PRIJENOS I DISTRIBUCIJA ELEKTRIČNE ENERGIJE

8. PRIJENOS ELEKTRIČNE ENERGIJE ISTOSMJERNOM STRUJOM VISOKOG NAPONA

dr.sc. Vitomir Komen, dipl.ing.el.

6

ISTOSMJERNOM STRUJOM PRI VISOKOM PRIJENOS ELEKTRIČNE ENERGIJE NAPONU

POJAM

PRIJENOS ELEKTRIČNE ENERGIJE ISTOSMJERNOM STRUJOM PRI **VISOKOM NAPONU**

PRIJENOS ISTOSMJERNOM STRUJOM VISOKOG NAPONA

HVDC: High Voltage Direct Current (engl.)

Hochspannungs Gleichstrom Übertragung (njem.) HGŰ:

CCHT: courant continu haute tension (franc.)

ППТ: передача постоянного тока (rus.)

Mi bismo, možda, mogli reći "prijenos ISVN" (prijenos istosmjernom strujom visokog napona), dakle ponekad i ISVN-prijenos, ISVN-stanica, ISVNpretvarač i t.sl., premda našem jeziku i pisanju bolje odgovara stanica ISVN i pretvarač ISVN. Ovdje ćemo ponekad pisati kolokvijalno "istosmjerni prijenos".

DEFINICIJA

Prijenos istosmjernom strujom pri visokom naponu je tehnika prijenosa pretvarača koji ispravlja izmjeničnu struju u istosmjernu (ispravljač), i (izmjenjivač), čime je povezivanje čvorova mreže izmjenične struje elektroenergetskih sustava trofazne električne struje, korištenjem električne energije unutar elektroenergetskog sustava ili između pretvarača koji tu istosmjernu struju opet pretvara u izmjeničnu zvedeno posredovanjem istosmjerne struje.

ISVN-prijenos:

- VISOKI NAPON (≥100 kV), VELIKE SNAGE (≥50 MW)
- TREND SREDNJI NAPON, MANJE SNAGE

MOTIVI PRIJENOSA ISTOSMJERNOM STRUJOM

- RAZVOJ EES-a temelji se na primjeni sustava trofazne izmjenične struje:
- prijenos velikih snaga uz razumno veliku struju
- energetski transformator transformiranje el. energije
 SN-VN-VVN-VN-SN-NN
- Mane prijenosa el. energije trofaznim izmjeničnim sustavom
- pad napona na vodovima uslijed uzdužnog induktivnog otpora nadzemnog energetskog voda (razmjeran duljini voda)
- smanjivanje prijenosne moći voda P=U₁*U₂/X uslijed induktivnog otpora
- smanjivanje prijenosne moći energetskog kabela uslijed protjecania kapacitivne struje – struja koja teče od vodiča prema plaštu kabela kapacitetom kabela
- energetskih kabela, korona na vodičima energetskih nadzemnih vodova skin efekt u vodičima energetskih vodova, dielektrični gubici u izolaciji
- nemogućnost povezivanja dva EES-a različitih pogonskih frekvencija (npr. 50 Hz i 60 Hz) ili različitih sustava P-f regulacija.

POVIJEST PRIMJENE ISTOSMJERNE STRUJE ZA PRIJENOS ELEKTRIČNE ENERGIJE

- pravi razvoj doživio primjenom tiristorskih ventila (od 1972. godine) Prijenos ISVN započeo primjenom živinih usmjerivačkih ventila, a
- 1950 godine KAŠIRA MOSKVA (tadašnji SSSR) prijenosne snage Početak: pokusni prijenos nadzemnim vodom istosmjerne struje 30 MW/napon 100 kV/duljina 112 km
- Švedsko kopno otok Gotland, prijenosna snaga 20 MW/napon 100 Puni komercijalni prijenos: podmorsko kabelsko povezivanje kV/duljina 96 km
- Od početka 70-tih godina nagli rast broja prijenosa i ukupne instalirane snage
- Današnje stanje:
- više od 100 prijenosa ISVN
- ukupna instalirana snaga veća od 75000 MW
- rast instalirane snage prikazan na slici 1.

