September 3rd

Goal

Calculus is the study of functions $f:[a,b]\to R$ and how they change.

To study calculus we must develop the language of real analysis.

1

1.1 Completeness Axiom

Definition 1.1

Let A be every nonempty subset of $\mathbb R$ or $(\emptyset \neq A \subseteq \mathbb R)$.

If A has a largest element we denote it with $\max(A)$ and the min is $\min(A)$.

This leads to a problem.

Example

$$A = [0, 1)$$

$$\min(A) = 0$$

$$\max(A) = \mathsf{DNE}$$

A has a least upper bound.

Definition 1.2

$$\emptyset \neq A \subseteq \mathbb{R}$$

We say A is bounded above iff there exists $m \in \mathbb{R}$ such that $a \leq m$ for all $a \in A$ we call such an m an upper bound for A.

Similarly we define bounded below as lower bound.

A is bounded if it's both bounded below and above.

Axiom 1.3 Completeness

if $\emptyset \neq A \subseteq \mathbb{R}$ is bounded above it has a least upper bound, called the supremum of A, $\sup(A)$

Example

$$A = [0, 1)$$
 then $\sup(A) = 1$.

Proposition 1.4

if $\emptyset \neq A \subseteq \mathbb{R}$ is bounded below then A has a greatest lower bound, called the infimum of A, $\inf(A)$

Proof: Assume $m \in \mathbb{R}$ such that $a \geq m$ for all $a \in A$. Then, $-a \leq m, \forall a \in A$.

Hence,
$$-A = \{-a : a \in A\}$$
 is bounded above.

By the completeness axiom $L = \sup(-A)$ exists.

Claim

$$\inf(A) = -L$$

For all $a \in A, -a \le L \Rightarrow a \ge -L \Rightarrow -L$ is a lower bound for A.

$$\Rightarrow -a \le -N$$

$$\Rightarrow L \le -N(\text{def of sup})$$

$$\Rightarrow -L \le N$$

If $N \in \mathbb{R}$ is a lower bound for A then for all $a \in A, N \leq a \Rightarrow -L \leq \inf(A)$

Remark
$$\bullet \ \sup(A) = L = -\inf(A)$$

Example

Example $\emptyset \neq A, B \subseteq \mathbb{R} \text{ is bounded above.}$ Consider, $A+B=\{a+b:a\in A,b\in B\}.$ Prove that $\sup(A+B)=\sup(A)+\sup(B)$

Proof: if $a \in A$ and $b \in B$ then $a \le \sup(A)$ and $b \le \sup(B)$.

This implies $a + b \le \sup(A) + \sup(B)$.

Hence $\sup(A+B) \le \sup(A) + \sup(B)$

Let ε < 0 be given.

Observe that there exists an $a \in A, b \in B$ such that

$$\sup(A) - \frac{\varepsilon}{2} < a$$

$$\sup(B) - \frac{\varepsilon}{2} < b$$

This implies $\sup(A) + \sup(B) - \varepsilon \le a + b \le \sup(A + B)$.

Since $\varepsilon > 0$ was arbitrary, $\sup(A) + \sup(B) \le \sup(A + B)$

September 5th

Example

 $\emptyset \neq A \subseteq R$ is bounded above, let $\alpha>0$ be given. $\alpha A=\{\alpha a:a\in A\}$ Prove that $\sup(\alpha A)=\alpha\sup(A)$

Proof: for $a \in A, a \leq \sup(A)$

$$\Rightarrow \alpha a \le \alpha \sup(A)$$
$$\Rightarrow \sup(\alpha A) \le \alpha \sup(A) \text{ (by the def of sup)}$$

for $a \in A$

$$\alpha a \le \sup(\alpha A)$$

$$\Rightarrow a \le \frac{1}{\alpha} \sup(\alpha a)$$

$$\Rightarrow \sup(A) \le \frac{1}{\alpha} \sup(\alpha a)$$

$$\Rightarrow \alpha \sup(A) \le \sup(\alpha A)$$

Exercise 1.5

What if $\alpha < 0$?

$$\begin{split} \sup(\alpha A) &= \sup(-(-\alpha)A) \\ &= -\inf(-\alpha A) \text{ (did last lecture)} \\ &= -(-\alpha)\inf(A) \text{ (for homework)} \\ &= \alpha\inf(A) \end{split}$$

Remark

 $\emptyset \neq A \subseteq \mathbb{R}$

If *A* is not bounded above, we write $\sup(A) = \infty$.

