UNCLASSIFIED

AD NUMBER AD813485 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JAN 1967. Other requests shall be referred to Ballistic Systems and Space Systems Division, Los Angeles, CA 90009-2960. This document contains export-controlled technical data. **AUTHORITY** SAMSO ltr, 19 Jan 1972

Compilation of Reaction Rate Data for Nonequilibrium Performance and Reentry Calculation Programs

JANUARY 1967

Prepared by THERMOCHEMISTRY RESEARCH DEPARTMENT Aerodynamics and Propulsion Research Laboratory Laboratories Division Laboratory Operations AEROSPACE CORPORATION

This decument is sub out to spoulal ouport controls and each transmittal to foreign severnments or foreign national made only with prior approval of _____ST

Carolina Salana

Prepared for BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS AIR FORCE SYSTEMS COMMAND LOS ANGELES AIR FORCE STATION Los Angeles, California

DISTRIBUTION OF THIS DOCUMENT

Air Force Report No. SSD-TR-67-45

Aerospace Report No. TR-1001(9210-02)-1

COMPILATION OF REACTION RATE DATA FOR NONEQUILIBRIUM PERFORMANCE AND REENTRY CALCULATION PROGRAMS

Prepared by

Thermochemistry Research Department Aerodynamics and Propulsion Research Laboratory

> Laboratories Division Laboratory Operations AEROSPACE CORPORATION

> > January 1967

Prepared for

BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

Distribution of this document

FOREWORD

This report is published by the Aerospace Corporation, El Segundo, California, under Air Force Contract No. AF 04(695)-1001. The report was authored by R. Tunder, S. Mayer, E. Cook, and L. Schieler of the Thermochemistry Research Department.

This report, which documents research carried out from June 1966 to September 1966, was submitted on 15 March 1967 to Captain John T. Allton, USAF, for review and approval.

Approved

Aerodynamics and Propulsion Research Laboratory Laboratories Division Laboratory Operations

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Space Systems Division

Air Force Systems Command

ABSTRACT

A compilation of gas-phase rate data for use in nonequilibrium gas composition and propellant performance calculation programs is presented. Reactions are listed with the preexponential factor, temperature exponent, and activation energy for the Arrhenius form of the rate equation. Only undirectional rate data are supplied since reverse rates may be generated from thermochemical data. Explanatory notes on the estimation of the rate data are included with the references.

MOSS NOT FINED AND MANE

TABLES

1.	Reactions	Involving	Aluminum Species	5
2.	Reactions	Involving	Beryllium Species	22
3.	Reactions	Involving	Boron Species	30
4.	Reactions	Involving	Carbon and Carbon-Hydrogen Species	36
5.	Reactions	Involving	Carbon-Nitrogen and Carbon-Oxygen Species	42
6.	Reactions	Involving	Lithium Species	46
7.	Reactions	Involving	Nitrogen Species,	49
8.	Reactions	Involving	Potassium Species	54
9.	Reactions	Involving	Sodium Species	55
10.	Reactions	Involving	Chlorine Species	58
11.	Reactions	Involving	Fluorine Species	59
12.	Reactions	Involving	Oxygen Species	60
13.	Reactions	Involving	Hydrogen Species	63

INTRODUCTION

This report is a compilation of gas-phase rate data for use in nonequilibrium gas composition and propellant performance calculation programs. The data are given for the Arrhenius rate equation, $k = AT^{n}$ exp (-E/RT) where A is the frequency factor, T is the absolute temperature, n determines the preexponential temperature dependence, E is the activation energy, and R is the gas constant. Only forward rate data are presented; rates for the reverse reactions can be calculated by means of the equilibrium constant.

The tabulation of the gas-phase rate data is as follows:

Reactions of aluminum species (Table 1)

- 1. Al
- . 2. AlCl, AlCl₂, AlCl₃
 - 3. Alf, Alf₂, Alf₃
 - 4. AlH
 - 5. A10
 - 6. Al₂0
 - 7. A10C1
 - 8. Alof
 - 9. A10H
- 10. A10₂H, etc.

Reactions of beryllium species (Table 2)

- 1. Be
- 2. BeCl
- 3. BeF
- 4. BeH
- 5. Be0

Reactions of boron species (Table 3)
Reactions of carbon species (Tables 4 and 5)
Reactions of lithium species (Table 6)
Reactions of nitrogen species (Table 7)
Reactions of potassium species (Table 8)
Reactions of sodium species (Table 9)
Reactions of chlorine (Table 10) and fluorine species (Table 11)
Reactions of oxygen (Table 12) and hydrogen species (Table 13)

The order of the tables (Table 1 through 13) is alphabetical with respect to names of the elements. Thus, aluminum reactions come first, even if they involve beryllium, boron, carbon, etc. Within each table, reactions of species containing the major element are listed alphabetically with species containing the smallest number of atoms listed first. Among the reactions involving two-atom and three-atom species, for example, the listing is alphabetical with respect to the elements. This species is always listed first in the equation, and the arrangement is based entirely on reactants, not products. Catalyzed reactions are listed before uncatalyzed reactions, and reactions with specific catalysts are listed alphabetically with respect to catalysts. The arrangement of reactions of a given species is alphabetical with respect to the other reactant (or reactants). All reactions with single-atom reactants come first, two-atom reactants are next, etc.

There are a number of exceptions to these organizational rules. Alphabetical order is as noted except for chlorine, fluorine, oxygen, and hydrogen; these are listed in that order, at the end of the table after sodium. This exception does not occur within the various tables. Halogen and oxide species in a table are often listed together instead of according to the numerical rule. AlCl, AlCl₂, and AlCl₃ are listed successively before AlF, AlF₂, and AlF₃, which are all listed before

AlH. 0 and 0₂ reactions are listed successively before OH. All charges are ignored in arranging reactions except when an isolated electron is a reactant; these reactions are then arranged alphabetically as single-atom reactants.

The references cited in the tables show the source of the data; where no kinetic data are available, the constants were estimated by recommended procedures as indicated in the references.

Many of the reaction rates are based on Ref. (2). For these cases, rate constants of nonionic reactions were estimated on the basis of the report cited in Ref. (1). A, n, and E were chosen to correspond to those of similar reactions in this report. For exothermic bimolecular reactions, $A = 5 \times 10^{11}$ cc/mole-sec, n = 0.5, E = 5.5% of the energy of the bond being broken for triatomic transition states (Hirschfelder rule). For transition states of more than three atoms, $A = 1 \times 10^{11}$ cc/mole-sec. Typically, for exothermic trimolecular reactions, $A = 3 \times 10^{10}$ cc²/moles² sec, n = -0.5, and E = 0.

Reactions based on Ref. (2), involving ions or electrons, use the report in Ref. (21) as their basis. For charge transfer reactions, $A = 4 \times 10^{11}$, n = 0.5, and E = 0. For reactions of the type $X^+ + e + M$, where M is, as in the tables, any third body that acts as a catalyst, $A = 5 \times 10^{23}$, n = -1.5, and E = 0. For the type $X^+ + Y^- + M = XY + M$, $A = 4 \times 10^{17}$, n = -0.5, and E = 0. For $X + e + M = X^- + M$, $A = 1 \times 10^{20}$, n = -1.0, and E = 0. For $x + Y^- + M = XY^- + M$, $A = 4 \times 10^{17}$, n = -0.5, and E = 0. For exothermic reactions of the type $X^- + Y = XY + e$, $A = 5 \times 10^{11}$, n = 0.5, and E = 0.

Although many of the tabulated reactions contain M, a generalized third-body catalyst, specific third bodies are included wherever the information is available. For example, the hydrogen-fluorine reactions (Refs. 3 and 19) have $\rm H_2$, H, and HF as specific third bodies, each with

slightly different k, values. Atomic fluorine is present in such systems at a much lower concentration and has a negligible effect as a third body; therefore third-body reactions with F as a catalyst are not listed. When a generalized third-body reaction rate was not available, but desirable, and several specific third body rates were available, A for the generalized reaction rate has been obtained from a weighted geometric mean of the A's for the specific reaction rates. The weighting is based on the concentration of each specific third body. If the concentrations of the specific third bodies are y, the weighted geometric mean is

$$A_{m} = (\prod_{i} A_{i}^{y_{i}})^{1/2} y_{i}.$$

All the rates associated with Ref. (36) are hydrogen transfer reactions (AH + B = A + HB). The collision equation used to estimate the rates of these reactions is a modification of the equation referred to in Ref. (36). In units of cc/mole-sec, $k_f = 2.74 \times 10^{12} \, P \, \sigma_{AB}^{2\,\mu^{\frac{1}{2}}} \, T^{\frac{1}{2}}$ $r_s \, (g_{BH} \, g_A/g_{AH} \, g_B)^{\frac{1}{2}}$. Here, E = 0, n = $\frac{1}{2}$, and the equation really determines A. In the equation P = 0.1 (steric factor for polyatomic reactants), g is the electronic multiplicity, σ_{AB} is the internuclear distance (in angstroms) between colliding species, μ is the reduced mass, and r_s is the number of equivalent hydrogens on AH.

Table 1. Reactions Involving Aluminum Species

Reaction	A, cc/ mole-sec	n	E. kcal/mole	Refer- ence
Al + AlCl ₂ = 2 AlCl	1 × 10 ¹¹	0.5	5	2
Al + AlClF = AlCl + AlF	1 x 10 ¹¹	0.5	6	2
Al + Aloc1 = Al ₂ 0 + Cl	1 x 10 ¹¹	0.5	8	2
Al + AlCl ₃ = AlCl + AlCl ₂	1 x 10 ¹¹	0.5	5	2
Al + AlF ₂ = 2AlF	1 x 10 ¹¹	0.5	6	2
Al + AlOF = AlF + AlO	1 x 10 ¹¹	0.5	9	2
Al + AlClF ₂ = AlF + AlClF	1 x 10 ¹¹	0.5	7	2
Al + AlCIF ₂ = AlCl + AlF ₂	1 x 10 ¹¹	0.5	6	2
Al + AlCl ₂ F = AlF + AlCl ₂	1 x 10 ¹¹	0.5	7	2
Al + AlCl ₂ F = AlCl + AlClF	1 x 10 ¹¹	0.5	6	2
Al + AlF ₃ = AlF + AlF ₂	1 x 10 ¹¹	0.5	7	2
Al + AlOH = Al ₂ O + H	1 × 10 ¹¹	0.5	4	2
Al + Al0 + M = Al ₂ 0 + M	3 × 10 ¹⁶	-0.5	0	2
Al + Al ₂ 0 ⁺ = Al ⁺ + Al ₂ 0	5 x 10 ¹¹	0.5	0	2
$Al^+ + AlO + M = Al_2O^+ + M$	3 × 10 ¹⁶	-0.5	0	2
Al + AlogH = AloH + Alo	5 x 10 ¹⁰	0.5	6	2
Al + AlO ₂ H = OH + Al ₂ O	1 x 10 ¹¹	0.5	5	2
Al + Alo H = OH + Al O +	1 x 10 ¹¹	0.5	5	2
Al + Al ₂ 0 ₂ = Al0 + Al ₂ 0	5 x 10 ¹⁰	0.5	6	2
$Al + Be^{\dagger} = Al^{\dagger} + Be$	4 x 10 ¹¹ .	0.5	0	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Al + BeCl = Be + AlCl	5 × 10 ¹¹	0.5	6	2
Al + BeF = AlF + Be	5 x 10 ¹¹	0.5	8	2
LL + BeH = AlH + Be	8.5x10 ¹¹	0.7	4	22
11 + Be0 = AlO + Be	5 x 10 ¹¹	0.5	6	2
1 + BeClF = BeCl + AlF	1 x 10 ¹¹	0.5	7	2
1 + CHO = A1 + CHO +	5 x 10 ¹¹	0.5	0	2
1 + CHO = AlH + CO	1 x 10 ¹¹	0.5	2	2
1 + C1 = AlC1 + e	5 x 10 ¹¹	0.5	0	2
1 + Cl ₂ = AlCl + Cl	5 x 10 ¹¹	0.5	3	2
1 + C1 + M = A1C1 + M	3 x 10 ¹⁶	-0.5	0	2
$a^+ + C1^- + M = AlC1 + M$	4 x 10 ¹⁷	-0.5	0	2
1 + ClF = AlF + Cl	5 x 10 ¹¹	0.5	3	2
1 + ClF = AlCl + F	5 x 10 ¹¹	0.5	3	2
1 + ClH = AlCl + H	5 x 10 ¹¹	0.5	6	2
1 + ClLi = AlCl + Li	1 x 10 ¹¹	0.5	6	2
1 + ClLi = AlCl + Li	5 x 10 ¹¹	0.5	6	2
1 + C1K = A1C1 + K	5 x 10 ¹¹	0.5	7	2
$1^+ + C1K = A1C1 + K^+$	1 x 10 ¹¹	0.5	7	2
1 + ClNa = AlC1 + Na	5 × 10 ¹¹	0.5	5	2
1 + ClNa = AlC1 + Na +	5 x 10 ¹¹	0.5	5	2

Table 1. Reactions Involving Aluminum Species (Continued)

