COMPUTER PROGRAMMING FOR COOLING TOWER PERFORMANCE

by
K A. NAGABUSHANA

ME 1983

M

NAG

COM

DEPARTMENT OF MECHANICAL ENGINEERING INDIAN, INSTITUTE OF TECHNOLOGY, KANPUR ALIGHET TORY

COMPUTED POGRAMMING FOR COOLING TOWER PERFORMANCE

82543

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by

K.A. NAGABUSHANA

to the

Department of Mechanical Engineering INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

AUGUST, 1983

ME-1903-M-NAG-COM

2 = MAT OOA

CENTING I 'BRARY

4cc No A \$2543

CERTIFICATE

This is to certify that the theses entitled.

"Computer Programming for Cooling Tower Performance"

by Mr. K.A. Nagabushana is a record work carried out

under my supervision and the same has not been submitted

elsewhere for a degree.

August 1983

(Manohar Prasad)

Assistant Professor

Department of Mechanical Engg.
Indian Institute of Technology
Kanpur.

ACKNOWLEDGEMENTS

I express my appreciation and gratitude to:

My supervisor, Dr. MANOHAR PRASAD, whose continuous

encouragement, guidance and enthusiasm were vital

to the success of this effort,

Computer Centre, IIT, Kanpur for computational facilities,

Dr. B. Sahay and V. Sundararajan for their timely help in the last moment,

Mr. R.K. Nakranı, V. Somasundaram, Srikanth Jaın, R. Rajaram Prasad and other friends in preparing this manuscripts,

Mr. P.N. Misra and P.N. Sharma for their constant encouragement and useful information,

Mr. D.P. Saini for nice typing of the manuscript.

CONTENTS

				Page
LIST OF FI	GURE	S		٧ı
LIST OF TA	BLES			vıi
NOMENCLATU	PE			V111
ABSTRACT				Хl
CHAPTER-1			INTRODUCTION	1
	1.1	:	Need for Cooling Towers	1
	1.2	:	Historical Background and Development in Cooling Towers	3
	1.3	:	Literature Survey	4
	1.4	*	Techniel Aspects in Cooling Tower Design	8
	1.5	:	Present Work	10
CHAPTER-2			THEORY OF COOLING TOWERS	13
	2.1	7	Operating Principles	13
	2.2	:	Cooling Tower Terminology	14
	2.3	=	Classification of Cooling Towers	19
	2.4	:	Main Components of Cooling Tower	34
CHAPTER-3			MATHEMATICAL ANALYSIS	3 9
	3.1	:	Psychometry and Heat Transfer	39
	3.2	•	Cross-Flow Analysis	41
	3.3	•	Counter Flow Analysis	47

	3 4		Tower Characteristic and Number of Transfer Unit	48
	3.5	-	Volume of Tower Based on Water Evaporation Rate	48
	3.6	:	Procedure of Solving Problems in Cooling Towers	49
	3.7		Variable Lewis Number	51
	3.8	•	Rate of Evaporation	52
	3.9	•	Variable Cost Analysis	52
	3.10):	Present worth Method	55
CHAPTER-4			RESULT AND DISCUSSION	56
	4.1	2	Selection of Grid Size	56
	4.2	:	Iterative Scheme of Analysis	56
	4.3	•	Effect of Lewis number	62
	4.4	:	Tower Coefficients	62
	4.5	:	Volume, Heat Transfer and Evaporation in Tower Analysis	63
	4.6	•	Cost Analysis	64
	4.7	:	Conclusion	64
PEFERENCE APPENDIX	S			66

LIST OF FIGURES

		Page
2.1.a	Continuous blow down	16
2.1.b	Intermittent blow down	16
2.2	Itmospheric spray tower	25
2.3	Hyperbolic natural-draft tower	25
2.4	Mechanical draft tower	3 0
2.5.a	Counter-flow tower	32
2.5.b	Cross-flow tover	32
2.6	Types of packing used in towers	36
3.1	Element (1,3) in cross-flow with control volume	43
3.2	Condition line for cooling tower on psychometric chart	46
4.1.a and b	Grid size selection	57
4.2	Variation of water temperature in each grid	59
4.3	Variation of humidity of air in each grid	60
4.4	Variation of enthalpy of air in each grid.	61

LIST OF TABLES

		<u>Page</u>
2.1	Comparison of the towers floor areas for the same heat load	21
3.1	Constants C3 and C4 from experimental results	54
4.1	Average outlet water temperature v/s grid size	71
4.2	Gridwise variation of water temperature and state of air	e 72
4.3	Details of water temperature at every grid point	73
4.4	Details of iterations in attaining desired temperature	74
4.5.a and b	Effect of Lewis number v/s exit water temperature	75-76
	Tower coefficients in case of counter-flow tower	77- 80
4.7	Tower co-efficient calculation details	81
4.9	Gridwise variation of tower characte- ristics	8 2
4.9	Comparison of tower volume based on tower dimensions and huridity	8 3
4.10.	Heat rejection and % rate of evaporation for cross-flow tower	n 8 4
4.11-	Various costs v/s flow rate	8 5

NOMENCLATURE

A	- Tower reference plan area
BLD	- % Blowdown of water/hr
CFIL	- Cost of wood/m ³
COP	- Cost of power/KW-hr
CWAT	- Cost of water/m ³
CWOOD	- Total cost of wood
C1,C2,C3,C4	- Constants depending upon the type of
	fill arrangement
D	- Drameter of water droplet in mm
đ	- Diameter in m
GE	- Equivalent mass of air
g	- Acceleration due to gravity in m/sec2
HEAD	- Total pumping head
HR ,	- Number of hours/year
h	- Enthalpy in kcal/kg of dry air
k	- Thermal conductivity in kcal/m-hr-°C
Le	- Lewis number h _C /(h _D c _{pa})
LKG	- 2 leakage of water/hr
M	- Number of elements in i direction
m	- Mass flow in tower - kg/hr
N	- Number of elements in j direction
n	- Number of decks
OF	Tower operating factor

```
Pressure in N/m2
Ρ
                 Volume of air blown/sec
VOLSEC
POWFAN
               - Power for fan in KW-hr
PPOW
               - Power for pump in KW-hr
Pr
               - Prandtl number
PUMCOS
               - Cost of pumping
              - Reynolds number
Re
              - Temperature in °C
\mathbf{T}
               - Total water required/year
TOTWAT
               - Total volume of tower in m<sup>3</sup>
V
               - Volume of fill in m<sup>3</sup>
VOLF
              - Face velocity in m/sec
VSEC
               - Humidity in kg of water/kg of dry air
W
               - Cost of water/m3
WATCOS
×
               - Mol-fraction of air in moles dry air/
                 moles moist air
               - Number of Years
                Surface area of water droplet in m2/m3
A_{\tau r}
Co
               - Total cost over projected life
^{\rm C}_{\rm p}
               - Specific heat in kJ/°C-kg of dry air
C_{+}
               - Total cost of tower for the projected life
tr
               - Pipe frictional co-efficient
               - Universal gravitational constant
q_{c}
               - Heat transfer coefficient in kcal/hr-m2-°C
h<sub>c</sub>
'nD
               - Mass transfer co-efficient in kg of dry
                 air/hr m<sup>2</sup>
```

```
к<sub>е</sub>
                 Combined heat and mass transfer coefficient
               - Rate of discount
r<sub>Tn+</sub>
               - Relative velocity of air
Z_{\mathcal{F}}
               - Distance between each deck in m.
ΔΡ
               - Pressure drop in mm of water
               - Elemental volume of tower in m<sup>3</sup>
ΔV
               - Density in kg/m<sup>3</sup>
ρ
               - Kinematic viscosity in stokes
ν
               - Absolute viscosity in kg/m-sec
LL
SUFFIX
а
               ~ air
               - average value
av
               - dry bulb
db
               - equivalent
e
               - evaporation
ev
f
               - saturated liquid state
               - evaporated state
fg
               - saturated vapour state
g
i
               - number of row
               - number of column
]
pip
               - pipe
               - rate of evaporation
re
               - saturated condition
s
wb
                 wet bulb
```

The governing equations for a cross and counter-flow cooling towers are derived using heat and mass transfer considerations. The finite element method was used to solve these equations for various ranges of parameters. The optimum number of fills were determined for a desired exit water temperature using iterative scheme.

In case of a given exit condition of water the NTU and tower characteristics were also determined using variable as well as fixed mass of water. When the evaporation of water was considered, it was found that the tower capacity gets increased by about 6 to 7%.

The effects of Lewis number shows significant effect on the exit conditions based on recommended Lewis numbers. Hence the present method considering the variable/average Lewis number should be used for the evaluation of the tower characteristics.

Finally, cost analysis has been carried out for constraints like water load, fills, etc., considering over a period of the tower life. It has been found that the make up water dominates over costs of power, machinery and packing material.

CHAPTER - I

INTRODUCTION

1.1 Need for Cooling Towers [4, 13, 14, 19, 30]

The disposal of waste heat is a most common feature in power plants, refrigeration systems and industries. In many processes it is even necessary to dispose of heat from certain part of the plant

- in order to get rid of the local temperature gradient
- 2. the vast quantity of heat generated cannot be put to good use for various reasons.

At the same time with the industrial progress the need for cooling equipment with sophisticated designs have grown up for the process of heat removal. Water and air are readily and naturally available in abundance as cheapest agencies. Owing to gaseous nature, greater quantities of air is required to perform the same function as water. Thus water is generally chosen as a cooling media.

In thermal power plants each MW of power generation demands 2 MW of heat rejection. Similarly, in vapour

compression refrigeration systems each ton of cooling requires about 1.3 ton of heat rejection. If air is used to reject 2 MW of heat with about 10°C of temperature rise, one needs 2000 kg/s of air as compared to only 500 kg/s of water. In olden days, due to this large requirement of water and lack of knowledge of cooling towers, the industries were situated at the water resources, like - lakes, large ponds, canals, river etc. The abundant water resources made it possible to use cold water on once through basis. However, the number of rivers and lake sites are limited, and the average temperature of such water frequently rises owing to growing number of plants. Also in many countries in the light of ecological renalssance it is environmentally unacceptable to discharge hot water directly to source after its use for cooling. The hot process water must be either cooled before discharge or cooled and recycled. Purchasing and then discharging large quantities of water into sewage systems is cost prohibitive. Even if favourable economically, such practice is socially restricted and environmentally prohibitive. Moreover the site selection for an industry may prove to be profitable to locate it where water is scarce. It implies therefore to develop a system which can cool the warm water with least use of make up water. This has led to the development

of evaporative cooling device-Cooling Tower.

1.2 Historical Background and Development in Cooling Towers 6,14, 16, 18, 19

In spite of present widespread and continually growing use of cooling towers for heat dissipation in various industries comparably less information was available in the past. The development, as a whole or in part, took place within last century. Water has always been the most convenient medium for removing the heat, and recooling became necessary as the required quantity of cooling water increased.

Cooling towers function on the principle of evaporative cooling. Although the art of evaporative cooling is quite ancient, it has been studied scientifically very recently. The first use of evaporative cooling dates back to 2500 B.C., where the porous jars were used to get cool water. In persian countries it was customarily to cover their tents with wet felt in order to find shelter from oppressive heat. And the permanent houses were built half underground and running water was flown into a small indoor pool. The same principle of evaporative cooling was made use of in making ice in olden days.

After continual development it was discovered that by spraying downwards in a box, instead of upwards,

in spray ponds and atmospheric spray towers, aerodynamically designed fans were incorporated into the system.
The betterment in system was brought about by fill or
packing material to increase the retention time of water
and provide greater hir/water interfacial contact for
more efficient cooling.

Cooling tower technology appears to have made an entire circle, as emphasis is again directed towards atmospheric cooling. However, there are significant differences in these modern designs compared to early prototype. The hyperbolic cooling towers are being constructed, now-a-days, without the use of fans or air movers.

1.3 Literature Survey [5, 6, 14]

The first technical consideration of the problem was given by Robinson C.S., in 1922. It was further developed by Walker, Lewis and McAdams in the following years. They developed the basic governing equations for Heat and Mass transfer as two different processes in the tower design, and developed an interesting relationship between Heat and Mass transfer co-efficients, but did not use. Later Lewis W.K., found the same relationship and was named after him as "LEWIS'S LAW", Le = f (Conductivity/Diffusivity) = $h_c/(h_d * c_{pa})$

During the same year it was noted by Nusselt W., and was verified by Schmidt E. In the case of water evaporating into air, conductivity is approximately equal to diffusivity, so that their ratio is unity. Montgomery R.B., finds it equal to 0.84 and Hansen H., puts it at 0.94.

The generally accepted concept of cooling tower performance was developed by Merkel F., in 1925. A number of assumptions were used to simplify the development of final governing equation for the process. They can be lised as

- There is no reduction in the mass flow rate of water due to evaporation,
- Enthalpy of a saturated mixture of air and water vapour is a measure of the enthalpy of any mixture having an equal wet bulb temperature,
- 3. Lewis number is a constant,
- 4. Each particle of water is surrounded by a film of hir that is saturated with moisture at the temperature of the water.

Accuracy was sacrified as a result, but modifications may be made in the direct application to minimize the resulting error. Merkel F., for the first time, utilized the Lewis relationship to combine the coefficients of sensible beat and mass transfer into a single overall heat transfer co-efficient based on enthalpy potential difference as the driving force in the cooling tower. The governing equations were developed considering Heat and Pass transfer process taking place together.

In 1939, Colburn A.P., made an attempt in determining tower characteristics. In 1943, Lichtenstein J., handled the basic equations in a slightly different manner, and also produced a method of plotting the Number of Transfer Units and Tower Characteristics to facilitate the tower selection. At the same time, Hutchison W.K., and Spirey E., established a non-dimensional treatment for cooling towers problems.

Mickley H.S., in 1949, developed a more rigerous analysis considering temperature and humidity gradients, heat and mass transfer coefficients from water to film, and from film to air. Eventhough the process involved in a cooling tower is necessarily complex, the analysis offered by Mickley provides offers a possible means of evaluating the given rooling tower. The difficulty lies in obtaining the test data necessary to evaluate them.

W.J., showed that the erfect of the hot water temperature is a function of the deck geometry and spacing. At first they found a conventional way of representing heat transfer for the tower in the form of plot against the air pressure drop which occurs during the process. They found that for a given air rate and tube diameter, the relationship was nearly linear. Kays W.M., and London A.L., made tests on finned tubes and correlated relative heat transfer with a friction-power constant. More recently Kelly N.A., and Swenson L.K., were able to evaluate emperical equations relating to tower performance with air pressure drop.

In 1950, Wood B., and Betts P., outlined a mathematical and graphical synthesis for natural draught towers, leading Chilton H., to determine some generalised simplifications in ascertaining the performance of such towers. Chilton examined the natural draught towers in detail for values of ma/mw varying from 0.5 to 1.5 for particular approaches and wet bulb temperatures, and showed that under usual operating conditions. Merkel's approximate solution will give a result close to results obtained by accurate integration with cooling ranges of 5°C to 10°C. In 1955, Margen P.H., established some very ingenious relationships between friction and heat transfer applicable to both Mechanical

and Natural draught water cooling towers. At the same time work was carried out comparatively independently along other lines, mainly with a view to obtain more efficient packings and more suitable heat transmission devices by Koch W., Mulder T.J.C., Otte W., and Velut J.

In 1950, a Cooling Tower Institute was established which is a non-profit, self-governing technical association dedicated to improvement in technology, design, performance and maintenance of cooling towers. Prevention of water ind air pollution are the prime concern of the institute.

1.4 Technical Aspects in Cooling Tower Design [12, 15, 16, 29, 32]

Design of a cooling tower is quite complex. It is developed through a series of steps that consider the inter-relationship of many components and parameters like:

- 1. Selection of a proper cooling tower size,
- 2. The calculation of a required air flow rate,
- 3. Static pressure imposed by the tower,
- 4. External environmental factors which affect the air entering the tower.
- 5. Variation in requirement of the industry,
- 6. Optimum cooling tower design conditions.

It requires many tables, charts and correlations based on analytical as well as experimental data to predict the design quantities. Unfortunately, there is no sirgle, simple meter, gauge or other mechanical device

Testing a cooling tower can be a relatively simple task, but since it is seldom possible to test a tower at the design condition. The purchaser wants all the equipments that comprise plant investment completely with specific standards and capacity.

Owners, and their system designers, quite naturally want a cooling tower to perform a specific duty as predicted. Therefore, a systematic analysis of imposed heat load; the preferred water flow rate; the required cold water temperature; and a design wet bulb temperature et... are essential. Similarly, manufacturers want full-rated performance from the cooling tower designers in order to compete with the market.

Design conditions are specified for the particular requirements before a cooling tower is purchased in order to get rid of inadequacy of the cool water temperature or volume. During operation all the cooling towers are expected to function at 100% of their capacity at the designed conditions. In actual

usage, the same may not be true due to

- Slippage due to usage and defective maintenance might have reduced the performance efficiency of the tower over years of operation.
- 2. The installation would have been originally undersized or the present service being greater than the original requirements for which the tower was purchased.
- 3. New plant may need additional water and possibly colder temperature.

Thus a thorough study of a cooling tower becomes necessary, especially in large industrial installations such as electric power plants, nuclear stations, chemical plants, steam generating plants.oil refineries, refrigeration etc. in which cooling tower size and performance are closely integrated with the size and cost of other system equipments.

1.5 Present Work [25]

The present analysis follows a finite element technique for - Solution of governing equations using mass and heat transfer. The computations are carried out for the following cases:-

 Exit state of water for the given cooling tower characteristic,

- 2. for a gi tower volume
- 3. the determination of tower characteristics.

