

1. 概述

SW6208 是一款高集成度的多协议双向快充移动电源专用多合一芯片,支持 A+A+B+C+L 口任意口快充。其集成了 5A 高效率开关充电,22.5W 高效同步升压输出,PPS/PD/QC/AFC/FCP/SCP/PE/SFCP 等多种快充协议,电量计量,数码管/LED 灯显示以及相应的控制管理逻辑。外围只需少量的器件,即可组成完整的高性能双向快充移动电源解决方案。

2. 应用领域

- 移动电源
- 其它电池供电设备

3. 规格

• 开关充电

- ▶ 电流高达 5A, 效率高达 96%
- ➤ 支持 4.2/4.35/4.4/4.5V 电池类型
- ➤ 支持 JEITA 规范
- ▶ 支持温度环控制

• 同步升压

- ▶ 输出功率高达 22.5W, 效率高达 95%
- ▶ 自动负载检测/轻载检测
- > 支持无线充模式
- ▶ 支持小电流模式

• 输出快充协议

- > 支持 PPS/PD3.0/PD2.0
- ➤ 支持 QC4+/QC4/QC3.0/QC2.0
- ▶ 支持 AFC
- ▶ 支持 FCP
- > 支持 SCP
- > 支持 PE2.0/PE1.1
- ▶ 支持 SFCP

• 输入快充协议

- ➤ 支持 PD3.0/PD2.0
- ▶ 支持 AFC
- ▶ 支持 FCP
- ▶ 支持 SCP
- ▶ 支持 PE1.1

• Type-C 接口

- ▶ 内置 USB Type-C 接口逻辑
- ▶ 支持 Try.SRC 功能

· BC1.2 模块

- ▶ 支持 BC1.2 DCP 模式
- ▶ 支持苹果/三星模式

• Lightning 解密

- ▶ 内置 Lightning 解密功能
- 电量计量及显示
 - ▶ 内置 12bit ADC
 - ▶ 内置库仑计精确电量
 - ▶ 支持 188 数码管显示
 - ➤ 支持 3-5 个 LED 灯显示

快充指示灯

- ▶ 内置快充指示灯驱动
- 照明驱动
 - ▶ 内置照明 LED 驱动

• 按键

> 支持机械按键

• 保护机制

- ▶ 输入过压保护
- ▶ 输出过流/短路保护
- ▶ 充电超时/过压保护
- ▶ 温度保护
- · I2C 接口
- QFN-48(6x6mm) 封装

4. 功能框图

5. 引脚定义及功能描述

5.1. 引脚定义

5.2. 引脚描述

Pin	Name	Function Description	
1	DPA2	Type-A2 口 DP 引脚。	
2, 3, 4, 5, 6	SW	开关节点。	
7	BST	上N管驱动 Bootstrap 引脚。	
8	DATA	Lightning 口 DATA 引脚。	
9	VOUTA1	Type-A1 口轻载电流检测引脚。	
10	VBUSA1	Type-A1 口输出电压检测引脚。	
11	VBUSB	Micro-B 口输入电压检测引脚。	
12	VBUSC	Type-C 口输入输出电压检测引脚。	

13	VOUTC	Type-C 口轻载电流检测引脚。
14	VOUTA2	Type-A2 口轻载电流检测引脚。
15	VBUSA2	Type-A2 口输出电压检测引脚。
16	VBUSL	Lightning 口输入电压检测引脚。
17	BAT	电池电压检测引脚。
18	NTC	电池温度检测引脚。
19	VCC	内部工作电源。
20	KEY/GSET	机械按键输入,电量计恒流充电时间参数设置。
21	FLED/BSET	快充指示,电池目标电压设置。
22	LED5/CSET	数码管显示接口 5, 及电池容量设置。
23	LED4/I2C	LED 灯或数码管显示接口 4,及 I2C 设置信号。
24	LED3/IRQ	LED 灯或数码管显示接口 3, 可复用为中断信号。
25	LED2/SDA	LED 灯或数码管显示接口 2, 可复用为 I2C 数据信号。
26	LED1/SCK	LED 灯或数码管显示接口 1, 可复用为 I2C 时钟信号。
27	VOUTSP	输入输出电流检测正端。
28	VOUTSN	输入输出电流检测负端。
29, 30, 31,		充电电路输入,升压电路输出引脚。
32, 33	VOUT	74 G GPH 1137 (7) 717E GPH 1134 ET (1794)
34	GATEL	Lightning 口通路控制。
35	GATEA2	Type-A2 口通路控制。
36	GATEA1	Type-A1 口通路控制。
37	GATEB	Micro-B 口通路控制。
38	GATEC	Type-C 口通路控制。
39	CCL/WLED	Lightning 口 CC 引脚,可配置为照明输出。
40	CC2	Type-C 配置通道 2。
41	CC1	Type-C 配置通道 1。
42	DMC	Type-C 口 DM 引脚。
43	DPC	Type-C 口 DP 引脚。
44	DMB	Micro-B 口 DM 引脚。
45	DPB	Micro-B 口 DP 引脚。
46	DMA1	Type-A1 口 DM 引脚。
47	DPA1	Type-A1 □ DP 引脚。
48	DMA2	Type-A2 口 DM 引脚。
	EPAD	散热 PAD,接地。

