Ex 6.1

Determinants Ex 6.1 Q1(i)

Let M_{ij} and C_{ij} represents the minor and co-factor respectively of an element which is placed at the i^{th} row and j^{th} column.

Now,

$$M_{11} = -1$$

 $\lceil \ln a \, 2 \, \times \, 2 \, m \, atrix$, the minor is obtained for a particular element, by \rceil deleting that row and column where the element is present.

$$M_{21} = 20$$

$$\begin{split} C_{11} &= \left(-1\right)^{1+1} \times M_{11} & \left[\left[\cdot \cdot \cdot C_{ij} = \left(-1\right)^{i+j} \times M_{ij} \right] \right] \\ &= \left(+1\right) \left(-1\right) \\ &= -1 \end{split}$$

$$\left[\bigtriangledown C_{ij} = \left(-1 \right)^{i+j} \times M_{ij} \right]$$

$$C_{21} = (-1)^{2+1} M_{21}$$

= $(-1)^3 \times 20$
= -20

Also,

$$|A| = 5(-1) - (0) \times (20)$$

$$\left|A\right| = 5\left(-1\right) - \left(0\right) \times \left(20\right) \qquad \left[\text{If } A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \text{then } \left|A\right| = a_{11}a_{22} - a_{21}a_{12} \right]$$

Determinants Ex 6.1 Q1(ii)

Let M_{ij} and C_{ij} represents the minor and co-factor respectively of an element which is present at the i^{th} row and j^{th} column.

Now,

 $M_{21} = 4$

$$C_{11} = (-1)^{1+1} \times M_{11} \qquad \left[C_{ij} = (-1)^{i+j} \times M_{ij} \right]$$

$$C_{21} = (-1)^{2+1} \times M_{21}$$

$$= (-1)^{3} \times 4$$

$$= -4$$

Also

$$|A| = (-1) \times (3) - (2) \times (4)$$

= -3 - 8
= -11

Determinants Ex 6.1 Q1(iii)

Let M_{ij} and C_{ij} represents the minor and co-factor respectively of an element which is placed at the i^{th} row and j^{th} column.

Now.

$$\begin{aligned} M_{11} &= \begin{bmatrix} -1 & 2 \\ 5 & 2 \end{bmatrix} & \begin{bmatrix} \ln a 3 \times 3 \, \text{matrix}, M_{ij} \, \text{equals to the determinant of the } 2 \times 2 \\ \text{sub-matrix obtained by leaving the } i^{th} \, \text{row and } j^{th} \, \text{column of } A. \end{bmatrix} \\ &= (-1) \times (2) - (5) \times (2) \\ &= -2 - 10 \\ &= -12 \\ M_{21} &= \begin{bmatrix} -3 & 2 \\ 5 & 2 \end{bmatrix} = (-3) \times (2) - (5) \times (2) = -6 - 10 = -16 \\ M_{31} &= \begin{bmatrix} -3 & 2 \\ -1 & 2 \end{bmatrix} = (-3)(2) - (-1)(2) = -6 + 2 = -4 \end{aligned}$$

$$\begin{split} C_{11} &= \left(-1\right)^{1+1} M_{11} & \left(C_{ij} = \left(-1\right)^{i+j} \times M_{ij}\right) \\ &= \left(+\right) \left(-12\right) = -12 \\ C_{21} &= \left(-1\right)^{2+1} M_{21} = \left(-1\right)^{3} \left(-16\right) = 16 \\ C_{31} &= \left(-1\right)^{3+1} M_{31} = \left(-1\right)^{4} \left(-4\right) = -4 \end{split}$$

Also, expanding the determinant along the first column.

$$\begin{split} & \left| A \right| = a_{11} \times \left(\left(-1 \right)^{1+1} \times M_{11} \right) + a_{21} \times \left(\left(-1 \right)^{2+1} \times M_{21} \right) + a_{31} \times \left(\left(-1 \right)^{3+1} \times M_{31} \right) \\ & = a_{11} \times C_{11} + a_{21} \times C_{21} + a_{31} \times C_{31} \\ & = 1 \times \left(-12 \right) + 4 \times 16 + 3 \times \left(-4 \right) \\ & = -12 + 48 - 12 = 24 \end{split}$$

Determinants Ex 6.1 Q1(iv)

Let M_B and C_B are respectively the minor and co-factor of the element a_B .

$$M_{11} = \begin{bmatrix} b & ca \\ c & ab \end{bmatrix}$$
$$= ab^2 - ac^2$$

$$M_{21} = \begin{bmatrix} a & bc \\ c & ab \end{bmatrix}$$
$$= a^2b - c^2b$$

$$M_{31} = \begin{bmatrix} a & bc \\ b & ca \end{bmatrix}$$
$$= a^2c - b^2c$$

$$\begin{split} C_{11} &= \left(-1\right)^{1+1} \times M_{11} = + \left(ab^2 - ac^2\right) \\ C_{21} &= \left(-1\right)^{2+1} \times M_{21} = -\left(a^2b - c^2b\right) \\ C_{31} &= \left(-1\right)^{3+1} \times M_{31} = + \left(a^2c - b^2c\right) \end{split}$$

Also, expanding the determinant, along the first column.

$$|A| = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

$$= 1(ab^2 - ac^2) + 1(c^2b - a^2b) + 1 \times (a^2c - b^2c)$$

$$= ab^2 - ac^2 + c^2b - a^2b + a^2c - b^2c$$

Determinants Ex 6.1 Q1(v)

Let M_{ij} and C_{ij} are respectively the minor and co-factor of the element a_{ij} .

Now,

$$M_{11} = \begin{bmatrix} 5 & 0 \\ 7 & 1 \end{bmatrix} = 5 - 0 = 5$$

$$M_{21} = \begin{bmatrix} 2 & 6 \\ 7 & 1 \end{bmatrix} = 2 - 42 = -40$$

$$M_{31} = \begin{bmatrix} 2 & 6 \\ 5 & 0 \end{bmatrix} = 0 - 30 = -30$$

$$\begin{split} C_{11} &= \left(-1\right)^{1+1} \times M_{11} = +5 \\ C_{21} &= \left(-1\right)^{2+1} \times M_{21} = \left(-\right) \left(-40\right) = 40 \\ C_{31} &= \left(-1\right)^{3+1} \times M_{31} = +\left(-30\right) = -30 \end{split}$$

Now, expanding the determinant along the first column.

$$|A| = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$
$$= 0 \times 5 + 1 \times (40) + 3 \times (-30)$$
$$= 40 - 90$$
$$= -50$$

Determinants Ex 6.1 Q1(vi)

Let M_B and C_B are respectively the minor and co-factor of the element a_B .

$$M_{11} = \begin{bmatrix} b & f \\ f & c \end{bmatrix} = bc - f^{2}$$

$$M_{21} = \begin{bmatrix} h & g \\ f & c \end{bmatrix} = hc - gf$$

$$M_{31} = \begin{bmatrix} h & g \\ b & f \end{bmatrix} = hf - bg$$

$$Also C_{11} = (-1)^{1+1} M_{11} = bc - f^{2}$$

$$C_{21} = (-1)^{2+1} M_{21} = -(bc - gf)$$

$$C_{31} = (-1)^{3+1} M_{31} = hf - bg$$

Also, expanding along the first column.

$$|A| = a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31}$$

$$= a(bc - f^2) + h(-)(hc - gf) + g(hf - bg)$$

$$= abc - af^2 + hgf - h^2c + ghf - bg^2$$

Determinants Ex 6.1 Q1(vii)

We have,

We have,
$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0 \end{bmatrix}$$
Here,
$$M_{11} = \begin{bmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ -1 & 5 & 0 \end{bmatrix} = -1(0+10)-1(1-2) = -9$$

$$M_{21} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 1 \\ -1 & 5 & 0 \end{bmatrix} = 9$$

$$M_{31} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 5 & 0 \end{bmatrix} = -9$$

$$M_{41} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -1 \end{bmatrix} = 0$$

$$C_{11} = (-1)^{1+1} M_{11} = -9$$

$$C_{21} = (-1)^3 M_{21} = -9$$

$$C_{31} = (-4)^4 M_{31} = -9$$

$$C_{41} = (-1)^5 M_{41} = 0$$

Hence,

$$\begin{bmatrix} 2 & -1 & 0 & 1 \\ -3 & 0 & 1 & -2 \\ 1 & 1 & -1 & 1 \\ 2 & -1 & 5 & 0 \end{bmatrix} = 2 \times C_{11} + (-3)C_{21} + 1 \times C_{31} + 2 \times C_{41} = -9[2 - 3 + 1] = 0$$

Determinants Ex 6.1 Q2(i)

$$Let A = \begin{vmatrix} x & -7 \\ x & 5x + 1 \end{vmatrix}$$

$$|A| = x (5x + 1) + 7 \times x$$
$$= 5x^2 + x + 7x$$
$$= 5x^2 + 8x$$

Hence
$$|A| = 5x^2 + 8x$$

Determinants Ex 6.1 Q2(ii)

$$Let A = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$

$$|A| = \cos \theta \times \cos \theta + \sin \theta \times \sin \theta$$

= $\cos^2 \theta + \sin^2 \theta$
= 1

Hence |A| = 1

Determinants Ex 6.1 Q2(iii)

$$Let A = \begin{vmatrix} \cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{vmatrix}$$

$$|A| = \cos 15^{\circ} \cos 75^{\circ} - \sin 15^{\circ} \sin 75^{\circ}$$

= $\cos (75 + 15)$ $(\because \cos A \cos B - \sin A \sin B = \cos (A + B))$
= $\cos 90^{\circ}$
= 0

Hence |A| = 0

Determinants Ex 6.1 Q2(iv)

Let
$$A = \begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$$

$$|A| = (a+ib)(a-ib) - (c+id)(-c+id)$$

$$= (a^2+b^2) + (c+id)(c-id)$$

$$(Taking(-) sign common from - c+id)$$

$$(Also (a+ib)(a-ib) = a^2+b^2)$$

$$= a^2 + b^2 + c^2 + d^2$$

Hence $|A| = a^2 + b^2 + c^2 + d^2$

Determinants Ex 6.1 Q3

Since
$$|AB| = |A| \times |B|$$

Expanding along the first column, we get

$$|A| = 2 \begin{vmatrix} 17 & 5 \\ 20 & 12 \end{vmatrix} - 3 \begin{vmatrix} 13 & 5 \\ 15 & 12 \end{vmatrix} + 7 \begin{vmatrix} 13 & 17 \\ 15 & 20 \end{vmatrix}$$

$$= 2(204 - 100) - 3(156 - 75) + 7(260 - 255)$$

$$= 2(104) - 3(81) + 7(5)$$

$$= 208 - 243 + 35$$

$$= 243 - 243$$

$$= 0$$

Hence from eq. (1)

$$|A|^2 = |A| \times |A| = 0 \times 0 = 0$$

Determinants Ex 6.1 Q4

sin 10° xcos 80° + cos 10° sin 80°

$$= \sin\left(10^{\circ} + 80^{\circ}\right) \qquad \left[\because \sin A \cos B + \cos A \sin B = \sin\left(A + B\right)\right]$$
$$= \sin 90^{\circ}$$
$$= 1$$

Henceproved

Determinants Ex 6.1 Q5

We will evaluate the given determinant

- (i) Along the first row
- (ii) Along the first column
- (i) Along the first row

$$|A| = 2 \begin{vmatrix} 1 & -2 \\ 4 & 1 \end{vmatrix} - 3 \begin{vmatrix} 7 & -2 \\ -3 & 1 \end{vmatrix} - 5 \begin{vmatrix} 7 & 1 \\ -3 & 4 \end{vmatrix}$$
$$= 2(1+8) - 3(7-6) - 5(28+3)$$
$$= 2(9) - 3(1) - 5(31)$$
$$= 18 - 3 - 155 = -140$$

(ii)Along the first column

$$|A| = 2 \begin{vmatrix} 1 & -2 \\ 4 & 1 \end{vmatrix} - 7 \begin{vmatrix} 3 & -5 \\ 4 & 1 \end{vmatrix} - 3 \begin{vmatrix} 3 & -5 \\ 1 & -2 \end{vmatrix}$$

$$= 2 (1+8) - 7 (3+20) - 3 (-6+5)$$

$$= 18 - 7 (23) - 3 (-1)$$

$$= 18 - 161 + 3$$

$$= 21 - 161$$

$$= -140$$

We can see, the answer is same with both the methods.

Determinants Ex 6.1 Q6

$$\Delta = \begin{vmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{vmatrix}$$
$$= -\sin \alpha (-\sin \beta \cos \alpha) - \cos \alpha (\sin \alpha \sin \beta)$$
$$= 0$$

Determinants Ex 6.1 Q7

$$\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

Expanding along C3, we have:

$$\Delta = -\sin\alpha \left(-\sin\alpha \sin^2\beta - \cos^2\beta \sin\alpha \right) + \cos\alpha \left(\cos\alpha \cos^2\beta + \cos\alpha \sin^2\beta \right)$$

$$= \sin^2\alpha \left(\sin^2\beta + \cos^2\beta \right) + \cos^2\alpha \left(\cos^2\beta + \sin^2\beta \right)$$

$$= \sin^2\alpha \left(1 \right) + \cos^2\alpha \left(1 \right)$$

$$= 1$$

Determinants Ex 6.1 Q8

Let
$$A = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix}$$

$$\Rightarrow |A| = 2 - 10 = -8$$

$$B = \begin{bmatrix} 4 & -3 \\ 2 & 5 \end{bmatrix}$$
$$\Rightarrow |B| = 20 + 6 = 26$$

Now
$$AB = \begin{bmatrix} 2 & 5 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ 2 & 5 \end{bmatrix}$$

= $\begin{bmatrix} 2 \times 4 + 5 \times 2 & 2 \times (-3) + 5 \times 5 \\ 2 \times 4 + 1 \times 2 & 2 \times (-3) + 1 \times 5 \end{bmatrix}$
= $\begin{bmatrix} 8 + 10 & -6 + 25 \\ 8 + 2 & -6 + 5 \end{bmatrix}$
= $\begin{bmatrix} 18 & 19 \\ 10 & -1 \end{bmatrix}$

$$\Rightarrow |AB| = 18 \times (-1) - (10) (19)$$
$$= -18 - 190 = -208$$

Now
$$|AB| = |A| \times |B|$$

- 208 = (-8) × (26)
- 208 = -208

Hence verified.

Determinants Ex 6.1 Q9

Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

Evaluating the determinant along the first column

$$|A| = 1 \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & 4 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 1 & 2 \end{vmatrix}$$
$$= 1 \times (4 - 0) - 0 + 0$$
$$= 4$$

$$Again3A = \begin{bmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{bmatrix}$$
 (every element of A willbe multiplied by 3)

Now, evaluating this determinant

$$\begin{vmatrix} 3A \end{vmatrix} = 3 \begin{vmatrix} 3 & 6 \\ 0 & 12 \end{vmatrix} - 0 \begin{vmatrix} 0 & 3 \\ 0 & 12 \end{vmatrix} + 0 \begin{vmatrix} 0 & 3 \\ 3 & 6 \end{vmatrix}$$
$$= 3 (36 - 0) - 0 + 0$$
$$= 108$$

Now, according to the question

$$|3A| = 27|A|$$

108 = 108

(Substituting values)

Henceproved

Determinants Ex 6.1 Q10

$$\begin{vmatrix}
2 & 4 \\
5 & 1
\end{vmatrix} = \begin{vmatrix}
2x & 4 \\
6 & x
\end{vmatrix}$$

$$\Rightarrow 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4$$

$$\Rightarrow 2 - 20 = 2x^2 - 24$$

$$\Rightarrow 2x^2 = 6$$

$$\Rightarrow x^2 = 3$$

$$\Rightarrow x = \pm \sqrt{3}$$

(ii)
$$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$$

$$\Rightarrow$$
 2×5-3×4 = x ×5-3×2 x

$$\Rightarrow$$
 10-12 = 5x-6x

$$\Rightarrow -2 = -x$$

$$\Rightarrow x = 2$$

$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$
$$3 - x^2 = 3 - 8$$

$$x^2 = 8$$

$$x = \pm 2\sqrt{2}$$

(iv)

$$\begin{vmatrix} 3x & 7 \\ 2 & 4 \end{vmatrix} = 10$$

$$12x - 14 = 10$$
$$12x = 24$$

$$12x = 24$$

Determinants Ex 6.1 Q11

Let
$$A = \begin{vmatrix} x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4 \end{vmatrix}$$

Expanding the given determinant along the first column

$$\left|A\right| = x^2 \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} - 0 \begin{vmatrix} x & 1 \\ 1 & 4 \end{vmatrix} + 3 \begin{vmatrix} x & 1 \\ 2 & 1 \end{vmatrix}$$

$$28 = x^{2}(8-1) - 0(4x-1) + 3(x-2)$$

$$28 = 7x^2 + 3x - 6$$

$$7x^2 + 3x - 6 = 28$$

$$7x^2 + 3x - 34 = 0$$

Solving using quadratic formula, we get x = 2.

