Part 1

Answer to the problem goes here.

1. Exercise 2.1.1 answer here.

```
(a). \forall x (P(x) \to A(m, x))

(b). \exists x (P(x) \land A(x, m))

(c). A(m, m)

(d). \neg \exists x (S(x) \land \forall y (L(y) \to B(x, y)))

(e). \neg \exists y (L(y) \land \forall x (S(x) \to B(x, y)))

(f). \forall x \forall y (L(x) \land S(y) \to \neg B(y, x)))
```

2. Exercise 2.1.3 answer here.

$$InBox(x) = x \text{ is in the box}$$

$$Animal(x) = x \text{ is an animal}$$

$$Cat(x) = x \text{ is a cat}$$

$$Dog(x) = x \text{ is a dog}$$

$$Red(x) = x \text{ is red}$$

$$Boy(x) = x \text{ is a boy}$$

$$Prize(x) = x \text{ is a prize}$$

$$Won(y, x) = x \text{ won } y$$

- $\begin{array}{l} (a). \ \forall x \, (Red(x) \rightarrow InBox(x)) \\ (b). \forall x \, (InBox(x) \rightarrow Red(x)) \\ (c). \neg \exists x \, (Animal(x) \land Cat(x) \land Dog(x)) \\ (d). \forall x \, (Prize(x) \rightarrow \exists y \, (Boy(y) \land Won(y,x))) \\ (e). \exists y \, (Boy(y) \land \forall x \, (Prize(x) \rightarrow Won(y,x))) \end{array}$
- 3. Exercise 2.3.9 (k) answer here.

1.
$$\forall x (P(x) \land Q(x))$$
 premise
2. $x_0 P(x_0) \land Q(x_0)$ $\forall x \in 1$
3. $P(x_0)$ $\land e_1 2$
4. $\forall x P(x)$ $\forall x \text{ i } 2-3$
5. $x_0 P(x_0) \land Q(x_0)$ $\forall x \in 1$
6. $Q(x_0)$ $\land e_2 5$
7. $\forall x Q(x)$ $\forall x \text{ i } 5-6$
8. $\forall x P(x) \land \forall x Q(x)$ $\land \text{ i } 4, 7$

Exercise 2.3.9 (1) answer here.

1.		$\forall x P(x) \vee \forall x Q(x)$	premise
2.	x_0		
3.		$\forall x P(x)$	assumption
4.		$P(x_0)$	$\exists x \in 3$
5.		$P(x_0) \vee Q(x_0)$	$\vee i_1 4$
6.		$\forall x Q(x)$	assumption
7.		$Q(x_0)$	$\exists x \in 6$
8.		$P(x_0) \vee Q(x_0)$	∨i ₂ 7
9.		$P(x_0) \vee Q(x_0)$	\vee e 1, 3–5, 6–8
10.		$\forall x \left(P(x) \vee Q(x) \right)$	$\forall x \ 2-9$

Exercise 2.3.9 (m) answer here.

1.		$\exists x (P(x) \land Q(x))$	premise
2.	x_0	$P(x_0) \wedge Q(x_0)$	assumption
3.		$P(x_0)$	$\wedge e_1 2$
4.		$\exists x P(x)$	$\exists x i 3$
5.		$Q(x_0)$	$\wedge e_2 2$
6.		$\exists x Q(x)$	$\exists x i 5$
7.		$\exists x P(x) \land \exists x Q(x))$	\wedge i 4, 6
8.		$\exists x P(x) \land \exists x Q(x))$	$\exists x \in 1, 2-7$

4. Exercise 2.4.1

According to the page 133 to 135, we found truth value of $\forall x \forall y \, Q(g(x,y), g(y,y), z)$ depends on the valuation of its free variables.

Let, we choose A to be the set of integers, $g^M(a, a)$ is the result of a from a and third integers (a, b, c) is in Q^M if and only if, c equals the product of a and b. That way g(y, y) is interpreted as 0. So the valuation of 0 equals to z. Thus, l(z) = 0 the formula holds in our model whereas for l(z) = 1 is false.

5. Exercise 2.4.6

According to the page 139 to 140,

Let choose a model A with integer set. We define (n,m) $x \in P^M$ if and only if n is $n \leq m$. Evidently the interpretation of P is reflexive and transitive: $n \leq m$, $m \leq k$, and $n \leq k$. However $2 \leq 3$ and $3 \neq \leq 2$ shows that the interpretation is not symmetric.

Project 2

We interpret P(x, y) as x is a brother of y. This relationship is transitive and symmetric but not reflexive.

We define A=a,b,c and $P^M=(a,a),(b,b),(c,c),(a,c),(a,b),(b,a),(c,a)$. While the interpretation is reflexive and symmetric, we have (b,a) and (c,a) are in P^M . Thus we need $(b,c)\in P^M$ to secure transitivity of P^M . Since this is not the case, we infer that the interpretation of P^M is not transitive.