

Key: a) n-BuLi, Ether; Et₂AlCl, toluene; b) 5 then dil.HCl; c) Lindelar Catalyst, H₂; d) TsCl, THF, pyridine; e) TMStriflate, CH₂Cl₂, 2,6-Lutidine; f) NaI, acetone, Δ ; g) N-Propionylcamphorsultam 18, n-BuLi, then 17; h) DIBAH, THF-CH₂Cl₂.

Key: a) MEMCl, DIPA, CH₂Cl₂; b) TBAF, THF; c) Swern Oxidation; d) Horner-Emmons Reaction, LDA, THF, 24; then ketone 23; e) HCl, H₂O, THF; f) TsCl, pyridine, CH₂Cl₂; g) TBSOTf, DIPA; h) NaI, acetone, Δ ; i) N-propionylcamphorsultam 18, n-BuLi, then iodide; j) DIBAH, CH₂Cl₂.

Key: a) Cl₃C₆H₂COCl, pyridine, DMAP; b) TBAF, THF; c) PCC, CH₂Cl₂; d) Horner-Emmons: LDA, 24.

Key: a) 58, TBAF, THF; 58a, chromatography; 58b, dil. acid or DDQ, CH₂Cl₂, water; b) PhSO2Cl, pyridine, or Cl₃PhCOCl, pyridine, DMAP, CH₂Cl₂.

Key: a) as in Figure 7

Key: a) 1.0 TBAF, THF; b) PCC, CH₂Cl₂; c) pyridine or DMAP, CH₂Cl₂; d) Horner-Emmons: LDA, 24 or other phosphonates.

Key: a] i)Mg, ether; ii) CuBr•DMS; iii) propyne; iv) I2; b] i) n-BuLi; ii) Me2AlCl; iii) 5b; c) HCl, EtOH; d) TsCl, pyridine; e) TBSOTf, 2,6-lutidine, CH2Cl2; f) NaI, acetone; g) 18, n-BuLi, -40 °C, THF; h) LiAlH4, THF; d) pyridine•SO3, CH2Cl2; Et3N.

Key: a] i) Mg, ether; ii) CuBr•DMS, DMS, ether; iii) propyne; iv) pentynyl lithium; b) 5b, -40 °C, 36 hrs; c) TBSOTf, 2,6-lutidine, CH₂Cl₂; d) AD-mix a, e) NaIO₄, EtOH, HOH; f) NaBH₄, MeOH; g) TsCl, pyridine.

Key: a) NaI, acetone; b) 18, n-BuLi, -40 _C, THF; c) LiAlH4, THF; d) pyridine•SO₃, CH₂Cl₂; Et₃N; e) DIBAH, ether, -78 °C.

Key: a) PCC, CH₂Cl₂; b) pyridine or DMAP, CH₂Cl₂; c) Horner-Emmons: LDA, 24 or other phosphonates.

Key: a) O₃, MeOH, -78 _C; then NaBH₄; b) TsCl, pyridine; c) LiBr, acetone; d] i) Mg, ether; ii) CuBr•DMS, DMS, ether; iii) propyne; iv) pentynyl lithium; v) 5a or 5b, -40 °C, 36 hrs; e) TMSOTf, 2,6-lutidine, CH₂Cl₂; or p-MeOC₆H₄CH₂Br, NaH, DMF; f) ADmix a; then NaIO₄.

Key: a] i) Mg, ether; ii) CuBr•DMS, DMS, ether; iii) propyne; iv) pentynyl lithium; v) 5a, -40 °C, 36 hrs; b] i) Mg, ether; ii) CuBr•DMS, DMS, ether; iii) propyne; iv) pentynyl lithium; v) 5a, -40 _C, 36 hrs; vi) TMSOTf, -78 °C; c) TMSOTf, 2,6-lutidine, CH₂Cl₂; d) (ipc)2BH, THF, -20 °C; then H₂O₂, NaOH; e) pyr•SO₃, DMSO, Et₃N, CH₂Cl₂; f) (ipc)2BH, THF, -20 °C; then PCC, CH₂Cl₂.

Key: a) PBr3; b) Mg, ether; then propyne, Cu(I); pentynyl lithium; then epoxide 4; then TBSCl; c) DDQ; d) Jones Oxidation; e) Swern Oxidation; f) Horner-Emmons reaction with 7; g) (Ipc)₂BH, THF; then PCC; h) (Ipc)₂BH, THF; then HOONa; i) Pyridine•SO₃, Et₃N, CH₂Cl₂; j) slight excess LDA, THF, -40 °C; k) TBSOTf, 2,6-lutidine, CH₂Cl₂; l) PhSO₂Cl, pyridine; m) Cl₃C₆H₂COCl, pyridine, DMAP; n) TBAF, THF; o) Dimethyldioxirane, acetone.

Key: a) Cr(VI), or pyridine•SO₃, DMSO, Et₃N, CH₂Cl₂; b) LDA, 24, then 140; c] i) 123, Mg, ether; ii) CuBr•DMS, DMS, ether; iii) propyne; iv) pentynyl lithium; v) 141, -40 °C, 36 hrs; vi) TMSOTf, -78 °C; d) (ipc)₂BH; then Cr(VI); e) 56a, THF, -78 °C; then silica gel; f) PhSO₂Cl, pyridine, CH₂Cl₂; g) dimethyldioxirane, acetone; h) chiral ketone 145, oxone, pH 7-8, aq. CH₃CN (Y. Shi, et al., J. Org. Chem., 63(23), 8475 (1998).).

