A Simulator for intelligently scheduling data parallel workloads

BTP presentation

JORU SAIKUMAR-17ME33037

ADVISOR: PROF. SOUMYAJIT DEY

MENTORED BY ANIRBAN GHOSE

Parallel Computing

□ Computation divided into subcodes and run across multiple devices parallely.

Two ways of achieving Parallelism:-

☐ Data level Parallelism-Same function, data divided across devices.

☐ Task level Parallelism-Entire data used in multiple functions.

Heterogeneous Programming

- ☐ More than one kind of processor cores
- ■Widely used in High Performance Computing(HPC)
- □ Applications involving Deep learning, Linear Algebra, Computational fluid mechanics and simulations in physics.
- ☐ Writing applications-OpenCL and CUDA frameworks

OpenCL

OpenCL

- Portability to run same program on different types of devices
- Kernel-functions executed on OpenCL device
- □ OpenCL device → Compute units(workgroups) → Processing elements(workitems)

OpenCL Execution model

- ☐ An OpenCL application DAG comprises of kernels with dependencies between input and output buffers.
- ☐ Kernels-run on accelerator devices, Host program-runs on single core CPU device.
- ☐ Host program responsible for scheduling the kernels following the dependency constraints

Designer Overhead

- ☐ Steep learning curve for heterogeneous programming
- □Complex host side development

User must be familiar with scheduling methodologies for optimum application to architecture mapping(for minimum makespan).

Proposed solution

Contributions

□A GUI enabled frontend providing a higher level abstraction thus enabling users to specify application dependencies with ease.

☐ Machine learning based implementations for ascertaining task device mapping decisions(topology oblivious and topology aware)

Graphical User Interface

□Allows users to create their own application DAGs without writing any complex codes and input formats.

☐ Built using Tkinter in python

☐ Select list of readily available database kernels from drop down menu

- Double click on the kernel's entry for preview.
- Use *Choose from folder* button to select kernels from a custom folder.
- ☐ The nodes for kernels and buffers are automatically added in the canvas

```
The following kernel is selected. Click again to deselect

__kernel void A(__global float* a, __global float* b, __global float* c, const int d) {
    int e = get_global_id(0);

    if (e < c) {
        c[e] = 0;
    }
    b[e] = a[e] + d;
}

OK
```


☐ Buffer nodes are added by parsing through the kernel.

- ☐ Parameters for each kernel edit Json text in *Parameters* window
- ☐ Symbolic variables entry widgets at the bottom.

☐ Specify the dependencies by drawing in the canvas.

- ☐ JSON Specification file created when submitting the DAG.
- ☐ Used by the backend of the simulator for creating DAGs using Networkx.

Kernel mapping stage

- ☐ The DAG generated through GUI-Each node mapped to run on GPU or CPU device.
- ☐ Basically, generate a command queue for each device
- ☐ Two types of mapping:
 - A)Topology oblivious mapping
 - B)Topology aware mapping

A)Topology oblivious mapping

☐ Kernels mapped to devices individually

	Table 4: Kernel features				
Basic Blocks	#Basic Blocks				
Branches	#Branches				
DivInsts	#Divergent Instructions #Instructions in Divergent Regions				
DivRegionInsts					
	Ratio between				
Diu Dosion Insta Datio	#instructions inside Divergent				
DivRegionInstsRatio	Regions and the Total				
	instructions				
DivRegions	#Divergent Regions				
TotInsts	#Instructions				
FPInsts	#Floating point Instructions				
Int/PD Inst Datio	Ration between Integer and				
Int/FP Inst Ratio	Floating Point Instructions				
IntInsts	#Integer Instructions				
MathFunctions	#Math Builtin Functions				
Loads	#Loads				
Stores	#Stores				
Barriers	#Barriers				

Trained logistic regression and XGBoost classification models.
Imbalanced dataset – used SMOTE sampling technique.
Feature selection methods for choosing only best features for the model.
RandomizedSearch – for tuning hyper-parameters.
Evaluation metrics used: 20% split test data, 10-fold cross-validation

☐ XGBoost over-performed logistic regression model with 10fold cross validation accuracy of 93.4%. For logistic regression it
is 84.4%.

TABLE 2: Logistic Regression

Evaluation method	Metric	K=10	K=20	K=30	K=40	K=50	K=56(all)
20% split	accuracy	59.45	60.9	57.6	56.13	58	59.1
	precision	79.4	80.8	76	84	83	86.5
	recall	57.5	56.8	55	52.7	55.4	55.5
10-fold cross validation	accuracy	81.4	84.4	78.8	84	79.6	82.4
	precision	56	55.6	56.4	55	55.4	55.6
	recall	58.7	58.4	59	58	57.7	58.4

Table 3: XGBoost

Evaluation method	Metric	K=10	K=20	K=30	K=40	K=50	K=56(all)
20% split	accuracy	84.4	87.6	89.23	87.4	85.34	86.6
	precision	96.8	95.6	92.7	89.9	91.2	89.7
	recall	77.6	83.1	86.2	85.14	79.5	84.5
10-fold cross validation	accuracy	96	93.4	92.8	92.11	91.2	90.5
	precision	76.8	84	84.23	84.1	84.3	84.4
	recall	83.5	88	87.7	87.3	87.14	86.9

- ☐ Also trained linear regression, XGBoost regression, SVM for predicting the speedup ratios.
- Evaluated using RMSE, MAE and R² score.

