Prof.dr.sc. Bojana Dalbelo Bašić

Fakultet elektrotehnike i računarstva Zavod za elekroniku, mikroelektroniku, računalne i inteligentne sustave

> www.zemris.fer.hr/~bojana bojana.dalbelo@fer.hr

Strojno učenje

Uvod

"Nothing is as practical as a good theory"

- Predavanja
 - Prof. dr. sc. Bojana Dalbelo Bašić
- Projekti SU / Laboratorij računarske znanosti
 - Frane Šarić, dipl. ing.
 - Artur Šilić dipl. ing.

http://www.fer.hr/predmet/su

- Predavanja
 - četvrtkom 8 11 sati u B1
- Konzultacije
 - Četvrtkom u 11-12 sati u D339C
- Bodovanje aktivnosti:
 - MI1: 20 bodova (1. međuispit)
 - MI2: 25 bodova (2. međuispit)
 - ZI: 35 bodova (završni ispit)
 - LV-Projekti : 20 bodova
 - + do 5 bodova za aktivno sudjelovanje u nastavi

LV/Projekti (grupe po 5 studenata – voditelj grupe)
 -program, podaci, dokumentacija, teorijska osnova, analiza rada grupe (detaljan opis doprinosa svakog člana)

Međuispiti:

- svaki ispit (međuispit, završni ispit) obuhvaća svo do tada obrađeno gradivo
- Prag na završnom ispitu:
 - ZI >= **12**
- Prag prolaznosti:
 - ukupno 50 bodova

Nadoknade:

- samo u opravdanim slučajevima
- tajnici ZEMRIS-a potrebno je predati molbu i valjanu ispričnicu najkasnije tjedan dana nakon propuštene aktivnosti

Međuispiti:

- održat će se u roku od 14 dana nakon međuispita
- način izvođenja: 50% pismeno i 50% usmeno

Sadržaj uvodnog predavanja

- Što je strojno učenje?
- Zašto strojno učenje?
- Interdisciplinarnost strojnog učenja
- Vrste učenja
- Primjeri primjene
- Sadržaj predmeta
- Literatura

Strojno učenje

- SU razvija se zadnjih 50-tak godina
- Odgovara na pitanje:

Kako napraviti računalne sustave koji automatski poboljšavaju svoje performanse kroz iskustvo i

koji su osnovni zakoni postupaka učenja?

Što je strojno učenje?

- Strojno učenje bavi se izgradnjom sustava koji poboljšavaju performanse kroz iskustvo koristeći kriterijsku funkciju
- Model (hipoteza) je definiran i izgrađen do razine nepoznatih parametara, strojno učenje je programiranje računala da podešava parametre modela na temelju danih primjera
- Model može biti:
 - prediktivni (predviđa buduće vrijednosti) i
 - deskriptivni (sadrži znanje o podacima)

Zašto strojno učenje?

- Složeni problemi ne postoji ljudsko znanje o procesu ili ljudi ne mogu dati objašnjenje o procesu (raspoznavanje govora) – programske implementacije koje nije moguće riješiti na klasičan način!
- Rastuće količine podataka ima li znanja u njima?
 Otkrivanje znanja u skupovima podataka (data & text mining)
- Sustavi koji se dinamički mijenjaju potrebna prilagodba (prilagodba korisničkih sučelja)
- ALI ne treba "učiti" da bi se obračunale plaće

Zašto strojno učenje?

- Učenje općenitih modela iz danih podataka
- Podataka ima u izobilju (skladišta podataka),
 znanje je skupo i potrebno.
- Primjer: Korisničke transakcije mogu objasniti ponašanje korisnika:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

 Izgradnja modela koji je dobra i korisna aproksimacija podataka.

