Алгебра и теория чисел

Курс Жукова И. Б.

осень 2021 г.

Оглавление

Oı	главл	ление	i
Ι	Ал	гебраические структуры	1
1	Мн	ожества	2
	1.1	Нотация	2
	1.2	Операции на множествах	3
	1.3	Отображение	3
	1.4	Композиция	5
	1.5	Тождественное отображение	6
2	Гру	ппы	7
	2.1	Введение	7
	2.2	Определение группы	8
	2.3	Подгруппы	9
	2.4	Таблицы Кэли	10
3	Отн	юшения на множестве	12
II	Ocı	новы теории чисел	14
4	Дел	имость	15
	4.1	Свойства	15
5	Про	остые числа	17
6	НО,	Д	19
	6.1	Свойства	20
	6.2	Взаимно простые числа	20
	6.3	Алгоритм Евклида	22

ОГЛАВЛЕНИЕ	ii	

7	нок	24
8	Основная теорема арифметики	26
9	Сравнения по модулю 9.1 Свойства	29 29
10	Кольцо классов вычетов 10.1 Обратимые классы	32 34
11	Китайская теорема об остатках	37
12	Функция Эйлера	39
13	Теорема Эйлера 13.1 Алгоритм RSA	41 42

Часть I Алгебраические структуры

_{ГЛАВА} 1

Множества

1.1. Нотация

Стандартная запись

$$A' = \{1, 3, 5, 7\}$$

 $A = \{1, 3, 5, ..., 99\}$

Общий вид

$$B = \{2,4,6,...0\} = \{2n : n \in \mathbb{N}\}$$

Стандартные числовые множества

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\} \\ \mathbb{Z} &= \{...,-1,0,1,2,\ldots\} \\ \mathbb{Q} &= \left\{\frac{p}{q}: p,q \in \mathbb{Z}, q \neq 0\right\} \\ \mathbb{R}, \mathbb{C} \end{split}$$

Подмножества

$$A' \subset A \subset \mathbb{N}, A' \not\subset B$$

$$C = \{1, 2, 3\}$$
 $\emptyset, \{1\}, \{2\}, \{3\}$
$$\{1, 2\}, \{1, 3\}, \{2, 3\}$$

$$\{1, 2, 3\} = C$$

Предикат для подмножеств: $\{n \in \mathbb{N} : n < 5\} = \{1, 2, 3, 4\}$

1.2. Операции на множествах

Пусть А, В — множества

$$\oplus \Leftrightarrow \triangle$$

$$A \cap B = \{a \in A \land a \in B\}$$

$$A \cup B = \{a : a \in A \lor a \in B\}$$

$$A \setminus B = \{a \in A \land a \notin B\}$$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

$$\begin{split} A &= \{1,2,3\} \quad B = \{-1,1\} \\ A &\times B = \{(1,-1),(1,1),(2,-1),(2,1),(3,-1),(3,1)\} \\ & \bigcap_{i=1}^n A_i \quad \bigcup_{i=1}^n A_i \\ A &\cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A &\cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{split}$$

1.3. Отображение

A, B — множества

Определение 1.1. Задать отображение A в B, значит для каждого $a \in A$ задать некоторый элемент B (т.н. образ элемента A)

$$A = \{1, 2, 3, 4\}$$

$$B = \mathbb{R}$$

$$\begin{array}{c|c} a & f(a) \\ \hline 1 & \sqrt{2} \\ 2 & 0 \\ 3 & 7^5 \\ 4 & 0 \end{array}$$

$$f: \mathbb{R} \to \mathbb{R} \qquad \qquad f: \mathbb{R} \to \mathbb{R}$$

$$f(a) = a - 3 \qquad \qquad a \mapsto a - 3$$

$$\begin{array}{c|c} a & f(a) \\ \hline 1 & -2 \\ 2 & -1 \\ 3 & 0 \\ 4 & 1 \end{array}$$

$$f: \mathbb{R} \to \mathbb{Z}$$

$$a \mapsto \begin{cases} 1, & a > 0 \\ 0, & a = 0 \\ -1, & a < 0 \end{cases}$$

$$\varphi: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto |\{m \in \mathbb{N}: m \leqslant n \ \& \ (m,n) = 1\}|$$

 $|M|=\#M=\mathrm{Card}\ M$ — мощность множества 2^M — множество всех подмножеств M, его мощность $|2^M|=2^{|M|}$

Свойства

 $f:A\to B$ называется инъекцией, если $\forall a_1,a_2\in A:a_1\neq a_2\Rightarrow f(a_1)\neq f(a_2)$

отображение называется сюръекцией, если $\forall b \in B, \exists a \in A: f(a) = b$ отображение называется биекцией, если оно одновременно инъекция и сюръекция

$$f:A\to B$$
 $b\in B$ полный прообраз b относительно $f:$
$$f^{-1}(b)=\{a\in A:f(a)=b\}$$

$$\mathbb{R} \to \mathbb{R}$$

$$f:x\mapsto x^2 \qquad \qquad f^{-1}(4)=\{-2,2\}$$

$$f^{-1}(0)=\{0\}$$

$$f^{-1}(-3)=\varnothing$$

$$f$$
 – инъекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| \leqslant 1$ f – сюръекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| \geqslant 1$ f – биекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| = 1$

Сужение отображения

$$\begin{array}{cccc} f:A\to B & A'\subset A & f:\mathbb{R}\to\mathbb{R} \\ f|_{A'}:A'\to B & x\mapsto x^2 \\ a\mapsto f(a) & f|_{\mathbb{R}_{\geqslant 0}}:\mathbb{R}_{\geqslant 0}\to\mathbb{R} \end{array}$$

Образ подмножества

$$f:A\to B$$

$$M\subset A \qquad \qquad f(M)=\{f(m):m\in M\}$$

$$f(A)=\mathrm{Im}A$$

1.4. Композиция

$$f:A\to B\quad g:B\to C$$

$$g\circ f:A\to C$$

$$a\mapsto g(f(a))$$

— композиция f и g

$$\begin{split} f,g:\mathbb{R} &\to \mathbb{R} \\ f(x) &= x+1 \\ g(x) &= 2x \\ g \circ f: \mathbb{R} &\to \mathbb{R} \qquad f \circ g: \mathbb{R} \to \mathbb{R} \\ x &\mapsto 2x+2 \qquad x \mapsto 2x+1 \end{split}$$