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VBUSB/VBUSC/VBUSL	-0.3	16	V
	VOUT/VOUTSP/VOUTSN/			
输出电压	VOUTA1/VOUTA2/VOUTC/	-0.3	16	V
	VBUSA1/VBUSA2/VBUSC			
SW 管脚电压	SW	-0.3	16	V
BST 管脚电压	BST-SW	-0.3	6	V
通路控制电压	GATEA1/GATEA2/GATEB/	-0.3	21	v
地 始	GATEC/GATEL	-0.3	21	V
CC1/CC2/CCL 管脚	CC1/CC2/CCL	0.2	16	V
电压	CCI/CC2/CCL	-0.3	16	V
其它管脚电压		-0.3	6	V
结温		-40	+150	°C
存储温度		-60	+150	°C
ESD (HBM)		-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

7. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VBUSB/VBUSC/VBUSL	4.5		13.5	V
电池电压	BAT	2.8		4.5	V

8. 电气特性

(V_{IN} = 5V, T_A = 25°C,除特别说明。)

Parameters	Symbol	Test Conditions	MIN	TYP	MAX	UNIT
供电电源						
VBUSB/VBUSC/VBUSL 输入电源	V _{BUSB/C/L}	V _{BUSB} /V _{BUSC} /V _{BUSL}	4		13.5	V
VBUSB/VBUSC/VBUSL 输入欠压门限	V _{BUSB/C/L_UVLO}	VBUSB/VBUSC/VBUSL 输入电压下降	3.9	4	4.1	V
VBUSB/VBUSC/VBUSL 输入欠压门限迟滞	V _{BUSB/C/L_UVLO_}	VBUSB/VBUSC/VBUSL 输入电压上升	300	400	500	mV

VBUSB/VBUSC/VBUSL 输入过压门限	V _{BUSB/C/L_OVP}	VBUSB/VBUSC/VBUSL 输入电压上升	13.4	13.7	14	V
VBUSB/VBUSC/VBUSL 输入过压门限迟滞	V _{BUSB/C/L_OVP_}	VBUSB/VBUSC/VBUSL 输入电压下降	600	800	1000	mV
VCC 输出电压	$ m V_{CC}$	Boost 或 V _{BUSB} /V _{BUSC} /V _{BUSL} 接 入	4.9	5	5.1	V
		关机		V_{BAT}		V
VCC 输出电流	I_{CC}	Boost 或 V _{BUSB} /V _{BUSC} /V _{BUSL} 接 入	40	60	80	mA
		关机	40	60	80	mA
功率管内阻						
NMOS 上管	R_{DSON_H}		17	20	24	m Ω
NMOS 下管	R_{DSON_L}		9	11	14	mΩ
NMOS 上管峰值限流	I _{PEAK_H}	充电模式	6	8	10	A
NMOS 下管峰值限流	I _{PEAK_L}	升压模式	8	10	12	A
充电模式						
涓流截止电压	V_{TC}	10/1	2.9	3	3.1	V
	T	$V_{BAT} < 0.5V$	30	60	100	mA
涓流充电电流(电池端电流)	I_{TC}	0.5V < V _{BAT} < 3V	200	300	400	mA
		$V_{BUSB} / V_{BUSL} = 5V, I_{CCSET} = 2A$	1.8	2	2.1	A
		$V_{BUSC} = 5V$, $I_{CCSET} = 3A$	2.7	3	3.2	A
恒流充电电流	I_{CC}	$V_{BUSB} / V_{BUSC} / V_{BUSL} = 9V,$ $I_{CCSET} = 2A$	1.8	2	2.1	A
		$V_{BUSB}/V_{BUSC}/V_{BUSL}$ =12V, I_{CCSET} =1.5A	1.3	1.5	1.6	A
		$V_{BUSB} / V_{BUSC} / V_{BUSL} = 5V$	200	230	260	mA
截止充电电流	I_{END}	$V_{BUSB} / V_{BUSC} / V_{BUSL} = 9V$	100	130	160	mA
		$V_{BUSB}/V_{BUSC}/V_{BUSL} = 12V$	80	100	120	mA
充电目标电压	$V_{\mathrm{BAT_FULL}}$		4.16	4.2	4.24	V
复充电电压	V _{BAT_RECH}		4.06	4.1	4.14	V
开关频率	F_{CHG}		350	400	450	KHz
涓流充电超时	t _{TC_OT}		36	40	44	Min
恒流恒压充电超时	t _{CC_OT}		30	33	36	Hour
恒温温度值	T _{REGU_CHG}		100	115	130	$^{\circ}$

