CS & IT ENGINEERING

Computer Network

Error Control

By - Abhishek Sir

Lecture No. - 08

Recap of Previous Lecture

ABOUT ME

Hello, I'm Abhishek

- GATE CS AIR 96
- M.Tech (CS) IIT Kharagpur
- 12 years of GATE CS teaching experience

Telegram Link: https://t.me/abhisheksirCS_PW

#Q. Assume that a 12-bit Hamming codeword consisting of 8-bit data and 4 check bits is d₈ d₇ d₆ d₅ C₈ d₄ d₃ d₂ C₄ d₁ C₂ C₁, where the data bits and the check bits are given in the following tables:

Data bits							
d_8	d ₇	d_6	d_5	d_4	d_3	d ₂	d_1
1	1	0	х	0	1	0	1

Check bits				
c ₈	C ₄	C ₂	c_1	
у	0	1	0	

Which one of the following choices gives the correct values of x and y?

- (A) x is 0 and y is 0
- (B) x is 0 and y is 1
- (C) x is 1 and y is 0
- (D) x is 1 and y is 1

Even Parity

- => Identify even or odd parity
 - → Parity R₁ is balanced using "even parity"
- => Identify value of variable X
 - \rightarrow As per parity \mathbb{R}_0 , X should be "zero bit"
- => Identify value of variable Y
 - \rightarrow If X is "zero", then as per parity R_3 , Y should be "zero bit"

Topic: Hamming Code

Hamming Code (with Even Parity) and 3 data bits:

dadido	> <u>d</u> 2	Logeword LRZdoR, F
000	>	000000
001	>	000111
010	>	011001
011	>	011110
100	>	101010
101	>	101101
110	>	110011
111	>	110100

Valid

_	_ [15])	010	_	1

Block Code

Topic: Hamming Weight

→ The weight of a codeword is the number of nonzero elements

Hamming weight of a binary string = Number of one's in that string

Example :-

Hamming Weight["1011101"] = 5

→ Metric for comparing two binary strings of equal length

Hamming distance between two binary strings of equal length

= Number of positions at which the corresponding bits are different

 \rightarrow Let suppose A and B are two binary strings of equal length

d(A,B) = Hamming Distance between A and B

= Hamming Weight of [A bit-wise XOR B]

Example :-
$$A = 1011101$$
 and $B = 0110110$

A = 1011101

bit-wise XOR B = 0110110

Result = 1101011

$$Str_1 = 10101101$$

 $Str_2 = 01101101$
 $Result = 11000000$

$$d(str, str_2) = 2$$

Let suppose set of valid codewords:

Codeword C₁: 00000 00000

Codeword C₂: 00000 11111

Codeword C₃: 11111 00000

Codeword C₄: 11111 11111

minimum Hamming Distance =

= Minimum[$d(C_1, C_2)$, $d(C_1, C_3)$, $d(C_1, C_4)$, $d(C_2, C_3)$, $d(C_2, C_4)$, $d(C_3, C_4)$]

CASE I : No any error

Transmitted Code = 00000000000 (Valid Codeword)

Received Code = 00000000000 (Valid Codeword)

Error Detected : "No"

Corrected Codeword:

Codeword $C_1:00000000000$

Codeword C₂: 00000 11111

Codeword C₃: 11111 00000


```
CASE II: One-bit error
```

```
Transmitted Code = 00000 00000 (Valid Codeword)
```

```
Received Code = 00000 00001 (Invalid Codeword)
```

Error Detected : "Yes"

Corrected Codeword: 00000 00000 (Nearest Valid Codeword)

Codeword $C_1:0000000000$

Codeword C₂: 00000 11111

Codeword C₃: 11111 00000


```
CASE III: Two-bit error
```

```
Transmitted Code = 00000000000 (Valid Codeword)
```

```
Received Code = 00000 00011 (Invalid Codeword)
```

Error Detected : "Yes"

Corrected Codeword: 00000 00000 (Nearest Valid Codeword)

Codeword $C_1:00000000000$

Codeword C₂: 00000 11111

Codeword C_3 : 11111 00000

CASE IV: Three-bit error

Received Code = 00000 00111 (Invalid Codeword)

Error Detected : "Yes"

Corrected Codeword: 00000 11111 (Nearest Valid Codeword)

Codeword $C_1:00000000000$

Codeword C₂: 00000 11111

Codeword C_3 : 11111 00000


```
CASE V : Four-bit error
```

Transmitted Code = 00000 00000 (Valid Codeword)

Received Code = 00000 01111 (Invalid Codeword)

Error Detected : "Yes"

Corrected Codeword: 00000 11111 (Nearest Valid Codeword)