If *A* is not bounded below, we write $\inf(A) = -\infty$.

Note

As a convention in this class we say

 $\sup(\emptyset) = -\infty$ (the smallest of everything) $\inf(\emptyset) = \infty$ (the largest of everything)

Proposition 1.6

Density of \mathbb{Q}

For all real numbers $a < b, \exists q \in Q$ such that a < q < b.

Proof: Choose $n \in \mathbb{N}$ large enough such that n(b-a) > 1.

Take $k \in \mathbb{N}$ such that -k < an < bn < k.

Consider $K = [-k,k] \cap \mathbb{Z}$ and such that $m = \min\{j \in K : an < j\}$. Thus -K < an < m and so $m-1 \in K$.

By minimality $an \ge m-1$. Hence $m \le an+1 < bn$ and an < m < bn, this implies that $a < \frac{m}{n} < b$.

2 Sequences

2.1 Limit of Sequences September 8th

Definition 2.1

A sequence is an infinite list of real numbers:

$$(a_n)_{n=1}^{\infty} = (a_n) = (a_1, a_2, \ldots)$$

We can view a sequence as a function $f:\mathbb{N}\to\mathbb{R}$ via the correspond $(a_1,a_2,\ldots)\leftrightarrow f:n\mapsto a_n$

Let (a_n) be a sequence such that $a_n \in A$ for all $n \in \mathbb{N}$ we write $(a_n) \subseteq A$.

Note Big Idea

$$(a_n) \subseteq \mathbb{R}, a \in \mathbb{R}$$

 $(a_n)\subseteq\mathbb{R}, a\in\mathbb{R}$ We say " (a_n) converges to a" iff no matter how close you wish, eventually in (a_n) the terms are

Definition 2.2

$$(a_n) \subseteq \mathbb{R}, a \in \mathbb{R}$$

We say (a_n) converges to $a,a \to a$ iff for all $\varepsilon > 0$ there exists $N \in \mathbb{R}$ such that $|a_n - a| < \varepsilon$

We call a limit of (a_n) and write $\lim_{n\to\infty} a_n = a$ or $\lim a_n = a$.

Definition 2.3

if (a_n) does not converge to any $a \in \mathbb{R}$ we say it diverges.

By taking the next highest natural number, we may assume $N \in \mathbb{N}.$ Symbolically:

$$a_n \to a \iff \forall \varepsilon > 0, \exists N \in \mathbb{R}, (n \ge N \Longrightarrow |a_n - a| < \varepsilon)$$

Example

•
$$a_n = \frac{1}{n}$$

Claim: $a_n \to 0$

Proof: Let $\varepsilon > 0$ be given and take $N = \frac{1}{\varepsilon} + 1$.

We see that $a_n - 0| < \varepsilon \Longleftrightarrow \frac{1}{n} < \varepsilon \Longleftrightarrow \frac{1}{\varepsilon} < n$.

For $n \geq N, n > \frac{1}{\varepsilon}$ and so $|a_n - 0| < \varepsilon$.

 \square asdads

2.3

September 22th

Theorem 2.4 **Balzard-Weierstaw**

Every bounded sequence, $(a_n)\subseteq\mathbb{R}$ has a convergent subsequence.

2.4 Completeness of $\mathbb R$

Definition 2.5

We say $(a_n)\subseteq\mathbb{R}$ is cauchy iff $\forall \varepsilon>0, \exists N\in\mathbb{N}, n,m\geq N\Rightarrow |a_n-a_m|<\varepsilon.$

Proposition 2.6 $\label{eq:convergent} \text{If } (a_n) \text{ is convergent then } (a_n) \text{ is cauchy.}$

Proof: Suppose $a_n \to a$.

