Real-time Dual-feature Mental Fatigue State SVM Classification using EEG Delta Bandpower

1st Candela-Leal, Milton Osiel Mechatronics Department Tecnológico de Monterrey Monterrey, México milton.candela@tec.mx

2nd Lozoya-Santos, Jorge de Jesús Mechatronics Department Tecnológico de Monterrey Monterrey, México jorge.lozoya@tec.mx

3rd Ramírez-Moreno, Mauricio Adolfo Mechatronics Department Tecnológico de Monterrey Monterrey, México mauricio.ramirezm@tec.mx

Abstract—Reliable fatigue state detection systems recently use electroencephalography (EEG) signals to optimally monitor mental states and decrease the chance of human errors [1]-[5]. The current paper presents a rapid real-time, EEG-based mental fatigue assessment framework based on a linear Support Vector Machine (SVM) model. A low-cost, dry 4-electrode consumergrade EEG device (Enophone [6]) collected 5-minute data from 24 undergraduate students that answered the Fatigue Assessment Scale (FAS) questionnaire [7] before undergoing an auditory oddball task. Pre-processing consisted in applying a 4th order Butterworth 0.1-100 Hz bandpass filter, as well as a 60 Hz Notch filter, in addition to a linear detrend. Feature extraction consisted of Power Spectral Density (PSD) features via the Welch method via Python's Brainflow library [8], using one-second windows and half-second overlap. Furthermore, Random Forest (RF) regression's Gini importance [9] determined the two most relevant features, which were two delta (1-4 Hz) ratios: $\delta \frac{A2}{A1}$ and $\delta \frac{C3}{A2}$. The binary (No Fatigue / Substantial Fatigue) classification Machine Learning (ML) model achieved 93% accuracy and 0.91 f1-score (7-fold stratified cross-validation). The SVM model was further implemented in a real-time framework and tested using another independent group doing the same task. The reliable, high-accuracy model shows that low-cost EEG devices could be further implemented within the consumer to assess their fatigue level [10]-[14], later including cloud-computing to monitor the user's mental state and allowing the system to make real-time adjustments to tasks' complexity and pacing, thus enhancing work efficiency and well-being [15]-[17].

Index Terms—eeg, electroencephalography, machine learning, mental fatigue, svm, support vector machine, real-time, wearable

REFERENCES

- [1] A. J. Aguilar-Herrera, E. A. Delgado-Jimenez, M. O. Candela-Leal, G. Olivas-Martinez, G. J. Alvarez-Espinosa, M. A. Ramirez-Moreno, J. de Jesus Lozoya-Santos, and R. A. Ramirez-Mendoza, "Advanced learner assistance system's (ALAS) recent results," in 2021 Machine Learning-Driven Digital Technologies for Educational Innovation Workshop, IEEE, Dec. 2021.
- [2] M. A. Ramírez-Moreno, P. Carrillo-Tijerina, M. O. Candela-Leal, M. Alanis-Espinosa, J. C. Tudón-Martínez, A. Roman-Flores, R. A. Ramírez-Mendoza, and J. de J. Lozoya-Santos, "Evaluation of a fast test based on biometric signals to assess mental fatigue at the workplace—a pilot study," International Journal of Environmental Research and Public Health, vol. 18, p. 11891, Nov. 2021.
- J.-H. Jeong, B.-W. Yu, D.-H. Lee, and S.-W. Lee, "Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals," Brain Sciences, vol. 9, p. 348, Nov. 2019.

- [4] M. Ramirez-Moreno, M. Diaz-Padilla, K. Valenzuela-Gomez, A. Vargas-Martinez, A. Roman-Flores, R. Morales-Menendez, R. Ramirez-Mendoza, and J. Lozoya-Santos, "Advanced learning assistant system (ALAS) for engineering education," in 2020 IEEE Global Engineering Education Conference (EDUCON), IEEE, Apr. 2020.
- [5] Y. Zhang, Y. Chen, and Z. Pan, "A Deep Temporal Model for Mental Fatigue Detection," Proceedings - 2018 ÎEEE Înternational Conference on Systems, Man, and Cybernetics, SMC 2018, pp. 1879-1884, 2019.
- Enophone, "eno: Noise-cancelling Headphones to Improve Focus," 2021.
- [7] H. J. Michielsen, J. D. Vries, and G. L. V. Heck, "Psychometric qualities of a brief self-rated fatigue measure: The fatigue assessment scale," Journal of psychosomatic research, vol. 54, pp. 345–352, apr 2003. [8] Brainflow, "Brainflow: How Biosensors Work," 2023.
- [9] M. O. Candela-Leal, J. M. García-Briones, G. Olivas-Martínez, R. Abrego-Ramos, G. J. Álvarez Espinoza, D. M. Botín-Sanabria, K. L. Rodríguez-Hernández, J. F. Pachego-Quintana, S. Sampogna-Montemayor, R. Morales-Menendez, R. A. Ramírez-Mendoza, M. A. Ramírez-Moreno, J. C. Tudón-Martínez, and J. de J. Lozoya-Santos, "Real-time biofeedback system for interactive learning using wearables and jot" in 2021 International Conference on Industrial Engineering and Operations Management (IEOM), IEOM, Nov. 2021.
- N. Kosmyna and P. Maes, "Attentivu: An EEG-based closed-loop biofeedback system for real-time monitoring and improvement of engagement for personalized learning," Sensors (Switzerland), vol. 19,
- [11] O. E. Krigolson, C. C. Williams, A. Norton, C. D. Hassall, and F. L. Colino, "Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research," Frontiers in Neuroscience, vol. 11, no. MAR,
- S. Lin, J. Liu, W. Li, D. Wang, Y. Huang, C. Jia, Z. Li, M. Murtaza, H. Wang, J. Song, Z. Liu, K. Huang, D. Zu, M. Lei, B. Hong, and H. Wu, "A Flexible, Robust, and Gel-Free Electroencephalogram Electrode for Noninvasive Brain-Computer Interfaces," Nano Letters, vol. 19, no. 10, pp. 6853-6861, 2019.
- Y. Wang, Y. Huang, B. Gu, S. Cao, and D. Fang, "Identifying mental fatigue of construction workers using eeg and deep learning," Automation in Construction, vol. 151, p. 104887, 2023.
- [14] J. de J Lozoya-Santos, M. A. Ramírez-Moreno, G. G. Diaz-Armas, L. F. Acosta-Soto, M. O. C. Leal, R. Abrego-Ramos, and R. A. Ramirez-Mendoza, "Current and future biometrics: Technology and applications," in Biometry, pp. 1-30, CRC Press, May 2022.
- M. Pishgar, S. F. Issa, M. Sietsema, P. Pratap, and H. Darabi, "Redeca: A novel framework to review artificial intelligence and its applications in occupational safety and health," International Journal of Environmental Research and Public Health, vol. 18, no. 13, 2021.
- [16] M. A. Ramírez-Moreno, M. Díaz-Padilla, K. D. Valenzuela-Gómez, A. Vargas-Martínez, J. C. Tudón-Martínez, R. Morales-Menendez, R. A. Ramírez-Mendoza, B. L. Pérez-Henríquez, and J. de J. Lozoya-Santos, "EEG-based tool for prediction of university students' cognitive performance in the classroom," Brain Sciences, vol. 11, p. 698, May 2021.
- [17] M. H. de Menendez, R. Morales-Menendez, C. A. Escobar, and J. Arinez, "Biometric applications in education," *International Journal* on Interactive Design and Manufacturing (IJIDeM), vol. 15, pp. 365-380, July 2021.