Al + F + M = AlF + M $Al^{+} + F^{-} + M = AlF + M$	5 x 10 ²³ 3 x 10 ¹⁶ 4 x 10 ¹⁷	-1.5 -0.5	0	2
$Al^+ + F^- + M = AlF + M$		-0.5		
	× 10 ¹⁷		0	2
	+ X TO	-0.5	0	2
Al + F ₂ = AlF + F	5 x 10 ¹¹	0.5	. 2	2
Al + FH = AlF + H	5 x 10 ¹¹	0.5	7	2
Al ⁺ + LiH = AlH + Li ⁺	1 x 10 ¹¹	0.5	3	2
Al + FLi = AlF + Li	5 x 10 ¹¹	0.5	7	2
Al ⁺ + FLi = AlF + Li ⁺	1 x 10 ¹¹	0.5	7	2
Al + LiO = AlO + Li	5 x 10 ¹¹	0.5	5	2
Al ⁺ + LiO = AlO + Li ⁺	1 × 10 ¹¹	0.5	5	2
Al + FK = AlF + K	5 x 10 ¹¹	0.5	7	2
$Al^+ + FK = AlF + K^+$	1 x 10 ¹¹	0.5	7	2
Al + FNa = AlF + Na	5 x 10 ¹¹	0.5	6	2
Al + FNa = AlF + Na +	1 x 10 ¹¹	0.5	6	2
$Al^+ + H^- + M = AlH + M$	4 x 10 ¹⁷	-0.5	0	2
Al + H + M = AlH + M	3 x 10 ¹⁶	-0.5	0	2
	5 x 10 ¹¹	0.5	0	2
	5 x 10 ¹¹	0.5	6	2
	3.0x10 ¹²	0.7	9	22
	3 x 10 ¹²	-0.5	0	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcel/mole	Refer- ence
Al + H ₂ O = Aloh + H	1 x 10 ¹¹	0.5	6	2
$A1 + H_30^{\dagger} = A1^{\dagger} + H + H_20$	1 x 10 ¹⁰	0.5	6	2
il + NaH = AlH + Na	5 x 10 ¹¹	0.5	7	2
Al + NaH = Na + AlH	9.7x10 ¹¹	0.7	6	22
ut + Li = Al + Li +	4 x 10 ¹¹	0.5	0	2
$A1 + NO^{+} = A1^{+} + NO$	5 x 10 ¹¹	0.5	0	2
11 + 0 = A10 + e	5 x 10 ¹¹	0.5	0	2
a1 + 0 + M = A10 + M	3 × 10 ¹⁶	-0.5	0	2
11 + 0 + M = A10 + M	4 x 10 ¹⁷	-0.5	0	2
1 + 0 ₂ = A10 + 0	5 x 10 ¹¹	0.5	6	2
1 + 02 = A10 + 0	5 x 10 ¹¹	0.5	6	2
$1^+ + 0_2^- = A10 + 0$	5 x 10 ¹¹	0.5	6	2
$K_{+} + K = AI + K_{+}$	4 x 10 ¹¹	0.5	0	2
1 + Na = Al + Na	4 x 10 ¹¹	c.5	0	2
1 + NeO = AlO + Na	5 x 10 ¹¹	0.5	4	2
1 + NaO = AlO + Na +	5 x 10 ¹¹	0.5	6	2
1C1 + A1C13 = 5A1C15	1 x 1c ¹¹	0.5	5	2
1C1 + AlC1 ₂ F = AlC1 ₂ + AlC1F	1 x 10 ¹¹	0.5	6	2
lc1 + Alc1F ₂ = 2Alc1F	1 x 10 ¹¹	0.5	7	2
LICI ₂ + ALF ₂ = AlCl + ALClF ₂	1 x 10 ¹¹	0.5	5.,	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
AlCl ₂ + AlF ₂ = AlF + AlCl ₂ F	1 × 10 ¹¹	0.5	6	2
AlCl ₃ + AlF = AlClF + AlCl ₂	1 x 10 ¹¹	0.5	5	2
AlC1 + AlO = AlOC1 + Al	1 x 10 ¹¹	0.5	6	2
AlC1 + AlO = Al ₂ 0 + C1	1 x 10 ¹¹	0.5	6	2
AlC1 + AlO2H = AlOC1 + AlOH	1 x 10 ¹¹	0.5	6	2
AICI + AIO = AICI + AICIO	1 x 10 ¹¹	0.5	5	2
alC1 + BeC1 = AlC1 ₂ + Be	1 x 10 ¹¹	0.5	6	2
lC1 + BeC1 = A1 + BeCl	1 × 10 ¹¹	0.5	6	2
LIC1 ₂ + BeCl = AlCl + BeCl ₂	1 × 10 ¹¹	0.5	5	2
llCl ₂ + BeCl = AlCl ₃ + Be	1 × 10 ¹¹	0.5	6	2
lCl ₃ + BeCl = AlCl ₂ + BeCl ₂	1 x 10 ¹¹	0.5	5	2
lC1 + BeF = BeClF + Al	J. x 10 ¹¹	0.5	6	2
ulc1 + BeF = Alc1F + Be	1 x 10 ¹¹	0.5	8	2
lCl ₂ + BeF = AlCl ₂ F + Be	1 x 10 ¹¹	0.5	8	2
lCl ₂ + BeF = BeFCl + AlCl	1 × 10 ¹¹	0.5	5	2
1C1 + CO ₂ = CO + AlC10	5 x 10 ¹⁰	0.5	7	2
lC1 + F ₂ = AlC1F + F	1 × 10 ¹¹	0.5	2	5
1C1 ₂ + F = AlFC1 ₂	1 x 10 ¹¹	0.5	0	ż
lC1 + C1F = A1C1F + C1	1 x 10 ¹¹	0.5	3	2
AIC1 ₂ + KF = AIC1 ₂ F + K	1 x 10 ¹¹	0.5	7	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
AlC1 + NeF = AlC1F + Ne	1 x 10 ¹¹	0.5	7	2
AlCl ₂ + NaF = AlCl ₂ F + Na	1 x 10 ¹¹	0.5	6	2
AlC1 + C1 + M = AlC1 ₂ + M	3 × 10 ¹⁶	-0.5	0	2
AlC1 + C1 = AlC1 ₂ + e	1 x 10 ¹¹	0.5	0	2
AlC1 + Cl ₂ = AlCl ₂ + Cl	1 x 10 ¹¹	0.5	3	2
AlC1 + C1F = AlC1 ₂ + F	1 × 10 ¹¹	0.5	3	2
AlCl ₂ + Cl = AlCl ₃	1 x 10 ¹¹	0.5	C	2
AlC1 ₂ + C1" = AlC1 ₃ + e	1 x 10 ¹¹	0.5	0	2
AlC1 + F + M = AlFC1 + M	3 x 10 ¹⁶	-0.5	0	2
Alc1 + KF = Alc1F + K	1 x 10 ¹¹	0.5	7	2
AlCl ₂ + H = AlCl + HCl	1 x 10 ¹¹	0.5	5	2
Alcl ₂ + H = HCl + Alcl ₂	1 x 10 ¹¹	0.5	5	2
AlC1 + Li0 = AlOC1 + Li	1 x 10 ¹¹	0.5	6	2
Alcl ₂ + Li = Alcl + Licl	1 x 10 ¹¹	0.5	5	2
Alcl ₃ + Li = Licl + Alcl ₂	1 × 10 ¹¹	0.5	5	2
AlC1 + M + 0 = AlOC1 + M	3 x 10 ¹⁶	-0.5	0	2
AlC1 + 0" = AlCC1 + e	1 x 10 ¹¹	0.5	0	2
AlC1 + 0" = Al0 + C1"	5 x 10 ¹¹	0.5	3	2
AlC1 + 02 = AlOC1 + 0	1 x 10 ¹¹	0.5	6	2
AlC1 + 02 = AlOC1 + 0	1 × 10 ¹¹	0.5	5	2
2			NEW YORK OF SELECTION	C Physical Control

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
AlCl ₂ + 0 = AlOCl + Cl	1 x 10 ¹¹	0.5	5	2
AlC1 ₂ + 0 = AlOC1 + C1	1 x 10 ¹⁰	0.5	5	2
AlCl ₂ + K = AlCl + KCl	5 x 10 ¹¹	0.5	5	2
AlCl ₃ + K = KCl + AlCl ₂	1 x 10 ¹¹	0.5	5	2
AlCl ₂ + Na = AlCl + NaCl	1 x 10 ¹¹	0.5	5	2
AlCl + NaO = AlCCl + Na	1 x 10 ¹¹	0.5	4	2
AlCl ₂ + Na = NaCl + AlCl ₂	5 x 10 ¹⁰	0.5	5	2
NCIF + AIF, = AIF + AICIF,	1 x 10 ¹¹	0.5	6	2
AICIF + AIF ₂ = AICI + AIF ₃	1 x 10 ¹¹	0.5	7	2
lClF + AlO = AlF + AloCl	1 x 10 ¹¹	0.5	6	2
lC1F + AlO = AlC1 + AlOF	1 x 10 ¹¹	0.5	7	2
lClF + BeCl = AlFCl ₂ + Be	1 x 10 ¹¹	0.5	6	2
AlC1F + BeC1 = AlC1 + BeC1F	1 x 10	0.5	7	2
lFC1 + BeC1 = BeC1, + AlF	1 x 10 ¹¹	0.5	6	2
lFC1 + BeC1 = AlFC1, + Be	1 x 10 ¹¹	0.5	6	2
AlClF + BeF = AlClF ₂ + Be	1 x 10 ¹¹	0.5	8	2
lClF + BeF = AlCl + BeF ₂	1 x 10 ¹¹	0.5	7	2
MC1F + BeF = BeFC1 + A1F	1 x 10 ¹¹	0.5	6	2
icif + cl = Alci ₂ F	1 x 10 ¹¹	0.5	0	2
ilcif + f = Alcif ₂	1 x 10 ¹¹	0.5	0	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Alcif + KF = Alcif ₂ + K	1 x 10 ¹¹	0.5	7	2
Alcif + NaF = Alcif ₂ + Na	1 x 10 ¹¹	0.5	6	2
AlClF + H = AlCl + HF	1 x 10 ¹¹	0.5	7	2
AlClF + H = AlF + HCl	1 x 10 ¹¹	0.5	6	2
AlClF + Li = AlCl + LiF	1 x 10 ¹¹	0.5	7	2
AlClF + Li = AlF + LiCl	1 x 10 ¹¹	0.5	6	2
AlClF + 0 = AlOF + Cl	5 x 10 ¹⁰	0.5	6	2
ALCIF + 0 = ALOC1 + F	5 x 10 ¹⁰	0.5	7	2
AlClF + 0 = AlOF + Cl	1 x 10 ¹¹	0.5	6	2
AlClF + Na = AlF + NaCl	1 x 10 ¹¹	0.5	6	2
Alclof + Alf = 2Alclf	1 x 10 ¹¹	0.5	6	2
AlCloF + BeCl = BeClF + AlClo	1 x 10 ¹¹	0.5	8	2
AlCl _p F + BeCl = BeCl _p + AlFCl	1 x 10 ¹¹	0.5	6	2
AlClF ₂ + BeF = BeF ₂ + AlClF	1 x 10 ¹¹	0.5	8	2
AlCIF ₂ + BeF = BeFC1 + AlF ₂	1 x 10 ^{1.1}	0.5	6	2
ARCI _O F + H = ALCIF + HCl	1 x 10 ¹¹	0.5	6	2
AlCl ₂ F + H = AlCl ₂ + HF	1 x 10 ¹¹	0.5	7	2
AlCl ₂ F + Li = LiF + AlCl ₂	1 x 10 ¹¹	0.5	7	2
AlCl ₂ F + Li = LiCl + AlClF	1 x 10 ¹¹	0.5	6	2
$AlCl_{2}F + K = KCl + AlClF$	1 x 10 ¹¹	0.5	6	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
AlCl ₂ F + Na = AlClF + NaCl	1 x 10 ¹¹	0.5	. 6	2
AlClF ₂ + BeCl = BeCl ₂ + AlF ₂	1 x 10 ¹¹	0.5	6	2
AlClF ₂ + BeCl = BeFCl + AlFCl	1 x 10 ¹¹	0.5	8	2
AlC1F ₂ + BeF = AlF ₂ + BeC1F	1 x 10 ¹¹	0.5	6	2
AlClF ₂ + BeF = AlClF + BeF ₂	1 x 10 ¹¹	0.5	8	2
ALCIF ₂ + H = AlF ₂ + HCl	1 x 10 ¹¹	0.5	6	2
LICIF ₂ + H = AlCIF + HF	1 x 10 ¹¹	0.5	7	2
lClF ₂ + Li = AlF ₂ + LiCl	1 x 10 ¹¹	0.5	6	2
licif ₂ + Li = Alcif + Lif	1 x 10 ¹¹	0.5	7	2
lf + Alo ₂ H = AloF + AloH	1 x 10 ¹¹	0.5	6	2
lF + Al ₂ O ₂ = AlOF + Al ₂ O	1 x 10 ¹¹	0.5	6	2
PALF ₂ = AlF + AlF ₃	1 x 10 ¹¹	0.5	6	2
LIF ₂ + AlO = AlF + AlOF	1 x 10 ¹¹	0.5	6	2
lF + BeCl = AlClF + Be	1 x 10 ¹¹	0.5	6	2
uF ₂ + BeCl = AlClF ₂ + Be	1 x 10 ¹¹	0.5	6	2
llF ₂ + BeCl = BeClF + AlF	1 x 10 ¹¹	0.5	6	2
LLF + BeO = AlOF + Be	1 x 10 ¹¹	0.5	9	2
lF + BeF = Be + AlF	1 x 10 ¹¹	0.5	8	2
lF + BeF = BeF, + Al	1 x 10 ¹¹	0.5	9	2
llF ₂ + BeF = BeF ₂ + AlF	1 x 10 ¹¹	0.5	6	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reactions	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence	
AlF ₂ + BeF = Be + AlF ₃	1 × 10 ¹¹	0.5	8	2	
$AlF_3 + BeF = BeF_2 + AlF_2$	1 x 10 ¹¹	0.5	8	2	
AlF + Cl + M = AlClF + M	3 × 10 ¹⁶	-0.5	0	2	
AlF ₂ + Cl = AlClF ₂	1 x 10 ¹¹	0.5	0	2	
AlF ₂ + KCl = AlClF ₂ + K	1 x 10 ¹¹	0.5	6	2	
AlF + ClF = AlClF + F	1 x 10 ¹¹	0.5	3	2	
AlF ₂ + NaCl = AlClF ₂ + Na	1 x 10 ¹¹	0.5	5 .	2	
LIF ₂ + KF = AlF ₃ + K	1 x 10 ¹¹	0.5	7	2	
LIF + CIF = ALF ₂ + Cl	1 x 10 ¹¹	0.5	3	2	
llF + F + M = AlF ₂ + M	3×10^{16}	-0.5	0	2	
AIF + F ₂ = AIF ₂ + F	1 x 10 ¹¹	0.5	2	2	
NF ₂ + F = AlF ₃	1 x 10 ¹¹	0.5	0	2	
AlF ₂ + HF = H + AlF ₃	1 x 10 ¹¹	0.5	7	2	
LIF ₂ + LiF = Li + AlF ₃	1 x 10 ¹¹	0.5	7	2	
Alf + NaF = Alf ₂ + Na	1 x 10 ¹¹	0.5	6	2	
LIF2+ NaF = Na + AlF3	1 x 10 ¹¹	0.5	6	2	
ALF ₂ + H = ALF + HF	1 x 10 ¹¹	0.5	6	2	
AIF + OH = ALOF + H	1 x 10 ¹¹	0.5	6	2	
NF ₂ + Li = AlF + FLi	1 x 10 ¹¹	0.5	9	2	
AlF + Lio = AloF + Li	1 x 10 ¹¹	0.5	5	2	

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
AlF + 0 + M = AlOF + M	3 × 10 ¹⁶	-0.5	0	2
$AlF_2 + 0 = AlOF + F$	1 x 10 ¹¹	0.5	6	2
$Alf + 0_2^- = Alof + 0^-$	1 x 10 ¹¹	0.5	5	2
AlF ₂ + K = AlF + FK	5 x 10 ¹¹	0.5	6	2
Alf + NaO = Alof + Na	1 x 10 ¹¹	0.5	4	2
AlH + Alo = AlOH + Al	1 x 10 ¹¹	0.5	4	2
$AlH + Al0 = Al_20 + H$	1 x 10 ¹¹	0.5	4	2
AlH + BeH = BeH ₂ + Al	1 x 10 ¹¹	0.5	4	2
AlH + BeO = BeOH + Al	1 x 10 ¹¹	0.5	4	2
AlH + BeO = AlOH + Be	1 x 10 ¹¹	0.5	6	2.
AlH + B = Al + BH	2.4x10 ¹²	0.7	8	22
AlH + C = Al + CH	1.4x10 ¹²	0.7	13	22
AlH + CN = Al + HCN	1 x 10 ¹¹	0.5	4	2
AlH + Cl = AlCl + H	5 x 10 ¹¹	0.5	4	2
AtH + C1 = A1 + HC1	1.4x10 ¹¹	0.7	8	22
AlH + F = Al + HF	1.5x10 ¹¹	0.7	6	22
AlH + H = Al + H ₂	9.1x10 ¹¹	0.7	4	22
AlH + NH = Al + NH ₂	1 x 10 ¹¹	0.5	4	2
AlH + Lio = Al + LioH	1 x 10 ¹¹	0.5	4	2
AlH + N = Al + HN	5.6x10 ¹¹	0.7	6	22

