ANALISIS POLA PEMBELIAN PADA DATA E-COMMERCE DENGAN ALGORITMA APRIORI

Kelompok 2

- Christopher Abie Diaz Doviano (00000067692)
- Jovanka Suryajaya (00000069834)
- Juanito Arvin William (0000069843)
- Julius Calvin Saputra (00000068626)

Import Library

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# associative Learning Libraries
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

import warnings
warnings.filterwarnings("ignore")
```

In [2]: # Membaca dataset 1
 de=pd.read_csv('Order Details.csv')
 de

Out[2]:		Order ID	Amount	Profit	Quantity	Category	Sub-Category
	0	B-25601	1275.0	-1148.0	7	Furniture	Bookcases
	1	B-25601	66.0	-12.0	5	Clothing	Stole
	2	B-25601	8.0	-2.0	3	Clothing	Hankerchief
	3	B-25601	80.0	-56.0	4	Electronics	Electronic Games
	4	B-25602	168.0	-111.0	2	Electronics	Phones
	•••						
	1495	B-26099	835.0	267.0	5	Electronics	Phones
	1496	B-26099	2366.0	552.0	5	Clothing	Trousers
	1497	B-26100	828.0	230.0	2	Furniture	Chairs
	1498	B-26100	34.0	10.0	2	Clothing	T-shirt
	1499	B-26100	72.0	16.0	2	Clothing	Shirt

1500 rows × 6 columns

```
In [3]: # Membaca dataset 2
li=pd.read_csv('List of Orders.csv')
li
```

Out[3]:

	Order ID	Order Date	CustomerName	State	City
0	B-25601	01-04-2018	Bharat	Gujarat	Ahmedabad
1	B-25602	01-04-2018	Pearl	Maharashtra	Pune
2	B-25603	03-04-2018	Jahan	Madhya Pradesh	Bhopal
3	B-25604	03-04-2018	Divsha	Rajasthan	Jaipur
4	B-25605	05-04-2018	Kasheen	West Bengal	Kolkata
•••					
555	NaN	NaN	NaN	NaN	NaN
556	NaN	NaN	NaN	NaN	NaN
557	NaN	NaN	NaN	NaN	NaN
558	NaN	NaN	NaN	NaN	NaN
559	NaN	NaN	NaN	NaN	NaN

560 rows × 5 columns

```
In [4]: # Melihat Tipe Data dataframe de
    de.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 6 columns):

```
# Column Non-Null Count Dtype
--- --- 0 Order ID 1500 non-null object
1 Amount 1500 non-null float64
2 Profit 1500 non-null float64
3 Quantity 1500 non-null int64
4 Category 1500 non-null object
5 Sub-Category 1500 non-null object
dtypes: float64(2), int64(1), object(3)
```

memory usage: 70.4+ KB

```
In [5]: # Melihat Tipe Data dataframe li
li.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 560 entries, 0 to 559
Data columns (total 5 columns):
# Column Non-Null Count Dt
```

#	Column	Non-Null Count	Dtype
0	Order ID	500 non-null	object
1	Order Date	500 non-null	object
2	CustomerName	500 non-null	object
3	State	500 non-null	object
4	City	500 non-null	object

dtypes: object(5)
memory usage: 22.0+ KB

Data Preparation

```
In [6]: # Cek Missing Value de
        de.isnull().sum()
Out[6]: Order ID
         Amount
                         0
         Profit
                         0
         Quantity
                         0
         Category
         Sub-Category
         dtype: int64
In [7]: # Cek Missing Value li
        li.isnull().sum()
Out[7]: Order ID
                         60
        Order Date
                         60
         CustomerName
                         60
         State
                         60
         City
                         60
         dtype: int64
In [8]: # Menghapus Missing Value dataframe de
        de = de.dropna()
        de
```

Out[8]:		Order ID	Amount	Profit	Quantity	Category	Sub-Category
	0	B-25601	1275.0	-1148.0	7	Furniture	Bookcases
	1	B-25601	66.0	-12.0	5	Clothing	Stole
	2	B-25601	8.0	-2.0	3	Clothing	Hankerchief
	3	B-25601	80.0	-56.0	4	Electronics	Electronic Games
	4	B-25602	168.0	-111.0	2	Electronics	Phones
	•••						
	1495	B-26099	835.0	267.0	5	Electronics	Phones
	1496	B-26099	2366.0	552.0	5	Clothing	Trousers
	1497	B-26100	828.0	230.0	2	Furniture	Chairs
	1498	B-26100	34.0	10.0	2	Clothing	T-shirt
	1499	B-26100	72.0	16.0	2	Clothing	Shirt