Let $\varepsilon>0$ be given and take $N\in\mathbb{N}$ such that $n\geq N\Rightarrow |a_n-a|<\frac{\varepsilon}{2}.$

For $n, m \geq N$,

$$\begin{split} &|a_n-a_m|\\ &=|a_n-a+a-a_m|\leq |a_n-a|+|a-a_m|\\ &<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\mathcal{E}. \end{split}$$

Proposition 2.7

 $(a_n) \subseteq \mathbb{R}$ cauchy

Suppose $\left(a_{n_k}\right)$ is a subsequence such that $a_{n_k}\to a$ then, $a_n\to a.$

Proof: Let $\varepsilon > 0$ be given.

We know, $\exists N_1 \in \mathbb{N}$ such that $|a_n - a_m| < \frac{\varepsilon}{2}$ for $n, m \ge N_1$.

There exists $N_2 \geq N_1$ such that $\left|a_{n_k} - a\right| < \frac{\varepsilon}{2} \text{ for } k \geq N_2$

For $n \geq N_1$

$$\begin{split} |a_n-a| &= \left|a_n - a_{n_{N_2}} + a_{n_{N_2}} - a\right| \\ &\leq \left|a_n - a_{n_{N_2}}\right| + \left|a_{n_{N_2}} - a\right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

September 24th

We say $A\subseteq\mathbb{R}$ is complete iff whenever $(a_n)\subseteq A$ is cauchy then $a_n\to a$ for some $a\in A$.

Theorem 2.9

Proof: Let $(a_n)\subseteq\mathbb{R}$ be cauchy. Then (a_n) is bounded.

By the B-W thm, $\exists \left(a_{n_k}\right)$ such that $a_{n_k} \to a \in \mathbb{R}$.

From before, $a_n \to a$

$$A = (0, 1]$$

A=(0,1] $a_n=\frac{1}{n}, \text{then } a_n\to 0 \Rightarrow (a_n)\subseteq A \text{ is cauchy since } 0\notin A, \text{ then } A \text{ is not complete}.$

Definition 2.10

We say $C\subseteq \mathbb{R}$ is closed iff $(x_n)\subseteq C$ such that $x_n\to x\in R$ then $x\in C.$

Example

- (0,1] is not closed
- \mathbb{R} is not closed
- Assignment 2 implies [a, b] is closed.
- \mathbb{Z} is closed.

Proposition 2.11

For $A \subseteq \mathbb{R}$, A is closed iff A is complete.

Proof: Assume A is closed. Let $(a_n) \subseteq A$ be cauchy.

Since $\mathbb R$ is complete, $a_n \to a \in \mathbb R$ for some a.

However A is closed and so $a \in A$.

Hence, A is complete.

Assume *A* is complete.

Let $(a_n) \subseteq A$ such that $a_n \to a \in \mathbb{R}$.

Since (a_n) is cauchy and A is complete, we know $a_n \to a \in A$.

Hence, A is closed.

2.5 lim sup, lim inf

2.6 Typology September 29th

Definition 2.12

We say that $U\subset\mathbb{R}$ is open if and only if $\forall x\in U, \exists \varepsilon>0, (x-\varepsilon,x+\varepsilon)\subseteq U$

- (a,b) is open (0,1] is neither open or closed $\forall \varepsilon > 0, \exists q \in \mathbb{Q}, q \in (\pi \varepsilon, \pi + \varepsilon) \subseteq \mathbb{R} \setminus \mathbb{Q}$

Proposition 2.13

A set $C \subseteq \mathbb{R}$ is closed iff $\mathbb{R} \setminus C$ is open

Proof: Assume C is closed.

Let $x \in \mathbb{R} \setminus C$.

For a contradiction, suppose $\forall \varepsilon > 0, \exists c \in C \text{ such that } c \in (x - \varepsilon, x + \varepsilon).$

Thus $\forall n \in \mathbb{N}, \exists c_n \in C \text{ such that } c_n \in \left(x - \frac{1}{n}, x + \frac{1}{n}\right)$. Then $|c_n - x| < \frac{1}{n} \to 0$ and so $c_n \to x$.

Since C is closed, $x \in C$, Contradiction!.

Assume $\mathbb{R} \setminus C$ is open.