 The study has been mainly concentrated on cross-flow tower with partial attention to counter-flow towers.

In the analysis of cross-flow cooling towers finite element technique [8] is made use of . The governing differential equations [10] used in this analysis are derived considering heat and mass transfer together, with the tower volume as the control volume. An iterative scheme is developed in predecting the required outlet conditions of cold water with variable parameters.

Before starting an iterative scheme with the help of DEC-10 computer system, computations were carried out to find the permissible number of rows and columns, to save the computation time which is quite valuable.

The computer program [4, 9, 20, 22, 25, 27, 31] is made as general as possible with a wider flexibility in selecting range, approach, volume of tower, type of fill used, water loading and face velocity of air. Studies are made covering all the practical range of each parameter. For a required outlet condition the minimum size of tower, number of fills, velocity of air etc., were computed for a set of inlet conditions. Later the program was extended to findout whether the selected size is quite

sutficient or not. To fart with a set or dimensions are selected for the tower and the volume required for the given inlet and required outlet conditions, is calculated based on the mass of water evaporated on the enthalpy separately. Finally comparison is made about the selection of dimensions.

Comparative performance and pressure drop characteristics have been carried out. For this purpose the dimensionless numbers known as "Number of Transfer Units" and "Tower Characteristics" were determined and studied for the specific tower under consideration.

Finally economical aspects [28] are delt with.

As the data availability were extremely difficult a flexible program has been developed. Some results have been found for the available data.

CHAPTEP 2

THEORY OF COOLING TOWERS

2.1 Operating Principles [13, 14, 19]

cooling tower operation is mainly based on evaporative consideration and exchange of sensible heat. The mixing of two fluid streams at different temperature releases enthalpy of vaporization, causing a cooling effect to the warmer fluid. Thousands of years ago water, on this principle, was cooled in the porous earthen pots and now-a-days in canvas water bags.

In evaporative cooling three processes take place simultaneously,

- transfer of heat by convection of sensible heat from warm water to cooler air,
- 2. due to mass transfer in the form of water molecules, because the main body of the air is at a lower vapour pressure than that of the water surface.
- 3. due to transfer of heat from the bulk of the liquid to the surface.

Among these three processes, effect of third process
is negligible, since the thermal resistance to such
direct internal conduction is very less. The evaporation on the convex surface of a drop is so intense that
it can take place even in an atmosphere damp enough for
condensation to occur on nearby objects. On the other
hand, the vapour resulting from evaporation of the water
has a low specific weight and contributes to the draught.
This effect is known as "Thomson effect" [14].

In a cooling tower operation, sensible heat also plays an important role. Sensible heat, defined as heat that changes temperature, is also part of the cooling process, because when water is warmer than air in addition to evaporation air cools the water and its temperature rises as it gains the sensible heat of the water. Thus transfer of sensible heat from water to air takes places. On an average 75% of total heat is removed by evaporation and 25% by sensible heat transfer. In simple terms, a cooling tower is a simple air-mass heat exchanger that transfers heat from one mass to another.

2.2 Cooling Tower Terminology [1, 13, 14, 19, 32]

2.2.1 Ambient Wet-Bulb Temperature (T₂): Temperature to which air can be cooled, making it adiabatic to saturation by the addition of water vapour.

- 2.2.2 Approach (DESTAV-T2) It is the difference between the outlot water temperature from the tower and the ambient air wet-bulb temperature.
- 2.2.3 Blow Down: The continuous (Fig. 2.1.a) or intermittent (Fig. 2.1.b) removal of a part of water from basin in order to maintain concentration of salt and other impurities as described below

- 2.2.4 Capacity: The average amount of water circulating in the cooling system per unit time.
- 2.2.5 Cooling Factor $(m_{\rm w}/m_{\rm a})$: It is the ratio of mass of water entering the tower per unit time to the amount of dry air per unit time passing through the tower.
- 2.2.6 Cooling Range(T_3 -DESTAV): It is the temperature difference between the inlet hot water to tower and outlet water from tower. The maximum attainable cooling range in cooling tower is temperature difference between the inlet hot water to tower and wet-bulb temperature of ambient air (T_3-T_2) .

%makeup water
(b)

Fig 2.1.a Intermittent blow down 2.1.b Continuous blow down

- 2.2.7 Counter-Flow A system in which one fluid flows opposite to the other (i.e., their flow velocities are 180° apart). In cooling tower air comes into contact with hot water at 180° angle, air enters near the base of the tower and moves upward through the fill and falling water.
- 2.2.8 Cross-Flow: A system in which one fluid flows at 90° to the other flowing fluid. In cooling tower the air enters through the entire side wall and moves horizont-lly through the fill and falling water.
- 2.2.9 Cycles of Concentration. It compares dissolved solids in make up with solids in the circulating water. Since chlorides are soluble, cycles of concentration is equal to ratio of chlorides in circulating water to chlorides in make up and can be expressed as reciprocal of 'Blow Down'.
- 2.2.10 Drift Eliminator: Baffling arrangement provided after the tower fills with a view to eliminate out going hot air associated with water droplets to change direction few times. Droplets hit the eliminator surface and fall back into the tower.

- 2.2.11 Drift, Windage or-Carryover Loss The amount of water that is carried away from cooling tower by air in the form of mist in the process of cooling. It is expressed as % of water circulated.
- 2.2.12 Evaporation Rate: The rate at which water is being evaporated to cool the circulating water.

 The heat of evaporation is furnished by the cooling of the circulating water.
- 2.2.13 Fill Packing. Specially designed baffling used to provide a large contact surface between hot water and air.
- 2.2.14 Fog: A mist formed where the ambient air cannot absorb all the plumes moisture.
- 2.2.15 Forced Draught: Air introduced at the bottom of the tower is forced to the top by blower (usually centrifugal or radial).
- 2.2.16 Heat Load: The amount of heat (kJ/s) dissipated
 in a cooling tower expressed as product of water
 load and range i.e.,

Heat load = $m_W * c_{p_W} * (T_3-DESTAV)$

2.2.17 Induced Draught: Air mover, usually an axial fan, on top of tower sucks air through the fill and discharges it out of the tower.

- 2.2.18 Louvers Baffles used for changing the direction of air flow through a tower in a uniform, parallel manner and preventing water droplets from splashing out of tower as they fall through the structure.
- 2.2.19 Make Up Water: The amount of water required to replace normal system losses caused by evaporation, drift, blowdown and small leakages.
- 2.2.20 Plume: Visible manifestation of water vapour leaving the tower.
- 2.2.21 Retention Time. The time required for water to fall from the distribution header to the cooling tower basin.
- 2.2.22 Water Load (\tilde{m}_W) : Water circulation rate over the tower expressed in terms of mass per unit time.

2.3 Classification of Cooling Towers [1, 2, 13, 19, 21, 30]

Most cooling towers perform the same function as an automobile radiator, transfer heat from warm circulating water to atmosphere. However, in the former the hot water and ambient air comes in direct contact during the course of heat transfer. As such they are known as WET TOWERS. They can be classified as follows

- Based on method of air introduction to the tower or type of flow,
 - 1. cross flow
 - 11. counter flow
 - 111. cocurrent flow
- 2. Method of heat dissipation-
 - 1. wet cooling
 - 11. dry cooling
 - in. wet-dry cooling
- 3. Based on application,
 - i. industrial
 - ii. power plant

The principal type of towers under first classification can be written as:

- 1. Ponds 1. natural cooling pond
 - in. spray cooling pond
- 2. Natural draft i. spray filled
 - 11. splash filled
 - ill. hyperbolic towers
- 3. Mechanical draft i. forced draft
 - in. induced draft

The various types of towers can be compared in term of flow area occupied for the same amount of heat removal and is as shown in Table 2.1.

TABLE 2.1

COMPARISON OF THE TOWERS FLOOR PERS FOR THE SAME HEAT LOAD

TYPE OF TOWEP	RELATIVE FLOOR AREA OCCUPIED		
NATURAL COOLING POND	1000		
SPRAY POND	50		
SPRAY FILLED ATMOSPHERIC TOWER	15		
SPLASH FILLED ATMOSPHEPIC TOWER	4		
MECHANICAL DRAFT COUNTER FLOW TOWER	1.5		
MECHANICAL DRAFT CROSS FLOW TOWER	1.2 to 2		

2.3.1.a Natural Cooling Pond:

Both artificial and natural water reservoirs are used as cooling ponds. The warm process water is introduced at one end and a cooled water is withdrawn from the opposite end, in order to avoid short circuiting of warm water. To achieve best results, the total area of the water surface should be as large as possible. Two or more ponds can be used together to transfer a large quantity of heat. To increase the heat dissipation the ponds are constructed below earth surface.

Advantages:

- 1. Less initial investment cost,
- 2. Low maintenance cost,
- 3. Longer life,
- Doesnot require make-up water for a long period.

Disadvantages:

- 1. Its heat removal c=paicty is very
 low (70 kJ/m² of surface area-hr-°C)
- 2. Special attention is required in order to prevent detritus entering the pond and growth of water vegetation.
- Larger surface area for the ponds cause serious problem in industrial cities,

4. Effect of solar radiation during summer affects the upper water layer and its temperature will be higher than the temperature of water at certain depth, leading to serious problem in selecting position of cooled water outlet.

?.3.1.b Spray Pond:

It differs from the natural cooling ponds because the hot water is carried to a height of 2-3 meters over the basin and sprayed through a spray system consisting of a network of distribution pipes fitted with spray nozzles. In some cases the distribution nozzles sprays water vertically from the surface of the water in the pond. Water cools as air mixes with the spray and evaporates some of it. Air movement depends on atmospheric conditions and the aspiring effects of the spray nozzles. These types of ponds are built at a site which is open to wind from all directions. They are usually situated at a distance from buildings and roads to avoid muisance to inhabitants because of the formation of fog.

Disadvantages: 1. Performance is limited by relatively short contact time of air and water opray.

- ?. The absence of louvers and fine spray more drift losses occur calling for more make-up water.
- 3. Height of spray is limited due to pump energy requirement,
- 4. Collection of dust and impurities due to the open surface to atmosphere leads to more maintenance cost,
- 5. Causes considerable environmental nuisance.
- 6. Ilthough spray tanks are more compact in design and better in their
 performance than natural ponds, they
 still require larger area and have
 limited performance capacity.

The spray-filled tower is essentially a compact enclosure having louvers on all sides to prevent drift losses, and tank at the bottom. Water which is sprayed downwards though nozzles, comes into contact with air flowing cross-wise as wind normally blows horizontally and gets cooled. The main components are spray system, water basin and louvers. The nozzles plays an important role on the tower efficiency. The dense spray improves the efficiency and confined spray cuts the water loss.

To ensure a uniform distribution of water and to reduce drift losses, low output nozzles pointing downwards are used.

Advanta**o**es•

- 1. Light weight and small in size. The smaller space requirement enables its installation even on the roof of a building,
- 2. Easy operation and maintenance,
- 3. Requires very less power (only to pump water for spray),
- 4. The hot air does not mix with fresh air,
- 5. Life is trouble free and long as not many mechanical parts are involved,
- 6. Since louvers are always wet, they increase water surface exposed to air.

- Disadvantages: 1. Cooling range is limited,
 - 2. Efficiency is low because of limited contact time and the wind losses. Not suitable for big industrial units,
 - 3. Water is sprayed from top, requiring more pump power,
 - 4. Nozzles may get clogged, requiring cleaning to avoid unbalanced water spray.

5. More pumping pressure - for atomization of water in a nozzle.

2.3.2.b Splash-Filled Natural Draft Tower:

Filling is incorporated to increase water break-up with a view to provide additional water surface to air flow apart from spray filled towers. Open louvers allow outside air to pass through tower over its full height. Despite the greater cooling efficiency than spray-filled towers, it is rarely used now-a-days because of increased initial most and maintenance.

- Disadvantage: 1. Greater length of tower is needed to compensate for the narrow structure,
 - Initial cost and pumping head are high,
 - 3. Tower's extreme length and height and narrow width necessitates good anchoring to withstand high winds.

2.3.2.c. Hyperbolic Towers [Fig. 2.3]

These towers are suitable for the largest heat load applications. They are built as cross flow or counter flow depending on requirement. They have a tall cylindrical structure above the spray system to provide chimney effect, the natural-draught. This draught,

28

The higher initial investment is balanced against savings in fan cost, fan power, longer life and less maintenance. They find their preferences as under:

- Where geography dictates maximum height release of moist air plumes,
- 2. For confined, restricted area sites,
- 3. Where extremely high power cost make natural draft most applicable.

The hyperbolic shape of the tower is employed from the aerodynamic and proctical view points, but it does not have any thermodynamic significance. The reasons for the preference of the hyperbolic shape are:

- 1. The cross section at the bottom, provides more space for fill and reduction in height of louvers, leading to reduction in pumping head.
- 2. The direction of inlet air changes from horizontal to vertical smoothly. Thus the turbulence is minimised.
- 3. The wind load on the structure is low due to reduced cross section at the top, where wind velocities are high.
- 4. Because of 'doubly curved' nature it is structurally strong as bending stresses are negligible.

- 5. Some what enlarged top decreases the velo city of air comparatively. The water particles in drift will be condensed due to sudden change in velocity.
- Advantages: 1. Simplicity in operation due to absence of mechanical parts.
 - 2. Total avoidance of heated air recirculation,
 - 3. High heat dissipation capacity,
 - 4. Absence of fan,
 - 5. Can be located at the middle of structural buildings as there is no ground fogging due to large height of the tower.
 - 6. Loss of water due to drift is negligible,
 - 7. Longer life.
- Disadvantage: 1. High initial cost,

load.

- 2. No control over air supply hence on outlet temperature of water.
- 2.3.3.a. Mechanical-Forced Draft Towers [Fig. 2.4]:

The forced draught created by the fan mounted at he bottom of the tower eliminates the dependence of cooling on the wind velocity and can be controlled as per requirement. The system becomes very compact for a given heat

Fig 2.4 Mechanical draft tower

Advantage:

- 1. Requires less space and piping than atmospheric towers.
- 2. Cooling efficiency is improved.
- 3. Close control of cold water temperature is possible.
- 4. Fans mounted on the floor, better foundation-less vibration,
- 5. Part of the velocity head is converted into pressure head and at the upper part again into velocity head, thus requiring less power.
- 6. Tower is compact and more packing is possible in a given volume.
- 7. Fan is not subjected to moist conditions.
- Disadvantage: 1. Operation of tower depends on fan characteristics.
 - Limited fan size and more energy for fan.
 - 3. Higher operating and maintenance cost,
 - 4. Possibility of recirculation of hot humid air.

2.3.3.b. Induced Draft Tower [Figs.2.5.a and 2.5.b]

The fan is mounted on the top of the tower, hot and humid air is pumped out of the tower creating draft

It is of two types

- 1. Counter flow,
- i1. Cross flow.

Maximum performance is achieved in induced draft counter flow tower because coldest water comes into contact with the driest air and viceversa, thereby having the maximum enthalpy gradient. In cross flow due to fill in a ring outside the tower requires lower water pumping head than in the counter flow.

Disadvantage: [Counter Flow]

- More air resistance and uneven air distribution of air inside the tower leads to larger fan power.
- 2. Limited water loading and high pumping head,
- 3. Blower is subjected to hot and highly moistened air.
- 4. High maintenance cost,
- 5. Hot water distribution system is not easily accessible for cleaning.
- 6. More stronger structure is required at the top to reduce vibration.
- 7. The power transmission system increases cost and maintenance.

- 1. Low static rressure drop and low pumping head,
- 2. More filling is possible per unit volume,
- 3. Larger diameter of fans implies less number of cells.

Dısadvantage:

- 1. Design is complex,
- Low pressure on water distribution system does not give fine spray,
- 3. Algae growth is encouraged, as water at top is exposed to atmosphere.

2.4 Main Components of Cooling Tower

cooling tower packing arrangements.

2.4.1 Fill Material [17, 19]:

The cooling tower packing material is used to render as large air-water interfacial area as possible with limited air-pressure losses. The falling water on fills spreads in such a way as to provide a large surface area of contact between witer and air stream. Inspite of present wide-spread and continually growing use of cooling towers, only limited information is available on the specific performance and pressure drop characteristics of

There are basically two types of packing-splash and nonsplash arrangements. The former utilise a system of laths generally of wood, variously shaped and spaced,

for the falling water to break into droplets. In the later case, drops are discouraged, and the water is caused to spread thinly over the surface of the filling. Splash type fill are generally used in cross flow designs and non-splash (film) type are utilized in counter flow designs.

Packings can be made from a variety of materials including wooden or plastic laths, corrugated asbestos cement sheets, plastic sheets, sheets of galvanized steel, resin-impregnated paper or glass fibre [Fig. 2.6]. The factors influencing the choice of fill are heat transfer characteristics, pressure loss, total packing cost and durability which implies freedom from maintenance. Naturally a fill that has lowest cost, higher heat transfer and low pressure loss is preferred. However, the problem of selection becomes more difficult when a packing is better in one or two respects and worse in the remainder.

2.4.2 Distribution System [14, 19]:

The function of distribution system is same as that of fill. Here inlet hot water is distributed uniformly over the fill section. It is of two types, gravity and spray types.

In gravity type a shallow tank or channels open to atmosphere are located on the top of the tower. Water

talls through the orifices over the tower packing due to gravity providing splash type pattern

In spray type, a header having a set of nozzles issues fine spray of water being distributed evenly over the fill. We can consider other types also in which the water is spread in a form of a thin film on the packing underneath without formation of droplets (film type).

