Problem Statement and Data Description

Why are our best and most experienced employees leaving prematurely?

Have fun with this database and try to predict which valuable employees will leave next.

Fields in the dataset include:

- 1) Satisfaction Level
- 2) Last evaluation
- 3) Number of projects
- 4) Average monthly hours
- 5) Time spent at the company
- 6) Whether they have had a work accident
- 7) Whether they have had a promotion in the last 5 years
- 8) Departments (column sales)
- 9) Salary
- 10) Whether the employee has left

Data set information

RangeIndex: 14999 entries, 0 to 14998

Data columns (total 10 columns):

- satisfaction level 14999 non-null float64
- last_evaluation 14999 non-null float64
- number_project 14999 non-null int64
- average_montly_hours 14999 non-null int64
- time_spend_company 14999 non-null int64
- · Work accident 14999 non-null int64
- left 14999 non-null int64
- promotion_last_5years 14999 non-null int64
- sales 14999 non-null object
- salary 14999 non-null object

dtypes: float64(2), int64(6), object(2)

Human Resource Analytics

Table

	satisfaction_	last_	number_	average_	time_	Work_	left	promotion_	sales	salary
	level	evaluatio	project	montly_	spend_	accident		last_		
		n		hours	company			5years		
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.80	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

sales and salary are categorical and let's see if "Work_accident" and "promotion_last_5years" are categorical or not

- Work accident [0 1]
- left [1 0]
- promotion_last_5years [0 1]
- sales ['sales' 'accounting' 'hr' 'technical' 'support' 'management' 'IT'
- 'product_mng' 'marketing' 'RandD']
- salary ['low' 'medium' 'high']

Clearly Work_accident and promotion_last_5years are categorical variables.

• Sales: contains 10 unique features

• Salary: contains 3 unique features

Let's see if there is any null value in the dataset

satisfaction level 0 last evaluation 0 number project 0 average montly hours 0 time spend company 0 Work accident 0 left 0 promotion last 5years 0 sales 0 salary 0 dtype: int64

There are no null values in dataset. In this dataset we don't need to impute any null values.

Exploratory Data Analysis : Categorical Variables

• Sales:

	left	not_left	Rate	total
sales				
hr	215	524	0.290934	739
accounting	204	563	0.265971	767
technical	697	2023	0.256250	2720
support	555	1674	0.248991	2229
sales	1014	3126	0.244928	4140
marketing	203	655	0.236597	858
IT	273	954	0.222494	1227
product_mng	198	704	0.219512	902
RandD	121	666	0.153748	787
management	91	539	0.144444	630

- People who are in HR and accounting departments are more likely to leave the company
- People in RandD and management department are less likely to leave

Salary

|--|

Salary

low	2172	5144	0.296884	7316
medium	1317	5129	0.204313	6446
medium	1317	3129	0.204313	0440
high	82	1155	0.066289	1237

- People who have low salary are more likely to leave than medium and high salary.
- As obvious people with higher salary are very less likely to leave the company

Work_accident

		eft	not_left	ra	ate	total
Work_accident						
	0	3402		9428	0.265160	12830
	1	169		2000	0.077916	2169

 In this case people who didn't had any accidents are more likely to leave.

promotion_last_5years

	left	not_left	rate	total
promotion_last_5years				
0	3552	11128	0.241962	14680
1	19	300	0.059561	319

• As obvious People who didn't had promotion in last 5 years are very much likely to leave.

