(11) Publication number: 2000164620 A

Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number: 10337184

(22) Application date: 27.11.98

(51) Intl. Cl.: H01L 21/60 G01R 31/28 H01L 21/66

MIZUNO HIROSHI

(71) Applicant: MATSUSHITA ELECTRIC IND CO LTD

(30) Priority:

(43) Date of application

16.06.00

publication:

ISHII HIDEO (74) Representative:

(72) Inventor: TOKUNO SEIJI

(84) Designated contracting states:

(57) Abstract:

(54) SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE AND ASSEMBLING METHOD FOR SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE

PROBLEM TO BE SOLVED: To provide a method which can surely inspect and assemble a semiconductor integrated circuit device, while optimizing the area of an electrode pad, in a semiconductor integrated circuit device in which making into microstructure is made to progress.

SOLUTION: Electrode regions 110 for bonding and bonding regions 109 for inspection are so arranged that the interval between a center 103 of the region 110 and a center 104 of the region 109 becomes greater than or equal to an interval 107. In a semiconductor integrated circuit device having formed electrode pads 102, inspection and bonding are easily and surely enabled by performing inspection and assembling through the use of the centers 103 and 104 of the respective regions.

COPYRIGHT: (C)2000, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-164620

(P2000-164620A)

(43)公開日 平成12年6月16日(2000.6.16)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
H01L	21/60		H01L	21/92	604T	2G032
		3 2 1		21/60	3 2 1 Y	4M106
G 0 1 R	31/28			21/66	E	5 F 0 4 4
H 0 1 L	21/66		G 0 1 R	31/28	U	

		審査請求	未請求 請求項の数2 OL (全 5 頁)
(21)出願番号	特願平10-337184	(71)出顧人	000005821 松下電器産業株式会社
(22)出願日	平成10年11月27日(1998.11.27)	(72)発明者	
		(72)発明者	大阪府門真市大字門真1006番地 松下電器 産業株式会社内 水野 詳
		(12/5091-6	大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代理人	100097445 弁理士 岩橋 文雄 (外2名)

最終頁に続く

(54) 【発明の名称】 半導体集積回路装置及び半導体集積回路装置の組立方法

(57)【要約】

【課題】 微細化が進む半導体集積回路装置において、 電極パッドの面積の最適化を図りながら、半導体集積回 路装置の検査及び組立を確実に行なえる方法を提供す る。

【解決手段】 ボンディング用電極領域110と、検査 用ボンディング領域109をボンディング用電極領域の 中心103と、検査用ボンディング領域の中心104の 間隔が間隔107以上あるように配置したことにより、 生成された電極パッド102を有し、検査と組立を、それぞれの領域の中心103と104を用いて行なうこと により、検査とボンディングを容易に確実に行なえることを特徴とした半導体集積回路装置。

1

【特許請求の範囲】

【請求項1】 各外部端子に対して、ボンディング用の 第1の矩形状の電極領域と、

テスト用の第2の矩形状の電極領域とを接して配置する ことにより形成される電極パッドを備えていることを特 徴とする半導体集積回路装置。

【請求項2】 請求項1記載の半導体集積回路装置に対 して、

前記の第2の電極パッドに対してテストプローブピンを 接触させて当該半導体集積回路装置の電気特性検査を行 ない、

前記の第1の電極パッドに対して外部信号線のボンディ ングを行なうことを特徴とする半導体集積回路装置の検 查組立方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体集積回路装 置の高密度化、高集積化の実現に関し、特に、高集積化 された半導体集積回路装置の電気特性検査とパッケージ へのボンディングを確実に実現し、かつ半導体集積回路 20 痕を残すことが大きな原因となっている。 装置の面積をできる限り小さくするためのパッド配置 と、前記パッドを用いた半導体集積回路装置の電気的特 性検査及び組立を行なう方法を提供するものである。

[0002]

【従来の技術】近年の半導体集積回路装置の微細化技術 の向上に伴って、半導体集積回路装置の内部と、外部と の電気信号のやりとりを行なうための、信号の方向制御 や、保護回路が搭載されているパッドセルの面積も大幅 に削減され、このパッドセルのピッチも小さなものにな ってきている。

