Trabajo Fin de Grado Grado en Ingeniería Electrónica, Robótica y Mecatrónica

Técnica de diagnóstico de SEU utilizando diccionarios de fallos incompletos

Autor: Álvaro Calvo Matos

Tutor: Hipólito Guzmán Miranda

Dpto. Ingeniería Electrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2020

Trabajo Fin de Grado Grado en Ingeniería Electrónica, Robótica y Mecatrónica

Técnica de diagnóstico de SEU utilizando diccionarios de fallos incompletos

Autor:

Álvaro Calvo Matos

Tutor:

Hipólito Guzmán Miranda Profesor Titular

Dpto. Ingeniería Electrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2020

Trabajo Fin de Grado:		Técnica de diagnóstico de SEU utilizando diccionarios de fallos incompletos
Autor: Tutor:		alvo Matos Guzmán Miranda
El tribunal non	nbrado para j	uzgar el trabajo arriba indicado, compuesto por los siguientes profesores:
	Presidente	:
	Vocal/es:	
	Secretario	
acuerdan oto	orgarle la cal	lificación de:
		El Secretario del Tribunal
		Fecha:

Agradecimientos

Orden recomendado: - Comienza con los agradecimientos más formales, que suelen ir dirigidos a patrocinadores y/o al tutor del proyecto.

- Jerarquiza en función de su influencia en partes relevantes del proyecto, de mayor a menor.
- No uses frases largas, aunque cuando nombres a personas cercanas puedes hacer uso de dedicatorias en el TFG; te dejamos algunos ejemplos de cómo hacerlo más adelante.
- Las dedicatorias en el TFG pueden ser palabras tuyas, propias, o comenzar con un verso, un proverbio, etc.

Algunos ejemplos de dedicatorias: - ... y particularmente agradezco a mi maestro D/D^a , por inculcarme el amor por las matemáticas cuando sólo era un niño de 7 años.

- También deseo agradecer el apoyo y la amistad demostrada en todo momento por, incluso cuando le llamaba, temeroso de no lograr terminar esta tesis, a altas horas de la madrugada.
- Gracias a mi familia por su amor y apoyo incondicional desde mi nacimiento, que se mantiene siendo un adulto.
- Y deseo agradecer de manera especial al profesor/a de la asignatura porque sin su buen hacer en la docencia no habría sido capaz de acometer el apartado con facilidad.
- La vida es hermosa, y una de las formas en que se manifiesta esta hermosura es en el hecho de poder compartir y disfrutar con quienes amamos,, y con quienes nos ayudan en nuestro camino, como han hecho en mi formación académica.

Poli María Dani Luis

Eduardo Elena Fernando

Compañeros de clase Familia

A mis profesores del Colegio Salesiano de Utrera, ... en especial a mis dos últimos tutores, Dª Elena Ojeda ¿Rodríguez? y D Fernando ¿? ¿? , por la formación que me dieron, pero sobre todo por entenderme, soportarme y apoyarme. Y a D Eduardo Pérez Prados, de quien adquirí mis primeros conocimientos en informática, y quién posteriormente me informó de la existencia de las becas científicas de verano, gracias a las cuales descubrí mi vocación por la robótica, llevándome directamente hasta donde estoy hoy.

Álvaro Calvo Matos Grado en Ingeniería Electrónica, Robótica y Mecatrónica

Sevilla, 2020

Resumen

El diagnóstico de Single Event Upset (SEU) es un problema abierto sobre el que apenas se han realizado investigaciones previas. En este trabajo perseguimos diseñar una nueva técnica de diagnóstico que permita localizar un SEU a partir de la información de la que se disponga.

Es común disponer únicamente de diccionarios de fallos incompletos, ya que, en circuitos grandes, el tiempo necesario para obtener un diccinario de fallos completo lo hace inviable. Vamos a ver qué técnica usamos para diagnosticar en estas situaciones y cuándo se comienza a perder la capacidad de diagnóstico conforme la exhaustividad del diccionario de reduce.

La hipótesis de la que partimos para diseñar las técnicas de diagnóstico es que los SEU próximos entre si producen patrones similares a la salida. Estos pueden ser caracterizados de diferentes formas y usados para estimar la localización real del SEU que queremos localizar.

Combinando la información que obtenemos al aplicar distintas métricas sobre la información disponible, hemos conseguido unos resultados bastante buenos sobre los diseños en los que se ha probado la técnica. Incluso para aquellos circuitos en los que no se consigue acertar el biestable y ciclo exactos, la técnica, tras la primera iteración, acota la localización del SEU en un relativamente reducido rango de ciclos y a unos registros concretos. A partir de esta primera acotación podemos obtener un nuevo diccionario de fallos enfocado en las zonas del circuito señaladas por el algoritmo de diagnóstico y repetir con él el proceso, mejorando el resultado. El diagnóstico puede darse por finalizado cuando encontremos un candidatos que produzca exactamente el mismo patrón de salida que el SEU bajo diagnóstico.

