

THE BEAMPLEXER

THE BEAMPLEXER

OPERATION

power

The unit is equipped with a self-contained regulated power supply which

input

Switching Input: The switching section consists of a Schmitt circuit which generates a switching pulse. This circuit is triggered on the positive going slope of the input signal between 5 volts and 50 volts. A two position switch on the front panel selects the switching input. The output of the Schmitt circuit goes to:

- A. The Trigger Out jack where it is used as a synchronizing pulse.
- B. To the switching grids of the Beam Tube.

Data Input: Each of the channels is A. C. coupled to an individual pedestal level control in its grid circuit.

switching

The cathode of each of the triode amplifiers is connected to a common plate load resistor. The output of each channel is available through its ten positions, current is supplied to the tube connected to the cathode in this way only one tube at a time is allowed to conduct.

output

The triode amplifiers are tied to a common plate load resistor. The output signal is available through a BNC connector at the rear of the unit.

The Beamplexer—Type 6001.
Shown with case—Type 7004.

Measu

Amplitu

time and

INSTRUMENTS

PRICE SCHEDULE JAN 20 1962 B 97

EFFECTIVE—MAY 1, 1959

BEAMPLEXERS

6001	Beamplexer.....	\$ 575.00	6001/7004	Beamplexer with Panel Cabinet.....	595.00
------	-----------------	-----------	-----------	------------------------------------	--------

PULSE CONTROL UNITS

1003	Triple Push Button Generator.....	\$ 192.00
1006	P.B. Wide Range Pulse Generator.....	200.00
1020	Pulse Standardizer.....	190.00
1050	10.4 Pulse Generator.....	325.00
1101	Flip Flop.....	170.00
1105	Twin Flip Flop.....	250.00
1201	Twin Coincidence Detector (Tube Type).....	196.00
1202	Twin Coincidence Detector (Xtal Type).....	90.00
1301	Pulse Delay (Multivibrator).....	200.00
1302	Pulse Delay (Tapped Delay Line).....	252.00
1303	Pulse Delay (.1 us. Not Panel Mounted).....	35.00
1402	Gated Channel Selector.....	234.00
1501	Pulse Gater.....	203.00
1601	Crystal Mixer (Not Panel Mounted).....	38.00
1602	Panel Mounted Twin Crystal Mixer.....	85.00
1603	Twin Vacuum Tube Mixer.....	250.00
1703	2-4-8-10-16 Pulse Counter.....	265.00
1751	Variable Scale Counter (1 Mc).....	395.00
1801	Twin Pulse Operated Relay.....	250.00
1810	Voltage Calibrator.....	327.00
1901	Twin Inverter.....	250.00
1950	Sequence Gater.....	200.00
3003	Negative Current Driver.....	450.00
3004	Positive Current Driver.....	450.00

RACK EQUIPMENT

7001	Unwired 6 Ft. Rack on Casters.....	\$ 30.00
7002	Wired 6 Ft. Rack on Casters.....	175.00
7003	Bench Rack.....	45.00
7004	7" Panel Cabinet.....	35.00
7101	Rack Power Strip with Amphenol Connectors.....	75.00
7102	Rack Power Strip with Jones Connectors.....	75.00
7202	Rack Power Control with Cut Out.....	275.00

POWER SUPPLIES

9001	8 Voltage Cabinet Type Power Supply.....	\$ 6,950.00
9102	7 Voltage Rack Mounted Power Supply.....	1,750.00
9202	Power Supply (5 unit capacity).....	375.00
9802	Power Supply for Type 1050.....	165.00

ACCESSORIES

8001	BNC Plug with Terminating Resistor.....	\$ 3.00
8002	BNC Plug with Binding Post.....	3.00
8003	Bracket Mounted Jack with Flexible Lead.....	3.00
8004	Identification Card Holder.....	.55
8005	BNC Jack with Banana Plugs.....	3.00
8006	UG-274-U Tee Connector.....	4.50
8007	Straight-Through BNC Cable Connector.....	2.50
8010-8	8-Inch Cable with Two BNC Plugs.....	5.50
8010-24	2-Foot Cable with Two BNC Plugs.....	5.50
8010-48	4-Foot Cable with Two BNC Plugs.....	5.50
8010-84	7-Foot Cable with Two BNC Plugs.....	7.50
8010-120	10-Foot Cable with Two BNC Plugs.....	7.50
8010-180	15-Foot Cable with Two BNC Plugs.....	7.50
8101	Feed Through Panel.....	95.00
8201	Remote Indicator Panel.....	80.00
8202	3½" Blank Panel.....	2.50
8030	Rack Table Assembly.....	20.00
8040	Core Test Jig—A.....	35.00
8041	Core Test Jig—B.....	35.00
8008	Cable Adapter Jones Socket to Amphenol Plug.....	10.00
8009	Cable Adapter Amphenol Socket to Jones Plug.....	10.00
8012	10 Watt Terminator.....	8.50

SPECIAL INSTRUMENTS

TS204A	Optimeter (with Nixie Readout).....	\$ 1,950.00	TS204BP	Power Supply for Optimeter TS204B.....	360.00
TS204B	Optimeter (with Provision for Relay Readout).....	1,950.00	RR40	Relay Readout (For Optimeter TS204B).....	900.00
TS204AP	Power Supply for Optimeter TS204A.....	360.00	BCT301	Tape Wound Bobbin Core Tester.....	4,162.50
			PG401	10.4 Mc Pulse Generator with Power Supply	525.00

