2 AULA 8 [Integrais Impróprias]

2.1 Integrais Impróprias do tipo 1

Nas resoluções das integrais definidas exige-se que seja válido o Teorema Fundamental do Cálculo, ou seja, o domínio de integração [a,b] deve ser fechado e limitado e as funções que limitam a região sejam contínuas naquele intervalo. Quando uma ou as duas condições não são satisfeitas, as integrais "definidas" são ditas integrais impróprias. Neste caso elas são resolvidas como limites.

Exemplo 16. Observe que o domínio de integração da primeira integral é ilimitado e na segunda integral a função integrando não está definida no limite inferior de integração.

1.
$$\int_0^\infty \frac{1}{1+x^2} dx$$
 2. $\int_0^2 \frac{1}{x} dx$

Definição 5 (Integrais impróprias do tipo 1). *Chamaremos de integrais impróprias do tipo 1 aquelas em que o intervalo de integração possui comprimento infinito. Neste caso teremos:*

1. Se $f:[a,\infty)\to\mathbb{R}$ for continua em $[a,\infty)$, então

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

2. Se $f:(-\infty,b]\to\mathbb{R}$ for continua em $(-\infty,b]$, então

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx$$

3. Se $f:(-\infty,\infty)\to\mathbb{R}$ for continua em $(-\infty,\infty)$, então

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

Sendo c um numero real qualquer.

Se o limite for finito, em qualquer dos casos, dizemos que a integral imprópria **converge**, e que o limite é o valor da integral imprópria. Caso o limite não exista, dizemos que a integral **diverge**.

Observação 2. Se f for uma função não negativa, então a integral imprópria em qualquer das três situações definidas acima continua sendo interpretada como a área que existe sob o gráfico de f no intervalo em questão. Se a integral convergir a área é finita, e se divergir a área será infinita.

A seguir apresentaremos alguns exemplos.

Exemplo 17. Decida se a integral imprópria $\int_0^\infty \frac{1}{1+x^2} dx$ converge ou diverge.

Solução:

Pela definição, temos que
$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{b \to \infty} \int_0^b \frac{1}{1+x^2} dx$$
.

Como a integral $\int \frac{1}{1+x^2} dx = arctg(x)$, então

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{b \to \infty} \int_0^b \frac{1}{1+x^2} dx$$

$$= \lim_{b \to \infty} \operatorname{arct} g(x)|_0^b$$

$$= \lim_{b \to \infty} [\operatorname{arct} g(b) - \operatorname{arct} g(0)]$$

$$= \frac{\pi}{2}$$

Neste caso a integral imprópria converge e seu valor é $\frac{\pi}{2}$.

Exemplo 18. Decida se a integral imprópria $\int_{-\infty}^{0} xe^{x} dx$ converge ou diverge.

Solução:

Pela definição, temos
$$\int_{-\infty}^{0} xe^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} xe^{x} dx$$
.

Como $\int xe^x dx = xe^x - e^x$ (integração por partes), então

$$\int_{-\infty}^{0} xe^{x} dx = \lim_{a \to -\infty} \int_{a}^{0} xe^{x} dx$$
$$= \lim_{a \to -\infty} [xe^{x} - e^{x}]_{a}^{0}$$
$$= \lim_{a \to -\infty} [-1 - ae^{a} + e^{a}]$$
$$= -1.$$

Neste caso a integral imprópria converge e seu valor é-1.

Observação 3. Observe que ae^a é indeterminado quando $a \to -\infty$. Neste caso utiliza-se a regra de L'Hopital para encontrar o limite.

Exemplo 19. Decida se a integral imprópria $\int_{-\infty}^{\infty} \frac{2x}{(1+x^2)^2} dx$ converge ou diverge.

Solução: Neste caso escolheremos c=0, mas poderíamos escolher qualquer valor para c.

