Dynamic Bipartite Network: Mathematical Derivations

Ruofan Ma and Qi Liu

September 7, 2023

1 Setup

Let $G_t = (V_{1,t}, V_{2,t}, E_t)$ represent a dynamic bipartite graph observed at time t, where V_1 and V_2 denote two disjoint families of nodes and E represents the set of undirected edges between two nodes of different families. Suppose that (at t) family 1 has $N_{1,t} = |V_{1,t}|$ nodes whereas the number of nodes in family 2 is $N_{2,t} = |V_{2,t}|$. For a pair of nodes p, q, let $z_{pq,t} \in \{1, \ldots, K_1\}$ denote the latent group that node $p \in V_{1,t}$ of family 1 instantiates when interacting with node $q \in V_{2,t}$ whose latent group membership is denoted by $u_{pqt} \in \{1, \ldots, K_2\}$. Further, let $y_{pqt} = 1$ if there exists a directed edge from node p to q for $(p, q) \in E_t$, and $y_{pqt} = 0$ otherwise.

Assume further that the network at time t is in one of M latent states, and that a Markov process governs transitions from one state to the next. We then assume the mixed-membership vectors are generated according to Markov-dependent mixtures with Dirichlet distributions whose concentration parameters are functions of node covariates:

$$oldsymbol{\pi}_{pt} \mid oldsymbol{eta}_1 \sim \sum_{m=1}^{M} \mathbb{P}\left(S_t = m | S_{t-1}\right) imes ext{Dirichlet}\left(\left\{\exp\left(\mathbf{x}_{pt}^{ op} oldsymbol{eta}_{1gm}
ight)\right\}_{g=1}^{K_1}\right)$$

$$\boldsymbol{\psi}_{qt} \mid \boldsymbol{\beta}_2 \sim \sum_{m=1}^{M} \mathbb{P}(S_t = m | S_{t-1}) \times \text{Dirichlet}\left(\left\{\exp\left(\mathbf{x}_{qt}^{\top} \boldsymbol{\beta}_{2hm}\right)\right\}_{h=1}^{K_2}\right)$$

, where the vector of predictors \mathbf{x}_{it} is allowed to vary over time, vectors $\boldsymbol{\beta}_{1gm}$ and $\boldsymbol{\beta}_{2hm}$, indexed by state m in the Markov process, contain regression coefficients associated with the gth and hth groups of vertex families 1 and 2. Further, the random states are generated according to:

$$S_t \mid S_{t-1} \sim \text{Categorical}(A_n)$$

, where A is the transition matrix. We define a uniform prior over the initial state S_1 and independent symmetric Dirichlet prior distribution for the rows of A. Then, as common in mixed-membership SBMs, we define a categorical sampling model for the dyad-state specific group memberships, $z_{pq,t}$ and $u_{pq,t}$ as:

$$z_{pq,t} \mid \boldsymbol{\pi}_{pt} \sim \operatorname{Categorical}(\boldsymbol{\pi}_{pt}), \ \ u_{pq,t} \mid \boldsymbol{\psi}_{qt} \sim \operatorname{Categorical}(\boldsymbol{\psi}_{qt})$$

The model is then completed by defining a $K_1 \times K_2$ blockmodel B, with its B_{gh} element giving the log odds of forming an edge between any two latent group members. Therefore:

$$y_{pqt} \mid z_{pqt}, u_{pqt}, \mathbf{B}, \boldsymbol{\gamma} \stackrel{\text{indep.}}{\sim} \text{Bernoulli}\left(\text{logit}^{-1}(B_{z_{nqt}, u_{nqt}} + \mathbf{d}_{nqt}^{\top} \boldsymbol{\gamma})\right)$$

In sum, the data-generating process can be described as follows:

- 1. For each time period t > 1, draw a historical state $S_t \mid S_{t-1} = n \sim \text{Categorical}(\mathbf{A}_n)$
- 2. For each node $p \in V_1$ and $q \in V_2$ at time t, draw state-dependent mixed-membership vectors $\boldsymbol{\pi}_{pt} \mid \boldsymbol{\beta}_1, S_t = m \sim \text{Dirichlet}\left(\left\{\exp(\mathbf{x}_{pt}^{\top}\boldsymbol{\beta}_{1gm})\right\}_{g=1}^{K_1}\right)$ and $\boldsymbol{\psi}_{qt} \mid \boldsymbol{\beta}_2, S_t = m \sim \text{Dirichlet}\left(\left\{\exp(\mathbf{x}_{qt}^{\top}\boldsymbol{\beta}_{2hm})\right\}_{h=1}^{K_2}\right)$

- 3. For each pair of nodes $(p,q) \in E_t$ at time t,
 - Sample a group indicator $z_{pq,t} \mid \boldsymbol{\pi}_{pt} \sim \text{Categorical}(\boldsymbol{\pi}_{pt})$
 - Sample a group indicator $u_{pq,t} \mid \pmb{\psi}_{qt} \sim \mathrm{Categorical}(\pmb{\psi}_{qt})$
 - Sample a link between them $y_{pqt} \mid z_{pqt}, u_{pqt}, \mathbf{B}, \boldsymbol{\gamma} \overset{\text{indep.}}{\sim} \text{Bernoulli}\left(\text{logit}^{-1}(B_{z_{pqt}, u_{pqt}} + \mathbf{d}_{pqt}^{\top} \boldsymbol{\gamma}) \right)$

Therefore, the DGP gives the full joint distribution of data and latent variables in the model given a set of global hyper-parameters $(\beta, \gamma, \mathbf{B})$ and covariates (\mathbf{D}, \mathbf{X}) as:

$$f(\mathbf{Y}, \mathbf{Z}, \mathbf{U}, \mathbf{\Pi}, \boldsymbol{\Psi}, \mathbf{A} \mid \mathbf{B}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = P(S_1) \left[\prod_{t=2}^{T} P(S_t \mid S_{t-1}, \mathbf{A}) \right] \prod_{m=1}^{M} P(\mathbf{A}_m)$$

$$\times \prod_{t=1}^{T} \prod_{p \in V_{1t}} f(\boldsymbol{\pi}_{pt} \mid \mathbf{X}_1, \boldsymbol{\beta}_1, S_t) \prod_{q \in V_{2t}} f(\boldsymbol{\psi}_{qt} \mid \mathbf{X}_2, \boldsymbol{\beta}_2, S_t)$$