DECade Counters and Special Products

DECade Counters

			1-9	10-99	100 or More
DC-101	10 KC	only Nixie Readout	\$ 85.00	\$ 80.00	\$ 75.00
DC-102	100 KC	only Nixie Readout	95.00	90.00	85.00
DC-103	1.1 MC	only Nixie Readout	125.00	115.00	105.00
DC-105	1.1 MC	Nixie & 10 outputs—Reset < 1 usec.	145.00	125.00	110.00
DC-105B	1.1 MC	Nixie & 10 outputs—Reset < 10 usec.	145.00	125.00	110.00
DC-106A	110 KC	Nixie & 10 outputs—Reset < 10 usec.	95.00	90.00	85.00
DC-106B	110 KC	10 outputs only—Remote Nixie Operation 400v	85.00	80.00	75.00
DC-106CA	110 KC	10 outputs only—Remote Nixie Operation 300v	85.00	80.00	75.00

ACCESSORIES:

Receptacles, type:	Used with:	1-99	SIX DECADE TRAY (19-inch wide with receptacles for rack mounting)
SR-101	DC-105, DC-106	\$3.00	R-201 Unwired with SR-102 receptacles \$32.00
SR-102	DC-101, DC-102 and DC-103	3.00	R-202 Unwired with SR-101 receptacles 32.00
			R-203 Wired—all DC-101 63.00
			R-204 Wired—DC-103, DC-102, DC-101 63.00
			R-205 Wired—all DC-106, DC-105B 63.00

CHEN COUNTERS

	1-9	10-99	100 & up
DC-190	10 KC Divider	\$ 45.00	\$ 42.00 \$ 39.50
DC-191	100 KC Divider	55.00	47.50 45.00
DC-195	Time Base (consists of four DC-190, one DC-191 and one BU-200)	249.50	240.00 230.00

Accessories

	1-9	10-99	100 & up
BU-200	Output Buffer Amplifier	35.00	32.50 30.00
BU-201	Input Buffer Amplifier		Prices on request
OS-100	100 KC Transistorized Oscillator		Prices on request

Lenticular Optic Displays

	1-99
LD-22 Up to 16 messages (2½" x 2½" screen)	\$45.00
LD-35 Up to 20 messages (3" x 5" screen)	\$55.00

NOTE 1: An initial tooling charge of \$5.00 per message is added to the basic cost of the first unit ordered. Additional units containing the same messages are priced as indicated above. The tooling charge covers the costs of preparation and photography and is charged only once for any given message. Therefore once a specific message has been prepared it can be used in combination with any other messages without additional cost.

NOTE 2: Units can be supplied for evaluation purposes containing typical messages, digits, etc. at no extra cost.

NOTE 3: Duplicate lenses are available at the following prices: type LD-22, \$17.00; type LD-35, \$20.00.

PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

MINIMUM ORDER \$10.00.

ALL PRICES F.O.B. SHIPPING POINT, NET 30 DAYS.

W A R R A N T Y

Instruments are warranted to be free from defects caused by materials, workmanship, and construction for a period of 180 days from the date of shipment. Burroughs Corporation's liability under this warranty is limited to replacing or repairing any instrument returned by the buyer during such period, provided:

1. Buyer promptly notifies Electronic Tube Division, Burroughs Corp., Plainfield, New Jersey in writing requesting authorization to return the unit as per our warranty policy. Letters should itemize complaints.

2. The defective unit is returned to address in (1), transportation charges prepaid.
3. Manufacturer's examination shall disclose to its satisfaction that defects have not been caused by misuse, neglect, accident or improper installation.

Under no conditions shall Burroughs Corp. be liable for collateral or consequential damages. This warranty is in lieu of all other warranties expressed or implied.

ELECTRONIC CONTRIBUTIONS BY

Burroughs Corporation

 ELECTRONIC TUBE DIVISION
Plainfield, New Jersey

REPRESENTED BY:

Burroughs Corporation
ELECTRONIC COMPONENTS DIVISION
PLAINFIELD, NEW JERSEY

DC/DC CONVERTER, TYPES VC12-170 AND VC28-170

Preliminary Engineering Data

DESCRIPTION: The Burroughs DC/DC Converter Modules, types VC12-170 and VC28-170, accept 12 VDC and 28 VDC, respectively, and provide a 170 VDC output suitable for operating NIXIE [®] Indicator Tubes. The converter is intended for use in electronic equipment where a high level DC voltage is not available. These units, when used in conjunction with the TRIXIE [®] Modules (transistor drivers for NIXIE tubes) provide a perfect combination for use in fully transistorized systems.

MODE OF OPERATION: The voltage level conversion is obtained by means of a transistor oscillator, transformer, and rectifier technique.

ELECTRICAL CHARACTERISTICS:

<u>Input Ratings</u>	<u>VC12-170</u>	<u>VC28-170</u>
Voltage	12 volts \pm 5%	28 volts \pm 5%
Current	750 ma max. (at full load)	300 ma max. (at full load)
<u>Output Ratings</u>	<u>VC12-170</u>	<u>VC28-170</u>
Voltage, full load	170 VDC, min.	170 VDC, min.
Voltage, no load	200 VDC \pm 5%	200 VDC \pm 5%
Current, full load	30 ma	30 ma
Impedance	330 ohms nom.	600 ohms nom.
Ripple	4V pp max, (at full load)	4V pp max, (at full load)

TERMINAL ARRANGEMENT

Input	Pins 1 and 2 (Pin 2 positive) Pins 3 and 4 (Pin 3 positive)
-------	--

PRICING

<u>1-9</u>	<u>10-99</u>	<u>100-499</u>
\$48.50	\$45.50	\$42.50

NOTES:

1. EXCEPT AS NOTED ALL RESISTORS 1/2 W $\pm 5\%$ WITH VALUES GIVEN IN OHMS.
2. NUMBERS SHOWN AT CORE WINDING ARE TERMINATION IDENTIFICATIONS.

NOTES.

1. ALL RESISTORS ARE 1/2 W 5% WITH VALUES GIVEN IN OHMS.
2. NUMBERS SHOWN AT CORE WINDINGS ARE TERMINATION IDENTIFICATIONS.

