1	A MACHINE LEARNING DECISION SUPPORT TOOL FOR
2	TRAVEL DEMAND MODELING
3	
4	
5	
6	TRB Paper - 19-04806
7	
8	CC 44 P
9	CScott Brown
10	University of South Alabama
11	Email: gitpushoriginmaster@gmail.com
12	W. M.C. T. A' DID
13	Venu M. Garikapati, Ph.D
14	National Renewable Energy Laboratory
15	15013 Denver West Parkway, Golden, Colorado 80401
16	Tel: 303-275-4784
17	Email: venu.garikapati@nrel.gov
18	Yi Hou
19	
20	National Renewable Energy Laboratory
21	15013 Denver West Parkway, Golden, Colorado 80401 Tel: 303-384-7525
22 23	Email: yi.hou@nrel.gov
2 <i>3</i> 24	Email: yl.nou@mei.gov
2 4 25	
26	Word Count: 1739 words + 2 table(s) x 250 = 2239 words
20 27	Word Count. 1737 Words 1 2 tubic(3) x 230 = 2237 Words
28	
29	
30	
31	
32	
1	Submission Date: October 31, 2018

2 INTRODUCTION

17

18

19

20

21

26

27

28 29

30

32

34

36

37

38

39

40

Utility maximization models are the lifeblood of virtually all travel demand models in practice. Be it the traditional travel demand models or more advanced activity-based models, utility maximization models are used extensively to model and predict myriad travel choices such as location choice, mode choice and route choice. However, there is increasing interest in incorporating machine learning (ML) into travel demand models to enhance prediction accuracy, and because ML techniques often require less stringent assumptions on, for example, variable error distributions than traditional statistical modeling methods. In the transportation field, ML is gaining rapid popularity in driver behavior modeling (1), travel time prediction (2), traffic forecasting (3), volume 10 estimation (4), and safety analysis (5, 6). There has been a great deal of effort in comparing util-11 ity maximization models to specific classes of ML models in specific contexts. However, these efforts give mixed and sometimes contradictory results, and are largely incomparable due to the complexity of ML models and the inherent latitude available to an investigator in model design and evaluation attendant to it. Thus, there is a need for a standardization in evaluation of ML models 15 against utility maximization models for a given choice context. 16

Notably, in the context of mode choice modeling: Zhang et al (7) perform a comparison of Support Vector Machine (SVM), Multilayer Perceptron (MLP) (a subset of neural networks) and Multinomial Logit (MNL) models and find that SVM models have a slight edge. Xie et al (8) compare Decision Tree (DT), MLP and MNL models finding that the Decision Tree and MLP models perform somewhat better. However, Vythoulkas et al (9) also compare MNL with a Neural Network architecture but find that there is no meaningful difference in their performance. Further, Hagenauer et al (10) compare a number of model families and find a significantly greater difference between performance of ML models and MNL models than previous studies. Unfortunately, these studies are quite different in model design, even for the same model families, and because they take different approaches to evaluation, they are impossible to objectively compare. Similar observations can be made in the literature on ML model design and evaluation for other variables frequently used in travel demand models.

Addressing the need for standardization and to provide a means by which models may be more easily compared, we present a tool for applying an array of models including MNL, Nested Logit (NL), MLP, Naive Bayes (NB), Ordinal Probit (OP) and Random Forest (RF) classifiers. The tool (TEAM-TDM 1) is designed to be easily extensible, accounts for common pitfalls in the application of various models, automatically selects optimum hyperparameters and reports a variety of metrics commonly employed to evaluate model performance. The tool is specifically tailored to aid in deciding the best model for a given choice context and can be used to choose an appropriate model family or to construct a model ensemble. Results demonstrate that for some variables, MNL are not the most effective models, and the proposed system can aid in selecting a better model. The goal of our experiments is to provide a unified framework that can be applied to a variety of problem sets, allowing practitioners and researchers to easily and fairly compare the performance of different model families on individual tasks, but also between tasks.

41 METHODOLOGY

- 42 We test our proposed system on household vehicle count and work schedule targets from the 2017
- National Household Travel Survey. In applying the tool to these datasets, we apply TEAM-TDM
- in an identical configuration. Thus, the experiments show that TEAM-TDM can be meaningfully applied to myriad classification problems in the transportation domain.

FIGURE 1 The TEAM-TDM tool.