$$\times \prod_{t=1}^{T} \prod_{p,q \in V_{1t} \times V_{2t}} f(y_{pqt} \mid z_{pqt}, u_{pqt}, \mathbf{B}, \mathbf{D}, \boldsymbol{\gamma}) f(z_{pqt} \mid \boldsymbol{\pi}_{pt}) f(u_{pqt} \mid \boldsymbol{\psi}_{qt})$$

$$(1)$$

2 Marginalization

2.1 Marginalizing Π

Collect and integrate all terms that contain π :

$$\int \cdots \int \prod_{t=1}^{T} \prod_{p \in V_{1t}} \left[P\left(\boldsymbol{\pi}_{pt} \mid \mathbf{X}, \boldsymbol{\beta}_{1}, S_{t}\right) \right] \prod_{qt \in V_{2t}} P\left(\mathbf{z}_{pqt} \mid \boldsymbol{\pi}_{pt}\right) d\boldsymbol{\pi}_{1t} \dots d\boldsymbol{\pi}_{N_{1t}}$$

Denote $\alpha_{ptgm} = \exp\left(\mathbf{x}_{pt}^{\top}\boldsymbol{\beta}_{1gm}\right)$, and $\xi_{ptm} = \sum_{g=1}^{K_1} \alpha_{pgm}$, then $\boldsymbol{\pi}_{pt} \mid \xi_{ptm} \sim \text{Dir}(\xi_{ptm})$. Therefore, plugging in the PDF for Dirichlet yields:

$$\prod_{t=1}^{T} \prod_{p \in V_{1t}} \int \prod_{m=1}^{M} \left[\frac{\Gamma(\xi_{ptm})}{\prod_{g=1}^{K_{1}} \Gamma(\alpha_{ptgm})} \prod_{g=1}^{K_{1}} \pi_{ptg}^{\alpha_{ptgm}-1} \right]^{s_{tm}} \prod_{q \in V_{2t}} \prod_{g=1}^{K_{1}} \pi_{ptg}^{z_{pqt,g}} d\boldsymbol{\pi}_{pt}$$

, where $z_{pqt,g} = \mathbb{I}(z_{pqt} = g)$. Define $C_{ptg} = \sum_{q \in V_{2t}} z_{pqt,g}$, applying the trick that for indicator function $s_{tm} = \mathbb{I}(S_t = m)$, $\sum_m s_{tm} x = \prod_m x^{s_{tm}}$ and taking the constant terms out of the integral:

$$\prod_{t=1}^{T} \prod_{p \in V_{1t}} \prod_{m=1}^{M} \left[\frac{\Gamma\left(\xi_{ptm}\right)}{\prod_{g=1}^{K_{1}} \Gamma\left(\alpha_{ptgm}\right)} \right]^{s_{tm}} \int \prod_{g=1}^{K_{1}} \pi_{ptg}^{\sum_{m=1}^{M} s_{tm} \alpha_{ptgm} + C_{ptg} - 1} d\boldsymbol{\pi}_{pt}$$

The integrand can be recognized as the kernel of a Dirichlet distribution. As the integral is over the entire support of this Dirichlet and must integrate to one, we can compute it as the inverse of the corresponding normalizing constant:

$$\prod_{t=1}^{T} \prod_{p \in V_{1t}} \prod_{m=1}^{M} \left[\frac{\Gamma(\xi_{ptm})}{\prod_{g=1}^{K_{1}} \Gamma(\alpha_{ptgm})} \right]^{s_{tm}} \frac{\prod_{g=1}^{K_{1}} \Gamma\left(\sum_{m=1}^{M} s_{tm} \alpha_{ptgm} + C_{ptg}\right)}{\Gamma\left(\sum_{m=1}^{M} s_{tm} \xi_{ptm} + N_{2t}\right)}$$

, where N_{2t} is the number of nodes in family 2 at time t. Apply the indicator trick again and rearranging the factorals:

$$\prod_{t=1}^{T} \prod_{p \in V_{1t}} \prod_{m=1}^{M} \left[\frac{\Gamma(\xi_{ptm})}{\Gamma(\xi_{ptm} + N_{2t})} \prod_{g=1}^{K_1} \frac{\Gamma(\alpha_{ptgm} + C_{ptg})}{\Gamma(\alpha_{ptgm})} \right]^{s_{tm}}$$
(2)

2.2 Marginalizing Ψ

Collect and integrate all terms that contain ψ :

$$\int \cdots \int \prod_{t=1}^{T} \prod_{q \in V_{2t}} \left[P\left(\boldsymbol{\psi}_{qt} \mid \mathbf{X}, \boldsymbol{\beta}_{2}, S_{t}\right) \right] \prod_{pt \in V_{1t}} P\left(\mathbf{u}_{pqt} \mid \boldsymbol{\psi}_{qt}\right) d\boldsymbol{\psi}_{1t} \dots d\boldsymbol{\psi}_{N_{2t}}$$

Following a similar strategy as 2.1 yields:

$$\prod_{t=1}^{T} \prod_{q \in V_{2t}} \prod_{m=1}^{M} \left[\frac{\Gamma(\xi_{qtm})}{\Gamma(\xi_{qtm} + N_{1t})} \prod_{h=1}^{K_2} \frac{\Gamma(\alpha_{qthm} + C_{qth})}{\Gamma(\alpha_{qthm})} \right]^{s_{tm}}$$
(3)

, where $C_{qth} = \sum_{p \in V_{1t}} \mathbb{I}(u_{qp,t} = h)$, $\alpha_{qthm} = \exp\left(\mathbf{x}_{qt}^{\top}\boldsymbol{\beta}_{2hm}\right)$, and $\xi_{qtm} = \sum_{h=1}^{K_2} \alpha_{qhm}$.

