CE 354

PROJECT 3

SATURATION FLOW AT TRAFFIC SIGNAL

OBJECTIVE

• Determination of Approach Capacity at an Intersection

• Approach capacity is measured in PCU per hour

- What happens at an intersection?
 - Queue forms during Red
 - Queue dissipates during Green and Amber
 - Cycle continues!

Queue at an Intersection

Saturation Flow Diagram

Data Collection Procedure (1)

- Take total cycle time and green + amber period. Divide the combined green plus amber time by 6 in order to find the number of 6 sec intervals and the duration of last interval
- Counting should be taken at the stop line (if there is no stop line a convenient reference line should be marked on the road) [Decide on a road mark and communicate that across the members of your group]
- Start counting at the commencement of green signal and continue till the end of amber period
- For each 6 sec interval, the classified vehicle counts should be recorded on the given form

Data Collection Procedure (2)

- For counting purpose, when **rear wheel** of a vehicle will cross the stop line, it should be included in the count for that interval.
- Recording of the flows should be discontinued, when the flow is no longer at the saturation level. [End of saturation level means when queue disappears, and vehicles discharge without stopping].
- Although the counting must stop at the end of the amber, any vehicle crossing on the red must be included in the last interval.
- Repeat vehicle counts for 5 cycles.

Sample Calculation: PCU

Α	В	С	D	Е	F	G	Н	1	J	K	L	М
No. of vehicles per 6 sec interval		1	2	3	4	5	No. of Vechicles	PCU factor	Converted PCU	Total PCU in	Cycles	
							in 5 cycles		in 5 cycles	5 cycles		Average PCU
								[Read from			[No. of	[Column K /
							[Sum of	Lecture	[Column H x	[Sum of	cycles	
							columns C to G]	Appendix]	Column I]	column J]	counted]	Column L]
	Car	4	0	0	1	0	5	1	5			
0	Auto rickshaw	3	2	1	3	1	10	0.5	5	31.1	5	6.22
	Motor cycle	2	2	1	0	2	7	0.3	2.1		3	
6	Cycle rikshaw	6	5	3	1	4	19	1	19			
6	Car	4	0	0	1	0						
	Auto rickshaw	7	2	4	3	1						
1	Motor cycle	2	2	1	0	2						
2	Cycle rikshaw	23	9	3	1	17						

Sample Calculation: Saturation Flow

Saturation flow, S

$$= \frac{7.5 + 7.6 + 7.2 + 7.3}{4}$$

= 7.4 PCU per 6 sec

[Be careful about the unit]

- = 1.233 PCU per sec (7.4/6)
- = 4440 PCU per hour (1.233333*3600)

[Remeber to ignore the 1st and the last ractangles]

Calculation (1)

- Convert vehicles to PCU values for each interval.
- Determine average PCU for each interval
 - Average $PCU = \frac{Sum \ of \ PCU \ across \ all \ cycles}{Number \ of \ cycles} = \frac{\sigma_{i=1}^{i=C} \ PCU_i}{C}$
 - [Here, C = total number of cycles, PCU_i is the PCU at the ith cycle]
- Draw histogram (i.e., the discharge profile) [Y-axis: PCU per 6 sec, X-axis: Time]
- Determine saturation flow by taking the height of the rectangle in each interval (excluding the first and last)
 - *Saturation flow* = *Average hight of the middle rectangles*
 - [Be careful about the unit PCU/6 sec or 0.1 min -> Convert it to PCU per hour]

Sample Calculation: Initial Lost Time

Sample Calculation: Final Lost Time

Sample Calculation: Effective Green Time

Sample Calculation: Approach Capacity

$$\begin{array}{l} approach\ capacity = \\ \frac{g}{c}\ x\ S\ [C = G + A + R] \end{array}$$

$$= \frac{34.62 \, sec}{60 \, sec} \, x$$

$$4440 \, PCU/hr$$

= 2562 PCU/hr

[Assuming Cycle length = 60 sec]

Calculation (2)

- Calculate initial and final lost times
 - Formulae: $l = t \frac{n}{s}$
 - Remember the unit of s i.e., the saturation flow should be in PCU per sec
- Calculate effective green time
 - Formulae: $g = G + A (l_i + l_f)$
 - i.e., effective green = Green (s) + Amber (s) (initial loss time(s) + final loss time(s))
 - Calculate approach capacity