1.5. Тождественное отображение

Пусть M – множество

$$\mathrm{id}_M:M o M$$
 $m\mapsto m$

Пусть $f:X\to Y$, тогда отображение $g:Y\to X$ называется обратным, если $g\circ f=\mathrm{id}_X, f\circ g=\mathrm{id}_Y$

Теорема 1.1. У $f: X \to Y$ есть обратное $\Leftrightarrow f$ – биекция

Доказательство.

$$\Rightarrow g:Y\to X \qquad \qquad g\circ f=\operatorname{id}_X \\ f\circ g=\operatorname{id}_Y \\ g(y):=x \qquad \qquad f^{-1}(y)=\{x\} \\ (g\circ f)(x)=g(f(x))=x \qquad f^{-1}(f(x))=\{x\} \\ (f\circ g)(y)=f(g(y))=y \qquad \qquad \Leftrightarrow g\circ f=\operatorname{id}_X \qquad \qquad f\circ g=\operatorname{id}_Y \\ \downarrow \uparrow \qquad \qquad \downarrow \uparrow \qquad \qquad \downarrow \uparrow \\ f-\text{ инъекция} \qquad \qquad f\circ g=\operatorname{id}_Y \\ \downarrow \uparrow \qquad \qquad \downarrow \uparrow \qquad \qquad \downarrow \uparrow \\ f-\text{ инъекция} \qquad \qquad f-\text{ сюръекция} \\ f(x_1)=f(x_2) \qquad \qquad y\in Y\Rightarrow \\ \Rightarrow g(f(x_1))=g(f(x_2)) \qquad \exists x\in X: f(x)=y \\ \Rightarrow x_1=x_2 \qquad \qquad f(g(y))=y \qquad \qquad \end{cases}$$

Группы

2.1. Введение

Определение 2.1. Бинарная операция на множестве M – отображение из $M \times M \to M$

Примеры

- 1. +, -, · на \mathbb{Z}
- 2. + на векторном пространстве

3.
$$M = X^X = \{f : X \to X\}$$

 $(f,g) \mapsto f \circ g$
 $M \times M \mapsto M$

Свойства

Есть операция $M \times M \to M$, обозначим ее $(a,b) \mapsto a * b$

- 1. Если $\forall a, b \in M : a * b = b * a$, то * коммутативна
- 2. * ассоциативна, если $\forall a, b, c \in M : (a * b) * c = a * (b * c)$
- 3. $e \in M$ называется левым нейтральным, если $\forall a \in M : e*a=a$ В вычи- $e \in M$ называется правым нейтральным, если $\forall a \in M : a*e=a$ тании $e \in M$ называется нейтральный, если он и левый, и правый целых нейтральный чисел ноль ней-

Обрат-

Лемма 2.1. Пусть * – операция, e_L, e_R – нейтральные слева и справа относительно *, тогда $e_L = e_R$.

Доказательство.

$$e_R = e_L \cdot e_R = e_L$$

4. Пусть e нейтральный относительно $*, a \in M$. Элемент $b \in M$ ное к a называется обратным к a, если b*a=a*b=e обозначается Если $b*a=e\Rightarrow b$ обратный слева Если $a*b=e\Rightarrow b$ обратный справа a^{-1}

Лемма 2.2. Ecnu*accouuamueha u y a если левый и правый обратный, тогда они равны. <math>b*a=e, a*c=e

Доказательство.

$$(b*a)*c = b*(c*a)$$
$$e*c = b*e$$
$$c = b$$

Если * – ассоциативная операция, $m \in \mathbb{Z}$:

$$a^m = \begin{cases} a_1 * a_2 * \dots * a_m & m > 0 \\ e & m = 0 \\ a_1^{-1} * a_2^{-1} * \dots * a_{-m}^{-1} & m < 0 \end{cases}$$

$$a^m * a^n = a^{m+n} \qquad (a^m)^n = a^{mn}$$

2.2. Определение группы

Определение 2.2. Группой называется множества G с операцией *, такие что:

- 1. * ассоциативна
- 2. У * есть нейтральный элемент
- 3. У любого $g \in G$ есть обратный

Группа G называется абелевой (коммутативной), если * коммутативна

Примеры

1. $(\mathbb{Z}, +)$

1–4 абелевы группы

- $2. (\mathbb{Q}, +), (\mathbb{R}, +)$
- 3. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot)$
- 4. $(\{1,-1\},\cdot)$
- 5. (X^X,\cdot) не группа, при |X|>1
- 6. $(S(X),\cdot),$ что $S(x)=\{f:x\to x:x$ биекция $\}$ группа, не абелева при |X|=2

2.3. Подгруппы

 Π ример. $(\mathbb{Z},+)$ – группа, $2\mathbb{Z}=\{2n:n\in\mathbb{Z}\}$ – подгруппа

Определение 2.3. G – группа, $H \subset G$ называется подгруппой, если:

- 1. H замкнуто относительно умножения, т.е. $\forall h_1, h_2 \in H: h_1h_2 \in H$
- $2. e \in H$
- 3. H замкнуто относительно обратного, т.е. $\forall h \in H: h^{-1} \in H$

Примеры

 $\subset\Leftrightarrow<$

- $2\mathbb{Z} < \mathbb{Z}$
- $\{0\} < \mathbb{Z}$
- $\mathbb{Z} \in \mathbb{Q}$
- $(\{-1,1\},\cdot) < \mathbb{Q}^*$
- $\{2^n : n \in \mathbb{Z}\} < \mathbb{Q}^*$
- Группы самосовмещений (симметрий) фигур, Π плоскость, $S(\Pi)$, $T(\Pi) < S(\Pi)$ перемещения плоскости (движения)

10

Законы сокращения

Лемма 2.3. Пусть G - группа, $g, h_1, h_2 \in G$

1.
$$gh_1 = gh_2 \Rightarrow h_1 = h_2$$

2.
$$h_1g = h_2g \Rightarrow h_1 = h_2$$

Доказательство.

$$g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2$$

2.4. Таблицы Кэли

Дана группа $G = \{g_1, g_2, \dots g_n\}$:

	g_1	g_2	•••	g_n
g_1	$g_1g_1 \\ g_2g_1$	g_1g_2	•••	g_1g_n
$egin{array}{c} g_1 \ g_2 \end{array}$	$g_{2}g_{1}$	g_2g_2	•••	g_2g_n
÷		•••	•••	•••
g_n		•••	•••	•••

Дана группа $\mathbb{Z}^* = (\{\pm 1\}, \cdot)$:

$$\begin{array}{c|cccc} & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Дана группа самосовмещений правильного прямоугольника:

Таблица Кэли является латинским

Группа абелева, т.к. симметрична относительно диагонали Квадра-Рассмотрим $\mathbb{Z}^* \times \mathbb{Z}^* = \{(1,1),(1,-1),(-1,1),(-1,-1)\}$. Операции ТОМ будем производить покомпонентно: (a,b)(a',b') = (aa',bb').

