CS 188 Fall 2018

Introduction to Artificial Intelligence

Written HW 8

Due: Monday 10/29/2018 at 11:59pm (submit via Gradescope).

Leave self assessment boxes blank for this due date.

Self assessment due: Monday 11/5/2018 at 11:59pm (submit via Gradescope)

For the self assessment, fill in the self assessment boxes in your original submission (you can download a PDF copy of your submission from Gradescope – be sure to delete any extra title pages that Gradescope attaches). For each subpart where your original answer was correct, write "correct." Otherwise, write and explain the correct answer. Do not leave any boxes empty.

If you did not submit the homework (or skipped some questions) but wish to receive credit for the self-assessment, we ask that you first complete the homework without looking at the solutions, and then perform the self-assessment afterwards.

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: Your submission should be a PDF that matches this template. Each page of the PDF should align with the corresponding page of the template (page 1 has name/collaborators, question 1 begins on page 2, etc.). Do not reorder, split, combine, or add extra pages. The intention is that you print out the template, write on the page in pen/pencil, and then scan or take pictures of the pages to make your submission. You may also fill out this template digitally (e.g. using a tablet.)

First name	Riley Campbell
Last name	
SID	2605-3152
Collaborators	

Q1. Decision Networks

After years of battles between the ghosts and Pacman, the ghosts challenge Pacman to a winner-take-all showdown, and the game is a coin flip. Pacman has a decision to make: whether to accept the challenge (accept) or decline (decline). If the coin comes out heads (+h) Pacman wins. If the coin comes out tails (-h), the ghosts win. No matter what decision Pacman makes, the outcome of the coin is revealed.

H	P(H)
+h	0.5
-h	0.5

H	A	U(H,A)
+h	accept	100
-h	accept	-100
+h	decline	-30
-h	decline	50

(a) Maximum Expected Utility
Compute the following quantities:

$$EU(accept) = 50$$

$$EU(decline) = \bigcap S$$

$$MEU(\{\}) = 25$$

Action that achieves $MEU(\{\}) = \bigcup_{i \in \mathcal{O}(\{\})} Action that achieves <math>MEU(\{\}) = \bigcup_{i \in \mathcal{O}(\{\})} Action that achieves achieves$

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct 5 & Librit understand this the first time areans but from I do.

I had to be expected utility.

- (b) VPI relationships When deciding whether to accept the winner-take-all coin flip, Pacman can consult a few fortune tellers that he knows. There are N fortune tellers, and each one provides a prediction O_n for H. For each of the questions below, select all of the VPI relations that are guaranteed to be true, or select None of the above.
 - (i) In this situation, the fortune tellers give perfect predictions. Specifically, $P(O_n = +h \mid H = +h) = 1$, $P(O_n = -h \mid H = -h) = 1$, for all n from 1 to N.

- $riangleq VPI(O_1, O_2) \ge VPI(O_1) + VPI(O_2)$
- \square VPI(O_i) = VPI(O_j) where $i \neq j$
- $\mathbb{D}^{/} \text{ VPI}(O_3 \mid O_2, O_1) > \text{VPI}(O_2 \mid O_1).$
- \square VPI(H) > VPI(O₁, O₂,...O_N)
- ☐ None of the above.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Incorrect, reviewed concept of VPI.

(ii) In another situation, the fortune tellers are pretty good, but not perfect. Specifically, $P(O_n = +h \mid H = +h) = 0.8$, $P(O_n = -h \mid H = -h) = 0.5$, for all n from 1 to N.

- \bigvee VPI(O_1, O_2) \geq VPI(O_1) + VPI(O_2)
- ∇ VPI $(O_i) = \text{VPI}(O_i)$ where $i \neq j$
- \square VPI($O_3 \mid O_2, O_1$) > VPI($O_2 \mid O_1$).
- \square VPI(H) > VPI($O_1, O_2, \dots O_N$)
- ☐ None of the above.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Incorrect, get 2 correct.

