ED – Seminario Tablas hash

María del Rosario Suárez Fernández

- Cada posición puede tener mas de un elemento asociado
- Aplicaciones:
 - Diccionario
- Factor de carga
 - >1 → Redispersión
 - <0.33 → Redispersión inversa

- Suponiendo que tenemos una tabla hash abierta de tamaño 13, muestra gráficamente cómo evolucionaría la tabla si se introducen en ella elementos con las siguientes claves: 1, 10, 15, 20, 7, 13, 3, 2, 4, 6, 8, 18, 11, 12, 14, 26, 65, 39, 40
- ¿Cuál es el factor de carga de la tabla en cada caso?

Insertar: 1, 10, 15, 20, 7, 13, 3, 2, 4, 6, 8, 18, 11

Elementos → 13 Tamaño tabla → 13 FC=13/13=1

Insertar: 12

Elementos → 14
Tamaño tabla → 13
FC=14/13=1.07

FC=1.07 >1 → Redispersión

- Nuevo tamaño
 - 13 * 2 = 26
 - Primer primo después del 26 → 29
- Redispersión
 - Reubicar todos los elementos de la tabla

Elementos → 14
Tamaño tabla → 29
FC=14/29=0.48

Insertar: 14, 26, 65, 39, 40

Tablas Hash cerradas

- Cada posición sólo tiene cabida para un elemento
 - Si se detecta una colisión, se buscan posiciones próximas
- Técnicas de búsqueda de posiciones próximas
 - Exploración lineal
 - Exploración cuadrática
 - Dispersión doble
- Factor de carga
 - >0.5 → Redispersión
 - <0.16 → Redispersión inversa

 La función que calcula la posición de un elemento pasa a ser:

```
• f(x)=(x+i)\%B  i=0,1,2,3,...
```

- Ejercicio:
 - Suponiendo que tenemos una tabla hash cerrada de 7 elementos, muestra gráficamente cómo evolucionaría la tabla si se introducen en ella elementos con las siguientes claves: 4, 10, 12, 3, 17, 15, 14

- Inserta el 4
 - Intento 0
 - f(4)=(4+0)%7=4%7=4

- Inserta el 10
 - Intento 0
 - f(10)=(10+0)%7=10%7=3

- Inserta el 12
 - Intento 0
 - f(12)=(12+0)%7=12%7=5

- Inserta el 3
 - Intento 0
 - f(3)=(3+0)%7=3%7=3
 - Intento 1
 - f(3)=(3+1)%7=4%7=4
 - Intento 2
 - f(3)=(3+2)%7=5%7=5
 - Intento 3
 - f(3)=(3+3)%7=6%7=6

- Inserta el 17
 - Intento 0
 - f(17)=(17+0)%7=17%7=3
 - Intento 1
 - f(17)=(17+1)%7=18%7=4
 - Intento 2
 - f(17)=(17+2)%7=19%7=5
 - Intento 3
 - f(17)=(17+3)%7=20%7=6
 - Intento 4
 - f(17)=(17+4)%7=21%7=0

- Inserta el 15
 - Intento 0
 - f(15)=(15+0)%7=15%7=1

- Inserta el 14
 - Intento 0
 - f(14)=(14+0)%7=14%7=0
 - Intento 1
 - f(14)=(14+1)%7=15%7=1
 - Intento 2
 - f(14)=(14+2)%7=16%7=2

- La función que calcula la posición de un elemento pasa a ser:
 - $f(x)=(x+i^2)\%B$ i=0,1,2,3,...
- Ejercicio:
 - Suponiendo que tenemos una tabla hash cerrada de 7 elementos, muestra gráficamente cómo evolucionaría la tabla si se introducen en ella elementos con las siguientes claves: 4, 10, 12, 17, 3

- Inserta el 4
 - Intento 0
 - $f(4)=(4+0^2)\%7=4\%7=4$

- Inserta el 10
 - Intento 0
 - $f(10)=(10+0^2)\%7=10\%7=3$

- Inserta el 12
 - Intento 0
 - $f(12)=(12+0^2)\%7=12\%7=5$

- Inserta el 17
 - Intento 0
 - $f(17)=(17+0^2)\%7=17\%7=3$
 - Intento 1
 - f(17)=(17+1²)%7=18%7=4
 - Intento 2
 - $f(17)=(17+2^2)\%7=21\%7=0$

