

Active learning for large-scale classification of poplar plantations with Sentinels time series DYNAFOR Conseil National Active learning for large-scale classification of

Yousra Hamrouni^{1,2}, David Sheeren¹, Éric Paillassa³, Véronique Chéret¹, Claude Monteil¹

1. Dynafor, University of Toulouse, INRA, INPT, INPT-El PURPAN, 2. Conseil National du Peuplier, 3. Centre National de la propriété Forestière

INTRODUCTION

Poplar is one of the fast-growing and wood producing trees which are increasingly considered as an important resource. In France, accurate and regularly up-to-date maps of poplar plantations are not yet available at the national scale. The update rate of National Forest Maps is unsuitable for this species because of its short rotation cycle (from 15 to 20 years).

Since the availability of high spatial and temporal resolution Sentinel time series, new opportunities for monitoring poplar plantations over large areas have come up.

Poplar large scale mapping from Sentinel-2 time series :

- > With all available reference data: 2 sampling approaches are compared
- > With limited number of samples : use of Active Learning

MATERIALS

Study area

The study is focused on three different sites in France with the most contrasting poplar conditions variability, climatic and management practices.

They are represented by five Sentinel-2 tiles in the following figure. Only highlighted tiles will be presented in this work.

Data

Optical images

All available Sentinel-2A and Sentinel-2B images over 2017:

T31TCJ: 39 images (10 spectral bands) T31UEQ: 35 images (10 spectral bands)

• Reference data

1st approach:

> All deciduous species (including poplar): sampling from the national forest database BD Forêt® (ground reality between 2004 and 2015 depending on departments)

2nd approach:

- > Poplar class : visual interpretation from Orthophotos + validation with Sentinel-2 images
- > Others deciduous classes: sampling from the national forest database BD Forêt®

METHOD 1: site by site classification

Context 1 : all possible samples are used

The following flowchart illustrates the classification process applied to each department in each tile.

METHOD 2: site to site classification

Context 2: the fewest and most informative samples are used with Active learning

Active learning (AL) is based on the hypothesis that a machine learning algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the data from which it learns (Settles, 2010).

Its use is well-motivated since collecting appropriate training samples is an expensive and difficult task especially for large scale.

Starting from a well trained model in a **first** study site, new samples are queried with AL from a **second** site and iteratively added to the model in order to adapt it to both sites.

RESULTS

Site by site classification

1^{st} approach : BD Forêt®							
Tile	Department	Nb classes	Training samples per class	Mean OA _(*30)	Mean Poplar F-score _(*30)		
T31TCJ (S.W)	82 32 31	6 4 4	$1000 \\ 1000 \\ 250$	71.3 79.6 80.9	76.6 ± 3.7 88.6 ± 2.2 84.7 ± 8.3		
T31UEQ (N.E)	51 02	4 6	1000 1000	59.9 71.3	68.7 ± 7.8 76.6 ± 3.6		

> Better poplar identification with the 2nd approach (visual validation of training samples)

2 nd approach : BD Forêt®+ Visual interpretation								
Tile	Department	Nb classes	Training samples	Mean $OA_{(*30)}$	Mean Poplar			
			per class	, ,	F -score $_{(*30)}$			
T31TCJ (S.W)	82	6	1000	79.1	98.9 ± 0.6			
	32	4	1000	82.5	96.0 ± 0.2			
	31	4	250	86.4	99.6 ± 0.4			
T31UEQ	51	4	1000	69.2	90.9 ± 2.4			
(N.E)	02	6	1000	79.1	89.9 ± 3.9			

> 10 to 20 % improvement of **Poplar F-Score**

Site to site classification with Active learning

> Department 51 (T31UEQ) to Department 82 (T31TCJ): 4 classes → 6 classes

Average Poplar F-score (*30): Active learning model vs Random model Mean Random Model > Full model₍₅₁₎: • F-score_{poplar}: 90.9 % Nb samples: 4000 Poplar 22.0 t F-score = 0.76 \rightarrow AL model₍₈₂₎:

Added samples

CONCLUSIONS

- Better classification results are obtained with well-created poplar samples \rightarrow The national forest data base is not updated regularly enough to guarantee high accuracies.
- In the first case, the active learning model achieved high Poplar F-score with the first added samples (+20 % with 100 samples) and reached a plateau faster than a randomly trained model → Active learning technique is a suitable option where reliable and appropriate training samples are limited, time-consuming or expensive to collect.

• F-score poplar: 85 %

Nb samples : 200

900

100