Temperatura Crítica de Superconductores

¿Es suficiente una regresión múltiple?

Grupo A - Estadística

Pontificia Universidad Católica de Chile Facultad de Matemáticas EYP2307 - Análisis de Regresión

1 de Diciembre de 2020

Contenido

Avance 1

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Contenido

Avance 1

Recursos Utilizados

- 1. Usamos RStudio.
- 2. R Markdown y R Sweave.
- 3. GitHub.
- 4. Bases de datos.
 - train.csv
 - unique_m.csv

Predecir la temperatura crítica de los superconductores, en base a nuestra variable respuesta critical_temp.

Limpieza de la base de datos

Como se tenían 169 variables en total, se decidió limpiar la base de datos.

Limpieza de la base de datos

- Como se tenían 169 variables en total, se decidió limpiar la base de datos.
- Al hacer la limpieza nos quedamos solo con 34 variables.

Se hizo un análisis de correlación.

- Se hizo un análisis de correlación.
- La variable std_ThermalConductivity tuvo la correlación más alta de **0.65**, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.

- Se hizo un análisis de correlación.
- La variable std ThermalConductivity tuvo la correlación más alta de **0.65**, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.
- Al hacer el análisis de la varianza explicada: $R^2 = 0.43$.

- Se hizo un análisis de correlación.
- La variable std_ThermalConductivity tuvo la correlación más alta de 0.65, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.
- Al hacer el análisis de la varianza explicada: $R^2 = 0.43$.
- Se decidió buscar alternativas para intentar aumentar este último valor.

Nos decidimos por un nuevo modelo.

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range Valence por ser una variable discreta y así nos quedaron 7 modelos.
- El modelo final nos quedó:

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.
- ► El modelo final nos quedó:
 - $\rho = 0.75.$

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.
- ► El modelo final nos quedó:
 - $\rho = 0.75.$
 - $ightharpoonup R^2 = 0.56.$

Objetivo del Avance 2

Predecir la temperatura crítica de los superconductores en base a nuestra variable respuesta, utilizando modelos de regresión lineal múltiple para mejorar los resultados obtenidos en el Avance 1.

Contenido

Avance :

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - 2. Forward.
 - 3. Backward-Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - 2. Forward.
 - 3. Backward-Forward.
 - 4. add1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - 2. Forward.
 - 3. Backward-Forward.
 - 4. add1.
 - drop1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - 7. Modelo con la idea del Avance 1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - 5. drop1.
 - 6. VIF.
 - Modelo con la idea del Avance 1.
 - 8. Ridge Regression.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - 2. Forward.
 - 3. Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - 7. Modelo con la idea del Avance 1.
 - 8. Ridge Regression.
 - 9. Lasso Regression.

Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con 34 variables.

- Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con **34** variables.
- Se solucionó el problema de multicolinearidad en cada modelo viendo el VIF.

- Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con 34 variables.
- Se solucionó el problema de multicolinearidad en cada modelo viendo el VIF.
- En todos los modelos se usó criterio AIC (excepto en Modelo con VIF).

Modelo con Backward

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

Modelo con Backward

- Multicolinearidad \rightarrow 2 variables eliminadas.
- Modelo conformado finalmente por **27** β 's.

Modelo con Forward

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

Modelo con Forward

- Multicolinearidad \rightarrow 4 variables eliminadas.
- Modelo conformado finalmente por **28** β 's.

Modelo con Backward-Forward

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

Modelo con Backward-Forward

- Multicolinearidad \rightarrow 2 variables eliminadas.
- Modelo conformado finalmente por **27** β 's.

Modelo con add1

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

Modelo con add1

- Multicolinearidad \rightarrow 3 variables eliminadas.
- Modelo conformado finalmente por **28** β 's.

ightharpoonup Multicolinearidad \rightarrow **1** variable eliminada.

Modelo con drop1

- ightharpoonup Multicolinearidad ightharpoonup variable eliminada.
- ▶ Modelo conformado finalmente por **25** β 's.

Modelo con VIF

▶ Se consideró el modelo conformado por todas las variables de la base de datos.

Modelo con VIF

- Se consideró el modelo conformado por todas las variables de la base de datos.
- Se fue eliminando el problema de multicolinearidad progresivamente.

- Se consideró el modelo conformado por todas las variables de la base de datos.
- Se fue eliminando el problema de multicolinearidad progresivamente.
- ► Modelo conformado finalmente por **28** variables.

Modelo con la idea del Avance 1

► Se crearon **7** bases de datos según range_Valence.

Modelo con la idea del Avance 1

- Se crearon 7 bases de datos según range Valence.
- Se creó un modelo para cada base de datos mediante selección Backward.

Modelo con la idea del Avance 1

- Se crearon 7 bases de datos según range Valence.
- Se creó un modelo para cada base de datos mediante selección Backward.
- Cantidad de variables:
 - Modelo para range_Valence = 0: 25 variables.
 - Modelo para range_Valence = 1: 23 variables.
 - 3. Modelo para range_Valence = 2: 24 variables.
 - 4. Modelo para range Valence = 3: 25 variables.
 - 5. Modelo para range Valence = 4: 22 variables.
 - 6. Modelo para range_Valence = 5: 19 variables.
 - 7. Modelo para range Valence = 6: 27 variables.