		V /V /V -5V	4.4	4.5	4.6	V
7F F 77 77 7F	1 7	$V_{BUSB}/V_{BUSC}/V_{BUSL} = 5V$				
限压环门限	$ m V_{HOLD}$	$V_{BUSB}/V_{BUSC}/V_{BUSL} = 9V$	8.4	8.5	8.6	V
		$V_{BUSB} / V_{BUSC} / V_{BUSL} = 12V$	11.35	11.45	11.55	V
升压模式				1	T	1
VBAT 输入电压	V_{BAT}		2.9		4.5	V
VBAT 输入欠压门限	V_{BAT_UVLO}	VBAT 输入电压下降	2.8	2.9	3.0	V
VBAT 输入欠压门限迟滞	V _{BAT_UVLO_HYS}	VBAT 输入电压上升	400	500	600	mV
		V _{OUT} =5V, I _{OUT} =0A	5	5.1	5.2	V
VOUT 输出电压	$ m V_{OUT}$	V _{OUT} =9V, I _{OUT} =0A	8.9	9.1	9.3	V
		V _{OUT} =12V, I _{OUT} =0A	11.8	12.1	12.4	V
		V _{OUT} =5V, I _{OUTSET} =3A	3		3.4	A
满载输出电流	I_{OUT}	V _{OUT} =9V, I _{OUTSET} =2A	2		2.3	A
		V _{OUT} =12V, I _{OUTSET} =1.5A	1.5		1.8	A
	I _{LIGHT_} LOAD	$R_{DS_PATH}=10$ m Ω , $V_{OUT}=5$ V	40	60	80	mA
轻载电流检测门限值		$R_{DS_PATH}=10m\Omega$, $V_{OUT}=9V/12V$	20	40	60	mA
≠2 ≠2 +4 √20 → +11 n+ 121		单口输出	28	32	40	S
轻载检测关机时间	t _{LIGHT_LOAD}	多口输出或边充边放	12	16	20	S
静态电流	I_Q	V _{BAT} =3.7V	40	50	65	uA
		0A <i<sub>OUT<1A</i<sub>		0		mV
线损补偿	V _{OUT_WDC}	1A <i<sub>OUT<2A</i<sub>	30	50	70	mV
		I _{OUT} >2A	80	100	120	mV
开关频率	F _{BST}		350	400	450	KHz
热控制环路门限值	T _{REGU_BST}		100	115	130	$^{\circ}$
Type-C 接口						
CC 管脚输出电流	I _{CC_SOURCE}	Power Level=3.0A	310	330	350	uA
CC 管脚端接电阻	R_{D}		4.9	5.1	5.3	kΩ
BC1.2	•			•		
	DP	Apple 2.4A Mode	2.55	2.7	2.85	V
DP/DM 电压	DM	Apple 2.4A Mode	2.55	2.7	2.85	V
PE						
电流门限	$I_{ m REF}$		150	250	350	mA

