Market Structure and Competition in Airline Markets

Federico Ciliberto (UVA) — Charlie Murry (Penn State) — Elie Tamer (Harvard)

Motivation

Canonical workhorse models of demand and supply rely on the assumption that the set of products observed is "exogenous."

- Firms and products are not allocated to markets randomly.
- Firms strategically self-select themselves into markets based on observable and unobservable characteristics.

Two potential problems:

- 1. Biased estimates of demand elasticities (analogous to selection problem in labor literature).
 - Example:
 - Consider marginal entrant has (unobservably) high quality.
 - Entry might induce slightly lower prices because of increased competition, but demand goes up a lot.
 - Data: covariation between prices and quantities in this situation will make demand look too elastic.
- 2. What are effects of product entry/exit in a counterfactual setting?

What is our contribution?

- Long tradition of IO economists thinking about *strategic* interactions.
- Firms play pricing game.
- Firms play and entry game.

Entry game \implies multiple equilibrium \implies no single probability that a particular firm enters the market.

The Econometric Problem

- Consider the workhorse model of discrete choice demand for differentiated products.
- Consumer utility: $u_{ijt} = X_{jt}\beta \alpha p_{jt} + \xi_{jt} + \epsilon_{ijt}$
 - product (j); market (t); consumer (i)
- Typically, estimation proceeds by making use of some a distributional assumption on unobserved product quality, $\{\xi\}$, to identify model:

$$E[\xi|Z] = 0$$

The Econometric Problem

- Consider the workhorse model of discrete choice demand for differentiated products.
- Consumer utility: $u_{ijt} = X_{jt}\beta \alpha p_{jt} + \xi_{jt} + \epsilon_{ijt}$
 - product (j); market (t); consumer (i)
- Typically, estimation proceeds by making use of some a distributional assumption on unobserved product quality, $\{\xi\}$, to identify model:

$$E[\xi|Z] = 0$$

- Issue: Set of observed products set is not random.
- Consider firm entry decision: $y_{jt} = 1$ if enter and $y_{jt} = 0$ if not entered. If firms face a meaningful selection problem (non-zero fixed/sunk costs)

$$E[\xi|Z, y=1] = 0 \implies E[\xi|Z] = 0$$

 More generally, entry and post-entry actions might be correlated – correlation between fixed costs and demand/mc unobservables.

Motivating Numerical Example

• 4 potential entrants, 1000 markets, simultaneous entry and pricing game.

•
$$\pi_j = (p_j - exp(\nu_j))s_j(p;\xi) - exp(-3 + \eta_j)$$

• $(\xi_j, \nu_j, \eta_j) \sim N(0, \Sigma)$

Literature: Estimating Entry and Competition

Eizenberg (2014) – selection on observables

- Uses insights of Pakes, Porter, Ho, Ishii (2015) to estimate a model where PC manufacturers decide which computers to offer, then compete in prices.
- During the "entry" stage firms do not know ξ , only its distribution.
- This assumption may not always be appropriate:
 - Costs.
 - Mature industries.

Literature: Estimating Entry and Competition

Eizenberg (2014) – selection on observables

- Uses insights of Pakes, Porter, Ho, Ishii (2015) to estimate a model where PC manufacturers decide which computers to offer, then compete in prices.
- During the "entry" stage firms do not know ξ , only its distribution.
- This assumption may not always be appropriate:
 - Costs.
 - Mature industries.

Other Related Papers

- IO: Wollman (wp), Berry and Waldfogel [and Eizenberg] (1999,[2016]), Sweeting et al (wp)
- Trade: Roberts, Xu, Fan, Zhang (wp)
- Auctions: Gentry and Li (2014), Roberts and Sweeting (2013), Li and Zheng (2015)

Literature: Product Repositioning

- Gandhi et al (2008) and Seim, Mazzeo, and Varela (wp) both use models and simulations to understand how prices are affected by product entry and repositioning after a merger.
- Li, Mazur, Sweeting and Roberts (wp) estimate similar model to ours, without mult. eq. and without correlations between unobservables study connecting route repositioning.
- Fan (2012) [newpaper charactersitcs], Ashenfelter, Hosken, Weinberg (2015), Miller and Weinberg (wp) [collusion and efficiencies], etc. estimate other non-price outcomes of mergers.

