See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/256252990

# Structure and vibrational assignment of gouche-1,3-butadiene

| ARTICLE in JOURNAL OF MOLECULAR STRUCTURE · JUNE 1985 |  |
|-------------------------------------------------------|--|

| CITATIONS | READS |
|-----------|-------|
| 66        | 7     |

# 4 AUTHORS, INCLUDING:



Yu. N. Panchenko Lomonosov Moscow State University

120 PUBLICATIONS 1,516 CITATIONS

SEE PROFILE

Impact Factor: 1.6 · DOI: 10.1016/0022-2860(85)80192-7



Sergey Krasnoshchekov

Lomonosov Moscow State University

38 PUBLICATIONS 473 CITATIONS

SEE PROFILE

# STRUCTURE AND VIBRATIONAL ASSIGNMENT OF gauche-1,3-BUTADIENE

#### Ch. W BOCK

Chemistry Department, Philadelphia College of Textiles and Science, Philadelphia, Pennsylvania 19144 (U.S.A.)

Yu. N. PANCHENKO, S. V. KRASNOSHCHIOKOV, V. I. PUPYSHEV

Molecular Spectroscopy Laboratory, Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 117234 (U.S.S.R.)

(Received 17 January 1985)

#### ABSTRACT

The completely optimized structures and harmonic force fields of the s-trans(anti) and gauche-isomers of 1,3-butadiene have been computed at the ab initio Hartree—Fock level using the 6-31G basis set. The gauche dihedral angle was found to be 348° from the planar s-cis(syn)-configuration of the 1,3-butadiene molecule. Seven scale factors for correcting the theoretical force constants of the trans-isomer were calculated from the experimental frequencies of light and heavy trans-1,3-butadienes. The correction of the gaiche-butadiene force field was then carried out using these scale factors, and the vibrational problems were solved for gauche forms of C<sub>4</sub>H<sub>6</sub>. CD<sub>2</sub>CHCHCD<sub>2</sub>, C<sub>2</sub>D<sub>6</sub>. <sup>13</sup>CH<sub>2</sub>CHCH<sup>13</sup>CH<sub>2</sub>, and <sup>13</sup>CH<sub>2</sub>CHCHCHC<sub>2</sub>. The total assignment of the experimental vibrational frequencies of these isotopomera is given. The conclusion drawn is that the quantum mechanical geometry and the scaled quantum mechanical force field correctly simulate the structure and the experimental frequencies of the butadiene gauche-conformer

### INTRODUCTION

During the last few years a series of studies has been completed in which many of the experimental vibrational frequencies of the second rotational isomeric form of 1,3-butadiene have been observed [1–4]. However, the suggested interpretations of the experimental spectrum were different in some cases [1–8]. The analysis of the "hot" band progression of the Raman active torsional overtone  $2\nu_{13}$  of 1,3-butadiene allowed the construction of a potential energy curve of internal rotation around the central C–C bond [9]. This curve turned out to be applicable to the series of its isotopomers [10]. According to this experimental curve the second form of the  $C_4H_6$  molecule is rotated about 23° from the planar s-cis-form(syn-form) [9, 10]. The most recent quantum mechanical calculations give an angle of internal rotation of about 38° from the planar s-cis-form [11–14]. The direct electron diffraction measurement does not allow the determination of the exact structure of the second form [15].

Calculations of the vibrational frequencies have been carried out for a planar s-cis-form of 1,3-butadiene [3-8], the force constants being transferred in some cases from the s-trans-form force field [3, 4, 8]. A calculation for the gauche-form (40° from the planar cis-configuration) has also been published; however, the same force field was used as for the s-cis-configuration [4] which is probably the reason why its results practically coincided with those on the cis-configuration calculation [4].

In this connection it is of interest to perform the quantum mechanical computation of the structure and the harmonic force field of the second rotational isomeric form of 1,3-butadiene and to predict the vibrational frequencies of this conformer. This in turn can be used to facilitate the assignment of the observed frequencies for this conformer.

#### METHOD OF COMPUTATION

The geometrical parameters and force constants of the trans- and gauche-isomers of 1,3-butadiene were computed by the ab initio Hartree—Fock method using the 6-31G basis set and gradient optimization [16] The completely optimized structural parameters of these two forms of 1,3-butadiene are given in Table 1.

At present, the combination of the theoretical and the experimental information was accepted as usual practice in the force field calculations of homologous series of molecules (see, for example, ref. 17). According to this technique the force fields are calculated for a standard (calculated ab initio and then experimentally corrected) geometry. Further the force constants are corrected by empirical scale factors. However, the main purpose of this work is to predict the vibrational frequencies of gauche-C<sub>4</sub>H<sub>6</sub> and to assign those that have been observed experimentally. Hence the transition to a

