Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Final Lecture: Case Study in Ethics

Lecture Agenda

- Logistics
 - RNNs due Last Day of Finals
- · Agenda
 - Finish CNN Demo
 - Ethical Case Study
 - Town Hall
 - Retrospective and Evaluations

Last Time

LSTM prototype

CNNs for Sequences

Element-wise multiplication

> Hadamard product

5 Best Programming Languages for Kids

- Python. Python is a programming language that reads like normal speech. ...
- Ruby. Ruby has the most readable syntax for beginner programmers. ...
- 3. Java. ...

- Scratch.
- gocoderz.com > blog > 5-best-progr...

5 Best Programming Languages for Kids - CoderZ

CNNs and RNNs

is an RNN similar to a CNN?

59

CNNs with Multiple Region Sizes

Demo - Part B

Back to the CNN

More examples:

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Seq2Seq:

https://github.com/tensorflow/tensorflow/blob/r0.11/tensorflow/examples/skflow/neural_translation_word.py

Ethics and Bias Case Study in NLP

Janelle Shane @JanelleCShane · 1d Predictive policing algorithms don't predict who commits crime. They predict who the police will arrest.

So of course the algorithm points toward people that are already overpoliced - it's trying to predict racism. Don't explicitly tell it race & it will just use other proxies.

I'm sick of this framing. Tired of it.

Many people have tried to explain,
many scholars. Listen to us. You can't
just reduce harms caused by ML to
dataset bias.

ML systems are biased when data is biased. This face upsampling system makes everyone look white because the network was pretrained on FlickFaceHQ, which mainly contains white people pics....

Timnit Gebru: Gender Shades

Back to RNNs: Word Embedding Analogy

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``aunt"}) - W(\text{``uncle"})$$

$$W(\text{``woman"}) - W(\text{``man"}) \simeq W(\text{``queen"}) - W(\text{``king"})$$

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$
.

Trained on **New York Times**

Extreme she occupations

- 1. homemaker
- 4. librarian
- 7. nanny
- 10. housekeeper
- 2. nurse
- 5. socialite
- 8. bookkeeper
- 3. receptionist
- 6. hairdresser
- 9. stylist
- 11. interior designer 12. guidance counselor

Extreme hc occupations

- 1. maestro
- 4. philosopher
- 7. financier
- 10. magician
- 2. skipper
- 5. captain
- 8. warrior
- 11. figher pilot
- 3. protege
- 6. architect
- broadcaster
- 12. boss

Bolukbasi et al., NeurlPs 2016 https://arxiv.org/pdf/1607.06520.pdf

https://nlp.stanford.edu/projects/glove/

ConceptNet

en cooking dinner

An English term in ConceptNet 5.7

Source: Open Mind Common Sense contributors View this term in the API

cooking dinner is a subevent of...

- boiling water →
- it burns →
- preheat the oven ->
- n taste the food →
- 💼 boil salt water →
- 🖶 boil water 🔿
- 🚥 brown the hamburger 🧇
- 🔤 chop a vegetable 🧇
- defrost →
- a fire →
- 📶 the fire alarm might go off 🔿

cooking dinne for...

- feeding a family
- TO EAT →
- entertaining com
- feeding yourself
- anyone ->
- avoiding fast foo
- being a cook ⇒
- caring for others
- cheering yoursel
- en creative people
- eating ⇒

ConceptNet Numberbatch

- Create with a Knowledge Graph (from multiple sources with relations like UsedFor, PartOf, etc.)
- Based on this KG, perturb existing embeddings (like GloVe) to optimize:

$$\Psi(Q) = \sum_{i=1}^n \left[\alpha_i \|q_i - \hat{q_i}\|^2 + \sum_{(i,j) \in E} \beta_{ij} \|q_i - q_j\|^2 \right]$$
 new embed old embed neighbors from KG (keep similar to original) (make similar according to other knowledge)

- Easy to optimize the objective by averaging neighbors in the ConceptNet KG
- Multiple embeddings achieved by merging through "retrofitting" which projects onto a shared matrix space (with SVD)

ConceptNet 5.5: An Open Multilingual Graph of General Knowledge, Speer et al., 2017

Lightning Demo

How to Make a Racist Al without Really Trying

Robyn Speer, 2017

http://blog.conceptnet.io/posts/2017/how-to-make-a-racist-ai-without-really-trying/

Debiasing: Man is to Computer Programmer as Woman is to Homemaker? De-biasing Word Embeddings

Bolukbasi et al., NeurlPs 2016 https://arxiv.org/pdf/1607.06520.pdf

ConceptNet 5.5: An Open Multilingual Graph of General Knowledge

Speer et al., AAAI 2017 https://arxiv.org/pdf/1612.03975.pdf

Rachael Tatman @rctatman · 18h

I first got interested in ethics in NLP/ML
becuase I was asking "does this system
work well for everyone". It's a good
question, but there's a more important
important one:

Who is being harmed and who is benefiting from this system existing in the first place?

