Math 416 Lecture Note: Week 15

Daesung Kim

1 Projections and least squares approximation

Lemma 1.1. Let $A \in \mathcal{M}_{m \times n}(F)$, then

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$

for all $x \in F^n$ and $y \in F^m$, where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on F^m and F^n .

Remark 1.2. The standard inner product on F^n can be thought of as

$$\langle x, y \rangle = y^* x$$

where x, y are $(n \times 1)$ matrices (or column vectors).

Lemma 1.3. Let $A \in \mathcal{M}_{m \times n}(F)$. Then, $\mathcal{N}(A) = \mathcal{N}(A^*A)$.

Proof. Note that $\mathcal{N}(A) \leq \mathcal{N}(A^*A)$ is trivial. Suppose $x \in \mathcal{N}(A^*A)$, then $A^*Ax = 0$. Thus,

$$0 = \langle x, A^*Ax \rangle = \langle Ax, Ax \rangle = ||Ax||^2$$

and so Ax = 0. Thus, $\mathcal{N}(A^*A) \leq \mathcal{N}(A)$.

Lemma 1.4. Let $A \in \mathcal{M}_{m \times n}(F)$. If A has rank r, then A^*A has the same rank.

Proof. It follows from the Dimension theorem that

$$r = \operatorname{rank}(A) = \dim(\mathcal{R}(A)) = n - \dim(\mathcal{N}(A)) = n - \dim(\mathcal{N}(A^*A)) = \dim(\mathcal{R}(A^*A)) = \operatorname{rank}(A^*A).$$

Remark 1.5. If $m \ge n$ and A has rank n, then $A^*A \in \mathcal{M}_{n \times n}(F)$ is invertible.

Lemma 1.6. Let V be an inner product space over F and $T: V \to V$ linear. Then,

$$\mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}$$
.

Proof. Suppose $x \in \mathcal{N}(T^*)$. Then,

$$\langle x, T(y) \rangle = \langle T^*(x), y \rangle = 0$$

for all y. Thus, $x \in \mathcal{R}(T)^{\perp}$, i.e., $\mathcal{N}(T^*) \leq \mathcal{R}(T)^{\perp}$. Suppose $x \in \mathcal{R}(T)^{\perp}$, then

$$0 = \langle x, T(y) \rangle = \langle T^*(x), y \rangle$$

for all $y \in V$. In particular, if we choose $y = T^*(x)$, then $||T^*(x)|| = 0$. Thus, $x \in \mathcal{N}(T^*)$.

Theorem 1.7. Let $A \in \mathcal{M}_{m \times n}(F)$ and $m \ge n$. Suppose $\operatorname{rank}(A) = n$ and $W = \mathcal{R}(L_A) = \operatorname{Col}(A)$. Then,

$$\operatorname{proj}_{W}(y) = My$$

for all $y \in F^n$, where $M = A(A^*A)^{-1}A^*$.

Proof. Recall that $\operatorname{proj}_W(y)$ is the unique vector such that $y = \operatorname{proj}_W(y) + z$ where $z \in W^{\perp}$. Thus, it suffices to prove $y - My \in W^{\perp}$. Since $W = \mathcal{R}(L_A)$, it is enough to show that $y - My \in \mathcal{N}(A^*)$. Indeed,

$$A^*(y - My) = A^*y - A^*A(A^*A)^{-1}A^*y = A^*y - A^*y = 0.$$

Example 1.8. Let W be a plain in \mathbb{R}^3 given by x + y + z = 0. We have seen that $T = L_P$ is the projection on W where

$$P = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

Since W is a subspace generated by $\{(1,-1,0),(0,1,-1)\}$, we have $W = \mathcal{R}(L_A)$ where

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}.$$

One can see that

$$A(A^{t}A)^{-1}A^{t} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} = P$$

Remark 1.9. We call a matrix $A \in \mathcal{M}_{n \times n}(F)$ idempotent if $A^2 = A$. Note that $M = A(A^*A)^{-1}A^*$ and I - M are idempotent. Note that M and I - M are always diagonalizable. Note also that L_M is the projection on $\mathcal{R}(A)$ and $L_{(I-M)}$ is the projection on $\mathcal{N}(A^*) = \mathcal{R}(A)^{\perp}$.

