Lec 7: Relationships between two categorical variables (Two-way tables)

Corinne Riddell

September 9, 2022

Learning objectives for today

- How to visualize and quantify relationships between two categorical variables
- Two-way tables: marginal vs. conditional distributions
- Bar graphs: side by side vs. stacked
- Simpson's paradox

Readings

- Chapter 5 of Baldi & Moore
- Relationships in categorical data

Two-way tables

- Two-way stands for 2X2, as in a table with two columns and two rows
- Used to examine the relationship between 2 categorical variables, originally those with two levels
- Foundational to epidemiology, because of the types of variables we are often interested in

Classic 2X2 table format

Exposure group	Disease	No disease	Row total
Exposed	A	В	A+B
Not Exposed	\mathbf{C}	D	C+D
Column total	A+C	B+D	A+B+C+D

Example: Lung cancer and smoking

Group	Lung Cancer	No Lung Cancer	Row total
Smoker	12	238	250
Non-smoker	7	743	750
Column total	19	981	1000

Marginal distribution

- The **marginal distribution** of a variable is the one that is **in the margin** of the table (i.e., the Row total or the Column total are the two margins of a two-way table).
- The marginal distribution is the distribution for a single categorical variable
- We learned in Ch.1 how to plot marginal distributions of categorical variables using geom_bar()

Marginal distribution

Group	Lung Cancer	No Lung Cancer	Row total
Smoker	12	238	250
Non-smoker	7	743	750
Column total	19	981	1000

- Overall, what % of the population has lung cancer?
 - Answer:
- Overall, what % of the population are smokers?
 - Answer:

Marginal distribution

Group	Lung Cancer	No Lung Cancer	Row total
Smoker	12	238	250
Non-smoker	7	743	750
Column total	19	981	1000

- Overall, what % of the population has lung cancer?
 - Answer: 19/1000 = 1.9%
- Overall, what % of the population are smokers?
 - Answer: 250/1000 25% smoking
- The $\mathbf{marginal}$ distribution of lung cancer is 1.9% lung cancer, 98.1% no lung cancer.

Conditional distribution

Group	Lung Cancer	No Lung Cancer	Row total
Smoker	12	238	250
Non-smoker	7	743	750
Column total	19	981	1000

- The **conditional distribution** is the distribution of one variable **within** or **conditional on** the level of a second variable
- What is the conditional distribution of lung cancer **given** smoking?
 - Answer:
- What is the conditional distribution of lung cancer given non-smoking?
 - Answer:

Conditional distribution

Group	Lung Cancer	No Lung Cancer	Row total
Smoker	12	238	250
Non-smoker	7	743	750
Column total	19	981	1000

- The **conditional distribution** is the distribution of one variable **within** or **conditional on** the level of a second variable
- What is the conditional distribution of lung cancer **given** smoking?
 - Answer: 12/250=4.8% lung cancer and 238/250=95.2% no lung cancer
- What is the conditional distribution of lung cancer **given** non-smoking?
 - Answer: 7/750 = 0.9% lung cancer and 743/750 = 99.1% no lung cancer

Visualization of conditional distributions

Marginal and conditional distributions in R

- We learned in Ch.1 how to plot marginal distributions of categorical variables using geom_bar()
- Can we generalize the use of geom_bar() to plot multiple conditional distributions? I.e., can we show the conditional distribution of lung cancer for smokers and non-smokers on the same plot?

First, we encode the data to read into R:

```
# students, you don't need to know how to do this
two_way <- tribble(~ smoking, ~ lung_cancer,</pre>
                                                        ~ percent, ~number.
                                      "lung cancer",
                      "smoker",
                                 "lung cancer", 4.8, "no lung cancer", 95.2,
                                                          4.8,
                                                                     12,
                      "smoker",
                                                                     238,
                      "non-smoker", "lung cancer",
                                                          0.9,
                                                                     7,
                                      "no lung cancer", 99.1,
                      "non-smoker",
                                                                     743
```

Visualization of conditional distributions

If there is an explanatory-response relationship, compare the conditional distribution of the response variable for the separate values of the explanatory variable.

