SỞ GD & ĐT KON TUM TRƯỜNG THPT DUY TÂN (Đề gồm có 3 trang)

ĐỀ KIỂM TRA GIỮA KÌ I; NĂM HỌC 2021 - 2022 Môn: TOÁN; Lớp 11

Thời gian làm bài: 90 phút

MÃ ĐÊ 162

I.Phần trắc nghiệm: (7 điểm)

Câu 1. Cho hình vuông ABCD tâm O. Xác định ảnh của tam giác

OBC qua phép quay tâm O góc quay $\frac{\pi}{2}$?

 \mathbf{A} . ΔOCB .

B. $\triangle OCD$. **C**. $\triangle OAD$.

 \mathbf{D}_{\bullet} . ΔOAB .

Câu 2.Trong các hàm số $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$, có bao nhiều hàm số tuần hoàn với chu kì π ?

B. 1.

C. 2.

D. 3.

Câu 3. Trong các hàm số sau, hàm số nào là hàm số chẵn?

A. $y = \cos x$.

B. $y = \tan x$.

C. $y = \cot x$.

D. $y = \sin x$.

Câu 4. Tập xác định của hàm số $y = \cos x$ là tập hợp nào trong các tập hợp dưới đây?

A. $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}$. **B.** $\mathbb{R} \setminus \left\{ k\pi, k \in \mathbb{Z} \right\}$. **C.** $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$.

Câu 5. Phép quay $Q_{(O;\varphi)}$ biến đường tròn (C) có bán kính R thành đường tròn (C') có bán kính R'. Khẳng định nào sau đây đúng?

A. R' = -3R.

B. $R' = \frac{1}{2}R$. **C.** R' = R. **D.** R' = 3R.

Câu 6.Tìm tập giá trị của hàm số $y = \cot x$?

A.

[-1;1].

B. $\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$ **C.** $\mathbb{R} \setminus \left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}.$

Câu 7. Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x + 2y - 6 = 0. Ảnh của đường thẳng d qua phép tịnh tiến theo $\vec{v} = (-1,3)$ là đường thẳng d' có phương trình

A. 2x+3y-3=0 **B.** 2x+3y+1=0 **C.** 3x+2y-9=0

 $\mathbf{D}.\,3x + 2y - 12 = 0$

Câu 8. Tìm tập xác định của hàm số $y = \cot \frac{x}{2}$.

A. $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$. **B.** $\mathbb{R} \setminus \left\{ k\pi, k \in \mathbb{Z} \right\}$.

C. $\mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}$ **D.** $\mathbb{R} \setminus \{\pi + k2\pi, k \in \mathbb{Z}\}$

Câu 9. Tìm nghiệm của phương trình: $\cos x = 1$.

A. $x = \frac{\pi}{2} + k\pi$, $(k \in \mathbb{Z})$. **B.** $x = k2\pi$, $(k \in \mathbb{Z})$. **C.** $x = k\pi$, $(k \in \mathbb{Z})$. **D.** $x = \pi + k\pi$, $(k \in \mathbb{Z})$.

Câu 10.Nghiệm của phương trình $\tan x = \tan \alpha$ là

A. $x = \alpha + k3\pi$, $k \in \mathbb{Z}$.

B. $x = \alpha + k2\pi$, $k \in \mathbb{Z}$ **C.** $x = \alpha$. **D.** $x = \alpha + k\pi$, $k \in \mathbb{Z}$.

Câu 11.Nghiệm của phương trình $\cot x = \cot \frac{\pi}{2}$ là

A.
$$x = \frac{\pi}{6} + k2\pi (k \in Z)$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

Câu 12.Giải phương trình $\cot x = -\sqrt{3}$?

A.
$$x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}.$$

C.
$$x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

B.
$$x = -\frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

B. $x = \pm \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$.

D. $x = \frac{\pi}{2} + k2\pi (k \in \mathbb{Z})$.

D.
$$x = -\frac{\pi}{6} + k\pi, k \in \mathbb{Z}$$
.

Câu 13. Giải phương trình $sin(x-10^0) = \frac{\sqrt{3}}{2}$.

A.
$$x = 70^{0} + k360^{0}$$
 $x = -70^{0} + k360^{0}$ $(k \in \mathbb{Z})$.

C.
$$x = 70^{\circ} + k360^{\circ}$$
$$x = 130^{\circ} + k180^{\circ} (k \in \mathbb{Z}).$$

B.
$$\begin{cases} x = 70^0 + k360^0 \\ x = 130^0 + k360^0 \end{cases} (k \in \mathbb{Z}).$$

D.
$$\begin{cases} x = 60^{0} + k360^{0} \\ x = 120^{0} + k360^{0} \end{cases} (k \in \mathbb{Z}).$$

Câu 14. Tìm tất cả các giá trị thực của m để phương trình $\sin x = m$ vô nghiệm?

$$\mathbf{A}. \begin{bmatrix} m < -1 \\ m > 1 \end{bmatrix}.$$

B.
$$m < -1$$
.

C.
$$-1 \le m \le 1$$

D.
$$m > 1$$

Câu 15. Phương trình nào sau đây vô nghiệm?

