Package 'pedigree'

October 14, 2022

Type Package

Version 1.4.2

Title Pedigree Functions

Date 2022-08-13
Depends Matrix
Imports methods, HaploSim (>= 1.8.4), reshape
Description Pedigree related functions.
License GPL (>= 2)
Author Albart Coster [aut, cre]
Maintainer Albart Coster <albart@dairyconsult.nl></albart@dairyconsult.nl>
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-08-13 20:50:02 UTC
Date: 1 abilitation 2022 00 13 20.50.02 0 10
R topics documented:
pedigree-package
add.Inds
blup
calcG
calcInbreeding 4 countGen 5
countOff
gblup
makeA
makeAinv
orderPed
trimPed
Index 11

2 add.Inds

pedigree-package

Package to deal with pedigree data

Description

Package with functions to analyse and transform pedigree data. A pedigree is a data.frame where the first column contains an ID, and the second and third columns contain ID of first and second parent.

Author(s)

Albart Coster: <albart.coster@wur.nl>

See Also

trimPed orderPed countGen makeA makeAinv calcInbreeding add.Inds

add.Inds

Function to add missing individuals to a pedigree

Description

Function add.Inds() adds missing individuals to a pedigree and returns the complete pedigree as a data.frame with the same headers as the original pedigree. Remeber to check for errors beforehand with function errors.ped. Unknown parents should be coded as NA.

Usage

```
add.Inds(ped)
```

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

data.frame of three columns with identical header as input.

Author(s)

Albart Coster, Albart.Coster@wur.nl

See Also

orderPed

blup 3

Examples

```
ID <- 3:5
DAM <- c(1,1,3)
SIRE <- c(2,2,4)
pedigree <- data.frame(ID,DAM,SIRE)
pedigree <- add.Inds(pedigree)</pre>
```

blup

Function to calculate breeding values using an animal model

Description

Fit an animal model to data, use a given variance ratio ($\alpha = \frac{\sigma_e^2}{\sigma_a^2}$). Calculate inverse of the additive genetic relationship matrix using function makeInv() of this package.

Usage

```
blup(formula, ped, alpha,trim = FALSE)
```

Arguments

formula	formula of the model, do not include the random effect due to animal (generally ID).
ped	$\mbox{\tt data.frame}$ with columns corresponding to ID, SIRE, DAM and the columns in the formula.
alpha	Variance ratio $(\frac{\sigma_e^2}{\sigma_a^2})$.
trim	If TRUE, trims the pedigree using the available phenotype data using function trimPed.

Value

Vector of solutions to the model, including random animal effects.

See Also

```
SamplePedigree, gblup, makeAinv,blup
```

```
example(gblup)
sol <- blup(P~1,ped = ped,alpha = 1/h2 - 1)</pre>
```

4 calcInbreeding

calcG	Function to calculate a relationship matrix from marker data (usually allele count data), G matrix.

Description

Function to calculate a relationship matrix from marker data. Option to return the inverse of matrix. Inverse calculated using Matrix package.

Usage

```
calcG(M, data = NULL, solve = FALSE)
```

Arguments

М	Matrix of marker genotypes, usually the count of one of the two SNP alleles at each markers (0, 1, or 2).
data	Optional logical vector which can tell of which individuals we have phenotypes.
solve	Logic, if TRUE then function returns the inverse of the relationship matrix.

Value

Matrix of class dgeMatrix.

See Also

```
SamplePedigree, gblup, makeAinv,blup
```

Examples

```
example(gblup)
G <- calcG(M)
Ginv <- calcG(M,solve = TRUE)</pre>
```

calcInbreeding

Calculates inbreeding coefficients for individuals in a pedigree.

Description

Calculates inbreeding coefficients of individuals in a pedigree.

Usage

```
calcInbreeding(ped)
```

countGen 5

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

Logical.

Examples

```
id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
ped <- data.frame(id,dam,sire)
(F <- calcInbreeding(ped))</pre>
```

countGen

Count generation number for each individual in a pedigree.

Description

Counts generation number for individuals in a pedigreee.

Usage

```
countGen(ped)
```

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

Numeric vector

```
id <- 1:5
dam <- c(0,0,1,1,4)
sire <- c(0,0,2,2,3)
ped <- data.frame(id,dam,sire)
(gens <- countGen(ped))</pre>
```

6 gblup

countOff	Function that counts the number of offspring (and following generations for each individual in a pedigree.

Description

Function to count the number of offspring for each individual in a pedigree. With loops, offspring of later generations will be counted several times.

Usage

```
countOff(ped)
```

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

Numeric vector with number of offspring for each individual in the pedigree.

Author(s)

Albart Coster

Examples

```
example(countGen)
countOff(ped)
```

gblup

Function to calculate breeding values using an animal model and a relationship matrix calculated from the markers (G matrix)

Description

Fit an animal model to data, use a given variance ratio ($\alpha = \frac{\sigma_e^2}{\sigma_a^2}$). Calculate genetic relationship matrix using the function calcG of this package.

Usage

```
gblup(formula, data, M, lambda)
```

gblup 7

Arguments

formula	formula of the model, do not include the random effect due to animal (generally ID).
data	$\mbox{\tt data.frame}$ with columns corresponding to ID and the columns mentioned in the formula.
М	Matrix of marker genotypes, usually the count of one of the two SNP alleles at each markers (0, 1, or 2).
lambda	Variance ratio $(\frac{\sigma^2}{\sigma_a^2})$

Value

Vector of solutions to the model, including random animal effects.