POVIJEST PRIMJENE ISTOSMJERNE STRUJE ZA PRIJENOS ELEKTRIČNE ENERGIJE

Instalirana snaga istosmjernih prijenosa u svijetu (MW)

PODRUČJA KORIŠTENJA PRIJENOSA ISVN

- prijenos velike snage nadzemnim vodom na veliku udaljenost (najčešće preko 500 kilometara)
- prijenos podmorskim (eventualno podzemnim) kabelom na relativno veliku udaljenost (od nekoliko desetaka kilometara na više)
- asinkrono povezivanje elektroenergetskih sustava koje nije moguće neposredno povezati (primjerice 50/60Hz ili sustava s različitom regulacijom frekvencije)
- prijenosa istosmjernom strujom, a kojih svojstava nema prijenos povezivanje pri kojem se iskorištavaju regulacijska svojstva izmjeničnom strujom.

VRSTE PRIJENOSA ISVN

- za prijenos vrlo velikih količina električne energije na vrlo velike udaljenosti (red veličine više stotina megavata na oko 700 kilometara ili više)
- za prijenos ispod morskih prepreka (duljine veće od 50-tak kilometara)
- za podzemno uvođenje u gradske zone (red veličine duljine sličan kao kod podmorskog kabela)

- za povezivanje mreža raznih pogonskih frekvencija, npr. 50 i 60 Hz u Japanu
- frekvencija u pogonu, svojedobno npr. interkonekcije UCPTE i OES za asinkrono povezivanje mreža raznih načina regulacije snaga
- kada se želi spriječiti povećanje struje kratkog spoja u povezanim sustavima ili povećati stabilnost tog povezivanja

PRIJENOS NADZEMNIM VODOM NA VELIKU **UDALJENOST**

Prijenos električne energije nadzemnim vodom izmjenične ili istosmjerne struje

KRITERIJ:

- Troškovi investicijske izgradnje, pogona i održavanja
- Troškovi prijenosa vodom izmjenične struje
- vod znatno skuplji
- priključna polja znatno jeftinija
- Troškovi prijenosa vodom istosmjerne struje
- vod znatno jeftiniji
- dvije pretvaračke stanice znatno skuplje

PRIJENOS NADZEMNIM VODOM NA VELIKU **UDALJENOST**

Troškovi izgradnje prijenosa iste snage istosmjernom strujom (DC) i izmjeničnom strujom (AC)

PRIJENOS ELEKTRIČNE ENERGIJE DULJIM KABELSKIM VODOM

Prijenos električne energije kabelskim vodom izmjenične ili istosmjerne struje

KRITERIJ:

- Troškovi investicijske izgradnje, pogona i održavanja
- smanjenje mogućnosti opterećenja djelatnom komponentom struje unutar dopuštene strujne opteretivosti kabela, a radi opterećenja kapacitivnom komponentom izmjenične struje srazmjerne duljini
- opravdano i tehnički nužno primjeniti kabel istosmjerne struje umjesto Kabelski vod – GRANIČNA DULJINA PRIJENOSA – ekonomski kabela izmjenične struje

PRIJENOS KABELSKIM VODOM NA VELIKU **UDALJENOST**

Opteretivost kabela istosmjernom strujom (DC) i izmjeničnom strujom

14

POVEZIVANJE SUSTAVA RAZLIČITIH FREKVENCIJA ILI RAZLIČITE REGULACIJE FREKVENCIJA

Prijenos ISVN koristi se za:

Povezivanje dviju mreža izmjenične struje različitih nazivnih pogonskih frekvencija

primjer Japan ili Južna Amerika (50Hz i 60 Hz)

Povezivanje dvaju sustava istih nazivnih pogonskih frekvencija ali kojima su različita svojstva regulacije frekvencija primjer Europa – sinkroni rad interkonekcije UCTE i interkonekcije CENTREL (različita regulacijska odstupanja frekvencije)

KORIŠTENJE REGULACIJSKIH SVOJSTAVA **PRIJENOSA ISVN**

Prijenos trofaznim vodom izmjenične struje

Prijenosna snaga
$$P_{12} = \frac{U_{a1} \cdot U_{a2}}{\chi} \cdot \sin(\delta_1 - \delta_2)$$

Vod je pasivan element – X=konst.