t _{PLUG_OUT}		160	200	240	mS
I_{SEG}		6	10	14	mA
I_{LED}		2	4	6	mA
$ m f_{LED}$		0.8	1	1.2	Hz
-					
R _{WLED}		10	20	30	Ω
-		1	X		
Tshort		24	32	500	mS
T _{LONG}		1.5	2	3	S
T _{DOUBLE}	发生两次短按键的最长时间	1.2	1.5	1.8	S
f_{CLK}			100	400	Kbit/S
•					-
T_{SHDT}	温度上升	135	150	165	$^{\circ}$
T _{SHDT_HYS}	温度下降	55	70	85	$^{\circ}$
	I _{SEG} I _{LED} f _{LED} Rwled T _{SHORT} T _{DOUBLE} f _{CLK}	I _{SEG} I _{LED} f _{LED} RWLED TSHORT TLONG TDOUBLE 发生两次短按键的最长时间 f _{CLK} Light	Iseg	I _{SEG} 6 10 I _{LED} 2 4 f _{LED} 0.8 1 RWLED 10 20 T _{SHORT} 24 32 T _{LONG} 1.5 2 T _{DOUBLE} 发生两次短按键的最长时间 1.2 1.5 f _{CLK} 100 T _{SHDT} 温度上升 135 150	Iseg 6 10 14 ILED 2 4 6 fLED 0.8 1 1.2 RWLED 10 20 30 TSHORT 24 32 500 TLONG 1.5 2 3 TDOUBLE 发生两次短按键的最长时间 1.2 1.5 1.8 fCLK 100 400 TSHDT 温度上升 135 150 165

9. 功能描述

9.1. 充电模式

SW6208 集成了最高效率高达 96%的开关充电模块, 其支持 4.2V/4.35V/4.4V/4.5V 等多种电池类型, 开关频率 400KHz, 可以使用小体积的 2.2uH 电感。

充电流程分为如下三个过程:涓流模式、恒流模式、恒压模式。当电池电压低于 3V 时,充电模块处于涓流模式,充电电流为涓流充电电流;当电池电压大于 3V 时,充电模块进入恒流模式,此时按照设定的目标电流全速充电;当电池电压上升到充电目标电压(比如 4.2V)时,充电模块进入恒压模式,此时电流逐渐减小,而电池端电压保持不变;当充电电流减小到充电截止电流,充电结束。充满后如果电池电压降低到比目标电压低 0.1V,则自动重新开始充电。

电池类型可通过 FLED/BSET Pin 设置。对 VCC 上拉 $10K\Omega$ 电阻时,设置 4.2V 电池;对 VCC 上拉 $15K\Omega$ 电阻时,设置 4.35V 电池;对 VCC 上拉 $5.6K\Omega$ 电阻时,设置 4.4V 电池;对 VCC 上拉 $3K\Omega$ 电阻时,设置 4.5V 电池。

恒流充电电流根据快充输入电压设置,为输入端的恒流电流,电池端电流最大可达 5A。 当处于普通 5V 输入电压时,对于 Micro-B 及 Lightning 口,充电电流设置为 2A;对于 Type-C 口,充电电流设置为 3A;当处于快充 9V 输入电压时,充电电流设置为 2A;当处于快充 12V 输入电压时,充电电流设置为 1.5A。

充电模块支持 NTC 保护及 JEITA 规范,NTC 温度保护模块会一直监测电池温度,典型情况下,使其在 0~50℃的正常温度范围内充电,当处于温度异常时,减小充电电流、降低充电目标电压或者关闭充电。典型的应用使用 103 AT NTC 电阻,当温度低于 5 ℃时,充电电流减小一半,如果温度继续下降低于 0 ℃,则关闭充电,温度上升到 5 ℃后自动重新充电,充电电流减少一半,温度继续上升到 10 ℃时,恢复正常充电电流。当温度高于 45 ℃时,充电目标电压降低 0.1 V,如果温度继续升高高于 50 ℃,则关闭充电,温度下降到 45 ℃后自动重新充电,充电目标电压降低 0.1 V,温度继续下降到 40 ℃时,恢复正常充电目标电压。JEITA 规范可根据需要使能或禁止。

