

Figure 1: Impact of α on cold test set NDCG and MDG-Min80% with k=20.

Figure 2: Cold item prediction counts with k = 20 against the number of target users for the Electronics dataset before and after magnitude scaling.

Table 1: Contingency tables for GAR and GoRec on the Electronics dataset (cf. Figure 2 in main paper). The 'Pop. Close Neighbor' class refers to cold items with a warm item neighbor which is in the top 1% of warm items by popularity. The 'Most Predicted' class refers to cold items which are in the top 1% by prediction count. The odds ratio for the corresponding Fisher exact tests are 40.04 (GAR) and 35.80 (GoRec) with $p \ll 1e^{-10}$ in both cases.

	Pop. Close Neighbor	~(Pop. Close Neighbor)		Pop. Close Neighbor	~(Pop. Close Neighbor)				
Most Predicted 105 21 ~(Most Predicted) 1,385 11,090			Most Predicted ∼(Most Predicted)	103 1,387	23 11,088				
	(a) GAR			(b) GoRec					

Figure 3: Cold test set item prediction counts at k = 20 against item prediction count percentiles (i.e. each item's position in the sorted list of prediction counts). Only items predicted at least once are plotted.

Table 2: User and item-oriented accuracy metrics along with exposure-based diversity across all datasets and models. Values where magnitude scaling provides a statistically significant (p < 0.01) improvement in performance over the base models are marked with asterisks (*), while statistically significant losses in performance are marked with daggers (†). Values are bolded where magnitude scaling improves performance by at least 10%.

	k = 20						k = 50						
Dataset	Method	User Acc.		Item Acc. (MDG)		Exposure		User Acc. Ite		m Acc. (MDG)		Exposure	
		NDCG	Recall	Min80%	Max5%	All	Gini-Div.	NDCG	Recall	Min80%	Max5%	All	Gini-Div.
Clothing	KNN	0.0738	0.1429	0.0270	0.3093	0.0604	0.6090	0.0825	0.1826	0.0349	0.3204	0.0689	0.5734
	Heater	0.0549	0.1216	0.0095	0.2873	0.0389	0.3612	0.0686	0.1847	0.0193	0.3001	0.0507	0.4666
	Heater+MS	0.0554	0.1210	0.0127^{*}	0.2766^{\dagger}	0.0412^{*}	$\boldsymbol{0.5225}^*$	0.0689	0.1835	0.0228^{*}	0.2921^{\dagger}	0.0533^{*}	0.6152^{*}
	GAR	0.0539	0.1145	0.0075	0.2921	0.0366	0.3573	0.0677	0.1785	0.0167	0.3073	0.0482	0.4643
	GAR+MS	0.0541	0.1148	0.0117^{*}	0.2785^{\dagger}	0.0402^{*}	0.5930^{*}	0.0675	0.1771^{\dagger}	0.0213^{*}	0.2925^{\dagger}	0.0517^{*}	0.6773^{*}
	GoRec	0.0640	0.1394	0.0177	0.3065	0.0499	0.4832	0.0777	0.2028	0.0283	0.3200	0.0619	0.5626
	GoRec+MS	0.0639	0.1371	0.0205^{*}	0.2973^{\dagger}	0.0520^{*}	0.6431^{*}	0.0776	0.2001^{\dagger}	0.0312^{*}	0.3114^{\dagger}	0.0639^*	0.6904*
Electronics	KNN	0.0188	0.0362	0.0030	0.1536	0.0179	0.4313	0.0215	0.0474	0.0051	0.1622	0.0209	0.3350
	Heater	0.0144	0.0324	0.0000	0.0986	0.0070	0.1355	0.0206	0.0605	0.0005	0.1194	0.0109	0.2044
	Heater+MS	0.0132^{\dagger}	0.0298^{\dagger}	0.0003^{*}	0.1011	0.0092*	0.4821^{*}	0.0188^{\dagger}	0.0553^{\dagger}	0.0025^{*}	0.1173	0.0137^{*}	0.5635^{*}
	GAR	0.0150	0.0326	0.0000	0.1015	0.0074	0.2460	0.0206	0.0578	0.0008	0.1194	0.0112	0.3443
	GAR+MS	0.0131^{\dagger}	0.0289^{\dagger}	0.0001^*	0.1003	0.0084*	0.5030^{*}	0.0181^{\dagger}	0.0519^{\dagger}	0.0016^{*}	0.1153^{\dagger}	0.0122^{*}	0.5773*
	GoRec	0.0175	0.0377	0.0000	0.1212	0.0092	0.1496	0.0241	0.0675	0.0013	0.1420	0.0138	0.2159
	GoRec+MS	0.0166^{\dagger}	0.0359^{\dagger}	0.0004^{*}	0.1210	0.0110^{*}	0.3254*	0.0228^{\dagger}	0.0641^{\dagger}	0.0027^{*}	0.1392^{\dagger}	0.0158^{*}	0.3836*
Microlens	KNN	0.0567	0.1143	0.0171	0.3287	0.0511	0.5340	0.0657	0.1554	0.0242	0.3405	0.0597	0.5013
	Heater	0.0500	0.1186	0.0073	0.3266	0.0386	0.3255	0.0672	0.1983	0.0173	0.3426	0.0523	0.4293
	Heater+MS	0.0517	0.1202	0.0113^{*}	0.3106^{\dagger}	0.0420^{*}	0.5711^*	0.0687	0.1989	0.0221^{*}	0.3286	0.0560^{*}	0.6491^{*}
	GAR	0.0470	0.1124	0.0069	0.3034	0.0356	0.4160	0.0647	0.1938	0.0162	0.3211	0.0491	0.5299
	GAR+MS	0.0473	0.1114	0.0092*	0.2904^{\dagger}	0.0369*	0.6223^{*}	0.0644	0.1901	0.0187^{*}	0.3096^{\dagger}	0.0503*	0.7085^{*}
	GoRec	0.0564	0.1284	0.0084	0.3563	0.0445	0.3208	0.0768	0.2217	0.0190	0.3729	0.0594	0.4078
	GoRec+MS	0.0574*	0.1302	0.0119^*	0.3412^{\dagger}	0.0470^{*}	0.4936^{*}	0.0771	0.2204	0.0226^{*}	0.3592^{\dagger}	0.0617^{*}	0.5613^{*}