

SMART INDUSTRY LABORATORY

生産財マーケティング(4)

- 製品企画ケーススタディー

早稲田大学 大学院情報生産システム研究科 藤村 茂

製品企画書の作成

- ・新規開発する製品を決定する 自社と製品納入先企業の双方のメリットについて議論する 新製品の市場を明確にする
- ・顧客のAs-Isモデルを解析する. どのような改善が必要かを議論する.
- ・新製品の導入によるTo-Beモデルを明確にする. どのような技術が必要かを議論し実現方法を明確にする.
- 価格設定、製品販売方法を決定する.

製品企画の社内プレゼン用資料を作成する. 自社のメリットのみならず、顧客のメリットを明確にし、 社内調整のストーリも作成する. ケーススタディ: 菓子パン製造工場梱包工程への自動化システム提案 のための製品企画書

製造工場の現状

- □ 原価 15.5円/個 卸値 45円/個
- □ 稼働時間 8時間/日
- □ 製造量 60個/分 年間540万個
- □ 労働者数

製造工程:1人(正社員)+2人(アルバイト)

検査工程:1人(正社員)

□ 給料 アルバイト時給 1,250円

顧客の要望

- □人件費の削減
 - →利益の向上
- □ 製品の質向上
 - →シェアの拡大
- □ 一日当たりの生産量調整可能
 - →生産量の向上、ムダの削除

•

ロボット市場の動向

2020年までの世界のロボット出荷台数の見通し 2020年までの世界のロボット稼働台数の見通し

STP分析:セグメンテーション

財務局調査による設備投資の現状及び今後の方針について ~①現状~

- 〇設備の現状について、「不足(気味)」と回答した企業は全体の22.6%。
- 〇主に、事業規模拡大を要因として挙げる企業が多い(65%程度)。次いで人手不足を要因として挙げた企業は15%程度
- 〇設備不足となっている弊害として、受注・事業拡大の機会の逸失を指摘する企業が最も多く(63%程度)、省力化・効率化等への対応が遅れることを 指摘する企業もあった。

①で「不足(気味)」と回答した企業(231社)が対象(不明・未回答18社除く)

【「その他」の内容】

- 社員の負担増(休日出勤等)(東北·中堅·情報通信機械 他)
- 〇 外注先へのアウトソーシング実施による物流コスト増加(四国・中小・金属 他)
- 業務効率の低下(福岡・大・その他連翰業 他)

★出典:財務局「設備投資の 現状及び今後の方針」より

STP分析:ターゲティング

STP分析:ポジショニング

自社の立ち位置の明確化

会社名	機械参考価格
自社	???
コンペチタ 1	50~100M¥
コンペチタ 2	5 ~ 10M¥

海外市場の動向

人件費/時間 (USD/h)

2005年から、経済成長に伴い中国の人件費が急増している

自動生産ライン需要の急増に、生産量が追いついていない.

★出典:中国国家統計局

As-Isモデル

As-Isモデルの課題

- □ 人件費がかさむ
 - → 2 名の正社員と 2 名のアルバイトへの給料は 年間約12M¥
- □ 作業効率にムラがある
 - →作業効率は従業員の熟練度に依存
- □ 製品の品質検査にムラがある
 - →作業員、体調によって品質検査レベルが異なる
- □ 生産量の制約
 - →現状からの増産ができない

As-Isモデルの改善目標

- ①稼働時間の増加→生産量の向上
- ②従業員の減少→人件費の削減
- ③機械再起動コストの削減→ 生産量の向上,生産コストの削減
- ④誤検出の減少→生産コストの削減

改善方法:生産ラインの一部を自動化 画像検査装置、自動箱詰め装置の導入

市場分析~画像検査装置~

画像検査装置の相場: 5 M¥

	価格	納期	完備性
大手汎用画像検査装置 メーカー	2~5M¥	1~2か月	検査部のみ ×
画像処理専門 メーカー	2~5M¥	1~2か月	検査部のみ ×
地場の制御機器 ベンダー	5 ~ 30M¥	4~6か月	検査設備全体 〇
中小画像処理装置専門 メーカー	5 ~ 10M¥	標準4か月	検査設備全体 ◎

市場分析~自動箱詰め装置~

自動箱詰め装置の相場:20M¥

[例]

弁当工場の箱詰めシステム:20M¥/台

コンベア使用した箱詰めシステム:15M¥/台

To-Beモデル

To-Beモデル~画像検査装置~

□ 導入目的:不良品の自動検出

□ 必要な技術:機械学習(深層学習)とロボット技術

□ 実現方法:画像検査装置(画像処理プログラムと輸送ロボット)を導入

例:

出典: https://www.itmedia.co.jp/news/articles/1805/08/news090.html

導入効果:検出と分類の高速化、誤検出の減少、人件費の削減

導入コスト: 5M¥

出典:_https://www.active-ltd.co.jp/picture_check.php https://www.itmedia.co.jp/news/articles/1805/08/news090.html

To-Beモデル~自動箱詰め装置~

改良方法: 製品の自動箱詰め

必要な技術: ロボットと自動化技術

実現方法: 自動箱詰めロボットを導入

例:

導入コスト: 20M¥

内訳

ロボット本体: 10M¥

関連装置 : 10M¥

出典: https://www.youtube.com/watch?v=ra8zTRPPIcE

導入効果: 箱詰めの高速化、分類と箱詰めの自動化、

長時間稼働可能(休憩時間も稼働可能)、人件費の削減

To-Beモデル~労働者の削減~

改良方法:労働者の削減

実現方法:右表参照

導入効果:生産ライン稼働時間

8時間稼働

9時間稼働可能

市場変化に対応可能

	労働者 1	労働者 2	生産ライン
9:00~10:00	労働	労働	稼働
10:00~11:00	労働	労働	稼働
11:00~12:00	労働	労働	稼働
12:00~13:00	休憩	労働	稼働
13:00~14:00	労働	休憩	稼働
14:00~15:00	労働	労働	稼働
15:00~16:00	労働	労働	稼働
16:00~17:00	労働	労働	稼働
17:00~18:00	労働	労働	稼働

工場のどの部分にターゲットを絞るか

	検査工程	梱包工程	•••
利用者の利益	正社員 1 人削減 3,600K¥/年	アルバイト1人削減 2,400K¥/年 適正生産による利益 9,000K¥/年	
製品開発費用	外作: 5M¥ 社内: 2M¥	外作: 20M¥ 社内: 3M¥	•••
製品販売利益	初年度:3M¥ 2年度:8M¥ :	初年度:10M¥ 2年度:24M¥ :	
:	:	:	:

To-Beモデル ~顧客にとっての投資回収試算~

To-Beモデルを実現するためのコストを計算(5年間の稼働と仮定する)

• 自動箱詰め装置

合計約43M¥

• 画像検査装置

5年間の

合計約5M¥

• メンテナンス費用

5年間総計約48M¥

正社員1名、アルバイト1人人件費削減適正生産による利益増加

6M¥/年 9M¥/年

<約3年で投資回収可能>

To-Beモデル ~自社にとっての投資回収試算~

To-Beモデルを開発することによる利益を計算

自動箱詰め装置 初年度 1システム 合計約13M¥

• 画像検査装置

2年目以降 2システム/年 合計約32M¥

5年間総計

合計141M¥

<初年度より利益がでる計画のため新製品開発リスク少ない>

本開発計画を実施する前に2年目以降の顧客に対するヒアリングを実施する。また、仕様決定時に協力を仰ぎ、次年度以降の受注の準備を行う。

SMART INDUSTRY LABORATORY

Thank you