Tecto to AMR and translation

Ondřej Bojar, Silvie Cinková,

Ondřej Dušek, Tim O'Gorman,

Martin Popel, Roman Sudarikov,

Zdeňka Urešová

August 1, 2014

Introduction

Motivation

- We suspect parallel AMRs will generally be similar
- We believe the AMR and t-layer (tectogrammatical layer) are similar
- Being able to convert T-layer to AMR would give us lots of AMR data.
- Also would be useful for translation.

Looking at the AMR-AMR link

- Manual annotation of 100 sentences of Czech, Chinese and English suggest that there is a lot of similarity between languages.
- Smatch alone doesn't work for cross-lingual comparison.

AMRICA

(AMR Inspector with Cross-language Alignment)
Extension to Smatch (Cai & Knight 2012).

Smatch Classic

Smatch Classic

Smatch Classic

AMRICA

AMRICA

Simplistic View of the MT Plan

From Text to AMR

From Text to AMR

- Same goal as AMR parsing team but...
- Building on top of t-layer analysis.

General Conversion Idea

- AMR and PCEDT are very similar:
 - Both abstract away from syntax.
 - Both make all semantic links in a sentence in a graph format.
 - Both do coreference
 - Semantic roles must be converted.
 - Various minor structural differences.

General Conversion Idea

These are the main things that t-to-AMR conversion has to handle:

- PCEDT has many layers and features;
 AMR is all in one graph.
- Some additional data (named entities, inferrable predicates, etc) are added in AMR graphs
- Semantic roles must be converted.
- Various minor structural differences.

"Peter is eager to please"

Merging of Coreferent Nodes

Elimination of semantically light words

Semantic Roles and Senses

Named Entities

Conversion Procedures

- Handcoded rules in two toolkits:
 - PML-TQ to reflect AMR Guidelines (and tightly coupled with Prague t-layer approach)
 - Tree Surgeon to reflect Tim's knowledge (and closer to the target AMR format)

Baseline

- Just printing t-trees in AMR format
- No changes, just coreference replaced by reentrancies

Edge Labels

 Deterministically mapped to AMR arc labels

Named Entities

 AMR-style Named Entities added using Stanford NER (CoNLL'08) and NameTag (BBN-style)

Verbalization

- Based on a dictionary:
 - lacktriangle administration ightarrow administrate-01
 - ▶ beekeeper \rightarrow person :ARG0-of keep-01 :ARG1 bee

PML-TQ Rules

- Based on AMR guidelines (generalized)
- For copula, attributes, non-core roles . . .

A PML-TQ rule

Guidelines example:

The boy is responsible for the work.

PML-TQ Rules

Rule application

Matching sentence:

Ondrej was nervous about the presentation.

Guidelines-Based Conversion

- Create marking rules in PML-TQ from AMR guidelines examples.
 - Empirical generalizations of the examples.
 - Find a many sentences structurally similar to the example sentence as possible, not considering possible interactions between queries.
 - Phenomena: copula, attributes, non-core roles...
- Mark t-trees with these rules.
- Change each t-tree to mimic the AMR in the guideline example.

Sample PML-TQ

Ex.: Iraq launched a missile attack.

```
101a-Iraq_launched_a_missile_attack
t-node $launch_DEL := [
  t_lemma in {"launch", "begin", "start", "perform", "do", "make
  is_passive !=1,
  t-node $a_attack_01 := [
    (gram/sempos~"^n..*$" or formeme~"ger",
      t_lemma in {"N_V"},
      functor in {"CPHR", "DPHR", "PAT"}
    ) or
    functor="CPHR",
    t-node $m missile := [
      functor in {"MEANS", "RSTR"},
      gram/sempos="n.denot",
      ord<$a_attack_01.ord]
  t-node $c_country_n_name := [gram/sempos~"^n..*$", functor="AC
```

Constructing Rules (LHS)

- query nodes indexed to map on the resulting AMR
- _DEL = delete node in conversion
- What makes a word similar to
 - launch, v? heuristic Wordlist of performative light verbs, based on PEDT
 - attack, n? heuristic structure template (part of a phraseme or -ing form or being listed as a predicate-invoker in AMR Editor

Applying Rules

- PML-TQ specifies the LHS of the replacement.
- RHS is usually just taken from AMR Guidelines
- Top-bottom, clone nodes from original t-tree to tamr-tree
- For each node apply all possible rules:
 - Add modifier from AMR node
 - Change parent if necessary

Tsurgeon tree transformation

- Other approach is to convert t-layer (with many features) into constituency trees (reentrancies repeated as variables)
- ► This is so that we can use a tree tranformation tool, **tsurgeon** (Levy and Andrews 2006) to quickly implement hand-written rules.
- Essentially does regular expressions over trees, with commands like "move", "insert", etc.

Tsurgeon tree transformation

 Many of the structural differences are pretty deterministic

Tsurgeon tree transformation

 Other differences are meaningful, but relatively consistent: AMR makes "apple" the head of "plenty of apples".

```
have have
PAT arg1
plenty APP apple quant
apple plenty
```

Adding and removing nodes using lexical lists

Have lists of mappings (manually generated at ISI and Boulder) we use for converting complex patterns.

	give				
ACT	CPHR		bless		
John	blessing	APP	ACT	PAT	
		Mary	John	Mary	

Predicate abstraction and semantic role conversion

- ► AMR verbalizes predicates, so "destruction" is "destroy-01", etc
- Propbank "unification" frame files mark this.
- Vallex mappings from t-layer roles to AMR numbered arguments.

Results of FN t-to-AMR Conv

				Smatch	(%)
	incl.	verb se	ense tags $ ightarrow$	yes	no
Baseline				20	28

41

45

43

47

48

52

33

37

35

38

40

44

Baseline

+labels +PML-TQ +verbaliz. +NE

+verbaliz. +NE

+labels +PML-TQ +verbaliz.

+labels

+labels

+labels +NE

+Tsurgeon + NE

MT as Cross-Lingual Deep Parsing

Overview of Cross-Lingual Parsing

Chinese to English (cross-lingual AMR parsing)

Jeff and Adi will report on their experiment