2.3 Marginalizing A

Since the transition probabilities have independent Dirichlet priors, and they are conjugate to the multinomial distribution over states at any given time, we can follow a similar strategy when collapsing the rows of \mathbf{A} . More specifically, and focusing on the portion of the joint distribution that involves \mathbf{A} , we have

$$\int \cdots \int \prod_{t=2}^{T} P\left(s_{t} \mid s_{t-1}, \mathbf{A}\right) \prod_{m} P\left(\mathbf{A}_{m}\right) d\mathbf{A}_{1} \cdots d\mathbf{A}_{M} =$$

$$\int \cdots \int \prod_{t=2}^{T} \prod_{m} \prod_{n} A_{m,n}^{s_{t,n} \times s_{t-1,m}} \prod_{m} \frac{\Gamma(M\eta)}{\prod_{n} \Gamma(\eta)} \prod_{n} A_{m,n}^{\eta-1} d\mathbf{A}_{1} \cdots d\mathbf{A}_{M} \qquad (4)$$

$$= \prod_{m} \frac{\Gamma(M\eta)}{\Gamma(M\eta + U_{m})} \prod_{n} \frac{\Gamma(\eta + U_{m,n})}{\Gamma(\eta)}$$

, where $U_{m,n} = \sum_{t=2}^{T} s_{t,n} s_{t-1,m}$ is the number of times the Markov chain transitions from state m to state n, and $U_{m} = \sum_{t=2}^{T} \sum_{n} s_{t,n} s_{t-1,m}$ is the total number of times the Markov chain transitions from m (potentially to stay at m). η is the hyperprior concentration parameter of a symmetric Dirichlet distribution.

2.4 Marginalized Joint Distribution

Plugging Equations (2) to (4) back into Equation (1), we can get the joint distribution collapsed over the mixed-membership vectors and the transition matrix.

$$f(\mathbf{Y}, \mathbf{Z}, \mathbf{U} \mid \mathbf{B}, \boldsymbol{\beta}, \gamma) = \iiint f(\mathbf{Y}, \mathbf{Z}, \mathbf{U}, \mathbf{\Pi}, \boldsymbol{\Psi}, \mid \mathbf{B}, \boldsymbol{\beta}, \gamma) d\mathbf{\Pi} d\boldsymbol{\Psi} d\mathbf{A}$$

$$= P(s_1) \left[\prod_{m=1}^{M} \frac{\Gamma(M\eta)}{\Gamma(M\eta + U_{m\cdot})} \prod_{n=1}^{M} \frac{\Gamma(\eta + U_{m\cdot n})}{\Gamma(\eta)} \right]$$

$$\times \prod_{t=2}^{T} \prod_{m=1}^{M} \prod_{p \in V_{1t}} \left[\frac{\Gamma(\xi_{ptm})}{\Gamma(\xi_{ptm} + N_{2t})} \prod_{g=1}^{K_1} \frac{\Gamma(\alpha_{ptgm} + C_{ptg})}{\Gamma(\alpha_{ptgm})} \right]^{s_{tm}}$$

$$\times \prod_{q \in V_{2t}} \left[\frac{\Gamma(\xi_{qtm})}{\Gamma(\xi_{qtm} + N_{1t})} \prod_{h=1}^{K_2} \frac{\Gamma(\alpha_{qthm} + C_{qth})}{\Gamma(\alpha_{qthm})} \right]^{s_{tm}}$$

$$\times \prod_{p,q \in V_{1t} \times V_{2t}} \left[\prod_{g=1}^{K_1} \prod_{h=1}^{K_2} \left(\theta_{pqt,z_{pqt},u_{pqt}}^{y_{pqt}} \left(1 - \theta_{pqt,z_{pqt},u_{pqt}} \right)^{1-y_{pqt}} \right)^{z_{pqt,g} \times u_{qpt,h}}$$

, where $\theta_{pqt,z_{pqt},u_{qpt}} = \text{logit}^{-1}(B_{z_{pqt},u_{pqt}} + \mathbf{d}_{pq}^{\top} \boldsymbol{\gamma})$ is the probability of a tie formation between p in family 1 and q in family 2 at time t

3 Estimation via Variational EM

Define a factorized distribution over the latent variables $L := \{Z, U, S\}$:

$$\tilde{Q}(\mathbf{L} \mid \mathbf{\Phi}, \mathbf{\Lambda}, \mathbf{\Delta}) = \prod_{t=1}^{T} Q_1(\mathbf{s}_t \mid \boldsymbol{\phi}_t) \prod_{p,q \in V_{1t} \times V_{2t}} Q_2(\mathbf{z}_{pq,t} \mid \boldsymbol{\lambda}_{pq,t}) Q_2(\mathbf{u}_{qp,t} \mid \boldsymbol{\delta}_{qp,t})$$
(6)

, where ϕ_t , $\lambda_{pq,t}$, and $\delta_{qp,t}$ are variational parameters. We can then find the lower bound for the log marginal probability of the network data \mathbf{Y} by applying Jensen's inequality:

$$P(\mathbf{Y} \mid \boldsymbol{\beta}, \boldsymbol{\gamma}, \mathbf{B}) \ge \mathcal{L} := \mathbb{E}_{\widetilde{Q}} \left[\log P\left(\mathbf{Y}, \mathbf{L} \mid \boldsymbol{\beta}, \boldsymbol{\gamma}, \mathbf{B} \right) \right] - \mathbb{E}_{\widetilde{Q}} \left[\log \widetilde{Q}(\mathbf{L} \mid \boldsymbol{\Phi}, \boldsymbol{\Lambda}, \boldsymbol{\Delta}) \right]$$
(7)

To approximate the true posterior over the latent variables, we optimize this lower bound by iterating between finding an optimal \widetilde{Q} (the E-step) and optimizing the corresponding lower bound with respect to the hyper-parameters $\mathbf{B}, \beta, \gamma$ (the M-step).

3.1 The E-Steps

3.1.1 E step 1: Z and U

Variational parameters λ_{pqt} and δ_{pqt} are updated by restricting eq. (5) to the terms that only contain \mathbf{z}_{pqt} and \mathbf{u}_{pqt} and taking the logarithm of the resulting expression. First, consider \mathbf{z}_{pqt} :

$$\begin{split} \log P\left(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\gamma}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{D}\right) \\ &= z_{pqgt} \sum_{h=1}^{K_{2}} u_{pqht} \left\{ Y_{pqt} \log \left(\theta_{pqght}\right) + \left(1 - Y_{pqt}\right) \log \left(1 - \theta_{pqght}\right) \right\} \\ &+ \sum_{m=1}^{M} s_{tm} \log \Gamma \left(\alpha_{pgtm} + C_{pgt}\right) + \text{ const.} \end{split}$$

