OPTICAL STORAGE MELUM

Patent number:

JP5307222

Publication date:

1993-11-19

Inventor:

KAMAUCHI MASAHARU; others: 01

Applicant:

MITSUBISHI CABLE IND LTD

Classification:

- international:

G03C1/72; G11B7/24

- european:

Application number:

JP19920111786 19920430

Priority number(s):

Abstract of JP5307222

PURPOSE:To obtain a PHB storage medium further enhanced in recording density in PHB memory. CONSTITUTION:This medium is obtained by laminating a layer dispersed with a hydroxyquinone derivative in a matrix composed of 1-100mol.% ZrO2 and 99-0mol.% SiO2 and a layer dispersed with a hydroxyquinone derivative in a SiO2 matrix or in a matrix composed of 1-100mol.% TiO2 and 99-0mol.% SiO2 in two or three layers. As a result, the PHB storage medium increased more than double compared with the conventional in recording density is obtained.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁(JP) (12) 公開特許公報(A)

FI

(11)特許出顧公開番号

特開平5-307222

(43)公開日 平成5年(1993)11月19日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

G03C 1/72

B 8910-2H

G11B 7/24

7215-5D

5 1 6 521

7215-5D

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号

(22)出願日

特顯平4-111786

(71)出願人 000003263

平成 4年(1992) 4月30日

三菱電線工業株式会社

兵庫県尼崎市東向島西之町8番地

(72)発明者 鎌内 正治

兵庫県尼崎市東向島西之町8番地 三菱電

線工業株式会社内

(72)発明者 下辻 利一

兵庫県尼崎市東向島西之町8番地 三菱電

線工業株式会社内

(74)代理人 弁理士 高島 一

(54) 【発明の名称】 光記憶媒体

(57)【要約】

【目的】 PHBメモリにおける記録密度を更に高めた PHB記憶媒体を提供すること。

【構成】 ZrO, 1~100モル%およびSiO, 9 9~0モル%からなるマトリックス中にヒドロキシキノ ン誘導体を分散させた層と、SiO、マトリックス中ま たは/およびTiO, 1~100モル%とSiO, 99 ~0モル%からなるマトリックス中にヒドロキシキノン 誘導体を分散させた層とを、二層または三層に積層して なることを特徴とする。

【効果】 従来のものに比べて記録密度が倍以上に増加 するPHB記憶媒体が得られる。

(2)

2

【特許請求の範囲】

【請求項1】 ZrO, $1\sim100$ モル%およびSiO, $99\sim0$ モル%からなるマトリックス中にヒドロキシキノン誘導体を分散させた層と、SiO, マトリックス中または/およびTiO, $1\sim100$ モル%とSiO, $99\sim0$ モル%からなるマトリックス中にヒドロキシキノン誘導体を分散させた層とを、二層または三層に積層してなる光記憶媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光化学ホールバーニング(以下、PHBという)現象を利用する光記憶媒体に関し、特に高密度記録が可能な波長多重PHB記憶媒体に関する。

[0002]

【従来の技術】現代における情報処理速度の高速化およ び処理される情報の大容量化に伴い、近年、高密度記録 方式としてのPHBメモリが提案されている。 このPH Bメモリにおける記録原理は、例えば特公昭58-51 355号公報にも記載されている通りである。透明媒体 20 中に分散された感光物質が液体ヘリウム温度などの極低 温において示す広い不均一な吸収帯に、充分狭い波長幅 をもつレーザー光を照射すると、その波長位置に吸収ス ペクトルを持つ分子のみが光励起され、他のエネルギー 状態に移る結果、波長選択的な鋭い吸光度の減少(ホー ル)が現われるが、PHBメモリはこの現象を利用して 記録を行うものである。即ち、記憶媒体の吸収スペクト ル中の特定の波長域での吸光度を減少させ、吸収スペク トル中に吸光度の減少によるホールを作り、このホール の有無を1、0のバイナリーコードに対応させた記録と 30 するものである。

