NLP and the Web - WS 2024/2025

Lecture 9 Neural Language Modeling

Dr. Thomas Arnold Hovhannes Tamoyan Kexin Wang

Ubiquitous Knowledge Processing Lab Technische Universität Darmstadt

Syllabus (tentative)

Nr. Lecture 01 Introduction / NLP basics 02 Foundations of Text Classification	
02 Foundations of Text Classification	
03 IR – Introduction, Evaluation	
04 IR – Word Representation	
05 IR – Transformer/BERT	
06 IR – Dense Retrieval	
07 IR – Neural Re-Ranking	
08 LLM – Language Modeling Foundations, To	okenization
09 LLM – Neural LLM	
10 LLM – Adaptation, LoRa, Prompting	
11 LLM – Alignment, Instruction Tuning	
12 LLM – Long Contexts, RAG	
13 LLM – Scaling, Computation Cost	
14 Review & Preparation for the Exam	

Outline

Recap: LM and Sub-word tokenization

Basic Neural Language Models

RNN and Transformer LM

Recap: Language Models

Language Model (LM) = Model that assigns probabilities to sequences of words

Recap: Bigram LM

Word 1	Word 2	Count	P(W2 W1)
<s></s>	There	256	0.256
<s></s>	The	321	0.321
<s></s>	Oh	17	0.017
<s></s>	I	69	0.069
<s></s>	They	169	0.169
<s></s>	Also	123	0.123
<s></s>	However	45	0.045
Anything	else		

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1} w_n)}{C(w_{n-1})}$$

$$C(\langle S \rangle) = 1000$$

$$\frac{C(\langle S \rangle There)}{C(\langle S \rangle)} = \frac{256}{1000}$$

$$= 0.256$$

Recap: Generation with a Bigram LM

Recap: OOV problem

Big problem: zero probability n-grams

In Evaluation: Test set might contain N-Grams that did never appear in training

- = the entire probability of the test set is zero! (multiplication with zero)
- = Perplexity is undefined! (division by zero)

In Generation: LM has never seen the words of my prompt before

= No way to generate the next token!

Approaches: <UNK> tokens, Laplace or add-k smoothing, backoff, interpolation...

Recap: Byte Pair Encoding (BPE)

Subword tokenization technique

Used for data compression and dealing with unknown words

Initialization:

Vocabulary = set of all individual characters

$$V = \{A, B, C, ..., a, b, c, ..., 1, 2, 3, ..., 1, \$, \%, ...\}$$

Repeat:

- Choose two symbols that appear as a pair most frequently (say "a" and "t")
- Add new merged symbol ("at")
- Replace each occurrence with the new symbol ("t","h","a","t" -> "t","h","at")

Until k merges have been done

De-Tokenization


```
Greedy longest prefix matching. Example: "the golden snickers" vocab: {"the", "go", "gold", "##den", "##en", "snicker", "##ers", "##s"}
```

the golden snickers -> "the" in vocab -> ["the"]

the **golden** snickers -> "golden" not in vocab

- -> prefix max match: "gold" -> ["the", "gold"]
- -> remaining subword: "##en" -> "##en" in vocab -> ["the", "gold", "##en"]

the golden **snickers** -> "snickers" not in vocab

- -> prefix max match: "snicker" in vocab -> ["the", "gold", "##en", "snicker"]
- -> remaining subword: "##s" in vocab -> ["the", "gold", "##en", "snicker", "##s"]

GPT3/4's Tokenizer

OpenAI's large language models (sometimes referred to as GPT's) process text using tokens, which are common sequences of characters found in a set of text. The models learn to understand the statistical relationships between these tokens, and excel at producing the next token in a sequence of tokens.

You can use the tool below to understand how a piece of text might be tokenized by a language model, and the total count of tokens in that piece of text.

It's important to note that the exact tokenization process varies between models. Newer models like GPT-3.5 and GPT-4 use a different tokenizer than our legacy GPT-3 and Codex models, and will produce different tokens for the same input text.

