Fast Track CHEMISTRY 2011

SECTION 1

1	a
2 3 4 5 6 7	b
3	a
4	b
5	d
6	С
7	b
8	d
9	d
10	d
11	С
12	a
13	d
14	d
15	b
16 17	b
17	С
18	a
19	b
20	b
21	C C
22	С
23	С
24	b
25	d
26 27	a
27	b
28	d
29	b
30	b

SECTION 2

1 a) $\begin{array}{ccc} Ag^+_{(aq)} + Br^-_{(aq)} & \longrightarrow & AgBr_{(s)} \\ \text{Two colourless solutions mix to form white precipitate.} \end{array}$

b)
$$Cu^{2+}_{(aq)} + 4NH_{3(aq)} \longrightarrow [Cu(NH_3)_4]^{++}_{(aq)}$$

Pale blue solution mixes with colourless solution to form deep blue solution.

$$\mathsf{CH_3CH_2OH}_{(aq)} + \mathsf{CH_3CH_2COOH}_{(aq)} \xrightarrow{\mathsf{H^+}} \mathsf{CH_3CH_2COOCH_2CH_3} + \mathsf{H_2O}$$

c)
Two colourless solutions combine to form a **sweet smelling** colourless solution.

- d) $2\text{MnO}_{4~(aq)}^{-} + 6\text{H}^{+} + 5\text{H}_{2}\text{O}_{2(aq)} \longrightarrow 2\text{Mn}^{2+}_{(aq)} + 8\text{H}_{2}\text{O}_{(l)} + 5\text{O}_{2(g)}$ Purple solution is added to colourless solution and a colourless, odourless gas is evolved. [12 MARKS]
- 2.a) $1s^22s^22p^63s^23p^6$
 - b) $1s^22s^22p^6$

[2 marks]

3.

Species	Structural formula (showing all valence shell electrons)	Shape (sketch or name)
sulfur dioxide, SO ₂	.ö.	BENT
Sulfate ion, SO ₄ ²⁻	: Ö: : Ö: Ö: : Ö:	2- TETRAHEDRAL
Nitrogen trichloride, NCl ₃	:Öl: W:Öl: :Öl:	PYRAMIDAL

[6 marks]

- 4. a) MgCl₂ consists of a strong ionic lattice which takes considerable energy to break, SCl₂ is a covalent substance and only relatively weak intermolecular forces need to be overcome, therefore it melts at a lower temperature.
 - b) In the solid form all ions are in a rigid lattice and are not free to carry a charge. In the molten state, the ions are free to move and carry charge.
 - c) i) Yes, the solution contains mobile ions to carry charge.
 - ii) Yes, although PCl₃ is covalent, the pH is lower than 7, so there must be ionisation of water to some extent, therefore the solution will conduct an electric current.

[6 marks]

Fast Track CHEMISTRY 2011 Answers

5.

Name of Compound	Molecular Formula	Empirical Formula	Structural Formula
1,3-dibromobenzene	C ₆ H ₄ Br ₂	C ₃ H ₂ Br	Br Br
2-methyl-3-pentanol	C ₆ H ₁₄ O	C ₆ H ₁₄ O	CH ₃ H ₃ C — CH CH CH ₂ CH ₃ OH
2,2-dimethylcyclopentanone	C ₇ H ₁₂ O	C ₇ H ₁₂ O	CH ₃ C CH ₃ CH ₂
Ethylethanoate	C ₄ H ₈ O ₂	C ₂ H ₄ O	O H ₃ C -C -O CH ₂ -CH ₃
Ethylcyclobutane	C ₆ H ₁₂	CH ₂	H_2C CH_2 CH_2 H_2C CH_2

[7 marks]

6. (a) methanal

(b) 2-butanone

(c) ethoxide ion ($CH_3CH_2O^-$) [3 marks]

7.