充电模块还包含一个温度控制环,当芯片温度超过 115℃时,充电电流开始下降,如果继续过温超过 150℃,则芯片进入过温关机模式。

充电模块还包含一个超时机制,当恒流充电时间超过33小时或是涓流充电超过40分钟时, 充电停止,插拔适配器可解除此状态。

9.2. 升压模式

SW6208 集成了 22.5W 的升压模块,开关频率 400KHz,最高效率可达 95%。升压模块包含了 PSM/PWM 两种模式,在轻载下,工作于 PSM 模式;在较大负载下,工作于 PWM 模式。当负载接入时,系统自动侦测并启动升压模块;当负载移出后,系统监测到超过一定时间后,

关闭升压输出。

升压模块支持 CC/CV 模式。当负载电流小于 CC 限流时,降压电路输出设定电压。当负载达到 CC 限流值时,将限定输出电流在 CC 限流值,输出电压将下降。输出限流值根据输出电压配置,输出电压越高,限流值越低。

升压模块支持 NTC 保护, NTC 保护模块会一直监测电池温度,使其在-20~60℃的正常温度范围内放电,当处于温度异常时停止放电。典型的应用使用 103AT NTC 电阻,当温度高于60 或低于-20℃时,停止放电。停止放电后,即使温度退出到正常温度,芯片也不会自动开机,而需要检测到负载插入或是短按键动作发生。

升压模块还包含一个温度控制环,当芯片温度超过115℃时,输出电压开始下降;如果继续过温超过150℃,则芯片进入过温关机模式。进入过温关机模式后,即使温度降低到过温门限以下,芯片也不会自动开机,而需要检测到负载插入或是短按键动作发生。

升压模块包含了输入欠压/输出过压/输出过载/输出短路等保护。

9.3. 通路控制

SW6208 支持 Type-A1+Type-A2+Micro-B+Type-C+Lightning 五口, 其中 Type-A1 及 Type-A2 支 持 QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP 快 充 输 出 ; Type-C 支 持 PPS/PD3.0/PD2.0/QC4+/ QC3.0/QC2.0/AFC/FCP/SCP/PE2.0/PE1.1/SFCP 快 充 输 出 , 支持 PD3.0/PD2.0/AFC/FCP/SCP/PE1.1 快充输入;Micro-B 支持 AFC/FCP/SCP/PE1.1 快充输入;Lightning 支持 PD3.0/PD2.0 快充输入,并支持线缆解密。

短按键及负载接入可打开 Type-A1/Type-A2 口对外放电,轻载检测将关闭 Type-A1/Type-A2/Type-C 输出口,轻载检测电流门限与通路管内阻相关,在通路管内阻 10m Ω 时,5V 输出及高压输出时对应的轻载电流约 60mA/40mA; DFP 接入可打开 Type-C 口进行充电,UFP 接入将打开 Type-C 口对外放电,另外 Type-C 口支持轻载检测,在 UFP 设备轻载时,也将关闭 Type-C 口,进入低功耗模式;适配器接入可打开 Micro-B/Lightning 口进行充电。

SW6208 支持边充边放。在单口工作时支持快充输入输出,多口工作时支持 5V 输入输出。 边充边放时,输入口电源在为电池充电时,也同时向输出口进行放电。边充边放功能可根据需求禁止。边充边放时,优先给输出口放电,充电模块的限压环门限设置为 4.8V,当输入口电源被输出口设备抽电后,如果输入电源供电不足导致输入电压低于 4.8V 时,充电模块将减小充电电流,使得输入口电压保持在 4.8V,输入口电源优先给输出口设备供电。

SW6208 支持 Type-A1/Type-A2/Type-C 口同时对外放电,此时输出电压为 5V。

9.4. 模式设置

SW6208 支持无线充、小电流及照明驱动模式。在 I2C 模式下,三种模式通过寄存器设置。 在数码管或 LED 显示模式下,三种模式通过 Pin 设置。

SW6208 支持无线充模式,Type-A2 口接无线充模块,针对无线充模块的供电做了特殊优化,如短按键打开 Type-A2 口,5V 输出及高压输出时轻载检测电流设置为 240mA/115mA,轻载检测时间固定为 32S。无线充模式通过 LED1/SCK Pin 设置,对地接 100K 电阻时,设置为无线充模式;否则为非无线充模式。

SW6208 支持小电流模式,可对蓝牙耳机、手环等小电流设备充电。设置为小电流模式后,通过长按进入或退出小电流模式。进入小电流模式后,电量显示也会变化,提示处于小电流模式。在小电流模式下,在 2 小时内不进行轻载检测,双击关机时也可退出小电流模式。小电流模式通过 LED2/SDA Pin 设置,对地接 100K 电阻时,设置为小电流模式,否则为非小电流模式。

