141, ДЗ 1, Векторные пространства

Задачи

Задача 1. Пусть пространство $V = \{ f \in K[x] \mid \deg f \leq n \}$. Покажите, что любой набор многочленов $p_0(x), p_1(x), \ldots, p_n(x), \mathbb{Z} \}$ что $\deg p_i(x) = i$, является базисом V.

Задача 2. Рассмотрим множество векторов $\cos^i x \sin^j x$, что $i, j \geq 0$ и $i+j \leq 3$. Найдите максимальную линейно независимую систему и выразите все остальные векторы через эту систему.

Задача **3.** Покажите, что множество векторов $\cos^k(x)$ линейно независимы $k \ge 0$.

Задача 4. Выяснить, являются ли вектора линейно зависимыми и если да, то найти хотя бы одну их нетривиальную линейную комбинацию, равную нулю

$$\begin{pmatrix} 1 \\ -1 \\ 2 \\ -3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 4 \\ -1 \end{pmatrix}$$

1. Линейная алгебра. Алгоритм Гаусса

Последняя тема в этом семестре – это линейная алгебра. И первое, что мы с вами обсудили – это решение системы линейных уравнений с помощью метода Гаусса. Прежде всего – что же такое система линейных уравнений?

Определение. Пусть R – кольцо. Тогда системой m линейных уравнений от n неизвестных называется набор условий

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases},$$

где $a_{ij}, b_i \in R$.

Нас в основном пока будет интересовать случай R = K – поле. Совершенно понятно, что система линейных уравнений определяется однозначно числами a_{ij} и b_i . Эти числа удобно организовывать в матрицы.

Определение. Матрица размера $m \times n$ над полем K – это набор чисел проиндексированных двумя числами a_{ij} $i \in \overline{1,m}, j \in \overline{1,n}$. Множество всех матриц размера $m \times n$ над полем K обозначается как $M_{m \times n}(K)$. Обычно матрицы я буду обозначать заглавными буквами, например A. Тот факт, что матрица A имеет размер $m \times n$ будем записывать как $A \in M_{m \times n}(K)$.

Определение. Матрица системы линейных уравнений называется матрица $A \in M_{m \times n}$, заполненная коэффициентами этой системы – то есть числами a_{ij} . Матрица размера $m \times n + 1$ содержащая дополнительно столбец b_1, \ldots, b_m называется расширенной матрицей системы. Мы будем отчёркивать столбец b, чтобы выделить его особую роль и будем обозначать расширенную матрицу системы как (A|b).

От каждой системы нас прежде всего интересует множество её решений. Поэтому логично ввести определение:

Определение. Две системы линейных уравнений называются эквивалентными, если множества их решений совпадают.

Теперь опишем три типа преобразований, которые переводят систему в эквивалентную.

Определение. Пусть дана система уравнений

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases},$$

Элементарным преобразованием первого типа над этой системой линейных уравнений называется следующая операция. Рассмотрим уравнения с номерами i и j, где $i \neq j$ и элемент $\lambda \in K$. Тогда прибавим i-ое уравнение к j-ому с коэффициентом λ и поместим результат на место j-го уравнения.

Определение. Элементарным преобразованием второго типа называется преобразование меняющее местами i-ое уравнения местами. Элементарным преобразованием третьего типа называется преобразование, домножающие i-ое уравнение на коэффициент $\lambda \in K^*$.

Нам будет удобно вместо системы линейных уравнений работать с её упрощённой записью – матрицей этой системы. Поэтому логично перевести понятия элементарных преобразований на язык матриц.

Определение. Элементарным преобразованием строк первого типа над матрицей A называется прибавление к j-ой строчке матрицы A её i строки с некоторым коэффициентом λ . Элементарным преобразованием второго типа называется перестановка i-ой и j-ой строк в матрице A. Преобразованием третьего типа называется домножение i-ой строчки на обратимый элемент $\lambda \in K^*$.

Обсудим метод Гаусса решения систем линейных уравнений. Он заключается в том, чтобы с помощью элементарных преобразований перевести систему уравнений в эквивалентную, так, чтобы её вид был как можно более простым. Сформулируем это.

Определение. Будем говорить, что матрица A имеет ступенчатый вид, если каждая новая строчка начинается с большего количества нулей, чем предыдущая. Говоря строго, для i-ой строки номер столбца в котором стоит первый ненулевой элемент строки строго больше, чем аналогичный номер у i-1 строки, если только строка не целиком состоит из нулей.

