>load geometry

Numerical and symbolic geometry.

Nama: Fanny Erina Dewi

NIM: 22305141005 Kelas: Matematika B 22

TRIGONOMETRI RASIONAL

Trigonometri Rasional adalah cabang matematika yang mempelajari fungsi-fungsi trigonometri yang dapat dinyatakan dalam bentuk pecahan rasional. Fungsi-fungsi ini dapat dinyatakan sebagai pecahan dari dua polinomial, yaitu polinomial pembilang dan penyebut. Contoh fungsi trigonometri rasional adalah $1/\cos(x)$

Perhitungan rasional simbolis sering kali menghasilkan hasil yang sederhana. Sebaliknya, trigonometri klasik menghasilkan hasil trigonometri yang rumit, yang mengevaluasi ke pendekatan numerik saja.

>load geometry;

Langkah awal adalah dengan menyalakan perintah awal pada materi geometri. Perintah di atas merupakan perintah Euler untuk memplot geometri bidang yang terdapat dalam file Euler "geometry.e".

```
>C&:=[0,0]; A&:=[12,0]; B&:=[0,5];...
>setPlotRange(-1,15,-1,15); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg(30);
```


Saya menggunakan segitiga dengan proporsi 5,12,13.

$$\sin(w_a) = \frac{a}{c},$$

di mana wa adalah sudut di A. Cara biasa untuk menghitung sudut ini, adalah dengan melakukan invers dari fungsi sinus. Hasilnya adalah sudut yang tidak dapat dicerna, yang hanya dapat dicetak secara perkiraan.

36°52'11.63''

Trigonometri rasional mencoba menghindari hal ini.

Gagasan pertama trigonometri rasional adalah kuadran, yang menggantikan jarak. Sebenarnya, itu hanya kuadrat jarak. Berikut ini, a, b, dan c menunjukkan kuadrat dari sisi-sisinya.

Teorema Pythogoras menjadi a+b=c.

169 = 169

Gagasan kedua dari trigonometri rasional adalah penyebarannya. Spread mengukur bukaan antar baris. Ini adalah 0, jika garis sejajar, dan 1, jika garis persegi panjang. Ini adalah kuadrat dari sinus sudut antara dua garis.

Garis AB dan AC pada gambar di atas didefinisikan sebagai

$$s_a = \sin(\alpha)^2 = \frac{a}{c},$$

di mana a dan c adalah kuadrat dari segitiga persegi panjang mana pun dengan satu sudut di A.

>sa &= a/c; \$sa

 $\frac{25}{169}$

Ini lebih mudah dihitung daripada sudut, tentu saja. Tetapi Anda kehilangan properti yang sudut dapat ditambahkan dengan mudah.

Tentu saja, kita dapat mengubah nilai perkiraan sudut wa menjadi sprad, dan mencetaknya sebagai pecahan.

>fracprint(sin(wa)^2)

9/25

Hukum cosinus dari trgonometri klasik diterjemahkan menjadi "hukum silang" berikut.

$$(c+b-a)^2 = 4bc(1-s_a)$$

Di sini a, b, dan c adalah kuadran dari sisi-sisi segitiga, dan sa adalah sebaran di sudut A. Sisi a, seperti biasa, berlawanan dengan sudut A.

Hukum ini diimplementasikan dalam file geometry.e yang kami muat ke Euler.

>\$crosslaw(aa,bb,cc,saa)

$$(cc + bb - aa)^2 = 4 bb cc (1 - saa)$$

Dalam kasus kami, kita mendapatkan

$$82944 = 82944$$

Mari kita gunakan crosslaw ini untuk mencari sebaran di A. Untuk melakukan ini, kita menghasilkan crosslaw untuk kuadran a, b, dan c, dan menyelesaikannya untuk sebaran yang tidak diketahui sa.

Anda dapat melakukan ini dengan tangan dengan mudah, tetapi saya menggunakan Maxima. Tentu saja,kami mendapatkan hasilnya, kami sudah mendapatkannya.

>\$crosslaw(a,b,c,x), \$solve(%,x)

$$82944 = 97344 \ (1-x)$$

$$\left[x = \frac{25}{169}\right]$$

Kami sudah tahu ini. Definisi penyebaran adalah kasus khusus dari hukum lintas hukum.