SW6208 支持照明驱动模式。CCL/WLED 可配置成照明驱动功能或 Lightning 口的 PD 快充输入功能。照明驱动模式通过 LED3/IRQ Pin 设置,对地接 100K 电阻时,设置为照明驱动模式,否则为 Lightning 口的 PD 快充输入模式。

9.5. Type-C 接口

SW6208集成了Type-C接口控制器,不但支持输入输出双向,还支持try.SRC角色。当适配器连接时,芯片自动开机并进行充电;当适配器拔除,自动停止充电。当用电设备接入时,升压模块打开工作,如果用电设备拔除,则自动关闭升压模块。

当用电设备连接,且升压功能开启时,SW6208 将会在 CC 引脚上广播 3A 电流能力。如果 VBUSB/Lightning 接入,也会在 CC 上广播 3A 电流能力。

9.6. PD 快充

SW6208 集成了 PPS/PD3.0/PD2.0 快充协议,支持输入输出双向快充。输出支持三档可配置 FIX PDO 和两档固定的 APDO。其中 5V FIX PDO 可配置为 5V: 3A/2A/2.4A/2.5A; 9V FIX PDO 可配置为 9V: 2A/2.22A/2.33A/2.4A; 12V FIX PDO 可配置为 12V: 1.5A/1.6A/1.67A/1.75A。 PPS0 APDO 为 5.0~5.9V@3A; PPS1 APDO 为 5.0~11V@2A。输入支持 5V/9V/12V 电压。

9.7. QC3.0/QC2.0 快充

SW6208 集成了 QC 快充协议,支持 QC4+/QC4/QC3.0/QC2.0,支持 Class A。QC2.0 支持 5V/9V/12V 输出电压。QC3.0 支持 5V~12V 输出电压,200mV/Step。

QC2.0/QC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入设备	SW6208
------	--------

DP	DM	VOUT	Note
3.3V	3.3V	保持原有电压	不响应
0.6V	0.6V	12V	
3.3V	0.6V	9V	
0.6V	3.3V	连续模式	0.2V/Step
0.6V	GND	5V	AT

9.8. AFC 快充

SW6208 集成了 AFC 快充协议,输出支持 5V/9V/12V。输入支持 5V/9V 电压。

9.9. FCP 快充

SW6208 集成了 FCP 快充协议, 支持 5V/9V/12V 输出电压。输入支持 5V/9V 电压。

9.10. SCP 快充

SW6208 集成了 SCP 快充协议,输出支持 5V@4.5A。输入支持 5.5V/3A。

9.11. PE 快充

SW6208 集成了 PE2.0 及 PE1.1 快充协议, PE2.0 支持 5V~12V 输出电压, 500mV/Step。 PE1.1 支持 5V/7V/9V/12V 输出电压。输入支持 5V/9V 电压。

9.12. SFCP 快充

SW6208 集成了 SFCP 快充协议, 支持 5V/9V/12V 输出电压。

9.13. BC1.2 功能

SW6208 包含了 USB 智能自适应功能模块, 其不仅支持 BC1.2 功能, 以及中国手机充电器标准, 还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.14. Lightning 口解密

SW6208 支持 Lightning 口解密功能,支持内部解密或外部解密模式。当选用内部解密模式时,将 DATA 直接连接 Lightning 口的 DATA Pin 端;当选用外部解密模式时,DATA 直接连接到 VCC,然后使用外部解密芯片对 Lightning 口进行解密。

9.15. 电量计量

SW6208 集成高精度电量计量系统,内置库仑计,可精确获取电池电量。

电量计支持电池容量自学习功能,一次完整的充电过程即可学习当前电池容量。

电池初始容量可通过 LED5/CSET Pin 的对地电阻设置。初始容量 Cset 与电阻 Rcset 的关系为:

其中 Cset 单位为 mAh, Rset 单位为 Ω。

电量计的恒流充电时间参数可通过 KEY/GSET 到 VCC 的上拉电阻设置。

9.16. ADC

SW6208 内部集成了 12 bit ADC,可采集 VOUT 电压/IOUT 电流/电池电压/NTC 电压。具体来说:

ADC 通路	范围	Step
VOUT 电压	0~16.384V	4mV
IOUT 电流	0~9.309A	25/11mA

电池电压	0~4.915V	1.2mV
NTC 电压	0~4.505V	1.1mV
芯片温度	-100~200°C	1/6.82℃

9.17. NTC 功能

SW6208 集成 NTC 功能,可实时监测电池温度,当出现温度异常时,进行保护。NTC Pin 通过放出一定电流到 NTC 电阻,然后采集 NTC 电压来计算当前电池温度。NTC 功能支持 103AT 电阻,在低电阻阻值时,放出 80uA,以保证检测精度;在高电阻阻值时,放出 40uA,以保证检测范围。默认放出 80uA 电流,在 NTC 电压高于 2.712V 时,切换到 40uA;放出 40uA时,在 NTC 电压低于 0.718V 时,切换到 80uA。

使用典型的 103AT 电阻,放电时,保护门限及对应 NTC 参数如下:

门限描述	NTC 温度/℃	NTC 电压/V	NTC 电流/uA
放电 NTC 低温保护	-20	2.711	40
放电 NTC 高温恒温控制	55	0.283	80
放电 NTC 高温保护	60	0.242	80

充电时,保护门限及对应 NTC 参数如下:

门限描述	NTC 温度/℃	NTC 电压/V	NTC 电流/uA
充电 NTC 低温保护	0	2.182	80
充电 NTC JEITA 低温降电流	5	1.764	80
充电 NTCJEITA 低温恢复电流	10	1.437	80
充电 NTC JEITA 高温恢复电压	40	0.466	80
充电 NTC JEITA 高温降电压	45	0.393	80

充电 NTC 高温保护	50	0.333	80
-------------	----	-------	----

在实际的应用中可通过串/并联电阻的方式改变温度范围。如果不需要 NTC 保护功能,将 NTC Pin 接地。

9.18. 数码管显示

SW6208 支持数码管显示。支持普通 188 数码管以及带%及快充指示的快充 188 数码管。普通 188 数码管型号为 YF2252S-5,可自动识别,结构图及内部连接方式为:

普通 188 数码管驱动连接方式如下:

带%及快充指示的快充 188 数码管型号为 KHP302518,通过 LED4/I2C Pin 对地接 100K 电阻设置,结构图及内部连接方式为:

快充 188 数码管驱动连接方式如下:

放电时,数码管常亮显示当前电量;当电量低于 5%时,数码管以 1Hz 闪烁提示电量不足; 在低电状态下,数码管显示 0%闪烁 5 次后系统关机。

充电时,数码管个位闪烁显示当前电量。

异常时,如输出过流、输出短路、输入过压、芯片过温、NTC 保护等,数码管全闪 5 次提示异常后系统关机。

9.19. LED 灯显示

SW6208 支持 LED 灯显示。LED 灯驱动支持 3~5 个灯,可自动识别 LED 灯个数。5 灯状态下其连接方式如下:

5 灯放电状态下 LED 指示表:

Capacity	LED1	LED2	LED3	LED4	LED5
80~100%	On	On	On	On	On
60~80%	On	On	On	On	Off
40~60%	On	On	On	Off	Off
20~40%	On	On	Off	Off	Off
5~20%	On	Off	Off	Off	Off

1~5%	Flicker	Off	Off	Off	Off
0%	Off	Off	Off	Off	Off

5 灯充电状态下 LED 指示表:

Capacity	LED1	LED2	LED3	LED4	LED5
100%	On	On	On	On	On
80~99%	On	On	On	On	Flicker
60~80%	On	On	On	Flicker	Off
40~60%	On	On	Flicker	Off	Off
20~40%	On	Flicker	Off	Off	Off
0~20%	Flicker	Off	Off	Off	Off

4 灯状态下的连接方式:

4 灯放电状态下电池电量指示表:

Capacity	LED1	LED2	LED3	LED4
75~100%	On	On	On	On
50~75%	On	On	On	Off
25~50%	On	On	Off	Off
5~25%	On	Off	Off	Off
1~5%	Flicker	Off	Off	Off
0%	Off	Off	Off	Off

4 灯充电状态下电池电量指示表:

Capacity	LED1	LED2	LED3	LED4
100%	On	On	On	On
75~99%	On	On	On	Flicker
50~75%	On	On	Flicker	Off
25~50%	On	Flicker	Off	Off

