M2 – Memory Systems

M2 – Outline

- Memory Hierarchy
- Cache Blocking Cache Aware Programming
- SRAM, DRAM
- Virtual Memory
- Virtual Machines
- Non-volatile Memory, Persistent NVM

- Organized as 2ⁿ words of 2^m bits each
 - Usually n >> m (1M vs. 64)
 - n = 20; m = 6

- Organized as 2ⁿ words of 2^m bits each
 - Usually n >> m (1M vs. 64)

- Organized as 2ⁿ words of 2^m bits each
 - Usually n >> m (1M vs. 64)
- Fold array to 2^{n-k} rows x 2^{m+k} columns

6T Static RAM Cell

6T SRAM Cell Operation

Read:

- Precharge bit, bit_b
- Raise wordline
- Cell puts value into bit and its complement in bit_b
- Sense amplifiers sense difference between bit and bit_b

6T SRAM Cell Operation

• Write:

- Drive data onto bit, bit_b
- Raise wordline
- Access transistors set the cell to new state

DRAM – Main Memory

- Main memory serves as input and output to I/O interfaces and the processor.
- DRAMs for main memory, SRAM for caches

DRAM

- Dynamic Random Access Memory (DRAM)
 - 8x more dense than SRAM

_

DRAM

- Dynamic Random Access Memory (DRAM)
 - 8x more dense than SRAM
 - Dynamic: Charge leak
 - Must be re-written after being read
 - Must be periodically refreshed

Main Memory

Main Memory

Main Memory

Memory Controller

- Schedule access requests
- Decodes the bank address(es) from the head(s) of the Q
- Transfers the address(es) into corresponding bank(s)
- Respond to the L3 Response queue

Row Address Strobe selects a Row

Row Address Strobe selects a Row

Row is read into the Row Buffer

Column Address Strobe

Column Address Strobe

Row Buffer is not changed till a new Row is read

Column Address Strobe

Row Buffer is not changed till a new Row is read

Open Row Policy

Column Address Strobe

Row Buffer is not changed till a new Row is read

Open Row Policy

Maximize row buffer hits

DRAM Access

- Activate RAS
 - Precharge Row
- Row Access
- Turn on CAS

DRAM Access

- Activate RAS
 - Precharge Row
- Row Access
- Turn on CAS
- Access Latency:

$$t_{Access} = t_{Precharge} + t_{Row Access} + t_{CAS}$$

- Exploits spatial locality of reference
- The most recent row read from a bank
- Acts like a cache

Rank, Bank

- Bank: a subset of a rank that is busy during one request
 - 4, 8 or 16 in one chip

Rank, Bank

- Bank: a subset of a rank that is busy during one request
 - 4, 8 or 16 in one chip
- Rank: a collection of DRAM chips that work together to respond to a request and keep the data bus full

- Each bank has a single row buffer
- Row buffers act as a cache within DRAM

 Row buffer hit: ~20 ns access time (time to move data from row buffer to pins)

- Row buffer hit: ~20 ns access time (time to move data from row buffer to pins)
- Empty row buffer access: ~40 ns (read arrays
 - + move data from row buffer to pins)

- Row buffer hit: ~20 ns access time (time to move data from row buffer to pins)
- Empty row buffer access: ~40 ns (read arrays
 + move data from row buffer to pins)
- Row buffer conflict: ~60 ns (precharge bitlines + read new row + move data to pins)

- Row buffer hit: ~20 ns access time (time to move data from row buffer to pins)
- Empty row buffer access: ~40 ns (read arrays
 + move data from row buffer to pins)
- Row buffer conflict: ~60 ns (precharge bitlines
 + read new row + move data to pins)
- Waiting time in the Queue (tens of nanoseconds) and incur address/cmd/data transfer delays (~10 ns)

DRAM Refresh

- Every DRAM cell must be refreshed within a 64 ms window
- A row read/write automatically refreshes the row
- Every refresh command performs refresh on a number of rows, the memory system is unavailable during that time
- A refresh command is issued by the memory controller once every 7.8µs on average
 - -8192 rows in RAM. 64ms/8192 = 7.8µs

Error Correction

- SECDED single error correct double error detect
 - 8b code for every 64-bit word

Error Correction

- SECDED single error correct double error detect
 - 8b code for every 64-bit word
- A rank is now made up of 9 x8 chips, instead of 8 x8 chips

Error Correction

- SECDED single error correct double error detect
 - 8b code for every 64-bit word
- A rank is now made up of 9 x8 chips, instead of 8 x8 chips
- Stronger forms of error protection exist: a system is chipkill correct if it can handle an entire DRAM chip failure

Future Memory Trends

- Processor pin count is not increasing
- High memory bandwidth requires high pin frequency
- 3D stacking can enable high memory capacity and high channel frequency (e.g., Micron HMC)
- Phase Change Memory cells
- Silicon Photonics

References

- Rajeev Balasubramonian, CS6810 Computer Architecture. University of Utah.
- Hennessy and Patterson. Computer
 Architecture. 5e. MK. Appendix B, Chapter 2.
- Bruce Jacob, Spencer Ng, David Wang.
 Memory Systems: Cache, DRAM. Elsevier, 2007.