TABLE 1

Completely optimized geometry of trans- and gauche-1,3-butadiene

| Parameter                          | $trans$ - $C_{4}H_{6}$ | gauche-C <sub>c</sub> H <sub>e</sub> |
|------------------------------------|------------------------|--------------------------------------|
| C=Ca                               | 1 3276                 | 1 3266                               |
| CC2                                | 1 4645                 | 1 4739                               |
| C-H <sub>trens-terminal</sub> a    | 1 0726                 | 1 0730                               |
| C—H <sub>cis-terminal</sub> a      | 1 0748                 | 1.0741                               |
| C-Ha                               | 1.0767                 | 1 0769                               |
| $\angle C = C - C_p$               | 124.29                 | 125.76                               |
| ∠C=C—H <sub>trans-terminal</sub> o | 121.79                 | 121.51                               |
| LC=C-H <sub>CIS</sub> terminal b   | 121.80                 | 122.04                               |
| ∠C=C—Hb                            | 119 55                 | 118 89                               |
| Dihedral angle <sup>b</sup>        | 0 0                    | 34 78                                |
| Energy <sup>c</sup>                | -154 864576            | -154.859731                          |

Angstrom u., ts bDegrees Atomic units.

standard geometry was not made and force fields were computed for the theoretical structures of the *trans*- and *gauche*-isomers. The force constants as obtained in cartesian coordinates were transformed into the internal vibrational coordinates in order to correct them using empirical scale factors. As internal coordinates, the local valence coordinates were chosen [18]. The coupling force constants are small in these coordinates, and it is easier to assign the calculated frequencies by their vibrational forms (normal-mode vectors, or eigenvectors). The definition of these coordinates for *trans*-1,3-butadiene is given in ref. 17.

The scaling procedure has been previously described [5, 19]. It is a congruent transformation of the force constant matrix. The values of the scale factors were obtained by minimizing the weighted mean-square deviation between the calculated and the experimental fundamental frequencies for the trans-form of light and heavy 1,3-butadiene using a program written by Dr. G. Pongor The experimental vibrational frequencies and their assignment for the trans-conformers of the C<sub>4</sub>H<sub>6</sub> and C<sub>4</sub>D<sub>6</sub> molecules are well known since 14 isotopomers of this molecule have been investigated [3, 20, 21]. The values of the scale factors obtained are given in Table 2. As a starting approximation, the scale factors used were those calculated for the trans-form of 1,3-butadiene in ref. 17 (see the last column in Table 2).

Correction of the theoretical force constant matrix of gauche-1,3-butadiene was performed using the seven scale factors calculated for the transconformer. The empirically corrected force constants obtained for the transand gauche-forms of butadiene are given in Tables 3 and 4. The vibrational problems were solved with these force fields for the trans-isomers of  $C_4H_6$  and  $C_4D_6$  (Table 5) and the gauche-isomers of  $C_4H_6$ ,  $C_4H_2D_4$ ,  $C_4D_6$ ,  $1,4^{-13}C_2-C_4H_6$ , and  $1^{-13}C-C_4H_6$  (Table 6). The assignment of the experimental frequencies of the gauche-conformer was carried out using data on the potential energy distribution taking into account the isotopic shifts

TABLE 2
Optimized scale factors

| Scale factor          | Basis set            |               |               |
|-----------------------|----------------------|---------------|---------------|
|                       | 6-31G<br>(this work) | 4 31G<br>[22] | 4-21G<br>[17] |
| C—C stretch           | 0.8514               | C.887—0.909   | 0.9215        |
| C=C stretch           | 0 7573               | 0 869-0.872   | 0 8657        |
| C-H stretch           | 0.8301               | C 881-0.890   | 0.8677        |
| C=C-C, C=C-H in-plane | 0.7944               | C.793-0.816   | 0 8025        |
| C—C torsion           | 3.9979               | <b></b>       | 1.095         |
| C-H, =CH, wag         | 0.6706               | C.718-0.746   | 0 7217        |
| C=C twist             | 0 7986               | C 793—0 816   | 0 7837        |

