ndex	Old_Simulation
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	3.534947226
20	
21	
22	2.79854148
23	2.83426602
24	
25	3.552279741
26	
27	4.786692137
28	
29	
30	5.988987117
31	
32	5.786101954
33	5.493677596
34	5.202660002
35	5.01488608
36	5.009220534
37	5.224008093
38	5.648541632
39	6.225444555
40	
41	
42	
43	8.165108118
44	8.195113052
45	8.033367932
46	7.752945931
47	7.453326387
48	7.238260181
49	7.192684679
50	
51	7.75068508
52	8.3042715
53	
54	9.549315187
· · · · · · · · · · · · · · · · · · ·	

In part (a) of Question 1.

We use the function from the previous week, sin(t/2.1) + t/6 to simulate the original dataset.

Meanwhile expanding it to 54 data points.

Index	OI	d_Simulation	Error	New_Simulation	Index	Old_Simulation	Error	New_Simulation	NOTE
	1	0.625063471		1.277532674	:	0.625063471	-0.024975593	0.600087879	
	2	1.148131491		0.946897234		1.148131491			In order to prevent the values of the data
	3	1.489903076	0.119362548	1.609265625	3	1.489903076	0.121491861	1.611394937	from changing with each refresh, this table serves as an example.
	4	1.611416557	-0.008504338	1.602912219	4	1.611416557	-0.082406732	1.529009825	
	5	1.52271873	0.102931114	1.625649844	!	1.52271873	0.194915771	1.717634501	
	6	1.2806294	0.150149363	1.430778763		1.2806294	0.288729004	1.569358404	
	7	0.976098704	0.367769803	1.343868507		7 0.976098704	0.23724216	1.213340864	Now Cimulation
	8	0.713970279	-0.043110418	0.670859861		0.713970279	-0.086464094	0.627506185	New_Simulation
	9	0.589653056	0.093194566	0.682847622	9	0.589653056	0.456910347	1.046563402	10
	10	0.667892323	-0.187502549	0.480389773	10	0.667892323	0.308810114	0.976702436	8
	11	0.968363593	-0.226354438	0.742009155	1:	0.968363593	0.365815344	1.334178937	7 6
	12	1.461294712	0.080818707	1.542113419	12	1.461294712	0.271399016	1.732693728	5
	13	2.074090298	0.676798175	2.750888473	13	3 2.074090298	-0.163811016	1.910279282	4
	14	2.707484564	0.087415409	2.794899973	14	2.707484564	-0.232228855	2.475255709	3 2
	15	3.257628415	0.01481063	3.272439045	1!	3.257628415	-0.037888245	3.21974017	1
	16	3.63919637	-0.0666857	3.57251067	10	3.63919637	0.219211008	3.858407379	0 10 20 30 40 50
	17	3.804371877	-0.072248271	3.732123606	1	7 3.804371877	0.330006428	4.134378305	
	18	3.753486727	0.19052385	3.944010578	18	3.753486727	-0.189742538	3.56374419	
	19	3.534947226	-0.294438352	3.240508874	19	3.534947226	0.515806131	4.050753357	
	20	3.234463562		3.104050341	20	3.234463562	-0.171095528	3.063368034	
	21	2.955978889	-0.195955138	2.760023751	2:	1 2.955978889	0.036488013	2.992466902	
	22	2.79854148	-0.108362862	2.690178618	22	2.79854148	-0.540018844	2.258522636	NOTE
	23	2.83426602		3.011133245	23			2.636845767	NOTE
	24	3.092287752	0.007112401	3.099400153	24	3.092287752	-0.113082418	2.979205334	
	25	3.552279741	-0.325155393	3.227124347	2!	3.552279741		3.506231084	In part (b) of Question 1.
	26	4.148975719	0.043735335	4.192711054	20	4.148975719	-0.438268392	3.710707327	in part (b) or gaestion i.
	27	4.786692137		5.021873825	2				
	28	5.360618201	0.072859245	5.433477447	28	5.360618201	0.044154731	5.404772932	We use NORM.INV(RAND(),0,
	29	5.780136775		5.634669159	29				((//-/
	30	5.988987117		6.196298562	30			6.191878695	Part of account of a College Open and
	31	5.977783159		5.868651096	3:			6.371421773	disturbances that follow Gaussia
	32	5.786101954		5.583028479					
	33	5.493677596		5.37756578				4.771652916	avacated value of 0 and a variou
	34	5.202660002		5.288403017	34			4.939703188	expected value of 0 and a varia
	35	5.01488608		5.197439401	3!			4.896834936	
	36	5.009220534		5.297431571	30			4.616545059	The white block will refresh data
	37	5.224008093		5.099104168				5.182830351	The white block will refresh date
	38	5.648541632		5.701423076	38			5.176635291	
	39	6.225444555		6.483503568	39			6.251170519	Thus, we have blue block to res
	40	6.863437361		7.328873947	40			6.993633277	
	41	7.457647758		7.407921959	4:			7.622306093	
	42	7.912945251		7.84316378				7.779843031	
	43	8.165108118		8.67483964	43			8.628637782	
	44	8.195113052		8.388627256				8.225424803	
	45	8.033367932		7.622687812	4!			8.142862625	
	46	7.752945931		7.940620262	40				
	47	7.453326387		7.486905497	4				
	48	7.238260181		7.13819119	48			6.990696966	
	49	7.192684679		7.07490982	49			7.283680668	
	50	7.363824764		7.715837262	50			7.233483711	
	51	7.75068508		7.667189127	5:			8.073618224	
	52	8.3042715		8.409711076				8.426026426	
	53	8.938492555		8.952046351	53			8.859458079	
	54	9.549315187		9.629062143				9.509633654	
	34	J.J4J31310/	0.0/3/40333	5.025002143		7.04731318/	-0.033061334	3.303033034	I

We use NORM.INV(RAND(),0, 0.25) to generate disturbances that follow Gaussian Process with a expected value of 0 and a variance of 0.25.

The white block will refresh data automatically.

Thus, we have blue block to restore data.

102	ANOVA					
136		自由度	SS	MS	F	顯著值
37	迴歸	1	100.477884	100.477884	10442.42524	6.68641E-44
728	殘差	34	0.327150827	0.009622083		
22	物子口	35	100 20503/12			

	係數	標準誤	t 統計	P-值	下限 95%	上限 95%	下限 95.0%	上限 95.0%
截距	0.139228497	0.04188001	3.324461842	0.002130939	0.054118075	0.224338918	0.054118075	0.224338918
X 變數 1	0.160819878	0.001573762	102.1881854	6.68641E-44	0.157621609	0.164018147	0.157621609	0.164018147

迴歸統計

0.99837599

0.996754618

0.996659166

0.098092218

In part (c) of Question 1.

D_bar_6.5_to_42.5 stands for the moving average of data.

For instance, D_6.5 is the average of y_1 to y_12

and D_7.5 is the average of y_1 to y_13, and so on.

To make analysis more precise, D_bar_7_to_42 is the moving average of D_bar_6.5_to_42.5, D_7 means the average of D_bar_6.5 and D_bar_7.5.

After calculating D_bar we need, we can get L and T by regression analysis. In excel, we set X be D_bar_7_to_42(from 1.343218386 to 7.137758094) and Y be Index(from 7 to 42). We can estimate L and T.

3

Index	New_Simulation L+T		Seasonality Factor	Seasonality Factor_Average
1	_	0.300048375	1.999970434	1.13766035
2	1.505053833	0.460868253	3.265692142	1.497030048
3		0.621688131	2.591966706	1.485843264
4		0.782508009	1.953986167	1.401236657
5	1.717634501	0.943327887	1.82082447	1.402853004
6		1.104147766	1.421330054	1.242972134
7	1.213340864	1.264967644	0.959187272	1.17338462
8		1.425787522	0.440111991	0.904822375
9		1.5866074	0.659623422	0.872673525
10		1.747427278	0.558937387	0.785961767
11		1.908247156	0.699164641	0.806678694
12	1.732693728	2.069067034	0.837427545	0.812666611
13		2.229886912	0.856670924	1.13766035
14		2.390706791	1.035365658	1.497030048
15		2.551526669	1.26188772	1.485843264
16		2.712346547	1.42253481	1.401236657
17		2.873166425	1.438962348	1.402853004
18		3.033986303	1.17460787	1.242972134
19		3.194806181	1.267918342	1.17338462
20		3.355626059	0.912905067	0.904822375
21		3.516445938	0.850991869	0.872673525
22		3.677265816	0.614185308	0.785961767
23		3.838085694	0.687021077	0.806678694
24		3.998905572	0.745005172	0.812666611
25		4.15972545	0.84289964	1.13766035
26		4.320545328	0.858851614	1.497030048
27		4.481365206	1.114480123	1.485843264
28		4.642185084	1.164273469	1.401236657
29		4.803004963	1.219517183	1.402853004
30		4.963824841	1.247400723	1.242972134
31		5.124644719	1.243290437	1.17338462
32		5.285464597	1.126275319	0.904822375
33		5.446284475	0.876129945	0.872673525
34		5.607104353	0.880972223	0.785961767
35		5.767924231	0.848976987	0.806678694
36		5.928744109	0.778671667	0.812666611
37		6.089563988	0.851100401	1.13766035
38		6.250383866	0.831100401	1.497030048
39		6.411203744	0.975038506	1.485843264
40		6.572023622	1.064152182	1.401236657
41		6.7328435	1.132108015	1.402853004
41		6.893663378	1.128549888	1.242972134
43		7.054483256	1.128549888	1.17338462
43		7.054483256	1.139997121	0.904822375
45		7.376123013	1.103948865	0.872673525
46		7.536942891	1.089752151	0.785961767
47 48		7.697762769 7.858582647	0.991552071 0.88956206	0.806678694 0.812666611
40	0.550050500	,.030302047	0.00530200	0.612000011

In part (d) of Question 1.

We use index multiply T and plus L(the formula is t * T + L) to get a regression line(L+T) of dataset.

Furthermore, we still need to estimate S_t to make L+T fluctuate like dataset.

Hence, we use L+T divide simulation and get S_t of every data point.

We assume that there are 4 cycles in these 48 data points, so every cycle has 12 periods.

Taking the average of S_t in the same period can estimate the overall seasonality factor of that period.

40

41

43

44

45

46

47

6.993633277

7.622306093

7.779843031

8.628637782

8.225424803

8.142862625

8.213399724

7.632732616

6.990696966

9.208960408

9.445189731

8.568631479

8.277622155

6.528567717

6.436947272

5.923748953

6.209621217

6.386407727

2.215327132

1.822883638

0.788788448

-0.351015627

-1.696857086

-1.705915353

-2.289650771

-1.423111399

-0.604289239

4.907674301

3.322904757

0.622187215

0.12321197

2.87932397

2.910147193

5.242500653

2.025246053

0.365165485

0.316763411

0.239151199

0.101388736

0.040680306

0.206294158

0.209498236

0.278770162

0.186448481

0.086441916

NOTE

In part (e) of Question 1.

We use index multiply T and plus L, then multiply S_t to estimate the data.

The formula is $(t * T + L) * S_t$.

E_t is the gap between data and forecasting which is used to estimate MSE and MAPE.

Index	New	_Simulation	Forecasting	E_t		E_t^2	E_t / D_t	MSE	=
	49	7.283680668	9.123356281	L	1.839675614	3.384406363	0.252574996	MAF	PE =
	50	7.233483711	12.24603874	ļ	5.012555027	25.1257079	0.692965551		
	51	8.073618224	12.39348149)	4.319863262	18.6612186	0.535059145		
	52	8.426026426	11.91312091	L	3.487094483	12.15982793	0.413848035		
	53	8.859458079	12.15246952	2	3.293011441	10.84392435	0.371694455	14	
	54	9.509633654	10.967367	7	1.457733351	2.124986522	0.153290169	12	

— New_Simulation — Forecasting

12.05001195

40.32%

NOTE

In part (f) of Question 1.

We use y_49 to y_54 which is generated before.

By the same parameters and formula to forecast and make comparison through MSE and MAPE like 1.(e).

	Old_Simulation	Error	New_Simulation	Index	Old Simulation	Error	New_Simulation
1	0.625063471		-0.243736445	1	_	-0.305198719	0.319864752
2	1.148131491		1.086707193	2		-0.00367526	1.144456231
3	1.489903076		1.10243421	3		-0.401236675	1.088666401
4	1.611416557		0.900104153	4		-0.044286505	1.567130052
5	1.52271873		1.868439978	5		0.526316379	2.049035109
6	1.2806294		0.975620338	6		-0.821129346	0.459500054
7	0.976098704		0.707408321	7		0.712768912	1.688867616
8	0.713970279		0.26976587	8		0.369987099	1.083957378
9	0.589653056		1.079890766			-0.096422523	0.493230532
10	0.667892323		0.247609843	10		-0.17727189	0.490620433
11	0.968363593		0.965195569	11		-0.185307164	0.783056429
12	1.461294712		1.444917472	12		0.352926935	1.814221646
13	2.074090298		2.081121925	13		-0.667750728	1.406339571
14	2.707484564		3.161572907	14		-0.436830581	2.270653983
15	3.257628415		3.389964073	15	3.257628415	-0.251284636	3.006343779
16	3.63919637		3.504408395	16		0.454302583	4.093498953
17	3.804371877		3.965523412	17	3.804371877	-0.648391121	3.155980757
18	3.753486727		3.848752445	18		-0.123523427	3.629963301
19	3.534947226		3.293010152	19	3.534947226	0.454808819	3.989756044
20	3.234463562		3.345228672	20		0.562235841	3.796699403
21	2.955978889		3.500856518			-0.163608588	2.792370301
22	2.79854148		2.846282786	22		0.131562855	2.930104335
23	2.83426602		2.345940596	23	2.83426602	0.010103546	2.844369566
24	3.092287752		3.30194993			-0.234393057	2.857894694
25	3.552279741		3.4288877	25	3.552279741	0.964317942	4.516597683
26	4.148975719		3.940598849	26		0.057314639	4.206290358
27	4.786692137		4.823759073	27	4.786692137	-1.003106021	3.783586116
28	5.360618201		4.140991107	28		0.47310205	5.833720251
29	5.780136775		5.987745295	29	5.780136775	1.114970298	6.895107073
30	5.988987117		6.380272658	30		-0.613301012	5.375686104
31	5.977783159	-0.586448298	5.391334861	31	5.977783159	-0.143701009	5.834082149
32	5.786101954		4.810483322	32		0.040573247	5.826675202
33	5.493677596	-0.421282099	5.072395497	33	5.493677596	0.488930669	5.982608265
34	5.202660002	0.343059426	5.545719428	34	5.202660002	0.145739652	5.348399654
35	5.01488608	-0.544052756	4.470833324	35	5.01488608	0.681833385	5.696719465
36	5.009220534	-0.644071067	4.365149467	36	5.009220534	0.336879993	5.346100526
37	5.224008093	0.146587837	5.370595929	37	5.224008093	-0.880167045	4.343841048
38	5.648541632	-0.006063012	5.64247862	38	5.648541632	-0.377336096	5.271205536
39	6.225444555	0.412921276	6.638365831	39	6.225444555	0.406852212	6.632296767
40	6.863437361	-0.495869275	6.367568086	40	6.863437361	0.48205554	7.345492901
41	7.457647758	0.523426841	7.981074599	41	7.457647758	-0.315199523	7.142448235
42	7.912945251	0.609357626	8.522302877	42	7.912945251	-0.21027772	7.70266753
43	8.165108118	0.154135114	8.319243232	43	8.165108118	0.394798755	8.559906873
44	8.195113052	-0.052132826	8.142980226	44	8.195113052	-0.890056272	7.30505678
45	8.033367932	-1.186987621	6.846380311	45	8.033367932	-0.294935058	7.738432874
46	7.752945931	-0.087052682	7.66589325	46	7.752945931	0.665569956	8.418515888
47	7.453326387	1.064736832	8.518063219	47	7.453326387	-0.292052374	7.161274013
48	7.238260181	-0.294937588	6.943322594	48	7.238260181	-0.335015953	6.903244228
49	7.192684679	-1.303899893	5.888784786	49	7.192684679	-0.048476375	7.144208304
50	7.363824764	0.601831507	7.965656271	50	7.363824764	0.336297903	7.700122667
51	7.75068508	-0.035241106	7.715443974	51	7.75068508	0.036887734	7.787572814
52	8.3042715	-0.354789262	7.949482238	52	8.3042715	0.197123916	8.501395416
53	8.938492555	-0.083178362	8.855314194	53	8.938492555	-0.124679259	8.813813297
54	9.549315187	-0.28803368	9.261281507	54	9.549315187	0.176477378	9.725792565

Index

NOTE

In part (g) of Question 1.

This page repeat 1.(b).

We use NORM.INV(RAND(),0, 0.5) to generate disturbances that follow Gaussian Process with a expected value of 0 and a variance of 0.5.

We would like to observe if there will be effects when the variance increments.

	D I CE I. 42 E	D I 7	1.7		lar.	In T +4 .1.
	D_bar_6.5_to_42.5	D_bar_/_to_42	L+T		New_Simulation	摘要輸出
1				0.170832289	0.319864752	
2				0.341664578	1.144456231	3
3				0.512496868	1.088666401	
4				0.683329157	1.567130052	
5				0.854161446	l	調整的R平方
6				1.024993735	0.459500054	
7	1.081883886	1.12715367		1.195826024	1.688867616	觀祭值個數
8	1.172423454	1.219348361		1.366658314	1.083957378	
9	1.266273267	1.346176491		1.537490603	0.493230532	ANOVA
10	1.426079715	1.531345086		1.708322892	0.490620433	
11	1.636610457	1.682733192		1.879155181	0.783056429	
12	1.728855928	1.860958563		2.049987471	1.814221646	
13	1.993061198	2.088931549		2.22081976	1.406339571	總和
14	2.184801901	2.297832818		2.391652049	2.270653983	
15	2.410863736	2.506661226		2.562484338	3.006343779	
16	2.602458717	2.704103879		2.733316627	4.093498953	
17	2.805749042	2.891637089		2.904148917	3.155980757	X 變數 1
18	2.977525137	3.021011514		3.074981206	3.629963301	
19	3.064497891	3.194091979		3.245813495	3.989756044	
20	3.323686067	3.404337582		3.416645784	3.796699403	9
21	3.484989098	3.517374195		3.587478073	2.792370301	8
22	3.549759293	3.622268513		3.758310363	2.930104335	7
23	3.694777734	3.850574664		3.929142652	2.844369566	6
24	4.006371594	4.079110044		4.099974941	2.857894694	4
25	4.151848494	4.228695415		4.27080723	4.516597683	3
26	4.305542336	4.390124661		4.44163952	4.206290358	2
27	4.474706986	4.607633568		4.612471809	3.783586116	1
28	4.74056015	4.841322455		4.783304098	5.833720251	0
29	4.94208476	5.060932672		4.954136387	6.895107073	
30	5.179780585	5.283455828		5.124968676	5.375686104	
31	5.387131071	5.379932877		5.295800966	5.834082149	
32	5.372734684	5.41710615		5.466633255	5.826675202	
33	5.461477616	5.580173893		5.637465544	5.982608265	
34	5.69887017	5.761860697		5.808297833	5.348399654	NO
35	5.824851224	5.835157106		5.979130122	5.696719465	
36	5.845462988	5.942420547		6.149962412	5.346100526	
37	6.039378106	6.152954137		6.320794701	4.343841048	In p
38	6.266530167	6.328129399		6.49162699	5.271205536	
39	6.389728632	6.46288799		6.662459279	6.632296767	
40	6.536047349	6.663968859		6.833291568	7.345492901	Thi
41	6.791890369	6.852913475		7.004123858	7.142448235	
42	6.913936581	6.978817568		7.174956147	7.70266753	
43	7.043698556			7.345788436	8.559906873	
44				7.516620725	7.30505678	
45				7.687453015	7.738432874	
46				7.858285304	8.418515888	
47				8.029117593	7.161274013	
48				8.199949882	6.903244228	

顯著值

下限 95%

-0.163617287

1.90106E-45

上限 95%

-0.0008239

下限 95.0%

-0.163617287

0.167773574

上限 95.0%

-0.0008239

0.173891004

12882.90463

0.04785033

P-值

MS

t 統計

113.378562

0.008800699

-2.052814956

NOTE

迴歸統計

0.998683028 0.99736779

0.997290373

0.093812039

34 35 SS

標準誤

113.378562

0.299223756

113.6777857

0.040052608

自由度

係數

-0.082220594

In part (g) of Question 1.

This page repeat 1.(c) to calculate L and T.

Index		New_Simulation L+T		Seasonality Factor	Seasonality Factor_Average
	1	0.319864752	0.088611696	3.60973515	1.510482947
	2	1.144456231	0.259443985	4.41118815	1.79542211
	3	1.088666401	0.430276274	2.530156709	1.39633922
	4	1.567130052	0.601108563	2.60706659	1.620031021
	5	2.049035109	0.771940852	2.654393925	1.554977377
	6	0.459500054	0.942773142	0.487391965	0.96308092
	7	1.688867616	1.113605431	1.51657631	1.268802812
	8	1.083957378	1.28443772	0.843915872	1.011823084
	9	0.493230532	1.455270009	0.338927161	0.807498656
	10	0.490620433	1.626102298	0.301715601	0.778862033
	11	0.783056429	1.796934588	0.435773475	0.760588623
	12	1.814221646	1.967766877	0.921969806	0.841186623
	13	1.406339571	2.138599166	0.657598485	1.510482947
	14	2.270653983	2.309431455	0.983209083	1.79542211
	15	3.006343779	2.480263745	1.212106489	1.39633922
	16	4.093498953	2.651096034	1.544077959	1.620031021
	17	3.155980757	2.821928323	1.118377363	1.554977377
	18	3.629963301	2.992760612	1.212914687	0.96308092
	19	3.989756044	3.163592901	1.26114711	1.268802812
	20	3.796699403	3.334425191	1.138636852	1.011823084
	21	2.792370301	3.50525748	0.796623448	0.807498656
	22	2.930104335	3.676089769	0.797070942	0.778862033
	23	2.844369566	3.846922058	0.739388405	0.760588623
	24	2.857894694	4.017754347	0.711316434	0.841186623
	25	4.516597683	4.188586637	1.078310675	1.510482947
	26	4.206290358	4.359418926	0.964874088	1.79542211
	27	3.783586116	4.530251215	0.835182407	1.39633922
	28	5.833720251	4.701083504	1.240930999	1.620031021
	29	6.895107073	4.871915793	1.415276324	1.554977377
	30	5.375686104	5.042748083	1.066023132	0.96308092
	31	5.834082149	5.213580372	1.11901644	1.268802812
	32		5.384412661	1.082137564	1.011823084
	33		5.55524495	1.076929698	0.807498656
	34		5.72607724	0.934042527	0.778862033
	35	5.696719465	5.896909529	0.966051698	0.760588623
	36		6.067741818	0.881069216	0.841186623
	37	4.343841048	6.238574107	0.696287481	1.510482947
	38		6.409406396	0.822417118	1.79542211
	39	6.632296767	6.580238686	1.007911276	1.39633922
	40		6.751070975	1.088048537	1.620031021
	41		6.921903264	1.031861897	1.554977377
	42		7.092735553	1.085993898	0.96308092
	43		7.263567842	1.178471387	1.268802812
	44		7.434400132	0.982602046	1.011823084
	45		7.605232421	1.017514317	0.807498656
	46		7.77606471	1.082619063	0.778862033
	47	7.161274013	7.946896999	0.901140912	0.760588623
	48		8.117729288	0.850391037	0.841186623
	-10	0.303244220	3.11,,23200	0.050551057	0.0-1100025

In part (g) of Question 1.

