Matematika I

Séria úloh 21

1. (7b) Daná je všeobecná rovnica kužeľosečky $9x^2 + 4y^2 + 18x + 8 = 0$.

Doplňte:

a)	(2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b)	(1b) Typ kužeľosečky je
c)	(3b) Napíšte, ak existujú
	c_1) súradnice stredu kužeľosečky:
	$c_2)$ súradnice ohniska resp. ohnisk kužeľosečky:
	c_3) súradnice vrcholu resp. vrcholov kužeľosečky:
d)	(1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,1],\,B=[2,1],\,C=[2,2]$ a D=[1,2].

Výsledok:

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[1, \frac{\pi}{6}, -1\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}, -1\right]$$

c)
$$M = \left[-\frac{\sqrt{3}}{2}, \frac{1}{2}, -1 \right]$$

b)
$$M = \left[\frac{\sqrt{3}}{2}, -\frac{1}{2}, -1\right]$$

d)
$$M = \left[-\frac{\sqrt{3}}{2}, -\frac{1}{2}, -1 \right]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) = 3x$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte, ak existuje
$\lim_{[x,y]\to[1,2]} \frac{2-\sqrt{4-xy}}{xy}.$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=e^{x\cos y}$ v bode $T=[1,\pi,z_0].$
(2b) Nájdite z_0 a uveďte súradnice dotykového bodu :
(4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y) = \ln(2x+y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x, y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (9b) Toto je príklad typu E

text text text