TABLE 3

Scaled force constant matrix of trans-1,3-butadiene<sup>a</sup>

|             | 1             | 2             | 3             | 4      | 5              | 6                  | 7      | 8      |
|-------------|---------------|---------------|---------------|--------|----------------|--------------------|--------|--------|
| 1           | 5 087         |               |               |        |                |                    |        |        |
| 2           | 0 299         | 8.521         |               |        |                |                    |        |        |
| 3           | 0 29°         | -0 069        | 8.521         |        |                |                    |        |        |
| 4           | <b>-0</b> 00∮ | 0 046         | 0.007         | 5.209  |                |                    |        |        |
| 5           | -0.004        | 0 007         | 0.046         | 0.002  | 5.209          |                    |        |        |
| 6           | 0.004         | 0.064         | <b>-0</b> 002 | 0.026  | 0.001          | 5.138              |        |        |
| 7           | 0 004         | -0.002        | 0 054         | 0.001  | 0.026          | C 3                | 5.138  |        |
| S           | 0.054         | 0.068         | 0.019         | 0.015  | -0.001         | 00                 | 0.011  | 5.048  |
| 9           | 0 054         | 0 019         | 0 068         | -0.001 | 0.015          | 0.011              | 0.0    | 0.0    |
| 10          | 0 211         | 9 168         | 0.965         | 0 047  | 0.013          | -0.059             | -0.002 | -0 150 |
| 11          | 0 211         | 0 065         | 0.168         | 0 013  | 0 047          | -0 002             | -0.059 | -0 048 |
| 12          | 0.180         | -0 184        | -0.011        | 0.009  | -0.003         | -0 027             | 0 011  | -0 002 |
| 13          | 0.180         | -0.011        | -0.184        | -0 003 | 0 009          | 0 011              | -0.027 | 0.022  |
| 14          | -0 005        | -0.197        | -0 001        | 0.058  | 0.0            | 0.056              | 0.001  | -0 007 |
| 15          | -0 005        | -0.001        | -0.197        | 00     | 0.058          | 0 001              | 0.056  | ~ે 00€ |
| 16          | 0.04%         | 0.008         | 0 009         | 0 097  | 0.002          | -0.105             | 0.003  | -0.035 |
| 17          | 0 041         | 0 009         | 0 008         | 0.002  | 0 097          | 0.003              | -0.105 | C 003  |
|             | 9             | 10            | 11            | 12     | 13             | 14                 | 15     | 16     |
| <del></del> | 5.048         |               |               | _      |                |                    |        |        |
| 10          | 0 048         | 1.055         |               |        |                |                    |        |        |
| 11          | -0.150        | 0.153         | 1 055         |        |                |                    |        |        |
| 12          | 0.022         | 9.005         | -0 04(,       | 0.525  |                |                    |        |        |
| 13          | -0.002        | <b>-0</b> 046 | 0 005         | 0 037  | 0.525          |                    |        |        |
| 14          | -0.006        | -0 012        | -0.009        | 0.015  | -0.001         | 0.447              |        |        |
| 15          | -0 007        | -0 009        | <b>-0 012</b> | -0 001 | 0.015          | 00                 | 0 447  |        |
| 16          | -0 003        | 0.083         | 0 011         | 0 039  | 0.0            | 0 002              | -0.001 | 0 527  |
| 17          | -0.035        | ი_ი11         | 0 083         | e o    | 0 039          | <del>-</del> 0 001 | 0 002  | 0 003  |
|             | 17            | ₹8            | 19            | 20     | 21             | 22                 | 23     | 24     |
| 17          | 0 5 2 7       |               |               |        |                |                    |        |        |
| 18          |               | 0.023         |               |        |                |                    |        |        |
| 19          |               | 0 003         | 0 246         |        |                |                    |        |        |
| 20          |               | 0.003         | -0 009        | 0.246  |                |                    |        |        |
| 21          |               | 0.0           | 0 024         | -0 003 | 0.232          |                    |        |        |
| 22          |               | 0 0           | -0 003        | 0 024  | 0 0            | 0.232              |        |        |
| 20          |               | 0.005         | 0.0           | -0 013 | 0 0            | -0.004             | 0 126  |        |
| 24          |               | 0.005         | -0 013        | 0.0    | <b>─</b> 0 004 | 0.0                | -0 004 | 0 120  |

<sup>&</sup>lt;sup>2</sup>For definition and order of internal coordinates see ref. 17

# DISCUSSION

The calculated geometrical parameters of the two molecular forms corroborate the changes which are expected when passing from a trans to a gauche-conformer. An accentuation in the alternation of the carbon—carbon bonds

