∽ Baccalauréat C Rennes septembre 1976 ∾

EXERCICE 1

1. Étudier les variations de l'application f de \mathbb{R} dans \mathbb{R} définie par :

$$f(x) = e^x - e^{-x}.$$

- **2.** Montrer que f admet une fonction réciproque f^{-1} définie sur \mathbb{R} . Écrire l'expression de f^{-1} (on pourra effectuer le changement de variable défini par $e^x = X$).
- **3.** Déterminer la fonction dérivée de f^{-1} et calculer l'intégrale

$$\int_0^x \frac{1}{\sqrt{t^2 + 4}} \, \mathrm{d}t.$$

EXERCICE 2

Soit *A* l'espace vectoriel sur \mathbb{R} des applications de [O; 2[dans \mathbb{R} . f_1, f_2, f_3, f_4 les éléments de *A* définis par :

$$f_1(x) = 1 - x$$

 $f_2(x) = |1 - x|$
 $f_3(x) = E(x)$
 $f_4(x) = x \cdot E(x)$

E(x) désignant la partie entière de x.

- **1.** Montrer que (f_1, f_2, f_3) est un système libre.
- **2.** Montrer que f_4 appartient au sous-espace vectoriel engendré par f_1 , f_2 , f_3 et calculer les composantes de f_4 dans la base (f_1, f_2, f_3) .

PROBLÈME

Le plan affine euclidien $\mathscr E$ étant rapporté à un repère orthonormé $\left(0\;;\;\overrightarrow{u}\;,\;\overrightarrow{v}\right)$. À tout point M de $\mathscr E$ de coordonnées $(x\;;\;y)$ on associe le nombre complexe z affixe de M.

Partie A

1. Soient deux points M_1 d'affixe z_1 et M_2 d'affixe z_2 ; montrer que M_1 et M_2 appartiennent à la même demi droite d'origine O si et seulement si

$$|z_1 + z_2| = |z_1| + |z_2|$$

(on pourra par exemple écrire z_1 et z_2 sous forme trigonométrique).

2. En déduire que trois points M_1 d'affixe z_1 , M_2 d'affixe z_2 et M_3 d'affixe z_3 sont sur la même demi droite d'origine O si et seulement si :

$$|z_1 + z_2 + z \circ 3| = |z_1| + |z_2| + |z_3|$$

Partie B

Le baccalauréat de 1976 A. P. M. E. P.

Soient A_1 , A_2 et A_3 trois points dont les affixes a_1 , a_2 , a_3 vérifient :

$$|a_1| = |a_2| = |a_3| = 1$$

Montrer que A_1 , A_2 et A_3 sont les sommets d'un triangle équilatéral de centre O si et seulement si $a_1 + a_2 + a_3 = 0$. (On pourra considérer l'isobarycentre des points A_1 , A_2 et A_3).

Partie C

Soient B₁, B₂ et B₃ trois points dont les affixes b_1 , b_2 , b_3 vérifient $\frac{b_1}{|b_1|} + \frac{b_2}{|b_2|} + \frac{b_3}{|b_3|} = 0$. On pose $\alpha_1 = \frac{b_1}{|b_1|}$, $\alpha_2 = \frac{b_2}{|b_2|}$, $\alpha_3 = \frac{b_3}{|b_3|}$.

1. Montrer que le nombre $S = \overline{\alpha_1}(z - b_1) + \overline{\alpha_2}(z - b_2) + \overline{\alpha_3}(z - b_3)$ est indépendant de z. Calculer |S| et en déduire que :

$$\forall z \in \mathbb{C}, \quad |b_1| + |b_2| + |b_3| \le |z - b_1| + |z - b_2| + |z - b_3|$$

2. Montrer que pour que l'affixe z d'un point M vérifie la relation

(1)
$$|z-b_1|+|z-b_2|+|z-b_3|=|b_1|+|b_2|+|b_3|$$

il faut et il suffit que les trois angles de vecteurs

$$(\overrightarrow{\mathrm{OB}_1}, \overrightarrow{\mathrm{B}_1 M}), (\overrightarrow{\mathrm{OB}_2}, \overrightarrow{\mathrm{B}_2 M}), (\overrightarrow{\mathrm{OB}_3}, \overrightarrow{\mathrm{B}_3 M})$$

soient égaux.

Quel est l'ensemble des points M dont l'affixe z vérifie (1)?

3. Soient MB_1 , MB_2 , MB_3 les distances respectives de M aux points B_1 , B_2 et B_3 . On pose $S(M) = MB_1 + MB_2 + MB_3$.

Démontrer que l'ensemble des réels S(M) pour M appartenant à $\mathscr E$ a un plus petit élément.

Partie D

Soit ABC un triangle dont chaque angle géométrique a une mesure en radians inférieure à $\frac{2\pi}{3}$. Déterminer par une construction géométrique simple le point M qui réalise le minimum de MA + MB + MC.