Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №3

з дисципліни «Фізичні основи комп'ютерних систем»

Виконала: студентка групи IM-21 Рабійчук Дар'я Олександірвна номер в списку групи: 18 Перевірив: Скирта Ю.Б.

Основні теоретичні відомості

Кожна речовина має магнітні властивості, тому може виступати як магнетик. Величина і орієнтація магнітних моментів молекул, іонів або атомів є визначальними факторами магнітних властивостей речовин.

Магнітний момент плоского контуру, через який протікає струм I, може бути визначений за формулою, що залежить від площі контуру S та його орієнтації.

$$p = I * S * n$$

де n- одинична нормаль, напрямок якої визначається за правилом правого гвинта.

В магнітному полі з індукцією В на замкнутий контур зі струмом діє момент сил:

$$M = [p, B] = I * S * B * sin(p, B),$$

який намагається повернути контур так, щоб напрямки р і В співпадали.

Коли контур протікає струмом, він створює власне магнітне поле з індукцією BC, яке співпадає за напрямком з магнітним моментом р контуру. Якщо стан контуру є стійким (M=0), то вектор індукції В буде складатися з індукції зовнішнього магнітного поля B' та власної індукції BC всередині контуру.

Важливо зазначити, що вектор індукції В всередині контуру буде завжди більший за вектор В' зовнішнього магнітного поля в будь-якій точці площини всередині контуру. Це явище збільшення індукції В всередині контуру зі струмом в магнітному полі може бути пояснено збільшенням індукції феромагнетика, який знаходиться в зовнішньому магнітному полі з індукцією В'.

Електрон, який обертається навколо ядра атома, має електронний орбітальний магнітний момент. За моделлю атома Бора, можна уявити такий електрон як плоску кругову рамку зі струмом I = ev, де e - заряд електрона, v - частота обертання електрона, r - радіус колової орбіти. Магнітний момент цієї рамки розраховується за формулою $pl = ISn = ev\pi r2n$, де Sn - площа кола радіусом rn. Напрямок магнітного моменту pl протилежний до напрямку механічного моменту L = [r,mev], який e моментом імпульсу електрона. Магнітний момент pl та механічний момент pl та механічний момент pl тов'язані співвідношенням: pl = -eL/2me, де pl то маса електрона.

Експериментально встановлено, що намагніченість J речовини пов'язана

з напруженістю магнітного поля Н залежністю:

$$J = \chi H$$
,

де χ – магнітна сприйнятливість речовини.

Магнітні властивості речовини характеризуються також магнітною проникністю μ , яка показує, у скільки разів змінюється індукція поля у речовині проти індукції поля у вакуумі, χ і μ пов'язані співвідношенням:

$$1 + \chi = \mu$$

Зв'язок між двома силовими характеристиками магнітного поля – напруженістю H та індукцією B: B = $\mu\mu$ 0H.

Магнітна індукція В залежить від напруженості Н за формулою В = $\mu\mu$ 0H. Речовини поділяються на діамагнетики, парамагнетики та феромагнетики залежно від їх сприйнятливості. Діамагнетики, такі як інертний газ, мають рат. = 0 і протидіють зовнішньому магнітному полю, тому їх магнітна сприйнятливість від'ємна і зазвичай мала. У формулі В = $\mu\mu$ 0H, В - магнітна індукція, Н - напруженість магнітного поля, а μ та μ 0 - магнітна проникність та магнітна проникність вакууму відповідно.

У феромагнетиків і феритів має місце магнітний гістерезис, який відображає залежність намагнічування від попереднього стану речовини. При циклічних змінах величини і напрямку напруженості Н зовнішнього поля ця залежність характеризується кривою, що називається петлею гістерезису.

Порядок виконання роботи

Завдання 1. Визначення основної кривої намагнічування.