Note that $C_{pgt} = C'_{pgt} + z_{pqtg}$ and that, for $x \in \{0,1\}$, $\Gamma(y+x) = y^x \Gamma(y)$. Since the $z_{pqtg} \in \{0,1\}$, we can re-express $\log \Gamma(\alpha_{ptmg} + C_{ptg}) = z_{pqtk} \log (\alpha_{ptmg} + C'_{ptg}) + \log \Gamma(\alpha_{ptmg} + C'_{ptg})$ and thus simplify the expression to

$$\begin{split} \log P\left(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\gamma}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{D}\right) \\ &= z_{pqgt} \sum_{h=1}^{K_{2}} u_{pqht} \left\{ Y_{pqt} \log \left(\theta_{pqght}\right) + \left(1 - Y_{pqt}\right) \log \left(1 - \theta_{pqght}\right) \right\} \\ &+ z_{pqgt} \sum_{m=1}^{M} s_{tm} \log \Gamma \left(\alpha_{pgtm} + C'_{pgt}\right) + \text{ const.} \end{split}$$

We proceed by taking the expectation of $\tilde{Q}(-z)$ under the variational distribution \tilde{Q} :

$$\mathbb{E}_{\tilde{Q}}\left[\log P\left(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\gamma}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{D}\right)\right]$$

$$= z_{pqgt} \sum_{h=1}^{K_{2}} \mathbb{E}_{\tilde{Q}_{2}}(u_{pqht}) \left\{Y_{pqt} \log \left(\theta_{pqght}\right) + \left(1 - Y_{pqt}\right) \log \left(1 - \theta_{pqght}\right)\right\}$$

$$+ z_{pqgt} \sum_{m=1}^{M} \mathbb{E}_{\tilde{Q}_{1}}(s_{tm}) \log \Gamma\left(\alpha_{pgtm} + C'_{pgt}\right) + \text{ const.}$$

The exponential of this expression corresponds to the (unnormalized) parameter vector of a multinomial distribution \tilde{Q}_2 :

$$\hat{\lambda}_{pqtg} \propto \exp\left[z_{pqgt} \sum_{h=1}^{K_2} \mathbb{E}_{\tilde{Q}_2}(u_{pqht}) \left\{ Y_{pqt} \log \left(\theta_{pqght}\right) + \left(1 - Y_{pqt}\right) \log \left(1 - \theta_{pqght}\right) \right\} \right] \times \exp\left[z_{pqgt} \sum_{m=1}^{M} \mathbb{E}_{\tilde{Q}_1}(s_{tm}) \log \Gamma \left(\alpha_{pgtm} + C'_{pgt}\right) \right]$$

Analogously, the update for \mathbf{u}_{qp} is similarly derived:

$$\mathbb{E}_{\tilde{Q}} \log P\left(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\gamma}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{D}\right)$$

$$= u_{pqht} \sum_{g=1}^{K_{1}} \mathbb{E}_{\tilde{Q}_{2}}(z_{pqgt}) \left\{ Y_{pqt} \log \left(\theta_{pqght}\right) + (1 - Y_{pqt}) \log \left(1 - \theta_{pqght}\right) \right\}$$

$$+ u_{pqht} \sum_{m=1}^{M} \mathbb{E}_{\tilde{Q}_{1}}(s_{tm}) \log \Gamma \left(\alpha_{qhtm} + C'_{qht}\right) + \text{ const.}$$

The exponential of this expression corresponds to the (unnormalized) parameter vector of a multinomial distribution \tilde{Q}_2 :

$$\hat{\delta}_{pqth} \propto \exp\left[u_{pqht} \sum_{g=1}^{K_1} \mathbb{E}_{\tilde{Q}_2}(z_{pqgt}) \left\{ Y_{pqt} \log \left(\theta_{pqght}\right) + (1 - Y_{pqt}) \log \left(1 - \theta_{pqght}\right) \right\} \right]$$

$$\times \exp\left[u_{pqht} \sum_{m=1}^{M} \mathbb{E}_{\tilde{Q}_1}(s_{tm}) \log \Gamma \left(\alpha_{qhtm} + C'_{qht}\right)\right]$$

3.1.2 E step 2: S

Similar to the last section, collection all terms in eq. (5) that contain s_{tm} for a specific t > 1 and m:

$$P(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = \Gamma \left(M \eta + U_m \right)^{-1} \prod_{m=1}^{M} \prod_{n=1}^{M} \Gamma \left(\eta + U_{mn} \right)$$

$$\times \prod_{p \in V_{1t}} \left[\frac{\Gamma \left(\xi_{ptm} \right)}{\Gamma \left(\xi_{ptm} + N_{2t} \right)} \prod_{g=1}^{K_1} \frac{\Gamma \left(\alpha_{ptgm} + C_{ptg} \right)}{\Gamma \left(\alpha_{ptgm} \right)} \right]^{s_{tm}}$$

$$\times \prod_{q \in V_{2t}} \left[\frac{\Gamma \left(\xi_{qtm} \right)}{\Gamma \left(\xi_{qtm} + N_{1t} \right)} \prod_{h=1}^{K_2} \frac{\Gamma \left(\alpha_{qthm} + C_{qth} \right)}{\Gamma \left(\alpha_{qthm} \right)} \right]^{s_{tm}} + \text{ const.}$$

Isolating terms that depend on $s_{tm}(n \neq m)$, define

$$U'_{m} = U_{m} - s_{tm}$$

$$U'_{mm} = U_{mm} - s_{t-1,m}s_{tm} - s_{tm}s_{t+1,m}$$

$$U'_{nm} = U_{nm} - s_{t-1,n}s_{tm}$$

$$U'_{mn} = U_{mn} - s_{tm}s_{t+1,n}$$

So that U'_{ab} , $a, b \in \{m, n\}$ counts the number of times the hidden Markov process transitions from a to b except for when the transition happens into or out of time t. Therefore, separating the case where m = n and $m \neq n$, the first two terms on the right hand side can be written as:

$$\Gamma \left(M\eta + s_{tm} + U'_{m} \right)^{-1} \Gamma \left(\eta + s_{t+1,m} s_{tm} + s_{t-1,m} s_{tm} + U'_{mm} \right) \times \prod_{n \neq m}^{M} \Gamma \left(\eta + s_{t+1,n} s_{tm} + U'_{mn} \right) \Gamma \left(\eta + s_{tm} s_{t-1,n} + U'_{nm} \right)$$