Findings

We estimate a model of competition and entry in airline markets using 2012 DB1B Department of Transportation airline data:

- Price-cost markups about 30% higher than a model with no selection.
- Correlation between unobservables is important for selection:
 - corr(Demand,FC)>0, corr(FC,MC)<0
 - Endogenous fixed costs improve production and demand.
- Simulate USAir-American merger:
 - Merger looks worse b/c of inelastic demand.
 - But post-merger entry mitigates price increases from merger.
 - Ambiguous effects come when merged firm replaces incumbent.
 - Merged firm faces stronger entry threat from legacy carriers, as opposed to low cost carriers.
 - During actual merger, DOJ focused on protecting LCCs market access.

Plan of Talk

- 1. Methodological Example
 - Discuss estimation.
- 2. Model of Airline competition.
- 3. Data and Identification
- 4. Estimation Specifics and Results
- 5. AA US Merger

Methodological Example

Simple Model with Two Firms

- Two firms simultaneously make a participation (entry) decision and, if active, realize some outcome (demand/profit/revenue).
- Complete information environment.
- Researcher has data on both the participation and the outcome.
- Outcome equation has endogenous variable (separate from entry decision).
- Researcher interested in primitives of participation and outcome equation.

Simple Model: Entry with Two Firms

• The following system of equations describes the model:

$$\begin{cases} y_1 = 1 \left[\delta_2 y_2 + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\delta_1 y_1 + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- $y_j = 1$ if firm j decides to enter a market, and $y_j = 0$ otherwise.
- Consider Pure Strategy Nash solution.
- Endogenous variables: $(y_1, y_2, S_1, S_2, P_1, P_2)$. We observe (S_1, P_1) only if $y_1 = 1$ and (S_2, P_2) if $y_2 = 1$.
- The variables $\mathbf{Z} \equiv (Z_1, Z_2)$ and $\mathbf{X} \equiv (X_1, X_2)$ are exogenous.
- Unobservables have a joint normal distribution,

$$(\nu_1, \nu_2, \xi_1, \xi_2) \sim N(0, \Sigma),$$

where Σ is the variance-covariance matrix to be estimated.

"Standard" Estimation Procedure

• Strategic interaction in the participation equation induced by $\delta_i y_i$.

$$\begin{cases} y_1 = 1 \left[\frac{\delta_2 y_2}{\delta_1 y_1} + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\frac{\delta_1 y_1}{\delta_1 y_1} + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- Let's forget about that for a moment: $\delta_1 = \delta_2 = 0$.
- How would we estimate the parameters of the "outcome" equation?

"Standard" Estimation Procedure

• Strategic interaction in the participation equation induced by $\delta_i y_i$.

$$\begin{cases} y_1 = 1 \left[\frac{\delta_2 y_2}{2} + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\frac{\delta_1 y_1}{2} + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- Let's forget about that for a moment: $\delta_1 = \delta_2 = 0$.
- How would we estimate the parameters of the "outcome" equation?
 - Estimate a first stage probit.
 - Compute Inverse Mills Ratio.
 - Do IV with IMR for the outcome equation.
- Reiss and Spiller (1989) find positive correlation between demand/prices and entry.

Challenges to Estimation

Strategic nature of the entry decision is problematic.

$$\begin{cases} y_1 = 1 \left[\frac{\delta_2 y_2}{2} + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\frac{\delta_1 y_1}{2} + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- 1. A multi-agent version of the classic Heckman Selection problem.
 - Multiple equilibrium in the entry equation.
 - The selection region of the unobservables is a potentially complicated area that depends on the full equilibrium map.
 - The selection equation is incomplete cannot use some well defined Inverse Mill Ratio.