1500 rows × 6 columns

```
In [9]: # Menghapus Missing Value dataframe Li
li = li.dropna()
li
```

Out[9]:		Order ID	Order Date	CustomerName	State	City
	0	B-25601	01-04-2018	Bharat	Gujarat	Ahmedabad
	1	B-25602	01-04-2018	Pearl	Maharashtra	Pune
	2	B-25603	03-04-2018	Jahan	Madhya Pradesh	Bhopal
	3	B-25604	03-04-2018	Divsha	Rajasthan	Jaipur
	4	B-25605	05-04-2018	Kasheen	West Bengal	Kolkata
	•••					
	495	B-26096	28-03-2019	Atharv	West Bengal	Kolkata
	496	B-26097	28-03-2019	Vini	Karnataka	Bangalore
	497	B-26098	29-03-2019	Pinky	Jammu and Kashmir	Kashmir
	498	B-26099	30-03-2019	Bhishm	Maharashtra	Mumbai
	499	B-26100	31-03-2019	Hitika	Madhya Pradesh	Indore

500 rows × 5 columns

```
In [10]: # Menggabungkan kedua dataframe
  order = pd.merge(de, li, on='Order ID')
  order
```

Out[10]:		Order ID	Amount	Profit	Quantity	Category	Sub- Category	Order Date	CustomerNam
	0	B- 25601	1275.0	-1148.0	7	Furniture	Bookcases	01- 04- 2018	Bhara
	1	B- 25601	66.0	-12.0	5	Clothing	Stole	01- 04- 2018	Bhara
	2	B- 25601	8.0	-2.0	3	Clothing	Hankerchief	01- 04- 2018	Bhara
	3	B- 25601	80.0	-56.0	4	Electronics	Electronic Games	01- 04- 2018	Bhara
	4	B- 25602	168.0	-111.0	2	Electronics	Phones	01- 04- 2018	Pear
	•••								
	1495	B- 26099	835.0	267.0	5	Electronics	Phones	30- 03- 2019	Bhishn
	1496	B- 26099	2366.0	552.0	5	Clothing	Trousers	30- 03- 2019	Bhishn
	1497	B- 26100	828.0	230.0	2	Furniture	Chairs	31- 03- 2019	Hitik
	1498	B- 26100	34.0	10.0	2	Clothing	T-shirt	31- 03- 2019	Hitik
	1499	B- 26100	72.0	16.0	2	Clothing	Shirt	31- 03- 2019	Hitik
	1500 rd	ows × 10) columns						>
In [11]:		= orde	yang tia r.drop(['			tate', 'Ci	ty'], axis=1	L)	

 $file: /\!/\!/C: /\!Users/calvi/Downloads/NIM_Nama_SourceCode_UAS_IF540L.html$

\cap	4	Γ11	٦.
Uι	1 L	Гтт] .

	Order ID	Amount	Profit	Quantity	Category	Sub-Category	Order Date
0	B-25601	1275.0	-1148.0	7	Furniture	Bookcases	01-04- 2018
1	B-25601	66.0	-12.0	5	Clothing	Stole	01-04- 2018
2	B-25601	8.0	-2.0	3	Clothing	Hankerchief	01-04- 2018
3	B-25601	80.0	-56.0	4	Electronics	Electronic Games	01-04- 2018
4	B-25602	168.0	-111.0	2	Electronics	Phones	01-04- 2018
•••							
1495	B-26099	835.0	267.0	5	Electronics	Phones	30-03- 2019
1496	B-26099	2366.0	552.0	5	Clothing	Trousers	30-03- 2019
1497	B-26100	828.0	230.0	2	Furniture	Chairs	31-03- 2019
1498	B-26100	34.0	10.0	2	Clothing	T-shirt	31-03- 2019
1499	B-26100	72.0	16.0	2	Clothing	Shirt	31-03- 2019

1500 rows × 7 columns

```
In [12]: # Mengurutkan Kolom
         order_date_index = order.columns.get_loc('Order Date')
         order.insert(1, 'Order Date', order.pop('Order Date'))
         order
```

