	578.86	2.76258	$SnCl_2$	189.92	2.27858
Rb ₂ SO ₄	266.97	2.42646	SnCl ₂ .2H ₂ O	225.95	2.35402
2			$SnCl_4$	260.84	2.41638
Rh	102.9	2.01242	SnCl ₄ .(NH ₄ Cl) ₂ .	367.84	2.56566
RhCl ₃	209.28	2.32073	SnO	135.0	2.13033
			SnO_2	151.0	2.17898
S	32.07	1.50610	SnS	151.07	2.17918
S_2	64.14	1.80713	$ \operatorname{SnS}_2 $	183.14	2.26278

				l p	***	
Formula.	Formula	a Weight.	Formula.	Formula	Formula Weight.	
z oznasu.	Number.	Logarithm.		Number.	Logarithm.	
Sr	87.63	1.94265	Tl,0	424.00	2.62737	
SrCl ₂	158.55	2.20017	Tl ₂ PtCl ₆	815.96	2.91167	
SrCl ₂ .6H ₂ O	266.65	2.42594	$\frac{1}{2}\tilde{\text{Tl}}_2\text{SO}_4$	252.04	2.40147	
SrCO,	147.63	2.16917	Tl_2SO_4	504.07	2.70249	
⅓Sr(HCO₃),	104.82	2.02044				
$Sr(HCO_3)_2$	209.65	2.32149	U	238.5	2.37749	
$Sr(NO_3)_2$	211.65	2.32562	U_2	477.0	2.67852	
SrO	103.63	2.01550	UO_2	270.5	2.43217	
$Sr(OH)_2.8H_2O$.	265.77	2.42451	$(\mathrm{UO}_2)_2$	541.0	2.73320	
SrSO ₄	183.70	2.26410	$\frac{1}{3}$ U ₃ O ₈	281.17	2.44897	
·			U_3O_8	843.5	2.92609	
Та	181.5	2.25888	$\mathrm{UO_2(C_2H_3O_2)_2}$.			
TaCl ₅	358.80	2.55485	$2H_2O$	424.58	2.62796	
$(\operatorname{TaCl}_5)_2 \dots$	717.60	2.85588	$UO_2(UO_3)_2$.			
Ta_2O_4	427.0	2.63012	$6\mathrm{H}_2\mathrm{O}\ldots$	502.68	2.70129	
Ta ₂ O ₅	443.0	2.64572	$\frac{1}{2}$ U ₂ P ₂ O ₁₁	357.54	2.55332	
			$U_2P_2O_{11}$	715.08	2.85436	
Te	127.5	2.10551	V	51.0	1.70757	
${ m TeO}_2$	159.5	2.20276	VO ₄	115.0	2.06070	
TeO_3	175.5	2.24428	$(VO_4)_2$	230.0	2.36173	
TeO ₃ .3H ₂ O	229.55	2.36087	V_2O_5	182.0	2.26007	
5 2			2 0	102.0	2.2000.	
Th	232.40	2.36624	W	184	2.26482	
ThCl4	374.24	2.57315	WO ₂	216	2.33445	
Th(NO ₃) ₄ .6H ₂ O	588.54	2.76978	WO_3	232	2.36549	
ThO ₂	264.40	2.42226	771			
~			Yb	172	2.23553	
Ti	48.1	1.68215	Yb_2O_3	392	2.59329	
TiO ₂	80.1	1.90363	Yt	89	1.94939	
2			$\mathrm{Yt_{2}O_{3}}$	226	2.35411	
T1	204.00	2.30963	20203		2.00111	
Tl_2	408.00	2.61066	Zn	65.37	1.81538	
Ticl	239.46	2.37923	ZnCl ₂	136.29	2.13447	
$(TlCl)_2$	478.92	2.68026	$ZnCO_3$	125.37	2.09819	
$\frac{1}{2}\text{Tl}_2\text{CO}_3$	230.00	2.36922	ZnO	81.37	1.91046	
Tl_2CO_3	468.00	2.67025	Zn ₂ P ₂ O ₇	304.82	2.48404	
½Tl,CrO4	262.00	2.41830	$\frac{1}{2}$ Zn ₂ P ₂ O ₇	152.41	2.18301	
$\tilde{T}l_2\tilde{C}rO_4$	524.00	2.71933	ZnS	97.44	1.98874	
TlHSO ₄	301.08	2.47869	ZnSO ₄	161.44	2.20801	
TH	330.92	2.51973	$ZnSO_4.7H_2O$	287.55	2.45872	
('All) ₂	661.84	2.82076				
Ťluo,	266.01	2.42490	Zr	90.6	1.9571	
½Tl2	212.00	2.32634	ZrO ₂	122.6	2.08	
					1	

CALCULATION OF VOLUMETRIC ANALYSES

VIII.—BASICITY OF ACIDS WITH VARIOUS INDI-CATORS ACCORDING TO R. T. THOMPSON *

The numbers indicate in each case the number of molecules of a univalent base, such as caustic soda, which will have combined with one molecule of the acid when the solution reacts neutral to the indicator given. Thomson divided indicators into three classes. Methyl orange is typical of the first class which also includes lacmoid, dimethyl amidobenzene, cochineal, iodeosine, and congo red. Phenolphthalein is typical of the second class which includes turmeric, curcuma, and flavescin. Litmus is typical of the third class, which includes rosolic acid, phenacetolin, fluorescein, gallein, and hematoxylin.

Acids.		Methyl Orange.	Phenolph	Phenolphthalein.		Litmus.	
Name.	Formula.	Cold.	Cold.	Boiling.	Cold.	Boiling.	
Sulphuric	H ₂ SO ₄	2	2	2	2	2	
Hydrochloric	HCl	1	1	1	1	1	
Nitric		1†	1	1	1	1	
Thiosulphuric	H ₂ S ₂ O ₃	2	2	2	2	2	
Carbonic	H,CO,	0	1 dilute	0		0	
Sulphurous		1	2				
Hydrosulphuric		0	1 dilute	0		0	
Phosphoric		1 .	2				
Arsenic	H ₂ AsO ₄	1	2				
Arsenous		0			0	0	
Nitrous		+	1		1		
Silicic		Ö			0	0	
Boric		0 52					
Chromic		1	2	2			
Oxalic			2	2	2	2	
Acetic			1		1 nearly		
Butyric			1		1 nearly		
Succinic			2 %		2 nearly		
Lactic			1		1		
Tartaric			$\overline{2}$		2		
Citric	2		3				
	3-6-5-6						

^{*} C. N., 47, pp. 123, 185; 49, pp. 32, 119. J. S. C. I., 6, p. 195. † Concentrated nitric acid sometimes contains oxides of nitrogen producing on dilution nitrous acid, which destroys methyl orange

IX.—VALUE OF NORMAL SOLUTIONS OF ACIDS AND BASES

In the following table the amount of each chemical compound which is equal to one c.c. of a normal solution is given. The indicator given in the last column or an indicator belonging to the same class, as given by Thompson, must be used. When no indicator is specified any one of the three classes of indicators may be used.

For fifth or tenth normal solutions or other strengths the number given in the table must be multiplied by $\frac{1}{5}$ or $\frac{1}{10}$ or the number expressing in terms of normal the strength of the solution used. If the amount of any chemical compound corresponding to 100 c.c. is weighed out and titrated with a normal solution the number of c.c. of solution used will be equal to the percentage of the constituent titrated. If a one tenth normal solution is used only one tenth of this amount need be weighed out.

Substance.	Formula.	Atomic or Molecular Weight.	ı c.c. Norn	utralized by nal Solution.	Indi- cator.
Acetic acid Ammonia Ammonium chloride hydroxide nitrate sulphate Barium carbonate chloride hydroxide oxide Calcium carbonate chloride hydroxide oxide bric acid Calcium carbonate chloride hydroxide oxide chloride hydroxide	Formula. H.C ₂ H ₃ O ₂ NH ₃ NH ₄ NH ₄ Cl NH ₄ OH NH ₄ NO ₃ (NH ₄) ₂ SO ₄ Ba BaCO ₃ BaCl ₂ .2H ₂ O Ba(OH) ₂ BaO H ₃ BO ₃ Ca CaCO ₃ CaCO ₃ CaCl ₂ CaCl ₂ Ca(OH) ₂ Ca(OH) ₂ CaOO Ca(OH) ₂ CaOO CaOO	Molecular	Number06003 .01703 .01804 .05350 .03505	Logarithm. 2.77838 2.23132 2.25624 2.72835 2.54469 2.90370 2.82007 2.83689 2.99427 T.08693 2.93298 2.88474 2.79256 2.30190 2.69932 2.74429 T.03957 2.56876	cator.
Carbon dioxide	CO_2	44.00	.04400	$\frac{1}{2}.64345$	P.
Hydrochloric acid	$H_3C_6H_5O_7$ HBr HCl	192.064 80.928 36.468	.08093	$\overline{2}.90811$	

^{*} M. = Methyl orange; L. = Litmus; P. = Phenolthalein.

Substance.	Formula.	Molecular or Atomic	Grams Ne	Indica- tor.	
		Weight.	Number.	Logarithm.	
Hydroiodic acid	НІ	127.928	.12793	T.10697	
Lactic acid		90.048		2.95447	P.
Lead	Pb	207.10	.10355	$\bar{1}.01515$	
carbonate	PbCO ₂	267.10	.13355	1.12561	M.
oxide	PbO	223.10	.11155	1.04747	
Magnesium	. Mg	24.32	.01216	$\bar{2} \cdot 08493$	Μ.
carbonate	MgCO ₃	84.32	.04216	$\frac{1}{2} \cdot 62490$	M.
chloride	MgCl ₂	95.24	.04762	$\bar{2}.67779$	M.
oxide		40.32	.02016	2.30449	M.
Nitric acid		63.018		2 79948	
oxide	N_2O_5	108.02	.05401	2.73247	
Nitrous acid	HNO,	47.018		2.67228	Р.
Nitrogen	N	14.01	.01401	2.14644	
Oxalic acid	$H_{2}C_{2}O_{4}$	90.016	.04501	2.65329	
" "	$H_{2}C_{2}O_{4}$.2 $H_{2}O$.	126.048	.06302	2.79951	
Phosphoric acid		98.064	.09806	2.99151	M.
"		98.064	.04903	2.69048	Р.
Potassium		39.10	.03910	2.59218	
bicarbonate	KHCO ₃	100.108	.10011	T.00048	M.
bitartrate		188.14	.18814	T.27448	P.
carbonate	K,CO,	138.20	.06910	$\bar{2}.83948$	M.
'dichromate	$K_2Cr_2O_7$	294.20	.14710	T.16761	P.
hydroxide	KOH	56.108	.05611	2.74904	
oxide		94.20	.04710	2.67302	
tartrate	$K_2C_4H_4O_6$	226.232	.11312		
tetroxalate	$\mathrm{KH_{3}(C_{2}O_{4})_{2}}.$	254.16	.08472	$\bar{2}.92799$	
Sodium		23.00	.02300	2.36173	
bicarbonate	NaHCO ₃	84.008	.08401	2.92433	Μ.
carbonate		106.00	.05300	2.72428	Μ.
diphosphate	Na ₂ HPO ₄	142.048	.14205	T.15244	Р.
	Na ₂ HPO ₄	358.24	.35824	T.55417	P.
hydroxide	NaOH.[12H ₂ O	40.008	.04001	2.60217	
oxide	Na_2O	62.00	.03100	2.49136	
tetraborate	$Na_2B_4O_7$	202.00	.10100	1.00432	P.
	2 4 / 2	382.16	.19108	I.28157	Р.
triphosphate		164.04	.16404	T.21495	M.
"	Na ₃ PO ₄	164.04	.08202	2.91392	Р.
Sulphur trioxide	SO_3	80.07	.04004	2.60249	
Sulphuric acid		98.086	.04904	2.69053	
Tartaric acid	$[H_2C_4H_4O_6]$	150.048	.07502	$\overline{2}.87520$	Р.

X.—VALUE OF NORMAL SOLUTIONS OF OXIDIZING AND REDUCING AGENTS

Substance T	Atomic or Molecular	r c.c. of Normal Solution is Equal to Grams.		
Name.	Formula.	Weight.	Number.	Logarithm.
Ammonium oxalate	$(NH_4)_2C_2O_4$	124.084	.06204	$\bar{2}.79267$
Antimony	Sb	120.2	.06010	$\bar{2}.77887$
	As	74.96	.03748	$\bar{2}.57380$
Arsenous acid		125.984	.06299	$\bar{2}.79927$
oxide	As ₂ O ₃	197.04	.04926	$\bar{2}.69249$
	As ₂ S ₃	246.13	.06153	$\bar{2}.78909$
Barium peroxide		169.37	.08469	$\bar{2}.92783$
peroxide	BaO ₂ .8H ₂ O	313.498	.15675	$\bar{1}.19521$
thiosulphate		267.526	.26753	$\bar{1}.42737$
Bleaching powder	CaOCl ₂	126.99	.06349	$\bar{2}.80271$
Bromine	Br	79.92	.07992	$\bar{2}.90266$
Calcium	Ca	40.07	.02004	$\bar{2}.30190$
carbonate	CaCO ₃	100.07	.05004	$\bar{2}.69932$
oxide	CaO	56.07	.02804	$\bar{2}.44778$
Chlorine	C1	35.46	.03546	$\bar{2}.54974$
Chromic anhydride	CrO_3	100.0	.03333	$\bar{2}.52284$
oxide	Cr ₂ O ₃	152.0	.02533	$\bar{2}.40364$
Copper	Cu	63.57	.06357	$\bar{2}.80325$
oxide	CuO	79.57	.0796	$\bar{2}.90091$
sulphate	CuSO ₄	159.64	.15964	$\bar{1}.20314$
"	CuSO ₄ .5H ₂ O	249.72	.24972	$\bar{1}.39745$
Ferric oxide	Fe ₂ O ₃	159.68	.07984	$\bar{2}.90222$
Ferrous oxide	FeO	71.84	.0719	$\bar{2}.85673$
	FeSO ₄ .7H ₂ O	278.031	.27803	1.44409
ammonium sulphate				
	6H ₂ O	392.16	.39222	$\bar{1}.59353$
Hydrogen peroxide	$\mathrm{H_{2}O_{2}}$	34.016	.01701	$\bar{2}.23065$
Hydrogen sulphide	H_2S	34.086	.01704	$\bar{2}.23142$
Iodine	I	126.92	.12692	$\bar{1}.10353$
Iron	Fe	55.84	.05584	$\bar{2}.74695$
	PbO_2	239.10	.11955	$\bar{1}.07755$
Manganese peroxide	MnO_2	86.93	.04346	$\bar{2}.63809$
Nitrous acid	HNO_2	47.018	.04702	$\bar{2}.67228$
Oxalic acid	$H_2C_2O_4$	90.016	.04501	$\bar{2}.65329$
"	$H_2C_2O_4.2H_2O$	126.048	.06302	$\bar{2}.79951$

Substance 7	Atomic or Molecular	r c.c. of Normal Solution is Equal to Grams.		
Name.	Formula.	Weight.	Number.	Logarithm
Potassium acid iodate	KH(IO ₂) ₂	389.94	.03249	2.51175
chlorate	KClO ₃	122.56	.02043	$\bar{2}.31033$
chromate	K_2CrO_4	194.2	.06473	$\bar{2}.81111$
dichromate	$K_2Cr_2O_7$	294.2	.04903	$\bar{2}.69046$
ferrocyanide	K_4 Fe(CN) ₆	368.30	.36830	1.56620
cryst	K ₄ Fe(CN) ₆ .3H ₂ O	422.48	.42248	1.62581
iodate	KIO ₃	214.02	.03567	$\bar{2}.55230$
nitrite	KNO ₂	85.11	.08511	$\bar{2}.92998$
perchlorate		138.56	.01732	$\bar{2}.23855$
permanganate	KMnO ₄	158.03	.03160	$\bar{2}.49969$
tetroxalate	$KH_3(C_2O_4)_2.2H_2O.$	254.16	.06354	$\bar{2}.80303$
Sodium chlorate	NaClO ₃	106.46	.01774	$\bar{2}.24895$
ferrocyanide		303.90	.30390	1.48273
thiosulphate	$Na_2S_2O_3.5H_2O$	248.22	.24822	1.39484
Stannous chloride	$SnCl_2$	189.92	.09496	$\bar{2}.97754$
	SnCl ₂ .2H ₂ O	225.952	.11298	1.05300
Tin	Sn	119.0	.0595	$\bar{2}.77452$

XI.—VALUE OF NORMAL SOLUTIONS OF PRECIPITATION REAGENTS

Ammonium sulphocyanate NH4CNS 76.12 0.7612 2.881	Substance T	Atomic or Molecular	solution is Equal to Grams.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Name.	Formula.	Weight.	Number.	Logarithm.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ammonium	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sulphocyanate	NH ₄ CNS	76.12	.07612	2.88150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			141.98	.04733	2.67514
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			229.92	.03832	$\bar{2}.58343$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			125.98	.04199	$\bar{2}.62315$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oxide		197.92	.03299	2.51838
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			79.92	.07992	2.90266
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			44.00	.02200	$\bar{2}.34242$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chlorine	Cl	35.46	.03546	$\bar{2}.54974$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Cu	63.57	.06357	$\bar{2}.80325$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	oxide	CuO	79.57	.07957	$\bar{2}.90075$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sulphate	CuSO ₄	159.64	.15964	1.20314
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			249.72	.24972	1.39745
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			26.01	.02601	$\bar{2}.41514$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			80.928	.08093	2.90811
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			36.468	.03647	$\bar{2}.56194$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			27.018	.02702	$\bar{2}.43169$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.12793	1.10697
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			126.92	.12692	1.10353
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		KBr	119.02	.11902	$\bar{1}.07562$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	chloride			.07456	$\bar{2}.87251$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		KCN	65.11	.06511	$\bar{2}.81365$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		KI	166.03		1.22019
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			110.27	.05513	$\bar{2}.74139$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\bar{2}.98758$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			107.88	.10788	$\bar{1}.03294$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			169.89	.16989	$\bar{1}.23017$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			102.92	.10292	$\bar{1}.01250$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	chloride		58.46	.05846	$\bar{2}.76686$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.69029
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	iodide	NaI			1.17586
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Na ₂ S			$\bar{2}.59140$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\bar{2}.51455$
sulphate $ ZnSO_4$		ZnO			$\bar{2}.60959$
" CO MIT O		ZnSO ₄			2.90698
$2nSO_4.7H_2O$	"	ZnSO ₄ .7H ₂ O	287.55	.14377	ī.15767

XII. — PHYSICAL AND CHEMICAL CONSTANTS OF OILS. By Albert F. Seeker

OF OI	LID.	DY ALBERT F.		
Name.	°C.	Specific Gravity.*	Solidifying Point, °C.	Hehner Value.
Almond	15°	0.9175-0.9195	-10 to -20	96.2
Beech nut	15°	0.9200-0.9225	-17	95.2
Black mustard	15°	0.916-0.920	-17	95.1
Candlenut	15.5°	0.920-0.926	below -18	95.5
Castor	15.5°	0.9600-0.9679	-10 to -18	
Cherry laurel	15°	0.9230	-19 to -20	
Cocoanut	40°	0.9115	22-14	88.6-90
Cod liver	15°	0.9210-0.9280	0 to -10	95. 3-97.5
Corn (Maize)	15.5°	0.9213-0.9250	-10 to -15	
Cottonseed	15°	0.9220-0.9250	-1 to 0	95-96
Croton	15°	0.9375-0.9428	-16	89.0
Fir seed	15°	0.9215-0.9285	-18 to -30	
Grape seed	15°	0.9350-0.9260	-10 to -13	
Hazel nut	15°	0.9146-0.9170	-10 to -13 -10 to -20	
Hemp seed	15°	0.9255-0.9280	-10 t0 -20	99.0
Herring	15.5°	0.9202-0.9390	_,	.95.6
	15.5°	0.9148-0.9175		
Lard oil	15°	0.9148-0.9173		96.2 95.5
Linseed	15.5°	0.9310-0.9380	-17 to -27	
Menhaden	15°		0 to 1.5	
Neat's foot		0.9133-0.9174	-6 to 2	
Olive	15.5° 15°	0.9140-0.9180		95
Olive kernel		0.9184-0.9191		04 05
Palm	15°	0.9210-0.9470		91-95
Palm nut	40°	0.9119	20.5 to 24	87.6–96
Peach kernel	15°	0.9180-0.9215		
Peanut (Arachis)	15.5°	0.9110-0.9220	-3 to +3	95.8
Poppy seed	15.5°	0.9240-0.9270	-18	95.2
Porpoise (body oil)	15°	0.9258-0.9350	-16	85.5
Porpoise (jaw oil)	15°	0.9258		70.2
Pumpkin seed	15°	0.920-0.925	-15.5	96.2
Rape (Colza)	15.5°	0.9132-0.9168		95.1
Safflower	15.5°	0.9251-0.9280	-13 to -18	95.4
Sardine	15°	0.9274-0.9330		95-97
Seal	15°	0.9155-0.9263	-2 to -3	95.45
Sesame	15.5°	0.9210-0.9244	-5	95.7
Shark liver (Arctic)	15°	0.9163-0.9290		86.9
Soja bean	15°	0.924-0.929	-15 to 8	94-96
Sperm oil[nose]	15°	0.8781-0.8835	15.5	
Sperm Oil, Arctic (Bottle-	15°	0.8764		
Sunflower	15°	0.9240-0.9258	-18.5	95.0
Tung (Chinese Wood oil)	15°	0.9360-0.9432	below -17	96.2
Walnut (Nut)	15°	0.9250-0.9260	-15 to -27	95.4
Whale	15.5°	0.922-0.926	below -2	93.5
White Mustard	15.5°	0.914-0.916	-8 to -16	96.2
	* Wo+	r of 15.5° - 1		

^{*} Water at $15.5^{\circ} = 1$.

	I		1	1	
Name.	Saponifica- tion Value.	Iodine Value.	Maumené Number.	°C.	Refractive Index.
Almond	189-195	93-104	51-54	25	1.4685-1.4693
Beech nut	191-196	111-120	64		
Black mustard	174-176	96-117	43	15.5	1.4740-1.4770
Candlenut	189-195	153-164		25	1.4760
Castor	177-186	83-88.5	46-47	15	1.4799-1.4803
Cherry laurel	194	108.9	44.5		
Cocoanut	246-268	8-12	21	40	1.4481-1.4497
Cod liver	182-189	135-168(181)	102-113	15	1.4790-1.4822
Corn (Maize)	188-193	113-129	74-86	15.5	1.4760-1.4768
Cottonseed	191-195	106-115	55-77	15.5	1.4737-1.4757
Croton	210-215	102-107		27	1.4757-1.4768
Fir seed	191.3	119.5	98.5		
Grape seed	178.5	96	53		
Hazel nut	192	83-90	36		
Hemp seed	192.5	148-160	97		
Herring	167-194	123.5-142			
Lard oil	195–198	65-80	40-47	15.5	1.4702-1.4720
Linseed	190-195	171-201	103-126	15	1.4820-1.4852
Menhaden	189-193	139-173		25	1.4787
Neat's foot	192-197	66-73.2	47 - 58.5	15	1.4695-1.4708
Olive	189-196	77.5-91	35-52	15.5	1.4703-1.4718
Olive kernel	183	82-87		25	1.4682-1.4688
Palm	196-205	51.5-57		60	1.4510
Palm nut	242-250	10-17		60	1.4431
Peach kernal	189-193	93–109	42.5	25	1.4697-1.4705
Peanut (Arachis)	186–197	85–103	44-67		1.4707-1.4731
Poppy seed	189-197	133–157.5	71-88		1.4766-1.4774
Porpoise (body oil)	195-224.8	110-120	50	25	1.4677
Porpoise (jaw oil)	254-272	22-50			
Pumpkin seed	188.4–195			25	1.4724-1.4738
Rape (Colza)	167–179	93–104	50-67		1.4720-1.4752
Safflower		129.8-150		40	1.4693
Sardine	189–193	160-193		20	1.4802-1.4808
Seal	189–196	127–159		25	1.4741
Sesame	188–193	103–114	61-68.5	15.5	1 .4748-1 .4762
Shark liver (Arctic)		114-143.5			
Soja bean	190-200	121-139	59-61		1.4760-1.4775
Sperm oil[nose]	123–147	81-90	51	15.5	1.4665-1.4672
Sperm oil, Arctic (Bottle-		67-82.1	41-47		
Sunflower	188-194	119–135	60-75	25	1.4736
Tung (Chinese Wood oil)	190-197	150-165		19	1.503
Walnut (Nut)	195	142–152	103	40	1.4690
Whale	188-194	110-128		25	1.4723
White Mustard	170–176	92-97	44-49	40	1.4649

Name.	Acid Value.	% Unsaponifi- able Matter.	Other Values.
Almond	1.5		
Black mustard	1.36-7.35		
Candlenut	8.1	0.76	
Castor	0.14-14.61		Acl. V. 153-156*
	~ =0		(R.M. 6.8-8.4
Cocoanut	5-50		P.V. 12-18
Cod liver	0.36-25	0.54-9.87	Acl. V. 4-8
Corn (Maize)	1.7-20.6	1.35-2.86	
Cottonseed	0.0	0.73-1.64	Acl. V. 7.6-18
Croton		0.55	(R.M. 12-13.6
Cioton		0.00	Acl. V. 20-39
Grape seed	16.2		Acl. V. 144.5
Hazel nut		0.5	
Hemp seed		1.08	
Herring	1.8-44	0.99-10.7	
Lard oil			
Linseed	0.8-8.4	0.42-1.9	
Menhaden	3-11.6	1.6-6.7	A 1 W 00 0
Neat's foot	1 0 70	0.40.1.0	Acl. V. 22.0
Olive	1.9-50	0.46-1.0	
	2-3.5		R.M. 0.7-1.9
Palm	8.4		R.M. 5-6.8
Peanut (Arachis)	1.2-32	0.54-0.94	R.M. 5-0.8
Poppy seed	0.7-11.0	0.43	
Porpoise (body oil)	1.2	3.7	R. No. 23.5
Porpoise (jaw oil)	5.0	16.4	R. No. 47.8-65
Rape (Colza)	1.4-13.2	0.58-1.0	20, 210, 2110 00
Safflower	0.33-20		Acl. V. 16.1
Sardine	4-25	0.5-1.4	
Seal	1.9-40	0.38-1.4	Acl. V. 33-34
Sesame	0.2-46	0.95-1.32	
Shark liver (Arctic)	3–7	5.46-10.2	
Sperm oil	13.2	37–41	M. Pt. \\\\(\begin{pmatrix} 25.5-25.7 \\ 22.5 & 20.5 \end{pmatrix} \]
Sperm oil, Arctic (Bottlenose)		31.7-42.6	M. Pt. (23.5–26.5)
Sunflower	11.2	0.31	
Tung (Chinese Wood oil)	7.6-12	0.44	
Whale	0.5-37	0.92-3.72	†Ael. V. 11.6–17.2
White Mustard	5.4		

^{*} Polarizes (200 mm.) +21.9 to +28°V.

P.V. = Polenske Value.

[†] Old oil has acetyl value at 23.

Acl. V. = Acetyl Value. R.M. = Reichert-Meissl Value.

R. No. = Reichert Value. M. Pt. = Melting Point.

	Mixed Fatty Acids.						
Name.	Melting Point, °C.	Acid Value.	Iodine Value.	Other Values.			
Almond	13-14	196-207	93-96.5	R.I. (60°) 1.4461			
Beech nut	23-24		114				
Black mustard	16	187.1	109.6				
Candlenut	20-21						
Castor	13	192.1	87-93	R.I. (60°) 1.4546			
Cherry laurel	20-22		112.1				
Cocoanut	25-27	258-273	8.4-9.3	R.I. (60°) 1.4295			
Cod liver	21-25	204-207	130.5-170	R.I. (60°) 1.4521			
Corn (Maize)	17-23	198.4	113-126				
Cottonseed	34-40	202-208	111-115	R.I. (60°) 1.4460			
Croton	18.6-19	201	111.5	S.P. 16.7-19			
Fir seed	16-19		121.5				
Grape seed	24	187.4	99				
Hazel nut	17-24	200.6	91.3-97.6				
Hemp seed	18-19		141				
Herring		178.5					
Lard oil	33.2-38.4						
Linseed	17-24	197	179-192	R.I. (60°) 1.4546			
Neat's foot	28.5-30.8		62-76				
Olive	19.2-31.0	193-198	86-90	R.I. (60°) 1.4410			
Palm	47-50	204-207	53.3	Titer 36-45.5			
Palm nut	25-28.5	258-264	12.0	R.I. (60°) 1.4310			
Peach kernel	10-18	200.9	94-101				
Peanut (Arachis)	26-36.4	201.6	96-103	R.I. (60°) 1.4461			
Poppy seed	7 20-25.8	199	139	R.I. (60°) 1.4506			
Porpoise (body oil)		207	126	R.I. (25°) 1.4622			
Pumpkin seed	28-29	197	133.6				
Rape (Colza)	17-22	185	99-106	R.I. (60°) 1.4991			
Safflower	17	199	148	Titer 16° C.			
Sardine	28-36	177-185					
Seal	22-33	193.2					
Sesame	26-32	200.4	110-116	R.I. (60°) 1.4461			
Soja bean	22-31	198	115-140				
Sperm oil[nose]	13.3	23.6	83.2-85.6	F.A. 60-64%			
Sperm oil, Arctic (Bottle-	10.3-10.8		82.7	F.A. 61-65%			
Sunflower	22-24	201.6	124-134	R.I. (60°) 1.4531			
Tung (Chinese Wood oil)	31-43.8	189-198	144-159				
Walnut (Nut)	16-20	200.2	150				
Whale	14-27.0		131.2				
White Mustard	15–16	185.8	95.3				

R.I. = Refractive Index. S.P. = Solidifying Point. F.A. = Fatty Acids.

XIII.—PHYSICAL AND CHEMICAL CONSTANTS OF FATS AND WAXES

BY ALBERT F. SEEKER

Name.	°c.	Specific Gravity.*	Solidifying Point, °C.	Hehner Value.	Saponifica- tion Value.
Beef marrow	15	0.9311-0.9380	31-29		196–199
Beef tallow	15	0.943-0.952	27-38	95.6	193.2-200
Beeswax	15	0.958-0.970	60.5-62.8		90-102
Bone fat	15	0.914-0.916	15-17		190.9
Butter fat	40	0.904-0.908	20-23	86.5-89.8	216-233
Carnaüba wax	15	0.990-0.999	80-87		79-95
Chicken fat	15	0.9241	21-27		193.5
Chinese wax (insect wax)	15	0.926-0.970	80.5-81		78-93
Cocoa butter	15	0.9500-0.9760	21.5-23	94.6	192-202
Cottonseed Stearine	15	0.9188-0.9230	16-22	95.9	195
Dog fat	15	0.9229	20-26	95	195.4
Goose (domestic)	15	0.9274-0.9227	18-20	95	193.1
Goose (wild)	15	0.9158	18-20		196
Hare fat	15	0.9288-0.9397	17-23	95.4	198-206
Horse fat	15	0.916-0.922	20-45	95-96	195-200
Human fat	25	0.9033	15		193-200
Japan wax	15	0.9700-0.9800	48.5-53	90.6	210-222
Lard	100	0.859-0.864	27.1-29.9	93-96	193-200
Laurel oil	15	0.9332	25		197.9
Mutton tallow	15	0.937-0.952	32-41	95.5	192 - 195.2
Myrtle wax	15	0.995	39–43		206-217
Nutmeg butter (Mace butter)	15	0.945-0.996	41–42		154–191
Rabbit fat (tame)	15	0.9342	22-24	95.5	202.6
Rabbit fat (wild)	15	0.9393	17-22		199.3
Spermaceti	15	0.905-0.960	42-47		123-135
Vegetable tallow (Chin.)	15	0.9180-0.9186	27-31	93	198-206
Wool fat (purified)	17	0.9322-0.9449	38–40	91	84-127

^{*} Water at $15.5^{\circ} = 1$.

XIII. — PHYSICAL AND CHEMICAL CONSTANTS OF FATS AND WAXES — (Continued)

Name.	Iodine Value.	c.	Refractive Index.	Acid Value.	% Unsaponi- fiable Matter.
Beef marrow	39-55.4			1.6	
Beef tallow	35-46	40	1.4586	3.5-50	
Beeswax	7.9-13.8		1.4398-1.4451	0.000	52-55*
Bone fat	46-55.8			29.6-53	0.5-1.8
Butter fat	26-38		1.4590-1.4620	0.45-35.4	0.33-0.56
Carnaüba wax	13.5	1	1.4520-1.4541		55*
Chicken fat	58-77			1.2	
Chinese wax (insect wax)	1.4			traces	
Cocoa butter	32-41	60	1.4496	1.1-1.88	
Cottonseed Stearine	90-103				
Dog fat	58.5(41-83)			1.79	
Goose (domestic)	58-71	40	1.4593-1.4596	0.59	
Goose (wild)	99.6			0.86	
Hare fat	81-119			2.73	
Horse fat	71-86	40	1.4603-1.4717	0.0-2.44	
Human fat	57-73				
Japan wax	5-12		1.4477-1.4492		1.1-1.63
Lard	50-70		1.4584-1.4601		0.23
Laurel oil	68-80				
Mutton tallow	35–46		1.4510		
Myrtle wax	1-10.7				
Nutmeg butter (Mace butter)	40-52	40	1.4700-1.4812	17–44.8	
Rabbit fat (tame)	67.6	40	1.4586	6.2	
Rabbit fat (wild)	99.8				
Spermaceti	3.8-9.5				
Vegetable tallow (Chinese)	28-50	1			
Wool fat	15-18	40	1.4781-1.4822		43.1-51.8*

^{*} Plus Alcohols.

[†] Commercial Samples.

XIII. — PHYSICAL AND CHEMICAL CONSTANTS OF FATS

AND WAXES — (Concluded)

W. c. rec. c.	Other Walnes		Mixed F	atty Acids.	
Name.	Other Values.	Melting Point, °C.	Acid Value.	Iodine Value.	Other Values.
Beef marrow		44–46 43–44	$204.5 \\ 197.2$	44-56 41.3	[46.2 Titer 37.9-
Beeswax	(E.V. 72–78. R.V.3.5–4.2				
Bone fat	Àcl. V. 11.3	30	200	55.7-57.4	
Butter fat	(R.M.20.0–33 P.V.1.3–3.5	38-40	210-233	28-31	R.I. (60°) 1.437
Chicken fat	R. No. 1.0	38-40	200.8	64.6	Acl.V. 45.2
Cocoa butter	M. Pt. 28–33	48-52	190–198	33–39	R.I. (60°) 1.4220
Cottonseed Stearine. Dog fat Goose (domestic)	R. No. 0.98	27-45 39-40.5 35-41 34-40	199.2 202.4 196.4	94 50.2 65.3 65.1	Titer 42–44
Goose (wild) Hare fat		44-47	209.0	. 88–98	R.I. (40°)
Horse fat	[31.2	37.5–42 35.5 56–62	202.6 213.7	72–87 64	Titer 33.7
Lard	Acl. V. 2.6	40-47	201.8	64	(R.I. (60°) 1.4395
Laurel oil Mutton tallow	R. No. 1.6	46-54	210	81.8 34.8	Titer 15.1 Titer 40.15; 48.02
Myrtle wax. [butter) Nutmeg butter (Mace		47.5 42.5	230.9		Titer 35.9
Rabbit fat (tame)	R. No. 2.8-5.6	40-42	218.1	64.4	R.I. (40°) 1.4495
Rabbit fat (wild) Spermaceti Vegetable tallow (Chinese)	Acl. V. 2.63 M. Pt. 36–46	39–41	209.5 182–208	101.1 30–39	
Wool fat	Acl.V.109-123 R.M. 8	41.8		17	}

E.V. = Ether Value = Saponification Value minus Acid Value.

R.V. = Ratio Value = Ether Value divided by Acid Value.

Acl. V. = Acetyl Value.

M. Pt. = Melting Point.

R.M. = Reichert-Meissl Value.

R.I. = Refractive Index. P.V. = Polenske Value.

R. No. = Reichert Value.

XIV.—PHYSICAL CONSTANTS OF LUBRICATING OILS

LEWKOWITSCH

Oil.	Specific Gravity.	Viscosi Redwood's meter. Sta Viscosity; S at 70° C.	Viscosi- on dard for perm Oil	Flash Point. Close Test.	Cold Test.
Refined Mineral Oils	60° F .	70° F .	120° F.	°F.	°F.
Scotch	0.890-0.895	100-130	40-50	320-350	32
Scotch	0.885-0.890	75-100	35-40	300-325	32
Scotch	0.875-0.880	50-60	25-30	300-325	32
American	0.915-0.920	400-425	90-100	375-425	32
American	0.905-0.910	200-225	55-65	350-400	32
American	0.885-0.890	75-100	35-40	325-350	32
American	0.875-0.880	65-75	30-35	325-350	32
Russian	0.910-0.915	1200-1500	200-250	400-425	25
Russian	0.905-0.912	700-800	125-150	350-375	25
Russian	0.895-0.900	220-250	60-65	325-350	15
Russian		125-175		300-325	10
Southern Sperm Oil :	0.8807	100.1	45.4	457.5	41.7
Arctic Sperm Oil	0.8804	105.3	47.2	446.2	39.2
White Whale Oil	0.9207	187.7	71.3	476.0	27.2
Neat's Foot Oil	0.9178	247	82.4	470.3	34.4
Lard Oil	0.9172	223.2	79.4	493.9	39.6
Olive Oil	0.9167	213.2	75.0	437.5	27
Rape Oil, East India, refined .	0.916	250.4	88.1	478.6	26.4
Rape Oil, Black Sea, refined	0.9209	226.9	78.8	465.4	27
Cottonseed Oil, refined	0.9235	190.4	69.8	523	30
Castor Oil	0.963	2500	390	487	0
Castor Oil	0.963	2500	390	487	0

XV.—PHYSICAL AND CHEMICAL CONSTANTS OF REPRESENTATIVE SAMPLES OF LUBRICATING OILS

BY ALBERT F. SEEKER

	AND AND ASSESSMENT AND ADDRESS OF THE PARTY							
Name.	Sp. Gr. 60° F.	Flash Test °F.	Fire Test °F.	Cold Test	Cold Saponifi- Test able °F. Matter.*	Ash.	Acidity or Alkalinity.	Other Tests.
Air Compressor Oil	0.8857	455	525	25	trace	none	neutral	No rosin oil Vis. 261, 7,8
Air Compressor Oil	0.8654	410	460	-2		none	neutral	No rosin oil.
Car Oil.	0.8824		400	5		none	neutral	T. S. M. 1%.†
Cutting Oil	0.9036	345	425	31	82.9%	none	3.16%	Mixture lard and min. oils. Vis. 8.6\$
Cylinder Oil	0.8921	535	₽009	09	20%	trace	neutral	T. S. M. less than 5%.
Cylinder Oil	0.9020	545	₽009	31	2.4%	none	neutral	T. S. M. trace. Vol. 1.43%.‡
Cylinder Oil	0.8993	590	₽009	:	none	0.06%	neutral	T. S. M. none. Vol. 9.74%.
Cylinder Oil	0.8992	555	1,009	:	none	0.08%	neutral	T. S. M. 2%. Vol. 9.12%.
Engine Oil	0.9163	430	480	27	1.5%	trace	neutral	No rosin oil. Vis. 28.4.§
Engine Oil	0.8845	360	415	50	10%	none	0.05%	T. S. M. none.
					_	_		

Table XV. - Lubricating Oils (Continued)

	-							
Name.	Sp. Gr. 60° F.	Flash Test °F.	Fire Test °F.	Cold Test °F.	Saponifi- able Matter.*	Ash.	Acidity or Alkalin- ity.	Other Tests.
Engine Oil.	0.8970	400	465	33	none	none	neutral	T. S. M. none. No rosin oil.
Engine Oil	0.8810	405	470	14	none	0.02%	neutral	T. S. M. none. No rosin oil.
150° Fire Test Oil	0.7864	140	180	:	none	none	neutral	T. S. M. none.
300° Fire Test Oil	0.8206	266	300	32	none	none	neutral	T. S. M. none.
High Speed Engine Oil	0.9152	400	465	70	17.2%	0.06%	1.09%	T. S. M. none. No rosin oil.
High Speed Engine Oil	0.9149	400	475	ಣ	15.3%	0.04%	1.06%	
Ice Machine Oil	0.8941	430	495	4-	none	0.13%	neutral	T. S. M. trace. No rosin oil.
Machine Oil	0.8689	420	480	0	trace	none	neutral	No rosin oil. Vis. 11.7.§
Marine Engine Oil	0.8812	405	440	17	none	trace	neutral	No rosin oil.
Marine Engine Oil	0.8765	435	200	20	none	0.03%	neutral	No rosin oil.
Marine Engine Oil	0.9090	405	465	0	12.0%	0.15%	0.75%	No rosin oil.
Marine Machine Oil	0.9054	400	470	6	9.0%	0.11%	0.50%	No rosin oil.
Screw-Cutting Oil	0.9002		425	15	25%	none	1.02%	T. S. M. none.
Transformer Oil	0.8646	365	430	0.	none	none	neutral	T. S. M. none.

* Saponifiable Matter. Obtain saponification value in usual way and calculate to rape oil, taking 175 as a mean

† T. S. M.=Tarry or suspended matter. Treat 5 c.c. of oil in a graduated tube with 100 c.c. 88° gasoline and allow to settle, reading off the sediment by the graduations.

‡ Vol. = Volatility. Heat 5 grams of oil in a tarred dish at 400° F. for 2 hours and calculate loss in weight to

|| Calculated to oleic acid.

Viscosity. Taken at 70° F. in Engler viscosimeter, water at 70° F.=1.

S VISC

XVI. — TEMPERATURE CORRECTION FOR RE-FRACTIVE INDICES OF OILS

Bul. No. 77, U. S. Dept. Agr.

Substance.	Correction for 1° C.	Substance.	Correction for 1° C.
Black mustard oil Corn oil Cottonseed oil Lard oil Mustard oil Olive oil	0.000361 0.000366 0.000368 0.000368 0.000360 0.000365	Peanut oil	0.000366 0.000369 0.000364 0.000370 0.000368

XVII. — TEMPERATURE CORRECTION FOR SPECIFIC GRAVITY OF OILS AND FATS

ALLEN, Com. Org. Anal.

Substance.	Correction for 1° C.	Substance.	Correction for 1° C.
Butter fat	0.000617	Olive oil	0.000629
Cocoa butter	0.000717	Palm nut oil	0.000653
Cocoanut oil	0.000642	Peanut oil	0.00065
Cod-liver oil	0.000646	Rape oil	0.00062
Cottonseed oil	0.000629	Sesame oil	0.00062
Lard	0.000650	Tallow	0.00067
Lard oil	0.000658	Whale oil	0.00069

XVIII.—CONVERSION OF ACID VALUE INTO OLEIC ACID

BY ALBERT F. SEEKER

Acid Value.	Oleic Acid, Per cent.	Acid Value.	Oleic Acid, Per cent.
1	0.5027 1.0054 1.5081 2.0108 2.5135	6	3.0162 3.5189 4.0216 4.5243

XIX.—TABLE FOR CALCULATING THE SPECIFIC GRAVITY OF OILS AT 15.5°*

C. H. Wright, Jour. Soc. Chem. Ind., **26**, 513. Example: $A = \text{sp. gr. at } 20^{\circ}$. $A \times 1.00319 = \text{sp. gr. at } 15.5^{\circ}$ C.

Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.	Tem- pera- ture.	Factor.
10	$\frac{1}{1.00389}$	14	1 1.00106	18	1.00177	22	1.00462
11	$\frac{1}{1.00318}$	15	1 1 . 00035	19	1.00248	23	1.00534
12	$\frac{1}{1.00248}$	16	1.0035	20	1.00319	24	1.00605
13	$\frac{1}{1.00177}$	17	1.00106	21	1.00391	25	1.00677

XX.—POLENSKE VALUE OF BUTTER FAT

Zeit. Nahrungs und Genussm., 7; 273 and 15, 193.

E. Polenske

M. FRITZSCHE (Dutch Butter)

Reichert- Meissl Value.	Polenske Value.	Maximum Limit.	Reichert- Meissl Value.	Polenske Value.	Maximum Limit.
20-21 21-22 22-23 24-25 25-26 26-27 27-28 28-29 29-30	1.3-1.7 1.4-1.8 1.5-1.9 1.7-1.8 1.8-1.9 1.9-2.0 2.0-2.2 2.2-2.5 2.5-3.0	2.1 2.2 2.3 2.3 2.4 2.5 2.7 3.0 3.5	24-25 25-26 26-27 27-28 28-29 29-30 30-31 31-32 32-33 33-34	$\begin{array}{c} 1.6 - 1.7 \\ 1.7 - 1.8 \\ 1.8 - 1.9 \\ 1.9 - 2.0 \\ 2.0 - 2.2 \\ 2.2 - 2.4 \\ 2.4 - 2.5 \\ 2.4 - 2.5 \\ 2.5 - 2.7 \\ 2.5 - 2.7 \end{array}$	2.0 2.2 2.4 2.7 2.8 3.0 3.2 3.2 3.4

^{*} These factors may be used for the common fats and oils and are accurate enough for all except the most accurate work.

XXI.—CONVERSION OF BUTYRO-REFRACT-OMETER READINGS TO INDICES OF REFRACTION.

By Albert F. Seeker

Butyro-R. Reading.	Index of Refraction.	Differ- ence.	Butyro-R. Reading.	Index of Refraction.	Differ- ence.	Butyro-R. Reading.	Index of Refraction.	Differ- ence.
0	1.4220		34	1.4481	7	68	1.4710	6
1	1.4228	8	35	1.4488	7	69	1.4717	7
2	1.4236	8	36	1.4495	7	70	1.4723	6
3	1.4244	8	37	1.4502	7	71	1.4729	6
4	1.4252	8	38	1.4510	8	72	1.4736	7
5	1.4260	8	39	1.4517	7	73	1.4742	6
6	1.4268	8	40	1.4524	7	74	1.4748	6
7	1.4276	8	41	1.4531	7	75	1.4754	6
8	1,4284	8	42	1.4538	7	76	1.4760	6
9	1.4292	8	43	1.4545	7	77	1.4766	6
10	1.4300	8	44	1.4552	7	78	1.4772	6
11	1.4308	8	45	1.4559	7	79	1.4778	6
12	1.4316	8	46	1.4566	7	80	1.4783	5
13	1.4324	8	47	1.4573	7	81	1.4789	6
14	1.4331	7	48	1.4580	7	82	1.4795	6
15	1.4339	8	49	1.4587	7	83	1.4801	6
16	1.4347	8	50	1.4593	6	84	1.4807	6
17	1.4354	7	51	1.4600	7	85	1.4812	5
18	1.4362	8	52	1.4607	7	86	1.4818	6
19	1.4370	8	53	1.4613	6	87	1.4824	6
20	1.4377	7	54	1.4620	7	88	1.4829	5
21	1.4385	8	55	1:4626	6	89	1.4835	6
22	1.4392	7	56	1.4633	7	90	1.4840	5
23	1.4400	8	57	1.4640	7	91	1.4846	6
24	1.4408	8	58	1.4646	6	92	1.4851	5
25	1.4415	7	59	1.4653	7	93	1.4857	6
26	1.4423	8	60	1.4659	6	94	1.4862	5
27	1.4430	7	61	1.4666	7	95	1.4868	6
28	1.4438	8	62	1.4672	6	96	1.4873	5
29	1.4445	7	63	1.4679	7	97	1.4879	6
30	1.4452	7	64	1.4685	6	98	1.4884	5
31	1.4460	8	65	1.4691	6	99	1.4890	6
32	1.4467	7	66	1.4698	7	100	1.4895	5
33	1.4474	7	67	1.4704	6	j		
	1					11	ı	

XXII. — REDUCTION OF GAS. VOLUMES TO 0° AND 760 MM.

Volume at 0° and 750 mm. = $v\left(\frac{1}{760 (1 + .00367 t)}\right)$ and (P-p).

v =observed volume of gas

t =observed temperature of gas in degrees Centigrade

P = observed barometric pressure, corrected, in millimeters

p = tension of aqueous vapor in millimeters

The logarithm of the volume at 0° and 76 mm, is obtained by adding the

logs of
$$v$$
 and $\left(\frac{1}{760 (1 + .00367 t)}\right)$ and $(P-p)$.

°C.	Logarithm of	Tension aqueous vapor.	°C.	Logarithm of 760(1+.00367t)	Tension aqueous vapor.	°C.	Logarithm of 1 760(1+.00367t)	Tension aqueous vapor.
		mm.			mm.			mm.
0.	3.11919	4.60	5.8	3.11004	6.90	11.6	3.10108	10.21
0.2	3.11887	4.65	6.0	3.10973	7.00	11.8	3.10178	10.34
0.4	3.11855	4.71	6.2	3.10942	7.09	12.0	3.10047	10.48
0.6	3.11824	4.78	6.4	3.10911	7.19	12.2	3.10017	10.62
0.8	3.11792	4.85	6.6	3.10880	7.29	12.4	3.09986	10.76
1.0	3.11760	4.92	6.8	3.10848	7.39	12.6	3.09956	10.90
1.2	3.11728	4.99	7.0	3.10818	7.49	12.8	3.09925	11.04
1.4	3.11696	5.06	7.2	3.10786	7.60	13.0	3.09895	11.19
1.6	3.11665	5.14	7.4	$\overline{3}.10755$	7.70	13.2	3.09864	11.33
1.8	3.11633	5.21	7.6	3.10724	7.81	13.4	3.09834	11.48
2.0	3.11601	5.29	7.8	3.10693	7.91	13.6	3.09804	11.63
2.2	3.11570	5.36	8.0	3.10662	8.02	13.8	3.09773	11.78
2.4	3.11538	5.44	8.2	3.10631	8.13	14.0	3.09743	11.94
2.6	3.11507	5.52	8.4	3.10600	8.24	14.2	3.09713	12.09
2.8	3.11475	5.60	8.6	3.10570	8.36	14.4	3.09682	12.25
3.0	3.11443	5.68	8.8	3.10538	8.47	14.6	3.09652	12.41
3.2	3.11412	5.76	9.0	$\overline{3}.10508$	8.58	14.8	3.09622	12.57
3.4		5.84	9.2	$\overline{3}.10477$	8.70	15.0	3.09592	12.73
3.6		5.92	9.4	310446	8.82	15.2	3.09561	12.89
3.8		6.00	9.6	3.10415	8.94	15.4	3.09531	13.06
4.0	3.11286	6.09	9.8	3.10384	9.06	15.6	3.09501	13.23
4.2		6.17	10.0	3.10354	9.18	15.8	3.09471	13.39
4.4	3.11223	6.26	10.2	$\overline{3}.10323$	9.30	16.0	3.09441	13.57
4.6	3.11192	6.35	10.4	$\overline{3}.10292$	9.43	16.2	3.09411	13.74
4.8	3.11160	6.44	10.6	3.10262	9.55	16.4	3.09381	13.91
5.0	3.11129	6.53	10.8	3.10231	9.68	16.6	3.09351	14.09
5.2	3.11098	6.62	11.0	$\bar{3}.10200$	9.81	16.8	3.09321	14.27
5.4	3.11067	6.71	11.2	3.10170	9.94	17.0	3.09291	14.45
5.6		6.81	11.4	3.10139 %	10.07	17.2	3.09261	14.63

°C.	Logarithm of 1 760(1+.00367t)	Tension aqueous vapor.	°c.	Logarithm of 1 760(1+.00367t)	Tension aqueous vapor.	°C.	Logarithm of 1 760(1+.00367t)	Tension aqueous vapor.
17.4	3.09231	mm. 14.82	23.4	3.08341	mm. 21.39	29.4	3.07469	mm. 30.48
17.6 17.8	3.09201 3.09171	$15.00 \\ 15.19$	$\begin{vmatrix} 23.6 \\ 23.8 \end{vmatrix}$	$\frac{3.08312}{3.08282}$	$21.65 \\ 21.91$	$\begin{vmatrix} 29.6 \\ 29.8 \end{vmatrix}$	$\frac{3.07440}{3.07411}$	30.84
18.0	3.09141	15.38	24.0	3.08253	22.18	30.0	3.07383	31.56
18.2	3.09111	15.58	24.2	3.08224	22.45	30.2	3.07354	31.92
18.4	3.09081	15.77	24.4	3.08194	22.72	30.4	$\overline{3}.07325$	32.29
18.6	$\overline{3}.09051$	15.97	24.6	$\overline{3}.08165$	22.99	30.6	3.07297	32.66
18.8	3.09021	16.17	24.8	3.08136	23.27	30.8	3.07268	33.04
19.0	3.08992	16.37	25.0	3.08107	23.55	31.0	3.07239	33.42
19.2	3.08962	16.57	25.2	3.08078	23.83	31.2	$\frac{3.07211}{}$	33.80
19.4	3.08932	16.78	25.4	3.08048	24.11	31.4	3.07182	34.19
19.6	3.08902	16.98	25.6	3.08019	24.40	31.6	3.07154	34.58
19.8	3.08873	17.19	25.8	3.07990	24.69	31.8	3.07125	34.97
20.0	3.08843	17.41	26.0	3.07961	24.99	$\frac{32.0}{32.2}$	3.07097	35.37
$\frac{20.2}{20.4}$	3.08813	17.62	26.2	3.07932	25.28 25.58	32.4	$\frac{3.07068}{5.07039}$	35.77
20.4	$\frac{3.08783}{3.08754}$	17.84 18.06	$\begin{vmatrix} 26.4 \\ 26.6 \end{vmatrix}$	$\frac{3.07903}{3.07874}$	25.89	$32.4 \\ 32.6$	3.07039	36.18 36.59
20.8	3.08724	18.28	26.8	$\frac{3.07844}{3.07844}$	26.19	32.8	$\frac{3.07011}{3.06983}$	37.01
21.0	3.08695	18.50	$\frac{20.8}{27.0}$	3.07816	26.50	33.0	3.06954	37.43
21.2	3.08665	18.73	$\begin{vmatrix} 27.0 \\ 27.2 \end{vmatrix}$	3.07787	26.82	33.2	3.06926	37.85
21.4	3.08635	18.96	27.4	$\frac{3.07758}{3.07758}$	27.13	33.4	$\frac{3.06820}{3.06897}$	38.28
21.6	3.08606	19.19	27.6	3.07729	27.45	33.6	3.06869	38.71
21.8	3.08576	19.42	27.8	3.07700	27.78	33.8	3.06841	39.15
22.0	1	19.66	28.0	$\frac{3}{3}$.07671	28.10	34.0	$\overline{3}.06812$	39.59
22.2		19.90	28.2	3.07642	28.43	34.2	3.06784	40.03
22.4		20.14	28.4	3.07613	28.77	34.4	3.06756	40.48
22.6	3.08458	20.39	28.6	$\overline{3}.07584$	29.10	34.6	$\overline{3}.06727$	40.93
22.8	3.08429	20.63	28.8	$\overline{3}.07555$	29.44	34.8	3.06699	41.39
23.0	3.08400	20.88	29.0	3.07527	29.78	35.0	3.06671	41.85
23.2	3.08370	21.14	29.2	3.07498	30.13			

XXIII. — CORRECTIONS OF BAROMETER READ-INGS FOR TEMPERATURE

GLASS SCALE (BUNSEN) M.M. TO BE DEDUCTED

Barom- eter Reading, mm.	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°
705 710 715	$0.121 \\ 0.121 \\ 0.122$		$ \begin{array}{r} 0.362 \\ 0.364 \\ 0.367 \end{array} $	$ \begin{array}{r} 0.483 \\ 0.486 \\ 0.489 \end{array} $	$0.603 \\ 0.607 \\ 0.612$	$ \begin{bmatrix} 0.724 \\ 0.729 \\ 0.734 \end{bmatrix} $	$0.844 \\ 0.850 \\ 0.856$	$0.965 \\ 0.972 \\ 0.979$	1.078 1.086 1.093 1.101 1.109	1.206 1.215 1.223
730 735 740		$0.252 \\ 0.253$	$ \begin{array}{r} 0.375 \\ 0.377 \\ 0.380 \end{array} $	$ \begin{array}{r} 0.500 \\ 0.503 \\ 0.506 \end{array} $	$ \begin{array}{r} 0.625 \\ 0.629 \\ 0.633 \end{array} $	0.744 0.749 0.755 0.760 0.765	0.874 0.880 0.886	0.999 1.006 1.013	1.116 1.124 1.132 1.140 1.147	1.249 1.258 1.266
755 760 765	$ \begin{array}{r} 0.129 \\ 0.130 \\ 0.131 \end{array} $	0.257 0.258 0.260 0.262	0.385 0.388 0.390 0.393	0.513 0.517 0.520 0.524	0.642 0.646 0.650 0.654	0.770 0.775 0.780 0.785	0.898 0.904 0.910 0.916	1.033 1.040 1.047	1.155 1.163 1.170 1.178	1.292 0.300 1.309
775 780 785	0.133 0.133 0.134	0.264 0.265 0.267 0.269 0.270	0.398 0.400 0.403	0.530 0.534 0.537	0.663 0.667 0.672	0.796 0.801 0.806	0.928 0.934 0.940	1.061 1.068 1.075	1.186 1.193 1.201 1.209 1.217	1.326 1.335 1.343
		0.272					0.952		1.224	

XXIV.—COEFFICIENT OF EXPANSION OF GASES*

		Constant Volu	me.		Constant Pres	sure.
Gas.	Temp. °C.	Pressure, mm.	Coef. of Expansion.	Temp.	Pressure, mm.	Coef. of Expansion.
Air	0-100	5.8	.0037666	0-100	760	.0036706
	0-100	752	.0036660	0-100	1001	.0036728
	0-100	756-833	.0036700	0 100	0000	.0036964
	0-100	1001	.0036744	0-100	2620	.003681
	0-100	2000	.0036903		`	
	0-100	20000	.0038866			
	0-100	100000	.0041001			
Argon	0-100	517	.003668			
Carbon dioxide	0-100	18.1	.0036753	0-40	518-760	.0037099
	20-98	760	.0037060	0-40	998	.0037536
		1743-2388	.0037523	0-40	1377	.0037906
	0-100	7927	.0042519	0-100	2520	.0038455
	0-64	19661	.005728	0-64	12988	.005136
	64-100	35-40†	.003956	0-64	18856	.006204
	64-100	94-119†	.007018	64-100	46.5*	.004946
Carbon monoxide	0-100	760	.0036667	0-100	760	.0036688
Helium	0-100	523-681	.0036627			
Hydrogen	16-132	.077	.003328	0-100	760	.0036613
, 0	12-185		.003656	0-100	200*	.00332
	0-100	520-694	.0036626	0-100	400*	.00295
	0-100	1100	.0036627	0-100	1000*	.00218
Nitrogen	13-132	0.6	.003021	0-100	1002	.0036732
	9-133	5.3	.003290	0-100	200*	.00434
	0-100	760	.0036682	0-100	600*	.00282
	0-40	1002	.0036752	0-100	1000*	.00218
Oxygen	11-132	0.07	.004161	0-100		.00486
	9-132	2.5	.003984	0-100	200*	.00534
		354	.00367	0-100	400*	.00459
	21-98	760	.0036743	0-100	600*	.00357
				0-100		.00241
Nitric oxide	22-98	760 }	.0036757	0-100	760	.0037195
Sulphur dioxide .	0-100	760	.0038453	0-100	760	.0039028
	0-100	765-1060	.0038591	0-100		.0039804
Water vapor	1 230	1300		0-119		.004187
· · · · · · · · · · · · · · · · · · ·				0-200		.003938
	1			11 - 200		

^{*} The data of this Table are quoted from Sandolt-Börnstein, Phys. Chem. Tabellen, 1905, p. 215.

[†] Atmospheres.

TABLE XXV.—SOLUBILITY OF GASES IN WATER*

	Oxyge	en, W.	Hydro	gen, W.	Nitrogen	, B. & B.	Chloris	ae, W.
T.	a.	q.	a.	q.	a.	q.	a.	q.
0	.04890	.006948	.02148	.0001922	.02388	.002977		
1	.04759	.006758	.02126	.0001902	.02337	.002912		
2	.04633	.006576	.02105	.0001882	.02288	.002843		
3.	.04512	.006401	.02084	.0001862	.02241	.002790	. ,	
4	.04397	.006234	.02064	.0001843	.02196	.002732		
5	.04286	.006074	.02044	.0001824	.02153	.002677		
6	.04181	.005920	.02025	.0001806	.02111	.002624		
7	.04080	.005775	.02007	.0001789	.02070	.002570		
8	.03983	.005633	.01989	.0001772	.02031	.002520		
9	.03891	.005499	.01972	.0001756	.01993	.002472		
10	.03802	.005370	.01955	.0001739	.01956	.002424	3.095	. 9969
11	.03718	.005248	.01940	.0001725	.01920	.002378	2.996	.9652
12	.03637	.005129	.01925	.0001710	.01885	.002333	2.900	.9344
13	. 03560	.005011	.01911	.0001696	.01851	.002289	2.808	.9048
14	.03486	.004908	.01897	.0001682	.01818	.002246	2.720	.8766
15	.03415	.004804	.01883	.0001669	.01786	.002205	2.635	.8493
16	.03347	.004703	.01869	.0001654	.01755	.002164	2.553	. 8230
17	.03283	.004609	.01856	.0001641	.01725	.002125	2.474	.7977
18	.03220	.004515	.01844	.0001630	.01698	.002089	2.399	.7736
19	.03161	.004428	.01831	.0001616	.01667	.002049	2.328	.7508
20	.03102	.004339	.01819	.0001604	.01639	.002012	2.260	.7291
21	.03044	.004253	.01805	.0001590	.01611	.001975	2.200	.7098
22	.02988	.004169	.01792	.0001575	.01584	.001940	2.143	. 6916
23	.02934	.004088	.01779	.0001561	.01557	.001903	2.087	.6737
24	.02881	.004009	.01766	.0001548	. 01530	.001868	2.035	. 6570
25	.02831	.003932	.01754	.0001534	.01504	.001832	1.985	. 6411
26	.02783	.003859	.01742	.0001522	.01478	.001798	1.937	. 6257
27	.02736	.003787	.01731	.0001509	.01453	.001764	1.891	.6110
28	.02691	.003717	.01720	.0001497	.01428	.001731	1.848	. 5973
29	.02649	.003653	.01709	.0001485	.01404	.001699	1.808	.5845
30	.02608	.003588	.01699	.0001470	.01380	.001666	1.769	.5722
35	.02440	.003315	.01666	.0001426	.01271	.001516	1.575	.5103
40	.02306	.003081	.01644	.0001385	.01182	.001386	1.414	. 4589
45	.02187	.002860	.01624	.0001338	.01111	.001275	1.300	. 4227
50	.02090	.002657	.01608	.0001288	.01061	.001184	1.204	.3927
60	.01946	.002274	.01600	.0001178	.01000	.001026	1.006	.3294
70	.01833	.001857	.01600	.0001021			0.848	.2792
80	.01761	.001381	.01600	.0000790			0.672	.2226
90	.01723	.000787	.01600	.0000461			0.380	.1268
100	.01700	.000000	.01600	.0000000	.01000	.000000	0.000	.0000

^{*} From Technical Chemists' Handbook, Lunge.

Column a gives the volume of gas (reduced to 0° and 760 mm.) dissolved by one volume of the liquid at the temperature indicated, if the partial pressure of the gas = 760 mm, Hg. Column q gives the weight of the substance in grams, dissolved by 100 gr. of the pure solvent, if

т.	Carbon Mo	onoxide, W.	Carbon	n Dioxide, . & B.	Hydrogen S	Sulphide, F.	Ammo	nia, R.
**	a.	q.	a.	q.	a.	q.	a.	q.
0	0.03537	0.004397	1.713	0.3347	4.686	0.710	1298.9	98.7
1	0.03455	0.004293	1.646	0.3214	4.555	0.689	1220.2	92.7
2	0.03375	0.004192	1.584	0.3091	4.428	0.670	1154.7	87.7
3	0.03297	0.004092	1.527	0.2979	4.303	0.651	1100.9	83.6
4	0.03222	0.003997	1.473	0.2872	4.182	0.632	1053.0	79.9
5	0.03149	0.003904	1.424	0.2774	4.063	0.615	1019.5	77.3
6	0.03078	0.003814	1.377	0.2681	3.948	0.596	997.2	75.6
7	0.03009	0.003726	1.331	0.2590	3.836	0.579	974.9	73.9
8	0.02942	0.003641	1.282	0.2494	3.728	0.562	954.5	72.3
9	0.02878	0.003560	1.237	0.2404	3.622	0.546	933.0	70.6
10	0.02816	0.003481	1.194	0.2319	3.520	0.530	910.4	68.9
11	0.02757	0.003416	1.154	0.2240	3.421	0.515	888.0	67.2
12	0.02701	0.003333	1.117	0.2166	3.325	0.500	865.6	65.5
13	0.02646	0.003260	1.083	0.2099	3.232	0.485	843.2	63.7
14	0.02593	0.003188	1.050	0.2033	3.142	0.471	822.1	62.1
15	0.02543	0.003130	1.019	0.1971	3.056	0.458	802.4	60.6
16	0.02494	0.003065	0.985	0.1904	2.973	0.445	783.2	59.1
17	0.02448	0.003007	0.956	0.1845	2.893	0.433	764.1	57.6
18	0.02402	0.002943	0.928	0.1789	2.816	0.421	744.3	56.1
19	0.02360	0.002893	0.902	0.1736	2.742	0.409	725.8	54.7
20	0.02319	0.002839	0.878	0.1689	2.672	0.398	710.6	53.5
21	0.02281	0.002789	0.854	0.1641			690.2	51.9
22	0.02244	0.002739	0.829	0.1591			674.3	50.6
23	0.02208	0.002691	0.804	0.1541			661.0	49.6
24	0.02174	0.002647	0.781	0.1494			647.8	48.6
25	0.02142	0.002603	0.759	0.1450			634.6	47.6
26	0.02110	0.002560	0.738	0.1407			621.3	46.5
27	0.02080	0.002519	0.718	0.1367			608.1	45.5
28	0.02051	0.002479	0.699	0.1328			594.8	44.4
29	0.02024	0.002442	0.682	0.1293				
30	0.01998	0.002405	0.665	0.1259				
35	0.01877	0.002231	0.592	0.1106				
40	0.01775	0.002076	0.530	0.0974				
45	0.01690	0.001934	0.479	0.0862				
50	0.01615	0.001797	0.436	0.0762				
60	0.01488	0.001521	0.359	0.0577				
70	0.01440							
80	0.01430	0.000981						
90	0.01420	0.000568						
100	0.01410	0.000000						

the partial pressure of the gas + the vapor pressure of the liquid at the temperature indicated = 760 mm. Hg.

The letters following the name of the gas indicate the observer, viz., W.=Winkler; B. & B.= Bohr & Bock; F.=Fauser; R.=Raoult; S.=Schönfeld; R.-D.=Roscoe-Dittmar; B.=Bunsen.

T.	Sulphur d S.	ioxide,	Hydroger R.	chloride,	Metha	nne, W.
	a.	q.	a.	q.	a.	q.
0	79.789	22.83	506.7	82.5	0.05563	0.003959
1	77.210	22.09	1		0.05401	0.003842
2	74.691	21.37	499.8	81.4	0.05244	0.003729
3	72.230	20.67			0.05093	0.003620
4	69.828	19.98	493.7	80.4	0.04946	0.003514
5	67.485	19.31			0.04805	0.003411
6	65.200	18.66	486.9	79.3	0.04669	0.003312
7	62.973	18.02			0.04539	0.003218
8	60.805	17.40	480.8	78.3	0.04413	0.003127
9	58.697	16.80			0.04292	0.003039
10	56.647	16.21	473.9	77.2	0.04177	0.002956
11	54.655	15.64			0.04072	0.002880
12	52.723	15.09	467.7	76.2	0.03970	0.002805
13	50.849	14.56			0.03872	0.002733
14	49.033	14.04	461.5	75.2	0.03779	0.002666
15	47.276	13.54	101.0	.0.2	0.03690	0.002600
16	45.578	13.05	455.2	74.2	0.03606	0.002538
17	43.939	12.59	100.2	11.2	0.03525	0.002479
18	43.360	12.14	448.3	73.1	0.03446	0.002422
19	40.838	11.70	110.0	10.1	0.03376	0.002369
20	39.374	11.29	442.0	72.1	0.03308	0.002319
21	37.970	10.89	112.0	• 2.1	0.03243	0.002370
22	36.617	10.50	435.0	71.0	0.03180	0.002210
23	35.302	10.13	100.0	11.0	0.03119	0.002178
24	34.026	9.76	428.7	70.0	0.03061	0.002178
25	32.786	9.41	120.1	10.0	0.03001	0.002134
26	31.584	9.07	423.0	69.1	0.03000	0.002052
27	30.422	8.43	420.0	09.1	0.02932	0.002031
28	29.314	8.42	417.2	68.2	0.02901 0.02852	
29	28.210	8.10	417.2	08.2		0.001974
30	27.161	7.81	411.5	67.3	0.02806	0.001939
35	22.489	6.47	411.5	07.3	0.02762	0.001905
			907 7	62 2	0.02546	0.001732
40 50	18.766	5.41	387.7	63.3	0.02369	0.001586
			361.6	59.6	0.02134	0.001359
60			338.7	56.1	0.01954	0.001145
70					0.01825	0.000926
80					0.01770	0.000695
90					0.01735	0.000398
.00					0.01700	0.000000

т.	Ethyle	ne, W.	Acetyle	ne, W.	Air	, w.	Nitrous Oxide, in Alcohol, B.
	a.	q.	a.	q.	a.	q.	a.
0	0.226	0.0281	1.73	0.20	0.02881		4.1780
1	0.219	0.0272	1.68	0.19	0.02808		4.1088
2	0.211	0.0262	1.63	0.19	0.02738		4.0409
3	0.204	0.0254	1.58	0.18	0.02670		3.9741
4	0.197	0.0245	1.53	0.18	0.02606		3.9085
5	0.191	0.0237	1.49	0.17	0.02543		3.8442
6	0.184	0.0228	1.45	0.17	0.02482		3.7811
7	0.178	0.0221	1.41	0.16	0.02424		3.7192
8	0.173	0.0214	1.37	0.16	0.02369		3.6585
9	0.167	0.0207	1.34	0.15	0.02316		3.5990
10	0.162	0.0200	1.31	0.15	0.02264		3.5408
11	0.157	0.0194	1.27 .	0.15	0.02217		3.4838
12	0.152	0.0188	1.24	0.14	0.02171		3.4279
13	0.148	0.0183	1.21	0.14	0.02127		3.3734
14	0.143	0.0176	1.18	0.14	0.02085		3.3200
15	0.139	0.0171	1.15	0.13	0.02045		3.2678
16	0.136	0.0167	1.13	0.13	0.02005		3.2169
17	0.132	0.0162	1.10	0.13	0.01970		3.1672
18	0.129	0.0158	1.08	0.12	0.01935		3.1187
19	0.125	0.0153	_ 1.05	0.12	0.01901		3.0714
20	0.122	0.0150	1.03	0.12	0.01869		3.0253
21	0.119	0.0146	1.01	0.12	0.01838		2.9805
22	0.116	0.0142	0.99	0.11	0.01808		2.9368
23	0.114	0.0139	0.97	0.11	0.01779		2.8944
24	0.111	0.0135	0.95	0.11	0.01751		2.8532
25	0.108	0.0131	0.93	0.11	0.01724		
26	0.106	0.0129	0.91	0.10	0.01698		
27	0.104	0.0126	0.89	0.10	0.01674		
28	0.102	0.0123	0.87	0.10	0.01650		
29	0.100	0.0121	0.85	0.10	0.01627		
30	0.098	0.0118	0.84	0.09	0.01606		
• • • • • •					0.01503		
• • • • • •					0.01418		
					0.01297		
• • • • • •					0.01216		
					0.01136		
					0.01120		
					0.01113		
					0.01103		

XXVI.—DENSITY OF

WEIGHT IN MILLIGRAMS OF 1 CC. AT 720 TO

mm.	10°	11°	12°	13°	14°	15°	16°	17°
720	1.13380	1.12881	1.12376	1.11875	1.11369	1.10859	1.10346	1.09828
722	1.13699	1.13199	1.12693	1.12191	1.11684	1.11172	1.10658	1.10139
724	1.14018	1.13517	1.13010	1.12506	1.11999	1.11486	1.10971	1.10450
726	1.14337	1.13835	1.13326	1.12822	1.12313	1.11799	1.11283	1.10761
728	1.14656	1.14153	1.13643	1.13138	1.12628	1.12113	1.11596	1.11073
730	1.14975	1.14471	1.13960	1.13454	1.12942	1.12426	1.11908	1.11384
732	1.15294	1.14789	1.14277	1.13769	1.13257	1.12739	1.12220	1.11695
734	1.15613	1.15107	1.14593	1.14085	1.13572	1.13053	1.12533	1.12006
736	1.15932	1.15424	1.14910	1.14401	1.13886	1.13366	1.12845	1.12317
738	1.16251	1.15742	1.15227	1.14716	1.14201	1.13680	1.13158	1.12629
740	1.16570	1.16060	1.15543	1.15032	1.14515	1.13993	1.13470	1.12940
742	1.16889	1.16378	1.15860	1.15348	1.14830	1.14306	1.13782	1.13251
744	1.17208	1.16696	1.16177	1.15663	1.15145	1.14620	1.14095	1.13562
746	1.17527	1.17014	1.16493	1.15979	1.15459	1.14933	1.14407	1.13873
748	1.17846	1.17332	1.16810	1.16295	1.15774	1.15247	1.14720	1.14185
750	1.18165	1.17650	1.17127	1.16611	1.16088	1.15560	1.15032	1.14496
752	1.18484	1.17968	1.17444	1.16926	1.16403	1.15873	1.15344	1.14807
754	1.18803	1.18286	1.17760	1.17242	1.16718	1.16187	1.15657	1.15118
756	1.19122	1.18603	1.18077	1.17558	1.17032	1.16500	1.15969	1.15429
758	1.19441	1.18921	1.18394	1.17873	1.17347	1.16814	1.16282	1.15741
760	1.19760	1.19239	1.18710	1.18189	1.17661	1.17127	1.16594	1.16052
762						1.17440		1
764	1.20398	1.19875	1.19344	1.18820	1.18291	1.17754	1.17219	1.16674
766	1.20717	1.20193	1.19660	1.19136	1.18605	1.18067	1.17531	1.16985
768	1.21036	1.20511	1.19977	1.19452	1.18920	1.18381	1.17844	1.17297
770	1.21355	1.20829	1.20294	1.19768	1.19234	1.18694	1.18156	1.17608
		l e			!			

NITROGEN (DIETRICH)

770 mm, Pressure and 10° to 25° Centigrade

_								
mm.	18°	19°	20°	21°	22°	23°	24°	25°
720	1.09304	1.08774	1.08246	1.07708	1.07166	1.06616	1.06061	1.05499
722	1.09614	1.09083	1.08554	1.08015	1.07472	1.06921	1.06365	1.05801
724	1.09924	1.09392	1.08862	1.08322	1.07778	1.07226	1.06669	1.06104
726	1.10234	1.09702	1.09170	1.08629	1.08084	1.07531	1.06973	1.06407
728	1.10544	1.10011	1.09478	1.08936	1.08390	1.07836	1.07277	1.06710
730	1.10854	1.10320	1.09786	1.09243	1.08696	1.08141	1.07581	1.07013
					·			
732		1.10629						
734		1.10938						
736		1.11248						
738	1.12095	1.11557	1.11018	1.10472	1.09921	1.09361	1.08796	1.08225
740	1.12405	1.11866	1.11327	1.10799	1.10227	1.09666	1.09100	1.08528
742	1 19715	1.12175	1 11635	1 11086	1 10533	1 00071	1 09404	1 08831
744		1.12484						
746		1.12404 1.12794						
748		1.13103						
750		1.13412						
150	1.10000	1.10112	1.12007	1.12014	1.11707	1.11191	1.10020	1.10046
752	1.14266	1.13721	1.13175	1.12621	1.12063	1.11496	1.10924	1.10346
754	1.14576	1.14030	1.13483	1.12928	1.12369	1.11801	1.11228	1.10649
756	1.14886	1.14340	1.13791	1.13236	1.12675	1.12106	1.11532	1.10952
758	1.15196	1.14649	1.13999	1.13543	1.12982	1.12411	1.11835	1.11255
760	1.15506	1.14958	1.14408	1.13850	1.13288	1.12716	1.12139	1.11558
760	1 15010	1 15005	1 1 4 1 1 0	1 11128	1 10504	1 10001	7 70110	4 44004
762 764		1.15267						
766		1.15576						
768		1.15886				1		
		1.16195						
770	1.17056	1.16504	1.15948	1.15385	1.14818	1.14241	1.13659	1.13073

XXVII.—DENSITY OF CARBON

Weight in milligrames of 1 c.c. carbon dioxide at 720 to 770 mm. pressure ings on glass scale. Calculated from 1.976 = weight of 1 liter $\rm CO_2$ at 0° Cen-

mm.	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°
720	1 7788	1 7706	1.7623	1 7540	1 7457	1 7373	1 7288	1 7203	1 7117	1 7031
722			1.7673							
724			1.7723							
726			1.7773							
728			1.7822							
730			1.7872							
.00	2.0000	1.,000	1.1012	1	1.1100		1.1000	1	1	1.1210
732	1.8089	1.8005	1.7921	1.7837	1.7752	1.7667	1 7582	1.7496	1.7409	1.7321
734	1.8139	1.8055	1.7971	1.7887	1.7802	1.7717	1.7631	1 7545	1.7458	1.7370
736	1.8189	1.8105	1.8021	1.7936	1.7851	1.7766	1.7680	1 7593	1.7506	1.7418
738			1.8071							
740			1.8120							
742	1.8338	1.8254	1.8170	1.8085	1.7999	1.7913	1.7827	1.7740	1.7652	1.7564
744	1.8388	1.8304	1.8219	1.8134	1.8048	1.7962	1.7875	1.7788	1.7700	1.7612
746	1.8439	1.8354	1.8269	1.8184	1.8098	1.8011	1.7924	1.7837	1.7749	1.7661
748	1.8489	1.8404	1.8319	1.8233	1.8147	1.8060	1.7973	1.7886	1.7798	1.7709
750	1.8539	1.8454	1.8368	1.8282	1.8196	1.8109	1.8022	1.7934	1.7846	1.7757
			i		,					
752			1.8418							
754	1.8639	1.8554	1.8468	1.8382	1.8295	1.8208	1.8120	1.8032	1.7944	1.7854
756	1.8689	1.8603	1.8517	1.8431	1.8344	1.8257	1.8169	1.8081	1.7992	1.7902
758			1.8567							
760	1.8789	1.8703	1.8617	1.8530	1.8443	1.8355	1.8267	1.8178	1.8089	1.7999
762			1.8667							
764			1.8716							
766			1.8766							
768			1.8816							
770	1.9040	1.8953	1.8865	1.8777	1.8689	1.8601	1.8512	1.8422	1.8332	1.8241
		1								1

^{*} S. W. Parr, Jour. Am.

DIOXIDE (PARR*)

and 10° to 30° Centigrade. Corrected for a queous vapor and barometer readtigrade, 760 $\,$ mm. pressure and 41° latitude

F		1 1	1	1		1	1
20° 2	1° 22°	23° 2	24° 25°	26° 27	° 28°	29°	30°
1.6944 1.6	856 1.6767	1.6678 1.6	5587 1.6495	1.6403 1.63	309 1 . 6213	1.6116	1.6018
				1.6450 1.63			
				1.6497 1.64			
1.7089 1.7	001 1 . 691	1.6821 1.6	5730 1 . 6638	1.6544 1.64	450 1.6354	1.6256	1.6157
				1.6591 1.64			
1.7185 1.7	097 1.7007	1.6917 1.6	825 1.6732	1.6638 1.6	544 1.6448	1.6350	1.6251
1 7000 1 7	145 1 705	1 60611 6	979 1 6770	1.6685 1.6	1 0404	1 6906	1 0007
				1.6733 1.6			
				1.6780 1.6			
				1.6827 1.6			
				1.6874 1.6			
1.41201.4	00.121.	1	1.0000	1.00.11.0	1.0001	1.0000	1.0100
1.7475 1.7	385 1.7295	1.72031.7	111 1.7017	1.6922 1.68	326 1 . 6729	1.662	1.6530
1.7523 1.7	433 1.7342	1.7250 1.7	158 1.7064	1.6969 1.68	373 1.6776	1.6677	1.6577
				1.7016 1.69			
				1.7063 1.69			
1.7667 1.7	577 1.7486	1.7394 1.7	301 1 . 7206	1.7110 1.70	014 1 . 6916	1.6817	1.6716
		L					
				1.7158 1.70			
				$\begin{bmatrix} 1.7205 & 1.71 \\ 1.7252 & 1.71 \end{bmatrix}$			
				$\begin{bmatrix} 1.7252 & 1.71 \\ 1.7300 & 1.72 \end{bmatrix}$			
				1.73471.72			
1.7509 1.7	010 1.1140	1.7052 1.7	000 1.7440	1.70111.72	1.7130	1.7000	1.0040
1.7957 1 7	866 1 7773	1.7680 1.7	586 1.7490	1.7394 1.72	296 1 . 7197	1.7097	1.6996
				1.7441 1.78			
				1.7488 1.73			
1.8102 1.8	010 1.7917	1.7823 1.7	728 1.7633	1.7535 1.74	37 1.7338	1.7237	1.7135
1.8150 1.8	058 1.7965	1.7871 1.7	776 1.7680	1.7582 1.74	84 1.7385	1.7284	1.7182

Chem. Soc. 31, 237.

XXVIII TABLE OF LOGARITHMS

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	00 000 432 860 01 284 703 342 743 04 139 532 922 05 308 690 06 070 446 849 8555	1 043 475 903 326 745 160 572 979 383 782 179 571 961 346 729	2 087 518 945 368 787 202 612 *019 423 822 218 610 999 385 767 145	3 130 561 988 410 828 243 653 *060 463 862 258 650 *038 423 805	173 604 *030 452 870 284 694 *100 503 902 296 689 *077 461	217 647 *072 494 912 325 735 *141 543 941 336 727	\$\frac{260}{689} \times 115 \times 536 \times 953\$\$ \$\frac{366}{776} \times 181 \times 583 \times 981\$\$	7 303 732 *157 578 995 407 816 *222 623 *021 415	8 346 775 *199 620 *036 449 857 *262 663 *060	9 389 817 *242 662 *078 490 898 *302 703 *100 493	1 2 3 4 5 6 7 8 9	P. 44 9 13 18 22 26 31 35 40	P. 43 4 9 13 17 22 26 30 34 39	42 4 8 13 17 21 25 29 34 38
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	432 860 01 284 703 02 119 531 938 03 342 743 532 922 05 308 690 06 070 446 4819 07 188	475 903 326 745 160 572 979 383 782 179 571 961 346 729 108 483	518 945 368 787 202 612 *019 423 822 218 610 999 385 767	561 988 410 828 243 653 *060 463 862 258 650 *038 423	604 *030 452 870 284 694 *100 503 902 296 689 *077	647 *072 494 912 325 735 *141 543 941 336 727	689 *115 536 953 366 776 *181 583 981	732 *157 578 995 407 816 *222 623 *021	775 *199 620 *036 449 857 *262 663 *060	817 *242 662 *078 490 898 *302 703 *100	2 3 4 5 6 7 8	4 9 13 18 22 26 31 35	4 9 13 17 22 26 30 34 39	4 8 13 17 21 25 29 34 38
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119	432 860 01 284 703 02 119 531 938 03 342 743 532 922 05 308 690 06 070 446 4819 07 188	475 903 326 745 160 572 979 383 782 179 571 961 346 729 108 483	518 945 368 787 202 612 *019 423 822 218 610 999 385 767	561 988 410 828 243 653 *060 463 862 258 650 *038 423	604 *030 452 870 284 694 *100 503 902 296 689 *077	647 *072 494 912 325 735 *141 543 941 336 727	689 *115 536 953 366 776 *181 583 981	732 *157 578 995 407 816 *222 623 *021	775 *199 620 *036 449 857 *262 663 *060	*242 662 *078 490 898 *302 703 *100	2 3 4 5 6 7 8	4 9 13 18 22 26 31 35	4 9 13 17 22 26 30 34 39	4 8 13 17 21 25 29 34 38
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	01 284 703 02 119 531 93 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	326 745 160 572 979 383 782 179 571 961 346 729 108 483	368 787 202 612 *019 423 822 218 610 999 385 767	410 828 243 653 *060 463 862 258 650 *038 423	284 694 *100 503 902 296 689 *077	325 735 *141 543 941 336 727	536- 953 366 776 *181 583 981 376	578 995 407 816 *222 623 *021	620 *036 449 857 *262 663 *060	662 *078 490 898 *302 703 *100	2 3 4 5 6 7 8	9 13 18 22 26 31 35	9 13 17 22 26 30 34 39	8 13 17 21 25 29 34 38
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	703 02 119 531 938 03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	745 160 572 979 383 782 179 571 961 346 729 108 483	787 202 612 *019 423 822 218 610 999 385 767	828 243 653 *060 463 862 258 650 *038 423	284 694 *100 503 902 296 689 *077	912 325 735 *141 543 941 336 727	953 366 776 *181 583 981 376	995 407 816 *222 623 *021	*036 449 857 *262 663 *060	*078 490 898 *302 703 *100	3 4 5 6 7 8	13 18 22 26 31 35	13 17 22 26 30 34 39	13 17 21 25 29 34 38
105 (106 107 108 109 110 (111 112 113 114 115 116 117 118 119 120	02 119 531 931 933 03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	160 572 979 383 782 179 571 961 346 729 108 483	202 612 *019 423 822 218 610 999 385 767	243 653 *060 463 862 258 650 *038 423	284 694 *100 503 902 296 689 *077	325 735 *141 543 941 336 727	366 776 *181 583 981 376	407 816 *222 623 *021	449 857 *262 663 *060	490 898 *302 703 *100	4 5 6 7 8	18 22 26 31 35	17 22 26 30 34 39	17 21 25 29 34 38
106 107 108 109 110 111 112 113 114 115 116 117 118 119	531 938 03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	572 979 383 782 179 571 961 346 729 108 483	612 *019 423 822 218 610 999 385 767	653 *060 463 862 258 650 *038 423	694 *100 503 902 296 689 *077	735 *141 543 941 336 727	776 *181 583 981	816 *222 623 *021	857 *262 663 *060	898 *302 703 *100	5 6 7 8	22 26 31 35	22 26 30 34 39	21 25 29 34 38
106 107 108 109 110 111 112 113 114 115 116 117 118 119	531 938 03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	572 979 383 782 179 571 961 346 729 108 483	612 *019 423 822 218 610 999 385 767	653 *060 463 862 258 650 *038 423	694 *100 503 902 296 689 *077	735 *141 543 941 336 727	776 *181 583 981	816 *222 623 *021	857 *262 663 *060	898 *302 703 *100	6 7 8	26 31 35	26 30 34 39	25 29 34 38
107 108 109 110 111 112 113 114 115 116 117 118 119	938 03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	979 383 782 179 571 961 346 729	*019 423 822 218 610 999 385 767	*060 463 862 258 650 *038 423	*100 503 902 296 689 *077	*141 543 941 336 727	*181 583 981 376	*222 623 *021	*262 663 *060	*302 703 *100	7 8	31 35	30 34 39	29 34 38
108 109 110 111 112 113 114 115 116 117 118 119 120	03 342 743 04 139 532 922 05 308 690 06 070 446 819 07 188	383 782 179 571 961 346 729 108 483	423 822 218 610 999 385 767	463 862 258 650 *038 423	503 902 296 689 *077	543 941 336 727	583 981 376	623 *021	663 *060	703 *100	8	35	34 39	34 38
110 111 112 113 114 115 116 117 118 119 120	743 04 139 532 922 05 308 690 06 070 446 819 07 188	782 179 571 961 346 729 108 483	822 218 610 999 385 767	258 650 *038 423	902 296 689 *077	941 336 727	981 376	*021	*060	*100			39	38
110 111 112 113 114 115 116 117 118 119	04 139 532 922 05 308 690 06 070 446 819 07 188	179 571 961 346 729 108 483	218 610 999 385 767	258 650 *038 423	296 689 *077	336 727	376				9	40		
111 112 113 114 115 116 117 118 119	532 922 05 308 690 06 070 446 819 07 188	571 961 346 729 108 483	610 999 385 767	650 *038 423	689 *077	727		415	454	493				
112 113 114 115 116 117 118 119	922 05 308 690 06 070 446 819 07 188	961 346 729 108 483	999 385 767	*038 423	*077									
113 114 115 116 117 118 119	05 308 690 06 070 446 819 07 188	346 729 108 483	385 767	423			766	805	844	883		41	40	39
114 115 116 117 118 119	690 06 070 446 819 07 188	729 108 483	767			*115	*154	*192	*231	*269	1	4	4	4
115 116 117 118 119	06 070 446 819 07 188	108 483		805		500	538	576	614	652	2	8	8	8
116 117 118 119	446 819 07 188	483	145		843	881	918	956	994	*032	3	12 16	12 16	12 16
117 118 119	819 07 188			183	221	258	296	333	371	408	5	21	20	20
118 119 120	07 188	856	521	558	595	633	670	707	744	781	6	25	24	23
119 120			893	930	967	*004	*041	*078	*115	*151	7	29	28	27
120	555	225	262	298	335	372	408	445	482	518	8	33	32	31
		591	628	664	700	737	773	809	846	882	9	37	36	35
	918	954	990	*027	*063	*099	*135	*171	*207	*243				
121	08 279	314	350	386	422	458	493	529	565	600		38	37	36
122	636	672	707	743	778	814	849	884	920	955	1	4	4	4
123	991	*026	*061	*096	*132	*167	*202	*237	*272	*307	2	8	7	7
124	09 342	377	412	447	482	517	552	587	621	656	3	11 15	11 15	11 14
125	691	726	760	795	830	864	899	934	968	*003	5	19	19	18
126	10 037	072	106	140	175	209	243	278	312	346	6	23	22	22
127	380	415	449	483	517	551	585	619	653	687	7	27	26	25
128	721	755	789	823	857	890	924	958	992	*025	8	30	30	29
129	11 059	093	126	160	193	227	261	294	327	361	9	34	33	32
130	394	428	461	494	528	561	594	628	661	694				,
131	727	760	793	826	860	893	926	959	992	*024		35	34	33
132	12 057	090	123	156	189	222	254	287	320	352	1	4	3	3
133	385	418	450	483	516	548	581	613	646	678	2	7	7	7
134	710	743	775	808	840	872	905	937	969	*001	3	11	10	10
											4	14	14	13
	13 033	066	098	130	162	194 •		258	290	322	5	18	17	17
136	354	386	418	450	481	513	545	577	609	640	6	21	20	20
137	672	704	735	767	799	830	862	893	925	956	7	25	24	23
138	988	*019	*051	*082	*114	*145	*176	*208	*239	*270	8	28	27	26
139	14 301	333	364	395	426	457	489	520	551	582	9	32	31	30
140	613	644	675	706	737	768	799	829	860	891				
141	922	953	983	*014	*045	*076	*106	*137	*168	*198		32	31	30
	15 229	259	290	320	351	381	412	442	473	503	1	3	3	3
143	534	564	594	625	655	685	715	746	776	806	2	6	6	6
144	836	866	897	927	957	987	*017	*047	*077	*107	3	10 13	9	9
	16 137	167	197	227	256	286	316	346	376	406	5	16	16	15
146	435	465	495	524	554	584	613	643	673	702	6	19	19	18
147	732	761	791	820	850	879	909	938	967	997	7	22	22	21
	17 026	056	085	114	143	173	202	231	260	289	8	26	25	24
149	319	348	377	406	435	464	493	522	551	580	9	29	28	27
N.	Ð	1	2	3	4	5	6	7	8	9	t .	10	. P.	

	. 0	1	1		1	i		1	1			
N.	0	1	2	3	4	5	6	7	8	9		P. P.
150	17 609	638	667	696	725	754	782	811	840	869		
151	898	926	955	984	*013	*041	*070	*099	*127	*156		29 28
152	18 184	213	241	270	298	327	355	384	412	441	1	3 3
153	469	498	526	554	583	611	639	667	696	724	2	6 6
154	752	780	808	837	865	893	921	949	977	*005	3	9 8
											4	12 11
155	19 033	061	089	117	145	173	201	229	257	285	5	15 14
156	312	340	368	396	424	451	479	507	535	562	6	17 17
157	590	618	645	673	700	728	756	783	811	838	7	20 20
58	866	893	921	948	976	*003	*030	*058	*085	*112	8	23 22
159	20 140	167	194	222	249	276	303	330	358	385	. 9	26 25
.60	412	439	466	493	520	548	575	602	629	656		
61	683	710	737	763	790	817	844	871	898	925		27 26
62	952	978	*005	*032	*059	*085	*112	*139	*165	*192	1	3 3
63	21 219	245	272	299	325	352	378	405	431	458	2	5 5
64	484	511	537	564	590	617	643	669	696	722	3	8 8
											4	11 10
65	748	775	801	827	854	880	906	932	958	985	5	14 13
66	22 011	037	063	089	115	141	167	194	220	246	6	16 16
67	272	298	324	350	376	401	427	453	479	505	7	19 18
68	531	557	583	608	634	660	686	712	737	763	8	22 21
69	789	814	840	866	891	917	943	968	994	*019	9	24 23
70	23 045	070	096	121	147	172	198	223	249	274		
71	300	325	350	376	401	426	452	477	502	528		25
72	553	578	603	629	654	679	704	729	754	779		1 3
73	805	830	855	880	905	930	955	980	*005	*030		2 5
74	24 055	080	105	130	155	180	204	229	254	279		3 8
75	304	329	353	378	403	428	452	477	502	527		4 10 5 13
76	551	576	601	625	650	674	699	724	748	773		6 15
77	797	822	846	871	895	920	944	969	993	*018		7 18
78	25 042	066	091	115	139	164	188	212	237	261		8 20
79	285	310	334	358	382	406	431	455	479	503		9 23
	***			200	004	0.40	070	000				·
80	527	551	575	600	624	648	672	696	720	744		01 00
81	768	792	816	840	864	888	912	935	959	983		24 23
82	26 007	031	055	079	102	126	150	174	198	221	1	2 2
83	245	269	293	316	340	364	387	411	435	458	2	5 5
84	482	505	529	553	576	600	623	647	670	694	3 4	7 7 10 9
85	717	741	764	788	811	834	858	881	905	928	5	12 12
86	951	975	998	*021	*045	*068	*091	*114	*138	*161	6	14 14
87	27 184	207	231	254	277	300	323	346	370	393	7	17 16
88	416	439	462	485	508	531	554	577	600	623	8	19 18
89	646	669	692	715	738	761	784	807	830	852	9	22 21
90	875	898	921	944	967	989	*012	*035	*058	*081		
91	28 103	126	149	171	194	217	240	262	285	307		22 21
92	330	353	375	398	421	443	466	488	511	533	1	2 2
93	556	578	601	623	646	668	691	713	735	758	2	4 4
94	780	803	825	847	870	892	914	937	959	981	3	7 6
95	29 003	026	048	070	092	115	137	159	181	203	4 5	9 8
96	29 003	248	270	292	314	336	358	380	403	425	6	13 13
97	447	469	491	513	535	557	579	601	623	645	7	15 15
98	667	688	710	732	754	776	798	820	842	863	8	18 17
99	885	907	929	951	973	994	*016	*038	*060	*081	9	20 19
33			323		010		-010	- 000	- 000	- 001	3	20 19
N.	0	1	2	3	4	5	6	7	8	9		P. P.

N.	0	1	2	3	4	5	6	7	8	9	F	P. P.
00	30 103	125	146	168	190	211	233	255	276	298		
01	320	341	363	384	406	428	449	471	492	514		22 21
02	535	557	578	600	621	643	664	685	707	728	1 1	2 2
03	750	771	792	814	835	856	878	899	920	942	2	4 4
04	963	984	*006	*027	*048	*069	*091	*112	*133	*154	3	7 6
05	31 175	197	218	239	260	281	302	323	345	366	4 5	9 8
06	387	408	429	450	471	492	513	534	555	576	-	11 11 13 13
	597	618	639	660	681	702	723	744	765	785		15 15
)7	806	827	848	869	890	911	931	952	973			
8 3	32 015	035	056	077	098	118	139	160	181	994 201		18 17 20 19
10	222	243	263	284	305	225	346	366	387	408		
1	428	449	469	490	510	531	552	572	593	613		20
2	634	654	675	695	715	736	756	777	797	818	1	2
3	838	858	879	899	919	940	960	980	*001	*021	2	4
4 :	33 041	062	082	102	122	143	163	183	203	224	3 4	6 8
5	244	264	284	304	325	345	365	385	405	425	5	10
6	445	465	486	506	526	546	566	586	606	626	6	12
7	646	666	686	706	726	746	766	786	806	826	7	14
8	846	866	885	905	925	945	965	985	*005	*025	8	15
	34 044	064	084	104	124	143	163	183	203	223	9	18
0	242	262	282	301	321	341	361	380	400	420		
1	439	459	479	498	518	537	557	577	596	616		19
2	635	655	674	694	713	733	753	772	792	811	1	2
3	830	850	869	889	908	928	947	967	986	*005	2	4
	35 025	044	064	083	102	122	141	160	180	199	3	6
5	218	238	257	276	295	315	334	353	372	392	4 5	8
6	411	430	449	468	488	507	526	545	564	583	6	11
7	603	622	641	660	679	698	717	736	755	774	7	13
8	793	813	832	851	870	889	908	927	946	965	8	15
9	984	*003	*021	*040	*059	*078	*097	*116	*135	*154	9	17
0 3	6 173	192	211	229	248	267	286	305	324	342		
1	361	380	399	418	436	455	474	493	511	530		18
		568	586	605	624	642	661	680	698	717	1	2
2	549		773	791	810	829	847	866	884	903	2	4
3	736	754						*051	*070	*088	3	5
4	922	940	959	977	996	*014	*033	.001	070	1008	4	7
5 3	7 107	125	144	162	181	199	218	236	254	273	5	9
6	291	310	328	346	365	383	401	420	438	457	6	11
7	475	493	511	530	548	566	585	603	621	639	7	13
8	658	676	694	712	731	749	767	785	803	822	8	14
9	840	858	876	894	912	931	949	967	985	*003	9	16
0 3	8 021	039	057	075	093	112	130	148	166	184		
1	202	220	238	256	274	292	310	328	346	364		17
2	382	399	417	435	453	471	489	507	525	543	1	2
3	561	578	596	614	632	650	668	686	703	721	2	3
4	739	757	775	792	810	828	846	863	881	899	3	5
-	109	101	110	134	010	020	010	000	001	000	4	7
5	917	934	952	970	987	*005	*023	*041	*058	*076	5	9
	9 094	111	129	146	164	182	199	217	235	252	6	10
7	270	287	305	322	340	358	375	393	410	428	7	12
8	445	463	480	498	515	533	550	568	585	602	8	14
9	620	637	655	672	690	707	724	742	759	777	9	15

	3	1				1						
N.	0	1	2	3	4	5	6	7	8	9	P	. P.
250	39 794	811	829	846	863	881	898	915	933	950		
251	967	985	*002	*019	*037	*054	*071	*088	*106	*123		18
252	40 140	157	175	192	209	226	243	261	278	295	1	2
253	312	329	346	364	381	398	415	432	449	466	2	4
254	483	500	518	535	552	569	586	603	620	637	3	5
201	100	000	010	000	002	000	000	000	020	001	4	7.
255	654	671	688	705	722	739	756	773	790	807	5	9
											- 1	
256	824	841	858	875	892	909	926	943	960	976	6	11
257	993	*010	*027	*044	*061	*078	*095	*111	*128	*145	7	13
258	41 162	179	196	212	229	246	263	280	296	313	8	14
259	330	347	363	380	397	414	430	447	464	481	9	16
260	497	514	531	547	564	581	597	614	631	647		
261	664	681	697	714	731	747	764	780	797	814		17
262	830	847	863	880	896	913	929	946	963	979	1 1	2
263	996	*012	*029	*045	*062	*078	*095	*111	*127	*144	2	3
264	42 160	177	193	210	226	243	259	275	292	308	3	5
	100	1	100					1		000	4	7
265	325	341	357	374	390	406	423	439	455	472	5	9
266	488	504	521	537	553	570	586	602	619	635	6	10
267	651	667	684	700	716	732	749	765	781	797	7	12
268	813	830	846	862	878	894	911	927	943	959	8	14
269	975	991	*008	*024	*040	*056	*072	*088	*104	*120	9	15
	40 100	150	100	105	001	017	000	0.40	000	001		
70	43 136	152	169	185	201	217	233	249	265	281		
71	297	313	329	345	361	377	393	409	425	441		16
72	457	473	489	505	521	537	553	569	584	600	1	2
73	616	632	648	664	680	696	712	727	743	759	2	3
74	775	791	807	823	838	854	870	886	902	917	3 4	5 6
275	. 933	949	965	981	996	*012	*028	*044	*059	*075	5	8
76	44 091	107	122	138	154	170	185	201	217	232	6	10
77	248	264	279	295	311	326	342	358	373	389	7	11
78	404	420	436	451	467	483	498	514	529	545	8	13
79	560	576	592	607	623	638	654	669	685	700	9	14
80	716	731	747	762	778	793	809	824	840	855		
81	871	886	902	917	932	948	963	979	994	*010		15
82	45 025	040	056	071	086	102	117	133	148	163	11	2
83	179	194	209	225	240	255	271	286	301	317	2	3
84	332	347	362	378	393	408	423	439	454	469	3	5
OF	40.1	200	P 4 P	700		F01	F=0	F01	000	001	4	6
85	484	500	515	530	545	561	576	591	606	621	5	8
86	637	652	667	682	697	712	728	743	758	773	6	9
87	788	803	818	834	849	864	879	894	909	924	7	11
88	939	954	969	984	*000	*015	*030	*045	*060	*075	8	12
89	46 090	105	120	135	150	165	180	195	210	225	9	14
90	240	255	270	285	300	315	330	345	359	374		
91	389	404	419	434	449	464	479	494	509	523		14
92	538	553	568	583	598	613	627	642	657	672	1	1
93	687	702	716	731	746	761	776	790	805	820	2	3
94	835	850	864	879	894	909	923	938	953	967	3	4
	000	000	00.	0,0	001	000	0.00	000	000	001	4	6
95	982	997	*012	*026	*041	*056	*070	*085	*100	*114	5	7
96	47 129	144	159	173	188	202	217	232	246	261	6	8
97	276	290	305	319	334	349	363	378	392	407	7	10
98	422	436	451	465	480	494	509	524	538	553	8	11
99	567	582	596	611	625	640	654	669	683	698	9	13
			-	-	-			-	-		-	

		1		1	1	1		T	1	1	
N.	0	1	2	3	4	5	6	7	8	9	P. P.
300	47 712	727	741	756	770	784	799	813	828	842	
301	857	871	885	900	914	929	943	958	972	986	15
02	48 001	015	029	044	058	073	087	101	116	130	1 2
03	144	159	173	187	202	216	230	244	259	273	2 3
04	287	302	316	330	344	359	373	387	401	416	3 5
									1		4 6
05	430	444	458	473	487	501	515	530	544	558	5 8
06	572	586	601	615	629	643	657	671	686	700	
07	714	728	742	756	770	785					
							799	813	827	841	7 11
08	855	869	883	897	911	926	940	954	968	983	8 12
09	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	9 14
10	49 136	150	164	178	192	206	220	234	248	262	
11	276	290	304	318	332	346	360	374	388	402	
12	415	429	443	457	471	485	499	513	527	541	
13	554	568	582	596	610	624	638	651	665	679	
14	693	707	721	734	748	762					
14	093	101	121	734	748	702	776	790	803	817	14
15	831	845	859	872	886	900	914	927	941	955	. 1 1
16	969	982	996	*010	*024	*037	*051	*065	*079	*092	2 3
17	50 106	120	133	147	161	174	188	202	215	229	3 4
18	243	256	270	284	297	311	325	338	352	365	4 6
19	379	393	406	420	433	447	461	474	488	501	5 7
	F + F	F00	F40	P P O	F00	200	200	010	200	007	6 8
20	515	529	542	556	569	583	596	610	623	637	7 10
21	651	664	678	691	705	718	732	745	759	772	8 11
22	786	799	813	826	840	853	866	880	893	907	9 13
23	920	934	947	961	974	987	*001	*014	*028	*041	
24	51 055	068	081	095	108	121	135	148	162	175	1
25	188	202	215	228	242	255	268	282	295	308	
26	322	335	348	362	375	388	402	415	428	441	
27	455	468	481	495	508	521	534	548	561	574	
											40
28	587	601	614	627	640	654	667	680	693	706	13
29	720	733	746	759	772	786	799	812	825	838	1 1 3
30	851	865	878	891	904	917	930	943	957	970	3 4
31	983	996	*009	*022	*035	*048	*061	*075	*088	*101	4 5
32	52 114	127	140	153	166	179	192	205	218	231	5 7
33	244	257	270	284	297	310	323	336	349	362	6 8
34	375	388	401	414	427	440	453	466	479	492	7 9
7	010	000	101	414	721	110	100	100	110	104	8 10
35	504	517	530	543	556	569	582	595	608	621	9 12
36	634	647	660	673	686	699	711	724	737	750	
7	763	776	789	802	815	827	840	853	866	879	
8	892	905	917	930	943	956	969	982	994	*007	
	53 020		046	058	071	084	097	110	122	135	
9	33 020	033	040	008	0/1	004	097	110	122	199	
10	148.	161	173	186	199	212	224	237	250	263	
1	275	288	301	314	326	339	352	364	377	390	12
12	403	415	428	441	453	466	479	491	504	517	1 1
13	529	542	555	567	580	593	605	618	631	643	2 2
4	656	668	681	694	706	719	732	744	757	769	3 4
	= 00	70.4	0.07	000	000	0.45	0 22	070	000	007	4 5
15	782	794	807	820	832	845	857	870	882	895	5 6
16	908	920	933	945	958	970	983	995	*008	*020	6 7
17	54 033	045	058	070	083	095	108	120	133	145	7 8
18	158	170	183	195	208	220	233	245	258	270	8 10
9	283	295	307	320	332	345	357	370	382	394	9 11
٧.	0	1	2	3	4	5	6	7	8	9	P. P.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
350	54 407	419	432	444	456	469	481	494	506	518	
351	531	543	555	568	580	593	605	617	630	642	13
352	654	667	679	691	704	716	728	741	753	765	1 1
353	777	790	802	814	827	839	851	864	876	888	2 3
354	900	913	925	937	949	962	974	986	998	*011	3 4
											4 5
355	55 023	035	047	060	072	084	096	108	121	133	5 7
356	145	157	169	182	194	206	218	230	242	255	6 8
357	267	279	291	303	315	328	340	352	364	376	7 9
358	388	400	413	425	437	449	461	473	485	497	8 10
359	509	522	534	546	558	570	582	594	606	618	9 12
60	630	642	654	666	678	691	703	715	727	739	
861	751	763	775	787	799	811	823	835	847	859	
62	871	883	895	907	919	931	943	955	967	979	
		*003		*027	*038	*050	*062	*074	*086	*098	
63	991		*015								
64	56 110	122	134	146	158	170	182	194	205	217	12
65	229	241	253	265	277	289	301	312	324	336	1 1
66	348	360	372	384	396	407	419	431	443	455	2 2
67	467	478	490	502	514	526	538	549	561	573	3 4
68	585	597	608	620	632	644	656	667	679	691	4 5
69	703	714	726	738	750	761	773	785	797	808	5 6
70	820	832	844	855	867	879	891	902	914	926	6 7 7 8
71	937	949	961	972	984	996	*008	*019	*031	*043	8 10
72	57 054	066	078	089	101	113	124	136	148	159	9 11
73	171	183	194	206	217	229	241	252	264	276	9 11
74	287	299	310	322	334	345	357	368	380	392	
75	403	415	426	438	449	461	473	484	496	507	
76		530	542	553	565	576	588	600	611	623	
	519										1
77	634	646	657	669	680	692	703	715	726	738	
78	749	761	772	784	795	807	818	830	841	852	11
79	864	875	887	898	910	921	933	944	955	967	1 1 2 2
80	978	990	*001	*013	*024	*035	*047	*058	*070	*081	3 3
81	58 092	104	115	127	138	149	161	172	184	195	4 4
82	206	218	229	240	252	263	274	286	297	309	5 6
83	320	331	343	354	365	377	388	399	410	422	6 7
84	433	444	456	467	478	490	501	512	524	535	7 8
0.4	400	777	400	407	410	200	301	912	024	000	8 9
85	546	557	569	580	591	602	614	625	636	647	9 10
86	659	670	681	692	704	715	726	737	749	760	
87	771	782	794	805	816	827	838	850	861	872	
88	883	894	906	917	928	939	950	961	973	984	
89	995	*006	*017	*028	*040	*051	*062	*073	*084	*095	
90	59 106	118	129	140	151	162	173	184	195	207	
91	218	229	240	251	262	273	284	295	306	318	10
92	329	340	351	362	373	384	395	406	417	428	1 1
93	439	450	461	472	483	494	506	517	528	539	2 2
94	550	561	572	583	594	605	616	627	638	649	3 3 4 4
95	660	671	682	693	704	715	726	737	748	759	5 5
96	770	780	791	802	813	824	835	846	857	868	6 6
97	879	890	901	912	923	934	945	956	966	977	7 7
98	988	999	*010	*021	*032	*043	*054	*065	*076	*086	8 8
	60 097	108	119	130	141	152	163	173	184	195	9 9
99											

N.		0	1	2	3	4	5	6	7	8	9	F	P. P.
00	60 2	206	217	228	239	249	260	271	282	293	304		
)1		314	325	336	347	358	369	379	390	401	412		
2		123	433	444	455	466	477	487	498	509	520		
3		531	541	552	563	574	584	595	606	617	627		
)4		538											
14		038	649	660	670	681	692	703	713	724	735		
5		746	756	767	778	788	799	810	821	831	842		
6		353	863	874	885	895	906	917	927	938	949		11
7		959	970	981	991	*002	*013	*023	*034	*045	*055	1	1
8	61	066	077	087	098	109	119	130	140	151	162	2	2
9		172	183	194	204	215	225	236	247	257	268	3 4	3 4
0		278	289	300	310	321	331	342	352	363	374	5	6
1		384	395	405	416	426	437	448	458	469	479	6	7
2		190	500	511	521	532	542	553	563	574	584	7	8
3		595	606	616	627	637	648	658	669	679	690	8	9
4		700	711	721	731	742	752	763	773	784	794	9	10
_		205				0.45		0.00	0770	000	000		
5		305	815	826	836	847	857	868	878	888	899		
6		909	920	930	941	951	962	972	982	993	*003		
7	62 (024	034	045	055	066	076	086	097	107		
8		118	128	138	149	159	170	180	190	201	211		
9		221	232	242	252	263	273	284	294	304	315		
0		325	335	346	356	366	377	387	397	408	418		
1		128	439	449	459	469	480	490	500	511	521		10
2		531	542	552	562	572	583	593	603	613	624	1 (1
3		634	644	655	665	675	685	696	706	716	726	2	2
4		737	747	757	767	778	788	798	808	818	829	3	3
5		339	849	859	870	880	890	900	910	921	931	4 5	5
6		941	951	961	972	982	992	*002	*012	*022	*033	6	6
7	63		053	063	073	083	094	104	114	124	134	7	7
8		144		165	175	185	195	205	215	225	236	8	8
9		246	155 256	266	276	286	296	306	317	327	337	9	9
											1.00		
0		347	357	367	377	387	397	407	417	428	438		
1		148	458	468	478	488	498	508	518	528	538		
2		548	558	568	579	589	599	609	619	629	639		
3		349	659	669	679	689	699	709	719	729	739		
4	1	749	759	769	779	789	799	809	819	829	839		
5	5	349	859	869	879	889	899	909	919	929	939		
6	(949	959	969	979	988	998	*008	*018	*028	*038		9
7	64 (058	068	078	088	098	108	118	128	137	1	1
8		147	157	167	177	187	197	207	217	227	237	2	2
9		246	256	266	276	286	296	306	316	326	335	3	3
0		345	355	365	375	385	395	404	414	424	434	5	4 5
						483	493	503	513	523	532	6	5
1		144	454	464	473			601	611	621	631	7	6
2		542	552	562	572	582	591				729	8	7
3		340	650	660	670	680	689	699	709	719		9	8
4	7	738	748	758	768	777	787	797	807	816	826	9 '	0
5		36	846	856	865	875	885	895	904	914	924		
6	Ç	33	943	953	963	972	982	992	*002	*011	*021		
7	65 0		040	050	060	070	079	089	099	108	118		
8		28	137	147	157	167	176	186	196	205	215		
9		25	234	244	254	263	273	283	292	302	312		
- 1													

N.	0	1	2	3	4	5	6	7	8	9	P. P.
150	65 321	331	341	350	360	369	379	389	398	408	
151	418	427	437	447	456	466	475	485	495	504	
52	514	523	533	543	552	562	571	581	591	600	
53	610	619	629	639	648	658	667	677	686	696	
54	706	715	725	734	744	753	763.	772	782	792	
55	801	811	820	830	839	849	858	868	877	887	
56	896	906	916	925	935	944	954	963	973	982	10
57	992	*001	*011	*020	*030	*039	*049	*058	*068	*077	1 1
58	66 087	096	106	115	124	134	143	153	162	172	2 2
59	181	191	200	210	219	229	238	247	257	266	3 3
60	276	285	295	304	314	323	332	342	351	361	4 4 5 5
61											
	370	380	389	398	408	417	427	436	445	455	6 6
62	464	474	483	492	502	511	521	530	539	549	7 7
63	558	567	577	586	596	605	614	624	633	642	8 8
64	652	661	671	680	689	699	708	717	727	736	9 9
65	745	755	764	773	783	792	801	811	820	829	
66	839	848	857	867	876	885	894	904	913	922	
67	932	941	950	960	969	978	987	997	*006	*015	
68	67 025	034	043	052	062	071	080	089	099	108	
69	117	127	136	145	154	164	173	182	191	201	
70	210	219	228	237	247	256	265	274	284	293	
71	302	311	321	330	339	348	357	367	376	385	9
72	394	403	413	422	431	440	449	459	468	477	1 1
73	486	495	504	514	523	532	541	550	560	569	2 2
74	578	587	596	605	614	624	633	642	651	660	2 2 3
75	669	679	688	697	706	715	724	733	742	752	4 4 5 5
76	761	770	779	788	797	806	815	825	834	843	6 5
77	852	861	870	879	888	897	906	916	925	934	7 6
78	943	952	961	970	979,	988	997	*006	*015	*024	8 7
79	68 034	043	052	061	070	079	088	097	106	115	9 8
30	124	133	142	151	160	169	178	187	196	205	
31	215	224	233	242	251	260	269	278	287	296	
32	305	314	323	332	341	350	359	368	377	386	
33	395	404	413	422	431	440	449	458	467	476	
4	485	494	502	511	520	529	538	547	556	565	
5	574	583	592	601	610	619	628	637	646	655	
6	664	673	681	690	699	708	717	726	735	744	8
37	753	762	771	780	789	797	806	815	824	833	1 1
8	842	851	860	869	878	886	895	904	913	922	2 2
9	931	940	949	958	966	975	984	993	*002	*011	3 2
0	69 020	028	037	046	055	064	073	082	090	099	4 3 5 4
1	108	117	126	135	144	152	161	170	179	188	6 5
2	197	205	214	223	232	241	249	258	267	276	7 6
3	285	294	302	311	320	329	338	346	355	364	8 6
4	373	381	390	399	408	417	425	434	443	452	9 7
5	461	469	478	487	496	504	513	522	531	539	
6	548	557	566	574	583	592	601	609	618	627	
7	636	644	653	662	671	679	688	697	705	714	
8	723	732	740	749	758	767	775	784	793	801	
9	810	819	827	836	845	854	862	871	880	888	
		1		3	4	5	6	7	8	9	P. P.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
00	69 897	906	914	923	932	940	949	958	966	975	
01	984	992	*001	*010	*018	*027	*036	*044	*053	*062	
02	70 070	079	088	096	105	114	122	131	140	148	
03	157	165	174	183	191	200	209	217	226	234	
04	243	252	260	269	278	286	295	303	312	321	
05	329	338	346	355	364	372	381	389	398	406	
06	415	424	432	441	449	458	467	475	484	492	9
07	501	509	518	526	535	544	552	561	569	578	1 1
08	586	595	603	612	621	629	638	646	655	663	2 2
09	672	680	689	697	706	714	723	731	740	749	3 3 4 4
10	757	766	774	783	791	800	808	817	825	834	5 5
11	842	851	859	868	876	885	893	902	910	919	6 5
12	927	935	944	952	961	969	978	986	995	*003	7 6
13	71 012	020	029	037	046	054	063	071	079	088	8 7
14	096	105	113	122	130	139	147	155	164	172	9 8
15	181	189	198	206	214	223	231	240	248	257	
16	265	273	282	290	299	307	315	324	332	341	
17	349	357	366	374	383	391	399	408	416	425	
18	433	441	450	458	466	475	483	492	500	508	
19	517	525	533	542	550	559	567	575	584	592	
20	600	609	617	625	634	642	650	659	667	675	
21	684	692	700	709	717	725	734	742	750	759	8
22	767	775	784	792	800	809	817	825	834	842	1 1
23	850	858	867	875	883	892	900	908	917	925	2 2 3 2
24	933	941	950	958	966	975	983	991	999	*008	3 2 4 3
25	72 016	024	032	041	049	057	066	074	082	090	5 4
26	099	107	115	123	132	140	148	156	165	173	6 5
27	181	189	198	206	214 296	222	230	239	247	255	7 6 8 6
28 29	263	272	280	288		304	313 395	321 403	329 411	337 419	8 6 9 7
	346	354	362	370	378	387					3 (
30	428	436	444	452	460	469	477	485	493	501	
31	509	518	526	534	542	550	558	567	575	583	
32	591 673	599	607	616	624 705	632	640 722	648	656	66 5 746	
34	754	762	770	779	787	795	803	811	819	827	
	835	843		860	868	876	884	892	900	908	
35 36	916	925	852 933	941	949	957	965	973	981	989	7
37	997	*006	*014	*022	*030	*038	*046	*054	*062	*070	1 1
38	73 078	086	094	1022	111	119	127	135	143	151	2 1
39	159	167	175	183	191	199	207	215	223	231	3 2
40	239	247	255	263	272	280	288	296	304	312	4 3 5 4
41	320	328	336	344	352	360	368	376	384	392	6 4
42	400	408	416	424	432	440	448	456	464	472	7 5
43	480	488	496	504	512	520	528	536	544	552	8 6
44	560	568	576	584	592	600	608	616	624	632	9 6
45	640	648	656	664	672	679	687	695	703	711	
46	719	727	735	743	751	759	767	775	783	791	
47	799	807	815	823	830	838	846	854	862	870	
48	878	886	894	902	910	918	926	933	941	949	
49	957	965	973	981	989	997	*005	*013	*020	*028	
23					1						

550 551 552 553 554	74 036 115										
551 552 553	115	044	052	060	068	076	084	092	099	107	
553		123	131	139	147	155	162	170	178	186	
	194	202	210	218	225	233	241	249	257	265	
54	273	280	288	296	304	312	320	327	335	343	
	351	359	367	374	382	390	398	406	414	421	
555	429	437	445	453	461	468	476	484	492	500	
56	507	515	523	531	539	547	554	562	570	578	
57	586	593	601	609	617	624	632	640	648	656	
58	663	671	679	687	695	702	710	718	726	733	
59	741	749	757	764	772	780	788	796	803	811	To distribute and the second
60	819	827 904	834	842	850	858	865	873	881	889	
661	896 974	981	912 989	920 997	927 *005	935 *012	943 *020	950 *028	958 *035	966 *043	8
63	75 051	059	066	074	082	089	097	105	113	120	1 1 2 2
64	128	136	143	151	159	166	174	182	189	197	2 2 3 2
											4 3
65	205	213	220	228	236	243	251	259	266	274	5 4
66	282	289	297	305	312	320	328	335	343	351	6 5
67	358	366	374	381	389	397	404	412	420	427	7 6
68	435	442	450	458	465	473	481	488	496	504	8 6
69	511	519	526	534	542	549	557	565	572	580	9 7
70	587	595	603	610	618	626	633	641	648	656	
71	664	671	679	686	694	702	709	717	724	732	
72	740	747	755	762	770	778	785	793	800	808	
73 74	815 891	823 899	831 906	838 914	846 921	853 929	861 937	868 944	876 952	884 9 5 9	
75	967	974	982	989	997	*005	*012	*020	*027	*035	
76	76 042	050	057	065	072	080	087	095	103	110	
77	118	125	133	140	148	155	163	170	178	185	
78	193	200	208	215	223	230	238	245	253	260	
79	268	275	283	290	298	305	313	320	328	335	
80	343	350	358	365	373	380	388	395	403	410	
81	418	425	433	440	448	455	462	470	477	485	7
82	492	500	507	515	522	530	537	545	552	559	1 1
83	567	574	582	589	597	604	612	619	626	634	2 1
84	641	649	656	664	671	678	686	693	701	708	3 2 4 3
85	716	723	730	738	745	753	760	768	775	782	5 4
86	790	797	805	812	819	827	834	842	849	856	6 4
87	864	871	879	886	893	901	908	916	923	930	7 5
88	938	945	953	960	967	975	982	989	997	*004	8 6
89	77 012	019	026	034	041	048	056	063	070	078	9 6
90	085	093	100	107	115	122	129	137	144	151	
91	159	166	173	181	188	195	203	210	217	225	
92	232	240	247	254	262	269	276	283	291	298	
93	305	313	320	327	335	342	349	357	364	371	
94	379	386	393	401	408	415	422	430	437	444	
95	452	459	466	474	481	488	495	503	510	517	
96	525	532	539	546	554	561	568	576	583	590	
97	597	605	612	619	627	634	641	648	656	663	
98	670 743	677 750	685 757	692 764	699 772	706 779	714 786	721 793	728 801	735 808	
N.	0	1	2	3	4	5	6	7	8	9	P. P.

N.	0	1	2	3	4	5	6	7	8	9	P. 1	Ρ.
00	77 815	822	830	837	844	851	859	866	873	880		
01	887	895	902	909	916	924	931	938	945	952		
02	960	967	974	981	988	996	*003	*010	*017	*025		
03	78 032	039	046	053	061	068	075	082	089	097		
04	104	111	118	125	132	140	147	154	161	168		
05	176	183	190	197	204	211	219	226	233	240		
96	247	254	262	269	276	283	290	297	305	312	- 1	8
7	319	326	333	340	347	355	362	369	376	383	1	1
8	390	398	405	412	419	426	433	440	447	455	2 3	2 2
9	462	469	476	483	490	497	504	512	519	526	4	3
10	533	540	547	554	561	569	576	583	590	597	5	4
1	604	611	618	625	633	640	647	654	661	668	6 7	5
2	675	682	689	696	704	711	718	725	732	739		6
3	746	753	'760	767	774	781	789	796	803	810	8	6
4	817	824	831	838	845	852	859	866	873	880	3	1
5	888	895	902	909	916	923	930	937	944	951		
6	958	965	972	979	986	993	*000	*007	*014	*021		
7 8	79 029 099	036 106	043	050 120	057 127	064 134	071	078 148	085 155	162		
9	169	176	183	190	197	204	211	218	225	232		
9	109	170	100	130	197	204	211	210	240	404		
0	239	246	253	260	267	274	281	288	295	302		7
1	309	316	323	330	337	344	351	358	365	372	1	1
2 3	379 449	386 456	393 463	400 470	407 477	414	421 491	428 498	435 505	442 511	2	1
4	518	525	532	539	546	553	560	567	574	581	3	2
5	588	595	602	609	616	623	630	637	644	650	5	3 4
6	657	664	671	678	685	692	699	706	713	720	6	4
7	727	734	741	748	754	761	768	775	782	789	7	5
8	796	803	810	817	824	831	837	844	851	858	8	6
9	865	872	879	886	893	900	906	913	920	927	9	6
0	934	941	948	955	962	969	975	982	989	996		
1	80 003	010	017	024	030	037	044	051	058	065		
2	072	079	085	092	099	106	113	120	127	134		
3	140	147	154	161	168	175	182	188	195	202		
4	209	216	223	229	236	243	250	257	264	271		
5	277	284	291	298	305	312	318	325	332	339		
6	346	353	359	366	373	380	387	393	400	407	. 1	6
7	414	421	428	434	441	448	455	462	468	475	1	1
8	482	489	496	502	509	516	523	530	536	543		1
9	550	557	564	570	577	584	591	598	604	611	4	2 2
0	618	625	632	638	645	652	659	665	672	679	5	3
1	686	693	699	706	713	720	726	733	740	747		4
2	754	760	767	774	781	787	794	801	808	814		4 5
3	821	828	835	841	848	855	862	868	875	882	8	5
4	889	895	902	909	916	922	929	936	943	949	•	
5	956	963	969	976	983	990	996	*003	*010	*017		
6	81 023	030	037	043	050	057	064	070	077	084		
7	090	097	104	111	117	124	131	137	144	151		
8	158 224	164 231	171 238	178 245	184 251	191 258	198 265	204 271	211 278	218 285		

N.	0	1	2	3	4	5	6	7	8	9	P. P.
550	81 291	298	305	311	318	325	331	338	345	351	
51	358	365	371	378	385	391	398	405	411	418	
52	425	431	438	445	451	458	465	471	478	485	
53	491	498	505	511	518	525	531	538	544	551	
54	558	564	571	578	584	591	598	604	611	617	
55	624	631	637	644	651	657	664	671	677	684	
56	690	697	704	710	717	723	730	737	743	750	
57	757	763	770	776	783	790	796	803	809	816	
58	823	829	836	842	849	856	862	869	875	882	
59	889	895	902	908	915	921	928	935	941	948	
60	954	961	968	974	981	987	994	*000	*007	*014	
61	82 020	027	033	040	046	053	060	066	073	079	7
62	086	092	099	105	112	119	125	132	138	145	1 1
63	151	158	164	171	178	184	191	197	204	210	2 1
64	217	223	230	236	243	249	256	263	269	276	3 2 4 3
65	282	289	295	302	308	315	321	328	334	341	5 4
66	347	354	360	367	373	380	387	393	400	406	6 4
67	413	419	426	432	439	445	452	458	465	471	7 5
68	478	484	491	497	504	510	517	523	530	536	8 6
39	543	549	556	562	569	575	582	588	595	601	9 6
70	607	614	620	627	633	640	646	653	659	666	
71	672	679	685	692	698	705	711	718	724	730	
								782		795	
72	737	743	750	756	763	769	776		789		
73	802	808	814	821	827	834	840	847	853	860	
74	866	872	879	885	892	898	905	911	918	924	
75	930	937	943	950	956	963	969	975	982	988	
76	995	*001	*008	*014	*020	*027	*033	*040	*046	*052	
77	83 059	065	072	078	085	091	097	104	110	117	
8	123	129	136	142	149	155	161	168	174	181	
9	187	193	200	206	213	219	225	232	238	245	
0	251	257	264	270	276	283	289	296	302	308	
1	315	321	327	334	340	347	353	359	366	372	6
2	378	385	391	398	404	410	417	423	429	436	1 1
33	442	448	455	461	467	474	480	481	493	499	2 1
4	506	512	518	525	531	537	544	550	556	563	3 2 4 2
5	569	575	582	588	594	601	607	613	620	626	5 3
6	632	639	645	651	658	664 .	670	677	683	689	6 4
7	696	702	708	715	721	727	734	740	746	753	7 4
8	759	765	771	778	784	790	797	803	809	816	8 5
9	822	828	835	841	847	853	860	866	872	879	9 5
0	885	891	897	904	910	916	923	929	935	942	
1	948	954	960	967	973	979	985	992	998	*004	
	84 011	017	023	029	036	042	048	055	061	067	
3	073	080	086	092	098	105	111	117	123	130	
1	136	142	148	155	161	167	173	180	186	192	
5	198	205	211	217	223	230	236	242	248	255	
6	261	267	273	280	286	292	298	305	311	317	
7	323	330	336	342	348	354	361	367	373	379	
	386	392	398	404	410	417	423	429	435	442	
9	448	454	460	466	473	479	485	429	497	504	

701 572 578 584 590 597 603 609 615 621 628 702 634 640 646 652 658 665 671 677 683 689 703 696 702 708 770 776 782 788 794 800 807 813 704 757 763 770 776 782 788 794 800 807 813 705 819 825 831 837 844 850 856 862 868 874 706 880 887 893 899 905 911 917 924 930 936 7 707 942 948 954 960 967 973 979 985 991 997 1 1 708 308 089 905 101 107 114 120 3 2												
101 572 578 584 590 597 603 609 615 621 628 628 629 609 6002 609 702 708 714 720 726 733 739 745 751 761 767 763 770 776 782 788 794 800 807 813 7604 767 763 770 776 782 788 794 800 807 813 7700 768 880 887 880 8	N.	0	1	2	3	4	5	6	7	8	9	P. P.
101 572 578 584 590 597 603 609 615 621 628 628 629 609 6002 609 702 708 714 720 726 733 739 745 751 761 767 763 770 776 782 788 794 800 807 813 7604 767 763 770 776 782 788 794 800 807 813 7700 768 880 887 880 8	700	84 510	516	522	528	535	541	547	553	559	566	
102	701											
103												
	703											
706												
706	705	819	825	831	837	844	850	856	862	868	874	
708 85 003 009 016 022 028 034 040 046 052 058 2 1 709 065 071 077 083 089 095 101 107 114 120 3 2 4 3 710 126 132 138 144 150 156 163 169 175 181 5 4 711 187 193 199 205 211 217 224 230 236 242 6 4 712 248 254 260 266 272 278 285 291 297 303 7 5 713 309 315 323 388 394 400 406 412 418 425 9 6 715 431 437 443 449 455 461 467 473 479 485	706	880	887	893	899	905	911	917	924	930	936	7
709 065 071 077 083 089 095 101 107 114 120 3 2 3 2 4 3 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 137 133 309 315 321 327 333 339 345 352 358 364 8 6 6 714 370 376 382 388 394 400 406 412 418 425 9 6 6 7 7 7 7 7 7 7 7	707	942	948	954	960	967	973	979	985	991	997	1 , 1
709 065 071 077 083 089 095 101 107 114 120 3 2 3 2 4 3 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 187 193 199 205 211 217 224 230 236 242 6 4 4 111 137 133 309 315 321 327 333 339 345 352 358 364 8 6 6 714 370 376 382 388 394 400 406 412 418 425 9 6 6 7 7 7 7 7 7 7 7	708	85 003	009	016	022	028	034	040	046	052	058	2 1
1710		065	071	077	083	089	095	101	107	114	120	3 2
11												4 3
112 248 254 260 266 272 278 285 291 297 303 7 5 113 399 315 321 327 333 339 345 358 364 8 6 715 431 437 443 449 455 461 467 473 479 485 716 491 497 503 509 516 522 528 534 540 546 716 491 497 503 509 516 522 528 534 540 546 717 552 558 664 570 576 582 588 594 600 606 606 718 612 618 627 681 687 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769	710	126	132	138	144		156	163	169	175	181	5 4
112 248 254 260 266 272 278 285 291 297 303 7 5 113 399 315 321 327 333 339 345 358 364 8 6 715 431 437 443 449 455 461 467 473 479 485 716 491 497 503 509 516 522 528 534 540 546 716 491 497 503 509 516 522 528 534 540 546 717 552 558 664 570 576 582 588 594 600 606 606 718 612 618 627 681 687 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769	711	187	193	199	205	211	217	224	230	236	242	6 4
714	712	248	254	260	266	272	278	285	291	297	303	7 5
715	713		315	321	327	333	339	345	352	358	364	8 6
716 491 497 503 509 516 522 528 534 540 546 770 552 558 564 570 576 582 588 594 600 606 666 719 673 679 685 691 697 703 709 715 721 727 727 720 733 739 745 751 757 763 769 775 781 788 782 784 800 806 812 818 824 830 336 842 848 6 66 722 854 860 866 872 878 884 890 902 908 1	714	370	376	382	388	394	400	406	412	418	425	9 6
716 491 497 503 509 516 522 528 534 540 546 770 552 558 564 570 576 582 588 594 600 606 666 719 673 679 685 691 697 703 709 715 721 727 727 720 733 739 745 751 757 763 769 775 781 788 782 784 800 806 812 818 824 830 336 842 848 6 66 722 854 860 866 872 878 884 890 902 908 1												
717	715											
719 612 618 625 631 637 643 649 655 661 667 719 685 691 697 703 709 715 721 727 727 728 733 739 745 751 757 763 769 775 781 788 721 794 800 806 812 818 824 830 836 842 848 622 854 860 866 872 878 884 890 896 902 908 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
729 673 679 685 691 697 703 709 715 721 727 720 733 739 745 751 757 763 769 775 781 788 721 794 800 806 812 818 824 830 836 842 848 722 854 860 866 872 878 884 890 896 902 908 1 1 723 914 920 926 932 938 944 950 956 962 968 2 1 724 974 980 986 992 998 *004 *010 *016 *022 *028 4 2 725 86 034 040 046 052 058 064 070 076 082 088 5 3 726 094 100 106 112 118 124 130 136 141 147 6 4 727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 261 267 8 5 729 273 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 733 510 516 522 528 534 540 546 552 558 564 733 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 77 23 729 735 741 57 737 747 753 759 764 770 766 782 788 794 800 1 1 1 738 806 812 817 823 829 835 841 847 853 859 2 1 739 864 870 876 882 888 894 900 906 911 917 3 2 740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 742 274 280 286 291 277 303 309 315 320 326 744 280 286 291 277 303 309 315 320 326 745 214 974 980 986 994 999 *005 *011 *017 *023 *029 *035 6 3 744 980 986 992 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 980 980 994 999 *005 *011 *017 *023 *029 *035 6 3 744 980 980 994 999 *005 *011 *017 *023 *029 *035 6 3 744 980 980 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 744 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 7					570							
720 733 739 745 751 757 763 769 775 781 788 721 794 800 806 812 818 824 830 836 842 848 6 722 854 860 866 872 878 884 890 896 902 908 2 1 1 723 914 920 926 932 938 944 950 956 962 968 2 1 1 724 980 986 992 998 *004 *010 *016 *022 *028 3 2 4 2 2 725 86 034 040 046 052 058 064 070 076 082 088 5 3 726 094 100 106 112 118 124 130 136 141 147 6 4 </td <td>718</td> <td></td> <td>618</td> <td>625</td> <td>631</td> <td>637</td> <td>643</td> <td>649</td> <td>655</td> <td>661</td> <td>667</td> <td></td>	718		618	625	631	637	643	649	655	661	667	
721 794 800 806 812 818 824 830 836 842 848 6 723 914 920 926 932 938 944 950 956 962 968 2 1 1 724 974 980 986 992 998 *004 *010 *016 *022 *028 4 2 725 86 034 040 046 052 058 064 070 076 082 088 5 3 2 726 094 100 106 112 118 124 130 136 141 147 6 4 2 727 153 159 165 171 177 183 189 195 201 207 7 4 7278 213 219 225 231 237 243 249 <t>255 261 267 8</t>	719	673	679	685	691	697	703	709	715	721	727	
721 794 800 806 812 818 824 830 836 842 848 6 723 914 920 926 932 938 894 950 956 962 968 2 1 1 724 974 980 986 992 998 *004 *010 *016 *022 *028 4 2 725 86 034 040 046 052 058 064 070 076 082 088 5 3 2 726 094 100 106 112 118 124 130 136 141 147 6 4 2 728 213 219 225 231 237 243 249 255 261 267 8 5 729 285 291 297 303 308 314 320 326 9 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
722 854 860 866 872 878 884 890 896 902 908 1 1 1 724 974 980 986 992 998 *004 *010 *016 *022 *028 3 2 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
723 914 920 926 932 938 944 950 956 962 968 3 2 1 2 4 2 1 3 2 4 2 2 4 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2 2 4 2 2 4 2 2 2 4 2 4 2 2 4 2 2 2 2 2 1 1 177 183 189 195 201 207 7 4 6 4 4 141 147 6 4 2 207 273 279 285 291 297 303 308 314 320 326 9 5 5 33 <td></td>												
724 974 980 986 992 998 *004 *010 *016 *022 *028 4 2 725 86 034 040 046 052 058 064 070 076 082 088 5 3 2 726 094 100 106 112 118 124 130 136 141 147 6 4 727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 261 267 8 5 729 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 457 4												
725 86 034 040 046 052 058 064 070 076 082 088 5 3 726 094 100 106 112 118 124 130 136 141 147 6 4 727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 201 207 7 4 729 273 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 340 345 431 430 346 457 481 487 493 499 504 731 392 398 404 410 415 421 427 433 439 445												
725 86 034 040 046 052 058 064 070 076 082 088 5 3 726 094 100 106 112 118 124 130 136 141 147 6 4 727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 261 267 8 5 729 273 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 322 388 404 410 415 421 427 433 439 445 732 451 457	724	974	980	986	992	998	*004	*010	*016	*022	*028	
726 094 100 106 112 118 124 130 136 141 147 6 4 727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 261 267 8 5 729 273 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 731 510 516 522 528 534 540 546 552 558 564 733 510 516 522 528 534	725	86 034	040	046	052	058	064	070	076	082	088	
727 153 159 165 171 177 183 189 195 201 207 7 4 728 213 219 225 231 237 243 249 255 261 267 8 5 729 273 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605	726	094	100	106	112	118	124	130	136	141	147	6 4
728 213 219 225 231 237 243 249 255 261 267 8 5 729 233 279 285 291 297 303 308 314 320 326 9 5 730 332 338 344 350 356 362 368 374 380 386 731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676												
730	728	213	219	225	231	237	243	249	255	261		8 5
731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 1 1 738 806 812 817 823 829 835 841 847 853 859 <td>729</td> <td>273</td> <td></td> <td>285</td> <td></td> <td>297</td> <td>303</td> <td>308</td> <td>314</td> <td>320</td> <td></td> <td>9 5</td>	729	273		285		297	303	308	314	320		9 5
731 392 398 404 410 415 421 427 433 439 445 732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 1 1 738 806 812 817 823 829 835 841 847 853 859 <td>730</td> <td>332</td> <td>338</td> <td>344</td> <td>350</td> <td>356</td> <td>362</td> <td>368</td> <td>374</td> <td>380</td> <td>386</td> <td></td>	730	332	338	344	350	356	362	368	374	380	386	
732 451 457 463 469 475 481 487 493 499 504 733 510 516 522 528 534 540 546 552 558 564 734 570 576 581 587 593 599 605 611 617 623 735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 1 1 738 806 812 817 823 829 835 841 847 853 859 2 1 739 864 870 876 882 888 894 900 906												
733												
734												
735 629 635 641 646 652 658 664 670 676 682 736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 1 1 1 738 806 812 817 823 829 835 841 847 853 859 2 1 739 864 870 876 882 888 894 900 906 911 917 3 2 740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *001 *017 *023 *029 *035 6 3 742 87 040 046 052 058 064 070 075 081 087 093 7 4 743 099 105 111 116 122 128 134 140 146 151 8 4 744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
736 688 694 700 705 711 717 723 729 735 741 5 737 747 753 759 764 770 776 782 788 794 800 1 1 738 806 812 817 823 829 835 841 847 853 859 2 1 739 864 870 876 882 888 894 900 906 911 917 3 2 740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *011 *1017 *023 *029 *035 6 3 742 87 040 046 052 058 064 070 075 081 087 093 7 4 <th< td=""><td>01</td><td>010</td><td>910</td><td>001</td><td>001</td><td>000</td><td>900</td><td>000</td><td>011</td><td>017</td><td>020</td><td></td></th<>	01	010	910	001	001	000	900	000	011	017	020	
737 747 753 759 764 770 776 782 788 794 800 1 1 1 1 138 812 817 823 829 835 841 847 853 859 2 1 <td>735</td> <td>629</td> <td>635</td> <td>641</td> <td>646</td> <td>652</td> <td>658</td> <td>664</td> <td>670</td> <td>676</td> <td>682</td> <td></td>	735	629	635	641	646	652	658	664	670	676	682	
737 747 753 759 764 770 776 782 788 794 800 1 1 1 1 138 806 812 817 823 829 835 841 847 833 859 2 1 </td <td></td> <td>5</td>												5
738 806 812 817 823 829 835 841 847 853 859 2 1 739 864 870 876 882 888 894 900 906 911 917 3 2 740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 742 990 105 111 116 122 128 134 140 146 151 8 4												1 1
739 864 870 876 882 888 894 900 906 911 917 3 2 740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 742 87 400 046 052 058 064 070 075 081 087 093 7 4 743 099 105 111 116 122 128 134 140 146 151 8 4 744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 747 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 1</td></t<>												2 1
740 923 929 935 941 947 953 958 964 970 976 5 3 741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 742 87 040 046 052 058 064 070 075 081 087 093 7 4 443 099 105 111 116 122 128 134 140 146 151 8 4 744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 438 390												3 2
741 982 988 994 999 *005 *011 *017 *023 *029 *035 6 3 742 87 040 046 052 058 064 070 075 081 087 093 7 4 743 099 105 111 116 122 128 134 140 146 151 8 4 144 157 163 169 175 181 186 192 198 204 210 9 5 145 216 221 227 233 239 245 251 256 262 268 274 280 286 291 297 303 309 315 320 326 327 332 338 344 349 355 361 367 373 379 384 48 390 396 402 408 413												
742 87 040 046 052 058 064 070 075 081 087 093 7 4 743 099 105 111 116 122 128 134 140 146 151 8 4 744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 274 280 286 291 297 303 309 315 320 326 3447 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
743 099 105 111 116 122 128 134 140 146 151 8 4 744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500			988									
744 157 163 169 175 181 186 192 198 204 210 9 5 745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
745 216 221 227 233 239 245 251 256 262 268 746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500	744	157	163	169	175	181	186	192	198	204	210	9 5
746 274 280 286 291 297 303 309 315 320 326 747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500	745	216	221	227	233	239	245	251	256	262	268	
747 332 338 344 349 355 361 367 373 379 384 748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
748 390 396 402 408 413 419 425 431 437 442 749 448 454 460 466 471 477 483 489 495 500												
749 448 454 460 466 471 477 483 489 495 500												
												,
1. 0 1 2 3 4 0 0 1 8 9 P.P.	N											D D
	14.	0	1	2	3	4	D	0	1	8	9	P. P.

N. 750 751	0	1	2								
			4	3	4	5	6	7	8	9	P. P.
751	87 506	512	518	523	529	535	541	547	552	558	
400	564	570	576	581	587	593	599	604	610	616	
752	622	628	633	639	645	651	656	662	668	674	
753	679	685	691	697	703	708	714	720	726	731	
754	737	743	749	754	760	766	772	777	783	789	
755	795	800	806	812	818	823	829	835	,841	846	
756	852	858	864	869	875	881	887	892	898	904	
757	910	915	921	927	933	938	944	950	955	961	
758	967	973	978	984	990	996	*001	*007	*013	*018	
759	88 024	030	036	041	047	053	058	064	070	076	
760	081	087	093	098	104	110	116	121	127	133	
761	138	144	150	156	161	167	173	178	184	190	6
762	195	201	207	213	218	224	230	235	241	247	1 1
763	252	258	264	270	275	281	287	292	298	304	2 1
764	309	315	321	326	332	338	343	349	355	360	3 2 4 2
765	366	372	377	383	389	395	400	406	412	417	5 3
766	423	429	434	440	446	451	457	463	468	474	6 4
767	480	485	491	497	502	508	513	519	525	530	7 4
768	536	542	547	553	559	564	570	576	581	587	8 5
769	593	598	604	610	615	621	627	632	638	643	9 5
770	649	655	660	666	672	677	683	689	694	700	
771	705	711	717	722	728	734	739	745	750	756	
772	762	767	773	779	784	790	795	801	807	812	
773	818	824	829	835	840	846	852	857	863	868	
774	874	880	885	891	897	902	908	913	919	925	
775	930	936	941	947	953	958	964	969	975	981	
776	986	992	997	*003	*009	*014	*020	*025	*031	*037	
777	89 042	048	053	059	064	070	076	081	087	092	
778	098	104	109	115	120	126	131	137	143	148	
779	154	159	165	170	176	182	187	193	198	204	
780	209	215	221	226	232	237	243	248	254	260	
781	265	271	270	282	287	293	298	304	310	315	5
782	321	326	332	337	343	348	354	360	365	371	1 1
783	376	382	387	393	398	404	409	415	421	426	2 1
784	432	437	443	448	454	459	465	470	476	481	3 2 4 2
785	487	492	498	504	509	515	520	526	531	537	5 3
786	542	548	553	559	564	570	575	581	586	592	6 3
787	597	603	609	614	620	625	631	636	642	647	7 4
788	653	658	664	669	675	680	686	691	697	702	8 4
789	708	713	719	724	730	735	741	746	752	757	9 5
790	763	768	774	779	785	790	796	801	807	812	
791	818	823	829	834	840	845	851	856	862	867	
792	873	878	883	889	894	900	905	911	916	922	
793	927	933	938	944	949	955	960	966	971	977	
794	982	988	993	998	*004	*009	*015	*020	*026	*031	
795	90 037	042	048	053	059	064	069	075	080	086	
796	091	097	102	108	113	119	124	129	135	140	
797	146	151	157	162	168	173	179	184	189	195	
798 799	200 255	206 260	211 266	217 271	222 276	227 282	233 287	238 293	244 298	249 304	
											D D
N.	0	1	2	3	4	5	6	7	8	9	P. P.

N.	Ø	1	2	3	4	5	6	7	8	9	P	. P.
00	90 309	314	320	325	331	336	342	347	352	358		
01	363	369	374	380	385	390	396	401	407	412		
02	417	423	428	434	439	445	450	455	461	466		
03	472	477	482	488	493	499	504	509	515	520		
04	526	531	536	542	547	553	558	563	569	574		
05	580	585	590	596	601	607	612	617	623	628		
06	634	639	644	650	655	660	666	671	677	682		
07	687	693	698	703	709	714	720	725	730	736		
08	741	747	752	757	763	768	773	779	784	789		
09	795	800	806	811	816	822	827	832	838	843		
10	849	854	859	865	870	875	881	886	891	897		
11	902	907	913	918	924	929	934	940	945	950		6
12	956	961	966	972	977	982	988	993	998	*004	1	1
13	91 009	014	020	025	030	036	041	046	052	057	2	1
14	062	068	073	078	084	089	094	100	105	110	3	2
15	116	121	126	132	137	142	148	153	158	164	4 5	2 3
16	169	174	180	185	190	196	201	206	212	217	6	4
17	222	228	233	238	243	249	254	259	265	270	7	4
18	275	281	286	291	297	302	307	312	318	323	8	5
19	328	334	339	344	350	355	360	365	371	376	9	5
20	381	387	392	397	403	408	413	418	424	429		,
21	434	440	445	450	455	461	466	471	477	482		
22	487	492	498	503	508	514	519	524	529	535		
23	540	545	551	556	561	566	572	577	582	587		
24	593	598	603	609	614	619	624	630	635	640		
25	645	651	656	661	666	672	677	682	687	693		
26	698	703	709	714	719	724	730	735	740	745		
27	751	756	761	766	772	777	782	787	793	798		
28	803	808	814	819	824	829	834	840	845	850		
29	855	861	866	871	876	882	887	892	897	903		
30	908	913	918	924	929	934	939	944	950	955		
31	960	965	971	976	981	986	991	997	*002	*007		5
32	92 012	018	023	028	033	038	044	049	054	059	1	1
33	065	070	075	080	085	091	096	101	106	111	2	1
34	117	122	127	132	137	143	148	153	158	163	3 4	2 2
35	169	174	179	184	189	195	200	205	210	215	5	3
36	221	226	231	236	241	247	252	257	262	267	6	3
37	273	278	283	288	293	298	304	309	314	319	7	4
38	324	330	335	340	345	350	355	. 361	366	371	8	4
39	376	381	387	392	397	402	407	412	418	423	9	5
40	428	433	438	443	449	454	459	464	469	474		
41	480	485	490	495	500	505	511	516	521	526		
42	531	536	542	547	552	557	562	567	572	578		
43	583	588	593	598	603	609	614	619	624	629		
44	634	639	645	650	655	660	665	670	675	681		
45	686	691	696	701	706	711	716	722	727	732		
46	737	742	747	752	758	763	768	773	778	783		
47	788	793	799	804	809	814	819	824	829	834		
48	840	845	850	855	860	865	870	875	881	886		
	891	896	901	906	911	916	921	927	932	937		
¥.												

N.	0	1	2	3	4	5	6	7	8	9	P	P. P.
850	92 942	947	952	957	962	967	973	978	983	988		
851	993	998	*003	*008	*013	*018	*024	*029	*034	*039	i	
852	93 044	049	054	059	064	069	075	080	085	090		
853	095	100	105	110	115	120	125	131	136	141		
854	146	151	156	161	166	171	176	181	186	192		
20.4	140	101	100	101	100	1/1	170	101	100	192		
355	197	202	207	212	217	222	227	232	237	242		
356	247	252	258	263	268	273	278	283	288	293		6
357	298	303	308	313	318	323	328	334	339	344	1	1
358	349	354	359	364	369	374	379	384	389	394	2	1
59	399	404	409	414	420	425	430	435	440	445	3	2
60	450	455	460	465	470	475	480	485	490	495	5	2 3
61	500	505			520	526	531	536	541	546	6	4
			510	515								
62	551	556	561	566	571	576	581	586	591	596	7	4
63	601	606	611	616	621	626	631	636	641	646	8	5
64	651	656	661	666	671	676	682	687	692	697	9	5
65	702	707	712	717	722	727	732	737	742	747		
66	752	757	762	767	772	777	782	787	792	797		
67	802	807	812	817	822	827	832	837	842	847		
68	852	857	862	867	872	877	882	887	892	897		
69	902	907	912	917	922	927	932	937	942	947		
	0.50	055	000	0.07	070	077	000	007	000	007		
70	952	957	962	967	972	977	982	987	992	997		
71	94 002	007	012	017	022	027	032	037	042	047		5
72	052	057	062	067	072	077	082	086	091	096	1	1
73	101	106	111	116	121	126	131	136	141	146	2	1
74	151	156	161	166	171	176	181	186	191	196	3 4	2 2
75	201	206	211	216	221	226	231	236	240	245	5	3
76	250	255	260	265	270	275	280	285	290	295	6	3
77	300	305	310	315	320	325	330	335	340	345	7	4
78	349	354	359	364	369	374	379	384	389	394	8	4
79	399	404	409	414	419	424	429	433	438	443	9	5
80	448	453	458	463	468	473	478	483	488	493		
										542		
81	498	503	507	512	517	522	527	532	537			
82	547	552	557	562	567	571	576	581	586	591		
83	596	601	606	611	616	621	626	630	635	640		
84	645	650	655	660	665	670	675	680	685	689		
85	694	699	704	709	714	719	724	729	734	738		
86	743	748	753	758	763	768-	773	778	783	787		4
87	792	797	802	807	812	817	822	827	832	836	1	0
88	841	846	851	856	861	866	871	876	880	885	2	1
89	890	895	900	905	910	915	919	924	929	934	3	1
90	939	944	949	954	959	963	968	973	978	983	5	2 2
91	-988	993	998	*002	*007	*012	*017	*022	*027	*032	6	2
92	95 036	041	046	051	056	061	066	071	075	080	7	3
93	085	090	095	100	105	109	114	119	124	129	8	3
94	134	139	143	148	153	158	163	168	173	177	9	4
	100	107	100	107	0.00	0.07	011	010	001	000		
95	182	187	192	197	202	207	211	216	221	226		
96	231	236	240	245	250	255	260	265	270	274		
97	279	284	289	294	299	303	308	313	318	323		
8	328	332	337	342	347	352	357	361	366	371		
99	376	381	386	390	395	400	405	410	415	419		
N.	0	1	2	3	4	5	6	7	8	9	P.	P.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
00	95 424	429	434	439	444	448	453	458	463	468	
01	472	477	482	487	492	497	501	506	511	516	
02	521	525	530	535	540	545	550	554	559	564	
03	569	574	578	583	588	593	598	602	607	612	
04	617	622	626	631	636	641	646	650	655	660	
05	665	670	674	679	684	689	694	698	703	708	
06	713	718	722	727	732	737	742	746	751	756	
07	761	766	770	775	780	785	789	794	799	804	
08	809	813	818	823	828	832	837	842	847	852	
09	856	861	866	871	875	880	885	890	895	899	
10	904	909	914	918	923	928	933	938	942	947	
11	952	957	961	966	971	976	980	985	990	995	5
12	999	*004	*009	*014	*019	*023	*028	*033	*038	*042	1 1
13	96 047	052	057	061	066	071	076	080	085	090	2 1
14	095	099	104	109	114	118	123	128	133	137	3 2 4 2
15	142	147	152	156	161	166	171	175	180	185	5 3
16	190	194	199	204	209	213	218	223	227	232	6 3
17	237	242	246	251	256	261	265	270	275	280	7 4
18	284	289	294	298	303	308	313	317	322	327	8 4
19	332	336	341	346	350	355	360	365	369	374	9 5
20	379	384	388	393	398	402	407	412	417	421	
21	426	431	435	440	445	450	454	459	464	468	
22	473	478	483	487	492	497	501	506	511	515	
23	520	525	530	534	539	544	548	553	558	562	
24	567	572	577	581	5 86	591	595	600	605	609	
25	614	619	624	628	633	638	642	647	652	656	
26	661	666	670	675	680	685	689	694	699	703	
27	708	713	717	722	727	731	736	741	745	750	
28	755	759	764	769 816	774 820	778 825	783 830	788	792 839	797	
29	802	806	811	010	020	020	000	834	009	844	
30	848 895	853 900	858 904	862 909	867 914	872 918	876 923	881 928	886 932	890 937	4
31	942	946	951	956	960	965	970	974	979	984	
32	942	993	997	*002	*007	*011	*016	*021	*025	*030	1 0 2 1
34	97 035	039	044	049	053	058	063	067	072	077	3 1
35	081	086	090	095	100	104	109	114	118	123	4 2 5 2
36	128	132	137	142	146	151	155	160	165	169	6 2
37	174	179	183	188	192	197	202	206	211	216	7 3
38	220	225	230	234	239	243	248	253	257	262	8 3
39	267	271	276	280	285	290	294	299	304	308	9 4
40	313	317	322	327	331	336	340	345	350	354	
41	359	364	368	373	377	382	387	391	396	400	
42	405	410	414	419	424	428	433	437	442	447	
43	451	456	460	465	470	474	479	483	488	493	
14	497	502	506	511	516	520	525	529	534	539	
15	543	548	552	557	562	566	571	575	580	585	
16	589	594	598	603	607	612	617	621	626	630	
17	635	640	644	649	653	658	663	667	672	676	
18	681	685	690	695	699	704	708	713	717	722	
19	727	731	736	740	745	749	754	759	763	768	
٧.	0	1	2	3	4	5	6	7	8	9	P. P.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
50	97 772	777	782	786	791	795	800	804	809	813	
51	818	823	827	832	836	841	845	850	855	859	
52	864	868	873	877	882	886	891	896	900	905	
53	909	914	918	923	928	932	937	941	946	950	
54	955	959	964	968	973	978	982	987	991	996	
55	98 000	005	009	014	019	023	028	032	037	041	
56	046	050	055	059	064	068	073	078	082	087	
57	091	096	100	105	109	114	118	123	127	132	
58	137	141	146	150	155	159	164	168	173	177	
9	182	186	191	195	200	204	209	214	218	223	
60	227	232	236	241	245	250	254	259	263	268	
61	272	277	281	286	290	295	299	304	308	313	5
62	318	322	327	331	336	340	345	349	354	358	1 1
63	363	367	372	376	381	385	390	394	399	403	2 1
64	408	412	417	421	426	430	435	439	444	448	3 2 4 2
65	453	457	462	466	471	475	480	484	489	493	5 3
66	498	502	507	511	516	520	525	529	534	538	6 3
67	543	547	552	556	561	565	570	574	579	583	7 4
86	588	592	597	601	605	610	614	619	623	628	8 4
69	632	637	641	646	650	655	659	664	668	673	9 5
70	677	682	686	691	695	700	704	709	713	717	
71	722	726	731	735	740	744	749	753	758	762	
72	767	771	776	780	784	789	793	798	802	807	
73	811	816	820	825	829	834	838	843	847	851	
74	856	860	865	869	874	878	883	887	892	896	
75	900	905	909	914	918	923	927	932	936	941	
76	945	949	954	958	963	967	972	976	981	985	
77	989	994	998	*003	*007 052	*012 056	*016 061	*021 065	*025	*029	
78	99 034	038	043 087	092	096	100			069	074	
9	078	083	087	092	090	100	105	109	114	118	
0	123	127	131	136	140	145	149	154	158	162	
1	167	171	176	180	185	189	193	198	202	207	4
2	211	216	220	224	229	233	238	242	247	251	1 0
3	255	260	264	269	273	277	282	286	291	295	2 1
4	300	304	308	313	317	322	326	330	335	339	3 1 4 2
5	344	348	352	357	361	366	370	374	379	383	5 2
6	388	392	396	401	405	410	414	419	423	427	6 2
7	432	436	441	445	449	454	458	463	467	471	7 3
88	476	480	484	489	493	498	502	506	511	515	8 3
9	520	524	528	533	537	542	546	550	555	559	9 4
0	564	568	572	577	581	585	590	594	599	603	
1	607	612	616	621	625	629	634	638	642	647	
2	651	656	660	664	669	673	677	682	686	691	
3	695	699	704	708	712	717	721	726	730	734	
4	739	743	747	752	756	760	765	769	774	778	
5	782	787	791	795	800	804	808	813	817	822	
6	826	830	835	839	843	848	852	856	861	865	
7	870	874	878	883	887	891	896	900	904	909	
8	913 957	917 961	922 965	926 970	930 974	935 978	939 983	944 987	948 991	952 996	
	301	-001			017					330	

PHYSICAL CONSTANTS OF CHEMICAL COMPOUNDS

XXIX.—PHYSICAL CONSTANTS

MOLECULAR WEIGHT, SPECIFIC GRAVITY, CRYSTALLINE FORM

-					
Number.	Name.	Formula.	Molec- ular. Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Acetic Acid	нсно	60 03	1.0607450	17°
1	Aluminium	Al		2.708-	657°
4		ZXI	21.1	$2.72\frac{16^{\circ}}{4^{\circ}}$	001
3	acetate normal	$Al(C_2H_3O_2)_3$	204 17	2.1240	decomp
4		$Al(C_2H_3O_2)_2OH$			decomp.
5	bromate				62.3°
6		Al ₂ Br ₆			93°
7		Al ₂ Br ₆ .12H ₂ O			
8		$Al_4^2C_3$		2.36	
9		$Al(ClO_3)_3.6H_2O$			decomp.
10	chloride	Al ₂ Cl ₆	266.96		190, 2½ At.
11	" To	Al ₂ Cl ₆ .12H ₂ O	483.09		
12	fluoride	Al_2F_6	168.2	3.10	
13		$Al_2F_6.7H_2O$			
14				3.43	
15	" di	$Al_2O_3.2H_2O$	138.23		
16	" tri	$Al_2O_3.3H_2O$	156.25	2.423	2H ₂ O, 300
17	iodide	Al_2I_6	815.72	2.63	185°
18	**********	$Al_2I_6.12H_2O$	1031.9		
19	nitride	Al ₂ N ₂	82.22		700
20	nitrate	$Al(NO_3)_3.9H_2O$	375.27		73°
21	oxide	Al ₂ O ₃	102.2	3.73-3.99	2020°
22	phosphate	AlPO ₄	122.14	2.59	infusible
23	notoccium tartrata	$KAl(C_4H_4O_6)_2$	262 25		
24	sodium chloride	$Al_2Cl_6.2NaCl.$	382 88		1850
25	" fluoride	$Al_2F_6.6NaF$	420 20	2 9-3 08	100
200	mariae	11121 6.01141	120.20	2.00.00	

The following abbreviations have been used in this table: -a.=acids; al. =alcohol; alk.=alkalies; aq. r.= aqua regia; dec. or decomp.= decomposes; deliques. = deliquescent; expl. = explodes; gr.= green; hexag.= hexagonal; insol.= insoluble; monocl.= monoclinic; reg.= regular; rhomb.= rhombic; s.= slightly; sol.= soluble; tetrag.= tetragonal; trimet.= trimetric; v.= very; ∞ = soluble in all proportions; $4\rm H_2O$, 120° indicates that 4 molecules of water are given off at 120° . The symbols of the common acids HCl, HNC3, $\rm H_2SO_4$ usually designate dilute solutions of these acids. The same rule applies to the symbols of other substances usually employed in solution. Alcohol usually

OF INORGANIC COMPOUNDS

SOLUBILITY,* MELTING AND BOILING POINT, AND COLOR

F	_					
Wirmhar	inei.	Boiling Point,		Solubility in	1 100 Parts.	Crystalline Form
With	TART	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
	1	118°		90	∞ sol. alcohol	
		> 2200°	∞ insoluble	decomp.	sol. HCl, H ₂ SO ₄ , alk.; s.	ootohodwal
	4	> 2200	msoluble	decomp.	sol. NHO ₃	octanedrai
	3		soluble	decomp.		
	-0.0		insoluble		sol. a.; insol. NH ₄ salts.	amorphous
	5	decomp. 100				
		263.3°747mm	soluble		sol. CS ₂ , alcohol	
	7		soluble	soluble	sol. CS ₂ , alcohol	
	8		dec.giv.CH ₄		soluble acids	yellow hexag
1	9	100 70759mm	v. soluble	v. soluble	[CS ₂	rhombohedral
		182.7°752mm		v. soluble	sol. CHCl ₃ , CCl ₄ , ether,	
			40 soluble	soluble	sol. ether; 50, alcohol	
			insoluble	s. soluble		
		01120, 250	insoluble	insoluble	insol. acids, alkalies	
			insoluble	insoluble	insol. acids, alkalies	
			insoluble	insoluble	soluble acids, alkalies.	
		360°				
			v. soluble	v. soluble	soluble alcohol, CS ₂	
1	9		slowly dec.		soluble alkalies	
2	20	dec. 134°	v. soluble		sol. alk., 100 alcohol	rhombic
			insoluble	insoluble	sol.conc.H2SO4,alk.HCl,	
2	22		insoluble	insoluble	soluble a., alk.; insoluble H.C ₂ H ₃ O ₂	amorphous
2	23		soluble	soluble		
2	24	white heat	soluble	soluble		
2	25		s. soluble		insoluble HCl	
						1

designates the ordinary 95% strength. The small figures after specific gravities indicate the temperature at which the specific gravity was taken, the upper figure being the temperature of the substance and the lower figure that of the water. When no temperature is given 15° may be assumed. The color of white or colorless compounds is omitted in the last column.

> = greater than.

< = less than.

^{*}Some of the solubilities in this table have been obtained from "Solubilities of Inorganic and Organic Substances" by Seidell, to which the student is referred for more complete data.

Number.	Name.	Formula .	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Aluminium aulphoto	A1 (SO)	342.41	0 71	J. 7700
	Aluminium, sulphate			2.71	dec. 770°
2		$Al_2(SO_4)_3.18H_2O$		1.62	decomp.
3	sulphide	Al_2S_3	150.41	2.02430	1100°
4	Alum, ammonium	$Al_2(SO_4)_3.(NH_4)_2SO_4.$ $24H_2O$	906.95	1.645 ²² °	94.5°
5	ammonium chrom.	$Cr_2(SO_4)_3.(NH_4)_2SO_4.$ 24H ₂ O	956.75	1 719	
6	ammonium iron	$\operatorname{Fe_2(SO_4)_3.(NH_4)_2SO_4.}$			
7	cæsium	24H ₂ OAl ₂ (SO ₄) ₃ .Cs ₂ SO ₄ .	964.43	1.712	
8	potassium	24H ₂ O	1136.5	2.02150°	105–106°
		$24\mathrm{H}_2\mathrm{O}$	949.06	1.7571 ² °°	84.5°
9	potassium chrom				
10	potassium iron	$24 \mathrm{H}_2\mathrm{O} \dots $ $\mathrm{Fe_2(SO_4)_3.K_2SO_4.}$	998.86	1.81278°	89°
	_	24H ₂ O	1006.5	1.806	
11	potassium manga- nese		1004.7		
12	rubidium	$Al_2(SO_4)_3.Rb_2SO_4.$			
13	sodium	$24 H_2 O \dots Al_2 (SO_4)_3 Na_3 SO_4$.	1041.8	1.87	99°
		$24\mathrm{H}_2\mathrm{O}$	916.86	1.675%	61°
14	thallium	$Al_2(SO_4)_3.Tl_2SO_4.$ $24H_2O$	1278.8	2 32	
15	Ammonia	_	17.03	(0.5971A. 0.62340° lq	-77.34°
16	Ammonium acetate.	NHCHO	77.07	(0.6234° 19	89°
17			222.27		
18					decomp.
10	auricyanide	H ₀ O	337.30		decomp. 200°
19	aurocyanide	AuCN.NH₄CN	267.26		decomp. 150–200°
20	arsenate	$(NH_4)_3AsO_4.3H_2O$	247.19		
21		NH AsO			
22	benzoate		139.082		dec. 193.5°
23		NH ₄ BF ₄		1.851 ^{17°}	
24	bromide	NH ₄ Br	97.96	2.32740	sublimes
25	bromoplatinate	(NH ₄)PtBr ₆ [NH ₂		4.26540	decomp.
26	carbamate	NH4HCO3.NH4CO2.	157.15		sublimes
27	carbonate	$(NH_4)_2CO_3.H_2O$			dec. 85°
2 8		NH₄HCO₃	79.05	1.586	dec.36-60°
-		1			

F	1	<u> </u>			1
Number	Boiling Point,		Solubility in	1 100 Parts.	Crystalline Form
Nu	Point,	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		36.1 ²⁰ °	89.1 ^{100°}		
2		87	1132 ¹⁰⁰ °	insoluble alcohol	octahedral
6.9	3	decomp.		sol. a	hexagonal needles
4	23H ₂ O, 190°	3.90°	357 ¹⁰⁰ °	insoluble alcohol	regular
5	5	3.95°	15 ¹⁵ °	soluble alcohol	vio. or green regular
1		40 ¹⁵ °	400	insoluble alcohol	regular
7	7	0.30°	42.54100°		
8	3 23H ₂ O, 190°	5.20°	422100°		regular
6		20	50	insoluble alcohol	green regular .
10)	2012.5°	v. soluble	insoluble alcohol	violet regular.
11		decomp.	soluble		violet regular.
12	2	1.30°	43.25 ⁸⁰ °		• • • • • • • • • • • • • • • • • • • •
13	3	103.1 ^{10°}	146.3 ³⁰ °	insoluble alcohol	regular
14	1	4.840°	65.19 ^{60°}		
15	$\begin{bmatrix} -38.5^{\circ} \\ -38.5^{\circ} \end{bmatrix}$	104960c.c.° 89.9°	72722c.c ^{15°} 57.8 ^{16°}	14.8 ^{20°} alcohol, ether	crystals
16		1484° 1086 50			
18		insoluble soluble	v. soluble .	insoluble alcohol	crystalline
19		soluble		soluble alkalies	
20		soluble 300			
22		v. soluble 952 ²⁵	83.3100	soluble alkalies 3.57 ^{25°} , 13.2 ^{78°} al	prisms
23		soluble	00.0-0	5.57-5, 15.2° al	hexag. prisms
24	1	66.2 ^{10°}	128.2 ^{100°}	soluble alcohol, ether	regular
20		0.59 ²⁰ ° 25 ¹⁵ °	6765°		red regular
2		100 ^{15°}		insoluble alcohol	plates
28	3	11.90°	27 ³⁰ °	insoluble alcohol	rhombic or monoclinic

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Ammonium carbon-	(NH.) _c CO _c .			
_	ate, sesqui	2NH ₄ HCO ₃ .H ₂ O	272.23		decomp.
2	citrate	$(NH_4)_3 C_6 H_5 O_7 \dots$	243.17		
3	chloraurate	(NH ₄ AuCl ₄) ₄ .5H ₂ O	447.19		5H ₂ O ₂ , 100
4	chlorate	NH ₄ ClO ₃			expl. 102°
5	chloride	NH ₄ Cl		1.520 ^{17°}	
6	chloroiridate	$(NH_4)_2IrCl_6$	441.94	2.856	
7	chloropalladate	$(NH_4)_2$ PdCl ₆	355.54		decomp.
8	chloropalladite	$(NH_4)_2 PdCl_4 \dots$	284.62		decomp.
9	chloroplatinate	$(NH_4)_2$ PtCl ₆		3.03440	decomp.
10	chloroplatinite	$(NH_4)_2$ PtCl ₄	373.12		decomp.
11	chlorostannate	$(NH_4)_2SnCl_6$	367.84		
12	chromate	$(NH_4)_2CrO_4$		81.88611°	dec. 185°
13	cyanate	NH ₄ CNO			decomp. dec. 36°
14 15	cyanidedichromate	NH ₄ CN	252.08	0.150	
16	dithionate	$(NH_4)_2Cr_2O_7$ $(NH_4)_2S_2O_6$	106 99	21.704	decomp.
17	ferric oxalate	$(NH_4)_2S_2O_6$ $(NH_4)_3Fe(C_2O_4)_3.$	190.22	21.704	
11	terrie oxalate	$4H_{\circ}O$	446 03	1.7785 ^{17.5°}	3H ₂ O,100°
18	ferrocyanide	$(NH_4)_4$ Fe $(CN)_6$.	440.05	1.7700	31120,100
10	rerrocyanide	$6H_{\circ}O$	261.96		
19	fluoride	NH ₄ F	37.04		
20	" acid	NH ₄ F.HF		1.211 ¹³ °	
21	formate	NH ₄ CHO ₂	63.05		decomp.
22	gallate	$NH_4^*C_7O_5O_5.H_2O$			
23	hypophosphite	$NH_4H_2PO_2$	83.10		100°
24	iodate	NH_4IO_3	192.96	3.31-3.34	dec. 150°
25	iodide	NH ₄ I	144.96	2.501	sublimes
26	metavanadanate	NH_4VO_3	69.04		decomp.
27	molybdate	$(NH_4)_2MoO_4$		2.38-2.95	decomp.
28	" hepta	$(NH_4)_6Mo_7O_{24}.4H_2O$.	1236.3		
29	nitrate	NH ₄ NO ₃		$1.725^{15^{\circ}}$	153°-166°
30	nitrite	NH ₄ NO ₂	64.05		decomp.
31	oxalate	$(NH_4)_2C_2O_4.H_2O$	142.10		
32		$NH_4HC_2O_4.H_2O$	125.07		
33		NH ₄ ClO ₄	117.50		decomp.
34 35	perenromate	$(NH_4)_3CrO_8$	234.13	2.2076 ^{10.25°}	dec. 50°
36		NH_4MnO_4 $(NH_4)_9S_9O_8$	130.97 228.20		decomp.
37		$(NH_4)_2S_2O_8$ $(NH_4)_2HPO_4$	132.13		decomp.
38	" mono	$NH_4H_9PO_4$	132.13 115.10		
90	1110110	11141121 04	110.10	1.0004	
-					

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
		25 ¹³ °	50 ⁴⁹ °		
		deliques.		1 1 1 1 1 1	
3		soluble 373		soluble alcohol	yellow monocl
4		soluble 29.40°	77.3 ¹⁰⁰ °	soluble alcohol	monoclinic
6		$0.7^{14^{\circ}}$	2.869°	s. sol. al, NH ₃ , Methyl al.	reg. or tetrag
7		soluble	2.000		bright red
1 8		v. soluble		insoluble alcohol	olive gr. needles
		0.6720°	1.25 ¹⁰⁰ °	0.005 alcohol	yellow regular.
1		soluble	v. soluble.		tetragonal
1		33.33 ^{15°}			
12		40 ³⁰ °	decomp.		vellow monocl.
13		soluble	decomp.	s. soluble alcohol	
14		soluble	v. soluble	soluble alcohol	regular
		47.1 ^{30°}	v. soluble.		orange monocl
16		v. soluble		insoluble alcohol	monoclinic
	1		0.4 11000		
17	dec. 165°	42.80°	345 ¹⁰⁰ °		light green crys.
18		soluble		insoluble alcohol	monoclinic
19		v. soluble	decomp.		hexagonal
20		v. soluble	decomp.		rhombie
		1020°	531 ^{80°}		monoclinic
22		soluble 3			
23		soluble ·	soluble	v. soluble alcohol	rhombic tablets
24		2.6 ^{15°}	14.5 ¹⁰⁰ °		rhombic
25		v. soluble	v. soluble	v. soluble alcohol	regular
		s. soluble	v. soluble	insol. NH ₄ Cl	crystalline
27		decomposes	decomp.	insoluble alcohol	monoclinic
28		soluble		0.0000 1 3 1	monoclinic
29	dec. 210°	1180°	S71100°	3.8 ^{20°} alcohol	rh'b. or tetrag
30		soluble 4.2 ¹⁵ °	decomp.	soluble alcohol	4
1		soluble	41.34		trimet. prisms .
33		soluble	v. soluble		trimet. prisms .
34		s. soluble	v. soluble	s.sol. NH ₃ ;insol.al.,ether	
35		815°		S. Soi. Wil ₃ , msoi.ai., emer	rhombic
36		58.20°			monoclinic
37		25	decomp.	insoluble alcohol	
38		1710°	260 ³¹ °		
				The state of the s	

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1 2 3 4 5 6	Ammonium phosphate meta phosphomolybdate salicylate selenate stannic chloride	$\begin{array}{c} (\mathrm{NH_4})_4\mathrm{P_4O_{12}}.\\ \mathrm{NH_4H_2PO_3}.\\ (\mathrm{NH_4})_3\mathrm{PO_4.12MoO_3}.\\ \mathrm{3H_2O}.\\ \mathrm{NH_4C_7H_8O_3}.\\ (\mathrm{NH_4})_2\mathrm{SeO_4}.\\ (\mathrm{NH_4})_2\mathrm{SnCl_6}. \end{array}$	388.33 99.10 1931.24 155.08 179.28 367.84	2.197 ^{18°} 2.511	123° decomp.
7 8 9 10 11 12	sulphate " acid sulphite sulphite acid sulphide		132.14 115.12 134.17 99.12 68.15 196.43	1.7687 ² ¢ 1.787	decomp. decomp. decomp.
13 14 15 16 17	sulphydrate sulphocyanate tartrate " acid thiocarbonate	\(\frac{1}{1}\frac{1}{2}\frac{1}{2}\frac{1}{5}\frac{1}{1}\frac{1}{1}\frac{1}{2}\frac{1}{5}\frac{1}{5}\frac{1}{1}\frac{1}{5}\frac{1}{	51.12 76.12 184.12 167.08 144.29 148.22	1.3057 ^{13°} 1.601 1.680	decomp. 159° sublimes
19 20 21 22	tungstate meta " para Antimonic Acid	$(NH_4)_2W_4O_{13}.8H_2O.$ $(NH_4)_6W_7O_{24}.6H_2O.$ $HSbO_3.$ $H_4Sb_2O_7.$ $HSbO_2.$	1124.2 1888.3 169.21 356.43 153.21	6.62	$7H_{2}O,100^{\circ}$ $4H_{2}O,100^{\circ}$ $decomp.$ $H_{2}O,200^{\circ}$ $decomp.$ 630°
25 26 27 28 29	bromide	$\begin{array}{l} \mathrm{SbBr_3}. \\ \mathrm{SbCl_3}. \\ \mathrm{SbCl_5}. \\ \mathrm{SbF_3}. \\ \mathrm{SbF_5}. \end{array}$	120.2 359.98 226.58 297.50 177.2 215.2	4.148 ^{23°} 3.064 ^{26°} 2.346 ²⁸ 4.379 ^{20.9°} 2.990 ^{22.8°}	94.2° 73.2° 2.8° 292°
30 31 32 33 34	iodide tri	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.22 500.96 500.96 500.96 288.4	4.344 ¹⁵ °A. 4.848 ²⁶ ° 4.768 ²² ° 5.2–5.67	-91.5° 170.8° 170.8 170.8° red heat
35 36 37 38	oxide pent oxychloride (-ous)	2 0	304.4 320.40 171.66 242.58	4.07	O, 1060° O, 450° decomp.

er.	Boiling Solubility in 100 Parts.				
Number	Point.		1	1	Crystalline Form and Color.
Nu	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	4
		7 1 1			1
1 2	dec. 150°	soluble 1710°	$260^{31^{\circ}}\dots$		tetragonal
1	dec. 150	171	2000		
3		.0315°	insoluble	insol. al., HNO3; sol. alk.	vellow
		111.1 ^{25°}		43 .5 ^{25°} , 100 ^{79°} al	monoclinic
5		1177°	197100°		rh'b. or monocl.
6	dec. 280°	33 - ()	103.3100°	insoluble alcohol	
8		100	103.3200		rhombie
9		100 ^{12°}		insoluble alcohol	
10		soluble			rhombic
11		v. soluble			
12		soluble		soluble alcohol	
13	dec. 170°	v. soluble 1220°	162 ²⁰ °	soluble alcohol	rhombic
	dec. 170	soluble	102		monoclinic
16		s. soluble		insol. al.; sol. a., alk	
17		v. soluble		,	yellow
18		soluble			rhombic
19		120 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 . 5 ²² °	insol. alcohol, ether	
21		s. soluble	s. soluble	soluble acids and KOH	momble
22		s. soluble	s. soluble	soluble KOH	
		insoluble	insoluble	insoluble alcohol	
	1440°	insoluble	insoluble	sol. hot conc. H ₂ SO ₄ , aq.r.	
1	280° 223.5°	decomp. 601.60°	decomp. 4531 ^{60°}	sol. HCl, HBr, CS ₂ , al. sol. al., HCl, H ₂ C ₄ H ₄ O ₆	rhombic
1	102°-103° *	decomp.	decomp.	sol.HCl	momble
	sublimes	soluble	decomp.		octahedral
	155°	soluble		soluble KF	oily liquid
1	-18° †	20c.c.	4	1500c.c.al.,2500c.c.CS ₂	
1	401° 401°	decomp.	decomp.	soluble alcohol,	red hexagonal
1	401°	decomp. decomp.	decomp.	KI, CS ₂	yellow rhomb.
		.00182 ¹⁵ °	•		(trimetric
	1550°		.01	$\rm sol. HCl, KOH, H_2C_4H_4O_6$	octahedral
35		insoluble	insoluble	sol. hot conc. HCl	
36	O ₂ , 1060°	insoluble insoluble	insoluble decomp.	soluble HCl, KOH, HI. insol. al.; sol. HCl, CS,	yellow monoclinic
38		insoluble	decomp.	soluble alcohol	vellow
33		22.0024.010	ascomp.		,
-	-				

^{*} At 68 mm.

[†] Decomposes at 150°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = \mathbf{I} . Air = \mathbf{I} (A). $\mathbf{H}_2 = \mathbf{I}$ (D).	Melting Point, °C.
	Antimony sulphate		528.41		decomp.
2	sulphide tri		336.61		fusible
3	" penta Antimonyl	$\mathrm{Sb}_{2}^{2}\mathrm{S}_{5}^{2}\ldots\ldots$	400.75	4.120 ⁰ °	fusible
4	potassium tartrate.	$K(SbO)C_4H_4O_6.\frac{1}{2}H_2O$	332.33	2.6	½Н,О,100°
5		(SbO) ₂ SO ₄ .Sb ₂ (OH) ₄			
6	Argon	A	39.88	(1.379 A.) 19.96 D.	-187.9°
7	Arsenic crystalline	As	299.84	5.727 ^{14°}	850°
8	" amorphous.	As ₄		4.716 ^{14°}	000
9	acid	$H_3AsO_4.\frac{1}{2}H_2O$	150.99		35.5°
10	fluoride	AsF ₅		5.964 D.	-80°
11		AsI_2	328.80		decomp.
12	pentoxide	As ₂ O ₅	229.92	3.99-4.25	red heat
13		As ₂ S ₂			307°
14			310.27		v. fusible
15	Arsenous bromide	$AsBr_3$	314.72	3.6618	31°
16	chloride		181.34		-18°
17		AsF ₃	131.96	2.73	-8.5°
18	hydride (arsine)	AsH ₃	77.98	2.695 A.	-113.5°
19	iodide	AsI ₃	455.72	4.3913	140.7°
20			395.84	3.65-4.15	sublimes
21			395.84	3.738	200°
22		AsOCl			fusible
23	phosphide	AsP			
24			386.52		360°
25				3.40-3.46	310°
	Auric bromide	AuBr ₃	436.96		
27		AuCl ₃			288°*
28		$AuCl_3.2H_2O$			
29	cyanide	$Au(CN)_3.6H_2O$	383.33		
30	hydroxide	$Au(OH)_3$	248.22		$1\frac{1}{2}H_{2}O,100$
31	lodide	AuI ₃			
32	hydrogen nitrate	$3\mathrm{H}_2\mathrm{O}$.	500.30		decomp.
33	oxide	Au_2O_3	442.4		0.160°†
34	sulphate	$Au_2O_3.2SO_3.H_2O$	620.54		
35	sulphide	Au_2S_3	490.61		
	Auricyanhydric Acid				50°
37	Aurichloro hydric Acid	HAuCl ₄ .4H ₂ O	412.11		
-					

^{*} Under a pressure of two atmospheres of Chlorine. \dagger Loses O_3 at 250°.

F							
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form		
Nun	Point,	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.		
2	volatile	decomp. .000175 insoluble	decomp. decomp. insoluble	sol. H_2SO_4 sol.alk., NH_4HS , K_2S , HCl sol. alk., NH_4HS , HCl .	black hexag		
		5.268.7° insoluble	35.7 ^{100°} decomp.	insol. al., sol. glyc 5.5 ^{15°} glycerene	octahedral		
6	-186.1°	5.6c.c.1°	3.43c.c. ^{50°}				
8 9 10	Subl. 554° < 360° H ₂ O, 160° - 53°	insoluble insoluble 16.7 soluble	insoluble insoluble 50	(sol. HNO ₃ , Cl ₂ .H ₂ O \(\) aq. r., hot alk soluble alkalies soluble alk., al., ether	black amor- [phous		
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	>700° dec. 250°	150 insoluble insoluble decomp. decomp. decomp. 1.716° 3.7 decomp. decomp. insoluble 0.00005 soluble 68 soluble v. soluble insoluble insoluble	v. soluble insoluble insoluble decomp. decomp. decomp. 10.14 11.46 decomp. decomp. s. soluble v. soluble insoluble decomp.	v. soluble	red monoclinic yellow		
33 34 35		decomp. insoluble deliques. insoluble	insoluble decomp.	soluble HNO ₃ soluble HClsol. HCl., 17 Conc.H ₂ SO ₄ sol. Na ₂ S, K ₂ S; insol. a	yellow triclinic octahedral black brown		
	decomp.	soluble v. soluble	v. soluble	soluble alcohol, ether			

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Auroauric bromide	AuBr ₂	357 04		dec. 115°
2	chloride	AuCl			dec. 250°
3	oxide	Au ₂ O	410.4		dec. 250°
4	sulphide	AuS	229.27		dec. 140°
-5	Aurobromhydric Acid	HAuBr ₄ .5H ₂ O	607.96		27°
	Aurous bromide	AuBr	277.14		dec. 115°
7	chloride	AuCl	232.66		
8	cyanide	AuCN	223.21		decomp.
9	iodide	AuI	324.12		dec. 120°
10	oxide	$\operatorname{Au_2O}$	410.40		dec. 250°
11	sulphide *	Au ₂ S	426.47		
12	Barium	Ba	137.37	3.78	850°
12	anatata	Pa(CHO) HO	273.43	2 02	donoma
13 14	acetate	$Ba(C_2H_3O_2)_2.H_2O$ $Ba_3(AsO_4)_2$	690.07	2.02	decomp.
15	arsenate	$BaHAsO_4.H_2O$	295.35		H ₂ O, 150°
16	boride	BaB_6	203.37		1120, 100
17	bromate	$Ba(BrO_3)_2.H_2O$	411.23		decomp.
18	bromide	$BaBr_{2}$		4.78124	880°
19	66	$BaBr_2.2H_2O$		$3.852^{\frac{24}{3}}$	2H ₂ O,100°
20	carbide	BaC ₂	161.37		
21	carbonate	BaCO ₃	197.37		1380°
22	chlorate	$Ba(ClO_3)_2.H_2O$	322.31		414° †
23	chloride	BaCl,	208.29	$3.856^{\frac{24}{3}}$	960°
24	"	BaCl, 2H,O	244.32	3.0974	860° ‡
25	chloroplatinate	BaPtCl ₆ .4H ₂ O	617.39	2.86	
26	chloroplatinite	BaPtCl ₄ .3H ₂ O	528.46	2.868	
27	chromate	BaCrO ₄		4.49815°	
28	cyanide	Ba(CN) ₂	189.39		
29	dichromate	$BaCr_2O_7$	353.37		
30	"	$BaCr_2O_7.2H_2O$			
31	dithionate		333.54	5.6	
32	ferrocyanide	$Ba_2Fe(CN)_6.6H_2O$			
33	fluoride	BaF ₂	175.37		1280°
34	fluosilicate	BaSiF ₆	279.67	4.2815	
25	Anahmana: 1-	DoD DoF	479 50	1 06	
35 36	fluobromide	$BaBr_2.BaF_2$ $BaCl_3.BaF_3$			• • • • • • • •
-90	nuoemoriae	DaOl ₂ .DaF ₂	000.00	4.01**	
37	fluoiodide	BaI ₂ .BaF ₂	566 68	5 91	
38	formate	$Ba(CHO_2)_2$			
00	TOTALIANO	Da(0110 _{2/2}	221.00	0.212 y 0.39	

^{*} For other compounds see "Gold." † Anhydrous.

F	1	1			1
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		decomp.			black
2		decomp.			dark red
3		insoluble	insoluble	soluble cold HCl	
4		insoluble	insoluble	insol. acids; sol. (NH4),S	
5		v. soluble			red crystals
6		insoluble		decomp. by acid	grayish yellow
7		insoluble	decomp.	1	vellowish white
8		insoluble	insoluble	insol, acids; sol, KCN.	yellow crystals
9		insoluble	s. soluble		yellow
10		s. soluble	insoluble	sol. HI, alkalies	violet
11		insoluble			black
12	vol. 950°	decomp.	decomp.	sol. al., a.; insol. b'z'l,	silvery crys-
		•		petroleum	tals
13		62.9.3°	80.5 ^{99°}	insoluble alcohol	prisms
14		0.055		soluble acids, NH ₄ Cl	
15	1½H2O, 225°				pearly crystals
16		insoluble	insoluble	soluble HNO ₃	black regular
17		0.30°	$5.67^{100^{\circ}}$		monoclinic
18		980°	149 ¹⁰⁰ °		
19		1250°	181.7 ¹⁰⁰ °	v. soluble methyl al	
20		dec. to C2H2		decomp. by acids	
		$0.0022^{20^{\circ}}$	0.0065^{100} °	sol. a., NH ₄ Cl	rhombic
		19.2 ³ °	111.2 ¹⁰⁰ °		monoclinie
1-0		30.90°	62.7 ¹⁰⁰ °	insol. al.; s. sol. HCl,	
		36.20°	$73.5^{100^{\circ}}$	HNO_3	
25		soluble		decomp. by acids	
		soluble		v. soluble 93% al	
27		0.0003818°	0.0043	soluble HCl, HNO ₃	
28		8014°			
		s. soluble		sol. hot conc. H ₂ SO ₄	
		decomp.	00 01000		yellow needles
		24.7518°	90.9 ¹⁰⁰ °		rhombie
l i		$0.1^{15^{\circ}}$	· Single View	1.11	
		$0.163^{18^{\circ}}$	s. soluble		reg. octahedral
34		$0.026^{17^{\circ}}$	0.09100°	insol. al.; s. sol. HCl,	
2 =		1	3	NH ₄ Cl. [HNO ₃	1-4
		decomp.	decomp.	insol. al.; sol. conc. HCl,	
30		decomp.	decomp.	insol. al.; sol. conc. HCl, HNO_3 [HNO ₃	
1		decomp.	decomp.	insol. al.; sol. conc. HCl,	
38		27.76°	$39.71^{80^{\circ}}$	insoluble alcohol, ether.	monoclinic

[‡] Loses 2H₂O at 100°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). $H_2 = I$ (D).	Melting Point, °C.
1	Barium hexanitride	BaN ₆ .H ₂ O	239.45		explodes
2	hydride	BaH	139.39		volatile
3	hydroxide	Ba(OH) ₂ :8H ₂ O	315.51	1.656	78° *
4	hypophosphate	Ba ₂ P ₂ O ₆	432.82		
5	hypophosphite	$Ba(H_2PO_2)_2.H_2O$	285.50	2.875	
6	iodate	$Ba(IO_3)_2.H_2O$	505.23	5.23	H ₂ O, 130°
7	iodide	BaI ₂	391.21	5.150%	539°-740°
8	manganate	BaMnO ₄	256.3	4.85	
9	metatungstate	$BaW_4O_{13}.9H_2O$	1243.5	4.298	
10	nitrate	$Ba(NO_3)_2$		3.24423	575°
11	nitrite	$Ba(NO_2)_2.H_2O$		3.173 ²⁹ °	dec. 115°
12	oxalate	$BaC_2O_4.H_2O$	243.39	2.6578	
13	oxide	BaO	153.37	4.73-5.46	$BaO_2.450^{\circ}$
14	"	BaO	153.37	5.32-5.74	
15	perchlorate	$Ba(ClO_4)_2.4H_2O$	408.35		†
16	periodate	$Ba_5(IO_6)_2$	1132.6		
17	permanganate	$Ba(MnO_4)_2$	375.3		
18	peroxide	BaO ₂		4.96	O, 450°
19	**	$BaO_2.8H_2O$	313.47		
20	persulphate		401.57		
21	phosphate tri	3/ 4/6			
22	1110110	91 4/2	331.48		
23	ui			4.16515°	
24	руго		448.80		
25 26	platinocyanide	/ 18 4	508.67 280.57		
27	selenate			4.75 4.44 ^{18°}	1470°
28	sincate	BaSiO ₃ .6H ₂ O	321.87	4.44~	1470
20				(4.476) 1580°
29	sulphate	BaSO ₄	233.44	4.330	decomp.
30	sulphate acid	$Ba(HSO_4)_2$	331.53	(4.000	, decomp.
31	sulphydrate		275.59		
32	sulphide mono		169.44		infusible
33	" tri		201.52		
34	" tetra		283.67		dec. 300°
35	sulphite		217.44		
36	sulphocyanate		289.57		
37	tartrate			2.98020.80	
38		BaS ₂ O ₃ .H ₂ O	267.53		
39	Beryllium (See Glu-				
	cinum)				
40	Bismuth	Bi	208.0	9.7474	270°

^{*} Loses $7H_2O$ at 95° ; $8H_2O$ at 780° .

_					
Number.	Boiling Point		Solubility in	100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		v. soluble	v. soluble		crystalline
2	1400°	decomp.	decomp.		crystalline
3	103°	5.56 ^{15°}	182.780°	soluble al.; insol. ether.	tetragonal
4		s. soluble		soluble alcohol	needles
		29	33	insoluble alcohol	monoclinic
, -		0.0080°	0.211000	insol. al.; sol. HCl, HNO ₃	
1 1		170°°	272 ¹⁰⁰ °	v. soluble alcohol	rhombic
		insoluble	v. soluble	decomp. by acids	green hexag
	decomp.	decomp. 5.2°	32 2100°	insol. al.: s. sol. acids	regular
		5.2°	97 ³⁵ °	1.6, 94% alcohol	hexag. needles.
		0.0093 ^{18°}	0.0228100°	sol.acids NH ₄ Cl; insol.al.	
13		1.50°	90.880°	soluble HCl, HNO ₃	amorphous
14					regular
15		v. soluble		v. soluble alcohol	hexagonal
16		insoluble		soluble HNO ₃	
		62.5 ^{11°}	72.4 ^{25°}	1 11 31 4	
18 19		insoluble insoluble	decomp.	soluble dilute acids soluble dilute acids	
		52.20°	decomp.	soluble alcohol	prisms
		insoluble		soluble	prisms
22		soluble		soluble acids	triclinic
23		0.0102		soluble acids, NH4 salts	
24		0.01			amorphous
25		316°			gray to yel. mon.
26		0.0118	0.0138	insoluble HNO ₃ ; sol.HCl	
27		soluble	decomp.	soluble HCl	rhombic
28				0 006 207 HCl	who we his
29	‡	0.0001720°	0.000334°	0.006, 3% HCl; sol. conc. H.SO ₄	amorphous
30				COHC. 11 ₂ DO ₄	amorphous
31		soluble		insoluble alcohol	rhombic
32		decomp.		insoluble alcohol	white amorph
33		soluble			yellow green
34		41 ^{15°}	v. soluble	insoluble alcohol, CS ₂	red rhombic
35	• • • • • • • • • •	0.019720°	0.00177 ⁸⁰ °	v. soluble HCl	hexagonal
36		soluble	0.050000	35 ^{20°} , 38 ^{79°} alcohol	needles
37		$0.026^{18^{\circ}}$ $0.2675^{17.5^{\circ}}$	0.05890°	0.032 ^{18°} alcohol	
39		0.2075110		insoluble alcohol	
00				[H _o SO ₄	[bohedral
40	1420°	insoluble	insoluble	sol. HNO ₃ , aq. r., conc.	
				7-1-1-21,03, 64, 1., 60110.	

[†] The anhydrous salt melts at 505°. ‡ Volatilizes slowly at 1300°

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Bismuth bromide	BiBr ₃	447.76	5 60	219°
2	carbonate sub	Bi ₂ O ₃ .CO ₂ .H ₂ O	526.02		decomp.
3	chloride di	BiCl ₂	278.9	4.86	163°
4	" tri	BiCl ₃	314.38		227°
5	citrate	$BiC_6H_5O_7$	397.040		decomp.
6	dichromate basic	$(BiO)_2Cr_2O_7$	764.0		accomp.
7	hydroxide	Bi(OH) ₃	259.02		H ₀ O.100°
8	iodide	BiI ₃	588.76	5.65 ²⁰ °	>439°
9	nitrate	$Bi(NO_3)_3.5H_2O$		2.78	74°
10	" sub	BiONO, H,O		4.928 ^{15°}	dec. 260°
11	oxalate	$\mathrm{Bi}_2(\mathrm{C}_2\mathrm{O}_4)_3$	680.0		
12	oxide tri	$\operatorname{Bi}_{2}\operatorname{O}_{3}$		8.8-9.0	820°-860°
13	" tetra	$\operatorname{Bi}_{2}^{2}\operatorname{O}_{4}^{\circ}.2\operatorname{H}_{2}\operatorname{O}$	516.03		O, 305°
14	" penta	$Bi_{2}O_{5}$	496.00		O, 150°
15	" "	Bi ₂ O ₅ .H ₂ O	514.02	5.917	H ₂ O, 120°
16	oxybromide	BiOBr	303.92	8.082 ^{15°}	
17	oxychloride	BiOCl	259.46	7.717 ^{15°}	red heat
18	oxyfluoride	BiOF	243.0	7.55 ^{20°}	
19	oxyiodide	BiOI	350.92	7.922 ^{15°}	
20	phosphate	BiPO4	303.04		
21	selenide	Bi ₂ Se ₃	653.6	6.82	decomp.
22	sulphate	$\mathrm{Bi}_2(\mathrm{SO}_4)_3 \ldots \ldots$	704.21		
23	sulphide	$\mathrm{Bi}_{2}\mathrm{S}_{3}$	512.21	7.00-7.81	decomp.
24	Boric Acid	$\mathrm{H_{3}BO_{3}}$	62.02	1.4347 ^{15°}	184°-186°
25	Boron	В	11.0	$\{2.45 \\ 2.554^{\frac{18}{4}}^{\circ}\}$	2200°- 2500°
26		BBr ₃	250.76	2.650 ²	
27		B_6C	78.0	2.51	
28		BCl_3	117.38		
29	fluoride	BF_3		2.3 A.	-127°
30	hydride	BH_3	14.02		
31	iodide	$\mathrm{BI}_{rac{3}{2}}$	391.76		43°
32	oxide	B_2O_3		1.75-1.83	577°
33	phosphide	BP	42.04		burns 200
34	sulphide tri	B_2S_3		1.55	310°
35	" penta	B_2S_5	1	1.85	390°
36	Borofluohydric Acid	HBF ₄	88.01		
37	Bromic Acid	HBrO ₃	128.97		dec. 100°
38	Bromine	Br_2	159.84	3.18830°	-7.3°
00	11 11	D CLIOILO	00 = =0		
39		BrCl.IOH ₂ O			7°
40	nuoride	$\mathrm{BrF}_3,\ldots,\mathbb{Z},\ldots,\mathbb{R}_5,$	136.92		5°

^{*} Loses 1½ H₂O at 150°.

[†] Loses 1½ H₂O at 300°.

F .:		D .			
Number	Boiling Point,		Solubility in	100 Paris.	Crystalline Form
Nur	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
	453°-498°	decomp.		soluble ether, HBr	yellow cryst
2		insoluble		sol. a.; insol. Na ₂ CO ₃	
4	dec. 300° 435°–447°	decomp		and of a contact	black needles.
5		decomp.		sol. al., a., acetone insol. al., sol. NH ₃ aq	
6		insoluble	insoluble	soluble acids; insol. alk.	orange red
7		insoluble		soluble acids; insol. alk.	
8		insoluble	decomp.	35.20° alcohol; sol. HI,KI	
9		decomp.		sol. a., 40 ^{19°} acetone	
10		insoluble	insoluble	soluble acids	
12		insoluble insoluble	insoluble	soluble acidssoluble acids; insol. alk.	
13		insoluble		soluble acids; insoi. aik.	
1	O ₂ , 357°	insoluble		soluble a., conc. KOH	
	O ₂ , 357°	insoluble [soluble a., conc. KOH	
16		insoluble		soluble acids	
17		insoluble		sol. a.; insol. H ₂ C ₄ H ₄ O ₆	quadratic
18		insoluble		soluble acids	crystalline
19 20		insoluble insoluble	insoluble	soluble acids; insol. KI. sol. HCl; insol. dil. HNO ₃	
21		insoluble	insoluble	insoluble alkalies	black
22			decomp.	soluble acids	
23		.000018		soluble HNO	
24	t	4.921°	28.7 ¹⁰⁰ °	(0.24 ²⁵ ° ether, sol. al. 28 ²⁰ °, 72 ¹⁰⁰ ° glycerene	triclinic mono- clinic
25	sublimes	insoluble	insoluble	insol. al., ether; sol. conc.	green amorph.
	(3500°	insoluble	insoluble	0/ 2 4	monoclinic
	90.5°	decomp.	in malanda ("	decomp. by alcohol	
27	18.2°	insoluble decomp.	insoluble ,	insol.a.; dec.fused KNO ₃ decomp. by alcohol	
	-101°	105.7 c.c.0°		decomp. by alcohol	
		s. soluble		soluble NH ₄ OH	
31	210°	decomp.		v. soluble CS_2 , CCl_4	
	high temp.	1.10°	16.4 ^{102°}	soluble al., conc. a	
1		insoluble	insoluble	insoluble, all solvent	
		decomp.		s. soluble, PCl ₃ , SCl ₂	
	130°	decomp.			crystamne
37		v. soluble	decomp.		
	58.7°	4.17°	3.49 ⁵⁰ °	sol. alk., CS ₂ , ether, al.,	
39	İ	soluble		CHCl ₃ KBr, H ₂ O soluble CS ₂ , ether	
	130-140°	decomp.		decomp. by alk	prisms.
	100 110	accomp.		account. Of with	Promoter

[‡] Decomposes above 10°.

_					
Number.	Name.	· Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Bromine hydrate	$Br_2.IOH_2O$	340.00		dec. 15°
2	Cadmium	Cd	112.4	8.64217°	321°
3	acetate	$Cd(C_2H_3O_2)_2.3H_2O$	284.50	2.01	
4	borotungstate	$Cd_{2}B_{2}W_{9}O_{32}.18H_{2}O$	2739.1		
5	bromate	$Cd(BrO_3)_2.H_2O$	398.26	3.758	decomp.
6	bromide	$CdBr_2$	272.24	$5.192^{\frac{25}{4}}$	568°
7	carbonate	$CdCO_3$	172.40	4.258	decomp.
8	chlorate	$Cd(ClO_3)_2.2H_2O$	315.35		80°
9	chloride	$CdCl_2$	183.32	$4.05^{\frac{25}{4}}$	563°
10		$CdCl_2.2H_2O$	219.35	3.327	
11	cyanide	$Cd(CN)_2$	164.42		dec. 200°
12	ferrocyanide	$\mathrm{Cd}_{2}\mathrm{Fe}(\mathrm{CN})_{6}$	436.70		
13	fluoride	CdF_2	150.40	6.64	520
14	formate	$Cd(CHO_2)_2.H_2O$	220.43	2.45	decomp.
15	hydroxide	$Cd(OH)_2$	146.42	4.79 ¹⁵ °	H ₂ O, 300°
16	iodate	$Cd(IO_3)_2$	462.24	5.644-5.98	decomp.
17	iodide	CdI_2	366.24	5.644	385°
18	lactate	$Cd(C_3H_5O_3)_2$	302.48		
19	nitrate	$Cd(NO_3)_2.4H_2O$	308.48	2.455	59.5°
20	oxalate	$CdC_2O_4.3H_2O$	254.45	3.32 ¹⁸ ° *	decomp.
21	oxide	CdO	128.40	6.95	infusible
22		CdO	128.40	8.11	
23	oxide sub	Cd_4O	465.6	8.21-8.18 ^{19°}	decomp.
24	permanganate	$Cd(MnO_4)_2.6H_2O$	458.36		decomp.
25	phosphate	$\operatorname{Cd}_3(\operatorname{PO}_4)_2$	527.28		
26	potassium iodide	CdI ₂ .2KI.2H ₂ O	734.29	3.359	
27	selenate	$CdSeO_4.2H_2O$	291.63	3.632	10000
28	sulphate	$CdSO_4$	208.47	4.7215°	1000°
29		$3CdSO_4.8H_2O$	769.54	3.087250	
30		$CdSO_4.4H_2O$	280.53	3.05	
31	sulphide artificial.	CdS	144.47	3.9-4.8	white heat
32		CdS	144.47	4.8-4.9	
33	sulphite	$CdSO_3$	192.47		decomp.
34	tungstate	CdWO_4	360.40	1 07902	00 070
35 36	bromide	Cs	132.81	1 . 87 ^{20°} 4 . 455 ²¹ .4°	26.37°
37	bromoiodide	CsBr	212.73	4.405	
38	carbonate	$CsBrI_2$	466.57		
39	carbonate acid	Cs ₂ CO ₃	325.62 193.818		100 1750
40	chloraurate	CsHCO ₃	471.85		$\frac{1}{2}$ CO ₂ , 175°
40	chloride	CsCl	$\frac{471.85}{168.27}$	3.972 ²	646°
42	chloroplatinate	Cs ₂ PtCl ₆	673.58		
43	chromate			4 99 7	
10	chromate	$CsCrO_4$	248.81	4.237	

^{*} Anhydrous.

Number.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3		soluble insoluble v. soluble	insoluble	sol. a., NH ₄ NO ₃	red octahedra. crystalline monoclinic
5 6		1250 ^{19°} 125 ^{17°} 61.1 ^{0°}	161 ¹⁰⁰ °	26.6 ^{15°} al., 0.4 ^{15°} ether	triclinic crystalline
7 8 9		insoluble 339 ^{0°} 140 ^{20°}	insoluble 549 ⁶⁵ ° 150 ¹⁰⁰ °	sol. acid, NH_4 salts soluble acids	hexagonal
10 11 12		168 ^{20°} 1.7 ^{15°} insoluble	180100°	2.05 ^{15°} methyl alcohol . sol. KCN, NH ₄ OH, a sol. HCl	monoclinic crystalline
1	1000°	4. 36 ^{15°} v. soluble 0.00026 ^{25°}		insol. al.; sol. acids [salts insol. alk.; sol. a., NH ₄	crystalline monoclinic hexagonal
16 17 18	708°-719°	s. soluble 80.10°	s. soluble 128 ^{100°} 12.5	soluble HNO ₃ , NH ₄ OH. sol. al., ether, NH ₄ OH. insoluble alcohol	crystalline brownish
	132°	143 .40° 0 .00337 ^{18°} insoluble	0.009 insoluble	sol. al.; insol. HNO ₃ sol. a., NH ₃ aq (soluble acid, NH ₄ salts	prism. needles.
22 23 24		insoluble v. soluble	insoluble	(insol. alk. decomp. by alk., acids.	regulargreen amorph.
25 26 27		insoluble 137 ^{15°} v. soluble		soluble NH ₄ salts, acids. 71 ^{15°} al.; 42 ^{15°} ether	amorphous
28 29 30		76.5°° 114.2°° 140°°	60 . 8 ¹⁰⁰ ° 87 ¹⁰⁰ ° 135 . 5 ¹⁰⁰ °	insoluble alcohol	monoclinic [or amorph.
31 32 33		(.00013 (insoluble s. soluble	colloidal s.	v. s. sol. NH ₄ OH; sol. a soluble conc. acidsinsol. al.; sol. a., NH ₄ OH	
36	670°	0.05 decomp. soluble	decomp.	soluble NH ₄ OHsoluble acids, alcoholdecomp. by alcohol	yellow crystals silvery yellow.
37 38 39	dec. 610°	decomp. 382.3 ^{20°} 210.2	v. soluble	soluble alcohol	rhomb. prisms
40 41 42 42		0.5 ^{10°} 161.4 ^{0°} 0.02'4 ^{0°} 71.35 ^{13°}	38 ^{100°} 270 · 5 ^{100°} 0 · 377 ^{100°} 88 · 66 ^{30°}	soluble alcoholsoluble alcohol	regularyellow regular.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Caesium cyanide	CsCN	158.82		
-2	fluosilicate	Cs ₂ SiF ₆			
3	hydride	CsH	133.82		decomp.
4	hydroxide	CsOH.	149.82	4.018	<272.3°
5	iodide	CsI	259.74	4.510^{25}	621°
6	mercuric bromide		932.41		
7	mercuric chloride		439.18		
8	nitrate	CsNO ₃	194.82	3.68738	414°
9	oxide mon	Cs_2O	281.62	4.78%	*
10	" di	Cs_2O_2	297.62	4.47 ^{15°}	400-450°
11	" tri	Cs_2O_3	313.62	4.250°	400°
12	" tetr-(per-)	Cs_2O_4	329.62	3.77 ^{19°}	515°
13	pentasulphide	Cs_2S_5	425.97	2.806 ^{16°}	202°-205°
14		CsClO ₄	232.27		decomp.
15			323.74		
16	permanganate			3.5974 ^{10.3°}	decomp.
17	silicotungstate	$Cs_8SiW_{12}O_{42}$	3970.8		
18	sulphate	Cs_2SO_4	361.69	$4.2434^{\frac{20}{4}}$	
19	sulphide	$Cs_2S.4H_2O$	369.75		
20		Cs_2S_2			430°
21		$Cs_2S_2.H_2O$			
22		Cs_2S_3			217°
23	tartrate acid	$CsHC_4H_4O_6$	281.85		
	Calcium	Ca		$1.5446^{29.2^{\circ}}$	805°
25	acetate	$Ca(C_2H_3O_2)_2.H_2O$	176.13		decomp.
26		$CaAl_2O_4$		3.671 ²⁰ °	1587°
27		$NH_4Ca.AsO_4.6H_2O$		1.905150	decomp.
28		$CaNH_4PO_4.7H_2O$		1.561 ^{15°}	decomp.
29		Ca_3As_2	270.13	2.5^{15}	decomp.
30	borate,	$Ca(BO_2)_2.2H_2O$	162.10	0.00170	
31	boride	CaB_6	106.07		1070 7000
32	bromide	CaBr ₂		3.353 ² .	485°-760°
33			308.18		38°
34	carbide	CaC_2	64.07		3 0050
35	carbonate	CaCO ₃		2.72-2.95	dec. 825° -
36		GIO3)2	206.99	0 150250	>100°
38				2.152 ² / ₂ °	774°
39		Cac L.H ₂ O		1 654	20 499
40			219.09		29.48°
41	citroto	$CaCrO_4.2H_2O$	574 20		2H ₂ O,200°
42	ferroevenide	${ m Ca_3(C_6H_7O_7)_2.4H_2O} \ { m Ca_2Fe(CN)_6.12H_2O}$	549 99		decomp.
12	remotyamue	04216(014)6.121120	010.23	• • • • • • • • • •	• • • • • • • • •

^{*} Absorbs 30 at 150°.

ber.	Boiling		Solubility in	100 Parts.	C
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1				insoluble alcohol	
2		60 ^{17°}	v. soluble	insoluble alcohol	regular
3		decomp.	decomp.	decomp. by acids	crystals
4		301.3 ^{30°}	soluble	soluble alcohol	grayish
5		27.70°	51.5 ^{35.6} °		
1 1		0.807 16°		s. soluble alcohol	
7		1.40617°	197100°	insoluble alcohol	
	or o o o a a a a a	9.330°		s. soluble alcohol	cubic
9		v. soluble		sol. abs. al	orange red crys. vellow needles
1	1	decomp.			choc. brown
1		decomp.			yellow cryst.
1				soluble alcohol	J 0210 W 01 J 50.
14		insoluble		insol. absolute alcohol	
15		$2.15^{15^{\circ}}$			rhombic plates
16		$0.097^{1^{\circ}}$	1.25^{59}		
		0.005 ²⁰ °	0.52 ^{100°}	insol. alcohol, HCl	
18		1670°	220.3 ^{100°}	insoluble alcohol	needles
19 20		v. soluble	v. soluble		crystals
21	,	hygroscopic soluble			dark red amor. quadratic crys.
	>800°	soluble			orange
23		9.725°	98100°		
24		decomp.	decomp.	-	silvery hexag.
25		43.60°	34.31000	s. soluble alcohol	needles[dles
26		decomp.		insol. benzine; sol. HCl.	prismatic nee-
27		0.02	soluble		monocl. plates
28		insoluble	insoluble	soluble acids	monoclinic
29	1	decomp. $0.40^{30^{\circ}}$	decomp.	soluble acids	reddish cryst
30		0.40°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0.40^{90} , insoluble	soluble acids, NH ₄ salts	blook somiles
-	806°-812°	insoluble 1250°	312105°	soluble HNO ₃ v. soluble alcohol	black regular.
3 1	149°-150°	500° %	314	v. soluble alcollol	needles
34		V-1	C_2H_2		crystalline
35		0.0013	0.088		rhombic ‡
36		177.78°			rhombie
37		59.50°	154 ^{99°}) 115	
38		69.10°	205 ⁹⁹ °	soluble onol	
1		117.40°		soluble alcohol	hexagonal
40		22. 20°	4.3100°	sol. alcohol, acids	
- ^		0.085 ^{18°}	0.096 ²⁵ ° 50 ⁹⁰ °		needles
12		• • • • • • • • • •	9000		triclinic

[†] Loses oxygen at 650°. ‡ Also hexagonal or rhombohedral.

