Exercises Set 6

Paul Dubois

September 29, 2023

Abstract

As this is the last session, there will be no compulsory questions this time.

1 Lagrangian multiplier technique

1.1 Unconstrained optimization

Let $f(x,y) = 2x^2 - 12x + 4y^2 + 8y + 20$. Find $(x^*,y^*) \in \mathbb{R}^2$ such that f reaches its minimum (i.e. $f(x^*,y^*) \leq f(x,y) \quad \forall (x,y) \in \mathbb{R}^2$).

1.2 (Equality) Constrained optimization

Let $f(x,y)=2x^2-12x+4y^2+8y+20$. Suppose further that we want 3x+5y=2. Find $(x^*,y^*)\in\mathbb{R}^2$ such that $3x^*+5y^*=2$ and f reaches its minimum (i.e. $f(x^*,y^*)\leq f(x,y) \quad \forall (x,y)\in\mathbb{R}^2,\ 3x+5y=2$).

1.3 Lagrange multiplier

Let $f(x,y) = 2x^2 - 12x + 4y^2 + 8y + 20$. Suppose further that we want 3x + 5y = 2. Let $\mathcal{L}(x,y,\lambda) = f(x,y) - \lambda(3x + 5y - 2)$. Find the point where $\nabla f = 0$

1.4 (Inequality) Constrained optimization

2 Support Vector Machines

2.1 Theory

Define a line in \mathbb{R}^2 with parameters \mathbf{w} and b defined by $\mathbf{w}.\mathbf{x} = b$ (or $\mathbf{w}.\mathbf{x} - b = 0$) for $\mathbf{x} \in \mathbb{R}^2$. This line cut the plane in 2 regions:

- $\mathbf{x} \in \mathbb{R}^2$ such that $\mathbf{w}.\mathbf{x} b < 0$
- $\mathbf{x} \in \mathbb{R}^2$ such that $\mathbf{w}.\mathbf{x} b > 0$

The goal is to find \mathbf{w} and b such that all points of the first class are in the first region, and all points of the second class are in the second region.

2.2 Practice

The training dataset consists of the following data points: Positive class ("+1"):

- (2, 2)
- (1, 1)

Negative class ("-1"):

- (0, 1)
- (1, 0)

The SVM model's objective function for a linearly separable dataset is as follows:

Minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

Subject to the constraints:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \text{ for all } i$$

Where:

 y_i is the class label (+1 or -1) of the *i*-th data point.

w is the weight vector of the hyperplane.

 \mathbf{x}_i is the *i*-th data point.

b is the bias term.

Your tasks:

1. Calculate the optimal values of ${\bf w}$ and b to separate the data points while maximizing the margin.

- 1. Calculate the optimal values of ${\bf w}$ and b to separate the data points while maximizing the margin.
 - 2. Determine the equation of the optimal hyperplane in the form $\mathbf{w} \cdot \mathbf{x} + b = 0$.
 - 3. Identify the support vectors in the dataset.
- 4. Calculate the margin, which is the perpendicular distance from the hyperplane to the nearest support vector.
 - 5. Classify a new data point, (3, 2), based on the learned SVM model.

Please provide the detailed steps and calculations for each task in your solution.