PREDICTING VIOLENCE: NETWORK DYNAMICS IN NIGERIA

Cassy Dorff (University of New Mexico), Max Gallop (University of Strathclyde), and Shahryar Minhas (Michigan State University)

OCTOBER 10, 2017

Motivation

Intrastate War

Extensive literature on the causes and prediction of intrastate conflict

Hegre et al. (2001)
Fearon & Laitin (2003)
Collier et al. (2004)
Salehyan (2013)
K.G. Cunningham (2013)
Sambanis & Shayo (2013)
Lacina (2014)
Prorok (2016)

Intrastate War

Extensive literature on the causes and prediction of intrastate conflict

Hegre et al. (2001)
Fearon & Laitin (2003)
Collier et al. (2004)
Salehyan (2013)
K.G. Cunningham (2013)
Sambanis & Shayo (2013)
Lacina (2014)
Prorok (2016)

Fearon & Laitin (2003) has been cited over 6,000 times!

Conflicts are complex: unpacking social structure

Roughly a **third** of all intrastate conflict between 1989 and 2003 have been fought with multiple warring parties (UCDP/PRIO 2007).

Conflicts involve multiple actors with changing relationships overtime

Conflicts are complex: unpacking social structure

Roughly a **third** of all intrastate conflict between 1989 and 2003 have been fought with multiple warring parties (UCDP/PRIO 2007).

Conflicts involve multiple actors with changing relationships overtime

- · Coordination (Bakke et al 2012; Findley & Rudloff, 2012)
- Spoiler groups and veto-players (Cunningham, 2006)
- · Disaggregating actors (Shellman et al, 2010)

Pairing Empirical Analysis to Theory

"Existence of multiple rebel groups means we can no longer understand civil wars with a sole focus on state attributes. In fact, the government's strategies leading to victory, defeat, or continuation of war can only be understood in relation to the rebel group/groups it is fighting."

Akcinaroglu (2012)

Conflict processes are driven by the evolution of relationships overtime.

 Intrastate conflicts → single complex system composed of multiple actors in conflict

- 1. Intrastate conflicts \rightarrow single complex system composed of multiple actors in conflict
- 2. Armed actors & battles = nodes and ties in a network

- Intrastate conflicts → single complex system composed of multiple actors in conflict
- 2. Armed actors & battles = nodes and ties in a network
- 3. Novel model captures interdependencies across actors within the conflict system

- Intrastate conflicts → single complex system composed of multiple actors in conflict
- 2. Armed actors & battles = nodes and ties in a network
- 3. Novel model captures relationships endogenous to the conflict system
- 4. Our approach provides unbiased parameter estimates & out performs standard approaches

- Intrastate conflicts → single complex system composed of multiple actors in conflict
- 2. Armed actors & battles = nodes and ties in a network
- Novel model captures relationships endogenous to the conflict system
- 4. Our approach provides precise estimates, & out performs standard approaches
- 5. Uncovers important relational patterns of conflict with substantive implications for the study of conflict processes

Networks & Conflict Processes

From dyads to networks

Dyadic data consists of a set of:

- nodes (e.g., rebel group actors)
- measurements specific to a pair of actors (e.g., the occurrence of a battle)

ender	Receiver	Event			i	j	k	l
i	j	y_{ij}		\overline{i}	NA	21	21	21
	k	y_{ik}	\longrightarrow		l INA	y_{ij}	y_{ik}	y_{il}
:	l	y_{il}	,	j	y_{ji}	NA	y_{jk}	y_{jl}
j	i	y_{ji}		k	y_{ki}	y_{kj}	NA	y_{kl}
÷	k	y_{jk}		,				
	l	y_{jl}		l	y_{li}	y_{lj}	y_{lk}	NA
k	i	y_{ki}						
	j	y_{kj}				*		
:	l	y_{kl}						
l	i	y_{li}						
:	j	y_{lj}						
	k	y_{lk}		-		\		

Network Effects

How does evolution in the structure of relationships influence conflict over time?