This page repeat 1.(d) to calculate S_t.

In part (g) of Question 1.

3.190049713

39.06%

This page repeat 1.(e) to calculate MSE and MAPE.

We can see the performance of this model is worse than the first model.

My thought is that the reason is the larger variance.

Even though the expected value is zero, it still affects S_t more than before.

Once there is an outlier, it will boost or sharply decrease S_t.

It will severely affect the performance of the model.

Index	New_Simulation	Forecasting	E_t		E_t^2	E_t / D_t	MSE =
4:	7.192684679	12.51973092		5.327046243	28.37742167	0.740620016	MAPE =
5	7.363824764	15.18818278		7.824358018	61.22057839	1.062539953	
5	1 7.75068508	12.05072326		4.300038181	18.49032835	0.554794594	
5	2 8.3042715	14.2579877		5.953716202	35.44673662	0.716946237	
5	8.938492555	13.95108712		5.012594567	25.1261043	0.560787463	14
5-	9.549315187	8.805182103		-0.744133084	0.553734046	0.077925283	12

28.2024839

61.89%

NOTE

In part (g) of Question 1.

This page repeat 1.(f) to calculate MSE and MAPE of future.

We can see the performance of this model is worse than the first model.

I think the reason is the same as part (e).

However, the prediction of future are both worth than MAPE of y_49 to y_54.

My thought is the average of S_t.

When L+T is tiny, we need a larger S_t to make the regression line to reach the data, whereas L+T becomes larger and larger, we do not need the large S_t anymore. S_t should become smaller accordingly.

To conclude, we can observe that the forecasting is lower than the data in the first cycle, and have a great performance in the second cycle. Nonetheless, it becomes higher than the data in the third cycle, and the gap is even larger in the fourth cycle. The phenomenon fits my hypothesis. Thus, I think this is the reason why MSE and MAPE is larger than before.

The performance is better because of the lager S in the previous cycle can be forgot.

It avoid the boost like static model, the model is robust even at the large 12 index(t).

Index	Nev	w_Simulation L_t	T_t	S_t		Forecasting	E_t		E_t^2	E_t / D_t	Alpha =	1
	49	7.283680668	6.356678146	0.160819878	1.145831282	10.04090881		2.757228138	7.602307006	0.37854874	Beta =	0
	50	7.233483711	4.831889460	0.160819878	1.497030048	9.756890381		2.523406669	6.367581219	0.348850812	Gamma =	0.002575604
	51	8.073618224	5.433694402	0.160819878	1.485843264	7.418383538		-0.655234686	0.429332494	0.081157502	MSE =	2.819054182
	52	8.426026426	6.013278617	0.160819878	1.401236657	7.839238486		-0.58678794	0.344320086	0.069639936	MAPE =	17.57%
	53	8.859458079	6.315314614	0.160819878	1.402853004	8.661352622		-0.198105457	0.039245772	0.0223609		-
	54	9.509633654	7.650721520	0.160819878	1.242972134	8.049654709		-1.459978944	2.131538518	0.153526308	Т	riple Exponential Smoothing model (4

Triple Exponential Smoothing model (49 to 54) 12 10 8 6 4 2 0 48 49 50 51 52 53 54 55 New_Simulation Forecasting

NOTE

In part (b) of Question 2.

We compare the result of triple exponential smoothing model in the future with static model like part (f) of Question 1.

The performance is also better than the static model because of S_t is more proper to fit the status of data.