

Минская областная олимпиада школьников по физике 2001 года

10 класс.

<u>Задача 1. (20 баллов)</u> В физике при описании сложных процессов достаточно широко используются различные простейшие модели. Одной из них является модель идеального газа. Данная задача посвящена анализу этой модели.

1.1 В узком цилиндрическом сосуде с подвижным поршнем движется с достаточно большой постоянной скоростью $v_0=50,0\frac{M}{c}$ упругий шарик массы m=10,0 г. Вектор скорости шарика все время направлен вдоль оси сосуда, удары шарика о поршень и дно сосуда абсолютно упругие. Найдите среднюю силу давления шарика на поршень

(усредненную по промежутку времени, значительно превышающему время между ударами) как функцию скорости v_0 и расстояния h между дном и поршнем. Силой тяжести пренебречь.

1.2 Как известно, термодинамическая температура является мерой средней кинетической энергии движения молекул. Л. Больцман показал, что средняя кинетическая энергия, приходящаяся на одну степень свободы молекулы, равна $\frac{kT}{2}$, где T - абсолютная температура, измеряемая по шкале Кельвина, $k=1,38\cdot 10^{-23}\,\frac{\mathcal{Д} \mathcal{H}}{K}$ — постоянная Больцмана. Используя эти данные, введите понятие «температуры газа», состоящего из одного движущегося в сосуде шарика (см. п. 1.1). Получите уравнение состояния такого «газа», связывающее между собой давление p, температуру T и объем газа V. Вычислите «температуру» для приведенных значений массы и скорости шарика.

1.3 Как известно, при тепловом контакте тел их температуры выравниваются. Продемонстрируйте этот факт на примере упругого столкновения двух одинаковых шариков, один из которых покоится, а второй налетает на него со скоростью v_0 . Пусть после удара налетающий шар отклонился на некоторый угол α . Найдите скорости шаров после их упругого столкновения. Рассчитайте средние кинетические энергии каждого из шаров после столкновения, если угол отклонения α равновероятно принимает произвольные значения в интервале от $-\frac{\pi}{2}$ до $+\frac{\pi}{2}$.

1.4 Пусть шарик находится в вертикальном открытом сосуде и падает на поршень с высоты h_0 . Как зависит средняя сила давления шарика на поршень от его высоты h? Ускорение свободного падения g.

1.5 Рассмотрим идеальный газ с молярной массой μ при постоянной температуре T, находящийся в очень высоком вертикальном сосуде в поле тяжести земли. Разобьем его на малые горизонтальные слои толщиной Δh . Покажите, что в этом случае давление газа в каждом следующем из вышележащих слоев убывает в геометрической прогрессии. Найдите эту прогрессию. Попытайтесь с помощью полученных результатов оценить высоту Земной атмосферы. Давление газа у поверхности земли p_{θ} .

1.6 Сравните результаты $\pi.1.4$ и $\pi.1.5$. Объясните полученное противоречие.

Задача 2. (10 баллов) Два гладких однородных одинаковых цилиндра радиуса R прислонены к вертикальной стенке. Из-за того, что нижний цилиндр чуть-чуть сместился вправо по горизонтальной плоскости, верхний стал опускаться по вертикали, и система пришла в движение. Найдите конечную скорость нижнего цилиндра.

Задача 3. (10 баллов) Каждая из двух новогодних гирлянд последовательно составлена из $N=100\,$ различных лампочек так, что сопротивление первой лампочки каждой гирлянды $R_I=1,0\,$ Ом , а последней - $R_{100}=100\,$ Ом . Известно, что в первой гирлянде сопротивления лампочек возрастают в арифметической прогрессии, а во второй — в геометрической. Найдите силу тока, тепловую мощность, а также падение напряжения на $50\,$ -ой лампочке в каждой из гирлянд, если их включили в сеть напряжением $U=220\,$ В . R_1 R_2

Примечание: $\sqrt[99]{100} \approx 1,0476$

