Computer graphics with computer vision

Volume Rendering

Low

Density

Density=0

High

Density

NeRF

UniOcc

NeRF f_{θ} : $(x,d) \rightarrow (c,\sigma)$

UniOcc f_{θ} : $(x) \rightarrow (s, \sigma)$

Advantage

- Cost lower memory
- Higher resolution
- Easily learned

$$T(z_k) = exp(-\sum_{t=1}^{k-1} \sigma(z_t)\beta_t), \tag{3}$$

$$\alpha(z_k) = 1 - \exp(-\sigma(z_k)\beta_k), \tag{4}$$

$$D = \sum_{k=1}^{N} T(z_k)\alpha(z_k)z_k,$$
 (5)

$$S = \sum_{k=1}^{N} T(z_k)\alpha(z_k)s(z_k), \tag{6}$$

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right),$$

 α

Thoughts

- How to Render
- S=

Challenge——Generalization

Challenge——Efficiency

数据集	数据量	Time
Fern (真实forward场景)	~100图片	4hours
Lego (虚拟前景场景)	~100图片	3hours

Challenge——Ambiguity

Plenoxels

PETR

$$f_{\theta}: (x,d) \to (c,\sigma) \longrightarrow f_{\theta}: (\gamma(x),d) \to (c,\sigma)$$

$$\gamma(p) = \left(\sin(2^0\pi p), \cos(2^0\pi p), \cdots, \sin(2^{L-1}\pi p), \cos(2^{L-1}\pi p)\right).$$

pipeline

Pipeline++ ->Coarse to fine

Pipeline++ ->Memory Cost

Pipeline++ ->SDF、TSDF

