STATS331

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Credit: Randall Monroe (xkcd.com)
Again!

Introduction to Bayesian Statistics Semester 2, 2016

Metropolis

- Proposal distribution q(proposed state | current state)
- If moving to a state of higher prob, accept
- If moving to a state of lower prob, accept with prob $\alpha = h_2/h_1$ (This assumes symmetric proposal we'll only use these in 331)

Tactile MCMC

In groups of 2-4, do 30 iterations of the Metropolis algorithm

```
State 1: h_1 = prior*lik = 0.1
```

State 2: $h_2 = prior*lik = 0.3$

Results

What proportion of "1"s did you get in the final column?

 This is a (hopefully) accurate approximation to the posterior probability of state 1.

Steady State Distribution

• The steady state distribution (also called the stationary distribution) of a Markov Chain:

- is the probability distribution representing where the algorithm will be after a long time
- is the frequency distribution of results you (probably) get after running the chain for a long time (assuming it's possible to go everywhere)

Using Metropolis on real problems

 Metropolis is usually used on problems with continuous parameter spaces, and with "random walk proposals"

Election Poll Example with Metropolis

 The data: ten people we called and asked whether they support a certain political party

Results: {0, 1, 1, 1, 0, 0, 1, 0, 1, 1} (six 'yes', four 'no')

• Likelihood = $\theta^6(1-\theta)^4$

R Code for Metropolis

This code is on Canvas (simple_metropolis.R)

There is also an industrial strength version

(metropolis.R and model.R)

Trace Plots

 These are plots of the parameter(s) moving around over time. Here's a healthy one:

Tuning the proposal

 If the proposal distribution is too wide or too narrow, the Metropolis algorithm can be inefficient

 Let's try various values for the size of the proposal 'jumps'

Tuning the proposal

- Having the proposal width too small is inefficient (accepted steps are very small)
- Having the proposal width too wide is inefficient (too many rejected steps)

An alternative to tuning, for lazy people

• In the 'industrial strength' code, I randomise the step size. Steps will be good *sometimes*.

```
# Prior widths for each parameter
widths = c(1)

# Proposal distribution
proposal = function(params)
{
    # Copy the parameters
    params2 = params

    # Which parameter to change?
    i = sample(1:length(params), 1)

    # Step size - Brendon's favourite magic
    step_size = widths[i]*10^(1.5 - 3*abs(rt(1, df=3)))

    params2[i] = params2[i] + step_size*rnorm(1)
    return(params2)
}
```

"Burn In"

 What happens if we start the MCMC in a very low probability region?

· Let's try it

• A just-working trace plot, with visible burn-in

MCMC in Practice

 While it is important to have a basic understanding of how MCMC works, in practice it's easier to use a software package such as JAGS.

We will start with JAGS next week.