【0003】半導体製造技術における微細化技術は、急 激なスピードで向上しているが、電極パッドにピンを当 て電気特性を評価する検査技術や、電極パッドを介して 半導体集積回路とパッケージとの接続を実現するボンデ ィング技術においては、半導体製造技術におけるほどの 微細化を実現することが困難になって来ている。

【0004】実際に、電気特性検査においては、検査装 置における、検査用ピンの太さや、動きのずれの精度よ り決定される領域を電極パッドが確保する必要がある し、パッケージへのボンディングにおいても、リード線 の幅などによって定義される領域を電極パッドが確保す る必要がある。

【0005】これらの課題を回避する方法の1つとし て、特開平5-206383号公報では、電極パッドと は別に、電気特性検査用のパッドを設け、これを半導体 ウエハー上で半導体集積回路の領域外のダイシングライ ン上に配置することで、電気特性検査用パッドの検査を 実行するために必要となる面積を確保し、ICの検査、 測定の容易化を図っている。

[0006]

【発明が解決しようとする課題】しかしながら、特開平 5-206383号公報では、電気特性の検査に関して は、確実に行なうことを可能としているが、従来技術で 述べているように、ボンディングのためにも電極パッド に一定の幅を持たせる必要があり、この問題を解決する ことができない。

【0007】また、現在では半導体ウエハーの加工技術 の向上にともない、ダイシングラインも微細化が進み、 ダイシングラインの幅よりも電気特性検査用パッドの幅 の方が大きくなることがあり、特開平5-206383 号公報の手法を用いても、ICの検査の容易化と半導体 集積回路の面積の最適化を両立することが困難になって いる。

【0008】また、検査、及びボンディングを行なうた めに必要最低限の大きさを持った電極パッドを用いて、 電気的特性検査を行ない、この後同一の電極パッドを用 いてボンディングを行なおうとした時に、ボンディング に失敗することがある。これは、特性検査をする時に当 てた検査ツールのプローブピンが電極パッドにプローブ

【0009】電極パッドの微細化が進むにつれて、電極 パッドの大きさに対するプローブ痕の占める割合が大き くなり、ボンディングの際にこのプローブ痕が、圧着 や、合金形成の妨げとなるからである。

[0010]

【課題を解決するための手段】上記の課題を解決し、確 実な電気的特性の検査とボンディングを実現するため に、電極パッドの面積を拡大して検査後のプローブ狼の 面積割合を削減し、ボンディングを可能とするか、電極 30 パッドを性能検査用の部分と、ボンディング用の部分に わけて作成しボンディング用のパッドの部分にはプロー ブ痕が残らないようにする方法が考えられる。

【0011】本特許では、確実な検査とボンディングを 実現し、さらに面積の最適化を図るために、電極パッド は、プローブする場所とボンディングする場所を変更す ることとし、さらに、半導体集積回路装置の面積の最適 化を図るために、検査のルール、ボンディングのルー ル、パッドピッチといった情報に基づいて電極パッド配 置を決定する。

[0012]

【発明の実施の形態】以下、本発明の実施の形態につい て、図を用いて説明する。

【0013】 (第1の実施の形態) 第1の実施の形態で は、請求項1に係る発明について図を用いて説明する。

【0014】図1は本発明に基づいて設計された、電極 用パッド及び、この電極パッドの配置の一例である。1 01は、パッドセル本体であり、保護回路、制御論理が 搭載されている。

【0015】領域109は検査用の電極領域であり、領 50 域110はボンディング用の電極領域である。ここで、

領域 $1\,1\,0$ は、ボンディング装置の精度やボンディング ワイヤーの物理的な要因から、ボンディングを確実に行なえるようにするために最小の大きさが規定されてお り、その幅は $1\,0\,5$ となる。また、領域 $1\,0\,9$ は、検査装置の精度や、検査用のピン物理的特性から、検査が確実に行なえるように最小の大きさが規定されており、その幅は $1\,0\,6$ となる。

【0016】電極パッド102は前記領域109と領域110を隣接あるいは一部を重ね合わせて配置することにより形成されている。本発明では、電極パッド102の様に凸型になることが一つの特徴である。

