<u>Prática 2 – Perceptron – para entregar</u>

Uma equipe de engenheiros determinou que um tipo de falha comumente encontrado em motores de indução trifásicos de uma indústria pode ser pré-identificado (antes que a mesma ocorra) mediante as análises de três grandezas físicas $\{x_1, x_2, x_3\}$. O esquema ilustrativo do processo é mostrado na figura abaixo. Desta forma, a partir de tais grandezas, a equipe pretende aplicar um *Perceptron* para classificar a operação do motor em duas classes, ou seja, "Operação Normal (Classe C_1)" ou "Iminência de Falha (Classe C_2)", tendo o intuito de se efetuar manutenção preventiva e minimizar o custo operacional da indústria.

A base de dados de treinamento do *Perceptron* foi levantada por meio de sucessivos ensaios experimentais, conforme descrito pela Tabela em Anexo. Portanto, o neurônio constituinte do *Perceptron* terá três entradas e uma saída conforme ilustrado na figura abaixo.

Considerando o modelo de neurônio artificial *Perceptron* com o algoritmo de aprendizagem de Hebb, desenvolva as seguintes atividades:

- 1) O algoritmo de treinamento é supervisionado? Justifique.
 - R: Sim, é supervisionado, uma vez que o mesmo só é finalizado quando os resultados encontrados são iguais aos resultados fornecidos (a quarta coluna do arquivo treinamento.txt)
- Qual função de ativação que deverá ser utilizada para o problema proposto?
 R: Degrau

3) Assumindo a taxa de aprendizagem de 0.01, implemente e execute 5 treinamentos da rede *Perceptron*, inicializando o vetor de pesos iniciais aleatoriamente de forma que este seja diferente a cada treinamento.

4) Registre os resultados dos treinamentos na tabela abaixo.

Treinamento	Vetor de Pesos Inicial				Vetor de Pesos Final				Número
Tremamento	θ	W 1	W 2	W 3	θ	W ₁	W 2	W 3	de Épocas
1° (T1)	0.6557	0.0357	0.8491	0.9340	0.0757	0.3880	0.3964	0.8048	28
2° (T2)	0.6787	0.7577	0.7431	0.3922	0.0187	-0.3008	-0.3027	0.6083	45
3° (T3)	0.6555	0.1712	0.7060	0.0318	0.0555	-0.3808	-0.3865	0.7820	59
4° (T4)	0.2769	0.0462	0.0971	0.8235	0.0369	-0.7575	-0.7603	1.5266	86
5° (T5)	0.6948	0.3171	0.9502	0.0344	-0.0052	-0.3654	-0.3762	0.7440	65

5) Após o treinamento do *Perceptron*, aplique o mesmo para efetuar a identificação de falhas com os seguintes dados coletados pelos sensores situados na planta industrial. Ressalta-se que os resultados das saídas são referentes aos treinamentos realizados no item anterior.

Amostra	X 1	X ₂	X 3	У	У	У	У	Y
	^ 1			(T1)	(T2)	(T3)	(T4)	(T5)
1	4.0736	4.5290	4.2580	-1	-1	-1	-1	-1
2	0.6349	4.5669	2.4343	-1	-1	-1	-1	-1
3	3.1618	0.4877	1.8373	-1	1	-1	1	1
4	1.3925	2.7344	2.0922	-1	1	-1	1	1
5	4.7875	4.8244	4.6913	-1	-1	-1	-1	-1
6	0.7881	4.8530	2.9396	1	1	1	1	1
7	4.7858	2.4269	3.7253	1	1	1	1	1
8	4.0014	0.7094	2.3517	-1	-1	-1	-1	1
9	2.1088	4.5787	3.3765	1	1	1	1	1
10	3.9610	4.7975	4.3967	1	1	1	1	1

6) Explique por que o número de épocas de treinamento varia a cada vez que se executa o treinamento do *Perceptron*.

R: pois o vetor inicial de pesos é iniciado com valores aleatórios entre 0 e 1, assim podendo levar mais ou menos repetições para que o y alcance o valor desejado

7) Qual a principal limitação do *Perceptron* quando aplicado em problemas de classificação de padrões?

R: A condição para que o Perceptron de camada simples possa ser utilizado como um classificador de padrões consiste em que as classes do problema a ser mapeado sejam linearmente separáveis.

8) Execute um treinamento considerando a entrada do limiar +1 (+ θ), ao invés de -1 (- θ), e discuta o resultado.

R: No vetor de pesos final o primeiro item tem o sinal trocado. Normalmente ele costuma ser positivo para $-\theta$.

OBSERVAÇÕES:

1. Anexar o programa fonte referente à implementação.

Obs: Este exercício elaborado pelo Prof. Ivan Nunes da Silva.