10

15

20

25

Novel compounds

The present invention relates to novel bacterial genes and processes for improving the manufacture of clavams e.g. clavulanic acid. The present invention also provides novel organisms capable of producing increased amounts of clavulanic acid.

Microorganisms, in particular Streptomyces *sp.* produce a number of antibiotics including clavulanic acid and other clavams, cephalosporins, polyketides, cephamycins, tunicamycin, holomycin and penicillins. There is considerable interest in being able to manipulate the absolute and relative amounts of these antibiotics produced by the microorganism and accordingly there have been a large number of studies investigating the metabolic and genetic mechanisms of the biosynthetic pathways [Domain, A.L. (1990) "Biosynthesis and regulation of beta-lactam antibiotics." In: 50 years of Penicillin applications, history and trends]. Many of the enzymes which carry out the various steps in the metabolic pathways and the genes which code for these enzymes are known.

Clavams can be arbitrarily divided into two groups dependent on their ring stereochemistry (5S and 5R clavams). The biochemical pathways for the biosynthesis of 5R and 5S clavams have not yet been fully elucidated but it has been suggested that they are derived from the same starter units (an as yet unidentified 3 carbon compound [Townsend,C.A. and Ho, M.F. (1985) J. Am. Chem. Soc. 107 (4), 1066-1068 and Elson, S.W. and Oliver, R.S. (1978) J. Antibiotics XXXI No.6, 568] and arginine [Valentine, B.P. et al (1993) J. Am Chem. Soc. 15, 1210-1211] and share some common intermediates [Iwata-Reuyl, D. and C.A.Townsend (1992) J.Am. Chem. Soc. 114: 2762-63, and Janc, J.W. et al (1993) Bioorg. Med. Chem. Lett. 3:2313-16].

Examples of 5S clavams include clavam-2-carboxylate (C2C), 2-hydroxymethylclavam (2HMC), 2-(3-alanyl)clavam, valclavam and clavaminic acid [GB 1585661, Rohl, F. et al. Arch. Microbiol. 147:315-320, US 4,202,819] There are, however, few examples of 5R clavams and by far the most well known is the beta lactamase inhibitor clavulanic acid which is produced by the fermentation of *Streptomyces clavuligerus*. Clavulanic acid, in the form of potassium clavulanate is combined with the beta-lactam amoxycillin in the antibiotic AUGMENTIN (Trade

15

20

25

30

Mark SmithKline Beecham). Because of this commercial interest, investigations into the understanding of clavam biosynthesis have concentrated on the biosynthesis of the 5R clavam, clavulanic acid, by *S.clavuligerus*. A number of enzymes and their genes associated with the biosynthesis of clavulanic acid have been identified and published. Examples of such publications include Hodgson, J.E. *et al.*, Gene 166, 49-55 (1995), Aidoo, K.A. *et al.*, Gene 147, 41-46 (1994), Paradkar, A.S. *et al.*, J. Bact. 177(5), 1307-14 (1995). In contrast nothing is known about the biosynthesis and genetics of 5S clavams other than clavaminic acid which is a clavulanic acid precursor produced by the action of clavaminic acid synthase in the clavulanic acid biosynthetic pathway in *S. clavuligerus*.

Gene cloning experiments have identified that *S.clavuligerus* contains two clavaminic acid synthase isoenzymes, cas1 and cas2 [Marsh, E.N. *et al* Biochemistry 31, 12648-657, (1992)] both of which can contribute to clavulanic acid production under certain nutritional conditions [Paradkar, A.S. *et al.*, J. Bact. 177(5), 1307-14 (1995)]. Clavaminic acid synthase activity has also been detected in other clavulanic acid producing micro-organsims, ie. *S. jumonjinensis* [Vidal, C.M., ES 550549, (1987)] and *S. katsurahamanus* [Kitano, K. *et al.*, JP 53-104796, (1978)] as well as *S. antibioticos*, a producer of the 5S clavam, valclavam [Baldwin, J.E. *et al.*, Tetrahedron Letts. 35(17), 2783-86, (1994)]. The latter paper also reported *S. antibioticos* to have proclavaminic acid amidino hydrolase activity, another enzyme known to be involved in clavulanic acid biosynthesis. All other genes identified in *S.clavuligerus* as involved in clavam biosynthesis have been reported to be required for clavulanic acid biosynthesis [Hodgson, J.E. *et al.*, Gene 166, 49-55 (1995), Aidoo, K.A. *et al.*, Gene 147, 41-46 (1994)] and as yet none have been reported which are specific for the biosynthesis of 5S clavams.

We have now identified certain genes which are specific for the biosynthesis of 5S clavams as exemplified by C2C and 2HMC in *S. clavuligerus*. Accordingly the present invention provides DNA comprising one or more genes which are specific for 5S clavam biosynthesis in *S. clavuligerus* and which are not essential for 5R clavam (e.g. clavulanic acid) biosynthesis.

By "gene" as used herein we also include any regulatory region required for gene function or expression. In a preferred aspect the DNA is as identified as Figure

10

15

20

25

30

1. Preferably the DNA comprises the nucleotide sequences indicated in Figure 1 designated as orfup3, orfup2, orfup1, orfdwn1, orfdwn2 and orfdwn3. The present invention also provides proteins coded by said DNA. The present invention also provides vectors comprising the DNA of the invention and hosts containing such vectors.

Surprisingly we have found that when at least one of the genes according to the invention is defective the amount of clavulanic acid produced by the organism is increased. Accordingly the present invention also provides processes for increasing the amount of clavulanic acid produced by a suitable microorganism. In one aspect of the invention the genes identified can be manipulated to produce an organism capable of producing increased amounts of clavam, suitably clavulanic acid. The findings of the present work also allow an improved process for the identification of organisms with higher clavulanic acid production comprising a preliminary screening for organisms with low or no 5S clavam production (for example by hplc and/or clavam bioassay as described in the examples herein).

Suitably the 5S clavam genes of the present invention can be obtained by conventional cloning methods (such as PCR) based on the sequences provided herein. The function of the gene can be interfered with or eliminated/deleted by genetic techniques such as gene disruption [Aidoo, K.A. et al., (1994), Gene, 147, 41-46]., random mutagenesis, site directed mutagenesis and antisense RNA.

In a further aspect of the invention there are provided plasmids containing one or more defective genes, preferably the plasmids *pCEC060*, *pCEC061*, *pCEC056* and *pCEC057*, described below.

Suitably, the plasmids of the invention are used to transform an organism such as *S. clavuligerus*, e.g. strain ATCC 27064 (which corresponds to *S. clavuligerus* NRRL 3585). Suitable transformation methods can be found in relevant sources including: Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989), *Molecular cloning: a laboratory manual*, 2nd Ed., ColdSpring Harbor Laboratory, Cold Spring Harbor, N.Y; Hopwood, D.A. et al. (1985), *Genetic Manipulation of Streptomyces*. A Cloning Manual, and Paradkar, A.S. and Jensen, S.E. (1995), J. Bacteriol. 177 (5): 1307-1314.

15

20

25

30

Strains of the species *S. clavuligerus* are used industrially to produce clavulanic acid (potassium clavulanate). Within the British and United States Pharmacopoeias for potassium clavulanate (British Pharmacopoeia 1993, Addendum 1994, p1362-3 and U.S. Pharmacopeia Official Monographs 1995, USP 23 NF18 p384-5) the amounts of the toxic 5S clavam, clavam-2-carboxylate, are specifically controlled.

Therefore in a further aspect of the invention there is provided an organism capable of producing high amounts of clavulanic acid but has been made unable to make C2C or capable of producing high amounts of clavulanic acid but able to make only low levels of C2C. Suitably the clavulanic acid producing organism contains one or more defective clavam genes, and is preferably the *S. clavuligerus* strain 56-1A, 56-3A, 57-2B, 57-1C, 60-1A, 60-2A, 60-3A, 61-1A, 61-2A, 61-3A, and 61-4A, described below. Such organisms are suitable for the production of clavulanic acid without the production of the 5S clavam, clavam-2-carboxylate or with significantly reduced production of clavam-2-carboxylate.