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
lH + O = Al + HO	2.8x10 ¹¹	0.7	8	22
LH + 0 = A1 + OH	5 × 10 ¹¹	0.5	3	2
TH + 0 = A10 + H	5 × 10 ¹¹	0.5	4	2
LH + OH = ALOH + H	5 × 10 ¹⁰	0.5	6	2
LH + OH = Al + H ₂ O	1 x 10 ¹¹	0.5	4	2
LH + NaO = Al + NaOH	1 × 10 ¹¹	0.5	14	2
A10 = A1 ₂ 0 ₂	1 x 10 ¹¹	0.5	o	2
A10 = A1 ₂ 0 + 0	1 × 10 ¹¹	0.5	6	2
10 + Aloh = Al ₂ 0 + OH	1 × 10 ¹¹	0.5	4	2
0 + AloH = Al ₂ 0 ₂ + H	1 x 10 ¹¹	0.5	5	2
$0 + Al_20^+ = Al^+ + Al_20_2$	1 x 10 ¹⁰	0.5	6	2
.0 + BeCl = AlOCl + Be	1 x 10 ¹¹	0.5	6	2
O + BeH = AlOH + Be	1 x 10 ¹¹	0.5	3	2
O + BeOH = BeO + AlOH	1.3x10 ¹¹	0.5	0	36
.0 + CH ₂ = CH + AloH	4.3x10 ¹¹	0.5	0	36
.0 + CH ₃ = CH ₂ + AlOH	2.5x10 ¹¹	0.7	6	22
0 + CH ₁₄ = CH ₃ + Aloh	2.2x10 ¹²	0.7	10	22
O + HCO = CO + AloH	6 x 10 ¹⁰	0.7	4	22
0 + H2CO = HCO + AlOH	2.7x10 ¹¹	0.7	10	22
O + HCN = CN + Aloh	5.1x10 ¹¹	0.7	21	22

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
		, <u></u>		
$A10 + C0 = A1 + C0_2$	1 x 10 ¹¹	0.5	6	2
Al0 + M + C1 = AlCl0 + M	3×10^{16}	-0.5	O.	2
AlO + Cl = AlCl + O	5 x 10 ¹¹	0.5	6	2
AlO + Cl = AloCl + e	1 x 10 ¹¹	0.5	0	2
AlO + Cl ₂ = AlOC1 + Cl	1 x 10 ¹¹	0.5	3	2
AlO + ClF = AlOF + Cl	1 x 10 ¹¹	0.5	3	2
AlO + ClF = AloCl + F	1 x 10 ¹¹	0.5	3	2
AlO + HCl = AloCl + H	1 x 10 ¹¹	0.5	6	2
AlO + NaCl = AlOCl + Na	1 x 10 ¹¹	0.5	6	2
AlO + F + M = AlOF + M	3×10^{16}	-0.5	0	2
AlO + F = AlF + O	5 x 10 ¹¹	0.5	6	2
Alo + F ₂ = AloF + F	1 x 10 ¹¹	0.5	2	2
AlO + HF = AlOF + H	1 x 10 ¹¹	0.5	7	2
AlO + LiF = AlOF + Li	1 x 10 ¹¹	0.5	7	2
AlO + KF = AlOF + K	1 x 10 ¹¹	0.5	7	2
AlO + NaF = 'AlOF + Na	1 x 10 ¹¹	0.5	6	2
A10 + H = A1 + OH	5 x 10 ¹¹	0.5	6	2
AlO + H + M = AlHO + M	3 x 10 ¹⁶	-0.5	0	2
AlO + LiH = AlOH + Li	1 x 10 ¹¹	0.5	3	2
AlO + OH = HAlO	1 x 10 ¹¹	0.5	0	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Alo + OH" = Alo ₂ H + e	1 x 10 ¹¹	9.5	0	2
Alo + HNO = NO + Aloh	3.2×1011	0.5	0	36
AlO + H ₂ O = OH + AlOH	8.4x10 ¹¹	0.5	0	36
Alo + NH ₂ = NH + AloH ₁	1.1x10 ¹²	0.5	0	36
Alo + NH ₃ = NH ₂ + AloH	6.6x10 ¹¹	0.5	0	36
Alo + NaOH = NaO + AloH	1.4x10 ¹¹	0.5	0	36
Alo + NaH = AloH + Na	1 x 10 ¹¹	0.5	3	. 2
AlO + N = Al + ON	5 x 10 ¹¹	0.5	6	2
Al ₂ 0 + AlOC1 = AlC1 + Al ₂ 0 ₂	1 × 10 ¹¹	0.5	8	2
Al ₂ O + Alo ₂ H = AloH + Al ₂ O ₂	5 x 10 ¹⁰	0.5	6	2
$Al_00 + Be^{\dagger} = Al_00^{\dagger} + Be$	4 x 10 ¹¹	0.5	0	2
Al ₂ 0 + Be0 = Be + Al ₂ 0 ₂	1 x 10 ¹¹	0.5	6	2
$Al_{2}0^{+} + C1 = A1^{+} + A10C1$	1 x 10 ¹¹	0.5	6	2
$Al_{2}0^{+} + Cl^{-} = Al + Aloc1$	1 x 10 ¹¹	0.5	6	2
Al ₂ 0 [†] + M + e = Al ₂ 0 + M	5 x 10 ²³	-1.5	0	2
Al ₂ O + F = Al+ AlOF	1 x 10 ¹¹	0.5	7	2
Al ₂ 0 + F = AlF + Al0	1 x 10 ¹¹	0.5	6	2
$Al_2O^{\dagger} + F = Al^{\dagger} + AloF$	1 x 10 ¹⁰	0.5	7	2
$\mathbf{Al_{2}0}^{+} + \mathbf{F}^{-} = \mathbf{Al} + \mathbf{AlOF}$	1 x 10 ¹¹	0.5	7	2
A1 ₂ 0 ⁺ + H ⁻ = A1 + A10H	1 x 10 ¹¹	0.5	6	2

Table 1. Reactions Involving Aluminum Species (Continued)

				\$55×617.1±500
Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Al ₂ 0 + 0H = H + Al ₂ 0 ₂	1 × 10 ¹¹	0.5	6	2
Λ1 ₂ 0 + Li + = Λ1 ₂ 0 + Li	4 x 10 ¹¹	0.5	0	2
Al ₂ 0 + 0 = Al ₂ 0 ₂ + e	1 x 10 ¹¹	0.5	0	2
Al ₂ 0 ⁺ + 0 ⁻ = Al ₂ 0 ₂	1 x 10 ¹¹	0.5	0	2
Al20 + 02 = 0 + Al202	5 x 10 ¹⁰	0.5	5	2
$Al_20^+ + K = K^+ + Al_20$	4 x 10 ¹¹	0.5	0	2
Al ₂ 0 ⁺ + Na = Na ⁺ + Al ₂ 0	5 x 10 ¹¹	0.5	0	2
AlOC1 + Be = BeO + AlC1	1 x 10 ¹¹	0.5	8	2
Aloc1 + F = O + AlciF	1 x 10 ¹¹	0.5	8	2
Aloc1 + H = Alc1 + OH	1 x 10 ¹¹	0.5	8	2
Aloc1 + Li = Alo + LiC1	1 x 10 ¹¹	0.5	8	2
Aloc1 + K = Alo + KC1	1 x 10 ¹¹	0.5	8	2
AlOF + Be = AlF + BeO	1 x 10 ¹¹	0.5	8	2
Alof + CO = Alf + CO	1 x 10 ¹¹	0.5	8	2
Alof + F = 0 + AlF	1 x 10 ¹⁰	0.5	8	2
ALOF + N = ALF + NO	1 x 10 ¹¹	0.5	6	2
Alof + 0 = Alf + 0 ₂	1 x 10 ¹¹	0.5	6	2
Alon - BeH = BeH, + Alo	1 x 10 ¹¹	0.5	4	. 2
Alon + Beon = Beo ₂ H ₂ + Al	1 x 10 ¹¹	0.5	5	2
Alon + Beo = Be + Alo ₂ H	1 x 10 ¹¹	0.5	6	2

Table 1. Reactions Involving Aluminum Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Alon + Beo = Beon + Alo	1 x 10 ¹¹	0.5	4	2
Alon + CH = Alo + CH ₂	4 x 10 ¹⁰	0.7	2	22
Aloh + CN = Alo + HCN	1 x 10 ¹¹	0.5	4	2
AloH + Cl = Alcl + OH	5 x 10 ¹⁰	0.5	5	2
AloH + Cl = Alo + HCl	1.4x10 ¹¹	0.5	. 0	36
Alox + Cl = Aloc1 + H	1 x 10 ¹¹	0.5	4	2
Aloh + F = AloF + H	1 x 10 ¹¹	0.5	4	2
Aloh + F = AlF + OH	1 x 10 ¹¹	0.5	5	2
Alon + F = Alo + HF	1.8x10 ¹¹	0.5	0	- 36
Aloh + H = Alo + H _o	1.2x10 ¹¹	0.1	5	22
Aloh + OH = Alo + H ₂ O	2.1x10 ¹¹	0.5	0	36
Alon + Lio = Alo + Lion	1 x 10 ¹¹	0.5	4	. 2
Alon + N = Alo + NH	1 x 10 ¹¹	0.5	4	2
Alon + NH = Alo + NH	1 x 10 ¹¹	0.5	4	2
Aloh + 0 = Alo, H + e	1 x 10 ¹¹	0.5	0	2
Aloh + 0 = Alo + Oh	3.7x10 ¹¹	0.5	0	
A10H + 0 = A10 + OH	1 x 10 ¹¹	0.5	4	2
Aloh + NaO = Alo + NaOH	3.1x10 ¹¹	0.5	0	36
AlogH + Be = BeOH + Alo	1 x 10 ¹¹	0.5	5	2
AlogH + BeOH = BeOgHg + Alo	1 x 10 ¹¹	0.5	5	2

Table 1. Reactions Involving Aluminum Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ende
AlogH + CO = Cog + AloH	5 x 10 ¹⁰	0.5	6	2
Alo ₂ H + Cl = AloCl + OH	5 x 10 ¹⁰	0.5	5	2
AlogH + C1" = Aloc1 + OH"	1 x 10 ¹⁰	0.5	6	2
Alogh + F = Alof + OH	1 x 10 ¹¹	0.5	5 "	2
AlogH + F = AloF + OH	5 x 10 ¹⁰	0.5	5	2
AlogH + H = H ₂ O + Alo	1 x 10 ¹⁰	0.5	5	2
Alogh + H = Aloh + OH	5 x 10 ¹⁰	0.5	6	2
AlogH + Li = LiOH + Alo	1 x 10 ¹¹	0.5	5	2
710 ² H + Li = V10H + Li0	1 x 10 ¹¹	0.5	6	2
HOLA + N = NO + ALOH	5 x 10 ¹⁰	0.5	6	2
Alo ₂ H + 0 = 0 ₂ + AloH	5 x 10 ¹⁰	0.5	6	2 .
A10 H + K = KOH + A10	1 x 10 ³¹	0.5	5	2
AlogH + Na = Na OH + Alo	5 x 10 ¹⁰	0.5	5	2
A10, H + Na = A10H + Na0	5 x 10 ¹⁰	0.5	6	2
Al ₂ O ₂ + CO = Al ₂ O + CO ₂	5 x 10 ¹⁰	0.5	*6 ·	2
11202 + N = NO + A120	1 x 10 ¹¹	0.5	6	2
$Al_2O_2 + O = O_2 + Al_2O$	1 x 10 ¹¹	0.5	6	2
	THE RESERVE TO STATE OF THE PARTY.			

Table 2. Reactions Involving Beryllium Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Be + BeO ₂ H ₂ = 2BeOH	1 × 10 ¹¹	0.5	5	2
Be + HCO = BeH + CO	1 x 10 ¹¹	0.5	2	2
Be + CL + M = BeCl + M	3 × 10 ¹⁶	-0.5	0	2
Be + Cl + M = BeCl + M	4 x 10 ¹⁷	-0.5	0	2
Be + Cl ₂ = BeCl + Cl	5 × 10 ¹¹	0.5	3	2
Be + ClF = BeCl + F	5 × 10 ¹¹	0.5	3	2
Be + ClF = BeF + Cl	5 × 10 ¹¹	0.5	3	2
Be + LiCl = BeCl + Li	1 x 10 ¹¹	0.5	6	2
Be + NaCl = BeCl + Na	1 x 10 ¹¹	0.5	5	2
Be + e + M = Be + M	5 x 10 ²³	-1.5	0	2
Be + F + M = BeF + M	3 x 10 ¹⁶	-0.5	0	2
Be + F + M = BeF + M	4 x 10 ¹¹	-0.5	0.	2
Be + F ₂ = BeF + F	5 x 10 ¹¹	0.5	3.	2
Be + LiF = BeF + Li	1 x 10 ¹¹	0.5	7	2
Be + NaF = BeF + Na+	1 x 10 ¹¹	0.5	6	2
Be + H + M = BeH + M	3 x 10 ¹⁶	-0.5	0	2
Be + OH + M = BeOH + M	3 x 10 ¹⁶	-0.5	0	2
Be + HO = BeO + H .	5 x 10 ¹¹	0.5	6	2
Be + H ₂ O = BeOH + H	1 x 10 ¹¹	0.5	6	2
Be + NaH = BeH + Na	2.2x10 ¹²	0.7	9	22
PO ATMINE TO ANOTHER PROPERTY.		0.1		100

Table 2. Reactions Involving Beryllium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Se ⁺ + NaH = BeH + Na ⁺	1 x 10 ¹¹	0.5	3	2
Be + Li = Be + Li +	4 x 10 ¹¹	0.5	0	2
3e + LiH = BeH + Li	1 x 10 ¹¹	0.5	3	2 .
Be + LiO = BeO + Li	5 x 10 ¹¹	0.5	5	2
Be + LiO = BeO + Li +	1 x 10 ¹¹	0.5	5	2
$Be^+ + NO = Be + NO^+$	4 x 10 ¹¹	0.5	0	2
3e + 0 = e + BeO	5 x 10 ¹¹	0.5	0	2
De + 0 + M = BeO + M	3 × 10 ¹⁶	-0.5	0	2
e + 0 + M = BeO + M	4 x 10 ¹⁷	-0.5	0	2
me + 02 = Be0 + 0	5 x 10 ¹¹	0.5	5	2
e + .0, = Be0 + 0	5 x 10 ¹¹	0.5	5	2
e + NaO = BeO + Na +	1 x 10 ¹¹	0.5	4	2
te + NaO = BeO + Na	5 x 10 ¹¹	0.5	4	2
be + Na = Be + Na +	4 x 10 ¹¹	0.5	0	2
BeC1 = Be + BeC1	1 x 10 ¹¹	0.5	6	2
eCl + BeF = BeClF + Be	1 x 10 ¹¹	0.5	8	2
eCl + M + Cl = BeCl ₂ + M	3 x 10 ¹⁶	-0.5	o	2
eCl + Cl = e + BeCl	1 x 10 ¹¹	0.5	0	2
eC1 + C1 ₂ = BeC1 ₂ + C1	1 x 10 ¹¹	0.5	3	. 2
eC1 + C1F = BeC1 ₂ + F	1 x 10 ¹¹	0.5	3	2

