MID-SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4002 SEMESTER: Spring 2022

MODULE TITLE: Engineering Mathematics 2 DURATION OF EXAMINATION: 40 minutes

LECTURER: Prof. N. Kopteva PERCENTAGE OF TOTAL MARKS: 30%

Please, do NOT open this paper until ANNOUNCED by your lecturer

EVERYBODY IS SUPPOSED TO START AT THE SAME TIME

1 (a) Evaluate the indefinite integral $\int x e^{-x^2} dx$. Hint: use an appropriate substitution.

2%

(b) Calculate the area between $y=x\,e^{-x^2}$ and the x-axis for $0\leq x\leq 2$. Hint: you may use the result of the previous question.

1%

(c) Express as a definite integral and then $\underline{evaluate}$ the limit of the Riemann sum $\lim_{n\to\infty}\left(\frac{1}{n}\sum_{i=1}^n 5^{1+2i/n}\right)$ (where one may use the partition P with $x_i=\frac{2i}{n}$ for $i=0,1,\ldots,n$).

3%

(d) Evaluate $\frac{d}{dx} \left(\int_x^{x^2+x} \cos \sqrt{t+8} \ dt \right)$.

2%

(e) Consider the four functions: $\cos x$, $\tan x$, $\cos^2 x$, and $\tan(x^5)$. Specify which of them is odd, even or neither. Hence, evaluate the integral $\int_{-\pi/4}^{\pi/4} \left(\cos^2 x + \tan(x^5)\right) dx$.

3%

.....

2 Evaluate the indefinite integral $\int \sin^3 x \ dx$.

4%

.....

3 Find the average value of the function $\frac{1}{x^2 + 6x + 10}$ on the interval [0, 2].

4%

.....

4 Evaluate the indefinite integral $\int x^8 \ln^2 x \ dx$. (Hint: use integration by parts.)

5%

.....

5 Perform a partial fraction expansion of $\frac{3x^2+5}{(x^2-2x+1)(x^2-1)}$;

 $x^2 + 5$

then evaluate the indefinite integral $\int \frac{3x^2 + 5}{(x^2 - 2x + 1)(x^2 - 1)} dx$.