(iii) In a third situation, each fortune teller's prediction is affected by their mood. If the fortune teller is in a good mood (+m), then that fortune teller's prediction is guaranteed to be correct. If the fortune teller is in a bad mood (-m), then that teller's prediction is guaranteed to be incorrect. Each fortune teller is happy with probability $P(M_n = +m) = 0.8$.

- \square VPI $(M_1) > 0$
- $\square \forall i \text{ VPI}(M_i|O_i) > 0$
- \square VPI $(M_1, M_2, ..., M_N) > \text{VPI}(M_1)$
- $\square / \forall i \ \text{VPI}(H) = \text{VPI}(M_i, O_i)$
- None of the above.

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Forcerred, reverse concept

Q2. HMM: Where is the Car?

Transportation researchers are trying to improve traffic in the city but, in order to do that, they first need to estimate the location of each of the cars in the city. They need our help to model this problem as an inference problem of an HMM. For this question, assume that only *one* car is being modeled.

(a) The structure of this modified HMM is given below, which includes X, the location of the car; S, the noisy location of the car from the signal strength at a nearby cell phone tower; and G, the noisy location of the car from GPS.

We want to perform filtering with this HMM. That is, we want to compute the belief $P(x_t|s_{1:t}, g_{1:t})$, the probability of a state x_t given all past and current observations.

The dynamics update expression has the following form:

$$P(x_t|s_{1:t-1},g_{1:t-1}) =$$
 (i) (ii) $P(x_{t-1}|s_{1:t-1},g_{1:t-1})$.

Complete the expression by choosing the option that fills in each blank.

(i)
$$O(P(s_{1:t-1}, g_{1:t-1})) O(P(s_{1:t-1})) O(P(s_{1:t-1}$$

(ii)
$$\bigcirc \sum_{x_t}$$
 $\bigcirc \sum_{x_{t-1}}$ $\bigcirc \max_{x_{t-1}}$ $\bigcirc \max_{x_t}$ $\bigcirc 1$
(iii) $\bigcirc P(x_{t-1} \mid x_{t-2})$ $\bigcirc P(x_{t-2}, x_{t-1})$ $\bigcirc P(x_{t-1}, x_t)$ $\bigcirc P(x_t \mid x_{t-1})$ $\bigcirc 1$

The observation update expression has the following form:

$$P(x_t|s_{1:t},g_{1:t}) =$$
 (iv) (vi) $P(x_t|s_{1:t-1},g_{1:t-1}).$

Complete the expression by choosing the option that fills in each blank.

(iv)
$$P(s_{1:t-1}|s_t)P(g_{1:t-1}|g_t) \bigcirc \frac{1}{P(s_t,g_t|s_{1:t-1},g_{1:t-1})} \bigcirc \frac{1}{P(s_{1:t-1},g_{1:t-1}|s_t,g_t)}$$

$$\bigcirc P(s_t,g_t|s_{1:t-1},g_{1:t-1}) \bigcirc P(s_{1:t-1},g_{1:t-1}|s_t,g_t) \bigcirc P(s_t|s_{1:t-1})P(g_t|g_{1:t-1})$$

$$\bigcirc \frac{1}{P(s_t|s_{1:t-1})P(g_t|g_{1:t-1})} \bigcirc \frac{1}{P(s_{1:t-1}|s_t)P(g_{1:t-1}|g_t)} \bigcirc 1$$
(v) $\bigcirc \sum_{x_t} \bigcirc \sum_{x_{t-1}} \quad \textcircled{D} \max_{x_t} \quad \bigcirc \max_{x_{t-1}} \bigcirc 1$
(vi) $\bigcirc P(x_{t-1},s_{t-1})P(x_{t-1},g_{t-1}) \quad \bigcirc P(x_{t-1},s_{t-1},g_{t-1}) \quad \bigcirc P(x_t|s_t)P(x_t|g_t)$

$$\textcircled{D} P(s_{t-1}|x_{t-1})P(g_{t-1}|x_{t-1}) \quad \bigcirc P(x_t,s_t)P(x_t,g_t) \quad \bigcirc P(x_t,s_t,g_t)$$

 $\bigcirc P(x_{t-1}|s_{t-1})P(x_{t-1}|g_{t-1}) \bigcirc P(s_t|x_t)P(g_t|x_t) \bigcirc 1$ Self assessment. If correct, write "correct" in the box. Otherwise, write, and explain the correct answer

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

In correct, write "correct" in the box. Otherwise, write and explain the correct answer.

