```
In [31]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Out[32]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

In [33]: df.head()

Out[33]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4.6											

```
In [34]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	fixed acidity	1599 non-null	float64	
1	volatile acidity	1599 non-null	float64	
2	citric acid	1599 non-null	float64	
3	residual sugar	1599 non-null	float64	
4	chlorides	1599 non-null	float64	
5	free sulfur dioxide	1599 non-null	float64	
6	total sulfur dioxide	1599 non-null	float64	
7	density	1599 non-null	float64	
8	рН	1599 non-null	float64	
9	sulphates	1599 non-null	float64	
10	alcohol	1599 non-null	float64	
11	quality	1599 non-null	int64	

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [35]: import seaborn as sns

In [36]: df.describe()

Out[36]:

total sulfu dioxid	free sulfur dioxide	chlorides	residual sugar	citric acid	volatile acidity	fixed acidity	
1599.00000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	count
46.46779	15.874922	0.087467	2.538806	0.270976	0.527821	8.319637	mean
32.89532	10.460157	0.047065	1.409928	0.194801	0.179060	1.741096	std
6.00000	1.000000	0.012000	0.900000	0.000000	0.120000	4.600000	min
22.00000	7.000000	0.070000	1.900000	0.090000	0.390000	7.100000	25%
38.00000	14.000000	0.079000	2.200000	0.260000	0.520000	7.900000	50%
62.00000	21.000000	0.090000	2.600000	0.420000	0.640000	9.200000	75%
289.00000	72.000000	0.611000	15.500000	1.000000	1.580000	15.900000	max
							4

In [10]:

In [37]: sns.pairplot(df)

Out[37]: <seaborn.axisgrid.PairGrid at 0x1c357211940>


```
In [38]: df1=df.drop(['citric acid'],axis=1)
         df1=df1.drop(df1.index[1537:])
         df1.isna().sum()
Out[38]: fixed acidity
                                  0
         volatile acidity
                                  0
         residual sugar
                                  0
         chlorides
                                  0
         free sulfur dioxide
                                  0
         total sulfur dioxide
                                  0
         density
                                  0
                                  0
         рΗ
                                  0
         sulphates
         alcohol
                                  0
         quality
                                  0
         dtype: int64
```

In [39]: sns.displot(df['alcohol'])

Out[39]: <seaborn.axisgrid.FacetGrid at 0x1c3533a32b0>


```
In [40]: sns.heatmap(df1.corr())
```

Out[40]: <AxesSubplot:>

In [41]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [42]: df1.isna().sum()

Out[42]: fixed acidity 0 volatile acidity 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 рΗ 0 0 sulphates alcohol 0 0 quality dtype: int64

```
In [44]: y=df1['fixed acidity']
         x=df1.drop(['chlorides','residual sugar'],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         print(x train)
               fixed acidity volatile acidity free sulfur dioxide \
         713
                         8.0
                                          0.430
                                                                10.0
         891
                         7.2
                                          0.660
                                                                16.0
         25
                         6.3
                                          0.390
                                                                11.0
         730
                         9.5
                                          0.550
                                                                12.0
         606
                         9.4
                                          0.410
                                                                10.0
         . . .
                          . . .
                                            . . .
                                                                 . . .
         1055
                         8.2
                                          0.640
                                                                 5.0
         1272
                         5.9
                                          0.460
                                                                25.0
         1096
                         6.6
                                          0.725
                                                                 9.0
         1334
                         7.2
                                          0.835
                                                                 4.0
         1333
                         9.1
                                          0.775
                                                                12.0
               total sulfur dioxide density
                                                 pH sulphates alcohol quality
         713
                                                                    9.4
                                                                                5
                                48.0
                                      0.99760 3.34
                                                          0.46
                                                                                5
                                86.0
                                                          0.57
                                                                    9.7
         891
                                      0.99743 3.53
         25
                                23.0
                                      0.99550 3.34
                                                          0.56
                                                                    9.3
                                                                                5
                                                                                5
         730
                                37.0
                                      0.99820 3.17
                                                          0.67
                                                                    9.6
                                                                               7
         606
                                20.0
                                      0.99730 3.34
                                                          0.79
                                                                   12.2
                                                           . . .
                                                                    . . .
         . . .
                                 . . .
                                77.0
                                      0.99747 3.13
                                                                    9.1
         1055
                                                          0.62
                                                                               6
         1272
                               44.0
                                      0.99385 3.50
                                                          0.53
                                                                   11.2
                                                                               5
                                                                               6
         1096
                                17.0 0.99655 3.35
                                                          0.49
                                                                   10.8
                                                                               5
         1334
                                11.0 0.99608 3.39
                                                          0.52
                                                                   10.0
                                                                                5
         1333
                               48.0
                                      0.99760 3.18
                                                          0.51
                                                                    9.6
         [1075 rows x 9 columns]
In [45]: model=LinearRegression()
         model.fit(x_train,y_train)
         model.intercept
```

Out[45]: 5.1514348342607263e-14

```
In [46]: prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[46]: <matplotlib.collections.PathCollection at 0x1c35fc941f0>
          16
          14
          12
          10
           8
           6
                                  10
                                         12
                                                 14
                                                        16
In [47]: model.score(x_test,y_test)
Out[47]: 1.0
In [48]: | from sklearn.linear_model import Ridge,Lasso
In [49]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[49]: Ridge(alpha=10)
In [50]: rr.score(x_test,y_test)
Out[50]: 0.9999866935956242
In [51]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[51]: Lasso(alpha=10)
In [52]: la.score(x_test,y_test)
Out[52]: -0.0026296681839950153
In [ ]:
```