Logistic Regression

Sean Sall

May 26th, 2016

Logistic Regression May 26th, 2016 1 / 32

Objectives

- Describe the motivation for logistic regression
- Understand how to fit a logistic model and interpret its coefficients
- Explain common classification metrics, and how they tie into the ROC curve

2 / 32

Agenda

- Logistic regression motivation
- Logistic regression details
 - Sigmoid (logistic) function discussion
 - ► Solving through maximum likelihood estimation
 - ► Interpreting the results
- Classification metrics and the confusion matrix
 - ► Precision, Recall, Accuracy
 - Specificity, Sensitivity (recall)
 - ► True positive rate (recall), false positive rate
- ROC Curve

Logistic Regression - A Visual Motivation

Ean Sall Logistic Regression May 26th, 2016 4 / 32

Linear Review - Visual

• With **linear regression**, we are modeling a **continuous** response and finding the linear function that gives the best fit

Linear Regression for Classification - Visual

 What happens if we try linear regression for a binary response (such as a yes/no)?

Earn Sall Logistic Regression May 26th, 2016 6 / 32

Linear Regression for Classification - Visual

 What happens if we try linear regression for a binary response (such as a yes/no)?

an Sall Logistic Regression May 26th, 2016 7 / 32

naa

A Model for Classification

- We need a model that:
 - ► Takes **continuous input** (e.g. -infinity to infinity)
 - ▶ Produces **output** between 0 and 1
 - ► Transitions from outputting 0 to outputting 1 quickly
 - ► Has interpretable coefficients (like our standard linear regression model)

Logistic Regression for Classification

• Enter logistic regression...

200

9 / 32

The Sigmoid function

• That general S-shaped curve is from the sigmoid family, who's general functional form is given by:

$$S(t) = \frac{1}{1 + e^{-t}}$$

n Sall Logistic Regression May 26th, 2016 10 / 32

Logistic Regression - Motivation II

Sean Sall Logistic Regression May 26th, 2016 11 / 32

Linear Review - Underlying Assumptions

 In a standard linear regression framework, we assume that our response is normally distributed:

$$y_i \mid X \sim N(X\beta, \sigma^2)$$

In a classification setting, that's not the case

m Sall Logistic Regression May 26th, 2016 12 / 32

Classification Setting - Obs. Distribution

• In a binary classification setting, the response is binary:

$$y_i \begin{cases} 1, & \text{if event occurs} \\ 0, & \text{if event doesn't occur} \end{cases}$$

Each observation is drawn from a Bernoulli distribution:

$$y_i \mid X \sim Bernoulli(p)$$

Our standard linear model won't work

A Model for Classification

- We need a model that:
 - ► Takes **continuous input** (e.g. -infinity to infinity)
 - Produces output between 0 and 1
 - Transitions from outputting 0 to outputting 1 quickly
 - Has interpretable coefficients (like our linear regression model)
 - ★ Takes the mean response of our observations and links it to a linear combination of our inputs (e.g. $X\beta$)

Note:
$$X\beta = \beta_0 + X_1\beta_1 + X_2\beta_2 + + X_n\beta_n$$

Logistic Regression for Classification

• Enter logistic regression...

$$p(y_i) = \frac{1}{1 + e^{-X\beta}}$$

Note: p(y) denotes the probability of success for y. We can think of this as the mean of the response.

ean Sall Logistic Regression May 26th, 2016 15 / 32

Logistic Regression - The Details

Logistic Regression May 26th, 2016 16 / 32

Logistic Regression

• Logistic regression fits a **logistic function** that we use to obtain the probability that an individual observation (y_i) is a success (typically denoted as a 1, where a failure is denoted by a 0).

$$p(y_i) = \frac{1}{1 + e^{-X\beta}}$$

• How do we get this function, though?

Logistic Regression - The Link Function

- The **link** function provides the relationship between a linear combination of our inputs $(X\beta)$ and the mean of our response $(p(y_i))$
- For logistic regression, we use the following link function:

$$\ln\left(\frac{p(y_i)}{1-p(y_i)}\right)=X\beta$$

 See the appendix for a derivation of how to move from this to the logistic function that we use to predict the mean of our response

Logistic Regression - Solution 1

 The parameters of our logistic regression are estimated via maximum **likelihood**. We know that each individual observation follows a Bernoulli distribution:

$$y_i \mid X \sim Bernoulli(p)$$

• Given this, we can construct the likelihood of our β matrix as:

$$\mathcal{L}(\beta \mid y) = \prod_{i=1}^{N} p(y_i)^{y_i} + (1 - p(y_i))^{(1-y_i)}$$

