Math 300.2 Homework 1

Paul Hacking

January 24, 2012

Reading: Gilbert and Vanstone, Chapter 1.

- (1) Compute the truth tables for the following statements.
 - (a) $(NOT P) \Rightarrow Q$.
 - (b) (P OR Q) AND(NOT(P AND Q)). [This is sometimes called "exclusive or"].
 - (c) $(P \text{ AND } Q) \Rightarrow R$.
 - (d) $(P \Rightarrow Q) \text{AND}(Q \Rightarrow R) \text{AND}(R \Rightarrow P)$.
- (2) In each of the following cases, show that the two statements are equivalent (that is, they are either both true or both false).
 - (a) $P \Rightarrow Q$, NOT(P AND(NOT Q)).
 - (b) $P \operatorname{AND}(Q \operatorname{OR} R)$, $(P \operatorname{AND} Q) \operatorname{OR}(P \operatorname{AND} R)$.
- (3) List the elements of the following sets. (If the set is infinite you can use ..., but you should list enough elements so that the pattern is clear.)
 - (a) $\{x \in \mathbb{Z} \mid x^2 + 3 < 11\}.$
 - (b) $\{x \in \mathbb{N} \mid \sqrt{x} \in \mathbb{N}\}.$
 - (c) $\{x \in \mathbb{R} \mid x^2 + 1 = 0\}.$
 - (d) $\{3,6\} \times \{2,4,6,8\}$.
- (4) Let A, B, C be sets. Show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ in two ways: first, using a Venn diagram, second, using truth tables. [Hint: For the second approach, express the statement $x \in A \cap (B \cup C)$ as a

compound of the statements $x \in A$, $x \in B$, and $x \in C$, and write out the truth table. Now repeat for the statement $x \in (A \cap B) \cup (A \cap C)$ and compare the truth tables.]

- (5) Let A be a subset of a set X. We define the *indicator function* of A to be the function $1_A \colon X \to \{0,1\}$ given by $1_A(x) = 1$ if $x \in A$ and $1_A(x) = 0$ if $x \notin A$.
 - (a) Draw the graph of the indicator function for $A = [0, 1] \subset X = \mathbb{R}$.
 - (b) Let A and B be two subsets of a set X. Show that

$$1_{A \cap B}(x) = 1_A(x) \cdot 1_B(x)$$

and

$$1_{A \cup B}(x) = 1_A(x) + 1_B(x) - 1_A(x) \cdot 1_B(x)$$

for all $x \in X$. [Hint: There are 4 cases to check given by $x \in A$ or $x \notin A$ and $x \in B$ or $x \notin B$.]