- Inserta el 3
 - Intento 0
 - $f(3)=(3+0^2)\%7=3\%7=3$
 - Intento 1
 - $f(3)=(3+1^2)\%7=4\%7=4$
 - Intento 2
 - f(3)=(3+2²)%7=7%7=0
 - Intento 3
 - f(3)=(3+3²)%7=12%7=5
 - Intento 4
 - f(3)=(3+4²)%7=19%7=5
 - Intento 5
 - f(3)=(3+5²)%7=28%7=0
 - •

- La función que calcula la posición de un elemento pasa a ser:
 - $f(x)=(x+i^*h_2(x))%B$ i=0,1,2,3,...
 - $h_2(x)=R-x\%R \rightarrow$ Función del cálculo de salto
- Ejercicio:
 - Suponiendo que tenemos una tabla hash cerrada de 7 elementos, muestra gráficamente cómo evolucionaría la tabla si se introducen en ella elementos con las siguientes claves: 4, 10, 12, 17, 3, 5, 7

- Inserta el 4
 - Intento 0
 - f(4)=(4+0*(5-4%5))%7=4

- Inserta el 10
 - Intento 0
 - f(10)=(10+0*(5-10%5))%7=3

- Inserta el 12
 - Intento 0
 - f(12)=(12+0*(5-12%5))%7=5

- Inserta el 17
 - Intento 0
 - f(17)=(17+0*(5-17%5))%7=3
 - Intento 1
 - f(17)=(17+1*(5-17%5))%7=6

- Inserta el 3
 - Intento 0
 - f(5)=(5+0*(5-5%5))%7=5
 - Intento 1
 - f(5)=(5+1*(5-5%5))%7=3
 - Intento 2
 - f(5)=(5+2*(5-5%5))%7=1

- Inserta el 5
 - Intento 0
 - f(3)=(3+0*(5-3%5))%7=3
 - Intento 1
 - f(3)=(3+1*(5-3%5))%7=5
 - Intento 2
 - f(3)=(3+2*(5-3%5))%7=0

Inserta el 7

- Intento 0
 - f(7)=(7+0*(5-7%5))%7=0
- Intento 2
 - f(7)=(7+1*(5-7%5))%7=3
- Intento 2
 - f(7)=(7+2*(5-7%5))%7=6
- Intento 3
 - f(7)=(7+3*(5-7%5))%7=2

Aumentar o disminuir el tamaño de la tabla

- Redispensión -> aumentar el tamaño de la tabla
 - FC>0.5
 - Nuevo tamaño de tabla: el siguiente número primo al doble del tamaño de la tabla
- Redispensión inversa → disminuir el tamaño de la tabla
 - FC<0.16
 - Nuevo tamaño de tabla: el numero primo anterior a la mitad del tamaño de la tabla si este no es primo

Ejercicio

 Suponer que tenemos una tabla hash cerrada de 23 elementos con los siguientes elementos insertados: 1, 2, 10, 11, 12, 13, 15, 16, 17, 19

Ejercicio

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

FC=0.39

Ejercicio

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

0	>	
1		1
2	>	2
З	\longrightarrow	
4		
5	>	
6	>	
7	>	
8	>	
9		
10	>	10
11	>	11
12	>	12
13	>	13
14	>	
15	>	15
16	>	16
17	>	17
18	>	
19	>	19
20	>	
21	>	
22	>	

Ejercicio

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

0		
		1
2	\longrightarrow	2
3	>	
4		
5	>	
6	>	
7	>	
8	>	
9	>	
10	>	10
11	>	11
12	>	12
13	>	13
14	>	
15	>	15
16	>	16
17	>	17
18	>	
19	>	19
20	>	
21	>	
22		

