ELEC4170 LAB REPORT 1

Chapter 1 Diode Rectifier

Your Name and Student ID

Single-phase half-wave diode rectifier with R load

a) Schematics

Figure 1: Single-phase half-wave diode rectifier with R.

Figure 2: Single-phase half-wave diode rectifier with R outputs.

c) Conclusions

Because of the forward biased principle for a diode, only the positive flowing current can pass through. Negative cycle is stopped to go to output because of diode reverse condition.

Single-phase half-wave diode rectifier with parallel RC load

a)Schematics

Figure 1: Single-phase half-wave diode rectifier with RC Load

b)Output

c)Result

RC circuit smoothes the rectified output, reducing the ripple and making the output voltage closer to a DC signal. However, as seen in the green curve, there is still a noticeable ripple due to the capacitor discharging between cycles.

Single-phase Full-wave diode rectifier with R load

a)Schematics

Figure 1: Single-phase full-wave diode rectifier with R Load

c)Result

Full Wave Rectifier is showing that we are getting both cycles of input at output but on positive sides. Diode voltage drop is 0.7V. Output current is calculated as I=V/R. Circuit smoothes the rectified output, reducing the ripple and making the output voltage closer to a DC signal.

Single-phase Full-wave diode rectifier with RL load

a)Schematics

Figure 1: Single-phase full-wave diode rectifier with RL Load

b)Output

c)Result

This experiment successfully demonstrated the operation and characteristics of a full-wave rectifier with an RL load, highlighting its effectiveness in converting AC input to pulsating DC output. The addition of the RL load significantly impacted the output waveform compared to a resistive load alone, with the inductor reducing ripple in the output voltage and acting as a smoothing element. Output voltage and current waveforms exhibited phase differences due to the inductive component, and experimental results closely matched theoretical predictions, validating our understanding of the circuit's behavior.

Three-phase Half-wave diode rectifier with R load

a)Schematics

Figure 1: Three-phase Half-wave diode rectifier with R Load

c)Result

This experiment successfully demonstrated the operation and characteristics of a three-phase half-wave rectifier, highlighting its advantages over single-phase rectifiers. The circuit effectively converted three-phase AC input into a pulsating DC output with reduced ripple compared to single-phase counterparts. Key observations included the 120° phase shift between input waveforms, the increased output frequency of 3f.

Three-phase Full-wave diode rectifier with R load

a)Schematics D1N3940 VAMPL = 220 D13 VOFF = 0 D1N3940 D1N3940 AC = R1 10 VAMPL = 220 VOFF = 0 AC = D12 D10 D1N3940 D11 D1N3940 D1N3940 VAMPL = 220 VOFF = 0 AC =

Figure 1: Three-phase full-wave diode rectifier with R Load

c)Result

This experiment successfully demonstrated the operation and advantages of a three-phase full-wave rectifier with a resistive load. The circuit efficiently converted three-phase AC input into a smoother DC output, showcasing significant improvements over single-phase alternatives. Key observations included a higher output frequency of 6f (where f is the input frequency), substantially lower ripple content in the output voltage, and improved transformer utilization. We also get higher average DC.

Task 7

Three-phase Full-wave diode rectifier with RLC load.C is parallel to series combination of L and R $\,$

Figure 1: Three-phase full-wave diode rectifier with RLC Load

c)Result

The results of the three-phase full-wave diode rectifier with RLC load demonstrate efficient AC to DC conversion with significantly reduced ripple compared to single-phase systems. The output waveforms show a smoother voltage and current profile, with the current exhibiting even less fluctuation due to the inductive component of the load. This configuration achieves a higher output frequency and improved power quality, making it suitable for applications requiring stable DC power from a three-phase source.