Out[12]:		Order ID	Order Date	Amount	Profit	Quantity	Category	Sub-Category
	0	B-25601	01-04- 2018	1275.0	-1148.0	7	Furniture	Bookcases
	1	B-25601	01-04- 2018	66.0	-12.0	5	Clothing	Stole
	2	B-25601	01-04- 2018	8.0	-2.0	3	Clothing	Hankerchief
	3	B-25601	01-04- 2018	80.0	-56.0	4	Electronics	Electronic Games
	4	B-25602	01-04- 2018	168.0	-111.0	2	Electronics	Phones
	•••		•••					
	1495	B-26099	30-03- 2019	835.0	267.0	5	Electronics	Phones
	1496	B-26099	30-03- 2019	2366.0	552.0	5	Clothing	Trousers
	1497	B-26100	31-03- 2019	828.0	230.0	2	Furniture	Chairs
	1498	B-26100	31-03- 2019	34.0	10.0	2	Clothing	T-shirt
	1499	B-26100	31-03- 2019	72.0	16.0	2	Clothing	Shirt

1500 rows × 7 columns

```
In [13]: # Cek Tipe Data Dataframe Baru
order.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1500 entries, 0 to 1499
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Order ID	1500 non-null	object
1	Order Date	1500 non-null	object
2	Amount	1500 non-null	float64
3	Profit	1500 non-null	float64
4	Quantity	1500 non-null	int64
5	Category	1500 non-null	object
6	Sub-Category	1500 non-null	object
dtvp	es: float64(2)	, int64(1), obje	ct(4)

dtypes: float64(2), int64(1), object(4)

memory usage: 82.2+ KB

Karena Order Date masih dalam bentuk object, maka perlu dilakukan pengubahan tipe data menjadi datetime.

```
In [14]: # Mengubah tipe dapa
order['Order Date'] = pd.to_datetime(order['Order Date'], format='%d-%m-%Y')
```

```
In [15]: order.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1500 entries, 0 to 1499
       Data columns (total 7 columns):
        # Column
                         Non-Null Count Dtype
                         -----
       --- -----
        0 Order ID
                       1500 non-null object
        1 Order Date 1500 non-null datetime64[ns]
        2 Amount
                        1500 non-null float64
                         1500 non-null float64
        3 Profit
                       1500 non-null int64
        4 Quantity
                       1500 non-null object
        5 Category
        6 Sub-Category 1500 non-null object
       dtypes: datetime64[ns](1), float64(2), int64(1), object(3)
       memory usage: 82.2+ KB
In [16]: # Manipulasi dan Ekstrak Data Hari dan Bulan
         # Bulan
         order['month'] = order['Order Date'].dt.month
         order['month'] = order['month'].replace((1,2,3,4,5,6,7,8,9,10,11,12),
         ('January', 'February', 'March', 'April', 'May', 'June', 'July', 'August',
         'September', 'October', 'November', 'December'))
         # Hari
         order['weekday'] = order['Order Date'].dt.weekday
         order['weekday'] = order['weekday'].replace((0,1,2, 3,4, 5,6),
         ('Monday', 'Tuesday', 'Wednesday', 'Thursday',
         'Friday', 'Saturday', 'Sunday'))
         order
```

Out[16]:		Order ID	Order Date	Amount	Profit	Quantity	Category	Sub- Category	month	weekc
	0	B- 25601	2018- 04-01	1275.0	-1148.0	7	Furniture	Bookcases	April	Sunc
	1	B- 25601	2018- 04-01	66.0	-12.0	5	Clothing	Stole	April	Sunc
	2	B- 25601	2018- 04-01	8.0	-2.0	3	Clothing	Hankerchief	April	Sunc
	3	B- 25601	2018- 04-01	80.0	-56.0	4	Electronics	Electronic Games	April	Sunc
	4	B- 25602	2018- 04-01	168.0	-111.0	2	Electronics	Phones	April	Sunc
	•••									
	1495	B- 26099	2019- 03-30	835.0	267.0	5	Electronics	Phones	March	Saturo
	1496	B- 26099	2019- 03-30	2366.0	552.0	5	Clothing	Trousers	March	Saturo
	1497	B- 26100	2019- 03-31	828.0	230.0	2	Furniture	Chairs	March	Sunc
	1498	B- 26100	2019- 03-31	34.0	10.0	2	Clothing	T-shirt	March	Sunc
	1499	B- 26100	2019- 03-31	72.0	16.0	2	Clothing	Shirt	March	Sunc
	1500 rd	ows × 9	column	S						
	<									>
In [17]:	order order	.insert	ndex = (order_	order.col date_inde	ex + 1,	'month', d	der Date') order.pop('	month'))		