- 1.1. Підготувати прилади до роботи:
- а) встановити такі параметри вихідного сигналу звукового генератора: частота 2 к Γ ц, вихідна напруга 0 В;
- б) відімкнути розгортку на осцилографі РО.
- 1.2. Увімкнути лабораторний стенд та прилади. Встановити промінь у центрі екрану осцилографа, після чого, регулюючи вихідну напругу на звуковому генераторі, отримати максимальну петлю гістерезису в межах екрану, що відповідає магнітному насиченню зразка. Зменшуючи вихідну

напругу, отримати сімейство петель гістерезису (не менше 8). Для кожної петлі

зняти координати х та у її вершини і записати в таблицю 2.2.

1.3. За формулами (2.11) $H = \beta b_1 x i$ (2.17) $B = \beta b_2 y$ знайти значення напруженості H та індукції B вершин усіх отриманих петель гістерезису і записати їх у таблицю 2.2. Значення α , β , N, N_2 , R_1 , R_2 , S_2 , C та θ_3 вказані на

панелі касети ФПЕ-07. Значення коефіцієнтів e_1 та e_2 зчитати з лицевої панелі осцилографа.

1.4. Оцінити довірчу межу випадкової похибки вимірювання H і B при довірчій ймовірності P = 0,9, пов'язану з похибками величин e_1, e_2, x і y.

Похибки вимірів величин H і B визначаються:

- а) систематичними похибками приладів, з якими пов'язані коефіцієнти відхилення електронного променя e_1 і e_2 , а також похибки візуального відліку величин х та у на екрані осцилографу (за паспортом осцилографу $\Delta e_1 = \pm 0.07$ В /мм, $\Delta e_2 = \pm 0.07$ В /мм, $\Delta x = \Delta y = \pm 0.5$ мм);
- б) похибкою, з якою задані величини N_1 , N_2 , R_1 , R_2 , S_2 , C, r_T . Ці елементи вимірювань здебільшого виготовляються для вимірювальних приладів високої точності і суттєвого внеску у загальну похибку не вносять.
- в) похибкою, що пов'язана з деякими припущеннями при виводі розрахункових формул (2.11) і (2.17) (систематична методична похибка). Інтервал довіри окремих вимірів у відповідності до формули (2.13) і рівнянь (2.11) та (2.17) визначаються за такими співвідношеннями:

$$\Delta H = \alpha \sqrt{x^2 \left(\frac{k_p \Delta b_1}{3}\right)^2 + b_1^2 \left(\frac{k_p \Delta x}{3}\right)^2}; \qquad (2.21)$$

$$\Delta B = \beta \sqrt{y^2 \left(\frac{k_{\rm p} \Delta b_2}{3}\right)^2 + b_2^2 \left(\frac{k_{\rm p} \Delta y}{3}\right)^2}.$$
 (2.22)

У цих формулах ΔH і ΔB — довірчі інтервали похибок вимірювання H і B. Значення ΔH і ΔB наносяться на криву B = f(H), а також заносяться до таблиці 2.2.

Завдання 2. Оцінка роботи перемагнічування A_n за один цикл.

- 2.1. Отримати максимальну петлю гістерезису і замалювати її на прозорому папері (калька) в координатах x та y.
 - 2.2. Скопіювати петлю на міліметровий папір, обчислити її площу.
- 2.3. За формулою (2.20) визначити роботу перемагнічування $A_{\rm n}$ за один цикл.

Завдання 3. Визначення коерцитивної сили.

- 3.1. За максимальною петлею гістерезису визначити координати \pm хс, що відповідають коерцитивній силі $\pm H_c$.
 - За формулою (2.11) обчислити значення H_c.
 - 1.3. Визначити групу феромагнетика (м'який або жорсткий).

<u>Параметри експериментальної установки</u>: $N_1 = 200 \, \text{вит.}$, $N_2 = 75 \, \text{вит.}$, $R_1 = 400 \, \text{Ом}$, $R_2 = 24 \, \text{кОм}$, $C = 0{,}022 \, \text{мкФ}$.

Параметри тороїда:
$$d_1 = 31 \,\text{мм}$$
, $d_2 = 18,5 \,\text{мм}$, $b_3 = 7 \,\text{мм}$, $r_T = \frac{d_1 + d_2}{2}$.