Table 2. Reactions Involving Beryllium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
BeCl + ClF = BeClF + Cl	1 x 10 ¹¹	0.5	3	2
BeC1 + HC1 = BeC1 ₂ + H	1 x 10 ¹¹	0.5	6	2
BeCl + LiCl = BeCl ₂ + Li	1 x 10 ¹¹	0.5	6	2
BeCl + NaCl = BeCl ₂ + Na	1 x 10 ¹¹	0.5	5	2
BeCl + e = Be + Cl	5 x 10 ¹¹	0.5	0	2
BeCl + F + M = BeClF + M	3 × 10 ¹⁶	-0.5	0	2
BeCl + F ₂ = BeClF + F	1 x 10 ¹¹	0.5	2	2
BeCl + HF = BeClF + H	1 x 10 ¹¹	0.5	7	2
BeCl + LiF = BeClF + Li	1 x 10 ¹⁾ .	0.5	7	2
BeCl + NaF = BeClF + Na	1 x 10 ¹¹	0.5	6	2
BeCl + H = HCl + Be	5 x 10 ¹¹	0.5	6	2
BeCl + OH = BeOH + Cl	1 x 10 ¹¹	0.5	6	2
BeCl + Li = LiCl + Be	5 x 10 ¹¹	0.5	6	2.
BeCl + 0 = Cl + BeO	5 x 10 ¹¹	0.5	6	2
BeC1 + 0 = C1 + BeO	1 x 10 ¹¹	0.5	6	2
BeCl + Na = NaCl + Be	5 x 10 ¹¹	0.5	6	2
2BeF = BeF ₂ + Be	1 x 10 ¹¹	0.5	8	2
BeF + Cl + M = BeClF + M	3 x 10 ¹⁶	-0.5	0	2
BeF + ClF = BeF, + Cl	1 x 10 ¹¹	0.5	3	2
BeF + ClF = BeClF + F	1 x 10 ¹¹	0.5	3	2

Table 2. Reactions Involving Beryllium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
BeF + HCl = BeClF + H	1 x 10 ¹¹	0.5	6	2
BeF + LiCl = BeClF + Li	1 x 10 ¹¹	0.5	6	2
BeF + NaCl = BeClF + Na	1 x 10 ¹¹	0.5	5	2
BeF + F + M = BeF ₂ + M	3 × 10 ¹⁶	-0.5	0	2
BeF + F ₂ = BeF ₂ + F	1 x 10 ¹¹	0.5	2	2
BeF + HF = BeF ₂ + H	1 x 10 ¹¹	0.5	7	2
BeF + LiF = BeF ₂ + Li	1 x 10 ¹¹	0.5	7	2
BeF + NaF = BeF ₂ + Na	1 × 10 ¹¹	0.5	6	2
BeF + H = Be + HF	4 x 10 ¹¹	0.5	8	2
SeF + HO = BeOH + F	1 x 10 ¹¹	0.5	6	2
BeF + Li = Be + LiF	5 x 10 ¹¹	0.5	8	2
GeF + 0 = F + BeO	5 x 10 ¹¹	0.5	8	2
BeF + Na = Be + NaF	5 x 10 ¹¹	0.5	8	2
PBeH = BeH ₂ + Be	1 x 10 ¹¹	0.5	3	2
SeH ₂ + BeO = BeH + BeOH	1 x 10 ¹¹	0.5	5	2
SeH + B = Be + BH	7.0x10 ¹¹	0.7	3	22
MeH + C = Be + CH	5.8x10 ¹¹	0.7	8	22
eH + CN = Be + HCN	1 x 10 ¹¹	0.5	3	2
eH ₂ + CN = BeH + HCN	1 × 10 ¹¹	0.5	5	2
$SeH + HCO = BeH_2 + CO$	1 x 10 ¹¹	0.5	2	2

Table 2. Reactions Involving Beryllium Species (Continued)

Reaction	A cc/ mole-sec	'n	E, kcal/mole	Refer- ence
BeH + Cl = BeCl + H	5 × 10 ¹¹	0.5	3	2
BeH + Cl = Be + HCl	2.6x10 ¹¹	0.7	3	22
BeH ₂ + C1 = BeH + HC1	1 x 10 ¹¹	0.5	5	2
BeH + F = Be + HF	2.5x10 ¹¹	0.7	2	22
BeH ₂ + F = BeH + HF	1 x 10 ¹¹	0.5	5	2
BeH + H + M = BeH ₂ + M	3 × 10 ¹⁶	-0.5	0	2
BeH, + H = BeH + H,	1 x 10 ¹¹	0.5	5	2
BeH + LiH = BeH ₂ + Li	1 x 10 ¹¹	0.5	3	2
BeH + NH = BeH, + N	1 x 10 ¹¹	0 5	5	2
BeH + NH = Be + NH ₂	1 x 10 ¹¹	0.5	3	2
BeH + NH ₂ = BeH ₂ + NH	1 × 10 ¹¹	0.5	5	2
BeH + OH = Be + H ₂ O	1 x 10 ¹¹	0.5	3	2
BeH ₂ + OH = BeH + H ₂ O	1 x 10 ¹¹	0.5	5	. 2
BeH + NaK = BeH ₂ + Na	1 × 10 ¹¹	0.5	3	2
BeH + LiO = LiOH + Be	1 x 10 ¹¹	0.5	3	2
BeH, + LiO = BeH + LiOH	1 x 10 ¹¹	0.5	5	2
BeH + N = Be + NH	5 x 10 ¹¹	0.5	3	2
BeH + O = BeO + H	5 x 10 ¹¹	0.5	0	2
BeH ₂ + O = BeH + OH	1 x 10 ¹¹	0.5	5	2
BeH + O = Be + OH	5 x 10 ¹¹	0.5	3	2.

Table 2. Reactions Involving Deryllium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
BeH ₂ + 0" = BeH + OH"	1 x 10 ¹¹	0.5	5	2
BeH + NaO = Be + NaOH	1 x 10 ¹¹	0.5	/ 3	2
BeH, + NaO = BeH + NaOH	1 x 10 ¹¹	0.5	5	2
2Be0 = Be ₂ 0 ₂	1 x 10 ¹¹	0.5		2
BeO + BeOH = Be ₂ O ₂ + H	5 x 10 ¹⁰	0.5	4	2
$Be0 + Be_20_2 = Be_30_3$	1 x 10 ¹¹	0.5	0	2
$BeO + Be_3O_3 = Be_{l_1}O_{l_2}$	1 x 10 ¹¹	0.5	0	2
Be ₂ O ₂ + BeOH = Be ₃ O ₃ + H	5 x 10 ¹⁰	0.5	4	2
$Be_3O_3 + BeOH = Be_4O_4 + H$	5 x 10 ¹⁰	0.5	4	2
2Be ₂ 0 = Be ₄ 0 ₂	5 x 10 ¹⁰	0.5	0 .	. 2
3e0 + C0 = Be + CO ₂	1 x 10 ¹¹	0.5	6	2
SeO + HCN = CN + BeOH	3.9x10 ¹¹	0.7	15	22
BeO + HCO = CO + BeOH	1.3x10 ¹¹	0.5	0	36
SeO + CH ₃ = CH ₂ + BeOH	1.6x10 ¹¹	0.7	1	22
3 2 3e0 + H ₂ CO = HCO + BeOH	6.0x10 ¹¹	0.6	2	22
3e0 + CH ₁₄ = CH ₃ + BeOH	1.13x10 ¹²	0.6	4	22
3eO + H + M = HBeO + M	3 × 10 ¹⁶	-0.5	0	2
BeO + HCl = BeOH + Cl	1 x 10 ¹¹	0.5	6	2
	1 x 10 ¹¹	0.5	6	2
3e0 + H ₂ = BeOH + H	1 x 10 ¹¹			
SeO + LiH = BeOH + Li	T X 10	0.5	3	2

Table 2. Reactions Involving Beryllium Species (Continued)

Reaction	A, cc/ mole-sec	'n	kcal/mole	Refer- ence
BeO + NH = BeOH + N	1 × 10 ¹¹	0.5	5	2
BeO + HO = BeOH + O	1 x 10 ¹¹	0.5	6	2
BeO + HO = BeOH + 0	1 x 10 ¹¹	0.5	8	2
BeO + NaH = BeOH + Na	1 x 10 ¹¹	0.5	3	2
BeO + HCN = BeOH + CN	1 x 10 ¹¹	0.5	6	2
BeO + HCO = BeOH + CO	1 x 10 ¹¹	0.5	2	2
BeC + LiOH = BeOH + LiO	1 x 10 ¹¹	0.5	6	2
BeO + NH ₂ = NH + BeOH	1.7x10 ¹²	0.5	0	36
BeO + HNO. = NO + BeOH	3.5x10 ¹¹	0.5	0	36
BeO + H ₂ O = BeOH + OH	1 x 10 ¹¹	0.5	6	2
BeO + NaOH = BeOH + NaO	1 x 10 ¹¹	0.5	7	2
BeO + NH ₃ = NH ₂ + BeOH	1.3x10 ¹²	0.5	0	36
BeO + N = Be + NO	5 x 10 ¹¹	0.5	6	2
BeO + 0 = Be + 0 ₂	5 x 10 ¹¹	0.5	6.	2
BeOH + CH = BeO + CH ₂	2 x 10 ¹¹	0.7	2	22
BeOH + Cl = BeO + HCl	9 x 10 ¹⁰	0.5	0	36
BeOH + F = BeO + HF	1 x 10 ¹¹	0.5	0	- 36
BeOH + H = BeO + H	5 x 10 ¹¹	0.7	5	22
BeOH + OH = BeO + H ₂ O	1.1x10 ¹¹	0.5	0	36
BeOH + OH = BeO ₂ H ₂	1 x 10 ¹¹	0.5	0	2

Table 2. Reactions Involving Beryllium Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
BeOH + LiOH = BeO2H2 + Li	1 x 10 ¹¹	0.5	5	2
BeOH + KOH = BeO2H2 + K	1 × 10 ¹¹	0.5	5	2
BeOH + NaOH = BeO2H2 + Na	1 x 10 ¹¹	0.5	5	2
BeOH + O = BeO + OH	2.0x10 ¹¹	0.5	0	36
BeOH + NaO = BeO + NaOH	1.8x10 ¹¹	0.5	0	36
BeO ₂ H ₂ + H = BeOH + H ₂ O	1 x 10 ¹¹	0.5	5	2

Table 3. Reactions Involving Boron Species

Reaction	A, ec/ mole-sec	n	E, kcal/mole	Refer- ence
3 ⁺ - BO = P + BO [*]	4 × 10 ¹¹	0.5	0	2
B + BF ₂ = 2BF	1 x 10 ¹¹	0.5	.6	2
B + BOF = BF + BO	1 x 10 ¹¹	0.5	9	2
3 + BH ₂ = 2 BH	1 x 10 ¹¹	0.5	6	2
3 + BF ₃ = BF + BF ₂	1 x 10 ¹¹	0.5	8	2
3 + BH ₃ = BH + BH ₂	1 x 10 ¹¹	0.5	6	2
$B + B_2 O_3 = BO + B_2 O_2$	1 x 10 ¹¹	0.5	8	2
+ e + M = B + M	5 x 10 ²³	-1.5	0	2
) + F + M = BF + M	3 × 10 ¹⁶	-0.5	0	2
+ + F + M = BF + M	4 x 10 ¹⁷	-0.5	0	2
+ F = e + BF	1 x 1c ¹¹	0.5	11	2
+ FH = BF + H	5 x 10 ¹¹	0.5	7	. 2
+ FNa = BF + Na	5 x 10 ¹¹	0.5	6	2
+ + FNa = BF + Na+	1 x 10 ¹¹	0.5	6	2
+ Lih = Li + BH	1.5x10 ¹²	0.7	5	22
s + OH = BO + H	5 x 10 ¹⁰	0.5	9	2
3 + HO = BO + H	5 x 10 ¹¹	0.5	6	2
+ NaH = Na + HB	9.2x10 ¹¹	0.7	5	22
+ HOH = BOH + H	1 x 10 ¹¹	0.5	6	2
$^{+}$ + 0 + M = BO^{+} + M	5 × 10 ¹¹	0.5	0	2

Table 3. Reactions Involving Boron Species (Continued)

Reaction	A. cc/ mole-sec	n	kcel/mole	Refer- ence
B + O + M = BO + M	3 × 10 ¹⁶	-0.5	0	2
B+ + 0" + M = BO + M	4 x 10 ¹⁷	-0.5	0	2
B + 0" = e + BO	1 x 10 ¹¹	0.5	11	2
B+ + 02 = B0 + 0	5 x 10 ¹¹	0.5	5	2
B ⁺ + 0 ₂ = B0 ⁺ + 0	5 x 10 ¹¹	0.5	9	2
B + 0 ₂ = B0 + 0	5 x 10 ¹¹	0.5	6	2
B + 02 = BO + 0	5 x 10 ¹¹	0.5	5	2
B^{\dagger} + NaO = BO^{\dagger} + Na	5 x 10 ¹¹	0.5	4	2
B ⁺ + NaO = BO + Na ⁺	1 x 10 ¹¹	0.5	5	2
B + NaO = BO + Na	5 x 10 ¹¹	0.5	4	2
3++ Na = B + Na+	4 x 10 ¹¹	0.5	o	2
EF + B ₂ 0 ₃ = OBF + B ₂ 0 ₂	1 x 10 ¹¹	0.5	8.	2
BF + F = e + BF ₂	1 x 10 ¹¹	0.5	0	2
BF + HO = OBF + H	1 x 10 ¹¹	0.5	6	2
BF + 0 = e + FBO	1 x 10 ¹¹	0.5	0	2
BF + 0 = F + BO	1 x 10 ¹¹	0.5	16	2
BF + 0 ₂ = OBF + 0	1 x 10 ¹¹	0.5	6	2
BF + 02 = OBF + 0	1 x 10 ¹¹	0.5	5	2
PBF ₂ = BF + BF ₃	1 x 10 ¹¹	0.5	6.	2
BF ₂ + BO = BFO + BF	1 x 10 ¹¹	0.5	6	2

Table 3. Reactions Involving Boron Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer-
BF ₂ + F = BF ₃	1 x 10 ¹¹	0.5	0	2
BF ₂ + F = e + BF ₃	1 x 10 ¹¹	0.5	0	2
BF ₂ + NeF = Ne + BF ₃	1 x 10 ¹¹	0.5	6	2
BF ₂ + H = BF + FH	1 x 10 ¹¹	0.5	6	2
BF ₂ + 0 = OBF + F	1 x 10 ¹¹	0 5	6.	2
BF ₂ + Na = BF + FNa	1 x 10 ¹¹	0.5	6	2
BH + BH ₃ = 2BH ₂	1 x 10 ¹¹	0.5	4	2
BH + C = B + CH	1.1x10 ¹²	0.7	3	22
BH + CH ₂ = CH + BH ₂	1.05x10 ¹²	0.7	27	22
BH + CH ₃ = CH ₂ + BH ₂	4.3x10 ¹¹	0.7	4	22
BH + CH ₄ = CH ₃ + BH ₂	2.1x10 ¹²	0.6	10	22
BH + HCN = CN + BH ₂	1.12x10 ¹²	0.6	19	22
BH + H ₂ CO = HCO + BH ₂	1.11x10 ¹²	0.6	9	22
BH + HCO = CO + BH ₂	2.1x10 ¹¹	0.5	0	36
2 3H + Cl = B + HCl	2.4x10 ¹¹	0.7	5	22
SH + F = B + HF	2.3x10 ¹¹	0.7		22
BH + H + M = BH ₂ + M	3 × 10 ¹⁶	-0.5	0	2
9H + H = B + H ₂	1.4x10 ¹²	0.7	2	22
BH + NH ₂ = NH + BH ₂	5.2x10 ¹¹	0.6	6	22
$SH + NH^3 = NH^5 + BH^5$	7.1x10 ¹¹	0.6	4	22

Table 3. Reactions Involving Boron Species (Continued)