Determinants Ex 6.1 Q12(i)

A matrix A is called singular if |A| = 0

Now expanding along the first row |A|

$$= (x-1) \begin{vmatrix} x-1 & 1 \\ 1 & x-1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & x-1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ x-1 & 1 \end{vmatrix}$$

$$= (x-1) [(x-1)^2 - 1] - 1 [x-1-1] + 1 [1-x+1]$$

$$= (x-1) (x^2 + 1 - 2x - 1) - 1 (x-2) + 1 (2-x)$$

$$= (x-1) (x^2 - 2x) - x + 2 + 2 - x$$

$$= (x-1) \times x \times (x-2) + (4-2x)$$

$$= (x-1) \times x \times (x-2) + 2 (2-x)$$

$$= (x-1) \times x \times (x-2) + 2 (2-x)$$

$$= (x-1) \times x \times (x-2) - 2 (x-2)$$

$$= (x-2) [x (x-1) - 2]$$

(Taking(x-2) common)

Since Ais a singular matrix, so |A| = 0

$$i.e(x-2)(x^2-x-2)=0$$

either
$$(x-2) = 0$$
 or $x^2 - x - 2 = 0$
 $x = 2$ or $x^2 - 2x + x - 2 = 0$
 $x(x-2) + 1(x-2) = 0$
 $(x-2)(x+1) = 0$
 $x = 2, -1$

$$x = 2 \text{ or } -1$$

Determinants Ex 6.1 Q12(ii)

A matrix A is said to be singular if |A| = 0

Now

$$\begin{vmatrix} 1+x & 7\\ 3-x & 8 \end{vmatrix} = 0$$

$$8+8x-21+7x=0$$

$$15x=13$$

$$x = \frac{13}{15}$$

Ex 6.2

Chapter 6 Determinants Ex 6.2 Q1-i

$$\begin{vmatrix} 1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38 \end{vmatrix} = 2 \begin{vmatrix} 1 & 3 & 5 \\ 1 & 3 & 5 \\ 31 & 11 & 38 \end{vmatrix} = 0$$

Chapter 6 Determinants Ex 6.2 Q1-ii

Consider the determinant

 $\Rightarrow \triangle = -1$

$$\Delta = \begin{vmatrix} 67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26 \end{vmatrix}$$

$$Applying C_1 \rightarrow C_1 - 4C_3, we get,$$

$$\Delta = \begin{vmatrix} 4 & 19 & 21 \\ -3 & 13 & 14 \\ -3 & 24 & 26 \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 4 & 19 & 21 \\ -3 & 13 & 14 \\ -3 & 24 & 26 \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 32 & 35 \\ -3 & 13 & 14 \\ 0 & 11 & 12 \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 32 & 35 \\ 0 & 109 & 119 \\ 0 & 11 & 12 \end{vmatrix}$$

$$\Rightarrow \Delta = 1(109 \times 12 - 119 \times 11)$$

$$[Applying R_2 \rightarrow 3R_1 + R_2]$$

$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$$
= $a(bc - f^2) - h(hc - fg) + g(hf - bg)$
= $abc - af^2 - h^2c + hfg + ghf - bg^2$

Chapter 6 Determinants Ex 6.2 Q1-iv

$$\begin{vmatrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & -3 & 1 \\ 4 & -1 & 1 \\ 3 & 5 & 1 \end{vmatrix} = 2 \begin{vmatrix} 1 & -3 & 1 \\ 3 & 2 & 0 \\ 2 & 8 & 0 \end{vmatrix} = 2(24 - 4) = 40$$

Chapter 6 Determinants Ex 6.2 Q1-v

Let Δ be the determinant.

$$\Delta = \begin{vmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 - R_2$, we get,

$$\Delta = \begin{vmatrix} 1 & 4 & 9-4 \\ 4 & 9 & 16-9 \\ 9 & 16 & 25-16 \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 4 & 5 \\ 4 & 9 & 7 \\ 9 & 16 & 9 \end{vmatrix}$$

⇒
$$\Delta = \begin{vmatrix} 1 & 5 & 5 \\ 4 & 13 & 7 \\ 9 & 25 & 9 \end{vmatrix}$$
 [Applying $C_2 \to C_1 + C_2$]

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 4 & -7 & -13 \\ 9 & -20 & -36 \end{vmatrix}$$
 [Applying $C_2 \rightarrow 5C_1 - C_2$ and $C_3 \rightarrow 5C_1 - C_3$]

$$\Rightarrow \Delta = 1(7 \times 36 - 13 \times 20) = 252 - 260 = -8$$

$$\begin{vmatrix} 6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \end{vmatrix}$$
Apply: $R_1 \to R_1 + (-3)R_2$ and $R_3 \to R_3 + 5R_2$

$$\begin{vmatrix} 0 & 0 & -4 \\ 2 & -1 & 2 \end{vmatrix} = 0$$

Chapter 6 Determinants Ex 6.2 Q1-vii

0 0 12

$$\begin{vmatrix} 1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 3^2 & 3^3 \\ 3 & 3^2 & 3^3 & 1 \\ 3^2 & 3^3 & 1 & 3 \\ 3^3 & 1 & 3 & 3^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 + 3 + 3^2 + 3^3 & 3 & 3^2 & 3^3 \\ 1 + 3 + 3^2 + 3^3 & 3^3 & 1 & 3 \\ 1 + 3 + 3^2 + 3^3 & 1 & 3 & 3^2 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) \begin{vmatrix} 1 & 3 & 3^2 & 3^3 \\ 1 & 3^2 & 3^3 & 1 \\ 1 & 3^3 & 1 & 3 \\ 1 & 1 & 3 & 3^2 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) \begin{vmatrix} 1 & 3 & 3^2 & 3^3 \\ 1 & 3^2 & 3^3 & 1 \\ 1 & 3^3 & 1 & 3 \\ 1 & 1 & 3 & 3^2 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) \begin{vmatrix} 1 & 3 & 3^2 & 3^3 \\ 1 & 3^2 & 3^3 & 1 \\ 1 & 3^3 & 1 & 3 \\ 1 & 1 & 3 & 3^2 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) \begin{vmatrix} 6 & 18 & -26 \\ 24 & -8 & -24 \\ -2 & -6 & -18 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) 2^3 \begin{vmatrix} 3 & -9 & 13 \\ 12 & 4 & 12 \\ -1 & 3 & 9 \end{vmatrix}$$

$$= (1 + 3 + 3^2 + 3^3) 2^3 \times 40(36 + 4) = 512000$$

Chapter 6 Determinants Ex 6.2 Q1-viii

Let
$$\Delta = \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix}$$

Applying $R_3 \rightarrow 17R_2 - R_3$, we get,

$$\Delta = \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 0 & 48 & 62 \end{vmatrix}$$

Applying $R_2 \rightarrow 102R_2 - R_1$, we get,

$$\Delta = \begin{vmatrix} 102 & 18 & 36 \\ 0 & 288 & 372 \\ 0 & 48 & 62 \end{vmatrix}$$

Thus,

$$\Delta = 102(288 \times 62 - 372 \times 48)$$

$$\Rightarrow \Delta = 0$$

Apply:
$$R_3 \rightarrow R_3 - R_2$$

$$\begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 4 & 1 & -2 \end{vmatrix}$$

Apply:
$$R_2 \to R_2 - R_1$$

$$= \begin{vmatrix} 8 & 2 & 7 \\ 4 & 1 & -2 \\ 4 & 1 & -2 \end{vmatrix}$$

Since, $R_3 = R_2$, the value of the determinant is zero.

Chapter 6 Determinants Ex 6.2 Q2(ii)

Taking (-2) common from C_1 , we get

= 0

 $\because C_1$ and C_2 are identical.

Chapter 6 Determinants Ex 6.2 Q2(iii)

Use:
$$R_3 \rightarrow R_3 - R_2$$

$$\therefore R_3 = R_1$$

Chapter 6 Determinants Ex 6.2 Q2(iv)

$$\begin{vmatrix} \frac{1}{a} & a^2 & bc \\ \frac{1}{b} & b^2 & ca \\ \frac{1}{c} & c^2 & ab \end{vmatrix}$$

 $\mathsf{Multiply} : R_1, R_2 \text{ and } R_3 \text{ by } \mathit{a,b} \text{ and } \mathit{c} \text{ respectively, we get}$

$$= \frac{1}{abc} \begin{vmatrix} 1 & a^3 & abc \\ 1 & b^3 & bca \\ 1 & c^3 & cab \end{vmatrix}$$

Take abc common from C_3 , we get,

$$= \begin{vmatrix} 1 & a^3 & 1 \\ 1 & b^3 & 1 \\ 1 & c^3 & 1 \end{vmatrix}$$
$$= 0$$

$$C_1 = C_3$$

$$= \begin{vmatrix} 2a+b & a & a \\ 4a+b & a & a \end{vmatrix}$$
$$= 0$$
$$C_3 = C_2$$

$$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} - \begin{vmatrix} 1 & a & bc \\ 1 & b & ac \\ 1 & c & ab \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{vmatrix} - \begin{vmatrix} 1 & a & bc \\ 0 & b - a & (a - b)c \\ 0 & c - a & (a - c)b \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 & b + a \\ 0 & 1 & c + a \end{vmatrix} - (b - a)(c - a) \begin{vmatrix} 1 & a & bc \\ 0 & 1 & -b \\ 0 & 1 & -b \end{vmatrix}$$

$$= (b - a)(c - a)(c + a - b - a) - (b - a)(c - a)(-b + c)$$

$$= (b - a)(c - a)(c - b) - (b - a)(c - a)(-b + c)$$

$$= 0$$

Chapter 6 Determinants Ex 6.2 Q2(vii)

Apply:
$$C_1 \rightarrow C_1 + (-8)C_3$$

$$\begin{vmatrix} 1 & 1 & 6 \\ 7 & 7 & 4 \\ 2 & 2 & 3 \end{vmatrix} = 0$$

$$\therefore \quad C_1 = C_2$$

Chapter 6 Determinants Ex 6.2 Q2(viii)

Multiply $\mathrm{C_1}$, $\mathrm{C_2}$ and $\mathrm{C_3}$ by z , y , and x respectively

$$=\frac{1}{xyz}\begin{vmatrix}0&xy&yx\\-xz&0&zx\\-yz&-zy&0\end{vmatrix}$$

Take y, x, and z common from $\rm R_1, R_2$ and $\rm R_3$ respectively

$$= \begin{vmatrix} 0 & x & x \\ -z & 0 & z \\ -y & -y & 0 \end{vmatrix}$$
$$: C_2 \rightarrow C_2 - C_3$$

Apply:
$$C_2 \to C_2 - C_3$$

$$\begin{vmatrix}
0 & 0 & x \\
-z & -z & z \\
-y & -y & 0
\end{vmatrix}$$

$$\cdot \cdot C_1 = C_2$$

$$\begin{vmatrix} 1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2 \end{vmatrix}$$
Apply: $C_2 \rightarrow C_2 + (-7)C_3$

$$\begin{vmatrix} 1 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2 \end{vmatrix}$$

$$= 0$$
∴ $C_1 = C_2$

$$\begin{vmatrix}
1^2 & 2^2 & 3^2 & 4^2 \\
2^2 & 3^2 & 4^2 & 5^2 \\
3^2 & 4^2 & 5^2 & 6^2 \\
4^2 & 5^2 & 6^2 & 7^2
\end{vmatrix}$$

 $Apply: \texttt{C3} \rightarrow \texttt{C3-C2}, \texttt{C4} \rightarrow \texttt{C4-C1}$

$$= \begin{vmatrix} 1^2 & 2^2 & 3^2 - 2^2 & 4^2 - 1^2 \\ 2^2 & 3^2 & 4^2 - 3^2 & 5^2 - 2^2 \\ 3^2 & 4^2 & 5^2 - 4^2 & 6^2 - 3^2 \\ 4^2 & 5^2 & 6^2 - 5^2 & 7^2 - 4^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1^2 & 2^2 & 5 & 15 \\ 2^2 & 3^2 & 7 & 21 \\ 3^2 & 4^2 & 9 & 27 \\ 4^2 & 5^2 & 11 & 33 \end{vmatrix}$$

Take 3 common from C₄

$$= 3 \begin{vmatrix} 1^2 & 2^2 & 5 & 5 \\ 2^2 & 3^2 & 7 & 7 \\ 3^2 & 4^2 & 9 & 9 \\ 4^2 & 5^2 & 11 & 11 \end{vmatrix}$$

Chapter 6 Determinants Ex 6.2 Q2(xi)

$$\begin{vmatrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \end{vmatrix}$$

$$= \begin{vmatrix} a & b & c \\ 2a+2x & 2b+2y & 2c+2z \\ x+a & y+b & z+c \end{vmatrix}$$

$$= 0 \qquad b \qquad c$$

$$= 2\begin{vmatrix} a & b & c \\ a+x & b+y & c+z \\ x+a & y+b & z+c \end{vmatrix}$$

$$= 0$$

Apply:
$$C_2 \rightarrow C_2 + C_1$$
.

$$= \begin{vmatrix} a & b+c+a & a^2 \\ b & c+a+b & b^2 \\ c & a+b+c & c^2 \end{vmatrix}$$

Take (a+b+c) common from C_2

$$= (b+c+a)\begin{vmatrix} a & 1 & a^2 \\ b & 1 & b^2 \\ c & 1 & c^2 \end{vmatrix}$$

Apply:
$$R_2 \rightarrow R_2 - R_1$$
, $R_3 \rightarrow R_3 - R_1$

$$= (b+c+a)\begin{vmatrix} a & 1 & a^2 \\ b-a & 0 & b^2-a^2 \\ c-a & 0 & c^2-a^2 \end{vmatrix}$$

$$= (b+c+a)(b-a)(c-a)\begin{vmatrix} a & 1 & a \\ 1 & 0 & b+a \end{vmatrix}$$

$$|^{1}$$
 $^{\circ}$ = $(b+c+a)(b-a)(c-a)(b-c)$

Chapter 6 Determinants Ex 6.2 Q4

$$Let \ \Delta = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$ we get,

$$\Delta = \begin{vmatrix} 1 & a & bc \\ 0 & b - a & ca - bc \\ 0 & c - a & ab - ba \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 1 & a & bc \\ 0 & b - a & c(a - b) \\ 0 & c - a & b(a - c) \end{vmatrix}$$

Taking (a - b) and (a - c) common, we have

$$\Delta = (a - b)(a - c) \begin{vmatrix} 1 & a & bc \\ 0 & -1 & c \\ 0 & -1 & b \end{vmatrix}$$

$$\Rightarrow \Delta = (a - b)(c - a)(b - c)$$

Chapter 6 Determinants Ex 6.2 Q5

Let
$$\Delta = \begin{vmatrix} x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$ we get,

$$\Delta = \begin{vmatrix} 3x + \lambda & x & x \\ 3x + \lambda & x + \lambda & x \\ 3x + \lambda & x & x + \lambda \end{vmatrix}$$

Taking $(3x + \lambda)$ common, we have

$$\Delta = (3x + \lambda) \begin{vmatrix} 1 & x & x \\ 1 & x + \lambda & x \\ 1 & x & x + \lambda \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$, we get,

$$\Delta = (3x + \lambda) \begin{vmatrix} 1 & x & x \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{vmatrix}$$

$$\Rightarrow \Delta = \lambda^2 (3x + \lambda)$$

$$Let \ \Delta = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$ we get,

$$\Delta = \begin{vmatrix} a+b+c & b & c \\ a+b+c & a & b \\ a+b+c & c & a \end{vmatrix}$$

Taking (a + b + c) common, we have

$$\Delta = (a + b + c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$, we get,

$$\Delta = (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & a-b & b-c \\ 0 & c-b & a-c \end{vmatrix}$$

$$\Rightarrow \Delta = (a+b+c)[(a-b)(a-c)-(b-c)(c-b)]$$

$$\Rightarrow \Delta = (a+b+c)[a^2-ac-ab+bc+b^2+c^2-2bc]$$

$$\Rightarrow \Delta = (a+b+c)[a^2+b^2+c^2-ac-ab-bc]$$

Chapter 6 Determinants Ex 6.2 Q7

$$\begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix} = \begin{vmatrix} 2+x & 1 & 1 \\ 2+x & x & 1 \\ 2+x & 1 & x \end{vmatrix} = (2+x)\begin{vmatrix} 1 & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix}$$
$$= (2+x)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & x \end{vmatrix}$$
$$= (2+x)(x-1)^{2}$$

Chapter 6 Determinants Ex 6.2 Q8

$$\begin{vmatrix} 0 & xy^2 & xz^2 \\ x^2y & 0 & yz^2 \\ x^2z & zy^2 & 0 \end{vmatrix}$$

$$= 0(0 - y^3z^3) - xy^2(0 - x^2yz^3) + xz^2(x^2y^3z - 0)$$

$$= 0 + x^3y^3z^3 + x^3y^3z^3$$

$$= 2x^3y^3z^3$$

Let
$$\Delta = \begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_3 - R_2$

$$Applying $R_1 \rightarrow R_1 - R_2 \rightarrow R_3 - R_2$

$$Applying $C_2 \rightarrow C_2 + C_1$

$$Applying $C_2 \rightarrow C_2 + C_1$

$$Applying $C_2 \rightarrow C_2 + C_1$

$$A = \begin{vmatrix} a & 0 & 0 \\ x & a+x+y & z \\ 0 & -a & a \end{vmatrix}$$

$$A = a[a(a+x+y)+az]+0+0$$

$$A = a^2(a+x+y+z)$$$$$$$$$$

$$\begin{split} \Delta + \Delta_1 &= \begin{vmatrix} 1 & \times & \times^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 1 \\ yz & zx & xy \\ \times & y & z \end{vmatrix} \\ &= \begin{vmatrix} 1 & \times & \times^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} + \begin{vmatrix} 1 & yz & x \\ 1 & zx & y \\ 1 & xy & z \end{vmatrix} \\ &= \begin{vmatrix} 1 & \times & \times^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} - \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix} \\ &= \begin{vmatrix} 1 & x & z^2 \\ 1 & y & z^2 \\ 1 & z & z^2 \end{vmatrix} - \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix} \end{split}$$

If any two rows (columns) of the determinant are interchanged then value of the determinant changes in sign.

$$= \begin{vmatrix} 0 & 0 & x^2 - yz \\ 0 & 0 & y^2 - zx \\ 0 & 0 & z^2 - xy \end{vmatrix}$$

= 0..........[$:: C_1$ and C_2 are identical]

Chapter 6 Determinants Ex 6.2 Q11

$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$

$$\begin{vmatrix} a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b \end{vmatrix}$$

$$\begin{array}{lll} \text{Apply: } C_1 \to C_1 + C_2 + C_3, \\ & = \left| \begin{array}{cccc} a+b+c & b & c \\ 0 & b-c & c-a \\ 2\left(a+b+c\right) & c+a & a+b \end{array} \right| \end{array}$$

Take (a+b+c) common from C_1

$$= \begin{pmatrix} a+b+c \end{pmatrix} \begin{vmatrix} 1 & b & c \\ 0 & b-c & c-a \\ 2 & c+a & a+b \end{vmatrix}$$

