# Intro to coding and information theories and the noisy-channel coding theorem

Jakub (Kuba) Perlin

Churchill College

2017-10-11

Introduction to coding theory

## The big picture

$$\underset{ms}{\text{messages}} \xrightarrow{\text{encode}} w \in \Sigma_{\textit{in}}^* \xrightarrow{\text{add errors}} w' \in \Sigma_{\textit{out}}^* \xrightarrow{\text{decode}} \underset{ms'}{\text{est. messages}}$$

$$Code = \{codewords\}$$

## Discrete, memoryless, noisy channel model

- Input alphabet  $\Sigma_{in}$ ,
- output alphabet  $\Sigma_{out}$ ,
- transition probabilities  $Pr(out = o_i | in = i_k)$ .

Often  $\Sigma_{in} = \Sigma_{out}$  but not necessarily.

Example: an additional "error" output symbol.

#### **Example:**

$$\Sigma_{in} = \Sigma_{out} = \{0, 1\},$$

channel flips every bit with a probability p.

# Coding theory branches

$$\underset{ms}{\text{messages}} \xrightarrow{ms} \{1..M\}^* \xrightarrow{\text{encode}} w \in \Sigma_{in}^* \xrightarrow{\text{add errors}} w' \in \Sigma_{out}^* \xrightarrow{\text{decode}} \underset{ms'}{\text{est. messages}}$$

- Source coding compression
- Channel coding error correction

#### Goals

$$\underset{ms}{\text{messages}} \xrightarrow{ms} \{1..M\}^* \xrightarrow{\text{encode}} w \in \Sigma_{\textit{in}}^* \xrightarrow{\text{add errors}} w' \in \Sigma_{\textit{out}}^* \xrightarrow{\text{decode}} \underset{ms'}{\text{est. messages}}$$

- Error detection
- Error correction

## Decoding schemes

- Maximum-likelihood decoding.
   Requires knowledge of transition probabilities.
- Minimum-distance decoding.

# Min-dist decoding



#### Definition of distance

**Hamming distance** of two *n*-words x, y = # places where they differ:

$$d(x, y) = |\{i : x[i] \neq y[i]\}|$$

**Example:** d(91111, 94321) = 3.

#### Min-dist error correction

Code's **minimal distance** = smallest distance between any two codewords.

• A code with minimal distance 2d + 1 corrects up to d errors.



## The trade off: error correction vs. efficiency

• Coding is about adding **redundancy**.

## The trade off: error correction vs. efficiency

Coding is about adding redundancy.

$$\mathsf{Rate} = \frac{\#\mathsf{meaningful\ bits}}{\#\mathsf{all\ transmitted\ bits}}$$

## 5-repetition code 'RC5'

```
M=\{0,1\} - the messages \Sigma_{in}=\Sigma_{out}=\{0,1\} - the alphabet C=\{00000,11111\} - the codewords 0\mapsto 00000 1\mapsto 11111
```

- Minimal distance = 5.
- Rate = 0.2.

#### Example:

- Receive 00000 11101 01010.
- Min-dist codewords are 00000, 11111, 00000.
- Decode to 010.

Linear codes

#### Fields

 $\mathbb{Z}_q$  (q prime) is a **field**.

Can add, subtract, multiply, divide.

Structure like the real numbers.

## Vector spaces

 $\mathbb{Z}_q^n$  is a **vector space** with field of scalars  $\mathbb{Z}_q$ .

Can add vectors and multiply by scalars.

Structure like Euclidean space  $\mathbb{R}^3$ .

#### Definition of linear codes

A linear code =  $\{codewords\}$ .

#### Definition of linear codes

A linear code =  $\{codewords\}$ .

A **linear code** is a subspace of the vector space  $\mathbb{Z}_q^n$ . (q prime)

A **subspace** of V =

a subset of V that's a vector space w.r.t. inherited operations.

 $C\subseteq \mathbb{Z}_q^n$  is a linear code  $\iff c_i+c_j\in C$  and  $orall a\in \mathbb{Z}_q$  .  $ac\in C$ .