```
order.insert(order_date_index + 2, 'weekday', order.pop('weekday'))
order
```

Sı Catego	Category	Quantity	Profit	Amount	weekday	month	Order Date	Order ID	
Bookca	Furniture	7	-1148.0	1275.0	Sunday	April	2018- 04-01	B- 25601	0
St	Clothing	5	-12.0	66.0	Sunday	April	2018- 04-01	B- 25601	1
Hankerch	Clothing	3	-2.0	8.0	Sunday	April	2018- 04-01	B- 25601	2
Electro Gan	Electronics	4	-56.0	80.0	Sunday	April	2018- 04-01	B- 25601	3
Pho	Electronics	2	-111.0	168.0	Sunday	April	2018- 04-01	B- 25602	4
									•••
Pho	Electronics	5	267.0	835.0	Saturday	March	2019- 03-30	B- 26099	1495
Trous	Clothing	5	552.0	2366.0	Saturday	March	2019- 03-30	B- 26099	1496
Ch	Furniture	2	230.0	828.0	Sunday	March	2019- 03-31	B- 26100	1497
T-s	Clothing	2	10.0	34.0	Sunday	March	2019- 03-31	B- 26100	1498
S	Clothing	2	16.0	72.0	Sunday	March	2019- 03-31	B- 26100	1499
						S	column	ows × 9	1500 rd
- 3									/

Exploratory Data Analysis

In [18]: # Menampilkan Statistik Umum
order.describe()

Out[18]:

	Order Date	Amount	Profit	Quantity
count	1500	1500.000000	1500.000000	1500.000000
mean	2018-10-23 14:00:57.600000	287.668000	15.970000	3.743333
min	2018-04-01 00:00:00	4.000000	-1981.000000	1.000000
25%	2018-07-26 18:00:00	45.000000	-9.250000	2.000000
50%	2018-11-08 00:00:00	118.000000	9.000000	3.000000
75%	2019-01-27 00:00:00	322.000000	38.000000	5.000000
max	2019-03-31 00:00:00	5729.000000	1698.000000	14.000000
std	NaN	461.050488	169.140565	2.184942

Visualisasi

```
In [19]: sns.set_style("whitegrid")
         # Distribusi Variabel Amount
         plt.figure(figsize=(8, 6))
         sns.histplot(data=order, x='Amount', kde=True, color='blue')
         plt.title('Distribution of Amount')
         plt.xlabel('Amount')
         plt.ylabel('Frequency')
         plt.show()
         # Distribusi Variabel Profit
         plt.figure(figsize=(8, 6))
         sns.histplot(data=order, x='Profit', kde=True, color='orange')
         plt.title('Distribution of Profit')
         plt.xlabel('Profit')
         plt.ylabel('Frequency')
         plt.show()
         # Distribusi Variabel Quantity
         plt.figure(figsize=(8, 6))
         sns.histplot(data=order, x='Quantity', kde=True, color='green')
         plt.title('Distribution of Quantity')
         plt.xlabel('Quantity')
         plt.ylabel('Frequency')
         plt.show()
```


Dalam penelitian ini, tidak akan dilakukan penghapusan outlier pada data numerik karena data tersebut kemungkinan memiliki informasi mengenai pola atau asosiasi yang bermakna, sehingga dapat berpengaruh terhadap hasil analisis.