Challenges to Estimation

Strategic nature of the entry decision is problematic.

$$\begin{cases} y_1 = 1 \left[\frac{\delta_2 y_2}{2} + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\frac{\delta_1 y_1}{2} + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- 1. A multi-agent version of the classic Heckman Selection problem.
 - Multiple equilibrium in the entry equation.
 - The selection region of the unobservables is a potentially complicated area that depends on the full equilibrium map.
 - The selection equation is incomplete cannot use some well defined Inverse Mill Ratio.
- 2. The "outcome" equation has an additional endogenous process.

Our Solution

$$\begin{cases} y_1 = 1 \left[\delta_2 y_2 + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\delta_1 y_1 + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- Directly simulate the equilibrium selection region of the unobservables.
 - Simulate all possible equilibria for many draws of the joint dist. of the errors.
 - Assume $(\xi_1, \nu_1) \sim N(0, \Sigma)$ where

$$\Sigma = \begin{pmatrix} \sigma_{\xi} & \sigma_{\xi,\nu} \\ \sigma_{\xi,\nu} & \sigma_{\nu} \end{pmatrix}$$

• Compare the **simulated selection region** of ξ to the joint density of the residuals $(\hat{\xi})$ estimated from the data.

Estimating the Distribution of the Unobservables

Case where $(y_1 = 1, y_2 = 0)$:

• For a given (α_1, β) , the data identifies

$$Pr(S_1 - \alpha_1 P_1 - X_1 \beta \le t_1; y_1 = 1, y_2 = 0, X, Z)$$

where t_1 arbitrary random variable independent of all variables in the model with the same support as S_1 .

• CDF for residuals evaluated at t_1 and where we condition on all exogenous variables in the model.

Model Implied Distribution of Unobservables with Multiple Equilibria

We do not assume a eqm selection rule.

$$\begin{cases} y_1 = 1 \left[\frac{\delta_2 y_2}{2} + \gamma Z_1 + \nu_1 \ge 0 \right], \\ y_2 = 1 \left[\frac{\delta_1 y_1}{2} + \gamma Z_2 + \nu_2 \ge 0 \right], \\ S_1 = y_1 (X_1 \beta + \alpha_1 P_1 + \xi_1), \\ S_2 = y_2 (X_2 \beta + \alpha_2 P_2 + \xi_2). \end{cases}$$

- $\left(\xi_1 \leq t_1; (\nu_1, \nu_2) \in A_{(1,0)}^U\right)$ be the set of ξ_1 that are less than t_1 when the unobservables (ν_1, ν_2) belong to the set $A_{(1,0)}^U$.
 - $A_{(1,0)}^U$: set where (1,0) unique Nash equilibrium outcome.
- $\left(\xi_1 \leq t_1; (\nu_1, \nu_2) \in A_{(1,0)}^M, d_{(1,0)} = 1\right)$ be the set of ξ_1 less than t_1 when unobservables (ν_1, ν_2) belong to set $A_{(1,0)}^M$.
 - $A_{(1,0)}^M$: set where (1,0) one among multiple equilibria outcomes.
 - $d_{(1,0)} = 1$ indicate that (1,0) was selected.

Recap

 We find the distribution of residuals for the outcome equation implied by the data:

$$Pr(S_1 - \alpha_1 P_1 - X_1 \beta \le t_1; y_1 = 1, y_2 = 0, X, Z).$$

• For the same parameters, we simulate the model and derive the distribution of unobservables, accounting for multiple equilibria:

$$Pr\left(\xi_1 \le t_1; (\nu_1, \nu_2) \in A_{(1,0)}^U\right)$$

$$Pr\left(\xi_1 \le t_1; (\nu_1, \nu_2) \in A_{(1,0)}^M, d_{(1,0)} = 1\right)$$

Bounds of the Distribution of Residuals

- "Match" distribution of residuals (at a given parameter value) from data with its counterpart predicted by the selection model.
- By the law of total probability:

$$Pr(\xi_{1} \leq t_{1}; y_{1} = 1, y_{2} = 0, \mathbf{X}, \mathbf{Z}) = Pr\left(\xi_{1} \leq t_{1}; (\nu_{1}, \nu_{2}) \in A_{(1,0)}^{U}, \mathbf{X}, \mathbf{Z}\right) + Pr(d_{(1,0)} = 1 \mid \xi_{1} \leq t_{1}; (\nu_{1}, \nu_{2}) \in A_{(1,0)}^{M}, \mathbf{X}, \mathbf{Z})$$

$$Pr\left(\xi_{1} \leq t_{1}; (\nu_{1}, \nu_{2}) \in A_{(1,0)}^{M}, \mathbf{X}, \mathbf{Z}\right)$$