TABLE 4
Scaled force constant matrix of gauche-1 3-butadiene<sup>2</sup>

|    | 1                 | 2              | 3              | 4              | 5             | 6                | 7      | 8                  |
|----|-------------------|----------------|----------------|----------------|---------------|------------------|--------|--------------------|
| 1  | 4.968             |                |                |                |               |                  | ~      |                    |
| 2  | 0.277             | 8.543          |                |                |               |                  |        |                    |
| 3  | 0 277             | -0.061         | 8 543          |                |               |                  |        |                    |
| 4  | -0.003            | 0 048          | 0.002          | 5.190          |               |                  |        |                    |
| 5  | -0.003            | -0 002         | 0.048          | 0 001          | 5 190         |                  |        |                    |
| 6  | -0.008            | 0.061          | 0.613          | 0.026          | 00            | <del>5</del> 166 |        |                    |
| 7  | -0.008            | 0.013          | 0 061          | 0.0            | 0.026         | 0 009            | 5.166  |                    |
| 8  | 0.068             | 0.077          | 0.003          | 0 015          | 0.005         | -0.001           | 0.0    | 5.034              |
| 9  | 0.068             | 0 003          | 0 077          | 0.005          | 0.015         | 0.0              | -0 001 | 0 015              |
| 10 | 0 266             | 0.151          | -0.022         | 0.050          | -0 008        | <b>−</b> 0 077   | -0.011 | <del></del> 0.150  |
| 11 | 6ر،0.2            | -0 022         | 0.151          | <b>-0 008</b>  | 0 050         | -0 011           | 0.077  | 0.041              |
| 12 | 0.186             | -0.191         | 0 024          | 0 009          | 0 007         | -0.027           | 0.002  | -0 003             |
| 13 | 0 186             | 0.024          | <b>⊸</b> 0 191 | 0 007          | 0.009         | 0 902            | -0 027 | 00                 |
| 14 | -0 006            | -0.199         | <b>⊸</b> 0 007 | 0.059          | 0.001         | 0.058            | 0.001  | -0.037             |
| 15 | -0 006            | -0 007         | -0 199         | 0 001          | 0.059         | -0 001           | 0 058  | - 0.001            |
| 16 | 0.029             | 0 010          | -0 003         | 0 095          | 0.002         | -0 098           | 0.003  | -0.037             |
| 17 | 0.029             | -0 003         | 0 010          | 0 002          | 0 095         | 0.003            | 0.098  | 0 008              |
| 18 | 0 009             | 0 018          | 0.018          | -0 001         | -0 001        | 0 001            | 0.001  | <b>−</b> 0 012     |
| 19 | -0 014            | 0.0            | 0 004          | 0 003          | 0.0           | 0.001            | 0 001  | —ე.008             |
| 20 | -0.014            | 0 004          | 00             | 0.0            | 0 003         | 0 001            | 0 001  | 00                 |
| 21 | -0 013            | 0 003          | 0 003          | 0 002          | 0.001         | -0.007           | 00     | 0,0                |
| 22 | -0 013            | 0.003          | 0 003          | 0 001          | 0 002         | 0 0              | -0.007 | 0.0                |
| 23 | 0.028             | -0.001         | 0.003          | 0.002          | 0.0           | 0.004            | 0.001  | -0.001             |
| 24 | 0 028             | 0.003          | -0 001         | 0 0            | 0.002         | 0.001            | 0.004  | <del>-</del> 0.004 |
|    | 9                 | 10             | 11             | 12             | 13            | 14               | 15     | 16                 |
| 9  | 5 034             |                |                | ·              |               |                  |        |                    |
| 10 | 0.041             | 1.091          |                |                |               |                  |        |                    |
| 11 | <del></del> 0 150 | 0.016          | 1.091          |                |               |                  |        |                    |
| 12 | 0.0               | 0.008          | 0 062          | 0.531          |               |                  |        |                    |
| 13 | -0.003            | 0.062          | 0.008          | -0.009         | 0.531         |                  |        |                    |
| 14 | -0.001            | -0.012         | -0 004         | 0.015          | 0 003         | 0 446            |        |                    |
| 15 | -0 007            | -0.004         | -0.012         | -0 003         | 0 015         | 0 003            | 0.446  |                    |
| 16 | 0.008             | 0 067          | -0.021         | 0 040          | 0.009         | 0.0              | 0.002  | 0 529              |
| 17 | -0 037            | <b>−</b> 0 021 | 0 067          | 0.009          | 0.040         | 0.092            | 80     | 0.005              |
| 18 | -0.012            | 0 035          | 0.035          | 0.001          | 0.001         | <b>-0 004</b>    | -C.004 | -0.007             |
| 19 | 00                | -0.016         | 0.006          | 0.004          | 0.011         | 0 003            | 0,0    | 0 004              |
| 20 | -0.008            | 0.006          | -0.016         | -0 011         | 0 004         | 0.0              | 0 003  | 0.005              |
| 21 | 0.0               | -0.009         | 0.001          | 0.001          | <b></b> 0 004 | 0,001            | 0.002  | 0 004              |
| 22 | 00                | 0 001          | -0 009         | <b>-</b> ₿ 004 | 0 001         | 0 002            | C 001  | 0.002              |
| 23 | -0.004            | 0 014          | 0 039          | 0,001          | -0.008        | 0.0              | -0 003 | -0 002             |
| 24 | -0.001            | 0.039          | 0 014          | -0.008         | 0 001         | <b></b> 0 003    | 0.0    | -0.001             |

TABLE 4 (continued)

|        | 17     | 18             | 19     | 20     | 21    | 22    | 23    | 24  |
|--------|--------|----------------|--------|--------|-------|-------|-------|-----|
| <br>17 | 0 529  |                |        |        |       |       |       |     |
| 18     | 0.007  | 0.017          |        |        |       |       |       |     |
| 19     | 0 005  | <b>−</b> 0 001 | 0.243  |        |       |       |       |     |
| 20     | 0 004  | -0.001         | 0.008  | 0.243  |       |       |       |     |
| 21     | 0.002  | 0.0            | 0 026  | C.004  | 0.235 |       |       |     |
| 22     | 0.004  | 0.0            | 0.004  | 0.026  | 0.0   | 0 235 |       |     |
| 23     | -0 001 | 0.003          | -0 002 | 0.008  | 0.0   | 0 003 | 0.128 |     |
| 24     | -0 002 | 0 003          | 0.008  | -0.002 | 0.003 | 0.0   | 0.004 | 0.1 |

<sup>&</sup>lt;sup>a</sup>For definition and order of internal coordinates see ref. 17.

is observed with decreasing length of the C=C bond and increasing length of the C=C bond (see Table 1). Furthermore, the value of the C=C—C angle increases noticeably, resulting in some decrease of the C=C—H angle. These changes are possibly connected with disturbances of the conjugation in the skew configuration.

Our use of the optimized geometry, rather than a standard or experimental geometry, gave a set of force constant scaling factors somewhat different from those of other authors (Table 2) for the trans-form. This is most noticeable for the scale factors of the stretching force constants, since they depend strongly on the adopted geometry. This effect was greatest in the case of the scale factor for stretching the C=C bond since the deviation of the calculated value of this bond length from the standard geometry was the largest. Deviation from the scale factors given in ref. 17 is caused by the use of a different basis set in the present work; in addition a reversal of the assignment for the  $\nu_{10}$  and  $\nu_{22}$  frequencies of trans-C<sub>4</sub>D<sub>6</sub> was accepted (see below). The procedure of scaling was also slightly different from that used in Ref. 22. Nevertheless, the set of scale factors obtained as a whole is quite close to that obtained in ref. 17, and thus the structures of the force constant matrices for the transform are similar in the present work and in ref. 17 (Table 3).