Recall that for Gamma function, $\Gamma(y+x)=y^x\Gamma(y)$, for $x\in\{0,1\}$, therefore this expression becomes

$$(M\eta + U'_{m})^{-s_{tm}} \Gamma (M\eta + U'_{m})^{-1} \left\{ (\eta + U'_{mm} + 1)^{s_{t+1,m}s_{t-1,m}} (\eta + U'_{mm})^{s_{t-1,m}-s_{t-1,m}s_{t+1,m}+s_{t+1,m}} \right\}^{s_{tm}} \times \Gamma (\eta + U'_{mm}) \prod_{n \neq m}^{M} (\eta + U'_{mn})^{s_{t+1,n}s_{tm}} \Gamma (\eta + U'_{mn}) \prod_{n \neq m}^{M} (\eta + U'_{nm})^{s_{tm}s_{t-1,n}} \Gamma (\eta + U'_{nm})$$

To see why

$$\Gamma\left(\eta + s_{t+1,m}s_{tm} + s_{t-1,m}s_{tm} + U'_{mm}\right) = \left\{ \left(\eta + U'_{mm} + 1\right)^{s_{t+1,m}s_{t-1,m}} \left(\eta + U'_{mm}\right)^{s_{t-1,m}-s_{t-1,m}s_{t+1,m}+s_{t+1,m}} \right\}^{s_{tm}} \Gamma(\eta + U'_{mm}) \quad (*)$$

Recall that $s_{tm} = \mathbb{I}(s_t = m) \in \{0, 1\}$, and consider in turn the following cases:

- 1) When $s_{tm} = 0$, equation (*) simplifies to $\Gamma(\eta + U'_{mm}) = 1 \times \Gamma(\eta + U'_{mm})$, for any values of $s_{t-1,m}$ and $s_{t+1,m}$
- 2) When $s_{tm} = 1$,
 - i) $s_{t-1,m} = 0$ and $s_{t+1,m} = 0$, equation (*) simplifies to: $\Gamma(\eta + U'_{mm}) = (1 \times 1)^1 \Gamma(\eta + U'_{mm})$
 - ii) $s_{t-1,m} = 1$ and $s_{t+1,m} = 0$, equation (*) becomes (recall the recursive property of the Gamma function):

$$\Gamma(\eta + U'_{mm} + 1) = (1 \times (\eta + U'_{mm} + 1))^{1} \Gamma(\eta + U'_{mm})$$

- iii) $s_{t-1,m} = 1$ and $s_{t+1,m} = 0$. This is analgous to ii)
- iv) $s_{t-1,m} = 1$ and $s_{t+1,m} = 1$, equation (*) becomes (applying the recursive property twice):

$$\begin{split} \Gamma(\eta + U'_{mm} + 1 + 1) &= (\eta + U'_{mm} + 1)\Gamma(\eta + U'_{mm} + 1) \\ &= (\eta + U'_{mm} + 1)(\eta + U'_{mm})\Gamma(\eta + U'_{mm}) \\ &= \left[(\eta + U'_{mm} + 1)^1(\eta + U'_{mm})^1 \right]^1 \Gamma(\eta + U'_{mm}) \end{split}$$

Again focus on the terms that are specific to a t and m,

$$\begin{split} &P(\mathbf{Y}, \mathbf{L} \mid \mathbf{B}, \boldsymbol{\beta}, \boldsymbol{\gamma}) \\ &= \left(M\eta + U_m'\right)^{-s_{tm}} \left\{ \left(\eta + U_{mm}' + 1\right)^{s_{t+1,m}s_{t-1,m}} \left(\eta + U_{mm}'\right)^{s_{t-1,m}-s_{t-1,m}s_{t+1,m}+s_{t+1,m}} \right\}^{s_{tm}} \\ &\times \prod_{n \neq m}^{M} \left(\eta + U_{mn}'\right)^{s_{t+1,n}s_{tm}} \left(\eta + U_{nm}'\right)^{s_{tm}s_{t-1,n}} \\ &\times \prod_{p \in V_{1t}} \left[\frac{\Gamma\left(\xi_{ptm}\right)}{\Gamma\left(\xi_{ptm} + N_{2t}\right)} \prod_{g=1}^{K_1} \frac{\Gamma\left(\alpha_{ptgm} + C_{ptg}\right)}{\Gamma\left(\alpha_{ptgm}\right)} \right]^{s_{tm}} \\ &\times \prod_{q \in V_{2t}} \left[\frac{\Gamma\left(\xi_{qtm}\right)}{\Gamma\left(\xi_{qtm} + N_{1t}\right)} \prod_{h=1}^{K_2} \frac{\Gamma\left(\alpha_{qthm} + C_{qth}\right)}{\Gamma\left(\alpha_{qthm}\right)} \right]^{s_{tm}} + \text{ const.} \end{split}$$

Taking log and expectation under \tilde{Q} w.r.t. variables do not contain s_{tm} :

$$\begin{split} \log \hat{\phi}_{tm} &= -s_{tm} \mathbb{E}_{\tilde{Q}_1} \left[\log \left(M \eta + U_m' \right) \right] + s_{tm} \phi_{t+1,m} \phi_{t-1,m} \mathbb{E}_{\tilde{Q}_1} \left[\log \left(\eta + U_{mm}' + 1 \right) \right] \\ &+ s_{tm} \left(\phi_{t-1,m} - \phi_{t-1,m} \phi_{t+1,m} + \phi_{t+1,m} \right) \mathbb{E}_{\tilde{Q}_1} \left[\log \left(\eta + U_{mm}' \right) \right] \\ &+ s_{tm} \sum_{n \neq m}^{M} \phi_{t+1,n} \mathbb{E}_{\tilde{Q}_1} \left[\log \left(\eta + U_{mn}' \right) \right] + s_{tm} \sum_{n \neq m}^{M} \phi_{t-1,n} \mathbb{E}_{\tilde{Q}_1} \left[\log \left(\eta + U_{nm}' \right) \right] \\ &+ s_{tm} \sum_{p \in V_{1t}} \left[\frac{\Gamma \left(\xi_{ptm} \right)}{\Gamma \left(\xi_{ptm} + N_{2t} \right)} \right] + s_{tm} \sum_{p \in V_{t1}} \sum_{g=1}^{K_1} \mathbb{E}_{\tilde{Q}_2} \left[\log \left[\frac{\Gamma \left(\alpha_{ptmg} + C_{ptg} \right)}{\Gamma \left(\alpha_{ptmg} \right)} \right] \right] \\ &+ s_{tm} \sum_{q \in V_{2t}} \left[\frac{\Gamma \left(\xi_{qtm} \right)}{\Gamma \left(\xi_{qtm} + N_{1t} \right)} \right] + s_{tm} \sum_{q \in V_{t2}} \sum_{h=1}^{K_2} \mathbb{E}_{\tilde{Q}_2} \left[\log \left[\frac{\Gamma \left(\alpha_{qtmh} + C_{qth} \right)}{\Gamma \left(\alpha_{qtmh} \right)} \right] \right] + \text{ const} \end{split}$$