Assim
$$\int_{-\infty}^{\infty} \frac{2x}{(1+x^2)^2} dx = \int_{-\infty}^{0} \frac{2x}{(1+x^2)^2} dx + \int_{0}^{\infty} \frac{2x}{(1+x^2)^2} dx.$$
Por substituição simples,
$$\int \frac{2x}{(1+x^2)^2} dx = \frac{-1}{1+x^2}.$$
Portanto,

$$\int_{-\infty}^{\infty} \frac{2x}{(1+x^2)^2} dx = \int_{-\infty}^{0} \frac{2x}{(1+x^2)^2} dx + \int_{0}^{\infty} \frac{2x}{(1+x^2)^2} dx$$

$$= \lim_{a \to -\infty} \int_{a}^{0} \frac{2x}{(1+x^2)^2} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{2x}{(1+x^2)^2} dx$$

$$= \lim_{a \to -\infty} \left[\frac{-1}{1+x^2} \right]_{a}^{0} + \lim_{b \to \infty} \left[\frac{-1}{1+x^2} \right]_{0}^{b}$$

$$= \lim_{a \to -\infty} \left[-1 + \frac{1}{1+a^2} \right] + \lim_{b \to \infty} \left[\frac{-1}{1+b^2} + 1 \right]$$

$$= 0.$$

Neste caso a integral imprópria converge e seu valor é 0.

Exemplo 20. Decida se a imprópria $\int_0^\infty sen(x) dx$ converge ou diverge.

$$\int_0^\infty sen(x) dx = \lim_{b \to \infty} \int_0^b sen(x) dx$$
$$= \lim_{b \to \infty} (-cos(x))_0^b$$
$$= \lim_{b \to \infty} (1 + cos(b))$$

Observe que este limite não existe!(oscila entre 0 e 2). Neste caso a integral imprópria DIVERGE.

Uma condição necessária para a convergência

Teorema 1. Seja f uma função contínua, tal que $[a, \infty) \subset Dom(f)$. Se $\int_a^\infty f(x) dx$ convergir, então $\lim_{x \to \infty} f(x) = 0$.

Observação 4. A condição $\lim_{x\to\infty} f(x) = 0$ é necessária para a convergência da integral imprópria, mas não é suficiente. Veja o exemplo abaixo.

Exemplo 21. Apesar de $\lim_{x\to\infty}\frac{1}{x}=0$ a integral imprópria $\int_0^\infty\frac{1}{x}\,dx$ diverge!

Solução:

De fato,

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx$$
$$= \lim_{b \to \infty} \ln(x) \Big|_{1}^{b}$$
$$= \lim_{b \to \infty} \ln(b)$$
$$= \infty$$

Exemplo 22. Decida sobre a convergência da integral imprópria $\int_1^\infty \frac{x^2}{5 + x l n(x)} dx$.

Solução:

Observe que
$$\lim_{x\to\infty}\frac{x^2}{5+xln(x)}=\lim_{x\to\infty}\frac{2x}{1+ln(x)}=\lim_{x\to\infty}\frac{2}{1/x}=\infty.$$

Portanto, pelo teorema 1, a integral diverge!

Algumas funções usadas na comparação para testes de convergência.

1. Consideremos a integral imprópria $\int_a^{\infty} \frac{1}{x^p} dx$, sendo a um número real positivo.

Para p = 1 o exemplo anterior nos mostrou que a integral diverge.

- a) se p > 1 então $\int_a^\infty \frac{1}{x^p} dx$ é convergente.
- b) se $p \le 1$ então $\int_a^\infty \frac{1}{x^p} dx$ é divergente.

De fato, se $p \neq 1$, então

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{a}^{b} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \frac{1}{1 - p} \left(\frac{1}{b^{p-1}} - \frac{1}{a^{p-1}} \right)$$

Se p>1, então $\lim_{b\to\infty}\frac{1}{b^{p-1}}=0$, isto implica que a integral imprópria convergirá para $\frac{1}{(p-1)(b^{p-1})}$.

Se p < 1, então $\lim_{b \to \infty} \frac{1}{b^{p-1}} = \infty$. Assim, a integral imprópria divergirá.

2. A função $\int_{a}^{\infty} e^{-px} dx$ converge se p > 0.(Verifique!)

Abaixo você encontrará duas sugestões de exercícios. Faça-os como treinamento!

Exercício 17. Decida se as integrais convergem ou divergem.

$$1. \int_0^\infty \frac{1}{\sqrt{x(x+4)}} dx$$

$$2. \int_1^\infty \frac{e^{\frac{1}{x}}}{(x^2)} dx$$

$$3. \int_0^1 ln(x)dx$$

$$4. \int_0^\infty \frac{1}{\sqrt{x}} ln(x) dx$$