Chapter 2

Boolean Algebra and Logic Gates

Boolean Algebra

Boole

 In 1854, George Boole introduced a systematic treatment of <u>logic</u> and developed for this purpose an algebraic system now called *Boolean* algebra.

Huntington

- In 1904, E.V. Huntington formulated the <u>postulates</u> for the formal definition Boolean algebra.
- For the formal definition of Boolean Algebra, we shall employ Huntington's First Set of Postulates.

Shannon

 In 1938, C. E. Shannon introduced <u>two-valued</u> Boolean algebra called Switch algebra, in which he demonstrated that the properties of binary electrical circuits can be represented by this algebra.

Most Common Postulates for Algebra

- Closure (封閉性)
 - x*y is also in S for any x,y in S (* operator)
- Associative law (結合律)
 - (x*y)*z = x*(y*z)
- Commutative law (交換律)
 - $x^*y = y^*x$
- Identity element (單位元素)
 - $e^*x=x^*e=x, x+0=x$
- Inverse
 - -a + (-a) = 0
- Distributive law (分配律)
 - $x^*(y+z) = (x^*y) + (x^*z)$

Two-valued Boolean Algebra

- $B = \{0,1\}$
- The rules of operations

	AND			OR		N	OT
\boldsymbol{x}	y	$x \cdot y$	x	y	x+y	\boldsymbol{x}	x'
0	0	0	0	0	0	0	1
O	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	 1	1	1		

- Closure 成立 (result is "0" or "1")
- Identity elements

(1) +: 0 0+0=0 1+0=1 →
$$x+0=x$$
 (0對 +)

• Commutative law 成立 1+0=0+1 1•0=0•1

Distributive Laws

• Distributive laws 成立

$$x \cdot (y+z)=(x \cdot y)+(x \cdot z)$$

Truth Table 真值表

х	У	z	y + z	$x \cdot (y + z)$	<i>x</i> · <i>y</i>	X·Z	$(x\cdot y) + (x\cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	$(b) x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) x(yz) = (xy)z
Postulate 4, distributive	(a) x(y+z) = xy + xz	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) x + xy = x	(b) $x(x + y) = x$

By means of truth table to prove

X	у	xy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

DeMorgan's Theorems

DeMorgan's Theorems

$$(x+y)' = x'y'$$

\mathcal{X}	y	x+y	(x+y)'	x'	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	О	0
1	0	1	0	O	1	O
1	1	1	0	O	0	О

$$(x y)' = x' + y'$$

\mathcal{X}	y	$x \cdot y$	$(x \cdot y)'$	x'	y'	x'+y'
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Operator Precedence

- Operator Precedence
 - parentheses
 - NOT
 - AND
 - OR
 - examples

$$-xy'+z \implies is x \cdot y' \text{ not } (xy)'$$

$$-(xy+z)'$$

The operations are implemented with logic gates

Boolean Functions and Gates (1/6)

■ NOT gate (反閘/反相閘)

$$F = A'$$
 or \overline{A}

0: false (low-voltage)

1: true (high voltage)

Truth Table (真值表)

Α	F
0	1
1	0

Input output

Boolean Functions and Gates (2/6)

• AND gate (且閘/及閘)

$$F = A \cdot B = AB$$

Truth Table (真值表)

A	В	F	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
In	nnut	output	

Boolean Functions and Gates (3/6)

• OR gate (或閘)

$$F = A + B$$

Truth Table (真值表)

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1
Ir	Input	

Boolean Functions and Gates (4/6)

■ NAND gate (反及閘)

$$F = (AB)$$
' or $\overline{(AB)}$

Truth Table					
Α	В	F			
0	0	1			
0	1	1			
1	0	1			
1	1	0			
I	nput	output			

Boolean Functions and Gates (5/6)

■ NOR gate (反或閘)

$$F = (A + B)$$
' or $\overline{(A + B)}$

Truth Table				
Α	В	F		
0	0	1		
0	1	0		
1	0	0		
1	1	0		
Input		output		

Boolean Functions and Gates (6/6)

