

Gebrauchsmuster

U 1

- (11) Rollennummer 6 87 05 723.9
- (51) Hauptklasse FO1N 3/28 Nebenklasse(n) BO1J 35/04
- (22) Anmeldetag 18.04.87
- (47) Eintragungstag 19.06.87
- (43) Bekanntmachung im Patentblatt 30.07.87
- (54) Bezeichnung des Gegenstandes Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen
- (71) Name und Wohnsitz des Inhabers Thyssen Industrie AG, 4300 Essen, DE
- (74) Name und Wohnsitz des Vertretærs

 Eberhard, F., Dipl.-Phys. Dr.-Ing., Pat.-Anw.,
 4300 Essen

Ansprüche:

- 1. Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen als Katalysatorträger, <u>dadurch gekennzeichnet</u>, daß die Querschnitte der Einzelkanäle (?) ein Verhältnis der Breite (3) zur Höhe (4) von 1,5 bis 15 aufweisen.
- 2. Wabenkörper nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß die Breite (3) der Einzelkanäle (2) ca. 3 bis 8 mm beträgt und die Höhe (4) der Einzelkanäle (2) 0,65 bis 0,9 mm beträgt.
- 3. Wabenkörper nach Anspruch 1 oder 2, aus Metallfolien, bei dem eine gewellte Folie von einer glatten, ungeprägten Folie gehalten ist, dadurch gekennzeichnet, daß bei der gewellten Folie (6) die Wellen (8, 9) mit der Höhe (4) der Kanäle (2) abwechselnd nach beiden Seiten aus der Folie (6) herausgeprägt sind
- 4. Wabenkörper nach Anspruch 1 oder 2 aus pfeilförmig gewellten Metallfolien, <u>dadurch gekennzeichnet</u>, daß die Wellenberge (10, 11) je
 zweier aufeinanderliegender Folien (6) in die gleiche Richtung,
 nämlich senkrecht zur Oberfläche der Folien (6) weisen, die pfeilförmigen Spitzen (12,13) der Wellenprägung aufeinanderliegender
 Folienlagen (6) jeweils in entgegengesetzte Richtung zeigen.
 - 5. Wabenkörper nach Anspruch 1 oder 2 aus gewellten Metallfolien, die schrägverzahnt sind, dadurch gekennzeichnet, daß die Wellenberge (10, 11) je zweier aufeinanderliegender Folien (6) in gleiche Richtung, nämlich senkrecht zur Oberfläche der Folien (6), weisen und die Richtungen (6) der Schrägverzahnung gegen die Folienquerrichtung (14) jeweils aufeinanderliegender Folien (14) jeweils verschieden sind (15, 16).
- 35 6. Wabenkörper nach einem der obigen Ansprüche, <u>dadurch gekennzeichnet</u>, daß die Querschnitte der Einzelkanäle (2) im zentralen Flächen-bereich der Wabenkörper-Querschnittsfläche größer sind als die Querschnitte der Einzelkanäle (2) im Außenbereich.

Essen, den 13.4.1987 PZ 3425 Fö/bk

5

1

THYSSEN INDUSTRIE AG Am Thyssenhaus 1 4300 Essen 1

10 Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen

Die Erfindung betrifft Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen. Die Wabenkörper dienen als Träger für Beschichtungen, insbesondere als Träger für einen edelmetallimprägnierten Wash-Coat.

15

Nach dem deutschen Gebrauchsmuster 73 02 106 werden zur Herstellung von Wabenkörpern aus Heizleitermaterial Folien wellig geprägt und abwechselnd mit einer glatten, ungeprägten Folie zum Körper gewickelt bzw. gestapel. Die ungeprägte, glatte Folie dient zur Abstandshaltung. Der Nachteil dieser Anorchung ist es nun, daß ca. 20 % der effektiven Folienoberfläche als Anlagefläche dient und damit der chemischen Schadstoffumsetzung nicht zur Verfügung steht. Hierbei werden trapezförmige Kanäle einer mittleren Breite von ca. 1,1 mm und einer freien Höhe von ca. 1,1 mm gebildet. Nach Beschichtung mit einem keramischen Material (Wash-Coat) sind die freien Kanalquerschnitte etwa kreisförmig ausgebildet, weil sich in den Ecken dickere Wash-Coat-Schichten ablagern als auf den freien Folien-Flächen. Die für Anwendungen als Katalysatorträger für Kraftfahrzeuge üblichen Durchmesser der Kanalquerschnitte betragen dann etwa 1 mm, nachdem der Wash-Coat aufgebracht ist.

