02610 Optimization and Data Fitting

Week 1: Fundamentals of Unconstrained Optimization

Yiqiu Dong

DTU Compute Technical University of Denmark

What is a solution?

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})$$

- $\mathbf{x} \in \mathbb{R}^n$ is a real vector with $n \ge 1$ components.
- $f: \mathbb{R}^n \to \mathbb{R}$ is a smooth function.

We would most like to have a global minimizer, i.e.,

A points \mathbf{x}^* is a global minimizer if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.

But the global minimizer can be difficult to find due to limited knowledge of f, most algorithms are able to find only a local minimizer, i.e.,

A points \mathbf{x}^* is a local minimizer if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$.

What is a solution?

A point x^* is a

- global minimizer, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.
- local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$.
 - ▶ **strict** local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$ and $\mathbf{x} \neq \mathbf{x}^*$.
 - ▶ isolated local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that \mathbf{x}^* is the only local minimizer in \mathcal{N} .
 - Some strict local minimizers are not isolated. For example

$$f(x) = x^4 \cos(1/x) + 2x^4, \qquad f(0) = 0$$

What is a solution?

A point x^* is a

- global minimizer, if $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.
- local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$.
 - ▶ **strict** local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that $f(\mathbf{x}^*) < f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}$ and $\mathbf{x} \neq \mathbf{x}^*$.
 - ▶ isolated local minimizer, if there is a neighborhood \mathcal{N} of \mathbf{x}^* such that \mathbf{x}^* is the only local minimizer in \mathcal{N} .
 - Some strict local minimizers are not isolated. For example:

$$f(x) = x^4 \cos(1/x) + 2x^4, \qquad f(0) = 0.$$

$$\min_{x \in \mathbb{R}} f(x) = 5x^2 + 3x - 2$$

Optimality conditions:

$$\frac{df}{dx}(x^*) = 10x^* + 3 = 0$$
$$\frac{d^2f}{dx^2}(x^*) = 10 > 0$$

Solution:

Minimizer: $x^* = -0.3$

Minimum value: $f(x^*) = -2.45$

$$\min_{x \in \mathbb{R}} f(x) = -5x^2 + 3x - 2$$

Optimality conditions:

$$\frac{df}{dx}(x^*) = -10x^* + 3 = 0$$

$$\frac{d^2f}{dx^2}(x^*) = -10 < 0$$

Solution:

Minimizer: no

Minimum value: no

Note that there is a maximizer.

$$\min_{x \in \mathbb{R}} f(x) = x^3$$

Optimality conditions:

$$\frac{df}{dx}(x^*) = 3x^{*2} = 0$$
$$\frac{d^2f}{dx^2}(x^*) = 6x^*$$

Solution:

Minimizer: *no*Minimum value: *no*

Note that there is a *stationary point*, i.e., the point satisfying $\frac{df}{dx}(x^*) = 0$.

$$\min_{x\in\mathbb{R}}f(x)=e^{-x}$$

Optimality conditions:

$$\frac{df}{dx}(x^*) = -e^{-x}$$

$$\frac{d^2f}{dx^2}(x^*) = e^{-x} > 0$$

Solution:

Minimizer: no

Minimum value: no

Note that the infimum is 0.

$$\min_{x \in \mathbb{R}} f(x) = x^4 + x^3 - 10x^2 - x + 1$$

Optimality conditions:

$$\frac{df}{dx}(x^*) = 4x^{*3} + 3x^{*2} - 20x^* - 1$$
$$\frac{d^2f}{dx^2}(x^*) = 12x^{*2} + 6x^* - 20$$

Solution:

Minimizer: 2 local

Minimum value: 2 local

3 2 -1 0 1 2

3 20 -1 0 1 2

3 20 -1 0 1 2

3 2 -1 0 1 2

X 1 0 1 2

Note that there is also a maximizer.

Optimality condition with univariate problems

$$\min_{\mathbf{x} \in \mathbb{R}} f(\mathbf{x}) \qquad f : \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^2(\mathbb{R}) \tag{1}$$

Theorem (Necessary Optimality Conditions)

Let $x^* \in \mathbb{R}$ be a local minimizer of (1). Then

- $\frac{d^2f}{dx^2}(x^*) \ge 0$

Theorem (Sufficient Optimality Conditions)

Let $x^* \in \mathbb{R}$ satisfy

- $\frac{d^2f}{dx^2}(x^*) > 0$

Then, x^* is a local minimizer of (1).