- $Pr(d_{1,0} = 1 \mid \xi_1 \leq t_1; (\nu_1, \nu_2) \in A^M_{(1,0)})$ unknown and represents the equilibrium selection function.
- Conduct inference using natural upper and lower bounds on this unknown function:

$$\begin{split} & Pr\left(\xi_1 \leq t_1; \ (\nu_1, \nu_2) \in A_{(1,0)}^U\right) \\ \leq & Pr(S_1 - \alpha_1 P_1 - X_1 \beta \leq t_1; \ y_1 = 1, y_2 = 0) \\ \leq & Pr\left(\xi_1 \leq t_1; \ (\nu_1, \nu_2) \in A_{(1,0)}^U\right) + Pr\left(\xi_1 \leq t_1; \ (\nu_1, \nu_2) \in A_{(1,0)}^M\right) \end{split}$$

Moment Inequality Condition

• The middle part can be consistently estimated from the data given a value for (α_1, β, t_1) :

$$Pr(S_1 - \alpha_1 P_1 - X_1 \beta \le t_1; y_1 = 1; y_2 = 0)$$

• We simulate the upper and lower bound on the distribution of unobservables implied by the selection model for a given value of the parameter vector:

$$Pr\left(\xi_1 \le t_1; (\nu_1, \nu_2) \in A_{(1,0)}^U\right), Pr\left(\xi_1 \le t_1; (\nu_1, \nu_2) \in A_{(1,0)}^M\right)$$

- Conditional moment inequality model where at the truth, the moment inequalities above hold for all $\mathbf{X}, \mathbf{Z}, t_1$.
- Use standard moment inequality methods to conduct set inference.

$$E[\mathbf{G}(\theta, S_1y_1, S_2y_2, P_1y_1, P_2y_2, y_1, y_2; t_1, t_2) | \mathbf{Z}, X] \le 0$$

Estimation – Moment Conditions

• Construct moments using the following inequality:

$$Pr^L(\xi^* < t \mid \ldots) \leq Pr(\hat{\xi} < t \mid \ldots) \leq Pr^U(\xi^* < t \mid \ldots)$$

A Model of Airline Entry and Pricing

Model: Demand and Supply

- Market (m) is a unidirectional airport pair with k potential entrants.
- Firms simultaneously decide entry and prices.

Demand

• Nested Logit, inside/outside nesting structure:

$$u_{ijm} = X_{jm}\beta + \alpha p_{jm} + \xi_{jm} + v_{igm} + (1 - \sigma)\epsilon_{ijm}$$

$$\implies ln(s_{jt}) - ln(s_{j0}) = X_{jm}\beta + \alpha p_{jm} + \sigma ln(s_{j|g}) + \xi_{jm}$$
 (1)

Supply

• Simultaneous Nash Bertrand pricing with constant marginal cost (Berry, 1994):

$$log(mc_{jm}) = log(p + \frac{1 - \sigma}{\alpha(1 - \sigma\bar{s}_{j|g} - (1 - \sigma)s_j)}) = \phi W_{jm} + \eta_{jm}$$
 (2)

Model: Entry

• Entry equation:

$$y_{jm} = 1 \iff \underbrace{(p_{jm} - mc_{jm})M_m s_{jm}}_{Var.Profits} - \underbrace{exp(\gamma Z_{jm} + \nu_{jm})}_{FixedCosts} \ge 0$$
 (3)

- $3 \times J$ equations plus selection rule describes the equilibria.
- Structural Errors:
- Demand, MC, FC Errors, $(\xi_{jm}, \eta_{jm}, \nu_{jm})$ are joint normal with mean zero and covariance:

$$\Sigma_{1m} = \begin{pmatrix} \sigma_{\xi}^2 & \sigma_{\xi\eta} & \sigma_{\xi\nu} \\ \sigma_{\xi\eta} & \sigma_{\eta}^2 & \sigma_{\nu\eta} \\ \sigma_{\xi\nu} & \sigma_{\nu\eta} & \sigma_{\nu}^2 \end{pmatrix}$$
(4)

How is this different than the simple model?