Interdisciplinarnost strojnog učenje

- umjetna inteligencija, računarstvo
- statistika i vjerojatnost (Bayesove metode)
- računalska teorija kompleksnosti (engl. computational complexity theory) - teoretska ograničenja zbog kompleksnosti zadaće učenja, mjerena u terminima računalskih resursa, broja primjera za učenje, broja pogrešaka, itd.
- teorija informacija (mjere entropije, optimalno kodiranje...)
- filozofija (Occam-ova britva najjednostavnija hipoteza je najbolja)
- psihologija i neurobiologija

Strojno učenje i dubinska analiza podataka (eng. data mining)

Dubinska analiza podataka je područje primjene SU

- Trgovina: analiza potrošačke košarica, CRM
- Financije: Određivanje kreditne sposobnoti, detekcija zlouporaba kartica
- Proizvodnja: optimizacija, troubleshooting
- Medicina: postavljanje dijagnoza
- Telekomunikacije: Optimizacija usluga
- Bioinformatika: analiza izražajnosti gena, poravnavanje
- Web mining: Tražilice

(Data mining – knowledge discovery in data sets)

Strojno učenje i umjetna inteligencija

- Inteligentni sustav treba se prilagođavati okolini, imati sposobnost učenja. Ako može učiti onda može planirati ponašanje u novim situacijama
- Strojno učenje je okosnica Umjetne inteligencije
- Raspoznavanje uzoraka: robotika, robotski vid raspozavanje govora, raspoznavanje lica,

Strojno učenje i statistika

Temeljni pojam u strojnom učenju:

indukcija, generalizacija

Cilj:

Naći opće pravilo koje objašnjava podatke ako je dan uzorak ograničene veličine

Statistika: Zaključivanje na temelju uzorka

(generalisation->inference; laerning ->estimation)

Strojno učenje i računarska znanost

- Računarska znanost: Učinkoviti algoritmi koji rješavaju
 - Rješavaju optimizacijske probleme
 - Omogućava predstavljanje modela i njegovu evaluaciju u računalu
 - Problemi prostorne i vremenske složenosti

Strojno učenje i kognitina znanost - fMRI

- Bilježi protok krvi kroz mozak (hemodinamika). Aktivna područja mozga koriste više energije - kisika. Više krvi u određenim područjima zadovoljavaju potrebe aktivnih neurona.
- Oslanjanje na činjenicu da molekule u krvnim stanicama reagiraju u magnetskom polju u ovisnosti o količini kisika.

Strojno učenje i kognitivna znanost

Razumijevanje algoritama za strojno učenje

Razumijevanje ljudske sposobnosti (ili ograničenja) za učenje.

- http://www.cs.cmu.edu/afs/cs/project/theo-73/www/index.html
- Nema univerzalnog algoritma za učenje! ipak izumljeni su efikasni algoritmi koji rješavaju određen tip problema (+ bolje teoretsko razumijevanje učenja).

- Učenje pravila (eng. learning associations)
- Nadzirano učenje (eng. supervised learning)
 - Klasifikacija
 - Regresija
- Nenadzirano učenje (eng. unsupervised learning)
- Podržano učenje (eng. reinforcement learning)

Podržano učenje

Nenadzirano

- Podaci su u dani u obliku (x, y) tj.
 ulazna vrijednost x, ciljna vrijednost y.
 Cilj u nadziranom učenju jest učenje ulazno izlaznog preslikavanja y = f(x)
- Dani su podaci, bez ciljne vrijednosti. Cilj nenadziranog učenja je naći pravilnosti u podacima

Podržano učenje

Nenadzirano

- Podaci su u dani u obliku (x, y) tj.
 ulazna vrijednost x, ciljna vrijednost y.
 Cilj u nadziranom učenju jest učenje ulazno izlaznog preslikavanja y = f(x)
- Dani su podaci, bez ciljne vrijednosti. Cilj nenadziranog učenja je naći pravilnosti u podacima

Nenadzirano učenje

- Dani su podaci, bez ciljne vrijednosti. Cilj nenadziranog učenja je naći pravilnosti u podacima
- Postoje pravilnosti u strukturi ulaznih podataka tako da se neki podaci pojavljuju češće od drugih
- Izradnja općenitih modela koji procjenjuju "što se obično dešava" naziva se procjena gustoće (eng. density estimation)
- Primjer: grupiranje podataka (eng. clustering) grupiranje sličnih objekata

Nenadzirano učenje

- Nema outputa
- Primjeri
 - Segmentacija korisnika/klijenata (CRM)
 - Kompresija slike
 - Bioinformatika