## Linear code examples

- RC5 is a (binary) linear code,
- {0000, 1011, 0101, 1110} is a (binary) linear code,
- {000,001,100,101} is a (binary) linear code,
- $\{00, 01, 10\}$  is not (missing 01 + 10).

## Encoding

#### For an [n, k] linear code C:

- Code is a k-dimensional subspace of  $\mathbb{Z}_q^n$ .
- Identify up to  $q^k$  messages with elements of  $\mathbb{Z}_q^k$ .
- Encoding maps  $\mathbb{Z}_q^k$  injectively into  $\mathbb{Z}_q^n$ .



## Code generator matrix

We can pick a basis for the code, consisting of k vectors.

Consider a  $k \times n$  generator matrix G whose k rows are basis vectors for the linear code C.



•  $m \mapsto mG$  maps a k-word to its encoding (codeword of C)

Linear-code encoding is just a matrix multiplication.

## Parity check matrix

Every linear code has an  $n \times (n - k)$  parity check matrix H such that:

 $cH = 0 \iff c \text{ is a codeword.}$ 

# Syndromes, a quick min-dist decoding

- 1. Receive an *n*-word *r*. Compute s(r) = rH (**syndrome** of *r*).
- 2. s(r) = rH = (c + e)H = 0 + eH = s(e)
- 3. Pick the least-weight (most zero-components) vector e' satisfying s(e') = s(r).
- **4.** Decode as r e'.

What we need is a precomputed mapping from syndromes to vectors e. There are  $q^{n-k}$  syndromes.

- Storage space:  $O(nq^{n-k})$ .
- Lookup time: O(n-k).

This is a **min-dist** decoding.

## Properties of linear codes

An [n, k] linear code has a rate of k/n.

The minimum distance of a linear code is equal to the weight of the lowest-weight nonzero codeword.

(The Singleton bound) The minimum distance of an [n, k] linear code is  $\leq n - k + 1$ .

## A comparison

#### Repetition code RC5:

- Rate = 0.2,
- Corrects up to 2 errors.

#### There exists a [5, 4] linear code with:

- Rate = 0.8,
- Corrects up to 2 errors.

#### Reed-Solomon codes

Invented in the 60s. Family of codes still used in real life applications. Let you scratch and touch your CDs.

- Cyclic codes.
- More algebra!

Introduction to information theory

#### Model

$$w \in \Sigma_{in}^* \xrightarrow[\text{channel}]{\text{add errors}} w' \in \Sigma_{out}^*$$

• Model the information source as a random variable X.

## Surprisal

**Surprisal** is a property of a single outcome of a random variable.

• How much information we get when we learn  $X = x_i$ .

$$-\log_2 Pr(X=x_i) \in [0,\infty)$$

Log is the only differentiable function of  $Pr(X = x_i)$ , that is additive for independent events.

**Example:** If Pr(X = 0) = 1 and we 'learn' that X = 0, we are not surprised at all - the surprisal is 0.

### Information entropy

**Information entropy** is a property of a random variable.

Expected surprisal.

$$H(X) = E[-\log_2 Pr(X = x_i)] = -\sum_i Pr(X = x_i) \log_2 Pr(X = x_i)$$

## Entropy examples

- A Mobius strip coin has 0 entropy.
- A fair coin has  $\frac{1}{2}\left(-\log_2\frac{1}{2}\right) + \frac{1}{2}\left(-\log_2\frac{1}{2}\right) = 1$  bit of entropy.
- A fair die roll will have log<sub>2</sub> 6 bits of entropy.

## Properties of entropy

- 1. Entropy is additive for independent r.v.s.: H(U, V) = H(U) + H(V).
- **Example:** Entropy of n coin tosses is n times that of a single toss.
- **2.** Entropy of a r.v. with n possible outcomes is  $\leq \log_2 n$ .

