Квантизатор нейронных сетей с эффективным матричным перемножением

Студент: Бронников Максим Андреевич

Руководитель: Ревизников Дмитрий Леонидович

Москва 2021

de 47

Мотивация

На текущий момент различные embedded устройства окружают нас повсюду. Такие устройства характеризуются:

- Слабым процессором (тактовая частота 180 MHz у STM32F446).
- Небольшим количеством оперативной памяти (128Кb RAM в STM32F446)
- Низкой стоймостью ($\approx 650p$ для STM32F446), что делает их настолько популярными.
- Отстутсвием hardware поддержки float-pointing вычислений в некоторых моделях (процессоры Cortex Arm M3 и ниже).

Мотивация

Нейронные сети - мощный и незаменимый инструмент при работе с данными из окружающей среды.

Работа полносвязного слоя описывается формулой:

$$o = \sigma(xW + b)$$

Сверточные сети могут быть приведены к данной формуле с помощью im2col преобразования, а рекуррентные сети содержат полносвязные слои внутри себя.

Операция перемножения матриц вычислительно трудная, что является ограничением для использования глубоких моделей в множестве задач.

de de

Мотивация

Существуют такие ускорители, как:

- · Нейронные процессоры (Huawei, Samsung, Qualcomm).
- · Мемристорные кроссбары (Hewlett-Packard).

Эти устройства отличаются высокой производительностью и малым энергопотреблением, однако имеют проблемы:

- Ограниченное число представимых чисел.
- · Небольшой объем памяти (менее 1Mb).

Be do

Квантизация

Один из инструментов оптимизации нейронных сетей - **квантизация** параметров слоев модели, а именно замена типа данных с *float32* на *intK*, где *K* - количество бит на каждый из весов или входов сети.

Преимущества:

- Значительное снижение занимаемого объема как в долговременной, так и в оперативной памяти.
- Увеличение производительности за счет использования целых чисел малого размера.

Недостатки:

• Потеря точности результатов.

do do

8-битная квантизация

Для квантизации весов(активаций) определяется диапазон возможных значений, на который равномерно отображаются 256 уровней квантизации. Чтобы квантизовать значение, находится ближайший к нему уровень и берется соответствующий int8:

& dy

Попытки снизить размер данных

Попытки использовать классический метод с меньшим количеством бит на параметр зачастую неудачны:

de 47

Проблема

Веса и входные значения каждого слоя имеют своё собственное распределение, что не учитывает классический алгоритм. При использовании уровней квантизации, которые находятся ближе к плотным местам распределения, можно точнее представлять значения параметра.

do do

Предлагаемый метод

Уровни квантизации распределяются не равномерно, а с помощью обучаемого базис-вектора a. Уровни квантизации q^l определяются скалярным произведением со всевозможными кодировками $e^l \in \{-1,1\}^K, \ 1 \leq l \leq 2^K$:

$$q^{l} = \langle e^{l}, a \rangle = e^{l} a^{T} = \sum_{i=1}^{K} a_{i} e_{i}^{l}$$

d7

Предлагаемый метод

Сама же квантизация и деквантизация производятся тем же образом, что и в классическом методе с использованием уровней квантизации:

Для этого находятся интервалы, для которых все значения будут иметь одинаковую целочисленную кодировку. Границы таких интервалов определяются как середины между уровнями квантизации.

47

Работа слоя

Битовая матрица кодировок значений (как весовых, так и входных) для одного нейрона:

$$B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{K1} & b_{K2} & \dots & b_{Kn} \end{pmatrix} \in \{-1, 1\}^{K \times n}$$

Обозначим каждую строку матрицы $b_j = (b_{j1} \ b_{j2} \ \dots \ b_{jn}).$

Работа слоя

Обозначим x - входной вектор актваций, а w - вектор весов, тогда выход сумматора нейрона расчитывается:

$$net = \sum_{m=1}^{n} x_m w_m \approx \sum_{m=1}^{n} \sum_{i=1}^{K^X} (b_{im}^X a_i^X) \sum_{j=1}^{K^W} (b_{jm}^W a_j^W) = \sum_{i=1}^{K^X} \sum_{j=1}^{K^W} a_i^X a_j^W (b_i^X \odot b_j^W)$$

Работа слоя

Побитовое скалярное произведение ⊙ может быть получено с помощью следующих побитовых операций:

XNOR:

POPCNT:

Количество единиц в бинарном представлении числа.

Be at

Обучение

Для подбора оптимальных параметров квантизации a^x , a^w предлагается использование алгоритма **Quantization Error Minimization**, который минимизирует ошибку между реальным значением параметра и тем, к которому он преобразуется путем квантизации.

Метод позволяет проводить квантизацию уже обученных сетей (post-training квантизация).

Be do

Обучение

Quantization Error Minimization:

Вход: данные x и базис-вектор a_0 , количество иттераций N. **Выход:** обновленный базис-вектор a.

- 1. Квантизовать x в матрицу B с помощью a_0 .
- 2. Для $\forall i \in \{1, ..., N\}$: 2.1 $a_i = (BB^T)^{-1}Bx$
 - 2.2 Обновить B с помощью a_i ;
- 3. Вернуть $a = a_N$.

Поскольку *ВВ*^Т может быть неопределена и расчет обратной матрицы вычислительно сложен, для 2.1 в данной работе используется градиентный спуск с L2 регуляризацией!

Be do

Результаты

- 1. Реализован новый нейронный слой в фреймворке Samsung ONE.
- 2. Написано вычислительное ядро в интерпретаторе с использованием побитовых операций.
- 3. Создан инструмент, который переводит обученные нейронные сети в квантизованный формат.

Be at

Нейронный слой

Новый квантизованный нейронный слой реализван в графовых представлениях фреймворка с учетом оптимального способа хранения бинарных весов, параметров квантизации и вектора смещений.

Описана структура взаимодействия слоя с соседними операциями - вершинами графа модели.

17

Ядро интерпретатора

Для того, чтобы было возможно исполнять модели с квантизованным слоем, реализовано вычислительное ядро в интерпретаторе luci_interpreter фреймворка.

Перед каждым выполнением расчетов необходимо проводить квантизацию входных значений в бинарный формат. Поиск оптимальных кодировок для каждого значения выполняется бинарным поиском.

Основные расчеты выполняются с использованием побитовых операций, что ускорило производительность.

Квантизатор

Добавлен новый инструмент - квантизатор lquantizer.

Он проходит по графу и заменяет все FullyConnected слои на квантизованные, обученные при помощи QEM путем прогонки реальных данных через сеть.

d7

Полученные показатели

Для сравнения результатов была спроектирована сеть из 2-х слоёв и обучена на датасете MNIST.

Таблица 1: Показатели исходной и квантизованных моделей

-	Время работы	Размер	Accuracy
fp32	584.829 мкс	2.1 Mb	97.19 %
int3	152.743 мкс	218.3 Kb	95.59 %
int2	84.7845 мкс	147.2 Kb	88.86 %
int1	44.7829 мкс	76.2 Kb	75.11 %