HKUST – Department of Computer Science and Engineering COMP 2711: Discrete Math Tools for Computer Science

Spring 2021 Midterm Examination

Date: Monday, 8 April 2021 Time: 19:30–21:20

Problem 1: [15 pts] Determine the truth value of each of the following statements. The domain for all variables are all integers. Justify your answer.

- (a) $\exists x \forall y \ (y = x^2 + 2x + 1)$
- (b) $\forall y \exists x \ (y = x^2 + 2x + 1)$
- (c) $\exists x \forall y \exists z \ (2y z = 4x)$
- (d) $\exists x \exists z \forall y \ (2y z = 4x)$
- (e) $\exists x \exists y \ ((x > 1 \land y > 1) \rightarrow (x \bmod y \ge y))$

Solution: (a) False. For every x, there is always an integer $y = x^2 + 2x + 2 > x^2 + 2x + 1$.

- (b) False. Note that $x^2 + 2x + 1 = (x+1)^2$. When y = 3, there is no integer x so that $(x+1)^2 = 3$.
- (c) True. Let x = 0. Then for any y, set z = 2y.
- (d) False. For every x and z, there is an integer y=4|x|+|z|+1, and thus 2y=8|x|+2|z|+2>4x+z.
- (e) True. When $x \le 1$ or $y \le 1$, we have $F \to (x \mod y \ge y) = T$.

Grading Scheme: 3 pts each. For each part, 1 point for True/False. The remaining points for justification.

Problem 2: [12 pts] Consider the following predicates.

- c(x): "x studied COMP2711".
- g(x): "x knows how to compute the gcd of two integers".
- h(x): "x can get a high paying job".

Prove the following statement using inference rules.

"Sarah, a student who studied COMP2711, knows how to compute the gcd of two integers. Everyone who knows how to compute the gcd of two integers can get a high-paying job. Therefore, at least one student who studied COMP2711 can get a high-paying job."

Please first translate the premises and conclusion into predicate logic sentences. Then show a step-by-step proof using inference rules. You don't have to write down the name of the rule used; instead, you can just write down from which statement(s) a new statement is derived. For example, instead of writing "(3): statement (Modus tollens using (1) and (2))", you can just write "(3): statement (from (1) and (2))".

Solution : We are given premises $c(\operatorname{Sarah})$, $g(\operatorname{Sarah})$, and $\forall x(g(x) \to h(x))$, and we want to conclude $\exists x(c(x) \land h(x))$.

Reason
Premise
Universal instantiation using (1)
Premise
Modus ponens using (2) and (3)
Premise
Conjunction using (4) and (5)
Existential generalization using (6)

Problem 3: [10 pts] Show that there is no largest prime number.

Solution : We prove this by contradiction.

Suppose there is a largest prime number n. Note that n! + 1 has no factors between 1 and n. Thus, if all primes were n or less, n! + 1 would have no prime factors, and it would be prime itself. Therefore, n! + 1 is a prime number greater than n, which is a contradiction.

Problem 4: [8 pts] Let \mathbb{N} be the set of all natural numbers.

- (a) Show that $\{S \mid S \subseteq \mathbb{N}, |S| \text{ is finite}\}\$ is countable.
- (b) Is $\{S \mid S \subseteq \mathbb{N}, |S| \text{ is infinite}\}\$ countable or uncountable? Justification is not necessary.
- **Solution :** (a) Here is one enumeration method for $\{S \mid S \subseteq \mathbb{N}, |S| \text{ is finite}\}$. We first enumerate \emptyset . Then for $k=0,1,\ldots$, we enumerate all $S\subseteq \mathbb{N}$ such that $\max S=k$. For each k, there are finitely many such S, and we can enumerate them in any order.
 - (b) Uncountable.

Grading Scheme: 6, 2.

Problem 5: [10 pts] Alice and Bob share a key using the Diffie-Hellman key exchange algorithm with $a = 17, p = 31, k_1 = 34$ and $k_2 = 41$. What is the shared key? Note that the shared key must be in \mathbb{Z}_p . Use Fermat's Little Theorem and the repeated squaring method to simplify the calculation. Show all the computational steps.

Solution : The shared key is $a^{k_1k_2} \mod p = 17^{34\cdot 41} \mod 31$.

By Fermat's Little Theorem, $17^{34\cdot41} \equiv 17^{34\cdot41 \mod 30} \equiv 17^{4\cdot11 \mod 30} \equiv 17^{14} \pmod{31}$.

We compute the shared key by repeated squaring method.

$$17^{2^{1}} \mod 31 = 10$$

 $17^{2^{2}} \mod 31 = 10^{2} \mod 31 = 7$
 $17^{2^{3}} \mod 31 = 7^{2} \mod 31 = 18$

Note that $17^{14} = 17^{2^1 + 2^2 + 2^3}$. So,

$$17^{14} \equiv 17^{2^1}17^{2^2}17^{2^3}$$
$$\equiv 10 \cdot 7 \cdot 18$$
$$\equiv 20 \pmod{31}$$

Problem 6: [12 pts] Consider the RSA encryption with parameters p = 443, q = 211.