EXAMPLES

In the examples all methods are as in Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual (2nd Edition), or Hopwood, D.A. et al. (1985) Genetic Manipulation of Streptomyces. A Cloning Manual, and Paradkar, A.S. and Jensen, S.E. (1995) J. Bacteriol. 177 (5): 1307-1314 unless otherwise stated.

- I. <u>DNA sequencing of the Streptomyces clavuligerus chromosome upstream</u> and downstream of the clavaminate synthase gene cas1.
- A. Isolation of *cas1*.

To isolate chromosomal DNA fragments from *Streptomyces clavuligerus* NRRL 3585 encoding the gene for clavaminate synthase isozyme 1 (*cas1*) an oligonucleotide probe RMO1 was synthesised based on nucleotides 9-44 of the previously sequenced *cas1* gene (Marsh, E.N., Chang, M.D.T. and Townsend, C.A. (1992) Biochemistry 31: 12648-12657). Oligonucleotides were constructed using standard methods on an Applied Biosystems 391 DNA Synthesiser. The sequence of

10

15

25

30

RMO1, a 36-mer, was synthesised in the antiparallel sense to that published by Marsh et al (1992, ibid) RMO1 was radiolabelled with ³²P using standard techniques for end-labelling DNA oligonucleotides (Sambrook *et al.*, 1989 ibid), and was used to screen a cosmid bank of *Streptomyces clavuligerus* genomic DNA by Southern hybridization as described by Stahl and Amann (In: Nucleic acid techniques in bacterial systematics. Ed. E. Stackebrandt and M. Goodfellow. Toronto: John Wiley and Sons, p. 205-248, 1991). The genomic bank of *S. clavuligerus* DNA, prepared in cosmid pLAFR3, was as described by Doran, J.L *et al.*, (1990), J. Bacteriol. 172 (9), 4909-4918.

Colony blots of the *S. clavuligerus* cosmid bank were incubated overnight with radiolabelled RMO1 at 60°C in a solution consisting of 5 x SSC, 5 x Denhardt's solution, and 0.5% SDS (1 x SDS: 0.15 *M* NaCl + 0.015 *M* Na3citrate; 1 x Denhardt's solution: 0.02% BSA, 0.02% Ficoll, and 0.02% PVP). The blots were then washed at 68°C for 30 minutes in a solution of 0.5 x SSC + 0.1% SDS. One cosmid clone, 10D7, was isolated that hybridised strongly to RMO1 and gave hybridization signals upon digestion with restriction endonucleases *Sac*I and *Eco*RI that were consistent with hybridization signals detected in similar experiments with digests of *S. clavuligerus* genomic DNA.

20 B. DNA sequencing of the S. clavuligerus chromosome flanking cas1.

A partial restriction map of cosmid 10D7 was generated using restriction endonucleases SacI, NcoI, and KpnI. Southern hybridization experiments between RMO1 and various digests of 10D7 DNA indicated that casI was most likely located at one end of a 7-kb SacI-SacI DNA subfragment. This fragment consisted of the casI open reading frame and approximately 6 kb of upstream DNA. The 7-kb fragment was then subcloned from a SacI digest of 10D7 in the phagemid vector pBluescriptII SK+ (2.96 kb; Stratagene), thus generating the recombinant plasmid pCEC007.

To facilitate the process of sequencing the chromosome upstream of *cas1*, a 3-kb *NcoI-NcoI* subfragment of the 7-kb *SacI-SacI* fragment was subcloned in pUC120 (3.2 kb; Vieirra and Messing, Methods Enzymol. 153, 3-11, 1987)) in both orientations, generating the recombinant plasmids pCEC026 and pCEC027. The 3-

kb subfragment consisted of the amino-terminal-encoding portion of *cas1* and approximately 2.6 kb of upstream DNA.

Nested, overlapping deletions were created in both pCEC026 and pCEC027 using exonuclease III and S1 nuclease digestion (Sambrook *et al.*, 1989 ibid) and the DNA sequence of the 3-kb *NcoI-NcoI* fragment was determined on both strands by the dideoxy chain termination method (Sanger, F., Nicklen, S. and Coulson, A.R. (1977), Proc. Natl. Acad. Sci. U.S.A. <u>74</u>: 5463-5467) using a Taq dye-deoxy^a terminator kit and an Applied Biosystems 373A Sequencer.

To determine the DNA sequence of the chromosome immediately downstream of cas1 a 4.3-kb KpnI-EcoRI DNA fragment was subcloned from cosmid clone 10D7 in pBluescriptII SK+, generating pCEC018. From pCEC018 a 3.7-kb SacI-SacI subfragment was cloned in pSL1180 (3.422 kb, Pharmacia); one of the SacI termini of this fragment partially overlapped the TGA stop codon of cas1, the other was vector encoded. Both orientations of the 3.7-kb fragment were obtained during subcloning and the resulting recombinant plasmids were designated pCEC023 and pCEC024. Nested, overlapping deletions were created in both plasmids and the DNA sequence of the 3.7-kb fragment was determined on both strands. The nucleotide sequence of the S. clavuligerus chromosome generated in these experiments, including and flanking cas1 sequence is shown in Fig.1.

20

25

30

15

10

II. Functional analysis of the open reading frames flanking cas1.

Computer analysis of the DNA sequence upstream of *cas1* predicted the presence of two complete orfs and one incomplete orf. All three orfs were located on the opposite DNA strand to *cas1* and were thus oriented in the opposite direction. The first open reading frame, *orfup1*, was located 579 bp upstream of *cas1* and encoded a polypeptide of 344 amino acids (aa). The second open reading frame, *orfup2*, was located at 437 bp beyond the 3'-end of *orfup1* and encoded a 151 aa polypeptide. Beyond *orfup2* is *orfup3*. The start codon of *orfup3* overlaps the translational stop codon of *orfup2*, suggesting that the two orfs are translationally coupled. No translational stop codon for *orfup3* was located on the 3-kb *NcoI-NcoI* fragment.

13.

15

A similar analysis of the DNA sequence downstream of cas1 predicted the presence of two complete orfs and one incomplete orf. Two of the orfs were located on the opposite DNA strand to cas1 and were thus oriented towards cas1. The third orf was located on the same strand as cas1 and was thus oriented away from it. The first downstream open reading frame, orfdwn1, was located 373 bp downstream of cas1 and encoded a 328 aa polypeptide. The second open reading frame, orfdwn2, was located 55 bp upstream of orfdwn1 and encoded a 394 aa polypeptide. At 315 bp upstream of orfdwn2 and on the opposite strand was orfdwn3. Because no stop codon was observed for orfdwn3 on the 3.7-kb fragment, it encoded an incomplete polypeptide of 219 aa.

Gene Disruption of the orfup and orfdwn open reading frames

To assess the possible roles of the open reading frames flanking *cas1* in the biosynthesis of clavulanic acid and the other clavams produced by *S. clavuligerus*, insertional inactivation or deletion mutants were created by gene replacement. The method used for gene disruption and replacement was essentially as described by Paradkar and Jensen (1995 ibid).

A. orfupl

A 1.5-kb *NcoI-NcoI* fragment carrying the apramycin resistance gene (*apr^r*), constructed as described in Paradkar and Jensen (1995 ibid), was treated with Klenow fragment to generate blunted termini (Sambrook *et al.*, 1989 ibid) and was ligated to pCEC026 that had been digested with *BsaBI* and likewise treated with Klenow fragment. pCEC026 possesses a *BsaBI* site located within *orfup1* at 636 bp from the translational start codon. The ligation mixture was used to transform competent cells of *E. coli* GM 2163 (available from New England Biolabs, USA., Marinus, M.G. *et al* M G G (1983) vol 122, p288-9) to apramycin resistance. From the resulting transformants two clones containing plasmids pCEC054 and pCEC055 were isolated; by restriction analysis pCEC054 was found to possess the *apr^r*-fragment inserted in the same orientation as *orfup1*, while pCEC055 possessed it in the opposite orientation.

