EFLEC: Efficient Feature-LEakage Correction in GNN based Recommendation Systems

Isshan Kumar, Yaochen Hu (Presenter), Yingxue Zhang Huawei Noah's Ark Lab

Positive training label

Positive training label

In the prediction phase, every pair of nodes does not have an edge in the graph.

Signal for message passing

How to efficiently solve the feature leakage problem in GNN-based recommender systems?

A Naive Solution: Accurate Removal

Cons: computationally infeasible

Sample and Removal Method

Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. STAR-GCN: Stacked and reconstructed graph convolutional networks for recommender systems.

Cons: potential loss of information

Is it possible to use the graph information as an accurate removal method while keeping an acceptable computation complexity as the sample and removal method?

An Algebraic Trick

 Seek the relation of the node embeddings from the original graph and those after the accurate removal method.

$$\hat{\mathbf{A}}_{z,*}^{k}\mathbf{E}^{(0)} = |\mathcal{N}(z)|/|\hat{\mathcal{N}}(z)| \left(\mathbf{A}_{z,*}^{k}\mathbf{E}^{(0)} - \left(\mathbf{A}_{z\bar{z}}\mathbf{A}_{z,*}^{k-1}\mathbf{E}^{(0)} + \tilde{\Delta}_{z}^{k}\right)\right)$$

$$\tilde{\Delta}_{z}^{k} = \mathbf{A}_{z,*}^{k-2} \mathbf{E}^{(0)} \cdot \sum_{i \in \hat{\mathcal{N}}(z)} \mathbf{A}_{zi}^{2} - \hat{\mathbf{A}}_{z,*}^{k-2} \mathbf{E}^{(0)} \cdot |\hat{\mathcal{N}}(z)| / |\hat{\mathcal{N}}(z)| \sum_{i \in \hat{\mathcal{N}}(z)} \hat{\mathbf{A}}_{zi}^{2}$$

Embeddings from the original graph

Embeddings from graph after accurate removal method

Main Results

Table 1: Dataset statistics.

Dataset	#User	#Items	#Interactions	Density
Instant	63,884	10,664	174,527	2e-4
Instrument	54,272	33,030	161,105	9.8e-5
Yelp	31,668	38,048	1,561,406	1.3e-3
Gowalla	29,858	40,981	1,027,370	8.4e-4

Table 2: Mean results of recall@20, nDCG@20, and time per epoch (T) in seconds. Bold represent the best and underline represents the second best. Vanila is not considered in the ranking for time.

	Method	od Instant			Instrument		Yelp			Gowalla			
2 Layers		Recall	nDCG	T(s)	Recall	nDCG	T(s)	Recall	nDCG	T(s)	Recall	nDCG	T(s)
	Vanilla	0.1698	0.0805	2.96	0.0392	0.0187	2.75	0.0577	0.0467	110.13	0.1623	0.1375	82.65
	DropEdge	0.1656	0.0776	<u>4.43</u>	0.0465	0.0216	<u>4.57</u>	0.0581	0.0469	259.93	0.1622	0.1375	<u>130.01</u>
	S&R	0.2202	0.1047	5.23	0.0541	0.0257	4.62	0.0576	0.0466	444.94	0.1628	0.1379	259.49
	EFLEC	0.2207	0.1029	3.11	0.0546	0.0260	3.06	0.0583	0.0469	122.75	<u>0.1630</u>	0.1382	72.88
3 Layers	Vanilla	0.1776	0.0874	4.52	0.0471	0.0216	3.55	0.0604	0.0489	136.23	0.1677	0.1414	67.15
	DropEdge	0.1806	0.0825	3.65	0.0521	0.0241	3.70	0.0603	0.0487	219.73	0.1690	0.1422	<u>105.28</u>
	S&R	0.2160	0.1059	5.72	0.0574	0.0270	5.18	0.0600	0.0485	465.03	0.1687	0.1420	190.42
	EFLEC	0.2155	0.1046	<u>4.56</u>	0.0573	0.0271	<u>4.15</u>	0.0602	0.0485	145.11	0.1689	0.1422	71.06

Yaochen Hu

Email: yaochen.hu@huawei.com

WeChat: dynamic_relaxing

WeChat QR code: (the bottom right)

