Legged Robots Practical: Project 2

14.11.2023

Plan

Part 1: Central Pattern Generators

Part 2: Deep Reinforcement Learning

Quadruped Model Reference Frame

Quadruped Model Leg References

Quadruped Model Joint References

Joint angles ←→ Cartesian space (in leg frame)

$$p=f(q)$$
 Forward kinematics $q=f^{-1}(p)$ Inverse kinematics $\dot{p}=v=J(q)\dot{q}$ Foot linear velocity $au=J^T(q)F$ Map desired end effector forms to be required.

force to torques

Joint angles ←→ Cartesian space (leg frame control)

$$p = f(q)$$

$$\frac{q}{q} = f^{-1}(\frac{p}{p})$$

$$\dot{p} = v = J(q)\dot{q}$$

$$\tau = J^T(q)F$$

$$\tau_{joint} = K_{p,joint}(q_d - q) + K_{d,joint}(\dot{q}_d - \dot{q})$$

 $\tau_{Cartesian} = J^{T}(q) |K_{p,Cartesian}(p_d - p) + K_{d,Cartesian}(v_d - v)|$

Cartesian PD

$$\tau_{final} = \tau_{joint} + \tau_{Cartesian}$$

ctesian Contributions from both joint PD and Cartesian PD

Central Pattern Generators: Review

Modeling the CPG with coupled oscillators (Quadruped)

Amplitude:

$$\dot{r}_i = \alpha(\mu - r_i^2)r_i$$

 $x_{\text{foot}} = -d_{step}r_i\cos(\theta_i)$

Phase:

$$\dot{\theta}_i = \omega_i + \sum_{j=0}^3 r_j w_{ij} \sin(\theta_j - \theta_i - \phi_{ij})$$

Output:

$$z_{\text{foot}} = \begin{cases} -h + g_c \sin(\theta_i) & \text{if } \sin(\theta_i) > 0 \\ -h + g_p \sin(\theta_i) & \text{otherwise} \end{cases}$$

Mapping CPG States to Foot Positions with Inverse Kinematics

$$\dot{r}_i = \alpha(\mu - r_i^2)r_i$$

$$\dot{\theta}_i = \omega_i$$

$$x_{\text{foot}} = -d_{step} r_i \cos(\theta_i)$$

$$z_{\text{foot}} = \begin{cases} -h + g_c \sin(\theta_i) & \text{if } \sin(\theta_i) > 0 \\ -h + g_p \sin(\theta_i) & \text{otherwise} \end{cases}$$

Gait Terminology

- Stride duration = the duration of a complete cycle (the period)
- Swing phase of a limb (period during which the limb is off the ground)
- Stance phase (period during which the limb touches the ground)
- *Duty factor* = Stance duration / Stride duration

Most common quadruped gaits

Classification in terms of the footfall sequences (mainly used in mathematical biology)

Most common quadruped gaits

Classification in terms of the footfall sequences (mainly used in mathematical biology)

This project

Most common quadruped gaits

Classification in terms of the footfall sequences (mainly used in mathematical biology)

Symmetric

Asymmetric

Transverse gallop

$$\dot{r}_i = \alpha(\mu - r_i^2)r_i$$

$$\dot{\theta}_i = \omega_i + \sum_{i=0}^3 r_j w_{ij} \sin(\theta_j - \theta_i - \phi_{ij})$$

What should ϕ be for each gait?

This project

Deep Reinforcement Learning: Review

Reinforcement Learning

An MDP is defined by:

- Set of states S
- Set of actions A
- Transition function P(s' | s, a)
- Reward function R(s, a, s')
- Start state s_0
- Discount factor γ
- Horizon *H*

• Return over a trajectory $\tau = (s_0, a_0, s_1, a_1, ...)$

$$R(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t$$

- Policy $\pi(a_t|s_t)$ maps from states s_t to actions a_t (Goal: find policy maximizing above return)
- Value function: $V^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|s_0 = s]$
- Action-value function: $Q^{\pi}(s, a) = \mathbb{E}_{\tau \sim \pi}[R(\tau)|s_0 = s, a_0 = a]$
- Advantage function: $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998 Deep RL Bootcamp. Berkeley CA, August 2017

Many Existing Tools for Reinforcement Learning

- RL algorithm implementations
 - stable-baselines3 https://github.com/DLR-RM/stable-baselines3

PPO, SAC

- o ray[rllib] https://github.com/ray-project/ray
- o spinningup https://github.com/openai/spinningup
- tianshou <u>https://github.com/thu-ml/tianshou/</u>
- o ... many others!
- Physics simulators
 - o pybullet https://github.com/bulletphysics/bullet3
 - MuJoCo https://mujoco.org
 - RaiSim https://raisim.com
 - Isaac-Gym https://developer.nvidia.com/isaac-gym
 - o ... and others!

RL Considerations

Algorithm

- On/off policy
- Hyperparameters
- Network architecture
- Random seeds/trials

...implementation dependent!

MDP Design Decisions

- Observation space
- Action space
- Reward function

Environment Parameters

- Simulator dynamics
- Control gains –
 joint/Cartesian
- Control/environment time step
- Noise, latency

State/Action/Reward Space: A1

 s_t ? i.e. -body (z, r, p, y) -body velocities -joint states

r_t ? i.e.-body linear velocity-energy penalty

 a_t ?

- -motor positions/torques
- -Cartesian PD
- -CPG state modulations

State/Action/Reward Space: A1

a_t?
-motor positions/torques
-Cartesian PD
-CPG state modulations

This project: construct the MDP

Joint Position Control vs. Cartesian PD Control (PPO/SAC)

Action Space: $a_t = q_{1...N}$

Action Space: $a_t = [x_{ee_i}, y_{ee_i}, z_{ee_i}]$

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

From Lecture 7

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

From Lecture 7

G. Bellegarda, A. Ijspeert. "CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion," RA-L 2022

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

From Lecture 7

$$\dot{r}_i = \alpha (\mu - r_i^2) r_i$$

$$\dot{\theta}_i = \omega_i + \sum_{j=0}^3 r_j w_{ij} \sin(\theta_j - \theta_i - \phi_{ij})$$

How robust is your approach? To be determined at the 19.12.2023 competition

Goal oriented locomotion: what should be in the observation space and reward function?

Use function: get_distance_and_angle_to_goal()

Sensory information in quadruped.py:

-GetBaseOrientation()

-GetBaseLinearVelocity()

. . .

Tips

- Monitor episode length and reward mean during training
- Training should complete within 1 million timesteps for reasonable observation space, action space, and reward function choices (with no noise in the environment)
- No training on test environment (used for competition)
- Start training early!