

Introducción a la segunda escuela en computación cuántica

Miguel González

· Quantom Function evaluator \hat{U}_{F} $F:\{0,1\}^{n}$ $\to \{0,1\}^{m}$; f es una función booleana

$$|x\rangle - U_f - |x\rangle$$

$$|y\rangle - |f(x) \oplus y\rangle$$

· Consideremis el caso particular f(x)=x2

$$F(x)=x^{2}$$
; $F(x): \{0,1\}^{2} \longrightarrow \{0,1\}^{4}$

$$F(x)=x^2$$

X ₁ X ₆	t (3) (2) (1) (6)
0 0	0 0 0 6
6 1	000
10	0 10 6
1 4 1	1001
Control	targets

Circuito generador de estados de Bell

$$|\beta_{00}\rangle = \frac{1}{\sqrt{a}}(|\infty\rangle + |11\rangle)$$

CECA v Centro de Estudios en Computación Avanzada

Circuito generador de estados de Bell

$$|\beta_{00}\rangle = \frac{1}{\sqrt{a}}(|\infty\rangle + |11\rangle)$$

Protocolo de teleportación cuántica