Least square approximation

Suppose that there is a data set $(y_1, t_1), \dots, (y_m, t_m)$ where y_i represents the population of a region at time t_i . Our goal is to understand the relationship between y_i and t_i (or the trend of y_i). Specifically, we assume y and t have the relation

$$y = ct + d$$

and find best possible constants c and d. If the model is true, then for each t_i , the population should be $\overline{y}_i = ct_i + d$. What we want to do is to find c and d that minimize the difference between the actual output Y and the expected output \overline{Y} , $\|Y - \overline{Y}\|$, where

$$A = \begin{pmatrix} t_1 & 1 \\ t_2 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{pmatrix}, \qquad x = \begin{pmatrix} c \\ d \end{pmatrix}, \qquad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}, \qquad \overline{Y} = \begin{pmatrix} \overline{y}_1 \\ \overline{y}_2 \\ \vdots \\ \overline{y}_m \end{pmatrix} = Ax.$$

In general, let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $Y \in \mathbb{R}^m$ be given. The question is to find $x_0 \in \mathbb{R}^n$ such that

$$||Y - Ax_0|| \le ||Y - Ax||$$

for all $x \in \mathbb{R}^n$. Let $W = \mathcal{R}(A)$, then we have seen that $Ax_0 = \operatorname{proj}_W(Y)$. Such a vector x_0 always exists because $\operatorname{proj}_W(Y)$ exists and belongs to W, and every vector in W is of the form Ax for some $x \in \mathbb{R}^n$. Recall that Y can be uniquely written as $Y = \operatorname{proj}_W(Y) + Z$ where $Z \in W^{\perp}$. Thus, $Y - Ax_0 \in W^{\perp} = \mathcal{R}(A)^{\perp} = \mathcal{N}(A^*)$ and so $A^*(Y - Ax_0) = 0$. Thus, the solution x_0 satisfies

$$A^*Ax_0 = A^*Y.$$

If A has full rank, then A^*A is invertible and so the solution is unique and

$$x_0 = (A^*A)^{-1}A^*Y.$$

2 Triangularization: Shur's theorem

Definition 2.1. Let V be a vector space over $F, T: V \to V$ linear, and W be a subspace of V. We say W is T-invariant if $T(W) \leq W$.

Remark 2.2. Suppose that W is T-invariant. We define $T_W: W \to W$ by $T_W(v) = T(v)$ for all $v \in W$. Note that T_W is well-defined.

Remark 2.3. Let V be an inner product space over F and W be a finite dimensional subspace of V. Then, we have $V = W \oplus W^{\perp}$. In particular, $\dim(V) = \dim(W) + \dim(W^{\perp})$.

Theorem 2.4 (Schur's theorem). Let V be an inner product space over \mathbb{C} and $T:V\to V$ linear. Then, there exists an orthonormal basis β for V such that $[T]_{\beta}$ is upper triangular.

Proof. Use an induction on n. If n=1, there is nothing to prove. Suppose that $n\geq 2$ and the theorem holds for n-1.

Since every polynomial over $\mathbb C$ splits, the characteristic polynomial of T^* splits. In particular, there exist $\lambda \in \mathbb C$ and an unit vector $v \in V \setminus \{0\}$ such that $T^*(v) = \lambda v$. Let $W = \operatorname{Span}(\{v\})$. We claim that W^{\perp} is T-invariant. For $y \in W^{\perp}$, we want to show that $T(y) \in W^{\perp}$. If $w \in W$, then w = cv and so

$$\langle T(y), w \rangle = \langle y, cT^*(v) \rangle = \langle y, c\lambda v \rangle = \overline{c\lambda} \langle y, v \rangle = 0.$$

Thus, $T(W^{\perp}) \leq W^{\perp}$. Since $\dim(W^{\perp}) = n - 1$, the induction hypothesis provides an orthonormal basis β' for W^{\perp} such that $[T_{W^{\perp}}]_{\beta'}$ is upper triangular. Let $\beta = \beta' \cup \{v\}$, then β is orthonormal. Furthermore,

$$[T]_{\beta} = \begin{pmatrix} [T_{W^{\perp}}]_{\beta'} & * \\ 0 & * \end{pmatrix}.$$

Thus, $[T]_{\beta}$ is upper triangular.

3 Normal operators

Definition 3.1. Let V be an inner product space over F and $T:V\to V$ linear. We say that T is normal if $TT^*=T^*T$. A matrix $A\in\mathcal{M}_{n\times n}(\mathbb{C})$ is normal if $AA^*=A^*A$.

Example 3.2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by angle $\theta \in [0, 2\pi]$, then the matrix representation in terms of the standard basis is

$$A = [T]_{\beta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

One can see that $AA^* = A^*A = I$.

Example 3.3. If $A = A^*$ or $A = -A^*$, then A is normal.

Remark 3.4. If β is an orthonormal basis, then T is normal if and only if $[T]_{\beta}$ is normal.

