Hello World

long subtitle

Xiangyun Ding

Tsinghua University

March 1, 2020

1 section1

2 section2

1 section1

2 section2

A sample slide

一个超链接

A displayed formula:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

An itemized list:

- itemized item 1, 你好
- itemized item 2
- The first item
- The second item

Theorem

1.1 In a right triangle, the square of hypotenuse equals the sum of squares of two other sides.

123

hello

First Item Description of first item

Second Item Description of second item

First column text and/or code

Second column text and/or code

section1

2 section2

Table: table decription

Key	Value
X	description of x
у	description of y
У	description of z

Table: Caption here

column 1	column 2	column 3
Hello	Beamer	NAN
$\alpha + \beta$	$\gamma + \eta$	34%

Figure: Caption here

dxy (Tsinghua University)

代码

```
def create_costco(shape, rank, nc):
inputs = [keras.Input(shape=(1,), dtype="int32") for i in range(len(shape))]
embeds = [
    keras.layers.Embedding(output_dim=rank, input_dim=shape[i])(inputs[i])
    for i in range(len(shape))]
x = keras.layers.Concatenate(axis=1)(embeds)
x = keras.layers.Reshape(target_shape=(rank, len(shape), 1))(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(nc, activation="relu")(x)
outputs = keras.layers.Dense(1, activation="relu")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
```

算法

Algorithm 1: HOSVD

Input: $HOSVD(X, R_1, R_2....R_N)$

Output: $G, A_{(1)}, A_{(2)}, ..., A_{(N)}$

1 for k = 1 to N do

2 | $A_{(n)} \leftarrow R_n$ left singular matrix of $X_{(n)}$

3 end

4
$$\mathcal{G} = \leftarrow \mathcal{X} \times A_{(1)}^T \times A_{(2)}^T \dots \times A_{(N)}^T$$

5 return $\mathcal{G}, A_{(1)}, A_{(2)}.....A_{(N)}$

section1

2 section2

• First point, shown on all slides.

- First point, shown on all slides.
- Second point, shown on slide 2 and later.

- First point, shown on all slides.
- Second point, shown on slide 2 and later.
- Third point, also shown on slide 2 and later.

- First point, shown on all slides.
- Second point, shown on slide 2 and later.
- Third point, also shown on slide 2 and later.
- Fourth point, shown on slide 3.

Questions?