Key: a) AD-mix; then NaIO4; b) NaBH4, MeOH; c) TBSCl, pyridine, CH2Cl2; d) O3, CH2Cl2; Me2S; e) Ph3P=CH-I, THF; f) t-BuLi, then Et2AlCl, then 141, then TIPSCl; g) Quinolinium fluorochromate, CH2Cl2; h) 56a, THF, -78 °C; i) HF•pyr, CH3CN; j) PhSO2Cl, pyridine, CH2Cl2; k) dimethyldioxirane, acetone.

Key: a) Zn/Cu, sonochem; b) Ph₃P=CH-I, THF; c) (Ipc)₂BH; then NaBO₃; d) TBSCl, pyr, CH₂Cl₂.

Key: a) Mg, ether; then propyne, Cu(I); pentynyl lithium; epoxide 143 (Scheme XXIII); then H_3O^+ ; b) β-lactone 157 (Scheme XXIII), pyridine, CH_2Cl_2 ; c) Mg, ether; then propyne, Cu(I); pentynyl lithium; β-lactone 157 (Scheme XXIII); then p-MeOC₆H₄CH₂OCH₂Cl or other protecting group such as TBSOTf or TBSCl; d) (Ipc)₂BH, THF; then LiOOH; e) Swern Oxidation; f) (Ipc)₂BH, THF; then PCC; g) Lewis or protic acid; or alternatively base catalyzed cyclization; h) DDQ, CH_2Cl_2 , HOH, buffer to remove the PMB, PMBM or DMB groups; Fluoride ion to remove Si based groups.

Key: a) RCOX, pyridine, catalytic DMAP, CH₂Cl₂; b) TMSOTf, 2,6-lutidine, CH₂Cl₂; c) R1COX, DMAP, CH₂Cl₂; d) R1COX, DMAP, CH₂Cl₂; then silica gel. Where RCOX = active ester of usual variety.

Key: a) i. Mg, ether; ii. CuBr•DMS complex, ether, DMS, -45°C; iii. propyne, -23°C; iv. Lihexyne, HMPA, -78°C; v. 5c, -78°C to -25°C, 78%; b) SEM-Cl, DIPEA, CH₂Cl₂, 94%; c) DDQ, CH₂Cl₂, HOH; 85%; d) SO₃•pyr, TEA, CH₂Cl₂; 78%; e) **24**, n-BuLi, THF, -78°C to R.T., 85%; f) (Ipc)₂BH, THF; H₂O₂, 82%; g) oxalyl chloride, DMSO, TEA, CH₂Cl₂, 88%; h) LDA, -78°C to -40°C, ZnCl₂; -78°C to -50°C, THF, 68%; i) TROC-Cl, DMAP, CH₂Cl₂, j) TFA, CH₂Cl₂, k) Trichlorobenzoyl chloride, TEA, THF, DMAP, toluene; l) HF•pyridine; m) Zn, HOAc; n) m-CPBA, CH₂Cl₂.

Key: a) HF•pyridine, THF; b) Zn, HOAc; c) RCOOH, DCC, TEA, DCM.

Key: a) LDA, -78°C to -40°C, ZnCl₂; -78°C to -50°C, THF, 68%; then CH₂=CH(CH₂)₃COCl, DMAP, CH₂Cl₂, b) TFA, CH₂Cl₂, c) Trichlorobenzoyl chloride, TEA, THF, DMAP, toluene; d) HF•pyridine; e) vicinal dihydroxylation; f) NaIO₄, THF, HOH.

Key: a) PMB-Br,NaH, Bu_4N-I , THF, 0 °C, 85%; b) i) Mg, ether, rt; ii) CuBr-DMS, ether, DMS, -45 °C, 3h, iii) Propyne, -45 °C to -23 °C, 4h then lithiohexyne, -78 °C, 1h; iv) epoxide **205**, -78 °C, 1h, -25 °C, 24h, 76%; c) SEMCI, DIPEA, DCM, 0 °C, 92%; d) DDQ, DCM:water (8:2), 88%; e) DMSO, (COCI)₂, DCM, TEA, -78 °C, 85%; f) **207**, n-BuLi, THF, then **214**, 72%; g) (i-PC)₂BH, THF, 0.5h, aq. NaBO₃; and h) DMSO, (COCI)₂, DCM, TEA, -78 °C, 92%.

Key: (a) (i) Bu_2BOTf , DIPEA, CH_2CI_2 , $0\,^0C$ then add **217** at -78 $\,^0C$; (ii) Raney Ni, acetone, 60 $\,^0C$, 45 min, 70% combined; (b) (i) TBDMSOTf, 2,6-lutidine, CH_2CI_2 , $0\,^0C$ to rt, 95%; (ii) LiOH, H_2O_2 , THF- H_2O , rt, 82%.

Key: a) LDA, **204**, THF, -78 °C to -40 °C then to -78 °C, ZnCl₂, **203**, -78 °C to -50 °C, 0. 5h; b) TrocCl, Py, DCM, 0 °C; c) TFA, DCM (3:7), -20 °C, 1h, 63% (three steps).

Key: (a) 2,4,6-Cl₃C₆H₂COCl, TEA, THF, DMAP, toluene, rt, 1h; b) HF-Py, DCM, rt, 95%; c) Zn, aq. NH₄Cl, MeOH, reflux, 92%; d) [Methyl(trifluoromethyl)]dioxirane, MeCN, 0 °C, 56%.