Philosophy 201 Homework Assignment #6 Solutions

April 27, 2016

1 Problem #1

For this problem, please use the following stochastic truth table to determine all of your algebraic translations for probabilistic claims involving $\{X, Y, Z\}$.

State (s_i)	X	Y	Z	$\Pr(s_i)$
s_1	Т	Т	Т	$\Pr(s_1) = a_1$
<i>s</i> ₂	Т	Т	Т	$\Pr(s_2) = a_2$
s_3	Т	Т	Т	$\Pr(s_3) = a_3$
S4	Т	Т	Т	$\Pr(s_4) = a_4$
S ₅		Т	Т	$\Pr(s_5) = a_5$
<i>s</i> ₆		Т	Т	$\Pr(s_6) = a_6$
<i>S</i> ₇		Т	Т	$\Pr(s_7) = a_7$
\$8		Т	Т	$\Pr(s_8) = a_8$

The goal is to prove the following general claim (the Unconditional Sure Thing Principle holds for Factor #2):

$$[\Pr(Z \mid X \& Y) > \Pr(Z) \text{ and } \Pr(Z \mid X \& \sim Y) > \Pr(Z)] \Longrightarrow \Pr(Z \mid X) > \Pr(Z).$$

That is, the goal is the prove that the following two assumptions:

- (1) $Pr(Z \mid X \& Y) > Pr(Z)$
- (2) $Pr(Z \mid X \& \sim Y) > Pr(Z)$

generally entail this third claim:

(3)
$$Pr(Z | X) > Pr(Z)$$

In order to do this, you should follow these two steps:

Step 1. Translate claims (1)–(3) into their algebraic counterparts, using our definitions of unconditional and conditional probability (and the above table for the salient variables). That is, using:

$$\Pr(p) \stackrel{\text{def}}{=} \sum_{s_i \models p} \Pr(s_i) = \sum_{s_i \models p} a_i$$

$$\Pr(p \mid q) \stackrel{\text{\tiny def}}{=} \frac{\Pr(p \& q)}{\Pr(q)}$$
, provided that $\Pr(q) > 0$.

Step 2. Use our two general assumptions about the a_i 's:

- (i) Each of the a_i 's are on [0,1]. That is: $a_1, \ldots, a_8 \in [0,1]$.
- (ii) The a_i 's must sum to 1. That is: $\sum_{i=1}^8 a_i = 1$.

to show (in algebraic terms) that whenever (1) and (2) are both true, (3) must also be true.

Answer: First, we rewrite (1), (2), and (3) in algebraic form, as follows:

(1)
$$\frac{a_1}{a_1 + a_2} > a_1 + a_3 + a_5 + a_7$$

(2)
$$\frac{a_3}{a_3 + a_4} > a_1 + a_3 + a_5 + a_7$$

(3)
$$\frac{a_1 + a_3}{a_1 + a_2 + a_3 + a_4} > a_1 + a_3 + a_5 + a_7$$

Cross-multiplying (1) and (2), yields (note, because the denominators of (1) and (2) are non-negative, cross-multiplying these inequalities will not change their direction).

(1)
$$a_1 > (a_1 + a_2) \cdot (a_1 + a_3 + a_5 + a_7)$$

(2)
$$a_3 > (a_3 + a_4) \cdot (a_1 + a_3 + a_5 + a_7)$$

Adding the left and right hand sides of these renditions of (1) and (2), yields [note, because all terms involved in these two inequalities are non-negative, adding these inequalities yields the new inequality (4)].

(4)
$$a_1 + a_3 > ((a_1 + a_2) \cdot (a_1 + a_3 + a_5 + a_7)) + ((a_3 + a_4) \cdot (a_1 + a_3 + a_5 + a_7))$$

Factoring out the $(a_1 + a_3 + a_5 + a_7)$ term on the right hand side of (4) and simplifying the result, yields:

(5)
$$a_1 + a_3 > (a_1 + a_3 + a_5 + a_7) \cdot (a_1 + a_2 + a_3 + a_4)$$

Dividing both sides of (5) by the non-negative term $(a_1 + a_2 + a_3 + a_4)$ yields:

(6)
$$\frac{a_1 + a_3}{a_1 + a_2 + a_3 + a_4} > a_1 + a_3 + a_5 + a_7$$

Finally, translating (6) back into the language of probability calculus yields:

(3)
$$Pr(Z | X) > Pr(Z)$$
,

which was precisely the claim we were trying to prove from (1) and (2).