## Source coding theorem

For a source with H bits of entropy, lossless compression at less than H bits per average message is **impossible**.



#### Model

$$w \in \Sigma_{in}^* \xrightarrow[\text{channel}]{\text{add errors}} w' \in \Sigma_{out}^*$$

- Model the information source as a random variable X.
- The channel output Y is a random variable dependent on X.

## Conditional entropy

$$H(X|Y) = E_Y[H(X|y)]$$

#### Mutual information

**Mutual information** I(X, Y) is a property of a pair of r.v.s.

$$I(X,Y) = H(X) - H(X|Y)$$

The information shared between X and Y.

#### Mutual information



## Channel capacity

$$w \in \Sigma_{in}^* \xrightarrow{\text{add errors}} w' \in \Sigma_{out}^*$$

$$C = \max_{P_X} I(X, Y)$$

**Channel capacity** = mutual information between input and output maximized over all input symbols probability distributions.

## A 'noisy typewriter' example

$$Pr('b'|'a') = Pr('a'|'a') = 1/2, \ldots, Pr('a'|'z') = Pr('z'|'z') = 1/2.$$

Typewriter's capacity =  $log_2 13$  bits:

$$C = \max I(X, Y) = \max H(Y) - H(Y|X) = \max H(Y) - 1$$
  
= log<sub>2</sub> 26 - 1 = log<sub>2</sub> 13

Noisy-channel coding theorem

#### Code's information rate

A code with M codewords of length n has **information rate** of

$$R = \frac{\log_2 M}{n}$$
 bits per transmission.

### The noisy-channel coding theorem

For any  $\varepsilon>0$  and a channel with capacity C and a number  $\delta\in(0,C)$ , there is a code with information rate  $R\geq C-\delta$  that allows data transmission with error probability  $<\varepsilon$ .

No such code exists with information rate R > C.

#### A measure of success

 $\lambda_i$  = prob. of incorrect decoding, given codeword  $x_i$  was sent.

Maximal probability of error:

$$\lambda_{max} = \max_{i} \lambda_{i}$$

**0.** Fix  $\varepsilon > 0$  and a rational  $R \in (0, C)$ .

- **0.** Fix  $\varepsilon > 0$  and a rational  $R \in (0, C)$ .
- 1. Look at random codes with  $2^{nR}$  codewords of length n. Information rate  $=\frac{1}{n}\log_2(2^{nR})=R$ .

- **0.** Fix  $\varepsilon > 0$  and a rational  $R \in (0, C)$ .
- 1. Look at random codes with  $2^{nR}$  codewords of length n. Information rate  $=\frac{1}{n}\log_2(2^{nR})=R$ .
- 2. Let X be the probability distribution (of input symbols), that achieves the channel capacity.

- **0.** Fix  $\varepsilon > 0$  and a rational  $R \in (0, C)$ .
- 1. Look at random codes with  $2^{nR}$  codewords of length n. Information rate  $=\frac{1}{n}\log_2(2^{nR})=R$ .
- 2. Let X be the probability distribution (of input symbols), that achieves the channel capacity.
- **3.** Generate  $2^{nR}$  codewords according to X. (One symbol at a time, independently.)

- **0.** Fix  $\varepsilon > 0$  and a rational  $R \in (0, C)$ .
- 1. Look at random codes with  $2^{nR}$  codewords of length n. Information rate  $=\frac{1}{n}\log_2(2^{nR})=R$ .
- 2. Let X be the probability distribution (of input symbols), that achieves the channel capacity.
- 3. Generate  $2^{nR}$  codewords according to X. (One symbol at a time, independently.)
- **4.** Prove that, for each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

=

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

There is a code with error prob. averaged over all its codewords  $< 2\varepsilon$ .

• At least half of its codewords have error probability  $< \varepsilon$ .

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

- At least half of its codewords have error probability  $< \varepsilon$ .
- Remove the others from the code!

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

==

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

- At least half of its codewords have error probability  $< \varepsilon$ .
- Remove the others from the code!
- Get a code with maximum error probability  $< \varepsilon$ .