=		1		Specific	
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). $H_2=1(D)$.	Melting Point, °C.
1	Calcium fluoride			3.15-3.18	1300°
2	fluosilicate	CaSiF ₆		2.662 ^{17.5} °	
3		$Ca(CHO_2)_2$	130.09		decomp.
4		CaH ₂	42.09		
5	hydroxide	$Ca(OH)_2$	74.09		
6		$Ca(ClO)_2.4H_2O$	215.05		decomp.
7	hypophosphate	$Ca_2P_2O_6.2H_2O$	274.25		
8	hypophosphite	$Ca(H_2PO_2)_2$	170.16		
9	iodate	$Ca(IO_3)_2$	389.91		decomp.
10	iodide	CaI_2		3.9564	631°-740°
11	1	CaI ₂ .6H ₂ O			420
12		$Ca(C_3H_5O_2)_2.5H_2O$	270.23	0.00	3H ₂ O,100°
13	nitrate	$Ca(NO_3)_2$	164.09		561°-499°
14		$Ca(NO_3)_2.4H_2O$	236.15	1.82 2.63 ¹⁷ °	42.31° 1200°
15	nitrid	Ca_3N_2			1200
16 17	nitrite	$Ca(NO_2)_2.H_2O$		2.231 ^{34°} 2.2 ^{4°} *	3
18		$CaC_2O_4.H_2O$ CaO		3.15–3.40	decomp.
19	oxide		20.07	3.15-3.40	
20		$Ca(MnO_4)_2.4H_2O$ $CaO_9.8H_9O$			decomp. 8H ₂ O,130°
21	peroxide	$Ca_3(PO_4)_2$	210.20	9 10	- '
22		$Ca_3(1O_4)_2$ $CaHPO_4.2H_5O$	179 15	2.306 ^{16:5°}	decomp.
23		$\operatorname{CaH}_{4}(\operatorname{PO}_{4})_{2}.\operatorname{H}_{2}O$		2.220 4 2.220 4	H ₂ O,100°
24	1110110	$\operatorname{Ca}_{2}\operatorname{P}_{2}\operatorname{O}_{7}.4\operatorname{H}_{2}\operatorname{O}$			1120,100
25	nhaenhida	$\operatorname{Ca}_{3}\operatorname{P}_{2}$	182 29	$2.51^{15^{\circ}}$	dif. fusible
26	phosphite	$2CaHPO_3.3H_2O$		2.01	
27		$Ca_{3}PbO_{4}$			
28			278.98		
29			328.43		
30		$Ca(C_7H_5O_3)_2.2H_2O$			
31		$CaSiO_3$	116.37	2.919 ^{18°}	1512°
32	silicide	CaSi ₂	96.68		
33		$CaSO_4$			1360°
34	" (gypsum).	CaSO ₄ .2H ₂ O	172.17	2.32	2H.O.900°
35		$Ca(SH)_2.6H_2O$			dec. 15–18
36		CaS	72.14		fusible
37	sulphite	CaSO ₃ .2H ₂ O			2H ₂ O,100°
38	sulphocarbonate	CaCS ₃	148.28		
39		$Ca(CNS)_2.3H_2O$			
40	tartrate	CaC ₄ H ₄ O ₆ .4H ₂ O	260.17		decomp.
41		$CaS_2O_3.6H_2O$	260.31	1.872	
42		CaWO ₄		6.062	
-			1		

^{*} Density of the anhydrous salt.

ber.	Boiling		Solubility in 100 Parts.		
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1		0.001618°		s. soluble conc. acids	regular
2		s. soluble		soluble HF, HCl, al	
3		160°	18.4 ^{100°}	insoluble alcohol	rhombic
4		decomp.	decomp.	insol. benzine; dec. by a.	crystalline
5		0.170°	0.081000	sol. NH ₄ Cl	hexagonal
6		deliques.	decomp.		
7		insoluble		soluble H ₄ P ₂ O ₆ , HCl	
8		17		insoluble alcohol	
9	7000 7100	0.415°	1.33100°	soluble HNO ₃	
	708°–719° 160°	192 ⁰ ° 907 ⁰ °.	435 ⁹² °	soluble acids, al	plates
11 12	100-	907°. 10.5		insol, ether; sol, alcohol	
13		93.10°	351 . 2 ^{152°}	14 ¹⁵ alcohol; sol. amyl. al	nrieme
	132°	134 ⁰ °	506 ^{152°}	0.8 alcohol	monoelinia
11	102	decomp.	decomp.	sol.dil.acids: insol.ab.al.	
16		deliques.	v. soluble	insoluble alcohol	prisms
17		0.000554^{18}°	0.0014 ⁹⁵ °	sol. a.; insol. H.C ₂ H ₃ O ₂ .	octahedral
18		0.130°	$0.06^{100^{\circ}}$	soluble acids	regular
19		331 ¹⁴ °	388 ^{25°}	[NH, salts	purple prisms.
20		s. soluble	decomp.	insol. al., ether; sol. a.,	tetragonal
21		0,003-0.008	decomp.	soluble acids; insol. al	amorphous
22		0.028	decomp.	insol. al.; sol H ₄ C ₆ H ₇ O ₇	monocl. plates.
	dec. 200°	415°	decomp.		rhombic
		s. soluble		soluble a.; insol. NH ₄ Cl.	
		decomp.		insol. al., ether; sol. dil.a	
	<i>:</i>	s. soluble	decomp.	sol. NH ₄ Cl; insol. al	
27		insoluble		soluble acids	brown crystals
28 29		s. soluble	Jacones	soluble acids	crystalline
30		0.25 v. soluble	decomp.		monoclinic
31		0.0095 ^{17°}		soluble HCl	monocl. or hex-
32		insoluble		soluble Hell	
33		0.179°	0.1781000 ($sol. a., Na_2S_2O_3, NH_4 $ salts	
34		0.24100	0.2221000	sol. HCl, NaCl, glycerine	monoclinic
35		v. soluble		soluble alcohol	prismatic
36		0.15 ¹⁰ °	$0.33^{90^{\circ}}$		regular
37		0.125		soluble H ₂ SO ₃	crystalline
38		soluble		soluble alcohol	yellow !
39		deliques.	v. soluble	v. soluble alcohol	crystalline
40		$0.016^{15^{\circ}}$	$0.3^{100^{\circ}}$	s. soluble alcohol	trimetr. prisms
41		100 ³ °	decomp.	insoluble alcohol	triclinic
42		0.2		insoluble a.; sol. NH ₄ Cl.	tetragonal

-					
Number.	Name.	Formula.	Molec- ular. Weight.	Specific Gravity. Water= 1. Air= 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1 2 3 4 5 6 7 8	" diamond	C	12.00 12.00 343.72 503.52 331.72 165.84 236.76	1.75-2.10 2.255\forall 3.47-3.5585 	\begin{cases} \text{sublimes} \\ \text{at} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
10 11 12 13 14	dioxide gaseous "liquid "solid disulphide	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.00 44.00 44.00 76.14	1.53A. 1.057 ^{-34°} 1.56 ^{-79°} 1.292 [‡] 2.63A 4.32 ²⁰ .2°	-65° -65°
15 16 17 18 19	oxybromide[gene) oxychloride (phos-	CO	44.07 187.84		decomp.
24	silicide	CSCÎ12 CSCI4 Ce CeC2	185.91 140.25 164.25	2.5 1.5085 ^{15°} 1.712 ^{12.8°} 6.92 ^{25°} 5.23	645°
25 26 27 28 29 30	fluoridehydroxide nitrate oxide peroxide silicide	CeO_3	172.25 188.25 196.85	5.67 ^{17°}	decomp.
31 32 33 34 35 36 37 38	sulphate. Cerous acetate bromide carbonate chloride fluoride hydroxide	$\begin{array}{c} \text{Ce}_2(\text{C}_2\text{H}_3\text{O}_2)_6.3\text{H}_2\text{O} \dots \\ \text{CeBr}_3.\text{H}_2\text{O} \dots \\ \text{Ce}_2(\text{CO}_3)_3.9\text{H}_2\text{O} \dots \\ \text{CeCl}_3 \dots \\ \text{CeF}_3.\frac{1}{2}\text{H}_2\text{O} \dots \\ \text{Ce}_2\text{O}_3.6\text{H}_2\text{O} \dots \\ \end{array}$	688.69 398.03 622.64 246.63 206.26 436.60	$3.88\frac{15.5}{15.5}$	3H ₂ O,115° decomp. decomp. 848°

_					
Number.	Boiling Point.		Solubility in	n 100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3		insoluble insoluble insoluble	insoluble insoluble insoluble	insoluble in acids alkalies; soluble in molten metals	black amorph. black hexag regular
	189.5° 121°	insoluble [5]		sol. CS.; insol. al., ether sol. al., ether, CHCl ₃	tablets
1	187°	insoluble		soluble alcohol, ether	rhombic, tri- clinic or reg.
10 11 12 13	-78.2°	insoluble 179.67c.c.° insoluble 0.2°°	90.14e.c. ²⁰⁰ 0.014 ^{50°}	soluble alcohol, ether soluble alcohol, ether	crystalline
16	-190° 200° 63-66°	(3.5c.c.0° (0.00440° insoluble	decomp. {1.6c.c. ^{50°} {0.0018 ^{50°}	$\begin{array}{l} {\rm soluble\ al.,\ CS_2,\ ether\ .} \\ {\rm 0.20566^{16^{\circ}}\ al.sol.\ Cu_2Cl_2} \\ {\rm CS_2,\ C_6H_6,\ H.C_2H_3O_2} \\ {\rm insol.\ al.;\ sol.\ CS_2,\ ether} \\ \end{array}$	red powder
	8.2° -47°	decomp. [1330°	40.330°	sol.glac.HC ₂ H ₃ O ₂ ;dec.al	
20 21		decomp. insoluble decomp. insoluble soluble acids deliques. insoluble	decomp. decomp. insoluble decomp.	soluble acidss. sol. alk., carbonate aq soluble alcohol	
30 31 32 33 34 35 36 37 38		insoluble soluble 26.4515° deliques, insoluble 100 insoluble sol. acids soluble	16.2 ^{76°} decomp.	soluble alcohol	yellow needles needlesneedlescrystalscrystalline

-					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Cerous nitrate	$Ce(NO_3)_3.6H_2O$	435.24		3H ₂ O,150°
2	oxalate	$Ce_{2}(C_{2}O_{4})_{3}.9H_{2}O$			decomp.
3		Ce ₂ O ₃	328.50	6.9-7.0	
4		$Ce_2O_3.2CeCl_3$	821.76		
5	phosphate	$CePO_4$	235.29		
6	sulphate	$ Ce_2(SO_4)_3$	568.71		
7	"	$Ce_{2}(SO_{4})_{3}.SH_{2}O$	712.84		8H,O,630°
8		$Ce_{3}S_{2}$		5.020 ¹¹⁰ °	decomp.
		$HClO_3.7H_2O$		1.282 ^{14°}	<-20°
		Cl_2		2.4910°A.	-102°
11		Cl.5H ₂ O	125.54		-50°
12		Cl_2O		2.977A.	-20°
13		ClO,		1.5, 2.315A.	-79°
14		$\operatorname{Cl_2O_7}$	182.92	,	_ 13
	Chlorosulphonic Acid		116.54		82°
	Chromium	Cr		6.92 ²⁰ °	1505°
17	boride	CrB		5.417°	1000
18		CrO_2	84.00		190,O,300
19	phosphide	CrP		5.71 ^{15°}	130,0,000
20	totreculphide	$\operatorname{Cr}_3\operatorname{S}_4$	234.28	0.71	
21	trioxide	CrO_3		2.67-2.82	196°
	Chromic bromide	CrBr_3	291.76		130
23	" " "	$CrBr_3.6H_2O$	399.86		
24		Cr_3C_3	180.0		
25		$CrCl_3$		2.757 ^{15°}	
26	cmonde	$CrCl_3.6H_2O$			sublimes
20		01013.01120	200.10		83°
27	fluoride	CrF_3	109.0	3 78	decomp.
28	"	$CrF_3.9H_2O$			
29	hydroxide	$Cr(OH)_3$			
30		$Cr(NO_3)_3.9H_2O$			37°
31	nitride	CrN			dec. 1500°
32		$\mathrm{Cr}_2\mathrm{O}_3$			2059°
33		$\operatorname{Cr}_{2}(\operatorname{PO}_{4})_{2}.6\operatorname{H}_{2}O$			
34	(4		510.27		7H ₂ O,100°
35	silicide	$\operatorname{Cr_3Si_2} \dots \dots$	212.60		
90	ZIIIOIGO	0.3019	00	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
36	sulphate	$\operatorname{Cr}_2(\operatorname{SO}_4)_3 \dots$	392.21	3.012	
37	"		482.29		
38	66	$Cr_2(SO_4)_3$. $15H_2O$		1.867 ^{17°}	100
39		$Cr_2(SO_4)_3$. $18H_2O$	716.50		
40	sulphide		200.21		
		2-3			

^{*} Decomposes at 200°. † Decomposes at 40°.

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	*	deliques.	v. soluble	50 alcohol	red crystals
2		.053 ^{25°}		insoluble oxalic acid	
3		insoluble		soluble conc. H ₂ SO ₄	gray powder
4		insoluble		soluble dilute acids	purple
5		insoluble	insoluble	soluble acids	monoel. prisms.
6		16.56°°	2.25 ^{100°}		[or rhombic
7		23.8°°	650°		
		insoluble	decomp.	soluble dilute acids	
9	1	v. soluble			
	-33.6°	150°°, 300¹0°	180 ³⁰ ° c.c.	soluble alkalies	9
11		soluble			octahedra
	-5° 9.9°	200c.c.0°			reddish yellow.
	9.9° 82°	2000c.c.4°	decomp.	sol. conc. H ₂ SO ₄ , alk	yellowish green.
	82° 155.3°	soluble		sol. benzene	
	2200°	decomp.	:ll-	insol. CS ₂ ; decomp. al. sol.HCl,dil.H ₂ SO ₄ ; insol.	
17	2200	insoluble	insoluble insoluble		
1		insoluble	insoluble	sol. fused Na ₂ O ₂ [HNO ₃	dark gray
		insoluble		insol. a.; sol. HNO ₃ ,HF.	gray blook onve
20		insoluble		s. soluble conc. acids	
	decomp.	163 .40°	206 · 7 ^{100°}	sol. al., ether, H ₀ SO ₄	
99		insoluble	200.1	501. al., coller, 11 ₂ 500 ₄	olive green hex
		200		v. soluble alcohol	green hexag. pl.
		insoluble	insoluble	sol. dil. HCl	
	1200-1500°	insoluble	s. soluble	insol. a.; sol. trace CrCl ₂ .	
26		v. soluble		soluble alcohol	(violet plates .
					gr. hexag. pl
27		insoluble		insol. al.; s. sol. acids	greenish octah
28		v. soluble			[-blue gelatin.
29		insoluble		sol. a., alk.; s. sol.NH ₃ aq	
	125.5°	soluble			purple prisms
31		insoluble		insol. acids, alkalies	amorphous
32		insoluble		s. soluble acids	dark green hex.
33		s. soluble		(sol. acids, alk.;	green
				(insol. H.C ₂ H ₃ O ₂	violet triclinic
35		insoluble	insoluble	sol.HCl, HF.; insol. HNO ₃ , H ₂ SO ₄	tetragonal prisms
36		insoluble		insoluble acids \dots	prisms
37				v. soluble alcohol	green amorph
38	10H ₂ O,100°		decomp.67°	insoluble alcohol	violet cryst
39		$120^{20^{\circ}}$			blue octahed
40		insoluble	decomp.	soluble HNO ₃	brn. black pow.
_			1	1	,

[‡] Decomposes at 35°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A). $H_2=1(D)$.	Melting Point, °C.
1	Chromous acetate	Cr ₂ (C ₂ H ₃ O ₂) ₆ .2H ₂ O	494.18		
2	carbonate	$CrCO_3$	112.00		
3	chloride	CrCl ₂		2.751 ^{14°}	
4	fluoride	CrF,	90.0	4.11	1100°
5	hydroxide	Cr(OH),	86.02		
6	iodide	CrI ₂	305.84		
7	sulphate	CrSO ₄ .7H ₂ O	274.18		
8	sulphide	CrS	84.07		
	Chromyl trichloride	CrO ₂ Cl ₂		1.96174	
	Cobalt	Co		8.71821	1490°
11	carbonvl	$Co(CO)_4 \cdot \cdot \cdot \cdot \cdot \cdot$		1.827 ^{18°}	42–46°
12	phosphide	Co ₂ P	148.98		12-10
	Cobaltic boride	Co_2^1 .		7.25 ^{18°}	
14	chloride	CoCl ₃	165.38		sublimes
15	" dichro	$Co(NH_3)_3Cl_3.H_2O$	234.50	2.54	subilines
16	" praseo	$Co(NH_3)_4Cl_3.H_2O$	251.53		
17	" purpureo	$Co(NH_3)_5Cl_3$	251.55 250.57	1.802 ^{15°}	
18	" luteo	$Co(NH_3)_6Cl_3$		1.7016 ^{20°}	
19	roseo	$Co(NH_3)_5Cl_3$	268.57	1.701020	
20	chromate	2CoO.CrO ₃ .2H ₂ O	286.03		
21	hydroxide	$Co(OH)_3$	110.02		
22	· ·			4.81-5.60	0.895°
23	oxidepotassium nitrite	Co_2O_3	958.71		
	•	$2\text{Co(NO}_2)_3.6\text{KNO}_2.$ $3\text{H}_2\text{O}$			
24	sulphate	$\operatorname{Co}_2(\operatorname{SO}_4)_3$			
25	sulphide	Co_2S_3		4.8	
26	" di	CoS_2	123.11		
	Cobaltocobaltic oxide	Co_3O_4		5.8-6.3	0.905
	Cobaltous acetate	$Co(C_2H_3O_2)_2.4H_2O$		1.704318.7°	
29	am. chloride	CoCl ₂ .NH ₄ Cl.6H ₂ O	291.49		
30	" sulphate	$CoSO_4.(NH_4)_2SO_4.$ $6H_2O$		1.902 ^{18°}	
31	arsenate	$Co_3(AsO_4)_2.8H_2O$	598.96	2.948	
32	arsenite	$Co_3H_6(AsO_3)_4.H_2O$	692.81		
33	bromate	$Co(BrO_3)_2.6H_2O$	454.91		
34	bromide	CoBr ₂	218.81	4.9094	
35		CoBr ₂ .6H ₂ O	326.91		100°
36	carbonate	CoCO ₃	118.97		decomp.
37	" basic	2CoCO ₃ .3Co(OH) ₂	516.90		
38	chlorate	$Co(ClO_3)_2.6\dot{H}_2O$			50°
39	chloride	CoCl	129.89	3.34824	sublimes
40		CoCl ₂ .6H ₂ O	238.00	1.84	86.75°
41	chromate	CoCrO ₄			decomp.

^{*} Decomposes at 100°.

ber.	Boiling		Solubility in 100 parts.		Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3 4		soluble insoluble v. soluble s. soluble		insoluble alcoholinsoluble etherinsol. al.; sol. hot HCl	amorphous
5		decomp. v. soluble		soluble acidss. soluble alcohol	yellow brown
	115.9°	insoluble decomp.	insoluble	v. soluble acidssoluble acids	black powder
11 12 13	dec. 135°	insoluble insoluble decomp.	insoluble decomp.	Sol. CS_2 , ether, al sol. conc. HNO_3 soluble HNO_3	small needles
14 15 16 17		soluble soluble v. soluble	soluble 1.03146.6°	soluble acids, alcohol soluble acids; insol. al.	green crystals
18 19 20		0.232° 4.26° 16.12° decomp.	12.74 ^{46.6°} 24.87 ^{16.19°}	insoluble alcohol insoluble al., NH ₃ aq s. soluble HCl	
21	heat	insoluble insoluble s. soluble	insoluble insoluble	insol.al.; sol.conc.cold a. soluble conc. acidsinsol. alcohol, ether	blacksteel gray
24 25 26		sol. with dec. insoluble insoluble		soluble conc., H ₂ SO ₄ decomp. by acids sol. HNO ₃ , aqua regia	black crystalsblack
27 28 29 30		insoluble soluble deliques. 20.5 ^{20°}	v. soluble 45.480°	sol. conc. H ₂ SO ₄ insoluble alcohol	red needles
31 32 33		insoluble insoluble 45.5 ^{17°}	insoluble	soluble acids, NH ₃ aq	reddish monocl.
34 35 36		66. 7 ^{59°} deliques. insoluble	68.1 ^{97°} 153.2 ^{97°} insoluble	soluble $\mathrm{NH_3aq}$ soluble alcohol, ether soluble alcohol, ether insol. conc. HCl, HNO $_3$	
37 38 39	*	insoluble 558.30° 457°	decomp. soluble 105 ^{96°}	sol. $(NH_4)_2CO_3$ soluble alcohol 31 al., 8.62 acetone	red colored regular blue crystals
40	†	76.70° insoluble	190 . 7 ^{100°}	v. sol. ether, glycoll sol.a.,NH ₃ aq., dil.HNO ₃	red monoclinic. yellowish brown

[†] Loses 6H₂O at 110°.

			1	Specific	
Number.	Name.	Formula.	Molec- ular Weight.	Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Cobaltous cyanide	Co(CN) ₂ .2H ₂ O	147 02		2H ₂ O ₂ 280°
2	ferricyanide	$Co_3[Fe(CN)_6]_2$	600.89		
3	ferrocyanide	$\text{Co}_2\text{Fe}(\text{CN})_6.7\text{H}_2\text{O}$	455.95		
4	fluoride	CoF, 2H, O	133.00	4.43 *	
5	"		305.10		
6	hydroxide	$Co(OH)_2 \dots OH$	93.00	3.597150	
7	iodate	$Co(IO_3)_2$	408.81	$5.008^{18^{\circ}}$	
8	iodide	CoI_2	312.81		
9	"				
10	"				
11	nitrate		291.09		56°
12	oxalate	ii '2 ii		2.325 ^{19°} *	
13	oxide	CoO		5.6-5.75	0.2860°
14	perchlorate		257.89		
15	phosphate		366.99		
16			421.04		
17	phosphite	$CoHPO_3.2H_2O$			blue at 250
18	potass. carbonate	CoCO ₃ .KHCO ₃ .4H ₂ O			
19	selenide	CoSe	138.17		red heat
20	silicate	$\text{Co}_2 \text{SiO}_4 \dots$	210.24		
21	sulphate	$CoSO_4$		$3.472^{15^{\circ}}$	989°
22	1 1 1 1	2 4		1.918 ^{15°}	96.8°
23 24		CoS	91.04		> 1100°
	sulphite	$CoSO_3.5H_2O$	229.12		
20	Columbic Acid	$3\text{Cb}_2\text{O}_5.7\text{H}_2\text{O}$	927.11		
	Columbium (Niobium)			7.0615	1950°§
27	bromide		493.10		
28	chloride penta	CbCl ₅	270.80		194°
29			94.51		decomp.
30	nitride	CbN	107.51		
31	oxalate	$Cb(HC_2O_4)_5$	538.54		
32		CbO		6.3-6.67	
33	" di		125.50		
34	" pent	Cb_2O_5		4.4-4.53	
35	oxybromide	CbOBr ₃			sublimes
36		CbOCl ₃	215.88		subl. 400°
37	oxysulphide		299.21		
38	Copper	Cu	63.57	8.91-8.96	1083°¶
39	boride	Cu_3B_2	212.63	8.116	
40	hydride	Cu_2H_2	129.16		dec. 60°
41	nitride	Cu ₃ N	204.72		dec. 300°
-					

^{*} Density of the anhydrous salt. † Decomposes at red heat.

er.	Boiling		Solubility in	1 100 Parts.	
Number.	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1 2 3 4 5		insoluble insoluble insoluble soluble	decomp.	sol. KCN, HCl, NH ₃ aq. insol. HCl; sol. NH ₃ aq. insol. HCl; sol. KCN soluble HF	buff colored red gray green rose red cryst trimetric prisms
6 7 8 9		insoluble $0.4^{15^{\circ}}$ $159^{9^{\circ}}$ deliques.	insoluble 1.33 ^{100°} 420 ^{100°}	insol. alk.; sol. NH ₄ salts soluble HCl, HNO ₃ v. soluble alcohol	
11 12 13 14 15	†	133.80° insoluble insoluble 1000° insoluble	insoluble 115 ^{45°} insoluble	$100^{12.5^{\circ}}$ alcohol. sol. a., NH $_3$ aq. sol. a., NH $_3$ aq.; insol. al. sol. al. acetone. sol. H $_3$ PO $_4$, NH $_3$ aq.	red monoclinic. reddish white greenish brown. red needles reddish
16 17 18 19 20 21	dec. 880°	insoluble decomp. decomp. insoluble 26.23°	82.6 ¹⁰⁰ °	decomp. by HCl	reddish . [cryst. rose colored yellow crystals . violet red powder
1 1	7H ₂ O, 420°	60.4 ^{3°} 0.00038 insoluble insoluble	soluble	sol. conc. HCl., aq. r., al. soluble H ₂ SO ₃ [H ₂ SO ₄ sol. KOH, HF, conc. {s.sol.HCl,HNO ₃ ,aq.r.	thrown needles.
26 27 28 29 30	240.5°	insoluble decomp.	insoluble	\{\)\ sol. hot conc. \(\text{H}_2 \text{SO}_4 \). \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	purple red yellow needles. gray powder black
	2310°	decomp. insoluble insoluble decomp. decomp. insoluble insoluble	decomp.	dec. al.; sol. $H_2C_2O_4$ $[H_2SO_4]$ insol. HNO $_3$; sol. conc. sol. conc. H_2SO_4 , HF soluble conc. acids sol. H_2SO_4 , alcohol sol. conc. H_2SO_4 . $[H_2SO_4]$ sol. HNO $_3$, hot conc.	monoclinic regular black crystalline yellow crystals. needles black red crystalline.
39 40 41				soluble HCldecomp. by acids	yellowreddish brown.

Carmine red rhomb. or monocl. § Burns in the air. ¶ Melts at 1065° in the air.

Number.	Name.	Formula.	Molec- ular Weight.	Water = 1.	Melting Point, °C.
	Copper peroxidesuboxideCupric acetate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270.28 199.63		oxidizes dec. 240°
4	aceto-arsenite	(CuOAs ₂ O ₃) ₃ .Cu (C ₂ H ₃ O ₂) ₂			
5 6 7	" sulphate	$CuCl_2.2NH_4Cl.2H_2O.$ $CuSO_4.4NH_3.H_2O$ $Cu_3(AsO_4)_2.4H_2O$	245.79		
8	arsenate, acid	$Cu_{5}H_{2}(AsO_{4})_{4}.2H_{2}O$. $Cu_{5}As_{2}$	911.74		decomp.
10 11	arsenite (Paris green). bromate	$CuHAsO_3$ $Cu(BrO_3)_2.5H_2O$	$187.54 \\ 409.49$	2.583	decomp. 5H ₂ O, 200°
12 13 14	carbonate basic	$CuBr_2$ $CuCO_3.Cu(OH)_2$ $2CuCO_3.Cu(OH)_2$	221.16	3.7-4.0	decomp. decomp.
15		$\mathrm{Cu}(\mathrm{ClO_3})_2.6\mathrm{H_2O}$			65°
16 17	chloride	CuCl ₂ CuCl ₂ .2H ₂ O	134.49 170.52	3.054 2.47–2.535	
18 19 20	cyanide	$CuCrO_4.2CuO.2H_2O.$ $Cu(CN)_2$ $CuCr_2O_7.2H_2O$	115.59		2H₂O, 260° easily dec.
21 22	fluoride	CuF ₂ .2H ₂ O CuSiF ₆ .6H ₂ O	137.60		
23 24	ferricyanide ferrocyanide	$Cu_2Fe(CN)_6.7H_2O$	465.15		
25 26 27	hydroxide	$Cu(CHO_2)_2$ $Cu(OH)_2$ $Cu(IO_3)_2$	153.59 97.59	3.368	decomp.
28		$Cu(IO_3)_2.H_2O$			dec. 290°
29 30	" basic		255.50	4.878 ^{15°} .	decomp. dec. 290°
31 32 33	nitro prusside	$Cu(C_3H_5O_3)_2.2H_2O$ $CuFe(CN)_5NO.2H_2O$ $Cu(NO_3)_2.3H_2O$	277.68 331.50 241.64		114.5°
34 35	66		295.69	2.074	26.4°
36 37	oxideoxychloride	CuO CuCl ₂ .2CuO.4H ₂ O	79.57 429.29	6.32-6.43	1064° 3H ₂ O, 140°
38	periodate	Cu ₂ HIO ₆	351.07		dec. 110°

^{*} Decomposes at 100°.

[†] Decomposes at red heat.

ber	Boiling Solubility in 100 Parts.			Crystalline Form	
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
~		insoluble		soluble acids	
2		insoluble		decomp. by acids	
1		7.2	20	7.143 alcohol; sol. ether	
4		insoluble		sol. acids NH ₃ aq	green
		22 000	00 9800	1 1 1 1 1	[bic monocl.
-		33 . 80° 18 . 5 ^{21.5} °	99.380°	soluble alcohol	light blue rhom-
-			decomp.	insoluble alcohol	
		insoluble insoluble		soluble acids, NH ₃ aq soluble acids, NH ₃ aq	blush green
		insoluble	insoluble	soluble HNO ₃ , aq. r	bluish octahed.
		insoluble	Institute		light green
		v. soluble		3014010 40143, 11113 44	blue green crys.
		v. soluble		insoluble benzene	iodine col. crys.
13		insoluble	decomp.		dark gr. mo'cl.
14		insoluble	decomp.	sol. NH ₃ aq., hot	blue monoclinic
i				NaHCO ₃ aq.	
15	*	2070°	v. soluble	soluble alcohol[al.	
	decomp.	70.6°°	107.9 ¹⁰⁰ °	53 ^{15.5°} al.,68 ^{15.5°} methyl	brownish yellow
17	1	110.4 ^{0°}	192.4 ^{100°}	sol. NH ₄ Cl, ether, al	
1 1		insoluble		soluble HNO ₃ , NH ₃ aq	
10		insoluble		sol. KCN	
	i	deliques. s. soluble	decomp.	sol alcohol, NH3aq	black crystals
		2.32 ¹⁷ °	decomp.	sol. al., HCl, HNO ₃ , HF 0.16 ^{20°} alcohol	blue
		insoluble		insol. HCl; sol. NH ₃ aq.	vellowish green.
- 1		insoluble		insol. acids; sol. NH ₃ aq.	
		12.5-25	decomp.	0.25 alcohol[KCN	
		insoluble	decomp.	sol. al., NH,Cl., Na,S,O,	
		insoluble	insoluble	sol. dil. H2SO4; insol. dil.	
28		insoluble	insoluble	HNO ₃ [HNO ₃	clinic plates
				sol. dil. H ₂ SO ₄ ; insol. dil.	blue triclinic
		$0.33^{15^{\circ}}$	$0.65^{100^{\circ}}$	sol. HCl, NH ₃ aq	
		insoluble	insoluble	sol. dil. H ₂ SO ₄	
		16.7	45 ¹⁰⁰ °	0.9 cold, 4 hot alcohol.	
		insoluble	1270 ¹⁰⁰ °	decomp. by alkalies	greenish
33 :	4-	137.8° 243.7°	1	100 ^{12.5} ° alcoholsoluble alcohol	crystalline
34 § 35	o .	insoluble	∞	insol. $H.C_2H_3O_2$	
		hygroscopic		sol. acids, NH ₄ Cl, KCN.	
37		insoluble		soluble acids	
	100-120°	insoluble	insoluble	sol. dil. HNO ₃	
				3	

[‡] Decomposes at 170°.

_					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
1	Cupric phosphate	Cu ₃ (PO ₄) ₂ .3H ₂ O	434.84		
2	phosphide	Cu_3P_2	252.79	6.67	
3	phosphite	CuHPO ₃ .2H ₂ O	179.65	0.01	decomp.
4	salicylate		320.67		accomp.
5	sulphate	$CuSO_4 \dots \dots$	159.64	3.516 ³⁰ °	dec. 621°
6	64	CuSO ₄ .5H ₂ O	249.72	2.284150	4H ₂ O,110°
7	sulphide	CuS	95.64	3.8-4.16	11120,110
8		$CuC_4H_4O_6.3H_2O$	265.65	3.0-4.10	decomp.
-	Cuprous ammonium		353.47		decomp.
3	iodide	Od1.1411 ₄ 1.11 ₂ O	000.11		
10		Cu_2Br_2	286.98	4.72	484°
11	carbonate	Cu_2DI_2	123.54	4.72	decomp.
12		2 0	198.06	3.38-3.68	418°
13		$\operatorname{Cu}_2(\operatorname{CN})_2$	179.16	9.00 9.00	
14		$\operatorname{Cu}_2\operatorname{F}_2$	165.14		908°
	Indonac	Ou ₂ 1 ₂ ,	100.11		500
15	ferricyanide	$Cu_3Fe(CN)_6$	402.61		
16	ferrocyanide	$\operatorname{Cu_4Fe(CN)_6}$	466.18		
17	hydroxide	CuOH	80.58		¹ / ₂ H ₀ O,360°
18	iodide		380.98	5.29-5.65 ^{15°}	606°
19			143.14	5.75-6.09	red heat
20		-	443.50	6.35-6.75	
21			159.21	5.52-5.82	1100°
22			225.23	3.83-4.46	
23	sulphocyanate	CuCNS	121.65		1084°
24	Cyanic acid	CNOH	43.02	1.1408	
25	Cyanogen	C_2N_2	52.02	1.8064A.	-39°
26		CNBr	105.93	3.607D.	52°
27	chloride	CNCl	61.47	2.13D.	18°
28		$(CN)_3Cl_3$	184.41	1.32	145°
29		CNI	152.93	1.85	146.5°
30	sulphide	(CN) ₂ S	84.09		60°
31			162.50		
32			411.632		dec. 120°
33	bromate	$Dy(BrO_3)_2.9H_2O$	566.484		78°
34	carbonate	$\mathrm{Dy}_2(\mathrm{CO}_3)_3.4\mathrm{H}_2\mathrm{O}$	577.064		3H ₂ O,150°
35	chloride	$DyCl_3$	268.88	3.674°	680°
36	chromate	$\mathrm{Dy}_{2}(\mathrm{CrO}_{4})_{3}.10\mathrm{H}_{2}\mathrm{O}_{\ldots}$	853.16		3.5H ₂ O,
					150°
37			769.16		
38	phosphate	$DyPO_4.5H_2O$			
39		$\mathrm{Dy}_{2}(\mathrm{SeO}_{4})_{3}.8\mathrm{H}_{2}\mathrm{O}$			8H ₂ O,200°
40	Erbium	Er	167.4	4.77	

F					
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble		soluble acids, NH ₃ aq	
2		insoluble		insol. HCl; sol. HNO ₃	black
3		insoluble	insoluble		[needles
4		v. soluble		v. soluble alcohol	bluish green
		20°°	194100°	insoluble	
1	$5H_2O, 230^{\circ}$	$31.61^{0^{\circ}}$	203.3 ¹⁰⁰ °	insoluble alcohol[K2S	
7		.000033		sol. HNO ₃ , KCN; insol.	black
8		0.0215°	$0.14^{85^{\circ}}$		light green
9		decomp.	decomp.	soluble NH ₄ I	rhombic plates
10					or prisms
	861-954°	insoluble		sol. HBr, HCl, NH3aq.,	
11		insoluble		sol. acids, NH3aq	
	954–1032° red heat	insoluble		sol. HCl, NH ₃ aq.,NH ₄ Cl	tetrahedral
	red heat	insoluble insoluble		sol. HCl, NH ₃ aq., KCN	monoclinie
				sol. HNO ₃ , conc. HCl.; insol. al	
15		insoluble		sol. NH ₃ aq.; insol. HCl.	brownish red
16		insoluble		sol.NH3aq., insol. NH4Cl	
17		insoluble	insoluble	sol. acids, NH ₃ aq	
	759–772°	0.0008180		insol. a., al.; sol. KI	
	O, 1800°	insoluble	insoluble	sol. NH ₃ aq., NH ₄ Cl,HCl	
		insoluble		sol. HNO ₃ ; insol. HCl	
21		. 00005		soluble HNO3.[al., ether	
22		s. soluble		sol. NH ₃ aq., HCl; insol.	
23		0.02318°		sol. NH ₃ aq	
24	-22°	decomp.		4 4 0 0 1 01 04	
	61.3°	25 c.c. v. soluble		4.4 c.c. al., sol. ether v. soluble alcohol	regular
	15.5°	soluble		v. soluble al., ether	
	10.0	soluble		v. soluble al., ethel	prisms
		soluble		v. soluble al., ether	needles
1		v. soluble		v. sol. al., ether	
31		· · · · · · · · · · · · · · · · · · ·			
1		soluble		dif. sol. alcohol	
	6H ₂ O, 110°	v. soluble		s. sol. alcohol	
		insoluble			
					vellow plates
36	decomp.	1.002 ²⁵ °			
37		insoluble		sol. dil. acid	prisms
38		insoluble		sol. dil. acids, acetic	yellow
39		v. soluble		insol. alcohol	
40					

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air=1(A).	Melting Point, °C.
				$\mathbf{H}_2 = \mathbf{I}(\mathbf{D}).$	
	Erbium chloride	ErCl ₃ .6H ₂ O	381.88		
2	nitrate	$\operatorname{Er(NO_3)_3.6H_2O}$	461.53		
3	oxide	$\mathrm{Er_2O_3}$	382.80	8.640	infusible
4	sulphate	$\operatorname{Er}_2(\operatorname{SO}_4)_3 \dots$	623.00	3.678	dec. 950°
5		$\operatorname{Er_2(SO_4)_3.8H_2O}$	767.14	3.180	
	Ferric acetate, / basic	$FeOH(C_2H_3O_2)_2$	190.90		
7	arsenate	FeAsO ₄ .2H ₂ O	230.85	3.18	
8	arsenite basic	2FeAsO ₃ .Fe ₂ O ₃ .5H ₂ O			decomp.
9	bromide	FeBr ₃	295.60	0.00410.00	*
10	chloride	FeCl ₃	162.22	$2.804^{10.8^{\circ}}$	301°
11		FeCl ₃ .6H ₂ O	270.32		37°
12	ferrocyanide (Prus-	$\text{Fe}_{4}[\text{Fe}(\text{CN})_{6}]_{3}$	859.06		decomp.
19	sian blue) fluoride	E.F.	110 04	3.18	
13 14	nuoriae	FeF_3	112.84 193.91		3H ₂ O,100°
15	formate	$Fe(CHO_2)_3.H_2O$	208.88		31120,100
16	hydroxide	$Fe(OH)_3$	106.86	3.4-3.9	1½H ₂ O,500
17	hypophosphite	$Fe(H_2PO_2)_3$	251.008	3.4-3.9	$\frac{1}{2}$ \frac
18	lactate	$Fe(C_3H_5O_2)_3$	274.96		decomp.
19	nitrate	$Fe(NO_3)_3.9H_2O$	404.01	1.6835 ^{20°}	47.2°
20	oxalate	$\operatorname{Fe_2(C_2O_4)_3}$	375.68	1.0000	dec. 100°
.21	oxide	$Fe_{2}O_{3}$	159.68	5.12-5.24	1548°
22	phosphate	$FePO_4.4H_2O$	222.94	2.87	1010
23	pyrophosphate	Fe ₄ (P ₂ O ₇) ₃ .9H ₂ O	907.74		[480°
24	sulphate **	$\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$	399.89	$3.097^{18^{\circ}}$	decomp.at
25	"	$Fe_2(SO_4)_3.9H_2O$	562.03	2-2.1	
26	sulphide	Fe ₂ S ₃	207.89	4.25-4.41	decomp.
27	sulphocyanate	$Fe(CNS)_3.3H_2O$	284.13		
28		Fe(C,H,O,),4H,O	245.95		decomp.
29	ammonium sulphate	FeSO ₄ . (NH ₄) ₂ SO ₄ .	392.16	1.865	
		6H ₂ O			
30	arsenate	$Fe_3(AsO_4)_2.6H_2O$	553.58		
31	arsenite	$Fe_2As_2O_5$	341.64		
32	f bromide	FeBr ₂	215.63	4.63625	
33		$FeBr_2.6H_2O$	323.78		27°
34	carbonate	FeCO ₃	115.84	3.70-3.87	decomp.
35		FeCO ₃ .H ₂ O	133.86		decomp.
36	chloride	FeCl ₂	126.76	2.98817.90	
37	66 187	FeCl ₂ .4H ₂ O	198.82	1.93	
38	chloroplatinate	FePtCl ₆ .6H ₂ O	571.90	2.714	
39	ferricyanide (Turn- bull's blue)	$Fe_3[Fe(CN)_6]_2$	591.32		decomp.
-					

^{*} Sublimes and dec.

^{**} For ferric alum see p. 102.

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		deliques.	soluble	soluble alcohol	
2		soluble		soluble alcohol	crystals
3		insoluble		soluble hot acids	
4		43			
5		30 ²⁰ °	100 ¹⁰⁰ °		
6		insoluble		soluble alcohol, acids	amorphous
7		insoluble	insoluble	soluble HCl	+4H ₂ O, rhomb.
8		decomp.		soluble alkalies	brown to yellow
9		soluble	soluble	soluble alcohol, ether	dark red crystals
10		74.390°	536.6 ^{100°}	v. sol. al., ether + HCl	brown hexagon.
11	280–285°	246.0°	00	soluble alcohol	
12		insoluble		(insol. al., ether; sol. conc. HCl, H ₂ SO ₄	dark blue cryst.
13		s. soluble	soluble	insol. al., ether; sol. a	green rhomb.
14	decomp.	s. soluble	soluble	insoluble alcohol	yellow crystals.
15		soluble	decomp.		yellow crystals.
16		insoluble	insoluble	insoluble alcohol, ether.	reddish brown.
17		0.043 ²⁵ °	0.083100°	sol. sol. alk. citrate	
18		deliques.	v. soluble	insoluble ether	brown amorph.
1	decomp.	v. soluble	v. soluble	soluble alcohol	rhombic
		v. soluble		insoluble alcohol	amorphous
21		hygroscopic	insoluble		† [or monoel.
22		insoluble	0.067	insol. H.C ₂ H ₃ O ₂	yellow rhombic
23		insoluble		soluble acids	yellow
24		s. soluble	decomp.	insol. conc. H ₂ SO ₄	amorphous
25		v. soluble	decomp.	dec. by al.; sol. ab. al	yellow rhombic
26		decomposes			greenish yellow.
27 28		v. soluble		v. soluble alcohol, ether	
28		v. soluble	78.2 ^{75°}	insoluble alcohol	needlesblue green mon-
		180	18.20		oclinic
30		insoluble		s. soluble NH ₃ aq	
31		insoluble		soluble NH ₃ aq	greenish white.
32		1020°	177.8 ^{100°}	soluble alcohol	
33		313.2°°	∞	soluble alcohol	yellow rhombic.
34		insoluble	insoluble .	soluble CO ₂ aq	8
35		s. soluble		, , ,	amorphous
36		64.410°	105.7100°	100 alcohol	
37		160 . 1 ^{10°}	415.5 ¹⁰⁰ °	soluble alcohol	blue gr. mono
38		v. soluble	v. soluble		yellow hexag
39		insoluble		insoluble al., dil. acids	deep blue
		1			

[†] Red hexag., rhombohed. or reg. § Grayish rhombohed.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= I Air= I (A). H_2 = I (D).	Melting Point, °C.
1	Ferrous ferrocyanide	Fe ₂ Fe(CN) ₆	323.58		
2	fluoride	$FeF_2.8H_2O$	237.97	4.09*	8H ₂ O,100°
3	formate	$Fe(CHO_2)_2.2H_2O$	181.89		decomp.
4	hydroxide	Fe(OH) ₂	89.86		accomp.
5	iodide	FeI ₂ .4H ₂ O	381.74	2.873	177°*
6	lactate	Fe(C ₂ H ₅ O ₂),.3H ₂ O.	287.97		decomp.
7	nitrate	$Fe(NO_3)_2.6H_2O$	287.96		60.5°
8	oxalate	$FeC_2O_4.2H_2O$	179.87		†
9	oxide	FeO	71.84		1419°
10	perchlorate	Fe(ClO ₄) ₂ .6H ₂ O	362.86		dec. < 100
11	phosphate	$\operatorname{Fe_3(PO_4)_2.8H_2O}$	501.73	2.680	
12		$K_2 \text{Fe}(C_2 O_4)_2.2 H_2 O$.	346.07	2.000	decomp.
1-	potassiam onacco	11210(0204/2.21120.	010.00		accomp.
13	sulphate	FeSO ₄ .7H ₂ O	278.02	1.898714.8°	64° †
14	sulphide	FeS.	87.91	4.75-5.04	1197°
15	sulphite	$FeSO_3.2\frac{1}{2}H_2O$	189.96		dec. 250°
16	sulphocyanate	Fe(CNS) ₂ .3H ₂ O	226.05		decomp.
17	tartrate	$FeC_4H_4O_6$	203.87		decomp.
18	thiosulphate [ride		258.06		
		FeCl ₂ .2FeCl ₃ .18H ₂ O			dec. 50°
20	ferricyanide (Prus-		1662.27		dec. 180°
20	sian green)	410 3[10(011)6]6	1002.21		acc. 100
21	hydrate	Fe ₂ O ₄ .4H ₂ O	303.58		decomp.
22	oxide	$\text{Fe}_{3}\text{O}_{4}$	231.52	4.96-5.40	1538°
23	sulphide§	$Fe_{3}S_{4}$	305.80	4.51-4.64	1000
	*	0 4		(1.31 ^{15°} A.	
24	Fluorine	F_2	38	1.14-1870	-223°
25	Fluosilicic Acid	H ₂ SiF ₆	144.32	(2.22	
	Formic Acid	H. COOH	46.02	1.2254	8.6°
	Gadolinium	Gd	157.3	1.31	0.0
28	acetate	$Gd.(C_2H_3O_2)_3.4H_2O$	406.44	1.611	
29	bromide	$GdBr_3.6H_2O$	505.16	2.844	
30	chloride	$GdCl_3$	263.68	4.52°	628°
31	chloride	GdCl ₃ .6H ₂ O	371.78	2.424	020
32	nitrate	$Gd(NO_3)_3.6\frac{1}{2}H_2O$	460.43	2.332	
33	oxalate	$Gd_1(C_2O_4)_3.10H_2O$	758.76	2.002	6H ₂ O,110°
34	potassium sulphate	$Gd_2(SO_4)_3.IOH_2O$ $Gd_2(SO_4)_3.K_2SO_4.$	813.11	1.503 ^{16°}	
04	potassium surphate	$2H_{\circ}O$	010.11	1.005~	
35	selenate	$Gd_{2}(SeO_{4})_{3}.8H_{2}O$	888.33	3.309	8H ₂ O,130°
36	sulphate		602.78	4.13914.6°	
37	surphate	$Gd_2.(SO_4)_3$		3.010	
	Gallium	$Gd_2(SO_4)_3.8H_2O$	746.94	5.95^{24}	30.15°
38	Gallium	Ga	69.9	0.9521	50.15

^{*} The anhydrous salt. † Decomposes at 160° into 2H₂O, CO, CO₂, Fe.

Number.	Boiling		Solubility in	100 Parts.	Crystalline Form.
Num	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2		insoluble s. soluble		insol al., ether; sol. a	white-blue amor green
3		s. soluble 0.00067		soluble NH ₄ Cl, acids	pale green cryst.
5		v. soluble	decomp. 8.5100°	soluble alcohol	green crystals
7		200°	300 ^{25°}		crystals
8 9		0.022	0.026	sol. acids	yellow crystals.
10		insoluble (sol. acids; insol. alk soluble alcohol	blackgreen
11		insoluble		soluble acids	monoelinie
12		soluble	soluble , .		golden needles. [or rhombic]
13		32.80°	196.4 ^{76°}	insoluble alcohol	blue green mono.
14		0.00089 s. soluble		soluble acidssoluble SO ₂ aq	black hexagonal
16		v. soluble		v. soluble al., ether	green rhombic
17 18		0.877 ^{15.6°} v. soluble	decomp.	v. soluble alcohol	crystalsgreen crystals
19		deliques.			yellow
20		insoluble		sol. conc. hot HCl	green
21		insoluble	insoluble	soluble acids	black
22 23		insoluble insoluble	insoluble	insoluble alcohol	black octahedhexagonal
24	-187°	decomp.	decomp.	Soldon Moldon	greenish vellow.
25		soluble	accomp.		Broomer Jerre III
26	101°	00	∞ .		
27 28		s. soluble			triclinic
29		soluble	soluble		rhombic plates.
30 31		soluble soluble	soluble Saluble		prism. needles.
32		v. soluble	v. soluble		asymmetrical
33		0.11 soluble	soluble	soluble conc. HNO_3 soluble K_2SO_4	monoclinic
				12004	
35 36		soluble 3.980°	soluble 2.26 ^{34.4} °		pearly monocl
37		soluble	soluble		monoclinic
38		insoluble	insoluble	soluble acids, alkalies	gray octahed

[‡] Loses 6H₂O at 100°, 7H₄O at 300°. For other compounds see "Iron."

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water=1. Air= $I(A)$. $H_2=I(D)$.	Melting Point, °C.
1	Gallium bromide	GaBr ₃	309.66		
2			140.82		164°
3	" tri	GaCl ₃	176.28	2.3688	75.5°
4	hydroxide	$Ga(OH)_3$	120.92		
5	iodide	GaI ₃	451.66		
6	nitrate	$Ga(NO_3)_3$	255.93		dec. 110°
7	oxide mon		85.90		
8	" sesqui	Ga_2O_3	187.80		
9	sulphate	$Ga_2(SO_4)_3$	428.01		
10	sulphide	Ga_2S_3	236.01		
	Germanium	Ge	72.5.	$5.469^{\frac{2}{2}}$	916°
12	bromide	$GeBr_4$	392.22		about 0°
13	chloride di		143.42		
14		4		1.887 ^{18°}	liquid.
15		GeHCl ₃	179.89		liquid.
16			188.66		
17	fluoride	4 2	202.55		decomp.
18	iodide	4		$20.5^{440^{\circ}}$	144°
19	oxide mon	GeO	88.50		
20	" di	GeO_2		4.703180	
21	oxychloride	GeOCl ₂	159.42		
22	sulphide mono	GeS		3.5411000	red heat
23	" di	GeS_2	136.64		
	Glucinum(Beryllium)		9.1	1.85 ^{20°}	>960°
25	bromide	4	168.94	-450	601°
26	carbide	Gl ₂ C	30.2	$1.9^{15^{\circ}}$	
27	carbonate	GlCO ₃ ,4H ₂ O	141.16		
28	" basic	$(GlO)_5.CO_2.5H_2O$	259.58		
29	chloride	GlCl ₂	80.02		400°
30		GlCl ₂ .4H ₂ O	152.08	0 1150	800°
31	fluoride	GlF ₂	47.1	$2.1^{15^{\circ}}$	
32	hydroxide	$Gl(OH)_2$	43.12	4 00150	decomp.
33	iodide	Gli		4.2013	510° 90°
34	nitrate	$Gl(NO_3)_2.3H_2O$		2.01000	infusible
35	oxide			$3.016^{0^{\circ}}$	
36 37	oxychloride	Gl ₂ OCl ₂			
38	potassium nuoride.	GIF ₂ .2KF	163.30		
39		GIF ₂ .2NaF	131.10	1.7125 ^{10.5°}	2H ₂ O ₂ 100°
39 40	sulphate	$GISO_4.4H_2O$ $GISO_4.7H_2O$	177.23 231.28		21120,100
40	Gold ¶	Au	197.2	19.32	1062°
42	colloidal	Au	197.2	19.52	1002
42	conoidar	Au	191.2		

^{*} Converted into Ga₂O₃ at 200°. † Volatile at 1350°. ‡ Sublimes at 450°.

1=	1				
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		deliques.	soluble (crystalline
	535°	deliques.	decomp.		crystalline
	215-220°	deliques.	decomp.		needles
4		insoluble		soluble acids, alkalies	
	deliques.	soluble			
	*	deliques.	v. soluble		
7		insoluble		soluble acids	grayish blue
8 9		insoluble		soluble acids	
1		v. soluble	v. soluble	soluble al.; insol. ether	l.:4-
10		insoluble	insoluble	sol. hot cone.H ₂ SO ₄ ,aq.r.	white
12		decomp.	insoluble	sor. not conc.11 ₂ SO ₄ ,aq.r.	gray reg. oct
		decomp.			
	86°	decomp.		insol. hot conc. H ₂ SO ₄	
	72°				
16	160°	insoluble		soluble HCl	
17		deliques.	soluble		crystalline
18	350-400°	deliques.	soluble		yellow
19		soluble :		soluble HCl	grayish black
20		$0.4^{20^{\circ}}$	1.05100°	soluble acids, alkalies	rhombic
21	>100°	insoluble		soluble acids	
22		0.25	soluble	soluble HCl, KOH	rhomb. or mon.
23		0.45	soluble	insol. acids; sol. alk	
24		insoluble	insoluble	sol. dil. a., alkalies	grayish hexag
25	T	deliques.	v. soluble	1 11 '1	needles
26 27		decomp.	decomp.	soluble acids	yellow hexag
28		insoluble	decomp.	soluble acids, alk	
1	500°	deliques.	v. soluble	v. soluble alcohol	needles
30	300	deliques.	v. soluble	soluble alcohol	crystalline
31		∞ soluble	∞ soluble	soluble al., H _o SO ₄	Crystamme
32		insoluble		sol.acids,alk.,(NH ₄) ₂ CO ₃	
	585–595°	decomp.	decomp.	sol. al., ether, CS ₂	needles
34		deliques.	v. soluble	v. soluble alcohol	
35		insoluble			hexagonal
36		insoluble ု			
37		$2^{20^{\circ}}$	$5.26^{100^{\circ}}$		
38		$1.47^{18^{\circ}}$	$2.94^{100^{\circ}}$		
	decomp.	$100^{14^{\circ}}$	∞	insoluble alcohol	
40				Cl ₂ H ₂ O	
-	2530°	insoluble	insoluble	insol. a.; sol. KCN, aq. r.	
42		soluble		insol. a.; sol. alk., aq. r	blue violet

[§] Decom. at 100°. ¶ For other compounds of Gold see "Auric" and "Aurous."

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Gold phosphide	Au_2P_3	487.4	6.67	decomp.
2	Helium	Не	3.99	(0.1368 A .)1.98D.	<-269°
3	Hydrazine	NH ₂ .NH ₂	32.05	1.01315	1.4°
4		$N_2H_4.HN_3$	75.09		65°
5		$N_2H_4.H_2Cl_2$	105.00		198°
6		$N_2H_4(H_2CO_2)_2$	124.08	1 000=910	128°
7 8	hydroxide			$1.0305^{21^{\circ}}$	<-40° 254°
9		$N_2H_4.H_2SO_4$ $N_3H_4.HNO_3$	95.07		69°
-	Hydrazoic Acid				-80°
11	Hydrobromic Acid		80 93	2.71°°‡A.	-86.13°
12	" " " " " " " " " " " " " " " " " " "	HBr.H ₂ O	98.95		00.10
	Hydrochloric Acid.			1.269°° † A.	-112.5°
	Hydrocyanic Acid			0.697 ¹⁸ °A.	-15°
15	Hydrofluoric Acid	HF		0.7126° ‡ A.	-92.3°
16	Hydroiodic Acid	HI	127.93	4.3737A.	-51.3°
17	Hydrogen	H_2	2.016	0.06949A.	-259°
18		$\mathrm{H_{2}O_{2}}$		$1.4584^{0^{\circ}}$	-2°
19		H_2S_2	66.16		-75°
20 20		H_2Se		1 1005 4	-64°
221		H_2S		1.1895A.	-85.5° -48°
-	Hydroxylamine	H ₂ Te		65.1D. 1.227 ¹ / ₄	33.05°
24	hydrochloride				151°
25		NH ₂ OH.HNO ₂			-10°
26	***************************************	2 0			170°
	Daipine C	In	114.8	$7.12^{\frac{13}{4}}$	155°
28	bromide	InBr ₃	354.60		
29		InCl	150.26		
30	" di	InCl ₂	185.72		
31	" tri	InCl ₃	221.18		
32		$In(CN)_3$	192.83		
33	fluoride		667.89		decomp.
34		$In(OH)_3$			*
35	100100111111111111	InI_3			200°
36		$In(IO_3)_3$			
37		$In(NO_{3/3}, 4\frac{1}{2}H_2O \dots)$			42H2O,10°
38	oxide mon	InO	277 60	7 170	infusible
39	sesqui	In_2O_3 $In(ClO_4)_3.8H_2O$	557 21	7.179	
40	perchiorate	$111(O1O_4)_3.O11_2O$	16.166		80

^{*} Sublimes at white heat.

‡ Values found by experiment.

1=	Solubility in 100 Parts,				
Number	Boiling		Solubility 11	n 100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (Al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1				insol. HCl; dec. by HNO	gray
2	-268.5°	1.487 c.c. ^{0.5}	1.371 c.c. ²⁵	absorbed by platinum	
1	113.5°	v. soluble		soluble alcohol	crystalline
4		deliques.	v. soluble	v. soluble alcohol	
6		soluble soluble	v. soluble	soluble alcohol	regular
1 -	119°	00	v. soluble	∞ sol. al.; insol. ether	
8		s. soluble	v. soluble	insoluble alcohol	tables
9	070				12
1	37° -68.7°	221.20°	130 ¹⁰⁰ °	soluble alcoholsoluble alcohol	liquidcrystalline
5	-00.1			soluble alcohol	crystalline
	-83.1°	$82.5^{10^{\circ}}$	$56.1^{60^{\circ}}$	soluble alcohol, ether	
	26.1°	00		∞ sol. al., ether	crystalline
	19.44° 34.1°	264 42500 c.c. ^{10°}		soluble alcohol	
	-252.5°	2.1 c.c. ^{0.5} °		sol. palladium, charcoal,	
	[(47mm.)			Pt., Fe., etc.	
	80.2°	∞		sol. ether, al	prisms
		decomposes		sol.CS ₂ , benz.; insol. al.	yellowish oil
	-42° -61.8°	331 c.c. ^{13°} 437 c.c. ^{0°}	186 c.c. ^{40°}	soluble CS_2	
22		soluble	180 C.C.	9.542° voi. ai	
	70 (60mm.)	soluble	decomp.	soluble alcohol, acids	crystalline
24	decomp.	v. soluble		sol. al.; insol. ether	monoclinic
25	dec.>100°	v. soluble	decomp.	v. soluble alcohol	
5	700°	v. soluble	soluble insoluble	s. soluble alcohol	monoclinic
	700	insoluble deliques.	v. soluble	soluble acids	regular octahed.
		deliques.	decomp.		dark red cryst
		deliques.	decomp.		crystalline
	440°	deliques.	v. soluble	s. sol. al., ether	
32		insoluble 7	1.	sol. HCN[ether	
33		s. soluble insoluble	decomp.	sol. HCl,HNO ₃ ; insol. al., sol. acids, alk.; insol.	needles
35		deliques.			
	decomp.	0.067 ²⁰ °		sol. dil. H ₂ SO ₄ , HNO ₃	crystalline
		deliques.	soluble	soluble alcohol	needles
38		insoluble		soluble acids	black
39		insoluble soluble	decomp.	sol. acids, insol. NH ₃ sol. ab. al., ether	
70	decomp. at	Soluble	decomp.	soi. ab. ai., emer	crystamme

[†] Volatile at 850°.

Number.	Name.	Formula.	Molec- ular Weight.	$\mathbf{H}_2 = 1$ (D).	Melting Point, °C.
1	Indium sulphate	$\operatorname{In}_2(\operatorname{SO}_4)_3 \dots \dots$	517.81	3.438	
2	sulphide	$\operatorname{In}_2 S_3 \dots$	325.81		infusible
3	sulphite	$2\operatorname{In}_{2}\overset{\circ}{\mathrm{O}}_{3}.3\operatorname{SO}_{2}.8\operatorname{H}_{2}\mathrm{O}\dots$	891.54		3H _o O,100°
	Iodic Acid	HIO	175.93	4 6290°	110°
5	Iodine	T	253 84	4 948172	114.2°
		2	200.01	1.010	114.2
6	ablarida mana a	ICl	169 29	2 12999	24.7°
7					13.9
- 6	p	ICl	102.38		15.9
2	" +-:	101	000 00	0 1107	000
3	tri	ICl_3	233.30	3.1107	33°
1	0 11	777	004 60		00
9		J	221.92		8°
10			206.84		36°
11		IO_2			dec. 130°
12	" pent	I_2O_5	333.84	4.799 ²⁵ °	dec. 300°
13	Iridium	Ir	193.1	15.86	2250°
14		Ir	193.1	22.42	1950°
					[120°
15	bromide tri	IrBr ₃ .4H ₂ O	504.92		3H,O,100-
16		IrBr_{4}			
17		IrCl_2	264.02		
18		IrCl ₃			
19		IrCl ₄	334.94		decomp.
20		IrO ₂ .2H ₂ O	261.13		decomp.
21		$Ir_2O_3.3H_2O$	488.25		
22		IrI_3			1 0000
23		IrI_4	700.78		dec. 360°
24		IrO_2	225.10		
25		Ir_2O_3	431.20		1 ' -
26		IrS			
27	di	IrS ₂	257.24		
28	" sesqui	$ Ir_2S_3$			oxidizes
29	Iron pure	Fe	55.84	7.85-7.88	1505°
30	wrought		55.84		1600°
31	white pig		55.84	7.58-7.73	1075°
32				7.03-7.13	1275°
33	0 0 1 0			7.60-7.80	1375°
34			1		1375°
35		FeB		$7.15^{18^{\circ}}$	
00	DOTIGO		00.01	1.10	
36	carbide	Fe ₃ C	179 52	7 07160	
37		FeC_4			
01		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1100.04		********

-		1			1
ber.	Boiling	Solubility in 100 Parts.			Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		deliques.	v. soluble		
2				dec. by a.; sol. (NH ₄) ₂ S	yellow
3	111 0 1100	insoluble 286°	471 ^{80°}	soluble acids	crystalline
	¹ / ₂ H ₂ O,110° 184 35°	0.0182110	0.092550	v. soluble alcohol, HNO ₃	
()	184 33	0.0182**	0.09200	sol. KI, CS ₂ , al., CHCl ₃ , ether	rhombic
6	101.3°	decomp.		(sol. al., CS ₂ , ether,	dark red needles
7	101.3°	decomp.		$glacial H.C_2H_3O_2$	reddish brown rhomb, plates
8		soluble	decomp.	sol. al., ether, HCl, glac. H.C ₂ H ₃ O ₂	
9	97°	decomp.	decomp.	decomposes acids	liquid
		s. soluble		sol. al., CS ₂ , ether	dark gray cryst.
11		insoluble	decomp.	insol. al. ether; sol. H ₂ SO ₄	
		187 . 4 ^{13°}		insol. al., CS ₂ , ether	
		insoluble	insoluble	sol. aq. r., $Cl_2.H_2O$	white spongy
14		insoluble	insoluble	insol. a., aqua regia	reg. or hexagon.
		soluble		insoluble alcohol, ether.	
				soluble alcohol	
17					
				insoluble acids, alkalies.	
			decomp.	soluble alcohol, dil. HCl	dark red crystals
				soluble HCl, alk	
		insoluble		insoluble acids	
			soluble insoluble	insoluble alcohol	
		insoluble	insoluble	soluble KI, NaI insoluble acids, alk	
				insoluble acids, alk	
				insol. acids; sol. K ₂ S	
27				insol. acids; sol. K_2S	
				soluble HNO ₃ , K ₂ S	
29		insoluble	insoluble	sol. acids; insol. alk	cubical or reg.
30		incoluble	insoluble	sol. acids; insol. alk	octahedral
			insoluble	sol. acids; insol. alk	
32		insoluble	insoluble	sol. acids; insol. alk	
33		insoluble	insoluble	sol. acids; insol. alk	
			insoluble	sol. acids; insol. alk	
				sol. HNO ₃ , hot conc.	gray crystals
36		insoluble	insoluble	soluble acids	regular
				s. soluble HCl	
1		THE CHARGE		o. bordioic HOL	gray orysodis

^{*} Loses 8H₂O at 260°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = τ . Air = τ (A). $H_2 = \tau$ (D).	Melting Point, °C.
1	Iron* carbonyl	Fo(CO).	195.84	1.47	-21°
2		FeS_2	120.01	4.86-5.18	1171°
3		Fe ₂ N	125.69	6.35	dec. 200°
9	nitride		123.09 142.72	$6.57^{15^{\circ}}$	1290°
4	parooparate	Fe ₂ P			
0	Krypton	Kr	82.92	(2.818A.	-169°
	T - 41 - A -13	II C II O	00.05	(40.78D.	. 040
	Lactic Acid	$H.C_3H_5O_3$		1.24854	<-24°
7	Lanthanum	La	139.0	6.1545	810°
8	bromate	$\text{La}_{2}(\text{BrO}_{3})_{6}.18\text{H}_{2}\text{O}$	1369.808		37.5°
9	bromide	LaBr ₃ .7H ₂ O	504.87	~ 0.0000	
10	carbide	LaC ₂	163.00	$5.02^{20^{\circ}}$	
11	carbonate	$La_2(CO_3)_3.8H_2O$	602.13		
12	chloride	LaCl ₃	245.32	3.9474	890°
13	**	LaCl ₃ .7H ₂ O	371.43		
14	nitrate	$La(NO_3)_3.6H_2O$	433.13		40°
15	oxalate	$La_2(C_2O_4)_3.9H_2O$	704.14		
16	oxide sesqui	$[La_2O_3]$	326.00	$6.41^{15^{\circ}}$	infusible
17	sulphate	$La_2(SO_4)_3$	566.15	3.600	dec. 1150°
18		$La_2(SO_4)_3.9H_2O$	728.29	2.821	decomp.
19	sulphide	La ₂ S ₃	374.15	4.911 ¹¹ °	stable at
					1000°
20	Lead	Pb	207.1	11.34	327°
21	acetate (sugar of).	Pb(C ₂ H ₃ O ₂) ₂ .3H ₂ O	379.20	2.50	75°, 3H ₂ O
22	" basic	$Pb_2(C_2H_3O_2)_3OH$	608.28		
23	" "	$Pb(C_2H_3O_2)_2$	584.28		
		Pb(OH) ₂ .H ₂ O			
24	66 66	Pb(C ₂ H ₃ O ₂) ₂ .2Pb	807.38		
		(OH) ₂			
25	azoimide	PbN_6	291.16		
26	borate	$Pb(BO_2)_2.H_2O$	311.12	5.598(anhy)	red heat
27	bromate	$Pb(BrO_3)_2.H_2O$	480.96		dec. 180°
28	bromide	PbBr ₂	366.94	6.57219.20	370°
29	carbonate	PbCO ₂	267.10	6.43	
30	" basic	2PbCO ₃ .Pb(OH) ₂ .	775.31		decomp.
31	chlorate	$Pb(ClO_3)_2 \cdot H_2O \cdot \cdot \cdot$	392.04	4.037	dec. 230°
32	chloride	PbCl ₂	277.02	5.80	498°
33	" tetra	PbCl	348.94	3.18 ^{0°}	-15°
34	chlorite	Pb(ClO ₂) ₂	342.02		
35	chromate	$PbCrO_4$	323.10	$6.123^{15^{\circ}}$	fusible
36	" basic	PbCrO ₄ .PbO	546.20		
0.0	(chrome red)	2 00104.2 0011111	2.0.20		
	(omonio roa)				

^{*} For other compounds of Iron see "Ferrous" and "Ferric."

er.	Pairia		Solubility	in 100 Parts.	Canatallina Farm
Number	Boiling Point, °C.	Point, Cold Hot Alcohol (al.), Acids (a.),		Crystalline Form and Color.	
3 4	103° decomp.	.00049 decomp. insoluble	insoluble	sol.conc.H ₂ SO ₄ , al., alk insoluble dil. acids sol. HCl, H ₂ SO ₄ [+HF insol. acids; sol. HNO ₃	yellow .[rhomb. yellow reg. or gray crystals .
7 8 9 10 11 12 13 14 15	14H ₂ O, 100°	v. soluble deliques. .00008 ^{25°}	decomp. decomp. v. soluble	insol. alcohol	white crystals . triclinic prismatic
17		3.00°	0.87 ^{100°} 1.06 ^{100°} decomp.	s. soluble alcohols. soluble alcoholsoluble dilute acids	hexagonal
21 22		insoluble 45.64 ^{15°} v. soluble v. soluble	insoluble 200 ^{100°}	H ₂ SO ₄ insoluble alcohols. soluble alcohol	regular or mon- oclinic monoclinic
25 26 27 28 29 30 31 32 33 34 35	† 861 861–954		s. soluble insoluble 4.75 ^{100°} decomp. insoluble soluble 3.34 ^{100°} decomp. soluble insoluble insoluble	v. soluble H.C ₂ H ₃ O ₂ insol. alk., sol. acidssol. acids, KBr; insol. al. insoluble alcohol0.02 CO ₂ aqsoluble0.09 dil. HCl, insol. al[H.C ₂ H ₃ O ₂ .sol. acids, alk.; insol.	crystalline monoclinie rhombie amorphous monoclinie rhombie

[†] Loses H2O at 160°.

[†] Decomposes at 105°,

			1		
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Lead cyanate	Pb(CNO) ₂	291.12		decomp
2	cyanide	Pb(CN) ₂	259.12		
3	dichromate	PbCr ₂ O ₇	423.10		
4	dithionate	PbS,O ₆ .4H,O	439.30	3.245	decomp.
. 5	ferricvanide	Pb [Fe(CN),]6H,O	1333.27		decomp.
6	ferrocyanide	$Pb_2Fe(CN)_6.3H_2O$	680.15		decomp.
7	fluoride	PbF_2	245.10	8.24	fusible
8	formate	Pb(CHO,),	297.12	4.571	dec. 190°
9	hydroxide	2PbO.H ₂ O	484.22		dec. 145°
10	46	$3 \text{PbO.H}_2 \text{O}$	687.32	7.592	H ₂ O, 130°
11	iodate	$Pb(IO_3)_2$	556.94		
12	iodide	PbI ₂	460.94		358°
13	nitrate	$Pb(NO_3)_2$	331.12		*
14	oxalate	PbC_2O_4			dec. 300°
15	oxide mon	PbO	223.10		888°
16	((((PbO	223.10		
17		PbO		9.2-9.5	red heat
18	" sub	Pb_2O	430.20		
19	" sesqui	Pb_2O_3	462.20		dec. 370°
20	" red (minium)	Pb_3O_4	685.30	9.096150	dec. 500°- 530°
21	" per	PbO_2	239.10	8.91	decomp.
22	oxychloride	PbCl ₂ .PbO	501.12		
23		PbCl ₂ .2PbO	724.22	7-7.1	
24		PbCl ₂ .3PbO			
25		PbCl ₂ .7PbO	1839.7		
	(cossel yellow)				
26	perchlorate	$Pb(ClO_4)_2.3H_2O$			
27	periodate	PbHIO ₅			
28	"	PbHIO ₅ .H ₂ O			†
29	persulphate	$PbS_2O_s.3H_2O$			
30	phosphate	$Pb_3(PO_4)_2$	811.38	6.9–7.3	
31	phosphite	PbHPO ₃			decomp.
32	pyrophosphate	$Pb_2P_2O_7.H_2O$	606.30		806°(anh.)
33	selenide	PbSe	286.30	$8.10^{15^{\circ}}$	1065°
34	sulphate	PbSO ₄	303.17	6.23	1100°
35	" acid	$Pb(HSO_4)_2.H_2O$	419.27		
36	" basic	$PbSO_4.PbO$			
37	sulphide	PbS.			1015°
38	sulphite	PbSO ₂			
00	Daipinto	2 0003	201.11		

^{*} Decomposes at 205°-223°.

ber.	Boiling		Solubility in 100 Parts.		
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1		insoluble	s. soluble		crystals
2 3		s. soluble	soluble	insoluble KCN	
4		decomp.		soluble acids, alkalies	
5		soluble s. soluble	soluble	soluble alkalies, HNO ₃ .	crystalline
6		insoluble	soluble	s. soluble conc., H_2SO_4 .	red crystals
7		$0.064^{18^{\circ}}$		soluble HNO ₃	
8		$1.6^{16^{\circ}}$	18100°	insoluble alcohol	
9		s. soluble	s. soluble	soluble alkalies	
10		0.014		soluble alkalies	
11		$0.0012^{2^{\circ}}$		s. soluble HNO ₃	
12	861-954°	$0.044^{0^{\circ}}$	0.4361000	insol. al., sol. KI	vellow hexag
13		3900	138.9 ¹⁰⁰ °	8.77 ^{22°} alcohol	
14		0.0001618°		insol. al. sol. HNO ₃	
	white heat	0.013-0220	1 1 1 1	soluble alkalies, lead	yellow rhomb
17	white heat	0.0013 ^{22°} insoluble	insoluble insoluble	acetate, NH ₄ Cl, CaCl ₂ , SrCl ₂	
18	TT AAA CO AA COO	insoluble	msoluble	dec. by acids, alkalies.	amorphous grayish black
19		insoluble	decomp.	decomp	reddish vellow
20		insoluble	accomp.	sol. glacial H.C ₂ H ₃ O ₂	
		1115024020		[C,H,O,	
21		insoluble	insoluble	insol. al.; sol. glac. H.	brown hexag
22		insoluble	insoluble	soluble alkalies	tetragonal
23		insoluble		soluble alkalies	yellow trimet
24		$0.0056^{18^{\circ}}$	0.0774°		yellow
25		insoluble			yellow crystals.
26		100°			· ·
27		insoluble	insoluble	soluble alcoholsoluble dil. HNO_3	awyatallina
28		insoluble	insoluble		amorphous
29		v. soluble	Histable	s. soluble dil. IIIVO3	amorphous
30		0.00001420°	insoluble	sol. HNO ₃ ; insol. H.	
				C ₂ H ₃ O ₂	
31		insoluble		soluble HNO3	
32		insoluble	decomp.	sol.Na ₄ P ₂ O ₇ ,HNO ₃ ,KOH	rhombic
33		insoluble		decomp. HNO ₃	regular
34		$0.0042^{20^{\circ}}$	s. soluble	sol. conc. H ₂ SO ₄ , HCl,	rhombie
25		1 11		NH ₄ salts; insol. al.	. 111
35		s. soluble	1.11	s. soluble H ₂ SO ₄	
36 37	1085°	0.0044°	s. soluble	s. soluble H ₂ SO ₄	blook nomile
38		0.0001 insoluble	insoluble	sol. conc.; a. insol. KOH s. sol., H ₂ SO ₃ sol. HNO ₃	black regular
90	* * * * * * * * * * * * * * * * * * * *	Insoluble		5. 501., 11 ₂ 50 ₃ 501. 11NO ₃	

[†] Loses H₂O at 110°–120°.

=					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity Water = 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
1	Lead sulphochloride	$\overline{3PbS.PbCl_2}$	995.53		
2	sulphocyanate	Pb(CNS),	323.26	3.82	
3	thiosulphate	PbS ₂ O ₃	319.24		decomp.
4	tungstate	PbWO ₄	455.10	8.235	
5	Lithium	Li	6.94	$0.534^{20^{\circ}}$	186°
6	acetate	LiC ₂ H ₃ O ₂ .2H ₂ O	102.00		70°
7	amid	LiNH ₂	22.97	1.178 ^{17.5°}	374°
8	benzoate	LiC ₇ H ₅ O ₂	127.980		
9	bicarbonate	LiHCO ₃	67.95		
10	bichromate	Li ₂ Cr ₂ O ₇ .2H ₂ O	266.01		
11	borate	Li ₂ B ₄ O ₇ .5H ₂ O	259.96		
12	bromide	LiBr	86.86	3.46625	442°-547°
13	carbide	Li,C,	37.88	1.65180	
14	carbonate	Li,CO,	73.88	2.111	618°-710°
15	chlorate	LiClO, HO	99.41		50°
16	chloride	LiCl	42.40	1.998-2.074	602°
17	chloroplatinate	Li ₂ PtCl ₆ .6H ₂ O	529.97		6H ₂ O,180°
18	chromate	Li ₂ CrO ₄ .H ₂ O	147.90		
19	citrate	Li ₃ C ₆ H ₅ O ₇ .4H ₂ O	281.804		decomp.
20	fluoride	LiF	25.94	2.601	801°
21	fluosilicate	Li ₂ SiF ₆ .2H ₂ O	192.21	2.33	2H ₂ O,100°
22	formate	LiCHO ₂ .H ₂ O	69.96	1.435-1.479	decomp.
23	hydroxide	LiOH	23.95		red heat
24	iodide	LiI	133.86	4.0634	330°-446°
25	"	LiI.3H ₂ O	287.91		72°
26	nitrate	Lino,	69.01	2.334-2.442	253°-264°
27		LiNO ₃ .3H ₂ O	123.00		29.88°
28	oxalate	$\operatorname{Li}_{2}\operatorname{C}_{2}\operatorname{O}_{4}$	101.88	2.1213 ^{17.5} °	decomp.
29	" acid	LiHC ₂ O ₄ ·H ₂ O······	113.96		decomp.
30	oxide	Li ₂ O	29.88	2.102 ^{15°}	sublimes
31	perchlorate	LiClO ₄	106.40	1.841	236°
32		LiClO ₄ .3H ₂ O	160.45		95°
33	phosphate	Li ₃ PO ₄ .H ₂ O	133.90	$2.41^{15^{\circ}}$	857°
34	salicylate	LiC ₇ H ₅ O ₃	143.940		decomp.
35	silicate	Li ₂ SiO ₃	90.18	$2.529^{15^{\circ}}$	1180°
36	silicide	Li Si ₂	98.54	1.12	decomp.
37	sulphate	$\text{Li}_2 \tilde{\text{SO}}_4 \dots$	109.95	$2.210^{15^{\circ}}$	818°-853°
38	(C) (Li ₂ SO ₄ .H ₂ O	127.97	$2.052^{\frac{20}{4}}$	H ₂ O, 130°
39	" acid	LiHSO ₄	104.02	2.123	120°
40	sulphide	Li ₂ S	45.95	1.63-1.7	
41	sulphite	Li ₂ SO ₃ .6H ₂ O	202.05		red heat
42	urate	LiHC ₃ H ₂ N ₄ O ₃	174.00		
-					

^{*} Decomposes at 600°.

[†] Loses 1½ H₂O at 90°.

Point, °C. Cold Hot Alcohol (al.),	
Boiling Point, Cold Hot Alcohol (al.), Alkalies (al.)	Acids (a.), lk.), etc.
1 insoluble decomp. insoluble dilu	
2 0.5 ^{20°} decomp. sol. KCNS, H	
$\begin{bmatrix} 3 & \dots & 0.03 & \dots & \text{soluble Na}_2S_2 \end{bmatrix}$	O ₃ regular
5 > 1400° decomp. decomp. soluble acids.	
6 decomp. 300 ^{15°} v. soluble 21.5 alcohol.	
7 430° decomp. decomp.	regular
8	
9 5.513°	
10	blk. brown crys
11	
12	crystalline
decomp. decomp. soluble acids.	3
1.5390° 0.728100° insoluble alco	1
$301^{18^{\circ}}$ ∞ v. soluble alc	
16	
soluble soluble alcoholis soluble alcoholis soluble alcoholis soluble soluble alcoholis soluble alcoholis soluble alcoholis soluble soluble alcoholis soluble	
19	red trimetric
20 0 · 27 ^{18°} s. sol. al. ethe soluble HF	
21 decomp. 52.6 sol. alcohol; i	
22	rhombic
23	
24	crystalline
25	(rh'mb. or hex.
26	
$ 27 \dots 138.4^{0^{\circ}} \infty 6 \dots \dots$	(or regular
28	
29 817°	
30 5.220° 6.26100°	crystalline
soluble soluble alcoho	
32 t soluble soluble alcoho	
0.01	4
· · · · · · · · · · · · · · · · ·	Cl[tine hexagonal
5. decemp. soluble dit. 11	sol. turpen-blue crystals
37 35.340° 29.24 ¹⁰⁰ ° insol. 80% al.	
38	
39 decomp.	prismatic
40 v. soluble v. soluble alc	
41 soluble soluble alco	
$ 42 $ $ 0.27^{20^{\circ}} $ $ 2.5^{100^{\circ}} $	

[‡] Loses 2H₂O at 100°, 3H₂O at 150°. § Loses H₂O at 100°.

[¶] Monoclinic, regular, rhombic or hexagonal.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Magnesium	Ma	94 99	1.69-1.75	650°
		Mg			000
2 3	acetate		214.43		
	aluminate	$MgO.Al_2O_3$]	$3.57^{15^{\circ}}$	d
4	ammonium arsenate	MgNH ₄ AsO ₄ .6H ₂ O	289.42		decomp.
5	cinoriae	MgCl ₂ .NH ₄ Cl.6H ₂ O	256.84		
6	" chromate	$\mathrm{MgCrO_4.(NH_4)_2} \ \mathrm{CrO_4.6H_2O}$	400.50	1.8293 ^{17°}	
7	" phosphate	MgNH ₄ PO ₄ .6H ₂ O	245.56	1 71150	decomp.
8	4 1				decomp.
8	" sulphate	$MgSO_4.(NH_4)_2SO_4.$ $6H_9O$	500.04	1.723 😤	
0	ananata		569 79	3.155 ^{15°}	
9	arsenate	2MgHAsO ₄ .13H ₂ O		5.10020	
10	arsenite	$Mg_3(AsO_3)_2$	318.88		J
11	benzoate	$Mg(C_7H_5O_2)_2.3H_2O.$			decomp.
12	borate	$Mg(BO_2)_2.8H_2O$			OTT 0 0000
13	bromate	$Mg(BrO_3)_2.6H_2O$			6H ₂ O, 200°
14	bromide				695°
15		$MgBr_2.6H_2O$			decomp.
16	carbonate	$MgCO_3$	84.32	3.04	dec. 350°
-4 Per	66	M CO SILO	100 07	1 00018	
17				1.80818	
18	" basic	$4 \mathrm{MgCO_3.Mg(OH)_2.}$ $5 \mathrm{H_2O}$	485.70	2.18	
19		$3 \mathrm{MgCO_3.Mg(OH)_2} $ $3 \mathrm{H_2O}$	365.34	2.18	
20	chlorate	$Mg(ClO_3)_2.6H_2O$	299.34		40°
21	chloride	MgCl ₂			708°
22	"	MgCl ₂ .6H ₂ O	203.34	1.569 ^{17°}	2H ₂ O, 100°
23	chromate		266.43		
24	ferrocyanide	Mg ₂ Fe(CN) ₆ .12H ₂ O			
25	fluoride	MgF_2	62.18		1396°
26	formate		150.37		
27		$Mg(OH)_2$	58.34		decomp.
28	iodate	$Mg(IO_3)_2.4H_2O$	446.22		4H ₂ O, 210°
29		MgI ₂			decomp.
30		$Mg(NO_3)_2.6H_2O$			90°
31	nitride				decomp.
32		$MgC_2O_4.2H_2O$			decomp.
33	oxide	MgO	40 32	3.22-3.654	
34		$Mg(MnO_4)_2.6H_2O$	370.28	O.UUI	decomp.
	I	8(- Jana
35	phosphate	$Mg_3(PO_4)_2.4H_2O$	335.10	1.640 ^{15°}	
	*			$(22H_{2}O)$	

^{*} Loses 5H₂O at 330°.

1	T		0.1.1		
Number	Boiling Point,				Crystalline Form
Nur	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3		insoluble deliques.	s. decomp. v. soluble	sol. a., NH ₄ saltsv. soluble alcohol	monoclinic
4 5		0.03820°	soluble	0.003 Mg. mix., insol. al.	
6		16.7 v. soluble	v. soluble		yellow monocl
8		0.01322 13.49 ^{0°}	67 .87 ^{75°}	soluble acids; insol. al	
9 10 11		insoluble insoluble 4.5 ²⁵ °	0.15 soluble	sol. HNO ₃ ; insol. NH ₄ Cl insol. NH ₃ aq.; sol.NH ₄ Cl	
12 13	decomp.	insoluble $71.5^{7^{\circ}}$	insoluble v soluble	soluble acids	regular
14 15 16		91.9 ^{0°} 316 ^{0°} 0.0106	120.2100°	soluble alcoholsol. acids, 2.21 CO ₂ aq	hex. rhomboh.
17 18		$0.1518^{19^{\circ}}$ 0.04	decomp.		or rhombic hexagonal
19		0.04	0.011	soluble acids, NH ₄ salts	monoelinie
20 21 22 23	red heat decomp.	deliques. 52.20° 167 211.518°	v. soluble 65.87 ^{80°} 367 v. soluble	soluble alcohol	hexagonal monoclinic
24 25		33 0.0087 ^{18°}	insoluble	sol. HNO ₃ ; insol. al	pale yel. cryst tetragonal
26 27 28	decomp.	7.7 0.0009 10 ^{15°}	33100°	insol. alcohol, ether soluble NH ₄ salts	rhombie rhombohedral monoclinie
29 30	*	100° 200	164.9 ^{110°} ∞	soluble alcohol, ether soluble alcohol	monoclinic or
31 32 33		insoluble 0.07 ^{16°} 0.00062	0.081000	soluble acids; insol. al sol. alk. oxalates, a sol. acids, NH ₄ salts	reg. or hexag
34		v. soluble	decomp.	sol. glac. H.C ₂ H ₃ O ₂ methyl alcohol	purple needles.
35		0.0205		sol. acids, insol. NH_4 salts, $H.C_2H_3O_2$	monoclinic

[†] Greenish yellow crystals.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). $H_2 = I (D)$.	Melting Point, °C.
	Magnesium				
1	O	MgHPO4.3H,O	174.42	$2.123^{15^{\circ}}$	
2	66 66	$Mg_3(PO_4)_2.8H_2O$		$2.195^{15^{\circ}}$	
3	" "	MgHPO ₄ .7H ₂ O	246.48		
4	" pyro	Mg,P,O,	222.72	2.40	
5	phosphite	MgHPO ₃ .3H ₂ O			
6	potassium chloride	MgCl ₂ .KCl.6H ₂ O	277.90		
7		$MgSO_4.K_2SO_4.6H_2O$.	402.76	2.02774	
8	selenate	$MgSeO_4.6H_2O$	275.62	1.928	
9	silicide	Mg ₅ Si ₃	206.50		
10	sodium chloride	MgCl ₂ .NaCl.H ₂ O	171.77		
11	sulphate	$MgSO_4$	120.39		
12		$MgSO_4.7H_2O$	246.50	$1.6784^{17.5^{\circ}}$	
13	sulphide	MgS		2.82 ^{15°}	decomp.
14	sulphite	$MgSO_3.6H_2O$	212:49		6H ₂ O,200°
15	tartrate	$MgC_4H_4O_6.4H_2O$	244.42		decomp.
16	thiosulphate	$MgS_2O_3.6H_2O$		1.818243	3H ₂ O,170°
	Manganese	Mn	54.93		1225°
18	acetate	$Mn(C_2H_3O_2)_2.4H_2O$	245.04		
19 20	ammon. phosphate.	NH ₄ MnPO ₄ .H ₂ O	186.03	$1.837^{\frac{18}{4}}$	
20	surpriace	MnSO4.(NH4)2SO4. $ 6H2O$	391.20	1.00/4	
21	arsenite	$Mn_3H_6(AsO_3)_4.2H_2O$.	698.71		
22	benzoate	$Mn(C_7H_5O_2)_2.3H_2O$	517.06		
23	boride	$Mn\dot{B}_2$		$6.04^{19^{\circ}}$	fusible
24	bromide	$MnBr_2$	1		decomp.
25	"	$MnBr_2.4H_2O$	286.83		
26	carbide	Mn_3C		$6.89^{17^{\circ}}$	
27	carbonate	MnCO ₃		3.125-3.66	decomp.
28	chloride	$MnCl_2$	125.85		650°
29	66 non	$MnCl_2.4H_2O$	197.91		87.5°
30	per	MnCl ₄	196.77		
31		$Mn_2Fe(CN)_6.7H_2O$		2 00	856°
32	fluoride di	MnF_2	92.93		
33 34	Sesqui	$Mn_2F_6.6H_2O$ $MnSiF_6.6H_2O$	331.96	1 002917.50	decomp.
35	formato		180.98		decomp.
36		$Mn(OHO_2)_2.2H_2O$ $Mn(OH)_2$	88.95		decomp.
90	nydroxide -ous	$\min(O11)_2$	00.90	0.200	decomp.
37	" -ic	$\mathrm{Mn_2^{'}O_3.H_2O}\ldots$	175.88	4.335	decomp.

ber.	Boiling	Crystalline Form			
Num	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	decomp. decomp. 1900°	Water. 0.3 insoluble 0.25 19.260° v. soluble insoluble 26.90° 76.90° decomp. 1.25 0.816° v. soluble decomp. 3 0.0031 51.325° insoluble 6.5515° insoluble	0.2 insoluble 81.70 ⁷⁵ ° decomp. 73.8 ¹⁰⁰ ° 671.2 ¹⁰⁰ ° 0.83 v. soluble decomp. 0.05 v. soluble	Alcohol (al.), Acids (a.), Alkalies (alk.), etc. soluble acids; insol. al. soluble acids; insol. al. soluble acids. dec. by acids, NH ₄ Cl. soluble alcohol soluble alcohol insoluble alcohol soluble alcohol insol. alcohol, NH ₄ salts. soluble acids.	plates monocl. plates hexagonal hexagonal monocl. prisms monoclinic tetragonal or monoclinic. red brown cub. monoclinic prismatic reddish. [clinic pale red mono flat prisms gray. vio. crys.
24 25 26 27 28 29 30 31 32 33 34 35	106°	127.30° 296.70° decomp. 0.013 62.1610° 1518° soluble insoluble insoluble v. soluble 140 soluble	228100°	soluble acids. 0.028,CO ₂ aq., sol. dil. a. sol. alcohol; insol. ether sol. alcohol; insol. ether soluble ether. sol. HCl; insol. NH ₄ salts insol. al., ether; sol. a. soluble acids. soluble acids.	rose red red monoclinic tetrahedral rose col. rhom- [bohedral rose col. mono. green [prisms red quadratic crystalline hexagonal monoclinic
36		insoluble insoluble	insoluble insoluble	sol. a., NH ₄ salts; insol. alk. sol. hot conc., H ₂ SO ₄	hexagonal

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
-	Manganese				
1	hypophosphite	Mn(H,PO,),H,O	203.06		
2		MnI ₂ .4H ₂ O	380.83		decomp.
3	lactate		287.06		decomp.
4		$Mn(NO_3)_2.6H_2O$	287.05		25.8°
5	oxalate	$MnC_2O_4.2_2^1H_2O$		2.453 ²⁰ °	dec. 150°
6	oxide -ous	MnO		5.09-5.18	white heat
7	" -ic		157.86	4.325-4.82	½O. 1090°
8	" di	MnO ₂	86.93	5.026	½O, 570°
9	" @ tri	MnO_3^2	102.93		decomp.
10	" hept			>1.84	$< -20^{\circ}$
11	phosphate -ous	$Mn_3(PO_4)_2.7H_2O$	480.98		
12	" " acid .	MnHPO ₄ .3H ₂ O	205.04		
13		MnHPO ₃ .H ₂ O	153.00		H ₂ O,200°
14	pyrophosphate	$Mn_2P_2O_7$	283.94	$3.5847^{20^{\circ}}$	
15	"	$Mn_2P_2O_7.3H_2O$	337.98		
16	silicate	MnSiO ₃	131.23		1218°
17	silicide		83.23	5.90150	
18	") di	$MnSi_2$	111.53	5.24 ^{13°}	
19	" -ous	$\mathrm{Mn_2Si}$	138.16	6.20 ^{15°}	
20	sulphate -ic	$\mathrm{Mn}_{2}(\mathrm{SO}_{4})_{3}$	398.07		decomp.
21	ous	2.0	151.00	2 054	700°
22	-ous	$MnSO_4$		2.845 ^{15°}	100
23	"	$MnSO_4.11_2O$ $MnSO_4.2H_2O$		2.52615°	
24	"	$MnSO_4.3H_2O$		2.356150	
25		MnSO ₄ .4H ₂ O *	223.06		
26		$MnSO_4.5H_2O$		2.1006 ^{14.5°}	54°
27	"	$MnSO_4.6H_2O$	0 40 40	2.1000	
28	"	$MnSO_4$.7 H_2O	277.11		7H ₂ O, 280°
29	sulphide -ic	MnS	119.07	. 463	decomp.
30	-ous	MnS	87.00	3.63170	decomp.
31	"	MnS	87.00	3.55170	decomp.
32	"	3MnS.H ₂ O	279.02		decomp.
33	sulphocyanate	Mn(CNS) ₂ .3H ₂ O			1
34	Manganocyanhydric				decomp.
0.0	acid	345.0	222 70	4 00 4 0	
35	Manganomanganic	$\mathrm{Mn_3O_4}$	228.79	4.33-4.9	infusible
20	oxide Mercuriammonium di-				
90	ammonium bromide	NHa Br NH Br	503 00		decomp.
	ammonium bromide.	Tring ₂ Dr.Trii ₄ Dr	090.09		decomp.

^{*} The ordinary salt.

[¶] Loses $3H_2O$ at 160° – 170° .

ber.	Boiling		Solubility in	ı 100 Parts.	C
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1					rose red cryst.
2		deliques.	v. soluble		rose red mono.
3		soluble	v. soluble		amethyst mon.
4	129.4°	426.40°	∞	v. soluble alcohol	
		0.05	$0.08^{100^{\circ}}$	sol. dil. acids	
		insoluble	insoluble	soluble acids, NH ₄ Cl	grass green reg.
7		insoluble	insoluble	soluble acids	black regular.
8		insoluble	insoluble	soluble HCl	‡
		soluble	decomp.	sol. conc., H ₂ SO ₄	reddish
	explodes	v. soluble	decomp.	soluble conc. H ₂ SO ₄	dark red oil
استعدا		s. soluble	Janana	soluble acids; insol. al	amorphous
		s. soluble	decomp.	soluble acids; insol. al	
		insoluble		sol. MnCl ₂ .MnSO ₄ soluble acids	reddish
		insoluble		soluble Mn ₄ P ₂ O ₇	
		insoluble		Soluble Mili ₄ 1 ₂ O ₇	rose colored
		insoluble	insoluble	insoluble acids	tetrahedral
		insoluble	insoluble	insol. HNO ₃ .H ₂ SO ₄ sol.	gray octahedra
19	• • • • • • • • • • • • • • • • • • • •	insoluble	insoluble	HF, alk. sol. HCl, NaOH; insol. HNO ₂	quadr. prisms.
20	160°	deliques.	decomp.	sol. conc.,HCl, dil.H ₂ SO ₄	green crystals.
21		53.20°	67 ^{75°}	sol. al.; insol. ether	Breen erjamis.
	†57° & 117°	98.4748°	79.77100°		
	†40° & 57°	85.27 ^{35°}	106.8 ⁵⁵ °		
24	†30° & 40°	74.225°	99.31 ^{57°}		
25	†18° & 30°	105.30°	111.2540	insoluble alcohol	monoclinic or
26	†8° & 18°	124.4°	142.1 ⁵⁴ °		[rhombic
	$†-5^{\circ} &+8^{\circ}$	147.4°	134.5 ^{38°}		[or rhombic
	†-10°&-5°	1720°	118 ¹⁵ °		pale red mono.
		insoluble	insoluble	decomp. by HCl	black regular
-		0.00047	insoluble	insol. (NH ₄) ₂ S; sol.dil. a.	green cryst
		0.0006	insoluble	insol. (NH ₄) ₂ S; sol. dil. a.	red pink
		0.0006	insoluble	insol(NH ₄) ₂ S; sol. dil. a.	gray)
		deliques. insoluble	v. soluble	v. soluble alcohol insol. ether; v. sol. al	
35		insoluble	insoluble	soluble hot HCl	brown tetrag
36		decomp.	decomp.	soluble HCl, KI	yellow

[†] Stable between the temperatures given. ‡ Black tetragonal or rhombic.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
	Mercuri diammonium				
1		NHg ₂ Cl.NH ₄ Cl	504 17	5 700	volatile
2	fusible white ppt	NHg ₂ Cl.3NH ₄ Cl			
3	ammonium iodide .	NHg ₂ I.3NH ₄ I			500
4	" nitrate.		375.29		
4	· · · · · · · · · · · · · · · · · · ·	H_2O	010.20		
5	" sulphate	$(NHg_2)_2SO_4.3(NH_4)_2$	1202.9		
J	suipilate	$SO_4.4H_2O$	1202.5		
6	bromide	NHg_2Br_2	105 13		dogomn
7	chloride	NHg ₂ Cl			A A
8	hydroxide	NHg ₂ OH			
9	iodide	NHg ₂ I			
10	mercuric chloride.	2NHg ₂ Cl.HgCl ₂			
11	nitrate	NHg_2NO_3			
12	sulphate	$(NHg_2)_2SO_4.2H_2O$			
12	Mercuri diammonium	(N11g ₂) ₂ 50 ₄ .211 ₂ 0	900.12		
13	bromide	NH ₂ HgBr.NH ₄ Br	204 51		don 1900
14	cupric iodide	$(NH_3)_4$. HgI_3 . CuI_2			
15	mercuric chloride	$(NH_3)_4.HgCl_2.Cul_2$ $(NH_3)_2HgCl_2.HgCl_2$			
16	sulphate	$(NH_3)_2HgSO_4.H_2O.$	249 75		H O 1150
10	Mercuro ammonium	$(N11_3)_211gSO_4.11_2O.$	340.70		H ₂ O, 115
17	Chloride	NH ₃ HgCl	252 00		Jacoman
18	diammonium ace-	$(NH_3)_2Hg(C_2H_3O_2)_2$.	200.09		decomp.
18	tate	H_2O	510.75		decomp.
	Mercuroxy				
19	ammonium chloride	NH ₂ Hg ₂ OCl			
20	" hydrox.	NH_2Hg_2OOH			
21	" iodide .	NH ₂ Hg ₂ OI			>128°
22	" nitrate.	NH ₂ Hg ₂ ONO ₃			
23	" sulphate				decomp.
24	Mercuric acetate	$Hg(C_2H_3O_2)_2$		$3.2544^{22^{\circ}}$	
25	arsenate	$Hg_3(AsO_4)_2$			
26	bromate	$ Hg(BrO_3)_2.2H_2O$			*
27	bromide	$ \mathrm{HgBr}_2$		5.74	235°
28	carbonate basic	2HgO.HgCO ₃			
29	chlorate	$\mathrm{Hg}(\mathrm{ClO_3})_2$			decomp.
30	chloride	$HgCl_2$		5.32-5.46	265°
31	chromate	HgCrO ₄			decomp.
32	cyanide	Hg(CN) ₂			decomp.
33	fluoride	HgF_2	238.60		

^{*} Decomposes at 130°-140°.

-		1			1
Number.	Boiling Point,		Solubility in	1 100 Parts.	Crystalline Form
Nu	°C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1			decomp.	insol. alcohol; sol. acids.	
		insoluble	decomp.	soluble acids, KI	
3		decomp.			
4		insoluble		sol. HNO ₃ ; insol. KOH.	
5		decomp.		sol. dil. a., NH ₄ salts	
6		insoluble		soluble HCl, KI	yellow
17		insoluble	insoluble		yellow
8		decomp.		sol. hot, HCl, HNO ₃	brown
9		insoluble			
10		insoluble	insoluble	soluble hot HCl	red crystals
11		insoluble			
12		insoluble		soluble HCl, KI	
13		insoluble	0,		rhombohedral
		decomp.		sol. alcohol+ $H.C_2H_3O_2$.	
		insoluble	decomp.		
16	decomp.	decomp.	decomp.	sol. acids, NH ₄ salts	orthorhombic
17		insoluble			black
18		v. soluble		s. soluble alcohol	rectangular
					plates
19		s. soluble		soluble HCl, HNO ₃	yellow[rhomb.
20		$0.007^{17^{\circ}}$	0.0680°		yellow brown
21	explodes			soluble HCl, KI	brown
22		insoluble			
23		s. soluble			white and yel
		$25^{10^{\circ}}$	100 ¹⁰⁰ °		micaceous scales
		s. soluble		sol. HCl, HNO ₃	
		0.17° 1.069°		sol.HNO ₃ ,HCl,Hg(NO ₃) ₂ soluble alcohol, ether	rhombic
27 28		insoluble	20-23100	soluble alcohol, ether	brown red
28		25°			needles
		$5.73^{0^{\circ}}$	53.96 ¹⁰⁰ °		rhombic
		s. soluble	decomp.	decomposed by acids	
		$12.5^{15^{\circ}}$	53 ¹⁰⁰ °		tetragonal
		decomp.			crystalline
		*			

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
1	Mercuric fluosilicate.	HoSiF HoO 3H O	613.55		
2		$HgC_2N_2O_2$	284.62		explodes
3	hydrate				H,O,175°
4					1120,110
5				6.2-6.32	241°-257°
6		HgI,			241°
7					229°
8		HgICl			153°
	8 12	6-33111111111111111111111111111111111			
9	nitrate	$Hg(NO_3)_2.2H_2O$	342.64		decomp.
10	nitride	Hg_3N_2	629.82		explodes
11	oxalate	HgC_2O_4	288.60		decomp.
12		HgO	216.60	11.00-11.29	decomp.
13	oxybromide	HgBr ₂ .3HgO	1010.2		
14	oxychloride	$HgCl_2.3HgO$	921.32		
15	oxycyanide	$Hg(CN)_2.HgO$		4.437190	explodes
16	oxyfluoride	$HgF_2.HgO.H_2O$			dec. 100°
17	oxyiodide	$ HgI_2.3HgO$	1104.2		
18	phosphate	$Hg_3(PO_4)_2$	791.88		
19	1	2 HgI $_2$.2KI.3H $_2$ O		4.28923.50	
20		HgSe		7.1-8.877	sublimes
21		$HgSO_4$			dec.red ht.
22		HgSO ₄ .2HgO		6.44	
23	1	HgS		7.55-7.70	(sublimes
24	**	HgS	232.67	8.06-8.12	(at 446°
05	aulub acreanata	Hg(CNS) ₂	316.76		dagamn
25	Mercurous acetate	$Hg_2(C_2H_3O_2)_2$			decomp.
27		Hg_2HAsO_4			decomp.
28		$Hg_2HAsO_4Hg_3AsO_4$			decomp.
40	* * * * * * * * * * * * * * * * * * * *	11g ₃ AsO ₄	140.10		decomp.
29	bromate	$ \mathrm{Hg}_2(\mathrm{BrO}_3)_2$	657.04		decomp
30	bromide	HgBr			accomp
31		Hg_2CO_3			dec. 130°
32		HgClO ₃			decomp.
33		HgCl		6.993-7.18	sublimes
				1	at
34	"	HgCl	236.06	66.482	400°-500°
35	chromate	Hg ₂ CrO ₄	517.20		decomp.
36		HgF			dec. 200°
			!		

Number.	Boiling Point		Solubility in	1 100 Parts.	Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		decomp.		soluble acids	yellow needles
2		s. soluble	soluble	sol. alcohol, NH2	octahedral
8		insoluble		soluble acids[HNO]	
4		insoluble		sol. NH,Cl, HCl; insol.	
5	349°	0.00417.50		(1.186 ^{18°} alcohol; sol.	red tetragonal.
	349° 360°	insoluble		(Na ₂ S ₂ O ₃ , alk. salts soluble ether	yellow rhomb.
	315°	insoluble	s. soluble	soluble alcohol	yellow rhomb.
	919-	insoluble	s. soluble	soluble alcohol	red tetrag.
9		v. soluble	decomp.	sol. HNO ₃ , insol. alcohol	crystalline
10		decomp.		decomp. by acids	brown powder
11		insoluble	insoluble	sol. HCl; s. sol. HNO ₃	(yellow tetrag.
12		$0.00515^{25^{\circ}}$	0.0395100°	insoluble alcohol; sol. a.	{ plates or red moncl.prisms
13		insoluble	s. soluble	v. soluble alcohol	vellow crystals
14		insoluble	decomp.		yellow prisms
15		s. soluble			needles
16		decomp.		soluble HNO ₃	yellow crystals
17		decomp.		soluble HI	yellow brown
18		insoluble	s. soluble	sol. a., NH ₄ Cl.; insol. al.	
19		decomp.		soluble alcohol, ether, KI	
20		insoluble		soluble aqua regia	gray laminal
21		decomp.		soluble a., insol. al	
22		0.002		soluble a., insol. al	yellow
23		0.0025		sol. Na ₂ S; insol. HNO ₃ .	black amorph.
24		insoluble	insoluble	soluble aqua regia	rhomboh. or red hexag.
25		s. soluble	soluble	sol. alcohol, NH ₄ salts	[scales
26		$0.75^{13^{\circ}}$		sol. H ₂ SO ₄ ,HNO ₃	micaceous
27		insoluble		soluble HNO ₃	
28		insoluble		soluble HNO_3 ; insoluble $H.C_2H_3O_2$	dark red
29		decomp.		sol. HNO ₃ , HCl, HgNO ₃	crystalline
1	340°-405°	insoluble	insoluble		yellow tetrag
31		insoluble	decomp.		black or yellow
32		soluble	decomp.		columnar crys.
33	382.5°	0.00031	0.01	insol. al., ether; sol. Hg(NO ₃), aq. r.	rhombic
34		0.00031	0.01	s. sol. hot., HNO ₃ ,	tetragonal
35		s. soluble	soluble	soluble HNO3, KCN	red crystals
36		decomp.			

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Mercurous fluosilicate	Hg _o SiF _o ,2H _o O	579.53		
2	formate	HgCHO,	245.61		decomp.
3		HgIO ₃	375.49		decomp.
4	iodide	HgI	327.52	7.70	290°
5		$HgNO_3.2H_2O$	298.64	4.78	decomp.
6		$\mathrm{Hg_2C_2O_4}$			
7	oxide	$\mathrm{Hg}_{2}\mathrm{O}\ldots$	417.20	8.95-10.69	decomp.
8	phosphate	$\mathrm{Hg_{3}PO_{4}}$	681.20		
9	sulphate	Hg ₂ SO ₄		7.064250	melts
10			433.27		dec. at 0°
11	sulphocyanate	HgCNS	258.68		decomp.
12	trinitride	HgN ₃	242.63		explodes
13	Mercury	Hg	200.6	13.59534	-38.85°
14	Molybdenum	Mo	96.0	8.6-9.01	2500°
15	bromhydroxide	$Mo_3Br_4(OH)_2$	641.70		
16	bromide di	MoBr ₂	255.84		
17	" tri	MoBr ₃	335.76		*
18	" tetra	MoBr ₄	415.68		decomp.
19	carbide	MoC	108.00	$8.4^{20^{\circ}}$	decomp.
20		$MoCl_2$			decomp.
21		MoCl ₃			decomp.
22	" tetra	MoCl ₄	237.84	0702	
23	penta	MoCl ₅	273.30	9.5350	194°
24 25		Mo ₃ Cl ₄ (OH) ₂ .2H ₂ O			170
26		MoF ₆		C 4410°	170
20	Oxide di	MOO_2	128.00	0.44.0	
27	" sesani-	$\mathrm{Mo_{2}O_{3}}$	240.00		
28	" tri	MoO_3		4 3921°	759°
29	oxybromide		287.84	1.00	sublimes
30	oxychloride		253.84		<100°
31	" 🤄	MoO_2Cl_2			sublimes
32	" <u>"</u>	$MoOCl_3$	218.38		sublimes
33	"	$Mo_2O_3Cl_5$	417.30		sublimes
34	phosphide	Mo_3P_2	350.08	6.17	oxidizes
35	sulphide di	MoS	160.14	4.80140	oxidizes
36	"	MoS_2 (Mineral)	160.14	4.44-4.80	
37	" tri	MoS_3	192.21		loses S

^{*} Decomposes at red heat.

ber.	Boiling Solubility in 100 Parts.				Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2		s. soluble 0.417°	decomp.	insol. alcohol	prismatic cryst.
3		insoluble	insoluble	soluble dil. HCl	
	310°	0.0417		sol. KI; insol. alcohol	yellow tetrag
		v. soluble	decomp.		monoclinic
6		insoluble	insoluble		1 1 1
7		insoluble	insoluble	sol. glac., $H\mathring{C}_2H_3O_2$ insol.	black
8		insoluble	decomp.	soluble HNO ₃	
	decomp.	0.05516.5°	0.092 ^{100°}	soluble H ₂ SO ₄ , HNO ₃	monoclinic
		insoluble		insol. acids, (NH ₄).S	
		insoluble		soluble HCl, KCNS	
		insoluble			crystalline
13	357.33°	insoluble	insoluble	sol. HNO ₃ , conc. H ₂ SO ₄ ; insol. HCl	silvery octahed.
14		insoluble	insoluble	sol. HNO ₃ , conc. H ₂ SO ₄	dra v
1		msorable	msorubic	aq. r., HCl	Stay
15				soluble KOH	red powder
		insoluble	insoluble	soluble alk., insol. a	
17		insoluble	insoluble		dark green need.
	volatile	v. soluble		[H ₂ SO ₄	
		insoluble insoluble	insoluble insoluble	sol. HNO ₃ , HF, hot conc. sol. acids, al., ether	gray prisms yellow amorph.
21		insoluble	decomp.	sol. HNO ₃ , H ₂ SO ₄ , al	red needles
		deliques.	decomp.	sol. HNO ₃ , H ₂ SO ₄ , al	brown crystals.
23		deliques.	decomp.	soluble HNO ₃ , H ₂ SO ₄ , al.	black crystals
		insoluble		soluble acids; insol. al	yellow amorph.
		s. soluble			crystalline
		insoluble		s. sol.,conc. H ₂ SO ₄ , insol. KOH	*
27		insoluble		insoluble acids, alkalies	black to yellow
		0.107180	$1.705^{70^{\circ}}$	soluble acids, NH ₃ aq	rhombic
30		soluble soluble	decomp.		yellow crystals.
	4.	soluble	decomp.	soluble alcohol:	greenvellow to white.
		deliques.		soluble acids	green
		deliques.	soluble		dk. brown crys.
-		insoluble		soluble hot, HNO ₃	gray crystals
35		insoluble		sol. H ₂ SO ₄ , aqua regia	black powder
		insoluble	1 11	1 11 1 1 1 1	
37		s. soluble	soluble	sol. alk., sulphides	red brown
-					1

[‡] Sublimes below 100°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number.	Name.	Formula.	ular	Gravity. Water= 1. Air = 1 (A).	Melting Point, °C.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Molybdenum				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	" tetra	MoS	224.28		oxidizes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Molybdic Acid	H ₂ MoO			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		" pale	$H_2^2MoO_4.H_2O$		$3.124^{15^{\circ}}$	H ₂ O, 70°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	Neodymium	Nd	144 3	6 9563	840°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			NdC			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$2.282{4}$	124
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Neon	Ne	20.2	(0.674 A.	-253°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					(9.96 D.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	Nickel	Ni	58.68	8.6-8.93	1450°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	acetate	$Ni(C_2H_3O_2)_2$	176.73	1.799	decomp.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14			291.24	1.645	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15			395.00	1.929400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		*				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	arsenide	NiAs	133.64	7.663	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17		Ni ₂ H ₂ (AsO ₂), H ₂ O			decomp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18		NiB			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19				2.575	decomp.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		bromide	NiBr.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , ,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						A .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Dasie		001.01		accomp.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	anhonyl		170 68	1 2185170	_ 250
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	carbonyi	111(00)4	170.03	1.0100	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	chloride	NiCl	120 60	2 56	sublimes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		chlorido	NiCl 6H O			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	g cyanide	$NI(ON)_2.4\Pi_2O$	110.72		41120,200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	formorror: 1	N; E ₂ (CN) 11H O	E07 44		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
33 fluosilicate $NiSiF_6.6H_2O$ 309.08 2.109 † decomp.		nuoride	NIF 2			
34 formate						4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nuosilicate	NISIF ₆ .6H ₂ O			1.
351 hydroxide -ous $ 4N_1(OH)_2.H_2O $ 388.80 4.36 decomp.		formate	N1(CHO ₂) ₂ .2H ₂ O			
	35	hydroxide -ous	$4N1(OH)_2.H_2O$	388.80	4.36	decomp.

^{*} Loses $5H_2O$ at 105° , $6H_2O$ at 160° . † Decomposes at red heat.

Roiling						
1	aber.			Solubility is	n 100 Parts.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nun	°C.			Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			insoluble		soluble alk., sulphide	brown powder
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3			2.13 ^{70°}	sol. acids, NH ₃ aq., NH ₄	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			decomp.			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6		decomp.			yellow hexag
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				511.6 ^{100°}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10			decomp.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	·····	insoluble	insoluble		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				39.2 ^{85°}	s. sol. $(NH_4)_2SO_4$ aq	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17		insoluble		soluble alkalies, acids	greenish white.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19		28			monometric
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						violet powder
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			***************************************			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	43°	0.0189.8°	insoluble	, , ,	needles
29 decomp. insoluble insoluble sol. KCN; insol. dil. KCl insoluble insoluble insoluble sol. KCN; insol. dil. KCl insol. HCl; sol. NH ₃ aq greenish white. 31 0.02 insol. a., al., ether green quadratic trimetric prisms green rhomboh. green crystals.					sol. alcohol, NH3aq	
30 insoluble insol. HCl; sol. NH ₃ aq greenish white. 31 0.02 insol. a., al., ether green quadratic trimetric prisms 33 v. soluble green rhomboh. 34 soluble green crystals.					sol. KCN; insol. dil.	apple green pl
33 v. soluble green rhomboh. 34 soluble green crystals.	31				insol. HCl; sol. NH ₃ aq. insol. a., al., ether	green quadratic
	33					green rhomboh.
35insolublesol. a., NH ₃ aq. insol. alk. pale green			insoluble			

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Nickel hydroxide -ic	Ni(OH)3	109.70		decomp.
2	iodide	NiI ₂	312.52		sublimes
3	" ammonia	NiI ₂ .6NH ₃	414.66	2.101	decomp.
4	nitrate	Ni(NO ₃) ₂ .6H ₂ O	290.80	$2.065^{14^{\circ}}$	56.7°
5	" ammonia.				30.1
	ammoma.	Ni(NO ₃) ₂ .4NH ₃ .2H ₂ O			* +
6		NiO	74.68	6.6-6.8	
7	" sesqui	Ni_2O_3	165.36	4.84160	†
8	oxyiodide	NiI ₂ .9NiO.15H ₂ O	1254.9		
9	perchlorate	$Ni(ClO_4)_2.5H_2O$	347.680		149°
10	phosphate	$Ni_3(PO_4)_2.7H_2O$	492.23		
11	phosphide	Ni_3P_2	238.12	5.99	
12	1 16	Ni P	148.40	6.3150	
13	pyrophosphate	Ni ₂ P ₂ O ₇ .6H ₂ O	399.54	‡3.9303 ²⁵ °	
14	potassium cyanide.	Ni(CN) ₂ .2KCN.H ₂ O	258.94	1.875110	H ₂ O, 100°
.15	selenide	NiSe	137.88	8.46	
16	sulphate	NiSO ₄	154.75	3.418 ^{15°}	SO ₃ , 840°
17		NiSO ₄ .6H ₂ O	262.85	2.031	6H ₂ O,280°
18	66	NiSO ₄ .7H ₂ O	280.86	1.98	98°–100°
19	sulphide mono	NiS	90.75	4.60	797°
20	" sub	Ni ₂ S	149.43	5.52	
21	sulphite	NiSO ₃ .6H ₂ O	246.85		
	Nickelo-nickelic oxide	Ni O	240.04		
23	sulphide		304.32		
20	sulpinde	Ni ₃ S ₄	304.34		
0.4	BY: - Li.	MI.	00 5	10.7	00000
	Niobium	Nb	93.5	12.7	2200°
25	bromide	$NbBr_{5}$	493.10		150°
26	chloride	$NbCl_5$	270.80	$2.77 - 2.73\frac{20}{20}$ °	
27	fluoride	NbF_5	188.5	3.2932 ^{18°}	72–73°
28	oxide	Nb_2O_5	267.0	4.8 cher	
29	Nitric Acid	HNO ₃	63.02	1.530%	-41.3
30	Nitrogen	N ₂	28.02	0.96737 A.	-210.5°¶
31	bromophosphide	NPBr,	204.89		
32	chloride	NCl ₃	120.39	1.653	expl. 95°
33	chlorophosphide		347.91	1.98	114°
34	A A		411.80	3.5	explodes
04	iodoazoimide	NH ₃ NI ₃	411.00	0.0	explodes
0.5		NO	14 00	00701 500 1	100.20
35	oxide mon-(nitrous)	N_2O	44.02	.937 ⁰ 1.530 A	
36	" di- (nitrie)	$NO(N_2O_2)$	30.01	1.0367 A.	-167°
37	oxide tri-	N O	76.02	1.447-2°	-111°
3/	Walde the	N_2O_3	10.02	1.44/	-111

^{*} Absorbs oxygen at 400°.

[†] Is reduced to NiO at 600°.

Boiling Point, oct Cold Water. Hot Water. Alcohol (al.), Acids (al.), etc. Crystalline Form and Color.	-					
	nber.	Point		Solubility in	1 100 Parts.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nur	°C.			Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		insoluble	insoluble	soluble acids, NH ₃ aq	black
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		124.20°	$188.2^{100^{\circ}}$		black scales
1	1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		-00.0			
Soluble HCl, NH ₃ aq black sol. HNO ₃ ; insol. NH ₃ aq sol. al. acet., insol. CHCl ₃ sol. al. acet., insol. Al. a	1					
Sol. HNO3; insol. NH3 aq [needles 9 222.50° 273.745° insoluble insolub	1 0					
9						
10	_			273 7 ⁴⁵ °		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		insoluble	insoluble	insoluble HCl:	dark green
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12		insoluble			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			*****			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1					
17			*****	-1000		
18						
18	116		62.520	340.7100	v. soluble al., NH_3 aq	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	S	75 615.50	475 21000	y golybla alachol	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	8	75.0-0	475.0	v. soluble alcohol	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		0.00036	decomp.	sol. HNO., aqua regia	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20			1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21		insoluble		soluble HCl, H ₂ SO ₃	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		insoluble			gray
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23		insoluble		soluble HNO ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5				insol. a., aq. r	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			decomp.			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			andrala (T)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			soluble			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			ος))	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.542c.c. ^{20°}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			soluble	decomp.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			decomp.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34		decomp.	explodes		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0=			00040		
26.6 al., FeSO ₄ aq. [brown gas	30	-89.8°				
	30	-150.2	7.3c.c.	0.0c.c.100°		
soluble sol. 11103, 112504, ether blue solid, or red	27	2 50	soluble			
	01	(1.0)	soluble		501. 1114O ₃ , 11 ₂ 5O ₄ , ether	bide sond, or red

 $[\]ddag$ The anhydrous salt. $\$ Loses 6H2O at 103°. $\$ \P At 84 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Nitrogen oxide tetr	$NO_2(N_2O_4)$	46.01	1.49034	-9.6°
2	" pent	N_2O_5	108.02	1.64218°	30°
3		NOBr			-2°
	(nitrosyl bromide)			100	
4	oxychloride (nitrosyl chloride)		65.47	1.4165-12°	-60°
5		NSe	93.21		explodes
6		N_4S_4		$2.22^{15^{\circ}}$	188°
7		N_2S_5	188.37		10°-11°
8	NO CONTROL OF THE PARTY OF THE	NS ₃ Cl			decomp.
9	Nitroxyl fluoride	NO_2F	65.01	2:24 A.	-139°
10	Osmium		190.9	22.48	2700° 2700°
11	ammonium trichlo- ride	2(OsCl ₃ .2NH ₄ Cl) 3H ₂ O	862.62		
12	chloride di	OsCl,	261.82		[600°
13		OsCl ₃			dec. 560°-
14			351.33		
15		7	332.74		
16	OTTOGO RATORE CONTROL	OsO	206.90		
17	sesqui				
18	ur	OsO_2			000
19 20	tetta=	OsO_4	254.90		20°
	chloride	$2(\mathrm{OsCl_3.3KCl})6\mathrm{H_2O}$			
21	potassium tetra- chloride	OsCl ₄ .2KCl	481.86		T
22	sulphide di	OsS_2	255.04		
23			319.18		oxidizes
24		OsSO ₃	270.97		
25	Oxalic Acid	$H_2C_2O_4.2H_2O$	126.05	1.653 ^{18.5°}	98°
	Oxygen	O_2		1.10535 A.	-227°
27				1.658 A.	dec. 270°
		Pd			1550°
29	bromide	PdBr ₂	266.54		
30		PdCl ₂ .2H ₂ O			
31		Pd(CN) ₂			decomp.
32	fluoride	PdF ₂	144.70		
33		Pd ₂ H			decomp.
34	hydroxide	$Pd(OH)_2$	140.72		

^{*} At 751 mm. † Sublimes at 135°.

ber.	Boiling Solubility in 100 Parts.			100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
	21.64°	soluble		sol. CS ₂ , CHCl ₃ , conc. HNO ₃ , H ₂ SO ₄	reddish yellow.
2	45°-50°	soluble			rhombic
3		decomp.	decomp.		dark brown
4	-5.6°*	lecomp.			solid, lem. yel. crys., or. red.
5	200°	insoluble		soluble HNO ₃ , CS ₂	orange yellow
6	1	insoluble	decomp.	sol. CS ₂ , al., ether	orange r. mono.
7	decomp.	insoluble		s. sol. CS ₂ , alcohol	red
8		soluble	decomp.	soluble CS ₂	citron yellow
9	-63.5°	decomp.			
10		insoluble	insoluble	s. sol. HNO ₃ , aqua regia	bluish amorph
		insoluble	insoluble	insol. acids, aqua regia.	bluish
11		v. soluble	decomp.	v. sol. al.; insol. ether	red. brown crys.
-					
12		insoluble		sol. al., ether, NaCl	
13		s. soluble		sol. alk., al., HCl. s. sol.	brownish reg
		1 11		ether	<i>r</i> 11
		s. soluble		sol. alk., HCl	[needles
		soluble		soluble HCl, alcohol	red to yellow
		insoluble	insoluble	insoluble acids	
17		insoluble		insoluble acids	
	1000	insoluble v. soluble		insoluble acids	
1	100°	v. soluble	v. soluble	sol. al., ether, NH ₃ aq	
20		v. soluble		v. soluble al.; insol. ether	dark red cryst
21		s. soluble		insoluble al., HCl	red octahedra
22		s. soluble		insoluble alkalies	brownish vel
1		insoluble		soluble HNO ₃ insol. alk.	
3		insoluble		soluble HCl	
		4.90°	120 ^{70°}	soluble alcohol	
	-182.7°	4.89 c.c.0°	2.61c.c.30°	sol. melted Ag.; s. sol. al.	
27		0.88		oil of turp, and cinnamon	
28		insoluble	insoluble	sol. conc. a., aqua regia	
		insoluble	insoluble	soluble HBr	
1		soluble	soluble	soluble HCl	
31		insoluble	insoluble	soluble KCN, NH ₃ aq	
1		s. soluble		soluble HF	
1					
34	ا	insoluble		sol. acids, alk	brown
No.					-

[‡] Loses 6H₂O at 150°-180°. ¶ Decomposes at red heat.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Palladium iodide	PdI,	360.54		100°
2	nitrate	$Pd(NO_3)_2$	230.72		decomp.
3	oxide sub	Pd,O	229.40		*
4	" mon	PdO	122.70		O, 875°
5	" di	PdO_2	138.70		O, 200°
6	sulphate	$PdSO_4.2H_2O$	238.80		
7	sulphide sub	Pd_2S	245.47	7.303 ^{15°}	red heat
8	" mono	PdS	138.77		oxidizes
	,,	D 10			
9	" di	PdS_2	170.84		decomp.
10	Pallados diammo-	D ICL ONIT	011 00		
11		PdCl ₂ .2NH ₃	211.69		3 /1009
11	hydroxide Perchloric Acid				dec.<100°
13	" "	HClO ₄ HClO ₄ .H ₂ O	119 40	1.7756 50	50°
14		$HClO_4.2H_9O$	136.49 136.50		-20.6°
	Periodic Acid		227.96		130°
	Permanganic Acid		119.96		100
	Permolybdic Acid		197.04		
		$PONH_2 \cdot (OH)_2 \cdot \dots$	97.04		decomp.
		PH,		1.185 A.	-133.5°
20	" liquid	P,H,	66.11	1.007-1.016	<-10°
21	solid		378.53	1.83 ^{19°}	burns 200°
22	Phosphonium bromide	PH ₄ Br	114.99	1.906 A.	30°
23	" chloride	PH ₄ Cl	70.53		26° .
24		PH_4OH	52.08		
25		$PH_{4}I$	161.99		
26		$(PH_4)_2SO_4$	166.21		
	Phosphoric Acid hypo-				55°
28		HPO_3	80.05	2.2-2.488	†
29	ortho	H_3PO_4		1.88418.20	38.6°
30	pyro	$H_4P_2O_7$	178.11		61°
	Phosphorous Acid	II DO	00 00	1.49318.80	96 FO
31	hypoortho		00.00	$1.493^{10.0}$ $1.651^{21.2}$	26.5° 70.1°
33	pyro		146.11		38°
	Phosphorous yellow.			1.831 ^{18°}	44.1°
0.7	I nosphorous yenow	14	121.10	1.001	11.1
35	" red	P ₄	124.16	2.29616°	725°
		4			
36	bromide tri	PBr ₃	271.04	2.8847	-41.5°
		J .			

^{*} Decomposes at red heat. † Sublimes at white heat.

er	Boiling		Solubility in	100 Parts.	
Number	Point,	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
1	360°	insoluble	insoluble	insol. al., ether; sol. KI	black
2		soluble	decomp.	soluble HNO ₃	brown yel.rhom
3		insoluble		insoluble acids	black
4		insoluble [s. soluble acids	black
5		insoluble 🔧		s. soluble acids	black
6		v. soluble	decomp.		brown crystals.
7		insoluble		insol. acids; sol. aq. regia	
8		insoluble		soluble HCl; insoluble (NH ₄) ₂ S	black
9		insoluble		soluble aqua regia	dark brown
10		s. soluble		soluble acids, NH ₃ aq	yel. or red crys.
11		soluble	decomp.		crystalline
	39°	soluble			oily
1	decomp.	soluble		1 1 1 1 1 1 1	needles
14	200°	v. soluble		soluble alcohol	crystalline
15	734°	v. soluble	Jaconen	soluble alcohol, ether	monoclinic
16 17		v. soluble	decomp.		white crystals
18		v. soluble	v. soluble		winte crystais
	-85°	s. soluble	insoluble	sol. al., ether, Cu ₂ Cl ₂	
	57°-58°	insoluble		sol. al., turpentine	
21		insoluble	insoluble	insol. al., sol. P., P ₂ H ₄	vellow
22		decomp.	decomp.		regular
23	sublimes	decomp.			regular
24					crystalline
	80°	decomp.		decomp. by alcohol	tetrag. prisms
26		decomp.			crystals
	dec. 70°	soluble			crystals
28		soluble	soluble :	1 11 1 7 1	glassy
29	T	v. soluble		soluble alcohol	rhombic
30	-10	v. soluble	decomp.	v. soluble	needles
	decomp.	∞	∞		tablets
32		∞ ∞	∞ ∮		crystalline
33		decomp.			needles
34	290°	0.00033	s. soluble	1.50° , $10^{81^{\circ}}$ benzol; 0.4 al.; 1000 CS $_2$; $.430^{\circ}$, $2^{35^{\circ}}$ ether; sol. alk.	yellow regular
35	350° (yel.)	insoluble	insoluble 🗧	insol. ether, CS_2 ; sol. alk.	red hexagonal rhombohedral
36	175.3°	decomp.		${\rm soluble} {\rm CS_2}, {\rm ether}, {\rm CHCI_3}$	

[‡] Loses ½ H₂O at 213°. § Decomposes at 200°. ¶ Decomposes at 130°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (A).	Melting Point, °C.
	Phosphorus				
1		PBr ₅	430 64		100°
2		PBr_2F_3			-20°
3	bromonitride	PBr_2N	204.89		188°-190°
4		PBr ₂ Cl ₃			35°
5	" octo-	$PBr_8^2Cl_3^2$	776.88		25°
6		PBr ₄ Cl ₃			
7	chloride tri	PCl ₃	137.42	$1.6128^{\frac{9}{4}}$	-111.8°
8	" penta	PCl_5	208.34	$3.60^{296^{\circ}}$ D.	148°†
9	chlorofluoride	PCl_2F_3	158.96		-8°
10	fluoride tri	PF_3	88.04		-160°
11	" penta	PF_5	126.04	4.30 D.	-83°
12		$PBr_7Cl_2 \dots \dots$	661.40		
	chloride	~ ~			
13		P_2I_4	284.82		110°
14	" tri	PI ₃	411.80		61°
15	iodochloride	PI ₂ Cl ₃	360.26		
16	monobromtetra- chloride	PBrCl ₄	252.81		
17		P_3N_5	163.17	9 5118	s
17 18	nuride	P_4O_6	220 16	2.135^{21}	22.5°
	oxide til	P O	196 00		>100°
19	" nent-	P_2O_4	140.00	2.007	>100
20	pent	P_2O_5	142.08	2.381	FE' FO
21	oxypromide	$ \stackrel{\text{POBr}_3}{\text{POBr.Cl}_2} $	107 00	2.822	55.5° 13°
22 23		POCl ₃			1.25°
24		POF_3			-68°
25		$P_3O_8I_6$			140°
26	oxynitride	PON	61.05		red heat .
27		P ₄ Se			-12°
28		P_2^{4} Se			
29		P.Se			
30	" penta	2 0			
31	sulphide sesqui	P_4S_3	220.37	$2.00^{11^{\circ}}$	172°
32	" tri	P_4S_6	316.58		290°
33	" di	P_3S_6	285.54		297°
34			222.43	2.03	290°
35	sulphobromchloride	PSBrCl ₂	213.95	2.12	-30°
36	sulphobromide	PSBr ₃	302.87	2.85170	36.4°-38°
37		PSBr ₃ .H ₂ O	320.89	2.7937183	35°
-38	sulphochloride	PSCl ₃	169.49	1.634220	-35°

^{*} In vacuo. † Under pressure. ‡ Decomposes at 250°.

7						
	Number.	Boiling		Solubility is	n 100 Parts.	Crystalline Form
	Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
-						[rhomboida
	1	106°	decomp.			citron yellow
	2		decomp.		l u ga arrai	pale yellow
	3	150°*			sol. ether, CS ₂ , CHCl ₃	opengo opvistela
	5					brown needles.
	6		decomp.			dark red cryst.
		76°	decomp.	decomp.	sol. CS ₂ , ether, CHCl ₃	
		160°-165°	decomp.		sol. CS ₂ , C ₆ H ₅ COCl	yellow rhombic
	9	‡ -95°	decomp.		soluble alcohol, alkalies	
	11		decomp.		soluble alcohol, alkalles	
	12		decomp.		soluble PCl ₃	prismatic
- 1	13		decomp.		soluble CS ₂	orange prisms
	14	decomp.	decomp.	decomp.	soluble CS_2 soluble CS_3	red prisms
- 1	16		decomp.		Soluble $OS_2, \dots, \dots,$	yellow crystals.
			,			J
	17		insoluble	s. decomp.		amorphous
- 1	- 1	173.1°	soluble	decomp.	sol. CS_2 , ether, $CHCl_3$	in aid or monoch.
		180°	soluble		1 11 77 00	orthorhombic
- 1	20	189.5°	v. soluble decomp.		soluble conc. H_2SO_4 sol. ether, con. H_2SO_4 , CS_2	amorphous plates
- 1		137.6°	decomp.		soi. ether, con. 11 ₂ 50 ₄ ,05 ₂	tablets
		107,2°	decomp.	decomp.	decomp	tablets
- 1	24	-40°	decomp.		decomp. by alcohol	crystalline
		decomp.	soluble		soluble alcohol, ether	red crystals
- 1	26 27	burns	insoluble decomp.		insoluble acids, alkalies sol. CS ₂ ; insol. al., ether	amorphous
- 1	28		decomp.		s. sol. CS ₂ ; insol. al., ether	
	29			decomp.	sol. KOH; insol. CS ₂	dark red
	30	407 09	decomp.		sol. CCl ₄ ; insol. CS ₂	dark red need
		407.8° 490°	insoluble	decomp.	sol. CS ₂ , PCl ₃ , PSCl ₃	yellow rhomb. yellow crystals.
- 3		¶337°	decomp.		sol. al., ether, alkaliess. soluble CS	yellow regulars.
		518°-520°	decomp		sol. CS ₂ , alkalies	yellow crystals.
- 1		150°	decomp.			yellow
		decomp.	decomp.		sol. CS_2 , ether, PCl_3 , PBr_3	
- 1	37	125°	dogomn		coluble CS	yellow crystal
	00	120	decomp.		soluble CS_2	

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
	Phosphorus				
1	sulphocyanate	P(CNS) ₃	205 28	1.62518°	<-20°
2	sulphofluoride	PSF_3			
3	sulphoxide	$P_4S_4O_6$	348.44		102°
4	thioamide	$PS(NH_2)_3$	111.16	$1.7^{13^{\circ}}$	dec. 200°
5	trioxytetrachloride	$P_2O_3Cl_4$	251.92		
6	I	$P_2S_3Br_4$	477.97	$2.262^{17^{\circ}}$	
	mide				
	Phosphotungstic Acid		3682.8		
	Platinic Acid brom	$H_2PtBr_6.9H_2O$			
9	cmor	H ₂ PtCl ₆ .6H ₂ O			decomp.
10	Platino-platinic oxide	$H_2PtI_6.9H_2O$ Pt_3O_4	640.60		+
	Platinum	$\operatorname{Pt}_{}$	195.2	$21.16^{\frac{24}{4}}$	1753°
13	bromide di		355.04		dec. 300°
14	" tetra	$PtBr_4$			
15	chloride di	PtCl,	266.12	5.87 ^{11°}	+
6	" tetra	PtCl4	337.04		decomp
17	" " "	PtCl ₄ .5H ₂ O	427.02	2.43	4H ₂ O,100°
18		Pt(CN) ₂	247.22		1
19	fluoride	PtF_{4}			1 4
20	hydroxide (-ous)	$Pt(OH)_2$	229.22		
27		$Pt(OH)_2.2H_2O$	265.25		
22	(-10)	$Pt(OH)_4$ PtI_2	263 . 23 449 . 04		decomp
23 24	iodide di	PtI_4	702.88		
25	oxide mon	${ m PtO}$			
26	" di	PtO ₂			
27	"	PtO_{2} . $H_{2}O$			
		2 2			20, 200
28	" "	PtO ₂ .2H ₂ O	263.23		
29	" "	$PtO_2.3H_2O$	281.25		dec. 300°
30		$PtO_2.4H_2O$	299.27		decomp.
_31	sulphide mono	PtS			decomp.
32	" di	PtS_2			decomp.
33	1/10 1	Pt_2S_3 $Pt(SO_4)_2.4H_2O$	480.61	5.52	
34	sulphate Potassium	$K = \frac{\text{Pt}(SO_4)_2.4H_2O}{\text{K}}$	30 10	0.875 ¹³ °	62.5°
16		$KC_2H_3O_2$	98 12	0.8732	
7	" acid	$KH(C_2H_3O_2)_2$	158.16		
1	aluminate	$K_2Al_2O_4.3H_2O$	250.45		
	Marie Control	7 2 4			

her.	Boiling		C		
Num	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
	1 265° 2 3 .8°* 3 295° 4		Hot	sol. al., ether, CS ₂ , CHCl ₃ s. sol. ether; insol. CS ₂ . 50, CS ₂ . soluble alcohol, ether . v. sol. al., ether, CHCl ₃ soluble alcohol, ether . v. sol. al., ether, CHCl ₃ soluble alcohol, ether . insoluble acids sol. aq. r., fused alk. soluble HBr, KBr sol. al., ether, HBr. soluble HCl, NH ₃ aq soluble alcohol, ether. insoluble alcohol, ether. insoluble alcohol, ether. soluble alcohol, ether. insoluble alcohol, ether. insoluble alcohol, ether.	gas. tetragonal. yellow amorph. red monoclinic red brown. brown monocl. black. grayish. brown. dark brown. brown. brown. ted monoclinic. yellow-brown. buff crystals.
2 2 2 2 2 2 2 2 2 2 2	1	insoluble	insoluble insoluble insoluble insoluble	sol. Acids, alkalies v. sol. acids, alkalies insol. a.; sol. Na ₂ SO ₃ sol. Alk., HI, KI sol. H ₂ SO ₃ , conc. HCl . insoluble acids sol. HCl, NaOH; insol. H.C ₂ H ₃ O ₂	yellowreddish brown blackbr. black amorviolet to black.black.
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 1 1 2 3 3 4 4 	insoluble insoluble insoluble insoluble soluble decomp. 1882° decomp. v. soluble	insoluble insoluble decomp. decomp.	insol. HCl, aq. rsol. acidsinsol. a.; sol. $(NH_4)_2S$. sol. $(NH_4)_2S$, aqua regia insol. a.; sol. aqua regia sol. a., al., ethersol. a., al., mercury33 alcohol; insol. ethersol. glac. $H.C_2H_3O_2$ insol. al.; sol. alk	blackyellow needles . black[needles

[‡] Decomposes at 300°–350°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= \mathbf{I} . Air= \mathbf{I} (A). $\mathbf{H}_2 = \mathbf{I}$ (D).	Melting Point, °C.
	Potassium amid	KH,N	55.13		271°
2	antimonate	KSbO ₃	207.30		
3	antimonyl tartrate.	$\begin{array}{c} \mathrm{KSbOC_4H_4O_6.\frac{1}{2}H_2O} \ . \\ \mathrm{K_3AsO_4} \end{array}$	332.34	2.6	½H₂O,100°
4					
5		K_2HAsO_4	218.17		
6		KH ₂ AsO ₄	180.08	2.851	288°
7		KAsO ₂	146.06		
8	" acid	$KH(AsO_2)_2.H_2O$	272.04		
9		KAuO ₂ .3H ₂ O			
10		$KAu(CN)_4.1\frac{1}{2}H_2O$			
12	aurocyanide	KAu(CN) ₂	288.32		
13	benzoate	$KC_7H_5O_2.3H_2O$	214.19		947°
14					0 11
15	borofluorido	$K_2B_4O_7.5H_2OKBF_4$	126 10	2 400900	5H ₂ O,r. h.
16	borottuoride		214.13		
17					434°
18	bromate	KBrO ₃	167.02	$3.271_{\overline{17.5}}$	
19	bromide	KBr		2.756^{29}	730°
20	bromoaurate	KAuBr ₄			decomp.
21				4.65840	
22		K ₂ PtBr ₆	593.08		
23	promoplatinite	$K_2PtBr_4K_2CO_3$		2.3312 ^{17°}	909°
24		$K_2CO_3K_3CO_4.2H_3O$	174.23		309
25		$2K_2CO_3.3H_2O$	330.45		
26	" acid	$KHCO_3$	100.11		
27	chlorate	KClO ₃		2.33718°	357°
28		KCl		1.99414	772°
29		KAuCl ₄	378.14		
30		KOClCrO,	174.66	2.497	
31	chloroiridate	K ₂ IrCl ₆	484.06		decomp.
32	chloropalladate	K ₂ PdCl ₆	397.66	2.74-2.81	decomp.
33		K_2PdCl_4	326.74		decomp.
34				3.49940	decomp.
35		K_2 PtCl ₄		3.291 ²¹ °	
36		$K_3RhCl_6.3H_2O$	487.01		decomp.
37		K_2SnCl_6	409.96		
38		K_2CrO_4		2.731918°	971°
39		$K_3C H_5O_7.H_2O$	324.36		decomp.
40	cobalticyanide	$K_3Co(CN)_6$	332.33		1 0000
41	copartinitrite	2Co(NO ₂) ₃ .6KNO ₂ .	958.71		dec. 200°
		3H ₂ O.			

^{*} Decomposes at 200°. † Anhydrous. ‡ Sublimes at white heat.

ber.	Boiling	Crystalline Form			
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
2 3 4 5 6 7 8 9 10 11 12	400° * decomp.	decomp. insoluble 58° 18.87 soluble 196° soluble soluble v. soluble soluble 14.3 124.117.5° 7130°	s. soluble 52100° v. soluble v. soluble decomp. v. soluble 200 161 ⁵⁰ ° v. soluble	decomp. by alcohol sol. warm KOH insoluble alcohol 4 alcohol insoluble alcohol s. soluble alcohol soluble alcohol soluble alcohol soluble alcohol soluble alcohol soluble alcohol s. sol. al.; insol. ether	green
14 15	decomp.	26.7 ^{30°} 1.42	v. soluble 6.25 ^{100°}	soluble alk.; insol. al	hexag. prisms hexag. tablets.
18 19 20 21 22 23 24 25 26 27	\$ subl. w. h.	3.10° 53.480° s. soluble 19.515° 2.0710° v. soluble 89.40° 146.90° 129.40° 22.40° 3.30° 28.50° 27.710° sol. and dec. 1.2519° s. soluble	50100° 102.04100°	0.833 alcohol; sol. alk. soluble alcohol, alkalies soluble alcohol soluble acids soluble acids.	rhombohedral. regular monoclinic red regular brown rhombic monoclinic monoclinic monoclinic regular yellow needles red prisms black octahed. red regular
33 34 35 36 37 38 39 40		soluble 0.482° 16.6 s. soluble soluble 61.50° 199.731° v. soluble 0.090°	v. soluble 5.18 ^{100°} v. soluble decomp. 81.8 ^{106.1°} s. soluble	insol.al.; sol. KCl, NH ₃ aq. insol. al., ether. insoluble alcohol. insoluble alcohol. insoluble alcohol. insoluble alcohol. insoluble alcohol. insoluble alcohol, ether.	yellow regular yellow regular red tetrag red triclinic yellow rhomb.

[§] Decomposes at 810°. || Decomposes at 100°–200°. || Decomposes at 400°.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2122 ² 048 52 ¹⁶ 692 ⁴ 8109 ¹⁷	Melting Point, °C. fuses red heat 396° decomp. decomp. 3H ₂ O, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2122 ² 048 52 ¹⁶ 692 ⁴ 8109 ¹⁷	red heat 396° decomp. decomp. 3H ₂ O, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2122 ² 048 52 ¹⁶ 692 ⁴ 8109 ¹⁷	red heat 396° decomp. decomp. 3H ₂ O, 100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2122 ² 048 52 ¹⁶ 692 ⁴ 8109 ¹⁷	red heat 396° decomp. decomp. 3H ₂ O, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	048 5216° 6924° 8109 ¹⁷ ° 8533 ¹⁷ °	red heat 396° decomp. decomp. 3H ₂ O, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52 ¹⁶ ° 692 ⁴ ° 8109 ¹⁷ °8533 ¹⁷ °	396° decomp. decomp. $3H_2O$, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8109 ^{17°}	decomp. decomp. 3H ₂ O, 100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8533 ^{17°}	decomp. 3H ₂ O, 100
7 ferric oxalate $KFe(C_2O_4)_2.2\frac{1}{2}H_2O.$ 315.98 $K_3Fe(C_2O_4)_3.3H_2O.$ 491.19	8533 ^{17°}	3H ₂ O, 100
8 " " $ K_3 Fe(C_2O_4)_3.3H_2O 491.19 $	8533 ^{17°}	44 /
9 ferrocyanide K.Fe(CN), 3H,0 422 35 1	8533 ^{17°}	
		†
10 fluoride KF		789°-885°
11 " KF.2H ₂ O 94.13 2.4	454	41°
		decomp.
14 fluostannate $K_2 Sn F_6 H_2 O \dots 329.22 3.0$		
15 fluosilicate	$665^{17.5}$	‡
16 fluotitanate K. TiF ₆ . H ₂ O	317	
17 fluozirconate K_2ZrF_6	582	
18 formate		150°
19 hydride		decomp.
20 hydrosulphide KSH		decomp.
21 hydroxide KOH 56.11 2.1	044	360.4°
22 hypochlorite KClO 90.56		decomp.
23 hypophosphite KH ₂ PO ₂ 104.16		burns
24 iodate	975 ^{18°}	560°
25 " acid $KH(IO_3)_2$		
26 iodide	04324.30	680°
27 " tri KI ₃	49815°	45°
28 iodobromide KBr.IBr 325.86		decomp.
29 iodochloride KCl.ICl ₃		decomp.
magnesium chloride MgCl ₂ .KCl.6H ₂ O 277.90 1. (carnallite)	618	
32 manganate K_2MnO_4		dec. 190°
34 nickel sulphate K SO NiSO 6H O . 437.11 2.	124	
35 nitrate	14°	337°
36 nitride		
37 nitrite KNO ₂	$195^{25^{\circ}}\dots$	
38 nitroprusside K ₂ Fe(CN) ₅ ,NO.2H ₂ O 330.13		
39 osmate		
40 osmocyanide K_4 Os $(CN)_6$. $3H_2O$ $ 557.41 $		

^{*} Decomposes at 230°.

† Decomposes at red heat.

F.	1		Solubility is	n 100 Parts.	
upe	Boiling		Solubility II	100 Faits.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
-	•				
1		soluble		insoluble alcohol, ether.	amethyst need
2		25.40°		108.449°	monoclinic pl
3		soluble		insoluble alcohol	laminæ
	red heat	v. soluble	122.2103.30	sol. glvc., al	octahedra [clinic
5	dec. 1000°	4.900	1021000	insoluble alcohol	red tri. or mono-
6		334.5°	77.51000	s. soluble alcohol	red monoclinic.
7		92210	decomp.		olive br. cryst
8	*	4.70°	117.71000	insoluble alcohol	
9		27.8 ^{12.2} °	90.696.30	insoluble alcohol	yellow monocl
10		92.318°	v. soluble	insol. alcohol; sol. HF	
11		349.3 ^{18°}	v. soluble	insol. alcohol; sol. HF	regular
12		41 ^{21°}		insol. al.; sol. KC ₂ H ₃ O ₂	regular
13		6.45180	43.5100°		
14		$3.7^{18^{\circ}}$	33.3100°		octahedra
15		0.1217.50	$0.955^{100^{\circ}}$	insol. al.; sol. HCl	hexagonal
16		0.5560°	1.28200	sol. HCl	
17		0.782°	25100°		rhombic
18	decomp.	331 ^{18°}	657 ^{90°}		rhombic
19		decomp.	decomp.	insol. benzine, ether, CS,	crystalline
		soluble	soluble	v. soluble alcohol	yel. rhombohed.
21	subl. w. h.	$107^{15^{\circ}}$	178 ¹⁰⁰ °	v. soluble alcohol, ether	rhombh. (2H ₂ O)
22		v. soluble	v. soluble		
		v. soluble		sol. al.; insol. ether	hexagonal
24		$4.74^{0^{\circ}}$	$32.3^{100^{\circ}}$	insol. al.; sol. KI	regular[clinic
25		$1.33^{15^{\circ}}$			rhomb. or mono-
26		126.10°	$205.6^{100.7^{\circ}}$	14.28 al.; sol. ether	regular
27		v. soluble		sol. alcohol, KI	dark blue need
28					
29		decomp.		decomp. by ether	yellow rhombic.
		v. soluble		insoluble alcohol	green crystals
31		$64.5^{18.75^{\circ}}$	decomp.	decomp. by alcohol	hexagonal
20		1		-1 7011	douls on about
32		decomp.		sol. KOH	dark gr. rhomb.
33		v. soluble $7.0^{0^{\circ}}$	60.8 ⁷⁵ °	insoluble alconol	blue monoclinic
	decomp.	13.30°	247100°	insoluble alcohol, ether.	T
	decomp.		247.00	insoluble alcohol, ether.	dark grav
37		decomp. 300 ^{15.5°}		insol. alcohol	prismatic
38		$100^{16^{\circ}}$		soluble alcohol	red monoclinic.
100		s, soluble	soluble	insoluble alcohol, ether.	
			soluble	insoluble alcohol, ether.	
(1)		s. soluble	soluble	insoluble alcohol, ethel.	yellowish plates

[†] Loses 3H₂O at 60°-80°.

[¶] Rhombohedral or prismatic.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Potassium oxalate	KCO HO	184.22	2.08	decomp.
2		$K_2O_2O_4.11_2O$ $KHC_2O_4.\frac{1}{2}H_2O$	137.12	2.088†	decomp.
3		$\mathrm{KH_3(C_2O_4)_2.2H_2O}$	254.16	1.836	decomp.
4		K_2O	94.20	2.328	red heat
5		K_2O_4	142.20		red heat
6		$ KClO_4$	138.56	$2.524\frac{10.8}{4}$	610°
7		K_3CrO_3	297.30	2.021 4	dec. 170°
8	periodate	KIO_4	230.02	3.618^{15}	582°
9	A	KMnO₄	158.03	$2.7032^{\frac{9.9}{4}}$	dec. 240°
-	1	7			1
10 11		$K_2S_2O_8$	270.34 204.80		dec. < 100° dec. 440°
12			450.75		dec. 100°
13		K_3PO_4			dec. 100
14	" hydrogen .		174.25		decomp.
15	ny drogen .	$KH_{3}PO_{4}$		2.338%	96°
16	" pyro		384.53	2.33	3H ₂ O ₁ 300
17	" meta	$K_4P_4O_{12}.2H_2O$		2.26414.50	2H,O, 100
18	phosphite		158.25		decomp.
19	platinate	$K_{2}PtO_{3}.3H_{2}O$	375.45		
20	platinocyanide	K_2^2 Pt(CN) ₄ .3H ₂ O	431.49	$2.4548^{16^{\circ}}$	
21	platinonitrite	$K_2Pt(NO_2)_4$	457.24		
22			387.15		
23	ruthenate	$K_2RuO_4.H_2O$	261.92		H ₂ O, 200°
24		2 9	221.40	3.066^{29}	
25			154.50		
26			335.40		
27		0 \ /2	199.00		
28			230.20	1.61	6H ₂ O,100°
29		K ₂ NaCo(NO ₂) ₆ .H ₂ O.		1.6333250	dec. 135°
30		$K_2SnO_3.3H_2OK_2SO_4$	$299.25 \\ 174.27$	3.197 2.6633	1072°
32		KHSO_{4}	136.18	2.245	200°
33		KHSO ₄	136.18	2.612	200
34		$K_{3}S_{3}O_{4}K_{3}S_{3}O_{7}$	254.34	2.012 2.27	>300°
35		2 2 1	110.27	2.13	2000
36		K ₂ S.5HO	200.35	2.10	3H ₂ O,150°
37		K_2S_2	142.34		
38			174.41		
39	" tetra		206.48		dec. 850°
40	" penta	K_2S_5	238.55		

^{*} Decomposes at 411°.

[†] Density of the anhydrous salt.

F	1	1			1
Number.	Boiling		Solubility i	n 100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		33160			monoclinic
2		2.20°	51.5 ¹⁰⁰ °		trimetric
3		1.8130	01.0		triclinic
4		v. soluble	v. soluble	soluble alcohol, ether	gray octahedral
5	decomp.	decomp.		decomp. by alcohol	vellow leaflets
	*	0.70°	19.8100°	s. sol. al.; insol. al., ether	0
7		s. soluble	10.0	insol. al., ether	brown octahed.
	O, 300°	$0.66^{13^{\circ}}$	soluble	s. soluble KOH	rhombic
	,	2.830°	32.3575°	sol. conc. H ₂ SO ₄	dark red rhomb
10		$0.564^{0^{\circ}}$	4.08400	insoluble alcohol	prismatic
1		s. soluble	1.00-0	msoruble alconor	black quadratic
11		decomp.	decomp.	decomp. HCl	red crystals
13		s. soluble	soluble	insoluble alcohol	rhombic
1		v. soluble	v. soluble	v. soluble alcohol	
	H ₂ O, 400°	$25^{7^{\circ}}$		insoluble alcohol	tetragonal
		soluble	v. soluble	insoluble alcohol	
		s. soluble		soluble acids	amorphous
18		v. soluble		insoluble alcohol	
		soluble		insoluble alcohol	yel. rhombohed.
20		s. soluble	v. soluble	soluble alcohol, ether	yellow rhombic.
21		$3.8^{15^{\circ}}$	soluble	1.11 TZOTT	monocl. prisms.
22		decomp.	decomp.	soluble KOH	rhombohedral black rhombic
		v. soluble	122.2 ^{100°}		black rhombic .
		soluble	124.2	insoluble alcohol	
1		soluble	soluble	insoluble alcohol	amorphous
		25 ^{20°}	100	4, alcohol	regular
1		13 ^{12°}	20 ^{15°}	1, 6200102	monoclinic
		.07 at 25°		insol. al., dil. ac. sol. a.	
30		$106.6^{10^{\circ}}$	110.5 ²⁰ °	insol. al.; s. sol. KOH	rhombohedral
31		8.50°	$26.2^{100^{\circ}}$	insoluble alcohol	rhom. or hexag.
	decomp.	36.3°	121.6 ¹⁰⁰ °	decomp. by alcohol	monoclinic
33					rhombie
34		soluble	decomp.	1 1 1 1 1 1 1	
35		soluble	v. soluble	sol. al., glyc.; insol. ether	brown crystals.
36		soluble		sol. al., glyc.; insol. ether	
37 38		soluble soluble	decomp.	soluble alcohol	yellowish red vellowish brown
39		soluble	decomp.	soluble alcohol	J
40		v. soluble	v. soluble	v. soluble alcohol	crystals
TXU	* * * * * * * * * * * * * * * * * * * *	v. soluble	v. soluble	,, soldbic diction, , , , , ,	[Crystals
_					1

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Potassium sulphite	$K_2SO_3.2H_2O$	194.30		decomp.
2	" acid	KHSO ₃	120.18		decomp.
3	sulphocyanate	KCNS	97.18	1.906	172.3°
	tartrate	$K_2C_4H_4O_6.\frac{1}{2}H_2O$	235.24	1.975	
4	acid	$K_2O_4\Pi_4O_6.2\Pi_2O$ $KHC_4H_4O_6$	188.14	1.956	
5	acid	1110411406	100.11		
c	tellurate	K ₂ TeO ₄ .5H ₂ O	359.78		
6	tellurite	$K_2 TeO_4.5 \Pi_2 O \dots K_2 TeO_3 \dots$	253.70		red heat
7 8	thioantimonate	$2K_3SbS_4.9H_2O$	893.70		
		K_3AsS_4	320.54		
9	thioarsenate	$K_3AsS_4K_3AsS_3K_3AsS_3K_3$	288.47		decomp.
10	thioarsenite	K_2CS_3	186.41		accomp.
11	thiocarbonate		238.34	2.278^{22}	decomp.
12	thionate di	$K_2S_2O_6$	270.41	$2.304^{\frac{20}{4}}$	
13	011	$K_2S_3O_6$	302.48	2.3044 $2.2963^{\frac{20}{4}}$	
14	tetra	$K_2S_4O_6$	723.15	2.1123^{20}	decomp.
15	periou	$2K_2S_5O_6.3H_2O$	1051.5	6.44 ^{15°}	burns
16	thioplatinate	$K_2Pt_4S_6$	473.57		10H ₂ O,100
17	thiostannate	$K_2SnS_3.10H_2O$	589.04	*2.590	H ₂ O, 180°
18	thiosulphate	$3K_2S_2O_3.H_2O$	362.23	-2.590	red heat
19		$K_2WO_4.2H_2O$	1166.3		red near
20		$K_2W_4O_{13}.8H_2O$	2014.7		decomp.
21	" para	$K_6^2W_7^4O_{24}.6H_2O$	380.70		decomp.
22		K_2UO_4		1.5576 ^{21.5} °	dec. > 200
23		$KS_2COC_2H_5$	160.28	6.4754	940°
	Praseodymium	Pr	140.61	2.53116.50	8H,O,170°
25	am. sulphate	$Pr_{2}(SO_{4})_{3}.(NH_{4})_{2}SO_{4}$.8H ₂ O	749.62		
26	bromate	$Pr_2(BrO_3)_6.18H_2O$	1373.008		56.5°
27	carbide	PrC_2	164.61	5.10	decomp.
28	carbonate	$Pr_2(CO_3)_3.8H_2O$	509.33		6H ₂ O,100°
29		PrCl ₃	246.98	4.01718	818°
30	"	PrCl ₃ .7H ₂ O	373.09	$2.251^{16.2^{\circ}}$	
31	oxalate	$Pr_2(C_2O_4)_3.10H_2O$	725.36		
32	oxide tri	Pr_2O_3	329.2	7.068^{20}	
33	" tetra	Pr_2O_4	345.2	5.9784	
34	" per	Pr_2O_5	361.2		
35		$Pr_2(SO_4)_3.3K_2SO_4.$ H_2O	1146.3	$3.275^{16^{\circ}}$	
36	sulphide	$Pr_{2}S_{3}$	377.41	5.042110	decomp.
37		$\Pr_2(SO_4)_3$	569.41	3.72160	
38	1	- COLON OTT O	713.54	2.8213.20	
	Radium	70	226.4		700°
-	1				

^{*} Anhydrous.

-					
Number.	Boiling		Solubility in	100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		100	v. soluble	s. soluble alcohol	monoclinic
2		soluble			needles
3	dec. 500°	177.20°		soluble alcohol, acetone	prisms
4		133 ^{2°}	158 ^{23°}		monoclinic
5		0.370°	6.1 ^{100°}	insol. al., H.C ₂ H ₃ O ₂ ; sol. a., alk.	
6		s. soluble	soluble	insol. al.; s. sol. KOH.	
7		s. soluble	soluble 🕺		
8		soluble		insoluble alcohol	0
9		v. soluble soluble		insoluble alcohol	crystalline
11		v. soluble		s. soluble alcohol	red br. crystals.
12		6	66 ¹⁰⁰ °	insoluble alcohol	hexagonal
13		v. soluble	decomp.	insoluble alcohol	rhombic needles
		v. soluble		insoluble alcohol	hexag. prisms
15		50	decomp.	insoluble alcohol	rhombic plates.
16		insoluble		decomp. by HCl	blue gray crys
17		soluble		insoluble alcohol	
	decomp.	96.1°	$312^{90^{\circ}}$	insoluble alcohol	monoclinic
19		51.5	151.5	insoluble alcohol	triclinic needles
20		soluble	v. soluble		octahedra
21 22		2.15 insoluble	insoluble	insoluble alcoholv. soluble acids	rhombic[rhomb.
	200°	v. soluble	msoluble	20 alcohol; insol. ether	orange yellow prisms
		decomp.		20 alcohor, msor. concr	yellow
25		s. soluble			crystalline
					prisms
26	14H ₂ O,100°	190 ²⁵ °			green hexag.
27		decomp.	decomp.	sol. dil. a., conc. H ₂ SO ₄	
20		insoluble		sol. acids	crystalline
1-0		69.5 ¹³ °	v. soluble	sol. al. pyr. insol. CHCl ₃	
30		176.5	v. soluble	soluble HCl	green crystals
		$0.098^{25^{\circ}}$		sol. conc. acids	crystalline
32					greenish yellow.
33					DIACK
35		s. soluble		sol. HNO ₃ , HCl	crystalline
36		insoluble	decomp.	soluble dil. acids	
37		23.64 ^{0°}	$1.01^{100^{\circ}}\dots$		1
38			• • • • • • • • • •		
39					

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Radium bromide	RaBr ₂	386.24		subl. 900°
2	chloride	RaCl ₂	296.9		1650°
	Rhodium	Rh	102.9	12.1	1970°
4	chloride	RhCl ₃	209.28		*
5	"	RhCl ₃ .4H ₂ O	281.34		
6	hydrosulphide	$Rh(SH)_3$	202.13		
7	hydroxide tetra	$Rh(OH)_4$	170.93		
8	" sesqui	$Rh(OH)_3$	153.92		decomp.
9	A	$Rh(NO_3)_3.2H_2O$	324.96		accomp.
-	nitrate	RhO	118.90		
10	oxide mon	Rh_2O_3	253.80		
11	pendar		134.90		
12	ui	RhO_2			
13	sulphate	$Rh_2(SO_4)_3.12H_2O.$	710.20		1
14	sulphide mono	RhS	134.97		decomp.
15	" sesqui	Rh_2S_3	302.01		
16	sulphite	$Rh_2(SO_3)_3.6H_2O$	554.11		
17	Rubidium	Rb	85.45	1.532200	38.5°
18	bromide	RbBr	165.37	$3.210^{23^{\circ}}$	683°
19	carbonate	Rb_2CO_3	230.90		837°
20	" bi	RbHCO₃	146.458		dec. 175°
21	chlorate	RbClO ₃	168.91		
22	chloride	RbCl	120.91	$2.706^{23^{\circ}}$	726°
23	chloroplatinate	Rb ₂ PtCl ₆	578.66	3.9417.50	
24	chromate	Rb ₂ CrO ₄	286.90	3.518	
25	dichromate	Rb ₂ Cr ₂ O ₇	386.90		
26	fluoride	RbF	104.45	$3.202^{16.5^{\circ}}$	753°
27	fluosilicate	Rb ₂ SiF ₆	313.20	3.338200	
28	hvdride	RbH	86.46	2	decomp.
29	hydroxide	RbOH	102.46	3.203110	301°
30	iodide	RbI	212.37	3.428249	642°
31	iodate	RbIO ₃	260.37	4.5594	0.22
32	nitrate	RbNO ₃	147.46	3.131 ^{15°}	
32	nitrate	100103	111.10	0.101	
0.0	: 1	PhO	186.90	3.728	
33	oxide mon	Rb_2O	202.90	3.65°	600°
34	ш		218.90	3.530°	<500°
35	" tri	Rb_2O_3		5.00	600° -650 °
36	" tetr	Rb_2O_4	234.90	0 610159	223°-224°
37	pentasulphide	Rb_2S_5	331.25	2.618 ^{15°}	
38	perchlorate	RbClO ₄	184.91	3.014	fusible
39	periodate	RbIO ₄	276.37	3.9184	
40	permanganate	RbMnO ₄	204.38	3.23510.40	
41	sulphate	Rb_2SO_4	266.97	3.6113^{24}	

^{*} Decomposes at 450°-500°.

-		ı			1
Number.	Boiling Point.		Solubility in	1 100 Parts.	Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		soluble	soluble	soluble alcohol	
2					yellowish reg
3		insoluble	insoluble	s. sol. a., aqua regia	grayish white
4		insoluble		insoluble acids	red
5		v. soluble		sol. al., HCl; insol. ether	
6		insoluble	decomp.	insol. a., Na ₂ S; sol. aq. r.	
7		insoluble		soluble HCl	green
8 9		insoluble soluble	soluble	soluble acids, KOH	black gelatin's
10		insoluble	insoluble	insoluble acids	
11		insoluble	insoluble	insol. acids, KOH	gray crystals
12		insoluble	insoluble	insol. acids, KOH	brown
13		v. soluble	decomp.	insoluble alcohol	pale yel. cryst.
14		insoluble	insoluble	insol. acids, aqua regia.	bluish
15		insoluble	insoluble	insoluble	black tablets
16		soluble		insoluble alcohol	yellow crystals
17	696°	decomp.	decomp.	soluble acids, alcohol	soft white
18		985°	205.2113.50		regular
19	†	450 ²⁰ °	soluble	soluble alcohol	
20		116.1		soluble alcohol	rhombic prisms
21		2.84.70	5.1 ^{19°}		trimetric
22		76.38 ^{1°}	138.9 ¹⁰⁰ °	soluble alcohol	regular
23		$0.184^{0^{\circ}}$	0.6341000	insoluble alcohol	yellow regular.
24		6200	95.7600	• • • • • • • • • • • • • • • • • • • •	yellow rhombic
25		5.72 ^{18°}	38.965°		tricl.or monocl.
26 27		$22.7^{13^{\circ}}$ $0.16^{20^{\circ}}$	1.35 ¹⁰⁰ °	insoluble al., ether	
28				insoluble alcohol; sol. a.	regular
29		decomp. 198 ^{30°}	decomp. v. soluble	decomp. acids	prismatic need.
30		$137.5^{6.9^{\circ}}$	15217.4°	soluble alcohol	reg. octahed.
31		$2.1^{23^{\circ}}$	102		crystals
32		20.10°	452 ¹⁰⁰ °	v. soluble HNO ₃	reg. or hexag.
					prisms
33		soluble			yellowoctahed.
34					yellow needles
35		sol. decomp.			black
36					yellow
37		decomp.			red rhombic
		1.0921.30		insoluble alcohol	rhombic
39		$0.65^{13^{\circ}}$			tetragonal
40		0.46°	4.68600		crystalline
41		$36.4^{0^{\circ}}$	81.81000		hexagonal

[†] Decomposes at 740°.

Number.	Name.	Formula.	Molec- ular Weight.	$\begin{array}{c} \text{Specific} \\ \text{Gravity.} \\ \text{Water} = \text{I.} \\ \text{Air} = \text{I} \text{ (A).} \\ \text{H}_2 = \text{I} \text{ (D).} \end{array}$	Melting Point, °C.
1	Rubidium sulphide.		275.03		
2	tartrate acid	$RbHC_4H_4O_6$	234.49	2.399	decomp.
3	Ruthenium		101.7	8.6	>1950°
4	66	Ru	101.7	11.4	2000°+
5		Ru	101.7	12.268	2000°+
6	chloride di	RuCl ₂	172.62		
7	" tri	RuCl ₃	208.08		
8	" tetra	RuCl ₄	243.54		
9	hydroxide(sesqui-)	$Ru(OH)_3$	192.82		
10	oxide sesqui	Ru_2O_3	331.60		
11		$RuO_2 \dots \dots$	173.80	7.2	
12		Ru ₂ O ₅	363.60		½O, 360°
13	" non	Ru_4O_9	711.20		O, 440°
14	" tetr	RuO_4	165.70	5.7	50°
15	silicide		130.0	5.4040	
16	Samarium		150.4	7.7-7.8	1350°
17		$\mathrm{Sm}_2(\mathrm{BrO}_3)_6.18\mathrm{H}_2\mathrm{O}$	1410.608		75°
18	bromide	$SmBr_3.6H_2O$	498.26	$2.97^{22^{\circ}}$	
19	carbide	SmC_2	174.4	5.86	
20	chloride	$SmCl_3$	208.18	$ 4.465^{\frac{18}{4}} $	686°
21		$SmCl_3.3H_2O$	310.83	2.392 ^{15°}	
22	fluoride		216.41		
23	hydroxide		402.85		
24	nitrate	$Sm(NO_3)_3.6H_2O.$	444.53	2.375	
25	oxide	$ \mathrm{Sm}_2\mathrm{O}_3$	348.80	8.347	
26	peroxide	Sm_4O_9	745.60		
27	sulphate		733.14	2.930	8H ₂ O, 450
		Sc	44.1		1200°
29	schloride	$ScCl_3 \cdots \cdots$	150.48		subl.800-850°
30	oxide	Sc_2O_3	136.2	3.864	
31	sulphate		376.41	2.579	
	Selenium		633.6	$4.26-4.28^{25}$ °	softens 50°
33	"	Se ₈	633.6	4.47250	170°-180°
34		Se ₈	633.6	4.8250	217°
35	bromide mono		318.24	3.604150	
36		SeBr ₄	398.88		dec. 75°
37	bromochloride tri-	SeBr ₃ Cl	354.42		decomp.
38	bromtrichloride	SeBrCl ₃	265.50	0.0017.50	dec. 190°
39	chloride mono		229.32	$2.906^{17.5^{\circ}}$	
40	tetra	SeCl ₄	221.04		sublimes
41	lodide mono	Se_2I_2	412.24		100
42		SeI_4	586.88	15.0	75°-80°
43	oxide di	$ SeO_2$	111.20	$3.9518_{\overline{15.8}}^{15.3}$	390°

^{*} Decomposes at 106°.

^{† 18}H₂O lost on heating to 150°.

ber.	Boiling		Solubility i	n 100 Parts.	Crystalline Form
Number,	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		v. soluble	v. soluble		crystals
2		1.1825°	$11.7^{100^{\circ}}$		trimet. prisms
		insoluble	insoluble	s. sol. a., aqua regia	black porous
4		insoluble	insoluble		melted
		insoluble	insoluble		grayish cryst
6		insoluble		insol. acids, alkalies	black cryst
7		soluble	decomp.	s. sol. al.; insol. a., CS ₂ .	brown cryst
8		soluble		soluble alcohol [NaOH	
9				sol. a. NH ₃ aq.; insol.	black powder
10		insoluble		insoluble acids	blue black
11		insoluble		insol. a.; sol. fused KOH	
12				soluble HCl	black cryst
13				soluble alkalies	black cryst
15		s. soluble	insoluble.		yellow rhombic.
16		insoluble	insoluble.	soluble HNO ₃ + HF	metallic prisms.
	14H ₂ O,100°†	114 ²⁵ °			vol har mi
	14H ₂ O,100			• • • • • • • • • • • • • • • • • • • •	yel. hex. prisms
19		deliques. decomp.	decomp.	soluble acids	yellow hexag
20		decomp.	decomp.	sol. ab. al., pyr	green yel. cryst.
21		deliques.		301. as. a, py1	green
22		insoluble		insoluble acids	
23		insoluble		sol. a.; insol. alkalies	
24		v. soluble			pale yel. prisms
				v. soluble in acids	pare Jen prising
26		insoluble		.,	
27	İ	s. soluble			
28					
29		v. soluble		insol. ab. alcohol	shining plates
30		insoluble		soluble hot conc. acids.	white powder
31					
32	690°	insoluble	insoluble	sol. CS_2 , conc. H_2SO_4	red powder
33	690°	insoluble	insoluble	sol. CS ₂ , conc. H ₂ SO ₄	red monoclinic.
		insoluble	insoluble	insol.CS2; sol.conc.H2SO4	steel-gray hex
35	225°-230°	insoluble	decomp.	sol. CS ₂ , CHCl ₃ , Et. Br.	bright red liquid
36		decomp.		sol. CS ₂ , CHCl ₃ , Et. Br.	orange crystals.
37				s. soluble CS_2	orange crystals.
38				insoluble CS_2	yelbrown crys.
	145°	decomposes		v. sol. CS ₂ , CHCl ₃ , CCl ₄ .	red liquid
40		decomposes		s. sol. CS_2 ; sol. $POCl_3$	yel. crystalline.
41		decomp.	decomp.		steel gray cryst.
42	I ₄ , 100°	decomp.	decomp.	[tone	
43	¶	38.4 ^{14°}	v. soluble	v. sol. al., HC ₂ H ₃ O ₂ , ace-	tetrag. needles.
	† Loses 3SO.	at 1050°	& Decomp	at 100°. ¶ Sublimes	at 250° 280°

[‡] Loses 3SO₃ at 1050°. § Decomp. at 100°. ¶ Sublimes at 250°–280°.

-					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Selenium oxychloride	SeOCl ₂	166.12	2.44	10°
2		Se, N,			exp. 200°
3	sulphide	SeS	111.27	3.0560°	decomp.
4	sulphoxide	SeSO ₃	159.27		dec. 40°
5	sulphoxytetra	SeSO ₃ Cl ₄	301.11		165°
6	Selenic acid	H SeO	145.22	2.9508150	58°
7	" "	$H_2SeO_4.H_2O$	163.24	2.627315°	25°
•	Selenious acid		129.22	3.006615.70	decomp.
	Silicic acid meta			1.813 ^{17°}	decomp.
10		H SiO	96.33	1.576170°	
	Silicobromoform	SiHRr	260 10	2.7	> -60°
10	Silicochloroform	SHIDI3	125 60	1.65	-1.34°
	Silicofluoform		86.31	2.980° D.	-1.54 -110°
19	Sincondorm	SIMF ₃	80.31	2.98° D.	-110
14	Silicoiodoform	C:III	410 07	3.314 ²⁰ °	
15	Silicon cryst	O: 1113	28.3	2.4910°	1420°
16		Si		2.4910	
10	graphitie	01	48.3	2.00-2.50	
17	amorphous	a:	28.3	2.00	
18	boride tri	SI	61.3	2.52	
19	forme tri	SiB_6		2.47	
20			94.3		95°
21	bromide tri	OlDr ₃	268.06 347.98	2.81288	95 5°
22	tetra			2.01200	9
23	bromotrichloride	SIDIUI3	$214.60 \\ 259.11$		> -60°
24	tribromchloride			2.432	>-00 >-39°
25	carbide		303.52	3.12 ¹⁵ °	
26			40.30	1.580°	-1°
27	chloride tri		134.68	1.58	-1° -89°
28	tetra	SiCl ₄	170.14	1.45	- 59
	chlorohydrosulphide	0101 ₃ 0H	167.76	" " "	-77°
29	fluoride		104.30	3.57 A.	-77
30	hydride	Slf1 ₄	32.33		1900
31		Si_2H_6	62.65	2.37 D.	-138°
32	iodide di	2	282.14		0500/
33	IICAa		818.22	10 FC A	250°(vac.)
34	0001a		535.98	18.56 A.	120.5°
35		SiHI ₃	410.068	3.28645	8°
36	iodotrichloride		261.60	0.0015.60	(10000
37	oxide di- amorph	SiO_2	60.30	2.2015.60	(1600°-
38	cryst	SiO_2	60.30	2.318-2.654	1750°
39	oxychloride	5120016	301.36	10.05 D.	

^{*} At 181 cm.

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2	179.5°	decomp.	insoluble	insol. al.; s. sol. CS ₂	yellowish liquid orange yellow.
3		insoluble	insoluble	sol. CS_2 ; insol. ether sol. conc. H_2SO_4	or. yel. tablets. green prisms
5	183°	decomposes decomposes			white needles.
1	260°	v. soluble		sol.conc.H ₂ SO ₄ ; dec. al.	hexag. prisms.
8		v. soluble v. soluble	v. soluble	v. soluble alcohol	needles
9		insoluble s. soluble		sol. alk.; insol. NH ₄ Cl sol. alk.; insol. NH ₄ Cl	amorphous
11	109°-110°	decomposes		t do ottol dol	
	34° -80.2°	decomposes		sol. CS ₂ , CHCl ₃ , CCl ₄ dec. alk., al., ether; sol.	
10	-00.2	decomposes		toluol.	
	220° 3500°	decomposes	insoluble	sol. $CS_2 \cdot \cdot \cdot \cdot \cdot \cdot [+ HF]$ insol. HF ; sol. HNO_3	liquidgray octahed
1	3500°	insoluble	insoluble	insol. HF; sol. HNO ₃ + HF, fused KOH	crystalline
	3500°	insoluble	insoluble	sol. HF, KOH	brown amorph.
18		insoluble insoluble		(s. sol. hot conc. H ₂ SO ₄ , conc. HNO ₃	black rhombic black crystals.
19	265°	decomposes		decomp. by KOH	rhombic
21		decomposes	decomp.	decomp. by H ₂ SO ₄	
22	80°	decomposes			
	103°-105°	decomposes			
24		decomposes		insoluble acids	rhombic plates
25	144°–148°	insoluble decomposes	insoluble	decomp. by alkalies	leaflets
27	59.6°	decomposes	decomposes	decomp. by alcohol	vellow
28		decomposes		decomp. by alcohol	,
29		decomposes		sol. al., ether, HNO ₃	gas
30		insoluble		decomp. by KOH	
31	52°	decomposes			liquid
32		decomposes	. ,	insol., CS ₂ , CHCl ₃ , C ₆ H ₆ .	
	decomp.	decomposes		19, CS ₂	hexag. plates .
34		decomposes		2.227°, CS ₂	reg. octahedra.
	dec. 150°	1		sol. ∞ benzol and CS_2 .	
	113°-114°	decomposes		sol. hot. alk., HF	
37 38		insoluble insoluble		insol. alk.; sol. HF	
39		decomposes		sol.CS ₂ ,CHCl ₃ ,CCl ₄ , ether	
00	100 100	account poses		27 37 47	

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1 (D)$.	Melting Point, °C.
-	0.11	ata	00 11		
	Silicon sulphide				000
2		SiSBr ₂			93°
3		SiSCl ₂			75°
4	Silver	Ag	107.88	10.53	961.5°
5		Ag	107.88		955° in air
6	acetate	$AgC_2H_3O_2$	166.90	3.259	decomp.
7		Ag_3AsO_4	462.60	6.66250	fusible
Ť		4			
8	arsenite	Ag ₃ AsO ₃	446.60		decomp.
,	Zijemie	3	110.00		accomp.
9	bromata	AgBrO ₃	235.80	5 206	decomp.
10		AgBr			427°
			107.00	0.4754	
11	carbonate	Ag_2CO_3	275.70	$6.017.5^{\circ}$	dec. 200°
		4 670	101 00	4041190	2222
12		AgClO ₃		4.401 ²³ °	230°
13		AgCl	143.34		451°
14		Ag_2CrO_4			
15	citrate	$AgC_6H_5O_7$	296.92		decomp.
16	cyanate	AgCNO	149.89	4.0	decomp.
17	cvanide	AgCN	133.89	3.95	decomp.
18		$Ag_2Cr_2O_7$			decomp.
10		126201207	1010		accomp.
19	ferricyanide	Ag_3FeCy_6	535.54		
00	c	A T. C II O	001 44		
20	ferrocyanide	$Ag_4FeCy_6.H_2O$	661.44	- 05015 50	
21	fluoride	AgF	126.88	5.85215.5	435°
22	fluosilicate	$Ag_2SiF_6.2H_2O$	394.09		<100°
23		$AgIO_3$			decomp.
24	iodide	AgI	234.80	5.675 ²⁵	526°-556°
25	nitrate	$AgNO_3$	169.89	$4.352^{19^{\circ}}$	218°
26	nitrite	AgNO ₂	153.89	4.453 ^{25°}	
27		Ag ₂ Fe(CN) ₅ NO			
	mior oprassiae	118210(011)5110	0,1,00		
28	ovalate	$Ag_2C_2O_4$	303 76	5 02040	decomp.
29					O.300-340
29	Oxide	$Ag_2O \dots$	231.70	1.021	0,500-540
20		1.0	100 00	- 4-4	1 > 1000
30		AgO			dec.>100°
31		$AgClO_4$			486°
32	permanganate	$AgMnO_4$	225.81		decomp.

^{*} At 22.5 mm.

ber.	Boiling				Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1	white heat	decomposes		sol. dil. alk.; dec. by al	needles
	150°	decomposes		soluble CS_2	plates
3	92° *	decomposes	decomposes	soluble CS_2	prisms
4	1955°	insoluble	insoluble	\(\) sol. HNO ₃ , hot cone.	
5	1955°			H ₂ SO ₄ ; insol. alk.	
6		$1.02^{14^{\circ}}$	$2.52^{80^{\circ}}$		laminæ
7		$0.00085^{20^{\circ}}$		sol. H.C ₂ H ₃ O ₂ , NH ₃ aq.	dark red
				NH ₄ salts	
8		$0.00115^{20^{\circ}}$	insoluble	sol. H.C ₂ H ₃ O ₂ , NH ₃ aq. NH ₄ salts	yellow
9		0.158 ^{20°}		sol. NH ₂ aq.; s. sol. HNO ₂	tetragonal
10		0.138^{20} $0.000026^{25^{\circ}}$	0.000141000	$.051^{100^{\circ}}$ NH ₃ aq.; sol.KCN	pale yel. octah.
111	1	0.000020^{-3} $0.0031^{15^{\circ}}$	0.05100°	sol. NH ₃ aq., Na ₂ S ₂ O ₃ ;	pale yer. octan.
11		0.0031-	0.00	insol. alcohol	
12	‡	$10^{15^{\circ}}$.	5080°-90°	insol. alcohol[KCN	tetrag. or reg
13		$0.000152^{20^{\circ}}$	$0.0022^{100^{\circ}}$	sol. conc. HCl., NH ₃ aq.,	regular
14		$0.0028^{18^{\circ}}$		sol. a., NH ₃ aq., KCN	dark red cryst.
15		$0.028^{18^{\circ}}$	$0.0284^{25^{\circ}}$	sol. NH ₃ aq., KCN	needles
16		s. soluble	soluble	sol.HNO ₃ , NH ₃ aq., KCN	
17		$0.000021^{25^{\circ}}$	insoluble	sol. NH ₃ aq., KCN, HNO ₃	white curdy
18		$0.0083^{15^{\circ}}$	decomp.	v. sol. HNO ₃ , NH ₃ aq.,	red triclinic
19		0.000066 ²⁰ °		KCN sol. NH ₃ aq., hot (NH ₄) ₂	orange yellow.
				CO ₃ [a.	0-0
20		insoluble		sol. KCN,NH ₃ aq.; insol.	yellowish white
		$182^{15.5^{\circ}}$			yellow tetrag
22	1	v. soluble			crystals
23		$0.00385^{18^{\circ}}$		sol. HNO ₃ .NH ₃ aq., KI	monoclinic
24		0.000035 ^{21°}		sol. KCN, Na ₂ S ₂ O ₃ , NaCl	yellow hexag
					or regular.
25	decomp.	122 ^{0°}	940100°	66 al., ether, glycerine.	rh'b. or hexag. rhombohed.
26		0.33	soluble	insoluble alcohol	crystals
1		insoluble		insol. al., HNO ₃ ; sol.	flesh colored
				NH₃aq.	
		$0.00339^{18^{\circ}}$		sol. NH₃aq., KCN	white
29		$0.00215^{20^{\circ}}$		sol. NH ₃ aq., KCN, Na ₂ S ₂ O ₃ [NH ₃ aq.	brown powder
30		insoluble		sol. conc. H ₂ SO ₄ , HNO ₃ ,	black octahed.
		soluble		22204, 21103,	
		0.550°	1.69 ^{28.5} °		monoclinic
					The state of the s

[†] Decomposes at 700°. ‡ Decomposes at 270°,

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1 2	Silver phosphate ortho pyro	Ag_3PO_4 $Ag_4P_2O_7$	418.68 605.60	7.321 5.306 ^{7.5} °	849° 585°
3 4	potassium cyanide. selenide	$KAg(CN)_2$	199.00 294.96	8.0	red heat
5	sulphate	Ag_2SO_4	311.83	5.40	660°
6	sulphidesulphite	$Ag_2SAg_2SO_3$	247.83 295.83	6.85-7.32	825° dec. 100°
8	sulphocyanate tartrate	$AgCNS$ $Ag_2C_4H_4O_6$	165.96 363.79	3.4321	decomp.
10 11	telluridetrinitride	Ag_2TeAgN_3	343.26 149.91	8.318	955° 250°
	tungstate Sodium	Ag_2WO_4 Na	463.76 23.00	0.9735 ^{13.5} °	< redness 97.6°
14 15	acetatealuminate	$NaC_2H_3O_2.3H_2O$ $Na_2Al_2O_4$	164.2	1.4	58° 1800°
16 17 18	amide[phate ammonium phos-antimonate	NaNH ₄ HPO ₄ .4H ₂ O 2NaSbO ₃ .7H ₂ O	40.03 209.15 508.51	1.554	decomp.
19	rsenate	$Na_2H_2Sb_2O_7.H_2O$ $Na_3AsO_4.12H_2O$		1.7593	85.5°
21 22	" acid	Na ₂ HAsO ₄ .7H ₂ O Na ₂ HAsO ₄ .12H ₂ O	312.08 402.16	1.67–1.76	57° 28°
23 24	arseniteaurosulphide	$Na_2^2HAsO_3$ $NaAuS.4H_2O$	169.97 324.33	1.87	
25 26	benzoate borate meta	$NaC_7H_5O_2$ $NaBO_2$	144.040 66.00		966°
27 28	tetra	$Na_2B_4O_7$ $Na_2B_4O_7.5H_2O$	202.00	2.367 1.815	878°
29 30	" meta	$Na_2B_2O_4.4H_2O$	382.16	1.694 ¹⁷ °	red heat 57°
31 32	bromide	NaBrO ₃ NaBr	150.92 102.92	$3.339_{\overline{17.5}}^{17.5} \\ 2.95 - 3.08$	381° 757.7°
33 34		$Na_2PtBr_6.6H_2O$		2.176 ²⁴ 3.323	decomp.
35 36	carbide	Na ₂ C ₂ Na ₂ CO ₃ Na ₂ CO ₃ .H ₂ O	106.00	1.575^{15}° 2.43-2.51	849° H ₂ O, 106°
37 38 39		$Na_2CO_3.H_2O$ $Na_2CO_3.10H_2O$ $NaHCO_3$	286.16	1.446 ^{17°} 2.19–2.22	† 34°
*	Loses 7H ₂ O at 100°.	** Loses 12H ₂ O at			+

ber.	Boiling		Solubility in	100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		0.00193 ^{20°}		sol. acids, NH ₃ aq., KCN	yellow
2		insoluble	insoluble	sol. NH ₃ aq., HNO ₃ , H ₂ SO ₄ , KCN	
3		25 ^{20°}	v. soluble	4 alcohol; insol. acids	reg. octahedra.
4		insoluble		sol. conc. hot HNO ₃ , NH ₃ aq.	gray
5	dec. 1085°	0.7314.5°	1.393 ¹⁰⁰ °	sol. H ₂ SO ₄ , HNO ₃ , NH ₃ , aq.; insol. al.	rhombic [or triclinic
6	oxidizes	0.00002		sol. conc. H ₂ SO ₄ , HNO ₃	gray black reg.
7		s. soluble		sol. NH ₃ aq.; insol. HNO ₃	crystals
8		$.000021^{25^{\circ}}$	0.00023100°	insol. dil. a.; sol. NH ₃ aq	curdy
1		0.218	$0.203^{25^{\circ}}$	soluble NH ₃ aq., KCN	scales
1		insoluble insoluble	.011000		gray octahedra.
	explodes	.05 ¹⁵ °	.01200	sol. dil. HNO ₃ , conc. a sol. HNO ₃ ,NH ₃ aq.,KCN	prismspale yel. cryst
	877.5°	decomp.	decomp.	insol. benzol., kero.;	pale yel. cryst
		266	200	sol. al. 2.1 ^{18°} [sol. a.	monocl. prisms.
		soluble	v. soluble	insoluble alcohol	amorphous
	400°	decomposes	decomposes		olive green
17		16.7	100	insoluble alcohol	
1		.03112.30		s. sol. al., NH ₄ salts	octahedra
		s. soluble	s. soluble	s. soluble alcohol	
		26.717			
21		$61^{15^{\circ}}$ $17.2^{0^{\circ}}$	v. soluble 140.7 ^{30°}	s. sol. alcohol	crystalline
22	**	v. soluble	s. soluble	insoluble alcohol	mono. or rhom
24		soluble	s. soluble	soluble alcohol	
25		62.5 ²⁵ °	76.9 ¹⁰⁰ °	2,3 ²⁵ °, 8.3 ⁷⁸ ° al	crystalline
26		soluble	v. soluble		
27		1.35°	52.5 ¹⁰⁰ °	insoluble alcohol	
28		1.95°	99.1100		
29		2.830°	$201.4^{100^{\circ}}$	insol. a.; sol. glycerine	
		soluble	v. soluble		monoclinic
31		$27.54^{0^{\circ}}$	90.9 ¹⁰⁰ °	insol. alcohol	§
32		79.50°	114.9 ¹⁰⁰ °	s. soluble alcohol	regular
33		172.50°	259.5 ¹⁰⁰ °		
34		v. soluble		v. soluble alcohol	
1	700°	decomp.	decomp.	sol. acids; decomp. al	
	decomp.	7.10°	45.41000	insoluble alcohol	
37		21 0000	1140290	insol. al. ether, sol. glyc.	
	3 106°	$\begin{vmatrix} 21.33^{0^{\circ}} \\ 6.90^{0^{\circ}} \end{vmatrix}$	1142 ^{38°} 16 . 40 ^{60°}	insoluble alcohol	
39)	16.90	10.4000	insoluble alcohol	monoemnie

[‡] Loses CO₂ at 270°.

[§] Reg. tetrah. hex. rhomboh. or rhomb.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
	Sodium				
1	carbonate sesqui	$Na_4H_2(CO_3)_3.3H_2O$	328.06	2.112	decomp.
2	chlorate	NaClO,	106.46	2.490150	255°
3	chloraurate	NaAuCl ₄ .2H ₂ O	398.07		
4	chloride	NaCl	58.46	2.174120	804°
5	chlororhodate	Na ₃ RhCl ₆	384.66		
6	chloriridate	Na ₂ IrCl ₆ .6H ₂ O			
7	chloroplatinate	Na ₂ PtCl ₆ .6H ₂ O		2.499	6H ₂ O, 100
8	chromate	Na ₂ CrO ₄ .10H ₂ O	342.16	2.71160	19.92°
9	citrate	2Na ₃ C ₆ H ₅ O ₇ .11H ₂ O	714.256		11H ₂ O,150°
10	cvanide	NaCN	49.01		111120,100
11	dichromate	Na ₂ Cr ₂ O ₇ .2H ₂ O	298.03	2.52160	†
12	dithionate	$Na_2S_2O_6.2H_2O$	242.17	2.175110	
13	ferricyanide	$Na_3Fe(CN)_6.H_2O$	298.92	2.110	
14	ferric oxalate	$Na_{3}Fe(C_{2}O_{4})_{3}.5\frac{1}{2}H_{2}O$	487.93	1.973117.50	4H ₂ O ₂ 100
15	ferrite	$Na_2Fe_2O_4$	221.68		11120, 100
16	ferrocvanide	$Na_4Fe(CN)_6.12H_2O$.	520.09	1.458	
17	fluoride	NaF	42.00		980°
18	fluosilicate	Na ₂ SiF ₆	188.30	$2.755^{17.5^{\circ}}$	900 ¶
19	formate	NaCHO ₂	68.01		decomp.
20	hydride	NaH	24.01	0.92	decomp.
21	hydrosulphide	NaSH.2H ₂ O	92.11		decomp.
22	hydroxide	NaOH	40.01		318°
23	hypochlorite	NaOCI	74.46		decomp.
24	hypophosphate	$Na_4P_2O_6.10H_2O$	430.24	1.832	decomp.
25			314.17		decomp.
26	hypophosphite	NaH,PO,H,O	106.07	1.040	accomp.
27	hyposulphite	NaHSO ₂	88.08		
28	iodate	NaIO ₃	197.92		decomp.
29	iodide	NaI.	149.92		653°
30			185.95	2.448	
31		$NaC_3H_5O_3$	112.04		decomp.
32	manganate		345.09		17°
33			242.03		1,
34			350.00		612°
35		I	620.11		012
36	" tetra		746.10		< red heat
37	" octo	Na ₂ Mo ₈ O ₂₅ .4H ₂ O	1286.1		
38	" deka		1718.2		
39		$NaNO_3$			316°
40		Na ₃ N	83.01	2.20.	010
41	nitrite			2.157 ²⁵ °	213°
2.1			00.02	- 1201	

^{*} Solubility of the anhydrous salt. † Loses 2H₂O at 100°. ‡ Decomp. at 400°.

1	1				
Number	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Nun	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		12.630°	41.59100°		monoclinic
	decomp.	81.90°	333120°	soluble alcohol	
1		150 ¹⁰ °	990600	v. sol. absolute al	[hexag.rhb.
-	white heat	35.70°	30100,	insol. conc. HCl.; s.sol.al	
5		v. soluble	v. soluble	soluble alcohol	red triclinic
7		v. soluble	v. soluble	sol.al.,Cl ₂ aq.; insol. ether	
8		87.36*	óo	s. soluble alcohol	
9	decomp.	91 ^{25°}	250 ¹⁰⁰ °	s. sol. al	
10		soluble	v. soluble	s. soluble alcohol	
11		23900	122698°		red triclinic
12		$47.6^{16^{\circ}}$	90.91000	insol. alcohol, conc. HCl	
13		18.9 32.50°	80 ¹⁰⁰ ° 182 ¹⁰⁰ °	insoluble alcohol	
14	8	decomposes	182100	v. soluble dil. HCl	green crystals.
		2215.5°		insoluble alcohol	
17		415°		s. soluble alcohol	
18		0.6517.50	2.461000	insoluble alcohol	
19		440°	160100°	s. sol. al.; insol. ether	
20		decomposes	decomp.	insol. CS ₂ , CCl ₄ , benzine;	
21		soluble	soluble	soluble alcohol [sol. Na	
22		133.3 ^{18°}	250 ⁸⁰ °	v. sol. al., ether, glyc	
23		soluble	decomposes		
24		33	v. soluble	insoluble alcohol	
25 26		soluble	soluble	v. soluble alcohol	
27		v. soluble	soluble	soluble alcohol	prisitis .
28		2.520°	33.9100°	insol. al.; sol. H.C ₂ H ₃ O ₂ .	
29		158.70°	312.5 ¹⁰⁰ °	v. soluble alcohol	
30		317.90°	1550 ^{100°}		
31		v. soluble		sol. al.; insol. ether	
32		soluble	decomposes		0
		56.20°	115.5 ^{100°}		
34		s. soluble	s. soluble 13.7 ¹⁰⁰ °		
35 36		3.878 ^{20°}	v. soluble		needles
37		s. soluble insoluble	insoluble		nowder
1		s. soluble	s. soluble		T
	decomp.	72.90°	180 ^{100°}	s. sol. alcohol, glycerene	
40				[methyl al.	dark gray
41		83.3200	v. soluble	0.31 ^{19.5°} et. al., 4.43 ^{19.5°}	
1					

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = I. Air = I (A). $H_2 = I (D)$.	Melting Point, °C.
1	Sodium nitroprusside.	Na.Fe(CN).NO 2H.O	297 83	1.6803170	
2		$Na_2C_2O_4$			
3		$NaHC_2O_4.H_2O$			
4	ovide	Na ₂ O	62.00	2. 25	red heat
5	naratungstate	$Na_6W_7O_{24}.16H_2O\dots$	2098 3	2.20	
6	nerhorate	$NaBO_3.H_2O$	100 02		dec 40°
7		$NaBO_3.4H_2O$			
8		$Na_{2}B_{4}O_{7}.10H_{2}O$			
9	nerchlorate	$NaClO_4$	199 46		1820
10	perchionate	Na ₃ CrO ₈	240 00		dec 115°
11		$NaMnO_4.3H_2O$			
12		Na_2O_2			decomp.
13	norruthonata	$NaRuO_4.H_2O$	206.72	2.000	decomp.
14	periumenate	$Na_2UO_5.5H_2O$	454 59		dec. 100°
15	phosphoto (trised)	$Na_3PO_4.12H_2O$	280 93	1 610 1 645	77°
16		Na ₂ HPO ₄ .12H ₂ O			35°
17		$NaH_2PO_4.H_2O$			2H ₂ O,200°
18		$Na_4P_4O_{12}$			617°
19	pyro				anh. 970°
20		Na ₂ H ₂ P ₂ O ₇ .6H ₂ O			aiiii. 370
20	sodium)	11421121 207.01120	300.19	1.040	
21	phosphite	Na,HPO,5H,O	216 17		53°
22		$2\text{NaH}_2\text{PO}_3.5\text{H}_2\text{O}$			42°
23	nlatinata	$Na_2PtO_3.3H_2O$	242 95		1
24		NaKCO ₃ .6H ₂ O			6H.O.100°
25		NaKC ₄ H ₄ O ₆ .4H ₂ O			70°-80°
26		$NaC_7H_5O_3$			10 -30
27	salicylate	$Na_{2}SeO_{4}$	180.04	3 20017.20	
28		Na ₂ Se			>875°
29		Na ₂ SiO ₃			1018°
30		$Na_2Si_4O_9$			1010
31	stannata	$Na_2SnQ_3.3H_2O$	267 05		
32	stannate	Na_2SO_4	149 07	9 67120	888°
02	surphate	1142004	144.01	2.0714	000
33	"	Na ₂ SO ₄ .7H ₂ O	060 10		
34		$Na_2SO_4.11I_2O$ $Na_2SO_4.10H_2O$			32.383°
35		$Na_2SO_4.10H_2O$ $NaHSO_4$			300°
36		Na ₉ S			infusible
37	surpline monto	$ \begin{array}{c} Na_2S_1\\ Na_2S_5 \end{array} $	206 25	2.4/1	musible
38	gulphite	Na_2S_5	126 07	9 6224150	150°
39	surpinte	Na_2SO_3 $Na_2SO_3.7H_2O$	252 10	1 5030150	7H ₂ O,150°
09	*******	1 a ₂ O 3. / 11 ₂ O	202.18	1.00004	11120,100
	1			1	

^{*} Loses $11H_2O$ at 100° . † Loses $12H_2O$ at 100° . ¶ $3H_2O$, $150^\circ-170^\circ$.

=		1			
Number.	Boiling		Solubility in	n 100 Parts.	Crystalline Form
Nut	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		40150	6.33100°		
2		3.22 ^{15,5} ° 1.7 ¹⁵ °	0.33100		1
3			1	1	
-	sublimes	decomposes	A	decomposes alcohol	grayishtriclinic
5		2.55 ¹⁵ °	decomposes $3.78^{32^{\circ}}$	soluble glycerine	
7		s. soluble		soluble acids	
8		4.2 ¹¹ °	decomp.	soluble acids	crystals
1 0	decomp.	soluble	v. soluble	soluble alcohol	crystals rhombohedral.
10		s. soluble	v. soluble		orange plates
11		v. soluble	v. soluble	msor. arconor, etner	dark red cryst
12		soluble	decomposes	soluble dilute acids	vellow
13		s. soluble	decomposes	Soluble dilute acids	black crystals
14		decomp.	decomp.	decomp. HCl	red crystals
15	*	28.3 ^{15°}	∞	decomp. 1101	hexagonal
16		6.30°	00	insoluble alcohol	rhombic
17		v. soluble		insoluble alcohol	rhombic
18		insoluble	insoluble	soluble acids, alkalies	
19		5.400	93	insoluble alcohol	monoclinic
20					
		soluble	v. soluble	insoluble alcohol	rhombohedral
22	· ·	56°°	193420		
		soluble		insoluble alcohol	yellow
24		185 ^{15°}			monoclinic
25		26°°	$66^{26^{\circ}}$		trimet. prisms
		v. soluble 13.3°	72.8 ¹⁰⁰ °		
27			72.8100		4-1-
28 29		decomposes	soluble	incol al No and K colta	crystals
30		soluble	soluble	insol. al., Na and K salts insol. al., Na and K salts	
31		67.40°	61.3 ^{20°}	insoluble alcohol	
32		4.800	42.5^{100}	insoluble alcohol	rhomb monocl.
04		1.0	12.0	insoluble alconor	or hexagonal.
33		55.59°°	202.6260		rhomb. or tetr.
34		12.160°	412340	insoluble alcohol	monoclinic
35		5000	1001000	decomp. by alcohol	triclinic
36		15.410°	59.2 ^{90°}	s. sol. al.; insol. ether	flesh col. amor.
37		soluble	soluble	s. sol. alcohol	
	decomp.	14.100	49.5400	insoluble alcohol	hexag. prisms .
	decomp.	32.830°	196 ⁴⁰ °	insoluble alcohol	monocl. prisms
					1
_				· · · · · · · · · · · · · · · · · · ·	

[‡] Decomposes at red heat. § Loses 5H₂O at 100°. || Loses 4H₂O at 215°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Sodium sulphite acid	NaHSO ₃			decomp.
2	sulphocyanate	NaCNS	81.08		287°
3	tartrate	$Na_2C_4H_4O_6.2H_2O$	230.06	1.794	
4	thioantimonate (Schlipp's salt)	$Na_3SbS_4.9H_2O$	479.62	1.864	
5	thioarsenate	$2Na_3AsS_4.15H_2O$	814.68		
6	thiocarbonate	$Na_2CS_3.H_2O$	172.23		decomn
7		$Na_4Pt_3S_6$	870.02		accomp.
8	thiosulphate		248.22		32°-48°
9					
	tungstate			$3.259^{17.5^{\circ}}$	$2\mathrm{H}_2\mathrm{O},100^\circ$
10	uranate		348.50		
11	vanadate		472.26		866 (anh.)
	Stannic acid	H_2SnO_3	169.02		
13	meta	$H_{10}Sn_5O_{15}$	845.08		
14		H_2SnS_3	217.23		
15	ammonium chloride	$SnCl_4.(NH_4Cl)_2$	367.84		
16	bromide	SnBr_{4}	438.68	$3.349^{35^{\circ}}$	29°
17	chloride	$SnCl_4$	260.84	$2.2788^{\frac{9}{4}}$	33°
18	fluoride	SnF_4^*	195.00	4.780	750°
19		SnI_{4}		4.696110	143°
20	oxide	SnO_2	1	6.6-6.9	1127°
21	" cryst	SnO_2		6.7-6.85	infusible
22		SnOCl ₂	205.92		
23	phosphate		_	3.98 (anh.)	
24		SnP			
25		SnSe ₂		4.85	
20	selemue	DIDE ₂	211.4	1.00	
26	sulphoto	$\operatorname{Sn}(\operatorname{SO}_4)_2.2\operatorname{H}_2\operatorname{O}\ldots$	247 17		
27				4.42-4.60	+
	sulphideStannous bromide	SnS_2		5.117 ^{17°}	‡ 215.5°
		SnBr_2			
29	chloride		189.92	0 = 15 50	249.3°
30	(un salu)	$SnCl_2.2H_2O$			37.7°
31		$\operatorname{Sn}_3(\operatorname{Fe}(\operatorname{CN})_6)_2$			
32		$\operatorname{Sn}_{2}\operatorname{Fe}(\operatorname{CN})_{6}\ldots\ldots$			
33	fluoride	SnF_2	157.00		
34	hydroxide	$\operatorname{Sn}(\tilde{\operatorname{OH}})_2$	153.02		
35	iodide	SnI_2	372 84		316°
36		SnO	135.00		decomp.
37		SnOSnCl ₂ .6H ₂ O	433.02		decomp.
		$SnOSnOl_2.0H_2O$ $SnSe$		6.1790° \$\$	
3 8	seienide	She	198.20	0.179	

^{*} M. P. anhydrous salt 698°.

ber.	Boiling	s	Solubility in 10	po Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		s. soluble	soluble	insoluble alcohol	
2		v. soluble	v. soluble	v. soluble alcohol	rhombic plates
3		2960	6642.50	insoluble alcohol	trimet, prisms.
		33		insoluble alcohol	yellow regular.
1					J
5		v. soluble		insoluble alcohol	yel. monoclinic
		soluble	decomposes		yellow[dles
7		insoluble	decomposes		red rhomb, nee-
	decomp.	74.70°	301.5 ^{60°}	insoluble alcohol [H ₂ SO ₄	
	*	4100	123.5 ^{100°}	insol. al., HCl, HNO ₃ ,	rhombietablets
		insoluble	insoluble		yellow
		v. soluble	msordore	insoluble alcohol	
		s. soluble	insoluble	sol. dil. acids, alk	
		insoluble	insoluble	insol. acids; sol. KOH	amorphous
		insoluble	msoruble		
		soluble			
16	203°	soluble		[tino	
	114°	soluble	decomp.	tine	
		v. soluble	decomp.	sol. al., CS ₂ , oil of turpen-	
	341°			145150 00 1 1	crystals
20		v. soluble	1.11	$145^{15^{\circ}}$ CS ₂ ; sol. al., ether	T
1-0		insoluble	insoluble	soluble conc. H ₂ SO ₄	amorphous
21		insoluble	insoluble	soluble conc. H ₂ SO ₄	
22		soluble			[or rhombic
23		insoluble	insoluble	insoluble HNO ₃	
		insoluble		sol. HCl; insol. HNO ₃	
25		insoluble		insol. dil. a.; sol. alk.,	crystals
000				hot conc. H ₂ SO ₄	
26		v. soluble		sol. dil. H ₂ SO ₄ , HCl	rhomb. leaflets
27		0.00002	insoluble	sol. conc. HCl, alk. sul-	yellow hexag.
	617°-634°	soluble	decomposes	[phides	
	603°-628°	83.90°	269.8150	sol. alk., al., tartaric acid	
	decomp.	118.7°°	∞	sol. alk., al., tartaric acid	
		insoluble		sol. HCl	
32		insoluble		sol. hot cone. HCl	
33		v. soluble			
34		insoluble	decomp.	sol. dil. a., alk.; insol. NH ₄ OH	yellow. amor.
35		0.9820°	4.03100°	sol. dil. HCl, KOH	red crystals
		insoluble		sol. a., NH ₄ Cl; insol. alk.	black regular
37		insoluble	insoluble	sol. dil. acids, al	
		insoluble		sol. alk. sulphides	
				P. Contraction of the Contractio	Braj pri
b					1

[†] Orange red octahedra.