Here is a math problem: 234566+64432 / (33345) * 0.1234

https://platform.openai.com/tokenizer

Outline

Recap: LM and Sub-word tokenization

Basic Neural Language Models

RNN and Transformer LM

N-Grams LMs and Long-range Dependencies

In general, count-based LMs are insufficient models of language because language has long-distance dependencies:

"The computer which I had just put into the machine room on the fifth floor crashed."

Pre-Computed N-Grams

Google Books Ngram Viewer

- Google n-gram viewer https://books.google.com/ngrams/
- Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Google Books Ngram Viewer

- Google n-gram viewer https://books.google.com/ngrams/
- Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

LM as a Machine Learning Problem

Task: Given the embeddings of the context, predict the word on the right side.

Discard anything beyond its context window

LM as a Machine Learning Problem

Task: Given the embeddings of the context, predict the word on the right side.

Discard anything beyond its context window

LM as a Machine Learning Problem

Task: Given the embeddings of the context, predict the word on the right side.

Discard anything beyond its context window

Training this model is basically optimizing its parameters Θ such that it assigns high probability to the target word.

- It will also lay the foundation for the future models (RNN, transformers, ...)
- But first we need to figure out how to train neural networks!

Feeding Text to Neural Net

- In practice this is implemented in this way:
 - 1. Turn each word into a unique index
 - 2. Map each index into a one-hot vector

Feeding Text to Neural Net

- In practice this is implemented in this way:
 - 1. Turn each word into a unique index
 - 2. Map each index into a one-hot vector
 - 3. Lookup the corresponding word embedding via matrix multiplication

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 8 & 2 & 1 & 9 \\ 6 & 5 & 4 & 0 \\ 7 & 1 & 6 & 2 \\ 1 & 3 & 5 & 8 \\ 0 & 4 & 9 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 & 8 \end{bmatrix}$$
Hidden layer output

Embedding Weight Matrix

Improvements over n-gram LM:

- Tackles the sparsity problem
- Model size is O(n) not O(exp(n)) —
 n being the window size.

Remaining problems:

- Fixed window is too small
- Enlarging window enlarges *W* Window can never be large enough!
- It's not deep enough to capture nuanced contextual meanings

Improvements over n-gram LM:

- Tackles the sparsity problem
- Model size is O(n) not O(exp(n)) —
 n being the window size.

Remaining problems:

- Fixed window is too small
- Enlarging window enlarges *W* Window can never be large enough!
- It's not deep enough to capture nuanced contextual meanings

Sun and lyyer (2021): Revisiting Simple Neural Probabilistic Language Models

Sun and Iyyer (2021): Revisiting Simple Neural Probabilistic Language Models

Model	# Params	Val. perplexity
Transformer	148 M	25.0
NPLM-old	$32M^2$	216.0
NPLM-old (large)	$221M^3$	128.2
NPLM 1L	123M	52.8
NPLM 4L	128M	38.3
NPLM 16L	148 M	31.7
- Residual connections	148 M	660.0
- Adam, + SGD	148 M	418.5
- Layer normalization	148 M	33.0

Table 1: NPLM model ablation on WIKITEXT-103.

What Changed from N-Gram LMs to Neural LMs?

What is the source of Neural LM's strength?
Why sparsity is less of an issue for Neural LMs?

Answer: In n-grams, we treat all prefixes independently of each other! (even those that are semantically similar)

students opened their ____
pupils opened their ____
scholars opened their ___
undergraduates opened their ___
students turned the pages of their ___
students attentively perused their ___

Neural LMs are able to share information across these semantically-similar prefixes and overcome the sparsity issue.