The tool itself can include arbitrary model families, but for comparison purposes we include in the evaluation on both problems MNL, RF, MLP and NB classifiers. In addition to training the models, TEAM-TDM preprocesses the data by performing scaling, feature selection and dummy variable introduction. It also chooses optimum hyperparameters for the given model families using bayesian optimization on cross-validation accuracy. Finally, TEAM-TDM provides a variety of performance metrics, allowing evaluation of models according to a number of real-world criteria. Lastly, the tool trains a 'stacked' model which combines the individual models in an attempt to maximize the overall accuracy.

Since the tool performs the entire data processing, model training and evaluation pipeline, one can apply it to different problem sets with nearly zero effort. As such, we apply the tool to the prediction of household vehicle count and work schedule targets from the 2017 National Household Travel Survey using the absolute minimum possible user intervention (such as identification of categorical variables). In this way, the experiments are designed to show that a unified pipeline can be applied to different problems, resulting in evaluations that can be easily compared across model families and datasets. In addition, the experiments are designed to show that this same unified pipeline produces models that perform comparably to prior research, so that TEAM-TDM gives reasonable models.

19 FINDINGS

2

3

10

11

13

15

17

18

20 NHTS household vehicle ownership prediction

- 21 The target feature for this exercise is the number of vehicles owned by the household. All of the
- 22 models in our experiments are capable of accounting for weighted data, which we include in our
- 23 training pipeline. Besides the row identifiers, the weights, and the target, we initially include all
 - features in our training pipeline, and let the model decide which are important. Table 1 includes

some summarizing statistics of various variables in the NHTS 2017 household-level dataset.

Model scores are summarized in the first section of Table 2. Since vehicle count admits an ordinal interpretation, and since additional model families can be included into TEAM-TDM as a parameter, we include an OP and an NL model for comparison. This allows for an indirect comparison with prior results along the same vein. For example, in (11), MNL and Ordinal Logit (devised using a different nesting structure than ours) give best case accuracies of around 59%. This is comparable to the results of our MNL and OP models and suggests that TEAM-TDM produces model results that are comparable to similar studies in the field. Note that the inclusion of these additional model families does not affect the results of other model families, and thus does not preclude a comparison of models between our two datasets.

The NL model seems to perform best, although the MLP and OP models are not far behind. Since the MLP does not benefit from our a priori knowledge of ordinality in the target variable this might reasonably be expected. The RF model performs comparably to the MLP model. Another interesting observation is that the NL model trains significantly faster than the MNL model, even though both utilize the same libraries for logit modeling. This fact, along with the good performance of the MLP model, suggest that a nested MLP or RF model might be worth exploring further in the context of vehicle ownership models.

The stacked model performs even better than the NL model across the board but requires a significant amount of resources to train. The fact that the stacked model performs better than the best performing model in many metrics suggests that it is able to capitalize upon the strengths of the various model families.

TABLE 1 Important Features

variable description			median	standard deviation	importance	
DRVRCNT	Number of drivers in household	1.677	2.0	0.767	0.075	
RESP_CNT	Count of responding persons	2.129	2.0	1.167	0.033	
$HHRELATD_0$ (dummy)	No household members are related	0.664	1.0	0.473	0.030	ب ا
CNTTDHH	Count of household trips on travel day	7.121	6.0	5.810	0.025	count
WRKCOUNT	Number of household workers	0.989	1.0	0.899	0.022	5
NUMADLT	Count of household members >18 y.o.	1.781	2.0	0.712	0.020	vehicle
CAR ₀ (dummy)	Respondent never uses personal vehicle	0.026	0.0	0.160	0.012	veh
HHSIZE	Count of household members	2.129	2.0	1.167	0.012	
LIF_CYC ₀ (dummy)	Household has one adult, no children	0.212	0.0	0.409	0.011	NHTS
HHRELATD ₁ (dummy)	At least 2 household members are related	0.336	0.0	0.473	0.009	Z
$HOMEOWN_0$ (dummy)	Respondent owns home	0.759	1.0	0.428	0.009	
CAR ₁ (dummy)	Respondent uses personal vehicle daily	0.776	1.0	0.417	0.008	
DWELTIME	Time at destination	473.055	512.000	161.722	0.009	
GCDWORK	Geodesic distance to work	12.473	6.380	67.014	0.005	
R_AGE	Age of respondent	45.130	46.000	14.734	0.005	<u>e</u>
$TRPMILES_0$	Trip distance to work	13.534	8.595	47.846	0.005	[np
DISTTOWK17	Road network distance to work	16.107	8.830	75.840	0.005	work schedule
$TRVLCMIN_0$	Trip duration to work	26.389	20.000	24.509	0.005	k se
$TRPMILES_1$	Trip distance from work	13.355	7.998	52.757	0.005	/or
VMT_MILE_0	Personal vehicle trip miles to work	11.776	7.507	28.206	0.005	S
TIMETOWK	Reported average trip time to work	24.674	20.000	25.151	0.005	NHTS
$TRVLCMIN_1$	Trip duration from work	28.356	20.000	28.432	0.005	$ \Xi $
VMT_MILE_1	Personal vehicle trip miles from work	11.358	6.926	26.682	0.005	
CNTTDHH	Count of household trips on travel day	8.862	8.000	5.978	0.005	