2.4.3 Circulating Pumps [14, 19]

Pumps are used to circulate hot water over top of the tower and to distribute cold water from tower to the process where its service is required. They may be of different types. The centrifugal pumps (single or multi-stage) are most commonly used. Their selection depends upon:

- a. discharge, b. head to be produced,
- c. efficiency, d. source of power,
- e. installation, f, maintenance,
- g. impurities in water, etc.

2.1.4 Fans [14, 19]:

Fans handle large volume of air at low velocities with a low-pressure drop through the tower. Thus the fan should be economically designed to handle desired air flow at minimum input.

In induced dr ft towers — s the fans are mounted on the top of the tower they are subjected to moistened conditions. Thus the blades should be given a proper protective coating. The most popular protective coating is not dipped galvanizing. Danger from excessive vibration, both to tower and equipment must be taken care with safety device. A large decrease in efficiency results when a thin layer of dirt or ice is formed on the fan blades.

A 1/3 mm thick coating may reduce 4 to 5% efficiency of fan. Even the clearance between the blade tips and fan housing has an important effect on efficiency. Thus a careful design of fan is needed.

2.4.5 Fan Drives, Speed Reducers and Motors:

These are the accessories to fan. The prime function of fan drive or drive shaft is to transmit power from the prime mover i.e., motor to the gear or speed reducer. Special care has to be taken in design of these parts as because they are also operating under the same condition as that of fan. This has a direct effect on the efficiency of the fan.

MATHEMATICAL ANALYSIS

3.1 Psychometry and Heat Transfer [9, 10, 17, 24]

The determination of cooling tower performance requires the study of moist air i.e. psychometry and heat transfer relations. The expressions for various quantities used in the present investigation have been given below.

1. Humidity ratio for unsaturated air is expressed in terms of mol-fraction of water:

$$w = 0.622 \times_{w} / (1 - \times_{w})$$
 (3.1.1)

2. Humidity ratio for saturated air:

$$w_s = 0.622 f_s p_{W,s}/(p - f_s p_{W,s})$$
 (3.1.2)

where f_s has been functionally related to T from the data as

$$f_s(T) = 1.004505 - 2.0707 \times 10^{-5} T + 9.1415 \times 10^{-7} T^2$$

3. Enthalpy

$$h = c_{pa,w} t + 2501.4 w$$
 (3.1.3)

where
$$c_{pa,w} = c_{pa} + 1.884 w$$

4. Prandtl number

$$Pr c_{pa} \mu/k$$
 (3.1.4)

5. Reynclds number

$$Re = P V L / \mu \qquad (3.1.5)$$

6. Heat transfer coefficient

$$h_{c} = \frac{0.171 \text{ k Pr (VSEC)}^{0.78}}{d_{e}^{0.22} \text{ (3.1.6)}}$$

7. Properties of air and water in terms of temperature

$$P_{W,s} = 225.65 \times 10^{-4} \times 9.81/[(7.21379 + (1.152 \times 10^{-4} - 4.787 \times 10^{-9} + (1.483.16)^{2}) (647.31/t-1)]$$

11 $c_{pa} = 0.219 + 0.0343 \times 10^{-4} \text{ TR} - 0.297 \times 10^{-8} \text{ TR}^2$

111 $c_{pw} = 4.2097187 - 1.4125 \times 10^{-3} T + 1.375 \times 10^{-5} T^2$

 $h_{fg} = 597.34 - 0.555 T$ $0.2389 \times 10^{(5.1463 - 1540/t)}$

 $v h_f = 0.99615 T + 1.8239 X 10^{-6} T^2$ - 0.13468 X 10^(-0.036 T)+ 0.13468

vi $\rho_a = 1.291 - 4.525 \times 10^{-3} \text{ T} + 1.125 \times 10^{-5} \text{ T}^2$

v11 $\mu = 0.0207 + 8.5 \times 10^{-5} T + 1.625 \times 10^{-5} T^2$

vill $\nu = 1.325 \times 10^{-5} + 8.525 \times 10^{-8} \text{ T} + 1.625 \times 10^{-10} \text{ T}^2$

Governi ations [4, 6, 10, 14]

These governing equations based on the heat and mass transfer principles help analyse the given tower. The following assumptions are made.

- 1. no water losses except evaporation,
- no heat transfer through the walls of the tower.

They are used to get the condition on the psychometric chart, representing the changes in the state of moist air passing through the tower. The rate of evaporation depends upon the

- 1. molecular weight of the liquid,
- 2. velocity of the impressed draught,
- 3. relative saturation and partial vapour pressures i.e. inference upon the humidity of the circulating air.
- 4. surface exposed to evaporation.

3.2 Cross-Flow Analysis [10, 25]

In this case the air and water flows are perpendicular to each other. Water falls from top of the tower and air flows from outerside of the tower. The analysis of this type is extremely involved. Because the direction of air flow will be changing constantly due to falling water droplets and packing arrangement inside the tower.

tower having fills and grids. Figure 3.1 shows the element (1,)) of cross flow cooling tower under consideration for analysis w control volume (indicated by dotted lines). $\tilde{m}_{W_{1}+1,j} = \tilde{m}_{W_{1},j} - \tilde{m}_{a_{1},j} (W_{1,j+1} - W_{1,j}) (a)^{\dagger}$ $\mathbf{T}_{\mathbf{W}_{1}+1,1} = \mathbf{T}_{\mathbf{W}_{1,1}} \sim \Delta \mathbf{T}_{\mathbf{W}_{1,1}}$ (d) $h_{1,j+1} = h_{1,j} + \Delta h_{1,j}$ (c) By heat balance Heat gained by air = $\dot{m}_{a_{1,1}}$ ($h_{1,j+1} - h_{1,j}$) Heat lost by water = $\dot{m}_{w_{1,1}} c_{pw} T_{w_{1,1}} - (\dot{m}_{w_{1}})$ $\dot{m}_{a_{1,1}}$ ($w_{1,j+1} - w_{1,j}$) c_{pw} $T_{1+1,j}$) Using Eq. (3.2.1.c), Eq. 3.2.3 reduces to $d\dot{q} = \ddot{m}_{a_{1,1}} (w_{1,j+1} - w_{1,j}) c_{pw} T_{w_{1,j}} + [(\dot{m}_{w_{1,j}})]$

 $\dot{m}_{a_{1,1}}(w_{1,j+1}-w_{1,j}) c_{pw} \Delta T_{w_{1,j}}$

(3.

The resistance to flow of air increases thus leading

pressure drop which is di ficult to predict. Hence a

a whole the exact nature of flow is difficult to anal-

in case of cross-flow. Analysis is again done using

finite element technique. The errors committed by the

assumptions are minimized by selecting large number of

grids. Figure 2.5.b shows a typical cross-flow cooling

Fig. 3.1 ELEMENT (1, j) IN CROSS-FLOW WITH CONTROL VOLUME

But heat gained by air Heat lost by water

$$d\theta - \hat{m}_{a_{1,j}} (w_{1,j+1} - w_{1,j}) c_{pw} T_{w_{1,j}} + [\hat{m}_{w_{1,j}} c_{pw} \Delta T_{w_{1,j}}]$$

$$c_{pw} \Delta T_{w_{1,j}} - \hat{m}_{a_{1,j}} (w_{1,j+1} - w_{1,j}) c_{pw} \Delta T_{w_{1,j}}$$

$$(3.2.5)$$

Also total heat transfer = Heat transfer due to convection + Heat transfer due to mass transfer

$$\dot{m}_{a_{1,j}}$$
 $(h_{1,j+1} - h_{1,j}) = h_c A_v dv_{1,j} (T_{w_{1,j}} - h_{1,j})$

$$T_{a_{1,j}}$$
) + h_{D} P_{v} $dv_{1,j}$ $(w_{s}(T_{w_{1,j}}) - w_{1,j})$ $h_{fg}(T_{w_{1,j}})$... (3.2.6)

By mass balance

$$\hat{m}_{a_{1,j}}$$
 $(w_{1,j+1} - w_{1,j}) = h_D A_v dv_{1,j} (w_{s(T_{w_{1,j}})})$ $w_{1,j}$ $(3.2.7)$

Rewriting Eq. (3.2.6)

$$- \hat{m}_{W_{1,j}} c_{pw} dT_{W_{1,j}} = h_{D} A_{v} dv_{1,j} [Le c_{pa} (T_{W_{1,j}} - T_{1,j}) + (W_{s}(T_{W_{1,j}}) - W_{1,j}) h_{fg}(T_{W_{1,j}})]$$
(3.2.8)

Combining Eqs. (3.2.5, 3.2.7 and 3.2.8) and neglecting smaller values

$$\frac{dh_{i,j}}{dw_{i,j}} = \text{Le } c_{pa} \frac{(T_{w_{i,j}} - T_{i,j})}{(W_{s}(T_{w_{i,j}}) - W_{i,j})} + h_{g}(T_{w_{i,j}})$$
(3.2.9)

Using the relations between enthalpy, temperature, specific heat and humidity, we can write

$$(h_{S(T_{W_{1,j}})} - h_{1,j}) = c_{pw} (T_{W_{1,j}} - T_{1,j}) + 2501.4$$
 $(w_{S(T_{W_{1,j}})} - w_{1,j})$
(3.2.10)

Combining Eqs. (3.2.9 and 3.2.10)

$$\frac{dh_{1,j}}{dw_{1,j}} = \text{Le} \frac{\binom{h_s(T_{W_{1,j}}) - h_{1,j}}{\binom{W_s(T_{W_{1,j}}) - W_{1,j}}} + h_{g(T_{W_{1,j}})} - 2501.4 \text{ Le}}{(3.2.11)}$$

Equation 3.2.11 gives the relation for the condition line of the heat and mass transfer process. It can be plotted on the psychometric chart after evaluation for a given set of operating conditions as shown in Fig. 3.2.

Rewriting Eq. (3.2.5),
$$dT_{W_{1,j}} = \frac{m_{a_{1,j}}(dh_{1,j} - dw_{1,j} h_{f,W_{1,j}})}{m_{w_{1,j}} - m_{a_{1,j}} dw_{1,j}} c_{pw}$$
(3.2.12)

$$dv_{i,j} = \frac{\tilde{m}_{a_{1,j}}}{h_{D}} \left[\frac{dw_{1,j}}{w_{s(T_{w_{1,j}}) - w_{1,j}}} \right]$$
 (3.2.13)

Total volume can be written as:

$$V = \sum_{i=1}^{M} (\sum_{j=1}^{N} dv_{i,j}) = \iint_{i,j}^{MN} \frac{\tilde{m}_{a_{i,j}}}{h_{D} A_{V}} (\frac{dw_{i,j}}{w_{s(T_{w_{i,j}}) - w_{i,j}}})$$
(3.2.14)

Equations (3.2.11, 3.2.12 and 3.2.14) forms the governing differential equations of cross flow tower analysis.

Fig 3.2 Condition line for cooling tower on psychometric chart

3.3 Counter-Flow Anal 1:

1. With evaporation loss

Water and air move in opposite directions parallel to each other. The whole tower is divided into number of sections for stepwise integration. In this case the flow is one dimensional. Proceeding in the similar way as in case of cross-flow analysis, we get the following governing equations:

$$\frac{dh}{dw} = Le \frac{(h_{g,W} - h)}{(w_{g,W} - w)} + (h_{g,W} - 2501.4 Le)$$
 (3.3.1)

$$-\Delta t_{W} = \frac{\mathring{\eta}_{g}}{\mathring{m}_{W}} (\Delta h - \Delta W h_{f,W})$$
 (3.3.2)

$$dv = \frac{\dot{m}}{h_D A_W} \left(\frac{\dot{dw}}{w_{S,W} - w} \right)$$
 (3.3.3)

Thus total volume V = J $dv = \frac{\dot{m}_a}{h_D A_V} \int_{w_1}^{w_2} (\frac{dw}{w_{s,w} - w})(3.3.4)$

Eq. (3.3.1) gives the condition line on psychometric chart for various points in the tower. Equations (3.3.1, 3.3.2 and 3.3.4) will form the governing differential equations for the cooling porcess in the counter-flow tower.

il. Without evaporation loss:

Here the analysis is similar as that of 3.3.1.

But the following changes are noted

a.
$$\mathring{\mathbf{m}}_{WO} = \mathring{\mathbf{m}}_{VI}$$

b.
$$m_{a}$$
 dh $-m_{f}$ dh_{f,w}

c. m_{a} dh $-m_{f}$ dh_{f,w}

c. m_{a} dh $m_{g,w}$ - $m_{g,w}$ + (h_{fg,w} - 2501.4 Le)

3.4 Tower Characteristic and Number of Transfer Unit [4, 6, 18]

The sensible and latent heat transfer are combined into an overall process based on enthalpy potential as driving force. An equivalent heat transfer coefficient has been chosen to represent the combined effects of heat and mass transfer coefficients. The basic equation based on heat transfer to air by water can be written as

$$\hat{m}_{a} dh = k_{e} A V(h_{s,w} - h) = \hat{m}_{w} dT$$
 (3.4.1)

Therefore, we can write

$$k_e A V/m_a = J dh/(h_{s,w} - h)$$
 (3.4.2)

$$-k_e A V/\dot{m}_W = \int dT/(h_{s,W} - h)$$
 (3.4.3)

The dimensionless number on left hand side of Eqs. (3.4.2 and 3.4.3) are known as "NUMBER OF TRANSFER UNIT" and "TOWER CHARACTERISTICS" respectively. It is found that tower characteristic is less accurate than number of transfer units. Thus, in practice, the given tower is analysed based on Eq. (3.4.2).

3.5 Volume of Tower Based on Water Evaporation Rate [2, 10, 24, 31]

Equations (3.2.13 and 3.3.3) give the volume at each element and the total volume of tower is given by

Eqs. (3.2.14 and 3.3.4) for cross flow and counter flow, respecti ely. For the cross-flow we calculate the volume based on mean values of humidity and humidity difference.

1.e.
$$V = \sum_{i=1}^{M} (\sum_{j=1}^{N} dv_{i,j}) = \int_{1}^{M} \int_{1}^{M} \frac{dv_{i,j}}{h_D A_V}$$

$$\left[\frac{(dw_{i,j} + dw_{i,j+1})}{4} (1/(w_{s(T_{w_{i,j}})} - w_{i,j}) \right]$$

$$+ 1/(w_{s(T_{W_1,3+1})} - w_{1,3+1}))]$$
 (3.5.1)

3.6 Procedure of Solving Problems in Cooling Towers [10, 18, 24]

3.6.1 Cross-Flow:

The water inlet condition for all elements in first row and air inlet condition for all elements in first column are known. Thus, for the element (1,1) we know all the inlet conditions. Hence we can calculate the outlet conditions of air and water from Eqs. (3.2.11 and 3.2.12). As the motion of air and water are at 90° to each other the outlet condition of air will be inlet condition of air for element (1,2). Thus, for element (1,2) we know both air and water inlet conditions and we can carry out the analysis for all the elements in the first row. The Lewis number is calculated at an average condition.

The water temperatures at exiting each element of the first row are known from Eq. (3.2.12). For the second row computation is repeated. This method is followed until all the rows are completed giving exit state of water for each column. Further, volume of cooling tower is calculated using Eq. (3.2.14).

The average outlet condition of water is found from the following equation:

$$T_{W,av} = \sum_{j=1}^{N} T_{W_{M+1,j}} / N$$
 (3.6.1)

Similarly, the average outlet condition of air at exit is given by

$$h_{a,av} = \sum_{i=1}^{M} h_{i,N+1} / M$$
 (3.6.2)

$$w_{a,av} = \sum_{l=1}^{M} w_{l,l+1} / M$$
 (3.6.3)

3.6.2 Counter Flow:

In this type of towers Eqs. (3.3.1, 3.3.2 and 3.3.4) forms the governing equations of the process, and are solved for the given inlet and desired exit conditions of water, which gives desired range. As flow rate remains the same throughout the tower the range is equally divided as the number of divisions of the tower. This forms the required change in water temperature (dT) at each stage.

For the determination of the size of the tower or the tower characteristics, a numerical method is applied by dividing it into a number of sections. Stepwise integration is carried out from the bottom of the tower until the exit state of air is determined. In this way for known values at various state points, the size of the cooling tower is determined using Eq. (3.4.2). Knowing all the values in Eq. (3.3.1), we can determine the value of dh/dw. Further, we know ΔT_{w} . Thus from Eqs. (3.3.1 and 3.1.14) we have two unknowns dh and dw, which can be solved. Thus the value at the exit of that division is calculated. And the analysis is continued until the exit values are calculated.

3.7 Variable Lewis Number [10, 23]

As stated earlier, it gives a relationship between heat transfer and mass transfer coefficients in a dimensionless form named after the discoverer, Prof. Lewis, W.K. (1922). Its value depends on the velocity of air flow, dry-and wet-bulb temperatures of air and water (inlet) temperature. It can be represented as

Le = f (V,
$$T_{db}$$
, T_{wb} , T_{w}) (3.7.1)

A generalized relation for Lewis number is given by: $F(VMIN) = 0.333(log_{10} VMIN)^{2} + 0.177046 log_{10} VMIN + 2.6949 \times 10^{-3} IIBRARY$ (3.7.2)

GH
$$4.32 \times 10^{-4} (T_1 + T_w)/2 + 0.8444P$$
 (3.73)

$$C = 0.75 \times GH + 0.25$$
 (3.7.4)

$$M = 0.0964284 - 0.096726 \times GH$$
 (3.7.5)

Le =
$$h_c/(h_D c_{pa}) = C + M X F(VMIN)$$
 (3.7.6)

The graphical representation of the same is available in [10].

