Examen d'analyse

- 1. On définit une suite u_n dans R par : $u_{n+1} = \sqrt{u_n}$, $u_0 \ge 0$. Que peut-on dire de sa limite si la suite u_n converge ? Etudiez la convergence pour $u_0 > 1$, $0 < u_0 < 1$, $u_0 = 1$.
- 2. (suite) On suppose $u_0 > 1$, et on pose $v_n = u_n 1$. Comment s'écrit $\log u_n$?

 Que pouvez-vous dire de la série $\sum_{n=0}^{+\infty} v_n$? Est-elle convergente?
- 3. Etudiez la série $\sum_{n=1}^{+\infty} \log \left[1 + arctg \left(\frac{(-1)^n}{\sqrt{n}} \right) \right]$.
- 4. On définit une fonction f de [0, 1] dans [0, 1]. On suppose que f est continue. Montrez qu'il existe c tel que $f(c) = c^2$. Que pouvez-vous dire si f est croissante?
- 5. Soit f une fonction de R dans R. Montrez que f est continue sur R si et seulement si pour tout intervalle ouvert I de R, $f^{-1}(I)$ est un ouvert.
- 6. On définit dans R^3 la fonction $f(x,y,z) = (x^2 + y^2 + z^2) e^{-x}$. Déterminez son gradient et sa matrice hessienne en un point quelconque. Déterminez ses extrema locaux. S'agit-il d'extrema globaux?

* * * *