[‡] Decomposes at red heat.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H ₂ = 1 (D).	Melting Point, °C.
1	Stannous sulphate	SnSO	215.07		
2		SnS	151.07	5.27150	880°
3		SnTe	246.50	6.47800	
	Strontium		87.63	2.54	900°
5	arsenate	SrHAsO ₄ .H ₂ O	245.01	3.606 ^{15°}	H ₂ O, 125°
6		$Sr(AsO)_2.4H_2O$	373.61		
7		$SrB_4O_7.4H_2O$	315.69		
8	boride	SrB_{6}	153.63	3.28 ^{15°}	
9	bromate	$Sr(BrO_3)_2.H_2O$	361.49	3.773	dec. 240°
10	bromide	$SrBr_2$	247.46	4.21624	498°-630°
11	oromide	*		2.358	100 000
12	carbide	SrC_2		3.19	
13	carbonate	$SrCO_3$	147.63	3.62	dec. 1155°
10	carbonate	DIOO3	111.00	0.02	acc. 1100
14	chlorate	$\operatorname{Sr}(\operatorname{ClO}_3)_2,\ldots$	254 55	3.152	dec. 290°.
15	"	$Sr(ClO_3)_2.SH_2O$	398.678	0.102	acc. 200 .
16	chloride	$SrCl_2$	158.55	3.054	872°
17	chioride	SrCl ₂ .6H ₂ O		1.96416.70	112°†
				3.89515°	
18	chromate	SrCrO ₄			J
19	cyanide	$Sr(CN)_2.4H_2O$		2.373	decomp.
20	dithionate	$SrS_2O_6.4H_2O$			$4H_{2}O, 78^{\circ}$
21	ferrocyanide	$Sr_2Fe(CN)_6.15H_2O.$		4 01	902°
22	fluoride	SrF_2	125:63	4.21	002
23	fluosilicate	SrSiF ₆ .2H ₂ O	265.96	2.999	§
24	formate	$Sr(CHO_2).2H_2O$		2.25	decomp.
25	hydrosulphide	$Sr(SH)_2$			decomp.
26	hydroxide	$Sr(OH)_2$		3.625	375°
27	* ***	$Sr(OH)_2.8H_2O$	265.77	1.396160	5050 0450
28	iodide	SrI_2	341.47	4.54925	507°-645°
29	"	$SrI_2.6H_2O$	449.57	4.415	
30	molybdate	SrMoO ₄	247.63	4.145	
31	nitrate		211.65	2.9816.80	645°
32		0/2 2	283.71	2.24915.50	TT 0 445
33	nitrite	$Sr(NO_2)_2.H_2O$		$2.645^{27^{\circ}}$	H ₂ O, 44°
34	oxalate	$\operatorname{SrC}_2\operatorname{O}_4.\operatorname{H}_2\operatorname{O}.\ldots$	193.65		decomp.
35	oxide	SrO	103.63	4.45-4.75	3000°
		~ 0			,
36			119.63	0.546	decomp.
37			263.76		8H ₂ O,100°
38		$Sr(MnO_4)_2.3H_2O$	379.55		decomp.
39				$3.544^{15^{\circ}}$	
40	salicylate	$Sr(C_7H_5O_3)_2.2H_2O$	397.742		

^{*} Loses H₂O at 120°

[†] Loses 4H₂O at 60°, 6H₂O at 100°.

er.	D.III.		Solubility in	100 Parts.	0 1111 7
Number	Boiling Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	Crystalline Form and Color.
	1090°	18.9 ^{19°} 0.000002	18.2 ^{100°} insoluble	sol. H ₂ SO ₄ sol. conc. HCl, (NH ₄) ₂ Sx	gray crystals
5	burns $1\frac{1}{2}$ H_2 O, 225°	decomp. 0.284 ^{15.5°}	decomp.	insol. conc. HClsol. acids, alcoholsol, in acids[H ₃ AsO ₄	crystallinerhomb.needles
1 ~		s. soluble insoluble 33 ^{15°-18°}	77 ^{100°} insoluble	s. soluble al., $Sr(OH)_2$, sol. HNO_3 , NH_4 salts soluble HNO_3	black crystals.
10 11		87.7°° 204.2°°	250 ^{110°} ∞	sol. ethyl and amyl. al.	needles
		decomp. 0.0011 ^{18°}	decomp.	decomp. by acids 0.12 H,CO ₃ aq.; sol. a., NH ₄ salts	rhombic
14 15 16		174.9 ^{18°} soluble 44.2 ^{0°}	v. soluble v. soluble 101.9 ¹⁰⁰ °	soluble alcoholsoluble alcoholsol. absolute alcohol	rhomb.ormon. needles
17 18 19		$106.2^{0^{\circ}}$ $0.12^{15^{\circ}}$ v. soluble	205.840°	sol. acetic acid, NH ₄ salts	hexag. needles monocl. prisms crystalline
20 21 22		$22^{16^{\circ}}$ 50 $0.012^{18^{\circ}}$	67 ¹⁰⁰ ° 100 s. soluble	insoluble alcoholinsol. HF; sol. HCl	hexag. plates yellow monocl. reg. octahedra
24	heat	3.2 ^{15°} soluble soluble	soluble decomp.		tetrag. prisms. rhombic
26 27		$0.41^{0^{\circ}} \\ 0.90^{0^{\circ}} \\ 164^{0^{\circ}}$	21.83 ¹⁰⁰ ° 47.71 ¹⁰⁰ ° 370 ¹⁰⁰ °	soluble NH ₄ Clsoluble NH ₄ Cl	tetragonal
29 30 31		448.90° $0.0104^{17^{\circ}}$ 39.50°	∞ 1100°		crystals
32 33		60.43° 62.83 ^{19.5°} 0.0051 ^{18°}	206.5 ¹⁰⁰ °	insol. HNO ₃	triclinic
1		decomp. to $Sr(OH)_2$ 0.008 ^{20°}		s. sol. al.; insol. ether	gray white rhombic
37 38		0.018 ^{20°} 270 ^{0°}	decomp. decomp. 291 ^{18°}		crystalline
39 40		insoluble 5.6^{25} °	28.6 ^{100°}		rhombic plates crystalline

[‡] Decomposes at 1000°.

^{\$ 2}H₂O gentle heat.

_					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Strontium selenate	SrSeO	230.83	4.23	
2	cilianto	$SrSiO_3$	163 03	3 91	1529
3		SrSO ₄		3.71-3.97	*
υ	surphate	01004	100.10	0.11 0.01	
4	" said	$Sr(HSO_4)_2$	281.79		decomp.
	acid	SrS		3.72 ^{15°}	decomp.
5 6	surphide mono	$SrS_4.6H_2O$	324.01	3.12-	
			167.70		decomp.
7	sulphite	SrSO ₃			
8		$Sr(CNS)_2.3H_2O$	257.84	10.8	$3H_{2}O,100^{\circ}$
9		$SrC_4H_4O_6.4H_2O$		$1.966\frac{19.8}{4}$	
10	thiosulphate	$SrS_2O_3.5H_2O$	289.85	$2.178^{17^{\circ}}$	4H ₂ O,100°
11	Sulphur amorph. soft	S ₈	256.56	1.9556°	>120°
12	" vellow .	S ₈	256.56	2.046	İ
13	colloidal St.	S	256.56		
14		S_8			
15	manaelinic Sß	$\left[\overset{\circ}{\mathrm{S}}_{8}^{8} \ldots \ldots \right]$			119.25°
16	mbombio Sa	\hat{S}_{s}	256 56	2 05-2 070°	114.5°
17	ablarida mana	$S_2^{\circ}Cl_2$	135.06	1 70049	-80°
18	emoride mono	$SCl_2 \dots SCl_2 \dots$	102.00	1 699150	-78°
	(i +-+	SCl_4	172 01	1.02215	-30°
19	tetra	DUI4	170.91		- 46°
20		S_2 B \mathbf{r}_2			
21	chloriodide	SCl ₇ I	1407.21	~ 09	decomp. -55°
22	hexafluoride	SF_6	140.07	5.03	- 55
23	monoxytetrachlo-	S_2OCl_4	221.98	$\begin{cases} 386^{100^{\circ}} \text{ D.} \\ 1.656^{0^{\circ}} \end{cases}$	decomp.
	ride)			(1.000	
24	oxide di	SO_2	64.07	(2.2639 D.	-76.1°
				1.4336800	1
25	" sesqui	S_2O_3	112.14		decomp.
26	" α-tri	SO_3	80.07	{ 2.75 D. 1.97 ²⁰ °	14.8°
27	" B-tri-	$(SO_3)_2$	160.14		50°
28		$S_{2}O_{7}$			0°
29	nepta	$S_2O_5Cl_2$	215 06		-39°
	pentoxydienioride.	$S_2O_3Cl_4$	252 00	1.019	57°
30	Culphania Asid	H SO	08 00	1.83424	10.46°
	Sulphuric Acid	USO UG			8.53°
32	" "	$H_2SO_4.H_2O$	124 10	1 66500	-38.9°
33	" "	$H_2SO_4.2H_2O$	134.12	1.005	-38.9°
34	" pyro-	$H_2S_2O_7$	178.16	1.89	35
35	" oxychloride	SÕ ₂ Čl ₂	134.99	1.00/383	1000
36		SO_2F_2	102.07		- 120°
37	Sulphurous	207	222	0.0100	
	oxybromide	$SOBr_2$	223.91	2.6100	

^{*} Decomposes at wh. ht. † Decomposes at 160°-170°. ‡ Ignition point 255°.

Number.	Boiling Point		Solubility i	n 100 Parts.	Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble		insol. HNO ₃ ; sol.hot HCl	rhombic
2		insoluble	0.01041000		prisms
3		$0.0114^{18^{\circ}}$	$0.0104^{100^{\circ}}$	insol. dil. H ₂ SO ₄ , al.; s. sol. acids	rhombic
4		decomposes		14 ^{70°} conc. H ₂ SO ₄	
5		sol. and dec.		soluble alcohol	cubical
6		soluble		soluble alcohol	reddish cryst.
7 8	+	0.0033 v. soluble		v. soluble H ₂ SO ₃ v. soluble alcohol	crystals
9	1	0.1120°	$0.755^{85^{\circ}}\dots$	v. soluble alcohol	monocl. prisms
		2513°	57100°	insoluble alcohol	monoclinic
	444.6°	insoluble	insoluble	partly sol. CS ₂	pale yel. amor-
12	444.6°	insoluble		insoluble CS_2	[phous
	444.6°	soluble		insol. NaCl	pale yellow
	444.6° 444.6°	insoluble insoluble	insoluble	insol. CS ₂	citron yel. am. yellow prisms.
	444.6°	insoluble	insoluble	sol. CS_2 , al., CH_3Cl , C_6H_6 240°, 181.355° CS_2	yellow octahed.
17	138°	decomposes		sol. CS_2 , C_6H_6 , al., ether.	yel. red liquid
18	59°				dark red
19	§ 54°	decomposes	decomposes		yel. brown liq.
21	94.	decomposes decomposes	decomposes		red yel. prisms
	-62°	s. soluble		s. sol. al.; sol. KOH	crystals
23		decomposes	decomposes	· · · · · · · · · · · · · · · · · · ·	deep red liquid
24	-10°	7979 c.c. ⁰ °	1560 c.c. ⁵⁰ °	sol. al., H_2SO_4 , $H.C_2H_3O_2$	
25		decomposes		decomp. by al., ether	bluegreen crys.
26	46.2°	decomposes	decomposes	sol. conc. H ₂ SO ₄	prismatic crys.
27		decomposes	decomposes		silky needles
	decomp.	decomposes	decomposes	sol. conc. H ₂ SO ₄	needles
	sublimes	decomposes decomposes			
	**	∞ ∞	∞ ∞	decomposes alcohol	
	210°-338°	∞	00	decomposes alcohol	
	170°–190°	∞	00	decomposes alcohol	
	decomposes 69.15°	decomposes decomposes		decomposessol. glacial acetic acid	
-	-52°	10 ⁹⁰ °		soluble alkalies	
37	68° ¶	decomposes			orange yellow.

[§] Decomposes at 20°. || At 0.18 mm. ** Decomposes at 40°. ¶ At 40 mm.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1 2 3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86.07	1.6767\$ 3.0076 14.491 ¹ \$	-110° 2900°
4 5 6 7 8	chloridefluoridenitride	$TaBr_5$	358.80 276.50 614.55	3.68 ^{27°} 4.981 ^{15°}	240° 211.3° 94° burns oxidizes
9 10 11 12 13	" tetr " pent sulphide Tartaric Acid Telluretted Hydrogen	$\begin{array}{l} {\rm Ta_2O_4^{}}.\\ {\rm Ta_2O_5^{}}.\\ {\rm Ta_2S_4^{}}.\\ {\rm H_2.C_4H_4O_6^{}}.\\ {\rm H_2Te}. \end{array}$	427. 443.00 493.30 150.05 129.52	7.6 1.7549 4.39 D.	oxidizes infusible oxidizes decomp48°
15 16	Telluric Acid	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229.55 229.55 127.5	3.053	dec. 160° 2H ₂ O,130° 2H ₂ O,130° 446° 452°
19 20 21 22 23	bromide tetra chloride di " tetra	TeBr ₂	447.18 198.42 269.34	4.31 ¹⁵ 6.89 D.	280° 380° 175° 214°
24 25 26 27	" tetra nitrate oxide mon: " di	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	635.18 773.04 143.50 159.50	5.890°	oxidizes dull red- ness
32	" thio sulphite Tellurous Acid α " " β		207.57 399.07 177.52 177.52	3.035 3.071	decomp. 30° dec. 40°
34 35	chloride oxide Thallium acetate	$\mathrm{TbCl_3}$ $\mathrm{Tb_2O_3}$	366.40 204.0 263.02	11.85	588°

^{*} Decomposes at 180°.

ber.	Boiling		Solubility in	1 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
	78° -30°	decomposes decomposes insoluble	decomposes	soluble ether, benzine insol. HCl, HNO ₃ , H ₂ SO ₄	liquidblk. crystalline
5		decomposes decomposes insoluble insoluble insoluble		sol. HF, fused alk. sol. abs. al., ether sol. H ₂ SO ₄ , abs. alcohol. sol. HF insol.a.; sol. HNO ₃ + HF insoluble acids insoluble acids	yellow crystals pale yel. prisms tetragonal yellow amorph. brown powder. dark gray
11 12 13 14 15 16 17		1150° soluble insoluble 19.70° insoluble insoluble insoluble	343 ^{100°} s. soluble 258.5 ^{100°} 258.5 ^{100°} insoluble insoluble	insol. a.; sol. HF	rhomb. prisms monocl. prisms gas regular octah. monocl. prisms amorphous rhombohedra
20 21 22 23 24 25	339° 420° 327° 414°	decomposes v. soluble decomposes decomposes insoluble s. soluble decomposes	soluble insoluble decomp.	decomposed by HCl sol. dil. HCl soluble HI soluble HNO ₃	[dles steel gray nee-orange black crystals. yel. crystalline black crystals. gray crystals orthorhombic
26 27 28 29 30	*	insoluble 0.00067 insoluble decomp.		sol. acids, alkinsol. a.; sol. hot KOHsoluble H ₂ SO ₄	black amorph. yel. octahedral orthorhomb. orange crystal. red amorphous
37	1280°	insoluble v. soluble 0.0466 ²⁰⁰		soluble acidssol. HNO ₃ , H ₂ SO ₄ v. soluble alcohol	octahedral monocl, prisms needles orangeamorph, bluish white silky needles regular

_					
Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water= 1. Air= 1 (A). H_2 = 1 (D).	Melting Point, °C.
	Thallium				
1		TlBr ₃	143 76		decomp.
2		$T1Br_2$			accomp.
3		TLCO		7.06-7.16	272°
4				5.0479°	
5			239.46		426°
6		Tl_2Cl_3		5.9	400°-500°
7	" tri	TlCl ₃	310.38		25°
8	"	TICl ₃ .4H ₂ O	328.40		36°-37°
9	chloroplatinate	$ Tl_2PtCl_6$	815.96	5.76^{170}	
10	chromate	Tl ₂ CrO ₄	524.0		
11	cyanide	TICN	230.01		decomp.
12	dichromate		624.00		
13		$Tl_4Fe(CN)_6.2H_2O$	1064.09	4.641	
14	fluoride mono	TlF	223.00		
15	" ftri	TlF ₃	261.0		
16	fluosilicate	$ Tl_2SiF_6.2H_2O$	586.33		
17	hydroxide (-ous)	TIOH	221.01		
18	(-ie)	TIO.OH	237.01		H ₂ O, 115°
19		$Tl(OH)_3$	255.02		
20		TII		7.07215.50	431°
21	sesqui	$\mathrm{Tl}_{2}\mathrm{I}_{3}$	788.76		
22	011	TlI ₃	584.76		
23		TINO ₃	266.01		205°
24	(-1c)	$Tl(NO_3)_3 \dots \dots$	390.06		
25 26	oxide (-ous)			F FC00	>870° 760°
27	perchlorate	Tl_2O_3	456.00		501°
28	phosphate		303.46		301
29	selenate	TI SoO	551.2	7.019 ¹⁸ °	>400°
30	sulphate (-ous)	TI SO		6.77	632°
31	" acid	TlHSO ₄	301.08		115°-120°
32	" (-ie)	$Tl_2(SO_4)_3.7H_2O$	822.32		6H ₂ O,200°
33	selenide		487.20		340°
34	sulphide (-ous)		440.07		fusible
35		$Tl_2^2S_3$			12°
36	sulphite (-ous)			6.427 ²⁰ °	
37	sulphocyanate		262.08		
		Th		11.0017	>1700°
39		Th	232.40		
40	boride	ThB_4		7.5 ^{15°} or	
-					

^{*} This form is stable below 72.8°. Between 72.8° and 142.5° rhombo-

ber	Boiling Solubility in 100 Parts.				Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	708°-719° decomp. decomp. 800°-806° O, 1865° O ₂ , 875° decomp. decomp. decomp.			v. soluble alcohol. insol. al., ether. s. sol. HCl; insol. al., NH ₃	yel. hexagonal hexag. plates needles pale orange yellow tablets red crystalline yellow triclinic reg. octahedra olive green reg. octahedra pale yel. prisms yellow crystals brown hexag. yellow regular black needles brown needles rhomb. prisms* crystals yellow needles rhomb. prisms gray crystals prism. needles rhomb. prisms. needles rhomb. prisms. needles rhomb. prisms.

hedral crystals are formed, and above 142.5° regular crystals.

_					
Number.	Name.	Formula.	Molec- .ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Thomisses bosis	TL D	200 40	C 4150	
1			298.40 552.08	6.4150	
2	bromide	ThBr ₄			burna
3		ThC_2		8.96180	burns
4		$Th(CO_3)_2$	352.40		0000
5		ThCl ₄	374.24		820°
6		ThF ₄ .4H ₂ O			2 -) 1
7		Th(OH) ₄			
- 8		ThI ₄			
9		$Th(NO_3)_4.12H_2O$			
10		$Th(C_2O_4)_2$		4.637160	decomp.
11	oxide di	ThO ₂		9.876^{150}	infusible
12	" per	Th_2O_7	576.80		
13	1	Th(Pt(CN) ₄) ₂ .16H ₂ O			
14	sulphate	$[Th(SO_4)_2$		$4.2252^{17^{\circ}}$	
15		$Th(SO_4)_2.9H_2O$	586.68	$2.766^{16^{\circ}}$	9H ₂ O,400°
16	sulphide	$[ThS_2$	296.54	6.8	
17	Thulium	Tm	168.5		
18	Tin ‡	Sn	119.0	6.53-6.56	$ sta.>170^{\circ} $
19	66	Sn	119.0	$7.2984^{15^{\circ}}$	232°
20	"	Sn	119.0	$5.8466^{15^{\circ}}$	sta. < 20°
21	Titanic Acid	H_2TiO_3	98.12		
22	Titanium	Ti	48.1	$4.50^{17.5^{\circ}}$	2200°
23	bromide tetra	TiBr ₄	367.78		39°
24	carbonitride	$Ti_5(\hat{CN})_4$	344.54	5.28 (1)	
25		TiCl ₂			
26	" tri	Ti ₂ Cl ₆	308.96		dec. 440°
		2 0			
27	" tetra	TiCl ₄	189.94	1.76044	-25°
28		Ti_2F_6			
29		TiF ₄		2.79820.50	284°-287°
30		TiI,			150°
31		5TiO ₂ .N ₂ O ₅ .6H ₂ O			
32		$Ti_2(C_2O_4)_3.10H_2O$			
33	oxide sesqui	Ti_2O_3			oxidizes
34	" di	TiO_2		3.75-4.25	1560°
		1102	00.10		1000
35	" per	TiO ₃	96.10		
36		$Ti_{2}(SO_{4})_{3}$	384.41		
37	Tungsten	\mathbf{W}			2800°
38	bromide di-	WBr_2			dec. 400°
39		WBr_5	0 40 . 0 4		276°
	poirta		000.00		210

^{*} In vacuo.

[†] Loses 2H₂O at 140°-200°.

Number.	Boiling	Boiling Solubility in 100 Parts.			Crystalline Form
Nun	°C.	C. Cold Hot Water. Alcohol (al.), Acids (a.), Alkalies (alk.), etc.		and Color.	
1 2	725° *	insoluble soluble	insoluble	sol. HNO ₃ conc. HCl	violet amorph.
3		decomposes			
4		insoluble v. soluble	decomp.	insol. CO2aq.; sol. conc.	
		insoluble		sol. KCl, al., etherinsoluble HF	crystalline
7 8		insoluble		soluble a.; insol. alk	gelatinous
9		soluble of soluble		v. soluble alcohol	plates
		insoluble		sol. hot $(NH_4)_2C_2O_4$ aq	
11 12		insoluble insoluble		sol. hot H ₂ SO ₄	0
13		s. soluble	soluble		
		$0.74^{0^{\circ}} \\ 0.97^{0^{\circ}}$	$6.76^{55^{\circ}}$ $9.41^{55^{\circ}}$		
		insoluble	insoluble	s. sol. a.; sol. hot aq. r.	
17 18	2275°	insoluble insoluble	insoluble insoluble	sol. HCl, H ₂ SO ₄ , dil.	rhombic
		insoluble	insoluble	HNO ₃ , aq. r., hot	white tetrag.
21		insoluble	insoluble	insol. al.; sol. a., alk	gray
	230°	insoluble decomposes	decomp.	soluble acids	d. gray amorp.
24	white heat	insoluble	insoluble	insol. a.,sol.HNO ₃ + HF	reddish octah.
25 26		decomposes soluble		insol. CS ₂ , ether, CHCl ₃ . v. sol. al.; insol. ether;	black
				sol. HCl	dark violet
	136.4°	decomposes		sol. dil. HCl[H ₂ SO ₄	numla mod
29	>400°	decomposes		insol. ether; sol. conc.	
	360°	v. soluble soluble			
32		soluble	soluble	insoluble alcohol, ether.	yellow prisms.
		insoluble		soluble H_2SO_4 , HF sol. conc. H_2SO_4 , alk	
					tetrag or rhom.
35 36		insoluble	insoluble	soluble acidssol.dil.a.; insol.al.ether	yellow
37		insoluble	insoluble	sol.HNO3,aq.r.,conc. hot	gray to black
38	333°	decomposes decomposes		sol.causticalkalies	bluish black viobr. need.
		1			

[‡] For salts of Tin see "Stannic" and "Stannous."

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	decomp 248°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	decomp 248° 275°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	decomp 248° 275°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	248° D. 275°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	248° D. 275°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$). 275°
6 dioxydibromide WO ₂ Br ₂ 375.84 7 dioxydichloride WO ₂ Cl ₂ 286.92	
7 dioxydichloride WO ₂ Cl ₂	
8 iodide	
9 oxide di- (brown) . WO_2	
10 " tri WO_3	red heat
11 oxytetrabromide WOBr ₄	
12 oxytetrachloride WOCl ₄	
13 phosphide W ₂ P	
phosphiae	
14 " WP	,
15 " WP ₂	decomp.
16 sulphide di WS ₂	
17 " tri WS ₃	
18 Tungstic Acid H ₂ WO ₄ 250.02	
19 " meta $H_2W_4O_{13}$. 21120,100
20 Uranic Acid H_2UO_4	H ₂ O,250°-
20 014110 11010	300°
21 Uranium	800°
22 bromide tri UBr ₃	000
23 " tetra UBr_4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
25 chloride tri	
26 " tetra UCl ₄	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
28 fluoride tetra UF_4 314.50 UF_6 352.5 $4.68^{20.7\circ}$	69.5 (2 atm.)
10 nexa UF6	09.5 (2 atm.)
30 iodide tetra UI ₄	500°
31 oxide di	2176°
32 " $(-0.50, -i.c) \dots U_3 O_8 \dots 843.50 7.31$	decomp.
33 " tri UO ₃	
34 " per UO ₄ .2H ₂ O 338.53	
35 sulphate (-ous) $U(SO_4)_2.4H_2O$ 502.70	
36 sulphide di US ₂	. >1100°
37 " sesqui $U_2\tilde{S}_3$ 573.21	
38 Uranyl acetate $UO_2(C_2H_3O_2)_2.2H_2O[424.58]$	

^{*} Burns at 150°-170°. † Very volatile.

-	1				1
Number.	Boiling Point.		Solubility in	100 Parts.	Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		insoluble		s. sol. HCl, H ₂ SO ₄ ; sol.	
2		decomposes		[HNO.	gray amorph
3		decomposes			gray crystals
4	275.6°	decomposes		s. soluble $CS_2 \dots$	black needles.
5	346.7°		dec. 60°	v. soluble CS ₂ , POCl ₃	steel-blue reg
6	decomposes				red prisms
7		soluble	decomp.	sol. alk. and NH ₄ OH	yellow tablets.
8					greenish
9		insoluble		soluble conc. KOH, a	brown rhombic
10		insoluble 👫		insol. a.; sol. alk	yellow rhombic
	327°	decomposes			black needles.
1	227.5° A			soluble CS_2	red needles
13				insol. a.; sol. fused Na ₂ CO ₃ +NaNO ₃	dark gray pris.
14		insoluble		insol. alk., HCl; sol. HNO ₃ +HF	gray prisms
15		insoluble	insoluble 🖂	insol. al., ether; sol. HNO ₃ +HF	black crystals.
16				oxidized by HNO ₃	dark gray crys.
17		s. soluble	soluble	sol. alk. sulphides, alk	black powder.
18		insoluble	s. soluble	sol. alkalies	vellow
19		soluble The			yellow octahed.
20		insoluble		sol. a., alk. carbonates; insol. alk.	yellow powder.
21	*	insoluble	insoluble	sol. a. insol. alk	white crystals.
22		soluble	insorabic -	Soi. a. Hisor. and	d. brown need.
23		soluble			black leaflets.
24	T	decomp.	decomp.	soluble acids	crystalline
25		v. soluble			brownish red .
26	red heat	v. soluble	decomp.	soluble NH ₄ Cl	dark green reg.
27		sol. and dec.			dark needles
28		insoluble		insol. dil. a. sol. conc. a.	green powder.
29	55°	soluble		sol. CCl ₄ , CHCl ₃ ; insol. CS ₂	yel. monocl.
30		soluble 2008		002	black needles.
31		insoluble	insoluble	sol. HNO3, cone. H2SO4	black octahed.
32				sol. HNO_3 , conc. H_2SO_4	olive gr. pow
33				3, 0010, 112004	vellow powder
34		hygroscopic		decomp. by HCl	yellow crystals
35		decomposes			green monocl.
1	oxidizes	decomposes			gray'h bl.quad.
37				s.sol.HCl;sol.conc.HNO ₃	
38		soluble		soluble alcohol	
-					

[‡] Volatile at red heat.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
	Uranyl [ate				
1	ammonium carbon-	$UO_2CO_3.2(NH_4)_2CO_3$			decomp.
2	chloride	UO_2Cl_2	341.42		fusible
3	nitrate	$UO_2(NO_3)_2.6H_2O$		2.807	60.2°
4		$UO_2(HPO_4)_2.4H_2O$			
5		$UO_2CO_3.2K_2CO_3$			CO ₂ , 300°
6		$UO_2CO_3.2Na_2CO_3$	542.50		
7		$UO_2SO_4.3H_2O$	420.62	3.28016.50	
8					
9	Vanadic Acid meta	HVO_3			
10		$H_4V_2\tilde{O}_7$	218.03		
				6.02515	1680°
12	bromide tri	VBr ₃			oxidizes
13	carbide			5.36	
14	chloride di	VCl ₂	121.92	3.23180	
15	" tri	VCl ₃			oxidizes
16	" tetra	VCl ₄		1.8653%	<-18°
17	fluoride tri			3.3628 ^{19°}	>800°
18	" "		162.05		3.H ₂ O,130
19	" tetra	V:F ₄	127.0	2.9749^{23}	dec. 325°
00	" nonto	TITI	1400	a = maa100	
20	"penta			$2.1766^{19^{\circ}}$	
21 22	oxide di		134.00 150.00		burns
	" totr				infusible infusible
23 24	0001	V_2O_4 V_2O_5		9 9 5 7 18 2	658°
25		$V_2O_5VOBr_2$			dec. 180°
26	oxytribromide	$VOBr_2$	206 76		130°-136°
27		VOCI			130 -130
28		V ₂ O ₂ Cl			
29	ovydiehloride fride	VOCl ₂	137 99	2 88132	
30		VOCl ₃			<-15°
31	silicide	VSi_2		4.42	†
32	"		130.3	1.12	+
33	sulphide di-	$V_2^2S_2$	166 14	4 2_4 4	oxidizes
34	" tri-	$V_2^{2}S_3$	198 18	3 7-4 0	oxidizes
35	" nenta-	$V_2^{2O_3}$	262 35	3.0	oxidizes
36			422.21	0.0	OMIGIZOS .
	•			(63.5 D.	
37	Xenon	Xe	130.2	4.422 A.	-140°
38	Ytterbium	Yb	172.0	(1.12211.	1800°
39		$Yb(C_2H_3O_2)_3.2H_2O$			4H ₂ O,100°
40	chloride	$YbCl_3.6H_2O$	386.48		150°-155°
-		100 mm Dagaman		000	

^{*} At 100 mm. Decomposes at 180°.

					1
Number.	Boiling Point		Solubility in		Crystalline Form
Nur	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
-					
1		515°	decomp.	sol. (NH ₄),CO ₃ aq.,SO ₃ aq	yellow crystals
1	decomp.	320 ^{18°}	soluble	sol. alcohol, ether	yellow crystals
	118°	200	v. soluble	v. sol. al., ether, acet	vellow rhombic
4		insoluble	insoluble	insol. acetic acid	yellow rhombic
5		$7.4^{15^{\circ}}$	decomp.	insoluble alcohol	yellow crystals
6		soluble		insoluble alcohol	yellow crystals
7		$16.6^{13.2^{\circ}}$	22.2 ¹⁰⁰ °	4 alcohol; sol. H ₂ SO ₄	yellow crystals
8		s. soluble		sol. al., conc. HCl	brown
9		s. soluble	soluble	insol. al.; sol. alk. NH3aq.	yellow scales
10		s. soluble		insol. al.; sol. NH ₃ aq	brown amorph.
11		insoluble	insoluble	sol. HNO ₃ , HF, H ₂ SO ₄	light gray crys.
12		soluble		sol. HNO ₃ .	gray b. amor-
1		soluble	soluble	sol. alcohol, ether	[phous apple gr. hex.
		soluble	Soluble	sol. alcohol, ether	pink tablets
	154° [heat	soluble		sol. alcohol, ether	red liquid
1	subl. red	insoluble		insol. al. CHCl ₃ , CS ₂	green
18		soluble	v. soluble	insol. ab. alcohol	rhombohedra
19		soluble		sol. acetone; s. sol. al., CHCl ₃	yellow
20	111.2°	soluble		sol. al., CHCl ₃ ; insol. CS ₂	* * * * * * * * * * * * * * * * * * * *
21		insoluble	insoluble	soluble dilute acids	
22		s. soluble	soluble	sol. HF, HCl, hot conc.	
23		insoluble		soluble a., alk[H ₂ SO ₄	
24		0.8200		soluble conc. a., alk	
25 26	*	soluble soluble			
27		insoluble		v. soluble HNO ₃	
28		insoluble		soluble HNO_3	
29		decomp.		soluble dil. HNO ₃	
1	127.19°	v. soluble		soluble alcohol	
31		insoluble	insoluble (insol. al., ether, benzine	
32		insoluble	insoluble (a.; sol. HF[HNO ₃	
33				sol. hot conc. H2SO4,	black plates
34				sol. alk. sulphides, alk	
35				sol. alk. sulphides, alk	
36		v. soluble	decomp.	soluble alcohol	blue
37		28.4 c.c. ^{17°}			
38		1 1 1			
39		v. soluble	v. soluble		hexag. plates .
40	6H ₂ O, 180°	soluble		sol. ab. al	green rhom. pr.

[†] Melts in electric arc.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). H_2 = 1 (D).	Melting Point, °C.
1	Ytterbium oxalate.	$Yb_2(C_2O_4)_3.10H_2O$	788.16	2.644	
2	oxide	Yb,O,	392.00	9.175	infusible
3	oxide hydrated	$Yb_2O_3.6H_2O$	500.10		
4	selenate	$Yb_2(SeO_4)_3.8H_2O$	917.73	3.49	
5	selenite	$Yb_2(SeO_3)_3$	715.60		
6	sulphate	$Yb_{\circ}(SO_{\bullet})_{\circ}$	632.21	3.62	dec. 900°
7	· (c)	$Yb_2(SO_4)_3.8H_2O$	776.34	3.28620.60	
8	Yttrium	Yt	89.0	$3.80^{15^{\circ}}$	1250°
9	bromate	$Y_2(BrO_3)_6,.18H_2O$	1287.808		780°
10	bromide	YtBr ₃	328.76		
11	"	YtBr ₃ .9H ₂ O			
12	carbonate	$Yt_2(CO_3)_3.3H_2O$	412.05		
13	chloride	YtCl ₃	195.38	2.8 ^{18°}	160°
14	"	$YtCl_3.6H_2O$		2.575	dec. 100°
15	fluoride	$2\text{Yt}\vec{\text{F}}_{3}.\text{H}_{2}^{2}\text{O}$			
16	hydroxide	$Yt(OH)_3$			decomp.
17	iodide	YtI,			
18	nitrate	$Yt(NO_3)_3.4H_2O$	347.09	2.682	
19	"	$Yt(NO_3)_3.6H_2O$	383.13		decomp.
20	oxalate	$Yt_2(C_2O_4)_3.9H_2O$			decomp.
21	oxide	Yt,O3	226.00	5.35 ^{18°}	
22	sulphate	$Yt_2(SO_4)_3$	466.21	2.612	dec. 1000°
23	"	$Yt_2(SO_4)_3.8H_2O$	610.34	2.558	8H,0,450°
24	Zinc	Zn	65.37	7.142160	419°
25	acetate	$Zn(C_2H_3O_2)_2$	183.42	1.84	242°
26	66		237.47	1.72	235°-257°
27	amide	$Zn(NH_2)_2$	97.42		dec. r. ht.
28	arsenate	$Zn_3(AsO_4)_2.8H_2O$	618.16	3.30915°	
29	bromate	$Zn(BrO_3)_2.6H_2O$	429.31	2.566	100°
30	bromide	ZnBr	225.21	4.2194	394°
31	carbonate	ZnCO ₃	125.37	4.42-4.45	CO ₂ , 300°
32	chlorate	$Zn(ClO_3)_2.6H_2O$	340.39		60°
33		ZnCl ₂	136.29	2.91%	262
34	cyanide	$Zn(CN)_2$	117.39		decomp.
35		$Zn_{2}Fe(CN)_{6}.3H_{2}O$	396.69		
36	TOTAGO GULLIAGO TTT	ZnF,\ldots	103.37	4.612120	734°
37	11001100111111111	$ZnF_2.4H_2O$	175.43	2.535120	4H ₂ O,100°
38		$Zn(OH)_2$	99.39	3.053	decomp.
39		$Zn(IO_3)_2.2H_2O$	451.24		
40	- BOOMEROOFF FOR THE FOR	ZnI_2	319.21	4.696	446°
41	1.00	$Zn(NO_3)_2.6H_2O$	297.49	2.06513°	36.4°
42		Zn_3N_2	224.13		
	11101100	3. 2			

^{*} Sublimes in vacuo.

[†] Loses 3H₂O at 100°.

ber.	Boiling		Solubility is	n 100 Parts.	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1		0.000583		s. soluble dilute acids	crystalline
2		insoluble a		soluble hot dil. acids	
3		insoluble		v. sol. acids, KOH insol.	gelatinous
4		decomp.	soluble	[NH ₃ aq.	hexag. plates.
5		insoluble 44. 20°	4.67100°	• • • • • • • • • • • • • • • • • • • •	
7		soluble	s. soluble		prisms
8		sl. decomp.	decomp.	v. sol. dil. a., hot KOH	grayish black.
	12H ₂ O,100°.	158	decomp.		hexag. prisms
		v. soluble		sol. al.; insol. ether	promo
11		v. soluble		sol. al.; insol. ether	tablets
12		insoluble		s. sol. CO ₂ aq.; sol.	
13		v. soluble			plates
14		v. soluble	v. soluble	sol. al.; insol. ether	rhombic prisms
15		insoluble		s. soluble acids	gelatinous
17		insoluble v. soluble		insol. alk.; sol. a., NH ₄ Cl. sol. al.; s. sol. ether	gelatinous
18		soluble		sol. conc. HNO ₃	prisms
19		v. soluble		v. sol. al., ether	crystalline
20		0.000137		s. sol. HCl	ory starring
21		insoluble		sol. a.; insol. alk	crystalline
22		1.52	s. soluble	sol. sat. K,SO,aq	
23		9.3	4.81000	s. sol. H ₂ SO ₄ ; insol. al	monoclinic
		insoluble	insoluble	sol. a., alk., H.C ₂ H ₃ O ₂	crystalline
25		30 ^{25°}	44.6 ¹⁰⁰ °	$2.8^{25^{\circ}}$, $166^{79^{\circ}}$ al	mono. laminæ.
26	1	40 ²⁵ °	66.6 ¹⁰⁰ °		
27		decomp.		dec. by al.; insol. ether.	amorphous
28		insoluble	1.1.1	sol. HNO ₃ , H ₃ AsO ₄ , alk.	mono. needles.
29	T	100 390°	v. soluble 670 ¹⁰⁰ °	v. sol. al., ether, NH ₃ aq.	regular
31		0.001 ^{15°}	insoluble	sol. a., alk., NH ₄ salts	rhombohedral.
		6520°	msoruble ,	v. soluble alcohol	[prisms
		209 ⁰ °	616 ¹⁰⁰ °	100 ^{12.5} al., v. sol. ether.	octahedral or
34		insoluble		insol. al.; sol. alk., KCN	orthorh, prisms
35		insoluble		insol. HCl; sol. NH ₃ aq	
36		s. soluble	soluble	insol. al.; sol. hot acids.	mono. needles.
37		$1.6^{18^{\circ}}$	soluble	sol. NH ₃ aq., a., alk	
38		$0.00042^{18^{\circ}}$	insoluble	sol. acids, alkalies	rhombic prisms
39		0.877	1.32	sol. HNO ₃ , NH ₃ aq., alk.	
	1	430° 324.5°	510 ¹⁰⁰ °	sol. a., $(NH_4)_2CO_3aq$	octahedra
41	0		∞	v. soluble alcohol	tetragonal
12	* * * * * * * *	decomp.			gray

 $[\]ddagger$ Loses $6\mathrm{H}_2\mathrm{O}$ at 200. § Loses $6\mathrm{H}_2\mathrm{O}$ at 105°.

Number.	Name.	Formula.	Molec- ular Weight.	Specific Gravity. Water = 1. Air = 1 (A). $H_2 = 1$ (D).	Melting Point, °C.
1	Zinc oxalate	$ZnC_2O_4.2H_2O$	189.04	*2.58217.50	
$\overline{2}$	oxide	ZnO			
3	oxide per	ZnO ₂	97.37		
4	oxysulphide	ZnO.ZnS	178.81		
5	permanganate	ZnMnO ₄ .6H ₂ O	292.40		5H ₂ O,100°
6	phosphate	$\operatorname{Zn}_3(\operatorname{PO}_4)_2 \dots$	386.19	3.998150	red heat
7		$Zn_3(PO_4)_2.4H_2O$	458.25	2.76-2.85	
8	"	$Zn_3(PO_4)_2.8H_2O$	530.41	3.109 ^{15°}	
9	" acid	$ZnH_4P_2O_8.2H_2O$	295.51		
10	pyro	$ \mathrm{Zn_2P_2O_7}$	304.82		
11	phosphide	Zn_3P_2	258.19	4.5513°	
12	salicylate	1 0 0/4 2	393.50		
13	1	ZnSO		3.6235 ^{15°}	dec. 600°
14		$ZnSO_4.7H_2O$	287.55	1.966116.20	50° †
٦.	1 1	Z CO ATT O	220 -	a a=	
15	sulphate	$ZnSO_4.6H_2O$	269.54		10400
16	sulphide	ZnS	97.44		1049°
17 18	" (blende)	ZnS	380.96	4.03-4.07	1049°
	sulphiteZirconium	$2\text{ZnSO}_3.5\text{H}_2\text{O}$		4.15	1500°
20	Zircomum	Zr		6.40 ¹⁸ °	2350°
21	bromide	$ZrBr_4$	410.28	0.20	2500
22	carbide	ZrC_{2}			
23	chloride	ZrCl_4	232.44		
24	fluoride	ZrF_4		4.433316°	
25	hvdroxide	$Zr(OH)_4$	158.63		2H ₂ O,550°
26	iodide	ZrI_4	598.28		21120,000
27	nitrate	$Zr(NO_3)_4.5H_2O$	428.12		dec. 100°
28	oxalate	$Zr(C_2O_4)_2.2Zr(OH)_4$.			decomp.
29	oxide di-	ZrO_2	122.60		2500°
30	66 (1) 66	ZrO_2			2500°
31	" per	ZrO_3^2	138.60		
32	oxybromide	$ZrOBr_2.3H_2O$	320.49		
33	oxychloride	ZrOCl ₂ .8H ₂ O	321.65		
34	oxyiodide				
35		$ZrI_2O.8H_2O$			decomp
36	sulphate	$Zr(SO_4)_2.4H_2O$	354.80		

^{*} Anhydrous.

[†] Loses 7H₂O at 280°; dec. at 600°.

ber.	Boiling		Solubility in	100 Parts	Crystalline Form
Number	Point, °C.	Cold Water.	Hot Water.	Alcohol (al.), Acids (a.), Alkalies (alk.), etc.	and Color.
1 2		0.00079 ¹⁸ ° 0.001		sol. acids, alksol acids alk., NH ₄ Cl	vel hever or
3 4		insoluble		decomp. by acids	[amorphous
5 6		v. soluble insoluble	v. soluble	decomp. al., acids [salts	
8		insoluble insoluble		v. sol. a., NH_3 aq., NH_4 soluble alkalies	rhombic plates
9 10 11		decomp. insoluble insoluble		sol. a., alk., NH ₃ aq sol. dil. acids	
12 13		520° 43.020°	95.03 ^{100°}	soluble alcohols. soluble alcohol	needles
14		115.20°	633.59 ^{100°}	s. soluble alcohol	rhomb. prisms or monoclinic
16	subl. 1180°	0.00069	insoluble	v. sol. a.; insol.H.C ₂ H ₃ O ₂	
1	subl. 1180°	0.000065 0.16 insoluble	insoluble decomp.	soluble acids[NH ₃ aq. insol. al.; sol. H ₂ SO ₃ , s. soluble acids, sol. HF.	
20 21		insoluble decomposes	insoluble	soluble hot acids, HF	gray crystals
	400°	soluble	1	soluble dilute HFsoluble alcohol	
25	white heat.	1.388 0.02 soluble	decomp. insoluble	soluble HFsol. a.; insol. alk., alsol. a., ether; s. sol. CS ₂ .	gelatinous
27 28		soluble insoluble	decomp.	sol. a., ether; s. sol. CS_2 [insol. NH_3 aq. sol. $(NH_4)_2C_2O_4$, HCl ;	
29 30		insoluble insoluble		sol. conc. H ₂ SO ₄ , HF	amorphous quad.prisms or
31		soluble		insol. cold dil. H ₂ SO ₄	[hexag. needles
33 34 35		soluble v. soluble v. soluble	decomp.	v. sol. ether	amorphous
36		soluble	14639.50	sol. H ₂ SO ₄ ; insol. al	

[‡] Yellow regular tetrahedral or hexagonal rhombohedral.

XXX.—PHYSICAL CONSTANTS

MOLECULAR WEIGHT, SPECIFIC GRAVITY, SOLUBILITY, MELTING

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Abietic acid	$C_{20}H_{30}O_2$	302.25	
2	Acenaphthen	$C_{10}H_6(CH_2)_2$	154.08	1.068788
3	Acetal	$CH_3CH(OC_2H_5)_2$	118.12	0.831439
4	" (K.)	$CH_3CH(OC_2H_5)_2$	118.12	0.82425
5	Acet-aldehyde	CH ₃ CHO	44.03	0.787616
6	" (K.)	CH ₃ CHO	44.03	0.79-0.795
7	aldoxine	CH ₃ CHNO	58.07	0.96453
8	amide	CH ₃ CONH ₂	59.08	1.139
9	anilid	CH ₃ CONH.C ₆ H ₅	135.11	1.21054
10	Acetic acid	CH ₃ .CO ₂ H	60.03	1.051515
11	" " (K.)	$\mathrm{CH_{3}.CO_{2}H}$	60.03	1.048-1.049
12				1.079915

This table has been compiled by E. Emmet Reid, formerly Professor of Chemistry Baylor Univ., Texas, now Johnson Scholar Johns Hopkins Univ.

Most of the older data have been taken from standard works of reference. Many of these figures have been verified by reference to the original publications. The current journals have been thoroughly searched for the more

Nine specific gravities of solids and 103 approximate solubilities have been determined by the author.

The constants given in the lines preceded by the letter K, were determined for the Chemical Annual by C. A. F. Kahlbaum. In a few cases blanks in these have been filled in from the literature. Such data are enclosed in parenthesis.

The boiling points were determined by him under the following conditions:

1. The distilling flask was of such a size that it was about half filled with the substance being investigated. Whenever possible a metallic vessel was used, on account of the well-known tendency to superheating in glass vessels. especially with low-boiling liquids, such as aldehyde, pentane, acetone, methyl alcohol, etc. Ether, for example, boils in glass vessels as high as 50°. Whenever glass vessels were used a piece of asbestos paper having a circular hole of $\frac{1}{6} - \frac{1}{3}$ the diameter of the distilling flask, according to the boiling point of the substance investigated, was placed under the flask.

2. Heat was supplied by a pointed non-luminous flame without wire gauze. The size of the flame was regulated at the beginning of the experiment so that two drops of the distillate were produced per second. This

OF ORGANIC COMPOUNDS

AND BOILING POINTS, CRYSTALLINE FORM AND COLOR. E. EMMET REID, M.A., Ph.D.

Number.	Solubility in 100 c.c.		c.c.	Melting Point, °C.	Boiling Point, °C.	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	and Color.
	insoluble	v. soluble	v. soluble	182°		leaf. or monc.
2		3.2^{20}		95°	229.5° C.	rhombic/al
3	5.2^{25}	00	00		102.91°	
4	5.5	00	000		102-4°	
5	∞	00	∞	-124.6°	20.8°	
6	00	00	∞	abt120°	20.5-24°	
7	00	∞	∞	47° or 13°	114-5°	
8	97.5^{20}	25.0^{20}	v. soluble	82°	222° C.	hexagonal
9	0.54^{25}	46.725	soluble	114.25° C.	305° C.	rhomb. lf/w.
1.0	00	∞	00	16.7°	118.1° C.	
11	00	∞	00		117-8°	colorless
12	decomp. sol	∞	∞			

rate of distillation was maintained during the entire experiment. The distillation was discontinued when 90 to 93% of the liquid had been distilled off. The temperature was observed as soon as the first drops of the distillate fell from the condenser.

3. All boiling points refer to an atmospheric pressure of 760 mm. When the atmospheric pressure was abnormal, thermometers with movable scales were employed, water (B. P. 100°), aniline (B. P. 184°) and quinoline (B. P. 238°) being used as standard substances.

4. The boiling points given are the limits between which the greater

part of the liquid distilled.

ABBREVIATIONS

The following abbreviations have been used in the table: abs. = absolute; acet. = acetone; al. = alcohol; amor. = amorphous; anhy. = anhydrous; at. = atmosphere; bz. = benzene; chlo. = chloroform; cryst. = crystalline; dec. = decomposes; et. = ether; exp. = explodes; hexag. = hexagonal; insol. = insoluble; leaf. = leaflets; lig. = ligroene; acet. = acetone; mod. = moderately; moncl. = monoclinic; need. = needles; pris. = prisms; quad. = quadratic; s. = slightly; sol. = soluble; subl. = sublimes; tab. = tablets; triclinic w. indicates that crystals separating from a water solution are triclinic in form; v. = very; w. = water; yel. = yellow; $265^{\circ 100}$ indicates that the substance boils at 265° under a pressure of 100 mm.; a small figure to the right of a number denoting solubility signifies the temperature; ∞ = infinitely soluble or soluble in all proportions; >= greater than; <= less than.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Acetic anhydride(K.)	(CH-CO)-O	102.05	1.077525
	Aceto-acetanilid (K.)		117.13	
3	Aceto-acetic acid	CH ₃ CO.CH ₂ CO ₂ H	102.05	
4	" ether	$CH_3CO.CH_2.CO_2C_2H_5$		1.02824
5		$CH_3CO.CH_2CO_2C_2H_5$		1.02425
	Acetol	CH ₃ CO.CH ₂ OH		
7	Acetone	CH ₃ COCH ₃		0.7970\\ 0.700
8	(11.)	CH CO CH		$0.788 - 0.790$ $1.0329\frac{15}{5}$
9	Aceto-phenone	$CH_3CO.C_6H_5$ $CH_3CO.C_6H_5$	1	1.032918 $1.028\frac{25}{25}$
	Acetoxime	$(CH_3)_{\circ}C: NOH.$		0.886875
	Acet-o-toluid	CH ₂ CONHC ₅ H ₄ .CH ₂		1.168^{15}
	Acetyl-acetone	CH ₃ COCH ₂ COCH ₃		0.98715
14	bromide	CH ₃ COBr	122.99	
15	chloride	CH ₃ COCl	78.48	1.1051%
- 1	Acetylene	H ₂ C:C:	1	.91(A).613-80
17	dicarbonic acid	CO_2 H.C: $C.CO_2$ H + 2H ₂ O	E .	
18		CHBr ₂ .CHBr ₂	345.86	
19	tetrachloride (K.) Acetyl fluoride	CHCl ₂ .CHCl ₂ CH ₂ COF	1	1.58225
21	iodide	CH ₃ COI	170.00	1.03690
22		CH ₃ CO.CH ₂ CO.C ₆ H ₁₃		0.90725
23	peroxide	$(CH_3CO)_2O_2$	118.05	
24	propyl alcohol	CH,CO.(CH,),CH,OH		1.01590
25	rosaniline	$C_{20}\mathring{H}_{18}(C_2H_3O)N_3$	343.29	
26	urea	$NH_2.CO.NHC_2H_3O$		
	Aconic acid			
28	Aconitic acid	$C_3H_3(CO_2H)_3$	174.05	
29	Acridine	$C_6H_4 < \frac{CH}{N} > C_6H_4.$	179.11	
30	Acrolein	CH ₃ : CH.CHO	56.03	0.84
31	Acrylic acid	CH ₂ : CH.CO ₂ H		1.0621
	Adipic acid	$CO_2H.(CH_2)_4.CO_2H$	146.08	
	Aldehyde ammonia			
34	benzoic acid (o.)	$CO_2H.C_6H_4CHO$		1.404
35	" " (m.)		150.05	
36	(β.)	CO ₂ H.C ₆ H ₄ CHO	150.05	
	Aldehydine	$2,5$ CH $_3$.C $_5$ H $_3$ N.C $_2$ H $_5$ CH $_3$.CH(.OH)CH $_3$ COH		$ \begin{array}{c c} 0.9184^{23} \\ 1.1094^{16} \end{array} $
	Alizarine	3 ' 2	240.06	
1		06-14(00)206112(011)2		

er.	Sol	ubility in 100 c	c.	Melting	Boiling	Crystalline
Number.				Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Form and Color.
N	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
-						
1	sol. dec	∞	∞		137-40°	colorless
2	v. s. sol.	soluble	soluble	84.5-5°		sm. flat pris.
3	00		00		decomp.	
4	s. soluble	∞	∞	< -80°	181.5°	
5	s. soluble	∞	∞		177-81°	becomes yel.
6	∞ -	∞	∞		147° dec.	
7	00	∞	∞	-94.6°	56.53° C.	
8		∞	∞ ∞	-95°	56-7°	
	insoluble	soluble	soluble	20.5°	202° C.	leaflets
	v. s. sol.	soluble v. soluble	v. soluble	17–19° 60°	199–202° 135°	usually yel
	v. soluble 0.86 ¹⁹	8.08		110°	296°	prisms
	12.5	∞ ∞	00	110	139°748	ormornomble
1	decomp.	decomp.	soluble		81°	
	decomp.	decomp.	soluble		50.9° C.	
	0.118 g. ¹²	600 c.c. ¹⁸		-81.5°	-83.6°	
	v. soluble	v. soluble	v. soluble	178-9°		crystalline
18	insoluble	soluble	00		239–42° d.	$wh. \rightarrow yel$
19	ınsoluble	00	00		145-7°	colorless
	5 c.c.	reacts	∞	$< -55^{\circ}$	10.5°750	
	decomp.	decomp.	soluble		108°	brown
3	v. s. sol.	00	00	-6°	234–7° dec.	
1	sl. soluble	dec. NaOH	∞	30°	63°21	plates
24		v. soluble	v. soluble insoluble		208-9°	
	insoluble v. sol. hot	$1^{20}:10^{77}$	Insoluble	218-9°		red
	17.6 ¹⁵	sol, CH ₂ OH		164°	dec.	triclinic/w
	18	50^{12}	s. soluble	191° dec.	acc.	leaflets
-						
29	s. soluble	v. soluble	v. soluble	107°	$> 360^{\circ} \text{ sub.}$	rhomb. leaf
30	40	soluble	soluble		52.4°	
31				8°	140°	
	1.415	v. soluble	0.605^{15}	153° C.	265°100	triclinic nd
	v. soluble	v. soluble	s. soluble	70–80°	100°	rhomboh
	v. soluble	v. soluble	v. soluble	97.2°	dec.	moncl.leaf./w
100	anl hat	v. soluble	s. soluble	164-6° 285°		sm. needles
	sol. hot insoluble	v. soluble	v. soluble	285	sub. 173–4°	needles/w
38		v. soluble	soluble		90-105°20	thick syrup
	0.034100	v. soluble*	1	289–90°	430°	red triclinic.
100						discountry.

^{*} Soluble CS₂, KOH. † Soluble Chloroform, CS₂.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 30 31 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	Alizarine \$\beta\$-carbonic acid Allantoin. Alloxan. Allyl acetate. acetic acid. Allyl acetone. alcohol. "(K.) amine. aniline. benzene. benzoate. bromide. butyrate. chloride. cinnamate (K.). cyanide. ether. formate. iodide. isoamyl ether. isobutyrate. isocyanide. isovaleriate. mercaptan. mustard oil. oxalate. phenyl ether phenyl urea. pyridine (\alpha). sulphiocyanide. Allylene. oxide. Aluminum ethyl.	CO ₂ H.C ₆ H ₃ (CO) ₂ C ₆ H ₂ C ₄ H ₆ N ₄ O ₃	284.06 158.21 142.10 100.06 98.08 58.05 57.10 133.13 118.08 162.08 121.00 128.10 67.08 98.08 86.05 168.01 128.13 128.10 67.08 91.00 128.13 128.10 128.13 128.10 129.14 170.08 142.12 74.11 99.14 170.08 134.08 176.18 119.11 114.14 99.14 40.03 56.03 114.22	Air = 1 (A). 0.9376° 0.9843½° 0.834²7 0.8491½° 0.854-0.857½° 0.982²5 0.9143½° 1.0578½° 1.436¹5 0.9371¹° 1.052½° 0.8351¹5 0.8046¹8 0.9322¹7·5 1.8293²3 0.794¹7 1.0173¹° 1.055¹⁵ 0.9856½°
37 38	Amarin	$C_{21}H_{18}N_2 + \frac{1}{2}H_2O \dots (C_6H_5)_2(C.N.C)_2(C_6H_5)_2\dots$ $NH_2CH_2.CO.CH_3.\dots$	307.24 384.24 73.10	

Number.	Sol	ubility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C.	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	Point, °C. C. = Cor- rected.	Form and Color.
1	s, soluble	mod. sol.	s. soluble	305°	sub.	red need
	0.6 ²⁰ v.s. h.		insol.	300	dec.	monocl. pris
	v. soluble	soluble		dec.	170°(?)	triclinic/w
4	s. soluble	∞	00		103-40734	
5	s. soluble	v. soluble	v. soluble	< -18°	188° C.	
6	insoluble				128-30°	
7	000	∞	00	-129°	96.69° C.	
8	00	∞	∞		95-7°	
9	∞	soluble	∞		56.50756	
	v. s. sol.	soluble			208–9°	yellow oil
11 12		soluble			176–7°C. 230° ⁷⁶⁸	
1	insoluble	soluble	soluble		70–1°	
1	msorable	soluble	Soluble		142°	
	insoluble	soluble	∞		46°	
16	insoluble !	v. soluble	∞		284-6° dec.	wh.→yel
17		soluble			119° C.	
18	s. soluble	∞	∞		94.3°	
-		soluble			83.6°C. ⁷⁶⁸	
	insoluble	soluble			102.5-2.8c	
21					120°	
22					133.5°	
	s. soluble	soluble			96–106° 154–5°	
					90°	
-0	v. s. soluble		v. soluble		150.7°	
	insoluble	soluble	V. BOIGBIC		217°	
	insoluble				191.7° C.	
29			sol. bz.	115.5°		thick needles.
30					189-90°	
1	s. soluble	∞	∞		138.6°758	
1	insoluble				161°	
			3000 c.c.	-110°	-23.5°*	
1	s. soluble				62-3°	
	dec.			<-18°	194° 130°	
	insoluble	v. soluble	v. soluble	130–1°anhy	130°	prisms
1		s. sol. hot	s. soluble	245–6°	subl.	sm. need./ace
1 1		soluble	s, soluble	188–9° dec.	subi.	need.ortab/al
1 - 1		soluble	soluble	105.5-6°		vel. flat pris.
1	2.202.			- 30,0		J Sat and prise.

^{*} Liquefies at 3 to 4 atmospheres pressure.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Amino-			
1	anthraquinone	$C_{14}H_9O_2.NH_2$	223.07	
2	azo-benzene (p.)	$NH_2.C_6H_4.N_2.C_6H_5$	197.21	
3	azo-naphthaline	$C_{10}H_7.N_2.C_{10}H_6NH_2$	297.24	
4	benzaldehyde (o.)	C_6H_4 .CHO.NH ₂	121.10	
5	benzamide (o.)	NH_2 . C_6H_4 . $CONH_2$	136.14	
6	" (m.)	$NH_2.C_6H_4.CONH_2$		
7	" (p.)	$NH_2.C_6H_4.CONH_2$	136.14	
8	benzene-sulphonic ac.o.	$NH_2.C_6H_4.SO_3H + \frac{1}{2}H_2O$.	182.17	
9		$NH_2.C_6H_4.SO_3H + 1\frac{1}{2}H_2O.$		
10		$NH_2 \cdot C_6H_4 \cdot CO_2H \cdot$ $NH_3 \cdot C_6H_4 \cdot CO_3H \cdot$		
11 12		$NH_2.C_6H_4.CO_2H$ $NH_2.C_6H_4.CO_2H$		
13	(β.)	$NH_2.C_6H_4.C_2H_2CO_2H$	162 11	
14	" " (m)	$NH_2.C_6H_4.C_2H_2CO_2H$	163 11	
15		$NH_2.C_6H_4.C_2H_2CO_2H$		
16	diphenyl (o.)	C_6H_5 . C_6H_4 . NH_2	169.13	
17	" (p.)	$C_6H_5.C_6H_4.NH_2$	169.13	
18	ethyl-benzene (o.)	$C_2H_5.C_6H_4.NH_2$	121.13	0.98322
19	" (m.)	$C_2H_5.C_6H_4.NH_2$	121.13	0.9896°
20	" (p.)	$C_2H_5.C_6H_4.NH_2$	121.13	0.975^{22}
21	β -naphthol (1)	$NH_2.C_{10}H_6.OH$	159.11	
22	phenol (o.)	$NH_2.C_6H_4.OH$	109.10	
23	" (m.)	$NH_2.C_6H_4.OH$	109.10	
24	" (p.)	$NH_2C_6H_4.OH$	109.10	
25	quinoline (2)	$C_9H_6N.NH_2$	144.14	
26	(4)	$C_9H_6N.NH_2+H_2O$	162.16	
27	salicylic acid (5)	$NH_2.C_6H_3(OH)CO_2H$	153.10	
28	thiophene	NH ₀ C ₄ H ₂ S	99.14	
29	triphenyl-methane	$(C_6H_5)_2CH.C_6H_4NH_2$	259.18	
30	Ammelid	$ C_6H_9N_9O_3 $	255.43	
31	Ammelin	$C_3H_5N_5O$	127.24	
32	Amygdaline	$C_{20}H_{27}NO_{11} + 3H_2O$	511.31	
33	Amygdalinic acid	$C_{20}H_{28}O_{13}$		
	Amyl acetate	$CH_3CO_2.C_5H_4$		0.874819
35	alcohol (n.)	$CH_3(CH_2)_3.CH_2OH$		0.8168^{20}
36 37	" (act.)	CH ₃ (C ₂ H ₅)CH.CH ₂ OH		0.8169^{18}
38		C_3H_7 .CH(OH).CH $_3$ (CH $_3$) $_2$.C(OH).C $_2$ H $_5$		$0.8239^{\circ} \\ 0.8144^{15}$
39		CH_3 ₂ . $C(OH)$. C_2H_5 $CH_3(CH_2)_4$. NH_2		0.814419
09	amme	O11 ₃ (O11 ₂) ₄ .W11 ₂	87.13	0.7002

_						
Number.	Sol	ubility in 100 c	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
-						
1	v. sol. chlo.*	s. soluble	v. sol. acet.	256°	subl.	red powder
2	v. s. sol. hot		v. soluble	127.4°	>360°	monoclinie
-		mod. sol.	mod. sol.	173-5°	dist.	red needles
	s. soluble	v. v. sol.	v. v. sol.	39-40°	dec.	leaflets
	mod. sol.	v. soluble	s. soluble	108°		leaflets/chlo
	s. soluble	soluble	soluble	79°	abt. 300°	yel. moncl.
	s. soluble			182.9° C.		bright yellow
-	1.5^{15} 1.99^{9}	soluble soluble				quad. prisms.
	0.34^{14}	soluble 10.7^9	16.0^7	144-5°	auhl in ma	triclinic pris. trimet.leaflets
	0.56^{14}	$\frac{10.7^{\circ}}{2.2^{9}}$	1.81 ⁶	174°	subi, in vac.	cryst. warts
	0.36^{14}		8.21^{6}	186–7°		red vel. cryst
	v. s. sol.	mod. sol.	mod. sol.	158–9° dec		vellow need.
1	s. soluble	soluble	soluble	180–1°		lg. vel. need
1	s. soluble	v. soluble	v. soluble	175-6° dec		fine yel, need.
	insoluble	soluble		49°	299°	leaflets
	s. soluble	v. soluble	v. soluble	53°	302° C.	glit. leaf/al
				< -10°	215–6° C.	8
19					214-5°	
20				-5°	216-6.5° C	glit. leaflets
	v. s. sol. hot		sol. fluoresc			leaflets
	1.7°	4.5°	v. soluble	170°	subl.	rhombic.
	2.6^{20}	soluble	soluble	122–3°		pris./toluene
	1.1°	4.5°	s. soluble	184° dec.	sub. pt.	leaflets
25	v. v. s. sol.	v. soluble	v. soluble	129° C.		lrg. leaf./w
26	soluble	soluble	sol. acet. {	69-70°		fine need./w
			((anh. 154°)	1	
1	insoluble	insoluble	· · · · · · · · · · · · · · · · · · ·	dec.	dec.	glit, needles
1	v. soluble	v. soluble	insoluble soluble	83–4°		oil
	sol. lig.	sol. bz.	soluble sol. acid	83-4		pris. lg. or et .
	0.02	insoluble	sol. KOH	dec.		powder
	$8^{10}, \infty^{100}$	$0.11^{10}, 9.78$		214–6°		tetra, pris./w
	deliq.	insoluble	v. s. sol.	211 0		cryst. mass
	0.18^{20}	∞ ∞	v. s. soi.	thick-75°.	148°	cryst. mass
	2.7^{22}	∞	∞ ∞	onick to .	137.8°	
					129.3° C.	
	16				118.50753	
38	s. soluble	soluble	soluble	-12°	101.81°	
39		soluble			104°	

^{*} Very soluble benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Amyl benzene	$C_6H_5.C_5H_{11}$	148.13	0.860222
2	bromide	CH_3 . $(CH_2)_3CH_2Br$		1.2234^{20}
3	" tert. (K.)	$CH_3.CH_2.CBr(CH_3)_2$	151.05	$1.194\frac{25}{25}$.
4	chloride			0.8834^{20}
5		$\mathrm{CH_{3}.CH_{2}CCl(CH_{3})_{2}}$		$0.862\frac{25}{5}$
6		$(C_2H_5)_2CHCN$		0.866^{20}
7	ether (K.)			0.774525
8		CHO ₂ C ₅ H ₁₁		0.90180
9	1	2/0 2		1.517428
10		$C_4H_7O_2.C_5H_{11}$		0.8592^{13}
$\frac{11}{12}$		$C_6H_4(CO_2C_5H_{11})_2$		$1.019\frac{25}{0.952\frac{25}{25}}$
13		$ <(CH_2)_2:(CO_2.C_5H_{11})_2$ $ C_4H_9.CO_2.C_5H_{11}$		0.88120
- Table 1-10	Amylene n			0.0012
	Amylene			
	Amylene (K.)	2 3	ł	0.66615
	Anethol (p.)			0.993615
	Angelic acid			0.953978
	Aniline		93.10	1.025415
20		$C_6^{"}H_5^".NH_2"$	93.10	1.021425
21	Anisalcohol (p.)	CH ₃ O.C ₆ H ₄ .CH ₂ OH	138.08	1.1129 15
22	Anisic acid (p.)	$CH_3O.C_6H_4CO_2H$	152.06	1.3644-1.385
23		$CH_3O.C_6H_4CHO$		1.126015
24		$CH_3O.C_6H_4.CHO$		1.120-1.12225
	Anisol			0.998815
26	" (K.)	C_6H_5 .O.CH $_3$		0.992528
27	Anisyl chloride (K.) (p.).	CH ₃ O.C ₆ H ₇ .COCI	170.51	
	Anthracene	$C_6H_4:(CH)_2:C_6H_4$	178.08	
29 30	carbonic acid $(a)(9) \dots$	C_6H_4 : $CHC(CO_2H)$: C_6H_4 .	222.08 222.08	
31	(1)	$C_6H_4:(CH_2)_2: C_6H_3.CO_2H$ $C_6H_4:(CH_2)_2: C_6H_3.CO_2H$		
	Anthramine	$C_{6}\Pi_{4}$, $(C\Pi_{2})_{2}$, $C_{6}\Pi_{3}$, $CO_{2}\Pi_{4}$		
33	Anthranil	$CH \cdot NHCO$		
34	Anthrapurpurin	$C + O (OH) \cdot 1.2.7$		
35	Anthraquinoline	$C_{17}H_{11}N$		
	Anthraquinone	1	208.06	1.419-1.438
37	carbonic acid (\$)	$C_6H_4:(CO)_2: C_6H_3CO_2H$	252.06	
38	dicarbonic acid (1, 3).	$C_{10}H_{\bullet}O_{\bullet}\dots\dots\dots$	280.06	
39	Anthrol (m.)	$C_bH_4(C_bH_3O_{11})$	194.08	
40	Antimony pentamethyl	$Sb(CH_3)_5$	195.32	

	1					
ber	Solubility in 100 c.c.			Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1		soluble			201°743	
2		soluble			128.70739	
3	insol. dec.	∞	∞		108–11° de.	wh.→yel
4		soluble			106.60740	
	insol. dec.	∞	∞		85-9°	colorless
6	s. soluble	∞	∞		176-70784	
7	insoluble	∞	∞		169–72°	yellowish
_	s. soluble	∞	∞	thick-75°	130.4° 155.4° ⁷³⁹	
9	s. soluble	soluble			153-5°	
1	insoluble	000	00 1.1		338–44°	vellow
1	insoluble	× ×	00		289–93°	$wh. \rightarrow yel.$
	s. soluble	×	00	thick-75°	203.7°	, , , , , , , , , , , , , , , , , , , ,
14					39-40°	
15					360741	
16	v. s. sol.	soluble	∞		37-42°	
	v. s. sol.	∞	∞	22.5°	235.20760	leaflets
	s. soluble	soluble	v. soluble	45.5°	185°	monoclinic
	3.607^{25}	00	∞	-5.96°	183.7° C.	1
1-0	3.2212.5	soluble	00	-6-5° 45°	183–4° 258.8°	becomes br'n needles
	insoluble 0.04^{18}	v. soluble	soluble	184.2° C.	275–80°	moncl. prisms
1	s. soluble	v. soluble	∞ ∞	00	248° C.	monei, prisms
	s. soluble	soluble	×		247–50°	usually yel
	insoluble	soluble	soluble	−37.8° C.	155-5.6°	yez
1	insoluble	soluble	∞	-37.8°	153-5°	
27	insol. dec.	sol. dec.	soluble	26-7°		sm. needles
28	insoluble	0.59^{15}	1.17^{15}	216.55° C.		
-	v. v. s. sol.	v. soluble		206° dec.	dec.	yel. need./al.
	insoluble	s. soluble	s. soluble	245°		yel. need./al.
	insoluble	soluble	soluble	280° abt.	subl.	sm.yelleaf/al.
1	v. v. s. sol.	s, soluble v, soluble	s. soluble	238° 18°	210 15 d-	yel. need./al.
	s. soluble s. sol. hot	v. soluble	s. soluble*	>330°	210–15 dec. 462° C.	lg. or need./al.
	insoluble	v. soluble	v. soluble	> 330 170°		leaf. or tablets
	(0.536^{20})	(0.05^{10})				(tetrag.yel.
36	acetone	2.3^{70}	s. soluble	284.65° C.	380° C.	need.
37	(v. s. sol.	v. v. s. sol.	290-2°	subl.	yel. pris./al
	v. v. s. sol.	v. soluble		>330°		yel. needles
39	sol. acetone	v. soluble	v. soluble		200° dec.	need.or leaf/a
40	insoluble				96-100°	

^{*} Slightly soluble chloroform; insoluble benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Antimony triethyl	$Sb(C_2H_5)_3$	207.32	1.324418
2	trimethyl	$Sb(CH_3)_3$		1.52315
	Antipyrene	$C_{11}H_{12}N_2O\dots$	188.18	
5	Apple oil see Isoamyl- isovaleriate			
	Arabin	CHO	282 15	
	Arabinose (d.)			
8		OHCH ₂ (CHOH) ₃ CHO		
9	Arabite (d.)	CH,OH,(CHOH),CH,OH		
10	Arachidic acid	$C_{20}H_{40}O_2$	312.32	
11	Arbutin	$C_{12}H_{16}O_7 + \frac{1}{2}H_2O \dots$	281.14	
12	Arsenic-diethyl	$[As(C_2H_5)_2]_2$	266.16	1.+
13	Asparagine (l.)	$C_2H_3.NH_2CO_2HCONH_2$	132.14	1.5434¥
14	Atronic acid	$C_{17}H_{14}O_2$	250.12	
15	Atropic acid	CH_{9} : $C(C_{6}H_{5}).CO_{9}H$	148.06	
16	Aurine	$C_{10}H_{14}O_3$	290.12	
17	Azelaic acid	$CO_2H.(CH_2)_7.CO_2H$		
18	Azobenzene	$C_6H_5.N_2.C_6H_5$	182.16	1.203
19	Azobenzoic acid (o.)	(CO.H.C.H.), N.	270.16	
20		$(CO_2H.C_6H_4)_2.N_2 + \frac{1}{2}H_2O$.	279.17	
21	" (p.)	$(CO_2H.C_6H_4)_2.N_2 + \frac{1}{2}H_2O$.	279.17	
22	Azonaphthaline (aa)	$C_{10}H_7.N: N.C_{10}H_7$	282.20	
	Azophenetol (o.)			
24	(20)	1 2 0 0 1/2 2	270.23	
$\frac{25}{26}$		$(OH, C_6H_4)_2N_2$	$\begin{vmatrix} 214.16 \\ 214.16 \end{vmatrix}$	
27	()	0 4/2 2	214.16	
	Azotoluene (oo.)	$(CH_3C_6H_4)_2N_2$	210.20	
29		$(CH_3C_6H_4)_2N_2$		
30		$(CH_3C_6H_4)_2N_2$		
31	Azoxybenzene	$(C_6H_5)_2$: N_2O	198.16	
32		$(\mathrm{CO_2H.C_6H_4})_2N_2O$	286.16	
33		$(\mathrm{CO}_2\mathrm{H}.\mathrm{C}_6\mathrm{H}_4)_2\mathrm{N}_2\mathrm{O}$		
34	(P.)	$(CO_2H.C_6H_4)_2N_2O$		
	Barbituric acid			
37	Bebeerine	$C_{18}H_{21}NO_3$	340 33	
38	Behenolic acid	C HC:C(CH.)CO H	336.32	
90	Description words, ,	81170.0(0112)11.00211	300.02	

^{*} Soluble KOH.

Number.	Sol	ubility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	insoluble	soluble	soluble			
	s. soluble	insoluble	soluble		·80.6°	[moncl./w.
3	v. soluble	v. soluble	sl. soluble	113°	319° C. ¹⁷⁴	leaf. et.:
5						
1	soluble	insoluble				amorphous
	5910	$0.46^{10}90\%$		158.5-9.5°		rhombic pris.
8	59.310;300100	$0.42^{9}/90\%$	insoluble	158.5-9.5°C		rhombic/al
9	v. soluble	$2.08^{12}90\%$		103° C.		warts
10	insoluble (s. soluble	v. soluble	77°		leaflets
1	v. sol. hot	soluble	v. v. s. sol.	165-6°		silky needles.
1	insoluble	soluble	soluble		185–90°	
13	$\left\{ \begin{array}{c} 0.62^{20} \\ 53^{100} \end{array} \right.$	v. s. sol.	v. s. sol.	234–5°	dec.	long rhombic
14	v. v. s. sol.	v. soluble		164°		pris./acet.
15	0.14^{19}	soluble	v. sol. CS ₂	106-7°	267°	amor./w. moncl. tab.al.
	insoluble	soluble	sol.solKOH		201	red rhombic.
	$0.24^{20} - 2.2^{85}$	v. soluble	v. soluble	106.5°	abt.360 dec.	leaf., needles.
18	insoluble	8.520	sol., v. sol.	68.1°	295–7° ⁷⁴⁹ C.	or. yel.moncl.
19	s. soluble	mod. sol.	v. soluble	250-1°		yel. needles
	v. s. sol.	s. soluble	s. soluble	dec.		amor, powder
21	insoluble 1	insoluble	insoluble	dec.	dec.	reddish amor.
22	insoluble	s. soluble	sol. acet.†	186°	subl.	red need. acet.
1	insoluble	soluble	sol.,sol.HCl	131°	240° dec.	red pris./al
	insoluble	s. soluble	v. soluble	160°	dist.	orange leaf
	insoluble	0.33	v. soluble*	171°	subl.	yel. leaflets
	v. s. sol.	s. sol. hot	s. soluble	205°		leaf./dil. al
1	s. soluble insoluble §	v. soluble 6.03 ¹⁴	v. soluble† 147 ¹⁶	204° 55°		brown triclin.
	insoluble	v. soluble	v. soluble	54-5°		red moncl./et. or. red rhomb.
1	insoluble	mod. sol.	v. soluble	144°		monocl. pris.
1	insoluble	11:415	soluble	36°	dec.	yel. rhombic.
1	v. s. sol.	mod. sol.	mod. sol.	248°	dec.	vel. triclin.
1	insoluble	s. soluble	s. soluble	345°		mic. needles.
34		insoluble	sol. pyridin	no m. p.	dec. 330°	yellow prisms
	s. soluble			dec.		rhombic
	0.016	20 abs.‡	8	214°		pris. meth. al.
	insoluble	0.102^{17}	1.9216	84°		needles
38	insoluble	v. soluble	sol. chlo	57.5°		need./abs. al.
		1			1	

[‡] Soluble acetone and chloroform. § Very soluble benzene.

				1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Benzal chloride	C.HCHCl.	160.95	1.29518
2		C_6H_5 .CHCl $_2$		
3	Benzalcohol	C.H.CH.OH	108.06	1.050015
4	" (K.)	$C_6H_5.CH_2OH$	108.06	1.04725
5	Benzaldehyde	$C_{\varepsilon}H_{\varepsilon}.CHO$	106.05	1.050415
6	Benzaldoxime (a) (anti).	CeH.CH: NOH	121.10	1.1120
7	" (β) (syn.)	C ₆ H ₅ .CH: NOH	121.10	
		0 0		
8	Benzamide	C _e H _e .CONH _o	121.10	1.3414
9	Benzanilid	C.H.CONHC.H.	197.13	1.306-1.3214
10	Benzene	C.H		0.87994
11		C_6H_6	78.05	$0.876\frac{25}{25}$
12	hexabromide (trans.)	$C_6H_6Br_6$	457.81	
13	hexachloride	$C_{\epsilon}H_{\epsilon}Cl_{\epsilon}$	290.75	1.8720
14		$C_6H_5.SO_2H$		
15	sulphone amide	$C_6H_5.SO_2NH_2$		
16	sulphone chloride	$C_6^{\circ}H_5^{\circ}SO_2C1$	176.55	1.384215
17	sulphonic acid	$C_0H_0SO_0H + H_0O_0$	176.13	1
18	Benzamidine	C.H.C(: NH).NH		
19	Benzidine (p.)	NH. C.H. C.H. NH.		
20	Benzil	C.H.CO.COC.H	210.08	
21	Benzilic acid	(C,H,),C(OH),CO,H		
22	Benzoic acid	C.H. CO.H		1.26594
23	anhydride	$(C_6H_5.CO)_2O$	226.08	1.1989 15
24	Benzophenone			1.097658
25		$(C_6H_5)_2CO$		
26	Benzotrichloride		195.39	1.38014
27	Benzoyl-acetic acid	C.H.COCH.CO.H		
28		$C_6H_5.CO.CH_2.CO.CH_3$		
29		$C_6H_5.COC_6H_4.CO_2H+H_2O$	244.10	
30	" " (m.)	C_6H_5 : COC_6H_4 . CO_2H		
31	" " (p,)	C_6H_5 : COC_6H_4 . CO_2H	226.08	
32	bromide	C_6H_5COBr		1.57015
33	chloride	C ₆ H ₅ .COCl		1.21884
34	" (K)	$C_6^{\circ}H_5$.COCl	140.49	1.21125
35	cvanide	C ₆ H ₅ .COCN		
36	fluoride	C_6H_5COF	124.04	
37	iodide	$C_6H_5.COI$		
38	peroxide (K.)	$(C_6H_5CO)_2O_2$	242.08	
		CH, CO, CH, C, H,	150.08	1.06215
40	aceto-acetic ether (K)	$C_2H_3O.CH(C_7H_7)CO_2C_2H_5$	220.13	1.06125
	asoto access concr (1t.)	2-301012(07117)00202115		

1						
Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
-				10 10 0	212.4°	
1 2	insol. dec.	00	00	-10.1° C.	$202-6^{\circ}$	$wh. \rightarrow yel$
	4.017	× ×	000		206.5° C.	wii yei
	4.0^{17}	soluble	000		202-5°	
5	0.3	00	∞	-13.5°	179.9° 0 7	
6	v. soluble	v. soluble	v. soluble	35°	200°; 134°20	leaflets
7	sol. bz.		v. soluble	128–30°		rhombic tab. or need./et.
8	1.35^{25}	26.9^{25}	v. soluble	128°	290°	monel. triel.
	insoluble	soluble	s. soluble	160-1°	dist.	leaflets
1	0.072^{22}	00	∞	5.42°	80.20°	rhombic pris.
	0.01 abt.	soluble	00	5.4°	80-1°	rhombic pris.
		s. soluble	s. soluble	212°		monoclinic
	4.35 ¹⁵ chlo.	6.5 ¹⁸ bz.	v. sol. anil.	157° 83–4°	dec. 288°	monoclinic
	s. soluble 0.43	v. soluble v. soluble	v. soluble v. soluble	83-4° 150°	dec. 100°	long prisms
	insoluble	v. soluble	soluble	14.5°	251.5° C.	need. or leaf
120	v. v. sol.	v. v. sol.	insoluble	65-6°	135–7°0	large leaflets.
	mod. sol.	v. soluble	s. soluble	75–80°	100-1	crystalline
	0.04^{12}	soluble	2.2	127.5-8°	400-10740	leaflets/w
1	insoluble	v. soluble	v. soluble *		346-8° C. †	hexag, pris./e
21	s. soluble	v. soluble	v. soluble	150°	dec. 180°	moncl. need
	0.3400^{25}	4820	3120	121,25° C.	249.2° C.	monel. nd., lf.
	insoluble	mod. sol.	mod. sol.	42°	360°	rhombic pris.
	insoluble	13.5^{18}	17.5^{13}	48-8.5°	305.44° C.	lg. rhom. pris.
		v. soluble	v. soluble	26-6.5°	306°	large moncl
	dec. s. soluble	v. soluble	v. soluble	-21.2° 103-4° dec.	213–4°	
	insoluble	v. soluble	soluble	59-60°		mic. needles. pris.—yel.
	mod. sol.	v. soluble	soluble	93°, 27°anh		tricl. need./w.
1-0	v. s. sol.	v. soluble	v. soluble	161–2°	• • • • • • • • • •	large needles.
- 0	v. s.sol.hot	v. soluble	v. soluble	194°	sub.	moncl.leaf/w
		soluble		0°	218-9°	
	dec.	dec.	∞	-1°	197, 2° C.	
	v. s. sol.	sol. dec.	∞	-1 -0°	196-8°	
	insoluble			32-3°	206-8°	tablets
					161.5°745	
	dec.	soluble		dec.	dec.	leaflets
	insoluble	soluble	soluble	103-4°		wh. prisms
39	in a plant 1				206°	
40	insoluble	00	00		284–90° d.	wh. \rightarrow yel.

^{*} Soluble in KOH.

[†] Decomposes.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
Z				
1	Benzyl amine	CHCHNH	107 11	0.986515
2				1.114^{18}
3		$C_6H_5.CH_2Br$		1.438022
4	carbinol	$C_6H_5.CH_2.CH_2OH$		1.0235^{15}
5	chloride	$C_6H_5.CH_2Cl.$		1.104015
6	cvanide	$C_6H_5.CH_2CN$		1.021415
7		$(C_6H_5.CH_2)_2S_2$	246.24	
8	ether			1.035916
	Benzylidene acetone (K.)			
	Benzyl iodide			1.733525
11	ketone	$(\mathring{\mathbf{C}}_{6}\mathring{\mathbf{H}}_{5}.\mathbf{C}\mathring{\mathbf{H}}_{2})_{2}\mathbf{CO}$		
12	" (K.)	$(C_6H_5.CH_2)_2CO$		
13	mercaptan			
14	mustard oil	$C_6^{\circ}H_5^{\circ}.CH_2^{\circ}.NCS$	149.16	1.+
15	sulphide	$(\mathring{\mathrm{C}}_{_{6}}\mathring{\mathrm{H}}_{_{5}}.\mathring{\mathrm{CH}}_{_{2}})_{_{2}}\mathrm{S}$	214.18	1.071258
16	sulphocyanide	C.H.CH.SCN	149.16	
17	sulphone	$(\mathring{\mathbf{C}}_{6}\mathring{\mathbf{H}}_{5}.\mathbf{C}\mathring{\mathbf{H}}_{2})_{2}\mathbf{SO}_{2}$	246.18	
18	urea	C _e H _e .CH _o .NH.CO.NH _o	150.16	
19	Berberonic acid	2:4:5C ₅ H ₅ N(CO ₂ H) ₃ 2H ₂ O	247.11	
20	Beryllium ethyl	$Be(C_2H_5)_2$		
21	Bi-anthryl	$C_{28}H_{18}$	354.15	
22	Bilirubin	$C_{34}H_{36}N_4O_7\dots$		
23	Bismuth tri-ethyl		295.62	1.82
24	Biuret	$NH(CONH_2)_2.H_2O$	121.18	
25	Borneol (i.)	$C_{10}H_{17}OH$	154.15	1.011
26	" (d.)		154.15	1.011
	Bornyl amine (d.)	$C_{10}H_{17}NH_2$	153.20	
	Brassidic acid		338.34	0.8585\\
	Bromacetic acid		138.99	
		HBrC: C:	104.97	
	Bromal		280.89	3.34
	Bromaniline (o.)	$BrC_6H_4NH_2$	172.05	
33				1.582021
34	" (p.)	$BrC_6H_4NH_2$		
	Brombenzamide (o.)			
36	" (m.)			
37				
38	Brombenzene			1.499115
	Brombenzoic acid (o.)	$BrC_6H_4.CO_2H$	201.00	
40	" (m.)	$BrC_6H_4.CO_2H$	201.00	
		1		

^{*} Soluble ${\rm CS_2}$ and benzene; 0.100323 parts soluble in 100 parts chloroform. † Very soluble in acetone and ligroin.

-	1			i		1
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
[um	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
1	water (w.).	Alcohol (al.).	Ether (et.).	recteu.	recteu.	
1	00	∞	∞		184.5° C.	
2		soluble	~	<20°	323–4° C.	leaflets
3				-3,9°	198–9°	
4	s. soluble	soluble	v. soluble		219° C.	
5	insoluble	∞	∞	-43.2° C.	179°	
-	insoluble	-00	∞	-24.6° C.	233.5° C.	
3	sol. benzene		v. soluble	71°-72°		leaflets/al
8		v. sol. hot	soluble		295–8°	oily
-	insoluble	v. soluble	v. soluble	41-2°		$tab. \rightarrow yel$
1	s. sol. CS ₂			34.1°	decomp.	crystalline
11	:	v. soluble	soluble	33.9° 33–4°	330.6° C.	large cryst/et
	insoluble		v. soluble	-	326-30°	$\text{wh.} \rightarrow \text{yel.}$
	insoluble		soluble		194–5° 243°	
1 ~ -		soluble	soluble	49°	240	rhomb. tab./e
1	insoluble	v. soluble	v. soluble	41°	230–5°	prisms
120	v. sol. acet.	s. soluble	v. sol. bz.	150°		flat needles/w
	v. s. sol.	v. soluble	v. s. sol.	147-8°		sm. needles
	v. s. sol.	v. s. sol.	insoluble	235°		triclinic pris.
20					185–8°	
21				300°		leaf. toluene.
1	insoluble (v. s. sol.	v. v. s. sol.*	192-2.8°		monoel./chlo.
	insoluble	v. soluble	v. soluble †		107°	oily
-	1.5415	soluble		190° dec.		needles
1	v. s. sol.	v. soluble	v. soluble	210.5°	sublimes	hexag.leaf./li.
	v. s. sol.	v. soluble	v. soluble ‡	206°	211–12° 203–4° ⁷³⁵	hexag. leaf
27	v. v. s. sol. 0.74/24	v. v. sol. v. s. sol.	v. v. sol. soluble §	163° 114°	282°30	looflota /ola
	deliq. ∞	v. s. sol.	soluble 8	49–50°	208°; 117°15	leaflets/alc hexagonal
		mod. sol.		49-30	-2° abt.	liquid at 3 at.
	decomp.				174.0°	nquiu at 5 at.
		soluble		31-31.5°	250-1°	crystalline
33		soluble		18-18.5°	251°; 130°12	crystalline
34	insoluble	v. soluble	v. soluble	66.4°	dec.	rhombic
35	sol. hot	soluble	s. soluble	155.6° C.		needles/w
1	s. sol. hot	v. soluble		155.3° C.		leaflets/dil.al.
	v. s. sol. hot	mod. sol.	s. soluble	189.5° C.		rectang. tab
		soluble	v. soluble	−30.5° C.	156.6°	
39	0.185^{25}	v. soluble	v. soluble	150°	subl.	large need./w.
40	0.04^{25}	v. soluble	v. soluble	155°	>280°	needles
	1					

 $[\]ddag$ 16 parts dissolve in 100 parts lig. at 20°, and 24 parts in 100 parts benz. \S Insoluble ligroene and benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Brombenzoic acid (p.)	BrC.H.CO.H	201.00	
	Bromethylene			
3	Bromine cyanide	BrČN	106.00	
4	Brommalonic acid	$CHBr(CO_2H)_2$	182.99	
5	Bromnaphthaline (α)	$C_{10}H_7Br$	207.02	1.492219
6	" $(\beta) \dots$	$ C_{10}H_7Br$	207.02	1.6050
	Bromnitrobenzene (o.)	$BrC_6H_4NO_2$		
8	" (m.)	$BrC_6H_4NO_2$		
9	(p.)	$BrC_6H_4NO_2$		1.93422
	Bromoform	3		2.884225
11	Phg. IV (K.)			2.829-2.832
13	Bromphenol (o.)			
14	(m.) (p.)	BrC ₆ H ₄ OH BrC ₆ H ₄ OH		1.84015
	Brompyridine (3)			1.63210
	Bromtoluene (o.)			1.430915
17		BrC ₆ H ₄ CH ₃		1.40994
18		$BrC_6H_4CH_3$		1.35404
	Butane			$0.60^{\circ}2.046(a)$
20	Butyl acetate			0.881720
21	acetylene	$C_4H_9.C: CH$	82.08	
22	alcohol (n.)	CH_3 . $(CH_2)_2$. CH_2OH		0.813815
23		$\mathrm{CH_{3}.(CH_{2})_{2}.CH_{2}OH}$	74.08	$0.807 - 0.808 \frac{25}{25}$
24		CH ₃ .CHOH.CH ₂ CH ₃		0.819^{22}
25		$CH_3(CH_2)_2CH_2NH_2$		0.7401^{20}
26	benzene	$C_6H_5(CH_2)_3.CH_3$		0.862039
27	benzoate	$C_6H_5CO_2.C_4H_9$		1.011115
28		CH_3 . $(CH_2)_2CH_2Br$		1.279220
29 30		$C_3H_7.CO_2.C_4H_9$	144.13	$0.8878^{\circ} \ 0.8122^{\circ}$
32		$ (CH_3)_3C.CH_2OH$ $ CH_3(CH_2)_3Cl$		0.8122° 0.8874°
33	thorne (tort) (K)	$(CH_3)_3CC1$		0.84035
31	evanide	CH_3 , $(CH_2)_3CN$		0.9995^{24}
34	ether	$(C_4H_9)_2.O.\dots$	130.15	
35	" (sec.)	$(CH_3(C_2H_5)CH)_2O$		0.7616^{15}
36		$HCO_2C_4H_9$		
37		CH_3 . $(CH_2)_2CH_2I$		1.616629
38	mercaptan	CH_3 . $(CH_2)_2$ CH_2 SH	90.14	
39	mustard oil	$CH_3.(CH_2)_3.NCS$		
40		$C_4H_9.CO.C_6H_5$		
41	sulphide	$(C_4H_9)_2S$	146.21	0.85230

ber.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	and Color.
2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.0037 ²⁵ soluble ∞ bz. sol. bz. s. soluble v. s. sol.	Alcohol (al.). v. soluble soluble of abs. 6 soluble of soluble v. soluble v. soluble soluble soluble soluble soluble soluble soluble soluble soluble soluble soluble soluble soluble	v. soluble v. soluble v. soluble v. soluble v. soluble soluble soluble	Point, °C. C.= Cor- rected. 252° 4-5° 59° 38.50° 52.56° 124.92° 9° 7° 32-3° 63-4°25.75° -39.8° 28.5°	Point, °C. C.= Corrected. 16°750 61.3°750 61.3°750 279.5°753 281-2° C. 264.4°760 257.5°760 259.2°760 151.2° C. 148-50° 194-5° 238° 180.3°754 183.7° 185.2° 1° 125.1°740 70.5-2.0° 117.02° C. 115-7° 99.8° 77.8°	Form
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	s. soluble v. s. sol. insoluble soluble	∞	∞ ¹¹ -	<-20°	183–5° 249° C. 105° 164.8° C. 113–4° 77.96° C. 49–52° 160° 140.9° 122–2.5° 106.9° 129.9° 97–8° 167° 237.5–8.5° 182°	thick oil

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
2 3 4 5 6 7 8 9 10 11 12 13	aldehyde. anhydride Cacodyl chloride Cacodylic acid. Cacodyl oxide sulphide	$\begin{array}{lll} CH_3.^{\circ}CH_2.CH_2.^{\circ}CONH_2\\ CH_3.^{\circ}(CH_2)_2CO_2H\\ CH_3.^{\circ}(CH_2)_2CO_2H\\ CH_3.^{\circ}(CH_2)_2CHO\\ (CH_3.^{\circ}(CH_2)_2CO)_2O\\ (CH_3)_2As.As., (CH_3)_2\\ (CH_3)_2AsCl\\ (CH_3)_2AsO.OH\\ ((CH_3)_2AsO.OH\\ ((CH_3)_2AsO)_2O\\ ((CH_3)_2AsO]_2O\\ ((CH_3)_2AsCl]_3\\ (CH_3)_2AsCl]_3\\ (CH_3)_2AsCl]_3\\ Cd(CH_3)_2\\ \end{array}$	87.11 88.06 88.06 72.06 158.12 210.10 140.50 138.05 226.10 242.16 211.40	1.+
	Caffeine		212.26	1.2319
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Campholene Campholic acid Camphor (d.) " "(d.) " anhydride Camphoronic acid (l.) Camphoronic acid (l.) Cantharidine Caoutchene Capric acid " "(K.) Caproic acid Caprylic acid " anhydride Carbanil Carbanil Carbanil Carbazol Carbazoline Carbazoline Carbazoline Carbanide Carbazoline	$\begin{array}{c} C_9H_{15}\cdot CO_2H \\ C_{10}H_{16}O \\ \\ C_8H_{14}(CO_2H)_2 \\ C_8H_{14}(CO_2H)_2 \\ C_{10}H_{14}O_3 \\ \\ C_{10}H_{12}O_4 \\ \\ C_{10}H_{12}O_5 \\ \\ $	124.13 170.15 152.13 200.13 182.12 218.12 196.10 54.05 172.16 116.10 144.13 270.24 119.08 212.18 167.11 173.16 170.40 76.12	0.992 ¹⁰ 1.228 1.186 1.194 ²⁰ 0.65- ²⁰ 0.8858 ⁴² 0.930 ³ ½ 0.9289 ²⁰ 0.9100 ² 4 1.092 ¹⁵ 1.2555 ²² 1.9988 ²³

	1			1	1	1
er.	So	lubility in 100	c.c.	Melting	Boiling	Crystalline
Number.			1	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Form
N	Water (w.).	Alcohol (al.)	Ether (et.).	rected.	rected.	and Color.
-		-	1			
1					1.5-2.5°	
1 -	soluble	soluble	s. soluble	115-6°		wh. tablets
3		000	∞	-7.9° C.	162.3° C.	
4		∞	∞	abt4°	161-3°	
	3.6				73–4° 191–3°	
	s. soluble	soluble	soluble	_6°	170°	oil
	insoluble	Soluble	Soluble	1-0	100°	011.
-	v. soluble	soluble	v. s. sol.	200°	100	rhomb. pris.
	insoluble			-25°	120°	
	soluble	soluble				
				dec. 40-50°		
13	dec.				104-5°?	
14	soluble	v. soluble		195°	dec.	yel. moncl.
						pris./w.
15	1.35 ¹⁶	$0.93^{21}95\%$	0.044^{16}	234-5°	sub. 116°°	glit. needles
		3.1278abs.	0.30^{35}		1	
	insoluble	v. soluble	v. soluble	49.5-5.0° 51-2°	157° C.	feath. need
	insoluble insoluble	v. soluble	v. soluble v. soluble		159° C. 138°	feath.cryst.
	0.016^{19}	soluble	soluble	105–6°	255°	leaf./et.+al.
	v. s. sol.	12012	v. soluble	176.4°	209.1° C.	hexagonal
	0.239	33	28	208°	203.1 0.	crystals
	0.625^{12}	112	insoluble	200-2°	dist. in CO.	monoclinic
23	v. s. sol.	v. soluble	v. soluble	220-1°	dec. 270°	rhb. pris./al
24	6.0	v. soluble	v. soluble	136-7°	dist.	sm. needles
25	0.003	100	0.11	218° C.		trimet. tab
1-0				-10°	14.5°	
	v. s. sol.	soluble	soluble	31.3°	268.4° C.	needles
			soluble	30-1°	268-9°	finewhite nee.
	s. soluble (0.25^{100})	soluble	soluble	-5.2° 16.5°	205°	oily liquid
31		∞	∞	16.5	237.5° C. 280–90°	leaflets
	dec.	comb.			166° ⁷⁶⁹	oil
	v. s. sol.	v. soluble	v. soluble		sub. 260°	prisms/al
1 3		0.92	s. soluble	238°	351.5° C.	leaf. tablets
0 0 1	v. s. sol.	v. soluble		99°	296–7°	silky need. or
1 1						yellow[pris.
	0.218^{22}	00	∞	−108.6°C.	46.2°	
38 i		mod. sol.	v. soluble	187°	185°	rhb. tab./al.
39 3	3.3 cc.	20 cc. ²⁰		-211°	-190°	
1						

^{* 0.059} CS,; 12.97 chlo.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Carbon oxysulphide	cos	60.06	2.1040
2	suboxide		68.00	
3		CBr ₄	331.84	3.42
4		CCl.	153.80	$1.6084\frac{9.5}{4}$
5		CCl.		1.59125
6	tetraiodide		519.88	
7	Carbonyl chloride	COCl		1.3924
8	Carbostyril		145.10	
9	Carboxy-cinnamic ac. (o.)	CO,H.C,H,.CH:CH.CO,H	192.06	
10	Carminic acid	$C_{22}H_{22}O_{12}\dots$	494.18	
11	Carvacrol	$(\mathrm{CH_3})_2\mathrm{CH.C_6H_3}(\mathrm{CH_3}).\mathrm{OH}$	150.12	0.977728
12	Cellulose	$(C_6H_{10}O_5)x,x=34?\dots$		1.27-1.61
13	Cerotic acid	$C_{26}H_{52}O_2.\dots$		0.83597
14	Ceryl alcohol	$C_{26}H_{54}O\dots$	382.43	
	Cetyl "	$C_{16}H_{33}OH.$		0.8176 4
17	Chlor-acetic acid	CICH ₂ .CO ₂ H		1.397864
18	(17.)	ClCH ₂ .CO ₂ H		1.397864
19	-acetone	CH ₂ Cl.CO.CH ₃ CH ₂ Cl.COCl.	$\frac{92.49}{112.92}$	1.16218
20				1.490
21		CH : C.CH,Cl	_	1.04545
22		$ClC_6H_4.NH_2.$		1.2125%
23	" (m.)	ClC ₆ H ₄ .NH ₂		1.21562
24			127.54	1.34018
25	benzamide (o.)	ClC ₆ H ₄ CONH ₂		
26	" (m.)	$ClC_6H_4CONH_2$	155.54	
27	" (p.)	$ClC_6H_4CONH_2$	155.54	
28		C_6H_5Cl		1.112515
29	(M.)	C ₆ H ₅ Cl	112.49	
30	benzoic acid (o.)		156.49	
31	(III.)		156.49	
33	(P.)		156.49	
34	" (m.)		1	
35		9 4 0 3		
36	ether			
37		CH ₂ Cl.CH ₂ OH		1.200519
	Chlorhydrine	CH ₂ Cl.CHOH.CH ₂ OH		1.13020
39	Chlor-methyl ether	ClCH ₃ .O.CH ₃		1.062510
40	malonic acid		138.48	
41	naphthaline (α)	$C_{10}H_7Cl$		1.1938%

-						
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	100 cc.	∞	∞		0°12.5 at.	
	sol. dec.		soluble	-107° abt.	7°	long cryst
	insoluble	soluble	soluble	92.5°	189.5°	tablets
4	0.08020	∞	00	-19.5°	76.74° C.	
1	v. v. s. sol.	∞	00		76-7°	
6		-1		750	dec.	red regular
	dec.	dec.	v. soluble	<-75° 199–200°	8.2° C.	large pris./al.
_	s. soluble	v. soluble	s. soluble	173–5°	sub,	needles/w
3	v. soluble	s. soluble	v. s. sol.	dec. 136°		monocl.prism.
1	sol. KOH	s. soluble	soluble	0°	237 . 97° C.	thick oil
	insoluble	insoluble	insol.		201.01	amorphous
	insoluble	v. soluble	2035 *	82.5°	dec.	mic. need./al.
14		soluble		79°		crystals
15	insoluble	soluble	soluble	50°	344°, 119°°	leaflets/al
	v. soluble	soluble	soluble	62.5-3.2°	185-7°	rhomb. tab
1	v. soluble	v. soluble	v. soluble	62-3°	185-7°	rhomb. tab.
	s. soluble	∞	00		119°	[or pris.
	decomp.				105–6°	
20	spon. comb.				65°	
21 22			soluble	< - 14°	207° (33)	
23			soluble	< - 14	2300787	
24			soluble	69.7°	232.3° C.	rhomb.prisms
	s. soluble	v. soluble	v. soluble	142.4° C.		long need./w
26	s. soluble	v. soluble		134.5°		needles
27	v. s. sol.	v. soluble	v. soluble	178.3° C.		needles/et
28		soluble		-44.9°	132°	
29			∞	-45°	131-2°	
	0.110	v. soluble	v. soluble	142°		rhomb. tab.
	0.04°	soluble	soluble	158°	sub.	small prisms.
-	0.02	v. soluble	v. soluble	243°	0.07 00	monocl. tab
34		sol. lig.	v. soluble	34° 89°	267–8°	monel. prisms
3				75.5°	282°	thin leaflets.
00	dec.	dec.	∞	10.0	97–8°	timi leanets.
37	oo	oo	00		132°. 51°22	
0.		soluble	soluble		127°	
	dec.				59.5°	
40	v. soluble	v. soluble	v. soluble	133°		prisms
41		soluble			263°	
	1					

^{*} v. sol. acetone, bz., ehlo., and CS₂.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Chlor-naphthaline(β)	$C_{10}H_7CI$	162.51	1.265616
2	nitro-benzene (o.)	ClC ₆ H ₄ NO ₂	157.52	1.36822
3	" (m.)	$ \mathrm{ClC}_6\mathrm{H_4NO_2} $	157.52	
4	" (p.)	$ClC_6H_4NO_2$		1.52018
	Chloral			1.512120
6		CCl ₃ ·CH(OH) ₂ ······	165.38	
	Chloroform			1.4760^{22}
8	Chlorophyll	$C_{38}H_{42}O_7N_4Mg$	690.90	
	Chlor-phenol (o.)		128.49	
10	(m.)	CIC ₆ H ₄ OH		1 20620
12		CH ₃ .CHCl.CO ₂ H		
13		CH ₃ .CHCl.CO ₂ H	108.49	
14	(-)	C_5H_4ClN		1.20515
15	" (4)	C_5H_4CIN	113.52	
16	quipoline (pv. 2)	C ₉ H ₆ ClN		1.275417
17	" (py. 4)	C_9H_6CIN		1.376617
18		ClC ₆ H ₄ .CH ₃		1.087715
19		ClC ₆ H ₄ .CH ₃	126.51	1.0823
20		ClC ₆ H ₄ .CH ₃		1.072220
21		CIC, H4.CH3	126.51	1.07418
22		ClC ₆ H ₄ CH ₃	126.51	1.074915
23	\/	ClC ₆ H ₄ CH ₃		1.07138
24	trinitro-benzene	$ClC_6H_2(NO_2)_32:4:6$	247.48	1.79720
25	Cholesterin	$C_{26}H_{43}OH + H_2O$	390.37	1.067
26	Cholic acid	$C_{24}H_{40}O_5 + H_2O \text{ or } C_2H_6O$.		
27	Chrysaniline	$C_{19}H_{15}N_3 + 2H_2O$	321.28	
28	Chrysene	$C_{18}H_{12}$	228.10	
29	Chrysine	$C_{15}H_{10}O_4$	254.08	
30	Cincholic acid	$C_7H_8U_6$	188.06	
	Cinchomeronic acid			
	Cinnamic acid			1.24754
	Cinnamic aldehyde			1.1129}\$
34	" (K.)	C_6H_5 .CH: CH.CHO	132.06	$1.048\frac{25}{25}$
35	" anhydride	$(C_9H_7O)_2O$	278.12	
	Cinnamyl alcohol			
37	chloride	C_9H_7OC1	166.51	
38	Citraconic acid	CH ₃ .C.(CO ₂ H): HC.CO ₂ H	130.05	1.617
39	anhydride	$C_{\varepsilon}H_{\star}O_{\star}$	112.03	1.25015
40		C_9H_{15} .ČHO	152.13	0.886820

Number.	Solt	ability in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1		soluble	soluble	56°	264-6° C. ⁷⁵¹	rhomb. leaf
2		soluble	soluble	32.5°	$245.5^{\circ 753}$	needles
1	v. sol. bz.	v. sol. hot	soluble	44.4°	235.6° C.	rhombic
4		soluble		83°	242°	monocl. pris.
1	v. soluble	∞	00	-57.5°	97.7° C.	
	66	v. soluble	sol. CS ₂	57°	97.5° 62° ⁷⁶⁰	monel. tab
	0.63 ²² insoluble	∞ v. soluble	∞ v. s. sol.	-63.2° C. no mp.	dec.	hexagonal
9		soluble	V. S. SOI.	7°	175–6°	nexagonai
10		soluble		28.5°	214°	crystals
11		v. soluble	v. soluble	37°	217°	crystals
12		00	00		186°	
13	v. soluble	v. soluble	∞	41.5°	203–5°	leaflets
1	v. s. sol.				166°714	
	mod. sol.				147-8°	
	v. v. s. sol.	v. v. sol.	v. v. sol.	37-8° ·	275°751	need./dil. al
1-	sol. HCl	v. v. sol.	v. v. sol.	340	260-1° ⁷⁴⁴ 155°	
	insoluble s. soluble	soluble	00	-34.0° -34°	158-9.5°	
20		soluble	00	-34 -47.8°	162°756	
	s. soluble	soluble	00	-47°	160.5–2.5°	
	insoluble			7.40	162.30756	
	s. soluble	soluble	00	6.5-7.5°	160.5-2.5°	moncl.tab./e.
24	insoluble	v. sol. hot	s. soluble	83°		moncl.pr./chl
	insoluble	1178 1.0817	18	148.5° C.	360° in vac.	monoel. tab
	0.025	$4.8^{700}\%$	0.2^{18}	195°	dec. 160°	tetrahed./al
1 1	v. v. s. sol.	s. soluble		267-70°	dist.	yel. need
	s. soluble	0.097^{16} 2.0^{78} *	v. s. sol.	250°	448°760	scales or rhb.
	v. v. s. sol. v. sol. hot	soluble	s. soluble	275° 168–9°	subl. need	yellowtab./al. moncl.tab./w.
	v. sol. not	s. soluble	v. v. s. sol.	258-9°	dec	prisms HCl
	20.049^{25}	13.9^{20} abs.		133°	300°	monel. prisms
	8 v. s. sol.	00	00	-7.5°	209.5°250 C	prisitis
34		soluble	∞	-8°	(248-50°	(colorless to
2	insoluble	v. a col	sol. bz.	130-5°	dec.	(brownish prisms/al
	mod. sol.	v. s. sol. v. soluble	v. soluble	33°	257.5° C.	long needles.
	7	v. soluble	soluble	35–6°	170°58	crystals
	245^{15}	s. sol. bz.	soluble	80°	in steam	monel. prisms
	insoluble			7°	213–4° C.	
40	insoluble	soluble	soluble		228-9°	oil
	* 17	-1:-1-41 m-1-		CC oblana	forms and 1	

^{*} Very slightly soluble benzene, CS₂, chloroform, and ligroene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Citramalic acid (rac.)	CO ₂ H.CH ₂ C(OH)(CH ₃) • CO ₂ H	148.06	
2	Citric acid	$(\mathrm{CO_2H.CH_2})_2\mathrm{C(OH)}\mathrm{CO_2H} \\ +\mathrm{H_2O}$		
3	Collidine (a)	$CH_3.C_5H_3N.C_2H_5$		0.926816
4	(β)	CH_3 , C_5H_3N , C_2H_5		0.9656°
5	" (γ)	$(CH_3)_3C_5H_2N_1$	121.13	0.917^{15}
6				
7			378.21	
	Coniïne (d.)			0.8472^{17}
10	Coumaric acid (o.)	OHCHCH: CH.CO ₂ H		
-	Coumarin	OHC ₆ H ₄ CH: CH.CO ₂ H C ₆ H ₆ O ₂		
	Coumaron	C_8H_6O	118 05	1.077615
	Creatine			
		$C_4H_7N_3O$		
	Creosole	CH.OC.H.(CH.)OH		1.095615
16	Cresole (o.)	CH.C.H.OH.		1.051115
17	" (m.)	CH_3 . C_6H_4 OH		1.03915
18	" (p.)	CH_3 . C_6H_4 OH		1.03915
19		CH_3 , C_6H_4 , O , CH_3 , \dots	122.08	0.97825
20	" " (m.) (K.)	$CH_3.C_6H_4.O.CH_3$	122.08	0.96925
21	" (p.) (K.)	$CH_3.C_6H_4.O.CH_3$	122.08	0.96835
	Croconic acid	$CO:C:C(CO_2H)_2 + 3H_2O$	196.07	
	Crotonic acid (a)	CH_3 . $HC: CH.CO_2H$		0.9730^{72}
24		$ HCH_3C: CH.CO_2H $		1.031215
25		CH ₃ HC: CH.CHO		0.8593
	Crotonyl ether		1	0.88950
27	alcohol	CH ₃ CH: CH.CH ₂ OH		0.87260
	Cumene			0.8629^{20}
	Cuminal cohol (p.) (K.)			
30	Cuminic acid (p.)	$\left (\mathrm{CH_3})_2 \mathrm{CH.C_6H_4.CO_2H} \right $	164.10	1.16254
31	aldehyde	(CH ₃)CHĆ ₆ H ₄ CHO	148.10	0.975925
32	Cyan-acetic acid	CNCH ₂ .CO ₂ H	85.07	
33				
34				
35				
	Cyanic acid		43.05	
	Cyanoform		91.13	
38	Cyanogen	(CN) ₂	52.08	0.866 ¹⁷ liq.
- 1			1	

-						
Number.	Sol	ubility in 100 (e.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected	and Color.
1	deliq.	v. soluble	mod. sol.	119°	dec. 200°	monoel. pr
2	133	75.9	2.26	153°	dec.	rhomb. pris
1	less sol. hot		v. soluble		179-80°	
	insoluble	soluble			$195-6^{\circ 753}$	
	sol.; insol.				171–2°	
	v. s. sol.	v. s. sol.	v. s. sol.	no m.p.		fine need./w
	0.51	soluble	insoluble	185°	dec.	glit. needles.
1	1.1	00	v. soluble	-2.5°	170°	
1	s. soluble	v. soluble	v. s. sol.	207–8°	dec.	long. needles.
	v. s. sol.	v. soluble	v. soluble	206° 67°	000 0 70	silky need./w.
	v. s. sol.	v. soluble soluble	soluble soluble	<-18°	290-0.5° 173-4°	rhombic/et
	insoluble 1.35 ¹⁸	0.008	insoluble	dec.		
	8.716	0.008 0.98^{18}	msoluble	dec.		monel. prisms monel. prisms
	s. soluble	0.90	∞ : ∞ bz.	dec.	221–2°	oil
	0.3	× ×	∞ , ∞ D2. ∞	30°	191° C.	crystals
	s. soluble	∞	∞ ∞	3-4°	202° C.	Ci y stais
	s. soluble	∞ ∞	∞ ∞	36°	202° C.	prisms
	insoluble	00	oo .		169-71°	colorless
	insoluble	00	00		173.5–6°	colorless
	insoluble	∞	∞		174–6°	colorless
	v. soluble	soluble				yel. needles
23	8.3	sol. lig.		72°	185° C.	monel. prisms
	40	soluble		15.45°	171.9° dec.	need. or pr
25	mod. sol.				104-5°	
26					143.5°	
27	16.6			$< -30^{\circ}$	117°	
28	insoluble	soluble ·	soluble		152.5–3°	,
1	insoluble	∞	∞		243–6°	wh. →yel
30	v. s. sol.	soluble	v. soluble	116.5°	subl.	triclin. pris. or tab./al.
31					235.5° C.	
32	soluble	soluble	soluble.	66.1-6.4° C.	dec.	crystals
33	v. v. sol.	v. soluble	v. soluble	40° & 203°		long needles
34	s. soluble	v. v. sol.	v. v. sol.	47°		leaflets
35	insoluble	s. soluble	s. soluble	210-20°	dec.	leaffets
	soluble					
1	soluble	s.col comb.		93.5°		needles
38	450 cc.	soluble	soluble	-34.4°	-20.7°	
1						

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Cyanogen bromide		106.00	
2 3		CNCI	61.49 153.01	1.+
4		(CN) ₂ S	84.14	
	Cyan-propionic acid (a)	CH ₃ .CHCN.CO ₂ H.1½H ₂ O	126.11	
	Cyclo-hexane	$ C_3N_3H_3O_3+2H_2O$ $ CH_2<(CH_2,CH_2)_2>CH_2$		1.768° 0.7843°
8		$(CH_2)_5$: CHOH	100.10	
9		(CH ₂) ₅ : CO		0.947330
10	pentadiëne	$CH_2 < (CH: CH)_2 > \dots$		0.80473
11	pentene	< (CH ₂ .CH ₂) ₂ $>$ CH ₂		0.7754^{14}
	Cymene (o.)	CH ₃ .C ₆ H ₄ .CH ₂ .CH ₂ CH ₃		$0.8748\frac{2}{3}$ 0.862^{20}
13 14	" (m.)	$CH_3.C_6H_4.CH: (CH_3)_2$ $CH_3.C_6H_4.CH: (CH_3)_2$	1	0.8597^{16}
15	14 /	$CH_3.C_6H_4.CH: (CH_3)_2$		$0.853\frac{25}{25}$
16	Dambose	$C_6H_6(OH)_6$	180.10	
	Deca-hydro-naphthaline	$C_{10}H_{18}$		0.877^{20}
	Decane (n.)	CH_3 . $(CH_2)_8CH_3$		0.7467^{20}
	Decyl alcohol Decylene (n.)	CH_3 . $(CH_2)_8$. CH_2 OH CH_3 . $(CH_2)_7$. CH : CH_2		$0.8297^{\frac{14}{4}}$ 0.7630°
	Desoxalic acid	CO ₂ H.CH(OH).C(OH).	194.05	
		$(\mathrm{CO_2H})_2$		
-	Dextrin	$C_{12}H_{20}O_{10}$	324.16	1.0384
	Diacetin	$(C_2H_3O_2)_2C_3H_5OH$		1.178815
24 25	Diacetyl	$[CH_3.CO.CO.CH_3$ $[CH_3.C(NOH)]_2$	117.14	0.973422
	Diacetylene	CH: C.C: CH		
27		$(.C; C.CO_2H)_2 + H_2O$		
28	Di-allyl	(CH ₂ : CH.CH ₂ .) ₂		0.68803
29	carbinol	$(C_3H_5)_2$ CHOH		0.87520
	Diallylene	$C_3H_5.CH_2.C:CH$ $C_6H_5CH(C_6H_4NH_2)_2$	80.06 274.23	0.857918
$\frac{31}{32}$	thane (pp.)	$O_6\Pi_5O\Pi(O_6\Pi_4\Pi\Pi_2)_2$	2/4.20	
	Diazo-amino-benzene	C ₆ H ₅ .N.NH.N.C ₆ H ₅	197.21	
34	benzene chloride	$C_6H_5.N_2Cl.$	140.57	
35		$C_6H_5.N_2NO_3$	167.16	
36		C_6H_4 : N_2SO_3	184.17 184.17	
37	(111.)	0 1 2 0	184.17	
39	methane	$CH_2: N_2$	42.08	
		-		

Solubility in roo c.c. Water (w.) Alcohol (al.) Ether (et.) Point, °C. C. = Corrected. C.	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	mber.	Sol	lubility in 100	c.c.	Melting Point, °C.	Boiling Point, °C.	Form
2 2500 cc, 3 soluble soluble soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. solubl	Nu	Water (w.).	Alcohol (al.)	Ether (et.).	rected.	rected.	and Color.
2 2500 cc, 3 soluble soluble soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. soluble soluble v. solubl	1	soluble	soluble	soluble	52°	61 30750	Ineedles
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1		
4 v. soluble soluble v. s	3	soluble	1		146.5°		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	v. soluble	soluble	v. soluble *	60°	sub. 30°+	(rhomb. tab.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	v. soluble	v. soluble		140° dec.		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17					81-1.5°	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	3.56		soluble	20°	160–1° C.	needles
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	v. soluble			-45°	155.5° C.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	insoluble	00	∞		42.5°	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11						oil
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		s. soluble	ıns. abs.				,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1 17				43 2 3 32 23
21 v. soluble v. soluble insoluble insoluble ∞ , insoluble insoluble ∞ , insoluble	1-01		soluble	,	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	v golublo	v golublo			_ ,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	v. soluble	v. soluble			uec.	cryst. mass
24 25 5 v. s. sol. v. soluble v. soluble 232-3°		v. soluble	insoluble 🙏				amorphous
25 v. s. sol. v. soluble v. soluble v. soluble 232-3° colorless 27 mod. sol. v. soluble v. soluble 177° exp. tab./al.+et. 28 insoluble v. soluble soluble 139-40° warts 31 v. v. s. sol. v. soluble v. soluble 139-40° warts 32 33 insoluble soluble soluble insoluble dec. needles needles needles cryst. mass 34 v. soluble soluble insoluble exp. needles cryst. mass cryst. mass cryst. mass cryst. mass colorless 59.5° C. 151° C. 70° warts 59.5° C. 151° C. colorless colorless 59.5° C. colorless color			v. soluble	∞ , insol. CS_2	40°		
26	1 1					87.5–8°	
27 mod. sol. v. soluble v. soluble soluble 177° exp. 59.5° C. 151° C.		v. s. sol.	v. soluble	v. soluble	232-3°		colorless
28 insoluble 29 v. v. s. sol. 28 insoluble 29 v. v. s. sol. 29 v. v. s. sol. 29 v. v. s. sol. 20 20 20 20 20 20 20 2							
29 v. v. s. sol.	1						
30	1			soluble			
31 v. v. s. sol. v. soluble v. soluble 139–40°	1 1	V. V. S. SOI.					
32 33 insoluble soluble v. soluble dec. needles	- 0	v. v. a col	v. golyblo	v. golublo		10-	***************************************
33 insoluble 34 v. soluble soluble soluble insoluble dec. needles soluble soluble insoluble exp. yellowleaf/al. needles needles needles cryst. mass red y. pris./w. sm. need./w.		v. v. s. sol.	v. soluble	v. soluble	159-40		warts
34 v. soluble soluble insoluble dec. needles 35 v. v. sol. soluble insoluble exp. needles 36 0.0715 ²⁵ cryst. mass 37 v. soluble exp. red y. pris./w. 38 v. sol. 60 insoluble sm. need./w.	1	insoluble	soluble	v soluble	96°	exp	vellow leaf /al
35 v. v. sol. soluble insoluble exp. needles cryst. mass red y. pris./w. sol. ** * * * * * * * * * * * * * * * * *	1						
36 0 .0715 ²⁵				, ,		i i	
37 v. soluble exp. red y. pris./w. 38 v. sol. 60 insoluble sm. need./w.							
38 v. sol. 60 insoluble	37	v. soluble			exp.		
			insoluble				0 1 /
			soluble	soluble	exp. 200°		,

^{*} Very soluble carbon disulphide; mod. sol. chlo. and bz.

)	Sacific
Number.	W	Formula.	Molecu-	Specific Gravity.
Mun	Name.	Formula.	Weight.	Water = \mathbf{I} . Air = \mathbf{I} (A).
14				
1	Diazo-phenol (p.)	$C_6H_4N_2O+4H_2O$	192.17	
2	Dibenzyl			0.975258
3		$NH(CH_2C_6H_5)_2$		1.033615
			217.94	
5	anthracene	$C_6H_4\cdot C_2Br_2\cdot C_6H_4\cdot \cdot \cdot \cdot \cdot \cdot \cdot C_6H_4Br_2\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		1.977 ¹⁸
6	benzene (o.)	$C_6H_4Br_2$		1.977^{10} 1.955^{19}
8	" (n)	$C_6H_4Br_2$	235.95	
9	propyl alcohol (K.)	$CH_2Br.CHBr.CH_2OH$	217.97	
	Di-butyl carbonate	(C.H.),CO,		0.924420
11	Di-butyl oxalate	$(C_4H_9)_2C_2O_4$	202.15	
12			127.97	
13		CHCl ₂ .CO ₂ H		1.572413
14				1.23621
15		CHCl ₂ .COCl		
16		CHCl ₂ .CHO		
17		$C_{14}H_8\tilde{C}l_2$ $NH_2C_6H_3Cl_2$	161.98	
18 19		$NH_2C_6H_3Cl_2$		
20		$NH_2C_6H_3Cl_2$		
21	" (3, 5)	$NH_2C_6H_3Cl_2$	161.98	
22		C ₆ H ₄ Cl ₂		
23	" (m.)	$C_6H_4Cl_2$	146.93	1.3070
24		$C_6H_4Cl_2$		
25	benzoic acid (2, 5)	$Cl_2C_6H_3.CO_2H$	190.93	
26	(2, 6)	$Cl_2C_6H_3.CO_2H$	190.93	
27	(0, 4),	Cl ₆ C ₆ H ₃ .CO ₂ H	190.93	
28	ether	CH ₂ Cl.CHCl.O.C ₂ H ₅	142.96	1.17423
29	" (2.2)	CH ₂ Cl.CHOH.CH ₂ Cl CH ₂ Cl.CHCl.CH ₂ OH	128.95	1.307
30 31	propage (2, 2)	CH ₃ .CCl ₂ .CH ₃	119 95	1 89718
32		$C_{14}H_{10}Cl_2$	248 98	
02		,	210.00	
33	Dicyan diamide (K.)	NH: C(NH ₂).NH.CN	84.19	
34	diamidine sulphate(K.)	[NH: C(NH ₂).NH	338.52	
35	Diethyl-acetic acid	$CONH_{2}]_{2}.H_{2}SO_{4} + 2H_{2}O$	116.10	0.919618
36	amine	$(C_2H_5)_2HC.CO_2H$	73.13	0.7226^4
37	" (K.)	$\left[\left(\mathrm{C_2H_5}\right)_2\mathrm{NH}\ldots\ldots\right]$	73.13	$0.7028\frac{25}{25}$
38 39		$(C_2H_5)_2NH$		
39	(K.)	$(C_2H_5.)_2NC_6H_5$	149.16	0.99328
-		•		

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
_	v. soluble sol. CS ₂	v. soluble mod. sol.	s. soluble v. soluble	38-9° exp. 51.8°	284°	yellow need monoclinic
4	v. soluble sol. hot bz.	v. soluble v. soluble s. soluble	v. soluble v. soluble s. soluble	48° 221°	269° ²⁵⁰ C. 232–4° subl.	crystals yel. need./tol.
1 -	501. 1100 02.	soluble soluble	soluble	-1° 1-2°	$223.8^{\circ 752}$ $219.4^{\circ 758}$	yer. need./ tor.
8 9 10	insoluble	v. soluble	∞	89.3° C.	219° 218–21° 207.7° C.	moncl. tab wh. \rightarrow yel
11	v. sol. hot	v. soluble	v. soluble	98°	243.4° C. 233–4° ⁷⁴⁵	moncl. prisms
	soluble soluble	soluble	soluble	-4°	189–91° 120° 107–8°	
16	insoluble sol. bz.	s. soluble	s. soluble	209°	89.5-90.5°	yel. needles
18		soluble soluble		63° 50° 71.5°	245° C. 251° 272°	need./dil. al needles/lig
21 22		soluble soluble		50.5° < -14°	259–60° 179°	needles/lig needles
	v. sol. bz.	soluble ∞	soluble v. soluble	-18° 53° 156°	172° ⁷⁶⁷ 173.7° C.	mon.leaf./al
26 27	v. s. sol.	v. s. sol.		126.5° 203°	dist.	sm. needles
28 29 30	1.119	∞	∞ ∞		140–5° 182° 182°	
31 32		∞ CS ₂ v. sol. hot	v. soluble	170°	69.7°	silk. need. or
	(2.26 ¹³) soluble	(1.26 ¹³ abs) insoluble	(0.01 ¹³ abs) insoluble			leaflets leaf. and tab. sm. wh. need.
36	s. soluble v. soluble soluble	soluble soluble	soluble	<-15° -40° -40°	190° ⁷⁵⁶ 55.5° 55–7°	
38	insoluble insoluble	soluble soluble	soluble ∞	-38.8° C. -38-9°	213.5° ⁷⁶⁰ 215.0-6.5°	oilusually yel

				1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Diethyl-benzene (o.)	$C_6H_4(C_2H_5)_2$	134.12	0.866218
2	" (m.)	$C_6H_4(C_2H_5)_2$	134.12	0.86024
3	" (p.)	$C_6H_4(C_2H_5)_2$	134.12	0.8675
4	carbinol	$(C_2H_5)_2CHOH$	88.10	0.83120
5	fumarate	$(C_2H_5)_2C_4H_2O_4$	172.10	1.06310
6	glutaconate	$(C_2H_5)_2C_5H_4O_4$	186.12	1.04994
7	isosuccinate	$(C_2H_5)_2C_4H_4O_4$	174.12	1.021315
8	itaconate		186.12	1.0504^{15}
9	ketone		86.08	0.8335%
10	" (K.)	$C_2H_5.CO.C_2H_5$	86.08	0 . 814015
11	maleate	$ (\tilde{\mathbf{C}}_2\tilde{\mathbf{H}}_5)_2\mathbf{C}_4\tilde{\mathbf{H}}_2\tilde{\mathbf{O}}_4\dots\dots$	172.10	1.074015
12	malonic acid		160.10	
13	mesaconate	$ (C_2H_5)_2C_5H_4O_4$	186.12	1.049215
14	mesoxalate	$(OH)_2C(CO_2C_2H_5)_2$		
15		$(.\text{CO.NHC}_2\text{H}_5)_2$	144.18	
16		$(C_2H_5)_2PH$	90.09	
17		$(C_2H_5)_2SO_3$		1.10630
18		$(C_2H_5)_2C_6H_3CH_3$		0.879^{20}
19		$CO(NHC_2H_5)_2$		1.0415
20		$NH_2.CO.N(C_2H_5)_2$	116.18	
	Diethylene glycol		106.08	
	Difluor benzene (p.)	$C_6H_4F_2$	114.03	
	Diglycerine	$C_6H_{14}O_5$	166:12	
	Diglycolic acid		152.07	
	Diguanid			
	Dihydro-anthracene			1 000=0
27		C_7H_8O		1.0327°
28		C.H ₈		0.84782
29	naphthaline		130.08	
30	primarie acid ($\triangle 2, 4$).	$O.C_6H_6(CO_2H)_2$ C_9H_9N		
$\frac{31}{32}$				
33		$C_6H_6O_2.H_2$ $C_6H_6(CO_2H)_2$		
34		CH_3 . C_6H_7		$0.8354^{\frac{20}{4}}$
35	rylana (a.)	$(CH_3)_2C_6H_6$		0.85947
36	" (m)	$(CH_3)_2C_6H_6$		0.8275^{20}
37				0.0210
	Dihydroxy-benzoic acid	$(CH_3)_2C_6H_6$		
39	(2, 3)	$(O11)_2O_611_3OO_211+211_2O$	130.00	
40		(OH),C6H3CO,H+3H2O	208.10	
41	(-, -, -,	$(OH)_2C_6H_3CO_2H+3H_2CO_3H$		
11	(2, 0)	(011)20611300211.	101.00	
-				

^{*} Very soluble benzene and ligroene.

	4					
Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1				<-20°	184-4.5°	
2				< -20°	181–2°	
3	insoluble	soluble	soluble	<-20°	182-3°	
4					116.5°753	
5					218.5° C.	
6			soluble		236-8°	
8					198.5–9.5° 227.8° C.	
1	soluble		soluble		103°	
1	4.1	00	∞ ∞		101-2°	
	4.1				223.03° C.	
	6516	v. soluble	v. soluble	121-5°		prisms
13					229° C.	
	insoluble s. soluble	soluble	v. s. sol.	57° 179–80°	abt. 200°	wh. needles
16		soluble	V. S. SOI.	179-80	85°	wn. needles
1	insoluble	soluble	soluble		161.3°	
18					199-200°	
	v. soluble	v. soluble	v. soluble *		263°	prisms
	deliq.	v. soluble	v. soluble	70°		prisms
$\begin{vmatrix} 21 \\ 22 \end{vmatrix}$	soluble	soluble	soluble		25.0° 87-9°	
	v. soluble		insoluble		220-30°1)	thick liquid
24		v. soluble	soluble	148°	decomp.	rhomb. pris.
25						amorphous
26	insoluble	v. soluble	v. soluble	108.5°	313°	triclinic
27				< -20°		oil
28		soluble		15 50	82°-85°	oil
29 30	$0.2^{10}, 16^{100}$	soluble	s. soluble	15.5° 215°	212°	moncl. tab
31	0.2 , 10	soluble	s. soluble	220–6°		vellow
32	v. soluble	v. soluble	v. s. sol.†	104-6 sl.dec		prisms/bz
	0.0006			no m.p.		fine needles
34		v. soluble	soluble		110-0.5°770	
35			soluble		134-5°	
36					132–4° 134–5°	
	soluble			204°	decomp.	needles
39	SOLUDIO				de comp.	
40	0.26317	v. soluble	v. soluble	213° dec.	decomp.	needles/eth
41	sol. hot.	v. soluble	v. soluble	200°	decomp.	need. or pris
					2 000	2 21

[†] V. sol. chlo., acetone, and hot benz.; v. s. sol. CS₂ and lig.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Dihydroxy-			
2		$(OH)_2C_6H_3CO_2H + 1\frac{1}{2}H_2O$	181.08	
3		(C ₆ H ₄ OH) ₂ CO		
4	" (3, 3′)	. 0 3 /2		
5		$(C_6H_4OH)_2CO$		
6	butane (2, 3)	CH, CHOH, CHOH, CH,		
7		$(OH)_2C_{10}H_6$	160.06	
8		(OH) ₂ C ₁₀ H ₆		
9	" (1, 8)	$(OH)_2^2C_{10}^1H_6^1$	160.06	
10	" (2, 3)	$(OH)_{\circ}C_{\circ}H_{\circ}$	160.06	
11	$(2,7)\ldots$		160.06	
12	pyridine (2, 4)	$C_5H_3N(OH)_2$	111.08	
13	" (2, 6)	$C_5H_3N(OH)_5+\frac{1}{2}H_5O$	120.09	
14	quinone (2, 5)	$C_6H_2O_2(OH)_2$	140.03	
15	toluene (2, 5)	$CH_3C_6H_3(OH)_2$	124.06	
16	" (2, 6)	$CH_3C_6H_3(OH)_2$	124.06	
17	" (2, 4)	$[CH_3C_6H_3(OH)_2$	124.06	
18	Diiodo-acetic acid	CHI ₂ .CO ₂ H	311.96	
19	acetylene	IC: CI	277.94	
20	benzene (o.)	$C_6H_4I_2$	329.97	
21	" (m.)	$C_6H_4I_2$	329.97	
22	" (p.)	$C_6H_4I_2$	329.97	
23		.IC: C.C:CI		
24		ICH,(CH,),CH,I		
25	Diiso-amyl			0.7479^{20}
26	amyl amine (K.)	[(CH ₃) ₂ CH.CH ₂ .CH ₂] ₂ NH		$0.766\frac{25}{28}$
27	amyl carbonate	$(C_{\epsilon}H_{11})_{\circ}CO_{\circ}$	202.18	0.91215
28	amyl ketone	(C.H.,),CO	170.18	
29	butyl amine	(C ₄ H ₀) ₂ NH	129.20	0.749115
30	butyl carbonate	$(C_4H_9)_2CO_3$	174.15	0.919^{15}
31	butylene	$(CH_3)_2C$: $CHC(CH_3)_3$		0.7158^{21}
32	butyl oxalate	$(C_4H_9)_2C_2O_4$	202.15	1.00214
33	propyl carbinol	[(CH ₃) ₂ CH] ₂ CHOH	116.13	0.82883
34	propyl ketone	$[(CH_3)_2CH]_2CO$	114.12	0.80623
35	Dimethyl allene (1, 1)	$(CH_3)_2C: C: CH_2$	68.06	0.69404
36		$(CH_3)_2NH$	45.10	0.6865^{-6}
37		$(CH_3)_2NH$	45.10	$0.6865\frac{-5.8}{15}$
38	aniline	C.H.N(CH.)		0.962115
39	" (K.)	$C_6H_5N(CH_3)_2$		$0.954\frac{28}{28}$
40	anthracene (2, 3)	$(\mathring{\mathrm{CH}}_{3})_{2}\mathring{\mathrm{C}}_{14}\mathring{\mathrm{H}}_{8}$		
		0/2 17 0		

-						
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystallino
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	Form and Color.
1 2	mod. sol.	v. soluble	v. soluble	232-3°		pris. or need
4	s. sol. hot soluble	sol. alk. soluble	v.sol.sol.bz. sol. alk.	162-3°		pyramid/bz. small needles
6	1	v. soluble	v. soluble *	210°	dist. undec. 183–4°	yel. need./lig.
8	v. sol. bz. mod. sol.	s. soluble v. soluble	v. soluble v. soluble	134–5° 178°		
10	v. sol. bz.	v. soluble	v. soluble v. soluble	140° 160–1°		need. or leafrhombic/al
12	sol. hot s. soluble	v. soluble s. soluble	v. soluble v. v. s. sol. v. s. sol.	190° 260–5° 195°		long needles. rhomb./al yel. need./w
14	v. v. s. sol.	v. soluble	v. s. sol. v. v. sol.	215–20° 125°	sublimes	yel. needles
16	v. soluble v. soluble	v. soluble v. soluble	v. v. sol. v. soluble	63-6° 103-4°	267–70°	needles
18	s. soluble v. sol. lig.	v. soluble	v. soluble	110° 82°	volatile	yel. crystals. clear need/lig
		soluble soluble	sol. chlo.	27° 40.4°	286.5 C.°751 284.7°758	pris. or tab (rhomb. tab.
22		soluble		129.4°	285° C.	/al.+et. leaflets
23			soluble	101° 6–7°	with steam	crystalline
25 26 27	s. soluble	soluble	∞		159.66° 185–9° 228.7° C.	colorless to yellowish
28 29					226° 139–40°	yellow oil
30					190.3° C. 102.5° C. ⁷⁵⁶	
32	v. s. sol.	soluble	soluble		229° 140°	[/bz.
35	sol. bz.	sol. toluene			123.7° 40.5-1.5°	irreg. cryst.
1	soluble v. soluble	soluble v. soluble	soluble		7.2-7.3° 7-7.3°	
4		1	soluble ∞	2.5° 2-2.5°	193,1°760 192.5–3.5°	yellowish
40	v. sol. bz.			246°		fluoresc. leaf.

^{*} V. sol. acetone and alkalies; v. s. sol. bz., chlo. and CS2.

				~
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Dimethyl-anthracene (2,4)	(CH.).C. H	206 12	
2		$(CH_3)_2AsH$		1.21329
3		$(CH_3)_2C_6H_3.CO_2H$		
4			150.08	
5	" (2, 4)		150.08	
6	" $(2, 6)$		150.08	
7	" (2, 5)	$(CH_3)_2C_6H_3.CO_2H$	150.08	
8	carbonate	$(CH_3)_2CO_3$	90.05	1.06922
9	ethyl acetic acid	$(CH_3)_2(C_2H_5).C.CO_2H$	116.10	
10	" benzene (s.)	$C_2H_5.C_6H_3.(CH_3)_2$		0.86120
11		$C_2H_5.C_6H_3.(CH_3)_2$		0.8783^{20}
12		$(CH_3)_2C: CH.C_2H_5$		0.68719
13		$(CH_3)_2C_4H_2O_4$		
14	isophthalate			
15		$(CH_3)_2(C_3H_7)COH$		0.823219
16	maleate			1.152914
17		$(CH_3)_2C(CO_2H)_2$	132.06	
18 19	naphthaline $(1, 4) \dots (\beta) \dots (\beta) \dots$	$ (CH_3)_2C_{10}H_6$	156.10	1.18031
20	a-naphthylamine		1	1.044615
21	β - "	$C_{10}H_7N(CH_3)_2$		1.0455
$\frac{21}{22}$	nitros-amine			1,045540
23		$(.CO.NHCH_3)_2$		
24		$(CH_3)_2C:(CH_3)C_2H_5$		0.7185^{21}
25	" (2) (2, 4)	$(CH_3)_2C$: CH . $CH(CH_3)_3$		0.698514
26	phosphine		62.06	
27	phosphinic acid	0.2	94.06	,
28		$C_6H_4(CO_2CH_3)_2$	194.08	
29	propyl carbinol		102.12	
30	quinone (2, 3)	$(CH_3)_2C_6H_2O_2$	136.06	
31	(2, 6)		136.06	
32	" (2, 5)		136.06	
33	racemate	$\left \left(\mathrm{CH_3} \right)_2 \mathrm{C_4} \mathrm{H_4} \mathrm{O_6} \right \ldots \ldots$	178.08	
34	succinic acid (uns.)	$(CH_3)_2C(CO_2H)CH_2CO_2H$	1	
35	tartrate	$(CH_3)_2C_4H_4O_6$		1.340315
36		$C_6H_4(CO_2CH_3)_2 \dots$	194.08	
37		$(CH_3)_2C_4H_2S$	i	0.9956^{20}
38		$(CH_3)_2C_4H_2S$		0.985919
39		$(CH_3)_2C: (CH_2)_2$		0.66044
40		$CO < (NHCH_3)_2 \dots$	88.14	
41	(uns.) (IX.)	$NH_2.CO.N(CH_3)_2$	88.14	
			1	

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point °C	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	Point, °C. C. = Corrected.	Form and Color.
1 2	v. sol. bz.	mod. sol. ∞ , ∞ CS ₂	∞ , ∞ chlo.	71°	36–7°	fine need./al.
	v. sol. hot v. v. s. sol.	soluble v. s. sol.		144° 163–5°		glassy pris./al prisms/al
5	v. v. s. sol.	soluble	soluble v. soluble	126° 116°	268°	moncl.pris./a short need/w.
7	v. s. sol. hot	v. soluble		132°	268° C.	long need./al.
9	insoluble insoluble	soluble	soluble	0.5° -14°	89.70° 187°	
10 11				<-20°	185° 183–4°	
12 13		s. soluble	s. soluble	102°	65–7° ⁷⁵⁷ 192° C.	triclin. prisms
14 15	soluble	soluble		67-8° -14°	dist. 117.6°	
16 17	10	s. soluble	v. soluble	192–3° dec.	205° C. sub. 120°+	quadrat. pris.
18 19				<-18° -20°	262-4° 264-6°	
1	insoluble	soluble	soluble	46°	274.5° C. ⁷¹¹ 305°, 212° ⁶⁹	
22					153°774	crystalline yellow oil
24		s. soluble	v. s. sol.	209–10°	75–80°	wh. needles
1	insoluble				83–4° 25°	
27 28				76°	282°	crystalline
29 30	s. soluble	soluble mod. sol.	mod. sol.	<-38° 55°	122.5-3.5° ⁷⁶² sublimes	yellow need
31 32	s. sol. hot	s. soluble	v. soluble	72–3° 125°	sublimes	yel. needles tricl. pris. /al.
33 34	7.5214	soluble v. soluble	s. soluble	85° 142°	282° 165°→anh.	monoclinic/al tricl. pris./bz.
35	soluble 0.33	v. soluble	sol. chlo.	48° 140°	280°	crystalline trimetric need
37 38					137–8° C. 136.5-7.5°C.	billionic need
39			ingoluble		21°	
1	v. soluble v. soluble	soluble soluble	insoluble insoluble	99–101° 180–1°		thin prisms
	1					

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Dinaphthol (a)	OH.C,0H6.C,0H6OH	286.12	
	Dinaphthol (β)			
	Dinaphthyl (aa)			
	Dinaphthylmethane (a)			
5		$(C_{10}H_7)_2CH_2$		
	Dinicotinic acid	$1: 2: 4C_5H_3N(CO_2H)_2$	167.08	
7	Dinitraniline (2, 4)	$(NO_2)_2C_6H_3NH_2$		1.61514
8	Dinitro-benzene (o.)	$C_6H_4(NO_2)_2$	168.11	1.56517
9	" (m)	$C_6H_4(NO_2)_2$	168 11	1.54617
10	" (n)	$C_6H_4(NO_2)_2$	168 11	1.58717
11	benzoic acid (2, 4)	$(NO_2)_2C_6H_3.CO_2H$	212.11	
	(2, 2).	(2.02)20623.00222		
12	" . " (2, 5)	$(NO_2)_2C_6H_3.CO_2H$	212.11	
13	" $(2, 6)$	$(NO_2)_2C_6H_3.CO_2H$	212.11	
14	" " (3, 5)	$(NO_9)_9C_6H_3.CO_9H$	212.11	
15	diphenyl (o.p.)	$NO_2C_6H_4.C_6H_4NO_2$	244.14	
16		$NO_2C_6H_4.C_6H_4NO_2$		
17		$\mathrm{CH_2(NO_2)_2}$		
18		$(NO_2)_2C_6H_3OH$		
19		$(NO_2)_2C_6H_3OH$		1.68324
20	(2, 0)	$(NO_2)_2C_6H_3OH$		
21 22	toluene (2, 4)	$(NO_2)_2C_6H_3.CH_3$	182.13	1.3208
23	(a), 4)	$(NO_2)_2C_6H_3.CH_3$ $(NO_2)_2C_6H_3.CH_3$	182.13	
20	(3, 3)	$(11O_2)_2O_6\Pi_3.O\Pi_3.\dots$	102.10	
24	Dioxindole	$C_8H_7NO_2$	149.10	
	Diphenol (a) $(0.0.)$	$OHC_6H_4.C_6H_4OH$	186.08	
26		$OHC_6H_4.C_6H_4OH$	186.08	
27	" $(\gamma)(p.p.)\dots$	$OHC_6H_4.C_6H_4OH$	186.08	
28	" (δ)	$OHC_6H_4.C_6H_4OH$	186.08	
29		$C_6H_5.C_6H_5$		0.984582
30		$(C_6H_5)_2CH.CO_2H$	212.10	
31		$(C_6H_5)_2NH$	169.13	
32		$C_6H_5.C_6H_4.C_6H_5$		
33	carbonate (K.)	$(C_6H_5)_2CO_3$		
34	diacetylene	C_6H_5 .C:C. C_6H_5		
35		$CH_3.CH(C_6H_5)_2$		1.0033%
36	hydrazine (aa)			1.19016
37 38	methane			1.0056¾ 1.0126¼
- 38	phosphine	$(\bigcirc_{6}\Pi_{5})_{2}\Gamma\Pi\dots\dots\dots$	180.09	1.01204

ber.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.)	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
	insoluble	mod. sol.	v. soluble	300°		rhombic tab.
	insoluble	mod sol.	v. soluble	218° C.	sub. nd.	flat nd. or pr.
	v. sol. bz.	mod. sol.	mod. sol.	160.5° C.	abt. 360°	rhomb. leaf.
	sol. CHCl ₃	0.820	v. sol. bz.	109°	above 360°	short pris./al.
1		v. soluble	sol. bz.	92°		fine needles
	v. s. sol.			323°	decomp.	
	insoluble	0.7^{21}		187.5-8°		yel. moncl
8	0.38100	3.8^{25} : 33^{78} abs.	27.118chlo.	117.9°	319° ⁷⁷³	monocl. tab
9	32.418 chlo.	$3.5^{20.5}$	39.45 ¹⁸ bz.	89.95° C.	302.8°770	thin rhb. tab.
10	0.18100	0.420.5	*1.8218chlo.	172-3°	2990777	moncl. need
11	1.8525	v. soluble		179°		rhomb. tab.
12	s. sol. hot			177°		needles
13	mod.sol. hot			202° dec.		needles
14	2.0100	v. soluble	s. soluble	204-5°		quad. tab./w.
15		v. sol, hot		93.5°		moncl. need.
		mod.sol.hot	v. soluble	234-5°		fine needles
17	soluble			$< -15^{\circ}$	exp. 100°	yel. crystals.
18	s. soluble	soluble	v. soluble	144°		yel. need/w
19	0.5	3.9^{19}	v. soluble	114-5°		yel. tab./w
20	s. soluble	soluble	v. soluble	61.78°		yel.need./w
21	insoluble	s. soluble	2.19^{17}CS_2	70.5°		moncl. need
22	insoluble	soluble	2.19^{17}CS_2	61°		long need.CS ₂
23	s. soluble	mod. sol.	v. soluble	92–3°	with steam	monel. pris.
			$mod.sol.CS_2$			/lig.
24	8.3	6.6	sol. alk.	180°	dec. 195°	rhomb. pris
	mod.sol. hot	v. soluble	v. soluble	123°	315°768	long flat need.
	s. soluble	v. soluble	v. soluble	190°		small leaflets.
	s. soluble	v. soluble	v. soluble	272°	sublimes	glit. leaf./al.
1	v. s. sol.	v. soluble	v. soluble	161°	342°	mon. prisms.
	insoluble	9.98	soluble	70.5°	254.93° C.	moncl. tab
100	s. soluble	v. soluble	v. soluble	148°	part. sub.	needles/w
1 -	s. soluble	soluble	soluble	52.85°	310°	moncl. leaf
	sol. hot bz.	v. s. sol.	s. soluble	205°	383–427°	small leaflets
	insoluble	soluble	v. soluble	80–1°		wh. needles
0 -		v. soluble	v. soluble	96°		need. dil. al.
					286°	oil
	v. s. sol.	v. soluble	v. soluble	44°	220°/40	triclin./lig
	insoluble	v. soluble	v. soluble	26.5°.	264.7° C.	prismat. need.
38	insoluble ;	v. soluble	v. soluble		280°	oil

^{* 0.69} parts dissolve in 100 parts methyl alcohol at 20°.

-				
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Diphenyl			
1		$CS < (NH.C_6H_5)_2$	228.24	
2			258.15	1.07^{16}
3		NH_2 . $CO.N(C_6H_5)_2$	212.18	
4	Diphenylene oxide	$<$ (C_6H_4) ₂ O	168.08	
	Dipicolinic acid	$1:2:6C_5H_3N(CO_2H)_2$		
	_	$+1\frac{1}{2}H_2O\dots$	194.07	
6	Dipropargyl		78.05	0.80494
7	F		101.16	0.735725
8		$(C_3H_7)_2NH$		$0.736\frac{25}{28}$
9	carbinol	$(C_3H_7)_2$ CHOH		0.820020
10	ketone	$(C_3H_7)_2CO$	114.12	$0.8205\frac{15.1}{4}$
11	" (K.)	$(C_3H_7)_2CO$	114.12	$0.822\frac{25}{26}$
12	oxalate	$(C_3H_7)_2C_2O_4$	174.12	1.0384°
13	Dipyridyl (γ)	$C_5H_4N.C_5H_4N$	156.16	
14		$C_9H_7N.C_9H_7N$	258.20	
15	Diquinoyl (2, 31)	$C_9H_6N.C_9H_6N$	256.18	
16		$C_9H_6N.C_9H_6N$	256.18	
17		$C_9H_6N.C_9H_6N$	256.18	
	Diresorcine		254.12	
	Dithio-glycerine			1.34214.4
	Ditolyl (o.)	$CH_3.C_6H_4.C_6H_4.CH_3$	182.12	0.000010
21	(o.m.)	$CH_3.C_6H_4.C_6H_4.CH_3$		0.99931
22 23	(111.)	$CH_3.C_6H_4.C_6H_4.CH_3$	182.12	0.9172121
24 24		$CH_3.C_6H_4.C_6H_4CH_3$	182.12 197.16	0.9172
$\frac{24}{25}$		$ (\mathrm{CH_3C_6H_4})_2\mathrm{NH}$ $ (\mathrm{CH_3C_6H_4})_2\mathrm{NH}$	197.16 197.16	
26		$(CH_3C_6H_4)_2NH$	197.16	
27		$CS < (NH.C_6H_5.CH_3)_2$	256.27	
28	" (n) (K)	$CS < (NH.C_6H_5.CH_3)_2$	256.27	
	Divinyl	CH.: CH CH: CH.		
	Docosane			0.7782*
	Dodecane, n			0.7684^{20}
	Dodecylene, n			0.7854^{20}
	Dulcite		1	1.466^{15}
	Durol		1	0.838081
35	Elaidic acid	C ₈ H ₁₇ CH: CH(CH ₂) ₇ CO ₂ H	282.28	0.85057
36	Ellagic acid	$C_{14}H_6O_8 + 2H_2O$	338.08	1.66718
37	Eosine	$C_{20}H_8Br_4O_5$	647.90	
38	a-Epichlorhydrine	C_3H_5ClO	92.49	1.20314
39	a-Epidichlorhydrine(K.).	CH ₂ : CCl.CH ₂ Cl	110.93	1.20935
		l .	1	

-				1	1	
Number.	Sol	ubility in 100 c	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
-						
					A control of the cont	
	v. s. sol.	s. soluble	v. s. sol.	153-4°		prisms
	sol. bz.	s. soluble	v. soluble	60.5-1.5°	354°706	irreg. prisms.
	s. soluble	soluble	soluble	189°	287–8°	long needles
	insoluble sol. hot	mod. sol.	v. soluble	86-7° 226° dec.	287-8	small. leaf./al
)	sol. not	v. s. sol.		220° dec.		f crusts, scales or needles
6			v. soluble	-6°	85.4°	(or needles
	s. soluble		v. sortioic	<-50°	109.4-10.4	
1	soluble	00	soluble		109.5-10.5	
9		soluble	soluble		154°	
10	insoluble				143.52°	
11	insoluble	∞	∞		141-3°	colorless
12					213.5° C.	
	v. s. sol.	v. soluble	v. soluble	111-2°	304.8°	need. or tab
	insoluble	v. soluble	v. soluble	114°		yel. needles
	insoluble	v. soluble	mod. sol.	176-7°	>400°	m'cl.tab.&nd.
	v. s. sol. hot		v. s. sol.	178°	dist.	mon. tab./al.
	insoluble	v. s. sol.	s. soluble	192.5°	sublimes	mon. tab./al.
	s. soluble	ins. acet.	soluble	310°	1 1900	need. or pw
	insoluble	v. sol. abs.	insoluble		dec. 130° 272°	thick liquid
21		v. soluble	v. soluble		288°	
		v. soluble	v. soluble		280-1°	
	sol. CS ₂	soluble	soluble	121°	dist.	monel. pris.
24					3120727	/et.
25		v. soluble	v. soluble	<-12°	319-20°	
26				79°	330.5°	long needles.
27		s. soluble	v. s. sol.	157.5-8.5°		v. sm. need
	v. s. sol.	s. soluble	v. s. sol.	176–7°		v. sm. need
29		4 ⁷⁸		44 40	10	
30		_		44.4° -12°	317.4° 214.5° C.	cryst./al
32				-12° -31.5°	214.5° C. 213–5°	
	$2.14, 56^{100}$	0.7	insoluble	188.8° C.	279-80°1C.	moncl. prisms
34		v. soluble	v. soluble	79–80°	196°	crystalline
	insoluble	soluble	soluble	51.5°	234°15,154°0	
1	v. s. sol. hot	s. soluble	insoluble	decompose		yel. cryst. po
	insoluble	soluble	sol. acet. ac			moncl. need
	insoluble		soluble		116° C.	
39	insoluble	∞	∞		95.5-6.5°	colorless
1						

Number.	Name.	Formula.	Molecu- lar Weight.	Water = 1.
1	Erucic acid	C ₈ H ₁₇ CH:CH(CH ₂) ₁₁ CO ₂ H	338.34	0.860258
2	Erythrite	(CH ₂ OH,CHOH.) ₂	122.08	1.59
3	anhydride	$C_4H_6O_2$		1.1132^{18}
4	Ethane.	$CH_3.CH_3$		0.446° liq.
5	Ether	$C_2H_5OC_2H_5$		0.711122
7	Ethoxy-benzoic acid (o.)	$C_2H_5O.C_6H_4.CO_2H$		
8	(m.)	$C_2H_5O.C_0H_4.CO_2H$ $C_2H_5O.C_6H_4.CO_2H$		
	Ethyl acetate			0.9028638
				{0.8920-
10	" " (K.)	$CH_3CO_2.C_2H_5$	88.06	$ \begin{cases} 0.8955^{\frac{25}{25}} \\ 0.8955^{\frac{25}{25}} \end{cases} $
11	acetoacetate	CH ₃ CO.CH ₂ .CO ₂ .C ₂ H ₅	130.08	1.024432
12	aceto-succinate (K.)		216.13	1.07935
13	acetylene	$C_2H_5.C:CH$		
14			258.14	1.10025
15	acrylate	$C_3H_3O_2.C_2H_5$		0.93930
16		C ₂ H ₅ .OH		0.7851025
17	allyl ether	C_2H_5 .O.CH $_2$.CH: CH $_2$ C_2H_5 NH $_2$	86.08	0.69948
18 19	amme	$C_2H_5NH_2$	128.13	
20	aniline			$0.9631^{\frac{29}{4}}$
21	anthracene	$\begin{bmatrix} C_2H_5.C_{14}H_9.\dots \end{bmatrix}$		0.9091 *
22	anisate	CH.O.C.HCO.C.H	į.	
23	arsenate	$\left[\left(\mathrm{C_2H_5}\right)_3\mathrm{AsO_4}\right]$		1.32640
24	arsenite	(C ₀ H _c) ₀ AsO ₀	210.12	
25	arsine	$ C_2H_5AsH_2 $	106.06	
26	benzene	$C_6H_5.C_2H_5$		0.873614
27	benzoate			1.05094
28	(K.)		150.08	
29				
30	(111.)			
32	benzovl-acetate (K)	$C_6H_5CO.CH_2.CO_2.C_2H_5$	192.10	
33	benzyl ether		136.10	
34	" ketone		1	0.99817-5
35	borate	$ (C_2H_5)_3BO_3 $	146.12	0.88634
36	brom-acetate (K.)	$CH_2Br.CO_2.C_2H_5$	167.02	
37			195.05	
38	"-isobutyrate (α) (K.)		195.05	
39	"-propionate (α) (K.).		181.03	
40	bromide	C_2H_5Br	109.00	1.449915
			1	

ber.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. ⇒ Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. ⇒ Corrected.	Form and Color.
	v. soluble	v. soluble s. soluble	insoluble	33–4° 126°	281°30,179°0 329–31° 138°	needles/al quadrat. pris.
5 6	s. soluble 8.11cc. ²² s. soluble	46 cc. 4	∞	-172.1° -112.6° 19.4°	-84.1°749 34.97°	oil
8	s. sol. hot v. v. s. sol. 6	∞	∞	137° 195°	sub. 77.4° C. ⁷⁵⁴	small needles needles
10	5.917.5	∞	∞	-83.8°	76-7°	colorless
}	s. soluble insoluble	v. soluble ∞	∞ ;	<-80°	181° 260–5° dec. 18° C.	wh. →yel
14 15	insoluble	∞	े ०० हैं है		290–6° dec. 98.5° C.	wh.→yel
16 17	∞		∞	-112.3°	78.4° 66–7° ⁷⁴³	
18		∞	∞	-83.8°	19-20° . 170° ⁷³⁸	
1	insoluble	soluble		-80° 60-1° 7°	206° 269–5°	leaflets/al
23 24	dec. dec.				235–8° 165–6° 36°	
26	insoluble s. sol. hot	∞ soluble	∞ soluble	-93.2°	136.5° C.	
28 29	s. sol. hot v. s. sol.	soluble v. soluble	∞ v. soluble	68°	209–12° 259° ⁷⁶⁰	faint yellow fine flat need.
31	v. v. sol. sol. hot	v. soluble	v. soluble	47° 112–3°		long need./w.
1000	insoluble insoluble	∞ ∞	∞ [A]		265–70°dec. 185° 223–6°	wh.→yel
35					120° 158–60°	wh.→vel
37	insoluble	∞ ∞	∞ ∞ (1		175-9° dec.	wh.→yel
100.00	insoluble insoluble	∞ ∞	∞ v v v v v v v v v v v v v v v v v v v		161–4° dec. 159–61°dec.	$wh. \rightarrow yel$ $wh. \rightarrow vel$
	0.91420	×	∞ ∞	-115.8°	38.37°	

_		1		
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Ethyl			
1		C ₂ H ₅ Br	109.00	1.453-1.4571
2	butyl ether	$C_2^{T} H_{5}^{T}.\mathrm{O}.C_4 H_{9}.\ldots$	102.12	0.7522^{20}
3	n. butyl ketone	$C_2H_5.CO.C_4H_9$	114.12	
4		$C_3^2H_7^3.CO_2.C_2H_5^3$	116.10	0.8978^{18}
5	caprate	$C_9H_{19}.CO_2.C_2H_5$	200.20	
6	caproate	C_5H_{11} . CO_2 . C_2H_5	_	0.8732^{20}
7		C_7H_{15} , CO_2 , C_2H_5		0.873016
8		$(C_2H_5)_2CO_3$	1	0.9780^{20}
9	chloracetate	CH ₂ Cl.CO ₂ .C ₂ H ₅		1.1585%
10		CH ₃ CO.CH ₂ .CO ₂ .C ₂ H ₅		1.17925
11 12		ClCO ₂ .C ₂ H ₅		1.139^{15} 0.9214^{0}
$\frac{12}{13}$		C_2H_5C1 $CH_3.CHCl.CO_2.C_2H_5$		$1.095\frac{25}{25}$
14		$C_6H_5.C_9H_9CO_9.C_9H_5$		1.054615
15		$C_6H_5.C_2H_2CO_2.C_2H_5$		1.049^{25}
16		$C_9H_9N(CO_2C_2H_5)$		1.04925 1.087^{15}
17		$CN.CH_2.CO_2.C_2H_5$		$1.059^{\frac{25}{25}}$
18		$CN.CO_2.C_2H_5$		1.013420
19		C ₂ H ₅ .CN		0.7799^{20}
20		(CH ₃ CO) ₂ CH ₂ CO ₂ C ₂ H ₅		1.104^{15}
21		$C_2HN_2O_2.C_2H_5$		1.08324
22		CHCl ₂ .CO ₂ .C ₂ H ₅	156.95	1.28212
23		CHCl ₂ .CO ₂ .C ₂ H ₅	156.95	1.27625
24	diethyl-aceto-acetate(K.	CH ₃ CO. C(C ₂ H ₅) ₂ CO ₂ C ₂ H ₅	186.14	$0.963^{\frac{25}{25}}$
25	" -malonate (K.)	$(C_2H_5)_2 > C < (CO_2C_2H_5)_2$.		$0.982\frac{25}{25}$
26		$(CH_3)_2 > C < (CO_2.C_2H_5)_2$.		0.96625
27	diphenylamine		197.16	
28	disulphide	$(C_2H_5)_2S_2$		0.9927*
29	fluoride		48.04	
30		HCO ₂ .C ₂ H ₅		0.9480%
31	(12.)	$HCO_2.C_2H_5$		$0.920\frac{25}{25}$
32		$C_5H_4O_4(C_2H_5)_2$		1.04993
33		$C_2H_3(OH)_2.CO_2.C_2H_5$		1.090915
34 35				0.92618
3 6		HOCH CO C H		1.0826^{23}
37		$HOCH_2.CO_2.C_2H_5$ $C_7H_5.O.C_9H_5$		0.7949°
38		$C_2H_5.O.C_6H_{13}$		0.1949
39	hinnurate (K)	C ₆ H ₅ .CO.NHCH ₂ .CO ₂ .C ₂ H ₅		
40		$C_2H_5NH.NH_2$		
10	and distance	021151(11.11112	30,11	

					1	
Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	s. soluble	00	∞	-125.5°	38-40°	colorless
2 3				,	91.4° 147–8° ⁷⁴³	
4	s. soluble	soluble	soluble	-93.3°	120.6° C.	
5					244°	
6 7	insoluble	soluble	soluble	-48°	166.6° 205.8°	
8	insoluble	soluble		-40	125.8° C.	
	insoluble				144.5°754	
1	v. s. sol. decomp.	∞ ∞	\$ 10 m		196–200° 94°	wh.→yel
112		∞	× ×	-141.6°	19.5°	
1	v. s. sol.	00	∞		145-9°	colorless
14		soluble	oo	12° 7.5°	271° 270–1° dec.	yellowish
16		Soluble			308-10°	thick yel. oil.
1	insoluble	∞	00 (1)		205-8°	wh.—yel
1	insoluble mod. sol.	soluble ∞	soluble	-103.5°	115–6° 97.08° C.	
	s. soluble			-105.5	209–11°dec	
	s. soluble	∞	00	-22°	140-10720	oil
22	insoluble	∞n∂:	al tools is		$157.7^{\circ 755}$ $156-9^{\circ}$	colorless
	insoluble	∞ ∞	∞		211-6° dec.	wh. →vel
1	insoluble	∞	∞		222-7°	colorless
26 27	insoluble	∞ soluble	∞ .		192–6° 295–7°	colorless
1 1	v. s. sol.		soluble		153°730 C.	oil
1	198 c.c. ¹⁴	v. soluble			-32°	
100	11 s. sol. dec.	∞ ∞	× ×	-78.9°	54.4° 54–5°	colorless
32	s. soi. dec.				236–7°	coloriess
	soluble				230-240°	
34	soluble		×		225–30° 135°	
36	·····				160° C.	
37					166.6°	
38	insoluble	soluble	soluble	60-1°	134–7°	sm. nd. wh.
	v. soluble	v. soluble	v. soluble		99.50709	siii. IId. wil.,

			1	1
Number.	Name.	Formula.	Molecu- lar Weight.	Water = 1.
	Ethyl			
1		$C_6H_5.CH_2CH_2CO_2.C_2H_5$	178.11	1.01235
2	hydrocollidine dicar-		267.21	
	bonate			
- 3		$NH_2.O.C_2H_5$		0.88277.5
4	β β β β β β β β β β	C_2H_5NHOH	61.10	0.90794
5		C ₂ H ₅ ClO		1 040015
6		CH ₃ .CH ₂ I		
8	(12.)	$CH_3.CH_2I$ $CH_2I.CH_2.CO_2.C_2H_5$		$1.666^{\frac{25}{25}}$
9	isoamyl aceto-acetate	$C_{9}H_{3}O.CH(C_{5}H_{11})CO_{9}C_{9}H_{5}$		
	(K.)		200.10	0.00120
10	isoamyl ether	$C_9H_5.O.C_5H_{11}$	116.13	0.76118
11		C_2H_5 .O. C_4H_9	102.12	0.7507
12	isobutyrate	$(CH_3)_2CH.CO_2.C_2H_5$		0.89044
13				0.815∜
14	isocrotyl ether			
15	isocyanate	.C ₂ H ₅ NCO		0.8981
16		$C: N.C_2H_5$		0.75914
17		$C_2H_3O.CH(C_3H_7).CO_2C_2H_5$	172.13	0.9628
18	(K.) -malonate (K.)	(CH ₃) ₂ CH.CH(CO ₂ .C ₂ H ₅)	202 14	0.98738
19		C_2H_5 .O.CH(CH ₂) ₂		0.74470
20		C_2H_5 .CO.CH(CH ₃) ₂	100.10	
21		$CH_3.CH < (CO_2.C_2H_5)_2$		1:02235
22				0.871718
23	lactate	$C_3H_5O_3.C_2H_5$	118.08	1.030819
24	laurate	$C_{12}H_{23}O_{21}C_{21}H_{51}$		0:86719
25	levulinate (K.)		144.10	$1.011\frac{25}{25}$
		C_2H_5		
26	malate (K.)		190.11	$1.124\frac{25}{25}$
27		CO ₂ C ₂ H ₅	100 10	1 001015
28	maionate	$C_3H_2O_4.(C_2H_5)_2$		1.0610 ¹⁵ 1.054 25
29	(IX.)	$C_3H_2O_4$. $(C_2H_5)_2$		$0.838^{\frac{21}{4}}$
30	monotertrete	CO_2H_1 (CHOH) $_2CO_2C_2H_5$.		
31	mustard oil	C_2H_5NCS	87.14	0.995223
32	myristate	C. H. O. C. H.	256.26	
33	naphthaline (a)	14 21 2 2 3		1.063515
34	" (β)	$C_{10}H_7.C_2H_5$	156.10	1.00780
35	naphthyl ether (a)	$C_{10}^{10}H_7O\tilde{C}_2H_5$		1.057935

_						[
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1	insoluble				242–5°	$wh \rightarrow vel$
_	v. v. s. sol.	s. soluble	s. soluble	131°	dec. 315°+	tablets/al
3	v. soluble	v. soluble	v. soluble	59-60°	sublimes	pearly leaf
1 -	00	∞ .	∞		68°	
5					360752	yellow
	0.40320	soluble	soluble	-108.5° { -118°	72.34°	
	s. soluble v. s. sol.	soluble	00	-118*	71–2° 198–201°	turns reddish wh. → vel
1	insoluble	00	00	· · · · · · · · · · · · · · · ·	230-6° dec.	$wh. \rightarrow yel$ $wh. \rightarrow yel$
1	TI SOLGISTO				200 0 000.	, y Ci
10	insoluble	∞			112°	
11					78-80°	
	s. soluble	∞	∞		110-1°	
13					136°	
14					92-4°	
1	insoluble		soluble	<-66°	60° 78.1°	
	mod. sol.	on	soluble ∞	< -00	200-5° dec.	$wh. \rightarrow yel$
1.4	V. S. SUI.		∞ 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		200-5 dec.	wii yei
18	insoluble	00	∞		212–7° dec.	colorless
	soluble	00	00		54°	
20		v. soluble				
	v. s. sol.	∞	∞ *s 1 1 ×		194-7°	colorless
	insoluble	∞	∞		20210	
23				-10°	154.5° C.	
	s. soluble	00	∞ i ?		269°, 79°° . 202–5.5°	$ \text{oil.} $ wh. \rightarrow yel
20	s. soluble	000	Ware gi		202-0.0	wii. → yei
26	soluble	~	∞ . e.e.		248-52° d.	colorless
27		000	∞	-49.8° C.	197.7-8.2°C	
28		00	∞ .		196.5-9.5°	colorless
1	1.5	soluble	soluble	-144.4°	370759	
	soluble insoluble		soluble	90° -5.9° C.	131–2°	rhomb. pris
32		soluble s. soluble	s. soluble	10.5–11.5°	295°, 102°°	
33		s. soluble	s. soluble	<-14°	258° s. dec.	
34				-19°	251° s. dec.	
35				5.5°	279.8° C.	crystals
£						

er.			Molecu-	Specific Gravity.
Number	Name.	Formula.	lar Weight.	Water = 1 . Air = 1 (A).
1	Ethyl naphthyl ether (β)			
2	nitrate	$C_2H_5NO_3$		1.115915
3		$C_2H_5NO_3$		1.10425
4	nitrite	$C_2H_5NO_2$		0.90015
5		$NO_2.C_6H_4.CO_2.C_2H_5$		
6		$NO_2C_9H_6O_2.C_2H_5$		
8	(b.) (1z.).	$NO_2C_6H_4.C_2H_2.CO_2.C_2H_5$ $CH_3C.(NO_2)NOH$		
9		$\mathrm{CH_3C.}(\mathrm{OC_2H_5})_3$	162.15	
10	orthocarbonate	$C(OC_2H_5)_4$		0.91974
11	orthoformate	$HC(OC_2H_5)_3$		0.8971
12	orthosilicate	$Si(OC_2H_5)_4$		0.933^{20}
13		$C_2O_4(C_2H_5)_2$		1.078623
14	" (K.)	$C_2^2O_4^2(C_2H_5^2)_2$	146.08	$1.076\frac{25}{25}$
15	oxamate (K.)	C ₂ H ₅ CO ₂ .CONH ₂		
16	oxanilate (K.)	$C_2H_5CO_2.CONHC_2H_5$		
17	palmitate	$C_{16}H_{31}O_2.C_2H_5$	284.30	
18	perchlorate	$C_2H_5ClO_4$		
19		C_2H_5 . C_6H_4OH		1.03710
20	phenyl-acetate (K.)	$C_6H_5.CH_2.CO_2.C_2H_5$		$1.029\frac{25}{25}$
21		$C_6H_5.C: C.C_2H_5$		0.923^{21}
22	phenyl carbinol	$C_6H_5.CH(OH).C_2H_5$		0.9915
23	phenyl hydrazine (aa.).	$C_6H_5(C_2H_5)N.NH_2$		1.01815
24	(ab.).	C_6H_5NH,HNC_2H_5	136.18	
$\frac{25}{26}$		$C_2H_5.CO.C_6H_5$		1.0150 ¹⁵ 1.0945 ²⁵
27	maionate (11.).	$C_6H_5.CH(CO_2.C_2H_5)_2$ $C_2H_5.SO_2.C_6H_5$	170.14	
28	phenyl sulphone	$(C_2H_5)_3PO_4$		1.07212
29	phosphine	$C_2H_5PH_2$	62.06	
30	phthalate (o.) (K.)	$C_6H_4(CO_2.C_2H_5)_2$		1.12635
31	propargyl ether	C.H.OC.H		0.83263
32	propiolate	$C_3HO_2.C_2H_5$		
33	propionate	$C_9H_5.CO_9.C_9H_5$	102.08	0.896416
34	" (K.)	$C_2H_5.CO_2.C_2H_5$	102.08	$0.885\frac{25}{25}$
35	propyl carbinol	C_3H_7 .CHOH. C_2H_5		0.818820
36	" ether	$C_2H_5OC_3H_7$	88.10	0.75450
37	" ketone	$C_2H_5.CO.C_3H_5$	100.10	0.81817.5
38	pyridine (2) (a)	$C_2H_5.C_5H_4N$		0.937117
39	pyrrol (1)	C_2H_5, C_4H_4N		0.904210
40	pyroracemate (K.)	$CH_3.CO.CO_2.C_2H_5$		1.04925
41	salicylate	$HOC_6H_4.CO_2.C_2H_5$	166.08	1.137215

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
-	insoluble	soluble	soluble	33°	282° 87.6°	cryst. mass.
1	v. s. sol.	soluble	soluble	-112° C. -112°	86-7°	
	insoluble	×	soluble		16.4°	
	insoluble	v. soluble	v. soluble	53-4°		yel. prisms
1	v. sol. bz.	v. soluble	v. soluble	44°		thin rh'b. nd.
1	insoluble	s. soluble	s. soluble	140-1°		flat nd. yel
8 9	soluble		soluble	86-8°	dec.	yel. rhombic.
10					158–9°	
11					145.5°	
1	decomp.				165°	
13	s. soluble	soluble	soluble	-41°	186.1° C.	
	s. sol. dec.	∞	∞	-41°	184-5°	colorless
1	soluble	s. soluble	s. soluble	114-5°		wh. prisms
17	v. s. sol.	soluble	soluble	66-7° 24.2°	185°1°,122°°	wh. prisms long flat need.
1	insoluble	soluble	soluble	41.4	74°	oil
19				<-18°	206.5-7.5°	
20	insoluble	∞	∞ 🕺		223-6°	colorless
21					201–3°	
22 23		soluble	soluble		219-20°	- 21
1-0	s. soluble	soluble	soluble		237° C. 100–4°10	oil
	s. soluble	soluble	soluble	21°	218°	
26	insoluble	v. soluble	00 100		278–85° d.	$\text{wh.} \rightarrow \text{yel}$
	mod.sol. hot		v. soluble	42°	>300°	moncl. tab./et
1	decomp.	soluble	soluble		215°, 116°30 25°	
29	insoluble	oo			25° 290–4°	colorless
	s. soluble	00	00 . [] . []		80°	coloriess
32		v. soluble	v. soluble		119°	oil
33	s. soluble	∞	∞	-72.6°	98.8° C.	
		00	∞,		99-102°	colorless
1					135° C.	
36	soluble	00	∞		63.6.°	
38			v. soluble		148.65° C.	
	insoluble	∞	00		131°	
	s. soluble	∞	∞ ∜ (148-53°	$\text{wh.} \longrightarrow \text{yel.} \dots$
41		00	00	1.3° C.	231.5°	
			1			

		1	1	1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Ethyl salicylate (K.)	HOC.H.,CO.,C.H.	166.08	1.1335
2	sebacate (K.)	$C_2H_5CO_2(CH_2)_8CO_2C_2H_5$.		0.98855
3	selenide	$(C_2H_5)_2$ Se	137.28	
4	succinate	$C_4H_4O_4(C_2H_5)_2$	174.12	1.046415
5	" (K.)	$C_4H_4O_4(C_2H_5)_2$	174.12	1.03835
6				
7		$(CH.CH_2.CO)_2(CO_2C_2H_5)_2$	256.13	
8		$(C_2H_5)_2SO_4$		1.183719
9	sulphide			0.83644
10	sulphinic acid	$C_2H_5SO_2H$	94.11	
11		$(\tilde{C}_2 H_5)_2 \tilde{S}O_3 \dots$		1.10630
12	sulphocyanate	$NCS.C_2H_5$		1.007123
13	sulphone	$(C_2H_5)_2SO_2$		1.35720
14		$C_2H_5.SO_2Cl$		1.35722
15		C ₂ H ₅ SO ₂ OH		
16	sulphoxamate	NH ₂ CSCO ₂ C ₂ H ₅		
17		$(C_2H_5)_2SO$		1.31618
18 19		$C_4H_4O_6(C_2H_5)_2$		1.2059^{20}
20	tartrate (d.)	$(C_2H_5)_2Te$	185.68	
21		$CS(OC_2H_5)_2$	134.14	
22	thymyl ether	$C_2H_5OC_{10}H_{13}$		0.93340
23	toluene (o.)	$C_2H_5.C_6H_4.CH_3$		0.873116
24	" (m.)	C_2H_5 . C_6H_4 . CH_3		0.869^{20}
25	" (p.)	C_2H_5 , C_6H_4 , CH_3		0.865221
26		CH_3 , C_6H_4 , CO_2 , C_9H_5		$1.039^{\frac{15}{15}}$
27		CH_3 , $C_6H_4CO_2$, C_2H_5	164.10	
28		$CCl_3.CO_2.C_2H_5$	191.39	1.38264
29	valeriate	$C_5H_9O_2.C_2H_5$	130.12	0.876520
30		$C_8H_7O_4.C_2H_5$	196.10	
31		$C_2H_5NH.CO.NH_2$	88.14	1.21318
32	Ethylene	CH_2 : CH_2		1.0.6095
33	acetate	$(C_2H_3O_2)_2C_2H_4$	146.08	
34		$CH_2Br.CH_2Br$		2.1901
35		CH ₂ Br.CH ₂ Br		$2.175\frac{28}{28}$
36		CH ₂ Cl.CH ₂ Cl		1.2808
37		CH ₂ Cl.CH ₂ Cl		1.25428
38	diamine	$NH_2CH_2.CH_2NH_2 + H_2O$		0.970^{15}
39	(K.)	$NH_2CH_2.CH_2NH_2+H_2O$		0.97635
40	diphenyl ether	$C_2H_4(OC_6H_5)_2$		
41	glycol	OHCH ₂ .CH ₂ OH	02.05	

-	1			1	1	1
Number.	Sol	lubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nur	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1		soluble	000	1.5-2°	 230.5–2.5°	$wh. \rightarrow yel$
2	insoluble	v. soluble	∞	0-1°	309-12°	colorless
-	insoluble				107-8°	
	insoluble	∞	∞*	-20.8° C.	216.5° C.	
1	insoluble	soluble v. soluble	v, soluble	98°	215–6.5°	colorless
	v. soluble	s. soluble	s. soluble	127–8°		fine prisms sm. green nd.
1 .	insoluble	dec. hot	s. soluble	-24.5°	208° C. dec.	sin. green nu.
-	insoluble	soluble	soluble	-99.5°	92.2-3° C.	
10	sol. alkali					syrup
		soluble			161.3°	
1	insoluble	∞	∞		146° C.	
1	15.616			70°	248°	rhombic
	dec. delia.	soluble	sol. alkali		177.5° C.	cryst, mass.
	v. sol. hot	v. soluble	v. soluble	63°		lemon yel pris
-	v. soluble	v. bordore	v. soldbic		decomp.	thick liquid.
18	v. soluble	soluble	soluble		decomp.	syrup
19	s. soluble	00	∞		280°	
	v. v. s. sol.				137–8°	reddish yel
	insoluble	v. soluble	v. soluble		161-2°	
22 23				< -17°	226.9° 158–9°	
	insoluble	soluble	soluble	< -17	158–9°	
	insoluble	soluble	soluble	< -20°	161–2°	
26					227° C.	
27					226-8°	
1	insoluble	∞	∞		167.1°755	
1	insoluble	∞	∞		144.5°	
1	1		i1 1	440	291–3°	crystal
102	v. v. sol. 25.63 c.c. ⁰	v. v. sol. 359.5 c.c.	insol. abs. soluble	91° -169°	-103.9°	monel. prisms
1	14.3	soluble	soluble	-109	186-7°	
100	v. s. sol.	soluble	····	9.53°	131.6°	
1	v. s. sol.	soluble	∞	9.5-10°	129.5-31.5	colorless toyel
36	0.869^{20}	soluble		−36° C.	83.5° C.	
1	v. s. sol.	soluble	00	-40°	83-4.5°	colorless
	soluble		0.3	10° 9°	116.5°	
39	v. s. sol.	∞ s. soluble	v. s. sol. v. soluble	9° 98.5°	117-9°	wh. \rightarrow yel
	v. s. soi. soluble	s. soluble	v. soluble	98.5° -17.4°	197.37°	crystals
11	soluble		1.1	11.1	101.01	

^{*} Very soluble chloroform; insoluble ligroene and CS₂.

Number	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Ethylene glycol (K.)	OHCH,,CH,OH	62.05	1.11325
2	iodide	CH ₂ I.CH ₂ I	281.97	2.07
3	monoacetate	$OHCH_2.CH_2OC_2H_3O$	102.05	1.+
4	nitrate	$NO_3.CH_2.CH_2.NO_3$		1.50994
5	nitrate nitrite	$NO_2.CH_2.CH_2.NO_3$	136.11	1.472
6	nitrite	$NO_2.CH_2.CH_2.NO_2$		1.21560
7	oxide	<(CH ₂) ₂ $>$ 0		0.882410
	Ethylidene bromide	CH ₃ .CHBr ₂		2.1001^{17}
9	chloride	CH ₃ .CHCl ₂		1.18631
10		$CH_3.CHI_2$	$281.97 \\ 86.13$	
11	Eucalyptol	$CO < (NH)_2 > CH.CH_3$		0.926720
	Eugenol $(1, 4, 3) \dots$		1	1.069615
14		C_3H_5 . C_6H_3 (OCH ₃) ₂ 1:3:4	1	$1.035\frac{25}{25}$
	Euxanthic acid	$C_{1}H_{1}O_{1}+2H_{2}O_{2}$	458.18	1.00025
16	Euxanthone	C.,H.O	228.06	
		13-8-4		
17	Filixic acid	$\left \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{5} \ldots \right $	264.13	
18	Flavaniline	$[NH_2.C_6H_4.C_9H_5N.CH_3]$		
19	Flavopurpurin	$C_{14}H_5(OH)_3O_2$	256.06	
20	Fluor acetic acid	$CH_2F.CO_2H$		
	Fluoran	20 12 3	300.10	
22	Fluoranthene	$C_{15}H_{10}$		
	Fluor-benzene	C ₆ H ₅ F		1.029015
24		FC ₆ H ₄ .CO ₂ H		
25 26	(111.),	$FC_6H_4.CO_2H$ $FC_6H_4.CO_2H$	$140.04 \\ 140.04$	
- 0	Fluorene		166.08	
	Fluoresceïn		332.10	
	Fluoroform	CHF.		2.48-2.53
	Fluortoluene (o.)			1.0041^{13}
31		FC ₆ H ₄ CH ₃	1	0.997213
32		$FC_6H_4CH_3$		1.000515
33	Formic acid		46.02	1.24484
34		H.CO ₂ H	46.02	1.21935
	Formaldehyde		30.02	0.8153-20
36	Formamide			1.13944
		HCONHC ₆ H ₅	121.10	1.1437¥
38	Formyl-diphenylamine	$\mathrm{CHO.N}(\mathrm{C_6H_5})_2\dots\dots$	197.13	
0.0	(K.)		110 10	4 000 #95
39	piperidine (K.)	$\mathrm{CHO.NC_5H_{10}}$	113.13	1.023538

[]							
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline	
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.	
1	00	00	v. s. sol.	-20°	194–8°	colorless	
	s. soluble	soluble		81-2°	dec.	pris. or tab	
3	00	soluble			182°		
4		soluble		*	exp. $114-6^{\circ}$		
5	insoluble 5	soluble soluble	soluble	<-15°	not volatile	oil	
7	msoluble :	soluble	soluble	< -15	13.50746		
8					112.50755		
	0.55020			-101.5°	59.9° C.		
					177-9°		
	v. v. s. sol.	s. soluble	v. v. s. sol. soluble	154° -1-3°	dec. 160° 176°	small needles	
	v. s. sol.	00	soluble	-1-9	253.5° C.	oil	
1	insoluble	∞	∞		250–3°	colorless	
15	s. soluble	mod. sol.	v. soluble	156-8°	dec.	glit. yel. need	
16	insoluble	soluble	s. soluble	240° C.	sub. dec.	∫pale yel.leaf.	
4 100		1	1 1	104 =0		or need.	
	insoluble v. s. sol.	v. v. s. sol. soluble	mod. sol.	184.5° 97°	dist.	v. sm. leaf./et lrg. pris./bz	
	v. s. sol. hot	v. s. sol.	s. soluble	459° C.	sub. 160° +	vel. need./al.	
20				33°	165°		
	sol. H ₂ SO ₄	soluble		180°		flat needles	
	sol. CS ₂	s. soluble	v. soluble	109-10°	217°30	monoclinie	
23			v. soluble	<-20° 120°	85°	scales	
	s. soluble	v. soluble	v. soluble	124°		fine need./wleaflets/w	
	s. soluble	soluble	soluble	182°		monocl. pr	
27		s. soluble	v. soluble	116° C.	295° C.	leaflets/al	
	sol. alkali	soluble	s. soluble	no m.p.	dec. 290°	cryst. powder	
1	s. soluble	500 c.c.	s. sol. chlo.		20°40 at.		
30				$> -80^{\circ}$ > -80°	114° 115°		
32				>-80	116°		
33		00		8.6°	100.8°		
34		00	00	7.5°	100-1°		
	soluble	soluble			-21°		
36		v. soluble	s. soluble soluble	-1° 46°	192–5°	monad	
	mod. sol.	soluble	soluble	71.5-2.5°	110	monocl. pr	
30	THEO I WOLL	STUDIE		1.0 2.0			
39	∞	∞	∞		218-22°	$wh. \rightarrow yel$	
				1			

^{*} Explodes by percussion.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Fructose (d.)	C ₆ H ₁₉ O ₆	180.10	1.5550
2	Fuchsin	$C_{20}H_{10}N_3HCI$	337.74	
3	Fulminic acid	: C: N.OH	43.05	
4	Fulminuric acid	$C_3H_3N_3O_3$	129.12	
	Fumaric acid		116.03	1.625
6	Furfural	$C_4H_3O.COH$	96.03	1.1594 30
7	" (K.)	$C_4H_3O.COH$		1.15825
	Furfuramide			
	Furfuran		L.	0.944415
10	Furfuryl alcohol	$C_4H_3O.CH_2OH$		$[1.1351\frac{2}{2}]$
11	Galactose (d.)	$C_6H_{12}O_6$		1 0041
12	Gallic acid 3: 4: 5,	$(OH)_3C_6H_2CO_2H + H_2O.$	188.07	
13	Geraniol	C ₉ H ₁₅ .CH ₂ OH	i	0.881216
14	Gluconic acid (d.)	$2H_{\circ}O$	232.14	
15	Glucose (d.)	CHO + HO	108 12	1.54-1.57
16	Glucose oxime (d.)	C-HO-: NOH		
17	pentacetate (a)	$C_6H_7O_5(C_2H_3O)_5$	390.18	
18	phenyl hydrazone (a).	$C_6H_{12}O_5N_2HC_6H_5$	270.23	
19		$C_6H_{12}O_5N_9HC_6H_5$	270.23	
		0 12 0 2 0 0		
20	Glutaconic acid	CO ₂ H.CH ₂ .CH: CHCO ₂ H	130.05	
21	anhydride	$C_5H_4O_3$		
	Glutaminic acid (i.)		147.11	
23	Glutaric acid	$CO_2H.(CH_2)_3CO_2H.$	132.06	
24	ambandaida	CILO	114 00	
		$C_5H_6O_3OHOH.CO_9H$		
26		OHCH ₂ , CHOH, CO ₂ H		
		OHCH ₂ .CHOH.CH ₂ OH		1.260420
28	acetates	†		
29				1.4715 dry
30		CH,OH,CHOH,CH,NO,	1	
31		CH ₂ NO ₃ .CHNO ₃ .CH ₂ NO ₃	227.16	1.600915
3 2	trinitrite	CH2NO2.CHNO2.CH2NO2	179.16	1.29118
33	Glyceryl ether	C_3H_5 : O_3 : C_3H_5		1.090718
34	Glycid	$C_2H_3O.CH_2OH$		1.1650
35	Glycocholic acid	$C_{26}H_{43}NO_6$	465.39	
36	Glycocoll	NH ₂ CH ₂ CO ₂ H		1.1607
37	Glycogen	$(C_6H_{10}O_5)x, x > 100$	162.08	
38	Glycol	CH_2OH, CH_2OH	62.05	1.1250
	+ Con mone di o	nd trie acting + (d) 1		

[†] See mono-, di-, and triacetins. ‡ (d.) 1.538.

er.	Sol	ubility in 100	c.c.	Melting	Boiling	
Number.	Water (w.).	1	Ether (et.).	Melting Point, °C. C. = Corrected.	Point, °C. C. = Cor- rected.	Crystalline Form and Color.
	**************************************	111001101 (411)	2000 (000)	100000	1001041	
	v. soluble	20	soluble	95°		trimetric
3	s. soluble	soluble	v. soluble			rhomb. tab
	soluble	soluble	soluble		exp. 145°	needles/al
-	0.66^{18}	soluble soluble	soluble soluble	286-7°	sub. 200°+	prisms (bright vel.
	913	00	soluble ∞		160-2°	dark yel.
-	insoluble	v. soluble	v. soluble	117°	250° dec. 31.4-5° ⁷⁵⁶	thin short
10	insoluble ∞	v. soluble	v. v. sol. v. soluble		170°, 84°24	needles
	v. soluble	s. soluble		170-1°		hexag. tab./a
	0.8 ¹² ; 33 ¹⁰⁰ insol.	22.215	2.5015	222-40° < -15°	dec. 230° ⁷⁶⁰	tric. prism
1	v. soluble	insoluble				syrup
15	81.6817	s. soluble	insoluble	α148°β150°		need./abs. al.
	v. soluble	v. s. sol.	insoluble 2.13 ¹⁵ *	137.5°		sm. need.
	v. s. soluble v. soluble	v. sol. hot	v. v. s. sol.	144-5°		fine need./lig. v. small crys
19		more sol.		115-6°		long needles
20	v. soluble	v. soluble	v. soluble	138°		prisms/et
	$sol.Na_2CO_3.$ $1^{16}(d)1.7(i)$	s. soluble	soluble insoluble	87° [C. 198°(d)213°		flat need./et rhombic
	(63.920.	v. soluble	v. soluble	97.5°	302-4°	monel. prisms
0.4	1111.865		1 11 /	FC F0	00#0 C	
25	v. s. sol.	∞	s. soluble insoluble	56-7°	287° C.	thin needles.
	slowly sol.	v. v. s. sol.	v. v. s. sol.	abt. 132°	not vol. in	crystals
27 28	∞	∞	insoluble	17°	290° C.	rhombic
29	v. soluble	v. soluble	soluble	26°	145°15	
	v. soluble 0.12	v. soluble	s. soluble ∞	2.8 & 13.1°	exp. 260°	dimorphous.
32	insoluble	decomp.	soluble		150°	yellow
33	∞ ∞	00	× ×		171–3° 161–2° dec	
35	3.3^{20}	soluble	0.093	152°	101–2 dec	needles
		insoluble	insoluble	232–6° C. abt. 240°		rhomb. pris
38	v. soluble ∞	0.150%	1.1	-12°	197.37°	amorph. pow. sweet

^{*} V. sol. et., bz. and acet. ac. ∞ chlo.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Glycol aldehyde	CH,OH.CHO	60.03	
2	amide	CH ₂ OH.CONH ₂	75.08	
3	diacetate	$C_2H_3O_2.CH_2.CH_2.C_2H_3O_2$	146.08	
4	dimethyl ether	$CH_3OCH_2.CH_2OCH_3$	90.08	0.873220
5	Glycolic acid	OHCH ₂ .CO ₂ H	76.03	
6	anhydride	$C_4H_6O_5$	134.05	
	Glycolid	$C_4H_4O_4$		
	Glycol monoacetate	$CH_2OH.CH_2O.C_2H_3O$	104.06	
9	urea	$C_3H_4N_2O_2$	100.11	
	Glyoxal	CHO.CHO		1.14^{20}
	Glyoxylic acid	$C_3H_4N_2$	68.11	
	Glyoxime	OHN: CH.CH: NOH		
	Guaiacol (o.)	$OH.C_6H_4.OCH_3$		1.139515
	Guanidine	$NH: C(NH_2)_2$	59.16	
- 1	Guanine	$C_5H_5N_5O$	151.24	
. 3	Haematoxylin	$C_{16}H_{14}O_6 + 3H_2O$	356.16	
18	Helicin (l.)	$ C_{13}H_{16}O_7 + \frac{3}{4}H_2O$	284.13	
19	Hemimelitic acid	$C_6H_3(CO_2H)_31:2:3$	212.05	
20	Hemipinic acid	$(CH_3O)_2C_6H_2(CO_2H)_2$	226.08	
	Heptadecane	$C_{17}H_{36}$		0.77663
	Heptamethylene	$(CH_2)_7$		0.8094^{20}
	Heptane (n.)	$CH_3.(CH_2)_5.CH_3$		0.70192
24	"	$(CH_3)_2C(C_2H_5)_2$		0.7111°
25 26	<i>(</i> (<i>)</i> (<i></i>	$HC(C_2H_5)_3$ $C_9H_5.CH(CH_3).C_3H_7$	100.13	0.7806^{17}
	Heptoic acid (n.)	$CH_3(CH_2)_5CO_2H$		$0.9212^{\frac{15}{4}}$
28	" " (K.)	$\mathrm{CH_3(CH_2)_5CO_2H}$	130.12	
29	anhydride	$(C_6H_{13}CO)_2O$	242.21	
	Heptyl acetate (n.)	$C_2H_3O_2.C_7H_{15}$	158.15	
31	alcohol	$CH_3(CH_2)_5$. CH_2OH	116.13	
32	amine (K.)	CH ₃ (CH ₂) ₅ CH ₂ NH ₂	115.18	$0.770\frac{25}{25}$
	Heptylene (1)	$CH_3(CH_2)_4CH:CH_2$	98.12	0.702619
	Heptyl ether (n.)	$\left \left(\mathrm{C_7H_{15}}\right)_2\mathrm{O}\ldots\right $	214.24	
35	formate	$HCO_2.C_7H_{15}$	144.13	
	Hesperidine	22 20 12	10-1-1	
	Hexabrom ethane	a. a.		0.04423
	Hexachlor benzene		284.70	
39	ethane			1.9988 ²⁹ 0.7754 ¹⁹
	Hexadecane	10 04		0.77543 0.7983^{26}
71	ireaductyr-acetyrene	110;0.(011 ₂) ₁₅ .011 ₃	200.21	0.1909

ber.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1 2 3 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	v. soluble 14	v. sol. hot v. soluble soluble mathematical interval int	s. soluble s. soluble soluble s. soluble s. soluble s. soluble s. soluble s. soluble s. soluble insoluble v. s. sol. soluble insoluble mod. sol. soluble soluble soluble soluble	78-9° 128-30° 82°: 86-7° 216° 15° 216° 15° 40° 175° 194-6° 177° C. 22.5°36.5°	s. vol. in [steam 186-7° 83-4° dec. dec. dec. dist. in vac. 182° 50. 5°76° with steam 256° sub. 205.1° C → anhyd. sublimes 303°, 81°° 117° ⁷³ C. 98 4° 86-7° 95-8° 91° 223-3.5° 217.5-21.5 268-71° 191.5° 175.8°	platescrystalsrhomb. monel
33 34	v. s. sol.	∞ soluble	× × · · · · · · · · · · · · · · · · · ·		153–5° 98–9° 261.9°	$\text{wh.} \rightarrow \text{yel.}$
36 37 38 39	0.02 insoluble		insoluble s. soluble v. s. sol. v. soluble ∞	251° dec. 229,05° C. 19–20° 26°	dec. 210° 326° 185° C.	v. sm. need rhomb. pris monoel. pris rhomb.tab./al pearly leaflets

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Hexaethyl benzene	$C_6(C_2H_5)_6$	246.24	0.8305%
3	-benzoic acid			1.04801
4	-cumene			0.78720
5				0.79615
6	-mellitic acid			
7	-salicylic acid		144.10	
8	-toluene	CH ₃ .Č ₆ H ₁₁	98.12	0.764139
9	-xylene (m.)		112.13	0.7874%
10	Hexahydroxy benzene	$C_6(OH)_6$	174.10	
	Hexamethyl benzene	$C_6(CH_3)_6$		
12	Hexane (n.)	$CH_3(CH_2)_4CH_3$	86.12	0.66034
13	"	$(CH_3)_2CH.CH(CH_3)_2$		0.668^{17}
14		$(CH_3CH_2)_2CH.CH_3$	86.12	0.67653
	Hexenoic acid $\delta \varepsilon$	CH_2 : $CH(CH_2)_3$. CO_2H	114.08	
	Hexenoic " $\alpha\beta$	$CH_3(CH_2)_2.CH: CH.CO_2H$	114.08	
	Hexenyl alcohol	$C_6H_{11}OH$		0.89110
18		$(C_6H_{11})_2O$		
	Hexoic aldehyde	CH ₃ (CH ₂) ₄ CHO		0.833520
	Hexyl acetate (n.)	$C_2H_3O_2.C_6H_{13}$		0.89020
21	acetylene (n.)			0.7701°
22	alcohol	$CH_3(CH_2)_4.CH_2OH$		
	Hexylene (n.)			0.68254
24	glycol 2, 3			0.9669°
	Hexyl formate		130.12	
	Hippuric acid			1.37114
	Homo-pyro-catechin			
	Hydracrylic acid			
29	Hydrastin	C_{2} , $H_{21}NO_{6}$	383.21	
20	Hydrazo-benzene	CHNHNHCH	10/ 10	1 15018
31		$(CO_2H.C_6H_4NH)_2$		
32	" (m.)			
33	" (p.)	$(CO_2H.C_6H_4NH)_2$		
34	toluene (o.)	$(CH_3C_6H_4NH)_2$	212.10	
35	" (m.)			
36		$(CH_3C_6H_4NH)_2$	212 21	0.95715
	Hydrindene (1, 2)			
	Hydrobenzoïn			0.004010
39	Hydrocarbostyril	C.H.NO	147.11	
40	Hydrocinnamic acid	C.H.CH.CH.CO.H	150.08	1.071149
41		$C_6H_5(CH_2)_2CHO\dots$		
	•	0 0 2/2		

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
1 2	insoluble v. sol. bz.	soluble v. soluble	v. soluble	129° 63°	298° C. 290°	long moncl.pr.
-	0.201 ¹⁵	v. soluble	v. soluble	30.5–1°	234–5° 147–50°	monocl. pris.
5	v. soluble	v. soluble	s. soluble	dec.	171–3°	
7 8	v. soluble	v. soluble	v. soluble	111°	103° C.	crystals
9	s. soluble	s. soluble	s. soluble	none	119.50751	[and need.
11		0.2		164° -93.5°	264°	long needles. rhombic/al
13 14	insoluble	abt. 50 ³³ soluble	∞ soluble	-93.5	68.95° 58° 64°	
15	s. soluble			32.7–3.1°	202-4°	
17	s. soluble v. soluble insoluble	∞	∞	32.7-3.1	216–7° C. 137° 116–8°	needles/w.
19 20	Insoluble				129° C. 169.2°	OII
21	s. soluble	×	00		131–2° 157° C.	
23 24		soluble	soluble		68-70°	
25		s. soluble	s. soluble	190.25° C.	153.6° decom.	rhombic.pris.
27 28	v. soluble	v. soluble	v. soluble	51°	251-2°	
	0.00320	s. soluble	0.50720	132°	decomp.	glit. trimet prisms
30	insoluble	516 soluble	soluble	131° 205°	decomp.	rhomb.tablets leaf. or pris.
32	insoluble insoluble	s. soluble s. soluble	sol, alkali sol, KOH			imperf. cryst. sm. need./al
34		soluble soluble	soluble	165°	decomp.	leaflets
36 37		v. soluble	v. soluble	128°	decomp.	monocl. tab.
38	0.25 ¹⁸ v. v. s. sol.	soluble soluble	soluble	138° 163°	300°+	moncl.tab./al.
40	0.620	v. soluble	soluble	48.7°	279.8° 221–4°744 C.	fmonel. pris.