3.8 Rate of Evaporation [10]

Here the mass of water evaporated in the process of cooling can be written as

$$\dot{m}_{ev} = \sum_{k=1}^{M} \dot{m}_{al,N+1} (v_{l,N+1} - w_{l,1})$$
 (3.8.1)

and in percentage
$$\mathring{m}_{re} = (\mathring{m}_{eV}/\mathring{m}_{W})$$
 100 (3.8.2)

3.9 Variable Cost Analysis [28]

1. Fan Power: The fan used should be of optimum size. It should handle the required volume of air against the resistance to flow. It is estimated on basis of pressure drop occurring during the process. The equation used is due to work of Kelly, N.W. and Swenson, L.K., where the total pressure drop is given by the sum of pressure drop due to fills and pressure drop due to falling water droplets, i.e.

which is put in the following form

$$\Delta P = 25.4 \text{ n} \left[P_{aV} / v_W \left(C3 \text{ m}_a^2 + C4 / \overline{Z_f} \text{ m}_W \text{ GE}^2 \right) \right]$$
 (3.9.2)

where

$$GE^2 = \mathring{m}_a^2 + \frac{4}{3}\mathring{m}_a 3600 P_a / 2g Z_f + g (3600 P_a)^2 Z_f (3.9.3)$$

The values of C3 and C4 is given in Table 3.1 for the different fill arrangement shown in Fig. 2.6.

Fan power =
$$(\Delta P (g/g)) \theta_W VOLSEC)/1000$$
 (3.9.4)

Cost of power/Year = POWFAN X HR X OF X COP (X) (3.9.5) Cost of power/KW-hr is given by equation:

$$COP(X) = 1.2930/(0.97986 + e^{-0.09338 X})$$
 (3.9.6)

and
$$X = current year - 1983$$
 (3.9.7)

where Eq. (3.9.6) is derived based on the cost variation of power for past 15 years. The value of further years are predicted using Powel's method of optimization with current year as reference.

.*. TOTWAT =
$$(\mathring{m}_W (\mathring{m}_{re} + BLD + LKG + OTH) HR OF)/100 (3.9.8)$$

CWAT = TOTWAT WATCOST (3.9.9)

3. Wood Cost:

VOLF = Cross-section area of fill X length of fill

(3.9.10)

TABLE 3.1

CONSTANTS C3 AND C4 FROM EXPERIMENTAL RESULTS

DECK	VERTICAL SPACING	PLAN SOLIDITY FACTOR	VERTICAL FREE FALL ZF	сз х 10 ⁸	C4 X 10 ¹²
A	0.75	0.250	3.00	0.34	0.11
В	1.00	0.250	4.00	0.34	0.11
С	1.25	0.333	3.75	0.40	0.14
D	2.00	0.333	6.00	0.40	0.14
E	2.00	0.404	4.95	0.60	0.15
F	2,00	0.219	9.13	0.26	0.07
G	2.00	0.292	6.85	0.40	0.10
Н	2.00	0.550	3.64	0.75	0.26
I	2.00	0.440	4.50	0.52	0.16

CWOOD NOFILL X VOLF X CFIL (3.9.11)

4. Cost of Pumping Water Here actual head of pumping is assumed to be height of tower plus a meter.

Thus HEAD = Actual head + frictional head due to pipe friction

= (HIG + a + f_r
$$\frac{\text{(HIG + a) V}^2}{\text{2g d}_{\text{rip}}}$$
 (3.9.12)

where a = 1 meter and

$$d_{pip} = [4\dot{m}_{w}/(\rho_{w} v_{wat} x)]^{1/2}$$
 (3.9.13)

• *. PPOW = HEAD
$$\hat{n}_{w}$$
 g (3.9.14)

$$PUMCOS = PPOW HR OF COP (X)$$
 (3.9.15)

3.10 Present Worth Method [28]

The unit value of costs is not identical different periods due to inter-temporal effects. This gives rise to the problem of reducing the costs to a particular base year and to make them commensurate with each other. The removal of these drawbacks gave rise to net present value approaches which can be expressed as

$$C_{O} = \frac{\sum_{\text{LIFE}=O}^{C_{t}} \frac{C_{t}}{(1+r_{int}) \text{LIFE}}}{(3.10.1)}$$

Equation (3.10.1) can be used for all the running expenditures.

RESULT AND DISCUSSION

4.1 Selection of Grid Size

The grid size in the present computation has been selected after comparing the results for different combinations as given in Table 4.1. In case of 20 X 20 grid combination the time taken is 78% where the same result is obtained. From comparison with other combinations it is evident that 15 X 15 is the most desirable combination. It has been used for all other computations in the present investigation. Figure 4.1 shows the same graphically.

4.2 Iterative Scheme of Analysis

A generalized computer program is envisaged with a view to incorporate various constraints such as approach, range, water load, air flow rate, air inlet temperature etc. covering all practical ranges. Outlet water temperature and state of air is studied at every grid point for a typical cooling tower. The whole result can be represented in a tabular form as shown in Table 4.2. It is interesting to note that the

Fig 3.1 Grid selec ion

amount of heat transfer ed is very high for the grids
near the top and it falls as we proceed towards
basin as shown in Figs.4.2 to 4.4.

A desired outlet temperature of water was obtained using an iterative scheme for a given set of inlet conditions, size of tower by varying fills in order to change the surface area. The changes in fill is continued until the desired result is achieved. Table 4.3 gives the details of temperature profile through the tower developed after 5 iterative schemes.

We should have a free fall path for water droplet for heat transfer process. By increasing the number of fill material in a given size of tower means decreasing the free fall path. To incorporate this optimum free fall path iteration is terminated if it falls below minimum path. These are shown in Table 4.4 where iterations are carried out for different water flow rates.

In counter-flow this type of iterative analysis is not necessary. Here the desired output is obtained against the tower size. If we find that the tower is smaller for given conditions, the iteration is terminated and analysed for bigger size of tower and different flow rates.

Fig 4.2 Variation of water temperature in each grid

Fig 4.3 Variation of humidity of air in each grid

Fig 4.4 Variation of enthalpy of air in each grid

During this process the following results were noticed

- 1. To get a desired temperature nigher by 2-5°C, than that for a given packing design, air flow rate has to be increased nearly 10 times the normal rate leading to larger fan size and its power.
- 2. If the difference between wet and dry bulb temperatures of air is less initially major part of heat transfer occurs due to evaporation and later the process is due to condensation.

4.3 Effect of Lewis Number

Lewis number is a function of inlet air velocity, dry and wet bulb temperature and inlet water temperature. Thus a change in Lewis number will have a direct effect on the final results. Its effect is studied for two sets of values and are presented in Table 4.5.a and 4.5.b. Change of about 2-4% in final result is found for a change in recommended Lewis number from 0.84 to 0.94. In order to get rid of this discrepancy variable Lewis number has been used as given by Eqs. (3.7.1 to 3.7.6)

4.4 Tower Coefficients

The NTU serves as a measure in determining the tower performance. Tables (4.6.a to 4.6.d) reveals that MTU depends significantly on air flow rate as well as water

loading. Thus, NTU is a function of cooling factor as reported by [17].

The NTU method does not lend to complete mathematical solution. It is used as a verification method along with usual procedure of heat and mass transfer process. The cooling towers are specified in terms of $\mathring{\mathbf{m}}_{\mathbf{W}}$, T1 , T2 , T3 , DEST N. For a particular conditions the NTU and tower characteristic vill be specified. This is known as required co-efficient. For various air flow rate we can determine the above co-efficients known as actual co-efficient as shown in Table (4.6.a to 4.6.d). Thus we can select a tower and flow rate such that the required size of tower.

Tables (4.6.a to 4.6.d) exhibits decrease in the tower coefficients with increase in range. Further the coefficients becomes negative at lower rate due to occurrence of condensation against evaporation. The details of calculating tower coefficients is shown in Table 4.7. In case of cross flow the variation in coefficients is shown in Table 4.8.

4.5 Volume, Heat Transfer and Evaporation in Tower Analysis

Tables 4-9 and 4-10 displays the comparison between the given volume of tower and estimated volume

4.6 Cost Anal sis

Fan power cost is calculated based on the pressure drop that is occurring in the tower. Fan power and pump power are combined together and estimated for various values of flow rates. Pump power is evaluated using the discharge rate and pumping head. The total cost for power is then found from Eqs. (3.9.6 and 3.9.15).

The cost variation for different flow rate are given in Table 4.11. It is found that the cost of water dominates among other costs. The fill cost is seen to be very less but even slight change in the fill influences the pumping cost considerably. All the values have been estimated based on the optimum number for given exit water condition.

4.7 Conclusions and Suggestions

- A. Conclusions · From the present work the following conclusions can be derived:
- The recommended grid size for the cross-flow cooling tower is 15 X 15 in view of saving of computational timing.
- 2. The effect of evaporation of water has to be considered while computing heat load capacity of the tower.

 Because it shows 6 to 8% higher values over the fixed mass results.

- 2. The effects of the recommended Lewis number are significant. Hence variable/average Lewis number suggested in the present paper be used.
 - 3. The cost analysis shows that the make up water dominates over all other costs. This requires special care
 in the design aspect of a cooling tower. The present
 worth method has been used for the total cost.
- 4. For counter-flow tower the effects for evaporation of water on the exit temperature is also found to be in the same range as found for a cross-flow cooling tower.

B. Suggestions:

- Better experimental data are required for heat and mass transfer coefficients for the solution of governing equations.
- 2. Further costs of various components of cooling tower should be collected from manufacturers for the exact cost analysis.

REFERENCES

- AGRAVAL, H.C., Evaporative Cooling and Cooling Equipment, A Short Term Course on Advances in Refrigeration and Airconditioning, May 11-31, 1981, Dept. of Mech. Engg., IIT Kanpur.
- 2. BERMAN, L.D., Evaporative Cooling of Circulating Water, Pergamon Press, 1961.
- 3. Carrier Data Hand Book of Airconditioning System Design, 1965.
- 4. CROSS, K.E., PARK, J.E., VANCE, J.M. and VANVIE, N.H., Theory and Application of Engineering Models for Cross-flow and Counter-flow Induced Draft Cooling Towers, Report Prepared for the U.S. Energy Research and Development Administration under U.S. Gov. Imment Contract No. W-7405, 1975.
- 5. DONALD R. BAKER and HOWARD A. SHRYOCK, A Comprehensive Approach to the Analysis of Cooling Tower Performance, J. Heat Transfer, Aug. 1967, pp. 339 350.
- 6. DONALD R. B. and LEON T. MART, Cooling Tower
 Characteristics as Determined by the Unit-Volume
 Coefficient, Refrigerating Engineering, Sept.

 1952, pp. 965 971.

- FRANK KREITH, Principles of Heat Transfer,
 International Text Book Company, London, 6th
 Edition, 1962.
- 8. HUBNER KENNETH H., The Finite Element Method for Engineers, John Wiley, N.Y., 1975.
- 9. ISI Steam Tables, Indian Standard Institution Publication, 1st Edition, 1966.
- JAMES L. THPELKELD, Thermal Environmental Engineering, Prentice-Hall, INC., New Jersey, 6th Edition, 1970, pp. 165 234.
- JAN O. SKOLD, Energy Savings in Cooling Tower Packings, Chemical Engineering Progress, Oct. 1981, pp. 48 53.
- 12. JOHN HENSLEY, External Influenes on Cooling Tower
 Performance, ASTRAE Journal, Jan. 1983, pp. 86-89.
- 13. MARKS R.H. and REVE E. LONKA, Cooling Towers a Special Report, POWER Journal, 1963, pp. 51-516.
- 14. McKELVEY K.K. and MAXEY BROOKE, The Industrial Cooling Tower, Elsevier Publishing Company, London, 1956.
- 15. MERLEY TECHNICAL BULLETIN, (R-58-P-2), Analyse Your Bids, Technical Publication Catalogue by Paharpur Cooling Towers Pvt. Ltd., Calcutta.

- Your Tower, T Lhnical Publication Catalogue by Pah, rpur Cooling Tower Pvt. Ltd., Calcutta.
- 17. N/G/BUSHANA K./., Selection of Optimum Water and /ir Ratio in Designing of Cooling Tower,

 Term Paper Presented for the Course Fulfilment of ME-719 at IIT K/NPUR.
- NEIL W KELLY and LEONARD K. SWENSON, Comparative

 Performance of Cooling Tower Packing Arrangements,

 Chemical Engineering Progress, 52, No. 7, July

 1956, pp. 263 268.
- 19. NICHOLAS P. CHEREMISIONOFF and PAUL N.

 CHEPEMISIONOFF, Cooling Towers Selections,

 Design and Practice, Ann Arbor Science, Michigan,

 U.S.A., 1982.
- 20. NRIPENDRA N. BISWAS, Essentials of Computer Programming in FORTRAN IV, Radiant Books, Bangalore, 1975.
- 21. PAHARPUR COOLING TOWERS, A Brochure giving the above Company Profile and details of manufacturing facilities and product range.
- PARK, J.E. and VANCE, J.M., Computer Model of Cross Flow Towers, Chemial Engineering Progress Vol. 67, No. 7, July 1971, pp. 55 57.

- 23. PAUL D , Cool: Tower Performance in Terms of its Effectiveness as an Thermy Exchanger, 1981.
- PRISAD, MINOHIR, Detailed Report on DG-Set Cooling SYSTEM, Consultancy Project Financed by Messers J.K. CEMENT WORKS, KINPUR Job. No. C/NE(MP)/82/3, 1982, Dept. of Mechanical Engg. IIT Kanpur.
- PRASAD MANOHAR and NAGABUSHANA K.A., Computer Programming for Cross-Flow Cooling Tower Performance, To be Presented in the 7th National Conference on Heat and Mass Transfer to be held at IIT-Kharagpur on Dec. 29-31, 1983.
- 26. Prepared by Editors of Chemical Engineering Progress, Cooling Towers, FICHE, N.Y. 1972.
- 27. RAJARAMAN V., Computer Programming in FORTRAN IV, Prentice-Hall or India Pvt.Ltd., New Delhi, 1981.
- 28. RATH B, Investment Analysis and Project Planning,
 A Short Term Course on Advances in Refrigeration
 and Airconditioning, May 11-31, 1981, Dept. of
 Mech. Engg., IIT-Kanpur.
- 29. ROBERT BURGER, Cooling Tower can Make Money,

 Chemical Engineering Progress, Feb. 1981,

 pp. 84 87.

- SINGHAM, J.R. Cooling Tower, Thermal and
 Hydraulic Design of Heat Exchangers, Heat
 Exchanger Dosign Handbook, Hemisphere Publishing
 Corporation, 1983.
- 31. STOECKER, W.F., Refrigeration and Airconditioning, McGraw-Hill Book Co. INC. 1958.
- 32. VIKRAM SWARUP, Practical tips on now to Specify a Cooling Tower, Technical Publication Catalogue by Paharpur Cooling Towers Pvt. Ltd., Calcutta.