Apply:
$$R_3 \to R_3 - 2R_1$$

$$= (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & b-c & c-a \\ 0 & c+a-2b & a+b-2c \end{vmatrix}$$

$$= (a+b+c)[(b-c)(a+b-2c)-(c-a)(c+a-2b)]$$

$$= a^3+b^3+c^3-3abc$$

$$= RHS$$

$$\begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} = 3abc-a^3-b^3-c^3$$

$$\begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}$$

$$=\begin{vmatrix} b+c+a & -b & a \\ c+a+b & -c & b \\ a+b+c & -a & c \end{vmatrix}$$

$$=-(b+c+a)\begin{vmatrix} 1 & b & a \\ 1 & c & b \\ 1 & a & c \end{vmatrix}$$

$$=-(b+c+a)\begin{vmatrix} 1 & b & a \\ 0 & c-b & b-a \\ 0 & a-b & c-a \end{vmatrix}$$

$$=-(b+c+a)[(c-b)(c-a)-(b-a)(a-b)]$$

$$=3abc-a^3-b^3-c^3$$

$$=RHS$$

$$\begin{vmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix} = 2\begin{vmatrix} a & b & c \\ b & c & a \\ c+a & a+b & b+c \end{vmatrix}$$

$$\begin{vmatrix} a+b & b+c & c+a \\ a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{vmatrix}$$

$$Apply: C_1 \rightarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 2(a+b+c) & b+c & c+a \\ 2(a+b+c) & c+a & a+b \\ 2(a+b+c) & a+b & b+c \end{vmatrix}$$

$$= 2\begin{vmatrix} a+b+c & b+c & c+a \\ a+b+c & a+b & b+c \end{vmatrix}$$

$$Apply: C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$$

$$= 2\begin{vmatrix} a+b+c & -a & -b \\ a+b+c & -b & -c \\ a+b+c & -c & -a \end{vmatrix}$$

$$= 2\begin{vmatrix} a+b+c & a+b \\ a+b+c & a+b \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} a+b+c & a+b \\ a+b+c & a+b \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+a & b \\ a+b+c & c+a \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+b+c & a+b \\ a+b+c & c+a \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+b+c & a+b \\ a+b+c & c+a \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+b+c & a+b \\ a+b+c & c+a \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+b+c & a+b \\ a+b+c & c+a \\ a+b+c & c+a \\ a+b+c & c+a \end{vmatrix}$$

$$= 2\begin{vmatrix} c+b+c & a+b \\ a+b+c & c+a \\ a+b$$

Chapter 6 Determinants Ex 6.2 Q14

We need to prove the following identity:

$$\begin{vmatrix} a+b+2c & a & b \\ c & b+c+2a & b \\ c & a & c+a+2b \end{vmatrix} = 2(a+b+c)^3$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have,

L.H.S =
$$\begin{vmatrix} 2a + 2b + 2c & a & b \\ 2a + 2b + 2c & b + c + 2a & b \\ 2a + 2b + 2c & a & c + a + 2b \end{vmatrix}$$

Taking the term 2a + 2b + 2 as common, we have

L.H.S =
$$(2a + 2b + 2c)$$
 $\begin{vmatrix} 1 & a & b \\ 1 & b + c + 2a & b \\ 1 & a & c + a + 2b \end{vmatrix}$
 $\Rightarrow L.H.S = 2(a + b + c)$ $\begin{vmatrix} 1 & a & b \\ 1 & b + c + 2a & b \\ 1 & a & c + a + 2b \end{vmatrix}$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$ we have

L.H.S =
$$2(a+b+c)\begin{vmatrix} 1 & a & b \\ 0 & a+b+c & 0 \\ 0 & 0 & a+b+c \end{vmatrix}$$

Thus, we have,

L.H.S =
$$2(a + b + c)[1 \times (a + b + c)^{2}]$$

= $2(a + b + c)(a + b + c)^{2}$
= $2(a + b + c)^{3}$

Chapter 6 Determinants Ex 6.2 Q15

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

LHS =
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Apply: $R_1 \rightarrow R_1 + R_2 + R_3$.

$$= \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Take (a+b+c) common from R_1

$$= (a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

Apply:
$$C_2 \rightarrow C_2 - C_1$$
, $C_3 \rightarrow C_3 - C_1$

$$\begin{vmatrix} 1 & 0 & 0 \\ 2b & -b - c - a & 0 \\ 2c & 0 & -c - a - b \end{vmatrix}$$

$$= (a+b+c)\begin{vmatrix} 1 & 0 & 0 \\ 2b & b+c+a & 0 \\ 2c & 0 & b+c+a \end{vmatrix}$$

$$=(a+b+c)^3$$

$$LHS = \begin{vmatrix} 1 & b+c & b^2+c^2 \\ 1 & c+a & c^2+a^2 \\ 1 & a+b & a^2+b^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & a-b & a^2-b^2 \\ 0 & a-c & a^2-c^2 \end{vmatrix}$$

$$= (a-b)(a-c)\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & 1 & a+b \\ 0 & 1 & a+c \end{vmatrix}$$

$$= (a-b)(a-c)\begin{vmatrix} 1 & b+c & b^2+c^2 \\ 0 & 1 & a+b \\ 0 & 0 & c-b \end{vmatrix}$$

$$= (a-b)(b-c)(c-a)$$

$$= RHS$$

$$LHS = \begin{vmatrix} a & a+b & a+2b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix}$$

$$= \begin{vmatrix} 3a+3b & 3a+3b & 3a+3b \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix}$$

$$= (3a+3b) \begin{vmatrix} 1 & 1 & 1 \\ a+2b & a & a+b \\ a+b & a+2b & a \end{vmatrix}$$

$$= 3(a+b) \begin{vmatrix} 0 & 1 & 0 \\ 2b & a & b \\ -b & a+2b & -2b \end{vmatrix}$$

$$= 3(a+b)b^{2} \begin{vmatrix} 0 & 1 & 0 \\ 2 & a & 1 \\ -1 & a+2b & -2 \end{vmatrix}$$

$$= 9(a+b)b^{2}$$

$$= RHS$$

Apply
$$R_1 \to R_1 a$$
, $R_2 \to R_2 b$, $R_3 \to R_3 c$

$$= \frac{1}{abc} \begin{vmatrix} a & a^2 & abc \\ b & b^2 & cab \\ c & c^2 & abc \end{vmatrix}$$

$$= \frac{abc}{abc} \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix}$$

$$= -\frac{\begin{vmatrix} a & 1 & a^2 \\ b & 1 & b^2 \\ c & 1 & c^2 \end{vmatrix}$$

$$= \frac{\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

$$\begin{vmatrix} z & x & y \\ z^{2} & x^{2} & y^{2} \\ z^{4} & x^{4} & y^{4} \end{vmatrix} = \begin{vmatrix} x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \end{vmatrix} = \begin{vmatrix} x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \\ x & y & z \end{vmatrix} = xyz \begin{pmatrix} x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{4} & y^{4} & z^{4} \end{vmatrix}$$

$$= xyz \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^{3} & y^{3} & z^{3} \end{vmatrix}$$

$$= xyz \begin{vmatrix} 0 & 1 & 0 \\ x - y & y & z - y \\ x^{3} - y^{3} & y^{3} & z^{3} - y^{3} \end{vmatrix}$$

$$= xyz(x - y)(z - y) \begin{vmatrix} 0 & 1 & 0 \\ 1 & y & 1 \\ x^{2} + y^{2} + xy & y^{3} & z^{2} + y^{2} + zy \end{vmatrix}$$

$$= -xyz(x - y)(z - y) [z^{2} + y^{2} + zy - x^{2} - y^{2} - xy]$$

$$= -xyz(x - y)(z - y) [(z - x)(z + x) + y(z - x)]$$

= -xyz(x-y)(z-y)(z-x)[z+x+y]= xyz(x-y)(y-z)(z-x)(x+y+z)

$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$$

LHS =
$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix}$$

= RHS

Apply:
$$C_1 \to C_1 + C_2 - 2C_3$$

$$= \begin{vmatrix} (b+c)^2 + a^2 - 2bc & a^2 & bc \\ (c+a)^2 + b^2 - 2ca & b^2 & ca \\ (a+b)^2 + c^2 - 2ab & c^2 & ab \end{vmatrix}$$

$$\begin{vmatrix} a^2 + b^2 + c^2 & a^2 & bc \\ a^2 + b^2 + c^2 & b^2 & ca \\ a^2 + b^2 + c^2 & c^2 & ab \end{vmatrix}$$

Take $(a^2 + b^2 + c^2)$ common from C_1

$$= (a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & a^{2} & bc \\ 1 & b^{2} & ca \\ 1 & c^{2} & ab \end{vmatrix}$$

$$= (a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & a^{2} & bc \\ 0 & b^{2} - a^{2} & ca - bc \\ 0 & c^{2} - a^{2} & ab - bc \end{vmatrix}$$

$$= (a^{2} + b^{2} + c^{2}) (b - a) (c - a) \begin{vmatrix} 1 & a^{2} & bc \\ 0 & b + a - c \\ 0 & c + a - b \end{vmatrix}$$

$$= (a^{2} + b^{2} + c^{2}) (b - a) (c - a) [(b + a)(-b) - (-c)(c + a)]$$

$$= (a - b) (b - c) (c - a) (a + b + c) (a^{2} + b^{2} + c^{2})$$

$$= RHS$$

$$\begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)(a+4) & a+4 & 1 \end{vmatrix} = -2$$

Apply
$$R_3 \to R_3 - R_2$$

$$= \begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)(a+3) & a+3 & 1 \\ (a+3)2 & 1 & 0 \end{vmatrix}$$

Apply
$$R_2 \to R_2 - R_1$$

$$= \begin{vmatrix} (a+1)(a+2) & a+2 & 1 \\ (a+2)2 & 1 & 0 \\ (a+3)2 & 1 & 0 \end{vmatrix}$$

$$= \begin{bmatrix} (2a+4)(1) - (1)(2a+6) \end{bmatrix}$$

$$= -2$$

$$= RHS$$

$$\begin{vmatrix} a^2 & a^2 - (b - c)^2 & bc \\ b^2 & b^2 - (c - a)^2 & ca \\ c^2 & c^2 - (a - b)^2 & ab \end{vmatrix} = (a - b)(b - c)(c - a)(a + b + c)(a^2 + b^2 + c^2)$$

$$\begin{vmatrix} a^2 & a^2 - (b - c)^2 & bc \\ b^2 & b^2 - (c - a)^2 & ca \\ c^2 & c^2 - (a - b)^2 & ab \end{vmatrix}$$

$$Apply: C_2 \rightarrow C_2 - 2C_1 - 2C_3$$

$$= \begin{vmatrix} a^2 & a^2 - (b - c)^2 - 2a^2 - 2bc & bc \\ b^2 & b^2 - (c - a)^2 - 2b^2 - 2ca & ca \\ c^2 & c^2 - (a - b)^2 - 2c^2 - 2ab & ab \end{vmatrix}$$

$$= \begin{vmatrix} a^2 & -(b^2 + c^2 + a^2) & bc \\ b^2 & -(b^2 + c^2 + a^2) & ca \\ c^2 & -(b^2 + c^2 + a^2) & ab \end{vmatrix}$$

Take
$$-(a^2+b^2+c^2)$$
 common from C_2

$$= -(b^2+c^2+a^2)\begin{vmatrix} a^2 & 1 & bc \\ b^2 & 1 & ca \\ c^2 & 1 & ab \end{vmatrix}$$

$$= -(b^2+c^2+a^2)\begin{vmatrix} a^2 & 1 & bc \\ b^2-a^2 & 0 & ca-bc \\ c^2-a^2 & 0 & ab-bc \end{vmatrix}$$

$$= -(b^2+c^2+a^2)(a-b)(c-a)\begin{vmatrix} a^2 & 1 & bc \\ -(b+a) & 0 & c \\ c+a & 0 & -b \end{vmatrix}$$

$$= -(b^2+c^2+a^2)(a-b)(c-a)[(-(b+a))(-b)-(c)(c+a)]$$

$$= (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$$

$$= RHS$$

$$\begin{vmatrix} 1 & a^{2} + bc & a \\ 1 & b^{2} + ca & b^{3} \\ 1 & c^{2} + ab & c^{3} \end{vmatrix} = -(a-b)(b-c)(c-a)(a^{2} + b^{2} + c^{2})$$

$$\begin{vmatrix} 1 & a^{2} + bc & a^{3} \\ 1 & b^{2} + ca & b^{3} \\ 1 & c^{2} + ab & c^{3} \end{vmatrix}$$

$$Apply: R_{2} \rightarrow R_{2} - R_{1} \text{ and } R_{3} \rightarrow R_{3} - R_{1}$$

$$= \begin{vmatrix} 1 & a^{2} + bc & a^{3} \\ 0 & b^{2} + ca - a^{2} - bc & b^{3} - a^{3} \\ 0 & c^{2} + abb^{2} + ca - a^{2} - bc & c^{3} - a^{3} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^{2} + bc & a^{3} \\ 0 & (b^{2} - a^{2}) - c(b - a) & b^{3} - a^{3} \\ 0 & (c^{2} - a^{2}) - b(c - a) & c^{3} - a^{3} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a^{2} + bc & a^{3} \\ 0 & (b - a)(b + a - c) & b^{3} - a^{3} \\ 0 & (c - a)(c + a - b) & c^{3} - a^{3} \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & a^{2} + bc & a^{3} \\ 0 & (b + a - c) & b^{2} + a^{2} + ab \\ 0 & (c + a - b) & c^{2} + a^{2} + ac \end{vmatrix}$$

$$= (b - a)(c - a) \left[((b + a - c))(c^{2} + a^{2} + ac) - (b^{2} + a^{2} + ab)(c^{2} + a^{2} + ac) \right]$$

$$= (a - b)(b - c)(c - a)(a^{2} + b^{2} + c^{2})$$

$$= RHS$$

We need to prove the following identity:

$$\begin{vmatrix} a^{2} & bc & ac + c^{2} \\ a^{2} + ab & b^{2} & ac \\ ab & b^{2} + bc & c^{2} \end{vmatrix} = 4a^{2}b^{2}c^{2}$$

Taking the term a,b,c common from C_1 , C_2 and C_3 , respectively, we have,

$$L.H.S = abc \begin{vmatrix} a & c & a+c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have,

L.H.S = abc
$$\begin{vmatrix} 2a + 2c & c & a + c \\ 2a + 2b & b & a \\ 2b + 2c & b + c & c \end{vmatrix}$$

$$\Rightarrow L.H.S = 2abc \begin{vmatrix} a+c & c & a+c \\ a+b & b & a \\ b+c & b+c & c \end{vmatrix}$$

Applying
$$C_2 \rightarrow C_2 - C_1$$
 and $C_3 \rightarrow C_3 - C_1$, we have,

L.H.S = 2abc
$$\begin{vmatrix} a+c - a & 0 \\ a+b - a & -b \\ b+c & 0 & -b \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have,

$$\Rightarrow L.H.S = 2abc \begin{vmatrix} c & -a & 0 \\ 0 & -a & -b \\ c & 0 & -b \end{vmatrix}$$

Taking c, a, and b from C_1 , C_2 and C_3 respectively, we have,

L.H.S =
$$2a^2b^2c^2\begin{vmatrix} 1 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1 \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 - R_1$, we have

L.H.S =
$$2a^2b^2c^2\begin{vmatrix} 1 & -1 & 0\\ 0 & -1 & -1\\ 0 & 1 & -1 \end{vmatrix}$$

= $4a^2b^2c^2$

Chapter 6 Determinants Ex 6.2 Q25

We need to prove the following identity:

$$\begin{vmatrix} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{vmatrix} = 16(3x+4)$$

Let us consider the L.H.S of the above equation.

$$\Delta = \begin{vmatrix} x+4 & x & x \\ x & x+4 & x \\ x & x & x+4 \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we get,

$$\Delta = \begin{vmatrix} 3x + 4 & x & x \\ 3x + 4 & x + 4 & x \\ 3x + 4 & x & x + 4 \end{vmatrix}$$

Taking the common term 3x + 4, we get,

$$\Delta = (3x + 4) \begin{vmatrix} 1 & x & x \\ 1 & x + 4 & x \\ 1 & x & x + 4 \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we get,

$$\Delta = (3x + 4) \begin{vmatrix} 1 & x & x \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{vmatrix}$$

$$\Rightarrow \Delta = 16(3x + 4)$$

We need to prove the following identity:

$$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1$$

Let us consider the L.H.S of the above equation.