Outline

Recap: LM and Sub-word tokenization

Basic Neural Language Models

RNN and Transformer LM

RNN Language Model

Input sequence

Word representation (lookup in embedding matrix)

Recurrent sequence encoding representation
(1x RNN layer)

- Sequence as the input
- Single vector (last state) as output
 - Part of a larger network

RNN Language Model

Input sequence

Word representation (lookup in embedding matrix)

Recurrent sequence encoding representation (1x RNN layer)

Sequence as the input

- Single vector (last state) as output
 - Part of a larger network

RNN Language Model

What are the cons?

- While RNNs in theory can represent long sequences, they quickly forget portions of the input.
- Vanishing/exploding gradients
- Difficult to parallelize

What can we do?

RNN vs Transformer

Self-Attention: Back to Big Picture

- Attention is a powerful mechanism to create context-aware representations
- A way to focus on select parts of the input

■ Better at maintaining long-distance dependencies in the context.

[<u>Attention Is All You Need, Vaswani et al. 2017</u>]

Properties of Self-Attention

Layer Type	Complexity per Layer	Sequential Operations
Self-Attention Recurrent	$egin{aligned} O(n^2 \cdot d) \ O(n \cdot d^2) \end{aligned}$	O(1) $O(n)$

- n = sequence length, d = hidden dimension
- Quadratic complexity, but:
 - ■O(1) sequential operations (not linear like in RNN)
- Efficient implementations

[Attention Is All You Need, Vaswani et al. 2017]

How Do We Make it Deep?

■ Step 1: Stack more layers!

■ Step 2: ...

■ Step 3: Profit!

From Representations to Prediction

- To perform prediction, add a classification head on top of the final layer of the transformer.
- This can be per token (Language modeling)
- Or can be for the entire sequence (only one token)

out
$$\in \mathbb{R}^{S \times d}$$
 (S: Sequence length)
$$logits = Linear_{(d, V)}(out) = f(out . W_V) \in \mathbb{R}^{S \times V}$$

$$probabilies = softmax(logits) \in \mathbb{R}^{S \times V}$$

Transformer-based Language Modeling

Image by http://jalammar.github.io/illustrated-gpt2/

- Goal: Train a Transformer for language modeling (i.e., predicting the next word).
- **Approach:** Train it so that each position is predictor of the next (right) token.
 - We just shift the input to right by one, and use as labels

EOS special token

```
X = text[:, :-1]
Y = text[:, 1:]
```

[Slide credit: Arman Cohan]

■ For each position, compute their corresponding **distribution** over the whole vocab.

(gold output)
$$Y = \text{cat}$$
 sat on the mat $$

■ For each position, compute the **loss** between the distribution and the gold output label.

■ Sum the position-wise loss values to a obtain a **global loss**.

■ Using this loss, do **Backprop** and **update** the Transformer parameters.

■ The model would solve the task by copying the next token to output (data leakage).

■ We need to **prevent information leakage** from future tokens! How?

	Attention raw scores														
0	-0.08	1.24	0.69	-0.98	1.43	-0.6	0.7	0.16	0.93	1.28	-1.61	-1.1			
-	-0.09	-0.0	-0.7	0.06	0.25	0.23	0.26	0.18	0.78	-0.21	-1.01	1.01			
2	0.86	1.19	1.59	0.86	-0.13	-0.15	-2.13	-0.98	-0.87	-1.72	1.87	-0.72			
8	0.12	-0.03	-0.02	0.88	-0.46	-0.7	0.54	-0.42	-1.89	-0.38	0.04	-0.84			
4	0.51	0.17	0.13	-1.64	0.24	-0.02	1.68	-0.36	0.64	0.36	0.27	0.66			
2	0.24	-1.44	0.43	0.74	0.96	-1.21	-0.31	1.54	1.66	1.14	0.58	-1.44			
9	0.26	-0.1	0.93	0.72	-0.38	1.65	0.47	-0.96	-0.17	-0.9	-1.57	0.22			
7	-0.55	0.81	0.71	1.7	-0.8	-1.14	-0.32	1.78	-0.7	-0.04	1.54	0.81			
œ	0.74	-0.76	-0.44	-0.08	-1.38	-0.13	1.25	-1.37	1.84	0.3	0.57	0.74			
6	-0.97	-0.91	0.15	0.35	-0.81	0.11	1.14	-1.52	1.06	1.87	0.5	-0.3			
10	1.56	0.9	0.39	1.46	1.44	-1.05	0.9	-0.73	0.36	-0.67	-0.62	-0.43			
7	0.32	0.74	0.44	-0.1	1.19	0.83	0.29	2.06	0.51	-0.26	1.51	0.11			
	1	2	3	4	5	6	7	8	9	10	11	12			