10

15

20

To introduce pCEC054 into *S. clavuligerus*, plasmid DNA was digested with *Bam*HI and *Hin*dIII and ligated to the high-copy number *Streptomyces* vector pIJ486 (6.2 kb; Ward *et al.*, (1986) Mol. Gen. Genet. 203: 468-478). The ligation mixture was then used to transform *E. coli* GM2163 competent cells to apramycin resistance. From the resulting transformants one clone, possessing the shuttle plasmid pCEC061, was isolated. This plasmid was then used to transform *S. clavuligerus NRRL 3585*. The resulting transformants were put through two successive rounds of sporulation on non-selective media and then replica plated to antibiotic containing media to identify apramycin-resistant and thiostrepton-sensitive transformants. From this process four putative mutants (61-1A, -2A,-3A and -4A) were chosen for further analysis.

To confirm that these putative mutants were disrupted in orfup1 genomic DNA was prepared from isolates 61-1A and 61-2A, digested with SacI and subjected to Southern blot analysis. The results of the Southern blot were consistent with a double cross-over having occurred and demonstrated that these mutants are true disruption replacement mutants in orfup1.

The mutants 61-1A, -2A, -3A and -4A were grown in Soya-Flour medium and their culture supernatants were assayed by HPLC for clavulanic acid and clavam production. The composition of the Soya-Flour medium and the method for assaying clavams by HPLC were as previously reported (Paradkar and Jensen, 1995 ibid) except that the running buffer for the HPLC assay consisted of 0.1 M NaH2PO4 + 6% methanol, pH 3.68 (adjusted with glacial acetic acid). The HPLC analysis indicated that none of the mutants produced detectable levels of clavam-2-carboxylate or 2-hydroxymethylclavam. Furthermore, when culture supernatants were bioassayed against Bacillus sp. ATCC 27860, using the method of Pruess and Kellett (1983, J. Antibiot. 36: 208-212)., none of the mutants produced detectable levels of alanylclavam. In contrast, HPLC assays of the culture supernatants showed that the mutants appeared to produce superior levels of clavulanic acid when compared to the wild-type (Table 1).

30

25

Table 1

<u>Clavulanic acid titre (CA) of orfup1 mutants in shake flask tests</u>

10

15

20

STRAIN	70 HOURS	70 HOURS	93 HOURS	93 HOURS
	CA ug /ml	CA ug/mg DNA	CA ug /ml	CA ug/mg DNA
NRRL 3585 #1	87	915	166	1963
NRRL 3585 #2	66	790 .	159	1842
61-1A	272	2894	439	6113
61-2A	199	2148	225	2928
61-3A	54	692	221	2585
61-4A	0	0	226	2422

B. orfdwn1 and orfdwn2

A deletion/replacement mutant in orfdwn1 and orfdwn2 was created by first digesting pCEC018 (7.3 kb) with NcoI and liberating a 1-kb subfragment containing most of orfdwn1 and a portion of orfdwn2. The digest was fractionated by agarosegel electrophoresis and the 6.3-kb fragment was excised and eluted from the gel. This fragment was then ligated to an NcoI-NcoI DNA fragment carrying aprr and used to transform E. coli XL1-Blue to apramycin resistance. One clone was obtained from this experiment but restriction analysis of the resulting recombinant plasmid revealed that two copies of the apramycin resistance fragment had been ligated into the deletion plasmid. To eliminate the extra copy of the aprr-fragment, the plasmid was digested with NcoI and self-ligated. The ligation mixture was used to transform E. coli GM2163 to apramycin resistance. From the transformants, two clones were isolated that contained plasmids pCEC052 and pCEC053 both of which possessed only one copy of the aprr-fragment; pCEC052 possessed the aprr-fragment inversely oriented with respect to orfdwn1 and 2, while pCEC053 possessed the aprr-fragment inserted in the same orientation as orfdwn1 and 2.

A shuttle plasmid of pCEC052 was constructed by ligating BamHI-digested pCEC052 with similarly digested pIJ486 and transforming E. coli GM2163 to apramycin resistance. From this experiment one clone was isolated that contained the shuttle plasmid pCEC060. This plasmid was used to transform wild-type S. clavuligerus 3585 to apramycin and thiostrepton resistance. The resulting transformants were put through two rounds of sporulation under non-selective

conditions and then replica plated to antibiotic containing media to identify apramycin resistant, thiostrepton sensitive colonies. Three putative mutants (60-1A, -2A and -3A) were chosen for further analysis.

To establish the identity of these putative mutants genomic DNA was isolated from strains 60-1A and 60-2A and digested with either SacI or BstEII and subjected to southern blot analysis.. The hybridisation bands generated from this experiment were consistent with both strains having undergone a double cross-over event demonstrating that these mutants are true disruption replacement mutants in orfdwn1/2.

When these were cultured in Soya-Flour medium and their culture supernatants assayed by HPLC, none of the mutants produced detectable levels of clavam-2-carboxylate or 2-hydroxymethylclavam. A bioassay of the culture supernatants showed that the mutants also failed to produce detectable levels of alanylclavam. As with the *orfup1* mutants, the *orfdwn1/2* mutants are capable of producing superior to wild-type levels of clavulanic acid (*Table2*).

Table 2

<u>Clavulanic acid titre (CA) of orfdwn1/2 mutants in shake flask tests</u>

STRAIN	70 HOURS	70 HOURS	93 HOURS	93 HOURS
	CA ug/ml	CA ug/mg DNA	CA ug/ml	CA ug/mg DNA
NRRL 3585 #1	87	915	166	1963
NRRL 3585 #2	66	790	159	1842
60-1A	164	1872	260	2911
60-2A	187	2013	108	1320
60-3A	79	994	214	2161

20 orfdwn3

25

To disrupt orfdwn3 pCEC023 (consisting of a 3.7-kb fragment of cas1 downstream DNA subcloned into pSL1180) was digested with NcoI and then self ligated. After transforming *E.coli* with the ligation mixture a clone was isolated that possessed the plasmid pCEC031. This plasmid retained only the 1.9kb NcoI-EcoRI fragment encoding a portion of orfdwn2 and the incomplete orfdwn3. An

15

20

25

examination of the DNA sequence revealed that pCEC031 possessed a unique BstEII site at 158bp from the translational start site of orfdwn3. Therefore, pCEC031 was digested with BstEII, treated with Klenow fragment to create blunt ends and then ligated to a blunted apramycin resistance cassette. The ligation mixture was used to transform *E.coli* GM2163 to apramycin resistance and ampicillin resistance. Two transformants were selected that contained respectively pCEC050 and pCEC051. restriction analysis revealed that the apramycin resistance cassette was orientated in the same orientation as orfdwn3 in pCEC050 and in the opposite orientation in pCEC051. Both of these plasmids were then digested with HindIII and ligated to similarly digested pIJ486. The ligation mixtures were then used separately to transform *E.coli* GM2163 to apramycin and ampicillin resistance. The shuttle plasmids pCEC056 (pCEC050 + pIJ486) and pCEC057 (pCEC051+ pIJ486) were isolated from the resultant transformants. Both plasmids were then used to transform *S.clavuligerus* NRRL 3585.

One transformant was selected from each transformant experiment and put through two successive rounds of sporulation on non-selective media and then replica plated to antibiotic containing media to identify apramycin-resistant and thiostrepton-sensitive transformants. From this process two putative mutants were isolated from the progeny of each primary transformant. (56-1A and 56-3A for pCEC056, and 57-1C and 57-2B for pCEC057).

To establish the identity of these putative mutants genomic DNA was isolated from these strains and digested with either SacI or Acc65I and subjected to Southern blot analysis. The hybridisation bands generated from this experiment were consistent with both strains having undergone a double cross-over event demonstrating that these mutants are true disruption replacement mutants in orfdwn3.

