Seminar in Classification of Algebraic Varieties

Talk 2: Curves of Small Genus

Alejandro Plaza Gallán

13 November 2023

1 Introduction

In the following, X will always denote a curve, this is, a smooth and projective scheme of dimension 1, irreducible $X \to \operatorname{Spec} k$ of finite type over an algebraically closed field k. We will denote by g the genus of X and K a canonical divisor of X.

Theorem. (Riemann-Roch) Let D be a divisor on X. Then

$$\dim |D| - \dim |K - D| = \deg D + 1 - g.$$

Definition. A divisor D on X is said to be **special** if dim $|K - D| \ge 0$. It is thus called **non-special** if dim |K - D| = -1.

Remark. If deg D < 0, then $|D| = \emptyset$, so dim |D| = -1.

If $\deg D > \deg K$, then D is non-special.

Corollary. Let D be a non-special divisor on X. Then

$$\dim |D| = \deg D - g.$$

Theorem. (Clifford) Let D be an effective special divisor on the curve X. Then

$$\dim |D| \le \frac{1}{2} \deg D.$$

Remark. If \mathfrak{d} is a base point free linear system of dimension r and degree d, it defines a morphism

$$X \longrightarrow \mathbb{P}^r_k$$

of degree d. This is unique up to an automorphism of \mathbb{P}_k^r .

If D is a very ample divisor and |D| is base point free, then the morphism it defines is an immersion and, since X is proper, it is indeed a closed immersion.

Proposition. Let X be a curve and D a divisor on X.

a) The complete linear system |D| has no base points if and only if $\forall P \in X$ closed point,

$$\dim |D - P| = \dim |D| - 1.$$

b) D is very ample if and only if $\forall P, Q \in X$ closed points (P = Q allowed),

$$\dim |D - P - Q| = \dim |D| - 2.$$

2 Canonical embedding

Proposition. If $g \ge 2$, then $\forall n \ge 1 | nK|$ has no base points.

Proof. a) First, let's prove the case n=1. Remember that dim |K|=g-1. Let $P\in X$ closed. By Riemann-Roch,

$$\dim |K - P| = \dim |P| - \deg P - 1 + g = g - 2 + \dim |P| = \dim |K| - 1 + \dim |P|.$$

Since $P \in |P|$, $|P| \neq \emptyset$, so dim $|P| \geq 0$. We want to see that dim |P| = 0.

Assume dim |P| > 0. That means $\exists Q \in |P|$ with $P \neq Q$. Then it has no base points, because

$$\operatorname{supp} P \cap \operatorname{supp} Q = \{P\} \cap \{Q\} = \emptyset,$$

so no point can be in the support of all divisors of |P|. Hence, |P| defines a morphism

$$|P|:X\longrightarrow \mathbb{P}^1_k$$

of degree 1, which is absurd because X is not rational, as g > 0.

Thus, $\dim |P| = 0$, leading to

$$\dim |K - P| = \dim |K| - 1.$$

From this result and the previous proposition, it follows that |K| has no base points.

b) Let $n \geq 2$. Since $g \geq 2$, we have

$$\deg K = 2g - 2 \ge 2,$$

so we get

$$2\deg K \ge \deg K + 2,$$

and hence

$$\deg nK = n \deg K \ge 2 \deg K \ge \deg K + 2.$$

Now, for all $P \in X$ closed,

$$\deg(nK - P) = \deg nK - 1 > \deg K.$$

By Riemann-Roch,

$$\dim |nK - P| = \deg(nK - P) - g = \deg nK - g - 1 = \dim |nK| - 1.$$

Thus, |nK| has no base points.

Definition. For $g \geq 2$ and $n \geq 1$, the base-free linear system |nK| defines a morphism

$$\phi_n: X \longrightarrow \mathbb{P}_k^N$$

of degree n(2g-2) called the **n-th pluricanonical map**, where

$$N = \dim |nK| = \begin{cases} g - 1, & n = 1; \\ (2n - 1)g - 2n, & n \ge 2. \end{cases}$$

Definition. A curve X of genus $g \ge 2$ is said to be **hyperelliptic** if there exists a finite morphism $X \to \mathbb{P}^1_k$ of degree 2.

This definition is equivalent to the curve having a linear system of dimension 1 and degree 2.

Proposition. If $g \ge 2$, then |K| is very ample if and only if X is not hyperelliptic.