Let $(c_n) \subseteq C$ such that $c_n \to x \in \mathbb{R}$.

For a contradiction assume $x \notin C$.

Since $\mathbb{R} \setminus C$ is open, $\exists \varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subseteq \mathbb{R} \setminus C$.

Using $c_n \to x, \exists N$ such that $c_N \in (x - \varepsilon, x + \varepsilon) \subseteq \mathbb{R} \setminus C$, Contradiction!.

Remark

 $U \in \mathbb{R}$ is open $\Leftrightarrow \mathbb{R} \setminus (\mathbb{R} \setminus U)$ is open $\Leftrightarrow \mathbb{R} \setminus U$ is closed.

Proposition 2.14

Let I be the index set

- 1. If $u_i \subseteq \mathbb{R}, i \in I$ are open, then $\cup_{i \in I} u_i$ is open.
- 2. If $c_i \subseteq \mathbb{R}, i \in I$ are closed, then $\cap_{i \in I} c_i$ is closed.
- 3. If $u, v \in \mathbb{R}$ are open, then $u \cap v$ is open.
- 4. If $C, D \in \mathbb{R}$ are closed, then $C \cup D$ is closed.

Proof:

- 1. Let $x \in \bigcup u_i \Rightarrow \exists i \in I, x \in u_i \Rightarrow \exists \varepsilon > 0, (x \varepsilon, x + \varepsilon) \subseteq u_i \subseteq Uu_i$
- 2. $\mathbb{R} \setminus \cap c_i = \cup (\mathbb{R} \setminus c_i)$ is open $\Rightarrow \cap c_i$ is closed.
- 3. Let $x \in U \cap V$, such that

$$\begin{split} &\exists \varepsilon_1 > 0, (x - \varepsilon_1, x + \varepsilon_1) \subseteq U \\ &\exists \varepsilon_2 > 0 (x - \varepsilon_2, x + \varepsilon_2) \subseteq V \\ &\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} \end{split}$$

This implies $(x - \varepsilon, x + \varepsilon) \subseteq U \cap V$.

4. $\mathbb{R} \setminus (C \cap D) = (\mathbb{R} \setminus C) \cap (\mathbb{R} \setminus D)$ open $\Rightarrow C \cup D$ closed.

•
$$\underbrace{\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)}_{\text{open}} = \underbrace{\{0\}}_{\text{not open}}$$
•
$$\underbrace{\bigcup_{n=1}^{\infty} \left[0, 1 - \frac{1}{n}\right]}_{\text{closed}} = \underbrace{\begin{bmatrix}0, 1\}}_{\text{not closed}}$$

Definition 2.15

 $A \subseteq \mathbb{R}$

1. The closure of A is

$$\overline{A} = \bigcap_{A \subseteq C} C$$
, where C is closed.

2. The interior of A is

$$\operatorname{int}(A) = \bigcup_{U \subseteq A} U, \text{where } U \text{ is open.}$$

Remark

- 1. \overline{A} is the smallest closed set containing A
- 2. int(A) is the largest open set contained in A

$$A = [0, 1)$$

$$int(A) = (0,1)$$

$$A = [0, 1]$$

Definition 2.16

- 1. We say $x \in \mathbb{R}$ is a limit point of A iff $\exists (a_n) \subseteq A$ such that $a_n \to x$.
- 2. We say $x \in \mathbb{R}$ is an interior point of A iff $\exists \varepsilon > 0, (x \varepsilon, x + \varepsilon) \subseteq A$.

- A = {limit pts of A}
 int(A) = {interior pts of A}

October 1st

Proof:

1. Let $L = \{x : x \text{ limit point of } A\}$

Let
$$x \in \overline{A}$$
. If $x \notin L$ then, $\exists \varepsilon > 0$, $(x - \varepsilon, x + \varepsilon) \subseteq \mathbb{R} \setminus A$. This implies $\underbrace{\mathbb{R} \setminus (x - \varepsilon, x + \varepsilon)}_{\text{closed}} \supseteq A$

Since $x \in \overline{A}$, $\Rightarrow x \in \mathbb{R} \setminus (x - \varepsilon, x + \varepsilon)$, Contradiction!.