【0003】このようなPHBメモリによれば波長選択的に記録が行われるので、その選択数倍だけ記録密度が高められるわけであり、理論的にはその多重記録の程度(多重度)は $10^\circ \sim 10^\circ$ と考えられている。現行の光メモリの容量の上限値が 10° ビット/ cm° といわれているが、PHBメモリではその $10^\circ \sim 10^\circ$ 倍の $10^\circ \sim 10^\circ$ ビット/ cm° という超高密度記録が可能となる。

[0004]

【発明が解決しようとする課題】しかしながら、多重度の理論上の上限値は前記の如くであっても、実際にそれだけのホールが独立に且つ同時に生成されるかについての確証が未だ得られていないのが現状であり、しかも一方では高密度化の要求には際限がなく、多重度を更に高めることが求められている。本発明の目的は、PHBメモリにおける記録密度を更に高めたPHB記憶媒体を提供することにある。

[0005]

【課題を解決するための手段】本発明者らは、前記課題 50 しているのではないかと考えられる。

を解決するために種々検討の結果、次に示す知見を得た。図1は、SiO、マトリックス中に、ヒドロキシキノン誘導体の一種である1、4ージヒドロキシアントラキノン(以下、DAQという)を微量分散させた材料についての吸収スペクトルであり、図中の矢印はPHB現象を示す波長域(約520mm)を示す。

【0006】図2は、TiO、マトリックス中にDAQを微量分散させた材料についての吸収スペクトルであり、図中の矢印は上記と同様PHB現象が起こる波長域(約600m)を示す。

【0007】図3は、ZrO。マトリックス中にDAQを微量分散させた材料についての吸収スペクトルであり、図中の矢印は上記と同様PHB現象が起こる波長域(約560mm)を示す。

【0008】上記図1、図2および図3を比較するとPHB現象が発現する波長域の差がそれぞれ約40mmあり、オーバーラップしないことが判る。しかも、本発明者らが調べたところによれば、図2に示した材料のTiO₂マトリックスの一部をSiO₂で置き換えた場合でも、その混合モル%の比(SiO₂:TiO₂)が0:100~99:1の範囲内ではPHB現象の発現する波長域がTiO₂マトリックスの場合と同一であることを確認した。

【0009】また、図3に示した材料の ZrO_i マトリックスの一部を SiO_i で置き換えた場合でも、その混合モル%の比(SiO_i : ZrO_i)が0:100~99:1の範囲内ではPHB現象の発現する波長域が ZrO_i マトリックスの場合と同一であることを確認した。【0010】本発明者らは、さらに上記特定構造を有する有機色素をそれぞれ分散させ各マトリックスを、二層または三層に積層した複層構造の記憶媒体としたところ、例えば二層構造では、図4で示すように、PHB現象が2か所の波長域で発現することを確認し、多重化出来ることを見出した。

【0011】即ち、本発明は上記知見に基づき完成したものであり、本発明の光記憶媒体は、ZrO、1~100モル%およびSiO、99~0モル%からなるマトリックス中にヒドロキシキノン誘導体を分散させた層と、SiO、マトリックス中または/およびTiO、1~100モル%とSiO、99~0モル%からなるマトリックス中にヒドロキシキノン誘導体を分散させた層とを、二層または三層に積層してなることを特徴とする。

【0012】上記積層構造とすることにより、多重度が高められ、記録密度を倍以上に増加させることができる。しかし、本発明における上記作用は、PHB現象が観察される他の色素、例えばテトラフェニルポルフィンなどのポルフィン類を用いた場合には得られない。この理由は明らかではないが、本発明で用いるヒドロキシキノン誘導体のキノン骨格の有するヒドロキシル基が関与しているのではないかと考えられる。

一部を容器に移し取り、室温で乾燥ゲル化させて第一の 層とした。

(第二層の形成) Zr (O·n-Bu)。〔式中、n-Buは直鎖ブチル基を表す] 19.2gをnープタノー ル500mlで希釈し、さらに1、4-ジヒドロキシアン トラキノン2. 2mgを混合し、約1時間攪拌して溶解し た後、酢酸 (pH2) 1. 8gをn-ブタノールで11 倍に希釈した溶液をビュレットで滴下した。 更に1時間 攪拌後、これを約200mlの溶液に濃縮して容器に移し 取り、室温で乾燥ゲル化させて第二の層とした。