Вот такая матрица находится в ступенчатом виде.

$$A = \begin{pmatrix} i_1 & i_2 & i_k \\ a_{1i_1} & * & * & * & * \\ 0 & 0 & a_{2i_2} & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & a_{ki_k} & * \end{pmatrix}$$

Здесь i_1, \ldots, i_k номера столбцов, где стоят первые ненулевые элементы в строках от 1 до k. После k-го номера все строки нулевые. Утверждение, которое стоит за методом Гаусса можно сформулировать следующим образом:

Теорема 1. Любую матрицу над полем K можно перевести элементарными преобразованиями к ступенчатому виду. Более того, можно считать, что для каждой строки первый её ненулевой элемент равен 1 и в столбце над ним стоят нули.

Предъявим индукционный алгоритм для получения ступенчатого вида:

Случай 1: Элемент $a_{11} \neq 0$. Тогда прибавим ко всем остальным строкам первую с коэффициентами $-\frac{a_{i1}}{a_{11}}$. Получится матрица у которой в перво столбце стоят нули, кроме первой позиции. Вычеркнем первый столбик и первую строчку и продолжим по индукции.

Случай 2: Элемент $a_{11} = 0$, но в *i*-ой строчке стоит ненулевой элемент. Поменяем строку с номером *i* с первой строкой и продолжим, как в случае 1.

Случай 3: Весь первый столбец нулевой. Тогда вычеркнем первый столбец и продолжим по индукции.

Указанные преобразования очевидно приводят матрицу к ступенчатому виду. Способ добиться нулей над первыми не нулевыми элементами называется обратным ходом метода Гаусса. Прежде всего заработаем единицы в первых ненулевых элементах строк a_i поделив на a_i^{-1} .

Затем посмотрим на последнюю ненулевую строку – скажем строку k, первый столбец с ненулевым элементом в которой имеет номер j_k , и прибавим её ко всем строкам выше с коэффициентом $-a_{lj_k}$ для l-ой строки. После чего перейдём к следующей строке.

Приступим к решению системы линейных уравнений. Приведём расширенную матрицу системы к ступенчатому виду. Рассмотрим последнюю ненулевую строчку. Если её ненулевой элемент находится в самом последнем отчёркнутом столбце, то решений нет, потому, что эта строчка соответствует уравнению $0x_1 + \cdots + 0x_n = b_1 \neq 0$, которое, как ни крути, решений не имеет.

Если же такого не происходит, то разделим переменные на два класса – зависимые и независимые. Зависимыми (главными) называются те переменные, в чьём столбце есть первый ненулевой элемент какой-то строки. Независимыми (свободными) будем называть все остальные.

Пусть зависимые переменные это x_{i_1}, \ldots, x_{i_n} . Тогда выбрав любые значения для x_{i_1}, \ldots, x_{i_n} из оставшихся уравнений мы однозначно восстановим значения всех остальных переменных. Более того, значения остальных переменных представляются в виде значений многочленов первой степени от x_{i_1}, \ldots, x_{i_n} . Так выглядит стандартное описание всех решений линейного уравнения, которое выдаёт метод Гаусса.

Замечание. Метод Гаусса подразумевает работу со строчками в определённой порядке, в частности перестановка строк делается только в экстренных случаях. Но в принципе никто не запрещает для удобства переставлять строчки и прибавлять их друг к другу в произвольном порядке – лишь бы вид системы в конце позволял проанализировать множество решений.

Упражнение 1. Решить систему линейных уравнений над \mathbb{R}

$$\begin{cases} x_1 - 2x_2 + x_3 + 3x_4 = 1\\ x_1 + x_2 + 2x_3 - x_4 = -1\\ x_1 - 3x_2 + 4x_3 + 5x_4 = 5 \end{cases}$$

Упражнение 2. Решить систему уравнений в комплексных числах

$$\begin{cases} x_1 x_2^2 x_3^3 = 2 \\ x_1^2 x_2^3 x_3^4 = 4 \\ x_1^2 x_2 x_3 = 2 \end{cases}$$

Упражнение 3. Найдите такие натуральные числа k_1, \ldots, k_4 не всё делящиеся на три, что $a^{k_1}b^{k_2}c^{k_3}d^{k_4} = f^3$, где a =

2. Векторные пространства. Примеры. Линейная зависимость. Базис

Определение (Векторное пространство). Векторным пространством над полем K называется множество V вместе с отображениями $+: V \times V \to V$ и $\cdot: K \times V \to V$. удовлетворяющие свойствам:

- 1) V, + является абелевой группой
- 2) $\forall v \in V$ верно, что $1 \cdot v = v$
- 3) $\forall v \in V, \, \forall \lambda, \mu \in K$ верно, что $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$.
- 4) $\forall u, v \in V, \forall \lambda \in K$ верно, что $\lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$.
- 5) $\forall v \in V \ \forall \lambda, \mu \in K$ верно, что $(\lambda \mu) \cdot v = \lambda \cdot (\mu \cdot v)$.