Non-smooth function

$$\min_{x\in\mathbb{R}}f(x)=|x|$$

Optimality conditions:

$$\frac{df}{dx}(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$
$$\frac{d^2f}{dx^2}(x) = 0$$

Solution:

Minimizer: $x^* = 0$

Minimum value: $f(x^*) = 0$

It is impossible in general to identify a minimizer of a general non-smooth function. But in some special cases, we can. \rightarrow 02611 "Optimization for Data

Multivariate problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \qquad f : \mathbb{R}^n \to \mathbb{R}, \, f \in \mathcal{C}^2(\mathbb{R}^n)$$

• Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^n$$

• Hessian:

$$\nabla^{2} f(\mathbf{x}) = \begin{bmatrix} \nabla \frac{\partial f}{\partial x_{1}}(\mathbf{x}) & \nabla \frac{\partial f}{\partial x_{2}}(\mathbf{x}) & \cdots & \nabla \frac{\partial f}{\partial x_{n}}(\mathbf{x}) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{x}) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\mathbf{x}) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{x}) & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\mathbf{x}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\mathbf{x}) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Necessary optimality conditions with multivariate problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \qquad f : \mathbb{R}^n \to \mathbb{R}, \ f \in \mathcal{C}^2(\mathbb{R}^n)$$
 (2)

Theorem (Necessary Optimality Conditions)

Let $\mathbf{x}^* \in \mathbb{R}^n$ be a local minimizer of (2). Then

- ② $\nabla^2 f(\mathbf{x}^*) \succeq 0$ (positive semi-definite)
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive semi-definite*, if it satisfies $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $\mathbf{x} \neq 0$.
- A is positive semi-definite if and only if all its eigenvalues are non-negative.

Sufficient optimality conditions with multivariate problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \qquad f : \mathbb{R}^n \to \mathbb{R}, \ f \in \mathcal{C}^2(\mathbb{R}^n)$$
 (2)

Theorem (Sufficient Optimality Conditions)

Let $\mathbf{x}^* \in \mathbb{R}^n$ satisfy

- ② $\nabla^2 f(\mathbf{x}^*) \succ 0$ (positive definite)

Then, x^* is a local minimizer of (2).

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite, if it satisfies $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.
- A is positive definite if and only if all its eigenvalues are positive.

Convexity

• Convex set: A set $S \in \mathbb{R}^n$ is a *convex set*, if

$$\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$$

for any two points $x_1, x_2 \in S$ and all $\alpha \in [0, 1]$.

Non-convex

• **Convex functions:** A function *f* is a *convex function*, if its domain *S* is a convex set and it satisfies

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

for any two points $x_1, x_2 \in S$ and all $\lambda \in [0,1]$.

Convexity

• Convex set: A set $S \in \mathbb{R}^n$ is a *convex set*, if

$$\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2 \in S$$

for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ and all $\alpha \in [0, 1]$.

• Convex functions: A function f is a convex function, if its domain S is a convex set and it satisfies

$$f(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1-\lambda)f(\mathbf{x}_2)$$

for any two points $\mathbf{x}_1, \mathbf{x}_2 \in S$ and all $\lambda \in [0, 1]$.

Convex functions

• **Definition 1:** A function *f* is a *convex function*, if its domain *S* is a convex set and it satisfies

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

for any two points $x_1, x_2 \in S$ and all $\alpha \in [0, 1]$.

• **Definition 2:** Let f be twice differentiable. Then f is a *convex function* if and only if its domain S is a convex set and its Hessian is positive semidefinite, i.e. for all $x \in S$

$$\nabla^2 f(\mathbf{x}) \succeq 0.$$

- f is strict convex, if $f(\alpha x_1 + (1 \alpha)x_2) < \alpha f(x_1) + (1 \alpha)f(x_2)$ whenever $x_1 \neq x_2$.
- f is concave, if -f is convex.

