LTR with Multiple Objectives

One of the key components for learning to rank is the definition of the relevance score. We have seen that it is difficult to achieve a ground touth when dealing with users and dick data.

LD

For example, a company wants to optimise both sales and their premium products.

Why a single objective may not be enough?

- · A possible recuerio that we might face is how to optimise for multiple objectives. For example:
 - · new sales vs short term retention
 - · engapement vs post-order experience (returns)
 - · engagement vs fashionalility.

1) Optimizing with 1 objective.

EXAMPLE: NDCG OBJECTIVE

this is an example of how a company com Score relevance

Interaction	(r_{ij})	
purchase	3	$i=1,\ldots,N_{s}$
click	1	$j=1,\ldots,n_i$
no interaction	0	

$$DCG_i = \sum_{j=1}^{n_i} \frac{r_{ij}}{\log_2(j+1)} \qquad NDCG = \sum_{i=1}^{N} \frac{DCG_i}{\max DCG_i}$$

2) What would we ideally want to advieve?

MULTI-OBJECTIVE OPTIMISATION

option 1 -D post-augmentation of the sorting rule

- 1) Optimise for one objective
- 2) threak the solution to address certain areas that don't watch what you want about the second objective.

aption 2 - o redefine relevance to include both objectives.

	second dimension
Interaction	r_{ij}
purchase, fashionable	7
purchase non-fashionable	3
click	1
no interaction	0

3) option 3 to scalaritation

$$\alpha F_{r'} + (1 - \alpha) F_{r''} \to \max$$

 $\alpha \in (0, 1)$

optimise both objectives separately and combine them wring weighting.

o this could be applied to multiple objectives.

HOW TO CHOOSE AMONG PARETO SOLUTIONS?

possible a combinations you could define a minimum toweshold to achieve in obj2 and allow a to decide best possible value to maximise slop 1.

OFFLINE EXPERIMENTATION: RESULTS

Other possible secondary objectives

Lack of diversity

- · Aside from results being relevant a user might want to have some divices to explore:
 - Lo For example, if a user searches for "best phones", you don't want to return all iphone models!
 - Lot for skyscaurer, you might not naut to show flights that are incredibly similar in departure time, dwarion and prices all crammed in the same spot.

· options:

- 1 Regularise loosed on pairwise similarity scores
- 2 Re-vanking 2 step optimization

Lo then rank for diversity