Con este proceso iterativo, si el diccionario de partida es lo suficientemente completo para realizar correctamente la primera estimación, llegará un momento en el que podamos obtener un diccionario completo de la zona acotada. Si llegados a este punto aún no ha terminado el diagnóstico y las iteraciones han seguido el camino correcto, el siguiente diccionario contendrá al menos una entrada cuyo patrón de salida coincida con el patrón que produce el SEU bajo diagnóstico.

Esta técnica puede ser muy útil en el proceso de diseño de circuitos resistentes a radiación, ya que, por ejemplo, ante cualquier vulnerabilidad encontrada tras radiar el circuito en el acelerador de partículas, evita repetir el proceso de diseño completo. Aplicando la técnica se puede saber en qué biestable se ha producido el SEU y reforzar la zona en caso de que fuera necesario.

Abstract

The Single Event Upset (SEU) diagnosis is an open problem that has hardly been investigated previously. In this work we seek to design a new diagnostic technique that allows locating a SEU from the information that is available.

It is common to have only incomplete fault dictionaries, since, on large circuits, the time required to obtain a complete fault dictionary makes it unfeasible. We are going to see what technique we use to diagnose in these situations and when the diagnostic capacity begins to lose, according to the exhaustiveness of the dictionary.

The hypothesis from which we start to design diagnostic techniques is that the SEUs close to each other produce similar patterns at the output. These can be characterized in different ways and used to estimate the actual location of the SEU that we want to locate.

Combining the information we obtain by applying different metrics on the available information, we have achieved quite good results on the designs in which the technique has been tested. Even for those circuits in which it is not possible to hit the exact flip-flop and cycle, the technique, after the first iteration, limits the location of the SEU in a relatively reduced range of cycles and to specific registers. From this first dimension we can obtain a new fault dictionary focused on the areas of the circuit indicated by the diagnostic algorithm and repeat the process with it, improving the result. The diagnosis can be terminated when we find a candidate that produces the exact same output pattern as the SEU under diagnosis.

With this iterative process, if the starting dictionary is complete enough to make the first estimate correctly, there will come a time when we can obtain a complete dictionary of the bounded area. If at this point the diagnosis has not yet finished and the iterations have followed the correct path, the following dictionary will contain at least one entry whose output pattern matches the pattern that the diagnostic SEU produces.

This technique can be very useful in the process of designing radiation resistant circuits, since, for example, before any vulnerability found after radiating the circuit in the particle accelerator, it avoids repeating the entire design process. By applying the technique, it is possible to know in which bistable the SEU has been produced and to reinforce the area if necessary.

... -translation by google-

Índice Abreviado

Ab	esumen ostract dice Abreviado	II V VI		
1	Introducción	1		
2	Estado del arte			
3	Inyección de fallos 3.1 FT-Unshades2	5		
4	Primera aproximación a una métrica apropiada. Distancia de Levenshtein 4.1 Elaboración de la base de datos de distancias 4.2 Diagnóstico basado en la distancia de Levenshtein 4.3 Resultados experimentales	7 7 7		
5	 Inclusión de la distancia temporal en el algoritmo de selección de candidatos 5.1 Diagnóstico basado en la distancia temporal 5.2 Fusión de las distancias temporal y de Levenshtein 5.3 Resultados experimentales 	9 9 9		
6	 Técnicas de diagnóstico auxiliares 6.1 Diagnóstico basado en el análisis de imágenes 6.2 Diagnóstico por coincidencias 6.3 Resultados experimentales 	11 11 11		
7	 Campañas iterativas a partir de los candidatos seleccionados 7.1 Estudio preliminar sobre el porcentaje de acierto de los algotirmos 7.2 Obtención de la lista de candidatos 7.3 Extracción de la información para la siguiente campaña de inyección de fallos 7.4 Resultados experimentales 	13 13 13 13		
8	Aplicación de la técnica sobre diseños reales 8.1 Edelweis creo 8.2 8061 o algo así	15 15 15		
9	Distancia en flip-flops. Mejora de la ditancia temporal	17		

VIII	Índice Abreviado

9.1	Inclusión de la distancia en flip-flops en el algoritmo	17
9.2	Resultados experimentales	17
10 Con	clusiones y trabajos futuros	19
10.1	Conclusiones	19
10.2	Trabajos futuros	19
Índice d	le Figuras	21
Índice d	le Tablas	23
Índice d	le Códigos	25
Bibliogra	afía	27
Índice a	lfabético	29
Glosario		29