Applying $C_2 \rightarrow C_2 - pC_1$ and $C_3 \rightarrow C_3 - qC_1$, we get

$$\Delta = \begin{vmatrix} 1 & 1 & 1+p \\ 2 & 3 & 4+3p \\ 3 & 6 & 10+6p \end{vmatrix}$$

Applying $C_3 \rightarrow C_3 - pC_2$, we get

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 3 & 6 & 10 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - pC_1$ and $C_3 \rightarrow C_3 - qC_1$, we get

$$\Rightarrow \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 3 & 3 & 7 \end{vmatrix}$$
$$\Rightarrow \Delta = 1[7 - 6] = 1$$

Chapter 6 Determinants Ex 6.2 Q27

$$\begin{vmatrix} a & b-c & c-b \\ a-c & b & c-a \\ a-b & b-a & c \end{vmatrix}$$

$$R_1 \to R_1 - R_2 - R_3$$

$$= \begin{vmatrix} -a+c+b & -b-c+a & -c-b+a \\ a-c & b & c-a \\ a-b & b-a & c \end{vmatrix}$$

$$= (b+c-a)\begin{vmatrix} 1 & -1 & -1 \\ a-c & b & c-a \\ a-b & b-a & c \end{vmatrix}$$

$$= (b+c-a)\begin{vmatrix} 1 & 0 & 0 \\ a-c & b+a-c & 0 \\ a-b & 0 & c+a-b \end{vmatrix}$$

$$= (a+b-c)(b+c-a)(c+a-b)$$

$$= RHS$$

$$\begin{vmatrix} b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}$$

$$= \begin{vmatrix} a^2 + b^2 + 2ab & 2ab & b^2 \\ a^2 + b^2 + 2ab & a^2 & 2ab \\ a^2 + b^2 + 2ab & b^2 & a^2 \end{vmatrix}$$

$$= (a^2 + b^2 + 2ab) \begin{vmatrix} 1 & 2ab & b^2 \\ 1 & a^2 & 2ab \\ 1 & b^2 & a^2 \end{vmatrix}$$

$$= (a^2 + b^2 + 2ab) \begin{vmatrix} 1 & 2ab & b^2 \\ 0 & a^2 - 2ab & 2ab - b^2 \\ 0 & b^2 - 2ab & a^2 - b^2 \end{vmatrix}$$

$$= (a^2 + b^2 + 2ab) \begin{vmatrix} 1 & 2ab & b^2 \\ 0 & a^2 - b^2 & 2ab - a^2 \\ 0 & b^2 - 2ab & a^2 - b^2 \end{vmatrix}$$

$$= (a^2 + b^2) \left[(a^2 - b^2) (a^2 - b^2) - (2ab - a^2) (b^2 - 2ab) \right]$$

$$= (a + b)^2 (a^2 + b^2 - ab)^2$$

$$= (a^3 + b^3)^2$$

$$= RHS$$

We need to prove the following identity:

We need to prove the following identit
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

Let us consider the L.H.S of the above equation.

$$\Delta = \begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1(a)$, $R_2 \rightarrow R_2(b)$ and $R_3 \rightarrow R_3(c)$, we get

$$\Delta = \frac{1}{abc} \begin{vmatrix} a(a^2 + 1) & a^2b & a^2c \\ ab^2 & b(b^2 + 1) & b^2c \\ c^2a & c^2b & c(c^2 + 1) \end{vmatrix}$$

Taking a,b, and c common from C_1, C_2 and C_3 , respectively, we get,

$$\Delta = \frac{abc}{abc} \begin{vmatrix} (a^2 + 1) & a^2 & a^2 \\ b^2 & (b^2 + 1) & b^2 \\ c^2 & c^2 & (c^2 + 1) \end{vmatrix}$$

$$\Delta = \frac{abc}{abc} \begin{vmatrix} \left(a^2 + b^2 + c^2 + 1\right) \left(a^2 + b^2 + c^2 + 1\right) \left(a^2 + b^2 + c^2 + 1\right) \\ b^2 & \left(b^2 + 1\right) & b^2 \\ c^2 & c^2 & \left(c^2 + 1\right) \end{vmatrix}$$

Taking the term, $(a^2 + b^2 + c^2 + 1)$ common from the above equation, we have,

$$\Delta = (a^2 + b^2 + c^2 + 1) \begin{vmatrix} 1 & 1 & 1 \\ b^2 (b^2 + 1) & b^2 \\ c^2 & c^2 & (c^2 + 1) \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$, $C_3 \rightarrow C_3 - C_1$, we get,

$$\Delta = \left(a^2 + b^2 + c^2 + 1\right) \begin{vmatrix} 1 & 0 & 1 \\ b^2 & 1 & 0 \\ c^2 & 0 & 1 \end{vmatrix}$$

$$\Rightarrow \Delta = (a^2 + b^2 + c^2 + 1)$$

Chapter 6 Determinants Ex 6.2 Q30

Let us consider the L.H.S of the given equation.

$$Let \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1 \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have,

$$\Delta = \begin{vmatrix} 1 + a + a^2 & a & a^2 \\ 1 + a + a^2 & 1 & a \\ 1 + a + a^2 & a^2 & 1 \end{vmatrix}$$

Taking the term $(1 + a + a^2)$ common, we have,

$$\Delta = (1 + a + a^{2}) \begin{vmatrix} 1 & a & a^{2} \\ 1 & 1 & a \\ 1 & a^{2} & 1 \end{vmatrix}$$

$$Applying R_{2} \rightarrow R_{2} - R_{1} \text{ and } R_{3} \rightarrow R_{3} - R_{1}, \text{ we have}$$

$$\Delta = (1+a+a^2) \begin{vmatrix} 1 & a & a^2 \\ 0 & 1-a & a(1-a) \\ 0 & -a(1-a) & (1-a)(1+a) \end{vmatrix}$$

Taking the term (1-a) common from R_2 and R_3 , we have

$$\Rightarrow \Delta = (1 + a + a^2)(1 - a)^2 \begin{vmatrix} 1 & a & a^2 \\ 0 & 1 & a \\ 0 & -a & (1 + a) \end{vmatrix}$$

$$\Rightarrow \Delta = (1 + a + a^2)(1 - a)^2(1 + a + a^2)$$

$$\Rightarrow \Delta = (1 + a + a^2)^2 (1 - a)^2$$

$$\Rightarrow \triangle = \left[\left(1 + a + a^2 \right) (1 - a) \right]^2$$

$$\Rightarrow \triangle = [(a^3 - 1)]^2$$

$$\begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix} = 2(a+b)(b+c)(c+a)$$

$$LHS = \begin{vmatrix} a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c \end{vmatrix}$$

$$Apply: C_t \rightarrow C_t + C_0 \text{ and } C_0 \rightarrow C_0 + C_0$$

Apply:
$$C_1 \to C_1 + C_3$$
 and $C_2 \to C_2 + C_3$

$$= \begin{vmatrix} a+c & -(c+b) & -b \\ -(c+a) & b+c & -a \\ a+c & b+c & a+b+c \end{vmatrix}$$

$$= (c+a)(c+b) \begin{vmatrix} 1 & -1 & -b \\ -1 & 1 & -a \\ 1 & 1 & a+b+c \end{vmatrix}$$

$$= (c+a)(c+b) \begin{vmatrix} 1 & -1 & -b \\ 0 & 0 & -a-b \\ 0 & 2 & a+c \end{vmatrix}$$

$$= 2(a+b)(b+c)(c+a)$$

$$= RHS$$

We need to prove the following identity:

$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$$

Let us consider the L.H.S of the above equation.

$$\Delta = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have,

$$\Delta = \begin{vmatrix} 2(b+c) & 2(a+c) & 2(a+b) \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$

Taking 2 common from the above equation, we have,

$$\Delta = 2 \begin{vmatrix} (b+c) & (a+c) & (a+b) \\ b & c+a & b \\ c & c & a+b \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have,

$$\Delta = 2 \begin{vmatrix} (b+c) & (a+c) & (a+b) \\ -c & 0 & -a \\ -b & -a & 0 \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have,

$$\Delta = 2 \begin{vmatrix} 0 & c & b \\ -c & 0 & -a \\ -b & -a & 0 \end{vmatrix}$$

$$\Rightarrow \Delta = 2(0 + 2abc + abc)$$

$$\Rightarrow \Delta = 4abc$$

$$\begin{vmatrix} b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$$

$$LHS = \begin{vmatrix} b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2 \end{vmatrix}$$

Multiply R_1, R_2 and R_3 by a, b and c respectively.

$$= \frac{1}{abc} \begin{vmatrix} ab^2 + ac^2 & a^2b & a^2c \\ b^2a & bc^2 + ba^2 & b^2c \\ c^2a & c^2b & ca^2 + cb^2 \end{vmatrix}$$

Take a,b and c common from C_1,C_2 and C_3 respectively.

$$= \frac{abc}{abc} \begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix}$$

Now apply $R_1 \rightarrow R_1 + R_2 + R_3$

$$\begin{vmatrix} 2(b^{2}+c^{2}) & 2(c^{2}+a^{2}) & 2(a^{2}+b^{2}) \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2} \end{vmatrix}$$

$$= 2\begin{vmatrix} (b^{2}+c^{2}) & (c^{2}+a^{2}) & (a^{2}+b^{2}) \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2} \end{vmatrix}$$

$$= 2\begin{vmatrix} c^{2} & 0 & a^{2} \\ b^{2} & c^{2}+a^{2} & b^{2} \\ c^{2} & c^{2} & a^{2}+b^{2} \end{vmatrix}$$

$$= 2\left[c^{2}\left\{(c^{2}+a^{2})\left(a^{2}+b^{2}\right)-b^{2}c^{2}\right\}+a^{2}\left\{b^{2}c^{2}-\left(c^{2}+a^{2}\right)c^{2}\right\}\right]$$

$$= 4a^{2}b^{2}c^{2}$$

$$= RHS$$

$$\begin{vmatrix} 0 & b^{2}a & c^{2}a \\ a^{2}b & 0 & c^{2}b \\ a^{2}c & b^{2}c & 0 \end{vmatrix} = 2a^{3}b^{3}c^{3}$$

$$LHS = \begin{vmatrix} 0 & b^{2}a & c^{2}a \\ a^{2}b & 0 & c^{2}b \\ a^{2}c & b^{2}c & 0 \end{vmatrix}$$

$$= a^{2}b^{2}c^{2}\begin{vmatrix} 0 & a & a \\ b & 0 & b \\ c & c & 0 \end{vmatrix}$$

$$= a^{3}b^{3}c^{3}\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$= a^{3}b^{3}c^{3}\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$= 2a^{3}b^{3}c^{3}$$

$$= RHS$$

$$\begin{vmatrix} a^2 + b^2 \\ c \end{vmatrix} c c c$$

$$a \frac{b^2 + c^2}{a} a$$

$$b b \frac{c^2 + a^2}{b}$$

$$= \frac{1}{abc} \begin{vmatrix} a^2 + b^2 & c^2 & c^2 \\ a^2 & c^2 + b^2 & a^2 \\ b^2 & b^2 & c^2 + a^2 \end{vmatrix}$$

$$= \frac{1}{abc} \begin{vmatrix} 0 & -2b^2 & -2a^2 \\ a^2 & c^2 + b^2 & a^2 \\ b^2 & b^2 & c^2 + a^2 \end{vmatrix}$$

$$= \frac{-2}{abc} \begin{vmatrix} 0 & b^2 & a^2 \\ a^2 & c^2 + b^2 & a^2 \\ b^2 & b^2 & c^2 + a^2 \end{vmatrix}$$

$$= \frac{-2}{abc} \begin{vmatrix} 0 & b^2 & a^2 \\ a^2 & c^2 + b^2 & a^2 \\ b^2 & 0 & c^2 \end{vmatrix}$$

$$= \frac{-2}{abc} \begin{vmatrix} 0 & b^2 & a^2 \\ a^2 & c^2 + b^2 & a^2 \\ b^2 & 0 & c^2 \end{vmatrix}$$

$$= \frac{-2}{abc} [(-a^2)(b^2c^2) + (b^2)(-a^2c^2)]$$

$$= \frac{-2}{abc} (-2a^2b^2c^2)$$

$$= 4abc$$

$$= RHS$$

$$\begin{vmatrix} -bc & b^2 + bc & c^2 + bc \\ a^2 + ac & -ac & c^2 + ac \\ a^2 + ab & b^2 + ab & -ab \end{vmatrix}$$

Multiply R_1, R_2 and R_3 by a, b and c respectively

$$= \frac{1}{abc}\begin{vmatrix} -abc & ab^2 + abc & ac^2 + abc \\ a^2b + abc & -abc & bc^2 + abc \\ a^2c + abc & b^2c + abc & -abc \end{vmatrix}$$

Take a, b and c common from C_1, C_2 and C_3 respectively.

 $\mathsf{Apply} \colon \! R_1 \to R_1 + R_2 + R_3$

$$ab+bc+ca \quad ab+bc+ca \quad ab+bc+ca$$

$$ab+bc \qquad -ac \qquad bc+ab$$

$$ac+bc \qquad bc+ac \qquad -ab$$

$$= (ab + bc + ca)^3$$
$$= RHS$$

L.H.S.,
$$\begin{vmatrix} x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda \end{vmatrix}$$

$$= \begin{vmatrix} x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda \end{vmatrix} \begin{bmatrix} C_1 \rightarrow C_1 - C_3, C_2 \rightarrow C_2 - C_3 \end{bmatrix}$$

$$= \begin{vmatrix} \lambda - x & 0 & 2x \\ 0 & \lambda - x & 2x \\ x - \lambda & x - \lambda & x + \lambda \end{vmatrix}$$

$$= (\lambda - x)(\lambda - x) \begin{vmatrix} 1 & 0 & 2x \\ 0 & 1 & 2x \\ -1 & -1 & x + \lambda \end{vmatrix}$$

$$= (\lambda - x)^2 \begin{vmatrix} 1 & 0 & 2x \\ 0 & 1 & 2x \\ -1 & -1 & x + \lambda \end{vmatrix}$$

$$= (\lambda - x)^2 [1(x + \lambda) + 2x + 2x(0 + 1)]$$

$$= (\lambda - x)^2 [x + \lambda + 2x + 2x]$$

$$= (\lambda - x)^2 [5x + \lambda]$$
= R.H.S
Hence Proved

Chapter 6 Determinants Ex 6.2 Q38

$$LHS = \begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix}$$

$$Apply C_1 \rightarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} 5x+4 & 2x & 2x \\ 5x+4 & x+4 & 2x \\ 5x+4 & 2x & x+4 \end{vmatrix}$$

$$= (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 1 & x+4 & 2x \\ 1 & 2x & x+4 \end{vmatrix}$$

$$= (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 1 & 2x & x+4 \end{vmatrix}$$

$$= (5x+4)\begin{vmatrix} 1 & 2x & 2x \\ 0 & -x+4 & 0 \\ 0 & 0 & -x+4 \end{vmatrix}$$

$$= (5x+4)(4-x)^2\begin{vmatrix} 1 & 2x & 2x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (5x+4)(4-x)^2$$

$$= RHS$$

$$Let \Delta = \begin{vmatrix} y+z & z & y \\ z & z+x & x \\ y & x & x+y \end{vmatrix}$$

$$Applying R_1 \rightarrow R_1 - R_2$$

$$\Delta = \begin{vmatrix} y & -x & y-x \\ z & z+x & x \\ y & x & x+y \end{vmatrix}$$

$$Applying R_1 \rightarrow R_1 - R_3$$

$$\Delta = \begin{vmatrix} 0 & -2x & -2x \\ z & z+x & x \\ y & x & x+y \end{vmatrix}$$

$$\Delta = 2x[z(x+y)-xy]-2x[zx-y(z+x)]$$

$$\Delta = 2x[zx+zy-xy-zx+yz+yx]$$

$$\Delta = 4xyz$$

$$\begin{vmatrix} -a(b^{2}+c^{2}-a^{2}) & 2b^{3} & 2c^{3} \\ 2a^{3} & -b(c^{2}+a^{2}-b^{2}) & 2c^{3} \\ 2a^{3} & 2b^{3} & -c(a^{2}+b^{2}-c^{2}) \end{vmatrix} = abc(a^{2}+b^{2}+c^{2})^{3}$$

LHS =
$$\begin{vmatrix} -a(b^2 + c^2 - a^2) & 2b^3 & 2c^3 \\ 2a^3 & -b(c^2 + a^2 - b^2) & 2c^3 \\ 2a^3 & 2b^3 & -c(a^2 + b^2 - c^2) \end{vmatrix}$$

Take a,b and c common from C_1,C_2 and C_3 respectively.

$$= abc \begin{vmatrix} -(b^2 + c^2 - a^2) & 2b^2 & 2c^2 \\ 2a^2 & -(c^2 + a^2 - b^2) & 2c^2 \\ 2a^2 & 2b^2 & -(a^2 + b^2 - c^2) \end{vmatrix}$$

$$\begin{split} & \text{Apply:} R_1 \to R_1 - R_3, R_2 \to R_2 - R_3 \\ & = \text{abc} \begin{vmatrix} -\left(b^2 + c^2 - a^2\right) - 2a^2 & 0 & 2c^2 + \left(a^2 + b^2 - c^2\right) \\ & 0 & -\left(c^2 + a^2 - b^2\right) - 2b^2 & 2c^2 + \left(a^2 + b^2 - c^2\right) \\ & 2a^2 & 2b^2 & -\left(a^2 + b^2 - c^2\right) \end{vmatrix} \end{split}$$

$$= abc \begin{vmatrix} -\left(b^2 + c^2 + a^2\right) & 0 & \left(a^2 + b^2 + c^2\right) \\ 0 & -\left(c^2 + a^2 + b^2\right) & \left(a^2 + b^2 + c^2\right) \\ 2a^2 & 2b^2 & -\left(a^2 + b^2 - c^2\right) \end{vmatrix}$$

$$= abc \left(b^{2} + c^{2} + a^{2}\right)^{2} \begin{vmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 2a^{2} & 2b^{2} & -\left(a^{2} + b^{2} - c^{2}\right) \end{vmatrix}$$

$$= abc \left(b^{2} + c^{2} + a^{2}\right)^{2} \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 2a^{2} & 2b^{2} & -\left(a^{2} + b^{2} - c^{2}\right) + 2a^{2} \end{vmatrix}$$

$$= abc \left(b^{2} + c^{2} + a^{2}\right)^{2} \begin{vmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 2a^{2} & 2b^{2} & -b^{2} + c^{2} + a^{2} \end{vmatrix}$$

$$= -abc \left(b^{2} + c^{2} + a^{2}\right)^{2} \left[\left(-1\right) \left(-b^{2} + c^{2} + a^{2}\right) - \left(1\right) \left(2b^{2}\right) \right]$$

$$= bc \left(a^{2} + b^{2} + c^{2}\right)^{3}$$

$$= RHS$$

$$LHS = \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+a & 1 \\ 1 & 1 & 1+a \end{vmatrix}$$

$$= \begin{vmatrix} 3+a & 3+a & 3+a \\ 1 & 1+a & 1 \\ 1 & 1 & 1+a \end{vmatrix}$$

$$= (3+a)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1+a \end{vmatrix}$$

$$= (3+a)\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1+a \end{vmatrix}$$

$$= (3+a)\begin{vmatrix} 1 & 1 & 1 \\ 0 & a & 0 \\ 0 & 1 & a \end{vmatrix}$$

$$= (3+a)a^{2}$$

$$= a^{3} + 3a^{2}$$

$$= RHS$$

Chapter 6 Determinants Ex 6.2 Q42

LHS.,
$$\begin{vmatrix}
2y & y-z-x & 2y \\
2z & 2z & z-x-y \\
x-y-z & 2x & 2x
\end{vmatrix}$$

$$=\begin{vmatrix}x+y+z & x+y+z & x+y+z \\
2z & 2z & z-x-y \\
x-y-z & 2x & 2x
\end{vmatrix} \begin{bmatrix} R_1 = R_1 + R_2 + R_3 \end{bmatrix}$$

$$=(x+y+z)\begin{vmatrix} 1 & 1 & 1 \\
2z & 2z & z-x-y \\
x-y-z & 2x & 2x
\end{vmatrix}$$

$$=(x+y+z)\begin{vmatrix} 1 & 0 & 0 \\
2z & 0 & -x-y-z \\
x-y-z & x+y+z & x+y+z
\end{vmatrix} \begin{bmatrix} C_2 = C_2 - C_1, C_3 = C_3 - C_1 \end{bmatrix}$$

$$=(x+y+z)[1\{0+(x+y+z)(x+y+z)\}]$$

$$=(x+y+z)^3$$

$$= R.HS.$$
Hence Proved

$$\begin{vmatrix} y + z & x & y \\ z + x & z & x \\ x + y & y & z \end{vmatrix}$$

$$= \begin{vmatrix} 2(y + z + x) & y + z + x & y + z + x \\ z + x & z & x \\ x + y & y & z \end{vmatrix}$$

$$= (x + y + z) \begin{vmatrix} 2 & 1 & 1 \\ z + x & z & x \\ x + y & y & z \end{vmatrix}$$

$$= (x + y + z) \begin{vmatrix} 0 & 1 & 1 \\ z + x - z - x & z & x \\ x + y - y - z & y & z \end{vmatrix}$$

$$= (x + y + z) \begin{vmatrix} 0 & 1 & 1 \\ 0 & z & x \\ x - z & y & z \end{vmatrix}$$

$$= (x + y + z)(x - z)^{2}$$

$$= RHS$$

L.H.S. =
$$\begin{vmatrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \end{vmatrix}$$

$$= \begin{vmatrix} a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & x & a+z \end{vmatrix}$$

$$= (a+x+y+z)\begin{vmatrix} 1 & y & z \\ 1 & x & a+z \end{vmatrix}$$

$$= (a+x+y+z)\begin{vmatrix} 1 & y & z \\ 1 & x & a+z \end{vmatrix}$$

$$= (a+x+y+z)\begin{vmatrix} 1 & y & z \\ 1 & x & a+z \end{vmatrix}$$

$$= (a+x+y+z)\begin{bmatrix} 1(a^2-0)\end{bmatrix}$$

$$= a^2(a+x+y+z)$$
= R.H.S.
Hence Proved.