THRUF 4.1 Average outlet water temperaturys aris size

TUTET CUNDITITUMD: P1=45 C 12=28 C 13=50 C MM=30,000 KT/hr V=2.5 T/se

M	ton only near page life; som ned.	11 as an marin 111 as	15)	75 1
1 17	24.12	3 1 * A 3	35.un	75.04	35.05
15	T step was easy upon that and gast 	4	31.96	34.95	35.01
1 2/1, 1	ि हरूरा जावने -ब्रह्मा भूतकु स्त्रीमा जावने बहुतः हुँ हुँ	34.66	14.93	34.95	14.99

* * ***

```
1 2 1 1 1 4 4 4 4 4
\frac{1165}{500} = \frac{7.707}{500} = \frac{7.707}{8}
                                                                                                                                                                                                                                                          54*3
 Tu"; :
h temperature
h temperature
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  = 30.J0 C
= 15.00 C
= 35.00 C
=50000.0k3/br
=38976.1 ka/nr
= 41.29 ka
=.0045JR ka/ka
                                                                                                                                                                                                            Qf
                                                                                                                                                                                                                                                          MIT
the temperature of the tower the tower at the to the tower water few to the tower with olowor air olowor air olowor air olowo the tower air of the tower the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               kalka of
               35, 100 35, 100 35, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 100 37, 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33.000 1
17.781 1
70.145 1
                                                                                                                                                       35.001
10.6/2
55.055
                                                                                                                                                                                                                                                                                 33.0°0
13.297
63.471
                                                                                                                                                                                                                                                                                                                                                                                                             35.000
15.658
70.125
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 15-000
19-691
81-552
                                                                                                                                                     33.6/9 1 33.6/4
10.157 1 12.55d
56.727 1 53.274
32.518 1 32.757
32.518 1 11.877
55.130 1 61.132
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    34. J44 I 34. 141
10. J35 I 18. 548
74. 665 I J9. 6J9
33. 168 I 33. 344
15. 805 I 17. 535
71. J45 I J6. 433
                                                                                                                                                                                                                                                                                                                                                                                33 935
14 744
99 236
32 925
13 66 655
                                                                                                                                                                                                                                                                                                                                                                                1 00.607 1 1.793 1 76.433

32.009 32.335 1 32.578

13.221 15.309 1 15.6616

04.430 69.204 1 73.6616

31.219 31.545 1 31.945

12.614 1 14.304 1 15.940

12.614 1 14.304 1 11.162
                                                                                                                                      11.453 t
q 270 t
53.794 t
                                                                                                                                                                                                                                                                            34.775
11.390
59.391
               30.112 30.4/1 30.86
5./25 22.642 10.82
4/.239 32.642 57.71
                 71.239
                                                                                                                                                                                                                                                                              30.852
10.830
57.719
                                                                                                                                                     29.563
9.569
51.642
               2 3. 37 0
5. 525
45. 58 /
28. 10 /
5. 47 8
46. 20 8
                                                                                                                                                                                                                                                                              3J.00±
1J.378
52.339
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    30.795
13.690
65.002
                                                                                                                                                                                                                                                                                                                                                                                                         30.419
12.086
50.789
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1 41-139
1 15-497
1 08-989
                                                                                                                                                      28.729
9.292
50.769
                                                                                                                                                                                                                                                                                                                                                                                                          29.606
11.622
59.282
                                                                                                                                                                                                                                                                                73,213
10,005
55,174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    30.082
13.148
63.246
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1 10-466
               27.368
0.351
45.789
                                                                                                                                                                                                                                                                                28.458
9.677
                                                                                                                                                     27.045
8.058
49.999
                                                                                                                                                                                                                                                                                                                                                                                                          28.955
11.911
57.940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     29.406
12.666
61.075
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 29-823
14-046
65-257
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Ţ
```

= 27.96 = 80.81 =.01941B

700

Z K1

581.1 kg/hr 1540969.4 k1/hr 292

6.8250 4**3

Kalka of 4th

itv at each orid = w*inun

in thing of the state of the st

hate adamonated

Teaber

Or Till Tradfred

Or Till Tradfred

Or Till Tradfred

Or Till Trade

of leaving water | leaving air

5 17 1

ceineratire oritilus of oni loaving

```
#ALAC Lounerature
***************
                                                                                                                                                                 10 P
                                                                                                                                   .
                                                                                                                                                                                                                                                                                                                                                       **
                             1 14 17 4
                                                                                                    T2= 1578 +
                                                                                                                                                                                                                        13= 356F+02
              A Latin by by m
                                                                                                                                                        V. 45096-07
                                                                                                                       44
                                                                                                                                           44.
37
                         ٦ì.
                                                                                             1 Parerature
                                                                                                                                                                                       1,1
                                                                                                                                                                                                             FValv
                                                                                                                                                                                                                                                            Trii
                                             6 3 1 6 3
                                                                                                                                                                                                                                                                                               Point
                                                                                                                                                                                                                                                                                                                                       354.59264
544.59264
544.20597
744.20597
                                                                                                                  J.
                                                            ション さいこう ハイノア ママウイ ハロロロア
                                                                                  002532413
002532413
                                                                                                                                       ハラションオーリン
                                                                                                                                                                        35
                                                                                                                                                                                            000134040141141
                                                                                                                                                                                                                                                                                                      074703715
                                                                                                                                                                                                                             4.4.4.
                                                                                                                                                                                                                                                         242411410
                                                                                                                 コンコンススつつつ ひょうとしょう
                                                                                                                                                                                                                                                                                  3
                                                                                                                                                                                                                           74.4.4.57
79.4.4.57
                                             ..
j
                                                                           ***
                                                                                                                                                                                                                                                                303710
                    * * * * * * * * * *
                                                                                                                                ******
                                                                                                                                                                                      . . . . . . . .
                                                                                                                                                                                                                                                                                                . . . . . . . . .
                                    ちつつうというな
                                                                                                                                                                      13333332X
                             ナルアントコーキ
                                                                                                                                                                                                                                                                                       43つつ1000
                                                                                                                                                                                                                                                                                  366666
        3
                                                                                                                                                                                                                                                                                                                                      よいいいつ
                                                            1
                                                                                                                                                                                                                                                                 つまけ
                                                                                                                                                                      22
ie ni
                                            19jew
                                                                                           tenner ature
                                                                                                                                                                                                           CAPLA
                                                                                                                                                                                                                                                         Stiu
                                                                                                                                                                                                                                                                                               Sorur
                                                                                                                                                                                                                                                                                                                                     5432VIII
                                                                               3.3
3.5
                                                         5333377777
                                                                                                                                                                                                                                                                               うろうろうしつのつつ
                                                                                                                                                                                                                                                                                                     040570097
                                                                                                                                     0/1/13130
                                                                                                                                                    てんていましてもり
                                                                                                                                                                           ちゃつつ10000
                                                                                                                                                                                            Λ
                                                                                                                                                                                                 いとなるとうつってん
                                                                                                                                                                                                                         シスツススなみへ
                                                                                                                                                                                                                                                        じょくし じゃいかは
                                                                                                                                                                                                                                                                                                                                                            000
                                                                                                                                                                    ひろと さとと とんとん
                                                                                                                                                                                                                                                  J
                                                                                                                                                                                                                                                               ひちて まな たの けし
                                                                                                                                                                                                                                ひとといしていませ
                                            Ų
I
                                                                                                                                                                                                                                                                                                                                                  ******
                                                                         * * * * * * * * *
                                                                                                                              ** * * * * * * * *
                                                                                                                                                                                   ***
                                                                                                                                                                                                                                         ***
                                                                                                                                                                                                                                                                                               *****
                    ***
                          されたままだいつち
     スカスラウラファナ
                                                                                                               てスマスワククク
                                                                                                                                            31777756
                                                                                                                                                                                         0001NER1
                                                                                                                                                                                                                                                                                                                                                          2470471402
                                                                                                                                                                                                                                                                                                                                    ようないけんよう
                                                                                                                                                                                                                                                ひしろつりひょっ
            ライト きょういりつ
                                          134010
                                                                                                                      としいりょ 57
                                                                                                                                                                                                                                                       Grid
              7,
                                                                                                                                                                                                         FVary
                                                                                                                                                                                   ht
                                                                                                                                                                                                                                                                                             Point
S
                                          10.164
                                                                                         iemperature
                         ように ドイトゥ ひいりょう ひょう アストライン アンストライン アントラント
                                                                                                                                                                                                                                                       つろうするちゅうりかる
                                                                                                                                                                                                                                                                                                    0133019122
                                                                                                                                                                                                                                                                                                                                     するするととしいり
                                                                                                                                                                                                                                                                                                                                                         U247U4715
     マスススフラファク
                                                         うちょうてのついてファ
                                                                                                             333333222
                                                                                                                                                                                         9999135P7
141
141
141
                                                                                                                                                                                                       つつつののつつでつ
                                                                                                                                                                                                                                                                               547711070
                                                                                900
                                                                                                                                           0777403558
                                                                                                                                                                                                                         アイ・ファイン ステンク
                                                                                                                                    ひしてしなりしょうひ
                                                                                                                                                                                                                                               いのよろつりいろり
           *******
                                                                                                                                                                                                                                うせいとしている
                                                                                                                                                                                  ****
                                                                                                                                                                                                                                                                                                                                                   ***
                                                                          ***
                                                                                                                              *******
                                                                                                                                                                                                                                        * * * * * * * *
                                                                                                                                                                                                                                                                                              *****
                                                                                       SAAAAGR1
                                                                                                                                                                                  B.t
                   ~ ı
                                                                                                                                                                                                         rvarv
                                                                                                                                                                                                                                                        orta
                                          HALPE
                                                                                         (Paperature
                                                                                                                                                                                                                                                                                             Print
     $
                                                                                                                                                                                                                                                                                                                                                  02904
-1704
-1407
-15
                                                                                                                                                                                         0757775607
                                                                                                                                                                                                                                                                                                                                    1432771003
  33377999876
                                                        33333366477
                                                                              06/44/16/14
                                                                                                             3332109967
                                                                                                                                          つびっきつちゃくり
                                                                                                                                                  1
                                                                                                                                                                          ちょうつけのののの
                                                                                                                                                                                                                         ろれななのなべつつ
                                                                                                                                                                                                                                ちもろくよいしょさ
                                                                                                                                                                                                                                               ひしまるコーショー
                                                                                                                                                                                                                                                       つるちゃつちちてつ
                                                                                                                                                                                                                                                                              343011010
                                                                                                                                                                                                                                                                                                    017591471
                                                                                                                                                                                                                                                                                                            076670267
                                0024J027
                                                                                                                                                                  とらとよさ ひととん
                                                                                                                                   167/89147
                                                                                                                                                                                                                                                              ひていきろうとん
                         152090125
                                                                                                                                                                                                                                                                                             . . . . . . . . .
                                                                       ***
                                                                                                                                                                                                                                        ******
                                                                                                                                                                                   9 W 9 K 8 8 8 8 8
                   *******
                                                                                                                             ***
                                                                                                                                                   おしゅうけら
                                                                                                                                                                                  pt F
                    ٦.
                                                                                                                                                                                                         Fym<sub>1</sub> /
                                                                                                                                                                                                                                                        Stid
                                                                                       In oper iture
                                                                                                                                                                                                                                                                                              Point
   ς
                                            iale;
                                                                                                                                                                                                                                                                                                                                     33.7714
33.7714
33.7714
33.7714
31.144
10.10
319.00
           3.17
                                                                                                                                           7111149011
                                                                                                                                                                    ちょう ひょうしゅつ
                                                                                                                                                                                          ሱ
                                                                                                                                                                                                                         スタスススススつつ
フィシン1111111111111
                                                                                                                                                                                                                                                                               ちゅうりょうりゅう
                                                                                                                                                                                                                                                                                                     0134734101
                                                                                                              えいいつ よにいりつ
                                                                                                                                                                                                         9
                                                                                                                                                                                                                                                        145744547
14171717
   ではる ひとり ひりょ
                                                                                                                                    いのししおりしゅし
                                                                                                                                                                                                 うり ちゅうしり 43 ちゅうしゅう
                                                                                                                                                                                                                                               いい上土つしいろし
                                                                                      メイ きゅういんし
                                                                                                                     354111101
                                                                                                                                                                                                                                       . . . . . . . . .
                                                                       . . . . . . . .
                                                                                                                                                                                   * * * * * * * * * *
                                                                                                                                                                                                                                                                                              * * * * * * * * *
                                                                                                                             * * * * * * * * * *
                                イスフレイガスプ
                                                                                                                                                                                         母ののつべらのつ
                                                                               よち りんだれいり
                                                                                              * ダ と C は で C C
                                                                ろうちゃ のみてつ
                                                                                                                                                                                                                                                                                                             ひかつ との とり とり
                                                         3333212
                                                                                                                                                                                                                                                                               3333322
                                        $ 10 to 10 to 20 t
                                                                                                                                                           77,77
7 27
7 20
                                   11. m
10. 1
10. 1
10. 1
10. 1
10. 1
                   ** <u>t</u>
                                                                                                               , ...
, ...
                                                                                                                                                                                                                                                                                                       .0925E+01
                                                                                                ,
,
                                                                                                                                                                                           Trotar
                                                                                                                                                                                   上げひしょくす
                                                                        1,
                                                                                        11
                                                                       10 TH #
                      11
                                                                                                                                                                                                                                          E++5 + 5
                                                                                                                                                                                                                   1101
                                                                                                                                                                                                                           1 7 7
                                                                                                                                                                                                                                                  310400
           1 =
                                                                                                                                                                                                                                  じょうしいり
                                                                                                                                                                                                                                                          C 2 4 2 4
                                                                                                                              ן
בן טן
ז'טי
בירי
                                                                                                                                                                                                                                                                  +97
296+09
316+09
.7276
```