• Exclusive-OR (XOR) gate (互斥或閘)

$$F = AB' + A'B = A \oplus B$$

Truth Table				
A	В	F		
0	0	0		
0	1	1		
1	0	1		
1	1	0		
I	nput	output		

真值表

Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$ \begin{array}{c cc} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
Buffer	x— F	F = x	$\begin{array}{c c} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Figure 2.5 Digital logic gates (continued)

NAND	$x \longrightarrow F$	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
NOR	x y F	F = (x + y)'	$ \begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} $
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-NOR or equivalence	x y F	$F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c ccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Figure 2.5 Digital logic gates

A Simple Circuit

Extension to Multiple Inputs

- Extension to multiple inputs
 - A gate can be extended to multiple inputs
 - if its binary operation is commutative and associative
 - AND and OR are commutative and associative

•
$$(x+y)+z = x+(y+z) = x+y+z$$

•
$$(x y)z = x(y z) = x y z$$

Positive and Negative Logic

- Positive and Negative Logic
 - two signal values <=> two logic values
 - positive logic: H=1; L=0
 - negative logic: H=0; L=1
- the positive logic is used in this book

- → A device is active high or active low
- → Some devices are active high and some are active low.

Boolean Functions

- 3 kinds of representations for Boolean functions
 - Boolean Algebra
 - binary variables
 - constants 0,1
 - logic operation symbols +, ●, '
 - Truth table
 - Circuit diagram

Three representations

1. Boolean Algebra

$$F_1 = x + y'z$$

3. Circuit Diagram

2. Truth Table

le 真值表

n input variables \rightarrow 2ⁿ combinations Inputs

X	У	Z	y'	y′z	F_1
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	0	1

DeMorgan's Theorems (1/5)

 $F_1(x, y) = (x+y)' = x'y'$

X	у	x+y	(x+y)'
О	О	0	1
О	1	1	О
1	О	1	О
1	1	1	0

				→
X	У	x'	y'	x'y'
О	О	1	1	1
О	1	1	О	О
1	О	О	1	О
1	1	О	0	0

$$F_1(x, y) = (x+y)' = x'y'$$

$$x$$
 y $(x+y)$,

DeMorgan's Theorems (2/5)

•
$$F_2(x, y) = (xy)' = x' + y'$$

X	У	ху	(xy)'
О	0	O	1
О	1	О	1
1	0	О	1
1	1	1	0

X	y	x'	y'	x'+y'
0	0	1	1	1
О	1	1	О	1
1	0	0	1	1
1	1	0	0	0

$$F_2(x, y) = (xy)' = x' + y'$$

$$y - (xy)^{\frac{1}{2}}$$

DeMorgan's Theorems (3/5)

•
$$F_3(x, y) = (x' + y')' = xy$$

X	у	x'	y'	x'+y'	(x'+y')'
О	О	1	1	1	0
О	1	1	О	1	О
1	0	0	1	1	О
1	1	О	О	О	1

X	y	xy
О	О	O
О	1	О
1	О	O
1	1	1

$$F_3(x, y) = (x' + y')' = xy$$

$$x \rightarrow (x'+y')'$$
 $y \rightarrow y$

DeMorgan's Theorems (4/5)

•
$$F_4(x, y) = (x'y')' = (x')' + (y')' = x + y$$

X	У	X'	y'	x'y'	(x'y')'
О	О	1	1	1	0
О	1	1	О	О	1
1	0	0	1	О	1
1	1	О	0	О	1

X	y	x+y
О	О	0
О	1	1
1	О	1
1	1	1

•
$$F_4(x, y) = (x'y')' = (x')' + (y')' = x + y$$

$$x \longrightarrow (x'y')'$$
 $y \longrightarrow (x'y')'$

$$\begin{array}{c} x \\ y \end{array}$$

DeMorgan's Theorems (5/5)

DeMorgan's theorem

$$(A+B+C)' = A'B'C'$$
 $(ABC)' = A'+B'+C'$

Generalizations

$$(A+B+C+ ... +F)' = A'B'C' ... F'$$

$$(ABC ... F)' = A' + B' + C' + ... + F'$$

$$(x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')$$

Two Equivalent Circuits

$$= x'z(y' + y) + xy'$$

$$= x'z + xy'$$

x'z+xy'
0
O
1
1
1
0
0

B

*				
x'y'z+x'yz+xy'				
0				
0				
1				
1				
1				
0				
0				

They are equivalent !!!