$$\begin{aligned} \text{Let} \, \Delta &= \begin{vmatrix} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{vmatrix} \\ \Delta &= 2 \begin{vmatrix} a^3 & 1 & a \\ b^3 & 1 & b \\ c^3 & 1 & c \end{vmatrix} \\ \Delta &= 2 \Big\{ a^3 (c-b) - 1 \Big(b^3 c - b c^3 \Big) + a \Big(b^3 - c^3 \Big) \Big\} \\ \Delta &= 2 \Big\{ a^3 (c-b) - b c \Big(b - c \Big) \Big(b + c \Big) + a \Big(b - c \Big) \Big(b^2 + b c + c^2 \Big) \Big\} \\ \Delta &= 2 \Big(b - c \Big) \Big\{ - a^3 - b c \Big(b + c \Big) + a \Big(b^2 + b c + c^2 \Big) \Big\} \\ \Delta &= 2 \Big(a - b \Big) \Big(b - c \Big) \Big(c - a \Big) \Big(a + b + c \Big) \end{aligned}$$

Chapter 6 Determinants Ex 6.2 Q46

$$\begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix} = - \begin{vmatrix} x & y & z \\ a & b & c \\ p & q & r \end{vmatrix} = (-1)^2 \begin{vmatrix} x & y & z \\ p & q & r \\ a & b & c \end{vmatrix} = \begin{vmatrix} x & y & z \\ p & q & r \\ a & b & c \end{vmatrix}$$
$$= (-1)^2 \begin{vmatrix} y & x & z \\ q & p & r \\ b & a & c \\ q & p & r \end{vmatrix}$$

Taking transpose, we get

$$= \begin{vmatrix} y & b & p \\ x & a & q \\ z & c & r \end{vmatrix}$$

Consider the determinant
$$\begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$$
, where a, b, c are in A.P.

Let
$$\Delta = \begin{vmatrix} x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have,

$$\Delta = \begin{vmatrix} 3x+1+2+a & x+2 & x+a \\ 3x+2+3+b & x+3 & x+b \\ 3x+3+4+c & x+4 & x+c \end{vmatrix}$$

$$\Rightarrow \Delta = \begin{vmatrix} 3x + 3 + a & x + 2 & x + a \\ 3x + 5 + b & x + 3 & x + b \\ 3x + 7 + c & x + 4 & x + c \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_2$, we have,

$$\Rightarrow \Delta = \begin{vmatrix} 3x + 3 + a & x + 2 & x + a \\ 2 + b - a & 1 & b - a \\ 2 + c - b & 1 & c - b \end{vmatrix}$$

Since a,b and c are in arithmetic progression, we have b-a=c-b=k(say).

Thus,

$$\Delta = \begin{vmatrix} 3x + 3 + a & x + 2 & x + a \\ 2 + k & 1 & k \\ 2 + k & 1 & k \end{vmatrix}$$

Since the second row and the third row are identical, we have $\Delta = 0$

Chapter 6 Determinants Ex 6.2 Q48

Since, α, β, γ are in A.P, $2\beta = \alpha + \gamma$

$$LHS = \begin{vmatrix} x - 3 & x - 4 & x - \alpha \\ x - 2 & x - 3 & x - \beta \\ x - 1 & x - 2 & x - \gamma \end{vmatrix}$$

$$R_2 \to R_2 - \frac{R_1}{2} - \frac{R_3}{2}$$

$$= \begin{vmatrix} x - 3 & x - 4 & x - \alpha \\ (x - 2) - \frac{x - 3}{2} - \frac{x - 1}{2} & (x - 3) - \frac{x - 4}{2} - \frac{x - 2}{2} & (x - \beta) - \frac{x - \alpha}{2} - \frac{x - \gamma}{2} \end{vmatrix}$$

$$= \begin{vmatrix} x - 3 & x - 4 & x - \alpha \\ 0 & 0 & 0 \\ x - 1 & x - 2 & x - \gamma \end{vmatrix}$$

$$= \begin{vmatrix} x - 3 & x - 4 & x - \alpha \\ 0 & 0 & 0 \\ x - 1 & x - 2 & x - \gamma \end{vmatrix}$$

$$= 0$$

$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:

$$\Delta = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:

$$\Delta = 2(a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix}$$

Expanding along R₁, we have:

$$\Delta = 2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]$$

$$= 2(a+b+c)[-b^2-c^2+2bc-bc+ba+ac-a^2]$$

$$= 2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$$

It is given that $\Delta = 0$.

$$(a+b+c)[ab+bc+ca-a^2-b^2-c^2]=0$$

$$\Rightarrow$$
 Either $a+b+c=0$, or $ab+bc+ca-a^2-b^2-c^2=0$.

Now

$$ab + bc + ca - a^2 - b^2 - c^2 = 0$$

$$\Rightarrow -2ab - 2bc - 2ca + 2a^2 + 2b^2 + 2c^2 = 0$$

$$\Rightarrow (a-b)^2 + (b-c)^2 + (c-a)^2 = 0$$

$$\Rightarrow (a-b)^2 = (b-c)^2 = (c-a)^2 = 0$$

$$\Rightarrow (a-b) = (b-c) = (c-a) = 0$$

$$\Rightarrow a = b = c$$

$$[(a-b)^2, (b-c)^2, (c-a)^2 \text{ are non-negative}]$$

Hence, if $\Delta = 0$, then either a + b + c = 0 or a = b = c.

$$\begin{vmatrix} a & q & c \\ a & b & r \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} p-a & 0 & c-r \\ 0 & q-b & c-r \\ a & b & r \end{vmatrix} = 0[R_1 = R_1 - R_3, R_2 = R_2 - R_3]$$

$$\Rightarrow (p-a)[r(q-b) - b(c-r)] + (c-r)[0 - a(q-b)] = 0$$

$$\Rightarrow (p-a)[r(q-b) - (p-a)b(c-r) - (c-r)a(q-b) = 0$$

$$\Rightarrow \frac{(p-a)[r(q-b)}{(p-a)(q-b)(r-c)} - \frac{(p-a)b(c-r)}{(p-a)(q-b)(r-c)} - \frac{(c-r)a(q-b)}{(p-a)(q-b)(r-c)} = 0$$

$$\Rightarrow \frac{r}{(r-c)} + \frac{b}{(q-b)} + \frac{a}{(p-a)} = 0$$

$$\Rightarrow \frac{r}{(r-c)} + \frac{q}{(q-b)} + \frac{(b-q)}{(q-b)} + \frac{(a-p)}{(p-a)} + \frac{p}{(p-a)} = 0$$

$$\Rightarrow \frac{r}{(r-c)} + \frac{q}{(q-b)} - 1 - 1 + \frac{p}{(p-a)} = 0$$

$$\Rightarrow \frac{r}{(r-c)} + \frac{q}{(q-b)} + \frac{p}{(p-a)} = 2$$

$$\therefore \frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$$

Chapter 6 Determinants Ex 6.2 Q51

Let us show that x = 2 is a root of the given equation:

Putting x = 2 in the LHS, we get

$$\begin{vmatrix} 2 & -6 & -1 \\ 2 & -6 & -1 \\ -3 & 4 & 4 \end{vmatrix} = 0$$

$$\therefore R_1 = R_2$$

Hence, x = 2 is a root of the given equation.

Now, we see if there are any other roots. For this we need to solve the equation:

$$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x - 3 \\ -3 & 2x & x + 2 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x - 1 & -6 & -1 \\ x - 1 & -3x & x - 3 \\ x - 1 & 2x & x + 2 \end{vmatrix} = 0$$

$$\Rightarrow (x - 1)\begin{vmatrix} 1 & -6 & -1 \\ 1 & -3x & x - 3 \\ 1 & 2x & x + 2 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)\begin{vmatrix} 1 & -6 & -1 \\ 1 & -3x & x - 3 \\ 1 & 2x & x + 2 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)\begin{vmatrix} 1 & -6 & -1 \\ 0 & -3x + 6 & x - 3 + 1 \\ 0 & 2x + 6 & x + 2 + 1 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)\begin{vmatrix} 1 & -6 & -1 \\ 0 & -3(x-2) & x - 2 \\ 0 & 2(x+3) & x + 3 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(x-2)(x+3)\begin{vmatrix} 1 & -6 & -1 \\ 0 & -3 & 1 \\ 0 & 2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow (x-1)(x-2)(x+3) = 0$$

$$\Rightarrow (x-1) = 0 \quad (x-2) = 0 \quad (x+3) = 0$$

$$\Rightarrow x = 1 \quad x = 2 \quad x = 3$$

Chapter 6 Determinants Ex 6.2 Q52-i

$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = 0$$

$$Apply C_1 \rightarrow C_1 + C_2 + C_3$$

$$\Rightarrow \begin{vmatrix} x+a+b+c & b & c \\ x+a+b+c & x+b & c \\ x+a+b+c & b & x+c \end{vmatrix} = 0$$

$$\Rightarrow (x+a+b+c)\begin{vmatrix} 1 & b & c \\ 1 & x+b & c \\ 1 & b & x+c \end{vmatrix} = 0$$

$$\Rightarrow (x+a+b+c)\begin{vmatrix} 1 & b & c \\ 1 & b & c \\ 0 & 0 & x \end{vmatrix} = 0$$

$$\Rightarrow (x+a+b+c)x^2 = 0$$

$$\Rightarrow x = -(a+b+c) \quad or \quad x = 0$$

Chapter 6 Determinants Ex 6.2 Q52-ii

Chapter 6 Determinants Ex 6.2 Q52-ii
$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$
Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we get:
$$\begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x+a & x \end{vmatrix} = 0$$

$$\Rightarrow (3x+a)\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x+a & x \end{vmatrix} = 0$$
Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:
$$\begin{vmatrix} 1 & 0 & 0 \\ x & 0 & a \end{vmatrix} = 0$$
Expanding along R_1 , we have:

Expanding along R₁, we have:

$$(3x+a)[1\times a^2] = 0$$

$$\Rightarrow a^2(3x+a) = 0$$

But $a \neq 0$.

Therefore, we have:

$$3x + a = 0$$

$$\Rightarrow x = -\frac{a}{3}$$

Chapter 6 Determinants Ex 6.2 Q52-iii

$$\begin{vmatrix} 3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$Apply C_1 \rightarrow C_1 + C_2 + C_3$$

$$\Rightarrow \begin{vmatrix} 3x - 2 & 3 & 3 \\ 3x - 2 & 3x - 8 & 3 \\ 3x - 2 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 3 & 3 \\ 1 & 3x - 8 & 3 \\ 1 & 3 & 3x - 8 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} (3x - 2) & 1 & 3x - 8 & 3 \\ 1 & 3 & 3x - 8 & 3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} (3x - 2) & 1 & 3x - 8 & 3 \\ 1 & 3 & 3x - 8 & 3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} (3x - 2) & 1 & 3x - 8 & 3 \\ 0 & 3x - 11 & 0 \\ 0 & 0 & 3x - 11 \end{vmatrix} = 0$$

$$\Rightarrow (3x - 2) & (3x - 11)^2 = 0$$

$$\Rightarrow (3x - 2) & = 0 \quad \text{or} \quad (3x - 11)^2 = 0$$

$$\Rightarrow x = \frac{2}{3} \quad \text{or} \quad x = \pm \frac{11}{3}$$

Chapter 6 Determinants Ex 6.2 Q52-iv

$$\begin{vmatrix} 1 & x & x^{2} \\ 1 & a & a^{2} \\ 1 & b & b^{2} \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & x & x^{2} \\ 0 & a - x & a^{2} - x^{2} \\ 0 & b - x & b^{2} - x^{2} \end{vmatrix} = 0$$

$$\Rightarrow (a - x)(b - x)\begin{vmatrix} 1 & x & x^{2} \\ 0 & 1 & a + x \\ 0 & 1 & b + x \end{vmatrix} = 0$$

$$\Rightarrow (a - x)(b - x)\begin{vmatrix} 1 & x & x^{2} \\ 0 & 1 & a + x \\ 0 & 0 & b - a \end{vmatrix} = 0$$

$$\Rightarrow (a - x)(b - x)(b - a) = 0$$

$$\Rightarrow (a - x) = 0 \quad \text{or} \quad (b - x) = 0$$

$$\Rightarrow a = x \quad \text{or} \quad b = x$$

$$\begin{vmatrix} x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4 \end{vmatrix} = 0$$
Apply $C_1 \to C_1 + C_2 + C_3$

$$\Rightarrow \begin{vmatrix} x+9 & 3 & 5 \\ x+9 & x+2 & 5 \\ x+9 & 3 & x+4 \end{vmatrix} = 0$$

$$\Rightarrow (x+9)\begin{vmatrix} 1 & 3 & 5 \\ 1 & x+2 & 5 \\ 1 & 3 & x+4 \end{vmatrix} = 0$$

$$\Rightarrow (x+9)\begin{vmatrix} 1 & 3 & 5 \\ 1 & 3 & x+4 \end{vmatrix} = 0$$

$$\Rightarrow (x+9)\begin{vmatrix} 1 & 3 & 5 \\ 0 & 0 & x-1 \end{vmatrix} = 0$$

$$\Rightarrow (x+9)(x-1)^2 = 0$$

$$\Rightarrow (x+9) = 0 \quad \text{or} \quad (x-1)^2 = 0$$

$$\Rightarrow x=-9 \quad \text{or} \quad x=1$$

$$\begin{vmatrix} 1 & x & x^{3} \\ 0 & b - x & b^{3} - x^{3} \\ 0 & C - x & C^{3} - x^{3} \end{vmatrix} = 0$$

$$\Rightarrow (b - x)(C - x)\begin{vmatrix} 1 & x & x^{3} \\ 0 & 1 & b^{2} + x^{2} + bx \\ 0 & 1 & C^{2} + x^{2} + cx \end{vmatrix} = 0$$

$$\Rightarrow (b - x)(C - x)\begin{vmatrix} 1 & x & x^{3} \\ 0 & 1 & b^{2} + x^{2} + bx \\ 0 & 0 & C^{2} + x^{2} + cx - (b^{2} + x^{2} + bx) \end{vmatrix} = 0$$

$$\Rightarrow (b - x)(C - x)\begin{vmatrix} 1 & x & x^{3} \\ 0 & 1 & b^{2} + x^{2} + bx \\ 0 & 0 & C^{2} - b^{2} + cx - bx \end{vmatrix} = 0$$

$$\Rightarrow (b - x)(C - x)(C - b)\begin{vmatrix} 1 & x & x^{3} \\ 0 & 1 & b^{2} + x^{2} + bx \\ 0 & 0 & b + C + x \end{vmatrix} = 0$$

$$\Rightarrow (b - x)(C - x)(C - b)(b + C + x) = 0$$

$$\Rightarrow (b - x) = 0 (C - x) = 0 (b + C + x) = 0$$

$$\Rightarrow x = b x = \dot{c} x = -(b + C)$$

Chapter 6 Determinants Ex 6.2 Q52-vii

$$\begin{vmatrix} 15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 15 - 2x & 11 - 3x & 7 - x \\ 1 & 1 & 1 \\ 10 & 16 & 13 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 15 - 2x & -x - 4 & 7 - x \\ 1 & 0 & 1 \\ 10 & 6 & 13 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 8 - x & -x - 4 & 7 - x \\ 1 & 0 & 0 \\ -3 & 6 & 13 \end{vmatrix} = 0$$

$$\Rightarrow -[(8 - x)(6) - (-x - 4)(-3)] = 0$$

$$\Rightarrow -[36 - 9x] = 0$$

$$\Rightarrow x = 4$$

Chapter 6 Determinants Ex 6.2 Q52-viii

$$\begin{vmatrix} 1 & 1 & x \\ p+1 & p+1 & p+x \\ 3 & x+1 & x+2 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & x \\ p & p & p \\ 2 & x & 2 \end{vmatrix} = 0$$

$$\Rightarrow p \begin{vmatrix} 1 & 1 & x \\ 1 & 1 & 1 \\ 2 & x & 2 \end{vmatrix} = 0$$

$$\Rightarrow p \begin{vmatrix} 1 & 1 & x \\ 1 & 1 & 1 \\ 2 & x & 2 \end{vmatrix} = 0$$

$$\Rightarrow p (x-1)(x-2) = 0$$

$$\Rightarrow (x-1) = 0 \qquad (x-2) = 0$$

Chapter 6 Determinants Ex 6.2 Q52-ix

$$\begin{vmatrix} 3 & -2 & \sin 3\theta \\ -7 & 8 & \cos 2\theta = 0 \\ -11 & 14 & 2 \end{vmatrix}$$

$$\Rightarrow 3 \big(16 - 14 \cos 2\theta\big) + 2 \big(-14 + 11 \cos 2\theta\big) + \sin 3\theta \big(-98 + 88\big) = 0$$

$$\Rightarrow 20(1-\cos 2\theta) + 10\sin 3\theta = 0$$

$$\Rightarrow$$
 20(2 sin² θ) + 10(3 sin θ - 4 sin³ θ) = 0

$$\Rightarrow 4\sin^2\theta + 3\sin\theta - 4\sin^3\theta = 0$$

$$\Rightarrow 4\sin\theta + 3 - 4\sin^2\theta = 0$$

$$\Rightarrow 4\sin^2\theta - 4\sin\theta - 3 = 0$$

$$\Rightarrow$$
 $(2\sin\theta + 1)(2\sin\theta - 3) = 0$

$$\Rightarrow \sin\theta = -\frac{1}{2} \text{ or } \sin\theta = \frac{3}{2} = 1.5$$