Table 4: Regression models

Model	RMSE	MAE	R^2 score
Linear Regression	1.2316	1.0056	0.078
XGBoost	1.1189	0.9013	0.241
Support Vector Machine(SVM)	1.1789	0.9334	0.136

B)Topology aware scheduling

☐ Kernel mapping depends on state information of neighborhood kernels as well.

□Collection of kernels mapped to the same device affect synchronization and data transfer overheads.

Graph neural networks-capture the dependence of graphs via message passing between nodes.

□ CNNs involves convolution and pooling operations using a 2D or 3D filter of weights.

□GCNNs carry out message passing using filter of essential nodes and edges.

Euclidean space

non Euclidean space

☐ GraphSAGE — A variant of GCNNs

Convolution operation on a node at each layer

$$h_{N(v)}^{k}$$
 = Agg^k({ h_{u}^{k-1} , \forall u \in $N(v)$ }) //Aggregation h_{v}^{k} = σ (W^k.[h_{v}^{k-1} , $h_{N(v)}^{k}$]) //Transformation h_{v}^{k} = h_{v}^{k} / $||h_{v}^{k}||$ //Normalization

where N(v)={u: (u,v) \in E} and h_v^0 = x_v

Algorithm 2 Forward propagation algorithm

Input: Graph G(V,E); input features $\{x_v, \forall v \in V\}$; number of layers K; Aggregator functions (Agg^k) and weight matrices $(W^k), \forall k \in \{1, ..., K\}$; non linearity σ ; Downstream Model D.

Output: Binary labels $\hat{y_v}, \forall v \in V$. 0 represents CPU device and 1 represents GPU device.

```
1: h_{v}^{0} \leftarrow x_{v}

2: for k \in \{1, 2, 3, ..., K\} do

3: for v \in V do

4: h_{N(v)}^{k} \leftarrow Agg^{k}(\{h_{u}^{k-1}, \forall u \in N(v)\})

5: h_{v}^{k} \leftarrow \sigma(W^{k}.CONCAT(h_{N(v)}^{k}, h_{v}^{k-1}))

6: h_{v}^{k} \leftarrow h_{v}^{k}/||h_{v}^{k}||^{2}, \forall v \in V

7: for v \in V do

8: z_{v} \leftarrow D(h_{v}^{K})

9: \hat{y_{v}} \leftarrow z_{v}
```

- W^k => Weight matrices for transformation.
- \square Agg^k => Aggregator function:
- 1)Mean aggregator-Element wise mean of the neighborhood node vectors(No trainable parameters)
- 2)LSTM aggregator-Based on LSTM architecture —has trainable parameters but permutation dependent
- 3)Pooling aggregator-element wise max pooling after transforming each neighbor vector with a fully connected layer(trainable parameters)

☐ Training data – Random DAG Generator

```
Algorithm 1 DAG Generating Method
Input: n-number of kernels, p-probability measure
 1: dagkernels \leftarrow Sample n kernels randomly from database kernels
 2: path \leftarrow \text{Create a '.qraph'} file and write list of dagkernels into it.
 3: for i \in 1...n do
       for j \in i + 1...n do
           if Random() <p then
 5:
               write the indices(i,j) separated by white space into the graph file.
 6:
 7: nCPU \leftarrow 2, mGPU \leftarrow 2
 8: timings \leftarrow dict()
 9: for each of 2^n enumerations do
       DC \leftarrow \text{DAGCreator}()
10:
       dag \leftarrow DC.create\_dag\_from\_file(path,device\_enumeration)
11:
       SA \leftarrow SchedulingAlgorithm(dag,nCPU,mGPU)
12:
       SA.list_scheduling()
13:
       timings[device\_enumeration] \leftarrow SA.makespan()
14:
15: Copy the timings dictionary to a 'Json' file
```


Loss function:

$$J(\theta) = \frac{\sum_{m=1}^{M} w_m * L_m(\theta)}{\sum_{m=1}^{M} w_m}$$

$$L_m(\theta) = -\frac{1}{n} \sum_{v \in V_m} \left[y_v \log(\hat{y_v}) + (1 - y_v) \log(1 - \hat{y_v}) \right]$$

☐ Trained model with 3 GCN layers — dimension of state vectors at each layer = 16, downstream model = Logistic Regression.

Highly unbalanced model –
Predicting single class always

Aggregator function	Test loss	Accuracy	Average Speedup
Mean Aggregator	0.6083	77.33%	0.83913
MeanPool Aggregator	0.5385	77.33%	0.83913
MaxPool Aggregator	0.6575	77.33%	0.83913
LSTM Aggregator	0.5935	77.33%	0.83913

□ Introduced new parameter $b \in [0,1]$ in DAG Generator – obtained a balanced dataset.

Aggregator function	Test loss	Accuracy	Average Speedup
Mean Aggregator	0.69275	61.042%	0.6955
MeanPool Aggregator	0.69532	61.25%	0.6957
MaxPool Aggregator	0.7349	59.16%	0.6874
LSTM Aggregator	0.7304	56.875%	0.6779

Thank you