Codeword $C_1:00000000000$

Codeword C₂: 00000 11111

Codeword C_3 : 11111 00000

CASE VI: Five-bit error

Transmitted Code = 00000 00000 (Valid Codeword)

Received Code = 00000 11111 (Valid Codeword)

Error Detected : "No"

Corrected Codeword:

Codeword $C_1:00000000000$

Codeword C₂: 00000 11111

Codeword C₃: 11111 00000

CASE VII: Five-bit error

Transmitted Code = 00000 00000 (Valid Codeword)

Received Code = 00001 01111 (In valid (odeword)

Error Detected : "Yes"

Corrected Codeword: 00000 11111 (Nearest Valid Codeword)

Codeword $C_1:0000000000$

Codeword C₂: 00000 11111

Codeword C_3 : 11111 00000

if (minimum) Hamming Distance is D

then receiver detect upto (D-1) bits error

and receiver correct upto Floor[(D-1)/2] bits error

$$\frac{\left(\lambda-1\right)}{2}$$

To detect up to x - bits error

-> minimum Hamming Distance should be (x+1)

To correct up to y - bits error

-> minimum Hamming Distance should be (2y+1)

#Q. An error correcting code has the following code words:

00000000, 00001111, 01010101, 10101010, 11110000

What is the maximum number of bit errors that can be corrected?

(A) 0

(B) 1

(C) 2

(D) 3

[GATE 2007]

IIT-K

Solution:-

$$C_1 = 00000000$$

$$C_2 = 00001111$$

$$C_3 = 01010101$$

$$C_4 = 10101010$$

$$C_5 = 11110000$$

minimum Hamming Distance (D) =

Minimum [
$$d(C_1, C_2)$$
, $d(C_1, C_3)$, $d(C_1, C_4)$, $d(C_1, C_5)$, $d(C_2, C_3)$, $d(C_2, C_4)$, $d(C_2, C_5)$, $d(C_3, C_4)$, $d(C_3, C_5)$, $d(C_4, C_5)$]

$$\rightarrow$$
 D = 4

→ Receiver can correct upto Floor[(D-1)/2] bits error

$$\left[\begin{array}{c} (D-1) \\ 2 \end{array}\right] = \left[\begin{array}{c} (4-1) \\ 2 \end{array}\right] = \left[\begin{array}{c} 3 \\ 2 \end{array}\right] =$$

#Q. Consider a binary code that consists only four valid codewords as given below.

00000, 01011, 10101, 11110

Let minimum Hamming distance of code be p and maximum number of erroneous bits that can be corrected by the code be q. The value of p and q are:

(A)
$$p = 3$$
 and $q = 1$

(B)
$$p = 3$$
 and $q = 2$

(C)
$$p = 4$$
 and $q = 1$

(D)
$$p = 4$$
 and $q = 2$

$$9 = \left| \frac{(P-1)}{2} \right|$$

Solution:-

$$C_1 = 00000$$
 $C_2 = 01011$
 $C_3 = 10101$
 $C_4 = 11110$

minimum Hamming Distance (p) =

Minimum[
$$d(C_1, C_2)$$
, $d(C_1, C_3)$, $d(C_1, C_4)$, $d(C_2, C_3)$, $d(C_2, C_4)$, $d(C_3, C_4)$]

$$Min[3,3,4,4,3,3]$$
 $P=3$

$$\rightarrow$$
 p = 3

→ Receiver can correct upto Floor[(p-1)/2] bits error

Topic : Cyclic Code

One-bit parity (with even parity) and 3 data bits

all single

for error correction

Valid Codeword Data

```
0000
000
       -->
001
                  0011
                  0101
010
                  0110
011
                  1001
100
       -->
101
                  101<mark>0</mark>
       -->
110
                  1100
       -->
                  1111
111
```

[Block Code + Linear Code min H.D = 2

Topic: Linear Code

Hamming Code (with Even Parity) and 3 data bits:

Always detect
upto two bit ornor

Always Correct Single bit error

$$\frac{(3-1)}{2} = \frac{|3|}{2} = 1$$

Data	>	Codewo
000	>	000000
001	>	000111
010	>	011001
011	>	011110
100	>	101010
101	>	101101
110	>	110011
111	>	110100

[Block Code]

H Linear Code]

[Not (ycho Code]

Min H D = 3

(minimum) Hamming Distance of the linear code is

= minimum weight of its nonzero codewords

- → (minimum) Hamming Distance in:
 - 1. One-bit parity is always "2".
 - → Always detect "single bit error"
 - 2. Hamming Code is always "3".
 - → Always correct "single bit error"
 - → Always detect "upto two bit error"

Pw

Set of Codewords in:

- → CRC is "Cyclic Code"
- → Hamming Code is "Linear Code, but not Cyclic"

THANK - YOU