When these strains were cultured in Soya-Flour medium and their culture supernatants assayed by HPLC, the mutants produced greatly reduced levels of clavam-2-carboxylate or 2-hydroxymethylclavam. A bioassay of the culture supernatants showed that the mutants also failed to produce detectable levels of alanylclavam. As with the orfup1 and orfdwn1/2 mutants, the orfdwn3 mutants were capable of producing superior to wild-type levels of clavulanic acid (Table 3).

Table 3

<u>Clavulanic acid titre (CA) of orfdwn3 mutants in shake flask tests</u>

STRAIN	71 HOURS	71 HOURS	93 HOURS	93 HOURS
	CA ug/ml	CA ug/mg DNA	CA ug/ml	CA ug/mg DNA
NRRL 3585 #1A	180	1580	193	1790
NRRL 3585 #1B	179	1640	266	2310
56-1A	34	110	235	2160
56-3A	225	2140	274	2740
57-1C	253	2910	277	2920
57-2B	242	2240	193	1860

The application discloses the following nucleotide sequences:

SEQ ID No. 1:

DNA sequence of Figure 1

SEQ ID No. 2:

orfup3 sequence

10 SEQ ID No. 3:

orfup2 sequence

SEQ ID No. 4:

orfup1 sequence

SEQ ID No. 5:

orfdwn1 sequence

SEQ ID No. 6:

ofrdwn2 sequence

SEQ ID No. 7:

orfdwn3 sequence

15

20

10

15

20

Figure 1: Nucleotide sequence of the *S. clavuligerus* chromosome 25 including and flanking cas1

Ncol

30 1

35 61

ACCCTATCACCGGGCGGTGGGCCGCGTCGTCTGAGGGCCTGTGCCTGGGCACCCACACGC 120

T P Y H G A V R R L L S G S V S G H T H

. <orfup3 . .

```
121
   GCCTTTCCGGGCCTCCGGCCCAGTGTCGGTGCCCATTGCGCGCCACAGGAACGGCGCCAT 180
                          * L W P Y R A T D K G A
5
   ASLGPPRTM
      181
   TAGCCCCAGGTCTATCTGCTTCCGGGCCACCTGCTCCTTCAGGGCGTGGAGCATCTGGCA 240
10
          D P D L Y V F A R H V L F D R V E Y V
   \mathbf{T}
     241
15
   CGTGGTCGCGGCCGCCGGTGAGCCCCAGTGGGCGGCCGGTGCCGGGCAGGGCCACGAG 300
          C W R G A A W E P D G A R W P G D R H
   Ε
20
    301
   TGGCACCCACGGGAGGCGCCGCTCCTCAAGCCAGGGCCAGTCTTAGGTCAACTGCCT 360
          G H T T G E A A L L E T G T L I W N V
   S
                25 .
      361
   GGTGTCTACCACCCACTAGCTCGCCTACCACGGGGGCTCCAGCAGCTTCTCGGCCCGCTA 420
           WLHHTISRITGGLDDFLRA
   I
30
      421
   GAGCCTGAACGGGCCCGGTCTGGGGTGAACCCCTTCTTCTTCTGGCGCAGGAGCCGCTT 480
           ESKGRALGWKPFFFVADEA
35 F
      481
   CATCAGCTAGCGCCCCCACGGCAGCGACGGCTGCGGCAACAGCTTGCGGAACTTCAT 540
40
          Y D I A P T G D S G V G G N D F A K F
   Y
    <orfup2
```

	541																				
	GCGCCACT	ACT	GGC	GGA	ACG	CGA	CGA	GCA	.GGC	AGT	ATG	GCC	GGC	TAC	GGT	GC	CTG	TAC	TT	6	00
			A	т	I	V	Α	K	R	0	E	D	Т	M	G	Α	s	Α	V	S	M
										_					_						
5					•			•				•			•				•		
,	601																				
								~~~		~~~	~									_	
	TGCTGGAG	G'I'C'	TCT	AAG	GCC	CAC	CGA	ACAC	GAC	CCC	GAC	GCC	.T.T.C	:CCC	ACA	\GG	GGG	CGC	TT	6	60
					٠			•				•			•				•		
	•																				
.0	661																				
	CCTGCCGC	CTG	CGG	CGC	CTG	CGG	CGC	CGG	CAG	AGG	GGC	CGC	CTC	CCC	AGC	GT	CGC	AGC	GAC	7	20
	721																				
5	CTCTCCCG	AAC	CGC	CGC	CGA	АСТ	GCG	GCA	CGA	CAG	GGC	'GCC	'GAA	.כככ	نسن	rac	GCT	ייףר ז	ንጥረ	7	80
. •										.0110										•	
					•			•				•			•				•		
	781																				
	GCCGGTCG	CAT	GCC	CGC	AAC	GTG	GCC	TGC	'ACA	TGC.	GGC	CAG	CCC	'TGC	GGZ	AGC.	ATG	GG	3GC	8	40
20					٠			•				•			•				•		
	•																				
	841																				
	CTCGGCCG	GCT	GGG	GCC	:GCC	GAG	GCC	ccc	ATG	CCI	'GCG	CGC	CCI	'GGC	CGC	GC'	TCG	CTC	GG	9	00
25																					
	901																				
	CCTGCCCA	GCC	ጥርር	CAC	'GCG	CAC	CAZ	AGGC	'CAC	ACA	GCC	ነጥርብ	CGA	GCC	ጥርረ	ىلىپ	GGC	יריחי(	3CC	9	60
	33133331														,,,,,					_	•
					•			•				•			•				•		
30																					
v	961																				
	ACGCGCAC	CAA	GGC	CAC	:ACA	'GCC	TGT	rcga	.GCC	TGC	CCA	(GCC	TGC	CAC	:GCC	3CA	CCA	AG	GCC	1	.020
					•			•				•			•				•		
	•																				
	1021																				
35	GTGCGGCC	TGC	CCA	GTC	AAC	GGC	TAC	CATE	CGC	TCG	TTA	\CGG	CCC	CAC	ATC	GC	GAG	GG	GCC	1	080
							*	N	G	I	M	Α	L	L	Α	P	I	, ,	Z F	E	G
	1081																				
10	TGTGGCCC	۵۵۵	ריזירי	ייים ב	יכפר	'ccc	יר גר	בתיכים	יאככ	ירכר	ייזיירי	ירייירי	יררר	יא רייר	יא ריר	יתר	~~	'C'T		7	140
. •	****																				140 1 I
		ت	٧	r	п	3	1	A	A	T	٧	r.	A	L	۵	K	L	, 1	) <u>L</u>	, R	. Т
					•			•				•			٠				•		
	•																				
	1141																				
15	TCCGCCGC	CGC	TCT	'AAC	AGG	CGC	TCI	racc	CGG	CCC	AAC	CGC	CAC	GGC	CCC	CTA	GCC	CTC	CT	1	200