Applications Notes: The voltage converters can be used with any of the NIXIE indicator tubes having a maximum ionization voltage rating of 170 volts or less. Since the output voltage of the converter decreases about 1 volt for each 1 ma of load current, the size of the current limiting anode resistance used with each NIXIE tube will depend on the number and type of NIXIE tubes being supplied. The size of the appropriate anode resistance for the NIXIE tube is determined as follows.

The nominal load current (I_N) to be supplied by the converter is obtained by multiplying the number (N) of NIXIE tubes to be supplied by the average current (I_A) for the type of NIXIE tube being used. The average NIXIE tube current is determined by adding together the minimum and maximum test currents for the NIXIE tube type as specified in the NIXIE tube catalogue and by then dividing the sum by two as follows:

$$I_A = \frac{I_{\max} + I_{\min}}{2}$$

For the type B6033 average current is $2\frac{1}{4}$ ma ($\frac{3.0 + 1.5}{2} = \frac{4.5}{2} = 2\frac{1}{4}$)

Thus, if eight (8) type B6033's are to be operated from the converter, the nominal load current would be 18 ma ($8 \times 2\frac{1}{4}$). The converter output voltage (V_o) would then be 182VDC (200 - 18).

The NIXIE tube catalogue specifies the amount of current limiting series resistance to be used with a given type of NIXIE tube when a supply voltage of 170 VDC is used. Where the supply voltage is greater than 170 VDC, the series resistance should be increased so that the average current through the NIXIE tube will not change. Thus, if the converter output voltage (V_o) is 182VDC, the series resistance used with each NIXIE tube would be increased enough to provide an additional 12VDC (182-170) voltage drop across the series resistance. For type B6033 NIXIE tubes with an average current of $2\frac{1}{4}$ ma, the additional series resistance required would be about 5000 ohms. Since the series resistance specified for the B6033 at 170 VDC is 43 K ohms, the series resistance required with a voltage of 182VDC applied would be 48 K ohms.

SUMMARY: The converter output voltage decreases by about 1VDC for each 1 ma of load current. The series resistance required for each NIXIE tube being supplied will depend on the number and type of NIXIE tube being used.

1950 JUN 2
1950 JUN 2

BURROUGHS UNITIZED PULSE CONTROL INSTRUMENTS

ANOTHER ELECTRONIC CONTRIBUTION BY

Burroughs Corporation

ELECTRONIC TUBE DIVISION

Plainfield, New Jersey

EVERY ENGINEER WHO WORKS WITH PULSES SHOULD KNOW ABOUT BURROUGHS PULSE CONTROL EQUIPMENT

New packaged pulse handling units performing basic functions connect together to form a virtually unlimited variety of pulse systems.

Now you can assemble any kind of pulse system you need from the simplest to the most complex — usually in a matter of minutes. All you do is connect together Burroughs Pulse Units, using standard plug-in cables.

Speed of set-up is one of the chief advantages of this equipment. There's no soldering required. Systems can be set up or radically changed without tools.

Since Burroughs Pulse Units are complete within themselves and matched to each other, you're relieved of the problem of detailed circuit design. You work with simple block diagrams and basic ideas only . . . concentrate your efforts entirely on the logic of the system.

BURROUGHS PULSE TEST UNITS

HELP ENGINEERS SAVE TIME TO DO MORE

1. STUDY THE PULSE SEQUENCE

This is the time chart of the desired pulse output from the pulse system. It shows pulse height, pulse width, pulse frequency, and pulse separation. Usually, the pulse sequence is worked out as part of your preliminary planning prior to beginning actual engineering with the equipment.

2. DRAW THE BLOCK DIAGRAM

This is the first step in planning the actual pulse system. Using standard block diagram symbols, you can plan your complete system within a matter of minutes. And you needn't worry about circuit details within the units themselves, because all units are complete and matched to each other.

3. CONNECT THE UNITS TOGETHER

From the block diagram you can determine which Burroughs units you need in your rack. Connect them together with standard cables, and there's your pulse system. Convenient front-panel controls add further flexibility — enable you to make frequency changes over a wide range as easily as turning knobs.

Typical Applications For Burroughs Pulse Units

Pulses are being used so widely today that it would be impossible to list fully the many fields of application for Burroughs Pulse Units. Generally, however, they are being used in research, development, and production testing in connection with such applications as:

RADAR
COMPUTERS
TELEVISION
INSTRUMENT DESIGN
SYSTEM DESIGN
INDUSTRIAL CONTROL
TELEMETERING

ELECTRONIC CONTROL
TEST EQUIPMENT
BEAM SWITCHING TUBE TESTING
TRANSISTOR TESTING
CORE TESTING
MISSILE INSTRUMENTATION
RELAY TESTING

If you have an engineering problem involving pulses, write Burroughs. Without charge, we'll engineer a system for you showing which Burroughs Pulse Units you need and how much you can save in engineering time and equipment cost. Deliveries can usually be made immediately from stock.

TRY NEW IDEAS — Burroughs Pulse Units are so easy to use they make it possible for you to try many new ideas that you might otherwise never find time for. Think of it. No breadboard engineering. No designing special test equipment before you begin on a new project. Consider how many more new ideas you can try when you have this convenient, flexible equipment at your finger tips. If you work with pulses, you need these new engineering tools.

CORRECT ERRORS FAST — Before Burroughs Pulse Units were developed, errors in pulse system planning meant a serious economic loss — in equipment as well as time. Not so now. When you discover an error in planning your system, simply reconnect the cables and correct the error. It only takes minutes. Often you can't be sure how a system should be connected. With Burroughs units, you can try different ways — at no loss. You can experiment without losing engineering time.