- 1. Added nonlinearities.
- 2. Need to solve for the equilibrium of the full model, which has six (rather than just four) endogenous variables (prices!).
- 3. There are *three* unobservables for each firm over which to integrate (marginal cost, demand, fixed cost).

A look back at the literature

- If we were to estimate the demand and supply conditions, then we have Berry 94, BLP etc.
 - Set of products/airline taken as exogenous.
 - Cannot estimate features of fixed costs distribution.
- If we were to estimate a reduced form version of the entry conditions, we have Bresnahan and Reiss (many), Berry 92, etc.
 - Difficult to make inferences on primitives like market power, welfare, etc.
- For sure, traction has been made on estimating these "jointly":
 - Berry/Waldgoel (1999) Berry/Waldfogel/Eizenberg (wp)
 - Eizenberg (2014)
- Our solution allows for meaningful selection on unobservables, in the sense of Heckman 76/79.

Empirical Setting

- Domestic commercial airline industry:
 - Considerable price differences across markets and market structure.
 - Considerable variation in market structure, with many recent mergers.
- Unit of observation: airline-market from DOT's DB1B and T-100 datasets in 2012.
- Market: unidirectional trip between two airports (6,322 markets, including 172 not served by any airline).
- Six airlines: American (AA), Delta (DL), United (UN), US Air (US), Southwest (WN), and a composite Other Low Cost Carrier (LCC)
- Number of potential entrants varies across markets, based on existing flights at endpoints.

Descriptive Statistics – Entry

Table: Percent of Markets Served

	Entry	Potential
AA	0.48	0.90
DL	0.83	0.99
LCC	0.26	0.78
UA	0.66	0.99
US	0.64	0.95
WN	0.35	0.38

Table: Distribution of Number of Entrants

	Number of Entrants						
	1	2	3	4	5	6	
Fraction of markets	0.08	1.11	5.16	18.11	42.87	32.68	

Endogenous Variables

- Entry: y_{jm}
- Prices: p_{jm}
- Shares/Demand: s_{jm}
- p_{jm} and s_{jm} are only observed if $y_{jm} = 1$

Exogenous Variables – Demand

- Nonstop Origin: number of non-stop routes that an airline serves out of the origin airport.
 - Proxy of frequent flyer programs: the larger the share of nonstop markets that an airline serves out of an airport, the easier is for a traveler to accumulate points, and the more attractive flying on that airline is.
- Distance between the origin and destination airports is also a determinant of demand.

Exogenous Variables – Flight/Pass. Costs (MC)

- Origin Presence: the ratio of markets served by an airline out of an airport over the total number of markets served out of that airport by at least one carrier.
- We think of this as the opportunity cost for not using a particular plane (seats/personnel/etc) for another flight. The more opportunities there are to use a particular plane, the higher the opportunity costs.

Exogenous Variables – Airport Costs (FC)

- Airport/fixed costs do not change with an additional passenger flown on an aircraft, or the use of the that plane for some other reason at that airport.
- Airlines must lease gates and hire personnel to enplane and deplane aircrafts at the two endpoints.
- Nonstop Origin: # of nonstop routes from origin.
- Nonstop Destination: the number of non-stop routes that an airline serves out of the destination airport.

