Computational Communication Science 2 Week 7 - Lecture »Validation (in Supervised Machine Learning)«

a.m.moller@uva.nl

May 15, 2023

Digital Society Minor, University of Amsterdam

Today

Recap	
Validating models	
Validation metrics	
About input for SML	

Recap

Recap

Last week, we discussed:

- Supervised Machine Leaning (SML)
- The principles behind SML
- The steps of SML
- Some commonly used ML models

At home, you:

• Got some hands-on experience SML (week 6 exercises)

Recap

Today, we:

- Review your first SML experience
- Take a deep dive into validating SML-models

Recap

Last week, you practiced with code that:

- Read in some data (Q1)
- Split the data into a train and a test set (Q2)
- Set up a Count vectorizer (Q3)
- Trained a Naïve Bayes model with the count vectorizer (Q4)
- Requested some metrics for validation (Q5)

Recap Q1

```
import csv
    from collections import Counter
    import matplotlib.pyplot as plt
3
4
    file = "hatespeech_text_label_vote_RESTRICTED_100K.csv"
    tweets = []
    labels = []
7
8
9
    with open(file) as fi:
10
      data = csv.reader(fi, delimiter='\t')
11
     for row in data:
     tweets.append(row[0])
12
      labels.append(row[1])
13
14
    print(len(tweets) == len(labels)) # there should be just as many tweets
15
         as there are labels
16
    Counter(labels)
17
    plt.bar(Counter(labels).keys(), Counter(labels).values())
18
```

Recap Q2

Split the dataset:

```
from sklearn.model_selection import train_test_split

tweets_train, tweets_test, y_train, y_test = train_test_split(tweets, labels, test_size=0.2, random_state=42)
```

Recap Q3

What happens here?

```
from sklearn.feature_extraction.text import (CountVectorizer)

countvectorizer = CountVectorizer(stop_words="english")

X_train = countvectorizer.fit_transform(tweets_train)

X_test = countvectorizer.transform(tweets_test)
```

Recap Q4

The actual SML part (yes, truly, it is three lines of code!):

- nb = MultinomialNB()
- p nb.fit(X_train, y_train)
- 3 y_pred = nb.predict(X_test)

Recap Q5

You can check what was created:

```
nb = MultinomialNB()
nb.fit(X_train, y_train)
y_pred = nb.predict(X_test)
print(y_pred[:10])
```

```
['normal' 'normal' 'normal' 'spam' 'normal' 'normal' '
normal' 'abusive' 'normal']
```

Recap Q5

Classification report:

```
from sklearn.metrics import classification_report
```

2

3 print(classification_report(y_test, y_pred))

Recap

Classification report: validate your classifier.

More about this today!

Validating models

Validation: When we assess the performance of a classifier.

Or when we try to answer the question: "How well does the classifier work?"

Validation: When we assess the performance of a classifier. Or when we try to answer the question: "How well does the classifier work?"

What criteria should we use to decide on this?

000000

000000

Validation metrics

Validation

What criteria should we use to decide on this? Entirely context specific!

Compare different goals for using SML:

To automatically decide what Instagram users should see an advertisement

Validation metrics

• To automatically remove spam from Twitter feed

Would you use the same criterion in both cases to determine how well a classifier works? Why (not)?

Recap

There are various evaluation metrics available for machine learning. In scikit-learn, they are presented by ways of a classification report!

Zooming out

So far, we:

Reviewed the exercise and the basic steps of SML

Validation metrics

Talked about what validation is

Next, we will talk about:

- Some commonly used validation metrics
- Input for SML
- Finding the best classifier

Precision

Recap

Precision quantifies the number of positive class predictions that actually belong to the positive cases.

OR: How much of what we found is actually correct?

Precision

Precision quantifies the number of positive class predictions that actually belong to the positive cases.

Validation metrics

OR: How much of what we found is actually correct?

Precision

Precision quantifies the number of positive class predictions that actually belong to the positive cases.

Validation metrics

OR: How much of what we found is actually correct?

Compare different goals for using SML in exercise 6:

- To automatically decide what Instagram users should see an advertisement
- To automatically remove spam from Twitter feed

Recap

Recall quantifies the number of positive class prediction made out of all positive examples in the dataset.

OR: How many of the cases that we wanted to find did we actually find?

Recap

Recall quantifies the number of positive class prediction made out of all positive examples in the dataset.

OR: How many of the cases that we wanted to find did we actually find?

Recall

Recall quantifies the number of positive class prediction made out of all positive examples in the dataset.

OR: How many of the cases that we wanted to find did we actually find?

Compare different goals for using SML in exercise 6:

- To automatically decide what Instagram users should see an advertisement
- To automatically remove spam from Twitter feed

Precision and Recall

Precision is calculated as: $\frac{TP}{TP+FP}$ In this example $\frac{150}{150+50}$ which is 0.75 Recall is calculated as $\frac{TP}{TP+FN}$ In this example $\frac{150}{150+20}$ which is 0.88

Validation metrics

What does this look like in code?