			,	1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Hydrocyanic acid	·C·NH	27 05	0 696918
	Hydronapthoquinone(1,2)			
3		$C_{10}H_6(OH)_2$		
	Hydroquinone (p.)			
5		$C_6H_4(OCH_3)_2$		1.052655
6		OHC ₆ H ₄ OC ₂ H ₅		
7	Hydrotropilidene			0.89298
8	Hydroxy-anthraquinone	C_6H_4 : (CO) ₂ : C_6H_3OH	224.06	
	(m.)			
9	-benzalcohol (o.)	OH.C ₆ H ₄ .CH ₂ OH	124.06	1.161325
10		$OH.C_6H_4.CH_2OH$		
11	" (p.)			
12	-benzaldehyde (o.)	OHC ₆ H ₄ .CHO	122.05	1.1589^{21}
13		OHC ₆ H ₄ .CHO		
14	" (p.)			
15	-benzamide (o.)	$OHC_6H_4.CONH_2$		
16	" (m.)			
17	" (p.)	$OHC_6H_4.CONH_2$		
18	-benzoic acid (o.)			
19	" (m.)			1.4734
20		OHC ₆ H ₄ .CO ₂ H		1.404^{22}
21		$CH_3(CH_2)_5CH(OH)CO_2H$	1	
22	-citric acid	1 /2 2 3\ 2 /3	1	
23		$OHC_6H_3(CO_2H)_2 + H_2O.$	200.07	
24		$OHC_6H_3(CO_2H)_2$	182.05	
25	(0)		182.05	
26			182.05	
27	(4)	$OHC_6H_3(CO_2H)_2$	182.05	
28	(4)	$OHC_6H_3(CO_2H)_2$	182.05	
29	-purpurin	$C_{14}H_4O_2(OH)_4$	272.00	
30 31	-pyridine $(\alpha)(2)$	OH.C ₅ H ₄ N	95.08	
32	(β) (δ)	OH.C. H.N. H.O.	99.08	
33	(1)(4)	$OH.C_5H_4N + H_2O$	115.10	
34	-quinoline (bz. 1) (8)	$C_9H_6N.OH$ $C_9H_6N.OH$	145.04	
35	(bz. 2) (1)	CHNOH	145.04	
36	(Dz. 3) (b)	$C_9H_6N.OH$	145.04	
37	$(Dz. 4) (3) \dots$	$C_9^{\circ}H_6^{\circ}N.OH.$ $C_9H_6N.OH.$	145.04	
38		$C_9H_6N.OH$ $C_6H_3(CO_2H)(CH_3)OH$		
39	" (1:2:4)	$^{\circ}_{6}$ $^{\circ}_{13}$ $^{\circ}_$		
00	(1.2.4)	+ 211 ₂ O	101.07	
. 1				

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color•
1	∞ sol. alkali	∞	∞	-10-2° abt. 60°	25.2°	leaflets
	mod. sol.hot		v. soluble	176°		monocl. need.
	5.85 ¹⁵	v. soluble	v. soluble	169°	285°	hex. pris./w
1	insol.	· · · · · · · · · · · · · · · ·	sol. bz.	55-6°	216.6°	large leaf./w.
	s. soluble	v. soluble	v. soluble	66°	246-7°	thin leaflets
7	v. s. sol.	soluble	sol. chlo.		120-1°	
8	v. v. s. sol.	mod. sol.	mod. sol.	302°	sub.	yel. leaf. or need./al.
9	6.722	v. sol.	v. sol., 1.95 bz. 18°	86°	sub. 100 up	rhomb. tab
10	v. sol. hot	v. soluble	v. soluble	67°	abt.300dec.	needles
11	soluble	soluble	soluble	124.5-5.5°		fine needles
12	v. s. sol.	∞	00	-20°	196.70°760	oil
1	mod. sol.hot		soluble	104°	240° C.	needles/w
	s. soluble	y. soluble	v. soluble	115-6°		needles/w
	soluble			139.9° C.	270° dec.	yellowish leaf.
1	s. soluble	v. soluble	v. soluble	170.5° C. 162°		thin leaf./w
	s. soluble 0.184 ²⁰	v. soluble 49, 63 ¹⁵	s. soluble 23 . 4 ¹⁷	158° C.	sub.	needles fine need./w.
	0.184^{18}	$0.01^{25} \mathrm{bz}.$	9.73^{17}	200°	dist.	rhomb./al
	0.492^{21}	v. soluble	9.4317	213-4°		monoclinic/w
	v. s. sol.	v. soluble	v. soluble	69.5°		large plates
22	v. soluble	v. soluble	v. soluble			syrup
	$0.14; 2.5^{100}$	v. soluble	v. soluble	239°		long need./w.
24	0.03^{24}	v. v. sol.	v. soluble	305-6°		long needles
	$0.06;18^{100}$	v. soluble	v. soluble	288° C.		needles
	2017	v. soluble	v. soluble	→anhyd.		short pris./w.
	310	v. soluble	mod. sol.	181° dec.		rosettes/w
28	s. soluble	v. soluble	mod. sol.	no m.p.	sub.	powder
	v. s. sol.		sol. acetone	>275°	sub.	br. red./acet.
Ł.	v. soluble	v. soluble	mod. sol.	106-7° 129°	280–1° dist.	fine need./bz.
	v. soluble 100 ¹⁵	v. soluble v. soluble	v. s. sol.	anh.148.5C.	uist.	moncl. pris
	v. s. sol.	v. soluble	s. soluble	75-6°	266.6°C. ⁷⁵²	prisms/dil. al.
	s. soluble	v. soluble	s. soluble	235–8°	sub.	prisms/al.
	v. s. sol.	s. soluble	v. s. soluble		>360°	small pris./al.
	sol. alkali	s. soluble	s. soluble	224°		small leaflets.
	v. s. sol.	v. soluble	v. soluble	199-200°	sub.	large pris./al.
	mod. sol.	v. soluble	v. soluble	145-6°		glit. need./w.
39	s. soluble	v. soluble	v. soluble	177-8°		small need./w

				1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	IIi			
4	Hydroxy-toluic acid	d II (do II) (dil) oli	150 00	
1	(1:2:0)	$C_6H_3(CO_2H)(CH_3)OH$		
2	(1:2:0)	$C_6H_3(CO_2H)(CH_3)OH$		
3	(1:3:2)	$C_6H_3(CO_2H)(CH_3)OH \dots$		
4	(1:0:47		161.07	
5		$C_6H_3(CO_2H)(CH_3)OH$		
6	(1:4:2)		152.06	
7	(1:4:3)		152.06	
8	(1.5.0)		152.06	
	Hyenic acid		382.40	
	Hypogaeic acid		254.24	
11	Indican		349.23	
12	Indigo	$(C_6H_4 < { m CO} { m NH} > C:)_2$	262.16	1.35
13	dicarbonic acid		350.16	
14	disulphonic acid	$(C_1, H_0, N_0, O_0, (SO_0, H)_0, \dots)$	422.28	
15	purpurin	$C_{10}H_{10}N_{0}O_{0}\dots$	262.16	
16	sulphonic acid	C ₁₆ H ₀ N ₀ O ₂ .SO ₃ H	342.22	
17	white	$C_{16}^{16}H_{12}^{9}N_{2}O_{2}$	264.18	
18	Indirubin	$C_{16}^{10}H_{10}^{12}N_2^2O_2^2$	262.16	
	Indol	$C_8^{10}H_7^{10}N$	117.10	
20	earbonic acid (pr. 2)	C.H.NO	161.10	
21	Indoxyl	C_8H_6NOH	133.10	
	Inosite (i.)	$C_6^8 H_{12} O_6 + 2 H_2 O_6 \dots$	216.12	
	Inulin			1.539 dry
24	Iodo-acetic acid	CH I CO H		
25	-acetylene	CH:CI		
26	-aniline (o.)			
27				
28	" (p.)	$IC_6H_4NH_2$		
29				
30	" (m.)			
31				
32				$1.8401\frac{15}{16}$
	-benzene			
33		0 0	1	$1.8285\frac{25}{25}$
34			154.00	
35	-propionic acid (a)			
36		CH ₂ I.CH ₂ .CO ₂ H	200.01	4 00 = 20
37	-toluene (o.)	$IC_6H_4.CH_3$	218.03	
38	" (m.)		218.03	1.69820
39	(p.)	IC ₆ H ₄ .CH ₃	218.03	

	Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
	Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	_						
		s. soluble	v. soluble	v. soluble	183.4°		needles/w
	_	0.1425	v. v. sol.	v. v. sol.	168°		needles/w
		v. sol. hot	sol. chlo v. soluble	v. soluble	163–4° 172–3°		long need./w.
		mod. sol.	v. soluble	v. soluble	210°	sub.	needles/w tablets/w
	_	v. s. sol.	soluble		177° C.		moncl. pris/al
	_	v. s. sol.	v. soluble	soluble	206–7° C.	sub.	long needles.
		v. s. sol.	v. soluble	v. soluble	151°		long need./w.
	9	insoluble	s. soluble	soluble	77-8°		crystals
		insoluble		soluble	33-4°	230°10 C.	needles
	11	v. soluble	v. soluble	soluble	176–7° anhy	dec.	brown syrup.
	12	insoluble	insoluble	insoluble	390–2°	sub.156-8°0	rhomb./anil
		$sol.H_2SO_4$	insoluble	insoluble			deep blue pow
		v. soluble	v. soluble				blue amorph.
		insoluble	soluble	soluble		sub.	choc. need
		soluble	soluble	,		dec. 200°	purple
	-	insoluble sol. gl. acet.	soluble mod. sol.	soluble		sub.	white mass rhomb./anil
		mod.sol. hot		v. soluble	52°	253–4°	leaflets
ı		mod.sol. hot	v. soluble	v. soluble	203°	200-1	fine need./w.
ı		sol. alkali				not vol.	oil
į	22	1012	v. s. sol.	insoluble	225° C.	319° in vac.	monel./w
ı	23	0.001^{15}	v. s. sol.		178° dec.	dec. 160°	v. fine cryst
ı		v. soluble	v. soluble	v. soluble	84°		rhomb. tab
ı		mod. sol.				29-32°	
ı		v. s. sol.	v. soluble		56.5° 25–7°		fine needles
ı	الناسا	insoluble insoluble	soluble soluble		63°		leaflets need. or pris
		soluble	soluble		0 01		needles
-		s. soluble			186.5° C.		ileedies
Ì		v. s. sol.			217.6° C.		
	32	insoluble	soluble		−28.5° C.	188.4°758	
- 1		insoluble	soluble	∞	-28-9°	186.5-8.5°	usually red
- 3	34					56°	
- 4	1	s. soluble		v. soluble	44.5-5.5° 82°		warts or pris.
		v. s. sol. insoluble	v. soluble	v. soluble	82	211°	leaflets
-	38	msoluble				204°	
-1	-	insoluble			35°	211.5°	leaflets
1							

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Iodoform	CHI	303 02	4 0817
	Iodosobenzene			
	Iodoxybenzene			
	Isatane	$C_{32}^{61151}C_{2}^{2}$		
5	Isatine	$C_6H_4 < \frac{CO}{N} > COH$	147.08	
6	Isatine chloride	C.H.ONCl	165.52	
	Isatinic acid		2 1	
	Isatoic acid, anhydride		163.08	
9	Isatoxime	$\mathring{C}_{\circ}H_{\mathfrak{s}}\mathring{N}_{\circ}\mathring{O}_{\circ}$	162.13	
10	Isatronic acid	$C_{17}^{\circ}H_{14}O_{3}^{\circ}$	250.12	
11	Isatyd	$C_{16}^{"}H_{19}^{"}N_{9}^{"}O_{4}$	296.18	
12	Isoamyl-acetate	$C_{\mathfrak{d}}^{\mathfrak{d}}H_{\mathfrak{d}}^{\mathfrak{d}}O_{\mathfrak{d}}C_{\mathfrak{s}}H_{\mathfrak{d}}$		0.876215
13	" " (K.)		130.12	0.86725
14	acetic acid (K.)	(ČH ₃) ₂ CH.(ČH ₂) ₃ CO ₂ H	130.11	0.912525
15		$(CH_3)_2CH.(CH_2)_2OH$		0.81043
16	" (K.)	$(CH_3)_2CH.(CH_2)_2OH$	88.10	0.81081238
17	" (sec.)	(CH ₂),CH.CH(OH).CH ₃ .	88.10	0.81919
18	benzene	$C_6H_5.C_5H_{11}$	148.13	0.8874
19	benzoate	$C_6H_5CO_2.C_5H_{11}$	192.13	0.992519
20	bromide	$C_5H_{11}Br$	151.05	1.205822
21	butyrate	$C_3H_7CO_2.C_5H_{11}$		0.88234
22		$NH_2.CO_2.C_5H_{11}$	131.15	
23			164.55	$1.041\frac{25}{25}$
24	chlorcarbonate (K.)	$Cl.CO_2.C_5H_{11}$	150.54	1.02425
25	chloride	$(CH_3)_2CH(CH_2)_2CI$	106.54	0.8625^{25}
26	cyanide	$(CH_3)_2CH(CH_2)_2CN$	97.13	0.8075
27	formate	$HCO_2.C_5H_{11}$	116.10	0.8944%
28		$(CH_3)_2CH(CH_2)_2I$	198.06	1.473420
29		$(CH_3)_2CH(CH_2)_2NC$	97.13	<1
30	isovaleriate	$C_5H_9O_2.C_5H_{11}$	172.16	0.87000
31	" (K.)		172.16	$0.855\frac{25}{25}$
32	mustard oil	$C_5H_{11}N.CS$		0.941917
33		$C_5H_{11}NO_3$		
34		$C_5H_{11}NO_2$		0.88015
35	phenol (p.)	$C_5H_{11}.C_6H_4OH$	164.13	
36	phenylketone	C_5H_{11} .CO. C_6H_5	176.13	
37	propionate	$C_{2}H_{5}CO_{2}.C_{5}H_{1}$	144.13	0.88774
38	salicylate (K.)	$OH.C_6H_4.CO_2.C_5H_{11}$	208.13	$1.045\frac{25}{25}$
39	sulphide	$(C_{\epsilon}H_{11})_{\circ}S$	174.24	
40	Isoanthracene	$C_{14}H_{10}$	178.08	
-				

-						
Number.	Sol	lubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
-	-					
	insoluble	1.318	soluble	119°	sub.	yel.hexag.tab.
	mod. sol.	mod. sol.	insoluble v. sol. chlo.		explodes	amorphous
-	insoluble	soluble	v. soi. cnio.		expl. 238°	long need./w.
1						red. moncl.
	s. soluble	soluble	s. soluble	200-1°	sub.	prisms
6	insoluble	soluble	v. soluble	180° dec.		brown need.
7	s. soluble				dec.	crystals
	0.7^{100}	abt. 3 ⁷⁸	s. soluble	240° dec.		monoclinic .
	v. s. sol.	soluble	s. KOH	202° dec.	1	long yel.need
	v. v. s. sol. v. v. s. sol.	v. soluble	v. soluble	156–7° 237–7.5°	dec. dec.	leaflets/dil.al.
	s. soluble	v. s.sol.	00	237-7.5	139°	micro. cryst
	v. v. s. sol.	00	00		138–42°	colorless
	v. v. s. sol.	00	×		215–21°	colorless
	2.672^{22}	× ×	000	-117.2°	131° C.	COTOTTESS
	2.5^{25}	× ×	00		130-2°	colorless
17					112.5°	
18					201-20760	
19		soluble			261-2°	
20	insoluble	soluble			118.6°	
21	s. soluble	v. soluble	v. soluble		178.6°	
	s. soluble	soluble	soluble	61-2°	221–3°	leaflets
	insoluble	∞	∞		189–92°	wh. →yel
		00	∞		151-6°	wh. →yel
	insoluble	soluble			100.9° C.	
26		soluble			155.48°	
27		soluble			123.3°	
28	:1-1-1-	soluble			148.2° C.	
30	insoluble	soluble soluble	soluble		137° 194° ⁷⁶⁰	
31	v. v. s. sol.	soluble	soluble.		194-100 191–3°	colorless
32	v. v. s. soi.	soluble	8		183–4°	coloriess
33		soluble			147–8°	
1	insoluble	∞ ∞	00		99°	
	v. s. sol. hot			92-3°	255°	long need./w.
36					241.5-2.5°	
37		soluble			160.2°	
38	insoluble (v. soluble	∞		268-73°	$wh. \rightarrow yel \dots$
39					216°	
40		s. soluble	s. soluble	$133.5 4.5^{\circ}$		pearly leaflets

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Isoanthraquinone	$C_{14}H_8O_2$	208.06	
2	Isobutane	$(CH_3)_2CHCH_3$		
	Isobutyl-acetate	$C_2H_3O_2.C_4H_9$		0.8921
4		(CH ₃) ₂ CH.CH ₂ OH		0.806415
5 6	aldehyde			0.799535
7	amine,	$(CH_3)_2CH.CHO$ $(CH_3)_2CHCH_2NH_2$		0.79384 0.724^{20}
8	benzene	$C_6H_5.C_4H_9$		0.859630
9	benzoate			1.003515
10		$(CH_3)_2CH.CH_2Br$		1.26125
11		$C_3H_7CO_2.C_4H_9$	144.13	0.8876%
12			117.13	
13	` '	2 4 ()		1.04025
14	chloride	(CH ₃) ₂ CH ₂ CH ₂ Cl		0.883615
15 16	cyanide	$(CH_3)_2CHCH_2CN$		0.9922^{12} 0.7616^{15}
$\frac{10}{17}$	etherformate	$(C_4H_9)_2O \dots \dots $ $HCO_2.C_4H_9.\dots$		0.7010
18	iodide			1.613815
19		$(CH_3)_2CH.CH_2CO_2.C_4H_9$.	ł.	0.84825
20	ketone			0.83320
21	mustard oil		115.17	0.9433
22		$(CH_3)_2CH.CH_2.NO_3$		1.01425
23		$C_4H_9.CO.C_6H_5$		0.99317
24		<[CH(OH).CO ₂ .C ₄ H ₉] ₂	1	0.040=20
$\frac{25}{26}$	Isobutyric acid			0.9487¥ 0.946₹
27	(12.)	$(CH_3)_2CH.CO_2H$ $(CH_2)_3CH.CONH_2$		0.94025
28		$[(CH_3)_2CHCO]_2O$		0.9574^{18}
	Isocaproic acid	(CH ₂),CH ₂ (CH ₃),CO ₃ H ₁ .		0.925^{20}
30	Isocinchomeronic ac	$2:5,C_5H_3N(CO_2H)_2+H_2O$	185.10	
31	Isocinnamic acid	$C_6H_5CH: CH.CO_2H$		
	Isocitric acid	$C_0H_8O_7 + H_2O \dots$		3
	Isocymene (m.)		1	0.86220
34	Isocrotonic acid	CH ₃ .CH: HC.CO ₂ H		1.03124
35	Isodulcite	CH ₃ (CHOH) ₄ CHO + H ₂ O	1	$21.4708^{\frac{29}{4}}$ $20.8961^{\frac{9}{4}}$
37	Isodurene	$\Gamma: Z: 3: 5 \cup_{6} \Pi_{2}(\cup \Pi_{3})_{4} \dots$	1	1.0907 15
38	Isoheptane	(CH_)_CH(CH_)_CH		30.7067
39	Isoheptoic acid	(CH ₂) ₂ CH(CH ₂) ₃ CO ₂ H	130.12	
	Isohexane			0.67658
	Isohexylaldehyde		100.10	

Der.	Solubility in 100 c.c.		.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1 2				211–2°	-11.5°	pale yel. need.
	s. soluble	00	00		116.3°	
1 -	soluble	00	000	-108°	108.00762	vitreous
5	9.55^{18}	00	∞		105.5-6.5°	colorless
6	9.0	∞			63-4°	
7	000				68-9°	
8					170-0.5° C.	
	insoluble	00	00		241.5° C.	
10	insoluble	00	∞		89.5–91° 156.9°	wh.→yel
	s. soluble	soluble	soluble	63.4°	205–7°	leaflets
	v. s. sol. dec	∞ ∞	%		127-30°	wh. →yel
14					68.5°	
15	s. soluble				1540750	
	soluble	∞ ,	∞		122-2.5°	
1	1.01			thick -75°	98.5°	
18				-90.7°	120.4° C.	colorless
	insoluble insoluble	00	∞		167–70° 181–2°	coloriess
21					162°	
	insoluble	00	~		122-3°	colorless
23					225-6°	
	s. soluble	v. soluble	v. soluble	68-9°		wh. scales
	2020	∞	∞	-79°	155.5°	
26		∞	∞	-79°	153-4.5°	
	v. soluble insoluble	v. soluble	s. soluble	128-9°	182.5°	leaflets
	s insoluble	soluble	soluble	>-18°	207.7° C.	
1	v. v. s. sol.	v. s. sol.	v. s. sol.	236°	sub.	v. sm. cryst.
-	s. soluble	v. soluble	v. soluble	59°	265° dec.	monel. pris.
32	v. s. sol.	v. s. sol.	v. s. sol.	→anh.100°		prisms [/lig
33				$< -25^{\circ}$	175-6°	
-	40			15.5°	171.9°dec.	long needles
	57.1119 .	soluble	54 meth.al.		105 50	large mon./w
37	3	soluble	soluble	low	195-7° 267.5° C.	
38	1	soluble	soluble	abt 10	90.3°	
39		Solubio	BOTABLO		209°	
40		soluble	soluble		62°	
41	s. soluble	soluble			1210743	

-		1	1	1
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Isohexylamine (K.)	(CH_)_CH(CH_)_CH_NH_	101 16	$0.759\frac{25}{2}$
	Isohydrobenzoin		214.12	
	Isohydronaphthoquinone	$C_{10}H_8O_2$		
	Isomalic acid	CH_3 . $C(OH)(CO_2H)_2$	134 05	
	Isomannid	$C_6H_{10}O_4$		
	Isonicotinic acid	$C_5H_4N.CO_2H$	123.08	
	Isopentane	$(CH_3)_{\circ}CHCH_{\circ}CH_3$		0.63870
	Isophthalic acid (m.)	$C_6H_4(CO_2H)_2$	166.05	
9		$C_6H_4(CHO)_2$		
10		0 1.	128.11	
		$C_6H_4(CN)_2$		0.6823^{20}
	Isoprene	CH_2 : $CH.C(CH_3)$: CH_2		
	Isopropyl-acetate	$CH_3CO_2.CH(CH_3)_2$		0.9166°
13	acetylene	(CH ₃) ₂ CH.C: CH		0.6854°
14	alcohol	$CH_3.CH(OH).CH_3$		0.790915
15	" (K.)	CH ₃ .CH(OH).CH ₃	}	0.79635
16	amine			0.690^{18}
17	benzoate	$C_6H_5CO_2CH(CH_3)_2$		1.017215
18	benzoic acid (o.)		164.10	
19	bromide (K.)	$(CH_3)_2CH.Br$		1.31025
20	chloride (K.)	$(CH_3)_2CH.Cl.$	1	0.85725
21	cyanide			
22		$[(CH_3)_2CH]_2O$		0.7247^{21}
23		$(CH_3)_2CH.CH: CH_2$	1	
24		$C_3H_7.CO.C_6H_{13}$		0.84117
25		$(CH_3)_2CH.I.$		1.70535
26		$(CH_3)_2CH.NC$		0.75960
27		$[(CH_3)_2CH]_2CO$	1	0.8062%
28	phenylketone	$(CH_3)_2CH.CO.C_6H_5$	148.10	
2 9	pyridine (a)	$(CH_3)_2CH_1C_5H_4N_1$		0.9342°
30	(γ)	3/2 3 9		0.94390
31	sulphide	$[(CH_3)_2CH]_2S$	118.18	
	Isoquinoline			1.0986⅔
33	Isosaccharic acid	< (CH(OH).CH(CO ₂ H)) ₂ $>$ O	192.07	
34	Isosuccinic acid		118.05	1.455
	Isovaleric acid	3 2 /2	102.08	0 93120
36	" (K.)	$(CH_3)_2CHCH_2CO_2H$		
37	aldehyde			0.8040^{15}
38	amide			0.0040
	Itaconic acid			1.573-1.632
	Ketene	$H_2C: CO \dots \dots$		1.575-1.052
10		1120.00	12.02	
-			-	

er.	Sol	ubility in 100 (C.C.	Melting	Boiling	C
Number.		1	1	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor- rected.	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	s. soluble				123-5°	wh. →yel
	0.2^{15}	v. soluble	v. soluble	121°		mon. pris./w.
		soluble	soluble	unstable		small needles
-	v. soluble	v. soluble	v. soluble	abt. 140° d.	dec. 160°	monoclinic
	v. soluble	mod. sol.	insoluble	87°	274°	monoclinic
1	s. soluble	v. v. s. sol.	v. s. sol.	315°	sub. dec.	needles/w
7	0.013^{25}	1 . 1		<-24°	30.4°	1 1/-
1	s. soluble	mod. sol.		<300° 89–90°	sub.	long need./w. long needles.
	s. sol. hot	sol, hot		156°		fine needles.
11	5. BOI. 1100	SOI, HOU		100	35.8°	ime needles
	s. soluble	00	00		90-3°	
13					28-9°751	
14	00	00	00	-85.8°	82.85° C.	cryst
15	00	∞	∞		81-3°	
16	00				33–4°	
17					218.5° C.	
	sol. hot			51°		prisms/w
	insoluble	∞	∞		59-60°	colorless
20	v. s. sol.	00	∞		35–36.5° 107–8°	colorless
22					69° C.	
23					21 . 1–1 . 3°	
24					200–10°	
4	insoluble	∞	00	(-89-91°)	88.5-9.5°	wh, →brown.
26					87°	
27					123.7°	
28					217°	
1	s. soluble				158-9°	
30					177-8°	
1	insoluble	soluble	soluble	24.6°	120.5°763 240°	
	hydroscopic v. soluble	v. soluble	s. soluble	185°	dec.	rhombic
00	v. soluble	v. soluble	s, soluble	189	aec.	rnombie
34	44.30	v. soluble	v. soluble	135° dec.	sub.	prisms
	$91^{50}, 4.2^{20}$	v. soldble ∞	×. 501001C	-51°	176.3° C.	Pradition
	s. soluble	∞	00	-51°	173–6°	
37	s. soluble	soluble	soluble	-51°	92.5°	
	soluble	soluble	soluble	126-8°	230-2°	
	8.320	2515	s. soluble	161° dec.	not in steam	rhombic
40	reacts	∞	soluble	−151° C.	−56° C.	

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Ketobutyric acid	CH.CH. CO CO.H.	102.05	1.20017
	Ketoheptamethylene			0.96850
	Ketopentamethylene	$CO(CH_2)_4$		$0.9416^{\frac{21}{4}}$
	Lactamide	CH ₃ .CHOH.CONH ₂	89.10	
	Lactic acid (i.)			1.24854
6				
	Lactid			0.861819
	Lactyl urea	0 0 4		
	Laevulin	C.H. O. at 100°		
	Laevulinic acid			1.1367^{25}
11		CH_3 .CO. $(CH_2)_2$ CHO		1.015616
12	Lauric acid	C., Hoo, CO.H.		0.8642
13			172.20	
	Lead tetraethyl		322.96	
15		Pb(CH ₃) ₄	267.00	2.0340
	Lecithin (protagon)		777.71	
	Lepidine			1.086220
	Leucine		131.15	1.29318
19	Leucinic acid	C.H.CH.CH(OH).CO.H		
	Leukaniline		303.29	
		CH_3		
21	" (0.)	$CH(C_6^{\circ}H_4NH_2)_3$	289.28	
22		$CH(C_6H_4NH_2)_3$		
23	Leukaurine		292.13	
24	Linoleïc acid			0.920614
25	Lophin	$C_{21}^{10}H_{16}^{10}N_{2}^{2}\dots$	296.21	
	Lutidene (a)		107.11	0.94670
27	" (2, 4)		107.11	0.94934
28	(2, 6)	$(CH_3)_{\circ}C_5H_3N$	107.11	0.94200
29	" (3, 4)	$(CH_3)_2C_5H_3N$	107.11	
30	Lutidinic acid	$C_5H_3N(CO_2H)_2 + H_2O$	185.10	
31	Maleïc acid	CO ₂ H.CH: CH.CO ₂ H	116.03	1.590
32		$C_4H_2O_3$	98.02	0.93394
33	Malic acid (i.)	CO ₂ H.CH ₂ .CHOH.CO ₂ H.	134.04	1.60139
34	" " (1.)	CO ₂ H.CH ₂ .CHOH.CO ₂ H.	134.04	1.595
35	Malonic acid		104.03	
36		$CO_2H.CH_2.CO_2H$		
37	Maltose	$C_{12}H_{22}O_{11} + H_2O$	360.19	1.54017
	Mandelic acid (i)		152.06	1.3614
39	Mannid	$C_6H_{10}O_4$	146.08	
40	Mannite (d.)	CH ₂ OH(CHOH) ₄ CH ₂ OH	182.12	1.52113

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number.	Sol	ubility in 100 (c.c.	Melting Point, °C.	Boiling Point, °C.	Crystalline
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Num	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Point, °C. C. = Cor- rected.	Form and Color.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 33 44 55 66 77 88 99 100 111 121 131 144 155 166 177 188	s. soluble v. soluble v. s. sol. v. s. sol. v. soluble deliq. ∞ ∞ insoluble insoluble insoluble $2 \cdot 2^{18}$	v. soluble ∞ v. soluble v. s. sol. v. soluble $10^{22} 84\%$ v. soluble ∞ soluble ∞ soluble ∞ 0.06^{17}	v. soluble v. v. s. sol. insoluble v. soluble soluble	74° 18° (d) 25° dec. 250–60 128° anhy. 145° 174° 32.5–3° <-21° 43.6° 44.5°	178.5–9.5°C 130–0.5°C 	crystals syrup amorphous . moncl.tab./al rhomb. prism amorphous .leaflets needles/al leaflets waxy
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	s. sol. hot s. soluble insoluble insoluble 25; less hot 20; less hot cold: less flot mod. sol. 5010 v. soluble deliq. 73.520 139.3715	v. soluble soluble v. soluble 0.88 ²¹ soluble v. soluble soluble soluble soluble soluble	s. soluble sol. acet. ∞ 0.32^{20} insoluble soluble v. soluble s. soluble 8 0^{15}	100° 165° 148°	156° 157° 142–3° 163.5–4.5° dec. 135° 202° C. decomp. decomp.	pris. or need sm. cryst./w. brown cryst. leaflets [/al. white pris. yellow oil. needles. tab. or leaf. moncl. prisms trimetric. needles. triclinic triclin. leaf. fine needles.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1		$[\mathrm{CH_2NO_3(CHNO_3)_2}]_2$	452.30	
2	Mannoheptite	$ C_7H_{16}O_7$	212.13	
	Mannoheptose (d.)		210.12	
	Mannose (d.)	$C_6H_{12}O$		
	Margaric acid		270.27	
	Meconic acid	$OHC_5HO_2(CO_2H)_2 + 3H_2O$		
	Meconine	10 10 4	194.08	
	Melam			
	Melamine	2/0	1	
10	Melene	$C_{30}H_{60}$	420.48	
11	Melissic acid	$C_{29}H_{59}CO_2H$		
12	Mellitic	$C_6(CO_2H)_6$		
13	Menthol	$C_{10}H_{19}OH$	156.16	
	Menthon (l.)	$C_{10}H_{18}O$		0.8972^{20}
15	Mercuric cyanide	$Hg(CN)_2$	252.08	4.002622
10	(*1.	(CHO) H.	200 00	
16	1	. 2 0 /2 0	322.20	0.444
17		$Hg(C_2H_5)_2$	258.08	
18				44.42 anhy.
19		$Hg(CH_3)_2$	230.05	
20		$Hg(C_{10}H_7)_2$	454.12 354.08	
21	phenyl	$Hg(C_6H_5)_2$ $CH_3(CO_9H)C: CHCO_9H$		2.010
	Mesitol 1: 3: 5: 2	$(CH_3)_3C_6H_2OH$		
	Mesitylene 1: 3: 5	$C_6H_3(CH_3)_3$		0.869410
	Mesitylinic acid 1:3:5	$(CH_3)_2C_6H_3CO_2H$	150.08	
	Mesityl oxide	(CH ₃) ₂ C: CHCOCH ₃	1	0.8568^{18}
27		$(HO)_{9}C_{9}H_{9}(CO_{9}H)_{9} + H_{9}O$	168.06	1
_	Mesoxalic acid	$(OH)_{\circ}C(CO_{\circ}H)_{\circ}$		1.000
	Metaldehyde	$(C_2H_4O)_4$	1	
	Metastyrene	$(C_8H_8)_x$		1.05413
	Methane	CH ₄		0.5542º liq
	Methoxy-benzamide (o.)	$CH_3^{\dagger}O.C_6H_4CO.NH_9$		
33	" (p.)	$CH_3O.C_6H_4CO.NH_2$	- 1	
34	benzoic acid (o.)	$CH_3O.C_6H_4CO_2H$	152.06	
35				
36	Methyl-acetanilid			
37		$CH_3CO_2.CH_3$		0.941014
38	aceto-acetate (K.)		116.06	1.07325
39	aceto-acetic ether	CH ₃ COCH(CH ₃)CO ₂ C ₂ H ₅	144.10	1.0098
40	acrylate	$C_3H_3O_2.CH_3$	86.05	0.9730

^{*} Sol. CS₂, s. sol. bz.

[†] V. sol. CS2, chlo., and bz.

ber.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	Form and Color.
	insoluble	$ 2.9^{13} $	49	112-3°	exp. 120°	needles
	6.3^{14}	v. s. sol.		188° C.		small needles
	v. soluble	s. soluble		134−5° C.		v. fine need.
3	24817	0.417.5 abs	insoluble	132–3° C.		rhombic/al
	insoluble	s. soluble	v. soluble	59.9°	227°100	crystals
	s. sol.; 25 ¹⁰⁰	s. soluble	s. soluble			rhomb. tab
	$0.14;4.5^{100}$			102-2.5°	sub.	glit. needles
2	insoluble	sol. KOH				orange powd.
	s. soluble	s. soluble	insoluble			monoclinic
		$0.13; 3.6^{78}$	abs.]	62°	370-80°	crystals
1	insoluble	v. s. sol.	v. s. sol.	91°		silky scales
	v. v. sol.	soluble	sol. H ₂ SO ₄	286-8°	dec.	fine silky nee.
	v. s. sol.	soluble	soluble	42.5°	211-3°	trimorphous.
	insoluble	∞	∞ CS ₂ & bz.		206.3° C.	
15	12.5^{15}	10.117	44.2 ¹⁹ wood al.	dec. 320– 400°		quad. prisms.
16		v. s. sol; 8 ⁷⁸		76-7°	dec.	leaflets/al
17	insoluble	s. soluble	soluble		159°	
	0.071^{12}	s. sol. hot		exp. 180°		needles/w
1	insoluble				96°	
20	insoluble	s, sol, hot	s. soluble *	187-8°	dist. dec.	leaf./bz
21	insoluble	mod.sol.hot	+	125-6°	>306° dec	rhomb. pris.
22	2.7^{18}	39	i soluble	202°	sub.	need./w.or al.
23	insoluble	v. soluble	v. soluble	68-9°	219.5° C.	crystals
	insoluble	soluble	soluble	-57.5°	164.5°	
25	v. s. sol.	v. soluble		166°	sub.	monel./al
26	soluble	∞			128.39°	
27	12015			140-3°		rectang. tab
28	v. soluble	mod. sol.	s. soluble	119-20°		needles
29	insoluble	1.870	0.5^{35}		sub. 150°	tetragonal
30	insoluble	insoluble (v. v. s. sol.	dec.		vitreous
31	5.45 cc.º	52.2 cc.	soluble	-184°	$-160^{\circ 760}$	
32	soluble			129.0° C.		leaflets/w
	s. soluble			162-3°		
34	0.5^{30}			98.5°	200°+	moncl.tab./w.
35	s. soluble	v. soluble		106-7°	sub.	long need./w.
		soluble [102-4°	253°712 C.	prisms./al
37	33 ²² [hot	∞	∞	-98.7°	57.5°	
	v. s. sol.	~	∞		$169-73^{\circ} \operatorname{dec}$	wh.→yel.
39					186.8°	
40					80.3° C.	

[‡] Very soluble chloroform, carbon disulphide, and ligroene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Methyl-acrylic acid	CH_2 : $C.(CH_3)CO_2H$	86.05	1.01534
	Methylal	$HCH(OCH_3)_2$		0.86214
3	" (K.)	$HCH(OCH_3)_2$		$0.855\frac{25}{25}$
4	Methyl alcohol	CH ₃ OH		0.79133
5 6		$CH_3OH[(OH)_2]$		0.78925
7	alizarine	CH_2 : C: CHCH ₃		
8	allyl carbinol	CH · CH CH CH(OH)	86.08	0.834%
9	" ether	$CH_3OC_3H_5[CH_3]$		0.3340 0.77^{11}
10	amine	CH_3NH_2		0.699-11
11	" (K.)	CH ₃ NH ₂		$0.699 \frac{-10.8}{15}$
12		$CH_3(CH_2)_4C:C.CH_3$	110.12	
13		$CH_3.CO.C_5H_{11}$		0.83460
14	aniline	CH ₃ NHC ₆ H ₅		.0991215
15	" (K.)	CH ₂ NHC ₆ H ₅	107.11	0.985528
16		C_6H_4 : $(CH_2)_2$: C_6H_3 . CH_3		
17		C_6H_4 : $(CH_2)_2$: C_6H_3 . CH_3		
18		CH_3 . C_6H_3 (CO) ₂ C_6H_4		
19 20		CH_3 .AsO $(OH)_2$		
21	arsenic dichioride	CH ₃ AsCl ₂ CH ₃ AsO		
22	arsina	CH ₂ AsH ₂		
23		$C_6H_5CO_2.CH_3$		1.0937\$
24	benzovl-acetate (K.)	$C_6H_5CO.CH_2.CO_2.CH_3$		$1.156\frac{25}{28}$
25		CH ₃ .CO.CH ₂ .C ₆ H ₅	134.08	1.010^3
26		$(CH_3)_3BO_3$	104.07	0.9400
27	bromide	CH ₃ Br		1.7320
28	butyl carbinol	$CH_3.CH(OH)C_4H_9$		0.83270
29 30		CH_3 .O. C_4H_9		0.76350
31	Ketone	CH_3 . CO . C_4H_9 $C_3H_7CO_2$. CH_3		0.830° $0.9058^{\frac{13}{4}}$
32	butyrate	$C_8H_{16}O$		0.90384 0.827^{16}
33	caprate	$C_9H_{19}CO_2.CH_3$		
34	caproate	$C_5H_{11}CO_2.CH_3$		0.90390
35	caprylate	C ₇ H ₁₈ CO ₂ .CH ₃		0.89420
36	carbamate (K.)	NH ₂ .CO ₂ .CH ₃		
37	chloracetate (K.)	ClCH ₂ .CO ₂ .CH ₃		1.23125
38	chlorearbonate (K.)	Cl.CO ₂ .CH ₃	94.47	$1.218^{\frac{25}{25}}$
39	chloride	CH ₃ Cl		0.919718
40	cinnamate	C ₆ H ₅ CH: CH.CO ₂ .CH ₃		1.0415%
41	u-crotonate	$C_3H_5CO_2CH_3$	100.06	0.98064

Der.	Sol	ubility in 100 (.c.	Melting	Boiling	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Cor- rected.	Boiling Point, °C. C. = Corrected.	Form and Color.
1 2	mod. sol.			16°	162-3°;79°6 45.5°	long prisms
3	28.5	∞	∞		41-3°	
4	∞	∞	∞	-97.8°	66.78°	
5	∞	∞	∞	-95°	65.7-66.3°	
1	sol. acetone	soluble	soluble	250-2°	sub. 200°	orange need.
7					18-19°	
	12.5				115-6°750	
9	1150 cc. ^{12,5}				46°	
1 1		sol.	1 11		-6-6.5°	
1 1	v. soluble	00	soluble		-6-5.5°	
12					133-4°	
13			soluble	-80°	151-2° 198.8°	
1	s. soluble	soluble	soluble on The	-80	198.8° 193–4°	vellow
1 1		sol. CS ₂	00	199-200°	195-4	leaflets/al
1	sol. bz.	s. soluble	s. soluble	207°		wh. scales
1	v. v. sol. bz.	v. s. sol.	soluble	177°	sub.	wh't needles.
	soluble	soluble				large leaf./al.
20					133°	
21			sol. bz.	95°	dec.	warts/CS2
	0.00085	00	∞ ^{1,2} f.			
	insoluble	∞	∞		198.6° C.	
	insoluble	∞	00		260-5° dec.	wh.→yel
25		soluble		27°	215°	
26 27		1 11.		040	65° 4.5°758	
1	s. soluble v. s. sol.	soluble soluble		<-84°	1360	
29	v. s. soi.	soluble			70.3°	
30					127.37°	
31		90	00		102-3°	
32					180°	
33					223.5°	
34					149.6°	
35				-40°	192.9°	
-	v. soluble	v. soluble	soluble	54-5°	177-8°	flat prisms
	v. s. sol.	∞	∞ / f		130-2°	colorless
	decomp.	000	∞	100 00	72-5°	colorless
1 1	400 c.c.	3500 c.c.	achible	-103.6°	-23.73° 259.6°	
40			soluble	30	120.7°	
11					120.1	

Number.	Name.	Formula	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Methyl			1
1		CN.CH ₂ .CO ₂ .CH ₃	99 08	1.12825
2	cvanide	$\mathrm{CH_{3}CN}$		0.778423
3	" (K)	CH ₃ CN		0.78425
4	diethyl carbinol		102.12	0.823720
5	dimethyl-aceto-acetate	CH ₃ CO.C(CH ₃),CO,CH ₃		0.99925
	(K.)	3/20023		
6		(CH ₃) ₂ O	46.05	1.617
7		CH ₃ (C ₂ H ₅)CH.CO ₂ H	102.08	0.938^{20}
8	" acetone	CH ₃ CO.CH(CH ₃)C ₂ H ₅	100.10	$0.818^{\frac{14}{4}}$
9	" carbonate	$\mathrm{CH_3.CO_3.C_2H_5}$	104.06	1.00227
10	" ether	$CH_3.O.C_2H_5$	60.06	0.72520
11		$CH_3.CO.C_2H_5$		0.8045^{20}
12		$CH_3.CO.C_2H_5$		$0.8045\frac{25}{25}$
13		$CH_3.C(NOH).C_2H_5$	87.11	0.92125
14	" -malonie ac. (K.)	$ \mathrm{CH_3C(C_2H_5)} < (\mathrm{CO_2H})_2$		
15	" oxalate	$CH_3O.C_2O_2.OC_2H_5$		1.1556°
16		$C_4H_4O_4(CH_3)C_2H_5$		1.09250
17		$CH_3.S.C_2H_5$		0.83693
18		CH ₃ F	34.03	
19	formate	HCO ₂ .CH ₃		0.98601
20		CH ₃ .C ₄ H ₂ O.CHO		1.108718
21		CH ₂ OH.CHOH.CO ₂ CH ₃ .		1.27025
22	glycolate (K.)	OHCH ₂ .CO ₂ .CH ₃		$ \begin{array}{c c} 1.1677^{18} \\ 0.8545^{20} \end{array} $
23 24		$C_8H_{15}.OH$		0.8602^{20}
25		$C_7\Pi_{14}CO$		0.3002 0.7953°
26		$CH_3.CO.C_6H_{13}$		0.8201
27	hydrazine	NH ₂ .NHCH ₃		0.02014
28	hypochlorite	CH ₃ ClO		
29		C_9H_9N		
30			142.00	2.285215
31		CH ₃ I		
32	isoamvl ether	$CH_3^{\circ}.O.C_5H_{11}$	102.12	0.6871%
33	" ketone	CH_3 . CO . C_5H_{11}	114.12	0.81817
34	isobutyl ketone	$CH_3.CO.C_4H_9$	100.10	0.803 0
35	isobutyrate	$(CH_3)_2CH.CO_2.CH_3$	102.08	0.91134
36	isocyanide	$CH_3.NC$	41.07	0.75574
37			128.13	0.81719
38		$CH_3COCH(CH_3)_2$		0.804519
39	isosuccinate	$C_5H_7O_2.CH_3$	146.08	1.10715

Number.	Sol	ubility in 100 (e.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
2 3 4	insoluble	∞ ∞ ∞ ∞ soluble ∞	∞ sol. bz. ∞ ∞	-44.4° C. -41° <-38°	202-5° 81.54° 80-2° 123° C. 170-4°	wh.→yel colorless wh.→yel
6 7 8 9	3700 c.c.	∞	∞	<-80° -14.5°	-23.65° 177° C. 118° C. 109.2° C.	
11 12	soluble soluble	∞ ∞	soluble	-85.9°	10.8° 79.7° 79.5–81.5° 150–3°	colorless
14 15 16	v. soluble	v. soluble	v. soluble	116.5-7.5° 	173.7° C. 208.2° C.	sm. wh. pris.
19	166 c.c. ¹⁵ soluble 3.3	∞ v. soluble	∞	-104.8° -101.2°	66.9° -78° ⁷⁴² 32.3° 187° C.	oil
21 22 23 24	∞	<u></u>	v. s. sol. v. soluble		239–44° 151.2° C. 174–6° 173–4°	wh.→yel
25 26 27	soluble	∞ ∞	∞· 71	-16°	149.8° 172.92° 87° ⁷⁴⁵	
31	s. soluble 0.8 c.c.	v. soluble soluble	v. soluble	59-60° -64.4°	12°726 272°750 44.5° C. 42-3°	need. or leaf becomes red.
35	1	∞ ∞ ∞ 2.9	∞; ∞ bz.	-45°	91° . (1) 144° C. 119°765 / (2) 92.3° 59.6°	
37 38 39					170–1° 95° 179°	

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Methyl isosuccinate (K.).	CH. CH < (CO. CH.).	160 09	1.02835
2				0.9001%
3	lactate		104.06	
4	malate (K)	CH ₃ CO ₂ .CHOH.CH ₂ .CO ₂		1.22525
	211111111111111111111111111111111111111	CH,	102.00	1.22020
5	malic acid (β)		148.06	
6	malonate			1.160315
7		$C_6H_5.CH(OH).CO_2.CH_3$		
8	mercaptan	CH ₃ SH	48.09	
9		CH,NCS		1.069137
10	naphthaline (a)	$C_{10}H_7$. CH_3	142.08	1.000519
11	" (β)	$ C_{10}H_7.CH_3$	142.08	
12	naphthyl amine (a)	$CH_3NHC_{10}H_7$	157.13	
13	" ether (a)	$CH_3.O.C_{10}H_7$	158.08	1.0964
14	" (β)	$CH_3.O.C_{10}H_7$	158.08	
15		$ \mathrm{CH_3NO_3} $		1.216715
16	nitrite	CH ₃ NO ₂		0.99115
17		$NO_2.C_6H_4.CO_2.CH_3$	181.09	1.28425
18		$NO_2.C_6H_4.CO_2.CH_3$		
19		CH(NO ₂)NOH		
20		$\mathrm{CH_{3}.CO.C_{9}H_{19}}$		0.826820
21		$\mathrm{CH_{3}.O.C_{8}H_{17}}$	144.16	
22		$CH_3.CO.C_8H_{17}$		0.825^{20}
23		$(CH_3)_2C_2O_4$		1.1479^{54}
24		$C_{16}H_{31}O_2.CH_3$	270.27	
25		$C_9H_{17}O_2.CH_3$	172.16	
26		$CH_3.C : C(CH_2)_{14}CH_3$		0.80162
27		$CH_3.C_5H_9$		0.75012
28		$C_6H_5.CH_2.CO_2.CH_3$		1.06325
29 30	pnenyi carbinoi (K.)	$CH_3(C_6H_5)CHOH$ $C_6H_5(CH_3)N.NH_2$		1.00325
31		CH_3PH_2		
32				1.18925
33	pineridine	$C_5H_{10}N.CH_3$		0.821^{15}
34	propaggyl ether	$CH_3.O.C_3H_3$		0.83^{12}
35		$C_2H_5.CO_2.CH_3$		0.9372
36		$CH_3(C_3H_7)CH.CO_2H$		0.94140
37		$CH_3.C: C.C_3H_7$		0.7377
38		$\mathrm{CH_{3}}$.O. $\mathrm{C_{3}H_{7}}$		0.7460°
39	" ketone	$\mathrm{CH_{3}COC_{3}H_{7}}$		0.812^{15}
40	" ketoxime (K.)	$CH_3.CO(NOH).C_3H_7$		$0.9045\frac{25}{25}$
		, , , , , ,		

	1					1
Number.	Sol	ubility in 100 c	c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1 2	v. s. sol.	∞	∞		177-9° 116.7°	colorless
_	soluble				144.8° C.	
	v. v. sol.	∞	oo M		242–6° dec.	colorless
5	00	∞	∞	123°	dec.	monocl. pris.
6				abt80°	181.5° C.	small leaflets
8	insoluble	∞	∞	-130.5°	20°	vellow oil
9				35°	119°	
10		v. soluble	v. soluble	-22°	240-2°	
11 12		v. soluble	v. soluble	32.5°	241–2° 293°	monocl./al
1		v. soluble	v. soluble	<-10°	269°753 C.	red on
	s. soluble	s. soluble	v. soluble	72°	274°	small leaf/et.
	s. soluble	soluble	soluble		65° exp.	
1	insoluble	00	00	-8°	-12° 286-9°	yellow oil
	insoluble	soluble	soluble	95-6°	200-9	flat yel. nd
1	v. soluble		soluble	64°		needles
20				15°	230.6°766 C.	
21 22				3.5°	173° 211°	
	s. soluble	soluble	sol.CH ₃ OH	54.0°	163.3° C.	moncl. tab
24				28°		crystals
25				0.00	213.5° C.	
26 27				30°	184°15 72–3°	
	insoluble	∞	14 8 C ∞ 0A		218-20°	colorless
1	insoluble	∞ %	\$ 00 m		201-5°	$\text{wh.} \longrightarrow \text{yel.} \dots$
30	1	soluble s. soluble	7000		227°745 -14°	
	s. soluble	s. soluble	7000 c.c. ∞		278-81°	vellow
	v. soluble				107°	yenow
	s. soluble	∞	∞		61-2°	
35	0.57^{17}	∞ soluble	oolubla	$< -75^{\circ}$	79.9° 193° ⁷⁴⁸	
37	0.57	soluble	soluble		83–4°	
	mod.soluble	∞	00		38.9°	
-				1	102.° C.	
40	soluble	∞	∞ ; ;		165-9°	colorless
1						

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = I. Air = I (A).
1	Methyl pyrrol (1)	$C_4H_4N.CH_3$	81.10	0.9145 15
2	" (2)	$C_4^{\dagger}H_4^{\dagger}N.CH_3^{\dagger}$	1	0.944615
3	pyrryl ketone	C ₄ H ₄ N.CO.CH ₃		
4	pyruviate	$C_3H_3O_3.CH_3$	102.05	
5	quinoline (6)	$CH_3.C_6H_3.C_3H_3N$		1.066439
6 7	(py. 3)	C ₁₀ H ₀ N		1.064620
8	racemate (N.)	<[.CH(OH).CO ₂ .CH ₃] ₂ OHC ₆ H ₄ CO ₂ CH ₃	178.08	1.18915
9		OHC ₆ H ₄ CO ₂ CH ₃		1.18225
10	($(CH_3)_2Se$	109.25	
11		$(CH_3O_2C)_2C_2H_4$		1.12082
12		CN.S.CH ₂		1.07325
13	stearate	$C_{18}H_{35}O_2.CH_3$		
14	sulphate	(CH ₃) ₂ SO ₄		1.327620
15		$(CH_3)_2S$	62.11	0.84583
16		$(CH_3)_2SO_3$		1.0456
17		CH ₃ .S.CN		1.06933
18		CH ₃ SO ₂ Cl	114.54	
19		CH ₃ .SO ₃ H		
20	sulphuric acid	CH ₃ HSO ₄		
$\frac{21}{22}$	tartrate (K.)	<[.CH(OH).CO ₂ .CH ₃] ₂		
23	tetramethylane	$(CH_3)_2$ Te		
24	triagnate	CH_3 . N_3		0.89618
25	trichlo-acetate	CCl ₃ .CO ₂ CH ₃		1.6733
26		$(CH_3)_3C.CO_2.CH_3$		
27		CH_3 . C_3H_5		0.6912-20
28		NH ₂ CÖNHCH ₃	74.13	
29		$CH_3.C_5H_3N_4O_3 + \frac{1}{2}H_2O$	191.22	
30	" (\gamma) (7)	$CH_3.C_5H_3N_4O_3+H_2O$		
31	valeriate	$C_4H_9.CO_2.CH_3$		0.90970
	Methylene acetate			
33		CH_2Br_2		2.4930
34		CH ₂ Cl ₂	1	1.3778%
35 36	cyanide	$CH_2(CN)_2$	1	0.0510
37	disulphonic soid	$CH_2(OC_2H_5)_2$ $CH_2(SO_3H)_2$	}	0.8510
38		$CH_2(SO_3H)_2$		3.332615
	Milk sugar			1.525^{20}
40				1.221215
	Mono-ethyl carbonate			
		2		,

-						
Number.	Sol	ubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	insoluble	000	00		112-30747	
2					147-80750	
-	v. soluble	v. soluble	v. soluble	90°	220°	moncl, need
4 5					134-7° 257.4-8.6 ⁷⁴⁵	
6				10-14°	250°710	
7	v. soluble	soluble	s. soluble	90-1°		wh. tab. & pr.
8	s. soluble	∞	00	-8.3°	222.2° C.	[yellowish
9		soluble	∞	-8°	221-3°	colorless to
10	insoluble			18.5°	58.2° 195.3° C.	crystals
	insoluble	00	०० । वर्षे	10.0	130.5-2.5°	colorless
13			soluble	38°		$\text{crystals}/\epsilon$
14			soluble .		188.3-8.6 C.	oil
15		soluble	soluble	-83.2°	380760	oil
16 17		soluble	soluble		121.5° 132.9 ⁷⁵⁷	
	insoluble	soluble	soluble		160°	
	v. soluble				dec. 130°	syrup
20	v. soluble	soluble	∞	<-30°		oil
	v. soluble	soluble	s. soluble	49.5-50.5°		wh. tablets
22	insoluble				82° 39–42°	brass color
24					20-1°	
	decom.	decom.	soluble	34°	191–2°	
26					100-2°	
1	s. soluble				4-5°	
	v. soluble 0.382 ¹⁰⁰	v. soluble v. v. s. sol.	0.0725 sol. KOH	102° >360° dec.	dec.	prisms
	1.25^{100}	V. V. S. SOI.	sol, KOH	no m.p.	dec. 370-80	small pris./w. fine leafl./w
31					127.3°	
32					170°	
-	1.14820				98.5°756	
	2.00^{20} 13.33	40: 10 chlo.	20: 6 7 bz.		41.6° C. 109°20	
	9.1^{18}	40; 10 cmlo.	20; 6 7 bz.		89° C.	
	deliq.					needles
38			soluble	4°	180° dec.	leaflets
	17.0310		insoluble	203.5° dec.		rhombic
40	v. soluble	v. soluble	s. soluble	61 570	dec.	thick liq
41				-61-57°		

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Mono-ethyl fumarate	CO,H.C,H,.CO,C,H,	144.06	
2	methyl carbonate	CH ₃ HCO ₃	76.03	
3	Morphine	$C_{17}H_{19}NO_3+H_2O$	303.21	1.317-1.326
4	Mucic acid	(OH),C,H,(CO,H),	210.08	
5	Myricyl alcohol	$C_{30}H_{61}OH$	536.50	
6	Myristic acid	$C_{12}H_{27}CO_{2}H$	228.22	0.862254
7	aldehyde	$C_{13}H_{27}CHO$	212.22	
8	Naphthalene	$C_{10}H_{\circ}$		1.007025
9	sulphone chloride $(\alpha)(K_{\cdot})$	$C_{10}H_7.SO_9.Cl.$	226.57	
10	" (β)(K.)	$ C_{10}H_7.SO_2.Cl$	226.57	
11		$C_{10}H_7SO_3H+H_2O$	226.14	
12	" (β)	$C_{10}H_7SO_3H$	208.12	
13		$C_{10}H_6(CO_2H)_2$	216.06	
	Naphthoic acid (a)	$C_{10}H_7.CO_2H$	172.06	
15	(β)	$C_{10}^{10}H_7$. $CO_2^{2}H$	172.06	
16	aldehyde (a)	C ₁₀ H ₇ .CHO	156.06	
17	(β)	C ₁₀ H ₇ .CHO		1 0044
	Naphthol (α)	$C_{10}H_7$.OH	144.06	
19	(p)	$C_{10}H_7.OH$	144.06	
20 21	surphonic acid (a)(1, 2) " acid (b)(2, 6)	$OHC_{10}H_6SO_3HOHC_{10}H_6SO_3HOHC_{10}$	224.12 224.12	
	Naphtho-phenazine $(\alpha\beta)$.	C H N		
23		$C_{16}H_{10}N_{2}$	193.17	
24	-quinaidine (w)	$C_{13}H_8N.CH_3$	193.17	
25	quinolino (a)	$C_{13}H_9N$	179.11	
26	-quinonne (a)	$C_{13}H_9N$	179.11	
27	-quinone (a)	$C_{10}H_6O_2$	158.05	
28	" (B)	$C_{10}^{10}H_6O_2$		
	Naphthyl acetate (a)	C-H-O- C-H-	186.08	
30	" " (β)	$C_2H_3O_2.C_{10}H_7$		
31	amine (a)	$ C_{10}H_7.NH_2$		$1.1229\frac{25}{25}$
32		$C_{10}H_7.NH_2$	143.11	
33	cvanide (a)	$C_{10}^{10-7}H_7.CN$		1.116715
34	" (β)	$C_{10}H_7$.CN		1.093988
35	Naphthylene diamine (1,2)	$C_{10}H_{\epsilon}(NH_{2})_{2}\dots\dots$	158.16	
36	" (1, 5)	$C_{10}H_6(NH_2)_2$		
37	" " (1, 8)	$C_{10}H_6(NH_2)_2$	1	
38	Naphthyl ether (a)	$(C_{10}H_7)_2O\dots$	270.12	
39	(β)	$(C_{10}H_7)_2O$	270.12	

				1		
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
	s. soluble	v. soluble	v. soluble	70° -57-60°	147°16	thin tablets
3	$0.0192^{20} \\ 0.25^{100}$	5 ²⁰ ; 7.5 ⁷⁸ 0.066 ²⁰ chlo.	0.0049 ⁵ wet 0.0595 ⁵ dry	243-4°	191–3°°	rhomb. pris
5		insoluble		206° dec. 88°		cryst. powder sm. need./et.
7		soluble	soluble	53.8° 52.5°	250.5°100 168-9°22	leaflets
9	insoluble insoluble insoluble	5.29 ¹⁵ abs. soluble soluble	v. soluble v. soluble v. soluble	80 . 05° C. 66–7° 76–7°	217 . 68° C.	monoclinic fine tablets fine tablets
11	deliq.	soluble	s. soluble	85-90°	decom.	crystalline
13	v. v. s. sol. v. s. sol. hot	s. soluble v. soluble	s. soluble soluble	no m.p. 160.5-1.0°	300°	silky need./al need./dil. al.
16	s. sol. hot	v. soluble	v. soluble	184° C.	>300° 291.6° C.	moncl. tab thick liquid
18	sol. hot s. soluble	v. soluble v. soluble	v. soluble v. soluble	60.5-1° 94-96°	278–80°	thin leaf./w monoclinic
20	s. sol. hot mod. sol. v. soluble	v. soluble v. soluble	v. soluble	122° >250° 122°	285–6°	moncl. leaf rhomb.tab./w small leaflets
22		v. s. sol.	v. s. sol.	142.5°	>360° >300°	lemon yel.
24	s. soluble v. s. sol.	v. soluble v. soluble	v. soluble v. soluble	82° 52°	>300° 351° C.	large need.
27	v. s. sol. s. soluble	v. soluble soluble	v. soluble v. soluble	93.5° 125°		glit. scales/w. yel. need./lig.
29	soluble mod.sol. hot		v. soluble	115–20° de 49°	not in steam	red. need./et. nd.or tab./al.
31	insoluble 0.167 soluble	v. soluble v. soluble soluble	v. soluble v. soluble	70° 50° 111–2°	300.8° C. 306.1° C.	small needles rhomb. need. leaflets/w
33	Soluble	soluble v. soluble	sol. lig.	37.5° 66.5°	299° C. 306 . 5° C.	needlesleaflets/lig.
35	mod. sol.hot v. s. sol.		v. soluble soluble	95–6° 189.5°		rh'b. leaf./w. prisms/et
1	s. soluble insoluble	s. soluble	v. sol.; v.	66.5° 110°	sub. >360°	cryst./dil. al. leaflets
39	v. sol. bz.	s. soluble	sol. bz. v. soluble	105°	250°19	

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Naphthyl ketone $(\alpha\beta)$	C, H, CO, C, H,	282.12	
2			282.12	
3		$C_{10}H_7$.CO. $C_{10}H_7$	282.12	
4	Narceïne	$C_{23}H_{27}NO_8$		
5	Narcotine	$C_{22}H_{23}NO_7$	413.23	
6	Neohexane	$(CH_3)_3CC_2H_5$	86.12	0.648820
7	Neopentane	$(CH_3)_4C$	72.10	
8	Nicotine	$C_{10}H_{14}N_2$	1	1.009244
9	Nicotinic acid	$C_5H_4NCO_2H$		
	Nitraniline (o.)	$NO_2.C_6H_4.NH_2$		1.44315
11	(m.)			1.39818
12	(p.)	NO ₂ .C ₆ H ₄ .NH ₂		1.43714
13 14	Nitro-acetic acid	$CH_2NO_2.CO_2H.$ $C_{14}H_7O_4.NO_2.$	105.07 285.10	
15		$C_{14}H_7O_4.NO_2$	285.10	
16		$NO_2.C_6H_4.OCH_3$		(1.268 ²⁰)
17	" (p.) (K.)	$NO_2.C_6H_4.OCH_3$		(1.233^{20})
18		$C_{14}H_7O_2.NO_2$		(1.200)
19		NO ₂ .C ₆ H .CHO		
20		NO ₂ .C ₆ H ₄ .CHO		
21		NO ₂ .C ₆ H ₄ .CHO	151.08	
22	-benzamide (o.)	NO ₂ .C ₆ H ₄ .CONH ₂	166.13	1.461532
23	" (m.)	$NO_2.C_6H_4.CONH_2$	166.13	
24		$NO_2.C_6H_4.CONH_2$		
25		$C_6H_5NO_2$		1.20334
26	" (K.)	$C_6H_5NO_2$		$1.2045\frac{25}{25}$
27	-benzoic acid (o.)	$NO_2.C_6H_4.CO_2H$	167.08	
28	$(m.) \dots$	$NO_2.C_6H_4.CO_2H$	167.08	
29	(p.)	$NO_2.C_6H_4.CO_2H$		1.54973
30 31	-benzonitrie (0.)	$NO_2.C_6H_4.CN$ $NO_2.C_6H_4.CN$		
32	(111.)	$NO_2.C_6H_4.CN$		
33				
34		$NO_2.C_6H_4.COC1$		
35		NO ₂ .C ₆ H ₄ .CH ₂ Cl		
36		NO_2 . C_6H_4 . CH_2Cl		
37		NO ₂ .C ₆ H ₄ .CH ₂ Cl		
38		NO_2CBr_3		
39		$C(\tilde{NO}_2)_4$	196.10	
4 0	-cinnamic acid (o.)	$NO_2.C_6\hat{H}_4.C_2H_2CO_2H$		
41	" (m.)			

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	v. sol. bz.	1.414	v. soluble	135°	dist.	needles/al
2		4		125.5°		needles/et
3		0.08	v. s. sol.	164-4.5°		silky leaflets.
	0.0813	v. soluble	insoluble	170°		long pris./w
	insoluble	185% 20: 578	0.77:2.135	176°	dec.	rhomb. pris
6		soluble	soluble		49.7°	
7				-20°	9.5°	
8	00	00	∞	< -80°	246.70745	
9	s. soluble	mod. sol.	v. v. s. sol.	228-9°	sub.	fine needles
	0.125^{25}	v. soluble	v. soluble	71.5°		rhomb. need
	0.12^{24}	11.06	7.8920	114°	285°	vel. rhb. need.
12	0.07720	5.84^{20}	6.10^{20}	147°		yel. moncl./w
13	dec.	v. v. sol.	v. v. sol.	69°		prisms/et
14	s. soluble	soluble	sol. KOH	289°	sub.	vel. need./al.
15	s. soluble	v. soluble	sol. chlo.	244° dec.	sub. dec.	orange need.
16	insoluble	00	00	9°	267-70°	yellow oil
17	insoluble	v. soluble	v. soluble	53-4°		yel. prisms
18	insoluble	v. s. sol.	v. v. s. sol.	228° C.	sub.	fine need./ace
	0.0153^{25}	v. soluble	v. soluble	43.5-4.5°	153°23	yel. need./w.
20	0.0107^{25}	v. soluble	v. soluble	58°	164°23	needles
21	s. soluble ,	v. soluble	s. soluble	106°		prisms/w
22	mod.sol. hot	mod. sol.	mod. sol.	176.6° C.	317°	short needles
23	sol. hot			142.7° C.	310-5°	needles
24	s. sol. hot			201.4° C.		needles
25	v. s. sol.	00	000	5.71°	209.40745	
	s. soluble	soluble	∞	5-6°	209-10°	bright yellow
	0.7316^{25} .	2810	21.611	147.70° C.		triclin.nd./w.
	0.238^{15}	3310	25.111	140-1°		moncl. tab./w
	0.02115	0.09^{10}	2.2^{11}	238°		leaflets/w
	sol. hot	v. soluble	v. soluble	110°		silky needles.
	s. soluble	v. soluble	v. soluble	117-8°		needles
	s. soluble	v. sol. chlo.		147°		leaflets/al
-	insol. dec.	soluble	v. soluble	35-6°		yel. prisms
	insol. dec.	soluble	v: soluble	72-3°		yel. prisms
35		soluble		48-9°		crystals/lig
36		soluble		45-7°	173-83°/³°	yel. need./lig.
37		soluble		71°		leaf. or need.
38		soluble		10.25°	127011876010	prisms
	insoluble	soluble	soluble	130	126°	white cryst
1	insoluble	s. soluble		237-40°		
41				196–7°		yellow need

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Nitro-cinnamic acid (p.)	NO.C.HC.H.CO.H	193.10	
2	-cresole (m.) (K.)			
3	-cumene o. + p	0 0 0 0		1.1025%
4	-dimethyl aniline (m.)	$NO_2C_6H_4N(CH_3)_2$		1.31317
5	" (p.).		166.16	
6	-diphenyl (o.)	$C_6H_5.C_6H_4.NO_2$	199.11	
7	-diphenyl (p.)	$C_6H_5.C_6H_4.NO_2$	199.11	
8	-ethane	$CH_3.CH_2NO_2$	75.08	1.056115
9	-form	$CH(NO_2)_3$	151.13	
10	-guanidine (K.)	$NH_2.C(NH).NHNO_2$	104.19	
11	-isatine	$NO_2.C_8H_4NO_2$	192.11	
12	-methane	CH_3NO_2		1.144115
	Nitron	$C_{20}H_{10}N_4$	312.29	
14		$C_{10}H_7.NO_2$	173.10	
15		$C_{10}H_7.NO_2$	173.10	
16			189.10	
17	(4)		189.10	
18	(1)(P)		189.10	
19		NO ₂ .C ₆ H ₄ .OH		1.65720
20	(111.)			$1.485^{20} \\ 1.479^{20}$
21	(p.)	$NO_2.C_6H_4.OH$		1.479
22	-phthalic acid (3)	$NO_{2}C_{6}H_{3}(CO_{2}H)_{2}+1\frac{1}{2}H_{2}O$ $NO_{2}C_{6}H_{3}(CO_{2}H)_{2}$	230.11 211.08	
23 24	" " (4)	$ NO_2C_6H_3(CO_2H)_2 + H_2O$		
25	-propane	$CH_3.CH_3.CH_2NO_2$		0.9999^{16}
26	-quinoline (5)	$C_0H_6N.NO_2$	174.13	
27	(6)			
28		$ C_9H_6N.NO_2$	174.13	
29	" (8)	$C_9H_6N.NO_2+XH_9O$	174.13	
30	-salicylic acid (3, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H.H ₂ O	201.10	
31	" (5, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H	183.08	
32	" (6, 2, 1)	NO ₂ C ₆ H ₃ (OH)CO ₂ H	183.08	
	Nitroso-aniline (p.)	NO.C ₆ H ₄ .NH ₂	122.13	
34	-benzene	$C_6H_5.NO.$	107.08	
35	-diethylamine (K.)	$(C_2H_5)_2$ N.NO	102.16	$0.944\frac{25}{25}$
36	-diisobutylamine (K.).	$(C_4H_9)_2$ N.NO		$0.893\frac{25}{25}$
37	-dimethylamine (K.).	(CH ₃) ₂ N.NO		1.04125
38	-dimethyl aniline (p.).	$NO.C_6H_4N(CH_3)_2$		
39	-diphenyl amine	$NO.N(C_6H_5)_2$		
40		$(C_3H_7)_2$ N.NO		$0.913\frac{25}{25}$
41	α -naphthol (2)	$NO.C_{10}H_6OH$	173.10	

Number.	Name,	Formula.	Molecu- lar Weight. Specific Gravity. Water = 1.
1	Nitroso-α-naphthol (4),	NO.C ₁₀ H ₆ OH	173.10
2	β - " (1)	NO.C ₁₀ H ₆ OH	
3			
4	Nitro-styrene (o.)		149.10
5	" (m.)		149.10
6	" (p.)	$NO_2.C_6H_4.C_2H_3$	149.10
7	-thiophene	$NO_2.C_4H_3S$	129.13
8	-toluene (o.)	$NO_2.C_6H_4.CH_3$	137.10 1.1643 ¹⁵
0	" " (K.)	NO ₂ .C ₆ H ₄ .CH ₃	137.10 1.16225
9 10	" (m.),	DEC COTT OFF	137.10 1.16822
11		2 0 1	137.10 1.139255
12		$C_6H_3(CH_3)(NH_2)NO_2$	152.14
13		$1: 2: 4 = CH_3: NH_2: NO_2$.	152.14 1.36515
14			152.14 1.36615
15	(6)		152.14 1.37815
16	-m- " (2)		152.14
17		1: 3: $4 = CH_3$: NH_2 : NO_2 .	152.14
18	" " (5)		152.14
19	(0)	1: 3: $6 = CH_3$: NH_2 : NO_2 .	152.14
20	-p- (2)		152.14
$\frac{21}{22}$	" " (3)	1: 4: 3 = CH ₃ : NH ₂ : NO ₂ . NH ₂ .CO.NHNO ₂	$\begin{vmatrix} 152.14 & 1.312^{17} \\ 105.15 & \dots \end{vmatrix}$
	Nonane n	$CH_3(CH_2)_7CH_3$	128.16 0.722813
24	44 Air	[(CH ₃) ₂ CH.(CH ₂) ₂] ₂ CH ₂	128.16 0.72470
	Nondecane n	$CH_3(CH_2)_{17}CH_3$	268.32 0.777432
	Nondecylic acid	$C_{18}H_{37}.CO_2H$	298.30
	Nonyl alcohol	CH ₃ (CH ₃) ₇ CH ₂ OH	144.16 0.8346 4
28	Nonylene	$CH(CH_2)_6CH: CH_2 \dots$	126.15 0.7433%
29	Nonylic acid	$C_8H_{17}.CO_2H$	$158.15 0.6890 \frac{17}{4}$
	Octadecane (n.)	$\mathrm{CH_{3}(CH_{2})_{16}CH_{3}}$	$254.30 0.7768^{28}$
	Octadecyl alcohol	$CH_3(CH_2)_{16}CH_2OH$	270.32 0.81245
	Octadecylene (n.)	$CH_3(CH_2)_{15}CH:CH_2$	$252.29 \mid 0.7910^{18}$
	Octane (n.)	$CH_3(CH_2)_6CH_3$	114.15 0.7188
34	Octochlor-propane	$[(CH_3)_2CH.CH_2.]_2$	114.15 0.7111%
36	Octyl alcohol (n.)	$CCl_3.CCl_2.CCl_3$ $CH_3(CH_2)_6CH_2OH$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
37	amine	$CH_3(CH_2)_6CH_2OH$	129.20
38	" (sec.)	$CH_3(CH_2)_5CH(NH_2)CH_3$	129.20 0.786
39			148.59 0.8928
40	(sec.)	$CH_3(CH_2)_5CHCl.CH_3$	148.59 0.870715

ber.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color,
3 4	insoluble mod. sol. sol. H ₂ SO ₄	v. soluble 2.4 ¹³ v. soluble	v. soluble v. soluble v. soluble	193–4° dec. 106° 126° 12–3.5°		needlesleaf, or prisms monocl. pris
6 7 8	v. v. s. sol.	sol. abs. v. sol. hot	soluble v. soluble ∞	-5° 29° 44° $\alpha - 9.4^{\circ}$, $\beta - 3.6^{\circ}$	224–5° 225.7° C.	yellow oil prisms/lig monoclinic dimorphous
10 11 12 13 14 15 16 17 18 19 20 21		soluble soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble soluble s. sol. CS ₂ v. soluble v. soluble	∞ soluble v. soluble soluble v. soluble sol. acids v. soluble v. soluble s. sol. CS₂. v. soluble	-10.5° 16° 54° 97° 107-9° 127-8° 91.5° 53° 109° 98-98.4° 138° 77.5° 116-7° dec. < -51°	219–21° 230–1° 237.7° ⁷⁶⁰ 	bright yellow
28 29 30 31 32 33 34 35 36 37 38 39 40	soluble	soluble soluble ∞	soluble soluble ∞	12-2.5° 28° 59° 18° -98.2° 160° -17.9°	139.5° C. 253-4° 317° C.98°0 210.5°15 125.46° C. 108.53° C 268-9°734 195.5°96°17 185-7° 162.5° 183.6-4.6C. 171-3° C.	leafletsglit. leaf./alcrystalline

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Octylene (n.)	$\mathrm{CH_{3}(CH_{2})_{5}CH: CH_{2}}$	112.13	0.72232
	Octyl ether (n.)			
3	formate	$HCO_2.C_8H_{17}$		
	Oenanthaldoxime (K_{\cdot}) Oenanthol (K_{\cdot}) ,			0.802525
6	Oenanthylic acid	CH (CH) CO H		0.8023^{25} $0.9212^{\frac{15}{4}}$
7	Oleïc acid			
8				$0.889\frac{25}{25}$
9	Oleïne	$(C_1, H_2, O_3), C_2, H_4, \dots$		
10	Opianic acid	(CH ₃ O) ₂ C ₆ H ₂ (CHO)CO ₂ H	210.08	
11	Orceïn	$C_{28}H_{24}N_2O_7$	500.27	
12	Orcin 1: 3:5	$CH_3 \cdot C_6H_3(OH)_2 + H_2O \dots$	124.06	1.28954
-10		00 00 0 00		
	Oxalacetic acid			
	Oxalhydrazid			1 05018
	Oxalic acid			1.6534
	Oxalvl chloride			
	Oxamic acid			
	Oxamide			1.475631
20	Oxanilic acid	CO ₂ H.CONHC ₆ H ₅	165.10	
21	Oxanilid	$(.CONHC_6H_5)_2$	240.18	
	Oximide			
	Oxindol			
	Oxyglutanic acid (a)			
	Oxythymol 4: 1: 2: 5			0.040,76
27	Palmitic acid	$CH_3(CH_2)_{14}CO_2H$. $[(OH)_2$ $CH_3(CH_2)_{14}CHO$		0.8405 4
28		$(C_{16}H_{21}O)_2O$		
	Palmitin	(C ₁₆ H ₃₁ O ₂) ₂ C ₂ H ₄		0.8657뙇
30	Palmitolic acid	C ₁₅ H ₂₇ .CO ₂ H	252.23	
31	Palmitone	$(C_{15}H_{21})_{0}CO$		0.7997%
32	Palmito-nitrile	$C_{15}H_{31}CN$		0.822434
33	Papaverine	$C_{20}H_{21}NO_4$		1.308-1.337
34	Papaverinic acid	$C_{16}H_{13}NO_7$		
	Parabanic acid			• • • • • • • • • • • •
	Paracyanogen			
	Paraformaldehyde Paraldehyde			0.0043 ²⁹
30	Pelargonic acid	$(C_2 I I_4 O)_3 \dots CO H$	158 15	0.99454
	Penta-brombenzene		472.81	
40		6	~,	

Number.	Solubility in 100 c.c.		c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1					124.60769	
3					291.7° 198.1°	
1	v. s. sol.	v. soluble	v. soluble	54-5°		sm. wh. tab
5	0.24115	soluble soluble	∞ soluble	-10.5°	153-5° 222.4°743	colorless
1	insoluble	00	∞ ∞	14°	285.5-6°100	needles
-	insoluble	v. soluble	∞	7-9°	1: 4:	usually yel
	insoluble 0.25; 1.7 ¹⁰⁰	s. soluble	v. soluble	-5° 150°	dist.in vac.	thin prisms
11	sol. acetone	soluble	insol. bz.			small red crys
12	v. soluble	v. soluble	v. soluble	106.5–8° anhy.	287–90°	monel. prisms
-	v. soluble	v. soluble	s. soluble	176–80° de.		dimorphous
	soluble 8.6 ²⁰ ; 37.1 ⁶⁵	v. s. sol.	v. v. s. sol.	235° dec. 187° anhy.		long need./w. moncl. prisms
	v. s. sol.					cryst. powder
	fumes in air	- 0410 010	soluble *	-12°	64°	wh. need
	1.7^{17} 0.04	v. v. s. sol. v. s. sol.	v. s. sol.	dec. 210° 417-9° dec.		cryst. powder cryst. powder
	s. soluble	v. soluble	v. soluble	149-50°		needles/w
1	insoluble s. soluble	v. s. sol.	v. s. sol.	252.50° C.	320°	scalesglit. prisms
1	sol, hot	soluble	sol. NH ₃ soluble	120°	dist.	long need./w.
1	v. soluble	v. soluble		72-3°		crystalline
25 26	v. s. sol.	v. soluble 1.13°	v. soluble soluble	143° 62.62°	290° 138–9°0mm	crystalline [et.
27			s. soluble	58.5°	$192 - 3^{\circ 22}$	pearly scales
28		0.004921		55-6°	210 2000	
1	insoluble insoluble	0.0043 ²¹ v. soluble	v. soluble v. soluble	65.5° 47°	310-20°° 240°¹⁵	silky needles.
31				82.8°		leaflets/al
32	v. v. s. sol.	soluble	0.410	31° 147°	251.5°100	hexag. tab trimet. prism.
1	v. v. s. sol. v. s. sol.	v. s. sol.	v. s. sol.	233° dec.		v. small tab
1	4.728	soluble				monoclinic
	insoluble 20–30 ¹⁸	insoluble insoluble	insoluble	162° dry	sub.	amorphous
38	1213			12.55°	124° C.	
	s. soluble mod. sol. bz	soluble	soluble s. soluble	12.5° 159–60°	251–4° C.	leaflets
10	11100. 501. 52	s. solubic	s. solubic	100 00	ou.o.	incoa./ ar

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = I. Air = I (A).
1	Penta-chlor-aniline	Cl ₅ C ₆ NH ₂	265.31	
2	" -benzene	C_6HCl_5	250.26	1.834216
3	-decane (n.)	$CH_3(CH_2)_{13}CH_3$	212.26	$0.7689^{\frac{20}{4}}$
4		$C(CH_2OH)_4$		
5	-ethyl benzene	$C_6H(C_2H_5)_5$	218.21	0.89634
6	-methylene	$(CH_2)_5 \dots \dots$	70.08	0.77541
7	" diamine	$NH_2CH_2(CH_2)_3CH_2NH_2$.	102.20	0.884615
8	" dibromide		230.00	1.7017 %
9		$C_5 \ddot{H}_8 (CO_2 H)_2 (1:2)$	158.08	
10	" oxide	$CH_2 < (CH_2.CH_2)_2 > O \dots$		0.88000
11		$(CH_3)_5C_6OH$		
12				
13		$(CH_3)_5C_6CO_2H$		
	Pentane (n.)			0.64540
15	Pentaminobenzene	$C_6H(NH_2)_5$	153.09	
16	Pentinoic acid	$C_4H_5.CO_2H$	98.05	
	Perchlorether			1.90014
18	Perseïte (d. or l.)	$C_7H_{16}O_7$	212.13	
19	Phenanthrene	$\langle (C_6H_4.CH)_2 \rangle \dots$	178.08	1.063100
20	Phenanthrene-quinone	$C_6H_4CO_2CO_2C_6H_4$	208.06	1.4045
21	Phenanthrol	$C_{14}H_9OH$		
22	Phenanthroline	$C_{12}H_8N_2+H_2O$	198.16	
23	Phenazine	$C_6H_4 < N_2 > C_6H_4 \dots$	180.14	0.00925
24	Phenetol (K.)	$C_1 C_2 C_2 C_3 C_4 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5 C_5$	122.08	
26 26	Phenol	Colid II > CO C II CO	94.05	1.067735
27	-phthalein	$(OHC_6H_4)_2CO.C_6H_4CO$ $OH.C_6H_4.SO_3H$	174.11	
28		$OH.C_6H_4.SO_3H + 2H_2O$		
29	(/	$OH.C_6H_4.SO_3H + 2H_2O$ $OH.C_6H_4.SO_3H$		
	Phenoxybenzoic ac. (o.)	CHOCHCOH	214 08	
31		CHN	131 16	
32		C H CH CO HNC H	211 14	
33	-acetate	$CH_3.CO_2.C_6H_5$	136 06	1.080915
34	-acetic acid	$C_6H_5CH_2.CO_2H$	136.06	1.077883
35	-acetylene	C_6H_5C : CH	102.05	0.93712
36	-acridine (9)	$C_6H_4NC(C_6H_5)C_6H_4$		0.55114
37	-allylene	$C_6H_5.C$: C.CH $_3$		
38		$C_6H_5CH_2.CH(NH_2)CO_2H$		
39	difficulty broblems design	$C_6H_5CH(NH_2)CH_2.CO_2H$		
40	-anthracene	$ C_6H_{\tilde{\mathfrak{o}}}.C_{14}H_9$		
41		$C_6H_5CO_2C_6H_5$		1.2345
		0 5-2-6-5		

aber.	Solu	ıbility in 100 c	.c.	Melting Point, °C.	Boiling Point, °C.	Crystalline
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
56 677 88 99 100 111 122 133 144 155 117 118 129 222 222 222 223 223 233 333 333 333 3	Water (w.). 5.115 v. soluble soluble soluble v. v. s. sol. v. soluble v. soluble v. soluble v. soluble v. soluble v. soluble v. s. sol. hot s. soluble v. v. s. sol. v. soluble v. v. s. sol. v. soluble v. v. s. sol. v. soluble soluble v. v. sol. v. soluble soluble v. v. s. sol. v. sol. hot v. soluble soluble soluble soluble v. v. s. sol. v. sol. hot insoluble soluble soluble soluble soluble v. v. s. sol. v. sol. hot s. soluble	Alcohol (al.). v. soluble v. v. s. sol. v. soluble soluble v. soluble	Ether (et.). v. soluble v. v. sol. s. soluble insoluble v. soluble	232° 85-6° 10° 253° < -20° abt. 15° 140° 125° 130° 210.5° -147.5° 102-3° 69° 188° C. 100.35° C. 202° 152-3° 117° anhyd. 170-1° -34° 42.5-3° 253-4° [C. 113.5-4.5° 74-5° 116-7° 76.5°	Point, °C. C. = Corrected. 275-6° 270.5° C. 277° C. 50.28° 178-9° 208-14° C. 160°→anh. 82-7° 267° decom 340° >360° >360° >360° sub. 170-2° 182.6° C 196.7° C. 265.5° C. 141.6°	long need./al. fine need./al. fine need./al. oil
39	mod. sol.	v.s. soluble v. soluble v. soluble mod. sol.	mod. sol. insoluble v. v. s. sol. v. soluble mod. sol.	181° 	403–4° 185° sub. part	leaf. or prisms leaf. or prisms lrg. moncl./w. leaflets/al moncl. prism.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Phenyl-benzoic acid (o.).	$C_6H_5.C_6H_4.CO_9H.$	198.08	,
2	" " (m.).	$C_6H_5.C_6H_4.CO_2H$		
3		$C_6H_5C_6H_4.CO_2H$		
4		$C_6H_5(CH_2)_3CO_2H$		
5		$(C_6H_5)_2CO_3$		
6 7		$C_6H_5CH: CH.CH_2.CO_2H .$ C_6H_5CN		1.010215
8	" (K)	C_6H_5CN		1.010218 $1.0235\frac{25}{25}$
9	disulphide	$(C_6H_5)_2S_2$		1.020020
10	ditolylmethane	$C_6H_5.CH.(C_6H_4.CH_3)_2$	į.	
11		$(\mathring{\mathbf{C}}_{6}\mathring{\mathbf{H}}_{5})_{2}\mathbf{O}$	170.08	1.072820 liq.
12	-ethylamine (K.)	$C_6H_5.C_2H_4.NH_2$	1	0.95925
13		$HCO_2N(C_6H_5)_2$	197.13	
14		$HCO_2C_6H_5$		
15	-glucosazone (d.)	$C_{18}H_{22}N_4O_4$		
16 17	-glyoxylle acid	$C_6H_5.CO.CO_2H$		1.097 ²³
18		C_6H_5NC		0.9775^{15}
19		$C_6H_5CH_2.CH(OH).CO_2H.$	1	0.0110
20	$-\beta$ -lactic acid (β)	$C_6H_5CH(OH).CH_2.CO_2H.$		
21	mustard oil	C_6H_5NCS	135.14	1.138215
2 2	naphthaline (α)	$ C_{10}H_7.C_6H_5$		
23		$C_{10}H_7.C_6H_5$		
24	β -naphthylamine	$C_{10}H_7.NH.C_6H_5$		1 1050
25 26	α -naphthyl methane β - "	$C_{10}H_7.CH_2.C_6H_5$		1.1650
27		$C_{10}H_7$, CH_2 , C_6H_5	218.11	
28	β " "	$C_{10}H_7.CO.C_6H_5$		
29	-phenol (m.)	$C_6H_5.C_6H_4.OH$		
30	" (p.)	$C_6H_5.C_6H_4.OH$	170.08	
31	phosphine	$C_6H_5PH_2$		1.00115
32	phosphinic acid	$C_6H_5PO(OH)_2$	158.06	1
33	phosphenige acid	$C_6H_5PO(OH)H$		
34 35	-propiolic acid	$C_6H_5.C$; $C.CO_2H$		0.00423
36		C_6H_5 .CH(OH). C_2H_5 C_6H_5 (CH ₂) ₂ CH ₂ OH		0.994^{23} 1.007^{15}
37	-pyrazolone (3) (K)	C_6H_5 , $C_3N_2H_3$		
38		$C_6H_5.C_5H_4N$	155.11	
39	(β)	$C_6H_5.C_5H_4N$	155.11	
40	()	$C_6H_5.C_5H_4N$	155.11	
			1	

	1			1		1
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
um				C. = Cor-	C. = Cor-	Form and Color.
Z	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	s. sol. hot	v. soluble	v. sol. bz.	113.5-4.5°	242 49	sm. need./al.
	s. sol. not	v. soluble	v. soluble	166° [C.		tablets/al
	v. v. s. sol.	v. soluble	v. soluble	224°	sub.	long need./al.
	mod.sol. hot		v. soluble	51.7°	290°	flat leaf./w
1 5	mou.sor. not	v. soluble	sol. CCl ₄	78°	301-2°	silky need./al.
6	v. s. sol.	v. soluble	v. soluble	86°	302°	thin need./w.
	1100	v. soluble	v. sordbie	-12.9° C.	190.7° C.	timi need./w.
0	1100	soluble	× ×	-12.9 C.	189–91°	colorless
	insoluble	soluble	v. soluble	60-1°	310° dec.	needles
1	v. sol. chlo.	soluble	v. soluble *		or dec.	small prisms.
1	v. soi. cmo. v. v. s. sol.	4.97-10	soluble	26.9-7.0°	258.97° C.	monocl. pris.
	soluble	4.97	sorubie	20.9-7.0	197.5-9.5°	wh.—vel.
	sol, hot	soluble	soluble	73-4°	210-20°°	orthorhomb.
1	801. 1100	soluble	soluble	13-4	179–80° de.	or thornomb.
	v. v. s. sol. m	and sol hot		217°	175-80 de.	fine yel. need.
-		v. soluble	insol. CS.	65–6°		crystalline
1-0	v. s. sol.	v. soldble	∞ ∞	19.6°	243.5°	monoclinic
	V. S. SOI.	00	00	19.0		greenish
1	soluble			97–8°	105-0 dec.	thick pris./w.
1	v. soluble			93° M		prisms
	insoluble	soluble	soluble	−21° C.	221° C.	prisins
	insoluble	v. soluble	v. soluble	no m.p.	$324-5^{\circ}$	
	v. sol. bz.	v. soluble	v. soluble	102-2.5°	345° C.	leaflets
	sol. CH ₃ OH	soluble	v. sol. chlo.	102-2.3 107.5-8°	395–9.5°	thin needles
25	$50 \mathrm{CS}_2$	$1.67^{15}; 3.3^{78}$	50	58.6°	350°	tab./al., pr/e.
		2.3^{15}	v. sol. bz.	35.5°	350°	monocl.pr/al.
27		2.49^{12}	v. soi. bz.	75.5°	385°	rhomb. prisms
28		2.01^{12}		820	909	rhomb. prisms
1	s. soluble	s. soluble	s. soluble	185°		leaflets/w
	sol. hot	v. soluble	v. soluble	164-5°	305–8°	silky need.
		v. soluble	v. soluble	104-3	160-1°	/dil. al.
	23.5^{15}	soluble	soluble	158°	250° dec.	rhomb, leaf.
	7.114; 211100		soluble	70°	dec.	leaflets
	v. s. sol.	v. sol.	v. sol.	136–7°	sub.	trimet. prisms
3	V. S. SOI.	V. SUI.	v. 501.	130-1	212° dinkala	or infect prisms
-	s. soluble	00	00	<-18°		thick liquid
-	insoluble	s. soluble	s. soluble	239-40°	200 , 110	fine leaflets
	insoluble	s. soluble	s. soluble	200-40	268.5-	ine leanets
100	insoluble				70.50749	* * * * * * * * * * *
30	insoluble	v. soluble	v. soluble		269-70°749	oil
	mod. sol hot		soluble	77–8°	274-5°	glit. leaf./w
140	mod. Sor not	soluble	soluble	11-0	214-0	giio. leai./w
						1

^{*} Very soluble CS2 and benzene.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Phenyl- quinoline (α)	C_cH_z . C_oH_cN	205.13	
2	(0.)	$C_6H_5.C_9H_6N$	205.13	
3		$OH.C_6H_4.CO_2.C_6H_5$		
4		C_6H_5 .NH.NH.CONH ₂		
5	" (4)	NH ₂ .NH.CO.NHC ₆ H ₅	151.19	
6		$(C_6H_5)_2S$		1.118515
7		$ (C_6H_5)_2SO_2$		
8		NH_2 .CS. NHC_6H_5		
9		$C_6H_5.C_6H_4.CH_3$		
10	" (m.)	$C_6H_5.C_6H_4.CH_3$	168.10	
11		$C_6H_5.C_6H_4.CH_3$		1.015^{27}
12		$C_6H_5.CO.C_6H_4.CH_3$	196.10	
13		$C_6H_5.CO.C_6H_4.CH_3$		1.08817
14		$C_6H_5.CO.C_6H_4.CH_3$		
15	Dhamlana dia atia aa (a)	CH CH CO H		
	Phenylene-diacetic ac.(o)	$C_6H_4(CH_2CO_2H)_2$	194.08	
17 18		$C_6H_4(CH_2CO_2H)_2$ $C_6H_4(CH_2CO_2H)_2$		
19				
20		$C_6H_4(NH_2)_2$		1.1389:5
21	" (n)	$C_6H_4(NH_2)_2$		1.1303.
22	"(3)sulphonicae (0)	$(NH_2)_2C_6H_3SO_3H+1\frac{1}{2}H_2O$		
	Phloroglucin			
24		1: 2: $3C_6H_3(OC_2H_5)_3$		
25		1: 2: 3C ₆ H ₃ (OCH ₃) ₃		
26		$C_6H_6(NOH)_3$		
27	Phoron	[(CH,),C:CH.],>CO		0.8850^{20}
	Phosphenyl chloride		178.94	1.31920
29	Phospho-benzene	$C_6H_5P: PC_6H_5$	216.08	
30	Phthalic acid	$O.C_6H_4(CO_2H)_2$		1.585-1.593
31	aldehyde	$o.C_6H_4(CHO)_2$	134.05	
32	anhydride	$ C_6H_4<(CO)_2>O$		1.5274
33	Phthalid	$C_6H_4.CH_2.O.CO - \dots$		
34	Phthalimide	$o.C_6H_4 < (CO)_2 > NH \dots$	1	
	Phthalyl chloride (o.)			1.421418
36	" (m.)	$C_6H_4C_2O_2.Cl_2$		
37	(p.)	$C_6H_4C_2O_2.Cl_2$		0.04025
	Picoline (α) (K.)	$CH_3.C_5H_4N$		0.94225
39	(5)	CH ₃ .C ₅ H ₄ N		0.96134
40	(γ)	CH N CO H		0.9571\\$
41	Picolinic acid (2)	$O_5\Pi_4N,OO_2\Pi,\ldots,OO_2\Pi$	123.08	

-						
Number.	Sol	ability in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	s. soluble	v. soluble	v. soluble	86° ·	363°	long need.
2		v. soluble	v. soluble		283°187	thick oil
6	v. v. s. sol.	v. sol. hot		42-2.5°	172-3°12	rhomb tab .
	s. soluble	v. soluble		172°		leaf./dil. al
	s. sol. hot.	v. soluble		122°		rhomb. lf./w.
	insol.∞ bz.	soluble		thick -40°	296°780 C.	
1	s. sol. hot	s. soluble 🃜	sol.; sol. bz.	128-9°	376.4°722	moncl.pris bz.
	0.24^{25}	5.66^{25}		152°		trimet./al
					258-60°	
10	1				272-7°	
1				-2-3°	263-7°	
	2 [chlo.			$< -18^{\circ}$	315–6° C.	
	3∞ bz. and	00	∞		$314-6^{\circ 745}$ C.	
	v. sol. bz.	mod. sol.	v. soluble	*	326° C.	hex. or moncl.
	s. sol. hot	v. soluble	v. soluble	147°		moncl. need
	s. soluble	v. soluble	v. soluble	150°		fine needles
	soluble	v. soluble	v. soluble	170°	dist. dec.	needles/w
	8 v. s. sol.	v. soluble	v. soluble	244°	dist.	flat needles
1	s. soluble	v. soluble	v. soluble	102-3°	256-8°	quad.tab./ch.
	soluble	v. soluble	v. soluble	63°	282-4° 267°	rhombie
	mod. sol.	v. soluble	v. soluble	140°	267	monoclin./w.
- 3	21.04^{10}	v. s. sol. v. soluble	v. s. sol. v. soluble	217–9°		rhomb. tab
	3 1 . 1 4 insoluble			43°	sub. dec. 175°24	rhomb. tab
	5 v. sol. bz.	v. v. sol. v. soluble	v. v. sol.	52°	255.5° C.	(vol. with st)
	6 v. sol. bz.	v. soluble v. s. sol.	v. soluble sol. chlo.	0_		prisms/al
	7	soluble	soluble	exp. 155°	198.5°	cryst. powd pale yel. cryst
	8 dec.	$\infty C_6 H_6$	∞ CS ₂		224.6° C.	pale yel, cryst
-	9 insoluble	insoluble	$\infty \cup S_2$ insoluble	149-50°	224.0 C.	pale yel. pow.
	$0.0.54^{14}$	11.8 ¹⁸ abs.	0.68^{15}	195° abt.	dec. 196°	rhombic
-	1 1 .4 hot	soluble	soluble	56-6.5°	uec. 190	monitore
	2 s. sol. hot	soluble	<1°	128°	284.5° C.	rhomb. pris
100	3 v. s. sol.	v. soluble	1	73°	290°	needles/w
1	4 insol. bz.	insol. lig.	s. soluble	233.5° C.	sub.	hexag.pris./et
	5			0°	281.5° C.	oil.
1	6			41°	276°	cryst. mass
3				77-8°	259°	needles
3		000	∞		. 128–30°	colorless
3					143.4°760 C	
4	0				. 142.5-4.5C	
4	1 v. soluble	v. soluble	v. v. s. sol.	137°	sub.	fine needles

^{*}The hexagonal crystals melt at 55°, while the monoclinic crystals melt at 60°.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Picramide	$NH_2C_6H_2(NO_2)_3$	228.19	
	Picramic acid $(4:6:2)$			
	Picric acid 1: 2: 4: 6			1.76719
	Picryl chloride (K.)		247.59	
	Pimelic acid (n.)	$CO_2H.(CH_2)_5CO_2H$		0.00000
	Pinacoline	$CH_3.CO.C(CH_3)_3$		0.8209% 0.9672^{15}
	Pinacone	$[(CH_3)_2C(OH).]_2$		0.8347
	Pinene			0.8647^{20}
	Pinol	10 10		0.9420^{20}
	Piperidine			$0.8606^{\frac{21}{4}}$
12	Piperonal	$CH_2 < O_2 > C_6H_3$.CHO	150.05	
	Piperonyl alcohol	$CH_{2} < O_{2} > C_{6}H_{3}.CH_{2}OH$	152.06	
	Polyglycolid			
	Populin	20 22 0 . 2		
	Prehnitene	$1: 2: 3: 4C_6H_2.(CH_3)_4$		
	Prehnitic acid 1: 2: 3: 4 Propane	$C_6H_2(CO_2H)_4 + 2H_2O \dots$ $CH_3.CH_6.CH_3.\dots$		0.51516
	Propargyl acetate	$CH_3.CO_2.C_3H_3$		1.0052
20	1 00	CH: C.CH ₂ OH		0.9722
		CH;C.CO ₂ H		
	Propion amide	$C_2H_5.CONH_2$		$0.9565^{\frac{78}{4}}$
	Propionic acid	CH ₃ .CH ₂ CO ₂ H	74.05	0.993720
24	" (K.)	$CH_3.CH_2CO_2H$	74.05	$0.991\frac{25}{25}$
25		CH ₃ .CH ₂ CHO		0.80663
26		$(CH_3CH_2.CO)_2O$		1.03364
	Propyl acetate (n.)	$CH_3CO_2.C_3H_7$		0.890818
28 29	-acetylene alcohol	C ₃ H ₇ .C: CH	68.08	
30	amine	$CH_3.CH_2.CH_2OH$ $CH_3.CH_2.CH_2NH_2$		$0.80358^{\frac{20}{4}}$ $0.7186^{\frac{20}{20}}$
31	-benzene	$\mathrm{CH_3}(\mathrm{CH_2})_2.\mathrm{C_6H_5}.\dots$		$0.8680^{\frac{13}{4}}$
32	benzoate	$C_6H_5.CO_2(CH_2)_2CH_3$		1.0274\{\frac{1}{2}}
33	-benzoic acid (o.)	$CH_3(CH_2)_2.C_6H_4.CO_2H$		
34	" " (p.)		164.10	
35	bromide	CH ₃ .CH ₂ .CH ₂ Br	123.02	1.364016
36	butyl ether	$C_3H_7.O.C_4H_9$		0.77730
37	butyrate			0.878915
38	carbamate (K.)	$\overrightarrow{NH}_2.\overrightarrow{CO}_2.\overrightarrow{C}_3\overrightarrow{H}_7$	103.11	
39	chlorearbonate (K.)			1.08325
40	chloride	CH ₃ ·CH ₂ ·CH ₂ Cl CH ₃ ·CHCl.CH ₃		$0.8915^{18} \\ 0.8588^{20}$
71	(sec.)	O11 ₃ .O11O1.O11 ₃	78.31	0.0000
				L

Timsoluble Insoluble Insoluble Sol. acet. 188°	ber.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point °C	Crystalline
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Corrected.	Form and Color.
38 v. soluble v. soluble soluble 59-60° 198-200° flat pris	1	insoluble 20.14 ²² 31.03 ²⁰ 4 insoluble 55 ²⁰ 52.36 ¹⁵ 7 s. soluble 60.2 8 s. soluble 60.4 ¹⁵ ; 42 ¹⁰⁰ 7 v. soluble 60.5 c.c. 18 6	insoluble mod. sol. 10 soluble v. soluble v. soluble soluble on abs. soluble soluble on abs. soluble soluble on on on on on on on on on on on on on	sol. acet. s. soluble soluble 5.4^{15} wet soluble v. soluble soluble soluble soluble soluble soluble ∞ soluble soluble ∞ soluble soluble ∞ soluble ∞ soluble ∞ soluble ∞ soluble ∞ soluble ∞ soluble ∞ soluble	188° 168-9° 122.5° 81-2° 105° 35-8° 5.45° 5.45° -17° 37° 51° -223° 180° -4° 238° dec. < -195° -127° -22° C92.5° -127° -58° 140°	exp. 272°100 106° C. 172-3° 120-1° 156°, 50°15 184° 106. 2°759 263° dec. dist. in vac. 204° 314-5° 144-5° 144-6c. 213° 140-1° 48.8° C. 168.6° 101.6° 48-9° 97.4° C. 49° 158.2°752 230.7° C. 272°739	yel, mon. tab. moncl. prisms yel. leaf./w yel. prisms rhombic/w small needles silky needles. long glit. crys long crystals. powder v. fine needles large irreg. pr. long crystals. rhomb./chlo. colorless

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Propyl cyanide	CH ₃ .CH ₃ .CH ₅ CN	69.10	0.796^{15}
2	ether	$(CH_3,CH_2CH_2)_2O$		0.746516
3	fluoride	CH ₃ .CH ₂ .CH ₂ F	62.06	
4	formate	$HCO_2.C_3H_7$	88.06	0.909517
5	glycollate	$C_5H_{10}O_3$	118.08	1.062118
6	hexamethylene	$C_3H_7.C_6H_{11}$	126.15	0.767120
7	hexyl ketone	$C_3H_7.CO.C_6H_{13}$	156.16	0.824%
8	iodide	CH ₃ .CH ₂ .CH ₂ I	170.03	1.747216
9	" (K.)	CH ₃ .CH ₂ .CH ₂ I	170.03	1.742 25
10	isobutyl ketone	C_3H_7 .CO.CH ₂ .CH(CH ₃) ₂	128.13	0.81322
11	isovaleriate (K.)	(CH ₃) ₂ CH.CH ₂ .CO ₂ .C ₃ H ₇ .	144.13	0.86225
12	mercaptan	CH ₃ .CH ₂ .CH ₂ SH	76.13	
13	mustard oil	C_3H_7 .NCS	101.15	0.99090
14	nitrate	$C_3H_7.NO_3$	1	1.063115
15	nitrite	$C_3H_7.NO_2$	89.10	0.935^{21}
16	phenol (m.)	$C_3H_7.C_6H_4OH$	136.10	
17	phenyl ketone	$C_3H_7.CO.C_6H_5$		1.0090
18	propionate	$C_2H_5.CO_2.C_3H_7$	116.10	0.8885^{13}
19	pyridine (α)	$C_3H_7.C_5H_4N$	121.13	
20	sulphide	$\left[\left(\mathrm{CH_{3}.CH_{2}.CH_{2}} \right)_{2} \mathrm{S} \right]$		0.81417
	Propylene	$CH_3.CH: CH_2$		1.498
22	bromide	CH_3 . $CHBr$. CH_2Br	1	1.9307^{18}
23	chloride	CH ₃ .CHCl.CH ₂ Cl		1.1656^{14}
24	iodide	$CH_2I.CH_2.CH_2I$		2.5614^{25}
25	oxide	$\mathrm{CH_{3}(CH.CH_{2})O}$	1	0.859°
	Propylidene-acetic ac	$CH_3CH_2CH: CH.CO_2H$	100.06	
	Proto catechuic acid 3,4.			1.54154
28		$3,4(OH)_2C_6H_3.CHO$	138.05	
		$1:2:4C_{6}H_{3}(CH_{3})_{3}$		0.881015
30	" (K.)	$1:2:4C_{6}H_{3}(CH_{3})_{3}$		0.8745 25
	Pseudo-cumenol	$2:4:5(CH_3)_3C_6H_2.OH$	136.10	
32	phenanthroline	$C_{12}H_8N_2 + 4H_2O$	252.21	
	Purpurin 1: 2: 4	$(OH)_3C_6H < (CO)_2 > C_6H_4$		
	Pyrazine	$N < (CH.CH.)_2 > N$ -NH.N.CH.CH.CH	80.11 64.11	
		M.OTT		
36	Pyrazoline	$NH < NCH_2 CH_2 > \cdots$	66.13	
		$C_{16}H_{10}$	202.08	
		$N_2 < (CH.CH)_2 > \dots$	80.11	1.1108 ¹⁸ / ₁₈
	Pyridine	$CH < (CH.CH)_{2} > N$	79.08	0.977925
40	" (K.)	$CH < (CH, CH)_2 > N \dots$	79.08	0.97625

ber.	Sol	ubility in 100 c	.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1 2	soluble	∞	×0		118.5° 91–1.2°	
3		∞	∞	<-75°	2° 81°	
5 6				_9°	170.5° C. 147.5–9.5° 206–7°	
	0.10720	∞ ∞	∞ ∞	-98.8°	102.2° C. 101.5–2.5°	turns brown.
10 11	insoluble	oc .	 		155°750 153-6°	colorless
13	v. s. sol.	soluble soluble	soluble soluble		67-8° 153° 110.5°	
15	v. v. s. sol.	soluble soluble	soluble		57° 228°	crystalline
1	s. soluble	soluble ∞	∞	21°	218° 122.4° C. 165–8°	
20	insoluble 44.6 c.c.	soluble 1250 e.c.	soluble	<-180°	$141.5 - 2.5^{772} - 48.2^{\circ 749}$	
23	$\begin{array}{c} 0.245^{20} \\ 0.272^{20} \end{array}$	soluble			141.6° C. 96.8° C.	
25	33 6 . 27 ²⁰	∞	∞ soluble	9.5–10.5°	227° dec. 35° 200–1° C.	
27	1.9 ¹⁴ 5.0	v. soluble v. soluble	mod, sol, v. soluble	199° dec. 153–4°	dec.	moncl. need flat cryst./w.
30		soluble	 		169.8° C. 168–70°	colorless
32	v. v. s. sol mod.sol.hot mod. sol.	v. soluble v. soluble	v. soluble s. soluble *	71–2° 173° 256°	234–5° dist.	fine needles w. thin need./ red need./al.
34	∞ v. soluble	v. soluble v. soluble	v. soluble v. soluble	47° 69.5–70°	118°760 186–8°	tb./et.;pris.w. long need./et.
36 37	∞	∞ 1.37	v. soluble	148–9°	144° far > 360°	monoclinic
38 39	∞ ∞	v. soluble	v. soluble soluble	-8° -42°	208° ⁷⁶⁰ C. 115.2° ⁷⁶⁰ C.	monoclinic
40	∞	∞	∞		113.5-4.5°	colorless

^{*} Soluble CS₂, hot benzene, and toluene.

Number.	Name.	Formula.	Molecu-	Specific Gravity. Water = 1.
Nur	210220		Weight.	Air = I (A).
_				
		$CH < (CH, CH)_2 > N \dots$		0.97235
2	penta carbonic acid	$C_5N(CO_2H)_5 + 2 \text{ or } 3H_2O$.		
3		$C_5H_4N.SO_3H.$	159.14	
	tricarbonic ac. (2, 3, 4) Pyrocatechin		110.05	
	Pyrocoll			
	Pyrogallol			1.46340
8	trimethyl ether	$1: 2: 3C_6H_3(OCH_3)_3$	168.10	1.111845
9	Pyromeconic acid	$C_5H_4O_3$		
	Pyromellitic ac. $(1, 2, 4, 5)$		290.08	
	Pyromucic acid			
	Pyrone			1.264925
	Pyrotartaric acid			1.4105
	Pyrrol			0.96694
16	Pyrrolidine	$NH < (CH_2.CH_2)_2 > \dots$		0.852022
	Pyrroline			0.9097%
	Pyrrone		164.10	
	Pyruvic acid			1.28818
21	Quercetin	$C_{15}\Pi_{10}O_7 + 2\Pi_2O \dots $	338.12	1.584513
21	Querene (d.)	>CHOH	101.10	1.0010
22	Quercitrine		698.24	
23	Quinaldine	py. 2.C ₉ H ₆ N.CH ₃	143.11	1.101310
	Quinic acid	$(OH)_4C_6H_7.CO_2H$	192.10	
	Quinic acid	CH ₃ O.C ₉ H ₅ N.CO ₂ H	203.11	
$\frac{26}{27}$	Quinoline	$<$ $\frac{\mathrm{CH.CH}}{\mathrm{CH.CH}}>\mathrm{C_2}<\frac{\mathrm{CH.CH}}{\mathrm{N.CH}}>$		1.0947 ²⁰ 1.093 ² 5
	" (K.) Ouinolinic acid		1	1.09525
	Quinone			1.307-1 318
	Racemic acid		168.07	
31	Raffinose	$C_{18}H_{32}O_{16} + 5H_2O$	594.34	
	Resorcine			1.2717^{15}
	dimethyl ether			$1.0617\frac{15}{15}$
	Retene		234.15	
	Rhamnite		166.12	
37	Ricinoleïc acid	C. H. (OH)CO.H	298 28	0.94515
38	Rosaniline	C ₂₀ H ₂₁ N ₂ O	319.29	
39	" (p.)	$(NH_2C_6H_4)_3COH$		
40	Rosinduline		321.24	
-				

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	Form and Color.
]	∞ v. v. sol.	∞	∞ v. v. s. sol.	dec. 220°		colorless
	v. v. sol.	v. s. sol.	insoluble	uec. 220		need, or leaf
	1.2^{15}	mod. sol.	insoluble	249-50°		rhomb, tab
	v. soluble	v. soluble	v. soluble	104°	245°	monoclinic
	insoluble	v. s. sol.	v. s. sol.	268-9°	sub.	moncl. tab
7	1413	100^{25}	83.325	$132.5 - 3.5^{\circ}$	293°, 105°°	thin leaf.& ne.
8	3	v. soluble	v. soluble	47°	241° C.	lg.need/dil.al.
	soluble	soluble	s. soluble		sub. 100°+	prisms
	14.216	v. soluble		265° anhy.		tricl. tab./w
	2.7° ; 25^{100}	v. soluble	v. soluble	132.6-4.3°	sub. 100°+	monel. prisms
4	v. v. s. sol.	soluble	v. soluble	32.5° 13.6°	210–5°,97°13 165°, 65°10	prisms
13	66.7^{20}	v. soluble	v. soluble	13.0° 117–8°		triclin. prisms
1	insoluble	v. soluble	v. soluble	117-8	130–1°	prisms
16		v. soldole	v. soluble		87.5-8.5°	
-	v. v. sol.				90-1°	
	v. v. s. sol.	v. soluble	v. soluble	160°		trimet. need.
19	000	00	00	13.6°	165° dec.	/et.
	0.35			313–4° dec.		lem. yel. nd
2	1120	v. s. sol.	insoluble	234° or 225		monel. prisms
	0.0480			1000 1		1 10
1	0.04^{20}	0.25	0.80	168° dec.	246–7°	yel.need.or lf.
	409	s. soluble	insoluble	161.6° C.	dec.	monel. prisms
	v. s. sol.	1.24 ⁷⁸⁰	v. v. s. sol.	280° dec.	sub. part.	yellow prisms
	6 6	soluble	sol. sol. CS ₂		240 · 4-1 · 3°	yenow prisins
	s. soluble	soluble	∞ ∞		237-8°	usually yel
	0.55°	s. soluble	v. soluble	231°	dec.	monel. prisms
	s. sol. hot	v. soluble	v. soluble	115.7°	sub. need.	yel. m'cl.pris.
30	20.620	2.04		205–6°		triclinic
	1420	0.120 90%		118-9°anhy		crystalline
	2 147.312.5	16115	v. soluble	110°	280°	rhomb.tab./w
1	v. s. sol.	soluble	soluble	<-17°	217° C.	vol.withste'm
	v galubla	3	soluble	98.5°	390°, 135°°	leaflets/al
	v. soluble	v. soluble s. soluble	v. s. sol.	121° 92–3°		triclin.pris./a.
	7	s. soluble	∞	92-3° 16-7°	250°15	eryst. mass
	s. soluble	soluble	insoluble	10	dec.	need, or tab
	insoluble	soluble	soluble	188-9°		red. leaflets
	insoluble	v. soluble	v. soluble	198-9°		brown lf./et
		•				

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	Rosolic acid			
	Saccharic acid (d.)		210.08	
	Saccharine (d.)	$(C_6H_{10}O_5)x$	162.08	
4	Saccharin	$C_6H_4 < CO_{SO_2} > NH \dots$	183.14	
		$C_{13}H_{13}O_2(\tilde{O}H)_5$	286.15	1.426-1.434
	Salicylamide	$OH.C_6H_4.CONH_2$	137.10	
		$0.OH.C_6H_4.CO_2H$	138.05	
- 8 - 9	phenyl ether	$C_2H_3O_2$, C_6H_4 , CO_2H o. C_6H_5O . C_6H_4 . CO_2H	$180.06 \\ 214.08$	
10	aldehyde (K.)	$0.0H.C_6H_4.CHO$		1.165 ²⁵
11	anhydride	$C_{14}H_{10}O_5$	240.06	
12	Saligenin	$OH.C_6H_4.CH_2OH$		1.161325
13	Salol see Phenyl salicylate			
	Santonin	$C_{15}H_{18}O_3$	1	1.1866
	Sarcolactic acid	$CH_3.CH(OH).CO_2H$		
	Sarcosine	$CH_3NH.CH_2CO_2H$ C_9H_9N	89.10	
	Sebacic acid		202.15	
	Semicar bazid		75.16	
20	Silicobenzoic acid	$C_6H_5.SiO_2H$	138.45	
21	Silicon tetraphenyl (K.).	$Si(C_6H_5)_4$	336.56	
22				0.90420
	Silver fulminate	$C_2Ag_2N_2O_2$	299.94	
$\frac{24}{25}$	Sodium ethyl	NaC_2H_5 $NaC_3H_7O_3$	52.09 114.11	
	Sorbic acid	$CH_3(CH; CH)_2CO_2H \dots$	112.06	
	Sorbinose	$C_6H_{12}O_6$	1	1.65415
2 8	Sorbite (d.)	$ C_6H_{14}O_6 + \frac{1}{2}H_2O$	191.12	
	Starch	$(C_6H_{10}O_5)x \ x = 46-50?$		1.499-1.513
	Stearic acid	$CH_3(CH_2)_{16}CO_2H$		0.84284
$\frac{31}{32}$	aldehyde	$CH_3(CH_2)_{16}CHO$	268.30	
	anhydride	$ (C_{18}H_{35}O)_2O$		0.8621%
	Stearolic acid	$C_{17}H_{31}CO_{2}H_{3}I_{5}$		0.8021*
	Stearone	$(C_{17}H_{35})_2CO$		0.7979%
	Stilbene	$C_6H_5.CH: CH.C_6H_5$		0.9707119
	Styrene	$C_6H_5CH: CH_2$		0.912113
	Suberic acid	$CO_2H(CH_2)_6CO_2H$	174.12	
	Suberone	<(CH ₂ .CH ₂ CH ₂) ₂ >CO		0.96850
40	Suberyl alcohol	<(CH ₂ .CH ₂ .CH ₂) ₂ CHOH	114.12	0.9595^{15}
-				

Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline
Num	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	Form and Color.
	v. s. sol.	v. sol. hot v. soluble	mod. sol.	abt. 270°	dec.	red leaflets
3	1315			160-1°	volatile	large rhb. pris. (monocl.
	0.430525	3.12/90%	*	220°dec.	sub.	/acetone
	3.34 ¹⁵ ; 85 ⁹⁵ s. soluble	soluble	insoluble	201° 139.9° C.	230–40° 270° dec.	rhomb.lf.orpr. leaflets
7	0.2206 ²⁵ v. s. sol.	49.63 ¹⁵ v. soluble	50 . 47 ¹⁵ v. soluble	159.05° C.	sub. $75-6^{\circ 0}$ dec. $> 140^{\circ}$	fine need./w fine need./w.
	v. s. sol. v. v. s. sol.	v. soluble	v. soluble	113°	355° dec.	leaf./dil. al
1	s. soluble insoluble	soluble v. soluble	v. soluble	-20° 200-20°	196.70°760 dec.	bright yellow vel. amor.
12	6.722	v. soluble	v. soluble	86°	sub. 100°+	rhomb. tab
14	0.02^{17}	2.022	1.317	169-70°	sub. dec.	trimet.t.or pr.
15 16	v. soluble	s. soluble	∞	210-5°		syruprhombic
	s. soluble 0.02 ²⁵ 0.4 ⁶⁵	soluble v. soluble	sol. lig.	95° 133–3.5°	265-6°755 294.5°100	glit. leaf./lig. feath'y cryst.
19	v. soluble	soluble	v. sol. chlo.	96°		pris./abs. al
	insoluble insoluble	sol. KOH v. s. sol.	v. soluble v. s. sol.	92° 230–1°		glassy/et fine leaflets
	insoluble 0.075^{13}	v sol NH.	soluble insol. HNO ₃	exp	230°	small need
24						
26	decom. v. s. sol.	soluble v. soluble	v. soluble	134.5°	228° dec.	white powd
1	200 soluble	s. soluble v. s. sol.		164° 110–1°		rhombic crystalline
	insoluble insoluble	insoluble 0.113995%	insoluble soluble	no m.p. 69.32°	291°100	amorphousleaflets
31		0.115995%	·····	63.5°	212-3°22	scales/ether
32 33	insoluble	v. s. sol.	soluble	71–7° 71–1.5°		crystalline
34 35	insoluble	s. soluble s. sol. hot	v. soluble s. sol. hot	48° 87.8°	260°	long pris./al leaflets
36		0.88 ¹⁷ abs.	7.8814	124-5°	306-7°	monoclinic
38	insoluble $0.08^{\circ}-0.16^{20}$	∞ soluble	∞ 0.809	140°	146° ⁷⁵⁹ C. 300°; 152°°	need. or tab
39 40	s. soluble	v. soluble	soluble		178.5-9.5°C 184-5° C.	oil

^{*} Sol. 2 in amylacet, 5 in ethylacetate, s. sol. bz, v. sol. HNO₃.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \textbf{2} \textbf{Succinic acid.} &$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
19 Talomucic acid (d. or l.) $CO_2H[CH(OH)]_4CO_2H$ 210.08 220 Tannin $C_{14}H_{10}O_9$ 322.08
20 Tannin $C_{14}H_{10}O_{9}$
14-10-9
21 Partaric acid (i.)
22 " (d.) $CO_2H[CH(OH)]_2CO_2H$ 150.05 1.7598 ²⁹
23 " (l.)
24 amide (d.)
25 Tartronic acidOHCH $(CO_2H)_2 + \frac{1}{2}H_2O$ 120.03
26 Taurine
27 Taurocholic acid $ C_{26}H_{45}NSO_7 + H_2O 533.48 $
28 Teraconic acid $(\tilde{CH}_3)_2C$: $C(CO_2\tilde{H})$. 158.08
CH ₂ .CO ₂ H.
29 Teracrylic acid C ₃ H ₂ CH: CH.CH ₂ CO ₂ H
30 Terebic acid
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
33 nitrile (p.) $C_6H_4(CHO)_2$ 134.03 128.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
35 Terpentine (pinene) $C_{10}H_{16}$
36 Terpinene $C_{10}H_{16}$ $C_{10}H_{16}$ $C_{10}H_{16}$ $C_{10}H_{16}$
$C_{10}H_{18}O$
38 Terpinolene
39 Tetrabrom-benzene (s.) 1:2:4:5C ₆ H ₂ Br ₄ 393.87 3.027 ²⁰
40 (as.) $ 1:3:4:5C_6H_2Br_4 $ 393.87
0 4 4

Number.	Sol	ubility in 100 c	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Cor- rected.	and Color.
1	0.45^{15}	insoluble	insoluble	 242–3°		needles
2	5.820; 28.165	9.9915	1.1915	185°	235°	monoclinic
	insoluble	soluble	v. s. sol.	119.6°	261°	trimetric/al
4	v. soluble	mod. sol.		125-6°	287-8°	octah./acet
				16-7°	190-2° C.	
	198.612	0.4		189.2° C.		monoclinic
1	v. soluble	v. soluble	v. soluble	165-7°		rhombohed
	v. s. sol.	v. soluble	s. soluble	238° C.		scales
	v. v. s. sol.	v. soluble	S. SOLUDIO	dec. 280°		flat pris /w
	1.10820	v. s. sol.	v. s. sol.	chars.280°+		rhomb, tab
1	soluble	v. soluble	insol. abs.	84-6°		pris. tab./w
	insoluble	s. soluble	s. soluble	123-4°		tablets
1	50	v. soluble	insoluble	130° anhy.		large trimet
1	delig.	v. soluble	v. soluble	141° anhy.		
	v. soluble	v. soluble	v. soluble	259-60°		needles
	∞^0	v. soluble	v. soluble	5°		
	2^{15} ; 6.7100	50/abs. ⁷⁸	0.75^{15}	125-6°	300° dec.	thick prisms.
18		ou/abs.	0.10	120 0	176–7°	[acetone
	v. soluble	v. sol. hot	sol. acetone	158° dec.		v. sm. leaf.
	20	167	v. s. sol.	dec. 210°		amorph. pow.
	125^{15}	107	v. s. soi.	140° anh.		rectang, tab.
	139	60^{25}	0.4	168-70°		monoclinic
	136.6	v. soluble	insoluble	170°		monoclinic
24	130.0	soluble	msoluble	170		rhombic
_	v. soluble	v. soluble	s. soluble	185-7° dry.	sub. 110°+	prisms/et
	6.5^{12}	insoluble	insoluble	88°	dec.	tetrag. need
27		v. soluble	s. soluble	00	uec.	delig, needles
		v. soluble	v. soluble	164° dec.	→anhyd.	triclinic
28	v. soluble	v. soluble	v. soluble	104 dec.	→annyu.	oriennie
29			,	<-18°	226-8° C.	
		soluble	soluble	174°	dec.	mono /al
	s. soluble	v. v. s. sol.	insoluble		sub.	needles
	0.0016 1.5^{100}			no m.p. 116°	245–8°	fine need /w.
	1.0	v. soluble	v. s. sol.	222°	240-0	ine need / W.
33		s. soluble	s. sol. hot	69-70°	volotilo	thick pris./et.
34				09-70-	volatile	oilet.
_	v. s. sol.	∞ abs.	. ∞		156°; 50°15	
36	1 1 1 1		1 1-1	35°	179–82° 218°	(trange area
1	insoluble	v. soluble	v. soluble	33	183–5° C.	ftransp.crys
38				174 50	183-5° C.	\\et
39				174-5°	329°	monoel. pris.
40		v. v. s. sol.	v. soluble	98.5°	329	fine needles
					1	

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Tetrabrom-ethane (s.)	CHBr. CHBr	345.86	$[2.9716^{\frac{17}{4}}]$
2		CBr ₂ .CBr ₂	343.84	
	Tetrachlor-aniline	$2: 3: 4: 5NH_{2}.C_{6}HCl_{4}$	230.87	
4	"	$2: 3: 5: 6NH_2.C_6HCl_4$	230.87	
5	-benzene (s.)	$1:2:4:5C_{6}H_{2}Cl_{4}$	215.82	1.85821
6	" (as.)	$1:2:3:5C_6H_2Cl_4$	215.82	
7		$1:2:3:4C_{6}H_{2}Cl_{4}$	215.82	
8		CCl_3 , $CHCl$, O , C_2H_5 ,		1.418215
9	-ethylene	CCl ₂ : CCl ₂		1.6312%
10 11		$(OH)_2C_6Cl_4$		0.77864
	Tetradecane (n.)	$CH_3(CH_2)_{22}.CH_3$		0.76452
13	Tetradecylene (n.)	CH ₂ (CH ₂) CH: CH		0.7745\$
	Tetraethyl-ammonium hy.		147.21	
15		$1: 2: 4: 5C_6H_2(C_2H_5)_4$	190.18	0.88844
16		$(C_2H_5)_4Si$		0.768222
17	Tetrahydro-benzaldehyde			1.00910
18	-naphthaline (α)	$C_{10}H_{12}$		0.934%
19	-phthalic acid (Δ')	$C_6H_8(CO_2H)_2$		
20	-quinoline (K.)	$C_9H_{11}N$		$1.056\frac{25}{25}$
21 22	-toluene	CH ₃ .C ₆ H ₉		$0.8048^{\frac{29}{4}}$ $0.8019^{\frac{19}{4}}$
	-m-xylene Tetrahydroxy-benzene(s.)	$C_6H_8(CH_3)_2$		0.8019 *
24	-banzoic seid	2: 3: 4: 5(OH) ₄ C ₆ HCO ₂ H	1	
25		$O_2C_6(OH)_4$		
26		CI _a : CI _a		2.98320
27	-pyrrol	$C_4\tilde{I}_4NH$		
	Tetramethyl			
28	-ammonium hydroxide	$(CH_3)_4NOH + 5H_2O$	181.23	
29	-anthracene	$C_{18}H_{18}$		
30	-benzene (s.)	$1:2:4:5C_6H_2(CH_3)_4$		0.838081
31	-benzene (as.)	$1:2:3:5C_6H_2(CH_3)_4$		0.89612
32		1: 2: 3: $4C_6H_2(CH_3)_4$		0.88169
33 34	-diamino-penzopnenone " -diphenyl-amine	$CO[C_6H_4N(CH_3)_2]_2$ $NH[C_6H_4N(CH_3)_2]_2$		
	Tetramethyl-diamino	$111[\bigcirc_{6}11_{4}11(\bigcirc_{11_{3})_{2}]_{2}$	255.29	
36		$H_2C.[C_6H_4N(CH_3)_2]_2$	254 26	
37				
38		(CH ₃) ₄ Si	88.50	
39	Tetramethylene-diamine.	NH ₂ .(CH ₂),.NH ₂ [2H ₂ O	88.18	
40	-tetra carbonic acid	$1, 1, 2, 2 C_4 H_4 (CO_2 H)_4 +$		

^{*} The crystals from benzene melt at 102°

-						
Number.	Sol	lubility in 100	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.)	Ether (et.).	rected.	rected.	and Color.
1				<-20°	137°36	
1 2				56°	100015	tablets
	v. sol. bz.	v. soluble	v. soluble	118°		
4				90°	0.40 00 0	
	mod.sol.CS ₂		mod. sol.	140-1° 50-1°	243–6° C. 246°	$monel / CS_2$ $needles$
7		s. soluble	v. soluble	45-6°	254°	needles
8					189.7°759	
9	insoluble	v. soluble	v. soluble	232°	121° sub. dec.	monel, pris
	msoluble	v. soluble	v. soluble	50.7-1.3°	243°15324.1°	/bz.
12				5.5°	252.5° C.	
13				-12°	240-6°	
	v. deliq.	soluble		dec. 190° 13°	dec. 250° C.	needles
	insoluble				153°	
1 1 1	insoluble				186-8°	
1-0	v. soluble			120° dec.	208-12°	losflots/
1	v. soluble	00	00	(abt. 20°)	246-50°	leaflets/w wh. →vel
21					105-6° C.	
22					122°	1. 1 0 /
	mod. sol.	mod. sol.	v. soluble	215–20° 147–8°		glit. leaf./ace. cryst./acet. e.
	s. soluble	v. soluble	s. soluble	no m.p.		bluish cryst
_	v. sol. CS ₂		soluble	192° Ĉ.		monocl. pris.
27	0.02	5.815, 90%	50; sol. bz.	no m.p.	dec. 140–50	yel. n./dil. al.
28	220 ¹⁵ , ∞ ⁶³	v. soluble		62-3°	dec.	delig. cryst
29	, , ,			abt. 280° d.		
00	v. sol. bz.	v. soluble	v. soluble	79-80°	193–5°	moncl, leaf
31				-4°	195–7° 204° C.	
33		v. soluble	v. soluble	174° C.		
34		soluble		119°		quad.tab./CS2
35		soluble		90-1°	dist.	leaflets/al
100	insoluble	mod. sol.	v. soluble	*	dist.	tric.n/bz.oral.
38	insoluble				30-1°	
100	v. soluble	v. soluble	v. soluble	27–8° 198–203°		leaflets
40	v. soluble	v. soluble	v. soluble	198-203		thick pris./w.
	l i					

while those from alcohol melt at 93-94°.

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Tetranitro-methane	C(NO ₆),	196.16	1.65013
2		$C_{10}H_4(NO_2)_4$		
3	(β)	$C_{10}^{10}H_4^4(NO_2^2)_4^4$	308.19	
4	Tetraphenyl-ethane (s.) .	$(C_6H_5)_2CH.CH(C_6H_5)_2$	334.18	1.182
5	-ethylene	$(C_6H_5)_2C: C(C_6H_5)_2$	332.16	
6			320.16	
7	Tetrolic acid		84.03	
8	Thallin			
	Theine (see Caffeine)	3 10 3		
10	Theobromine	C ₇ H ₈ N ₄ O ₂	180.22	
11	Thiazol	1: 3N(CH) ₃ S	85.13	1.199817
12	Thio-acet-amide	CH ₃ .CS.NH ₂	75.14	
13	" -anilid	CH ₃ .CS.NHC ₆ H ₅	151.17	
14	-acetic acid	CH ₃ .COSH	76.09	1.07410
15	-benzoic acid	$C_6H_5.COSH$	138.10	
16	-carbamic acid		93.19	
17	-carbanilid		228.24	1.32054
18	-o-cresole	$CH_3.C_6H_4.SH$	124.12	
19	-m. "	$CH_3.C_6H_4.SH$		1.06254
20	-p. "	$CH_3.C_6H_4.SH$	124.12	
21	-cyanuric acid		177.33	
22	-diphenyl amine	$S < (C_6H_4)_2 > NH$	199.17	
23	-glycerine	$(OH)_2C_3H_5.SH$	108.12	1.29514
24	-hydroquinone (p.)	$C_6H_4(SH)_2$	142.17	
25		C_8H_6S	134.11	
26	-α naphthol	$C_{10}H_7SH$	160.12	1.15493
27	-β- "	$C_{10}^{10}H_7SH$	160.12	
28	-oxamide	$NH_2SC.CSNH_2$		
29	-phene	<(CH.CH) ₂ >S		1.0705\$
30		$<$ (CH.CH) $_2>$ S	84.09	
31	" alcohol		114.11	
32	" aldehyde	C ₄ H ₃ S.CHO		1.21521
33	" carbonic acid (a)	$C_4H_3S.CO_2H$		
34	" " (β)	$C_4H_3S.CO_2H$		
35		C_6H_5 .SH		1.07525
36		CSCl ₂		1.5085^{15}
37	-resorcine	$C_6H_4(SH)_2(1:3)$	142.17	
38	-semicarbizid	NH ₂ .CS.NH.NH ₂		1 400 1 450
39	-urea	NH ₂ .CS.NH ₂		1.406-1.450
40	Thymol (4:1:3)	$(CH_3)_2CH_1C_6H_3(CH_3)OH_1$		0.97915
	Thymo-quinone		164.10	0.004176
42	Tiglic acid	$CH_3.CH: C(CH_3).CO_2H.$	100.06	0.9641 ⁷⁶

-	1			1	1	
Number.	Sol	ubility in 100	c.c.	Melting	Boiling	Crystalline
nm		1		Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Form and Color.
Z	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Colors
1	insoluble	soluble	soluble	13°	126°	white cryst
	v. v. s. sol.	v. v. s. sol.	v. v. s. sol.	259°	exp.	rhomb./chlo.
				203°	exp.	long thin n./a
4	14 bz.	s. soluble	sol. acet.	211° C.	379–83° C.	rhomb. need.
1		v. s. sol.	v. s. sol.		415–25°	monoclinic
	sol. bz.		insoluble	285°	431°780	wh. cryst./bz.
	v. soluble	v. soluble	v. soluble	76°	203°	tablets
	v. s. sol.	v. soluble	v. soluble	42-3°	283°735	thick trim. pr
9	0.03^{18}	0 0421 0 07	0.02035	329–30°	sub. 290°+	rhombic mic.
11		$0.04^{21} 95\%$	0.032^{35}	329-30	116.8° C.	rnombie mie.
	v. soluble	soluble		107.5-8.5°	110.8 C.	moncl.tab./et
	insoluble	sol. KOH		75°	dec.	needles/w
14	00	00	∞	<-17°	93°	
	insoluble	00	00	24°		crystals
	v. soluble	v. soluble	v. soluble			needles
	insoluble	v. soluble	v. soluble	154°	dec.	trimet. tab
	insoluble	soluble		15°	194.30780	leaflets
19				<-20°	195.40760	1 0 1 1
	insoluble	soluble	v. soluble	43°	190.2-1.7°	leaflets/et
1	v. sol. hot v. sol. bz.	v. s. sol. s. soluble	v. s. sol.	no m.p. 180°	dec. 200° 371° dec.	yel. needles
	s. soluble	s. soluble	mod. sol. insoluble		371 dec.	thick liquid
24		00	insoluble	98°		hexag. leaf
				30-1°	220-1°	leaflets
	insoluble	v. soluble	v. soluble		285° dec.	
27		soluble	v. soluble	81°	288° dec.	glit. scales/al.
28	s. soluble	sol. hot	s. soluble	dec.		yel. red. cryst
	insoluble	soluble	sol. H ₂ SO ₄		84° C.	
1	insoluble	soluble	∞		83.5-4.5°	colorless
31					207° C.	
32		1 1 1 1	soluble	100 =0	198° C.	oily
-	0.75^{25} 0.43^{25}	v. soluble	v. soluble	126.5° 138.4°	260° C. dec. with steam	monocl. need.
_	insoluble	v. soluble	~	138.4	168-9.5°	monocl.pris/w wh. \rightarrow yel
36		v. soluble	0		73.5°	red
37				27°	243°116.4°11	crystalline
	soluble			181–3°		long need./w.
39	9	v. s. sol.	v. s. sol.	180°		thick rhb. pri.
40	0.08315	v. soluble	v. soluble	49.65° C.	231.8°	hexag. or mo.
	v. s. sol.	v. soluble	v. soluble	45.5°	233.5° C.	or, yel, tab
42	s. soluble	soluble	soluble	64.5°	198.5°	triclinie

=		1	1	
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
	•			
1	Tiglic aldehyde	CH, CH: C(CH,).CHO	84.06	0.87115
2	Tin diethyl		177.08	
3	tetra-ethyl	$\operatorname{Sn}(C_2H_5)_4$	235.16	1.18723
4	" -methyl			1.31380
5	triethyl		412.24	1.41150
6	Tolane	$C_6H_5.C: C.C_6H_5$	178.08	
7	Toluene			0.872315
8		$CH_3 \cdot C_6H_5 \cdot \dots $		$0.8625^{\frac{25}{25}}$
9		$CH_3.C_6H_4.SO_2NH_2$		
10		$CH_3.C_6H_4.SO_2NH_2$	171.17	
11	" chloride (o.).			
12	(p.).			
13	sulphonic acid (o.)			
14 15	" (m.) " (p.)	9.04.9		
	Toluic acid (o.)		126 06	
17		$CH_3.C_6H_4.CO_2H$	136.06	1 0543112
18	" (n)	$CH_3.C_6H_4.CO_2H$	136 06	
19		CH_3 . C_6H_4 . $CONH_2$		
20		$CH_3.C_6H_4.CONH_2$		
21		$CH_3.C_6H_4.CONH_2$		
22		$(CH_3.C_6H_4.CO)_2O_5$		
23	Toluidine (o.)	CH ₃ .C ₆ H ₄ .NH ₂	107.11	1.003115
24	" " (K)	$CH_3.C_6H_4.NH_2$		
25	" (m.)			0.996118
26	" (p.)	$CH_3.C_6H_4.NH_2$	107.11	0.97358
	Tolunitrile (o.) (K)	CH_3 , C_6H_4 , CN	117.10	$0.995\frac{25}{25}$
28		$CH_3.C_6H_4.CN$		
29	(p.) (IX.)	CH ₃ .C ₆ H ₄ .CN	117.10	
30	Tolyl carbinol (o.)	CH_3 , C_6H_4 , CH_2OH	122.08	
$\frac{31}{32}$	" (m.)		122.08	
33	(p.)			
34	" (m)			
35	(III.),,,	$CH_3.C_6H_4.CH_2Cl$		
36	mustard oil (a.) (K.)	$CH_3.C_6H_4.N:CS$	149 16	1 10488
37	" " (n) (K)		149.16	
	Tricetamide	(CH ₂ CO) ₂ N		
39	Triacetin	(C ₀ H ₂ O ₀) ₃ C ₂ H ₂	218.12	1.160615
40		$(C_2H_3O_2)_3C_3H_5$		
41	Triamino-benzene	1:2:3C,H,(NH,),	123.19	
-		· · · · · · · · · · · · · · · · · · ·		

Ī.			•			
Number.	Sol	ubility in 100 (c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nun	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	2	∞	∞		116.6° C.	
	insoluble	soluble			dec.	oily
3	insoluble		soluble		175°	
4	insoluble	insoluble			78° 256–70° de.	
6		v. sol. hot	v. soluble	60°	275–300°	monoclinic
-	insoluble	v. soi. not ∞	v. soluble	-92.4°	111.0°	monocimie
1	v. v. s. sol.	soluble	∞	-93.2°	110-1°	colorless
9	0.1059	3.6^{5}		155°		octahedral
	0.199	7.5^{5}		137°		leaflets
	insoluble					oily
	insoluble		soluble	69°	$145-6^{\circ_{15}}$	rhombic
13						crystalline
15				92°	146-7°0	leaf, or pris.
	s. soluble	v. soluble	sol. chlo.	102°	259°	long need./w.
	1.7100	v. soluble	v. soluble	110.5°	263°	prisms/w
18	s. soluble	v. soluble	v. soluble	176-7°	275° C.	needles
1	soluble	v. soluble	v. soluble	147°		needles
1	s. soluble			97°		rhomb. pris
21 22	s. soluble	v. soluble	s. soluble	165°	14 00.00	need.or tab./.
	s. soluble	on		39° $\alpha - 21^{\circ}$	abt. 325° 199. 7°760	crys./et.or bz.
24		00	00	$\beta - 15.5^{\circ}$	199.7	annorphous
-	s, soluble	soluble	00	5 10.0	199-200°	usually vel
25	s. soluble	00	∞	<-13°	203° C.	
1	0.739^{21}			45°	200.3° C.	leaflets/al
1	insoluble	∞	∞		201-4°	wh.→yel
-	insoluble	∞	∞		209-11°	wh. →yel
	insoluble 1 ²⁰ ; 115 ¹⁰⁰	v. soluble v. soluble	v. soluble v. soluble	28-9° 34°	215–7° 223° C. 750	$wh. \rightarrow yel$ needles
31		v. soluble	soluble	<-20°	217°	needles
	v. s. sol.	v. soluble	v. soluble	58.5-9.5°	217°	needles
33					197–9°	
34					195-6°	
35					200-2°	
1	insoluble	v. soluble	∞		238-9°	
37		v. soluble	v. soluble	26-7° 78-9°	242-4°	wh. →yel
38	s. soluble	∞	soluble ∞	18-9	258-9°	sm. need./et.
40		00	00			colorless
1-0	v. soluble	v. soluble	v, soluble	103°	336° C.	crystalline
	1			1		1- 3

Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Triamino-benzene	1:2:4C ₆ H ₃ (NH ₂) ₃	123.19	
2	-phenol (2, 4, 6)	$OH.C_6H_2(NH_2)_3$	139.19	
	Triazobenzene	C ₆ H ₅ .N: N ₂		1.098010
4	Tribenzylamine	$(\mathring{C}_6 \mathring{H}_5 CH_2)_3 \mathring{N} \dots$	287.21	
5	Tribrom-acetic acid	$CBr_3.CO_2H$	296.89	
6	aniline (2:4:6) (K.)	$NH_2.C_6H_2.Br_3$	349.95	
7	-benzene (s.)	1: 3: $5C_6H_3Br_3$	314.91	
8	" (as.)		314.91	
9	(٧ -)	1: 2: 3C ₆ H ₃ Br ₃	314.91	2.658^{16} 2.436^{23}
10 11	-hydrine	$CH_2Br.CHBr.CH_2Br$ 2: 4: 6OH.C ₆ H ₂ Br ₃	330.91	2.4302
12	-resorcine (2: 4: 6)	$(OH)_{2}C_{6}H.Br_{3}$	346.91	
	Tributyl amine	$(C_4H_9)_3N$		0.778220
		CO,H.CH(CH,CO,H),		
		$OH.C_6H_2(CO_2H)_3 + H_2O$	226.05	
	Trichlor-acetal	$CHCl_2.CCl(OC_2H_5)_2$	221.44	
17	"	$CCl_3.CH(OC_2H_5)_2$	221.44	1.288
18	-acetamide	$CCl_3.CONH_2$	162.41	
19	-acetic acid	$CCl_3.CO_2H$		1.629861
20	-benzene (s.)	$1:3:5C_6H_3Cl_3$	181.38	
21	(as.)			1.4658 ¹⁰ liq .
22 23	" (v.) benzoic acid	1: 2: 3C ₆ H ₃ Cl ₃	181.38 225.38	
24	benzoie acid	2: 4: 5Cl ₃ C ₆ H ₂ .CO ₂ H		
25		$3: 4: 5Cl_3C_6H_2.CO_2H$		
26	-brommethane	Cl ₂ CBr		2.0550%
27	-ethane (1, 1, 1)	CCl ₃ .CH ₃		1.324926
28	$(1, 2, 2) \dots$	CH ₂ Cl.CHCl ₂		1.47840
29	-ethyl-alcohol	CCl ₃ .CH ₂ OH	149.38	1.550023
30	-ethylene	CHCl: CCl ₂		
31	-hydrine	CH ₂ Cl.CHCl.CH ₂ Cl		1.417 7
32	-hydroquionone	$Cl_3C_6H(OH)_2(2:3:5)$		
33	-phenol (2:4:6)	$\text{Cl}_3\text{C}_6\text{H}_2\text{OH}$		
34	-phenol (2:3:5)	$\text{Cl}_3\text{C}_6\text{H}_2\text{OH}$		
35	-quinone	$Cl_3C_6H.O_2$	211.30	0.770048
	Tricosane (n.)			0.779948
	Tridecane	$CH_3C(CH_2)_{11}CH_3$		
		$C_{13}H_{26}$		
	Triethyl amine (k.)	$(C_2H_5)_3N$	101.16	0.7250^{25}
41	arsine	$(C_2H_5)_3As$	162.12	1.15117
42		$C_6 H_3 (C_2 H_5)_3 \dots$	162.15	0.86367

-	1				1	
Number.	Sol	ubility in 100 c	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nu	Water (w.).	Alcohol (al.).	Ether (et.).	rected.	rected.	and Color.
1	v. soluble	v. soluble	s. soluble	44°	abt. 340° 257°	leaf./chlo
	insoluble	s. soluble	s. soluble		73.5022-4	vellow oil
	v. s. sol.	s. soluble	v. soluble	91.3°		moncl.lea./al.
	v. soluble	v. soluble	v. soluble	135°	245° ·	monel, tab
6	insoluble	s. soluble	soluble	121-2°		sm. needles
7		s. sol, hot		119.6°	278°	needles
. 8		s, soluble		44°	275-6°	needles
9				87.4°		monocl. pris.
				16-7°	219-21°	prisms
122	0.007^{15}	v. soluble	soluble	96°	sub.	monocl. pris.
12	v. s. sol.	v. soluble	soluble	111°		small need
120					216.5°	
	40.5214	v. soluble	s. soluble	165°	sub. dec.	rhombic
1	0.5^{10}	v. sol. hot	s. soluble		dec. 180°	warts
		soluble		83°	230° dec.	moncl. n./al.
-	0.5	∞	∞ ; ∞ glyc.		197°	
1	v. s. sol.	v. soluble	v. v. sol.	141°	238-9°	mncl. tab./w.
120	v. soluble	soluble	soluble	57°	195°	rhomohedral.
1-0		soluble		63.40°	208.5°C.784	long needles.
21				17°	213°	
		s. soluble		53-4°	218-9°	large tab./al.
	v. v. s. sol.	v. soluble .		163°	sub.	sm. need./w.
E	mod. sol.			129°		needles
-	v. v. s. sol.	v. soluble	v. soluble	203°	sub.	needles/al
1-0				-21°	104.07° C.	
27					74.5° 114°	
1				17.8°	151° ⁷³⁷	-3 1 4 1
30	s. soluble	∞	∞	17.8	88°	rhomb. tab
100					158°	
	0.615	v soluble	v. soluble	134°	sub. leaf.	large prisms.
	0.051^{11} :	v. v. sol.	v. soluble	67–8°	243.5–4.5°	rhomb. pris.
!	sol. hot	v. v. soi. v. soluble	v. v. sor. v. soluble	53-4°	252-3°	long need./al.
-	insoluble	s. soluble	v. soluble	165-6°		large yel leaf.
	msorubie	s. soluble	soluble	47.7°	320.7°	glit leaf./al.et
37		v. soluble	v. soluble	93.5°	volatile	need
38		v. soluble	v. soluble	-6.2°	234°	necu
39				0.2	232.7° C.	
	14 . 2420	00	00		88-9°	wh. →vel
-	insoluble	0	~		140°736 dec.	wii. →yei
42	orabie				217° C.	

=				
Number.	Name.	Formula.	Molecu- lar Weight.	Specific Gravity. Water = 1. Air = 1 (A).
1	Triethyl borate	(C.H.) BO	146 12	0.88638
2	horida	$(C_2H_5)_3B$	09 12	0.606123
3	aerbinol	$(C_2H_5)_3COH$	116 12	0.0901
4		$(C_2H_5)_3P$		
5	phosphite	$(C_2H_5)_3PO_3$	166 19	0.014
6		$(C_2H_5)_3SiOH$		0.8709
7	sincor	$(C_2H_5)_3SiOC_2H_5$		0.84034
8	cilican hydrida	$(C_2H_5)_3SiOC_2H_5$ $(C_2H_5)_3SiH$		0.7510
9	sincon nyariae	$[(C_2H_5)_3Si]_2O$		0.7510
	Trihydroxy-benzene (as.)	[(C ₂ H ₅) ₃ SI] ₂ O	196 05	0.8090
	hannais asid	$1: 2: 4 \circ_{6} \Pi_{3}(O\Pi)_{3} \dots$	170.05	
11	butana (1.9.2)	$2: 3: 4(OH)_3C_6H_2CO_2H CH_3.(CHOH)_2CH_2OH$	106.00	1.232417
12	-butane (1, 2, 3)	Cn_3 . $(CnOn)_2Cn_2On$	100.08	
13	Triiodo-acetic acid	$2:4:6(OH)_3C_5H_2N$	127.08	
15	-benzene (as.)	1: 2: 4C ₆ H ₃ I ₃	400.94	0.70725
	Triisoamyl amine (K.)	$[(CH_3)_2CH.CH_2.CH_2]_3N$	227.30	0.78528
17	Triisobutyl amine (K.)	$[(CH_3)_2CH, CH_2]_3N \dots$	185.26	
	Trimellitic acid			
19	Trimesic acid (s.)	$1:3:5U_6H_3(CU_2H)_3$	210.05	0.00 = 50
	Trimethyl acetic acid			
21	amine	$(CH_3)_3N$	59.11	0.662-5
22		(CH ₃) ₃ N		0.662-5.2
23	anthracene	1: 2: 4(CH ₃) ₃ C ₁₄ H ₇	220.13	
24		1: 3: $6(CH_3)_3C_{14}H_7$	220.13	
25		1: 4: $6(CH_3)_3C_{14}H_7$	220.13	
26	arsine	$(CH_3)_3As$	120.07	
27	benzoic acid	$2:4:5(CH_3)_3C_6H_2CO_2H.$	164.10	
28	bismuth	$(CH_3)_3Bi$	253.57	2.3010
29	boride	$(CH_3)_3B$	56.07	1.9108
30		$(CH_3)_3C.C(CH_3): CH_2$	98.12	
31	carbinol			
32		$(CH_3)_3C.COH(CH_3)_2$		
33		$(CH_3)_3.C_6H_5O_7$		
34	phosphate	$(CH_3)_3PO_4$	140.07	
35	phosphine	(CH ₃) ₃ P	76.07	
	Trimethylene	$CH_2 < (CH_2)_2 > \dots$	42.05	
37	bromide	CH ₂ Br.CH ₂ .CH ₂ Br	201.97	1.9878
38	-carbonic acid	<(CH ₂) $>$ CHCO ₂ H	86.05	1.0879%
39	-dicarbonic acid (1, 2)	$<(CH_2)_2>C<(CO_2H)_2.$	130.05	
		$1:3:5 \text{ C}_6\text{H}_3(\text{NO}_2)_3$	213.15	
41	-cresole(1:3)(2:4:6)(K.)	$CH_3.C_6H(OH)(NO_2)_3$	243.16	
42	-cyan methane	(NO ₂) ₃ CCN.	176.16	

ber.	Solu	ubility in 100 c	c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Corrected.	C. = Corrected.	Form and Color.
1					119.5°	
1		soluble	soluble		95°	
	s. soluble insoluble	soluble	soluble		$140-2^{\circ}$ $127^{\circ 744}$	
	insoluble	soluble v. soluble	soluble		155.5-6.5° ⁷⁴¹	
	insoluble		v. soluble		155.5-6.5 154°	
1 -	insoluble	sol. H ₂ SO ₄			153°	
1	insoluble	501. 112504			107°	
9		sol. H ₂ SO ₄			231°	
	v. soluble	v. soluble	v. v. sol.	140.5°	with steam	mncl.leaf./et.
11	0.1312	soluble	v. soluble	d.195-200°		silky need./w.
	soluble	∞	∞		$134-6^{\circ 28}$	
1-0	mod. sol.			220-30°		miero. eryst
-	soluble			150° dec.		glit. yel. leaf.
1		soluble		76°	sub.	small needles
120	insoluble	v. soluble	00		237–40°	$\text{wh.} \longrightarrow \text{yel} \dots$
	insoluble	v. soluble	\(\sigma_{i}^{\text{\tint{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\tinit}\\ \text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\tii}\\\ \ti}\\\ \\tittt{\text{\texi}\text{\text{\text{\texi}\text{\text{\tex{	228°	189–92°	$\text{wh.} \rightarrow \text{yel} \dots$
	mod. sol.	v. soluble	mod. sol.	345–50°	sub. 300°+	prisms/w
	2.09 2.2^{20}	v. soluble	v. soluble	35.35°	163.7° C	regular
1-0	v. soluble	v. soluble	soluble		3.2-3.8°.	legalai
-	v. soluble	v. soluble	soluble		3.2-3.8°	colorless
23				243°		
24	sol. bz.	s. soluble	soluble	222°		
	sol. bz.	v. s. sol.	mod. sol.	227°	sub.	fluoresc. leaf.
1	s. soluble				<100°	
1 -	v. s. sol. hot	v. soluble	v. soluble	149-50°	with steam	1" need./bz
28 29					110°	
30					78–80°	gas
1	deliq. ∞	soluble		25 .45°	82.94° C.	rhomb. tab
	\rightarrow hydrate.	Solubic		17°	131°	crystalline
33				78.5-9°	283-7° dec.	triclinic
34		soluble	soluble		197.2° C.	
1000	insoluble		soluble		40-2°	
36				-126.6°	-34°749	
37		soluble	soluble	<-75°	165° C.	
-	s. soluble		1 11	18–19°	182-4°	17 / /
100	20	2.95 ²⁵ abs.	soluble	175° 121.2°	210°30	needles/et
	0.04 ²⁰	soluble	v. soluble soluble	121.2° 105–6°	dec.	rh'b. tab./al. sm. yel. need.
1	dec.	dec.	soluble	41.5°	exp. 220°	campher.mass
12	1400.	Jacc.	poruble	11.0	Jexp. 220	campher mass

$ \begin{array}{ c c c c c } \hline \textbf{Formula.} & \textbf{Formula.} & \textbf{Molecu-Weight.} & \textbf{Gravity.} \\ \hline \textbf{Trinitro-naphthaline } (a) & \textbf{C}_{10}\textbf{H}_{8}(\textbf{NO}_{2})_{3} (1;3:5) & 263.16 \\ & \textbf{``} & (\beta) & \textbf{C}_{10}\textbf{H}_{8}(\textbf{NO}_{2})_{3} (1;3:8) & 263.16 \\ & \textbf{``} & (\gamma) & \textbf{C}_{10}\textbf{H}_{8}(\textbf{NO}_{2})_{3} (1;4:5) & 263.16 \\ & \textbf{``} & (\gamma) & \textbf{C}_{10}\textbf{H}_{8}(\textbf{NO}_{2})_{2} (1;4:5) & 263.16 \\ & \textbf{``} & (2,3,6) & (\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{``} & (3,4,6) & (\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{``} & (3,4,6) & (\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{``} & (3,4,6) & (\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{``} & (3,4,6) & (\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{``} & (\textbf{K}.) & (\textbf{K}.) \\ & \textbf{8} & -\text{toluene } (\textbf{s.}) & 2:4:6(\textbf{NO}_{2})_{3}_{6}\textbf{H}_{2},\textbf{OH} & 229.15 \\ & \textbf{-triphenyl methane} & (\textbf{NO}_{2}\textbf{C}_{6}\textbf{H}_{3})_{2}\textbf{C} & 227.16 \\ & \textbf{-triphenyl methane} & (\textbf{NO}_{2}\textbf{C}_{6}\textbf{H}_{3})_{2}\textbf{C} & 227.16 \\ & \textbf{-triphenyl methane} & (\textbf{NO}_{2}\textbf{C}_{6}\textbf{H}_{3})_{2}\textbf{C} & 39.05 \\ & \textbf{2Tripalmitin} & \textbf{C}_{3}\textbf{H}_{6}\textbf{C}_{3} & 99.05 \\ & \textbf{2Tripalmitin} & \textbf{C}_{3}\textbf{C}_{10}\textbf{H}_{10} & 29.05 \\ & \textbf{2Tripalmitin} & \textbf{C}_{3}\textbf{H}_{6}\textbf{C}_{3} & 99.05 \\ & \textbf{2Tripalmitin} & 2Tripa$					
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ -\text{phenol} \left(s \right) \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ $	Number.	Name.	Formula.	lar	Gravity. Water = 1.
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ -\text{phenol} \left(s \right) \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ $		Trinitro-			
$ \begin{array}{c} 2 \\ 3 \\ 3 \\ 4 \\ -\text{phenol} \ (s.) \\ 4 \\ -\text{phenol} \ (s.) \\ 5 \\ 6 \\ (2,3,6) \\ (3,4,6) \\ (NO_2)_3 C_6 H_2 O H \\ (NO_2)_3 C_6 H_2 O H \\ 229.15 \\ 6 \\ (3,4,6) \\ (NO_2)_3 C_6 H_2 O H \\ 229.15 \\ 6 \\ (3,4,6) \\ (NO_2)_3 C_6 H_2 O H \\ 229.15 \\ 7 \\ -\text{resorcine} \ (1:3) \ (2:4:6) \\ (OH)_2 C_6 H (NO_2)_3 \\ (V.) \\ 24:6 \ (NO_2)_3 C_6 H_2 C H_3 \\ 229.15 \\ 7 \\ -\text{resorcine} \ (1:3) \ (2:4:6) \\ (OH)_2 C_6 H (NO_2)_3 \\ (V.) \\ (V.) \\ 8 \\ -\text{toluene} \ (s.) \\ 2:4:6 \ (NO_2)_3 C_6 H_2 C H_3 \\ 227.16 \\ (NO_2 \cdot C_6 H_4)_3 C H \\ 379.23 \\ 227.16 \\ (NO_2 \cdot C_6 H_4)_3 C H_3 \\ 379.23 \\ 241.18 \\ 11 \ \text{Trioxymethylene} \ (a.) \\ (2.4:6) \ (K.) \\ (CH_3)_2 C_6 H (NO_2)_3 \\ (CH_3)_2 C_6 H_3 \\ (CH_3)_2 C_6 H_3 \\ (CH_3)_3 C C C_2 H \\ 288.13 \\ 13 \\ 14 \\ 4 \\ \text{amine} \\ (C_6 H_5)_3 C C O_2 H \\ 288.13 \\ 14 \\ 4 \\ \text{amine} \\ (C_6 H_5)_3 C C O_2 H \\ 288.13 \\ 15 \\ 15 \\ \text{benzene} \ (s.) \\ 1:3:5 C_6 H_3 (C_6 H_5)_3 \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ (C_6 H_5)_3 C O H \\ 260.13 \\ 17 \\ \text{ethane} \ (s.) \\ (C_6 H_5)_3 C O H \\ (C_6 H_5)_3 C O H \\ 287.26 \\ (C_6 H_5$	1		C.,H.(NO.), (1:3:5)	263.16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		" (γ)	$C_{10}H_{\epsilon}(NO_{2})_{0}(1:4:5)\dots$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-phenol (s.)	$(NO_9)_3C_6H_9.OH$	229.15	see picric ac
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	-resorcine (1:3) (2:4:6)	$(OH)_2C_6H(NO_2)_3$	245.14	
$\begin{array}{c} 9 \\ -\text{triphenyl methane} \\ 10 \\ -\text{xylene}(1:3)(2:4:6)(K) \\ 11 \\ \text{Trioxymethylene} \\ (a). \\ 2 \\ \text{Tripalmitin} \\ 2 \\ \text{Triphenyl acetic acid} \\ 12 \\ \text{Triphenyl acetic acid} \\ 13 \\ \text{Triphenyl acetic acid} \\ 14 \\ \text{amine}. \\ 15 \\ \text{benzene} \\ \text{(s.)}. \\ 16 \\ \text{carbinol}. \\ 17 \\ \text{ethane} \\ \text{(s.)}. \\ 18 \\ \text{guanidine} \\ \text{(a)}. \\ 19 \\ \text{(b)} \\ \text{(b)} \\ \text{(b)} \\ \text{(b)} \\ \text{(c)} \\ \text{(b)} \\ \text{(c)} \\ \text{(b)} \\ \text{(c)} \\ \text{(b)} \\ \text{(c)} \\ \text{(c)} \\ \text{(c)} \\ \text{(c)} \\ \text{(b)} \\ \text{(c)} \\$		(K.)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	-triphenyl methane			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$C_8H_6O_3$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			CH(CHO)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
29 -glycerine					
30 TyrosinOH.C ₆ H ₄ .C ₂ H ₃ (NH ₂)CO ₂ H 181.18 1.456					
31 Undecane (n.)	31	Undecane (n.)	$CH_3(CH_2)_0CH_3$		
32 Undecylene $C_{11}H_{22}$	32				
33 Undecyclic acid					
34 Uramil (murexan)				143.16	
35 Urea CO(NH ₂) ₂ 60.11 1.323				60.11	1.323
36 nitrate	36	nitrate	CO(NH ₂) ₂ .HNO ₂		
37 Urethane	37				
38 Uric acid $C_5H_4^2N_4O_3^2$	38	Uric acid		168.19	1.855-1.893
39 Usnic acid (d)	39	Usnic acid (d)	$C_{18}H_{16}O_7$	344.13	
40 Usnic acid (i)	40	Usnic acid (i)	$C_{18}H_{16}O_7$	344.13	

					1	1
Number.	Solubility in 100 c.c.		c.c.	Melting Point, °C. C. = Cor-	Boiling Point, °C. C. = Cor-	Crystalline Form
Nux	Water (w.).	Alcohol (al.).	Ether (et.).	C. = Cor- rected.	C. = Cor- rected.	and Color.
	v. sol. acet.		v. sol. chlo.			monoclinic
	v.s.sol.chlo.		v. s. sol.	218° 154° T		monoel./ehol.
1	0.64 chlo.	$0.122^{18}90\%$	0.39	154°		glit. yel. leaf.
_	mod.sol.hot	v. soluble	v. soluble	117-8°		small need
	mod.sol.hot		v. soluble	96°		glt.n.or scales
7	v. s. soluble	soluble	s. soluble	174-5°		sm. yel. pr
1	$0.386^{17} \mathrm{CS}_2$	v. sol. hot		82°		rhombic
	sol. bz.		v. s. sol.	206-7°		cryst./bz
	insoluble	soluble	s. soluble	180-1°		yel. prisms
12	soluble	soluble 0.0043 ^{21abs}	soluble v. soluble	60-1° 65.5°	sub. 310–20°°	needles
	s. soluble	mod. sol.	s. soluble	2.64-5°	310-20	monocl. pris.
	mod. sol.bz	s. soluble	sol. acet.	127°	347-8°	mncl. pris./et
	sol. bz.	s. soluble	s. soluble	169-70°	dist.	rhb. tab./et
	sol. bz.	v. soluble	v. soluble	162°	360°+	hexag./bz
17		insoluble	v. soluble	54°	348–9° C.	monocl. leaf
1	insoluble v. s. sol.	7.94 ²⁵ abs.	v. soluble	144-4.5° 131°	dec.	rhb. pris./al . regular tab
	mod. sol.	mod. sol.	s. soluble	142°		thick needles
	sol. bz. hot	s. soluble	v. soluble	92°	358-9°754	rhombic
22	v. sol. chlo.	v. s. sol.	v. s. sol.	145-7°		transp. cryst.
	insoluble	mod. sol.	v. soluble	79°	>360°	mncl. prs./et.
	s. soluble	∞	soluble	71 00		colorless
25	insoluble	v. s. sol. 4.87 ²⁵	21.70^{25}	71.6° 45–6°	dist. in vac. 205°	crystrhomb. need.
27	msoluble	1.01	21.70	$\alpha 101^{\circ} \beta 125$	246–7°	long prisms
	insol. dec.	sol. Na ₂ CO ₃	soluble	[γ 76°	57° dec.	led. brown oil
	insoluble	mod. sol.	insoluble			
	0.0420	0.0117	insoluble	314–8° C.		silky needles.
31				-25.6°	194.5° C.	
32	insoluble o	v. soluble		28.5°	195.4° C. 212.5°100	scales
	insoluble	sol. NH ₃	sol.con. HCl	20.0	212.0	needles
	100; sol. bz.	5.06	s. soluble	132.65° C.	dec.	quadratic
	s. soluble	s. soluble		163°		monoclinic
_	v. soluble	v. soluble	v. soluble	49–50°	180°	leaflets
	0.007	insoluble	insoluble		dec.	scales
	insoluble	v. s. sol.	s. soluble 0.3^{20}	203° 192–3°		yel. pris./al
40	insoluble	v. s. sol.	0.3-	192-3		yel. mon. pris.

-				Specific
Number	Name.	Formula.	Molecu- lar Weight.	Gravity. Water = \mathbf{I} . Air = \mathbf{I} (A).
2				
1	Uvic acid (2:5) (3)	(CH ₃) ₂ C ₄ HO.CO ₂ H	140.06	
2	Uvitic acid 1: 3: 5	$CH_3.C_6H_3(CO_2H)_2$	180.06	
	Valeric acid (n.)	$CH_3(CH_2)_3CO_2H$		0.941520
4	(227) (227) 1 1 1	$CH_3(CH_2)_3CO_2H$		0.9373
5	tordong do i i i i i i i i i i i i i i i i i i	$CH_3(CH_2)_3CHO$		0.818511
. 6		$(C_5H_9O)_2O$		0.9272
7	Valerylene	$CH_3.C : C.CH_2.CH_3$ $CH_3: C.(CH_3).C : CH$		
	Valylene	CH_2 : $C.(CH_3).C$: CH CH_3 O. C_6 H $_3$ (OH) C O $_2$ H		
10		$CH_3O.C_6H_3(OH)CO_2H$ $CH_3O.C_6H_3(OH)CH_2OH$	154.08	
11		$CH_3O.C_6H_3(OH)CHO$		
	Veratrol (K.)	$C_6H_4(OCH_3)_2$		1.08438
	Veronal	$(\mathring{C}_2\mathring{H}_5)_2\mathring{C} < (\mathring{C}ONH)_2 > \mathring{C}O$	160.18	
14	Vesuvine impure	$(C_{18}H_{18}N_{e}) + \frac{2}{3}C_{6}H_{6}$	398.50	
15	Vinyl acetic acid	CH ₂ : CH.CH ₂ CO ₂ H		
16	amine	$(.CH_2.)_2 > NH$		0.832124
17	bromide	CH ₂ : CHBr	1	1.516714
18	chloride	CH ₂ : CHCl		
19 20	ether	(CH ₂ : CH) ₂ O		0.04020
20	ethyl carbinol " ether	C_2H_3 .CH(OH). C_2H_5 C_2H_3 .O. C_2H_5		0.840 ² ° 0.7625 ¹ 7
22	sulphide	$(CH_2: CH_2)_2S$		0.702517
	Wood alcohol	(see methyl alcohol)	00.11	0.0120
	Xanthene	$CH_2 < (C_6H_4)_2 > O \dots$	182.08	
	Xanthine (2:6)	$C_5H_2N_4(OH)_2$		
	Xanthone	$ CO < (\hat{C}_6H_4)_2 > O \dots$	196.06	
27	Xylene (o.)	$C_6H_4(CH_3)_2$	106.08	0.881815
28	" " (K.)	$C_6H_4(CH_3)_2$		0.87625
29	" (m.)	$C_6H_4(CH_3)_2$		0.869118
30		$C_6H_4(CH_3)_2$		0.86325
$\begin{array}{c c} 31 \\ 32 \end{array}$	(p.)			0.866118
33	" (A.)	$C_6H_4(CH_3)_2$	1	0.85925
34	com i pure(ix.)	$C_6H_4(CH_3)_2$		0.80128
	Xylenol (1, 2) (3)	$(CH_3)_2C_6H_3.SO_3H + 2H_2O$		
36	" (1. 2) (4)	$(CH_3)_2C_6H_3OH$		
37	" (1, 3) (2)	$(CH_3)_2C_6H_3OH$		
38	$(1, 4) (4) \dots \dots$	$(CH_3)_{\circ}C_6H_3OH$	122.08	
39	" (1, 3) (5)	(CH.) C.H.OH	122.08	
40	" (1, 4) (2)	$(CH_3)_{\circ}C_6H_3OH$	122.08	1.16915
41	Xylidine (1: 2) (3)	$(CH_3)_2C_6H_3.NH_2$		0.99115
42	"emps (1: 2) (4)	$(CH_2)_2C_6H_3.NH_2$	121.13	1.0755^{17}

ber.	Sol	ubility in 100 (c.c.	Melting	Boiling	Crystalline
Number.	Water (w.).	Alcohol (al.).	Ether (et.).	Melting Point, °C. C. = Corrected.	Point, °C. C. = Cor- rected.	Form and Color.
1	0.25^{100}	v. soluble	v. v. sol.	135°	with steam	needles/w
	insoluble	v. soluble	v. soluble	290-1°	sub.	fine need./w.
	3.718	∞	00	-58.5°	186.4° C.	
	3.7 c.c. ¹⁶	. ∞	00	-59°	185.5-6.5°	colorless
1	s. soluble				103.4° 215°	
1	insoluble				55.5-6°	
8					50°	
-	0.12^{14}	v. soluble	soluble	207°	sub.	needles/w
3	v. sol. hot	v. soluble	v. soluble	115°	dec.	prisms
	1.014; 580	v. soluble	v. soluble	80-1°	285° in CO.	monel. n./w
12	s. soluble	soluble	soluble	23°	207.1° C. 3	eryst
	$0.7^{20}, 8^{100}$	soluble	v. soluble	182°		cryst. pw
14	s. sol. hot	v. soluble	v. soluble	118°		cryst./bz
				$ < -20^{\circ}$	168°, 70°12	
16		soluble			56°	
17					16°750 -18-15°	
18		soluble soluble	00		39°	
1-0		soluble	· · ·		114-4.5°	
-	s. soluble	00	00		35.5°	
- A	s. soluble	∞	00		101°	oily
	v. s. soluble		soluble	100.5°	315° C.	leaflets/al
	0.26^{17}	0.033^{17}	v.sol.KOH		sub. pt.dec.	powder
	insoluble	0.7	s. soluble	173–4°	350-1°	long need/al.
1	insoluble	v. soluble	v. soluble	-27.1° -29°	142.6° C. 142–3°	1 1
-	insoluble insoluble	soluble v. soluble	v. soluble	-29° -54.8°	139.3° C.	colorless
	insoluble	soluble	v. soluble	- 54°	138.5–9.5°	colorless
1	insoluble	v. soluble	v. soluble	15°	137 · 5° C.	moncl. prisms
-	insoluble	soluble	00	15°	137-7.5°	monel, prisms
33	insoluble	soluble	∞			
34	soluble			dec.		rectang. tab
1	soluble	soluble		75°	218° C.	long need./w.
- 0	soluble	soluble		65°	2250757	long need./w.
1	s. sol. hot	soluble		49°	211-2°	leaflets
	v. s. sol.	00	00 1 N-OII	26°	211.5° C.	needles
	s. soluble soluble	soluble soluble	sol. NaOH	68° or 64° 74.5°	219.5° 211.5°	fine need./w.
40	soluble	soluble		<-15°	211.5° 225°	monocl. pris
	s. soluble	mod.sol.lig		49°		moncl. tab

Number.	Name.	Formula.	Molecu- lar Weight.	Water = 1.
2 3 4 5	" 1: 3: 5	$\begin{array}{c} (CH_3)_2C_6H_3, NH_2 \\ (CH_3)_2C_6H_3, NH_2 \\ (CH_3)_2C_6H_3, NH_2 \\ (CH_3)_2C_6H_3, NH_2 \\ \end{array}$	121.13 121.13 121.13 150.08 123.48	0.9184^{15} 0.9935^{0} 0.980^{15} 1.535^{0} 1.182^{18}

Number.	Solubility in 100 c.c.		Melting Point, °C.	Boiling Point, °C.	Crystalline Form
Nun	Water (w.).	Alcohol (al.). Ether (et.).	C. = Cor- rected.	C. = Corrected.	and Color.
1 2					
3 4					
1 -	117 ²⁰ dec.	v. v. s. sol. v. v. s. sol. dec. soluble	150–3° – 28°	118°	orthorhomb
7	dec.		-40°	46°	

In 200 Constant Points C.

XXXI

PHYSICAL CONSTANTS OF ALKALOIDS

COMPILED BY ATHERTON SEIDELL

EXPLANATORY REMARKS

This table was compiled from the data found in the United States Pharmacopæia, 8th Revision (1905); Beilstein's "Handbuch der Organ. Chemie," 3rd Edition (1896–1899), and Ergänzungsbände thereto (1901–1906). Merck's 1907 Index; Hager's "Handbuch der Pharmaceutischen Praxis" (1900); Bruhl's "Die Pflanzen Alkaloide" (1900); and Pictet's "The Vegetable Alkaloids"—translated and revised by H. C. Biddle (1904).

No attempt has been made to include every alkaloidal compound mentioned in the above-named reference books, but those only have been selected which appear of most general interest and for which the constants have been

most completely determined.

The solubility data are for the most part of qualitative reliability only. The quantitative statements found in the reference books vary considerably, especially so in the case of alcohol as the solvent. In fact it is practically hopeless to harmonize them in a reasonably satisfactory manner. In the present table an attempt has been made in all cases to select a value from the available sources which is nearest the truth, giving preference, however, to the U. S. P. results. It may also be mentioned that in practically all reference books the solubilities are expressed in terms of parts of solvent to dissolve one part of alkaloid. It is often uncertain whether weight or volume parts are meant, and furthermore the temperature is frequently omitted, as well as the degree of purity or strength of the solvent employed. For greater uniformity and convenience, the solubility values have been recalculated to terms of weight of alkaloid dissolved in 100 grams of the solvent. Unless otherwise stated, it is to be understood that the compounds are colorless.

Sol. = soluble, v. = very, sl. = slightly, insol. = insoluble.

The compiler of this table desires to acknowledge his indebtedness to Professors W. A. Puckner and H. M. Gordin for valuable criticisms and suggestions.

XXXI. — PHYSICAL CON-

BY ATHERTON

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Aconitine	C ₃₄ H ₄₇ NO ₁₁ (or C ₃₃ H ₄₅ NO ₁₂)	645.386	195° (1)
2	hydrobromide	$C_{34}H_{47}NO_{11}.HBr + 2.5H_2O$.	771.354	163° (4)
3 4 5	hydrochloride nitrate sulphate	C ₃₄ H ₄₇ NO ₁₁ .HCl+3H ₂ O(3) C ₃₄ H ₄₇ NO ₁₁ .HNO ₃ +5.5H ₂ O (C ₂₄ H ₄₇ NO ₁₁) ₀ .H ₂ SO.	735.902 798.484 1388.858	
6 7 8	AnhalonidineAnhalonineAnhydroecgonine	$egin{array}{c} C_{12}H_{15}NO_3 & & & \\ C_{12}H_{15}NO_3 & & & \\ C_9H_{13}NO_2 & & & \\ \end{array}$	221.13 221.13 167.110	154° (5) 85.5° 235° (6)
11	Apoatropine hydrochloride	$egin{array}{ccc} C_0 H_{13} N O_2 . H C I$	307.646	
13	Apocodeine	$C_{17}H_{17}NO_2$	281.162 267.146	2009 109 (2)
14 15 16	Arecoline hydrobromide Atropine (Daturine)	${f C_{17}H_{17}NO_2.HCl. \atop C_8H_{13}NO_2.HBr. \atop C_{17}H_{23}NO_3}$	236.042 289.194	
17		$(C_{17}H_{23}NO_3.HCl)AuCl_3$	629.242	135°-7°
18 19	sulphate	$C_{17}H_{23}NO_3IO_3H$		183°-184°.5 (4) (7)
20 21 22	Bebeerine (Bebirine)	$ \begin{array}{c} (C_{17}H_{23}NO_3.C_5H_{10}O_2).H_2O. \\ C_{18}H_{21}NO_3 \\ C_{18}H_{21}NO_3.HCl. \end{array} $	409.22 299.178 335.646	42° 214° (8) 259°
24	Berberine	C ₅ H. NO. HCl + 4H ₅ O(11)	443 · 242 443 · 678 431 · 232	
26	bisulphate	$C_{23}^{23}H_{26}N_2O_4 + 4H_2O(11)$	466.292	
27 28 29	nitrate	$\begin{bmatrix} C_{23}H_{26}N_2O_4.HC1\\ C_{23}H_{26}N_2O_4.HNO_3.2H_2O\\ (C_{22}H_{26}N_2O_4)_2H_2SO_4,7H_2O. \end{bmatrix}$	430.696 493.278 1012.654	

⁽¹⁾ With slow heating at 182° with decomposition. (2) 3% solution in alcohol. (3a) In 2% aq. solution. (3) Or $3.5~\rm{H}_2O$.

⁽⁴⁾ Of the anhydrous salt.
(5) 159° according to Beilstein.
(6) With decomposition.

STANTS OF ALKALOIDS

SEIDELL

Number.		Solubility at 25°.		Optical	Crystalline Form,
Num H	I ₂ O. (9	C ₂ H ₅ OH.	$(C_2H_5)_2O.$	Activity.	Color, Etc.
1 0.	0312	4.54	2.27	$[\alpha]D^{23} = +11^{\circ}$ (2)	rhombic tables or prisms; also amor- phous.
2 solub	le so	luble		$[\alpha]_D = -30.47^{\circ} (3a)$	monoclinic tables.
3 solub		luble		lævo	
4 solub		luble		lævo	
5 solub		luble		lævo.	
6 solub		luble luble	soluble soluble	inactive	needles, octohedra.
8 v. sol		luble	v. sl. sol.		crystals. [morphic.
9 solub		luble		$[\alpha]_{D} = -61.5^{\circ}$	needles, rhombic, hemi-
10 sl. so		soluble	v. soluble	[tt]D 01.0	prisms.
11 solub	le				leaflets. [mass. amorphous, gummy
12 v. sl.		luble	soluble		amorphous, gummy
13 sl. so	luble so	luble	soluble		amorphous mass, turns green in air.
14 2.		2.62	0.0536		monoclinic prisms.
15 solub		luble			prisms.
16 0.		68.5			rhombic prisms or needles (sublimes).
17 sl. so	luble				crystals, leaflets or glistening powder.
18 26	3	27	0.0467	inactive	powder or needles.
20 v. sol	uble sl.	. soluble	sl. soluble		crystal crusts.
21 0.016		soluble		$[\alpha]_D = -298^{\circ}$	glistening prisms.
22 v. sol	luble v.	soluble			needle clusters (hygroscopic). [prisms.
23 22.		1.0 (cold)	v. sl. sol.		red-yellow needles or
24 solub		luble			bright orange needles.
25 1.		soluble			fine yellow crystals.
26 0.31	(cold) v.	soluble	v. sl. sol.	$ \begin{array}{c c} [\alpha]D = -119^{\circ} \\ -127^{\circ} (10) \end{array} $	monoclinic columns, plates, prisms or leaf- lets.
27 v. sol					crystalline clusters.
28 solub	le so	luble			four-sided prisms.
29					long needles.
28 solub					crystalline clust

⁽⁷⁾ At about 189.9° (U. S. P.) (8) At 180° when amorphous. (9) At 178° when anhydrous.

⁽¹⁰⁾ In chloroform solution.
(11) Also with .2H₂O.
(12) Also with .1 H₂O.

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Bulbocapnine	$C_{19}H_{19}NO_4$	325.162	199°
2	Caffeine (tri methyl xan-thine).	$C_8H_{10}N_4O_2+H_2O(1)\dots$	212.136	236.8° (2)
3 4 5 6 7 8	citratehydrochloridesulphate	$\begin{array}{c} C_sH_{10}N_4O_2.C_cH_sO_7.\dots\\ C_sH_{10}N_4O_2.HCl+2H_2O(3)\\ C_sH_{10}N_4O_2.H_2SO_4(4)\dots\\ C_sH_{10}N_4O_2.L_2.HI+1.5H_2O \\ C_sH_{10}N_4O_2.C_cH_{10}O_2.\dots\\ C_{14}H_{25}NO_2.\dots\end{array}$	266.620 292.206 592.912 296.20	171° (21) 121° (cor.)
9	hydrochloride	C ₁₄ H ₂₅ NO ₂ .HCl	275.678	225° (7)
10	Chelerythrine	$C_{19}H_{11}NO_2(OCH_3)_2 \dots$	347.146	203°-4°
11	Chelidonine	$C_{20}H_{19}NO_5 + H_2O$	371.183	135°-6°
12 13	hydrochloride Cinchonidine	$C_{20}H_{19}NO_5.HCI$	389.634 294.196	207.2° (cor.)
14	hydrochloride	$C_{19}H_{22}N_2O.HCl+H_2O(11).$	348.68	
15 16	sulphate	$3H_{*}O(12)$		205.3° (13)
17	Cinchonine	$C_{19}H_{22}N_2O$	294.196	264.3° (cor.)
18	hydrochloride	$C_{19}H_{22}N_2O.HCl+2H_2O$	366.696	
19 20 21	nitratebisulphatesulphate	$\begin{array}{c} C_{19}H_{22}N_2O\cdot HNO_3 + \frac{1}{2}H_2O \dots \\ C_{19}H_{22}N_2O\cdot H_2SO_4 + 4H_2O \dots \\ (C_{19}H_{22}N_2O)_2\cdot H_2SO_4 + \\ 2H_2O(19). \end{array}$		198.5°

⁽¹⁾ Anhydrous when crystallized from

alcohol.

(2) When dried at 100° to constant weight.

(3) Also anhydrous, Beilstein.

(4) Also with 1 H₂O.

(5) With decomposition.

⁽⁶⁾ In absolute alcohol.

⁽⁷⁾ Begins to darken and decompose at

⁽⁷⁾ Begins to darken and decompose at higher temperature.
(8) In 96% alcohol, p = 2.
(9) For a solu, in a mixture of 2 vols. CHCls and 1 vol. C2H₅OH of 97%, p=1.1-2.1.
(10) Grams per 100 cc. of saturated solution in 99.75 vol., per cent alcohol.
(11) Also with .2 H₂O.

ber.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,
Number.	H ₂ O.	C_2H_5OH (92.3 wt. $\%$).	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{O}.$	Activity.	Color, Etc.
1	insoluble	soluble	soluble	$[\alpha]_D = +$ 237.1°	rhombic hemihedral
2	2.19	1.88	0.267		flexible silky needles (sublimes).
4 5	soluble (5) soluble (5)				monoclinic crystals. monoclinic crystals. rosettes of needles.
7	soluble (5) soluble (5) insoluble	v. soluble 11 (12°) (6)	3		long metal green prisms fatty glistening needles monoclinic prisms,
			3	55'(6)	rhombic crystals (sublimes).
	11.6				long needles, rhombic or monoclinic.
10		sl. soluble	sl. soluble	inactive	rhombohedral crystals (solutions fluoresce blue).
	insoluble	soluble	soluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{20} = + \\ 115^{\circ} \ 24'(8) \end{bmatrix}$	monoclinic tables or powder (tribolu- minescence in sol.)
	0.31 (18°) 0.019 (11.5°)	6.13 (13°)	0.53 (15°)	$\begin{bmatrix} \alpha \end{bmatrix} D^{17.80} = - \\ 107.9^{\circ} (9)$	fine crystals. large trimetric prisms.
14	5 (20°)	25.55 (18.5°) (10)		lævo	large double trimetric pyramids, monoclinic.
15 16	v. soluble 1.6	v. soluble 1.4	0.0237	lævo lævo	long monoclinic prisms glistening needles or prisms.
17	0.043	0.795 (20°) (15)	0.27 (10°) (16)	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = + \\ 229.6 \ (14)$	monoclinic tables, columns, prisms or needles (sublimes).
18	4.5 (cold)	100 (cold)	0.18 (cold)	$[\alpha]_D = +$ $165.5 (17)$	monoclinic crystals.
20	3.79 (12°) 217 (14°) 1.72	soluble 111 (14°) (18)	0.043	dextro	monoclinic crystals.
21	1.42	10	0.043	$\begin{bmatrix} \alpha \\ D = + \\ 170.3 (20) \end{bmatrix}$	prismatic, rhombic monoclinic.

 $[\]begin{array}{lll} (12) \ \ {\rm Also\ with\ .6\ H_2O.} \\ (13) \ \ {\rm Darkens\ at\ 203^\circ,\ U.\ S.\ P.} \\ (14) \ \ {\rm In\ absolute\ alcohol.} \\ (15) \ \ {\rm In\ 84\ vol.\ per\ cent\ alcohol.} \\ (16) \ \ {\rm In\ ether\ of}\ \ d=0.73. \\ \end{array}$

 $[\]begin{array}{lll} (17) & 2.425 \ p \ \mbox{in aq. solution.} \\ (18) & \mbox{In alcohol of} \ d = 0.85, \\ (19) & \mbox{Also . I H_2O.} \\ (20) & 0.855 \ p \mbox{in aq. solution.} \\ (21) & \mbox{For anhydrous salt.} \end{array}$

_				
Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Cinchotine	$\overline{\mathrm{C}_{19}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}\ldots\ldots}$	296.212	265°-278°
2	Cocaine	$C_{17}H_{21}NO_4$	303.178	(cor.) 98°
3	hydrochloride	C ₁₇ H ₂₁ NO ₄ .HCl		
4	Codeine	$C_{18}H_{21}NO_3 + H_2O$	317.194	154.9° (4)
5 6	hydrochloride	$C_{18}H_{21}NO_3.HCl + 2H_2O$ $C_{18}H_{21}NO_3.H_3PO_4 + 2H_2O$	371.678 433.280	264° (4) 235°
7	sulphate	(6).		278° (7)
8	Colchicine	$C_{22}H_{25}NO_6$	399.21	142.5 (8)
9	Conhydrine (oxyconiine)	C ₈ H ₁₇ NO	143.146	120.6
10	(pseudo)	C ₈ H ₁₇ NO	143.146	101-2
11	Coniine (d-2-propyl piperidine).	C ₈ H ₁₇ N	127.146	-2.5° (10)
12 13	hydrochloride Cryptopine	$C_8H_{17}N.HCl$	163.624 369.194	208°–210° 217°
14	Cytisine (Ulexine)	$C_{11}H_{14}N_2O$	190.132	152°-3°
15	Delphinine	$C_{22}H_{35}NO_{6}(13)$	409.29	120° (14)
16	Diacetyl morphine (Heroin).	$C_{21}H_{23}NO_5$	369.194	171°, 173°
17	hydrochloride.	$C_{21}H_{23}NO_5.HC1$	405.662	230°-231°
	Ibltlb-10 695	(E) I = 0707 -les		

⁽¹⁾ In absolute alcohol, p=0.625. (2) In chloroform solution, q= per cent CHCl₃. (3) In alcohol solution, q=% C₂H₅OH. (4) For anhydrous salt.

⁽⁵⁾ In 97% alcohol. (6) Also with 1.5 H₂O. (7) Chars at 200° and residue melts at 278°. (8) When dried over H₂SO₄.

ra-						
Number.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,	
Num	$\mathbf{H}_2\mathbf{O}$.	C_2H_5OH (92.3 wt. %).	$(C_2H_5)_2O.$	Activity.	Color, Etc.	
1			insoluble	$[\alpha]D^{17} = +$	needles from alcohol.	
2	0.166	20	26.3	$ \begin{bmatrix} 199 & (1) \\ [\alpha]D^{20} = - \\ (15.827 + \\ .00585 & q) \end{bmatrix} $	four or six-sided mono- clinic prisms.	
3	250	38.4	insoluble	$ \begin{bmatrix} (2) \\ [\alpha] D^{20} = - \\ (52.18 + \\ 0.1588 q) \end{cases} $ (3)	monoclinic prisms, leaflets or powder.	
4		62.5	8	$\alpha j = -135.8^{\circ}$ (5)	orthorhombic prisms, octohedral crystals or crystalline powder.	
5 6		0.383	0.0746	$\begin{bmatrix} \alpha \end{bmatrix}_D \text{ for } \\ \text{neutral} \\ \text{salts} = - \end{bmatrix}$	short needles. needle shaped crys- tals, or powder.	
7	3.3	0.0967	insoluble	134°	rhombic prisms, needle shaped crystals or powder.	
8	4.54	v. soluble	0.645	lævo	pale yellow leaflets or powder.	
9	soluble	soluble	soluble	dextro	leaflets (sublimes), b. pt. 225°.	
10	soluble	soluble	soluble	$\begin{bmatrix} \alpha \end{bmatrix}_D = + \\ 4.30^{\circ} (9)$	needle shaped crystals (sublimes), b.pt. 229°.	
11	1.1	all propor- tions	ca. 16	$[\alpha]D^{19} = +$ 16.4°	oily liquid, d ₁₉ =0.844, b. pt. (739 mm.) 163.5° in hydrogen.	
12	50 insoluble	soluble v. sl. sol.	insoluble insoluble	inactive	large rhombic crystals. microscopic six-sided	
					prisms or plates.	
14		30.1 (8°) (11)		$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = - \\ 119.1^{\circ} (12)$	to needles and leaflets).	
	0.002 (20°)	4.8 (20°) (15)		inactive	rhombic crystals,	
16	v. sl. sol.	sl. soluble	sl. soluble		prisms or powder.	
17	50	soluble	insoluble		crystalline powder.	

⁽⁹⁾ In 8% solution. (13) C₃₁H₄₉NO₇ (Brühl), (10) Solidifying point. (14) Decomposes without melting. (11) In absolute alcohol. (15) In 98% alcohol. (12) In 2% aq. solution; -111°, 22′ for 5% aq. solution.

=								
Number.	Name.	Formula.	Molecular Weight.	Melting Point.				
_								
1	Dionin (ethyl morphine hydrochloride).	$C_{19}H_{23}NO_3.HCl + 2H_2O(1)$	385.694	125° (2)				
2	Ditaine (Echitamine)	$C_{22}H_{28}N_2O_4 + 4H_2O(3)$	456.308	206° (4)				
3	Ecgonine	$C_9H_{15}NO_3+H_2O\dots$	203.146	198° (6)				
4 5 6	hydrochloride Emetine Ephedrine	$\begin{array}{cccc} C_{0}H_{15}NO_{3}.HC1 & & \\ C_{30}H_{40}N_{2}O_{5}. & & \\ C_{10}H_{15}NO & & & \\ \end{array}$	239.614 508.34 165.13	246° 62°-65° (8)				
7	Ergotinine	$C_{35}H_{40}N_4O_6\dots$	612.36	205° (9)				
8	lpha Eucaine	$C_{19}H_{27}NO_4$ $C_{19}H_{27}NO_4.HCl+H_2O$	333.226 387.71	103°-5° ca. 200° (2)				
10 11	β Eucaine	$C_{15}H_{21}NO_2$ $C_{15}H_{21}NO_2.HCl$	253.178 289.646	ca. 78°, 91° 268° (2)				
12	Gelseminine	$C_{22}H_{26}N_2O_3$	366.228	172° (11)				
13	hydrochloride	$C_{22}H_{26}N_2O_3.HC1$	407.696	330° (12)				
14	Homoatropine (oxyto- luylatropeine).	$C_{16}H_{21}NO_3$	275.178	95.5°-98.5°				
15 16	hydrobromide Hydrastine	$C_{16}H_{21}NO_3.HBr$	356.106 383.178					
17	hydrochloride	$C_{21}H_{21}NO_6.HCl+aq$	419.646					
18 19	Hydrastinine hydrochloride	$C_{11}H_{13}NO_3$ $C_{11}H_{11}NO_2.HCl.$		116°-7° 212° (2)				
20	bisulphate	$C_{11}H_{11}NO_2.H_2SO_4$	287.184	216° (2)				
21	Hydroberberine	$C_{20}H_{21}NO_4$	339.178	167°				
22	Hydrocotarnine	$C_{12}H_{15}NO_3 + \frac{1}{2}H_2O \dots$	230.138	50°, 55°				
23 24	Hydrohydrastinine Hyoscine (Scopolamine).	$\begin{bmatrix} C_{11}H_{13}NO_2 \\ C_{17}H_{21}NO_4 \end{bmatrix}$	191.114 303.178	66° ca. 50°, 59°				
-								

 ^{.1} H₂O also given.
 With decomposition.
 Also .1 H₂O, dehydrates at 105°.
 With rapid heating, decomposes.

⁽⁵⁾ For 2% solution in 97% alcohol.
(6) At 205° after drying at 140°.
(7) In 95% alcohol.
(8) Also given as 68°.

-							
Number.		Solubility at 25°. Grams per 100 Grams:			Crystalline Form,		
Nun	H ₂ O.	c_2H_5OH (92.3 wt. %).	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{O}.$	Activity.	Color, Etc.		
1	14.3	50	insoluble		microscopically crystalline powder.		
2	soluble	v. soluble	sl. soluble	$[\alpha]_{D^{15} = -28.8^{\circ} (5)}$	thick glistening prisms		
3	21.7 (17°)	1.83(17°) (7)	v. sl. sol.	lævo	monoclinic prisms (from abs. alcohol).		
5	soluble 0.1 soluble	sl. soluble v. soluble soluble	v. soluble soluble	$[\alpha]_D = -57$ inactive	triclinic plates. leaflets. crystalline mass,		
7	insoluble	0.5 (20°) (7)	soluble		b. pt. 225°. (Brühl) prismatic needles (solu- tions fluoresce violet)		
8 9	10	117	v. soluble sl. soluble		shining prisms, crystals. rosettes of small crystals or powder.		
10 11		11	v. soluble insoluble		erystals. plates and prisms or		
12	insoluble				rosettes from benzene, also amorphous.		
13	v. soluble	v. sl. sol.			microscopic columns or prisms.		
14	sl. soluble				1		
	17.5 v. sl. sol.	3.08	insoluble 0.80	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = - \\ 678^{\circ} (13)$	rhombic prisms. rhombic prisms tri- metric.		
17	soluble		soluble	lævo	microcrystalline pow-		
	sl. soluble v. soluble	v. soluble v. soluble	v. soluble 0.77	inactive inactive	needles (from ligroin). yellowish needles (aq. solutions fluoresce blue).		
20	soluble	soluble			crystals with green fluorescence.		
21	insoluble	soluble			monoclinic needles or octohedrons.		
22	2	v. soluble	v. soluble	inactive	monoclinic prisms (from ether).		
23	B	v. soluble v. soluble	v. soluble v. soluble	$\begin{bmatrix} \alpha \end{bmatrix}_{D=-}^{D=-}$ 33.1°	crystals. varnish drying syrup, prisms when pure.		

⁽⁹⁾ When crystalline; at 138° when amorphous.
(10) In alcoholic solution.
(11) When dry.

⁽¹²⁾ Decomposes without melting.
(13) In chloroform solution, 1.275 grams in 50 cc.

-		1		1
Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Hyoscine hydrobromide.	$C_{17}H_{21}NO_4.HBr + 3H_2O(1)$	438.154	191°-2° (2)
2	sulphate	$(C_{17}H_{21}NO_4)_2.H_2SO_4 + 2H_3O(4).$	740.472	
3	Hyoscyamine	$C_{17}H_{23}NO_3$	289.192	108.5°
4	hydrobromide	$C_{17}H_{23}NO_3.HBr$	370.122	151.8°
5 6	hydrochloride sulphate	$C_{17}H_{23}NO_3.HC1$	345.662 676.474	
7 8 9	(pseudo)	$\begin{array}{cccc} C_{17}H_{23}NO_3 & & & & \\ C_{20}H_{25}NO_4 & & & & \\ C_{21}H_{27}NO_4 & & & & & \end{array}$	289.192 343.21 357.226	166°
10	Lobeline	$C_{18}H_{23}NO_2$	285.194	
11	Lupanine	$C_{15}H_{24}N_2O\dots$	248.212	44°
12	Lupinine	${ m C_{21}H_{40}N_2O_2}$ (or ${ m C_{10}H_{19}NO}$).	352.34	68.5°-69.2° (8)
13	hydrochloride	$C_{21}H_{40}N_2O_2.2HCl$	425.276	212°-3°
14 15	Lycorine	$C_{32}H_{32}N_2O_8$ $C_{17}H_{19}NO_3+H_2O$	572.276 303.178	250° (11) 254° (12)
16	acetate	$C_{17}H_{19}NO_3.C_2H_4O_2 + 3H_2O$.	399.242	ca. 200° (14)
17	hydrochloride	$C_{17}H_{19}NO_3.HCl+3H_2O$	375.678	ca. 250° (15)
18	meconate	$(C_{17}H_{19}NO_3)_2C_7H_4O_7+ \\ 5H_2O$	860.436	
19 20	nitratesulphate	$C_{17}H_{19}NO_3.HNO_3$	348.18 758.49	ca. 250° (15)
21	Narceine	$C_{23}H_{27}NO_8 + 3H_2O(17)$	499.274	170° (18)

Also with less H₂O of crystallization depending upon the solvent from which it is crystallized.
 When anhydrous.
 For an 8% solution of an atrocine free preparation containing .2 H₂O.
 Also anhydrous.

⁽⁵⁾ For p = 3.22.
(6) Also with 2 H₂O.
(7) For p = 2.
(8) B. pt. in H = 255.7°.
(9) In aq. solution of specific gravity 1.005.
(10) In 2% solution.
(11) With decomposition.

Number.		Solubility at 25°. Grams per 100 Grams:			Crystalline Form,		
Num	H_2O .	C_2H_5OH (92.3 wt. $\%$).	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{O}.$	Activity.	Color, Etc.		
1	66.6	6.25	insoluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{15} = - \\ 32.9^{\circ} (3)$	rhombic crystals from H ₂ O.		
2	v. soluble	v. soluble			$\begin{array}{ccc} microscopic & needles \\ from H_2O. \end{array}$		
3	soluble	v. soluble	soluble	$ \begin{bmatrix} \alpha \end{bmatrix} D^{15} = - \\ 20 \cdot 3 (5) $	needles, tetragonal pyramids or plates.		
4	v. soluble	50	0.0625	lævo	prismatic crystals, deliquescent.		
	soluble v. soluble	soluble 15.6	0.04	$\begin{bmatrix} \alpha \\ D = - \\ 28.6^{\circ} (7) \end{bmatrix}$	indistinct crystals or powder (deliquescent).		
7 8		soluble	sl. soluble 0.154 (18°)	inactive	small trimetric prisms.		
	insoluble	v. soluble	5.18 (16°)	$[\alpha]D^{15} = +$ $103.23^{\circ}(7)$.	needles from benzene.		
10		v. soluble	sl. soluble		yellow, honey-like liquid.		
11	soluble	soluble	soluble	dextro	needles (also lævo and inactive modi- fications).		
12	decomposes	soluble	soluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{17} = -19^{\circ} \\ (9)$	tables from acetone, rhombic crystals from petroleum ether		
13	soluble	soluble		$[\alpha]_D = -14^{\circ}$ (10)	large rhombic crystals.		
	sl. soluble 0.03	sl. soluble 0.595	sl. soluble 0.0224		polyhedric crystals. 'rhombic prisms, fine		
10	0.03	0.353	0.0224		needles or crystal- line powder.		
16	44.4	4.63	insoluble		crystalline or amorphous powder.		
17	5.87	2.38	insoluble	$\begin{bmatrix} \alpha \end{bmatrix} D^{25} = - \\ 111.5^{\circ}(16)$	needles or micro-		
18	4.0	soluble		111.5 (16)	crystalline cubes.		
19 20	soluble 6.53	0.215	insoluble		acicular crystals or cubical masses.		
21	0.078 (13°)	0.105 (13°) (19)	insoluble	inactive	prisms or fine needles (deliquescent).		

(16) For anhydrous salt, C = 2.24. (17) Also with .1 and .2 H₂O. (18) When dehydrated at 100° it melts at 145 2° (cor.) (19) In 80% alcohol.

⁽¹²⁾ When heated slowly, first turning brown at 200°
(13) In methyl alcohol. C = 2.292.
(14) With loss of acetic acid and water.
(15) Turns brown and chars without melting the companion of th ing.

_				
Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1 2 3	Narceine hydrochloride . bisulphate	C ₂₃ H ₂₇ NO ₈ .HCl+3H ₂ O(1) C ₂₃ H ₂₇ NO ₈ .H ₂ SO ₄ +2H ₂ O C ₂₂ H ₂₃ NO ₇	535.742 579.342 413.194	190°-2° (2) 176°
4 5	hydrochloride Nicotine	$C_{22}H_{23}NO_7.HCl(5)C_{10}H_{14}N_2$		b. pt. in H
6 7 8 9	hydrochloridesalicylatetartrateOxyacanthine	$\begin{array}{c} C_{10}H_{14}N_2.HCl~(6)\dots\\ C_{10}H_{14}N_2.C_7H_6O_3\dots\\ C_{10}H_{14}N_2.2C_4H_6O_5+2H_2O\dots\\ C_{10}H_{21}NO_3\dots\end{array}$	198.60 300.18 498.260 311.178	117.5°
10	hydrochloride	$C_{19}H_{21}NO_3.HCl+2H_2O$	383.678	
11	Oxysparteine	$C_{15}H_{24}N_2O\dots$	248.212	84°
13 14 15 16 17	Papaverine	$\begin{array}{c} C_{20}H_{21}NO_4.HCI. \\ C_{27}H_{39}N_5O_5+6\frac{1}{2}H_2O(10) \\ C_8H_{13}NO \\ C_{15}H_{19}NO_3 \\ C_{19}H_{24}N_2O~(?) \end{array}$	630.466 139.114 237.162	245°-7° (?) 126° (11) b.pt.195°(12) 110° 118°-124°
19 20	hydrochloride salicylate	$C_{15}H_{21}N_3O_2.HC1$ $C_{15}H_{21}N_3O_2.C_7H_6O_3$	311.666 413.246	178.9° (14)
21	sulphate	$(C_{15}H_{21}N_3O_2)_2.H_2SO_4$	648.482	140° (15)
22	Pilocarpidine	$C_{10}H_{14}N_2O_2$	194.132	
2 3	platinum chloride	$ \begin{array}{c} (C_{10}H_{14}N_2O_2.HCl)_2PtCl_4 \ + \\ 4H_2O \end{array} $	870.304	187° (16)
24	Pilocarpine	$\begin{bmatrix} 4H_2O \\ C_{11}H_{16}N_2O_2 \end{bmatrix}$	208.148	34°
25	hydrochloride	$C_{11}H_{16}N_2O_2.HCl$	244.596	195.9° (19)
26	nitrate	$C_{11}H_{16}N_2O_2.HNO_3$	271.146	170.9° (20)

(6) With .2 HCl (Hager).
(7) In hydrated form m. pt. = 138°-146°.
(8) For p = 4 in chloroform.
(9) For p = 2 in aq. solution.
(10) Anhydrous according to Beilstein.
(11) Decomposition temperature.
(12) B. pt. at 100 mm = 195°.

(12) B. pt. at 100 mm. = 125°.

Also with .5½ H₂O.
 When anhydrous.
 In 85% alcohol.
 In chloroform, neutral solutions are lavo, acid solutions, dextro.
 Also .1 H₂O, yields basic salts by recrystallization from hot water.

Solubility at 25°.

ber	Grams per 100 Grams:			Optical	Crystalline Form,	
Number.	H ₂ O.	C_2H_5OH (92.3 wt. $\%$).	$(\mathbf{C}_{2}\mathbf{H}_{5})_{2}\mathbf{O}$.	Activity.	Color, Etc.	
3	insoluble	soluble soluble 1. (cold) (3)	0.6 (16°)	$ \begin{bmatrix} \alpha \end{bmatrix}_D = - \\ 207.35^{\circ}(4) $	lemon yellow crystals. fine needles. needles, prisms or rhombic columns.	
	soluble v. soluble	v. soluble	v. soluble	$\begin{bmatrix} \alpha \end{bmatrix}_D = - \\ 161.55^{\circ}$	colorless oil $d_{20} = 1.011$, very hygroscopic.	
7	v. soluble soluble	soluble soluble		dextro	crystals.	
	soluble	soluble	soluble	$[\alpha]D^{15} = + \\ 131.6^{\circ} (8)$	hydrated flakes, anhy- drous needles from alcohol.	
10				$[\alpha]D^{15} = 163.6^{\circ} (9)$	small needles.	
11	v. soluble	v. soluble	v. soluble		white hygroscopic needles.	
13	()	sl. soluble	0.38 (10°)	inactive	prisms. large columns.	
15	insoluble 4.35 (cold)	insoluble v. soluble	insoluble v. soluble	dextro (13)	yellow leaflets. oily liquid of $d_0 = 0.988$.	
17	insoluble insoluble sl. soluble	v. soluble v. soluble v. soluble	v. soluble v. soluble v. soluble		plates from alcohol. amorphous powder.	
	soluble	v. soluble	v. soluble	1200	trimetric prisms from benzene.	
20		7.87	0.57		acicular or short	
21	v. soluble	v. soluble	0.083		micro-crystalline pow-	
	soluble	v. soluble	sl. soluble	$[\alpha]_D = +$ 81.3° (17)	syrup (crystalline (?))	
23		insoluble			orange yellow leaflets or dark red pyramids.	
	v. soluble	v. soluble	sl. soluble	$[\alpha]D^{18} = +$ 106° (18)	needles very hygro- scopic.	
25	333	43.5	insoluble	$ \begin{bmatrix} \alpha \end{bmatrix}_D = + \\ 91.74^{\circ}(21) $	prismatic crystals deliquescent.	
26	25	1.66	insoluble	$[\alpha]_{D=+}$ 82.9° (22)	shining crystals, prisms.	

⁽¹⁴⁾ Softens and turns yellow at 160°.

(15) Softens at 130°.

(19) When dried at 100°, 200°-5°, Beilstein.

⁽¹⁶⁾ Of anhydrous salt, with decomposition; air-dried salt melts at 88°-9°.

^{(20) 178°} cor., Beilstein. (21) For C = 9.924. (22) For C = 9.572.

=				
Number.	Name.	Formula.	Molecular Weight.	Melting Point.
N				
1	Pilocarpine sulphate	$(C_{11}H_{16}N_2O_2)_2.H_2SO_4$	514.342	132° (120°)
2	Piperine	$\mathrm{C_{17}H_{19}NO_3}$	285.162	130°
3	Pseudo pelletierine	$C_9H_{15}NO.2H_2O$	189.162	48° (2)
4	Quinidine	$C_{20}H_{24}N_2O_2$ (3)	324.212	171.5° (4)
5	hydrochloride	$C_{20}H_{24}N_2O_2.HCl+H_2O$	378.696	
6	sulphate	$(C_{20}H_{24}N_2O_2)_2H_2SO_4+ \\ 2H_2O$	782.542	
7	Quinine	$C_{20}H_{24}N_2O_2 + 3H_2O$	378.260	57°
8	(anhydrous) bisulphate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	324.212 548.410	174.9° ca. 160° (11)
10	sulphate	$\substack{(\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_2\mathrm{O}_2)_2.\mathrm{H}_2\mathrm{SO}_{\pmb{4}}+\\7\mathrm{H}_2\mathrm{O}(10)}$	872.622	205° (12)
11	hydrobromide	$C_{20}H_{24}N_2O_2.HBr+H_2O$	423.156	152°-200°
12	hydrochloride	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_2\mathrm{O}_2.\mathrm{HCl} + 2\mathrm{H}_2\mathrm{O}\dots$	396.712	156°-190°
13	salicylate	$C_{20}H_{24}N_2O_2.C_7H_6O_3+$	471.268	183°-7°
14 15	Sabadine Sanguinarine	$\frac{1}{2}H_{2}^{2}O$ $C_{29}H_{51}NO_{8}$ $C_{20}H_{15}NO_{4}+H_{2}O$	541.418 351.146	238°-240°(14) 213°
16 17	Solanine	$C_{28}H_{47}NO_{10} + 2H_2O(?)\dots$ $C_{15}H_{26}N_2\dots$	234.228	250° b. pt. 180°– 181° (17)
18	bisulphate	$C_{15}H_{26}N_2.H_2SO_4 + 5H_2O(16)$	422.394	136° (18)
19	Strychnine	$C_{21}H_{22}N_2O_2\dots$	334.196	268°
20	nitrate	$C_{21}H_{22}N_2O_2.HNO_3$	397.214	decomposes

⁽¹⁾ For C = 7.318. (2) B. pt. = 246°. (3) Crystallizes in different forms, with H₂O and other substances of crystallization according to the solvent employed.

⁽⁴⁾ When dry.(5) In 80% alcohol.

⁽⁶⁾ In 1.06% solution in a mixture of 1 vol. alcohol and 2 vols. chloroform; +274.7°, Brühl.
(7) In 97% alcohol.
(8) For 3% solution in chloroform.
(9) For 0.657 gram in 100 cc. of 97% alcohol.

cohol.

Number.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,		
Nun	H ₂ O.	C_2H_5OH (92.3 wt. $\%$).	$(\mathbf{C}_{2}\mathbf{H}_{5})\mathbf{O}_{2}.$	Activity.	Color, Etc.		
1	soluble	soluble		$[\alpha]_D = +$ 84.72 (1)	crystals from alcohol- ether.		
2	insoluble	6.66	277	inactive	large monoclinic col- umns.		
3	soluble	soluble	soluble	inactive	prismatic plates from		
4	0.05(15°)	4.0 (20°) (5)	` `	$[\alpha]D^{17} = - \\ 274.7^{\circ} (6)$	petroleum ether. needles from benzene (3).		
5	1.6 (10°)	v. soluble	v. sl. soluble	$[\alpha]_D = +2.212$ -2.562(7)	prisms.		
6	1.0 (15°)	12	v. sl. soluble		prisms, solutions fluor- esce blue.		
7	0.0645	166	76.9	$[\alpha]_{D^{15} = -145.2^{\circ}(9)}$	flaky or microcrys- talline powder, efflo- resces.		
8 9	0.0571 11.76	166 5.55	22.2 0.0565	lævo	amorphous powder. orthorhombic or small		
10	0.139	1.16	v. sl. sol.		needles (effloresces). silky crystals or prismatic monoclinic		
11	2.5	149.2	6.25		needles (effloresces). silky needles (effloresces).		
12	5.55	166	0.415	$\begin{bmatrix} \alpha \end{bmatrix} D^{15} = - \\ 144.98^{\circ} (13)$	silky needles (efflo-		
13	1.3	9.1	0.91		colorless needles.		
	sl. soluble insoluble	v. soluble soluble	sl. soluble soluble	inactive	needles (from ether). needles (from acetic ether) (15) blue violet fluorescence.		
	v. sl. sol. v. sl. sol.	soluble soluble	insoluble soluble	$[\alpha]_D = -$ 14.6° (19)	needles. oily liquid, yellowish		
18	91	41.7	insoluble	14.0 (19)	syrupyliquid(Hager) rhombohedral crystals		
19	0.0156	0.91	0.0182	lævo	or powder. prismatic rhombic		
20	2.38	0.83	insoluble	$\begin{bmatrix} \alpha \end{bmatrix} D = \mathbf{ca.} - \\ 36^{\circ}$	crystals or powder. needles, glistening prisms.		
-	(10) Sometimes 8 HeO (14) With decomposition						

(14) With decomposition.

(14) With decomposition.
(15) The salts are deep red.
(16) Varying mols. H₂O of crystallization.
(17) At 20 mm.
(18) When anhydrous.
(19) In alcohol.

⁽¹⁰⁾ Sometimes .8 H₂O.
(11) Softens at 60°, becomes semifluid at 70°, and melts at 160° with decomposition.
(12) When dried over H₂SO₄.
(13) For 3.15 grams in 100 cc. H₂O.

Number.	Name.	Formula.	Molecular Weight.	Melting Point.
1	Strychnine sulphate	$(C_{21}H_{22}N_2O_2)_2.H_2SO_4+ \\ 5H_2O$	856.558	200° (1)
2	Thebaine (para morphine).	$C_{19}H_{21}NO_3$	311.178	193°
3	hydrochloride	$C_{19}H_{21}NO_3.HCl+H_2O$	365.662	
4	Theobromine	$C_7H_8N_4O_2$	180.104	329°-330° (4)
5	Theophylline	$C_7H_8N_4O_2+H_2O$	198.120	264°
6	Tritopine	$C_{42}H_{54}N_2O_7$	698.452	182°
7	Tropacocoaine hydro- chloride.	$C_{15}H_{19}NO_2.HCl$	281.630	271°
8	Tropine	$C_8H_{15}NO$	141.13	61.2°-63° (5)
9	platinum hydrochlo- ride.	$(C_8H_{15}NO.HCl)_2.PtCl_4$	692.236	198°-200°
10	Veratrine	$C_{37}H_{53}NO_{11}$	687.434	180°
11	Yohimbine	$C_{23}H_{32}N_2O_4$ (?)	400.276	231°

⁽¹⁾ When anhydrous.(2) In 2% solution in 97% alcohol.

⁽³⁾ P=2.33.

ber.	Solubility at 25°. Grams per 100 Grams:			Optical	Crystalline Form,	
Number.	H ₂ O.	C_2H_5OH (92.3 wt. $\%$).	$(C_2H_5)O_2.$	Activity.	Color, Etc.	
1	3.22	1.54	insoluble		prismatic / crystals or powder(efflorescent).	
2	v. sl. sol.	0.10	0.71 (10°)	$[\alpha]D^{15} = -$ 218.64°(2)	leaflets, or prisms.	
3	6.33 (10°)			$[\alpha]_D = -$	large rhombic prisms.	
4	0.0305 (18°)	0.045 (21°)	insoluble	168.32 (3)	lumpy crystalline pow- der(from H ₂ O),micro- scopic rhombic crys-	
5	0.55	sl. soluble			tals sublimes, 290–5°. thin monoclinic plates, needles (from H ₂ O).	
6		soluble	sl. soluble		prisms (from alcohol) plates (from ether).	
7	soluble				needle-shaped crystals.	
8	v. soluble	v. sl. sol.	v. sol.	inactive	plates(from abs. ether)	
9	soluble	insoluble			very hygroscopic.	
10	insoluble	9	9	inactive	clinic table, columns. amorphous resinous	
11	v. sl. sol.	soluble	soluble	dextro	mass. glistening needles.	

⁽⁴⁾ In closed tube.

⁽⁵⁾ B. pt. 229-33°.

XXXII.—PHYSICAL AND CHEMICAL

COMPILED BY

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation,	Solubility in Alcohol.
1	Ajowan: (Carum ajowan)	.900 to .930 (1)	+1.0 to + 1.5(2)	
2	Allspice: (Pimenta officinalis).	1.045 to 1.055 (2) (1.024–1.055) (1)	-1 to -5 (1)	1 pt. in 2 of 70%
3	Ammoniac: (Dorema ammoniacum).	.891 (1)	slightly dextro- gyrate (2)	
4	Angelica Root:	.857 to .918 (1) .855 to .905 (2)	+16 to +32 (1)	
5		.915		
6	Angelica Seed: (Angelica officinalis).	.856890 (1)	+11 to +12 (1)	
7	Angostura: (Galipea cusparia).	.930960 (2)	-36 to -50 (2)	
8	Anise Seed: (Pimpinella anisum).	.980–.990 at 17° C. (5 and 2)	lævogyrate to -1.9 (2)	1 pt. in 1½ to 5 of 90% (1)
9	Anise Bark: (Unknown source).	.969	-0.8	
10	Anise, Star: (Chinese) (Illicium verum).	.980990 at 17° C. (2) (5) .975988	slightly - to about -2 (1) rarely slight- ly+	1 pt. in 3 of 90% alc.
11	Anise, Star: (Japanese) (Illicium religiosum) (leaves).	1.006 at 16.5° C.	-8.1(2)	
12	Arnica: [Arnica montana (flowers)].	.906 (1)		
13	[Arnica montana	.990-1.000 (1)	-2 (2)	
14	$(ext{rhizome})]. \\ ext{Asafætida:} \\ (ext{Ferula } fatida).$.975990 (1)	-9° 15′ †	
15	Asarum Canadense:	.930960 (2)	-3.5	2 parts 70%
	Asarum Europæum: Basil: (European) (Ocymum basilicum).	1.015–1.068 (2) .905–.930 (1)	-6 to -22 (1)	1 pt. in 2 of 80%
18		.945987 (1)	+7 to + 12 (1)	1 pt. in 7 of 70%

* About 20° C.

The numbers in brackets in the table refer to the following authorities:

- (1) Schimmel & Co., Semi-Annual Reports.
 (2) Commercial Organic Analysis, Allen.
 (3) E. J. Parry.
 - (4) Bush & Co.(5) United States Pharmacopœia.(6) Gildermeister and Hoffman.

CONSTANTS OF ESSENTIAL OILS

ALBERT F. SEEKER

1=		
No.	Other Characters.	Chief Known Constituents.
1	Smells strongly of thymol, of which it contains 45-55%.	Thymol; cymene.
2	Refractive index (20°) 1.5309-1.5303 (3) Produces semi-solid mass with equal vol. strong caustic soda. Not less than 65% eugenol (5).	Eugenol; sesquiterpene.
3	Boils principally between 250-290°, beginning at 155° C.	
	Saponification value 37.7 (4). Distils chiefly between 60–70° C. Ref. index (20°) 1.4800. Crystals separate at +10°, and oil solidifies at	acid.
	0°. Boiling point between 170–310°.	
	Pale yellow oil darkens with age	
7		pene: pinene.
8	Deposits anethol on cooling. Solidifying point 10 to 15° C. (15-19° [1]). Refractive index 1.552-1.558 (20° C.) (3).	Anethol; methyl clavi-
9		Methyl clavicol.
10	Solidifying point $+$ 14 to $+$ 18°. Refractive index 1.552–1.558 (20° C.) (3).	Anethol; anise aldehyde and ketone; methyl elavicol; safrol.
11		Anethol; safrol; eugenol.
12	Acid value 75.1. Sapon. value 29.9. Usually of buttery consistency.	
13	Yellow color, becoming darker with age	
14		moquinol. Alkyl disulphides.
15	Yellowish-brown oil	Asarol; methyl eugenol.
17	Thick, brownish liquid	Methyl clavicol; cineol. linalol.
18		
	† One sample	

† One sample.

⁽⁷⁾ Pharmacographia Indica.
(8) Hesse and Müller, Berichte, 32.
(9) Joancard and Satie.

⁽¹⁰⁾ Bulletin 109, U. S. Dept. Ag.(11) Soldaini and Berté.(12) Charabot.

⁽¹³⁾ Daufresne.