Descriptive Statistics

Table: Summary Statistics

	Mean	Std. Dev.	Min	Max	N	Equation
Price (\$)	243.21	54.20	139.5	385.5	20,470	Entry, Utility, MC
All Markets						
Origin Presence (%)	0.44	0.27	0	1	37,932	MC
Nonstop Origin	6.42	12.37	0	127	37,932	Entry, Utility
Nonstop Dest.	6.57	12.71	0	127	37,932	Entry
Distance (000)	1.11	0.63	0.15	2.72	37,932	Utility, MC
Markets Served						
Origin Presence (%)	0.58	0.19	0.00	1	20.470	MC
Nonstop Origin	8.50	14.75	1	127	20.470	Entry, Utility
Nonstop Destin.	8.53	14.70	1	127	20.470	Entry
Distance (000)	1.21	0.62	0.15	2.72	$20,\!472$	Utility, MC

Estimation and Results

Numerical Exercise: Evidence of Selection

- We claimed that there is a selection problem in demand/supply estimation.
- Generate data using model with different sets of parameters.
- We estimate market power using standard GMM framework of Berry (1994).
- In all cases, $corr(\xi, \nu) > 0$.

Estimation Algorithm

- Guess parameters $(\beta^0, \alpha^0, \sigma^0, \phi^0, \gamma^0, \Sigma^0)$.
- Using Σ^0 , draw from the unselected distribution of errors.
- Solve all equilibria of of the model and construct an upper and lower envelope for the cdf of selection region.

$$\{Pr^{L}(\{\xi*,\eta*\}< t|\Omega), Pr^{U}(\{\xi*,\eta*\}< t|\Omega)\}, \ \Omega=(X,W,Z,y)$$
 (5)

Estimation Algorithm

- Guess parameters $(\beta^0, \alpha^0, \sigma^0, \phi^0, \gamma^0, \Sigma^0)$.
- Using Σ^0 , draw from the unselected distribution of errors.
- Solve all equilibria of of the model and construct an upper and lower envelope for the cdf of selection region.

$$\{Pr^L(\{\xi*,\eta*\}< t|\Omega), Pr^U(\{\xi*,\eta*\}< t|\Omega)\}, \ \Omega=(X,W,Z,y) \ \ (5)$$

• Also, construct the data identified distribution of "selected" residuals

$$Pr(ln(s_{jt}) - ln(s_{j0}) - (X_{jm}\beta^0 + \alpha^0 p_{jm} + \sigma^0 ln(s_{j|g})) < t|\mathbf{\Omega}, \mathbf{y})$$
$$= Pr(\hat{\xi}_{jm} < t|\mathbf{\Omega}, \mathbf{y}) \quad (6)$$

- In practice, construct moments from matching bin counts of the cdfs, conditional on a market type.
- Use sub-sampling routine suggested by CHT for inference.

Computational Challenges

- Solve for all possible equilibria
 - Typical type of mult eq in entry games.
 - Assume a unique pricing equilibrium given a market structure (nested logit).
- Probably a very funny looking objective function, so simulation bias could be a serious issue.
- Both issues imply non-trivial computational costs.

Parameter Estimates

Table: Parameter Estimates: Exogenous vs Endogenous Market Structure

	E 10 0	D 1 M C
	Exog Mkt Structure	Endog Mkt Structure
Demand	Point Est. (s.e.)	Conf. Inter.
Constant	-2.863 (0.225)	[-5.499, -5.467]
Distance	0.319 (0.015)	[0.184, 0.191]
Nonstop Origin	0.180 (0.008)	[0.125, 0.130]
LCC	-0.980 (0.053)	[-0.345, -0.333]
WN	0.416 (0.038)	[0.222, 0.230]
$Price(\alpha)$	-0.025 (0.001)	[-0.012, -0.011]
σ	0.080 (0.017)	[0.481, 0.499]
Marginal Cost	()	
Constant	5.338 (0.003)	[5.173, 5.221]
Distance	0.064 (0.002)	0.030, 0.031
Origin Presence	-0.041 (0.003)	[-0.242, -0.233]
LCC	-0.127 (0.007)	[-0.132, -0.127]
WN	-0.282 (0.008)	[-0.088, -0.085]
Fixed Cost		
Constant	_	[7.768, 8.066]
Nonstop Origin	_	[-0.142, -0.137]
Nonstop Dest.	-	[-0.333, -0.321]
LCC	-	[-0.003, -0.003]
WN	-	[-1.642, -1.583]
Demand-FC Correlation	_	[0.721, 0.758]
Demand-MC Correlation	0.683	[0.382, 0.396]
MC-FC Correlation	-	[-0.299, -0.288]
Median Elas. of Demand	-5.567	[-2.43,-2.40]
Median Markup	38.167	[51.25,53.40]