FC=0.39

FC=0.35

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

FC=0.39

FC=0.35

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

FC=0.39

FC=0.35

FC=0.26

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borra el elemento con clave: 2
 - Borra el elemento con clave: 13
 - Borra el elemento con clave: 19
 - Borra el elemento con clave: 16
 - Borra el elemento con clave: 10

FC=0.39

FC=0.21

FC=0.35

FC=0.26

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 21
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 33

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 21
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 33

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 21
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 33

En la <u>posición 10</u> estaba el elemento con <u>valor</u> <u>10</u> pero como se necesita el hueco, lo sustituyo y se pone el <u>estado a LLENO</u>

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 1
 - Borrar el elemento con clave: 33
 - Borrar el elemento con clave: 21
 - Borrar el elemento con clave: 9
 - Borrar el elemento con clave: 11

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 1
 - Borrar el elemento con clave: 33
 - Borrar el elemento con clave: 21
 - Borrar el elemento con clave: 9
 - Borrar el elemento con clave: 11

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 1
 - Borrar el elemento con clave: 33
 - Borrar el elemento con clave: 21
 - Borrar el elemento con clave: 9
 - Borrar el elemento con clave: 11

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 1
 - Borrar el elemento con clave: 33
 - Borrar el elemento con clave: 21
 - Borrar el elemento con clave: 9
 - Borrar el elemento con clave: 11

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 1
 - Borrar el elemento con clave: 33
 - Borrar el elemento con clave: 21
 - Borrar el elemento con clave: 9
 - Borrar el elemento con clave: 11

- Redispersión inversa
- **FC**<0.16
- Nuevo tamaño. Número primo anterior a la mitad del tamaño de la tabla o el mismo si ya es primo
 - 23 / 2 = 11
 - Me vale 11 porque es primo
- Recolocaríamos los datos
 - 12, 15, 17

- Redispersión inversa
- **FC**<0.16
- Nuevo tamaño. Número primo anterior a la mitad del tamaño de la tabla o el mismo si ya es primo
 - 23 / 2 = 11
 - Me vale 11 porque es primo
- Recolocaríamos los datos
 - 12, 15, 17

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 3
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 4

FC=0.36

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 3
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 4

FC=0.36

FC=0.27

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Insertar el elemento con clave: 3
 - Insertar el elemento con clave: 9
 - Insertar el elemento con clave: 4

FC=0.36

FC=0.54

FC=0.27

- Redispersión
- **FC**>0.5
- Nuevo tamaño. Número primo siguiente al doble del tamaño de la tabla
 - 11 * 2 = 22
 - Primer primo después del 22 → 23
- Recolocaríamos los datos
 - 12, 3, 15, 4, 17, 9

FC=0.36

FC=0.54

FC=0.27

- Redispersión
- **FC**>0.5
- Nuevo tamaño. Número primo siguiente al doble del tamaño de la tabla
 - 11 * 2 = 22
 - Primer primo después del 22 → 23
- Recolocaríamos los datos
 - 12, 3, 15, 4, 17, 9

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 12
 - Borrar el elemento con clave: 17
 - Borrar el elemento con clave: 15

FC=0.26

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 12
 - Borrar el elemento con clave: 17
 - Borrar el elemento con clave: 15

FC=0.26

FC=0.21

- Muestra gráficamente cómo evolucionaría la tabla (y el FC) si se produce lo siguiente:
 - Borrar el elemento con clave: 12
 - Borrar el elemento con clave: 17
 - Borrar el elemento con clave: 15

FC=0.26

FC=0.21

FC=0.13

- Redispersión inversa
- **FC**<0.16
- Nuevo tamaño. Número primo anterior a la mitad del tamaño de la tabla o el mismo si ya es primo
 - 23 / 2 = 11
 - Me vale 11 porque es primo
- Recolocaríamos los datos
 - 3, 4, 9

FC=0.26

FC=0.21

FC=0.13

- Redispersión inversa
- **FC**<0.16
- Nuevo tamaño. Número primo anterior a la mitad del tamaño de la tabla o el mismo si ya es primo
 - 23 / 2 = 11
 - Me vale 11 porque es primo
- Recolocaríamos los datos
 - 3, 4, 9

FC=2.27