Kita juga bisa menyelesaikan ini untuk umum a, b, c. Hasilnya adalah rumus yang menghitung sebaran sudut segitiga berdasarkan kuadran ketiga sisinya.

>\$solve(crosslaw(aa,bb,cc,x),x)

$$\[x = \frac{-cc^2 - (-2bb - 2aa) \ cc - bb^2 + 2aa \ bb - aa^2}{4 \ bb \ cc} \]$$

Kita bisa membuat fungsi dari hasilnya. Fungsi seperti itu sudah ditentukan dalam file geometry.e Euler.

>\$spread(a,b,c)

$$\frac{25}{169}$$

Sebagai contoh, kita bisa menggunakannya untuk menghitung sudut segitiga bersisi

$$a, \quad a, \quad \frac{4a}{7}$$

Hasilnya rasional, yang tidak mudah didapat jika kita menggunakan trigonometri klasik.

```
>$spread(a,a,4*a/7)
```

 $\frac{6}{7}$

Ini adalah sudut dalam derajat

```
>degprint(arcsin(sqrt(6/7)))
```

67°47'32.44''

Contoh Lain

Sekarang, mari kita coba contoh yang lebih maju.

Kami mengatur tiga sudut segitiga sebagai berikut. asilnya rasional, yang tidak mudah didapat jika kita menggunakan trigonometri klasik.

```
>A&:=[1,2]; B&:=[4,3]; C&:=[0,4]; ...
>setPlotRange(-1,5,1,7); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```


Menggunakan Pythogoras, mudah untuk menghitung jarak antara dua titik. Saya pertama kali menggunakan jarak fungsi file Euler untuk geometri. Jarak fungsi menggunakan geometri klasik.

>\$distance(A,B)

 $\sqrt{10}$

Euler juga mengandung fungsi untuk kuadran antara dua titik.

Dalam contoh berikut, karena c+b bukan a, maka segitiga itu bukan persegi panjang.

10

5

17

Pertama, mari kita hitung sudut tradisional. Fungsi computeAngle menggunakan metode biasa berdasarkan hasil kali titik dua vektor. Hasilnya adalah beberapa pendekatan floating point.

$$\arccos\left(\frac{11}{\sqrt{10}\sqrt{17}}\right)$$

32.4711922908

Dengan menggunakan pensil dan kertas, kita dapat melakukan hal yang sama dengan hukum silang. Kami memasukkan kuadran a, b, dan c ke dalam hukum silang dan menyelesaikan x.

>\$crosslaw(a,b,c,x), \$solve(%,x),

$$4 = 200 \ (1 - x)$$

$$\left[x = \frac{49}{50}\right]$$

Yaitu, apa yang dilakukan oleh penyebaran fungsi yang didefinisikan dalam "geometry.e".

>sb &= spread(b,a,c); \$sb

Maxima mendapatkan hasil yang sama menggunakan trigonometri biasa, jika kita memaksanya. Itu menyelesaikan istilah $\sin(\arccos(...))$ menjadi hasil pecahan. Sebagian besar siswa tidak dapat melakukan ini.

>\$sin(computeAngle(A,B,C))^2

$$\frac{49}{170}$$

Setelah kita memiliki penyebaran di B, kita dapat menghitung tinggi ha di sisi a. Ingatlah bahwa

$$s_b = \frac{h_a}{c}$$

menurut definisi.

 $\frac{49}{17}$

Gambar berikut ini dibuat dengan program geometri C.a.R., yang dapat menggambar kuadran dan penyebaran.

image: (20) Rational_Geometry_CaR.png

Menurut definisi, panjang ha adalah akar kuadrat dari kuadrannya.

>\$sqrt(ha)

$$\frac{7}{\sqrt{17}}$$

Sekarang kita dapat menghitung luas segitiga. Jangan lupa, bahwa kita berurusan dengan kuadran!

>\$sqrt(ha)*sqrt(a)/2

 $\frac{7}{2}$

Rumus penentu yang biasa menghasilkan hasil yang sama.

>\$areaTriangle(B,A,C)

 $\frac{7}{2}$

Rumus Heron

Sekarang, mari kita selesaikan masalah ini secara umum!

