A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EQ

Bookmark

Show all steps: (

ON

Problem

As a provisional definition, let us call a finite abelian group "decomposable" if there are elements $a_1, ..., a_n \in G$ such that:

(DI) For every $x \in G$, there are integers $k_1, ..., k_n$ such that $\mathbf{x} = \mathbf{a_1^{k_1} a_2^{k_2} \dots a_n^{k_n}}$ (D₂) If there are integers $l_1, ..., l_n$ such that

$$a_1^{l_1}a_2^{l_2}\cdots a_n^{l_n}=e^{\text{then }}a_1^{l_1}=a_2^{l_2}=\cdots=a_n^{l_n}=e^{-\frac{1}{n}}$$

If (D_1) and (D_2) hold, we will write $G = [a_1, a_2, ..., a_n]$. Assume this in parts 1 and 2.

Let G' be the set of all products $a_2^{l_2} \cdots a_n^{l_n}$ as l_2 , range over \mathbb{Z} . Prove that G' is a subgroup of G, and $G' = [a_2, ..., a_n]$.

Step-by-step solution

Step 1 of 3

Assume that a finite abelian group G, of order $p^k m$, is decomposable. That is, if a_1 , $a_n \in G$ and both the conditions D1, D2 holds, then $G = [a_1, a_2, a_n]$.

Let G' be the set of all products $a_2^{l_2}a_3^{l_3}$ $a_n^{l_n}$, as $l_2, l_3, ..., l_n$ range over integers. Objective is to prove that G' is a subgroup of G, and $G' = [a_2, ..., a_n]$.

One step test: If H is a nonempty subset of group G, then H will be subgroup of G if and only if for all $a, b \in H$

$$ab^{-1} \in H$$

Comment

Step 2 of 3

Since G' be the set of <u>all</u> products $a_2^{l_2}a_3^{l_3}$ $a_n^{l_n}$, where $l_2, l_3, ..., l_n$ are integers. Therefore, the

set G' is closed under multiplication. Since $l_2, l_3, ..., l_n$ are arbitrary integers, so $-l_2, -l_3, ..., -l_n$ also. This shows that inverse of each $a_i^{l_i}$ will be $a_i^{-l_i} \in G'$.

Then again by the multiplication closed property,

$$a_j^{l_j}\cdot a_i^{-l_i}\in G'$$

for some i and j. Thus, any set generated by some set of elements forms a subgroup. Now, by the definition

$$a_1^0 \cdot a_2^{l_2} a_3^{l_3} \quad \ a_n^{l_n} = e \text{ implies } \ \ a_i^{l_i} = e.$$

So,
$$G' = [a_2, , a_n]$$
.

Comment

Step 3 of 3

Hence, G' is a subgroup of G, and $G' = [a_2, , a_n]$.

Comment