Laboratorio 4 MATLAB

Esercizio 1

Per la realizzazione dell'esercizio sono stati creati due file:

- esercizio1.m, contenente lo svolgimento dell'esercizio;
- creaMatrice.m, contenente la funzione ausiliaria omonima che crea una matrice A di dimensione variabile in base al numero di matricola del primo componente in ordine alfabetico del gruppo (Anna Dellepiane, 5565836). In particolare, la matrice A sarà di dimensione 73x3.

All'interno del primo file è contenuto lo svolgimento vero e proprio dell'esercizio: dopo l'inizializzazione di A e della sua trasposta A^T , sono state calcolate le decomposizioni a valori singolari di entrambe le matrici ottenute tramite la funzione *svd*.

Sono stati successivamente calcolati gli autovalori di $A*A^T$ e A^T*A tramite la funzione *eig*. Per concludere sono stati ricavati immagine e nucleo di $A \in A^T$ tramite le funzioni *orth* e *null*.

Risultati ottenuti

Come ci si poteva aspettare, risultano uguali le coppie di matrici (svd_sinistra_A, svd_destra_AT), (svd_destra_A, svd_sinistra_AT) e (svd_A, svd_AT):

Prime 21 righe e 12 colonne delle matrici svd_sinistra_A e svd_destra_AT:

	1	2	3	4	5	6	7	8	9	10	11	12
1	-0.0814	0.1821	-0.2774	-0.1429	-0.1406	-0.1383	-0.1361	-0.1340	-0.1319	-0.1299	-0.1279	-0.1261
2	-0.0820	0.1796	-0.2559	-0.1815	-0.1752	-0.1688	-0.1625	-0.1562	-0.1500	-0.1437	-0.1375	-0.1313
3	-0.0827	0.1770	-0.2350	-0.1744	-0.1551	-0.1364	-0.1183	-0.1008	-0.0838	-0.0675	-0.0518	-0.0367
4	-0.0834	0.1744	-0.2147	0.9461	-0.0507	-0.0476	-0.0445	-0.0415	-0.0386	-0.0358	-0.0330	-0.0303
5	-0.0840	0.1716	-0.1949	-0.0510	0.9519	-0.0453	-0.0425	-0.0398	-0.0372	-0.0346	-0.0321	-0.0297
6	-0.0847	0.1688	-0.1758	-0.0482	-0.0456	0.9570	-0.0405	-0.0381	-0.0357	-0.0334	-0.0312	-0.0290
7	-0.0854	0.1659	-0.1572	-0.0454	-0.0431	-0.0408	0.9614	-0.0365	-0.0343	-0.0323	-0.0303	-0.0283
8	-0.0861	0.1629	-0.1392	-0.0427	-0.0406	-0.0387	-0.0367	0.9652	-0.0330	-0.0312	-0.0294	-0.0277
9	-0.0869	0.1599	-0.1218	-0.0400	-0.0383	-0.0366	-0.0349	-0.0333	0.9684	-0.0301	-0.0285	-0.0270
10	-0.0876	0.1567	-0.1050	-0.0374	-0.0360	-0.0345	-0.0331	-0.0317	-0.0303	0.9710	-0.0277	-0.0264
11	-0.0884	0.1535	-0.0887	-0.0349	-0.0337	-0.0325	-0.0313	-0.0302	-0.0290	-0.0279	0.9732	-0.0258
12	-0.0891	0.1502	-0.0730	-0.0325	-0.0315	-0.0306	-0.0296	-0.0287	-0.0278	-0.0269	-0.0260	0.9749
13	-0.0899	0.1468	-0.0580	-0.0301	-0.0294	-0.0287	-0.0280	-0.0273	-0.0266	-0.0259	-0.0252	-0.0245
14	-0.0907	0.1433	-0.0435	-0.0278	-0.0273	-0.0268	-0.0263	-0.0258	-0.0253	-0.0248	-0.0243	-0.0238
15	-0.0915	0.1397	-0.0296	-0.0256	-0.0253	-0.0250	-0.0247	-0.0245	-0.0242	-0.0239	-0.0235	-0.0232
16	-0.0923	0.1361	-0.0162	-0.0234	-0.0234	-0.0233	-0.0232	-0.0231	-0.0230	-0.0229	-0.0227	-0.0226
17	-0.0931	0.1324	-0.0035	-0.0213	-0.0215	-0.0216	-0.0217	-0.0218	-0.0219	-0.0219	-0.0220	-0.0220
18	-0.0940	0.1286	0.0087	-0.0193	-0.0196	-0.0200	-0.0203	-0.0205	-0.0208	-0.0210	-0.0212	-0.0214
19	-0.0948	0.1247	0.0203	-0.0173	-0.0179	-0.0184	-0.0188	-0.0193	-0.0197	-0.0201	-0.0204	-0.0207
20	-0.0957	0.1207	0.0313	-0.0154	-0.0162	-0.0168	-0.0175	-0.0181	-0.0186	-0.0192	-0.0197	-0.0201
21	-0.0965	0.1167	0.0417	-0.0136	-0.0145	-0.0153	-0.0161	-0.0169	-0.0176	-0.0183	-0.0189	-0.0195

svd_destra_A e svd_sinistra_AT:

	1	2	3	4
1	-0.8228	0.5529	-0.1316	
2	-0.4637	-0.5192	0.7179	
3	-0.3286	-0.6517	-0.6836	
4				

svd_A e svd_AT:

	1	2	3
1	10.1868	0	0
2	0	2.9961	0
3	0	0	0.4395

Entrambe le matrici $A \in A^T$ possiedono gli stessi 3 valori singolari diversi da 0 (ovvero 10.1868, 2.9961 e 0.4395), di conseguenza possiamo affermare che il rango delle matrici in questione è uguale a 3.