M2 – Outline

- Memory Hierarchy
- Cache Blocking Cache Aware Programming
- SRAM, DRAM
- Virtual Memory
- Virtual Machines
- Non-volatile Memory, Persistent NVM

Extra

- Memory Channel = Data (64b) + Address/Cmd (23b = 17a + 6c)
- DIMM: a PCB with DRAM chips on the back and front
- Transfers one cache line size (64B) per address

Memory Technology - Optimizations

- Multiple accesses to same row
- Synchronous DRAM
 - Clocked operation, Burst mode
- Wider interfaces
- Double data rate
- Multiple banks on each DRAM device

Scheduling Policies

- FCFS: Issue the first read or write in the queue that is ready for issue
 - RoB commits loads and stores in program order
- First Ready FCFS: Issue loads that result in row buffer hits.
- Stall Time Fair: First issue row buffer hits, unless other threads are being neglected

Clock rates, Bandwidth and Names

Standard	l Cl	lock rate (MHz)	M transfers per second	DRAM name	MB/sec /DIMM	DIMM name
DDR		133	266	DDR266	2128	PC2100
DDR	2.5V	150	300	DDR300	2400	PC2400
DDR		200	400	DDR400	3200	PC3200
DDR2	1.8V	266	533	DDR2-533	4264	PC4300
DDR2	1.0V	333	667	DDR2-667	5336	PC5300
DDR2		400	800	DDR2-800	6400	PC6400
DDR3	1.5V	533	. 1066	DDR3-1066	8528	PC8500
DDR3		666	1333	DDR3-1333	10,664	PC10700
DDR3		800	1600	DDR3-1600	12,800	PC12800
DDR4	1 - 1.2V	, 1066–1600	2133–3200	DDR4-3200	17,056-25,600	PC25600

- GDDR5 Graphics memory based on DDR3
 - -2x 5x bandwidth per DRAM vs. DDR3
 - Wider interface, higher clockrate
 - Attached via soldering instead of socketted DIMM

Open/Closed Page Policies

- Open Page Policy: Row buffers are kept open
 - Useful when access stream has locality
 - Row buffer hits are cheap (20ns)
 - Row buffer miss is a bank conflict and expensive (60ns)
- Closed Page Policy: Bitlines are precharged immediately after access
 - Useful when access stream has little locality
 - Nearly every access is a row buffer miss (40ns)
 - The precharge is usually not on the critical path
- Modern memory controller policies lie somewhere between these two extremes (usually proprietary)

Reads and Writes

- A single bus is used for reads and writes
- Bus direction must be reversed when switching between reads and writes
 - Takes time and leads to bus idling
- Writes are performed in bursts
- Write queue stores pending writes until a high watermark is reached

Memory Controller

Address Mapping Policies

- Consecutive cache lines can be placed in the same row to boost row buffer hit rates
 - row:rank:bank:channel:column:blkoffset

 Time between access to cache block X and X+1 = 20ns (row buffer hit)

Address Mapping Policies

- Consecutive cache lines can be placed in different ranks to boost parallelism
 - row:column:rank:bank:channel:blkoffset

Cache blocks X and X+1 can be accessed simultaneously

Modern Memory System

Modern Memory System

- The link into the processor is narrow and high frequency
- The Scalable Memory Buffer chip is a "router" that connects to multiple DDR3 channels (wide and slow)
- Boosts processor pin bandwidth and memory capacity
- More expensive, high power

Memory Array

- 2n words of 2m bits each
- If n >> m, fold by 2^k into fewer *rows* of more columns
- Good regularity easy to design
- Very high density if good cells are used

16-Word x 4-bit SRAM Organization

Simplified SRAM timing diagram

- Read: Valid address, then Chip Select
- Access Time: address good to data valid
 - even if not visible on out
- Cycle Time: min between subsequent mem operations
- Write: Valid address and data with WE_I, then CS
 - Address must be stable a setup time before WE and CS go low
 - And hold time after one goes high
- When do you drive, sample, or Z the data bus?

Logic Diagram of a Typical SRAM

- Write Enable is usually active low (WE_L)
- Din and Dout are combined to save pins:
- A new control signal, Output Enable (OE_L)
 - WE_L is asserted (Low), OE_L is unasserted (High)
 - » D serves as the data input pin
 - WE_L is unasserted (High), OE_L is asserted (Low)
 - » D is the data output pin

or chipSelect (CS) + WE

Neither WE_L and EFO E To Let a serted?

71

- Row buffer: the last row (say, 8 KB) read from a bank, acts like a cache
- Bank: a subset of a rank that is busy during one request
 - 4, 8 or 16 in one chip
- Rank: a collection of DRAM chips that work together to respond to a request and keep the data bus full

DRAM

128MB =

16,384 rows/bank

x 1,024 columns addresses/row

x 1 byte/column address

x 8 stacked banks per IC.

128MB =

16,384 rows/bank

x 1,024 columns addresses/row

x 1 byte/column address

x 8 stacked banks per IC.

128MB x 8 ICs per rank = 1GB in Rank 1.

128MB =

16,384 rows/bank

x 1,024 columns addresses/row

x 1 byte/column address

x 8 stacked banks per IC.

128MB x 8 ICs per rank = 1GB in Rank 1.

1GB (Rank 1) + 1GB (Rank 2) = 2GB per module.

Memory Technology

- Bandwidth
- Access Time
 - Time between read request and when desired word arrives

DRAM Cell Read