```
>&remvalue(a,b,c,sb,ha);
```

Pertama-tama kita menghitung penyebaran di B untuk segitiga dengan sisi a, b, dan c. Kemudian kita menghitung luas kuadrat ("quadrea"?), memfaktorkannya dengan Maxima, dan kita mendapatkan rumus Heron yang terkenal.

Memang, hal ini sulit dilakukan dengan pensil dan kertas.

$$\frac{-c^{4}-\left(-2\,b^{2}-2\,a^{2}\right)\,c^{2}-b^{4}+2\,a^{2}\,b^{2}-a^{4}}{4\,a^{2}\,c^{2}}\\ \underline{\left(-c+b+a\right)\,\left(c-b+a\right)\,\left(c+b-a\right)\,\left(c+b+a\right)}}{16}$$

Aturan Penyebaran Tiga

Kerugian dari spread adalah bahwa mereka tidak lagi hanya menambahkan sudut seperti.

Namun, tiga spread dari sebuah segitiga memenuhi aturan "triple spread" berikut ini.

>&remvalue(sa,sb,sc); \$triplespread(sa,sb,sc)

$$(sc + sb + sa)^2 = 2(sc^2 + sb^2 + sa^2) + 4 sa sb sc$$

Aturan ini berlaku untuk tiga sudut yang berjumlah 180°.

$$\alpha + \beta + \gamma = \pi$$

Karena penyebaran dari

$$\alpha, \pi - \alpha$$

sama, aturan triple spread juga benar, jika

$$\alpha + \beta = \gamma$$

Karena penyebaran sudut negatifnya sama, aturan penyebaran tiga kali lipat juga berlaku, jika

$$\alpha + \beta + \gamma = 0$$

Contohnya, kita bisa menghitung penyebaran sudut 60° . Hasilnya adalah 3/4. Namun, persamaan ini memiliki solusi kedua, di mana semua penyebarannya adalah 0.

>\$solve(triplespread(x,x,x),x)

$$\left[x = \frac{3}{4}, x = 0\right]$$

Penyebaran 90° jelas adalah 1. Jika dua sudut ditambahkan ke 90°, penyebarannya akan menyelesaikan persamaan penyebaran tiga dengan a, b, 1. Dengan perhitungan berikut, kita mendapatkan a + b = 1.

>\$triplespread(x,y,1), \$solve(%,x)

$$(y+x+1)^2 = 2(y^2+x^2+1) + 4xy$$

[x = 1 - y]

Karena penyebaran 180°-t sama dengan penyebaran t
, rumus penyebaran tiga kali lipat juga berlaku, jika satu sudut adalah jumlah atau selisih dari dua sudut lainnya.

Jadi kita dapat menemukan penyebaran sudut dua kali lipat. Perhatikan bahwa ada dua solusi lagi. Kita jadikan ini sebuah fungsi.

>\$solve(triplespread(a,a,x),x), function doublespread(a) &= factor(rhs(%[1]))

$$\label{eq:continuous} \left[x = 4\,a - 4\,a^2, x = 0 \right]$$
 - 4 (a - 1) a

Garis Pembagi Sudut

Ini adalah situasi yang sudah kita ketahui.

```
>C&:=[0,0]; A&:=[4,0]; B&:=[0,3]; ...
>setPlotRange(-1,5,-1,5); ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>plotSegment(B,A,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>insimg;
```


Mari kita hitung panjang garis bagi sudut di A. Tetapi kita ingin menyelesaikannya untuk a, b, c secara umum.

Jadi, pertama-tama kita menghitung penyebaran sudut yang dibelah dua di A, menggunakan rumus penyebaran tiga.

Masalah dengan rumus ini muncul lagi. Rumus ini memiliki dua solusi. Kita harus memilih salah satu yang benar. Solusi lainnya mengacu pada sudut terbagi dua 180°-wa.

\Rightarrow triplespread(x,x,a/(a+b)), \$solve(%,x), sa2 &= rhs(%[1]); \$sa2

$$\left(2x + \frac{a}{b+a}\right)^2 = 2\left(2x^2 + \frac{a^2}{(b+a)^2}\right) + \frac{4ax^2}{b+a}$$

$$\left[x = \frac{-\sqrt{b^2 + ab} + b + a}{2b+2a}, x = \frac{\sqrt{b^2 + ab} + b + a}{2b+2a}\right]$$

$$\frac{-\sqrt{b^2 + ab} + b + a}{2b+2a}$$

Mari kita periksa persegi panjang Mesir.

Kita bisa mencetak sudut dalam Euler, setelah mentransfer penyebaran ke radian.