Reaction	A, cc/ mcle-sec	n	E, kcal/mole	Refer-
BH + HNO = NO + BH ₂	1.2x10 ¹²	0.5	0	36
BH + 0 = B + OH	6.6x10 ¹¹	0.7	1	22
BH ₂ + H = BH ₃	1 × 10 ¹¹	0.5	0	2
$BH_2 + H = BH + H_2$	1 x 10 ¹¹	0.5	6	2
$BH_2 + H_2 = BH_3 + H$	1 × 10 ¹¹	0 5	5	2
$2B0 = B_2 O_2$	1 x 10 ¹¹	0.5	0	2
BO + CH ₂ = CH + HBO	4 lx10 ¹¹	0.5	0	36
BO + CH ₃ = CH ₂ + HBO	6.3x10 ¹¹	0.6	6	22
30 + CH ₄ = CH ₃ + HBO	1.2x10 ¹²	0.6	16	22
BO + HCO = CO + HBO	1.4x10 ¹¹	0.5	0	36
30 + H ₂ CO = HCO + HBO	5.5x10 ¹¹	0.6	16	22
30 ⁺ + e + M = BO + M	5 x 10 ²³	-1.5	0	2
30 ⁺ + F ⁻ + M = FBO + M	4 x 10 ¹⁷	-0.5	0	2
80 + F = BF + 0	1 x 10 ¹¹	0.5	11	2
00 + F = e + FBO	1 x 10 ¹¹	0.5	0.	2
00 + FH = FBO + H	1 × 10 ¹¹	0.5	7	2
00 + FNa = FBO + Na	1 x 10 ¹¹	0.5	6	2
00 + H + H = HBO + M	4 x 10 ¹⁷	-0.5	0	2
00 + H = HBO + e	1 × 10 ¹¹	0.5	0	2
90 + H ₂ = HBO + H	1 × 10 ¹¹	0.5	6	2

Table 3. Reactions Involving Boron Species (Continued)

Reaction	A, cc/ mole-sec	n	kcel/mole	Refer- ence
во ⁺ + он ⁻ = нво ₂	1 x 10 ¹¹	0.5	•0	2
BO + HO = HBO + O	1 x 10 ¹¹	0.5	6	2
BO + HO = HBO + O	1 x 10 ¹¹	0.5	6	2
BO + HO = HBO ₂	1 x 10 ¹¹	0.5	0.	2
BO + HO = e + HBO	1 x 10 ¹¹	0.5	0	2
BO + HNa = HBO + Na	1 x 10 ¹¹	0.5	3	2
BO + H ₂ O = HBO + OH	1 x 10 ¹¹	0.5	6	2
BO + NaOH = HBO + KaO	1 x 10 ¹¹	0.5	7	2
BO + NaOH = Na + HBO	1 x 10 ¹¹	0.5	* 5	2
BO ⁺ + Na = BO + Na ⁺	4 x 10 ¹¹	0.5	0	2
B ₂ O ₂ + OH = H + B ₂ O ₃	1 x 10 ¹¹	0.5	6.	2
$B_2O_2 + O = B_2O_3$	1 × 10 ¹¹	0.5	0.	2
$B_2O_2 + O^2 = e + B_2O_3$	1 × 10 ¹¹	0.5	0.	2
$B_2O_2 + O_2 = B_2O_3 + O$	1 x 10 ¹¹	0.5	6	2
$B_2O_2 + O_2^- = O^- + B_2O_3$	1 x 10 ¹¹	0.5	5	2
$B_2O_2 + NaO = Na + B_2O_3$	1 x 10 ¹¹	0.5	4.0	2
HBO + CH = BO + CH ₂	4.4x10 ¹¹	0.5	0	36
HBO + CN = BO + HCN	3.1x10 ¹¹	0.5	0	36
HBO + F = BO + FH	1 x 10 ¹¹	0.5	6	2
HBO + F = FBO + H	1 x 10 ¹¹	0.5	6	2

Table 3. Reactions Involving Boron Species (Concluded)

Reaction	A, cc/ mole-sec	n	kcal/mole	Refer- ence
HBO + F = BF + HO	1 x 10 ¹¹	0.5	6	2
HBO + 02 = 0 + HBO2	1 x 10 ¹¹	0.5	5	2
$HBO + O_2 = O + HBO_2$	1 x 10 ¹¹	0.5	6	2
HBO + NaO = Na + HBO ₂	1 x 10 ¹¹	0.5	4	2
HBO ₂ + H = H ₂ O + BO	1 x 10 ¹¹	0.5	4	2
нво ₂ + н = вон + он	1 x 10 ¹¹	0.5	7	2
HBO ₂ + F = FBO + OH	1 x 10 ¹¹	0.5	7	2
HBO ₂ + F = FBO + OH	5 x 10 ¹⁰	0.5	7	2

Table 4. Reactions Involving Carbon And Carbon-Hydrogen Species

Reaction	A, cc/ mole-sec	u	kcal/mole	Refer- ence
C + C + M = C2 + M	1 × 10 ¹⁶	-0.5	0	2
C + C ₂ + M = C ₃ + M	1 x 10 ¹⁶	-0.5	0	2
$C + C_2H = C_2 + CH$	5 x 10 ¹¹	0.5	4	2
C + H ₂ C = 2CH	5 x 10 ¹¹	0.5	18	2
$C + CH_{l_k} = CH + CH_3$	5 x 10 ¹¹	0.5	6	2
С + СН_О = СНО + СН	3 × 10 ¹⁰	0.5	3	11
C + HCO = CO + HC	5 x 10 ¹¹	0.5	4	2
c + co ₂ = 2co	5 x 10 ¹¹	0.5	4	2
C + H + M = CH + M	2 x 10 ¹⁶	-0.5	0	1
C + OH + M = CHO + M	3 × 10 ¹⁵	-0.5	0	2
C + OH = CO + H	5 x 10 ¹¹	. 0.5	4	2
C + L1H = L1 + CH	1.7x1012	0.7	9	22
C + O + M = CO + M	1 x 10 ¹⁶	-0.5	0	2
c + 0 ₂ = co + 0	5 x 10 ¹¹	0.5	4	2
2C ₂ = C ₃ + C	5 x 10 ¹¹	0.5	6	2
$c_2 + cH = H + c_3$	5 x 10 ¹¹	0.5	6	2
C ₂ + CHO = CO + C ₂ H	5 x 10 ¹¹	0.5	6	2
C ₂ + CH ₂ O = CHO + C ₂ H	2 x 10 ¹⁰	0.5	6	11
C ₂ + H = C + CH	5 x 10 ¹¹	0.5	10	1
C ₂ + H = C ₂ H	5 x 10 ¹¹	0.5	0	1

Table 4. Reactions Involving Carbon
And Carbon-Hydrogen Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
c ₂ + 0 = co + c	5 × 10 ¹¹	0.5	4	2
C3 + OH = C2 + CHO	1 x 10 ¹⁰	0.5	10	2
$c_3 + 0 = c_2 + c0$	5 x 10 ¹¹	0.5	4	2
CH + C2H = C + C2H2	5 × 10 ¹¹	0.5	6	2
$CH + C^2H = C^2 + CH^2$	1 x 10 ¹¹	0.5	40	1
2CH = C ₂ H ₂	5 x 10 ¹¹	0.5	6	2
CH + CH ₂ = C + CH ₃	5 x 10 ¹¹	0.5	6	2
CH + CH ₃ = 2CH ₂	1.2010	0.7	5	22
CH + CH ₄ = CH ₃ + CH ₂	2.4x10 ¹¹	0.7	6	22
CH + CH4 = CH3 + CH2	5 x 10 ¹¹	0.5	6	2
H + HCN = CN + CH ₂	3.3x10 ¹¹	0.6	8	22
CH + CHO = CO + CH2	5 x 10 ¹¹	0.5	6	2
EH + CH20 = CH0 + CH2	2 x 10 ¹⁰	0.5	5	11
EH + H2CO = HCO + CH2	1.1x10 ¹¹	0.7	4	22
EH + HCO = CO + CH ²	3 × 10 ¹⁰	0.7	1	22
$SH + CO^{5} = CO + CHO$	1 x 10 ¹⁰	0.5	6	2
H + Cl = C + HCl	3.2x10 ¹¹	0.7	1	22
H + F = C + HF	3.0x10 ¹¹	0.7	1	22
SH + H = C + H ²	6.4x10 ¹¹	0.7	2	22
H + H = CH ²	5 x 10 ¹¹	0.5	0	1

Table 4. Reactions Involving Carbon And Carbon-Hydrogen Species (Continued)

		Por phocres	(-020-02	A SHARE THE REAL PROPERTY.
Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
CH + NH ⁵ = NH + CH ⁵	3 × 10 ¹⁰	v. 7	2	22
CH + NH ₃ = NH ₂ + CH ₂	5 x 10 ¹⁰	0.7	2	22
CH + OH = H + CHO	5 x 10 ¹¹	0.5	10	2
CH + OH = C + H2O	5 x 10 ¹¹	0.5	6	2
CH + HNO = NO + CH	6.3x10 ¹¹	0.5	0	36
$CH + HO^{5} = O^{5} + CH^{5}$	1 x 10 ¹⁰	0.5	15	2
CH + HO = OH + CHO	5 x 10 ¹¹	0.5	6	2
CH + NaOH = NaO + CH	9.9x10 ¹¹	0.6	5	22
CH + N = C + NH	4.5x10 ¹¹	0.7	2	22
CH + O = C + OH	2.5x10 ¹¹	0.7	2	22
CH + 0 = HCO + e	1 x 10 ¹¹	0.5	0	2
CH + O + M = CHO + M	1 × 10 ¹⁶	-0.5	o	2
CH + O = H + CO	5 x 10 ¹¹	0.5	4	2
CH + 0 ₂ = 0 + CHO	5 x 10 ¹¹	0.5	6	2
2C ₂ H = C ₂ + C ₂ H ₂	1 x 10 ¹⁰	0.5	6	2
C2H + H = C2 + H2	5 x 10 ¹¹	0.5	35	1
$C_2H + H = C_2H_2$	5 x 10 ¹¹	0.5	0	1
с ₂ н + н = 2CH	5 x 10 ¹¹	0.5	50	2
с ⁵ н + сн ⁵ = сн + с ⁵ н ⁵	5 x 10 ¹¹	0.5	6	2
$c_{2}H + cH_{2} = c_{2} + cH_{3}$	1 x 10 ¹¹	0.5	6	2

Table 4. Reactions Involving Carbon
And Carbon-Hydrogen Species (Continued)

	And Carbon-Aydrog	en obectes	(continued)	
Reaction	A cc/ mole-sec	n	E, kcal/mole	Refer- ence
C2H + CH3 = C2 + CH4	1 × 10 ¹¹	0.5	6	2
C2H + CH3 = CH2 + C2H2	1 x 10 ¹¹	0.5	6	2
C2H + CHO = CO + C2H2	1 x 10 ¹¹	0.5	6	2
C2H + CH2O = CHO + C2H2	3 x 10 ¹⁰	0.5	6	11
$c_2H + CH_4 = CH_3 + C_2H_2$	1 x 10 ¹⁰	0.5	6	11
2H + OH = O + C2H2	5 x 10 ¹¹	0.5	6	2
² H + OH = C ² + H ² O	5 x 10 ¹¹	0.5	6	2
⁵ н + н ⁵ о = с ⁵ н ⁵ + он	1 x 10 ¹⁰	0.5	6	2
² H + O = CH + CO	5 x 10 ¹¹	0.5	4	2
2H + O = C ₂ + OH	5 x 10 ¹¹	0.5	4	2
² н ² + н = с ² н + н ²	5 x 10 ¹¹	0.5	15	1
CH ₂ = CH + CH ₃	5 x 10 ¹¹	0.5	6	2
H ₂ + CH ₄ = 2CH ₃	1.21x10 ¹²	0.7	20	11,22
H ₂ + HCO = CO + CH ₃	3 x 10 ¹⁰	0.7	1	22
н ₂ + сн ₂ 0 = сно + сн ₂	3 × 10 ¹⁰	0.5	6	11
H ₂ + C1 = CH + HC1	3.6x10 ¹¹	0.7	29	22
H ₂ + F = CH + HF	8 x 10 ¹⁰	0.7	5	22
H ₂ + H = CH + H ₂	2.9x10 ¹¹	0.7	26	1,22
$H_2 + H_2 = H + CH_3$	1 x 10 ¹⁰	0.5	10	11
H ² + OH = O + CH ³	5 x 10 ¹¹	0.5	6	2

Table 4. Reactions Involving Carbon
And Carbon-Hydrogen Species (Continued)

Reaction	A, cc/mole-sec	n	E, kcel/mole	Refer- ence
CH ₂ + OH = CH + H ₂ O	5 x 10 ¹¹	0.5	6	2
CH ₂ + HNO = NO + CH ₃	6.8x10 ¹¹	0.5	r	36
CH ₂ + H ₂ O = OH + CH ₃	1 x 10 ¹⁰	0.5	10	2
$CH_2 + O = CH + OH$	3.2010	0.7	26	2
$CH_2 + O = H + CHO$	5 x 10 ¹¹	0.5	4	2
$CH_2 + O_2 = H_2CO + O$	5 x 10 ¹¹	0.5	7	2
CH3 + CN = CH2 + HCN	9 x 10 ¹⁰	0.7	3	22
CH ₃ + HCO = CH ₂ + H ₂ CO	1.5×10	0.7	Ĺ,	22
$cH^3 + HCO = CO + CH^7$	3.0x10 ¹¹	0.5	0	36
EH ₃ + H ₂ CO = CHO + CH ₄	1 x 10 ¹⁰	0.5	6	12
$cH_3 + cl = cH_2 + Hcl$	2.2x10 ¹¹	0.7	8	22
CH ₃ + F = CH ₂ + HF	6 x 10 ¹⁰	0.7	1	22
CH ₃ + H = CH ₂ + H ₂	1.8x10 ¹¹	0.7	3	22
$H_3 + H = CH_{l_1}$	5 x 10 ¹¹	0.5	0	2
он ₃ + н ₂ = н + сн ₄	1 x 10 ¹⁰	0.5	10	12
$CH_3 + NH = CH_2 + NH_2$	9 x 10 ¹⁰	0.7	2	22
$CH_3 + NH_2 = CH_2 + NH_3$	1.7x10	0.7	2	22
$cH_3 + HNO = NO + CH_4$	5.0x10 ¹¹	0.5	0	36
$cH_3 + OH = CH_2 + H_2O$	6 x 10 ¹⁰	0.7	2	22
сн ₃ + но ₂ = сн ₄ + о ₂	1 x 10 ¹¹	0.5	. 6	2

Table 4. Reactions Involving Carbon And Carbon-Hydrogen Species (Concluded)

Reaction	A, ec/ mole-sec	n	E, kcal/mole	Refer- ence
сн ₃ + о = сн ₂ о + н	1.9x10 ¹³	0.0	0	16
$CH_3 + O = CH_2 + OH$	1 x10 ¹¹	0.5	17	2
CH ₃ + NaO = CH ₂ + NaOH	1.3x10 ¹²	0.5	0	36
$CH_4 + CN = CH_3 + HCN$	2.9x10 ¹¹	0.7	5	22
СН ₄ + нсо = СН ₃ + н ₂ со	8.6x10 ¹¹	0.6	9	22
CH ₄ + C1 = CH ₃ + HC1	6.9x10 ¹¹	0.6	13	22
H ₄ + F = CH ₃ + HF	9 x 10 ¹⁰	0.7	1.	22
$cH_4 + H = cH_3 + H_2$	4.4x10 ¹¹	0.7	7	22
$cH_4 + NH = CH_3 + NH_2$	5.9x10 ¹¹	0.6	7	22
CH ₄ + NH ₂ = CH ₃ + NH ₃	9.5x10 ¹¹	0.6	ä	22
$cH_{14} + OH = CH_3 + H_2O$	3.5x10 ¹⁴	0.0	9	16
$H_{\mu} + O = CH_3 + OH$	4.0x10 ¹¹	0.5	8	37
$H_{\mu} + NaO = CH_{3} + NaOH$	1.6x10 ¹¹	0.7	1	22