Examples of univariate convex functions

- Affine: f(x) = ax + b with $x \in \mathbb{R}$ for all $a, b \in \mathbb{R}$
- Exponential: $f(x) = e^{ax}$ with $x \in \mathbb{R}$ for all $a \in \mathbb{R}$
- Powers: $f(x) = x^a$ with $x \in \mathbb{R}_{++}$ when $a \ge 1$ or $a \le 0$
- Negative roots: $f(x) = -x^a$ for $x \in \mathbb{R}_{++}$ when $0 \le a \le 1$
- Powers of absolute value: $f(x) = |x|^p$ with $x \in \mathbb{R}$ for $p \ge 1$
- Negative logarithm: $f(x) = -\log(x)$ for $x \in \mathbb{R}_{++}$
- Negative entropy: $f(x) = x \log(x)$ for $x \in \mathbb{R}_{++}$

Examples of multivariate convex functions

• Norms: Every norm on \mathbb{R}^n is convex. For example,

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$
$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$
$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$$

- Max function: $f(\mathbf{x}) = \max\{x_1, \dots, x_n\}$
- Log-sum-exp: $f(\mathbf{x}) = \log(e^{x_1} + \cdots + e^{x_n})$
- Negative geometric mean: $f(x) = -(\prod_{i=1}^n x_i)^{1/n}$ with $x \in \mathbb{R}_{++}^n$

Operations that preserve convexity

- Non-negative weighted sums: If f_i with $i=1,\ldots,m$ are convex and $w_i \geq 0$ for all $i=1,\ldots,m$, then $f(\mathbf{x})=w_1f_1(\mathbf{x})+\cdots+w_mf_m(\mathbf{x})$ is convex.
- Non-negative weighted integrals: If f(x, y) is convex in x for each $y \in S$ and $w(y) \ge 0$ for each $y \in S$, then $g(x) = \int_S w(y) f(x, y) dy$ is convex in x.
- Composition with an affine mapping: Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $\mathbf{b} \in \mathbb{R}^n$. If f is convex, then $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$ is convex.
- Pointwise maximum: If f_i with i = 1, ..., m are convex, then $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), ..., f_m(\mathbf{x})\}$ is convex.

Convex optimization problems

$$egin{array}{ll} \min_{m{x} \in \mathbb{R}^n} & f(m{x}) \ & ext{subject to} & c_i(m{x}) = 0 ext{ for } i \in \mathcal{E} \ & c_i(m{x}) \geq 0 ext{ for } i \in \mathcal{I} \end{array}$$

- The objective function *f* must be convex
- ullet The equality constraint functions c_i with $i\in\mathcal{E}$ must be linear
- ullet The inequality constraint functions c_i with $i\in\mathcal{I}$ must be concave

Convex optimization problems

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x})$$

- The objective function f must be convex
- The equality constraint functions c_i with $i \in \mathcal{E}$ must be linear
- The inequality constraint functions c_i with $i \in \mathcal{I}$ must be concave

Optimality conditions with convex problems

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \qquad f : \mathbb{R}^n \to \mathbb{R}, \ f \in \mathcal{C}(\mathbb{R}^n) \text{ and } f \text{ is convex}$$
 (3)

Theorem

- Any local minimizer $\mathbf{x}^* \in \mathbb{R}^n$ of (3) is a global minimizer.
- If in addition f is differentiable, x^* is a global minimizer of (3) if and only if

$$\nabla f(\mathbf{x}^*) = 0.$$

Role of optimality conditions

- Recognize the solution. Given a candidate solution, check optimality conditions to verify it is a solution.
- Measure the quality of an approximate solution: Measure how "close" a point is to being a solution.
- **Develop algorithms.** Reduce an optimization problem to solving a system of (nonlinear) equations (finding a root of the gradient).