Proof. By the criterion for very ample, |K| will be very ample if and only if $\forall P, Q \in X$ closed,

$$\dim |K - P - Q| = \dim |K| - 2.$$

Applying Riemann-Roch,

$$\dim |K - P - Q| = \dim |P + Q| - \deg(P + Q) - 1 + g = \dim |P + Q| - 3 + g.$$

Hence, we get the equivalences

$$|K|$$
 is very ample $\iff \forall P, Q \in X \ \dim |K - P - Q| = g - 3 \iff \forall P, Q \in X \ \dim |P + Q| = 0.$

Let's now prove the double implication of the statement of the proposition.

- \Rightarrow) Assume X is hyperelliptic. Then there is a linear system $\mathfrak d$ of dimension 1 and degree 2. Observe that all divisors in $\mathfrak d$ are effective of degree 2, i.e., of the form P+Q for $P,Q\in X$. Since dim $\mathfrak d>0$, $\exists P+Q\in\mathfrak d$. Then, $\mathfrak d\subseteq |P+Q|$, so dim $|P+Q|\geq \dim\mathfrak d=1>0$.
- \Leftarrow) Assume that $\exists P, Q \in X$ closed with $\dim |P + Q| \neq 0$. Since $P + Q \in |P + Q| \neq \emptyset$, then $\dim |P + Q| \geq 1$. Hence, |P + Q| contains a linear divisor \mathfrak{d} of dimension 1 and degree $\deg \mathfrak{d} = \deg(P + Q) = 2$. Thus, X is hyperelliptic.

Definition. For a non-hyperelliptic curve X of genus $g \geq 3$, the closed immersion defined by a canonical divisor

$$|K|: X \longrightarrow \mathbb{P}_k^{g-1}$$

is called the **canonical embedding**. It is unique up to an automorphism of \mathbb{P}_k^{g-1} . Its image, which is a curve of degree 2g-2, is a **canonical curve**.

Example. • If X is a non-hyperelliptic curve of genus g = 3, then its canonical embedding $|K|: X \to \mathbb{P}^2_k$ has degree 4. This means that it embeds the curve X into \mathbb{P}^2_k as a quartic curve.

• If X is a non-hyperelliptic curve of genus g=4, then its canonical embedding $|K|:X\to\mathbb{P}^3_k$ has degree 6. This means that it embeds the curve X into \mathbb{P}^3_k as a sextic curve.

3 Classification of curves of small genus

We want to study the set \mathfrak{M}_g of all curves of genus g up to isomorphism. One first step to do this is to divide the curves to be classified according to whether they admit linear systems g_d^r of certain dimension r and degree d. For example, if they admit g_2^1 , they are hyperelliptic and can be classified apart more easily.

Definition. A curve X is called **trigonal** if it admits a g_3^1 .

Proposition. A curve of genus g has a g_d^1 for any $d \ge \frac{1}{2}g + 1$. For $d < \frac{1}{2}g + 1$, there exist curves of genus g with no g_d^1 .

In particular, for every genus $g \ge 3$, there exist non-hyperelliptic curves. Curves of genus $g \le 4$ are always trigonal, but for genus $g \ge 5$ there exist non-trigonal curves.

3.1 Genus 3

The canonical embedding of a curve of genus 3 is a non-singular plane quartic curve. Conversely, every non-singular plane quartic curve has genus 3. Hence, the problem reduces to find all the non-singular quartic curves in \mathbb{P}^2_k . These are defined by homogeneous polynomials of degree 4.

Proposition. $k[x_0, \ldots, x_r]_d = \{f \in k[x_0, \ldots, x_r] \mid f \text{ homogeneous}, \deg f = d\}$ is a k-vector space of base $\{x_0^{n_0} \cdots x_r^{n_r} \mid n_0 + \cdots + n_r = d\}$. Moreover,

$$\dim k[x_0,\ldots,x_r]_d = \binom{r+d}{d}.$$

Proof. (Sketch) $\{x_0^{n_0} \cdots x_r^{n_r} \mid n_0 + \cdots + n_r = d\}$ is base of $k[x_0, \dots, x_r]_d$ by construction of homogeneous polynomials. A typical exercise in combinatorics shows that

$$\#\{x_0^{n_0}\cdots x_r^{n_r}\,|\,n_0+\cdots+n_r=d\}=\#\{(n_0,\ldots,n_r)\in\mathbb{N}_0^{r+1}\,|\,n_0+\cdots+n_r=d\}=\binom{r+d}{r}.$$

