Vector Analysis

C.1 VECTOR IDENTITIES

The following formulas may be shown to hold where Φ is an arbitrary scalar and **A** and **B** are arbitrary vectors.

$$\nabla \times \nabla \Phi = 0$$

$$\nabla \cdot (\Phi \mathbf{A}) = \Phi \nabla \cdot (\mathbf{A}) + \mathbf{A} \cdot \nabla \Phi$$

$$\nabla \times (\Phi \mathbf{A}) = \nabla \Phi \times \mathbf{A} + \Phi (\nabla \times \mathbf{A})$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

$$(\mathbf{A} \cdot \nabla) \mathbf{A} = \frac{1}{2} \nabla (\mathbf{A} \cdot \mathbf{A}) - \mathbf{A} \times (\nabla \times \mathbf{A})$$

$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla) \mathbf{B} + (\mathbf{B} \cdot \nabla) \mathbf{A}$$

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$$

C.2 INTEGRAL THEOREMS

(a) Divergence theorem:

$$\int_{A} \mathbf{B} \cdot \mathbf{n} dA = \int_{V} \mathbf{V} \cdot \mathbf{B} dV$$

where V is a volume enclosed by surface A and \mathbf{n} is a unit normal on A.

(b) Stokes's theorem:

$$\oint \mathbf{B} \cdot d\mathbf{l} = \int_{A} (\mathbf{V} \times \mathbf{B}) \cdot \mathbf{n} dA$$

where A is a surface bounded by the line traced by the position vector \mathbf{l} and \mathbf{n} is a unit normal of A.

C.3 VECTOR OPERATIONS IN VARIOUS COORDINATE SYSTEMS

(a) Cartesian coordinates: (x, y, z)

Coordinate	Symbol	Velocity component	Unit vector
Eastward	х	и	i
Northward	y	v	j
Upward	z	w	k

$$\nabla \Phi = \mathbf{i} \frac{\partial \Phi}{\partial x} + \mathbf{j} \frac{\partial \Phi}{\partial y} + \mathbf{k} \frac{\partial \Phi}{\partial z}$$

$$\nabla \cdot \mathbf{V} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

$$\mathbf{k} \cdot (\nabla \times \mathbf{V}) = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

$$\nabla_h^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2}$$

(b) Cylindrical coordinates: (r, λ, z)

Coordinate	Symbol	Velocity component	Unit vector
Radial	r	и	i
Azimuthal	λ	v	j
Upward	z	w	k

$$\nabla \Phi = \mathbf{i} \frac{\partial \Phi}{\partial r} + \mathbf{j} \frac{1}{r} \frac{\partial \Phi}{\partial \lambda} + \mathbf{k} \frac{\partial \Phi}{\partial z}$$

$$\nabla \cdot \mathbf{V} = \frac{1}{r} \frac{\partial (ru)}{\partial r} + \frac{1}{r} \frac{\partial v}{\partial \lambda}$$

$$\mathbf{k} \cdot (\nabla \times \mathbf{V}) = \frac{1}{r} \frac{\partial (rv)}{\partial r} - \frac{1}{r} \frac{\partial u}{\partial \lambda}$$

$$\nabla_h^2 \Phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \lambda^2}$$

(c) Spherical coordinates: (λ, ϕ, r)

Coordinate	Symbol	Velocity component	Unit vector
Longitude	λ	и	i
Latitude	ϕ	v	j
Height	r	w	k

$$\nabla \Phi = \frac{\mathbf{i}}{r \cos \phi} \frac{\partial \Phi}{\partial \lambda} + \mathbf{j} \frac{1}{r} \frac{\partial \Phi}{\partial \phi} + \mathbf{k} \frac{\partial \Phi}{\partial r}$$

$$\nabla \cdot \mathbf{V} = \frac{1}{r \cos \phi} \left[\frac{\partial u}{\partial \lambda} + \frac{\partial (v \cos \phi)}{\partial \phi} \right]$$

$$\mathbf{k} \cdot (\nabla \times \mathbf{V}) = \frac{1}{r \cos \phi} \left[\frac{\partial v}{\partial \lambda} - \frac{\partial (u \cos \phi)}{\partial \phi} \right]$$

$$\nabla_h^2 \Phi = \frac{1}{r^2 \cos^2 \phi} \left[\frac{\partial^2 \Phi}{\partial \lambda^2} + \cos \phi \frac{\partial}{\partial \phi} \left(\cos \phi \frac{\partial \Phi}{\partial \phi} \right) \right]$$