 (\Longleftrightarrow)

Let $x \in L$

Proposition 2.18

- 1. $\overline{\mathbb{R} \setminus A} = \mathbb{R} \setminus \operatorname{int}(A)$ 2. $\operatorname{int}(\mathbb{R} \setminus A) = \mathbb{R} \setminus \overline{A}$

Proof:

3 Continuity

October 6th

Recall recall

if $f:A\to\mathbb{R}$ is cst at $a\in A$ iff $f(a_n)\to f(a)$ whenever $(a_n)\subseteq A, a_n\to a$

Proposition 3.1

cts at $a\in A$ iff $\forall \varepsilon>0, \exists \delta>0, x\in A, |x-a|<\delta \Rightarrow |f(x)-f(a)|<\varepsilon.$

Proof: (\Rightarrow) Suppose f is cts at $a \in A$. Let $\varepsilon > 0$ be given.

Suppose no such $\delta>0$ exists. Thus for all $n\in\mathbb{N}$, $\exists a_n\in A$ such that $|a_n-a|<\frac{1}{n}$ but $|f(a_n)-a|<\frac{1}{n}$ $f(a) \geq \varepsilon$.

 $Na_n, a_n \to a$ and so $f(a_n) \to f(a)$ by cty at a.

For a large $N, |f(a_N) - f(a)| < \varepsilon$. Contradiction!.

 (\Leftarrow) Suppose f satisfies the ε, δ Condition at a.

Assume $(a_n) \subseteq A$ such that $a_n \to a$.

$$f(a_n) \to f(a)$$

 $f(a_n) o f(a)$ **Proof:** Let $\varepsilon>0$ be given. There exists $\delta>0$ such that $x\in A, |x-a|<\delta\Rightarrow |f(x)-f(a)|<\varepsilon.$

Also, $\exists N \in \mathbb{N}$ such that $n \geq |a_n - a| < \delta.$ For $n \geq N, |f(a_n) - f(a)| < \varepsilon.$

Proposition 3.2

Then, f is cts iff $f^{-1}(u)$ is relatively open in A, whenever $U \subseteq \mathbb{R}$ is open.

$$f: X \to Y, B \subseteq Y$$
.

Notation $f:X\to Y, B\subseteq Y.$ The image of B under f is $f^-1(B)=\{x\in X:f(x)\in B\}.$

Proof: Assume *f* is cts.

Assume there exists an open $U \subseteq \mathbb{R}$ such that $f^{-1}(u)$ is not relatively open in A.

Thus $\exists x \in f^{-1}(u)$ such that $\forall n \in \mathbb{N}, \exists a_n \in A \text{ with, } |a_n - x| < \frac{1}{n} \text{ and } a_n \notin f^{-1}(u).$

 $\therefore a_n \to x \text{ and so}, f(a_n) \to f(x) \text{ by cty.}$

Since *U* is open, $\exists \varepsilon > 0, (f(x) - \varepsilon, f(x) + \varepsilon) \subseteq U$

However, $f(a_n) \to f(x)$ and so for large $N, f(a_n) \in (f(x) - \varepsilon, f(x) + \varepsilon) \subseteq u$. This implies $a_N \in f(x)$ $f^{-1}(u)$, Contradiction!.

← Assume the pre-image Condition.

Let $(a_n) \subseteq A$ such that $a_n \to a \in A$.

$$f(a_n) \to f(a)$$

Let $\varepsilon > 0$ be given.

Consider $u = (f(a) - \varepsilon, f(a) + \varepsilon)$.

By assumption, $f^{-1}(u)$ is relatively open in A.

Since $a \in f^{-1}(u), \exists \delta > 0$ such that. $(a - \delta, a + \delta) \cap A \subseteq f^{-1}(u)$.

There exists $N \in \mathbb{N}$ such that $n \geq N \Rightarrow |a_n - a| < \delta$.

Hence, $a \ge N \Rightarrow a_n \in (a - \delta, a + \delta) \cap A, \subset f^{-1}(u)$.

$$\therefore n \ge f(a_n) \in U \Rightarrow |f(a_n) - f(a)| < \varepsilon.$$

$$f:A\to\mathbb{R}$$

Corollary 3.3 $f:A\to\mathbb{R}$ Then, f is cts iff $f^{-1}(c)$ is rel closed in A whenever $C\subseteq\mathbb{R}$ is closed.