François Chollet <a> @fchollet < 11h

When faced with tech ethics problems, you can either ask hard questions, seek solutions, and take responsibility, or you can lazily jump on the nearest intellectual shortcut that looks like it will save you

Town Hall

Timnit Gebru

A lot of times, people are talking about bias in the sense of equalizing performance across groups. They're not thinking about the underlying foundation, whether a task should exist in the first

place, who creates it, who will deploy it on which population, who

owns the data, and how is it used?

sayii

Sayi

"just

The root of these problems is not only technological. It's social. Using technology with this underlying social foundation often

beca

advances the worst possible things that are happening. In order for

Tech

out :

technology not to do that, you have to work on the underlying

while

foundation as well. You can't just close your eyes and say: "Oh,

arou

whatever, the foundation, I'm a scientist. All I'm going to do is

math."

tial entire en and is

s it take? e, books m experts

se. cover nmunity matter.

ut ML

ployed...

Course Retrospective

Leading ML researchers issue statement of support for JMLR

The forty people whose names appear below have resigned from the

like to make our resignations public, to explain the rationale for

Al winters exi From: Michael Jordan [mailto:jordan@CS.Berkeley.ZD0] Sent: Monday, October 08, 2001 5:33 PM machine learning journal

repeat)

Dear colleagues in machine learning,

- Formal meth (Editorial Board of the Machine Learning Journal (MLJ). We would
- our action, and to indicate some of the implications that we see for At the end of members of the machine learning community worldwide.

The machine learning community has come of age during a period Open source of enormous change in the way that research publications are circulated. Fifteen years ago research papers did not circulate easily, and as with other research communities we were fortunate advancemen that a viable commercial publishing model was in place so that the fledgling MLJ could begin to circulate. The needs of the community, principally those of seeing our published papers circulate http://www.as widely and rapidly as possible, and the business model of commercial publishers were in harmony.

> Times have changed. Articles now circulate easily via the Internet, but unfortunately MLJ publications are under restricted access. Universities and research centers can pay a yearly fee of \$1050 UE to obtain unrestricted access to MLJ articles (and individuals can pay \$120 US). While these fees provide access for institutions and individuals who can afford them, we feel that they also have the effect of limiting contact between the current machine learning community and the potentially much larger community of researchers worldwide whose participation in our field should be the fruit of the modern Internet.

None of the revenue stream from the journal makes its way back to authors, and in this context authors should expect a particularly favorable return on their intellectual contribution --- they should expect a service that maximizes the distribution of their work. We see little benefit accruing to our community from a mechanism that ensures revenue for a third party by restricting the communication channel between authors and readers.

Sincerely yours,

Chris Atkeson Peter Bartlett Andrew Barto Jonathan Baxter Yoshua Bengio Kristin Bennett Chris Bishop Justin Boyan Carla Brodley Claire Cardie William Cohen Peter Dayan Tom Dietterich Jerome Friedman Nir Friedman Zoubin Ghahramani David Heckerman Geoffrey Hinton Havm Hirsh Tommi Jaakkola Michael Jordan Leslie Kaelbling Daphne Koller John Lafferty Bridhar Mahadevan Marina Meila Andrew McCallum Tom Mitchell Stuart Russell Lawrence Saul Bernhard Schoelkopf John Shawe-Taylor Yoram Singer Satinder Singh Padhraic Smyth Richard Sutton Sebastian Thrun Manfred Warmuth Chris Williams Robert Williamson

Topics review

- Data **munging** in pandas and numpy
- Data **visualization** in jupyter with matplotlib, pandas, seaborn, and plotly
- Data preprocessing: **dim reduction**, images, text, categorical features, **embeddings**
- Linear models: linear regression, logistic regression, simple neural networks
- Optimization strategies: Gradient ascent, Quasi-Newton
- Back propagation in MLP (from scratch)
- Tensorflow/Keras for wide and deep networks
- Convolutional neural networks
- Recurrent neural networks

Topics Not Covered

- Visualizing Deep Convolutional Networks
- Fully Convolutional Networks
- Transfer/Multi-Task Learning
- Style Transfer
- Generative Adversarial Networks
- · (partial) Reinforcement Learning

Syllabus for CSE8321: Machine Learning and Neural Networks

Syllabus for CSE8321: Machine Learning and Neural Networks

Overview

This course extends besic knowledge of the use of Neural Networks in mechine learning beyonds simple prediction, especially targeted outputs that are generation or alteration of images, text, and audio. This course emphasizes topics of neural networks in the "deep learning" autobrasin. This course will survey of important topics and current areas of research, including transfer learning, multi-task and multi-modal learning, image style transfer, reutal network visualization, deep convolutional generative adversarial networks, and deep reinforcement learning. For grading, students are expected to complete smaller team-based projects throughout the semester, present one research paper in a 15-20 minute group presentation (covering topics in the course), and complete a comprehensive final project that involves a number of different deep learning architectures.

Thank you for a great semester!

- but it could have been better somehow, right?
 - how could you learn better?
 - what should not be cut or changed?
 - · Already cut: SVMs, Ensembles, Transformers,
 - More RNNs? Less RNNs?
 - More convolutional approaches/depth?
 - More APIs? Turi / PyTorch?

Thank You for an Excellent Semester!

Courtesy of Omar Roa

Please fill out the course evaluations!!!!