(b) It turns out that if the car moves too fast, the quality of the cell phone signal decreases. Thus, the signal-dependent location S_t not only depends on the current state X_t but it also depends on the previous state X_{t-1} . Thus, we modify our original HMM for a new more accurate one, which is given below.

Again, we want to compute the belief $P(x_t|s_{1:t}, g_{1:t})$. In this part we consider an update that combines the dynamics and observation update in a *single* update.

$P(x_t s_{1:t},g)$	1:t) = _	(i)	(ii)	(iii)	(i	v)	_ P	$P(x_{t-1} s_{1:t-1},g_{1:t-1}).$
Complete tl	ne forw	ard update expres	sion by choo	sing the	e option that fills	in each	blank	c
(i)	0	$P(s_{1:t-1}, g_{1:t-1} s_t,$	g_t)	$P(s_t, s_t)$	$g_t s_{1:t-1},g_{1:t-1})$	0	$P(s_t $	$s_{1:t-1})P(g_t g_{1:t-1})$
	0	$\frac{1}{P(s_t, g_t s_{1:t-1}, g_{1:t})}$		$\overline{P(s_{1:t})}$	$\frac{1}{(-1,g_{1:t-1} s_t,g_t)}$	0	$P(s_1:$	$_{t-1} s_t)P(g_{1:t-1} g_t)$
	0	$\frac{1}{P(s_t s_{1:t-1})P(g_t g}$		$\overline{P(s_{1:t})}$	$\frac{1}{(s_t)P(g_{1:t-1} g_t)}$	0	1	
(ii)	0	$\max_{x_{t-1}}$	max_{x_t}		$\bigcap \sum_{x_{t-1}}$		\sum_{x_t}	\bigcirc 1
(iii)	0	$P(s_{t-1} x_{t-2},x_{t-1})$	$P(g_{t-1} x_{t-1})$	0	$P(s_t x_{t-1},x_t)P(s_t x_{t-1},x_t)P(s_t x_{t-1},x_t)P(s_t x_{t-1},x_t)$	$g_t x_t)$	0	$P(s_t, g_t x_t)$
	0	$P(x_{t-2}, x_{t-1}, s_{t-1})$	$P(x_{t-1}, g_{t-1})$) 🚳	$P(x_{t-1}, x_t, s_t)P($	$x_t, g_t)$	0	$P(s_{t-1}, g_{t-1} x_{t-1})$
	0	$P(x_{t-2}, x_{t-1} s_{t-1})$	$P(x_{t-1} g_{t-1})$	0	$P(x_{t-1}, x_t s_t) P(x_{t-1}, x_t s_t$	$x_t g_t)$	0	1
	0	$P(x_{t-2}, x_{t-1}, s_{t-1})$	g_{t-1}	0	$P(x_{t-1}, x_t, s_t, g_t)$)		
						100-000		

(c) The Viterbi algorithm finds the most probable sequence of hidden states $X_{1:T}$, given a sequence of observations $s_{1:T}$, for some time t = T. Recall the canonical HMM structure, which is shown below.

