ODSEK ZA FIZIČKU ELEKTRONIKU ODSEK ZA SIGNALE I SISTEME ODSEK ZA TELEKOMUNIKACIJE I INFORMACIONE TEHNOLOGIJE

REŠENJA ZADATAKA

1. a)
$$R_1 = 606\Omega$$
; $R_2 \approx 2.2 \text{k}\Omega$; $R_3 = 5 \text{k}\Omega$.

b)
$$a = \frac{v_i}{v_u} = g_{m3} R_3 \frac{g_{m1}(R_1 \parallel r_{\pi 3})}{1 + g_{m1}(R_2 \parallel \frac{r_{\pi 2}}{\beta_0 + 1})} \approx 1972.$$

c)
$$R_{ul} = r_{\pi 1} + (\beta_0 + 1) \cdot \left(R_2 \parallel \frac{r_{\pi 2}}{\beta_0 + 1} \right) \approx 4.97 \text{k}\Omega$$
; $R_{izl} = R_3 = 5 \text{k}\Omega$.

d)
$$V_I = 0$$
;

 $v_{\it IMAX}=4.8{\rm V}$ (Q_3 na granici zasićenja); $v_{\it IMIN}=-5{\rm V}$ (Q_3 na granici zakočenja); $V_{\it immax}=4.8{\rm V}$.

4.

$$v_I[V] = -12V = const$$
, za $-12V \le v_G \le -4.5V$ (IOP-neg. zasićenje, D -ON); $v_I[V] = 2v_G[V] - 3$, za $-4.5V \le v_G \le -1.5V$ (IOP-lin. režim, D -ON); $v_I[V] = 4v_G[V]$, za $-1.5V \le v_G \le 3V$ (IOP-lin. režim, D -OFF); $v_I[V] = 12V = const$, za $3V \le v_G \le 12V$ (IOP-poz. zasićenje, D -OFF).