In the case r=2, d=4 we get that homogeneous polynomials of degree 4 in 3 variables are determined by $\binom{6}{2}=15$ coefficients. Hence,

$$\{P \in \mathbb{A}_k^{15} \mid P \text{ closed}\} \longleftrightarrow k[x_0, x_1, x_2]_4.$$

Now, two curves $X,Y\subseteq\mathbb{P}^2_k$ are the same if and only if the defining polynomials f,g satisfy $f=\lambda g$ for some $\lambda\in k$, so

$$\{P \in \mathbb{P}_k^{14} \mid P \text{ closed}\} = \{P \in \mathbb{A}_k^{15} \setminus \{0\} \mid P \text{ closed}\}/k^{\times} \longleftrightarrow \{X \subset \mathbb{P}_k^2 \mid X \text{ quartic curve}\}.$$

Now, non-singular quartic curves form an open variety $U \subseteq \mathbb{P}_k^{14}$ and the dimension remains unchanged: $\dim U = 14$.

In our variety of moduli we are considering the isomorphism classes of curves, so $\mathfrak{M}_3^{\text{non-hyp}} = U/\cong$.

Fact. All curves $X, Y \subseteq \mathbb{P}^2_k$ are canonical curves, any isomorphism $X \xrightarrow{\cong} Y$ can be uniquely extended to an automorphism of \mathbb{P}^2_k .

Hence,

$$\mathfrak{M}_{3}^{\text{non-hyp}} = U/\operatorname{PGL}_{k}(2),$$

where $\operatorname{PGL}_k(2) = \operatorname{Aut} \mathbb{P}^2_k$ is the projective linear group. This group can be represented by the matrices $\operatorname{PGL}_k(n) \cong \operatorname{GL}_{n+1}(k)/k^{\times}$, so dim $\operatorname{PGL}_k(2) = (2+1)^2 - 1 = 8$.

Exercise IV.5.2 from Hartshorne states that if X is a curve of genus $g \ge 2$ over a field k with char k = 0, then the group Aut X is finite. Hence, dim Aut X = 0, so

$$\dim \mathfrak{M}_3^{\text{non-hyp}} = \dim U - \dim \operatorname{PGL}_k(2) = 14 - 8 = 6.$$

3.2 Genus 4

Fact. Sextic curves in \mathbb{P}^3_k are complete intersections between a unique quadric surface $Q \subseteq \mathbb{P}^3_k$ and a cubic surface F.

Conversely, the complete intersection of a quadric surface and a cubic surface is a sextic curve.

X has exactly one g_3^1 if and only if Q is singular. In that case, Q is a quadric cone.

Complete intersection means that the ideal sheaf of the curve is the sum of the ideal sheaves of the surfaces.

The canonical embedding of a non-hyperelliptic curve of genus 4 is a sextic curve in \mathbb{P}^3_k , so we just need to classify sextics of \mathbb{P}^3_k .

$$\{P \in \mathbb{P}^9_k \mid P \text{ closed}\} \longleftrightarrow (k[x_0, x_1, x_2, x_3]_2 \setminus \{0\})/k^{\times} \longleftrightarrow \{Q \subseteq \mathbb{P}^3_k \mid Q \text{ quadric surface}\}.$$

Now, the set of non-singular sextic curves in \mathbb{P}^3_k can be described as a projective bundle E over the space of quadric surfaces \mathbb{P}^9_k . Considering the projection map $\pi: E \to \mathbb{P}^9_k$, the fibre E_Q of a quadric $Q \in \mathbb{P}^9_k$ is the set of all curves obtained by intersecting Q with cubic surfaces and $H^0(\mathbb{P}^3_k, \mathcal{O}_Q(3))$ is the space of homogeneous cubic polynomials over Q, i.e., the $E_Q = \mathbb{P}(H^0(\mathbb{P}^3_k, \mathcal{O}_Q(3)))$.