· 1st-order: Sender effects

2nd-order: Reciprocity

· 3rd-order: Homophily & Stochastic equivalence

System level: Changing actor composition

Network phenomena: sender heterogeneity

Values across a row, say $\{y_{ij}, y_{ik}, y_{il}\}$, may be more similar to each other than other values in the adjacency matrix because each of these values has a common sender i

	i	j	k	1
i	NA	Уij	Уik	Yil
j	Ујі	NA	Уjk	УјІ
k	Уki	y_{kj}	NA	УkI
1	Уli	y_{lj}	Уlk	NA

Network phenomena: receiver heterogeneity

Values across a column, say $\{y_{ji}, y_{ki}, y_{li}\}$, may be more similar to each other than other values in the adjacency matrix because each of these values has a common receiver i

	i	j	k	1
i	NA	Уij	Yik	УiI
j	Ујі	NA	Уjk	УјІ
k	Уki	Уkj	NA	YkI
1	Уli	Уij	Yık	NA

Network phenomena: sender-receiver covariance

Actors who are more likely to send ties in a network may also be more likely to receive them

Network phenomena: reciprocity

Values of y_{ij} and y_{ji} may be statistically dependent

	i	j	k	1
i	NA	Уij	Yik	УiI
j	Ујі	NA	Уjk	YjI
k	Уki	y_{kj}	NA	YkI
1	Ун	Уlj	Уlk	NA

Network phenomena: third order dependencies

Network phenomena: changing actor composition

Nigeria

Intrastate Conflict: Nigeria's intrastate conflict system

Complex, multi-actor conflict

- Numerous violent political groups including ethnic militias, militant regional groups and Islamist insurgents
- Political violence of all types has risen substantially since 2011 with violence against civilians seeing the most dramatic increase.
- Civilians engage in both violent and nonviolent resistance efforts.

Intrastate Conflict: Nigeria's intrastate conflict system

Complex, multi-actor conflict

- numerous violent political groups including ethnic militias, militant regional groups and Islamist insurgents
- political violence of all types has risen substantially since 2011 with violence against civilians seeing the most dramatic increase
- civilians engage in both violent and nonviolent resistance efforts.

Intrastate Conflict: Nigeria's intrastate conflict system

Spatial Distribution of Conflict Pre Boko Haram

Spatial Distribution of Conflict Post Boko Haram

Modeling Approach & Results

Additive effects portion of AME (Warner et al. 1979; Li & Loken 2002):

$$y_{ij} = \mu + e_{ij}$$

$$e_{ij} = a_i + b_j + \epsilon_{ij}$$

$$\{(a_1, b_1), \dots, (a_n, b_n)\} \sim N(0, \Sigma_{ab})$$

$$\{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} \sim N(0, \Sigma_{\epsilon}), \text{ where}$$

$$\Sigma_{ab} = \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \qquad \Sigma_{\epsilon} = \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

- μ baseline measure of network activity (for the purpose of regression we turn this into $\beta^T X_{ii t}$)
- \cdot e_{ij} residual variation that we will use the SRM to decompose

$$\begin{aligned} y_{ij} &= \mu + e_{ij} \\ e_{ij} &= a_i + b_j + \epsilon_{ij} \\ \{(a_1, b_1), \dots, (a_n, b_n)\} &\sim \textit{N}(0, \Sigma_{ab}) \\ \{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} &\sim \textit{N}(0, \Sigma_{\epsilon}), \text{ where} \\ \Sigma_{ab} &= \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} &= \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{aligned}$$

- · row/sender effect (a_i) & column/receiver effect (b_i)
- Modeled jointly to account for correlation in how active an actor is in sending and receiving ties

$$\begin{aligned} y_{ij} &= \mu + e_{ij} \\ e_{ij} &= a_i + b_j + \epsilon_{ij} \\ \{(a_1, b_1), \dots, (a_n, b_n)\} &\sim \textit{N}(0, \Sigma_{ab}) \\ \{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} &\sim \textit{N}(0, \Sigma_{\epsilon}), \text{ where} \\ \Sigma_{ab} &= \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} &= \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{aligned}$$

- \cdot σ_a^2 and σ_b^2 capture heterogeneity in the row and column means
- σ_{ab} describes the linear relationship between these two effects (i.e., whether actors who send [receive] a lot of ties also receive [send] a lot of ties)

$$\begin{aligned} y_{ij} &= \mu + e_{ij} \\ e_{ij} &= a_i + b_j + \epsilon_{ij} \\ \{(a_1, b_1), \dots, (a_n, b_n)\} &\sim \textit{N}(0, \Sigma_{ab}) \\ \{(\epsilon_{ij}, \epsilon_{ji}) : i \neq j\} &\sim \textit{N}(0, \Sigma_{\epsilon}), \text{ where} \\ \Sigma_{ab} &= \begin{pmatrix} \sigma_a^2 & \sigma_{ab} \\ \sigma_{ab} & \sigma_b^2 \end{pmatrix} \quad \Sigma_{\epsilon} &= \sigma_{\epsilon}^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{aligned}$$