	Attention raw scores												
0	-0.08	1.24	0.69	-0.98	1.43	-0.6	0.7	0.16	0.93	1.28	-1.61	-1.1	
—	-0.09	-0.0	-0.7	0.06	0.25	0.23	0.26	0.18	0.78	-0.21	-1.01	1.01	
2	0.86	1.19	1.59	0.86	-0.13	-0.15	-2.13	-0.98	-0.87	-1.72	1.87	-0.72	
8	0.12	-0.03	-0.02	0.88	-0.46	-0.7	0.54	-0.42	-1.89	-0.38	0.04	-0.84	
4	0.51	0.17	0.13	-1.64	0.24	-0.02	1.68	-0.36	0.64	0.36	0.27	0.66	
2	0.24	-1.44	0.43	0.74	0.96	-1.21	-0.31	1.54	1.66	1.14	0.58	-1.44	
9	0.26	-0.1	0.93	0.72	-0.38	1.65	0.47	-0.96	-0.17	-0.9	-1.57	0.22	
7	-0.55	0.81	0.71	1.7	-0.8	-1.14	-0.32	1.78	-0.7	-0.04	1.54	0.81	
∞	0.74	-0.76	-0.44	-0.08	-1.38	-0.13	1.25	-1.37	1.84	0.3	0.57	0.74	
6	-0.97	-0.91	0.15	0.35	-0.81	0.11	1.14	-1.52	1.06	1.87	0.5	-0.3	
10	1.56	0.9	0.39	1.46	1.44	-1.05	0.9	-0.73	0.36	-0.67	-0.62	-0.43	
£	0.32	0.74	0.44	-0.1	1.19	0.83	0.29	2.06	0.51	-0.26	1.51	0.11	
	1	2	3	4	5	6	7	8	9	10	11	12	

- 0.25

- 0.20

- 0.15

- 0.10

-0.05

-0.00

	Attention raw scores													
0	-0.08	1.24	0.69	-0.98	1.43	-0.6	0.7	0.16	0.93	1.28	-1.61	-1.1		
-	-0.09	-0.0	-0.7	0.06	0.25	0.23	0.26	0.18	0.78	-0.21	-1.01	1.01		
2	0.86	1.19	1.59	0.86	-0.13	-0.15	-2.13	-0.98	-0.87	-1.72	1.87	-0.72		
က	0.12	-0.03	-0.02	0.88	-0.46	-0.7	0.54	-0.42	-1.89	-0.38	0.04	-0.84		
4	0.51	0.17	0.13	-1.64	0.24	-0.02	1.68	-0.36	0.64	0.36	0.27	0.66		
2	0.24	-1.44	0.43	0.74	0.96	-1.21	-0.31	1.54	1.66	1.14	0.58	-1.44		
9	0.26	-0.1	0.93	0.72	-0.38	1.65	0.47	-0.96	-0.17	-0.9	-1.57	0.22		
7	-0.55	0.81	0.71	1.7	-0.8	-1.14	-0.32	1.78	-0.7	-0.04	1.54	0.81		
œ	0.74	-0.76	-0.44	-0.08	-1.38	-0.13	1.25	-1.37	1.84	0.3	0.57	0.74		
6	-0.97	-0.91	0.15	0.35	-0.81	0.11	1.14	-1.52	1.06	1.87	0.5	-0.3		
10	1.56	0.9	0.39	1.46	1.44	-1.05	0.9	-0.73	0.36	-0.67	-0.62	-0.43		
E	0.32	0.74	0.44	-0.1	1.19	0.83	0.29	2.06	0.51	-0.26	1.51	0.11		
	1	2	3	4	5	6	7	8	9	10				

