Moyenne de Césaro

On appelle suite des moyennes de Césaro associée à une suite réelle (u_n) la suite (σ_n) définie par :

$$\forall n \in \mathbb{N}, \sigma_n = \frac{u_0 + u_1 + \dots + u_n}{n+1}.$$

L'objectif du problème est d'étudier la convergence de (σ_n) en fonction de propriétés portées par (u_n) .

Partie I - Cas d'une suite monotone et convergente

On suppose dans cette partie que (u_n) est une suite croissante de limite $\ell \in \mathbb{R}$.

On introduit sa suite des moyennes de Césaro (σ_n) définie comme en introduction.

- 1.a Montrer que la suite (σ_n) est croissante.
- 1.b Montrer que $\forall n \in \mathbb{N}, \sigma_n \leq \ell$. Que peut-on en déduire ?
- $\text{2.a} \qquad \text{Etablir} \ \, \forall n \in \mathbb{N}, \sigma_{2n+1} \geq \frac{1}{2}\sigma_n + \frac{1}{2}u_{n+1}\,.$
- 2.b En déduire que (σ_n) converge vers ℓ .
- 3. Que dire de la suite des moyennes de Césaro d'une suite décroissante de limite $\ell \in \mathbb{R}$?

Partie II - Cas d'une suite convergente

Soit (u_n) une suite réelle convergent vers $\ell \in \mathbb{R}$. Pour tout $\varepsilon > 0$.

- 1.a Justifier qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > n_0$ entraı̂ne : $|u_n \ell| \le \varepsilon/2$.
- 1.b Etablir que pour tout entier $n > n_0$ on a :

$$\left|\sigma_n-\ell\right|\leq \frac{\left|u_0-\ell\right|+\cdots+\left|u_{n_0}-\ell\right|}{n+1}+\frac{\left|u_{n_0+1}-\ell\right|+\cdots+\left|u_n-\ell\right|}{n+1}\,.$$

- $\text{1.c} \qquad \text{Montrer qu'il existe} \quad n_{\scriptscriptstyle 1} > n_{\scriptscriptstyle 0} \quad \text{tel que pour tout} \quad n \in \mathbb{N} \;, \; n > n_{\scriptscriptstyle 1} \; \text{entraîne} : \; \frac{\left|u_{\scriptscriptstyle 0} \ell\right| + \dots + \left|u_{\scriptscriptstyle n_{\scriptscriptstyle 0}} \ell\right|}{n+1} \leq \varepsilon/2 \;.$
- 2. Conclure que (σ_n) converge vers ℓ .
- 3. On suppose ici que la suite (σ_n) converge vers le réel ℓ . On se propose d'étudier une réciproque du résultat précédent.
- 3.a Montrer que la suite (u_n) n'est généralement pas convergente. On pourra exhiber un contre-exemple.
- 3.b Montrer que la suite (u_n) n'est pas nécessairement bornée. On pourra considérer la suite (u_n) définie par $u_n = \begin{cases} p \text{ si } n = p^3 \\ 0 \text{ sinon} \end{cases}.$
- 3.c On suppose en outre que la suite (u_n) est monotone ; on pourra considérer, par exemple, qu'elle est croissante. Montrer alors par l'absurde que la suite (u_n) est majorée par ℓ . Conclure.

Partie III - Cas des suites périodiques

Soit $T \in \mathbb{N}^*$ et (u_n) une suite réelle T périodique i.e. telle que

$$\forall n \in \mathbb{N}, u_{n+T} = u_n$$
.

On introduit sa suite des moyennes de Césaro (σ_n) définie comme en introduction.

On pose aussi

$$s = \frac{1}{T}(u_0 + u_1 + \dots + u_{T-1}).$$

- 1. Montrer que, pour tout $\ n\in\mathbb{N}$, $\ s=\frac{u_{\scriptscriptstyle n}+u_{\scriptscriptstyle n+1}+\cdots+u_{\scriptscriptstyle n+T-1}}{T}$.
- 2. On considère la suite (v_n) de terme général : $v_n = (n+1)\sigma_n (n+1)s$.
- 2.a Montrer que (v_n) est T périodique.
- 2.b En déduire que (v_n) est bornée.
- 2.c Etablir que (σ_n) converge et préciser sa limite.