See Also

```
SamplePedigree, gblup, makeAinv,blup
```

```
## Example Code from SampleHaplotypes
hList <- HaploSim::SampleHaplotypes(nHaplotypes = 20,genDist =
1,nDec = 3,nLoc = 20) ## create objects
h <- HaploSim::SampleHaplotype(H0 = hList[[1]],H1 = hList[[2]],genDist =
1, nDec = 3)
## code from the Example SamplePedigree
ID <- 1:10
pID0 \leftarrow c(rep(0,5),1,1,3,3,5)
pID1 \leftarrow c(rep(0,4),2,2,2,4,4,6)
ped <- data.frame(ID,pID0,pID1)</pre>
phList <- HaploSim::SamplePedigree(orig = hList,ped = ped)</pre>
## own code
h2 <- 0.5
ped <- phList$ped
hList <- phList$hList
qtlList <- HaploSim::ListQTL(hList = hList,frqtl = 0.1,sigma2qtl = 1)
qtl <- tapply(unlist(qtlList), list(rep(names(qtlList), times = unlist(lapply(qtlList, length))),
                  unlist(lapply(qtlList,function(x)seq(1,length(x))))),mean,na.rm = TRUE)
qtl <- reshape::melt(qtl)</pre>
names(qtl) <- c("POS","TRAIT","a")</pre>
HH <- HaploSim::getAll(hList,translatePos = FALSE)</pre>
rownames(HH) <- sapply(hList,function(x)x@hID)</pre>
QQ <- HH[,match(qtl$POS,colnames(HH))]
g <- QQ
ped$G <- with(ped,g[match(hID0,rownames(g))]+g[match(hID1,rownames(g))])</pre>
sigmae <- sqrt(var(ped$G)/h2 - var(ped$G))</pre>
ped$P <- ped$G + rnorm(nrow(ped),0,sigmae)</pre>
M <- with(ped,HH[match(hID0,rownames(HH)),] + HH[match(hID1,rownames(HH)),])</pre>
rownames(M) <- ped$ID</pre>
```

8 makeAinv

```
sol \leftarrow gblup(P^1, data = ped[,c('ID','P')], M = M, lambda = 1/h2 - 1)
```

makeA

Makes the A matrix for a part of a pedigree

Description

Makes the A matrix for a part of a pedigree and stores it in a file called A. txt.

Usage

```
makeA(ped,which)
```

Arguments

ped data. frame with three columns: id,id parent1,id parent2

which Logical vector specifying between which indiduals additive genetic relationship

is required. Goes back through the whole pedigree but only for subset of indi-

viduals.

Value

Logical.

Examples

```
id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
ped <- data.frame(id,dam,sire)
makeA(ped,which = c(rep(FALSE,4),rep(TRUE,2)))
A <- read.table("A.txt")
if(file.exists("A.txt"))
file.remove("A.txt")</pre>
```

makeAinv

Makes inverted A matrix for a pedigree

Description

Makes inverted A matrix for a pedigree and stores it in a file called Ainv.txt.

Usage

```
makeAinv(ped)
```

orderPed 9

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

Logical.

Examples

```
id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
ped <- data.frame(id,dam,sire)
makeAinv(ped)
Ai <- read.table('Ainv.txt')
nInd <- nrow(ped)
Ainv <- matrix(0,nrow = nInd,ncol = nInd)
Ainv[as.matrix(Ai[,1:2])] <- Ai[,3]
dd <- diag(Ainv)
Ainv <- Ainv + t(Ainv)
diag(Ainv) <- dd
if(file.exists("Ainv.txt"))
file.remove("Ainv.txt")</pre>
```

orderPed

Orders a pedigree

Description

Orders a pedigree so that offspring follow parents.

Usage

```
orderPed(ped)
```

Arguments

ped

data.frame with three columns: id,id parent1,id parent2

Value

numerical vector

10 trimPed

Examples

```
id <- 1:6
dam <- c(0,0,1,1,4,4)
sire <- c(0,0,2,2,3,5)
pedigree <- data.frame(id,dam,sire)
(ord <- orderPed(pedigree))
pedigree <- pedigree[6:1,]
(ord <- orderPed(pedigree))
pedigree <- pedigree[order(ord),]
pwrong <- pedigree
pwrong[1,2] <- pwrong[6,1]</pre>
```

trimPed

Function to trim a pedigree based on available data

Description

Trims a pedigree given a vector of data. Branches without data are trimmed off the pedigree.

Usage

```
trimPed(ped, data,ngenback = NULL)
```

Arguments

ped data.frame with three columns: id,id parent1,id parent2

data TRUE-FALSE vector. Specifies if data for an individual is available.

ngenback Number of generations back. Specifies the number of generations to keep before

the individuals with data.

Value

Logical vector specifying if an individual should stay in the pedigree.

```
id <- 1:5
dam <- c(0,0,1,1,4)
sire <- c(0,0,2,2,3)
data <- c(FALSE,FALSE,TRUE,FALSE,FALSE)
ped <- data.frame(id,dam,sire)
yn <- trimPed(ped,data)
ped <- ped[yn,]</pre>
```

Index

```
* utilities
    add.Inds, 2
    blup, 3
    calcG, 4
    calcInbreeding, 4
    countGen, 5
    countOff, 6
    gblup, 6
    makeA, 8
    makeAinv, 8
    orderPed, 9
    pedigree-package, 2
    trimPed, 10
add. Inds, 2, 2
blup, 3, 3, 4, 7
calcG, 4
calcInbreeding, 2, 4
countGen, 2, 5
countOff, 6
gblup, 3, 4, 6, 7
makeA, 2, 8
makeAinv, 2-4, 7, 8
orderPed, 2, 9
pedigree (pedigree-package), 2
pedigree-package, 2
SamplePedigree, 3, 4, 7
trimPed, 2, 3, 10
```