T

4 +

retails

at

e۷

```
中水
                                                                                                                                                                                                                                                                                                                                                                                           ウ!1
* 本
                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                  I.
                                                                                                                                                                                                                                                                 *
                                                                                                                                                                                                                                                                                                           *
                                                                      1 13
                                                                                                                  1
                                                                                                                                                                                                                                                                                                                              7
                                                                                                                                                                                                                                                                                                                                                                                                                                             *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  taining
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (1P 5)
水本本
                                                                                                      T 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STAW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        V
                                                                                                                                                                                                                                                                                                                                                                                                 THE THE THE THE
                                                                                                                                                                                                                                                                                                                                                                              1111111
                                                                                                                                                                                                                                                  ちちちちちちちちちず
                                                                                                                                                                                                                                                                                                                                                                                                                                               CECTETICE
                                                                                                      さつけつこうこうさい
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       つクラスフフフファ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    000000000
1 おし上ろまちつ/ n
                                                                                                                                               ひつつうくうりゅうす
                                                                                                                                                                                                                                                                                                                                                                                                                           ****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             というららしじじじ
                                                                                                                                                                                                                                                                       100000001011
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  とうりゅう かいりゅう ひり
                                                                                                                          *********
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      けいのひひひひひひしょ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .........
                                                                                    333333333
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ととととと とんとと む
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ******
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 . . . . . . . . . .
                                                                                                                                                                                                                                                                                                                                                                                          うきょう
                                                                                                                                                                                                                                                                                                                                                                                                           いれていばん
                                                                                                                                                                                                                                          1111
                                                                                                                                                                                                                                                            55555
                                                                                                                                                                                                                                                                                                                                                                                                                                                         ひつつ ひつつ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        のののののの
                                                                                              とならいなっ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ファシブ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              000000
                                                                                                                                                                                                                                                                                                     ひひひひは
                                                                                                                                                                                                                                                                                                                                                                                                                                   * * * * *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           うつうちち
                                                                                                                                                         ひとりいいの
                                                                                                                                                                                                                                                                                   * * * * *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   40.8040
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ひしいいい
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2222
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   申并於我也
               77777
                                                                                                                                     * * * * *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         * * * * *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     * * * * *
                                                                                                                                                                                                                                                                                                                                                                                                             ****************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        のおからからからのいろうからでったかっ
                                                                                                                                                                                                                                              多季代香季香香香香香香香香 有日日 有日日
                                                                                                                                                                                                                                                                                                         פי י בכבסי הבכנ בבני בני בני
                                                                                                                  ***************
                                                                                                                                                                                                                                                                                                                                                                                                                                     电电极 医食用 医异物 经存货 医不力 医异性原物 的
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ورود ورود وراد وراد وراد وراد و داد 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     せいかいしゅうじょく ストランド かいいしゅいいい
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   アファ スプアングラング アンプラング アクア
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     使用分子的有限的的有效的非常的有效的
                   an an action to the the the the the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ***************
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ****
```

```
ς,
                                                                                                                                        计本
                                                                                                                                                                       t
Y
                                                                                                                                                                                                                                                                                                                                                                                            1 t.
* *
                                                                                                                   φ
‡
                                                                                                                               Cif
                                                                                                                                                             ∩
*
                                                                                                                                                                                                                                                        ን <del>!</del> 1
                                                                                                                                                                                                                                                                             うつけて
タネネギチ
                                                                                                                                                                                                                                                                                                                                                                                                                                    ate;
                                                                                                                                                                                                                                                                                                                                                                        e
                                                                                                                                                                                                                                                                                                                                                                                 X
                                                                                                                                                                                                                                              ŧ
                                                                                                                                                                                             LVN
                                                                                                                     ALL
                                                                                                                                                                                                                                                                                                 40
                                                                                                                                                                                                                                                                                                                                                                                                                                                         ጥሗዣ
11111177777
            とうとうがくりののなく かくとのうののくのののない
                                                                                                                                                                     スマイに たんて マイ たんらん
                                                                                                                                                                                                  CCCCCCCCCCC
                                                                                                                                                                                                                                                                 ハスコイ ハマコ なべ マスク
                                                                                                                                                                                                                                                                                    ファファファファファファ
    . . . . . . . . . . .
                                                                                                                                       香中有年也年了李信里有年
                                                                                                                                                                                                                                                                                               244424422414
                                                                                                                                                                                                                                                                                                         つのひろんなつくならのでく
                                                                                                                                                                                                                                                                                                                                                                               702310207835
                                                                                                                                                                                                                                                                                                                                                                                                   うちひ100009317
                                                                                                                                                                                                                                                                                                                                                                                                                                                       789801689690
                                             ひきらなる ちょうこうきょ
                                                                                                                            8 4 4 4 5 4 4 4 5 6 5 6 6
                                                                                                                                                                                                             ひひん てひこひこし ひしひ
                                                                                                                                                                                                                                                                                                                                                                                                              018771190176
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          187025002650
                                                                                                                                                                                        ひらいしょ くいひ いくくし
                                                                                                                                                                                                                        ****
                                                                                                                                                                                                                                 しいじ ひじ ひけ し ひ ひ ひ ひ
                                                                                                                                                                                                                                                                                                                                                                                                                                             こくしょう ししにんしんろ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ロシノキコミノおひょう
                                                                 * * * * * * * * * * * * * * *
                                                                                                                                                                                                                                                                                                                    ****
                                                                                                                                                                                                                                                                                                                                                                                          的的形式的用的现在形式的
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ****
                                                                                                                    **********
                                                                          40000000000
                                                                                                                                                                                                                                                                                                                                                                      מ ש ש ש ש ש ש ש ש ש ש ש ש ש ש
                                                                                                                                                                                                                                                                                                                             11111111
***
                                           ひりつつ ひりつつ ひりつ ひり
                                                                                                                                                                                                                                                                李孝有在有在你在你在李春春
                                                                                                                                                                                                                                                                          711177777777777
                                                                . . . . . . . . . . . . .
                                                                                                                            といない なっち ひっち ひひひ と
                                                                                                                                      月月九十日日本在七十日本
                                                                                                                                                                                                                                                                                  acacacacacac
                                                                                                                                                                                                                                                                                              2222222222
                                                                                                                                                                                                                                                                                                        ツフフフフフフフファフファ
                                                                                                                                                                                                                                                                                                                                                                     111177011111
                                                                                                                                                                                                                                                                                                                                                                                                                                             いんないない かいかいかい
                                                                                                                                                                                                                                                                                                                                                                                                                                                      134745073035
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          417137735050
                                                                                                                                                                                                                                 とないよののの子のののと
                                                                                                                                                                                                                                                                                                                                                                                                              500760374567
                                                                                                                  ********
                                                                                                                                                                                                                                                                                                                            有有有有有有有有有有
                                                                                                                                                                                                                                                                                                                                                            11111111111111111
                                                                                                                                                                                                                                                                                                                                                                                                   2400/1473297
                                                                                                                                                                                                                       . . . . . . . . . . . . .
                                                                                                                                                                                                                                                                                                                   -----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ひろしんじょうしょうしょ
                                                                                                                                                                                                                                                                                                                                                                                          ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ******
           ひのち ひり ひり ひり ひり ひり
                                                    ママス ちらんててって ちらら
                                                                                                                          イカカロのひののちちのの
                                                                                                                                                                             你你在有情你在你你你你
                                                                                                                                                                                                                                                                                                                                                                    A 4 5 4 5 5 7 A 4 5 5 5
                                                                                                                                                                                                                                                                                                                                                                                                   746619407558
                                                                                                                                                                                                                                                                                                                                                                                                                                             きるきょうきょうきょうきょう
                                                                                                                                                                                                                                                                                                                                                                                                                                                     57P6R9467479
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          745248347840
                                                                         00000000000000
                                                                                                                                      11人工月也也不有用日本
                                                                                                                                                                    30733/35/30/
                                                                                                                                                                                                00000000000000
                                                                                                                                                                                                                                                                          1/7/17/17/17/17
                                                                                                                                                                                                                                                                                   11111111111
                                                                                                                                                                                                                                                                                                       プラフフフファファファフ
                                                                                                                                                                                                                                                                                                                           1111111111
                                            于子和中心 不明子行 并不行
                                                                                                                                                                                                            ひ いい い い い い い い い い い い い い
                                                                                                                                                                                                                                ひひ ししし しゅうしゅじょうい
                                                                                                                                                                                                                                                                                             かいかい ひから ひっこう
                                                                                                                                                                                                                                                                                                                                                                               28198241*105
                                                                                                                                                                                                                                                                                                                                                                                                              ネルタフルツちのつのネス
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     てょうるひこり コんタこら
   * * * * * * * * * * * * *
                                                                *********
                                                                                                                                                                                                                                                                                                                   * * * * * * * * * * * * *
                                                                                                                  ****
                                                                                                                                                                                                                                                                                                                                                                                         ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ***
                                                                                                                                                                                                                       * * * * * * * * * * * * *
           つうりゅう こうしゅうりゅう
                                          444555414554
                                                                                                                                                                  44444444444
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     40231/101398
  华 雅 邦 华 角 此 形 幸 养 田 号 5
                                                                                                                                                                                                                                                                                                                                                                                                                                             4+4444344344
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          178448659079
                                                                                                                          KKKKKKKKKKKKK
                                                                                                                                                                                                                                                                                                                                                            11111111111111
                                                                         ついろうりのこうとうと
                                                                                                                                                                                                                                                                                   在存在在在在在在在有有日
                                                                                                                                                                                                                                                                                                                                                                    REGEO OFTETRO
                                                                                                                                                                                                                                                                                                                                                                                                   ちとてよるのからなるとも
                                                                . . . . . . . . . . . .
                                                                                                                                                                                                                                ******
                                                                                                                                                                                                                                                                                                                                                                              082895983790
                                                                                                                                                                                                                                                                                                                                                                                                              50862696114
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  . . . . . . . . . . . .
                                                                                                                 . . . . . . . . . . . .
                                                                                                                                                                                                                                                                                                                                                                                          ********
                                                                                                                                                                                                                        *****
                                                                                                                                                                                                                                                                                                                    . . . . . . . . . . . .
```

```
十十六
                                                                                                                                t
*
  a r
                                   5. II
                                                                               F
F
                                                                                              つし
学 キ
                                                                                                                           7
                                                                                                                                                110
**
                                                                                                                                                                                             ナキチャギ
                                                                                                                                                                                                                                ·
                                                                                                                                                                                                                                               マンマネキネ
                                                                                                                                                                                                                                                                            <u>ہ</u>
                                                                                                                                                                                                                                                                                   X
                                                                                                                                                                                                                                                                                           † t
**
                                                                                                                                                                                                                                                                                                                 * 4
                                                                                                                                                                                                                                                                                                                       将常
                                                                                                                                                                                                                                                                                                                               t.
                                                                                                                                                               ii
P
                                                                                                                                                                       1
                                                                                                                                                                            3
                                                                                       *
                                                                                                                                                                                      ¥
        1 ,
                                                   ز ۳
                                                                                               141
                                                                                                                                                  (* # E + W
                                                                                                                                                                                                                   r
                                                                                                                                                                                                                            17
                                                                                                                                                                                                                                                                                    HAV
                                                                                                                                                                                                                                                                                                                                      ተልነ
                                                                                                                                                                                                                                                                                                                                      TAL
                                                                                               ች ታ ነ <sup>ተገ</sup>
                                                                                                                                                  1 1/2 ...
                                                                                                                                                                                                                   7 4 7
                                                                                                                                                                                                                                                                                    HAV
         i' z
                                                                                                                                      990203140714.
                                                                                                                                                                                                                                                                                                                               222233222223
       キャ しょすがいつつつつつ
                                                                                                                                                                                                    414444444444
                                                                                                                                                                                                                                                                                                  フラリンスラネアゼラよもひ
                                            3335555777655
3335777555
                                                                44 CCCCCCCCC
                                                                                                             有有有意意中的 意見等有意
                                                                                                                                   うつりょうしょうしょうし
                                                                                                                                                                                                                  ファブラファファファファ
                                                                                                                                                                                                                                479757431382
                     へつき すっこく ちじゅ ひり
                                                                                                                                                                                                                          ととと イベノムノムレン
                                                                                                     とんにんんに しょうけいしん
                                                                                                                                                                                                                                               *****
                                                                                                                                                                                                                                                                                                                                              ****
              ~1 イノ こんんし / ん/ と
                                                           ********
                                                                                                                                                                                                                                        . . . . . . . . . . . .
                                                                                              744460567383
                                                                                                                                                                                                                                                                                                                                              ****
                                                                                                                                                                                                                                                                                                                                3333333333333333
                                           ないのですするないです
                                                                 こうちゃく ちゅうりゅう
                                                                                                            + 14474411144
                                                                                                                                         3144144444
                                                                                                                                                                                                           11111111111111
                                                                                                                                                                                                                  11117700011117
                                                                                                                                                                                                                                                                                    1577364911/0
                                                                                                                                                                                                                                                                                                         001011067490
くだなくなっとなくとない
                                                                                                     サーン コナンシャンシャ
                                                                                                                                                                                                                          2 イムレ んしんしょしんじん
                                                                                                                                                                                                                                ファファファファファファ
                                                                                                                                                                                                                                                                      11年人是是不是人工人工
                                                                                                                                                                                                                                                                                                   はと3134931127
                      ひら りゅうりゅう ひっと りょう
                                                           *****
                                                                                                                                   さつとろっくろうしょうし
                                                                                                                                                                              Ú
                                                                                                                                                                                                                                                 下车喝售售售售作作等售售
                                                                                              *****
                                                                                                                                                                       * * * * * * * * * * * * * *
                                                                                                                                                                                                                                         *********
                                                                                                                                                                                                                                                                                           * * * * * * * * * * * * *
               ****
                                                                                                                                                                             と ここり こうしょう こうしょ
                                                                                                                                  3333343333333
                                                                                                                                                                                                                                                                                                                                                      077571770284
                      ~~~~~~~~~~~
                                                                                                                                                                                                                                                                                                  921959558475
                                            是中年五年生生生主任任徒
                                                                                                                                                                                                            7 177777777711
                                                                                                                                                                                                                                                                             145056234415
                                                                                                                                                                                                                                                                                                                                                              おしからとう ゴアルガスき
        イイネをままのでつつつつ
                                                           * * * * * * * * * * * * * * *
                                                                                                     とう かい とり とり かい かい かい
                                                                                                                                                                                                    144444444444
                                                                                                                                                                                                                                 ファファファブブファブ
                                                                                                                                                                                                                                               KKKKKKKKKKKK
                                                                                                                                                                                                                                                                      170860192083
                                                                                                            在一个人不不不不不不不不不不不不不不不
                                                                                                                                                                                                                   111111111
                                                                                                                                                                                                                         00000000000000
                                                                                                                                                                                                                                                                                            *******
                                                                                                                                                                                                                                                                                                                                               ****
                                                                                               . . . . . . . . . . .
                                                                                                                                                                                                                                         . . . . . . . . . . . .
 つうちょう ひから ひちろうろ
                安 無 体 容 即 中 於 表 类 条 并 杂
                                                                                                                                                                       ********
                                                                                                                                                                              ひもいひしひひひひひひ
                                                                                                                                   444444144544
                                                                                                                                                                                                                                                                                                                                        013024802913
                                                                                                                                                                                                                                                                                                                                                       390772982263
                                                                                                     サリンタナンコラシャンラ
                                                                                                                                                        KKKKKKKKKKK
                                                                                                                                                                                                                                                                       1111111111111
                                                                                                                                                                                                                                                                             720200672720
                                                                                                                                                                                                                                                                                                          71870620704
                                                                                                                                                                                                     44444445144
                                                                                                                                                                                                                    李存在李左在在李存在 東日
                                                                                                                                                                                                                                   ****
                                                                                                                                                                                                                                                                                     901773801011
                                                                                                                                                                                                                                                                                                                                                               はてはとうひとりょうは
        QCCCC77777777
                      PROTTE OF TH
                                                                  つうてい ちゃくりょうとう
                                                                                                                                                                               000000000000000
                                                                                                                                                                                                                           LII LELLENGE
                                                                                                                                                                                                                                                                                                    896567775230
                                                                                                                                                                                                                                                                                                                                                 **********
                                            はなるりつし エイキリ
                                                                                                                                                                                                                                                                                             ***
                                                                                                                                                                        * * * * * * * * * * * * *
                                                                                                                                                                                                                                          非 化化 作 化 张 张 华 伯 的 的 化
                                                           * * * * * * * * * * * * * *
  はなかかからいい
                ***
                                                                                                医斯格林斯特斯林的比较级
```

```
neflicients
                                                                                                                               111
***
                            1 °
                                      ***
                                                                                                                                               9263
***
                                                          CA
                                                                                                                                                                    Of Counter
*******
  11 .. O .. I
                                                     *
                                                                                                                          *
 T 4
                      tip, ዋያ \y
                                                                     JT
                                                                                                           p
                                                                                                                                          44/AV
                                                                                                                 1 1
                                                                                                                                                                                    N'<u>1</u> 11
 5/99
5/97
7/91
7/91
                           1665666
                                                                                                                                                        000000
                                          うつけつつうへ
                                                                                                                    ~~ ~~~~
                                                                                                                               りつつつつつ
                                                                                                               ひょうしんし
                                      . . . . .
                                                                                                                                                                                         . . . . .
                                                                                                                          . . . . .
                                                                                                                                                    * * * * * *
                                                                                                                                               11111
                                                                   なったがいなっていっこう
                                                                                                                                                                                             3000000
                                          ペロランへ ひ
                                                                                                         200000
                                ****
                                                                                                                    000000
                                                                                                                              ひつつつひつ
                                                                                                                                                                                   のつかつかの
                                                                                                                                                                                                        121547
                                                                                                              としていいと
                           ピンシ とととん
                                     * * * * *
                                                                * * * * * *
                                                                                                                          * * * * * *
                                                                                                                                                    * * * * * *
                                                                                                                                                                                         . . . . . .
                                                                                                                                               11111
                                                                   000000
00000
00000
00000
                                                                                                                                                        なられていないのう
                           74444A
                                                                                              201111
 かかかったから
                                         200000
                                                                                                         300000
                                                                                                                    00000
                                                                                                                              CCCCCC
                                                                                                                                                                                   000000
                                                                                                                                                                                                   419681
                                                                                                                                                                                                        206717
                                     . . . . .
                                                                                                              いいいいいい
                                                                                                                                                                                        - - - -
                                                                                                                         . . . . . .
                                                                                                                                                    * * * * * *
           * * * * * *
                                                                * * * * * *
                                                                                                                                               まる 丁丁丁
                                                                         0000000
                                                                                               من ليل ليم ليل من ليم
                                                                                                        22220
                                                                                                                                                                                   000000
                                                                                                                                                                                              11111
                                                                                                                                                                                                   フラムチャイカ
 41111111
                           3113111311
                                          へつつつつつ
                                                                                                   100001
                                                                                                                   つつのつののの
                                                                                                                              200000
                                                                                                              からいいい
                                                                                                                                                             000000
                                                                    300000
                                                                                                                                                        ないとすいら
                                                                                                                                                                                        ****
           * * * * * *
                                     . . . . .
                                                               ****
                                                                                                                         . . . . . .
                                                                                                                                                    * * * * * *
                                                                                                                                                                                                        KR307
                                                                                                                                              111111
                                                                         000000
                                                                                                        200000
                                                                                                                                                        000000
                                                                                                                                                                                             111111
                          ようがん
ちんだん
ちん
ちん
ちん
ちん
ちん
                                                                                              3000000
                                                                                                              いつついいい
                                                                                                                   ひつりつつり
                                                                                                                                                                                                        773086
455555
                                         000000
                                                                    000000
                                                                                                                              ロカイロつで
                                                                                                                                                                                                   211100
                                                                                                                                                                                        * * * * * *
                                     . . . . . .
                                                                                                                         * * * * * *
                                                                                                                                                    . . . . . .
                                                                * * * * * *
          * * * * *
                                                                                                                                               095
088
086
087
083
                                                                                                                                                        ならずずではなっている
2 4 K L I L
                                         ていてくてく
                                                                         22775
                                                                                               いいしいしょう
                                                                                                         () () () () () ()
                                                                                                                    つつつつののつ
                                                                                                                              0 000000
                                                                                                                                                                                    000000
                                ***
                                                                                                               いいいいいい
                                                                    220000
                                                                              いいいいいいい
     1 6 6 6 5 1
          * * * * * *
                           4 件五十五十五
                                                                                                                         * * * * *
                                                                                                                                                                                         * * * * * *
                                     * * * * * *
                                                               * * * * * *
                                                                                                                                                     * * * * * *
                                                                                                                                               LILLI
```

ė

r_{\perp}	r	73	ngs (to	س ر	ria	1A/ 18	ViII	Tja
7775	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	95* 95* 95* 95* 95* 95* 95*	166.0 166.0 166.0 166.0		70707.7 70707.7 70707.7 70707.7 70707.7 70707.7	1.20	0.400 0.352 0.352 0.324 0.304	CCCPHW.
777777	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	41.00	.07\ .01\ .01\ .01\ .01\ .01\	7 U 1 U 1 . 1 7 U 1 U 1 . 1	1.00	0.354 0.261 0.261 0.245 0.237	1.
1000 mm 1000 m	-4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -	رن درن درن درن	1000000 1000000	* 50 00 00 00 00 00 00 00 00 00 00 00 00	7 0 0 0 1 0 1 7 1 0 0 1 0 1 0 1 0 1 0 1	1.20 1.20 1.30 1.30 1.30	0.247 0.210 0.196 9.187 9.181 9.177	100000
さい ない	777777 000000	^V. 10. 40. 40.	311.000	000 000 000 000 000 000 000	70000.0 70000.1 70001.1 70001.0 70000.0	1.20 1.20 1.40 1.80	0.173 0.156 0.148 0.143 0.140 0.137	000000
40000	255555	45. 45. 45. 45.	366.0 366.0 366.0 36.0	. 600 . 500 . 500 . 500 . 500	70000.0 70000.0 70000.0 70000.0 70000.0 70000.0	1.20 1.20 1.40 1.60	0.127 0.113 0.110 0.110 0.106	COCCCC ********************************
* C C C C C C C C C C C C C C C C C C C	31. 31. 31. 31. 31. 31. 31. 31. 31. 31.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41.0	*300 *300 *300 *300 *300 *300	70100.1 70101.1 70101.1 70101.1 70101.1	1.30	0.095 0.098 0.086 0.084 0.083 0.083	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

l Amaria salvata	12 101 L 1011111121 L 7 L 3 T C 35P OL COUNTER 1134 TOWER
	- የተመመጠቀም ተመመጠቀም ተመመጠቀም ተመመጠቀም የመመጠቀም የመመመ የመመመ የመመመ የመመመ የመመመ የመመመ የመመመ የመ

r L	" _č	د "	r, ~1 * .	jΥ	rįą	44/1/1	at Tax	TJCH
, , , , , , , , , , , , , , , , , , ,	E 4 C 4 C 4 C 5 C 4	23.00.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17. 17.0 17.0 17.0 17.0	3",0",0",0 3",0",0",0 3",0",0",0 3",0",0",0 3",0",0",0	00.1 00.1 00.1	-2.454 -1.7406 1.616 1.740	-13.135 -0.455 11.457 4.354 2.340
	10.	3 1 m	131 LL 16 LL	1.000	30000000000000000000000000000000000000	1.20	-7.555 1.747 0.825 0.746	-41.424 10.499 4.490 4.203 1.803
ار المراج الم	在 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30. 35. 35. 35. 35.	**************************************	1.000	301 0 0 0 1 0 30 1 0 1 0 1 0 1 0 1 0 1 0	1.00	2.576 0.942 0.637 0.637 0.541	14.025 4.205 2.798 1.31
25 25 25 25 25 25 25 25 25 25 25 25 25 2	00. 200. 200. 200. 200.	40. 40. 40. 40.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.000 1.000 1.000 1.000	30700.0 30700.0 30700.0 30700.0 30700.0	1.00 1.20 1.20 1.20 1.30	0.442 0.448 0.441 0.40	4.5814 1.5814 1.158
4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	255555	45. 45. 45. 45. 45.	30.0 30.0 30.0 30.0 30.0 30.0	1.000	30000.0 30000.0 30000.0 30000.0 30000.0	1.400	0.487 0.386 0.347 0.324 0.329 0.299	2./01 1.71/ 1.28/ 1.951 0.739
	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*****************	35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.000 2.000 1.000 1.000 1.000	3090000 3090900 3090909 3090909 3090909	1.00 1.40 1.40 1.40	7.320 0.751 0.751 0.731 0.731	1,794 1,210 0,937 0,767 0,560