Последние 2 группы изоморфны (если заменить все элементы, например, буквами, то они и их таблицы Кэли будут идентичны) Теория групп изучает группы с точностью до изомфорфизма

Аксиома 2.1. Любые группы третьего порядка изоморфны.

С группами порядка 4 это уже не выполняется

Отношения на множестве

Определение 3.1. Отношения на множестве M – это подмножество в $M \times M$

Пример.
$$\leqslant$$
 на $\{1,2,3\}$ – $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$

Определение 3.2. R на M называется рефлексивным, если

$$\forall m \in M : (m, n) \in R$$

Определение 3.3. R на M называется симметричным, если

$$\forall m,n \in M: (m,n) \in R \implies (n,m) \in R$$

Определение 3.4. R на M называется антисимметричным, если

$$\forall m,n \in M: (m,n) \in R, (n,m) \in R \implies m = n$$

Определение 3.5. R на M называется транзитивным, если

$$\forall a,b \in M: (a,b) \in R, (b,c) \in R \implies (a,c) \in R$$

Определение 3.6. R называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Пусть R — отношения эквивалентности на $M, a \in M$. Класс [a] = использовать

Лемма 3.1.

$$\forall m,n \in M: [m] = [n] \ \mathit{unu} \ [m] \cap [n] = \varnothing$$

Будем использовать запись $(a,b) \in R = aRb$

Доказательство.

$$[m]\cap[n]\neq\varnothing$$

$$\exists l\in[m]\cap[n]$$

$$\Longrightarrow lRm, lRn \implies mRl \implies mRn$$

$$a\in[m]\implies aRm \implies aRn \implies a\in[n]$$
 Таким образом $[m]\subset[n]$. Аналогично $[n]\subset[m]\implies[m]=[m]$

Теорема 3.1. Пусть R отношение эквивалентности на множестве M, тогда $M = \bigcup_{i \in I} C_i$, т.ч. $C_i \cap C_j = \emptyset (i \neq j)$ и т $Rn \Leftrightarrow m, n \in C_i$ для некоторого i.

Доказательство.

$$C_{i^-}$$
 всевозможные $[m] \in R$ $M = \bigcup_{m \in M} [m]$ т.к. $m \in [m]$ $a,b \in [m] \implies \begin{cases} aRm \\ bRm \end{cases} \implies aRb$ $a \in [m] \\ b \in [n] \\ aRb \end{cases} \implies [m] = [n]$ $aRb \implies a \in [m] \cap [n] \implies [m] \cap [n] \neq \emptyset \implies [m] = [n]$

Определение 3.7. Если \sim – отношение эквивалентности на M, то множество классов эквивалентности: M/\sim – фактормножество M относительно \sim

Часть II Основы теории чисел

Делимость

 $a\mid b$ или b ; aчитается как a делитbили b делится на a,если $\exists q\in\mathbb{Z}:b=aq$

 Π ример. Делители 4:-4,-2,-1,1,2,4 Делители 0: все элементы $\mathbb Z$

4.1. Свойства

1. Рефлексивность

$$2. \ \, \begin{cases} a \mid b \\ b \mid a \end{cases} \implies a = \pm b$$

3. Транзитивность

$$4. \ a \mid b \implies \forall c \in Z : a \mid bc$$

$$5. \ a \mid b, a \mid c \implies a \mid (b \pm c)$$

6.
$$a \mid b \implies \forall k \in \mathbb{Z} : ka \mid kb$$
 $b = aq \implies kb = kaq \implies ka \mid kb$

7.
$$ka \mid kb, k \neq 0 \implies a \mid b$$
 $kb = kaq \Leftrightarrow k(b-aq) = 0 \implies b-aq = 0 \implies b = aq$

Теорема 4.1 (О делении с остатком). $\forall a \in \mathbb{Z} \forall b \in \mathbb{N} \exists ! q, r \in \mathbb{Z}$

1.
$$a = bq + r$$

2.
$$0 \le r < b$$

$$r=a-bq$$

$$r=a-bq \implies a=bq+r$$

$$r\geqslant 0$$
 предположим, что $r\geqslant b$
$$a-bq-b=r-b\geqslant 0 \implies a-b(q+1)< a-bq$$
 противоречие с выбором q

Пусть
$$a = bq_1 + r_1 = bq_2 + r_2$$

$$\begin{split} 0 \leqslant r_1, r_2 < b \\ b(q_1 - q_2) &= r_2 - r_1 \\ -(b - 1) \leqslant r_2 - r_1 \leqslant 0 - 1 \\ b \mid b(q_1 - q_2) \implies q_1 - q_2 = 0 \implies r_2 - r_1 = 0 \end{split}$$

Простые числа

Определение 5.1. $p \in \mathbb{Z}$ называется простым, если $p \neq 0, \pm 1$ и $\{a: a \mid p\} = \{\pm 1, \pm p\}$. Простые числа могут быть отрицательными.

$$\mathbb{Z} = \{0, \pm 1\} \cup \{\text{простыe}\} \cup \{\text{составныe}\}$$

Утверждение 5.1. Пусть a > 1, тогда наименьший натуральный делитель a, отличный от 1 – простое число.

Доказательство. p — наименьший натуральный делитель n. Если p составное, то $\exists q: 1 < q < p, q \mid p$

$$\left. \begin{array}{c} q \mid p \\ p \mid n \end{array} \right\} \implies q \mid n, q$$

Следствие 5.1. Любое целое число, кроме ± 1 делится на простое

Следствие 5.2. Наименьший натуральный делитель, $\neq 1$, составного числа n не больше \sqrt{n} .

Доказательство. p – наименьший натуральный делитель $n, \neq 1$.

$$n = pb$$

Предположим, что $p>\sqrt{n},\, n$ – составное $\implies b\neq 1 \implies b\geqslant p>\sqrt{n}$

$$n = pb > \sqrt{n}\sqrt{n} = n \qquad *$$

Теорема 5.1 (Евклида). Простых бесконечно много.