Performance, fuel economy, and approximate price for various automobiles					
	PRICE - Approxi mate Price	ACCEL ERATIO N - Acceler ation	BRAKIN G - Breakin g from 80 mph	HANDLI NG - Road holding index	MILEAG E - Miles per gallon
Acura	-0,521	0,477	-0,007	0,382	2,079
Audi	0,866	0,208	0,319	-0,091	-0,677
BMW	0,496	-0,802	0,192	-0,091	-0,154
Buick	-0,614	1,689	0,933	-0,210	-0,154
Corvette	1,235	-1,811	-0,494	0,973	-0,677
Chrysler	-0,614	0,073	0,427	-0,210	-0,154
Dodge	-0,706	-0,196	0,481	0,145	-0,154
Eagle	-0,614	1,218	-4,199	-0,210	-0,677
Ford	-0,706	-1,542	0,987	0,145	-1,724
Honda	-0,429	0,410	-0,007	0,027	0,369
Isuzu	-0,798	0,410	-0,061	-4,230	1,067
Mazda	0,126	0,679	-0,133	0,500	-1,724
Merced es	1,051	0,006	0,120	-0,091	-0,154
Mitsub.	-0,614	-1,003	0,084	0,382	0,718
Nissan	-0,429	0,073	-0,007	0,263	0,997
Olds	-0,614	-0,734	0,409	0,382	2,114
Pontiac	-0,614	0,679	0,536	0,145	0,195
Porsche	3,454	-2,215	-0,296	0,618	-1,026
Saab	0,588	0,679	0,246	0,263	0,021

0,736

0,382

-0,210

-0,851

0,195

0,369

Toyota

Volvo

VW

-0,059

-0,706

0,219

1,218

-0,128

0,612

0,228

0,102

0,138

Podržano učenje

Nenadzirano

- Podaci su u dani u obliku (x, y) tj.
 ulazna vrijednost x, ciljna vrijednost y.
 Cilj u nadziranom učenju jest učenje ulazno izlaznog preslikavanja y = f(x)
- Dani su podaci, bez ciljne vrijednosti. Cilj nenadziranog učenja je naći pravilnosti u podacima

Nadzirano učenje: Primjene

- Predviđanje budućih slučajeva: Na temelju ulaznih vrijednosti predvidjeti buduće
- Ekstrakcija znanja : Pravila su lako razumljiva
- Kompresija: Pravilo koje objašnjava podatke umjesto podataka
- Detekcija ekstremnih vrijednosti: Iznimke nisu pokrivene pravilima, e.g., zlouporaba

Nadzirano učenje: Klasifikacija

- Primjer: analiza kreditne sposobnosti
- Razlikovanje između grupa klijenata niskog-rizika i visokog rizika na temelju podataka o njihovom prihodu i ušteđevini

Diskriminacijska funkcija:

IF $prihod > \theta_1$ AND $u\check{s}te\bar{d}evina > \theta_2$

THEN nizak rizik ELSE visok rizik

Primjena je PREDVIĐANJE

Nadzirano učenje – klasifikacija -Raspoznavanje lica

Raspoznavanje lica: poza, osvjetljenje, okluzija (naočale brada), frizure, make-up....

Podaci za učenje

Podaci za testiranje

Nadzirano učenje - Klasifikacija: Primjene

Raspoznavanje rukom pisanih znakova:
 različiti stilovi pisanja

Fig. 3. Images of handwritten digits, normalized for horizontal and vertical scale and translation and sampled on an 8 x 8 pixel grid. Different writing angles introduce different levels of shearing in each image.

- Raspoznavanje govora:
- Medicinska dijagnostika: od simptoma do dijagnoze
- Inteligentna analiza teksta (TM & IR): Automatska klasifikacija vijesti, dokumenta, web stranica, detekcija spam-a, automatsko sažimanje dokumenata, automatsko dodjeljivanje ključnih riječi...

• ..

Strojno učenje klasificiranja dokumenata

Učenje asocijacijskih pravila

Analiza potrošačke košarice:

P(Y|X) vjerojatnost da netko tko kupi X također kupi Y(X, Y su proizvodi, usluge).