Theorem 3.5. Let V be an inner product space over F and $T: V \to V$ normal.

- (i) $||T(x)|| = ||T^*(x)||$ for all $x \in V$.
- (ii) T cI is normal for all $c \in F$.
- (iii) If x is an eigenvector for T, then it is also an eigenvector for T^* . Moreover, if $T(x) = \lambda x$, then $T^*(x) = \overline{\lambda}x$.
- (iv) If λ_1 and λ_2 are distinct eigenvalues for T corresponding to x_1 and x_2 respectively, then $\langle x_1, x_2 \rangle = 0$.

Proof. (i) It follows that

$$||T(x)||^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle = \langle x, TT^*(x) \rangle = \langle T^*(x), T^*(x) \rangle = ||T^*(x)||^2.$$

(ii) We have

$$(T - cI)(T - cI)^* = (T - cI)(T^* - \overline{c}I) = TT^* - cT^* - \overline{c}T + |c|^2$$

and

$$(T - cI)^*(T - cI) = (T^* - \overline{c}I)(T - cI) = T^*T - cT^* - \overline{c}T + |c|^2.$$

(iii) Suppose $T(x) = \lambda x$, then $(T - \lambda I)(x) = 0$. Thus, by Part (i) and (ii),

$$0 = \|(T - \lambda I)(x)\| = \|(T - \lambda I)^*(x)\| = \|(T^* - \overline{\lambda}I)(x)\|$$

and so $T^*(x) = \overline{\lambda}x$.

(iv) It follows from Part (iii) that

$$\lambda_1 \langle x_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \langle T(x_1), x_2 \rangle = \langle x_1, T^*(x_2) \rangle = \langle x_1, \overline{\lambda_2} x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$$
.

Thus, we have $(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0$. Since $(\lambda_1 - \lambda_2) \neq 0$, we conclude that $\langle x_1, x_2 \rangle = 0$.

Theorem 3.6. Let V be an inner product space over \mathbb{C} and $T:V\to V$ linear. Then, T is normal if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Proof. Suppose that there exists an orthonormal basis β for V consisting of eigenvectors of T. Then, $[T]_{\beta}$ is diagonal and $[T^*]_{\beta} = ([T]_{\beta})^*$ is also diagonal. Since diagonal matrices commute each other, we get

$$[TT^*]_{\beta} = [T]_{\beta}[T^*]_{\beta} = [T^*]_{\beta}[T]_{\beta} = [T^*T]_{\beta}.$$

Thus, T is normal.

Suppose that T is normal. By Schur's theorem, there exists an orthonormal basis $\beta = \{v_1, \dots, v_n\}$ such that $[T]_{\beta}$ is upper triangular. Note that v_1 is an eigenvalue for T because $[T]_{\beta}$ is upper triangular. Suppose $2 \le k \le n$ and v_1, \dots, v_{k-1} are eigenvectors for T. We claim that v_k is also an eigenvector. Let λ_j be an eigenvalue for T corresponding to v_j , $1 \le j \le k-1$. Since $A = [T]_{\beta}$ is upper triangular,

$$T(v_k) = A_{1k}v_1 + A_{2k}v_2 + \dots + A_{kk}v_k.$$

Since β is orthonormal,

$$A_{ik} = \langle T(v_k), v_i \rangle = \langle v_k, T^*(v_i) \rangle = \lambda_i \langle v_k, v_i \rangle = 0$$

for all $j = 1, 2, \dots, k - 1$. Thus, v_k is an eigenvector.

Definition 3.7. Let V be a vector space over F and $T:V\to V$ linear. A subspace $W\leq V$ is T-invariant if $T(W)\leq W$. We define the restriction $T_W:W\to W$ by $T_W(x)=T(x)$ for all $x\in W$.

Definition 3.8. A matrix $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is unitary if $A^*A = AA^* = I$. A matrix $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ is orthogonal if $A^tA = AA^t = I$.

Remark 3.9. Let $V = F^n$, β be an orthonormal basis, and γ the standard basis, then one can see that $Q = [I]^{\gamma}_{\beta}$ is unitary if $F = \mathbb{C}$, and orthogonal if $F = \mathbb{R}$. Thus, the theorem can be restated as follows: if $A \in \mathcal{M}_{n \times n}(\mathbb{C})$ is normal, then there exists a unitary matrix Q such that Q^*AQ is diagonal.

References

- [FIS] Freidberg, Insel, and Spence, *Linear Algebra*, 4th edition, 2002.
- [Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address$:daesungk@illinois.edu