Inverse Matrix

• **Definition**: For a square matrix $A \in \mathbb{R}^{n \times n}$, its inverse matrix A^{-1} is defined such that

$$A^{-1}A = AA^{-1} = I_n.$$

• For a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its inverse matrix A^{-1} is defined as

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Solving Linear System via Inverse Matrix

• We can now solve $A\mathbf{x} = \mathbf{b}$ as follows:

$$A\mathbf{x} = \mathbf{b}$$

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$I_n\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

Solving Linear System via Inverse Matrix

• Example:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 \end{bmatrix}$$

One can verify

$$A^{-1}A = AA^{-1} = I_n.$$

•
$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 & -1.0000 \end{bmatrix} \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$

Solving Linear System via Inverse Matrix

• Now, the life-span can be written as $(\text{life-span}) = -0.4 \times (\text{weight}) + 20 \times (\text{height}) \\ -20 \times (\text{is_smoking}).$