Índice

ΑŁ	esumen bstract odice Abreviado	II V VI			
1	Introducción				
2	Estado del arte				
3	Inyección de fallos 3.1 FT-Unshades2				
4	Primera aproximación a una métrica apropiada. Distancia de Levenshtein 4.1 Elaboración de la base de datos de distancias 4.2 Diagnóstico basado en la distancia de Levenshtein 4.3 Resultados experimentales 4.3.1 Diccionarios exhaustivos 4.3.2 Diccionarios no exhaustivos	7 7 7 7 7			
5	Inclusión de la distancia temporal en el algoritmo de selección de candidatos 5.1 Diagnóstico basado en la distancia temporal 5.2 Fusión de las distancias temporal y de Levenshtein 5.3 Resultados experimentales 5.3.1 Diccionarios exhaustivos 5.3.2 Diccionarios no exhaustivos	9 9 9 9			
6	 Técnicas de diagnóstico auxiliares 6.1 Diagnóstico basado en el análisis de imágenes 6.2 Diagnóstico por coincidencias 6.3 Resultados experimentales 	11 11 11			
7	 Campañas iterativas a partir de los candidatos seleccionados 7.1 Estudio preliminar sobre el porcentaje de acierto de los algotirmos 7.2 Obtención de la lista de candidatos 7.3 Extracción de la información para la siguiente campaña de inyección de fallos 7.4 Resultados experimentales 	13 13 13 13			
8	Aplicación de la técnica sobre diseños reales	15			

X Índice

8.1	Edelweis creo	15
8.2	8061 o algo así	15
9 Dis	stancia en flip-flops. Mejora de la ditancia temporal	17
9.1	Inclusión de la distancia en flip-flops en el algoritmo	17
9.2	Resultados experimentales	17
	9.2.1 Diccionarios exhaustivos	17
	9.2.2 Diccionarios no exhaustivos	17
10 Co	nclusiones y trabajos futuros	19
10.	1 Conclusiones	19
10.2	2 Trabajos futuros	19
Índice	de Figuras	21
,	de Tablas	23
Índice	de Códigos	25
Bibliog	rafía	27
Índice a	alfabético	29
Glosari	io	29

1 Introducción

a primera vez que se observaron los efectos de la radiación en satélites en órbita fue a mediados de la década de 1970. Desde entonces, los investigadores han estudiado sus efectos sobre diferentes circuitos y tecnologías. La radiación puede ser un problema para los circuitos destinados a trabajar en su presencia. Si esta es ionizante, puede dar lugar a un *Single Event Effect (SEE)*, o un efecto de evento único, provocando un error en el circuito. Los daños que provoca la radiación se clasifican en dos grandes grupos: *errores físicos ('hard errors')* y *errores lógicos ('soft errors')*. Las *conmutaciones por evento único o Single Event Upset (SEU)* son errores lógicos inducidos por radiación en el circuito que consisten en el cambio de valor de un biestable del mismo. No son daños permanentes, pero si que puedes afectar al correcto funcionamiento del sistema.

Con la miniaturización de los circuitos, la dosis de radiación necesaria para provocar un SEU es cada vez menor, con la consiguiente aparición de sus efectos cada vez a menor altitud [1]. Esto acerca el problema de la radiación a aplicaciones más comunes como puede ser la aviación o las telecomunicaciones. Si la radiación cambia un bit en tu movil no pasa nada, pero si lo hace en un circuito, fiesta

2 Estado del arte

3 Inyección de fallos

3.1 FT-Unshades2

4 Primera aproximación a una métrica apropiada. Distancia de Levenshtein

- 4.1 Elaboración de la base de datos de distancias
- 4.2 Diagnóstico basado en la distancia de Levenshtein
- 4.3 Resultados experimentales
- 4.3.1 Diccionarios exhaustivos
- 4.3.2 Diccionarios no exhaustivos

5 Inclusión de la distancia temporal en el algoritmo de selección de candidatos

- 5.1 Diagnóstico basado en la distancia temporal
- 5.2 Fusión de las distancias temporal y de Levenshtein
- 5.3 Resultados experimentales
- 5.3.1 Diccionarios exhaustivos
- 5.3.2 Diccionarios no exhaustivos

6 Técnicas de diagnóstico auxiliares

- 6.1 Diagnóstico basado en el análisis de imágenes
- 6.2 Diagnóstico por coincidencias
- 6.3 Resultados experimentales

7 Campañas iterativas a partir de los candidatos seleccionados

- 7.1 Estudio preliminar sobre el porcentaje de acierto de los algotirmos
- 7.2 Obtención de la lista de candidatos
- 7.3 Extracción de la información para la siguiente campaña de inyección de fallos
- 7.4 Resultados experimentales

8 Aplicación de la técnica sobre diseños reales

- 8.1 Edelweis creo
- 8.2 8061 o algo así

9 Distancia en flip-flops. Mejora de la ditancia temporal

- 9.1 Inclusión de la distancia en flip-flops en el algoritmo
- 9.2 Resultados experimentales
- 9.2.1 Diccionarios exhaustivos
- 9.2.2 Diccionarios no exhaustivos

10 Conclusiones y trabajos futuros

- 10.1 Conclusiones
- 10.2 Trabajos futuros

Índice de Figuras

Índice de Tablas

Índice de Códigos

Bibliografía

[1] Michael Santarini, Cosmic radiation comes to asic and soc design, May 2005.

Glosario

SEE Single Event Effect. 1

SEU Single Event Upset. III, 1