Примеры:

- 0) Само поле K вместе со сложением и умножением.
- 1) Пространство столбцов K^n . Умножение и сложение покомпонентное.
- 2) Обобщая. Пространство матриц $M_{m \times n}(K)$.
- 3) Пусть X множество. Рассмотрим множество всех функций из K в X, то есть K^X . Это векторное пространство над полем K с поточечным сложением и умножением.
- 4) Рассмотрим множество непрерывных вещественнозначных функций на отрезке [0,1]. Это векторное пространство над \mathbb{R} .
- 5) Рассмотрим множество последовательностей над полем K, удовлетворяющих заданному линейному рекуррентному соотношению $a_k x_{n+k} + \cdots + a_0 x_n = 0$. Это векторное пространство над K.
- 6) Рассмотрим множества всех многочленов $K[x_1, \ldots, x_n]$, всех рациональных функций $K(x_1, \ldots, x_n)$, рядов K[[x]]. Это векторные пространства относительно естественного сложения и умножения на элементы K.
- 7) Пусть A абелева группа, такая, что любой её элемент имеет порядок p, для фиксированного простого числа p. Тогда на A существует и единственна структура векторного пространства над \mathbb{Z}/p .
- 8) Пусть L расширение поля K. Тогда L является векторным пространством над K.

Определение (Подпространство). Пусть V – векторное пространство над полем K. Подмножество $U\subseteq V$ называется подпространством V, если

- 1) U подгруппа V.
- 2) $\forall \lambda \in K, \forall u \in U$ верно, что $\lambda u \in U$.

По другому говоря, операции на V можно сузить на U, с тем, чтобы U стало векторным пространством относительно этих операций.

Примеры:

- 1) Рассмотрим множество столбцов из K^n , у которых первая координата равно 0. Это подпространство в пространстве столбцов.
- 2) Рассмотрим множество многочленов, которые делятся на данный многочлен p(x)K[x]. Это подпространство в K[x].
- 3) Рассмотрим множество непрерывных на отрезке [0,1] функций, принимающих значение 0 в точках $0,\frac{1}{2},1$. Это подпространство в C[0,1].
- 4) Рассмотрим множество многочленов степени не выше n от одной переменной

$$K[x_1, \dots, x_k]_{\leq n} = \{ f \in K[x_1, \dots, x_k] \mid \deg f \leq n \}.$$

Это подпространство в $K[x_1,\ldots,x_n]$.

5) Пусть $A \in M_{n \times m}(K)$. Тогда множество решений однородной системы уравнений Ax = 0 $W = \{x \in K^m \mid Ax = 0\}$ является подпространством K^m .

Определение. Линейной комбинацией векторов v_1, \ldots, v_n с коэффициентами $\lambda_1, \ldots, \lambda_n$, называется элемент $v \in V$

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

Если хотя бы один из элементов $\lambda_1, \dots, \lambda_n$ не равен 0, то говорят, что линейная комбинация нетривиальна.

Определение (Линейная зависимость). Набор векторов v_1, \ldots, v_n называется линейно зависимым, если 0 является нетривиальной линейной комбинацией v_1, \ldots, v_n , то есть существуют $\lambda_1, \ldots, \lambda_n \in K$ не все равные 0, что

$$0 = \lambda_1 v_1 + \dots + \lambda_n v_n.$$

Определение (Линейная независимость). Набор векторов v_1, \dots, v_n называется линейно независимым, если он не является линейно зависимым, то есть если $\lambda_1, \ldots, \lambda_n \in K$ такие, что

$$0 = \lambda_1 v_1 + \cdots + \lambda_n v_n$$
, to $\lambda_1 = \cdots = \lambda_n = 0$.

Примеры:

- 0) Набор из одного нуля линейно зависим.
- 1) Пусть v_1 и v_2 два вектора из V. Они линейно зависимы тогда и только тогда, когда они пропорциональны.
- 2) Рассмотрим пространство K^n и набор столбцов

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Это линейно независимая система векторов.

3) Аналогично в пространстве матриц $M_{m \times n}(K)$ имеется набор матриц e_{ij} вида

$$e_{ij} = \begin{pmatrix} j & \cdots & \cdots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & 1 & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

- 4) Все мономы x^{α} в кольце $K[x_1,\dots,x_n]$ линейно независимы 5) Набор $\frac{1}{x-\lambda}$ для различных $\lambda\in K$ линейно независим в K(t).
- 6) Любой поднабор линейно независимого набора линейно независим.

