A Book of Abstract Algebra | (2nd Edition)

Chapter 16, Problem 3EI	Bookmark	Show all steps: o	
	Problem		
Let H and K be normal subgroups of a group G , with $H \subseteq k$ Define ϕ : $G/H \to G/K$ by $\phi(Ha) = Ka$. Prove part: ϕ is surjective.			
Step-k	y-step solution		
•	by-step solution tep 1 of 3		
•	tep 1 of 3	vith $H \subseteq K$.	
S	tep 1 of 3 re normal subgroups of Gv	with $H\subseteq K$.	
Suppose that <i>G</i> is any group and let <i>H</i> , <i>K</i> a	tep 1 of 3 re normal subgroups of Gv	with $H\subseteq K$.	
Suppose that G is any group and let H , K a Consider a mapping $\phi:G/H\to G/K$ de	tep 1 of 3 re normal subgroups of G v	vith $H \subseteq K$.	

Step 2 of 3

Comment

	Assume that $Kx \in G/K$, for some $x \in G$. An element x is the member of G because of the coset of G/K . So from there it implies that
	$Hx \in G/H$
s	uch that
	$\phi(Hx) = Kx$
Т	his satisfies the definition of surjective map.
C	Comment
	Step 3 of 3
F	Hence, function ϕ is surjective.
C	Comment