IT-Security (ITS) B1

DIKU, E2024

Today's agenda

Crypto recap

Putting it all together

Key exchange

Key management

Certificates

Assignments

There are 6 weekly assignments during the course.

```
Week | Date
              | Topic
     | 08 Sep | No handin first week
36
    | 15 Sep | Assignment 1 handin
     | 22 Sep | Assignment 2 handin
39
    | 29 Sep | Assignment 3 handin
40
     | 06 Oct | Assignment 4 handin
41
     | 13 Oct | Assignment 5 handin
              | Possible re-handin of one assignment (1-4)
42
     | 27 Oct | Assignment 6 handin
43
```

Pass/fail; groups of up to 3; expect at least 66 % correct to pass; re-handin of only one.

Recap: Security goals and crypto primitives

Don't worry about the details of RSA, AES, or SHA1

Focus on the bigger picture of what we achieve with

- symmetric / asymmetric ciphers
- cryptographic hash functions
- message authentication codes
- digital signatures

Key management

Many keys to protect

Master key

Session key

Signature key

Data encryption key

Key encryption key

...

Protect during entire lifecycle

Generation

Exchange

Storage/backup

Use

Expiration

Revocation

Destruction

Key exchange options include

Pre-distribution

Generated and distributed "ahead of time" e.g. physically

Distribution

Generated by a trusted third party (TTP) and sent to all parties

Agreement

Generated by all parties working together

Asymmetric

Is e really yours?

Developing a key distribution scheme

Situation:

A and B want to exchange keys remotely

Both A and B share a key (K_AS, K_BS) with a trusted third party, S

At the end, we want to achieve:

A and B know a new key K_AB

No one but A, B, and possibly S knows K_AB

A and B know that K_AB is newly generated

Basic authenticated key exchange

Alice (claimant)

shared secret: $W_{\mbox{\scriptsize AB}}$

I am Alice, here is some evidence that I know our shared Alice-Bob secret

Yes, but that looks old. Here's a random number

Okay, here is fresh evidence combining our secret and the random number you just sent

Bob (verifier)

shared secret: W_{AB}

More key management risks

Attack	Short description
replay	reusing a previously captured message in a later protocol run
reflection	replaying a captured message to the originating party
relay	forwarding a message in real time from a distinct protocol run
interleaving	weaving together messages from distinct concurrent protocols
middle-person	exploiting use of a proxy between two end-parties
dictionary	using a heuristically prioritized list in a guessing attack
forward search	feeding guesses into a one-way function, seeking output matches
pre-capture	extracting client OTPs by social engineering, for later use

Key agreement

Basic idea

If you wanted to exchange secret paints

Basic idea

Choose a function f such that

$$f(a,f(b)) = f(b,f(a))$$

And

 $f^{-1}(x)$ is hard

Solution by Diffie-Hellman, 1976

Computational Diffie-Hellman assumption

Diffie-Hellman: toy example (security)

Alice Bob Eve

Known	Unknown	Known	Unknown	Known	Unknown
p = 23		p = 23		p = 23	
g = 5		g = 5		g = 5	
a = 6	b	b = 15	a		a, b
A = 5 ^a mod 23		B = 5 ^b mod 23			
$A = 5^6 \mod 23 = 8$		$B = 5^{15} \mod 23 = 19$			
B = 19		A = 8		A = 8, B = 19	
s = B ^a mod 23		s = A ^b mod 23			
s = 19 ⁶ mod 23 = 2		s = 8 ¹⁵ mod 23 = 2		$s = 19^a \mod 23 = 8^b \mod 23$	
s = 2		s = 2			s

Is e really yours?

Public-key infrastructure (PKI)

A system for the creation, storage, and distribution of **digital certificates** which are used to verify that a particular public key belongs to a certain entity

X.509 format for certificates include:

Serial number – unique identification of certificate

Valid-From/To – lifespan of the certificate

Subject - the entity/person/machine/etc. identified

Public key – the entity's public key

Signature – the actual signature of the issuer

Issuance and verification

A private key is created by you — the certificate owner — when you request your certificate with a Certificate Signing Request (CSR).

Types of PKI: CA model

Trust in browsers

Browsers come pre-configured with a set of root CAs. Do you trust all these CAs (to authenticate properly, to avoid/inform of breaches)?

Chain of trust

CA providers

Types of PKI: Web of trust

Revocation of certificates

Certificate revocation list (CRL):

A list of (serial numbers for) certificates that have been revoked, and therefore, entities presenting those (revoked) certificates should no longer be trusted

Online Certificate Status Protocol (OCSP):

Protocol used for obtaining the revocation status of an X.509 digital certificate

Lecture plan

```
Week | Date
       02 Sep | Security concepts and principles
     | 06 Sep | Cryptographic building blocks
   | 09 Sep | Key establishment and certificate management
| 13 Sep | User authentication, IAM
    | 16 Sep | Operating systems security, web, browser and mail security
     | 20 Sep | IT security management and risk assessment
    | 23 Sep | Software security - exploits and privilege escalation
     | 27 Sep | Malicious software
     | 30 Oct | Firewalls and tunnels, security architecture
     | 04 Oct | Cloud and IoT security
     | 07 Oct | Intrusion detection and network attacks
     | 11 Oct | Forensics
42
              | Fall Vacation - No lectures
     | 21 Oct | Privacy and GDPR
     | 25 Oct | Privacy engineering
     | 28 Oct | Final guest lecture and Exam O/A
```