Proof: \Rightarrow Let f be cts, and let $C \subseteq \mathbb{R}$ be closed.

Then $\mathbb{R} \setminus C$ is open and so $f^{-1}(\mathbb{R} \setminus C)$ is rel open in A.

For homework check, $f^{-1}(\mathbb{R}\setminus C)=f^{-1}(\mathbb{R})\setminus f-1(C)=A\setminus f^{-1}(c)\Rightarrow f^{-1}(C)$ rel closed in A.

⇐ Identical, do for homework if time.

October 8th

Proposition 3.4
$$f,g:A\to\mathbb{R}, a\in A \text{ is cts at } a\in A$$

Proof: Then, f + g, αf , fg, where $\frac{f}{g}g(0) \neq 0$ are all cts at a.

$$(a_n)\subseteq A, a_n\to a, (f+g)(a_n)=f(a_n)+g(a_n)\to f(a)+g(a), \text{etc.}$$

Proposition 3.5

If g is cts at a, and f is cts at (a), then $f \circ g$ is cts at a.

why

Note $(a_n)\subseteq \mathrm{dom}(g) < a_n \to a, g \ \mathrm{cts} \Rightarrow g(a_n) \to g(a) \ f \ \mathrm{cts} \Rightarrow f(g(a_n)) \to f(g(a)) \Rightarrow (f \circ g)(a_n) \to (f \circ g)(a).$

Example

• $f,g:A \to \mathbb{R}$ are cts

$$X = \{x \in A : f(x) < g(x)\}$$

Prove that X is relatively open in A.

Prove that $\max\{f,g\}$ is cts.

$$\max\{f,g\} = \tfrac{(f+g)+|f-g|}{2}$$

Proposition 3.6

 $K\subseteq\mathbb{R}$ is compact $f:K\to\mathbb{R}$ is cts

Note **Notation**

 $f:X \to Y, A \subseteq X$ the image of A is $f(A) = \{f(a): a \in A.$

 $\textit{Proof:} \ \mathrm{Let}\ (y_n) \subseteq f(k) \ \mathrm{and} \ \mathrm{say}\ y_n = f(x_n), x_n \in K.$

Since $(x_n)\subseteq K$ and K is compact, $\exists a \text{ subsequence } X_{n_k}\to x\in K.$

Using continuity of f, we have $f\Big(x_{n_k}\Big) \to f(x),$ and so $y_{n_k} \to f(x) \in f(K)$

 $f: \mathbb{R} \to \mathbb{R}, f(x) = \arctan(x) = \tan^{-1}(x),$ $\underbrace{f(\mathbb{R})}_{x}$

$$\underbrace{f(\mathbb{R})}_{\text{closed}} = \underbrace{\left(-\frac{n}{2}, \frac{n}{2}\right)}_{\text{pot closed}}$$

END OF MIDTERM MATERIAL

Midterm Exam Wed, Oct, 22, 7:00 - 8:30 PM. (not 8:50). DWE 1501

Every question has a theme

1. Suprema

- 1. [5] From class (either a example problem or proof)
- 2. [5] New, (new homework type problem)
- 2. Sequence Conv
 - 1. [3] New (a is separate)
 - 2. [3] From Class (b, c, d) are all part of the same idea
 - 3. [2] Stat a thm
 - 4. [2] From Class
- 3. Cty + topology
 - 1. [5] From class
 - 2. [5] New
- 4. Assignment Probs (read the assignment solutions)
 - 1. [5]
 - 2. [5]
- 5. Short Answer/Computation 5 x [2] = [10]

Out of 50 points

The density of \mathbb{Q} proof is not on the midterm.