Vod je generator/potrošač jalove snage

Granica prijenosne snage – granica stabilnosti prijenosa

Prijenos vodom istosmjerne struje

$$P_{12} = \frac{U_{d1} - U_{d2}}{R} \cdot U_{d2}$$

Djelatna snaga prijenosa

$$=\frac{U_{d1}-U_{d2}}{R}\cdot U_{d2}$$

OSNOVNE SHEME PRIJENOSA ISVN

Osnovne sheme prijenosa ISVN

- a) TOČKA TOČKA
- b) LEDA U LEDA

VRSTE SHEMA PRIJENOSA ISVN UZ KORIŠTENJE VODA (točka – točka)

a) jednopolni (monopolarni) prijenos (oznaka napona UmkV) – jedan pretvarački

izoliran za mali napon prema zemlji, gromobranski zaštitni vodič, ??? (zemlja, Vod istosmjerne struje ima vodič (jednopolni vod) i povratni vodič (vodič more)) b) dvopolni (bipolarni) prijenos (oznaka napona ± UmkV) – dva pretvaračka pola Vod istosmjerne struje ima dva vodiča (dvopolni vod)

IZVEDBA PRETVARAČKE STANICE

PRETVARAČKA STANICA – struktura:

- zgrada s usmjerivačkim ventilskim sklopovima, upravljanjem i regulacijom
- pretvarački transformatori
- visokonaponsko rasklopno postrojenje s vodnim poljima
- polja za priključak kompenzatora jalove snage i filtera za popravak oblika izmjeničnog napona
- površina pretvaračke stanice do više desetaka hektara
- Pretvaračka postrojenja su skupocjena postrojenja

- tiristorski ventilski slog (V)
- ventilska prigušnica (L)

pretvarački transformatori (T)

- eventualno: filtar na istosmjernoj strani (Fd)
- filtri na izmjeničnoj strani (F)
- kompenzacija na izmjeničnoj strani (K)
- upravljanje i regulacija, zaštita i komunikacija.

IZVEDBA PRETVARAČKE STANICE

Tiristorski ventilski slogovi (blokovi)

- paralelno i serijsko spajanje istovrsnih modula tiristorskih dioda
- tiristori nazivni podaci 4 kA/8kV
- uobičajeno spojeni u grane 12-pulsnog trofaznog mosta
- serijsko spajanje u spiralu, prostorno oblikovano u pravokutnu prizmu
- smješteni u ventilsku halu, hlađenje vodom, a izolacija je zračna
- trend cijena tiristorskih dioda pada, a vrijednost njihovih tehničkih parametara raste

IZVEDBA NADZEMNIH VODOVA, KABELA I UZEMLJIVAČA KOD PRIJENOSA ISVN

- Izvedbe nadzemnih vodova za prijenos ISVN
- jednopolni sa zemljom kao povratnim vodičem
- jednopolni s dva vodiča, odlaznim i povratnim
- jednopolni s gromobranskim zaštitnim užetom kao povratnim vodičem
- dvopolni s dva vodiča, eventualno kao druga etapa pri korištenju
- dvostruki dvopolni s četiri vodiča.
- Konstrukcija nadzemnih vodova Fe stupovi, vodiči, zaštitni vodiči izolatori kao kod vodova izmjenične struje

IZVEDBA NADZEMNIH VODOVA, KABELA I UZEMLJIVAČA KOD PRIJENOSA ISVN

Izvedba energetskih kabela za prijenos ISVN

- podmorski kabel jednopolna izvedba
- jednopolni prijenos jedan kabel
- dvopolni prijenos dva kabela
- primjer: Kabel 1200 mm2 Cu, uljno-impregnirana papirna izolacija debljine 17,5 mm s poluvodljivom ???

