This is not the final version of the assignment. Check back after this notice has been removed.

Instructions:

- Due TBD at 11:59pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1 (Complex Numbers).

- (a) Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{C}$.
- (b) Show that $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Problem 2 (Vector Spaces).

- (a) Let *V* be a vector space. Prove that -(-v) = v for all $v \in V$.
- (b) Let $V = \mathbb{R}^n$. Suppose $a \in \mathbb{R}$ and $v \in V$. Prove that if $a\mathbf{v} = \mathbf{0}$, then a = 0 or $\mathbf{v} = \mathbf{0}$.
- (c) The empty set {} is not a vector space. Which property of vector spaces is not satisfied by the empty set?

Problem 3 (Subspaces).

- (a) Prove that if X and Y are linear susbpaces of V, then so is X + Y.
- (b) Prove that the set $\{0\}$ consisting of the zero element of V is a subspace of V.
- (c) Suppose $b \in \mathbb{R}$. Show that the set of continuous real-valued functions f on the interval [0,1] such that $\int_0^1 f(x) dx = b$ is a subspace of the vector space of all continuous real-valued functions on [0,1] if and only if b=0.

Problem 4 (Span/Independence).

- (a) Let $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$. Prove span $(\mathbf{v}_1, \dots, \mathbf{v}_k)$ is a subspace of V.
- (b) Show that if the set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent, then none of the \mathbf{v}_i are the zero vector.