Линейная Алгебра

Игорь Энгель

10 июня 2020 г.

Содержание

1. Комплексные числа

1

1. Комплексные числа

Замечание.

В \mathbb{R} существуют неприводимые многочлены с $\deg p(x) \geqslant 2$.

Это неудобно.

Хотим найти поле содержащие \mathbb{R} в котором таких многочленов нет.

Определение 1.1. Пусть K, L - поля. K - подкольцо внутри L. Тогда L называется расширением поля K.

Рассмотрим многочлен $x^2 + 1$. Назовём его корень i.

- 1. $i \in L$
- 2. $\mathbb{R} \subset L$
- 3. Тогда $a + bi \in L$ если $a, b \in \mathbb{R}$

Так-же поле L содержит выражения вида $a + bi + ci^2$, но так-как i^2 по определению равен -1. Значит, такие выражения сводятся к a' + bi. Аналогично для больших степений.

Рассмотрим операции поля:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$
$$(a+bi)(c+di) = ac + adi + bci + bdi^{2} = (ac-bd) + (ad+bc)i = a' + b'i.$$

Значит, эти выражения задают подкольцо в L.

Возьмём множество пар вещественных чисел \mathbb{R}^2 .

Введём на нём сложение: $\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$.

Введём умножения: $\langle a, b \rangle \cdot \langle c, d \rangle = \langle ac - bd, ad + bc \rangle$.

Заметим, что сущетсвует корень многочлена $x^2 + 1 \in \mathbb{R}^2[x]$: $\langle 0, 1 \rangle \cdot \langle 0, 1 \rangle = \langle 0 - 1, 0 + 0 \rangle = \langle -1, 0 \rangle$.

Теорема 1.1. \mathbb{R}^2 с этими операциями - кольцо.

Доказательство. \mathbb{R}^2 - абелева группа, как произведение абелевых групп.

Коммутативность:

$$\langle a, b \rangle \cdot \langle c, d \rangle = \langle ac - bd, ad + bc \rangle = \langle ca - db, da + cb \rangle = \langle c, d \rangle \cdot \langle a, b \rangle$$
.

Дистрибутивность:

$$\langle a, b \rangle \cdot (\langle c, d \rangle + \langle e, f \rangle)$$

$$= \langle a, b \rangle \cdot \langle c + e, d + f \rangle$$

$$= \langle a(c+e) - b(d+f), a(d+f) + b(c+e) \rangle$$

$$= \langle ac + ae - (bd+bf), ad + af + bc + be \rangle$$

$$= \langle ac - bd, ad + bc \rangle + \langle ae - bf, af + be \rangle$$

$$= \langle a, b \rangle \cdot \langle c, d \rangle + \langle a, b \rangle \cdot \langle e, f \rangle$$

Ассоциативность:

$$\begin{aligned} \langle a,b\rangle \cdot (\langle c,d\rangle \cdot \langle e,f\rangle) \\ &= \langle a,b\rangle \cdot \langle ce-df,cf+de\rangle \\ &= \langle a(ce-df)-b(cf+de),a(cf+de)-b(ce-df)\rangle \\ &= \langle ace-adf-bcf-bde,acf+ade-bce-bdf\rangle \\ &= \langle e(ac-bd)-f(ad+bc),e(ad-bc)+f(ac-bd)\rangle \\ &= \langle ac-bd,ad+bc\rangle \cdot \langle e,f\rangle \\ &= (\langle a,b\rangle \cdot \langle c,d\rangle) \cdot \langle e,f\rangle \end{aligned}$$

Единица:

$$\langle 1, 0 \rangle \cdot \langle a, b \rangle = \langle 1a - 0b, 1b + 0a \rangle = \langle a, b \rangle.$$

 $Onpedenehue\ 1.2.\$ Полем комплексных чисел $\mathbb C$ называется $\langle \mathbb R^2,+,\cdot \rangle$

Элементы \mathbb{C} записываются как a+bi (соответсвуют элементам вида $\langle a,b\rangle$)

Теорема 1.2. $\mathbb C$ - поле

Доказательство. Найдём обратный элемент для a + bi.

$$(a+bi)(a-bi) = a^2 - b^2i^2 = a^2 + b^2.$$

Если $a + bi \neq 0$, то $a^2 + b^2 \neq 0$.

