

SOLUCIONES

Parte I: PREGUNTAS TIPO TEST. 30 %.

- 1. a)
- 4. c)
- 7. b)
- 10. c)
- 13. c)

- 2. b)
- 5. b)
- 8. b)
- 11. c)
- 14. a)

- 3. b)
- 6. c)
- 9. a)
- 12. b)
- 15. c)

Parte II: PREGUNTAS CORTAS. 10%.

1. Obtenemos los conjuntos PRIMERO:

2. Obtenemos los conjuntos SIGUIENTE:

$$\begin{aligned} & \text{PRIMERO}(A) = \{ \ a, \ b, \ c \ \} \\ & \text{PRIMERO}(B) = \{ \ b, \ \lambda, \ a, \ c \ \} \\ & \text{PRIMERO}(C) = \{ \ c, \ \lambda, \ a, \ b \ \} \end{aligned}$$

SIGUIENTE(
$$A$$
) = { \$, b, a, c }
SIGUIENTE(B) = { a , b , c }
SIGUIENTE(C) = { a , b , c }

3. Obtenemos los conjuntos PREDICT:

$$\begin{array}{lll} \operatorname{PREDICT}(A \to B \ C \ A) &= \left\{ \ a, \ b, \ c \ \right\} \\ \operatorname{PREDICT}(A \to a) &= \left\{ \ a \ \right\} \\ \operatorname{PREDICT}(B \to C \ A \ B) &= \left\{ \ a, \ b, \ c \ \right\} \\ \operatorname{PREDICT}(B \to b) &= \left\{ \ b \ \right\} \end{array}$$

PREDICT
$$(B \to \lambda) = \{ a, b, c \}$$

PREDICT $(C \to A B C) = \{ a, b, c \}$
PREDICT $(C \to c) = \{ c \}$
PREDICT $(C \to \lambda) = \{ a, b, c \}$

- 4. La gramática no puede ser LL(1) porque la intersección de los conjuntos PREDICT de cualquier par de reglas de un mismo no terminal no es vacía:
 - lacktriangle Para el no terminal A:

 $PREDICT(A \rightarrow B \ C \ A) \cap PREDICT(A \rightarrow a) = \{ a \}$

 \blacksquare Para el no terminal B:

$$\begin{array}{l} \operatorname{PREDICT}(B \to C \ A \ B) \cap \operatorname{PREDICT}(B \to b) = \{ \ b \ \} \\ \operatorname{PREDICT}(B \to C \ A \ B) \cap \operatorname{PREDICT}(B \to \lambda) = \{ \ a, \ b, \ c \ \} \\ \operatorname{PREDICT}(B \to b) \cap \operatorname{PREDICT}(B \to \lambda) = \{ \ b \ \} \end{array}$$

 \blacksquare Para el no terminal C:

$$\begin{array}{l} \text{PREDICT}(C \rightarrow A \ B \ C) \cap \text{PREDICT}(C \rightarrow c) = \{ \ c \ \} \\ \text{PREDICT}(C \rightarrow A \ B \ C) \cap \text{PREDICT}(C \rightarrow \lambda) = \{ \ a, \ b, \ c \ \} \\ \text{PREDICT}(C \rightarrow c) \cap \text{PREDICT}(C \rightarrow \lambda) = \{ \ c \ \} \end{array}$$

Parte III: PROBLEMA. 60%.

Apartado 1.

Obtenemos los conjuntos PRIMERO y SIGUIENTE que solicita el enunciado:

$$\begin{aligned} & \text{PRIMERO}(S) = \{ \text{ if, print } \} \\ & \text{PRIMERO}(C) = \{ \text{ id } \} \\ & \text{PRIMERO}(E) = \{ \text{ else } \} \end{aligned}$$

$$SIGUIENTE(S) = \{ else, \$ \}$$

 $SIGUIENTE(E) = \{ \$, else \}$
 $SIGUIENTE(C) = \{ then \}$

Para construir la tabla de análisis Ll(1), calculamos los conjuntos PREDICT:

$$\begin{aligned} & \text{PREDICT}(S \to \text{if } C \text{ then } S \ E) = \{ \text{ if } \} \\ & \text{PREDICT}(S \to \text{print str}) = \{ \text{ print } \} \end{aligned}$$

$$\begin{array}{l} \operatorname{PREDICT}(C \to \operatorname{id} == \operatorname{num}) = \{ \operatorname{id} \} \\ \operatorname{PREDICT}(E \to \operatorname{else} S) = \{ \operatorname{else} \} \end{array}$$