SPEED COMPLETION OF ENGINEERING — Every day lost in the engineering phase of product development postpones product delivery. So you're the loser when you take time to build your own test equipment. How much easier it is to make deadlines when you can simply connect Burroughs pre-engineered units together. Leading laboratories engaged in all phases of electronics research are now benefiting from the time-saving advantages of Burroughs Pulse Units.

USE EQUIPMENT OVER AND OVER AGAIN — This is where the real economy comes in. But first let us say a word about original cost. Burroughs Pulse Units usually cost less than you would otherwise have to spend in engineering time and equipment to design and build your own pulse system. Beyond that, they can be used over and over again on different future jobs — saving additional cost in every application. The total savings can be incalculable.

1003 TRIPLE PUSH BUTTON PULSE GENERATOR

Inputs:

- (a) Push Button
- (b) Push button and a positive synchronizing pulse
- (c) Low frequency — limited pulse shaper for standardizing to 0.1 μ sec. pulse)

Output:

Duration: 0.1 μ sec. half sine wave pulse
Amplitude: variable from 0 to 35 volts
Polarity: positive only
Impedance: 93 ohms

TRIPLE PUSH BUTTON

1006 WIDE FREQUENCY RANGE PULSE GENERATOR

Inputs:

- (a) Push Button
- (b) Free-running: Frequency continuously variable from 15 cps to 4.5 MC

Output:

Duration: 0.1 μ sec. half sine wave pulse
Amplitude: variable from 8 to 30 volts
Polarity: Positive or negative
Impedance: 93 ohms

WIDE FREQUENCY RANGE
PUSH BUTTON TO 4.5 MC

NEW

1020 PULSE STANDARDIZER

Input:

ac or dc	5 volts min.
sine wave	40 volts max. peak-to-peak
pulse	positive — 30 volts max.
dc	negative — 20 volts max.
	positive — 30 volts max.
	negative — 15 volts max.

repetition frequency — to 1 megacycle

Output:

Duration: 0.1 μ sec. half sine wave pulse
Amplitude: variable 8 to 30 volts
Polarity: Positive or negative
Impedance: 93 ohms

ANY WAVEFORM INPUT
CONTROLLABLE STANDARDIZED
OUTPUT

NEW

1050 HIGH FREQUENCY PULSE GENERATOR

Inputs:

- (a) Free-running: Frequency continuously variable from 1.6 MC to 10.4 MC

Output:

Pulse Widths: 30, 40, 50, 60 or 70 millimicroseconds half sine wave pulse
Amplitude: variable 1 to 30 volts
Polarity: Positive or negative
Impedance: 93 ohms

HIGH FREQUENCY 1.6 MC
TO ABOVE TEN MEGACYCLES

NEW

Also available as a complete instrument. See PG-401

1101 HIGH FREQUENCY FLIP-FLOP

Inputs:

- Positive 0.1 μ sec. pulse
- 15.0 volt minimum amplitude
- 2.5 MC. maximum frequency
- Zero: A pulse into this jack sets the flip-flop to the "zero" state
- One: A pulse into this jack sets the flip-flop to the "one" state
- Complement A pulse into this jack reverses the flip-flop

Outputs:

Zero Gate: -23 or '0' volts dc
One Gate: '0' or -23 volts dc
(when zero gate = -23V, one gate = 0V and vice-versa)
Rise Time: 0.06 μ sec. (unloaded)
Fall Time: 0.06 μ sec. (unloaded)

2.5 MC FLIP FLOP

1105 TWIN FLIP-FLOP

Inputs: (each half)

- Positive 0.1 μ sec. pulse
- 15 volt minimum amplitude
- 1.0 MC maximum frequency
- Zero: A pulse into this jack sets the flip-flop to the "zero" state
- One: A pulse into this jack sets the flip-flop to the "one" state
- Complement A pulse into this jack reverses the flip-flop

Outputs: (each half)

(a) Zero Gate: -23 or '0' volts dc
(b) One Gate: '0' or -23 volts dc
when zero gate = -23 volts, one gate = 0 volts and vice-versa
Rise Time: 0.1 μ sec. (unloaded)
Fall Time: 0.1 μ sec. (unloaded)

TWIN FLIP FLOP

1201 TWIN COINCIDENCE DETECTOR

(To sense coincidence between DC level "And" 0.1 μ sec. pulse)

Inputs: (each half)

- Grid #1
Positive 0.1 μ sec. pulse
- 13 volt minimum amplitude
- 2.5 MC. maximum frequency
- Grid #3
'0' or -23 volts dc
to open or close grid #1

Outputs: (each half)

(obtained when grid #3 is '0' volts
"And" grid #1 has 0.1 μ sec. pulse)
Duration: 0.1 μ sec. half sine wave pulse
Amplitude: Variable 10 to 30 volts
Polarity: Positive or negative
Impedance: 93 ohms

TWIN "AND" GATES TUBE TYPE

1202 TWIN COINCIDENCE DETECTOR

(To sense coincidence of from two to five DC levels)

Inputs:

Two level dc voltages
'0' or -23 volts

Output:

'0' volts when all used inputs are '0'
-23 volts when one or more inputs are
-23 volts

TWIN "AND" GATES XTAL TYPE

1301 PULSE DELAY

(Multivibrator delay 1.0 to 80,000 μ sec.)

