

COMPRESSION BONDED TYPE SEMICONDUCTOR DEVICE

PUB. NO.: 61-251043 [JP 61251043 A]
PUBLISHED: November 08, 1986 (19861108)
INVENTOR(s): ISHIDA AKIRA

AKABANE KATSUMI
APPLICANT(s): HITACHI LTD [000510] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 60-090856 [JP 8590856]
FILED: April 30, 1985 (19850430)
INTL CLASS: [4] H01L-021/58; H01L-021/60
JAPIO CLASS: 42.2 (ELECTRONICS — Solid State Components)
JOURNAL: Section E, Section No. 493, Vol. 11, No. 99, Pg. 114, March
27, 1987 (19870327)

ABSTRACT

PURPOSE: To contrive to nearly uniformize the distribution of the surface pressure to be applied to the pressingly contact surface of the stamp electrode and the semiconductor element by a method wherein a defect to say that large surface pressure generates in the boundary of the pressingly contact surface, that is, just under the periphery of the so-called pressingly contact is dissolved.

CONSTITUTION: The cathode side of a semiconductor element 31, such as the diode, is made to pressingly contact by a stamp electrode 34 having the pressingly contact surface of D₁ in diameter through a temperature compensating metal plate 33 of (h₂) in thickness and of D₂=D₁+2l₂ in diameter. A groove 35 of (l₁) in depth is provided over the whole periphery on the side surface of this stamp electrode 34 at a position where is a height (h₁) high from the pressingly contact surface. 32 is the temperature compensating metal plate on the anode side of the semiconductor element 31. In the device to be constituted in such a way, a load is applied to the axial direction and as the cathode side of the semiconductor element is brought into contact by pressing, the semiconductor element to be made to pressingly contact type the stamp electrode through the temperature-compensating metal plate can effectively prevent the concentration of stress to be partially applied thereto, thereby enabling to enhance the electrical characteristics and mechanical strength of the compression bonded type semiconductor device. As a result, the improvement of the reliability thereof can be contrived.

③ 公開特許公報 (A) 昭61-251043

④ Int.CI.
H 01 L 21/58
21/60

識別記号 延内整理番号
6732-5F
6732-5F

⑤ 公開 昭和61年(1986)11月8日
審査請求 未請求 発明の数 1 (全4頁)

⑥ 発明の名称 圧接型半導体装置

⑦ 特願 昭60-90856
⑧ 出願 昭60(1985)4月30日

⑨ 発明者 石田 昭
⑩ 発明者 赤羽根 克己
⑪ 出願人 株式会社日立製作所
⑫ 代理人 弁理士 小川 勝男
土浦市神立町502番地 株式会社日立製作所機械研究所内
日立市幸町3丁目1番1号 株式会社日立製作所日立工場
内
東京都千代田区神田駿河台4丁目6番地
外2名

明細書

発明の名称 圧接型半導体装置

特許請求の範囲

1. 半導体素子と、該半導体素子の少なくとも一方の面に設けられた該半導体素子の熱膨張係数に近い熱膨張係数を有する温度補償金属板と、該温度補償金属板を介して前記半導体素子を圧接するスタンプ電極とを備えた圧接型半導体装置において、前記スタンプ電極の側面の圧接面より離れた位置に溝を付け、さらに、前記スタンプ電極と同心円状にある前記温度補償金属板の直径を、前記スタンプ電極の圧接面の直径より大きくしたことを特徴とする圧接型半導体装置。

発明の詳細な説明

〔発明の利用分野〕

本発明は圧接型半導体装置に係り、特に、ダイオード、サイリスタ或いはゲートメーンオフサイリスタ(以下、GTO)等の半導体素子に温度補償金属板を介してスタンプ電極を加圧接触させる圧接型半導体装置の面圧力均一化構造に関する。

〔発明の背景〕

一般にダイオード、サイリスタ或いはGTO等の半導体素子にスタンプ電極を加圧接する圧接型半導体装置は、電力用として良く知られている。そしてこの種の圧接型半導体装置は、第3図に示すように構成されている。すなわち、半導体素子1の両面に、この半導体素子1の熱膨張係数に近い値の温度補償金属板2、3を介して熱および電気伝導率の高い、円柱状のスタンプ電極4、5で半導体素子1を積層方向に圧接する構造になつていて。さらに、上フランジ11、12、下フランジ13、14と同心円状に位置するセラミック円筒10等の部材により、窒素ガスおよび不活性ガス中で封じ、半導体素子1に外気の水分が触れないよう構成されている。