Упражнение 4. Пусть пространство $V=\{f\in K[x]|\deg f\leq n\}$ и даны различные элементы $\lambda_1,\ldots,\lambda_n\in K.$ Покажите, что набор многочленов $p_i(x) = \prod_{j \neq i} (x - \lambda_j)$ линейно независим.

Доказательство. Решение Пусть есть такие коэффициенты μ_i , что $\sum_{i=1}^n \mu_i p_i(x) = 0$. Покажем, что все они равны 0. Для этого подставим вместо x элемент λ_i . Тогда все слагаемые кроме одного обнулятся. Получаем

$$\mu_i \prod_{j \neq i} (\lambda_i - \lambda_j) = 0.$$

Коэффициент при μ_i не равен 0. Значит $\mu_i = 0$, что и требовалось.

Упражнение 5. Пусть $\lambda_1,\ldots,\lambda_n$ различные вещественные числа. Покажите, что множество векторов $e^{\lambda_i x}$ линейно независимо как элементы в пространстве непрерывных функций на \mathbb{R} .

Доказательство. Решение Пусть $\sum \mu_i e^{\lambda_i x} = 0$ и λ_i упорядочены по возрастанию. Поделим на $e^{\lambda_n x}$. Тогда при $x \to \infty$

$$0 = \sum \mu_i e^{(\lambda_i - \lambda_n)x}$$

стремится к μ_n . Но тогда μ_n равно 0. Аналогично все предыдущие μ_i .

Упражнение 6. Покажите, что множество векторов $\cos nx$ $u \sin nx$ по всем натуральным n линейно независимы (рассматривая ux как элементы пространства непрерывных функций на отрезке $[0, 2\pi]$).

Определение. Пусть X подмножество векторного пространства V. Тогда подпространство, порожденное X – это наименьшее подпространство, содержащее X. Обозначается оно $\langle X \rangle$. Это подпространство так же называют линейной оболочкой X.

Лемма 1. Пусть $X \subseteq V$. Тогда линейная оболочка $\langle X \rangle$ существует и описывается как множество всех линейных комбинаций элементов из X.

$$\langle X \rangle = \{ v \in V \mid \exists x_1, \dots, x_n \in X, \text{ if } \lambda_1, \dots, \lambda_n \in K, \text{ sto } v = \lambda_1 x_1 + \dots + \lambda_n x_n \}$$

Определение. Будем говорить, что набор $v_{\alpha} \in V$ $\alpha \in I$ является порождающим для V, если $\langle \{v_{\alpha}\}_{\alpha \in I} \rangle = V$. Иными словами, для любого $v \in V$ существуют $v_{\alpha_1}, \ldots, v_{\alpha_n}$ и $\lambda_1, \ldots, \lambda_n$, что $v = \sum \lambda_i v_{\alpha_i}$.

Определение (Базис). Набор векторов v_{α} , $\alpha \in I$ называется базисом пространства V, если он является порождающей и линейно независимой системой векторов в V.

Примеры:

- 1) Набор векторов $e_i \in K^n$ является базисом. Этот базис называют стандартным.
- 2) Набор e_{ij} является базисом $M_{m \times n}(K)$.
- 3) Мономы x^{α} являются базисом $K[x_1,\ldots,x_n]$.
- 4) Элементы $1, x, \ldots, x^n, \ldots$ и $\frac{1}{(x-\lambda)^n}$ по всем $\lambda \in \mathbb{C}$ являются базисом в $\mathbb{C}(x)$.

Теорема 2. Любую линейно независимую систему в векторном пространстве V можно дополнить до базиса V при помощи векторов из любой порождающей системы для V.

Теорема 3. Любые два базиса векторного пространства V равномощны.

Определение (Размерность). Пусть V – конечно-порождённое пространство. Размерностью V называется количество элементов в базисе V.

Обсудим какие практические задачи стоят за этими теоремами и как эти задачи решать. Первая задача состоит в том, как по произвольному набору векторов в векторном пространстве V сказать, что он линейно независим. А именно, пусть дан набор векторов $u_1, \ldots, u_k \in V$ и базис e_1, \ldots, e_n пространства V. Пусть нам известно разложение векторов v_i через базис e. То есть даны числа μ_{ji} , что

$$v_j = \sum_{i=0}^n \mu_{ji} e_i.$$

Выбор базиса и знание такого разложения позволяют свести вычисления к модельному случаю пространства столбцов \mathbb{K}^n .

