Teacher: Savinder Kaur & Sushil Singh Date: 18/20 January, 2022

CLASS WORK to be evaluated on Jan 18/20, 2022

1. METHOD

- (a) Write the Distribution Functions for Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein.
- (b) Explain Fermi energy and chemical potential and their importance/significance.

2. CODING

(a) (Plot: Figure 1)

Plot the three distribution functions (Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein) as a function of energy (ϵ/kT) taking the same value of $\alpha = 0$ or 1.

Hint! the BE graph **should be** drawn for $(\epsilon/kT) > -\alpha$ [i.e., $(\epsilon/kT) > -(-\mu/kT)$ or $\epsilon > \mu$ as f_{BE} cannot be negative; observe a spike at α .

(b) (Plot: Figure 2)

Plot the Fermi-Dirac distribution function as a function of energy for $\epsilon_F = 1$ eV for ϵ range [-4, 4] at different temperatures T = 10 K, 100 K, 100 K, 100 K.

(c) (Plot: Figure 3)

Take a hypothetical case of $\mu=1~eV$. From figure 1 above we learnt that for BE case the minimum energy $\epsilon_{min}>\mu$ and thus for all energies we have $\epsilon>\mu$.

Plot the Bose-Einstein distribution function as a function of energy for $\mu=1$ for ϵ range $(\mu,4]$ at different temperatures T=10~K,100~K,1000~K,5000~K.