For this canonical HMM, the Viterbi algorithm performs the following dynamic programming computations:

$$m_t[x_t] = P(s_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}].$$

We consider extending the Viterbi algorithm for the modified HMM from part (b). We want to find the most likely sequence of states $X_{1:T}$ given the sequence of observations $s_{1:T}$ and $g_{1:T}$. The dynamic programming update for t > 1 for the modified HMM has the following form:

 $m_t[x_t] =$ (i) (ii) $m_{t-1}[x_{t-1}].$ Complete the expression by choosing the option that fills in each blank. $\bigcap \max_{x_t}$ \bigcirc max_{x_{t-1}} O_{1} $\bigcirc \sum_{x_{t-1}} \bigcirc \sum_{x_t}$ (i) $\bigcirc P(s_{t-1}|x_{t-2},x_{t-1})P(g_{t-1}|x_{t-1}) \bigcirc P(s_{t}|x_{t-1},x_{t})P(g_{t}|x_{t}) \bigcirc P(s_{t},g_{t}|x_{t})$ (ii) $\bigcirc P(x_{t-2}, x_{t-1}, s_{t-1}) P(x_{t-1}, g_{t-1}) \quad \textcircled{\textcircled{\$}} \quad P(x_{t-1}, x_t, s_t) P(x_t, g_t) \quad \bigcirc \quad P(s_{t-1}, g_{t-1} | x_{t-1})$ $\bigcirc P(x_{t-2}, x_{t-1}|s_{t-1})P(x_{t-1}|g_{t-1}) \quad \bigcirc P(x_{t-1}, x_t|s_t)P(x_t|g_t) \quad \bigcirc 1$ $\bigcirc P(x_{t-1},x_t,s_t,g_t)$ $\bigcap P(x_{t-2}, x_{t-1}, s_{t-1}, g_{t-1})$ \bigcirc 1 $\bigcirc P(x_{t-1}, x_t)$ $\bigcirc P(x_t | x_{t-1})$ $\bigcirc P(x_{t-2}, x_{t-1})$ $\bigcap P(x_{t-1}|x_{t-2})$ (iii)

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Therefore the self the Verreer among the correct answer.

Applications of independence among the correct answer.

problem and get it night when I retried it.

(c) The Viterbi algorithm finds the most probable sequence of hidden states $X_{1:T}$, given a sequence of observations $s_{1:T}$, for some time t = T. Recall the canonical HMM structure, which is shown below.

For this canonical HMM, the Viterbi algorithm performs the following dynamic programming computations:

$$m_t[x_t] = P(s_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}].$$

We consider extending the Viterbi algorithm for the modified HMM from part (b). We want to find the most likely sequence of states $X_{1:T}$ given the sequence of observations $s_{1:T}$ and $g_{1:T}$. The dynamic programming update for t > 1 for the modified HMM has the following form:

(iii) $m_t[x_t] =$ (i) (ii) Complete the expression by choosing the option that fills in each blank. O_1 \bigcirc max_{x_{t-1}} \bigcap max_x, O \sum_{x} O $\sum_{x_{t-1}}$ (i) $\bigcirc P(s_t|x_{t-1},x_t)P(g_t|x_t) \quad \bigcirc P(s_t,g_t|x_t)$ $\bigcap P(s_{t-1}|x_{t-2},x_{t-1})P(g_{t-1}|x_{t-1})$ (ii) $\bigcirc P(x_{t-2}, x_{t-1}, s_{t-1}) P(x_{t-1}, g_{t-1}) \quad \textcircled{\textcircled{\$}} \quad P(x_{t-1}, x_t, s_t) P(x_t, g_t) \quad \bigcirc \quad P(s_{t-1}, g_{t-1} | x_{t-1})$ $\bigcirc P(x_{t-1},x_t|s_t)P(x_t|g_t) \bigcirc 1$ $\bigcap P(x_{t-2}, x_{t-1}|s_{t-1})P(x_{t-1}|g_{t-1})$ $\bigcap P(x_{t-1},x_t,s_t,g_t)$ $\bigcap P(x_{t-2}, x_{t-1}, s_{t-1}, g_{t-1})$ $\bigcirc P(x_{t-1}|x_{t-2})$ O_1 $\bigcap P(x_{t-2},x_{t-1})$ $\bigcap P(x_{t-1},x_t)$ $P(x_t|x_{t-1})$ (iii)

Self assessment If correct, write "correct" in the box. Otherwise, write and explain the correct answer.

Therefore the water to remember the correct answer.

Therefore the water to remember the correct answer.

Applications of many and the correct answer.

problem and get it night when I retried it.