【0019】(吸収スペクトルの測定)前記の如くして 得られた各層をSi(OC, H,)。、エタノールおよび H, O溶液を間にコーティングすることにより積層し、 クライオスタット(4.2K)内で吸収スペクトルを測 定したところ、図4に示されるような吸収スペクトル曲 線が得られた。色素レーザを用いてこの媒体に520nm および560mの波長を照射したところ、それぞれ独立 したPHB現象が認められた。

【0020】実施例2

(第一層の形成) Ti (O·i-Pr)。〔式中、i-Prはイソプロピルを表す〕14.9ml、エタノール1 1. 7mlおよび1, 4ージヒドロキシアントラキノン 1. 2mgを混合し、約1時間攪拌後、氷水で冷却したH 2 OO. 98m1、エタノール11.7m1およびHC1 (4N) 溶液をビュレットで滴下した。 更に約1時間攪 拌後、室温で保存し、ゲル化させて第一の層とした。

(第二層の形成) 実施例1と同様にして、第二層の形成 を形成した。

【0021】(吸収スペクトルの測定)前記の如くして 得られた各層をSi(OC, H,)。、エタノールおよび H, O溶液を間にコーティングすることにより積層し、 クライオスタット(4.2K)内で吸収スペクトルを測 定したところ、図5に示されるような吸収スペクトル曲 線が得られた。色素レーザを用いてこの媒体に560mm および600mの波長を照射したところ、それぞれ独立 したPHB現象が認められた。

【0022】実施例3

(第一層の形成) 実施例1と同様にして、第一層を形成 した。

(第二層の形成) 実施例2の第一層の形成と同様にし て、第二層を形成した。

(第三層の形成) 実施例1の第二層の形成と同様にし て、第三層を形成した。

【0023】 (吸収スペクトルの測定) 前記の如くして 得られた各層をSi(OC, H_s), 、エタノールおよび H, O溶液を間にコーティングすることにより積層し、 クライオスタット(4.2K)内で吸収スペクトルを測 定したところ、図6に示されるような吸収スペクトル曲 線が得られた。色素レーザを用いてこの媒体に520n 50 m. 560 nm および600 nm の波長を照射したところ、

【0013】以下、本発明をより詳細に説明する。本発 明で用いられるヒドロキシキノン誘導体としては、ナフ タザリン、5、6、8-トリヒドロキシー1、4-ナフ トキノンなどのヒドロキシナフトキノンおよびこれらの 誘導体; DAQ、1, 2, 4-トリヒドロキシアントラ キノン、1,2,5,8ーテトラヒドロキシアントラキ ノンなどのヒドロキシアントラキノン;および2,6-ジ (pーブチル) フェノキシー1, 4ージヒドロキシア ントラキノン、1-アミノ-4-ヒドロキシアントラキ ノン、1-ステアロイルアミノ-4-ヒドロキシアント 10 ラキノンなどのヒドロキシアントラキノンの誘導体など が挙げられ、中でもDAQなどが好ましく用いられる。

【0014】本発明の光記憶媒体を製造するには、例え ばゾルーゲル法によってヒドロキシキノン誘導体を、S iO₂ マトリックス中、TiO₂ 1~100モル%およ びSiO, 99~0モル%からなるマトリックス中ある いはZrO, 1~100モル%およびSiO, 99~0 モル%からなるマトリックス中にそれぞれ均一に分散さ せた層を作り、各層をシリコンアルコキシド溶液を用い て接着するなどの方法によって二層または三層に積層す 20 ればよい。

【0015】なお、本発明では、積層の順は特になく、 ZrO, 1~100モル%およびSiO, 99~0モル %からなるマトリックス中に前記ヒドロキシキノン誘導 体を分散させた層と、SiO,マトリックス中または/ およびTiO, 1~100モル%とSiO, 99~0モ ル%からなるマトリックス中にヒドロキシキノン誘導体 を分散させた層とを、任意の順に積層すればよい。