~				
No.	Oil and Chief Botanical Source.	Specific Gravity.	Optical Rotation,	Solubility in Alcohol.
1	Bay: (Pimenta acris)	9.65995 (3)	lævogyrate (as much as -2)	
2	Bergamot: [(expressed) Citrus bergamia].	.880886	+8 to +20 (not more than +20 [5])	1 pt. in 2 of 80%
	Birch: (Betula lenta) Bitter Almond: [Prunus Amygdalus var. amara].	1.045-1.071 (2)	inactive inactive	1 pt. in 5 of 70% 1 pt. in 2 of 70%
5 6	HCN removed Cade: (Juniperus Oxycedrus).	1.050–1.055 (1) .99–1.05	inactive	1 pt. in 2 of 70% soluble in hot 90%
7	Cajuput: (Melalouca Leu- cadendron).		- 10' to -2°(1) not more than -2 (5)	soluble in equal
8	Calamus: (Acorus calamus).	.960980 (Japanese (2) .985-1.00)	+10 to +31	all proportions of 90%
9	Camphor: [Cinnamomum Camphora. (Wood		+12 to +32 (2)	
10	and twigs.)]. Camphor Wood: [(Venezuelian) Source unknown].	1.155 (2)	+2.7 (2) (65.1	
	Cananga: (Cananga odorata).	.896942 (30°) (1) .920935 (1)	$ \begin{array}{c c} -27 & to & -87 \\ (30^{\circ}) & (1) \\ +1^{\circ} & 8' & † \end{array} $	
13	Caraway: (Carum Carvi)	.907915 (1) .900910 (25°) (5)	+70 to +85 (3) +70 to +80 (25°) (5)	equal pt. 90%
14	Cardamoms: (Elettaria repens). (Ceylon)	.895–.905 (1)	+12 to +15 (1)	1 pt.in 2 of 80%
15 16		.933943 (6) .905 (42° C.)	+26 to +34 (6) +38° 4′ (42° C.)	
17	Cedar Leaves: [(Commercial) Juni- perus Virginiana].	.868920 (1) .883888 (3)	$-3 \text{ to } -24 \\ +55 \text{ to } +65 (3)$	
18	Cedar Wood: [Juniperus	.945960 (6)	-30 to -40 (1)	1 pt. in 20 of 90%
19	Virginiana]. Celery Seed: (Apium graveolens).	.870895 (1)	+67 to +79 (6)	3070

-		1
No.	Other Characters.	Chief Known Constituents.
1	Mixed with equal volume concentrated caustic soda forms semi-solid mass. Refractive index 1,487–1.585 (20°) (3).	
2	Refractive index (20°) 1.465–1.470 (3). Residue on evaporation not more than 6%. Contains 30–45% linally acetate. Acid value 1.4–3.5. Ester value 96.4 †.	limonene.
4	Odor of wintergreen. Boils 218–221° C Clear solution on warming with excess of saturated solution sodium bisulphite. Boiling point about 180°. Not less than 85% benzaldehyde. 2–4% hydrocyanic acid (5). Ref. index 1.542–1.551 (20°) (3).	Benzaldehyde; hydrocy- anic acid; phenyloxy- acetonitril.
	Thick, clear liquid, tarry odor, burning, bitter taste. 68-80% vol. between 150-300°.	Cadinene.
7	Usually bluish-green, due to traces copper. Becomes semi-solid when shaken with phosphoric acid (Sp. gr. 1.75). Refractive index 1.460–1.466 (20°) (3).	
	Sapon. value 16-20 (after acetylization 40-50). Boils 170-300° C. Refractive index 1.507-1.515 (20°) (3). Very variable, being a by-product from the production of common camphor.	oenanthilic, heptylic
10	Solidifies to crystalline mass at ordinary temperatures.	tene; safrol; eugenol.
	Sapon. value 42–94(1). Refractive index (30°) 1.4788–1.5082 (1).	_ lol.
13	Refractive index (20°) 1.4867-1.4970 (3). Boils 175-230° C. (1). Not more than 15% should distil below 185° (2). Carvone 50-60%.	Eugenol; cineol; caryo- phylene. Carvone; dextro-limo- nene.
14	Refractive index 1.460-1.470 (20°) (3).	Terpinene; dipentene;
15	Saponification value 132 (6)	acetic esters; limonene.
17	Refractive index 1.4639 (20°) (3). Savin-like odor.	Limonene; cadinene; borneol; bornyl esters.
18	Refractive index (20°) 1.498-1.503 (3)	Cedrene; cedar camphor.
19		Limonene; phenols; sedanonic acid.

No.	Oil and Chief Botanical	Specific Gravity,	Optical Rotation,	Solubility in Alcohol.
-1	Chamomile: [(German)	.930940 (1)	very slight	Turbid with 90%
	Matricaria Chamo- milla].	,	, and a second	
2	Chamomile: [(Roman) Anthemis nobilis].	.905915 (6)	+1 to +3 (6)	1 pt.in 6 of 70%
	Cherry Laurel: (Prunus laurocerasus).	1.054–1.066 (1)		1 pt.in 2 of 70%
4	Cinnamon Bark: [(Ceylon) Cinnamo-	1.024-1.040 (1)	0 to -1 (2)	1 pt. in 2 of 70%
5	mum zeylanicum]. [(Cassia) Cinnamo- mum cassia].	(5)	+1 to -1 (2)	1 pt. in 2 of 80%
6	Cinnamon Leaves: (Cinnamomum zey- lanicum).	1.055-1.070 (1) 1.044-1.065 (1)	$-0^{\circ} 5' \text{ to } +1^{\circ}$ 18' (1)	1 pt.in 3 of 70%
7	Citronella: [(Singapore) Andropogon nardus].		$-0^{\circ} 34' \text{ to } -3^{\circ}$	1 pt. in 2 of 80%
8	(Lana Batu)	.900920 (1)	-5 to -21 (1)	1 pt. in 2 of 80%
9	Clove: (Eugenia caryo- phyllata).	1.048-1.070 (3) 1.040-1.060(25°) (5)	slightly lævo- gyrate up to -1° 10′ (1)	
10	Cognac	.875885 (1)	$+0^{\circ} 43' \text{ to } -0^{\circ}$ 3' (1)	1 pt. in 3.5 of 80%
11	Copaiba: (Copaiba Langsdorffii and other species).	.895905 (25°) (5)	$\begin{bmatrix} -2 & (2) \\ -7 & to & -35 & (1) \end{bmatrix}$	1 pt. in 10 of 95% (5)
12	Coriander: (Coriandrum	.863878(25°)(5) .870885 (1)		1 pt.in 3 of 70%
13	sativum). Cubebs: (Piper Cubeba).	[.905925 (25°) (5)]910930(1)	(5)]+8 to+13(1) -25 to -40 (6)	1 pt. in 1 of 95%
14	Cumin: (Cuminum cyminum).	.900930 (1)	+4 to +8 (1)	1 pt. in 3 to 10
15	Cypress: (Cypressus sem- pervirens).	.866890 (1)	+4 to +31 (1)	of 80% 1 pt. in 4–5 of 90% (6)
16	Dill: (Peucedanum grave- olens).	.895915 (1) [.905920 (7)]	+70 to +80 (2) [not less than +70 (7)]	1 pt. in 5 to 8 of 80% (1)
17	East Indian: (Anethum sowa).	.948970 (6)	+41 to +50 (6)	
18	Elemi: (From Manilla Elemi).	.870910 (1)	about +44 (6)	
19	Erigeron: (Erigeron Canadensis).	.850870 (6) [.855890 in- creasing with age (2)]	[not less than + 45 (25°) (5)] + 52 (6)	

No.	Other Characters.	Chief Known Constituents.
1	Solid at 0° and deposits crystals at 15°. Sapon. value 45 (1).	A paraffin.
2	Sapon. value 250-317 (6). Blue color when fresh, changing to green and finally to yellow-brown. Refractive index 1.4455 (20°) (3).	Esters of butyric, angelic and tiglic acid.
3	changing to green and finally to yellow-brown. Refractive index 1.4455 (20°) (3).	Benzaldehyde; hydrocy- anic acid.
4	Cinnamic aldehyde 65–75% (6). Refractivindex 1.590–1.599 (20°) (3). Refractive index (20°) 1.585–1.605 (3). Boils	Cinnamic aldehyde; eugenol.
5	Refractive index (20°) 1.585-1.605 (3). Boils 240-260°. Not less than 75% cinnamic aldehyde (5).	Cinnamic aldehyde 70–85% (2).
6	Refractive index 1.535 (20°) (3)	Eugenol; cinnamic alde- hyde; safrol.
	Contains 80-91% geraniol (6). Refractive index 1.465-1.468 (20°).	
8	Refractive index (20°) 1.4811-1.4830 (3).	Geraniol; citronellal; methyl eugenol.
9	Contains 50–70% geraniol (6). Refractive index (20°) 1.5301–1.5360 (3). Boils between 250–260° C. Contains 80– '90% eugenol. Becomes semi-solid on shak- ing with strong ammonia.	Eugenol; caryophyllene. [Not less than 80% eugenol (5)].
10	Ester value 140-250. Acid value 50 to over	Esters caprinic and ca-
11	100(1). Boils 250–275° C. (1)	Chiefly sesquiterpenes.
12	Refractive index (20°) 1.4665 (3)	Linalol; pinene.
	Viscid greenish color. Boils 175–280°; 80% volatile between 250–280° C. Refractive index 1.49–1.496 (20°) (3).	
	Limpid liquid with sharp taste	1 1 .
15	Boils 160–250° (6)	Pinene; cymene; valeric acid; camphene; cy- press camphor.
16	Penetrating odor; taste at first sweetish, then sharp and burning. Refractive index 1.48-1.495 (20°) (3).	Phellandrene; terpinene;
17	1.490 (20) (8).	Limonene; dill-apiol.
18	Agreeable aromatic odor and taste	Dipentene.
19	Larger part distils between 175-180° C. (2)	d-limonene; terpineol; esters.

-					
No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation,	Solubility in Alcohol.	
1	Eriodictyon: (Eriodictyon Californica). Eucalyptus:	0.937 (2)	-1.6 (2)	soluble in 70%	
2	$(amygdalina) \dots \dots$.850886 (1) .855890 (3) .890940 (2)	-25 to -70 (1) (-89) (3)	1 pt. to more than 6 of 90%	
4 5 6 7 8	(cnéorifolia)(dealbata)(dumosa)(eugenoides)(globulus)	.899923 (2) .871900 (2) .884915 (2) .905910 (3) .910930 (1) [.915925 (5)]	-4 to -14 (2) 0 to +6.5 (2) +3.7 to +5.2 (6) +1 to +15 (1)	1 pt. in 3 of 70%	
9 10 11 12	(hæmastoma) (leucoxylon) (macrorrhyncha) (maculata variety citriodora).	.870905 (2)	+0.5 to +2.7 (2) $\pm 0 \text{ to} +2 (2)$	1 pt. in 4–5 of 70%	
13	(microcorys)	.896935 (2)			
14	(odorata)	.899925 (2)	slightly lævo- gyrate	*	
15 16	(oleosa) $(piperita)$.905930 (3) .909913 (2) [(17°)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
17 18	(punctata)	(6) .912920 .910925 (3)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
19 20 21	Fennel: [(Commercial) Fæniculum capil-		-1.1 to +13 (2) -13.7 (2) +12 to +24 (6)	1 pt. in 2 of 70% sol. in equal pt. 90%	
22 23	laceum]. (Japanese) (Macedonian)	(5) .975–.976 (6) .970–.980 (6)	+ 10 to + 16 (6) + 5 to + 12 (6)		
24 25	(Roman) (Wild)	.976980 (6) .905925 (6)	+7°50′ to 16°30′ +48 (6)		
26	L	.8589 (6)	+ 12° 42′ to + 15°		
27	aquatica]. Galangal:	.915925 (1)	$-1^{\circ} 30' \text{ to } -3^{\circ}$	1 pt. in ½ of 90%	
28	(Alpinia officinarum). Galbanum:	.910940 (6)	30' (1) +20 to - 10 (6)		
2 9	(Ferula galbaniflua) Garlic: (Allium sativum).	1.046-1.057	inactive		

No.	Other Characters.	Chief Known Constituents.
1	Refractive index 1.4735 (20°) (3)	Phellandrene; cineol.
	Boils 160-185° (6). Contains about 30% cineol (1). Has an odor resembling dill and caraway Boils 206-216° (6)	drene. Cineol; cuminal. Citronellal; citronellol. Cineol. Cineol; pinene; aldehydes.
111112	acid (1.75 sp. gr.). Boils 170—250° C. (1)	Cineol; terpenes. Cineol. Cineol; eudesmol. Citronellal; geraniol; citronellol.
	Boils 160-200° (1). Contains about 30% cineol (1).	
15	Boils 157–199° (6). Solidifies in a freezing mixture. Boils 170–272° (1).	Cineol: cuminal.
	Contains about 46-64% cineol (1)	Cineol.
20	Boils 137 (?)—181° (6)	piperitone. Cineol; valeric aldehyde. Aromadendral
22	Solidifying point about 3-6° C. (6). Not less than +5° (5). Refractive index 1.525-1.534 (20°) (3). B. pt. 160-220°. Solidifying point about 7° C. (6)	Anethol: fenchone.
23	Solidifying point 7–12° C. (6)	Anethol; phellandrene; limonene.
24 25	Solidifying point 10-12° C. (6)	Anethol. d-phellandrene; fen- chone.
26	50-60% volatile between 170-172°	Phellandrene.
27	Boils 170–275° (1). Ref. ind. 1.480 (20°) (3).	Cineol; eugenol.
28		d-pinene; cadinene.
29		Allyl-propyl disulphide; diallyl disulphide.

No.	Oil and Chief Botanical Source.	Specific Gravity,	Optical Rotation,	Solubility in Alcohol.
	Geranium: [(Rose Geranium). Several species of Pelargonium].		P. F. (0 (0)	
1	(French)	.897905 (6)	-7.5 to -9 (6)	2-3 vols. 70%
2 3 4	(Algerian)	.892900 (6)	-8 to -11 (6) -6.5 to -10 (6) -10 to -11 (6)	2-3 vols. 70% 2-3 vols. 70% not completely sol.
5 6	(German †) Ginger:	.906 (1) .875–.885 (1)	$\begin{bmatrix} -16 & (6) \\ -25 \text{ to } -45 & (1) \\ & [(4)] \end{bmatrix}$	1 pt. in 100 of 95%
7	(Zingiber officinale). Grains of Paradise: (Amomum melequeta).	[.882900 (4)] .894 (1)	[-12.4 to -45.3 -4 (1)	
8	Guaiac Wood: (Bulnesia sarmienti).	(30°) .965–.975 (1)	$-6 \text{ to } -7 (30^{\circ})$	sol. in 70%
9	Gurjum Balsam: Species of Dipterocarpus.	.915930 (1)	-35 to -130 (1) sometimes strongly + (7)	sparingly in 95%
10	Hops: (Humulus lupulus).	.855880 (6) .840882 (3)		very sparingly in 95%
11	Jasmine: (Jasminum grandiflorum).	1.007–1.018 (8)	+2.5 to +3.5 (8)	
12	Juniper Berries: (Juniperus communis) (Hungarian).	.865882 (6) .860885 (1) .862868 (6)	slightly + to - 11 (6) 0 to -18° 48′ (6)	times not com-
13	Jaborandi: (Pilocarpus jaborandi)	.865895 (1)	+3° 25′ (1)	1 pt. in 2 of 80%
14	Laurel Berries: (Laurus nobilis).	.915935 (6)	-14° 10′ (6) †	sol. in 90%
15	Laurel Leaves: (Laurus nobilis).	.920930 (1)	-15 to -18 (1)	1 pt. in 3 of 80%
16	Lavender:	.875—.910 (25°)		1 pt. in 3 of 70%
17	(Lavendula officinalis) (French)	(5) .880–.895	-6 to -10 (9).	1 pt. in 3 of 70%
18	(English)	.885900 (1)	$ \begin{array}{c c} -3 \text{ to } -9 (1) \\ -1 \text{ to } -10 (1) \end{array} $	1 pt. in 3 of 70%
19	(Spike) (Lavendula spica, D.C.)	.905915 (1)	-1 to $+7$ (1)	1 pt. in 6 of 65%
20	Lemon: (Citrus medica var. limonum).	[.851855 (25°) 5] .856861 (15.6°)	+54 to +66 (20°)	not sol. to clear sol. owing to presence of wax

No.	Other Characters.	Chief Known Constituents.
2 3	Refractive index 1.460–1.471 (20°) (3). Esters as geranyl tiglate 25–28%. Esters as geranyl tiglate 27–33%. Green color. Esters as geranyl tiglate 19–29%	Geraniol; citronellol, and their esters, chiefly tiglates.
5 6	Boils 155–300° C. (1). Refractive index 1.488–1.495 (20°) (3).	berene.
7	Boils 236–258° C. (1)	
8	Sapon. value about 4 (1). Very viscid oil, tealike odor, and crystalline at ordinary temporatures	Guaiol.
9	peratures. Boils 255–256°C. (1). Sapon. value after acetylization about 9.6 (6).	A sesquiterpene.
1	Refractive index (20°) 1.4775 (3)	penes.
	Esters as benzyl acetate 69–73% (8)	acetate; linalol.
	Varies greatly in appearance and properties, according to origin and mode of preparation. Refractive index 1.474-1.488 (20°)(3).	per camphor.
	Boils 180-290° C. (1). Sometimes solidifies on cooling. Sometimes solidifies above 0° C	
15		acid. Pinene; cineol; methyl
	Refractive index 1.462–1.4675 (20°) (3)	clavicol; eugenol.
17	Refractive index (20°) 1.4638-1.4643 (3).	
18	Sapon. value after acetylization 160 (9). Refractive index (20°) 1.4660–1.4678 (3)	linalol. Linalyl acetate 5-10%; cineol.
19	Refractive index (20°) 1.4666 (3). Sapon. value about 15 (1). Odor resembles both lavender and rosemary.	
20	Refractive index (20°) 1.4743-1.4760 (1). First 10% of distillate (using Ladenburg flask) should have optical rotation differing from that of original oil by not more than 5° (1). First 50% of distillate must have higher rotation than original oil and the residue (11). Residue at 100° not more than 5%.	d-limonene; citral.

No.	Oil and Chief Botanical Source.	Specific Gravity,	Optical Rotation,	Solubility in Alcohal.
1	Lemongrass: (Andropogon citratus). Lime (Limette): (West Indian. Citrus	.895905 (3)‡ .877-887 (3) §	+3 to -3 (3) $[-12.7 (4)]$	1 pt. in 2 of 70%
2	medica, var. acida). Expressed		+35 to +40 (2)	
3	Distilled	.856868 (1 and 3)	+38 to +45	
4	(Italian. Citrus limetta). Expressed	.872 (1) .882 (2)	+58 (6)	
5	Distilled	.863866 (2)	+34.8 to +45(2)	
6		.875–895 (1)	+8 to -13 (2) $[-5 to -12(1)]$	1 pt. in 2 of 70%
7	[(Cayenne) Ocotea can- data (?)].	.870880 (1)	-15 to -20 (1)	1 pt. in 2 of 70%
8	Lovage: (Levisticum officinale).	1.000-1.040 (6) [.963-1.023 (4)]	$\pm 0 \text{ to } + 5 (6)$ $[-14 \text{ to } + 12(4)]$	1 pt. in 3 of 80%
9	Mace: (Myristica fragrans).		+10 to +20 (1)	1 pt. in 3 of 90%
10	Male Fern. (Dryopteris Filix-mas).	.850 (1)		
11	Mandarin: (Citrus madurensis).	.850858 (1)	+65 to +75 (1)	
12	Marjoram: (Origanum majorana).	.890910 (6)	+5 to +18 (6)	1 pt. in 2 of 80%
13	Mastic: (Pistacia lentiscus).	.858868 (1)	+22 to +28 (1)	
14	Matico (leaves): (Piper augustifolium).	.930-1.130 (3)	+5.5 to -0.25	equal part 90%
15	Monarda: (Monarda punctata.).	.930940 (2)	slightly + (2)	
16	Mustard: (Brassica nigra and B. juncea).	1.016-1.030 (6) [1.013-1.020 (25°) (5)]		1 pt. in 10 of 70%
17	Myrrh: (Species of Com- miphora).	.988-1.007 (6)	-67° 54′ to 90°	1 pt. in 10 of
18	Myrtle: (Myrtus communis).	.890920 (2)	+10 to $+30$ (1)	
19	Neroli: (Citrus bigaradia).	.870880 (6)	slightly dextro- gyrate to +5 (6)	
20	Nutmeg: (Myristica fragrans).	.865930 (1) [.884924 (25°) (5)]		1 pt. in 3 of 90%
	+ Fost Indi		& West Indian	

[‡] East Indian. § West Indian.

No.	Other Characters.	Chief Known Constituents.
1	Contains 70–75% citral. Refractive index 1.483–1.488 (20°) (3).	Citral; geraniol; methyl heptenone.
2	Refractive index (20°) 1.480–1.4846 (3)	d-limonene; citral; methyl anthranilate.
3	Refractive index (20°) 1.4750-1.4770 (3). Boils 175-220 (1).	d-limonene.
4	Sapon. value 75 (6). Ref. ind. 1.477 (20°) (3).	d-limonene; citral; lin- alvl acetate.
5		Citral; "limene" ($C_{15}H_{24}$).
1	Sapon. value 1–10 (1). Refractive index (20°) 1.4638 (1).	hentenone
		Ť
	Refractive index 1.476–1.484 (20°) (3)	
	Boils 140–250° (1)	risticin.
1	Boils 175–179° C. (6)	fatty acids. Limonene; citral; methyl ester of methyl an-
12	Sapon. value 21.5 † (6)	thanilate. Terpineol; terpenes.
13	Boils 155–160° (1)	d-pinene.
		eugenol (1).
15	Strong thyme-like odor	Thymol; cymol.
	Boils 148-154° C. Warmed with ammonia water it produces thiosinamine. Should give on distillation the same sp. gr. with first and last of distillate. Ref. ind. 1.525-1.535 (20°) (3).	less than 92% (5)].
	Boils 220–325° (6)	
		tene.
19	Sapon. value 20–52 (1). Shaken with saturated sodium bisulphite assumes a permanent purplish color. Ref. ind. (20°) 1.4755.	Linalvl acetate; linalol;
20	Evaporated on water bath should leave no crystalline residue on cooling. Refractive index (20°) 1.476 (3).	Myristicin; pinene.

-				
No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation,	Solubility in Alcohol.
1	Olibanum:	.875885 (6)	-11 to -17 (6)	
	(Boswellia Carterii). Onion: (Allium cepa) Orange (Sweet): (Citrus aurantium). (Bitter C. bigaradia).	1.035-1.045 (3) .848857 (1) .842846 (25°) (5)	about -5 (1) +95 to +99 (1) (bitter orange) +90 to +93)	1 pt. in 4 of 95% with faint tur- bidity
4	Origanum (Triest):	.940980 (1)	±0 to slight-	1 pt. in 3 of 70%
5	(Origanum hirtum). (Smyrna). (Origanum smyrnæum).	.915966 (3)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 pt. in 3 of 70%
	Origanum vulgare: Orris: (Species of <i>Iris</i>).	.870910 (6)	-34.5 (6) slightly dextrogyrate	
8	Opopanax: (Commiphora katof).	.870905 (1)	-10 to -12 (1)	equal part 90%
9	Palmarosa: (Andropogon Schaenanthus).	.885896 (1 & 4)	$+1.8 \text{ to} -1.7 (1) \\ [+1 \text{ to} -1 (4)]$	1 pt. in 3 of 70%
10	Parsley (leaves): (Petroselinum sativum).	.900925 (1)	$+16' \text{ to } +3^{\circ} 10'$	
11	(seed)	1.05-1.10 (1)	slightly lævo-	
12	Patchouli: (Pogostemon patchouli).	.970995 (1)	gyrate -50 to -68	equal part 90%
13	Pennyroyal (American): (Hedeoma pulegioides).	.925940 (1) [.920935 (25°)	+18 to +22 (1 and 5) [+25.7† (1)]	1 pt. in 2 of 70%
14	(European): (Mentha pulegium).	(5)] .930–.960 (1)	+17 to +23 (1)	1 pt. in 2 of 70%
15	Pepper (Black): (Piper nigrum).	.870900 (6) [.930 (4)]	-5 to +2 (6) $[-8.5 (4)]$	1 pt. in 15 of
16	Peppermint:	.894914 (25°)	-20 to -33	1 vol. in 4 of
17	(Mentha piperita). (American)	.905920 (2)	(25°) (5) -18 to -33 (2)	70% (5) ½ or more vol. 90%
18	(English)	.900910 (2)	-22 to -33 (2)	do
19 20	(French) (Russian)			do
21	(German)	.900915 (2)	-25 to -33 (2)	do
22	(Italian †)	.912 (2)	-16.3 (2)	do
23	(Japanese) (Mentha arvensis).	.895900 (24°)	-25 to -43 (2)	do

_		
No.	Other Characters.	Chief Known Constituents.
1 2 3	Refractive index 1.4730–1.4740 (20°)	Pinene; phellandrene; dipentene. Allyl-propyl disulphide. Chiefly limonene.
5	Contains 60-85% carvacrol. Gives violet color with ferric chloride. Contains 25-60% carvacrol. Color with ferric chloride not so intense as last. Refractive index 1.510 (20°) (3). Distils mostly at 161°C. (6)	Carvacrol; linalol; cymene. Carvacrol (?); phenols. Myristic and oleic acid and their methyl es-
	Boils between 250–300° (6)	
	Refractive index (20°) 1.4760-1.4805 (3). Sapon. value 20-40 (1); after acetylization 230-270 (1).	tate and capronate; dipentene.
	Strong odor of parsley. Greenish yellow color. Refractive index (20°) 1.489 (3). German oil semi-solid at ordinary tempera-	
	tures, French oil on cooling. (These values were obtained on oils distilled in Europe.) Singapore oils, probably sophisticated, give lower sp. gr., and optical rotation.	Patchouly alcohol: v-cam-
13	- cacca, grade not op . gr., and op . carrotation.	Pulegone; hedeomol.
14	About 80% distils between 212-216° C., and only about 5% below 212°. Refractive index (20°) 1.4805 (3).	
15		Phellandrene; dipentene.
	Not less than 6% esters (menthyl ester) and 50% total menthol (5). Ref. ind. (20°) 1.4650. Refractive index (20°) about 1.4635 (2). Solidifies in freezing mixture. Total men-	been identified in
18	thol 48-64%. Deposits a few crystals on long standing in	esters of menthol; menthone; pinene; cineol;
20	freezing mixture. Total menthol 51-66%. Total menthol 45-69%. Acts like English oil on cooling. Total menthol about 50%.	many of the same con-
	Acts like English oil on cooling. Total menthol 55-68%.	stituents.
	Deposits no crystals on cooling. Refractive index 1.4680 at 16°. Total menthol 55.5%. Solidifies + 17 to +28° C. Total menthol 70-	
_	91%.	

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation, 100 mm.*	Solubility in Alcohol.				
1	Petit-grain: (Citrus bigaradia).	.887900 (1)	+3.7 to -1.3(1) [-6.25 from leaves]	1 pt. in 2 of 80%				
	Petit-grain citronier: (Citrus medica). Pine-needles: (various conifers).	.869874 (1) .878 (4) .853875 (1) (P. sylvestris .905) (P.cembra .920)	(12)] +22 to +34 (1) +9.4 (4) -5 to -76 (1) (P. sylvestris +10.7 to -19) (P. cembra+29)	1 pt. in 5-6 of 90%				
4	Poplar buds: (Populus nigra).	.895905 (6)	+1 to +5 (6)	1 pt. in 1 of 95%				
5	Rose: (Rosa damascena) (Bulgarian)	(1) .849860 (30°)	lævogyrate to -4(1)					
6	(German)	(1) .845855	+1 to -1 (1)					
7 8	(U. S. Pharm.) Rosemary: (Rosmarinus officinalis).	(30°) .855–.865 (25°) .896–.920 (2)	-9 to +18 (3) (English oil -9.5†)					
9	Rue: (Ruta graveolens).		+0.2 to +2 (1) (Algerian oil $+5$)	1 pt. in 2–3 of 70%				
	Sage: Salvia officinalis Sandal-Wood: (East Indian).	.915925 (1) .970985 (1)	+10 to +25 (1)	1 pt. in 2 of 80% 1 pt. in 5 of 70%				
	(Santalum album).	.971982 (4)	$ \begin{bmatrix} -17 & 0 & -19 & (1) \\ [-16 & to & -20 \\ (25^{\circ}) & (5) \end{bmatrix} $					
12	(West Indian). (Amyris balsamifera).	.960967 (6)	+24 to +29 (6)					
13 14		.953 1.065-1.095 (2) [1.070-1.080 (1)]	+5.3 +1 to +4 (2) [+3 to +4 (1)]	All proportions of 90%				
15	Savin: (Juniperus sabina)	.910930 (1) .903923(25°) (5)		equal part 95%				
16	Schinus: (Schinus molle)		+46 (17°) (1)	1 pt. in 3.3 of 90%				
17 18	Spearmint: (Mentha viridis). (American) (Russian) (botan. source (?)).	.883885 (6)	-23 (6)	equal part 90% 1 pt. in 2 of 70%				
	‡ Two authentic samples .961 and .980.							

No.	Other Characters.	Chief Known Constituents.
1	Refractive index (20°) 1.4623 (3). Sapon. value 110–245 (1).	Linalyl acetate; linalol; limonene; a sesquiterpene.
2	Contains oil from unripe fruit	Esters of linalol; citral.
3	Boils 150–185° C. Leaves considerable residue at 185° C. Less than 10% volatile below 160°.	l-pinene; l-limonene; bornyl acetate.
4	Sapon. value 13 (1). Boils 255–265 (6)	Humulene and another sesquiterpene; a paraffin.
	Congeals below 23° C. Sapon. value 10-17. Acid value 0.5-3. Refractive index (25°) 1.452-1.464. Geraniol 66-74% (1). Congeals +27 to +37° C. (1). Stearoptene	Geraniol; citronellol; stearoptene.
7	26-34%. Congeals 18-22° C. Sapon. value 10-17 Sapon. value 12-20 (1). First 10% distillate	
0	should also be dextrogyrate. Not less than 2.5% bornyl acetate and 10% total borneol (5).	eol; camphor; borneol; bornyl acetate.
9	Refractive index (20°) 1.4341 (3). Solidifies +8 to 10°. Most of it volatile 215–232°, not more than 5% below 200°.	Methyl-nonyl-ketone; lauric aldehyde.
10	Sapon. value 107 (1)	Cineol; thujone; pinene.
	Sapon. value 5-15 (1). Not less than 90% alcohols as santalol (5). Refractive index (20°) 1.505-1.510 (3).	esters of santal alco-
12	(20) 21030 21010 (0).	
13 14	Five drops of oil cooled and mixed with 5 drops cone. nitric acid produce first a red	Safrol; eugenol; camphor; pinene; phellandrene.
15	coloration, then a resin. Sapon. value 115-125 (1). Not more than 25% volatile below 250° C.	Sabinol; sabinol acetate; cadinene; pinene.
16		Phellandrene; pinene; carvacrol.
17 18	Carvone about 56% (6)	[nene. Carvone; limonene; pi- Linalol; citral; cineol carvone; limonene.

No.	Oil and Chief Botanical Source.	Specific Gravity,	Optical Rotation,	Solubility in Alcohol.
1	Storax: (Liquidambar orientale).	.890-1.100 (1)	-3 to -38 (6)	
2	Tansy: (Tanacetum vulgare).	.925955 (6) [Fresh herb .915		
3	Tar: (Species of Pinus).	to .930 (2)] .862872 (6) [about .892 (25°) (5)]	$\begin{bmatrix} -27.5 & (2) \\ +15 & to +24 & (6) \end{bmatrix}$	sol. in 95%
4	Tarragon: (Artemisia Dracunculus).		+2 to +9 (1)	1 pt. in 10 of 80%
5	Thuja (Leaves): (Thuja occidentalis).	.915925 (3)	-5 to -14 (6)	1 pt. in 3–4 of 70%
6	Thyme: (Thymus vulgaris).	.900930 (25°) (5)	not more than $-3 (25^{\circ}) (5)$	1 pt. in 1-2 of 80% (5)
7	(French)	.905915 (1)	slightly lævo- gyrate (1)	1 pt. in 2 of 80%
. 8	(German)	.909935 (1)	slightly lævo- gyrate (1)	1 pt. in 2 of 80%
9 10	(Spanish) (Botanical source (?)).	.930950 (6)		1 pt. in 2–3 of 70%
11	Thyme (Wild): (Thymus serpyllum).	.890920 (6) .905930 (2)	$-10 \text{ to } -21 (6) \\ -1 \text{ to } -11 (2)$	10%
12	Tolu: (Toluifera balsamum).	.945–1.09(6)	-1 to -11(2) -1 to +1 (6)	
13	Turpentine:	.860870(25°)(5)		1 pt. in 3 of 95%
14	(Various conifers).	.862875 (20°) (10)	-34.8 to +29.6 (2)	
15	("Wood" Turpentine)	.855–.910 (20°) (10)		
16	Valerian: (Valeriana officinalis)	.930955 (2)	-8 to -15 (2)	
17	(Japanese) (V. officinalis, var.	.990996 (1)	-8 to -15 (2)	
	augustifolia). Verbena: † (Lippia citriodora). Verti-vert: (Andropogon	.900 (1)	-12° 38′ (1)	1 pt. in 5 of 90%
19	muricatus). (German)	1.015-1.030 (1)	about +27 (1)	1 pt. in 2 of 80%
20	(Réunion)	(30°) .982998 (1)	+29 to +36 (1)	1 pt. in 2 of 80%

No.	Other Characters.	Chief Known Constituents.
1 2	Boils 150-300° C. (American Storax, L. styracifluum, dextrogyrate, about +16.)	Styrene; cinnamic esters. Thujone; camphor; borneol.
3		
5		d-pinene; l-fenchone;
7	Contains not less than 20% phenols (5). Ref. ind. (20°) 1.480–1.490 (3). Contains 20–25% phenols, sometimes as much as 42%. Like the French oil.	
910	Contains 50–70% phenols (6)	
11	Distils mostly 175–180° (6)	Thymol; carvacrol.
	Saponification value about 180 (6) Most of the oil distils 155-162° (5). Less than	cinnamic acid.
	2% residue at 100° (2). Refractive index (20°) 1.4690-1.4740 (10). Less than 5% is left unpolymerized with conc. sulphuric acid after standing 30 min.; about 90% distils 156-180°. Refractive index (20°) 1.4685-1.4750 (10).	pentene.
	Usually has a tarry odor. Less than 90% distils below 165° (2). Boils 250–300° (2). Acid value 20–50. Ester value 80–100. Sapon. value 100–150 (6).	Borneol; bornyl formate, acetate and isovaleri- anate; pinene; cam- phene.
	Has a green color, but similar to European oil in other organoleptic properties.	
	Sapon. value 60-80. Most viscid of all essential oils.	
-		

No.	Oil and Chief Botanical Source.	Specific Gravity, 15° C.	Optical Rotation,	Solubility in Alcohol.
1	Wintergreen: (Gautheria procumbens).		$\begin{bmatrix} -0.45 & \text{to } -1.0 \\ (1) & \end{bmatrix}$	1 pt. in 6 of 70%
2	Wormseed (American): (Chenopodium ambrosioides).	.965985 (25°)	-5 to -18 (2)	1 pt. in 10 of 70%
3	Wormseed (Levant) (Artemisia maritima).	.930935 (2)	slightly lævo- gyrate	
4	Wormwood: (Artemisia absinthium).		0,	1 pt. in 2-4 of 80%
i	Ylang Ylang: (Manila) (Cananga odorata). Zedoary: (Curcuma Zedoaria).	· (1)	-27 to -49.7 (30°) (1)	

No.	Other Characters.	Chief Known Constituents.
1	Boils 218–221°	Methyl salicylate about 99%.
2	Penetrating odor and bitter taste. Varies in properties with age.	
3		Cineol.
4	First 10% of distillate should be soluble in 2 vols. 80% alcohol. Has green color when distilled from green herb. Refractive index (20°) 1.460-1.470 (3).	phellandrene; thujyl
	Sapon. value 90-138 (1). Refractive index (30) 1.4747-1.4940. Viscid, very dark oil. Distils mostly 240-300°.	their esters; pinene.

XXXIII.—MELTING POINT AND COMPOSITION OF FUSIBLE ALLOYS*

Melting		Percentage (Observer or		
Point, °C.	Lead.	Tin.	Bismuth.	Cadmium.	Special Name.
55.5 55.5 60-68 65.5 65.5	25.00 12.00 26.70 25.00 12.00 24.90	12.50 16.00 13.30 12.50 16.00 14.20	50.00 60.00 50.00 50.00 60.00 51.00	12.50 12.00 10.00 12.50 12.00 10.80	Lipowitz. Wood.
67.5	25.21	14.10	51.07	9.60	Wood. von Hauer.
68.5	24.24	13.65	49.09	13.09	v. Hauer.
68.5	25.94	14.51	52.53	7.00	V. Hauer.
65-71 65-71 70 70 72 75 75.5 75.5	30.77 25.00 28.60 27.19 29.66 27.60 25.80 25.00	15.38 12.50 14.30 12.91 8.80 10.30 14.70 14.20	38.77 50.00 50.00 50.09 54.94 27.60 52.40 50.70	15.38 \ 12.50 \ 7.10 \ 9.81 \ 6.60 \ 34.50 \ 7.00 \ 10.10	Silliman. Wood. Wood. Wood. Wood. Lipowitz.
76.5	34.38	9.37	50.00	6.25	(v. Hauer. Lipowitz-Eratz.
76.6 77.0 80.0 80.0 82.0 88.0 89.5 89.5 89.5 90.0	27. 27 29. 41 25. 00 21. 43 35. 15 42. 86 42. 86 39. 52 50. 00 33. 33 34. 97 31. 25	18.18 17.65 25.00 21.43 20.03	45.46 47.06 43.75 57.14 35.31 50.00 50.00 53.36 33.33 50.00 35.13 50.00	9.09Hg. 5.88 6.25 9.51 7.14 7.14 7.11 16.67	Harper. d'Arcet. Wood. n. v. Hauer. v. Hauer.
91.6	30.00	20.00	50.00		Onions. Lichtenberg.
91.6 92–93 93.0	32.73 18.45 25.00	12.44 31.55 25.00	54.83 50.00 50.00		Lichtenberg. v. Hauer. Erman. Rose.
93.0	18.75	31.25	50.00		Newton.
93.75 94.0 94.0	27.94 16.67 42.10	15.92 16.67 15.80	56.16 66.66 42.10		Newton. Melotte. Rose.

^{*} Chem. Ztg., 30, 1139-1143. Jour. Soc. Chem. Ind., 25, 1221.

Melting				•	Observer or	
Point, °C.	Lead.	Tin.	Bismuth.	Cadmium.	Special Name.	
94.0	27.50	45.00	27.50		Bismuth solder.	
94.44	33.90	11.60	54.50		Newton.	
94.5	50.00	30.00	20.00		Newton.	
95.0		33.33	50.00	16.67	v. Hauer.	
95.0		30.00	50.00	20.00	v. Hauer.	
95.0		33.33	55.56	11.11		
95.0		25.00	50.00	25.00	Wood, v. Hauer.	
95.0	43.26		50.06	6.67	v. Hauer.	
95.0	58.33		33.33	8.34		
95.0	30.77		53.84	15.39		
95.0	33.13	32.15	40.00	34.40	77 A	
95.0	32.49	18.51	49.00		d'Arcet.	
95.0	25.00	25.00	50.00		Rose.	
98.0 98.75	31.25 45.10	18.75	50.00		Newton, d'Arcet.	
98.8		9.60	45.30		d'Arcet.	
99.0	24.00 33.34	27.30 33.33	48.70 33.33		Rose.	
100.0	50.00	30.00	20.00			
100.0	16.67	41.67	41.66		Newton.	
100.0	25.00	25.00	50.00		Smith.	
104.0	26.33	7.51	66.16		Krafft.	
105.0	26.67	44.76	23.81	4.76	v. Hauer.	
111.0	40.00	20.00	40.00	4.10	Bismuth solder.	
119.0	48.39	38.71	12.90		Distriction solder.	
122.0	39.28	21.25	39.47		Homberg.	
123.3	33.33	33.33	33.34			
123.75	41.67	25.00	33.33			
124.0	38.84	22.14	39.02			
124.0	42.86 .	42.86	14.28			
125.3	27.20		72.80		Rudberg.	
127.0	42.74		57.26			
128.0	44.45	44.44	11.11			
130.0	38.46	30.77	30.77			
132.0	28.00	47.00		25.00	v. Hauer.	
136.0	34.36	57.64		8.00	v. Hauer.	
136.0	26.47	59.32		14.30	v. Hauer.	
136.0	20.43	68.54		11.03	v. Hauer.	
136.4		29.80	70.20		Rudberg.	
140.0	99 99	68.29	31.71			
140.0 140.0	33.33 42.10	33.33	33.34			
140.0	42.10	36.84 27.50	$21.06 \\ 24.25$			
145.0	50.00	30.00	24.25			
146.3		30.00	78.80	21.20	Rudberg.	
149.0	25.00	50.00	10.00	25.00	nuaberg.	
150.0	40.74	44.44	14.82	20.00		
155.0	42.86	42.86	14.28		Bismuth solder.	
			11.20		Distriction Dougle	

Melting		Percentage (Observer or		
Point, °C.	Lead.	Tin.	Bismuth.	Cadmium.	Special Name.
155.0	52.50	30.00	17.50		
160.0	53.57	32.14	14.29		
160.0	42.10	47.37	10.52		
160.0	44.45	44.44	11.11		Bismuth solder.
160.0	31.80	36.20	32.00		
165.0		75.65		24.35	v. Hauer.
168.0	40.00	60.00		<u>.</u> .	Prechtl, tin solder.
168.0	26.90	68.90		4.20Zn	Svanberg.
171.0	33.33	66.67			soft quick solder.
173.8			67.80	32.20	Rudberg.
175	89.77	10.23			Spring.
175	87.53	12.47			Spring.
176.5	77.82	22.18			Spring.
177.0 177.5	84.03	15.97			Spring.
177.5	63.70 36.90	36.30 63.10			Spring.
180.0	25.00	75.00			Spring. Prechtl.
180.0	37.00	63.00			Drop solder.
181.0	37.35	62.65			Pillichody.
181.0	51.28	48.72			I michody.
181.2	55.64	44.36			Pohl.
183.0	30.50	69.50			Spring.
185.0	46.73	53.27			opring.
186.0	37.50	62.50			
186.0	20.00	80.00			Prechtl.
187.0	31.00	69.00			
187.0	33.33	66.67			
187.0	30.50	69.50			Pillichody.
189.0	63.70	36.30			
189.0	50.00	50.00			Prechtl quick solder.
189.0	81.40	18.60			
189.0	71.43	28.57			
190.0	22.62	77.38			
190.0	41.23	58.77			
192.0	16.67	83.33			Prechtl.
194.0	14.30	85.70			Prechtl.
194.0	23.08	76.91			
194.0	25.00	75.00			
194.0	28.58	71.42			
194-195	84.00	16.00			
194-195	75.00	25.00			D'11: 1 1
197.0	47.20	52.80			Pillichody.
197	54.34	45.66			
198.0	86.00	14.00			• • • • • • • • • • • • • • • • • • • •
198.0	77.78	22.22			
200.0	63.70 50.00	36.30 50.00			
200.0	30.00	30.00			

SPECIFIC GRAVITY TABLES

XXXIV (a).—EQUIVALENT OF DEGREES BAUMÉ (AMERICAN STANDARD) AND SPECIFIC GRAVITY AT 60° F.

Degrees Baumé = $145 - \frac{145}{\mathrm{Sp.\,Gr.}}$ For Liquids Heavier than Water.

	op. Gr.								
Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity		
0.0	1.0000	.7	1.0262	.4	1.0538	.1	1.0829		
.1	1.0007	.8	1.0269	.5	1.0545	.2	1.0837		
.2	1.0014	.9	1.0276	.6	1.0553	.3	1.0845		
.3	1.0021	4.0	1.0284	.7	1.0561	.4	1.0853		
.4	1.0028	.1	1.0291	.8	1.0569	.5	1.0861		
.5	1.0035	.2	1.0298	.9	1.0576	.6	1.0870		
.6	1.0042	.3	1.0306	8.0	1.0584	.7	1.0878		
.7	1.0049	.4	1.0313	.1 .	1.0592	.8	1.0886		
.8	1.0055	.5	1.0320	.2	1.0599	.9	1.0894		
.9	1.0062	.6	1.0328	.3	1.0607	12.0	1.0902		
1.0	1.0069	.7	1.0335	.4	1.0615	.1	1.0910		
.1	1.0076	.8	1.0342	.5	1.0623	.2	1.0919		
.2	1.0083	.9	1.0350	.6	1.0630	.3	1.0927		
.3	1.0090	5.0	1.0357	.7	1.0638	.4	1.0935		
.4	1.0097	.1	1.0365	.8	1.0646	.5	1.0943		
.5	1.0105	.2	1.0372	.9	1.0654	.6	1.0952		
.6	1.0112	.3	1.0379	9.0	1.0662	.7	1.0960		
.7	1.0119	.4	1.0387	.1	1.0670	.8	1.0968		
.8	1.0126	.5	1.0394	.2	1.0677	.9	1.0977		
.9	1.0133	.6	1.0402	.3	1.0685	13.0	1.0985		
2.0	1.0140	.7	1.0409	.4	1.0693	.1	1.0993		
.1	1.0147	.8	1.0417	.5	1.0701	.2	1.1002		
.2	1.0154	.9	1.0424	.6	1.0709	.3	1.1010		
.3	1.0161	6.0	1.0432	.7	1.0717	.4	1.1018		
.4	1.0168	.1	1.0439	.8	1.0725	.5	1.1027		
.5	1.0175	.2	1.0447	.9	1.0733	.6	1.1035		
.6	1.0183	.3	1.0454	10.0	1.0741	.7	1.1043		
.7	1.0190	.4	1.0462	.1	1.0749	.8	1.1052		
.8	1.0197	.5	1.0469	.2	1.0757	.9	1.1060		
.9	1.0204	.6	1.0477	.3	1.0765	14.0	1.1069		
3.0	1.0211	.7	1.0484	.4	1.0773	.1	1.1077		
.1	1.0218	.8	1.0492	.5	1.0781	.2	1.1086		
.2	1.0226	.9	1.0500	.6	1.0789	.3	1.1094		
.3	1.0233	7.0	1.0507	.7	1.0797	.4	1.1103		
.4	1.0240	.1	1.0515	.8	1.0805	.5	1.1111		
.5	1.0247	.2	1.0522	.9	1.0813	.6	1.1120		
.6	1.0255	.3	1.0530	11.0	1.0821	.7	1.1128		

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.8	1.1137	.2	1.1526	.6	1.1944	28.0	1.2393
.9	1.1145	.3	1.1535	.7	1.1954	.1	1.2404
15.0	1.1154	.4	1.1545	.8	1.1964	.2	1.2414
.1	1.1162	.5	1.1554	.9	1.1974	.3	1.2425
.2	1.1171	.6	1.1563	24.0	1.1983	.4	1.2436
.3	1.1180	.7	1.1572	.1	1.1993	.5	1.2446
.4	1.1188	.8	1.1581	.2	1.2003	.6	1.2457
.5	1.1197	.9	1.1591	.3	1.2013	.7	1.2468
.6	1.1206	20.0	1.1600	.4	1.2023	.8	1.2478
.7	1.1214	.1	1.1609	.5	1.2033	.9	1.2489
.8	1.1223	.2	1.1619	. 6	1.2043	29.0	1.2500
.9	1.1232	.3	1.1628	.7	1.2053	.1	1.2511
16.0	1.1240	.4	1.1637	.8	1.2063	.2	1.2522
.1	1.1249	.5	1.1647	.9	1.2073	.3	1.2532
.2	1.1258	.6	1.1656	25.0	1.2083	` .4	1.2543
.3	1.1267	.7	1.1665	.1	1.2093	.5	1.2554
.4	1.1275	.8	1.1675	.2	1.2104	.6	1.2565
.5	1.1284	.9	1.1684	.3	1.2114	.7	1.2576
.6	1.1293	21.0	1.1694	.4	1.2124	.8	1.2587
.7	1.1302	.1	1.1703	.5	1.2134	.9	1.2598
.8	1.1310	.2	1.1712	.6	1.2144	30.0	1.2609
.9	1.1319	.3	1.1722	.7	1.2154	.1	1.2620
17.0	1.1328	.4	1.1731	.8	1.2164	.2	1.2631
.1	1.1337	.5	1.1741	.9	1.2175	.3	1.2642
.2	1.1346	.6	1.1750	26.0	1.2185	.4	1.2653
.3	1.1355	.7	1.1760	,1	1.2195	.5	1.2664
.4	1.1364	.8	1.1769	.2	1.2205	.6	1.2675
.5	1.1373	.9	1.1779	.3	1.2216	.7	1.2686
.6	1.1381	22.0	1.1789	.4	1.2226	.8	1.2697
.7	1.1390	.1	1.1798	.5	1.2236	.9	1.2708
.8	1.1399	.2	1.1808	.6	1.2247	31.0	1.2719
.9	1.1408		1.1817 1.1827	.8	1.2257	.1	1.2730
18.0	1.1417	.4	1.1827	}	1.2267 1.2278	.2	1.2742
.1	1.1426 1.1435	.6	1.1846	27.0	1.2288	.3	1.2753 1.2764
.3	1.1455	.7	1.1856	.1	1.2299		1.2704
. 3	1.1444	.8	1.1866	.1	1.2309	.5	1.2775
.5	1.1462		1.1876	.3	1.2319	.7	1.2787
.6	1.1462	23.0	1.1876	.3	1.2319	.8	1.2798
.7	1.1472	.1	1.1895	.5	1.2340	.8	1.2809
.8	1.1481	.1	1.1895	.6	1.2340	32.0	1.2821 1.2832
.9	1.1490	.3	1.1905 1.1915	.0	1.2351	32.0	1.2832
19.0	1.1499	.3	1.1915	.8	1.2361 1.2372	.1	1.2843 1.2855
.1	1.1508	.5	1.1924	.9	1.2383	.3	1.2866
.1	1.1017	.0	1.1304	. 9	1.2000	0.	1.2000

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.4	1.2877	.8	1.3401	.2	1.3969	.6	1.4588
.5	1.2889	.9	1.3414	.3	1.3983	.7	1.4602
.6	1.2900	37.0	1.3426	.4	1.3996	.8	1.4617
.7	1.2912	.1	1.3438	.5	1.4010	.9	1.4632
.8	1.2923	.2	1.3451	.6	1.4023	46.0	1.4646
.9	1.2935	.3	1.3463	.7	1.4037	.1	1.4661
33.0	1.2946	.4	1.3476	.8	1.4050	.2	1.4676
.1	1.2958	.5	1.3488	.9	1.4064	.3	1.4691
.2	1.2970	.6	1.3501	42.0	1.4078	.4	1.4706
.3	1.2981	.7	1.3514	.1	1.4091	.5	1.4721
.4	1.2993	.8	1.3526	.2	1.4105	.6	1.4736
.5	1.3004	.9	1.3539	.3	1.4119	.7	1.4751
.6	1.3016	38.0	1.3551	.4	1.4133	.8	1.4766
.7	1.3028	.1	1.3564	.5	1.4146	.9	1.4781
.8	1.3040	.2	1.3577	.6	1.4160	47.0	1.4796
.9	1.3051	.3	1.3590	.7	1.4174	.1	1.4811
34.0	1.3063	.4	1.3602	.8	1.4188	.2	1.4826
.1	1.3075	.5	1.3615	.9	1.4202	.3	1.4841
.2	1.3087	.6	1.3628	43.0	1.4216	.4	1.4857
.3	1.3098	.7	1.3641	.1	1.4230	.5	1.4872
.4	1.3110	.8	1.3653	.2	1.4244	.6	1.4887
.5	1.3122	.9	1.3666	.3	1.4258	.7	1.4902
.6	1.3134	39.0	1.3679	.4	1.4272	.8	1.4918
.7	1.3146	.1	1.3692	.5	1.4286	.9	1.4933
.8	1.3158	.2	1.3705	.6	1.4300	48.0	1.4948
.9	1.3170	.3	1.3718	.7	1.4314	.1	1.4964
35.0	1.3182	.4	1.3731	.8	1.4328	.2	1.4979
.1	1.3194	.5	1.3744	.9	1.4342	.3	1.4995
.2	1.3206	.6	1.3757	. 44.0	1.4356	.4	1.5010
.3	1.3218	.7	1.3770	.1	1.4371	.5	1.5026
.4	1.3230	.8	1.3783	.2	1.4385	.6	1.5041
.5	1.3242	.9	1.3796	.3	1.4399	.7	1.5057
.6	1.3254	40.0	1.3810	4	1.4414	.8	1.5073
.7	1.3266	.1	1.3823	.5	1.4428	.9	1.5088
.8	1.3278	.2	1.3836	.6	1.4442	49.0	1.5104
.9	1.3291	.3	1.3849	.7	1.4457	.1	1.5120
36.0	1.3303	.4	1.3862	.8	1.4471	.2	1.5136
.1	1.3315	.5	1.3876	.9	1.4486	.3	1.5152
.2	1.3327	.6	1.3889	45.0	1.4500	.4	1.5167
.3	1.3329	.7	1.3902	.1	1.4515	.5	1.5183
.4	1.3352	.8	1.3916	.2	1.4529	.6	1.5199
.5	1.3364	.9	1.3929	.3	1.4544	.7	1.5215
.6	1.3376	41.0	1.3942	.4	1.4558	.8	1.5231
.7	1.3389	.1	1.3956	.5	1.4573	.9	1.5247

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
50.0	1.5263	.4	1.6004	.8	1.6821	.2	1.7726
.1	1.5279	.5	1.6022	. 9	1.6841	.3	1.7748
.2	1.5295	. 6	1.6040	59.0	1.6860	.4	1.7770
.3	1.5312	.7	1.6058	.1	1.6880	.5	1.7791
.4	1.5328	.8	1.6075	.2	1.6900	.6	1.7813
.5	1.5344	. 9	1.6093	.3	1.6919	.7	1.7835
.6	1.5360	55.0	1.6111	.4	1.6939	.8	1.7857
.7	1.5376	.1	1.6129	.5	1.6959	9.	1.7879
.8	1.5393	.2	1.6147	.6	1.6979	64.0	1.7901
.9	1.5409	.3	1.6165	.7	1.6999	.1	1.7923
51.0	1.5426	.4	1.6183	.8	1.7019	.2	1.7946
.1	1.5442	.5	1.6201	.9	1.7039	.3	1.7968
.2	1.5458	.6	1.6219	60.0	1.7059	.4	1.7990
.3	1.5475	.7	1.6237	.1	1.7079	.5	1.8012
.4	1.5491	.8	1.6256	.2	1.7099	.6	1.8035
.5	1.5508	. 9	1.6274	.3	1.7119	.7	1.8057
.6	1.5525	56.0	1.6292	.4	1.7139	.8	1.8080
.7	1.5541	.1	1.6310	.5	1.7160	.9	1.8102
.8	1.5558	.2	1.6329	.6	1.7180	65.0	1.8125
.9	1.5575	.3	1.6347	.7	1.7200	.1	1.8148
52.0	1.5591	.4	1.6366	.8	1.7221	.2	1.8170
.1	1.5608	.5	1.6384	.9	1.7241	.3	1.8193
.2	1.5625	.6	1.6403	61.0	1.7262	.4	1.8216
.3	1.5642	.7	1.6421	.1	1.7282	.5	1.8239
.4	1.5659	.8	1.6440	.2	1.7303	.6	1.8262
.5	1.5676	.9	1.6459	.3	1.7324	.7	1.8285
.6	1.5693	57.0	1.6477	.4	1.7344	.8	1.8308
.7	1.5710	.1	1.6496	.5	1.7365	.9	1.8331
.8	1.5727	.2	1.6515	. 6	1.7386	66.0	1.8354
.9	1.5744	.3	1.6534	.7	1.7407	.1	1.8378
53.0	1.5761	.4	1.6553	.8	1.7428	.2	1.8401
.1	1.5778	.5	1.6571	. 9	1.7449	.3	1.8424
.2	1.5795	.6	1.6590	62.0	1.7470	.4	1.8448
.3	1.5812	.7	1.6609	.1	1.7491	.4	1.8448
.4	1.5830	.8	1.6628	.2	1.7512	.5	1.8471
.5	1.5847	.9	1.6648	.3	1.7533	.6	1.8495
.6	1.5864	58.0	1.6667	.4	1.7554	.7	1.8519
.7	1.5882	.1	1.6686	.5	1.7576	.8	1.8542
.8	1.5899	.2	1.6705	. 6	1.7597	.9	1.8566
.9	15917	.3	1.6724	.7	1.7618	67.0	1.8590
54.0	1.5934	.4	1.6744	.8	1.7640	.1	1.8614
.1	1.5952	.5	1.6763	.9	1.7661 .	.2	1.8638
.2	1.5969	.6	1.6782	63.0	1.7683	.3	1.8662
.3	1.5987	.7	1.6802	.1	1.7705	.4	1.8686

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.5	1.8710 1.8734	.2	1.8880 1.8905	.9	1.9054 1.9079	.6	1.9231 1.9256
.7	1.8758	.4	1.8930	69.0	1.9104	.8	1.9282
.8	1.8782 1.8807	.5	1.8954 1.8979	.2	1.9129 1.9155	70.0	1.9308 1.9333
68.0	1.8831 1.8856	.7	1.9004 1.9029	.4	1.9180		

XXXIV (b). — EQUIVALENT BAUMÉ DEGREES (AMERICAN STANDARD) WITH SPECIFIC GRAVITY AT 60° F.

Sp. Gr. $=\frac{140}{130+B}$ ° For Liquids Lighter than Water.

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
10.0	1.0000	.2	0.9845	.4	0.9695	.6	0.9550
.1	0.9993	.3	0.9838	.5	0.9689	.7	0.9543
.2	0.9986	.4	0.9831	.6	0.9682	.8	0.9537
.3	0.9979	.5	0.9825	.7	0.9675	.9	0.9530
.4	0.9972	.6	0.9818	.8	0.9669	17.0	0.9524
.5	0.9964	.7	0.9811	.9	0.9662	.1	0.9517
.6	0.9957	.8	0.9804	15.0	0.9655	.2	0.9511
.7	0.9950	.9	0.9797	.1	0.9649	.3	0.9504
.8	0.9943	13.0	0.9790	.2	0.9642	.4	0.9498
.9	0.9936	.1	0.9783	.3	0.9635	. 5	0.9492
11.0	0.9929	.2	0.9777	.4	0.9629	.6	0.9485
.1	0.9922	.3	0.9770	.5	0.9622	.7	0.9479
.2	0.9915	.4	0.9763	.6	0.9615	.8	0.9472
.3	0.9908	.5	0.9756	.7	0.9609	.9	0.9466
.4	0.9901	.6	0.9749	.8	0.9602	18.0	0.9459
.5	0.9894	.7	0.9743	.9	0.9596	.1	0.9453
.6	0.9887	.8	0.9736	16.0	0.9589	.2	0.9447
.7	0.9880	.9	0.9729	.1	0.9582	.3	0.9440
.8	0.9873	14.0	0.9722	.2	0.9576	.4	0.9434
.9	0.9866	.1	0.9715	.3	0.9569	.5	0.9428
12.0	0.9859	.2	0.9709	.4	0.9563	.6	0.9421
.1	0.9852	.3	0.9702	.5	0.9556	.7	0.9415
							i

Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.8	0.9409	.2	0.9138	.6	0.8883	32.0	0.8642
. 9	0.9402	.3	0.9132	.7	0.8878	.1	0.8637
19.0	0.9396	.4	0.9126	.8	0.8872	.2	0.8631
.1	0.9390	.5	0.9121	.9	0.8866	.3	0.8626
.2	0.9383	. 6	0.9115	28.0	0.8861	.4	0.8621
.3	0.9377	.7	0.9109	.1	0.8855	. 5	0.8615
.4	0.9371	.8	0.9103	.2	0.8850	.6	0.8610
.5	0.9365	. 9	0.9097	.3	0.8844	.7	0.8605
. 6	0.9358	24.0	0.9091	.4	0.8838	.8	0.8600
.7	0.9352	.1	0.9085	. 5	0.8833	.9	0.8594
.8	0.9346	.2	0.9079	.6	0.8827	33.0	0.8589
.9	0.9340	.3	0.9073	.7	0.8822	.1	0.8584
20.0	0.9333	.4	0.9067	.8	0.8816	.2	0.8578
. 1	0.9327	. 5	0.9061	. 9	0.8811	.3	0.8573
.2	0.9321	.6	0.9056	29.0	0.8805	.4	0.8568
.3	0.9315	.7	0.9050	.1	0.8799	.5	0.8563
.4	0.9309	.8	0.9044	.2	0.8794	.6	0.8557
.5	0.9302	.9	0.9038	.3	0.8788	.7	0.8552
.6	0.9296	25.0	0.9032	.4	0.8783	.8	0.8547
.7	0.9290	.1	0.9026	.5	0.8777	.9	0.8542
.8	0.9284	.2	0.9021	. 6	0.8772	34.0	0.8537
.9	0.9278	.3	0.9015	.7	0.8766	.1	0.8531
21.0	$0.9272 \\ 0.9265$.5	0.9009	.8	0.8751	.3	0.8526
.2	0.9259	.6	0.9003	30.0	0.8750	.3	0.8521 0.8516
.3	0.9259	.7	0.8997	.1	0.8745	.5	0.8510
.4	0.9247	.8	0.8986	.2	0.8739	.6	0.8505
.5	0.9241	.9	0.8980	.3	0.8734	.7	0.8500
.6	0.9235	26.0	0.8974	.4	0.8728	.8	0.8495
.7	0.9229	.1	0.8969	.5	0.8723	.9	0.8490
.8	0.9223	.2	0.8963	.6	0.8717	35.0	0.8485
.9	0.9217	.3	0.8957	.7	0.8712	.1	0.8480
22.0	0.9211	.4	0.8951	.8	0.8706	.2	0.8475
.1	0.9204	. 5	0.8946	.9	0.8701	.3	0.8469
.2	0.9198	. 6	0.8940	31.0	0.8696	.4	0.8464
.3	0.9192	.7	0.8934	.1	0.8690	.5	0.8459
.4	0.9186	.8	0.8929	.2	0.8685	.6	0.8454
5	0.9180	.9	0.8923	.3	0.8679	.7	0.8449
.6	0.9174	27.0	0.8917	.4	0.8674	.8	0.8444
.7	0.9168	.1	0.8912	. 5	0.8669	.9	0.8439
.8	0.9162	.2	0.8906	.6	0.8663	36.0	0.8434
.9	0.9156	.3	0.8900	.7	0.8658	.1	0.8429
23.0	0.9150	.4	0.8895	.8	0.8653	.2	0.8424
. 1	0.9144	.5	0.8889	.9	0.8647	.3	0.8419

				1 70		1 5	
Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baume	Specific Gravity
.4	0.8413	.8	0.8197	.2	0.7991	.6	0.7795
.5	0.8408	.9	0.8192	.3	0.7986	.7	0.7791
.6	0.8403	41.0	0.8187	.4	0.7982	.8	0.7786
.7	0.8398	.1	0.8182	.5	0.7977	.9	0.7782
.8	0.8393	.2	0.8178	.6	0.7973	50.0	0.7778
.9	0.8388	.3	0.8173	.7	0.7968	.1	0.7773
37.0	0.8383	.4	0.8168	.8	0.7964	2	0.7769
. 1	0.8378	.5	0.8163	.9	0.7959	.3	0.7765
.2	0.8373	.6	0.8159	46.0	0.7955	.4	0.7761
.3	0.8368	.7	0.8154	.1	0.7950	.5	0.7756
.4	0.8363	.8	0.8149	.2	0.7946	.6	0.7752
.5	0.8358 0.8353	42.0	0.8144	.3	$0.7941 \\ 0.7937$.7	0.7748 0.7743
.7	0.8348	.1	0.8140	.5	0.7937	.8	0.7743
.8	0.8343	.1	0.8130	.6	$0.7932 \\ 0.7928$	51.0	0.7735
.9	0.8338	.3	0.8135	.7	0.7923	.1	0.7731
38.0	0.8333	.4	0.8121	.8	0.7919	$\frac{1}{2}$	0.7726
.1	0.8328	.5	0.8116	.9	0.7914	.3	0.7722
2	0.8323	.6	0.8111	47.0	0.7910	.4	0.5718
.3	0.8318	.7	0.8107	.1	0.7905	.5	0.7713
.4	0.8314	.8	0.8102	.2	0.7901	.6	0.7709
.5	0.8309	.9	0.8097	.3	0.7896		0.7705
.6	0.8304	43.0	0.8092	.4	0.7892	.8	0.7701
.7	0.8299	.1	0.8088	.5	0.7887	.9	0.7697
.8	0.8294	.2	0.8083	.6	0.7883	52.0	0.7692
.9	0.8289	.3	0.8078	.7	0.7878	.1	0.7688
39.0	0.8284	.4	0.8074	.8	0.7874	.2	0.7684
.1	0.8279	.5	0.8069	.9	0.7870	.3	0.7680
.2	0.8274	.6	0.8065	48.0	0.7865	.4	0.7675
.3	0.8269	.7	0.8060	.1	$0.7861 \\ 0.7856$.5	$0.7671 \\ 0.7667$
.5	0.8264	.9	0.8055	.3	$0.7850 \\ 0.7852$	7	0.7663
.6	0.8255	44.0	0.8046	.4	0.7848	.8	0.7659
.7	0.8250	.1	0.8040	.5	0.7843	.9	0.7654
.8	0.8245	.2	0.8037	.6	0.7839	53.0	0.7650
.9	0.8240	.3	0.8032	.7	0.7834	.1	0.7646
40.0	0.8235	.4	0.8028	.8	0.7830	.2	0.7642
.1	0.8230	.5	0.8023	9	0.7826	.3	0.7638
.2	0.8226	.6	0.8018	49.0	0.7821	.4	0.7634
.3	0.8221	.7	0.8014	.1	0.7817	.5	0.7629
, .4	0.8216	.8	0.8009	.2	0.7812	.6	0.7625
.5	0.8211	.9	0.8005	.3	0.7808	.7	0.7621
.6	0.8206	45.0	0.8000	.4	0.7804	.8	0.7617
.7	0.8202	.1	0.7995	.5	0.7799	.9	0.7613
		11					

Degrees	Specific	Degrees	Specific	Degrees	Specific	Degrees	Specific
Baumé	Gravity	Baumé	Gravity	Baumé	Gravity	Baume	Gravity
	0 2000		0 7404		. 5001		0 2000
54.0	0.7609	.4	0.7431	.8	0.7261	.2	0.7099
.1	0.7605	.5	0.7427	.9	0.7258	.3	0.7096
.2	0.7600	.6	0.7423	63.0	0.7254	.4	0.7092
.3	0.7596	.7	0.7419	.1	0.7250	.5	0.7089
.4	0.7592	.8	0.7415	.2	0.7246	.6	0.7085
.5	0.7588	.9	0.7411	.3	0 7243	.7	0.7081
.6	0.7584	59.0	0.7407	.4	0.7239	.8	0.7078
.7	0.7580	.1	0.7403	.5	0.7235	.9	0.7074
.8	$\begin{bmatrix} 0.7576 \\ 0.7572 \end{bmatrix}$.3	0.7400	.6	$\begin{bmatrix} 0.7231 \\ 0.7228 \end{bmatrix}$	68.0	0.7071
.9			$0.7390 \\ 0.7392$	1	$0.7228 \\ 0.7224$.1	0.7067
55.0	0.7568	.4	0.7392	.8	$0.7224 \\ 0.7220$.2	0.7064
.1	$\begin{bmatrix} 0.7563 \\ 0.7559 \end{bmatrix}$.8	0.7384	64.0	$\begin{bmatrix} 0.7220 \\ 0.7216 \end{bmatrix}$.3	0.7060 0.7056
.2		.7	0.7384	.1	0.7210	.4	
	$0.7555 \ 0.7551$.8	0.7376	.1	$0.7213 \\ 0.7209$.5	0.7053
.4	$0.7531 \\ 0.7547$.9	0.7370	.3	$0.7209 \\ 0.7205$.6	$0.7049 \\ 0.7046$
.6	0.7547	60.0	0.7368	.5	$0.7203 \\ 0.7202$.8	
.7	$\begin{bmatrix} 0.7543 \\ 0.7539 \end{bmatrix}$.1	0.7365	.5	$0.7202 \\ 0.7198$.8	$0.7042 \\ 0.7039$
.8	$0.7539 \ 0.7535$.2	0.7361	.6	0.7198	69.0	0.7039
.9	$0.7535 \\ 0.7531$.3	0.7357	.7	0.7194	.1	0.7033
56.0	$0.7531 \\ 0.7527$.4	0.7353	.8	0.7191	.1	0.7032
.1	$\begin{bmatrix} 0.7527 \\ 0.7523 \end{bmatrix}$.5	0.7349	.9	0.7183	.3	0.7028 0.7025
.2	0.7523	.6	0.7345	65.0	0.7179	.4	0.7025
.3	0.7519	.7	0.7343	.1	0.7176	.5	0.7021
.4	0.7513	.8	0.7341	.2	0.7170	.6	0.7018
.5	0.7511	.9	0.7334	.3	0.7172	.7	0.7014
.6	0.7503	61.0	0.7334	.4	0.7165	.8	0.7011
.7	0.75	.1	0.7326	.5	0.7161	.9	0.7004
.8	0.7495	.2	0.7322	.6	0.7157	70.0	0.7000
.9	0.7491	.3	0.7318	.7	0.7154	.1	0.6997
57.0	0.7487	.4	0.7315	.8	0.7150	.2	0.6993
.1	0.7483	.5	0.7311	.9	0.7147	.3	0.6990
.2	0.7479	.6	0.7307	66.0	0.7143	.4	0.6986
.3	0.7475	.7	0.7303	.1	0.7139	.5	0.6983
.4	0.7471	.8	0.7299	.2	0.7136	.6	0.6979
.5	0.7467	.9	0.7295	.3	0.7132	.7	0.6976
.6	0.7463	62.0	0.7292	.4	0.7128	.8	0.6972
.7	0.7459	.1	0.7288	.5	0.7125	.9	0.6969
.8	0.7455	.2	0.7284	.6	0.7121	71.0	0.6965
.9	0.7451	.3	0.7280	.7	0.7117	.1	0.6962
58.0	0.7447	.4	0.7277	.8	0.7114	.2	0.6958
.1	0.7443	.5	0.7273	.9	0.7110	.3	0.6955
.2	0.7439	.6	0.7269	67.0	0.7107	.4	0.6951
.3	0.7435	.7	0.7265	.1	0.7103	.5	0.6948
.0	0,,100		3., 200		3.,100		3.0010

Degrees Baumé.	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity	Degrees Baumé	Specific Gravity
.6	0.6944	.8	0.6869	.9	0.6799	78.0	0.6731
.7	0.6941	.9	0.6866	76.0	0.6796	.1	0.6728
.8	0.6938	74.0	0.6863	.1	0.6793	.2	0.6724
.9	0.6934	.1	0.6859	.2	0.6790	.3	0.6721
72.0	0.6931	.2	0.6856	.3	0.6786	.4	0.6718
.1	0.6927	.3	0.6853	.4	0.6783	.5	0.6715
.2	0.6924	.4	0.6849	.5	0.6780	.6	0.6711
.3	0.6920	.5	0.6846	.6	0.6776	.7	0.6708
.4	0.6917	.6	0.6843	.7	0.6773	.8	0.6705
.5	0.6914	.7	0.6839	.8	0.6770	.9	0.6702
.6	0.6910	.8	0.6836	.9	0.6767	79.0	0.6699
.7	0.6907	.9	0.6833	77.0	0.6763	.1	0.6695
.8	0.6903	75.0	0.6829	.1	0.6760	.2	0.6692
.9	0.6900	.1	0.6826	.2	0.6757	.3	0.6689
73.0	0.6897	.2	0.6823	.3	0.6753	.4	0.6686
.1	0.6893	.3	0.6819	.4	0.6750	.5	0.6683
.2	0.6890	.4	0.6816	.5	0.6747	.6	0.6679
.3	0.6886	.5	0.6813	.6	0.6744	.7	0.6676
.4	0.6883	.6	0.6809	.7	0.6740	.8	0.6673
.5	0.6880	.7	0.6806	.8	0.6737	.9	0.6670
.6	0.6876	.8	0.6803	.9	0.6734	80.0	0.6667
.7	0.6873						

By W. C. FERGUSON

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent H ₂ SO ₄ .	Weight of Cu. Ft. in Lbs. Av.	Per Cent 0. V.*	Pounds O. V. in r Cubic Foot.
0	1.0000	0.0	0.00	62.37	0.00	0.00
1	1.0069	1.4	1.02	62.80	1.09	0.68
2	1.0140	2.8	2.08	63.24	2.23	1.41
3	1.0211	4.2	3.13	63.69	3.36	2.14
4	1.0284	5.7	4.21	64.14	4.52	2.90
5	1.0357	7.1	5.28	64.60	5.67	3.66
6	1.0432	8.6	6.37	65.06	6.84	4.45
7	1.0507	10.1	7.45	65.53	7.99	5.24
8	1.0584	11.7	8.55	66.01	9.17	6.06
9	1.0662	13.2	9.66	66.50	10.37	6.89
10	1.0741	14.8	10.77	66.99	11.56	7.74
11	1.0821	16.4	11.89	67.49	12.76	8.61
12	1.0902	18.0	13.01	68.00	13.96	9.49
13	1.0985	19.7	14.13	68.51	15.16	10.39
14	1.1069	21.4	15.25	69.04	16.36	11.30
15	1.1154	23.1	16.38	69.57	17.58	12.23
16	1.1240	24.8	17.53	70.10	18.81	13.19
17	1.1328	26.6	18.71	70.65	20.08	14.18
18	1.1417	28.3	19.89	71.21	21.34	15.20
19	1.1508	30.2	21.07	71.78	22.61	16.23
20	1.1600	32.0	22.25	72.35	23.87	17.27
21	1.1694	33.9	23.43	72.94	25.14	18.34
22	1.1789	35.8	24.61	73.53	26.41	19.42
23	1.1885	37.7	25.81	74.13	27.69	20.53
24	1.1983	39.7	27.03	74.74	29.00	21.68

Sp. Gr. determinations were made at 60° F., compared with water at 60° F. From the Sp. Grs., the corresponding degrees Baumé were calculated by the following formula: Baumé = 145-145/Sp. Gr.

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

* 66° Baumé = Sp. Gr. 1.8354 = Oil of Vitriol (O. V.). 1 cu. ft. water at 60° F. weighs 62.37 lbs. av. Atomic weights from F. W. Clarke's table of 1901. O = 16. $H_2SO_4 = 100$ per cent.

> $\% \text{ H}_2\text{SO}_4$ % O. V. %60° O. V. = 93.19 = 100.00 = 119.98 60° = 77.67 = 83.35 = 100.00 50° = 62.18 = 66.72 = 80.06

AND H. P. TALBOT

Degrees Baumé.	* Freezing (Melting) Point. F.	APPRO	XIMATE 50° B,	BOILING 295° F.	POINTS	
			60° "	386° "		
0	32.0		61° "	400° "		
1	31.2		62° "	415° "		
2	30.5		63° "	432° "		
3	29.8		64° "	451° "		
4	28.9		65° "	485° "		
_	90.1		66° "	538° "		
5	$ \begin{array}{c c} 28.1 \\ 27.2 \end{array} $					
6 7	26.3		FIXED	POINTS		
8	25.1					
9	24.0	Specific	Per Cent	Specific	Per Cent	
9	24.0	Gravity.	H ₂ SO ₄ .	Gravity.	H ₂ SO ₄ .	
10	22.8					
11	21.5	1.0000	.00	1.5281	62.34	
12	20.0	1.0048	.71	1.5440	63.79	
13	18.3	1.0347	5.14	1.5748	66.51	
14	16.6	1.0649	9.48	1.6272	71.00	
	a 4 200	1.0992	14.22	1.6679	74.46	
15	14.7	1.1353	19.04	1.7044	77.54	
16	12.6	1.1736	23.94	1.7258	79.40	
17	10.2	1.2105	28.55	1.7472	81.32	
18	7.7	1.2513	33.49	1.7700	83.47	
19	4.8	1.2951	38.64	1.7959	86.36	
20	+ 1.6	1.3441	44.15	1.8117	88.53	
21	- 1.8	1.3947	49.52	1.8194	89.75	
22	- 6.0	1.4307	53.17	1.8275	91.32	
23	-11	1.4667	56.68	1.8354	93.19	
24	-16	1.4822	58.14	1.0001	00.10	

Acids stronger than 66° Bé, should have their percentage compositions determined by chemical analysis.

* Calculated from Pickering's results, Jour. of Lon. Ch. Soc., vol. 57, p. 363.

AUTHORITIES - W. C. FERGUSON; H. P. TALBOT.

This table has been approved and adopted as a standard by the Manufacturing Chemists' Association of the United States.

W. H. BOWER, HENRY HOWARD, JAS. L. MORGAN, ARTHUR WYMAN, A. G. ROSENGARTEN,

Executive Committee

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent H ₂ SO ₄ .	Weight of t Cu. Ft. in Lbs. Av.	Per Cent 0. V.	Pounds O. V. in Cubic Foot.
25	1.2083	41.7	28.28	75.36	30.34	22.87
26	1.2185	43.7	29.53	76.00	31.69	24.08
27	1.2288	45.8	30.79	76.64	33.04	25.32
28	1.2393	47.9	32.05	77.30	34.39	26.58
29	1.2500	50.0	33.33	77.96	35.76	27.88
30	1.2609	52.2	34.63	78.64	37.16	29.22
31	1.2719	54.4	35.93	79.33	38.55	30.58
32	1.2832	56.6	37.26	80.03	39.98	32.00
33	1.2946	58.9	38.58	80.74	41.40	33.42
34	1.3063	61.3	39.92	81.47	42.83	34.90
35	1.3182	63.6	41.27	82.22	44.28	36.41
36	1.3303	66.1	42.63	82.97	45.74	37.95
37	1.3426	68.5	43.99	83.74	47.20	39.53
38	1.3551	71.0	45.35	84.52	48.66	41.13
39	1.3679	73.6	46.72	85.32	50.13	42.77
40	1.3810	76.2	48.10	86.13	51.61	44.45
41	1.3942	78.8	49.47	86.96	53.08	46.16
42	1.4078	81.6	50.87	87.80	54.58	47.92
43	1.4216	84.3	52.26	88.67	56.07	49.72
44	1.4356	87.1	53.66	89.54	57.58	51.56
45	1.4500	90.0	55.07	90.44	59.09	53.44
46	1.4646	92.9	56.48	91.35	60.60	55.36
47	1.4796	95.9	57.90	92.28	62.13	57.33
48	1.4948	99.0	59.32	93.23	63.65	59.34
49	1.5104	102.1	60.75	94.20	65.18	61.40
50	1.5263	105.3	62.18	95.20	66.72	63.52
51	1.5426	108.5	63.66	96.21	68.31	65.72
52	1.5591	111.8	65.13	97.24	69.89	67.96
53	1.5761	115.2	66.63	98.30	71.50	70.28
54	1.5934	118.7	68.13	99.38	73.11	72.66
55	1.6111	122.2	69.65	100.48	74.74	75.10
56	1.6292	125.8	71.17	101.61	76.37	77.60
57	1.6477	129.5	72.75	102.77	78.07	80.23
58	1.6667	133.3	74.36	103.95	79.79	82.95
59	1.6860	137.2	75.99	105.16	81.54	85.75

	1					
Degrees Baumé.	* Freezing (Melting) Point. °F.	ATT	LOWANCE	EOD TEM	DED ATTITUE	D.
		ALI	LOWANCE	FOR TEM	PERATURI	E.
25	-23					
26	-30		Bé029° Bé	e. or .00023		1° F.
27	-39	" 20°	" .036°	.00034	4 " =	1° "
28	-49	" 30°	" .035°	.0003		1° "
29	-61	" 40°	" .031°	.00041	l " =	10 "
		" 50°	" .028°	.00048	5 " =	10 "
30	-74	" 60°	" .026°	.00053	3 " =	10 "
31	-82	" 63°	" .026°	.0005		10 11
32	-96	" 66°	" .0235°	" .0005		10 11
33	-97		.0200		_	-
34	-91					
35	-81					
36	-70		1			
37	-60	Per Cent	Pounds 60° Baumé	Per Cent	Pounds 50° Baumé	
38	-53	60° Baumé.	in	50° Baumé.	in	
39	-47	Daume.	1 Cubic Foot.	Daume.	1 Cubic Foot.	
				-		
40	-41	61.93	53.34	77.36	66.63	
41	-35	63.69	55.39	79.56	69.19	
42	$-30 \\ -31$	65.50	57.50	81.81	71.83	
43	$-31 \\ -27$	67.28	59.66	84.05	74.53	
44	$-27 \\ -23$	69.09	61.86	86.30	77.27	
44	-25	09.09	01.00	80.00	11.21	
AF	-20	70.90	64.12	88.56	80.10	
45		$70.90 \\ 72.72$	66.43	90.83	82.98	
46	-14		68.79			
47	-15	74.55	1	93.12	85.93	
48	-18	76.37	71.20	95.40	88.94	
49	-22	78.22	73.68	97.70	92.03	
-	0.50	00.00	FC 01	100.00	0.5.00	
50	-27	80.06	76.21	100.00	95.20	
51	-33	81.96	78.85	102.38	98.50	
52	-39	83.86	81.54	104.74	101.85	
53	-49	85.79	84.33	107.15	105.33	
54	-59	87.72	87.17	109.57	108.89	
					190	
55)	89.67	90.10	112.01	112.55	
56	Below 40	91.63	93.11	114.46	116.30	
57		93.67	96.26	117.00	120.24	
58	Be.	95.74	99.52	119.59	124.31	
59	- 7	97.84	102.89	122.21	128.52	

Degrees Baumé.	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	$\begin{array}{c} \operatorname{Per} \\ \operatorname{Cent} \\ \operatorname{H}_2 \operatorname{SO}_4. \end{array}$	Weight of 1 Cu. Ft. in Lbs. Av.	Per Cent O. V.	Pounds O. V. in I Cubic Foot.
60	1.7059	141.2	77.67	106.40	83.35	88.68
61	1.7262	145.2	79.43	107.66	85.23	91.76
62	1.7470	149.4	81.30	108.96	87.24	95.06
63	1.7683	153.7	83.34	110.29	89.43	98.63
64	1.7901	158.0	85.66	111.65	91.92	102.63
641/4	1.7957	159.1	86.33	112.00	92.64	103.75
$64\frac{1}{2}$	1.8012	160.2	87.04	112.34	93.40	104.93
$64\frac{3}{4}$	1.8068	161.4	87.81	112.69	94.23	106.19
65	1.8125	162.5	88.65	113.05	95.13	107.54
$65\frac{1}{4}$	1.8182	163.6	89.55	113.40	96.10	108.97
$65\frac{1}{2}$	1.8239	164.8	90.60	113.76	97.22	110.60
$65\frac{3}{4}$	1.8297	165.9	91.80	114.12	98.51	112.42
66	1.8354	167.1	93.19	114.47	100.00	114.47

XXXVI. — FUMING SULPHURIC ACID AT 20°

CL. WINKLER

Specific	Total	100]	Parts Con	tain	Specific	Total	100 I	100 Parts Contain			
Gravity.	SO ₃ .	Free SO ₃ *.	H ₂ SO ₄	Acid of 66° B.	Gravity.	SO ₃ .	Free SO3.*	H ₂ SO ₄	Acid of 66° B.		
1.835 1.840 1.845 1.850 1.855 1.860 1.865 1.870 1.875 1.880 1.885	75.31 77.38 79.28 80.01 80.95 81.84 82.12 82.41 82.63 82.81 82.97	1.54 2.66 4.28 5.44 6.42 7.29	92.25 94.79 97.11 98.01 99.16 98.46 97.34 95.76 94.56 93.58 92.71	99 90.69 83.08 80.10 76.38 72.81 71.71 70.53 69.35 68.92 68.27	1.905 1.910 1.915 1.920 1.925 1.930 1.935 1.940 1.945 1.950 1.955	83.57 83.73 84.08 84.56 85.06 85.57 86.23 86.78 87.13 87.41 87.65	10.56 11.43 13.33 15.95 18.67 21.34 25.65 28.03 29.94 31.46 32.77	89.44 88.57 86.67 84.05 81.33 78.66 74.35 71.97 70.06 63.54 67.23	65.68 65.25 63.84 62.10 59.90 57.86 55.21 53.00 51.60 50.48 49.52		
1.890 1.895 1.900	83.13 83.43 83.48	8.16 9.34 10.07	91.94 90.66 89.93	67.55 66.81 66.24	1.960 1.965 1.970	88.22 88.92 89.83	35.87 39.68 44.64	64.13 60.32 55.36	47 .23 44.42 40.78		

^{*} This column gives the amount of SO3 which may be distilled off.

Degrees Baumé.	* Freezing (Melting) Point.	Per Cent 60° Baumé.	Pounds 60° Baumé in Cubic Foot.	Per Cent 50° Baumé.	Pounds 50° Baumé in Cubic Foot.
60	+12.6	100.00	106.40	124.91	132.91
61	27.3	102.27	110.10	127.74	137.52
62	39.1	104.67	114.05	130.75	142.47
63	46.1	107.30	118.34	134.03	147.82
64	46.4	110.29	123.14	137.76	153.81
641	43.6	111.15	124.49	138.84	155.50
$64\frac{1}{2}$	41.1	112.06	125.89	139.98	157.25
$64\frac{3}{4}$	37.9	113.05	127.40	141.22	159.14
65	33.1	114.14	129.03	142.57	161.17
$65\frac{1}{4}$	24.6	115.30	130.75	144.02	163.32
$65\frac{1}{2}$	13.4	116.65	132.70	145.71	165.76
$65\frac{3}{4}$	- 1	118.19	134.88	147.63	168.48
66	-29	119.98	137.34	149.87	171.56

XXXVII. — SULPHURIC ACID

94-100% H₂SO₄ By H. B. BISHOP

The acid used in this table was prepared from Baker and Adamson's c.p. sulphuric acid 95 per cent, which was strengthened to 100 per cent by the addition of fuming sulphuric acid made by distilling fuming acid (70 per cent free SO_3) into a portion of the 95 per cent c.p. acid. The final acid was tested for impurities: residue upon evaporation, chlorine, niter and sulphur dioxide. The only impurity found was a trace of sulphur dioxide (0.001 per cent) which was less than the sensitiveness of the determination.

The analytical and specific gravity determinations, and the allowance for temperature were made in the same manner, and with the same accuracy as in the sulphuric acid table adopted in 1904, the specific gravity 1.8354 and 93.19 per cent H₂SO₄ being taken as a standard.

The actual determinations were made within a few hundredths of a per cent of the points given in the table, the even percentages being calculated by interpolation.

Per Cent H ₂ SO ₄ .	Sp. Gr. at 60° F.	Allowance for Temperature.
66° Bé. 93.19 94.00 95.00 96.00 97.00 97.50 98.00 99.00 100.00	1.8354 1.8381 1.8407 1.8427 1.8437 1.8439 1.8437 1.8424 1.8391	At 94% 0.00054 sp. gr. = 1° F. At 96% 0.00053 sp. gr. = 1° F. At 97.5% 0.00052 sp. gr. = 1° F. At 100% 0.00052 sp. gr. = 1° F.

XXXVIII.—SULPHURIC ACID

LUNGE AND ISLER

Specific Gravity		by weight	ı liter c gra	ontains ms	Specific Gravity	100 parts corresp	by weight ond to		ontains
in vacuo	SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄	in vacuo	SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄
1.000	0.07	0.09	1	1	1.190	21.26	26.04	253	310
1.005	0.68	0.83	7	8	1.195	21.78	26.68	260	319
1.010	1.28	1.57	13	16	1.200	22.30	27.32	268	328
1.015	1.88	2.30	19	23	1.205	22.82	27.95	275	337
1.020	2.47	3.03	25	31	1.210	23.33	28.58	282	346
1.025	3.07	3.76	32	39	1.215	23.84	29.21	290	355
1.030	3.67	4.49	38	46	1.220	24.36	29.84	297	364
1.035	4.27	5.23	44	54	1.225	24.88	30.48	305	373
1.040	4.87	5.96	51	62	1.230	25.39	31.11	312	382
1.045	5.45	6.67	57	71	1.235	25.88	31.70	320	391
1.050	6.02	7.37	63	77	1.240	26.35	32.28	327	400
1.055	6.59	8.07	70	85	1.245	26.83	32.86	334	409
1.060	7.16	8.77	76	93	1.250	27.29	33.43	341	418
1.065	7.73	9.47	82	102	1.255	27.76	34.00	348	426
1.070	8.32	10.19	89	109	1.260	28.22	34.57	356	435
1.075	8.90	10.90	96	117	1.265	28.69	35.14	363	444
1.080	9.47	11.60	103	125	1.270	29.15.	35.71	370	454
1.085	10.04	12.30	109	133	1.275	29.62	36.29	377	462
1.090	10.60	12.99	116	142	1.280	30.10	36.87	385	472
1.095	11.16	13.67	122	150	1.285	30.57	37.45	393	481
1.100	11.71	14.35	129	158	1.290	31.04	38.03	400	490
1.105	12.27	15.03	136	166	1.295	31.52	38.61	408	500
1.110	12.82	15.71	143	175	1.300	31.99	39.19	416	510
1.115	13.36	16.36	149	183	1.305	32.46	39.77	424	519
1.120	13.89	17.01	156	191	1.310	32.94	40.35	432	529
1.125	14.42	17.66	162	199	1.315	33.41	40.93	439	538
1.130	14.95	18.31	169	207	1.320	33.88	41.50	447	548
1.135	15.48	18.96	176	215	1.325	34.35	42.08	455	557
1.140	16.01	19.61	183	223	1.330	34.80	42.66	462	567
1.145	16.54	20.26	189	231	1.335	35.27	43.20	471	577
1.150	17.07	20.91	196	239	1.340	35.71	43.74	479	586
1.155	17.59	21.55	203	248	1.345	36.14	44.28	486	596
1.160	18.11	22.19	210	257	1.350	36.58	44.82	494	605
1.165	18.64	22.83	217	266	1.355	37.02	45.35	502	614
1.170	19.16	23.47	224	275	1.360	37.45	45.88	509	624
1.175	19.69	24.12	231	283	1.365	37.89	46.41	517	633
1.180	20.21	24.76	238	292	1.370	38.32	46.94	525	643
1.185	20.73	25.40	246	301	1.375	38.75	47.47	533	653
	1	1				1			1

Specific Gravity	100 parts	by weight	ı liter o	contains	Specific Gravity		by weight		ontains
15°	01	Of.			150	Of	Of		
in vacuo	% SO ₃	% H ₂ SO ₄	SO ₃	H ₂ SO ₄	in vacuo	% SO ₃	% H ₂ SO ₄	SO ₃	H_2SO_4
-									
1.380	39.18	48.00	541	662	1.590	55.18	67.59	877	1075
1.385	39.62	48.53	549	672	1.595	55.55	68.05	886	1085
1.390	40.05	49.06	557	682	1.600	55.93	68.51	89	1096
1.395	40.48	49.59	564	692	1.605	56.30	68.97	904	1107
1.400	40.91	50.11	573	702	1.610	56.68	69.43	913	1118
1.405	41.33	50.63	581	711	1.615	57.05	69.89	921	1128
1.410	41.76	51.15	589	721	1.620	57.40	70.32	930	1139
1.415	42.17	51.66	597	730	1.625	57.75	70.74	938	1150
1.420	42.57	52.15	604	740	1.630	58.09	71.16	947	1160
1.425	42.96	52.63	612	750	1.635	58.43	71.57	955	1170
1.430	43.36	53.11	620	759	1.640	58.77	71.99	964	1181
1.435	43.75	53.59	628	769	1.645	59.10	72.40	972	1192
1.440	44.14	54.07	636	779	1.650	59.45	72.82	981	1202
1.445	44.53	54.55	643	789	1.655	59.78	73.23	989	1212
1.450	44.92	55.03	651	798	1.660	60.11	73.64	998	1222
1.455	45.31	55.50	659	808	1.665	60.46	74.07	1007	1233
1.460	45.69	55.97	667	817	1.670	60.82	74.51	1016	1244
1.465	46.07	56.43	675	827	1.675	61.20	74.97	1025	1256
1.470	46.45	56.90	683	837	1.680	61.57	75.42	1034	1267
1.475	46.83	57.37	691	846	1.685	61.93	75.86	1043	1278
1.480	47.21	57.83	699	856	1.690	62.29	76.30	1053	1289
1.485	47.57	58.28	707	865	1.695	62.64	76.73	1062	1301
1.490	47.95	58.74	715	876	1.700	63.00	77.17	1071	1312
1.495	48.34	59.22	723	885	1.705	63.35	77.60	1080	1323
1.500	48.73	59.70	731	896	1.710	63.70	78.04	1089	1334
1.505	49.12	60.18	739	906	1.715	64.07	78.48	1099	1346
1.510	49.51	60.65	748	916	1.720	64.43	78.92	1108	1357
1.515	49.89	61.12	756	926	1.725	64.78	79.36	1118	1369
1.520	50.28	61.59	764	936	1.730	65.14	79.80	1127	1381
1.525	50.66	62.06	773	946	1.735	65.50	80.24	1136	1392
1.530	51.04	62.53	781	957	1.740	65.86	80.68	1146	1404
1.535	51.43	63.00	789	967	1.745	66.22	81.12	1156	1416
1.540	51.78	63.43	797	977	1.750	66.58	81.56	1165	1427
1.545	52.12	63.85	805	987	1.755	66.94	82.00	1175	1439
1.550	52.46	64.26	813	996	1.760	67.30	82.44	1185	1451
1.555	52.79	64.67	821	1006	1.765	67.65	82.88	1194	1463
1.560	53.12	65.08	829	1015	1.770	68.02	83.32	1204	1475
1.565	53.46	65.49	837	1025	1.775	68.49	83.90	1216	1489
1.570	53.80	65.90	845	1035	1.780	68.98	84.50	1228	1504
1.575	54.13	66.30	853	1044	1.785	69.47	85.10	1240	1519
1.580	54.46	66.71	861	1054	1.790	69.96	85.70	1252	1534
1.585	54.80	67.13	869	1064	1.795	70.46	86.30	1265	1549

Specific Gravity 15°		by weight		ontains	Specific Gravity		by weight	ı liter contains grams	
in vacuo	% SO ₈	H ₂ SO ₄	SO ₃	H ₂ SO ₄	in vacuo	% SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄
1.800 1.805 1.810	70.94 71.50 72.08	86.90 87.60 88.30	1277 1291 1305	1564 1581 1598	1.833 1.834 1.835	75.72 75.96 76.27	92.75 93.05 93.43	1388 1393 1400	1700 1706 1713
1.815 1.820 1.821	72.69 73.51 73.63	89.05 90.05 90.20	1319 1338 1341	1621	1.836 1.837 1.838	76.57 76.90 77.23	93.43 93.80 94.20 94.60	1405 1412 1419	1722 1730
1.822 1.823 1.824	73.80 73.96 74.12	90.40 90.60 09.80	1345 1348 1352	1647 1651	1.839 1.840 1.8405	77.55 78.04 78.33	95.00 95.60 95.95	1419 1426 1436 1441	1748 1759 1765
1.825 1.826 1.827	74.29 74.49 74.69	91.00 91.25 91.50	1356 1360 1364	1661 1666	1.8410 1.8415 1.8410	79.19	97.00 97.70 98.20	1458 1469 1476	.1786
1.828 1.829 1.830	74.86 75.03 75.19	91.70 91.90 92.10	1368 1372 1376	1681 1685	1.8405 1.8400 1.8395	80.98 81.18	98.70 99.20 99.45	1483 1490 1494	1825 1830
1.831 1.832	75.35 75.53	92.30 92.52	1380 1384	1690 1695	1.8390 1.8385	81.39 81.59	99.70 99.95	1497 1500	1834 1838

XXXIX. - FUMING SULPHURIC ACID

FREE SO3, TOTAL SO3 AND EQUIVALENT VALUES IN TERMS OF 100%, 98% AND 93.19% $\rm H_2SO_4$

Ву Н. В. Візнор

com	tual iposi- on.	Equivalents.				com	tual iposi- on.		Equiva	alents.	
Per Cent Free SO ₃ .	Per Cent H ₂ SO ₄ .	Total SO ₃ .	100 Per Cent H ₂ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.	Per Cent Free SO ₃ .	Per Cent H ₂ SO ₄ .	Total SO ₃ .	100 Per Cent H ₂ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.
0 1 2 3 4	100 99 98 97 96	81.82 82.00 82.18	100.00 100.23 100.45 100.67 100.90	102.27 102.50 102.73	107.55 107.79 108.03	25 26 27 28 29	75 74 73 72 71	86.41 86.59 86.78	105.62 105.85 106.07 106.30 106.53	108.01 108.24 108.47	113.59 113.83 114.07
5 6 7 8	95 94 93 92 91	82.55 82.73 82.92 83,10	101.13 101.35 101.58 101.80 102.63	103.19 103.42 103.65 103.88	108.52 108.76 109.00 109.24	30 31 32 33 34	70 69 68 67 66	87.14 87.33 87.51 87.69	106.75 106.98 107.20 107.42 107.65	108.93 109.16 109.39 109.62	114.55 114.79 115.03 115.28
10 11 12 13 14	90 89 88 87 86	83.65 83.84 84.02	102.25 102.47 102.70 102.92 103.15	104.57 104.80 105.03	109.96 110.21 110.45	35 36 37 38 39	65 64 63 62 61	88.24 88.43 88.61	107.87 108.10 108.33 108.55 108.78	110.31 110.54 110.76	116.00 116.24 116.48
15 16 17 18 19	85 84 83 82 81	84.57 84.75 84.94	103.38 103.60 103.82 104.05 104.27	105.71 105.94 106.17	111 . 17 111 . 41 111 . 65	40 41 42 43 44	60 59 58 57 56	89.16 89.35 89.53	109.00 109.22 109.45 109.67 109.90	111.45 111.68 111.91	117.21 117.45 117.69
20 21 22 23 24	80 79 78 77 76	85.49 85.67 85.86	104.50 104.73 104.95 105.18 105.40	106.86 107.09 107.32	112.38 112.62 112.86	45 46 47 48 49	55 54 53 52 51	90.08 90.27 90.45	110.13 110.35 110.58 110.80 111.02	112.60 112.83 113.06	118.41 118.66 118.90

						1 .					
con	tual nposi- on.		Equiv	alents.		con	tual iposi- ion.		Equiv	alents.	
Per Cent Free SO ₃ .	Per Cent H ₂ SO ₄ .	Total SO ₃ .	100 Per Cent H ₂ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.	Per Cent Free SO ₃ .	Per Cent H ₂ SO ₄ .	Total SO ₃ .	100 Per Cent H ₂ SO ₄ .	98 Per Cent H ₂ SO ₄ .	H ₂ SO ₄ 93.19 Per Cent 66° B.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31	91.00 91.18 91.37 91.55 91.73 91.92 92.10 92.29 92.47 92.65 92.84 93.02 93.39 93.57 93.76 93.94 94.12 94.31	111.25 111.48 111.70 111.93 112.15 112.37 112.60 112.82 113.05 113.28 113.50 113.73 114.17 114.40 114.62 114.85 115.08 115.30 115.53	113.75 113.98 114.21 114.44 114.67 114.90 115.13 115.36 115.59 115.82 116.05 116.28 116.19 117.42 117.65 117.88 118.11	119.62 119.86 120.11 120.35 120.59 120.83 121.07 121.31 121.55 121.79 122.04 122.28 122.52 122.76 123.40 123.49 123.73 123.97	75 76 77 78 79 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11	95.59 95.78 95.96 96.14 96.33 96.51 96.69 97.25 97.43 97.60 97.80 97.98 98.16 98.35 98.53 98.71 98.90	116.88 117.10 117.33 117.55 117.77 118.00 118.22 118.45 118.68 118.90 119.13 119.35 119.57 119.80 120.03 120.25 120.48 120.70 120.92 121.15	119.49 119.72 119.95 120.18 120.41 120.64 120.87 121.10 121.23 121.56 121.79 122.02 122.25 122.48 122.70 123.36 123.62 123.85	125.66 125.90 126.14 126.38 126.62 126.86 127.11 127.35 127.59 127.83 128.07 128.31 128.36 128.30 129.04 129.28 129.52 129.76 130.00
72 73 74	28 27 26	94.86 95.04	116.20 116.42 116.65	118.57 118.80	$124.69 \\ 124.93$	97 98 99	3 2 1	99.45 99.63 99.82	121.83 122.05 122.28	124.31 124.54 124.77	130.73 130.97 131.21
						100	0	100.00	122.50	125.00	131.45

XL. - NITRIC ACID

By W. C. FERGUSON

Degrees Baumé.	Sp. Gr. 60° F.	Degrees Twaddell.	Per Cent HNO3.	Degrees Baumé.	Sp. Gr. 60° F.	Degrees Twaddell.	Per Cent HNO ₃ .
						34.36	
10.00 10.25	1.0741	14.82 15.22	12.86 13.18	21.25	1.1718	l .	28.02
10.25	1.0761	15.62	13.49	21.50	1.1741	34.82	28.36
10.30	1	1		21.75 22.00	1.1765	35.30	28.72
11.00	1.0801	$16.02 \\ 16.42$	13.81 14.13	$\frac{22.00}{22.25}$	1.1789	$\begin{vmatrix} 35.78 \\ 36.26 \end{vmatrix}$	29.07
11.00	1	16.42	14.15	22.23		36.74	29.43
11.50	1.0841	17.22	14.44	$\frac{22.50}{22.75}$	1.1837	37.22	
11.75	1.0881	17.62	15.07	23.00	1.1861 1.1885	37.70	30.14
12.00	1.0902	18.04	15.41	23.25	1.1910	38.20	30.49
12.00	1.0902	18.44	15.41	$\frac{23.23}{23.50}$	1.1910	38.68	31.21
12.25	1.0922	18.86	16.05	23.75	1.1954	39.18	31.58
12.30 12.75	1.0943	19.28	16.39	24.00	1.1939	39.66	31.94
13.00	1.0904	19.28	16.39	24.00	1.1963	40.16	32.31
13.25	1.1006	20.12	17.05	24.23	1.2008	40.16	32.68
13.50	1.1000	20.12	17.03	24.75	1.2058	41.16	33.05
13.75	1.1048	20.96	17.71	25.00	1.2083	41.66	33.42
14.00	1.1048	21.38	18.04	25.25	1.2109	42.18	33.80
14.25	1.1009	21.80	18.37	25.25 25.50	1.2134	42.18	34.17
14.25	1.1111	22.22	18.70	25.30 25.75	1.2160	43.20	34.56
14.75	1.1111	22.64	19.02	26.00	1.2185	43.70	34.94
15.00	1.1154	23.08	19.36	26.25	1.2211	44.22	35.33
15.25	1.1176	23.52	19.30	26.25	1.2211	44.72	35.70
15.50	1.1176	23.94			1.2262	45.24	36.09
15.75	1.1197	24.38	20.02 20.36	$26.75 \\ 27.00$	1.2288	45.76	36.48
		1		27.00	1.2314	46.28	36.87
$16.00 \\ 16.25$	1.1240 1.1262	24.80 25.24	20.69 21.03	27.50	1.2340	46.80	37.26
16.25	1.1262	25.68	21.03	27.75	1.2340	47.34	37.20
				28.00	1.2393		38.06
16.75 17.00	1.1306	$ \begin{array}{c c} 26.12 \\ 26.56 \end{array} $	$21.70 \\ 22.04$	28.25	1.2420	47.86 48.40	38.46
	1.1328		22.38		1.2420	48.92	
17.25	1.1350	27.00	22.74	$28.50 \\ 28.75$	1.2440	49.46	38.85 39.25
17.50	1.1373	27.46 27.90	23.08	29.00	1.2500	50.00	39.66
17.75 18.00	1.1395	28.34	23.42	29.00	1.2527	50.54	40.06
18.25	1.1417	28.80	23.42	29.25	1.2554	51.08	40.00
18.25	1.1440	29.24	24.11	29.75	1.2582	51.64	40.47
		29.70	24.11	30.00	1.2609	52.18	41.30
18.75 19.00	1.1485		24.47	30.25	1.2637	52.74	41.72
19.00	1.1508 1.1531	30.16	25.18	30.25	1.2664	53.28	42.14
		1		30.75	1.2692	53.84	42.14
19.50	1.1554	31.08	25.53 25.88	31.00	1.2092	54.38	42.38
19.75	1.1577	31.54	26.24	31.00	1.2719	54.38	
20.00	1.1600	32.00		31.50	1.2747		43.44 43.89
20.25	1.1624	32.48	26.61 26.96	31.75	1.2804	55.50	44.34
20.50	1.1647	32.94			1.2804	56.08	
20.75	1.1671	33.42	27.33	32.00		56.64	44.78
21.00	1.1694	33.88	27.67	32.25	1.2861	57.22	45.24

Degrees Baumé.	$ \begin{array}{c} \text{Sp. Gr.} \\ \frac{60^{\circ}}{60^{\circ}} \text{ F.} \end{array} $	Degrees Twaddell.	Per Cent HNO3.	Degrees Baumé.	Sp. Gr. $\frac{60^{\circ}}{60^{\circ}}$ F.	Degrees Twaddell.	Per Cent HNO ₃ .
32.50	1.2889	57.78	45.68	40.75	1.3909	78.18	63.48
32.75	1.2918	58.36	46.14	41.00	1.3942	78.84	64.20
33.00	1.2946	58.92	46.58	41.25	1.3976	79.52	64.93
33.25	1.2975	59.50	47.04	41.50	1.4010	80.20	65.67
33.50	1.3004	60.08	47.49	41.75	1.4044	80.88	66.42
33.75	1.3034	60.68	47.95	42.00	1.4078	81.56	67.18
34.00	1.3063	61.26	48.42	42.25	1.4112	82.24	67.95
34.25	1.3093	61.86	48.90	42.50	1.4146	82.92	68.73
34.50	1.3122	62.44	49.35	42.75	1.4181	83.62	69.52
34.75	1.3152	63.04	49.83	43.00	1.4216	84.32	70.33
35.00	1.3182	63.64	50.32	43.25	1.4251	85.02	71.15
35.25	1.3212	64.24	50.81	43.50	1.4286	85.72	71.98
35.50	1.3242	64.84	51.30	43.75	1.4321	86.42	72.82
35.75	1.3273	65.46	51.80	44.00	1.4356	87.12	73.67
36.00	1.3303	66.06	52.30	44.25	1.4392	87.84	74.53
36.25	1.3334	66.68	52.81	44.50	1.4428	88.56	75.40
36.50	1.3364	67.28	53.32	44.75	1.4464	89.28	76.28
36.75	1.3395	67.90	53.84	45.00	1.4500	90.00	77.17
37.00	1.3426	68.52	54.36	45.25	1.4536	90.72	78.07
37.25	1.3457	69.14	54.89	45.50	1.4573	91.46	79.03
37.50	1.3488	69.76	55.43	45.75	1.4610	92.20	80.04
37.75	1.3520	70.40	55.97	46.00	1.4646	92.92	81.08
38.00	1.3551	71.02	56.52	46.25	1.4684	93.68	82.18
38.25	1.3583	71.66	57.08	46.50	1.4721	94.42	83.33
38.50	1.3615	72.30	57.65	46.75	1.4758	95.16	84.48
38.75	1.3647	72.94	58.23	47.00	1.4796	95.92	85.70
39.00	1.3679	73.58	58.82	47.25	1.4834	96.68	86.98
39.25	1.3712	74.24	59.43	47.50	1.4872	97.44	88.32
39.50	1.3744	74.88	60.06	47.75	1.4910	98.20	89.76
39.75	1.3777	75.54	60.71	48.00	1.4948	98.96	91.35
40.00	1.3810	76.20	61.38	48.25	1.4987	99.74	93.13
40'.25	1.3843	76.86	62.07	48.50	1.5026	100.52	95.11
40.50	1.3876	77.52	62.77				

Specific Gravity determinations were made at 60° F., compared with water at 60° F. From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula: $Baum\acute{e} = 145 - \frac{145}{5}$

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. 0=16.

ALLOWANCE FOR TEMPERATURE:

At
$$10^{\circ} - 20^{\circ}$$
 Bé. $-1/30^{\circ}$ Bé. or .00029 Sp. Gr. $= 1^{\circ}$ F. $20^{\circ} - 30^{\circ}$ Bé. $-1/23^{\circ}$ Bé. or .00044 " " $= 1^{\circ}$ F. $30^{\circ} - 40^{\circ}$ Bé. $-1/20^{\circ}$ Bé. or .00060 " " $= 1^{\circ}$ F. $40^{\circ} - 48.5^{\circ}$ Bé. $-1/17^{\circ}$ Bé. or .00084 " " $= 1^{\circ}$ F.

AUTHORITY - W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

.

W. H. BOWER, J HENRY HOWARD, A A. G. ROSENGARTEN,

JAS. L. MORGAN, RD, ARTHUR WYMAN,

New York, May 14, 1903.

Executive Committee

XLI.—NITRIC ACID

LUNGE AND REY

Specific Gravity	100 parts	by weight tain		r con- grams	Specific Gravity	100 parts	by weight tain	ı lite tains g	r con- grams
in vacuo	% N ₂ O ₅	HNO ₃	N_2O_5	HNO ₃	in vacuo	% N₂O₅	HNO ₃	N_2O_5	HNO ₃
1.000	0.08	0.10	1	1	1.195	27.10	31.62	324	378
1.005	0.85	1.00	8	10	1.200	27.74	32.36	333	388
1.010	1.62	1.90	16	19	1.205	28.36	33.09	342	399
1.015	2.39	2.80	24	28	1.210	28.99	33.82	351	409
1.020	3.17	3.70	33	38	1.215	29.61	34.55	360	420
1.025	3.94	4.60	40	47	1.220	30.24	35.28	369	430
1.030	4.71	5.50	49	57	1.225	30.88	36.03	378	441
1.035	5.47	6.38	57	66	1.230	31.53	36.78	387	452
1.040	6.22	7.26	64	75	1.235	32.17	37.53	397	463
1.045	6.97	8.13	73	85	1.240	32.82	38.29	407	475
1.050	7.71	8.99	81	94	1.245	33.47	39.05	417	486
1.055	8.43	9.84	89	104	1.250	34.13	39.82	427	498
1.060	9.15	10.68	97	113	1.255	34.78	40.58	437	509
1.065	9.87	11.51	105	123	1.260	35.44	41.34	447	521
1.070	10.57	12.33	113	132	1.265	36.09	42.10	457	533
1.075	11.27	13.15	121	141	1.270	36.75	42.87	467	544
1.080	11.96	13.95	129	151	1.275	37.41	43.64	477	556
1.085	12.64	14.74	137	160	1.280	38.07	44.41	487	568
1.090	13.31	15.53	145	169	1.285	38.73	45.18	498	581
1.095	13.99	16.32	153	179	1.290	39.39	45.95	508	593
1.100	14.67	17.11	161	188	1.295	40.05	46.72	519	605
1.105	15.34	17.89	170	198	1.300	40.71	47.49	529	617
1.110	16.00	18.67	177	207	1.305	41.37	48.26	540	630
1.115	16.67	19.45	186	217	1.310	42.06	49.07	551	643
1.120	17.34	20.23	195	227	1.315	42.76	49.89	562	656
1.125	18.00	21.00	202	236	1.320	43.47	50.71	573	669
1.130	18.66	21.77	211	246	1.325	44.17	51.53	585	683
1.135	19.32	22.54	219	256	1.330	44.89	52.37	597	697
1.140	19.98	23.31	228	266	1.3325	45.26	52.80	603	704
1.145	20.64	24.08	237	276	1.335	45.62	53.22	609	710
1.150	21.29	24.84	245	286	1.340	46.35	54.07	621	725
1.155	21.94	25.60	254	296	1.345	47.08	54.93	633	739
1.160	22.60	26.36	262	306	1.350	47.82	55.79	645	753
1.165	23.25	27.12	271	316	1.355	48.57	56.66	658	768
1.170	23.90	27.88	279	326	1.360	49.35	57.57	671	783
1.175	24.54	28.63	288	336	1.365	50.13	58.48	684	798
1.180	25.18	29.38	297	347	1.370	50.91	59.39	698	814
1.185	25.83	30.13	306	357	1.375	51.69	60.30	711	829
1.190	26.47	30.88	315	367	1.380	52.52	61.27	725	846

Specific Gravity	100 parts by weight contain		ı liter con- tains grams		Specific Gravity	100 parts by weight contain		r liter con- tains grams	
in vacuo	% N₂O₅	HNO ₃	N_2O_5	HNO ₃	in vacuo	N_2O_5	HNO ₃	N_2O_5	HNO ₃
1.3833	53.08	61.92	735	857	1.495	78.52	91.60	1174	1369
1.385	53.35	62.24	739	862	1.500	80.65	94.09	1210	1411
1.390	54.20	63.23	753	879	1.501	81.09	94.60	1217	1420
1.395	55.07	64.25	768	896	1.502	81.50	95.08	1224	1428
1.400	55.97	65.30	783	914	1.503	81.91	95.55	1231	1436
1.405	56.92	66.40	800	933	1.504	82.29	96.00	1238	1444
1.410	57.86	67.50	816	952	1.505	82.63	96.39	1244	1451
1.415	58.83	68.63	832	971	1.506	82.94	96.76	1249	1457
1.420	59.83	69.80	849	991	1.507	83.26	97.13	1255	1464
1.425	60.84	70.98	867	1011	1.508	83.58	97.50	1260	1470
1.430	61.86	72.17	885	1032	1.509	83.87	97.84	1265	1476
1.435	62.91	73.39	903	1053	1.510	84.09	98.10	1270	1481
1.440	64.01	74.68	921	1075	1.511	84.28	98.32	1274	1486
1.445	65.13	75.98	941	1098	1.512	84.46	98.53	1277	1490
1.450	66.24	77.28	961	1121	1.513	84.63	98.73	1280	1494
1.455	67.38	78.60	981	1144	1.514	84.78	98.90	1283	1497
1.460	68.56	79.98	1001	1168	1.515	84.92	99.07	1287	1501
1.465	69.79	81.42	1023	1193	1.516	85.04	99.21	1289	1504
1.470	71.06	82.90	1045	1219	1.517	85.15	99.34	1292	1507
1.475	72.39	84.45	1068	1246	1.518	85.26	99.46	1294	1510
1.480	73.76	86.05	1092	1274	1.519	85.35	99.57	1296	1512
1.485	75.18	87.70	1116	1302	1.520	85.44	99.67	1299	1515
1.490	76.80	89.60	1144	1335					
		30.03							

XLII. — HYDROCHLORIC ACID

By W. C. FERGUSON

DI W. C. PERGUSON								
Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.	Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.	
1.00	1.0069	1.38	1.40	14.25	1.1090	21.80	21.68	
2.00	1.0140	2.80	. 2.82	14.50	1.1111	22.22	22.09	
3.00	1.0211	4.22	4.25	14.75	1.1132	22.64	22.50	
4.00	1.0284	5.68	5.69	15.00	1,1154	23.08	22.92	
5.00	1.0357	7.14	7.15	15.25	1.1176	23.52	23.33	
5.25	1.0375	7.50	7.52	15.50	1.1197	23.94	23.75	
5.50	1.0394	7.88	7.89	15.75	1.1219	24.38	24.16	
5.75	1.0413	8.26	8.26	16.0	1.1240	24.80	24.57	
6.00	1.0432	8.64	8.64	16.1	1.1248	24.96	24.73	
6.25	1.0450	9.00	9.02	16.2	1.1256	25.12	24.90	
6.50	1.0469	9.38	9.40	16.3	1.1265	25.30	25.06	
6.75	1.0488	9.76	9.78	16.4	1.1274	25.48	25.23	
7.00	1.0507	10.14	10.17	16.5	1.1283	25.66	25.39	
7.25	1.0526	10.52	10.55	16.6	1.1292	25.84	25.56	
7.50	1.0545	10.90	10.94	16.7	1.1301	26.02	25.72	
7.75	1.0564	11.28	11.32	16.8	1.1310	26.20	25.89	
8.00	1.0584	11.68	11.71	16.9	1.1319	26.38	26.05	
8.25	1.0603	12.06	12.09	17.0	1.1328	26.56	26.22	
8.50	1.0623	12.46	12.48	17.1	1.1336	26.72	26.39	
8.75	1.0642	12.84	12.87	17.2	1.1345	26.90	26.56	
9.00	1.0662	13.24	13.26	17.3	1.1354	27.08	26.73	
9.25	1.0681	13.62	13.65	17.4	1.1363	27.26	26.90	
9.50	1.0701	14.02	14.04	17.5	1.1372	27.44	27.07	
9.75	1.0721	14.42	14.43	17.6	1.1381	27.62	27.24	
10.00	1.0741	14.82	14.83	17.7	1.1390	27.80	27.41	
10.25	1.0761	15.22	15.22	17.8	1.1399	27.98	27.58	
10.50	1.0781	15.62	15.62	17.9	1.1408	28.16	27.75	
10.75	1.0801	16.02	16.01	18.0	1.1417	28.34	27.92	
11.00	1.0821	16.42	16.41	18.1	1.1426	28.52	28.09	
11.25	1.0841	16.82	16.81	18.2	1.1435	28.70	28.26	
11.50	1.0861	17.22	17.21	18.3	1.1444	28.88	28.44	
11.75	1.0881	17.62	17.61	18.4	1.1453	29.06	28.61	
12.00	1.0902	18.04	18.01	18.5	1.1462	29.24	28.78	
12.25	1.0922	18.44	18.41	18.6	1.1471	29.42	28.95	
12.50	1.0943	18.86	18.82	18.7	1.1480	29.60	29.13	
12.75	1.0964	19.28	19.22	18.8	1.1489	29.78	29.30	
13.00	1.0985	19.70	19.63	18.9	1.1498	29.96	29.48	
13.25	1.1006	20.12	20.04	19.0	1.1508	30.16	29.65	
13.50	1.1027	20.54	20.45	19.1	1.1517	30.34	29.83	
13.75	1.1048	20.96	20.86	19.2	1.1526	30.52	30.00	
14.00	1.1069	21.38	21.27	19.3	1.1535	30.70	30.18	
							i	

Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HC1.	Degrees Baumé.	Sp. Gr.	Degrees Twaddell.	Per Cent HCl.
19.4	1.1544	30.88	30.35	22.5	1.1836	36.72	36.16
19.5	1.1554	31.08	30.53	22.6	1.1846	36.92	36.35
19.6	1.1563	31.26	30.71	22.7	1.1856	37.12	36.54
19.7	1.1572	31.44	30.90	22.8	1.1866	37.32	36.73
19.8	1.1581	31.62	31.08	22.9	1.1875	37.50	36.93
19.9	1.1590	31.80	31.27	23.0	1.1885	37.70	37.14
20.0	1.1600	32.00	31.45	23.1	1.1895	37.90	37.36
20.1	1.1609	32.18	31.64	23.2	1.1904	38.08	37.58
20.2	1.1619	32.38	31.82	23.3	1.1914	38.28	37.80
20.3	1.1628	32.56	32.01	23.4	1.1924	38.48	38.03
20.4	1.1637	32.74	32.19	23.5	1.1934	38.68	38.26
20.5	1.1647	32.94	32.38	23.6	1.1944	38.88	38.49
20.6	1.1656	33.12	32.56	23.7	1.1953	39.06	38.72
20.7	1.1666	33.32	32.75	23.8	1.1963	39.26	38.95
20.8	1.1675	33.50	32.93	23.9	1.1973	39.46	39.18
20.9	1.1684	33.68	33.12	24.0	1.1983	39.66	39.41
.21.0	1.1694	33.88	33.31	24.1	1.1993	39.86	39.64
21.1	1.1703	34.06	33.50	24.2	1.2003	40.06	39.86
21.2	1.1713	34.26	33.69	24.3	1.2013	40.26	40.09
21.3	1.1722	34.44	33.88	24.4	1.2023	40.46	40.32
21.4	1.1732	34.64	34.07	24.5	1.2033	40.66	40.55
21.5	1.1741	34.82	34.26	24.6	1.2043	40.86	40.78
21.6	1.1751	35.02	34.45	24.7	1.2053	41.06	41.01
21.7	1.1760	35.20	34.64	24.8	1.2063	41.26	41.24
21.8	1.1770	35.40	34.83	24.9	1.2073	41.46	41.48
21.9	1.1779	35.58	35.02	25.0	1.2083	41.66	41.72
22.0	1.1789	35.78	35.21	25.1	1.2093	41.86	41.99
22.1	1.1798	35.96	35.40	25.2	1.2103	42.06	42.30
22.2	1.1808	36.16	35.59	25.3	1.2114	42.28	42.64
22.3	1.1817	36.34	35.78	25.4	1.2124	42.48	43.01
22.4	1.1827	36.54	35.97	25.5	1.2134	42.68	43.40

Sp. Gr. determinations were made at 60° F., compared with water at 60° F. From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula: Baumé = 145 - 145/Sp. Gr.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

ALLOWANCE FOR TEMPERATURE:

 $10-15^{\circ}$ Bé. $-1/40^{\circ}$ Bé. or .0002 Sp. Gr. for 1° F. $15-22^{\circ}$ Bé. $-1/30^{\circ}$ Bé. or .0003 """1° F.

22-25° Bé. - 1/28° Bé. or .00035 " " " 1° F.

AUTHORITY - W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

W. H. BOWER, JAS. L. MORGAN, HENRY HOWARD, ARTHUR WYMAN, A. G. ROSENGARTEN,

New York, May 14, 1903.

Executive Committee

XLIII. — HYDROCHLORIC' ACID

LUNGE AND MARCHLEWSKI

Specific Gravity. 15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.	Specific Gravity 15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.	Specific Gravity 15° 4° in Vacuo.	Per Cent HCl by Weight.	r Liter con- tains Grams HCl.
1.000	0.16	1.6	1.075	15.16	163	1.145	28.61	328
1.005	1.15	12	1.080	16.15	174	1.150	29.57	340
1.010	2.14	22	1.085	17.13	186	1.152	29.95	345
1.015	3.12	32	1.090	18.11	197	1.155	30.55	353
1.020	4.13	42	1.095	19.06	209	1.160	31.52	366
1.025	5.15	- 53	1.100	20.01	220	1.163	32.10	373
1.030	6.15	64	1.105	20.97	232	1.165	32.49	379
1.035	7.15	74	1.110	21.92	243	1.170	33.46	392
1.040	8.16	85	1.115	22.86	255	1.171	33.65	394
1.045	9.16	96	1.120	23.82	267	1.175	34.42	404
1.050	10.17	107	1.125	24.78	278	1.180	35.39	418
1.055	11.18	118	1.130	25.75	291	1.185	36.31	430
1.060	12.19	129	1.135	26.70	303	1.190	37.23	443
1.065	13.19	141	1.140	27.66	315	1.195	38.16	456
1.070	14.17	152	1.1425	28.14	322	1.200	39.11	469

COMPOSITION OF CONSTANT BOILING HYDROCHLORIC ACID *

Pressure mm. of Mercury.	Per Cent of HCl.	Grams constant boiling distillate for 1 mol. HCl.
770	20.218	180.390
760	20.242	180.170
750	20.266	179.960
740	20.290	179.745
730	20.314	179.530

Temperature of constant boiling hydrochloric acid is 108.54° at 763 mm. Specific gravity 1.09620^{25} .

^{*} Hulett and Bonner, Jour. Am. Chem. Soc. xxxi, 390.

XLIV. — ACETIC ACID AT 15°

OUDEMANS

•			OCDE	VALET (1/2)			
Specific Gravity.	Per Cent H.C ₂ H ₃ O ₂ .	Specific Gravity.	Per Cent H.C ₂ H ₃ O ₂ .	Specific Gravity.	Per Cent H.C ₂ H ₃ O ₂ .	Specific Gravity.	Per Cent H.C ₂ H ₃ O ₂ .
0.9992	0	1.0363	26	1.0623	51	1.0747	76
1.0007	1	1.0375	27	1.0631	52	1.0748	77
1.0022	2	1.0388	28	1.0638	53	1.0748	78
1.0037	3	1.0400	29	1.0646	54	1.0748	79
1.0052	4	1.0412	30	1.0653	55	1.0748	80
1.0067	5	1.0424	31	1.0660	56	1.0747	81
1.0083	6	1.0436	32	1.0666	57	1.0746	82
1.0098	7	1.0447	33	1.0673	58	1.0744	83
1.0113	8	1.0459	34	1.0679	59	1.0742	84
1.0127	9	1.0470	35	1.0685	60	1.0739	85
1.0142	10	1.0481	36	1.0691	61	1.0736	86
1.0157	11	1.0492	37	1.0697	62	1.0731	87
1.0171	12	1.0502	38	1.0702	63	1.0726	88
1.0185	13	1.0513	39	1.0707	64	1.0720	89
1.0200	14	1.0523	40	1.0712	65	1.0713	90
1.0214	15	1.0533	41	1.0717	66	1.0705	91
1.0228	16	1.0543	42	1.0721	67	1.0696	92
1.0242	17	1.0552	43	1.0725	68	1.0686	93
1.0256	18	1.0562	44	1.0729	69	1.0674	94
1.0270	19	1.0571	45	1.0733	70	1.0660	95
1.0284	20	1.0580	46	1.0737	71	1.0644	96
1.0298	21	1.0589	47	1.0740	72	1.0625	97
1.0311	22	1.0598	48	1.0742	73	1.0604	98
1.0324	23	1.0607	49	1.0744	74	1.0580	99
1.0337	24	1.0615	50	1.0746	75	1.0553	100
1.0350	25						1

MELTING POINTS OF ACETIC ACID

		Rudorff, B	er. 3 , 390.		
H.C ₂ H ₃ O ₂ mixed with gr. water.	by weight contain parts water.	Melting (solidi- fying) point °C.	H.C ₂ H ₃ O ₂ mixed with gr. water.	by weight contain parts water.	Melting (solidifying) point °C.
0.0	0.0	16.70	8.0	7.407	6.25°
0.5	0.497	15.65	9.0	8.257	5.3
1.0	0.990	14.8	10.0	9.090	4.3
1.5	1.477	14.0	11.0	9.910	3.6
2.0	- 1.961	13.25	12.0	10.774	2.7
3.0	2.912	11.95	15.0	13.043	-0.2
4.0	3.846	10.5	18.0	15.324	-2.6
5.0	4.761	9.4	21.0	17.355	-5.1
6.0	5.660	8.2	24.0	19.354	-7.4
7.0	6.542	7.1			

Boiling point 100% acid 117.8°.

HAGER

Specific Gravity.	Per Cent. P ₂ O ₅ .	Per Cent. H ₃ PO ₄ .	Specific Gravity.	Per Cent. P ₂ O ₅ .	Per Cent. H ₃ PO ₄ .	Specific Gravity.	Per Cent. P ₂ O ₅ .	Per Cent. H ₃ PO ₄ .
1.809	68.0	93.67	1.462	46.0	63.37	1.208	24.0	33.06
1.800	67.5	92.99	1.455	45.5	62.68	1.203	23.5	32.37
1.792	67.0	92.30	1.448	45.0	61.99	1.198	23.0	31.68
1.783	66.5	91.61	1.441	44.5	61.30	1.193	22.5	30.99
1.775	66.0	90.92	1.435	44.0	60.61	1.188	22.0	30.31
1.766	65.5	90.23	1.428	43.5	59.92	1.183	21.5	29.62
1.758	65.0	89.54	1.422	43.0	59.23	1.178	21.0	28.93
1.750	64.5	88.85	1.415	42.5	58.55	1.174	20.5	28.24
1.741	64.0	88.16	1.409	42.0	57.86	1.169	20.0	27.55
1.733	63.5	87.48	1.402	41.5	57.17	1.164	19.5	26.86
1.725	63.0	86.79	1.396	41.0	56.48	1.159	19.0	26.17
1.717	62.5	86.10	1.389	40.5	55.79	1.155	18.5	25.48
1.709	62.0	85.41	1.383	40.0	55.10	1.150	18.0	24.80
1.701	61.5	84.72	1.377	39.5	54.41	1.145	17.5	24.11
1.693	61.0	84.03	1.371	39.0	53.72	1.140	17.0	23.42
1.685	60.5	83.34	1.365	38.5	53.04	1.135	16.5	22.73
1.677	60.0	82.65	1.359	38.0	52.35	1.130	16.0	22.04
1.669	59.5	81.97	1.354	37.5	51.66	1.126	15.5	21.35
1.661	59.0	81.28	1.348	37.0	50.97	1.122	15.0	20.66
1.653	58.5	80.59	1.342	36.5	50.28	1.118	14.5	19.97
1.645	58.0	79.90	1.336	36.0	49.59	1.113	14.0	19.28
1.637	57.5	79.21	1.330	35.5	48.90	1.109	13.5	18.60
1.629	57.0	78.52	1.325	35.0	48.21	1.104	13.0	17.91
1.621	56.5	77.83	1.319	34.5	47.52	1.100	12.5	17.22
1.613	56.0	77.14	1.314	34.0	46.84	1.096	12.0	16.53
1.605	55.5	76.45	1.308	33.5	46.15	1.091	11.5	15.84
1.597	55.0	75.77	1.303	33.0	45.46	1.087	11.0	15.15
1.589	54.5	75.08	1.298	32.5	44.77	1.083	10.5	14.46
1.581	54.0	74.39	1.292	32.0	44.08	1.079	10.0	13.77
1.574	53.5	73.70	1.287	31.5	43.39	1.074	9.5	13.09
1.566	53.0	73.01	1.281	31.0	42.70	1.070	9.0	12.40
1.559	52.5	72.32	1.276	30.5	42.01	1.066	8.5	11.71
1.551	52.0	71.63	1.271	30.0	41.33	1.062	8.0	11.02
1.543	51.5	70.94	1.265	29.5	40.64	1.058	7.5	10.33
1.536	51.0	70.26	1.260	29.0	39.95	1.053	7.0	9.64
1.528	50.5	69.57	1.255	28.5	39.26	1.049	6.5	8.95
1.521	50.0	68.88	1.249	28.0	38.57	1.045	6.0	8.26
1.513	49.5	68.19	1.244	27.5	37.88	1.041	5.5	7.57
1.505	49.0	67.50	1.239	27.0	37.19	1.037	5.0	6.89
1.498	48.5	66.81	1.233	26.5	36.50	1.033	4.5	6.20
1.491	48.0	66.12	1.228	26.0	35.82	1.029	4.0	5.51
1.484	47.5	65.43	1.223	25.5	35.13	1.025	3.5	4.82
1.476	47.0	64.75	1.218	25.0	34.44	1.021	3.0	4.13
1.469	46.5	64.06	1.213	24.5	33.75	1.017	2.5	3.44

XLVI. - AQUA AMMONIA

ACCORDING TO W. C. FERGUSON

Degrees Baumé.	Sp. Gr.	Per Cent	Degrees Baumé.	Sp. Gr. 60° F.	Per Cent NH ₃ .	Degrees Baumé.	Sp. Gr. 60° F.	Per Cent HN ₃ .
10.00	1.0000	.00	16.50	.9556	11.18	23.00	.9150	23.52
10.25	.9982	.40	16.75	.9540	11.64	23.25	.9135	24.01
10.50	.9964	.80	17.00	.9524	12.10	23.50	.9121	24.50
10.75	.9947	1.21	17.25	.9508	12.56	23.75	.9106	24.99
11.00	.9929	1.62	17.50	.9492	13.02	24.00	.9091	25.48
11.25	.9912	2.04	17.75	.9475	13.49	24.25	.9076	25.97
11.50	.9894	2.46	18.00	.9459	13.96	24.50	.9061	26.46
11.75	.9876	2.88	18.25	.9444	14.43	24.75	.9047	26.95
12.00	.9859	3.30	18.50	.9428	14.90	25.00	.9032	27.44
12.25	.9842	3.73	18.75	.9412	15.37	25.25	.9018	27.93
12.50	.9825	4.16	19.00	.9396	15.84	25.50	.9003	28.42
12.75	.9807	4.59	19.25	.9380	16.32	25.75	. 8989	28.91
13.00	.9790	5.02	19.50	.9365	16.80	26.00	.8974	29.40
13.25	.9773	5.45	19.75	.9349	17.28	26.25	.8960	29.89
13.50	.9756	5.88	20.00	.9333	17.76	26.50	.8946	30.38
13.75	.9739	6.31	20.25	.9318	18.24	26.75	. 8931	30.87
14.00	.9722	6.74	20.50	.9302	18.72	27.00	.8917	31.36
14.25	.9705	7.17	20.75	.9287	19.20	27.25	.8903	31.85
14.50	.9689	7.61	21.00	.9272	19.68	27.50	.8889	32.34
14.75	.9672	8.05	21.25	.9256	20.16	27.75	.8875	32.83
15.00	.9655	8.49	21.50	.9241	20.64	28.00	.8861	33.32
15.25	.9639	8.93	21.75	.9226	21.12	28.25	.8847	33.81
15.50	.9622	9.38	22.00	.9211	21.60	28.50	.8833	34.30
15.75	.9605	9.83	22.25	.9195	22.08	28.75	.8819	34.79
16.00	.9589	10.28	22.50	.9180	22.56	29.00	.8805	35.28
16.25	.9573	10.73	22.75	.9165	23.04			

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities the corresponding degrees Baumé were calculated by the following formula:

Baumé =
$$\frac{140}{\text{Sp. Gr.}} - 130$$
.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

^{*} Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

ALLOWANCE FOR TEMPERATURE

The coefficient of expansion for ammonia solutions, varying with the temperature, correction must be applied according to the following table:

Corrections Deg	to be A			ch	Corre	ction		Subtra pove (acted for	Eac	h Degre	е
Degrees Baumé.	40° F	.	50° F		70° I	?.	80° F	٠.	90° F	•	100° F	٠.
14° Bé 16° 18° 20° 22° 26°	.015° .021 .027 .033 .039 .053	Bé " " " "	.017° .023 .029 .036 .042 .057	"	.020° .026 .031 .037 .043 .057	Bé " " " " "	.022° .028 .033 .038 .045 .059	Bé " " " " "	.024° .030 { .035 .040 .047	Bé " " "	.026° .032 .037 .042	Bé

AUTHORITY - W. C. FERGUSON.

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

W. H. Bower,
Henry Howard,
Jas. L. Morgan,
Arthur Wyman,
A. G. Rosengarten,
Executive Committee.

New York, May 14, 1903.

XLVII. — SODIUM HYDROXIDE SOLUTION AT 15°

	rr	N	0	TO	
4	u	TM.	V.	P.	

Specific Gravity.	Degrees Baume.	Degrees Twaddell.	Per Cent Na ₂ O.	Per Cent NaOH.	r Liter Gra	contains ms
Gravity.	Baume.	I wadden.	Na ₂ O.	NaOH.	Na ₂ O.	NaOH
1.007	1.0	1.4	0.47	0.61	4	6
1.014	2.0	2.8	0.93	1.20	9	12
1.022	3.1	4.4	1.55	2.00	16	21
1.029	4.1	5.8	2.10	2.70	22	28
1.036	5.1	7.2	2.60	3.35	27	35
1.045	6.2	9.0	3.10	4.00	32	42
1.052	7.2	10.4	3.60	4.64	38	49
1.060	8.2	12.0	4.10	5.29	43	56
1.067	9.1	13.4	4.55	5.87	49	63
1.075	10.1	15.0	5.08	6.55	55	70
1.083	11.1	16.6	5.67	7.31	61	79
1.091	12.1	18.2	6.20	8.00	68	87
1.100	13.2	20.0	6.73	8.68	74	95
1.108	14.1	21.6	7.30	9.42	81	104
1.116	15.1	23.2	7.80	10.06	87	112
1.125	16.1	25.0	8.50	10.97	96	123
1.134	17.1	26.8	9.18	11.84	104	134
1.142	18.0	28.4	9.80	12.64	112	144
1:152	19.1	30.4	10.50	13.55	121	156
1.162	20.2	32.4	11.14	14.37	129	167
1.171	21.2	34.2	11.73	15.13	137	177
1.180	22.1	36.0	12.33	15.91	146	188
1.190	23.1	38.0	13.00	16.77	155	200
1.200	24.2	40.0	13.70	17.67	164	212
1.210	25.2	42.0	14.40	18.58	174	225
1.220	26.1	44.0	15.18	19.58	185	239
1.231	27.2	46.2	15.96	20.59	196	253
1.241	28.2	48.2	16.76	21.42	208	266
1.252	29.2	50.4	17.55	22.64	220	283
1.263	30.2	52.6	18.35	23.67	232	299
1.274	31.2	54.8	19.23	24.81	245	316
1.285	32.2	57.0	20.00	25.80	257	332
1.297	33.2	59.4	20.80	26.83	270	348
1.308	34.1	61.6	21.55	27.80	282	364
1.320	35.2	64.0	22.35	28.83	295	381
1.332	36.1	66.4	23.20	29.93	309	399
1.345	37.2	69.0	24.20	31.22	326	420

Specific	Pegrees	Degrees	Per Cent	Per Cent	1 Liter contains Grams		
Gravity.	Baumé.	Twaddell.	Na ₂ O.	NaOH.	Na ₂ O.	NaOH,	
1.357	38.1	71.4	25.17	32.47	342	441	
1.370	39.2	74.0	26.12	33.69	359	462	
1.383	40.2	76.6	27.10	34.96	375	483	
1.397	41.2	79.4	28.10	36.25	392	506	
1.410	42.2	82.0	29.05	37.47	410	528	
1.424	43.2	84.8	30.08	38.80	428	553	
1.438	44.2	87.6	31.00	39.99	446	575	
1.453	45.2	90.6	32.10	41.41	466	602	
1.468	46.2	93.6	33.20	42.83	487	629	
1.483	47.2	96.6	34.40	44.38	510	658	
1.498	48.2	99.6	35.70	46.15	535	691	
1.514	49.2	102.8	36.90	47.60	559	721	
1.530	50.2	106.0	38.00	49.02	581	750	

XLVIII. — POTASSIUM HYDROXIDE SOLUTION AT 15°

LUNGE

Specific	Degrees	Degrees	Per Cent	Per Cent		1 Liter contains Grams		
Gravity.	Baumé.	Twaddell.	K ₂ O.	кон.	K ₂ O.	кон.		
1.007	1.0	1.4	0.7	0.9	7	9		
1.014	2.0	2.8	1.4	1.7	14	17		
1.022	3.1	4.4	2.2	2.6	22	26		
1.029	4.1	5.8	2.9	3.5	30	36		
1.037	5.2	7.4	3.8	4.5	39	46		
1.045	6.2	9.0	4.7	5.6	49	58		
1.052	7.2	10.4	5.4	6.4	57	67		
1.060	8.2	12.0	6.2	7.4	66	78		
1.067	9.1	13.4	6.9	8.2	74	83		
1.075	10.1	15.0	7.7	9.2	83	99		
1.083	11.1	16.6	8.5	10.1	92	109		
1.091	12.1	18.2	9.2	10.9	100	119		
1.100	13.2	20.0	10.1	12.0	111	132		
1.108	14.1	21.6	10.8	12.9	119	143		
1.116	15.1	23.2	11.6	13.8	129	153		

Specific	Degrees	Degrees	Per Cent	Per Cent		contains
Gravity.	Baunié.	Twaddell.	K₂O.	КОН.	K ₂ O .	кон.
1.125	16.1	25.0	12.4	14.8	140	167
1.134	17.1	26.8	13.2	15.7	150	178
1.142	18.0	28.4	13.9	16.5	159	183
1.152	19.1	30.4	14.8	17.6	170	203
1.162	20.2	32.4	15.6	18.6	181	216
1.171	21.2	34.2	16.4	19.5	192	228
1.180	22.1	36.0	17.2	20.5	203	242
1 190	23.1	38.0	18.0	21.4	214	255
1.200	24.2	40.0	18.8	22.4	226	269
1.210	25.2	42.0	19.6	23.3	237	282
1.220	26.1	44.0	20.3	24.2	248	295
1.231	27.2	46.2	21.1	25.1	260	309
1.241	28.2	48.2	21.9	26.1	272	324
1.252	29.2	50.4	22.7	27.0	284	338
1.263	30.2	52.6	23.5	28.0	297	353
1.274	31.2	54.8	24.2	28.9	308	368
1.285	32.2	57.0	25.0	29.8	321	385
1.297	33.2	59.4	25.8	30.7	335	398
1.308	34.1	61.6	26.7	31.8	349	416
1.320	35.2	64.0	27.5	32.7	363	432
1.332	36.1	66.4	28.3	33.7	377	449
1.345	37.2	69.0	29.3	34.9	394	469
1.357	38.1	71.4	30.2	35.9	410	487
1.370	39.2	74.0	31.0	36.9	425	506
1.383	40.2	76.6	31.8	37.8	440	522
1.397	41.2	79.4	32.7	38.9	457	543
1.410	42.2	82.0	33.5	39.9	472	563
1.424	43.2	84.8	34.4	40.9	490	582
1.438	44.2	87.6	35.4	42.1	509	605
1.453	45.2	90.6	36.5	43.4	530	631
1.468	46.2	93.6	37.5	44.6	549	655
1.483	47.2	96.6	38.5	45.8	571	679
1.498	48.2	99.6	39.6	47.1	593	
1.514	49.2	102.8	40.6	48.3	0.00	706
1.530	50.2	102.8	-0.0		615	731
1.546	51.2	100.0	$\frac{41.5}{42.5}$	49.4 50.6	635	756
1.546					655	779
	52.2	112.6	43.6	51.9	681	811
1.580	53.2	116.0	44.7	53.2	706	840
1.597	54.2	119.4	45.8	54.5	731	870
1.615	55.2	123.0	47.0	55.9	754	905
1.634	56.3	126.8	48.3	57.5	789	940

XLIX.—Sodium Carbonate Solution at 15°

LUNGE

Specific	Degrees	Per Cent	. Per Cent	1 Liter co	ntains Grams
Gravity.	Baumė.	Na ₂ CO ₃ .	Na_2CO_3 . 10 H_2O .	Na ₂ CO ₃ .	Na ₂ CO ₃ .10H ₂ O.
1.007	1.0	0.67	1.807	6.8	18.2
1.014	2.0	1.33	3.587	13.5	36.4
1.022	3.1	2.09	5.637	21.4	57.6
1.029	4.1	2.76	7.444	28.4	76.6
1.036	5.1	3.43	9.251	35.5	95.8
1.045	6.2	4.29	11.570	44.8	120.9
1.052	7.2	4.94	13.323	52.0	140.2
1.060	8.2	5.71	15.400	60.5	163.2
1.067	9.1	6.37	17.180	68.0	183.3
1.075	10.1	7.12	19.203	76.5	206.4
1.083	11.1	7.88	21.252	85.3	230.2
1.091	12.1	8.62	23.248	94.0	253.6
1.100	13.2	9.43	25.432	103.7	279.8
1.108	14.1	10.19	27.482	112.9	304.5
1.116	15.1	10.95	29.532	122.2	329.6
1.125	16.1	11.81	31.851	132.9	358.3
1.134	17.1	12.61	34.009	143.0	385.7
1.142	18.0	13.16	35.493	150.3	405.3
1.152	19.1	14.24	38.405	164.1	442.4

L. — CONCENTRATED SODIUM CARBONATE SOLUTION AT 30°

LUNGE

Specific	Degrees	Per Cent	Per Cent	I Liter co	ntai -s Grams
Gravity	Baumé.	Na ₂ CO ₃ .	Na ₂ CO _{3.10} H ₂ O.	Na ₂ CO ₃ .	Na ₂ CO ₃ . 10H ₂ O
1.142	18.0	13.79	37.21	157.5	425.0
1.152	19.1	14.64	39.51	168.7	455.2
1.162	20.2	15.49	41.79	180.0	485.7
1.171	21.2	16.27	43.89	190.5	514.0
1.180	22.1	17.04	45.97	201.1	542.6
1.190	23.1	17.90	48.31	214.0	577.5
1.200	24.2	18.76	50.62	225.1	607.4
1.210	25.2	19.61	52.91	237.3	640.3
1.220	26.1	20.47	. 55.29	249.7	673.8
1.231	27.2	21.42	57.80	263.7	711.5
1.241	28.2	22.29	60.15	276.6	746.3
1.252	29.2	23.25	62.73	291.1	785.4
1.263	30.2	24.18	65.24	305.4	824.1
1.274	31.2	25.11	67.76	319.9	863.2
1.285	32.2	26.04	70.28	334.6	902.8
1.297	33.2	27.06	73.02	351.0	947.1
1.308	34.1	27.97	75.48	365.9	987.4

LI.—Correction of Specific Gravity of Sodium Carbonate for $\pm~1^{\circ}$ C.

LUNGE

	For 7	emperatures	from		For Specific Gravity		
o° to 30°.	30° to 40°.	40° to 50°	50° to 70°.	70° to 100°.	From	То	
0.0002	0.0004	0.0004	0.0005	0.0005	1.010	1.050	
0.0003	0.0004	0.0004	0.0006	0.0005	1.060	1.070	
0.0004	0.0004	0.0004	0.0006	0.0006	1.080	1.110	
0.0004	0.0004	0.0005	0.0006	0.0006	1.120	1.170	
0.0004	0.0004	0.0006	0.0007	0.0007	1.180	1.200	
0.0005	0.0004	0.0005	0.0007	0.0007	1.210	1.240	
	0.0005	0.0005	0.0007	0.0007	1.241	1.252)	
	0.0005	0.0005	0.0006	0.0008	1.263	1.285	

LII.—Potassium Carbonate Solution at 15°

CALCULATED FROM GERLACH

Specific Gravity.	Baumé.	Twaddell.	Per Cent K ₂ CO ₃ .	r Liter contains Grams K ₂ CO ₃ .	Specific Gravity.	Baumé.	Twaddell.	Per Cent K ₂ CO ₃ .	1 Liter contains Grams K ₂ CO ₃ .
1.00914	1.3	1.8	1	10.1	1.27893	31.6	55.8	28	358.1
1.01829	2.6	3.6	2	20.4	1.28999	32.6	58.0	29	374.1
1.02743	3.9	5.4	3	30.8	1.30105	33.6	60.2	30	390.3
1.03658	5.1	7.2	4	41.4	1.31261	34.5	62.5	31	406.9
1.04572	6.3	9.2	5	52.3	1.32417	35.5	64.8	32	423.7
1.05513	7.6	11.0	6	63.3	1.33573	36.4	67.1	33	440.8
1.06454	8.8	12.9	7	74.5	1.34729	37.4	69.5	34	458.1
1.07396	10.0	14.8	8	85.9	1.35885	38.3	71.8	35	475.6
1.08337	11.2	16.6	9	97.5	1.37082	39.2	74.2	36	493.5
1.09278	12.3	18.6	10	109.3	1.38279	40.1	76.6	37	511.6
1.10258	13.5	20.5	11	121.3	1.39476	41.0	79.0	38	530.0
1.11238	14.6	22.4	12	133.5	1.40673	41.9	81.4	39	548.6
1.12219	15.8	24.4	13	145.9	1.41870	42.8	83.7	40	567.5
1.13199	16:9	26.4	14	158.5	1.43104	43.7	86.2	41	586.7
1.14179	18.0	28.3	15	171.3	1.44338	44.5	88.7	42	606.2
1.15200	19.1	30.4	16	184.3	1.45573	45.4	91.1	43	626.0
1.16222	20.2	32.4	17	197.5	1.46807	46.2	93.6	44	646.0
1.17243	21.3	34.5	18	211.0	1.48041	47.1	96.0	45	666.2
1.18265	22.4	36.5	19	224.7	1.49314	47.9	98.6	46	686.8
1.19286	23.4	38.6	20	238.6	1.50588	48.7	101.2	47	707.7
1.20344	24.5	40.7	21	252.7	1.51861		103.7	48	728.9
1.21402	25.6	42.8	22	267.1	1.53135		106.3	49	750.4
1.22459	26.6	44.9	23	281.7	1.54408	51.1	108.8	50	772.1
1.23517	27.6	47.0	24	296.5	1.55728		111.5	51	794.2
1.24575	28.6	49.1	25	311.5	1.57048		114.1	52	816.7
1.25681	29.6	51.4	26	326.8	1.57079	52.7	114.2	52.024	817.2
1.26787	30.6	53.6	27	342.3					

416 LIII. — Specific Gravity and Percentage of Alcohol by Volume

SOUIBB

Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.	Per Cent Alcohol by Volume.	Specific Gravity at 15.56°C.
Volume. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	0.9985 .9970 .9956 .9942 .9930 .9914 .9898 .9890 .9878 .9869 .9855 .9841 .9828 .9821 .9815 .9802 .9789 .9789 .9766	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	0.9698 .9691 .9678 .9665 .9652 .9643 .9631 .9618 .9609 .9593 .9578 .9565 .9550 .9535 .9519 .9503 .9490 .9452 .9434	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	0.9323 .9303 .9283 .9262 .9242 .9221 .9200 .9178 .9160 .9135 .9113 .9090 .9069 .9047 .9025 .9001 .8973 .8949 .8925	Volume. 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	0.8745 .8721 .8696 .8664 .8639 .8611 .8581 .8557 .8526 .8496 .8448 .8373 .8340 .8305 .8272 .8237 .8199
21	.9753	46	.9416	71	.8875	96	.8125
22	.9741	47	.9396	72	.8850	97	.8084
23	.9728	48	.9381	73	.8825	98	.8041
23	.9728	48	.9381	73	.8825	98	.8041
24	.9716	49	.9362	74	.8799	99	.7995
25	.9709	50	.9343	75	.8769	100	.7946

The tables giving the percentage of alcohol by weight and by volume do not agree with each other. The density of absolute alcohol given by Fownes is .7938 at 15.6° C. (60° F.) compared with water at the same temperature. Under the same conditions Tralles finds a density of .7946. Squibb has shown that the density of absolute alcohol must be at least as low as .7935. This is .003 lower than the density found by Fownes and corresponds to 0.1 per cent of alcohol. The table given by Squibb is based on the values given by Fownes for percentage by weight and those given by Tralles for percentage by volume.

To reduce sp. gr. at $\frac{15.6^{\circ}}{15.6^{\circ}}$ to $\frac{15.6^{\circ}}{4^{\circ}}$ multiply by .99908 or for sp. gr. 1.000 to .935 subtract .0009

".934 to .825 ".0008
".824 .0007

LIV. — PERCENTAGE OF ALCOHOL BY VOLUME AND BY WEIGHT*

GILPIN, DRINKWATER, AND SQUIBB

Specific		Alcohol		Specific		Alcohol	
Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams per 100 c.c.
1.00000	0.00	00.0	0.00	.99473	3.60	2.88	2.86
0.99984.	0.10	0.08	0.08	.99459	3.70	2.96	2.94
.99968	0.20	0.16	0.16	.99445	3.80	3.04	3.02
.99953	0.30	0.24	0.24	.99431	3.90	3.12	3.10
.99937	0.40	0.32	0.32	.99417	4.00	3.20	3.18
.99923	0.50	0.40	0.40	.99403	4.10	3.28	3.26
.99907	0.60	0.48	0.48	.99390	4.20	3.36	3.34
.99892	0.70	0.56	0.56	.99376	4.30	3.44	3.42
.99877	0.80	0.64	0.64	. 99363	4.40	3.52	3.50
.99861	0.90	0.71	0.71	.99349	4.50	3.60	3.58
.99849	1.00	0.79	0.79	.99335	4.60	3.68	3.66
.99834	1.10	0.87	0.87	.99322	4.70	3.76	3.74
.99819	1.20	0.95	0.95	. 99308	4.80	3.84	3.81
.99805	1.30	1.03	1.03	.99295	4.90	3.92	3.89
.99790	1.40	1.11	1.11	.99281	5.00	4.00	3.97
.99775	1.50	1.19	1.19	.99268	5.10	4.08	4.05
.99760	1.60	1.27	1.27	.99255	5.20	4.16	4.13
.99745	1.70	1.35	1.35	.99241	5.30	4.24	4.21
.99731	1.80	1.43	1.43	.99228	5.40	4.32	4.29
.99716	1.90	1.51	1.51	.99215	5.50	4.40	4.37
.99701	2.00	1.59	1.59	.99202	5.60	4.48	4.44
.99687	2.10	1.67	1.66	.99189	5.70	4.56	4.52
.99672	2.20	1.75	1.74	.99175	5.80	4.64	4.60
.99658	2.30	1.83	1.82	.99162	5.90	4.72	4.68
.99643	2.40	1.91	1.90	.99149	6.00	4.80	4.76
.99629	2.50	1.99	1.98	.99136	6.10	4.88	4.84
.99615	2.60	2.07	2.06	.99123	6.20	4.96	4.92
.99600	2.70	2.15	2.14	.99111	6.30	5.05	5.00
.99586	2.80	2.23	2.22	.99098	6.40	5.13	5.08
.99571	2.90	2.31	2.30	.99085	6.50	5.21	5.16
.99557	3.00	2.39	2.38	.99072	6.60	5.29	5.24
.99543	3.10	2.47	2.46	.99059	6.70	5.37	5.32
.99529	3.20	2.55	2.54	.99047	6.80	5.45	5.40
.99515	3.30	2.64	2.62	.99034	6.90	5.53	5.48
.99501	3.40	2.72	2.70	.99021	7.00	5.61	5.56
.99487	3.50	2.80	2.78	.99009	7.10	5.69	5.64
4 1	Dullatin	No 65	TI C T		f Amnio	14	-

^{*} Bulletin No. 65, U.S. Department of Agriculture.

Specific		Alcohol		Specific		Alcohol	
Gravity at	per cent	per cent	Grams	Gravity at	per cent	per cent	Grams
$\frac{60^{\circ}}{60^{\circ}}$ F.	by volume	by weight	per 100 c.c.	$\frac{60^{\circ}}{60^{\circ}}$ F.	by volume	by weight	per 100 c.c.
		17 0.25.110				Working	100 0.0.
.98996	7.20	5.77	5.72	.98513	11.30	9.11	8.97
.98984	7.30	5.86	5.80	.98502	11.40	9.19	9.05
.98971	7.40	5.94	5.88	.98491	11.50	9.27	9.13
.98959	7.50	6.02	5.96	.98479	11.60	9.35	9.21
.98947	7.60	6.10	6.04	.98468	11.70	9.43	9.29
.98934	7.70	6.18	6.11	.98457	11.80	9.51	9.36
.98922	7.80	6.26	6.19	.98446	11.90	9.59	9.44
.98909	7.90	6.34	6.27	.98435	12.00	9.67	9.52
.98897	8.00	6.42	6.35	.98424	12.10	9.75	9.60
.98885	8.10	6.50	6.43	.98413	12.20	9.83	9.68
.98873	8.20	6.58	6.51	.98402	12.30	9.92	9.76
.98861	8.30	6.67	6.59	.98391	$12.40 \\ 12.50$	10.00	9.84
.98849	8.40 8.50	6.75	$6.67 \\ 6.75$.98381	12.60	10.08	9.92
.98837 .98825	8.60	6.91	6.83	.98359	12.70	10.10	10.00
.98813	8.70	6.99	6.91	.98348	12.70	10.24	10.07
.98801	8.80	7.07	6.99	.98337	12.90	10.33	10.13
.98789	8.90	7.15	7.07	.98326	13.00	10.49	10.25
.98777	9.00	7.23	7.14	.98315	13.10	10.57	10.39
.98765	9.10	7.31	7.22	.98305	13.20	10.65	10.47
.98754	9.20	7.39	7.30	.98294	13.30	10.74	10.55
.98742	9.30	7.48	7.38	.98283	13.40	10.82	10.63
.98730	9.40	7.56	7.46	.98273	13.50	10.90	10.71
.98719	9.50	7.64	7.54	.98262	13.60	10.98	10.79
.98707	9.60	7.72	7.62	.98251	13.70	11.06	10.87
.98695	9.70	7.80	7.70	.98240	13.80	11.15	10.95
.98683	9.80	7.88	7.78	. 98230	13.90	11.23	11.03
.98672	9.90	7.96	7.85	.98219	14.00	11.31	11.11
.98660	10.00	8.04	7.93	.98209	14.10	11.39	11.19
.98649	10.10	8.12	8.01	.98198	14.20	11.47	11.27
.98637	10.20	8.20	8.09	.98188	14.30	11.56	11.35
.98626	10.30	8.29	8.17	.98177	14.40	11.64	11.43
.98614	10.40	8.37	8.25 8.33	.98167	14.50	11.72	11.51
.98603	10.50	8.45	8.41	.98156	14.60 14.70	11.80	11.59
.98592 .98580	10.60	8.61	8.49	.98135	14.70	11.88	11.67 11.75
.98569	10.70	8.70	8.57	.98125	14.90	12.05	11.73
.98557	10.80	8.78	8.65	.98114	15.00	12.13	11.90
.98546	11.00	8.86	8.73	.98104	15.10	12.13	11.98
,98535	11.10	8.94	8.81	.98093	15.20	12.29	12.06
.98524	11.20	9.02	8.89	.98083	15.30	12.38	12.14

Specific		Alcohol		Specific		Alcohol	
Gravity at	per cent	per cent	Grams	Gravity at	per cent	per cent	Grams
60° F.	by	by	per	$\frac{60^{\circ}}{60^{\circ}}$ F.	by	by	per
	volume	weight	100 C.C.		volume	weight	100 C.C.
.98073	15.40	12.46	12.22	.97658	19.50	15.84	15.47
.98063	15.50	12.54	12.30	.97648	19.60	15.93	15.55
.98052	15.60	12.62	12.37	.97638	19.70	16.01	15.63
.98042	15.70	12.70	12.45	.97628	19.80	16.09	15.71
.98032	15.80	12.79	12.53	.97618	19.90	16.18	15.79
.98021	15.90	12.87	12.61	.97608	20.00	16.26	15.87
.98011	16.00	12.95	12.69	.97598	20.10	16.34	15.95
.98001	16.10	13.03	12.77	.97588	20.20	16.42	16.03
.97991	16.20	13.12	12.85	.97578	20.30	16.51	16.10
.97980	16.30	13.20	12.93	.97568	20.40	16.59	16.18
.97970	16.40	13.29	13.01	.97558	20.50	16.67	16.26
.97960	16.50	13.37	13.09	.97547	20.60	16.75	16.34
.97950	16.60	13.45	13.17	.97537	20.70	16.84	16.42
.97940	16.70	13.53	13.25	.97527	20.80	16.92	16.50
.97929	16.80	13.62	13.33	.97517	20.90	17.01	16.58
.97919	16.90	13.70	13.41	.97507	21.00	17.09	16.66
.97909	17.00	13.78	13.49	.97497	21.10	17.17	16.74
.97899	17.10	13.86	13.57	.97487	21.20	17.26	16.82
.97889	17.20	13.94	13.65	.97477	21.30	17.34	16.90
.97879	17.30	14.03	13.73	.97467	21.40	17.43	16.98
.97869	17.40	14.11	13.81	.97457	21.50	17.51	17.06
.97859	17.50	14.19	13.89	.97446	21.60	17.59	17.14
.97848	17.60	14.27	13.96	.97436	21.70	17.67	17.14
.97838	17.70	14.35	14.04	.97426	21.80	17.76	17.30
.97828	17.80	14.44	14.12	.97416.	21.90	17.84	17.38
.97818	17.90	14.52	14.20	.97406.	22.00	17.92	17.46
.97808	18.00	14.60	14.28	.97396	22.10	18.00	17.54
.97798	18.10	14.68	14.36	.97386	22.20	18.09	17.62
.97788	18.20	14.77	14.44	.97375	22.30	18.17	17.70
.97778	18.30	14.85	14.52	.97365	22.40	18.26	17.78
.97768	18.40	14.94	14.60	.97355	22.50	18.34	17.86
.97758	18.50	15.02	14.68	.97345	22.60	18.42	17.94
.97748	18.60	15.10	14.76	.97335	22.70	18.51	18.02
.97738	18.70	15.18	14.84	.97324	22.80	18.59	18.10
.97728	18.80	15.27	14.92	.97314.	22.90	18.68	18.18
.97718	18.90	15.38	15.00	.97304	23.00	18.76	18.26
.97708.	19.00	15.43	15.08	.97294	23.10	18.84	18.33
.97698	19.10	15.51	15.15	.97283	23.20	18.92	18.41
.97688	19.10	15.59	15.13	.97273	23.30	19.01	18.49
.97678	19.30	15.68	15.23	.97263	23.40	19.01	18.57
.97668	19.40	15.76	15.31 15.39	.97253	23.50	19.03	18.65
.0.000	10.40	10.70	10.00	. 31200	20.00	10.11	10.00

Specific		Alcohol		Specific		Alcohol	
Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent	per cent	Grams per	Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent	per cent	Grams per
-	volume	weight	100 C.C.		volume	weight	100 C.C.
.97242	23.60	19.25	18.73	.96805	27.70	22.71	21.98
.97232	23.70	19.34	18.81	.96794	27.80	22.79	22.06
.97222	23.80	19.42	18.88	.96783	27.90	22.88	22.14
.97211	23.90	19.51	18.96	.96772	28.00	22.96	22.22
.97201 .97191	$24.00 \\ 24.10$	19.59 19.67	$19.04 \\ 19.12$.96761	28.10 28.20	23.04 23.13	22.30 22.38
.97180	24.10	19.76	19.12	.96738	28.30	23.13	22.45
.97170	24.30	19.84	19.28	.96726	28.40	23.30	22.53
.97159	24.40	19.93	19.36	.96715	28.50	23.38	22.61
.97149	24.50	20.01	19.44	.96704	28.60	23.47	22.69
.97139	24.60	20.09	19.52	.96692	28.70	23.55	22.77
.97128	24.70	20.18	19.60	.96681	28.80	23.64	22.85
.97118	24.80	20.26	19.68	.96669	28.90	23.72	22.93
.97107	24.90	20.35	19.76	.96658	29.00	23.81	23.01
.97097	25.00	20.43	19.84	.96646	29.10	23.89	23.09
.97086	25.10	20.51	19.92	. 96635	29.20	23.98	23.17
.97076	25.20	20.60	20.00	.96623	29.30	24.06	23.25
.97065	25.30 25.40	20.68	20.08	.96611	29.40	24.15 24.23	23.33 23.41
.97033	25.40 25.50	$\begin{vmatrix} 20.77 \\ 20.85 \end{vmatrix}$	20.16 20.24	.96600	29.50 29.60	24.23	23.49
.97033	$\frac{25.50}{25.60}$	20.83	20.24	.96576	29.70	24.40	23.57
.97023	25.70	21.02	20.40	.96564	29.80	24.49	23.65
.97012	25.80	21.10	20.47	.96553	29.90	24.57	23.73
.97001	25.90	21.19	20.55	.96541	30.00	24.66	23.81
.96991	26.00	21.27	20.63	.96529	30.10	24.74	23.89
.96980	26.10	21.35	20.71	.96517	30.20	24.83	23.97
.96969	26.20	21.44	20.79	.96505	30.30	24.91	24.04
.96959	26.30	21.52	20.87	.96493	30.40	25.00	24.12
.96949	26.40	21.61	20.95	.96481	30.50	25.08	24.20
.96937	26.50	21.69	21.03	.96469	30.60	25.17	24.28
.96926	26.60 26.70	21.77	21.11 21.19	.96457	30.70	25.25 25.34	24.36
.96905	26.80	21.00	21.19	.96433	30.90	25.42	24.44
.96894	26.90	22.03	21.35	.96421	31.00	25.51	24.60
.96883	27.00	22.11	21.43	.96409	31.10	25.60	24.68
.96872	27.10	22.20	21.51	.96396	31.20	25.68	24.76
.96861	27.20	22.28	21.59	.96384	31.30	25.77	24.84
.96850	27.30	22.37	21.67	.96372	31.40	25.85	24.92
.96839	27.40	22.45	21.75	.96360	31.50	25.94	25.00
.96828	27.50	22.54	21.83	.96347	31.60	26.03	25.08
.96816	27.60	22.62	21.90	.96335	31.70	26.11	25.16
-		1		II .	1		

Specific		Alcohol		Specific		Alcohol	
Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams per 100 c.c.	Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	per cent by volume	per cent by weight	Grams per 100 c.c.
. 96323	31.80	26.20	25.24	, 95787	35.90	29.74	28.49
.96310	31.90	26.28	25.32	.95773	36.00	29.83	28.57
.96298	32.00	26.37	25.40	.95759	36.10	29.92	28.65
.96285	32.10	26.46	25.48	.95745	36.20	30.00	28.73
.96273	32.20	26.54	25.56	.95731	36.30	30.09	28.81
.96260	32.30	26.63	25.64	.95717	36.40	30.17	28.88
.96248	32.40	26.71	25.71	.95703	36.50	30.26	28.96
.96235	32.50	26.80	25.79	.95688	36.60	30.35	29.04
.96222	32.60	26.89	25.87	.95674	36.70	30.44	29.12
.96210	32.70	26.97	25.95	.95660	36.80	30.52	29.20
.96197	32.80	27.06	26.03	.95646	36.90	30.61	29.29
.96185	32.90	27.14	26.11	.95632	37.00	30.70	29.36
.96172	33.00	27.23	26.19	.95618	37.10	30.79	29.44
.96159	33.10	27.32	26.27	.95603	37.20	30.88	29.52
.96146	33.20	27.40	26.35	.95589	37.30	30.96	29.60
.96133	33.30	27.49	26.43	.95574	37.40	31.05	29.68
.96120	33.40	27.57	26.51	.95560	37.50	31.14	29.76
.96108	33.50	27.66	26.59	.95545	37.60	31.23	29.84
.96095	33.60	27.75	26.67	.95531	37.70	31.32	29.92
.96082	33.70	27.83	26.75	.95516	37.80	31.40	30.00
.96069	33.80	27.92	26.82	.95502	37.90	31.49	30.08
.96056	33.90	28.00	26.90	.95487	38.00	31.58	30.16
.96043	34.00	28.09	26.98	.95472	38.10	31.67	30.24
.96030	34.10	28.18	27.06	.95457	38.20	31.76	30.32
.96016	34.20	28.26	27.14	.95442	38.30	31.85	30.40
.96003	34.30	28.35	27.22	.95427	38.40	31.94	30.48
.95990	34.40	28.43	27.30	.95413	38.50	32.03	30.56
.95977	34.50	28.52	27.38	.95398	38.60	32.12	30.64
.95963	34.60	28.61	27.46	.95383	30.70	32.20	30.72
.95950	34.70	28.70	27.54	.95368	30.80	32.29	30.79
.95937	34.80	28.78	27.62	.95353	30.90	32.37	30.87
.95923	34.90	28.87	27.70	.95338	39.00	32.46	30.95
.95910	35.00	28.96	27.78	.95323	39.10	32.55	31.03
.95896	35.10	29.05	27.86	.95307	39:20	32.64	31.11
.95883	35.20	29.13	27.94	.95292	39.30	32.72	31.18
.95869	35.30	29.22	28.02	.95277	39.40	32.81	31.26
.95855	35.40	29.30	28.09	.95262	39.50	32.90	31.34
.95842	35.50	29.38	28.17	.95246	39.60	32.99	31.42
.95828	35.60	29.48	28.25	.95231	39.70	33.08	31.50
.95814	35.70	29.57	28.33	.95216	39.80	33.17	31.58
.95800	35.80	29.65	28.41	.95200	39.90	33.27	31.66
-	1						

Specific		Alcohol		Specific		Alcohol	
Gravity at	per cent	per cent	Grams	Gravity at	per cent	per cent	Grams
$\frac{60^{\circ}}{60^{\circ}}$ F.	by volume	by weight	per 100 c.c.	60° 60° F.	by volume	by weight	per 100 c.c.
.95185	40.00	33.35	31.74	. 94519	44.10	37.02	34.99
.95169	40.10	33.44	31.82	.94502	44.20	37.11	35.07
.95154	40.20	33.53	31.90	.94484	44.30	37.21	35.15
.95138	40.30	33.61	31.98	.94467	44.40	37.30	35.23
.95122 .95107	40.40	33.70 33.79	$\frac{32.06}{32.14}$.94450	44.50	37.39	35.31 35.39
.95091	40.60	33.88	32.14	.94435	44.60 44.70	37.48 37.57	35.47
.95075	40.70	33.97	32.30	.94398	44.80	37.66	35.55
.95059	40.80	34.06	32.38	.94381	44.90	37.76	35.63
.95044	40.90	34.15	32.46	.94364	45.00	37.84	35.71
.95028	41.00	34.24	32.54	.94346	45.10	37.93	35.79
.95012	41.10	34.33	32.62	.94329	45.20	38.02	35.87
.94996	41.20	34.42	32.70	.94311	45.30	38.12	35.95
.94980	41.30	34.50	32.78	.94294	45.40	38.21	36.03
.94964	41.40	34.59	32.86	.94276	45.50	38.30	36.11
.94948	41.50	34.68	32.93	. 94258	45.60	38.39	36.19
.94932	41.60	34.77	33.01	. 94241	45.70	38.48	36.26
.94916	41.70	34.86	33.09	. 94223	45.80	38.57	36.34
.94900	41.80	34.95	33.17	.94206	45.90	38.66	36.42
.94884	41.90	35.04	33.25	.94188	46.00	38.75	36.50
.94868	42.00 42.10	35.13 35.22	33.33	.94170	46.10	38.84 38.93	36.58 36.66
.94835	42.10	35.31	33.49	.94134	46.30	39.03	36.74
.94810	42.20 42.30	35.40	33.57	.94116	46.40	39.12	36.82
.94802	42.40	35.49	33.65	.94098	46.50	39.21	36.90
.94786	42.50	35.58	33.73	.94080	46.60	39.30	36.98
.94770	42.60	35.67	33.81	.94062	46.70	39.39	37.06
.94753	42.70	35.76	33.89	.94044	46.80	39.49	37.13
.94737	42.80	35.85	33.97	.94026	46.90	39.58	37.21
.94720	42.90	35.94	34.04	.94008	47.00	39.67	37.29
.94704	43.00	36.03	34.12	.93990	47.10	39.76	37.37
.94687	43.10	36.12	34.20	.93971	47.20	39.85	37.45
.94670	43.20	36.21	34.28	. 93953	47.30	39.95	37.53
.94654	43.30	36.30	34.36	.93934	47.40	40.04	37.61
.94637	43.40	36.39	34.44	.93916	47.50	40.13	37.69
.94620	43.50	$ \begin{array}{c c} 36.48 \\ 36.57 \end{array} $	$34.52 \\ 34.60$.93898	$47.60 \\ 47.70$	40.22	37.77 37.85
.94586	43.70	36.66	34.68	.93861	47.70	40.32	37.83
.94570	43.80	36.75	34.76	.93842	47.90	40.41	38.01
.94553	43.90	36.84	34.84	.93824	48.00	40.60	38.09
.94536	44.00	36.93	34.91	.93805	48.10	40.69	38.17

Specific Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.		Alcohol.		Specific Gravity at $\frac{60^{\circ}}{60^{\circ}}$ F.	Alcohol.			
	Per Cent by Volume.	Per Cent by Weight.	Grams per 100 c.c.		Per Cent by Volume.	Per Cent by Weight.	Grams per 100 c.c.	
.93786. .93768. .93749. .93730. .93711. .93692. .93679. .93655. .93636.	48.20 48.30 48.40 48.50 48.60 48.70 48.80 48.90 49.00	40.78 40.88 40.97 41.06 41.15 41.24 41.34 41.43 41.52	38.25 38.33 38.41 38.49 38.57 38.65 38.72 38.80 38.88	.936179359893578935599354093521935029348293463	49.10 49.20 49.30 49.40 49.50 49.60 49.70 49.80 49.90	41.61 41.71 41.80 41.90 41.99 42.08 42.18 42.27 42.37	38.96 39.04 39.12 39.20 39.28 39.36 39.44 39.52 39.60	

ALCOHOL TABLES OF THE BUREAU OF STANDARDS

LV. — Density of Mixtures of Ethyl Alcohol and Water

Per Cent Alcohol by Weight.	D ¹⁵ / ₄ .*	$D^{\frac{20}{4}}$.	$D^{\frac{25}{4}}$.	Per Cent Alcohol by Weight.	D ¹⁵ / ₄ .	$D_{\frac{4}{4}}^{20}$.	D ²⁶ / ₄ .
0	0.99913	0.99824	0.99708	15	0.97683	0.97522	0.97336
. 1	0.99725	0.99636	0.99521	16	0.97563	0.97393	0.97199
2	0.99543	0.99453	0.99338	17	0.97444	0.97264	0.97061
3 ·	0.99366	0.99274	0.99159	18	0.97324	0.97134	0.96922
4	0.99197	0.99102	0.98984	19	0.97203	0.97003	0.96782
5	0.99033	0.98936	0.98815	20	0.97080	0.96870	0.96640
6	0.98877	0.98776	0.98651	21	0.96956	0.96736	0.96497
7	0.98726	0.98620	0.98491	22	0.96829	0.96599	0.96352
8	0.98581	0.98470	0.98336	23	0.96699	0.96459	0.96203
9	0.98442	0.98325	0.98185	24	0.96566	0.96317	0.96052
10	0.98307	0.98185	0.98038	25	0.96430	0.96171	0.95897
11	0.98176	0.98047	0.97893	26	0.96289	0.96021	0.95739
12	0.98049	0.97913	0.97752	27	0.96145	0.95868	0.95577
13	0.97925	0.97781	0.97612	28	0.95997	0.95711	0.95412
14	0.97803	0.97651	0.97474	29	0.95845	0.95550	0.95244
				l			

^{*} $D_{\frac{15}{4}}^{15}$ = density at 15° C. referred to water at 4° C.

Per Cent Alcohol by Weight.	D ¹⁵ .*	D ²⁰ .	$D^{\frac{25}{4}}$.	Per Cent Alcohol by Weight.	D ¹⁵ / ₄ .	D ²⁰ / ₄ .	D_{4}^{25} .
30	0.95688	0.95385	0.95071	65	0.88368	0.87950	0.87530
31	0.95526	0.95215		66	0.88134	0.87716	0.87295
32	0.95360	0.95213	0.94713	67	0.87899	0.87480	0.87058
33	0.95191	0.94865	0.94713 0.94529	68	0.87664	0.87244	0.86821
34	0.95017			69	0.87428		
34	0.95017	0.94684	0.94342	09	0.07428	0.87008	0.86583
35	0.94839	0.94499	0.94152	70	0.87192	0.86770	0.86344
36	0.94657	0.94311	0.93957	71	0.86954	0.86532	0.86105
37	0.94471	0.94119	0.93760	72	0.86716	0.86292	0.85864
38	0.94282	0.93924	0.93560	73	0.86477	0.86052	0.85622
39	0.94089	0.93725	0.93356	74	0.86237	0.85812	0.85380
40	0.93893	0.93524	0.93151	75	0.85997	0.85570	0.85137
41	0.93694	0.93320	0.92943	76	0.85755	0.85328	0.84893
42	0.93491	0.93113	0.92732	77	0.85513	0.85084	0.84648
43	0.93286	0.92904	0.92519	78	0.85270	0.84840	0.84403
44	0.93078	0.92693	0.92305	79	0.85026	0.84595	0.84157
45	0.92868	0.92480	0.92088	80	0.84781	0.84349	0.83909
46	0.92655	0.92264	0.91870	81	0.84534	0.84101	0.83660
47	0.92441	0.92047	0.91650	82	0.84286	0.83852	0.83410
48	0.92225	0.91828	0.91429	83	0.84037	0.83602	0.83159
49	0.92006	0.91608	0.91207	84	0.83786	0.83350	
50	0.91787	0.91386	0.90983	85	0.83534	0.83097	0.82652
51	0.91566	0.91164	0.90758	86	0.83279	0.82842	0.82396
52	0.91344	0.90940	0.90533	87	0.83022	0.82583	0.82137
53	0.91120	0.90715	0.90307	88	0.82762	0.82323	0.81876
54	0.90895	0.90488	0.90079	89	0.82500	0.82060	0.81613
55	0.90670	0.90262	0.89851	90	0.82235	0.81795	0.81348
56	0.90443	0.90034	0.89622	91	0.81966	0.81527	0.81080
57	0.90215	0.89805	0.89392	92	0.81694	0.81255	0.80809
58	0.89987	0.89576	0.89162	93	0.81418	0.80979	0.80534
59	0.89758	0.89346	0.88931	94	0.81138	0.80700	
60	0.89528	0.89115	0.88700	95	0.80854	0.80417	0.79974
61	0.89297	0.88883	0.88467	96	0.80564	0.80129	0.79689
62	0.89066	0.88651	0.88234	97	0.80271	0.79838	0.79400
63	0.88834	0.88418	0.88000	98	0.79972	0.79541	0.79106
64	0.88601	0.88185	0.87766	99	0.79668	0.79240	0.78809
				100	0.79358	0.78933	0.78507

^{*} $D_{4}^{1.5}$ = density at 15° C. referred to water at 4° C.

LVI. — Density of Mixtures of Ethyl Alcohol and Water at $\frac{20^{\circ}}{4^{\circ}}\mathrm{C}.$

Per Cent Alcohol												
Weight.	0	1	2	3	4	5	6	7	8	9		
0	0.99824	804	786	767	748	729	710	692	673	654		
1	0.99636	617	599	580	562	544	525	507	489	471		
2	0.99453	434	417	399	381	363	345	327	310	292		
3	0.99274	257	240	222	205	188	171	154	136	119		
4	0.99102	086	069	052	035	019	002	*986	*969	*952		
5	0.98936	920	904	887	871	855	839	823	807	791		
6	0.98776	760	744	729	713	697	682	666	651	636		
7	0.98620	605	590	575	560	545	530	515	500	485		
8	0.98470	456	441	426	412	397	383	368	354	340		
9	0.98325	311	297	283	269	255	241	227	213	199		
10	0.98185	171	157	143	130	116	102	.088	074	061		
11	0.98047	034	020	006	*993	*979	*966	*953	*939	*926		
12	0.97913	899	886	873	860	846	833	820	807	794		
13	0.97781	768	755	742	728	715	702	689	676	663		
14	0.97651	638	625	612	599	586	573	560	547	535		
15	0.97522	509	496	483	470	457	444	432	419	406		
16	0.97393	380	367	354	341	328	316	303	290	277		
17	0.97264	251	238	225	212	199	186	173	160	147		
18	0.97134	121	108	095	082	068	055	042	029	016		
19	0.97003	*989	*976	*963	*950	*936	*923	*910	*896	*883		
20	0.96870	856	843	830	816	803	790	776	763	749		
21	0.96736	722	708	695	681	668	654	640	626	613		
22	0.96599	585	571	557	544	530	516	502	488	473		
23	0.96459	445	431	417	403	388	374	360	346	331		
24	0.96317	302	288	273	259	244	230	215	200	186		
25	0.96171	156	141	126	111	096	081	066	051	036		
26	0.96021	006	*991	*975	*960	*945	*929	*914	*899	*883		
27	0.95868	852	837	821	806	790	774	759	743	727		
28	0.95711	695	679	663	647	631	615	599	583	566		
29	0.95550	534	518	501	485	468	452	435	419	402		

^{*} The asterisk indicates a diminution of one in the second place decimal.

Alcohol Weight. O											
weight. 0 1 2 3 4 5 6 7 8 9 30 0.95385 369 352 335 318 301 284 267 250 232 31 0.95215 198 181 164 146 129 112 094 077 059 32 0.95042 024 007 *989 *971 *954 *936 *918 *900 *883 33 0.94865 847 829 811 793 775 757 739 720 702 34 0.94684 666 647 629 611 592 574 555 537 518 35 0.94499 481 462 443 424 406 386 368 349 330 36 0.94419 992 272 253 234 215 196 176 157 188 37 0.9419 999 080 0	Per				Te	nths of I	Per Cent	•			
31 0.95215 198 181 164 146 129 112 094 077 059 32 0.95042 024 007 *989 *971 *954 *936 *918 *900 *883 33 0.94865 847 829 811 793 775 757 739 720 702 34 0.94684 666 647 629 611 592 574 555 537 518 35 0.94499 481 462 443 424 406 386 368 349 33 36 0.94111 292 272 253 234 215 196 176 157 138 37 0.94119 099 080 061 041 022 002 *983 *963 *944 38 0.93725 705 685 665 645 625 605 585 565 545	by	0	1	2	3	4	5	6	7	8	9
32 0.95042 024 007 *989 *971 *954 *936 *918 *900 *883 33 0.94865 847 829 811 793 775 757 739 720 702 34 0.94684 666 647 629 611 592 574 555 537 518 35 0.94499 481 462 443 424 406 386 368 349 330 36 0.94311 292 272 253 234 215 196 176 157 138 37 0.94119 099 080 061 041 022 002 *983 *963 *943 38 0.93242 904 884 864 845 825 805 785 765 745 39 0.93725 705 685 665 645 625 605 585 565 545	30	0.95385	369	352	335	318	301	284	267	250	232
33 0.94865 847 829 811 793 775 757 739 720 702 34 0.94684 666 647 629 611 592 574 555 537 518 35 0.94499 481 462 443 424 406 386 368 349 330 36 0.94311 292 272 253 234 215 196 176 157 138 37 0.94119 099 080 061 041 022 002 *983 *963 *944 38 0.93924 904 884 864 845 825 805 785 765 755 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93524 504 484 464 443 423 402 382 362 341 </td <td>31</td> <td>0.95215</td> <td>198</td> <td>181</td> <td>164</td> <td>146</td> <td>129</td> <td>112</td> <td>094</td> <td>077</td> <td>059</td>	31	0.95215	198	181	164	146	129	112	094	077	059
34 0.94684 666 647 629 611 592 574 555 537 518 35 0.94499 481 462 443 424 406 386 368 349 330 36 0.94311 292 272 253 234 215 196 176 157 138 37 0.94119 099 080 061 041 022 002 *983 *963 *944 38 0.93924 904 884 864 845 825 805 785 765 745 39 0.93725 705 685 665 645 625 605 585 565 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93131 092 072 259 238 217 196 176 155 134	32	0.95042	024	007	*989	*971	*954	*936	*918	*900	*883
35	33	0.94865	847	829		793	775	757	739	720	702
36 0.94311 292 272 253 234 215 196 176 157 138 37 0.94119 099 080 061 041 022 002 *983 *963 *944 38 0.93924 904 884 864 *845 825 805 785 765 745 39 0.93725 705 685 665 645 625 605 585 565 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92480 458 437 415 394 372 351 329 308 286	34	0.94684	666	647	629	611	592	574	555	537	518
37 0.94119 099 080 061 041 022 002 *983 *963 *944 38 0.93924 904 884 864 845 825 805 785 765 745 39 0.93725 705 685 665 645 625 605 585 565 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501	35	0.94499	481		443	424	406	386	368	349	330
38 0.93924 904 884 864 845 825 805 785 765 745 39 0.93725 705 685 665 645 625 605 585 565 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286		0.94311		272		234		196		157	138
39 0.93725 705 685 665 645 625 605 585 565 545 40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 699		1							*983	*963	
40 0.93524 504 484 464 443 423 402 382 362 341 41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850		1					1				745
41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 4	39	0.93725	705	685	665	645	625	605	585	565	545
41 0.93320 300 279 259 238 217 196 176 155 134 42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 4	40	0.93524	504	484	464	443	423	402	382	362	341
42 0.93113 092 072 051 030 009 *988 *967 *946 *925 43 0.92904 883 862 841 820 799 778 757 736 714 44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 0											134
44 0.92693 672 651 629 608 587 566 544 523 501 45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782	42	0.93113	092	072	051	030	009	*988	*967	*946	*925
45 0.92480 458 437 415 394 372 351 329 308 286 46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737	43	0.92904	883	862	841	820	799	778	757	736	714
46 0.92264 243 221 199 178 156 134 112 091 069 47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 33	44	0.92693	672	651	629	608	587	566	544	523	501
47 0.92047 025 004 *982 *960 *938 *916 *894 *872 *850 48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102	45	0.92480	458	437	415	394	372	351	329	308	286
48 0.91828 806 784 762 740 718 696 674 652 630 49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874<	46	0.92264	243	221	199	178	156	134	112	091	069
49 0.91608 586 564 542 519 497 475 453 431 408 50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 3	47	0.92047	025	004	*982	*960	*938	*916	*894	*872	*850
50 0.91386 364 342 319 297 275 253 230 208 186 51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 1						740	718	696	674		630
51 0.91164 141 119 096 074 052 029 007 *984 *962 52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369	49	0.91608	586	564	542	519	497	475	453	431	408
52 0.90940 917 895 872 850 827 805 782 760 737 53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138		0.91386	364	342		297	275		230	208	186
53 0.90715 692 670 647 624 602 579 556 534 511 54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
54 0.90488 466 443 420 398 375 352 330 307 284 55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 <tr< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>3</td><td></td><td></td></tr<>					1				3		
55 0.90262 239 216 193 170 148 125 102 079 056 56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 <tr< td=""><td></td><td> </td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>\$</td><td></td></tr<>						1				\$	
56 0.90034 011 *988 *965 *942 *919 *896 *874 *851 *828 57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208	54	0.90488	466	443	420	398	375	352	330	307	284
57 0.89805 782 759 736 713 690 668 645 622 599 58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208					193					079	056
58 0.89576 553 530 507 484 461 438 415 392 369 59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208							*919	*896	*874	*851	
59 0.89346 323 300 277 254 230 207 184 161 138 60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208											599
60 0.89115 092 069 046 022 *999 *976 *953 *930 *906 61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208											
61 0.88883 860 837 814 791 767 744 721 698 674 62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208	59	0.89346	323	300	277	254	230	207	184	161	138
62 0.88651 628 605 581 558 535 512 488 465 442 63 0.88418 395 372 348 325 302 278 255 231 208					00	0	000		000	000	*906
63 0.88418 395 372 348 325 302 278 255 231 208									1		674
		1 1						1			442
04 10 0040						1			1		208
64 0.88185 161 138 114 091 068 044 021 *997 *974	64	0.88185	161	138	114	091	068	044	021	*997	*974

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent				Te	enths of	Per Cent				
Alcohol	0	1	2	3	4	5	6	7	8	9
Weight.	-									9
0=	0.05050	007	004	000	057	099	010	700	700	700
65 66	0.87950	927 692	904 669	880 645	857 622	833 598	810 574	786 551	763 527	739 504
67	0.87480	457	433	409	386	362	339	315	291	268
68	0.87244	221	197	173	150	126	102	079	055	031
69	0.87008	*984	*960	*936	*913	*889	*865	*842	*818	*794
70	0.86770	746	722	699	675	651	627	603	580	556
71	0.86532	508	484	460	436	412	388	364	340	316
72	0.86292	268	245	221	197	173	149	125	101	076
73	0.86052	028	004	*980	*956	*932	*908	*884	*860	*836
74	0.85812	788	764	739	715	691	667	643	618	594
75	0.85570	546	522	497	473	449	425	400	376	352
76	0.85328	303	279	255	230	206	182	157	133	109
77	0.85084	060	036	011	*987	*962	*938	*914	*889	*865
78	0.84840	816	791	767	742	718	693	669	644	620
79	0.84595	571	546	521	497	472	448	423	398	374
80	0.84349	324	299	275	250	225	200	176	151	126
81	0.84101	076	051	026	002	*977	*952	*927	*902	*877
82	0.83852	827	802	777	752	727	702	677	652	627
83	0.83602	577	552	526	501	476	451	426	401	376
84	0.83350	325	300	274	249	224	198	173	147	122
85	0.83097	071	046	020	*995	*969	*944	*918	*893	*867
86	0.82842	816	790	764	738	713	687	661	635	609
87	0.82583	557	531	506	479	453	427	401	375	349
88	0.82323	297	270	244	218	192	165	139	113	086
89	0.82060	034	007	*981	*954	*928	*901	*875	*848	*822
90	0.81795	768	742	715	688	661	634	608	581	554
91	0.81527	500	473	446	418	391	364	337	310	282
92	0.81255	228	200	173	145	118	090	062	035	007
93	0.80979	952	924	896	868	840	812	784	756	728
94	0.80700	672	644	616	587	559	531	502	474	445
95	0.80417	388	360	331	302	274	245	216	187	158
96	0.80129	100	071	042	013	*984	*955	*926	*896	*867
97	0.79838	808	779	749	720	690	660	631	601	571
98	0.79541	511	481	451	421	391	361	331	300	270
99	0.79240	209	179	148	118	087	056	026	*995	*964
100	0.78933									

^{*} The asterisk indicates a diminution of one in the second place decimal.

LVII. — Specific Gravity of Mixtures of Ethyl Alcohol and Water at $\frac{60^{\circ}}{60^{\circ}}$ F. $\left(\frac{15.55^{\circ}}{15.56^{\circ}}$ C. $\right)$

Per Cent Alcohol by Vol-				Te	enths of	Per Cen				
ume at 60° F.	0	1	2	3	4	5	6	7	8	9
0	1.00000	*985	*970	*954	*940	*924	*910	*894	*880	*865
1	.99850	835	820	805	791	776	761	747	732	718
$\overline{2}$.99703	688	674	660	645	631	616	602	588	574
3	.99560	545	531	517	503	489	475	461	447	433
4	.99419	405	392	378	364	350	337	323	310	296
5	.99283	269	256	243	230	216	203	190	177	164
6	.99150	137	124	111	098	086	073	060	047	034
7	.99022	009	*996	*984	*971	*959	*946	*934	*922	*909
8	. 98897	885	872	860	848	836	824	812	800	788
9	.98776	764	752	740	728	716	705	693	681	670
10	. 98658	646	635	623	612	600	589	578	566	555
11	. 98544	532	521	510	499	488	477	466	454	444
12	. 98432	422	410	400	389	378	367	356	345	334
13	. 98324	313	302	291	281	270	259	249	238	227
14	.98217	206	196	185	175	164	154	144	133	123
15	.98112	102	092	082	071	061	051	040	030	020
16	. 98010	000	*989	*979	*969	*959	*949	*939	*928	*918
17	.97908	898	888	878	868	858	848	838	828	818
18	.97808	798	788	778	768	758	748	738	728	718
19	.97708	698	688	678	668	658	648	637	627	617
20	. 97607	597	587	577	567	557	547	537	527	517
21	. 97507	497	487	477	466	456	446	436	426	416
22	.97406	396	386	375	365	355	345	334	324	314
23	.97304	294	283	273	263	252	242	232	221	211
24	.97200	190	180	169	159	148	138	127	117	106
25	.97096	085	074	064	053	043	032	022	011	000
26	.96990	979	968	957	946	936	925	914	903	892
27	.96881	870	859	848	837	826	815	804	792	781
28	.96770	759	748	736	725	714	702	691	679	668
2 9	.96656	645	633	622	610	. 599	587	575	564	552

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent Alcohol				Т	enths of	Per Cen	ıt.			
by Vol-						· · · · · · · · · · · · · · · · · · ·	1		1	1
ume at 60° F.	0	1	2	3	4	5	6	7	8	9
30	.96540	528	516	504	492	481	469	456	444	432
31	.96420	408	396	384	372	359	347	335	322	310
32	.96297	285	272	260	248	235	222	210	197	184
33	.96172	159	146	133	120	107	094	082	068	055
34	.96042	029	016	003	*990	*976	*963	*950	*936	*923
35	.95909	896	882	868	855	841	827	814	800	786
36	.95772	758	744	730	716	702	688	673	659	645
37	. 95630	616	602	587	573	558	544	529	515	500
38	. 95485	471	456	441	426	412	397	382	367	352
39	.95337	322	306	291	276	261	246	230	215	200
40	.95184	168	153	137	122	106	090	075	059	043
41	.95027	011	*995	*979	*963	*947	*931	*915	*899	*883
42	.94866	850	834	817	801	784	768	751	735	718
43	.94702	685	668	651	634	618	601	584	567	550
44	.94532	515	498	481	464	447	429	412	395	377
**	.01002	010	100	101	,101	111	120	112	. 000	011
45	. 94360	342	325	307	290	272	254	236	219	201
46	. 94183	165	147	129	111	093	076	058	039	021
47	.94003	*985	*967	*948	*930	*912	*893	*875	*856	*838
48	. 93819	801	782	764	745	726	707	688	670	651
49	.93632	613	594	575	556	536	517	498	479	460
50	. 93440	421	402	382	363	343	324	304	285	265
51	. 93246	226	206	187	167	147	128	108	088	068
52	. 93048	028	008	*988	*968	*948	*928	*908	*887	*867
53	. 92847	827	806	786	766	745	725	704	684	663
54	.92643	622	601	581	560	539	518	498	477	456
55	.92435	414	393	372	351	330	309	288	267	246
56	. 92224	203	182	161	139	118	097	075	054	032
57	.92011	*990	*968	*946	*925	*903	*882	*860	*838	*817
58	. 91795	773	752	730	708	686	664	643	621	599
59	.91577	555	533	511	489	467	444	422	400	378
60	.91356	333	311	289	266	244	222	199	177	154
61	.91132	109	087	064	041	019	*996	*973	*951	*928
62	.90905	882	860	837	814	791	768	745	722	699
63	.90676	653	630	607	584	560	537	514	491	468
64	.90444	421	398	374	351	328	304	281	257	234

^{*} The asterisk indicates a diminution of one in the second place decimal.

Per Cent Alcohol by Vol-				Te	enths of l	Per Cent				
ume at 60° F.	0	1	2	3	4	5	6	7	8	9
65	.90210	187	163	140	116	092	069	045	022	*998
66	.89974	950	927	903	879	855	831	807	783	759
67	.89735	711	687	663	639	615	591	567	542	518
68	.89494	470	445	421	397	372	348	324	299	275
69	.89250	226	201	177	152	127	103	078	053	029
70	.89004	*979	*954	*930	*905	*880	*855	*830	*805	*780
71	.88755	730	705	680	655	630	605	580	554	529
72	.88504	478	453	428	403	377	352	326	301	276
73	.88250	224	199	173	147	122	096	070	044	018
74	.87993	967	941	915	889	864	838	812	786	760
75	.87734	708	682	655	629	603	577	550	524	498
76	.87471	445	419	392	366	339	313	286	259	233
77	.87206	179	153	126	099	072	045	018	*991	*964
78	.86937	910	883	856	829	802	774	747	720	692
79	.86665	638	610	583	555	528	500	472	445	417
80	.86389	362	334	306	278	250	222	194	166	138
81	.86110	082	054	025	*997	*969	*941	*912	*884	*855
82	.85827	799	770	742	713	684	656	627	598	570
83	.85541	512	483	454	425	396	367	338	308	279
84	.85250	220	191	162	132	103	073	044	014	*984
85	.84955	925	895	865	835	805	775	745	714	684
86	.84654	624	593	563	532	502	471	440	410	379
87	.84348	317	286	255	224	193	162	131	100	068
88	.84037	005	*974	*942	*910	*879	*847	*815	*783	*751
89	.83719	687	654	622	590	557	525	492	459	427
90	.83394	361	328	294	261	228	194	160	127	093
91	.83059	025	*991	*957	*923	*888	*854	*819	*785	*750
92	.82715	680	645	610	574	539	503	468	432	396
93	.82360	324	288	252	215	178	142	105	068	031
94	.81994	956	918	881	843	804	766	728	689	650
95	.81611	572	533	494	454	414	374	334	293	253
96	.81212	171	130	089	047	006	*964	*921	*879	*836
97	.80794	751	708	664	620	576	532	488	443	398
98	.80353	308	262	216	169	123	076	028	*981	*933
99	.79885	837	788	739	690	640	590	540	489	438
100	.79387									

^{*} The asterisk indicates a diminution of one in the second place decimal.

Table LVIII.—Per Cents of Alcohol by Volume at 60°F., Corresponding to Various Per Cents by Weight in Mixtures of Ethyl Alcohol and Water

Per Cent Alcohol				Т	enths of	Per Cen	ıt.			
Weight.	0	1	2	3	4	5	б	7	8	9
0	0.00	0.13	0.25	60.38	0.50	0.63	0.75	0.88	1.01	1.13
1	1.26	1.38	1.51	1.63	1.76	1.88	2.01	2.13	2.26	2.38
2	2.51	2.63	2.76	2.88	3.01	3.13	3.26	3.38	3.51	3.63
- 3	3.76	3.88	4.01	4.13	4.26	4.38	4.50	4.63	4.75	4.88
4	5.00	5.13	5.25	5.37	5.50	5.62	5.75	5.87	5.99	6.12
5	6.24	6.37	6.49	6.61	6.74	6.86	6.98	7.11	7.23	7.36
6	7.48	7.60	7.73	7.85	7.97	8.10	8.22	8.34	8.47	8.59
7	8.71	8.84	8.96	9.08	9.20	9.33	9.45	9.57	9.70	9.82
8	9.94	10.07	10.19	10.31	10.43	10.56	10.68	10.80	10.92	11.05
9	11.17	11.29	11.41	11.54	11.66	11.78	11.90	12.03	12.15	12.27
10	12.39	12.52	12.64	12.76	12.88	13.00	13.13	13.25	13.37	13.49
11	13.62	13.74	13.86	13.98	14.10	14.22	14.35	14.47	14.59	14.71
12	14.83	14.95	15.08	15.20	15.32	15.44	15.56	15.68	15.81	15.93
13	16.05	16.17	16.29	16.41	16.53	16.66	16.78	16.90	17.02	1 7.14
14	17.26	17.38	17.50	17.62	17.75	17.87	17.99	18.11	18.23	18.35
15	18.47	18.59	18.71	18.83	18.95	19.08	19.20	19.32	19.44	19.56
16	19.68	19.80	19.92	20.04	20.16	20.28	20.40	20.52	20.64	20.76
17	20.88	21.00	21.12	21.24	21.36	21.48	21.60	21.72	21.84	21.96
18	22.08	22.20	22.32	22.44	22.56	22.68	22.80	22.92	23.04	23.16
19	23.28	23.40	23.52	23.64	23.76	23.88	24.00	24.12	24.24	24.36
20	24.48	24.59	24.71	24.83	24.95	25.07	25.19	25.31	25.43	25.55
21	25.67	25.78	25.90	26.02	26.14	26.26	26.38	26.50	26.62	26.73
22	26.85	26.97	27.09	27.21	27.33	27.44	27.56	27.68	27.80	27.92
23	28.04	28.15	28.27	28.39	28.51	28.62	28.74	28.86	28.98	29.10
24	29.21	29.33	29.45	29.57	29.68	29.80	29.92	30.03	30.15	30.27
25	30.39	30.50	30.62	30.74	30.85	30.97	31.09	31.21	31.32	31.44
26	31.56	31.67	31.79	31.91	32.02	32.14	32.26	32.37	32.49	32.60
27	32.72	32.84	32.95	33.07	33.18	33.30	33.42	33.53	33.65	33.76
28	33.88	34.00	34.11	34.23	34.34	34.46	34.57	34.69	34.80	34.92
29	35.03	35.15	35.26	35.38	35.49	35.61	35.72	35.84	35.95	36.07

Per Cent Alcohol				Т	enths of	Per Cen	t.			1
by Weight.	0	1	2	3	4	5	6	7	8	9
	20.10	20. 20	20 41	20. 50	20.04	90 75	20 07	20.00	27 10	97.01
30 31	$\begin{vmatrix} 36.18 \\ 37.32 \end{vmatrix}$	36.30 37.44	36.41 37.55	36.52 37.67	36.64 37.78	36.75 37.89	36.87 38.01	36.98 38.12	37.10 38.23	37.21 38.35
32	38.46	38.58	38.69	38.80	38.91	39.03	39.14	39.25	39.37	39.48
33	39.59	39.71	39.82	39.93	40.04	40.16	40.27	40.38	40.49	40.61
34	40.72	40.83	40.94	41.05	41.17	41.28	41.39	41.50	41.61	41.72
35	41.84	41.95	42.06	42.17	42.28	42.39	42.50	42.62	42.73	42.84
36	42.95	43.06	43.17	43.28	43.39	43.50	43.61	43.72	43.83	43.94
37	44.06	44.16	44.27	44.38	44.49	44.60	44.71	44.82	44.93	45.04
38	45.15	45.26	45.37	45.48	45.59	45.70	45.81	45.92	46.03	46.14
39	46.25	46.36	46.46	46.57	46.68	46.79	46.90	47.01	47.12	47.23
40	47.33	47.44	47.55	47.66	47.77	47.87	47.98	48.09	48.20	48.31
41	48.41	48.52	48.63	48.74	48.84	48.95	49.06	49.17	49.27	49.38
42	49.49	49.59	49.70	49.81	49.91	50.02	50.13	50.23	50.34	50.45
43	50.55	50.66	50.77	50.87	50.98	51.08	51.19	51.30	51.40	51.51
44	51.61	51.72	51.82	51.93	52.04	52.14	52.25	52.35	52.46	52.56
45	52.67	52.77	52.88	52.98	53.09	53.19	53.30	53.40	53.51	53.61
46	53.72	53.82	53.92	54.03	54.13	54.24	54.34	54.44	54.55	54.65
47	54.76	54.86	54.96	55.07	55.17	55.27	55.38	55.48	55.58	55.69
48	55.79	55.89	55.99	56.10	56.20	56.30	56.41	56.51	56.61	56.71
49	56.82	56.92	57.02	57.12	57.22	57.33	57.43	57.53	57.63	57.73
50	57.84	57.94	58.04	58.14	58.24	58.34	58.45	58.55	58.65	58.75
51	58.85	58.95	59.05	59.15	59.26	59.36	59.46	59.56	59.66	59.76
52	59.86	59.96	60.06	60.16	60.26	60.36	60.46	60.56	60.66	60.76
53	60.86	60.96	61.06	61.16	61.26	61.36	61.46	61.56	61.66	61.76
54	61.86	61.96	62.05	62.15	62.25	62.35	62.45	62.55	62.65	62.75
55	62.85	62.94	63.04	63.14	63.24	63.34	63.44	63.53	63.63	63.73
56	63.83	63.93	64.02	64.12	64.22	64.32	64.41	64.51	64.61	64.71
57	64.80	64.90	65.00	65.10	65.19	65.29	65.39	65.48	65.58	65.68
58	65.77	65.87	65.97	66.06	66.16	66.26	66.35	66.45	66.55	66.64
59	66.74	66.83	66.93	67.03	67.12	67.22	67.31	67.41	67.50	67.60
60	67.70	67.79	67.88	67.98	68.08	68.17	68.26	68.36	68.46	68.55
61	68.64	68.74	68.83	68.93	69.02	69.12	69.21	69.31	69.40	69.50
62	69.59	69.68	69.78	69.87	69.97	70.06	70.15	70.25	70.34	70.43
63	70.53	70.62	70.71	70.81	70.90	70.99	71.09	71.18	71.27	71.37
64	71.46	71.55	71.64	71.74	71.83	71.92	72.02	72.11	72.20	72.29

weight. 0 1 2 3 4 5 6 7 8 9 65 72.38 72.48 72.57 72.66 72.75 72.84 72.94 73.03 73.12 73.21 66 73.30 73.40 73.49 73.58 73.67 73.76 73.85 73.94 74.03 74.12 68 75.12 75.21 75.30 75.30 75.48 75.57 75.66 75.75 74.94 75.93 69 76.02 76.11 76.20 76.38 76.47 76.56 76.74 76.83 70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.54 77.62 77.71 71 77.80 77.89 77.98 78.06 78.15 78.24 78.33 78.42 78.50 78.59 72 78.68 78.77 79.81 79.91 79.99 80.07 80.07 80.16 80.25	Per Cent											
65 72.38 72.48 72.57 72.66 72.75 72.84 72.94 73.03 73.12 73.21 66 73.30 73.40 73.49 73.58 73.67 73.76 73.85 73.94 74.03 74.12 68 75.12 75.21 75.30 75.30 75.30 75.30 75.30 75.30 75.66 75.75 75.84 75.93 69 76.02 76.11 76.20 76.29 76.38 76.47 76.56 76.65 76.74 76.83 70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.54 77.62 77.71 77.80 77.89 77.98 78.06 78.15 78.24 78.33 78.42 78.50 78.59 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.87 81.28 81.36 81.45 81.53 81.62 81.70 81.87 81.28 81.88 82.91 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.89 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.65 83.78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 83.65 83.65 83.65 83.65 83.65 83.65 83.65 83.65 83.65 83.65 83.65 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82.87 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.69 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.69 87.90 87.98 88.05 88.13 88.21 88.29 89.00 89.08 89.16 89.24 89.32 89.40 89.25 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 91.99 91.79 91.25 91.32 91.40 91.47 91.55 91.62 91.70 91.99 91.79 91.25 91.32 91.40 91.47 91.55 91.62 91.70 93.99 94.06 94.14 94.21 94.28 94.39 95.06 95.13 95.20 92.37 92.45 99.25 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 96.11 96.18 96.25 96.31 96.39 97.06 97.72 97.79 97.85 97.92 97.93 97.38 93.99 94.06 94.14 94.21 94.28 94.39 95.06 95.76 95.83 95.99 95.97 96.64 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.93 97.39 97.39 97.39 97.39 97.39 97.39 97.39 97.39 97.39 99.40 99.39 99.49 99.39 99.49 99.39 99.49 99.39 99.49 99.39 99.49 99.39 99.49 99.39 99.48 99.99 99.39 99.45 99.39 99.49 99.39 99.											1	
66	Weight.	0	1	2	3	4	5	6	7	8	9	
66												
67 74.22 74.31 74.40 74.49 74.58 74.67 74.76 74.85 74.94 75.75 75.84 75.75 75.84 75.75 75.84 75.93 75.48 75.57 75.66 75.75 75.84 75.93 76.02 76.02 76.29 76.38 76.47 76.56 76.65 76.65 76.65 76.67 76.74 76.83 70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.45 77.62 77.17 71 77.80 77.87 78.85 78.94 79.03 79.12 79.20 79.29 79.38 79.47 73 79.55 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62												
68 75.12 75.21 75.30 75.39 75.48 75.57 75.66 75.75 75.84 76.92 76.38 76.47 76.56 76.65 76.65 76.74 76.83 70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.54 77.62 77.71 71 77.80 77.89 77.85 78.94 79.03 79.12 79.20 79.29 79.38 79.47 73 79.55 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.79 81.87 81.96 82.04 76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.81												
69 76.02 76.11 76.20 76.29 76.38 76.47 76.56 76.65 76.74 76.83 70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.54 77.62 77.71 71 77.80 77.89 77.98 78.06 78.15 78.24 78.33 78.42 78.50 78.59 77.91 79.90 79.90 79.90 79.20 79.29 79.38 79.47 79.91 79.99 80.07 80.16 80.25 80.33 79.81 79.90 79.99 80.07 80.16 80.25 80.33 81.02 81.11 81.11 81.81 80.25 80.38 80.76 80.85 80.93 81.02 81.11 81.11 81.11 81.11 81.81 86.82 86.33 88.31 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.48 84.56 79 84.64 84.73 84.81 84.89												
70 76.92 77.00 77.09 77.18 77.27 77.36 77.45 77.54 77.62 77.71 71 77.80 77.89 77.98 78.06 78.15 78.24 78.33 78.42 78.50 78.59 72 78.68 78.77 78.85 78.94 79.03 79.12 79.20 79.29 79.38 79.47 73 79.55 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.87 81.96 82.04 76 82.13 82.21 82.38 82.47 82.55 82.64 82.72 82.81 82.89 77 82.98 83.06 83.14 83.28 82.47 82.55 82.61 82.55												
71 77.80 77.89 77.98 78.06 78.15 78.24 78.33 78.42 78.50 78.59 79.47 73 79.55 79.64 79.73 79.81 79.00 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.11 81.11 81.18 81.28 81.28 81.28 81.28 81.28 82.47 82.55 82.64 82.72 82.81 82.81 82.81 82.81 82.81 83.61 83.61 83.41 83.23 83.31 83.40 83.45 83.65	69	76.02	76.11	76.20	76.29	76.38	76.47	76.56	76.65	76.74	76.83	
72 78.68 78.77 78.85 78.94 79.03 79.12 79.20 79.29 79.38 79.47 73 79.55 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.79 81.87 81.96 82.04 76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.89 77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.56 83.56 83.56 83.48 84.56 84.44 84.44 84.48 84.56 79 84.64 84.73 84.81 84.98 85.06 85.41 85.22 85.30 85.39 80 85.47 85.55 85.63 86.61 86.67 86.74 86.85	70	76.92		77.09	77.18	77.27	77.36	77.45	77.54	77.62	77.71	
73 79.55 79.64 79.73 79.81 79.90 79.99 80.07 80.16 80.25 80.33 74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.79 81.87 81.96 82.04 76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.89 77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.65 83.73 78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 86.63 85.71 85.80		77.80	77.89	77.98	78.06	78.15	78.24	78.33			78.59	
74 80.42 80.50 80.59 80.68 80.76 80.85 80.93 81.02 81.11 81.19 75 81.28 81.36 81.45 81.53 81.62 81.70 81.79 81.87 81.96 82.04 76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.89 77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.63 78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.52 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.67		78.68	78.77	78.85						79.38	79.47	
75 81.28 81.36 81.45 81.53 81.62 81.70 81.79 81.87 81.96 82.04 76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.04 77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.73 78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.67 786.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.5		1										
76 82.13 82.21 82.30 82.38 82.47 82.55 82.64 82.72 82.81 82.89 77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.63 73 78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 <td>74</td> <td>80.42</td> <td>80.50</td> <td>80.59</td> <td>80.68</td> <td>80.76</td> <td>80.85</td> <td>80.93</td> <td>81.02</td> <td>81.11</td> <td>81.19</td>	74	80.42	80.50	80.59	80.68	80.76	80.85	80.93	81.02	81.11	81.19	
77 82.98 83.06 83.14 83.23 83.31 83.40 83.48 83.56 83.65 83.73 78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48	75	81.28	81.36	81.45	81.53	81.62	81.70	81.79	81.87	81.96	82.04	
78 83.81 83.90 83.98 84.06 84.15 84.23 84.31 84.40 84.48 84.56 79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 80.92 90.79 90.86	76	82.13	82.21	82.30	82.38	82.47	82.55	82.64	82.72	82.81	82.89	
79 84.64 84.73 84.81 84.89 84.98 85.06 85.14 85.22 85.30 85.39 80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.6	77	82.98	83.06	83.14	83.23	83.31	83.40	83.48	83.56	83.65	83.73	
80 85.47 85.55 85.63 85.71 85.80 85.88 85.96 86.04 86.12 86.20 81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.45 91.70 91.70 90.86 90.91 90.94 <		83.81		83.98			. (
81 86.29 86.37 86.45 86.53 86.61 86.69 86.77 86.85 86.93 87.01 82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52	79	84.64	84.73	84.81	84.89	84.98	85.06	85.14	85.22	85.30	85.39	
82 87.10 87.18 87.26 87.34 87.42 87.50 87.58 87.66 87.74 87.82 83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 90.91 90.94 90.94 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55	80	85.47	85.55	85.63	85.71	85.80	85.88	85.96	86.04	86.12	86.20	
83 87.90 87.98 88.05 88.13 88.21 88.29 88.37 88.45 88.53 88.61 84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99	81	86.29	86.37	86.45	86.53	86.61	86.69	86.77	86.85		87.01	
84 88.69 88.77 88.85 88.92 89.00 89.08 89.16 89.24 89.32 89.40 85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 95.06 95.13 95.20 95.27 95.34 <	82	87.10	87.18	87.26	87.34	87.42	87.50	87.58	87.66	87.74	87.82	
85 89.47 89.55 89.63 89.71 89.78 89.86 89.94 90.02 90.10 90.17 86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 92 94.71 94.78 94.85 94.92 94.99 95.06	83	87.90	87.98	88.05	88.13	88.21	88.29	88.37	88.45		88.61	
86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 92 94.71 94.78 94.85 94.92 94.99 95.06 95.13 95.20 95.97 95.34 93 95.42 95.48 95.55 95.62 95.69 95.76	84	88.69	88.77	88.85	88.92	89.00	89.08	89.16	89.24	89.32	89.40	
86 90.25 90.33 90.40 90.48 90.56 90.63 90.71 90.79 90.86 90.94 87 91.02 91.09 91.17 91.25 91.32 91.40 91.47 91.55 91.62 91.70 88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 92 94.71 94.78 94.85 94.92 94.99 95.06 95.13 95.20 95.27 95.34 93 95.42 95.48 95.55 95.62 95.69 95.76 95.83 95.90 95.97 96.04 94 96.11	85	89.47	89.55	89.63	89.71	89.78	89.86	89.94	90.02	90.10	90.17	
88 91.78 91.85 91.93 92.00 92.08 92.15 92.22 92.30 92.37 92.45 89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 92 94.71 94.78 94.85 94.92 94.99 95.06 95.13 95.20 95.27 95.34 93 95.42 95.48 95.55 95.62 95.69 95.76 95.83 95.90 95.97 96.04 94 96.11 96.18 96.25 96.31 96.38 96.45 96.52 96.59 96.65 96.72 95 96.79 96.86 96.92 96.99 97.06 97.13 97.19 97.26 97.33 97.39 96.92 96		90.25				1	4	90.71	90.79	90.86	90.94	
89 92.52 92.60 92.67 92.75 92.82 92.89 92.97 93.04 93.12 93.19 90 93.26 93.34 93.41 93.48 93.55 93.63 93.70 93.77 93.85 93.92 91 93.99 94.06 94.14 94.21 94.28 94.35 94.42 94.49 94.57 94.64 92 94.71 94.78 94.85 94.92 94.99 95.06 95.13 95.20 95.27 95.34 93 95.42 95.48 95.55 95.62 95.69 95.76 95.83 95.90 95.97 96.34 94 96.11 96.18 96.25 96.31 96.38 96.45 96.52 96.59 96.65 96.72 95 96.79 96.86 96.92 96.99 97.06 97.13 97.19 97.26 97.33 97.39 96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 98 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99 99.39 99.35	87	91.02	91.09	91.17	91.25	91.32	91.40	91.47	91.55	91.62	91.70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	91.78	91.85	91.93	92.00	92.08	92.15	92.22	92.30	92.37	92.45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	92.52	92.60	92.67	92.75	92.82	92.89	92.97	93.04	93.12	93.19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	93.26	93.34	93.41	93.48	93.55	93.63	93.70	93.77	93.85	93.92	
93 95.42 95.48 95.55 95.62 95.69 95.76 95.83 95.90 95.97 96.04 94 96.11 96.18 96.25 96.31 96.38 96.45 96.52 96.59 96.65 96.72 95 96.79 96.86 96.92 96.99 97.06 97.13 97.19 97.26 97.33 97.39 96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 97 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94	91		1					94.42	94.49	94.57	94.64	
94 96.11 96.18 96.25 96.31 96.38 96.45 96.52 96.59 96.65 96.72 95 96.79 96.86 96.92 96.99 97.06 97.13 97.19 97.26 97.33 97.39 96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 97 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94	92	94.71	94.78	94:85	94.92	94.99	95.06	95.13	95.20	95.27	95.34	
94 96.11 96.18 96.25 96.31 96.38 96.45 96.52 96.59 96.65 96.72 95 96.79 96.86 96.92 96.99 97.06 97.13 97.19 97.26 97.33 97.39 96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 97 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94	93	95.42	95.48	95.55	95.62	95.69	95.76	95.83	95.90	95.97	96.04	
96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94	94	96.11		96.25	96.31	96.38	96.45	96.52	96.59	96.65	96.72	
96 97.46 97.53 97.59 97.66 97.72 97.79 97.85 97.92 97.98 98.05 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94	95	96.79	96.86	96.92	96.99	97.06	97.13	97.19	97.26	97.33	97.39	
97 98.12 98.18 98.24 98.31 98.37 98.44 98.50 98.57 98.63 96.69 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94					1							
98 98.76 98.82 98.88 98.95 99.01 99.07 99.14 99.20 99.26 99.32 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94												
99 99.39 99.45 99.51 99.57 99.63 99.69 99.75 99.82 99.88 99.94		1		-	1					1		
100 100.00							99.69	99.75	99.82	99.88	99.94	
	100	100.00										

LIX. — REDUCTION OF MIXTURES OF ETHYL ALCOHOL
AND WATER FROM PER CENTS BY VOLUME TO
PER CENTS BY WEIGHT

Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.
0	0.00	0.80	23	18.76	0.84	46	38.78	0.91
1	0.80	0.79	24	19.60	0.84	47	39.69	0.93
2	1.59	0.80	25	20.44	0.84	48	40.62	0.92
3	2.39	0.81	26	21.28	0.84	49	41.54	0.94
4	3.20	0.80	27	22.12	0.85	50	42.48	0.94
5	4.00	0.80	28	22.97	0.85	51	43.42	0.95
6	4.80	0.81	29	23.82	0.85	52	44.37	0.95
7	5.61	0.81	30	24.67	0.85	53	45.32	0.95
8	6.42	0.81	31	25.52	0.86	54	46.27	0.97
9	7.23	0.82	32	26.38	0.86	55	47.24	0.96
10	8.05	0.81	33	27.24	0.86	56	48.20	0.98
11	8.86	0.82	34	28.10	0.87	57	49.18	0.98
12	9.68	0.82	35	28.97	0.87	58	50.16	0.99
13	10.50	0.82	36	29.84	0.88	59	51.15	0.99
14	11.32	0.82	37	30.72	0.87	60	52.14	1.00
15	12.14	0.82	38	31.59	0.89	61	53.14	1.00
16	12.96	0.82	39	32.48	0.88	62	54.14	1.02
17	13.78	0.83	40	33.36	0.89	63	55.16	1.02
18	14.61	0.83	41	34.25	0.90	64	56.18	1.02
19	15.44	0.83	42	35.15	0.89	65	57.20	1.03
20	16.27	0.83	43	36.04	0.91	66	58.23	1.04
21	17.10	0.83	44	36.95	0.91	67	59.27	1.05
22	17.93	0.83	45	37.86	0.92	68	60.32	1.06

Per Cent Alcohol by Vol- ume at 60° F.	Per cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.	Per Cent Alcohol by Vol- ume at 60° F.	Per Cent Alcohol by Weight.	Differ- ences.
69	61.38	1.06	80	73.52	1.16	91	86.98	1.32
70	62.44	1.07	81	74.68	1.17	. 92	88.30	1.34
71	63.51	1.07	82	75.85	1.18	93	89.64	1.37
72	64.58	1.09	83	77.03	1.19	94	91.01	1.40
73	65.67	1.09	84	78.22	1.21	95	92.41	1.43
74	66.76	1.10	85	79.43	1.22	96	93.84	1.47
75	67.86	1.12	86	80.65	1.23	97	95.31	1.51
76	68.98	1.12	87	81.88	1.25	98	96.82	1.56
77	70.10	1.13	88	83.13	1.27	99	98.38	1.62
78	71.23	1.14	89	84.40	1.28	100	100.00	
79	72.37	1.15	90	85.68	1.30			

LX. — Methyl Alcohol at $\frac{15.56^{\circ}}{4^{\circ}}$

DITTMAR AND FAWSITT

Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.	Specific Gravity.	Per Cent by Weight.
0.99729	1	0.94055	38	0.89133	63 ·	0.84521	82
0.99554	2	0.93697	40	0.88905	64	0.84262	83
0.99214	4	0.93335	42	0.88676	65	0.84001	84
0.98893	6	0.92975	44	0.88443	66	0.83738	85
0.98569	8	0.92610	46	0.88208	67	0.83473	86
0.98262	10	0.92237	48	0.87970	68	0.83207	87
0.97962	12	0.91855	50	0.87714	69	0.82938	88
0.97668	14	0.91661	51	0.87487	70	0.82668	89
0.97379	16	0.91465	52	0.87262	71	0.83396	90
0.97039	18	0.91267	53	.0.87021	72	0.82123	91
0.96808	20	0.91066	54	0.86779	73	0.81849	92
0.96524	22	0.90863	55	0.86535	74	0.81572	93
0.96238	24	0.90657	56	0.86290	75	0.81293	94
0.95947	26	0.90450	57	0.86042	76	0.81013	95
0.95655	28	0.90239	58	0.85793	77	0.80731	96
0.95355	30	0.90026	59	0.85542	78	0.80448	97
0.95053	32	0.89798	60	0.85290	79	0.80164	98
0.94732	34	0.89580	61	0.85035	80	0.79876	99
0.94399	36	0.89358	62	0.84779	. 81	0.79589	100

LXI. — Specific Gravity and Percentage by Weight and Volume of Methyl Alcohol

TECHN. HOGSKOLAN STOCKHOLM. ARKIV. KEMI. MIN. GEOL. (2) 27, 32 pp.