Takeaways from Estimation Results

- Selection model price elasticity is half the size of exogenous model.
- Story: Firms who enter are "better" (demand/mc unobservables) and therefore can exert more market power.
- Airline heterogeneity important in both demand and costs.
- Correlation in unobservables implies selection is important.

Merger with Endogenous Repositioning

Merger Simulation

- Simulate merger between American and USAir (our data is pre-merger).
- Consider a "best case" scenario for the new AA/US merged firm.
- Details:
 - Eliminate US as a potential firm.
 - In each market, assign AA the "best" observable and unobservable characteristics between the pre-merged AA and US.
 - Implies AA will have weakly lower costs and weakly higher utility after the merger.

Economics of Merger with Endogenous Entry

Increased Concentration (markets with US and AA pre-merger)

- Less competition \implies higher prices [EX].
- New firm enters market ?? prices.

AA/US lower marginal costs:

- Lower prices. [EX]
- Rivals might exit b/c fiercer price competition.
- AA/US might enter new markets.

AA/US lower fixed costs:

• Entry into new markets, could replace incumbents or drive down prices.

AA/US higher consumer utility:

- AA/US can raise price.[EX]
- AA/US enters new markets because charge higher prices and cover FC.
- AA/US steal consumers from rivals rivals exit.

Post Merger Entry/Exit in Concentrated Markets

AA enters unserved markets. Also, high likelihood of monopolization.
 Table: Market Structures in AA and US Monopoly and Duopoly Markets

	Post-merger				
Pre-merger	No Firms	AA Monopoly			
No Firms AA & US Duopoly	[0.36,0.90] [0.00,0.01]	[0.10,0.19] [0.20,0.82]			

Post Merger Entry/Exit in Concentrated Markets

• Many markets that DL is potential entrant. Now enters as duopoly.

Table: Entry of Competitors in AA and US Duopoly Markets

Post-merger market structure							
Pre-merger	Duopoly AA/US & DL Duopoly AA/US & LCC Duopoly AA/US & UA Duopoly AA/US & W						
Duopoly AA & US	[0.08, 0.25]	[0.01,0.02]	[0.05,0.11]	[0.00,0.01]			

Table: AA/US Price Changes in Duopoly Markets

Post-merger market structure						
Change in the price of AA	Duopoly AA/US & DL	Duopoly AA/US & LCC	Duopoly AA/US & UA	Duopoly AA/US & WN		
Duopoly AA & US	[-0.12,-0.01]	[-0.01,0.03]	[-0.06,0.00]	[0.00,0.04]		

Markets Involving DCA

- DCA was an airport with a high presence by AA and US.
- Type of market that is particularly concerning for regulators.
- The DOJ approved the merger conditional on AA giving up slots to other competitors.

Table: Post-merger entry and pricing in pre-merger AA & US Duopoly markets, Reagan National Airport

Prob mkt structure	Monopoly AA/US	Duopoly AA/US & DL	Duopoly AA/US & LCC	Duopoly AA/US & UA	Duopoly AA/US & WN
Mkt Struct. Transitions	[0.161, 0.710]	[0.136, 0.227]	[0.000, 0.047]	[0.059, 0.188]	[0.000, 0.000]
% Change in Prices	[0.019, 0.089]	[-0.095, 0.018]	[-0.073, 0.126]	[-0.114, 0.068]	[n.a.]

