A Study of Fo Modification for X-Vector Based Speech Pseudonymization Across Gender

Pierre Champion ¹ De

Denis Jouvet 1

Anthony Larcher²

¹Université de Lorraine, CNRS, Inria, LORIA, Nancy, France.

²Le Mans Université, LIUM, France

Speech anonymization

Suppress identifiable personal information contained within speech signals.

Use cases:

- Hide speaker identity before sending signals to centralized servers.
- Keep the spoken content intelligible to share speech data for improved training.

Anonymization technique

The speaker identity (x-vector) and linguistic content (FO and Phonetic features) from an input utterance are first extracted. Then, in the baseline, the x-vector is replaced by a pseudospeaker x-vector, and FO is unchanged. We added an FO modification consistent with the chosen pseudo-speaker x-vector.

Figure 1. The speaker anonymization pipeline. We added module D.

Fo modification

Used Linear transformation:

$$\hat{x}_t = \mu_y + \frac{\sigma_y}{\sigma_x} (x_t - \mu_x)$$

 x_t = F0 of the source speaker

 μ_x and σ_x : statistics source speaker

 μ_y and σ_y : statistics selected pseudo-speaker.

Experiment and evaluation

Results compared to the VoicePrivacy baseline system on LibriSpeech test-clean.

Privacy and Utility metrics:

- 1. Equal Error Rate (EER_%), measures the speaker's concealing capability through speaker verification. (verify whether an input speech corresponds to the claimed identity, score to maximize).
- 2. Word Error Rate (WER_%), measures speech intelligibility through speech recognition. (translate an input speech sequence into text, score to minimize).

Metrics	Without anonymization	(baseline) VoicePrivacy	(proposed) VoicePrivacy + F0
Utility (WER _%)	4.1	6.7	6.7
Male Privacy (EER%)	1.0	36.7	48.7
Female Privacy (EER%)	7.1	32.1	43.4

Table 1. Scores obtained with the VoicePrivacy evaluation system.

Multiple pseudo-speaker selections were studied. Table 1 shows the best results obtained by selecting a pseudo-speaker from the *opposite* gender. The utility score stays as low as the baseline, while privacy enhanced.

Conclusion

State-of-the-art speaker verification performance decreases when input speech signals are anonymized. Modifying both the pseudo-speaker and the log FO with a linear transformation yields better privacy protection without a utility penalty.

References

[1] Tomashenko, Srivastava, Wang, Vincent, Nautsch, Yamagishi, Evans, Patino, Bonastre, and Noé. Introducing the VoicePrivacy Initiative. *Proc. Interspeech*, 2020.