Joe heute überwiegend üblichen Wabenkörper aus Keramik mit 400 Zellen/
inch² weisen quadratische Kanalquerschnitte mit 1,1 x 1,1 mm auf.

Die Wash-Coat-Ansammlung in den Ecken führt auch hier zu einem mehr kreisförmigen Querschnitt der Kanäle von ca. 1 mm Durchmesser.

In der DE-OS 27 59 559 wird vorgeschlagen, die Folie für Katalysatorträger-Wabenkörper pfeilförmig verzahnt zu prägen. Bei jeweils um 180°

5 gedrehten Folienlagen mit dadurch entgegengesetzten Pfeilrichtungen
kann auf eine glatte Zwischenlage verzichtet werden. Die sich überscheidenden Wellenberge sorgen für die Abstandshaltung. Eigene Messungen
zeigen nun, daß hierbei eine folge großer und kleiner hydraulischer
Durchmesser je eines Kanales entsteht, obwohl die Querschnittfläche

10 pro Kanal konstant bleibt. Dies führt zu wesentlich erhöhten Druckverlusten in der Summe über die Kanallänge, oder bei einer Vergrößerung
der Wellenquerschnitte zu gleichem Druckverlust wie bei dem Katalysatorträger mit Zwischenlage, dann aber zu verringerten chemischen Schadstoffumsetzungen bei gleichem Katalysator-Trägervolumen.

15

Es ist nun Aufgabe der Erfindung, die Kanal-Querschnittsform so auszubilden, daß ein größeren Verhältnis von Schadstoffumsatz zu Druckverlust erzielt wird.

Die Aufgabe wird bei einem Wabenkörper der eingangs genannten Gattung dadurch gelöst, daß die Querschnitte der Einzelkanäle ein Verhältnis von Breite zur Höhe von 1,5 bis 15 aufweisen. Es wurde nun überraschend gefunden, daß sich bei den laminaren Strömungen, wie sie in den Trägern auftreten, die Ausbildung der Kanalquerschnitte als Spalt bzw. Rechteck oder mit ovaler Form ein bis zu 30 % besseres, d.h. größeres Verhältnis des Schadstoffumsatzes zum Druckverlust ergibt. Die Form der Kanäle führt zu einer geringeren Wandfläche als bei den Wabenkörpern nach dem Stand der Technik gleicher Größe und bringt insbesondere bei Wabenkörpern aus Metall noch den Vorteil, daß eine verringerte Folienmenge erforderlich ist.

Wenn der Wabenkörper aus Keramik besteht, läßt sich die erfindungsgemäße Querschnittsform durch eine geeignete Ausbildung des Extrusionswerkzeuges leicht einstellen.

35

Im einzelnen kann die Erfindung wie folgt vorteilhaft ausgestaltet sein.

Günstige Verhältnisse von Schadstoffumsatz zu Druckverlust bei guter Stabilität der Wabenkörper werden dadurch erreicht, daß die Breite der Einzelkanäle ca. 3 bis 8 mm beträgt und die Höhe der Einzelkanäle 0,65 bis 0,9 mm. Große Breiten der Querschnitte wirken sich nachteilig auf die Festigkeit der Wabenkörper aus.

Der Wabenkörper aus Metallfolien, bei dem eine gewellte Folie von einer glatten, ungeprägten Folie gehalten ist, kann so aufgebaut sein, daß bei der gewellten Folie die Wellen mit der Höhe der Einzelkanäle abwechselnd nach beiden Seiten aus der gewellten Folie, die im übrigen glatt ist, herausgeprägt sind. Die glatten Folien liegen dann jeweils den Scheitelpunkten der herausgeprägten Wellen an, und die Einzelkanäle haben außer der Querschnittsfläche mit dem Breiten- und Höhenverhältnis von 1,5 bis 15 damit zusammenhängend die Flächen der herausgeprägten Wellen.

