Factor Theorem

Factor Theorem: If P(x) is a polynomial and P(c) = 0, then x - c is a factor of P(x). Conversely, if x - c is a factor of P(x), then P(c) = 0.

Practice Exercises

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(a-1)$$
; $P(x) = a^3 - 2a^2 + a - 2$

2.
$$(x-4)$$
; $P(x) = 2x^3 - 9x^2 + 9x - 20$

3.
$$(2x-1)$$
; $P(x) = 2x^3 - 7x^2 + x + 1$

4.
$$(y+3)$$
; $P(x) = 2y^3 + y^2 - 13y + 6$

5.
$$(b-2)$$
; $P(x) = 4b^3 - 3b^2 - 8b + 4$

Problem Set

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(x-2)$$
; $P(x) = x^{20} - 4x^{18} + 3x - 6$

2.
$$(x-4)$$
; $P(x) = 3x^3 - 15x^2 + 10x + 8$

3.
$$(x+2)$$
; $P(x) = x^4 - 3x^3 + 5x - 2$

4.
$$(x-2)$$
; $P(x) = 3x^4 - 6x^3 + 5x + 10$

5. (x+5); $P(x) = x^3 + x^2 - 25x + 25$

Factor Theorem

Factor Theorem: If P(x) is a polynomial and P(c) = 0, then x - c is a factor of P(x). Conversely, if x - c is a factor of P(x), then P(c) = 0.

Practice Exercises

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(a-1)$$
; $P(x) = a^3 - 2a^2 + a - 2$

2.
$$(x-4)$$
; $P(x) = 2x^3 - 9x^2 + 9x - 20$

3.
$$(2x-1)$$
; $P(x) = 2x^3 - 7x^2 + x + 1$

4.
$$(y+3)$$
; $P(x) = 2y^3 + y^2 - 13y + 6$

5.
$$(b-2)$$
; $P(x) = 4b^3 - 3b^2 - 8b + 4$

Problem Set

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(x-2)$$
; $P(x) = x^{20} - 4x^{18} + 3x - 6$

2.
$$(x-4)$$
; $P(x) = 3x^3 - 15x^2 + 10x + 8$

3.
$$(x+2)$$
; $P(x) = x^4 - 3x^3 + 5x - 2$

4.
$$(x-2)$$
; $P(x) = 3x^4 - 6x^3 + 5x + 10$

5.
$$(x+5)$$
; $P(x) = x^3 + x^2 - 25x + 25$

Factor Theorem

Factor Theorem: If P(x) is a polynomial and P(c) = 0, then x - c is a factor of P(x). Conversely, if x - c is a factor of P(x), then P(c) = 0.

Practice Exercises

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(a-1)$$
; $P(x) = a^3 - 2a^2 + a - 2$

2.
$$(x-4)$$
; $P(x) = 2x^3 - 9x^2 + 9x - 20$

3.
$$(2x-1)$$
; $P(x) = 2x^3 - 7x^2 + x + 1$

4.
$$(y+3)$$
; $P(x) = 2y^3 + y^2 - 13y + 6$

5.
$$(b-2)$$
; $P(x) = 4b^3 - 3b^2 - 8b + 4$

Problem Set

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(x-2)$$
; $P(x) = x^{20} - 4x^{18} + 3x - 6$

2.
$$(x-4)$$
; $P(x) = 3x^3 - 15x^2 + 10x + 8$

3.
$$(x+2)$$
; $P(x) = x^4 - 3x^3 + 5x - 2$

4.
$$(x-2)$$
; $P(x) = 3x^4 - 6x^3 + 5x + 10$

5.
$$(x+5)$$
; $P(x) = x^3 + x^2 - 25x + 25$

Factor Theorem

Factor Theorem: If P(x) is a polynomial and P(c) = 0, then x - c is a factor of P(x). Conversely, if x - c is a factor of P(x), then P(c) = 0.

Practice Exercises

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(a-1)$$
; $P(x) = a^3 - 2a^2 + a - 2$

2.
$$(x-4)$$
; $P(x) = 2x^3 - 9x^2 + 9x - 20$

3.
$$(2x-1)$$
; $P(x) = 2x^3 - 7x^2 + x + 1$

4.
$$(y+3)$$
; $P(x) = 2y^3 + y^2 - 13y + 6$

5.
$$(b-2)$$
; $P(x) = 4b^3 - 3b^2 - 8b + 4$

Problem Set

Use the factor theorem to determine whether the binomial is a factor of the given polynomial.

1.
$$(x-2)$$
; $P(x) = x^{20} - 4x^{18} + 3x - 6$

2.
$$(x-4)$$
; $P(x) = 3x^3 - 15x^2 + 10x + 8$

3.
$$(x+2)$$
; $P(x) = x^4 - 3x^3 + 5x - 2$

4.
$$(x-2)$$
; $P(x) = 3x^4 - 6x^3 + 5x + 10$

5.
$$(x+5)$$
; $P(x) = x^3 + x^2 - 25x + 25$