As
$$\sin\theta \in [-1,1]$$

$$\therefore \sin\theta = -\frac{1}{2}$$

$$\Rightarrow \theta = n\pi + (-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$$

Ex 6.3

Chapter Determinants Ex 6.3 Q1(i)

If the vertices of a triangle are $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) then the area of the triangle is given by :

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Substituting the values

$$\Delta = \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & -1 & 1 \end{vmatrix}$$

expanding the determinant along \mathcal{R}_1

$$= \frac{1}{2} \left[3 \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} - 8 \begin{vmatrix} -4 & 1 \\ 5 & 1 \end{vmatrix} + 1 \begin{vmatrix} -4 & 2 \\ 5 & -1 \end{vmatrix} \right]$$
$$= \frac{1}{2} \left[3 (3) - 8 (-9) + 1 (-6) \right]$$

$$=\frac{1}{2}[9+72-6]=\frac{75}{2}$$
 sq. units

The area of the \triangle is $\frac{75}{2}$ sq. units

Chapter Determinants Ex 6.3 Q1(ii)

The area is given by:

$$\Delta = \frac{1}{2} \begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$$

expanding along R_1

$$= \frac{1}{2} [2(-7) - 7(-9) + 1(-2)]$$

$$=\frac{1}{2}[-14+63-2]$$

$$=\frac{47}{2}$$
 sq. units

The area of the \triangle is $\frac{47}{2}$ sq. units

Chapter Determinants Ex 6.3 Q1(iii)

The area is given by:

$$\Delta = \frac{1}{2} \begin{vmatrix} -1 & -8 & 1 \\ -2 & -3 & 1 \\ 3 & 2 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \left[-1 \left(-5 \right) + 8 \left(-5 \right) + 1 \left(5 \right) \right]$$
$$= \frac{1}{2} \left[5 - 40 + 5 \right] = \frac{-30}{2} = 15 \text{ sq. units}$$

 \odot Area can not be negative, so answer will be 15 sq. units.

The area of the \triangle is 15 sq. units.

Chapter Determinants Ex 6.3 Q1(iv)

The area is given by:

$$\Delta = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$$

 ${\sf Expanding\,along}\, {\it R}_1$

$$=\frac{1}{2}[0-0+1(18)]=9$$
 sq. units

The area is 9 sq. units

Chapter Determinants Ex 6.3 Q2(i)

If 3 points are collinear, then the area of the triangle then form will be zero.

Hence

$$\frac{1}{2} \begin{vmatrix} 5 & 5 & 1 \\ -5 & 1 & 1 \\ 10 & 7 & 1 \end{vmatrix} = 0$$

Expanding along R_1

$$= \frac{1}{2} \left[5 \left(-6 \right) - 5 \left(-15 \right) + 1 \left(-35 - 10 \right) \right]$$

$$=\frac{1}{2}[-35+75-45]$$

$$=\frac{1}{2}[0]$$

= 0

Since the area of the triangle is zero, hence the points are collinear.

Chapter Determinants Ex 6.3 Q2(ii)

If 3 points are collinear, then the area of the triangle then form will be zero.

Hence

$$\frac{1}{2} \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 4 & 5 & 1 \end{vmatrix} = 0$$

Expanding along R_1

$$= \frac{1}{2} [1(-4) + 1(-2) + 1(6)]$$

= 0

Since the area of the triangle is zero, hence the points are collinear.

Chapter Determinants Ex 6.3 Q2(iii)

If the points are collinear, then the area of the triangle will be zero.

So
$$\frac{1}{2} \begin{vmatrix} 3 & -2 & 1 \\ 8 & 8 & 1 \\ 5 & 2 & 1 \end{vmatrix} = 0$$

Expanding along R_1

$$= \frac{1}{2} [3(6) + 2(3) + 1(-24)]$$

$$= \frac{1}{2} [18 + 6 - 24]$$

$$= \frac{1}{2} [0]$$

$$= 0$$

Since the area of the triangle is zero, hence given points are collinear.

Chapter Determinants Ex 6.3 Q2(iv)

If given points are collinear, then the area of the triangle must be zero.

Hence

$$= \frac{1}{2} \begin{vmatrix} 2 & 3 & 1 \\ -1 & -2 & 1 \\ 5 & 8 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [2(-10) - 3(-6) + 1(2)]$$

$$= \frac{1}{2} [-20 + 18 + 2]$$

$$= \frac{1}{2} [0]$$

$$= 0$$

Hence the given points are collinear.

Chapter Determinants Ex 6.3 Q3

If the given points are collinear, the area of the triangle must be zero.

Hence

$$\frac{1}{2} \begin{vmatrix} a & 0 & 1 \\ 0 & b & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

Expanding along R_1

$$= \frac{1}{2} [a(b-1)-0(0-1)+1(-b)] = 0$$
or $ab-a-0-b=0$
or $ab=a+b$

Hence proved

If the given points are collinear, then the area of the triangle must be zero.

Hence

$$\frac{1}{2}\begin{vmatrix} a & b & 1 \\ a' & b' & 1 \\ a-a' & b-b' & 1 \end{vmatrix} = 0$$

or

$$\frac{1}{2} \Big[a \big(b' - b + b' \big) - b \big(a' - a + a' \big) + 1 \big(a' b - a' b' - ab' + a' b' \big) \Big] = 0$$
or
$$\frac{1}{2} \Big[a b' - a b + a b' - a' b + a b - a' b + a' b - ab' \Big] = 0$$
or
$$ab' - a' b = 0$$

$$ab' = a' b$$

Hence proved

Chapter Determinants Ex 6.3 Q5

If the points are collinear, then the area of the triangle must be zero.

Hence

$$\begin{vmatrix} 1 & -5 & 1 \\ -4 & 5 & 1 \\ \lambda & 7 & 1 \end{vmatrix} = 0$$

Expanding along R₁

$$1(-2) + 5(-4 - \lambda) + 1(-28 - 5\lambda) = 0$$
$$-2 - 20 - 5\lambda - 28 - 5\lambda = 0$$
$$-50 - 10\lambda = 0$$
$$\lambda = -5$$

Hence $\lambda = -5$

Chapter Determinants Ex 6.3 Q6

Area =
$$\begin{vmatrix} \frac{1}{2} & \frac{1}{$$

-70 = -10x + 50

$$10x = 120 \text{ or } x = 12$$

Hence x = -2,12

Area =
$$\frac{1}{2}\begin{vmatrix} 1 & 4 & 1 \\ 2 & 3 & 1 \\ -5 & -3 & 1 \end{vmatrix}$$

= $\frac{1}{2}[1(6) - 4(7) + 1(-6 + 15)]$
= $\frac{1}{2}[6 - 28 + 9]$
= $\frac{1}{2}[-13]$
= $\frac{13}{2}$ sq. units [\because Area can not be negative]

Also, since the area of the triangle is non-zero.

Hence these points are non-collinear.

Chapter Determinants Ex 6.3 Q8

Area =
$$\frac{1}{2}\begin{vmatrix} -3 & 5 & 1\\ 3 & -6 & 1\\ 7 & 2 & 1 \end{vmatrix}$$

= $\frac{1}{2}[-3(-8) - 5(-4) + 1(48)]$
= $\frac{1}{2}[24 + 20 + 48]$
= 46 sq. units

Hence the area is 46 sq. units.

Chapter Determinants Ex 6.3 Q9

If the given points are collinear, then the area of the triangle must be zero.

so
$$\frac{1}{2}\begin{vmatrix} k & 2-2k & 1\\ -k+1 & 2k & 1\\ -4-k & 6-2k & 1 \end{vmatrix} = 0$$

expanding along R_1

$$k (2k - 6 + 2k) - (2 - 2k) (-k + 1 + 4 + k) + 1 (1 - k) \times (6 - 2k) - 2k (-4 - k) = 0$$

$$k (4k - 6) - (2 - 2k) (5) + 1 [6 - 2k - 6k + 2k^2 + 8k + 2k^2] = 0$$

$$4k^2 - 6k - 10 + 10k + 6 + 4k^2 = 0$$

$$8k^2 + 4k - 4 = 0$$

$$8k^2 + 8k - 4k - 4 = 0$$
(Middle term splitting)
$$8k (k + 1) - 4(k + 1) = 0$$

$$(8k-4)(k+1)=0$$

If
$$8k - 4 = 0$$
 or if $k + 1 = 0$
 $k = \frac{1}{2}$ $k = -1$

Hence
$$k = -1, \frac{1}{2}$$

Chapter Determinants Ex 6.3 Q10

Since the points are collinear, hence the area of the triangle must be zero.

so
$$\frac{1}{2} \begin{vmatrix} x & -2 & 1 \\ 5 & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0$$

or
$$\times (-6) + 2(-3) + 1(24) = 0$$

or
$$-6x - 6 + 24 = 0$$

 $-6x + 18 = 0$
 $x = 3$

Hence x = 3

Chapter Determinants Ex 6.3 Q11

Since the points are collinear, hence the area of the triangle must be zero.

$$\frac{1}{2} \begin{vmatrix} 3 & -2 & 1 \\ x & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0$$

$$3(-6) + 2(x - 8) + 1(8x - 16) = 0$$

$$-18 + 2x - 16 + 8x - 16 = 0$$

$$10x = 50$$

$$x = 5$$

Hence x = 5

Chapter Determinants Ex 6.3 Q12(i)

Let A(x,y), B(1,2) and C(3,6) are 3 points in a line.

Since these points are collinear, hence area of the triangle must be zero.

$$\frac{1}{2} \begin{vmatrix} x & y & 1 \\ 1 & 2 & 1 \\ 3 & 6 & 1 \end{vmatrix} = 0$$

Expanding along R₁

$$x(-4) - y(-2) + 1(0) = 0$$

 $-4x + 2y = 0$
or $2x - y = 0$
or $y = 2x$

Hence the equation is y = 2x

Chapter Determinants Ex 6.3 Q12(ii)

Let A(x,y), B(3,1) and C(9,3) are 3 points in a line.

Since these points are collinear, hence the area of the triangle ABC must be zero.

$$\begin{vmatrix} \frac{1}{2} & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1 \end{vmatrix} = 0$$

Expanding along R_1

$$\times (-2) - y (-6) + 1 (0) = 0$$

 $-2x + 6y = 0$
 $x - 3y = 0$

Hence the equation of the line is x - 3y = 0

Chapter Determinants Ex 6.3 Q13(i)

Area =
$$\frac{1}{2}\begin{vmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$$

 $\pm 4 = \frac{1}{2}\begin{vmatrix} k & 0 & 1 \\ 4 & 0 & 1 \\ 0 & 2 & 1 \end{vmatrix}$

Expanding along R_1

$$\pm 8 = k(-2) - 0(4 - 0) + 1(8)$$

$$\pm 8 = -2k + 8$$

Taking positive (+) sign

$$+8 = -2k + 8$$
 or $k = 0$

Taking negative (-) sign

$$-8 = -2k + 8$$
 or $k = 8$

Hence k = 0,8

Chapter Determinants Ex 6.3 Q13(ii)

$$4 = \frac{1}{2} \begin{vmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{vmatrix}$$

$$\pm 8 = \begin{vmatrix} -2 & 0 & 1 \\ 0 & k & 1 \\ 0 & k & 1 \end{vmatrix}$$

$$\pm 8 = \begin{vmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{vmatrix}$$

Expanding along R_1

$$\pm 8 = -2(4-k) - 0(0-0) + 1(0)$$

$$\pm 8 = -8 + 2k$$

Taking positive (+) sign

$$+8 = -8 + 2k$$

or
$$k = 8$$

Taking negative (-) sign

$$-8 = -8 + 2k$$
 or $k = 0$

or
$$k = 0$$

Hence k = 0.8

Ex 6.4

Chapter 6 Determinants Ex 6.4 Q1

Let
$$D = \begin{vmatrix} 1 & -2 \\ -3 & 5 \end{vmatrix} = 5 - 6 = -1$$

$$D_1 = \begin{vmatrix} 4 & -2 \\ -7 & 5 \end{vmatrix} = 20 - 14 = 6$$

$$D_2 = \begin{vmatrix} 1 & 4 \\ -3 & -7 \end{vmatrix} = -7 + 12 = 5$$

by definition
$$x = \frac{D_1}{D} = \frac{6}{-1} = -6$$

 $y = \frac{D_2}{D} = \frac{5}{-1} = -5$

Hence
$$x = -6$$

Let
$$D = \begin{vmatrix} 2 & -1 \\ 7 & -2 \end{vmatrix} = -4 + 7 = 3$$

$$D_1 = \begin{vmatrix} 1 & -1 \\ -7 & -2 \end{vmatrix} = -9$$

$$D_2 = \begin{vmatrix} 2 & 1 \\ 7 & -7 \end{vmatrix} = -21$$

Now,
$$x = \frac{D_1}{D} = \frac{-9}{3} = -3$$

$$y = \frac{+D_2}{D} = \frac{-21}{3} = -7$$

Hence
$$x = -3$$

 $y = -7$

Chapter 6 Determinants Ex 6.4 Q3

Let
$$D = \begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix} = 13$$

$$D_1 = \begin{vmatrix} 17 & -1 \\ 6 & 5 \end{vmatrix} = 91$$

$$D_2 = \begin{vmatrix} 2 & 17 \\ 3 & 6 \end{vmatrix} = -39$$

$$x = \frac{D_1}{D} = \frac{91}{13} = 7$$
$$y = \frac{D_2}{D} = \frac{-39}{13} = -3$$

Hence
$$x = 7$$

 $y = -3$

Chapter 6 Determinants Ex 6.4 Q4

Let
$$D = \begin{vmatrix} 3 & 1 \\ 3 & -1 \end{vmatrix} = -6$$

$$D_1 = \begin{vmatrix} 19 & 1 \\ 23 & -1 \end{vmatrix} = -42$$

$$D_2 = \begin{vmatrix} 3 & 19 \\ 3 & 23 \end{vmatrix} = 12$$

$$x = \frac{D_1}{D} = \frac{-42}{-6} = 7$$
$$y = \frac{D_2}{D} = \frac{12}{-6} = -2$$

Hence
$$x = 7$$

 $v = -2$

Chapter 6 Determinants Ex 6.4 Q5

Let
$$D = \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} = 11$$

$$D_1 = \begin{vmatrix} -2 & -1 \\ 3 & 4 \end{vmatrix} = -5$$

$$D_2 = \begin{vmatrix} 2 & -2 \\ 3 & 3 \end{vmatrix} = 12$$

$$x = \frac{D_1}{D} = \frac{-5}{11}$$
$$y = \frac{D_2}{D} = \frac{12}{11}$$

Chapter 6 Determinants Ex 6.4 Q6

Let
$$D = \begin{vmatrix} 3 & a \\ 2 & a \end{vmatrix} = a$$

$$D_1 = \begin{vmatrix} 4 & a \\ 2 & a \end{vmatrix} = 2a$$

$$D_2 = \begin{vmatrix} 3 & 4 \\ 4 & 2 \end{vmatrix} = -2$$

$$X = \frac{D_1}{D} = \frac{2a}{a} = 2$$

$$Y = \frac{D_2}{D} = \frac{-2}{a}$$

Let
$$D = \begin{vmatrix} 2 & 3 \\ 1 & 6 \end{vmatrix} = 9$$

$$D_1 = \begin{vmatrix} 10 & 3 \\ 4 & 6 \end{vmatrix} = 48$$

$$D_2 = \begin{vmatrix} 2 & 10 \\ 1 & 4 \end{vmatrix} = -2$$

$$X = \frac{D_1}{D} = \frac{48}{9} = \frac{16}{3}$$

$$Y = \frac{D_2}{D} = \frac{-2}{9}$$

Chapter 6 Determinants Ex 6.4 Q8

Let
$$D = \begin{vmatrix} 5 & 7 \\ 4 & 6 \end{vmatrix} = 2$$

$$D_1 = \begin{vmatrix} -2 & 7 \\ -3 & 6 \end{vmatrix} = 9$$

$$D_2 = \begin{vmatrix} 5 & -2 \\ 4 & -3 \end{vmatrix} = -7$$

$$X = \frac{D_1}{D} = \frac{9}{2}$$

$$Y = \frac{D_2}{D} = \frac{-7}{2}$$

Chapter 6 Determinants Ex 6.4 Q9

Let
$$D = \begin{vmatrix} 9 & 5 \\ -2 & 3 \end{vmatrix} = 37$$

$$D_1 = \begin{vmatrix} 10 & 5 \\ 8 & 3 \end{vmatrix} = -10$$

$$D_2 = \begin{vmatrix} 9 & 10 \\ -2 & 8 \end{vmatrix} = 92$$

$$X = \frac{D_1}{D} = \frac{-10}{37}$$

$$Y = \frac{D_2}{D} = \frac{92}{37}$$

Chapter 6 Determinants Ex 6.4 Q10

Let
$$D = \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = -5$$

$$D_1 = \begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix} = -7$$

$$D_2 = \begin{vmatrix} 1 & 1 \\ 3 & 4 \end{vmatrix} = 1$$

$$X = \frac{D_1}{D} = \frac{7}{5}$$

$$Y = \frac{D_2}{D} = \frac{-1}{5}$$

Let
$$D = \begin{vmatrix} 3 & 1 & 1 \\ 2 & -4 & 3 \\ 4 & 1 & -3 \end{vmatrix}$$

Expanding along
$$R_1$$

$$= 3(9) + (-1)(-18) + 1(18)$$

$$\text{Again } D_1 = \begin{vmatrix} 2 & 1 & 1 \\ -1 & -4 & 3 \\ -11 & 1 & -3 \end{vmatrix}$$

