

Differentiable Dynamic Programing for Structured Prediction and Attention

Arthur Mensch⁽¹⁾

Mathieu Blondel⁽²⁾

(1)Parietal team, Inria, Saclay, France (2)NTT Communication Science Laboratories, Kyoto, Japan

1 - Context - End-to-end deep structured prediction

- $x \in \mathcal{X}$: text sequence, audio time-series
- $Y \in \mathcal{Y}$: tag sequence, alignment between time-series, attention map
- Losses typically involve LP solution baseline structured perceptron

$$\ell(oldsymbol{ heta}(oldsymbol{x}), oldsymbol{Y}_{\mathsf{true}}) = \max_{oldsymbol{Y} \in \mathcal{Y}} \langle oldsymbol{Y}, oldsymbol{ heta}
angle - \langle oldsymbol{Y}_{\mathsf{true}}, oldsymbol{ heta}
angle$$

- Easiest case: $\theta(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$, $\mathcal{Y} = [1, k]$
- Often in machine learning: max and argmax from dynamic programing

Dynamic programing

End-to-end training

 $(arg)max_{\boldsymbol{Y}\in\mathcal{Y}}\langle\boldsymbol{\theta}(\boldsymbol{x}),\,\boldsymbol{Y}\rangle$ breaking ${\cal Y}$ into smaller sets

- Linear vs exp complexity
- Inference on tree CRF / DTW

- **1** Loss functions
- ⇒ Backpropagate through LP value (max)
- 2 Differentiable inference mechanism
- ⇒ Backpropagate through LP solution (argmax)

2 - Contrib - Smoothing DP for end-to-end training

- Dynamic programing value/solution become differentiable layer
- End-to-end training for many supervised prediction problems
- Easy to implement custom backward module, with probabilistic interpreta°
- Optional **sparsity** in $Y \Rightarrow$ small set of best guesses / sparse attention

3 – Generic DP on a directed acyclic graph

- Find shortest path on a graph G. Edge (i,j) has weight $\theta_{i,j} j$ parent, i child
- Path $\boldsymbol{Y} \in \mathcal{Y} \subset \{0,1\}^{N \times N}$: $y_{i,j} = 1$ iff (i,j) is taken, $\theta \in \mathbb{R}^{N \times N}$ adj. matrix

Bellman equation

$$v_i(\boldsymbol{\theta}) = \max_{j \in \mathcal{P}_i} \theta_{i,j} + v_j(\boldsymbol{\theta}), \mathsf{DP}(\boldsymbol{\theta}) \triangleq v_n(\boldsymbol{\theta})$$

Highest score among all paths:

$\mathsf{LP}(oldsymbol{ heta}) = \max_{oldsymbol{Y} \in \mathcal{V}} \langle oldsymbol{Y}, oldsymbol{ heta} angle = \mathsf{DP}(oldsymbol{ heta})$

 $\mathsf{DP}(\boldsymbol{ heta}) = \mathsf{Vit}(\boldsymbol{ heta})$

 $\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle = \theta_{1,3,1} + \theta_{2,1,3} + \theta_{3,2,1}$

ICML, pp. 1614–1623.

Value computation

Dynamic time warping

 $\mathsf{DP}(\boldsymbol{\theta}) = \mathsf{DTW}(\boldsymbol{\theta})$

Backpropagation

Danskin theorem

 $\partial \mathsf{DP}(\boldsymbol{\theta}) = \mathsf{conv}(\mathsf{argmax}\langle \boldsymbol{Y}, \boldsymbol{\theta} \rangle)$

- Not defined everywhere, not smooth, piecewise constant
- Need regularization

4 – DP smoothing

- $\Omega : \mathbb{R} \to \mathbb{R}$ str-convex f (Nesterov, 2005). $\max_{\Omega}(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \Delta^d} \langle \boldsymbol{x}, \boldsymbol{y} \rangle - \sum_{i=1}^d \Omega(y_i)$
- Bottom-up Bellman smoothing $\mathsf{DP}(\boldsymbol{\theta}) \to \mathsf{DP}_{\Omega}(\boldsymbol{\theta}), \ \partial \mathsf{DP}(\boldsymbol{\theta}) \to \nabla \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$
- Vs generally intractable $LP_{\Omega}(\theta)$
- Argmax backprop: $\nabla^2 \mathsf{DP}_{\Omega}(\boldsymbol{\theta})$

