$$= \frac{30 \times (5 \times 6 - 10 \times 9)^{2}}{14 \times 16 \times 15 \times 15}$$

$$= 4.142$$

Critical value: We have d = 0.05 and degree of freedom (df) = $\frac{2}{100} = \frac{3.841}{1000}$

Decision: Since x 2 < 22, we do not reject Ho. Thus,
the median lives of Neon and Helium tubus made
by two manufacturers are same.

> KOLMOGOROV- SMIRNOV (K-5) TEST

CONE SAMPLE)

216. In a cirtain computer hardware manufacturing industry six different types of machines are working to cut pieces of wires. The number of wires of unequal length recorded in a day is as follows:

-	Machine	1	2	3	4	5	6
	No of wire	2	0	4	8	5	11

Ho: The machines equally cut wire of unequal length

Hi: The machines do not equally cut wire of unequal

length. (Two Tailed Test)

Tut- statistic : Under Ho, when the

File) [Ripo For]

Do = Maximum / Fether - Fother for he would

The resistion Guar Es,

120 61 Calculation F usp 1 cfo (for) E=npl cfe For (For) | For) Machine Noist 2/30 1 15/15 5 1 5/30 15 21 2 €. 3/30 2/301 6 500 10 + 10/30 0120 20% 8/30 6/30 5 15 15/30 14/30 5 20 20/30 19/30 5 25 25/30 30/30 5 30 30/30 9/30 14 6/30 19 6/30 30

 $D_0 = 9/30 = 0.3$

Critical value: We have do Dor and no 30 (Two to b Dn. a (Two-Tailed Test) : Dgo oor = 0242

Decision: Since Do 1> Dn, a, we reject Ho Hence, the machinus do not equally cut wires of unequal lingth.

Q18. A game consists of four pairs of wolor cards. Twenty chimpanaces of same age were taught the matching game of wood cards for a specified period of time. At the end of the training 4 pairs of color caroli wire given to each chimpanzee for matching. The results were as follows:

	\			<u>^</u>	Y		+ · · ·	/1
Matched set	0	1. 5. 6.	\ .	10:12	• •	e Agenga	31 1	7
Frequency	l	0		5		7		
								C

Does chimpanzee recognize wolors? Use Kolmogoror Smirnov test at 5% level of significance?

Ho: Chimpanzes recognize colors Mr. Chimpanzius do not recognize Colors (Two tailed

Tut- statistic : Under Ho,

Do = Maximum / Fe (2) - Fo (2) Eximpe 1 F. M. . L. Fe(2) | Fe(2) - Fo(2) Matched set Frequency Cfo En E=np 4/20 3/20 1 1/20 4 8/20 1 1/20 4 6 6/20 4 and 120to 12/20 saint/20 13 to 13 to 13 to 4 16/20 13/20 16 n 7 11 20 20/20 4 20 20/20

Do = 7/20 = 0.35

Critical value: We have d = 0.05 and n = 20

Dn, d (Two tailed test) = D20, 0.05 (Two Tailed test)

= 0.294

Decision: Since Do > Dn, a, we reject Ho. Thus, chim panzees do not recognize colors.

Q. A random sample of 20 volume: based internet have following speed of interconnection in mps:

 $3 \cdot 1, 3 \cdot 0, 2 \cdot 9, 3 \cdot 3, 3 \cdot 0, 2 \cdot 9, 3 \cdot 0, 2 \cdot 9, 3 \cdot 0, 2 \cdot 9.$

Apply Kolmogorov- Smirnov test for testing that the internet speed are equally distributed. Use of = 5%.

Solution

in what out

Creating frequency table of above dator

Internet		Free	quency	.c fo	Fo(x)	E=np	Cfe	fe(*)	(fex) -
2.6	6/25 hg	1.65.0	1,	/	1/20	20/9	20/8	.('\'	
2.7			1	200	2/20	20/8	20/4	1-1	
2. 4. 2. 8	! 2 !	5-12	2 2 1	/4 F	4/20	20/8	3100/8	. 7	
2.9	5	1.2	5 1/	9		20/8			
3.0	F_{i}		6	15		20/8			
3.1	1. 18. 18. 7	1 1/170	3/	112.18	18/20	320/8	6#	20/8	
3.2		3-10 1331	1	19	19/20	20/8	7*	20/8	
3.3			1 .	2.0	20/20	20/8	20	, c	

Ho: Internet speeds are equally distributed

Hi: Internet speeck are not equally distributed.

