ОТЧЁТ к лабораторной работе №1

ИССЛЕДОВАНИЕ РАБОТЫ БАЗОВЫХ ЦИФРОВЫХ УСТРОЙСТВ КОМБИНАЦИОННОГО И ПОСЛЕДОВАТЕЛЬНОГО ТИПА

Вариант 23

Студент гр. 351001 Ушаков А.Д.

СОДЕРЖАНИЕ

1 Цифровой мультиплексор	2
2 Демультиплексор	
3 Т-триггер	4
4 Суммирующий счетчик с коэффициентом пересчета 16	5

1 Цифровой мультиплексор

На рисунке 1 изображён выполненный в программе Proteus цифровой мультиплексор.

Рисунок 1 – Цифровой мультиплексор

Формула 1 задаёт совершенную дизьюнктивную нормальную форму (СДНФ) для цифрового мультиплексора:

$$Y=X0*a1*a0 + X1*a1*a0 + X2*a1*a0 + X3*a1*a0.$$
 (1)

Таблица 1 представляет собой таблицу истинности для цифрового мультиплексора.

Таблица 1 – Таблица истинности для цифрового мультиплексора

X3	X2	X1	X0	A1	A0	Y
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	1	0	0	1	0	1
1	0	0	0	1	1	1

2 Демультиплексор

На рисунке 2 изображён выполненный в программе Proteus демультиплексор.

Рисунок 2 – Демультиплексор

Формулы 1-4 задают совершенную конъюнктивную нормальную форму (СКНФ) для демультиплексора:

$$X0 = ^A1^A0Y$$
; $X1 = ^A1A0Y$; $X2 = A1^A0Y$; $X3 = A1A0Y$. (1-4)

Таблица истинности для демультиплексора такая же, как и для цифрового мультиплексора.

3 Т-триггер

На рисунке 3 изображён выполненный в программе Proteus T-триггер (сверху T-триггер без использования P/Simulator Primitives/DTFF, чтобы показать внутреннее строение, снизу – схематическое изображение).

Рисунок 3 – Т-триггер

4 Суммирующий счетчик с коэффициентом пересчета 16

На рисунке 4 изображён выполненный в программе Proteus суммирующий счётчик.

Рисунок 4 – Суммирующий счётчик с коэффициентом пересчёта 16