TABLE 2 Model Scores

	RF	MNL	MLP	NB	Dummy	OP	NL	Best Model	Stacked	
accuracy	0.630	0.611	0.643	0.614	0.255	0.640	0.650	NL	0.655	_
weighted f1	0.586	0.574	0.609	0.601	0.256	0.611	0.627	NL	0.635	
weighted precision	0.611	0.572	0.583	0.599	0.258	0.620	0.623	NL	0.631	nt
weighted recall	0.630	0.611	0.643	0.614	0.255	0.640	0.650	NL	0.655	count
macro f1	0.199	0.198	0.205	0.229	0.078	0.226	0.227	NB	0.234	le o
macro precision	0.245	0.219	0.201	0.248	0.078	0.263	0.248	OP	0.262	vehicle
macro recall	0.199	0.199	0.211	0.222	0.078	0.219	0.223	NL	0.229	
mean log loss	1.062	1.062	1.105	1.947	25.349	1.061	1.040	NL	1.038	NHTS
macro MAMSE	10.301	33.761	9.365	20.631	7.678	11.448	8.716	NL	19.389	
weighted MAMSE	0.401	0.320	0.224	0.190	0.051	0.306	0.220	NB	0.210	
training time (s)	268.247	190.623	6701.169	0.650	0.068	144.772	11.390	NB	4795.457	
accuracy	0.212	0.572	0.626	0.260	0.032			MLP	0.593	
weighted f1	0.149	0.560	0.599	0.300	0.030			MLP	0.577	
weighted precision	0.214	0.571	0.585	0.438	0.029			MLP	0.587	schedule
weighted recall	0.212	0.572	0.626	0.260	0.032			MLP	0.593	ped
macro f1	0.024	0.290	0.252	0.115	0.004			MNL	0.294	scł
macro precision	0.064	0.334	0.242	0.179	0.004			MNL	0.339	work
macro recall	0.025	0.292	0.286	0.142	0.004			MNL	0.292	×
mean log loss	3.656	3.942	1.968	20.363	33.417			MNL	12.839	NHTS
macro MAMSE	211.669	152.784	279.702	1116.607	250.511			MLP	154.545	
weighted MAMSE	1.146	0.235	0.348	0.886	0.304			MNL	0.249	
training time (s)	1383.772	2214.177	181095.857	10.359	1.171			NB	194215.423	

NHTS work times prediction

For this experiment, the start and end times of work activity for an individual are modeled. Features and data at the 'household', 'person' and 'trip' level are used. Before input into TEAM-TDM, preprocessing is limited to identifying 'work' activities in the dataset, binning to create a classification problem and creating a test/train split. Results are summarized in the second section of Table 2

The MLP model is somewhat better than the MNL model in certain aspects but performs worse on minority classes and market share. However, the market share error for the MLP is comparable to the market share error for the stratified dummy classifier, which suggests that the MLP is at least making predictions according to the correct distribution. The stacked estimator, although not obviously better than either the MNL or MLP model, seems to capture the best of both worlds in many respects, scoring better than one or both in all but log loss.

Lastly, comparing the training times of the models with the vehicle count problem, it is clear that some model families scale better than others. Notably, the MLP takes nearly 30 times as long, whereas the RF model takes only 5 times as long. The relatively small increase in training time for the RF model may be an artifact of a large quantity of time taken up by the Gaussian Process optimizer for choosing hyperparameters. This comparison is only possible due to the fact that our training pipeline is identical between these two datasets. To wit, the difference in training time is not an artifact of different model design decisions.

