Positive Hahn-Banach separation theorems in operator algebras

Ikhan Choi

The University of Tokyo

Tokyo, January 2025

Contents

1. Introduction and preliminaries

2. Proof sketches

Positive Hahn-Banach separation theorems in operator algebras

In E an ordered vector space, $F \subset E^+$ is called *hereditary* if $0 \le x \le y \in F$ implies $x \in F$.

Theorem (Haagerup '75, C. '25)

Let M be a von Neumann algebra, and let A be a C^* -algebra.

- (1) If F is a σ -weakly closed convex hereditary subset of M^+ , then for any $x \in M^+ \setminus F$ there exists $\omega \in M^+_*$ such that $\omega(x) > 1$ and $\omega(x') \le 1$ for all $x' \in F$.
- (2) If F_* is a norm closed convex hereditary subset of M_*^+ , then for any $\omega \in M_*^+ \setminus F_*$ there exists $x \in M^+$ such that $\omega(x) > 1$ and $\omega'(x) \le 1$ for all $\omega' \in F_*$.
- (3) If F is a norm closed convex hereditary subset of A^+ , then for any $a \in A^+ \setminus F$ there exists $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega(a') \le 1$ for all $a' \in F$.
- (4) If F^* is a weakly* closed convex hereditary subset of A^{*+} , then for any $\omega \in A^{*+} \setminus F^*$ there exists $a \in A^+$ such that $\omega(a) > 1$ and $\omega'(a) \le 1$ for all $\omega' \in F^*$.

Positive Hahn-Banach separation theorems in operator algebras

In E an ordered vector space, $F \subset E^+$ is called *hereditary* if $0 \le x \le y \in F$ implies $x \in F$.

Theorem (Haagerup '75, C. '25)

Let M be a von Neumann algebra, and let A be a C^* -algebra.

- (1) If F is a σ -weakly closed convex hereditary subset of M^+ , then for any $x \in M^+ \setminus F$ there exists $\omega \in M^+_*$ such that $\omega(x) > 1$ and $\omega(x') \le 1$ for all $x' \in F$.
- (2) If F_* is a norm closed convex hereditary subset of M_*^+ , then for any $\omega \in M_*^+ \setminus F_*$ there exists $x \in M^+$ such that $\omega(x) > 1$ and $\omega'(x) \le 1$ for all $\omega' \in F_*$.
- (3) If F is a norm closed convex hereditary subset of A^+ , then for any $a \in A^+ \setminus F$ there exists $\omega \in A^{*+}$ such that $\omega(a) > 1$ and $\omega(a') \le 1$ for all $a' \in F$.
- (4) If F^* is a weakly* closed convex hereditary subset of A^{*+} , then for any $\omega \in A^{*+} \setminus F^*$ there exists $a \in A^+$ such that $\omega(a) > 1$ and $\omega'(a) \le 1$ for all $\omega' \in F^*$.

Haagerup proved (1) \sim (3) in his master's thesis [Haa75], and asked if (4) holds. The part (1) plays a major role in the proof of some equivalence conditions for normal weights on a von Neumann algebra. The difficulty is (3)<(2) \approx (1)<(4). I proved (1) and (2) in different ways, and solved (4).

Since we can write $F^{r+r+}=(F-E^+)^{rr+}=(\overline{F-E^+})^+$ by the usual real bipolar theorem, where r denotes the real polar, each statement is equivalent to $(\overline{F-E^+})^+\subset F$.

Since we can write $F^{r+r+}=(F-E^+)^{rr+}=(\overline{F-E^+})^+$ by the usual real bipolar theorem, where r denotes the real polar, each statement is equivalent to $(\overline{F-E^+})^+\subset F$.

Definition

For
$$\delta > 0$$
, we define $f_{\delta} : (-\delta^{-1}, \infty) \to \mathbb{R}$ such that $f_{\delta}(t) := \frac{t}{\delta t + 1}$ for $t > -\delta^{-1}$.