- (a) List out all possible public keys (n, e) so that e in [120, 130]. Justification is not necessary.
- (b) Suppose you select the smallest value e in your answer of (a) to be the public key (n, e). Compute the corresponding private key d. Show all your steps.
- **Solution :** (a) $T = (p-1)(q-1) = 442 \cdot 210 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 = 92820$. We need the values e in [120, 130] that are relatively prime to T. The values cannot contain any factor in $\{2, 3, 5, 7, 13, 17\}$. Therefore, 121 and 127 are the only possible values of e.
 - (b) The private key should satisfy $(ed) \mod T = 1$. i.e. d is the multiplicative inverse of e in Z_T . Run the extended GCD algorithm to find d:

$$92820 = 121 \cdot 767 + 13$$
$$121 = 13 \cdot 9 + 4$$
$$13 = 4 \cdot 3 + 1$$
$$4 = 1 \cdot 4 + 0$$

Then,

$$1 = 13 - 4 \cdot 3$$

$$= 13 - (121 - 13 \cdot 9) \cdot 3$$

$$= 13 \cdot 28 - 121 \cdot 3$$

$$= (92820 - 121 \cdot 767) \cdot 28 - 121 \cdot 3$$

$$= 92820 \cdot 28 - 121 \cdot 21479$$

Thus, $d = -21479 \mod 92820 = 71341$.

Grading Scheme: 4, 8

- **Problem 7:** [10 pts] Show that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$ for any two distinct prime numbers p and q.
 - **Solution :** By Fermat's little theorem, $p^{q-1} \equiv 1 \pmod{q}$.

Clearly, $q^{p-1} \equiv 0 \pmod{q}$.

Therefore, $p^{q-1} + q^{p-1} \equiv 1 + 0 \equiv 1 \pmod{q}$.

Similarly, $p^{q-1} + q^{p-1} \equiv 0 + 1 \equiv 1 \pmod{p}$.

By the Chinese remainder theorem, we have $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Problem 8: [15 pts] Consider the following three options.

- (i) $f(x) = \Theta(g(x))$.
- (ii) f(x) = O(g(x)).
- (iii) $f(x) = \Omega(g(x))$.

For each of the following f, g pairs, choose all options that apply from above. No justification is necessary. Note that it is possible that none of them apply.

(a)
$$f(x) = \sin(x), g(x) = (\cos(x))^2$$
.

(b)
$$f(x) = 2\sin(x), g(x) = |\cos(x)| + 0.5.$$

(c)
$$f(x) = 0.5x$$
, $g(x) = x|\cos(x)|$.

(d)
$$f(x) = \log_3(x), g(x) = \log_{20}(x).$$

(e)
$$f(x) = 2^{\log_3 x}$$
, $g(x) = 3^{\log_{20} x}$.

- **Solution :** (a) None. When x keeps increasing, $(\cos(x))^2$ periodically reaches zero. When $(\cos(x))^2$ is zero, $\sin(x)$ could be -1 or 1. So, no constant c that makes $f(x) \le c \cdot g(x)$ or $f(x) \ge c \cdot g(x)$.
 - (b) (ii), f(x) = O(g(x)). We have $f(x) \le 4g(x)$.
 - (c) (iii), $f(x) = \Omega(g(x))$. $f(x) \ge 0.5g(x)$.
 - (d) (i)(ii)(iii), $f(x) = \Theta(g(x))$. $\log_{20}(x) = \log_3(x)/\log_3 20$ where $1/\log_3 20$ is a constant.
 - (e) (iii), $f(x) = \Omega(g(x))$. $f(x) = 2^{\log_3 x} = x^{\log_3 2}$. $g(x) = 3^{\log_{20} x} = x^{\log_{20} 3}$. The answer is then obvious.

Grading Scheme: 3 for each.

Problem 9: [8 pts] Given two binary numbers a and b, $a \wedge b$ is the bitwise AND operation of a and b. E.g. if $a = 3_{10} = 011_2$ and $b = 6_{10} = 110_2$, then $a \wedge b = 2_{10} = 010_2$. Consider the following two algorithms, both of which count the number of 1's in the binary representation of n.

```
procedure CountOneA(n: binary number) a \leftarrow 0 while n \neq 0 if n \mod 2 = 1 then a \leftarrow a + 1 n \leftarrow \lfloor n/2 \rfloor return a procedure CountOneB(n: binary number) a \leftarrow 0 while n \neq 0 a \leftarrow a + 1 n \leftarrow n \wedge (n - 1) return a
```

For each algorithm's running time, select all that apply from the list below, and briefly justify your answer.

```
(1) O(\log n); (2) \Omega(\log n); (3) \Theta(\log n); (4) O(1); (5) \Omega(1); (6) \Theta(1).
```

Solution : Algorithm A's running time is proportional to the number of bits in the binary representation of n, so it's $\Theta(\log n)$, which is also $O(\log n)$, $\Omega(\log n)$, and $\Omega(1)$.

Algorithm B's running time is proportional to the number of 1's in the binary representation of n, which fluctuates between 1 and $\log n$, depending on the actual value of n. So it's $O(\log n)$ and $\Omega(1)$.

Grading Scheme: 4, 4

Bonus: [10 pts] Prove $|(0,1)| = |(0,1) \times (0,1)|$.

Solution : We need to construct an injection from (0,1) to $(0,1)\times(0,1)$, as well as one the other way round. Then applying the Schröder-Bernstein theorem would complete the proof. An injection $f:(0,1)\to(0,1)\times(0,1)$ is trivial, e.g., f(x)=(x,0). An injection $f:(0,1)\times(0,1)\to(0,1)$ can be defined as follows. For any $x,y\in(0,1)$, let $x=0.x_1x_2\cdots$ and $y=0.y_1y_2\cdots$ be their valid decimal representations (i.e., not ending with infinitely many 9's). Define $f(x,y)=0.x_1y_1x_2y_2\cdots$. Note that this must also be a valid decimal

representation of some real number in (0,1), because if it's not, $x=0.x_1x_2\cdots$ and $y=0.y_1y_2\cdots$ must end with infinitely many 9's. For any $(x,y)\neq (x',y')$, they must have at least one different digit, so $f(x,y)\neq f(x',y')$, hence f is an injection.