Dodged bar chart for the visualization of conditional distributions

```
ggplot(two_way, aes(x = smoking, y = percent)) +
geom_bar(aes(fill = lung_cancer), stat = "identity", position = "dodge") +
labs(title = "Dodged bar chart") + theme_minimal(base_size = 15)
```


Syntax: Dodged bar chart for the visualization of conditional distributions

```
#students, remove eval=F if you copy this code chunk (or else the code won't compile)
ggplot(data, aes(x = exposure_variable, y = percent)) +
  geom_bar(aes(fill = outcome_variable), stat = "identity", position = "dodge") +
  labs(title = "Dodged bar chart") +
  theme_minimal(base_size = 15)
```

Stacked bar chart for the visualization of conditional distributions

```
ggplot(two_way, aes(x = smoking, y = percent)) +
geom_bar(aes(fill = lung_cancer), stat = "identity", position = "stack") +
labs(title = "Stacked bar chart") + theme_minimal(base_size = 15)
```


Syntax: Stacked bar chart for the visualization of conditional distributions

```
#students, remove eval=F if you copy this code chunk (or else the code won't compile)
ggplot(data, aes(x = exposure_variable, y = percent)) +
  geom_bar(aes(fill = outcome_variable), stat = "identity", position = "stack") +
  labs(title = "Stacked bar chart") +
  theme_minimal(base_size = 15)
```

Visualization of conditional distributions: three levels of response variable

- Stacked and dodged plots are less informative when there are only two levels of both variables.
- This is because once you know the percent of lung cancer among smokers, you also know the percent of non-lung cancer among smokers. This makes some of the information redundant.
- The plots are more informative if there are 3 or more levels for at least one of the variables

Visualization of conditional distributions: three levels of response variable

• Example 2: Shoe support by gender (Data from Baldi & Moore page 124 of Ed.4):

Group	Men	Women	Row total
Good support	94	137	231
Average support	1348	581	1929
Poor support	30	1182	1212
Column total	1472	1900	3372

Check your understanding!

Visualization of conditional distributions: three levels of response variable

• Example 2: Shoe support by gender (Data from Baldi & Moore page 124 of Ed.4):

Group	Men	Women	Row total
Good support	94	137	231
Average support	1348	581	1929
Poor support	30	1182	1212
Column total	1472	1900	3372

• The question: How does the distribution of support of shoes worn vary between men and women?

Visualization of conditional distributions: three levels of response variable

```
# students, you don't need to know how to do this
shoe_data <- tribble(~ shoe_support, ~ gender, ~ percent,</pre>
                      "good",
                                      "men",
                                                94/1472,
                      "average",
                                      "men",
                                                1348/1472,
                      "poor",
                                      "men",
                                                30/1472,
                      "good",
                                    "women", 137/1900,
                      "average",
                                     "women", 581/1900,
                                      "women", 1182/1900)
                      "poor",
shoe data
```

```
## # A tibble: 6 x 3
    shoe_support gender percent
##
##
    <chr>
                 <chr>
                          <dbl>
## 1 good
                 men
                         0.0639
## 2 average
                 men
                         0.916
## 3 poor
                         0.0204
                 men
## 4 good
                         0.0721
                 women
## 5 average
                 women
                         0.306
## 6 poor
                         0.622
                 women
```

Stacked visualization when there are three levels of response

```
ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "stack") +
  theme_minimal(base_size = 15)
```


Dodged visualization when there are three levels of response

```
ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "dodge") +
  theme_minimal(base_size = 15)
```


Dodged visualization when there are three levels of response

Question: what is misleading about the fill legend?

```
ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "dodge") +
  theme_minimal(base_size = 15)
```


Dodged visualization when there are three levels of response

Question: what is misleading about the fill legend?

Answer: It is in alphabetic order, which is different from the natural order of this variable.

Question 2: How can we change the order in the legend?

```
ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "dodge") +
  theme_minimal(base_size = 15)
```


Dodged visualization when there are three levels of response

Question 2: How can we change the order in the legend?