Table 5. Reactions Involving Carbon-Nitrogen
And Carbon-Oxygen Species

Reaction	A, ec/ mole-sec	n	E, kcal/mole	Refer- ence
CN + CHO = HCN + CO	1.9×10 ¹¹	0.5	o	36
CN + H ₂ CO = HCO + HCN	1.2x10 ¹¹	0.7	3	22
CN + C1 = CN + C1	5 x 10 ¹¹	0.5	0	2
CN + HCl = HCN + Cl	1 x 10 ¹¹	0.5	6	2
$CN^- + F = F^- + CN$	4 x 10 ¹¹	0.5	0	2
CN + H + M = HCN + M	3 × 10 ¹⁶	-0.5	0	2
en + H = HCN + e	1 x 10 ¹¹	0.5	0	2
N + H = CN . + H	4 x 10 ¹¹	0.5	0	2
N + H = HCN + e	5 x 10 ¹¹	0.5	0	2
en + H ₂ = hen + H	1 x 10 ¹¹	0.5	6	2
N + NH = HCN + N	1 x 10 ¹¹	0.5	2	2
N + NH ₂ = HCN + NH	5 x 10 ¹⁰	0.7	2	22
$EN + NH_3 = HCN + NH_2$	7 × 10 ¹⁰	0.7	2	22
2N + OH = HCN + O	1 x 10 ¹¹	0.5	6	2
$cn + oh^{-} = cn^{-} + oh$	4 x 10 ¹¹	0.5	0	2
en + hno = hon + no	3.8×10 ¹¹	0.5	0	36
$e^{-1} + H_3 o^+ = HCN + H_2 o$	1 x 10 ¹¹	0.5	0	2
CN + NaH = HCN + Na	1 x 10 ¹¹	0.5	3	2
$N + HO^{-} = HCN + O^{-}$	1 x 10 ¹¹	0.5	9	2
$cn + o^{-} = cn^{-} + o$	5 x 10 ¹¹	0.5	0	2

Table 5. Reactions Involving Carbon-Witrogen .
And Carbon-Oxygen Species (Continued)

Reaction	d Carbon-Oxygen Spe	n		Refer-
	cc/ mole-sec		kcal/mole	ence
$cn + o_2 = cn + o_2$	4 x 10 ¹¹	0.5	o	2
HCN + Cl = CN + HCl	4.5x10 ¹¹	0.6	20	22
HCN + F = CN + HF	4 x 10 ¹⁰	0.7	1	22
HCN + H = CN + H ₂	2.6x10 ¹¹	0.7	18	22
HCN + OH = CN + H ₂ O	2.0x1011	0.6	5	22
HCN + Lio = CN + Lioh	1 x 10 ¹¹	0.5	6	2
HCN + O = CN + OH	2.8x10 ¹¹	0.7	17	22
HCN + NaO = CN + NaOH	3.6x10 ¹¹	0.6	2	22
$co + c_2 o = c_2 + co_2$	1 x 10 ¹¹	0.5	6	2
CO + H = CHO + e	5 x 10 ¹¹	0.5	0	2
CO + OH = H + CO ₂	3 × 10 ¹¹	0.0	0.6	38
co + HNO = HN + CO	1 x 10 ¹¹	0.5	7	2
CO + LiO = CO ₂ + Li	1 x 10 ¹¹	0.5	5	2
$co + No_2 = No + co_2$	2 x 10 ¹¹	0.5	5	2
co + N ₂ 0 = N ₂ + CO ₂	1 x 10 ¹¹	0.5	3.	2
co + o + M = co ₂ + M	1 x 10 ¹⁶	0.0	3.5	26
co + o = co ₂ + e	1 x 10 ¹¹	0.5	0	2
$co + o_2 = o + co_2$	3.5x10 ¹²	0.0	51	39
CO + NaO = CO _p + Na	1 × 10 ¹¹	0.5	¥	2
$C_{0}O + M = CO + C + M$	1 x 10 ¹⁷	0.0	100	2
$C_{2}0 + 0 = 200$	5 x 10 ¹¹	0.5	4	2

Table 5. Reactions Involving Carbon-Nitrogen And Carbon-Oxygen Species (Continued)

Reaction	cc/ mole-sec	n n	kcal/mole	Refer- ence
CO ₂ + H ₂ = CO + H ₂ O	1 x 10 ⁹	0.5	15	2
co ₂ + N = co + No	2 x 10 ¹¹	0.5	8	2
co ₂ + 0 = co + o ₂	5 x 10 ¹¹	0.5	8	2
CHO + M = CO + H + M	1 x 10 ¹⁵	0.5	23	6
2HCO = CO + H2CO	1.4x10 ¹¹	0.5	0.	36
HCO + Cl = CO + HCl	9 x 10 ¹⁰	0.5	0.	36
$CHO^+ + e + M = CHO + M$	5 x 10 ²³	-1.5	0	2
HCO + F = CO + HF	1.1x10 ¹¹	0.5	0.	36
HCO + H = CO + H ₂	1.5x10 ¹²	0.5	0	36
HCO + NH = CO + NH	1.4x10 ¹¹	0.5	0	36
HCO + NH ₂ = CO + NH ₃	2.6x10 ¹¹	0.5	0	36
HCO + NH ₂ = NH + H ₂ CO	1.3x10 ¹¹	0.6	4	22
HCO + NH ₃ = NH ₂ + H ₂ CO	3.0x10 ¹¹	0.6	3	22
HCO + HNO = NO + H ₂ CO	3.2x10 ¹¹	0.5	0.	36
HCO + OH = CO → H ₂ O	1.1x10 ¹¹	0.5	0	36
CHO + L1 = CO + L1H	1 x 10 ¹¹	0.5	2	2
CHO + Li + = CHO + Li	4 x 10 ¹¹	0.5	0	2
CHO + N = CO + NH	2 x 10 ¹¹	0.5	2	2
СНО + NO = CO + HNO	2 x 10 ¹¹	0.5	2	2
HCO + 0 = CO + OH	1.8x10 ¹¹	0.5	0	36

Table 5. Reactions Involving Carbon-Nitrogen And Carbon-Oxygen Species (Concluded)

Reaction	A, cc/ mole-sec	n	kcal/mole	Refer- ence
CHO + O = CO + OH	1 × 10 ¹¹	0.5	2	2
HCO + NaO = CO + NaOH	1.8x10 ¹¹	0.5	0	36
CHO + Na = CO + NaH	1 x 10 ¹¹	0.5	2	2
CH ₂ O = H + CHO	3 x 10 ¹⁷	0.0	87	7
H ₂ CO + C1 = HCO + HC1	3.5×10 ¹¹	0.6	11	22
H2CO + F = HCO + HF	4.1x10 ¹¹	0.5	0	36
Н200 + Н = СНО + Н2	1 x 10 ¹³	0.0	2	6
H2CO + OH = HCO + H2O	5 x 10 ¹⁰	0.7	1	22
H2CO + O = HCO + OH	4.0x10 ¹¹	0.6	4	22
H2CO + NaO = HCO + NaOH	7.2x10 ¹¹	0.5	0	36

Table 6. Reactions Involving Lithium Species

Reaction	A cc/mole-sec	'n	E, kcal/mole	Refer- ence
Li + Cl + M = ClLi + M	3 × 10 ¹⁶	-0.5	0	2
Li+ + Cl- + M = LiCl + M	4 x 10 ¹⁷	-0.5	0	2
Li + Cl ₂ = LiCl + Cl	5 x 10 ¹¹	0.5	3	2
II + + + + M = II + M	5 × 10 ²³	-1.5	0	2
L: + M + F = LiF + M	3 × 10 ¹⁶	-0.5	0	2
Li + F + M = LiF + M	4 x 10 ¹⁷	-0.5	0	2
Li + F ₂ = Lif + F	5 × 10 ¹¹	0.5	2	2
IA + H + M = IAH + M	3 × 10 ¹⁶	-0.5	0	2
TT + + H + M = TTH + W	4 x 10 ¹⁷	-0.5	0	2
Li + H = e + LiH	5 × 10 ¹¹	0.5	0	2
Li + HCl = LiCl + H	1 x 10 ¹¹	0.5	6	2
Li ⁺ + OH + M = Lioh + M	4 x 10 ¹⁷	-0.5	0	2.
Ti + OH + M = TiOH + H	3 × 10 ¹⁶	-0.5	0	2
TT + OH = TTO + H	5 x 10 ¹¹	0.5	6	2
Li + HOH = Lioh + H	1 x 10 ¹¹	0.5	6	2
Li + H ₃ 0 ⁺ = Li ⁺ + H + H ₂ 0	1 x 10 ¹¹	0.5	0	2
Li + NO ⁺ = Li ⁺ + NO	4 x 10 ¹¹	0.5	0	2
ri + 0 + M = rio + M	4 x 10 ¹⁷	-0.5	0	2
TT + 0 + W = TTO + W	3 × 10 ¹⁶	-0.5	0	2
n ₊ + 0 ⁵ = mo + 0	5 × 10 ¹²	0.5	5	2
Lic1 + 0 = Li0 + C1	1 x 10 ¹¹	0.5	6	2
				Transfer Committee

Table 6. Reactions Involving Lithium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Lif + H = HF + Li	1 x 10 ¹¹	0.5	7	2
LiH + Cl = Li + HCl	2.0x10 ¹¹	0.7	12	22
LiH + Cl = H + LiCl	5 x 10 ¹¹	0.5	3	2
LiH + F = H + LiF	5 x 10 ¹¹	0.5	3	2
Lih + F = Li + HF	2.4x10 ¹¹	0.7	8	22
14H + H = LA + H ₂	9.6x10 ¹¹	0.7	6	22
Lih + Nh = Li + Nh	1 x 10 ¹¹	0.5	3	2
Lih + Oh = Li + H ₂ 0	1 x 10 ¹¹	0.5	3	2
LiH + LiO = Li + LiOH	1 x 10 ¹¹	0.5	3	2
LiH + NaO = Li + NaOH	1 x 10 ¹¹	0.5	3	2
TIH + O = TI + OH	5.1x10 ¹¹	0.7	6	22
LIOH + F = HF + LIO	1 x 10 ¹¹	0.5	7	2
LiO + Cl = LiCl + O	5 x 10 ¹¹	0.5	5	2
LiO + HCl = LiOH + Cl	1 x 10 ¹¹	0.5	6	5
LiO + F = LiF + 0	5 x 10 ¹¹	0.5	. 5	2
LiO + F = LiF + 0	1 x 10 ¹¹	0.5	6	2
L10 + H = L1H + 0	1 x 10 ¹¹	0.5	5	2
L10 + N = L1 + OH	5 x 10 ¹¹	0.5	5	2
г10 + н ² = г10н + н	1 x 10 ¹¹	0.5	6	2
Lio + NH = Lioh + N	1 x 10 ¹¹	0.5	5	2
		A LEGICATION	23-17/2012/10/2012/10	

Table 6. Reactions Involving Lithium Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
L10 + NH ₂ = L10H + NH	1 × 10 ¹¹	0.5	5	2
LiO + OH = LiOH + O	1 x 10 ¹¹	0.5	5	2
LiO + OH = LiOH + O	1 x 10 ¹¹	0.5	9	2
Lio + H ₂ O = LioH + OH	1 x 10 ¹¹	0.5	6	2
LiO + NaH = LiOH + Na	1 x 10 ¹¹	0.5	3	2
Lio + N = Li + NO	5 x 10 ¹¹	0.5	5	2
Lio + 0 = Li + 0 ₂	5 x 10 ¹¹	0.5	5	2
Lio + 0 = Li + 02	5 x 10 ¹¹	0.5	5	2

Table 7. Reactions Involving Nitrogen Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
$N + N_2 = 3N$	4 × 10 ¹⁶	-0.5	225	30
$N + NH = H + N_2$	5 x 10 ¹¹	0.5	. 5	13
N + NH ₂ = 2NH	5 x 10 ¹¹	0.5	2	13
$N + NH_3 = NH_2 + NH$	5 x 10 ¹¹	0.5	2	13
N + HNO = NH + NO	1 x 10 ¹¹	0.5	2	2
$HNO + N = H + N^{5}O$	5 x 10 ¹⁰	0.5	3	2
N + H + M = NH + M	3×10^{16}	-0.5	0	2
N + OH + M = HNO + M	1 x 10 ¹⁵	-0.5	100	2
N + OH = H + NO	5 x 10 ¹¹	0.5	5	2
N + NO = 2N + O	1.12x10 ²⁰	-1.0	151	5,25
$N + O^- = NO + e$	1 x 10 ¹¹	0.5	0	2
$N + O_2 = O + NO$	1.33x10 ¹⁰	1.0	7	25
N + 0 ₂ = NO + 0	5 x 10 ¹¹	0.5	6	2
N + NaO = NO + Na	5 x 10 ¹¹	0.5	4	2
2n ₂ = 2n + n ₂	5.4x10 ¹⁷	-0.5	225	30
$N_2 + Ar = 2N + Ar$	4 x 10 ¹⁶	-0.5	225	30
$N_2 + M = 5N + M$	1.9x10 ¹⁹	-1.0	225	5
$N_2 + NO = 2N + NO$	1.5x10 ¹⁶	-0.5	225	30
$N_2 + NO = N + O + N_2$	5.6x10 ¹⁸	-1.0	151	5,25

Table 7. Reactions Involving Nitrogen Species (Continued)

Table 7. Reaction	us Involving Mitroger	pecies (ontinued	
Reaction	A, cc/ mole-sec	n	E, kcel/mcle	Refer- ence
N ₂ + MO = N ₂ O + N	8 x 10 ⁷	0.0	121	5
$N_2 + NO_2 = N_2O + NO$	1.4x10 ¹⁴	0.0	83	5
$N_2 + 0 = NO + N$	6.8xlo ¹³	0.0	75	5
$N_2 + 0 = 2N + 0$	1.5×10 ¹⁶	-0.5	225	30
N ₂ + e + 0 = 0 + N ₂	3 × 10 ¹⁶	0.0	0	42
$N_2 + O_2 = 2N + O_2$	1.5x10 ¹⁶	-0.5	225	30
$N_2 + O_2 = N_2 O + O$	4 x 10 ¹²	0.0	106	5
$1_2 + 0_2 = 200$	2 x 10 ¹ 4	0.0	122	5
$I_2 + O_2 = NO_2 + N$	1.7x10 ¹¹	0.0	136	5
$N_2 + O_2 + e = O_2^{-} + N_2$	3 x 10 ¹⁶	0.0	0	43
$\mathbf{H} + \mathbf{C1} = \mathbf{N} + \mathbf{HC1}$	2.2x10 ¹²	0.68	0.2	22
H + F = N + HF	1.4×10 ¹²	0.68	0.6	22
$IH + H + M = NH_2 + M$	2 x 10 ¹⁶	-0.5	0	13
$MH + H = N + H^{5}$	1.0x10 ¹²	0.68	1.9	22
NH + H = NH ₂ + e	5 x 10 ¹¹	0.5	0	2
NH + HNO = NO + NH ₂	2 x 10 ¹¹	0.5	2	13
TH + HO = N + H ₂ O	5 x 10 ¹¹	0.5	2	2
NH + NaH = NH ₂ + Na	1 x 10 ^{1.1}	0.5	3	2
N ₂ O + NH = N ₂ + HNO	1 x 10 ¹¹	0.5	3	2
$10_2 + NH = NO + HNO$	2 x 10 ¹¹	0.5	5	2
NH + O + M = HNO + M	1 x 10 ¹⁶	-0.5	0	2