So that the *m*th element of the parameter vector for $\widetilde{Q}_1(s_t \mid \phi_{tm})$ is (so we could treat the expectations w.r.t. to \widetilde{Q}_2 as constant):

$$\begin{split} \hat{\phi}_{tm} &\propto \exp\left[-\mathbb{E}_{\tilde{Q}_{1}}\left[\log\left(M\eta + U_{m}^{\prime}\right)\right]\right] \exp\left[\phi_{t+1,m}\phi_{t-1,m}\mathbb{E}_{\tilde{Q}_{1}}\left[\log\left(\eta + U_{mm}^{\prime} + 1\right)\right]\right] \\ &\times \exp\left[\left(\phi_{t-1,m} - \phi_{t-1,m}\phi_{t+1,m} + \phi_{t+1,m}\right)\mathbb{E}_{\tilde{Q}_{1}}\left[\log\left(\eta + U_{mm}^{\prime}\right)\right]\right] \\ &\times \prod_{n \neq m} \exp\left[\phi_{t+1,n}\mathbb{E}_{\tilde{Q}_{1}}\left[\log\left(\eta + U_{mn}^{\prime}\right)\right]\right] \exp\left[\phi_{t-1,n}\mathbb{E}_{\tilde{Q}_{1}}\left[\log\left(\eta + U_{nm}^{\prime}\right)\right]\right] \\ &\times \prod_{p \in V_{1t}} \left[\frac{\Gamma\left(\xi_{ptm}\right)}{\Gamma\left(\xi_{ptm} + N_{2t}\right)}\prod_{g=1}^{K_{1}}\frac{\Gamma\left(\alpha_{ptgm} + C_{ptg}\right)}{\Gamma\left(\alpha_{ptgm}\right)}\right] \\ &\times \prod_{q \in V_{2t}} \left[\frac{\Gamma\left(\xi_{qtm}\right)}{\Gamma\left(\xi_{qtm} + N_{1t}\right)}\prod_{h=1}^{K_{2}}\frac{\Gamma\left(\alpha_{qthm} + C_{qth}\right)}{\Gamma\left(\alpha_{qthm}\right)}\right] \end{split}$$

3.2 The M-Steps

3.2.1 The Lower Bound

The full expression of the lower bound can be written as:

$$\mathcal{L}(\widetilde{Q}) = \mathbb{E}_{\widetilde{Q}} \left[\log P \left(\mathbf{Y}, \mathbf{L} \mid \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\gamma}, \mathbf{B}, \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{D} \right) \right] - \mathbb{E}_{\widetilde{Q}} \left[\log \widetilde{Q} \left(\mathbf{L} \mid \boldsymbol{\Phi}, \boldsymbol{\Lambda}, \boldsymbol{\Delta} \right) \right]$$

$$= \log \left(P \left(s_{1} \right) \right) + \log \Gamma \left(M \boldsymbol{\eta} \right) - \sum_{m} \mathbb{E}_{\widetilde{Q}} \left[\log \Gamma \left(M \boldsymbol{\eta} + U_{m \cdot} \right) \right] + \sum_{m,n} \mathbb{E}_{\widetilde{Q}} \left[\log \Gamma \left(\boldsymbol{\eta} + U_{m,n} \right) \right] - \log \Gamma (\boldsymbol{\eta})$$

$$+ \sum_{t,m} \phi_{tm} \sum_{p \in V_{1,t}} \left[\Gamma(\xi_{ptm}) - \Gamma(\xi_{ptm} + N_{2t}) \right] + \sum_{t,m} \phi_{tm} \sum_{p \in V_{1,t}} \sum_{s=1}^{K_{1}} \left[\mathbb{E}_{\widetilde{Q}} \left[\log \Gamma \left(\alpha_{ptgm} + C_{ptg} \right) \right] - \log \Gamma \left(\alpha_{ptgm} \right) \right]$$

$$+ \sum_{t,m} \phi_{tm} \sum_{q \in V_{2,t}} \left[\Gamma(\xi_{qtm}) - \Gamma(\xi_{qtm} + N_{1t}) \right] + \sum_{t,m} \phi_{tm} \sum_{q \in V_{2,t}} \sum_{h=1}^{K_{2}} \left[\mathbb{E}_{\widetilde{Q}} \left[\log \Gamma \left(\alpha_{qtgm} + C_{qth} \right) \right] - \log \Gamma \left(\alpha_{qthm} \right) \right]$$

$$+ \sum_{t} \sum_{(p,q) \in V_{1t} \times V_{2t}} \sum_{g=1}^{K_{1}} \sum_{h=1}^{K_{2}} \lambda_{pq,g} \delta_{pq,h} \left\{ y_{pqt} \log \theta_{pqght} + \left(1 - y_{pqt} \right) \log \left(1 - \theta_{pqght} \right) \right\}$$

$$- \sum_{g=1}^{K_{1}} \sum_{h=1}^{K_{2}} \frac{\left(B_{gh} - \mu_{gh} \right)^{2}}{2\sigma_{gh}^{2}} - \sum_{j=1}^{J_{d}} \frac{\left(\gamma_{j} - \mu_{\gamma} \right)^{2}}{2\sigma_{\gamma}^{2}} - \sum_{g=1}^{K_{1}} \sum_{j=1}^{J_{1x}} \sum_{m=1}^{M} \frac{\left(\beta_{1gjm} - \mu_{\beta_{1}} \right)^{2}}{2\sigma_{\beta_{1}}^{2}} - \sum_{h=1}^{K_{2}} \sum_{j=1}^{J_{2x}} \sum_{m=1}^{M} \frac{\left(\beta_{2hjm} - \mu_{\beta_{2}} \right)^{2}}{2\sigma_{\beta_{2}}^{2}}$$