De acuerdo con los conjuntos PREDICT anteriores, la tabla de análisis LL(1) es la siguiente:

NO TERM	TERMINAL									
NO TERM	if	then	print	str	id	==	num	else	\$	
S	$S \rightarrow \text{if } C \text{ then } S E$		$S o \mathtt{print}\;\mathtt{str}$							
C					$C \to \operatorname{id} == \operatorname{num}$					
E								$E o \mathtt{else}\; S$		

Como se puede observar, no hay conflictos en la tabla y, por tanto, la gramática es LL(1).

Apartado 2.

A continuación se muestra el análisis de la entrada if id num then else print str con tratamiento de errores en modo pánico.

Pila	Entrada	Acción
\$ S	if id num then else print str \$	
$\$ \ E \ S$ then C if	if id num then else print str \$	$S o ext{if } C ext{ then } S ext{ } E$
$\$ \ E \ S$ then C	id num then else print str \$	
$\$ \ E \ S$ then num == id	id num then else print str \$ 0	$C o \mathtt{id} == \mathtt{num}$
$\$ \ E \ S$ then num ==	num then else print str \$ 1	Error: falta == en la entrada. Eliminar de la pila.
$\$ \ E \ S$ then num	num then else print str \$	
$\$ \ E \ S$ then	then else print str \$	
\$ E S	else print str \$ 1	Error: $else \in SIG(S)$. Desapilar S.
\$ E	else print str \$	
\$~S else	else print str \$	$E o \mathtt{else}\; S$
\$ S	print str \$	
\$ str print	print str \$	$S o \mathtt{print}\;\mathtt{str}$
\$ str	str \$	
\$	\$]	Fin: entrada con errores. No aceptar.

Apartado 3.

Para comprobar si la gramática es SLR(1), se construyen los conjuntos de ítems de la colección LR(0):

$$I_0 = \{ S' \rightarrow \cdot S \\ S \rightarrow \cdot \text{ if } C \text{ then } S E \\ S \rightarrow \cdot \text{ print str} \}$$

$$I_8 = \text{GOTO}(I_5, ==) = \{ C \rightarrow \text{ id } == \cdot \text{ num } \}$$

$$I_9 = \text{GOTO}(I_7, S) = \{ S \rightarrow \text{ if } C \text{ then } S \cdot E \\ E \rightarrow \cdot \text{ else } S \}$$

$$I_1 = \text{GOTO}(I_0, S) = \{ S' \rightarrow S \cdot \}$$

$$GOTO(I_7, \text{ if }) = I_2$$

$$GOTO(I_7, \text{ print }) = I_3$$

$$I_3 = \text{GOTO}(I_0, \text{ print }) = \{ S \rightarrow \text{ print } \cdot \text{ str } \}$$

$$I_4 = \text{GOTO}(I_2, C) = \{ S \rightarrow \text{ if } C \cdot \text{ then } S E \}$$

$$I_5 = \text{GOTO}(I_2, \text{ id}) = \{ C \rightarrow \text{ id } \cdot == \text{ num } \}$$

$$I_6 = \text{GOTO}(I_3, \text{ str}) = \{ S \rightarrow \text{ if } C \text{ then } \cdot S E \}$$

$$I_7 = \text{GOTO}(I_4, \text{ then }) = \{ S \rightarrow \text{ if } C \text{ then } \cdot S E \}$$

$$I_{13} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{13} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{13} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{13} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{14} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{ E \rightarrow \text{ else } S \cdot \}$$

$$I_{15} = \text{GOTO}(I_{12}, S) = \{$$

A partir de la colección anterior, se construye la siguiente tabla de análisis SLR:

ESTADO					Acción						IR-A	
	if	then	print	str	id	==	num	else	\$	S	C	E
0	d2		d3							1		
1									acc			
2					d5						4	
3				d6								
4		d7										
5						d8						
6								r2	r2			
7	d2		d3							9		
8							d10					
9								d12				11
10		r3										
11								r1	r1			
12	d2		d3							13		
13			•	•		•	•	r4	r4			

No hay conflictos en la tabla, de modo que podemos deducir que la gramática es SLR(1).