Доказательство. Пусть это не так, $p_1, p_2, ..., p_k$ – все положительные простые.

$$\begin{aligned} n &= p_1 p_2 ... p_k + 1 \\ n &> 1 \implies \text{ составное} \\ &\implies \exists \text{ простое } p \mid n, p > 0 \\ &\implies p \in \{p_1, ..., p_k\} \implies p \mid (n-1) \\ p \mid n \\ p \mid (n-1) \end{aligned} \right\} \implies p \mid 1 \implies p = \pm 1 \qquad \text{*}$$

Наибольший общий делитель

 $a_1,...,a_n\in\mathbb{Z}$ не все $0,\,d\geqslant 0$ называется наибольшим общим делителем $a_1,...,a_n$ если:

1.
$$d \mid a_1, ..., d \mid a_n$$

2.
$$\forall d' \geqslant 0 : d' \mid a_1, ..., d' \mid a_n \implies d' \mid d$$

Определение 6.1. НОД существует и единственный

Доказательство.

$$I = \{a_1c_1 + ... + a_nc_n : c_1, ..., c_n \in \mathbb{Z}\}$$

d – наименьший положительный элемент I

$$c_i \neq 0 \implies c_i \cdot 1 > 0$$
 или $c_i \cdot (-1) > 0$

Доказать: d – НОД $a_1, ..., a_n$

Предположим, что $d \nmid a_j$

$$\begin{split} a_j &= dq + r, 0 < r < d \\ r &= a_j - dq = a_j - (a_1c_1 + \ldots + a_nc_n)q = \\ &= a_1(-c_1)q + \ldots + a_j(1-c_1q) + a_n(-c_nq) \in I \end{split}$$

Пусть $d'\mid a_1,...,d'\mid a_n\implies d'\mid a_1c_1,...,d'\mid a_nc_n\implies d'\mid (a_1c_1+...+a_nc_n)\implies d'\mid d$

Единственность. Пусть d_1,d_2 – НОД $a_1,...,a_n \implies d_2 \mid d_1,$ аналогично $d_1 \mid d_2 \implies d_1 = d_2$

6.1. Свойства

Обозначения: НОД $(a_1,...,a_n)$ или $\gcd(a_1,...,a_n)$ или $(a_1,...,a_n)$

1.
$$b \mid a \implies (a, b) = b$$

2.
$$a = bl + a' \implies (a, b) = (a', b)$$

Доказательство.

$$\{$$
делители a и $b\} = \{$ делители a' и $b\}$

Включение левого множества в правое:

$$\left. \begin{array}{c} d \mid a \\ d \mid b \end{array} \right\} \implies d \mid (a - bl) \implies d \mid a'$$

Включение правого в левое доказывается аналогично, следовательно множества равны

3.
$$\forall m > 0 : (am, bm) = m(a, b)$$

4.
$$d \mid a, d \mid b \implies \left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a,b)}{d}$$

5. Линейное представление НОД: $a,b\in\mathbb{N} \implies \exists u,v\in\mathbb{Z}: au+bv=(a,b)$

Доказательство.

$$\begin{split} r_1 &= a - bq = a \cdot 1 + b \cdot (-q_1) \\ r_2 &= b - r_1 q_2 = b - (a \cdot 1 + b \cdot (-q_1)) q_2 = a \cdot (-q_2) + b(1 + q_1 q_2) \\ r_3 &= r_1 - r_2 q_3 = a \cdot (\ldots) + b \cdot (\ldots) \end{split}$$

6.2. Взаимно простые числа

Определение 6.2. $a,b \in \mathbb{Z}$ называются взаимно простыми, если (a,b)=1.

21

Свойства

1. $(a,b) = 1 \Leftrightarrow \exists u, v \in \mathbb{Z} : au + bv = 1$

Доказательство.

$$\iff d \mid a \\ \Leftarrow \frac{d \mid a}{d \mid b} \implies d \mid (au + bv) \implies d = \pm 1$$

2. $(a,b) = 1 \implies \forall c \in \mathbb{Z} : (a,bc) = (a,c)$

Доказательство.

3. $a \mid bc, (a, b) = 1 \implies a \mid c$

Доказательство.

$$\exists u, v \in \mathbb{Z} : au + bv = 1 \qquad | \cdot c$$

$$\underbrace{auc}_{a|\dots} + \underbrace{bvc}_{a|\dots} = c \implies c \mid a$$

4. $(a, b_1) = (a, b_2) = 1 \implies (a, b_1b_2) = 1$

Доказательство.

$$\begin{aligned} au_1 + b_1v_1 &= 1 \\ au_2 + b_2v_2 &= 1 \\ 1 &= a^2u_1u_2 + au_1bv_2 + b_1v_1au_2 + b_1b_2v_1v_2 &= \\ a\underbrace{(\ldots)}_{u} + b_1b_2\underbrace{v_1v_2}_{v} \implies (a, b_1b_2) &= 1 \end{aligned}$$

5.

$$\begin{aligned} a_1,...,a_m,b_1,...,b_n &\in \mathbb{Z} \\ (a_i,b_j) &= 1 (1 \leqslant i \leqslant m; 1 \leqslant j \leqslant n) \\ &\implies (a_1 \cdot ... \cdot a_m,b_1 \cdot ... \cdot b_n) = 1 \end{aligned}$$

 $\mathcal{ Д}$ оказательство. Возьмем $(a_i,b_1\cdot\ldots\cdot b_n)=1.$ Через индукцию по k докажем $(a_i,b_1\cdot\ldots\cdot b_k)=1$

База:

$$(a_1, b_1) = 1$$

Переход:

$$\left. \begin{array}{l} (a_i,b_1\cdot\ldots\cdot b_k)=1\\ (a_i,b_{k+1}) \end{array} \right\} \implies (a_i,b_1\cdot\ldots\cdot b_kb_{k+1})=1$$

Проведя аналогичную индукцию с b_i получим:

$$(a_1 \cdot \ldots \cdot a_m, b_1 \cdot \ldots \cdot b_n) = 1$$

6.3. Алгоритм Евклида

Даны
$$a,b \in \mathbb{N}, a > b$$

$$a = bq_1 + r_1 \qquad 0 \leqslant r_1 < b$$

$$r_1 \neq 0 \qquad b = r_1q_2 + r_2 \qquad 0 \leqslant r_2 < r_1$$

$$r_2 \neq 0 \qquad r_1 = r_2q_3 + r_3 \qquad 0 \leqslant r_3 < r_2$$

$$\vdots$$

$$r_{n-2} \neq 0 \qquad r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \quad 0 \leqslant r_{n-1} < r_{n-2}$$

$$r_{n-1} \neq 0 \quad r_{n-2} = r_{n-1}q_n + 0$$

Теорема 6.1. $r_{n-1} = (a, b)$

Доказательство.

$$(a,b)=(b_1,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-2},r_{n-1})=r_{n-1}$$

ГЛАВА

Определение 7.1. Пусть $a_1,...,a_n \in \mathbb{Z},$ их наименьшее общее кратное – наименьшее натуральное c, т.ч. $a_1 \mid c, ..., a_m \mid c$.