Input:

Positive 0.1 μ sec. half sine wave pulse
20 volt minimum amplitude

Outputs:

(a) 1 to 80,000 μ sec. after input pulse
Duration: 0.1 μ sec. half sine wave pulse
Amplitude: variable 10 to 30 volts
Polarity: Positive or negative
Impedance: 93 ohms
(b) Two level DC voltage:
Zero volts in quiescent state;
+30 volts during delay period
(1 to 80,000 μ sec.)
Impedance: 1650 ohms

1 TO 80,000 USEC DELAY

1302 PULSE DELAY

(Tapped delay line 0.1 to 1.9 μ sec. in 0.05 μ sec. steps)

Input:

Positive 0.1 μ sec. pulse
13 volt minimum amplitude

Output:

(0.1 to 1.9 μ sec. after input pulse)
Duration: 0.1 microsecond
Amplitude: Variable 10 to 32 volts
Polarity: Positive or negative
Impedance: 93 ohms

0.1 USEC TO 1.9 USEC DELAY

1402 CHANNEL SELECTOR

Inputs:

Coincidence Inputs
Grid #1: Positive 0.1 μ sec. pulse
10 volts minimum amplitude
2.5 MC. maximum frequency
Grid #2: Zero or -23 volts to open or
close grid #1

Outputs: (Four)

Duration (each): 0.1 μ sec. half sine wave
Amplitude (each): variable 10 to 30V
Polarity (each): Positive or negative
Impedance (each): 93 ohms

4 OUTPUTS FROM 1 INPUT

1501 PULSE GATER

Accomplishes functions of a pulse delay, a flip-flop and a coincidence detector to gate pulses for a period variable from 0.3 to 6,000 μ sec.

Inputs:

(a) Delay trigger input:
Positive 0.1 μ sec. pulse
10 volts minimum amplitude
(b) Coincidence inputs:
Grid #1: Positive 0.1 μ sec. pulse
20V minimum amplitude
Grid #3: Zero or -23 volts to open or
close grid #1

Outputs:

(a) Gating output (DC level)
-30 volts in quiescent state
'0' volts during delay period
Delay Period: Variable from 0.3
 μ sec. to 6000 μ sec.
(b) Pulse Output
During coincidence
Duration: 0.1 μ sec. half sine wave pulse
Amplitude: Variable 10 to 32 volts
Polarity: Positive or negative
Impedance: 93 ohms

GATES PULSE "BURSTS"

1601 MIXER

(Non rack mounted)

Inputs: (4)

Positive 0.1 μ sec. half sine wave pulse
20 volts minimum amplitude
2.0 MC. maximum frequency

Output:

(Do not terminate)
Duration: 0.1 μ sec. half sine wave pulse
Amplitude: Input minus 1 db maximum
Polarity: Positive

PULSE 4 INPUT "OR" GATE

1602 TWIN MIXER

Inputs: (5 each half)
Positive 0.1 μ sec. half sine wave pulse
20 volts minimum amplitude
2.0 MC. maximum frequency

Output: (one each half)

(Do not terminate)
Duration: 0.1 μ sec. half sine wave pulse
Amplitude: Input minus 1 db maximum
Polarity: Positive

TWIN 5 INPUT PULSE "OR" GATE

1603 TWIN MIXER

(Mixes the outputs of 4 flip-flops)

Inputs: (Four in each half)

Two level DC voltage

'0' or 23 volts

Output: (One for each half)

'0' volts DC if any or all inputs = '0' volts

-23 volts DC if all four inputs = -23 dc

TWIN DC "OR"

1703 PULSE COUNTER

Binary or Decade Scaler

Inputs:

(a) Counting (1.0 MC. maximum frequency)

0.1 μ sec. positive pulse

15 volts minimum amplitude

(b) Electronic reset

0.1 μ sec. positive pulse

15 volts minimum amplitude

reset time — 2.2 μ sec.

(c) Push button reset

Output: After selected 2, 4, 8, 10 or 16 count

Width: 0.1 μ sec. half sine wave

Amplitude: Variable 0 to 30 volts

Polarity: Positive or negative

Impedance: 93 ohms

COUNTS BY 2, 4, 8, 10, OR 16

NEW

1751 VARIABLE SCALE COUNTER

Inputs:

(a) Counting (1 MC maximum frequency)

0.1 μ sec. positive pulse

25 volts minimum amplitude

(b) Electronic reset

0.1 μ sec. positive pulse

25 volts minimum amplitude

Reset time — 1.0 μ sec.

(c) Push button reset

Outputs:

(a) After selected 1 thru 10 count

0.1 μ sec. positive or negative pulse

Amplitude: Variable 0 to 30 volts

(b) During each count period

One ON position = -90 volts

Nine OFF positions = -60 volts

**ALL 10 OUTPUTS AVAILABLE—
UNITS MAY BE CASCDED**

NEW

1801 PULSE OPERATED RELAY

Inputs:

Mode I (flip-flop)

(a) Energize

Positive 0.1 μ sec. half sine wave pulse

20 volts minimum amplitude

(b) De-energize

Positive 0.1 μ sec. half sine wave pulse

20 volts minimum amplitude

Energize in-put triggers flip-flop, thereby energizing relay

De-energize in-put resets the flip-

flop, thereby de-energizing relay.

Mode II (Univibrator)

(a) Energize

Positive 0.1 μ sec. half sine wave pulse

20 volts minimum amplitude

Energize in-put triggers univibrator, thereby energizing relay.

Delay period of univibrator variable from 1 millisecond to 8 seconds.

Outputs:

(a) Normally open relay contacts

(b) Normally closed relay contacts

**CONNECTS PULSE EQUIPMENT
TO TERMINAL EQUIPMENT**

1810 PULSE CALIBRATOR

The 1810 Pulse Calibrator is used primarily to measure AC, DC or pulse voltage and current amplitudes with an overall accuracy better than 0.3%. It can also be employed to obtain a more accurate measurement of pulse width and rise time where these measurements are taken at a percentage of the peak amplitude of the unknown signal.

**MEASURES AC, DC, OR PULSE
WITH 0.3% ACCURACY**

1901 TWIN INVERTER

Inputs: (DC)

Zero or -23 volts

Outputs: (DC)

When input = 0 Volts Output = -23 Volts

When input = -23 Volts Output = 0 Volts

DC INVERTER

1950 SEQUENCE GATER

This unit is used in conjunction with the 1750 pulse counter. It produces standard pulse control voltages to sequence 1201 or 1202 coincidence detectors.