Answer 2: Recall from the problem sets and lab how to reorder factor variables that affect the look of the plot:

```
shoe_data <- shoe_data %>%
  mutate(shoe_support = fct_relevel(shoe_support, "good", "average", "poor"))

ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "dodge") +
  theme_minimal(base_size = 15)
```


Dodged visualization when there are three levels of response

You might also want to specify the colors used to communicate that poor shoe support is painful!

```
ggplot(shoe_data, aes(x = gender, y = percent)) +
  geom_bar(stat = "identity", aes(fill = shoe_support), position = "dodge", col = "black") +
  theme_minimal(base_size = 15) +
  scale_fill_manual(values = c("#1a9641", "#fdae61", "#d7191c"))
```


Visualization of conditional distributions: three levels of response variable

In general, dodged plots are preferred over stacked plots. Why do you think that is?

Simpson's Paradox

Simpson's Paradox: Example from Baldi and Moore

Let's load these data that examines mortality rates by community and age group across two communities

```
#this is the data from page 131 of edition 4 of baldi and moore
simp_data <- tribble(~ age_grp, ~ community, ~ deaths, ~ pop,</pre>
                        "0-34",
                                    "A",
                                                  20,
                                                            1000,
                        "35-64",
                                    "A",
                                                 120,
                                                            3000,
                        "65+",
                                    "A",
                                                 360,
                                                            6000,
                        "all",
                                    "A",
                                                 500,
                                                            10000.
                        "0-34",
                                    "B",
                                                 180,
                                                            6000,
                        "35-64",
                                    "B",
                                                 150,
                                                            3000.
                        "65+",
                                    "B",
                                                 70,
                                                            1000,
                        "all",
                                    "B",
                                                 400,
                                                            10000)
simp_data <- simp_data %>%
  mutate(death_per_1000 = (deaths/pop) * 1000)
simp_data_no_all <- simp_data %>% filter(age_grp != "all")
```

Simpson's Paradox: Example from Baldi and Moore

```
simp_data
```

```
## # A tibble: 8 x 5
##
     age_grp community deaths
                                pop death_per_1000
             <chr>
                                              <dbl>
##
     <chr>
                        <dbl> <dbl>
## 1 0-34
             Α
                           20 1000
                                                 20
## 2 35-64
                           120
                               3000
                                                 40
             Α
## 3 65+
                          360 6000
                                                 60
             Α
## 4 all
                          500 10000
                                                 50
             Α
## 5 0-34
                          180
                                                 30
             В
                               6000
## 6 35-64
             В
                          150
                               3000
                                                 50
## 7 65+
             В
                           70 1000
                                                 70
## 8 all
                          400 10000
                                                 40
```

Simpson's Paradox Example: Plot only the conditional data

• Plot the mortality rates according to age group and community and link the point size to population size

```
ggplot(simp_data_no_all, aes(x = age_grp, y = death_per_1000)) +
  geom_point(aes(col = community, size = pop)) +
  labs(title = "Death rate by age group, community, and population size") +
  theme_minimal(base_size = 15)
```

Death rate by age group, community, and population :

Observations from this visualization:

- 1.
- 2.
- 3.

If someone ask you which community has higher mortality, what would you say?

Simpson's Paradox Example: Add the marginal data

- Add in the **marginal** data (not conditional on age)
- Notice that the mortality rates for the communities overall show community A having a higher rate than community B. Why?

Simpson's Paradox

"An association or comparison that holds for all of several groups can **reverse direction** when the data are combined to form a single group. This reversal is called **Simpson's Paradox**"

Simpson's Paradox

- Here are the same data shown using a bar chart
- Notice that the mortality rate for each of the blue-shaded bars in community B is higher than the correponding bar for community A, but the overall bar (shaded in gray) shows a reversal.

Simpson's Paradox

- With a bar chart we can't use aes(size = pop), so it is harder to see why the paradox is occuring.
- It is because we are taking a weighted average of each age-specific bar with weights proportional to the number of people of each age group in each community

Simpson's Paradox in Berkeley Admissions

- There is a famous example of Simpson's paradox related to admissions to Berkeley by gender
- Watch it here!

Recap: What new code and statistical concepts did we learn?

- 1. geom_bar(aes(col = var), stat = "identity", position = "dodge")
- 2. geom_bar(aes(col = var), stat = "identity", position = "stack")
- 3. Marginal distribution vs. conditional distribution
- 4. Simpson's Paradox