$$- \sum_{t,m} \phi_{tm} \log(\phi_{t,m}) - \sum_{(p,q) \in V_{1t} \times V_{2t}} \sum_{g=1}^{K_{1}} \sum_{h=1}^{K_{2}} \left\{ \lambda_{pqgt} \log(\lambda_{pqgt}) - \delta_{qpht} \log \left(\delta_{qpht} \right) \right\}$$

$$(8)$$

3.2.2 M step 1: B

Collect the terms that contain B_{gh} in the lower bound:

$$\mathcal{L}(\widetilde{Q}) = \sum_{t=1}^{T} \sum_{p,q \in V_{1t} \times V_{2t}} \sum_{g,h=1}^{K} \lambda_{pqtg} \delta_{qpth} \left\{ y_{pqt} \log \theta_{pqtgh} + (1 - y_{pqt}) \log (1 - \theta_{pqtgh}) \right\}$$

$$- \sum_{q=1}^{K_1} \sum_{h=1}^{K_2} \frac{(B_{gh} - \mu_{gh})^2}{2\sigma_{gh}^2} + \text{ const.}$$

We optimize this lower bound with respect to \mathbf{B}_{gh} using a gradient-based numerical optimization method. The corresponding gradient is given by,

$$\frac{\partial \mathcal{L}_{B_{gh}}}{\partial B_{gh}} = \sum_{t=1}^{T} \sum_{p,q \in V_{1t} \times V_{2t}} \lambda_{pqtg} \delta_{qpth} \left(y_{pqt} - \theta_{pqtgh} \right) - \frac{B_{gh} - \mu_{B_{gh}}}{\sigma_{B_{gh}}^2}$$

3.2.3 M step 2: γ

Collect the terms that contain γ in the lower bound (note that $\theta_{pqtgh} = \text{logit}^{-1}(B_{z_{pqt},u_{pqt}} + \mathbf{d}_{pq}^{\top}\gamma)$ is also a function of γ), J_d is the number of dyadic covariates:

$$\mathcal{L}(\tilde{Q}) = \sum_{t=1}^{T} \sum_{p,q \in V_{1t} \times V_{2t}} \sum_{g=1}^{K_1} \sum_{h=1}^{K_2} \lambda_{pqtg} \delta_{qpth} \left\{ y_{pqt} \log \theta_{pqtgh} + (1 - y_{pqt}) \log (1 - \theta_{pqtgh}) \right\} - \sum_{j=1}^{J_d} \frac{(\gamma_j - \mu_{\gamma})^2}{2\sigma_{\gamma}^2} + \text{const.}$$

Similarly, we use a numerical optimization algorithm based on the following gradient to optimize this expression with respect to γ_j (the jth element of the γ vector). The corresponding gradient is given by,

$$\frac{\partial \mathcal{L}_{\gamma_j}}{\partial \gamma_j} = \sum_{t=1}^{T} \sum_{p,q \in V_{tt} \times V_{2t}} \sum_{q=1}^{K_1} \sum_{h=1}^{K_2} \lambda_{pqtg} \delta_{qpth} \mathbf{d}_{pqtj}^{\top} \left(y_{pqt} - \theta_{pqtgh} \right) - \frac{\gamma_j - \mu_{\gamma}}{\sigma_{\gamma}^2}$$

3.2.4 M step 3: β_{1m} and β_{2m}

First, collect all terms that contain β_{1gm} and roll the rest of the terms into a constant. J_{1x} is the number of monadic covariates for family 1, and J_{2x} is the number of monadic covariates for family 2:

$$\mathcal{L}(\widetilde{Q}) = \sum_{t=1}^{T} \sum_{m=1}^{M} \phi_{tm} \sum_{p \in V_{1t}} \left[\log \Gamma \left(\xi_{ptm} \right) - \log \Gamma \left(\xi_{ptm} + N_{2t} \right) \right]$$

$$+ \sum_{t,m} \phi_{tm} \sum_{p \in V_{1t}} \sum_{g=1}^{K_1} \left[\mathbb{E}_{\widetilde{Q}_2} \left[\log \Gamma \left(\alpha_{pgtm} + C_{ptg} \right) \right] - \log \Gamma \left(\alpha_{pgtm} \right) \right]$$

$$- \sum_{g=1}^{K_1} \sum_{i=1}^{J_{1x}} \sum_{m=1}^{M} \frac{\left(\beta_{1gjm} - \mu_{\beta_1} \right)^2}{2\sigma_{\beta_1}^2} + \text{const.}$$

No closed-form solution exists for an optimum with respect to β_{1mgj} , but a gradient-based algorithm can be implemented to maximize the above expression. The corresponding gradient with respect to each element in vector β_{1qm} is given by:

$$\frac{\partial \mathcal{L}(\tilde{Q})}{\partial \beta_{1mgj}} = \sum_{t=1}^{T} \phi_{tm} \sum_{p \in V_{1t}} \alpha_{ptmg} x_{1ptj} \left(\mathbb{E}_{\tilde{Q}_{2}} \left[\check{\psi} \left(\alpha_{ptmg} + C_{ptg} \right) - \check{\psi} \left(\alpha_{ptgm} \right) \right] + \left[\check{\psi} \left(\xi_{ptm} \right) - \check{\psi} \left(\xi_{ptm} + N_{2t} \right) \right] \right) - \frac{\beta_{1mgj} - \mu_{\beta_{1}}}{\sigma_{\beta_{1}}^{2}}$$

Here, $\check{\psi}$ is the digamma function. Similarly for β_{2hm} , collect all the relevant terms yield:

$$\mathcal{L}(\widetilde{Q}) = \sum_{t=1}^{T} \sum_{m=1}^{M} \phi_{tm} \sum_{q \in V_{2t}} \left[\log \Gamma \left(\xi_{qtm} \right) - \log \Gamma \left(\xi_{qtm} + N_{1t} \right) \right]$$

$$+ \sum_{q \in V_{2t}} \sum_{h=1}^{K_2} \left[\mathbb{E}_{\widetilde{Q}_2} \left[\log \Gamma \left(\alpha_{qhtm} + C_{qth} \right) \right] - \log \Gamma \left(\alpha_{qhtm} \right) \right]$$

$$- \sum_{h=1}^{K_2} \sum_{i=1}^{J_{2x}} \sum_{m=1}^{M} \frac{\left(\beta_{2hjm} - \mu_{\beta_2} \right)^2}{2\sigma_{\beta_2}^2} + \text{ const.}$$