Um im Fall der Metall-Folien-Träger einen Teil der Folienmenge, die bisher als Anlagefläche verwendet wird, einsparen zu können, schlägt die Erfindung vor, die seitliche Begrenzung der langgezogenen Kanalquerschnitte und die Abstandshaltung der Folienlagen mit Hilfe von pfeilförmig verzahnten Wellen auszuführen. Dabei zeigen die Wellenberge aufeinanderfolgender Folienlagen in die gleiche Richtung, die Pfeilspitzen der Wellenberge aufeinanderfolgender Folienlagen aber jeweils in entgegengesetzte Richtung. Auf diese Weise wird ein nahezu rechteckiger Kanalquerschnitt erzeugt, dem sich ein kleinerer Flächenanteil der Wellung der darauffolgenden Folienlage hinzu addiert. Auf diese Weise dienen nur etwa 5 bis 7 % der gesamten Folienberfläche als Anlagefläche. Dabei erfolgte die Begrenzung der Breite der Kanäle durch die pfeilförmig geprägten Wellen.

Statt mit einer pfeilförmigen Wellung kann der Wabenkörper auch mit schrägverzahnten Wellungen so ausgebildet sein, daß die Wellenberge je zweier aufeinanderliegenden Folien in gleicher Richtung, nämlich senkrecht zur Oberfläche der Folie, weisen, die Richtung der Schräg-

verzahnung gegen die Folienquerrichtung jeweils aufeinanderliegender Folien mit unterschiedlichen Winkeln angeordnet sind. Durch die verschiedenen Winkel kreuzen sich die Wellen und dienen als Abstandshalter und seitliche Begrenzung der langgezogenen Kanalquerschnitte.

Bei beiden Ausführungsarten können die aufeinanderliegenden Folienlagen entweder durch Wickeln oder Aufeinanderschichten hergestellt werden.

10

In einer besonders vorteilhaften Ausgestaltung sind die Querschnitte der Einzelkanäle im zentralen Flächenbereich der Wabenkörper-Querschnittsfläche größer als die Querschnitte der Einzelkanäle im Außenbereich. Da die Rauchgasströmung bzw. Strömung der Verbrennungsgase ein Tempera-15 turprofil mit höherer Temperatur in der Mitte des Abgasrohres aufweist und die Diffusionskonstanten der Schadstoffe mit der Temperatur steigen, die Dichte des Gases aber sinkt, wirkt sich die Vergrößerung der Kanalquerschnitte im inneren Bereich der Katalysatorträger günstig auf den Druckverlust aus, ohne den chemischen Umsatz zu senken. Außerdem wird 20 durch die Maßnahme der Folienbedarf wesentlich verringert. Ein derartiger Wabenkörper ist durch Aufwickeln der Folien leicht herstellbar. Zu Beginn des Aufwickelns der Folien ist ein sehr kleiner Krümmungsradius vorhanden, der beim weiteren Aufwickeln abnimmt. Wegen des kleineren Krümmungsradius spannen sich die schräg- oder pfeilverzahnten Wellen 25 zu Beginn stärker ab, als am Außenumfang des Körpers. Auf diese Weise werden im Innenbereich des Gesamtquerschnittes der Wickelkörper die größeren Kanalquerschnitte und damit größere hydraulische Durchmesser erzielt als außen.

- 30 Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels erläutert. Es zeigen im einzelnen
 - Figur 1 eine schematische Darstellung eines Ausschnitts der Stirnfläche eines Wabenkörpers aus Keramik,

35

Figur 2 eine schematische Darstellung eines Ausschnitts zwei Folienlagen eines Wabenkörpers aus Metallfolien mit einer glatten Zwischenschicht,

Figur 3 eine andere Gestaltung zweier Folienlagen mit Metallfolien ohne Zwischenschicht und

Figur 4 eine weitere Ausführungsart zweier Folienlagen mit Metallfolien ohne Zwischenschicht.

Ein Wabenkörper 1 zur Reinigung der Abgase von Verbrennungsmaschinen
10 dient als Katalysatorträger. Die Querschnitte der Einzelkanäle weisen
ein Verhältnis der Breite 3 zur Höhe 4 von 1,5 bis 15 auf. Dabei heträgt die Breite 3 der Einzelkanäle 2 ca. 3 bis 8 mm und die Höhe 4 der
Einzelkanäle 0,65 bis 0,9 mm. Der keramische Wabenkörper der Figur 1
ist durch Extrudieren hergestellt. Auf den Wänden des Wabenkörpers 1
15 ist eine Beschichtung aus einem keramischen Material (Wash-Coat) 5
aufgebracht.

Bei den in Figur 2 dargestellten zwei Folienlagen eines Wabenkörpers aus Metallfolien, aus der der gesamte Wabenkörper 1 aufgebaut wird,

20 ist eine gewellte Folie 6 von einer glatten ungeprägten Folie 7 gehalten.