Comparing the force fields of the trans- and gauche-conformers, it is interesting to note the appearance of large non-diagonal elements in the force constant matrix of the gauche-form which are situated at the "intersection" of in-plane and out-of-plane coordinates. This clearly demonstrates that using the force constants of the trans-form to calculate the vibrational frequencies of the gauche-form is not in general justified.

Frequencies of the trans-form, calculated with the empirically corrected force field, are in good agreement with the experimental results (Table 5). It should be noted that there is some disagreement as to the assignment of the  $\nu_{10}$  and  $\nu_{23}$  bands of trans- $C_4D_6$ . In refs. 3, 4, and 17 it was suggested that the assignment of bands at 768.8 cm<sup>-1</sup> and 735.6 cm<sup>-1</sup> be interchanged in comparison with the earlier suggested assignment [20]. However, experimental study of the IR spectra of the trans- $C_4D_6$  molecule in the crystalline phase

TABLE 5

Experimental and calculated fundamental vibrational frequencies of trans forms of 1,3 butadiene and d.-1,3-butadiene

| Assignment                                    | trans          | CH <sub>3</sub> = ( | JH-CH=C     | 11,  |                  |    |              |          | trans-(        | בית:     | vans-CD, =CD—CD=CD, | D,    |                     |          |                |       |
|-----------------------------------------------|----------------|---------------------|-------------|------|------------------|----|--------------|----------|----------------|----------|---------------------|-------|---------------------|----------|----------------|-------|
|                                               | Sym,           | a                   | Exp<br>[20] | Calc | Sym.             | -  | Exp.<br>[20] | Calc,    | Sym,           | <b>a</b> | Exp.<br>[8, 20]     | Calc. | Sym,                | <u> </u> | Exp<br>[3, 20] | Calc. |
| ν(CH <sub>2</sub> )str.                       | <u>ש</u>       | 1                   | 3101        | 3110 | ρ'n              | 17 | 3102         | 3110     | a <sub>n</sub> | 1        | 2341                | 2316  | $b_{\mathbf{u}}$    | 17       | 2336           | 2916  |
| $\nu(C-II)$ str.                              | •              | ~                   | 3014        | 3035 | •                | 18 | 3020         | 3036     | :              | ~        | 2262                | 2251  | !                   | 18       | 2266           | 2251  |
| v(CH,)atr                                     |                | c.                  | 3014        | 3021 |                  | 19 | $3010^{a}$   | 3027     |                | ~        | 2205                | 2205  |                     | 18       | 2215           | 2206  |
| "(C *C)str.                                   |                | 4                   | 1643        | 1668 |                  | 20 | 1599         | 1591     |                | 7        | 1583                | 1604  |                     | 20       | 1523           | 1497  |
| δ(CH <sub>2</sub> )sc.                        |                | ಶ                   | 1442        | 1466 |                  | 21 | 1385         | 1388     |                | ⋍        | 1048                | 1050  |                     | 21       | 1042           | 1053  |
| p(C −II)r.                                    |                | 9                   | 1291"       | 1290 |                  | 22 | 12962        | 1304     |                | 9        | 919                 | 926   |                     | 22       | 1009           | 1005  |
| $\nu(C-C)str$                                 |                | -                   | 1205        | 1214 |                  | l  | l            | I        |                |          | 1136                | 1178  |                     | ١        | İ              | i     |
| $\rho(\mathrm{CH}_{\mathbf{i}})_{\mathbf{i}}$ |                | 8                   | 890         | 878  |                  | 53 | 9066         | 900<br>1 |                | 20       | 739                 | 730   |                     | 23       | 7688           | 749   |
| $\delta(C=C-C)b$ .                            |                | 0                   | 613         | 203  |                  | 24 | 301          | 202      |                | 6        | 440                 | 439   |                     | 73<br>4  | 253 6          | 246   |
| $\lambda(C-H)w$                               | a <sub>n</sub> | 10                  | 1013.2      | 1021 | $b_{\mathbf{k}}$ | 14 | 190          | 976      | ď              | 10       | 7356                | 768   | $\rho_{\mathbf{g}}$ | 14       | 796            | 196   |
| $x(CH_2)w$                                    |                | 11                  | 9078        | 915  | ì                | 15 | 110          | 911      | i              | Π        | 7.18,5              | 716   | ı.                  | 16       | 702            | 687   |
| 7(CH <sub>2</sub> )tw.                        |                | 12                  | 524 6       | 512  |                  | 16 | 753          | 739      |                | 12       | 381                 | 374   |                     | 16       | 603            | 598   |
| r(C—C)tor.                                    |                | 13                  | 163         | 163  |                  | l  | ļ            | ł        |                | 13       | 140                 | 141   |                     | ı        | i              | i     |

