

Actividad nº5. Resolver examen del curso 2019

Ejercicios de recapitulación

Inteligencia Artificial - Grado en Ingeniería Informática – 2019/2020

Estudiante: Borja López Pineda

Profesor: Luis Ignacio López Gómez

Índice

1Ex	xamen 2019	2
	1.1. – Ejercicio MiniMax	2
	1.2. – Ejercicio Grafos	3
	1.3. – Ejercicio Redes Bayesianas	4
	1.4. – Ejercicio ID3	5
	1.5. – Eiercicio Clips	

Examen IA 2019. Nombre: Borja López Pineda

1.- Considere el siguiente árbol:

donde los valores numéricos que aparecen en los nodos hoja corresponden a estimaciones de lo prometedoras que son para el jugador MAX las situaciones de la partida representadas por dichos nodos. Describir paso a paso el comportamiento de la estrategia de poda alfabeta en función de los valores de los números reales "a" y "b", suponiendo que el nodo raíz es un nodo MIN y el recorrido se realiza de derecha a izquierda. Por otra parte, ¿cuál es la decisión o jugada más acertada para MIN en cada caso?

La poda P1 se producirá si b ≤ 7 La poda P2 se producirá siempre

Para todos los valores de a,b la mejor jugada que puede hacer MIN es ir por la izquierda.

2.- Un sistema puede encontrarse en un conjunto de estados {S0...,S7,S8}. Su estado inicial es S0 y los estados meta son S7 y S8. Describir los pasos que componen cada una de las siguientes estrategias de búsqueda del estado meta a partir de S0:

a) Búsqueda en amplitud

~,	
FIFO	
S0	
\$1	
S3	
\$4	
S2	
\$5	
S6	
\$7	
S5	
S6	
S8	

Camino: S0 -> S4 -> S7

Coste: 21

b) Búsqueda en profundidad

LIFO
S0
S4
S3
\$1
S5
S2
\$5
\$6
S8

Camino: S0 -> S1 -> S2 -> S5 -> S6 -

>\$8

Coste: 126

f) Búsqueda primero el mejor

Abiertos	Cerrados
S0(40)	S0
\$1(20)	S1
S3(100)	S5
S4(110)	S6
S2(40)	S8
S5(20)	
S6(10)	
S8(0)	

Camino: S0 -> S1 -> S5

-> S6 -> S8 Coste: 136

g) Algoritmo A*

Abiertos	Cerrados	
SO(40)	S0	
S1(30)	S1	
S3(120)	S2	
S4(130)	S3	
S2(60)	S6	
S5(120)	S8	
S6(50)		
S8(0)		

Camino: S0 -> S3 -> S6

-> S8 Coste: 41 3.- Dado el grafo adjunto calcular las probabilidades más abajo indicadas.

P(Terremoto | Alarma, No robo), P(Alarma | Mariallama, Terremoto, No robo)

```
P(Terremoto|Alarma,No\ Robo) = \frac{P(Terremoto,Alarma,No\ Robo)}{P(Alarma,No\ Robo)} = \frac{0.0005794}{0.001576} = 0.3676
P(Alarma,No\ Robo) = P(Terremoto,Alarma,No\ Robo) + P(No\ Terremoto,Alarma,No\ Robo)
= 0.0005794 + 0.0009970 = 0.001576
P(Terremoto,Alarma,No\ Robo) = P(Terremoto) \cdot P(Alarma|No\ Robo,Teremoto) \cdot P(No\ Robo)
= 0.002 \cdot 0.29 \cdot 0.999 = 0.0005794
P(No\ Terremoto,Alarma,No\ Robo)
= P(No\ Terremoto) \cdot P(Alarma|No\ Robo,No\ Terremoto) \cdot P(No\ Robo)
= 0.998 \cdot 0.001 \cdot 0.999 = 0.0009970
```

 $P(Alarma|Mariallama, Terremoto, No~Robo) = \frac{P(Alarma, Mariallama, Terremoto, No~Robo)}{P(Mariallama, Terremoto, No~Robo)}$

$$=\frac{0.0004056}{0.0004198}=0.9662$$

P(Mariallama, Terremoto, No Robo)

= P(Alarma, Mariallama, Terremoto, No Robo)

 $+ P(No\ Alarma, Mariallama, Terremoto, No\ Robo)$

= 0.0004056 + 0.000001418 = 0.0004198

P(Alarma, Mariallama, Terremoto, No Robo)

 $= P(Alarma|No\ Robo, Terremoto) \cdot P(Mariallama|Alarma) \cdot P(Terremoto)$

 $P(No\ Robo) = 0.29 \cdot 0.7 \cdot 0.002 \cdot 0.999 = 0.0004056$

P(No Alarma, Mariallama, Terremoto, No Robo)

 $= P(No Alarma|No Robo, Terremoto) \cdot P(Mariallama|No Alarma)$

 $P(Terremoto) \cdot P(No\ Robo) = 0.71 \cdot 0.001 \cdot 0.002 \cdot 0.999 = 0.00001418$

UHU ETSI - Grado en Ingeniería Informática — Inteligencia $P\'{a}gina~4$

Se desea determinar las reglas que rigen el comportamiento de un alumno durante su vida académica para poder detectar casos que presenten riesgo de abandonar los estudios: para ello se dispone de los siguientes datos:

Nivel cultural padres	Capacidad cálculo	Trabaja	Asiste tutorías	Clase
Graduado escolar	baja	no	sí	Abandona
Graduado escolar	baja	sí	sí	Abandona
Graduado escolar	alta	sí	sí	Termina
Bachillerato	baja	no	sí	Abandona
Universitario	alta	no	sí	Termina
Universitario	alta	sí	sí	Termina

 a) Aplica el algoritmo ID3 de Quinlan a los datos que aparecen en la tabla anterior. b) Traduce ese árbol de decisión a reglas que me digan únicamente cuándo un alumno va a abandonar sus estudios c) Explicar cómo harías el entrenamiento por validación cruzada (o cross-validation)d) ¿Qué predicción harías para un alumno de padres universitarios que tiene unacapacidad de cálculo baja, trabaja y asiste con regularidad a tutorías mediante elárbol de decisión obtenido?

a)
$$I(X,C) = -\frac{3}{6}\log\left(\frac{3}{6}\right) - \frac{3}{6}\log\left(\frac{3}{6}\right) = 1$$

$$E(X,C,Nivel\ cultural\ padres)$$

$$= \frac{3}{6}\left(-\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right)\right) + \frac{1}{6}\left(-\frac{0}{1}\log\left(\frac{0}{1}\right) - \frac{1}{1}\log\left(\frac{1}{1}\right)\right) + \frac{2}{6}\left(-\frac{2}{2}\log\left(\frac{2}{2}\right) - \frac{0}{2}\log\left(\frac{0}{2}\right)\right) = 0.4591$$

$$E(X,C,Capacidad\ de\ c\'alculo) = \frac{3}{6}\left(-\frac{0}{3}\log\left(\frac{0}{3}\right) - \frac{3}{3}\log\left(\frac{3}{3}\right)\right) + \frac{3}{6}\left(-\frac{3}{3}\log\left(\frac{3}{3}\right) - \frac{0}{3}\log\left(\frac{0}{3}\right)\right) = 0$$

$$E(X,C,Trabaja) = \frac{3}{6}\left(-\frac{1}{3}\log\left(\frac{1}{3}\right) - \frac{2}{3}\log\left(\frac{2}{3}\right)\right) + \frac{3}{6}\left(-\frac{2}{3}\log\left(\frac{2}{3}\right) - \frac{1}{3}\log\left(\frac{1}{3}\right)\right) = 0.9183$$

$$E(X,C,Asiste\ turor\'as) = \frac{6}{6}\left(-\frac{3}{3}\log\left(\frac{3}{3}\right) - \frac{3}{3}\log\left(\frac{3}{3}\right)\right) = 1$$

$$I(X,C,Nivel\ cultural\ padres) = I(X,C) - E(X,C,Nivel\ cultural\ padres) = 0.5409$$
 $I(X,C,Capacidad\ de\ cálculo) = I(X,C) - E(X,C,Capacidad\ de\ cálculo) = 1$ $I(X,C,Trabaja) = I(X,C) - E(X,C,Trabaja) = 0.0817$ $I(X,C,Asiste\ tutorías) = I(X,C) - E(X,C,Asiste\ tutorías) = 0$

b) Abandonará sus estudios si su capacidad de cálculo es baja.

- c) Tomaría una parte de los ejemplos y los excluiría de los datos de entrenamiento. Realizaría una comprobación del modelo con los datos reservados. Repetiría este proceso cambiando los ejemplos usado para la validación.
- d) Abandonará.

Escribir la tabla de seguimiento de su (retract ?h1 ?h2) ejecuci'on e indicar los hechos que quedan (assert (respuesta SI))) finalmente en memoria Se pide: 1. Construir una tabla de seguimiento con el (defrule regla siguiente conjunto de hechos iniciales. ¿Qué ?h1 <- (resultado \$?r) quedan en la base de conocimiento al terminar ?h2 <- (datos ?x \$?d) (not (datos ?y&:(< ?y ?x) \$?)) la ejecución? (deffacts ej1 => (retract ?h1 ?h2) (dato1 1 2 3 1) (assert (resultado \$?r ?x) (dato2 2 1 1 3)) 2. Construir una tabla de seguimiento con el (datos ?d))) (deffacts hechos siguiente conjunto de hechos iniciales. ¿Qué (datos -1 2 5) hechos (datos 0 3) quedan en la base de conocimiento al terminar (resultado)) la ejecución? (deffacts ej1 (defrule regla1 (dato1 1 2 3 1) ?h1 <- (dato1 \$?i1 ?x \$?f1) (dato2 2 1 2 3)) ?h2 <- (dato2 \$?i2 ?x \$?f2) => (retract ?h1 ?h2) Inicial: dato11231 dato2 2 1 1 3 regla1: dato1131 (assert (dato1 \$?i1 \$?f1) dato2 1 1 3 regla1: dato113 (dato2 \$?i2 \$?f2))) dato2 1 3 (defrule regla2 regla1: dato13 dato23 ?h1 <- (dato1 \$? ?x \$?) regla1: dato1 dato2 (not (dato2 \$? ?x \$?)) regla3: respuesta Si ?h2 <- (dato2 \$?) => (retract ?h1 ?h2) dato2 2 1 2 3 (assert (respuesta NO))) Inicial: dato11231 (defrule regla3 regla1: dato1131 dato2 1 2 3 ?h1 <- (dato1) regla1: dato113 dato2 2 3 regla1: dato11 ?h2 <- (dato2) dato2 2 regla2: respuesta No