exercise 1:

Using properties 1, 2, and 3 of the absolute value function on \mathbb{Q} stated in class, show that

- for all x, y in \mathbb{Q} : (i). if $x \neq 0$, $|\frac{1}{x}| = \frac{1}{|x|}$, (ii) $||x| |y|| \leq |x y| \leq |x| + |y|$.

$\underline{\text{exercise } 2}$:

Let $\overline{T = (0,1)} \cup \{2\}$. Find, with proof, sup T.

exercise 3:

Let S and T be two bounded above subsets of \mathbb{R} . Define the subset

$$S + T = \{x + y : x \in S, y \in T\}.$$

Show that S + T is bounded above.

exercise 4:

From Abott's textbook: exercise 1.4.4.

exercise 5:

Using the definition of convergent sequences show that $b_n = \frac{1}{\sqrt{n}}$ converges to zero.

exercise 6:

Using the definition of convergent sequences show that any constant sequence is convergent.