Contenido

Avance 1

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Modelo	AIC	BIC	R ²
Backward	126489.9	127064.9	0.66
Forward	126880.5	127103.5	0.66
Backward-Forward	126849.9	127064.9	0.66
add1	126858.4	127081.4	0.66
drop1	126849.6	127048.7	0.66
VIF	126880.5	127103.5	0.66
Idea Avance 1	121021.6	121840.3	0.74

▶ abc

Supuesto de Independencia

Se utilizó el Test de Durbin-Watson.

Supuesto de Independencia

- Se utilizó el Test de Durbin-Watson.
- Independencia de residuos \Leftrightarrow Valor D entre **1.5** y **2.5**.

- Se utilizó el Test de Durbin-Watson.
- ▶ Independencia de residuos \Leftrightarrow Valor D entre **1.5** y **2.5**.
- ▶ Valor D = $\mathbf{0.89} \rightarrow \text{No se cumple el supuesto.}$

► Se utilizó el Test de *Kolmogorov-Smirnov*.

- ► Se utilizó el Test de *Kolmogorov-Smirnov*.
- Criterio: valor-p > 0.05.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- ▶ El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.
- Segunda solución aplicada: Transformación de Johnson.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.
- Segunda solución aplicada: Transformación de Johnson.
- No se lograron resultados satisfactorios.

► Se utilizó el Test de *Breusch-Pagan*.

- ► Se utilizó el Test de *Breusch-Pagan*.
- Criterio: valor-p > 0.05.

- ► Se utilizó el Test de *Breusch-Pagan*.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.

- Se utilizó el Test de Breusch-Pagan.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Solución propuesta para Heterocedasticidad:

Weighted Least Squares Regression.

Weighted Least Squares Regression

abc

Diapositiva

▶ abc

Contenido

Avance :

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Ridge Regression

► **Objetivo:** Minimizar **RSS**.

Ridge Regression

- **Objetivo:** Minimizar **RSS**.
- Shrinkage Penalty: $RSS_{Ridge} = RSS_{AMC} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$.
 - $\lambda = \mathbf{0} : RSS_{Ridge} = RSS_{AMC}.$
 - $\lambda > 0$: Impacto en valores de β .
 - $\lambda \to \infty : \beta \to \vec{\mathbf{0}}.$

Ridge Regression: λ óptimo

Es aquel que reduce la mayor varianza del modelo sin apenas perder ajuste.

Ridge Regression: λ óptimo

- ► Es aquel que reduce la mayor varianza del modelo sin apenas perder ajuste.
- Validación cruzada.

Ridge Regression: Visualización

Ridge Regression: Ventajas

Reduce la varianza.

Ridge Regression: Ventajas

- Reduce la varianza.
- Datos de Entrenamiento vs. Datos de Prueba.

EYP2307 - Análisis de Regresión

Ridge Regression: Ventajas

- Reduce la varianza.
- Datos de Entrenamiento vs. Datos de Prueba.
- Minimiza la influencia sobre el modelo de los predictores menos relacionados con la variable respuesta.

► Modelo final incluye todos los predictores.

Lasso Regression

▶ Misma idea que en *Ridge Regression*.

Lasso Regression

- Misma idea que en Ridge Regression.
- Realiza selección de predictores.

Lasso Regression

- Misma idea que en Ridge Regression.
- Realiza selección de predictores.
- ► Shrinkage Penalty : $RSS_{Lasso} = RSS_{AMC} + \lambda \sum_{i=1}^{p} |\beta_i|$.

Comparación entre Ridge y Lasso Regression

Usamos uno u otro dependiendo del escenario.

Comparación entre Ridge y Lasso Regression

- ▶ Usamos uno u otro dependiendo del escenario.
- ▶ Ridge Regression: cuando los $\beta's \neq \mathbf{0}$ y tienen la misma magnitud aproximadamente.

Comparación entre Ridge y Lasso Regression

- ▶ Usamos uno u otro dependiendo del escenario.
- ► Ridge Regression: cuando los $\beta' s \neq \mathbf{0}$ y tienen la misma magnitud aproximadamente.
- Lasso Regression: cuando un gran grupo de parámetros \approx **0**.

Resultados de la implementación en R

Ridge Regression:

Resultados de la implementación en R

- ► Ridge Regression:
- Lasso Regression:

Contenido

Avance

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Sobre los nuevos modelos.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Sobre Ridge y Lasso Regression.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Sobre Ridge y Lasso Regression.
- Contraste con Avance 1.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Sobre Ridge y Lasso Regression.
- Contraste con Avance 1.
- ¿Es suficiente una regresión múltiple?

Contenido

Avance :

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Referencias bibliográficas

- https://online.stat.psu.edu/stat501/lesson/13/13.1 Weighted Least Squares. 2018
- https://rpubs.com/Joaquin_AR/242707 Selección de predictores: Ridge y Lasso. 2016
- https://rstatisticsblog.com/data-science-in-action/machinelearning/ridge-regression-in-r/ Simple Guide To Ridge Regression In R. 2020