		クれらり	1253	? 0	1499	7 8 Q	9	
		ソレル集	4452	4	41	420	I	
^*	[]	アラドラ	5798	7 7	5444	3	2	
	T	*		•	* * *	*	*	
*	NF	フォスチャイ	プラミののの	さのののののの	000000	000000	00000	
〇 t 本本		***						
53 * *	J	} \ }) }	} } }))))	n n n	
5 1	ią i	91 54 15 10 10 10	3646	3/24/1	なられている。	RO 71	けいしょうひ	
7) *	/		•		A	B		
į,)						L	
) (*# <i>[</i>	1	i l	i !]			
1		つつつつ	つついつ	()	のつつつ	J.	つつつつ	
*		* = 1	* * *	*	* * *	* *		
5*	R)	4000	0000	000	ስ ስ ስ ስ	<u>ل</u> ل	りつつつ	
t'	ŧή	いいいい	かんない	U U U	ついいし	j	7	
*	יד	つつつつつつ	300000	つけいついつ	404404	000000	00000	
2		000	0000	000	00000	UUU	UUU	
C1		7777	7777	777	7 7 7	7 7 7		
† *		./ () () ()	0000	000	0000	UUU	V) U)	
f	ιĀι	しししし	ሳሳሰስ	n n n n	ひかかい	のりのの	7000	
*	ر	0000000	ひいしししし	ないないない	100000	0.0000	000000	
∩ *			* * * *	* * * *	* * *	* * * 4	* * *	
C * *		1 1 1	1111	1111	11111	1	1	
r *	ý							
*	3	000000	n n n	0000	ስ ስ	U U	200000	
4	ŗ	* * *	* * * *	* * * 4				
^*	, ,,,,	0000	۲,	000000	*****	0	ATA	
i.) F	1	111	525	2	3	41.43	
U	1							
•		雨雨雨雨雨	#	*		* * *	***	
U	.5	らりらら	UV	ちちらもちち	いいいいいいい	いついけつり	りがんり	
ŧ a	Lbe	2222	للا ليز يدر فيد	-	4	1 1 1	スペパパ	
ŧ	2	•		*	•	_	R	
, T ,	rj.	まだよ	くりつくへつ	ちがちちから	のつつつつつ	55555	10000000000000000000000000000000000000	
۴			and the first fine	**************************************	3	Ü		

		A. F	** /		* 3	UFLIVA	7) [VELOCTIV	THU
		, , ,	€	^	35 71717	26 <u>000</u> 00	, n kununun		2 5nunon	, 30000 30
4	?	7\	A, y	1 ,	FIL JTEL	HOTO EN DIEL	EAN IP FHAT	4TU	SUI MITT	rnch
*LJ w Lu	F 1 m	•	·	x x	(10 * 11)					
		pro-	£ 6-4	+1 7/9	31195	1 117552	025/3	0 0154	0 1154	0 0846
n, 1 t	Jon gra	fm # 1	(1 1 2	\$ 1 5LF	34 272	1 07593	0 0 1612	0 0157	0 3311	0 0859
7 1/2	1 ~	7 7 12	J 5 s	17 7 1	28 113	0 02031	9-02647	0 0159	U)470	0 0871
ו הלה ט	1 3 4	γ ,	81 68,) 1 ± ?	3/ 335	v 17664	0 026/8	0 0151	0 0631	0 0881
1 7 4 6	2 4 %	*· >) i sto	51 131	3/ 13/	v v2693	0 07715	0 0162	0 1793	0 08 9 0
7 1 4	3 16 3	e (7 * 3 4 4	77 729	3 p g 1 *	0 02710	0 01715	0 0154	0 0956	0 0897
3 = 113	2 5	*	1, 182	01 (11	27 271	0 07/34	0'02740	0 0164	u 1121	0 0902
7 11 1 2	A 7 7	y m	10 11,	p1 3(1	30 411	0.02746	0 01749	0 0155	0 1286	0 0905
7 7 1 4	7	4 ^ +} _↓	163 131	U7 5 4 3	30 37/	U 02/52	0 07751	0 0165	0 1451	0 0906
n mir,	5 ⁻ A		101 /31	10 925	30 351	J U2751	0 01747	0 0155	0 1616	0 0905
0 3 16	~	31 1	141 134	14 177	30 157	v v2743	0'02736	0 0164	U 1780	0.0901
0 7/67	e e i u	3 7 m		17 171	35 353	U 07178	9 0717	0 0163	U 1943	0 0895
1 * 457	7 7	A P	1 * 124	on tof	35 353	0 02706	0 02692	0 0162	0.2104	0 0887
1 1 1 1 1	7 4	4 3 2) 1	11/11	91 102	3/ 353	v 02671	0.401669	0 0150	0 2264	0.0877
* 7 * 1	7 · 1	4 3 1	17 1 14 2			L V2n12	0 02621	0 015/	0 2421	0 0865
1 325:	m a f		, 7h > 74	67 370	37 853	0 020 12 0 020 12	(
		r ()	10, 11,	yn hya	33 250	() () ? Q · ()				
	1 ⁷ N	* 1	Ar	1	T 3	DISTAY	P i		VFLOCTIY	THN
		15 J	, 30 0	บก	50 03030	41 00000	, 0~600000	}	2 300000	, 30000,00
, £10	7 (3		R FT L L	ATH	t a DIEF	FRAC FIN DIEF	MEAN IF FRAC	NTU	SUM NEII	roch
	a ~	A S A S A S A S A S A S A S A S A S A S			(15+1)					
	~	·	17,5	74						
		4 4	17: 17.	नेव धरेव	70 131	0 01313	0-01297	0.0078	0.0078	0.0436
U #30	Y /	↓ F F	1 6 33/	107 191	78 140	0 01280	0 01263	0076		0.0424
A shu	1 7,	<u>*</u> ~ 1	19, 162	115 558	an 3rg	0 01245	0 012/8	0 0074		0.0413
r 1273			01 553	168 720	92 633	0 01210	0'01192	0 0072	0 0799	0 0401
n 107	"ን		101 416	112 202	85 133	0 01175	01157	n nu69		0 0389
n 711612	~ ^	16 9 2	114 451	115 648	P.7 +11	1/1134	0 01171	0.0067	0.0435	0.0377

0.7161	A		7. 176	60 B S	2 6 7 3		0'0.0.0	0.0054		0.0343
٠ ٤٠٠ ا	es a s	142 4 11 1	174.174	125.731	95.974	0.01031	0"01013	0.0051	0.0524	0.0342
	6,300	2" m " L "	274.519	129,129	100-451	9.06.400	0_009/8	0.0059	0. 0683	0.0330
0,307.		3 7 m 1 1 1.	430.001	137.135	エラギ・ハラエ	0.00961	0_00943	0.0057	0.0740	0.0319
O 4 (E).	5.600	,7.6.,3	243.340	135.9/0	101.975	0.01926	ດ້າຄວາມຈ	0.0055	0.0794	0.0307
C. 1451	7 7. 4	10.750	2 ⁵ 1,335	137.249	112.32/	U.UN302	0-008/6	0.0053	0.0947	0.0295
0.1/53	7.000	40.131	259.052	1+7.527	110.435	0.00859	0.00843	0.0051	0.0897	0.0285
ಗ್ತಿ ್ ಾರ	P 1 1 1 P				121.028	0.00876	0,00810	0.0049	U. U946	0.0274
n_E 113	0.17	, 1 , 1 , 3	261.037	145.000			V 2 V W (1 2 V)		4,0 727	
	- /	3 7 4 70 1	275.269	149,394	170.873	U_U0794				

ı

•

libers 4.8 Detail of variation of tower coefficient in every original

VETUME OF THURST MEND = 7.767 M**3 MEMBER OF CHIDS MEED = 5 & 8

Time Condition:

Time Condition:

The Conditio

	CUPATE = 0.016 CC 1000 = 0.147	U. 1210	0.055 0.312	0.074 0.415	0.093	U.112 U.020	0.131	0.150 0.825
1	50.00 = 0.010 50.000 = 0.010	0.038 3.205	0.057	0.076 0.411	0.095 0.513	U.114 U.010	0.132 0.719	0.151 0.820
	$a_{0} = a_{0} = a_{0}$	U.U30 U./05	7.757 7.358	0.07p 0.411	0.095 0.513	0.114 0.616	0.132 0.719	0.151 0.821
İ	300 1000 2 0163).J3d J.Z0b	1.158 1.308	0.070 0.411	0.095 0.513	U.114 U.015	0.133 0.718	0.151 0.821
1	0.019 0.103	0.039 0.276	0.058 0.309	0.07/ 0.411	0.095 0.514	0.114 0.015	0.133 0.719	0.152 0.821
!	SUPPLIED 1103	0.739 0.706).058 0.339	0.077 0.412	0.096 0.514	U.114 U.61/	0.133 0.719	0.152 0.822
1	307,270 = 0.010 Sub-prope 0.103	J.339 J.206	7.058 0.359	0.077 0.412	0.096 0.515	0,115 0,018	0 133 0 725	0.152 0.823
1	\$0.1700 = 0.002 \$0.1700= 0.026	0.319 0.352	7.028 0.077	0.037 0.103	0.046 0.129	U.U55 U.154	0.065 0.180	0.074 0.206

narify Chabirings:
Average temperature of leaving water
Average enthalpy of leaving air
analytic or reaving air

= 27.96 C = 80.81 kJ =.019418 kg/kg of dry air

Agsulis:

Hass of water evaporated
Heat released
Humber of fill required
volume of Lower based on
evaporation rate

= 581.1 kg/hr = 1540869.4 kd/hr = 292 = 6.8250 4**3

TARUF 4.0 Comparision of volume of tower pased on tower dimensions and numbuity

van een een man man een een een een een een een een een e	1 7 The No. 100 and 10	o and the case with the case w	T 4, 4, 4, 100 and 100	V	ľàv	v Դեպեր Մ.Դ.	PASED ON HUMID
) 1 m '	1 3 m to	្ន ^ស ្តព	39000.7	2.5	19.99	7.787	6.844
5 (1 m) 5 (2 m) 5 (2 m)	15.0	35.9 35.0 35.0	50000.0 50000.0 50000.0	1.5	?1.35 ?1.95 27.97	7.787 7.787 7.787	6.840 6.825 6.820
37.3	10.0	35.0 35.0	70000.0 70000.0 70000.0	1.5	28,94 28,95 28,94	7.787 7.787 7.787	6.863 6.832 6.824
13.1	23.0	45.0	30000.0 30000.0	2:0	29.45	7.787 7.787	6.835 6.829
1 19 1 19 1 19 1 19 1 19 1 19 1 19 1 1	23.4 25.7 23.7	45.0 45.0 45.0	50000.0 50000.0 50000.0	1.5 2.0 2.5	37.97 37.99 37.94	7.787 7.787 7.787	6.822 6.818 6.816
10.0	75.J 75.J 75.J	45.0 45.0 45.0	7,000.1 7,000.0 7,000.0	1.5	38.95 38.97 38.98	7.787 7.787 7.787	6.846 6.820 6.817

TARGE 1.10 deat rejection and % Pate of evaporation in case of cross flow

2' *	12	1, 3	THM	1 14 H	I'A v	Q	EVAN
	ウラウ できつ ウラフラウラウ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	######################################	3 JOO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1 ±8723-1	277777 13987	733473E+06 *8743E+07 *8749TE+07 *1209E+07 *1316E+07 *1316E+07 *1316E+007 *11316E+007 *11316E+007 *11306	1.528/48929 1.52861755497 1.521.5497
	294 • U U U U U U U U U U U U U U U U U U	7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	47799999999999999999999999999999999999	8777026117614 	**************************************	7.06 1.77 1.64 2.02 1.83 2.76 1.77 2.17 1.91
	747444000000 44744400000000000000000000	433 433	70000000000000000000000000000000000000	17711555555555555555555555555555555555	374080719457 37468045757579	9334E+07 1325E+07 1325E+07 1326E+07 1364E+07 1126EE+07 11398E+07 11398E+07 11432E+07 11432E+07	2.975294774308
13.00 15.00	\$9999999999999999999999999999999999999	00700000000000000000000000000000000000	**************************************	41111111111111111111111111111111111111	42.16 39.23 41.62	135855EE++007 135855EE++007 135855EE++007 135856EE++007 1212424EE++007 1202976EE++007 1202976EE++007 1202976EE++007 1202976EE++007 1202976EE++007	3087313333178 208731629052

TABLE 4.11 Various costs v/s riow rate

FMW	TAR	หานกล	AATED	, 5 in	ខាង	$_{i,k} \sigma_{(i,k)} r_{(i,k)}$
23101	4872U	66317	110943	14±4	11090	1,3/00
33101	4872U	92886	174126	2553	1119	
53101	4872U	77827	271730	1014	15194	
641J1	生97つロ	90093	257731	1751 1727 14/7	42434 1	359360
7000	487つロ	97210	304477		4243,1	400943
83000	487つロ	105930	317909		4243,4	455280
20000	49232	25731	110230	29/1	20)05	144693
20000	38976	42545	117048	19/5	350 35	151498
20000	48720	66317	110943	14/1	413 35	184705
20000 20000 20000	59464 69208 48720	98041 142355 92886	177169 177169 174426	11/3 11)1 2533	53399 51795 41410	716389 767570 269371 314396
70000 70000	58464 6820d	135/59 191416	170745 174739	2791 1727	57410	307483

4	3' # " · · ·	* * * *	7 % % & &	à.	*	* ☆ ★ 基	* * *	* *
r .	ģ ģ	4 4	>	} *	4	* *	*	* *
* * * * * *	大家 化 铲	* * * *	* * * *	4 4	*	* *	4	*
Υ	*	*	*	h 3	* *	* *	*	F #
* (th.	*	***	₩.	*	***	* * *	* *

```
א ון יי דיי כי ח
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   *
                                                                             PESTAN
                                                                                                                                                                                      O G
                                                                                                                                                                                                                                CHALLMA
                                                                                                                                                                                                                                                                                                                                                                       I U w E K
   TOTAL VARIABLE MASS OF MATER (I.e., with consideration of Evaporation of ATER OF THE VARIABLE MASS OF MATER (I.e., with consideration of Evaporation of ATER OF AREA OF STRUCK OF THE VARIABLE AND OF STRUCK OF THE VARIABLE AND OF THE PROPERTY OF THE ANALYSIS OF COUNTING TOWER PERFORMANCE
                                                             Dimension S1(30,30), 52(30,30), S22(30,30), S3(30,30), Dw(30,30)
Dimension Dime(30,30), MSE(30,30), MSE(30,30), Dime(30,30)
Dimension Moder(30,30), Madia (30,30), DrT(30,30), ENDIFF(30,30)
Dimension Embar(30,30), Exp(30,30), FRENDT(30,30), WSS(30,30)
Dimension Emmana(30,30), ATO(30,30), SUMMIN(30,30), T3C4(30,30)
Dimension Townsion Makes (30,30), RANGE(30,30), MALEY(30)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DW(30,50)
                                                             TOTAL WILL TO THE METER, THIOTA, MAIGH, WASHAT, MASAIP, MOUREE TOTAL WILLIAM, WOLTHY, WOOPEN, WAYEAR TITEOUR TROUPS
                                                               1/
| (x) = (J, 90015*x+(1.9239E=6)*x**2=0.13468*10**(=0.036*XJ*0.1346
| to) + 1.137
| (x) = (Y) + HF(Y)
| Od (X) = (Y) + HF(Y)
| Od (X) = (Y) + 
                                                                    THERM (FATTEN), ETHER DATACORY)

THERM (MATTEN), ETHER COST. ALL!)

THERM (MATTEN), ETHER ETHERMEN)

THERM (MATTEN)
                                                              THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (14 | 1 = 2?)

THE CHAIR (15 | 2)

THE CH
                                                                     61
                                                                       71=12.9; A2=0.0/2

r=91=(S1De1+S1De2)*2

AARA=SIDe1+SIDE2
```