Market Structure and Price Transitions

Table: Post-merger Entry of AA in New Markets

	(1)	(2)		(3)		(4)		(5)
Monopoly			Duopoly		3-opoly		4-opoly	
Pre-merger	AA	AA	Pre-merger	AA	Pre-merger	AA	Pre-merger	AA
Firms	Replacement	Entry	Firms	Entry	Firms	Entry	Firms	Entry
DL	[0.02,0.09]	[0.19, 0.25]	DL,LCC	[0.09, 0.27]	DL,LCC,UA	[0.21, 0.35]	DL,LCC,UA,WN	[0.27, 0.44]
LCC	[0.07, 0.19]	[0.02, 0.14]	DL,UA	[0.24, 0.32]	DL,LCC,WN	[0.10, 0.33]		
UA	[0.04, 0.12]	[0.10, 0.21]	DL,WN	[0.16, 0.27]	DL,UA,WN	[0.29, 0.37]		
WN	[0.01, 0.04]	[0.10, 0.19]	LCC,UA	[0.05, 0.22]	LCC,UA,WN	[0.07, 0.29]		
			LCC,WN	[0.04, 0.23]				
			UA,WN	[0.11, 0.26]				

Market Structure and Price Transitions

Table: Post-Merger Price Changes After the Entry of AA in New Markets

Monopoly		Duopoly		3-opoly		4-opoly	
Pre-merger Firms	$\%\Delta Price$	Pre-merger Firms	$\%\Delta Price$	Pre-merger Firms	$\%\Delta Price$	Pre-merger Firms	$\%\Delta Price$
DL	[-0.12,-0.08]	DL LCC	[-0.05,-0.03] [-0.01,-0.01]	DL LCC UA	[-0.03, -0.01] [-0.01,-0.00] [-0.015 -0.010]	DL LCC UA WN	[-0.02, -0.01] [-0.00,-0.00] [-0.01,-0.01] [-0.01,-0.00]
LCC	[-0.10,-0.09]	DL UA	[-0.04,-0.02] [-0.02,-0.02]	DL LCC WN	[-0.028,-0.014] [-0.008,-0.004] [-0.012,-0.008]		[****, ****]
UA	[-0.12,-0.09]	DL WN	[-0.05,-0.03] [-0.02,-0.01]	DL UA WN	[-0.021,-0.013] [-0.016,-0.010] [-0.008,-0.006]		
WN	[-0.11,-0.08]	LCC UA LCC WN	[-0.02,-0.01] [-0.04,-0.03] [-0.04,-0.02] [-0.05,-0.02]	LCC UA WN	[-0.011,-0.005] [-0.025,-0.015] [-0.009,0.001]		
		UA WN	[-0.04,-0.03] [-0.02,-0.02]				

Conclusions

- Estimate a model of supply/demand with endogenous entry.
- Market power estimates differ substantially from exogenous market structure estimates.
- Potential upside of merger due to entry.
- Many possible changes to market structure and prices.

Transitions with Exit

Table: Likelihood of Exit by Competitors after AA-US Merger

Duopoly with AA		3-opoly with AA		
Pre-merger Firm	Exit	Pre-merge Firms	er Exit	
DL	[0.03, 0.05]	DL LCC	[0.05,0.15] [0.01,0.01]	
LCC	[0.09, 0.16]	DL UA	[0.01,0.01] [0.04,0.14] [0.01,0.05]	
UA	[0.06, 0.08]	DL WN	[0.01,0.00]	

Table: Price Changes From Exit of Competitor After Merger

Duopoly		3-opoly			
Pre-merger Firm	AA $\%\Delta$ Price	Pre-merger Firm	$\%\Delta Price$	Pre-merger Firm	$\%\Delta Price$
DL	[-0.02,0.04]	AA AA	[-0.07,-0.05] [-0.01,0.06]	DL LCC	[-0.03,-0.00] [-0.02,0.01]
LCC	[0.01, 0.07]	A A A A	[-0.07,-0.04] [-0.02,-0.00]	DL UA	[-0.03,0.03] [-0.03,0.02]
UA	[0.01, 0.08]	AA AA	[-0.05,-0.02] [-0.04,-0.01]	DL WN	[-0.01,0.01] [-0.02,0.03]