Minimierung einer Funktion mittels Stochastic Gradient Descent (SGD)

Hermann Völlinger

15.09.2024

Lösen des Beispiels mit Stochastic Gradient Descent (SGD)

Wir wollen die Funktion

$$f(x) = x^4 - 3x^2 + 2$$

mit Hilfe des $Gradient\ Descent\ (SGD)$ - Verfahrens minimieren.

Dieses vollständige LaTeX-Dokument beschreibt die Minimierung der Funktion mithilfe des SGD-Verfahrens und zeigt die ersten paar Iterationen in einer Tabelle.

Schritt 1: Ableitung der Funktion

Die Ableitung von f(x) ist:

$$f'(x) = 4x^3 - 6x$$

Schritt 2: SGD-Update-Regel

Die Update-Regel des Gradientenabstiegs lautet:

$$x_{\text{neu}} = x_{\text{alt}} - \eta f'(x_{\text{alt}})$$

wobei $\eta = 0.01$ die Lernrate ist.

Schritt 3: Iterationen

Wir starten mit einem zufälligen Wert $x_0=0.5$ und führen das SGD-Verfahren iterativ durch:

Iteration n	x_n	$f'(x_n)$	$x_{ m neu}$	$f(x_{\text{neu}})$
1	0.5	f'(0.5) = -1.25	$0.5 - 0.01 \times (-1.25) = 0.5125$	1.761
2	0.5125	f'(0.5125) = -1.207	$0.5125 - 0.01 \times (-1.207) = 0.52457$	1.726
3	0.52457	f'(0.52457) = -1.166	$0.52457 - 0.01 \times (-1.166) = 0.53624$	1.692
4	0.53624	f'(0.53624) = -1.126	$0.53624 - 0.01 \times (-1.126) = 0.5475$	1.659

Schritt 4: Stopkriterium

Das Verfahren wird fortgesetzt, bis die Differenz zwischen f(x) in aufeinanderfolgenden Iterationen kleiner als ein festgelegter Schwellenwert $\epsilon=0.0001$ ist