It has many interesting properties such as operator monotonicity, semi-group property, increasing strong convergence to the identity, etc.

Since we can write $F^{r+r+}=(F-E^+)^{rr+}=(\overline{F-E^+})^+$ by the usual real bipolar theorem, where r denotes the real polar, each statement is equivalent to $(\overline{F-E^+})^+\subset F$.

Definition

For $\delta>0$, we define $f_\delta:(-\delta^{-1},\infty)\to\mathbb{R}$ such that $f_\delta(t):=\frac{t}{\delta\,t+1}$ for $t>-\delta^{-1}$.

It has many interesting properties such as operator monotonicity, semi-group property, increasing strong convergence to the identity, etc. For example in (1), fixing δ ,

Since we can write $F^{r+r+}=(F-E^+)^{rr+}=(\overline{F-E^+})^+$ by the usual real bipolar theorem, where r denotes the real polar, each statement is equivalent to $(\overline{F-E^+})^+\subset F$.

Definition

For $\delta > 0$, we define $f_{\delta} : (-\delta^{-1}, \infty) \to \mathbb{R}$ such that $f_{\delta}(t) := \frac{t}{\delta t + 1}$ for $t > -\delta^{-1}$.

It has many interesting properties such as operator monotonicity, semi-group property, increasing strong convergence to the identity, etc. For example in (1), fixing δ ,

Haagerup used the σ -strong topology to have $f_{\delta}(x_i) \to f_{\delta}(x)$ in the proof of (1).

Since we can write $F^{r+r+}=(F-E^+)^{rr+}=(\overline{F-E^+})^+$ by the usual real bipolar theorem, where r denotes the real polar, each statement is equivalent to $(\overline{F-E^+})^+\subset F$.

Definition

For
$$\delta > 0$$
, we define $f_{\delta} : (-\delta^{-1}, \infty) \to \mathbb{R}$ such that $f_{\delta}(t) := \frac{t}{\delta t + 1}$ for $t > -\delta^{-1}$.

It has many interesting properties such as operator monotonicity, semi-group property, increasing strong convergence to the identity, etc. For example in (1), fixing δ ,

Haagerup used the σ -strong topology to have $f_{\delta}(x_i) \to f_{\delta}(x)$ in the proof of (1). Since A^* has no analogue of the σ -strong topology, we use an inequality like $t - \varepsilon \le f_{\delta}(t) \le t$ on a suitable interval, to approximate x by elements majorized by y_i .

Bounded commutant Radon-Nikodym derivatives

To take functional calculi on linear functionals:

Bounded commutant Radon-Nikodym derivatives

To take functional calculi on linear functionals:

Definition

Let M be a von Neumann algebra, and let $\psi \in M_*^+$. Consider the Gelfand-Naimark-Segal representation $\pi: M \to B(H)$ associated to ψ with the canonical cyclic vector $\Omega \in H$. Then, we have a positive bounded linear map $\theta: \pi(M)' \to M_*$ defined such that

$$\theta(h)(x) := \langle h\pi(x)\Omega, \Omega \rangle, \qquad h \in \pi(M)', \ x \in M.$$

It has the image

$$\operatorname{im} \theta = \{\omega \in M_* : \text{there is } C > 0 \text{ such that } |\omega(x)| \le C\psi(x) \text{ for all } x \in M^+\}.$$

We will call $\theta^{-1}(\omega)$ the commutant Radon-Nikodym derivative of ω with respect to ψ .

Bounded commutant Radon-Nikodym derivatives

To take functional calculi on linear functionals:

Definition

Let M be a von Neumann algebra, and let $\psi \in M_*^+$. Consider the Gelfand-Naimark-Segal representation $\pi: M \to B(H)$ associated to ψ with the canonical cyclic vector $\Omega \in H$. Then, we have a positive bounded linear map $\theta: \pi(M)' \to M_*$ defined such that

$$\theta(h)(x) := \langle h\pi(x)\Omega, \Omega \rangle, \qquad h \in \pi(M)', \ x \in M.$$

It has the image

$$\operatorname{im} \theta = \{\omega \in M_* : \text{there is } C > 0 \text{ such that } |\omega(x)| \leq C\psi(x) \text{ for all } x \in M^+\}.$$

We will call $\theta^{-1}(\omega)$ the commutant Radon-Nikodym derivative of ω with respect to ψ .