【0017】103はボンディング用パッド領域110の中心位置であり、104は性能検査用パッド領域109の中心位置となっている。

【0018】ここで、間隔107は、ボンディング用パッド領域110の中心103と、検査用パッド領域109の中心104の距離の最小幅を示している。この距離は、特性検査の際にプローブ用ピンを置いた後のパッド上にピンのプローブ痕が残っていても、この間隔だけを維持しておけば確実にボンディングを行なえることを保20証するための距離で、今回の発明にとって最も重要な距離となる。このように、間隔107を定義することにより、領域109と領域110をそれぞれの中心103と104が間隔107以上の距離を維持したまま重ね合わせ配置したとしても検査とボンディングを確実に実現できることが保証できるので、電極パッドの削減の効果も期待できる。

【0019】図2は、本発明に基づいて設計された電極用パッド及び、この電極用パッドの配置の一例である。図2は、図1においてボンディング用の電極領域の幅105と検査用の電極領域の幅106同一の値の時の状態である。このような状態では、ボンディング用電極領域の中心203と検査用電極領域の中心204には区別がなくなるためボンディング及び、検査を行なう際に、どちらを使うかの選択が可能となり、効率の良い検査、ボンディングが可能となる。

【0020】(第2の実施の形態)第2の実施の形態では、請求項2に係る発明について図を用いて説明する。【0021】図3は、本発明で実現されるテスト方法の一例を示している。ここで、301は検証のプローブピンであり、これをテスト用電極領域の中心104に接触させ電気的特性検査を実行する。この時検査用プローブピンのピン間隔の精度、検査装置のプローブピン移動に関する精度、検査用プローブピンの電極パッドに対する進入角等の要因により、ピン301の電極パッド102への接触場所は中心位置104からはずれるが、検査用電極領域109が幅106を確保しているので確実に検査を行なうことが可能となっている。

【0022】図4は、本発明で実現される半導体回路装置の組立方法の一例を示している。ここで、401はパ

ッケージの端子であり、402はパッケージと半導体集 積回路装置とを接続するリード線である。403は、図 3の様に検査用のプローブピンが接触したところに生じ るプローブ痕であり、パッドの表面が大きく傷ついてい る。

【0023】このように、検査とボンディングを同じところで実行した場合には、403のようなプローブ痕がある上にリード線等を接続するような形になるので、接続がうまくいかなくなる。今回の発明では、ボンディングは、ボンディング用電極領域の中心103を用いて実行されるので、接続不良が起こるようなことにはならない。また、ボンディング装置の精度や、リード線幅のような物理的条件から規定される、ボンディング用電極領域の幅105を電極102が確保しているので、接続不良や、隣接する電極用パッドとのショート等が起こることもなく確実な組立を実現できている。今回の図面では、ワイヤーボンディングタイプの説明をしているが、この考え方は、チップサイズパッケージやエリアパッドのような接続方法に対しても十分有効なものとなる。

20 [0024]

【発明の効果】以上説明した様に、本発明では、微細化が進む半導体集積回路装置において、電極パッドを検査用の領域と、ボンディング用の領域に分けて考え、これらの領域の幅と間隔の最小値を、検査装置、ボンディング装置の精度や、プローブ用ピンの加工精度、等の情報に基づいて決定しておき、この最小値を確保するようにこの電極パッドの設計を実現することで、半導体集積回路装置の検査と組立を確実に行なえるとともに、面積の最適化も実現できる。

30 【図面の簡単な説明】

【図1】本発明の第1の実施の形態における電極用パッドの配置例を示す図

【図2】本発明の第1の実施の形態における電極用パッドの配置例を示す図

【図3】本発明の第2の実施の形態における半導体集積 回路装置の検査方法の一例を示す図

【図4】本発明の第2の実施の形態における半導体集積 回路装置の組立方法の一例を示す図

【符号の説明】

- 10 101 パッドセル
 - 102 電極パッド
 - 103 ボンディング用電極領域の中心位置
 - 104 検査用電極領域の中心位置
 - 105 ボンディング用電極領域の最小幅
 - 106 検査用電極領域の最小幅
 - 107 ボンディング用電極領域の中心位置と検査用電極領域の中心位置の最小間隔
 - 108 パッドセル幅
 - 109 検査用電極領域
- *50* 110 ボンディング用電極領域

フロントページの続き

(72)発明者 石井 英雄

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 2G032 AB01 AD08 AF01 AK04

4M106 AD01 AD24 BA01

5F044 EE01 EE03 EE07 EE11 QQ06