TC1018: Estructura de Datos C++
ACT03 — Apuntadores
Ing. Luis Humberto Gonzdiez G, Ing. Barbara Gabriela Garza V,
Forma de Trabajo: Individual,

Nombre: Solución

Matricula:

I. Escribe en la columna de la derecha, la declaración que se solicita en cada uno de los incisos.

Declara un apuntador a un double	double *P
Declara un apuntador a un string	Strius XP

II. Dada la siguiente declaración de variables, indica cuáles de los siguientes estatutos son correctos. Para los casos en los que sea necesario puedes suponer que el apuntador ya contiene una dirección válida.

double *p, *q, valor = 10;

⊠ Correcto	☐ Incorrecto	*p = valor;
☐ Correcto	✓ Incorrecto	*p = &valor
Correcto	☐ Incorrecto	p = &valor
☐ Correcto	⊠Incorrecto	p = valor;
☐ Correcto	Incorrecto	p = 10.3;
Correcto	☐ Incorrecto	q = p;

III. Dada la siguiente declaración de variables, indica cuáles de los siguientes estatutos son correctos. Para los casos en los que sea necesario puedes suponer que el apuntador ya contiene una dirección válida.

▼ Correcto	☐ Incorrecto	*pdX = *piA;
☐ Correcto	✓ Incorrecto	pdX = piA;
☐ Correcto *	✓Incorrecto	piA = pdX;
Correcto	☐ Incorrecto	*pdX = *piA + *piA;
⊠ Correcto	☐ Incorrecto	*pdX = iB;
Correcto	☐ Incorrecto	*piA = dY;
Correcto	☐ Incorrecto	*piA = 2 * (*piA);
☐ Correcto	Incorrecto	piA = NULL;
☐ Correcto	✓ Incorrecto	*pdX = NULL;
☑ Correcto	☐ Incorrecto	*pdX = (*pdX) + 3;

IV. Escribe en la columna de la derecha, la declaración que se solicita en cada uno de los incisos.

Declarar el arreglo A que tenga la capacidad de almacenar 50 apuntadores a enteros	int * Acceglo[50];
Declarar el apuntador P para que apunte a un arreglo para almacenar 50 enteros.	int Arreglo (50]; *p=Arreglo,

V. Dada la siguiente declaración de variables, indica cuáles de los siguientes estatutos son correctos. Para los casos en los que sea necesario puedes suponer que el apuntador ya contiene una dirección válida.

double one[10], two[5][5], *ptr, value = 1.0;

,			
▼ Correcto	☐ Incorrecto	*one = value;	
✓ Correcto	☐ Incorrecto	ptr = one + 3;	
☐ Correcto	Incorrecto	one = ptr;	
Correcto	☐ Incorrecto	ptr = one;	
✓ Correcto	☐ Incorrecto	*(one + 4) = 19.5;	
✓ Correcto	☐ Incorrecto	ptr = two[2];	
☐ Correcto	✓ Incorrecto	*one + 2 = 25.1;	
Correcto	☐ Incorrecto	*one = *(one + 3);	
☐ Correcto	Incorrecto	ptr = &one	

VI. Dada la siguiente definición de apuntador:

char *Cadena = "1234567890abcdefghi";

¿Qué salida se generará cada uno de los siguientes? Si lo que se va a desplegar es una dirección de memoria, especificar a quién pertenece la dirección.

cout << *Cadena + 6 << endl;	55
cout << *Cadena << endl;	V .
cout << Cadena[5] << endl;	Lø.
cout << (Cadena + 3) << endl;	4567890abcd efghi
cout << (Cadena + 1)[1] << endl;	3
cout << Cadena << endl;	1234567896abcdefgh