Bei der gewellten Folie 6 sind die Wellen 8, 9 mit der Höhe 4 der Kanäle abwechselnd nach beiden Seiten aus der Folie 6 herausgeprägt. Bei
dieser Ausführungsart weisen die Einzelkanäle Zusatzvolumina von der
Größe der Wellen 8,9 auf.

In der Ausführungsart der Folien, aus denen der Wabenkörper aufgebaut wird nach Figur 3, sind die Wellenberge 10, 11 je zweier aufeinanderliegender Folien in die gleiche Richtung, nämlich senkrecht zur Oberfläche der Folien, in der Zeichnung nach oben, herausgeprägt. Die Wellen sind pfeilförmig ausgebildet und die Pfeilspitzen 12, 13 der aufeinenderliegenden Folien 6 zeigen jeweils in entgegengesetzte Richtung. Auch bei dieser Ausführungsform kommt zu dem Volumen des rechteckigen Einzelkanals mit der Breite 3 und der Höhe 4 das Volumen der Wellen 10, 11 hinzu.

Nach Figur 4 sind bei Metallfolien mit schrägverzahnten Wellen die Wellen ebenfalls in einer Richtung, in der Zeichnung nach oben, aus den Folien herausgeprägt. Die Richtungen der Schrägverzahnung der beiden aufeinanderliegenden Folien 6 gegen die Folienquerrichtung 14, & 15 und - & 16

25

5

sind verschieden. Im Ausführungsbeispiel der Figur 4 unterscheiden sie sich durch das Vorzeichen.

Durch die Ausführung der Querschnitte der Einzelkanäle 2 in gestreckter Form wird trotz der Beschichtung mit Wash-Cost 5 ein großer, freier Querschnitt mit geringem Strömungswiderstand ohne Beeinträchtigung der umgesetzten Schadstoffmenge erreicht. Bei Versuchen mit einem 10 Metallkörper mit pfeilförmiger Ausbildung der Wellungen nach Figur 3 wurden gegenüber einem Metallkörper mit einer glatten Zwischenlage, bei dem die Wellung nach dem Stand der Technik mit kleinen, nahezu kreisförmigen Kanalquerschnitten von rd. 1 mm² ausgeführt war, folgende Werte erhalten:

15

5

Prägehöhe	der	Wellen	0,85 mm, pfeilverzahnt mit
			6 Angtellwinkel (M)

freie	Kanalhöhe	0,72 mm
freie	Kanalbreite	5 mm

20 Druckverlust verringert um 15 %

chemischer Umsatz verbessert

Folienmenge pro verringert um 30 %

Katalysatorvolumen

25 Der aus den Folien nach Figur 3 gewickelte Körper wies im Innenbereich des Gesamtquerschnittes des Wickelkörpers (nicht dargestellt) größere Kanalquerschnitte und damit hydraulische Durchmesser auf als außen.

30

35

Essen, den 13.4.1987 PZ 3425 Fö/bk

5

ZUSAMMENFASSUNG

Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen

10 Wabenkörper zur Reinigung der Abgase von Verbrennungskraftmaschinen dienen als Träger für mit einem Edelmetall imprägnierten Wash-Coat. Die bekannten Wabenkörper weisen quadratische Kanalquerschnitte mit rd. 1,1 \times 1,1 mm² Querschnittsfläche auf. Die geringen Querschnitte führen, noch verstärkt durch Ablagerungen von dickeren Wash-Coat-Schichten in den Zwickeln, zu 15 hohen Strömungswiderständen. Eine wesentliche Verringerung der Strömungswiderstände ohne Verkleinerung der umgesetzten Schadstoffmengen bei einer Einsparung an Wabenkörpermaterial wird dadurch erreicht, daß die Wabenkörper (1) Einzelkanäle (2) aufweisen, die ein Verhältnis der Breite (3)

20

Figur 1

zur Höhe (4) von 1,5 bis 15 haben.

25

 f^{-1}

Essen, den 13.4.1987 PZ 3475 Fö/bk

BEZUGSZEICHENLISTE

- 1 Wabenkörper
- 2 Einzelkanäle
- 3 Breite
- ਂ 4 ਮੋਲੋਂ ਮਿ
 - 5 Wash-Coat
- 6 gewellte Folie
- 7 glatte, ungeprägte Folie
- 8 Welle
- 9 Welle
- 10 Wellenberg
- 11 Wellenberg
- 12 Pfeilspitze
- 13 Pfeilspitze
- 14 Folienquerrichtung
- 15 oc
- 16 -d

