Calculate Standard Deviation for Returns

$$\sigma = \sqrt{rac{\sum_{i=1}^n (x_i - ar{x})^2}{n}}$$

For Equal probabilites

$$var(r) = \sum_{j=1}^{j=m} P_j(r_j - E(r))^2$$

$$\sigma = \sqrt{var(r)}$$

For UnEqual probabilites

Exp Return(A)	Standard Deviation(A)	Exp Return(B)	Standard Deviation(B)
0.074	1.162037005	-0.1	0.938003198

We'll End with these values

Since we now have two assets, pick the weight combination between assets1 and asset2 such that their weights add up to 100

Weight(Adani)	Weight(Reliance)	
50		50
70		30
10		90
90		10
30		70
40		60

In this way pick all the combinations