Lya Tomography Mapping with BOSS QSOs at z = 2.5: HII Bubble Candidate in FALL Field

Dongsheng Sun
Observational Cosmology Group
University of Tokyo

Introduction

Void in HI underdensity (Krolewski et al. 2018) Void: Area with relatively low matter density

Lyα Tomography Mapping (Lee et al. 2018):
Lyα Forest of Background QSO
To trace Foregound HI gas
distribution in IGM

But some HI underdensity areas can not be explianed by void (associated with high matter density)

Introduction

HII Bubble (Mukae et al. 2020): HI gas Highly ionized by radition of QSOs overdensity

Evolution:

HI gas overdensity → Galaxy overdensity

→ Quasar overdensity → HII Bubble

Mukae et al. 2020

To confirm this Evolution: More QSO overdensity suround by HI underdensity

Mukae et al. 2020

Spatial Scale

DATA

Background spectra: SDSS DR14 QSOs (Paris+18)

Field: Fall (R.A.[deg] 5.3~37.7

 $Dec[deg] -1.5 \sim 1.8$

Selection of QSO overdensity

Foreground QSOs:

R.A.[deg]: $24.44 \sim 26.44$

Dec[deg]: $-0.5 \sim 1.5$

Red shift $z : 2.489 \sim 2.689$

70 QSOs in 4 deg²

Background QSOs for tomography

Selection:

Red shift $z: 2.3 \sim 3.5$

Restframe 1040 Å to 1185 Å

Median SN > 2; remove DLA

33 Background QSOs Used

Analysis: Tomography map construction

MF-PCA fitting (Lee et al. 2012,2013,2014): To get Intrinsic Flux of Background QSOs

PCA: Principal Component Analysis, Correlations between the unabsorbed flux

(UV continum and Lya Forest)

flux

DA range UV range

MFPCA err

MFPCA average

MF: Mean Flux regulation, Lya forest transmission have a redshift evolution (z incaease Lya forest Transmission decrease, Faucher-Giguere+08)

MF-PCA fitting in an example Background QSO spectrum:

Analysis: Tomography map construction

HI overdensity δ_F : Relative HI Absorption excess from cosmic average

Analysis: Tomography map construction

Wiener filtering: A Smoothing technique, Reasonable Estimation in region without background QSO

- 1. 2D Gaussian Smoothing (RA and Dec; smoothing scale = 20 h⁻¹Mpc)
- 2. Weighting factor depends on SN

Result: HI Tomography map

Result: FALL Slice

Confrimation

Confrimation

Conclusion

•HII Bubble candidate have been found by using Tomography mapping in QSOs overdensity of FALL field

Future

- Increase Accuracy

 More Sightline
- Confrim Mukae et al. 2020 hypothesis
 More HII Bubble
 LAEs&QSOs overdensity