Expanding along \mathcal{R}_1

$$= 2(9) + (-1)(36) + 1(-45)$$

Again
$$D_2 = \begin{vmatrix} 3 & 2 & 1 \\ 2 & -1 & 3 \\ 4 & -11 & -3 \end{vmatrix}$$

Expanding along
$$R_1 = 3(3+33)-2(-18)+1(-22+4)$$

= 108+36-18 = 126

Also
$$D_3 = \begin{vmatrix} 3 & 1 & 2 \\ 2 & -4 & -1 \\ 4 & 1 & -11 \end{vmatrix}$$

Expanding along
$$R_1$$

$$= 3(45) - 1(-18) + 2(18) = 135 + 18 + 36 = 189$$

Now
$$x = \frac{D_1}{D} = \frac{-63}{63} = -1$$

 $y = \frac{D_2}{D} = \frac{126}{63} = 2$
 $z = \frac{D_3}{D} = \frac{189}{63} = 3$

Let
$$D = \begin{vmatrix} 1 & -4 & -1 \\ 2 & -5 & 2 \\ -3 & 2 & 1 \end{vmatrix}$$

Expanding along
$$R_1$$

$$=1(-9)+4(8)-1(-11)=-9+32+11=34$$

$$\text{Again } \mathcal{D}_1 = \begin{vmatrix} 11 & -4 & -1 \\ 39 & -5 & 2 \\ 1 & 2 & 1 \end{vmatrix}$$

Expanding along R_1

Also
$$D_2 = \begin{vmatrix} 1 & 11 & -1 \\ 2 & 39 & 2 \\ -3 & 1 & 1 \end{vmatrix}$$

Expanding along R_1

Also
$$D_3 = \begin{vmatrix} 1 & -4 & 11 \\ 2 & -5 & -39 \\ -3 & 2 & 1 \end{vmatrix}$$

Expanding along R_1

$$= 1(-5-78)+4(2+117)+11(4-15)$$

= -83+476-121=272

Now
$$x = \frac{D_1}{D} = \frac{-34}{34} = -1$$

 $y = \frac{D_2}{D} = \frac{-170}{34} = -5$
 $z = \frac{D_3}{D} = \frac{272}{34} = 8$

Hence
$$x = -1$$
, $y = -5$, $z = 8$

Let
$$D = \begin{vmatrix} 6 & 1 & -3 \\ 1 & 3 & -2 \\ 2 & 1 & 4 \end{vmatrix}$$

Expanding along
$$R_1$$

$$= 6 (14) - 1 (8) - 3 (-5)$$
$$= 84 - 8 + 15 = 91$$

Also
$$D_1 = \begin{vmatrix} 5 & 1 & -3 \\ 5 & -3 & -2 \\ 8 & 1 & 4 \end{vmatrix}$$

Expanding along \mathcal{R}_1

Again
$$D_2 = \begin{vmatrix} 6 & 5 & -3 \\ 1 & 5 & -2 \\ 2 & 8 & 4 \end{vmatrix}$$

Expanding along R_1

$$= 6 (36) - 5 (8) - 3 (-2) = 216 - 40 + 6 = 182$$

Also
$$D_3 = \begin{vmatrix} 6 & 1 & 5 \\ 1 & 3 & 5 \\ 2 & 1 & 8 \end{vmatrix}$$

Expanding along R_1

$$= 6 (19) - 1(-2) + 5(-5) = 114 + 2 - 25 = 91$$

Now
$$X = \frac{D_1}{D} = \frac{91}{91} = 1$$

$$y = \frac{D_2}{D} = \frac{182}{91} = 2$$

Also
$$Z = \frac{D_3}{D} = \frac{91}{91} = 1$$

Hence
$$x = 1, y = 2, z = 1$$

Let
$$D = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

Expanding along R_1

$$= 1(1) - 1(-1) + 0(-1) = 1 + 1 + 0 = 2$$

Also
$$D_1 = \begin{vmatrix} 5 & 1 & 0 \\ 3 & 1 & 1 \\ 4 & 0 & 1 \end{vmatrix}$$

Expanding along R_1

$$= 5(1) - 1(-1) + 0(-4) = 5 + 1 + 0 = 6$$

Again
$$D_2 = \begin{vmatrix} 1 & 5 & 0 \\ 0 & 3 & 1 \\ 1 & 4 & 1 \end{vmatrix}$$

Expanding along R_1

$$=1(-1)-5(-1)+0(-3)=-1+5+0=4$$

Also
$$D_3 = \begin{vmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 1 & 0 & 4 \end{vmatrix}$$

= 1(4)-1(-3)+5(-1) = 4+3-5=2

Now
$$x = \frac{D_1}{D} = \frac{6}{2} = 3$$

 $y = \frac{D_2}{D} = \frac{4}{2} = 2$
 $z = \frac{D_3}{D} = \frac{2}{2} = 1$

Hence x = 3, y = 2, z = 1

Let
$$D = \begin{bmatrix} 0 & 2 & -3 \\ 1 & 3 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

Expanding along R_1

$$= 0(0) - 2(0) - 3(-5) = 15$$

Also
$$D_1 = \begin{bmatrix} 0 & 2 & -3 \\ -4 & 3 & 0 \\ 3 & 4 & 0 \end{bmatrix}$$

Expanding along $R_{\mathbf{1}}$

$$= 0 (0) - 2 (0) - 3 (-25) = 75$$

$$\text{Again } \mathcal{D}_2 = \begin{vmatrix} 0 & 0 & -3 \\ 1 & -4 & 0 \\ 3 & 3 & 0 \end{vmatrix}$$

Expanding along R_1

$$= 0(0) - 0(0) - 3(15) = -45$$

Also
$$D_3 = \begin{vmatrix} 0 & 2 & 0 \\ 1 & 3 & -4 \\ 3 & 4 & 3 \end{vmatrix}$$
$$= 0(25) - 2(15) + 0(1) = -30$$

Now
$$x = \frac{D_1}{D} = \frac{75}{15} = 5$$

 $y = \frac{D_2}{D} = \frac{-45}{15} = -3$
 $z = \frac{D_3}{D} = \frac{-30}{15} = -2$

Hence
$$x = 5, y = -3, z = -2$$

Here
$$D = \begin{vmatrix} 5 & -7 & 1 \\ 6 & -8 & -1 \\ 3 & 2 & -6 \end{vmatrix} = 5(48 + 2) + 7(-33) + 1(36)$$

= 250 - 231 + 36 = 55

$$D_1 = \begin{vmatrix} 11 & -7 & 1 \\ 15 & -8 & -1 \\ 7 & 2 & -6 \end{vmatrix} = 11(50) + 7(-83) + 1(86)$$
$$= 550 - 581 + 86 = 55$$

$$D_2 = \begin{vmatrix} 5 & 11 & 1 \\ 6 & 15 & -1 \\ 3 & 7 & -6 \end{vmatrix} = 5(-83) - 11(-33) + 1(-3)$$
$$= -415 + 363 - 3 = -55$$

$$D_3 = \begin{vmatrix} 5 & -7 & 11 \\ 6 & -8 & 15 \\ 3 & 2 & 7 \end{vmatrix} = 5(-86) + 7(-3) + 11(36)$$
$$= -430 - 21 + 396$$
$$= -55$$

Now
$$x = \frac{D_1}{D} = \frac{55}{55} = 1$$

 $y = \frac{D_2}{D} = \frac{-55}{55} = -1$
 $z = \frac{D_3}{D} = \frac{-55}{55} = -1$

Hence
$$x = 1, y = -1, z = -1$$

Chapter 6 Determinants Ex 6.4 Q17

$$2x - 3y - 4z = 29$$

 $-2x + 5y - z = -15$
 $3x - y + 5z = -11$

From the given system of equation we have

$$D = \begin{vmatrix} 2 & -3 & 4 \\ -2 & 5 & -1 \\ 3 & -1 & 5 \end{vmatrix} = 2(25-1)+3(-10+3)+4(2-15)=48-21-52=-25$$

$$D_1 = \begin{vmatrix} 29 & -3 & 4 \\ -15 & 5 & -1 \\ 11 & -1 & 5 \end{vmatrix} = 29(25-1)+3(-75+11)+4(15-55)=696-192-160=344$$

$$D_2 = \begin{vmatrix} 2 & 29 & 4 \\ -2 & -15 & -1 \\ 3 & 11 & 5 \end{vmatrix} = 2(-75+11)-29(-10+3)+4(-22+45)=-128+203+92=167$$

$$D_3 = \begin{vmatrix} 2 & -3 & 29 \\ -2 & 5 & -15 \\ 3 & -1 & 11 \end{vmatrix} = 2(55-15)+3(-22+45)+29(2-15)=80+69-377=-228$$
So, by Cramer's Pulle, we obtain

So, by Cramer's Rule, we obtain

$$x = \frac{D_1}{D} = -\frac{344}{25}$$

$$y = \frac{D_2}{D} = -\frac{167}{25}$$

$$z = \frac{D_3}{D} = \frac{228}{25}$$

Note: Answer given in the book is incorrect.

Chapter 6 Determinants Ex 6.4 Q18

Hence x = -2, y = 3, z = -4

$$D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

$$c_2 \to c_2 - c_1, c_3 \to c_3 - c_1$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 & b^2 - a^2 & c^2 - a^2 \end{vmatrix}$$

Now taking (b-a) from c_2 , and (c-a) c_3 common

$$= (b-a)(c-a)\begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b+a & c+a \end{vmatrix}$$

Expanding along R_1

$$= (b-a)(c-a)[c+a-b-a]$$

$$= (b-a)(c-a)(c-b)$$

$$= (a-b)(b-c)(c-a)$$

Again
$$D_1 = -\begin{vmatrix} 1 & 1 & 1 \\ d & b & c \\ d^2 & b^2 & c^2 \end{vmatrix}$$

$$c_2 \rightarrow c_2 - c_1, c_3 \rightarrow c_3 - c_1$$

$$D_1 = - \begin{vmatrix} 1 & 0 & 0 \\ d & b - d & c - d \\ d^2 & b^2 - d^2 & c^2 - d^2 \end{vmatrix}$$

Taking (b-d) common from c_2 and (c-d) from c_3

$$-(b-d)(c-d)\begin{vmatrix} 1 & 0 & 0 \\ d & 1 & 1 \\ d^2 & b+d & c+d \end{vmatrix}$$

Expanding along \mathcal{R}_1

$$= -(b-d)(c-d)[1(c+d-b-d)]$$

$$=-\left(b-d\right) \left(c-d\right) \left(c-b\right)$$

$$=-\left(b-c\right) \left(c-d\right) \left(d-b\right)$$

Again
$$D_2 = -$$

$$\begin{vmatrix}
1 & 1 & 1 \\
a & d & c \\
a^2 & b^2 & c^2
\end{vmatrix}$$

$$c_2 \rightarrow c_2 - c_1, c_3 \rightarrow c_3 - c_1$$

$$= -$$

$$\begin{vmatrix}
1 & 0 & 0 \\
a & d - a & c - a \\
a^2 & d^2 - a^2 & c^2 - a^2
\end{vmatrix}$$

Taking (d - a) common from c_2 and (c - a) from c_3

$$= - (d-a)(c-a)\begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & d+a & c+a \end{vmatrix}$$

Expanding along R_1

$$= - (d-a)(c-a) \times 1[c+a-d-a]$$

$$= - (d-a)(c-a)(c-d)$$

$$= -(a-d)(d-c)(c-a)$$

Also
$$D_3 = -\begin{vmatrix} 1 & 1 & 1 \\ a & b & d \\ a^2 & b^2 & d^2 \end{vmatrix}$$

$$c_2 \to c_2 - c_1, c_3 \to c_3 - c_1$$

$$= -\begin{vmatrix} 1 & 0 & 0 \\ a & b - a & d - a \\ a^2 & b^2 - a^2 & d^2 - a^2 \end{vmatrix}$$

Now, taking (b-a) common from c_2 and (d-a) from c_3

$$= -(b-a)(d-a)\begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b+a & d+a \end{vmatrix}$$

Expanding along
$$R_1$$

= - $(b-a)(d-a) \times 1[d+a-b-a]$
= - $(b-a)(d-a)(d-b)$
= - $(a-b)(b-d)(d-a)$

Now
$$x = \frac{D_1}{D} = -\frac{(b-c)(c-d)(d-b)}{(a-b)(b-c)(c-a)}$$

 $y = \frac{D_2}{D} = -\frac{(a-d)(d-c)(c-a)}{(a-b)(b-c)(c-a)}$
 $z = \frac{D_3}{D} = -\frac{(a-b)(b-d)(d-a)}{(a-b)(b-c)(c-a)}$

Here
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & 2 & 2 \\ 2 & 1 & -2 & 2 \\ 3 & -1 & 3 & -3 \end{vmatrix}$$

$$D = \begin{vmatrix} 0 & 0 & 1 \\ -1 & -4 & 0 \\ -22 & 6 & -6 \end{vmatrix} = 1\{-6 - 88\} = -94$$

$$\begin{bmatrix} C1 \to C1 + 3C3 \\ C2 \to C2 - C3 \end{bmatrix}$$

$$D_1 = \begin{vmatrix} 2 & 1 & 1 & 1 \\ -6 & -2 & 2 & 2 \\ -5 & 1 & -2 & 2 \\ -3 & -1 & 3 & -3 \end{vmatrix} = 188$$

$$D_2 = \begin{vmatrix} 1 & 2 & 1 & 1 \\ 1 & -6 & 2 & 2 \\ 2 & -5 & -2 & 2 \\ 3 & -3 & 3 & -3 \end{vmatrix} = -282$$

$$D_3 = \begin{vmatrix} 1 & 1 & 2 & 1 \\ 1 & -2 & -6 & 2 \\ 2 & 1 & -5 & 2 \\ 3 & -1 & -3 & -3 \end{vmatrix} = -141$$

$$D_4 = \begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & -2 & 2 & -6 \\ 2 & 1 & -2 & -5 \\ 3 & -1 & 3 & -3 \end{vmatrix} = 47$$

Now
$$x = \frac{D_1}{D} = \frac{188}{-94} = -2$$

 $y = \frac{D_2}{D} = \frac{-282}{-94} = 3$
 $z = \frac{D_3}{D} = \frac{-141}{-94} = \frac{3}{2}$
 $w = \frac{D_4}{D} = \frac{47}{-94} = -\frac{1}{2}$

Hence
$$x = -2$$
, $y = 3$, $z = \frac{3}{2}$, $w = -\frac{1}{2}$

Here
$$D = \begin{vmatrix} 2 & 0 & -3 & 1 \\ 1 & -1 & 0 & 2 \\ 0 & -3 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$

$$D = -1 \begin{vmatrix} 1 & -6 & 1 \\ 4 & -3 & 2 \\ 0 & 0 & 1 \end{vmatrix} = -1(-3 + 24) = -21$$

$$\begin{bmatrix} C1 \to C1 + 3C3 \\ C2 \to C2 - C3 \end{bmatrix}$$

$$D_1 = \begin{vmatrix} 1 & 0 & -3 & 1 \\ 1 & -1 & 0 & 2 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} = -21$$

$$D_2 = \begin{vmatrix} 2 & 1 & -3 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} = -6$$

$$D_3 = \begin{vmatrix} 2 & 0 & 1 & 1 \\ 1 & -1 & 1 & 2 \\ 0 & -3 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} = -6$$

$$D_4 = \begin{vmatrix} 2 & 0 & -3 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & -3 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{vmatrix} = 3$$

Now
$$x = \frac{D_1}{D} = \frac{-21}{-21} = 1$$

 $y = \frac{D_2}{D} = \frac{-6}{-21} = \frac{2}{7}$
 $z = \frac{D_3}{D} = \frac{-6}{-21} = \frac{2}{7}$
 $w = \frac{D_4}{D} = \frac{3}{-21} = -\frac{1}{7}$

Chapter 6 Determinants Ex 6.4 Q22

$$Let D = \begin{vmatrix} 2 & -1 \\ 4 & -2 \end{vmatrix}$$

Expanding along R_1 = -4 + 4 = 0

Also
$$D_1 = \begin{vmatrix} 5 & -1 \\ 7 & -2 \end{vmatrix} = -3$$

Also
$$D_2 = \begin{vmatrix} 2 & 5 \\ 4 & 7 \end{vmatrix} = -6$$

And since D=0 and D_1 and D_2 are non-zero, hence the given system of equations is inconsistent.

