Homework 14

Joe Baker, Brett Schreiber, Brian Knotten

February 14, 2018

21

\mathbf{a}

Consider that every Boolean circuit can be represented by AND, OR, and NOT gates.

Consider a Boolean circuit C containing n gates. There exists a corresponding Boolean formula F of size n, because AND, OR, and NOT gates can be represented in a Boolean formula as logical operators \land 's, \lor 's, and \neg 's. Since there is a one-to-one mapping of gates to logical operators, there exists a Boolean formula F with an output equivalent to C of size n.

Any Boolean function F for an input size n can be encoded into a string x of size $|x| = S = 2^n$, where each bit represents an output for a given input. For example, if n = 4, the first bit of x, either a 0 or 1, represents the output for the input 0000. The second bit of x represents the output for input 0001... and the last bit of x represents the output for input 1111.

The formula for F can be naively implemented through the following algorithm:

List all binary numbers of length n from 0 to 2^n . Let B be this list. For each number b in B:

for each bit b_i in b:

```
if b_i = 0, write out \neg x_i
```

if $b_i = 1$, write out x_i

Join together all of these boolean expressions with \wedge 's

Join together all of these boolean expressions with \vee 's

Here is an example Boolean function f encoded as 1011. This means f has the following outputs:

f(00) = 1

f(01) = 0

f(10) = 1

f(11) = 1

The corresponding boolean formula using the naive implementation is: $f(x_1x_2) = (\neg x_1 \land \neg x_2) \lor$

```
\neg(\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor
```

 $(x_1 \wedge x_2)$

So every boolean function on n bits has a formula of size at most 2^n . Since \land , \lor , and \neg exist as gates in circuits, this formula can be converted into a circuit with size at most 2^n gates.

b

First, show that f computed by circuit $|C| = S \Rightarrow f$ computed by S-line program:

For each Boolean gate (NOT, AND, OR) in C, there exists an equivalent straight-line program statement with a left-side assignment variable corresponding to the output of the gate and a right side consisting of either a boolean operation (\land, \lor) performing the gate's operation on input variables corresponding to the input of the gate, or the negation (\neg) of an input variable corresponding to the input of the gate.

Therefore, given a circuit |C| = S, we can construct an equivalent straight-line program with S statements by iterating over each level of C and converting each gate to an equivalent straight-line program statement. Note that C will have at most S levels as it has S inputs.

Next, show that f computed by S-line program \Rightarrow f computed by circuit |C| = S:

For every straight-line program statement there exists an equivalent Boolean gate (NOT, AND, OR) with inputs corresponding to the right-side variable(s) of the statement that performs the corresponding Boolean operation (\neg, \land, \lor) of the right-side of the statement and an output corresponding to the left-side assignment variable of the statement.

Therefore, given a straight-line program with S statements, we can construct an equivalent circuit |C| = S by iterating over each statement and converting it to an equivalent Boolean gate.

Thus, f can be computed by a circuit $|C| = S \Leftrightarrow f$ can be computed by a S-line straight-line program.

22

Problem

Show that there are some Boolean functions $f: \{0,1\}^n \to \{0,1\}$ that can be computed with n^4 gates but not with n^2 gates.

Proof:

Let $f:\{0,1\}^x \to \{0,1\}$ be a Boolean function that cannot be computed with a circuit of $\frac{2^x}{x}$ or less gates. We know from Shannon's proof of Theorem 6.21 in the book that such a function exists. We also know from class that a circuit of size $x*2^x$ gates or less can compute f.

Let x = 3 * log(n) and define $g : \{0,1\}^n \to \{0,1\}$ as a Boolean function that runs f for the first x bits of input.

Then the size of g uses less than n^4 gates to compute f since a circuit of size $x*2^x$ gates or less can compute f and $(3*log(n))*2^{3*log(n)}=3*log(n)*n^3\in O(n^4)$. Additionally, g uses more than n^2 gates to compute f since f cannot be computed with less than $\frac{2^x}{x}$ and $2^{3*log(n)}/(3*log(n))=n^3/(3*log(n))\notin O(n^2)$. Thus f is a function which can be computed with n^4 gates but not n^2 gates.