Обозначение: $HOK(a_1, ..., a_n)$.

Теорема 7.1. Пусть $a, b \in \mathbb{N}$, тогда

$$\mathrm{HOK}(a,b) = \frac{ab}{(a,b)}$$

Доказательство. Пусть $(a,b)=d, a=da_1, b=db_1$

$$\frac{ab}{d} = a_1b = ab_1$$

то есть $\frac{ab}{d}$ — общее кратное a,b Пусть M — какое-либо общее кратное a,b

$$\begin{split} M &= dM_1 \\ a \mid M \implies da_1 \mid dM1 \implies a_1 \mid M_1 \end{split}$$

Аналогично $b_1 \mid M_1$

$$M_1 = a_1c$$
 $b_1 \mid M_1$ $(b_1,a_1) = 1 \implies b_1 \mid c$ $a_1b_1 \mid M_1$ $a_1b_1d \mid M$, где $a_1b_1d = \frac{ab}{(a,b)}$

ГЛАВА 7. HOK 25

 $\mathit{Замечаниe}.$ При этом проверили: любое общее кратное a,b, кратно $\mathrm{HOK}(a,b)$

Основная теорема арифметики

Лемма 8.1. Пусть p – простое число $a \in \mathbb{Z}$, тогда либо $p \mid a$, либо (p,a)=1.

Доказательство.

$$(p,a) \mid p \implies \left[\begin{array}{c} (p,a) = 1 \\ (p,a) = p \implies p \mid a \end{array} \right.$$

Лемма 8.2. Пусть p – простое u $p \mid (a_1 \cdot ... \cdot a_n) \implies \exists i : p \mid a_1$ Доказательство. Индукция по n. База: n=1 – тривиально.

Переход:

$$p\mid (a_{1}...a_{n})$$

По лемме 8.1

$$\left[\begin{array}{l} (p,a_n)=1 \implies p \mid (a_1...a_{n-1}) \\ p \mid a_n \implies \text{ok} \end{array}\right.$$

По идукционному предположению

$$p\mid a_i(1\leqslant i\leqslant n-1)$$

Теорема 8.1 (Основная теорема арифметики). Любое натуральное число раскладывается в произведение положительных простых чисел, так что это разложение единственно с точностью до порядка множителей.

Доказательство. Докажем существование: для натурального числа $n \geqslant 2$ проведем индукцию по n.

База:

$$2 = 2$$

Переход:

$$n$$
 – простое, то доказывать нечего n – составное, то $n = ab, 1 < a, b < n$

Тогда a, b раскладываются на простые множители и, соответсвенно, их произведение тоже раскладывается

Докажем единственность: проведем индукцию по n.

$$n = p_1...p_r = q_1...q_s$$

$$q_s \mid n \implies \exists j : \underbrace{q_s \mid p_j}_{>0} \implies q_s = p_j$$

$$\implies p_1...\hat{p_j}...p_r = \underbrace{q_1...q_{s-1}}_{< n}$$

 $(q_1,...,q_{s-1})$ отличается от $(p_1,...,\hat{p_j},...,p_r)$ только порядком (т.к. s=r), это означает единственность для n.

Определение 8.1. Представление числа a>1 в виде $p_1^{\alpha_1}...p_n^{\alpha_n}$, где p_i попарно различны, а $\alpha_i\in\mathbb{N}$ называется каноничным разложением (или факторизацией) числа a.

Следствие 8.1. Пусть $a = p_1^{\alpha_1}...p_n^{\alpha_n}$ – каноническое разложение, тогда множество положительных делителейа:

$$\{p_1^{\beta_1}...p_n^{\beta_n}: 0 \leqslant \beta_i \leqslant \alpha_i, i = 1,...,n\}$$

Доказательство. Очевидно, что $p_1^{\beta_1}...p_n^{\beta_n} \mid a$. Обратно: пусть $d \mid a, a = dc$. Из единственности разложения можно утверждать в d входят только $p_1,...,p_n$ и показатель p_i не больше α_i .

Следствие 8.2. Число натуральных делителей $a=p_1^{\alpha_1}...p_n^{\alpha_n}$ – это

$$(\alpha_1 + 1)...(\alpha_n + 1)$$

Предложение 8.1. Пусть $m=\pm p_1^{l_1}...p_s^{l_s}; n=\pm p_1^{r_1}...p_s^{r_s},\ mor\partial a$

$${\rm HOД}(m,n) = p_1^{\min(l_1,r_1)}...p_s^{\min(l_s,r_s)}$$

$$HOK(m, n) = p_1^{\max(l_1, r_1)} ... p_s^{\max(l_s, r_s)}$$

Доказательство.

$$\begin{array}{cccc} d\mid m\Leftrightarrow d=p_1^{\alpha_1}...p_s^{\alpha_s} & & \alpha_j\leqslant l_j\\ & d\mid n\Leftrightarrow ... & & \alpha_j\leqslant r_j\\ & \begin{cases} d\mid m\\ d\mid n \end{cases} \Leftrightarrow ... & & \alpha_j\leqslant \min(l_j,r_j)\\ & \end{cases}\\ d=\mathrm{HOД}(n,m)\Leftrightarrow ... & & \alpha_j=\min(l_j,r_j) \end{array}$$

$$\begin{split} m\mid c,n\mid c\\ \Leftrightarrow c = p_1^{\beta_1}...p_s^{\beta_s}q_1^{\gamma_1}...q_h^{\gamma_h}\\ l_j\leqslant \beta_j,r_j\leqslant \beta_j,j=1...s\\ \Longrightarrow \beta_j\geqslant \max(l_j,r_j)\\ \mathrm{HOK}(m,n) = p_1^{\beta_1}...p_s^{\beta_s},\beta_j = \max(l_j,r_j) \end{split}$$

Следствие 8.3.

$$HOД(m, n) \cdot HOK(m, n) = mn$$
 $m, n > 0$

Сравнения по модулю

Определение 9.1. $a,b\in\mathbb{Z}$ сравнимы по модулю m, если $m\mid (a-b)$

 Π ример. Если m=5, то 13 и 28 сравнимы по модулю 5, а 17 и 26 не сравнимы по модулю 5.