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = 3x_1^2 + 2x_2^2 + x_1x_2 + 3x_1 + 2x_2 + 4$$

Contour plots using Python

```
x1 = numpy.arange(-5, 5, 0.005)
x2 = x1
X, Y = np.meshgrid(x1, x2)
F = 3*X**2+2*Y**2+X*Y+3*X+2*Y+4
fig, ax=matplotlib.pyplot.subplots(subplot_kw={"projection": "3d"})
surf = ax.plot_surface(X, Y, F, cmap=matplotlib.cm.coolwarm,
                       linewidth=0, antialiased=False)
plt.show()
fig, ax = plt.subplots()
v = np.concatenate((np.arange(0, 10, 2), np.arange(10, 100, 5),
                        np.arange(100, 200, 20)), axis=None)
c = ax.contour(X, Y, F, v, linewidths=2)
norm = matplotlib.colors.Normalize(vmin=c.cvalues.min(),
                     vmax=c.cvalues.max())
sm = matplotlib.cm.ScalarMappable(norm=norm, cmap=c.cmap)
fig.colorbar(sm, ax=ax)
plt.show()
```

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = 3x_1^2 + 2x_2^2 + x_1x_2 + 3x_1 + 2x_2 + 4$$

• Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \end{bmatrix} = \begin{bmatrix} 6x_1 + x_2 + 3 \\ 4x_2 + x_1 + 2 \end{bmatrix}$$

• Hessian:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 1 & 4 \end{bmatrix}$$

Optimality conditions:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 6x_1 + x_2 + 3 \\ 4x_2 + x_1 + 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \nabla^2 f(\mathbf{x}) = \begin{bmatrix} 6 & 1 \\ 1 & 4 \end{bmatrix} \succ 0$$

Solve linear systems in Python

$$A\mathbf{x} = b$$

• LU factorization: A is a general matrix (unsymmetric, indefinite).

```
>>> import numpy as np
>>> from scipy.linalg import lu
```

$$>>> P, L, U = lu(A)$$

```
>>> tmp = scipy.linalg.solve_triangular(L,P@b,lower=True)
>>> x = scipy.linalg.solve_triangular(U,tmp,lower=False)
```

• Cholesky factorization: A is a symmetric positive definite matrix.

```
>>> c, low = scipy.linalg.cho_factor(A)
>>> x = scipy.linalg.cho_solve((c, low), b)
```

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = 3x_1^2 + 2x_2^2 + x_1x_2 + 3x_1 + 2x_2 + 4$$

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = \left[\begin{array}{c} -0.4348 \\ -0.3913 \end{array} \right]$$

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 1)^2$$

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 1)^2$$

• Obviously, the minimizers are located on the curve $S = \{(x_1, x_2) : x_1^2 + x_2 - 1 = 0\}.$

• Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \end{bmatrix} = \begin{bmatrix} 4x_1(x_1^2 + x_2 - 1) \\ 2(x_1^2 + x_2 - 1) \end{bmatrix}$$

• Hessian:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) \end{bmatrix}$$
$$= \begin{bmatrix} 12x_1^2 + 4x_2 - 4 & 4x_1 \\ 4x_1 & 2 \end{bmatrix}$$

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 1)^2$$

The points on the curve $S = \{(x_1, x_2) : x_1^2 + x_2 - 1 = 0\}$ satsify

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4x_1(x_1^2 + x_2 - 1) \\ 2(x_1^2 + x_2 - 1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 8x_1^2 & 4x_1 \\ 4x_1 & 2 \end{bmatrix} \succeq 0$$

At the minimizer $\mathbf{x}^* \in \mathcal{S}$, the Hessian matrix $\nabla^2 f(\mathbf{x})$ is positive semi-definite with eigenvalues 0 and 2.

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x}) = x_1^2 - x_2^2$$

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x}) = x_1^2 - x_2^2$$

• Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \end{bmatrix} = \begin{bmatrix} 2x_1 \\ -2x_2 \end{bmatrix}$$

Hessian:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

At the point $\mathbf{x}^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\nabla f(\mathbf{x}^*) = 0$ is satisfied, but \mathbf{x}^* is neither a local minimizer nor a local maximizer. In this case, we call \mathbf{x}^* a saddle point. Note that the Hessian matrix at \mathbf{x}^* is indefinite.

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

• Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \end{bmatrix} = \begin{bmatrix} 4x_1(x_1^2 + x_2 - 11) + 2(x_1 + x_2^2 - 7) \\ 2(x_1^2 + x_2 - 11) + 4x_2(x_1 + x_2^2 - 7) \end{bmatrix}$$

• Hessian:

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) \end{bmatrix}$$
$$= \begin{bmatrix} 12x_{1}^{2} + 4x_{2} - 42 & 4x_{1} + 4x_{2} \\ 4x_{1} + 4x_{2} & 4x_{1} + 12x_{2}^{2} - 26 \end{bmatrix}$$

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

The stationary points can be found by using a nonlinear system solver such as scipy.optimize.fsolve in Python to solve

$$\nabla f(\mathbf{x}) = 0.$$

In the following slides, we list the stationary points together with its Hessian, $\nabla^2 f(\mathbf{x})$, and the corresponding eigenvalues, λ , of the Hessian matrix.