0~25%	Flicker	Off	Off	Off

3 灯状态下的连接方式:

3 灯放电状态下的指示表:

Capacity	LED1	LED2	LED3
66~100%	On	On	On
33~66%	On	On	Off
5~33%	On	Off	Off
1~5%	Flicker	Off	Off
0%	Off	Off	Off

3 灯充电状态下的指示表:

Capacity	LED1	LED2	LED3
100%	On	On	On
66~99%	On	On	Flicker
33~66%	On	Flicker	Off
0~33%	Flicker	Off	Off

在低电状态下, LED1 闪烁 5 次后系统关机。

异常时,如输出过流、输出短路、输入过压、芯片过温、NTC 保护等,全部 LED 全闪 5 次提示异常后系统关机。

9.20. 照明驱动

SW6208 内部集成照明 LED 驱动,通过长按按键打开和关闭。照明驱动与 Lightning 口的 CCL 复用,通过 LED3/IRQ Pin 设置。

9.21. 快充指示灯

SW6208 内部集成快充指示灯驱动 FLED/BSET Pin,在快充输入或输出时,FLED/BSET 拉低,打开快充指示灯。

9.22. 按键

SW6208 支持机械按键,内部弱拉高,支持短按、长按及双击。

短按动作时,打开 Type-A1 口以及轻载的 Type-C 输出口对外放电及电量显示。

长按动作时,打开或关闭照明驱动;在小电流模式时,进入或退出小电流模式。

双击动作时,关闭 Type-A1/Type-A2 口及 Type-C 输出口、电量显示;如果有外部电源存在,则只关闭输出口。

9.23. I2C 接口

SW6208 支持 I2C 接口,支持 100K/400K 通信速率。Master 可通过 I2C 接口读取芯片的状态信息。I2C 接口与电量显示模块复用,当设置为 I2C 接口时,将 LED4/I2C 接地。在 I2C 模式下,无线充、小电流及照明驱动模式通过寄存器设置。

读操作:

Slave address: 0x3C Register address: 0xB0

写操作:

Slave address: 0x3C Register address: 0xB0

10. 典型应用电路图

11. 机械尺寸

11.1. 封装图

BOTTOM VIEW

11.2. 封装尺寸

		Dimension in Millimeters	s
Symbol	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	-	0.02	0.05
b	0.15	0.20	0.25
С	0.18	0.20	0.23
D	5.90	6.00	6.10
D2	4.10	4.20	4.30
e		0.40BSC	
Ne		4.40BSC	
Nd		4.40BSC	
Е	5.90	6.00	6.10
E2	4.10	4.20	4.30
L	0.35	0.40	0.45
h	0.30	0.35	0.40

12. 版本历史

- V1.0 初始版本;
- V1.1 修改了部分电气特性参数;
- V1.2 修改了升压模块 NTC 保护的描述;
- V1.3 修改公司 Logo;
- V1.4 修改 PD PDO 等参数;
- V1.5 更换文档模板;

免责声明

珠海智融科技股份有限公司(以下简称"智融科技")可能随时对所提供的产品、服务及本文件作出修改或更新,且不另行通知。客户应在下订单前获取最新的相关信息,并确认这些信息是否完整且是最新的。

本文件所含信息仅为您提供便利,智融科技不对这些信息作任何明示或暗示、书面或口头、 法定或其他形式的声明或保证,包括不但限于产品的用途、特性、使用情况、适销性等方面。 智融科技对这些信息及不合理使用这些信息而引起的后果不承担任何责任。

智融科技对应用帮助或客户产品设计不承担任何义务。客户应对其使用智融科技的产品和应用自行负责。客户应提供充分的设计与操作安全验证,且保证在将智融产品集成到任何应用程序中时不会侵犯第三方知识产权,如发生侵权行为智融科技对此概不承担任何责任。

在转售智融科技产品时,如果对该产品参数及其陈述相比存在差异或虚假成分,则会自动丧失智融科技相关产品的所有明示或暗示授权,且对此不正当的、欺诈性商业行为,智融科技保留采取一切合法方式维权。智融科技对任何此类虚假陈述均不承担任何责任或义务。

本文件仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制,否则智融科技有权追究其法律责任。智融科技对此类篡改过的文件不承担任何责任或义务。复制如涉及第三方的信息应当服从额外的限制条件。