```
In [21]: # Distribusi Order berdasarkan Kategori
    category_counts = order['Category'].value_counts()
    plt.figure(figsize=(8, 8))
    plt.pie(category_counts, labels=category_counts.index, autopct='%1.1f%%', starta
    plt.title('Distribution of Orders by Category')
    plt.show()
```

Distribution of Orders by Category


```
In [22]: # Count plot untuk Variabel Kategorikal
  plt.figure(figsize=(10, 6))
  sns.countplot(data=order, x='Sub-Category')
  plt.xticks(rotation=45)
  plt.show()
```


In [23]: # Bar Plot Penjualan Bulanan berdasarkan Kategori
 order['month_year'] = order['Order Date'].dt.strftime('%Y-%m')
 monthly_sales = order.groupby(['month_year', 'Category'])['Amount'].sum().reset_
 plt.figure(figsize=(12, 6))
 sns.barplot(data=monthly_sales, x='month_year', y='Amount', hue='Category')
 plt.title('Monthly Sales by Category')
 plt.xlabel('Month and Year')
 plt.ylabel('Amount Sold')
 plt.legend(title='Category')
 plt.tight_layout()
 plt.show()


```
In [24]: # Line Chart Profit setiap Bulan
monthly_profit = order.groupby('month_year')['Profit'].sum().reset_index()
plt.figure(figsize=(10, 6))
plt.plot(monthly_profit['month_year'], monthly_profit['Profit'], marker='o', col
```

```
plt.title('Profit Each Month')
plt.xlabel('Month and Year')
plt.ylabel('Profit')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```



```
In [25]: # Heatmap Korelasi
    numeric=order[['Amount','Profit','Quantity']]
    plt.figure(figsize=(10, 8))
    sns.heatmap(numeric.corr(), annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Heatmap')
    plt.show()
```


- Kolom Quantity dengan Amount memiliki korelasi positif yang lemah. Hal ini dibuktikan dengan nilai korelasi sebesar 0.35, yang lebih mendekati 0 dibanding 1.
- Kolom Profit dengan Amount memiliki korelasi positif yang lemah karena memiliki nilai korelasi sebesar 0.24.

Rekayasa Fitur

```
In [26]: # Transformasi data ke dalam format True/False
grouped = order.groupby('Order ID')['Sub-Category'].apply(list)
transactions = grouped.tolist()
unique_items = list(set(item for sublist in transactions for item in sublist))
df = pd.DataFrame(index=range(len(transactions)), columns=unique_items)
for i, transaction in enumerate(transactions):
    for item in transaction:
        df.at[i, item] = True

df = df.fillna(False)
df.insert(0, 'Transaction_ID', range(len(df)))
df.head()
```

Out[26]:		Transaction_ID	Tables	Bookcases	Electronic Games	Trousers	Printers	Shirt	Furnishings
	0	0	False	True	True	False	False	False	False
	1	1	False	False	False	False	False	False	False
	2	2	False	False	False	True	False	False	False
	3	3	False	False	False	False	False	False	False
	4	4	False	False	False	False	False	False	False
	<								>

Pemodelan Data dan Evaluasi

Pembanding 1 (Min. Support 0.01)

```
In [27]: # Pemodelan Apriori Pembanding 1
frequent_itemsets1 = apriori(df.drop(columns=['Transaction_ID']), min_support=0.
frequent_itemsets1['length'] = frequent_itemsets1['itemsets']. apply(lambda x: 1
frequent_itemsets1
```

Out[27]:		support	itemsets	length
	0	0.032	(Tables)	1
	1	0.144	(Bookcases)	1
	2	0.146	(Electronic Games)	1
	3	0.074	(Trousers)	1
	4	0.134	(Printers)	1
	•••	•••		
	329	0.010	(Saree, Stole, Accessories, Phones)	4
	330	0.010	(T-shirt, Saree, Stole, Phones)	4
	331	0.010	(Hankerchief, Saree, Stole, Phones)	4
	332	0.010	(T-shirt, Hankerchief, Stole, Accessories)	4
	333	0.012	(Hankerchief, Stole, Accessories, Phones)	4

334 rows × 3 columns

```
In [28]: # Pembatasan Panjang Itemset
frequent_itemsets1 = frequent_itemsets1[(frequent_itemsets1['length'] <= 3)]
frequent_itemsets1</pre>
```

Out[28]

]:		support	itemsets	length
	0	0.032	(Tables)	1
	1	0.144	(Bookcases)	1
	2	0.146	(Electronic Games)	1
	3	0.074	(Trousers)	1
	4	0.134	(Printers)	1
	•••			
	288	0.018	(Hankerchief, Kurti, Stole)	3
	289	0.012	(Hankerchief, Kurti, Phones)	3
	290	0.014	(Hankerchief, Stole, Skirt)	3
	291	0.016	(Hankerchief, Stole, Phones)	3
	292	0.010	(Kurti, Stole, Phones)	3