Specific Gravity $\frac{15.6^{\circ}}{15.6^{\circ}}$ C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity $\frac{15.6^{\circ}}{15.6^{\circ}}$ C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.
1.0000	0.00	0.00	0.9962	2.04	2.62	0.9924	4.24	5.38
0.9999	0.06	0.07	0.9961	2.09	2.69	0.9923	4.29	5.45
0.9998	0.11	0.13	0.9960	2.14	2.76	0.9922	4.35	5.52
0.9997	0.17	0.20	0.9959	2.20	2.83	0.9921	4.41	5.60
0.9996	0.22	0.27	0.9958	2.26	2.90	0.9920	4.57	5.67
0.9995	0.28	0.33	0.9957	2.31	2.98	0.9919	4.53	5.74
0.9994	0.33	0.40	0.9956	2.37	3.05	0.9918	4.60	5.82
0.9993	0.39	0.47	0.9955	2.43	3.12	0.9917	4.66	5.89
0.9992	0.44	0.53	0.9954	2.49	3.19	0.9916	4.72	5.96
0.9991	0.50	0.60	0.9953	2.55	3.26	0.9915	4.78	6.04
0.9990	0.55	0.67	0.9952	2.60	3.34	0.9914	4.85	6.11
0.9989	0.61	0.73	0.9951	2.66	3.41	0.9913	4.91	6.18
0.9988	0.66	0.80	0.9950	2.72	3.48	0.9912	4.97	6.25
0.9987	0.72	0.86	0.9949	2.78	3.55	0.9911	5.03	6.33
0.9986	0.77	0.93	0.9948	2.84	3.62	0.9910	5.10	6.40
0.9985	0.83	1.00	0.9947	2.89	3.70	0.9909	5.16	6.47
0.9984	0.88	1.06	0.9946	2.95	3.77	0.9908	5.22	6.55
0.9983	0.94	1.13	0.9945	3.01	3.84	0.9907	5.28	6.62
0.9982	0.99	1.20	0.9944	3.07	3.91	0.9906	5.35	6.69
0.9981	1.05	1.26	0.9943	3.13	3.98	0.9905	5.41	6.77
0.9980	1.10	1.33	0.9942	3.18	4.06	0.9904	5.47	6.84
0.9979	1.15	1.40	0.9941	3.24	4.13	0.9903	5.53	6.91
0.9978	1.20	1.47	0.9940	3.30	4.20	0.9902	5.60	6.98
0.9977	1.26	1.54	0.9939	3.36	4.27	0.9901	5.66	7.06
0.9976	1.31	1.62	0.9938	3.42	4.35	0.9900	5.72	7.13
0.9975	1.36	1.69	0.9937	3.48	4.42	0.9899	5.78	7.21
0.9974	1.41	1.76	0.9936	3.53	4.49	0.9898	5.85	7.28
0.9973	1.46	1.83	0.9935	3.59	4.57	0.9897	5.91	7.36
0.9972	1.52	1.90	0.9934	3.65	4.64	0.9896	5.97	7.44
0.9971	1.57	1.97	0.9933	3.71	4.71	0.9895	6.04	7.52
0.9970	1.62	2.05	0.9932	3.77	4.79	0.9894	6.10	7.59
0.9969	1.67	2.12	0.9931	3.83	4.89	0.9893	6.16	7.67
0.9968	1.72	2.19	0.9930	3.89	4.94	0.9892	6.23	7.75
0:9967	1.78	2.26	0.9929	3.94	5.01	0.9891	6.29	7.82
0.9966	1.83	2.33	0.9928	4.00	5.08	0.9890	6.36	7.90
0.9965	1.88	2.40	0.9927	4.06	5.16	0.9889	6.42	7.98
0.9964	1.93	2.47	0.9926	4.12	5.23	0.9888	6.48	8.05
0.9963	1.98	2.55	0.9925	4.18	5.30	0.9887	6.55	8.13

T5.6° C. Weight. Volume. T5.6° C. Weight. Weight. Weight. Volume. T5.6° C. Weight. Weight. Volume. T5.6° C. Weight. Weight. Volume. T5.6° C. Weight. T5.6° C. T5.6° T5									
0.9885 6.67 8.29 0.9842 9.45 11.66 0.9799 12.34 15.21 0.9884 6.74 8.36 0.9841 9.52 11.74 0.9798 12.41 15.29 0.9883 6.80 8.44 0.9840 9.58 11.82 0.9797 12.48 15.38 0.9881 6.86 8.52 0.9839 9.65 11.90 0.9796 12.55 15.46 0.9880 6.99 8.67 0.9838 9.72 11.98 0.9795 12.62 15.55 0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.72 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9876 7.25 8.98 0.9831 10.06 12.39 0.9790 12.97 15.87 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14	Gravity	Cent	Cent Vol-	Gravity 15.6°	Cent	Cent Vol-	Gravity	Cent	Cent
0.9884 6.74 8.36 0.9841 9.52 11.74 0.9798 12.41 15.29 0.9883 6.80 8.44 0.9840 9.58 11.82 0.9797 12.48 15.38 0.9881 6.86 8.52 0.9839 9.65 11.90 0.9796 12.55 15.46 0.9880 6.99 8.67 0.9836 9.72 11.98 0.9795 12.62 15.55 0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.63 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9876 7.25 8.98 0.9833 10.06 12.39 0.9790 12.97 15.87 0.9875 7.32 9.06 0.9832 10.12 12.47 0.9789 13.04 16.06 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 <tr< td=""><td>0.9886</td><td>6.61</td><td>8.21</td><td>0.9843</td><td>9.39</td><td>11.58</td><td>0.9800</td><td>12.27</td><td>15.12</td></tr<>	0.9886	6.61	8.21	0.9843	9.39	11.58	0.9800	12.27	15.12
0.9883 6.80 8.44 0.9840 9.58 11.82 0.9797 12.48 15.38 0.9882 6.86 8.52 0.9839 9.65 11.90 0.9796 12.55 15.46 0.9881 6.93 8.59 0.9838 9.72 11.98 0.9795 12.62 15.55 0.9880 6.99 8.67 0.9837 9.78 12.06 0.9794 12.69 15.63 0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.72 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9876 7.25 8.98 0.9833 10.06 12.39 0.9790 12.97 15.87 0.9875 7.32 9.06 0.9832 10.12 12.47 0.9789 13.04 16.06 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 <tr< td=""><td>0.9885</td><td>6.67</td><td>8.29</td><td>0.9842</td><td>9.45</td><td>11.66</td><td>0.9799</td><td>12.34</td><td>15.21</td></tr<>	0.9885	6.67	8.29	0.9842	9.45	11.66	0.9799	12.34	15.21
0.9882 6.86 8.52 0.9839 9.65 11.90 0.9796 12.55 15.46 0.9881 6.93 8.59 0.9838 9.72 11.98 0.9795 12.62 15.55 0.9880 6.99 8.67 0.9837 9.78 12.06 0.9794 12.69 15.63 0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.72 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9876 7.25 8.98 0.9834 9.99 12.31 0.9791 12.90 15.89 0.9875 7.32 9.06 0.9832 10.12 12.47 0.9789 13.04 16.04 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 0.9872 7.51 9.29 0.9829 10.33 12.71 0.9786 13.25 16.31 <tr< td=""><td>0.9884</td><td>6.74</td><td>8.36</td><td>0.9841</td><td></td><td></td><td>0.9798</td><td></td><td>15.29</td></tr<>	0.9884	6.74	8.36	0.9841			0.9798		15.29
0.9881 6.93 8.59 0.9838 9.72 11.98 0.9795 12.62 15.55 0.9880 6.99 8.67 0.9837 9.78 12.06 0.9794 12.69 15.63 0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.72 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9876 7.25 8.98 0.9834 9.99 12.31 0.9791 12.90 15.89 0.9875 7.32 9.06 0.9832 10.12 12.47 0.9789 13.04 16.06 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 0.9873 7.45 9.22 0.9830 10.26 12.63 0.9787 13.18 16.23 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9786 13.25 16.31 <t< td=""><td>0.9883</td><td>6.80</td><td>8.44</td><td>0.9840</td><td>9.58</td><td></td><td>0.9797</td><td></td><td>15.38</td></t<>	0.9883	6.80	8.44	0.9840	9.58		0.9797		15.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
0.9879 7.06 8.75 0.9836 9.85 12.14 0.9793 12.76 15.72 0.9878 7.12 8.83 0.9835 9.92 12.23 0.9792 12.83 15.80 0.9877 7.19 8.90 0.9834 9.99 12.31 0.9791 12.90 15.89 0.9876 7.25 8.98 0.9833 10.06 12.39 0.9790 12.97 15.87 0.9875 7.32 9.06 0.9832 10.12 12.47 0.9789 13.04 16.06 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 0.9873 7.45 9.22 0.9830 10.26 12.63 0.9787 13.18 16.23 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9786 13.25 16.31 0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						ļ.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								i	
0.9875 7.32 9.06 0.9832 10.12 12,47 0.9789 13.04 16.06 0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 0.9873 7.45 9.22 0.9830 10.26 12.63 0.9787 13.18 16.23 0.9872 7.51 9.29 0.9829 10.33 12.71 0.9786 13.25 16.31 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9785 13.32 16.40 0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48 0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9866 7.90 9.76 0.9823 10.74 13.20 0.9780 13.67 16.82									
0.9874 7.38 9.14 0.9831 10.19 12.55 0.9788 13.11 16.14 0.9873 7.45 9.22 0.9830 10.26 12.63 0.9787 13.18 16.23 0.9872 7.51 9.29 0.9829 10.33 12.71 0.9786 13.25 16.31 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9785 13.32 16.40 0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48 0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9867 7.84 9.68 0.9824 10.67 13.12 0.9781 13.60 16.74 0.9865 7.97 9.84 0.9822 10.80 13.28 0.9779 13.74 16.82									
0.9873 7.45 9.22 0.9830 10.26 12.63 0.9787 13.18 16.23 0.9872 7.51 9.29 0.9829 10.33 12.71 0.9786 13.25 16.31 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9785 13.32 16.40 0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48 0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9867 7.84 9.68 0.9824 10.67 13.12 0.9781 13.60 16.74 0.9865 7.97 9.84 0.9823 10.74 13.20 0.9780 13.67 16.82 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9778 13.82 16.91									
0.9872 7.51 9.29 0.9829 10.33 12.71 0.9786 13.25 16.31 0.9871 7.58 9.37 0.9828 10.40 12.79 0.9785 13.32 16.40 0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48 0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9867 7.84 9.68 0.9824 10.67 13.12 0.9781 13.60 16.74 0.9866 7.90 9.76 0.9823 10.74 13.20 0.9780 13.67 16.82 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9779 13.74 16.91 0.9863 8.16 10.07 0.9819 11.01 13.52 0.9776 13.96 17.16									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
0.9870 7.64 9.45 0.9827 10.46 12.87 0.9784 13.39 16.48 0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9867 7.84 9.68 0.9824 10.67 13.12 0.9781 13.60 16.74 0.9866 7.90 9.76 0.9823 10.74 13.20 0.9780 13.67 16.82 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9779 13.74 16.91 0.9863 8.10 10.00 0.9820 10.94 13.44 0.9777 13.89 17.08 0.9862 8.16 10.07 0.9818 11.07 13.61 0.9775 14.03 17.25									
0.9869 7.71 9.53 0.9826 10.53 12.95 0.9783 13.46 16.57 0.9868 7.77 9.61 0.9825 10.60 13.04 0.9782 13.53 16.65 0.9867 7.84 9.68 0.9824 10.67 13.12 0.9781 13.60 16.74 0.9866 7.90 9.76 0.9823 10.74 13.20 0.9780 13.67 16.82 0.9865 7.97 9.84 0.9822 10.80 13.28 0.9779 13.74 16.91 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9778 13.82 16.99 0.9863 8.10 10.00 0.9820 10.94 13.44 0.9777 13.89 17.08 0.9862 8.16 10.07 0.9818 11.07 13.61 0.9775 14.03 17.25							1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
0.9866 7.90 9.76 0.9823 10.74 13.20 0.9780 13.67 16.82 0.9865 7.97 9.84 0.9822 10.80 13.28 0.9779 13.74 16.91 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9778 13.82 16.99 0.9863 8.10 10.00 0.9820 10.94 13.44 0.9777 13.89 17.08 0.9862 8.16 10.07 0.9819 11.01 13.52 0.9776 13.96 17.16 0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25									
0.9865 7.97 9.84 0.9822 10.80 13.28 0.9779 13.74 16.91 0.9864 8.03 9.92 0.9821 10.87 13.36 0.9778 13.82 16.99 0.9863 8.10 10.00 0.9820 10.94 13.44 0.9777 13.89 17.08 0.9862 8.16 10.07 0.9819 11.01 13.52 0.9776 13.96 17.16 0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25									
0.9863 8.10 10.00 0.9820 10.94 13.44 0.9777 13.89 17.08 0.9862 8.16 10.07 0.9819 11.01 13.52 0.9776 13.96 17.16 0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25		7.97	9.84	0.9822	10.80	13.28	0.9779	13.74	16.91
0.9862 8.16 10.07 0.9819 11.01 13.52 0.9776 13.96 17.16 0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25		8.03	9.92	0.9821	10.87	13.36	0.9778	13.82	16.99
0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25	0.9863	8.10	10.00	0.9820	10.94	13.44	0.9777	13.89	17.08
0.9861 8.23 10.15 0.9818 11.07 13.61 0.9775 14.03 17.25	0.9862	8.16	10.07	0.9819			0.9776	13.96	
0 0000 0 00 10 00 0 0017 11 14 19 00 0 0774 14 11 17 00	0.9861						1		
	0.9860	8.29	10.23	0.9817	11.14	13.69	0.9774	14.11	17.33
0.9859 8.35 10.31 0.9816 11.21 13.78 0.9773 14.18 17.42									
0.9858 8.42 10.38 0.9815 11.27 13.86 0.9772 14.25 17.50				1					
0.9857 8.48 10.47 0.9814 11.34 13.94 0.9771 14.32 17.59									
0.9856 8.55 10.55 0.9813 11.41 14.03 0.9770 14.40 17.68									
0.9855 8.61 10.63 0.9812 11.47 14.11 0.9769 14.47 17.76 0.9854 8.68 10.71 0.9811 11.54 14.20 0.9768 14.54 17.85									
							1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1								
0.9851 8.87 10.95 0.9808 11.74 14.45 0.9765 14.76 18.10									
0.9850 8.94 11.03 0.9807 11.80 14.53 0.9764 14.83 18.19									
0.9849 9.00 11.10 0.9806 11.87 14.62 0.9763 14.90 18.27									
0.9848 9.06 11.18 0.9805 11.94 14.70 0.9762 14.98 18.36							1		
0.9847 9.13 11.26 0.9804 12.00 14.78 0.9761 15.05 18.44									
0.9846 9.19 11.34 0.9803 12.07 14.87 0.9760 15.12 18.53									
0.9845 9.26 11.42 0.9802 12.14 14.95 0.9759 15.19 18.62									
0.9844 9.32 11.50 0.9801 12.20 15.04 0.9758 15.27 18.70			11.50	0.9801	12.20	15.04	0.9758	15.27	

Specific Gravity 15.6° C.	Per Cent Weight.	Per cent Vol-ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.	Specific Gravity 15.6° C.	Per Cent Weight.	Per Cent Vol- ume.
0.9757	15.34	18.79	0.9714	18.40	22.47	0.9671	21.42	26.10
0.9756	15.41	18.88	0.9713	18.47	22.56	0.9670	21.49	26.18
0.9755	15.49	18.96	0.9712	18.54	22.64	0.9669	21.56	26.26
0.9754	15.56	19.05	0.9711	18.61	22.73	0.9668	21.63	26.35
0.9753	15.63	19.14	0.9710	18.68	22.82	0.9667	21.70	26.43
0.9752	15.70	19.22	0.9709	18.75	22.90	0.9666	21.77	26.52
0.9751	15.78	19.31	0.9708	18.82	22.99	0.9665	21.84	26.60
0.9750	15.95	19.40	0.9707	18.89	23.07	0.9664	21.91	26.68
0.9749	15.92	19.48	0.9706	18.96	23.16	0.9663	21.98	26.77
0.9748	16.00	19.56	0.9705	19.03	23.24	0.9662	22.05	26.85
0.9747	16.07	19.65	0.9704	19.10	23.33	0.9661	22.12	26.94
0.9746	16.14	19.74	0.9703	19.17	23.41	0.9660	22.19	27.02
0.9745	16.22	19.83	0.9702	19.24	23.50	0.9659	2226	27.10
0.9744	16.29	19.91	0.9701	19.31	23.58	0.9658	22.52	27.18
0.9743	16.36	20.00	0.9700	19.38	23.67	0.9657		27.26
0.9742	16.43	20.09	0.9699	19.45	23.75	0.9656	22.47	27.34
0.9741	16.51	20.17	0.9698	19.52	23.84	0.9655	22.54	27.43
0.9740	16.58	20.26	0.9697	19.59	23.92	0.9654	22.61	27.51
0.9739	16.65	20.35	0.9696	19.66	24.00	0.9653		27.59
0.9738	16.72	20.43	0.9695	19.73	24.09	0.9652	22.75	27.67
0.9737	16.79	20.52	0.9694	19.80 19.87	$\begin{vmatrix} 24.17 \\ 24.25 \end{vmatrix}$	0.9651	22.82	27.75
0.9736 0.9735	16.86	20.60	0.9693	19.87	24.25	0.9650 0.9649		27.83
0.9733	17.00	20.09 20.77	0.9691	20.01	24.42	0.9648		27.91 27.99
0.9734	17.07	20.86	0.9690	20.01	24.42	0.9647		28.07
0.9732	17.14	20.94	0.9689	20.16	24.59	0.9646		28.18
0.9731	17.21	21.03	0.9688	20.23	24.67	0.9645		28.24
0.9730	17.28	21.11	0.9687	20.30	24.76	0.9644		28.32
0.9729	17.35	21.20	0.9686	20.37	24.84	0.9643		28.40
0.9728	17.42	21.28	0.9685	20.44	24.92	0.9642		28.48
0.9727	17.49	21.37	0.9684	20.51	25.01	0.9641		28.56
0.9726	17.56	21.45	0.9683	20.58	25.09	0.9640		28.64
0.9725	17.63	21.54	0.9682	20.65	25.17	0.9639		28.72
0.9724	17.70	21.62	0.9681	20.72	25.26	0.9638		28.80
0.9723	17.77	27.71	0.9680	20.79	25.34	0.9637	23.80	28.88
0.9722	17.84	21.79	0.9679	20.86	25.42	0.9636		28.96
0.9721	17.81	21.88	0.9678	20.93	25.51	0.9635		29.04
0.9720	17.98	21.96	0.9677	21.00	25.59	0.9634		29.11
0.9719	18.05	22.05	0.9676	21.07	25.68	0.9633		29.19
0.9718	18.12	22.13	0.9675	21.14	25.76	0.9632		29.27
0.9717	18.19	22.22	0.9674	21.21	25.84	0.9631	,	29.36
0.9716	18.26	22.30	0.9673	21.28	25.95	0.9630		29.43
0.9715	18.33	22.39	0.9672	21.33	26.01	0.9629	24.38	29.51

LXII. — REFRACTOMETER READINGS OF METHYL AND ETHYL ALCOHOL

ZEISS' IMMERSION REFRACTOMETER

By LEACH AND LYTHGOE

Per Cent Alcohol	Scale R	cale Readings at 20° C.		Per Cent Alcohol			Per Cent Alcohol	
Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyl Alcohol.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5	14.5 14.65 14.8 15.1 15.4 15.7 16.0 16.3 16.6 16.9 17.2 17.5 17.8 18.1 18.4 18.7 19.0 19.3 19.6 19.9 20.2 20.5 20.8 21.1 21.4 21.7	14.5 15.25 16.0 16.8 17.6 18.35 19.1 19.9 20.7 21.5 22.3 23.2 24.1 25.0 25.9 26.85 27.8 28.7 29.6 30.5 31.4 32.3 33.2 34.1 35.0 35.95 36.9	15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24.5 25.5 26 26.5 27 27.5 28	23.55 23.9 24.2 24.5 24.85 25.2 25.5 25.8 26.15 26.5 26.8 27.1 27.45 27.8 28.1 28.4 29.7 30.0 30.3 30.6 30.9 31.25 31.6	41.5 42.5 43.5 44.5 44.5 45.5 46.5 47.5 48.5 50.5 51.45 52.4 53.35 54.3 55.3 57.25 58.2 59.15 60.1 61.0 61.9 62.8 63.7 64.6 65.5 66.35	31 31.5 32 32.5 33 33.5 34 34.5 35.5 36 36.5 37 37.5 38 38.5 39.5 40 40.5 41 41.5 42 42.5 43.5	33.5 33.8 34.1 34.4 34.7 34.95 35.2 35.5 36.05 36.3 36.55 37.7 37.7 37.7 38.1 38.25 38.4 38.6 39.0 39.2 39.25 39.3	70.4 71.05 71.7 72.4 73.1 73.75 74.4 75.1 75.8 76.35 76.9 77.95 78.0 78.55 79.1 79.65 80.2 80.75 81.3 81.8 82.3 82.8 83.3 83.75 84.2 84.7
13 13.5 14 14.5	22.0 22.3 22.6 22.9	37.8 38.7 39.6	29 29 29.5 30	32.2 32.4 32.8	67.2 68.1 69.0	44.5 45 45.5	39.35 39.4 39.45	85.2 85.7 86.2 86.6
15	23.2	40.5	30.5	33.15	69.7	46	39.5	87.0

^{*} Interpolated to half degrees.

Per Cent Alcohol	t 20° C.		Scale Readings at 20° C. Per Cent Alcohol		eadings at ° C.	Per Cent Alcohol	Scale Readings at 20° C.	
Weight.	Methyl Alcohol.	Ethyl Alcohol.	Weight.	Methyl Alcohol.	Ethyl Alcohol.	by Weight.	Methyl Alcohol.	Ethyl Alcohol.
46.5 47 47.5 48 48.5 49.5 50.5 51.5 52.5 52.5 53.5 54.5 55.5	39.55 39.6 39.65 39.7 39.75 39.8 39.8 39.7 39.65 39.6 39.6 39.6 39.5 39.5 39.5 39.4	87.4 87.8 88.25 88.7 89.1 89.5 89.9 90.3 90.7 91.1 91.45 91.8 92.1 92.4 92.7 93.0 93.3 93.6	64.5 65.5 66.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 73	35.75 35.5 35.25 35.0 34.75 34.5 34.25 34.0 33.75 33.5 33.0 32.65 32.3 32.0 31.7 31.4 31.1	98.15 98.3 98.5 98.7 98.9 99.1 99.25 99.4 99.55 99.7 99.85 100.0 100.1 100.2 100.3 100.4 100.5 100.6	82.5 83 83.5 84 84.5 85.5 86 86.5 87 87.5 88 88.5 89 90 90.5 91	23.45 23.6 23.2 22.8 22.3 21.8 20.8 20.25 19.7 19.15 18.6 17.95 17.3 16.7 16.1 15.5 14.9	100.45 100.4 100.35 100.3 100.1 99.95 99.8 99.65 99.5 99.35 99.2 99.05 98.9 98.75 98.45 98.3
55.5 56 56.5 57 57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5 63 63.5	39.3 39.2 39.1 39.0 38.8 38.6 38.45 38.3 38.1 37.9 37.7 37.5 37.0 36.75 36.25 36.0	93.85 94.1 94.4 94.7 94.95 95.2 95.45 95.7 95.55 96.2 96.45 96.7 96.9 97.1 97.3 97.5 97.75 98.0	73.5 74 74.5 75.5 76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81 81.5	30.75 30.4 29.75 29.7 29.35 29.0 28.65 28.3 27.95 27.6 27.2 26.8 26.4 26.0 25.55 25.1 24.7 24.3	100.7 100.8 100.9 101.0 101.0 101.0 100.95 100.9 100.9 100.85 100.8 100.75 100.65 100.65 100.55	91.5 92 92.5 93 93.5 94 94.5 95 96 96.5 97 97.5 98 98.5 99 99.5	14.3 13.7 13.05 12.4 11.7 11.0 10.3 9.6 8.9 8.2 7.45 6.7 5.9 5.1 4.3 3.5 2.75 2.0	98.05 97.8 97.5 97.2 96.8 96.4 96.05 95.7 95.3 94.9 94.45 94.0 93.5 92.0 91.5 91.0

^{*} Interpolated to half degrees.

CALCULATION OF THE AMOUNT OF ETHYL AND METHYL ALCOHOL IN DISTILLATES CONTAINING A MIXTURE OF THE TWO

By A. F. Seeker

EXAMPLE.

Observed data: — Specific gravity $\frac{15.6^{\circ}}{15.0^{\circ}}$, 0.9796.

Immersion refractometer reading 20°, 26.8.

The observed specific gravity corresponds to the following percentages of the respective alcohols having the refractometer readings indicated in the last column:

			Refractometer reading at 20°.
(1) Ethyl alcohol	16.50	13.37	37.57
(2) Methyl alcohol	15.46	12.55	21.73

The difference in refractometer reading for these percentages of the respective alcohols

$$(3) \ 37.57 - 21.73 = 15.84$$

divided into the difference between the observed refractometer reading and the refractometer reading for ethyl alcohol alone

$$(4) \ 37.57 - 26.8 = 10.77$$

gives the proportion of methyl alcohol in the mixture.

(5)
$$\frac{10.77}{15.84} = 0.68$$
 methyl alcohol.

(6)
$$1.00 - 0.68 = 0.32$$
 ethyl alcohol.

Referring back to the possible content of each alcohol calculated from the specific gravity (1) and (2), and multiplying each by their respective proportional parts just found we have:

- $(7) 15.46 \times 0.68 = 10.51$
- $(8) 16.50 \times 0.32 = 5.28$

15.79 per cent by vol. of mixed alcohols in the distillate.

It has been found (5) that 0.68 of this is methyl alcohol and (6) 0.32 is ethyl alcohol; consequently:

- (9) $15.79 \times 0.68 = 10.74$ per cent by vol. of the distillate is methyl and
- (10) $15.79 \times 0.32 = 5.05$ per cent by vol. of the distillate is ethyl acohol. Starting from (7) the percentages by weight can be found in the same way.
- (11) $12.55 \times 0.68 = 8.53$
- (12) $13.37 \times 0.32 = 4.38$

12.91 per cent by weight of mixed alcohols in the distillate.

- (13) $12.91 \times 0.68 = 8.78$ per cent by weight of the distillate is methyl and
- (14) $12.91 \times 0.32 = 4.13$ per cent by weight of the distillate is ethyl alcohol.

LXIII. — Specific Gravity Aqueous Solutions Chemically Pure Glycerene

ine.	Ger	lach.	Skalweit.	ant sine.	Ger	lach.	Skalweit.
Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at 15° C.	Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at 15°.
0	1.0000	1.0000	1.0000	36			1.0912
1			1.0024	37			1.0939
2			1.0048	38			1.0966
3			1.0072	39			1.0993
4			1.0096	40	1.1020	1.1010	1.1020
5			1.0120	41			1.1047
6			1.0144	42			1.1074
7			1.0168	43			1.1101
8			1.0192	44			1.1128
9			1.0216	45	1.1155	1.1145	1.1155
10	1.0245	1.0235	1.0240	46			1.1182
11			1.0265	47			1.1209
12			1.0290	48			1.1236
13			1.0315	49			1.1263
14			1.0340	50	1.1294	1.1280	1.1290
15			1.0365	51			1.1318
16			1.0390	52			1.1346
17			1.0415	53			1.1374
18			1.0440	54			1.1402
19			1.0465	55	1.1430	1.1415	1.1430
20	1.0490	1.0480	1.0490	. 56			1.1458
21			1.0516	57			1.1486
22			1.0542	58			1.1514
23			1.0568	59,			1.1542
24			1.0594	60	1.1570	1.1550	1.1570
25	1.0620	1.0610	1.0620	61			1.1599
26			1.0646	62			1.1628
27			1.0672	63			1.1657
28			1.0698	64			1.1686
29			1.0724	65	1.1711	1.1685	1.1715
30	1.0750	1.0740	1.0750	66			1.1743
31			1.0777	67			1.1771
32			1.0804	68			1.1799
33			1.0831	69			1.1827
34	1 0005		1.0858	70	1.1850	1.1820	1.1855
35	1.0885	1.0875	1.0885	71	1.1878	1.1847	1.1882
-					·		

nt ne.	Ger	lach.	Skalweit.	Cent erene.	Ger	lach.	Skalweit,
Per Cent Glycerene.	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at 15°.	Per Ce Glycere	Sp. Gr. at 15° C. Water at 15° = 1.	Sp. Gr. at 20° C. Water at 20° = 1.	Sp. Gr. at
72	1.1906	1.1874	1.1909	87	1.2319	1.2279	1.2314
73	1.1934	1.1901	1.1936	88	1.2346	1.2306	1.2341
74	1.1962	1.1928	1.1963	89	1.2373	1.2333	1.2368
75	1.1990	1.1955	1.1990	90	1.2400	1.2360	1.2395
76	1.2018	1.1982	1.2017	91	1.2425	1.2386	1.2421
77	1.2046	1.2009	1.2044	92	1.2451	1.2412	1.2447
78	1.2074	1.2036	1.2071	93	1.2476	1.2438	1.2473
79	1.2102	1.2063	1.2098	94	1.2501	1.2464	1.2499
80	1.2130	1.2090	1.2125	95	1.2526	1.2490	1.2525
81	1.2157	1.2117	1.2152	96	1.2552	1.2516	1.2550
82	1.2184	1.2144	1.2179	97	1.2577	1.2542	1.2575
83	1.2211	1.2171	1.2206	98	1.2602	1.2568	1.2600
84	1.2238	1.2198	1.2233	99	1.2628	1.2594	1.2625
85	1.2265	1.2225	1.2260	100	1.2653	1.2620	1.2650
86	1.2292	1.2252	1.2287				

LXIV. — Ammonium Sulphate Solution at 19°

Schiff

Specific Gravity.	Per Cent (NH ₄) ₂ SO ₄ .	Specific Gravity.	Per Cent (NH ₄) ₂ SO ₄ .	Specific Gravity.	Per Cent (NH ₄) ₂ SO ₄ .	Specific Gravity.	Per Cent (NH ₄) ₂ SO ₄ .	Specific Gravity.	Per Cent (NH ₄) ₂ SO ₄ .
1.0057	1	1.0632	11	1.1207	21	1.1780	31	1.2343	41
1.0115	2	1.0690	12	1.1265	22	1.1836	32	1.2402	42
1.0172	3,	1.0747	13	1.1323	23	1.1892	33	1.2462	43
1.0230	4	1.0805	14	1.1381	24	1.1948	34	1.2522	44
1.0287	5	1.0862	15	1.1439	25	1.2004	35	1.2583	45
1.0345	6	1.0920	16	1.1496	26	1.2060	36	1.2644	46
1.0403	7	1.0977	17	1.1554	27	1.2116	37	1.2705	47
1.0460	8	1.1035	18	1.1612	28	1.2172	38	1.2766	48
1.0518	9	1.1092	19	1.1670	29	1.2228	39	1.2828	49
1.0575	10	1.1149	20	1.1724	30	1.2284	40	1.2890	50
									-

LXV. — Ammonium Chloride Solution at 15°

Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific	Per Cent
Gravity.	NH ₄ Cl.	Gravity.		Gravity.	NH,CI.	Gravity.	NH ₄ Cl.	Gravity.	NH ₄ C1.
1.00316 1.00632 1.00948 1.01264 1.01580 1.01880	1 2 3 4 . 5 6	1.02180 1.02481 1.02781 1.03081 1.03370 1.03658	7 8 9 10 11 12	1.03947 1.04325 1.04524 1.04805 1.05086 1.05367	13 14 15 16 17 18	1.05648 1.05929 1.06204 1.06479 1.06754 1.07029	19 20 21 22 23 24	1.07304 1.07575 1.07658	25 26 26.297

LXVI.—Available Chlorine in Bleaching Powder Solution at 15°

LUNGE AND BACHOFFEN

Specific	Grams	Specific Gravity.	Grams	Specific	Grams	Specific	Grams
Gravity.	Cl per l.		Cl per 1.	Gravity.	Cl per l.	Gravity.	Cl per 1.
1.0000	traces 1.40 2.71 5.58 8.48 11.41 14.47	1.0300	17.36	1.0650	39.10	1.1000	61.50
1.0025		1.0350	20.44	1.0700	42.31	1.1050	64.50
1.0050		1.0400	23.75	1.0750	45.70	1.1060	65.33
1.0100		1.0450	26.62	1.0800	49.96	1.1100	68.00
1.0150		1.0500	29.60	1.0850	52.27	1.1105	68.40
1.0200		1.0550	32.68	1.0900	55.18	1.1150	71.50
1.0250		1.0600	35.81	1.0950	58.40	1.1155	71.79

LXVII. — CUPRIC CHLORIDE SOLUTION AT 17.5°

FRANZ

Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific Gravity.	Per Cent
Gravity.	CuCl ₂ .	Gravity.	CuCl ₂ .	Gravity.	CuCl ₂ .		CuCl ₂ .
1.0182	2	1.1178	12	1.2501	22	1.3950	32
1.0364	4	1.1436	14	1.2779	24	1.4287	34
1.0548	6	1.1696	16	1.3058	26	1.4615	36
1.0734	8	1.1958	18	1.3338	28	1.4949	38
1.0920	10	1.2223	20	1.3618	30	1.5284	40

LXVIII. — CUPRIC SULPHATE SOLUTION AT 18°

Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.	Specific Gravity.	Per Cent CuSO ₄ . 5H ₂ O.
1.0063 1.0126 1.0190 1.0254 1.0319 1.0384 1.0450 1.0516	1 2 3 4 5 6 7 8	1.0582 1.0649 1.0716 1.0785 1.0854 1.0923 1.0993 1.1063	9 10 11 12 13 14 15 16	1.1135 1.1208 1.1281 1.1354 1.1427 1.1501 1.1585	17 18 19 20 21 22 23	1.1699 1.1738 1.1817 1.1898 1.1980 1.2063 1.2146	24 25 26 27 28 29 30

LIX. — Ferric Chloride Solution at 17.5°

Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl ₆ .	Specific Gravity.	Per Cent Fe ₂ Cl ₆ .
1.0146	2	1.1054	14	1.2155	26	1.4311	38	1.4867	50
1.0292	4	1.1215	16	1.2365	28	1.3622	40	1.5153	52
1.0439	6	1.1378	18	1.2568	30	1.3870	42	1.5439	54
1.0587	8	1.1542	20	1.2778	32	1.4118	44	1.5729	56
1.0734	10	1.1746	22	1.2988	34	1.4367	46	1.6023	58
1.0894	12	1.1950	24	1.3199	36	1.4617	48	1.6317	60

LXX. — Ferrous Sulphate at 15°

GERLACH

Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.	Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.	Specific Gravity.	Per Cent FeSO ₄ .	Per Cent FeSO ₄ . 7H ₂ O.
1.005	0.565	1	1.0267	2.811	5	1.1430	15.834	25
1.011	1.130	2	1.0537	5.784	10	1.1738	19.622	30
1.016	1.694	3	1.0823	8.934	15	1.2063	23.672	35
1.021	2.258	4	1.1124	12.277	20	1.2391	27.995	40

LXXI. — Ferric Sulphate at 18°

HAGER

GIVING PERCENTAGE OF METALLIC IRON

Specific Gravity.	Per Cent Fe ₂ (SO ₄) ₃ .	Per Cent Fe.	Specific Gravity.	Per Cent Fe ₂ (SO ₄) ₃ .	Per Cent Fe.	Specific Gravity.	Per Cent Fe ₂ (SO ₄) ₃ .	Per Cent Fe.
1.017 1.027 1.036 1.046 1.057 1.067 1.077 1.087	2 3 4 5 6 7 8 9	0.56 0.84 1.12 1.40 1.68 1.96 2.24 2.52 2.80	1.173 1.184 1.196 1.208 1.220 1.232 1.245 1.258 1.271	17 18 19 20 21 22 23 24 25	4.76 5.04 5.35 5.60 5.88 6.16 6.44 6.72 7.00	1.351 1.365 1.380 1.395 1.411 1.427 1.442 1.458 1.474	31 32 33 34 35 36 37 38 39	8.68 8.96 9.24 9.52 9.80 10.08 10.36 10.67 10.92
1.107 1.118 1.129 1.140 1.151 1.162	11 12 13 14 15 16	3.08 3.36 3.64 3.92 4.20 4.48	1.284 1.297 1.310 1.323 1.337	26 27 28 29 30	7.28 7.56 7.84 8.12 8.40	1.490 1.506 1.523 1.540 1.557	40 41 42 43 44	11.20 11.48 11.76 12.04 12.32

LXXII.— Potassium Chromate Solution at 19.5° Schiff

Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific	Per Cent	Specific	Per Cent
Gravity.	K ₂ Cr ₂ O ₄ .	Gravity.	K2CrO4.	Gravity.	K2CrO4.	Gravity.	K ₂ CrO ₄ .	Gravity.	K ₂ CrO ₄ .
1.0080	1	1.0750	9	1.1474	17	1.2274	25	1.3151	33
1.0161	2	1.0837	10	1.1570	18	1.2379	26	1.3268	34
1.0243	3	1.0925	11	1.1667	19	1.2485	27	1.3386	35
1.0325	4	1.1014	12	1.1765	20	1.2592	28	1.3505	36
1.0408	5	1.1104	13	1.1864	21	1.2700	29	1.3625	37
1.0492	6	1.1195	14	1.1964	22	1.2808	30	1.3746	38
1.0576	7	1.1287	15	1.2066	23	1.2921	31	1.3868	39
1.0663	8	1.1380	16	1.2169	24	1.3035	32	1.3991	40

LXXIII. — Potassium Dichromate Solution at 19.5°

KREMERS AND GERLACH

Specific Gravity.	$\operatorname{Per}_{\operatorname{Cent}}_{\operatorname{K}_2\operatorname{Cr}_2\operatorname{O}_7}.$	Specific Gravity.	Per Cent K ₂ Cr ₂ O ₇ .	Specific Gravity.	Per Cent K ₂ Cr ₂ O ₇ .	Specific Gravity.	Per Cent K ₂ Cr ₂ O ₇
1.007 1.015 1.022 1.030	1 2 3 4	1.037 1.043 1.050 1.056	5 6 7 8	1.065 1.073 1.080 1.087	9 10 11 12	1.095 1.102 1.110	13 14 15

LXXIV. — SODIUM CHLORIDE SOLUTION AT 15° GERLACH

Specific Gravity.	Per Cent NaCl.	Specific Gravity.	Per Cent NaCl.	Specific Gravity.	Per Cent NaCl.	Specific Gravity.	Per Cent NaCl.
1.00725 1.01450 1.02174 1.02899 1.03624 1.04366 1.05108	1 2 3 4 5 6	1.05851 1.06593 1.07335 1.08097 1.08859 1.09622 1.10384	8 9 10 11 12 13 14	1.11146 1.11938 1.12730 1.13523 1.14315 1.15107 1.15931	15 16 17 18 19 20 21	1.16755 1.17580 1.18404 1.19228 1.20098 1.20433	22 23 24 25 26 26,395

LXXV. - SODIUM DICHROMATE SOLUTION

By STANLEY

Specific Gravity.	Per Cent	Specific	Per Cent	Specific	Per Cent
	Na ₂ Cr ₂ O ₇ .	Gravity.	Na ₂ Cr ₂ O ₇ .	Gravity.	Na ₂ Cr ₂ O ₇ .
1.007 1.035 1.071 1.105	1 5 10 15	1.141 1.171 1.208 1.245	20 25 30 35	1.280 1.313 1.343	40 45 50

LXXVI. — SODIUM HYPOSULPHITE

Ву Н. В. Візнор

B é.°∗	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent Na ₂ S ₂ O ₃ 5 H ₂ O.	Per Cent Na ₂ S ₂ O ₃ .	Weight of 1 Cubic Foot in Pounds Avoirdupois.	Pounds Na ₂ S ₂ O ₃ . 5 H ₂ O in 1 Cubic Foot.
10	1.0741	13.75	8.76	66.99	9.21
11	1.0821	15.19	9.68	67.49	10.25
12	1.0902	16.63	10.60	68.00	11.31
13	1.0985	18.09	11.53	68.51	12.39
14	1.1069	19.56	12.46	69.04	13.50
15	1.1154	21.03	13.40	69.57	14.63
16	1.1240	22.51	14.34	70.10	15.78
17	1.1328	24.03	15.31	70.65	16.98
18	1.1417	25.56	16.29	71.21	18.20
19	1.1508	27.12	17.28	71.78	19.47
20	1.1600	28.69	18.28	72.35	20.76
21	1.1694	30.25	19.28	72.94	22.06
22	1.1789	31.82	20.28	73.53	23.40
23	1.1885	33.39	21.28	74.13	24.75
24	1.1983	34.98	22.29	74.74	26.14
25	1.2083	36.59	23.32	75.36	27.57
26	1.2185	38.21	24.35	76.00	29.04
27	1.2288	39.84	25.39	76.64	30.53
28	1.2393	41.49	26.44	77.30	32.07
29	1.2500	43.15	27.50	77.96	33.64
30	1.2609	44.82	28.56	78.64	35.25
31	1.2719	46.49	29.62	79.33	36.88
32	1.2832	48.18	30.70	80.03	38.56
33	1.2946	49.87	31.78	80.74	40.27
34	1.3063	51.60	32.88	81.47	42.04

			1		
Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent Na ₂ S ₂ O ₃ . 5 H ₂ O.	Per Cent Na ₂ S ₂ O ₃ .	Weight of I Cubic Foot in Pounds Avoirdupois.	Pounds Na ₂ S ₂ O ₃ . 5 H ₂ O in 1 Cubic Foot.
35	1.3182	53.34	33.99	82.22	43.86
36	1.3303	55.10	35.11	82.97	45.72
37	1.3426	56.87	36.24	83.74	47.62
38	1.3551	58.66	37.38	84.52	49.58
39	1.3679	60.46	38.53	85.32	51.58
40	1.3810	62.27	39.68	86.13	53.63
41	1.3942	64.08	40.83	86.96	55.72
42	1.4078	65.92	42.00	87.80	57.88
43	1.4216	67.77	43.18	88.67	60.09
44	1.4356	69.65	44.38	89.54	62.34
45	1.4500	71.61	45.63	90.44	64.76
46	1.4646	73.59	46.89	91.35	67.23
47	1.4796	75.61	48.18	92.28	69.77
48	1.4948	77.64	49.47	93.23	72.39
49	1.5104	79.69	50.78	94.20	75.07
50	1.5263	81.76	52.10	95.20	77.84
51	1.5426	83.83	53.42	96.21	80.65
52	1.5591	85.90	54.74	97.24	83.53
53	1.5761	87.98	56.06	98.30	86.48
54	1.5934	90.04	57.38	99.38	89.48
55	1.6111	92.03	58.64	100.48	92.48
56	1.6292	93.93	59.85	101.61	95.44
57	1.6477	95.73	61.00	102.77	98.38
58	1.6667	97.43	62.08	103.95	101.27
59	1.6860	99.03	63.10	105.16	104.14
59.63	1.6984	100.00	63.72	105.93	105.93

Specific gravity determinations were made at 60° F., compared with water at 60° F.

From the specific gravities, the corresponding degrees Baumé were calculated by the following formula:

Bé.
$$145 - \frac{145}{\text{sp. gr.}}$$

* Baumé hydrometers for use with this table must be graduated by the above formula, which formula should *always* be printed on the scale.

ALLOWANCE FOR TEMPERATURE

At 15° Bé. 0.026° Bé. or 0.00022 sp. gr. = 1° F. 20° Bé. 0.027° Bé. or 0.00025 sp. gr. = 1° F.

20° Be. 0.027° Be. or 0.00025 sp. gr. = 1° F. 30° Bé. 0.026° Bé. or 0.00029 sp. gr. = 1° F.

 30° Be. 0.026° Be. or 0.00029 sp. gr. = 1° F

 40° Bé. 0.024° Bé. or 0.00032 sp. gr. = 1° F. 50° Bé. 0.020° Bé. or 0.00033 sp. gr. = 1° F.

59° Bé. 0.017° Bé. or 0.00033 sp. gr. = 1° F.

LXXVII. — SODIUM SULPHITE

Ву Н. В. Візнор

B é.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent Na ₂ SO ₃ .	Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F .	Per Cent Na ₂ SO ₃ .
15.00	1.1154	11.67	19.25	1.1531	15.20
15.25	1.1176	11.87	19.50	1.1554	15.42
15.50	1.1197	12.06	19.75	1.1577	15.64
15.75	1.1219	12.26	20.00	1.1600	15.86
16.00	1.1240	12.45	20.25	1.1624	16.09
16.25	1.1262	12.65	20.50	1.1647	16.31
16.50	1.1284	12.85	20.75	1.1671	16.54
16.75	1.1306	13.06	21.00	1.1694	16.77
17.00	1.1328	13.27	21.25	1.1718	17.00
17.25	1.1350	13.48	21.50	1.1741	17.22
17.50	1.1373	. 13.69	21.75	1.1765	17.44
17.75	1.1395	13.90	22.00	1.1789	17.66
18.00	1.1417	14.11	22.25	1.1813	17.88
18.25	1.1440	14.33	22.50	1.1837	18.10
18.50	1.1462	14.54	22.75	1.1861	18.33
18.75	1.1485	14.76	23.00	1.1885	18.56
19.00	1.1508	14.98	23.25	1.1910	18.80

SOLUTION AT 212° F.

Bé.°	Specific Gravity 212° 60° F.	Per Cent Na ₂ SO ₃ .	Bé.°	Specific Gravity $\frac{212^{\circ}}{60^{\circ}}$ F.	Per Cent Na ₂ SO ₃ .
21.75	1.1765	21.90	22.25	1.1813	22.47
22.00	1.1789	22.18	22.50	1.1837	22.75

ALLOWANCE FOR TEMPERATURE

 $15-23^{\circ}$ Bé.° -40° F. = 1° Bé.°

FIXED POINTS AT 60° F.

	I CI CCIII.		rei cent.
1.1138	11.52	1.1702	16.85
1.1323	13.22	1.1864	18.36
1.1494	14.85	1.1913	18,82

Ат 212° F.

	Per Cent.
1.1768	21.93
1.1100	41.33
1.1841	22.80

LXXVIII. — SODIUM BISULPHITE

Ву Н. В. Візнор

Bé.°*	Specific Gravity.	Per Cent NaHSO ₃ .	Bé.°	Specific Gravity.	Per Cent NaHSO ₃ .
0.00	1.0000	0.00	8.75	1.0642	9.03
0.25	1.0016	0.25	9.00	1.0662	9.30
0.50	1.0034	0.51	9.25	1.0681	9.56
0.75	1.0051	0.76	9.50	1.0701	9.83
1.00	1.0069	1.02	9.75	1.0721	10.09
1.25	1.0086	1.27	10.00	1.0741	10.36
1.50	1.0104	1.53	10.25	1.0761	10.62
1.75	1.0122	1.78	10.50	1.0781	10.89
2.00	1.0140	2.04	10.75	1.0801	11.15
2.25	1.0157	2.29	11.00	1.0821	11.42
2.50	1.0175	2.55	11.25	1.0841	11.68
2.75	1.0193	2.80	11.50	1.0861	11.95
3.00	1.0211	3.06	11.75	1.0881	12.21
3.25	1.0229	3.31	12.00	1.0902	12.48
3.50	1.0247	3.57	12.25	1.0922	12.75
3.75	1.0265	3.82	12.50	1.0943	13.02
4.00	1.0284	4.08	12.75	1.0964	13.29
4.25	1.0302	4.33	13.00	1.0985	13.56
4.50	1.0320	4.59	13.25	1.1006	13.83
4.75	1.0338	4.85	13.50	1.1027	14.10
5.00	1.0357	5.11	13.75	1.1048	14.38
5.25	1.0375	5.37	14.00	1.1069	14.65
5.50	1.0394	5.63	14.25	1.1090	14.93
5.75	1.0413	5.89	14.50	1.1111	15.20
6.00	1.0432	6.15	14.75	1.1132	15.48
6.25	1.0450	6.41	15.00	1.1154	15.75
6.50	1.0469	6.67	15.25	1.1175	16.03
6.75	1.0488	6.93	15.50	1.1197	16.30
7.00	1.0507	7.19	15.75	1.1218	16.58
7.25	1.0526	7.45	16.00	1.1240	16.85
7.50	1.0545	7.71	16.25	1.1262	17.13
7.75	1.0564	7.97	16.50	1.1284	17.40
8.00	1.0584	8.24	16.75	1.1306	17.68
8.25	1.0603	8.50	17.00	1.1328	17.96
8.50	1.0623	8.77	17.25	1.1350	18.24
			1	1	1

Bé.°	Specific Gravity.	Per Cent NaHSO ₃ .	Bé.°	Specific Gravity.	Per Cent NaHSO ₃ .
17.50	1.1372	18.52	27.50	1.2340	29.85
17.75	1.1394	18.80	27.75	1.2366	30.14
18.00	1.1417	19.08	28.00	1.2393	30.43
18.25	1.1439	19.36	28.25	1.2419	30.72
18.50	1.1462	19.64	28.50	1.2446	31.00
18.75	1.1485	19.92	28.75	1.2473	31.29
19.00	1.1508	20.20	29.00	1.2500	31.57
19.25	1.1531	20.48	29.25	1.2527	31.86
19.50	1.1554	20.76	29.50	1.2554	32.14
19.75	1.1577	21.04	29.75	1.2581	32.43
20.00	1.1600	21.32	30.00	1.2609	32.71
20.25	1.1623	21.60	30.25	1.2636	33.00
20.50	1.1647	21.88	30.50	1.2664	33.28
20.75	1.1670	22.16	30.75	1.2691	33.57
21.00	1.1694	22.44	31.00	1.2719	33.86
$21.25 \\ 21.50 \\ 21.75 \\ 22.00 \\ 22.25$	1.1717	22.72	31.25	1.2747	34.14
	1.1741	23.00	31.50	1.2775	34.43
	1.1765	23.28	31.75	1.2803	34.71
	1.1789	23.57	32.00	1.2832	35.01
	1.1813	23.85	32.25	1.2860	35.31
22.50	1.1837	24.14	32.50	1.2889	35.62
22.75	1.1861	24.42	32.75	1.2917	35.94
23.00	1.1885	24.71	33.00	1.2946	36.25
23.25	1.1909	24.99	33.25	1.2975	36.57
23.50	1.1934	25.28	33.50	1.3004	36.88
23.75 24.00 24.25 24.50 24.75	1.1958	25.56	33.75	1.3033	37.20
	1.1983	25.85	34.00	1.3063	37.51
	1.2008	26.13	34.25	1.3092	37.83
	1.2033	26.42	34.50	1.3122	38.14
	1.2058	26.70	34.75	1.3152	38.46
25.00	1.2083	26.99	35.00	1.3182	38.78
25.25	1.2108	27.27	35.25	1.3212	39.10
25.50	1.2134	27.56	35.50	1.3242	39.42
25.75	1.2159	27.84	35.75	1.3272	39.74
26.00	1.2185	28.13	36.00	1.3303	40.06
26.25	1.2210	28.41	36.25	1.3333	40.38
26.50	1.2236	28.70	36.50	1.3364	40.69
26.75	1.2262	28.98	36.75	1.3395	41.00
27.00	1.2288	29.27	37.00	1.3426	41.30
27.25	1.2314	29.56	37.25	1.3457	41.61

Bé.°	Specific Gravity.	Per Cent NaHSO ₃ .	Bé.°	Specific Gravity.	Per Cent NaHSO ₃ .
37.50	1.3488	41.91	38.50	1.3615	43.12
37.75	1.3519	42.22	38.75	1.3647	43.42
38.00	1.3551	42.52	39.00	1.3680	43.72
38.25	1.3583	42.82	39.25	1.3712	44.02

Specific gravity determinations were made at 60° F., compared with water at 60° F.

From the specific gravities, the corresponding degrees Baumé were calculated by the following formula:

Baumé =
$$145 - \frac{145}{\text{sp. gr.}}$$
.

* Baumé hydrometers for use with this table must be graduated by the above formula, which formula should *always* be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

ALLOWANCE FOR TEMPERATURE

LXXIX. — STANNIC CHLORIDE SOLUTION AT 15°

By GERLACH

Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.	Specific Gravity.	Per Cent SnCl ₄ . 5H ₂ O.
		-							
1.012	2	1.137	22	1.293	42	1.491	62	1.759	82
1.024	4	1.151	24	1.310	44	1.514	64	1.791	84
1.036	6	1.165	26	1.329	46	1.538	66	1.824	86
1.048	. 8	1.180	28	1.347	48	1.563	68	1.859	88
1.059	10	1.195	30	1.366	50	1.587	70	1.893	90
1.072	12	1.210	32	1.386	52	1.614	72	1.932	92
1.084	14	1.2268	34	1.406	54	1.641	74	1.969	94
1.097	16	1.242	36	1.426	56	1.669	76	1.988	96
1.110	18	1.259	38	1.447	58	1.698	78		
1.1236	20	1.2755	40	1.468	60	1.727	80		
			1		1				

LXXX. — STANNOUS CHLORIDE SOLUTION AT 15°

Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.	Specific Gravity.	Per Cent SnCl ₂ . 2H ₂ O.
1.013	2	1.128	18	1.268	34	1.445	50	1.677	66
1.026	4	1.144	20	1.288	36	1.471	52	1.711	68
1.040	6	1.161	22	1.309	38	1.497	54	1.745	70
1.054	8	1.177	24	1.330	40	1.525	56	1.783	72
1.068	10	1.194	26	1.352	42	1.554	58	1.821	74
1.083	12	1.212	28	1.374	44	1.582	60	1.840	75
1.097	14	1.230	30	1.395	46	1.613	62		
1.113	16	1.249	32	1.421	48	1.644	64		

LXXXI. - ZINC CHLORIDE

By H. B. BISHOP

Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent ZnCl ₂ .	Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent ZnCl ₂ .	Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent ZnCl ₂ .
5.0	1.0357	3.75	14.0	1.1069	11.49	23.0	1.1885	20.00
5.5	1.0394	4.19	14.5	1.1111	11.97	23.5	1.1934	20.48
6.0	1.0432	4.63	15.0	1.1154	12.45	24.0	1.1983	20.96
*6.18	1.0445	4.79	15.5	1.1197	12.89	24.5	1.2033	21.45
6.5	1.0469	5.00	16.0	1.1240	13.32	25.0	1.2083	21.94
7.0	1.0507	5.41	16.5	1.1284	13.77	25.5	1.2134	22.44
7.5	1.0545	5.85	*16.66	1.1298	13.90	26.0	1.2185	22.94
8.0	1.0584	6.31	17.0	1.1328	14.23	26.5	1.2236	23.39
8.5	1.0623	6.71	17.5	1.1373	14.64	26.6	1.2247	23.49
9.0	1.0662	7.12	18.0	1.1417	15.16	27.0	1.2288	23.84
9.5	1.0701	7.52	18.5	1.1468	15.63	27.5	1.2340	24.49
10.0	1.0741	7.94	19.0	1.1508	16.11	28.0	1.2393	25.14
10.5	1.0781	8.35	19.5	1.1554	16.59	28.5	1.2446	25.75
*10.54	1.0784	8.39	20.0	1.1600	17.07	29.0	1.2500	26.36
11.0	1.0821	8.78	20.5	1.1647	17.56	29.5	1.2554	26.98
11.5	1.0861	9.24	21.0	1.1694	18.05	30.0	1.2609	27.60
12.0	1.0902	9.70	21.5	1.1741	18.49	30.5	1.2664	28.33
12.5	1.0943	10.17	*21.91	1.1780	18.86	31.0	1.2719	28.85
13.0	1.0985	10.64	22.0	1.1789	18.97	*31.38	1.2762	29.34
13.5	1.1027	11.07	22.5	1.1837	19.35	31.5	1.2775	29.42

^{*} Specific gravity determinations and analysis made on these samples.

Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}} \text{ F.}$	Per Cent ZnCl ₂ .	Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent ZnCl ₂ .	Bé.°	Specific Gravity $\frac{60^{\circ}}{60^{\circ}}$ F.	Per Cent ZnCl ₂ .
32	1.2832	29.83	48.5	1.5026	45.77	65	1.8125	63.80
32.5	1.2889	30.21	49	1.5104	46.34	65.5	1.8239	64.30
33	1.2946	30.59	*49.11	1.5122	46.45	66	1.8354	64.86
33.5	1.3004	31.01	49.5	1.5183	46.77	66.5	1.8471	65.39
34	1.3063	31.44	50	1.5263	47.44	67	1.8590	65.93
34.5	1.3122	31.84	50.5	1.5344	47.94	67.5	1.8710	66.47
35	1.3182	32.23	51	1.5426	48.46	68	1.8831	67.01
35.5	1.3242	32.63	51.5	1.5508	48.94	68.5	1.8954	67.55
*35.95	1.3297	33.00	52	1.5591	49.43	*68.86	1.9044	67.88
36	1.3303	33.07	52.5	1.5676	49.93	69	1.9079	68.09
36.5	1.3364	33.57	53	1.5761	50.43	*69.30	1.9155	68.56
37	1.3426	34.09	53.5	1.5847	50.93	69.5	1.9205	68.62
37.5	1.3488	34.56	*53.57	1.5857	50.99	70	1.9333	69.15
*37.81	1.3527	34.86	54	1.5934	51.52	70.5	1.9463	69.67
38	1.3551	35.04	54.5	1.6022	52.07	71	1.9595	70.20
38.5	1.3615	35.52	55	1.6111	52.63	71.5	1.9728	70.71
39	1.3679	35.99	55.5	1.6201	53.19	72	1.9863	71.23
39.5	1.3744	36.48	56.05	1.6292	53.75	72.5	2.0000	71.74
40	1.3810	36.97	56.5	1.6384	54.30	73	2.0139	72.26
40.5	1.3876	37.47	57	1.6477	54.84	73.5	2.0280	72.78
41	1.3942	37.95	57.5	1.6571	55.44	74	2.0423	73.31
41.5	1.4010	38.43	58	1.6667	56.03	74.5	2.0567	73.83
42	1.4078	38.89	58.5	1.6763	56.57	75	2.0714	74.35
42.5	1.4146	39.41	*58.74	1.6810	56.87	*75.23	2.0782	74.59
43	1.4216	39.92	59	1.6860	57.14	75.5	2.0863	75.10
43.5	1.4286	40.38	59.5	1.6959	57.69	76	2.1014	75.85
44	1.4356	40.82	60	1.7059	58.25	76.5	2.1168	76.63
44.5	1.4428	41.30	60.5	1.7160	58.82	77	2.1323	77.43
*44.76	1.4465	41.58	61	1.7262	59.39	77.5	2.1481	78.19
45	1.4500	41.87	61.5	1.7365	59.94	78	2.1642	78.97
45.5	1.4573	42.42	62	1.7470	60.50	*78.08	2.1668	79.09
46	1.4646	42.95	62.5	1.7576	61.07	*78.14	2.1687	79.19
46.5	1.4721	43.55	63	1.7683	61.63	78.5	2.1805	79.79
47	1.4796	44.13	63.5	1.7791	62.17	79	2.1970	80.60
47.5	1.4872	44.67	64	1.7901	62.71	79.5	2.2137	81.35
48	1.4948	45.18	64.5	1.8012	63.25	80	2.2307	82.12

^{*} Specific gravity determinations and analysis made on these samples.

ALLOWANCE FOR TEMPERATURE

ALLOWANCE FOR TEMPERATURE

\mathbf{At}	5° Bé.	50° F. =	1° Bé.	At 30°	Bé. 30° F.	= 1° Bé.
	10° Bé.	47° F. =	1° Bé.	35°	Bé. 32° F.	= 1° Bé.
	15° Bé.	$38^{\circ} \text{ F.} =$	1° Bé.	40°	Bé. 31° F.	= 1° Bé.
	20° Bé.	$31^{\circ} \text{ F.} =$	1° Bé.	45°	Bé. 30° F.	$= 1^{\circ}$ Bé.
	25° Bá	30° F =	1º Bá	50°	Bé 34° F	= 1° Bé

The specific gravity determinations and analysis made on these samples. Solution proved neutral by gravimetric determinations of zinc and chlorine; solution is neutral to methyl-orange.

Specific gravity determinations made by bottle method.

Baumé corresponding to specific gravity calculated from the sulphuric acid tables of the Manufacturing Chemists Association of the United States.

Above 66° Bé. the calculation was made according to the formula:

Bé. =
$$145 - \frac{.145}{\text{sp. gr.}}$$

Methods of analysis: — Zinc precipitated with sodium carbonate and weighed as ZnO. Chlorine precipitated with silver nitrate and weighed as AgCl. Chlorine determinations made on each sample analyzed. Zinc determinations made on every other sample.

All work done in duplicate by two men independently.

LAUREL HILL LABORATORY, Jan. 24, 1902.

LXXXII. — ZINC, CADMIUM AND LITHIUM CHLORIDE

AT 19.5° By Krämer

S	pecific Gravi	ty.	Per Cent	S	ty.	Per Cent	
ZnCl ₂ .	CdCl ₂ .	LiCl.	Salt.	ZnCl ₂ .	CdCl ₂ .	LiC1.	Salt.
1.045	1.045		5	1.352			35
1.091	1.089	1.0580	10	1.420	1.472	1.2557	40
1.137	1.140		15	1.488			45
1.186	1.195	1.1172	20	1.566	1.656		50
1.238	1.256		25	1.650			55
1.291	1.321	1.1819	30	1.740	1.890		60

LXXXIII. — ZINC SULPHATE SOLUTION AT 15°

Specific Gravity.	Per Cent ZnSO ₄ .7H ₂ O.	Specific Gravity.	Per Cent ZnSO _{4.7} H ₂ O.	Specific Gravity.	Per Cent ZnSO _{4.7} H ₂ O.
1.029	5	1.167	25	1.310	45
1.059	10	1.193	30	1.352	50
1.091	15	1.231	35	1.399	55
1.124	20	1.271	40	1.445	60

LXXXIV. — DENSITY OF WATER AT 0° TO 36°

Weight in Grams of One Cubic Centimeter of Water Free from Air at Temperatures of 0 to 36 Centigrade by the Hydrogen Thermometer — According to Thiesen, Scheel, and Diesselhorst Wiss. Abh. d. Phys. — Techn. Reichsanst. 3, 68: 1900

0 0.999868 874 881 887 893 899 905 911 916 922 1 927 932 936 941 945 950 954 957 961 965 2 968 971 974 977 980 982 985 987 989 991 3 992 994 995 996 997 998 999 999 *900 *900 *900 5 0.999992 990 988 986 984 982 977 996 *993 6 986 965 962 958 954 951 947 943 338 934 7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 888 882 9 <th>ees.</th> <th></th> <th></th> <th>. 1</th> <th>renths</th> <th>of Degr</th> <th>ees.</th> <th></th> <th></th> <th></th> <th></th>	ees.			. 1	renths	of Degr	ees.				
1 927 932 936 941 945 950 954 957 961 965 2 968 971 974 977 980 982 985 987 989 991 3 992 994 995 996 997 998 999 999 899 999 899 899 999 899	Degrees.	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
2 968 971 974 977 980 982 985 987 989 991 3 992 994 995 996 997 998 999 999 *000 *000 4 1.000000 000 000 *999 *999 *998 *997 *996 *995 *993 5 0.999992 990 988 986 965 962 958 984 982 979 977 974 971 6 986 965 962 958 984 981 983 888 834 7 929 925 920 915 910 904 899 893 888 882 8 876 864 857 851 844 837 830 823 816 10 727 718 709 700 691 681 672 662 652 642 <t< th=""><th>0</th><th>0.999868</th><th>874</th><th>881</th><th>887</th><th>893</th><th>899</th><th>905</th><th>911</th><th>916</th><th>922</th></t<>	0	0.999868	874	881	887	893	899	905	911	916	922
3 992 994 995 996 997 998 999 999 *995 *993 5 0.999992 990 988 986 984 982 977 *976 *995 *993 6 986 965 962 958 954 951 947 943 938 934 7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 7277 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 699 558 547 536 12 525 <th>1</th> <th>927</th> <th>932</th> <th>936</th> <th>941</th> <th>945</th> <th>950</th> <th>954</th> <th>957</th> <th>961</th> <th>965</th>	1	927	932	936	941	945	950	954	957	961	965
4 1.000000 000 000 *999 *999 *998 *997 *996 *995 *993 5 0.999992 990 988 986 984 982 979 977 974 971 6 986 965 962 958 954 951 947 943 938 934 7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12		968	971	974	977	980	982	985	987	989	991
5 0.999992 990 988 986 984 982 979 977 974 971 6 986 965 962 958 954 951 947 943 938 934 7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404	3	992	994	995	996	997	998	999	999	*000	*000
6 986 965 962 958 954 951 947 943 938 934 7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271	4	1.000000	000	000	*999	*999	*998	*997	*996	*995	*993
7 929 925 920 915 910 904 899 893 888 882 8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126		0.999992	990	988	986	984	982	979	977	974	971
8 876 870 864 857 851 844 837 830 823 816 9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 2986 16 0.998970 953 937 920 904 887 870 853 836 819 <th></th> <th></th> <th>965</th> <th></th> <th>958</th> <th></th> <th></th> <th>947</th> <th>943</th> <th>938</th> <th>934</th>			965		958			947	943	938	934
9 808 801 793 785 778 769 761 753 744 736 10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 2986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>899</th> <th>893</th> <th>888</th> <th>882</th>								899	893	888	882
10 727 718 709 700 691 681 672 662 652 642 11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 </th <th></th> <th>876</th> <th>870</th> <th>864</th> <th>857</th> <th>851</th> <th>844</th> <th>837</th> <th>830</th> <th>823</th> <th>816</th>		876	870	864	857	851	844	837	830	823	816
11 632 622 612 601 591 580 569 558 547 536 12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 </th <th>-</th> <th></th>	-										
12 525 513 502 490 478 466 454 442 429 417 13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 </th <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>					1				1		
13 404 391 379 366 353 339 326 312 299 285 14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 </th <th></th> <th></th> <th></th> <th>1</th> <th></th> <th>1</th> <th></th> <th></th> <th>558</th> <th></th> <th>536</th>				1		1			558		536
14 271 257 243 229 215 200 186 171 156 141 15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22									1		
15 126 111 096 081 065 050 034 018 002 *986 16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23											
16 0.998970 953 937 920 904 887 870 853 836 819 17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997779 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24											
17 801 784 766 749 731 713 695 677 659 640 18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 <			1				1	1		1	
18 622 603 585 566 547 528 509 490 471 451 19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26											
19 432 412 392 372 352 332 312 292 271 251 20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 <th></th> <th></th> <th>1</th> <th></th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th>			1		1						1
20 230 210 189 168 147 126 105 083 062 040 21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
21 019 *997 *975 *953 *931 *909 *887 *864 *842 *819 22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
22 0.997797 774 751 728 705 682 659 635 612 588 23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30											
23 565 541 517 493 469 445 421 396 372 347 24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31									1	-	
24 323 298 273 248 223 198 173 147 122 096 25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32		1		1							
25 071 045 019 *994 *968 *941 *915 *889 *863 *836 26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *857 *827 *794 *762 33 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>											
26 0.996810 783 756 730 703 676 648 621 594 567 27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 0.52 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34					1	-					
27 539 512 484 456 428 400 372 344 316 288 28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092					1						
28 259 231 202 174 145 116 087 058 029 000 29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092				1)				
29 0.995971 941 912 882 853 823 793 763 733 703 30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092					1)	1				
30 673 643 613 582 552 521 491 460 429 398 31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092									1		
31 367 336 305 273 242 211 179 148 116 084 32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092		1									
32 052 020 *988 *956 *924 *892 *859 *827 *794 *762 33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092				1	1				1	1	
33 0.994729 696 663 630 597 564 531 498 464 431 34 398 364 330 296 263 229 195 161 126 092											
34 398 364 330 296 263 229 195 161 126 092						1		1		1	
100 101 100 101											
35 058 023 *989 *954 *920 *885 *850 *815 *780 *745											
000 020 000 000 000 010 100 110	35	058	023	*989	*954	*920	*885	*850	*815	*780	*745

LXXXV. — Density of Water at 30° to 102°

Weight in Grams of One Cubic Centimeter of Water Free from Air at Temperatures of 30° to 102° Centigrade by the Hydrogen Thermometer — According to M. Thiesen

Wiss. Abh. d. Phys. — Techn. Reichsanst. 4, 1: 1904

De- grees.	0	1	2	3	4	5	6	7	8	9
30 40 50 60 70 80 90	$\begin{array}{c} 0.99567 \\ 224 \\ 0.98807 \\ 324 \\ 0.97781 \\ 183 \\ 0.96534 \\ 0.95838 \end{array}$	537 186 762 272 723 121 467 765	505 147 715 220 666 057 399 693	473 107 669 167 607 *994 330	440 066 621 113 548 *930 261	406 025 573 059 489 *865 192	371 *982 525 005 429 *800 122	336 *940 475 *950 368 *734 051	299 *896 425 *894 307 *668 *981	262 *852 375 *838 245 *601 *909

LXXXVI. — DENSITY OF WATER AT 100° TO 320°

Weight in Grams of One Cubic, Centimeter of Water at Temperatures of 100° to 320° Centigrade

According to W. Ramsay, S. Young, J. J. Waterston, and G. A. Hirn

°C.	Density.	°C.	Density.	°C.	Density.	°C.	Density.
100	0.9585	160	0.9075	220	0.837	280	0.75
110	0.9510	170	0.8973	230	0.823	290	0.72
120	0.9434	180	0.8866	240	0.809	300	0.70
130	0.9352	190	0.8750	250	0.794	310	0.68
140	0.9264	200	0.8628	260	0.779	320	0.66
150	0.9173	210	0.850	270	0.765		

To reduce the densities of water free from air to the density of water containing air add .000003 for temperatures of 0 to 14, .000002 for temperatures of 15 to 19. For higher temperatures the correction is negligible.

LXXXVII. — Volume in Cubic Centimeters of One Gram of Water at 0° to 36° Centigrade

By the Hydrogen Thermometer—According to Thiesen, Scheel, and Diesselhorst Wiss. Abh. d. Phys.—Techn. Reichsanst. 3, 69: 1900

	Tenths of Degrees												
Ses				Tenths	of Deg	rees							
Degrees.	0	.1	.2	.3	.4	.5	.6	.7	.8	.9			
0	1.000132	126	119	113	107	101	095	089	084	079			
1	073	069	064	059	055	051	047	043	039	035			
2	032	029	026	023	020	018	016	013	011	009			
3	008	006	005	004	003	002	001	001	000	000			
4	000	000	000	001	001	002	003	004	005	007			
5	008	010	012	014	016	018	021	023	026	029			
6	032	035	039	042	046	050	054	058	062	066			
7	071	075	080	085	090	096	101	107	112	118			
8	124	130	137	143	149	156	163	170	177	184			
9	192	199	207	215	223	231	239	247	256	264			
10	273	282	291	300	390	319	328	338	348	358			
11	368	378	388	399	409	420	431	442	453	464			
12	476	487	499	511	522	534	547	559	571	584			
13	596	609	622	635	648	661	675	688	702	715			
14	729	743	757	772	786	800	815	830	844	859			
15	874	890	905	920	936	951	967	983	999	*015			
16	1.001031	048	064	081	098	114	131	148	165	183			
17	200	.218	235	253	271	289	307	325	343	361			
18	380	399	417	436	455	474	493	513	532	551			
19	571	591	610	630	650	671	691	711	732	752			
20	773	794	815	836.	857	878	899	921	942	964			
21 22	985	*007	*029	*051	*073	*096	*118	*140	*163	*186			
23	1.002208	231 465	254 489	277 513	300 538	324 562	347 586	370 611	394 635	418 660			
24	685	710	735	760	785	810	835	861	886	912			
25	938	964	990	*016	*042	*068	*094	*121	*147	*174			
26	1.003201	227	254	281	308	336	363	390	418	445			
27	473	501	529	556	585	613	641	669	698	726			
28	755	783	812	841	870	899	928	957	987	*016			
29	1.004046	075	105	135	165	194	225	255	285	315			
30	346	376	407	437	468	499	530	561	592	623			
31	655	686	717	749	781	812	844	876	908	940			
32	972	*005	*037	*070	*102	*135	*167	*200	*233	*266			
33	1.005299	332	365	399	432	465	499	533	566	600			
34	634	668	702	736	771	805	839	874	908	943			
35	978	*013		*082	*118	*153	*188	*223	*259	*294			

LXXXVIII. — VOLUME IN CUBIC CENTIMETERS OF ONE GRAM OF WATER AT 30° TO 102° CENTIGRADE

By the Hydrogen Thermometer — According to M. Thiesen Wiss, Abh. d. Phys. — Techn. Reichsanst. 4, 1: 1904

De- grees.	0	1	2	3	4	5	6	7	8	9
30	1.00435	466	497	530	563	598	633	669	706	743
40	782	821	861	901	943	985	*028	*072	*116	*162
50	1.01207	254	301	349	398	448	498	548	600	652
60	705	758	813	867	923	979	*036	*093	*151	*210
70	1.02270	330	390	452	514	576	639	703	768	833
80	899	965	*032	*099	*168	*237	*306	*376	*447	*518
90	1.03590	663	736	810	884	959	*035	*111	*188	*265
100	1.04343	422	501							

To reduce the volumes of water free from air to the volume of water containing air add .000003 for temperatures of 0 to 14, .000002 for temperatures of 15 to 19. For higher temperatures the correction is negligible.

LXXXIX. — VOLUME IN CUBIC CENTIMETERS OF ONE GRAM OF WATER AT 100° TO 320° CENTIGRADE

According to W. Ramsay, S. Young, J. J. Waterston, and G. A. Hirn

°C.	Cubic Cent.	°C.	Cubic Cent.	°C.	Cubic Cent.	°C.	Cubic Cent.
100 110 120 130 140 150	1.0433 1.0515 1.0601 1.0693 1.0794 1.0902	160 170 180 190 200 210	1.1019 1.1145 1.1279 1.1429 1.1590 1.177	220 230 240 250 260 270	1.195 1.215 1.236 1.259 1.283 1.308	280 290 300 310 320	1.34 1.38 1.42 1.46 1.51

XC. — Tension of Water Vapor Over Ice in Millimeters of Mercury

ACCORDING TO JUHLIN AND MARVIN

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	°C.	mm.	°c.	mm.	°C.	mm.	°c.	mm.
-39 + 0.115 + -26 + 0.438 + -13 + 1.506 + -0 + 4.579	-49 -48 -47 -46 -45 -44 -43 -42 -41	0.038 0.043 0.048 0.054 0.061 0.068 0.076 0.085 0.095	-36 -35 -34 -33 -32 -31 -30 -29 -28	0.156 0.173 0.193 0.215 0.238 0.264 0.292 0.324 0.358	-23 -22 -21 -20 -19 -18 -17 -16 -15	0.589 0.648 0.714 0.787 0.868 0.955 1.048 1.148 1.257	-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2	1.974 2.154 2.347 2.557 2.785 3.032 3.299 3.586 3.894

XCI. — TENSION OF WATER VAPOR OVER WATER IN MILLIMETERS OF MERCURY

According to Regnault, Broch, and Juhlin

°C.	mm.	°C.	mm.	°c.	mm.	°C.	mm.
-20 -19 -18 -17 -16 -15	0.960 1.044 1.135 1.233 1.338 1.451	$ \begin{array}{c c} -14 \\ -13 \\ -12 \\ -11 \\ -10 \end{array} $	1.573 1.705 1.846 1.997 2.159	$ \begin{array}{c c} - 9 \\ - 8 \\ - 7 \\ - 6 \\ - 5 \end{array} $	2.335 2.521 2.722 2.937 3.167	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.413 3.677 3.958 4.258 4.579

XCII. — Vapor Tension of Water in Millimeters of Mercury -2° to $+36^{\circ}$ C.

ACCORDING TO REGNAULT, BROCH, AND WEIBE

=										
°C.	0	.1	.2	.3	.4	.5	.6	.7	.8	.9
	mm.									
-2		3.929	3.900	3.872	3.844	3.815	3.787	3.760	3.732	3.705
-1	4.258	4.227	4.197	4.166	4.136	4.106	4.076	4.046		3.987
-0	4.579	4.546	4.513	4.481	4.448	4.416	4.384	4.352	4.321	4.289
0	4.579	4.612	4.646	4.679	4.713	4.747	4.782	4.816	4.851	4.886
1	4.921	4.957	4.992	5.028	5.064	5.101	5.137	5.174	5.211	5.248
2	5.286	5.324	5.362	5.400	5.438	5.477	5.516	5.555	5.595	5.635
3	5.675	5.715	5.755	5.796	5.837	5.878	5.920	5.961	6.003	6.046
4	6.088	6.131	6.174	6.217	6.261	6.305	6.349	6.393	6.438	6.483
5	6.528	6.574	6.620	6.666	6.712	6.759	6.806	6.853	6.901	6.949
6	6.997	7.045	7.094	7.143	7.192	7.242	7.292	7.342	7.392	7.443
7	7.494	7.546	7.598	7.650	7.702	7.755	7.808	7.861	7.914	7.968
8	8.023	8.077	8.132	8.187	8.243	8.299	8.355	8.412	8.469	8.526
9	8.584	8.642	8.700	8.759	8.818	8.877	8.937	8.997	9.057	9.118
10	9.179	9.240	9.302	9.364	9.427	9.490	9.553	9.616	9.680	9.745
11	9.810	9.875							10.342	10.410
12									11.042	
	11.187				11.481				11.782	
	i i								12.566	
									13.394	
									14.269	
									15.192	
									16.166	
									17.193	
									18.278	
									19.424	
									20.634	
									21.913	
									23.266	
									24.693	
									26.195	
									27.777	
									29.442	
									31.194	
									33.036	
									34.973	
									37.008	
									39.146	
									41.390	
									43.747	
00	11.000	12.000	12.019	14.004	12.191	10.020	10.200	13.500	10.747	10.000
-										

XCIII. — Vapor Tension of Water in Millimeters of Mercury 30° to 230°

ACCORDING TO REGNAULT, BROCH, AND WIEBE

Degrees.	0	1	2	3	4	5	6	7	8	9
30	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.	mm.
40	$31.56 \\ 54.97$	33.42 57.98	35.37 61.13	$37.43 \\ 64.43$	$39.59 \\ 67.89$	41.85 71.50	44.23 75.28	46.73 79.23	49.35 83.36	52.09 87.67
50		96.87		106.88				129.25		142.41
60	0		163.65							
			254.84							
• •	200.10	22112	201.01	200.01	211.11	200.02	001.00	011.12	021.01	011.02
80	355.47	370.11	385.25	400.90	417.08	433.79	451.07	468.91	487.33	506.36
90	526.00	546.27	567.19	588.77	611.04	634.01	657.69	682.11	707.29	733.24
100	760.00	787.57	816.0	845.3	875.4	906.4	938.3	971.1	1004.9	1039.6
110	1075.4	1112.1	1149.8	1188.6	1228.4	1269.4	1311.5	1354.7	1399.0	1444.5
120	1491	1539	1588	1639	1691	1744	1798	1854	1911	1970
	2030	2092	2155	2220	2286	2354	2423	2494	2567	2641
	2718	2795	2875	2957	3040	3125	3213	3302	3393	3486
	3581	3678	3778	3879	3983	4088	4196	4307	4419	4534
	4651	4771	4893	5018	5145	5274	5406	5541	5678	5819
170	5961	6107	6255	6406	6560	6717	6877	7040	7205	7374
100	7546	7721	7899	8080	8265	8453	8644	8838	9036	9237
	9442	9650	9862	10078	10296	10519	10745	10975	11209	11447
	11688	11934	12183	12436	12694	12955	13220	13490	13764	14042
	14324	14611	14901	15197	15496	15800	16109	16422	16740	17062
	17389	17721	18058	18399	18745	19096	19452	19813	20179	20549
	20925	11121	10000	10000	10,10	10000	10102	10010	20110	20010
		,								

XCIV. — VAPOR PRESSURE OF WATER

According to Regnault

°C.	°F.	Inches of Mercury.	Pounds per sq. inch.	Grams per sq. Centi- meter.	°C.	°F.	Inches of Mercury.	Pounds per sq. inch.	Grams per sq. Centi- meter.
0	32.0	0.181	0.0890	6.254	38	100.4	1.941	0.954	67.026
1	33.8	0.194	0.0955	6.716	39	102.2	2.049	1.007	70.752
2	35.6	0.209	0.1025	7.206	40	104.0	2.162	1.061	74.653
3	37.4	0.224	0.1100	7.736	41	105.8	2.280	1.121	78.678
4	39.2	0.240	0.1180	8.291	42	107.6	2.404	1.216	82.947
5	41.0	0.257	0.1263	8.878	43	109.4	2.533	1.244	87.488
6	42.8	0.276	0.1354	9.517	44	111.2	2.669	1.312	92.165
7	44.6	0.295	0.1452	10.183	45	113.0	2.811	1.381	97.059
8	46.4	0.316	0.1551	10.904	46	114.8	2.959	1.454	102.184
9	48.2	0.338	0.1657	11.651	47	116.6	3.114	1.530	107.528
10	50.0	0.361	0.1773	12.467	48	118.4	3.276	1.609	113.115
11	51.8	0.386	0.1893	13.310	49	120.2	3.444	1.692	118.962
12	53.6	0.412	0.2023	14.207	50	122.0	3.62	1.78	125.05
13	55.4	0.439	0.2158	15.173	51	123.8	3.81	1.87	131.42
14	57.2	0.469	0.2303	16.192	52	125.6	4.00	1.96	138.04
15	59.0	0.500	0.2456	17.266	53	127.4	4.20	2.06	144.98
16	60.8	0.533	0.2618	18.408	54	129.2	4.41	2.17	152.20
17	62.6	0.568	0.2789	19.605	55	131.0	4.63	2.27	159.72
18	64.4	0.605	0.2970	20.883	56	132.8	4.85	2.39	167.55
19	66.2	0.644	0.3162	22:229	57	134.6	5.09	2.50	175.72
20	68.0	0.685	0.3363	23,643	58	136.4	5.33	2.62	184.23
21	69.8	0.728	0.3577	25.152	59	138.2	5.59	2.75	193.08
22	71.6	0.774	0.3802	26.729	60	140.0	5.86	2.88 .	202.29
23	73.4	0.822	0.4040	28.401	61	141.8	6.14	3.01	211.87
24	75.2	0.873	0.4289	30.155	62	143.6	6.42	3.16	221.84
25	77.0	0.927	0.4554	32.018	63	145.4	6.72	3.30	232.20
26	78.8	0.984	0.4833	33.975	64	147.2	7.04	3.46	242.97
27	80.6	1.044	0.5126	36.042	65	149.0	7.36	8.62	254.17
28	82.4	1.106	0.5434	38.204	66	150.8		3.78	265.79
29	84.2	1.172	0.5759	40.488	67	152.6	8.05	3.95	277.87
30	86.0	1.242	0.6101	42.894	68	154.4	8.41	4.13	290.40
31	87.8	1.315	0.6461	45.423	69	156.2	8.79	4.32	303.41
32	89.6	1.392	0.6838	48.074	70	158.0			316.90
33	91.4	1.473	0.7234	50.861	71	159.8			330.90
34	93.2	1.558	0.7655	53.798	72	161.6	10.00		345.42
35	95.0	1.647	0.810	56.870	73	163.4	10.44		360.49
36	96.8	1.740	0.855	60.093	74	165.2			376.08
37	98.6	1.838	0.903	63.478	75	167.0	11.36	5.58	392.26

°C. OF. Inches of Mercury. Pounds Inch. Grams Per st. Per s										
78 170.6 12.35 6.06 426.36 118 244.4 1.841 27.06 1902.05 78 172.4 12.37 6.32 444.32 119 246.2 1.901 27.94 1963.92 28.85 2027.48 80 176.0 13.96 6.85 482.15 121 249.8 2.025 29.78 2092.70 81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2159.62 82 179.6 15.14 7.44 522.67 123 253.4 2.157 31.70 2228.26 83 181.4 15.75 7.74 543.96 124 255.2 2.225 32.70 2298.69 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.03 8.71 612.26 127 260.6 2.430 35.86 2520.89 81	°C.	°F.	of	per sq.	per sq. Centi-	°c.	°F.		per sq.	per sq. Centi-
78 170.6 12.35 6.06 426.36 118 244.4 1.841 27.06 1902.05 78 172.4 12.37 6.32 444.32 119 246.2 1.901 27.94 1963.92 28.85 2027.48 80 176.0 13.96 6.85 482.15 121 249.8 2.025 29.78 2092.70 81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2159.62 82 179.6 15.14 7.44 522.67 123 253.4 2.157 31.70 2228.26 83 181.4 15.75 7.74 543.96 124 255.2 2.225 32.70 2298.69 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.03 8.71 612.26 127 260.6 2.430 35.86 2520.89 81	76	168 8	11 84	5 89	400 01	117	242 6	1 789	26 20	18/11 7/
78 172.4 12.87 6.32 444.32 119 246.2 1.901 27.94 1963.95 79 174.2 13.40 6.58 462.92 120 248.0 1.962 28.85 2027.48 80 176.0 13.96 6.85 482.15 121 249.8 2.025 29.78 2092.70 81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2159.62 82 179.6 15.14 7.44 502.07 122 251.6 2.091 30.73 2159.62 83 181.4 15.75 7.74 543.96 124 255.2 2.255 32.70 2298.6 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.9 86 186.8 19.16				-		11		1		1
79 174.2 13.40 6.58 462.92 120 248.0 1.962 28.85 2027.48 80 176.0 13.96 6.85 482.15 121 249.8 2.025 29.78 2092.70 81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2092.70 82 179.6 15.14 7.44 502.07 123 253.4 2.157 31.70 22928.26 83 181.4 15.75 7.74 543.96 124 255.2 2.225 32.70 2298.69 84 183.0 16.09 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 262.4 2.515 36.97 2598.76 89 192.2 19.91				3				1		
80 176.0 13.96 6.85 482.15 121 249.8 2.025 29.78 2092.70 81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2159.62 82 179.6 15.14 7.44 522.67 123 253.4 2.157 31.70 2228.26 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.27 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.515 36.2 2758.75 89 192.2 19.91		1	1	1			1			
81 177.8 14.54 7.14 502.07 122 251.6 2.091 30.73 2159.62 82 179.6 15.14 7.44 502.07 123 253.4 2.157 31.70 2228.26 83 181.4 15.75 7.74 543.96 125 257.0 2.295 33.70 2298.69 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2298.69 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.515 36.97 2598.76 89 192.2 19.91					1	11	1		1	
82 179.6 15.14 7.44 522.67 123 253.4 2.157 31.70 2228.26 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.88 129 264.2 2.592 38.11 2678.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 2929.89 92 197.6 22.31				1					1	
83 181.4 15.75 7.74 543.96 124 255.2 2.225 32.70 2298.69 84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.592 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 2267.8 2.753 40.47 2844.12 91 19.6 22.31						11		1	1	
84 183.2 16.39 8.05 565.99 125 257.0 2.295 33.72 2370.91 85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.552 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 299.89 194 201.2 24.04			1			11		1	1	
85 185.0 17.05 8.37 588.74 126 258.8 2.366 34.78 2444.96 86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.552 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 2929.89 92 197.6 22.31 10.95 770.54 133 271.4 2.921 42.93 3017.80 94 201.2 24.04 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>13</td> <td></td> <td></td> <td></td> <td></td>					1	13				
86 186.8 17.73 8.71 612.26 127 260.6 2.430 35.86 2520.89 87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.552 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 2929.89 92 197.6 22.31 10.95 770.54 133 271.4 2.921 42.93 3017.80 93 199.4 23.17 11.81 830.34 135 275.0 3.097 45.52 3200.04 95 203.0 24.95 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>§</td> <td></td>					1				§	
87 188.6 18.43 9.05 636.57 128 262.4 2.515 36.97 2598.76 88 190.4 19.16 9.41 661.68 129 264.2 2.592 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 2929.89 92 197.6 22.31 10.95 770.54 133 271.4 2.921 42.93 3017.80 93 199.4 23.17 11.38 799.98 134 273.2 3.008 44.21 3107.85 94 201.2 24.04 11.81 830.34 135 275.0 3.097 45.52 3200.04 95 203.0 24.95 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td>						11				
88 190.4 19.16 9.41 661.68 129 264.2 2.592 38.11 2678.54 89 192.2 19.91 9.78 687.61 130 266.0 2.671 39.26 2760.29 90 194.0 20.69 10.16 714.38 131 267.8 2.753 40.47 2844.12 91 195.8 21.49 10.56 740.31 132 269.6 2.836 41.68 2929.89 92 197.6 22.31 10.95 770.54 133 271.4 2.921 42.93 3017.80 93 199.4 23.17 11.38 799.98 134 273.2 3.008 44.21 3107.80 94 201.2 24.04 11.81 830.34 135 275.0 3.097 45.52 3200.04 95 203.0 24.95 12.26 861.66 136 276.8 3.188 46.87 3294.43 96 204.8 27.85<						11			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l .	11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						11				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1			1	11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1			11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				11				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		1			11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						11				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	212.0	1	14.70	1033.26	1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	213 8	,	15 23	1070 78	11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				11				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1				11				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
115 239.0 1.670* 24.55 1725.84 157 314.6 5.667 83.29 5855.5										
						1				
110 20.0 1.120 20.10 1100.02 100 010.1 0.010 00.11 0000.0										
	110	10.0	1.120	20.10	1100.02		310.1	3.010	00.11	

^{*} Atmospheres.

°C.	°F.	Atmos- pneres.	Pounds per sq. inch.	Grams per sq. Centi- meter.	°C.	°F.	Atmos-	Pounds per sq. inch.	Grams per sq. Centi- meter.
159	318.2	5.966	87.69	6164.7	195	383.0	13.842		14302.7
160	320.0	6.120	89.96	6324.2	196	384.8	14.139		14609.8
161	321.8	6.278	92.27	6486.8	197	386.6	14.441		14921.2
162	323.6	6.439	94.63	6652.8	198	388.4	14.749		15240.4
163	325.4	6.603	97.04	6822.2	199	390.2	15.062	221.37	15563.5
164	327.2	6.770	99.50	6994.9	200	392.0	15.380		15891.9
165	329.0	6.940	102.01	7171.1	201	393.8	15.703		16225.5
166	330.8	7.114	104.56	7350.7	202	395.6	16.031	235.61	16564.7
167	332.6	7.291	107.18	7533.9	203	397.4	16.364		16908.8
168	334.4	7.472	109.84	7720.7	204	399.2	16.703		17257.3
169	336.2	7.656	112.53	7911.1	205	401.0	17.047		17614.0
170	338.0	7.844	115.29	8105.2	206	402.8	17.396		17974.9
171	339.8	8.036	118.11	8303.1	207	404.6	17.751		18341.5
172	341.6	8.231	120.98	8504.7	208	406.4	18.111		18713.7
173	343.4	8.430	123.90	8710.2	209	408.2	18.477		19091.6
174	345.2	8.632	126.87	8919.5	210	410.0	18.848	277.01	19475.4
175	347.0	8.839	129.91	9132.8	211	411.8	19.226		19864.9
176	348.8	9.049	133.00	9350.0	212	413:6	19.608	288.21	20260.5
177	350.6	9.263	136.15	9571.3	213	415.4	19.997		20661.9
178	352.4	9.481	139.35	9796.6	214	417.2	20.391		21069.3
179	354.2	9.703		10026.1	215	419.0	20.791		21482.8
180	356.0	9.929		10259.7	216	420.8	21.197		21902.4
181	357.8	10.150		10497.7	217	422.6	21.690		22328 3
182	359.6	10.394	152.77		218	424.4	22.027	323.78	22760.3
183	361.4	10.633		10986.4	219	426.2	22.452	330.01	23198.6
184	363.2	10.876		11237.3	220	428.0	22.882	336.30	
185	365.0	11.123	163.47		221	429.8	23.319	342.70	
186	366.8	11.374		11752.5	222	431.6	23.761	349.21	24551.8
187	368.6	11.630		12016.9	223	433.4	24.210	355.81	25015.8
188	370.4	11.885		12285.9	224	435.2	24.666	1	25486.4
189	372.2	12.155	1	12559.6	225	437.0	25.128		25963.5
190	374.0	12.425	1	12837.9	226	438.8	25.596	376.17	26447.4
191	375.8	12.699		13121.0	227	440.6	26.071	383.15	
192	377.6	12.977		13408.9	228	442.4	26.552		27435.4
193	379.4	13.261		13701.7	229	444.2	27.040	397.40	27939.6
194	381.2	13.549	199.13	13999.4					
	1	1	1	1		1		1	

XCV. — Boiling Point of Water at Barometric Pressures of 680 MM. To 800 MM.

According to Regnault, Broch, and Wiebe

Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.	Baro- metric Pressure mm.	Boiling Point °C.
680	96.915	711	98.145	741	99.293	771	100.403
681	96.955	711	98.145	741	99.293	772	100.403
682	96.996	713	98.223	743	99.368	773	100.435
683	97.036	714	98.261	744	99.406	774	100.511
684	97.076	715	98.300	745	99.443	775	100.548
001			00,000				200.040
685	97.116	716	98.339	746	99.481	776	100.584
686	97.156	717	98.378	747	99.518	777	100.620
687	97.197	718	98.416	748	99.555	778	100.656
688	97.237	719	98.455	749	99.592	779	100.692
689	97.277	720	98.493	750	99.630	780	100.728
690	97.317	721	98.532	751	99.667	781	100.764
691	97.357	722	98.570	752	99.704	782	100.800
692	97.396	723	98.609	753	99.741	783	100.836
693	97.436	724	98.647	754	99.778	784	100.872
694	97.476	725	98.686	755	99.815	785	100.908
695	97.516	726	98.724	756	99.852	786	100.944
696	97.555	727	98.762	757	99.889	787	100.979
697	97.595	728	98.800	758	99.926	788	101.015
698	97.635	729	98.838	759	99.963	789	101.051
699	97.674	730	98.877	760	100.000	790	101.087
700	97.714	731	98.915	761	100.037	791	101.122
701	97.753	732	98.953	762	100.037	792	101.122
702	97.792	733	98.991	763	100.014	793	101.193
703	97.832	734	99.029	764	100.110	794	101.139
704	97.871	735	99.067	765	100.111	795	101.264
•01	01.011	100	00.001	,00	100.101	100	101.201
705	97.910	736	99.104	766	100.220	796	101.300
706	97.949	737	99.142	767	100.257	797	101.335
707	97.989	738	99.180	768	100.293	798	101.370
708	98.028	739	99.218	769	100.330	799	101.406
709	98.067	740	99.255	770	100.366	800	101.441
710	98.106						

XCVI. - VAPOR TENSION OF MERCURY

RAMSAY AND YOUNG, J. CHEM. Soc. 49, 37; 1886

°C.	mm.	°C.	mm.	°c.	mm.	°c.	mm.
40	0.0008	160	4.013	280	157.378	400	1495.60
50	0.015	170	5.904	290	198.982	410	1733.79
60	0.029	180	8.535	300	246.704	420	2000.21
70	0.052	190	12.137	310	304.794	430	2298.80
80	0.092	200	17.015	320	373.528	440	2628.79
90	0.160	210	23.482	330	454.277	450	2996.06
100	0.270	220	31.957	340	546.715	460	3399.50
110	0.445	230	42.919	350	658.515	470	3843.68
120	0.719	240	56.919	360	785.107	480	4327.14
130	1.137	250	74.592	370	930.335	490	4856.74
140	1.763	260	96.661	380	1096.22	500	5434.99
150	2.684	270	123.905	390	1283.71	510	6059.16
						520	6736.60

XCVII. — VAPOR TENSION OF MERCURY

CAILLETET, CORLARDEAU, AND RIVIÈRE, C. R. 130, 1585; 1900

°C.	Atm.	°C.	Atm.	°c.	Atm.	°C.	Atm.
400 450 500	2.1 4.25 8	550 600 650	13.8 22.3 34	700 750 800	50 72 102	850 880	137.5 162

EQUIVALENTS OF METRIC AND CUSTOM— ARY (U. S.) WEIGHTS AND MEASURES

STANDARDS OF WEIGHTS AND MEASURES *

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee, two ingots were cast of pure platinum-iridium in the proportion of nine parts of the former to one of the latter metal. From one of these a certain number of kilograms were prepared, from the other a definite number of meter bars. These standards of weight and length were intercompared, without preference, and certain ones were selected as International prototype standards. The others were distributed by lot, in September, 1887, to the different governments, and are called National Prototype Standards. Those apportioned to the United States were received in 1890, and are kept by the Bureau of Standards in Washington, D. C.

The International Standard Meter is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the Inter-

national Bureau of Weights and Measures near Paris, France.

The International Standard Kilogram is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The International Standard Meter and Kilogram are the fundamental

standards for the United States.

The liter is equal to a cubic decimeter, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogram in a vacuum, the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimeter.

The grain Troy is the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The nautical mile adopted by the U. S. Coast and Geodetic Survey many years ago is defined as the length of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clarke's Spheroid of 1866).

^{*} Quoted from Smithsonian Physical Tables, 3d Ed., 1904.

XCVIII. — FUNDAMENTAL EQUIVALENTS *

1 meter = 39.37 inches (law of July 28, 1866).

1 yard $= \frac{3600}{3937}$ meter.

1 pound avoirdupois = 453.5924277 grams. 1 pound troy = $\frac{5760}{600}$ pound avoirdupois.

1 gallon = 231 cubic inches. 1 bushel = 2,150.42 cubic inches.

All lengths, areas, and cubic measures are derived from the international meter, the legal equivalent being 1 meter = 39.37 inches (law of July 28, 1866). In 1893 the United States Office of Standard Weights and Measures was authorized to derive the yard from the meter, using, for the purpose, the relation legalized in 1866, 1 yard equals $\frac{3.600}{3.03.7}$ meter, and the customary weights are likewise referred to the kilogram (executive order, approved April 5, 1893). This action fixes the values, inasmuch as the reference standards are as perfect and unalterable as it is possible for human skill to make them.

All capacities are based on the practical equivalent 1 cubic decimeter equals 1 liter. The decimeter is equal to 3.937 inches in accordance with the legal equivalent of the meter given above. The gallon referred to in the tables is the United States gallon of 231 cubic inches. The bushel is the United States bushel of 2,150.42 cubic inches. These units must not be confused with the British units of the same name which differ from those used in the United States. The British gallon is approximately 20 per cent larger and the British bushel 3 per cent larger than the corresponding units used in this country.

The customary weights derived from the international kilogram are based on the value 1 avoirdupois pound = 453.5924277 grams. This value is carried out farther than that given in the law, but is in accord with the latter as far as it is there given. The value of the troy pound is based upon the relation just mentioned and also the equivalent $\frac{5760}{7000}$ avoirdupois pound equals 1 troy pound.

^{*} Quoted from Table of Equivalents, U. S. Bureau of Standards.

XCIX.—Comparison of Metric and Customary Units from 1 to 10*

LENGTHS

Inches.	Millimeters.	Inches.	Centimeters.	Feet.	Meters.
0.03937 =	1	0.3937 =	1	1 =	0.304801
0.07874 =	2	0.7874 =	2	2 =	0.609601
0.11811 =	3	1 =	2.54001	3 =	0.914402
0.15748 =	4	1.1811 =	3	3.28083 =	1
0.19685 =	5	1.5748 =	4	4 =	1.219202
0.23622 =	6	1.9685 =	5	5 =	1.524003
0.27559 =	7	2 =	5.08001	6 =	1.828804
0.31496 =	8	2.3622 =	6	6.56167 =	2
0.35433 =	9	2.7559 =	7	7 =	2.133604
1 =	25.4001	3 =	7.62002	8 ==	2.438405
2 =	50.8001	3.1496 =	8	9 =	2.743205
3 =	76.2002	3.5433 =	9	9.84250 =	3
4 =	101.6002	4 =	10.16002	$ \cdot 13.12333 =$	4
5 =	127.0003	5 =	12.70003	16.40417 =	· 5
6 =	152.4003	6 ==	15.24003	19.68500 =	= 6
7 =	177.8004	7 =	17.78004	22.96583 =	7
8 =	203.2004	8 =	20.32004	26.24667 =	- 8
9 =	228.6005	9 =	22.86005	29.52750 =	9

U. S. Yards.	Meters.	U. S. Miles.	Kilometers.
1 1.093611 2 2.187222	= 1.828804	$\begin{array}{cccc} 0.62137 & = & \\ 1 & = & \\ 1.24274 & = \\ 1.86411 & = & \\ \end{array}$	2
3 3.280833 4 4.374444 5	= 3.657607	2 2.48548 = 3 10685 = 3.72822 =	5
5.468056 6 6.561667 7	= 5.486411	4 = 4.34959 = 4.97096 = 5 =	
7.655278 8 8.748889 9 9.842500	= 7.315215 = 8 = 8.229616	5.59233 = 6 = 7 = 8 = 9 =	9 9.65608 11.26543 12.87478 14.48412

^{*} Table of Equivalents, U. S. Bureau of Standards.

AREAS

Square Square Inches. Millimeters.	Square Square Inches. Centimeters.	Square Square Feet. Meters.
0.00155 = 1 $0.00310 = 2$ $0.00465 = 3$ $0.00620 = 4$	$\begin{array}{cccc} 0.1550 &= & 1 \\ 0.3100 &= & 2 \\ 0.4650 &= & 3 \\ 0.6200 &= & 4 \end{array}$	1 = 0.09290 2 = 0.18581 3 = 0.27871 4 = 0.37161
$\begin{array}{cccc} 0.00775 = & & 5 \\ 0.00930 = & & 6 \\ 0.01085 = & & 7 \\ 0.01240 = & & 8 \\ 0.01395 = & & 9 \end{array}$	0.7750 = 5 $0.9300 = 6$ $1 = 6.452$ $1.0850 = 7$ $1.2400 = 8$	5 = 0.46452 6 = 0.55742 7 = 0.65032 8 = 0.74323 9 = 0.83613
$\begin{array}{lll} 1 & = & 645.16 \\ 2 & = & 1,290.33 \\ 3 & = & 1,935.49 \\ 4 & = & 2,580.65 \\ 5 & = & 3,225.81 \\ 6 & = & 3,870.98 \\ \end{array}$	$\begin{array}{cccc} 1.3950 &=& 9 \\ 2 &=& 12.903 \\ 3 &=& 19.355 \\ 4 &=& 25.807 \\ 5 &=& 32.258 \\ 6 &=& 38.710 \end{array}$	10.764 = 1 $21.528 = 2$ $32.292 = 3$ $43.055 = 4$ $53.819 = 5$ $64.583 = 6$
7 = 4,516.14 8 = 5,161.30 9 = 5,806.46	7 = 45.161 8 = 51.613 9 = 58.065	75.347 = 7 86.111 = 8 96.875 = 9
Square Square Yards. Meters.	Square Square Miles, Kilometers.	Acres. Hectares.
$\begin{array}{rcl} 1 & = 0.8361 \\ 1.1960 & = 1 \\ 2 & = 1.6723 \\ 2.3920 & = 2 \\ 3 & = 2.5084 \\ 3.5880 & = 3 \\ 4 & = 3.3445 \\ \end{array}$	$\begin{array}{ccccc} 0.3861 &=& 1 \\ 0.7722 &=& 2 \\ 1 &=& 2.5900 \\ 1.1583 &=& 3 \\ 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.1800 \end{array}$	$ \begin{array}{rcl} 1 & = 0.4047 \\ 2 & = 0.8094 \\ 2.471 & = 1 \\ 3 & = 1.2141 \\ 4 & = 1.6187 \\ 4.942 & = 2 \\ 5 & = 2.0234 \end{array} $
4.7839 = 4 $5 = 4.1807$ $5.9799 = 5$ $6 = 5.0168$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7 = 5.8529 $7.1759 = 6$ $8 = 6.6890$	3.4749 = 9 $4 = 10.3600$ $5 = 12.9500$	9 = 3.6422 9.884 = 4 12.355 = 5
8.3719 = 7 $9 = 7.5252$ $9.5679 = 8$ $10.7639 = 9$	6 = 15.5400 7 = 18.1300 8 = 20.7200 9 = 23.3100	14.826 = 6 17.297 = 7 19.768 = 8 22.239 = 9

VOLUMES

Cubic Inches.	Cubic Millimeters.	Cubic Cubic Inches. Centimeters.	Cubic Cubic Feet. Meters.
0.000061 = 0.000122 = 0.000183 = 0.000244 =	= 2 = 3	0.0610 = 1 $0.1220 = 2$ $0.1831 = 3$ $0.2441 = 4$	$\begin{array}{rcl} 1 & = 0.02832 \\ 2 & = 0.05663 \\ 3 & = 0.08495 \\ 4 & = 0.11327 \end{array}$
0.000305 = 0.000366 = 0.000427 = 0.000488 = 0.000549 =	= 6 = 7 = 8	0.3051 = 5 $0.3661 = 6$ $0.4272 = 7$ $0.4882 = 8$ $0.5492 = 9$	5 = 0.14159 6 = 0.16990 7 = 0.19822 8 = 0.22654 9 = 0.25485
2 = 3 =	= 16,387.2 = 32,774.3 = 49,161.5 = 65,548.6	1 = 16.3872 2 = 32.7743 3 = 49.1615 4 = 65.5486	35.314 = 1 $70.629 = 2$ $105.943 = 3$ $141.258 = 4$
6 = 7 = 8	= 81,935.8 = 98,323.0 = 114,710.1 = 131,097.3 = 147,484.5	5 = 81.9358 6 = 98.3230 7 = 114.7101 8 = 131.0973 9 = 147.4845	176.572 = 5 $211.887 = 6$ $247.201 = 7$ $282.516 = 8$ $317.830 = 9$

Cubic Cubic Yards. Meters.	Cubic Yards.	Cubic Meters.	Cubic Yards.	Cubic Meters.
$ \begin{array}{rcl} & 1 & = 0.7645 \\ & 1.3079 & = 1 \\ & 2 & = 1.5291 \end{array} $	4 = 5 = 5.2318 =	3.8228	8 =	= 6 = 6.1165 = 6.8810
2.6159 = 2 3 = 2.2937 3.9238 = 3	6 = 6.5397 = 7 =	5	9.1556 = 10.4635 = 11.7715 =	= 8

CAPACITIES

Milliliters. (cc.)	U.S. Liquid Ounces.	Milliliters. U.S. Ap	othe- rams. U.S. caries'	Apothe- Millil Scruples. (c	iters.
1 = 2 = 3 = 4 =	0.03381 0.06763 0.10144 0.13526	2 = 0.8	2705 0.81 5410 1 1.62 2	231 = 1.2 $= 2.4$	2322 4645
5 = 6 = 7 = 8 =	0.16907 0.20288 0.23670 0.27051	5 = 1.8 6 = 1.6 7 = 1.8	2.43 3 3525 3.24 4 3936 4.08	$ \begin{array}{rcl} & = & 3.6 \\ 461 & = & 4 \\ & = & 4.9 \\ 577 & = & 5 \end{array} $	6967 9290
9 = 29.574 = 59.147 = 88.721 =	0.30432 1 2 3	9 = 2.4 $11.0901 = 3$	4.86 5 5.68 6 6.49	= 6.3 $= 7$ $= 7.3$ $= 23$ $= 8$	1612 3934
118.295 = 147.869 = 177.442 = 207.016 = 236.590 =	4 5 6 7 8	14.7869 = 4 $18.4836 = 5$ $22.1803 = 6$ $25.8770 = 7$ $29.5737 = 8$	7 7.30 8 9)38 = 9 = 9.8	6257 8579 0901
266.163 =	9	33.2704 = 9			
U.S. Liquid Quarts.	Liters.	U.S. Liquid Lite Gallons.	Qu Qu	Dry Liter	s.
U.S. Liquid Quarts. 1 = 1.05668 = 2 = 2.11336 =	Liters. 0.94636 1 1.89272 2	U.S. Liquid Gallons. Lite 0.26417 = 1 0.52834 = 2 0.79251 = 3 1 = 3.	78543 Qu 0.90 1 1.8 2 2.75	$ \begin{array}{rcl} & \text{arts.} & \text{Effer} \\ & 081 & = & 1 \\ & = & 1 \\ & 162 & = & 2 \\ & = & 2 \\ & 242 & = & 3 \end{array} $	1012 2025
U.S. Liquid Quarts. 1 = 1.05668 = 2 = 2.11336 = 3.17005 = 4 = 4.22673 =	Liters. 0.94636 1 1.89272 2 2.83908 3 3.78543 4	U.S. Liquid Gallons. 0.26417 = 1 0.52834 = 2 0.79251 = 3 1 = 3.4 1.05668 = 4 1.32085 = 5 1.58502 = 6 1.84919 = 7	78543 2 2.73 3 6 4 4.5	arts. Different arts. 2081 = 1 = 1.162 = 2 = 2.242 = 3 = 3.323 = 4 = 4.404 = 5	1012 2025 3037 4049
U.S. Liquid Quarts. 1 = 1.05668 = 2 = 2.11336 = 3.17005 = 4 = 4.22673 = 5 = 5.28341 = 6 = 6.34009 =	Liters. 0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815 6	U.S. Liquid Gallons. 0.26417 = 1 0.52834 = 2 0.79251 = 3 1 = 3. 1.05668 = 4 1.32085 = 5 1.58502 = 6 1.84919 = 7 2 = 7. 2.11336 = 8 2.37753 = 9 3 = 11.	78543 Qu 0.90 1 1.82 2.73 3.66 4 4.5 5 5.4 6 6.3 35630 7	arts. Eller 081 = 1	1012 2025 3037
U.S. Liquid Quarts. 1 = 1.05668 = 2 = 2.11336 = 3.17005 = 4 = 4.22673 = 5 = 5.28341 = 6 = 6	Liters. 0.94636 1 1.89272 2 2.83908 3 3.78543 4 4.73179 5 5.67815	U.S. Liquid Gallons. 0.26417 = 1 0.52834 = 2 0.79251 = 3 1 = 3. 1.05668 = 4 1.32085 = 5 1.58502 = 6 1.84919 = 7 2 = 7. 2.11336 = 8 2.37753 = 9 3 = 11 4 = 15. 5 = 18 6 = 22 7 = 26.	78543 Qu 0.90 1 1.8 2 2.7 3 3.66 4 4.5 5 5.4 6 6.3	arts. Eller 2081 = 1	1012 2025 3037 4049 5061 6074

METRIC TABLES

CAPACITIES (Continued).

U.S. Pecks.	Liters.	Dekaliters.	U.S. Pecks.	U.S. Bushels.	Hectoliters.
0.11351 = 0.22702 = 0.34053 = 0.45404 =	= 2 = 3	1.7620		1 = 2 = 2.83774 = 3 =	0.70479
0.56755 = 0.68106 = 0.79457 = 0.90808 = 1	= 6 = 7	3.5239 = 4 =	3 . 4053 4 . 5404 5		1.76196
2 = 3 =	= 9 = 17.61964 = 26.42946 = 35.23928	5 = 5.2859 = 6.1669 =	6 6.8106	8 = 8.51323 = 9 = 11.35097 =	3 3.17154
6 = 7 = 8 = =	= 44.04910 = 52.85892 = 61.66874 = 70.47856 = 79.28838	7.9288 = 8 =	7.9457 8 9 9.0808 10.2159	14.18871 = 17.02645 = 19.86420 = 22.70194 = 25.53968 =	6 7 8

U.S. Bushels per Acre.	Hectoliters per Hectar.	U.S. Bushels per Acre.	Hectoliters per Hectar.	U.S. Bushels He	ectoliters er Hectar.
1 = 1.14840 = 2 =	0.87078 1 1.74156	4 = 4.59359 = 5 =	4	7 = 8 = 8.03879 =	6.09545 6.96622 7
2.29680 = 3 = 3.44519 =	2 2.61233 3	5.74199 = 6.89039 =	~	9 = 9.18719 = 10.33558 =	7.83700 8 9

MASSES

Grains. Gran	s. Avoirdupois Ounces.	Grams.	Troy Ounces.	Grams.
1 = 0.064 2 = 0.129 3 = 0.194 4 = 0.259 5 = 0.323 6 = 0.388 7 = 0.453 8 = 0.518 9 = 0.583	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	= 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9	$\begin{array}{c} 0.03215 = \\ 0.06430 = \\ 0.09645 = \\ 0.12860 = \\ 0.16075 = \\ 0.19290 = \\ 0.22506 = \\ 0.25721 = \\ 0.28936 = \\ \end{array}$	1 2 3 4 5 6 7 8 9
15.4324 = 1 $30.8647 = 2$ $46.2971 = 3$ $61.7294 = 4$ $77.1618 = 5$ $92.5941 = 6$ $108.0265 = 7$ $123.4589 = 8$ $138.8912 = 9$	1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = =	= 56.6991 = 85.0486 = 113.3981 = 141.7476 = 170.0972 = 198.4467 = 226.7962	1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = =	31.10348 62.20696 93.31044 124.41392 155.51740 186.62088 217.72437 248.82785 279.93133
Avoirdupois Pounds.	Kilograms.	Troy Po	ounds. Kil	ograms.
1 = 2 = 2.20462 = 3 = 4 = 4.40924 = 5 = 6.61387 = 7 = 8 = 8.81849 = 9 = 11.02311 = 13.22773 = 13.22773 = 15.22773 = 15.20462 = 15.20	0.45359 0.90718 1 1.36078 1.81437 2 2.26796 2.72155 3 3.17515 3.62874 4 4.08233 5 6	3 4 5 5 5.3 6 7 8 8.0 9 10.7 13.3 16.0	= 0.7	37324 74648 11973 49279 86621 23945 31269 98593
$ \begin{array}{rcl} 15.43236 & = \\ 17.63698 & = \\ 19.84160 & = \end{array} $	7 8 9	18.7 21.4	5460 = 7 3383 = 8 1306 = 9	

EQUIVALENTS OF METRIC AND BRITISH IMPERIAL WEIGHTS AND MEASURES*

STANDARDS AND FUNDAMENTAL EQUIVALENTS

The meter is the length, at the temperature of 0°C., of the platinum-

iridium bar deposited with the Board of Trade.

The present legal equivalent of the meter is 39.37079 inches. If a brass meter is, however, compared, not at its legal temperature (0° C. or 32° F.), but at the temperature of 62° F., with a brass yard also at the temperature of 62° F., then the apparent equivalent of the meter would be nearly 39.382 inches.

The kilogram is the weight in vacuo at 0° C, of the platinum-iridium

weight deposited with the Board of Trade.

millimeter (mm., .001 m.)

The liter contains one kilogram weight of distilled water at its maximum density (4° C.), the barometer being at 760 millimeters.

C. — METRIC TO IMPERIAL

LINEAR MEASURE

= 0.03937 inch

ds

centimeter (.01 m.)	-	0.39371 inch
decimeter (.1 m.)	=	3.93708 inches
meter (m.)	=	39.37079 inches
	=	3.28089917 feet
	=	1.09363306 yard
dekameter (10 m.)	=	10.93633 yards
hectometer (100 m.)	=	109.36331 yards
kilometer (1,000 m.)	=	0.62138 mile
myriameter (10,000 m.)	==	6.21382 miles
micron	==	0.001 mm.

Square Measure		
sq. centimeter	=	0.15501 sq. inch
sq. decimeter (100 sq. centm.)	=	15.50059 sq. inches
sq. meter or centiare (100 sq. dcm.)	=	10.76430 sq. feet
	=	1.19603 sq. yards
are (100 sq. m.)	=	119.60333 sq. yards
hectare (100 ares or 10,000 sq. m.)	=	2.47115 acres

Cubic Measure		
cub. centimeter (c.c. or 1,000 cubic millimeters	s) =	0.06103 cub. inch
cub. decimeter (c.d. or 1,000 c.c.)	_	61.02705 cub. inches
cub. meter or stere (1,000 c.d.)	=	35.31658074 cu. feet
	==	1.30802151 cu. yards

^{*}Quoted from sheets issued in 1890 by the Standard Office of the British Board of Trade.

MEASURE OF CAPACITY

milliliter (ml., c.c. or .001 liter) = 0.06103 cub. inch centiliter (.01 liter) = 0.61027 " " = 0.07043 gill

deciliter (.1 liter) = 0.17643 gm = 0.17608 pint liter (1,000 c.c. or cub. decimeter) = 1.7607 pints dekaliter (10 liters) = 2.20097 gallons hectoliter (100 liters) = 2.75121 bushels

microliter = 0.001 c.c.

APOTHECARIES' MEASURE

cubic centimeter (1 gram weight of

millier or ton (1,000 kilogram)

kiloliter (1.000 liters)

water) = 0.03527 fluid ounce

= 0.28219 fluid drachm = 15.43235 grains weight

= 3.43901 quarters

cubic millimeter = 0.01693 minim

AVOIRDUPOIS WEIGHT

milligram (mgr.) $= 0.01543 \, \text{grain}$ centigram (.01 gram) = 0.5432 " decigram (.1 gram) = 1.54324 grains = 15.43235 " gram dekagram (10 gram) $= 5.64383 \, drams$ = 3.52739 ounces hectogram (100 gram) kilogram (1,000 gram) = 2.20462125 pounds = 15432.34874 grains myriagram (10 kilogram) = 22.04621 pounds quintal (100 kilogram) = 1.96841 cwt.

TROY WEIGHT

gram = 0.03215073 oz. Troy = 0.64301 pennyweight

 $= 15.43235 \, \text{grains}$

= 0.98420591 ton

APOTHECARIES' WEIGHT

 $\begin{array}{ll} \text{gram} & = 0.25721 \text{ drachm} \\ = 0.77162 \text{ scruple} \end{array}$

= 0.77162 scruple = 15.43235 grains

CI.—EQUIVALENTS OF BRITISH IMPERIAL AND METRIC WEIGHTS AND MEASURES

STANDARDS AND FUNDAMENTAL EQUIVALENTS

The yard is the length at 62° F, marked on a bronze bar deposited with the Board of Trade.

The pound is the weight of a piece of platinum weighed in vacuo at the temperature of 0° C., which is also deposited with the Board of Trade.

The gallon contains 10 lb. weight of distilled water at the temperature of 62° F., the barometer being at 30 inches. The weight of a cubic inch of water is 252.286 grains.

IMPERIAL TO METRIC

LINEAR MEASURE

 $\begin{array}{lll} \text{inch} & = 25.39954113 \text{ millimeters} \\ \text{foot (12 inches)} & = 0.30479449 \text{ meters} \\ \text{yard (3 feet)} & = 0.91438348 \text{ "} \\ \text{pole } (5\frac{1}{2} \text{ yards}) & = 5.02911 \text{ "} \\ \text{chain (22 yards or 100 links)} & = 20.11644 \text{ "} \\ \text{furlong (220 yards)} & = 201.16437 \text{ "} \\ \text{mile (1,760 yards)} & = 1.60931493 \text{ kilometers} \end{array}$

SQUARE MEASURE

 square inch
 = 6.45137 sq. centimeters

 square foot (144 sq. in.)
 = 9.28997 sq. decimeters

 sq. yard (9 sq. ft.)
 = 0.83669715 sq. meters

 perch (30¼ sq. yd.)
 = 25.29194 " "

 rood (40 perches)
 = 10.11678 ares

 acre (4,840 sq. yds.)
 = 0.40467 hectare

 sq. mile (640 acres)
 = 258.98945312 hectares

CUBIC MEASURE

cubic inch = 16.38617589 cub. centimeters cubic foot (1,728 cub. in.) = 0.02832 cub. meter = 28.31531 cub. decimeters cubic yard (27 cub. ft.) = 0.76451342 cub. meter

MEASURE OF CAPACITY

gill	= 141.983 cubic centimeters = 1.41983 deciliters
	= 0.56793 liter
pint (4 gills)	
quart (2 pints)	= 1.13586 liters
gallon (4 quarts)	= 4.54345797 liters
peck (2 gallons)	= 9.08692 "
bushel (8 gallons)	= 3.63477 dekaliters
quarter (8 bushels)	= 2.90781 hectoliters

APOTHECARIES' MEASURE

gallon * (8 pints or 160 fluid oz.)	==	4.54346 1	iters	
fluid ounce f. 3 (8 drachms)	=	28.39661	cub.	centimeters
fluid drachm f. 3 (16 minims)		3.54958	66	66
minim. M (0.91146 grain weight)		0.05916	66	66

AVOIRDUPOIS WEIGHT

grain	==	64.79895036 milligrams
dram	=	1.77185 grams
ounce (16 drams)	=	28.34954 "
pound (16 oz. or 7,000 grains)	=	0.45359265 kilogram
stone (14 pounds)	=	6.35030 "
quarter (28 pounds)	=	12.70059 "
hundred weight (112 pounds)	=	50.80238 "
	=	0.50802 quintal
ton (20 cwt.)	=	1.01604754 millier or tonne

TROY WEIGHT

Troy ounce (480 grains † avoir.)	=	31.10350	grams
pennyweight (24 grains)	==	1.55517	66

APOTHECARIES' WEIGHT

ounce ‡ (8 drachms)	==	31.10350	grams
drachm 3i (3 scruples)	=	3.88794	- "
scruple Di (20 grains*)	=	1.29598	"

- * The Apothecaries' gallon is of the same capacity as the Imperial gallon.
- † The Troy grain is of the same weight as the Avoirdupois and Apothecaries' grain.
 - ‡ The Apothecaries' ounce is of the same weight as the Troy ounce.

THERMOCHEMISTRY

CII. — THERMOCHEMICAL UNITS

THE SMALL CALORIE is the amount of heat required to raise the temperature of one gram of water one degree centigrade (from 0° to 1°, 4° to 5° or 15° to 16° being used, giving slightly different values).

THE LARGE CALORIE is the amount of heat required to raise the temperature of one kilogram of water one degree centigrade. It is therefore one thousand times as large as the small calorie.

The British Thermal Unit (B. T. U.) is the heat required to raise the temperature of one pound of water one degree Fahrenheit. As one kilogram is equal to 2.20462 pounds, and one degree centigrade is equal to $\frac{9}{5}$ degree Fahrenheit, the large calorie is 3.96832 (2.20462 \times $\frac{9}{5}$) times as great as the British Thermal Unit, the small calorie being .00396832 times the British Thermal Unit,

THE HEAT OF COMBUSTION of a substance is the number of small or large calories of heat evolved during the combustion of a gram or a kilogram of the substance.

Using the English weights and measures it is the number of B. T. U. of heat evolved during the combustion of one pound of the substance. To convert the former into the latter value the number of calories must be multiplied by $1.8 (3.96832 \div 2.20462)$.

The Heat of Formation of a substance is the number of calories of heat evolved or absorbed when a gram molecular weight of the substance is formed. When heat is absorbed the value found is negative.

CIII. — HEATS OF FORMATION

Name.	Formula.	Temp.	Physical State.	Calories.
Aluminium				
carbide	Al ₄ , C ₃	15	solid	232,000
chloride	Al, Cl ₃	15	solid	161,800
"			dil. sol.	238,100
fluoride	Al, F ₃	15	dil. sol.	275,220
hydroxide	Al, O_3 , H_3	15	solid	301,300
oxide	Al ₂ , O ₃	15	solid	392,600
silicate	Al ₂ , Si ₂ , O ₇	15	solid	767,500
	Al ₂ , Si ₂ , O ₉ , H ₄	15	solid	927,420
sulphate	Al ₂ , S ₃ , O ₁₂	15	dil. sol.	879,700
sulphide	Al ₂ , S ₃	15	solid	126,400
Ammonia	N, H ₃	15	gas	12,000
Comments on g			liquid	21,000
Ammonium			1	
bi-carbonate,	$N, H_5, C, O_3 \dots$	15	solid	208,600
	l		dil. sol.	202,300
bromide	NH ₃ , HBr			45,020
"	NH ₄ , Br			65,350
chloride	N, H ₄ , Cl	15	solid	76,800
			dil. sol.	72,800
"	NH ₃ , HCl			41,900
"	NH ₄ , Cl	l.		75,790
fluoride	N, H ₄ , F	15	solid	101,250
			dil. sol.	99,750
hydroxide	N, H ₅ , O	15	solid	88,800
			dil. sol.	90,000
iodide	NH ₃ , HI			43,460
46	NH ₄ , I			49,310
nitrate	N_2 , H_4 , O_3			88,060
nitrite	N_2 , H_4 , O_2			64,950
acid sulphate	N, H_5, S, O_4	15	solid	244,600
" "			dil. sol.	245,100
sulphate	N_2 , H_8 , S , O_4	15	solid	283,500
* "			dil. sol.	281,100
sulphide	N. H ₅ , S	15	solid	40,000
66			dil. sol.	36,700
Antimony				
chloride, tri	Sb, Cl ₃	15	solid	91,400
" penta	Sb, Cl ₅	15	liquid	104,500
"			solid	104,870
fluoride	Sb, F ₃	15	dil. sol.	136,680
			[

			•	
Name.	Formula.	Temp. °C.	Physical State.	Calories.
Antimony				
hydride (stibine)	Sb, H ₃	15	gas	86,800
· ·			(const.)	34,270
			vol.	02,20
			{const. }	33,980
oxide, tri	Sb ₂ , O ₃	15	(press.)	166,900
" pent	Sb_2 , O_5	15	solid	231,200
sulphide	Sb_2 , S_3	15	solid	34,400
Arsenic	202, 2000000000000000000000000000000000		20110	01,100
chloride	As, Cl ₃		liquid	71,380
		15	solid	-71,500
hydride (arsine)	H ₃ , As	15	gas	44,200
oxide tri	As_2, O_3	15	solid	{ 154,670
	1102, 03	10		(156,400
			dil. sol.	148,900
" pent	As ₂ , O ₅	15	solid	219,400
Auric			dil. sol.	225,400
chloride	Au, Cl ₃	15	solid	22,800
"		10	dil. sol.	27,200
oxide	Au ₂ , O ₃	15	solid	-11,500
Aurous chloride	Au, Cl	15	solid	5,800
Barium	•			
carbonate	Ba, C, O ₃	15	solid	286,300
chloride	Ba, Cl ₂	15	solid	197,100
			dil. sol.	198,300
fluoride	Ba, F_2	15	solid	224,000
hvdrido	Do U	1	dil. sol.	221,500 37,500
hydride	Ba, H_2		Some	37,000
hydroxide	$\frac{\text{Ba}}{2}$, O, H			109,550
nitride	Ba ₃ , N ₂	15	solid	149,400
oxide	Ba, O		solid	133,400
((dil. sol.	161,500
dioxide	Ba, O ₂	15	solid	145,500
selenide	Ba, Se		solid	69,900
silicate	Ba, Si, O ₃		solid	328,100
sulphate	Ba, S, O ₄	15	solid	339,400
sulphide	Ba, S	15	solid	102,900
70 11			dil. sol.	109,800
Beryllium	Do Cl	15	anl: J	155,000
chloride	Be, Cl ₂	15	solid dil. sol.	155,000
	* * * * * * * * * * * * * * * * * * * *		dii. soi.	199,000

Name.	Formula.	Temp.	Physical State.	Calories.		
Bismuth						
chloride	Bi, Cl ₃		solid	90,800		
hydroxide	Bi, O_3, H_3		solid	171,700		
oxide	$\operatorname{Bi}_{2}, \operatorname{O}_{3}, \ldots$		solid	139,200		
Boron	2, 0,		BOTTA	100,200		
chloride	B, Cl ₃	15	gas	89,100		
fluoride	B, F ₃	15	dil. sol.	219,345		
oxide	B_2, O_3	15	solid .	272,600		
"			dil. sol.	279,900		
sulphide	B_2, S_3	15	solid	75,800		
Cadmium	_,					
carbonate	Cd, C, O ₃	15	solid	183,200		
chloride	Cd , Cl_2	15	solid	93,700		
			dil. sol.	96,400		
cyanide	$Cd, C_2, N_2 \dots$	15	solid	-31,850		
fluoride	Cd, F_2	15	dil. sol.	121,720		
oxide	Cd, O	15	solid	66,300		
sulphate	Cd, S, O ₄	15	solid	219,900		
			dil. sol.	231,600		
sulphide	Cd, S	15	solid	34,400		
telluride	Cd, Te	15	solid	16,600		
Cæsium						
carbonate	Cs_2O , CO_2			20,570		
44	Cs_2 , C , O_3			274,540		
carbonate, bi	Cs, H, C, O_3	.,		232,920		
"	$CsOH$, CO_2			11,250		
chloride	Cs, Cl			109,860		
hydroxide	Cs_2O , H_2O			50,360		
oxide mon	Cs_2, O			82,700		
Ur1	Cs_2O_2 , O			18,000		
0001	Cs_2O_3 , O			12,500		
Calcium	Ca Al O	15	1:-1	EQ4 550		
aluminate, mono	Ca, Al_2, O_4	15 15	solid solid	524,550		
" tri	Ca_2 , Al_2 , O_5	15	solid	658,900		
aluminium silicate	Ca_3, Al_2, O_6 Ca_3, Al_2, Si_2, O_{10}	15	solid	789,050 1,195,550		
carbide	Ca_3, Ai_2, Si_2, Oi_0 Ca, C_2	15	solid	-6,250		
carbonate	Ca, C_2 Ca, C, O_3	15	solid	-0.250 273.850		
chloride	Ca, Cl_2	15	solid	169,900		
6	Ca, C12		dil. sol.	187,400		
cyanide	Ca, C_2, N_2	15	dil. sol.	41,650		
fluoride	Ca, F_2, \ldots	15	solid	216,450		
11401140	04, 4 2	10		210,100		

Name.	Formula.	Temp.	Physical State.	Calories.
- Tumo	T OZIAROZU:	°С.	State.	
Calcium				
hydroxide	Ca, H ₂ , O ₂	15	solid	215,600
		ļ. 	dil. sol.	219,500
	CaO, H ₂ O			15,100
oxide	Ca, O	15	solid	131,500
			dil. sol.	149,600
" per	Ca, O ₂			156,010
phosphate	Ca ₃ , P ₂ , O ₈	15	solid	919,200
selenide	Ca, Se	15	solid	58,000
silicate, mono	Ca, Si, O ₃	15	solid	329,350
" di	Ca, Si, O ₄	15	solid	471,300
" tri	Ca ₃ , Si, O ₅	15	solid	603,050
sulphate	Ca, S, O ₄	15	solid	317,400
			dil. sol.	321,800
sulphide	Ca, S	15	solid	94,300
			dil. sol.	100,600
Carbon				
di-oxide	CO, O	15	gas	68,040
			dil. sol.	73,940
	C, O_2	15	gas	103,100
di-sulphide	$C, S_2 \dots \dots$	15	gas	-25,400
			liquid	-19,000
monoxide	C, O	15	gas	21,160
tetrachloride	C, Cl_4		liquid	28,230
			gaseous	21,030
			(8,940
Cementite	C, 3 Fe			(650°-
Cobalt			(700°)
chloride	Co, Cl ₂	15	solid	76,700
			dil. sol.	95,000
fluoride	Co, F_2	15	dil. sol.	120,340
oxide	Co, O	15	solid	64,100
selenide	Co, Se	15	solid	13,900
sulphate	Co, S, O_4	15	dil. sol.	228,700
sulphide	Co, S	15	solid	21,900
telluride	Co, Te	15	solid	13,000
Copper				
carbonate	Cu, C, O ₃	15	solid	146,100
chloride (cupric)	Cu, Cl ₂	15	solid	51,400
<i>" "</i>			dil. sol.	62,500
" (cuprous)	Cu, Cl	15	solid	35,400
cyanide	Cu, C, N	15	solid	-20,235
nitrate	Cu, N ₂ , O ₆	15	dil. sol.	81,300

Name.	Formula.	Temp.	Physical State.	Calories.
Copper				
oxide (cupric)	Cu, O	15	solid	37,700
" (cuprous)	Cu ₂ O	15	solid	43,800
selenide (cupric)	Cu, Se	15	solid	17,300
" (cuprous)	Cu_2 , Se	15	solid	8,000
sulphate	Cu, S, O ₄	15	solid	181,700
- "			dil. sol.	197,500
sulphide (cupric)	Cu, S	15	solid	10,100
" (cuprous)	Cu ₂ , S	15	solid	20,300
telluride	Cu_2 , Te	15	solid	8,200
Cyanogen	C, N		gas	-65,700
Hydriodic acid	H, I		gas	-6,040
Hydrobromic		,		
acid	H, Br		gas	8,440
Hydrochloric	·			
acid	H, Cl	15	gas	22,000
"			dil. sol.	39,400
Hydrocyanic				
acid	H, C, N	15	gas	-27,150
66			dil. sol.	-21,050
Hydroferricyanic				
acid	H_3 , Fe, C_6N_6	15	dil. sol.	-127,500
Hydroferrocyanic				
acid	H_4 , Fe, C_6N_6	15	solid	-102,000
66			dil. sol.	-101,500
Hydrofluoric				
acid	H, F	15	gas	38,500
			dil. sol.	50,300
Hydrogen				
oxide	H_2 , O		solid	70,400
"			liquid	69,000
"			gas	58,060
peroxide	H_2, O_2, Aq		liquid	45,300
- "	H_2O , O , Aq			-23,060
" hydrated	H_2O_2Aq , H_2^*			-91,420
sulphide	H_2 , S	15	gas	4,800
			dil. sol.	9,500
Hypochlorous				
anhydride	Cl ₂ , O		gas	-17,930
Iodic				
acid	$H, I, O_3 \dots \dots$			57,590

^{*} Decomposition of hydrogen peroxide.

Name.	Formula.	Temp.	Physical State.	Calories.
Iodine				
chloride mono			liquid	5,830
" tri	I, Cl ₃		solid	21,490
pentoxide	$I_2, O_5 \dots \dots$		solid	45,030
sulphide	I, S		solid	0,000
Iron carbide	Fe ₃ , C	15	solid	8,460
carbonate (ferrous)	Fe, C, O_3	15	solid	187,800
chloride (ferrous)	Fe, Cl_2	15	solid	82,200
"			dil. sol.	100,100
chloride (ferric)	Fe, Cl ₃	15	solid	96,150
" " "				127,850
cyanide	Fe ₇ , C ₁₈ , N ₁₈	15	solid	-256,700
fluoride (ferrous)	Fe, \underline{F}_2	15	dil. sol.	125,220
fluoride (ferric)	Fe, F_3	15	dil. sol.	164,940
oxides	Fe, O	15	solid	65,700
************	Fe_2, O_3	15 15	solid solid	195,600
***************************************	Fe ₃ O ₄			270,800 (nearly
phosphide	Fe, P	15	solid	zero
selenide	Fe, Se	15	solid	15,200
silicate (ferrous)	Fe, SiO ₃	15	solid	254,600
sulphate (ferrous)	Fe, S, O_4	15	dil. sol.	234,900
(ferric)	$Fe_2, S_3, O_{12}, \ldots$	15	dil. sol.	650,500
sulphidetelluride	Fe, S	15 15	solid solid	24,000 12,000
Lanthanum	re, re	19	Solid	12,000
chloride	La, Cl ₃			263,000
Lead	24, 01, 11111			200,000
carbonate	Pb, C, O ₃	15	solid	170,000
chloride	Pb, Cl ₂	15	solid	83,900
"			dil. sol.	77,900
fluoride	Pb, F_2	15	solid	101,600
nitrate	Pb, N_2 , O_6	15	solid	105,400
	DI- O	15	dil. sol.	98,200
oxide mon	Pb, O	15 15	solid solid	50,800
" per selenide	Pb, O_2 Pb, Se	15	solid	63,400 17,000
sulphate	Pb, S, O ₄	15	solid	215,700
sulphide	Pb, S	15	solid	20,200
telluride	Pb, Te	15	solid	6,200
Lithium				
carbide	Li, C	15	solid	-5,750

77	Formula	Temp.	Physical State.	Calories.
Name.	Formula.	°C.	State.	Calories.
Lithium				
chloride	Li, Cl	15	solid	93,900
"		10	dil. sol.	102,300
fluoride	Li, F	15	dil. sol.	116,880
hydroxide	Li, O, H	15	solid	112,300
			dil. sol.	118,100
	Li ₂ O, H ₂ O		(not con-	22,270
	2-, 2		densed	}
"	$\text{Li}_2\text{O}, \text{H}_2\text{O}\dots$		(con-	{ 19,090
oxide	Li ₂ , O		densed	143,320
selenide	$\operatorname{Li}_{2},\operatorname{Se}_{2},\ldots$	15	solid	83,000
"		10	dil. sol.	93,700
silicate	Li ₂ Si, O ₃	15	solid	347,100
sulphate	Li_2 , \acute{S} , O_4	15	solid	333,500
- "			dil. sol.	339,600
sulphide	Li, S	15	dil. sol.	115,400
Magnesium	7. 0.0			
carbonate	$Mg, C, O_3 \dots \dots$	15	solid	269,900
chloride	Mg, Cl_2	15	solid	151,200
fluoride	Mg, F_2	15	dil. sol.	187,100 209,500
hydroxide	$\mathrm{Mg},\mathrm{O}_2,\mathrm{H}_2.\dots$	15	solid	217,800
oxide	Mg, O.	15	solid	143,400
"			dil. sol.	148,800
phosphate	$Mg_3, P_2, O_8 \dots$	15	solid	910,600
sulphate	Mg, S, O_4	15	solid	300,900
"			dil. sol.	321,100
sulphide	Mg, S	15	solid	79,400
Manganese	M. C		1. 1	444400
carbide di	M_n, C_2, \ldots	15	solid	114,400
" tri	Mn, C_3 Mn, C, O_3	15 15	solid solid	9,900
chloride	Mn , Cl_2	15	solid	210,300 151,200
"			dil. sol.	187,100
fluoride	Mn, F ₂	15	solid	209,500
oxide (manganous)	Mn, O	15	solid	90,900
manganoso manganic.	Mn_3, O_4	15	solid	328,000
dioxide	Mn, O_2	15	solid	125,300
phosphide	Mn_3, P_2	15	solid	70,900
selenide	Mn, Se	15	solid	22,400
silicidesilicate	$M_{n_7}, Si_2 \dots M_{n_7}, Si_8 \dots M_{n_7}$	15 15	solid solid	47,400 276,300
Smeate	WIII, DI, U3	10	SULIU	270,500

Name.	Formula.	Temp.	Physical State.	Calories.
Manganese				
sulphate	Mn, S, O_4	15	solid	249,400
11.7	TM (1		dil. sol.	263,200
sulphide Mercuric	Mn, S	15	solid	45,600
chloride	Hg, Cl ₂	15	solid	53,300
66			dil. sol.	50,300
cyanide	$Hg, C_2, N_2 \dots$	15	solid	-59,150
oxide	Hg, O	15	solid	21,500
selenide	Hg, Se	15	solid	6,300
sulphate Mercurous	Hg, S, O_4	15.	solid	165,100
chloride	Hg, Cl	15	solid	31,320
oxide	Hg_2, O	15	solid	22,200
sulphate	Hg_2 , S, O_4	15	solid	175,000
Nickel				, , , , , , , , , , , , , , , , , , ,
chloride	Ni, Cl ₂	15	solid	74,700
			dil. sol.	93,900
fluoride	Ni, F ₂	15	solid	118,980
oxide	Ni, O	15	solid solid	61,500
selenidesulphate	Ni, Se Ni, S, O ₄	15 15	dil. sol.	14,700 228,700
sulphide	Ni, S	15	solid	19,500
telluride	Ni, Te	15	solid	11,600
Nitric				
acid	H, N, O_3		liquid	41,610
oxide	N, O		gas	-21,575
Nitrogen	N O			0.105
dioxide	N, O_2 N_2, O_4		gas	-8,125 $-2,650$
Nitrous	1, 04		gas	-2,000
oxide	N ₂ , O		gas	-17,470
Palladium			0****	
chloride	Pd, Cl ₂	15	solid	40,500
cyanide	$Pd, C_2, N_2 \dots$	15	solid	-49,250
hydride	Pd ₁₅ , H	15	solid	4,600
oxide	Pd, O	15	solid	21,000
Phosphorous hydride (phosphine)	H ₃ , P	15	gas	4,900
oxybromide	P, O, Br_3		solid	120,750
pentoxide	P_2, O_5	15	solid	365,300
pentachloride	P, Cl ₅		solid	104,990
trichloride	P, Cl ₃		liquid	75,300
		<u> </u>		

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Platinum				
chloride	Pt, Cl4	15	solid	60,200
"			dil. sol.	79,800
hydride	Pt ₁₀ , H	15	solid	14,200
oxide	Pt, O	15	solid	17,000
Potassium bromate	K, Br, O ₃		cryst.	84,060
or of the contract of the cont	KBr, O_3		cryst.	-11,250
bi-carbonate	K, H, C, O ₃	15	solid	233,300
"			dil. sol.	228,000
carbonate	K_2 , C , O_3	15	solid	282,100
			dil. sol.	288,600
chlorate	K, Cl, O ₃		solid	95,860
"	KCl, O ₃		solid	-9,750
chloride	K, Cl	15	solid	105,700
	TZ CL NI O		dil. sol.	101,200
cyanate	K, C, N, O	15	solid dil. sol.	105,850
cvanide	K, C, N	15	solid	100,650 33,450
cyanide	IX, O, IV	10	dil. sol.	30,250
			an. 501.	(129,600
ferri-cyanide	K_3 Fe, C_6 , N_6			100,800
ferrocyanide	K_4 , Fe, C_6 , N_6	15	solid	157,300
			dil. sol.	145,300
fluoride	K, F	15	solid	110,000
"			dil. sol.	113,600
hydroxide	K, O, H	15	solid	104,600
	T. T. O.		dil. sol.	117,100
iodate	K, I, O_3		solid	124,490
nitride tri	KI, O_3	15	solid solid	44,360 30,700
nitrate	K, H_3, N K, N, O_3	$\begin{array}{c c} 15\\ 15 \end{array}$	solid	119,000
"	IX, IX, O3		dil. sol.	110,700
oxide	K_2, O	15	solid	98,200
"			dil. sol.	165,200
selenide	K_2Se	15	solid	79,600
66			dil. sol.	87,900
silver-cyanide	$K, Ag, C_2, N_2 \dots$	15	solid	13,700
¥			dil. sol.	5,350
sulphate	K_2S , O_4	15	solid	344,300
* * * * * * * * * * * * * * * * * * * *	TZ TT CL C		dil. sol.	337,700
acid	K, H, S, O ₄	15	solid	276,100
			dil. sol.	272,900

Name.	Formula.	Temp.	Physical State.	Calories.
Potassium sulphide	K ₂ , S	15 15	solid dil. sol. solid dil. sol.	103,500 113,500 59,300 59,700
Rubidium carbonate '' bi chloride hydroxide '' oxide			solid	20,570 231,920 105,940 101,990 51,480 83,500
Selenium hydride '' hydroxide (selenic) '' (selenous) '' nitride	Se, H ₂	15 15 15 15	gas dil. sol. dil. sol. solid dil. sol. solid	$\begin{array}{c} -25,100 \\ -15,800 \\ 79,300 \\ 52,400 \\ 51,500 \\ -42,300 \end{array}$
Silicon carbide	SiC Si, Cl ₄ Si, F ₄ Si, H ₄ Si, O ₂ Si, S ₂	15 15 15 15 15	gas gas gas solid solid	1,963 128,800 275,920 -6,700 180,000 40,000
Silver carbide carbonate chloride cyanate fluoride ''	Ag, C Ag ₂ C, O ₃ Ag, Cl Ag, C, N, O Ag, F.	15 15 15 15 15	solid solid solid solid solid dil. sol.	$\begin{array}{c} -43,575 \\ 123,800 \\ 29,000 \\ 26,450 \\ 22,070 \\ 25,470 \end{array}$
nitrate oxide	Ag ₂ , O. Ag ₂ , Se. Ag ₂ S, O ₄ . Ag ₂ , S.	15 15 15 15 15	solid dil. sol. solid solid solid dil. sol. solid	28,700 23,000 7,000 2,000 167,100 162,600 3,000
Sodium borate, bi	Na ₂ , B ₄ , O ₇	15	solid dil. sol.	748,100 758,300

Name.	Formula.	Temp.	Physical State.	Calories.
Sodium				
carbide	Na, C	15	solid	-4,400
carbonate	Na_2 , C , O_3	15	solid	273,700
			dil. sol.	279,300
" bi	Na, H, C, O ₃	15	solid	227,000
" "			dil. sol.	222,700
chloride	Na, Cl	15	solid	97,900
"			dil. sol.	96,900
cyanate	Na, C, N, O	15	solid	105,850
			dil. sol.	100,250
cyanide	Na, C, N	15	solid	25,950
	NT. TO		dil. sol.	25,450
fluoride	Na, F	15	solid	109,720
	No O II	15	dil. sol.	109,120
hydroxide	Na, O, H	15	solid dil. sol.	102,700 112,500
nitrate	Na, N, O ₃	15	solid	112,300
"	1, 03		dil. sol.	106,000
oxide	Na ₂ , O	15	solid	100,000
66 CA CA CA CA CA CA CA CA CA CA CA CA CA		10	dil. sol.	155,900
" per	Na ₂ O, O	19	solid	8,900
" Fit	Na_2, O_2	19	solid	119,800
phosphate	Na_3, P, O_4	15	solid	452,400
selenide	Na ₂ , Se	15	solid	60,900
			dil. sol.	78,600
silicate	No Si O		(solid)	326,100
silicate	Na_2 , Si , O_3		(liquid)	520,100
sulphate	Na_2S , O_4	15	solid	328,100
"			dil. sol.	328,500
" bi	Na, H, S, O ₄	15	solid	269,100
"			dil. sol.	268,300
sulphide	Na ₂ , S	15	solid	89,300
			dil. sol.	104,300
DI	Na ₂ , S ₂	15	solid	49,500
• • • • • • • • • • • • • • • • • • • •	NT O TO		dil. sol.	54,400
tellurate	Na_2O , TeO_3			124,300
titanate	Na_2O , TiO_2 , O			69,700 67,600
zincate	Zn, Na_2O_2 Zn, O, Na_2O			87,000
Stannic chloride	Sn, Cl_4	15	liquid	129,800
oxide	SnO_2	15	solid	141,300
Stannous chloride	SnCl ₂	15	solid	80,900
oxide	Sn, O	15	solid	70,700
	,			. 0, . 00

Name.	Formula.	Temp.	Physical State.	Calories.
Strontium				
carbonate	Sr, C, O_3	15	solid	281,400
chloride	Sr, Cl_2	15	solid	184,700
"			dil. sol.	195,850
fluoride	Sr, F_2	15	solid	224,020
hydride	Sr, H_2	15	solid	38,400
hydroxide	Sr, O_2, H_2	15	solid	217,300
			dil. sol.	227,400
oxide	Sr, O	15	solid	131,200
"			dil. sol.	158,400
selenide	Sr, Se	15	solid	67,600
silicate	Sr, SiO_3	15	solid	329,100
sulphate	Sr, S, O_4	15	solid	330,200
sulphide	Sr, S	15	solid	99,300
- "	 		dil. sol.	106,700
Sulphur				
monochloride	S_2 , Cl_2		liquid	14,260
oxide di	S, O_2, \ldots	15	gas	69,260
"			dil. sol.	77,600
" tri	S, O_3	15	solid	91,900
"			dil. sol.	141,000
Sulphuric				
acid	H_2 , S, O_4	15	liquid	192,200
66	l		dil. sol.	210,200
anhydride	S, O ₃		liquid	103,240
	SO ₂ , O			32,160
Tellurium	-,			,
chloride (telluric)	Te, Cl ₄			77,380
hydride	Te, H ₂	15	gas	-34,900
hydroxide (telluric)	Te, O ₃ , H ₃	15	dil. sol.	99,500
" (tellurous)	Te, O_2 , H_2	15	solid	78,300
oxide	Te, O_2	15	dil. sol.	78,300
Thallic	- 5, 52			,
hydroxide	Tl, O ₃ H ₃	15	solid	43,800
oxide	Tl_2, O_3	15	solid	87,600
Thallous	122)	1	Sorra	0.,000
chloride	Tl, Cl	15	solid	48,600
"			dil. sol.	38,400
fluoride	Tl, F	15	dil. sol.	54,405
hydroxide	Tl, O, H	15	solid	57,400
"		10	dil. sol.	54,300
oxide	Tl ₂ O	15	solid	42,800
66	1120	10	dil. sol.	39,700
selenide	Tl ₂ , Se	15	solid	13,400
Dolomac	1 22, 50	10	BOTTA	10,100

Name.	Formula.	Temp. °C.	Physical State.	Calories.
Thallous				
sulphate	Tl ₂ , S, O ₄	15	solid	221,800
· (([dil. sol.	213,500
sulphide	Tl ₂ , S	15	solid	21,600
Thorium				
chloride	Th, Cl ₄			339,430
	Th, 2 Cl ₂			300,200
oxide	Th, O_2			326,000
telluride	Tl ₂ , Te		solid	10,600
Water	H_2 , O	15	solid	70,400
			liquid	69,000
66			gas	58,060
Zinc				
carbonate	$Zn, C, O_3 \dots$	15	solid	197,500
chloride	Zn, Cl_2	15	solid	97,400
			dil. sol.	113,000
cyanide	Zn, C_2, N_2	15	solid	-24,550
fluoride	Zn, F ₂	15	dil. sol.	138,220
hydroxide	$Zn, H_2, O_2 \dots$	15	solid	83,500
nitrate	Zn, N_2, O_6	15	dil. sol.	131,700
oxide	Zn, O	15	solid	84,800
selenide	Zn, Se	15	solid	30,300
sulphate	Zn, S, O_4	15	solid	229,600
			dil. sol.	248,000
sulphide	Zn, S	15	solid	45,600
telluride	Zn, Te	15	solid	31,000

CIV. — HEATS OF SOLUTION

· Name.	Formula.	Temp.	Water.	Calories.
Acetic			Mols.	
acid	$H.C_2H_3O_2$	18	200	375
Aluminium				
chloride	AlCl ₃		2500	+153,690
potassium sulphate	$K_2Al_2(SO_4)_4.24H_2O.$		2400	-20,240
Ammonium				,
bromide	NH ₄ Br		200	-4,380
chloride	NH ₄ Cl		200	-3,880
iodide	NH4I			-3,550
nitrate	$\mathrm{NH_4NO_3}$			-6,320
platinochloride	$(NH_4)_2PtCl_4$			-8,480
sulphate				-2,370

Name.	Formula.	Temp.	Water.	Calories.
Antimony			Mois.	
pentachloride	SbCl ₅	18	1100	35,200
trichloride	SbCl ₃	18		8,910
Arsenic				-,
acid	H_3AsO_4	18	230	-400
pentoxide	As_2O_5	18		6,000
tri-chloride	AsCl₃ liq	18	900	17,580
Arsenious				
oxide	As_2O_3	18		-7,550
Auric				
bromide	AuBr ₃		2000	-3,760
chloride	·AuCl ₃		900	+4,450
Barium				
bromide	$BaBr_2$		400	+4,980
	BaBr ₂ .2H ₂ O		400	-4,130
chlorate	$Ba(ClO_3)_2.H_2O$		600	-11,240
chloride	BaCl ₂		400	+ 2,070
	$BaCl_2.2H_2O$	1	400	- 4,930
hydroxide	$Ba(OH)_2$		400	+12,260
**********	$Ba(OH)_2.8H_2O$		400	-15,210
iodide	$BaI_2.7H_2O$		500	- 6,850
nitrate	$Ba(NO_3)_2$		400	-9,400
oxide	BaO			+34,520
sulphate	BaSO ₄			- 5,580
acid	$B_2O_3.3H_2O$	18	800	-10,790
Bismuth	D ₂ O ₃ .511 ₂ O	10	000	-10,790
tri-chloride	BiCl ₃	18	1600	7,830
Bromine	Br ₂ liquid	18	600	1,080
Cadmium	Dr ₂ riquid,	10	000	1,000
bromide	$CdBr_2$		400	+440
66	$CdBr_24H_2O$		600	-7,290
chloride	$CdCl_2$		400	+3,010
"	$CdCl_2.H_2O$		400	+760
iodide	CdI_2		400	-960
nitrate	$Cd(NO_3)_2.H_2O$		400	+ 4,180
sulphate	$CdSO_4$		400	+10,740
"	$CdsO_4.H_2O$		400	+6,050
Cæsium	0 000 0 4120 1111111111111111111111111111111111			, ,,,,,
bi-carbonate	CsHCO ₃			- 4,317
chloride	CsCl			-4,750
oxide	Cs_2O			11,840
sulphate	Cs_2SO_4			-4,970
bi-sulphate	CsHSO ₄			- 3,730

Name.	Formula.	Temp. °C.	Water.	Calories.
Calcium			Mols.	
bromide	CaBr ₂		400	+24,510
66	CaBr ₂ .6H ₂ O		400	- 1,090
chloride	$CaCl_2$	1	300	+17,410
"	CaCl ₂ .6H ₂ O		400	- 4,310
hydroxide	$Ca(OH)_2$		2500	+2,790
iodide	CaI_2		400	+27,690
nitrate	$Ca(NO_3)_2$		400	+3,950
oxide	CaO		2500	+18,330
nitrate	$Ca(NO_3)_2.4H_2O$	400	2000	-7,250
sulphate	$CaSO_4$			+4,440
surphate	$CaSO_4.2H_2O$			-300
	$CaS_2O_6.4H_2O$		400	
sulphite	$CaS_2O_6.4\Pi_2O$		400	- 7,970
Cerium	G (GO) A ATT O		1000	1 10 100
sulphate	$Ce_2(SO_4)_3$. $4.4H_2O$		1200	+16,130
Citric	G TT O			
acid	$C_6H_8O_7$		600	-4,100
Cobalt				
chloride	$ \text{CoCl}_2$		400	+18,340
	CoCl ₂ .6H ₂ O		400	-2,850
nitrate	$Co(NO_3)_2.6H_2O$		400	-4,960
sulphate	$CoSO_4.7H_2O$		800	-3,570
Cupric				
bromide	$CuBr_2$		400	+80,250
chloride	CuCl ₂		600	+11,080
	CuCl ₂ .2H ₂ O		400	+ 4,210
nitrate	$Cu(NO_3)_2.6H_2O$		400	-10,710
sulphate	CuSO ₄		400	+15,800
"	$CuSO_4.5H_2O$		400	+ 9,340
Ferric	CusO4.01120		100	1 0,010
chloride	FeCl ₃		2000	+63,360
Ferrous	recia		2000	700,000
	E ₂ Cl		350	1 17 000
chloride	FeCl ₂			+17,900
	FeCl ₂ .4H ₂ O		400	+ 2,750
_ sulphate	$FeSO_2.7H_2O$		400	- 4,510
Formic	TT CITE	10	200	4 80
_ acid	$H.CHO_2$	18	200	150
Iodic				
acid	HIO3	18	200	-2,170
Iodine				
pentoxide	I_2O_5	18		-1,790
Lead	,			
acetate	$PbC_4H_6O_4.3H_2O$		800	- 6,140
bromide	$PbBr_2$		2500	-10,040

Name.	Formula.	Temp.	Water.	Calories.
Lead			Mols.	
chloride	PbCl ₂		1800	- 6,800
nitrate	$Pb(NO_3)_2$		400	- 7,610
Lithium	(10/2			,,,,,
oxide	Li_2O , $200H_2O$			31,200
Magnesium				,
chloride	$MgCl_2$		800	+35,920
"	$MgCl_2.6H_2O$		400	+ 2,950
hydroxide	$Mg(OH)_2$			0 -
potassium sulphate	$\mathrm{KMg}(\mathrm{SO_4})_2.6\mathrm{H_2O}\ldots$		600	-10,020
nitrate	$Mg(NO_3)_2.6H_2O$		400	-4,220
sulphate	$MgSO_4$		400	+20,280
	$MgSO_4.H_2O$		400	+13,300
"	$MgSO_4.7H2O$		400	- 3,800
sulphite	$MgS_2O_6.6H_2O$		400	-2,960
Manganese				
chloride	$MnCl_2$		350	+16,010
"	$MnCl_2.4H_2O$		400	+ 1,540
nitrate	$\operatorname{Mn}(\operatorname{NO}_3)_2 \dots \dots$			12,930
sulphate	$MnSO_4$		400	+13,790
"	$MnSO_4.H_2O$		400	+ 7,820
Mercuric				
chloride	$HgCl_2$		300	- 3,300
Nickel				
chloride	NiCl ₂		400	+19,170
"	NiCl ₂ .6H ₂ O		400	- 1,160
nitrate	$Ni(NO_3)_2.6H_2O$		400	-7,470
sulphate	$NiSO_4.7H_2O$		800	-4,250
Nitric	77370		200	W 400
acid	$\mathrm{HNO}_3\dots\dots$	18	300	7,480
Nitrogen	37 0			TO 000
carbide	N_2 , C_2	15	gas	-73,000
			dil.sol.	-67,100
Oxalic	** 6 0 0 7 0		F00	0 700
acid (cryst.)	$H_2.C_2O_4.2H_2O$		530	- 8,590
Phosphoric	TT DO . 11 . 1 . 1	4.0	200	F 0 F 0
acid	H ₃ PO ₄ , liquid	18	200	5,350
((H ₃ PO ₄ , solid	18	120	2,690
Phosphorous	TI DO 1' '1	10	100	2.010
acid	H ₃ PO ₃ , liquid	18	120	2,940
7.7	H ₃ PO ₃ , solid	18	120	-130
chloride, tri	PCl ₃ , liquid	18	1000	65,140
pentoxide	P_2O_5	18	550	35,600

Name.	Formula.	Temp.	Water.	Calories. ,
Potassium			Mols.	
acetate	$KC_2H_3O_2$		200	+ 3,340
bromate	$\mathrm{KBrO_3}$		200	- 9,760
bromide	KBr		200	- 5,080
carbonate	$\mathrm{K_{2}CO_{3}}$		400	+ 6,490
"	K_2CO_3 , $\frac{1}{2}H_2O$		400	+4,280
chlorate	KClO ₃		400	-10,040
chloride	KC1		200	-4,440
cyanide	KCn		175	-3,010
dichromate	$K_2Cr_2O_7$		400	-16,700
di-thionate	$K_2S_2O_6$		500	-13,010
hydroxide	KOH		250	+13,290
iodate	KIO ₃		500	- 6,780
iodide	KI		200	- 5,110
nitrate	KNO ₃		200	-8,520
oxalate	$K_2C_2O_4.H_2O$		800	-7,410
palladic chloride	K_2PdCl_6			-15,000
chlorplatinate	K ₂ PtCl ₆			-13,760
	K_2PtCl_4		600	-12,220
bromplatinite	K_2PtBr_4		800	-10,630
permanganate	KMnO ₄		1000	-20,790
acid sulphate	KHSO ₄		200	-3,800
sulphate	K_2SO_4		400	-6,380
Rubidium				-,
carbonate	Rb_2CO_3			9,077
bi-carbonate	RbHCO ₃			4,731
chloride	RbCl			- 4,460
oxide	$\mathrm{Rb}_2\mathrm{O}.$			83,000
sulphate	$\mathrm{Rb}_2\mathrm{SO}_4.\ldots\ldots$			- 6,660
bi-sulphate	RbHSO ₄			-3,730
Silver	•			,
nitrate	$AgNO_3$		400	-10,880
sulphate	Ag_2SO_4		1400	- 4,480
Sodium				_,
acetate	$NaC_2H_3O_2$		200	+ 3,870
"	$NaC_2H_3O_2.3H_2O$		400	- 4,810
ammonium phosphate	Na ₂ NH ₄ PO ₄ .4H ₂ O		800	-10,750
bi-borate	Na ₂ B ₄ O ₇ .10H ₂ O		1600	-25,860
bromide	NaBr		200	-190
"	NaBr.2H ₂ O		300	- 4,710
carbonate cryst	Na ₂ CO ₃			+ 5,640
"	Na2CO ₃ .H ₂ O			+2,250

Name.	Formula.	Temp.	Water.	Calories.
Sodium			Mols.	
carbonate cryst	Na ₂ CO ₃ .2H ₂ O		400	+20
	$Na_2CO_3.10H_2O$		400	-16,160
chloride	NaCl		100	- 1,180
hydroxide	NaOH		200	+ 9,940
hydrogen phosphate	Na_2HPO_4		400	+5,640
" " "	$Na_2HPO_4.2H_2O$		400	-390
			400	-22,830
iodide	NaI		200	+ 1,220
	NaI.2H ₂ O		300	- 4,010
nitrate	NaNO ₃		200	- 5,030
oxide	Na_2O			56,500
chlorplatinate	Na ₂ PtCl ₆ .6H ₂ O		900	-10,630
sulphate	Na ₂ SO ₄		{ 400	fused +460
			(400	efflor'd+170
***************************************	$Na_2SO_4.H_2O$		400	- 1,900
	$Na_2SO_4.10H_2O$		400	-18,760
D1•	NaHSO ₄		200	+ 1,190
thiosulphate	$Na_2S_2O_3.5H_2O$		400	-11,370
Stannic	a ai		900	1 00 000
chloride	SnCl ₄		300	+29,920
Stannous	9-01		900	1 250
chloride	SnCl ₂		300	+350
Strontium	$SnCl_2.2H_2O$		200	- 5,370
bromide	C _n D _n		400	+16,110
oromide	$SrBr_2$ $SrBr_2.6H_2O$		400	-7,220
chloride	$SrCl_2$		400	+11,140
Chioride	$SrCl_2.6H_2O$		400	-7,500
hydroxide	$Sr(OH)_2$		300	+11,640
"	$Sr(OH)_2.8H_2O$			-14,640
nitrate	$Sr(NO_3)_2$		400	-4,620
(6	$Sr(NO_3)_2.4H_2O$		400	-12,300
oxide	SrO			+29,340
sulphite	$SrS_2O_6.4H_2O$		400	-9,250
Sulphur	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		100	0,200
dioxide	SO ₂ , liquid	18	300	1,500
trioxide	SO ₃ , liquid	18	1600	39,170
Sulphuric	, *********************************	-	2000	00,210
acid	H ₂ SO ₄ , liquid	18	1600	17,850
((H ₂ SO ₄ , H ₂ O, liquid		1600	11,470
Pyrosulphuric	2.04.220, 2.04.001.			
acid	H ₂ S ₂ O ₇ , liquid	18	1600	54,320

Name.	Formula.	Temp. °C.	Water.	Calories.
Thallous			Mols.	
chloride	Tl_2Cl_2		9000	-20,200
hydroxide	Tl(OH)		470	- 6,310
nitrate	TlNO ₃		600	-19,940
oxide	Tl_2O		570	- 3,080
sulphate	$\mathrm{Tl}_2\mathrm{SO}_4$		1600	- 8,280
Zinc				
bromide	$ZnBr_2$		400	+15,030
chloride	$ZnCl_2$		300	+15,630
iodide	ZnI_2		400	+11,310
nitrate	$Zn(NO_3)_2.6H_2O$		400	- 5,840
sulphate	$ZnSO_4$		400	+18,430
	$ZnSO_4.H_2O$		400	+ 9,950
	$ZnSO_4.7H_2O$		400	-4,260
sulphite	$ZnS_2O_6.6H_2O$		400	-2,420

CV. — HEATS OF NEUTRALIZATION OF ACIDS WITH FORMATION OF SODIUM SALTS

Compound Formed.	Reaction.	Calories.
Sodium		
acetate	$HC_2H_3O_2$ 200 Aq, NaOH 200 Aq	13,400
arsenate	H ₃ AsO ₄ 200 Aq, 3NaOH 200 Aq	35,920
arsenite	$H_2As_2O_4$ 400 Aq, 2NaOH 400 Aq	13,780
borate	$H_2B_2O_4$ 300 Aq, 2NaOH 300 Aq	20,010
bicarbonate	H ₂ CO ₃ Aq, NaOH Aq	11,016
bromate	HBrO ₃ 400 Aq, NaOH 400 Aq	13,780
bromide	HBr 200 Aq, NaOH 200 Aq	13,750
carbonate	H ₂ CO ₃ Aq, 2NaOH Aq	20,180
cyanide	HCN 100 Aq, NaOH 100 Aq	2,270
chlorate	HClO ₃ 400 Aq, NaOH 400 Aq	13,760
chloride	HCl 200 Aq, NaOH 200 Aq	13,780
citrate	H ₃ C ₆ H ₅ O ₇ 600 Aq, 3NaOH 600 Aq	38,980
chromate	H ₂ CrO ₄ 400 Aq, 2NaOH 400 Aq	24,720
fluoride	HF 200 Aq, NaOH 200 Aq	16,270
formate	HCHO ₂ 200 Aq, NaOH 200 Aq	13,450
fluosilicate	H ₂ SiF ₆ 400 Aq, 2NaOH 400 Aq	26,620
hypochlorite	HClO 400 Aq, NaOH 400 Aq	9,980
hypophosphite	HPH ₂ O ₃ 250 Aq, NaOH 250 Aq	15,160
iodate	HIO ₃ 400 Aq, NaOH 400 Aq	13,810

Compound Formed.	Reaction.	Calories.
Sodium		
iodide	HI 200 Aq, NaOH 200 Aq	13,680
malate	H ₂ C ₄ H ₄ O ₅ Aq, 2NaOH Aq	26,170
metaphosphate	HPO ₃ 400 Aq, NaOH 400 Aq	14,380
monochloracetate	HC ₂ H ₂ ClO ₂ 200 Aq, NaOH 200 Aq	14,280
nitrate	HNO ₃ 200 Aq, NaÕH 200 Aq	13,680
palladochloride	H ₂ PdCl ₄ Aq, 2NaOH Aq	27,250
phosphate	H ₃ PO ₄ 450 Åq, 3NaOH 450 Aq	34,030
phosphite	H ₂ PHO ₃ 400 Åq, 2NaOH 400 Åq	28,450
platinichloride	H ₂ PtCl ₆ 600 Aq, 2NaOH 600 Aq	27,220
pyrophosphate	H ₄ P ₂ O ₇ 800 Aq, 4NaOH 800 Aq	52,740
selenate	H ₂ SeO ₄ 400 Aq, 2NaOH 400 Aq	30,390
silicate	H ₂ SiO ₃ 200 Aq, 2NaOH 200 Aq	5,230
succinate	H ₂ C ₄ H ₄ O ₄ 400 Aq, 2NaOH 400 Aq	24,160
sulphate	H ₂ SO ₄ 200 Aq, 2NaOH 200 Aq	31,380
sulphydrate	HSH Aq, NaOH Aq	7,740
sulphite	H ₂ SO ₃ 400 Aq, 2NaOH 400 Aq	28,970
tartrate	H ₂ C ₄ H ₄ O ₆ 300 Aq, 2NaOH 300 Aq	25,310

CVI. — RELATIVE AVIDITY OF ACIDS

				Measured b	у
Mole- cules.	Acid.	Avidity.	Electric Conductiv- ity.	Hydroly- sis of Methyl Acetate.	Inversion of Cane Sugar.
1	Nitrie	1.00	0.996	0.92	1.00
1	Hydrochloric	1.00	1.00	1.00	1.00
1	Hydrobromic	0.89	1.01	0.98	1.11
1	Hydriodic	0.79			
$\frac{1}{2}$	Sulphuric	0.49	0.65	0.74	0.73
$\frac{1}{2}$	Selenic	0.45			
1	Trichloracetic	0.36	0.62	0.68	0.73
1	Orthophosphoric	0.25	0.07		0.06
$\frac{1}{2}$	Oxalic	0.24	0.20	0.17	0.18
1	Monochloracetic	0.09	0.05	0.04	0.05
1	Hydrofluoric	0.05			
$\frac{1}{2}$	Tartaric	0.05	0.023	0.023	
1/3	Citric	0.05	0.017	0.016	0.017
1	Acetic	0.03	0.004	0.003	0.004
1/2	Borie B ₂ O ₃	0.01			
$\frac{1}{2}$	Silicic	0.00			
1	Hydrocyanic	0.00			

CVII. — HEAT OF COMBUSTION OF VARIOUS SUBSTANCES

Substance.	Burned to	Heat E	volved.	Authority.
Substance.	Burned to	Cal- ories.	B.T.U.	Authority.
Alcohol, ethyl	CO,+H,O liquid	7184	12931	Favre and Silberman
ethyl	CO ₂ +H ₂ O liquid	7054	12697	Berthelot
methyl		5330	9594	
Asphalt		9532	17159	Slossen and Colburn
Benzol C ₆ H ₆ gas	CO ₂ +H ₂ O liquid	10070	18126	Berthelot
gas	CO ₂ +H ₂ O liquid	9650	17370	
liquid	CO ₂ +H ₂ O liquid	10030	18054	Stohman
Cane sugar		3961	7130	Berthelot
Carbon crystallized	CO	2405	4329	Berthelot
crystallized	CO ₂	7859	14146	Berthelot
amorphous	CO	2489	4480	Berthelot
amorphous	CO ₂	8137	14647	Berthelot
amorphous	CO_2	8080	14544	Favre and Silberman
vapor	CO_2	11328	20390	Calculated
vapor diamond	CO ₂	11134	20041	Berthelot
Carbonic oxide CO	CO ₂	5640	10152	Thomsen
Cellulose	CO ₂ +H ₂ O liquid	4208	7574	Berthelot
Charcoal	CO	2473	4451	Favre and Silberman
	CO	2442	4396	Berthelot
	CO_2	8080	14544	Favre and Silberman
"	CO_2	8137	14647	Berthelot
beech	CO_2	7140	12852	Schwackhöfer
soft	CO ₂	7071	12723	Schwackhöfer
sugar	CO ₂	8040	14472	Favre and Silberman
Coul (num and dury)		(7800	14040	
Coal (pure and dry)		9000	16200	
Coke gas	CO_2	8047	14485	Favre and Silberman
petroleum	CO_2	8017	14503	Mohler
Copper	CuO	590	1062	Thomsen
Gas, acetylene C ₂ H ₂ .	CO ₂ +H ₂ O liquid	11927	21469	Berthelot
acetylene C ₂ H ₂	CO ₂ +H ₂ O liquid	11527	20749	Thomsen
coal		(4440)	7990	
coar		7370	12266	• • • • • • • • • • • • • • • • • • • •
ethylene C ₂ H ₄	CO ₂ +H ₂ O liquid	11858	21344	Favre and Silberman
ethylene C ₂ H ₄	CO ₂ +H ₂ O liquid	12072	21730	Berthelot
ethylene C ₂ H ₄	CO ₂ +H ₂ O gas	11293	20327	Berthelot
methane CH4	CO ₂ +H ₂ O liquid	13063	23513	Favre and Silberman
methane CH ₄	CO ₂ +H ₂ O liquid	13344	24019	Berthelot

Out atomos	Daywood to	Heat E	volved.	Azeklanuidun
Substance.	Burned to	Cal- ories.	B.T.U.	Authority.
Gas, methane CH,	CO _o +H _o O gas	12066	21719	Berthelot
petroleum		10800	19440	
producer		773	1391	
producer		(1370	2466	
water		2350	4230	
water		3032	5458	
Glycerene	CO ₂ +H ₂ O liquid	4316	7769	Stohman
Graphite	CO_2	7901	14222	Berthelot
Hydrogen	H₂O liquid	34462	62032	Favre and Silberman
	H ₂ O liquid	34180	61524	Thomsen
	H ₂ O liquid	34500 28800	62100	Berthelot
	H ₂ O gas	29150	51840 52470	Thomsen Berthelot
Iron	H_2O gas Fe_2O_3	1582	2848	Derthelot
11011	re ₂ O ₃	(6000	10800	
Lignite (pure and dry)		7000	12600	
Magnesium	MgO	6077	10939	
Naphthalene	CO ₂ +H ₂ O liquid	9690	17442	Berthelot
"	$CO_2 + H_2O$ gas	9354	16837	Berthelot
Oil, cotton seed	0021220 5	9500	17100	
heavy coal gas		8900	16020	St. C. Deville
olive		9473	17051	Stohman
rape		9489	17080	Stohman
schist		9000	1620	
sperm		10000	18000	Gibson
Paraffin	CO ₂ +H ₂ O liquid	11140	20050	Stohman
	$CO_2 + H_2O$ gas	10340	18612	Stohman
Peat		5940	10692	Bainbridge
Petroleum		9600	17280	
		11000	19800	
Pitch		8400	15120	
Silicon	SiO_2	7407	13333	Berthelot
Stearic acid	CO ₂ +H ₂ O liquid	9374	16873	Stohman
Starch	CO ₂ +H ₂ O liquid	4228	7610	Berthelot
Sulphur, rhombie	SO_2	2221	3998	Favre and Silberman Berthelot
rhombic	SO ₂	2166 2241	3899 4034	Thomsen
monoclinic	SO_2	9500	17100	Stohman
Tallow		4750	8550	Gottlieb
soft resinous		5050	9090	Gottlieb
Soft resinous		9090	8080	GOULIED
			1	1

CVIII. - CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF ANTHRACITE COAL*

Heat of Combustion.	Cal- ories. B.T.U.	7724 13900 8333 15000 7833 14100 7583 13650 7806 14050 8442 1519 5
	. Ash.	11.0 5.42 15.5 14.0 10.01 0.84 6.83
	Water.	
	Sul- phur	
osition.	Nitro- gen.	
Chemical Composition.	Oxy- gen.	0.78
Chemica	Hydro- gen.	
	Total.	99.06
	Comb. Kixed. Total.	5.0 84.0 2.17 92.41 6.21 76.94 5.0 81.0 7.49 76.28 6.67 85.66 90.66 1.73 0.78 .001
	Volatile Comb. Matter.	5.0 2.17 6.21 5.0 7.49 6.67
	Source and Grade of Coal.	Lackawanna. Black Mountain. Lykens Valley buckwheat. Lykens Valley buckwheat. Mount Pleasant Scranton pea. Treverton.

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CIX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF BITUMINOUS COAL*

				hemica	Chemical Composition.	sition.				Heat of Combustion.	of stion.
Source and Grade of Coal.	Volatile	Carl	on.	iro-	Oxo-	Nitro-	S.			100	
	Matter. Fixed. Total.	Fixed.	Total.	Hyo ge	gen.	gen.	phur.	Water.	Ash.	ories.	B.T.U.
Indiana: Brazil	34.49	50 30	70 50	4.76	16 90	1 26	1 20	0000		0010	3
Lancaster	37.44	37.44 47.22 71.41 5.56 18.42 1.54 0.62	71.41	5.56	18.42	1.54	0.62	12.66	2.68	7917	14942
Ohio: Brier Hill.	36.4	59.1		:) .		7888	14200
Hocking Valley	36.05	49.05	68.18 4.65	4.65		9.40 1.44 1.43	1.43	6.40	8.50	7922	13981
Waterford	37.29	53.34	74.39	4.98		6.42 1.40 3.44	3.44	1.55	7.82	8230	14814
Pennsylvania: Carnegie	36.42	56.20	77.20	5.10		1.68	1.42	1.45	5.93	8304	14947
West Virginia: Pocahontas	18.30	73.65	83.75	4.13	2.65	0.85	0.57	08.0	7.25	8928	15682
Pocahontas ad	18.10	74.52	:	:		:	09.0	0.73	6.65	8751	15739
Thacker	35.00	57.10	78.90	4.98		5.64 1.42 1.16	1.16	1.40	6.50	8434	15181
Wyoming: Diamond	33.35	44.30	77.65	:			0.42	14.50	7.85	6477	11658
Harker	33.52	43.90	77.40	:	:		1.03	7.88	14.70	7433	13380
Jumbo	40.13	43.65	83.78	:	:	:	4.57	5.72	10.50	7873	14170
	_	_	_	_			_				

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CX. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF OVEN COKES*

Source of Coke. Volatile			петиса	Chemical Composition.	sition.				Hea	Heat of Combustion.
Matter	Carbon.	on.	n.	O _V V-	Nitro	S. I.				
Traction .	Fixed. Total.	Total.	Hyo	gen.	gen.	phur.	Water.	Ash.	ories.	B.T.U.
0.46		:	:		:	0.81	0.03	9.11	7895	
60.0	75.94	. :	:		:	0.67	0.54	21.75	7953	
Pineville, W. Va.	94.66	:	:		:	0.69	1.14	3.57	9008	
99.0	92.80	:	:	:	:	0.55	0.66	4.91	8032	
1.58	88.87	:	:	:	:	1.18	1.92	8.99	7946	
Seymore, Pa		•	:	:	:	0.85	0.22		8036	14468
St. Bernard, Pa 0.34	90	:			. :	2.37	:	8.96	7995	

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole,

CXI. -- CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF LIGNITE*

			Chen	nical Co	Chemical Composition.	n.				Heg	Heat of Combustion.
Source of Coke.	Volatile	Carl	on.		Over	Nitro	Cl			1	
	Matter, Fixed. Total.	Fixed.	Total.	Hyd	gen.	gen. phur.	phur.	Water.	Ash.	ories.	B.T.U.
Cañon City, Col	37.61	51.36	:	7.38	9.27	1.50	1.02	9.27 1.50 1.02 7.01	4.03	7276	13097
Errie, Col.	32.71	45.98	:	4.25	6.65	1.64	1.64 0.52	18.57	2.74		
Golden City, Col.	44.74	34.89	:	5.14		1.50	0.42	14.60 1.50 0.42 17.15	3.22		9778
Golden City, Col.	36.20	45.08	:	5.07		1.20	0.43	18.35	3.37		8154
Golden City, Col.	41.23	38	:	4.89	13.88 0.95 0.30	0.95	0.30	17.64	2.67		2466
Gunnison River, Col	12.16	84.65	:	3.72		1.62	0.70		2.29	7911	14240
Lechner's South Park, Col	33.79	58.62	:	5.23	12.86	2.35	0.47	6.30	1.28		12204

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CXII.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WOOD*

Name.		Che	emical Cor	nposition	1.			f Com-
Name.	Carbon.	Hydro- gen.	Oxygen.	Nitro- gen.	Ash.	Water.	Cal- ories.	B.T.U
Ash	49.18	6.27	43.91	0.07	0.57		4711	8480
Beech	49.06	6.11	44.17	0.09	0.57		4774	8591
Birch	48.88	6.06	44.67	0.10	0.29		4771	8586
Elm	48.89	6.20	44.25	0.06	0.50		4728	8510
Fir	50.36	5.92	43.39	0.05	0.28		5035	9063
Oak	50.16	6.02	43.36	0.09	0.37		4620	8316
Pine	50.31	6.20	43.08	0.04	0.37		5085	9153
Tan bark					15.0		3389	6100
66 66						30.0	2380	4284

CXIII.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF PETROLEUM *

		Specific	Che	emical C	ompositio	on.	Hea Combu	
Source.	Grade.	Grav- ity.	Carbon.	Hydro- gen.	Oxygen + Ni- trogen.	Oxy- gen.	Cal- ories.	B.T.U.
Ohio	Heavy		84.2 80.2	13.1 17.1	2.7		10399 12000	18718 21600
Pennsylvania	Crude Heavy	0.938	84.9	13.7 13.7	1.4	1.4	11520 10672	20736
West Virginia	Light	0.826	82.0	14.8 13.9	3.2	0.8	9963 10102	17930
	Heavy Light	0.841	84.3	13.3 14.1	3.2 1.6		10180 10223	18324 18400
Russia	Crude	0.884		$13.6 \\ 12.3$		0.1	12650 10800	22628 19440

^{*} Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

OF CXIV. — CHEMICAL COMPOSITION AND HEAT OF COMBUSTION NATURAL GAS*

				Chemical	Chemical Composition.	tion.				Heat of Combustion.	of stion.
Source of Gas.	Hydro- gen, H ₂ .	Meth- ane, CH₄.	Ethyl- ene, C ₂ H ₄ .	Illumi- nants.	Carbon Dioxide, CO ₂ .	Carbon Mon- oxide, CO.	Oxygen,	Nitro- gen, N ₂ .	Hydro- gen Sul- phide, H ₂ S.	Calories per Cu. M.	B.T.U.
Indiana, Kakomo.	1.42	94.16	0.30		0.27	0.55	0.30	2.80	0.18	9581	1030
Munice	2.35	92.67	0.25		0.25	0.45	0.35	3.53	0.15	9477	1019
Kentucky, Louisville	1.31	87.75		:	09.9		:	4.34		8849	939
New York, Olean	•	96.50		1.00		0.50	2.00			0066	1071
W. Bloomfield		82.41	•	2.94	10.11	:	0.23	4.31		9158	866
Ohio, Findlay	2.18	92.60	•	0.31	0.26	0.50	0.34	3.61	0.20	10250	1100
Pennsylvania, Burn's Well	6.10	75.44	18.12	trace	0.34	trace				10090	1170
Cherry Tree	22.50	60.27	6.80		2.28	•	0.38	7.32	:	8034	840
E. Liberty	9.64	57.85	08.0	5.20		1.00	2.10	23.41		5581	592
Leechburg	4.89	89.65	4.39	0.56	0.35	0.26	:		:	8965	1073
Grapeville	. 24.56	14.93	0.96	39.64	trace	trace	0.12	18.69	:	8326	891
e	19.56						2.20		:	8458	006
Pittsburg	20.02	72.18	•	6.30	08.0	1.00	08.0	:	:	8620	917

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CXV. - CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF

Heat of Combustion.	B.T.U.	129	612	611	645	657	399	612	645	620	599
Hea	Calories per Cu. M.	6095	5460	5455	6033	6151	3736	5730	6033	5536	2608
	Hy- drogen Sul- phide, H ₂ S.			:		:	:	0.43			:
	Nitro-gen, N2.	0.85	. w	6.3	3.71	14.20	18.0		8.20	3.7	2.06
	Oxygen,		0.6	9.0	0.41	0.40	:	:	1.40	0.5	:
ltion.	Carbon Mon- oxide, CO.	6.74	4.5	3.6	4.78	10.40	3.20	6.46	4.30	5.7	6.16
Chemical Composition.	Carbon Dioxide, CO ₂ .	1.04	1.4	2.2	0.82	0.20	2.00	1.41	2.70	3.1	1.16
Chemica	Illumi- nants.		6.2	5.5	:	1.70	8.0	2.24	0.75	5.0	5.23
	Ethyl- ene, C ₂ H ₂ .	5.21		:	5.17	9.50		:	5.85	•	
	Meth. ane, CH4.	38.67	39.2	36.5	39.26	28.80	18.8	36.11			34.80
	Hydro-gen, H ₂ .	47.49	44.6	45.4	45.85	34.80	57.2	53.2	39.50	46.5	50.59
	Source of Gas,	Boston, Mass	Cape Breton, Canada	Cape Breton, Canada	Cincinnati, Ohio	Cleveland, Ohio	Coke Ovens, Johnston, Pa.	Coke Ovens, Westphalia	Hoboken, N. J	International, Canada	Newton, Mass

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

CXVI.—CHEMICAL COMPOSITION AND HEAT OF COMBUSTION OF WATER GAS *

				Chemical Composition	Compos	ition.				Heat of Combustion.	of stion.
Source of Gas.	Hydro- gen, H ₂ .	Meth- ane, CH₄.	Ethyl- ene, C ₂ H ₄ .	Illumi- nants.	Carbon Dioxide, CO ₂ .	Carbon Mon- oxide, CO.	Oxygen,	Nitro- gen, N ₂ .	Hydrogen Sulphide, H ₂ S,	Calories per Cu. M.	B.T.U. per Cu. Ft.
Anthracite gas.	52.76	:		4.11	2.05	35.38		4.43		3385	386
Coke	50.10	:		0.70	4.00	40.00		5.3		2859	294
Coke and bituminous coal	94.08			:	0.50	3.54		0.12	:	3032	324
Granger process (uncarburetted)	52.88	2.16		3.47	:	36.8	:	4.69	:	2642	283
Granger process (carburetted)	30.0	24.0	12.5	0.3		29.0	0.2	2.5	1.5	0009	640
Granger process (from coke)	52.41	0.2	:	:	4.8	11.5	:	0.47	:	3098	331
Loomis process, Boston, Mass	53.40	3.10	:	0.29	7.60	29.50	:	6.05	:	2884	308
Lowe process, Des Moines (1½ gal. oil).	41.7	12.2	:	5.4	4.5	34.6	0.4	1.2	:	4580	490
Lowe process, Des Moines $(2\frac{1}{2} \text{ gal. oil})$.	37.6	16.5		6.8	3.7	30.7	0.7	1.9	:	5514	590
Lowe process, Philadelphia, Pa	50.9	:	:	:	:	44.5	0:07	2.08	:	3062	327
New York City, 1897	32.7	16.8	:	14.4	2.4	30.2	0.4	3.1		7160	992
Rose-Hastings, Louisville, Ky. (soft c'1)	36.4	23.2	:	14.05	3.02	19.1	1.15	3.08	:	6140	657
Rose-Hastings (generator gas)	8.6	49.6		1.1	8.1	28.1	0.3	3.9	:	3482	390
Rose-Hastings (enriched)	26.0	34.6		11.9	5.6	10.9	0.3	1.6	:	0009	673
Strong Process, Yonkers, N. Y	52.76	4.11	:		2.05	35.88	0.77	4.43	:	2900	315
					_	_					
		-	Charles of the Party of the Par						-		-

* Most of the data for this table have been quoted from The Calorific Power of Fuels by Poole.

The state of the s

STOICHIOMETRY

R. HARMAN ASHLEY, Ph.D.

AND

CARL H. LIPS, Ph.D.

EIN-ROTH TOUR

E B. WERST AVAILA

ा, समान भा ह

WEIGHT AND MASS

FUNDAMENTAL UNITS

Velocity (v) is equal to the distance travelled, divided by the time required to do so. v = distance/time.

The Unit of Velocity (u) is the velocity of a point that traverses the unit distance, in the unit of time, u = cm./sec.

The Unit of Acceleration. (a)— The acceleration per unit of time a is equal to the addition to a velocity, of another velocity u equal to the unit of velocity. a cm. per sec. = u, $a = u/sec. = (cm./sec.)/sec. = <math>a = cm./sec.^2$.

Acceleration produced by Gravity (g).—It has been found that gravity will impart to any body, irrespective of its weight, an acceleration of 980.62 cm. per second per second (g) in mean latitude (45°) ; that is, the velocity attained by a freely falling body is 980.62 cm. per second, at the end of the first second of its fall. At the beginning of its fall, it has no velocity, while at the end of the first second of its fall, it travels with a speed that carries it 980.62 cm. in one second. It has then traversed a distance of 980.62 cm./2 = 490.31 cm. The formula showing this, and from which g may be calculated after determining the other data experimentally, is $H = \frac{1}{2}gt^2$. H = height or distance travelled, in centimeters; t = time in seconds.

The Unit of Length, in physical computations, is the centimeter. This centimeter is the one one-hundredth part of the distance between two marks on a rod of a platinum-iridium alloy (9 parts platinum, 1 part iridium) kept in Paris in the archives of the Bureau of Standards. Since 1875 rods of this alloy have been made, and the distance of one meter indicated upon them by two fine lines. These rods have been supplied to those governments that have joined the "Meter Conference" originally held in Paris on the 20th of May, 1875. The original meter, made by Lenoir and still preserved in the archives in Paris, is the distance, from end to end, on a rod of platinum, at 0° C.

Originally the meter was intended to be the ten millionth part of a quadrant of the meridian. The reason that the length of the seconds pendulum was not taken as the unit was that, then, another element, *time*, would have been brought into consideration.

The Unit of Volume is equal to 1 centimeter cube, cm.³.

The volume of 1000 ccm. was taken as a unit for common measure and called a liter which is also equal to the volume of one kilogram of pure water at 4° C. weighed in vacuo. The mass of a liter of water at 4° C. was adopted as the unit of mass, and called a kilogram. A mass of platinum-iridium alloy, made to coincide exactly with the mass of one liter of water at 4° C., is kept in the archives of the Bureau of Standards in Paris.

The Unit of Mass is the one thousandth part of the above standard kilogram or is equal to 1 gram; the unit of mass is, of course, also equal to the

mass of 1 gram of water at 4° C. The reason that the definition of the unit of mass refers to the above standard kilogram and not to the liter is that, when the metric system was evolved, it was intended to make the unit of mass equal to the mass of a cubic centimeter of pure water (very carefully distilled) at 4° C. The original kilogram standard was made in accordance with this intention. But it was then found that the comparison of kilogram weights could be made more accurately than the determination of the weight of a cubic centimeter of water at 4° C. Therefore, the above kilogram weight is taken as the standard of mass.

The Unit of Force, or the Dyne, is that force which gives to the unit of mass, in the unit of time, the unit of velocity. The dyne = (gram (mass) × cm.)/sec.

One of the fundamental laws of mechanics states that a unit force f, which gives to a unit mass m, in the unit time t, a unit velocity u ($u=\mathrm{cm./sec.}$), varies directly as the quantities m and u, and inversely as the quantity t, or f=c.m.u/t. This c is a constant. But force is equal to mass times acceleration, and $u/t=(v/t)/t=v/t^2=$ acceleration. So $m.v/t^2=$ force unit. Consequently mv/t=c.m.v/t and c must then be equal to 1. The force, exerted by the earth's attraction upon the mass of 1 gram, in mean latitude, 45°, is equal to 1×980.62 cm. gram/sec.² or 1×980.62 dynes. The weight of 1 gram mass is, thus, 980.62 dynes, and 1 dyne force or weight = 1 gram mass/980.62=0.00102 grams weight.

Weight.— The force with which gravity acts upon a mass M is called the weight W of this mass. The forces thus acting are known by the same names as the masses upon which they act. The weight of a kilogram is the force with which the earth acts upon the mass of a kilogram. This latter force is in mean latitude, 980.62 cm./sec.² and is generally designated by the letter g. Consequently the weight kilogram = the mass kilogram $\times g$, or the force kilogram = mass $kg \times g$, or in the absolute system, we have, force (weight) $kg = 1000 \times 980.62$ dynes.

The fact that masses and weights are designated by the same terms, although they depend upon entirely different units, and, therefore, have different numerical values, is often rather confusing. It is, therefore, necessary for the scientist always to bear in mind, when dealing with e.g., a kilogram, whether the weight (force) or the mass of the kilogram for example is meant.

Weighing. — The expression weight refers to the relative attraction of bodies for one another. Weight is not a characteristic of any one body, and as the "weight" of a body varies about ½ per cent on the surface of the earth, the weight of any one body cannot be made unity. Special sets of weights would have to be made for at least each latitude.

The weights we use are masses to which we compare other masses. Our sets of "weights" are really sets of masses, and a weighing performed on an ordinary analytical balance is not a determination of weight, but a determination of mass.

The Unit of Pressure is that pressure in which the unit of force is exerted upon the unit of area. In other words, unit pressure is equal to a pressure of, or weight of, 1 dyne acting on a square centimeter (gram cm./sec.²)/cm.² = gram/sec.² cm.

Atmosphere. — The pressure exerted upon the area of one square centimeter by a column of mercury, 76.0 cm. high, at 0° C., at sea level and in a latitude of 45°, is known as a pressure of one atmosphere.

The mass of a unit volume of mercury is 13.596 times as great as the mass of a unit volume of water. The cross-section of the above column of mercury being 1 sq. cm. in area, the mass is, therefore, 1 (sq. cm.) \times 76.0 (cm.) \times 13.596 = 1033.296 grams. The weight of this mass pressing downwards is 1033. 296 \times 980.62 cm./sec.² at 45° latitude. And this is equal to 1,013,270.7 + dynes. At latitude 50° we have 1033. 296 \times 981.1 cm./sec. 1,013,766.7 + dynes. At 45° latitude the value of 1 dyne in grams is 0.00102 (more correctly 0.0010196), and consequently the pressure there, of one atmosphere, will be 1,013,270.7 + \times 0.0010196 grams = 1033.290 grams weight per square centimeter. The ratio of 981.1: 980.62 is 1.0005: 10. Therefore, if we multiply 1033.29 by 1.0005, we obtain the value in grams weight of 1 atmosphere at 50° latitude, which is equal to 1033.81 grams.

The constant g varies with the latitude, as we have just seen. It also varies with the height. The following formula enables us to calculate g for any latitude and for any height. $g = 980.6 \ (1-0.0026 \times \cos 2\phi - 0.0000002 \ H)$ cm./sec. ϕ = latitude in degrees. H = height in meters. g decreases as a body is raised above sea level, by 0.2 millionths parts for every meter of the value at sea level. Local variations amount to about as much. 0.0000002 is a mean, and is influenced by local topographical conditions. The entire variation at sea level is only about 0.5 per cent, g at the equator being 978.1 and at the pole 983.2.

It was the physicist Richter, who in the year 1672, when in Cayenne, noticed that the seconds pendulum was shorter than in his northern home. This led him to conclude that the force of gravity varied on the surface of the earth, L=gt/TP. At the equator g=978.009, while at the pole, it is 983.089 (cm./sec.). The "weight" of 1 gram of mass, at the pole, will be 1×983 dynes, and that of the same mass, at the equator, will be only 1×978 dynes, or a difference of 5 dynes. As one dyne (see under Unit of Force) is equal to 0.001020 grams weight, the difference in weight of the mass of one gram, weighed at the pole, and at the equator, is 0.00510 grams.

Expansion. — The fractional increase in length of the unit of length, upon heating, varies with the temperature, and the constant of variation, at any particular range of temperature, is called the coefficient of linear expansion.

 $L = \text{length at } t^{\circ}$, $L_{0} = \text{length at } 0^{\circ}$, B = constant (coefficient), $t = \text{number of degrees between } 0^{\circ}$ and t° , then by definition $\left(\frac{L - L_{0}}{L_{0}t}\right) = B$.

If B is known, this last equation permits us to calculate the length L for any temperature of a rod whose length at 0° was L_0 .

Reduction of a Length to Length at 0° . — If we know the length L of a rod at t° , and if we know also B, then we can calculate the length L_0 that the rod would have at 0° . $L_0 = L/(1+Bt)$. Since B is generally very small, 1/(1+Bt) = 1 - Bt, and we have, $L_0 = L(1-Bt)$.

Cubical Coefficient of Expansion, a. — In the case of the superficial expansion of an isotropic material of unit length of side, at 0° , we obtain for t° rise

in temperature a length of side of 1 + Bt; the area will then be $1 + 2Bt + (Bt)^2$. As $(Bt)^2$ represents a very small number, we can neglect it. The coefficient of superficial expansion is then 2B.

Similarly the cubical coefficient of expansion from 0° to t° is 3 B, for in the expression for the cubical contents, after expansion, $1 + 3 Bt + 3 Bt^2 + Bt^3$,

the last two terms may be neglected, as being very small.

The cubical coefficient of expansion is generally expressed for brevity's sake, by the Greek letter α (alpha).

CALCULATION

Accuracy of Measurements

When making physico-chemical measurements, it must not be forgotten that errors of observation are unavoidable. These errors depend upon various causes, such as the individuality of the observer, the delicacy of adjustment of the instruments, change of temperature during the observation, and among still other causes, a change in the body during measurement, due to hygroscopic properties, or other causes not controllable.

Thus it will be seen that, in practice, several measurements of the same object, made at different times, may vary from each other, or the measurement of one sample may vary from that made of another sample of the same homogeneous object. The relative size of these differences is called "definition" by Ostwald-Walker who formulated the fundamental rule for measurements, as follows: The accuracy of the measurement must correspond to the exactness of the definition of the object to be measured. An example will illustrate this:

One hundred grams of a 1 per cent solution of a salt, in water, are to be made. It would be an error, in method, to weigh the water on the same delicate balance as the 1 gram of salt, striving in both cases, of course, for the same limit of accuracy, about 0.1 mg. The "definition" of such a quantity of water is uncertain, owing to evaporation, etc. Furthermore, an error of 0.1 mg. in the weight of the salt occasions the same error in the strength of the solution, as a one hundred times greater error in the weight of the water: $0.0001 \, \text{g.} / 1 \, \text{g.} = x/100$, x = 0.01, x = 0.01 per cent, and x = 0.01 g. x = 0.01 per cent.

Figuring

Results should be given in so many figures, that the second last figure is fairly accurate, while the last figure is uncertain owing to errors of observation in making the measurements. In doubtful cases, it is advisable to carry one figure more rather than less. Arithmetically the results must be correct, and thus, in a longer calculation, e.g., one in which logarithms are used, one figure more than it is intended to report in the result, should be carried along, as otherwise, by dropping all but the number of figures intended for the final result, the last figure in the number may become wrong by several units.

Suppose, in measuring a cube whose edges are 2.10 cm., 1.01 cm., and 1.05 cm. long respectively, we make, in each case, an error of + 0.01 cm. The uncertainty, due to error of observation, lies in the second place of the decimal.

The final result, then, cannot agree with the actual facts, beyond this third figure of the number. This third figure is uncertain and cannot be made more certain by annexing figures to it:

 $2.11 \times 1.02 \times 1.06 = 2.281332$, arithmetically. $2.10 \times 1.01 \times 1.05 = 2.22705$, arithmetically. $2.09 \times 1.00 \times 1.04 = 2.1736$, arithmetically.

From the above the volume of the cube is $2.2 \pm \text{ccm}$.

Added zeros or those beginning decimal fractions are not counted when determining the number of figures with which to calculate or those that are to be reported.

