Algoritmos Indutores de Árvores de Decisão

Fabrício J. Barth

Sistemas Inteligentes Análise e Desenvolvimento de Sistemas Faculdades de Tecnologia Bandeirantes

Problema: Diagnóstico para uso de lentes de contato

Diagnóstico para o uso de lentes de contato

O setor de oftalmologia de um hospital da cidade de São Paulo possui, no seu banco de dados, um histórico de pacientes que procuraram o hospital queixando-se de problemas na visão.

A conduta, em alguns casos, realizada pelo corpo clínico de oftalmologistas do hospital é indicar o uso de lentes ao paciente.

Problema: Extrair do banco de dados do hospital uma hipótese que explica que paciente deve usar ou não lente de contatos.

Atributos

- idade (jovem, adulto, idoso)
- miopia (míope, hipermétrope)
- astigmatismo (não, sim)
- taxa de lacrimejamento (reduzido, normal)
- lentes de contato (forte, fraca, nenhuma)

Dados

Idade	Miopia	Astigmat.	Lacrimej.	Lentes
jovem	míope	não	reduzido	nenhuma
jovem	míope	não	normal	fraca
jovem	míope	sim	reduzido	nenhuma
jovem	míope	sim	normal	forte
jovem	hiper	não	reduzido	nenhuma
jovem	hiper	não	normal	fraca
jovem	hiper	sim	reduzido	nenhuma
jovem	hiper	sim	normal	forte
adulto	míope	não	reduzido	nenhuma

Idade	Miopia	Astigmat.	Lacrimej.	Lentes
adulto	míope	não	normal	fraca
adulto	míope	sim	reduzido	nenhuma
adulto	míope	sim	normal	forte
adulto	hiper	sim	reduzido	nenhuma
adulto	hiper	não	normal	fraca
adulto	hiper	sim	reduzido	nenhuma
adulto	hiper	sim	normal	nenhuma

Idade	Miopia	Astigmat.	Lacrimej.	Lentes
idoso	míope	não	reduzido	nenhuma
idoso	míope	não	normal	nenhuma
idoso	míope	sim	reduzido	nenhuma
idoso	míope	sim	normal	forte
idoso	hiper	não	reduzido	nenhuma
idoso	hiper	não	normal	fraca
idoso	hiper	sim	reduzido	nenhuma
idoso	hiper	sim	normal	nenhuma

Exemplo de árvore de decisão

Aprendizado de Árvores de Decisão

Sumário e Objetivos

- Representação de Árvores de Decisão
- Algoritmo de Aprendizagem ID3
- Entropia e Ganho de informação
- Bias
- Resumo
- Exercícios

Uma árvore de decisão para o problema de **Jogar Tenis**

Características

- Representação de árvore de decisão:
 - * cada nodo interno testa um atributo;
 - * cada aresta correponde a um valor de atributo;
 - ★ cada nodo folha retorna uma classificação.
- Pode-se representar:
 - ⋆ conjunções e disjunções.

Características

- Em geral, árvores de decisão representam uma disjunção de conjunções de restrições sobre os valores dos atributos dos exemplos.
- Cada caminho entre a raiz da árvore e um folha correspondente a uma conjunção de testes de atributos e a própria árvore corresponde a uma disjunção destas conjunções.

Quando considerar Árvores de Decisão?

- Exemplos descritos por pares atributo/valor.
 Exemplos são descritos por um conjunto fixo de atributos(aparência) e seus valores(sol).
- A função alvo tem valores discretos de saída.
 Classificação booleana (sim ou não) ou mais de duas possibilidades para cada exemplo.

- Hipóteses disjuntivas podem ser necessárias. Árvores de decisão representam naturalmente expressões disjuntivas.
- Dados de treinamento podem conter erros e valores de atributos faltantes.

Algoritmo ID3

- O algoritmo ID3 cria uma árvore de uma maneira top-down começando com a seguinte pergunta:
 - * Qual atributo deve ser testado na raiz da árvore?
- Para responder esta questão, cada atributo do conjunto de treinamento é avaliado usando um teste estatístico para determinar quão bem o atributo (sozinho) classifica os exemplos de treinamento.

Algoritmo ID3

Entrada: Conjunto de Exemplos E.

Saída: Árvore de Decisão (Hipótese h).

1 Se todos os exemplos tem o mesmo resultado para a função sendo aprendida, retorna um nodo folha com este valor;

 ${\bf 2}$ Cria um nodo de decisão N e escolhe o melhor atributo A para este nodo;

- **3** Para cada valor V possível para A:
 - **3.1** cria uma aresta em N para o valor V;
 - **3.2** cria um subconjunto E_V de exemplos onde A=V;
- 3.3 liga a aresta com o nodo que retorna da aplicação do algoritmo considerando os exemplos E_V .
- 4 Os passos 1, 2 e 3 são aplicados recursivamente para cada novo subconjunto de exemplos de treinamento.

Qual o melhor atributo?

Entropia - Teoria da Informação

- Caracteriza a impureza de uma coleção arbitrária de exemplos.
- Dado uma coleção S contendo exemplos \oplus e \ominus de algum conceito alvo, a **entropia** de S relativa a esta classificação booleana é

$$Entropia(S) = -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus} \quad (1)$$

- p_{\oplus} é a proporção de exemplos positivos em S.
- p_{\ominus} é a proporção de exemplos negativos em S.

