

<u>6028_6/00</u> (43) 공개일자 198/년06월05일	
(21) 출원번호 특 1986-0009242 (22) 출원일자 1986년 11월03일	
(30) 우선권주장 794992 1985년11월04일 미국(US) (71) 출원인 다우 코닝 코포레이션 알빈 어네스트 베이	
미합중국 미시간주 미들랜드 (72) 발명자 윌리암 에르윈 데니스	
미합중국 미시간 미들랜드 시버트 6205 (74) 대리인 이병호, 최달용	
실사청구 : 없음	

(54) 개선된 광학섬유

요약

내용 없음

대표도

도1

명세서

[발명의 명칭]

개선된 광학섬유

[도면의 간단한 설명]

제1도는 본 발명에 따른 광학섬유 즉 광학도파관의 사시도이다.

제2도는 제1도에서 선 2-2를 따라 취한 광학섬유의 단면도이다.

본 내용은 요부공개 건이므로 전문 내용을 수록하지 않았음

(57) 청구의 범위

청구항 1

광학 글래스의 코어부, 광학 글래스의 클래드층(여기에서 코어부의 굴절율은 클래드부의 굴절율보다 더 높음), 및 클래드부의 굴절율보다 더 높은 굴절율을 갖는 도핑된 글래스로 필수적으로 구성된 클래드 단 부를 포함하는 광학섬유.

청구항 2

광학 글래스의 코어부, 광학 글래스의 클래드층(여기에서 코어부의 굴절율은 클래드부의 굴절율보다 더 높음), 및 클래드부의 굴절율보다 더 높은 굴절율을 갖는 도핑된 글래스로 필수적으로 구성된 클래드 단 부를 필수적으로 포함하는 광학섬유.

청구항 3

제1항에 있어서, 클래드 단부상에 제1중합체 피복물을 추가로 포함하는 광학섬유.

청구항 4

제3항에 있어서, 클래드 단부상에 제1중합체 피복물이 실리콘 탄성체 피복물인 광학섬유.

청구항 5

제3항에 있어서, 제1중합체 피복물상에 제2중합체 피복물을 추가로 포함하는 광학섬유.

청구항 6

클래드부에 적합하여 코어부 글래스보다 더 낮은 굴절율을 갖는 광학 글래스로 둘러싸인 높은 굴절율 광학 글래스의 코어부를 포함하는 예비 성형물을 만들고, 상기 예비 성형물로부터 연신된 섬유가 코어부

1 ;

전송을 거쳐 클래드부를 통과하는 파장만큼 클래드부 및 코어부로부터 굴절시키기에 충분한 도핑된 글래스 두께를 가질 정도의 깊이로 상기 예비 성형물의 외부표면을 도핑하고, 이때 상기 도핑은 클래드부의 굴절율보다 더 큰 굴절율을 제공하는 도핑제로 수행하며, 상기 도핑된 글래스 두께는 클래드 단부이고, 상기 예비 성형물로부터 광학섬유를 연신하여 코어부, 클래드부 및 클래드 단부를 갖는 감소된 직경의 광학성유를 형성시킴을 포함하는, 제1중합체 피복물상에 작용하는 섬유능력의 의존도를 감소시킬 수 있 는 광학섬유를 성형하는 방법.

청구항 7

클래드부에 적합하여 코어부 글래스보다 더 낮은 굴절율을 갖는 광학 글래스로 둘러싸인 높은 굴절율 광학 글래스의 코어부를 포함하는 예비 성형물을 만들고, 상기 예비 성형물로부터 연신된 섬유가 코어부전송을 거쳐 클래드부를 통과하는 파장만큼 클래드부 및 코어부로부터 굴절시키기에 충분한 도핑된 글래스 두께를 가질 정도의 깊이로 상기 예비 성형물의 외부표면을 도핑하고, 이때 상기 도핑은 클래드부의굴절율보다 더 큰 굴절율을 제공하는 도핑제로 수행하며, 상기 도핑된 글래스 두께는 클래드 단부이고, 상기 예비 성형물로부터 광학섬유를 연신하여 코어부, 클래드부 및 클래드 단부를 갖는 감소된 직경의광학섬유를 형성시키는 것으로 이루어진, 제1중합체 피복물상에 작용하는 섬유능력의 의존도를 감소시킬수 있는 광학섬유를 성형하는 방법.

청구항 8

클래드부에 적합하여 코어부 글래스보다 더 낮은 굴절율을 갖는 광학 글래스로 둘러싸인 높은 굴절율 광학 글래스의 코어부를 포함하는 예비 성형물을 만들고, 상기 예비 성형물로부터 연신된 섬유가 코어부전송을 거쳐 클래드부를 통과하는 파장만큼 클래드부 및 코어부로부터 굴절시키기에 충분한 도핑된 글래스 두께를 가질 정도의 깊이로 상기 예비 성형물의 외부표면을 도핑하고, 이때 상기 도핑은 클래드부의 굴절율보다 더 큰 굴절율을 제공하는 도핑제로 수행하며, 상기 도핑된 글래스 두께는 클래드 단부이고, 상기 예비 성형물로부터 광학섬유를 연신하여 코어부, 클래드부 및 클래드 단부를 갖는 감소된 직경의 광학섬유를 형성시킴을 특징으로 하는, 제1중합체 피복물 상에 작용하는 섬유능력의 의존도를 감소시킬수 있는 광학섬유를 성형하는 방법.

청구항 9

코어부 광학 글래스보다 더 낮은 굴절율을 갖는 클래드부 글래스에 의해 둘러싸인 코어부 광학 글래스와, 예비 성형물로부터 광학성유를 연신할 때 코어부 전송을 거쳐 클래드부를 통과하는 파장만큼 클래드부 및 코어부로부터 굴절시키기에 충분한 두께를 충분히 제공할 클래드부의 외부 표면상의 도핑된 글래스와를 포함하며, 여기에서 외부 표면을 만들기 위해 사용된 도핑제는 클래드부 글래스보다 높은 굴절율을 갖는 광학섬유 제조용 예비 성형물.

※ 참고사항 : 최초출원 내용에 의하여 공개하는 것임.

도면

도면1

도면2