<sup>4</sup>Corrected on Penni resonance Values expressed in cm<sup>-1</sup>

TABLE 6

Experimental and enleulated fundamental vibrational frequencies of gauche-forms of 1,3-butadiene, 1,1,4,4, d,·1,3 butadiene, d,·1,3 butadiene, and 1.¹3C-1,3 butadiene, and 1.¹3C-1,3 butadiene, and 1.¹3C-1,3 butadiene, and 1.¹3C-1,3 butadiene, and 1.³C-1,3 butadiene, and

|                                       | JE A | сп,снспсн,     | ICH,  | CD,CHCHCD, | HCD,  | co,cococo,    | ocp,  | 13,HDE1 | *CH,CHCH''CII, | чононочо.   | сисн, |
|---------------------------------------|------|----------------|-------|------------|-------|---------------|-------|---------|----------------|-------------|-------|
|                                       | }    | Exp.<br>[3, 4] | Calc, | Exp.       | Calc, | Exp<br>[3, 4] | Cale, | Exp.    | Cale           | Екр.<br>[3] | Cale, |
| 1 v(CH.)str. a                        |      | 3103           | 3112  | 2337       | 2317  | 2335          | 2317  | 3068    | 3099           | 3100        | 3110  |
| 2 v(C-H)str                           |      | 3030           | 3041  | 2013       | 3036  | 2256          | 2253  | 1       | 3038           | ł           | 3040  |
| 3 v(CH, )str                          |      | 3014           | 3026  | 2228       | 2219  | 2222          | 2207  | 3008    | 3027           | 3010        | 3030  |
| 4 v(C=C)str                           |      | 1633           | 1635  | 1592       | 1590  | 1552          | 1582  | 1612    | 1614           | 1626        | 1632  |
| 6 8(CH <sub>1</sub> )3c.              |      | 1426           | 1448  | . 384      | 1090  | 1             | 1009  | 1424    | 144.3          | 1424        | 1447  |
| 6 n(C-H)r                             |      | 1              | 1318  | 1305       | 1311  | I             | 838   | 1       | 1312           | 1           | 1315  |
| 7 ρ(CH <sub>2</sub> )r.               |      | 1              | 1057  | I          | 723   | 708           | 723   | 1       | 1053           | l           | 1055  |
| 8 x(C-II)w                            |      | 983            | 987   | 927        | 921   | J             | 776   | ļ       | 986            | 982         | 986   |
| 9 x(C)1,)w,                           |      | $916^{6}$      | 918   | 726        | 744   | 712           | 703   | 907b    | 600            | 913         | 918   |
| 10 v(C-C)str.                         |      | ı              | 865   | 944        | 696   | 1166          | 1159  | I       | 867            | I           | 961   |
| 11, (C-C)tw.                          |      | 727            | 729   | 694        | 592   | 587           | 588   | 731     | 728            | 731         | 729   |
| 12 5 (C≖C—C)b.                        |      | ļ              | 271   | ł          | 234   | J             | 232   | 1       | 265            | j           | 268   |
| 13 r(C-C)tor.                         |      | ı              | 155   | 1          | 136   | 1             | 122   | i       | 154            | 1           | 155   |
| 14 "(CII,) str b                      |      | 3103           | 3109  | 2337       | 2314  | 2335          | 2316  | I       | 3096           | 1           | 3098  |
| 15 "(C -II)atr                        |      | 3039           | 3033  | 3025       | 3019  | 2266          | 2246  | I       | 3023           | i           | 3024  |
| 16 v(CH, )str                         |      | 3011           | 3016  | 2228       | 2210  | 2222          | 2203  | ١       | 3016           | i           | 3016  |
| 17 v(C=C)atr                          |      | 1612           | 1629  | 1          | 1577  | 1528          | 1531  | l       | 1608           | i           | 1611  |
| 18 5 (CH, )5c                         |      | 1403           | 1493  | 103T       | 1040  | 1056          | 1.068 | 1401    | 1422           | 1401        | 1422  |
| 19 p(C-H)r.                           |      | 1              | 1286  | 1286       | 1292  | 877           | 875   | ļ       | 1278           | I           | 1281  |
| $20 \ \rho(\mathrm{CH_2})_\mathrm{r}$ |      | 108/           | 1094  | I          | 946   | 1             | 1009  | 1077    | 1064           | 1033        | 1089  |
| $21 \ (C-II)w$                        |      | 966            | 1002  | 014        | 913   | 763           | 761   | 906     | 1002           | 966         | 1002  |
| $22  \chi(\mathrm{CH_3}) \mathrm{w}$  |      | 914            | 918   | 727        | 731   | 715           | 709   | 200     | 600            | 906         | 606   |
| 23 6 (C=C—C)b.                        |      | 596            | 604   | 488        | 505   | 492           | 497   | 596     | 603            | 697         | 604   |
| 24 r(C-C)tw                           |      | 468            | 461   | 373        | 358   | 360           | 346   | 467     | 450            | 467         | 451   |

Values expressed in cm<sup>-1</sup>, <sup>a</sup>All the vibrations belong to the  $\sigma$  symmetry type <sup>b</sup>Values as estimated from  $\nu_{\rm p}$  i  $\nu_{\rm p_2}$  (1829 cm<sup>-1</sup> and 1814 cm<sup>-1</sup>, respectively) [3]

The first the state of the stat

allows, by analogy with  $C_4H_6$ , assignment of the band at 735.6 cm<sup>-1</sup> to the out-of-plane vibration  $\nu_{10}$  of the C-D bond. Provided that the structure of the  $C_4H_6$  and the  $C_4D_6$  crystals are the same, this assignment is corroborated by the value and the direction of shift, the value of splitting, and the polarization of components of the split band in the IR spectrum when passing from the gas phase to the crystal for the frequency pairs of 907.8—718.5 cm<sup>-1</sup> and 1013 2—735.6 cm<sup>-1</sup> (Table 5). The spectral region under consideration and a detailed discussion are given in ref. 23.