		S	Α	A	Α	L	N	D	A	L	H	Α	P	N	A	Т	G	P	I	P	V
					•			•							•			•			
	•																				
	1201																				
5	GCAGGAGC	GGG	GCC	ACC	ACG	TCG	GTC	CGC	TCG	CGC	TCG	ACA	.CGG	TCC	CAG	TCG	GGG	тст	G	12	60
		V	D	E	G	R	H	H	L	W	A	L	Α	L	Q	A	L	T	L	G	L
	1261																				
10	GCAGGCGC	TGG	CCC	GCG	TCG	GCC	ACG	TCG	TTG	CTC	GCC	AAC	GCG	CGC	TCC	:CGG	CCT	CGC	G	13	20
		G	D	Α	V	P	R	L	R	Н	L	L	s	R	N	R	Α	L	A	P	A
	1321																				
15	ACTTGGCC	:CCG	ACC	GGG	GCC	:GCC	TTC	AGG	AGC	AGG	GGG	TCT	'AGC	AGC	CAC	CAC	:GCC	TAC	C	13	80
		s	F	R	P	Q	G	R	R	F	D	E	D	G	L	D	D	Т	Т	R	I
	•																				
	1381																				
20	ACGGCCAC	TCT	TTT	GGG	GCA	.GGG	TCT	'CCC	CGC	TTA:	CGC	TGC	TAG	GGC	TAG	GGG	TCG	AGG	G	14	40
		т	G	T	L	F	G	R	G	L	P	A	Y	A	V	Ī	G	I	G	L	E
																	_		_		
															•			·			
	1441																				
25	CCGTCTGC	CCG	TGG	TGG	AGC	'AGC	AGC	'TAG	GGC	:GCG	CTG	GTG	TCC	GAG	GTG	AGC	'GAG	ACG	T.	15	00
		R	C	v	P	V	V	E	D	E	I	G	R	s	W	L	s	W	E	s	Q
				,	_	•	•		_	_	_	Ū		_	••	_	_	•••		_	×
	_				•			•				•			•			•			
	1501																				
30	GGCGGCAG	ምርር	CCC	'ACG	·ጥርር	יכיכר	'AGG	:CGG	:GCC	יכרני	ייירכ	CAC	rece	ccc	יריייר	ירכנ	: A.C.C	יריתירי	יידי	15	60
		V	A	Т	v	P	Н	v	A	D	A	R	R	L	Т	. ССС	A	s	P	E	s
		•		-	•	-		·	••	-	••	•	•	_	•		**		-		
	_				•			•				•			•			•			
	1561																				
35	CTGGCTCG	GAC	'GCC	ጥርር	:ממכ	יככני	:ACC	יכרני	:TGC	ייירני	AGC	'CGG	יייככ	COT	יכככ	ייייכר	יראכ	a a a	4 Δ	16	20
	01000100										R										
		_	-	_		•	•		•	_	•	•	_	-	••	•	21	Č	٧	-	-
					•			·				•			•			•			
	1621																				
40	GCTAGCCG	የጥርር	ccc	יכככ	'AGG	CAC	:ርጥር	ነልሮር	:מככ	י איזיכ	'ልጥር	יחירי	'AGC	ייייאַרי	יכככ	'AGC	יראכ	יממר	ıψ	16	80
. •	001110000										H										
			-	£	V	_	£	ט	1	70	n	V	1	I	יו	ע	Τ	ĸ	ע	T	G
					•			•				•			•			•			
	1681																				
45	CTGCTGCG	יייירי	ירייי	יכר זי	A CC	יכיתיכ	ירפר	ccc	ccc	יחירי	ነ አ ጥ⁄ጉ	יכישיטי		13 CC	-	·cmc	mma			17	40

		L	R	R	L	S	R	E	С	A	A	R	V	Y	S	P	E	G	С	L	G
												•			•						
	•																				
	1741																				
5	CCCTCCGC	GGC	AGC	CTG	CTC	GCG	TGG	TAC	GGC	TTG	AAC	CAC	CGC	TAG	TCG	TGG	AGC	AGG	G	18	00
		Q	s	Α	G	D	S	S	R	V	M	G	F	K	T	Α	I	L	V	E	D
	• •																				
	1801																				
10	CCGCCGGG	CGC	TGG	CGG	GCA	.GGC	TCG	TCG	AGG	AGT	GGC	CGC	GGC	TCG	GGG	ACC	TGC	AGC	C.	18	60
		R	R	G	Α	V	A	R	G	L	L	Ε	E	G	A	G	L	G	Q	V	D
																			-		
	1861																				
15	GCCACAGG	TCG	TCC	CAC	'TGG	GGC	'CGC	AGC	TGC	:CGC	:CGC	:GCC	TAC	CAC	:CGG	CAG	CGG	GCC	.C	19	20
		A	Т	D	L	L	т	V	G	A	D	V	A	A	R	I	т	A	т	A	R
			-	_	_	_	-	•	•		_					_	_				
					·							•			•			•			
	1921																				
20	GCGCCAGG	יררר	יכרא	.מממ	י זא יזיר	الماليات	ימכר	ነ ጉልሰ	יראכ	יררנ	ነጥ ( (	יבייים.	raac	ייייריכ	ccc	מככ	יריכית	CAC	ىك.	19	80
20	OCOCCIAC.	A	R	D	р	R	G	Y	F	D.	T	т	P	L	C	G	L	G	Q	A	S
			•	D	_	10	ū	٠.	•	J	-	•	•		_	•		_	×.	**	
					•			•				•			٠			•			
	1981																				
25	GGCCTTCC	· 2 CC	,,,,,,	יתוריר	ימפר	,	יחיר	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	יכפו	ייייי	יייייי	ייייכר			יכיחר	יחריר	i Cimar	1000	· C	20	40
23	GGCC11CC	v V	P	L	DD.		L	A	R R	.ucu	P	. 1 GC P	R	.CGC P	V.	A	A	.GGC S	.c v	S	G G
		V	P	ш	ט	R	نبد	A	х	V	F	P	K	-	V	A	A	ت	٧	ی	G
													1								
					•			•	•		< (	orfu	īpī		•			•	•		
20																					
30	2041																				
	CCGGGGAC	TCC	€GGC	CGGA	GAG	CGC	3GAC	CATI	ACGC	SAAC	CTC	CAC	CAGG	CGC	AGC	:CGG	GAA	\CG(	€G	21	100
	GGCCCCTC			CCI	CTC	GCC	CTC	TAT				GTC	TCC	GCC	TCG	GCC	CTI	'GCC	C		
2.5		Ą	P	S	E	P	₽	S	R	S	M										
35					٠				•			•			•				•		
	•																				
	2101																				
	ACGAGGG	GAC	3GAC	CGGC	ACC	GA.	ACGI	\AG(	GAG!	AGGA	ACGO	GAC	CGGA	CAC	CAC	:GGA	CGG	GAG	CG	21	L60
40	TGCTCCCC	CTC	CTC	GCC	TGC	CTT	rgci	rtc	CTCT	rcc1	rgcc	CTC	CCI	GTC	GTO	CCI	GCC	CTC	€C		
					•				•										•		
	•																				
	2161																				
15	2122211																				

	CTGCCTTGCCTCAGCCCTTGGCCCCCCCCACTGGCCTTGGCCCGGCAGGAACCGGGAGGG	
5	2221	
	CCGTCCTCCCGCCATCCGCCGTTCTCCCCGTTCCCTCCCGTCCTCCAGCCAACACC	2280
	GGCAGGAGGGCGGTAGGCGGCAAGAGGGGCAAGGGAGAGGCAGGAGGTCGGTTGTGG	
10	2281	
	GCCGCCCTTTCCAAGCGCTTGACACGGCACCGACAGCCGCCGGGCGCCCGATGGGGA	2340
15	CGGCGGGAAAGGTTCGCGAACTGTGCCGTGGCTGTCGGCGGCCGGGCCCGCGGGCTACCCCT	
13		
	2341 CCCGTGCCCGCCGGTGAGCGCGGTGAGCGCCGGTACGGGACCCCACGCGCCGCCCG	2400
20	GGGCACGGCGCCACTCGCGGCCATGCCCTGGGGTGCGCGGGGGG	
	• • • • • • • • • • • • • • • • • • • •	
2.5	2401 GGCGCCGCCAGGCCCGCCCGGCCCGGCCCGGCCGGAGCGGCG	2460
25	CCGCGGGCGGTCCCGGGCGCCGGTGGGGCCGGGCCGGCC	
30	2461 CCGCTCGCTGCAAGAGAACATCCACAGCCGCACAAGGAGCGCTCCGCACAGTGGGCACC	2520
	GGCGAGCGACGTTCTCCTTGTAGGTGTCGGCGTGTTCCTCGCGAGGCGTGTCACCCGTGG	
	• • • • • • • • • • • • • • • • • • • •	
35	2521 ACGTCCGCCCCGCCCCACACCGTGGCCGGTCCCCCACCGGACAGCACCACCACAG	2580
	TGCAGGCGGGCAGGGGTGTGGCACCGGCCAGGGGTGGCCTGTCGTGTCGTGGCGTGTC	
40		
	2581 CACCACATCGCACGGCACAGCACCACCGGCACGAGGAACCAAGGAAAGGAACCAC	2640
15	GTGGTGTAGCGTGCCGTGTCGTGGTGGCCGTGCTCCTTGGTTCCTTTGGTG	

