

School of Computing & Engineering Sciences Bachelor of Informatics & Computer Science ICS 2106: Probability & Statistics II

End of Semester Examinations

Time: 13:00 - 15:00 Hours

Instructions:

- (i) Answer Question one and any other two questions.
- (ii) Show all your workings clearly.

Date: 14th December 2023

(iii) This paper consists of Two Printed Pages.

Question 1 (30 Marks)

(a) Let X and Y be two jointly continuous random variables with joint probability density function given by

$$f(x,y) = \begin{cases} 2, & y+x \leq 1, \ x>0, \ y>0 \\ 0, & \text{otherwise} \end{cases}$$

- (i) Obtain the marginal density of X and Y, i.e. $f_1(x)$ and $f_2(y)$. [5 Marks]
- (ii) Are the random variables X and Y independent? Justify your answer. [2 Marks]
- (iii) Find the covariance of X and Y, i.e. σ_{xy} [4 Marks]
- (iv) Obtain the correlation coefficient between X and Y, i.e. ρ_{xy} [2 Marks]
- (b) Suppose that the joint probability mass function of the random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{x+y}{30}, & x = 0, 1, 2, 3, \ y = 0, 1, 2\\ 0, & \text{elsewhere} \end{cases}$$

(i) Verify that f(x, y) is a probability mass function. [3 Marks]

(ii) Find the P(X > Y). [3 Marks]

(iii) Obtain P(X + Y = 4). [2 Marks]

(c) Suppose X and Y have bivariate normal density with mean vector and covariance matrix given by

$$\vec{\mu} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix}$$

(i) Compute Var(2X + 6Y - 9).

[3 Marks]

(ii) Obtain the conditional distribution of Y given X.

[4 Marks]

(iii) Find the regression equation of Y on X.

[2 Marks]

Question 2 (20 Marks)

(a) Consider the joint probability density function of the random variables X and Y given by

$$f(x,y) = \begin{cases} k(2x+3y), & 0 \le x \le 1, \quad 0 \le y \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

(i) Find the value of the constant k.

[3 Marks]

- (ii) Evaluate the probability, $P[(X,Y) \in A]$, where A is the region described as $\{(x,y)|0 < x < \frac{1}{2}, \frac{1}{4} < y < \frac{1}{2}\}$. [3 Marks]
- (iii) Compute the $P(X + Y \le 1)$.

[3 Marks]

(b) Let X and Y be continuous random variables with joint density function f(x,y) and marginal densities $f_1(x)$ and $f_2(y)$ respectively. Show that E(Y) = E[E(Y|X)].

[4 Marks]

(c) Prove that if X and Y are jointly continuous random variables, then

$$E(X) = \int_{-\infty}^{\infty} E[X|Y = y] f_Y(y) dy$$

[4 Marks]

(d) Electronic components of a certain type have a life length X with a probability density function given by

$$f(x) = \begin{cases} \frac{1}{100} e^{-\frac{1}{100}x}, & x > 0, \\ 0, & \text{elsewhere} \end{cases}$$

(Life length is measured in hours). Suppose that two such components operate independently and in series in a certain system, i.e., the system fails when either component fails. Find the density function for Y, the life length of the system.

[3 Marks]

Question 3 (20 Marks)

Let the joint probability mass function of the random variables X and Y be given by the following table:

(x, y)	f(x,y)
(1,1)	$\frac{3}{8}$
(2, 1)	$\frac{1}{8}$
(1, 2)	$\frac{1}{8}$
(2, 2)	$\frac{3}{8}$

(a) Obtain the following probability distributions:

(i) $f_{X|Y}(x|y)$. [3 Marks]

(ii) $f_{Y|X}(y|x)$. [3 Marks]

(b Find the values of the following random variables:

(i) $\mu_{x|y}$, the conditional mean of X given Y. [3 Marks]

(ii) $\mu_{u|x}$, the conditional mean of Y given X. [3 Marks]

(c) Describe the random variable $\sigma^2_{Y|X}$, the conditional variance of Y given X.

[5 Marks]

(d) Are X and Y independent? Justify your answer.

[3 Marks]

Question 4 (20 Marks)

(a) The management at a fast-food outlet is interested in the joint behaviour of the random variables Y_1 , defined as the total time between a customer's arrival at the store and the departure from the service window, and Y_2 , the time a customer waits in line before reaching the service window. Because Y_1 includes the time a customer waits in line, we must have $Y_1 \geq Y_2$. The relative frequency distribution of the observed values of Y_1 and Y_2 can be modelled by the probability density function given by

$$f(y_1, y_2) = \begin{cases} e^{-y_1}, & 0 \le y_2 \le y_1 < \infty, \\ 0, & \text{otherwise} \end{cases}$$

with time measured in minutes. Find:

(i) $P(Y_1 > 2, Y_2 > 1)$. [3 Marks]

(ii) $P(Y_1 \ge 2Y_2)$. [3 Marks]

(iii) $P(Y_1 - Y_2 \ge 1)$, (Notice that $Y_1 - Y_2$ denotes the time spent at the service window). [4 Marks]

(b) Let the joint p.d.f of the random variables X and Y be given by

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le 1, & 0 \le y \le x \\ 0, & \text{elsewhere} \end{cases}$$

Find the conditional expected value of:

(i) Y given X, E(Y|X). [5 Marks]

(ii) X given Y, E(X|Y). [5 Marks]

Question 5 (20 Marks)

(a) Suppose that X_1 and X_2 are independent exponential random variables with parameter $\theta=1$ so that their joint p.d.f is

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} e^{-x_1-x_2}, & 0 \le x_1 < \infty, & 0 \le x_2 < \infty \\ 0, & \text{elsewhere} \end{cases}$$

Consider the transformation given by $U = X_1 - X_2$ and $V = X_1 + X_2$. Obtain the joint distribution of U and V using the Jacobian of transformation hence obtain the marginal probability density functions of U and V. [9 Marks]

(b) Consider two discrete random variables X and Y whose joint probability mass function is given in tabular form below:

		Y		
X	0	1	2	$f_1(x)$
0	0.10	0.10	0.20	0.40
1	0	0.15	0.05	0.20
3	0.10	0.20	0.10	0.40
$f_2(y)$	0.20	0.45	0.35	1

(i) Obtain the covariance of X and Y, i.e. σ_{xy} .

[5 Marks]

(ii) Calculate the correlation coefficient between X and Y, i.e. ρ_{xy} and interpret the results. [6 Marks]