For each codeword  $c_i$ , the error probability averaged over all codes is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

The error probability averaged over all codes and all codewords is  $< 2\varepsilon$ .

 $\Longrightarrow$ 

- At least half of its codewords have error probability  $< \varepsilon$ .
- Remove the others from the code!
- Get a code with maximum error probability  $< \varepsilon$ .
- The rate of the code drops from  $\log(C)/n$  to  $\log(C/2)/n$ .
- A decrease by only 1/n which is negligible as  $n \to \infty$ .

## Decoding scheme



We will **decode by joint typicality**, i.e. decode an output  $\vec{y}$  to a codeword  $\vec{x}$  if and only if:

•  $\vec{x}$  is the **unique** (only) codeword  $\varepsilon_2$ -jointly-typical with  $\vec{y}$ 

### $\varepsilon_2$ -typicality

A sequence  $\vec{x}$  of symbols from  $\Sigma$  is  $\varepsilon_2$ -typical (in the context of a r.v. X) if:

 $\sum_{i} \log Pr(x_i) \text{ is } \varepsilon_2\text{-close to its expected value.}$ 

#### $\varepsilon_2$ -typicality

A sequence  $\vec{x}$  of symbols from  $\Sigma$  is  $\varepsilon_2$ -typical (in the context of a r.v. X) if:

$$\sum_{i} \log Pr(x_i) \text{ is } \varepsilon_2\text{-close to its expected value.}$$

i.e. 
$$Pr(\vec{x}) \in (2^{-nH(X)-n\varepsilon_2}, 2^{-nH(X)+n\varepsilon_2})$$

#### $\varepsilon_2$ -joint-typicality

Two sequences  $\vec{x}$ ,  $\vec{y}$  (same length n) of symbols from  $\Sigma_x$ ,  $\Sigma_y$  are  $\varepsilon_2$ -jointly-typical (in the context of r.v.s X, Y) if:

$$\sum_{i} \log Pr(x_i, y_i) \text{ is } \varepsilon_2\text{-close to its expected value.}$$

i.e. 
$$Pr(\vec{x}, \vec{y}) \in (2^{-nH(X,Y)-n\varepsilon_2}, 2^{-nH(X,Y)+n\varepsilon_2})$$

and both sequences are  $\varepsilon_2$ -typical on their own.

### $\varepsilon_2$ -joint-typicality - corollary

Two sequences  $\vec{x}, \vec{y}$  (same length n) of symbols from  $\Sigma_x, \Sigma_y$  are  $\varepsilon_2$ -jointly-typical (in the context of r.v.s X, Y) iff:

$$Pr(\vec{x}) \in (2^{-nH(X)-n\varepsilon_2}, \ 2^{-nH(X)+n\varepsilon_2})$$
 and  $Pr(\vec{y}) \in (2^{-nH(Y)-n\varepsilon_2}, \ 2^{-nH(Y)+n\varepsilon_2})$  and  $Pr(\vec{x}|\vec{y}) \in (2^{-nH(X|Y)-n2\varepsilon_2}, \ 2^{-nH(X|Y)+n2\varepsilon_2})$ 

#### $\varepsilon_2$ -joint-typicality - corollary

Two sequences  $\vec{x}, \vec{y}$  (same length n) of symbols from  $\Sigma_x, \Sigma_y$  are  $\varepsilon_2$ -jointly-typical (in the context of r.v.s X, Y) iff:

$$Pr(\vec{x}) \in (2^{-nH(X)-n\varepsilon_2}, \ 2^{-nH(X)+n\varepsilon_2}) \text{ and}$$
 $Pr(\vec{y}) \in (2^{-nH(Y)-n\varepsilon_2}, \ 2^{-nH(Y)+n\varepsilon_2}) \text{ and}$ 
 $Pr(\vec{x}|\vec{y}) \in (2^{-nH(X|Y)-n2\varepsilon_2}, \ 2^{-nH(X|Y)+n2\varepsilon_2})$ 