cas1>

				M	т	s	V	D	С	т	A	Y	G	P	E	L	R	A	L	A	A
	2641																				
	ACCACCATO	GAC	CTC	AGT	GGA	CTG	CAC	CGC	GTA	CGG	CCC	CGA	GCT	GCG	CGC	GCT	CGC	CGC	C.	27	00
5																					
	TGGTGGTA	CTG	GAGʻ	TCA	CCT	GAC	GTG	GCG	CAT	GCC	GGG(	GCT(	CGA	CGC	GCG	CGA	GCG	GCG	G		
					•			•				•			•			•			
10	2701	000	~~~	000	~~~	000	001	~~~	-CT-3	aaa.	~~~	~~~	~~.	~~~	~~~		~-~		_		<b>.</b> .
10	CGGCTGCC		JAC L	P	CCG R	GGC T	CGA P	CCT R	GTA A	CGC D	L L	Y Y								27	-
		K	יי	P	K	1	P	х	A	U	יד	1	A	F	L	D	A	A	H	T	A
					•			•				•			•			•			
	2761																				
15	GCCGCCTC	GCT	CCC	CGG	CGC	CCT	CGC	CAC	CGC	GCT	GGA	CAC	CTT	CAA	CGC	CGA	.GGG	CAG	C	28	20
		A	Α	S	L	P	G	A	L	A	Т	A	L	D	т	F	N	A	E	G	s
	•																				
	2821																				
20	GAGGACGG	CCA'	TCT	GCT	GCI	'GCG	CGG	CCI	'CCC	GGT	GGA	GGC	CGA	CGC	CGA	.CCT	CCC	CAC	C.	28	80
		Ε	D	G	H	L	L	L	R	G	L	P	V	E	A	D	A	D	L	P	T
																		_			
					•			•				•			•		Ncc	· 1			
25	2881																				
	ACCCCGAG	CAG	CAC	ccc	:GGC	:GCC	:CGA	GGA	CCG	CTC	CCT	GCT	GAC	CAT	GGA	GGC	CAT	GCT	'C	29	40
		т	P	s	s	т	P	A	P	E	D	R	s	L	L	т	M	E	A	М	L
														Kpn	I.						
30	•																				
	2941																				
	GGACTGGT							:GC#	CAC	:GGG		-	GGA	.GCT	'GCG	CTC	GGG	CAC	:G	30	00
		G	L	V	G	R	R	L	G	Ŀ	H	Т	G	Y	R	E	L	R	S	G	T
35					•			•				•			•			•			
33	. 3001																				
	GTCTACCA	CGA	്യ	יכיים	.ררר	יכיזיכ	·CCC	ירכר	ברכר	יכרא	CCA	CCT	יכיתיר	יכיזיכ	'GCA	GAC	יריתיר	·ccz	G	3.0	60
	0101110011																		T		
						•	_	Ī.		_						J	_	<u> </u>	•	J	_
40																					
	3061																				
	ACGCTGCT	'GGA	GTT.	'CCA	CAC	GGA	GAT	GGC	CTA	CCA	.CCG	GCT	'CCA	GCC	GAA	CTA	CGI	'CAT	Ğ	31	20
		T	L	L	E	F	H	T	E	M	A	Y	H	R	L	Q	P	N	Y	V	M
					•				•			•						-			
45	•																				

	3121																				
	CTGGCCTG	CTC	CCG	GGC	CGA	CCA	CGA	GCG	CAC	GGC	GGC	CAC.	ACT	CGT	CGC	CTC	GGT	CCG	2	31	80
		L	A	С	S	R	A	D	H	E	R	T	A	A	T	L	V	A	S	V	R
					•			•				•			٠			•			
5																					
	3181																				
	AAGGCGCT																		_	32	
		K	A	L	₽	L	L	D	E	R	T	R	A	R	L	L	D	R	R	M	P
10					•			•				•			•			•			
10																					
	3241	.~~.		~~~															_		^ ^
	TGCTGCGT																			33	
		С	С	V	D	V	A	F	R	G	G	V	D	D	P	G	A	I	A	Q	V
15					•			•				•			•			•			
13	. 3301																				
	AAACCGCT	א מחיים	~~~	'CC3	~~~	יריים	CC 3	maa	cmm	COM	~~~	CITI X	~~×	~~~		aam	oom.	~~~	<u> </u>	33	60
	AMACCGC	K	P	L	Y	.GGA	D	A.	D D	D	P P	F	L L	G	Y Y	D	R	GGC E	G L	L	A
		K	F	11	1	G	ע	A	D	D	F	Ľ	יי	G	T	ע	T.	E.	ш	יי	A
20					•			•				•			•			•			
20	3361																				
	CCGGAGG	יכככ	ירכר	'GGA	.CAA	.GGA		റവ	ነሮርር	·CGC	ירכיזי	יכיייר	מ מ יי	GGC	GCT	rcca	റ്റുമ	രവൗ	C	34	20
	000011001	P	E	D	P	A	D	K	E	A	v	A	A	L	S	K	A	L	D	E	V
		-	_	_	-		~	٠.	_	••	•		**	_		10	71		_	_	٠
25	_				•			•				•			•			•			
	3421																				
	ACGGAGG	GGT	GTA	TCI	'GGA	\GCC	'CGG	CGA	ATCT	'GCT	'GAT	CGT	'CGA	CAA	CTT	יככנ	CAC	CAC	G	34	80
		т	E	A	V	Y	L	E	P	G	D	L	L	I	V	D	N	F	R	T	T
														- -							
30	•													•							
	3481																				
	CACGCGC	GAC	GCC	GTT	CTC	GCC	CCC	CTO	GGA	CGG	GAA	GGA	CCC	CTG	GCI	GCA	CCG	CGI	'C	35	40
		Н	Α	R	T	Р	F	s	P	R	W	D	G	K	D	R	W	L	H	R	V
35	•																				
	3541																				
	TACATCC	GCAC	CGA	ACCC	CA	TGC	ACA	GC1	CTC	CGC	CGC	CGA	.GCG	CGC	GGG	GCGA	CGT	CGI	'C	36	00
		Y	I	R	T	D	R	N	G	Q	L	s	G	G	E	R	A	G	D	V	V
40		A	F	T	P	R	G	*	Sac	ΞI											
	•																				
	3601																				
	GCCTTCA	CACC	CGCC	GCGC	CTC	SAGO	CTCC	CGC	GTC	CCGA	CAC	CCGC	GCC	GCI	'GAZ	ACCC	ACG	GTC	:C	36	60
45	CGGAAGT	GTGC	GCGC	CGCC	GAC	CTCC	SAGO	GCC	CAC	GCI	GTC	GCC	CGC	CGA	CTI	rgge	TGC	CAG	G		

3661 GGGGCCACGGTCCGGCACCGCGCGGCTGAGCCCCCGGGTCCGGCAGCGGCGGCTGAAC 3720 5 CCCCGGTGCCAGGCCGTGCCGCCGACTCGGGGGCCCAGGCCGTCGCCCGACTTG 3721 10 CCCCGCCCGGGCCACCGCCCGACCGCCCCGCGCACGGACGCCCCGCCTGTACGGCG 3780 15 3781 GTCCCGCCCGGGGCCCGTACACCTGAAGCGCCCGGGGGACCGCCGCCGCCGGGGGGACGG CAGGGCGGGCCCGGCATGTGGACTTCGCGGGCCGCCTGGCGGCGGGGGGGCCCCCTGCC 20 3841 ACAGAGCCGGGTGCGGGAGGACGTCCTCCCGCACCGGCTCCCACCGTTCCGCACCGACC 3900 25 TGTCTCGGCCCACGCCCTCCTGCAGGAGGGCGTGGCCGAGGGTGGCAAGGCGTGGCTGG 3901 30 3961 35 GGCGCCACGCCGCACGGTGCCCGCGCTCCACCCGTCCACCGGGCTGTCCAG 4020 CCGCGGTGCGGCGTGCCACGGGCGCGACGGTCGGCGGCAGGTGGCCCGACAGGTC * G G D V P S D L 40 4021 GTCGGCGGCGCGCGGGGGCTACTTGAGGGCCAGCCGCCGGCTGGGGGGCCTGGGGGC 4080 L R R L A G G I F E R D A A S G G S G 45 A