For example in (2), when $\omega_n \in F_* - M_*^+$ converges to $\omega \in M_*^+$ in norm, we can find a suitable $\psi \in M_*^+$ such that

Contents

1. Introduction and preliminaries

2. Proof sketches

We prove (1) in a different way to motivate the proof methods of (4). Recall that we need to prove $(\overline{F}-\overline{M}^+)^+ \subset F$. To use the Krein-Šmulian theorem, we define a subset G satisfying $F-\overline{M}^+ \subset G$ and $G^+ \subset F$ and $\overline{G} \subset G$.

We prove (1) in a different way to motivate the proof methods of (4). Recall that we need to prove $(\overline{F-M^+})^+ \subset F$. To use the Krein-Šmulian theorem, we define a subset G satisfying $F-M^+ \subset G$ and $G^+ \subset F$ and $\overline{G} \subset G$. Haagerup originally defined and proved the σ -strong closedness of

$$G := \{ x \in M^{sa} : f_{\delta}(x) \in F - M^+ \text{ for all } \delta < \|x_{-}\|^{-1} \}.$$

We prove (1) in a different way to motivate the proof methods of (4). Recall that we need to prove $(\overline{F-M^+})^+ \subset F$. To use the Krein-Šmulian theorem, we define a subset G satisfying $F-M^+ \subset G$ and $G^+ \subset F$ and $\overline{G} \subset G$. Haagerup originally defined and proved the σ -strong closedness of

$$G := \{ x \in M^{sa} : f_{\delta}(x) \in F - M^+ \text{ for all } \delta < \|x_-\|^{-1} \}.$$

Instead, to avoid the use of $\sigma\text{-strong}$ topology, we define

$$G:=\left\{ \begin{aligned} &\text{for any } \varepsilon>0, \text{ there is a net } y_\delta\in F\\ x\in M^{sa}: &\text{indexed on } 0<\delta\leq (1+\|x\|)^{-1} \text{ such that}\\ &\|y_\delta\|\leq \delta^{-1} \text{ and } f_\delta(x)\leq y_\delta+\varepsilon\delta^{\frac{1}{2}} \end{aligned} \right\}.$$

We prove (1) in a different way to motivate the proof methods of (4). Recall that we need to prove $(\overline{F-M^+})^+ \subset F$. To use the Krein-Šmulian theorem, we define a subset G satisfying $F-M^+ \subset G$ and $G^+ \subset F$ and $\overline{G} \subset G$. Haagerup originally defined and proved the σ -strong closedness of

$$G := \{x \in M^{sa} : f_{\delta}(x) \in F - M^{+} \text{ for all } \delta < \|x_{-}\|^{-1}\}.$$

Instead, to avoid the use of σ -strong topology, we define

$$G:=\left\{ \begin{aligned} &\text{for any } \varepsilon>0, \text{ there is a net } y_\delta\in F\\ x\in M^{sa}: &\text{indexed on } 0<\delta\leq (1+\|x\|)^{-1} \text{ such that}\\ &\|y_\delta\|\leq \delta^{-1} \text{ and } f_\delta(x)\leq y_\delta+\varepsilon\delta^{\frac{1}{2}} \end{aligned} \right\}.$$

- ► $F M^+ \subset G$: Easy.
- ► $G^+ \subset F$: Relatively easy. Fix $\delta' > 0$ and obtain $(1 + \delta' ||x||)^{-1} f_{\delta}(x) \in F$ by limiting

$$0 \le (1 + \delta' \|x\|)^{-1} f_{\delta}(x) \le f_{\delta'}(f_{\delta}(x)) \le f_{\delta'}(y_{\delta} + \delta^{\frac{1}{2}}) \le f_{\delta'}(y_{\delta}) + \delta^{\frac{1}{2}}.$$