SPECIFIC GRAVITY

Hydrostatic Pressure. — The weight of each layer of a liquid presses upon the layer beneath it so that the pressure increases with the depth of the liquid.

Let q be the area of the upper surface of such a layer, h the height of the column of liquid, and d its density; then the mass m of the liquid will be m = q.h.d. And if g is the acceleration of gravity in the latitude where the determination is made, then the weight w of the liquid will be w = q.h.d.g.,

and the pressure per unit area will be $p = \frac{q.h.d.g.}{q} = h.d.g.$ (Force = mass \times

acceleration, and pressure = force per unit area.) Every horizontal layer of liquid that has a layer of liquid above it of the height h will receive a pressure p=h.g.d. This pressure, produced by gravity, is known as hydrostatic pressure.

TERMS USED IN CONNECTION WITH SPECIFIC GRAVITY

- (1) The specific gravity of a homogeneous substance is expressed by a number indicating how many times heavier or lighter it is than the weight of an equal volume of water of maximum density 4° C. In other words, it is equal to the weight of the body divided by the weight of an equal volume of water at 4° C.
- (2) The *density* of a homogeneous substance is equal to the mass of a unit volume of the substance. See (7).
- (3) The specific volume of a homogeneous substance is equal to the volume of a unit mass of the substance. See (7).
 - (4) Density and specific volume are reciprocals of each other.
- E.g., 10.53 = density of Ag. 10.53 grams. of Ag occupy 1 cm. 1 gram of silver occupies a volume of 1/10.53 c.cm. which equals the specific volume.
- (5) The volumes of equal weights of bodies vary inversely as their specific gravities.
- (6) The weights of equal volumes and the densities of substances vary directly as their specific gravities, and inversely as their specific volumes and as the volumes of equal masses.

(7) Figures representing specific gravity are relative figures, and as such independent of the absolute, or c.-g.-s.-system.

(8) Density and specific volume, however, are expressed in the absolute

system.

According to (1) water at 4° C. has a specific gravity of 1, and as 1 ccm. of water at 4° C. contains 1 gram mass, the density of water at 4° C. in the c.-g.-s.-system is equal also to 1, or in other words, density and specific gravity in the absolute system are equal.

(9) In practice, generally, water of to is employed. This leads to the

determination of the specific gravity of water at t° .

(10) Specific gravity of water of $t^{\circ} = \frac{\text{weight of a body in water of } t^{\circ}}{\text{weight of same body in water of } 4^{\circ}}$

= the ratio of the weights of equal volumes (6).

(11) From (10) and (1) we obtain for the specific gravity of a homogeneous solid, determined in water of t° , specific gravity = $\frac{\text{weight of body at } t^{\circ}}{\text{loss of weight in water at } t^{\circ}}$

 \times specific gravity of water at t° .

Similarly, the specific gravity of a liquid is found as follows: Weigh a body in the liquid, and in water of the same temperature. The loss of weight of the body in the liquid and its loss of weight in water represent the weights of equal volumes of the liquid and of water, and we have

(12) Specific gravity = $\frac{\text{loss of weight of body in the liquid of } t^{\circ}}{\text{loss of weight of body in water of } t^{\circ}} \times \text{specific}$

gravity of water of t° .

METHODS FOR DETERMINING SPECIFIC GRAVITY OF SOLIDS

The Pycnometer. — Let the pycnometer, filled with water, or any other liquid as above, weigh p grams, the body m grams and the pycnometer, after the body has been dropped into the water and the overflow removed, p grams. The overflow, or the volume of water displaced by the body is, then, v = p + m - p. v ccm. water at 4° have a mass of v grams. d = m/v and specific

gravity = m grams/v grams.

Nickolson's Hydrometer. — This instrument is so adjusted that when 10 grams are placed in the pan, the instrument sinks in distilled water, at 4° C. to a fixed mark 0 on the stem. Place in the pan a fragment of the body weighing less than 10 grams, and add the weight w required to sink the mark to the water level. Then the weight of the substance in air is 10-w. Remove the body to the cavity at the bottom of the instrument. Now add to the weight in the pan till the 0 mark again is at the water level. The additional weight represents the buoyancy of the body, or its apparent loss of weight in water. The specific gravity = (10-w)/w'. Owing to the many sources of error, this instrument is but rarely used.

Jolly's Spring Balance. — The spiral spring of this balance when used for specific gravity determinations has fastened to it two weighing pans, the lower one of which is always submerged in water. The lower, free end of the

spring may be shaped into a pointer.

With the aid of a set of weights weighing can readily be made with this instrument, by bringing the pointer end always to the same mark on a graduated scale fastened behind the spring. Without weights weighings may be performed by employing the principle that the elongation h of the spring is practically proportional to the weights w attached. $w = c \cdot h$. By a trial with a known weight the constant c is readily determined. Since in density determinations the weight factor can be eliminated, we can make use of the scale divisions as units.

If the pointer is lowered h scale divisions, when the body is placed in the upper pan, and h' divisions, when it is placed under water in the lower pan,

we have: specific gravity = h/(h-h').

As, however, the elongation is not absolutely the same for all weights, it is best to determine two constants, one for the greatest expected elongation and one for about one-half of that elongation. Then w = ch + dh', c and d being the constants at the particular ranges, h and h'.

Solids Soluble in Water, and Heavier.—Weigh solid in air, then in a liquid of known specific gravity, in which it is insoluble. Weight in air divided by loss of weight in liquid is equal to the specific gravity, relative to the liquid employed: multiplying by specific gravity of the liquid employed gives the specific gravity of the substance.

Let the density of a substance relative to chloroform be 5. If the specific gravity of the latter be 1.476, to find the density referred to water, or the true

specific gravity of the body, we proceed as follows:

(a) If the body were five times as heavy as an equal volume of water, a unit volume of it would weigh 5 grams. But as the weight of a unit volume of chloroform is 1.476 grams, and the unit volume of the body weighs as much as 5 unit volumes of chloroform, the unit volume of the body, or 1 c.cm. will weigh 5×1.476 grams or 7.38 grams. The specific gravity sought is, therefore, 7.38.

(b) Or, by (6), if x be the loss in weight of the body, when immersed in the liquid, and y be the weight of a like volume of water of the same temperature

as the liquid, we have: x:y::1.476:1.

Dividing the weight in air, 5 (grams), by the weight of a like volume of water, 0.6775 (grams), we get the desired specific gravity, 7.38.

Still another method can be followed:

(c) Keeping in mind that density and specific volumes are reciprocals (4), and that specific volumes vary inversely as the specific gravities (6a), we find, taking the same figures as before:

 $\frac{5 = \text{volume of the chloroform, } t^{\circ}}{x = \text{volume of the water, } t^{\circ}} = \frac{1 = \text{specific gravity water, 4° C.}}{1.476 = \text{specific gravity chloroform, 4° C.}}$ therefore x = 7.38 ccm.

Now 7.38 ccm. of water weigh as much as 5 ccm. of chloroform (by the equation), and 5 ccm. of chloroform weigh as much as 1 ccm. of the body (4, and conditions of the problem). Consequently, 1 ccm. of the body weighs as much as 7.38 ccm. of water, and, therefore, (1) the specific gravity of the body is 7.38.

(d) Another method, depending upon the fact that the specific gravity varies directly as the density, gives us the two expressions: 5 = density, body at t° relative to chloroform at t° , $\propto 1.476 =$ specific gravity chloroform, at 4° . x = density, body at t° relative to water at t° , $\propto 1.0 =$ specific gravity, water at 4° .

 $5 \propto 1.476$, $x \propto 1.0$. Combining and converting into an equation, we get: $5 \times 1.476 = x \times 1.0$, or in the form of a proportion, 5:x::1:1.476, or 5/x = 1/1.476

Solids Insoluble in Water, and Lighter. — In this case we must employ a sinker in order to immerse the substance in water. If we know the weight of the sinker in air and its specific gravity, we can find its weight in water as follows: By (10 and 12) we have specific gravity, e.g., 5, weight in air = 10 grams, weight in air divided by specific gravity equals volume of water displaced (10/5 = 2) or loss in weight in water. Therefore the weight of the sinker in water equals 10 - 2 or 8.

The substance being lighter than water, the weight of sinker and substance in water will be less than that of the sinker alone. If we subtract from the weight of sinker and substance in water the weight of the sinker in water, we obtain the weight of the substance in water. This is a negative quantity, and is a measure of the buoyant power of the substance.

Specific gravity = $\frac{\text{Weight in air}}{\text{Weight in air} - \text{loss of weight in water}}$ = $\frac{\text{Weight in air}}{\text{Weight in air}}$

Weight in air - (weight of sinker + substance in water - weight of sinker in water)

To Illustrate. — Weight of substance in air, 5 grams. Weight of sinker in water, 12 grams. Weight of substance and sinker in water, 10 grams. Difference of weight of sinker and substance in water, and of sinker alone in water = 10 - 12 = -2 grams, and we have: $5 \div [5 - (-2)] = 5 \div 7 = 0.714$, the specific gravity sought.

Solids Soluble in Water, and Lighter. — Weigh with a sinker attached in some liquid that will not act on the substance. Calculate the density (specific gravity) relative to this liquid, and then find the true specific gravity, as under R

To Illustrate. — Find specific gravity of potassium, given weight of potassium = 4 grams. Weight of sinker in air = 10 grams. Weight of potassium and sinker in ligroin = 8.6698 grams. Specific gravity of silver sinker = 10.53. Specific gravity of ligroin used = 0.73.

First find the specific gravity of the sinker referred to ligroin. Keeping in mind that density and specific volume are reciprocals of one another (4), and that the weights of equal volumes vary inversely as the specific volumes (6), we have 0.73:1::10.63:x...x=14.4246= specific gravity of sinker referring to ligroin.

Then find the weight of the sinker in ligroin. We have just found how many times heavier a unit volume of the sinker is than an equal volume of ligroin. Specific gravity (14.4246) = weight in air (10 grams) divided by loss in weight in ligroin $(10-x) \dots x = 9.3067$ grams.

Now following the reasoning under (c), we obtain the following equation:

Specific gravity potassium =
$$\frac{4}{4 - [8.6669 - 9.3067]} = \frac{4}{4.6398} = 0.8621$$
.

METHODS OF DETERMINING SPECIFIC GRAVITY OF LIQUIDS

1. Calibrated vessels, such as measuring flasks and cylinders, pipettes and burettes.

The volume of these vessels being known, we know the weight of an equal volume of water at 4° C. If now the weight of a definite volume of any liquid such as the contents of a liter flask is taken, we immediately have the necessary data, i. e. weights of equal volumes.

- 2. Pycnometer. Here we have vessels of unknown volume, but either having a mark on the neck, or having glass stopper with a capillary hole. Thus the pycnometers are made to hold constant volumes. Constant temperature is obtained by the aid of a bath of constant temperature. For use in a determination the pycnometer is weighted empty, filled with water, and filled with the liquid under consideration. The weight of the pycnometer full of water minus the weight of the empty pycnometer is equal to the weight of the water it will hold. This weight, compared with the weight of the liquid that the pycnometer will hold, gives us the specific gravity of the liquid.
- 3. Hydrostatic Balance. A body of sufficient density, e.g., a small thermometer, is suspended from the end of the balance arm. By placing weights in the balance pan suspended from the other end of the balance arm, we obtain the weight of the body in air. It is then weighed, still suspended from the balance arm, immersed in water, and finally it is weighed, immersed in the liquid whose density is to be determined.

The weight of the body in air minus its weight in water is equal to its loss of weight in water, and this loss corresponds to the weight of a volume of water equal to the volume of the body. Similarly, we find the weight of the same volume of the liquid. The ratio of the weights of this same volume of water and of the liquid represents the ratio of the densities.

A source of error is the frequently uneven wetting of the fine platinum suspending wire. This can be overcome, practically, by plating the wire with black platinum.

Another source of error is a bubble of air frequently formed by water or by the liquid in the loop of the wire from which the small thermometer is suspended.

Mohr-, Westphal-, Sartorius-, Specific Gravity Balances. — In these balances the right-hand half of the beam is divided into ten equal parts from the fulcrum to the point of suspension at the end of the beam. Suspended from this end of the beam is the sinker (thermometer), while a weight at the other end acts as a counterbalance. When the sinker is immersed in water of 4° C., the equilibrium of the balance is destroyed by the buoyancy of the water. To adjust the equilibrium, a weight equal to this force and in grams

equal to the weight of the volume of water displaced (which is equal to the volume of the sinker) is hung from the point of suspension. This weight is shaped somewhat like Ω and is called a *rider*. Other riders weighing respectively 0.1, 0.01, 0.001 of the weight of this rider constitute the set of weights used with these balances. With their aid we can directly read off from the balance beam the density of a liquid.

Hydrometers

These instruments consist of a spindle-shaped float, with a cylindrical neck containing a scale. They are weighted at their lower end, thus bringing the center of gravity very far down, and insuring an upright position when floating. They depend upon the principle that a body will sink in a liquid until enough liquid has been displaced, so that the weight of the displaced liquid equals the weight of the body.

The weight and volume are so adjusted, that the instrument sinks to the lowest mark on its neck in the heaviest liquid to be tested by it, and to the

highest mark on its neck in the lightest liquid to be tested by it.

The Instrument always Displaces its own Weight of Liquid. — If we subdivide the stem of the hydrometer into any number of equidistant divisions of volume, such that each division represents the same multiple of the volume of the submerged portion of the hydrometer when floating in water, we can directly read off the volumes of equal weight, i.e., the specific volumes.

For example, let us mark with the number 100 the point up to which the hydrometer sinks in water, and let us subdivide the stem into 100 equal parts, by volume, such that each division represents one one-hundredth of the weight of the submerged volume of the hydrometer. Then, if the instrument sinks only up to the mark 75, for example, in a liquid whose density is to be determined, we know that 75 of the above parts, by volume, weigh as much as 100 of these parts by volume of water, or as much as the entire hydrometer weighs.

Water being unity, the specific volume of the liquid (compared with water, both volumes having the same weight), is as 75 parts volume liquid are to

100 parts volume water or 75/100 or 0.75.

Seventy-five volumes of the liquid, weighing the same as one hundred volumes of water, must be as much heavier than the water, as 75 is contained in 100, or 1.333+, consequently the relative density is 1.333+, which, if we have worked with water and liquid of 4° C., is the true *specific gravity* of the liquid.

From the following table, we see that if the same hydrometer were to be used for liquids only a little heavier than water and for those considerably heavier, that the intervals, between the lines indicating specific gravity, would become so small as to render the hydrometer entirely useless; for the errors of observation with hydrometers are relatively great, and the nearer the divisions the greater will be the error.

Therefore, hydrometers are made comprising only limited ranges of specific

gravity, e.g., 10-1.2000, 1.2000-1.4000, 1.4000-1.6000.

As a rule, it is desirable to read off directly the specific gravity, and not the specific volume of a liquid. This specific gravity scale must be constructed: Equal differences of specific gravity are not represented by equal differences of parts volume marked on the stem:

Specific Gravity.		Degrees Immersed.		Differenc		x°=Degrees Immersed.	
1.0		100.0					
1.1		90.9		9.1	Spec.	grav.=	
1.2		83.3		7.6	100	$/x^{\circ}$	
1.3		76.9		6.4	$x^{\circ} = 10$	$x^{\circ} = 100/\text{spec}$.	
1.4		71.4		5.5	gra	v.	
Degrees Immersed.			Specifi	Specific Gravity.		Difference.	
100	100	/100	1	0000			
100 100/100 99 100/99		1	1.0000 1.0101		0.0101		
98 100/98			1.0204		0.0101		
97 100/97		1	1.0309		0.0105		
96 100/96			1.0417		0.0103		
95 100/95			1.0526		0.0109		
75	100	/75	1.	3333			
50	100			0000	.6667		
25	100			0000		2.0000	
10	100			0000		6.0000	
5 100/5		-	20.0000		10.0000		
1 100/1		100	100.0000		80.0000		

Baumé Hydrometer

This hydrometer is extensively employed in the chemical industries. It is named after the French chemist, Antoine Baumé, born in Senlis, France, in the year 1728. He described this instrument in the journal "Avant Coureur" in the years 1768 and 1769.

It depends upon the following principles:

The specific gravity of water, at the temperature at which the hydrometer is calibrated, and at which it is intended to be used, is taken as being unity, or specific gravity water at 17.5° C., e.g. 1.000.

In writing degrees Baumé is abbreviated to ° Bé.

The original Baumé hydrometer scale is marked 0° at the point up to which it sinks in a 10 per cent sodium chloride solution, and 10° at the point to which it sinks in water, both liquids being at 17.5° C.

The distance between these two fixed points is divided into ten equal divisions, and this scale is then continued above and below these points.

Frequently, for liquids heavier than water, rational Baumé scale hydrometers are used side by side with hydrometers for liquids lighter than water whose scale is calibrated according to the old Baumé system. This is likely to produce confusion.

Rational scale Baumé hydrometers have been proposed by Lunge. Here the scale is marked 0° at the point up to which the hydrometer sinks in water, and 10° at the point to which it sinks in a 10 per cent sodium chloride solution, both liquids being at 12.5° C.

According to Lunge, the numbers, indicating rational Lunge-Baumé degrees, are marked with the minus (-) sign, if the degrees refer to a liquid lighter than water

The old Baumé scale gives us no indication as to whether a liquid lighter or heavier than water is under consideration. The following table* will illustrate what has just been said.

Rational Degrees Baumé-Lunge.	Specific Gravity.	Degrees Baumé.	Rational Degrees Baumé-Lunge.	Specific Gravity.	Degrees Baumé.
-50	0.743	60	+ 9	1.067	1
-25	0.852	35	+10	1.074	0
-10	0.935	20	+11	1.083	1
- 1	0.993	11	-15	1.116	5
0	1.000	10	+19	1.152	9
+ 1	1.007	9	+20	1.161	10
+ 5	1.036	5	+21	1.170	11

American Standard Baumé Scale. — These various Baumé scales have been the cause of great confusion. To do away with this uncertainty, the Manufacturing Chemists' Association of the United States has adopted a Baumé table calculated by aid of the following formulæ: For liquids heavier than water at 60° F.

° Bé =
$$145$$
 - $\frac{145}{\text{sp. gr.}}$ ' specific gravity = $\frac{145}{\text{°Bé.} - 145}$

For liquids lighter than water at 60° F.

° Bé =
$$\frac{140}{\text{sp. gr.}}$$
 - 130, specific gravity = $\frac{140}{130 + \text{° Bé}}$.

The specific gravity determinations were made at 60° F., compared with water at 60° F. (60° F. = 15.55° C.+) and are calculated for weights in air.

Twaddle's hydrometer is generally employed in England. Its scale has 200 degrees, from 0° to 200°, corresponding to a change of specific gravity from 1 to 2. The degrees represent constant increases in specific gravity. Water at 4° C. is given a specific gravity of 1000. An increase of specific

^{*} This table is taken from Dr. R. Dierbach, "Der Betriebschemiker," 2nd Ed., p. 100.

gravity of 5 units corresponds to an increase of 1° Tw. Therefore, at 15.55°C. specific gravity = 1 + .005 Tw°.

Alcoholometers frequently employed are those of Richter and of Tralles.

Richter's alcoholometer shows the per cent by weight of alcohol in an aqueous alcoholic solution. It has a decimal scale. The points up to which the instrument sinks in 0 per cent (H_2O) , 5 per cent, 10 per cent, etc., solutions are noted, and the intervals are decimally subdivided.

Tralles' alcoholometer shows the percentage by volume of alcohol in an aqueous alcoholic solution. It is so constructed, that, for every per cent volume of alcohol shown on the scale, an equal volume of the instrument is submerged, e.g., with 100 per cent alcohol, the instrument should be just below the surface of the alcohol.

CORRECTIONS TO BE APPLIED IN SPECIFIC GRAVITY DETER-MINATIONS

To obtain the *true* specific gravity of substances, their density, at 4° C., and in *vacuo*, must be compared with the density of water, at 4° C., in vacuo.

Correction for Temperature

Tables are published showing the weight of a cubic centimeter, or the volume of a gram of distilled water at different temperatures.

In case we know the weight of one cubic centimeter of water, at the temperature at which the density determination was made, we obtain (see definition 6):

(a) Specific gravity at 4°; specific gravity at t°; density at 4°; density at t°.

Specific gravity $4^{\circ} = (\text{specific gravity } t^{\circ} \times \text{density, water at } 4^{\circ})/\text{density,}$

ccm. water at 4°.

water at t° .

Where we know the volume of a cubic centimeter, at t° , we obtain: Specific gravity at t° : volume 1 ccm. water at t° : volume 1

(b) Specific gravity 4° = (specific gravity $t^{\circ} \times$ volume 1 ccm. water, t°)/volume 1 ccm. water, 4° .

If we know the cubical coefficient of expansion, at or around the temperature of the determination, we have S = s [1 + a(t - T)], where s = density at temperature of determination, t° (for a solid t° = temperature in water), S = density at any other temperature T, while a = coefficient of expansion.

Most liquids have an irregular expansion. This is taken from tables. If the volumes of the same weight of a liquid be V at T° and v at t° , and S and S be the densities at T° and t° , we have:

$$S = s \times \frac{v}{V}$$

For technical use, specific gravity is frequently determined at any convenient temperature, and referred to water, of either that same temperature, or to water at 4° C., weight in air being taken as a basis. Thus 15° C./15° C., after

the specific gravity figure, means that the temperature of the solid or liquid was 15° C., at the time of the determination, and that the weight of a unit volume of it was compared with the weight of a unit volume of water at 15° C. Similarly, 15° C./4° C., after the specific gravity figure, means that here comparison is made with the weight of a unit volume of solid or liquid at 15° C., with the weight of a unit volume of water at 4° C.

To convert from one system to the other, and to standard conditions,

proceed as follows, taking the above figures to illustrate the method:

w 15° C. = weight unit volume of liquid at 15° C., w 15° C. = weight of unit volume of water at 15° C., w 4° C. = weight unit volume water at 4° C.

Specific gravity $15^{\circ}/15^{\circ} = w \ 15^{\circ}/w \ 15^{\circ}$. Specific gravity $15^{\circ}/4^{\circ} = w \ 15^{\circ}/w \ 4^{\circ}$. Then $w \ 15^{\circ} =$ specific gravity $15^{\circ}/15^{\circ} \times w \ 15^{\circ}$, and $w \ 15^{\circ} =$ specific gravity $15^{\circ}/4^{\circ} \times w \ 4^{\circ}$, and we have:

(c) Specific gravity $15^{\circ}/15^{\circ} = \text{(specific gravity } 15^{\circ}/4^{\circ} \times w 4^{\circ})/w 15^{\circ}.$

(d) Specific gravity $15^{\circ}/4^{\circ} = \text{(specific gravity } 15^{\circ}/15^{\circ} \times w \ 15^{\circ})/w \ 4^{\circ}$. To convert from specific gravity $15^{\circ}/4^{\circ}$ to $4^{\circ}/4^{\circ}$, we proceed as under (a)

To convert from specific gravity $15^{\circ}/4^{\circ}$ to $4^{\circ}/4^{\circ}$, we proceed as under (a) or (b) above.

To Illustrate. — The density of Uranium is given as $18.685^{\frac{2}{4}}$ on page 208. To obtain the true specific gravity, we obtain, from a table, the density of water at 13°, or the volume of 1 gram of water at 13°. Then, by (a): 18.685/0.99941 (density) = $18.696^{\frac{4}{4}}$ and by (b) 18.685×1.00059 (volume) = $18.696^{\frac{4}{4}}$.

Correction to Weight in Vacuo, and a Combination of this with the Temperature Correction

In the following discussion and formulæ, let d= density of water, at t° , used for comparison. $\lambda=(0.00012)$, the mean density of air referred to water (see under atmosphere, p. 517), m= apparent mass (weight) in air of body, as found by aid of balance, or, in case of determinations of density of liquids with the aid of the glass body, e.g. (Westphal balance), the apparent loss of weight of this body when immersed in the liquid. w= apparent mass (weight) in air of the volume of water equal to the volume of the body. In case of liquids, w= apparent weight in air of the water in the pycnometer, or of the volume of water displaced by the glass body (buoyancy). In case of solids, w= apparent loss of weight of the body in water, in determinations depending upon buoyancy, or the apparent weight in air of the water displaced, when a solid is placed in the pycnometer full of water. m/w= specific gravity, uncorrected.

Discussion. — If a body, solid or liquid, weighs m in air, and displaces a mass of air, a, its weight in vacuo is m + a. In case the weight w of a volume of water equal to that of the solid, has been determined in air, its weight in vacuo will be w + a. Again, if the apparent loss of weight of a body by submersion in water was determined, this weight must also be increased by a, since, in vacuo, this weight would have been greater than in air by a. And again, if the density of a liquid is determined by comparing the apparent loss

of weight of a solid in water, and in the liquid, each loss must be increased, for the same reason as above, by a.

Now, if the water used did not have the density l, but had a density d, then the same volume of water would weigh, at 4° , not w+a, but (w+a)/d. Therefore, the true specific gravity of the body would be S=(m+a)/[(w+a)/d]=(m+a)d/(w+a). Now as (w+a)/d is equal to the volume of the displaced air (volume = weight/density), whose density is λ , the weight

of this air will be
$$a = \lambda (w + a)/d$$
, or $a = \frac{w\lambda}{d-\lambda}$

Substituting this value for a in S = (m + a)d/(w + a) we obtain

(1)
$$S = (m/w) (d - \lambda) + \lambda \text{ or } (m/w)d + (1 - m/w) \lambda.$$

Proof and derivation of above formula:

$$S = d \frac{m + \frac{w\lambda}{d - \lambda}}{w + \frac{w\lambda}{d - \lambda}} = d \frac{md - m\lambda + w\lambda}{wd - w\lambda + w\lambda} = \frac{md - m\lambda + w\lambda}{w} = \frac{md}{w} + \frac{w - m}{w} \lambda.$$

$$S = \frac{m}{w}d + \left(1 - \frac{m}{w}\right)\lambda = \frac{m}{w}d + \lambda - \frac{m}{w}\lambda = \frac{m}{w}(d - \lambda) + \lambda.$$

The importance of the corrections obtained by the above formulæ will become apparent from the following, showing that the uncorrected result may be as much as 0.08 too high.

A piece of Uranium weighs 37.37 grams in air. Specific gravity $U=18.685^{\frac{13}{4}}$, 1 ccm. U weighs 18.685 grams in air. 1 gram U has a volume of 1/18.685 ccm. = 0.053518 ccm. 1 gram U displaces 0.053518 ccm. of air, 0.053518 ccm. of water. 37.37 grams U displaces 37.37 \times 0.053518 ccm. = 2 ccm. of air and the same volume of water.

One ccm. air weighs 0.001293 gram, 2 ccm. air weighs 0.002586 gram. Weight of volume of water equal to volume of U=2 grams. Weight in vacuo of U=37.37+0.002586 gram = 37.372586 grams. Weight in vacuo of a volume of water equal to volume of U=2+0.002586 gram = 2.002586.

Specific gravity U reduced to (weights in) vacuo = $37.372586/2.002586 = 18.662^{\frac{13}{4}}$. 18.685 in air -18.662 in vacuo = 0.023 difference. $18.662^{\frac{13}{4}} = 18.673^{\frac{4}{4}}$. 18.696 - 18.673 = 0.023 difference.

If the expansion of water were neglected, the difference would be: Density $U_{4}^{t^{\circ}}$ = specific gravity, $4^{\circ} \times$ density water, t° . Density $U_{4}^{\frac{3.0}{4}} = U_{4}^{\frac{4}{4}} \times$ density water, $30^{\circ} = 18.592^{\frac{3.0}{4}}$. Differences: $18.673 - 18.662^{\frac{1.3}{4}} = 0.011$, $18.673 - 18.592^{\frac{3.0}{4}} = 0.081$.

Corrections for Differences in Temperature During the Determination of Density, with the Pycnometer or with the Aid of the Glass Body or Sinker

If, when using the pycnometer, there is a difference of temperature between the water and the liquid whose density is to be compared, the mass of the volume of water of t_n degrees and density d_n has to be recalculated to the mass

of the volume of water that would fill the pycnometer at t degrees and that would then have a density d.

If the net weight of, or the weight in water, or the buoyancy in water (of the glass body or sinker), at the temperature t_n , indicates an apparent net weight w_n , or an apparent buoyancy w_n , then, to find the corresponding weight w, or buoyancy w, at another temperature, t, at which the net weight, in the pyenometer, of the liquid whose density is to be determined was found, or at which the buoyancy of the glass body or sinker in the liquid was found, or the temperature of the water, or other liquid, in a pyenometer, after putting into it a solid whose density is to be determined, was found, we have:

The correction for the expansion of water will be an addition of w_n $(d - d_n)$ to W_n , and the correction for the increase in volume of the water due to the increase in volume of the pycnometer will be an addition of $w_n B$ $(t - t_n)$ to w_n . We have now (definition 6) $d: d_n :: m/w: m/w_n = d: d_n :: m/wm$:

 $m/w_n m = d: d_n: w: w_n; \ w = \frac{w_n d}{d_n}$, the pyenometer, or the glass sinker =

 $w_n + w_n [1 + 3 B (t - t_n)] : w = w_n [1 + 3 B (t - t_n)] d/d_n$. But as $d/d_n = 1 - (1 - d)/1 - (1 - d_n) = 1 + (d - d_n)$, the above expression becomes: $w = w_n [(d - d_n) + 3 B (t - t_n)]$. The quantity $(d - d_n) 3 B (t - t_n)$ is insignificant, and, therefore, neglected.

This expression should be inserted in the formula (1) in place of w, then $S = [M/(w_n + w_n)][(d - d_n) + 3 B (t - t_n)][(d - \lambda) + \lambda]$. The quantity in brackets can readily be taken from tables.

$$W = w_0 \frac{1 + 3B(t - t_0)}{A - 0.00120}$$
.

This term should be determined for the temperature interval that is likely to occur, and plotted in a curve. For a determination at temperature t, take value for W and calculate specific gravity S (for temperature t degrees) where M = apparent weight of liquid in pycnometer, or equals apparent buoyancy in liquid.

$$S = \frac{M}{W} + 0.00120$$
. Proof of this formula by combining formula 1 and 2.

Taken from Kohlrausch: Lehrbuck der proktischen physik, 9th Ed., p. 70 (top).

• Hydrometers have indicated upon their stem the temperature at which they are to be used. This temperature is usually 60° Fahrenheit (15.55° C.) on technical hydrometers, a temperature readily obtained and held constant. To obtain correct readings determinations should be made at this temperature. Liquids, as a rule, do not expand uniformly. Their expansion should be obtained from tables which have been experimentally obtained. If a table giving the volume of a mass of liquid at the temperatures T and t is at hand, then if S = specific gravity at T°, and if s be that at t°, we have (see under definition 5) S/v = s/V, S = s.v/V.

For given liquids, temperature allowances within a certain range of specific gravity are determined and published. These allowances are published in books dealing with chemical and physical tables and constants.

USE OF SPECIFIC GRAVITY TABLES

ACID CALCULATIONS

Large shipments of acid, particularly sulphuric acid, are usually billed and paid for on the basis of 66° Bé, 50° Bé, etc. It is, therefore, necessary to calculate the actual strength of the acid shipped to its equivalent in 66° Bé, 50° Bé or to whatever strength basis the acid is billed and paid for.

The weight of one cubic foot of water at 60° F. has been found to be 62.37 pounds. The weight of a cubic foot of an acid is its specific gravity multiplied by 62.37. The acid content corresponding to 66° Bé (oil of vitriol, O. V.) has been carefully ascertained and found to be 93.19 per cent H₂SO₄. (p. 392). A sample of sulphuric acid of 65.75° Bé containing 91.80 per cent H₂SO₄ is equivalent to

$$\frac{91.80}{93.19} \times 100 = 98.51$$
 per cent O. V.,

and as a cubic foot of 65.75° Bé acid weighs 114.12 pounds the number of pounds of oil of vitriol equivalent to one cubic foot of this acid is

$$\frac{91.80}{93.19} \times 114.12 = 112.42$$
 pounds O. V.

The equivalent per cent in 60° Bé (77.67 per cent H_2SO_4) of an acid of 64° Bé (85.66 per cent H_2SO_4) is

$$\frac{85.66}{77.67} \times 100 = 110.29 \text{ per cent } 60^{\circ} \text{ Bé},$$

and as 60° Bé corresponds to 1.7059 specific gravity, the pounds of 60° Bé equivalent to one cubic foot of 64° Bé acid is

$$\frac{85.66}{77.67} \times 1.7059 \times 62.37 = 123.14$$
 pounds 60° Bé.

Correction for temperature must be made when determining the specific gravity. As an example illustrating the use to which the specific gravity tables may be put: suppose it is required to calculate the number of pounds of 50° Bé sulphuric acid in a shipment, the following data being given:

Forty-two inches of sulphuric acid are drawn out of the tank at a temperature of 101° F.

Suppose we find by calculating the capacity of the tank from the inside measurements that 1 inch of liquid in the tank corresponds to 50.00 cubic feet. A sample taken from the tank and tested in the laboratory showed 56.88° Bé at 92° F. Correction must be made for the temperature in order to reduce it to 60° F., the temperature for which the tables are constructed:

$$92 - 60 = 32$$
 difference.

From the table under the caption "Allowance for Temperature," it is seen that the allowance for 60° Bé acid is 0.026° Bé for each degree Fahrenheit,

and that the correction for 50° Bé acid is 0.026° Bé. As the acid in question is about midway between these points, the allowance for each degree Fahrenheit is very nearly 0.027° Bé. The correction for temperature is

$$32 \times 0.027 = 0.86^{\circ} \text{ Bé},$$

and as the standard temperature, 60° F., is lower than 92° F., the temperature at which the Baumé of the sample was taken, this amount must be added. The Baumé of the acid at 60° F. is, then,

$$56.88 + 0.86 = 57.74^{\circ}$$
 Bé.

The Baumé of the acid at 101° F., the temperature at which the acid was drawn off, is calculated

$$101 - 60 = 41^{\circ}$$
 F. difference,
 $41 \times 0.027 = 1.11^{\circ}$ Bé correction,

and as the density of the acid is lowered as the temperature is raised

$$57.74 - 1.11 = 56.63^{\circ}$$
 Bé at 101° F.

The easiest way to get the specific gravity corresponding to this degree Baumé is by interpolating the given data:

 57° Bé = 1.6477 specific gravity. 56° Bé = 1.6292 specific gravity. diff. = $\overline{0.0185}$ specific gravity. $56.63 - 56.00 = 0.63^{\circ}$ Bé difference. $0.0185 \times 0.63 = 0.0117$ specific gravity. 1.6292 + 0.0117 = 1.6409 specific gravity corresponding to 56.63° Bé.

Then as 42 pounds were drawn from the tank, the pounds drawn off are

$$42 \times 50.00 \times 62.37 \times 1.6409 = 214,920$$
 pounds.

As the acid is sold on the basis of 50° Bé, the pounds of 50° Bé corresponding to 57.74° Bé acid is easily found by interpolating from the table.

 58° Bé = 119.59 per cent 50° Bé acid. 57° Bé = $\frac{117.00}{2.59}$ per cent 50° Bé acid. diff. = $\frac{117.00}{2.59}$ per cent 50° Bé acid. $2.59 \times 0.74 = 1.92$. 117 + 1.92 = 118.92 per cent 50° Bé acid corresponding to 57.74° Bé acid. $214,920 \times 1.1892 = 255,827$ pounds 50° Bé acid.

PROBLEMS

1. (a) What is the per cent oil of vitriol (93.19 per cent H₂SO₄) equivalent to 62.18 per cent sulphuric acid? (b) What is the per cent of 50° Bé sulphuric acid (62.18 per cent H₂SO₄) equivalent to oil of vitriol?

Ans. (a) 66.72 per cent; (b) 149.87 per cent.

2. (a) What is the equivalent in oil of vitriol (93.19 per cent H_2SO_4) of 600 pounds of a sulphuric acid of 89.55 per cent H_2SO_4 ? (b) In 50° Bé sulphuric acid (62.18 per cent H_2SO_4)?

Ans. (a) 576.6 lbs.; (b) 864.12 lbs.

3. Knowing that 60° Bé sulphuric acid contains 77.67 per cent H_2SO_4 and that 50° Bé sulphuric acid contains 62.18 per cent H_2SO_4 , what is the number of pounds of 50° Bé sulphuric acid equivalent to a cubic foot of 60° Bé sulphuric acid?

Ans. 132.91 lbs.

4. 50° Bé sulphuric acid contains 62.18 per cent $\rm H_2SO_4$ and 52° Bé acid contains 65.13 per cent $\rm H_2SO_4$. (a) To how many pounds of 50° Bé sulphuric acid are 350 cubic feet of 52° Bé acid equivalent? (b) If 60° Bé sulphuric acid contains 77.67 per cent $\rm H_2SO_4$, to how many pounds of 60° Bé sulphuric acid are 530 cubic feet of 52° Bé acid equivalent?

Ans. (a) 35,647.5 lbs.; (b) 43,216.2 lbs.

5. Calculate the equivalent weight in terms of 60° Bé sulphuric acid equivalent to 2310 cubic feet measured at 102° F., a sample of which showed 59.66° Bé at 80° F.

Ans. 243,150 lbs.

- **6.** Calculate the weight of 50° Bé sulphuric acid equivalent to a shipment of 2130.61 cubic feet measured at 120° F., a sample of which showed 56.14° Bé at 80° F.*

 Ans. 252,410 lbs.
- 7. How many pounds of 66° Bé sulphuric acid are equivalent to a shipment of 2507 cubic feet measured at 92° F., a sample of which showed 65.52° Bé at 77° F.?

 Ans. 282,614 lbs.
- 8. A sample of bismuth weighed 14.738 grams in air and 13.235 grams in water. (a) What is the density of the bismuth? (b) What is the weight of a cube of bismuth, 2 cm. on an edge? (c) How many cubic centimeters in a kilogram of bismuth?

Ans. (a) 9.805; (b) 78.44 grams; (c) 101.98 cc.

Rel. dens. = W/(W-w).

(a) 14.738 - 13.235 = 1.503 grams loss of weight in water

14.738/1.503 = 9.805 specific gravity.

Mass = rel. dens. \times vol.

(b) Mass = $9.805 \times (2)^3 = 78.44$ grams. Vol. = mass/specific gravity.

(e) Vol. = 1000/9.805 = 101.98 ccm.

^{*} In commercial transactions, calculations are often carried to a degree of accuracy unwarranted by the accuracy of the readings.

9. A sample of cork weighed 2.140 grams in air. A silver sinker (specific gravity 10.53) of 10.000 grams was employed, the combination of sinker and cork, in water, weighing 2.274 grams. Find the specific gravity of the cork.

Specific gravity =
$$W/(W + x - w)$$
.

The sinker will displace a volume of water equal to its volume. The weight of this water will be equal to the loss of weight of the sinker, when weighed in water.

10/10.53 = 0.9497 cm. = 0.9497 gram. 10.00 - 0.9497 = 9.0503 grams, weight in water of sinker.

Substituting in the formula:

$$2.14/(2.14 + 9.0503 - 2.274) = 2.14/8.9163 = 0.240.$$

10. A block of pine weighed 6.431 grams in air. With a sinker attached to the block by a fine thread, the sinker being in water and the block in air, the combination weighed 18.530 grams; the combination of both sinker and block in water weighed 7.635 grams. Find the specific gravity of the block of pine.

Ans. 0.5903.

$$\begin{array}{l} {\rm Specific\ gravity} = W/(W'-W'') = 6.431/(18.53-7.635) \\ = 6.431/10.895 = 0.5903. \end{array}$$

11. Find the specific gravity of a sample of sand, from the following data: Weight of sand taken 4.655 grams; weight of bottle full of water 80.04 grams; weight of bottle containing sand and filled up with water 82.755 grams.

Ans. 2.399.

Specific gravity =
$$W/[W - (W'' - W')] = 4.655/[4.655 - (82.755 - 80.04)]$$

= $4.655/1.94 = 2.399$.

12. A platinum ball weighed 42.96 grams in air, 40.96 grams in water, 39.548 grams in sulphuric acid, and 41.264 grams in naphtha. Find the specific gravity (a) of the sulphuric acid, (b) of the naphtha, and (c) of the platinum.

Ans. (a) 1.706; (b) 0.848; (c) 21.48.

Specific gravity =
$$(W - W'')/(W - W')$$
.

- (a) (42.96 39.548)/(42.96 40.96) = 3.412/2 = 1.706.
- (b) (42.96 41.264)/(42.96 40.96) = 1.696/2 = 0.848.
- (e) 42.96/(42.96 40.96) = 42.96/2 = 21.48.
- 13. (a) Convert specific gravity, 1.7957, into degrees Baumé. (b) Convert 65.25° Baumé (heavier than water) into specific gravity. (c) Convert specific gravity, 0.7692, into degrees Baumé. (d) Convert 51° Baumé (lighter than water) into specific gravity.

Ans. (a) 64.25°; (b) 1.8182; (c) 52°; (d) 0.7735.

14. 0.0203 gram of gold (specific gravity, 19.32) were plated on a brass weight having a superficial area of 13.5 sq. cm. What is the thickness of the gold plating?

Ans. 0.000777 mm.

We have 0.0203 gram Au 1 cc. Au weighs 19.32 grams 0.0203/19.32 = volume of Au spread over 13.5 sq. cm. [(0.0203/19.32)/13.5] cc. = volume

of Au spread over 1 sq. cm., and this divided by 1 sq. cm. = thickness of Au film, 0.0000777 cm.

15. A steel sphere of 1.90 cm. diameter weighed 28.25 grams. What is the density of the steel sphere?

Ans. 7.866.

- 16. The best funnels are made with an angle of exactly 60° . If a funnel measures 7.5 cm. across the top, what size filter paper will fit it flush with the edge?

 Ans. 15 cm. diam.
- 17. A piece of aluminum wire 200 mm. long weighs 0.1327 gram. What length should be taken to make a centigram rider?

Ans. 15.05 mm.

18. A certain catalogue gives the following data about platinum foil: Platinum foil, medium, 0.003 inch thick, I gram per square inch. Assuming the price of platinum to be \$0.80 per gram, what would a cone for electrolysis cost, having a slant height of 4 inches and a diameter at the base of 3 inches?

Ans. \$15.09.

- 19. A block of wood, $7.49 \times 7.46 \times 3.78$ cm. weighs 152.7 grams. What is its specific gravity?
- 20. Linseed oil has a specific gravity of 0.930. What will it weigh per gallon? (1 gallon = 231 cubic inches.)

Ans. 7.758 lbs.

21. A drum has a capacity of 4 cubic feet, how many pounds of ammonia of 0.8917 specific gravity will it hold? (Take, the weight of one cubic foot of water as 62.37 pounds.)

Ans. 222.5 lbs.

- **22.** What is the weight of 15 cubic feet of oil of vitriol, whose specific gravity is 1.8354?

 Ans. 1717 lbs.
- 23. What is the volume of 100 pounds of hydrochloric acid of 1.2003 specific gravity?

 Ans. 1.335 cu. ft.
- 24. A casting of iron weighs 1000 kilograms. Taking the specific gravity of iron as 7.23, what is its volume?

Ans. 138.3 liters.

25. A platinum wire 7.25 cm. long weighs 1.0762 grams. The specific gravity of platinum is 21.48. Find the diameter of the wire.

4ns. 0.938 mm.

26. What is the radius of a steel sphere (specific gravity = 7.81) equal in weight to a brass sphere (specific gravity = 8.40) of 1.5 cm. radius?

Ans. 1.54 cm.

27. Faraday estimated that the ductility of gold was so high that the gold in four English sovereigns could be drawn into a wire long enough to surround the earth. The weight of a sovereign is 7.988 grams, and it contains 91.66 per cent gold. If a quadrant of the earth is 10,000,857 meters, what is the thickness of the wire? (Specific gravity of gold = 19.3.)

Ans. 0.0002198 mm.

- 28. A casting of iron is suspected of having internal cavities. In air it weighs 170.42 grams; in water, 145.60 grams. The specific gravity of cast iron is 7.23. Has the casting any cavities, and if so, what is their volume?

 Ans. 1.25 cc.
- 29. In obtaining the specific gravity of a sample of heavy spar, the following weights were obtained: weight in air, 5.127 grams; weight in water, 3.969 grams. What is the relative density of the sample?

Ans. 4.427.

30. In obtaining the specific gravity of a brass weight, the following readings were obtained: weight in air, 116.62 grams, weight in water, 102.81 grams, temperature of the water, 20° C. Volume 1 gram H₂O at 20° C. = 1.001773 cc. What is the specific gravity of the brass weight?

Ans 8 430

- **31.** Find the weight of a cubic foot of water at 60° F. Density of water at 60° F, is 0.999050.

 Ans. 62,363 lbs.
- **32.** Calculate the relative density of a block from the following data: Weight of block alone in air, 152.7 grams; weight of block in air, and sinker in water, 218.5 grams; weight of block and sinker in water, 9.5 grams.

Ans. 0.7306.

- **33.** Find the relative density of gutta-percha from the following data: Weight of gutta-percha in air, 4.152 grams; weight of sinker in air, 10.450 grams; weight of sinker in water, 7.546 grams; weight of gutta-percha and sinker in water, 7.405 grams.

 Ans. 0.967.
- **34.** A sample of willow weighed in air 3.820 grams. A sinker of lead (specific gravity 11.4) of a volume of 1.632 cc. was employed, the combination weighing in water 14.26 grams. What is the specific gravity of the willow?

 Ans. 0.5847.
- 35. At a certain temperature a specific gravity flask holds 83.327 grams of alcohol (specific gravity, 0.8164), 155.79 grams of sulphuric acid, and 120.44 grams of potassium hydroxide solution. Determine the specific gravity (a) of the sulphuric acid, and (b) that of the potassium hydroxide solution.

Ans. (a) 1.526; (b) 1.180.

- **36.** A piece of glass weighed 5.236 grams in air, and its specific gravity was 3.256. It weighed 3.702 grams in a solution of ammonia. Find the specific gravity of the ammonia.

 Ans. 0.9539.
- 37. A cylinder sank 54.40 centimeters when immersed in water, and 39.85 centimeters in gasoline. What is the relative density of the gasoline?

ns. 0.732

38. A cylinder was immersed in water at 4° C., and was marked 1.000 at the depth to which it sank. It was then immersed in a liquid of 1.2083 specific gravity, and the depth to which it sank was marked 1.250. The distance between these marks was divided into 25 equal spaces. When the cylinder was placed in a third liquid, it sank to the 1.150 mark, what is the specific gravity of this liquid?

Ans. 1.125.

- **39.** One side of a U-tube is filled with glycerine, the other with mercury (density, 13.6). If 17.4 cc. of mercury balance 187.8 cc. of glycerine, what is the specific gravity of the glycerine?

 Ans. 1.26.
- **40.** A cylinder when immersed to a certain depth in water weighed 37.93 grams. When immersed to the same depth in gasoline, it weighed 27.55 grams. What is the relative density of the gasoline?

 Ans. 0.7263.
- 41. Find the specific gravity of the liquid from the following: Weight of specific gravity bottle, 40.327 grams; weight of specific gravity bottle and water, 143.252 grams; weight of specific gravity bottle and liquid, 108.779.

 Ans. 0.665.
- 42. Bunsen gives the following data. From it calculate the relative density of calcium. Weight of empty bottle, 13.640 grams; weight of bottle filled with naphtha, 20:275 grams; weight of bottle partly filled with naphtha, 16.650 grams; weight of bottle partly filled with naphtha and calcium, 19.150 grams; weight of bottle full of naphtha and calcium, 21.576 grams; density of the naphtha, 0.758.

 Ans. 1.581.
- **43.** A sample of bronze is made up of 31.50 per cent zinc, 3.00 per cent tin, and 65.50 per cent copper. What is its specific gravity, supposing no change in volume occurred in alloying? (Specific gravities: zinc = 7.142; copper = 8.93; tin = 7.29.)

 Ans. 8.226.
- 44. A piece of brass weighed 9.0331 grams in water at 4° C. and 10.2531 grams in air. The specific gravity of copper is 8.930 and of zinc 7.142. What is the percentage of copper and of zinc, supposing that these two metals only are present, and that no change of volume took place in alloying?

 Ans. 70.97 per cent Cu, 29.03 per cent Zn.
- **45.** An amalgam, consisting of 60.34 per cent mercury (specific gravity, 13.59) and of 39.66 per cent gold (specific gravity, 19.3) shows a specific gravity of 15.47. What is the contraction that has taken place in the formation of a kilogram of the amalgam in totals of the volumes of the two original metals?

 Ans. 0.31 cc.
- **46.** Lupton states, that an alloy of 50 per cent by weight of platinum (specific gravity, 21.5), and 50 per cent by weight of copper (specific gravity, 9.00) has the same color and density as gold (specific gravity, 19.5). What is the contraction in the formation of 50 cc. of the alloy?

Ans. 26.84 cc.

47. The allowance for temperature of 13 per cent to 26 per cent nitric acid is 0.00029 specific gravity for each degree Fahrenheit. (a) Given a sample of acid of specific gravity 1.1154 at 60° F., what is its specific gravity at 45° F.? (b) At 78° F.? (c) What is the weight of 3.4 cubic feet of this acid at 80° F.? (d) What weight of this acid will occupy 10 cubic feet at 42° F.? (e) What is the volume in cubic feet of 100 pounds of this acid at 60° F.? (1 cubic foot of water at 60° F. weighs 62.37 pounds.)

Ans. (a) 1.1197 spec. grav.; (b) 1.1102 spec. grav.;

(c) 235.3 lbs.; (d) 698.9lbs.; (e) 1.437 cu. ft.

48. An acid of a certain concentration was found to have a specific gravity of 1.5281 at 56° F., and a specific gravity of 1.5209 at 72° F. (a) What was the expansion per degree F.? (b) What was the change per degree F. of the specific gravity? (c) Change of strength Bé per degree F.? (d) What is the specific gravity of this acid at 60° F.? (e) The Bé strength of this acid at 60° F.? (f) Assuming the changes of specific gravity and of Bé strength, per degree rise in temperature, to be uniform, what is the specific gravity of the acid at 50° F.? (g) What is the strength Bé at 80° F.?

Ans. (a) 0.0001937; (b) 0.00045; (c) 0.02812° Bé; (d) 1.5263 sp. gr.; (e) 1.5308 sp. gr.; (f) 49.44° Bé.

49. 60° F. is the temperature at which degrees Baumé are tabulated. An acid of a certain concentration changes 0.0235° Bé for each degree change of temperature (Fahrenheit). (a) If the strength Baumé at 42° F. of a sample of this acid is 66.46° Bé, what is the strength Baumé at the temperature of tabulation? (b) What would be the strength Baumé of this acid at 73° F.? (c) If at 60° F., the percentage of acid, corresponding to 66° Bé, is 93.19 per cent and 65.75° Bé corresponds to 91.80 per cent acid, what is the percentage strength of the acid in this sample?

Ans. (a) 66.04° Bé; (b) 65.73° Bé; (c) 93.41 per cent.

50. A sample of sulphuric acid shows a strength of 65.25° Bé at 60° F. How many pounds of this acid in a cubic foot?

Ans. 113.40 lbs.

51. What must be the diameter of a drum to hold 400 pounds of 26° Bé ammonia, length of drum to be 2.5 feet?

Ans. 1.91 ft.

52. Accurate volumetric analysis requires that correction be made for changes of volume of standard solutions with change of temperature. A solution was standardized at 72° F. This solution showed a specific gravity of 1.0277 at 84° F., and of 1.0378 at 40° F. (a) What is the expansion per unit volume per degree Fahrenheit? (b) If a determination was made with this solution at 55° F., using 98.00 cc., what correction must be made to find what the volume would be at 72° F., which is the temperature at which it was standardized? (c) What is the volume, corrected to 72° F.?

Ans. (a) 0.000225; (b) 0.37 ec.; (c) 98.37 cc.

53. What is the Twaddell reading corresponding (a) to 1.6111 specific gravity? (b) To 66° Bé?

Ans. (a) 122.2 Tw.; (b) 167.1 Tw.

54. 141.2° Twaddell corresponds (a) to what specific gravity, and (b) to how many degrees Bé?

Ans. (a) 1.7060 spec. grav.; (b) 60.0° Bé.

55. 50° Bé sulphuric acid contains 62.18 per cent $\rm H_2SO_4$ and 52° Bé acid contains 65.13 per cent $\rm H_2SO_4$. (a) To how many pounds of 50° Bé sulphuric acid are 350 cubic feet of 52° Bé acid equivalent? (b) If 60° Bé sulphuric acid contains 77.67 per cent $\rm H_2SO_4$, to how many pounds of 60° Bé sulphuric acid are 530 cubic feet of 52° Bé acid equivalent?

Ans. (a) 35,647.5 lbs.; (b) 43,216.2 lbs.

56. Calculate the weight of a 60° Bé sulphuric acid that would be equivalent to 2310 cubic feet, measured at 102° F., of a 59.66° Bé acid, the latter being at 80° F. when its Bé strength was determined.

Ans. 243,150 lbs.

57. Calculate the weight of a 50° Bé sulphuric acid that would be equivalent to a shipment of 2,160.61 cubic feet, measured at 120° F., of an acid, a sample of which showed 56.14° Bé at 80° F.*

Ans.252,410 lbs.

58. It is desired to make a 50 cc. burette, graduated to tenths of a cubic centimeter, the graduations to be 2 mm. apart. What should the diameter of the glass tube be? Ans. 0.798 cm.

GAS AND MERCURY THERMOMETERS

The scale of the gas thermometer is the ideal scale and the one now generally adopted. It depends upon the supposition, that an ideal gas will expand for every increase of temperature of one degree, at constant pressure, an equal amount, or, that at constant volume, its pressure will increase equally for every rise in temperature of 1°. An ideal gas will expand $\frac{1}{2}$, of its volume at 0° for every rise of one degree in temperature. The gas used is hydrogen. At high temperatures nitrogen is used.

To have a standard for comparison at all times, hydrogen of such a density, that it would have at 0° a pressure of 1000 mm. mercury was agreed upon as the normal gas. The coefficient of expansion of hydrogen is a = 0.003663, that of nitrogen is $\alpha = 0.003675$, between 0° and 100°. The difference, in indication, of the hydrogen and of the nitrogen thermometers between 0° and 100° is 0.01° at the most. This difference increases at low temperatures.

but amounts to only 0.6° at -190° (the boiling point of air).

Mercury does not expand uniformly, as gases do, but shows an accelerated expansion as the temperature rises. The same may be said of glass, though different varieties vary in this respect. Evidently, if a glass could be produced that would show the same absolute inequality of expansion as mercury, a mercury thermometer could be made whose readings would agree with those of the gas thermometer.

Mercury thermometers, if the caliber is the same throughout their length, and the ice point, as well as the boiling point, are correctly indicated, will give too high readings between 0° and 100° C. Thermometers vary, depending upon the variety of glass used. The variations from the true readings may

reach up to 150° C., 0.5°, up to 250° C., 4°, and up to 350° C., 10°.

At 20° C., for example, thermometers made of Jena glass No. XVI indicate 0.09° too high, while those made of Jena glass No. 59, indicating a variety of glass known as verre dur, indicate 0.08 too high.

In tabulating corrections for "tested" thermometers, the latter are compared with the hydrogen thermometer up to 100°, and above this they are

^{*} In commercial transactions, calculations are often carried to a degree of accuracy unwarranted by the accuracy of the readings.

compared with the air thermometer, whose indications up to 100° vary very little from those of the former. Tables are published showing the corrections

to be made for various grades of glass.

The scale employed for the thermometers just discussed is the decimal or centigrade scale. However, there are two other scales in use: the Reaumur and the Fahrenheit scale. The centigrade scale is the one adopted by Celsius, and the readings of the instrument, based upon this scale, are often called degrees Celsius.

Celsius called the point at which the mercury in the thermometer constructed by him, stood, when the instrument was placed in melting ice (finely chopped, or grated ice, made into a sort of paste by adding a little distilled water), 0, and he called the point to which the mercury rose when the instrument was placed in the vapors of boiling water, 100, and divided the interval into 100 equal spaces called degrees. This same scale is continued above and

below these two fixed points.

Fahrenheit took the prevailing temperature, in Danzig, in the winter of 1709, as the 0 point of his scale, in order always to have positive temperature indications, believing that a lower temperature (than then prevailing) could not be obtained. He marked the point to which the mercury rose when the thermometer was placed into melting ice 32. This boiling point he marked 212. Thus there are 180 degrees on the Fahrenheit scale between the ice point and the boiling point. Reaumur marked the ice point 0 and the boiling point 80, thus making his scale one of 80 degrees.

A comparison of these three scales will readily show the relation of one to

the other.

Thus 100° C. = 180° F. = 80° R., and, therefore, to compare the Celsius (C) or the centigrade scale and the Reaumur (R) scale with the Fahrenheit (F) scale, we must first subtract 32° from the reading of the Fahrenheit instrument. Then, we can compare the number of degrees between the melting point of ice and the boiling point of water on the three instruments. Vice versa, when Centigrade or Reaumur degrees are to be converted into Fahrenheit degrees, the ratios 180/100 and 180/80 show only the relation of the scales between the two fixed points, and would give a result 32° too low. For example: $^{\circ}$ F. = (180/100) t° C. If t° C. = 100° , then the expression becomes $^{\circ}$ F. = 180° . If t° C. = 0, then the expression becomes 0° , in each case 32° below the true marking for the respective temperature.

The temperature of boiling water and consequently that of its vapor varies with the atmospheric pressure. If we know this pressure in millimeters mercury, then we can readily find the boiling point of water, at this pressure, in tables.* The boiling point t° can be found without resource to tables correctly to within one one-hundredth of a degree, between 715 mm. and 770 mm. pressure, for a pressure b, by the aid of the following formula: t° =

 $100^{\circ} + 0.0375^{\circ} (b - 760).$

Example. — Let the reduced barometric reading be 750 mm. Then from a table, we find the boiling point of water to be 99.63° at 750 mm. By the above formula: $100^{\circ} + 0.0375^{\circ}$ (750 - 760) = $100 - 0.375 = 99.625^{\circ}$. If

the thermometer indicated 99.83°, it indicated 0.20° too high. The correction, at the 100° mark on the thermometer, is, therefore, -0.20° .

The position of the fixed points is subject to change.

- 1. Position and Pressure. Thermometers are usually calibrated for use in a vertical position. This fact should be considered when using long, delicate thermometers. In a horizontal position the pressure of the column of mercury (the thread) upon the portion in the bulb is less than when it is in a vertical position, and thus in this position mercury may expand a little more than when the instrument is in its normal position. The amount of this influence of position upon the indication of any particular thermometer is to be found empirically. If the thermometer indicates S degrees higher, in a horizontal position, than in a vertical one, at the same temperature, then the correction will be, for the angle of tilting, Y, S sin Y. The factor S is proportional to the height of the column of mercury. If this column be L mm. long, S will average 1/8000 L° C.
- 2. Gradual Ascending of the Fixed Points. Owing to the very gradual contraction of newly blown glass, a process that may continue for years, the volume of the glass of a newly made thermometer slowly shrinks. And so, as the volume of the mercury in the instrument remains constant, the length of the thread produced by the expansion of the mercury becomes longer. The two fixed points are thus raised, and they may be found as much as one degree higher than the original corresponding marks.
- 3. Low Indication, after Exposing a Thermometer to Heat. Upon being exposed to any definite temperature, glass will not immediately attain the volume which corresponds to that temperature. If a thermometer be kept at a high temperature for any length of time, the ice point and the boiling point may experience a *permanent* lowering of as much as 2° C.
- 4. Correction for Exposed Thread. Thermometric scales are based upon the theory that all of the mercury in the instruments has the same temperature. In practice this is rarely the case. If d degrees of the thread of mercury are exposed to a temperature t'° lower than that to be measured, t° , and if the length of this exposed portion of the thread were d_0 degrees at 0° C., then this length would be increased by d_0 a(t-t'). No appreciable error is introduced by replacing d_0 by d in this formula. The apparent coefficient of expansion of mercury in glass a (i.e., the difference of the expansion of these two substances) varies with the composition of the glass. For three standard grades of thermometer glass $a=0.000157,\ 0.000163,\ 0.000158$. Thus the formula will read, in the last instance, $d\times 0.000158$ (t-t'). The mean temperature, t'° , is found by the aid of short thermometers that are placed into immediate contact with the long instrument, and whose bulbs are so placed as to be about in the middle of the exposed portion of the thread.

ATMOSPHERIC PRESSURE - BAROMETER

Gravity, increasing from the equator, where its value is 978.1, to mean latitude 45°, where it is 980.6, and from there to the poles, where its value is 983.2, influences atmospheric pressure.

The atmospheric pressure at any one place is subject to constant variations. The pressure reaches a maximum and a minimum twice in twentyfour hours. The times of greatest pressure are from 9 to 11, and of least

pressure from 3 to 5, both A.M. and P. M.

The mean atmospheric pressure at sea level is taken as 760 mm. of mercury at 45° latitude. From the equator, either northward or southward, the mean pressure increases to about latitude 30° by 4 to 5 mm., and thence it decreases to about latitude 65°, where the mean atmospheric pressure is less than at the equator, and beyond that it slightly increases. This distribution of pressure in zones is due to the great atmospheric currents.

The extreme variation of atmospheric pressure is very unequal in different latitudes. Within the tropics it rarely exceeds 6 mm., while at 40° latitude, it is more than 50 mm.; at higher latitudes the variation may amount to

76 mm.

The mean atmospheric pressure is not known for a sufficiently large number of places on the earth's surface. So to obtain a basis for comparison, the mean atmospheric pressure at latitude 45° and at sea level, reduced to 0° C. and referred to the value for gravity at 45° latitude, was selected as a standard.

This standard pressure, per square centimeter, is equal to the pressure of a column of mercury of a height of 337.784 Paris lines (1''' of Paris = 2.2558 mm.), or of 762.703 mm., or of 30.028 inches. For scientific purposes a

pressure of 760 mm. mercury has been adopted as a standard.

The effective pressure of an atmosphere at sea level, based upon the value of gravity at 45° latitude, is taken as 1033.3 grams per square centimeter in France, and in the other countries using the metric system, while in this country and in England, it is taken as 14.71 pounds per square inch. For general use, excepting for scientific purposes, an atmosphere, equal to a pressure of 1 kilogram per square centimeter, has been adopted and is known as the new atmosphere. Instruments for measuring atmospheric pressure are now generally calibrated with this new atmosphere as a basis.

Corrections to be applied to the readings of a barometer. For:

- 1. Temperature of the Mercury. Mercury expands 0.000181 of its volume for every increase in temperature of 1° C. If l is the reading of the barometer at t°, then the reading l_0 at t_0 degrees will be $l_0 = l 0.000181$ t.l.
- 2. Temperature of the Scale. The coefficient of expansion β of brass is 0.000019, that of glass is 0.000008. Then the length l_0 of the scale at t_0 will be $l_0 = l \beta.t.l$. The combined correction will be the sum of these two corrections: $l_0 = l (0.000181 \beta) \ t.l$; $l_0 = l [0.000181 \ t.l + (-\beta.t.l)] = l (0.000181 \beta) \ t.l$.

With a brass scale, this correction will be: $(0.000181 - 0.000019) = 0.000162 \, l.t.$

With a glass scale, this correction will be: (0.000181 - 0.000008) = 0.000173 l.t. These latter values may be taken from tables.

This correction will amount, under ordinary barometric conditions, to about 1/8 mm. per degree centigrade, and for general purposes the result will frequently be sufficiently accurate, if 1/8 mm.t be deducted from the barometric reading.

3. Capillary Depression. — This varies with the different instruments. The correction is generally supplied, for any particular instrument, by the manufacturer. The wider the tube of the barometer, the less will be the error due to capillary depression. This correction will amount, at most, to 0.1 mm., where the diameter of the barometer tube is 15 mm.

4. Vapor Pressure of Mercury. — This amounts to 0.001 mm. at 20 °C., and to 0.01 at 40° C. To compensate for the vapor pressure of mercury, it

will be sufficient to add to the reading of the barometer 0.001 mm.t.

5. Influence of Gravity. — Reduction to conditions in latitude 45°. The pressure of one and the same column of mercury at different latitudes is proportional to gravity. The pressure of a column of mercury, at sea level, that would be in equilibrium with the pressure of the air would be: At the poles, $983.2 \times 13.596 \times 760$ dynes/cm.², at 45° latitude, $980.6 \times 13.596 \times 760$ dynes/cm.², and at the equator, $978.1 \times 13.596 \times 760$ dynes/cm.²

Thus we see that the specific gravity and the height of the column of mercury remaining the same, the pressure depends upon gravity. Thus, at the equator, the effective pressure is, in the ordinary system of nomenclature, (978.1/980.6) 760 \times 13.596 grams/cm.², at latitude 45°, it is 980.6/980.6 (760×13.596) grams/cm.², while at the poles it is 983.2/980.6 (760×13.596)

grams/cm.2

Thus, to reduce a barometric reading at any latitude other than 45° to that at latitude 45°, we have the following equation: g/g 45° = x mm./760 mm., or 760.g/g45°, or 760 (1 - 0.0026.cos 2ϕ - 0.0000002 H) = height which a column of mercury would have, under the same atmospheric pressure, at sea level, and at latitude 45°.

This ratio, $g/g45^{\circ}$, is equivalent to the expression, $1-0.0026 \cos 2\phi - 0.0000002 H$. In this expression ϕ represents the latitude and H the height in meters above sea level. At sea level, H, of course, is equal to 0. The quantity 0.0000002 is a mean that is influenced by the physical properties of the locality. Only at great heights will this last factor, 0.0000002 H, be of any account.

GAS CALCULATIONS

Boyle's Law. — The temperature remaining constant, the volume of a true gas varies inversely as the pressure to which it is subjected. Let V be the volume of a gas under a pressure P and let V' be some other volume of the same quantity of the gas and P' its corresponding pressure. The analytical expression of this law is

 $\frac{V}{V'} = \frac{P'}{P}$ or PV = P'V'.*

^{*} P'V' = k, a constant; therefore, on plotting the changes of a given volume of a gas under varying pressure or temperature, an hyperbola results.

Charles' Law. — The pressure remaining constant, the volume of a true gas varies directly as its absolute temperature. Let V be the volume of gas at a temperature T and let V' be some other volume of the same quantity of the gas and T' its corresponding temperature. Then the analytical expression of this law is

$$\frac{V}{V'} = \frac{T^*}{T'}.$$

Since 0° C. corresponds to 273° absolute, the law of Charles may be stated as follows. The pressure remaining constant, a true gas expands or contracts $\frac{1}{2}$ of its volume at 0° C. for each degree centigrade rise or fall in temperature.

Furthermore, the volume remaining constant, the pressure on a gas varies directly as the absolute temperature. Let P be the pressure of a gas at temperature T and let P' be some other pressure on the same quantity of the gas and T' its corresponding temperature. Then the analytical expression of this fact is

$$\frac{P}{P'} = \frac{T}{T'}.$$

The gas thermometer is based upon this law. Thus the pressure exerted by a gas is used as a means of measuring temperature and is employed in the hydrogen thermometer in which the volume is kept constant, and differences of pressure caused by different temperatures are measured. This unit has been chosen for the reason that the expansion coefficient of hydrogen is very uniform over wide ranges of temperature, a property of all gases in a condition far removed from their liquefaction point. Mercury being a liquid does not expand with this regularity with increase of temperature, though at ordinary temperatures the difference of a temperature reading with a hydrogen thermometer and a mercury thermometer is slight.

The laws of Charles and Boyle may be combined in the general formula

$$\frac{PV}{T} = \frac{P'V'}{T'},$$

in which P, V, and T are the original conditions of the gas and P', V', and T' are the changed conditions of the same gas. Then, knowing five of these quantities, the sixth may be obtained by solving the equation.

Vapor Pressure. — Volumes of gases are often measured over liquids which may or may not exert an appreciable vapor pressure. The vapor pressure of a saturated vapor depends only upon the temperature and is independent of the pressure or the presence or absence of an inert gas. If a sufficient amount of a volatile liquid is introduced into the Torricellian vacuum above a mercury barometer or into a barometer tube containing a gas, the

^{*} Note that T and T' are in the absolute scale.

 $[\]dagger$ $_{2\frac{1}{2}3}$ can be expressed as a decimal. More accurately the coefficient of expansion of a gas is 0.00367, then for t° change this becomes 0.00367 t.

height of the column will be depressed an amount which is independent of all conditions except the temperature. If then the volume of a confined gas is measured over a volatile liquid such as water, the volume will appear greater than the volume of the same amount of the dry gas by an amount corresponding to the vapor pressure of the water (if that is the liquid employed) at that temperature. If this vapor pressure were a constant quantity or increased regularly with the rise in temperature, it would be a very simple matter to correct for it; but such not being the case the vapor pressures corresponding to various temperatures are obtained experimentally and tabulated. In an analytic form these facts are expressed by the equation

$$\frac{V}{V'} = \frac{P - p}{P},$$

in which V and V' are the volumes of the dry and the moist gases respectively, P' the pressure and p the pressure of aqueous vapor at the temperature of observation.

When measuring a liquid over mercury, whether moist or not, a common procedure is to bring the mercury to the same level inside and outside the tube, the atmospheric pressure being measured by a barometer. Under such conditions, the pressure of the confined gas is indicated by the barometer. If it is not convenient to bring the mercury columns to the same level the height of the mercury in the tube must be subtracted from the barometric pressure in order to obtain the pressure on the confined gas. If P' be the reading of the barometer and F the height of the mercury in the tube, V the volume corresponding to the pressure P, and V' the volume of the confined gas, the equation is

 $\frac{V}{V'} = \frac{P' - F}{P},$

and if V' be measured moist, the volume V of the dry gas is

$$V = \frac{P' - (p+F)}{P} V'.$$

Use of this formula is as follows: It is desired to know the weight W of a liter of air saturated with moisture at 15° C. (T) under a pressure of 754 mm. (P'). The weight of a liter of a gas is given under standard conditions $(T=273^{\circ} \text{ A}; P=760 \text{ mm.})$. Of air this weight is 1.2926 grams (A). The tension of aqueous vapor (P) at 15° C. is 12.76 mm. Substituting in the formula

$$W = \frac{273}{288} \times \frac{754 - \frac{3}{8}12.76}{760} \times 1.2926 = 1.2078 \text{ grams.}$$

Again, it is required to find the weight of a liter of oxygen saturated with moisture at 17° C. and under a pressure of 750 mm. (ten. aq. vap. at 17° C. = 14.45 mm.). W' = the weight of the dry oxygen, W'' = the weight of the water vapor.

$$W' = \frac{273}{290} \times \frac{750 - 14.45}{760} \times 32 \times 0.044656 = 1.3019 \,\mathrm{gr.\,O_2}.$$

$$W'' = \frac{273}{290} \times \frac{14.45}{760} \times 18.016 \times 0.044656 = 0.0144 \,\mathrm{gr.\,H_2O\,vapor.}$$

$$W = 1.3019 + .0144 = 1.3163 \,\mathrm{gr.}$$

PROBLEMS

The readings in all problems are supposed to be at standard conditions, unless otherwise stated.

59. 200 cc. of a gas is at a pressure of 752 mm. at 15° C. (a) What is its volume under a pressure of 770 mm., the temperature remaining constant? (b) What is its volume, if the temperature is lowered to 10° C., the pressure remaining constant? (c) What is its volume, if the pressure and temperature are changed from 752 mm. and 15° C. to 770 mm. and 10° C.?

Ans. (a) $(752/770) \times 200 = 195.33$ ccm.; (b) 15° C. = 288° T.; 10° C. = 283° T. $(283/288) \times 200$ = 196.53 ccm.:

(c) (283/288) (752/770).200 = 191.94 ccm.

60. A barometer graduated at 19.5° C. on a glass scale reads 763.4 mm. (a) What is the reading corrected to 0° C.? (b) If the corrected height of a barometer with a brass scale is 764.7 mm., what does the barometer read at 22° C.? (c) If a barometer with a glass scale reads 754.3 mm. at -10° C., what is the height corrected to standard temperature?

> Ans. (a) $763.4/[1 + (0.000181 - 0.000008) 19.5^{\circ}] = 760.9 \text{ mm.};$ (a) $763.4 - (0.000173 \times 763.4 \times 19.5) = 760.9$ mm.; (b) $x/[1 + (0.000162 \times 22)] = 764.7x = 767.4$ mm.;

(b) $764.7 + (0.000181 - 0.000019) \times 764.7 \times 22$ = 767.4 mm.:

(c) $754.3 - (0.000173 \times 754.3 \times -10) = 755.6$ mm.

61. A gas, at 750 mm. and 12° C., measured moist, occupies 325 cc. (a) What is its volume, dry, under the same conditions? (b) Volume, dry, at standard conditions? (c) 160 cc. of a gas are measured, moist, at 15° C., the barometer (corrected) reads 743 mm. The mercury in the tube stands 150 mm. above the trough what is the volume of the dry gas at standard

conditions?

or

Ans. (a) Tension of aqueous vapor at 12° C. is 10.48 mm.; at 15° C. it is 12.73 mm.;

(750 - 10.48)/750 = 325/x = 320.46 cc.;

(b) $V_0 = (750 - 10.48) \times 325 \times 273/285 = 302.93$ cc.;

(b) $V_0 = (739.52 \times 325)/(760 \times 285 \times 0.00367)$ = 302.93 cc.;

(c) $V = [743 - (150 + 12.73)] 160/[760 \times 288 \times 0.00367]$ =115.8 cc.

62. How many cubic centimeters of nitrogen gas, at standard conditions, can be obtained from a liter of ammonia gas at 15° C. and 780 mm.?

Ans. $2 \text{ NH}_3 = \text{N}_2 + 3 \text{ H}_2$; 2 vol. 1 vol. 3 vol.Two vol. NH_3 give one vol. N_2 , 1 vol. NH_3 (1000 ccm.), gives $\frac{1}{2}$ vol. N_2 (500 ccm.);

 $V = \frac{1}{2} \text{ vol. N}_2 (500 \text{ cem.});$ $V = (780 \times 500)/760 \times 288 \times 0.00367 = 486.43 \text{ cem.}$

- 63. (a) A liter of sulphur dioxide, at standard conditions, weighs 2.9266 grams. Find its molecular weight. (b) The molecular weight of acetylene is 26.016; what is the weight of 250 cc. of the gas at 18° C. and 757 mm. pressure? (c) If the specific gravity of hydrogen selenide, referred to air, is 2.806, what is its weight per liter? (d) What is its molecular weight?
 - Ans. (2) $[2.9266/1000) \times 760(1+at) \times 1]/0.00004463 \times 760 \times (1+at) \times 1 = 65.5$, or $2.9266 \times 22.393 = 65.5$ or 2.9266/0.044656 = 65.5;

 $0.044656 \times 26.016/1 = 1.1617$ gr. per L., at standard conditions;

 $W_0 = 1.1617 \times 760 \times 1 \times 273/291 = 1.0899$ gr. per L., at 18° C. and 760 mm.;

 $W_0 = 1.0856 \times 757/760 = 1.0856$ gr. per L., at 18° C. and 757 mm.;

1.0856 gr. per L. = 1.0856 \times 0.250 gr. per 0.250 L. = 0.2714 gr.; ** $W_{18^{\circ}}$ = 0.044656 \times 26.016 \times 757 \times 250 \times 273/760 \times 1000 \times 291 = 0.2714 gr.

- (c) $2.806 \times 1.2926 = 3.627$ gr. per L.;
- (d) $2.806 \times 28.943 = 81.21$.
- **64.** (a) If 30.82 ccm. of oxygen (density, to air = 1.1055) effuses through a small orifice in 55 seconds, what volume of hydrogen (density, to air = 0.06965) will effuse in the same time under the same conditions? (b) What volume of sulphur dioxide will effuse through a small orifice in the same time as 83 cc. of ammonia? (c) 150 ccm. of air effuse in the same time as 63.82 ccm. of bromine. What is the molecular weight of the bromine?
 - Ans. (a) $V^2: v^2:: D: d = V = v \sqrt{d/D}$, where V and v indicate velocities. $V = 30.82 \sqrt{\frac{1.1055}{.06965}} = 123.1$ cc.
 - (b) The ratio of the densities of sulphur dioxide and of ammonia is the same as the ratio of their molecular weights, then as before:
 - (b) $v = (83) \times 17.034/64.06 = 42.82$;
 - (c) D=V/v=d; $D=150/63.82\times 1=5.524$ density referred to air; $5.525\times 28.943=159$, 9 density (referred to hydrogen).
- **65.** (a) What volume of oxygen at 18° C. and 754 mm. is liberated by 1.763 grams of potassium chlorate, when completely decomposed? (b) How

much sulphuric acid must be taken to obtain 5.5 cubic feet of hydrogen, at 17° C. and 762 mm., by acting on a metal?

Ans. (a) 2 KClO₃ = 2 KCl + 3O₂.
2 (122.56) gr. 3(22.4) L.

$$v = p_0v_0 (1 + at)/p$$
.
 $v = 760 (3 \times 22.4) 291/273$. 1.763/2(122.56) mol. grams × $v = 0.5193$ L.;
(b) $m.p.v = M.p_0v_0 (1 + at)$. $H_2SO_4 + M'' = M''$ SO₄ + H_2 ;
98.09 oz. 1(22.4) cu. ft.
 $M = 98.09 \times 762 \times 5.5 \times 273/760 \times 22.4 \times 290 = 22.73$ oz.

66. Find the weight, in vacuo, in each of the two following problems: (a) A mass of aluminum (density, 2.583) weighed in air at 18° C. and 742 mm. showed an apparent weight of 149.2350 grams, brass weights (density = 8.4) being used. What is its weight in vacuo? (b) A mass of platinum (density, 21.48) weighed in air at 15° C., and 765 mm. with brass weights, showed an apparent weight of 89.4130 grams. Find its weight in vacuo.

(a) $p_0v_0 = p_0v_0T$; $v_0 = pv/p Ta$; v = m/d = 149.2350/2.583;

(1.42 lbs.).

$$v = 742 \times (149.2350/2.583) \times 273/760 \times 291; \quad 0.0012926 \times v_0 = 0.0684 \text{ gram lost by aluminum.}$$

$$V = 742 \quad (149.2350/8.4) \quad 273/760 \times 291; \quad 0.0012926 \times v_0 = 0.0210 \text{ gram lost by weights;}$$

$$0.0684 \quad -0.0210 \quad = 0.0474 \text{ grams difference in air displaced;}$$

$$149.2350 \quad +0.0474 \quad = 149.2824 \text{ grams, weight in vacuo.}$$
(b) Using the formula $W = W' + W'd\left(\frac{1}{D} - \frac{1}{D_1}\right)$,
$$d = \frac{273}{288} \times \frac{765}{760} \times 0.0012926 = 0.0012333;$$

$$w = 89.4130 + 89.4130 \times 0.0012333 \left(\frac{1}{21.48} - \frac{1}{8.4}\right);$$

$$w = 89.4130 + 89.4130 \times 0.0012333 \left(0.04656 - 0.11905\right);$$

$$w = 89.4130 + 89.4130 \times 0.0012333 \left(-0.07249\right);$$

$$w = 89.4130 - 0.0080 = 98.4050 \text{ grams in vacuo.}$$

 $\bf 67.$ One liter of a gas is under a pressure of 780 mm. What will be its volume at standard pressure (760 mm.), the temperature remaining constant?

Ans. 1026.3 ccm.

- 68. 300 ccm. of gas is under standard pressure. What will be its volume at 784 mm., the temperature remaining constant?

 Ans. 290.8 cc.
- **69.** Five cubic feet of a gas are under a pressure of 27.3 ins. of mercury. What is its volume at 29.9 ins., the temperature remaining constant?

Ans. 4.565 cu. ft.

70. A gas occupying a volume of one liter, under standard pressure, is expanded to 1200 ccm. The temperature remaining constant, by how many millimeters must the pressure have been diminished?

Ans. 126.7 mm.

- 71. A gas measures 200 ccm. at 15.7° C. Find its volume at 0° C., the pressure remaining constant.

 Ans. 189.12 ccm.
- 72. One liter of a gas is measured at -15° C., what is its volume at 15° C., pressure remaining constant?

 Ans. 1116.3 ccm.
- 73. A gas measured 150 ccm. at 17.5° C., and on account of a change of temperature, the pressure remaining constant, the volume decreased to 125 ccm. What is the new temperature?

 Ans. -30.9° C.
- 74. The pressure on a confined gas at 15° C. was 792 mm. If the pressure, later, registered 820 mm., what is the temperature, the volume remaining unchanged?

 Ans. 25.2° C.
- 75. A liter of gas,, at standard conditions, has its temperature raised to 15° C. What must be the pressure on the gas if the volume is unaltered?

 Ans. 801.7 mm.
- **76.** A gas, measuring 183 ccm. at standard conditions, has its pressure raised to 792 mm. What is the temperature, the volume remaining constant?

 Ans. 11.5° C.
- 77. 250 ccm. of a gas are at a temperature of 15° C. What is the volume of the gas at 0° C., the pressure remaining constant?

 Ans. 237 ccm.
- 78. The pressure on a certain volume of hydrogen is $730 \, \mathrm{mm}$, at the temperature of melting ice. The volume remaining constant, what is the temperature at a pressure of $750 \, \mathrm{mm}$?

 Ans. $7.5^{\circ} \, \mathrm{C}$.
- 79. Given 250 ccm. of a gas, under a pressure of 765 mm. and at a temperature of 15° C., what is their volume under standard conditions? (0° C. and 760 mm.)

 Ans. 238.5 cc.
- 80. 50 cc. of a gas at 780 mm, and at 10° C, changes its volume to 48 cc. under a pressure of 792 mm. What is the temperature at this pressure and volume? Ans. 2.9° C.
- 81. A gas is at a pressure of 748 mm. and at a temperature of 12° C. when its volume is 200 ccm. What must be the pressure of the gas, if its volume is 178 ccm. at a temperature of 0° C.?

 Ans. 805.1 mm.
- 82. A volume of gas is confined at 0° C. and 760 mm. pressure. What is this pressure (a) in inches of mercury, and (b) in pounds per square inch?

 Ans. (a) 29.921 ins.; (b) 14.701 lbs. per sq. in.
- 83. A barometer with a glass scale shows a pressure of 752.6 mm. at 15° C. What is the barometer reading at 0° C. corrected for the contraction of the scale?

 Ans. 750.7 mm.
- 84. A barometer with a brass scale shows a pressure of 768.5 mm. at 18° C. What is the barometer reading at 0° C. corrected for the contraction of the scale?

 Ans. 766.3 mm.
- **85.** The reading of a barometer with a glass scale at -5° C. is 753.2 mm. What is the reading at 0° C.?
- 86. What must be the reading on a barometer with a glass scale at 15° C., so that the pressure, at 0° C., may indicate 760 mm.?

Ans. 761.9 mm.

- 87. If sufficient water is placed in a vessel containing a dry gas that is at a temperature of 15° C. and a pressure of 753.8 mm. to thoroughly saturate it, what would be the pressure after saturation,* the temperature remaining constant?

 Ans. 766.53 mm.
- 88. If the atmosphere is saturated at 14° C. and 758 mm., what percentage by volume of water vapor does it contain?

 Ans. 1.58 per cent.
- 89. A gas, measured moist, has a volume of one liter, at 17.5° C., under a pressure of 758.9 mm. What is its volume, dry, under standard conditions?

 Ans. 919.9 cc.
- 90. 300 ccm. of a gas are measured, over water, at 15° C. and under a pressure of 765 mm. (a) What would be the volume of the gas, dry, at this temperature and pressure? (b) What is its volume, dry, under standard conditions?

 Ans. (a) 295.0 cc.; (b) 281.5 cc.
- **91** A certain reaction produces 22.4 liters of a gas measured at standard conditions. (a) What volume would the moist gas occupy at 18° C. and at standard pressure? (b) At 18° C. and 770 mm.?

Ans. (a) 24.36 liters; (b) 24.04 liters.

92. 500 ccm. of nitrogen are measured, over water, at 17° C., the barometer reading 750 mm. If the water stood 180 mm. in the tube, what would be the volume of the nitrogen, dry, at standard conditions?

Ans. 447.07 ccm.

- 93. 180.5 ccm, of air are saturated with moisture at 18° C. and 620.3 mm, pressure and is measured over mercury, the barometer reading 620.3 mm. The mercury stood 52 mm, in the tube. Find the volume of the air in the dry state and at standard conditions.

 Ans. 123.7 ccm.
- **94.** 203 ccm. of chlorine gas at standard conditions are necessary to decompose a certain amount of hydrobromic acid gas, also at standard conditions. What is the volume of the hydrobromic acid gas?

Ans. 406 ccm.

95. If to a mixture of 100 ccm. nitrogen and of 200 ccm. oxygen, 500 ccm. of hydrogen are added, and the mixture exploded, (a) what is the resultant volume, if the water is allowed to condense? (b) What is the resultant volume, if the water stays in the gaseous state?

Ans. (a) 200 cc.; (b) 600 cc.

SUCCESSIVE REACTIONS

When one chemical substance is the means of obtaining another, by means of a series of chemical reactions, that may of themselves be well defined, and it is desired to know the quantity of one of the two requisite to obtain a certain quantity of the other, it is unnecessary to calculate the quantities of the intermediate products. We need to know, only, how many molecules of the one substance are required to produce one molecule of the other. The ratio

^{*} For tension of aqueous vapor see p. 462.

of the molecules and, consequently, that of the molecular weights being given, the ratio of the weights of the substances under consideration is readily obtained.

For example, we wish to know the amount of ammonia involved in the production of one ton of anhydrous sodium carbonate by the Solvay process. The reactions involved are:

$$\begin{array}{l} 2~{\rm NH_3} + 2~{\rm H_2O} + 2~{\rm CO_2} = \underline{2}~{\rm NH_4HCO_3}; \\ 2~{\rm NaCl} + 2~{\rm NH_4HCO_3} = \underline{2}~{\rm Na~HCO_3} + 2~{\rm NH_4Cl}; \\ 2~{\rm NaHCO_3} = \underline{{\rm Na_2CO_3}} + {\rm H_2O} + {\rm CO_2}. \end{array}$$

From these equations, in which the underscored compounds are successively converted one into the other, we see that 2 molecules of ammonia are required to produce one molecule of sodium carbonate. The ratio of the molecules is:

$$2 \text{ NH}_3/\text{Na}_2\text{CO}_3 = 2 (17.03)/106 = 34.06/106,$$

and the ratio of the weights of the two substances is:

 X_1 tons NH₃/1 ton Na₂CO₃ 34.06/106 = X/1, X = 0.3213 tons, or 642.6 pounds.

FACTORS

In gravimetric analysis the term *factor* represents the numerical value of a ratio.

1. The factor of an element (sought), or of a group of elements (sought), forming part of one molecule, is the weight in grams of the element, or group of elements, contained in one gram of the substance of whose molecule they form a part.

2. The factor of the molecule of one of two chemically equivalent molecules represents the weight in grams of the molecule (sought), contained in

one gram of the other equivalent molecule.

Examples to Illustrate. — Factor of SO_3 in $BaSO_4$ = molecular weight SO_3 : molecular weight $BaSO_4$ = 80.06: 233.46 = 80.06/233.46 = 0.3430, i.e., 0.3430 grams of SO_3 are contained in 1 gram of $BaSO_4$.

Factor of S in BaSO₄ = atomic weight S: molecular weight BaSO₄ = 32.07: 233.46 = 32.07/233.46 = 0.13738, i.e., 0.13738 grams of S are contained

in 1 gram of BaSO₄.

Factor of $Mg_2P_2O_7$ corresponding to $MgCl_2 \cdot 6$ H_2O = molecular weight $Mg_2P_2O_7$: 2 (molecular weight $MgCl_2 \cdot 6$ H_2O) = 222.64: 2 (203.34) = 224.64/406.68 = 1.8266, i.e., 1.8266 grams of $Mg_2P_2O_7$ correspond to 1 gram of $MgCl_2 \cdot 6$ H_2O .

"ASSAY-TON" SYSTEM

This system was devised by Prof. Charles W. Chandler of Columbia University. It saves long calculations in reporting the results of an assay of the ores of gold or silver, obtained in grams, the results being required in ounces Troy per ton of 2000 pounds avoirdupois. If an "assay ton," or 29.1666

grams, is used, the result in gold or silver, as weighed in milligrams, is ounces

per ton, without any further calculation.

The "assay ton" is derived as follows: One pound avoirdupois contains 7000 grains. One ton, 2000 pounds, contains 14,000,000 grains. One ounce Troy contains 480 grains. 14,000,000/480 = 29,166.6, or the number of Troy ounces in one ton. Thus, if we take this number of milligrams (29,166.6) of ore for an assay, each milligram of gold or silver found is equivalent to an ounce Troy in one ton of the ore.

Proof. — 1 mg.: 29,166.6 mg.: 480 grains (1 ounce Troy): 14,000,000 grains

(1 ton Avoirdupois).

PROBLEMS

96. Given the reaction:

$$PbCl_2 + K_2CrO_4 = PbCrO_4 + 2 KCl;$$

(278.02) (323.1)

- (a) What is the factor of lead chloride to lead chromate? (b) If 0.1784 grams of lead chromate are precipitated by an excess of potassium chromate from a solution containing lead chloride, how many grams of lead chloride were present? (c) How many grams of lead chromate are obtained from one gram of lead chloride? (d) How many grams of lead in 0.7325 grams of lead chromate?

 Ans. (a) PbCl₂/PbCrO₄ = 278.02/323.1 = 0.8604;
 - (b) $0.1784 \times 0.8604 = 0.1535 \,\mathrm{gr. PbCl_2}$;

(c) 1/0.8604 = 1.1622 gr. PbCrO₄;

(d) Pb/PbCrO₄, 207.1/323.1 = x/0.7325 = 0.4695 gr. Pb.

97. Hydrous sodium carbonate may be converted into the anhydrous salt by heat according to the equation,

$$Na_2CO_3 \cdot 10 H_2O = Na_2CO_3 + 10 H_2O.$$
286.16 106.00 180.16

(a) How many pounds of anhydrous sodium carbonate may be obtained from 15 pounds of the crystallized salt? (b) What is the factor of hydrous sodium carbonate to anhydrous sodium carbonate? (c) If 17 pounds of hydrous sodium carbonate are converted into the anhydrous form, what is the loss in weight?

Ans. (a)
$$(Na_2CO_3/Na_2CO_3 \cdot 10 H_2O) 106.0/286.16 = x/15 x = 5.5214 lbs. Na_2CO_3;$$

(b) $Na_2CO_3 \cdot 10 H_2O/Na_2CO_3 = 2.6996$;

(c) The loss in weight is the water driven off. This problem may be solved in two ways: By using the factor found in (b), or by calculating the water directly.

17/2.6996 = 6.2973 lbs. Na_2CO_3 remaining;

17.000 - 6.2973 = 10.703 lbs. water driven off;

10 ${\rm H_2O/Na_2CO_3} \cdot 10~{\rm H_2O} = (180.16/286.16)17 = 10.703$ lbs. water driven off,

98. Sulphuric acid is made according to the equation

$$2 S + 3 O_2 + 2 H_2 O = 2 H_2 SO_4$$
.

- (a) If brimstone containing 97.00-per cent sulphur is used, how much sulphuric acid is obtained from one ton? (b) If pyrites containing 96 per cent FeS_2 is used to furnish the sulphur, how many tons are required to yield a ton of sulphuric acid?

 Ans. (a) 2.9667 tons; (b) 0.6371 tons.
- 99. (a) What is the percentage of manganese in pure potassium permanganate? (b) In potassium permanganate containing 2 per cent impurities?

 Ans. (a) 34.76 per cent; (b) 34.06 per cent.
- **100.** Potassium antimonyl tartrate (tartar emetic) corresponds to the formula K_2H_2 ($C_4H_4O_6$) \cdot \cdot Sb_2O_3 . (a) What are the percentages of the different elements in this compound? (b) What is the percentage of Sb_2O_3 ? (c) Five gram of antimony are contained in how many grams of tartar emetic?

Ans. (a) K = 11.76 per cent, H = 1.52 per cent, C = 14.44 per cent, O = 36.11 per cent, Sb = 36.17 per cent;

- (b) 43.39 per cent;
- (c) 13.8245.
- 101. How many grams of chromic sulphide will be formed from 0.7182 gram of chromic oxide according to the equation:

$$2 \operatorname{Cr}_2 O_3 + 3 \operatorname{CS}_2 = 2 \operatorname{Cr}_2 S_3 + 3 \operatorname{CO}_2$$
?

Ans. 0.9460 gr.

102. What is the factor for the conversion Mg₂P₂O₇ to P₂O₅? (b) How many grams of phosphoric anhydride are contained in 0.7256 grams of magnesium pyrophosphate? (c) What is the factor for the ratio conversion (NH₄)₃PO₄ · 12 MoO₃ to P₂O₅? (d) How many grams of phosphoric anhydrids are equivalent to 0.1500 gram of ammonium phosphomolybdate?

Ans. (a) 0.63793; (b) 0.46288 gr.; (c) 0.03784; (d) 0.0056765 gr.

103. Iodine may be obtained from potassium iodide according to the equations

$$NaCl + H_2SO_4 = NaHSO_4 + HCl,$$

 $4 HCl + MnO_2 = MnCl_2 + 2 H_2O + Cl_2,$
 $Cl_2 + 2 KI = 2 KCl + I_2.$

How much sodium chloride must be taken to produce 5 grams of iodine?

Ans. 4.606 gr.

104. The LeBlanc process for the manufacture of sodium carbonate is

$$2 \text{ NaCl} + \text{H}_2 \text{SO}_4 = \text{Na}_2 \text{SO}_4 + 2 \text{ HCl.}$$
 $\text{Na}_2 \text{SO}_4 + 2 \text{ C} = \text{Na}_2 \text{S} + 2 \text{ CO}_2,$
 $\text{Na}_3 \text{S} + \text{CaCO}_3 = \text{Na}_2 \text{CO}_3 + \text{CaS.}$

How many tons of sodium carbonate may be obtained from a ton of salt?

Ans. 0.9066 tons.

105. From the equations,

$$\begin{array}{l} AlCl_3 + 3 \ NH_4C_2H_3O_2 = Al(C_2H_3O_2)_3 + 3 \ NH_4Cl, \\ Al(C_2H_3O_2)_3 + H_2O = Al(OH) \cdot (C_2H_3O_2)_2 + HC_2H_3O_2, \\ 2 \ Al(OH) \cdot (C_2H_3O_2)_2 + 8 \ O_2 = Al_2O_3 + 7 \ H_2O + 8 \ CO_2 : \end{array}$$

(a) How many grams of aluminum chloride are required to yield 0.3 gram of aluminum oxide? (b) How many grams of aluminum oxide are obtained from 0.8300 gram of aluminum chloride?

Ans. (a) 0.7836 gr.; (b) 0.3177 gr.

106. Sulphuric acid reacts with sodium hydroxide thus,

$$H_2SO_4 + 2 NaOH = Na_2SO_4 + 2 H_2O.$$

If 0.2073 grams of sulphuric acid are added to 0.1705 grams of sodium hydroxide, (a) how much sodium sulphate is formed and (b) which is left over, caustic alkali or acid, and how much?

107. What are the percentages of the elements in ammonium phosphomolybdate $(NH_4)_3PO_4 \cdot 12 MoO_3 \cdot 3 H_2O$?

Ans.
$$N = 2.18$$
 per cent; $O = 35.63$ per cent; $H = 0.93$ per cent; $Mo = 59.65$ per cent; $P = 1.61$ per cent.

108. Regarding ammonium phosphomolybdate as made up of the radicals (NH_3) , (H_2O) , (P_2O_5) , and MoO_3 , what is the percentage composition of these radicals in the molecule?

Ans.
$$P_2O_5 = 3.69$$
 per cent; $H_2O = 4.20$ per cent; $NH_3 = 2.65$ per cent; $MoO_3 = 89.47$ per cent.

109. Chrome iron ore is Cr_2O_3FeO , and may be converted into potassium dichromate as follows:

$$\begin{array}{l} 4\; {\rm FeOCr_2O_3} + 4\; {\rm K_2CO_3} + 4\; {\rm CaO} + 7\; {\rm O_2} = 4\; {\rm K_2CrO_4} + 4\; {\rm CaCrO_4} \\ + 2\; {\rm Fe_2O_3} + 4\; {\rm CO_2}. \end{array}$$

The calcium chromate is converted into potassium chromate,

$$CaCrO_4 + K_2SO_4 = CaSO_4 + K_2CrO_4$$

and potassium dichromate is obtained from the potassium chromate,

$$2 K_2 CrO_4 + H_2 SO_4 = K_2 SO_4 + H_2 O + K_2 CrO_4 \cdot CrO_3$$

How many tons of potassium dichromate can be obtained from a ton of chrome iron ore, if the conversion is complete, and the ore is 92 per cent ${\rm FeCr_2O_4?}$ Ans. 1.2089 tons.

110. Sulphur dioxide may be produced by the reaction,

$$Cu + 2 H_2SO_4 = CuSO_4 + 2 H_2O + SO_2$$
.

(a) How much copper and (b) how much of a 93.2 per cent $\rm H_2SO_4$ must be taken to obtain 64 grams of sulphur dioxide?

111. How much superphosphate can be made from one ton of calcium phosphate, 93.5 per cent pure? The reaction is

$$Ca_3(PO_4)_2 + 2 H_2SO_4 = 2 CaSO_4 + CaH_4(PO_4)_2.$$
Ans. 0.7056 tons.

OLEUM ANALYSIS

When an oleum contains free sulphurous anhydride, an interesting and important case of indirect volumetric analysis results. Such an oleum contains sulphuric acid, sulphuric anhydride, and sulphurous anhydride. (There may be other impurities, such as solid particles, etc., but for these calculations, only the three constituents enumerated will be considered as being present. The method is easily extended so as to cover other impurities.) A weighed sample is dissolved in water and titrated with a standard alkali when all the constituents are acted upon as follows:

$$H_2SO_4 + 2 NaOH = Na_2SO_4 + H_2O$$
; $SO_3 + H_2O = H_2SO_4$; $H_2SO_3 + 2 NaOH = Na_2SO_3 + H_2O$; $SO_2 + H_2O = H_2SO_3$.

The following is a typical example of an oleum analysis: Exactly 5 grams of an oleum are dissolved in water, and the volume is then made up to 500 cc. Of this solution 100 cc., equivalent to 1 gram of the sample, are titrated with N/10 iodine solution, of which 7.80 cc. are required. A similar portion is titrated with N/5 sodium hydroxide, using phenolphthalein* as the indicator, 122.81 cc. being required. To calculate the composition of the oleum:

1 mol. SO₂ (64.06) requires 1 mol. I (253.70), or 64.06/253.70;

1 cc. N/10 Iodine sol. = 1 cc. N/10 SO₂ =
$$\times \frac{64.06}{2 \times 10} \times \frac{1}{1000} = 0.003203$$
 gr. SO₂;

hence, 7.8 cc. Iodine N/10=7.8 \times 0.003203=0.02498 gr. SO₂=2.5 per cent SO₂; 122.81 N/5 solution = 245.62 cc. N/10 solution;

245.62 - 7.80 = 237.82 cc. N/10 NaOH;

required for the titration of the sulphuric acid, and the sulphur trioxide. (The 7.80 cc. are subtracted, this being the number of cc. of N/10 solution of sodium hydroxide used in neutralizing the sulphuric acid. If methyl orange had been used 253.42 cc. (254.62 + 7.80) of N/10 sodium hydroxide would have been required for the total acidity titration. Then 15.6 cc. (7.8 cc. to form NaHSO₃ and 7.8 cc. to form from this, Na₂SO₃) of N/10 sodium hydroxide that would have been required from the 253.42 cc. N/10 sodium hydroxide that would have been required for the total acidity, leaving 237.82 cc. to take up the sulphuric acid and the sulphuric acid anhydride as before.)

^{*} Using phenolphthalein the following reaction takes place, $H_2SO_3 + 2$ NaOH = Na₂SO₃ + H_2O while with methyl orange the acid salt will be formed as follows: $H_2SO_3 + NaOH = NaHSO_3$.

 $80.08 \text{ g. } \mathrm{SO_3/2} \times 1000 \text{ cc. nNaOH} = 40.04/1000 \text{ cc. nNaOH} \\ = X \text{ g. } \mathrm{SO_3/237.82} = 95.21 \text{ per cent total SO_3.} \\ 95.21 \text{ per cent} + 2.50 \text{ per cent} = 97.71 \text{ per cent, SO_2} + \mathrm{SO_3.} \\ 100.00 \text{ per cent} - 97.71 \text{ per cent} = 2.29 \text{ per cent H_2O.} \\ 98.09 \text{ g. H_2SO_4/18.016 g. H_2O} = X \text{ per cent H_2SO_4/2.29 per cent H_2O} \\ = 12.47 \text{ per cent H_2SO_4.} \\ .$

100.00 per cent (of the oleum) - (12.47 per cent $H_2SO_4 + 2.50$ per cent SO_2) = 85.03 per cent free SO_3 and so the oleum is composed of $H_2SO_4 = 12.47$ per cent, $SO_3 = 85.03$ per cent, $SO_2 = 2.50$ per cent -100.00 per cent.

To calculate this problem algebraically, let $x = \text{percentage of } H_2SO_4$, $y = \text{percentage of } SO_3$, $z = \text{percentage of } SO_2$, $A = \text{total acidity, as } H_2SO_4$, $f = \text{factor, } H_2SO_4/SO_3 = 98.09/80.07 = 1.22505$.

Then,

$$x + y + z = 100, x + y = 100 - z, x = 100 - (y + z).$$

From the conditions of the problem:

 $x+y=100-z,\,x+fy=A.$ x=A-fy. Substituting in first equation, A-fy+y=100-z, or $fy-y=-100+z+A,\,y$ $(f-1)=A+z-100,\,y=(A+z-100)/(f-1)=(A+z-100)/0.22505=4.4436$ (A+z-100).

Solving the problem given by this method:

Since z = 2.50 per cent (as before),

A = 237.82 cc. n/10 NaOH = 116.64 per cent H₂SO₄.

y = 4.4436 (116.64 per cent + 2.50 per cent - 100.00 per cent = $4.4436 \times 19.14 = 85.05$ per cent.

x = 100.00 per cent (2.50 per cent + 85 per cent) = 12.45 per cent.

The result of the analysis then is:

 $12.45~\rm per~cent~H_2SO_4,\,85.05~\rm per~cent~SO_3,\,2.50~\rm per~cent~SO_2$ (= 100.00 per cent).

DILUTION AND CONCENTRATION OF LIQUIDS, OF MIXTURES, AND FORMATION OF ALLOYS OF DEFINITE COMPOSITION, ETC.

The course of reasoning, in each instance, will be analogous, if not the same. For the sake of simplicity liquids alone will be considered.

(1) Preparation of a definite amount of a dilute solution by diluting a strong solution of a substance with water or with a weak solution of the same substance.

General Discussion. — Let x be the weight in grams of the solution to be diluted, and let A be the number of grams of substance dissolved in 100 grams of this solution. This ratio of A grams to 100 grams of solution is called the concentration. The solution then is an A per cent solution. Water containing nothing of the substance dissolved in it, is therefore, in respect to the substance a 0 per cent solution.

Argument. — X= weight in grams of the solution of A per cent concentration that is to be diluted with a quantity of solution of B per cent concentration to form Z grams of a solution of D per cent concentration. Z-X= weight in grams of the solution of B per cent concentration, that, if mixed with X grams of the A per cent solution, will form Z grams of a D per cent solution.

(A/100) X = weight, in grams, of substance dissolved in X grams of the A per cent solution.

(B/100) (Z-X) = weight, in grams, of substance dissolved in Z-X grams of the B per cent solution.

(D/100)Z = weight, in grams, of substance dissolved in Z grams of the D per cent solution.

(2) Dilution of a definite amount of solution, thus producing a greater amount than this of a more dilute solution.

X = weight, in grams, of the B per cent solution to be added to Z grams of the solution, to be diluted, of A per cent concentration, to form of these Z + X grams of a weaker solution, a D per cent solution.

AZ = weight in grams of the substance dissolved in Z grams of the A per cent solution.

BX =weight in grams of the substance dissolved in X grams of the B

per cent solution.

D(Z + X) = weight in grams of the substance dissolved in Z + R grams of the D per cent solution.

AZ + BX = DZ + DX, X = Z(A - D)/(D - B).

Where we dilute with water, the B per cent solution, as before, is in fact a 0 per cent solution, and the expression becomes:

$$X = Z(A - D)/(D - O), X = Z(A - D)/D.$$

Example 1. — How many pounds of water must be added to 800 pounds of a 73 per cent $\rm H_2SO_4$ to make of the whole a 70 per cent $\rm H_2SO_4$? Dilution with water.

$$X = 800(73 - 70)/70 = 34.39$$
 pounds of H₂O.

How much water must be added to $1000~\rm cc.$ of a $0.1128~\rm N$ solution to make a $0.1~\rm N$ solution? As a $N/10~\rm solution$ has practically a density of one, the numbers indicating normality may be taken as volumes. To be very accurate the corresponding weights should be taken.

$$X = 1000 (0.1128 - 0.1000) / 0.1000 = 128 \text{ cc. H}_2\text{O}$$
.

Example 2. — How many pounds of a 62.18 per cent $\rm H_2SO_4$ must be added to 1000 pounds of a 98 per cent $\rm H_2SO_4$ to make of the whole a 93 per cent $\rm H_2SO_4$?

$$X = 1000 (98 - 93)/(93 - 62.18) = 162.2 \text{ pounds } 62.18 \text{ per cent } H_2SO_4.$$

Example 3. — How much $0.1012~\mathrm{N}$ solution must be added to $1000~\mathrm{cc}$, of a $0.5009~\mathrm{N}$ solution to make a $2~\mathrm{N}/10$ solution?

$$X = 1000(0.5009 - 0.2000)/(0.2000 - 0.1012) = 3045.5$$
 cc. of a 0.1012 N solution.

(3) Preparation of a definite amount of a stronger solution, from a weak solution, by the addition of a solution of a higher concentration than that of either of the two solutions on hand.

Let X = weight in grams of the C per cent solution, the one that will be diluted by mixing with a quantity of a solution of A per cent concentration necessary to make Z grams of a solution, stronger than the A per cent solution, and of a D per cent concentration.

Z-X = weight of the solution of A per cent concentration, that, together with X grams of the C per cent solution, will give Z grams of a D per cent

solution.

$$CX + A(Z - X) = DZ$$
, $X(C - A) = Z(D - A)$, $X = Z(D - A)/(C - A)$.

Example 1. — How many pounds of an 80 per cent acetic acid and of a 60 per cent acetic acid must be mixed to make 500 pounds of a 65 per cent acetic acid.

$$X = 500 (65 - 60)/(80 - 60) = 125 \text{ pounds}$$
 80 per cent acetic acid.
 $Z - X = 500 - 125$ = 375 pounds 60 per cent acetic acid.
 $X + (Z - X) = 500 \text{ pounds}$ 65 per cent acetic acid.

Example 2. — How many cubic centimeters of a 0.0957 N and a 0.1120 N solution must be taken to make 1000 cc. of a 0.1 N solution.

$$X = 1000 (0.1000 - 0.0957)/(0.1120 - 0.0957) = 263.8 \text{ cc. of the}$$

 $0.112 \text{ N solution.}$
 $Z - X = = 736.2 \text{ cc. of the } 0.0957 \text{ N solution.}$

X + (Z - X) = = 1000 cc. N/10 solution.

(4) Concentration of a definite amount of solution, by the addition of a more concentrated solution of the same substance, thus producing a greater amount of a concentrated solution.

Let X= weight of the solution of C per cent concentration, that will be diluted by adding it to Z grams of an A per cent solution, necessary to make a quantity Z+X grams of a solution, stronger than the A per cent solution, and of a D per cent concentration.

$$CX + AZ = D(Z + X), X(C - D) = Z(D - A), X = Z(D - A)/(C - D).$$

Example. — How many pounds of an 80 per cent H₂SO₄ must be added to 980 pounds of a 35 per cent H₂SO₄, to strengthen the whole to a 40 per cent acid.

X = 980 (40 - 35)/(80 - 40) = 122.5 pounds 80 per cent H₂SO₄.

FORMATION OF MIXTURES OF DEFINITE COMPOSITION

(1) Suppose we have two lots of soap powder in stock, one containing 25 per cent of soap, and the other 50 per cent of soap. We desire to make a soap powder containing 40 per cent of soap, for which we have an order calling for

1000 pounds. How many pounds of each of our stock powders must we mix to fill the order?

One lot contains 15 per cent less soap than the desired mixture, the other 10 per cent more. So if we take 15 parts of the richer mixture to 10 parts of the poorer one, we shall have a powder containing 40 per cent soap.

$$15/25 = x/100 = 60/100 = 60$$
 per cent.
 $10/25 = y/100 = 40/100 = 40$ per cent.

60 per cent of 1000 pounds of the final mixture must be 600 pounds of the 50 per cent mixture.

40 per cent of 1000 pounds of the final mixture must be 400 pounds of the 25 per cent mixture.

600 pounds of the 50 per cent mixture contain 300 pounds of soap.

400 pounds of the 25 per cent mixture contain 100 pounds of soap.

Therefore, 1000 pounds of this 40 per cent mixture contain 400 pounds of soap as required.

(2) Problems of this character may also be solved as follows:

There are on hand two portions of iron, one containing 0.1 per cent of carbon while the other contains 0.25 per cent of carbon. How many pounds of each must be melted together to produce 1000 pounds of an iron containing 0.2 per cent of carbon.

Let x be the weight in pounds of the 0.25 per cent carbon iron, then 1000 - x is the weight required of the 0.1 per cent carbon iron in pounds. 0.25 per cent of x + 0.1 per cent of (1000 - x) = 0.2 per cent of $(1000 - x) = 0.002 \times 1000$. x = 666.67 pounds of the 0.25 per cent carbon iron, and 333.33 pounds of the 0.1 per cent carbon iron are required to produce $(1000 - x) = 0.002 \times 1000$. $(1000 - x) = 0.002 \times 1000$. $(1000 - x) = 0.002 \times 1000$.

FORMATION OF MIXTURES OF SULPHURIC AND NITRIC ACIDS OF DEFINITE COMPOSITION (SO-CALLED "MIXED ACIDS")

"Mixed acid" is a commercial term, generally meaning a mixture of nitric and sulphuric acids. Such mixtures are extensively used in manufacturing processes. On account of the relatively high cost of concentrated nitric acid, compared with that of the dilute acid, the concentrated acid is diluted with a weak solution of the acid, instead of with water, using a minimum quantity of concentrated and a maximum quantity of dilute nitric acid. The sulphuric acid is added as 98 per cent acid, as here it is practically impossible to ship the dilute acid, it being a question of containers. Concentrated sulphuric acid hardly attacks iron, and so it can be readily shipped in iron drums or tanks.

Example 1. — A waste mixed acid left over from nitrating is composed of 60.12 per cent H₂SO₄, 20.23 per cent HNO₃ and 19.65 per cent H₂O. It is required to make a mixture of 1000 pounds, containing 60 per cent H₂SO₄, 22.5 per cent HNO₃, and 17.5 per cent H₂O. A 97.5 per cent H₂SO₄ and a

90.5 per cent HNO₃ are on hand. How many pounds of each of these two acids and of the waste acid must be taken to make the required mixture without adding any water?

Solution. — Let x be the weight of the waste acid, y the weight of 97.5

H₂SO₄ added, and z the weight of 90.5 per cent HNO₃ added.

Then x (0.6012) = weight of H_2SO_4 (100 per cent) in the waste acid, y (0.975) = weight of H_2SO_4 (100 per cent) actually added, when adding the 97.5 per cent acid, x (0.2023) = weight of HNO_3 (100 per cent) in the waste acid, z (0.905) = weight of HNO_3 (100 per cent) actually added, y (0.025) = weight of H_2O contained in the H_2SO_4 (97.5 per cent), that was added, z (0.095) = weight of H_2O , contained in the HNO_3 (90.5 per cent), that was added, x (0.1965) = weight of H_2O , in the waste acid.

One thousand pounds of the desired mixture must evidently contain 601.2 pounds H₂SO₄, 202.3 pounds HNO₅, and 196.5 pounds H₂O. Therefore, we

have the following equations:

```
(1) x (0.6012) + y (0.975) = 600 pounds H_2SO_4.

(2) x (0.2023) + z (0.905) = 225 pounds HNO_3.

(3) x (0.1965) + y (0.025) + z (0.095) = 175 pounds H_2O.

y = (600 - x 0.6012)/0.975 = 615.38 - x (0.61662).
z = (225 - x 0.2023)/0.905 = 248.62 - x (0.22353).
```

Substituting these two equations in equation (3), we obtain:

```
\begin{array}{lll} 0.1965+15.38-0.01542\,x+23.62-0.02124\,\,x=175.00. \\ 0.15984x=136,\ \ x=850.85\,\ldots\ldots\ldots &=850.85\ \mathrm{pounds}\,\mathrm{of}\,\,\mathrm{waste}\,\,\mathrm{acid}. \end{array}
```

Substituting in equation (1):

$$y = (600 - 511.53)/0.975 = 90.74 \dots$$
 = 90.74 pounds H₂SO₄ 95.7 per cent.

Substituting in equation (2):

$$z = (225 - 172.13)/0.905$$
 = 58.41 pounds HNO₃ 90.5 per cent. 1000.00 pounds mixture.

Example 2. — It is desired to make a "mix" consisting of 60,000 pounds of a mixed acid to consist of 46 per cent H_2SO_4 , 49 per cent HNO_3 and 5 per cent water. The H_2SO_4 is to be added in the form of 98 per cent acid, the HNO_3 in the form of 61.4 per cent and 95.5 per cent acid.

Solution.

```
60,000 \times 0.46 = 27,600 pounds H_2SO_4 are required. 60,000 \times 0.49 = 29,400 pounds HNO_3 are required. 60,000 \times 0.05 = 3,000 pounds H_2O are required. \frac{27,600}{10.98} = 28,163 pounds 98 per cent H_2SO_4 required.
```

60,000-28,163=31,837 pounds of a mixture of concentrated and dilute nitric acid to be added to the 28,163 pounds of the 98 per cent H_2SO_4 to complete the required mixture.

Let

x = number of pounds of 95.5 per cent HNO₃ to be added.

Then

 $31.837 - x = \text{number of pounds of } 61.4 \text{ per cent HNO}_3 \text{ to be added.}$

Then

$$0.955x + 0.614(31,837 - x) = 29,400,$$

and solving

 $x=28,\!891$ pounds of 95.5 per cent $\rm HNO_3$ to be taken. $31,\!837\,-\,28,\!891\,=\,2946$ pounds of 61.4 per cent $\rm HNO_3$ to be taken.

So to make the "mix," take:

28,163 pounds 98 per cent $\rm H_2SO_4$ 28,891 pounds 95.5 per cent $\rm HNO_3$ 2,946 pounds 61.4 per cent $\rm HNO_3$ $\overline{60,000}$ pounds total.

This same result might have been reached by means of the formulæ given to adjust the strengths of acids (1) to (4) page 556, according as to whether the acid is to be diluted or is to be strengthened. 29,400 pounds of absolute nitric acid are called for. The weight of nitric acid to be added, after the 98 per cent sulphuric acid is added, is 31,837 pounds, as before. We obtain the concentration of this acid as follows:

29,400/31,837 = x/100; x = 92.35 or the 29,400 pounds absolute nitric acid, if added to the 31,837 pounds of 98 per cent H_2SO_4 , would produce a 92.35 per cent HNO_3 solution that would be mixed with the 98 per cent H_2SO_4 solution.

To make 31,837 pounds of a 92.35 per cent $\mathrm{HNO_3}$ solution from a mixture of 95.5 per cent and 61.4 per cent nitric acids, employing formula (3) p. 558, we proceed as follows:

(92.35 - 61.4)/(95.50 - 61.4) = x/31,837 x = 28,896 pounds 95.5 per cent

HNO₃ to be taken.

31,837 - 28,896 = 2941 pounds 61.4 per cent HNO₃ to be taken.

Example 3. — An example, involving the use of oleum, will now be considered: It is required to make 61,320 pounds of a mixed acid of the composition,

56 per cent HNO₃ (add as 94.5 per cent HNO₃), 41 per cent H₂SO₄ (add as 98.56 per cent H₂SO₄ and as 20 per cent oleum), and 3 per cent H₂O.

The tank in which the acid is to be mixed already contains 2604 pounds of the remains of a previous "mix" of the composition,

52 per cent $\mathrm{HNO_3}$, 42.50 per cent $\mathrm{H_2SO_4}$ and 5.5 per cent $\mathrm{H_2O}$.

Solution.

 $61,320\times0.56=34,339$ pounds HnO3, $61,320\times0.41=25,141$ pounds H2SO4, $61,320\times0.03=1840$ pounds H2O.

 $2604 \times 0.52 = 1354$ pounds HNO₃, $2604 \times 0.4250 = 1107$ pounds H₂SO₄, $2604 \times 0.055 = 143$ pounds H₂O.

Thus we have:

Required: 25,141 pounds H_2SO_4 , 34,339 pounds HNO_3 , 1840 pounds H_2O ; In tank: $\frac{1,107}{24,034}$ pounds H_2SO_4 , $\frac{1,354}{32,985}$ pounds HNO_3 , $\frac{143}{1697}$ pounds H_2O . To be added: $\frac{1}{24,034}$ pounds $\frac{1}{20}$, $\frac{1}{32,985}$ pounds $\frac{1}{20}$, $\frac{1}{20}$ pounds $\frac{1}{20}$.

24,034/0.9856 = 24,385 pounds 98.56 per cent H₂SO₄ required.

(In attempting to work out the amounts requisite, by the previous method, it will be seen that the method will not work, for the reason that too much water would be introduced. The 24,385 pounds of 98.56 per cent sulphuric acid given above is a provisional figure that will have to be modified later.)

24,385 - 24,034 = 351 pounds H₂O that were added with the 98.56 per cent

 H_2SO_4 .

1,697 - 351 = 1346 pounds H_2O still to be added.

Adding this water with the nitric acid, would call for a stronger nitric acid, than the 94.5 per cent nitric acid on hand:

 $32,985 \text{ (HNO}_3) + 1346 \text{ (H₂O)} = 34,331 \text{ pounds HNO}_3 + \text{H₂O still to be added.}$

32,985/34,331 = x/100/x = 96.08 or a 96.08 per cent HNO₃ would be required.

Oleum will be required to take up this water.

32,945/0.945 = 34,905 pounds 94.5 per cent HNO₃ are required.

34,905 - 32,985 = 1920 pounds H_2O added with the 94.5 per cent HNO₃.

1920 - 1697 = 223 pounds H_2O added in excess.

These 223 pounds of water must be taken up by the 20 per cent oleum which will require 4955 pounds 20 per cent oleum.

 $80 (SO_3)/18 (H_2O) = x/223 = 991$ pounds free SO_3 , and this is contained

in 4955 pounds, 991/20 = x/100 = 4955 pounds.

But as 85.31 is the percentage total of SO_3 in 20 per cent oleum, and as 81.63 is the percentage total of SO_3 in 100 per cent sulphuric acid, 20 per cent oleum is equivalent to 104.5 per cent H_2SO_4 .

85.31/81.63 = x/100 = 104.5 per cent.

The addition of these 4955 pounds 20 per cent oleum corresponds to an addition of $4955 \times 104.5/100 = 5178$ pounds of 100 per cent H_2SO_4 . 24,034 pounds - 5178 pounds 100 per cent H_2SO_4 = 18,856 pounds 100 per cent

H₂SO₄ that are yet to be added.

This acid is to be prepared from 20 per cent oleum and from 98.56 per cent sulphuric acid. This 98.56 per cent acid contains 80.45 per cent of its weight SO_3 : 80.06/100.00 = x/98.56. Using formula (3) page 555 and calculating on the SO_3 content, we find that 4723 pounds of 20 per cent oleum are required. (Desired conc. — actual conc.)/(conc. strength sol. — actual conc.) × amount sol. desired or given = conc. stronger sol. to be added or taken. (81.63 — 80.4)/(85.31 — 80.4) × 18,856 = 4723 pounds.

The amount of 98.56 per cent H₂SO₄ that is to be added is now calculated,

and found to be 14,133 pounds.

Thus, 18,856 pounds 100 per cent $H_2SO_4 - 4723$ pounds 20 per cent oleum = 14,133 pounds 98.56 per cent H_2SO_4 .

Formula (1), p. 556, y = z - x, or amount weaker solution to be added or taken = amount of solution desired or given minus amount of stronger solution to be added or taken.

The total amount of 20 per cent oleum to be added is 9678 pounds = 4955 pounds + 4723 pounds = 9678 pounds.

And thus, to make the required mixture, we add to the acid already in the tank: 9678 pounds of 20 per cent oleum, 14,133 pounds of 98.56 per cent H_2SO_4 , and 34,905 pounds of 94.5 per cent HNO_3 .

RECTANGLE METHOD FOR THE DILUTION AND CON-CENTRATION OF LIQUIDS AND MIXTURES, AND FOR THE FORMATION OF ALLOYS OF DEFINITE COMPOSITION

The figures expressing the percentage concentration of two solutions (or those of one solution, and the figure 0 for water, where dilution with water is desired) are written in the two left hand corners of a rectangle, and the figure expressing the desired concentration is placed on the intersection of the two diagonals of this rectangle.

Now subtract the figures on the diagonals, the smaller from the larger, and write the result at the other end of the respective diagonal. These figures then indicate what quantities of the solutions whose concentration is given on the other end of the respective horizontal line, must be taken to obtain a solution of the desired concentration. For example, to make a 12 per cent solution, by mixing an 8 per cent and a 15 per cent solution we prepare Fig. 1

which indicates that we have to take 3 parts by weight of the 8 per cent solution and 4 parts by weight of the 15 per cent solution to obtain (7 parts by weight of) the 12 per cent solution.

Again, if we wish to dilute a 25 per cent solution so as to obtain a 9 per cent solution, we place the

figure 25 in, for example, the upper left corner of a rectangle and place the figure 0 (concentration of the solution in pure water) in the lower left corner, and then place the figure 9 (desired concen-

corner, and then place the figure 9 (desired concentration) at the point of intersection of the diagonals, and subtracting across the diagonals, we obtain Fig. 2: 9 parts by weight of the 25 per cent solution, if mixed with 16 parts by weight of water, will give 25 parts by weight of a 9 per cent solution.*

1. To prepare a definite amount of a dilute solution, by diluting a strong solution of a substance with water, or with a weak solution of the same substance.

See examples 1 and 2 page 558.

* By A. Cobenzl, Wiesloch, Baden. From Compendium der prakt. Photographic, Prof. F. Schmidt, 9th Ed. p. 379. See also for explanation, problems 1 and 2 under the heading: "Formation of Mixtures of Definite Composition," p. 558.

62.18

98.00

1. How many pounds of H₂O and how many pounds of a 60 per cent H₂SO₄ must be mixed to obtain 400 pounds of a 34.2 per cent H₂SO₄?

Fig. 4

Fig. 3

By Fig. 3, 34.2 parts of a 60 per cent H_2SO_4 and 25.8 parts of H_2O , if mixed, will give 60 parts (34.2 + 25.8) of a 34.2 per cent H_2SO_4 .

Or, 34.2/60 parts of a 60 per cent H_2SO_4 and 25.8/60 parts of H_2O will, if mixed, give 1 part of a 34.2 per cent H_2SO_4 and 400 parts of a 34.2 per cent H_2SO_4 will require 400 times these quantities of H_2SO_4 and of H_2O .

2. How many pounds of a 62.18 per cent H₂SO₄ must be added to 1000 pounds of a 98 per cent H₂SO₄ to make of the whole a 93 percent H₂SO₄.

Argument same as above.

5+30.82=35.82. 5/35.82 of the 62.18 per cent acid +30.82/35.82 of the 98 per cent acid will give 1 part of a 93 per cent acid. Etc.

2. Dilution of a definite amount of solution, thus producing a greater amount than this of a more dilute solution.

See examples 1, 2, and 3 page 557.

(1) We wish to know the weight of water to be added to 800 pounds of a 73 per cent H₂SO₄ to make, of the whole, a 70 per cent acid. If 3 parts of H₂O added to 70 parts of a 73 per cent H₂SO₄ will give a 70 per cent acid, then X parts of H₂O added to 800 parts of a 73 per cent H₂SO₄ will also give a 70 per cent acid: 3/70 =

Fig 5 X/800, X = 34.29 pounds H_2O . (2) How much 0.1012 N solution must be added to 1000 cc. of a 0.5009 N solution to make of it a 2 N/10 solution?

If 0.3009 parts of the 0.1012 N solution added to 0.0988 parts of the 0.5009 N solution will produce a 2 N/10 solution, then X parts of the 0.1012 N solution added to 1000 cc. of the 0.5009 N solution will also give a 2 N/10 solution:

0.3009/0.0988 = X/1000, X = 3045.5 cc. 0.1012 N solution.

3. Preparation of a definite amount of a stronger solution from a weak solution, by the addition of a solution of a higher concentration than that of either of the two solutions on hand.

See example 1 page 558.

(1) How many pounds of an 80 per cent acetic acid and of a 60 per cent acetic acid must be mixed to make 500 pounds of a 65 per cent acetic acid?

Five pounds of the 80 per cent acid added to 15 pounds of the 60 per cent acid will give 20 pounds of a 65 per cent acid. 5/20 parts of the 80 per cent acid +15/20 parts of the 60 per cent acid will require 500 times these quantities:

 $500 \times 5/20 = 125$ pounds 80 per cent acid, $500 \times 15/20 = 375$ pounds 60 per cent acid.

4. Concentration of a definite amount of solution by the addition of a more concentrated solution of the same substance, thus producing a greater amount of a concentrated solution.

See example under (4) page 558.

(1) How many pounds of an 80 per cent H₂SO₄ must be mixed with 980 pounds of a 35 per cent H₂SO₄ to strengthen the whole to a 40 per cent acid? If 5 parts of an 80 per cent acid added to 40 parts of a 35 per cent acid will produce a 40 per cent acid, then X parts of an 80 per cent acid added to 980 parts of a 35 per cent acid will also produce a 40 per cent acid.

5/40 = X/980, X = 122.5 pounds of an 80 per cent H₂SO₄.

DILUTION TO A CERTAIN SPECIFIC GRAVITY

The method to be described is not strictly accurate, on account of the small contraction of volume, on melting together of metal, when forming alloys, or when mixing solutions of different densities, but this does not introduce an error that is appreciable in ordinary work.

Under this head comes the problem that Archimedes had to solve: The problem of the Crown. The following discussion will explain the principles

involved.

and

whence

How many parts by weight, x grams, of a metal of the specific gravity S, and how many parts by weight, y grams, of another metal of the specific gravity S_1 , are there in n parts, by weight, of an alloy of these two metals, of the specific gravity S_2 ,

$$x + y = n; \quad \frac{x}{S} + \frac{y}{S_1} = \frac{n}{S_2}; \quad \text{then} \quad y = n - x;$$
and
$$\frac{x}{S} + \frac{n - x}{S_1} = \frac{n}{S_2};$$
whence
$$S_1 S_2 x + S S_2 n - S S_2 x = S S_1 n, \quad \text{or} \quad x = \frac{nS (S_1 - S_2)}{S_2 (S_1 - S)}.$$
Similarly we obtain
$$y = \frac{nS_1 (S - S_2)}{S_2 (S - S_2)}.$$

PROBLEMS

112. What percentage of "Oil of Vitriol" (O. V.) (93.19 per cent H₂SO₄) is equivalent to 62.18 per cent of sulphuric acid (100 per cent)? (b) What percentage of 50° Bé sulphuric acid (62.18 per cent H₂SO₄) must be taken to be equivalent in strength to O. V.?

(a)
$$62.18 \text{ per cent} \times 100 = x \text{ per cent} \times 93,$$

 $x \text{ per cent} = 62.18 \text{ per cent} \times 100/93.19.$
(b) $93.19 \text{ per cent} \times 100 = x \text{ per cent} \times 62.18,$
 $x \text{ per cent} = 93.19 \text{ per cent} \times 100/93.19.$

(a) 0.6219/0.9319 = x/100 = 66.72 per cent.

(b) 0.9319/0.6219 = x/100 = 149.87 per cent.

113. What is the result of the analysis of an oleum containing SO₂, being given the following data:

For total acid, as SO3:

Weight of oleum taken = 3.0570 gr. N/1 NaOH required = 74.30 cc.

For sulphur dioxide:

Weight of oleum taken = 7.0510 gr. N/10 I sol. required = 46.80 cc.

The reaction for the sulphurous acid and the iodine is

$$H_2SO_3 + I_2 + H_2O = H_2SO_4 + 2 HI.$$

Ans. Free $SO_3 = 80.33$ per cent; $SO_2 = 2.13$ per cent; $H_2SO_4 = 17.54$ per cent.

114. What is the composition of an oleum, the data of the titration of which, having used phenolphthalein as an indicator, are as follows:

For total acid:

Weight of acid taken = 5.0000 gr. 1.112 N NaOH to neutralize = 99.95 cc.

For sulphur dioxide:

Weight of acid taken = 5.0000 gr. N/10 I sol. required = 39.00 cc.

Ans. Free $SO_3 = 33.10$ per cent. $H_2SO_4 = 64.40$ per cent. $SO_2 = 2.50$ per cent.

100.00 per cent.

115. 300 pounds of oleum containing 33% of free SO₃ and 67% of H₂SO₄ are equivalent to how many pounds of oil of vitriol (93.19% H₂SO₄)?

Ans. 345.82 lbs.

116. How many pounds of oleum containing 33% of free SO₃ and 67% of H_2SO_4 must be added to 100 pounds of 85% H_2SO_4 to make oil of vitriol?

Ans. 53.64 lbs.

117. (a) 600 pounds of an 89.55 per cent sulphuric acid is equivalent to how many pounds of oil of vitriol (93.19 per cent H₂SO₄)?

(b) And to how many pounds of 50° Bé sulphuric acid (62.18 per cent H_2SO_4)?

Ans. (a) 576.6 pounds; (b) 864.12 pounds.

118. What is the percentage of 100 per cent sulphuric acid, equivalent in strength (a) to a 20 per cent oleum? (b) To a 30 per cent oleum?

Ans. (a) 104.5 per cent; (b) 106.75 per cent.

119. (a) What is the percentage of oil of vitriol equivalent in strength to a 25 per cent oleum? (b) What is the percentage of a 98 per cent sulphuric acid, equivalent in strength to a 35 per cent oleum?

Ans. (a) 113.34 per cent; (b) 110.08 per cent.

120. Calculate the amounts of acid required to make 34,000 pounds of a mixed acid to consist of 65.9 per cent H₂SO₄, 18.1 per cent HNO₃, and 16 per cent H₂O. There are still in the tank 3780 pounds of an acid, consisting of 42 per cent H₂SO₄, 52 per cent HNO₃, and 6 per cent H₂O. It is desired to employ, besides this acid in the tank, a quantity of acid that is on hand, and that is to be "worked off." This consists of 7000 pounds of a mixed acid composed of 64 per cent H₂SO₄, 28 per cent HNO₃, and 8 per cent water.

93.2 per cent H₂SO₄, 52.3 per cent HNO₃ and water are on hand, and are to be used to help give the mixture the desired composition. How many pounds of these two acids and of water are required to accomplish this?

Ans. 17,531 pounds 93.2 per cent $\mathrm{H}_2\mathrm{SO}_4$; 4260 pounds 52.3 per cent HNO_3 ; 1429 pounds water.

121. How many pounds of a 98 per cent and a 96 per cent sulphuric acid and a 61.4 per cent nitric acid must be taken to make 60,000 pounds of a mixed acid, to be composed of 46 per cent H₂SO₄, 48 per cent HNO₃, and 6 per cent H₂O?

122. It is required to make a mixed acid composed of 46 per cent H₂SO₄, 49 per cent HNO₃, and 5 per cent H₂O with the aid of a 96 per cent and a 61.4 per cent nitric acid, and of a 98 per cent sulphuric acid. How many pounds of each must be taken to prepare 60,000 pounds of the mixed acid?

Ans. 28,163 pounds 98 per cent H_2SO_4 ; 28,474 pounds 96 per cent HNO_3 ; 3363 pounds 61 per cent HNO_3 .

123. How many pounds of a 95 per cent nitric acid and of a 30 per cent oleum must be added to each 1000 pounds of a mixed acid, composed of 43 per cent $\rm H_2SO_4$, 51 per cent $\rm HNO_3$, and 6 per cent $\rm H_2SO_4$, 53 per cent $\rm HNO_3$, and 5 per cent $\rm H_2SO_4$, 53 per cent $\rm HNO_3$, and 5 per cent $\rm H_2O$?

Ans. 137.07 pounds 95 per cent HNO₃; 71.38 pounds 30 per cent oleum.

124. It is required to make 61,320 pounds of a mixed acid of the composition, 41 per cent H₂SO₄, 56 per cent HNO₃, and 3 per cent H₂O. The mixing tank contains 2604 pounds of an acid composed of 52 per cent HNO₃, 42.5 per cent H₂SO₄, and 5.5 per cent H₂O. How many pounds of a 20 per cent

oleum, a 98.56 per cent sulphuric acid, and a 94.50 per cent nitric acid must be added to the acid already in the tank?

Ans. 4678 pounds 20.00 per cent oleum; 14,133 pounds 98.56 per cent H_2SO_4 ; 34,905 pounds 94.50 per cent HNO_3 .

125. 37,000 pounds of a mixed acid are to be made. It is to consist of 41 per cent H₂SO₄, 52 per cent HNO₃, and 7 per cent H₂O. In the mixing tank there is still, from a former lot, a residue of 6720 pounds, consisting of 42 per cent H₂SO₄, 52.54 per cent HNO₃, and 5.46 per cent H₂O. How many pounds of a 98 per cent and a 94.7 per cent H₂SO₄ and a 61.4 per cent HNO₃ must be added to the acid already in the tank to make a mixture of the above composition?

Ans. 12,599.6 pounds of the 98 per cent H_2SO_4 , 15,689.3 pounds of the 94.7 per cent HNO_3 , and 1991.1 pounds of the 61.4 per cent HNO_3 .

126. Sodium hydroxide and trisodium phosphate are to be determined in the presence of each other. Phenolphthalein reacts neutral to disodium phosphate; therefore, in titrating a mixture of these two salts with sulphuric acid, and employing phenolphthalein as an indicator, we have:

 $\begin{array}{c} 2~\mathrm{Na}\mathrm{OH} + \mathrm{H}_2\mathrm{SO}_4 = \mathrm{Na}_2\mathrm{SO}_4 + 2~\mathrm{H}_2\mathrm{O}, \\ 2~\mathrm{Na}_3\mathrm{PO}_4 + \mathrm{H}_2\mathrm{SO}_4 = 2~\mathrm{Na}_2\mathrm{HPO}_4 + \mathrm{Na}_2\mathrm{SO}_4. \\ 45~\mathrm{cc.~of~} 0.5~\mathrm{NH}_2\mathrm{SO}_4 \,\mathrm{are~required~for~these~titrations.} \end{array}$

Methyl orange, which is alkaline to disodium phosphate, but neutral to monosodium phosphate, is now added, and the titration is continued with $0.5~\mathrm{N}$ $\mathrm{H_2SO_4}$:

 $2 \operatorname{Na_2HPO_4} + \operatorname{H_2SO_4} = 2 \operatorname{NaH_2PO_4} + \operatorname{Na_2SO_4}.$

35 cc. are required. What amounts of trisodium phosphate and of sodium hydroxide are present? Ans. 0.20005 gr. NaOH; 2.8707 gr. Na_3PO_4 .

- 127. What is the composition of a solution of mixed tri- and disodium phosphates, if the phenolphthalein titration requires 25 cc. of a 0.5 N sulphuric acid, and the methyl orange titration requires 35 cc. of a 0.5 N sulphuric acid, in addition?

 Ans. 0.71025 gr. Na₂HPO₄; 2.0505 gr. Na₃PO₄.
- 128. What is the result of the analysis of an oleum containing SO₂, having given the following data:

For total acid, as SO₃:

Weight of oleum taken = 3.0570 gr. N/1 NaOH required = 74.30 cc.

For sulphur dioxide:

Weight of oleum taken = 7.0510 gr. N/10 I sol. required = 46.80 cc.

The reaction for the sulphurous acid and the iodine is

 $H_2SO_3 + I_2 + H_2O = H_2SO_4 + 2 HI.$

Ans. Free $SO_3 = 51.23$ per cent. $SO_2 = 2.13$ per cent. $H_2SO_4 = 46.64$ per cent.

129. What is the composition of an oleum, the data of the titration of which, having used phenolphthalein as an indicator, are as follows:

For total acid:

Weight of acid taken = 5.0000 gr. 1.112 N NaOH to neutralize = 99.95 cc.

For sulphur dioxide:

Weight of acid taken = 5.0000 gr.N/10 I sol. required = 39.00 cc.

Ans. Free $SO_3 = 33.10$ per cent. $H_2SO_4 = 64.40$ per cent. $SO_2 = \underbrace{2.50}_{100.00}$ per cent.

130. A solution of sulphuric acid, after testing is found to contain 0.049205 grams of acid per cubic centimeter. How many cubic centimeters of water must be added to a kilogram of this solution to make it $\rm N/1?$

Ans. 3.20 cc.

131. How much 0.2019 N sodium hydroxide and how much water must be taken to make 5 liters of N/10 sodium hydroxide? (Consider the densities of the two liquids to be the same, in this and other problems, unless otherwise mentioned.)

Ans. 2391.2 cc. NaOH; 2608.8 cc. H₂O.

132. 50 cc. of a solution (factor to N/10 = 1.005) correspond to 48.90 cc. of another solution. How many cubic centimeters of water, per liter, must be added to this second solution to make it N/10?

Ans. 28.00 cc.

- **133.** How many grams each of a 0.5012 N and of a 0.1078 N solution must be mixed to make 5 kilos of a 2 N/10 solution?

 Ans. 756.6 gr. of the 0.1078 N solution; 234.4 gr. of the 0.5012 N solution.
- 134. How many pounds of an 80 per cent acetic acid must be added to a 92.60 per cent acetic acid to make 600 pounds of a 90 per cent acid?

 Ans. 123.8 pounds 80.00 per cent acid; 476.2 pounds 92.60 per cent acid.
- 135. How many pounds of a 20 per cent hydrochloric acid must be added to 800 pounds of a 43 per cent hydrochloric acid to convert this quantity of acid into a 30 per cent acid?

Ans. 1040 pounds.

136. How many pounds each of a 30 per cent oleum and of a 98 per cent sulphuric acid must be mixed, to prepare 100 pounds of a 100 per cent sulphuric acid? (Calculate on the percentages of SO_3 present in each.)

Ans. 22.82 pounds 30 per cent oleum; 77.18 pounds 98 per cent H₂SO₄.

137. A solution of sulphuric acid, after testing it, is found to contain 0.049205 gram of acid per cubic centimeter. How many cubic centimeters of water must be added to a kilogram of this solution to make it N/1?

Ans. 3.20 cc.

- 138. How much 0.2019 N sodium hydroxide and how much water must be taken to make 5 liters of N/10 sodium hydroxide? (Consider the densities of the two liquids to be the same, in this and other problems, unless otherwise mentioned.)

 Ans. 2391.2 cc. NaOH: 2608.8 cc. H₂O.
- 139. 50 cc. of a solution (factor to N/10 = 1.005) correspond to 48.90 cc. of another solution. How many cubic centimeters of water, per liter, must be added to this second solution to make it N/10?

 Ans. 28.00 cc.
- **140.** How many grams each of a 0.5012 N and of a 0.1078 N solution must be mixed to make 1 kilo of a N/5 solution?
- Ans. 756.6 gr. of the 0.1078 N solution; 234.4 gr. of the 0.5012 N solution.
- 141. How many pounds of an 80 per cent acetic acid must be added to a 92.6 per cent acetic acid, to make 600 pounds of a 90 per cent acid?

 Ans. 123.8 lbs. 80 per cent acid; 476.2 lbs. 92.6 per cent acid.
- **142.** How many pounds of a 20 per cent hydrochloric acid must be added to 800 pounds of a 43 per cent hydrochloric acid to convert this quantity of acid into a 30 per cent acid?

 Ans. 1040 lbs.
- 143. How many pounds each of a 30 per cent oleum and of a 98 per cent sulphuric acid must be mixed to prepare 100 pounds of a 100 per cent sulphuric acid? (Calculate on the percentages of SO₃ present in each.)

 Ans. 22.82 lbs. 30 per cent oleum; 77.18 lbs. 98 per cent H₂SO₄.

NEW BOOKS

A LIST OF THE MORE IMPORTANT BOOKS WHICH HAVE BEEN PUBLISHED SINCE JULY, 1909

AMERICAN AND ENGLISH BOOKS

AGRICULTURE AND HORTICULTURE

American Fertilizer Handbook, 1910. A standard directory of the commercial fertilizer industry and allied trades. Illustrated. 8×10 .	1
Cloth. 240 pp. Philadelphia, 1910 net	\$3.00
Cameron, Frank, K.: The Soil Solution. The nutrient medium for plant growth. Illustrated. 6 × 9. Cloth. 141 pp. Easton,	
1911net	1.25
Fritsch, J.: The Manufacture of Chemical Manures. Translated from the French, with numerous notes, by Donald Grant. 69 illustra-	
tions. 108 tables. $6 \times 8\frac{3}{4}$. Cloth. 355 pp. London, 1911net	4.00
Hall, A. D.: Fertilizers and Manures. Illustrated. 12mo. Cloth. 399 pp. New York, 1909net	1.50
—— The Feeding of Crops and Stock. An introduction to the science of the nutrition of plants and animals. With 24 illustrations and diagrams. $5\frac{1}{2} \times 8$. Cloth. 314 pp. New York, 1911net	1.50
	1.50
Hart, J. H.: Caeao. A manual on the cultivation and curing of caeao. 64 illustrations and plates. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 333 pp. London,	
1911net	3.00
Johnson, W. H.: The Cultivation and Preparation of Para Rubber. Second Edition, rewritten and greatly enlarged. 32 illustrations.	
8vo. Cloth. 186 pp. London, 1909net	3.00
Kinch, E.: Church's Laboratory Guide. A manual of practical chemistry for colleges and schools, specially arranged for agricultural students. Ninth Edition, revised and largely rewritten. 45 illus-	
trations. $5\frac{1}{2} \times 7\frac{3}{4}$. Cloth. 385 pp. New York, 1912net	2.50
Microbiology for Agricultural and Domestic Science Students. Edited	
by C. E. Marshall. 128 illustrations. $5\frac{3}{4} \times 8$. Cloth. 746 pp. Philadelphia, 1911	2.50
Murray, J. A.: Soils and Manures. 33 illustrations. 8vo. Cloth. 367 pp. (Van Nostrand's Westminster Series.) New York, 1910.	
net	2.00

Ville, M. G.: Artificial Manurcs: Their Chemical Selection and Scientific Application to Agriculture. New and Revised Translation by William Crookes and John Percival. Illustrated. 8vo. Cloth. 388 pp. London, 1909net \$3.	00
ĄNALYTICAL	
Allen's Commercial Organic Analysis. A treatise on the properties, modes of assaying, and proximate analytical examination of the various organic chemicals and products employed in the arts, manufactures, medicine, etc. With concise methods for the detection and estimation of their impurities, adulterations, and products of decomposition. Vol. V. Edited by W. A. Davis and S. S. Sadtler. Fourth	
Edition, entirely rewritten. Tannins, Analysis of Leather, Dyes and Colouring Matters, Inks. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 714 pp. Philadelphia, 1911	00
Barthel, Dr. Chr. Stockholm. Methods used in the examination of milk and dairy products. Translation by W. Goodwin, M.Sc. Ph.D. London, 1910. Cloth. 260 pp., 8°	90
Baskerville, Prof. Charles and Dr. L. J. Curtman: College of the City of New York. Qualitative Analysis. New York, 1910. Cloth. 200 pp., 8°	40
Battle, H. B. and Gascoyne, W. J.: Chemical conversion tables for the use in the analysis of commercial fertilizers, cotton seed, iron and food products, etc. 13 tables. 16mo. Leather. 80 pp. Thumb in-	00
Blyth, A. W., and Blyth, M. W.: Foods: Their Composition and Analysis. A manual for the use of analytical chemists and others. Sixth edition, thoroughly revised, enlarged and rewritten. Illus-	50
Bolton, F. C., S. E. Richards and Cecil Revis: Fatty Foods, Their Practical Examination. A handbook for the use of analytical and	50
technical chemists. 7 Plates and 36 figures. Philadelphia 3. Byers, H. G., and Knight, H. G.: Notes on Qualitative Analysis.	50
Ppt atom a carry	50
Caven, R. M.: Systematic Qualitative Analysis for Students of Inorganic Chemistry. 8vo. Cloth. 240 pp. London, 1909net 1.	25
Chesneau, M. G.: Ingenieur en chef des Mines: Professeur d'analyse minérale a l'école nationale des Mines. Theoretical Principles of the Methods of Analytical Chemistry Based upon Chemical Reactions. Authorized translation by A. T. Lincoln, Ph.D., Assistant Professor of Chemistry, Rensselaer Polytechnic Institute and D. H. Carnahan, Ph.D., Associate Professor of Romance Languages, University of Illinois. New York, 1910. Cloth. 184 pp., 8°	75

Clowes, F., and Coleman, J. B.: Quantitative Chemical Analysis. Adapted for use in the laboratories of colleges and schools. Eighth Edition. Illustrated. 8vo. Cloth. 589 pp. London, 1909net	\$3.50
Darling, C. R.: Pyrometry. A practical treatise on the measurement of high temperatures. 60 illustrations. $5 \times 7\frac{1}{2}$. Cloth. 212 pp. London, 1911	2.00
Desch, Cecil H.: The Chemistry and Testing of Cement. Illustrated. $5\frac{7}{8} \times 8\frac{3}{4}$. Cloth. 277 pp. London, 1910net	3.00
Gardner, H. A., and Schaeffer, J. A.: The Analysis of Paints and Painting Materials. Illustrated. $6\frac{3}{8} \times 9\frac{3}{8}$. Cloth. 109 pp. New York, 1911net	1.50
Gill, Augustus H.: A Short Handbook of Oil Analysis. Fifth Edition revised and enlarged. Illustrated. 12mo. Cloth. 179 pp. Philadelphia, 1909	2.00
Given, A.: Methods for Sugar Analysis and Allied Determinations. The methods here presented are those which the author, from practice on a very large variety of substances, considers to be best adapted for the purposes in hand. Illustrated. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 85 pp. Philadelphia, 1912net	2.00
Gooch, Frank Austin: Professor of Chemistry in Yale University, and Philip Embury Browning, Assistant Professor of Chemistry in Yale University. Outlines of Qualitative Chemical Analysis. Second Edition, Revised. Small 8vo, vi + 145 pages. Clothnet	1.25
Hampshire, C. H.: Volumetric Analysis for Students of Pharmaceutical and General Chemistry. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 112 pp. Philadelphia, 1912net	1.25
Johnson, A. E.: Analyst's Laboratory Companion. A collection of tables and data for the use of general analysts, agricultural, brewing, and works' chemists, and students; together with numerous examples of chemical calculations and concise descriptions of several analytical processes. $5 \times 7\frac{1}{2}$. Cloth. 176 pp. Philadelphia, 1912net	2.00
Johnson, C. M.: Rapid Methods for The Chemical Analysis of Special Steels, Steel-making Alloys and Graphite. Illustrated. 12mo. Cloth. 227 pp. New York, 1909	3.00
Leach, Albert E., S.B.: Chief of the Denver Food and Drug Inspection Laboratory, Bureau of Chemistry, U. S. Department of Agriculture. Food Inspection and Analysis. For the use of public analysts, health officers, sanitary chemists, and food economists. Second Edition, Revised and Enlarged. Large 8 vo. xviii + 954 pp. 120 figures. 40 full-page half-tone plates. Cloth	7.50
Low, Albert H., B.S.: formerly Chief Assayer, United States Mint, Denver. Fourth Edition, Revised. Technical Methods of Ore Analysis. 8vo. xii + 349 pages. Cloth	3,00

Lunge, George: Technical Methods of Chemical Analysis. English translation from the latest German edition; edited by C. A. Keane, in collaboration with eminent specialists. Vol. II. In two parts. 148 illustrations. $7 \times 9\frac{1}{2}$. Cloth. 1291 pp. New York, 1911net § Previously published:	§18. 00
Vol. I. General Methods of Technical Analysis. (In two parts.) Illustrated. $6\frac{1}{4} \times 9$. 1024 ppnet	15.00
Mac Farlane, Walter: Laboratory Notes on Iron and Steel Analysis. 25 illustrations. 12mo. Cloth. London, 1909net	2.50
A Practical Guide to Iron and Steel Works Analyses. Being selections from "Laboratory Notes on Iron and Steel Analyses." Illustrated. $5 \times 7\frac{1}{4}$. Cloth. 196 pp. New York, 1911net	1.25
Mason, William P.: Professor of Chemistry, Rensselaer Polytechnic Institute. Examination of Water. (Chemical and Bacteriological) Fourth Edition, Revised. 12mo. v + 167 pp., illustrated. Cloth	1.25
Moor, C. G. and Partridge, W.: Aids to the Analysis of Food and Drugs. Third Edition. 12mo. Cloth. London, 1909net	2.00
Mulliken, Samuel P.: Identification of the Commercial Dyestuffs. Being Volume III of A Method for the Identification of Pure Organic Compounds by a systematic analytical procedure based on physical properties and chemical reactions.	
—— Identification of Dyestuffs. 1. Aufl. 1910. 1910. New York. Zt. f. ang. Chem. 1910, 2085.	M5.00
Neave, G. B., and Heilbron, I. M.: Identification of Organic Compounds. $5 \times 7\frac{3}{4}$. Cloth. 111 pp. New York, 1911net	1.25
Nelson, Burt E.: Introduction to the Analysis of Drugs and Medicines. An elementary handbook for the beginner. $5 \times 7\frac{1}{4}$. Cloth. 396	2 00
pp. New York, 1910net Parry, L.: The Analysis of Ashes and Alloys. 8vo. Cloth. 151 pp. London, 1908net	3.00 2.00
Peckham, S. F.: Solid Bituminous. Their physical and chemical properties and chemical analysis, together with a treatment of the chemical technology of bituminous pavements. 29 illustrations.	
8vo. Cloth. 324 pp. Chicago, 1909 net Price, W. B., and Meade, R. K.: Technical Analysis of Brass and the Non-Ferrous Alloys. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 271 pp. New York, 1911 net	2.00
Richards, Ellen H.: Laboratory Notes on Industrial Water Analysis. A survey course for engineers. Second Edition, revised with additions. 8vo. Cloth. 59 pp. New York, 1910net	0.50
Rockwood, E. W., M.D., Ph.D.: Chemical Analysis for students of Medicine, Pharmacy and Dentistry. Illustrated. Fourth Edition. Revised. 262 pp. Philadelphia	1.50

Schimpf, Henry W.: A Manual of Volumetric Analysis for the use of pharmacists, sanitary and food chemists as well as students in these branches. Fifth Edition, revised and enlarged. 102 illustrations.	
8vo. Cloth. 745 pp. New York, 1909	\$5.00
adapted to the needs of students of pharmaceutical chemistry. 58 illustrations. $5\frac{1}{2} \times 8\frac{1}{2}$. Cloth. 372 pp. New York, 1911net	1.50
Scott, Wilfred Welday: Qualitative Chemical Analysis. A laboratory guide. Illustrated. $6\frac{1}{4} \times 9$. Cloth. 176 pp. New York, 1910. net	1.50
Seamon, W. H.: A Manual for Assayers and Chemists. Determination of metals, acids, ores, slags and miscellaneous substances used in metallurgy. $5\frac{3}{4} \times 8\frac{1}{4}$. Cloth. 355 pp. New York, 1910net	2.50
Sherman, H. C.: Methods of Organic Analysis. Second Edition, rewritten and enlarged. Illustrated. $6\frac{1}{2} \times 9$. Cloth. 425 pp.	2.40
New York, 1912net Smith, E. F.: Electro-Analysis. Fifth Edition, revised and enlarged. 46 illustrations. $5\frac{1}{2} \times 7\frac{1}{2}$. Leather. 340 pp. Philadelphia, 1911.	2.40
Smith, J. R.: Modern Assaying. A concise treatise describing latest	2.50
methods and appliances. Edited by F. W. Braun. 80 illustrations. 12mo. Cloth. 145 pp. Philadelphia, 1910net	1.50
Stieglitz, J.: The Elements of Qualitative Chemical Analysis. Parts I. and II., Fundamental Principles and Their Application. With special consideration of the application of the laws of equilibrium and	
of the modern theories of solution. $5\frac{3}{4} \times 8\frac{3}{4}$. Cloth. 325 pp. New York, 1911net	1.40
Stillman, Thomas B.: Engineering Chemistry. A manual of quantitative chemical analysis for the use of students, chemists and engineers. Fourth Edition. 174 illustrations. 6×9 . Cloth. 753 pp. Eas-	
ton, Pa., 1910net Stocks, H. B.: Water Analysis for Sanitary and Technical Purposes.	5.00
Illustrated. $5\frac{1}{2} \times 8$. Cloth. 144 pp. London, 1912net Stone, C. H., B.S., M.S.: Chief Inspector of Gas, Public Service	1.50
Commission, Second District, New York. Practical Testing of Gas and Gas Meters. 8vo. x + 337 pp. 51 figures. Cloth	3.50
Sutton, Francis: A Systematic Handbook of Volumetric Analysis; or, the Quantitative Determination of Chemical Substances by Measure, Applied to Liquids, Solids and Gases. Tenth Edition, revised	
throughout, with numerous additions by W. Lincolne Sutton. $6\frac{1}{4} \times 8\frac{3}{4}$. Cloth. 635 pp. Philadelphia, 1911net	5.50
Thorne, Baker T.: The Spectroscope. Its Uses in General Analytical Chemistry. New York. William Wood & Co., 1908. Svo	1.75
Treadwell, F. P.: Analytical Chemistry. Vol. II. Quantitative Analysis. Translated by William T. Hall. Second Edition, thoroughly revised and enlarged. 110 illustrations. $6\frac{1}{4} \times 9\frac{1}{4}$.	
Cloth. 797 pp. New York, 1910	4.00

Trotman, S. R.: Leather Trades Chemistry. A practical manual on the analysis of materials and finished products. 48 Illustrations. 8vo. Cloth. 300 pp. London and Philadelphia, 1908net	\$4.50
Waterbury, L. A.: Laboratory Manual for the Use of Students in Testing Materials of Construction. 68 illustrations. $5 \times 7\frac{3}{4}$. Cloth. 279 pp. New York, 1912net	1.50
Zerr, George: Tests for Coal-Tar Colors in Aniline Lakes: a review of the coal-tar coloring matters generally used in the lake industry and their behavior with distinct chemical reagents. Translated by	
Charles Mayer. $6\frac{1}{2} \times 9$. Cloth. 230 pp. London, 1910	4.50
FOODS	
Armstrong, E. F.: The Simple Carbohydrates and the Glucosides. Svo. Boards. 121 pp. London, 1910net	1.20
Billing, G. T., and Walker, A. H.: Milk and Food Inspectors' Examinations. Model answers to questions set by the Royal Sanitary Institute and other examining bodies. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 164 pp.	
London, 1911.	1.50
Gibbs, W. M.: Spices and How to Know Them. Illustrated. Colored plates. $6\frac{3}{4} \times 9\frac{7}{8}$. Cloth. 179 pp. Buffalo, N. Y. 1909 net	3.50
Grant, J.: The Chemistry of Breadmaking. 47 illustrations and 4 plates. $5 \times 7\frac{1}{2}$. Cloth. 234 pp. New York, 1912net	1.40
Hawk, P. B., M.S., Ph.D.: Practical Physiological Chemistry. Fourth Edition revised. Six colored plates and 136 text figures (12 in colors.) 495 pp. Philadelphia	2.50
Jago, W., and Jago, W. C.: The Technology of Bread-Making. Including the chemistry and analytical and practical testing of wheat, flour, and other materials employed in bread-making and confectionery. 121 illustrations. 7 × 10. Cloth. 916 pp. London, 1911	7.50
Jordan, W. H.: Principles of Human Nutrition. A study in practical	
dietetics. Illustrated. $5\frac{3}{4} \times 8$. Cloth. 475 pp. New York, 1912.	1.75
Leathes, J. B.: The Fats. $6\frac{1}{4} \times 9\frac{3}{4}$. Boards. 138 pp. (Monographs on Biochemistry.) London, 1910net Macewen, Hugh A.: Food Inspection. A practical handbook. Illus-	1.25
trated. 8vo. Cloth. 264 pp. London, 1910net	2.50
Monographs on Biochemistry: Ed. by R. H. Aders Plimmer and F. G. Hopkins. Longmans, Green & Co., London. 1. The chemical constitution of the Proteins. R. H. Aders Plimmer. 2 pts., 1908. 100 + 66 pp. 2. The nature of Enzyme action. 90 pp. 1908. W. M. Bayliss. Z. f. Koll. 1909 ¹ , 44	
Murray, J. A.: The Economy of Food. A popular treatise on nutri-	
tion, food and diet. Illustrated. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 265 pp. New York, 1911net	1.50

Parry, E. J.: Foods and Drugs. In two volumes. $6\frac{1}{2} \times 10$. Cloth. London, 1911. Vol. I. The Analysis of Foods and Drugs. 59	
illustrations. 752 pp	\$7.50 3.00
Plimmer, R. H. A.: Practical Physiological Chemistry. 49 illustrations. $6\frac{1}{4} \times 9\frac{3}{4}$. Cloth. 278 pp. London, 1910net Rigby, W. O.: Reliable Candy Teacher. Candy, Ice Cream and Soda	1.80
Water Formulas. Tenth Edition, revised and enlarged. 12 mo. Paper. 177 pp. Topeka, Kas., 1909.	2.00
 Robertson, F. B.: The Proteins. Berkeley, Cal., Univ. of California. Savage, W. G.: Milk and the Public Health. The Bacteriology of Milk; Milk and Human Disease; Public Health Control of the Milk Supply. 35 illustrations. 6 × 9. Cloth. 477 pp. London, 1912. 	1.00
net Schryver, S. B., Ph.D.: The general characters of the Proteins.	3.25
From "Monographs on Biochemistry," ed. by R. H. A. Plimmer and F. G. Hopkins. 86 pp. 1909. Longmans, Green & Co., London. Z. f. Koll. 1909 ¹¹ , 77	
Sherman, Henry C., Ph.D.: Professor in Columbia University. Chemistry of Food and Nutrition. Cloth. 355 pp., index, 8° .net	1.50
Simmons, W. H., and Mitchell, C. A.: Edible Fats and Oils. Their composition, manufacture and analysis. Illustrated. $5\frac{3}{4} \times 8\frac{3}{4}$. Cloth. 164 pp. London 1911 net	3.00
Surface, G. T.: The Story of Sugar. New York. Appleton 238 pp.	1.00
Thomson, G. S.: Milk and Cream Testing and Grading Dairy Products, for School, Farm and Factory. With an introduction by Samuel Lowe. Illustrated with plates. $5 \times 7\frac{1}{2}$. Cloth. 224 pp.	1.00
London, 1911net Van Slyke, L. L., and Publow, C. A.: The Science and Practice of	1.75
Cheese Making. A treatise on the manufacture of American cheddar cheese and other varieties. Illustrated. 12mo. Cloth. 499 pp. New York, 1909	1.75
Whymper, R.: London. Cocoa and Chocolate, their Chemistry and Manufacture. 327 S. 1912. J. & A. Churchill, London. 15 Schilling. Zt. f. angew. Chem. 1912, S. 828	1.10
Wiley, Harvey W.: Foods and Their Adulteration. Origin, manu-	
facture, and composition of food products, infant's and invalids'; detection of common adulterations and food standards. Second Edition, revised and enlarged. 87 illustrations. 11 colored plates. $6\frac{3}{4} \times 9\frac{3}{4}$. Cloth. 653 pp. Philadelphia, 1911net	4.00
GENERAL	
d'Albe, E. E. F.: Contemporary Chemistry. A survey of the present state, methods and tendencies of chemical science. $5\frac{1}{2} \times 8\frac{1}{4}$. Cloth.	1.05
188 pp. London, 1911net	1.25

Annual Reports on the Progress of Chemistry for 1909. Issued by the Chemical Society. Volume VI. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 293 pp. Lon-	
don, 1910	\$2.00
London, 1912net	2.00
Baden-Powel, B. F. S. (Editor): The Science Year Book. With astronomical, physical and chemical tables; summary of progress in science and diary for 1910. Sixth year of issue. 8vo. Cloth. London, 1910	2.00
Biltz, Heinrich: Introduction to Experimental Inorganic Chemistry. Authorized translation from the German by William T. Hall and Joseph W. Phelan, Instructors in Chemistry, Massachusetts Institute of Technology. 12mo. vi + 185 pp. Cloth	1.25
Bingham, E. C., and White, George C.: A Laboratory Manual of Inorganic Chemistry. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 155 pp. New York, 1911	1.25
Blanchard, A. A.: Synthetic Inorganic Chemistry. A laboratory course for first year college students. Illustrated. 12mo. Cloth.	1.00
97 pp. New York, 1908net The British Journal of Photography, 1910. Fourth Colonial Number Phot. Korr. 1910, 193	1.00
The British Journal, photographic almanac and photographers daily Companion, 1910. Ed. by George E. Brown. 1909. Henry Greenwood & Co., London. Phot. Korr. 1910, 99	1.00
Brown, James C. D., Sc., LL.D.: The History of Chemistry from the earlier times till the present day. 107 Ill. 573 pp. Philadelphia	3.50
Brundage, A. H.: A Manual of Toxicology. A concise presentation of the principal facts relating to poisons, with detailed directions for the treatment of poisoning. Also a table of doses of the principal and many new remedies. Seventh Edition, revised and profusely illus-	
trated. $4\frac{1}{4} \times 7\frac{1}{4}$. Cloth. 438 pp. New York, 1911net Burgess, G. K., and Le Chatelier, H.: The Measurement of High Temperatures. Third Edition, rewritten and enlarged. 179 illustrations of 1000 lb. Cloth. 1992 pp. New York, 1912.	2.00
tions. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 528 pp. New York, 1912net Chauvenet, R.: Chemical Arithmetic and Calculation of Furnace	4.00
Charges. A systematic course in stoichiometric calculations. The present manual may serve either as a text-book, or as a convenient reference for the instructor. The author has included in the text all of the problems which he was accustomed to present to his classes in General Chemistry. $6\frac{1}{2}, \times 9\frac{1}{2}$. Cloth. 315 pp. Philadelphia, 1912	
Czapek, F.: Chemical Phenomena in Life. $4\frac{1}{2} \times 7$. Cloth. 162 pp.	4.00
London, 1911net	0.75
Dreaper, W. P., F. I. C., F. C. S.: Notes on Chemical Research	1 00

Dunstan, A. E., and Thole, F. B.: Text-book of Practical Chemistry	
for Technical Institutes. 52 illustrations. $5 \times 7\frac{1}{2}$. Cloth. 345 pp. London, 1911net	\$1.40
Edmunds, E. W., and Hoblyn, J. B.: The Story of the Five Elements.	#2.20
43 illustrations. 8 plates. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 272 pp. London,	
1911net	1.25
Fenton, Henry J. H.: Outlines of Chemistry with Practical Work. Part I. 8vo. Cloth. 384 pp. Cambridge, 1909net	3.00
Field, Samuel: The Principles of Electro-Deposition. A laboratory	
guide to electro-plating. 120 illustrations. $5\frac{1}{4} \times 8$. Cloth. 398 pp. London, 1911net	1.80
Fowler, Gilbert J.: An introduction to Bacteriological and Enzyme	1.00
Chemistry. Illustrated. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 336 pp. New York,	
1911net	2.10
Friend, J. N.: The Corrosion of Iron and Steel. Illustrated. $5\frac{1}{2} \times 8$. Cloth. 315 pp. London, 1911	1.80
— The Theory of Valency. 12mo. Cloth. 194 pp. London,	1.00
1909net	1.60
Gooch, Frank Austin: Professor of Chemistry in Yale University and	
Claude Frederic Walker, teacher of Chemistry in the High School of	
Commerce of New York City. Outlines of Inorganic Chemistry. Cloth. 514 pp., 8°net	1.75
Gooch, Frank Austin, and Claude Frederic Walker: Laboratory Ex-	1.10
periments to Accompany Outlines of Inorganic Chemistry. Paper.	
104 pp., 12°	0.50
Hale, A. J.: Practical Chemistry for Engineering Students. With an introductory note by Professor R. Meldola. 58 illustrations.	
$5\frac{1}{2} \times 8$. Cloth. 212 pp. New York, 1912net	1.00
Hale, William J.: The Calculations of General Chemistry with Defini-	
tions, Explanations, and Problems. Second Edition, revised. 275	1 00
problems. 16mo. Cloth. 185 pp. New York, 1909net	1.00
Heinemann, P. G.: A Laboratory Guide in Bacteriology. Second Edition. 35 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 225 pp. Chicago,	
1912net	1.50
Hilditch, T. P.: A Concise History of Chemistry. 16 diagrams.	
$5 \times 7\frac{1}{2}$. Cloth. 273 pp. New York, 1911	1.25
Holleman, A. F., and Cooper, H. C.: A Text-book of Inorganic Chemistry. Fourth Edition, completely revised. 77 illustrations, 2 colored	
plates. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 514 pp. New York, 1912	2.50
Houlievigue, L.: The Evolution of the Sciences. A popular treatise	
on Chemistry and Astronomy. Translated from the French. Illus-	
trated. 8vo. Cloth. 338 pp. London, 1909net	2.00
Jago, William: A Manual of Forensic Chemistry, dealing especially with Chemical Evidence, its Preparation and Adduction. $5\frac{1}{4} \times 7\frac{5}{8}$.	
Cloth. 264 pp. London, 1909net	2.00

Jorgensen, Alfred: Micro-Organisms and Fermentation. Biological Examination of Air and Water; Bacteria; Moulds; Yeasts; The Pure Culture of Yeast on a Large Scale. Translated by S. H. Davies. 101 illustrations. $6 \times 8\frac{3}{4}$. Cloth. 500 pp. London, 1911net Kahlenberg, Louis, Ph.D.: Professor of Chemistry and Director of the course in Chemistry in the University of Wisconsin. Outlines of	\$4.50
Chemistry. A Text-book for College Students. New York, 1909. Cloth. 548 pp., 8°net	2.60
Lafar, Franz: Technical Mycology: The utilization of micro-organisms in the arts and manufactures. A practical handbook on fermentation and fermentative processes. Translated by Charles T. C. Salter. In two volumes. London, 1910.	
Vol. I. Schrzomycetic Fermentation. 99 illustrations. 1 plate. $6\frac{3}{4} \times 9\frac{1}{2}$. Cloth. 828 pp net Vol. II. Eumycetic Fermentation. Part I. 50 illustrations.	4.50
$5\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 550 pp	4.00 5.00
illustrations. $5\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 758 ppnet Lee, Edwin: A text-book of Experimental Chemistry. With descriptive notes for students of general inorganic chemistry. 57 illus-	0.00
trations. 12mo. Cloth. 433 pp. Philadelphia, 1909net	1.50
Lowell,Percival:The Evolution of Worlds.Illustrated.8vo.Cloth.275 pp.New York, 1909net	2.50
Martin, G.: Triumphs and Wonders of Modern Chemistry. A popular treatise on modern chemistry and its marvels, written in non-technical language for general readers and students. 76 illustrations. 24 plates. $5\frac{1}{2} \times 8\frac{1}{4}$. Cloth. 378 pp. New York, 1911net	2.00
Mastin, John: The Chemistry, Properties and Tests of Precious Stones. $4 \times 6\frac{1}{2}$. Leather. 114 pp. London, 1911	1.00
Morse, H. W.: Storage Batteries. The chemistry and physics of the lead accumulator. 106 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 271 pp. New York, 1912net	1.50
Mees, C. E. K.: An Atlas of the Absorption Spectra. Longmans.	
Ostwald, W.: Professor of Chemistry in the University of Leipzig. Conversations on Chemistry. Part II. The Chemistry of the Most Important Elements and Compounds. Authorized Translation by	
Stuart K. Turnbull. Second Edition, corrected. 12mo. viii + 373 pp. 32 figures. Cloth	2.00
— Introduction to Chemistry. Authorized translation by W. T. Hall and Robert S. Williams. 74 illustrations. $6 \times 8\frac{1}{4}$. Cloth. 378 pp. New York, 1911net	1.50
The Fundamental Principles of Chemistry. An introduction to all text-books of chemistry. Authorized Translation by Harry W.	
Moreo 65 illustrations Syn Cloth 261 pp. Now Vork 1000	2 25

Parsons, C. L.: The Chemistry and Literature of Beryllium. 8vo. Cloth. 180 pp. Easton, Pa., 1909	29 00
Partington, J. R.: Higher Mathematics for Chemical Students. 44	p2.00
illustrations. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 278 pp. London, 1911net	2.00
Penrose's Pictorial Annual: The process yearbook. Ed. by William	
Gamble. Vol. 15, 1909–1910. Vol. 14, 1908–1909. A. W. Penrose & Co., London. Phot. Korr. 1909, 145; 1910, 297 SI	5 00
Roberts, E.: Famous chemists. New York. McMillan Co. 243 pp. net	
Pösch, V.: An Introduction to the Chemistry of Colloids. A com-	0.00
pendium of colloidal chemistry for students, teachers and works	
managers. Translated from the Second Enlarged German Edition by H. H. Hodgson. $5 \times 7\frac{1}{2}$. Cloth. 114 pp. London, 1910	1.25
Ramsay, Sir William: Essays, Biographical and Chemical. Illustra-	1.20
ted. 12mo. Cloth. 254 pp. New York, 1909net	2.50
Ransom, J. H.: Experimental General Chemistry. Second Edition,	
revised. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 155 pp. New York, 1911net	1 00
Rohland, Dr. P.: The Colloidal and Crystalloidal State of Matter.	1.00
Translated by W. J. Britland and H. E. Potts. $5 \times 7\frac{1}{2}$. Cloth.	
54 pp. New York, 1912net	1.25
Schwedtman, F. C., and Emery, J. A.: Accident Prevention and Relief.	
An investigation of the subject in Europe, with special attention to England and Germany, together with recommendations for action in	
the United States of America. Illustrated, $6\frac{1}{2} \times 9\frac{1}{2}$. Half	
morocco. 501 pp. New York, 1911	15.00
Segerblom, W.: Tables of Properties of over fifteen hundred common	
inorganic substances. 8vo. Cloth. 154 pp. Exeter, N. H., 1909.	3.00
Seidell, Atherton: Solubilities of Inorganic and Organic Substances.	0.00
A handbook of the most reliable quantitative solubility determina-	
tions. Second printing, with corrections. $6 \times 9\frac{1}{2}$. Cloth. 375 pp.	9.00
New York, 1911net Senter, G.: A Text-book of Inorganic Chemistry. 89 illustrations.	3.00
Senter, G.: A Text-book of Inorganic Chemistry. 89 mustrations. $5\frac{1}{2} \times 7\frac{1}{2}$. Cloth. 593 pp. New York, 1912net	1.75
Stoddard, John F.: Professor of Chemistry at Smith College. New	
York, 1910. Introduction to General Chemistry. Designed as a	
basis for the first year's course in Chemistry. Cloth. 432 pp. 8vo.	1.60
The ABC Guide to Autotype Carbon Printing: Published by J. R.	1,00
Sawyer in the year 1887, brought up to date. 1909. The Auto-	
type Co., London. Phot. Korr. 1909, 603	
Tennant, A.: The American Annual of Photography, New York. G. Murphy. 328 pp	1.00
G. Murphy. 528 pp	

Thorpe, Edward: History of Chemistry. Vol. I. From the Earliest Times to the Middle of the Nineteenth Century. Illustrated. 16mo. Cloth. 210 pp. New York, 1909	\$0.75
Travers, Dr. Morris W.: Assistant Professor of Chemistry, University College, London. The Experimental Study of Gases. With Intro- duction by Sir W. Ramsay. London, 1901. Cloth. 323 pp., 8°. net	
Wadmore, J. M.: Elementary Chemical Theory. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 290 pp. New York, 1912net	
Watkins, A.: Photography. Its principles and applications. 100 illustrations. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 349 pp. New York, 1911net	2.00
Wedekind, E. and J. Lewis. New Atomic Weight Curves. 21 pp. with 4 curves. 1910. Stuttgart: Ferdinand Curke	
Werner, A.: New Ideas on Inorganic Chemistry. Translated with the author's sanction from the second German Edition by E. P. Hedley. 6 × 9. Cloth. 284 pp. London, 1911net	2.50
Zsigmondy, Richard: Professor of Inorganic Chemistry in the University of Göttingen. Colloids and the Ultramicroscope. A Manual of Colloid Chemistry and Ultramicroscopy. Authorized Translation by Jerome Alexander, M.Sc. Small 8vo. xiil + 245 pp. Illustrated	
with line cuts and 2 plates in color. Cloth	3.00
MANUFACTURING AND INDUSTRIAL CHEMISTRY	
American Institute of Chemical Engineers. Transactions. Vol. I, 1908. 41 illustrations. 5 folding plates. 8vo. Cloth. 212 pp. New	2.00
York, 1909	6.00
York, 1910net Vol. III., 1910. Illustrated. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 411 pp. New York 1911.	6.00
York, 1911	6.00
Bedell, W. L. D.: Practical Electro-Plating. 110 illustrations.	
12mo. Cloth. 244 pp. New York, 1909net Bellow, H. R.: Factory Glazes for Ceramic Engineers. Book A of the Series: Leadless Sanitary Glazes for hard weatherproof glazed brick	2.00
and stone factory; for porcelain enameled fireclay sanitary ware factory; for soft porcelain factory; for strong clayware factory.	
9 × 14 inches. Cloth. 60 pp. New York, 1908 Bennett, H. G.: The Manufacture of Leather. 110 illustrations.	10.00
8vo. Cloth. 441 pp. London, 1910net	4.50
Beveridge, James: The Papermakers' Pocketbook. Specially compiled for paper mill operatives, engineers, chemists, and office officials. Second and Enlarged Edition. Illustrated. $4\frac{1}{4} \times 6\frac{1}{2}$. Cloth. 270	
pp. London, 1911net	4.00

Blount, B., and Bloxam, A. G.: Chemistry for Engineers and Manufacturers. A practical text-book. Vol. I., Chemistry of Engineering, Building, and Metallurgy. Second Edition. 55 illustrations. $6 \times 8\frac{3}{4}$. Cloth. 404 pp. London, 1911net	\$4.00
Blucher, H.: Modern Industrial Chemistry. Translated by J. P. Millington. Articles in Alphabetical Order. Illustrated. $7 \times 9\frac{1}{2}$. Cloth. 795 pp. Berlin, 1911net	
	5.00
Brown's Directory of American Gas Companies. Gas Statistics. Compiled and corrected by E. C. Brown. $7 \times 10\frac{1}{2}$. Cloth. 641 pp. New York, 1911	5.00
Bunnell, S. H.: Cost-keeping for Manufacturing Plants. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 243 pp. New York, 1911net Byrom, T. H., and Christopher, J. E.: Modern Coking Practice. In-	3.00
cluding the analysis of materials and products. 110 illustrations. 8vo. Cloth. 156 pp. London, 1910net Calvert, G. T.: The Manufacture of Sulphate of Ammonia. 100	3.50
illustrations. $5\frac{3}{4} \times 9$. Cloth. 153 pp. London, 1911	3.00
Chalon, P. F.: Les Explosifs Modernes. Third Edition. 217 illustrations. $7 \times 9\frac{3}{4}$. Cloth. 789 pp. Paris, 1911net	7.50
Chapin, H. M.: How to Enamel. Being a treatise on the practical enameling of jewelry with hard enamels. Illustrated. $5 \times 7\frac{1}{2}$. Cloth. 81 pp. New York, 1911	1.00
Ottawa, Canada, 1907	1.00
Cross, C. F., Bevan, E. J., and Sindall, R. W., with the collaboration of W. N. Bacon. Wood Pulp and Its Uses. 25 illustrations. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 281 pp. New York, 1911net	2.00
Cushman, A. S., and Gardner, H. A.: The Corrosion and Preservation of Iron and Steel. 67 illustrations. 8vo. Cloth. 373 pp. New York, 1910	4.00
Dichmann, Carl: The Basic Open-Hearth Steel Process. Translated by Alleyne Reynolds. Illustrated. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 340 pp. London, 1911net	3.50
Duncan, R. K.: Some Chemical Problems of To-day. Illustrated. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 260 pp. New York, 1911net	2.00
Durnford, E.: Manufacture of Nitro-Lignin and Sporting Powder. The book is divided into parts which deal briefly with the Manufacture of Nitro-Lignin, as a base for sporting powder, and the Manufacture of Nitro-Lignin, as a base for sporting powder, and the Manufacture of Nitro-Lignin, as a base for sporting powder, and the Manufacture of Nitro-Lignin, as a base for sporting powder, and the Manufacture of Nitro-Lignin and Sporting Powder.	
ufacture of Sporting Powder, respectively. Illustrated. $5\frac{3}{4} \times 9$. Cloth. 90 pp. London, 1912net	1.90

Standpoint. Map and charts. 8vo. Cloth. 92 pp. New York, 1909	\$2.00
Ennis, William D.: Linseed Oil and Other Seed Oils. An industrial manual. 88 illustrations. 8vo. Cloth. 330 pp. New York, 1909	4.00
Garcke, E., and Fells, J. M.: Factory Accounts. Their principle and practice. Sixth Edition, revised and considerably extended. 63 illustrations. $5\frac{1}{2} \times 7\frac{1}{2}$. Cloth. 292 pp. London, 1911net	3.00
Geerligs, H. C. P.: Cane Sugar and Its Manufacture. Large 8vo. Cloth. 377 pp. Manchester, 1909net	
Grampp, Otto: The Practical Enameler. With especial reference to enameling sheet-iron and cast-iron ware, with useful information relating to all side lines. An exceptionally complete manual for self-instruction for all engaged in the trade. $5\frac{1}{2} \times 8\frac{1}{2}$. Cloth. 88 pp. New York, 1910net	10.00
Grünwald, Julius: The Theory and Practice of Enameling on Iron and Steel, with historical notes on the use of enamel. Translated by Herbert H. Hodgson. 8vo. Cloth. 138 pp. London, 1910	
Harden, Arthur: Alcoholic Fermentation. With tables. $6 \times 9\frac{3}{4}$. Boards. [138 pp. New York, 1911net	
Holley, Clifford Dyer, M.S., Ph.D.: Chief Chemist Acme White Lead and Color Works. Lead and Zinc Pigments. Large 12mo. xix + 340 pp. 85 figures. Clothnet	3.00
Hornby, John: A Text-book of Gas Manufacture for Students. 1911. G. Bell & Sons, London. Zt. f. angew. Chem. 1912, S. 26.	
Humphrys, N. H.: Construction and Management of Small Gas Works. With a section on Actual Costs and capacity of recently erected works by J. H. Brearley. 48 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 270 pp. London, 1911net	3.00
Jones, L., and Scard, F. I.: The Manufacture of Cane Sugar. 224 illustrations. 8vo. Cloth. 473 pp. London, 1909net	
Lowe, Houston: Paints for Steel Structures. 12mo. 115 pages	1.00
Lunge, George: Coal-Tar and Ammonia. Fourth and Enlarged Edition. In two volumes, not sold separately. 305 illustrations. 8vo.	
Cloth. 1210 pp. London, 1910net	15.00
— The Manufacture of Sulphuric Acid and Alkali. A theoretical and practical treatise. Vol. II. Sulphate of Soda, Hydrochloric Acid, Leblanc Soda. Third Edition, much enlarged. In two parts, not sold separately. 335 illustrations. 8vo. Cloth. 1044 pp. Lon-	
don, 1910net	
— Technical Chemists' Handbook. 283 pp. 12mo. Leathernet — The Manufacture of Sulphuric Acid and Alkali, with the Collateral	3.50
Branches. A theoretical and practical treatise. Vol. III., Ammo-	

nia Soda, Various Processes of Alkali Making and the Chlorine Industry. 181 illustrations. $6\frac{1}{2} \times 9$. Cloth. 784 pp. New York	
1911net	\$10.00
Vols. I. and II. Previously published	
MacDonald, G. W.: Historical Papers on Modern Explosives. With an introduction by Sir Andrew Noble. Illustrated. $5\frac{1}{2} \times 8\frac{1}{2}$ Cloth. 200 pp. London, 1912net	
McIntosh, J. G.: The Manufacture of Varnishes and Kindred Industries. Based on and including the work of Ach. Livache. Second Edition, greatly enlarged. Vol. III., Spirit Varnishes and Spirit Varnish Materials. 64 illustrations. $5\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 500 pp London, 1911	l ;
Masselon, Roberts et Cillard: Le Celluloid, Fabrication, Applications Substituts. 159 illustrations, 7 plates. $5\frac{1}{2} \times 9$. hf. morocco. 534	3
pp. Paris, 1911	
tions. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 522 pp. Easton, Pa., 1911	4.50
Mittelstaedt, Otto: Technical Calculations for Sugar Works. Translated from the Third German Edition by C. J. Bourbakis. 12mo. Cloth. 128 pp. New York, 1910net	
Molinari, Ettore: General and Industrial Inorganic Chemistry.	
Translated by Dr. E. Feilmann, B. Sc., F.I.C., Ph.D. From Third Italian Edition, revised. 720 pp. 280 illustrations and 3 plates.	
Philadelphia General and Industrial Organic Chemistry. Translated by	
T. H. Pope. From Third Italian Edition, revised. 506 illustra- tions. Philadelphia	
Morris, G. S.: The Bottlers' Formulary. Practical recipes, formulas and processes for making the soluble flavors used in the manufacture of carbonated beverages. $5\frac{1}{2} \times 7\frac{3}{4}$. Cloth. 87 pp. Kansas	
City, 1910	5.00
Narmandy, F.: A practical manual on Sea Water Distillation. London. Griffin & Co. 8°. 104 pp	6 S
Nicholson, T. Lee: Nicholson on Factory Organization and Costs. Illustrated. 4to. Three-quarters morocco. 423 pp. New York,	
1909	
Norton, C.: Book on Modern Yeasting and Distillation. Construction of Plants; Mashing; Yeasting; Fermentations; Distillation; Feed; Laboratory; Mycology. Illustrated. $6 \times 8\frac{3}{4}$. Cloth. 68	
pp. Chicago, 1911	10.00
Otto, M.: L'Industrie des parfums, d'aprés les théories de la chemie	
moderne. Notations et formules. Les parfums naturels. Les parfums artificiels. Illustrated. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 545 pp. Paris,	
1909	

Paint Manufacturers' Association: First Annual Report on Wearing of Paints Applied to Atlantic City Fence. Illustrated. 8vo.	
Paper. 315 pp. Bulletin 16. Philadelphia, 1909. — First Annual Report on the Wearing of Paints Applied to Pitts-	\$5.00
burg Test Fence. Illustrated. 8vo. Paper. 301 pp. Bulletin 17. Philadelphia, 1909.	5.00
Parry, Ernest J.: The Chemistry of Essential Oils and Artificial	3.00
Perfumes. Illustrated. 8vo. Cloth. 554 pp. London and New York, 1908net	5.00
Potts, H. E.: The Chemistry of the Rubber Industry. $6\frac{1}{4} \times 9\frac{1}{2}$. Cloth. 168 pp. London, 1912net	2.00
Reitzenbaum, S.: Important Decisions regarding The Working of German Patents. 12mo. Cloth. 48 pp. London, 1909net	1.00
Rise and Progress of the British Explosives Industry published under the auspices of the Seventh International Congress of Applied Chem- istry by its Explosives Section. Illustrated. 4to. Cloth. 432	
pp. London, 1909	5.25
the student and manufacturer. Edited by authors in collaboration with eminent specialists. 340 illustrations. $7 \times 9\frac{3}{4}$. Cloth. 870	
pp. New York, 1912net Sadtler, S. P.: Industrial Organic Chemistry. Adapted for the use of	5.00
manufacturers, chemists, and all interested in the utilization of organic materials in the industrial arts. Fourth Edition, revised, enlarged and reset. 122 illustrations. 19 diagrams. 7×10 .	
Cloth. Philadelphia, 1912net Sang, Alfred: Corrosion of Iron and Steel. The work is in great	5.00
measure a compilation and study of the results obtained by other investigators and is intended as a compendium of the subject suitable	
for reference. 12mo. Cloth. 130 pp. New York, 1910net Scherer, R.: Casein. Its preparation and technical utilization.	1.00
Translated from the German by Charles Salter. Second Edition, revised and enlarged. Illustrated. $5\frac{3}{4} \times 8\frac{3}{4}$. Cloth. 196 pp.	9.00
London, 1911	3.00
A practical, critical and interesting presentation of the most important features of the various branches of the rubber industry. The	
work deals with the production and consumption of rubber, the plantation industry, wild and crude rubbers, the chemical, physical and	
mechanical properties, vulcanization, tests and manufactured articles, etc. 300 pp. Illustrated with 83 plates and diagrams.	- 00
1910net Scott, W. G.: White Paints and Painting Materials. Source and	5.00
manufacture, composition and properties; uses and formulas; physical tests and chemical analysis. 62 illustrations. $6\frac{5}{8} \times 9\frac{1}{2}$.	
Cloth. 527 pp. Chicago, 1910net	3.50

· ·	
Seeligmann, T., Torrilhon, G. L., and Falconnet, H.: India Rubber and Gutta Percha. Translated by J. G. McIntosh. A complete practical treatise on India rubber and gutta percha in their historical, botanical, arboricultural, mechanical, chemical and electrical aspects. Second English Edition, revised and enlarged. 145 illustrations. 125 tables. $6\frac{1}{2} \times 9\frac{3}{4}$. Cloth. 424 pp. London, 1910.	
Seymour, Alfred: Modern Printing Inks. A practical handbook for printing ink manufacturers and printers. Illustrated. 8vo. Cloth. 90 pp. London, 1910net	\$2.00
Simmons, W. H., and Appleton, H. A.: The Handbook of Soap Manufacture. 27 Illustrations. 8vo. Cloth. 166 pp. London and New York, 1908net	3.00
Sindall, R. W.: The Manufacture of Paper. 58 illustrations. 8vo. Cloth. 285 pp. Van Nostrand's Westminster Series. New York, 1909	2.00
Thorpe, E.: A Dictionary of Applied Chemistry. In five volumes. Vol. I. Revised and Enlarged Edition. Illustrated. $7 \times 9\frac{1}{2}$. Cloth. 764 pp. London, 1912net	13.50
Toch, Maximilian: Materials for Permanent Painting. A manual for manufacturers, art dealers, artists and collectors. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 207 pp. New York, 1911net	2.00
Wahl, R., and Henius, M.: American Handy Book of the Brewing, Malting and Auxiliary Trades. A book of ready reference for per- sons connected with the brewing, malting and auxiliary trades, to-	
gether with tables, formulas, calculations, bibliography and dictionary of technical terms. Third Edition, revised. Illustrated. 12mo. Leather. Two volumes. 1530 pp. Chicago, 1908net	12.00
Webner, F. E.: Factory Costs. A work of reference for cost accountants and factory managers. 230 illustrations. $6\frac{3}{4} \times 9\frac{1}{4}$. Cloth. 611 pp. New York, 1911net	6.00
West, P. C. H.: The Modern Manufacture of Portland Cement. A handbook for manufacturers, users and all interested in Portland cement. Vol. I. Machinery and Kilns. 159 illustrations. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 262 pp. London, 1910net	4.00
Worden, Edward C.: Nitrocellulose Industry. A compendium of the history, chemistry manufacture, commercial application and analysis of nitrates, acetates and xanthates of cellulose as applied to the peace-	
ful arts with a chapter on gun cotton, smokeless powder and explosive cellulose nitrates. Two volumes. 324 illustrations. $6\frac{1}{2} \times 9\frac{1}{2}$. Cloth. 1239 pp	10.00
MECHANICAL ENGINEERING, MINING, METALLURGY AND GEOLOGY	
Anderson, Fred A.: Boiler Feed Water. A practical treatise on its quality, effects and purification. Svo. Cloth. 165 pp. London, 1909	2.50

Austin, Leonard S.: The Metallurgy of the Common Metals. Second Edition, revised and enlarged. 195 illustrations. 8vo. Cloth. 494 pp. San Francisco, Cal., 1909net	\$4.00
Bain, H. Foster: More Recent Cyanide Practice. In this book are	Ψ1.00
compiled the leading articles on cyanidation that have appeared since	
"Recent Cyanide Practice" was published. Illustrated. $6\frac{1}{4} \times 9\frac{1}{4}$.	
Cloth. 424 pp. San Francisco, 1910	2.00
Borchers, W.: Metallurgy. A brief outline of the modern processes	
for extracting the more important metals. Authorized translation	
from the German by W. T. Hall and Carle R. Hayward. 218 illus-	
trations. 6×9 . Cloth. 271 pp. New York, 1911net	3.00
Brislee, F. J.: An Introduction to the Study of Fuel. A text-book for	
those entering the engineering, chemical and technical industries. 60	
illustrations. $6\frac{1}{4} \times 9$. Cloth. 293 pp. London, 1911net	3.00
Buchanan, John F.: Practical Alloying. A compendium of alloys and	
processes for brass founders, metal workers and engineers. Illustra-	
ted. $6\frac{1}{2} \times 9$. Cloth. 205 pp. Cleveland, 1910	2.50
Clennell, J. E.: The Chemistry of Cyanide Solutions resulting from the	
treatment of ores. Second Edition, corrected and enlarged. 8vo.	
Cloth. 208 pp. New York, 1910net	2.50
— A Complete Treatise on the Cyanide Process of Treating Ores.	
The Cyanide Handbook. 8vo. Cloth. 531 pp. New York,	× 00
1910net	5.00
Collins, Henry F.: The Metallurgy of Lead. Being one of a series of	
treatises on metallurgy written by associates of the Royal School of	
Mines. Edited by Sir W. C. Roberts-Austin. Second Edition, thoroughly revised and enlarged. 315 illustrations. $7 \times 9\frac{1}{4}$.	
thoroughly revised and emarged. 315 mustrations. $7 \times 9\frac{1}{4}$. Cloth. 558 pp. London, 1910net	6.00
	0.00
Coste, J. H.: Calorific Power of Gas. A treatise on calorific standards and calorimetry. 57 illustrations. Numerous tables. $5\frac{1}{2} \times 8$.	
Cloth. 326 pp. London, 1911	2.00
Finlay, James R.: The Cost of Mining. An exhibit of the results of	2.00
important mines throughout the world. Illustrated. 8vo. Cloth.	
	5.00
Ford, W. E.: Dana's Manual of Mineralogy. For the student of	0.00
elementary mineralogy, the mining engineer, the geologist, the	
prospector, the collector, etc. Thirteenth Edition, entirely revised	
and rewritten. 357 illustrations. 10 plates. $5\frac{1}{2} \times 7\frac{3}{4}$. Cloth.	
468 pp. New York, 1912net	2.00
Greene, A. M., Jr.: Pumping Machinery. A treatise on history, de-	
sign, construction and operation of various forms of pumps. 502	
illustrations. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 709 pp. New York, 1911net	4.00
Gunther, C. G.: Electro-Magnetic Ore Separation. Illustrated.	
8vo. Cloth. 200 pp. New York, 1909net	3.00

Harbord, F. W., and Hall, J. W.: The Metallurgy of Steel. Fourth Edition, enlarged and revised. 2 vols. 612 illustrations. 6½ × 9¼. Cloth. 1028 pp. London, 1911	12.00
Hatfield, W. H.: Cast Iron. In the light of recent research. Composition and properties of. 164 illustrations. $6\frac{3}{4} \times 9$. Cloth. 263 pp. London, 1912	3.50
Hoover, Herbert C.: Principles of Mining. Valuation, organization and administration. Copper, gold, lead, silver, tin and zinc. 45 illustrations. 8vo. Cloth. 205 pp. New York, 1909net	2.50
Joly, J., M.A., ScD., F.R.S.: Professor of Geology and Mineralogy in the University of Dublin. Radioactivity and Geology. An Account of the Influence of Radioactive Energy on Terrestrial History. 290	0.00
pp. $5 \times 7\frac{1}{2}$ inches. 8 illustrations	3.00
pp. New York, 1908net	3.00
Lake, E. F.: Composition and Heat Treatment of Steel. Making Pig Iron; Bessemer Open Hearth, and Crucible Processes and Electric Furnace for Steel Making; Working Steel into Shape; Furnaces and Fuels Used for Heat-Treatment; Annealing, Hardening, and Tempering Steel; Carbonizing. 143 illustrations. $6\frac{1}{4} \times 9\frac{1}{4}$.	
Cloth. 252 pp. New York, 1910net	2.50
Levy, D. M.: Modern Copper Smelting. Lectures delivered at Bir-	
mingham University greatly extended and adapted, and with an introduction on the history, uses and properties of copper. 76 illustrations, 4 colored plates. $6\frac{1}{2} \times 9\frac{1}{4}$. Cloth. London, 1912	3.50
Maclaren, J. M.: Gold. Its geological occurrence and geographical distribution. 213 illustrations, 38 plates. 6×9 . Cloth. 662 pp. Londonnet	10.00
McMillan, W. G., and Cooper, W. R.: A Electro-Plating and Electro-Metallurgy Treatise on Electro-Metallurgy. Third Edition, revised and enlarged. 111 illustrations. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 440 pp. Lon-	
don, 1910	4.00
Megraw, H. A.: Practical Data for the Cyanide Plant. 25 illustrations. $4\frac{1}{4} \times 6\frac{3}{4}$. Leather. 93 pp. New York, 1910net	2.00
Nagel, Oscar: The Mechanical Appliances of the Chemical and Metallurgical Industries. Illustrated. 8vo. Cloth. 307 pp. New York, 1908	2.00
North, Sydney, H.: Oil Fuel. Its supply, composition, and application. Revised throughout and greatly enlarged by Edward Butler. Second Edition. 106 illustrations. Folding plates. $5\frac{1}{2} \times 8$.	
Cloth. 248 pp. London, 1911net	2.00

O'Shea, L. T.: Elementary Chemistry for Coal Mining Students. Illustrated. $5\frac{3}{4} \times 8$. Cloth. 330 pp. New York, 1911.....net \$1.80

Parry, L.: Systematic Treatment of Metalliferous Waste. Illustrated. Syo. Cloth. 121 pp. London, 1909.....net 2.00

Philip, Arnold: The Electro-Plating and Electro-Refining of Metal. Second Edition, revised. Being a new edition of Alexander Watt's "Electro-Deposition." 162 illustrations. 6 × 8. Cloth. 704 pp. London, 1911	4.50
Rose, T. Kirke: The Precious Metals. Comprising gold, silver and platinum mining, smelting and assaying. 46 illustrations. 8vo. Cloth. 311 pp. (Van Nostrand's Westminister Series.) New York, 1909	2.00
Rowe, J. P.: Practical Mineralogy Simplified. For mining students, mines and prospectors. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 162 pp. New York, 1911net	1.28
Ruer, Dr. Rudolf: Privatdozent at the University of Göttingen. Elements of Metallography. Authorized Translation by C. H. Mathewson, Ph.D., Instructor in Chemistry and Metallography at the Sheffield Scientific School of Yale University. 8vo. xiv + 342 pp. 119 figures. Cloth	3.00
Sexton, A. H.: Alloys (Non-Ferrous). 137 illustrations. 8vo. Cloth. 298 pp. Manchester, 1909net	3.00
— and Primrose, J. S. G.: Common Metals (Non-Ferrous). The metallurgy of copper, tin, zinc, lead, antimony, aluminium and nickel. 185 illustrations. $6 \times 8\frac{3}{4}$. Cloth. 491 pp. Manchester, 1911	3.00
Soap Maker's Handbook of Materials: Processes and Receipts for every description of soap. Edited chiefly from the German of Dr. C. Deite, A. Engelhardt, F. Wiltner and other experts. With additions by W. T. Brannt. Second Edition, revised and greatly rewritten. 54 illustrations. $6 \times 8\frac{3}{4}$. Cloth. 535 pp. Philadelphia, 1912.net	6.00
Stevens, H. J.: The Copper Handbook. This book lists and describes 8130 mines and mining companies in all parts of the world. Vol. X., $1910-1911$. Completely revised. 6×9 . Buckram. 1902 pp.	6.00
Houghton, Michigan, 1911	5.00 7.50
Wang, C. Y.: Antimony for students manufacturers and users of antimony. 64 illustrations. 8vo. Cloth. 227 pp. London, 1909	
net	4.00

ORGANIC CHEMISTRY

Cohnheim, O.: Enzymes. Six lectures delivered under the Herter Lectureship Foundation at the University and Bellevue Hospital	
Medical College. $5\frac{1}{2} \times 7\frac{3}{4}$. Cloth. 183 pp. New York, 1912. net	\$1.50
Fischer, Emil: Introduction to the Preparation of Organic Com-	
pounds. Translated with the author's sanction from the New	
(Eighth) German Edition by R. V. Stanford. 19 illustrations. $5 \times 7\frac{1}{2}$. Cloth. 194 pp. New York, 1910net	1.25
Keane, C. A.: Modern Organic Chemistry. 29 illustrations. 12mo.	
Cloth. 518 pp. London, 1909	1.50
May, Percy: The Chemistry of Synthetic Drugs. $6\frac{1}{4} \times 9$. Cloth. 239 pp. New York, 1911net	2.25
Moore, F. J.: Outlines of Organic Chemistry. A book designed	
especially for the general student. Illustrated, 12mo, Cloth, 324 pp. New York, 1910net	1.50
Noyes, W. A., Prof.: Illinois. Organic Chemistry for the Laboratory.	
2. durchgeseh. u. erweiterte Aufl. XI und 291 S. 1911. The	
Chemical Publishing Co., Easton, Pa. Zt. f. angew. Chem. 1911, S. 2156.	
Remsen, Ira: An introduction to the Study of the Compounds of	
Carbon or Organic Chemistry. Fifth revision. Illustrated. 12mo.	1 00
Cloth. 441 pp. Boston, 1909net Roscoe, H. E., and Schorlemmer, C.: A Treatise on Chemistry.	1.20
Vol. I. The Non-Metallic Elements. Fourth Edition. 226 illustra-	
tions. 6×9 . Cloth. 967 pp. London, 1911net	5.00
Previously published: Vol. II. The Metals. 259 illustrations. 6 × 9. Cloth. 1400 pp. (London, 1907net	7.50
Sidgwick, N. V.: The Organic Chemistry of Nitrogen. Illustrated.	1.00
$6\frac{1}{2} \times 10$. Cloth. 426 pp. Oxford, 1910net	4.75
Stewart, A. W.: Recent Advances in Organic Chemistry, with an intro-	2.50
duction by J. W. Colie. 8vo. Cloth. 401 pp. London, 1908. net Sudborough, J. J. and James, J. C.: Practical Organic Chemistry, 92	2.50
illustrations. 12mo. Cloth. 394 pp. London, 1909net	2.00
PHYSICAL CHEMISTRY	
Ewell, Arthur W.: A Text-book of Physical Chemistry, Theory and	
Practice. 102 illustrations. 63 tables. 12mo. Cloth. 379 pp. Philadelphia, 1909	2.25
Getman, Frederick H., Ph.D.: Associate in Chemistry, Bryn Mawr	2.20
College, formerly Carnegie Research Assistant in Physical Chemistry	
Johns Hopkins University. Introduction to Physical Science. 12mo. vi + 257 pp. 129 figures. Clothnet	1.50
into. vi not pp. the figures. Cloth	1.00

Gibson, Charles R.: The Autobiography of an Electron. Wherein the scientific ideas of the present day are explained in an interesting and novel fashion. Illustrated. $5 \times 7\frac{1}{2}$. Cloth. 216 pp. Phila-	
delphia, 1910net	\$1.50
Jones, H. C.: Professor of Physical Chemistry in the Johns Hopkins University. Introduction to Physical Chemistry. New York, 1910. Cloth. 279 pp. 12°net	1.60
— The Electrical Nature of Matter and Radioactivity. Second Edition, completely revised. $8\frac{1}{4} \times 5\frac{5}{8}$. Cloth. 218 pp. New York, 1910net	2.00
Kaye, G. W. C., and Laby, T. H.: Tables of Physical and Chemical Constants and some Mathematical Functions. $6\frac{3}{4} \times 9\frac{3}{4}$. Flexible	2.00
cloth. 160 pp. New York, 1911net Lorentz, H. A.: The Theory of Electrons. 8vo. Cloth. London,	1.50
1909net	3.60
Morgan, J. Livingston R., Ph.D.: Professor of Physical Chemistry in Columbia University. Physical Chemistry for Electrical Engineers. Second Edition, revised. 12mo. x + 243 pp. Clothnet	1.50
Perrin, M. Jean: Brownian Movement and Molecular Reality. Translated from the Annales de Chimie et de Physique. 8th series, September, 1909, by F. Soddy. Illustrated. $5\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 93	
pp. London, 1910net	1.25
Philip, T. C.: Physical Chemistry. Its bearing on biology and medicine. Illustrated. $5\times7\frac{1}{2}$. Cloth. 310 pp. London, 1910net	2.10
Prideaux, A. B. R.: Problems in Physical Chemistry. With practical applications. Illustrated. 6 × 9. Cloth. 325 pp. New York, 1912	2.00
Redgrove, H. S.: On the Calculation of Thermochemical Constants. 8vo. Cloth. London, 1909net	1.70
Roth, W. A.: Exercises in Physical Chemistry. Authorized translation by A. T. Cameron. 49 illustrations. 8vo. Cloth. 208 pp.	
London, 1909net	2.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.50
pp. New York, 1911net	1.75
Smiles, Samuel: The Relations between Chemical Construction and some Physical Properties. Illustrated. $5\frac{1}{4} \times 7\frac{3}{4}$. Cloth. 583 pp. London, 1910net	4.00
Soddy, F.: Chemistry of the Radio-Elements. $6 \times 8\frac{3}{4}$. Cloth. 97 pp. New York, 1911net	0.90
Stewart, A. W.: Recent Advances in Physical and Inorganic Chemistry. With an Introduction by Sir William Ramsay. 25 illustrations Sire Clerk 282 pp. Lenden 1999	
tions tro Cloth 989 nn London 1000 not	2 50

(*

Townsend, John S.: The Theory of Ionization of Gases by Collision. Illustrated. $5 \times 7\frac{1}{2}$. Cloth. 99 pp. New York, 1911net	\$1.25
Tutton, A. E. H.: Crystalline Structure and Chemical Construction. Illustrated. 8vo. Cloth. 204 pp. London, 1910net	1.60
TEXTILE INDUSTRY	
Barker, A. T.: Textiles. 86 illustrations. $6 \times 8\frac{1}{2}$. Cloth. 387 pp.	
New York, 1911net	2.00
Carter, H. R.: Bleaching, Dyeing and Finishing of Flax, Hemp and Jute Yarns and Fabrics. 20 illustrations. $5\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 172 pp. London, 1911net	1.00
Edge, J. H.: Notes on Practical Cotton Finishing. Illustrated. $5\frac{1}{2} \times 8\frac{1}{2}$. Cloth. 102 pp. London, 1911net	2.00
Fay, Irving W.: The Chemistry of the Coal-Tar Dyes. $6\frac{1}{2} \times 9$. Cloth. 473 pp. New York, 1911net	4.00
Fernbach, R. L.: Chemical Aspects of Silk Manufacture. $5\frac{1}{2} \times 8$.	2.00
Cloth. 84 pp. New York, 1910net	1.00
Knecht, E., Rawson, C., and Lowenthal, R.: Manual of Dyeing. For the use of practical dyers, manufacturers, students and all interested in the art of dyeing. Second Edition. Two volumes. 120 illustra-	
tions. 875 pp. London, 1910net	12.00
Kretschmar, Karl: Yarn and Warp Sizing in all its Branches. Translated from the German by C. Salter. 122 illustrations. $6\frac{1}{4} \times 10$. Cloth. 192 pp. London, 1911net	4.00
Maire, F.: Colors, What They Are and What to Expect of Them. A series of practical treatises on development of the color-making industry; preliminary study of colors; natural earth colors; chemically made colors; various divisions of groups of colors; black group of colors; brown group of pigments; raw and burnt umber; the mining of earth colors; the blue group of pigments; also the green, red, yellow and white; vehicles or thinness of pigments; system of grinding. Illustrated. $4\frac{1}{2} \times 8\frac{3}{4}$. Cloth. 103 pp. Chicago, 1911.	0.60
Matthews, J. M.: Laboratory Manual of Dyeing and Textile Chemis-	
try. 8vo. Cloth. 375 pp. New York, 1909	3.50
Olney, Louis A.: Textile Chemistry and Dyeing. A manual of practical instruction in the art of textile bleaching and coloring, and allied processes of treatment including many useful hints and recipes.	
Illustrated. 8vo. Half leather. 343 pp. Chicago, 1909	3.00
Owen, F. A., B.S.: Dyeing and Cleaning of Textile Fabrics. A Handbook for the Amateur and the Professional. Containing a List of the Various Kinds of Dyes; the Art of Fixing Coloring-Matters, and Miscellaneous Recipes for Dyeing Cotton, Wool, Silk; the Preparation of Cleaning Liquor; Bleaching; the Removing of Spots and Stains from Garments; the Washing of Silk and Cotton; the Wash-	

ing of Flannel and other Woollen Articles; the Cleaning of Clothes, Carpets, etc. Steam Cleaning, Dry Cleaning. Soaps, etc., etc.