(a)

Description of Test	
e.g.: Add excess sodium hydroxide to samples of each.	
Observation with magnesium chloride	
White precipitate forms that does not re-dissolve.	
Observation with zinc chloride	
White precipitate forms that re-dissolves in excess sodium hydroxide (i.e.: soluble $[Zn(OH)_4]^{2-}$ forms)	
(b) Samples of ammonia gas and nitrogen gas. Description of Test	
e.g.: Bubble each through distilled water and test with red litmus paper.	
Observation with ammonia gas	
Turns red litmus blue.	
Observation with nitrogen gas	
No observable reaction with red litmus.	
8]	marks]

solutions of magnesium chloride and zinc chloride.

Fast Track CHEMISTRY 2011 Answers

- 8. (a) bromine and chlorine incorrectly placed.
 - (b) e.g.: $Cl_{2(g)} + 2Na_{(s)} \longrightarrow 2NaCl_{(s)}$
 - (c) I⁻, Br⁻, Cl⁻, F⁻
 - (d) e.g.: $2Ag^{+}_{(aq)} + 2I^{-}_{(aq)} \longrightarrow 2Ag_{(s)} + I_{2(ag)}$
 - (e) Fluorine would oxidise all of the halides present producing free halogens in the solution and fluoride ions.
 - (f) Fluorine would also oxidise some of the water present

i.e.:
$$2F_{2(g)} + 2H_2O_{(l)} \longrightarrow O_{2(g)} + 4F_{(aq)} + 4H_{(aq)}^+$$

[8 marks]

9. (a).

(b) (i) A Neon atom:

1s² 2s²2p⁶ Reaction Co-ordinate

(ii) A Potassium ion:

 $1s^2 2s^2 2p^3 3s^2 3p^6$ [1]

[4 marks]

10. a)

b)

Or other representation eg:

- c) Addition Polymerision
 - d) For example: Add bromine water, if the bromine water decolorised it would indicate unsaturation and that the reaction was incomplete.

[6 marks]

$$k = \frac{|CO||Br_2|}{[COBr_2]}$$

b)

CHANGE	EFFECT ON NUMBER OF MOLES OF COBr ₂	REASON
Bromine gas is rapidly		Reverse reaction favoured
introduced to the reaction flask at a constant volume		when extra product introduced
and temperature.		
Ethene gas is rapidly		Ethene is unsaturated ∴Br ₂
introduced to the reaction		reacts and is consumed.
flask at a constant volume	 	∴FWD reaction favoured
and temperature.	Y	
The volume of the system is		Greater volume will cause
allowed to expand at a		equilibrium position to shift to
constant temperature	↓	side with greatest moles of gas ∴favour FWD reaction

[7 marks]

SECTION THREE

1.
$$2Al^{3+} + 3CO_3^{2-} \rightarrow Al_2(CO_3)_3$$

n = **cV**
 $n(Al(NO_3)_3) = 1.00 \times 0.250 = 0.250 \text{ mol}$
 $\therefore n(Al^{3+}) = 0.250 \text{ mol} [1]$
 $n(Na_2CO_3) = .500 \times 0.500 = 0.250 \text{ mol}$
 $\therefore n(CO_3^{2-}) = 0.250 \text{ mol} [1]$
 $n(CO_3^{2-})_{required} = (3/2) \times n(Al)$
 $= (3/2) \times 0.250 = 0.375 [1]$

 \therefore (CO₃²⁻) is the limiting reagent as there is only 0.250 mol present. [1]

n (Fe²⁺)

[2 marks]

= $(5/1) \times n(MnO_4)_{total}$ = 0.05322 mol [1]

m = n x M
m(Fe) = 0.05322 x 55.85
= 2.972 g [1]
%(Fe) =
$$(2.972/4.910)$$
 x 100 = **60.5**% [1]

[7 marks]

(b) H⁺ ions are required for the reduction of the MnO₄⁻ ion. [1] In this reaction sulfuric acid is used to dissolve the alloy so the solution is already acidic [1]

[2 marks]

4. (a)