Обозначение:

$$13 \equiv 28 \pmod{5} \qquad -7 \equiv 3 \pmod{5}$$

9.1. Свойства

- 1. Рефлексивность: $a \equiv a \pmod{m}$
- 2. Симметричность: $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$

Доказательство.

$$m \mid (b-a) = m \mid -(a-b)$$

3. Транзитивность:

$$\left. \begin{array}{ll} a \equiv b \pmod m \\ b \equiv c \pmod m \end{array} \right\} \implies a \equiv c \pmod m$$

Доказательство.

$$m \mid (a - c) = m \mid (a - b) + m \mid (b - c)$$

$$4. \begin{array}{l} a \equiv b \pmod{m} \\ a' \equiv b' \pmod{m} \end{array} \} \implies a + a' \equiv b + b' \pmod{m}$$

Доказательство.

$$m \mid ((a+a')-(b+b')) = m \mid (a-b)+m \mid (a'-b')$$

$$5. \begin{array}{l} a \equiv b \pmod{m} \\ d \in Z \end{array} \right\} \implies da \equiv db \pmod{dm}$$

Доказательство.

$$m \mid (a-b) \implies dm \mid d(a-b)$$

$$6. \ \, \begin{cases} a \equiv b \pmod{m} \\ k \mid m \end{cases} \implies a \equiv b \pmod{k}$$

$$7. \begin{array}{l} a \equiv b \pmod{m} \\ a' \equiv b' \pmod{m} \end{array} \} \implies aa' \equiv bb' \pmod{m}$$

Доказательство.

$$aa'\equiv ba'\pmod{m}$$
 $(aa'\equiv ba'\pmod{ma'})$ по свойству 5 $\implies aa'\equiv ba'\pmod{m}$ по свойству 6) $ba'=bb'\pmod{m}$ По транзитивности: $aa'\equiv bb'\pmod{m}$

8. $a \equiv b \pmod{m > 0} \Leftrightarrow$ остатки a и b при делении на m совпадают

Доказательство.

9.
$$a \equiv b \pmod{m} \implies (a, m) = (b, m)$$

Кольцо классов вычетов

Определение 10.1. Класс эквивалентности относительно сравнимости по модулю m называется классом вычетов по модулю m. Класс числа a обозначается: $[a]_m = \overline{a} = \{..., a-2m, a-m, a, a+m, a+2m, ...\}$

 Π ример. Разбиение на классы при m=3

$$\begin{split} M_0 &= \{..., -3, 0, 3, 6, 9, ...\} \\ M_1 &= \{..., -5, -2, 1, 4, 7, 10, ...\} \\ M_2 &= \{..., -4, -1, 2, 5, 8, 11, ...\} \\ \mathbb{Z} &= M_0 \cup M_1 \cup M_2 \end{split}$$

Определение 10.2. Фактор-множество относительно сравнимости по модулю обозначают $\mathbb{Z}/m\mathbb{Z}$, читают как «зет по эм зет», и называют множеством классов вычетов по модулю m

Предложение 10.1. Пусть $m \in N$, тогда $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство. Пусть r – остаток от a при делении на m, тогда

$$[a]_m = [r]_m \implies \mathbb{Z}/m\mathbb{Z} = \{[0]_m, [1]_m, ..., [m-1]_m\}, \text{ т.е. } |\mathbb{Z}/m\mathbb{Z}| \leqslant m$$
 осталось проверить, что $[i]_m \neq [j]_m, 0 \leqslant i < j \leqslant m-1$

$$i \not\equiv j$$
, (mod m) т.к. $0 < j - i < m$

Определение 10.3. Набор чисел $a_1,...,a_m$ называется полной системой вычетов по модулю m, если $\forall i\neq j: a_i\not\equiv a_j\pmod m$ (при этом: $\{[a_1],...,[a_m]\}=\mathbb{Z}/m\mathbb{Z})$

Предложение 10.2. Пусть $a_1,...,a_m$ – полная система вычетов по модулю m, пусть $(c,m)=1,b\in\mathbb{Z},$ тогда $\{ca_j+b:j=1,...,m\}$ тоже ПСВ по модулю m

Доказательство.

$$\begin{aligned} ca_i + b &\equiv ca_j + b \pmod{m} \\ -b &\equiv -b \pmod{m} \\ &\Longrightarrow ca_i \equiv ca_j \pmod{m} \\ m \mid c(a_i - a_j) \\ (c, m) &= 1 \end{aligned} \} \implies m \mid (a_i - a_j) \\ &\Longrightarrow a_j \equiv a_i \pmod{m} \implies i = j$$

Введем операции на $\mathbb{Z}/m\mathbb{Z}$

$$\overline{a} + \overline{b} := \overline{a+b}$$

$$\overline{a} \cdot \overline{b} := \overline{ab}$$

Предложение 10.3. Сложение и умножение на этом множестве корректно определены.

<u>Доказательство.</u> Нужно проверить: если $\overline{a}=\overline{a'},\overline{b}=\overline{b'},$ то $\overline{a'+b'}=\overline{a+b}$ и $\overline{a'b'}=\overline{ab}$ Имеем

$$a \equiv a' \pmod{m} \qquad b \equiv b' \pmod{m}$$

$$\implies a' + b' \equiv a + b \pmod{m}$$

$$a'b' \equiv ab \pmod{m}$$

$$\implies \overline{a' + b'} = \overline{a + b} \qquad \overline{a'b'} = \overline{ab}$$

Теорема 10.1. $(\mathbb{Z}/m\mathbb{Z}, +, *)$ – коммутативное ассоциативное кольцо с единицей.

Доказательство. 1. $\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a}$

- 2. Ассоциативность аналогично.
- $3. \ \overline{0}$ нейтральный

- $4. \ \overline{-a}$ обратный к \overline{a}
- 5. Коммутативность и ассоциативность умножения аналогично сложению
- 6. $\overline{a}(\overline{b}+\overline{c})=\overline{a}\cdot\overline{(b+c)}=\overline{a(b+c)}=\overline{ab+ac}=\overline{ab}+\overline{ac}=\overline{a}\cdot\overline{b}+\overline{a}\cdot\overline{c}$ дистрибутивность умножения
- 7. $\overline{1}$ нейтральный по умножению

Определение 10.4. Областью целостности называется коммутативное ассоциативное кольцо с $1 \neq 0$, т.ч. если $a, b \neq 0$, то $ab \neq 0$

Предложение 10.4. $\mathbb{Z}/m\mathbb{Z}$ – область целостности только если т простое.

