A Book of Abstract Algebra | (2nd Edition)

Chapter 30, Problem 6EE	Bookmark	Show all steps: ON				
Problem						
We will show that $2\pi/5$ is a constructible and constructible.	le, and it will follow that th	ne regular pentagon is				
Prove that the regular pentagon is constructible.						
Stop by	v stan colution					
Step-by	-step solution					
Ste	p 1 of 4					
Here, objective is to prove that the regular pentagon is constructible.						
Comment						
Ste	p 2 of 4					
Regular <i>n</i> -gon has <i>n</i> equal length of sides an	nd all angles are equal.					
Regular <i>n</i> -gon is constructible if and only if the	ne angle $\frac{2\pi}{n}$ is constructi	ble				

Comment	
	Step 3 of 4
Consider re	egular Pentagon.
Regular Pe	ntagon is a five-sided Polygon or $5 - gon$
Number of	sides $n = 5$

Step 4 of 4

To verify $\frac{2\pi}{5}$ is constructible or not:

$$\frac{2\pi}{N} = \frac{2\pi}{5}$$

$$N = 5$$

Here, 5 can be written in the form of $2^{2^n} + 1$. That is for n = 1

$$2^{2^1} + 1 = 5$$

So, 5 is a Fermat prime.

Therefore, $\frac{2\pi}{5}$ is a constructible angle, which Implies Regular 5-gon is constructible.

Hence.

Regular Pentagon is constructible.

Comment

COMPANY

About Chegg Chegg For Good College Marketing Corporate Development Investor Relations Jobs Join Our Affiliate Program Media Center Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks Mobile Apps Chegg Coupon Sell Textbooks Solutions Manual Chegg Play Chegg Study Help Study 101 College Textbooks Textbook Rental eTextbooks **Used Textbooks** Flashcards **Digital Access Codes** Learn Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service Give Us Feedback Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription Return Your Books Textbook Return Policy