Поделим:

$$\frac{(a+bi)(a-bi)}{a^2+b^2} = 1.$$

Значит, $\frac{a-bi}{a^2+b^2}$ - обратный к a+bi.

Замечание. В $\mathbb C$ любой вещественный многочлен степени 2 раскладывается на линейные множители.

Доказательство. Рассмотрим многочлен $x^2 + bx + c$. $b, c \in \mathbb{R}$.

Тогда его корни имеют вид

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Если $D=b^2-4c\geqslant 0$, то у него есть вещественный корень.

Если D < 0, то вещественных корней нет.

Тогда $D = -1 \cdot |D|$.

$$x_{1,2} = \frac{-b \pm \sqrt{(-1)|D|}}{2} = \frac{-b \pm \sqrt{|D|}\sqrt{-1}}{2} = \frac{-b \pm |D|i}{2}.$$

Свойства. Пусть $z = a + bi \in \mathbb{C}$.

 $a = \operatorname{Re} z$ - вещественная часть

 $b = \operatorname{Im} z$ - мнимая часть

 $\overline{z}=a-bi$ - комплексно-сопряжённое к z число $|z|=\sqrt{a^2+b^2}$ - модуль z

Определение 1.3. R_1, R_2 - кольца. $f: R_1 \to R_2$ называется гомоморфизмом колец, если

- 1. f(a+b) = f(a) + f(b)
- 2. $f(a \cdot b) = f(a) \cdot f(b)$
- 3. f(1) = 1 если кольцо с единицей.

Определение 1.4. Если $f: R_1 \mapsto R_2$ гомоморфизм колец и биекция, то f - изоморфизм колец. **Утверждение 1.3.** Комплексное сопряжения - изоморфзим $\mathbb{C} \mapsto \mathbb{C}$.

Доказательство.

$$\overline{(a+bi)+(c+di)} = \overline{(a+c)+(b+d)i} = (a+c)-(b+d)i.$$

$$\overline{a+bi}+\overline{c+di} = (a-bi)+(c-di) = (a+c)-(b+d)i.$$

$$\overline{(a+bi)(c+di)} = \overline{(ac-bd) + (ad+bc)i} = (ac-bd) - (ad+bc)i.$$

$$\overline{a+bi} \cdot \overline{c+di} = (a-bi)(c-di) = (ac-(-b)(-d)) + (a(-d)+(-b)c)i = (ac-bd) - (ad+bc)i.$$

$$\overline{1+0i} = 1+0i.$$

Лемма. $\psi: R_1 \mapsto R_2$ гомоморфизм колец.

 $g(x) \in R_1[x]$ - многочлен. $\lambda \in R_1$ - корень g(x)

Построим многочлен $\psi(g) = \psi(a_0) + \psi(a_1)x + \dots + \psi(a_n)x^n$

Тогда $\psi(\lambda) \in \mathbb{R}_2$ - корень $\psi(g)$

Доказательство.

$$a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n = 0.$$

$$\psi(a_1\lambda + a_2\lambda + \dots + a_n\lambda^n) = \psi(0) = 0.$$

$$\psi(a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda) = \psi(a_1)\psi(\lambda) + \psi(a_2)\psi(\lambda)^2 + \dots + \psi(a_n)\psi(\lambda)^n = \psi(g)(\psi(\lambda)) = 0.$$

Утверждение 1.4. Если $\varphi:\mathbb{C}\mapsto\mathbb{C}$ - изоморфизм колец, и $\forall x\in\mathbb{R}$ $\varphi(x)=x$, то либо $\forall z\in\mathbb{C}$ $\varphi(z)=z$, либо $\forall z\in\mathbb{C}$ $\varphi(z)=\overline{z}$

Доказательство. $\varphi(a+bi) = \varphi(a) + \varphi(b)\varphi(i) = a + b\varphi(i)$.

$$\varphi(x^2+1) = x^2+1.$$

Значит $\varphi(i)$ тоже корень x^2+1 . Значит, либо $\varphi(i)=i$, либо $\varphi(i)=-i$.