A.
$$5\sin x - 1 = 0$$
.

B.
$$\cot x + 2 = 0$$
.

C.
$$3 \tan x - 1 = 0$$
. **D.** $\cos x - 3 = 0$.

Câu 16.Đặt $t = \sin x$ với điều kiện $-1 \le t \le 1$, phương trình $-\sin^2 x - 4\sin x + 3 = 0$ trở thành phương trình nào dưới đây?

A.
$$t^2 + 4t + 3 = 0$$
. **B.** $-t^2 - 4t - 3 = 0$. **C.** $-t^2 - 4t = 0$.

B.
$$-t^2 - 4t - 3 = 0$$
.

$$\mathbf{C}_{\bullet} - t^2 - 4t = 0$$

D.
$$t^2 + 4t - 3 = 0$$
.

Câu 17. Giải phương trình $\sin^2 x + 3\sin x - 4 = 0$.

A.
$$x = 0$$
. **B.** $x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$. **C.** Vô nghiệm. **D.** $x = k2\pi, k \in \mathbb{Z}$.

D.
$$x = k2\pi, k \in \mathbb{Z}$$
.

Câu 18.Phương trình $\sin x - \sqrt{3} \cos x = 1$ tương đương với phương trình nào sau đây?

A.
$$\sin\left(x-\frac{\pi}{3}\right)=1$$

A.
$$\sin\left(x - \frac{\pi}{3}\right) = 1$$
 B. $\sin\left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ **C.** $\sin\left(x + \frac{\pi}{3}\right) = \frac{1}{2}$ **D.** $\sin\left(x - \frac{\pi}{3}\right) = \frac{1}{2}$

$$\mathbf{C.}\sin\!\left(\mathbf{x} + \frac{\pi}{3}\right) = \frac{1}{2}$$

D.
$$\sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}$$

Câu 19. Phương trình $\sin x = \sin \alpha$ có nghiệm là:

A.
$$\begin{cases} x = \alpha + k\pi \\ x = \pi - \alpha + k\pi \end{cases} ; k \in \mathbb{Z} .$$

C.
$$\begin{cases} x = \alpha + k\pi \\ x = -\alpha + k\pi \end{cases} ; k \in \mathbb{Z}.$$

$$\mathbf{B.} \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix}; k \in \mathbb{Z}$$

D..
$$\begin{cases} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{cases}; k \in \mathbb{Z}$$

Câu 20. Nghiệm của phương trình $\cos x = \frac{\sqrt{2}}{2}$ là:

A.
$$x = \pm \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \pm \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C.} \ \ x = \pm \frac{\pi}{4} + k2\pi, k \in \mathbb{Z}..$$

D.
$$x = \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

Câu 21. Trong mặt phẳng Oxy, cho điểm M'(x'; y') là ảnh của điểm M(x; y) qua phép tịnh tiến theo vector $\vec{v} = (a;b)$. Tìm mệnh đề **đúng**?

A.
$$\begin{cases} x' = a - x \\ y' = b - y \end{cases}$$
B.
$$\begin{cases} x' = x + a \\ y' = y + b \end{cases}$$
C.
$$\begin{cases} x' = x - a \\ y' = y - b \end{cases}$$

$$\mathbf{B.} \begin{cases} x' = x + a \\ y' = y + b \end{cases}.$$

$$\mathbf{C.} \begin{cases} x' = x - a \\ y' = y - b \end{cases}$$

$$\mathbf{D.} \begin{cases} x' = x + b \\ y' = y + a \end{cases}.$$

Câu 22.Cho hình chữ nhật MNPQ. Tìm ảnh của điểm Q qua phép tịnh biến theo véc to \overrightarrow{MN}

A. Điểm M.

B. Điểm N.

C. Điểm Q.

Câu 23. Trong mặt phẳng tọa độ Oxy, cho điểm M(1;-3). Ảnh của điểm M qua phép tịnh tiến theo véc to $\vec{v} = (1; -2)$ là.

$$C. M'(0;-5)$$

Câu 24.Cho phép quay $Q_{(O; \varphi)}$ biến điểm M thành M'. Khẳng định nào sau đây là khẳng định **đúng**?

A.
$$\overrightarrow{OM} = \overrightarrow{OM'}$$
 và $(OM, OM') = \varphi$.

$$\mathbf{B.}OM = OM'$$
 và $(OM, OM') = \varphi$.

C.
$$\overrightarrow{OM} = \overrightarrow{OM'}$$
 và $\widehat{MOM'} = \varphi$.

D.
$$OM = OM'$$
 và $\widehat{MOM'} = \varphi$.

Câu 25. Trong hệ toạ độ Oxy, cho điểm A(1;0). Ảnh của A qua phép quay tâm O, góc quay 90° là

A.
$$A'(0;-1)$$
.

B.
$$A^{\prime}(-1;0)$$
.

C.
$$A'(0;1)$$
.

D.
$$A^{\prime}(1;1)$$
.

Câu 26. Trong hệ toạ độ Oxy, phép quay tâm O góc quay -90° biến M(-3,5) thành điểm nào?