The calculation of the vibrational frequencies of trans- $C_4H_6$  showed that the  $\nu_{19}$  frequency should be reassigned. Indeed, in the IR spectrum of  $C_4H_6$  in condensed phase there are five bands instead of three, i.e. 2972, 2998, 3023, 3044, and 3084 cm<sup>-1</sup> [24]. Those at 2998 cm<sup>-1</sup> and 3023 cm<sup>-1</sup> are weak and are possibly combination bands. On going from the vapour to the solid state, shifts of 10–20 cm<sup>-1</sup> to the low frequency are observed. Such a low frequency of the strong band at 2972 cm<sup>-1</sup> (2985 cm<sup>-1</sup> in vapour) could be explained by a shift due to a Fermi resonance with a combination band (1643 + 1385 = 3028,  $a_g \times b_u$ ) and by a phase shift Obviously, the value of the vibrational frequency  $\nu_{19}$  in the condensed phase should be equal to (2972 + 3023)/2 = 2997 cm<sup>-1</sup>. Then in the gas phase it should be situated approximately at 3010 cm<sup>-1</sup> (Table 5) and indeed, this vibrational frequency in the molecules CH<sub>2</sub>CHCDCD<sub>2</sub> and trans-CHDCHCHCH<sub>2</sub> is observed at 2997 cm<sup>-1</sup> and 3003 cm<sup>-1</sup>, respectively [20]. The vibrational frequency  $\nu_6$  in the  $C_4H_6$  molecule is also corrected by Fermi resonance [20] (Table 5).

The assignment of the vibrational frequencies of gauche- $C_4H_6$  (Table 6) coincides in general with the results given in Refs. 3 and 4 and differs in the interpretation of frequencies from Ref. 8 for vibrations  $\nu_{12}$ ,  $\nu_{23}$ , and  $\nu_{24}$ . In Ref. 8 the experimental bands at  $472 \text{ cm}^{-1}$  and  $475 \text{ cm}^{-1}$  [2] are assigned to the  $\nu_{12}$  and  $\nu_{23}$  vibrations. Later, only one band ascribed to  $\nu_{24}$  (Table 6) was observed in this region of the  $C_4H_6$  spectrum [3, 4]. The 596 cm<sup>-1</sup> band interpreted as  $\nu_{24}$  in Ref. 8 was reassigned to  $\nu_{23}$  [3, 4].

Table 6 also contains the experimental and the calculated vibrational frequencies for the gauche-forms of the  $C_4H_2D_4$  and the  $C_4D_5$  molecules. In the case of the  $C_4H_2D_4$  molecule the present calculation allows the reassignment of the vibrational frequencies  $\nu_5$  and  $\nu_{10}$  in companion with the assignment in Ref. 4 The frequency of the =CD<sub>2</sub> group scissoring is very characteristic and should not depend on the rotation angle around the C—C bond. For the trans-conformers of the  $C_4H_2D_4$  and the  $C_4D_6$  molecules this frequency is about 1050 cm<sup>-1</sup> [20] which corroborates the assignment of the 1084 cm<sup>-1</sup> band to  $\nu_5$ . The experimental band at 927 cm<sup>-1</sup> corresponds very well to the 60 cm<sup>-1</sup> shift of the calculated vibrational frequency  $\nu_8$  when passing from  $C_4H_6$  to  $C_4H_2D_4$ .

For the  $C_4D_6$  molecule the present calculations confirmed the assignment of the experimental band at 877 cm<sup>-1</sup> to  $\nu_{19}$  [3] in contradiction to its interpretation as  $\nu_6$  [4].

The most interesting fact in the assignment of the vibrational frequencies of the gauche-conformers of  $C_4H_2D_4$  and  $C_4D_6$  is the inverse isotopic shift [25] of the C—C bond stretching frequency  $\nu_{10}$  (Table 6). A similar inverse isotopic shift was observed for the stretching frequencies  $\nu_{10}$  and  $\nu_{33}$  of the C—C bond in the trans-cis-trans-1,3,5-hexatriene molecule on going to its 2,3,4,5-tetradeuteroanalogues [26]. It should be noticed that in the transform substitution of the H atoms by D atoms shifted the stretching frequency of the C—C bond very little ( $\nu_7$  in Table 5), while in the gauche-form it resulted in an increase of this frequency to 300 cm<sup>-1</sup> ( $\nu_{10}$  in Table 6).

The calculated values of the vibrational forms (normal-riode vectors or eigenvectors), distribution of potential energy [27, 25] and the isotopic shifts of the experimental vibrational frequencies confirmed the adopted assignments for all molecules studied

Table 6 gives the results of the vibrational frequency calculation of the gauche-forms of  $1^{-13}C_1$ ,3-butadiene and  $1,4^{-13}C_2$ -1,3-butadiene. The isotopic shifts for these molecules are small and do not give any essential information in addition to the data already existing for  $C_4D_6$  and  $C_4H_2D_4$ . However, the spectra of these molecules give further confirmation for the experimental detection of the bands belonging to the second rotational isomeric form of 1,3-butadiene.

