Topici speciale în logică și securitate l Domenii abstracte

Paul Irofti

Master anul II, Sem. I, 2019-2020

Variabile multiple

Ce se întâmplă dacă am variabile multiple?

```
int A[4][8] = {...};
int i, j;
int sum = 0;

for (i = 0; i < 4; i++)
    for (j = 0; j < 8; j++)
        sum += A[i][j];

printf("sum = %d\n", sum);</pre>
```

Inegalități

Scop: constrângeri numerice asupra domeniului variabilelor X.

Fie x vectorul ce conține toate variabilele din X.

Lin: Fie $Lin^{\mathbb{R}}$ setul expresilor liniare de forma ax, unde $a \in \mathbb{R}^n$ sunt coeficienții variabilelor.

Ineq: Fie $Ineq^{\mathbb{R}}$ setul inegalităților liniare de forma $ax \leq c$, unde $c \in \mathbb{R}$ este o constantă.

Exemple:

- $6x_3 \le x_1 + 5 \iff \begin{bmatrix} -1 & 0 & 6 & 0 & \dots & 0 \end{bmatrix} x \le 5$
- $x_2 = 7 \iff x_2 \le 7 \land x_2 \ge 7$
- $x_2 \ge 7 \iff -x_2 \le -7$
- Expresii cu întregi: $e_1 < e_2 \iff e_1 \le e_2 1$

Proprietăți geometrice ale inegalităților

Fiecare inegalitate $\mathbf{ax} \leq c \in \mathit{Ineq}^{\mathbb{R}}$ crează semiplanul $[\![\mathbf{ax} \leq c]\!] = \{x \in \mathbb{R}^{|\mathcal{X}|} \mid \mathbf{ax} \leq c\}.$

Un set de inegalități $I \subseteq Ineq^{\mathbb{R}}$ produce un spațiu convex închis $[\![I]\!] = \bigcap_{\iota \in I} [\![\iota]\!]$.

Fie $S = \{ \llbracket I \rrbracket \mid I \subseteq Ineq^{\mathbb{R}} \}$ setul tuturor spațiilor convexe.

Definim $\overline{\Upsilon}$, similar ca la intervale, operația asupra lui $S_1, S_2 \in \mathcal{S}$ ce produce spațiul $S = S_1 \overline{\Upsilon} S_2$ a.î. $S_1 \subseteq S$ și $S_2 \subseteq S$.

Teoremă: $\left(S,\subseteq,\overline{\Upsilon},\cap\right)$ formează o latice.

Demonstrație: Exercițiu.

Concluzie: Soluția unui set de ecuații precum cea dată ca exemplu la intervale data trecută există și poate fi rezolvată cu *teorema de punct fix*: cum am rezolvat pentru i putem rezolva pentru mai multe variabile deodată.

Probleme de ordin computațional

Numar infinit de inegalități. Poliedere.

- există seturi convexe $S \in S$ a.î. $|I| \notin \mathbb{N} \forall I \subseteq Ineq$ și [I] = S.
- implementăriile pot stoca spații convexe generate de către un set finit de inegalități denumite *poliedre*

Exemplu:

- secvența poliedrelor regulate (triunghi echilateral, pătrat, hexagon, dodecagon, ...) converge către disc;
- putem formula lanțul crescător $S_1 \subseteq S_2 \subseteq S_3 \dots$
- S_i este un poliedru; $\bigcup_i S_i$ nu este pentru că un disc nu poate fi reprezentat de un set finit de inegalități

Concluzii: Laticea poliedrelor este incompletă. Teorema de punct fix poate converge într-un spațiu convex care nu este un poliedru!

Probleme de ordin computațional

Creșterea nelimitată a coeficienților.

- $Lin^{\mathbb{R}}$ și $Ineq^{\mathbb{R}}$ sunt definite pe \mathbb{R}
- numerele reprezentate în virgulă mobilă reprezintă elemente finite din \mathbb{R} ; mai exact numerele pe calculator fac parte din \mathbb{Q}

Exemplu:

- fie secvența $x_i \in \mathbb{Q}$ definită de $x_0 = 1$ și $x_{n+1} = (x_n + 2/x_n)/2$
- $S_j = [[\{1 \le x \le x_j\}]]$ cuprinde $x_0, ..., x_j$
- putem formula lanțul crescător $S_0 \subseteq S_1 \subseteq \dots$
- lanțul converge la $[[1 \le x \le \sqrt{2}]]$

Concluzii: Teorema de punct fix poate crea inegalități ce conțin coeficienți și constante de dimensiune infinită. Restrângerea coeficienților și constantelor la mulțimea numerelor raționale duce la un domeniu incomplet!

Operatorul de widening

Widening este o tehnică de accelerare ce permite încheierea execuției iterațiilor de punct fix în timp finit prin eliminarea anumitor inegalități.

Când se aplică *widening* unui lanț crescător, se obține un set de inegalități ce poate fi finit descris.

Redefinim: Fie Lin setul cu coeficienții $a \in \mathbb{Z}^n$ și Ineq inegalitățiile construite cu Lin și constante $c \in \mathbb{Z}$.

Semiplanul definit de o inegalitate devine $[\![ax \le c]\!] = \{x \in \mathbb{Q}^{|\mathcal{X}|} \mid ax \le c\}.$

Spațiile convexe obținute prin *widening* sunt $Poly = \{ \llbracket I \rrbracket \mid I \in Ineq \land |I| \in \mathbb{N} \}$ sau setul poliedrelor convexe generate în timp finit.