4081 CTCTACGGGGGTGTGAGGGCCCTAGTGGAGGTCGCTCCGTATGCCGTCGTCTAGCCGGTG 4140 5 LHGWVGPIVELSAYPLLDA V 4141 10 GGCGAAGAGCAGGAGCTGCCGCTTTGTGTGCAGGTCCCGCGGGCCGTCGTGCTGCCGGGC 4200 R K E D E V A F C V D L A G P L V V A R 15 4201 GCGGCACTGCCTCCGGTCGCGGGGGCTGCGAGGGGGGCCCGGGGCCCACAGCGGGGGTG 4260 A T V S A L A A E V S G G A G P T A G 20 . NCOI . . 4261 TAGGCACAAGAGGGTCCACGCGTGGTACCACTCGTCTAGGCGCCGGGCCCGGGCCTCTC 4320 D T N E W T R V M T L L D A A G P G S 25 L 4321 CTTCTGGACGAGGGTCTTCGGCCACTCCATGAGGAGCGCCCACCGCTTTGGGTCGAGGGC 4380 30 F V Q E W F G T L Y E E R T A F G L E 4381 35 CACCCGTGCCGCCCGGGTCTTCCTTGCGCTCCAGGGGGTGGGCCGCTTGTGGGCCGGGCG 4440 HARRAWFSRSTGWGAFVRG Α 4441 40 GCGGAAGGCGGGGCGAGCGCGCGACTCGCGGCGCGGTCTGGCCTGTCGTC 4500 A K R G R E G A D A S L A A A L G S L 45

	4501																			
	CTGGTCCGAC	'ACG	CCC	GAC	GAG'	TGG	CCG	CGG	GGC	GTC	TAG	CCC	CGC	TAG	GCC	GCG	TGG	TA	4	560
		V	L	s	H	P	s	s	V	P	A	G	С	I	P	A	I	R	R	V
	M				1															
5				•				•										•		
	•																			
	4561																			
	GGGGCCTACG							-												620
10		G	₽	H	S	V	A	W	Q	Y	A	H	A	A	G	M	S	W	G	Т
10	V																			
				•				•			•			•				•		
	4621																			
	GTCCCGGTCA	AGG	GCA	TGG	GGG	TCG	AGG	AGC	CAC	TCG	TCG	GCC	ACG	ACG	CGG	CGC	TGT	AA	4	680
15		L	A	L	E	R	v	G	L	E	E	T	L	L	R	Н	0	A	A	V
	N																~			
	4681																			
20	CAGGACGCCI	CAC	TAG	TCG	CCT	TTC	GCC	CTG	GGG	CTG	CCC	ACC	AAC	GGC	:CCG	CTC	GAC	CT	4	740
		D	Q	P	T	I	L	P	F	R	S	G	S	P	H	N	G	P	S	S
	S																			
				•				•			٠			•				•		
25	•																			
25	4741																			
	CTGGGGCAAC			-															_	800
	Ŀ	V	G	N	G	F	L	G	A	T	V	V	С	Y	R	R	T	D	L	P
	T.																			
30				•				•			•			•				•		
50	4801																			
	GGGGCGTGGC	CTAG	TCG	GTC	AGC	ATG	iGGC	CAC	ACC	'AGG	GCC	:GGC	TTC	TTC	CTC	CCT	GTC	TC	4	860
		G	A	G	I	L	W	D	Y	G	Т	Н	D	R	G	F	F	s	₽	С
	L																			
35																				
	•																			
	4861																			
	GTGGTGCAAC	GCAG	GGC	AGC	CGC	'AAG	CCC	CAC	GGC	ATG	TAC	:CGC	PTA	GGC	TAG	GCC	CGC	AG	4	920
4.0		V	V	N	T	G	D	A	N	P	T	G	Y	M	A	Y	G	I	R	A
40	D																			
				•				•			•			•				•		
	<pre><orfdwn1 4921<="" pre=""></orfdwn1></pre>																			
45	4921 GGCGTCCTGC	28.00		יארר	ישיי	amma.	,,,,,,	א ריווויר	እርረ	יארי	י תחי	**	ב זיוונון ב	.m. ~		, com 2	7 CC	ım.c	1	000
7.7	GGCGTCCTGC	שמשט	الكالكال	טטמ.	100	יו דר		JICA	W.C.	بين دي	TAC	كالتال	. I T.P	THU	GCC	4 L ی	400	170	4	980

		R	L	v	E	G	D	L	L	P	L	E	D	I	E	F	I	R	С	E
	M																			
								•			•									
	•																			
5	4981																			
	GCGACTGGAC	GAA	CAA	GCT.	AGG	GGG	GCC	TGT	TGT	CCA	GCC	AGC	ACC	GGC	CTC	TGA	GTC	TC	5	040
	_																			*
	L																			
10				•				•			•			•				•		
10	5041																			
	GGTCAACCC	CGC	TAG	AGC	CAC	CGG	GጥG	TCG	AGG	TCC	GAC	GCG	TCG	ACC	ጥርጥ	AGC	ACC	CC	5	100
	0010121000	W	N	P	A	I	E	Т	A	W	L	E	L	s	R	l	0	v	D	н
	P																_			
15																				
	•																			
	5101																			
	CTAGTCGGG	CCTC	CATG	ACC	GTG	ACC	TCG	TCT	'ATG	AGG	CCT	AGC	ACG	GCG	AGG	TGG	TCC	AA	5	160
		I	L	G	S	Y	Q	С	Q	L	L	Y	Ε	P	D	H	R	E	V	L
20	K																			
				•				•			•			•				•		
	5161 GAGCTAGTA	~~~	ገል አር	ית א יחי	יאככ	יארכ	ccc	ግ <b>ሮ</b> አር	rece	ance c	יכישירי	יאכר	יייירי	ccc	יכיכי	አሮር	יחייר	ייייי	5	220
25	GAGCIAGIA	E	I	M.	.AGC R	.AGG N	I	D	D.GGC	P	T	G	V	W	E	L L	. 1 Gc	R	ם	720 V
	L	_	-		•	•	_	-	-	-	-	Ū	•	••	_	_	•	••	_	•
	_																			
	•																			
	5221																			
30	CCAGAACAT	CAGO	3CTC	GGC	TAC	CCI	'GGC	CAG	AGC	GGC	CAC	CGC	:GCG	TCC	CGG	AGC	CAC	TT	5	280
		T	K	Y	D	S	G	I	P	G	T	E	G	T	A	R	L	A	E	$\mathbf{T}$
	F																			
				_																
25		1	Ncol					٠			•			•				•		
35	5281																			
	CGGGTACCC	caar	ግጥጥር	iama Tama	ממי	מאכבר	الماليات	ንጥል ረ	יתיתיר	cac	raac	raca	ccc	יריתיר	יייי	יריייר	יא ריי	77.0	=	340
	CGGGTACCC		M		G	F	W		E	F	I				G					
	Н	Ū		-	_	-	•••	••	~	•	-	•	Ŭ	J	·		٥		••	••
40																				
	•																			
	5341																			
	CCGGAGCGG	CCT	CAGO	GCC	CTC	TGG	STC	CTGC	CAGO	SAAC	TAC	STGC	GGC	CTGC	GCC	AGC	GGG	GC	5	400
		A	E	G	s	D	R	s	v	L	V	D	K	M	V	G	V	R	E	G
45	R																			