Siccome il rango della matrice A è 3, la sua immagine ($immagine_A$) è proprio uguale alle prime tre colonne della matrice $svd_sinistra_A$, mentre quella della matrice A^T ($immagine_AT$), anch'essa di rango 3, corrisponde all'intera matrice $svd_sinistra_AT$ in quanto la sua dimensione è 3x3.

Infine, il nucleo della matrice A risulta nullo poiché la matrice svd_destra_A ha dimensioni 3x3, mentre quello della matrice A^T è pari alle colonne da 4 a 73 della matrice svd_AT .

Esercizio 2

Per la realizzazione di questo esercizio è stato creato un file chiamato esercizio2.m, nel quale viene creata la matrice B triangolare superiore, avente dimensioni dipendenti dall'indice n con n = 2, 3, ..., 10 ottenuto con un ciclo for.

Sono stati poi calcolati i valori singolari per ogni iterazione del ciclo, il valore singolare minimo e massimo ed infine il condizionamento tramite la funzione *cond*, salvati rispettivamente nelle variabili *valoriSingolari*, *mins, maxs* e *condsB*.

Successivamente è stato perturbato il valore B(n, 1) tramite la formula -2^{2-n} come da consegna e successivamente sono stati calcolati gli autovalori della matrice B perturbata (tenendone solo la parte reale tramite la funzione *real*, siccome risultavano numeri complessi).

Nota: sono stati creati vettori di dimensione max(n)-1=9 dove vengono salvati i dati calcolati ad ogni iterata del ciclo for.

Risultati ottenuti

La seguente tabella riporta i dati salvati di ogni iterata:

	maxs		mins		condsB		
	1		1		1		
1	1.6180	1	0.6180	1	2.6180		
2	1.8794	2	0.3473	2	5.4115		
3	2.2631	3	0.1826	3	12.3906		
4	2.7363	4	0.0930	4	29.4275		
5	3.2661	5	0.0468	5	69.8456		
6	3.8299	6	0.0234	6	163.5252		
7	4.4148	7	0.0117	7	376.8062		
8	5.0132	8	0.0059	8	855.6269		
9	5.6205	9	0.0029	9	1.9185e+03		
			T				

Si può notare come il valore singolare massimo cresca al crescere di n mentre quello minimo diminuisca; il condizionamento invece assume un valore sempre crescente, in quanto è uguale al rapporto tra il valore singolare massimo e quello minimo.

Cosa potrebbe succedere se l'autovalore minimo venisse approssimato al valore 0?

Questa approssimazione potrebbe portare a dei problemi, in particolare al calcolo del rango della matrice B perturbata e i suoi valori singolari che risulterebbero non massimi e quindi errati o imprecisi.

Esercizio 3

Per il terzo esercizio è stato creato un file *esercizio3.m* che utilizza la funzione ausiliaria *creaMatrice(...)* creata nell'omonimo file.

All'interno del file viene creata la matrice A usando la funzione *creaMatrice(...)* e la matrice y come da consegna.

Vengono infine svolti i quattro punti della consegna, determinando la soluzione ai minimi quadrati del sistema Ac = y nei diversi modi proposti, come si può notare nella sezione "risultati ottenuti".

Risultati ottenuti

La seguente tabella riporta i risultati calcolati e salvati durante l'esecuzione dello script:

c_svd	c_qr	c_eq	С
-0.00808152524350650	-0.00808152524350633	-0.00808152524349542	-0.00808152524350638
1.09430267089546	1.09430267089546	1.09430267089541	1.09430267089546
-0.238411842996589	-0.238411842996589	-0.238411842996537	-0.238411842996589

Nota: è stato possibile applicare tutti e quattro i metodi per la risoluzione ai minimi quadrati del sistema Ac = y grazie al fatto che A è di rango massimo, altrimenti l'unico metodo applicabile sarebbe stato quello ai valori singolari.

Si può notare in tabella come tutti i metodi risolutivi abbiamo restituito risultati simili tra loro, che divergono solamente al massimo di 1 o 2 cifre decimali nelle ultime posizioni.

La differenza dei risultati può derivare non solo dalla precisione della macchina e da possibili approssimazioni ma anche dalla complessità e quindi dalla precisione di ogni singolo algoritmo.

Ambiente di sviluppo e altro

L'intero laboratorio è stato sviluppato su MATLAB aggiornato alla versione:

23.2.0.2459199 (R2023b) Update 5.