Integrirani pogonski sistemi

Modeliranje električnih pogonov

as. dr. Klemen Drobnič klemen.drobnic@fe.uni-lj.si 15. november 2016

Preizkus modela AS

Zagon v različnih koordinatnih sistemih

V model vstavite Scope ter mu definirajte 8 osi ter pripeljite naslednje signale: $u_{qs}, u_{ds}, i_{qs}, i_{ds}, i_{qr}, i_{dr}, \omega_r, M_e$.

Preizkusite delovanje motorja (zagon in stacionarno obratovanje) v različnih koordinatnih sistemih:

- statorski KS ($\omega = 0$),
- rotorski KS rotorska električna vrtilna hitrost ($\omega = \omega_r$),
- ullet sinhronski KS vrtilna hitrost statorske napetosti ($\omega=\omega_e$),
- KS rotorskega polja ($\omega=\omega_{m{\psi}_r}$) (indirektna orientacija),
- ullet KS rotorskega polja vrtilna hitrost ($\omega=\omega_{oldsymbol{\psi}_r}$),
- KS statorskega polja vrtilna hitrost ($\omega=\omega_{\psi_s}$).

Nastavitev izbirnika različnih KS

KS rotorskega polja (indirektna orientacija)

Trenutno lego rotorskega magnetnega sklepa izračunamo s pomočjo indirektne orientacije polja

$$\omega_{mr} = \omega_r + \omega_{sl} = \omega_r + \frac{R_r}{L_r} \frac{i_{qs}}{i_{ds}}$$

Izvedba - KS rotorskega (statorskega) magnetnega sklepa

Motorsko spremenljivko lahko uporabimo tudi za definiranje lastnega KS, v katerem nato opazujemo druge veličine. Zanima nas ψ_r in ψ_s .

Celoten model