Виконання роботи:

Завдання 1. Визначення основної кривої намагнічування.

$$B1 = 0.7412 \text{ B/под}$$

$$B2 = 1,6938 B/под$$

$$\alpha = N1/(2 \pi \cdot R1 \cdot rT) = 6,4305$$

$$\beta = (R2 \cdot C)/(N2 \cdot S2) = 0.1609$$

$$N1 = 200$$
 вит.

$$N2 = 75 \text{ BUT}.$$

$$R1 = 400 \text{ Om}$$

$$R2 = 24 \text{ kOm} = 24 \cdot 10^3 \text{ Om}$$

$$C = 0.022 \text{ MK}\Phi = 2.2 \cdot 10^{-8} \Phi$$

$$B3 = 7 \text{ MM} = 7 \cdot 10^{-3} \text{ M}$$

$$P = 0.9$$

$$Kp = 1,615$$

$$d1 = 31_{MM} = 31 \cdot 10^{-3} \text{ M}$$

$$d2 = 18,5 \text{ mm} = 18,5 \cdot 10^{-3} \text{ m}$$

$$rT = (d1+d2)/4 = 12,375 \text{ MM} = 12,375 \cdot 10^{-3} \text{ M}$$

$$S2=(r1-r2) \cdot B3=43,75 \text{ MM}^2=43,75 \cdot 10^{-6} \text{ M}^2$$

$$r1 = d1/2 = 15.5 \text{ mm} = 15.5 \cdot 10^{-3} \text{ m}$$

$$r2 = d2/2 = 9,25 \text{ MM} = 9,25 \cdot 10^{-3} \text{ M}$$

Таблиця 2.2

Номер петлі	х, под	у, под	Ux, B	Uy, B	Н, А/м	ΔΗ, Α/м	В, Тл	ΔВ, Тл
1	0,352	0,128	0,2609024	0,2168064	1,6777336	0,8625702	0,03488725	0,01068011
2	0,544	0,32	0,4032128	0,542016	2,59286102	1,32446401	0,08721812	0,02074467
3	0,912	0,56	0,6759744	0,948528	4,34685524	2,21370439	0,15263171	0,03474066
4	1,104	0,976	0,8182848	1,6531488	5,26198266	2,67831788	0,26601526	0,05963553
5	1,504	1,488	1,1147648	2,5203744	7,16849811	3,64679193	0,40556425	0,0905269
6	1,824	1,728	1,3519488	2,9268864	8,69371048	4,42182898	0,47097783	0,10503875
7	2,016	2,144	1,4942592	3,6315072	9,6088379	4,8869115	0,58436139	0,13021442
8	2,336	2,368	1,7314432	4,0109184	11,1340503	5,66211373	0,64541407	0,14377776

Завдання 2: Оцінка роботи перемагнічування Ап за один цикл.

2.2. Скопіювати петлю на міліметровий папір, обчислити її площу. $S_{n=4,65}$ под²

2.3. За формулою (2.20) визначити роботу перемагнічування Ап за один шикл.

$$A_n = (N1 * R2 * b1 * b2 * C / (2 * pi * rt * R1 * N2 * S2)) * Sn = (200 * 24000 * 0,7412 * 1,6938 * 0,0000000022 * 4,65 / (2 * 3,14 * 0,012375 * 400 * 75 * 0,4375)) = 6,04073831 (Дж)$$

Завдання 3. Визначення коерцитивної сили.

3.2. За формулою (2.11) обчислити значення Нс:

$$Hc = \alpha * b1 * x = 6,4305 * 0,7412 * 0,928 = 4,42311586 A/M$$

3.3. Визначити групу феромагнетика (м'який або жорсткий):

4,42311586 < 100 => м'який

Висновок:

У даній лабораторній роботі мною вивчалося явище феромагнітного гістерезису в матеріалах. Це явище полягає в залежності магнітної індукції В від напруженості магнітного поля Н. Згідно з отриманими результатами експерименту можна стверджувати, що феромагнітний гістерезис залежить від складу матеріалу та його попередньої історії намагнічення.

Контрольні запитання

1) Що таке магнітне поле? Що називається напруженістю та індукцією магнітного поля і який зв'язок між ними?