半導体素子1は通常PN接合されたシリコン81板、スタンプ電極4、5は銅Cu円棒、そして温度補償金属板2、3はタンクステンWとかモリブデンMn板等が一枚に用いられている。

実験結果的には、停止時に比べ80℃程度温度

上昇する。これら起動停止が長年にわたつて行われることになる。9 i の熱膨張係数は $\alpha = 2.9 \times 10^{-6} / \text{℃}$ 、Cu の $\alpha = 1.7 \times 10^{-6} / \text{℃}$ とその熱膨張係数の差が大なので、半導体素子 1 とスタンプ電極 4, 5 間には、熱膨張係数 $\alpha = 4.3 \times 10^{-6} / \text{℃}$ の W とか、 $\alpha = 4.9 \times 10^{-6} / \text{℃}$ の Mo 板を挿入し、半径方向の熱伸び対策を行つてある。

第3図に示した構造及びそれと類似の構造は多くの特許、登録実用新案の説明図等に表示されており公知である。第3図中、本発明と関連する重要な部分は、カソード側スタンプ電極 4 の圧接面の直径寸法を d_1 、スタンプ電極 4 に加圧される厚みが t なるカソード側温度補償金属板 3 の直径を d_2 とすると、 $d_2 > d_1$ のときである。このようになつてゐる場合、半導体素子 1 とスタンプ電極 4 との熱膨張の差をすべらせて逃がすという温度補償金属板 3 の本来の目的の他に、スタンプ電極 4, 5 で上、下より加圧したとき、半導体素子 1 にかかる面圧力を若干均一化させて、機械的

強度を向上させるという別の面の効果もある。ここで、 $d_2 > d_1$ となつていて $d_1 = d_2 + 2\delta r$ と温度補償金属板 3 の半径寸法がスタンプ電極 4 の圧接面の寸法より $4r$ だけ大きく、温度補償金属板 3 の厚みが t のとき、上記面圧力均一化に対し、 $4r$ と t の寸法によつて効果は大分左右される。しかし、温度補償金属板 3 の材料は前記したようにタンクステン W とかモリブデン Mo なので、スタンプ電極 4, 5 の材料鋼 Cu に比べ、温度及び電気伝導率が小であり、温度補償金属板 3 の厚みをある値以上にすると性能低下をもたらすし、さらに、材料費の面でも不経済なので温度補償金属板 3 の厚みを充分に確保し、かつ半径寸法を $4r$ だけ大として半導体素子 1 に作用する面圧力を均一化させることには問題がある。

一方、特開昭58-71633号公報によると、第4図に示すように半無限弾性体 2-1 を円柱状のポスト 2-0 で加圧力を σ をもつて圧接すると半無限弾性体 2-1 中に生じる圧接面に垂直な方向の応力 $P(z)$ は圧接周端部で非常に大となり、半無限弾

性体 2-1 内の応力分布は著しく不均一になる。そこで、特開昭58-71633号公報に記述されている内容によれば、圧接型半導体装置の半導体素子に上記のような著しい応力分布の不均一を解消するため、第5図に示すように、半導体素子 2-5 を圧接するスタンプ電極 2-2 の側面に溝 2-3 を設け、加圧時にその溝 2-3 が弾性変形することを利用して、スタンプ電極 2-2 の周辺直下での半導体素子 2-5 の応力集中を緩和するようにしている。さらに、半導体素子 2-5 がシリコン Si、温度補償金属板 2-4 が 0.5 mm 厚みのモリブデン Mo 板、スタンプ電極 2-2 が半径 2.5 mm の鋼 Cu 円柱体、温度補償金属板 2-6 がタンクステン W であつて、スタンプ電極 2-2 に総荷重 5000 kgf を印加したときのスタンプ電極 2-2 及び温度補償金属板 2-4 の周辺直下 P 点の応力を第6図に示したように、溝 2-3 の深さ L と高さ H のパラメータとして算出し、P 点での応力集中を緩和させる構造を提案し、良い結果が得られたと報じている。しかし、本発明者らの実験によれば、それでもなお、応力集中が

充分緩和されているとは云えない結果が得られた。
【発明の目的】

本発明の目的は上述したスタンプ電極と半導体素子の圧接面の境界、いわゆる圧接周辺直下に大きな面圧力が生じるという欠点を解消して、圧接面の面圧力分布がほぼ均一となる構造の圧接型半導体装置を提供することにある。