Canonical and Standard Forms

- Minterms and Maxterms
 - A minterm: an AND term consists of all literals in their normal form or in their complement form
 - For example, two binary variables x and y
 - xy, xy', x'y, x'y'
 - It is also called a standard product
 - n variables can be combined to form 2ⁿ minterms
 - A maxterm: an OR term (x+y), (x+y'), (x'+y), (x'+y')
 - It is also called a standard sum
 - 2ⁿ maxterms

Minterms and Maxterms

 each maxterm is the complement of its corresponding minterm, and vice versa

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			Minterms		Maxterms		
X	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	$M_{ m O}$	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Canonical Forms

- Canonical Forms
 - Sum (ORing) of minterms
 - F = x'y'z + xyz + xyz' in canonical form of 3 variables
 - F = x'y'z + xy not a canonical form
 - Product (ANDing) of maxterms
 - F = (x'+y'+z)(x+y+z)(x+y+z') in canonical form of 3 variables
 - F = (x'+y'+z)(x+y) not a canonical form
- Properties of Boolean Algebra
 - A Boolean function can be expressed as a sum of minterms
 - A Boolean function can be expressed as a product of maxterms

Sum of Minterms (全及項的和)

Table 2.4 *Functions of Three Variables*

	x	y	z	Function f ₁	Function f ₂
m_0	0	0	0	0	0
m_1	0	0	1>	4 1	0
m_2	0	1	0	0	0
m_3	O	1	1	0	1
m_4	$\langle \hat{1} \rangle$	0	0	4 1	0
m_{5}	1	0	1	0	1
m_6	1	1	0	0	1
m ₇	(1]	1	1>>	◆1	1

 An Boolean function can be expressed by a Sum of minterms (全及項的和)

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

Product of Maxterms (全或項的積)

 $f_1 = x'y'z + xy'z' + xyz$ = $m_1 + m_4 + m_7$

Table 2.4 *Functions of Three Variables*

x	y	z	Function f_1	Function f_2
0	0	0	0	0
0	0	1	1	0
0	1	O	0	0
0	1	1	0	1
1	O	O	1	0
1	O	1	0	1
1	1	O	0	1
1	1	1	1	1

- An Boolean function can also be expressed by a Product of maxterms (全或項的積)
 - $f_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$ (所有 $f_1 = 0$ 的全及項的和) $= m_0 + m_2 + m_3 + m_5 + m_6$
- $f_1''=f_1=(x'y'z')'(x'yz')'(x'yz)'(xy'z)'(xyz')'$ $=(x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y+z')=M_0M_2M_3M_5M_6$

Conversion between Canonical Forms

$$F(A,B,C) = \Sigma (1, 4, 5, 6, 7)$$

$$F'(A,B,C) = \Sigma(0, 2, 3) = m_0 + m_2 + m_3$$

⇒
$$F(A,B,C) = (m_0 + m_2 + m_3)' = m'_0 m'_2 m'_3$$

= $M_0 M_2 M_3 = \Pi(0,2,3)$

$$F(A,B,C) = \Sigma (1, 4, 5, 6, 7) = \Pi(0, 2, 3)$$

Table 2.5 *Truth Table for F* = A + B'C

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F(A,B,C) = \Sigma(1, 3, 6, 7) = \Pi(0, 2, 4, 5)$$

Standard Forms

- Disadvantage of the canonical forms
 - It requires each term to contain all variables (not the least number of literals)
 sum of minterms or product of maxterms
 - are seldom used
- Another is Standard Forms
 - 1. sum of products
 - 2. product of sums
- Characteristics of Standard Forms
 - with the least number of literals

Three Equivalent Circuits

An Boolean function can be expressed by a Sum of minterms

Simplification with Boolean Algebra (1/2)

They are equivalent

 F_{2}

Simplification with Boolean Algebra (2/2)

DeMorgan's theorem

$$(A+B+C)' = A'B'C'$$
 $(ABC)' = A'+B'+C'$

Generalizations

$$(A+B+C+...+F)' = A'B'C'...F'$$

 $(ABC...F)' = A'+B'+C'+...+F'$
 $(x'yz'+x'y'z)' = (x'yz')'(x'y'z)' = (x+y'+z)(x+y+z')$
 $[x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')'(yz)'$
 $= x' + (y+z)(y'+z') = x' + yz'+zy'$

We skip the discussion of simplification with Boolean algebra here. In fact, software tools can do a better job than human.

