every orthonormal set is linearly independent

Theorem: An orthonormal set of vectors in an inner product space is linearly independent.

Proof. We denote by $\langle \cdot, \cdot \rangle$ the <u>inner product</u> of L. Let S be an orthonormal set of vectors. Let us first consider the case when S is finite, i.e., $S = \{e_1, \dots, e_n\}$ for some n. Suppose

$$\lambda_1 e_1 + \cdots + \lambda_n e_n = 0$$

for some scalars λ_i (belonging to the field on the underlying <u>vector space</u> of L). For a fixed k in $1, \ldots, n$, we then have

$$0 = \langle e_k, 0
angle = \langle e_k, \lambda_1 e_1 + \dots + \lambda_n e_n
angle = \lambda_1 \, \langle e_k, e_1
angle + \dots + \lambda_n \, \langle e_k, e_n
angle = \lambda_k,$$

so $\lambda_k=0$, and S is linearly independent. Next, suppose S is <u>infinite</u> (<u>countable</u>) or <u>uncountable</u>). To prove that S is linearly independent, we need to show that all finite subsets of S are linearly independent. Since any subset of an orthonormal set is also orthonormal, the infinite case follows from the finite case. \square

Title	every orthonormal set is linearly independent
Canonical name	EveryOrthonormalSetIsLinearlyIndependent
Date of creation	2013-03-22 13:33:48
Last modified on	2013-03-22 13:33:48
Owner	mathcam (2727)
Last modified by	mathcam (2727)
Numerical id	14
Author	mathcam (2727)
Entry type	Theorem
Classification	msc 15A63