With the corresponding gradient:

$$\frac{\partial \mathcal{L}(\tilde{Q})}{\partial \beta_{2mhj}} = \sum_{t=1}^{T} \phi_{tm} \sum_{q \in V_{2t}} \alpha_{qtmh} x_{2ptj} \left(\mathbb{E}_{\tilde{Q}_{2}} \left[\check{\psi} \left(\alpha_{qtmh} + C_{qth} \right) - \check{\psi} \left(\alpha_{qthm} \right) \right] + \left[\check{\psi} \left(\xi_{qtm} \right) - \check{\psi} \left(\xi_{qtm} + N_{1t} \right) \right] \right) - \frac{\beta_{2mhj} - \mu_{\beta_{2}}}{\sigma_{\beta_{2}}^{2}}$$

3.3 Standard Error Computation

3.3.1 Hessian for γ

Restricted to terms that involve γ , we have shown that

$$\frac{\partial \mathcal{L}(\tilde{Q})}{\partial \gamma_{j}} = \sum_{t=1}^{T} \sum_{p,q \in V_{1t} \times V_{2t}} \sum_{g=1}^{K_{1}} \sum_{h=1}^{K_{2}} \lambda_{pqtg} \delta_{qpth} \mathbf{d}_{pqtj}^{\top} \left(y_{pqt} - \theta_{pqtgh} \right) - \frac{\gamma_{j} - \mu_{\gamma}}{\sigma_{\gamma}^{2}}$$

Then,

$$\frac{\partial^2 \mathcal{L}(\tilde{Q})}{\partial \gamma_j \partial \gamma_{j'}} = \sum_{t=1}^T \sum_{p,q \in V_{1t} \times V_{2t}} \sum_{g=1}^{K_1} \sum_{h=1}^{K_2} -\mathbf{d}_{pqtj}^{\top} \mathbf{d}_{pqtj'} \left[\bar{\theta}_{pqtgh} (1 - \bar{\theta}_{pqtgh}) \right] - \sigma_{\gamma}^{-2} \delta_{jj'}$$

Here, $\delta_{jj'}$ is the Kronecker delta function, and

$$ar{ heta}_{pqtgh} = \mathbb{E}_{\widetilde{Q}}\left[heta_{pqtgh}
ight] = \hat{\lambda}_{pqtg}^{ op}\hat{\mathbf{B}}\hat{\delta}_{qpth} + \mathbf{d}_{pqt}^{ op}\gamma$$

is a closed-form solution to the expectation over \widetilde{Q} .

3.3.2 Hessian for β_1 and β_2

First, we focus on family 1 coefficients, which is β_1 . For coefficients in the same group g:

$$\frac{\partial \mathcal{L}(\tilde{Q})}{\partial \beta_{1mgj}} = \sum_{t=1}^{T} \phi_{tm} \sum_{p \in V_{1t}} \alpha_{ptmg} x_{1ptj} \left(\mathbb{E}_{\tilde{Q}_{2}} \left[\check{\psi} \left(\alpha_{ptmg} + C_{ptg} \right) - \check{\psi} \left(\alpha_{ptgm} \right) \right] + \left[\check{\psi} \left(\xi_{ptm} \right) - \check{\psi} \left(\xi_{ptm} + N_{2t} \right) \right] \right) - \frac{\beta_{1mgj} - \mu_{\beta_{1}}}{\sigma_{\beta_{1}}^{2}}$$

So,

$$\begin{split} \frac{\partial^{2} \mathcal{L}(\tilde{Q})}{\partial \beta_{1mgj} \partial \beta_{1mgj\prime}} &= \sum_{t=1}^{T} \phi_{tm} \sum_{p \in V_{1t}} x_{1ptj} x_{1ptj\prime} \alpha_{ptmg} \left\{ \mathbb{E}_{\tilde{Q}_{2}} \left[\check{\psi} \left(\alpha_{ptmg} + C_{ptg} \right) - \check{\psi} \left(\alpha_{ptgm} \right) \right] \right. \\ &\left. + \check{\psi} \left(\xi_{ptm} \right) - \check{\psi} \left(\xi_{ptm} + N_{2t} \right) \right. \\ &\left. + \alpha_{ptmg} \left[\mathbb{E}_{\tilde{Q}_{2}} \left[\check{\psi}_{1} \left(\alpha_{ptmg} + C_{ptg} \right) - \check{\psi}_{1} \left(\alpha_{ptgm} \right) \right] + \check{\psi}_{1} \left(\xi_{ptm} \right) - \check{\psi}_{1} \left(\xi_{ptm} + N_{2t} \right) \right] \right\} \end{split}$$

Here, ψ_1 is the trigamma function. For coefficients in different latent groups g and g',

$$\frac{\partial^{2} \mathcal{L}(\tilde{Q})}{\partial \beta_{1mgj} \partial \beta_{1mg'j'}} = \sum_{t=1}^{T} \phi_{tm} \sum_{p \in V_{1t}} x_{1ptj} x_{1ptj'} \alpha_{ptmg} \alpha_{ptmg'} \left(\breve{\psi}_{1} \left(\xi_{ptm} \right) - \breve{\psi}_{1} \left(\xi_{ptm} + N_{2t} \right) \right)$$

The Hessian for β_2 can be derived similarly.

Unlike γ , there are no closed-form solutions for the expectations involved in the Hessian for β_1 and β_2 . To approximate them, we take S samples from the Poisson-Binomial distribution of C_{ptg} , and we get $C_{ptg}^{(s)}$ ($s \in 1...S$), and let

$$\mathbb{E}_{\tilde{Q}_{2}}\left[\check{\psi}\left(\alpha_{ptmg}+C_{ptg}\right)\right]\approx\frac{1}{S}\sum_{S}\left(\check{\psi}\left(\alpha_{ptmg}+C_{ptg}^{(s)}\right)\right)$$

$$\mathbb{E}_{\tilde{Q}_{2}}\left[\check{\psi}_{1}\left(\alpha_{ptmg}+C_{ptg}\right)\right]\approx\frac{1}{S}\sum_{S}\left(\check{\psi}_{1}\left(\alpha_{ptmg}+C_{ptg}^{(s)}\right)\right)$$