2 Problem #2

Suppose we have an urn containing 320 objects. We are going to sample a single object *o* at random from the urn (each individual object is equally likely to be chosen). Consider the following three statements:

- B = o is black ($\sim B = o$ is white).
- M = o is metal ($\sim M = o$ is plastic).
- S = o is a sphere ($\sim S = o$ is a cube).

Assume that these three properties are distributed according to the following *probabilistic truth-table*:

World (s_i)	В	M	S	$Pr(s_i)$
s_1	Т	Т	Т	$\Pr(s_1) = \frac{24}{320}$
s_2	Т	Т	Т	$\Pr(s_2) = \frac{6}{320}$
s_3	Т	Т	Т	$\Pr(s_3) = \frac{24}{320}$
s_4	Т	Т	Т	$\Pr(s_4) = \frac{42}{320}$
<i>S</i> ₅		Т	Т	$Pr(s_5) = \frac{33}{320}$
<i>s</i> ₆		Т	Т	$Pr(s_6) = \frac{33}{320}$
<i>S</i> ₇		Т	Т	$Pr(s_7) = \frac{47}{320}$
\$8		Т	Т	$Pr(s_8) = \frac{111}{320}$

That is, 24 of the 320 objects are black metallic spheres; 47 of the 320 objects are white plastic spheres *etc.* With these basic probabilities in mind, we can use our definitions of unconditional and conditional probability (on page 1) to calculate *any* probability in this example.

The HW is to answer the following eleven (11) questions. [Note: once you've answered questions (1)–(5), you'll have everything you need to answer questions (6)–(11). See my 11/10/15 lecture for the 3 Proposals.]

- 1. What is Pr(S)?
 - Answer: $Pr(S) = Pr(s_1) + Pr(s_3) + Pr(s_5) + Pr(s_7) = \frac{24}{320} + \frac{24}{320} + \frac{33}{320} + \frac{47}{320} = \frac{128}{320} = \frac{2}{5}$
- 2. What is $Pr(S \mid B)$? [That is, what is $\frac{Pr(S\&B)}{Pr(B)}$?]
 - Answer:

$$Pr(S \mid B) = \frac{Pr(S \& B)}{Pr(B)} = \frac{Pr(s_1) + Pr(s_3)}{Pr(s_1) + Pr(s_2) + Pr(s_3) + Pr(s_4)}$$

$$= \frac{\frac{24}{320} + \frac{24}{320}}{\frac{24}{320} + \frac{6}{320} + \frac{24}{320} + \frac{42}{320}}$$

$$= \frac{48/320}{96/320}$$

$$= \frac{48}{96} = \frac{1}{2}.$$

- 3. What is $Pr(S \mid B \& M)$? [That is, what is $\frac{Pr(S\&(B\&M))}{Pr(B\&M)}$?]
 - Answer:

$$Pr(S \mid B \& M) = \frac{Pr(S \& (B \& M))}{Pr(B \& M)} = \frac{Pr(s_1)}{Pr(s_1) + Pr(s_2)}$$
$$= \frac{\frac{24}{320}}{\frac{24}{320} + \frac{6}{320}}$$
$$= \frac{24/320}{30/320}$$
$$= \frac{24}{30} = \frac{4}{5}.$$

- 4. What is $Pr(B \to S)$? [Hint: do the truth-table for $B \to S$ to see in which of the 8 worlds $B \to S$ is true.]
 - Answer:

$$Pr(B \to S) = Pr(s_1) + Pr(s_3) + Pr(s_5) + Pr(s_6) + Pr(s_7) + Pr(s_8)$$

$$= \frac{24}{320} + \frac{24}{320} + \frac{33}{320} + \frac{33}{320} + \frac{47}{320} + \frac{111}{320}$$

$$= \frac{272}{320} = \frac{17}{20}.$$

5. What is $Pr((B \& M) \to S)$? [Hint: do the truth-table for $(B \& M) \to S$ to see in which worlds it is true.]

Alternatively, you could calculate $Pr(B \to S) = 1 - Pr(\sim(B \to S)) = 1 - (Pr(s_2) + Pr(s_4)) = 1 - \left(\frac{6}{320} + \frac{42}{320}\right) = 1 - \frac{48}{320} = \frac{272}{320}$.