3.2 EVT + IVT

 $\emptyset
eq A \subseteq \mathbb{R} \,\, \mathrm{bd}$ $\exists (a_n), (b_n) \subseteq A \,\, \mathrm{such }\, \mathrm{that}$

$$a_{n_{\sim}}\sup(A)\in\overline{A}$$

$$b_{n_{s}}\inf(A)\in\overline{A}$$

Theorem 3.7 **Exterme Value Thm**

If $K\subseteq\mathbb{R}$ is compact and $f:K\to\mathbb{R}$ is cts, then $\exists a,b\in K$ such that $f(a)=\max f(k)$ and

Proof: Since f(k) is compact

$$\sup f(k) \in \overline{f(k)} = f(k) \text{ and } \inf f(k) \in \overline{f(k)} = f(k).$$

October 10th

Intermediate Value Theorem

Theorem 3.8 $\text{If } f:[a,b]\to\mathbb{R} \text{ is cts, then } f([a,b]) \text{ is a compact interval.}$

Proof: Let $y_1, y_2 \in f([a,b])$ and let $z \in \mathbb{R}$ such that $y_1 < z < y_2$

Say
$$y_i = f(x_i), x_i \in [a,b]$$

Case 1: $x_1 < x_2$ Let

$$x_0 = \sup\{x \in [x_1, x_2] : f(x) < z\}.$$

For every $n \in \mathbb{N}, \exists a_n \in [x_1, x_2] \text{ s.t. } x_0 - \frac{1}{n} < a_n \leq x_0 \text{ and } f(a_n) < z.$

Then, we have $a_n \to x_0$ and so $f(a_n) \to f(x_0) < z$.

Hence by limits preserve order, $f(x_0) \leq z$.

Let $t_n = \min\left\{x_0 + \frac{1}{n}, x_2\right\}$

$$\therefore x_0 \leq t_n < x_0 + \frac{1}{n} \Rightarrow t_n \to x_0 \Rightarrow f(t_n) \to f(x_0)$$

However, $f(t_n) \ge z$ and so $f(x_0) \ge z$

$$\therefore z = f(x_0).$$

Case 2: $x_2 < x_1$

Similar, so we are done.

•
$$K\subseteq\mathbb{R}$$
 compact
$$f:K\to K \text{ is cts. } \forall x\neq y, |f(x)-f(y)|<|x-y|$$
 Prove that $\exists x\in K$ such that $f(x)=x$.

Proof: Consider $g:K\to\mathbb{R},$ g(x)=|f(x)-x|. This is a comp of cts functions which implies g is

Using EVT, Let $g(x_0) = \min g(K)$.

Claim

$$f(x_0) = x_0$$

Suppose for a contradiction $f(x_0) \neq x_0$.

$$\therefore |f(f(x_0)) - f(x_0)| < |f(x_0) - x_0| \Rightarrow g(f(x_0)) < g(x_0).$$

By minimally $g(x_0)$ must the smallest value, Condition!

Example

$$f:[0,1]\to [0,1]$$
 cts

 $f:[0,1]\to [0,1]$ cts Prove that $x\in [0,1]$ such that f(x)=x.

why

Note
$$g(x)=f(x)-1$$

$$g(0)=f(0)\geq 0$$

$$g(1)=f(1)01\leq 1$$
 By the IVT, $g([0,1]$ is an interval. $g(1)\leq 0\leq g(0)$

Example

$$f(x) = \cos(x) - \frac{1}{x}$$
 is cts

$$f(\frac{\varphi}{2}) = 0 - \frac{2}{\pi} < 0$$

$$f(2\pi) = 1 - \frac{1}{2}\pi > 0$$

Prove $\exists x \in \mathbb{R}$ such that $\cos x = \frac{1}{x}$. $f(x) = \cos(x) - \frac{1}{x} \text{ is cts.}$ $f(\frac{\varphi}{2}) = 0 - \frac{2}{\pi} < 0$ $f(2\pi) = 1 - \frac{1}{2}\pi > 0$ Since $f: \left[\frac{\pi}{2}, 2\pi\right] \to \mathbb{R}$ is cts, by the IVT, $f(\frac{\pi}{2}, 2p)$.

Hence we have, $f\left(\frac{\pi}{2}\right) < 0 < f(2\pi)$.

Thus $\exists x \in \left[\frac{\pi}{2}, 2\pi\right]$ such that f(x) = 0.