

Endereçamento de Redes

Revisão de Binários

- O GateWay é um nó de rede utilizado para unir redes que utilizam protocolos de comunicação diferentes
- Ele pode conter dispositivos para traduzir protocolos, sinais de dados, converter taxas de impedância e outros fatores que bloqueariam a troca de informações entre dois computadores
- Para que o seu funcionamento ocorra com alta qualidade, é necessário que ambas as infraestruturas sigam alguns padrões em comum, tornando o trabalho desse equipamento mais simples
- Os GateWays também são chamados de conversores de protocolo

Revisão de Binários

Hexadecimal	Octal	Binário	Decimal	
0	0	0	0	
1	1	1	1	
2	2	10	2	
3	3	11	3	
4	4	100	4	
5	5	101	5	
6	6	110	6	
7	7	111	7	
8	10	1000	8	
9	11	1001	9	
Α	12	1010	10	
В	13	1011	11	
С	14	1100	12	
D	15	1101	13	
<u>E</u>	16	1110	14	
F	17	1111	15	

Conversão entre Bases - Decimal para Binário

- Para converter um número entre bases podem ser aplicados alguns métodos
- Para converter um número no sistema decimal para binário:
- Basta dividir o maior número por 2 até restar 0
- Após cada divisão observa-se se sobrou resto, caso tenha sobrado atribua o valor 1, caso contrário (divisão exata, par) atribua o valor 0
- Depois leia esse número invertido e você terá o valor binário para aquele número decimal

Conversão entre Bases - Decimal para Binário

Exemplo: temos o número 339

Valor	Divisão	Total	Binário
339	/2	169, 5	1
169	/2	84, 5	1
84	/2	42	0
42	/2	21	0
21	/2	10,5	1
10	/2	5	0
5	/2	2,5	1
2	/2	1	0
1	/2	0,5	1
0			

Conversão entre Bases - Binário para Decimal

- Para converter um número no sistema binário para decimal:
- Basta criar uma matriz de base 2, de 1 até o tamanho do binário

512	256	128	64	32	16	8	4	2	1
-----	-----	-----	----	----	----	---	---	---	---

- Multiplica o valor do binário pelo valor da sua posição na matriz
- Soma o resultado
- Exemplo para o número 100011010

Matriz	256	128	64	32	16	8	4	2	1
Binário	1	0	0	0	1	1	0	1	0

Matriz	256	128	64	32	16	8	4	2	1
Binário	1	0	0	0	1	1	0	1	0
Multiplicação	256	0	0	0	16	8	0	2	0

- O IPv4 possui endereços com o tamanho de 32 bits
- Cada host e roteador na rede tem um endereço IP que pode ser usado nos campos Endereço de origem e Endereço de destino dos pacotes IP
- Cada endereço de 32 bits é composto de uma parte de rede de tamanho variável nos bits superiores e uma parte de host nos bits inferiores
- A parte de rede tem o mesmo valor para todos os hosts em uma única rede, como uma LAN Ethernet
- Isso significa que uma rede corresponde a um bloco contíguo de espaço de endereços IP. Esse bloco é o Prefixo

- Os endereços IP são escritos em notação decimal com ponto
- Nesse formato, cada um dos 4 bytes é escrito em decimal, de 0 a 255. Por exemplo, o endereço hexadecimal de 32 bits 80D00297 é escrito como 128.208.2.151
- Os prefixos são escritos dando o menor endereço IP no bloco de endereços
- O tamanho do prefixo é determinado pelo número de bits na parte de rede
- Os bits restantes fazem parte do campo de host e podem variar

- Isso significa que o tamanho do endereço deve ser uma potência de dois
- Por convenção, ele é escrito após o prefixo com uma barra seguida pelo tamanho em bits da parte da rede
- Em nosso exemplo, se o prefixo tiver 28 endereços e, portanto, deixar 24 bits para a parte de rede, ele é escrito como 128.208.0.0/24.

- Como o tamanho do prefixo não pode ser deduzido apenas pelo endereço IP, os protocolos de roteamento de_x0002_vem transportar os prefixos aos roteadores
- Às vezes, os prefixos são simplesmente descritos por seu tamanho, como em um '/16' que é pronunciado como 'barra 16'
- O tamanho do prefixo corresponde a uma máscara binária de 1s na parte destinada à rede
- Quando escrita dessa forma, ela é chamada máscara de sub-rede

- Ela pode ser submetida a um AND com o endereço IP a fim de extrair apenas a parte da rede do endereço IP
- Para nosso exemplo, a máscara de sub-rede é 255.255.255.0
- A figura a seguir mostra um prefixo e uma máscara de sub-rede