たったがひこんがソビンチ

1KVENK=365*24 GU 10 73 HEVENK=366*24

75 11 F1 = 0 + 30 4 P 75 KUTO = 0 - 48359 7 NO 10 1 10 10 10 11 11

TECHBOCEYENK-UYENKI .EO. 0.0) GJ ET 22

4/CFATET*3

TYPAPARYEAR

```
1137
                                                             To the ateration could be
253
                                                           T = 13 - 15
                                                           T3=11+5
                                                          DESTRUCTS -15
TE (TS -C) - 437 CO FO 30
PRIME 51, T1, F2, T3
                                                          TI-TETERATORE OF AIR (ORY BULE TEMPORTURE -TOB IN DEGREE C)
L2-TETERATORE OF AIR (ARI BULE TEMPORTURE - TOB IN DEGREE C)
L3-TETERATORE OF AIR (ARI BULE TEMPORATORE - TOB IN DEGREE C)
L5-TETERATORE OF OUT VATER (IM DEGREE C)
LFS-TAT-DESITE (FEBORATORE OF UNITED WATER (IN DEGREE C)
                                                                 TAV-AVerage lemprature of water heaving the lower in vevolocity of air in mysec vill - Velocity of air in s/min Ald-ufulat Humork
                                                            Abd-uRulo' Munork

Prephartal Munork

Prephartal Munork

Prephartal Munork

Prephartal Munork

Profice Photograph

Profice Pho
                                                                 PAPER BYLL WINDER
                                                                                                                                                                                                                                                                                                                                                              In The Process of Cooling
                                                                    while specitic volume of ai whose of airs
                                                              (100="ower Chaiacteristic
                                                              LUE L'ATTOLISCHE L'ACEMEN
COLORE D'ETHECHACHE LE TELL
COLORE D'ETHECHE L'ESTELL
                                                             MINITIAL TOPH TERM TOPE

OUT 31 K2=1,5,2

OUT 31 K2=1,32

OUT 31 COUT 31 COUT 31 COUT 32

OUT 31 K2=1,32

OUT 31 COUT 31 COUT 31 COUT 31 COUT 32

OUT 31 K2=1,32

OUT 31 COUT 31 COUT 31 COUT 31 COUT 32

OUT 31 COUT 31 COUT 31 COUT 31 COUT 32

OUT 31 K2=1,32

OUT 31 K2=1,32

OUT 31 K2=1,32

OUT 31 COUT 31 COUT 31 COUT 31 COUT 31 COUT 32

OUT 31 K2=1,32

OUT 31 COUT 
                                                                ひみるエチョネノき
                                                                 TYPE 25
                                                                   Carculation of Pevnold's Number & Friction factor
                                                                   0301A=PeP1/3.1415920
```

```
- 4=20,4(11); 14,60,4(2001.441.484*11)
                                         76 7=0.622+1, /(71-40)
16=004(22)+13+451+(3501.1+1.864+13)
                                        72
7 * 7 3
                                         77.11.112=1177.17代中本地上代书77.4174年以中战中战
                                        TATELY VALUE OF A STATE THE STATE OF THE STA
                                      けい マガニ けいすびん
73 75
ο,
 11
14
                                        TARRESTEE DESCRIPTION OF PLACE DRUP IN TERMS OF TACHES OF WATER CANCULATION OF CUSY OF PUWER
                                         ATRILITATION OF AIR at TI in hovet**3

AND AND PROSITY OF MATER IN HOVET**3

AND AR MASS OF AIR IN LOVIN PER UNIT PLAN AREA

AND AR MASS OF BATER IN LOVIN PER UNIT PLAN AREA

PRURUP-Pressure prop in Terms of INCHES of Water per Fill

PRURUP-Pressure prop per Fill in MINUTMETER of Water

PRURUP-Colal Pressure Drop in Terms of MILLIMETER of Water

OF CZ-Constants depending on Dack Arrangement (depending on Vertical spacing
                                       C) C C2-Constants depending on Dack Arrandement(depending on Vertical spacing on Vertical spacing GRAV-Acceleration Due to Gravity in Ft/sec**2 UNIVG-UNIVERSAL GRAVITATIONAL CONSTANT GMAS-Acceleration due to Gravity in M/sec**2 AVDEAR-Average Dry Air Density in Lbs/Ft**3 LEMGIH, DHIGH-Dimensions of Tower in FPS Units NODECK-Number of Decks used in the Tower(no. of rows)
                                       *IPUEN=UEN(T1)*CFMTFT**3/CFKGLB
*AFUEN=UENWAT*CFMGFGT**3/CFKGLB
'ASATK=TMA/(CFKGLG*LENGTH*LWTDTH)
MASATK=TMM/(CFKGLG*LENGTH*LWTDTH)

PLEUTSPFH*/(CFMTFT*RP)

AIRGF=MASATK**2+((4*MASATK*3600*AIRDEN)*SQRT(2*GRAV*ZF))/3+GRAV*

PROKON=(3600*AIRUEN)***

PROKON=(AVDEAK/ATRDEN)**(C1*MASAIR**2+C2*SQPT(ZF)*MASWAT*AIRGE)

PROERF=PRORUP*25,4

OEDFR=NODECK*PRPFKF

PANFOW=OFLPR*GMKS*DENWAT*VOUSEC/(1000*FANEFF*UNIVG)
                                       PANEOW=OFLPR*GMKS*DENWAT*VOLSEC/(1000*FANEFF*UNIVG)
PUTEADD=GFIGHT+1.0
PIPUTA=GORT(TMA/(DENWAT*VELWAT*3.1415926))
FRHEAD=PIPFRI*PUHEAD*VFLWAT**2/(2*PIPDIA*GMKS)
                                         TUHEAD = PHILEAD + ERHEAD
                                         PUMPOW=IOHEAD+TMPAGMKS/(3600*PUMEFF*IINIVG
```

```
of the at every city Point
                                                                                                                                                                                                                 something of supply unwinders of with supplied
                                                             大学的大学的企业企业的企业,但是对于1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,1976年,19
                                                               " all the same
                                                           TU TI UST TU ST TU
                                                               TE 17 (60 a) Ou an 70
                                                             7 .
0.
   4.1
                                                                 THITA
                                                              1020.04(T1)*10+40*(J20T*4+T*884*T1)
J2=5(T1)*F(L1)
J2=5(T1)*F(L1)
  222
  14 13
                                                             Th (1,3)=(((,S+v)
                                                            can remark the contract of the
                                                             Tull = [15-us+750], 41/(1.004+1.884*45)
3,19,10=1,32F-4+(1/1+Full)/2+0,84419
C=0,75*A5; Pa+0,25
C=0,U004284-0,25
Cull=0+Full(No.1)
                                                             CUMERCH MITAR (MATA)

CUMERCIA, U) = A LF

A LF BUM = A LE BUM

FR = A LE M (NB - M) / (NS - M) + HG (TJ) - A LE + 2 > 91.4
                                                          THEALUM (HU-H)/(NS-W)+HG(TJ)-ALE#2501.4

OHEGORDA (L,J)

TH (T _LO_ 1) GU IN 10

HU (T _343

DAM(1,J)=LVW/W

OHE(DH-WW(T,J)*HF(TJ))/(DAM(T,T)*CPW(FJ)/UMA)

OFF(T,J)=UF

HU-DIFF(I,J)=DH

MARAT(I,J)=HS

PAOL(L,J)=HS-H

MARAT(I,J)=HS

TJ=LI-DT

H=H+OH

H=H+OH
7,7
                                                             H=H+OH
TSE(T,T)=HS
USF(T,T)=HS
DMW(T+1,J)=UMW(1,J)=DMA+DH(1,J)
                                                                じてニ(い、」+1)」とで
                                                             52(1,4+1)=W
                                                            53(1,J+1)=P
CJN(1,J+1)=P
111
                                                             70=x+1
                                                             Calculation of volume >>> based on water evaporation rate
                                                             YUD=N-1
                                                           TUDE NOTE OF SVOLUBE O
151
                                                             CONTINUE
                                                              7.7
                                                             Calculation of volume >>> based on enthalpy of air
                                                             ちゃつしばら=0
                                                             DU 152 J=1.N
```

```
いだしのしらしてしょりょしょくしいいいいしょんほうがつつしたりょくとでんしんのじ
100
                             Chiculation of Average parties of Water, numicity & Enthalpy and a constant and the contract of water, numicity & Enthalpy
a
                            Timol("0,1)
Outolomm(1D,1)
Outolomm(1D,1)
Outolomm(1D,1)
Outolomm(1D,1)*
Outol
                             TITTS (MN, J)
THEATHES (MN, J)
THEATHES (MN/(M*,))
FUNCTIVE VERNESUM
FRATTE/V
TE (DESING GT. TAU) GO THE SOU
٠,
                             Calculation of Cakeup water used in fower and Cost of water
                             Align-water evanorated at each Grid

Align-water evanorated at each Grid

Align-Total Mass of Water Evanorated

India-Total Mater Used per Kear

Align-Total Mater Der Cabic Mater

CMATUR-Total Cost of Mater per Cabic Mater

Example Total Cost of Mater
                             PHKMPV=U.0
PD 21 1=1,M
WATEV(I)=DYA*(S2(1,1+1)=S2(1,1))
THKMEV=IMEWEV+WATEV(I)
? <u>i</u>
                               CUMITAME
TITUSS=T*w*(PRTET+BUDUMN)/100
                              TUTWYE=(TMKWFV+DTLOSS)/DENWAT
CWALEK=TOTWYE*WATCOS*HRYEAR*OF
TYPE *, TIEK, NOFIDD, TAV, NOD
UNDECK=NODECK
                                                                                                                TAY, NODECK, DEUPR, CHOWER, TOTAYE, CWATER
                              TYPE 333, TIPR, MOPILL, MADECK, TI, T2, T3, DESTAY, V, IMM, TAV
                             GU EU 327
PRINT 131
PU 322 1=1, MD
PUTAT 323, (SIC1, J), J=1,N)
 322
                               TPFH=ITHP+1
 7 39
                              MATERIA
                              THE (MOSITAVEDESIAVE) LET. U.U.S.) GO TO 71
TIPE #, TIER, MUFITU, TAV, NODECK, DEUPR, CPOWER, TOTAYE, CWALER
TIPE 333, TIER, MUFITU, MNDECK, TI, TZ, T3, DESTAV, V, IMW, TAV
GO 10 324
PRINT 131
 TO JUST
                              DU 374 1=1,MD
PRIJT 323, (SI(1,J), J=1,4)
 321
                               Chily FATTE
                              71
                               9303F
33_x0_201
                               TILLE C=1+TILFL
                              TUTUTC=U.U
TUTUTC=U.U
TUTUNC=U.U
TUTUNC=U.U
MKITE (21,*), T1, T2, T3, DESIAV, V, IMW, TMA
WKITE (21,*), T1FK, NUFITU, TAV, NUBCK, UELPR, CPOWER, TUTWYE,
                               1 CWATER
                              TCMATER

VRTTE (21,75)

DU 201 LITTO=1, LLTTE

LITUW=LLTU-1

CUSTP=CPOWFR/(1+RATLVI)+*LTTOW

CUSTWA=CWATER/(1+RATLVI)+*LITOW

CUSTWU=COFTLL/(1+RATLVI)**LITOW

CUSTWU=COFTLL/(1+RATLVI)**LITOW
```

```
7 . 4
                                                TI, Ta, Ta, Ting, 194A, HA, MA
9 1 K
7 11
                                                on to tar, in out, in the tar.
                                                161
                                                "AT AT 134
"OU 102 LTEL,"
PATET 134, LT2(1,U), G=1, ND;
"UNITATE
PATET 135
"OU 103 LTL,"
"OUT 5T 136, LT3(1,U), G=1, ND;
"Out 5T 136, LT3(1,U), G=1, ND;
1 )2
                                                Clast dia
Cather 137
133
101
                                                Od 104 [=1,e1
PRT ST 138, (Da(1,d), J=1,d)
CJ91T 40,
PRT 47, 139,
1 14
                                                DI 105 1=1, dr
PRINT 141, (PMW(T, T), T=1, V)
PRINT 140
PRINT 140
1 05
                                               "H=53(1,NJ)
"W=52(1,NJ)
"J 16 1=2,M
HH=HH+53(1,ND)
W=WW+52(1,ND)
HAV=Hd/M
1 3
                                                 WAV=WM/M
                                                RATE=EVAP*100/THW
                                               RATE=EVAP*TOU/THW
TYPE *, RATE
PRIAT 5, TVULUB, TVULHB, EVAP, RATE
PRIAT 5, TVULUB, TVULHB, EVAP, RATE
PRINT 91
PRINT 91
PRINT 92, M, M, V, G, R, ALEAVE, TMA, WAV, HAV, TAV, TMW
1012=0.
0.1 2 1=1,3
1.02=0.012+83(1,00)
1.02=0.12+83(1,00)
2
                                             THE PROOF OF THE P
 3
7
                                                CUNTINUE

OU /R J=1,N

OU /R J=1,M

OU /R J=1,M

PANGE(I,J)=KANGE(L,J-1)+DIT(I,J)

CUNTINUE
71
78
```

```
ykris (22,883), (33(t,1), r=1,4)'
                                               Charles and Sa
9/9
                                             GU 17 33

OU 33 T=1, MD

TYPL 40, (S1(1,J), J=1,ND)

TYPL 41, (S2(1,J), J=1,ND)

TYPE 42, (S3(1,J), J=1,ND)

TYPE 43, (MAWAT(T,T), J=1,N)

TYPE 45, (FND1(1,J), J=1,N)

TIPE 46, (FNMEAN(1,J), J=1,N)

TYPE 48, (SUMNTU(1,J), J=1,N)

TYPE 49, (TUCH(1,J), J=1,N)

TYPE 49, (TUCH(1,J), J=1,N)

TYPE 50, (TUWEPC(1,J), J=1,N)

TYPE 50, (PANGF(T,T), J=1,N)

TYPE 51, (PANGF(T,T), J=1,N)
                                                TYPETAGE
33
                                                GU 17 543

GU 17 543

WKIPE (40,834), TI, TZ, T3, TMW, V, TAV, VOLH, TVOLMB

UKIPE (40,25)
513
                                                      JULTANIE
25
31
                                                 TUTTINIE
                                                CUNTAINE
                                               FURNAL (//,/Y, 'EMTHALPY---->',7X, 'TUP 20%=',E12.4,8X, 'BUTTOM 4 10%=',F12.4,4X, 'PU*AV=',F10.4////)
FURNAL (5X, 'VOLUME OF TOWER BASED ON HUMIDITY =', E16.4. 5X, 1 VOLUME OF TOWER BASED ON EMTHALPY =', E16.4. /, 5X, 'MASS OF TATER EVAPORATION=' E11.4)
 5
                                                     MRITE.
                                                 ZKILE
                                              FURNAT (/, 7x, U)=", E17.8,7x, "Q2=", E15.8)

FURNAT (/)

FURNAT (5x, 'DTSTANCE BETAELN FLU > fWICE THE STZE OF fHE FILL')

FURNAT (8x, 'M', 4x, 10f10.4)

FURNAT (8x, 'M', 4x, 10f10.4)

FURNAT (5x, 'ENDT', 4x, 10f10.4)

FURNAT (5x, 'ENDT', 4x, 10f10.4)

FURNAT (5x, 'ENMFAN', 4x, 10f10.4)

FURNAT (5x, 'SUMFAN', 4x, 10f10.4)

FURNAT (5x, 'SUMFU', 4x, 10f10.4)

FURNAT (5x, 'SUMTUCH', 4x, 10f10.4)

FURNAT (7x, 'SUMTUCH', 4x, 10f10.4)

FURNAT (4x, 'RANGE', 4x, 10f10.4)
                                                 FURMAT
 23
23
43
                                                 FURBAL
 96
 1 11
                                                  FURMÁT
                                                 FURMAT (4x, 'T', 4x, 10611.4)
FURMAL (//, 4x, 'Details of Humidity in Air At Every Grid Point'
   137
  133
                                                  PUPMAT (4x, 'W', 4x, 10E11.4)
FURMAT (//, 4x, 'Details of Enthalog Of Air At Every Grid Point'
 131
                                                       URMAR (4x, "H", 4x, 10E11.4)
URMAR (//, 4x, 'Details of Water Evaporation At Every Grid Poin
 1 35
                                                  FURMAT
  137
                                               FURNAT (//, 4x, Decails 1.11.4)
FURNAT (3x, 'UW', 4x, 10E11.4)
FURNAT (//, 4x, 'Decails Of Water Available For Cooling At Every
1Grid Point", /)
FURNAT (2x, 'DMW', 4x, 8E15.8)
FURNAT (//)
FURNAT (//)
FURNAT (1x, 'VOLM', 4x, 10E11.4)
FURNAT (1x, 'VOLM', 4x, 10E11.4)
 139
 1 11
                                               FURMAT (//)
FURMAT (1X, 'VOLW', 4X, 10E11.4)
FURMAT (1X, 'VOLW', 4X, 10E11.4)
FURMAT (7X, 'WSE', 4X, 10E11.4)
FURMAT (7X, 'WSE', 4X, 10E11.4)
FURMAT (75X, 'HA=', E11.4, 5X, 'WA =', E11.4,/)
FURMAT (2X, 17F7.3)
FURMAT (3X, T2, 3X, T4, 3X, T3, 3X, F4.1, 3X, F4.1, 3X, F4.1, 3X, F4.1, 3X, F4.1, 3X, F6.3)
FURMAT (3X, F3.1, 3X, F4.1, 2X, F6.3)
FURMAT (8X, F4.1, 2X, F6.3, 2X, F6.3)
FURMAT (7X, F6.3, 2X, F6.3, 2X, F6.3)
FURMAT (7X, F6.3, 2X, F6.3, 2X, F6.3)
FURMAT (7X, T0X, VOLUME UF TOWER USED =', F7.3, 'M**3',/,10X,'NUM 10ER UF GRIDS USED =', T2, X, ',12, /')
FURMAT (7X, TNLET CUNDITIONS :',/,15X,'Dry pulb temperature of air', 12X, '=', F7.2, 'C',/,15X,'Wet pulb temperature of air', 213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, '=', F7.2, 'C',/,15X,'Water temperature on to toe Tower', /X, '213X, 'E', '213X
 140
 1/2
 181
 834
  387
 877
 8/8
```