VELIČINA TROŠKOVA IZGRADNJE

Troškovi izgradnje pretvaračke stanice

- ukupni troškovi:
- 50% radovi (građevinski, el.montažni)
- 50% oprema
- 1/3 pretvarački transformatori
- 1/3 tiristorski ventili
- 1/3 ostala oprema
- približni troškovi:
- 100 USD/kW za "LEĐA U LEĐA"
- 30% veća cijena za par pretvaračkih stanica

Primjer: cijena pretvaračke stanice 600MW "LEĐA – U – LEĐA" je oko 60 milijuna JSD, a TS 400/110 kV, 2x300MW je oko 30 milijuna USD

- Troškovi izgradnje vodova istosmjerne struje
- cijena nadzemnog voda istosmjerne struje za istu snagu prijenosa je oko polovine vrijednosti voda izmjenične struje (polovina mase čelika, manje izolatora, slična masa vodiča i uža trasa)
- kabel istosmjerne struje jeftiniji je od ekvivalentnog kabela izmjenične struje
- iskorištenija izolacija
- primjena jeftinije čelične armature
- dvopolni prijenos dva kabela
- jednopolni prijenos jedan kabel

DANAŠNJE STANJE PRIJENOSA ISVN U SVIJETU

- Stanje 2005. godine: u pogonu 100 prijenosa ukupne instalirane snage veće od 75000 MW
- Trećina prijenosa ima snagu 300-600 MW
- Polovina prijenosa ima duljinu do 500 km
- Primjenjeni naponi jednog pola prema zemlji su u području 100-500 kV
- prema zemlji, drugi vodič -100 kV prema zemlji, dakle "linijski" napon 200 Naponi koji se primjenjuju počinju od oko ±100 kV (jedan vodič +100 kV kV), da bi najveći broj prijenosa bio ostvaren uz napon ±250 kV. Najviši napon istosmjernog prijenosa u pogonu je ±600 kV.
- Nema kontinenta bez primjene prijenosa ISVN
- (Japan, Novi Zeland, Filipini, a u izgradnji je prijenos otočnog i kopnenog Sve velike otočke zemlje imaju prijenos ISVN među glavnim otocima dijela Malezije oko 600 km).

DANAŠNJE STANJE PRIJENOSA ISVN U SVIJETU

- Granična svjetska ostvarenja istosmjernih prijenosa pri visokom naponu koji su u pogonu su:
- hidroelektrane na svijetu HE Itaipu (12600MW, generatori 50Hz), na rijeci Parani (granica Paragvaj-Brazil) do brazilske mreže 60Hz u blizini Sao najsnažniji nadzemni prijenos: Itaipu 6300MW, kojim je ostvaren 785 kilometara dugi dvostruki dvopolni prijenos između najsnažnije
- na rijeci Zair i metalurški čvor proizvodnje bakra Kolwezi u pokrajini Shaba, najdulji nadzemni prijenos: Inga-Shaba u Zairu kojim je povezana HE Inga dva odvojena jednopolna voda duljine 1700 kilometara, uz snagu istosmjernog prijenosa od 560MW
- ednožilnih kabela duljine 72 kilometra uz snagu prijenosa 2000MW radi najsnažniji podmorski prijenos: IFA 2000, kojim je ispod La Manchea godišnje količine oko 15TWh (više od sadašnjeg godišnjeg konzuma kontinuiranog izvoza francuske električne energije u Veliku Britaniju, povezana Francuska i Velika Britanija s dva bipola i ukupno osam
- najdulji podmorski prijenos: Baltic-kabel, koji povezuje Njemačku i Švedsku spod Baltičkog mora, na duljini 250 kilometara uz snagu 600MW
- najsnažnija leđa-u-leđa stanica: Vyborg, kojom su asinkrono povezani elektroenergetski sustavi Rusije i Finske snagom 1065MW.

