- 1	N	0	11	n	^	•
			ш		•	_

Enrolment No:

UPES Class Test 1

Programme Name: B.Tech
Course Name: Discrete Mathematical Structure

Semester: III
Time: 40 Min.

Course Code : CSEG2006 Max. Marks: Nos. of page(s) : 1 Batch: 23 &24

Instructions: Do all questions.

S. No.		Marks	CO
Q 1	(a) Consider the following relation on {1,2,3,4,5,6}		
	$R = \{(i, j): i - j = 2\}$		
	Is 'R' transitive? Is 'R' reflexive? Is 'R' symmetric?		
	(b) Let R be the binary relation defined as		
	$R = \{(a, b) \in R^2 : (a - b) \le 3\}$		
	Determine whether R is reflexive, symmetric, antisymmetric, and transitive.		
Q 2	Show that $[(p \lor q) \land \sim (\sim p \land (\sim q \lor \sim r))] \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$ is tautology by using laws of logic.		
Q 3	Which elements of the poset ({2,4,5,10,12,20,25},) are maximal and which are minimal.		
Q 4	If s is a valid conclusion from the premises $p \to q, p \to r, \sim (q \land r)$ and $s \lor p$. If yes or no, justify		
Q 5	Let f and g be functions from the positive integers to the positive integers defined by $f(n) = n^2$, $g(n) = 2^n$.		
	Find (i) fof, (ii) gog, (iii) fog, (iv) gof		