- There are about  $2^{nH(X)}$  typical  $\vec{x}$ s.
- For a given  $\vec{y}$  there are about  $2^{nH(X|Y)}$  jointly typical  $\vec{x}$ s.
- Probability of an  $\vec{x}$  being jointly typical to a given  $\vec{y}$ :

$$p \leq \frac{2^{nH(X|Y)+n2\varepsilon_2}}{2^{nH(X)-n\varepsilon_2}} = 2^{n[H(X|Y)-H(X)+3\varepsilon_2]} = 2^{-n[I(X,Y)+3\varepsilon_2]}$$

## Decoding scheme



We will **decode by joint typicality**, i.e. decode an output  $\vec{y}$  to a codeword  $\vec{x}$  if and only if:

•  $\vec{x}$  is the **unique** (only) codeword  $\varepsilon_2$ -jointly-typical with  $\vec{y}$ 

#### Possible errors

Say we transmitted  $\vec{x}$ . An error will occur if one of the following happens:

- $\vec{x}$  is not jointly typical with  $\vec{y}$ 
  - Probability vanishes (for long n) below some  $\varepsilon_1$ .
- there's a different  $\vec{x'}$  that's jointly typical with  $\vec{y}$ 
  - We know the probability that a single  $\vec{x'}$  is jointly typical with  $\vec{y}$ .

### Error probability estimation

(Averaged over codes) Probability of a codeword  $c_1$  being incorrectly decoded:

$$Pr(\odot) \leq Pr(c_1 \text{ not jointly typical with } \vec{y})$$
  
  $+ Pr(c_2 \text{ being jointly typical with } \vec{y})$   
  $+ Pr(c_3 \text{ being jointly typical with } \vec{y})$   
  $+ \dots$   
  $+ Pr(c_{2^{nR}} \text{ being jointly typical with } \vec{y})$ 

### Error probability estimation

(Averaged over codes)

Probability of a codeword  $c_1$  being incorrectly decoded:

$$Pr(\odot) \le \varepsilon_1 + (2^{nR} - 1)2^{-nI(X,Y) + n3\varepsilon_2}$$

$$= \varepsilon_1 + (2^{nR} - 1)2^{-nC + n3\varepsilon_2}$$

$$\le \varepsilon_1 + (2^{nR})2^{-nC + n3\varepsilon_2}$$

$$= \varepsilon_1 + 2^{-n(C - R + 3\varepsilon_2)}$$

#### Error probability estimation

(Averaged over codes)

Probability of a codeword  $c_1$  being incorrectly decoded:

$$Pr(\odot) \le \varepsilon_1 + (2^{nR} - 1)2^{-nI(X,Y) + n3\varepsilon_2}$$

$$= \varepsilon_1 + (2^{nR} - 1)2^{-nC + n3\varepsilon_2}$$

$$\le \varepsilon_1 + (2^{nR})2^{-nC + n3\varepsilon_2}$$

$$= \varepsilon_1 + 2^{-n(C - R + 3\varepsilon_2)}$$

And because we do have R < C and  $\varepsilon_1 \xrightarrow{n \to \infty} 0$ :

$$Pr(\odot) \xrightarrow{n \to \infty} 0$$

#### What we've shown

For any  $\varepsilon>0$  and a channel with capacity C and a number  $\delta\in(0,C)$ , there is a code with information rate  $R\geq C-\delta$  that allows data transmission with error probability  $<\varepsilon$ .

#### Sources

- Sarah Spence Adams (Cornell University): Introduction to algebraic coding theory, 2008.
- Mai Vu (Tufts University):
   EE194 Network Information Theory, Lecture 2.
- Amon Elders (Universiteit van Amsterdam): Shannon's Noisy-Channel Theorem, 2016.
- J.H. Van Lint: Introduction to coding theory, 1992.
- Wikipedia.
- codetables.de

### Questions?

Thanks for the attention.

Thanks to Jasper Lee.