МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Метод удаления импульсных шумов из цветных изображений с помощью сверточных нейронных сетей

Студент: Прянишников Александр Николаевич Группа: ИУ7-85Б Руководитель: Степанов В. П.

Цель и задачи

Цель работы – разработать метод для борьбы с импульсными шумами в цветных изображениях с помощью сверточных нейронных сетей.

Задачи работы:

- провести анализ предметной области;
- описать существующие методы удаления шума в изображениях, провести сравнительный анализ;
- разработать метод удаления импульсных шумов из цветных изображений;
- разработать программный комплекс, реализующий метод;
- исследовать разработанный метод на применимость.

Шум и причины его появления на изображениях

Шум — дефект изображения, в основе которого лежит эффект появления на фотографии пикселей случайного цвета на изображении.

Импульсный шум проявляется в том, что на изображениях в случайных местах появляются черные и белые пиксели из-за темнового тока и дефектов пикселей.

Шум соли – светлые точки на темном фоне

Шум перца – темные точки на светлом фоне

Обзор существующих алгоритмов

Существуют два способа решения задачи: нелинейные фильтры и нейронные сети.

	Медианный фильтр	Гауссов фильтр	Билатеральный фильтр	Алгоритм Хианвей	DnCNN	RIDNET
Учитывается ли анизотропия?	Нет	Нет	Да	Да	Да	Да
Учитывается ли взаимосвязь пикселей?	Нет	Нет	Да	Да	Нет	Да
Зависит от количества шума?	Нет	Нет	Нет	Нет	Да	Да
Тип шума?	Любой	Гауссов	Гауссов	Гауссов	Любой	Любой
Используются нейронные сети?	Нет	Нет	Нет	Нет	Да	Да

Общая схема алгоритмов для цветных изображений

Цвет пикселя можно разбить на три составляющие – синюю, красную и зеленую. Методы работают отдельно с каждой из составляющих пикселя, вычисляя новое значение для каждой характеристики. Результат работы является объединением подсчетов по всем составляющим.

Постановка требований к методу

Разрабатываемый метод должен соответствовать следующим требованиям:

- 1. Должны удаляться импульсные шумы для цветных изображений любого размера.
- 2. Гарантируется, что максимальная степень зашумленности изображения 30%.
- 3. Исходное количество шума неизвестно.
- 4. Для выполнения цели должны быть использованы сверточные нейронные сети.

Основная идея реализации метода

В качестве отправной точки использовались два алгоритма: медианный фильтр и RIDNET.

- 1. Медианный фильтр позволяет очищать изображения от шумов вне зависимости от степени загрязненности картинки. Но из-за него возникает эффект сглаживания, цвет некоторых пикселей искажается.
- 2. RIDNET плохо справляется с большим количеством импульсных шумов, но показывает лучшие результаты среди аналогов на слабозагрязненных изображениях.

Идея алгоритма: подсчитать процент шума. Если его количество превышает пороговое, то применить медианный фильтр. После чего использовать сверточные нейронные сети для удаления оставшихся шумов и восстановления исходных характеристик пикселей.

Формализация задачи. IDEF0-диаграмма

Схема алгоритма

Основные этапы алгоритма:

- 1. Изображение разбивается на небольшие патчи размером 40х40 пикселей.
- Для каждого патча подсчитывается процент шума.
- 3. Если процент больше, чем пороговое значение, то применяется медианный фильтр и нейронная сеть для коррекции изображения.
- 4. Применяется нейронная сеть для очищения изображения от шумов.
- 5. Обработанные патчи склеиваются обратно в цельное изображение.

Алгоритм подсчета количества шумов на патче

Разработанный метод требует подсчета количества шума на патче для принятия решения о применении медианного фильтра.

Алгоритм учитывает взаимосвязь пикселя с соседями, что позволяет исключить идентификацию областей одного цвета как шум.

Конфигурация нейронных сетей

Конфигурация состоит из слоя свертки, модуля извлечения признаков, в котором производится основная обработка, и полносвязной нейронной сети.

Средства программной реализации метода

Для программной реализации метода был использован язык программирования **Python**.

Для работы с нейронными сетями использовалась библиотека **Tensorflow**.

В качестве среды разработки использовалась Yandex DataSphere.

Графический интерфейс для работы с методом

Результат работы метода

Результаты очистки изображения

Метрика сравнения качества очистки изображений

PSNR – метрика, обозначающее пиковое отношение сигнала к шуму.

Она универсальна и используется не только для удаления шумов, а также для измерения уровня искажения при сжатии изображений.

PSNR рассчитывается по логарифмической шкале.

Пусть есть два изображения: І – исходное, и К – полученное в результате обработки.

Размер каждого составляет MxN пикселей. MX – максимальное значение пикселя

MSE =
$$\frac{1}{MN} \sum_{0}^{M-1} \sum_{0}^{N-1} |I(i,j) - K(i,j)|.$$

$$PSNR = 20 \log_{10} \left(\frac{MX}{\sqrt{MSE}} \right)$$

Исследование выбора оптимального значения порога

В качестве возможных значений было выбрано три порога для применения порога: 5%, 15% и 25%.

Оптимальным было выбрано 12%, так как при 5% заметно падение метрики PSNR, а порог 25% проигрывает на зашумленности изображения в 15-25%.

Сравнение с аналогами по метрике PSNR

Тестирование производилось на датасете из изображений, искусственно зашумленных.

Реализованный метод показал лучшие результаты по сравнению с аналогами.

Разница особенно заметна на большом количестве шумов, где PSNR выше на 15%, чем у RIDNET.

Возможности дальнейшего развития

В качестве возможных улучшений разработанного метода можно выполнить:

- 1. Улучшить нейронную сеть для восстановления изображения после применения медианного фильтра.
- 2. Использовать вместо медианного фильтра другой нелинейный фильтр.