Утверждение 1.5. $|z| = \sqrt{z\overline{z}}$

Доказательство. $z\overline{z}=(a+bi)(a-bi)=a^2+b^2$.

Утверждение 1.6. $|z_1z_2| = |z_1||z_2|$

Доказательство. $|z_1z_2|^2=z_1z_2\cdot\overline{z_1z_2}=z_1\overline{z_1}z_2\overline{z_2}=|z_1|^2|z_2|^2.$

Определение 1.5. Аргументом $z = a + bi \neq 0$ называется угол между вещественной прямой и радиус-вектором точки задаваемой этим числом на комплексной плоскости. И обозначается $\operatorname{Arg} z \in \mathbb{R}/(2\pi\mathbb{Z})$.

Утверждение 1.7. $z_1, z_2 \neq 0$. Arg $z_1 z_2 = \text{Arg } z_1 + \text{Arg } z_2$.

 \mathcal{A} оказательство. Arg $\frac{z_1}{|z_1|}=\mathrm{Arg}\,z_1$, значит можно доказывать только для элементов с |z|=1.

$$|z_1| = |z_2| = 1$$
. Пусть $\varphi = \operatorname{Arg} z_1$, $\psi = \operatorname{Arg} z_2$.

Тогда $z_1 = \cos \varphi + i \sin \varphi$, $z_2 = \cos \psi + i \sin \psi$.

$$z_1 z_2 = (\cos \varphi \cos \psi - \sin \varphi \sin \psi) + i(\cos \varphi \sin \psi + \cos \psi \sin \varphi) = \cos(\varphi + \psi) + i\sin(\varphi + \psi).$$

Доказательство. Факт: Пусть есть изометрия плоскости у которой ести единственная неподвижная точка, то эта изометрия - поворот.

Введём расстояние между комплексными числами - $\rho(z_1, z_2) = |z_1 - z_2|$. Оно соответсвует обычному расстоянию на плоскости.

$$|z_1| = |z_2| = 1.$$

При $z_1 = 1$ тривиально, предположим что $z_1 \neq 1$.

Рассмотрим отображения $x \mapsto z_1 x$.

Докажем что это изометрия: $|z_1x - z_1y| = |z_1(x - y)| = |z_1||x - y| = |x - y|$.

Заметим, что $z_1 x = x \iff x(z_1 - 1) = 0 \iff x = 0.$

Значит, заданное отображение - поворот вокруг начала координат. При этом, так-как $z_1 \cdot 1 = z_1$, то это поворот на угол $\operatorname{Arg} z_1$. Значит, $\operatorname{Arg} z_1 x = \operatorname{Arg} z_1 + \operatorname{Arg} x \implies \operatorname{Arg} z_1 z_2 = \operatorname{Arg} z_1 + \operatorname{Arg} z_2$.

Определение 1.6. Тригонометрическая форма записи комплексного числа $z \neq 0$ с аргументом $\varphi = \operatorname{Arg} z$:

$$a+bi=z=|z|\frac{z}{|z|}=|z|\left(\cos\varphi+i\sin\varphi\right)=:|z|e^{i\varphi}.$$

Cooicmso. $z_1 = r_1 e^{i\varphi_1}, z_2 = r_2 e^{i\varphi_2}.$

$$z_1 z_2 = r_1 r_2 e^{i\varphi_1} e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

Замечание.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{j}}{j!} + \dots$$
$$e^{ix} = 1 + ix + \frac{-x}{2!} + \frac{-ix}{3!} + \frac{x}{4!} + \dots$$

При чётных степенях:

$$1 - \frac{x^2}{2} + \frac{x^4}{4!} + \ldots + (-1)^k \frac{x^{2k}}{2k!} = \cos x.$$

При нечётных:

$$ix - \frac{ix^3}{3!} + \dots + (-1)^k \frac{ix^{2k+1}}{(2k+1)!} = i\sin x.$$

 $e^{ix} = \cos x + i\sin x.$

Теорема 1.8. В комплексных числах есть корни уравнения вида $x^n = a$

Доказательство. Если a=0, то сущетсвует единственный корень кратности n - x=0. Предположим что $a\neq 0$.

