Boundary value problems

Martin van Sint Annaland, Edwin Zondervan, Ivo Roghair

m.v.sintannaland@tue.nl

Chemical Process Intensification, Process Systems Engineering, Eindhoven University of Technology

Today's outline

1 Solution techniques in Excel Solver and goal-seek

2 Boundary value problems

Today's outline

 Solution techniques in Excel Solver and goal-seek

2 Boundary value problems

Excel comes with a goal-seek and solver function. For Excel 2010:

- Install via Excel ⇒ File ⇒ Options ⇒ Add-Ins ⇒ Go (at the bottom) ⇒ Select solver add-in. You can now call the solver screen on the 'data' menu ('Oplosser' in Dutch)
- Select the goal-cell, and whether you want to minimize, maximize or set a certain value
- Enter the variable cells; Excel is going to change the values in these cells to get to the desired solution
- Specify the boundary conditions (e.g. to keep certain cells above zero)
- Click 'solve' (possibly after setting the advanced options).

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

• Open Excel and type the following:

	В
×	3
f(x)	=-3*B1^2-5*B1+2

• Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

• Set cell: B2

• To value: 0

• By changing cell: B1

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

Open Excel and type the following:

	А	В
1	X	3
2	f(x)	=-3*B1^2-5*B1+2
3		

• Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

Set cell: B2To value: 0

• By changing cell: B1

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

Open Excel and type the following:

	А	В
1	Х	3
2	f(x)	=-3*B1^2-5*B1+2
3		

• Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

Set cell: B2To value: 0

• By changing cell: B1

Goal-Seek can be used to make the goal-cell to a specified value by changing another cell:

Open Excel and type the following:

	А	В
1	Х	3
2	f(x)	=-3*B1^2-5*B1+2
3		

Go to Data ⇒ What-If Analysis ⇒ Goal Seek...

Set cell: B2To value: 0

• By changing cell: B1

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

Use the following sheet:

		С
	×	f(x)
×1	3	=2*B2*B3-B3+2
x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

• Use the following sheet:

	А	В	С
1		×	f(x)
2	×1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

Use the following sheet:

	А	В	С
1		×	f(x)
2	x1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

The solver is used to change the value in a goal-cell, by changing the values in 1 or more other cells while keeping boundary conditions:

Use the following sheet:

	А	В	С
1		×	f(x)
2	x1	3	=2*B2*B3-B3+2
3	x2	4	=2*B3-4*B2-4

- Go to Data ⇒ Solver
 - Goalfunction: C1 (value of: 0)
 - Add boundary condition: C2 = 0
 - By changing cells: \$B\$1:\$B\$2 (you can just select the cells)
- Solve. You will find B1=0 and B2=2.

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute $\ln P_{\text{exp}}$ and $\ln P_{\text{corr}}$

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute $\ln P_{\text{exp}}$ and $\ln P_{\text{corr}}$
- 4 Compute $(\ln P_{\rm exp} \ln P_{\rm corr})^2$, and sum this column

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- $oxed{3}$ Compute In P_{exp} and In P_{corr}
- 4 Compute $(\ln P_{\text{exp}} \ln P_{\text{corr}})^2$, and sum this column
- **5** Start the solver, and minimize the sum by changing cells for *A*, *B* and *C*.

Use Excel functions to obtain the Antoine coefficients A, B and C for carbon monoxide following the equation:

$$\ln P = A - \frac{B}{T + C}$$

P [mmHg]	<i>T</i> [°C]
1	-222.0
5	-217.2
10	-215.0
20	-212.8
40	-210.0
60	-208.1
100	-205.7
200	-201.3
400	-196.3
760	-191.3

- Dedicate three separate cells for A, B and C. Give an initial guess
- Convert all values to proper units (hint: use e.g. =CONVERT(A2, "mmHg", "Pa"))
- 3 Compute $\ln P_{\text{exp}}$ and $\ln P_{\text{corr}}$
- 4 Compute $(\ln P_{\text{exp}} \ln P_{\text{corr}})^2$, and sum this column
- Start the solver, and minimize the sum by changing cells for A, B and C.

What is an ODE?

Algebraic equation:

$$f(y(x), x) = 0$$
 e.g. $-\ln(K_{eq}) = (1 - \zeta)$

First order ODE:

$$f\left(\frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\frac{dc}{dt} = -kc^n$

Second order ODE:

$$f\left(\frac{d^2y}{dx^2}(x), \frac{dy}{dx}(x), y(x), x\right) = 0$$
 e.g. $\mathcal{D}\frac{d^2c}{dx^2} = -\frac{kc}{1 + Kc}$

About second order ODEs

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

About second order ODEs

Very often a second order ODE can be rewritten into a system of first order ODEs (whether it is handy depends on the boundary conditions!)

In general

Consider the second order ODE:

$$\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} = r(x)$$

Now define and solve using z as a new variable:

$$\frac{dy}{dx} = z(x)$$

$$\frac{dz}{dx} = r(x) - q(x)z(x)$$

Importance of boundary conditions

The nature of boundary conditions determines the appropriate numerical method. Classification into 2 main categories:

Initial value problems (IVP)
 We know the values of all y_i at some starting position x_s, and it is desired to find the values of y_i at some final point x_f.

Boundary value problems (BVP)

Boundary conditions are specified at more than one x. Typically, some of the BC are specified at x_s and the remainder at x_f .

