(Draft) KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

MATH-244 (Linear Algebra); Final Exam; Semester 1 (1443 H)

Max. Marks: 40

Max. Time: 3 hours

Note: Attempt all the five questions!

Question 1 [4+2+2 marks]:

- a) Find adjoint matrix and matrix of cofactors of $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 6 & 2 \\ -2 & 3 & 6 \end{bmatrix}$ and also find A^{-1} .
- b) Evaluate $det(det(A)B^2A^{-1})$, where **A** and **B** are square matrices of order 3 with det(A)=3 and det(B)=2.
- c) Let $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 6 & 3 \\ 0 & 2 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ -1 & 0 & 8 \end{bmatrix}$. Explain why the matrices A and B are not row equivalent to each other?

Question 2 [5+3 marks]:

a) Find the values of α and β such that the following linear system:

$$x - 2y + 3z = 4$$

 $2x - 3y + \alpha z = 5$
 $3x - 4y + 5z = \beta$

has:

- i) No solution;
- ii) Infinitely many solutions.
- b) Let $s_1 = 3 2x$, $s_2 = 2 + x$, $s_3 = 1 + x x^2$, $s_4 = x + x^2 x^3$. Find the values of a, b, c and d such that $1 6x 3x^2 4x^3 = as_1 + bs_2 + cs_3 + ds_4$.

Question 3 [4+4 marks]:

- a) Let $\{u_1 = (1,1,1,1), u_2 = (0,1,2,1), u_3 = (1,0,-2,3), u_4 = (1,1,2,-2)\}$ generate the subspace F of the Euclidean space \mathbb{R}^4 . Then:
 - i) Find dim(F)
 - ii) Show that $(1,1,0,1) \notin F$.
- b) Let $B = \{v_1 = (1,1,2), v_2 = (3,2,1), v_3 = (2,1,5)\}$ and $C = \{u_1, u_2, u_3, \}$ be two bases for \mathbb{R}^3 such that

$${}_{B}P_{C} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

is the transition matrix from C to B. Find the vectors u_1, u_2 and u_3 .

Question 4 [(1+2)+(1+1)+3 marks]:

- a) Let $w_1 = (0,0,1)$, $w_2 = (0,1,1)$, $w_3 = (1,1,1)$ be vectors in the Euclidean space \mathbb{R}^3 . Then:
 - i) Find the angle between w_1 and w_3 .
 - ii) By applying the Gram-Schmidt process on $\{w_1, w_2, w_3\}$ to find an orthonormal basis of the Euclidean space \mathbb{R}^3 .
- b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by T(x, y) = (x + 4y, 2x + 3y). Find:
 - i) Ker(T)
- ii) $dim \operatorname{Im}(T)$
- c) Let the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by:

$$T(x,y) = (x + 2y, x - y, 3x + y).$$

Find matrix of the transformation $[T]_B^C$, where B and C are the standard bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Question 5 [4 + 4 marks]:

a) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find eigenvalue/s of the matrix A and determine one

basis of the corresponding eigenspace/s. Then, give reason for the non-diagonalizability of A.

b) Show that the matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ diagonalizes the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
 and then use this fact to compute A^{-1} .

SOLUTION KEY: 1443/Semester-1/Math-244/Final Exam

Solution of Question 1:	
ad $ A = C^r = \begin{bmatrix} 30 & -12 & 4 \\ -16 & 6 & -2 \\ 18 & -7 & 2 \end{bmatrix}$ and $ A = -2$.	(2 marks) (1 mark)
Hence, $A^{-1} = A ^{-1}adj(A) = \begin{bmatrix} -15 & 6 & -2 \\ 8 & -3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$	(1 murk)
b) der(der(A)B'A-1) = (der(A))'(der(B))'(der(A))' = (der(A))'(der(B))' = 36	(2 marks)
c) $ A = -2$ and $ B = 0 \Longrightarrow A$ is invertible but B is non-invertible $\Longrightarrow A$ and B are not row equivalent. Solution of Question 2:	(2 marks)
8) $[A:B] = \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & \alpha - 6 & -3 \\ 0 & 0 & 8 - 2\alpha & \beta - 6 \end{bmatrix}$	(2 marks)
Hence, the linear system has:	
i) no solution if $a=4$ and $\beta\neq 6$; ii) Infinitely many solutions if $a=4$ and $\beta=6$. b) $a=2$, $b=-3$, $c=1$, $d=4$.	(2.5 marks) (2.5 marks)
Solution of Question 3.	(3 marks)
a) () $[u_1 \ u_2 \ u_3 \ u_4] = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (R.E.E.)	(A marks)
$\Rightarrow F = span\{u_1, u_2, u_3\} \Rightarrow dim(F) = 3.$ If) $\{u_1, u_2, u_3, (1, 1, 0, -1)\}$ is linearly independent and $F = span\{u_1, u_2, u_3\}$. So, $\{1, 1, 0, 1\} \in F$	(1 marks)
b) $a^{\dagger} c = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} [u_1]_a & [u_2]_e & [u_1]_e \end{bmatrix}$	(? marks)
(-1 1 1)	() take
Hence, $u_1 = 1v_1 + 1v_2 + 1v_3 = (2,2,-2)$. Similarly, $u_2 = (1,1,8)$ and $u_3 = (3,2,7)$.	(Smith)
Solution of Question 4	
a) $\theta = \cos^{-1} \frac{1}{\sqrt{3}} = 0.955 rad$	(1 mark)
ii) $u_1 = w_1 = (0, 0, 1), u_2 = w_2 + \frac{cw_{21}w_{22}}{2cw_{11}}u_1 = (0, 1, 0)$	
and $u_3 = w_3 - \frac{\langle w_3, w_4 \rangle}{\ u_1\ ^2} u_1 - \frac{\langle w_4, u_2 \rangle}{\ u_4\ ^2} u_2 = (1, 0, 0).$	(3 marks)
So, $\{e_1 = u_1 = (0.0,1), e_2 = u_2 = (0.1,0), e_1 = u_3 = (1.0,0)\}$ is an orthonormal basis	s of R3,
b) (i) $Ker(T) = \{(0,0)\}$	gl meski
(i) I from Fart (), T is one-one and so $Im(T) = \mathbb{R}^d$. Hence, $dim Im(T) = 2$.	(1 सम्बर्भ)
c) $ T _{0}^{2} = T(1,0) _{0} T(0,1) _{0} I _{0} = \begin{vmatrix} 1 & 2 \\ 1 & -1 \\ 3 & 1 \end{vmatrix}$	(Z maits)
Selution of Question 5.	
3) Egenvalues = 1, 1, 2 E ₁ = xpan [(0,0,1)]	D made D made
So, the algebraic multiplicity of the eigenvalue 1 is 3 which is different from its geometric multiplicity 1. Hence, the given matrix A is not diagonalizable.	(Zenarii)
b) $P^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ -1 & 0 & -1 \end{bmatrix}$ so that $D = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ thus $A^{-1} = PD^{-1}P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 1/2 \\ -1/2 & 0 & 1/2 \end{bmatrix}$	i Gelekmans
-i n -i	###1
	nwel