293 rows × 3 columns

```
In [29]: # Aturan Asosiasi Pembanding 1
    rules1 = association_rules(frequent_itemsets1, metric='confidence', min_threshol
    rules_sorted1 = rules1.sort_values(by='confidence', ascending=False)
    rules_filtered1 = rules_sorted1.loc[:, 'antecedents':'lift']
    rules_filtered1
```

Out[29]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
3	(Furnishings, Kurti)	(Hankerchief)	0.012	0.276	0.010	0.833333	3.019324
2	(T-shirt, Shirt)	(Stole)	0.022	0.314	0.018	0.818182	2.605675
1	(T-shirt, Electronic Games)	(Stole)	0.018	0.314	0.014	0.777778	2.476999
0	(Bookcases, Skirt)	(Saree)	0.016	0.312	0.012	0.750000	2.403846
4	(Accessories, Chairs)	(Saree)	0.016	0.312	0.012	0.750000	2.403846

Pembanding 2 (Min. Support 0.07)

```
In [30]: # Pemodelan Data Pembanding 2
    frequent_itemsets2 = apriori(df.drop(columns=['Transaction_ID']), min_support=0.
    frequent_itemsets2['length'] = frequent_itemsets2['itemsets']. apply(lambda x: 1
    frequent_itemsets2
```

Out[30]:		support	itemsets	length
	0	0.144	(Bookcases)	1
	1	0.146	(Electronic Games)	1
	2	0.074	(Trousers)	1
	3	0.134	(Printers)	1
	4	0.132	(Shirt)	1
	5	0.132	(Furnishings)	1
	6	0.312	(Saree)	1
	7	0.098	(Leggings)	1
	8	0.128	(Chairs)	1
	9	0.130	(Accessories)	1
	10	0.140	(T-shirt)	1
	11	0.276	(Hankerchief)	1
	12	0.082	(Kurti)	1
	13	0.112	(Skirt)	1
	14	0.314	(Stole)	1
	15	0.142	(Phones)	1
	16	0.092	(Hankerchief, Saree)	2
	17	0.116	(Saree, Stole)	2
	18	0.118	(Hankerchief, Stole)	2

In [31]: # Aturan Asosiasi Pembanding 2
 rules2 = association_rules(frequent_itemsets2, metric='confidence', min_threshol
 rules_sorted2 = rules2.sort_values(by='confidence', ascending=False)
 rules_filtered2 = rules_sorted2.loc[:, 'antecedents':'lift']
 rules_filtered2

Out[31]:

•	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
4	(Hankerchief)	(Stole)	0.276	0.314	0.118	0.427536	1.361580
5	(Stole)	(Hankerchief)	0.314	0.276	0.118	0.375796	1.361580
2	(Saree)	(Stole)	0.312	0.314	0.116	0.371795	1.184060
3	(Stole)	(Saree)	0.314	0.312	0.116	0.369427	1.184060
0	(Hankerchief)	(Saree)	0.276	0.312	0.092	0.333333	1.068376
1	(Saree)	(Hankerchief)	0.312	0.276	0.092	0.294872	1.068376

CONCLUSION

Berdasarkan kedua aturan asosiasi yang telah dilakukan, terlihat bahwa aturan asosiasi pertama (minimum support 0.01) memiliki nilai minimum confidence yang lebih tinggi, serta support yang masih cukup tinggi dengan minimum support 0.01. Aturan asosiasi ini menunjukkan hubungan yang kuat antara barang-barang yang dibeli bersama dalam transaksi, dengan confidence di atas 75% dan lift yang tinggi, menunjukkan relevansi yang signifikan. Sementara itu, aturan asosiasi kedua (minimum support 0.07) menggunakan nilai minimum confidence yang lebih rendah, dan meskipun support yang lebih tinggi dengan minimum support 0.05, confidence dan lift yang dihasilkan cenderung lebih rendah. Hal ini menunjukkan bahwa aturan asosiasi pembanding kedua kurang kuat dan memiliki dampak yang lebih rendah dalam memprediksi pola pembelian pelanggan. Pilihan minimum support 0.01 untuk aturan asosiasi pertama digunakan untuk menemukan hubungan yang kuat dan spesifik antara sub-kategori produk, sementara minimum support 0.07 digunakan pada aturan asosiasi kedua untuk melihat pola pembelian yang lebih umum dan luas.

In [31]: