Obs.: A lista deve ser entregue até 19/06/2022.

Os códigos dos programas devem ser salvos em um arquivo texto (Word, PDF, etc.) esse arquivo deve ser compactado e renomeado para o nome do aluno (obrigatoriamente). Deve ser postado no Teams ou enviado por email.

Básicos

- 1) Faça um algoritmo para calcular quantas ferraduras são necessárias para equipar todos os cavalos comprados para um haras.
- 2) A padaria Hotpão vende uma certa quantidade de pães franceses e uma quantidade de broas a cada dia. Cada pãozinho custa R\$ 0,12 e a broa custa R\$ 1,50. Ao final do dia, o dono quer saber quanto arrecadou com a venda dos pães e broas (juntos), e quanto deve guardar numa conta de poupança (10% do total arrecadado). Você foi contratado para fazer os cálculos para o dono. Com base nestes fatos, faça um algoritmo para ler as quantidades de pães e de broas, e depois calcular os dados solicitados.
- 3) Uma fábrica de camisetas produz os tamanhos pequeno, médio e grande, cada uma sendo vendida respectivamente por 10, 12 e 15 reais. Construa um algoritmo em que o usuário forneça a quantidade de camisetas pequenas, médias e grandes referentes a uma venda, e a máquina informe quanto será o valor arrecadado
- 4) Criar um programa que informe a quantidade total de calorias de uma refeição a partir da escolha do usuário, que deverá informar o prato, a sobremesa e bebida. (Veja a tabela a seguir)

PRATO	SOBREMESA	BEBIDA
Vegetariano 180cal	Abacaxi 75cal	Chá 20cal
Peixe 230cal	Sorvete Diet 110cal	Suco de Laranja 70cal
Frango 250cal	Mousse Diet 170cal	Suco de Melão 100cal
Carne 350cal	Mousse chocolate 200cal	Refrigerante Diet 65

5) Criar um programa que leia o destino do passageiro, se a viagem inclui retorno (ida e volta) e informe o preço da passagem conforme a tabela a seguir:

DESTINO	IDA	IDA E VOLTA
Região Norte	R\$ 500,00	R\$ 900,00
Região Nordeste	R\$ 350,00	R\$ 650,00
Região Centro-Oeste	R\$ 350,00	R\$ 600,00
Região Sul	R\$ 300,00	R\$ 550,00

- 6) Criar um programa que a partir da idade e peso do paciente calcule a dosagem de determinado medicamento e imprima a receita informando quantas gotas do medicamento o paciente deve tomar por dose. Considere que o medicamento em questão possui 500mg por ml, e que cada ml corresponde a 20 gotas.
 - Adultos ou adolescentes desde 12 anos, inclusive, se tiverem peso igual ou acima e 60 quilos devem tomar 1000mg; com peso abaixo de 60 quilos devem tomar 875mg.
 - Para crianças e adolescentes abaixo de 12 anos a dosagem é calculada pelo peso corpóreo conforme a tabela a seguir:

5 kg a 9 kg = 125mg	24.1kg a 30kg = 500mg
9.1 kg a 16 kg = 250mg	acima de 30kg = 750mg
16,1kg a 24kg = 375mg	

Estruturas de Repetição

- 7) A série de Fibonacci é uma sequência de termos que tem como os 2 primeiros termos, respectivamente, os números 0 e 1. A partir daí, os demais termos são formados seguindo uma certa regra. A série de Fibonacci pode ser vista a seguir: 0 1 1 2 3 5 8 13 21...
- 8) Escrever um programa que calcule e apresente a somatória do número de grãos de trigo que se pode obter em um tabuleiro de xadrez, obedecendo a seguinte regra: colocar um grão de trigo no primeiro quadro e nos quadros seguintes o dobro do quadro anterior. Ou seja, no primeiro coloca-se um grão, no segundo quadro coloca-se dois grãos (neste momento tem-se três grãos), no terceiro coloca-se quatro grãos, repetir até atingir o sexagésimo quarto quadro. (Este exercício foi baseado em uma situação do capítulo 16 do livro "O Homem que calculava" de Malba Tahan.

Vetores e Matrizes

- 9) Seja A e B dois vetores contendo N elementos inteiros. Fazer um programa para:
 - a. ler A e B.
 - b. Calcular a soma dos elementos de A.
 - c. Calcular a soma dos elementos de B.
 - d. Obter o vetor C, que é a soma dos vetores A e B.
 - e. Obter o vetor D, subtraindo B de A.
 - f. Obter o produto escalar de A por B, isto é, $A[0]*B[0] + A[1]*B[1] + \dots + A[N-1]*B[N-1]$.
- 10) Ordenar, de modo crescente, um vetor com N elementos solicitados ao usuário.
- 11) Leia uma matriz 10 x 10 e escreva a localização (linha e a coluna) do maior valor.
- 12) Leia duas matrizes 4 x 4 e escreva uma terceira com os maiores elementos entre as duas primeiras.

Funções

- 13) Faça uma função que recebe por parâmetro o raio de uma esfera e calcula o seu volume (v = 4/3.P .R3).
- 14) Faça uma função que recebe por parâmetro um valor inteiro e positivo e retorna o valor lógico **Verdadeiro** caso o valor seja primo e **Falso** em caso contrário.

15) Faça uma função que verifique se um valor é perfeito ou não. Um valor é dito perfeito quando ele é igual à soma dos seus divisores exceto ele próprio. (Ex: 6 é perfeito, 6 = 1 + 2 + 3, que são seus divisores). A função deve retornar um valor booleano.