Zápočtová úloha z předmětu KIV/ZSWI

STRUKTUROVANÝ NÁVRH APLIKACE

pro Software umožňující výběr předmětu na monitoru

11. dubna 2017

Tým: Carel

Členové:

Kateřina Kopřivová kcermak@students.zcu.cz

Jakub Šantora santoraj93@gmail.com

Valentin Horáček valentin.horacek@gmail.com

Obsah

1. ÚVOD	3
1.1 Účel systému	
1.2 Slovníček definic, pojmů a zkratek	
2. KONTEXT A ARCHITEKTURA SYSTÉMU	3
2.1 Kontext systému	4
3. TYPY INFORMACÍ ZPRACOVÁVANÉ SYSTÉMEM	4
4. NÁVRH SYSTÉMU	4
4.1 Přehled modulů	5
4.2 Modul Eye	
4.2.1 Metody	
4.3.1 Metody	
4.4 Modul EyeTracker	
4.4.1 Konstruktor	
4.4.2 Metody	
4.5.1 Metody	
4.6 Modul my_gui	
4.6.1 Metody	6

1. Úvod

Tento dokument popisuje návrh aplikace pro Eye Tracker, která umožňuje výběr předmětu na monitoru. Návrh programu je vytvářen v rámci předmětu KIV/ZSWI a slouží k základnímu seznámení s funkcemi a architekturou systému.

1.1 Účel systému

Hlavním účelem programu je vybrat jeden z obrázků na monitoru pouze snímáním pohybu zorničky. Obrázky představují činnosti nebo potřeby člověka. Projekt ma do budoucna za úkol pomoci lidem bez možnosti pohybu a komunikace s okolním světem.

1.2 Slovníček definic, pojmů a zkratek

• Pupil data Data z Eye modulu s informacemi o zorničce.

• Gaze data Pupil data namapovaná World procesem vzhledem k pohledu uživatele.

• Eye proces Funkce Eye modulu, který čte data z kamery a předává je dál jako Pupil data.

• World proces Funkce World modulu, která mapuje Pupil data a kalibrační data.

 EyeTracker Nejdůležitější modul aplikace, který z Gaze dat vybere daný obrázek na monitoru podle pohledu uživatele.

• IPC backbone Meziprocesová komunikace

1.3 Odkazy na další dokumenty

Veškeré informace k softwaru Pupil jsou k dispozici na uložišti GitHub: Moritz Kassner, William Patera, Pupil Github Repository - https://github.com/pupil-labs/pupil

2. Kontext a architektura systému

2.1 Kontext systému

Tento systém je založen na open-source platformě Pupil. Pupil je software určený ke sledování a nahrávání pohybu zorničky v předem definované oblasti jednoznačně určené kalibrací kamery. Systém obsahuje jednoduché uživatelské rozhraní pro nastavení, kalibraci a výběru obrázků, a komponentu pro vybrání konkrétního obrázku z matice podle zaměření zorničky uživatele.

Obr. č. 1: Diagram případů užití

2.2 Architektura systému

Tento projekt je postaven nad softwarem Pupil, ze kterého využíváme množství modulů. Jelikož nejsou tyto moduly vhodně rozděleny do funkčních vrstev, tak ani v našem programu nebylo možné jejich funkce oddělit.

2.3 Zvolená technologie, programovací jazyk ad., důvody

Veškeré programování je v jazyce Python, jelikož v něm je původní software Pupil napsán. Z původního softwaru Pupil jsou využity nezbytné knihovny a moduly pro snímání zorničky oka uživatele. Některé z těchto modulů jsou psánavy jazyce C++.

3. Typy informací zpracovávané systémem

Aplikace zpracovává data z kamery Pupil. Tyto data obsahují informaci o pozici zorničky uživatele. Dalšími vstupními daty programuj jsou obrázky, které může uživatel nahrát do galerie. Podporované formáty těchto obrázků jsou: BMP, PNG, JPEG.

Program uchovává konfigurační soubor /service_settings/user_calibration_data, kde jsou uložena data z předchozí kalibrace.

4. Návrh systému

Obr. č. 2: DFD

4.1 Přehled modulů

Hlavní moduly projektu:

- Eye proces
- World proces
- EyeTracker
- Main
- my gui

Dále jsou využívané moduly a knihovny aplikace Pupil.

4.2 Modul Eye

Eye modul spouští Eye proces pro převod binárních dat z kamery na Pupil data, která dále posílá na IPC backbone. Mezi další funkce tohoto modulu patří detekování zorničky sledovaného oka.

4.2.1 Metody

eye(timebase, is_alive_flag, ipc_pub_url, ipc_sub_url, ipc_push_url, user_dir, version, eye_id)

timebase Čas spuštění aplikace.
is_alive_flag Vlajka spuštění oka.
ipc_pub_url Url PUB portu IPC.
ipc_sub_url Url SUB portu IPC.
ipc push url Url PUSH portu IPC.

• user dir Složka s uživatelským nastavením.

version Verze aplikace.eye id ID kamery oka.

Metoda zajišťuje spuštění Eye procesu.

4.3 Modul World

Modul World mapuje Pupil data a kalibrační data na Gaze data. Data jsou dále předávána na IPC backbone.

4.3.1 Metody

world(timebase, eyes_are_alive, ipc_pub_url, ipc_sub_url, ipc_push_url, user_dir, version)

• timebase Čas spuštění aplikace.

• eyes_are_alive Vlajky pro spuštění procesu.

ipc_pub_url Url PUB portu IPC.
ipc_sub_url Url SUB portu IPC.
ipc_push_url Url PUSH portu IPC.

• user_dir Složka s uživatelským nastavením.

• version Verze aplikace.

Metoda spouští World proces.

4.4 Modul EyeTracker

Modul řídí aplikaci a spouští proces, který podle Gaze dat vybere daný obrázek na monitoru podle toho kam se uživatel díval.

4.4.1 Konstruktor

__init__(ipc_push_url, ipc_sub_url)

- ipc_push_url Url PUSH portu IPC.
- ipc sub url Url SUB portu IPC.

4.4.2 Metody

showEyeCam()

Metoda, která zobrazí pole snímané kamerou.

closeAll()

Ukončení aplikace.

calibrate()

Metoda pro spuštění kalibrace.

tileDetection(cols, rows)

cols Počet sloupců matice.
rows Počet řádek matice.

Metoda sleduje zorničku a podle sledované oblasti vybere příslušnou sekci a zvýrazní obrázek v sekci.

4.5 Modul Main

Modul, který řídí celou aplikaci a obsahuje IPC backbone.

4.5.1 Metody

launcher()

Metoda pro spuštění celého programu.

4.6 Modul my gui

Tento modul zajišťuje spárvnou funkčnost GUI a jeho komponent.

4.6.1 Metody

run show grid()

Spuštění okna pro nastavení obázků v mížce.

run run()

Metoda, která spouští hlavní okno aplikace.