- \cdot ϵ_{ii} captures the within dyad effect
- · Second-order dependencies are described by σ^2_ϵ
- Reciprocity, aka within dyad correlation, represented by ho

Latent Factor Model: The "M" in AME

Each node i has an unknown latent factor

$$\mathbf{u}_i, \mathbf{v}_i \in \mathbb{R}^k \ i, j \in \{1, \dots, n\}$$

The probability of a tie from *i* to *j* depends on their latent factors

$$\gamma(\mathbf{u}_i, \mathbf{v}_j) = \mathbf{u}_i^\mathsf{T} D \mathbf{v}_j$$

$$= \sum_{k \in K} d_k u_{ik} v_{jk}$$
 $D \text{ is a } K \times K \text{ diagonal matrix}$

Accounts for both stochastic equivalence and homophily (Hoff 2008)

Additive and Multiplicative Effects (AME) Model

$$y_{ij,t} = g(\theta_{ij,t})$$

$$\theta_{ij,t} = \boldsymbol{\beta}^T \mathbf{X}_{ij,t} + e_{ij,t}$$

$$e_{ij,t} = a_i + b_j + \epsilon_{ij} + \alpha(\mathbf{u}_i, \mathbf{v}_j) \text{ , where}$$

$$\alpha(\mathbf{u}_i, \mathbf{v}_j) = \mathbf{u}_i^T \mathbf{D} \mathbf{v}_j = \sum_{k \in K} d_k u_{ik} v_{jk}$$

(Hoff 2005; Hoff 2008; Hoff et al. 2013; Minhas et al. 2016)

Data

Armed Conflict Location and Event Data Project (ACLED) developed by Raleigh et al. (2010)

- ACLED records armed conflict and protest events in over 60 developing countries
- We use ACLED battles data for Nigeria to generate a measure of conflict where:
 - $y_{ij,t} = 1$ indicates that a conflict occurred when actor i attacked actor j at time t
 - $y_{ij,t} = 0$ if no conflict occurred
- We focus only on modeling the interactions between armed groups that are engaged in battles for at least 5 years during the 2000-2016 period, which results in a total of 37 armed groups

Covariates

- · Country-Level covariates:
 - · Post Boko-Haram
 - Neighborhood conflict
 - · Election year
- · Sender and Receiver-Level Covariates:
 - · Violence against civilians
 - · Riots/Protests directed against actor
 - · Geographic spread

Model Results

Multiplicative Effects

Out of Sample Cross-Validation

Out of Sample Forecast

Future work

Are "people-power" movements less effective in multi-actor civil conflicts?

Why does violence against civilians increase an actor's conflictual behavior towards armed groups?

Does our "key player" effect matter in other conflict settings?

Key Take-aways

CONFIRMED: Intrastate conflict is a network process! Structure of relationships influences violence between actors (reciprocity and warring communities characterize social patterns in the data)

CONFIRMED: Key players alter violence in the conflict system, even in warring dyads the key player is not directly involved in.

CONFIRMED: Network model of conflict out performs standard approaches

Thanks!

CASSYDORFF.COM

Network GOF

Additive Sender/Receiver Random Effects

Dyadic data assumptions

GLM:
$$y_{ij} \sim \beta^T X_{ij} + e_{ij}$$

Networks typically show evidence against independence of dyadic interactions

Not accounting for dependence can lead to:

- biased effects estimation
- · uncalibrated confidence intervals
- · poor predictive performance
- · inaccurate description of network phenomena

We've been hearing this concern for decades now:

Thompson & Walker (1982)	Beck et al. (1998)	Snijders (2011)
Frank & Strauss (1986)	Signorino (1999)	Erikson et al. (2014)
Kenny (1996)	Li & Loken (2002)	Aronow et al. (2015)
Krackhardt (1998)	Hoa & Ward (2004)	Athey et al. (2016)

ACLED Data - Nigeria

Data collection

- Battles are violent clashes between at least two armed groups.
- · Battles make up approximately one third of the dataset.
- Data types: civic society (reports, NGOs), media (newspapers), Analysts (specialists' reports), governing bodies (UN reports), "Local source project" (ACLED is connected with local sources)
- · Analysis of data does not reveal urban bias

Boko Haram's Entrance in Network

ERGMs

ERGMs are useful when researchers are interested in the role that a specific list of network statistics have in giving rise to a certian network. (Such as: number of transitive triads in a network, balanced triads, reciprocal pairs, etc.)

- ERGMs provide a way to find the probability of a network given the patterns it exhibits
- the researcher must specify which network statistics should give rise to a particular network of interest