Exploratory Data Analysis -- Numerical variable

• satisfaction_level

		satisfaction_level_x	satisfaction_level_y
•	count	3571.000000	11428.000000
•	mean	0.440098	0.666810
•	std	0.263933	0.217104
•	min	0.090000	0.120000
•	25%	0.130000	0.540000
•	50%	0.410000	0.690000
•	75%	0.730000	0.840000
•	max	0.920000	1.000000

As per above table and violin distribution graph we can see a obvious thing as people who left were not much satisfied. Most of the people who stay (75%) had satisfaction level more than 0.5. Whereas people who left are categorized into three groups. First who had very less satisfaction level. Second group had satisfaction level around 0.4 and last group had around 0.9

last_evaluation

		last_evaluation_x	last_evaluation_y
•	count	3571.000000	11428.000000
•	mean	0.718113	0.715473
•	std	0.197673	0.162005
•	min	0.450000	0.360000
•	25%	0.520000	0.580000
•	50%	0.790000	0.710000
•	75%	0.90000	0.850000
•	max	1.00000	1.000000

Distribution for people who left shows bi-modal graph. Here some people had very low evaluation, so of course they left. Few people had higher evaluation but still left.

number_project

number	project	X	number	project	У
--------	---------	---	--------	---------	---

•	count	3571.000000	11428.000000
•	mean	3.855503	3.786664
•	std	1.818165	0.979884
•	min	2.000000	2.000000
•	25%	2.000000	3.000000
•	50%	4.000000	4.000000
•	75%	6.000000	4.000000
•	max	7.000000	6.000000

People who had very less projects left and even people who had many projects left due to over pressure.

average_montly_hours

average_montly_hours_x average_montly_hours_y

•	count	3571.000000	11428.000000
•	mean	207.419210	199.060203
•	std	61.202825	45.682731
•	min	126.000000	96.000000
•	25%	146.00000	162.000000
•	50%	224.000000	198.000000
•	75%	262.000000	238.000000
•	max	310.000000	287.000000

Some people were working very hard and spending extra monthly hours left due to work pressure.

• time_spend_company

	time_spend_company_x	time_spend_company_y
• count	3571.000000	11428.000000
• mean	3.876505	3.380032
• std	0.977698	1.562348
• min	2.00000	2.000000
• 25%	3.00000	2.000000
• 50%	4.00000	3.000000
• 75%	5.00000	4.000000
• max	6.000000	10.000000

Clearly who worked less than 4 years were more likely to leave

Building a Model

- We have **Sale** and **Salary** columns that contain textual categorical variable.
- So we use **LabelEncoder** and **OneHotEncoder** from **preprocessing** module of **sklearn** library.
- Remember to avoid dummy variable trap by removing one column.
- Hence we now have 18 columns in comparison to 10 columns that we had in our dataset earlier.
- Now we split data our data into x_train,x_test,y_train, y_test using train_test_split from sklearn.model_selection.
- As our main goal is to predict that who will leave the company and who will not ,so for that we need an appropriate classifier and hence we use **RandomForestClassifier** for this.
- Now to tune our hyper parameter we use GridSearchCV from sklearn.model_selection.
- Then we use best parameter given by **GridSeachCV** to train our model via **RandomForestClassifier**.
- And once trained then we use it to predict value for x_test
- Now we check how well our model performed by looking at accuracy score, confusion matrix and f1 score.

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=1 0, criterion='gini', max_depth=None, min_samples_split=2, min_samples_le af=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes =None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=T rue, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_s tart=False, class_weight=None)

```
n_estimators=[10,100,500]

max_depth=[None,6,8]

max_features=[2,5,12,18]

min_samples_leaf=[1,3,5]

rfc_param={'criterion':['gini','entropy'],'n_estimators':n_estimators,'max_depth':max_depth
,'max_features':max_features,'min_samples_leaf':min_samples_leaf}
```

Now best score and best parameters returned by Grid Search are:

```
rfc_best_score 0.989582465205
rfc_best_param {'min_samples_leaf': 1,
'max_depth': None, 'n_estimators': 500,
'max_features': 12, 'criterion': 'entropy'}
```

Model evaluation

Random Forest Classifier Confusion Matrix:

	Left	Stayed
Left	2294	5
Stayed	17	684

Accuracy Score:

0.992666666667

F1_Score:

0.984172661871

Created by:

Anubhav Shukla

http://www.github.com/anushuk