```
>wa2 := arcsin(sqrt(1/10)); degprint(wa2)
```

```
18°26'5.82''
```

Titik P adalah perpotongan garis bagi sudut dengan sumbu y.

```
>P := [0,tan(wa2)*4]
```

```
[0, 1.33333]
```

```
>plotPoint(P,"P"); plotSegment(A,P):
```


Mari kita periksa sudut-sudutnya dalam contoh spesifik kita.

```
>computeAngle(C,A,P), computeAngle(P,A,B)
```

- 0.321750554397
- 0.321750554397

Sekarang kita menghitung panjang garis bagi AP.

$$\frac{BC}{\sin(w_a)} = \frac{AC}{\sin(w_b)} = \frac{AB}{\sin(w_c)}$$

berlaku dalam segitiga apa pun. Kuadratkan, ini diterjemahkan ke dalam apa yang disebut "hukum penyebaran"

$$\frac{a}{s_a} = \frac{b}{s_b} = \frac{c}{s_b}$$

di mana a, b, c menunjukkan kuadrannya.

Karena spread CPA adalah 1-sa2, kita mendapatkan bisa/1=b/(1-sa2) dan bisa menghitung bisa (kuadran dari pembagi sudut).

>&factor(ratsimp(b/(1-sa2))); bisa &= %; \$bisa

$$\frac{2b(b+a)}{\sqrt{b(b+a)}+b+a}$$

Mari kita periksa rumus ini untuk nilai-nilai Mesir kita.

>sqrt(mxmeval("at(bisa,[a=3^2,b=4^2])")), distance(A,P)

- 4.21637021356
- 4.21637021356

Kita juga dapat menghitung P dengan menggunakan rumus penyebaran.

>py&=factor(ratsimp(sa2*bisa)); \$py

$$-\frac{b\left(\sqrt{b\ (b+a)}-b-a\right)}{\sqrt{b\ (b+a)}+b+a}$$

Nilainya sama dengan yang kita dapatkan dengan rumus trigonometri.

>sqrt(mxmeval("at(py,[a=3^2,b=4^2])"))

1.33333333333

Sudut Akor

Lihatlah situasi berikut ini

```
>setPlotRange(1.2); ...
>color(1); plotCircle(circleWithCenter([0,0],1)); ...
>A:=[cos(1),sin(1)]; B:=[cos(2),sin(2)]; C:=[cos(6),sin(6)]; ...
>plotPoint(A,"A"); plotPoint(B,"B"); plotPoint(C,"C"); ...
>color(3); plotSegment(A,B,"c"); plotSegment(A,C,"b"); plotSegment(C,B,"a"); ...
>color(1); 0:=[0,0]; plotPoint(0,"0"); ...
>plotSegment(A,0); plotSegment(B,0); plotSegment(C,0,"r"); ...
>insimg;
```


Kita dapat menggunakan Maxima untuk menyelesaikan rumus penyebaran tiga untuk sudut-sudut di pusat O untuk r. Dengan demikian kita mendapatkan rumus untuk jari-jari kuadrat dari pericircle dalam hal kuadran sisi-sisinya.

Kali ini, Maxima menghasilkan beberapa angka nol yang rumit, yang kita abaikan.

```
>&remvalue(a,b,c,r); // hapus nilai-nilai sebelumnya untuk perhitungan baru >rabc &= rhs(solve(triplespread(b,r,r),spread(a,r,r),spread(c,r,r)),r)[4]); $rabc
```

$$-\frac{a\,b\,c}{c^2-2\,b\,c+a\,\left(-2\,c-2\,b\right)+b^2+a^2}$$

Kita dapat menjadikannya sebuah fungsi Euler.

```
>function periradius(a,b,c) &= rabc;
```

Mari kita periksa hasilnya untuk poin A, B, C.

```
>a:=quadrance(B,C); b:=quadrance(A,C); c:=quadrance(A,B);
```

Radiusnya 1.

```
>periradius(a,b,c)
```

Faktanya adalah, bahwa penyebaran CBA hanya bergantung pada b dan c. Ini adalah teorema sudut akor.

>\$spread(b,a,c)*rabc | ratsimp

 $\frac{b}{4}$

Faktanya, penyebarannya adalah b/(4r), dan kita melihat bahwa sudut chord b adalah setengah dari sudut tengah.

>\$doublespread(b/(4*r))-spread(b,r,r) | ratsimp