Astfel operatorul de widening este $\nabla: Poly \times Poly \rightarrow Poly$ cu propiretățiile

- $Q \subseteq P \nabla Q, \forall P, Q$
- 3 Pentru toate lanțurile $P_0 \subseteq P_1 \subseteq \ldots$, lanțul $R_0 = P_0$ și $R_{i+1} = R_i \nabla P_{i+1}$ este stabil $(\exists i \text{ a.î. } \bigcup_{i \in \mathbb{N}} R_i \subseteq R_i)$

Proprietăți. Dezavantaje.

Laticea (Poly, \leq_P , \vee_P , \wedge_P):

- ≤_P este operatorul de incluziune ⊆
- $\vee_P = \overline{\Upsilon}$ este operația de *join* pentru poliedre
- \wedge_P este operația de *meet* pentru seturi

Laticea este incompletă pentru că operațiile de *join* sau *meet* aplicate unui număr arbitrar de poliedre nu rezultă neapărat într-un poliedru.

Operatorul de widening împreună cu laticea incompletă restrâng numărul de puncte fixe ce pot fi atinse.

Un poliedru stabil obținut la convergență este în general un *post-fixpoint*: un poliedru ce cuprinde poliedrul punctului fix. O aproximare.

Exemplu:

- fie secvența $x_i \in \mathbb{Q}$ definită de $x_0 = 1$ și $x_{n+1} = (x_n + 2/x_n)/2$
- lanțul converge la $[[\{1 \le x \le \sqrt{2}\}]] \notin Poly$
- post-fixpoint: $[[\{1 \le x \le 2\}]]$ sau chiar $[[\{1 \le x\}]]$

Operații

Asignarea unei valori unei variabile.

Fie $P \in Poly$ și $x \in X$. Operația x = 42 corespunde poliedrului $P \wedge_P [[\{x = 42\}]]$ care este de fapt poliedrul P doar că valoarea lui x este fixată la 42.

Exercițiu: Arătați că operația $P \wedge_P [[\{x = 42\}]]$ implemnetează semantica operației if (x == 42). Dați un exemplu!

Actualizarea valorii unei variabile.

Pentru ca x să primească o nouă valoare, valoarea veche trebuie să dispară: folosim operatorul de proiecție $\exists_x : Poly \rightarrow Poly$:

$$\exists_{x_i}(P) = \{ [x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n] \mid \mathbf{x} \in P, x \in \mathbb{R} \}$$

Operatorul elimină orice informație privind $x \in X$ din $P \in Poly$.

Exercițiu: Cum implementați semantica operației x=42? Dar x=x+1?

Operații speciale

Cum implementați operația x=x+1?

- $\exists_x(P) \land_P \llbracket \{x = x + 1\} \rrbracket$ nu este fezabil
- folosim o variabilă intermediară $t \in X^T$ și apoi asignăm pe t lui x
- $X^T \subseteq X$ reprezintă un set abstract al variabilelor temporare ce nu corespund nici unei variabile din program
- deci orice operație x=e, unde e este o expresie liniară

Exercițiu: Arătați că x=e poate fi implementat ca

$$\exists_t (\llbracket\{x=t\}\rrbracket) \land_P \exists_x (P \land_P \llbracket\{t=e\}\rrbracket))$$

Vom nota cu $P \triangleright x := e$ această operație.

Operații speciale

Notația $P \triangleright x := e$ este suficientă pentru toate operațiile de asignare cu excepția diviziunii și a operației de *shift*.

Fie $P \triangleright x := y \gg n$ cu $n \in \mathbb{N}$ operația de *shift* la dreapta cu n biți.

- rescriem: x este actualizat a.î. P conține soluțiile întregi $x = \lfloor y/2^n \rfloor$
- ecuația liniară echivalentă este: $2^n x = y d$ cu $d \in \{0, ..., 2^n 1\}$
- rezultă modelul:

$$\exists_t ([[\{x=t\}]] \land_P \exists_x (P \land_P [[\{y-(2^n-1) \le 2^n t \le y\}]]))$$

Exercițiu: Ilustrați geometric poliedrul rezultat din operația $P' = P \triangleright y := x \gg 2$. Ce se întâmplă dacă avem precondiția x = 8? $(P' \land_P [\{x = 8\}]]$.)

Exercițiu: Cum poate fi modelată operația de diviziune?

Tehnici de optimizare

Cum pot găsi valoarea minimă a unei expresii $ax \in Lin$ astfel încât $x \in P$?

Fie setul $C = \{c \in \mathbb{Z} \mid P \land_P [\![\{ax \le c\}]\!] \ne \emptyset\}$ ce conține toate constantele c pentru care semi-planul $ax \le c$ se intersectează cu poliedrul P.

Definim funcția $minExp : Lin \times Poly \rightarrow (\mathbb{Z} \cup \{-\infty\})$

$$minExp(ax, P) = \begin{cases} min(C), & dacă există min(C) \\ -\infty, & altfel \end{cases}$$

Aceasta este o problemă de programare liniară de tipul

$$\min \boldsymbol{c}^T \boldsymbol{x}$$
 a.î. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \quad \boldsymbol{x} \geq 0$

ce poate fi rezolvată de algoritmi standard precum simplex.