Primjer: P (čips| pivo) = 0.7

Pravilo: 70% kupaca koji kupe pivo ujedno kupe i čips

Može nas zanimati i *P* (X| Y, D), gdje su D atributi korisnika

Nadzirano učenje: Regresija

- Primjer: Cijena rabljenih automobila
- x : atributi auta (prijeđeni km)

$$y = g(x \mid \boldsymbol{\theta})$$

g () model,

 θ parametri – w, w_0

ili

$$y = w_2 x^2 + w_1 x + w_0$$

Problem linearan u parametrima

Podržano učenje

Nenadzirano

- Podaci su u dani u obliku (x, y) tj.
 ulazna vrijednost x, ciljna vrijednost y.
 Cilj u nadziranom učenju jest učenje ulazno izlaznog preslikavanja y = f(x)
- Dani su podaci, bez ciljne vrijednosti. Cilj nenadziranog učenja je naći pravilnosti u podacima

Podržano učenje

- Učenje strategije na temelju serije izlaza.
- Nema nadziranog učenja samo odgođena nagrada
- Problem dodjeljivanja nagrade (eng. credit

assignment problem)

- Igranje igara
- Robot u labirintu

Strojno učenje i umjetnička interpretacija

Do sada smo govorili o znanju i učenju.

Izazov ...stroj uči umjetničku interpretaciju... ?

Primjer: glazbena umjetnost

- G. Widmer, Application of Machine Learning to Music Research: Empirical Investigation into Phenomenon of Musical Expression, Machine Learning and Data Mining: Methods and Applications, pp. 269-293.
- G. Widmer, Learning Musical Expressions, Machine Learning showcases and success stories, WWW stranice (Studeni, 2001.):

http://www.cp.jku.at/people/widmer/

Dinamika u izvedbi

Chopin Waltz op.18, Es dur (početak),

Primjer prije učenja 🀠 🀠

Primjer poslije učenja 🀠 🀠

Varijacija tempa u izvedbi

Chopin Waltz op.18, Es dur (početak),

Primjer prije učenja 🎨 🍕

41

Sadržaj predmeta

- Osnovna načela strojnog učenja, Učenje koncepata,
 Stabla odluke, CART, statističko odlučivanje,
- Bayesove mreže, Parametarske metode, Ocjenjivanje i usporedba klasifikacijskih algoritama, kombiniranje više klasifikatora
- Neparametarske metode, grupiranje, (k-nn), podržano učenje

Literatura

Mitchell, Tom: "Machine Learning", McGraw-Hill Comp., 1997.
 (Prof. Tom M. Mitchell, Carnegie Mellon University, http://www.cs.cmu.edu/~tom)

 Alpaydin, Ethem: "Itroduction to Machine Learning", MT Press, 2004. (http://www.cmpe.boun.edu.tr/~ethem/i2ml/)

Literatura

 Elezović, Neven: "Statistika i procesi", Element, Zagreb 2007.

 Bishop, Christopher: "Pattern Recognition" and Machine Learning, Springer, 2007.

Izvori: Skupovi podataka

- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- UCI KDD Archive: http://kdd.ics.uci.edu/summary.data.application.html
- Statlib: http://lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/

Izvori: Časopisi

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Transactions on Neural Networks
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- Journal of the American Statistical Association
- ...

Izvori: Konferencije

- International Conference on Machine Learning (ICML)
 - ICML05: http://icml.ais.fraunhofer.de/
- European Conference on Machine Learning (ECML)
 - ECML05: http://ecmlpkdd05.liacc.up.pt/
- Neural Information Processing Systems (NIPS)
 - NIPS05: http://nips.cc/
- Uncertainty in Artificial Intelligence (UAI)
 - UAI05: http://www.cs.toronto.edu/uai2005/
- Computational Learning Theory (COLT)
 - COLT05: http://learningtheory.org/colt2005/
- International Joint Conference on Artificial Intelligence (IJCAI)
 - IJCAI05: http://ijcai05.csd.abdn.ac.uk/
- International Conference on Neural Networks (Europe)
 - ICANN05: http://www.ibspan.waw.pl/ICANN-2005/
- ...

Literatura za uvodno predavanje

Ch1 Introduction

Ch1 Introduction