Table 7. Reactions Involving Nitrogen Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
NH + O = H + NO	5 x 10 ¹¹	0.5	5	13
NH + O = N + OH	8.4x10 ¹²	0.7	0.1	22
NH + 0" = N + OH"	5 x 10 ¹¹	0.5	5	2
NH + NaO = NaOH + N	1 x 10 ¹¹	0.5	5	.2
NH ₂ + Cl = NH + HCl	5.1x10 ¹¹	0.5	0	36
NE ₂ + F = NH + HF	6.2x10 ¹¹	0.5	0	36
TH ₂ + H = NH + H ₂	1.4x10 ¹¹	0.7	4	22
H ₂ + H = H ₂ + NH	5 x 10 ¹¹	0.5	2	13
H ₂ + H = NH ₃	5 x 10 ¹¹	0.5	0	2
NH ₂ = NH + NH ₃	1 x 10 ¹²	0.5	3.	2,14
TH ₂ + HNO = NO + NH ₃	6.1x10 ¹¹	0.5	0	13,36
IH ₂ + OH = NH + H ₂ O	3 x 10 ¹⁰	0.7	1	22
$\mathbf{NH}_2 + \mathbf{O}^* = \mathbf{NH} + \mathbf{OH}^*$	1 x 10 ¹¹	0.5	5	2
$H_2 + O = NH + OH$	9.2×10 ¹¹	0.5	0	36
H ₂ + NaO = NH + NaOH	1.2×10 ¹²	0.5	0	36
$H_3 + C1 = NH_2 + HC1$	4.5x10 ¹¹	0.5	0	36
H ₃ + F = NH ₂ + HF	4.3x10 ¹¹	0.5	0	36
$H_3 + H = NH_2 + H_2$	1.9x10 ¹¹	0.7	3	22
$H_3 + OH = NH_2 + H_2O$	4 x 10 ¹⁰	0.7	1	22
$H_3 + H = NH_2 + H_2$	5 x 10 ¹¹	0.5	2	13

Table 7. Reactions Involving Nitrogen Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
1"3 + 0 = NH ₂ + OH	8.2×10	0.5	0	36
$NH_3 + NaO = NH_2 + NaOH$	9.6x10 ¹¹	0.5	0	36
INO + Cl = NO + HCl	2.5x10 ¹¹	0.5	0	36
INO + F = NO + HF	2.4x10 ¹¹	0.5	0	36
INO + H = NH + OH	2 x 10 ¹¹	0.5	13	2
$INO + H = NO + H_2$	3.9x10 ¹²	0.5	0	13,30
$INO + OH = NO + H_2O$	2 x 10 ¹¹	0.5	2	3
$INO + O = NH + O_2$	1 x 10 ¹¹	0.5	7	2
$INO + O = H + NO_2$	5 × 10 ¹⁰	0.5	3	2
INO + O = NO + OH	5.0x10 ¹¹	0.5	0	36
INO + NaO = NO + NaOH	4.7x10 ¹¹	, 0.5	0	36
10 + Ar = N + O + Ar	5.6x10 ¹⁸	-1.0	151	5,25
$10^+ + e + M = NO + M$	5 x 10 ²³	-1.5	0	2
$10^+ + e = N + O$	2.8x10 ²⁰	-1.2	0	44
$10 + e = N0^{+} + 2e$	2.5x10 ¹³	0.5	214	5
10 + M = N + O + M	2.4x10 ¹⁷	-0.5	150	5
$MO + M = NO^+ + e + M$	6 x 10 ⁴	1.5	214	5
O + H + M = HNO + M	1 x 10 ¹⁷	-0.5	0.7	2,15
$2NO = N_2O + O$	3.5×10 ¹²	0.0	64	5
$NO = NO_2 + N$	1 x 10 ¹⁰	0.0	88	5

Table 7. Reactions Involving Nitrogen Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
2NO = N + O + NO	1.12x10 ²⁰	-1.0	151	5,25
NO + O = N + 20	1.12x10 ²⁰	-1.0	151	5,25
$NO^{+} + O^{-} = NO + O$	3.6x10 ¹⁹	-1.0	0.	र्मर्ग
$NO + O_2 = N + O + O_2$	5.6x10 ¹⁸	-1.0	151	5,25
$N0^{+} + O_{2}^{-} = N0 + O_{2}^{-}$	3.6x10 ¹⁹	-1.0	0	种
$NO^+ + K = NO + K^+$	4 x 10 ¹¹	0.5	0	2
$N_2O + M = N + NO + M$	1 x 10 ¹⁴	-1.0	115	5
$I_2O + H = N_2 + OH$	3×10^{14}	0.0	16	40
$I_2O + H = NH + NO$	1 x 10 ¹¹	0.5	30	2
$N_2O + O_2 = NO + NO_2$	1 x 10 ¹³	0.0	70	5
$NO_2 + H = NO + OH$	5 x 10 ¹¹	0.5	5	2
$10^{2} + 0 = 10 + 0^{2}$	2 x 10 ¹³	0.0	1.1	32
$N_{2}O + O = N + NO_{2}$	1 x 10 ¹³	0.0	50	5,29

Table 7. Reactions Involving Nitrogen Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
2NO = N + O + NO	1.12x10 ²⁰	-1.0	151	5,25
NO + O = N + 20	1.12x10 ²⁰	-1.0	151	5,25
$NO^+ + O^- = NO + O$	3.6x10 ¹⁹	-1.0	0.	44
NO + O2= N + O + O2	5.6x10 ¹⁸	-1.0	151	5,25
$NO^{+} + O_{2}^{-} = NO + O_{2}^{-}$	3.6x10 ¹⁹	-1.0	0	1414
$NO^+ + K = NO + K^+$	4 x 10 ¹¹	0.5	0	2
N ₂ O + M = N + NO + M	1 × 10 ¹⁴	-1.0	115	5
$N_2O + H = N_2 + OH$	3 × 10 ¹⁴	0.0	16	40
$N_2O + H = NH + NO$	1 x 10 ¹¹	0.5	30	2
$N_2O + O_2 = NO + NO_2$	1 x 10 ¹³	0.0	70	5
$NO_2 + H = NO + OH$	5 x 10 ¹¹	0.5	5	2
$NO_2 + O = NO + O_2$	2 x 10 ¹³	0.0	1.1	32
$N_2O + O = N + NO_2$	1 x 10 ¹³	0.0	50	5,29

Table 8. Reactions Involving Potassium Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
K + C1 + M = KC1 + M	3 × 10 ¹⁶	-0.5	0	2
$K^+ + Cl^- + M = KCl + M$	4 x 10 ¹⁷	-0.5	0	2
K + Cl ₂ = KCl + Cl	5 x 10 ¹¹	0.5	3	2
$K^+ + e + M = K + M$	5 × 10 ²³	-1.5	0	2
K + F + M = KF + M	3 × 10 ¹⁶	-0.5	0	2
$K^+ + F^- + M = KF + M$	4 x 10 ¹⁷	-0.5	0	2
$K + F_2 = KF + F$	5 x 10 ¹¹	0.5	2	2
$K^+ + OH^- + M = KOH + M$	4 x 10 ¹⁷	-0.5	0	2
K + OH + M = KOH + M	3 × 10 ¹⁶	-0.5	0	2
K + HOH = KOH + H	1 x 10 ¹¹	0.5	6	2
$K + H_3O^+ = K^+ + H + H_2O$	4 x 10 ¹¹	0.5	0	2
KCl + H = HCl + K	5 x 10 ¹¹	0.5	7	2
KF + H = HF + K	5 x 10 ¹¹	0.5	7	2

Table 9. Reactions Involving Sodium Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
Na + C1 + M = NaC1 + M	3 × 10 ¹⁶	-0.5	0	2
$Na^+ + Cl^- + M = NaCl + M$	4 x 10 ¹⁷	-0.5	0	2
Na + Cl = NaCl + e	5 × 10 ¹¹	0.5	0	2
Na + Cl ₂ = NaCl + Cl	5 x 10 ¹¹	0.5	3	2
Na + ClF = NaF + Cl	5 x 10 ¹¹	0.5	3	, 2
Na + ClF = NaCl + F	5 x 10 ¹¹	0.5	3	2
Na + HCl = NaCl + H	5 x 10 ¹¹	0.5	6	2
$Na^+ + e + M = Na + M$	5 x 10 ²⁴	-2.5	0	44
Na + e = Na + 2e	2.6x10 ¹³	0.5	119	5
$Na^+ + e = Na + h\nu$	1.2×10 ¹⁴	-0.75	0	5
Na + F + M = NaF + M	3 × 10 ¹⁶	-0.5	0	2
$Na^+ + F^- + M = NaF + M$	4 x 10 ¹⁷	-0.5	0	2
Na + F ₂ = NaF + F	5 x 10 ¹¹	0.5	2	2
Ja + H + M = NaH + M	4 x 10 ¹⁷	-0.5	o	2 .
Ia + H + M = NaH + M	3 × 10 ¹⁶	-0.5	0	2
ia + H = NaH + e	5 x 10 ¹¹	0.5	0	2
$Va^+ + OH^- + M = NaOH + M$	4 × 10 ¹⁷	-0.5	0	2
a + OH + M = NaOH + M	3 × 10 ¹⁶	-0.5	0	2
a + OH = NaOH + e	1 x 10 ¹¹	0.5	0	2
a + HOH = NaOH + H	1 x 10 ¹¹	0.5	6	2

Table 9. Reactions Involving Sodium Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Reference
$Na + H_3^{0+} = Na^+ + H + H_2^{0}$	1 × 10 ¹⁰	0.5	6	2
Na + 2N = N ₂ + Na ⁺ + e	4 x 10 ¹⁵	0.0	0	42
$Na + N + O = NO + Na^{+} + e$	4 x 10 ¹⁵	0.0	0	42
$Na + NO^{\dagger} = Na^{\dagger} + NO$	3 × 10 ¹³	-0.5	0	42
$Na^+ + O^- + M = NaO + M$	4 x 10 ¹⁸	0.0	0	42
Na + O + M = NaO + M	3 × 10 ¹⁶	-0.5	0	2
ia + 0 = NaO + e	5 x 10 ¹¹	0.5	Getain .	. 2
Va + 0 = Na + 0	4 x 10 ¹⁸	-1.0	0	142
$1a + 20 = 0_2 + Na^+ + e$	4 x 10 ¹⁶	0.0	0	5
$A + O_2 + M = NaO_2 + M$	4 x 10 ¹³	0.0	0	42
$a^+ + 0_2^- = Na + 0_2$	4 x 10 ¹⁸	-1.0	0	42
$a^+ + 0_2^- = Na0 + 0$	5 x 10 ¹¹	0.5	6	2
aC1 + 0 + NaO + C1	5 x 10 ¹¹	0.5	2	2
aF + H = HF + Na	1 x 10 ¹¹	0.5	6	2
aF + 0 = NaO + F	1 x 10 ¹¹	0.5	6	2
aH + Cl = NaCl + H	5 x 10 ¹¹	0.5	3	2
aH + Cl = Na + HCl	1.8x10 ¹¹	0.7	10	22
aH + F = Na + HF	1.7x10 ¹¹	0.7	8	22
aH + F = NaF + H	5 x 10 ¹¹	0.5	3	2
aH + H = Na + H ₂	1.4x10 ¹²	0.7	5	22

Table 9. Reactions Involving Sodium Species (Concluded)

Table 9. Reaction	ons Involving Sodium	a opecies (oncluded)	经营业中
Reaction	A cc/ mole-sec	n	E, kcal/mole	Refer- ence
NaH + OH = Na + H ₂ O	1 x 10 ¹¹	0.5	3	2
NaH + O = Na + OH	1.3×10 ¹²	0.7	1	22
NaH + O = NaO + H	5 x 10 ¹¹	0.5	3	2
NaH + NaO = NaOH + Na	1 x 10 ¹¹	0.5	3	2
NaO + Cl = NaCl + O	5 x 10 ¹¹	0.5	4	2
NaO + F = NaF + O	5 x 10 ¹¹	0.5	4	2
NaO + H + M = NaOH + M	3 × 10 ¹⁶	-0.5	0	2
NaO + H = Na + OH	5 x 10 ¹¹	0.5	4	2
NaO + H = NaOH + e	5 x 10 ¹¹	0.5	0	2
NaO + HCl = NaOH + Cl	1 x 10 ¹¹	0.5	6	2
NaO + H ₂ = NaOH + H	1 x 10 ¹¹	0.5	6	2
NaO + OH = NaOH + O	1 x 10 ¹¹	0.5	6	2
NaO + OH = NaOH + O	1 x 10 ¹¹	0.5	9	2
NaO + H ₂ O = OH + NaOH	1.3x10 ¹²	0.5	0	36
NaO + 0 = Na + 0	5 x 10 ¹¹	0.5	4	2
NaO + O = Na + O2	5 x 10 ¹¹	0.5	6	2
NaOH + Cl = NaO + HCl	1.0x10 ¹¹	0.5	0	36
NaOH + F = NaO + HF	1.2x10 ¹¹	0.5	0	36
NaOH + H = NaO + H2	1.19x10 ¹²	0.7	19	22
NaOH + OH = NaO + H ₂ O	1.2x10 ¹¹	0.5	0.	36
NaOH + O = NaO + OH	2.6x10 ¹¹	0.5	0.	36

Table 10. Reactions Involving Chlorine Species

Reaction	A, cc/	n	E, kcal/mole	Refer- ence
	more-sec			
C1 + C1 = C1 ₂ + e	5 × 10 ¹¹	0.5	0	2
C1 + e + M = C1 + M	1 × 10 ²⁰	-1.0	0	2
C1 + H + M = HC1 + M	3×10^{16}	-0.5	0	2
$C1 + H^- = C1^- + H$	4 × 10 ¹¹	0.5	0	2
$C1 + H^- = e + HC1$	5 x 10 ¹¹	0.5	0	2
C1 + H = HC1 + e	5 x 10 ¹¹	0.5	0	2
C1 + H ₂ = H + HC1	8.1x10 ¹³	0.0	6	31
$C1 + OH^{-} = C1^{-} + OH$	4 x 10 ¹¹	0.5	0	2
$C1^- + H_3O^+ = HC1 + H_2O$	1 × 10 ¹⁰	0.5	6	2
C1 + 0 = C1 + 0	4 x 10 ¹¹	0.5	0	2
$C1 + O_2^- = C1^- + O_2$	5 × 10 ¹¹	0.5	0	2
HC1 + F = C1 + HF	1.9×10 ¹²	0.7	0.6	22
$HC1 + OH = C1 + H_2O$	1 × 10 ¹¹	0.5	6	2
$HC1 + 0^{-} = OH + C1^{-}$	5 x 10 ¹¹	0.5	13	2
HC1 + O = C1 + OH	2.3x10 ¹¹	0.6	1	22
ClF + H = HF + Cl	5 x 10 ¹¹	0.5	3	2
C1F + H = HC1 + F	5 x 10 ¹¹	0.5	3	2

