

Upcoming Schedule

Today

Bring a pencil/pen

Date	Topic	Lab	Assignment
10/13	Programming/Python Review		
10/15	Midterm Review	No Lab	HW4 Due
10/20	Midterm Exam		
10/22	Special Topics - Bias in Al	No Lab	

Homework Grades

- HW grades should now be visible
- There's a small set of students who do not currently have grades for their first couple HW
 - We are aware and working on getting grades out ASAP

Regrades

- Full policy is in the syllabus
- TL;DR:
 - If you notice a mistake in the grading, please email your lab TA and me to have us look over it
 - Regrades must be requested within a week of when your grade was released

Lecture Outline

- Midterm Info
- Python Review
 - Data types
 - Functions and control statements
 - Visualizations

Midterm Info

Midterm Logistics

- Next week Monday (10/20) during class
- Paper exam
 - Closed book, no electronic devices
 - Allowed to bring a single 5"x7" notecard
 - Bring a pen or pencil
- TAs will lead a review session on Wednesday with sample questions

What you are not expected to know

- Exact syntax of datascience module functions
 - You should know what the functions do, but you will not be tested on memorizing the exact order of inputs
- Lectures 1-2

What you are expected to know

- Programming concepts:
 - Table functions/methods we've used thus far
 - Operations we can perform on tables
 - Visualizations (plots, bar charts, histograms, ...)
 - NumPy functions we've used thus far
 - Built-in Python
 - Data types, basic operations on and with data types
- Concepts and Definitions:
 - Topics covered in slides

Suggested materials to study

- Slides
- Textbook Chapters
- Demo code

Data Types Review

Numbers

- Integers: Whole numbers

- Floats: Anything with decimals

- Basic calculations

Strings

- Text in python! Starts and ends with either a single quote or a double quote:

```
- "a"

- 'This is a sentence'

- "This is another sentence. Wow!"
```

- You can convert values to a string using str(...)

```
- str(5) becomes "5"
```

- You can convert strings of numbers to numbers

```
- int('12'), float('1.2')
```

Booleans

- Booleans are data types for truth values: True or False
 - True is equivalent to 1
 - False is equivalent to 0
- bool (x) turns x into a boolean
 - e.g., bool (1) evaluates to True and bool (0) evaluates to False

Arrays

- Arrays are a sequence of values
 - e.g., ["Mystery", "Abby", "Jinu", "Baby", "Romance"] or [1,2,3,5]
- Arrays are zero-indexed
 - The first element is the 0th and the second is 1st
- Can perform component-wise arithmetic
 - Note this only works for numpy arrays but not built-in Python lists!

```
from datascience import *
onetwothree = make_array(1,2,3)
onetwothree * 2
array([2, 4, 6])
```

```
from datascience import *
onetwothree = make_array(1,2,3)
twothreefour = make_array(2,3,4)
onetwothree + twothreefour
array([3, 5, 7])
```

```
onetwothree = [1,2,3]
twothreefour = [2,3,4]
onetwothree + twothreefour

[1, 2, 3, 2, 3, 4]
```

Tables

A table is a way of representing data sets

- Each row is an individual
- Each column is an attribute of the individual

Name	Age	Weight	Coloring	Sex	Owner
Ruby	14	8	tuxedo	F	Alice
Gertrude	15	12	tuxedo	F	Alice
Hamby	8	16	tabby	М	Bob
Fig	3	7	tabby	F	Bob
Corina	6	10	tortie	F	Carol
Frito	2	8.5	tabby	М	Carol

Control Flow and Functions

Anatomy of a Function

```
Name, Parameters, Body, Return Statement
Example:
def convert to figs (weight):
  new weight = (weight/7).round(1)
  return new weight <
```

Functions with Multiple Arguments/Parameters

Functions can take in multiple inputs

- Each argument is given a unique name and separated by commas
- Specifying default values for particular inputs to makes them optional

```
def convert_to_figs(weight, decimal_places=1):
    '''Divides the input by 7 (Figs weight) and then rounds to
    the given number of decimal places'''
    new_weight = (weight/7).round(decimal_places)
    return new_weight
```

Recall: apply

Returns an array with convert_to_figs called on each element in the 'Weight' column

Use apply to call a function on each element in a column

```
def convert_to_figs(weight):
    new_weight = (weight/7).round(1)
    return new_weight

cat_tbl.apply(convert_to_figs, 'Weight')
```

apply with Multiple Inputs

For functions with multiple inputs, apply can take multiple columns

```
def convert_to_figs(weight, decimal_places=1):
    new_weight = (weight/7).round(decimal_places)
    return new_weight

cat tbl.apply(convert to figs, 'Weight', 'Precision')
```