Based partly on notes of H. C. Standage. 12mo. vi + 253 pp. Cloth	\$2.00
Polleyn, F.: Dressings and Finishings for Textile Fabrics and Their Application. Description of all the materials used in dressing textiles; their special properties, the preparation of dressings and their employment in finishing linen, cotton, woollen and silk fabrics, freproof and waterproof dressings, together with the principal machinery employed. Translated from the Third German Edition by Chas. Salter. 60 illustrations. $5\frac{3}{4} \times 8\frac{1}{2}$. Cloth. 279 pp. London,	
1911	3.00
Brannt. Fourth Edition, revised and enlarged. 41 illustrations. $5\frac{1}{4} \times 7\frac{1}{2}$. Cloth. 371 pp. Philadelphia, 1911net Practical Manual of Cloth Finishing. Comprising the finishing of	2.50
woollen, worsted and union fabrics. By the editors of "The Dyer and Calico Printer." Illustrated. $6\frac{1}{2} \times 9\frac{1}{4}$. Cloth. 316 pp. London, 1911	8.40
Rothery, G. C., and Edmonds, H. O.: The Modern Laundry. Its construction, equipment and management. Including dry cleaning and dyeing, by A. Morris. In two volumes. $7\frac{3}{4} \times 10\frac{3}{4}$. Half	
morocco. London, 1911	15.00
Trotman, S. R., and Thorp, E. L.: Principles of Bleaching and Finish-	
ing of Cotton. 131 illustrations. $6\frac{3}{4} \times 9$. Cloth. 359 pp. London, 1911net	5.00
WATER SUPPLY AND SANITATION	
Bailey, E. H. S., Ph.D.: Professor of Chemistry, University of Kansas. A Text-book of Sanitary and Applied Chemistry or The Chemistry of Water, Air, and Food. New York, 1906. Reprinted 1908, 1910. Cloth. 345 pp. 12°net	1.40
Baskerville, Chas.: Municipal Chemistry. A series of thirty lectures by experts on the application of the principles of chemistry to the city, delivered at the College of the City of New York, 1910. 251 illustra-	
tions. $16\frac{1}{2} \times 9\frac{3}{4}$. Cloth. 535 pp. New York, 1911net	5.00
Cosgrove, J. J.: History of Sanitation. Illustrated. 8vo. Cloth. 124 pp.; Pittsburg, 1909	1.50
229 pp. Pittsburgh, 1909	3.00
Don, John, and Chisholm, John: Modern Methods of Water Purification. 96 illustrations. 6×9 . Cloth. $384\mathrm{pp}$. London, $1911.\mathrm{net}$	4.20

Fuller, G. W.: Sewage Disposal. 80 illustrations. $7 \times 9\frac{1}{2}$. Cloth. 783 pp. New York, 1912net	\$6.00
Kershaw, G. Bertram: Modern Methods of Sewage Purification. A guide for the designing and maintenance of sewage purification works. Illustrated tables, 36 plates. $6\frac{3}{4} \times 9$. Cloth. 369 pp. London, 1911net	7.50
Kinnicutt, L. P., Winslow, C. E. A., and Pratt, R. W.: Sewage Disposal. Illustrated. $6\times9^{\frac{1}{2}}$. 440 pp. New York, 1910net	3.00
Mathews, John L.: The Conservation of Water. Illustrated. $5\frac{3}{4} \times 8\frac{1}{4}$. Cloth. 299 pp. Boston, 1911	2.00
Moore, E. C. S. and Silcock, E. J.: Sanitary Engineering. A practical treatise on the collection, removal and final disposal of sewage and house refuse, and the design and construction of works of drainage and sewerage with numerous hydraulic tables, formulæ and memoranda including an extensive series of tables of velocity and discharge of pipes and sewers. Two volumes. 500 illustrations. 101 folding plates. 160 tables. 8vo. Cloth. 880 pp. London, 1909.	
	14.00
Morse, W. F.: The Collection and Disposal of Municipal Waste. 91 illustrations. 100 tables. 8vo. Cloth. 500 pp. New York, 1909net	5.00
Naylor, W.: Trades Waste. Its treatment and utilization. With special reference to the prevention of river pollution. 21 plates, 27 folding diagrams, and numerous illustrations. 6×9 . Cloth. 283 pp. Philadelphia, 1912 net	6.50
Ogden, H. N.: Rural Hygiene. 79 illustrations. $5\frac{1}{2} \times 8$. Cloth. 451 pp. New York, 1911net	
— and Cleveland, H. B.: Practical Methods of Sewage Disposal. For residences, hotels and institutions. 52 illustrations and plates. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 138 pp. New York, 1912net	1.50
Richards, Ellen H.: Instructor in Sanitary Chemistry, Massachusetts Institute of Technology, and Alpheus G. Woodman, Assistant Pro- fessor of Food Analysis, Massachusetts Institute of Technology. Air, Water, and Food from a Sanitary Standpoint. Third Edition,	1.50
revised. 8vo. 278 pp. Illustrated. Cloth	2.00
— Conservation by Sanitation. Air and water supply. (Including a laboratory guide for sanitary engineers.) Illustrated. $6\frac{1}{4} \times 9\frac{1}{4}$. Cloth. 317 pp. New York, 1911	2.50
Trentham, W. H. and Saunders, James: Modern Methods of Sewage Disposal. A practical handbook for the use of members of local authorities and their officials. Illustrated. 12mo. Cloth. 68 pp.	
London 1909	1 25

FOREIGN BOOKS, MOSTLY GERMAN

By Carl H. Lips, B. S., Ph. D.

The following list is made up of only such books as have been reviewed between August 1, 1908, and January 1, 1913, in such readily and generally accessible journals as the "Photographische Korrespondenz," "Zeitschrift für angewandte chemie," and "Zeitschrift für Chemie und Industrie der Kolloide."

In these reviews attention is often called to errors and misstatements. Valuable information relating to the subject matter of the book is frequently added by the reviewing specialist. This fact alone will make it worth while in many cases to look up the reference, whether one is interested in any particular book, or only in the subject matter covered by such a book.

AGRIKULTURCHEMIE UND DAZU GEHÖRIGES — FORSTWISSEN-SCHAFT

D V 22222 2	
Baumhauer, Dr. Heinrich: Freiburg im Breisgau. Leitfaden der Chemie, insbes. zum Gebrauch an landwirtschaftlichen Lehranstalten. Zt. f. angew. Chem. 1911, S. 890, 2156. I. Teil: Anorg. Chemie, 6. Aufl. mit 34 Abb. 1911. Herdersche Verlagshandlung	M2.70 M1.80
Ehrenberg, Paul: Theoretische Betrachtungen über die Beeinflussungen einiger der sogen. physikalischen Bodeneigenschaften. Ein Anfangsversuch einer landwirtschraftlichen Kolloidchemie Sonderabdruch aus den Mitteilungen der landw. Inst. der Kgl. Universität Breslau. 1908. O. Parey, Berlin	
Grossmann, H.: Die Stickstofffrage und ihre Bedeutung für die deutsch. Volkswirtschaft. 1911. M. Krayn, Berlin. Zt. f. angew. Chemie, 1911, S. 1741	
1910, 601	M0.80
Jahresbericht über die Fortschritte auf dem Gesamtgebiete der Agrikulturchemie. Nr. 22, 3. Folge, 1909; der ganzen Reihe 52. Jahrg. Hrsg. von Prof. Th. Dietrich, Hannover. 1910. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 2176	M28.00
Jurisch, Konrad W., Dr.: Salpeter und sein Ersatz. 356 S., 2 Bild-	

wissen, 45 Abb. 1908. S. Hirzel, Leipzig. Zt. f. ang. Chem.

1908. S. 2108.

Stickstoffdüngung. Sonderabdruck aus: "Salpeter und sein Ersatz." 1908. L. Hirzel, Leipzig	
Kaiser, Karl, Prof.: Der Luftstickstoff und seine Verwertung. Bd. 313 aus "Natur und Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem., 1911, 648	
Krische, Dr. P.: Argikulturchemie. (Sammlung aus Natur und Geisteswelt). B. G. Teubner, Leipzig. Zt. f. angew. Chem. 1912, S. 27.	
Löhnis, Dr. F.: Landwirtschaftlich-bakteriologisches Praktikum. 3 Taf. und 40 Abb. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 65	M3.40
Passon, Max, Dr.: Kleines Handwörterbuch der Agrikulturchemie. 1. Teil Aadl-Kynurensäure. 2. Teil Lab-Zymogen. 1910. W. Engelmann, Leipzig. Zt. f. ang. Chem. 1910, 700	25.00
v. Schneider, W., Dr.: Mineralische Düngemittel und Ernteerträge. 1909: N. Kymmel, Riga. Zt. f. ang. Chem. 1910, 601	
Schröter, E.: Die Rauchquellen im Königreich Sachsen und ihr Einfluss auf die Forstwirtschaft. Heft 2 der Sammlung von Abh. über Abgase u. Rauchschäden. Hrsg. von H. Wislicenus. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 210.	M4.00
Schucht, L.: Die Fabrikation des Superphosphats mit Berücksichtigung der anderen gebräuchlichen Düngemittel. Ein Handbuch. 3. verb. u. verm. Aufl. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 162	
Stoklasa, Dr. J.: Biochemischer Kreislauf des Phosphations im Boden. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1912, S. 28	20.00
ALLGEMEINE CHEMISCHE TECHNOLOGIE, WERKE UND	
ZEITSCHRIFTEN BETR. CHEMISCHE TECHNOLOGIE	
,	M6.00
Alt, Heinrich, Dr.: München. Die Kälte, ihr Wesen, ihre Erzeugung und Verwendung. Bd. 311, "Aus Natur u. Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1911, 791	
0	M1.00
	M2.00
Beltzer, Francis J. G., Prof.: Paris. Die moderne industrielle Chemie. 2. Teil: Anorg. chem. Industrie: Die Metalloide, 687 S. 1909. Société d'Éditions techniques, Paris. Zt. f. ang. Chem. 1910, 743	

Bertelsmann, Wilhelm, Dr.: Lehrbuch der Leuchtgasfabrikation.	
2. Bde. 1. Bd.: Die Erzeugung des Leuchtgases. 12 Tafeln u.	
401 Abb. 581 S. 1911. Ferd. Enke, Stuttgart. Zt. f. ang.	120.00
Chem. 1911, 1266	120.00
1910-11. 1911. Franz Siemenroth, Berlin. Zt. f. ang. Chem.	
1911, 841	/15 00
Böhm, Richard C., Dr.: Die Fabrikation der Glühkörper für Gas-	110.00
glühlicht. Bd. 19 Monogr. über chemtechn. Fabrikations-	
methoden. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1910,	
840 vide 1905, 1644geh. M	122.00
Bottler, Max: Die Lack und Firnisfabrikation. Bd. 16 d. Monogr.	
ü. chemtechn. Fabrikat. methoden. 130 S. W. Knapp, Halle.	
	M4.50
Breuer, Carl: Kitte und Klebstoffe. Bd. 33 der Bibl. der. ges.	
Technik. 1907. Dr. Max Jänecke, Hannover. Z. f. Koll. Chem.	
1910 ¹ , 126	M3.80
Buchner, Georg: München. Die Metallfärbung und deren Ausfüh-	
rung, mit bes. Berücksichtigung der chemischen metallfärbung.	
4. verb. u. verm. Aufl. 1910. M. Krayn, Berlin. Zt. f. ang.	
	M8.70
Bujard, Alfons, Dr.: Stuttgart. Zündwaren. 1910. G. J. Göschen,	
	M0.80
le Coutre, Walter: Calcium-Carbid und seine volkswirtschaftliche	
Bedeutung für Deutschland. 1909. Dr. Wedekind & Co., Berlin.	3.50.00
	M3.00
Dichmann, C.: Der basische Herdofenprozess. 1910. Jul.	1.50 00
1 0 /	M8.00
Friese, Wilhelm: Die Asphalt-und Teerindustrie. 1908. Dr. Max	* OO
	M5.00
Geilenkirchen, Th., DrIng.: Grundzüge des Eisenhüttenwesens.	
1. Bd. Allgemeine Eisenhüttenkunde. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 938	M8.00
Gräfe, Ed., Dr.: Laboratoriumsbuch für die Braunkohlenteerin-	V10.00
dustrie, etc., Paraffin- u. Kerzenfabriken sowie Ölgasanstalten.	
190 S. 63 Abb. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909,	
	M6.60
Grossmann, J.: Die Schmiermittel. 2. Aufl. 1909. Kreidel,	
	M6.50
Günther, P.: Quarzglas. Seine Geschichte, Fabrikation und Ver-	
wendung. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911,	
1171	
Handbuch der Kaliwerke, Salinen, Tiefbohrunter nehmungen, etc.	
Jahrgänge, 1909, 1910, 1911. Verlag der Kuxen-Zeitung, Berlin,	
C. Zt. f. ang. Chem. 1909, 859. Zt. f. ang. Chem. 1910, 793. Zt.	
f. ang. Chem. 1911. 648	12.00

Handbuch der Lack- und Firnisindustrie. Hrsg. von Dr. Ing. Franz	
Seeligmann u. Emil Zicke, unter Mitwirk, von Dr. Eugen Sachsel	
u. Dr. Fritz Zimmer. 953 S. mit 252 Abb. 1910. Union, Deut-	
sche Verlagsgesellschaft, Berlin. Zt. f. ang. Chem. 1910, 2319 30 Lieferungen zu je	M1.00
	M28.00
Harper, W.: Die Destillation industrieller und forstwirtschaftlicher	1.120.00
Holzabfälle. Erw. deutsche Bearb. von R. Linde. 1909. J.	
Springer, Berlin. Zt. f. ang. Chem. 1910, 162	M40.00
Haselhoff, Emil, Prof.: Wasser und Abwässer. 1909. G. J. Gös-	
chen, Leipzig. Zt. f. ang. Chem. 1910, 566	M0.80
Jahresbericht über die Leistungen der Chemischen Technologie mit	
besonderer Berücksichtigung der Elektrochemie und gewerbestatistik	
Bearb. von Prof. Ferd. Fischer, — Göttingen. (1907) 38. Jahrng.	
2 Teile pro Jahrng.: Anorganischer u. organischer Teile. Zt. f.	
ang. Chem. 1907, 810; 1908, 953, 1819; 1909, 809, 2266; 1910, 1175, 1318; 1907-1909, Otto Weigand; 1910, J. A. Barth, Leipzig.	
Z. f. Koll. 1908 ¹¹ , 310	M15 00
Jörissen, Franz, Dr.: Die deutsche Leder — und Lederwarenindus-	1110.00
trie. Ist in den drei Sprachen, deutsch, englisch, u. französisch	
geschrieben. 1909. Gust. Braunbeck & Gutenberg Druckerei A.	
	M40.00
Kissling, Richard, Dr., Bremen. 1. Das Erdöl, seine Verarbeitung	
und Verwendung. 2. Laboratoriumsbuch für die Erdölindustrie.	
1.—12. Bd. monograph. über chemtechn. Fabrikations	
methodem, Dr. L. Wohlgemuth. 1908. W. Knapp, Halle. Zt. f.	
ang. Chem. 1908, 1578, 2246	
1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1223	M11 00
Kohlenuntersuchungen, 1910. Im Auftrag d. Vereins für Feuerungs-	14111.00
betrieb und Rauchbekämpfung ausgef. durch die Thermochem.	
Prüfungs — u. Versuchsanstalt Dr. Aufhäuser. 1910. Felbstver-	
lag, Hamburg. Zt. f. ang. Chem. 1911, 1527	
König, J., Prof.: Münster i. W. Neuere Erfahrungen über die	
Behandlung und Beseitigung der gewerblichen Abwässer. 52 S.	
1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1214	M1.00
Krische, P., Dr.: Die Verwertung des Kalis in Industrie und Land-	
wirtschaft. 181 S. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1912. Z. f. Koll. 1911 ¹ , 62	M5.70
Kröhnke, O., Dr.: Über das Verhalten von guss- und Schmiedrohren	1410.70
in Wasser, Salzlösungen und Säuren. 60 Abb. 1911. R. Olden-	
bourg, Münchenw., Berlin. Zt. f. ang. Chem. 1911, 1317	M5.00
Über Schutzanstriche eiserner Röhren. 1. Die mechanische u.	
physikal. Prüfung der Anstriche. 2. Das Verhalten der An-	
striche gegen chemische Einwirkunzen. 1910. F. Leineweber,	1/0 00
Leipzig. Zt. f. ang. Chem. 1911, 1317je	M2.00

Kunststoffe: Hrsg. von Dr. Richard Escales, München. Jährl. 24 Hefte. 1911. J. F. Lehmann, München	M16.00
Lach, Bela: Die Stearinfabrikation. Bd. 15 d. monogr. über chemtechn. Fabrikations methoden. 180 S. W. Knapp, Halle. Z. f. Koll. 1911 ¹ , 62. Zt. f. ang. Chem. 1909, 1290Brosch.	
Lehner, Sigmund: Die Kitte und Klebemittel. 7. verm. u. verb. Aufl. 1909. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910; 363geh.	
Lunge, Georg, Prof.: Zürich, u. Dr. Ernst Berl. Chemisch-technische Untersuchungsmethoden. Unter Mitw. zahlr. Fachgenossen hrsg. 1. Bd. 6 vollst. umgearb. u. verm. Aufl. 1. Bd. Zt. f. ang. Chem. 1910, 1319. 1910. J. Springer, Berlin	
Maercker, Max: Handbuch der Spiritus fabrikation. 9. vollst. neubearb. Aufl., herausgegeb. von Dr. M. Delbrück. 284 Textabb. u. 2 Tafeln. 1908. Paul Parey, Berlin. Zt. f. ang. Chem. 1908, 2297	
Mitreiter, Max, Dr.: Die Gewinnung des Broms in der Kalündustrie. Bd. 20, Monogr. üb. chem. techn. Fabrikationsmeth. 54 S. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 1867. Z. f. Koll 1911 ¹ , 62	
Nicolardot, Paul: Industrie des Métaux Secondaires et des Terres Rares. Octave Doin, Paris. Zt. f. ang. Chem. 1908, 2604Frc.	
Nierenstein, M., Dr.: Bristol. Chemie der Gerbstoffe. Aus Sammlung chem. u. chemtechn. Vorträge. 58 S. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 1992. Zt. f. ang. Chem. 1911, 938.	M1.20
Ohlmüller, W. Dr., u. Prof. O. Spitta: Die Untersuchung und Beurteilung des Wassers und des Abwassers. 3. neubearb u. veränd. Aufl. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1271	
Ost, H., Prof.: Hannover. Lehrbuch der Chemischen technologie. 7. umgearb. Aufl. 293 Abb. u. 9 Tafeln. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 1266	
Riemann, Karl, Dr.: Gewinnung und Reinigung des Kochsalzes. monogr. über chem u. chem. technische Fabrikationsmethoden. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 409	
Rüdisüle, A., Dr.: Bern. Die Untersuchungsmethoden des Eisens und Stahls. 1910. Max Drechsel, Bern. Zt. f. ang. Chem. 1911, 22.	M11.00
Scheithauer, W., Dr.: Die Schwelteere, ihre gewinnung und verarbeitung. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, 1361	
Schnabel-Kühn, Albert Erich, Dr.: Die Steinkohlengasindustrie in Deutschland in ihrer Bedeutung für die Volkswirtschaft und das moderne Städteleben. 1910. R. Oldenbourg, München, Berlin	M4.00

Stolzenwald, G.: Industrie des Sulfats, der Salzsäure und der Salpetersäure. Bibliothek der ges. Technik. 62 Band. 1907. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909 ^t , 187	
Strache, H., Prof.: Die Fortschritte des Beleuchtungswesens und der Gasindustrie im Jahre 1909. Im Auftrage des Vereins der Gasund Wasserfachmänner in Österreich-Ungarn, zusammengestellt. 1910. Selbstverlag des Vereins, Wien. Zt. f. ang. Chem. 1911, 1171	M5.00
Teichman, H., Dr.: Komprimierte und verflüssigte Gase. xii. u. 192 S. 38 Abb. im Text. 14. Bd. der Monogr. über chem. techn. Fabrikationsmethoden. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909 ^t , 809. Z. f. Koll, 1910 ^t , 126	M6.80
Tietjens, L., Dr., u. Dr. H. Rormer: Laboratoriumsbuch für die Kalündustrie. Aus Sammlung: Lab. Bücher f. d. chem. u. verw. Ind., Bd. 12. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1361	M3.60
Urban, K., Dr.: Laboratoriumsbuch für die industrie der verflüssigten und Komprimierten Gase. 40 S. Bd. 7 — Laboratoriumsbücher, f. d. chem. u. verw. Industrien. 1909. W. Knapp, Halle.	
Z. f. Koll. 1910 ¹ , 127Brosch.	M1.80
Wedding, Hermann, Dr.: Ausführliches Handbuch der Eisenhüttenkunde. 2. vollk. umgearb. Aufl. Bd. 4. hilfgr. 2. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2617. Zt.	
f. ang. Chem. 1909, 2617	
1300. Tettoher, herpzig. 20.1. ang. Onem. 1300, 2332	1111.20
ALLGEMEINE LEHRBÜCHER DER CHEMIE.	
Abel, Gustav, Prof.: Chemie in Küche und Hans. 2. vollst. umgearb. Aufl. von Dr. Joseph Klein. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 2457	M1.25
Arnold, Carl, Dr.: Repetitorium der Chemie. 13. Aufl. 1909. Leopold Voss, Hamburg. Zt. f. ang. Chem. 1909, 1821	M7.00
Bahrdt, Wilh., Dr.: Stöchiometrische Aufgabensammlung. 1909. G. J. Göschen, Leipzig. Zt. f. ang. Chem., 1910, 64	M0.80
Bernthsen, A., Prof.: Ludwigshafer a. Rh. Kurzes Lehrbuch der organischen Chemie. 10. Aufl. Bearb. in Gemeinschaft mit Prof. E. Mohr. 640 S. 1909. Vieweg & Sohn, Braunschweig. Z. f. Koll. 1909 ¹ , 206.	***************************************
Binz, A., Prof.: Chemisches Praktikum für Anfänger mit Berücksichtigung der Technologie. 1909. Georg Reimer, Berlin. Zt. f. ang. Chem. 1910, 64.	
Dittrich, Max, Dr.: Chemisches Praktikum für Studierende der Naturwissenschaften. Analyt. Chemie. 1908. Carl Winter, Hei- delberg. Zt. f. ang. Chem. 1908, 2562.	

Emich, Prof. Friedrich, Graz. Lehrbuch der Mikrochemie. 30 Textabb., XIV + 212 S. 1911. J. F. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1912, S. 371	M6.65
Erdmann, H., Prof.: Charlottenburg. Lehrbuch der anorganischen Chemie. 5. Aufl. Mit dem Porträt d. Verf. in Gravüre. 1910. Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910,	110.00
2040	M17.00
Gürtler, Dr. W.: Metallographie. Band I, Heft 7 und 8. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 113	M6.60
 Hahn, Hans, Dr.: Grundriss der Chemie für Techniker. 2. Teil, Bd. 148 der Bibliothek d. ges. Technik: Organische Chemie. 146 S. Zt. f. ang. Chem. 2. Teil: 1911, 840. Z. f. Koll, 1911, 60. 	
1910. Dr. Max Jänecke, Hannover	
Mit einer Vorrede von Prof. Dr. Thiele. 176 S. 1909. Akad. Verlagsgesellschaft m. b. H., Leipzig. Z. f. Koll. 1911, 173	
Knoevenagel, Emil, Prof.: Praktikum des anorganischen Chemikers	
2. vollst. veränderte Aufl., mitbearb. von Dr. E. Ebler. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1910, 64	M10.00
Kohlschütter, Prof. Dr. Volkmar: Forschung und Erfindung in der Chemie. (Akademischer Vortrag gehalten in der Universität zu Bern am 9. Feb., 1911.) 1911. Max Drechsel, Bern. Zt. f. ang. Chem. 1911, S. 2402	
Kotte, E.: Lehrbuch der Chemie. 3. Teil-Org. Chemie. 1911. Bleyl & Kämmerer, Dresden-Blasewitz. Zt, f. aug. Chem. 1911, 1267.	
Kümmell, Gottfried, Prof.: Rostock. Physikalisch-chemische Praktikumsaufgaben. VII u. 71 S. 1910. B. G. Teubner, Leipzig u. Berlin. Zt. f. ang. Chem. 1911, 1029.	M2.00
Kuspert, Franz, Dr.: Lehrgang der Chemie und Mineralogie für höhere Schulen. 1908. C. Koch, Nurnberg. Zt. f. ang. Chem. 1908, 1819.	
Ladenburg, Albert: Naturwissenschaftliche Vorträge in gemeinverständlicher Darstellung. 2. bedeut. verm. Auflage (Volksausgabe)	
1 Tabelle u. 30 Abb. 1911. Akademische Verlagsgesellschaft m. b. H. Leipzig. Zt. f. ang. Chem. 1911, S. 1818	M5.00
Lassar-Cohn, Prof.: Konigsberg i. Pr. Einführung in die Chemie in leichtfasslicher Form. 3. verb. u. verm. Aufl. mit 60 Abb. XII u. 301 S. 1907. Leopold Voss, Hamburg, Leipzig. Zt. f. ang.	2.20,00
Chem. 1908, 2056	M4.00
Linck, Gottlob, Dr.: Grundriss der Krystallographie für Studierende und zum Sellstunterricht. 604 Originalfig. 3 farb. lithogr. Tafelu. 2. Aufl. 1908. Gustav Fischer, Jena. Zt. f. ang.	
Chem. 1909, 808	M11.00

Meyer's Kleines Konversationslexikon. 7. gänzl. neubearb. u. verm. Aufl. 6 B'de in Halbleder-gebunden zu. Bd. 1–3. Z. f. Koll. Bd. 2. 382. Bd. 4–6. Z. f. Koll. 1908", 188; 1909", 228 Bibliographisches Institut, Wien u. Leipzigje.	M12.00
Mikrokosmos: Zeitschrift für die praktische Betätigungaller Naturfreunde. (Mikroskopie.) 5. Jahrg. 12 Hefte u. 2 Gratisbuchbeilagen. Hrsgn. von Dr. Adolf Reitz. Franck, Stuttgart. Zt. f. ang. Chem. 1911, 1140	
Mohr, Ernst, Prof.: Anleitung zum zweckmässigen Rechnen bis chemischen, präparativen Arbeiten. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2218	
Ochs, Rudolf: Einführung in die Chemie. 218 Textfig., 1 Spektraltafel, VIII u. 204 S. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 411.	M6.00
Oppenheimer, Carl, Prof.: Grundriss der anorganischen Chemie. 6. Aufl. VII u. 171 S 1910. Georg Thieme, Leipzig. Zt. f. ang. Chem. 1911, 22.	M3.50
Riesenfeld, C. H., Prof.: Freiburg i. Br. Anorganisch-chemisches Praktikum Qual. Analyse u. anorgan. Praeparate. 2. Aufl. 13 Abb. XII u. 340 S. 1910. S. Hirzel, Leipzig. Zt. f. ang.	
Chem. 1911, 20:	M6.00
 von Richter, V.: Richters Chemie der Kohlenstoffverbindungen oder organische Chemie. 11 Aufl Bearb. von Prof. Anschütz u. Dr. G. Schroeter, Bonn. 1. Bd.: Die Chemie der Fettkörper. 1909. Friedrich Cohen, Bonn. Zt. f. ang. Chem. 1909, 2266 	M20 40
Sackuf, Otto, Dr.: Breslau. Einführung in die Chemie. Ein Lehrbuch für Zahnärzte u. Studierende der Zahnheilkunde. Unter Mitw. von Dr. med Erich Feiler-Breslau, hrsg. von Dr. O. Sackur, 123 S. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 647	
Scheffer, W.: Wirkungsweise und Gebrauch des Mikroskops und seiner Hilfsapparate. VII u. 116 S. 1911. B. G. Teubner, Ber- lin. Zt. f. ang. Chem. 1912, S. 830	
Schwarze, Dr. W.: Hamburg. Vorschule der Chemie. 66 Abb. 1911. Leopold Voss, Hamburg u. Leipzig. Zt. f. ang. Chem. 1911, S. 1741	M1.80
Smith, Alex., Prof.: New York. Einführung in die allgemeine und	
anorganische Chemie auf elemtarer Grundlage. Unter Mitwirk. des Verf. übers. u. bearb. von Dr. E. Sterm. 1909. G. Braun, Karlsruhe. Zt. f. ang. Chem. 1909, 1579	M9.00
Praktische Übungen zur Einführung in die Chemie. Übers. von	1,10.00
Prof. F. Haber u. Dipl. Ing. F. Hiller. 175 S. 1910. G. Braun, Karlsruhe. Zt. f. ang. Chem. 1911, 112.	M3.60
 Stähler, Arthur: Berlin. Einführung in die anorganische Chemie. 520 S. gr. 8°. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 	
1910, 2086	M12.00

Ullmann, F.: Organisch-chemisches Praktikum. 1908. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1909, 1047	
Weinhold, Adolf, F.: Physikalische Demonstrationen. 5. Aufl., 1. Lief. 1911. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1912, S. 1125	
ALLGEMEINE TECHNOLOGIE	
Andés, Louis Edgar: Der Kesselstein, seine Entstehung und Verhütung. Bd. 332 d. chem. techn. Bibliothek. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1911, 22	
Bender, O.: Feuerungswesen. Bd. 36 der Bibliothek der ges. Technik. 263 S. u. 75 Abb. 1907. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1908, 2567	M3.80
Bersch, Dr. Wilh.: Handbuch der Moorkultur. 2. Aufl. 1912. Wilh. Frick, Wien-Leipzig. Zt. f. ang. Chem. 1912, S. 1123	
Bertelsmann, Dr. Wilhelm: Lehrbuch der Leuchtgasindustrie. 2. Bde. II. Bd. Die Verwendung des Leuchtgases. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 479	M15.00
Binz. E.: Die Mission der Teerfarbenindustrie. 1912. Georg Reimer, Berlin. Zt. f. ang. Chem. 1912, S. 1234	
Brähmer, Dr. Friedrich: Chemie der Gase. 1911. Franz Benjamin Auffahrt, Frankfurt a/M. Zt. f. ang. Chem. 1912, S. 1433.	1,10.10
Bugge, Dr. Günther: Chemie und Technik. (Bücher der Naturwissenschaften, heraus von Prof. Dr. Siegmund Günther, 11. Band.) 7 Tafeln u. 14 Zeichnungen Philipp Reclam jun. Leipzig. Zt. f. ang. Chem. 1911, S. 2434	
Kälteerzeugung, Die industrielle, und ihre Anwendungen. Institut du Mois Scientifique et Industriel. Bibliothèque Pratique du Mois Scientifique et Industriel 8, Rue Nouvelle, Paris 8c. Zt. f. ang. Chem. 1911, S. 2404	2.75
Fischer, Ferd., Prof.: Göttingen. Kraftgas, seine Herstellung und Beurteilung. VIII u. 236 S. 1. Bd. von: Chemische Technologie in Einzeldarstellungen. Hrsg. von Prof. Ferd Fischer, Göttingen. 1911. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911,	
113–114	M13.50
Geiger, Dr. Ing. C.: Handbuch der Eisen- und Stahlgiesserei. 1911, Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1015	
Gewerbliche Materialkunde: Herausgegeb. v. Dr. Paul Krais. Bd. II. Die Schmuck- und Edelsteine. Von Dr. A. Eppler. 1912. Verlag Felix Krais, Stuttgart. Zt. f. ang. Chem. 1912, S. 1287	M12.00
Haier, F.: Dampfkessel feuerungen zur Erzielung einer möglichst rauchfreien Verbrennung. 2. Aufl. 375 Text fig., 29 Zahlen- tafeln, 10 lithogr. Tafeln. 1910. Jul. Springer, Berlin. Zt. f.	
tateln, 10 lithogr. Tateln. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 354	M20.00

Hartmann, DrIng. Konrad, Geh. RegRat. Sicherheitseinrichtungen in chemischen Betrieben. (Chem. Technologie in Einzeldarstellungen, herausgeg. von Ferdinand Fischer.) Mit 245 Fig. Verlag von Otto Spamer, Berlin. Zt. f. ang. Chem. 1911, S. 2019	
Hausbrand, E.: Kgl. Baurat. Das Trocknen mit Luft und Dampf. 4. Aufl. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911,	.00
Heidepriem, Eugen: Die Reinigung des Kesselspeisewassers. 2.	2.50
Hohorst, Dr. C. v.: Laboratoriumsbuch für die anorg. Grossindustrie. Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S.	5.60
Jochum, P. Dr.: Der Drehrohrofen als modernster Brennapparat. 1911. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1911,	,.00
	6.00
,	3.60
Kietaibl, Carl, Dr.: Das generatorgas, seine Crzeugung und Verwendung. 151 Abb. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 2369	
Krätzer, A., Bingen a. Rh.: Teeröldieselmotoren als Kraftmasschinen für ein Elektrizitätswerkvonca. 400 k.w. 1911. A. Krätzer, Bingen, a. Rh. Zt. f. ang. Chem. 1911, 1417	
Kremann, Prof. Dr. Robert: Anwendung physikalchemischer Theorien auf techn. Prozesse und Fabrikationsmethoden. X+	
	9.60
Lach, Ing. Chem. u. Dr. phil., Béla: Die Ceresinfabrikation. 49 Abb. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 412 MS	9.60
Ludwig, K.: Reduktionstabelle für Heizwert und Volumen von gasen. 1911. R. Oldenbourg, Berlin, München. Zt. f. ang.	
Chem. 1911, 414	1.20
bourg, München, Berlin. Zt. f. ang. Chem. 1910, 1419 M10	0.00
Massot, Prof. Dr. W.: Wäscherei, Bleicherei, Färberei und ihre Hilfsstoffe. 2 Aufl. Textilindustrie III. Sammlung Göschen. Zt. f. ang. Chem. 1912, S. 892	
Moldenhauer, Dr. Wilh.: Darmstadt. Chemtechnisches Prakti- kum. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 892.	

Momber, W.: Der Dampf in der chemischen Technik. Bd. 11. Monogr. über chemtechn. Fabrikationsmethoden. 104 S. 26 Fig. im Text. 1908. Wm. Knapp, Halle. Zt. f. ang. Chem. 1908,	3/19 00
2564. Z. f. Koll. 1910 ^t , 127geh. Monasch, Berthold, Dr. Ing.: Elektrische Beleuchtung. 2 Aufl. Dr.	M3.60
Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 221Brosch. Nairz, O.: Die elektrische Arbeitsübertragung. 1909. Barth,	M9.20
Leipzig. Zt. f. ang. Chem. 1909, 1869.	M6.00
Naske, Carl: Zerkleinerungsvorrichtungen und Mahlanlagen. aus Fischer's. "Chemische Technologie in Einzeldarstellungen." 1911. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, 1030	M15.00
Neuner, Dr. Franz Ch.: Fortschritte in der Gerbereichemie. 60 S. 1911. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1911, S. 2365.	M1.80
Der Oelmotor: (Zeitschrift für die ges. Fortschritte auf dem Gebiete der Verbrennungs-motoren.) Verlag für Fachliteratur, Berlin. Zt. f. ang. Chem. 1912, S. 1383	
Rathkes Adressbuch der Zuckerindustrie Deutschlands und des Auslands. 28. Jahrg. 1911/12. Albert Rathkes Bibliothek für Zuckerinteressenten, Band I. Zt. f. ang. Chem. 1911, S. 2434	
Reichelt, Alfred: Die Prüfung der Konstruktionsstoffe für den Maschinenbau. 1909. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1531.	M3.80
Schmatolla, Ernst: Die Gaserzeuger u. Gasfeuerungen. 2 Aufl. 1908. Max Jänecke, Hannover	M6.60
Schmidt, Fritz. Ingenieur: Die Leuchtgaserzeugung und die moderne Gasbeleuchtung. Heft 40 von: "Die Wissenschaft." 1911. Friedr. Vieweg, Braunschweig. Zt. f. ang. Chem. 1912, S. 535.	
Geb.	M3.20
Seipp, Heinr., Dr.: Leitfaden der Statik für Hochbau- und Tiefbautechniker. 1908. L. Degener, Leipzig. Zt. f. ang. Chem. 1908, 2493	M2.00
Stohmann-Schander: Handbuch der Zuckerfabrikation. 5. um- gearb. Aufl. 1912. Verlag. Paul Parey, Berlin. Zt. f. ang. Chem. 1912, S. 1234	M26.00
Strache, Prof. Dr. H.: Die Fortschritte des Beleuchtungswesens und der Gasindustrie im Jahre 1910. 1911. R. Oldenbourg, München-Berlin. Zt. f. ang. Chem. 1912, S. 1125	M4.50
Vogel, Prof. Dr. J. H.: Das Acetylen, seine Eigenschaften, seine Herstellung und Verwendung. 1911. Otto Spamer, Berlin, Leipzig. Zt. f. ang. Chem. 1912, S. 27	M6.50
Waldau, Fr.: Freistehende Schornsteine. 1909. Wilh. Seegelken, Stassfurt. Zt. f. ang. Chem. 1909, 2456	M6.00

Wasser und Abwasser: Die Hygiene der Wasserversorgung und Abwasserbeseitigung. Bearbeitet v. Prof. Dr. R. Kolkwitz, Berlin, Dr. Ing. C. Reichle, Berlin, usw. Mit III Abb. u. 3 Farbtafeln, 386 S. 1911. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1911, S. 2066.	
Weiss, F. J.: Kondensation. Ein Lehr- u. Handbuch über Kondensation und alle damit zusammenhängenden Fragen, auch einschliesslich der Wasserrückkühlung. 2. ergänzte Aufl. bearb. von E. Wiki, Luzern. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 457	M19 00
Wichelhaus: Vorlesungen über chemTechnologie. 3. Aufl. The- odor Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 680. geb	
ANALYTISCHE CHEMIE UND DARAUF BEZÜGLICHE BÜ	CHER
Aufhäuser, fungs-und Hamburg.Dr.:Kohlenuntersuchungen.Thermochem.Prü- Versuchsanstalt.1910.Selbstverlag des Verf.,L. f. ang. Chem. 1911, S. 1527.	
Bauer, O., und E. Deiss: Probenahme und Analyse von Eisen und Stahl. VIII. 258 S. u. 128 Textabb. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1525	M9.00
Beilsteins Anleitung zur Qualitativen Analyse. 9. Aufl. Neu bearb. von Prof. E. Winterstein u. G. Trier. VI. u. 80 S. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2267	M2.60
Birkenbach, L., Dr.: Die Untersuchungsmethoden des Wasserstoffsuperoxyds. Bd. 7 der "Chemischen Analyse." 142 S. 1909. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 2221	M4.40
Birnbaum, K., Prof.: Leitfaden der chemischen Analyse. 8. verb. u. verm. Aufl., bearb. von Prof. E. Dieckhoff. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 363	M4.80
Bornemann, Georg, Prof.: Chemnitz. Stöchiometrie. 59 durchgerechnete Beispiele u. 265 aufgaben. VIII u. 192 S. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 942	M4.00
Böttger, Wilhelm, Dr., Prof.: Qualitative Analyse vom Standpunkte	
der Jonenlehre. 2. umgearb. u. stark erweiterte Aufl. 524 S. 1908. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1908, 2618. Stand und Wege der analytischen Chemie. (13. Bd. aus: Die chemische Analyse, von Margosches.) 1911. Ferd. Enke, Stutt-	M10.00
chemische Analyse, von Margosches.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 583	M1.80
Classen, Alexander: Quantitative Analyse durch Elektrolyse. 5. Aufl. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 2566. Theorie und Praxis der Massanalyse. 46 Abb. IX + 772 S. 1912.	M10.00
Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1912, S. 1016. Koll. Zt. 1912 ¹ , S. 61geb.	M32.00
Crato, E., Dr.: Massanalyse. VIII u. 305 S. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2219	M7.80

Dennstedt, M., Prof.: Hamburg. Anleitung zur vereinfachten Elementaronalyse für wissenschaftliche und technische Zwecke. 1910. Otto Meissner, Hamburg. Zt. f. ang. Chem. 1911, 647	M3.00
Donath, Ed., Prof.: Über den Ersatz des Schwefelwasserstoffs in der qualitativen chemischen Analyse. Eine Zusammenstellung der einschlägigen Methoden. 1909. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1909, 2120	M2.80
Eder, Joseph Maria, Prof. Wien, u. Prof. E. Valenta: Wien. Atlas typischer Spektren. Über 600 Abb. typischer Bogen- und Funkenspektren von 71. Elementen sowie zum Teil noch nicht veröff. Flammenspektren vieler Verbindungen. 1911. Kaiserliche Akademie der Wissenschaften, Wien. Phot. Korr. 1911, 379, 388.	W12.80
 Ehrhardt, R., Dr.: Tabellen zur Berechnung von Kalianalysen. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1740 Eijkman, J. F., Prof.: Groningen. Tafeln zum Gebrauche bei der Bestimmung von Brechungsindices, nach der Methode der konstanten Deviation von 40°. Zt. f. ang. Chem. 1910, 1815 	M3.00
Fages y Virgili, Prof. Dr. Juan: Die indirekten Methoden der analytischen Chemie. (Sammlung chemischer und chemisch-technischer Vorträge.) 1911. F. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 1934	M3.60
Fichter, Fr.: Übungen in quantitativer chemischer Analyse. 1909. Fr. Reinhardt, Basel. Zt. f. ang. Chem. 1909, 2220	M2.40
Fischer, A., Dr.: Elektroanalytische Schnellmethoden. 304 S. 1908. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ¹ , 230Brosch.	M9.40
Formanek, Jaroslaw: Untersuchungen und Nachweis organischer Farbstoffe auf spektroskopischem Wege. I. Teil. 2. Teil, 1. Leif. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2070; 1912, S. 1335	
Frühling, R., Prof.: Anleitung zur Untersuchung der für die Zucker- industrie in Betracht kommenden Rohmaterialien, Produkte, Neb- enprodukte und Hilfs substanzen. 7. umg. u. verm. Aufl. 535 S. 1911. Vieweg & Sohn; Braunschweig. Zt. f. ang. Chem. 1911,	
1029	M16.00
Fühner, Dr. phil et med. Hermann, Freiburg i/B. Nachweis und Bestimmung von Giften auf biologischem Wege. 89 farb. Text- abb. u. 176 S. 1911. Urban u. Schwarzenberg, Berlin u. Wien.	
Zt. f. ang. Chem. 1912, S. 213	M9.00
Glikin, Dr. W.: Calorimetrische Methodik. 51. Fig. 1911. Verlag v. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, S. 2252	M10.00
Hanofsky, Karl, Prof., u. Prof. Dr. Paul Artmann: Kurze Anleitung zur qualitativen chemischen analyse nach dem Schwefelnatrium-	

gange. Ergänzung zu Prof. Vortmann's; Allgemeiner Gang der qualitativen chemischen analyse ohne anwendung von Schwefel- wasserstoffgas. VII u. 115 S. 1910. Franz Deuticke, Leipzig u. Wien. Zt. f. ang. Chem. 1911, 591	M2,50
Herz, W., Dr.: Physikalische Chemie als grundlage der analytischen Chemie. Bd. 3 der "Chemischen Analyse," Margosches. 114 S. 1907. F. Enke, Stuttgart. Z. f. Koll. 1909 ¹¹ , 227	M3.40
Hillebrand, W. F.: Washington. Analyse der Silicat- und Carbonatgesteine. Deutsche Ausgabe unter Mitw. des Verf. übers. u. besorgt von Ernst Wilke-Dörfurt. 2. stark verm. Aufl. der "Prakt. Anl. zur Analyse der Sillkatgesteine," von W. F. Hillebrand. XVI. u. 2588 S., 25 Fig., 1910. W. Engelmann, Leipzig. Zt. f. ang. Chem. 1910, 1125; Zt. f. ang. Chem. 1911, 591	M7.00
Hinrichsen, F. W.: Die Untersuchung von Eisengallustinten. Bd. 6 der Sammlung: Die Chemische Analyse, hrsg. von Dr. Margosches. 140 S. 1909. F. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1532.	M4.40
Klut, Dr. Hartwig: Untersuchung des Wassers an Ort und Stelle. 2. verm. u. verb. Auflage mit 30 Textfig. und 150 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2366	M4.00
Kremann, R., Dr., u. K. Kaas: Anleitung zu den Analytisch- chemischen Übungen für Anfänger. X u. 109 S. 1909. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1909, 2267	M3.00
Krüss, Gerhard, Prof., u. Dr. Hugo Krüss: Colorimetrie und quantitative Spektralanalyse in ihrer Anwendung in der Chemie. 2. verb. u. verm. Aufl. Bearb. von Dr. u. Hugo und Paul Krüss. 52 Abb. VIII u. 284 S. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910, 1569.	M8.00
Küster, F. W.: Logarithmische Rechentafeln. 9 Aufl. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1578	
Ledebur, A.: Leitfaden für Eisenhüttenlaboratorien. IX. Aufl. 170 S. Fried. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1912, S. 679	M5.50
Leo, Max, Dr.: Die Anlauffarben. Eine neue Methode zur (optischen). Untersuchung opaker Erze und Erzgemenge. 74 S., mit einer Dreifarbendrucktafel u. einer Tabelle. 1911. Theo. Steinkopff, Dresden. Z. f. Koll. 1911, 268. Zt. f. ang. Chem.	
1911, 1028	M2.00
Luchmann, Ernst, Dr.: Neue Methoden zur Massanalytischen Bestimmung von Mn, Fe, Cr. 1908. Gebrüder Böhm, Kattowitz, O. S. Zt. f. ang. Chem. 1909, 2119	M2.00
Meigen, W., Prof.: Freiburg i. Br. Übungsbeispiele zur quantitativen Analyse. 60 S. Speyer & Kaerner, Freiburg i. Br	M2.00

Moser, L., Dr.: Wien. Die Bestimmungsmethoden des Wismuts und seine Trennung von anderen Elementen. Aus "Die chemische	
Analyse," Bd. 10. 1909. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 508	M4.00
Chem. 1910, 508	M8.00
Plato, F.: Tafel zur Umrechnung der Volumenprozente in Gewichtsprozente und der Gewichtsprozente in Volumenprozente bei Branntweinen. Nach den amtlichen Zahlen der Kais. Nor- maleichungskomber. 3. Aufl. Jul. Springer, Berlin	M1.00
Rakusin, M. A.: Die Polarimetrie der Erdöle. 1910. Verlag f. Fachliteratur, Berlin-Wien. Zt. f. ang. Chem. 1912, S. 1014	
Schmidt, Dr. Ernst, Geh. RegRat, Marburg. Anleitung zur qualitativen Analyse. 7. Aufl. IV + 98 S. und 6 Tafeln. 1911. Verlag Tausch und Grosse, Halle a/S. Zt. f. ang. Chem. 1912, S. 263	
Schoorl, N., Dr.: Utrecht. Beiträge zur mikrochemischen Analyse. Sonderabdruck aus der Z. anal. Chem. 46 u. 48. 1909. C. W. Kreidel, Wiesbaden. Zt. f. ang. Chem. 1909, 2311.	
Sidersky, D.: Die Dichten der Zuckerlösungen bei verschiedenen Temperaturen. Deutsch u. französisch. 1908. Vieweg u. Sohn, Braunschweig. H. Dunode E. Pinat, Paris. Zt. f. ang. Chem. 1908, 2393	M2.75
Smith, Edgar F., Dr., Prof.: Philadelphia. Quantitative Analyse. Nach der 4. Aufl. deutsch bearb. von Dr. Arthur Stähler. IV. u. 338 S. mit 43 Fig. 1908. Veit & Co., Leipzig. Zt. f. ang. Chem.	
1909, 377. Zt. f. ang. Chem. 1910, 262 (Berichtigung)	M8.00
Tafel zur Ermittlung des Zuckergehaltes von Zuckerlösungen. Hrsgn. von der Kaiserl. Normaleichungskommission. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 647	M1.00
Thiel, A.: Der Stand der Indikatorenfrage. Zugleich ein Beitrag zur Theorie der Farbe. 116 S. 1911. Ferd. Enke, Stuttgart. Koll. Zt. 1912 ^t , S. 158.	1111100
Treadwell, F. P., Prof.: Zürich. 1. Bd.: Kurzes Lehrbuch der analytischen Chemie. 6. Aufl., verm. u. verb. 7. verm. u. verb. Aufl. VIII u. 512 S. 1911. 2. Bd.: Quantitative Analyse, 5 verm. u. verb. Aufl. IX u. 704 S. 1908. Franz Deuticke, Leipzig,	
Wien. Bd. 1: Zt. f. ang. Chem. 1909, 331; 1912, S. 478. Bd. 1 Bd. 2: Zt. f. ang. Chem. 1911, 1029. Bd. 2 Tabellen zur qualitativen Analyse. 1907. Ferd. Dümmler,	M13.00
Berlin. Zt. f. ang. Chem. 1908, 1721	M4.00

 Untersuchungen des Magdeburger Elb- und Leitungswassers von 1904-1911. Bearbeitet von Dr. Otto Wendel nach den Analysen des chemischen Laboratoriums von Dr. Hugo Schulz, Magdeburg. Inhaber Dr. Otto Wendel, Dr. Jul. Schulz, Dr. Adolf Wendel. 1911. Verlag von C. E. Klotz, Magdeburg. Zt. f. ang. Chem. 1911, S. 2475. Vortmann, Georg, Prof.: Wien. Allgemeiner gang der qualitativen chemischen analyse ohne anwendung von Schwefelwasserstoffgas. Wien. Zt. f. ang. Chem. 1908, 1720. Übungsbeispiele aus der quantitativen chemischen analyse durch Gewichtsanalyseeinschliesslich der Elektroanalyse. 3. Aufl. 63 S. 1910. Franz Deuticke, Leipzig, Wien. Zt. f. ang. Chem. 1911, 22. Wallach, Otto, Prof.: Göttingen. Tabellen zur chemischen Analyse. (Zum Gebrauch im Laboratorium und beider Repetition.) 4. Aufl. 	M1.50
69 S. 1910. A. Mareus & E. Weber, Bonn. Zt. f. ang. Chem.	
Walland, H.: Chemisches Praktikum (Qualitative Analyse) für höhere Lehranstalten. 1909. F. Deuticke, Wien. u. Leipzig. Zt. f. ang. Chem. 1909, 1655. Wendel, Dr. Otto: Untersuchung des Elbwassers bei Magdeburg und Tochheim während der Eisperiode JanFebr., 1912. 1912. Verlag C. E. Klotz, Magdeburg. Zt. f. ang. Chem. 1912, S.	M2.00
1382	
Winkler, Clemens, Prof.: Praktische Übungen in der Massanalyse. 4. Aufl. bearb. von Dr. Otto Brunck, Prof. a. d. Bergakademie Freiberg. 196 S. 1910. Arthur Felix, Leipzig. Zt. f. ang. Chem. 1911, 501. Wölbling, H., Dr.: Lehrbuch der analytischen Chemic. 439 S., 83	M8.00
Fig., 1 Löslichkeitstabelle. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1526.	MO 00
ang. Chem. 1911, 1920	M9.00
ANORGANISCHE CHEMIE UND ANORGANISCHE HANDBÜ	CHER
Angeli, Angelo, Prof.: Florenz Über einige sauerstoffhaltige Verbindungendes Stukstoffes. Übersetzt von Prof. Kurt Arndt. Ahrens' Sammlung chem. u. chem. techn. Vorträge. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1908, 1771, 2296	
Anselmino, Q., Dr.: Greifswald. Das Wasser. Bd. 291 aus	
" natur und geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1911, 890.	M1.25
Arendt, Rudolf: Technik der anorganischen Experimentalchemie.	1111.20
4. umgearb. u. verm. Auflage. Herausgegeben von Dr. L. Doer-	
mer. XXXVI u. 1011, S. mit 1075 Abb. 1910. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1912, S. 479	M26.00

Bernthsen, Prof., Dr. A.: Kurzes Lehrbuch der anorgan. Chemie. 11. Auflage. 1911. Verlag Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1912, S. 263	M12.00
Biltz, Heinr.: Experimentelle Einführung in die unorganische Chemie. 4. Aufl. 1911. Veit & Co., Leipzig. Zt. f. ang. Chem. 1912, S. 1285	
Boeke, H. E.: Ein Schlüssel zur Beurteilung des Krystallisationsverlaufs der bei der Kalisalzverarbeitung vorkommenden Lösungen. Sonderabdruck aus der Zeitschrift "Kali," 4. Jahrg., Heft 13 u. 14. 52 S. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1030	
Bornemann, K., Dr.: Die binären Metallegierungen. 38 Tafeln enth. ca 400 Abb. u. ein Ableselineal. Teil 1. 1909geh. Teil II. 3 Textfig. u. 13 Tafeln. 1912. Wilh. Knapp, Halle a/S.	M7.00
Zt. f. ang. Chem., 1910, 1174, 1912, S. 1286	M9.60
12 Abb. 1910. M. Krayn, Berlin. Zt. f. ang. Chem. 1910, 1419	M2.50
Cavalier, J.: Leçons sur les alliages metalliques. 466 S. u. 24 Tafeln. 1909. Vuibert et Nony, Paris. Zt. f. ang. Chem. 1910 1224.	M10.00
Gmelin-Krauts Handbuch der anorganischen Chemie. 7., gänzl. umgearb. Aufl., hrsg. von C. Friedheim. Lieferungen 74-107. 1908/1909. Zt. f. ang. Chem. 1909, 2220	
Lieferung 108-145. (Herausgegeben von C. Friedheim. o. ö Prof. (Bern), und fortgesetzt von Prof. Franz Peters.) Carl Winters Universitätsbuchhandlung, Heidelberg. Zt. f. ang. Chem., 1909, 2220; 1911, S. 2367	
Guertler, W., Dr.: Metallographie. Ein ausführl. Lehr- u. Handbuch, etc. 1910. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1909, 2457; 1910, 1223; 1911, 113	
Lieferung 1	M4.20 M3.00
Lieferung 3 Lieferung 4	M4.00 M3.40
Lieferung 5 Lieferung 6	M3.00 M5.40
Heyn, E. u. O. Bauer: Metallographie. 2 Bde. 1909. G. Göschen, Leipzig. Zt. f. ang. Chem. 1910, 700je Hoffmann, M. K., Dr.: Lexikon der anorganischen Verbindungen.	M0.80
Bd. 1, 1. Lieferung. Bd. 3, 1. Lief. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1224 je	M4.00
Jänecke, Ernst, Dr.: Kurze Übersicht über sämtliche Legierungen. 98 S. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem.	
1910, 1418, 2041	M4.80

Jellinek, Karl: Das Hydrosulfit. 2 Bde. Bd. 1: Grundzüge der physikal. Chemie des Hydrosulfits im Vergleich zu analogen Schwefelsauerstoffderivaten. (Samml, Chem. und chemtechn. Vorträge XVII. Bd; Heft 1-5.) 1911. Ferd. Enke. Stuttgart. Zt. f. ang. Chem. 1912, S. 772. Koll. Zt. 1912 ¹¹ , S. 46 u. S. 137. Bd. 1 Bd. 2	M9.00
Katalog — Allgemeine Chemie. Liste Nr. 631. 1910. Dr. Robert	
Muencke, G. m. b. H., Berlin, N. W. 6. Zt. f. allg. Chem. 1910, 1720.	
Lunge, Georg, Prof.: Handbuch der Sodaindustrie und ihrer Nebenzweige. 3. umgearb. Aufl. 2. Bd. Zugleich als 16. Lie- ferung von Bolley-Englers Handbuch der chem. Technologie, neue Folge. Sulfat, Salzsäure, Leblaneverfahren, Kaustische Soda. 1909.	
Vieweg & Sohn, Braunschweig	M36.60
Mennicke, Hans, Dr.: Die Metallurgie des Zinns mit spezieller Berücksichtigung der Elektrometallurgie. 1910. W. Knapp,	
Halle. Zt. f. ang. Chem. 1911, 889	M10.00
Ouvrard, L. Dr.: Paris (Sorbonne). Die Industrie des Chroms, des Mangans, des Nickels und des Cobalts. 320 S. 22 Fig. 1910. O. Doin et fils, Paris. Zt. f. ang. Chem. 1910, 1570Fcs.	5.00
v. Panayeff, Jos., Dr.: Verhalten der wichtigsten seltenen Erden	0.00
zu Reagenzien. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 311.	M3.60
Ramsay, Sir William: Die edlen und die radioaktiven Gase. Vortrag geh. in deutscher Sprachr in Wien. 1908. Akad. Verlags-	
gesellschaft, Leipzig. Zt. f. ang. Chem. 1909, 514	M1.80
Schütz, Dr. Ing. E.: Die Darstellung von Bisulfiten und Sulfiten. 1911. W. Knapp, Halle. Koll. Zt. 1912 ¹¹ , S. 137geh.	M2.80
Swarts, F.: Grundriss der anorganischen Chemie. (Autorisierte	
deutsche Ausgabe von W. Cronheim.) 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2402	M15.00
Urban, K.: Laboratoriumsbuch für die Industrie der verflüssigten und Komprimierten Gase. W. Knapp, Halle. Zt. f. ang. Chem.	
1909, 1739	
Vanino, L., Dr.: Das Natriumsuperoxyd. Bd. 305 der chemtechn. Bibl. von Hartleben. 72 S. A. Hartleben, Wien, Leipzig. Z. f. Koll. "1909, 277	M2.00
Werner, A., Prof.: Zürich. Neuere anschauungen auf dem gebiete der anorganischen Chemie. Heft 8, "Die Wissenschaft." 2. Aufl. 292 S. 1909. Vieweg & Sohn, Braunschweig. Z. f. Koll.	
1909 ¹ , 153	
die gesanite Theorie u. Praxis der Metallegierungen. Hrsg. von Dr. W. Guertler, Berlin. Erscheint in zwanglosen Heften, von den	
6-7 einen Band von 24 Druckbogen bilden. 1911. Gebr. Born-	3.500
träger, Berlin. Zt. f. ang. Chem. 1911, 592Pro Band	M20

BERGBAU, MINERALOGIE, ETC.

Bärtling, Dr. Rich.: Die Schwerspatlagerstätten Deutschlands. 19. Abb. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911,	
S. 2207. Boeke, Prof. Dr. H. E.: Die Anwendung der stereographischen Projektion bei krystallographischen Untersuchungen. 57 Textabb. u. 1 lithogr. Tafel. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, S. 1869.	M2.60
Handbuch der Kalibergwerke, Salinen- und Tiefbohrunternehmungen. Jahrg. 1912. Verlag der Kuxenzeitung, Berlin, C. 2. Zt. f. ang. Chem. 1912, S. 1526	M12.00
Handbuch der Mineralchemie. Herausgegeben von Hofrat Prof. Dr. C. Doelter, Wien. Bearb. v. G. d'Achiardi, R. Amberg, F. R. v. Arlt usw. 4 Bände, ca 200–220 Bogen. Preis per Bogen 65 Pfg. Bis jetzt ersch. Bogen 1–50. Zt. f. ang. Chem. 1912, S. 892	
Schiffner, C.: Uranmineralien in Sachsen. 1911. Selbstverlag. Freiberg i. S. 20 S. Zt. f. ang. Chem. 1911, S. 1933	
Silberberg, Dr. Ludwig: Gesetz über den Absatz von Kalisalzen vom 25. 5. 1910. 1911. W. Knapp, Halle. Zt. f. ang. Chem. 1912, S. 1433	M5.40
Sommerfeldt, E.: Praktikum der experimentellen Mineralogie, mit Berücksichtigung der krystallographischen und chemischen Grenzgebiete. Bd. IV, d. Bibliothek f. naturwissenschaftliche Praxis. Herausgeg. v. Dr. W. Wächter. 1. Tafel, 61 Textfig. XI u. 192 S. 1911. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, S.	
1740	M4.80
BEZIEHUNGEN DER CHEMISCHEN INDUSTRIE ZUR VOLKSWIRTSCHAFT	
Aeby, Julius, Dr.: Antwerpen. Gefährliche Waren. J. Aeby, 43 Rue de l'Empereur, Antwerpen. Zt. f. ang. Chem. 1910, 1513	M16.00
Binz, Arthur, Prof.: Kohle und Eisen. 1909. Quelle & Meyer, Leipzig. Zt. f. ang. Chem. 1909, 1821	M1.25
Drösser, Ellinor: Die technische Entwicklung der Schwefelsäure- fabrikation und ihre volkswirtschaftliche Bedeutung. Bd. 4 der Sammlung technvolkswirtschaftl. Monogr. Hrsg. von Prof. L. Sinzheimer. 220 S. W. Klinckhardt, Leipzig. Zt. f. ang. Chem.	
1909, 559 Erban, Franz, Dr.: Wien Kartelle und Konventionen in der chem-	M4.50
ischen Industrie. 1910. Verlag der Appreturzeitung, gera, Reuss. Zt. f. ang. Chem. 1910, 124, 840	
Felsen, F.: Der Indigo und seine Konkurrenten. 1909. Verlag	

Geitmann, Hans, Dr., Ing.: Die wirtschaftliche Bedeutung der deutschen Gaswerke. 1910. R. Oldenbourg, München, Berlin. Zt. f. ang. Chem. 1911, 221	M4.00
Jung, Franz Erich, Dr.: Die rationelle Auswertung der Kohlen als Grundlage für die Entwicklung der nationalen Industrie. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2039	
Liefmann, R. Prof.: Kartelle und Trusts und die Weiterentwicklung der volkswirtschaftlichen Organisation. 210 S. 1910, E. H. Moritz, Stuttgart. Z. f. Koll, 1911, 222.	M2.50
Ost, H., Prof.: Hannover. Kaliwerke im Wesergebiete und Wasserversorgung von Bremen. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 1474	
Schaefer, Franz, Dr.: Die wirtschaftliche Bedeutung der technischen Entwicklung in der Papierfabrikation. 1909. Dr. Werner Klinkhardt, Leipzig. Zt. f. ang. Chem. 1910, 64	M8.00
CELLULOSE, CELLULOID, PAPIER, IHRE FABRIKATION,	ETC.
Becker, Dr. Franz: Die Kunstseide. 368 S. mit 142 Abb. 1912. Verlag Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 1434.	M20.00
Erban, Franz: Die Anwendung von Fettstoffen und daraus hergestellten Produkten in der Textilindustrie. (Bd. XXVI. der Monogr. über chemtechn. Fabrikationsmethoden.) 1911. Wilh.	W10 00
Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 1201	M18.00
Klason, Peter, Prof.: Beiträge zur Kenntniss der chemischen Zusammensetzung des Fichtenholzes. Übers. aus dem Schwedi- schen auf Veranlassung des Vereins der Zellstoff- und Papierchemi-	1120 700
ker. Nr. 2. 41 S. 1911. Gebr. Bornträger, Berlin	M1.50
Masselon, Roberts et Cillard: Le Celluloid. (Fabrication, Applications, Substituts.) A. D. Cillard, Paris. Zt. f. ang. Chem. 1911, 114 Frs.	20.00
Müller, Max, W. H., Dr.: Finkenwalde. Literatur der Sulfitablauge. 1911. Papier-Ztg., Carl Hoffmann, Berlin. Zt. f. ang. Chem. 1911, 1172	M6.00
 Priest, C., Dr.: Hanan. Die Cellulose, ihre Verarbeitung und ihre chemischen Eigenschaften. 10 Abb. 155 S. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 168. Z. f. Koll, 1910^{II}, 316.geh. 	M6/

Prüfungsapparate für die Papierindustrie. Katalog von Louis Schopper, Leipzig. Zt. f. ang. Chem. 1910, 1680	
Renker, M., Dr.: Über Bestimmungsmethoden der Cellulose. 2. verb. Auflage. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 193, 840	
Schwalbe, Carl G., Prof.: Darmstadt. Die Chemie der Cellulose. 1. Hälfte, 272 S. 1910, Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1911, 415. Z. f. Koll. 1910 ¹¹ , 316geh.	M9.60
CHEMIKERKALENDER, ETC.	
Chemikerschematismus: Hrsgn. vom Verein Österr. Chemiker. VI. Ausg. Ein Verzeichniss. Öst. Ungar. Chemiker. 1911. Verlag des Vereins, Wien. Zt. f. ang. Chem. 1911, 1028	
Deutscher Universitätskalender: Hrsgn. von Prof. F. Ascherson. 74. Ausgabe, Wintersemester 1908/1909–1909/1910. 1. Teil: Die	
Universitäten im deutschen Reiche	M2.00 M2.00 M3.40
Kalender der technischen Hochschulen Deutschlands, Österreichs und der Schweiz. 1. Ausgabe, Studienjahr, 1908/1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2170. Zt. f. ang. Chem. 1910, 942. Zt. f. ang. Chem. 1911, 938	M2.60
Van Nostrand's Chemical Annual, 1909: 2. Aufl. VI u. 580 S. Hrsgn. von Prof. John C. Olsen, Brooklyn, N. Y. 1909. D. Van Nostrand Co., New York. Zt. f. ang. Chem. 1910, 840	1112.00
Wer ist's: 3. Jahrg. Auskunft über in der Öffentlichkeit stehender. Personen. 1908. Ludwig Degener, Leipzig. Zt. f. ang. Chem. 1908, 2246.	M10.00
EINZELVORTRÄGE UND VERSCHIEDENES	
d'Albe, Fournier: Zwei neue Welten. Deutsch von Max Iklé. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 115	M4.00
Die Durchgeistigung der deutschen Arbeit. Ein Bericht von Deutschen Werkbund. 8 Tafeln. 1911. Eugen Diederichs, Jena. Zt. f. ang. Chem. 1911, 1267	M1.00
Eudel, Paul: Fälscherkünste. Neu hrsg. u. ergänzt von Arthur Roessler. 1909. Fr. Wilh. Grunow, Leipzig. Zt. f. ang. Chem. 1909, 2456.	M6.00
Luxusausgabe	
Fischer, Emil, Prof.: Berlin. Neuere Erfolge und Probleme der Chemie. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 945, 1318	M0.80

Hunicke, August: The Chemical Engineer. 19 S. Abdruck einer Rede geh. vor d. chem. gess. zu St. Louis, Mo. 406 Market St. Zt. f. ang. Chem. 1908, 2566	
Jahrbuch der technischen Sondergebiete: Übersicht über die Unterrichtseinrichtungen für die einzelnen techn. Fächer, über Sonderlaboratorien, etc., Fachzeitschriften, etc. Unter Mitw. von Fachleuten bearb. von Dr. R. Escales. 1. Jahrg. 1910. 1910. J. F. Lehmann, München. Zt. f. ang. Chem. 1911, 168	M6.00
Kiesel, Arthur, Dr.: Scheinwelt und wirkliche Welt. 9 Ill. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 699geh.	M3.00
Krätzer, A.: Keine Gemeinde, kein Anwesen ohne Elektrizität. 4. Aufl. 1911. Selbstverlag d. Verf., Bingen. Zt. f. ang. Chem. 1911, 1418	
Ladenburg, Albert, Prof.: Breslau. Naturwissenschaftliche Vorträge. 264 S. 12 Vorträge allgemeineren Charakters. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. Koll. 1908 ¹¹ , 106. Zt. f. ang. Chem. 1908, 2109geh.	M9.00
Le Bon, Gustave: Die Entwicklung der Materie Nach der 12. Aufl. übers. von Max Iklé. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1815	
Lehmann, O.: Flüssige Krystalle und die Theorien des Lebens. 2. durch Zusätze verb. Auflage. Vortrag geh. 21. Sept. 1906. Vers. deutsch. naturf. u. Ärzte. 69 S. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2391	M1.50
Lodge, Oliver: Leben und materie, eine kritik von Häckels Welträtsel. 150 S. 1908. Karl Curtius, Berlin. Zt. f. ang. Chem. 1908, 2565	
Mach, E., Prof., emer.: Wien. Populär wissenschaftliche Vorlesungen. 4. verm. u. durchges. Auflage. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1369	M7.50
Ostwald, Wilhelm, Prof.: Grossbothen. Die Forderung des Tages. 1910, Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1911, 71	M10 20
71, Grossbothen. Sprache und Verkehr. 51 S. 1911. Akad. Verlagsges., Leipzig. Zt. f. ang. Chem. 1911, 1475geh.	M1.50
Perry, Edward Delavan: Die amerikanische Universität. Bd. 206 aus Natur und Geisteswelt. IV u. 96 S. 22 Fig. Deutsch von Prof. Dr. Bahlsen. Zt. f. ang. Chem. 1909, 379	M1.25
Schmitz, Hermann: Kein Hans und kein Betrieb ohne Elektrizität. 70 S. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 1031.	M0.45
 Trübner, K., Dr.: Minerva, Jahrbuch der gelehrten Welt. 1907/ 1908 (17. Jahrgn.) 1909/1910. Karl. J. Trübner, Strassburg. Zt. f. ang. Chem. 1908, 1916. Zt. f. ang. Chem. 1910, 409ca 	

Weinstein, Max B., Prof.: Welt- und Lebensanschauungen, hervorgegangen aus Religion, Philosophie, und Naturerkenntniss. XII u. 496 S. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1942	M11.50
Wieland, Heinr., Dr.: München. Die Knallsäure. Sammlung chemu. chem. techn. Vorträge. 1909. Ferd. Emke, Stuttgart. Zt. f. ang. Chem. 1910, 2264.	
Ziegler, J. H., Dr.: Bern. Die Struktur der Materie und das Welträtsel. 98 S. 1908. Selbstverlag, Bern. Z. f. Koll. 1909, 206.	
ELEKTROCHEMIE, ELEKTROTECHNIK, UND HIERAU BEZÜGLICHE WERKE	JF
Askenasy, Paul: Braunschweig. Einführung in die technische Elektrochemie. 1. Bd. Elektrothermie. Unter mitw. herv. Fachgenossen. 251. S. 1910. Braunschweig. Zt. f. ang. Chem. 1910, 1720.	
Arndt, Kurt: Flektrochemie. Aus "Natur u. geisteswelt." B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 1580	M1.25
Bein, W., Dr: Elemente und Akkumulatoren, ihre Theorie und Technik. Aus "Wissen und Können." 241 S. 98 Abb. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 709, 1760	
Bermbach, W.: Die Akkumulatoren. 2. verm. Aufl. 38 Abb. 187 S. 1911. Otto Wigand, Leipzig. Zt. f. ang. Chem. 1912, 1432.	
Betts, Anson Gardner: Bleiraffination durch Elektrolyse. Bd. 35, Monogr. über angew. Elektrochemie. Aus dem Engl. übers. von Viktor Engelhardt. 1910. Wilh. Knapp, Halle. Zt. f. ang. Chem.	
1911, 888 Billiter, Jean, Dr.: Wien. Die elektrochemischen Verfahren der chemischen grossindustrie. 4 Bde. — 1. Bd.: Elektrometallurgie wässeriger Lösungen. 284 S. 1909. II. Bd.: Elektrolysen mit unlöslichen Anoden ohne Metallabscheidung. Z. f. Koll. 1910¹, 230. Zt. f. ang. Chem. 1910, 210, 1912, S. 215	
Brosch	M28.50 M12.00
Die elektrolytische Alkalichloridzersetzung. Teil 1. Koll. Zt. 1912 ^{II} , S. 137geh. Brand, K., Dr.: Die elektrochemische Reduktion organischer Nitro-	M16.50
körper und verwandter Verbindungen. Bd. 13. 3–9 Heft, Sammlung chem. u. chemtechn. Vorträge. Zt. f. ang. Chem. 1909, 2267. Zt. f. ang. Chem. 1909, 2582.	
Brochet, André: La Sonde électrolytique, theorie, laboratoire, industrie. 247 S. 76 Fig. Bernard Tignol, Paris. Zt. f. ang. Chem. 1910, 1368. Frs. Manuel Pratique de Galvanoplastie et de Despots Electrochimiques. Preface de M. Haller de l'Institut. 1908. Baillière et fils, Paris. Zt. f. ang. Chem. 1908, 2491.	10.00

chemie. 1. Elemente u. anorg. Verb. Lieferung 5. Zink vollst. u. Teil von Cadmium. Zt. f. ang. Chem. 1909,1384	
Ebert, W., u. Joseph: Nussbaum. Hypochlorite und elektrische Bleiche, praktischangewandter Teil. 38. Bd. aus Engelhardt's "Monographien über angew. Elektrochemie." XII u. 367 S., 54 Fig. u. 33 Tabellen. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1137 u. 1140.	M18.00
Elbs, Karl: Die Akkumulatoren. 4. Aufl. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2391	M1.00
Ferchland, P., Dr.: Berlin. Die elektrochemischen Patentschriften der Vereinigten Staaten von Nord Amerika. 1. Bd.: Elektrothermische Verfahren u. Apparate; Entladungen durch Gase. 352 Fig. im Text. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 890 Die englischen elektrochemischen Patente. Auszüge, ausf. Sach-u.	M12.00
Namenregister. 1. Bd.: Elektrolyse. Verfahren u. Apparate, Entlad. durch Gase. 2. Bd.: Elektrothermische. 1907. W. Knapp, Halle	M9.00 M9.60
Fischer, A., Dr. Ing.: Aachen. Elektroanalytische Schnellmethoden. 4. u. 5 Bd. der Chemischen Analyse. 394 S., 41 Abb., 136 Tabellen. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 560	M9.40
Jahresbericht über die Leistungen der Chemischen Technologie mit besonderer Berücksichtigung der Elektrochemie und gewerbestatistik. Bearb. von Prof. Ferd. Fischer, — Göttingen. (1907.) 38. Jahrg. 2 Teile pro Jahrg.: Anorg. u. org. Teil. Zt. f. ang. Chem. 1907, 810; 1908, 953, 1819; 1909, 809, 2266; 1910, 1175, 1318. 1907/1909, Otto Weigands. 1910. J. A. Barth, Leipzig. Z. f. Koll. 1908 ¹¹ , 310.	
König, Adolf, Dr., Ing.: Über die Oxydation des Stickstoffs im gekühlten Hochspannungsbogen bei Niederdruck. 76 S. 8 Abb. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 709	M3.00
Le Blanc, Max: Lehrbuch der Elektrochemie. 5. Auflage. Oskar Leiner, Leipzig. Zt. f. ang. Chem. 1911, S. 1935 Geb.	M7.00
Löb, Walther, Prof.: Grundzüge der Elektrochemie. 2. verm. u. verb. Aufl. 174 S. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1910, 1030.	M3.00
Lorenz, R., u. F. Kaufler: Elektrochemie geschmolzener Salze. Bd. 11, Abt. 1, von Bredig's Handbuch der angew. physik. Chemie. 84 S. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2364	M3.60

Messungen elektromotorischer Kräfte galvanischer Ketten mit wässrigen Elektrolyten. Gesammelt und bearb. im Auftrage der Deutschen Bunsen-Gesellschaft von R. Abegg, Fr. Auerbach, R. Luther. Abhandlungen der Deutschen Bunsengesellschaft Nr. 5. 213 S. 1911. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1911,	
S. 2403	M4.80
Moser, Alex.: Moskau, unter mitw. von Prof. F. Haber, Karlsruhe. Die Elektrolytischen Processe der organischen Chemie. 36 Bd. Monogr. ü. angew. Elektrochem. XVI u. 205 S. 1910. W.	
Knapp, Halle. Zt. f. ang. Chem. 1910, 2211	M10.00
1909, 474. Ostwald, W.: Entwicklung der Elektrochemie in gemeinverständlicher Darstellung. Aus: Wissen u. Können. 208 S. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1030. Schule der Elektrizität. Nach G. Claude, l'Electricité pour tout le monde. 400 Abb. 579 S. 1909. Dr. Werner Klinkhardt, Leipzig. Zt. f. ang. Chem. 1909, 2582.	M9.00
Poincarè, L.: Die Elektrizität. Deutsch von Prof. A. Kalähne. Quelle & Mayer, Berlin. Zt. f. ang. Chem. 1910, 1030	M4.40
Ries, Chr.: Die elektrischen Eigenschaften und die Bedeutung des Selens für die Elektrotechnik. 96 S. 1908. "Der Mercator," Berlin — Nikolassee. Zt. f. ang. Chem. 1909, 1049	M2 00
Schenkel, M.: Elektrotechnik. 1910. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1910, 1569.	
Schlötter, M., Dr., Ing.: Leipzig. Galvanostegie. I. Teil: Ueber elektrolytische Metallniederschläge. 22. Fig. (37. Bd. der Monographien über angewandte Elektrochemie.) 1910. Verlag Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 28Geh.	
Sperling, M., Dr.: Beiträge zur Kenntniss der Selenzellen. Zt. f. ang. Chem. 1908, 2493	
Spiel, Dr. Hugo: Ueber die Bildung von Stickoxyden bei der stillen elektrischen Entladung im Siemensrohr. 1911. Alfred Hölder, Wien u. Leipzig. Zt. f. ang. Chem. 1912, S. 27Brosch. kart.	M1.40 M1.60
ENZYME UND GÄHRUNGSGEWERBE	
Bayliss, W. M., Prof.: London. Das Wesender Enzymwirkung. Deutsch von Karl Schorr-Wien. 91 S. 1910. Theo. Steinkopff, Dresden. Zt. f. ang. Chem. 1910, 1273. Z. f. Koll. 1910 ¹ , 59	M3.00
Bersch, Wilh., Dr.: Hefen, Schimmelpilze und Bakterien. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1911, 264	

Chodounsky, Franz: Die Bierbrauerei. Bd. 128 d. Bibl. d. gesamten Technik. Dr. Max Jaenecke, Hannover. Zt. f. ang. Chem. 1910, 1941.	M4.60
Dafert, F. W., und Kornauth, Karl: Experimentelle Beiträge zur Lösung der Frage nach der zweckmässigsten, gesetzlichen Regelung des Verkehrs mit Hefr. 1908. Wilhelm Frick, Wien. Zt. f. ang. Chem. 1908, 2200	M3.00
Euler, Hans: Allgemeine Chemie der Enzyme. 239 S. 1910. J. F. Bergmann, Wiesbaden. Z. f. Koll. 1910", 62. Zt. f. ang. Chem. 1910, 1941	
Henneberg, Wilh., Dr.: Berlin. Gährungsbakteriologisches Praktikum, Betriebsuntersuchungen und Pilzkunde. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 260	M21.00
Jahrbuch der Versuchs- und Lehranstalt für Brauerei in Berlin. 11. Bd. 1908. Hrsg. von M. Delbrück. 1908. P. Parey, Berlin. Zt. f. ang. Chem. 1909, 280.	
Kobert, R., Prof.: Rostock. Über die Einwirkung von Enzymen auf Alkaloide, Glykoside und Ester. 18 S. 1909. H. Warkentien. Zt. f. ang. Chem. 1909, 2457.	M0.80
Kossowicz, Prof. Dr. Alexander: Wien. Zeitschrift für Gärungsphysiologie. Band I. Heft I. (je 24 Bogen 1 Bd.) 1912. Bornträger, Berlin. Zt. f. ang. Chem. 1912, S. 630	
Lindner, Paul, Prof.: Mikroskopische Betriebskontrolle in den gährungsgewerben mit einer Einführung in die technische Biologie, Hefenreinkultur und Infectionslehre. 5. neubearb. Aufl. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1910, 312	M21.00
Oppenheimer, Carl: Die Fermente und ihre Wirkungen. 3. völlig neu bearbeit. Aufl. 1. Spezieller Teil, 491 S. 2. Allgemeiner Teil u. Register, mit einem Sonderkapitel: Physikalische Chemie der Fermentwirkungen, von R. O. Herzog. 1919, 1910. F. C. W. Vogel, Leipzig. Z. f. Koll. 1910 ¹¹ , 62. Z. f. Koll. 1911 ¹ , 334. Z. f. ang. Chem. 1910, 1174	M16.00
Prescher, Joh., Dr., u. Viktor Rabs: Bakteriologisch-chemisches Praktikum. 2. vollst. umgearb. u. verm. Aufl. 1910. Curt Kabitzsch, Würzburg. Zt. f. ang. Chem. 1910, 2085	
Rüdinger, Hermann: Die Bierbrauerei und die Malzextrakt-Fabrikation. 3. vollst. neu bearb. Aufl. 402 S. A. Hartleben, Wien, Leipzig. Z. f. Koll. 1909 ¹ , 205.	
Will, H., Prof.: Anleitung zur biologischen Untersuchung und Begutachtung von Bierwürze, Bierhefe, Bier und Brauwasser, zur Betriebskontrolle sowie zur Hefereinzucht. R. Oldenbourg, Berlin, München. Zt. f. ang. Chem. 1909, 2458	M12.00

FARBSTOFFE, FÄRBEREI, UND THEORIE DES FARBENS, MALMATERIALIENKUNDE

S. 1910. Wilh. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S.	
165. Koll. Zt. 1912 ¹¹ , S. 137geh.	M12.00
Bucherer, Dr. Hans Th.: Die Mineral-, Pflanzen- und Teerfarben. 4 Tafeln. 142 S. 1911. Veit & Co., Leipzig. Zt. f. ang.	
4 Taiem. 142 S. 1911. Veit & Co., Leipzig. Zt. i. ang. Chem. 1912, S. 679	M3.60
Church, J. A.: Farben und Malerei. Übers. u. bearbeitet von M. u.	
W. Ostwald. 1908. Georg Callwey, München. Zt. f. ang. Chem. 1909, 187.	
Cohn, Georg, Dr.: Berlin. Die Pyrazolfarbstoffe. 176 S. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 112geh.	M5.00
Eibner, A.: München. Malmaterialien Runde als Grundlage der Maltechnik. J. Springer, Berlin. Zt. f. ang. Chem. 1909, 1628	M13.60
Eppendahl, Fr.: Die Echtheitsbewegung und der Stand der heutigen Färberei. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 891	M1.00
Erban, Franz, Dr.: Laboratoriumsbuch für Tinktorialchemiker	1411.00
Koloristen, Ingenieure und technische Reisende. 109 S. 1908. W. Knapp, Halle. Z. f. Koll. 1910 ¹ , 230Brosch.	M5.20
Färber-Kalender, 1912: Verband der Färber und Chemischwäseher (Berlin). Otto Dreyer, Berlin. Zt. f. ang. Chem. 1912, S. 411.	
Felsen, F., Dr.: Türkischrot und seine Konkurrenten. 128 S. mit 188 Mustern. Verlag für Textilindustrie, Berlin. Zt. f. ang. Chem. 1911, S. 1638	M15 00
Heermann, Paul, Dr.: Berlin. Anlage, Ausbau und Einrichtungen	W110.00
von Färberei, Bleicherei und appreturbetrieben. 90 Fig. 1911.	
Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1317	M7.00
Kozlik, Bernhard: Technologie der Gewebeappretur. 161 Fig. im Text. 1908. Jul. Springer, Berlin	
Lange, Dr. Otto: Die Schwefelfarbstoffe, ihre Herstellung und ihre	
Verwendung. 26 Fig. 497 S. 1912. Otto Spamer, Leipzig. Zt.	3.504.00
f. ang. Chem. 1912, S. 1433	M24.00
Schlichteanalyse. 2. erw. u. verb. Aufl. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1028.	M7.00
Mayer, Karl: Die Farbenmischungslehre und ihre prakt. anwendung.	2.27.00
1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1737	754 60
Brosch. Moehlau u. Bucherer, Dr. Dr.: Farbenchemisches Praktikum.	M4.00
374 S. u. 7 Färbetafeln 1908 Veit & Co. Leinzig Zt. f. ang	

Chem. 1909, 619.....

Pelet-Jolivet, L.: Die Theorie des Färbeprozesses. XII u. 224 S. 1910. Theo. Steinkopff, Dresden. Z. f. Koll. 1910 ^t , 278. Zt. f. ang. Chem. 1910, 1030	M8.00
Polleyn, Friedr.: Die Appreturmittel und ihre Verwendung. 3. vollst. umgearb. Aufl. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1909, 2311	
Schultz, Dr. Gustav.: München. Farbstofftabellen. 5. vollst. umgearb. u. verm. Auflage der tabellarischen Uebersicht der im Handel befindlichen organischen Farbstoffe von Gustav Schultz	M2 00
und Paul <i>Julius</i> . 1. Lieferung	M3.00 M3.00
Schwalbe, Carl G., Prof.: Darmstadt. Neuere Färbetheorien. Bd. 12, Hefte 4–6, Sammlung chem. u. chemtechn. Vorträge. 230 S. 1907. Ferd. Enke, Stuttgart. Z. f. Koll. 1908 ^{II} , 106	
Staeble, Rupert, Dr.: Die neueren Farbstoffe der Pigmentfarbenindustrie, mit besonderer Berücksichtigung der einschlägigen Patente. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2368	M7.00
Unna, P. G. und L. Golodetz: Die Bedeutung des Sauerstoffs in der Färberei. (Dermatologische Studien, Bd. 22.) 1912. Verlag von Leopold Voss, Leipzig u. Hamburg. Zt. f. ang. Chem. 1912, S. 535.	M4.00
Wahl, Prof. Dr. André: L'Industrie des Matières Colorantes Organiques. 400 pages. 1912. Octave Doin et fils, Paris. Zt. f. ang. Chem. 1912. S. 1201.	5 Frs.
Walther, Dr. Gustav.: Crefeld. Farben und Farbstoffe. (Bibliothek der ges. Technik, Bd. 157.) Mit 9 Tafeln und 8 Abb. 1911. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, S. 2318	M4.80
Zacharias, Procopios, Prof.: Athen. Die Theorie der Färbevorgänge. Deutsche Ausgabe. 420 S. 1908. Verlag für Textilindustrie, Berlin, S. W. Zt. f. ang. Chem. 1908, 2155. Z. f. Koll. 1908 ¹¹ , 243	M5.00
Zänker, Dr. W.: Barmen. Die Kalkulation der Organisation in Färbereien und verwandten Betrieben. 1911. Verlag von Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 584	
Zerr, Georg: Bestimmung von Teerfarbstoffen in Farblacken. 1907. Steinkopffe Springer, Dresden. Z. f. Koll. 1909 ¹¹ , 276	
— u. Dr. R. Rübencamp. Handbuch der Farbenfabrikation (Körperfarben). 2. neubearb. u. verm. Aufl. Union Deutsche Verlagsgesellschaft, Berlin, S. W. 68. Zt. f. ang. Chem. 1910, 365	M30.00
Zimmermann, Wilh.: Die Batikfärberei und moderne Batikfarben 120 Farbtöne auf Baumwollsatin und Seide. A. Wehner, Zürich, Leipzig. Zt. f. ang. Chem. 1910, 1513	

GESCHICHTE DER CHEMIE

Arrhenius, Svante: Die Vorstellung vom Weltgebäude der Zeiten. (Das Werden der Welten, Neue Folger.) Schwedischen übersetzt von L. Bamberger. 28 Abb. S. 1908. Akademische Verlagsgesellschaft, Leipzig. Chem. 1908, 2055	Aus dem XI. u. 191 Zt. f. ang.	M6.00
Auerbach, Felix: Geschichtstafeln der Physik. 1910 Leipzig. Zt. f. ang. Chem. 1910, 1174	J. A. Barth,	M5.00
Bryk, Otto, Dr.: Entwicklungsgeschichte der reinen und ten Naturwissenschaft im 19. Jahrhundert. 1. Naturphilosophie und ihre Überwindung durch die er mässe Denkweise (1800–1850). 1909. J. A. Barth, L. f. ang. Chem. 1910, 312	Bd.: Die fahrungsge- eipzig. Zt.	M16.00
Dannemann, Friedrich: Aus der Werkstatt grosser Fo Aufl. des 1. Bds. des "Grundriss einer Geschichte wissenschaften." XII u. 430 S. 1908. W. Engelman Zt. f. ang. Chem. 1909, 2411.	der Natur.	
—— Die Naturwissenschaften in ihrer Entwicklung ur Zusammenhang. 4 Bde. Bd. 1. Von den Aufänge Wiederaufleben der Wissenschaften. Mit 50 Abb. i einem Bildniss von Aristoteles. 1910. Wilh. Engelma Zt. f. ang. Chem. 1911, 70.	en bis zum im Text u. nn, Leipzig.	M10.00
Die Naturwissenschaften in ihrer Entwicklung und in ihr menhange dargestellt von Friedrich Dannemann. Bd. Anfängen bis zum Wiederaufleben der Wissenschaften. Bd. II: Von Galilei bis zur Mitte des 18. Jahrhunderts Bd. III: Das Emporblühen der modernen Naturwis bis zur Entdeckung des Energieprinzips	I: Von den Geb. sGeb. ssenschaften Geb. ang. Chem.	M11.00
Faraday: Naturgeschichte einer Kerze. 6 Vorlesung Ingend. Mit einem Lebensabriss Faraday's. Hrsg Richard Meyer, Braunschweig. 5. Aufl. 1909. Meyer, Leipzig. Zt. f. ang. Chem. 1909, 2457	gen für die g. von Dr. Quelle &	M2.50
Günther, Siegmund: Geschichte der Naturwissenschafte Reklamjun, Leipzig. Zt. f. ang. Chem. 1910, 1815		
Hennig, Richard, Dr.: Buch berühmter Ingenieure. 4 Text. 1911. Otto Spamer, Leipzig. Zt. f. ang. C 2430	Chem. 1910,	M6.50
Hjelt, Edv., Prof.: Helsingfors. Berzelius — Liebig — De Stellung zur Radikaltheorie 1832–1840. Aus Ahrens' Chem. u. chemtechn. Vorträge. 1908. Ferd. Enke Zt. f. ang. Chem. 1909, 2618, 1911, 2618	Sammlung , Stuttgart.	
26. 1. aug. Ouem. 1909, 2010, 1911, 2018		W11.00

Jacobs, Karl: Das Aufkommen der Feuerwaffen am Niederrhein bis zum Jahre, 1400. Vu. 137 S. 8°. 1910. Peter Hanstein, Bonn. Zt. f. ang. Chem. 1910, 1679.	M2.00
Jörgensen, S. M.: Die Entdeckung des Sauerstoffs. Aus dem Dänischen übers. von Wilh. Ortwed u. Max Speter. 1909. Stuttgart. Zt. f. ang. Chem. 1909, 1090.	
Ostwald, Wilhelm, Prof.: Grossbothen. Der Werdegung einer Wissenschaft. 7 gemeinverst. Vorträge. Ref. von Prof. L. Pfaundler, Graz. 1908. Akad. Verlagsgesellschaft, Leipzig. Zt.	
f. ang. Chem. 1908, S. 2135	
Ramsay, Sir William: Die Gase der Atmosphäre und die Geschichte	
ihrer Entdeckung. 3. Aufl. Übers. von Max Huth. 160 S. 8 Abb. im text. 1907. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2564	M5.00
Speter, Max, Dr.: Lavoisier und seine Vorläufer. Bd. 15 d. Sammlung chem. u. chemtechn. Vorträge. 110 S. 1910. F. Enke, Stuttgart. Z. f. Koll. 1911 ¹ , 173. Zt. f. ang. Chem. 1910, 1271	
Strunz, Franz, Dr.: Wien Beiträge und Skizzen zur Geschichte der Naturwissenschaften. 1909. Leopold Voss, Hamburg, Leipzig. Zt. f. ang. Chem. 1910, 412	M5.00
Volhard, Jakob: Justus von Liebig. 2 Bde. Ein Kapitel daraus ver-	
öffentlicht: "Unterricht," Zt. f. ang. Chem. 1908, 2449. 1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2536	M24.00
Walden, P., Prof.: Rigà. Die Lösungstheorien in ihrer geschichtlichen Aufeinanderfolge. Sammlung chem u. chem. techn. Vorträge Bd. 15, Heft 8-12. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 1867. Z. f. Koll. 1911 ¹¹ , 44	
Zimmermann, Ernst: Die Erfindung und Frühzeit des Meissner Porzellans. Ein Beitrag z. Geschichte d. deutschen Keramik. 1. Farbetafel u. 111 Abb., XXV u. 928 S. gr. 40. 1908. Georg	
Reimer, Berlin. Zt. f. ang. Chem. 1910, 1721	M22.00

GLAS, KERAMIK, ZEMENT

v. Arlt, Ferd. R., Dr.: Laboratoriumsbuch für die Zementindustrie. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1910, 2137, 2369 geh.

M4.50

Berdel, Dr. Ed., Höhr: Einfaches chemisches Praktikum für Keramiker, Glastechniker, Metalltechniker usw., zum Gebrauch	
an Fachschulen, Gewerbeschulen, und zum Selbstunterricht. 1. Teil: Chem. Vers. u. Praeparate für Anfänger; 2. Teil: Vorübungen zur Analyse; 3. Teil: Die qualitative Analyse; 4. Teil:	
Ausgewählte quantitativen Methoden. 1909, 1910. Müller & Schmidt, Koburg	M1.20
ang. Chem. 1910, 409, 943, 1911, S. 890, 1868	M2.40
Beufey, Gustav: Herstellung feuerfester Erzeugnisse. (Bibliothek d. ges. Technik.) Dr. M. Jänecke, Hannover. Zt. f. ang. Chem. 1912, S. 1288	M3.20
Bollenbach, H., Dr.: Laboratoriumsbuch für die Tonindustrie. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 168	
Bronn, J.: Der elektrische Öfen im Dienste der keramischen Gewerbe und der Glas- und Quarzglaserzeugung. 198 Abb. u. 2 Tafeln. XIII u. 360 S. 34. Bd.: Monog. ü. angew. Elektrochemie. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 264	M22 00
Dralle, Robert: Die Glasfabrikation. 2 Bände. 1282 S. mit 1031 Textfig. u. 48 Taf. R. Oldenbourg, München, Berlin. Zt. f. ang. Chem. 1912, S. 829.	
Granger, Albert: Fabrication et emploi des matériaux et produits réfractaires utilisés dans l'industrie. 378 p. 1910. Librairie polytechnique Ch. Béranger, Paris. Zt. f. ang. Chem. 1911, 415 Frs.	15.00
Heim, Max, Dr.: Die Steingutfabrikation. Bd. 145, "Bibl. der ges. Technik." 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1911, 840.	
Heinemann, Bruno, Dr.: Die wirtschaftliche und soziale Entwicklung der deutschen Ziegelindustrie unter dem Einflusse der Technik. 1909. Dr. Werner Klinkhardt, Leipzig. Zt. f. ang. Chem. 1910,	
Der Kalksandstein, seine Herstellung und Eigenschafen. 105 S. 72	M4.50
Abb. Verein der Kalksandsteinfabriken. Zt. f. ang. Chem. 1910, 410.	M3.00
Kasai, Dr. S.: Portlandzement mit Puzzolanzusatz. 1911. Ton- industrie-Ztg. G. m. b. H., Berlin. Zt. f. ang. Chem. 1912, S. 1067geh.	M5.00
Michaelis sen., W., Dr: Der Erhärtungsprocess der Kalkhaltigen hydraulischen Bindemittel. 49 S. 1909. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1910, 410. Z. f. Koll. 1909", 172	M1.50
Miller, J. B.: Die Glasätzerei. 4. verm. Aufl. 20 Abb. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910. 411	

Rieke, Reinhold, Dr.: Berlin. Das Porzellan. Bd. 150 der Bibl. d. gesamt. Technik. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1910, 2369.	
Rohland, Paul, Dr.: Die Kolloidstoffe in den Tonen. van Bemmelen-gedenkbock, 1910. Z. f. Koll. 1911 ^t , 54	
Die Tone. 127 S. 8. 1909. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1909, 2311. Z. f. Koll. 1909", 172	M2.80
ges. Technik, Bd. 139. 1910. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1910, 1991	M3.60
Die Silicate in chemischer und technischer Beziehung. Theorie von W. und D. Asch. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1014.	
Deutsche Steinzeugwarenfabrik für Kanalisation und Chemische Industrie, Friedrichsfeld in Baden. Abt. 1: Apparate und Einzelteile zum Kühlen, Absorbieren und Kondensieren. Zt. f. ang. Chem. 1911, 553.	
Zentralblatt für Chemie und Analyse der hydraulischen zemente. Hrsg. von Dr. Ferd. R. v. Arlt, — Wien. Erscheint zunächst monatlich einmal. 1911. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 593.	
Zwick, H., Dr.: Hydraulischer Kalk und Portlandzement, ihre Rohstoffe, physikalischen u. chemischen Eigenschaften. 3. Aufl. bearb. von Dr. A. Moye. 50 Abb. A. Hartleben. Zt. f. ang. Chem. 1909, 2220.	
GUMMI, GUTTAPERCHA, U. KAUTSCHUK	
Ditmar, R., Dr.: Die Analyse des Kautschuks, der Guttapercha, der Balata u. ihrer Zusätze. 288 S. 1908. A. Hartleben, Wien, Leipzig. Z. f. Koll. 1908 ¹¹ , 187	
Kalender für die Gummündustrie u. verwandte Betriebe. 1909, hrsgn. von Edgar Herbst. 1910 hrsgn. von Dr. Kurt Gottlob. Hrsg. von Edgar Herbst. Union Deutsche Verlagsgesellschaft,	
Berlin, S. W. 68. Zt. f. ang. Chem. 1909, 1482; 1910, 1368 Hinrichsen, F. W., Prof.: u. K. Memmler, — Gross-Lichterfelde. Der Kautschuk und seine Prüfung. X u. 263 S. 64 Abb. 3	
Teile. 1910. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1911, 264. Z. f. Koll. 1911 ^t , 109	M9.00
Pearson, Henry C.: Gummireifen und alles darauf Begügliche. Bearb. von Dr. Rudolf Ditmar; Übers. von R. Challamel. XVI u. 224 S. mit 316 Abb. A. Hartleben, Wien, Leipzig. Zt. f. ang.	
Chem. 1910, 1367	
mit 56 Fig. 1911. Octave Doin et Fils, Editeur, Paris. Zt. f. ang. Chem. 1911, S. 1934	5 Frs.

KOLLOIDCHEMIE UND DARAUF BEZÜGLICHE LEHRBÜCHER

Arnat, Prof., Dr. Kurt: Die Bedeutung der Kolloide für die Technik.	
40 S. 1909. Theo. Steinkopff, Dresden	M1.00
Z. f. Koll. 1909 ¹ , 320. 2. verb Auflage. Zt. f. ang. Chem. 1910,	
410, 1912; 165Brosch.	M1.50
van Bemmelen, J. M., Prof.: (Leiden.) III. 1911. Die Ab-	1111100
sorption. Mit Unterstützung des Vf. neu hrsg. von Dr. Wo.	
Ostwald, Leipzig. Mit dem Bilde des Verf., seiner Biographie u.	
Ostward, Leipzig. Wit dem blide des vert., seiner biographie u.	
zahlr. Figuren. 1910. Theo. Steinkopff, Dresden. Zt. f. ang.	3 540 80
Chem. 1911, 553	M13.50
Gedenkbock, 1910. Z. f. Koll. 1911	S.
Rohland, P. Die Kolloidstoffe in den Tonen	S. 54
Liesegang, R. E. Trocknungserscheinungen bei Gelen	S. 54
Zsigmondy, R. Über Dialyse der Kolloiden Kieselsäure	S. 55
Freundlich, H., u. M. Masius. Über die Adsorption in einer	
Lösung mehrerer Stoffe	S. 264
Pelet-Jolivet, L., u. H. Siegrist. Die temperaturabhängigkeit	
der Adsorption von Methylenblau u. Krystallponceau durch	
Kohle	S. 265
Doelter, C. Über den amorphen und den krystallinen Zustand	S. 265
Duhem, P. Die Kolloide u. die dauernden Zustandsänderungen	
in der Chemie	S. 265
Malfitano, G. Über einige willkürliche Unterscheidungen in den	2.200
heutigen chemischen Lehren	S. 265
Biltz, W. Über die Dialysierbarkeit der Farbstoffe	S. 266
Svedberg, The. Über die Entwicklung eines Grundproblems der	D. 200
Kolloidchemie	S. 266
Longld C. H. Pook on tungen über die ekemische Zusermenset	D. 200
Leopold, G. H. Beobachtungen über die chemische Zusammenset-	
zung des Ges chiebelehms im niederländischen Diluvium mit	0 005
besonderer Rücksicht auf das Verwitterungsilikat	S. 267
Ehrenberg, P., u. H. Pick. Die Bedeutung der Bodenkolloide für	~
die Bestimmung der Hygroskopizität in Acker- und Waldboden	S. 267
Procter, H. R. Kolloidchemie und Gerberei	S. 267
Vanino, L. Über die Beziehungen der Künstlichen Leuchtsteine	
zu den Kolloidlösungen	S. 268
Cohen, E. Der Leim in der Kulinochemie	S. 268
Lorenz, R. "Pyrosole." Das Kolloide Phänomen in der glühend	
flüssigen Materie	S. 332
Ostwald, Wo. Über Elektrolytadsorptionen in Solen	S. 332
Zacharias, P. D. Farbstoffe und Kolloidchemie	S. 333
Bechold, H. Pulsierende Ultrafiltration	S. 333
Spring, W. Über die Sättigungskapazität von Kolloidverbin-	N. 000
dungen	S. 333
Bredig, G., u Marck, A. Über Kolloides Mangandioxydsol und	D. 000
	S. 333
sein Verhalten gegen Wasserstoffsuperoxyd	
Barus, C. Kompressibilität fester Kolloide	S. 334

NEW BOOKS

Spiro, K. Zur Lehre von der Quellung	S. 34 S. 34 S. 35 S. 35 S. 35
Freundlich, Herbert: Kapillarchemie. 591 S. 1909. Akadem. Verlagsgess. m. b. H., Leipzig. Z. f. Koll. 1910 ^t , 58. Z. f. ang. Chem. 1909, 1293. Z. f. ang. Chem. 1910, 792	
körper. Verlag v. Theodor Steinkopff, Dresden. Zt. f. ang. Chem. 1911, S. 1868	M1.50
Liesegang, Raphael Ed.: Beiträge zu einer Kolloidchemie des Lebens. 148 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 327. Z. f. Koll. 1910 ¹ , 122. Phot. Korr. 1910, 44. Zt. f. ang. Chem. 1910, 1079.	M5.00
Über die Schichtungen bei Diffusionen. 1907. Düsseldorf, ——. Zt. f. ang. Chem. 1909, 89	2,20,00
Ostwald, Wolfgang, Dr.: Leipzig. Grundriss der Kolloidchemie. 2. völlig umgearb. u. wesentlich verm. Aufl. 1. Hälfte, 330 S Z. f. Koll. 1909, 546. (1. Aufl.) 1911. Theo. Steinkopff, Dresden. Z. f. Koll. 1911, 175. Zt. f. ang. Chem. 1909, 2582. Zt. f. ang. Chem. 1911, 1172. Phot. Korr. 1911, 331	M9.00
Pauli, Wolfgang: Kolloidchemische Studien am Eiweiss. 28 S. 1908, Theo. Steinkopff, Dresden. Z. f. Koll. 1908 ¹¹ , 244. Zt. f. ang. Chem. 1908, 2536.	M1.00
Pöschl, Viktor, Dr.: Einführung in die Kolloidchemie. 2. wesentl. verm. Aufl. 68 S. 1910. Theo. Steinkopff, Dresden. 3. verb.	
Aufl	M2.00 M1.80
Rohland, Dr. Paul: Der Eisenbeton. Kolloidehemische und physikalchem. Untersuchungen. 1912. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1912, S. 1124	M3.00
Svedberg, The, Dr.: Upsala. Die Methoden zur Herstellung Kolloider Lösungen anorganischer Stoffe. 507 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 275. Zt. f. ang. Chem. 1909, 2220.	M18 00
Szilard, B., Dr.: Paris. Beiträge zur allgemeinen Kolloidchemie VI u. 41 S. 1908. Theo. Steinkopff, Dresden. Zt. f. Koll. 1908",	1113.00
46	M1.50

Weimarn, Prof. Dr. P. P. von: St. Petersburg. Grundzüge der Dispersoidchemie. Theodor Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 828. Zsigmondy, R.: Kolloidchemie. Ein Lehrbuch. 294 S. 1912. Otto Spamer. Koll. Zt. 1912", S. 250.	
KUNSTSEIDE UND GESPINSTFASERN, UND IHRE VERAI UNG. APPRETURMITTEL UND IHRE ANALYSE	RBEIT-
Axmacher, Aug.: Praktischer Führer durch den Zeugdruck. Bibl. d. gesamten Technik, Bd. 95 u. 96. 1908. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1908, 2603	
Chaplet, A., et H. Rousset: Les succédanés de la soic. — Les soies artificielles. 157 p. Gauthier Villars, Masson Co. & Zt. f. ang. Chem. 1909, 2019	
Elbers, Wilh., Dr.: Die Bedienung der Arbeitsmaschinen zur Herstellung bedruckter Baumwollstoffe unter Berücksichtigung der wichtigsten Arbeitsmaschinen der Spinnerei und Weberei. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2502	M33.00
Herzinger, Eduard: Die Technik der Mercerisation. 1911. Appreturzeitung, Gera, Reuss. Zt. f. ang. Chem. 1911, 1172	
Herzog, Alois, Prof.: Sorau i. N.—S. Die Unterscheidung der natürlichen und Kümstlichen Seiden. 50 Abb. 78 S. 1910. Theo. Steinkopff, Dresden. Z. f. Koll. 1910 ¹¹ , 172. Zt. f. ang. Chem. 1911, 1031	M3.00
 Sansone, Antonio: Jahresbericht über die Fortschritte des Zeugdrucks und verwandter Industrien. 1. Jahrg. 1. Lieferung. 1908. Gustav Fock, Leipzig. Zt. f. ang. Chem. 1908, 1771 Supplement für Dr. E. Laubers: Prakt. Handbuch des Zeugdrucks, Schick, Oskar: Der Textilchemiker. Kleines Handbuch für Textilfabrikslaboranten. 1910. Paul Genschel, Gera-Reuss. Zt. f. 	M2.00
ang. Chem. 1911, 1317	M6.00
LABORATORIUMSEINRICHTUNGEN DER BETRIEBSCHEM UND SEINE KAUFMÄNNISCHE BETÄTIGUNG	IKER
Bender, O.: Laboratoriumstechnik. Aus Bibliothek der gesamten Technik. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1820	M3.00
Calmes, Dr. Albert: Der Fabrikbetrieb. Die Organisation, die Buchhaltung und die Selbstkostenberechnungen industrieller Betriebe. 2. neubearb. u. verm. Aufl. 1908. G. A. Gloeckner, Leipzig. Zt. f. ang. Chem. 1908, 1722.	M4.00

ang. Chem. 1908, 2248.	
Grimshaw, R., Dr.: Organisation industrieller Betriebe. Bd. 152, Bibl. d. ges. Technik. 1910. Dr. Max Jaenecke. Zt. f. ang. Chem. 1910, 2039.	
Leitner, Friedr.: Die Selbstkostenberechnung industrieller Betriebe.	
3. stark verm. Aufl. 1908. I. D. Sauerländer, Frankfurt, a/M. Zt. f. ang. Chem. 1909, 280.	M4.80
Oeflers Geschäftshandbuch: (Die kaufmännische Praxis.) 12. verb. Aufl. 81–100. Tausend. Hrsgn. unter Mitwirkung bewährter Fachleute. Richard Oefler, Berlin, S. W. 61. Zt. f. ang. Chem. 1908, 2618.	M3.00
Samter, Victor, Dr.: Einrichtung von Laboratorien und allgemeine operationen. 65 S. Bd. 8: Laboratoriumsbücher für die chem. u. verm. Industrien. 1909. W. Knapp, Halle. Zt. f. ang. Chem.	1120.00
1910, 363geh.	M2.70
Scheffler, W., Dr., Ing.: Einrichtung von Fabriklaboratorien. Bd. 151 d. Bibl. d. ges. Technik. 146 S. 1910. Dr. Max Jänecke, Hannover. Z. f. Koll. 1911, 221. Zt. f. ang. Chem. 1910, 2039	M3.40
NAHRUNGSMITTEL UND NAHRUNGSMITTELCHEMIN NAHRUNGSMITTEL-CHEMIE	E .
Bauer, Dr. Hugo: Stuttgart. Nahrungsmittelchemisches Prakti- kum. 36 Abb. VIII u. 252 S. 8°. 1911. Ferdinand Enke, Stuttgart. Zt. f. ang. Chem. S. 1934	M3.00
Beckurts, Dr. Heinr.: Braunschweig, unter Mitwirkung von Dr. H. Frerichs und Dr. H. Emde. Jahresbericht über die Fortschritte in der Untersuchung der Nahrungs- und Genussmittel. (Sonderabdruck a. d. Jahresbericht der Pharmazie. 20. Jahrgang 1910.)	
166 S. 8°. 1911. Vandenhoeck v. Ruprecht, Göttingen. Zt. f. ang. Chem. 1911, 2368	M5.40
Beythien, A., Prof.: Dresden. Die Nahrungsmittelverfälschung, ihre Erkennung und Bekämpfung. 140 S. gr. 8°. Sammlung	M0.40
Chem. u. chem. tech. Vorträge. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70	M3.60
Bremer, W. Dr.: Harburg, A. E. Die Nahrungsmittelkontrolle durch den Polizeibeamten. 73 S. 8°. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1720	M1.60
Bujard, Dr. A., und Dr. E. Baier: Hilfsbuch für Nahrungsmittel- chemiker. Zum gebrauch im Laboratorium, etc. 3. umgearb. Aufl. XVIII u. 730 S. 8°. 1911. Julius Springer, Berlin. Zt. f.	
ang. Chem. 1911, S. 1570	M12.00
Clare A Dr. Dunnausi Dr Mary January Hannovan 7t f	

Codexalimentarius austriacus. (Österreichisches Lebensmittelbuch.) XIV u. 461 S. 4°. 1911. K. K. Hof und Staatsdruckerei; Wien. Band II., 459 S. gr. 4°. 1912. K. K. Hof- und Staatsdruckerei, Wien. Zt. f. ang. Chem. 1911, 1527; 1912, S. 1432	K10.00
Deutsches Nahrungsmittelbuch: Hrsg. vom Bunde deutscher Nahrungsmittel-Fabrikanten und -Händler. 2. vielf. geänderte u. verm. Aufl. VII u. 408 S. gr. 8°. 1909. Carl Winter, Heidel-	
berg. Zt. f. ang. Chem. 1910, 1418	M10.40
Dieterich-Helfenberg. Zur Pharmakodiakosmie und chemischen Analyse der Hausen- und Fischblasen. Abhandlung zur Erlangung der Lehrberechtigung an der Kgl. Sächs. Tierärztl. Hochschule zu Dresden. 3. Tafeln, 1909. Zt. f. ang. Chem. 1909, 977 u. 1001.	
Experimentelle und Kritische Beiträge zur Neubearbeitung der Vereinbarungen: Zur einheitlichen Untersuchung und Beurteilung von Nahrungs- und Genussmitteln, sowie Gebrauchsgegenständen für das Deutsche Reich. Hrsgn. vom Kaiserl.	
Gesundheitsamte, Berlin. 1 Bd. V. u. 260 S. 4°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 1028	M4.00
Gerlach, V., Dr. med.: Wiesbaden. Physiologische Wirkungen der Benzorsäure und des Benzorsauren Natrons. 95 S. 8°. 15 Tafeln. 1909. Heinr. Staadt, Wiesbaden. Zt. f. ang. Chem.	1111.00
,1910, 1418	
Handbuch der Milchkunde: Hrsg. von Dr. Paul Sommerfeld. XIV u. 999 S. gr. 8°. 1909, J. F. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1909, 1788.	M20.00
Hartwich, C., Prof.: Zürich. Die menschlichen Genussmittel, ihre Herkunft, Verbreitung, Geschichte, Bestandteile, Anwendung und Wirkung. Lex. 8°. 576 mit ca. 24 Tafeln in Autotypie, Karten u. Abbildng. im Text. Ca 14 Lieferungen vorgesehen. Liefg. 1–9. Chr. H. Tauchnitz, Leipzig. Zt. f. ang. Chem. 1911, 354. Pro Liefg.	M2.00
Hasterlik, Alfred, Dr.: München. Der Bienenhonig und seine Ersatzmittel. 228 S. 1909. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1909, 281.	
Der Tafelsenf (Mostrich) und die technische Verwertung der Senfpflanze. 56 Abb. u. 3 Taf. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 411	M3.00
Hausner, A.: Die Fabrikation der Konserven und Kanditen. 4. verb. Aufl. 47 Abb. VIII + 332 S. 8°. 1912. A. Hartleben, Wien u. Leipzig. Zt. f. ang. Chem. 1912, S. 1288	
Jahrbuch des Vereins der Spiritus-Fabrikanten in Deutschland, des Vereins der Stärke-Interessenten in D., und des Vereins Deutscher Kartoffeltrockner. 9. Jahrg. Bearb. von G. Heinzelmann. 1909. Paul Parey, Berlin. Zt. f. ang. Chem. 1909, 1579	
Jahresbericht über die Fortschritte in der Untersuchung der Nahrungs- und Genussmittel. Bearb. von Prof. Heinr. Beckurts,—	

Braunschweig, u. Dr. Dr. Frerichs u. Emde. Sonderabdruck a. d. Jahresbericht d. Pharmazie. 1907, 170 S. gr. 8°	M5.00 M6.00
Jahresbericht über die Untersuchungen und Fortschritte auf dem Gesamtgebiete der Zuckerfabrikation. Bearb. von Dr. Joh. Bock. 48. Jahrg. 1908. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 2217.	M16.00
 Jolles, Adolf, Dr.: Die Nahrungs- und Genussmittel, ihre Herstellung und Verfälschung. Mit einem Pilzmerkblatt. VIII u. 209 S. 8°. 1909. Franz Deuticke, Leipzig, Wien. Zt. f. ang. Chem. 1909, 1739. 	M4.00
Kaiserliches Gesundheitsamt: Übersicht über die Jahresberichte der öffentlichen anstalten zur technischen Untersuchung von Nahrungs- und Genussmitteln im Deutschen Reich für des Jahr. 1904. VIII u. 285 S. 4°. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 1819. Ergebnisse der amtlichen Weinstatisktik. Berichtjahr 1909/10. 470 S. gr. 8°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 113.	M5.00
Kassowicz, Alex., Prof. Dr.: Wien. Einführung in die Mykologie der Nahrungsmittelgewerbe. 5 Tafeln, 21 Abb. VIII u. 138 S. 8°. Zt. f. ang. Chem. 1911, S. 1600	M4.00
König, Dr. J., Geh. RegRat: Münster. Die Untersuchung landwirtschaftlich und gewerblich wichtiger Stoffe. 4. neubearb. Aufl. mit 426 Textabb. XX und 1226 S. gr. 8°. 1911. Paul Parey, Berlin. Zt. f. ang. Chem. 1911, S. 2403	
Kosutàny, Dr. Th.: Budapest. Chemische Untersuchungen der Mahlprodukte der ungarischen Exportweizenmühlen vom Jahre 1911. 39 S. 4°. Budapest, 1912. Zt. f. ang. Chem. 1912, S. 1526.	
Kraus, A., Dr., u. Dr. P. Schwenzer: vom chem. Unters. Amt. Kreis Neuss. Hilfstabellen für Nahrungsmittelchemiker. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 1031	
Kremers & Schlossmann: Die Milch in Gesetz und Rechtsprechung. VIII u. 39 S. 8°. 1909. Carl Heymann, Berlin. Zt. f. ang.	

Kulisch, P., Prof.: Colmar. Anleitung zur sachgemässen Weinverbesserung einschliesslich der Umgärung der Weine. 3. auf Grund des Reichsgesetzes über d. Verk. m. Wein vom 7. IV. 1909. umgearb. Aufl. XII u. 171 S. 8°. 1909. Paul Parey, Berlin.	
Zt. f. ang. Chem. 1910, 410, Das neue Weingesetz. Veranlassung. Grundlegende Bestimmungen. Regelung der Zuckerungsfrage. 52 S. gr. 8°. 1909. J. Springer, Berlin. Zt. f. ang. Chem. 1909, 2364	M4.00
Lebensmittelbuch: Schweizerisches. Methoden für die Untersuchung und Normen für die Beurteilung von Lebensmitteln und gebrauchsgegenständen. — Im Auftrag des Schweiz. Departements des Inneren bearb. 2. Aufl. IX u. 67 S. gr. 8°. 2 revid. Aufl. XVI u. 336 S. 1908, 1909. Neukomm & Zimmermann, Bern. Zt. f. ang. Chem. 1909, 2120.	
Lebbin, Dr. Georg: Berlin. Allgemeine Nahrungsmittelkunde. XI u. 543 S. 8°. 1911. Leonhard Simion Nachf., Berlin. Zt. f. ang. Chem. 1911, S. 1738	M12.50
Luhmann, E., Dr.: Kakao und Schokolade. Bibl. d. ges. Technik, 114. Bd. 68 Abb. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1089.	M4.40
Mezger, Otto, Dr.: Stuttgart. Anleitung zur Durchführung einer wirksamen Milchkontrolle in Stadt- und Landgemeinden. IV u. 126 S. 8°. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 70.	
Reitz, Dr. Adolf: Die Milch und ihre Produkte. Mit 16. Abb. u. 104 S. 1911. G. B. Teubner, Berlin. Zt. f. ang. Chem. 1912, S. 64.	M1.25
Röhrig, Armin, Dr.: Leipzig. Bericht über die Tätigkeit der chemischen Untersuchungsanstalt der Stadt Leipzig in Jahre 1909. 51 S. gr. 8°. Zt. f. ang. Chem. 1910, 1720	
Röttger, H.: Lehrbuch der Nahrungsmittelchemie. 4. verm. u. verb. Aufl. 1. Bd. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 2039	
Stift, Anton, u. Wilh. Gredinger: Der Zuckerrübenbau und die Fabrikation des Rübenzuckers. 1910. A. Hartleben, Wien, Leipzig. Zt. f. ang. Chem. 1910, 1816.	M20.00
Teichert, Dr. Kurt: Wangen im Allgäu. Die Analyse der Milch und Milcherzeugnisse. 2. verm. u. verb. Aufl. mit 19 Textfig. VII u. 81 S. 8°. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1934.	M2.40
Methoden zur Untersuchung von Milch und Molkereiprodukten. 54 Abb. u. 27 Tabellen. 1909. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1910, 262.	

Zt. f. ang. Chem. 1910, 1031. 1906. M6 Zt. f. ang. Chem. 1911, 305. 1907. M9 Untersuchung von Nahrungs-, Genussmitteln und Gebrauchsgezen-	7.60 3.60 9.40
ständen. 4. vollst. umgearb. Aufl. bearb. in gemeinschaft mit hervorrag. Fachgenossen von Prof. Dr. J. König, Münster i. w. 3. Bd., 1. Teil. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1720	3.00
Utz, F.: München. Die Milch, ihre Untersuchung und Verwertung. 1911. A. Hartleben, Wien, Liepzig. Zt. f. ang. Chem. 1911, 501 geh. M8	5.00
Veröffentlichungen auf dem Gebiete des Militär-Sanitätswesens. Hrsgn. von der Medizinal-Abteilung des Königl. Preuss. Kriegsministeriums. Arbeiten aus den hygienchem. Untersuchungsstellen. Heft 38: 2. Teil. 115 S. Heft 45: 4. Teil 122 S. 1908, 1911. Aug. Hirschwald, Berlin. Zt. f. ang. Chem. 1908, 1819. Zt. f. ang. Chem. 1911, 889. Verzeichniss der Zuckerfabriken und Raffinerien Deutschlands und des Auslandes. 1908/1909, 1909/1910 (26 Jahrg). Albert Ratke, Magdeburg. Zt. f. ang. Chem. 1908, 2346. 1909, 2310. Weinstatistik, 1909: Die Schweizerische. Bearb. vom Verein anal. Chemiker, Schweiz. Separat-Abdruckaus., Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene," 1, 1910. Heft 4. 31 S. 8°. Zt. f. ang. Chem. 1911, 415. Verzeichniss der schweizer. Weinlagen und Wein-Handelsbezeichnungen. 68 S. 8°. 1910. J. Dürst, Zürich. Zt. f. ang. Chem. 1911, 353.	
ÖLE, FETTE, WACHSE	
Congrès international du pétrole: 3. session, Bucarest 8.—13./9. 1907. Compte-Rendu. II. Memoires. 1910. Carol Göbl, Bucarest. Zt. f. ang. Chem. 1911, 355 Einheitsmethoden zur Untersuchung von Fetten, Ölen, Seifen und Glycerinen, sowie sonstigen Materialien der Seifenindustrie. Hrsg. vom Verband der Seifenfabrikanten Deutschlands. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 2264 Engler, C.: Die neueren Ansichten über die Entstehung des Erdöls. Verlag für Fachliteratur, Berlin W. 30	

Fahrion, Wilhelm, Dr. phil.: Die Chemie der trocknenden Oele. 1911. Verlag v. Jul Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2367	
Handbuch der Kaliwerke, Salinen, Tiefbohrunternehmungen und der <i>Petroleumindustrie</i> . Jahrgänze 1909, 1910, 1911. Verlag der Kuxen-Zeitung, Berlin C. Zt. f. ang. Chem. 1909, 859. Zt. f. ang. Chem. 1910, 793. Zt. f. ang. Chem. 1911, 648 Pro Jahrgn.	
Hefter, Gustav: Technologie der Fette und Ole. 4 Bde. 1. Bd.: Gewinnung der Fette u. ÖleAllegemeiner Teil. 2. Bd.: Gewinnung der Fette u. ÖleSpecieller Teil. 3. Bd.: Die Fett verarbeitenden Industrien. Jul. Springer, Berlin. Zt. f. ang. Chem. 1907, 43. Zt. f. ang. Chem. 1908, 763. Zt. f. ang. Chem. 1910, 1473.	M22.50 M31.00
Holde, D., Prof.: Untersuchung der Mineralöle und Fette sowie der ihnen verwandten Stoffe. 3. verm. u. verb. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 365	M12.00
Lach, Bela: Die Zeresinfabrikation. 1912. W. Knapp, Halle. Koll. Zt. 1912 ^{II} , S. 46.	M9.60
Landenberger, Dr.: Die deutschen Patente betreffend Verfahren zur Herstellung von Seifen. Selbstverlag des Verf., Berlin S. W. 61. Zt. f. ang. Chem. 1908, 1721	
Leimdörfer, J.: Beiträge zur Technologie der Seife auf kolloid- chemischer Grundlage. (Sonderausgabe aus "Kolloidchemische Beihefte") 2 Tafeln, 56 S. 1911. Theodor Steinkopff, Dresden. Zt. f. ang. Chem. 1912, 308	M1.80
Lewkowitsch, J.: Technologie et analyse chimigue des huiles graisses et cires. Traduit par E. Bontoux. Tome 1. Zt. f. ang. Chem. 1908, 281, 474. Tome 2. Zt. f. ang. Chem. 1909, 2311. Tome 3. Zt. f. ang. Chem. 1910, 1079. H. Dunod et E. Pinat, Paris.	
Mann, H.: Die Schule des modernen Parfümeurs. Hersgn. vom H. Mann. 1912. H. Ziolkowsky. Koll. Zt. 1912 ¹ S. 323	M10.00
Marcusson, J.: Laboratoriumsbuch für die Industrie der Oele und Fette. Mit 21 Abbild. u. 20 Tab. 1911. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1911, S. 2369	
Rakusin, M. A.: Die Theorie der Färbung der natürlichen Erdöle und deren notwendige Konsequenzen. 1909. Verlag für Fachliteratur, Berlin. Zt. f. ang. Chem. 1910, 743	M2.00
Ubbelohde, L. und F. Goldschmidt: Handbuch der Chemie und Technologie der Oele und Fette. III. Bd. 1. u. 2. Abt. 13 Tafeln, 225 Abb., 1195 S. 1911. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1912 S. 309. Koll. Zt. 1912 S. 60.	M34 00

ORGANISCHE CHEMIE UND ORGANISCHE HANDBÜCHER

ORGANISCHE CHEMIE UND ORGANISCHE HANDBUCH	IER
Angeli, Prof., Dr. A.: Neue Studien in der Indol- und Pyrrolgruppe. (Deutsch. bearb. v. Dr. W. Roth, Cöthen.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 830	
Bartelt, Konrad, Dr.: Die Terpene und Campherarten. ea 370 S. 1908. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1908, 2347	M12.00
Comanducci, Ezio, Prof.: Neapel. Die Konstitution der Chinaal- kaloide. Deutsche Ausgabe durchges. von Dr. W. Roth, Köthen, 165 S. 16. Bd., 4.–7. Heft von Ahrens' Sammlung chem. u. chemtechn. Vorträge. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, 457.	
Carré, P., Prof.: Paris. Hydrocarbures, Alcool et Éthers de la Série Grasse. Aus der Sammlung: Encyclopédie scientif. publiée sons la direction du Dr. Toulouse. III + 410 + XII S. 1911. Octave Doin et Fils, Paris	Frs. 5.00
Decker, Herman: Carl Graebe's Untersuchungen über Chinone. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1911, S. 1739	
Gmelin-Kraut: Handbuch der organischen Chemie. 7. Aufl. Hrsg. von C. Friedheim. 43. bis 73. Lieferung. Zt. f. ang. Chem. 1909, 905, vergl. 1908, 664	
Goldberg, Irma, Dr., u. Dr. Herm. Friedmann: Die Sulfosäuren des Anthrachinons und seiner Derivate. (Eine Zersammenstellung derselben.) 1909. Weidmann, Berlin. Zt. f. ang. Chem. 1910, 1720.	M4.00
Hallerbach, Wilhelm: Uerdingen am Rhein. Die Citronensäure und ihre Derivate. 11 und 104 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 2252	M4.40
 Holleman, A. F., Prof.: Amsterdam. Die direkte Einführung von Substituenten in den Benzolkern. Ein Beitrag zur Lösung des Substitutionsproblems in aromatischen Verbindungen. VI u. 516 S. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 501. 	
Jahrbuch der Chemie: Hrsgn. von Prof. Richard Meyer, — Braunschweig. 1907, 1908, 1909. 1909 = 19. Jahrg. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2297. Zt. f. ang. Chem. 1910, 2211. Z. f. Koll. 1908 ¹¹ , 310. Z. f. Koll. 1911 ¹ , 63 Geb. in Linw. Geb. in Halbfrg.	M19.00
Jahrbuch der organischen Chemie. 1. Jhrg. 1907, 392 S. 1908. 1909. Hrsgn. von Prof. Julius Schmidt, Stuttgart. Ferd. Enke, Stuttgart. Z. f. Koll. 1908 ¹¹ , 310. Zt. f. ang. Chem. 1909, 1579. Zt. f. ang. Chem. 1910, 942.	11120.00
Ley, H.: Die Beziehungen zwischen Farbe und Konstitution bei organischen Verbindungen. 1911. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1912, S. 1334	

Meyer, Hans, Prof.: Prag. Analyse und Konstitutionsermittlung organischer Verbindungen. 2. verm. u. umgearb. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2312	M31.00
Richter, M. M.: Lexikon der Kohlenstoffverbindungen. 3 Auflage. Leopold Voss, Hamburg, Berlin. Zt. f. ang. Chem. 1910, 1569, 1912, S. 1433	
Schmidt, Dr. Julius: Die Alkaloidehemie in den Jahren 1907–1911. 284 S. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 1477.	
Die organischen Magnesiumverbindungen und ihre Anwendung zu Synthesen, II. Sammlung chem. u. chemtechn. Vorträge. Bd. 13. 11–12 Heft. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1482.	
— Stuttgart. Über Chinone und chinoide Verbindungen. Ahrens' Sammlung chemischer u. chemtechn. Vorträge. Bd. 11. Hefte 10 u. 11.	
Scholtz, M.: Die optisch aktiven Verbindungen des Schwefels, Selens, Zinns, Silciums und Stickstoffs. Ahrens Samml. chem. u. chemtechn. Vorträge XI. Bd., Heft 12. Zt. f. ang. Chem. 1909, 1090.	
Stoermer, R., Prof.: Die Oxydations- und Reduktionsmethoden der organischen Chemie Sonderabdruck aus Th. Weyl's Handbuch: Die Methoden der org. Chemie. 256 S. 1909. G. Thieme, Leipzig. Z. f. Koll. 1909 ¹¹ , 173	
Wallach, Otto: Terpene und Campher. XXII. u. 576 S. 1909. Veit & Co., Leipzig. Zt. f. ang. Chem. 1909, 1530	
 Weyl, Theo., Dr.: Berlin. Die Methoden der organischen Chemie. Ein Handbuch. 1. Bd. 355 S. 1., 2., 3., Lfng. 1908. G. Thieme, Leipzig. Z. f. Koll. 1911¹, 173. Zt. f. ang. Chem. 1908, 2564. Zt. f. ang. Chem. 1909, 2218	
Wichelhaus, Dr. H.: Sulfurieren, Alkalischmelze der Sulfosäuren, Esterifizieren. (Chem. Technologie in Einzeldarstellungen, herausgeg. v. Ferd. Fischer.) 32 Fig. u. 1 Tafl. Otto Spamer, Leipzig. Zt. f. ang. Chem. 1911, S. 2019	
Winterstein, E., Prof., u. Dr. G. Trier: Zürich. Die Alkaloide. Eine Monographie der natürlichen Basen. gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 1992	
Winther, Adolf, Dr.: Zusammenstellung der Patente auf dem Gebiete der organischen Chemie 1877–1905. 3 Bde., gr. 4°., ca. 4000 S. 1. Bd. ——. 2. Bd. ——. 3. Bd. Austandische Patente. Register. Zt. f. ang. Chem. 1908, 2247; 1909, 1088; 1910, 1367. 1910, Alfred Töpelmann, Giessen	

PATENT-GESETZE, ETC.

Bomborn, Bernhard: Das deutsche Gebrauchsmusterrecht. Bibl. d. ges. Technik, Bd. 134. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 1948	
Damme, F., Dr., Geh. RegRat., Dir im Kaiserl. Patentamt, Berlin. Der Schutz technischer Erfindungen als Erscheinungsform moderner Volkswirtschaft. 1910. Otto Liebmann, Berlin. Zt. f. ang. Chem. 1911, 591	M3.40
Dennstedt, M., Prof.: Hamburg. Die Chemie in der Rechtspflege. 1910. Akad. Verlagshandlung, Hamburg. Zt. f. ang. Chem. 1910, 1772	
Fischer u. Roediger, Dr.: Die Patentgesetze. Eine systematische Übersicht der Pat. gesetze der versch. Länder. 2. u. 3. Teil. 1907. 1908. Carl Heymann, Berlin. Zt. f. ang. Chem. 1909, 663	M5.00
Freund, G. S., Dr., u. J. Magnus: Gesetz zum Schutz der Warenbezeichnungen vom 12. v. 1894. Der früheren Ausg. 5. völlig neu bearb. Aufl. Taschenformat	M3.50
Goldschmidt, Karl, Dr.: Das Recht der Angestellten an ihren Erfindungen. 41 S. 1909. W. Knapp, Halle. Zt. f. Koll. 1910 ¹ , 324	M1.50
Hederich, Dr.: Warenzeichen oder Geschmacksmuster? Über den gesetzlichen Schutz von Etiquetten. Verlag "Geistiges Eigentum," Charlottenburg. Zt. f. ang. Chem. 1910, 364	M0.50
Jahreskatalog des K. K. Patentamtes in Wien. Alphabetisches Sachverzeichniss über sämtliche bis 31. Dec. 1908, 1909, in das Patentregister eingetragenen Patente. Lehmann & Wentzel,	771 00
Wien. Phot. Korr. 1909, 452; 1910, 297	K1.00
Köhler, Josef: Warenzeichenrecht. J. Bensheimer, Mannheim, Leipzig. Zt. f. ang. Chem. 1911, 742	M8.00
ternationalen Vertrag z. Schutze des gewerbl. Eigentums, etc. 7. neubearb. Aufl. von Dipl. Ing. u. Pat. Anwalt Tennenbaum. 1909. H. A. Ludwig Degener, Leipzig. Zt. f. ang. Chem. 1909,	
1948	M6.00
Zt. f. ang. Chem. 1909, 2502. Silberberg, Ludwig, Dr.: Gesetz über den Absatz von Kalisalzen, vom 25. v. 1910. Mit Erläuterungen und Sachregister. 1910.	M13.00
W. Knapp, Halle. Zt. f. ang. Chem. 1911, 983	M5.40

Teudt, Heinrich, Dr.: (Ständiger Mitarbeiter im Kaiserlichen Patentamte.) Die Abfassung der Patentunterlagen und ihr Einfluss auf den Schutzumfang. Ein Handbuch für Nachsucher und Inhaber deutscher Reichspatente. 1908. Julius Springer,	
Berlin. Zt. f. ang. Chem. 1908, 2249	M3.60
Unterklassen und Gruppen. Bearb. im Kaiserlichen Patentamt zu Berlin. 2. Aufl. 1910. Bernhard Paul, Berlin. Zt. f. ang. Chem. 1911, 169	M5.00
Wassermann, Martin, Dr.: Die grundzüge des deutschen Patentrechts. 1910. Dr. Walther Rotschild, Berlin u. Leipzig. Zt. f.	
ang. Chem. 1910, 1417	
PFLANZENCHEMIE	
Euler, H.: Grundlagen und Ergebnisse der Pflanzenchemie. 3	
Teile in 2 Bänden; 238 u. 297 Seiten. Nach der schwedischen Ausgabe. 1908/1909. Vieweg & Sohn, Braunschweig. Z. f. Koll.	
1910 ^r , 59	
Fischer, Julius, Dr.: Die Lebensvorgänge in Pflanzen und Tieren. Versuch einer Lösung der physiologischen Grundfragen. 83 S. 1908. Friedländer & Sohn, Berlin. Z. f. Koll. 1909 ¹ , 205. Zt. f. ang. Chem. 1909, 90.	
Tschirch, A.: Die Chemie und Biologie der pflanzlichen Sekrete. 95 S. 1908. Akad. Verlagsges, m. b. H., Leipzig. Z. f. Koll. 1911 ¹ , 173	
Vageler, P., Dr.: Die organogenen Nährstoffe der Pflanze; O, H, C, u. Nals Pflanzennährstoffe. Aus "Wissen u. Können." 148 S. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1821	
Wehmer, C., Prof.: Hannover. Die Pflanzenstoffe (botanisch- syst. bearb. Chem. Bestandteile u. Zusammensetz. der einzelnen Pflanzenarten, Rohstoffe u. Produkte, Phanerogamen). XVI u. 937 S. Register umfasst 98 S. 1911. Gustav Fischer, Jena.	
Zt. f. ang. Chem. 1911, 791	M35.00
PHARMAZIE UND PHARMAKOGNOSCIE	
Apothekengesetze, Die preussischen: Hrsg. von Dr. H. Böttger unter Mitw. von E. Urban. 4. umgearb. u. vervollst. Aufl. 1910. J. Springer, Berlin. Zt. f. ang. Chem. 1910, 1991	
Arends, G.: Neue Arzneimittel und pharmazeutische Specialitäten. (Einschliesslich der neuen Drogen, Organ- und Serumpräparate mit zahlr. Vorschriften zu Ersatzmitteln u. einer Erklärung der	

gebräuchl. medicin. Kunstansdrücke. 3. sehr verm. u. verb. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2310. M6.00

Bauer, Dr. phil. Hugo: Die Gehaltsbestimmungen des Deutschen Arzneibuches V. 92 S. 1911. Verlag von Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2110	
Beckurts, Heinrich, Dr.: Analytische Chemie für Apotheker. 2. neubearb. Aufl. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1908, 2603	M11.60
Buchheister, G. A.: Handbuch der Drogistenpraxis. 9. neubearb. Aufl. von Georg Ottersbach. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 2218.	M13.40
Cieszyński, T.: Der polnische Apotheker. Polnischlateinisches Wörterbuch, etc. 2. verm. Aufl. bearb. von J. Jasinski. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909, 2120	M2.80
Dieterich, Eugen: Neues Pharmazeutisches Manual. 10. verm. Aufl. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1090.	M18.00
Düring, Franz, Dr.: Gräfenhainichen. Übersicht über die deutschen Reichspatente betreffend Heilmittel und Desinfectionsmittel. 116 S. 8°. 1908. "Selbstverlag," Berlin. Z. f. Koll. 1909", 277. Zt. f. ang. Chem. 1908, 1819.	
Eichinger, Alfons: Die Pilze. 54 Abb. u. 124 S. 1911. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1911, S. 2018	M1.25
Fränkel, Dr. S.: Die Arzneimittelsynthese. 3. umgearb. Aufl. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1123	M26.50
Handbuch der Drogisten-Praxis: (Im Entwurf vom Drogisten- verband preisgekrönte Arbeit von G. A. Buchheister, 1910.) Neu bearbeitete Auflage v. Georg Ottersbach, Hamburg. 389 Fig. u. 1260 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1912 S. 263.	M13.40
Hell, Gustav: Pharmazeutisch technisches Manuale. Anleitung zur rationellen Darstellung pharmazeutischer Präparate, etc. Ein Handbuch für Apotheker. 5. Aufl. 1910. Urban & Schwarzenberg, Berlin, Wien. Zt. f. ang. Chem. 1911, 220 2 Teile zuje	M12 00
Heyl, Prof., Dr. Georg: Erklärung der technischen Prüfungsmethoden des 9 Abbildungen. 1911. Selbstverlag des Deutschen Apothekervereins, Berlin. Zt. f. ang. Chem. 1911, S. 1819	
Knolls Pharmaka 1886–1911. Knoll & Co., Ludwigshafen a/Rh. Zt. f. ang. Chem. 1911, S. 2369	
Kommentar zum Deutschen Arzneibuch, 5. Ausgabe, 1910. 1. Halbband. Unter Mitw. hervorr. Fachgenossen, hrsgn. von Dr. O. Anselmino u. Prof. Ernst Gilig.	
— 2 Halbband (Auf Grundlage der Hager-Fischer-Hartwich'schen Kommentare der früheren Arzneibücher, unter Mitwirkg. v. Prof. Dr. Bieberstein, Dr. P. W. Dankwortt, etc., in zwei Bänden. 1	

Halbband, S. 1-400. 2. Halbband S. 401-719. 1911. Jul.	740.00
Springer, Berlin. Zt. f. ang. Chem. 1911, S. 984, 2065 geh.	M8.00
Lenz, W. und G. Arends: Hager's Handbuch der pharmaceutischen	
Praxis für Apotheker, Ärzte, etc. 820 S. Lexikongrösse. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 89	7/17 50
	M17.50
Lipowski, L., Dr.: Anleitung zur Beurteilung und Bewertung der	
wichtigsten neueren Arzneimittel. 102 S. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 2492	M2.80
	W12.80
Mannheim, Dr. E.: Pharmazeutische Chemie. I. Anorgan. Chemie. (Sammlung Göschen Nr. 543.) II. Bd. Organ. Chemie.	
(Sammlung Göschen Nr. 544.) 1911. Göschensche Verlagsbuch-	
handlung. Göschen, Leipzig. Zt. f. ang. Chem. 1911, S.	
2206, 1912, S. 679	M0.80
Oesterle, O. A., Prof.: Bern. Grundriss der Pharmakochemie.	2120100
Gebrüder Bornträger, Berlin. Zt. f. ang. Chem. 1909, 1869	
Partheil, A., Dr.: Königsberg i. Pr. Kurzgefasstes Lehrbuch der	
Chemie für mediziner und Pharmazeuten. Org. Teil. 1. Abt.:	
Die Chemie der Fettköpper. 1909. Carl Georgi, Bonn. Zt. f.	
ang. Chem. 1909, 2503	
Rohden, C.: Die offiziellen ätherischen Oele und Balsame. 1911.	
Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1965	
Bosch.	M7.00
Schlickums Ausbildung des jungen Pharmazeuten und seine Vor-	
bereitung zur Gehilfenprüfung. 11. vollst. umgearb. u. bed.	
verm. Aufl. — Hrsg. unter Reduktion von Dr. W. Böttger. 1909.	
J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 410	M20.00
Schmidt, Ernst, Prof.: Marburg. Ausführliches Lehrbuch der	
pharmazeutischen Chemie. 5. Aufl. 2. Bd. 1. Abt	M25.50
II. Band. Organ. Chemie. Verlag. Friedr. Vieweg & Sohn,	
Braunschweig. Zt. f. ang. Chem. 1910, 1472; 1912, S. 214	
Scholtz, Max, Prof.: Greifswald. Lehrbuch der pharmazeutischen	
Chemie. 1. Bd. Anorganischer Teil. 1910. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1910, 2085	M19 00
Constant I Deef College Charles The College Co	1/112.00
Spiegel, L., Prof.: Charlottenburg. Einführung in die Pharmakologie für Studierende der Medizin und der Pharmazie. 193 S.	
1911. Ernst Reinhard, München. Zt. f. ang. Chem. 1911, 501	M2 50
Squire's Companion to the British Pharmakopoeia. 18. ed. 1908.	1112.00
J. & A. Churchill. Zt. f. ang. Chem. 1909, 1088	
Thoms, Dr. Prof. H.: Dahlem. Arbeiten aus dem Pharmazeu-	
tischen Institute der Universität, Berlin. 280 S. 1911. Urban	
& Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1912, S. 1124	
geh.	M7.00
— Schule der Pharmazie. Bd. II. Chemischer Teil. 5. verb.	
Aufl. 105 Textabb., 536 S. 1912. Jul. Springer, Berlin. Zt. f.	
ang Chem 1912 S 1476	M10 00

— Das Pharmazeutische Institut der Universität, Berlin. 1910. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 2211	
	M12.00
Berlin. 7. Bd. 1910. Urban & Schwarzenberg, Berlin, Wien. Zt. f. ang. Chem. 1910, 1679	M8.50
Hefte 1-4, 5-8, 9-12, 14-18, 19-27. 2 Bde. Hermann Tauchnitz, Leipzig. Zt. f. ang. Chem. 1908, 2440; Zt. f. ang. Chem. 1909, 1048; Zt. f. ang. Chem. 1910, 261; Zt. f. ang. Chem. 1910, 1271; Zt. f. ang. Chem. 1911, 1362	M2.00
PHOTOGRAPHIE	
Autochrombelichtungstabelle des Wiener Amateurphotographen- Klubs. Phot. Korr. 1910, 43	
Bartels, C. O.: Auf frischer Tat. Beobachtungen aus der niederen Tierwelt in Bilderserien nach Naturaufnahmen vom Verf. 1.	
Sammlung. 40 S. Text u. 15 Serien mit 71 Aufnahmen aus	
der niederen Tierwelt. E. Schweizerbart, Stuttgart. Phot. Korr. 1910, 253. 216 u. 217.	M3.80
Blecher, Karl: Lehrbuch der Reproduktionstechnik. Lieferung 2–4, 5–6. W. Knapp, Halle. Phot. Korr. 1909, 351, 548. Pro Lief.	M2.00
Clerc, L. P.: Paris. Les reproductions Photomécaniques Mono- chromes. Photogravüre, Similigravüre, Phototypie, Heliogravüre, etc. XXII u. 396 S. mit 115 Fig. im Text. 1910. O. Doin et	r 00
Fils, Paris. Phot. Korr. 1910, 557	5.00
Phot. Korr. 1909, 44	M10.00
Das Bild: Monatschrift für photographische Bildkunst. 7. Jahrg. 1911	M2.00 M2.30
N. P. G. Bibliothek: Bd. 1. Bromsilberpapier, 40 S. Bd. 2. Katatypie, 32 S. Bd. 3. Gaslichtpapier, Lenta," 64 S Pro Band Phot. Korr. 1909, Beilage zu S. 300. 1910. 193. 1909, 1910. Neue Photographische Gesellschaft, Steglitz-Berlin	M0.20
David, Ludwig: K. K. Oberst. Photographisches Praktikum, Lehrbuch der Photographie. 2. völl. neu bearb. Aufl. 185 Textfig. 2 farb. Aufnahmen u. 26 Tafeln. 1911. W. Knapp,	
Halle. Phot. Korr. 1911, 335	
4250. Aufl. 1909. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2200; Zt. f. ang. Chem. 1909, 2312; Phot. Korr. 1909, 403, 601	M2.00

Dombrowsky, Constantin: Über die Einwirkung der verschiedenen	
Stoffe, insbesondere des H ₂ O ₂ auf die photographische Platte. 1908. "Inaugural-Dissertation," Leipzig. Phot. Korr. 1909, 89.	
Eder, Joseph Maria, Prof.: Wien. Jahrbuch für Photographie und	
Reproduktionstechnik. 1908 — 22 Jahrg., ca. 751 S. 1908, 1909,	
1910. W. Knapp, Halle. Phot. Korr. 1909, 245. 1911, 332geh.	M8.00
Z. f. ang. Chem. 1909, 2170geb. Die photographischen Objektive. 3. Aufl. W. Knapp, Halle	M9.50
Die photographischen Objektive. 3. Aufl. W. Knapp, Halle	
,	M12.00
— Rezepte und Tabellen für Photographie und Reproduktions-	
technik. 7. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem.	7/12 00
1908, 2200.	M3.00
Fleck, C.: Photokeramik. Anleitung zum Übertragen phot. Aufnahmen auf Porzellan, Email, Glas, Metall. 12 Fig. 1909.	
Gustav Schmidt, Berlin. Phot. Korr. 1910, 149	M1.80
— Die Photoxylographie. Herstellung von Bildern auf Buchs-	1111100
baumholz für die Zwecke der Holzschneidekunst. 5 Abb. 1911.	
A. Hartleben, Wien, Leipzig. Phot. Korr. 1911, 235	K2.20
Frank, Max: Kaufmännisches Handbuch des Photographen. 1910.	
W. Knapp, Halle. Phot. Korr. 1910, 508	M8.00
Frerkjr, Friedr. Willy: Die Sportphotographie. Grethlein & Co.,	
Leipzig. Phot. Korr. 1909, 301	M0.60
Fuhrmann, Franz, Dr.: Der Öldruck. Enzykl. d. Phot. Nr. 73.	
1910. W. Knapp, Halle. Phot. Korr. 1911, 422	
Gamble, William: Line Photo-Engraving. Line, grain, and	
stipple. 1909. Percy Lund, Humphries & Co. Phot. Korr.	
1910, 558	
wissenschaften. 1910. Philipp Reclam jun., Leipzig. Zt. f. ang.	
Chem. 1911, 983geh.	M0.60
Grienwaldt, A.: Ureigenste Berufsarbeit. 1909. Selbstverlag d.	
Verf., Bremen. Phot. Korr. 1909, 452	
Hanneke, P.: Die Herstellung von Diapositiven. 2. Aufl. 1909.	
Gus. Schmidt, Berlin. Phot. Korr, 1909, 548	M2.50
Hansen: Die photographische Industrie Deutschlands. 1908.	
W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2248	M2.00
Harting, H., Dr.: Optisches Hilfsbuch für Photographierende. Gr.	
8°. ca. 200 S., 56 Fig. 1909. Gustav Schmidt, Berlin. Phot.	3.5 = =0
Korr. 1909, 350	M5.50
Hauberrisser, Georg, Dr.: Verbesserung mangelhafter Negative.	1/12 00
1911. Ed. Liesegang, Leipzig. Phot. Korr. 1911, 421	M3.00
durchges, u. ergänzte Aufl. 26 Abb., 11 Bildvorlagen, u. 1. Tafel	
mit 7 belichteten Negativen. Ed. Liesegang, Leipzig. Phot.	
Korr. 1910, 99	M1.25

Horsley-Hinton, A.: Künstlerische Landschaftsphotographie in Studium und Praxis. 4. Aufl. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1909, 549.	M4.00
Hübl, A. v.: Die Photographischen Lichtfilter. 1910. W. Knapp, Halle a/S. Zt. f. ang. Chem. 1912, S. 411	M4.50
v. Hübl, Freiherr A.: Die Theorie und Praxis der Farbenphotographie mit Autochromplatten. 2. Aufl. Enzykl. d. Photogr. Nr. 60. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246. Zt. f. ang. Chem. 1909, 89	M2.00
Idzerda, W. H.: Delft. Leerbock der allgemeene fotografie. 1. Grondbegrippen. 2.——. 3. Beknopte Geschiedenis van het fotografisch Objectief. 1909. S. L. van Looy, Amsterdam. Phot. Korr. 1909, 452, 549.	
Internationales Archiv für Photogrammetrie. Redigiert von Prof. E. Dolezal, Wien. Carl Fromme, Wien, Leipzig. Phot. Korr. 1909, 301	
(Die) Internationale Photographische Ausstellung, Dresden 1909, in Wort und Bild. Bearb. von K. Weiss, Dresden. Wilh. Baensch, Dresden. Phot. Korr. 1909, 500	M4.00
Internationaler Photographentag (Erster), Dresden 7.–10. Juli, 1909. 1909, W. Knapp, Halle. Phot. Korr. 1910, 605	
Das Jahrbuch 1911 der Lehr-u. Versuchsanstalt für Photographie, Chemigraphie, Lichtdruck, u. Gravüre zu München. Bd. 5. Phot. Korr. 1911, 422	M2.30 M2.80
Kessler, Heinrich: Die Photographie. 4. verb. Aufl. G. J. Göschen, Leipzig. Phot. Korr. 1911, 333	M0.80
Klein, Henry O: Collodion Emulsion. Its Application to Three-Color Photography, Process Work. Isochromatic Photography and Spectrographic Work. 2. Ed. 1910. A. W. Penrose & Co., Ltd., London. Phot. Korr. 1910, 558	S5.00
Klimschs Jahrbuch: Bd. 10. 1910. Klimsch & Co., Frankfurt a. M. Phot. Korr. 1910, 100.	
Koebig, August: Spezialkatalog Nr. 3 für Maschinen und Apparate der photographischen Industrie von der Radebeuler Maschinenfäbrik, August Koebig in Radebeul-Dresden. Phot. Korr. 1909, 403.	
König, E., Dr.: Das Arbeiten mit farbenempfindlichen Platten. 16. Tafeln. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1909.	
350. Zt. f. ang. Chem. 1909, 2311	M2.85
Chem. 1909, 42.	M1.70

Kosel-Album: Zweite Sammlung Buchdruckreproduktionen nach Original-Photographien von Hermann Kosel. 1910. Langer & Co., Wien. Phot. Korr. 1910, 150	K8.00
Kümmell, Gottlieb, Prof.: Photochemie. Bd. 227, ,, Aus Natur u. Geisteswelt." Ca. 100 S. 1908. B. G. Teubner, Leipzig. Phot. Korr. 1909, 42. Zt. f. ang. Chem. 1908, 2298	M1.25
Lettner, G.: Skioptikon, Einführung in die Projektions Kunst. 5. Aufl. 1910. Ed. Liesegang, Leipzig. Phot. Korr. 1911, 334	M1.50
Lexikon für Photographie und Reproduktionstechnik. Unter Mitw. zahlr. Fachleute hrsgn. von Prof. G. H. Emmerich, München. A.	TZC 00
Hartleben, Wien. 1. Hälfte. Phot. Korr. 1910, 299	K6.00
Liesegang, R. Ed.: Photographische Chemie. 3. vollst. neu bearb. Aufl. von Dr. Carl Kieser. Bd. 9, Liesegangs photogr. Bücherschatz. Photogr. Korr. 1909, 301	M3.00
Liesegang, F. Paul: Das lebende Lichtbild. (Kinematographie.) Ed. Liesegang, Leipzig. Phot. Korr. 1910, 297 — Einstellung und Abblendung des photographischen Objektivs.	M2.00
Separatabdruck. 1910. "Physikalische Zeitschrift," S. 1017. Phot. Korr. 1910, 606	M9.00
Limmer, Fr., Dr.: Das Farbenanpassungsverfahren. Ausbleichverfahren. Separatabdruck aus "Wiener Mitteilungen photographischen Inhalts." 1910. "Wiener Mitteilungen," Wien. Phot. Korr. 1911, 605.	
Linden, A., Dr.: Die Standentwicklung und deren Fortschritte. 19 Abb. Ed. Liesegang, Leipzig. Phot. Korr. 1910, 559	M2.50
Loescher, Fritz: Die Bildnisphotographie. 3. erw. Aufl., bearb. von Otto Ewel. gr. 8°. XII u. 220 S. mit 149 Bildnisbeispielen und Gegenbeispielen. Phot. Korr. 1911, 235	M7 00
- Vergrössern und Kopieren auf Bromsilberpapier. Photogr. Bibl. Bd. 15. 3. Aufl. Gust. Schmidt, Berlin. Zt. f. ang.	M7.00
Chem. 1909, 2019. Phot. Korr. 1909, 44	M3.20
ihrem photographischen Teil. H. 67, Enzykl. d. Phot., 140 S. 1909. W. Knapp, Halle. Z. f. Koll. 1909 ¹¹ , 77. Phot. Korr. 1909, 548. Zt. f. ang. Chem. 1910, 115	M4.80
— Kolloides Silber und die Photohaloide. (Carey Lea u. Lüppo- Cramer) 147 S. 1908. Theo. Steinhopff, Dresden	M4.80
Kolloidchemie und Photographie. 1908. Theo. Steinkopff, Dresden. 154 S	M5.80
Z. f. Koll, 1908 ¹¹ , 46, Zt. f. ang. Chem. 1908, 2108	

Luther, R., Dr.: Dresden. Photographie als Lehr- u. Forschungs- gegenstand. Enzykl. d. Photog. Heft 66. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246	M1.00
Mathies-Masuren, F.: Das Bildniss. Ein museum für den Porträtphotographen. Heft 1: Damenbildnisse, ganze Figuren, von R. Dührkoop. Heft 2: Text über gruppenaufnahmen und 10 gruppenbildnisse. 1909. W. Knapp, Halle. Phot. Korr. 1909, 548. Phot. Korr. 1911, 51	M4.00
Mayer, Anton: Abtnaundorfbri Leipzig. Die Spiegelreflexcamera, ihr Wesen und ihre Konstruktion. 48 Abb. Enzykl. d. Phot. Nr. 71. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1031. Phot. Korr. 1911, 50. Phot. Korr. 1910, 606	M2.40
Max Liebermann: 14 Kunstblätter und 4 Textbilder nach seinen besten Werken. Mit einem Geleitwort von Wilh. F. Burr. Hrsgn. von d. freien Lehservereinigung für Kunstpflege. 1910. Josef Scholz, Mainz. Phot. Korr. 1911, 337	M1.00
Mees, Kenneth C. E.: An Atlas of Absorption Spektra. 170 Spectrograms of aqueous solutions of dyestuffs. Longmans, Green & Co., London, and Wratten & Wainwright Ltd., Croydon. Z. f. Koll. 1911, 221.	
Mente, O. und Prof. Dr. Adolf Warschauer: Die Anwendung der Photographie für die archivalische Praxis. Mitteilungen der Kgl. preussischen Archiv-Verwaltung, Heft 15. 1909. Phot. Korr. 1910, 508. Siehe auch hierzu Anmerk. C. H. L. Phot. Korr. 1910, 324, 499, 500. Phot. Korr. 1911, 426	
Mercator, G.: Die Diapositivverfahren. Enzyk. d. Phot. Heft. 27. 2. Aufl. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1047	M2.00
Miethe, A., Prof.: Charlottenburg, Berlin. Photographische Aufnahmen vom Ballon aus. Enzykl. d. Phot. Nr. 68. 1909. W. Knapp, Halle. Phot. Korr. 1909, 549	M2.50
Miethe, A.: Dreifarbenphotographie nach der Natur. 2. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2247	M2.50
Müller, H.: Misserfolge in der Photographie. 4. Aufl. 1907. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2298	
Musterblätter 1910 der k. u. k. Hof-Photochemigraphischen Kunstanstalt C. Angerer & Göschl in Wien. Phot. Korr. 1911, 50	
Naumann, Felix: Die Technik des Platindruckes. 1910. Ed. Liesegang, Leipzig. Phot. Korr. 1911, 51	M2.50
Naumann, Fr.: Form und Farbe. 1909. Buchverlag der Hilfe, G. m. b. H., Berlin. Phot. Korr. 1909, 351	M3.00

Neuhauss, R., Dr.: Lehrbuch der Projektion. 7 Abb. 2. umgearb. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2493	M4.00
Neumann, A., u. Dr. F. Staeble: Das photographische Objektiv. 1909. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 246	M3.00
Niemann, Adolf: Die Photographie auf Forschungsreisen mit besonderer. Berücksichtigung der Tropen. 2. Aufl. Umgearb. u. erw. 78 Abb. 1909. Gustav Schmidt, Berlin. Phot. Korr,	
1910, 100	M3.20
Optisches Werk Dr. Staeble & Co., München, Daieserstrasse, 15. Katalog-gratis. Belichtungstafel Dr. Staeble Phot. Korr. 1911, 234	M0.30
Orthochromatic Filters: 1911. Croydon, Wratten & Wainwright Ltd. Phot. Korr. 1911, 422	
Ottmann, Viktor: Der Amateurphotograph auf Reisen. Winke für die Ausbildung zum erfolgreichen Kamera-Touristen. 8°. 48 S. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1909, 350 Kart.	M1.00
Paar, J.: Leitfaden der Retusche für Negativ und Positiv. 4. verm. Aufl. Bd. 10, Liesegangs photogr. Bücherschatz. Phot.	
Korr. 1909, 301	M3.00
Gustav Schmidt, Berlin. Zt. f. ang. Chem. 1908, 2391	M2.50
Photographisches Unterhaltungsbuch. Anl. zu interess. u. leicht auszuführ. photogr. Arbeiten, von A. Parzer-Mühlbacher. 3. umgearb. u. erw. Aufl. 185 Abb. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1910, 150	M4.50
Pizzighelli: Anleitung zur Photographie. 13. Aufl. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2108	M4.50
Plotnikow, Joh., Dr.: Moskau. Photochemie. 182 S. gr. 8°. 1910. W. Knapp, Halle. Phot. Korr. 1910, 404. Zt. f. ang. Chem. 1910, 2038	M7.50
Die Projektionskunst und die Darstellung von Lichtbildern. Hrsg. Dr. Paul Ed. Liesegang. ca 300 S., 150 Abb. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 246.	M6.00
Puyo, C.: Der Olfarben-Kopierprocess. Deutsch von Dr. C.	1110.00
Stürenburg. Photogr. Bibl. Bd. 24. Gustav Schmidt, Berlin. Phot. Korr. 1909, 44, 86. Zt. f. ang. Chem. 1909, 2910	M2.40
Ranft, Artur: Die Praxis der Heimphotographen. 5 Abb. Emzykl. d. Phot. H. 70. 1910. W. Knapp, Halle. Phot. Korr. 1911, 235	M1.80
Reche, W.: Die Standentwicklung, eine sehr empfehlenswerte	
Entwicklungsmethode. 1910. Verlag des "Photograph," Bunzlau i Schl. Phot. Korr. 1911. 335.	M1.00

La revue de photographie: Publication annuelle illustrée. Hrsg. vom Photo-Club de Paris. Bd. 7. 1908. Hachette & Co., Paris. Phot. Korr. 1909, 244	12.00
Rheden, J., Dr.: Photographische Belichtungstabelle. 5. Aufl. 1911. Langer & Co., Wien. Phot. Korr. 1911, 336	K4.00
v. Rohr, M.: Abhandlungen zur Geschichte des Stereoskops. Nr. 168 von Ostwald's Klassikern der exakten Wissenschaften. 1908. Wilh. Engelmann, Leipzig. Phot. Korr. 1909, 245	M2.20
Schilling, Otto: Handbuch der Stereoskopie. Ca. 50 Abb. u. 5 Tafeln. 1910. Ed. Liesegang, Leipzig. Phot. Korr. 1910, 557	M3.00
Schleussner-Photo-Hilfsbuch: Anleitung für den Gebrauch photographischer Platten. Ca 120 S. 2 Aufl. 174 S. 1910. Dr. C. Schleussner A. G., Frankfurt a. M. Phot. Korr. 1910, 149; 1911,	
233, 286. Phot. Industrie — Berlin, H. 1. 1910. Wiener Mitteilungen, Jan. 1910. Kart	M0.50 K0.45
Schmidt, Curt, Prof.: Die Photographie im Dienste wissenschaftlicher Forschung. 1910. A. Hartleben, Wien. Phot. Korr. 1910, 150.	
Schmidt, Fritz, Prof.: Was die meisten Amateur- und manche Fachphotographen nicht wissen. Fin Handbuch praktischer Ratschläge und Erfahrungen. 1911. Otto Nemnich, Leipzig. Phot. Korr. 1911, 333	M3.00
Schmidt, Hans: Berlin. Die photographische Praxis. 127 Fig. Union, Deutsche Verlagsgesellschaft, Berlin. Phot. Korr, 1909, 300	M3.00
—— Das Photographieren mit Blitzlicht. 1910. W. Knapp. Halle, a/S. Zt. f. ang. Chem. 1912, S. 1067	
— Die Standentwicklung und ihre Abarten, für den Amateur- und Fachphotographen. 19 Abb. Enzykl. d. Phot. Nr. 69. Wesen, Ausführung, Leistungsfähigkeit auf grund ausführl. Unters. d. Verf. 1909, 1910. W. Knapp, Halle. Phot. Korr. 1909, 601. Phot. Korr. 1911, 335. Zt. f. ang. Chem. 1910, 507	
geh. Notiz- und Merkbuch für Photographierende. Mit zahlr. Tabellen u. Angaben, sowie einem ausführl. Negativregister und Notizka- lender. Taschenformat. Gustav Schmidt, Berlin. Phot. Korr.	M2.40
1911, 236	M1.00 M5.00
Gustav Schmidt, Berlin. Phot. Korr. 1911, 236 Senefelder, Alois: Lehrbuch der Lithographie und des Steindrucks.	M5.00
Verfasst von Alois S., München. 1821. Neu hrsgn. durch den Verband der Lithographen, Steindrucker u. verw. Berufe. XIV u. 372 S. 4°. 1909. "Selbstverlag," Berlin, N. 28. Phot. Korr	M6.00

Spörl, Hans: Photographische Kunst fürstlicher Autoren. 1911. "Selbstverlag," München, 31. Phot. Korr. 1911, 423	
— Porträtkunst in der Photographie. Bd. 1. Ästhetik. Bd. 2. Praxis. 1909. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 547je	M4.60
Stenger, Erich, Dr.: Moderne photographische Kopierverfahren. Enzykl. d. Photog. Nr. 63. 1909. W. Knapp, Halle. Phot. Korr. 1909, 247. Zt. f. ang. Chem. 1909, 2019	M2.00
Stolze, F.: Die Panoramenapparate in ihren Vorzügen und Mängeln sowie ihre Verwendung in der Praxis. Enzykl. d. Photog. Nr. 64. 1909. W. Knapp, Halle. Phot. Korr. 1909, 247. Zt. f. ang.	
Chem. 1909, 2120	
Phot. Korr. 1909, 301. Zt. f. ang. Chem. 1909, 1047 Unger, A. W., K. K. Prof.: Die Herstellung von Büchern, Illustrationen Akzidenzen u. s. w. 2. verm. Aufl. 178 Fig., 12 Beilagen, 74 Tafeln. 1911. W. Knapp, Halle. Phot. Korr. 1911, 335	M5.00
Urban, Wilh.: München. Kompendium der gerichtlichen photographie. 103 Bilder. 1909, 1910. Otto Nemnich, Leipzig. Phot. Korr. 1910, 298. Zt. f. ang. Chem. 1910, 566	M7.50
Vogel's Dr. E. Taschenbuch der Photographie. Ein Leitfaden für Anfänger und Fortgeschrittene. Bearb. von Paul Hanneke. 21.–25. Aufl. — 91. Tausend. 1909, 1910. Gustav Schmidt, Berlin. Phot. Korr. 1909, 601; 1911, 334.	M2.50
Warstat, Willi, Dr.: Allgemeine Ästhetik der photographischen Kunst auf psychologischer Grundlage. Eneykl. d. Photogr. Heft 65. 1909. W. Knapp, Halle. Phot. Korr. 1909, 246	M3.00
Was der Photograph, Photohändler und Amateur vom Giftgesetz und den Giften wissen muss. Hrsgn. u. verlegt von Soennecken & Co., München. Phot. Korr. 1911, 421	
Weigert, F.: Die chemischen Wirkungen des Lichts. 114 S. Koll. Zt. 1912 ^{II} , S. 205	
Wentzel, Fritz, Dr. Ing.: Kinematographen-Films. Nr. 6, 1911 der Zeitschrift: Kunststoffe. 1911. J. F. Lehmann, München. Phot. Korr. 1911, 332	M18.00
— u. Dr. F. Paech: Photographisches Reisehandbuch; ein Ratgeber für die photographische Ausrüstung und Arbeit auf Reisen. Klein 8°. Reich ill. 1909. Gustav Schmidt, Berlin. Phot. Korr. 1909, 350.	M3.00
Wiener, Otto: Über Farbenphotographie. Ein Vortrag. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 890	

Wimmer, Franz Paul: Praxis der Makro- und Mikro-Projektion für Lehrzwecke in Schule und Haus, sowie für Lichtbildervorträge, etc. 1911. Otto Nemnich, Leipzig. Phot. Korr. 1911, 333 Wolf-Czapek, K. W.: Angewandte Photographie in Wissenschaft und Technik. I. Teil: Die Photographie im Dienste der anorgan. Naturwissenschaften; 124 Fig. auf 33 Tafeln und 100 S	M6.00
Fig. IV. Teil: Die Photographie im Dienste sozialer Aufgaben. 98 S., 86 Fig. 1911. Deutsche Union Verlagsgesellsch, Berlin. Zt. f.	
ang. Chem. 1912, S. 1476 Hrsgn. mit Unters. hervorr. Fachleute. 4 Teile, jeder etwa 100 S. Text u. über 100 Abb. auf ca. 40 Tafeln. 19 Referate. Union, Deutsche Verlagsgesellschaft, Berlin. Phot. Korr. 1911, 385 — Die Kinematographie. Wesen, Entstehung und Ziele des lebenden Bildes. 2. erw. Aufl. 46 Abb. 1911. Union Deutsche Verlagsgess, Berlin, S. 61. Phot. Korr. 1911, 423	
Zehn Jahre Deutsche Alpenzeitung. Phot. Korr. 1911, 334	
von Zamboni, Karl: Anleitung zur Positiv- und Negativretusche. 3. Aufl. 1908. W. Knapp, Halle. Phot. Korr. 1909, 43	M2.40
Zimmermann, W.: Die Photographie. 1909. Quelle & Meyer, Leipzig. Zt. f. ang. Chem. 1909, 2121	M1.80
Zollhandbuch für die photographische Industrie. Zusammenstellung der ausländischen Einfuhrzölle auf die wichtigsten photogr. Bedarfsartikel. Bearb. von Fritz Hansen, Berlin. 170 S. Hrsgn. vom Verein der Fabrikanten photographischer artikel E. V., Berlin. Phot. Korr. 1910, 558.	1,11.00
PHOTOGRAPHISCHE KALENDER, ZEITSCHRIFTEN, ET	C.
Agenda Lumière, 1909, 1910. Lyon, A. Lumière et ses fils. Gauthier-Villars, Paris. Phot. Korr. 1909, 145; 1910, 193Fr. Deutscher Kamera-Almanach: gr. 8°. ca. 300 S. u. 130 Reprod., 146	1.00
Reprod. Bd. 5 = 1909. Begr. von Fritz Loescher, fortgeführt von Otto Eevel. Gustav Schmidt, Berlin. Phot. Korr. 1909, 44;	
1910, 45; 1911, 336	M5.00 M5.50
Photographen-Kalender: Taschenbuch und Almanach für 1909, 1910, 1911. 2 Teile. 28. Jahrg. 1909. Karl Schwier,	Mo
Weimar	M2.00
423Beide zusammen.	M3.00

Jahrbuch des Kamera-Klubs in Wien, 1909. Selbstverlag. Phot. Korr. 1909, 547.	
Notizbuch für Amateurphotographen. 2. verm. u. verb. Aufl. mit Belichtungstafel. P. Brünsing, Heidelberg. Phot. Korr. 1909,	M1.20
Photographischer Abreisskalender, 1910. Phot. Korr. 1910, 46. R. Lechner, Wien.	K3.30
Photographischer Abreisskalender, 1910, 1911. W. Knapp, Halle. Phot. Korr. 1909, 601. Phot. Korr. 1910, 605. 4. Jahrg	
Photographischer Almanach: Hrsg. Hans Spörl. Ca 144 S. Jährlich. Ed. Liesegang, Leipzig. Phot. Korr. 1909, 43, 245; 1910,	M1.50
149	M1.50
Phot. Korr. 1911, 334	M1.50
Photographisches Taschen-Notizbuch: Soennecken & Co., G. m. b. H., München. Phot. Korr. 1909, 500	M1.00
PHYSIKALISCHE- UND THEORETISCHE CHEMIE MATI MATIK, PHYSIK.	HE-
Arndt, Kurt: Technische Anwendungen der physikalischen Chemie. IV u. 304 S. 55 Abb. im Text. 1908. Mayer & Müller, Berlin. Zt. f. ang. Chem. 1908, 2566	M8.00
Arrhenius, Svante, Prof.: Stockholm. Theorien der Chemie. Übers von A. Finkelstein. 2. neubearbeitete u. bed. verm. Aufl. 233 S. 1909. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1909, 1655.	
— Untersuchung über die galvanische Leitfähigkeit der Elektrolyte. Übers. von Anna Hamburger. Hrsg. von Otto Sackur. Ostwald's Klasoiker, etc. Wilh. Engelmann, Leipzig: Zt. f.	
ang. Chem. 1908, 2564	M2.50
Auerbach, Felix, u. Rudolf Rothe: Taschenbuch für Mathematiker und Physiker. Unter mitw. zahlr. Fachgenossen hrsgn. 2. Jahrg. 1911. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911,	
1417	M7.00
Bakhuis Roozeboom, Dr. H. W.: Amsterdam. Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre. Drittes Heft, Erster Teil. Die ternären Gleichgewichte. 1911. Friedr. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1911, S.	
Bädeker, K., Prof.: Jena. Die elektrischen Erscheinungen in	
metallischen Leitern. Aus d. Sammlung "Die Wiesenschaft."	M4 90

Bendt, Franz: Grundzüge der Differential- u. Integralrechnung. 4. Aufl. 39 Abb. J. J. Weber, Leipzig. Zt. f. ang. Chem. 1911, 458	M3.00
Benrath, Dr. Alfred: Chemische Konstitutionsbeweise. 79 S. 1911. Carl Winters Universitätsbuchhandlung, Heidelberg. Zt. f. ang. Chem. 1911, S. 2367	
Winter, Heidelberg. Zt. f. ang. Chem. 1909, 89	M1.20
Börnstein, R., Prof., u. Prof. W. Marckwald: Sichtbare und unsichtbare Strahlen. 2. neubearb. u. verm. Aufl. 85 Abb. im Text. 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 890	M1.25
Bruni, Guiseppe, Dr.: Feste Lösungen und Isomorphismus. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. VI. u. 130 S. Zt. f. ang. Chem. 1909, 560. Z. f. Koll. 1909 ¹ , 154	M5.00
Byk, Alfred, Dr.: Einführung in die Kinetische Theorie der Gase. 1. Teil: Die idealen gase. (Statik und Dynamik der einatomigen gase.) 10. B'dchen d. "Mathemat. — physikal. Schriften für Ingenieure und Studierendi," hrsgn. von E. Jahnke. IV u. 102 S. 1910. B. G. Teubner, Berlin, Leipzig. Zt. f. ang. Chem. 1911, 648.	M3.20
Coops, G. H., Dr.: Übersichtliche Darstellung des zweiten Hauptsatzes der Thermodynamik und der daraus herzuleitenden Folgen. 1909. P. Noordorf, Groningen. Zt. f. ang. Chem. 1909, 2070	M0.75
Dessau, Bernhard: Die physikalisch-chemischen Eigenschaften der Legierungen. VIII u. 208 S. 1910. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1992	M8.00
Duhem, Pierre: Ziel u. Struktur der Physikalischen Theorien. Übers. von Fr. Adler, Vorwort von Ernst Mach. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2392	M8.00
Fournier d'Albe, C. E.: Die Elektronentheorie. Gemeinverst. Einf. in die moderne Theorie der Elektricität u. des Magnetismus. Übers. von I. Herweg. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2491.	M4.80
Gehrcke, C., Prof.: Die Strahlen der positiven Elektrizität. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 115	
Helm, Georg, Prof.: Dresden. Die Grundlagen der höheren Mathematik. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1911, 355	M14.20
Hinrichsen, Willy, F.: Vorlesungen über chemische Atomistik. 7 Abb. im Text, 1. Tafel. 1908. Teubner, Leipzig. Zt. f. ang. Chem. 1908, 2491.	M7.00
van't Hoff, J. H., Prof.: Berlin. † 2 III. 1911. Die Lagerung der Atome im Raume. 3. umgearb. u. verm. Aufl. 147 S. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2108.	
Z. f. Koll. 1909 ¹ , 206	M4.50

— Zur Bildung der ozeanischen Salzablagerungen. 2. Heft. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909,	15.05
1627	M5.00
Jänecke, Ernst: Gesättigte Salzlösungen vom Standpunkte der Phasenregel. 188 S. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 665	M9 00
von Jüptner, H.: Das chemische Gleichgewicht auf grund mechan-	1410.00
ischer Vorstellungen. 367 S. 1910. B. G. Teubner, Leipzig, Berlin. Zt. f. ang. Chem. 1911, 889.	M11.00
Kauffmann, Prof. Hugo: Die Valenzlehre. 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 772	M15.00
Kaufmann, Walther, Prof.: Königsberg i. Pr. und Prof. Alfred Coehn, Göttingen. Magnetismus und Elektrizität. Aus: Müller — Pouillets Lehrbuch der Physik und Meteorologie, 10. Aufl. 4 Bde. — Bd. 4. 1. Abth. 5. Buch. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1910, 1816	M13.00
Kremann, R.: Leitfaden der graphischen Chemie. Mit 5 zu-	
sammenlegbaren Raummodellen. 1910. Gebr. Bornträger,	
Berlin. Zt. f. ang. Chem. 1911, 353	M6.60
Kröhnke, O., Dr.: Kurze Einführung in den inneren gefügeaufbau der Eisenkohlenstofflegierungen. 1911. Concordia Verlagsges, Berlin. Zt. f. ang. Chem. 1911, 1417	M7.50
 Lehmann, O.: Die neue Welt der flüssigen Kristalle, und deren Bedeutung für Physik, Chemie, Technik und Biologie. 388 S. mit 246 Fig. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1911, S. 1935. Zt. f. Koll, 1911¹, 269 Geb. 	M13.00
Leiser, R., Dr.: Elektrische Doppelbrechung der Kohlenstoffver- bindungen Abhandlungen d. Deutschen Bunsen-gesellschaft Nr. 4. 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 840	M3.60
Levy, Herbert, Dr: Thermodynamische Behandlung einiger Eigenschaften des Wassers und des Wasserdampfes. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem. 1911, 220	
Lundèn, Harald: Affinitätsmessungen an schwachen Säuren und Basen. Ahrens'sche Sammlung chem. u. chemtechn. Vorträge Bd. 14, Heft 1–3. 1908. Ferd. Enke, Stuttgart. Z. f. Koll. 1910 ¹ , 324. Zt. f. ang. Chem. 1910, 412.	
 Marc, Dr. Robert: Jena. Vorlesungen über die chemischen Gleichgewichte und ihre Anwendung auf die Probleme der Mineralogie, Petrographie und Geologie. 1911. Gustav Fischer, Jena. Zt. f. ang. Chem. 1911, S. 1818. Koll. Zt. 1912^T, S. 205 	
Mecklenburg, Werner: Die experimentelle Grundlage der Ato-	
mistik. VIII u. 143 S. 1910. Gustav Fischer, Jena. Zt. f. ang. Chem. 1911, 1912. Z. f. Koll. 1911, 108geh.	

Warran Tulium Day Darlin Die Allaturuis den sheminsken Ele	
Meyer, Julius, Dr.: Berlin. Die Allotropie der chemischen Elemente. Sammlung Ahrens, etc. 66 S. 1910. Ferd. Enke,	
Stuttgart. Z. f. Koll. 1910 ¹¹ , 172. Zt. f. ang. Chem. 1910, 1867. Geh.	M2.40
— Die Bedeutung der Lehre von der chemischen Reactionsgeschwindigkeit für die angewandte Chemie. Ein Vortrag. IV u. 64 S. 1908. Akad. Verlagsgesellschaft m. b. H., Leipzig. Zt. f. ang. Chem. 1908, 2200. Z. f. Koll. 1908 ^{II} , 243Brosch.	M2.00
Obermiller, Jul., Dr.: Stuttgart. Die orientierenden Einflüsse und der Benzolkern. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1223.	
Ostwald, W., Prof.: Die Energie. Aus "Wissen u. Können." 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 954	M4.40
— Ueber Katalyse. 2. Aufl. 1911. Akademische Verlagsgesellschaft, Leipzig. Zt. f. ang. Chem. 1912, S. 1066	
Ostwald-Luther: Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen. 3. Aufl. Hrsg. von Dr. R. Luther, Dresden, und Dr. K. Drucker, Leipzig. 351 Fig. im Text. 573 S. 1910. Wilh. Engelmann, Leipzig. Zt. f. ang. Chem. 1911, 305	M12 00
Perrin, Prof., Dr. J.: Die Brownsche Bewegung und die wahre	W110.00
Existenz der Moleküle. 1910. Th. Steinkopff, Dresden. Zt. f. ang. Chem. 1912, S. 1013	M2.50
Planck, Max: Das Prinzip der Erhaltung der Energie. II. Aufl. Sammlung: Wissenschaft u. Hypothese. B. G. Teubner. Zt. f. ang. Chem. 1909, 1291.	M6.00
Vorlesungen über die Theorie der Wärmestrahlung. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 1291	M7.80
Pöschl, Victor, Dr.: Die Härte der festen Körper und ihre physikalisch-chemische Bedeutung. 84 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 173. Zt. f. ang. Chem. 1910, 1772	M2.50
Ramsay, William, Sir: Moderne Chemie. 1. Teil: Theoretische Chemie. Übers, von Dr. Max Huth. 9. Abb. 2. Aufl. 1908.	
W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1579	M2.00
Righi, Augusto: Bologna. Strahlende Materie und magnetische	M35.00
Strahlen. Übers. von Max Iklé. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 412	M7.20
Righi, Augusto: Bologna. Die Bewegung der Ionen bei der elektrischen Entladung. Deutsch von Max Iklé. 70 S. 1907.	
Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1909, 474	

— Neuere Anschaunngen über die Struktur der Materie. Deutsch von Dr. F. Fraenckel. Die moderne Theorie der physikalischen Erscheinungen. Deutsch	M1.40
von B. Dessau. II. Aufl. 1908. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem. 1908, 2297.	M4.80
Schenck, Rudolph: Physikalische Chemie der Metalle. W. Knapp, Halle. Zt. f. ang. Chem. 1909, 1580	M7.00
Skrabal, A., Dr.: Wien. Die induzierten Reactionen, ihre Geschichte und Theorie. Die Reaction Ferrosalz-Permangant in salzsaurer Lösung. Samml. chem. u. chemtechn. Vorträge. Bd. XIII. 10. Heft. 36 S. 1 Abb. 1908. Friedr. Enke, Stuttgart.	7/1 00
Zt. f. ang. Chem. 1909, 1002	
an der Univ. Glasgow, 1908. 31 Abb. XVI u. 272 S. 1909. J. A. Barth. Leipzig. Zt. f. ang. Chem. 1910, 507	
Thiel, A.: Der Stand der Indikatorenfrage. (Beitrag zur chemischen Theorie der Farbe. Sammlung Ahrens.) 1911. F. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2475	
Thiele, Dr. Johannes: Strassburg. Ueber den Verlauf chemischer Reaktionen. Verlag J. H. Ed. Heitz (Heitz & Mündel). Zt. f. ang. Chem. 1911, S. 1869	M1,20
Thomson, J. J.: Die Korpuskulartheorie der Materie. Übers. von G. Siebert. 1908. Vieweg & Sohn, Braunschweig. Zt. f.	
ang. Chem. 1908, 2392.	M5.80
van der Waals, Prof. Dr. J. R.: Die Zustandsgleichung. Akademische Verlagsgesellschaft m. B. H., Leipzig. Zt. f. ang. Chem. 1911, S. 2109.	
Wedekind, Prof. Dr. E. und Dr. Lewis: Neue Atomgewichtskurven. 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 629	
Weber, Heinrich, und Joseph Wellstein: Enzyklopaedie der Elementarmathematik. 3. Bd.: Angew. Elementarmathematik. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1909, 859	M14 00
Woker, Gertrud: Die Katalyse, Die Rolle der Katalyse in der analyt. Chemie. I. Allgemeiner Teil. XI. und XII. Band der	M14.00
Sammlung von Einzeldarstellungen auf dem Gebiete der chem., technchem., und physikalchem. Analyse. (645 S.) 1910. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1911, S. 2366	M20.00
PHYSIOLOGIE, BIOCHEMIE UND MEDIZINISCHE CHE	MIE
Abderhalden, Prof. Dr. Emil: Berlin. Die Bedeutung der Verdauung für den Zellstoffwechsel, im Lichte neuerer Forschungen auf dem Gebiete der physiologischen Chemie. (Vortrag geh. im Ingenieur-u. Architekten-Verein, 27. 1. 1911.) 39. S. Urban	
und Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1912, S. 65	M1.00

— Handbuch der biochemischen Arbeitsmethoden. 1. Bd.: Zt. f. ang. Chem. 1909, 1912; 2. Bd.: Zt. f. ang. Chem. 1910, 601; 3. Bd.: Zt. f. ang. Chem. 1910, 1721; 4. Bd.: Zt. f. ang. Chem.	
1911, 168	
— Lehrbuch der Physiologischen Chemie. In 32 Vorlesungen. 2. Aufl. vollst. umgearb. u. erweitert. 984 S. 18 Fig. 1908/1909. Urban u. Schwarzenberg, Berlin-Wien. Zt. f. ang. Chem. 1909,	
664	M26.50
chemie. 128 S. 1909. Gustav Fischer, Jena. Zt. f. ang. Chem. 1909, 1090	
— Physiologisches Praktikum. 271 Fig.; 283 S. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1525 Brosch.	M10.00
— Synthese der Zellbausteine in Pflanze und Tier. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 1123	
Arthus, Maurice, u. Joh. Starke: Elemente der physiologischen Chemie. 353 S. 3. Aufl. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772.	
Autenrieth, Dr. W.: Freiburg i/B. Die Chemie des Harns. 28 Abb., 344 S. 1911. J. C. B. Mohr (Paul Siebeck) Tübingen. Zt. f. ang. Chem. 1912, S. 213	M11.00
Bayliss, W. M.: London. Der osmotische Druck elektrolytisch dissozüerter Kolloide. Vortrag gehalten a. d. 8. internat. Physiologen-Kongress, Wien, 27–30 Sept. 1910. Z. f. Koll. 1911, 55	
Bechhold, Prof. Dr. H.: Die Kolloide in Biologie und Medizin. 52. Abb., mehrere Tab., u. 2. Tafeln, 441 S. 1912. Theodor Stein; kopff, Stuttgart. Zt. f. ang. Chem. 1912, S. 729. Koll. Zt. 1912, S. 205.	M15 50
Buchka, Dr. Karl v.: Die Nahrungsmittelgesetzgebung im Deutschen Reiche. 2. Aufl., XIX. 294 S. 8°. 1912. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912, S. 729	W15.50
van Calcar, R. P.: Dialyse, Eiweisschemie und Immunität. 81 S. 1908. van Doesburgh, Leiden, u. J. A. Barth, Leipzig. Z. f. Koll. 1909 ¹¹ , 77.	
Coermann, Amtsgerichtsrat: Nahrungsmittel-Gesetzgebung. (Teil XXI.) 1912. Emil Roth, Giessen. Zt. f. ang. Chem. 1912, S. 771	M15.00
Cohnheim, Otto: Chemie der Eiweisskörper. 3. vollst. neu bearb. Aufl. 388 S. 1911. Vieweg & Sohn, Braunschweig. Koll. Zt. 1912 ¹ , S. 322. Zt. f. ang. Chem. 1912. S. 213.	M12.00

Delbrück, M. und F. Hayduck: Die Gärungsführung in Brauerei, Brennerei und Presshefefabrik auf Grund der Arbeiten und Er- fahrungen des Instituts für Gärungsgewerbe in Berlin. 6 Textabb. und 226 S. 1911. Paul Parey, Berlin. Zt. f. ang. Chem.	
1912, S. 214	
Ehrlich, Dr. Felix: Ueber die Bedeutung des Eiweissstoffwechsels für die Lebensvorgänge in der Pflanzenwelt. (Sammlung chemischer und chemisch-technischer Vorträge, Band XVII; Heft 9.) 1911. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1912, S. 771	
Ehrlich, Paul, Prof., Frankfurt a. M., u. Dr. S. Hata: Die experimentelle Chemotherapie der Spirillosen. (Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie.) Mit Beiträgen von H. J. Nichols, New York, J. Iversen, St. Petersburg, Bitter, Kairo, und Dreyer, Kairo. 164 S. 1910. Jul. Springer, Berlin. Zt. f. ang. Chem.	
1911, 457	M7.00
— Beiträge zur experimentellen Pathologie und Chemotherapie. 247 S. 1909. Akad. Verlagsgesellschaft, Leipzig. Zt. f. ang.	
Chem. 1910, 1867. von Esmarch, Erwin: Hygienisches Taschenbuch für Medicinal- und Verwaltungsbeamte, Ärzte, Techniker und Schulmänner. 4. Aufl. kl. 8°. XII u. 324 S. 1908. Jul. Springer, Berlin. Zt.	M8.00
f. ang. Chem. 1909, 1196	M4.00
Fischer, Emil: Organische Synthese und Biologie. 28 S. Faraday Lecture, Oct. 10, 1907, Chemical Soc. London. 1908. Jul. Springer, Berlin. Zt. f. ang. Chem. 1908, 1721	M1.00
Fischer, Martin H., Prof.: Cincinnati. Das Odem. Eine experimentelle und theoretische Untersuchung der Physiologie und Pathologie der Wasserbindung im Organismus. Mit Autorisation der Trustees u. d. Verf., deutsch von Karl Schorr u. Wolfg. Ostwald. 223 S. 1910. Theo. Steinkoff, Dresden. Zt. f. ang. Chem. 1911, 840. Z. f. Koll. 1911, 60	M7.00
Gaidukov, N.: Dunkelfeldbeleuchtung und Ultramikroskopie in der Biologie und in der Medizin. 13 Abb. VI u. 83 S. 1910. Gustav Fischer, Jena. Z. f. Koll. 1910 ¹¹ , 173	
Glikin, W., Dr.: Biochemisches Taschenbuch. 348 S. 1909. Gebr. Bornträger, Berlin. Zt. f. ang. Chem. 1910, 115	M8.50
Hammarsten, Olaf: Upsala. Lehrbuch der physiologischen Chemie. 7. völlig umgearb. Aufl. 947 S. 1910. I. J. Bergmann, Wiesbaden. Zt. f. ang. Chem. 1910, 1991; 1907, 681	1410.00
Ungeb.	M23.00
Handbuch der biochemischen Arbeitsmethoden. Herausg. von Prof. Dr. Emil Abderhalden. (Bearb. v. Prof. Dr. Abderhalden, Prof. Dr. W. Authenrieth, Prof. Dr. Bechhold, etc.) 5. Band, 1.	
Teil mit 168 Textabb. 1911. Verlag von Urban & Schwarzenberg, Berlin. Zt. f. ang. Chem. 1912, S. 26	M28.00

Der Harn, sowie die übrigen Ausscheidungen und Körperflüssigkeiten	
von Mensch und Tier, ihre Untersuchung und Zusammensetzung in	
normalem und pathologischem Zustande. Bearbeitet von A. Albu, Berlin, A. C. Andersen, Kopenhagen, I. Bang, Lund, usw. 2	
Teile, 1823 S. 1911. Julius Springer, Berlin. Zt. f. ang. Chem. 1911, S. 1868	M63 00
Höber, Rudolf: Physikal. Chemie der Zelle u. Gewebe. 3. neu-	14103.00
bearb. Aufl. 671 S. mit 55 Textfig. 1911. W. Engelmann, Leipzig. Koll. Zt. 1912 ¹ , S. 262	
Hofmeister, Franz: Leitfaden für den praktisch-chemischen Unterricht der Mediciner. III. Aufl. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1908, 2298	M4.75
Jahresbericht über die Ergebnisse der Immunitätsforschung, 1907. Hrsg. von Dr. Wolfgang Weichard, Erlangen. 542 S. 1908. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 1949	
Kaiserliches Gesundheitsamt: Uebersicht über die Jahresberichte der öffentlichen Anstalten zur techn. Untersuchung von Nahrungs-	
und Genussmitteln im Deutschen Reich 1908. X. 461 und 54 S. Gr. 4°. 1911. Jul. Springer, Berlin. Zt. f. ang. Chem. 1912,	
S. 679	M11.00
v. Korányi, A., und P. F. Richter: Physikalische Chemie und Medizin. 2. Bd. 484 S. 1908. Georg Thieme, Leipzig. Z. f. Koll. 1908 ^{II} , 187	
Kraft, Ernst, Dr.: Analytisches Diagnostikum. Die chemischen, mikroskopischen u. bakteriologischen Untersuchungsmethoden von Harn, Auswurf, magensaft, Blut, Kot usw. 146 Abb., 4 farb. Tafeln. 1909. Joh. Ambr. Barth, Leipzig. Zt. f. ang. Chem.	
1909, 1788	M10.00
Lockemann, Georg, Dr.: Berlin. Die Beziehungen der Chemie zur Biologie und Medizin. 30 S. 1909. Carl Winter, Heidelberg. Zt. f. ang. Chem. 1910, 1772.	M0.80
Loeb, Jacques, Prof.: New York. Die chemische Entwicklung-	1110.00
serregung des tierischen Eies. (Künstliche Parthenogenese.) 56 Textfig. 259 S. 1909. Jul. Springer, Berlin. Z. f. Koll. 1909 ¹¹ ,	
327 Die Bedeutung der Tropismen für die Psychologie. 51 S.	M10.00
J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 1772Geh.	M1.00
Loehlein, M., Dr.: Leipzig. Die krankheiterregenden Bakterien 307. Bd. der Sammlung "Aus Natur und Geisteswelt." 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 1772	M1 95
Michaelis, Leonor, Dr. med. Prof.: Dynamik der Oberflächen.	M1.25
Eine Einführung in biologische Oberflächen-Studien. 88 S. 1909. Theo. Steinkopff, Dresden. Z. f. Koll. 1909 ¹¹ , 227. Zt. f.	
ang. Chem. 1910, 1772	M4.00

Physikalische Chemie und Medicin. Ein Handbuch. 2. Bd. 24 Abb. 484 S. 1908. Georg Thieme, Leipzig. Zt. f. ang.	
Chem. 1908, 2240	M10.00
Übersetzt von F. A. Wyncken. 447 S. 1912. Th. Steinkopff, Dresden. Koll. Zt. 1912 ¹ , S. 58. Zt. f. ang. Chem. 1912, S. 1384 Spaeth, Eduard, Dr.: Die chemische u. mikroskopische Unter-	M15.50
suchung des Harnes. Handbuch für Ärzte, Chemiker, Apotheker. III. Aufl	M13.60
Barth, Leipzig. Zt. f. ang. Chem. 1908, 2491; 1912, S. 1432 Spiegel, Leopold, Dr.: Chemische Konstitution und physiologische Wirkung. Sammlung chemischer u. chemtechn. Vorträge (Ahrens-Herz). 14. Bd. Heft 8–10. Ferd. Enke, Stuttgart. Zt. f. ang. Chem. 1909, 2218	M17.50
Stodel, G.: Les colloïdes en Biologie et en Thérapeutique. Le mercure colloïdal électrique. 284 S. 1908. Vigot frères, Paris. Z. f. Koll. 1909 ¹ , 321	
Strecker, Dr. Wilh.: Chemische Übungen für Mediciner. Greifswald. Zt. f. ang. Chem. 1908, 1720	
Tandler, R., Dr.: Wien. Laboratoriumsbuch für den klinischen Chemiker. 122 S. 11. Bd. von Wohlgemuth's "Laboratoriumsbücher für, etc." 1910. W. Knapp, Halle. Zt. f. ang. Chem. 1911, 1030	M4.80
Tschirch, A.: Die Chemie und Biologie der Sekrete. [Harze.] 1908. Akad. Verlagsges. m. b. H. Zt. f. ang. Chem. 1908, 1720	M3.60
Uhlenhuth, P., Prof., u. Dr. O. Weidanz: Praktische Anleitung zur Ausführung des biologischen Eiweissdifferenzierungsverfahrens mit besonderer Berücksichtigung der forensischen Blut- und Fleischuntersuchung, sowie der Gewinnung präcipitierender Sera. 1909. Gustav Fischer, Jena. Zt. f. ang. Chem. 1910, 364	M6.50
Weinwurm, IngChem. Edm., K. K., Prof.: Betriebsstörungen in der Malzfabrikation und Bierbrauerei, sowie deren Behebung. (Bibliothek der ges. Technik, Bd. 159.) Dr. M. Jaenecke, Hannover. Zt. f. ang. Chem. 1912, S. 1067	M3.00
RADIUM, RADIOAKTIVITÄT	
Batelli, A., A. Occhialini, u. S. Chella: Die Radioactivität. Aus dem Ital. übers. von Max Iklé. 428 S. 1910. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1910, 2040.	M6.40
Bugge, Günther: Strahlungserscheinungen, Ionen, Elektronen und Radioaktivität. Phil. Reklam, Jr., Leipzig. Zt. f. ang. Chem. 1910, 2038.	

Doelter, C.: Das Radium und die Farben. VIII u. 133 S. 1910. Theo. Steinkopff, Dresden. Zt. f. ang. Chem. 1910, 840. Z. f. Koll. 1910 ¹ , 228.	M5.00
Greinacher, Heinrich, Dr.: Die neueren Fortschritte auf dem Gebiete der Radioaktivität. Von Anfang 1906 bis mitte 1908. 47 S. 1908. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 186.	M1.20
Kauffmann, H., Prof.: Das Radium. 100 S. 10 Abb. Strecker & Schröder, Stuttgart. Zt. f. ang. Chem. 1910, 1513	M1.40
v. Lerch, F.: Beitrag zur Kenntniss der Thoriumzerfallprodukte. Sitzungsber d. Akad. d. Wissenschaften, Wien. Math. naturw. Kl. 116. Abt II a. Dez. 1907. Zt. f. ang. Chem. 1909, 187	
London, E. S., Prof.: St. Petersburg. Das Radium in der Biologie und Medizin. 1911. Akademische Verlagsges. m. b. H., Leipzig. Zt. f. ang. Chem. 1911, 890	M6.00
Schiffner, C., Prof., und M. Weidig: Radioaktive Wasser in Sachsen. 2 Teile. 1908, 1909. Craz & Gerlach, Freiberg i. S. Zt. f. ang. Chem. 1909, 232. Zt. f. ang. Chem. 1910, 364. Teil 1. Teil 2.	M2.00 M3.00
RIECHSTOFFE	
Gildemeister, E., u. Fr. Hoffmann: Die Ätherischen Öle. 2. Aufl. von E. Gildemeister: Die alth. Öle. Bearb. im Auftrage der Firma Schimmel & Co., in Miltitz bei Leipzig. 1. Bd. 1910. L. Staackmann, Leipzig. Zt. f. ang. Chem. 1911, 888	M20.00
 Knoll, Dr. Rudolf: Synthetische und isolierte Riechstoffe und deren Darstellung. Monog. uber chemtechn. Fabrikationsmethoden. Bd. X. 1908. Wilh. Knapp, Halle. Zt. f. ang. Chem. 1908, 1720 	M4.50
Leimbach, Robert, Dr.: Die aetherischen Öle Eine kurze Darstellung ihrer Gewinnung und ihrer Untersuchung, eine Zusammenstellung ihrer wichtigsten merkmale. Bd. 21. Monogr. ü. chem. techn. Fabrikat. methoden. W. Knapp, HalleBrosch.	
Mann, H.: Die moderne Parfümerie Unter Mitw. von Fachkollegen hrsg. von H. Mann. 2. verb. Aufl. 560 S. 1909. H. Ziolkowsky, Augsburg. Zt. f. ang. Chem. 1910, 1125. Z. f. Koll. 1910, 323.	W10.00
Simon, Oscar, Dr.: Laboratoriumsbuch für die Industrie der Riechstoffe. 1908. W. Knapp, Halle. Zt. f. ang. Chem. 1908, 2155	M3.00
SPRENGSTOFFE	
Biedermann, Rudolf, Prof.: Berlin. Die Sprengstoffe, ihre Chemie und Technologie. Aus: Natur u. Geisteswelt, Bd. 286. 1910. B. G. Teubner, Leipzig. Zt. f. ang. Chem. 1910, 1991	M1.25

Brunswig, Dr., H.: Explosivstoffe auf grund des in der Literatur veröffentlichten Materials bearbeitet. 56 Fig. im Text, u. 56 Tabellen. 1909. J. A. Barth, Leipzig. Zt. f. ang. Chem. 1909,	
1708	M9.00
Escales, Richard, Dr.: Chloratsprengstoffe. 1910. Veit & Co., Leipzig. Zt. f. ang. Chem. 1911, 21	M8.00
Guttmann, Oscar: Zwanzig Jahre Fortschritte in Explosivstoffen. 4 Vorträge, geh. in der Royal Soc. of Arts, London, Nov./Dec. 1908. 11 Abb. u. 1 farb. Tafel. 1909. Jul. Springer, Berlin. Zt. f. ang. Chem. 1909, 1196	M3.00
Kast, H., Dr.: Anleitung zur chemischen und physikalischen Untersuchung der Spreng- und Zündstoffe. 1909. Vieweg & Sohn, Braunschweig. Zt. f. ang. Chem. 1909, 1654	M4.20
Kedesdy, E., Dr.: Die Sprengstoffe. 105. Bd. der Bibl. der gesamten Technik. 1909. Dr. Max Jänecke, Hannover. Zt. f. ang. Chem. 1909, 618.	M4.60
,	
TOXIKOLOGIE UND GERICHTLICHE MEDIZIN	
Autenrieth, Wilh., Prof.: Freiburg i. B. Die Auffindung der Gifte und stark wirkender Arzneistoffe. 4. vollst. neubearb. Aufl. 1909. J. C. B. Mohr, Tübingen. Zt. f. ang. Chem. 1910, 411	M8.60
Gadamer, J., Prof.: Breslau. Lehrbuch der chemischen Toxikologie und Anleitung zur Ausmittlung der Gifte für Chemiker, Apotheker und Mediziner. Bearb. von Prof. Gadamer unter Mitw. von Prof. W. Herz u. Dr. G. Otto Gaebel. XII u. 725 S., 31 Abb., 1 Tafel der Blutspektra u. 10 Tabellen. 1909. Vandenhoeck u. Ruprecht, Göttingen. Zt. f. ang. Chem. 1911, 648	M20.00
Leers, Otto, Dr.: Berlin. Die forensische Blutuntersuchung. 1910.	
Jul. Springer, Berlin. Zt. f. ang. Chem. 1910, 1771	M6.80
1911 ¹ , 173	M0.80
Poulsson, E.: Lehrbuch der Pharmakologie für Ärzte und Studierende. Deutsch von Fr. Leskien. 574 S. 1909. S. Hirzel, Leipzig. Zt. f. ang. Chem. 1910, 1472	M15.00
Rambousek, Dr. J.: Gewerbliche Vergiftungen. 1911. Veit & Co. Leipzig. Zt. f. ang. Chem. 1912, S. 730 Geb.	M13.50
Schmiedeberg, O., Prof.: Strassburg. Grundriss der Pharmakologie in bezug auf arzneimittellehre und Toxikologie. 6. Aufl. 1909. F. C. W. Vogel, Leipzig. Zt. f. ang. Chem. 1910, 1570 Geh.	M11.50

NEW BOOKS

Schmidt, W. A., Prof.: Kairo. Die Erkennung von Blutflecken	
und die Unterscheidung von Menschen- und Tierblut in der gerichts	
praxis. 31 S. gr. 8°. Quelle & Meyer, Leipzig. Zt. f. ang. Chem	
1910, 942	M0.80
Teleky, Dr. Ludwig: Die gewerbliche Quecksilbervergiftung dar-	
gestellt auf Grund von Untersuchungen in Oesterr. 14. Abb., 17	
Tab. 228. S. 1912. A. Seydel, Berlin. Zt. f. ang. Chem.	
1912, S. 891	M8.00

The properties with the 182 of the

Toth: Kaira. Die Erkennung von Elefflacken blung von Alauschen- und Tierblut in der gerkeitst gewichte Such Leipzig. Zhell ung. Chen dwg: Die gewerbliche Queeksibervergiftenu ders von Untersuchungen in Ocstere. 13. Abb., 17. 1912. A. Seydel, Berlin. Ze. aug. Chem.

INDEX

Acceleration, of gravity, 515.

unit of, 515.

Acetic acid, melting points of, 406. specific gravity of, 406. Acid calculations, 531.

Acid values of oils, conversion into oleic acid, 67.

Acids and bases, value of normal solutions of, 52.

Acids, basicity of, with various indicators, 51.

heats of neutralization of, 500.

relative avidity of, 501.

Alcohol, ethyl, comparison of per cents by weight and by volume, 431,

density of, 423, 425, 428.

methyl, specific gravity and percentage by weight and volume, 423, 436.

methyl, refractometer readings of, 439.

calculation of, 441.

percentage of, by volume and by weight, 417.

refractometer readings of, 439.

specific gravity and percentage of, by volume, 417.

tables of Bureau of Standards, 423. Alkaloids, physical constants, 339. Alloys, fusible, melting point and com-

position of, 376. of definite composition, formation of, 563.

American standard Baumé scale, 526. Ammonia, specific gravity of, 408

Ammonium, chloride, specific gravity of solutions of, 444.

sulphate, specific gravity of solutions of, 443.

Anthracite coal, chemical composition and heat of combustion of, 504.

Assay-ton system, 551.

Atmosphere, definition of, 517. pressure of, 542.

Atomic and molecular weights and their logarithms, 39.

Atomic weights for 1909, 1.

Available chlorine in bleaching powder solution at 15°, 444.

Avidity of acids, 501.

Barometer, 542.

corrections for, 542.

readings, correction of, for temperature, 72.

Basicity of acids with various indicators, 51.

Baumé, degrees and specific gravity equivalent of, 379.

hydrometer, 525.

Bishop, H. B., furning sulphuric acid,

specific gravity of sodium bisulphite, 451.

specific gravity of sodium hyposulphite, 448.

specific gravity of sodium sulphite,

specific gravity of sulphuric acid,

specific gravity of zinc choride, 454. Bituminous coal, chemical composition and heat of combustion of, 505.

Bleaching powder solution, available chlorine in, 444.

Boiling point of water at 680 to 800 mm. pressure, 467.

Boyle's law, 543.

British Imperial and metric weights and measures, equivalents of, 477.

Bureau of Standards, alcohol tables of, 423.

Butter fat, Polenske values of, 68.

Butyro-Refractometer readings, conversion of, to indices of refraction, 69.

Cadmium chloride, specific gravity of solutions of, 456.

Calculation, accuracy of, 518. of gas analyses, tables for, 70.

of volumetric analyses, tables for, 51. Carbon dioxide, table of density of (Parr), 76.

Charles' law, 544.

Chemical and physical constants of, fats and waxes, 61.

lubricating oils, 65.

oils, 57.

Chemical composition and heat of combustion of, anthracite coal, 504. bituminous coal, 505.

coal gas, 510. lignite, 507.

natural gas, 509.

oven cokes, 506.

petroleum, 508. water gas, 511.

wood, 508.

Coal, chemical composition and heat of combustion of, 505.

gas, chemical composition and heat of combustion of, 510.

Coefficient, of expansion, 517.

of expansion of gases, 73.

Coke, chemical composition and heat of combustion of, 506.

Comparison of metric and U. S. weights and measures from 1 to 10, 472.

Constant boiling hydrochloric acid, composition of, 405.

Conversion, of acid values of oils into oleic acid, 67.

of butyro-refractometer readings to indices of refraction, 69.

Correction of barometer readings for temperature, 72.

Cupric, chloride, specific gravity of solutions of, at 17.5°, 444. sulphate, specific gravity of solu-

tions of, 445.

Density, 519.

of gases, 3.

of nitrogen, 74.

of water, at 0° to 36°, 457. at 30° to 102°, 458. at 100° to 320°, 458.

Dilution, and concentration of liquids,

to a certain specific gravity, 565.

Dyne, 516.

Elements, Mendeléeff's periodic system of, 2.

physical constants of, 4.

Equivalents, of degrees Baumé and specific gravity, 379. of metric and British Imperial

weights and measures, 477.

of metric and U. S. weights and measures, 469.

Essential oils, physical and chemical constants of, 356.

Ethyl alcohol, comparison of per cents by weight and by volume, 431, 434.

density of, 423, 425, 428.

refractometer readings of, 439. calculation of, 441.

Expansion, coefficients of, 517.

Factors, 551.

for the calculation of indirect gravimetric analyses, 37.

gravimetric, and their logarithms, 10. Fats and waxes, physical and chemical constants of, 61.

Ferric, chloride, specific gravity of solutions of, 445.

sulphate, specific gravity of solutions

of, 446. Ferrous sulphate, specific gravity of solutions of, 446.

Figuring, accuracy of, 518.

Force, unit of, 516.

Fuming sulphuric acid, 397. specific gravity of, 392.

Fundamental equivalents of metric and U. S. weights and measures.

Fundamental units, 515.

Gas, analyses, tables for the calculation of, 70.

calculations, 543.

coal, chemical composition and heat of combustion of, 510.

natural, chemical composition and heat of combustion of, 509.

volumes, reduction of, to 0° and 760 mm., 70.

water, chemical composition and heat of combustion of, 511.

Gas and mercury thermometers, 539. Gases, coefficient of expansion of, 73. density of, 3.

solubility of, in water, 73a. German books, review of, 596. Glycerene, specific gravity of aqueous solutions of, 442.

Gravimetric factors and their logarithms, 10.

Gravity, variations of, 517.

Heat of combustion of, anthracite coal, 504.

bituminous coal, 505.

coal gas, 510. lignite, 507.

natural gas, 509.

oven cokes, 506. petroleum, 508.

various substances, 502. water gas, 511.

wood, 508.

Heats of, formation, 482.

neutralization of acids with formation of sodium salts, 500.

solution, 494.

acid, composition of Hydrochloric constant boiling, 405.

specific gravity of, 403, 405.

Hydrometer, Nickolson's, 520. Hydrometers, 524.

Hydrostatic, balance, 523. pressure, 519.

Indirect gravimetric analyses, factors for the calculation of, 37.

Inorganic compounds, physical constants of, 101.

International atomic weights for 1913, 1.

Jolly's spring balance, 520.

Kilogram, definition of, 515.

Leach and Lythgoe, refractometer readings of methyl and ethyl alcohol, 439.

Length, unit of, 515.

Lignite, chemical composition heat of combustion of, 507.

Liquids, dilution and concentration of, 556.

methods of determining specific gravity of, 523.

Lithium chloride, specific gravity of solutions of, 456.

Liter, definition of, 515. Logarithms, table of, 79.

Lubricating oils, physical and chemical constants of, 65.

physical constants of, 64.

Lythgoe and Leach, refractometer readings of methyl and ethyl alcohol, 439.

Mass, unit of, 515.

Melting point, and composition of fusible alloys, 376. of acetic acid, 406.

Mendeléeff's periodic system of the elements, 2.

Mercury, vapor tension of, at 40° to 880°, 468.

Meter, definition of, 515.

Methyl alcohol, refractometer readings of, 439.

calculation of, 441.

specific gravity and percentage by weight and volume, 436. specific gravity of, 435.

Metric and British Imperial weights and measures, equivalents of, 477.

Metric and U. S. weights and measures, equivalents of, 469. fundamental equivalents of, 470.

Mixed acids, formation of, 559. Mixtures of definite composition, for-

mation of, 558. Mohr specific gravity balance, 523.

Molecular and atomic weights and their logarithms, 39.

Natural gas, chemical composition and heat of combustion of, 509. New books, review of, 571.

Nickolson's hydrometer, 520.

Nitric acid, specific gravity of, 399, 401.

Nitrogen, density of, 74.

Normal, solutions of acids and bases, value of, 52.

oxidizing and reducing solutions, value of, 54.

precipitation reagents, value of, 56.

Oils, physical and chemical constants of, 57.

table for calculation of specific gravity of, 68.

The Chemist's

Duplex Slide Rule

Designed by Dr. R. Harman Ashley

The Chemist's Duplex Slide Rule represents the successful completion of a long series of experiments to adapt the logarithmic and cologarithmic scales, in conjunction with the chemical gauge points, to the rapid solution of the problems encountered by the chemist. By the use of this Rule, problems in Stoichiometry, such as Gravimetric Analysis, Volumetric Analysis, Equivalents, Percentage Composition, Conversion Factors, Volume of gas from a given weight of substance at different temperatures and pressures, and many other analogous problems are quickly and easily solved.

Aside from the solution of the chemical problems above referred to, any arithmetical problems solvable by logarithms are readily and accurately done with a minimum number of settings.

The Rule carries 138 chemical symbols, which include the common acids, bases, salts, oxides and elements, and which are arranged in the order of their molecular weight.

arranged in the order of their molecular weight.

As each symbol has its individual position corresponding to the logarithm of its molecular weight, the number of permutations and combinations possible covers the requirements of almost any problem.

NEW YORK

KEUFFEL &

Chicago

St. Louis

Drawing Materials

Mathematical and

SECTIONAL VIEW-SEVENTH-EIGHTHS ACTUAL SIZE

The application of a simple rule enables the Chemist

to locate other symbols of less frequent occurrence.

The Chemist's Duplex Slide Rule may be relied upon to give accurate readings to three significant figures, with a maximum apparent error of one-tenth per cent. This error is quite within the limit of accuracy of the average operation of the analytical Chemist.

The Rule does not attempt to replace logarithms, but it is a valuable adjunct to the Chemist in checking up results and it may be conveniently used whenever rapid approximations to

within a fair degree of certainty are desired.

In many cases, the operator may solve a chemical problem directly with the Rule. It is made of high grade material, has a 10 in. scale, engine divided, and each rule is accompanied by a manual containing clear, comprehensive instructions for use.

Write to our nearest office for a complete description of this rule.

ESSER CO. HOBOKEN, N. J.

San Francisco

Montreal

Measuring Tapes

Surveying Instruments

BEAR

D. Van Mostrand Comyany, 25 park Place, New York, are prepared to supply any of the books listed in the foregoing bibliography, as well as any other publication treating of

Chemistry or the Chemical Industries

A complete stock of books is always kept on band and we shall be glad to forward to any address our free complete catalogs of Books on Chemistry or any other Engineering or Scientific Subject

Requests for information concerning books on any scientific subject are given prompt and careful attention.

Whe are ready at all times to give immediate consideration to requests for books to be sent for ex amination.