Note matrix multiplication is quite fast in GPUs. WS24/25 | Computer Science Department | UKP - Dr. Thomas Arnold

Masked attention raw scores

0	-0.08	-inf	-inf	-inf	-inf	-inf						
_	-0.09	-0.0	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf
2	0.86	1.19	1.59	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf
က	0.12	-0.03	-0.02	0.88	-inf	-inf	-inf	-inf	-inf	-inf	-inf	-inf
4	0.51	0.17	0.13	-1.64	0.24	-inf	-inf	-inf	-inf	-inf	-inf	-inf
2	0.24	-1.44	0.43	0.74	0.96	-1.21	-inf	-inf	-inf	-inf	-inf	-inf
9	0.26	-0.1	0.93	0.72	-0.38	1.65	0.47	-inf	-inf	-inf	-inf	-inf
7	-0.55	0.81	0.71	1.7	-0.8	-1.14	-0.32	1.78	-inf	-inf	-inf	-inf
80	0.74	-0.76	-0.44	-0.08	-1.38	-0.13	1.25	-1.37	1.84	-inf	-inf	-inf
6	-0.97	-0.91	0.15	0.35	-0.81	0.11	1.14	-1.52	1.06	1.87	-inf	-inf
10	1.56	0.9	0.39	1.46	1.44	-1.05	0.9	-0.73	0.36	-0.67	-0.62	-inf
1	0.32	0.74	0.44	-0.1	1.19	0.83	0.29	2.06	0.51	-0.26	1.51	0.11
	1	2	3	4	5	6	7	8	9	10	11	12

	Attention probabilities													
>	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
-	0.48	0.52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
7	0.22	0.31	0.47	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
0	0.2	0.18	0.18	0.44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
†	0.31	0.22	0.21	0.04	0.23	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
0	0.16	0.03	0.19	0.26	0.32	0.04	0.0	0.0	0.0	0.0	0.0	0.0		
0	0.09	0.06	0.18	0.14	0.05	0.36	0.11	0.0	0.0	0.0	0.0	0.0		
	0.03	0.13	0.11	0.31	0.03	0.02	0.04	0.33	0.0	0.0	0.0	0.0		
0	0.14	0.03	0.04	0.06	0.02	0.06	0.23	0.02	0.41	0.0	0.0	0.0		
n	0.02	0.02	0.07	0.08	0.03	0.06	0.18	0.01	0.16	0.37	0.0	0.0		
2	0.21	0.11	0.06	0.19	0.18	0.02	0.11	0.02	0.06	0.02	0.02	0.0		
=	0.05	0.07	0.05	0.03	0.11	0.08	0.05	0.27	0.06	0.03	0.16	0.04		

11

■ We need to **prevent information leakage** from future tokens! How?

Use the output of previous step as input to the next step repeatedly

Use the output of previous step as input to the next step repeatedly

Use the output of previous step as input to the next step repeatedly

Use the output of previous step as input to the next step repeatedly

Use the output of previous step as input to the next step repeatedly

Lessons Learned

- Neural models overcome n-gram limitations (sparsity, fixed windows) and model long-range dependencies.
- Fixed-window models reduce sparsity but lack depth and scalability for larger contexts.
- RNNs handle sequences but struggle with vanishing gradients and parallelization.
- Transformers use self-attention for efficient, context-aware representations, excelling in longdistance dependencies.
- Masking prevents future token leakage during training, enabling autoregressive text generation.

Next Lecture

Adaptation & Prompting