Математический анализ 1. Направление 38.03.01 Экономика Тема 2. Функции нескольких переменных

Семинар 2.1. Пространство \mathbb{R}^n и его подмножества. Последовательности векторов

- 1. Приведите пример множества $U \subset \mathbb{R}^n$, которое не является ни открытым, ни замкнутым в \mathbb{R}^n .
- 2. Докажите, что следующие множества являются открытыми в \mathbb{R}^{n} :
 - (1) n-мерный открытый шар $B_r(\mathbf{a}) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} \mathbf{a}| < r\}$, где $\mathbf{a} \in \mathbb{R}^n$, r > 0;
 - (2) n-мерный открытый прямоугольный параллелепипед $(a_1,b_1)\times\ldots(a_n,b_n)$, где $a_1< b_1,\ldots,a_n< b_n$.
- 3. Докажите, что следующие множества являются замкнутыми в \mathbb{R}^n :
 - (1) n-мерный замкнутый шар $B_r(\mathbf{a}) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} \mathbf{a}| \leqslant r\}$, где $\mathbf{a} \in \mathbb{R}^n$, r > 0;
 - (2) n-мерный замкнутый прямоугольный параллелепипед $[a_1,b_1] \times \dots [a_n,b_n]$, где $a_1 < b_1,\dots,a_n < b_n$.
- 4. Какие фигуры представляют собой замкнутые «шары» с центром в 0 радиуса 1 при n=3 (т.е. в \mathbb{R}^3) в неевклидовых нормах:
 - (1) $|\mathbf{x}|_{\infty} = \max_{1 \le i \le n} |x_i|;$ (2) $|\mathbf{x}|_1 = |x_1| + \ldots + |x_n|.$
- 5. Выясните, существует ли предел $\lim_{k\to\infty} \mathbf{x}_k$ следующих последовательностей векторов, и если да, то найдите его:

$$(1) \mathbf{x}_k = \begin{pmatrix} \sqrt{k+1} - \sqrt{k} \\ \frac{k-1}{k} \\ \frac{2k^2 - 1}{k^2} \\ \left(1 + \frac{1}{k}\right)^k \end{pmatrix}; \quad (2) \mathbf{x}_k = \begin{pmatrix} \frac{(-1)^k}{k} \\ (-1)^k \end{pmatrix}; \quad (3) \mathbf{x}_k = \begin{pmatrix} \frac{\cos \varphi_k}{\varphi_k} \\ \frac{\sin \varphi_k}{\varphi_k} \end{pmatrix}, \text{ где:}$$

- а) $\{\varphi_k\}_{k=1}^{\infty}$ бесконечно большая последовательность, $\varphi_k \neq 0$;
- б) $\{\varphi_k\}_{k=1}^{\infty}$ бесконечно малая последовательность, $\varphi_k \neq 0$;

(4)
$$\mathbf{x}_k = \begin{pmatrix} r^k \cos(k\varphi) \\ r^k \sin(k\varphi) \end{pmatrix}, r > 0, 0 \leqslant \varphi < 2\pi;$$

(5)
$$\mathbf{x}_k = \begin{pmatrix} k \left(\sqrt[k]{r} \cos \frac{\varphi}{k} - 1 \right) \\ k \sqrt[k]{r} \sin \frac{\varphi}{k} \end{pmatrix}, \ r > 0, \ \varphi \in \mathbb{R}.$$

6. Для функции двух переменных f(x,y) найдите ее область определения D(f) и область значений R(f) и укажите (с обоснованием), является ли каждое из множеств D(f) и R(f) открытым, замкнутым, ограниченным, компактным:

(1)
$$f(x,y) = \sqrt{4 - x^2 - y^2}$$
; (2) $f(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 4}}$; (3) $f(x,y) = \sqrt{\cos(x^2 + y^2)}$.

1

- 7. Для функции трех переменных f(x,y,z) найдите ее область определения D(f) и область значений R(f) и укажите (с обоснованием), является ли каждое из множеств D(f) и R(f) открытым, замкнутым, ограниченным, компактным:
 - (1) $f(x, y, z) = x^2 + y^2 + z^2$; (2) $f(x, y, z) = \ln(xyz)$; (3) $f(x, y, z) = \ln x + \ln y + \ln z$;
 - (4) $f(x, y, z) = \ln(xy) + z$; (5) $f(x, y, z) = \ln x + \ln(yz)$.
- 8. Для функции n переменных $f(\mathbf{x})$, $\mathbf{x} = (x_1, \dots, x_n)$ найдите ее область определения D(f) и область значений R(f) и укажите (с обоснованием), является ли каждое из множеств D(f) и R(f) открытым, замкнутым, ограниченным, компактным:

$$(1) \ f(\mathbf{x}) = \sqrt{1 - x_1^2 - \dots - x_n^2}; \ \boxed{\mathbf{(2)}} \ f(\mathbf{x}) = \frac{1}{\sqrt{1 - \frac{x_1^2}{a_1^2} - \dots - \frac{x_n^2}{a_n^2}}}, \ \text{где } a_1 > 0, \dots, a_n > 0.$$

- 9. Множество S точек плоскости \mathbb{R}^2 задано одним из пяти условий на декартовы координаты его точек:
 - а) f(x,y) > 0; б) $f(x,y) \ge 0$; в) f(x,y) < 0; г) $f(x,y) \le 0$; д) f(x,y) = 0.

Выясните (с обоснованием), является ли оно открытым, замкнутым, ограниченным, компактным, связным, выпуклым, для функций:

- (1) f(x,y) = 3x + 2y 4; (2) $f(x,y) = 2x + y^2 + 1$; (3) $f(x,y) = \frac{1}{4}x^2 + 4y^2 3$;
- (4) $f(x,y) = x^4 + y^4 1$.
- 10. Множество S точек плоскости \mathbb{R}^2 задано двумя условиями на декартовы координаты его точек. Выясните (с обоснованием), является ли оно открытым, замкнутым, ограниченным, компактным, связным, выпуклым:
 - (1) $x^2 + y^2 < 1$, x + y < 1; (2) $x^2 + y^2 < 1$, x + y = 1; (3) $x^2 + y^2 \le 1$, x + y < 1;
 - (4) $x^2 + y^2 > 1$, $x + y \le 1$; (5) $x^2 + y^2 > 1$, x + y = 1; (6) $x^2 + y^2 \ge 1$, $x + y \le 1$;
 - (7) $x^2 + y^2 = 1$, $x + y \le 1$.
- 11. Множество S точек плоскости \mathbb{R}^2 задано двумя условиями на декартовы координаты его точек. Выясните (с обоснованием), является ли оно открытым, замкнутым, ограниченным, компактным, связным, выпуклым:
 - (1) $x^2 + y^2 < 1$, $x + y \le 1$; (2) $x^2 + y^2 \le 1$, $x + y \le 1$; (3) $x^2 + y^2 \le 1$, x + y = 1;
 - (4) $x^2 + y^2 > 1$, x + y < 1; (5) $x^2 + y^2 \ge 1$, x + y < 1; (6) $x^2 + y^2 \ge 1$, x + y = 1;
 - (7) $x^2 + y^2 = 1$, x + y < 1.