6. Przestrzenie wektorowe

Zadania

- 1. Które z podanych zbiorów są podprzestrzeniami odpowiednich przestrzeni wektorowych:
 - (a) $\{[x,y] \in \mathbb{R}^2 \mid x \ge 0, y \ge 0\} \subseteq \mathbb{R}^2$
 - (b) $\{[x, y, z] \in \mathbb{R}^3 \mid yz \le 0\} \subseteq \mathbb{R}^3$
 - (c) $\{[x,y] \in \mathbb{R}^2 \mid |x-y| \le 1\} \subseteq \mathbb{R}^2$
 - (d) $\{A \in M_2^2(\mathbb{R}) \mid Det A = 0\} \subseteq M_2^2(\mathbb{R})$
 - (e) $\left\{ \left(\begin{array}{cc} x & y \\ x+y & 2x \end{array} \right) \in M_2^2(\mathbb{R}) \mid x,y \in \mathbb{R} \right\} \subseteq M_2^2(\mathbb{R})$
 - (f) $\{(x_1, x_2, \dots,) \in \mathbb{R}^{\infty} \mid \lim_{n \to \infty} x_n < \infty \} \subseteq \mathbb{R}^{\infty}$
 - (g) $\{f \in \mathbb{R}[x] \mid stf = 2k, \ k \in \mathbb{N}\} \subseteq \mathbb{R}[x]$
- 2. Niech $\mathbb{K} = (K, +, \cdot)$ będzie ciałem, $A \in M_m^n(K)$ oraz $X \in M_n^1(K)$. Pokazać, że zbiór $Rozw(A|\mathbf{0}_n^1)$ rozwiązań układu jednorodnego $AX = \mathbf{0}_n^1$ jest podprzestrzenią przestrzeni wektorowej $M_n^1(K)(\mathbb{K})$.
- 3. Sprawdzić, czy
 - (a) wektory [1,3,5], [2,7,5] i [1,1,9] generują przestrzeń wektorową $R^3(\mathbb{R})$,
 - (b) $[5,6,4,1] \in \mathcal{L}([1,3,1,0],[1,4,2,3])$ w przestrzeni wektorowej $\mathbb{Z}_7^4(\mathbb{Z}_7)$.
- 4. Zbadać liniowa niezależność podanych układów wektorów w odpowiednich przestrzeniach wektorowych:
 - (a) [1,3,5], [2,9,13], [4,9,17] w przestrzeni $R^3(\mathbb{R})$
 - (b) [5,4,1], [4,3,2], [7,7,-6] w przestrzeni $R^3(\mathbb{R})$
 - (c) [1,1,0], [4,3,1], [1,4,2] w przestrzeni $Z_5^3(Z_5)$
 - (d) [0,0,1], [4,0,4], [3,4,3] w przestrzeni $Z_5^3(Z_5)$
 - (e) $p_1 = x^2 1$, $p_2 = x + 1$, $p_3 = -x^2 + 2x + 3$, $p_4 = -2x + 3$ w $R_2[x](\mathbb{R})$
 - (f) $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \le M_2^2(R)(\mathbb{R})$
 - (g) $f_1 = 1$, $f_2 = \sin^2 x$, $f_3 = \cos^2 x$ w przestrzeni funkcji ciągłych na zbiorze R
 - (h) $f_1=1,\,f_2=e^x,\,f_3=e^{-x}$ w przestrzeni funkcji ciągłych na zbiorzeR
- 5. Wiedząc, że wektory $\boldsymbol{u},\,\boldsymbol{v},\,\boldsymbol{w}$ i \boldsymbol{x} są liniowo niezależne, zbadać liniową niezależność wektorów:
 - (a) u + v, v + w, u + w
 - (b) u, u + v, u + v + w, u + v + w + x
- 6. Sprawdzić, czy następujące układy wektorów stanowią bazy odpowiednich przestrzeni wektorowych:
 - (a) $[1, 1, 1], [2, 1, 5], [3, 5, 4] \le R^3(\mathbb{R})$
 - (b) $[1,7,-1], [2,1,11], [1,5,1] \le R^3(\mathbb{R}),$
 - (c) $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ w $M_2^2(R)(\mathbb{R})$,
- 7. Znaleźć współrzędne wektorów:
 - (a) v = [-2, 5, 6] w bazie $\mathcal{B} = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$ przestrzeni wektorowej $R^3(\mathbb{R})$,
 - (b) v = [-2, 5, 6] w bazie $\mathcal{B} = \{[1, 1, 0], [2, 1, 0], [3, 3, 1]\}$ przestrzeni wektorowej $R^3(\mathbb{R})$,
 - (c) $p = x + x^2$ w bazie $\mathcal{B} = \{1 + x, 1 x, 1 + x + x^2\}$ przestrzeni wektorowej $R_2[x](\mathbb{R})$.
- 8. Dla $A = \begin{pmatrix} 2 & 3 & 0 & 4 \\ 4 & 2 & 3 & 0 \end{pmatrix} \in M_2^4(Z_5)$ znaleźć bazę podprzestrzeni $Rozw(A|\mathbf{0}_4^1)$ przestrzeni wektorowej $Z_5^4(Z_5)$.

- 9. Wskazać bazy i określić wymiary podanych przestrzeni wektorowych nad ciałem \mathbb{R} :
 - (a) $\{[2x, x+y, 3x-y, x-2y] \in R^4 \mid x, y \in R\}$
 - (b) $\{[x, y, z, t] \in \mathbb{R}^4 \mid x + y = z y\}$
 - (c) $\{p \in R_3[x] \mid p(0) + p(1) = 0\}$
 - (d) $\mathcal{L}([1,1,-1,3],[1,8,6,-4],[1,7,5,-3],[2,8,7,1])$
- 10. Dla podprzestrzeni $U=\mathcal{L}([5,1,-3,0],[17,0,-7,1])$ oraz $W=\mathcal{L}([1,2,3,4],[5,8,1,7])$ przestrzeni wektorowej $R^4(\mathbb{R})$ znaleźć wymiary podprzestrzeni U+W i $U\cap W$.