Test- Statistic : Under Ho,

PTO

Do = Maximum | Fe(x) - Fo(x) |

calculation Tabulating above data as follows:

ומשעומאיר	40.0		1 - 1 . 11				Fe(x) - Fo(x)
Internet Speed	Frequency	cfo	Fo (th)	E=np	cfa.	Fe(n) 4.5/40	1.5720
2.6 2.7 2.8	\(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2	- 1 2 4	1/ ₂₀ 2/ ₂₀ 4/ ₂₀	2.5 2.5 4.5	1.5 5 7.5	720 7.5720 10/20	3/20 3·5/20 1/20
4.9 3.0	5	9 15	9/20 157 ₂₀ 18/20	2.5 2.5 2.5	10.0 14.5 15.0	12.5720	3/20
3·2 3·3	1 1	19	19/20	2.5	20.0	17.5/20	,

Critical value: We have, q: 0.05 and n= 20. Dn, a (Two tailed test) = D20, 0.05 (Two tailed test) troids. adt tods prince it two

Decision: Since Do < Dan, A, we accept Ho. Thus, internet speeds are equally dictorbuted.

[TWO SAMPLES]

TEQUAL CASE) Q12. Amount of time required to design website by software developers A and Bare found as follows:

1 4-0 900 2500 1400	4-8	8-12	12-16	16-20
Time this	7	12	5 p	4
No of websites designed by A 2.	9	8	4	. 3

Does A take more time than B to design website? Use Kolmogorov-Smirnov test at 5% level of significance.

Solution

Ho: A down't take more time than B to duign website HI: A takes more time than B to design website (One Tailed Test)

Test - statistic . Under Hoj Do = Maximum (Fx) - F(y) e Statistic : Cader 20

 $\mathcal{Q}_{2}: \mathcal{S}_{2}(x_{0}^{2}n_{1}u_{2}u_{2}) \mid \mathcal{F}_{2}(x_{0}) - \mathcal{F}_{2}(x_{0}) \mid$

Time (hrs)	fre	fy	cfa	F(*)	c fy	F(y)	F(x) - F(y)
0-4	2	6	2 '8	2/30	61.	6/30	4/30
4-8	7.	21	9 ,	9/30	15	15730	6/30
8-13	12	\$ • 5	21	21/30	23	23/30	2/30
12-16	75/41	4 21	20	26/30	27	27/30	1/30
10-20	7	3	30	30/30	30	30/30	0
4	n;=30	n _a = 30	V\$ 1				<u>;</u> - :
26.23	36. D.	= 6/30	= 0.2	t -	5 A1		1.0
*	12/22	130	31135	1			

Critical value: We have d=0.05, n, = 30, n, = 30

... D (One Tailed Tut) = D (One Tailed Tut)
(n, n, n, n), d (30, 30), 0.05

Decision: Since Do (Dn, n2), d, we do not reject Ho. Thus,

A doun't take more time than B to duign website.

Q13. Two independent samples of 26 junior programming and 25 senior programming smokers selected from a software company used to smoke following number of cigarettes per day.

Number of cigarettes	0-2	2-4	4-6	6-8	8-10	10-12	12-14
Number of junior programmer	7	6	13 Turke	(-3	2	3	2
Number of series	5	4	6	3	4	2	1

Using Kolmogorov Swirnov test identify if there is any significance between junior and senior programmer. Use 0.05-level of significance.

Solution

Atoling is the test of contract on the

Ho: There is no significance between junior and senior programmer.

Hi: There is a significance between junior and senior programmer. (Two tailed test)

Test- statistic: Under Ho,

Do = Maximum | F &) - F(y) |

No. of	- fa	fy	Cfx:	Fe)	c fy	Fy)	Fe1 - Fey)
ciganities	THE.			7/	5 F	5725	0.069
0-2	7:/4	5 0	7.	7/26	9.	9/15	0:14
2-4	66	4.	1.9	13/26	15	1725	0.053
4-6	4	6	17	17/26		18/25	0.010
6-\$	2	3	17	19/26	18	22/25	0.072
8-10	2	4	21	21/26	22	24/25	0.036
10-12	3	2	24	24/26	24 :	· · · · · · · · · · · · · · · · · ·	0
12-14	2	1	26	26/26	25	12/12	V_
	n=26	n,=25	•	10.2:1	100,4 5 %	9 5, 6	. ** : : : .

... ! (or "whet to) 4 1.0 = 100 (in half Tree,)

Critical values: We have, d=0.05, $n_1=26$, $n_2=26$ $D_{(n_1,n_2)}$, d=0.05, $n_1=26$, $n_2=26$ $D_{(n_1,n_2)}$, d=0.06 $D_{(n_1,n_2)}$, d=0.06 $D_{(n_1,n_2)}$ $D_{(n_1,n_2)}$

: ban entermated to the state of the state

Decision: Since Do < D(n,,n2), d, we do not reject Ho.

Dung Kindonggeron Sammer test identify it there is and signify and between junior and scaler programmen. See o.c.stewer significance.

Jun 120 6

16: There is no significance between jumer and senior programment.

in there is a significance setwen junior and senior or conformation (To parted 44).