Table 11. Reactions Involving Fluorine Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
F + e + M = F + M	1 × 10 ²⁰	-1.0	0	2
F + OH + HF = O + 2HF	5 x 10 ¹⁸	-0.5	6	2,19
$F + H^{-} = F^{-} + H$	4 x 10 ¹¹	0.5	0	2
F + 2H = HF + H	3.5×10 ¹⁷	-0.5	0	2,19
$F + H_2 = H + HF$	7.8x10 ¹¹	0.7	3	22
F + H + H ₂ = HF + H ₂	7 x 10 ¹⁷	-0.5	0	2,19
F + OH = F + OH	4 x 10 ¹¹	0.5	0	2
F + OH = O + HF	2.9x10 ¹²	0.7	0.2	22
F + H ₂ O = OH + HF	5.6x10 ¹¹	0.5	0	36
$F + H_0O = HF + HO$	1 x 10 ¹¹	0.5	6	2
7 + H + OH = RF + OH	5 x 10 ¹⁸	-0.5	0	2,19
F" + H ₃ 0 ⁺ = HF + H ₂ 0	1 x 10 ¹¹	0.5	0	2
F + H + H ₂ O = HF + H ₂ O	5 x 10 ¹⁸	-0.5	0	2,19
F + 0 = F + 0	4 × 10 ¹¹	0.5	0	2
$F + O_2^- = F^- + O_2$	4 x 10 ¹¹	0.5	0	2
F ₂ + M = 2F + M	7.1x10 ¹⁵	0.0	30	35
F ₂ + H = HF + F	5.28x10 ¹²	0.5	4	23
EF + M = H + F + M	5.1x10 ²²	-2.0	134	28
$\mathbf{H} + \mathbf{H} = \mathbf{H}_2 + \mathbf{F}$	1 × 10 ¹³	0.0	35	28
AF + 2H = H ₂ + HF	1 x 10 ¹⁹	-0.5	0	2,19
IF + 0 = HO + F	1 x 10 ¹¹	0.5	7	2

Table 12. Reactions Involving Oxygen Species

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
0 + 0" + M = 0 ₂ " + M	4 x 10 ¹⁷	0.0	0	42
0 + 02 = 30	8.5×10 ¹⁹	-1.0	118	5,33
0 + 02 = 02 + 0	4 x 10 ¹²	0.0	0	42
20, = 20 + 0,	2 x 10 ¹⁹	-1.0	118	5
0 ₂ + M = 20 + M	3 × 10 ¹⁸	-1.0	118	5
02 + M = 02 + e + M	5 x 10 ¹³	0.0	10	2
$0_3 + M = 0 + 0_2 + M$	6 x 10 ¹⁵	0.0	25	5,34
0 + e + M = 0 + M	4 x 10 ¹⁵	0.0	0	21
0 + e + 0 ₂ = 0 + 0 ₂	4 x 10 ¹⁵	0.0	0	5
0 + e + N ₂ = 0 + N ₂	2 x 10 ³⁹	-0.5	0	5
$0 + e = 0 + h\nu$	7.208	0.0	0	5
$0_{2} + e = 0^{2} + 0$	3 × 10 ¹⁵	-1.0	84	5
$O_2 + e = O_2^- + h_V$	1 x 10 ⁵	0.0	0	43
$20_2 + e = 0_2^2 + 0_2$	1.5x10 ²¹	-1.0	0	5
) + H + M = OH + M	2 x 10 ¹⁸	-1.0	0	4
O + H + M = OH + M	4 × 10 ¹⁷	-0.5	0	2
O + H + M = OH + M	6 x 10 ¹⁷	-0.5	0	2
) + 2H = OH + H	3.5x10 ¹⁷	-0.5	0	2,4
) + H + H ₂ = OH + H ₂	7 x 10 ¹⁷	-0.5	0	2,4
) + H + OH = 20H	5 x 10 ¹⁸	-0.5	o	2,4
) + H + H ₂ O = OH + H ₂ O	5 × 10 ¹⁸	-0.5	0	2,4

Table 12. Reactions Involving Oxygen Species (Continued)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
0 + H = e + OH	5 x 10 ¹¹	0.5	0	2
0 + H + O + H	4 x 10 ¹¹	0.5	0	2
$0^- + H = OH + e$	5 x 10 ¹¹	0.5	0	2
0" + н ₂ = н + он"	5 x 10 ¹¹	0.5	6	2
0 + H ₂ = H + OH	4 x 10 ¹³	0.0	10	37
0 + H ₂ 0 = 20H	4.2x10 ¹³	0.0	18	41
0 + OH = O + OH	5 x 10 ¹¹	0.5	0	2
$0^- + H_3 0^+ = 0H + H_2 0$	1 x 10 ¹⁰	0.5	6	2
0 ₂ + H + M = 0 ₂ H + M	1 x 10 ¹⁵	-0.5	0	2,26
0 ₂ + H = OH + O	2 x 10 ²¹⁴	0.0	17	26
02 + H = OH + O	5 x 10 ¹¹	0.5	6	2
02 + H = O + OH	5 x 10 ¹¹	0.5	6	2
o ₂ + H = o ₂ + H	4 x 10 ¹¹	0.5	0	2
$0_2 + 0_2 = 0 + 0_3$	1 x 10 ¹²	0.0	97	5
0 ₂ + H ₂ = 20H	1 x 10 ¹⁴	0.0	70	9,23
0, + OH = OH + O2	4 x 10 ¹¹	0.5	0	2
OH + M = OH + e + M	5 x 10 ¹³	0.0	10	2
он + н + м = н ₂ о + м	4.5x10 ²¹	-1.5	0	2 6
он + н + н ₂ о = 2н ₂ о	1.8×10 ²²	-1.5	0	
OH + H = H ₂ O + e	1 x 10 ¹¹	0.5	0	2

Table 12. Reactions Involving Oxygen Species (Concluded)

Reaction	A, cc/ mole-sec	n	E, kcal/mole	Refer- ence
OH + H = e + H ₂ O	5 x 10 ¹¹	0.5	0	2
OH + H = H + OH	4 x 10 ¹¹	0.5	0	2
OH + 2H = H ₂ + OH	5 x 10 ¹⁸	-0.5	o	2,19
он + н ₂ = н + н ₂ 0	6 x 10 ¹¹	0.5	5.	38
OH + OH = H2O + O	1 x 10 ¹¹	0.5	9	2
он + н ₃ о + = 2н ₂ о	1 x 10 ¹¹	0.5	0	2
н20 + н = он + н2	2.9x10 ¹¹	0.7	18	22
H ₂ 0 + 2H = H ₂ + H ₂ 0	5 x 10 ¹⁸	-0.5	0	2
$HO_2 + H = H_2 + O_2$	1 x 10 ¹¹	0.5	6	2
$H_30^+ + e = H_20 + H$	3 × 10 ¹⁵	0.5	0	2,1

Table 13. Reactions Involving Hydrogen Species

Reaction	A cc/ mole-sec	n	E, kcal/mole	Refer- ence
2H + H ₂ = 2H ₂	5 x 10 ¹⁸	-1.0	0	26
3H = H ₂ + H	2 x 10 ¹⁹	-1.0	0	. 26
$2H + M = H_2 + M$	2 x 10 ¹⁸	-1.0	0	26
$H + H = e + H_2$	5 x 10 ¹¹	0.5	0	2
$H + e + M = H^- + M$	1 x 10 ²⁰	-1.0	0	2
$H + H + H_2O = H_2 + H_2O$	1.5×10 ¹⁹	-1.0	0	26

REFERENCES AND NOTES

- 1. Estimated by A. X. Eschenroeder and J. A. Lordi, Symp. Combust., 9th, Cornell Univ., Ithaca, N. Y., 1962, 241 (1963).
- Estimated by S. W. Mayer in accordance with paper cited in Ref. 1 for nonionic reactions. For such bimolecular exothermic reactions, $A = 5 \times 10^{11}$, n = 0.5, E = 6% of bond energy for triatomic transition states. (E is equal to bond energy for endothermic reactions.) A values are similar to those chosen in Ref. 1 for similar reactions. For third-body recombinations of atoms or radicals, E = 0 and n = -0.5.
- 3. Selected as in paper cited in Ref. 1, as a weighted average of experimental data.
- 4. Selected by N. Cohen as a weighted average of data reported by A. A. Westenberg and S. Favin, Symp. Combust., 9th, Cornell Univ., Ithaca, N. Y., 1962, 785 (1963). (Applicable from 400 to 1800 K.)
- 5. Selected by M. H. Bortner, Chemical Kinetics in a Reentry Flow Field, R 63SD63, General Electric Space Sciences Laboratory, (1963).
- 6. K. H. Anderson and S. W. Benson, J. Chem. Phys. 39, 1677 (1963).
- 7. S. W. Benson, Ind. Eng. Chem. 56, 18 (1964). Gives rules for estimating AT and E for several classes of reactions.
- 8. S. W. Benson, The Foundations of Chemical Kinetics, (McGraw-Hill Book Company, Inc., N. Y., 1960.) (Tabulates several values for ATⁿ and E.)
- 9. R. E. Duff, <u>J. Chem. Phys.</u> 28, 1193 (1958); also, C. P. Fenimore and G. W. Jones, J. Phys. Chem. 65, 993 (1961).
- 10. Selected from data reported by I. N. Montchiloff, et al., Symp. Combust., 9th, Cornell Univ., Ithaca, N. Y., 1962, 220 (1963).

- 11. Estimated by S. W. Mayer by analogy with the values for H_2 + CH_3 = $H + CH_4$ and H_2 CO + H_2 (Ref. 6).
- 12. Selected from reported data in Ref. 6.
- 13. Estimated by S. W. Mayer based on Ref. 14. The A and n values also agree with those of Ref. 1. The E values for atom transfers involving the N—H bond are about 2 kcal lower than those involving the C—H bond, but from 2000 to 4000 K this difference has a relatively small effect on the rate constant.
- 14. R. W. Diesen, J. Chem. Phys. 39, 2121 (1963).
- 15. Simonaitis, J. Phys. Chem. 67, 2227 (1963); also, M. A. A. Clyne, B. A. Thrush, Trans. Faraday Soc. 57, 1305 (1961). A is the mean of the results in these two papers; E is given in the latter paper.
- 16. C. P. Fenimore and G. W. Jones, J. Phys. Chem. 65, 1532 (1961).
- 17. J. A. Green and T. M. Sugden, Symp. Combust., 9th, Cornell Univ., Ithaca, N. Y., 1962, 607 (1963). E values estimated as in Ref. 2 for transfer reaction.
- 18. V. N. Kondratiev, Symp. Combust, 7th, London and Oxford, 1958, 41 (1959); B. H. Mahan and R. B. Solo, J. Chem. Phys. 37, 2669 (1962).
- 19. K. A. Wilde, AIAA J. 2, 374 (1964). (Estimated.)
- 20. M. H. Bortner, The Chemical Kinetics of Sodium in Reentry, R 64 SD 33, General Electric Missile and Space Division, (1964).
- 21. M. H. Bortner, <u>Chemical Kinetics of Atmospheric De-ionization</u>, R 63 SD 34, General Electric Missile and Space Division, (1963).
- Calculated by the H. S. Johnston method. H. S. Johnston and C. Parr, J. Am. Chem. Soc. 85, 2544 (1963); also, S. W. Mayer, J. B. Szabo, L. Schieler, and H. S. Johnston, Computed High Temperature Rate Constants for H-atom Transfers Involving the Light Elements, TDR-469(9210-02)-4, Aerospace Corp. (July 1965).
- 23. R. Dunlap and R. Hermsen, Nonequilibrium Flow in Nozzles, UTC 2032-FR, United Technology Corporation, (February 1963).

- 24. R. Klein, <u>J. Chem. Phys.</u> <u>32</u>, 1814 (1960).
- 25. Estimated by N. Cohen from K. L. Wray and J. D. Teare, <u>J. Chem. Phys.</u> 26, 2582 (1962).
- 26. W. E. Kaskan and W. G. Browne, <u>Kinetics of the H₂/CO/O₂</u> Systems, R 64 SD 37, General Electric Missile and Space Division, (1964).
- 27. Selected from R. R. Baldwin, Symp. Combust., 9th, Cornell Univ., Ithaca, N. Y., 1962, 667 (1963).
- 28. T. Jacobs, N. Cohen, and R. Giedt, J. Chem. Phys. 43, 3688 (1965).
- 29. Estimated by N. Cohen on basis of F. Kaufman and J. Kelso, Symp. Combust., 7th, London and Oxford, 1958, 53 (1959).
- 30. Estimated by N. Cohen from B. Cary, Phys. Fluids 8, 26 (1965).
- 31. G. C. Fettis and J. H. Knox, <u>Progress in Reaction Kinetics</u>, (MacMillan, N. Y., 1964), Vol. 2, p. 22.
- 32. F. S. Klein and J. T. Herron, J. Chem. Phys. 41, 1285 (1964).
- 33. K. L. Wray, J. Chem. Phys. 38, 1518 (1963). (For 1000 K and above).
- 34. S. W. Benson and A. E. Axworthy, J. Chem. Phys. 42, 2614 (1965).
- 35. C. D. Johnson and D. Britton, <u>J. Phys. Chem.</u> 68, 3032 (1964).
- 36. Estimated by S. W. Mayer on basis of S. W. Mayer, E. A. Cook, and L. Schieler, "Nonequilibrium Recombination in Nozzles," TDR-269 (4210-10)-6, Aerospace Corp. (September 1964) p. 12.
- 37. A. A. Westenberg, private communication, Applied Physics Laboratory, Silver Springs, Md. (November 1966).
- 38. G. Dixon-Lewis, W. E. Wilson, and A. A. Westenberg, J. Chem. Phys. 44, 2877 (1966).
- 39. K. G. F. Sulzmann, et al., J. Chem. Phys. 42, 3969 (1965).
- 40. C. P. Fenimore, Chemistry in Premixed Flames, (Pergamon Press, N. Y., 1964).

- 41. R. M. Fristrom and A. A. Westenberg, Flame Structure, (McGraw-Hill Book Company, Inc., N. Y., 1965).
- M. H. Bortner, Editor, <u>DASA Reaction Rate Handbook</u>, Chapter 13, (In Press), (Via personal communication, December 1966).
- M. H. Bortner, personal communication, December 1966, as the value selected by A. V. Phelps in Chapter 8 of <u>DASA Reaction Rate Handbook</u>, (In Press).
- M. H. Bortner, personal communication, December 1966, as the value selected by M. A. Biondi in Chapter 7 of <u>DASA Reaction Rate</u> <u>Handbook</u>, (In Press).

Security Classification

DOCUME (Security classification of title, body of abstract a	ENT CONTROL DATA - R&D		the overall report is classified)
Aerospace Corporation El Segundo, California	2	a. REPOR	AT SECURITY CLASSIFICATION
Compilation of Reaction Rate De Reentry Calculation Programs	ata for Nonequilibrium	Perfo	ormance and
4 DESCRIPTIVE NOTES (Type of report and inclusive of	detee)		
Tunder, R., Mayer, S., Cook, E.	, and Schieler, L.		
6 REPORT DATE January 1967	70. TOTAL NO. OF PAGES 76. NO. OF REPS		
AF 04(695)-1001 b. project no.	TR-1001(9210-02)-1		
c.	96. OTHER REPORT NO	(S) (Any	other numbers that may be sealgned
d.	SSD-TR-67-4	5	
Distribution of this document			
11. SUPPLEMENTARY NOTES	12: SPONSORING MILITA	RY ACTIV	VITY
	Space Systems Division Air Force Systems Command Los Angeles, California		

13 ABSTRACT

A compilation of gas-phase rate data for use in nonequilibrium gas composition and propellant performance calculation programs is presented. Reactions are listed with the preexponential factor, temperature exponent, and activation energy for the Arrhenius form of the rate equation. Only undirectional rate data are supplied since reverse rates may be generated from thermochemical data. Explanatory notes on the estimation of the rate data are included with the references.

DD FORM 1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED Security Classification

	KEY WORDS	
Rate Constants		
Recombination Reactions		
Reaction Kinetics		
Nonequilibrium Reactions		
Monedulliptim Wesc flour		
	Abstract (Continued)	