Apartado 4.

Por definición, toda gramática SLR(1) es también LALR(1) y LR(1).

Apartado 5.

La gramática no es ambigua porque:

- 1. No hay operadores binarios cuya precedencia y asociatividad no esté definida por las estructuras de la gramática.
- 2. Todas las sentencias de la gramática, derivadas de S, contienen el no terminal else, de modo que tampoco se produce la ambigüedad por la coincidencia de sentencias if y sentencias if-else.

Por tanto, aunque la gramática permite anidamiento de sentencias, no hay confusión sobre qué if corresponde a cada else: es siempre el inmediatamente anterior.

Apartado 6.

a) La definición dirigida por la sintaxis puede emplear los siguientes atributos:

Símbolo	Atributo	Tipo	Comentario
S	n_1	int	Nivel de anidamiento del propio nodo S .
S	n_2	int	Nivel de anidamiento del nodo S (puede ser un des-
			cendiente) en el que está el print que se imprime
			porque su condición es la que se cumple.
S	l	int	Identificador del str que se imprime, almacenado en
			una tabla de cadenas.
C	b	boolean	Valor lógico de la condición del propio nodo C .
E	n_1	int	Nivel de anidamiento del propio nodo E .
E	n_2	int	Nivel de anidamiento del nodo S (descendiente) en el
			que está el print que se imprime porque su condición
			es la que se cumple.
E	l	int	Identificador del str que se imprime, almacenado en
			una tabla de cadenas.
id	lex	char*	Cadena de caracteres del lexema de id.
num	v	int	Valor numérico del lexema de num.
str	l	int	Identificador del str que se imprime, almacenado en
			una tabla de cadenas.

Consideramos que el analizador léxico inserta en una tabla de cadenas la información relativa a los str que va encontrando. También consideramos que existe una función getVal() a la que se le pasa el lexema de un identificador y devuelve el valor de dicho identificador.

En cuanto a las reglas semánticas que evalúan los atributos, podemos plantear las siguientes:

Regla de producción	Regla semántica
S' o S	$S.n_1 = 0;$
$S o ext{if } C ext{ then } S_1 ext{ } E$	$S_1.n_1 = S.n_1;$
	$E.n_1 = S.n_1;$
	if (C.b) { $S.l = S_1.l$; $S.n_2 = S_1.n_2$; }
	else { $S.l = E.l; S.n_2 = E.n_2; }$
$S o \mathtt{print} \; \mathtt{str}$	S.l = str.l;
	$S.n_2 = S.n_1;$
$C o \mathtt{id} == \mathtt{num}$	if $(getVal(id.lex) == num.v)$ $C.b = true;$
	else $C.b$ = false;
$E o \mathtt{else}\; S$	$S.n_1 = E.n_1 + 1;$
	$E.n_2 = S.n_2;$
	E.l = S.l;

b) El árbol anotado para la entrada propuesta se muestra en la página siguiente. Para su comprensión, se considera que la tabla de símbolos tiene los siguientes valores:

Tabla de símbolos				
id	valor			
a	1			
b	2			

En cuanto a la tabla de cadenas, contiene las siguientes entradas al final del análisis:

Tabla de cadenas				
label	str			
1	"a es 0"			
2	"a no es 0; b es 1"			
3	"a no es 0; b no es 1"			

Para facilitar la comprensión de la DDS, se indica el nivel de anidamiento correspondiente a cada sentencia print de la entrada en el comentario asociado a cada línea:

c) La DDS anterior define una gramática L-atribuida, porque el atributo n_1 es heredado del padre.