▶ $\overline{G} \subset G$: If $x_i \in G$ is bounded and $x_i \to x$ σ -weakly, then we can construct $y_\delta \in F$ such that $y_{i,\delta} \to y_\delta$ for $\delta \leq \delta_0$ and $y_\delta := f_{\delta - \delta_0}(y_{\delta_0})$ for $\delta > \delta_0$ for small $\delta_0 > 0$. Long computations. The convexity follows from $F - M^+ \subset G$ and $\overline{G} \subset G$, so the Krein-Šmulian theorem completes the proof.

For (4), we define

For (4), we define

$$G^* := \left\{ \begin{array}{c} \text{for any } \varepsilon > 0 \text{, there are nets } \psi_\delta \in A^{*+} \text{ and } \varphi_\delta \in F^* \\ \text{indexed on } 0 < \delta \leq (1+4\|\omega\|)^{-6} \text{ such that} \\ \text{the following five conditions are satisfied:} \\ |\omega(a)| \leq \delta^{-\frac{1}{6}} \psi_\delta(a) \text{ for all } a \in A^+, \ \|\psi_\delta\| \leq 1, \ \|\varphi_\delta\| \leq \delta^{-1}, \\ \omega_\delta \leq \varphi_\delta + \varepsilon \delta^{\frac{1}{2}} \psi_\delta, \text{ and } \omega_\delta \to \omega \text{ weakly* in } A^* \text{ as } \delta \to 0 \end{array} \right\},$$

where $\omega_{\delta} := \theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\omega)))$, and here θ_{δ} is associated to ψ_{δ} .

For (4), we define

$$G^* := \left\{ \begin{array}{c} \text{for any } \varepsilon > 0 \text{, there are nets } \psi_\delta \in A^{*+} \text{ and } \varphi_\delta \in F^* \\ \text{indexed on } 0 < \delta \leq (1+4\|\omega\|)^{-6} \text{ such that} \\ \text{the following five conditions are satisfied:} \\ |\omega(a)| \leq \delta^{-\frac{1}{6}} \psi_\delta(a) \text{ for all } a \in A^+, \ \|\psi_\delta\| \leq 1, \ \|\varphi_\delta\| \leq \delta^{-1}, \\ \omega_\delta \leq \varphi_\delta + \varepsilon \delta^{\frac{1}{2}} \psi_\delta, \text{ and } \omega_\delta \to \omega \text{ weakly* in } A^* \text{ as } \delta \to 0 \end{array} \right\},$$

where $\omega_{\delta} := \theta_{\delta}(f_{\delta}(\theta_{\delta}^{-1}(\omega)))$, and here θ_{δ} is associated to ψ_{δ} .

- $F^* A^{*+} \subset G^* \colon \mathsf{Take} \ \psi_\delta := (1 + \|\omega\|)^{-1}([\omega] + (1 + \|\varphi\|)^{-1}\varphi) \ \mathsf{and} \ \varphi_\delta := \theta(f_\delta(\theta(\varphi))).$
- ▶ $G^{*+} \subset F^*$: Take the Radon-Nikodym for $\omega + \delta \varphi_{\delta} + \psi_{\delta}$ and do the same thing as (1).
- ▶ $\overline{G^*}$ \subset G^* : ... we can prove in a similar way to (1) ... but Looong computations ...

Questions

- Simpler proof? (in conversation with N. Ozawa)
- Weight theory on C*-algebras?
- Convex hereditary subsets instead of convex balanced subsets?
- Non-commutative L^p spaces?

References I

- [Haa75] Uffe Haagerup. Normal weights on W*-algebras. J. Functional Analysis, 19:302–317, 1975.
- [Tak02] M. Takesaki. Theory of operator algebras. I, volume 124 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition, Operator Algebras and Non-commutative Geometry, 5.