 \mathcal{A} оказательство. Пусть $m=1 \implies \mathbb{Z}/m\mathbb{Z}=\{\overline{0}\}; 1=0$ – не ОЦ. Пусть m – составное, тогда

$$m=ab$$
 $1 < a,b < m$ $\Longrightarrow \overline{a} \cdot \overline{b} = \overline{ab} = \overline{m} = \overline{0}$ $\overline{a}, \overline{b} \neq \overline{0} \Longrightarrow$ делители нуля

Пусть m — простое, тогда $\overline{1}\neq\overline{0}$, т.к. m>1. Предположим, что $\overline{a}\cdot\overline{b}=\overline{0}$, но, если $\overline{ab}=\overline{0}$, то

$$\begin{array}{c} m \mid ab \\ m \text{ простое} \end{array} \} \implies \left[\begin{array}{c} m \mid a \\ m \mid b \end{array} \right] \implies \left[\begin{array}{c} \overline{a} = \overline{0} \\ \overline{b} = \overline{0} \end{array} \right]$$

10.1. Обратимые классы

Определение 10.5. Если A – ассоциативное кольцо с 1, то $A^* = \{a \in A : \exists a^{-1}\}$ – множество обратимых элементов A, а так же группа по умножению.

Пример.

$$\mathbb{Z}^* = \{\pm 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$

Теорема 10.2. Пусть $m \in \mathbb{N}, a \in \mathbb{Z}$. Тогда $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^* \Leftrightarrow (a, m) = 1$

Доказательство.

$$\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^* \Leftrightarrow \exists \overline{c} \in \mathbb{Z}/m\mathbb{Z} : \overline{a} \cdot \overline{c} = \overline{1}$$

$$\Leftrightarrow \exists c \in \mathbb{Z} : ac \equiv 1 \pmod{m}$$

$$\Leftrightarrow \exists c, t \in \mathbb{Z} : ac = 1 + mt$$

$$\Leftrightarrow \exists c, t \in \mathbb{Z} : ac - mt = 1$$

$$\Leftrightarrow (a, m) = 1$$

Следствие 10.1. $\mathbb{Z}/m\mathbb{Z}$ – поле, только если m – простое.

 \mathcal{A} оказательство. Пусть m – составное $\implies \mathbb{Z}/m\mathbb{Z}$ – не ОЦ \implies не поле.

Пусть p = m – простое

$$\implies (\mathbb{Z}/p\mathbb{Z})^* = \{\overline{a}: 0 \leqslant a < p-1, (a,p) = 1\} = \{\overline{1},\overline{2},\overline{3},...,\overline{p-1}\} = (\mathbb{Z}/p\mathbb{Z}) \setminus \{\overline{0}\}$$

т.е. $\mathbb{Z}/p\mathbb{Z}$ – конечное поле

Мы обнаружили поля из конечного числа элементов. Что мы о них знаем:

- 1. Поле вида $\mathbb{Z}/p\mathbb{Z}$ единственное вплоть до изоморфизма.
- 2. Если в поле $m=p^l$ количество элементов, то оно существует и единственно.
- 3. Если в поле $m \neq p^l$ элементов, то такое поле не существует.

Теорема 10.3 (Вильсона). *Пусть р – простое число, тогда*

$$(p-1)! \equiv -1 \pmod{p}$$

Пример.

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24 \equiv -1 \pmod{5}$$

Доказательство.

$$\begin{split} \prod_{n=1}^{p-1} \overline{n} &= \overline{-1} \text{ в } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \overline{a}, \overline{b} &: \overline{a} \cdot \overline{b} = \overline{1} \\ \overline{a'}, \overline{b'} &: \overline{a'} \cdot \overline{b'} = \overline{1} \end{split}$$

...

В итоге весь класс разобьется на пары: x, x^{-1} , но некоторые числа будут выписаны дважды, нужно выяснить когда

$$x \cdot x = \overline{1}$$
?

Для этого решим уравнение:

$$x^2 = \overline{1}$$

$$x = \overline{c}$$

$$\overline{c} \cdot \overline{c} = \overline{1}$$

$$c^2 \equiv 1 \pmod{p}$$

$$(c-1)(c+1) \equiv 0 \pmod{p}$$

$$\begin{bmatrix} c \equiv 1 \pmod{p} \\ c \equiv -1 \pmod{p} \\ c \equiv -1 \pmod{p} \end{bmatrix}$$

$$x = \overline{1} \quad x = \overline{-1}$$

$$\prod_{n=1}^{p-1} \overline{n} = \overline{1} \cdot \dots \cdot \overline{1} \cdot \overline{1} \cdot \overline{-1} = \overline{-1}$$

Китайская теорема об остатках

Теорема 11.1. Пусть $m, n \in \mathbb{N}, (m, n) = 1, a, b \in \mathbb{Z}, mor \partial a$

$$\exists x \in \mathbb{Z} : \begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

Далее, если

$$x' \in \mathbb{Z}, \begin{cases} x' \equiv a \pmod{m} \\ x' \equiv b \pmod{n} \end{cases} \Leftrightarrow x' \equiv x \pmod{mn}$$

Доказательство.

$$x' \equiv x \pmod{mn} \Leftrightarrow \begin{cases} x' \equiv x \pmod{m} \\ x' \equiv x \pmod{n} \end{cases} \Leftrightarrow \begin{cases} x' \equiv a \pmod{m} \\ x' \equiv b \pmod{n} \end{cases}$$
$$(m,n) = 1 \implies \overline{m} \in (\mathbb{Z}/n\mathbb{Z})^*$$
$$\implies \exists x_1 \in \mathbb{Z} : \overline{mx_1} = \overline{1} \in (\mathbb{Z}/m\mathbb{Z})^* \implies mx_1 \equiv 1 \pmod{n}$$

Аналогично

$$\exists x_2 \in \mathbb{Z} : nx_2 \equiv 1 \pmod{m}$$

$$\begin{cases} mx_1 \equiv 0 \pmod{m} & \begin{cases} nx_2 \equiv 1 \pmod{m} \\ mx_1 \equiv 1 \pmod{n} \end{cases} \end{cases} \begin{cases} nx_2 \equiv 1 \pmod{m} \\ nx_2 \equiv 0 \pmod{n} \end{cases}$$

$$b(mx_1) + a(nx_2) \equiv b \cdot 0 + a \cdot 1 \pmod{m}$$

$$b(mx_1) + a(nx_2) \equiv b \cdot 1 + a \cdot 0 \pmod{n} \implies \begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

Доказательство.