DANAŠNJE STANJE PRIJENOSA ISVN U SVIJETU

su Siemens (ranije Siemens/AEG/BBC), GEC Alsthom, General Electric, te Isporučitelji opreme pretvaračkih stanica u svijetu su: oko 2/3 svih isporuka učinio je ABB (odnosno, svojedobno ASEA i BBC), a ostale isporuke izveli japanski i ruski proizvođači.

RASPOLOŽIVOST 26 ISTOSMJERNIH PRIJENOSA S TIRISTORSKIM VENTILIMA U SVIJETU 1996.GODINE (%)

8

ė

8

8

8

S

ដ

9

Prijenosi ISVN u Europi:

- povezivanje nordijskih zemalja podmorskim kabelima prema kontinentu i među sobom
- povezivanje velikobritanskog otoka s kontinentom
- povezivanja u Mediteranu
- leđa-u-leđa povezivanja, pretežno dezavuirana pomicanjem granice UCPTE na istok (Dürnrohr, Wien-Süd Ost, Etzenricht), i stanica Vyborg u korištenju.
- u Europi nema prijenosa ISVN na daljinu

Prijenosi ISVN u izgradnji u Europi

- Najdulji podmorski kabelski prijenos na svijetu NorNed prijenos između Norveške i Nizozemske, pod sjevernim morem – duljina 580 km, dvožilni kabel, napon ±450 kV, prijenosna moć 700 MW, izgradnja 2004. – 2007.
- Europom duljine veće od 1000 km jednožilni kabel, 1200 mm², napon 400 kV, prijenosna moć 500 MW, a u konačnoj fazi udvostručenje (dubina mora Projekt u pripremi – najdulji podmorski kabelski prijenos, veza Islanda s I

_
_
₹
Z
=
\Box
0
Ö
_
Ē
=
\vdash
2
တ
5
JEM
ш
,
⋖
2
X
_
_
Ť
0
Ř
=
ب
Ш
\supset
⋖
Ž
_
0
₾
₹
_
Ö
_
8
Ž
Ō
SIS
5
Σ
ō
\preceq
j
α
STR
Ś
Σ
=
~
0
-
-
-
JERN
-
I ISTOSMJERN
JERN
SI ISTOSMJERN
I ISTOSMJERN
NOSI ISTOSMJERN
SI ISTOSMJERN
NOSI ISTOSMJERN
JENOSI ISTOSMJERN
RIJENOSI ISTOSMJERN
JENOSI ISTOSMJERN
RIJENOSI ISTOSMJERN
RIJENOSI ISTOSMJERN
RIJENOSI ISTOSMJERN
ca 1. PRIJENOSI ISTOSMJERN
RIJENOSI ISTOSMJERN
ca 1. PRIJENOSI ISTOSMJERN