Hence proved.

$$D = \begin{vmatrix} 3 & 1 \\ -6 & -2 \end{vmatrix} = -6 + 6 = 0$$

$$D_1 = \begin{vmatrix} 5 & 1 \\ 9 & -2 \end{vmatrix} = -10 - 9 = -19 \neq 0$$

Since D = 0 but $D_1 \neq 0$

Hence the given system of equations is inconsistent.

Chapter 6 Determinants Ex 6.4 Q24

Here
$$D = \begin{vmatrix} 3 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & -2 & -1 \end{vmatrix}$$

Expanding along R_1

$$= 3(5) + 1(-5) + 2(-5)$$
$$= 15 - 5 - 10 = 15 - 15 = 0$$

Also
$$D_1 = \begin{vmatrix} 3 & -1 & 2 \\ 5 & 1 & 3 \\ 1 & -2 & -1 \end{vmatrix}$$

Expanding along R_1

$$= 3(5) + 1(-8) + 2(-11)$$

Since D = 0 and $D_1 \neq 0$

Hence the given system of equations is inconsistent.

Chapter 6 Determinants Ex 6.4 Q25

Here
$$D = \begin{vmatrix} 3 & -1 & 2 \\ 2 & -1 & 1 \\ 3 & 6 & 5 \end{vmatrix} = 3(-11) + 1(7) + 2(15) = -33 + 7 + 30 = 4$$

$$D_1 = \begin{vmatrix} 6 & -1 & 2 \\ 2 & -1 & 1 \\ 20 & 6 & 5 \end{vmatrix} = 12$$

$$D_2 = \begin{vmatrix} 3 & 6 & 2 \\ 2 & 2 & 1 \\ 3 & 20 & 5 \end{vmatrix} = -4$$

$$D_3 = \begin{vmatrix} 3 & -1 & 6 \\ 2 & -1 & 2 \\ 3 & 6 & 20 \end{vmatrix} = 28$$

Now
$$X = \frac{D_1}{D} = \frac{12}{4} = -3$$

 $Y = \frac{D_2}{D} = \frac{-4}{4} = -1$
 $Z = \frac{D_3}{D} = \frac{28}{4} = 7$

We have,

$$D = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 0 \\ 3 & 1 & 0 \\ -3 & -2 & 0 \end{vmatrix} = 0$$

$$D_1 = \begin{vmatrix} 3 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 0 \end{vmatrix} = 0$$

$$D_2 = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 2 & -1 \\ -1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -4 & -3 \\ -1 & 4 & 3 \end{vmatrix} = 1(-12 + 12) = 0$$

$$D_3 = \begin{vmatrix} 1 & -1 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & -4 \\ -1 & -3 & 4 \end{vmatrix} = 1(12 - 12) = 0$$

$$D = D_1 = D_2 = D_3 = 0$$

So, either the system is consistent with infinitely many solutions or it is inconsistent. Consider the first two equations, written as

$$x - y = 3 - z$$
$$2x + y = 2 + z$$

To solve these equations we use Cramer's rule.

Here,

$$D = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 + 2 = 3$$

$$D_1 = \begin{vmatrix} 3 - z & -1 \\ 2 + z & 1 \end{vmatrix} = (3 - z) + (2 + z) = 5$$

$$D_2 = \begin{vmatrix} 1 & 3 - z \\ 2 & 2 + z \end{vmatrix} = (2 + z) - (6 - 2z) = -4 + 3z$$

$$\therefore \qquad x = \frac{D_1}{D} = \frac{5}{3}$$

$$y = \frac{D_2}{D} = \frac{-4 + 3z}{3}$$

Let
$$z = k$$
, then the equations have the solution.

$$x = \frac{5}{3}, \ y = \frac{-4 + 3k}{3}, \ z = k$$

Chapter 6 Determinants Ex 6.4 Q27

Here,

$$D = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 6 - 6 = 0$$

$$D_1 = \begin{vmatrix} 5 & 2 \\ 15 & 6 \end{vmatrix} = 30 - 30 = 0$$

$$D_2 = \begin{vmatrix} 1 & 5 \\ 3 & 15 \end{vmatrix} = 15 - 15 = 0$$

So,
$$D = D_1 = D_2 = 0$$

Let y = k, then we have,

$$x + 2y = 5$$

$$\Rightarrow x = 5 - 2y = 5 - 2k$$

x = 5 - 2k, y = k are the infinite solutions of the given system.

Here,

$$D = \begin{vmatrix} 1 & 1 & -1 \\ 1 & -2 & 1 \\ 3 & 6 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -3 & 2 \\ 3 & 3 & -2 \end{vmatrix} = 1(6-6) = 0$$

$$D_1 = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 6 & -5 \end{vmatrix} = 0$$

$$D_2 = \begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 3 & 0 & -5 \end{vmatrix} = 0$$

$$D_3 = \begin{vmatrix} 1 & 1 & 0 \\ 1 & -2 & 0 \\ 3 & 6 & 0 \end{vmatrix} = 0$$

So,
$$D = D_1 = D_2 = D_3 = 0$$

The given system either has infinite solutions or it is inconsistent.

Consider the first two equations, written as

$$\begin{aligned}
 x + y &= z \\
 x - 2y &= -z
 \end{aligned}$$

To solve this we will use Cramer's rule

Here,

$$D = \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = -2 - 1 = -3$$

$$D_1 = \begin{vmatrix} z & 1 \\ -z & -2 \end{vmatrix} = -2z - z = -z$$

$$D_2 = \begin{vmatrix} 1 & z \\ 1 & -z \end{vmatrix} = -z - z = -2z$$

$$\therefore \qquad x = \frac{D_1}{D} = \frac{-z}{-3} = \frac{z}{3}$$

$$y = \frac{D_2}{D} = \frac{-2z}{-3} = \frac{2z}{3}$$
Let $z = k$, then the solutions of the given system are
$$x = \frac{k}{3}, \ y = \frac{2k}{3}, \ z = k$$

$$x = \frac{k}{3}, y = \frac{2k}{3}, z = k$$

Chapter 6 Determinants Ex 6.4 Q29

Here,

$$D = \begin{vmatrix} 2 & 1 & -2 \\ 1 & -2 & 1 \\ 5 & -5 & 1 \end{vmatrix} = \begin{vmatrix} 12 & 9 & -2 \\ -4 & -3 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1(-36 + 36) = 0$$

$$D_1 = \begin{vmatrix} 4 & 1 & -2 \\ -2 & -2 & 1 \\ -2 & -5 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & -2 \\ 0 & -2 & 1 \\ 0 & -5 & 1 \end{vmatrix} = 0$$

$$D_2 = \begin{vmatrix} 2 & 4 & -2 \\ 1 & -2 & 1 \\ 5 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 0 & -2 \\ 1 & 0 & 1 \\ 5 & 0 & 1 \end{vmatrix} = 0$$

$$D_3 = \begin{vmatrix} 2 & 1 & 4 \\ 1 & -2 & -2 \\ 5 & -5 & -2 \end{vmatrix} = \begin{vmatrix} 4 & -3 & 0 \\ 1 & -2 & -2 \\ 4 & -3 & 0 \end{vmatrix} = 2(-12 + 12) = 0$$

So,
$$D=D_1=D_2=D_3=0$$

So, the given system is either inconsistent or has infinite solutions.

Consider the 2nd and 3rd equation, written as

$$x - 2y = -2 - z$$
$$5x - 5y = -2 - z$$

Then,

$$D = \begin{vmatrix} 1 & -2 \\ 5 & -5 \end{vmatrix} = -5 - (-10) = 5$$

$$D_1 = \begin{vmatrix} -2 - z & -2 \\ -2 - z & -5 \end{vmatrix} = (2 + z)(5) - 2(2 + z) = 3(2 + z) = 6 + 3z$$

$$D_2 = \begin{vmatrix} 1 & -(2 + z) \\ 5 & -(2 + z) \end{vmatrix} = -(2 + z) + 5(2 + z) = 4(2 + z) = 8 + 4z$$

$$\therefore \qquad X = \frac{D_1}{D} = \frac{6 + 3z}{5}$$

$$y = \frac{D_2}{D} = \frac{8 + 4z}{5}$$

$$x = \frac{6+3k}{5}$$
, $y = \frac{8+4k}{5}$, $z = k$ are the infinite solution of the given system of equations.

Here,

$$D = \begin{vmatrix} 1 & -1 & 3 \\ 1 & 3 & -3 \\ 5 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 0 \\ 1 & 3 & -3 \\ 6 & 6 & 0 \end{vmatrix} = 3(12 - 12) = 0$$

$$D_1 = \begin{vmatrix} 6 & -1 & 3 \\ -4 & 3 & -3 \\ 10 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 0 \\ -4 & 3 & -3 \\ 6 & 6 & 0 \end{vmatrix} = 0$$

$$D_2 = \begin{vmatrix} 1 & 6 & 3 \\ 1 & -4 & -3 \\ 5 & 10 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 0 \\ 1 & -4 & -3 \\ 6 & 6 & 0 \end{vmatrix} = 0$$

$$D_3 = \begin{vmatrix} 1 & -1 & 6 \\ 1 & 3 & -4 \\ 5 & 3 & 10 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 6 \\ 0 & 4 & -10 \\ 0 & 8 & -20 \end{vmatrix} = 1(-80 + 80) = 0$$

So, $D = D_1 = D_2 = D_3 = 0$

So, the given system is either inconsistent or has infinite solutions.

Consider the first to equations, written as

$$x - y = 6 - 3z$$
$$x + 3y = -4 + 3z$$

Here,

$$D = \begin{vmatrix} 1 & -1 \\ 1 & 3 \end{vmatrix} = 3 + 1 = 4$$

$$D_1 = \begin{vmatrix} 6 - 3z & -1 \\ -4 + 3z & 3 \end{vmatrix} = 3(6 - 3z) + (-4 + 3z) = 14 - 6z$$

$$D_2 = \begin{vmatrix} 1 & 6 - 3z \\ 1 & -4 + 3z \end{vmatrix} = (-4 + 3z) - (6 - 3z) = -10 + 6z$$

$$x = \frac{D_1}{D} = \frac{14 - 6z}{4} = \frac{7 - 3z}{2}$$

$$y = \frac{D_2}{D} = \frac{6 - z - 10}{4} = \frac{3 - z - 5}{2}$$

Let z = k, then

$$x = \frac{7 - 3k}{2}$$
, $y = \frac{3k - 5}{2}$, $z = k$ are the infinite solution of the given system of equations.

Chapter 6 Determinants Ex 6.4 Q31

Let the rates of commissions on items A, B and C be x, y and z respectively.

Then we can express the given model as a system of linear equations

$$90x + 100y + 20 = 800$$

 $130x + 50y + 40 = 900$
 $60x + 100y + 30 = 850$

We will solve this using the Cramer's rule.

Here,

$$D = \begin{vmatrix} 90 & 100 & 20 \\ 130 & 50 & 40 \\ 60 & 100 & 30 \end{vmatrix} = \begin{vmatrix} -170 & 0 & -60 \\ 130 & 50 & 40 \\ -200 & 0 & -50 \end{vmatrix} = 50(8500 - 12000) = -175000$$

$$D_1 = \begin{vmatrix} 800 & 100 & 20 \\ 900 & 50 & 40 \\ 850 & 100 & 30 \end{vmatrix} = \begin{vmatrix} -1000 & 0 & -60 \\ 900 & 50 & 40 \\ -950 & 0 & -50 \end{vmatrix} = 50(50000 - 57000) = -350000$$

$$D_2 = \begin{vmatrix} 90 & 800 & 20 \\ 130 & 900 & 40 \\ 60 & 850 & 30 \end{vmatrix} = \begin{vmatrix} 90 & 800 & 20 \\ -50 & -700 & 0 \\ -75 & -350 & 0 \end{vmatrix} = 20(17500 - 52500) = -700000$$

$$D_3 = \begin{vmatrix} 90 & 100 & 800 \\ 130 & 50 & 900 \\ 60 & 100 & 850 \end{vmatrix} = \begin{vmatrix} -170 & 0 & -1000 \\ 130 & 50 & 900 \\ -200 & 0 & -950 \end{vmatrix} = 50(161500 - 200000) = -1925000$$

$$X = \frac{D_1}{D} = \frac{-350000}{-175000} = 2$$

$$Y = \frac{D_2}{D} = \frac{-700000}{-175000} = 4$$

$$Z = \frac{D_3}{D} = \frac{-1925000}{-175000} = 11$$

 \therefore The rates of commission of items A, B and C are 2%, 4% and 11% respectively.

Expressing the given information as a system of linear equations we get

$$2x + 3y + 4 = 29$$

 $x + y + 2 = 13$
 $3x + 2y + = 16$

Where x, y, $\not\equiv$ is the number of cars C_1 , C_2 and C_3 produced.

We use Cramer's rule to solve this system.

Here,

$$D = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 2 \\ 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -10 & -5 & 0 \\ -5 & -3 & 0 \\ 3 & 2 & 1 \end{vmatrix} = 1(30 - 25) = 5$$

$$D_1 = \begin{vmatrix} 29 & 3 & 4 \\ 13 & 1 & 2 \\ 16 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -35 & -5 & 0 \\ -19 & -3 & 0 \\ 16 & 2 & 1 \end{vmatrix} = 1(105 - 95) = 10$$

$$D_2 = \begin{vmatrix} 0 & 29 & 4 \\ 1 & 13 & 2 \\ 3 & 16 & 1 \end{vmatrix} = \begin{vmatrix} -10 & -35 & 0 \\ -5 & -19 & 0 \\ 3 & 16 & 1 \end{vmatrix} = 1(190 - 175) = 15$$

$$D_3 = \begin{vmatrix} 2 & 3 & 29 \\ 1 & 1 & 13 \\ 3 & 2 & 16 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 0 \\ 1 & 1 & 13 \\ 3 & 2 & 16 \end{vmatrix} = -2(16 - 26) = 20$$

$$X = \frac{D_1}{D} = \frac{10}{5} = 2$$

$$Y = \frac{D_2}{D} = \frac{15}{5} = 3$$
and
$$Z = \frac{D_3}{D} = \frac{20}{5} = 4$$

Hence, the number of cars produced of type $C_1,\ C_2$ and C_3 are 2,3 and 4 respectively.

Ex 6.5

Chapter 6 Determinants Ex 6.5 Q1

Here
$$D = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$$

= $1(3) - 1(-3) - 2(3)$
= $3 + 3 - 6$
= 0

Since D = 0, so the system has infinite solutions:

Now let z = k,

$$x + y = 2k$$
$$2x + y = 3k$$

Solving there equations by cramer's Rule

$$X = \frac{D_1}{D} = \frac{\begin{vmatrix} 2k & 1 \\ |3k & 1 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}} = \frac{-k}{-1} = k$$

$$y = \frac{D_2}{D} = \frac{\begin{vmatrix} 1 & 2k \\ 2 & 3k \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}} = \frac{-k}{-1} = k$$

thus, we have x = k, y = k, z = kand there values satisfy eq.(3)

Hence x = k, y = k, z = k

Here
$$D = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 1 & 1 \\ 2 & -1 & 3 \end{vmatrix}$$

= 2(4)-3(1)+4(-3)
= 8-3-7
= -2
 $\neq 0$

So, the given system of equations has only the trivial solutions i.e x = 0 = y = z:

Hence
$$x = 0$$

 $y = 0$

Chapter 6 Determinants Ex 6.5 Q3

Here
$$D = \begin{vmatrix} 3 & 1 & 1 \\ 1 & -4 & 3 \\ 2 & 5 & -2 \end{vmatrix}$$

= 3(8-15)-1(-2-6)+1(13)
= -21+8+13
= 0

So, the system has infinite solutions:

Let
$$z = k$$
,

so,
$$3x + y = -k$$
$$x - 4y = -3k$$

Now,

$$x = \frac{D_1}{D} = \frac{\begin{vmatrix} -k & 1 \\ -3k & -4 \end{vmatrix}}{\begin{vmatrix} 3 & 1 \\ 1 & -4 \end{vmatrix}} = \frac{7k}{-13}$$

$$y = \frac{D_2}{D} = \frac{\begin{vmatrix} 3 & -k \\ 1 & -3k \end{vmatrix}}{\begin{vmatrix} 3 & 1 \\ 1 & -4 \end{vmatrix}} = \frac{-8k}{-13}$$

$$x = \frac{-7k}{13}, y = \frac{8k}{13}, z = k$$

and there values satisfy eq.(3) Hence x = -7k, y = 8k, z = 13k

Chapter 6 Determinants Ex 6.5 Q4

$$D = \begin{vmatrix} 2\lambda & -2 & 3 \\ 1 & \lambda & 2 \\ 2 & 0 & \lambda \end{vmatrix}$$
$$= 3\lambda^3 + 2\lambda - 8 - 6\lambda$$
$$= 2\lambda^3 - 4\lambda - 8$$

which is satisfied by λ = 2 $\left[\because \right]$ for non-trivial solutions λ = 2

Now Let z = k.

$$4x - 2y = -3k$$

$$x + 2y = -3k$$

$$x = \frac{D_1}{D} = \frac{\begin{vmatrix} -3k & -2 \\ -2k & 2 \end{vmatrix}}{\begin{vmatrix} 4 & -2 \\ 1 & 2 \end{vmatrix}} = \frac{-10k}{10} = -k$$

$$y = \frac{D_2}{D} = \frac{\begin{vmatrix} 4 & -3k \\ 1 & -2k \end{vmatrix}}{\begin{vmatrix} 4 & -2 \\ 1 & 2 \end{vmatrix}} = \frac{-5k}{10} = \frac{-k}{2}$$

Hence solution is x = -k, $y = \frac{-k}{2}$, z = k

$$D = \begin{vmatrix} (a-1) & -1 & -1 \\ -1 & (b-1) & -1 \\ -1 & -1 & (c-1) \end{vmatrix}$$
Now for non-trivial solution, $D = 0$

$$0 = (a-1)[(b-1)(c-1)-1]+1[-c+1-1]+[1-c+1]$$

$$0 = (a-1)[bc-b-c+1-1]+c-b$$

$$0 = abc-ab-ac+1-1-1-c-b$$

$$ab+bc+ac=abc$$

Hence proved