Inputs: (10)

DC levels from 1750

-90 volts

-60 volts

Outputs: (10)

DC levels:

Zero volts when input = -90 volts

-30 volts when input = -60 volts

COMPANION TO 1750

CURRENT DRIVERS TYPES 3003-3004

The types 3003 and 3004 operate as cascode amplifiers with the cathode-anode junction at ground potential. The 3003 which produces the negative pulses is designed as a high impedance, high current source. The 3004 produces the positive current pulses and is designed for low impedance operation. It functions as a cathode follower.

Input — Standard 0.1 microsecond negative pulses of approximately 15 to 30 volts amplitude.

Output — Rectangular current pulses of variable amplitude, rise time and duration.

The type 3003 produces negative pulses, and the type 3004 produces positive pulses both with respect to ground.

Controls

Duration — Coarse and fine controls produce pulse widths continuously variable from 1.0 to 10 microseconds.

Rise Time — Coarse and fine controls allow continuous adjustment over rise times between 0.2 and 1.0 microseconds. Rise time is linear.

Fall Time — Fixed at 0.3 microseconds.

Amplitude — Coarse and fine controls permit continuous control up to 1.0 ampere.

Power Requirements

3004

+150 VDC	80 ma
-150 VDC	46 ma
6.3 VAC	9.15 amps

3003

-150 VDC	38 ma
-400 VDC	46 ma
6.3 VAC	11.65 amps

Duty Factor — 10%

Stability — If set according to instructions after proper warm up, the current pulse should remain stable for 24 hours.

HIGH CURRENT CORE TESTER

BCT-301 CORE TESTING SYSTEM

The BCT-301 is a complete core testing system composed of Burroughs Pulse Control units and designed expressly for the individual testing of tape-wound bobbin cores. It provides precise control over the frequency, pattern, amplitude and rise time of the core driving signal. The BCT-301 also allows highly accurate measurements of the switching time of the core as well as the amplitude of the output pulse. Because of its flexible, unitized construction, the BCT-301 can be enlarged and modified to accommodate many core testing applications including the testing of completely assembled core devices.

The BC7-301 uses standard Pulse Control units plus the 3003/3004 Current Drives plus Core Holding Jig and Table

TAPE WOUND

BOBBIN CORE

TESTING EQUIPMENT

PG-401 HIGH FREQUENCY PULSE GENERATOR

The PG-401 is a complete 1.6 to 10.4 megacycle pulse generator instrument comprised of a model 1050 high frequency pulse generator, a 9802 power supply and a 7002 seven inch panel cabinet.

The PG-401 pulse generator has the following specifications:

- I. Frequency: Continuously variable from 1.6 to 10.4 megacycles
- II. Output: Half-sine wave pulse
 - A. Amplitude: Continuously variable from 1 to 30 volts
 - B. Duration: 30, 40, 50, 60 or 70 millimicroseconds
 - C. Polarity: Positive or negative
 - D. Impedance: 93 ohms

Since the unit will produce thirty volts into a ninety-three ohms load, it can also be used as a high frequency current driver.

1.6 TO 10.4 MEGACYCLE

PULSE GENERATOR

COMPLETE WITH

POWER SUPPLY

RACK EQUIPMENT

7001 Unwired 6 Ft. Rack on Casters
7002 Wired 6 Ft. Rack on Casters
7003 Bench Rack
7004 7" Panel Cabinet

7101
7102
7202

Rack Power Strip with Amphenol Connectors
Rack Power Strip with Jones Connectors
Rack Power Control with Cut-Out

ACCESSORIES

8001	BNC Plug with Terminating Resistor	8010-48	4-Foot Cable with Two BNC Plugs
8002	BNC Plug with Binding Post	8010-84	7-Foot Cable with Two BNC Plugs
8003	Bracket Mounted Jack with Flexible Lead	8010-120	10-Foot Cable with Two BNC Plugs
8004	Identification Card Holder	8010-180	15-Foot Cable with Two BNC Plugs
8005	BNC Jack with Banana Plugs	8101	Feed Through Panel
8006	UG-274-U Tee Connector	8201	Remote Indicator Panel
8007	Straight-Through-BNC Cable Connector	8020	3½" Blank Panel
8010-8	8-Inch Cable with Two BNC Plugs	8030	Rack Table Assembly
8010-24	2-Foot Cable with Two BNC Plugs		

POWER SUPPLIES

The Type 9001, the largest composite power supply in the Burroughs line, provides eight regulated d-c voltages each supplied by an independent unit. All d-c voltages can be manually adjusted $\pm 20\%$ from the nominal voltage. With the exception of the -15 volt and the -35 volt units, which are mounted on the same panel, each unit may be removed separately for servicing. Since all units are electrically interlocked by relays, failure in any of the output voltages will disconnect all d-c voltages. The entire unit is contained in one panel suitable for relay rack mounting, and power is made

Output — D-C Voltage	Current
+400	1 amp.
+250	5
+150	6
+105	3
-15	1
-35	1
-150	6
-400	1

interlocked by relays, failure, such as the loss of d-c output from any unit or the opening of a central transformer primary fuse, will cause all d-c output voltages to be removed.

Power is made available by means of a terminal strip located inside the cabinet.

SPECIFICATIONS

Input — 220 volts 60 Cycles Single Phase 42 amps.

Regulation — $\pm 1\%$ from 10% load variations, for a-c input line variations of $\pm 8\%$.

Dimensions — The 9001 is mounted in a steel cabinet 35" wide x 75 $\frac{3}{8}$ " high x 22 $\frac{1}{16}$ " deep.

Weight — 1600 lbs.