#### CONCLUSIONS

The calculation of the vibrational frequencies of the second rotational isomeric form of 1,3-butadiene showed that all its observed frequencies may be assigned to vibrations of the gauche-form with a rotation angle of about  $34.8^{\circ}$  from the planar s-cis-configuration. An additional experimental argument for the realization of the gauche-form is the manifestation in the IR spectrum of the bands of the  $\nu_8$ ,  $\nu_9$ , and  $\nu_{11}$  vibrations. In the case of an s-cisconfiguration these must belong to the  $a_2$  symmetry type and be forbidden in the IR spectrum

Good agreement between the calculated and experimental vibrational frequencies of the gauche-form and the difference of its force field from that of the trans-form demonstrates the possibility of using the same set of scale factors for several structural isomers and shows in general the inaccuracy of transferring force constants from one rotational isomer to another.

The calculation performed is an additional example of the solution of the structural problem by means of the gradient technique the application of which was discussed in detail in Ref. 29.

## ACKNOWLEDGEMENT

The authors are deeply grateful to Dr. Yu. Furukawa for providing the experimental data on vibrational frequencies of gauche-1,1,4,4-d<sub>4</sub>-1,3-butadiene.

#### REFERENCES

- 1 P. Huber-Walchli, Ber. Bunsenges. Phys. Chem., 82 (1978) 10.
- 2 M E Squillacote, R S Sheridan, O. L Chapman and F A. L Anet, J Am Chem. Soc., 101 (1979) 3657.
- 3 P. Huber-Walchli, Hs H Gunthard, Spectrochum Acta, Part A, 37 (1981) 285.
- 4 Yu. Furukawa, H. Takeuchi, L. Harada and M. Tasumi, Bull. Chem. Soc. Japa., 56 (1983) 392
- 5 Yu. N Panchenko, P. Pulay and F. Torok, J. Mol. Struct, 34 (1976) 283.
- 6 Ch. W Bock, M Trachtman and P. George, J Mol. Spectrosc , 84 (1980) 243.
- 7 A. Warshel and M. Karplus, J. Am. Chem. Soc., 94 (1972) 5612
- 8P. W. Mui and E. Grunwald, J Am Chem. Soc , 104 (1932) 6562
- 9 Ch W Bock, P. George, M Trachtman and M Zanger, J Chem Soc., Perkin Trans 2, (1979) 26.
- 10 Yu. N. Panchenko, A. V. Abramenkov, V. I. Mochalov, A. A. Zenkin, G. Keresztury and G. Jalsovszky, J. Mol. Spectrosc., 99 (1983) 283.
- 11 S Skaarup, J E Boggs and P. N. Skancke, Tetrahedron, 32 (1976) 1179
- 12 Ch. W. Bock, P. George and M. Trachtman, Theor. Chim. Acta, 64 (1984) 293
- 13 G. R. De Maré, J. Mol. Struct. Theochem, 107 (1984) 127
- 14 G. R. De Maré and D. Neisius, J. Mol. Struct, Theochem, 109 (1084) 103.
- 15 K. Kveseth, R. Seip and D. A. Kohl, Acta Chem. Scand, Part A, 34 (1980) 31
- 16 Gaussian 82, J S Binkley, M J Frisch, D. J. De Frees, K Raghavachari, R. A. Whiteside, H. B Schlegel, E M Fluder and J A. Pople, Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania
- 17 P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs and A. Vargha, J. Am. Chem. Soc., 105 (1983) 7037.
- 18 P. Pulay, G. Fogarasi, F Pang and J E Boggs, J. Am. Chem Soc., 101 (1979) 2550.
- 19F Torok, A. Hegedus, K. Kosa and P. Pulay, J. Mol. Struct., 32 (1976) 93.
- 20 Yu N Panchenko, Spectrochim. Acta, Part A, 31 (1975) 1201.
- 21 E Benedetti, M. Aglietto, S. Pucci, Yu. N Panchenko, Yu. A. Pentin and O. T. Nikitin. J. Mol. Struct, 49 (1978) 293
- 22 C. E. Blom, C. Altona and A. Oskam, Mol. Phys., 34 (1977) 557
- 23 Yu N. Panchenko and P. Csaszar, J Mol Struct., (1985), in press.
- 24 R. K. Harris, Spectrochim Acta, 20 (1964) 1129.
- 25 Yu. N. Panchenko, V. I. Pupyshev and N. F. Stepanov, Opt. Spectrosc (USSR), 47 (1979) 457
- 26 Yu N Panchenko, P Csaszar and F. Torok, Acta Chun Acad Sci Hung, 113 (1983) 149.
- 27 P. Pulay and F. Torok, Acta Chim Acad. Sci. Hung., 47 (1966) 273.
- 28 G Keresztury and Gy Jalsovszky, J. Mol Struct, 10 (1971) 304.
- 29 L. Schäfer, J. Mol Struct., 100 (1983) 51