Происхождение и эволюция геномов

Туранов С.В. ННЦМБ ДВО РАН

Лаб. Молекулярной систематики

1. Многообразие геномов и их устройство.

2. Геномы органелл. Эукариогенез.

3. Эволюция геномов.

4. Происхождение геномов.

1. Многообразие геномов и их устройство

Геном – совокупность всей наследственной информации (вида).

Геном (с утилитарной точки зрения) — совокупность молекулярно-генетических (МГМ) маркеров различной функциональности.

Генотип - совокупность наследственной информации организма (особи).

Структурные единицы **генома** – нуклеиновые кислоты (**ДНК** и **РНК**).

Короткий полинуклеотид ДНК, показывающий структуру фосфодиэфирной связи. Обратите внимание, что два конца полинуклеотида химически различны

Реакция полимеризации, в ходе которой производится синтез полинуклеотида ДНК. Синтез ведется в направлении 5'→3', и при этом новый нуклеотид добавляется к 3'-атому углерода на конце существующего полинуклеотида. β- и γ-фосфаты присоединяемого нуклеотида удаляются в виде молекулы пирофосфата

Геномы эукариот

Организация ядерного генома

Chromatin and Condensed Chromosome Structure

Кариотип человека. Представлена G-исчерченность (темные полосы обогащены AT-основаниями, светлые – GC, краситель Гимза). Структурный гетерохроматин – сильно компактизованный хроматин, содержащий мало или вообще никаких генов.

2. Геномы органелл и эукариогенез

Нехромосомная (цитоплазматическая) наследственность

Цитоплазматическое (или нехромосом- ное) наследование было открыто в 1909 г. немецкими генетиками Карлом Корренсом (1864–1933) и Эрвином Бауром (1875–1933). Э. Баур первым указал на хлоропласты как на генетические детерминанты изучавшегося им признака пестролистности растений. Генетическая роль митохондрий была открыта в 1949 г. французским генетиком Борисом Эфрусси (1901–1979).

Карл Корренс

Наследование митохондриального генома

Но есть исключения...

Схема двойного однородительского наследования (doubly uniparental inheritance) митохондриального генома у некоторых двустворчатых. В пределах вида может наблюдаться до 30% дивергенции между двумя геномами.

Организация митохондриального генома

До 10000 копий в каждой клетке. Компактная структура. Не содержит интронов (у позвоночных).

3.ы.: Протяженность ядерного генома ~ 3,1 млрд п.н.

Эндосимбиотическое происхождение митохондрий

Гипотеза о симбиогенном происхождении эукариотической клетки была выдвинута русским ученым К.С. Мережковским, им же был предложен термин «**симбиогенез**».

Подтверждение из молекулярной филогенетики

Филогенетическое 16S рРНК последовательностей древо на основе анализа ДНК митохондриальной совместно гомологами ЭТОГО участка прокариот (из Yang et al., 1985).

Эукариогенез

Политомия:)

Уникальные характеристики эукариот

- 1. Эукариоты монофилетичны т.е. эукариогенез уникальное эволюционное событие, никогда не возникал повторно.
- 2. Многноклеточные эукариоты (животные, грибы, растения) лишь небольшое (малочисленное) побочное ответвление в трех ветвях эукариот, образованных протистами. Вы всё ещё горды собой, эукариоты?
- 3. Митохондрии или митохондриеподобные органеллы (анаэробные протисты утратили часть функций, но не утратили структуру) есть у всех эукариот.
- 4. Главный тренд эволюции генов эукариот дупликации и редкость ГПГ (горизонтального переноса генов), в то время как основной тренд эволюции у прокариот ГПГ.

Эукариогенез посредством эндосимбиоза

Эукариогенез был инициирован **эндосимбиозом** альфа-протеобактерий, а система внутренних мембран, включая **ядро**, развилась как защита против инвазий специфических **интронов** и, *может быть*, вообще **бактериальной ДНК** (Е.В. Кунин, 2014).

3. Эволюция геномов

Геномы — это **репликаторы** с неограниченной наследуемостью. В нуклеиновых кислотах замена одного нуклеотида на другой влияет только на передаваемую информацию, а не на физические или химические свойства носителя информации.

Необходимым условием эволюции является достаточно низкий (а не высокий) уровень ошибок репликации.

В природе не существует полимераз, которые не совершают ошибок при достройке комплементарной цепи.

Элементарные события в эволюции генов и геномов

Тип эволюционного события	Ген	Геном
Замена	Замена нуклеотида (точечная мутация), один из ключевых процессов	Замена гена неортологом или ксенологом, важна, но относительно редко встречается
Делеция / потеря	Малые делеции почти столь же часты, как и замены; большие делеции встречаются реже, обратно пропорционально величине	Потеря гена путем делеции или инактивации широко распространена во многих эволюционных линиях
Вставка	Небольшие вставки обычны, хотя и менее часты, чем делеции	Приобретение генов посредством ГПГ — один из важнейших путей эволюции генома; вставки другого происхождения много более редки
Рекомбинация / ГПГ	Внутригенная рекомбинация сравнительно редка, за исключением гомологической рекомбинации в близкородственных генах	Важнейший путь эволюции генома, доминирующий у прокариот
Дупликация	Дупликация небольших участков обычна; большие дупликации встречаются реже, обратно пропорционально	Важнейший путь эволюции генома, доминирующий у эукариот

Транзиции

Пурины

 $C \longrightarrow T \longrightarrow C$

Пиримидины

Трансверсии

Дупликации

Происхождение семейства глобинов путём дупликаций

Эволюция надсемейства генов глобинов человека. Члены этого надсемейства находятся теперь на разных хромосомах. Ген нейроглобина находится на хромосоме 14, ген цитоглобина находится на хромосоме 17, а ген миоглобина находится на хромосоме 22. Группа α -глобина находится на хромосоме 16, а группа β -глобина находится на хромосоме 11. Сокращение: млн — миллионов лет назад

В молекулярной филогенетике полезны ортологи

Классификация гомологичных связей генов: ортологи, паралоги и методы их определения

Эволюционные связи генов:

- Гомология: гены, имеющие общее происхождение.
- Ортология: гомологичные гены, эволюционировавшие путем видообразования.
- Паралогия: гомологичные гены, эволюционировавшие путем дупликации.
- Ксенология: гомологичные гены, имитирующие ортологи, но образовавшиеся в результате горизонтального переноса гена из другой ветви.
- Паралогия, внутренняя и внешняя: паралогичные гены, возникшие в результате видоспецифической дупликации после (внутренняя) или до (внешняя) определенного события видообразования.

Полногеномная дупликация (полиплоидизация)

- 1. Дупликация генома явление, специфическое для эукариот.
- 2. Механизм широко применяется в сельском хозяйстве и аквакультуре (триплоидные свекла, арбуз, устрицы, форель, тиляпия и т.д.)

3. С дупликацией связано появление позвоночных, а также развитие у них сложного мозга, механизма приобретённого иммунитета, а также

обоняния.

Полногеномная дупликация у рыб

4. Происхождение геномов (биологических репликаторов)

Phylogenetic Tree of Life

Противоречия

- 1. LUCA, скорее всего, вирус, но все современные вирусы не могут размножаться вне клетки.
- 2. Для появления репликатора с минимальным набором кодируемых функций самовоспроизведения необходим репликатор с не менее сложной структурой:
- Две рРНК, с общим размером не менее 1000 нуклеотидов.
- Примерно 10 примитивных адаптеров по 30 нуклеотидов каждый, в целом около 300 нуклеотидов.
- По меньшей мере одна РНК, кодирующая репликазу, размером примерно 500 нуклеотидов. В принятой модели, n-1800.
- «...вероятность случайного зарождения системы трансляция—репликация в единственной H-области будет P < 10-1018» (Е.В. Кунин, 2014)

Научный выход (фальсифицируемые доводы): физика

Мир многих миров (МММ) и антропный принцип.

МММ увеличивает возможное пространство действий.

Антропный принцип сокращает свойства наблюдаемой вселенной до такой, в которой может возникнуть **наблюдатель**.

Ненаучный выход (нефальсифицируемые доводы): разумный создатель

Литература

- 1. Браун Т.А. Геномы / Пер.с англ. М.-Ижевск: Институт компьютерных исслеодваний, 2011. 944 с.
- 2. Кунин Е.В. Логика случая. О природе и происхождении биологической эволюции / Пер. с англ. М.: ЗАО Издательство Центрполиграф, 2014. 527 с.
- 3. Saitou N. Introduction to Evolutionary Genomics: Introduction to Evolutionary Genomics Series: Computational Biology. Springer. 2014. 461 pp.