Let's ask for a confusion matrix:

```
from sklearn.metrics import confusion_matrix
2
   y_{test} = [0, 1, 1, 1, 0]
   y_{pred} = [0, 0, 1, 1, 1]
5
   print(confusion_matrix(y_test, y_pred))
```

```
[[1 1]
[ 1 2]]
```

The classification report

Let's get some metrics for validation:

- 1 from sklearn.metrics import classification_report
- print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
abusive hateful normal spam	0.81 0.83 0.78 0.67	0.88 0.05 0.93 0.30	0.85 0.10 0.85 0.41	5369 966 10848 2817
accuracy macro avg weighted avg	0.77 0.78	0.54 0.78	0.78 0.55 0.75	20000 20000 20000

F_1 -score

But wait...

Compare different goals for using SML:

To automatically decide what Instagram users should see an advertisement

Validation metrics

• To automatically remove spam from Twitter feed

Such information was not available in the exercise for week 6!

F_1 -score

 F_1 -score: The harmonic mean of precision and recall. (Weighted average of precision and recall)

Validation metrics

$$F_1$$
-score = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

Accuracy

	precision	recall	f1-score	support
abusive hateful normal spam	0.81 0.83 0.78 0.67	0.88 0.05 0.93 0.30	0.85 0.10 0.85 0.41	5369 966 10848 2817
accuracy macro avg weighted avg	0.77 0.78	0.54 0.78	0.78 0.55 0.75	20000 20000 20000

Recap

Accuracy: In which percentage of all cases was our classifier right?

Accuracy

Class distribution: The number of examples that belong to each class.

Imbalanced classification: A predictive modeling problem where the distribution of examples across the classes within a training dataset is not equal.

Accuracy

Accuracy

Majority class (red dots) vs. minority class (grey dots)

Recap

Always check how your cases are distributed across the labels.

Decide what metric is best to use beforehand.

Consider:

Recap

- Is class imbalance an issue?
- What will the classifier be used for?

The latter can bring you back to the question: To SML or not to SMI?

SML suitability depends on:

- How hard/easy it is to translate the decision proces for classification into straight-forward rules
- How much data there are to classify
- How much room there is for errors

Consider these matters as you decide (a) whether or not to use SML, and (b) what performance metrics to use.

In last week's lecture, we saw that you can train many different classifiers.

Amongst other, classifiers can differ based on:

- The vectorizer that is used on the data (i.e., count vectorizer or tf-idf vectorizer)
- The underlying model (e.g., Naïve Bayes, Logistic Regression, Decision Trees, SVM, etc.)

How do you know what classifier is best beforehand?

In last week's lecture, we saw that you can train many different classifiers.

Amongst other, classifiers can differ based on:

- The vectorizer that is used on the data (i.e., count vectorizer or tf-idf vectorizer)
- The underlying model (e.g., Naïve Bayes, Logistic Regression, Decision Trees, SVM, etc.)

How do you know what classifier is best beforehand?

Selecting a classifier

You don't!

Typically, various classifiers are trained and their performance is compared.

The best performing classifier is then selected and used to annotate more/new data.

Selecting a classifier

You don't!

Typically, various classifiers are trained and their performance is compared.

The best performing classifier is then selected and used to annotate more/new data.

Selecting a classifier

You don't!

Typically, various classifiers are trained and their performance is compared.

The best performing classifier is then selected and used to annotate more/new data.

Validation metrics

000000000000000000000

Zooming out

So far, we:

- Reviewed the exercise and the basic steps of SML
- Talked about what validation is
- Discussed some commonly used validation metrics

Next, we will talk about:

Input for SML

About input for SML

Bad input

Poor quality input can cause:

- Your classifier not being able to identify specific categories
- Your classifier to perform badly overall
- Your classifer to pick up implicit bias

Bad input

What makes input (training data) bad input?

Validation metrics

Bad input

What can be done to solve these issues?

Poor quality input can cause:

- Your classifier not being able to identify specific categories
- Your classifier to perform badly overall
- Your classifer to pick up implicit bias

Creating good input

You can create good input:

 Avoid class imbalance: increase your sample (add rare cases), or random selection

Validation metrics

- Make sure the hand coding is reliable (check Krippendorf's Alpha, add coder training)
- Make sure to develop a clear and objective codebook

User case*:

^{*}Based on: Möller et al., in press

User case*:

^{*}Based on: Möller et al., in press

User case*:

^{*}Based on: Möller et al., in press

User case*:

^{*}Based on: Möller et al., in pres

User case*:

^{*}Based on: Möller et al., in press

Classifiers can only be used to automatically annotate data from the same population as the data that they were trained on.

Validation metrics

Zooming out

Today, we:

- Reviewed the exercise and the basic steps of SML
- Talked about what validation is
- Discussed some commonly used validation metrics
- Talked about input for SML

Validation metrics

Zooming out

Tomorrow and this week, you will:

- Set up multiple different classifiers
- Validate those classifiers
- Select the best performing classifier

Work on the tutorial exercises for this week.