20 CONCLUSIONS

Tn this paper we develop and evaluate a tool - TEAM-TDM (A Tool for Evaluating an Array of Machine Learning Travel Demand Models) that is capable of applying an array of machine learning models to classification problems for the purpose of first-pass evaluation of the performance of various model families. Through exercises carried out on the NHTS 2017 (12) dataset we show that the same modeling pipeline can be applied to a variety of classification problems in travel demand modeling, on varying targets and feature sets. This pipeline can then aid the choice of an appropriate model family for a particular problem. We provide this tool for transportation engineers and researchers to further investigate the ability of various machine learning algorithms to successfully model transportation problems.

We also demonstrate that, amongst the vast array of classification problems tackled by typical transportation simulations, there exist situations where standard techniques such as logit models are inferior to other model families. Since these classification problems typically number in the dozens for a typical transportation simulation, we conclude that a point-and-click method for evaluation of different model families will be of great benefit as future simulations become more complex and include even more variables.

The tool has a number of limitations in that there is no consideration for messy data, unbalanced data, the effects of outliers, correlated features or all possible model tuning configurations. Although we anticipate that certain features will be added to the next iteration of the tool, other limitations are inherent to an automated tool lacking a priori knowledge of a problem. Furthermore, extension of the tool to tackle regression targets, clustering targets and mixed discrete/continuous targets would aid in evaluating model families in most scenarios arising out of transportation simulations.

2 REFERENCES

- 3 1. Meng, Q. and J. Weng, Classification and regression tree approach for predicting driversâĂŹ
- 4 merging behavior in short-term work zone merging areas. *Journal of Transportation Engineer- ing*, Vol. 138, No. 8, 2012, pp. 1062–1070.
- 6 2. Hou, Y., P. Edara, and Y. Chang, Road network state estimation using random forest ensemble
- learning. In *Intelligent Transportation Systems (ITSC)*, 2017 IEEE 20th International Conference on, IEEE, 2017, pp. 1–6.
- 9 3. Ma, X., H. Yu, Y. Wang, and Y. Wang, Large-scale transportation network congestion evolution prediction using deep learning theory. *PloS one*, Vol. 10, No. 3, 2015, p. e0119044.
- 4. Hou, Y., S. E. Young, A. Dimri, and N. Cohn, Network Scale Ubiquitous Volume Estimation
 Using Tree-Based Ensemble Learning Methods, 2018.
- 5. Brijs, T., D. Karlis, F. Van den Bossche, and G. Wets, A Bayesian model for ranking hazardous
- road sites. Journal of the Royal Statistical Society: Series A (Statistics in Society), Vol. 170,
- 15 No. 4, 2007, pp. 1001–1017.
- 6. Miranda-Moreno, L. F., A. Labbe, and L. Fu, Bayesian multiple testing procedures for hotspot identification. *Accident Analysis & Prevention*, Vol. 39, No. 6, 2007, pp. 1192–1201.
- 7. Zhang, Y. and Y. Xie, Travel mode choice modeling with support vector machines. *Trans*-
- portation Research Record: Journal of the Transportation Research Board, No. 2076, 2008, pp. 141–150.
- 8. Xie, C., J. Lu, and E. Parkany, Work travel mode choice modeling with data mining: decision
- trees and neural networks. Transportation Research Record: Journal of the Transportation
- 23 Research Board, , No. 1854, 2003, pp. 50–61.
- 9. Vythoulkas, P. C. and H. N. Koutsopoulos, Modeling discrete choice behavior using concepts
- from fuzzy set theory, approximate reasoning and neural networks. *Transportation Research*
- 26 *Part C: Emerging Technologies*, Vol. 11, No. 1, 2003, pp. 51–73.
- 27 10. Hagenauer, J. and M. Helbich, A comparative study of machine learning classifiers for mod-
- eling travel mode choice. *Expert Systems with Applications*, Vol. 78, 2017, pp. 273–282.
- 29 11. Bhat, C. R. and V. Pulugurta, A comparison of two alternative behavioral choice mechanisms
- for household auto ownership decisions. Transportation Research Part B: Methodological,
- 31 Vol. 32, No. 1, 1998, pp. 61–75.
- 32 12. 2017 National Household Travel Survey. https://nhts.ornl.gov, 2017, accessed: 2018-194 07-26.