Regularizations have different properties

- Negentropy -H: $\Omega(p) = p \log(p)$
- $\nabla \max_{\Omega}(\mathbf{x}) = \operatorname{softmax}(\mathbf{x})$
- $\nabla \mathsf{DP}_{\Omega}$ expected Gibbs distribution
- ℓ_2^2 : $\Omega(p) = p^2$ (Martins et al., 2016)
- $\nabla \max_{\Omega}(\mathbf{x}) = \operatorname{sparsemax}(\mathbf{x})$
- Projection on \triangle^d : $\nabla \mathsf{DP}_{\Omega}$ sparse

5 – Theoretical properties

DP value layer

- $\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathsf{LP}_\Omega(oldsymbol{ heta})$ if and only if $\Omega = -\gamma H$, where $\gamma \geq 0$
- **DP** gradient layer
- DP_{Ω} is convex, $\mathsf{LP} \mathsf{DP}_{\Omega}$ bounded \bullet Path distribution $\boldsymbol{p}_{\theta,\Omega}$ (over \mathcal{Y}) s.t. $abla\mathsf{DP}_\Omega(oldsymbol{ heta}) = \mathbb{E}_{oldsymbol{ heta},\Omega}[oldsymbol{Y}] \in \mathsf{conv}(\mathcal{Y})$
 - Graph random walk, easy to sample

6 - Experiments - Named entity recognition (CoNLL'03)

- Word embedding + word LSTM
- Linear chain CRF-like potential $\theta(\boldsymbol{X})_{t,i,j} = \boldsymbol{w}_i^T \boldsymbol{x}_t + b_i + t_{i,j}$

• Sparse prediction $\nabla \mathsf{DP}_{\ell_2^2}(\boldsymbol{\theta})$

Ω	Loss	English	Spanish	German	Dutch
Negent.	Surrogate	90.80	86.68	77.35	87.56
	Relaxed	90.47	86.20	77.56	87.37
$\overline{\ell_2^2}$	Surrogate	90.86	85.51	76.01	86.58
	Relaxed	89.49	84.07	76.91	85.90
0 Struc	t. perceptron	86.52	81.48	68.81	80.49
Lample	et al., 2016	90.96	85.75	78.76	81.74

Exp – Structured and sparse attention (WMT14 fr-en)

- Compute attention c by marginalizing a graphical model (Vit_{Ω}), with sparse marginal computation $\Omega=\ell_2^2$. vs simple softmax in original version
- Regularization is needed to backprop through argmax
- Vit_O double-backward using Pearlmutter (1994) AD

	Attention	WMT14 1M BLEU
	Softmax	27.96
fr→en	Entropy reg.	27.96
	ℓ_2^2 reg.	27.21
	Softmax	28.08
en→fr	Entropy reg.	27.98
	ℓ_2^2 reg.	27.28

Exp – Audio to score alignment

7 – Code + further

- PyTorch + AllenNLP implem:
- github.com/arthurmensch/didyprog More on algo + theory in paper
 - See also SparseMAP (Niculae et al.) for a different approach at ICML'18

Mensch, Arthur and Mathieu Blondel (2018). "Differentiable Dynamic Programming for Structured Prediction and Attention". In: Proceedings of the International Conference on Machine Learning Nesterov, Yurii (2005). "Smooth minimization of non-smooth functions". In: Mathematical Programming 103.1, pp. 127–152. Niculae, Vlad et al. (2018). "SparseMAP: Differentiable sparse structured inference". In: Proceedings of the International Conference on Machine Learning. Pearlmutter, Barak A. (1994). "Fast exact multiplication by the Hessian". In: Neural computation 6.1, pp. 147–160.

Martins, André F.T. and Ramón Fernandez Astudillo (2016). "From softmax to sparsemax: A sparse model of attention and multi-label classification". In: Proc. of

Lample, Guillaume et al. (2016). "Neural Architectures for Named Entity Recognition". In: *Proc. of NAACL*, pp. 260–270.

LeCun, Yann et al. (2006). "A tutorial on energy-based learning". In: Predicting structured data 1.0.