【0016】マトリックス中に分散させるヒドロキシキ ノン誘導体の濃度は、マトリックス中におけるヒドロキ 30 シキノン誘導体分子間の相互作用が無視できるような割 合にすればよく、通常は10-6~10-1(ヒドロキシキ ノン誘導体/アルコキシドモル比)、好ましくは10-5 ~10- (ヒドロキシキノン誘導体/アルコキシドモル 比)程度である。

【0017】このようにして得られた本発明の光記憶媒 体は従来のものに比べて記録密度が二倍から三倍程度高 くなっている。また積層した各層のマトリックスの組成 変化も小さくできるので界面の整合性がよく、界面での 光散乱損失を低減できるという利点を有する。

[0018]

【実施例】次に、実施例により本発明を更に詳細に説明 するが、本発明がこれら実施例に限定されるものでない ことは言うまでもない。

実施例1

(第一層の形成) Si (O・C, H_e), 20ml、エタノ ール23. 6mlおよび1, 4-ジヒドロキシアントラキ ノン2. 2mgを混合し、約1時間攪拌後、エタノール2 3. 6ml、H₂ O6. 47mlおよびHCl (0. 014 N) 溶液をビュレットで滴下した。更に1時間攪拌後、

それぞれ独立したPHB現象が認められた。

【0024】実施例4

実施例3における第二および第三の層に替えて、下記のようにして形成した第二および第三の層を用いた以外は 実施例1と同様にして媒体を得た。

(第二の層の形成) Ti (O-i-Pr), 2.7ml、Si (OC, H,), 18ml、エタノール11.7ml および1, 4-ジヒドロキシアントラキノン2.2mg を混合し、約1時間攪拌後、H, O0.98ml、エタノール11,7mlおよびHCl(4N)溶液をビュレ 10ットで滴下した。更に1時間攪拌後、容器に移し取り、室温で乾燥ゲル化させて第二の層とした。

【0025】(吸収スペクトルの測定) 得られた媒体に 20 つき、実施例1と同様にして色素レーザを照射したところ、520mm, 560mmおよび600mmの波長域にそれぞれ独立したPHB現象が認められた。

【0026】実施例5

実施例1における1、4ージヒドロキシアントラキノンの代わりに、1、2、4ートリヒドロキシアントラキノンを用いた以外は実施例1と同様にして媒体を得た。得られた媒体につき、実施例1と同様にして色素レーザを照射したところ、520mと560mの波長域にそれぞれ独立したPHB現象が認められた。

【0027】比較例1

Si (OC, H,), 20ml、エタノール23.6m l、クロロフォルム5mlおよびテトラフェニルポルフ* *ィン5.5mgを混合し、約1時間攪拌後、エタノール 23.6ml、H, O6.47mlおよびHC1(0.014N) 溶液をビュレットで滴下した。更に1時間攪 拌後室温で乾燥ゲル化させた。

【0028】このようにして得られたサンプルについて、PHB現象が起こる長波長側の吸収スペクトル位置を調べたところ、650mであった。次いで、Ti (O-i-Pr)、14.9ml、エタノール11.7mlおよびクロロフォルム5mlおよびテトラフェニルポルフィン5.5mgを混合し、約1時間攪拌後、氷水で冷却したH, O0.98ml、エタノール11.7mlおよびHCl(4N)溶液をビュレットで滴下した。更に約1時間攪拌後、室温で保存し、ゲル化させた。このようにして得られたサンプルの吸収スペクトルは、SiO、マトリックスのものと同一であり、これらを積層しても多重化できないことが判った。

[0029]

【発明の効果】以上述べた通り、本発明によれば多重度を高めることができるので、従来のものに比べて記録密度が倍増するPHB記憶媒体が得られる。

【図面の簡単な説明】

【図1】 SiO、マトリックス中にDAQを分散させた材料についての吸収スペクトルを示す図である。

【図2】 TiO, マトリックス中にDAQを分散させた材料についての吸収スペクトルを示す図である。

【図3】 ZrO、マトリックス中にDAQを分散させ た材料についての吸収スペクトルを示す図である。

【図4】 本発明の一実施例における媒体の吸収スペクトルを示す図である。

【図5】 本発明の一実施例における媒体の吸収スペクトルを示す図である。

【図6】 本発明の一実施例における媒体の吸収スペクトルを示す図である。

