Einführung in die Informatik, Übung 12

HENRY HAUSTEIN

Aufgabe 12.1

(a) alle Modelle von Γ finden:

p	q	r	$p \Rightarrow q$	$r \lor p$	$\neg q \vee r$
0	0	0	1	0	1
0	0	1	1	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0
1	1	1	1	1	1

3 Modelle erfüllen Γ

(b) $\Gamma \models (\neg p \lor r)$, denn

p	q	r	$\neg p \lor r$
0	0	1	1
0	1	1	1
1	1	1	1

(c) $\Gamma \not\models (\neg q \land r)$, denn

$$\begin{array}{c|cccc} p & q & r & \neg q \wedge r \\ \hline 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ \end{array}$$

(d) $\Gamma \models (q \lor r)$, denn

Aufgabe 12.2

(a) siehe Tabelle

ϕ	ψ	$\phi \lor \psi$	$\phi \wedge (\phi \vee \psi)$	$\phi \wedge (\phi \vee \psi) \equiv \phi$
0	0	0	0	1
0	1	1	0	1
1	0	1	1	1
1	1	1	1	1

(b) siehe Tabelle

		1	1	ı	1	ı	İ	1
ϕ	ψ	π	$\psi \vee \pi$	$\phi \wedge (\psi \vee \pi)$	$\phi \wedge \psi$	$\phi \wedge \pi$	$(\phi \wedge \psi) \vee (\phi \wedge \pi)$	$\phi \wedge (\psi \vee \pi) \equiv (\phi \wedge \psi) \vee (\phi \wedge \pi)$
0	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	1
0	1	0	1	0	0	0	0	1
0	1	1	1	0	0	0	0	1
1	0	0	0	0	0	0	0	1
1	0	1	1	1	0	1	1	1
1	1	0	1	1	1	0	1	1
1	1	1	1	1	1	1	1	1

Aufgabe 12.3

Ersetzungen:

- $a \lor b \equiv \neg \neg a \lor \neg \neg b \equiv \neg (\neg a \land \neg b)$
- $c \Leftrightarrow d \equiv (c \land d) \lor (\neg c \land \neg d) \equiv \neg(\neg(c \land d) \land \neg(\neg c \land \neg d))$

$$\begin{split} \phi &= \neg (((\neg p \lor q) \lor (p \Leftrightarrow \neg q)) \lor \neg (r \land (s \lor r))) \\ &= \neg (\neg (\neg ((\neg p \lor q) \lor (p \Leftrightarrow \neg q)) \land \neg (\neg (r \land (s \lor r))))) \\ &= \neg (\neg (\neg ((\neg p \lor q) \lor (p \Leftrightarrow \neg q)) \land \neg (\neg (r \land (\neg (\neg s \land \neg r)))))) \\ &= \neg (\neg (\neg (\neg (\neg (\neg p \lor q) \land \neg (p \Leftrightarrow \neg q))) \land \neg (\neg (r \land (\neg (\neg s \land \neg r)))))) \\ &= \neg (\neg (\neg (\neg (\neg (\neg (\neg p) \land \neg q)) \land \neg (p \Leftrightarrow \neg q))) \land \neg (\neg (r \land (\neg (\neg s \land \neg r)))))) \\ &= \neg (\neg (\neg (\neg (\neg (\neg (\neg p) \land \neg q)) \land \neg (\neg (\neg (p \land \neg q) \land \neg (\neg p \land \neg \neg q))))) \land \neg (\neg (r \land (\neg (\neg s \land \neg r))))))) \end{split}$$

Aufgabe 12.4

 ϕ muss erst in die richtige Form gebracht werden, das Problem ist hier $\neg(p \lor r) \equiv \neg p \land \neg r$

Aufgabe 12.5

(a) Hier ist das vollständige semantische Tableau. Die roten Knoten die Knoten, die dem Tableau aus der Aufgabenstellung fehlen.

- (b) ja, z.B. für $w(p)=w(q)=w(r)=1\,$
- (c) nein, z.B. für w(p)=w(q)=w(r)=0 ist $w(\phi)=0$