【発明の概要】

本発明は、半導体素子を圧接するスタンプ電極の側面に溝をつけ、さらにスタンプ電極と同心円状にある温度補償金属板の直径寸法をスタンプ電極の圧接面の直径寸法より大きくして、圧接力の力線の流れと全体の変形及びその反力により、溝の直下、スタンプ電極周辺直下、さらに温度補償金属板の周辺直下での半導体素子の圧縮応力及び抜け応力集中を緩和するようにしたものである。

【発明の実施例】

第1図は本発明の一実施例の構成図、第2図は第1図の要部構成図である。これら2つの図で示すようにダイオード等の半導体素子 3-1 のカソ-

ド側を、厚みが b_1 、直徑寸法が $D_1 = D_2 + 2L$ である温度補償金属板33を介して、圧接面の直徑寸法 D_1 のスタンプ電板34で圧接している。このスタンプ電板34の背面には全局にわたつて圧接面より高さ b_1 の位置に深さ b_1 の溝35を設けている。32はアノード側の温度補償金属板である。なお、第3図に示したものと同一部分には同一符号を付けている。このように構成した装置に第5図と同様の軸方向(垂直方向)に荷重を加え、加圧実験させる。

上記本発明構造に対し、現在一般的になつてゐる有限要素法によつて圧接型半導体装置の応力計算を行うと、スタンプ電板34の溝35の寸法 b_1 、 L_1 、及びカソード側の温度補償金属板33の厚み b_1 と半径当たりの突出寸法 L_1 をパラメータとして半導体素子31の面圧力分布が得られる。

具体例として、シリコンSi半導体素子の直徑寸法が8.0mmのとき、鋼Cuポスト電板34の直徑寸法 $D_1 = 6.0$ mm、溝35の高さ $b_1 = 1.5$ mm、

スタンプ電板34の継弾性係数 $E = 12000 \text{ kN/mm}^2$ であるのに對し、シリコンSi半導体素子31の $E = 18000 \text{ kN/mm}^2$ であることより、スタンプ電板34の方が変形しやすいので、それに伴い、対応する部のひずみ(単位長さ当たりの伸び)が大きくなり、応力 σ は材料力学の基本式、 $\sigma = E \epsilon$ より、ひずみ ϵ が継弾性係数 E の比より大となれば、その部の応力の方が大きくなるのである。

一方、第1図、第2図の構成の各種断面間にろう付部がないオール半田レス構造としたときを考え調べてみると、本発明の構造は半導体素子31の曲げ応力集中の低減に威力を發揮する。いわゆる、前記した圧縮応力の所で記述した寸法によれば、本発明の構造のもとで半導体素子31の最大曲げ応力は内部に移行し、ピーク値を第5図に示した従来の溝付構造の物に比べ $\frac{1}{5}$ 以下と小さくでき、半導体素子31の機械的強度を5倍以上とすることができる。

ダイオードについて本発明の効果を具体的に説明したが、その他、サイリスタ、GTO、またト

ンジスターについても同様の応用効果があるのは当然である。また、アノード側のスタンプ電板40に溝を設けてもよい。

軸方向加圧だけで、振動等による外力の曲げモーメントを略して、この圧縮応力を更に詳しく調べてみると、溝35を付けること等による圧縮応力集中の低下はポスト電板34の方が50%以下と顕著であり、半導体素子31の応力は溝35等を付けたことにより、大きな応力の発生する位置が内部に移るが、そのピーク圧縮応力の低下は25%程度である。このような面圧集中低減の途には、材料力学の分野で一般化している材料定数の差によつて説明がつく。いわゆる、鋼Cuスタン

プ電板34についても同様の応用効果があるのは当然である。また、アノード側のスタンプ電板40に溝を設けてもよい。

〔発明の効果〕

本発明によれば、温度補償金属板を介してスタンプ電板により圧接される半導体素子の部分的な応力集中を効果的に防ぎ、もつて圧接型半導体装置の電気的特性、および機械的強度を高めることができるので、信頼性の向上を図ることができる。図面の簡単な説明

第1図は本発明の一実施例になる圧接型ダイオードを示す断面図、第2図は第1図本発明の要部構成断面図、第3図は従来の一般に知られている圧接型ダイオードを示す断面図、第4図は半無限板を円柱で圧接したときの応力分布説明図、第5図、第6図は従来の圧接型半導体装置の断面図である。

31…半導体素子、32…アノード側温度補償金属板、33…カソード側温度補償金属板、34…カソード側スタンプ電板、35…スタンプ電板

34の圖。

代理人 特許士 小川勝男

第1図

第2図

第3図

第4図

应力 $P(z)$

第5図

第6図

THIS PAGE BLANK (USPTO)