Точнее, соотношение линейной зависимости для векторов $0 = \lambda_1 u_1 + \dots + \lambda_k u_k$ равносильно соотношению для их координатных столбцов в базисе e_1, \dots, e_n , которые мы обозначим как $[u_i]$. Составим из $[u_i]$ матрицу A размера $k \times n$. Нахождение линейной зависимость, таким образом, равносильно решению системы $A\lambda = 0$.

Приведём матрицу A методом Гаусса к ступенчатому виду A'. Решения системы остались прежними, то есть столбцы A линейно независимы тогда и только тогда, когда соответствующие столбцы для A' независимы. Но независимые столбцы для A', через которые выражаются остальные, легко найти. А именно, если матрица A' имеет вид

$$A' = \begin{pmatrix} i_1 & & i_2 & & i_r \\ 1 & * & * & * & * \\ 0 & 0 & 1 & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & * \end{pmatrix},$$

то столбцы с номерами главных (зависимых) переменных i_1, \dots, i_r линейно независимы и порождают всё пространство столбцов. Следовательно, и исходные вектора u_{i_1}, \dots, u_{i_r} независимы и порождают всё пространство U.

Упражнение 7. Выяснить, являются ли вектора $v_1 = (4, -5, 2, 6), v_2 = (2, -2, 1, 3), v_3 = (6, -3, 3, 9), v_4 = (4, -1, 5, 6)$ линейно зависимыми.

Решение. Составим матрицу из этих столбцов и приведём её к ступенчатому виду:

$$A = \begin{pmatrix} 4 & 2 & 6 & 4 \\ -5 & -2 & -3 & -1 \\ 2 & 1 & 3 & 5 \\ 6 & 3 & 9 & 6 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 3 & 5 \\ -1 & 0 & 3 & 9 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & -9 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & 3 & 0 \\ 2 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & 3 & 0 \\ 0 & 1 & 9 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Отсюда видно, что v_1, v_2, v_4 линейно независимы и третий вектор выражается через первый и второй как

$$v_3 = 9v_2 - 3v_1$$

Перейдём к следующей задаче. Пусть дан вектор $v \in V$ и набор $u_1, \ldots, u_k \in V$, для которого, как и для v известно разложение через базис e. Как узнать, можно ли представить v в виде линейной комбинации u_i ?

Для ответа на этот вопрос заметим, что задача опять свелась к модельному пространству K^n . Для ответа на вопрос необходимо и достаточно понять возможно ли равенство

$$\lambda_1[u_1] + \dots + \lambda_k[u_k] = [v].$$

Это равенство эквивалентно системе линейных уравнений $A\lambda = [v]$ для матрицы A, составленной из столбцов $[u_i]$, решить которую не составляет труда.

Последний вопрос посвящён тому, как проверить, что набор u_i порождает V. Прежде всего мы понимаем, что если $k \neq n$, то это невозможно. Далее, если k = n, то u_i порождают V тогда и только тогда, когда u_i линейно независимы. Впрочем, можно предложить и другой критерий – u_i порождают V тогда и только тогда, когда через них выражаются базисные вектора e_i .

Стоит заметить, что разный выбор базиса приводит к довольно разным координатным столбцам. Попробуем решить задачу:

Упражнение 8. Найдите базис пространства \mathbb{R}^3 , в котором векторы x, y, z имеют заданные координатные столбию [x], [y], [z].

$$x = (9, 2, 0)^{\top}, y = (6, 3, 4)^{\top}, z = (3, 1, 2)^{\top}$$

 $[x] = (1, 2, 1)^{T}, [y] = (1, -1, 2)^{T}, [z] = (-2, -1, 3)^{T}$

Для этого запишем в матрицу A столбцы x, y, z, а в матрицу B столбцы [x], [y], [z]. Тогда я хочу найти такую невырожденную матрицу X, что A = BX. Столбцы матрицы X и будут подходящим базисом в \mathbb{R}^3 .

Если матрица B обратима, то матрицу X можно найти как $B^{-1}A$. Однако удобнее находить решение другим способом. А именно, заметим, что при применении элементарных преобразований строк одновременно к матрицам A и B множество решений этой системы не меняется.

С другой стороны, если матрица B равна единице, то решение будет единственным возможным X=A, если A невырождена.

Записав, таким образом матрицу (A|B) и приведя её к виду (C|E) мы получим, что матрица C и есть решение (если она невырождена).

Заметим так же, что эту задачу можно решить приведя элементарными преобразованиями столбцов матрицу

$$\begin{pmatrix} A \\ B \end{pmatrix}$$
 к виду $\begin{pmatrix} C \\ E \end{pmatrix}$.

B случае вырожденных матриц A и B ситуация немного усложняется.