A.
$$(-5; -3)$$
.

B.
$$(5;-3)$$
.

Câu 27. Gọi M và m lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số $y = 2\cos 2x + 3$. Tính tổng M + m?

A. 6

Câu 28. Trong các hàm số sau, hàm số nào là hàm số chẵn?

$$\mathbf{A.} \ y = x \cos x \ .$$

$$\mathbf{B.}\ y = \cos x.\cot x$$

$$\mathbf{A} \cdot y = x \cos x$$
. $\mathbf{B} \cdot y = \cos x \cdot \cot x$. $\mathbf{C} \cdot y = \cot x \cdot \sin x$.

$$\mathbf{D.} y = \sin 2x.$$

II. Phần tự luận: (3 điểm)

Câu 1 (0,5 điểm). Tìm tập xác định của hàm số $y = \tan\left(x + \frac{\pi}{4}\right)$

Câu 2 (1,5 điểm). Giải các phương trình lượng giác sau :

a)
$$\sin 3x + \cos 3x = \sqrt{2}\sin 2x$$

b).
$$(\cos x + \sqrt{2}\sin x)(1-\cos x) = \sin^2 x$$

Câu 3 (1,0 điểm). Trong mặt phẳng Oxy, cho đường tròn $(C):(x-2)^2+(y+1)^2=3$ và $\vec{v}=(-5;1)$. Viết phương trình đường tròn (C') biết (C') là ảnh của (C) qua phép tịnh tiến theo vecto \vec{v} .

.....Hết

ĐÁP ÁN MÃ ĐỀ 162

I. TRẮC NGHIỆM

1B	2C	3A	4D	5C	6D	7C	8C	9B	10D
11C	12D	13B	14A	15D	16D	17B	18D	19D	20C
21B	22D	23A	24B	25C	26C	27A	28C		

II. TƯ LUÂN

II. TỰ LUẠN						
Câu	Nội dung	Điểm				
1 (0,5điểm)	$y = \tan\left(x + \frac{\pi}{4}\right)$					
	Hàm số xác định khi và chỉ khi:					
	$\cos\left(x + \frac{\pi}{4}\right) \neq 0$	0,25				
	$\Leftrightarrow x + \frac{\pi}{4} \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{4} + k\pi$ $\text{Tập xác định}: } D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi, k \in \mathbb{Z} \right\}$					
	Tập xác định: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi, k \in \mathbb{Z} \right\}$	0,25				
2 (1,5điểm)	$a. \sin 3x + \cos 3x = \sqrt{2}\sin 2x$					
	$\Leftrightarrow \frac{1}{\sqrt{2}}\sin 3x + \frac{1}{\sqrt{2}}\cos 3x = \sin 2x$	0,25				
	$\Leftrightarrow \sin(3x + \frac{\pi}{4}) = \sin 2x$					
	$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{4} = 2x + k2\pi \\ 3x + \frac{\pi}{4} = \pi - 2x + k2\pi \end{bmatrix}$	0,25				
	$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{4} = \pi - 2x + k2\pi \\ x = -\frac{\pi}{4} + k2\pi \\ x = \frac{3\pi}{20} + k\frac{2\pi}{5} \end{bmatrix}$	0,25				
	$(\cos x + \sqrt{2}\sin x)(1-\cos x) = \sin^2 x$					
	$\Leftrightarrow (1 - \cos x)(\sqrt{2}\sin x - 1) = 0$	0,25				
	$\int cosx = 1$	0,25				
	$\Leftrightarrow sinx = \frac{1}{\sqrt{2}}$					
	$x = k2\pi$					
	$\Leftrightarrow x = \frac{\pi}{4} + k2\pi (k \in \mathbb{Z})$ $x = \frac{3\pi}{4} + k2\pi$	0,25				
	$x = \frac{3\pi}{4} + k2\pi$					

Mã đề 162- trang4

3 (1,0 điểm)	$(C): (x-2)^2 + (y+1)^2 = 3 \text{ và } \vec{v} = (-5;1)$ $\text{Ta có (C) có tâm I(2;-1) và bán kính R} = \sqrt{3}$ $\text{Gọi } I'(x';y') \text{là ảnh của điểm I qua } T_{\vec{v}}.$ Ta có	0,25
	$\begin{cases} x' = 2 - 5 = -3 \\ y' = -1 + 1 = 0 \end{cases} \Rightarrow I'(-3;0)$	0,25
	Khi đó đường tròn (C') tâm I'(-3;0) và bán kính R' = R = $\sqrt{3}$ có phương trình: $(x+3)^2 + y^2 = 3$	0,5