$$a = re^{i\varphi}$$

$$x = se^{i\alpha}.$$

$$x^n = s^n e^{in\alpha}.$$

$$s^n = r \implies s = \sqrt[n]{r}.$$

$$n\alpha = \varphi + 2\pi k \implies \alpha = \frac{\varphi}{n} + \frac{2\pi}{n}k.$$

$$x_k = \sqrt[n]{r}e^{i\left(\frac{\varphi}{n} + \frac{2\pi}{n}k\right)}$$

Таких решений n штук, значит это все решения уравнения.

Пример. Рассмотрим уравнение $x^n = 1 = 1 \cdot e^0$.

Тогда $\varepsilon_k = e^{i \cdot \frac{2\pi k}{n}}$.

Определение 1.7. R - кольцо, $x \in R$ удовлетворяющий $x^n = 1$. Тогда x - корнеь степени n из единицы.

Определение 1.8. K - поле, тогда $\varepsilon \in K$ называется первообразным корнем степени n из единицы, если ord $\varepsilon = n$.

Замечание. Все первообразные корни степени n из единицы в $\mathbb C$ имеют вид ε_k , где k взаимно просто с n.

Теорема 1.9 (Основная теорема алгебры). Любой неконстантный многочлен $p(x) \in \mathbb{C}[x]$ имеет хотя-бы один корень в \mathbb{C} .

Без доказательства.

Определение 1.9. Поле K называется алгебраически замкнутым, если у любого неконстантного многочлена $p(x) \in K[x]$ есть корень в K.

Лемма. K - алгебраически замкнутое поле. $p(x) \in K[x], n = \deg p \geqslant 1$, тогда p имеет ровно n корней с учётом кратности.

Доказательство. Если n=1, то есть ровно один корень.

Пусть n > 1, так-как K замкнуто, то существует корень λ .

Тогда $p(x) = p'(x)(x - \lambda)$.

По индукции у p'(x) ровно n-1 корень с учётом кратности, и один корень у $x-\lambda$. Итого, n корней.

Замечание. Любой многочлен $f(x) \in \mathbb{C}[x]$ представляется в виде

$$f(x) = c(x - \lambda_1) \dots (x - \lambda_n)$$
.

Лемма. Если $\lambda \in \mathbb{C}$ - корень $p(x) \in \mathbb{R}[x]$, то $\overline{\lambda}$ - тоже корень.

Доказательство. Заметим, что $p(x)=\overline{p}(x)$. Значит, их корни совпадают. Но $\overline{\lambda}$ - корень $\overline{p}(x)$.

Утверждение 1.10. Если $p(x) \in \mathbb{R}[x]$ неприводимый, то либо $p(x) = c(x - \lambda)$, либо $p(x) = x^2 + bx + c$ и $b^2 - 4c < 0$.

Доказательство. То, что эти многочлены неприводимы тривиально.

Предположим что p неприводим и $\deg p > 2$.

Заметим, что p имеет комплексный корень λ . Тогда $p :_{\mathbb{C}} (x - \lambda)$ и $p :_{\mathbb{C}} (x - \overline{\lambda})$.

 $\lambda \neq \overline{\lambda}$, так-как p неприводим.

Тогда
$$p(x)=p'(x)((x-\lambda)(x-\overline{\lambda}))=p'(x)\left(x^2-\lambda x-\overline{\lambda}x+\lambda\overline{\lambda}\right)=p'(x)\left(x^2-2\operatorname{Re}\lambda x+|\lambda|^2\right).$$

Предположим что $p(x) \not \mid_{\mathbb{R}} (x - \lambda)(x - \lambda')$.

Тогда они взаимно простые. Тогда

$$a(x)p(x) + b(x)(x - \lambda)(x - \overline{\lambda}) = 1.$$

Ho $p(\lambda)=0$ и $(\lambda-\lambda)(\lambda-\overline{\lambda})=0$. Противоречие.

Значит, $p' \in \mathbb{R}[x]$, и p приводим. Противоречие, значит неприводимых многочленов степени больше 2 не существует.