And from there, our log likelihood:

$$\ell = \sum_{i=1}^{N} y_i \log p(y_i) + (1 - y_i) \log (1 - p(y_i))$$

Logistic Regression - Solution 2

- Unfortunately, there is no closed form solution (like in linear regression)
- As a result, iterative methods are typically used
 - These work with the first and/or second derivatives to try to take clever steps towards an optimal solution (defined by maximizing the likelihood function), often starting with a random guess
 - ► Tomorrow you'll be doing this through stochastic gradient descent, which is one of the most popular techniques

Logistic Regression - Interpretation Part 1

• Say we fit a logistic regression model with the outcome/response as whether or not a person works (yes/no, which is denoted with a 1/0) and only one predictor, income:

$$p(y_i) = \frac{1}{1 + e^{-(\beta_0 + X_1 \beta_{income})}}$$

 To actually interpret the coefficients, we need to go back to our original *link* function:

$$\ln\left(\frac{p(y_i)}{1-p(y_i)}\right) = \beta_0 + X_1 \beta_{income}$$

Logistic Regression - Interpretation Part 2

• Typically, we'll take one step away from the raw *link* function, and then we'll build up our interpretation from here:

$$\frac{p(y_i)}{1 - p(y_i)} = e^{\beta_0 + X_1 \beta_{income}}$$

We can modify that to this:

$$\frac{p(y_i)}{1 - p(y_i)} = e^{\beta_0} e^{X_1 \beta_{income}}$$

- Turns out that the left side of the above equation is known as the **odds** ratio. So, we interpret our results as follows:
 - ▶ For a one-unit increase in X_1 , the odds increases by $e^{\beta_{income}}$

Logistic Regression - Interpretation Example

- Let's say in the context of our example (regressing whether or not somebody works on income), our β_1 is 0.00001. This means that a one-unit increase in income (\$1) causes an $e^{(0.0001)}$ increase in the odds of somebody working.
 - $e^{(0.00001)} = 1.00001$
- This ultimately means that for each additional dollar that a person makes, we expect a 0.001% increase in the odds that they are working.
 - ► For an additional \$1000 dollars that a person makes, we expect a 1% increase in the odds that they are working

Classification Metrics

Sean Sall Logistic Regression May 26th, 2016 24 / 32

Classification Metrics I

• We use the following metrics as a base by which to judge our model:

		Predicted	
		Positive	Negative
ne	Positive	True Positives (TP)	False Negatives (FN)
Ξ	Negative	False Positives (FP)	True Negatives (TN)

 $Figure \ 5: Confusion \ Matrix$

Classification Metrics II

 Recall / True Positive Rate / Sensitivity - Of those observations that are actually positives, which ones did I label as positive?

True Positives
True Positives + False Negatives

 Specificity / True Negative Rate - Of those observations that are actually negative, which ones did I label as negative?

 $\frac{\textit{True Negatives}}{\textit{True Negatives} + \textit{False Positives}}$

 Precision / Positive Predictive Value - Of those observations that I labeled as positive, which ones are actually positive?

True Positives
True Positives + False Positives

Classification Metrics III

Accuracy - How many observations did I label correctly?

 $\frac{True\ Positives + True\ Negatives}{Total\ number\ of\ obs.}$

 False Positive Rate - Of those observations that are actually negatives, which ones did I label as positive?

 $\frac{\textit{False Positives}}{\textit{False Positives} + \textit{True Negatives}}$

ROC Curve I

• We use build a receiver operating curve (ROC) to visualize the performance of a given binary classifier:

ROC Curve II

- With the ROC curve, we can examine how the True Positive Rate changes as the False Positive Rate changes (or vice versa)
 - ► We can compare across curves to determine which model gives us a better True Positive Rate for a given False Positive Rate
 - We can also use the Area Under the Curve to try to differentiate one model from another (greater area is typically better, but this also depends on what True/False positive rate you are willing to accept)
 - ► We can typically achieve the 45 degree line through random guessing (so we should always do better than this)

Appendix

ean Sall Logistic Regression May 26th, 2016 30 / 32

Logistic Regression - From link to probability I

3
$$p(y_i) = (1 - p(y_i))e^{X\beta}$$

Logistic Regression

Logistic Regression - From link to probability II

6
$$p(y_i)(1 + e^{X\beta}) = e^{X\beta}$$

$$p(y_i) = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

$$p(y_i) = \frac{\frac{e^{X\beta}}{e^{X\beta}}}{\frac{1+e^{X\beta}}{e^{X\beta}}}$$

32 / 32

an Sall Logistic Regression May 26th, 2016