Exemplo

- Sendo S uma coleção de 14 exemplos de algum conceito booleano, incluindo 9 exemplos positivos e 5 negativos [9+,5-].
- A entropia de S relativa a classificação booleana é

$$Entropia(S) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940$$
(2)

Entropia

Entropia

• Generalizando para o caso de um atributo alvo aceitar c diferentes valores, a entropia de S relativa a esta classificação c-classes é definida como:

$$Entropia(S) = \sum_{i=1}^{v} -p_i \log_2 p_i \tag{3}$$

onde p_i é a proporção de S pertencendo a classe i.

Ganho de Informação

• Ganho(S, A) = redução esperada na entropia devido a ordenação sobre A, ou seja, a redução esperada na entropia causada pela **partição** dos exemplos de acordo com estre atributo A.

$$Ganho(S, A) = Entropia(S) - Ganho(A)$$
 (4)

$$Ganho(A) = \sum_{v \in Valores(A)} \frac{|S_v|}{|S|} Entropia(S_v)$$
 (5)

Ganho de Informação - Exemplo

• Qual atributo tem o maior ganho de informação?

Atributo alvo: Jogar Tênis

Aparência	Temperatura	Umidade	Ventando	Jogar
sol	quente	elevada	falso	não
sol	quente	elevada	verdadeiro	não
nublado	quente	elevada	falso	sim
chuva	suave	elevada	falso	sim
chuva	frio	normal	falso	sim
chuva	frio	normal	verdadeiro	não

Aparência	Temperatura	Umidade	Ventando	Jogar
nublado	frio	normal	verdadeiro	sim
sol	suave	elevada	falso	não
sol	frio	normal	falso	sim
chuva	suave	normal	falso	sim
sol	suave	normal	verdadeiro	sim
nublado	suave	elevada	verdadeiro	sim
nublado	quente	normal	falso	sim
chuva	suave	elevada	verdadeiro	não

Exemplo ilustrativo

- Ganho(S, Aparência) = 0.246
- Ganho(S, Humidade) = 0.151
- Ganho(S, Vento) = 0.048
- Ganho(S, Temperatura) = 0.029

Graficamente: atributo aparência

Graficamente: atributo humidade

Graficamente: atributo ventando

Graficamente: atributo temperatura

Árvore de decisão final

Busca no espaço de hipóteses

- O método de aprendizagem ID3 pode ser caracterizado como um método de busca em um espaço de hipóteses, por uma hipótese que se ajusta aos exemplos de treinamento.
- O espaço de hipóteses do ID3 é o conjunto de árvores de decisão possíveis.
- O ID3 realiza uma busca (subida da montanha)
 através do espaço de hipóteses começando com uma
 árvore vazia e considerando progressivamente
 hipóteses mais elaboradas.

Busca no espaço de hipóteses

Busca no espaço de hipóteses

- Espaço de hipóteses é **completo** (a função alvo está presente e é encontrada pelo algoritmo ID3).
- Fornece uma única hipótese (qual?) não pode representar 20 hipóteses.
- Sem backtracking (recuo/volta atrás) mínimo local.
- Escolhas de busca com base estatística robustez a ruído nos dados.

Bias Indutivo no ID3

- Dada uma coleção de exemplos de treinamento, existem geralmente várias árvores de decisão consistentes com os exemplos.
- Qual árvore deve ser escolhida?

Bias Indutivo no ID3

- A preferência é por árvore mais curtas e por aquelas com atributos de alto ganho de informação próximos da raiz.
- Bias: é uma preferência por algumas hipóteses ao invés de uma restrição do espaço de hipóteses H.
- Occam's razor prefere hipóteses mais curtas (mais simples) que se ajustam aos dados.

Resumo

- O bias indutivo implícito do ID3 inclui uma preferência por árvores menores. A busca através do espaço de hipóteses expande a árvore somente o necessário para classificar os exemplos de treinamento disponíveis.
- Várias extensões do algoritmo básico ID3 (C4.5, J4.8, ...).
- Aprendizagem de árvores de decisão fornece um método prático para a aprendizagem de conceito e para a aprendizagem de outras funções de valor discreto.

 A família de algoritmos ID3 infere árvores de decisão expandindo-as a partir da raiz e descendo, selecionando o próximo melhor atributo para cada novo ramo de decisão.

Exercícios

Forneça árvores de decisão para representar as seguintes funções booleanas:

- $A \land \neg B$
- $A \vee (B \wedge C)$
- A XOR B
- $(A \wedge B) \vee (C \wedge D)$

Considere o seguinte conjunto de treinamento:

Exemplo	Classificação	a_1	a_2
1	+	Т	Т
2	+	Т	Т
3	-	Т	F
4	+	F	F
5	-	F	Т
6	-	F	Т

- Qual é a entropia de todo o conjunto de treinamento com relação ao atributo objetivo: Classificação?
- Qual é o ganho de informação do atributo a_2 relativo ao conjunto de exemplos?

Árvores de decisão e R

http://rpubs.com/fbarth/5533

Material de consulta

- Tom Mitchell. Machine Learning, 1997. (Capítulo 3)
- Russel e Norvig. Inteligência Artificial, 2a. edição, capítulo 18.
- Ferramentas: RapidMiner e Weka.
- Weka no R: http://cran.rproject.org/web/packages/RWeka/RWeka.pdf.
- Yanchang Zhao. R and Data Mining: Examples and Case Studies. (Capítulo 4): http://cran.rproject.org/doc/contrib/Zhao_R_and_data_mining.pdf