Standard Forms - Two-level Gating

Ex.
$$F1 = y' + xy + x'yz'$$
 (sum of products)

$$F2 = x (y'+z) (x'+y+z')$$
(product of sums)

Transistor (電晶體)

- A transistor has three terminals
 - A source (feed with 5 volts)
 - A base
 - An emitter, typically connected to a ground wire
- If the <u>base signal</u> is <u>high</u> (close to +5 volts), the source signal is grounded and the <u>output signal</u> is low (0). If the base signal is low (close to 0 volts), the source signal stays high and the output signal is high (1)

N-channel MOS Transistor

Transistor (電晶體)- Semiconductor(半導體)

Constructing Gates (semiconductor)

 It turns out that, because the way a transistor works, the easiest gates to create are the NOT, NAND, and NOR gates

V _{in}	V _{out}
0	1
1	0

V_1	V_2	V_{out}	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

Circuits

Gate (1 gate ~= 2~14 transistors)
 A combination of interacting transistors

Circuit

A combination of interacting gates designed to accomplish a specific logical function

Integrated Circuit (IC)

- System > PCB (printed circuit board)
- As with gates, we can describe the operations of entire circuits using three notations
 - Boolean expressions
 - logic diagrams
 - truth tables

Integrated Circuits (IC)

- Chip
 - A silicon semiconductor crystal that contains the electronic components for constructing digital gates.
- Levels of Integration Categories of ICs by their complexity
 - SSI Small-scale Integration devices (~10 gates)/
 - MSI Medium-scale Integration devices (~100 gates)
 - LSI Large-scale Integration devices (>1000 gates)
 - VLSI Very Large-scale integration
 - hundreds of thousands of gates
 - millions of transistors
 - SoC (system on a chip)

Digital Logic Families (by circuit technology)

- Digital Logic Families
 - Each family has its own basic electronic circuit
 - named by its <u>electronic components</u> employed in the construction of the basic circuit
- Most popular digital logic families
 - TTL: Transistor-transistor logic (standard)
 - ECL : emitter-coupled logic (high-spaced)
 - MOS : metal-oxide semiconductor (high component density)

IC Design (with CMOS)

CMOS Inverter

One npn transistor and one pnp transistor are used to construct one inverter.

done by tools or chip designer

masking

done by TSMC, UMC

Packing, Testing

Chip/Circuit Everywhere!

IC Industry in Taiwan

Parameters for Digital Logic Families (1/2)

- Parameters to be evaluated and compared among digital logic families
 - Fan-out
 - # of standard loads that the output of a typical gate can drive without impairing its normal operation
 - Standard load: the amount of current needed by an input of another gate
 - Fan-in the number of inputs available in a gate
 - Power dissipation (power consumption)
 - battery life and cooling system

Fig. 5-10 *D*-Type Positive-Edge-Triggered Flip-Flop

Fan out of the gate must >3

Parameters for Digital Logic Families (2/2)

Propagation delay

INPUT/OUTPUT PATH	DELAY (ns)
c_i to c_{i+1}	4.8
c_i to s_i	4.2
x_i, y_i to c_{i+1}	9.0
x_i, y_i to s_i	8.4

■ Noise margin

max external noise voltage to an input signal that dose not cause an undesirable change in the circuit output

Computer Aided Design (CAD)

- CAD tools is necessary (> millions of transistors)
- EDA (electronic design automation) is used specially for IC design
 - Schematic editor
 - HDL (Hardware Description Language)
 - Logic synthesis (automates the design)
- Physical realization of a digital circuit
 - ASIC application-specific integrated circuit
 - FPGA Field-programmable gate array
 - CPLD Complex programmable logic device