• Answer:

$$\Pr((B \& M) \to S) = \Pr(s_1) + \Pr(s_3) + \Pr(s_4) + \Pr(s_5) + \Pr(s_6) + \Pr(s_7) + \Pr(s_8)$$

$$= \frac{24}{320} + \frac{24}{320} + \frac{42}{320} + \frac{33}{320} + \frac{33}{320} + \frac{47}{320} + \frac{111}{320}$$

$$= \frac{314}{320} = \frac{157}{160}.^2$$

- 6. Is the argument $^{r}B : S^{r}$ inductively strong, according to Proposal #1? [Hint: use your answer to (4).]
 - **Answer**: According to proposal #1, the argument ${}^{\mathsf{r}}B : S^{\mathsf{r}}$ is strong iff $\Pr(B \to S) > \frac{1}{2}$. From (4), we know that $Pr(B \to S) = \frac{17}{20} > \frac{1}{2}$. So, according to proposal #1, the argument $^{\mathsf{r}}B : S^{\mathsf{r}}$ is strong.
- 7. Is $^{\mathsf{r}}B : S^{\mathsf{r}}$ inductively strong, according to Proposal #2 (Skyrms's proposal)? [Hint: use (2).]
 - **Answer**: According to proposal #2, the argument ${}^{r}B :: S^{r}$ is strong iff $Pr(S \mid B) > \frac{1}{2}$. From (2), we know that $Pr(S \mid B) = \frac{1}{2} > \frac{1}{2}$. So, according to proposal #2, the argument $^{r}B : S^{3}$ is **not** strong.
- 8. Is $^{\mathsf{r}}B : S^{\mathsf{r}}$ inductively strong, according to Proposal #3 (my proposal)? [Hint: use (2) and (1).]
 - **Answer**: According to proposal #3, the argument rB \therefore S^1 is strong iff *both* $\Pr(S \mid B) > \frac{1}{2}$, *and* $\Pr(S \mid B) > \Pr(S)$. From (2), we know that $\Pr(S \mid B) = \frac{1}{2} \not\ge \frac{1}{2}$. So, according to proposal #2, the argument ${}^{\mathsf{r}}B : S^{\mathsf{l}}$ is **not** strong.³
- 9. Is the argument ${}^{r}B \& M \therefore S^{3}$ inductively strong, according to Proposal #1? [Hint: use (5).]
 - Answer: According to proposal #1, the argument ${}^{\Gamma}B \& M : S^{\Gamma}$ is strong iff $\Pr((B \& M) \to S) > \frac{1}{2}$. From (5), we know that $Pr((B \& M) \to S) = \frac{157}{160} > \frac{1}{2}$. So, according to proposal #1, the argument $^{\mathsf{r}}B \& M :: S^{\mathsf{r}}$ is strong.
- 10. Is ${}^rB \& M : S^1$ inductively strong, according to Proposal #2 (Skyrms's proposal)? [Hint: use (3).]
 - **Answer**: According to proposal #2, the argument ${}^{\Gamma}B\&M : S^{\Gamma}$ is strong iff $\Pr(S \mid B\&M) > \frac{1}{2}$. From (3), we know that $Pr(S \mid B \& M) = \frac{4}{5} > \frac{1}{2}$. So, according to proposal #2, the argument ${}^{\mathsf{T}}B \& M : S^{\mathsf{T}}$ is strong.
- 11. Is $^{r}B \& M : S^{r}$ inductively strong, according to Proposal #3 (my proposal)? [Hint: use (3) and (1).]
 - **Answer**: According to proposal #3, the argument ${}^{\Gamma}B \& M : S^{\gamma}$ is strong iff both $\Pr(S \mid B \& M) > \frac{1}{2}$, and $Pr(S \mid B \& M) > Pr(S)$. From (3) and (1), we know that $Pr(S \mid B \& M) = \frac{4}{5} > \frac{1}{2} > \frac{2}{5} = Pr(S)$. So, according to proposal #3, the argument ${}^{\mathsf{r}}B \& M :: S^{\mathsf{r}}$ is strong.

²Alternatively, you could calculate $\Pr((B \& M) \to S) = 1 - \Pr(\sim((B \& M) \to S)) = 1 - \Pr(s_2) = 1 - \frac{6}{320} = \frac{314}{320}$. ³Note: the premise *B* is positively relevant to the conclusion *S*, since $\Pr(S \mid B) = \frac{1}{2} > \frac{2}{5} = \Pr(S)$.