The Type 9102 is a composite, regulated power supply providing seven separately controlled d-c voltages, each regulated to within 1% of its selected value. Since all units are electrically interlocked by relays, a failure in any of the output voltages will disconnect all d-c voltages. The entire unit is contained in one panel suitable for relay rack mounting, and power is made

Output — D-C Voltage	Current
+250	500 ma
+150	500 ma
+105	500
-15	± 25
-35	± 25
-150	1.0 amp
-400	200
A-C Voltage	(each source)
6.3 (four available)	12.5 amp.

available through an Amphenol plug on either side of the unit. In addition, there are four independent 6.3 volt, 12.5 ampere heater windings available.

SPECIFICATIONS

Input — 117 VAC 60 Cycle Single Phase 12 amps. Can be adapted for 220 VAC 60 Cycle Single Phase 3 wire use.

Regulation — $\pm 1\%$ from 10% load variations, for a-c input line variations of $\pm 10\%$.

Ripple — Less than 0.05% RMS.

Size — 19" wide x 24" high x 8 $\frac{3}{4}$ " deep.

Mounting — Rack mounted with amateur notching.

Weight — 75 lbs.

The Type 9202 is the smallest in the line of Burroughs Power Supplies. It is a composite supply which provides six d-c voltages and will drive five individual Burroughs Pulse Control units. Because of its built-in socket connections which permit power distribution

Output — D-C Voltage	Min.	Current	Max.
+250	2 ma	150 ma	150 ma
+150	30	300	300
+105	9	180	180
-15	0	15	15
-150	135	180	180
-400	10	15	15
A-C Voltage		Current	
6.3		16 amp.	

without the use of power rack strips, this unit can be used with the Burroughs Bench Rack, Type 7003, or any standard 19" relay rack.

SPECIFICATIONS

Input — 115 VAC 60 Cycle Single Phase

Regulation — For combined line variations of 110 to 120 VAC and indicated load variations there is $\pm 5\%$ regulation for all output voltages.

Ripple — Less than 0.5% RMS.

Size — 19" wide x 7" high x 14" deep.

Mounting — Rack mounted with Amateur notching.

Weight — 35 lbs.

Burroughs Corporation

ELECTRONIC TUBE DIVISION

Plainfield, New Jersey

5M1259

MODES OF OPERATION

quires a 60 cycle 115 V.A.C. source.

takes an input waveform and produces a standard input signal, and the triggering level is adjustable so the unit to operate over two ranges of rise times

amplifier. Each amplifier has gain control and a

ding target of the Beam Tube. As the beam steps to a particular target on which the beam is formed. In

signal across this load is fed to a cathode follower

With respect to observation of the input signal there are three modes of operation of the Beamplexer:

1. Push Button Operation. This allows selective viewing of each channel for an indefinite period.

2. Synchronizing the Switching Signal with the Data. Whenever the data signals are related frequencywise, either by having the same frequency or by being multiples of a common frequency, it is possible to view complete cycles on each of the input lines. In this operation the synchronizing pulse from the channel with the slowest frequency is used to switch the Beamplexer. The sync pulse from the Beamplexer in turn is used to trigger the scope. In this manner it is possible to view at least one complete cycle on each of the ten channels.

3. Sampling. By using signals from an independent asynchronous source to switch the Beamplexer, it is possible to sample the ten input lines at rates up to 100KC. When used in this fashion, the unit acts as a chopper.

Telemetering
Multiplexing
Vibration Analysis

Servo Mechanism Phase Measurements
Neurological Studies
Internal Combustion Studies

Pulse width,
frequency, Delay
overshoot.

Comparing—Wave shapes,
Rise times, Durations and Phase
Relationships.

Monitoring—Related wave-
forms from various check points
in a system.

Sampling—Unrelated wave-
forms from independent
sources.

POWER SUPPLIES

The Type 9001, the largest composite power supply in the Burroughs line, provides eight regulated d-c voltages each supplied by an independent unit. All d-c voltages can be manually adjusted $\pm 20\%$ from the nominal voltage. With the exception of the -15 volt and the -35 volt units, which are mounted on the same panel, each unit may be removed separately for servicing. Since all units are electrically interlocked by relays, failure, such as the loss of d-c output from any unit or the opening of a central transformer primary fuse, will cause all d-c output voltages to be removed.

Power is made available by means of a terminal strip located inside the cabinet.

SPECIFICATIONS

Input — 220 volts 60 Cycles Single Phase 42 amps.

Regulation — $\pm 1\%$ from 10% load variations, for a-c input line variations of $\pm 8\%$.

Dimensions — The 9001 is mounted in a steel cabinet 35" wide x 75 $\frac{3}{8}$ " high x 22 $\frac{1}{16}$ " deep.

Weight — 1600 lbs.

Output — D-C Voltage	Current
+400	1 amp.
+250	5
+150	6
+105	3
-15	1
-35	1
-150	6
-400	1

9001

The Type 9102 is a composite, regulated power supply providing seven separately controlled d-c voltages, each regulated to within 1% of its selected value. Since all units are electrically interlocked by relays, a failure in any of the output voltages will disconnect all d-c voltages. The entire unit is contained in one panel suitable for relay rack mounting, and power is made available through an Amphenol plug on either side of the unit. In addition, there are four independent 6.3 volt, 12.5 ampere heater windings available.

Output — D-C Voltage	Current
+250	500 ma
+150	500 ma
+105	500
-15	+25
-35	+25
-150	1.0 amp
-400	200

A-C Voltage	(each source)
6.3 (four available)	

9102

The Type 9202 is the smallest in the line of Burroughs Power Supplies. It is a composite supply which provides six d-c voltages and will drive five individual Burroughs Pulse Control units. Because of its built-in socket connections which permit power distribution

Output — D-C Voltage	Min.	Current	Max.
+250	2 ma		150 ma
+150	30		300
+105	9		180
-15	0		15
-150	135		180
-400	10		15

A-C Voltage	Current
6.3	16 amp.