	Titrations		
	1	2	3
Final Reading (mL)	15.90	31.75	47.65
Initial Reading (mL)	0.00	15.90	31.75
Titre (mL)	15.90	15.85	15.90

[1]

Average Titre = 15.88 mL = 0.01588 L [1]

$$\mathbf{n} = \mathbf{cV}$$
 $\mathbf{n}(HCl) = 1.05 \times 0.01588 = 0.01668 \text{ mol } [1]$
 $\mathbf{n}(NaOH)_{unreacted} = \mathbf{n}(HCl) = 0.01668 \text{ mol } [1]$
 $\mathbf{n}(NaOH)_{initial} = 0.500 \times 0.0500 = 0.0250 \text{ mol } [1]$
'back titration'
 $\mathbf{n}(NaOH)_{reacted} = \mathbf{n}(NaOH)_{initial} - \mathbf{n}(NaOH)_{unreacted} [1] = 0.0250 - 0.01668$
 $= 8.32 \times 10^{-3} \text{ mol } [1]$
triprotic acid
 $\mathbf{C}_6\mathbf{H}_8\mathbf{O}_{7(aq)} + 3\mathbf{OH}_{7(aq)}^{-1} \rightarrow \mathbf{C}_6\mathbf{H}_5\mathbf{O}_{7^{-1}(aq)}^{-1} + 3\mathbf{H}_2\mathbf{O}_{(l)}[1]$

$$\text{...} \qquad \text{n(C}_6\text{H}_8\text{O}_7) \qquad = (1/3) \text{ x n(NaOH)}_{reacted} = (1/3) \text{ x 8.320 x } 10^{-3} \text{ mol} \\ = 2.773 \text{ x } 10^{-3} \text{ mol } [1]$$

$$\mathbf{m}$$
 = $\mathbf{n} \times \mathbf{M}$ $M(C_6H_8O_7)$ = 192.124 $m(C_6H_8O_7)$ = 2.773 x 10⁻³ x 192.124 = 0.5327g [1]

$$\therefore$$
 % by mass = (0.5327/8.00) x 100 = **6.66%** [1]

[11 marks]

5. a)
$$n(FeS_2) = m/M$$

= 9.00 x 10⁶/119.97
= 7.502 x 10⁴ moles

∴
$$n(H_2SO_4)= 8/4 \times 7.502 \times 10^4$$

= 1.500 x 10⁵ moles

$$\therefore$$
 n(H⁺) = 1.500 x 10⁵ x 2

```
= 3.00 \times 10^5 moles

∴ [H^+] = 3.00 \times 10^5/3.00 \times 10^7

= 1.00 \times 10^{-2} molL<sup>-1</sup> [3 marks]

b) pH = -\log[H^+]

= -\log(1.00 \times 10^{-2})

= 2.00 [2 marks]

c) n (NaOH)= m/M

= 9.00 \times 10^6/39.998

= 2.25 \times 10^5 mol

= n(OH<sup>-</sup>) [3 marks]
```

i.e.: needed 3.00 x 10^5 moles of $OH^{\text{-}}$ ions to neutralise acid, \therefore insufficient base added.

SECTION FOUR

Essay One

The following points should be included in a *good* essay:

- ◆ General discussion of electrical conductivity and how it relates to dissolved ions in solution
- ◆ Discussion of polar vs. non-polar and how the polar substances are only weakly ionised, this discussion should also include strong vs weak acids and electrolyte strength
- ◆ Discussion of how all of the purely ionics compounds are good electrolytes due to the formation of ions in solution
- ◆ A thorough discussion of the halogen halides and how although covalent, generally are good electrolytes due to their acidic nature, i.e.: they protonate to form H₃O⁺ ions as well as halide ions so that charge can be carried.
- ◆ Notably, HF is a weak electrolyte due to the strong covalent bond between H and F. ie: F is very electronegative, ∴HF is a weak acid and a weak electrolyte. Discussion should involve distance between valence shell and charge centre for fluorine.