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Local minimizers (blue)

x	$\nabla^2 f(\mathbf{x})$	λ
-2.8051	64.9495 1.3048	64.8404
3.1313	1.3048 80.4409	80.5501
3	74 20	25.7157
2	20 34	82.2843
-3.7793	116.2655 -28.2500	70.7144
-3.2832	-28.2500 88.2345	133.7856
3.5844	104.7850 6.9452	28.6907
-1.8481	6.9452 29.3246	105.4189

The Hessian matrices are positive definite, i.e., all eigenvalues are positive.

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Saddle points (green)

x	$\nabla^2 f(x)$	λ
-3.073	-49.6184 -8.3267	-50.6102
-0.0814	_8.3267 19.2922	20.2840
0.0867	-30.3728 11.8837	-31.7066
2.8843	11.8837 74.1738	75.5076
3.3852	95.8066 13.8360	-14.1352
0.0739	13.8360 -12.3939	97.5479

The Hessian matrices are indefinite, i.e., at least one positive and one negative eigenvalue.

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Local maximizer (red)

	x	$\nabla^2 f(\mathbf{x})$		λ	
П	-0.2708	-44.8119	-4.7755	-45.6052	_
	-0.9230	-4.7755	-16.8594	_16.0660]	

The Hessian matrix is negative definite, i.e., all eigenvalues are negative.

Numerical optimization algorithms

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2(\mathbb{R}^n)$

Most optimization problems can NOT be solved in a closed form (a single step).

For them, we develop iterative algorithms:

- **1** Start from an initial candidate solution: x_0
- **②** Generate a sequence of candidate solutions (iterates): x_1, x_2, \cdots
- 3 Stop when a certain condition is met; return the candidate solution

In a large number of algorithms, x_{k+1} is generated from x_k , that is, using the information of f at x_k .

In some algorithms, x_{k+1} is generated from x_k, x_{k-1}, \ldots But, for time and memory consideration, most previous iterates are not kept in memory.

Numerical optimization algorithms

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2(\mathbb{R}^n)$

The iteration step in most algorithms that we will introduce in this course is essentially in the form of

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k.$$

- x_k is the iterate. We expect as $k \to +\infty$ we have $x_k \to x^*$.
- \boldsymbol{p}_k is the search direction.
- α_k is the step size or step length.
- In addition, we need the stop criteria to define when the algorithm stops.

Two strategies: line search and trust region

• Line search: The algorithm chooses a direction p_k and searches along this direction from the current iterate x_k for a new iterate with a lower function value. For example, we can find the next step size by solving the 1D problem:

$$\min_{\alpha>0} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k).$$

• Trust region: The algorithm constructs an approximation of f, m_k , in neighborhood of x_k , then searches for a minimizer of m_k in this region. For example, we can find the next moving step by solving

$$\min_{\boldsymbol{p}} m_k(\boldsymbol{x}_k + \boldsymbol{p}), \quad \text{s. t. } \|\boldsymbol{p}\| \leq \Delta.$$

Stopping criteria

The first-order necessary condition $\|\nabla f(\mathbf{x}_k)\| = 0$ is not practical.

Some practical stopping criteria:

- Gradient condition: $\|\nabla f(\mathbf{x}_k)\| < \epsilon$.
- Successive objective condition: $|f(\mathbf{x}_{k+1}) f(\mathbf{x}_k)| < \epsilon$ or the relative one

$$\frac{|f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k)|}{|f(\mathbf{x}_k)|} < \epsilon.$$

• Successive point difference: $\|x_{k+1} - x_k\| < \epsilon$ or the relative one

$$\frac{\|\boldsymbol{x}_{k+1}-\boldsymbol{x}_k\|}{\|\boldsymbol{x}_k\|}<\epsilon.$$

• Maximum iteration number: $k > k_{\text{max}}$.