Regulation — For combined line variations of 110 to 120 VAC and indicated load variations there is $\pm 5\%$ regulation for all output voltages.

Ripple — Less than 0.5% RMS.

without the use of power rack strips, this unit can be used with the Burroughs Bench Rack, Type 7003, or any standard 19" relay rack.

SPECIFICATIONS

Input — 115 VAC 60 Cycle Single Phase

9202

Current
16 amp.

Size — 19" wide x 7" high x 14" deep.

Mounting — Rack mounted with Amateur notching.

Weight — 35 lbs.

Burroughs Corporation

ELECTRONIC TUBE DIVISION

Plainfield, New Jersey

5M1259

THE BEAMPLEXER

OPERATION

power

The unit is equipped with a self-contained regulated power supply which requires a 60 cycle 115 V.A.C. source.

input

Switching Input: The switching section consists of a Schmitt circuit which takes an input waveform and produces a standard switching pulse. This circuit is triggered on the positive going slope of the input signal, and the triggering level is adjustable between 5 volts and 50 volts. A two position switch on the front panel allows the unit to operate over two ranges of rise times for the switching input. The output of the Schmitt circuit goes to:

- A. The Trigger Out jack where it is used as a synchronizing pulse.
- B. To the switching grids of the Beam Tube.

Data Input: Each of the channels is A. C. coupled to an individual triode amplifier. Each amplifier has gain control and a pedestal level control in its grid circuit.

switching

The cathode of each of the triode amplifiers is connected to a corresponding target of the Beam Tube. As the beam steps through its ten positions, current is supplied to the tube connected to the particular target on which the beam is formed. In this way only one tube at a time is allowed to conduct.

output

The triode amplifiers are tied to a common plate load resistor. The output signal across this load is fed to a cathode follower and is available through a BNC connector at the rear of the unit.

The Beamplexer is a ten position electronic switch utilizing the Burroughs Beam Switching Tube. It provides a means of displaying up to ten separate channels of information on a conventional single-beam oscilloscope. Individual controls on each of the ten input channels allow the vertical positioning of the signals, so that they may be superimposed on each other or placed in any desired relationship. This direct visual comparison simplifies certain studies and measurements of waveshapes, phase relationships, amplitude and frequency, and increases the application and effectiveness of the oscilloscope. Available as a rack mounting unit or in an individual cabinet, the Beamplexer is a portable instrument containing its own regulated power supply. It can be used with any standard oscilloscope and will find wide application with that instrument wherever multiple switching and time sharing techniques can be employed.

The Beamplexer—Type 6001.
Shown with case—Type 7004.

Measuring—Pulse width, Amplitude, Frequency, Delay time and Overshoot.

Comparing—Wave shapes, Rise times, Durations and Phase Relationships.

Monitoring—Related waveforms from various check points in a system.

Sampling—Unrelated waveforms from independent sources.

MODES OF OPERATION

With respect to observation of the input signal there are three modes of operation of the Beamplexer:

1. Push Button Operation. This allows selective viewing of each channel for an indefinite period.

2. Synchronizing the Switching Signal with the Data. Whenever the data signals are related frequencywise, either by having the same frequency or by being multiples of a common frequency, it is possible to view complete cycles on each of the input lines. In this operation the synchronizing pulse from the channel with the slowest frequency is used to switch the Beamplexer. The sync pulse from the Beamplexer in turn is used to trigger the scope. In this manner it is possible to view at least one complete cycle on each of the ten channels.

3. Sampling. By using signals from an independent asynchronous source to switch the Beamplexer, it is possible to sample the ten input lines at rates up to 100KC. When used in this fashion, the unit acts as a chopper.

Telemetering
Multiplexing
Vibration Analysis

Servo Mechanism Phase Measurements
Neurological Studies
Internal Combustion Studies

specifications

BEAMPLEXER TYPE 6001

SWITCHING SECTION

input: Frequency—Push Button operation and 10 cps to 100 kc.
Triggers on positive going waveforms.
Triggering level is adjustable from 5 volts to 50 volts.
Minimum pulse width—0.1 microsecond.
A push button has been provided for manual switching.

synchronizing output: Each switching signal is converted into a standard output pulse suitable for synchronizing an oscilloscope.
Width—1.4 microseconds • Amplitude—20 volts • Polarity—Positive
reset: A push button has been provided for resetting the unit to the zero position.

DATA SECTION

channels: Number of Input Channels—10.
Number of Output Channels—1.
Signal Band Width Each Channel—10 cps to 1.0 megacycle.
Acceptable Amplitude—0.5 volts to 200 volts.

noise: Channel Noise—0.05 volts peak to peak maximum.
Cross Talk between channels—0.5 volts peak to peak maximum (at 1.0 megacycles).
Switching Transient—14 volts peak to peak maximum, 2 microseconds duration.

controls: Positioning—Individual for each channel.
Pedestal levels for each channel are adjustable over a range of ± 11 volts as measured at the signal output.
Amplitude—Individual for each channel.
Maximum gain—10 db.

POWER

120 VAC, 60 cps, single phase—0.73 amps.

tube	8	12AT7	1	6AH6
complement:	2	6AK5	1	5651
	1	6X4	1	6700
	1	6216		

connections: All input and output jacks are BNC type.

PHYSICAL CHARACTERISTICS

Height:	7	inches
Width:	19	inches
Depth:	12	inches
Weight:	20	pounds
Mounting:	Amateur notching for rack mounting.	

beamplexer cabinet type 7004

Height: (including handles)	10 $\frac{1}{4}$	inches
Width:	19 $\frac{1}{4}$	inches
Depth:	12 $\frac{1}{2}$	inches
Weight:	5	pounds

tools for engineers

ANOTHER ELECTRONIC CONTRIBUTION BY

Burroughs Corporation

ELECTRONIC TUBE DIVISION

PLAINFIELD, NEW JERSEY