Control Statements

- Two major types are if and for
 - if statements specify code that should be run conditioned on something being true
 - They can also specify if alternative code should be run otherwise
 - for loops allow executing code over each element in some sequence of items

if statements

```
Runs if statement 1 == True
if statement 1:
   first code block
                               - Runs if statement_1!= True
AND statement_2 == True
elif statement 2:
   second code block
elif statement 3:
   third code block
                                  AND statement -3 == True
else:
   fourth code block
                              nothing above == True
```

for Statements

- Executing a for runs code with each element in an iterable

```
for item in some array:
  print (item)
      code to evaluate in each iteration of the loop
```

Table Functions

Grouping by a Single Column

The group method aggregates all rows with the same value in column c

- tbl.group(c)
- tbl.group(c, func)

group can optionally apply func to grouped values, for example:

- len: count of grouped values (default)
- list: list of all grouped values
- sum: total of all grouped values

cat_tb1	l.group('Owner	', np.averag	je)		
Owner	Name average	Age average	Weight average	Coloring average	Sex average
Alice		14.5	10		
Bob		5.5	11.5		
Carol		4	9.25		

Grouping by Multiple Columns

The group method can also aggregate all rows that share the combination of values from multiple columns

<pre>cat_tbl.group(['Sex','Coloring'], sum)</pre>						
Sex	Coloring	Name sum	Age sum	Weight sum	Owner sum	
F	tabby		3	7		
F	tortie		6	10		
F	tuxedo		29	20		
М	tabby		10	24.5		

Joining Two Tables

Sometimes data about the same individuals are in different tables

- join combines the two datasets together
- Entries that do not appear in both tables are not included in the new table

To combine entries from table1 and table2 based on columns c1 and c2

- table1.join(c1, table2, c2)

Pivot Tables

```
tbl.pivot(col_var, row_var, values, collect)
```

- values: Table column to aggregate
- collect: Function to aggregate with

Either include both values and collect or neither

```
cat_tbl.pivot('Owner', 'Sex', 'Age', np.average)

Sex Alice Bob Carol

F 14.5 3 6

M 0 8 2
```

Group vs Pivot

Group

- One combo of grouping variables
 per row
- Any number of grouping variables
- Aggregate values of all other
 columns in the table
- Missing combos are absent

<pre>cat_tbl.group(['Sex','Coloring'], np.average)</pre>					
Sex	Coloring	Name average	Age average	Weight average	Owner average
F	tabby		3	7	
F	tortie		6	10	
F	tuxedo		14.5	10	
М	tabby		5	12.25	

Pivot

- One combo of grouping variables per entry
- Two grouping variables: columns and rows
- Aggregate values of values column
- Missing combos = 0 (or empty string)

```
cat_tbl.pivot('Sex', 'Coloring', 'Weight', np.average)

Coloring F M
tabby 7 12.25

tortie 10 0
tuxedo 10 0
```

Randomly Selecting from Arrays

To select uniformly at random from array some array

```
- np.random.choice(some array)
```

To select n number of random elements from array some array

```
- np.random.choice(some_array, n)
```

Randomly Sampling Tables

Returns a table with n rows sampled with replacement from Table tbl

```
- tbl.sample(n)
```

Returns a new table with n rows sampled without replacement from tbl

```
- tbl.sample(n, with_replacement=False)
```

Visualizations

Charts Summary

Туре	Syntax	Description
Line graph	.plot(x_axis, y_axis)	Sequential data
Scatter Plot	.scatter(x_axis, y_axis)	Relation between two numerical values
Bar Chart	.barh(column_label)	Distribution of one categorical variable (already grouped)
Histogram	.hist(column_label, unit, bins)	Distribution of one numerical variable

Histograms

The area of each bar is a percentage of the whole

The horizontal axis is a numerical distribution - the bins don't need to be of equal size

The vertical axis is a rate (e.g., percent/year) - density

Bin size = 5

Area Principle

area of bar = percent of entries in bin

area of bar = (height of bar) \times (width of bin)

height of bar =
$$\frac{\text{area of bar}}{\text{width of bin}} = \frac{\text{percent of entries in bin}}{\text{width of bin}}$$

Bin size = 1

Bin size = 5

Bin size = 15

Bar Chart vs Histogram

Bar Chart

- Distribution of categorical variable
- Length of bars is proportional to the frequency / percent of individuals

Histogram

- Distribution of numerical variable
- Horizontal axis is numerical, bins can be unequal
- Area of bars is proportional of percent of individuals, height measures density

Upcoming Schedule

Wed

Bring a pencil/pen

Date	Topic	Lab	Assignment
10/13	Programming/Python Review		
10/15	Midterm Review	No Lab	HW4 Due
10/20	Midterm Exam		
10/22	Special Topics - Bias in Al	No Lab	