GGCGTCCCACGGCACCGGGCGGAGCCGGAGGAGGGCCATCTACAGGTAGTCGGCCCG 5460 5 RLTGHGAAEAEERYIDMLR 5461 10 CTGCTAGACCAGCACCACAAGTAGTCCTAGCCGTGGTGCGGGAGGGCCCGTGTCTTGGC 5520 VIQDDTNMLIPVVGERACF Ŕ 15 5521 CTTGCACAGGAGTGACTTCGCCGACCTTCTGCCCGCCCACCCCGCGACCATCCC 5580 FTDESFSFPQFVPPHPRQY 20 . 5581 GAACCCGCGCTACGGGTGGAGCGCCTACTGCGGCAAGAGCAGCTCCGGGGCCGGCATCGC 5640 K P A I G V E R I V G N E D L G R G Y R 25 CGCGTGGCGGAGCATCCCCTTGAGGTCCAGGCCGTGGCCCTAGCAGGTGACGAGGGGCCT 5700 RVAEYPFELDPVPITWOEG 30 5701 CACCCACTTGCAGAGCCAGCAGGTGCGGAAGAACTACTAGAGGGTCACGAGGAGCTTCTC 5760 35 HTFTETTWAKKIIEWHEEF L 5761 CCGTGCTAACGCGGCCAGGCGAGGGCCGCAGCCTGTCCCACGGCGGCTGGGGCATGTG 5820 ARNRRDREGADSLTGGVGY V

. 80 98

```
5821
   QGMIDAWRKQFGRAIGVFA
   R
5
     5881
   CGGGGCCCAGTACACCAGCTCGTAGCGGTCTAGGAGCCGGTCGCCTAACACGTC 5940
          G R T M H D L M A L D E A L R L P N H
10
    5941
   GCCGTCCTGCAACCGGTAGACCGGCTGGGCCTACACGGCCCAGACGTACGGCTCCATCTC 6000
15
         PLVNAMQGVRIHRTQMGLY
              6001
   GGGGTCGTACTAGCCCAACAACCTCTGGAGCTTTGGGAGCCACACCTTCACCACGAGCCA 6060
          G L M I P N N S V E F G E T H F H H E
              •
25
    6061
   CTTCCTGTCAGGGGTCATCGGCTCAAGCAGCCGGCGGACGGCCGACTCGACGGC 6120
          F S L G W Y G L E D A A Q A Q R T L Q
   R
              .
30
     6121
   CTCGTACAAGACCATCAAGACGCCTAACTGGGGGGGGGTATGGGGCGACCTGGACGCGTAC 6180
          L M N Q Y N Q P N V G A M G R Q V Q A
35
                                 <orfdwn2 .
     6181
   ACTGCCGACCGTTGGCAGATAGAAGAGAATGGACTTCACCCTGGCTCCCGGTTCGCGG 6240
40
   TGACGGCTGGCAACCGTCTATCTTCTCTTACCTGAAGTGGGACCGAGGAGGCCAAGCGCC
          SGVTPLYFLISKM
```

	6241 CGCCCTCCATTGACGTGCGCCGAAAGCGGCTCGACCGTCCCACTCCGCCCTTGAGTTCCG	6300
5	GCGGGAGGTAACTGCACGCGGCTTTCGCCGAGCTGGCAGGGTGAGGCGGGAACTCAAGGC	
	6301	
	TCTGACGCCGCCAGTCGGCGGGCCGTCCGCCGGGGTGCCCGCCGGGGTCCGCACCCGC	6360
10	AGACTGCGGCGGCTCAGCCGCCCGGCAGGCGCCCCACGGCGCGCCCCAGGCGTGGGCG	
	· · · · · · · · · · · · · · · · · · ·	
	6361	
15	CGGACGGCACGGCGCGCGCGCGCGCGCTTCGGGGCACCGGGCTCGACGGGGTGC	6420
	GCCTGCCGTGCCGCGCGCGCGCGCGCGAAGCCCCGTGGCCCGAGCTGCCCCACG	
	6421	
20	TCAGCGGGACGTCCAACGGAAGGCAAGCCCCCGTACCCAGCCTGGTCAAGGCGCTCATCG	6480
	AGTCGCCCTGCAGGTTGCCTTCCGTTCGGGGGCATGGGTCGGACCAGTTCCGCGAGTAGC	
	orfdwn	<b>?&gt;</b>
25		<b>-</b>
		M P
		_
		_
30	6481	м Р
30	6481 CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG	м Р
30	6481 CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGAGGGCTGGCACGGGC	м Р
30	6481 CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG	M P
30 35	6481  CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG  GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGAGGGCTGGCACGGGC  6541  GCTCCGGACTCGAAGCACTGGACCGTGCCACCCTCATCCACCCCACCCTCTCCGGAAACA  S G L E A L D R A T L I H P T L S	M P 6540
	6481 CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGAGGGCTGGCACGGGC	M P 6540
	6481  CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG  GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGAGGGCTGGCACGGGC  6541  GCTCCGGACTCGAAGCACTGGACCGTGCCACCCTCATCCACCCCACCCTCTCCGGAAACA  S G L E A L D R A T L I H P T L S  T	M P 6540
35	6481  CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG  GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGCAGGGCTGGCACGGGC	M P 6540
	6481  CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGCGCTCCCGACCGTGCCCG  GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGAGGGCTGGCACGGGC  6541  GCTCCGGACTCGAAGCACTGGACCGTGCCACCCTCATCCACCCCACCCTCTCCGGAAACA  S G L E A L D R A T L I H P T L S  T	M P 6540
35	6481  CCATTCCCTGAGGAGGTCCCGCCTTGACCACAGCAATCTCCGGGGTCCCGACCGTGCCCG  GGTAAGGGACTCCTCCAGGGCGGAACTGGTGTCGTTAGAGGCGCGCGAGGCTGGCACGGGC  6541  GCTCCGGACTCGAAGCAACCTGGACCGTGCCACCCTCATCCACCCCCACCCTCTCCGGAAACA  S G L E A L D R A T L I H P T L S  T  6601  CCGCGGAACGGATCGTGCCGGCGGTCCGGGGTCCGGGACGCCCCCCCGACGGCCCCCCCC	M P 6540

6661 GGGAGTACCTGGACGCGAGCGCCGTCCTCGGGGTGACCCAGGTGGGCCACGGCCGGGCCG 6720 EYLDASAVLGVTQVGHGRA 5 6721 AGCTGGCCGGGTCGCGGCCGAGCAGATGGCCCGGCTGGAGTACTTCCACACCTGGGGGA 6780 LARVAAEQMARLEYFHTWG 10 6781 CGATCAGCAACGACCGGGCGGTGGAGCTGGCGGCACGGCTGGTGGGGCTGAGCCCGGAGC 6840 15 I S N D R A V E L A A R L V G L S P E 6841 CGCTGACCCGCGTCTACTTCACCAGCGGCGGGGCCGAGGGCAACGAGATCGCCCTGCGGA 6900 L T R V Y F T S G G A E G N E I A L R 25 6901 TGGCCCGGCTCTACCACCACCGCGCGGGGGAGTCCGCCCGTACCTGGATACTCTCCCGCC 6960 ARLYHHRRGESARTWILSR R 30 6961 GGTCGGCCTACCACGGCGTCGGATACGGCAGCGGCGCGTCACCGGCTTCCCCGCCTACC 7020 S A Y H G V G Y G S G G V T G F P A Y 35 7021 ACCAGGGCTTCGGCCCTCCCTCCCGGACGTCGACTTCCTGACCCCGCCGCAGCCCTACC 7080 Q G F G P S L P D V D F L T P P Q P Y 40 7081

GCCGGGAGCTGTTCGCCGGTTCCGACGTCACCGACTTCTGCCTCGCCGAACTGCGCGAGA 7140

R E L F A G S D V T D F C L A E L R E

т

Sau

5 7141 CCATCGACCGGATCGGCCGGAGCGGATCGCGGCGATCGCGGCGATCGCGGCGATCGCGGCGATCGCGGCGATCGCGAGCCGATC