

DATABASES

Lecture 2. Data modeling in ER and UML

Alexander Breyman

Software Engineering Department Computer Science Faculty

Database Design

Database Abstraction Layers

- 1. Conceptual Model
- 2. Logical Model
- 3. Physical Database Design

Database design

Book of Duty

- Describe information requirements
 - Objects used (e.g., student, professor, lecture)
 - Domains of attributes of objects
 - Identifiers, references / relationships
- Describe processes
 - E.g., examination, degree, register course
- Describe processing requirements
 - Cardinalities: how many students?
 - Distributions: skew of lecture attendance
 - Workload: how often a process is carried out
 - Priorities and service level agreements

Entity/Relationship (ER) Models

- Entity
- Relationship
- Attribute
- Key
- Role

Entity/Relationship (ER) Models

- Entity
- Relationship
- Attribute
- Key
- Role

Attendant

Entity/Relationship (ER) Models

- Entity
- Relationship
- Attribute
- Key
- Role

Natural Language Version

- Students have a StudID, Name and Semester. The StudID identifies a student uniquely.
- Lectures have a LecID, CP and Title. The LecID identifies a lecture uniquely.
- Professors have a PersID, Name, Level and Room. The PersID identifies a professor uniquely.
- Assistants have a PersID, Name and (research) Area. The PersID identifies an assistant uniquely.
- Students attend lectures.
- Lectures can be prerequisites for other lectures.
- Professors give lectures.
- Assistents work for professors.
- Students are tested by professors about lectures. Students receive grades as part of these tests.
- Is this the only possible interpretation?

Why ER?

Advantages

- ER diagrams are easy to create
- ER diagrams are easy to edit
- ER diagrams are easy to read (from the layman)
- ER diagrams express all information requirements

Other aspects

- Minimality
- Tools (e.g., Visio)
- Graphical representation

General

- Try to be consice, complete, comprehensible, and correct
- Controversy whether ER/UML is useful in practice
- No controversy that everybody needs to learn ER/UML

Functionalities

Functionalities of n-ary relationships

$$R: E_1 \times ... \times E_{k-1} \times E_{k+1} \times ... \times E_n \rightarrow E_k$$

Example: seminar

supervise : Professor x Student → Topic

supervise : Topic x Student → Professor

Constraints

The following is not possible:

- 1. Students may only do at most one seminar with a prof.
- 1. Students may only work on a topic at most once.

The following is possible:

- Profs may recycle topics and assign the same topic to several students.
- The same topic may be supervised by several profs.

Example

Two Binary vs One Ternary

- A thief steals a painting as part of a theft.
 - Model as two binary relationships
 - Model as one ternary relationship
 - What is better?

Rules of thumb

- Attribute vs. Entity
 - Entity if the concept has more than one relationship
 - Attribute if the concept has only one 1:1 relationship
- Partitioning of ER Models
 - Most realistic models are larger than a page
 - Partition by domains (library, research, finances, ...)
 - I do not know of any good automatic graph partitioning tool
- Good vs. Bad models
 - Do not model redundancy or tricks to improve performance
 - Less entities is better (the fewer, the better!)
 - Remember the C4 rule. (concise, correct, complete, compr.)

(min, max)-Notation

For all $e_i \in E_i$:

- At least min_i records (..., e_i, ...) exist in R AND
- At most max_i records (..., e_i, ...) exist in R

Geometric Modelling

Geometric Modelling

Weak Entities

- The existince of room depends on the existence of the associated building.
- Why must such relationships be N:1 (or 1:1)?
- RoomNr is only unique within a building.
- Key of a room: BldNr and RoomNr

Exams depend on the student

Can the existence of an entity depend on several other entities? (E.g., exam on student and prof?)

Corner Case 1

- A human cannot exist without a heart.
- A heart cannot exist without a human.
- Anne lives on Bob 's heart. Bob lives on Anne 's heart. Possible?

Corner Case 2

- A human can only survive with at least one kidney.
- Not expressible with ER! (Why not?)

Generalization

Aggregation

Why is ER modelling so difficult?

Global Schema

- •No redundancy
- No conflicts
- Avoid synonyms
- Avoid homonyms

Consolidation Hierarchies

Problem: How to achieve multi-lateral consensus?

Example: Professor View

Example: Library View

Example: Lecture View

Observations

- Lecturer and Professor are synonyms.
- *Uni-Member* is a generalization of *Student, Professor* and *Assistant*.
- However, libraries are managed by *Employees*. (View 2 is imprecise in this respect.)
- *Dissertations, Master theses* and *Books* are different species of *Document*. All are held in libraries.
- Do and Write are synonyms in View 1.
- Things get complicated very quickly requires "engineers"
 - Not unique
 - Need to invent new concepts
 - Need to compromise (e.g., authorship of documents)

Data Modelling with UML

- Unified Modelling Language UML
- De-facto standard for object-orientierted design
- Data modelling is done with "class diagramms"
 - Class in UML ~ Entity in ER
 - Attribute in UML ~ Attribute in ER
 - Association in UML ~ Relationship in ER
 - Compositor in UML ~ Weak Entity in ER
 - Generalization in UML ~ Generalization in ER
- Key differences between UML class diagrams and ER
 - Methods are associated to classes in UML
 - Keys are not modelled in UML
 - UML explicitly models aggregation (part-of)
 - UML supports the modelling of instances (object diagrams)
- UML has much more to offer (use cases, sequence diagr., ...)

Class: Professor

Professor

- PersNr: Integer
- + Name: String
- Level: String
- + promote()

Associations (directed, undirected)

Functionalities & Multiplicities

Multiplicities

- Every instance of A is associated to 4 to 6 instances of B.
- Every instance of B is associated to 2 to 5 instances of A.
- Be careful: Flipped around as compared to ER.
- Be careful: Cannot be used for n-ary relationships.

Functionalities

- Represented as UML multiplicities: 1, *, 1..*, 0..*, or 0..1
- Otherwise, the same as in ER.

Aggregation

Generalization

Homework Assignment 2

Draw an E/R diagram for Library system based on the following requirements:

- Library keeps Copies of Books. Each Copy (Instance) has a unique CopyNumber, a Position on a Shelf, and can be uniquely identified with CopyNumber together with ISBN.
- Each Book has a unique ISBN number, a Year, a Title, an Author and a Number-of-pages.
- Books are published by Publishers. A Publisher has a Name and an Address.
- Books have one or more Category (s) assigned. Categories form a hierarchy, so a category can be just another category subordinate. Category has a Name and no other properties.
- Each reader is assigned a unique Reader-number. Reader has a Last-name, a First-name, an Address and Birthday.
- Readers may borrow one or more Copies of Books. When borrowing, the planned Return-date is recorded.

Thank you for your attention!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931 www.hse.ru