Let $Q \subseteq \mathbb{P}^3_k$ be a quadric surface. Twisting by 3 the exact sequence of the closed subscheme, we get

$$0 \longrightarrow \mathcal{L}(-Q) = \mathcal{O}_{\mathbb{P}^3_k}(-2) \longrightarrow \mathcal{O}_{\mathbb{P}^3_k} \longrightarrow \mathcal{O}_Q \longrightarrow 0,$$

$$0 \longrightarrow H^0(\mathbb{P}^3_k, \mathcal{O}_{\mathbb{P}^3_k}(1)) \longrightarrow H^0(\mathbb{P}^3_k, \mathcal{O}_{\mathbb{P}^3_k}(3)) \longrightarrow H^0(\mathbb{P}^3_k, \mathcal{O}_Q(3)) \longrightarrow 0.$$

$$\dim E_Q = h^0(\mathbb{P}^3_k, \mathcal{O}_Q(3)) - 1 = h^0(\mathbb{P}^3_k, \mathcal{O}_{\mathbb{P}^3_k}(3)) - h^0(\mathbb{P}^3_k, \mathcal{O}_{\mathbb{P}^3_k}(1)) - 1 = \binom{6}{3} - \binom{4}{3} - 1 = 15.$$

Thus, the dimension of the projective bundle that parametrises the sextic curves in \mathbb{P}^3_k is

$$\dim E = \dim \mathbb{P}^9_k + \dim E_Q = 9 + 15 = 24.$$

$$\mathfrak{M}_4^{\text{non-hyp}} = E / \operatorname{PGL}_k(3),$$

$$\dim \mathfrak{M}_4^{\text{non-hyp}} = \dim E / \operatorname{PGL}_k(3) = \dim E - \dim \operatorname{PGL}_k(3) = 24 - (4^2 - 1) = 24 - 15 = 9.$$

Now, let's study the curves of genus 4 that only have one g_3^1 . Recall that these curves are characterised by their associated quadric surface Q being a cone. Now, all quadric cones – up to isomorphism – can be defined by a homogeneous polynomial of degree 2 with the term x_3^2 missing, so we are left with 9 coefficients. Hence, the variety that parametrises them is \mathbb{P}_k^8 .

Repeating all the process, the projective bundle F of sextic curves in \mathbb{P}^3_k with one g_3^1 over the quadric cones \mathbb{P}^8_k also has fibres of degree 15, so we get a moduli variety $F/\operatorname{PGL}_k(3)$ of dimension 8.

3.3 Genus 5

Let X be a non-hyperelliptic curve of genus 5.

Fact. X does not have a g_3^1 if and only if its canonical embedding in \mathbb{P}_k^4 is the complete intersection of three quadric hypersurfaces.

The curves of genus 5 that don't admit a g_3^1 are the complete intersection of three quadric hypersurfaces, and these can be shown to form a moduli variety of dimension 12. Let's now explicitly classify the trigonal curves.

Proposition. X has a g_3^1 if and only if it can be represented as a plane quintic with one node.

Proof. $\bullet \Rightarrow$) Let D be a g_3^1 . By Riemann-Roch,

$$\dim |K - D| = \dim |D| - \deg D + g - 1 = 1 - 3 + 5 - 1 = 2.$$

Hence, we have a map $|K-D|:X\to\mathbb{P}^2_k$ of degree 5. Its image is a plane curve, so we can use the formula for the genus:

$$5 = g = \frac{1}{2}(d-1)(d-2) - n = 6 - n,$$

where n is the number of nodes. This gives n = 1.

• \Leftarrow) Let $f: X \to \mathbb{P}^2_k$ be a plane quintic curve. Let $D = f^*H$, where $H \subseteq \mathbb{P}^2_k$ is a hyperplane. Then,

$$\deg D = \deg f \cdot \deg H = 5.$$

$$\dim |D| = \dim |f^*H| \ge \dim |H| = h^0(\mathbb{P}^2_k, \mathcal{O}_{\mathbb{P}^2_k}(1)) - 1 = \binom{3}{1} - 1 = 2.$$

By Riemann-Roch,

$$\dim |K - D| = \dim |D| - \deg D + g - 1 = \dim |D| - 1 \ge 1 > 0.$$

Hence, K - D is a special divisor. We apply Clifford theorem:

$$2 \le \dim |D| \le \frac{1}{2} \deg D = \frac{5}{2},$$

so dim |D| = 2 and therefore, dim |K - D| = 1 and deg(K - D) = 8 - 5 = 3. Thus, K - D is the g_3^1 we were looking for.

Now the problem of classifying non-hyperelliptic trigonal curves of genus 5 has turned into classifying quintic plane curves with one node. These are defined by a homogeneous polynomial of degree 5, but – as in the case of quadric cones – one of the terms is missing, so there are $\binom{7}{2} - 1 = 20$ coefficients, so these curves are parametrised by \mathbb{P}_k^{19} . Now the classes of equivalence of these curves are represented by $\mathbb{P}_k^{19}/\operatorname{PGL}_k(2)$, which is a variety of dimension 19 - 8 = 11.