<u>Магнітне поле</u> - це область простору, в якій на магнітні тіла діє сила. <u>Напруженість магнітного поля</u> (H) - це векторна величина, яка характеризує силову дію магнітного поля на провідник зі струмом.

<u>Індукція магнітного поля</u> (В) - це векторна величина, яка характеризує магнітний потік, що проходить через одиничну площу, перпендикулярну до напрямку поля.

Зв'язок між напруженістю та індукцією магнітного поля:

$B = \mu * H$

де: В - індукція магнітного поля (в Теслах, Тл) μ - магнітна проникність середовища (в Γ н/м) Н - напруженість магнітного поля (в Амперах на метр, А/м).

3) Які існують види магнетиків? Які властивості діа- та парамагнетиків?

Існує кілька типів магнетиків, основними з яких ϵ діамагнетики, парамагнетики та феромагнетики.

Властивості діамагнетиків:

- Діамагнетики слабко відштовхуються від магнітного поля.
- У таких матеріалів всі внутрішні електрони утворюють пари, що мають однаковий спін, і тому магнітні моменти цих пар складаються один проти одного, що призводить до діамагнетичної поведінки.
- Приклади діамагнетиків: вода, органічні сполуки, деякі метали (такі як мідь, золото, срібло).

Властивості парамагнетиків:

- Парамагнетики слабко притягуються до магнітного поля.
- У таких матеріалів ϵ неспарені електрони, які мають магнітні моменти, що призводить до парамагнетичної поведінки.

- При зовнішньому магнітному полі вони намагаються вирівняти свої магнітні моменти в напрямку зовнішнього поля.
- Приклади парамагнетиків: алюміній, платина, хром, повітря.
- 4) Що таке феромагнетики? У чому полягає явище магнітного гістерезису?

<u>Феромагнетики</u> - це клас матеріалів, які проявляють сильну взаємодію з магнітним полем. У феромагнетиках спін магнітних моментів атомів або молекул взаємодіє між собою, утворюючи домени - групи атомів, що мають спін в одному напрямку. Під впливом зовнішнього магнітного поля ці домени можуть або вирівнюватися (намагнічуватися) або розбиватися на менші, залежно від напрямку і сили поля.

Явище магнітного гістерезису відображає залежність магнітної індукції В від напруженості магнітного поля Н у матеріалах. При зміні зовнішнього магнітного поля процеси намагнічування та розмагнічування можуть не бути ідеально оберненими одне в одне. Тобто, коли змінюється магнітне поле, магнітна індукція матеріалу може залишатися на певному рівні, навіть якщо поле змінюється.

Головна причина магнітного гістерезису полягає у залишкових магнітних моментах в матеріалі, які залишаються після зміни зовнішнього магнітного поля. Це може бути спричинено дефектами в структурі матеріалу, неоднорідностями у розташуванні доменів, а також іншими факторами. Гістерезис є важливим явищем у багатьох пристроях та матеріалах, включаючи магнітні диски, трансформатори, електродвигуни та інші.

6) У чому полягає явище електромагнітної індукції? Як формулюється закон Фарадея для електромагнітної індукції?

Явище електромагнітної індукції полягає в тому, що зміна магнітного поля в певній області простору породжує електричне поле індукції, що, в свою чергу, створює електричний струм в провіднику або контурі.

Закон Фарадея для електромагнітної індукції формулюється наступним чином:

"Змінний магнітний потік через будь-яку замкнену площину, що обмежується провідником, викликає у ньому електричний струм. Величина цього струму пропорційна швидкості зміни магнітного потоку і обернено пропорційна опору цієї площини."

$$E = -\frac{d\Phi}{dt}$$

де:

- Е індукована електродвигуном (емкістю) електромагнітна сила (ЕДС),
- Ф магнітний потік,
- t час.

7) Як формулюється закон Ома для змінного струму? Запишіть його формулу.

Закон Ома для змінного струму формулюється наступним чином: "Струм, що протікає через провідник, пропорційний прикладеній до нього напрузі, а обернено пропорційний опору провідника."

Математично це можна виразити за допомогою формули:

$$I = \frac{U}{R}$$

де:

- I ефективне значення струму,
- V- ефективне значення напруги,
- R активний опір.