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{\text{инъ.}} (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$$

$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

$$|\mathbb{Z}/mn\mathbb{Z}| = mn = |(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})| \implies \text{отображение биекция}$$

 Π ример. Сколько решением имеет уравнение $x^2 \equiv 1 \pmod{77}$

$$x^{2} \equiv 1 \pmod{77} \Leftrightarrow \begin{cases} x^{2} \equiv 1 \pmod{7} \\ x^{2} \equiv 1 \pmod{7} \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{7} \end{cases} \\ x \equiv 1 \pmod{11} \end{cases} \Leftrightarrow \begin{cases} \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{11} \end{cases} \\ \begin{cases} x \equiv 1 \pmod{11} \\ x \equiv 1 \pmod{11} \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv -1 \pmod{11} \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv -1 \pmod{7} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{77} \\ x \equiv 43 \pmod{77} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 43 \pmod{77} \\ x \equiv -1 \pmod{77} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{77} \\ x \equiv -1 \pmod{77} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{77} \\ x \equiv -1 \pmod{77} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{77} \\ x \equiv -1 \pmod{77} \end{cases}$$

Функция Эйлера

Определение 12.1.

$$n \in \mathbb{N}$$

$$\varphi = |(\mathbb{Z}/n\mathbb{Z})^*| = \{a: 0 \leqslant a < n, (a,n) = 1\}$$

$$\varphi: \mathbb{N} \to \mathbb{N}$$

Пример.

$$|(\mathbb{Z}/5\mathbb{Z})^*| = 4 \qquad \qquad \varphi(5) = 4$$
$$|(\mathbb{Z}/6\mathbb{Z})^*| = 2 \qquad \qquad \varphi(6) = 2$$

Предложение 12.1. Пусть p – простое, $n \in \mathbb{N}$, тогда

$$\varphi(p^n)=p^n-p^{n-1}=p^{n-1}(p-1)$$

Доказательство.

$$\begin{split} (a,p^n) &= 1 \Leftrightarrow p \nmid a \\ |\{a: 0 \leqslant a < p^n - 1, (a,p) = 1\}| &= \\ = p^n - |\{a: 0 \leqslant a \leqslant p^n - 1, p \mid a\}| &= \\ &= p^n - p^{n-1} \end{split}$$

Предложение 12.2. Пусть $m, n \in \mathbb{N}, (m, n) = 1, mor \partial a$

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Доказательство.

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{\lambda} (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

По KTO λ – биекция

$$(a, mn) \Leftrightarrow \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases}$$

$$\lambda((\mathbb{Z}/mn\mathbb{Z})^*) = (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$$

$$\Leftrightarrow (a, mn) = 1 \Leftrightarrow \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases} \Leftrightarrow \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/m\mathbb{Z})^* \end{cases}$$

$$\Leftrightarrow \lambda([a]_{mn}) \in (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

$$\Rightarrow |\mathbb{Z}/mn\mathbb{Z}| = |(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})|$$

$$\varphi(mn) = 1 \Leftrightarrow \mathbb{Z}/mn\mathbb{Z} = |(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/m\mathbb{Z})|$$

Таким образом $a=p_1^{r_1}...p_s^{r_s}$, где $p_1...p_s$ – различные простые.

$$\varphi(a) = \varphi(p_1^{r_1})...\varphi(p_s^{r_s}) = p_1^{r_1-1}(p_1-1)...p_s^{r_s-1}(p_s-1)$$

Теорема Эйлера

Теорема 13.1. Пусть $n \in \mathbb{N}, a \in \mathbb{Z}, (a, n) = 1, mor \partial a$

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Пример.

$$5^{301} \equiv ? \pmod{101}$$
 $5^{100} \equiv 1 \pmod{101}$ $5^{300} \equiv 1 \pmod{101}$ $5^{301} \equiv 5 \pmod{101}$

Доказательство. Рассмотрим все обратимые классы $X_1,...,X_{\varphi(n)}$

$$\begin{split} (\mathbb{Z}/n\mathbb{Z})^* &= \{X_1,...,X_{\varphi(n)}\} \\ \overline{a} &\in (\mathbb{Z}/n\mathbb{Z})^* \\ \overline{a}X_1,...,\overline{a}X_{\varphi(n)} &\in (\mathbb{Z}/n\mathbb{Z})^* \quad (\overline{a}X_i \neq \overline{a}X_j, i \neq j) \\ &\Longrightarrow (\mathbb{Z}/n\mathbb{Z})^* = \{\overline{a}X_1,...,\overline{a}X_{\varphi(n)}\} \\ &\Longrightarrow \prod_{i=1}^{\varphi(n)} (\overline{a}X_i) = \prod_{X \in (\mathbb{Z}/n\mathbb{Z})^*} X = \prod_{i=1}^{\varphi(a)} X_i \\ &\prod_{i=1}^{\varphi(n)} (\overline{a}X_i) = (\overline{a})^{\varphi(n)} \prod_{i=1}^{\varphi(n)} X_i \\ &(\overline{a})^{\varphi(n)} = \overline{1} \\ &a^{\varphi(n)} \equiv 1 \pmod{n} \end{split}$$

Следствие 13.1 (Малая теорема Ферма). *Пусть р – простое, а* $\in \mathbb{Z}$, $mor\partial a$

$$a^p \equiv a \pmod{p}$$

Доказательство.

$$a^{p-1} \equiv 1 \pmod{p}$$
 $a^p \equiv a \pmod{p}$
 $p \mid a$
 $a^p \equiv 0 \equiv a \pmod{p}$

13.1. Алгоритм RSA

- 1. Создание пары ключей
 - а) Выберем $p \neq q$ большие числа простые числа

b)
$$n = pq$$
 $\varphi(n) = (p-1)(q-1)$

с) Выбрать
$$1 < e < \varphi(n)$$
 $(e, \varphi(n)) = 1$

d) Вычислить
$$1 < d < \varphi(n)$$
 $ed \equiv 1 \pmod{\varphi(n)}$

Теперь пара (e, n) – открытый ключ, а пара (d, n) закрытый.

- 2. Шифрование
 - a) $0 \le m < n$ сообщение
 - b) $m^e \equiv r \pmod{n}, r < n$
- 3. Дешифрование

a)
$$r^d \equiv r' \pmod{n}, r' < n$$

b)
$$r' \equiv r^d \equiv (m^e)^d \pmod{n} = m^{ed} \equiv m \pmod{n}$$

c)
$$\begin{cases} 0 \leqslant r' < n \\ 0 \leqslant m < n \end{cases} \implies r' = m$$