Prijenos	Država A	Država B	(km)	(km)	Ukupno (km)	(KV)	(MW)	Pogon	Opaska
U pogonu:									
Volgograd-Donbas	europ.dio Rusije	ije	470	0	470	700∓	720	1962	Sad.stanje od 1965
Konti-Skan 1	Danska	Švedska	92	98	180	250	250	1965	
	Italija(kopno-Sardinija)	Sardinija)	292	121	413	200	200	1967	Od 1986: SACOI-1, a od 1992: SACOI-2, 300MW
Kingsnorth	Velika Britanija	a	0	82	82	±266	640	1974	Duboki kabelski uvod u urbano područje Velikog Londona
Skagerrak 1 i 2	Danska	Norveška	113	127	240	+250	200	1976	Sad.stanje od 1977
	tad.SSSR	Finska	1	-		±85x3	1065	1981	Asinkrono povezivanje, sad.stanje od 1984
Dűrnrohr	Austrija	tadaš.ČSR				145	550	1983	Asinkrono povezivanje, mog.proširenje na 1100MW
Gotland 2	Švedska(kopno-Gotland)	no-Gotland)	7	96	103	150	130	1983	Prijenos 20MW iz 1954, poveć.na 30MW 1970,obust.1987
IFA 2000	Francuska	V.Britanija	0	72	72	±270x2	2000	1985	Sad.stanje od 1986 (prijenos 160MW iz 1961.obust.1984)
	tal.kopno	Korzika/Fr.	1	-		200	20	1956	Priključak Korzike na SACOI-1
11 Gotland 3	Švedska(kopno-Gotland)	no-Gotland)	7	96	103	150	130	1987	
12 Konti-Skan 2	Danska	Švedska	92	85	180	285	300	1988	
13 Fenno-Skan	Švedska	Finska	33	200	233	400	200	1990	
14 Skagerrak 3	Danska	Norveška	113	127	240	350	200	1993	Proširenje za jedan pol, povratni vodič: tlo
15 Wien Sűd-Ost	Austrija	Mađarska		-	-	145	220	1993	Asinkrono povezivanje
Etzenricht	Njemačka	Češka	-	-	-	160	009	1993	Asinkrono povezivanje, moguće proširenje na 2x600MW
17 Baltic-kabel	Njemačka	Švedska	0	250	250	450	009	1994	
18 Kontek-kabel	Njemačka	Danska	118	25	170	400	009	1996	
19 ScotlNorth Ireland	Ujedinjeno Kraljevstvo	aljevstvo	0	09	09	150	250	1998	
U izgradnji, pripremi izgradnje ili razmatranju:	izgradnje ili ra	zmatranju:							
	Italija	Grčka	155	160	315	00€∓	009	2000	Konačna veličina: ±400kV, 1000MW
21 NorNed-kabel	Nizozemska	Norveška	0	200	200		009	2001	
Store Baelt	ist./zap.Danska	ka	35	30	9	280	350	2003	Prva etapa: jednopolno, povratni vodič: tlo
23 Euro-kabel	Njemačka	Norveška	0	009	200		009	2003	
24 Viking-kabel	Njemačka	Norveška	0	009	200		009	2003	
25 SWePol-kabel	Poljska	Švedska	30	230	260		009	2003	
Tunis-Sicilija	Tunis	Italija	0	~150	~150			:	
27 Grčka-Turska	Grčka	Turska	0	~250	~250		***		
28 Island-kabel	Island	Škotska/I IK	0	056~	~950		1100	2005	+Bazm onskrha Hamburga s Islanda, akološki motivirano

Prijenosi ISVN u Hrvatskoj:

- nema prijenosa u pogonu
- godine 1957. razmatran je kabelski prijenos istosmjernom strujom ispod jadrana Hrvatska – Italija, studijom Ekonomske Komisije za Energiju Ujedinjenih naroda
- Hrvatska Italija, za uvoz energije u Italiju s istoka, tranzitom preko hrvatske trenutno u studijskoj pripremi istosmjerni kabelski podmorski prijenos prijenosne mreže. ١

ZAKLJUČAK

- strujom znade biti povoljniji u pogledu: regulacijskih svojstava, ukupne pogonske pouzdanosti i djelovanja na okolinu, a sve to uz postizanje Prijenos istosmjernom strujom u usporedbi s prijenosom izmjeničnom veličine i dinamike investiranja, gubitaka električne energije pri prijenosu, nekim prilikama: prijenos, odnosno povezivanje istosmjernom strujom, visoke raspoloživosti suvremenih tehničkih rješenja pretvaračkih stanica. U jedino je tehnički moguće rješenje.
- Očekivani pravci razvoja prijenosa ISVN
- komercijalno ostvarenje DC prekidača
- širenje primjene na srednjenaponsko područje
- daljnji razvoj FACTS sustava na VN i SN području