CYBER 207 Applied Machine Learning for Cybersecurity

Summer 2023

Week 5

Classification Metrics

- If you have supervised data, you will want to maximize an objective function.
 - **Precision**: $TP \div (TP + FP)$ % positives correctly identifed
 - **Recall**: $TP \div (TP + FN)$ % existing positives identified
 - Optimal point on ROC (precision/recall) curve
 - Accuracy: $(TP + TN) \div (TP + TN + FP + FN)$
 - \circ F-test: $2 \cdot (P \cdot R) \div (P + R)$

Precision and Recall

Precision and Recall

Precision

(Total apples correct)/ (Total apple side observations) = $\frac{3}{5}$ = 60%

Recall

(Total number of apples correct)/ (Total actual apples) $= \frac{3}{4} = 75\%$

Multiclass Classification

Species	PetalWidthCm	PetalLengthCm	SepalWidthCm	SepalLengthCm
Iris-virginica	2.3	5.9	3.2	6.8
Iris-virginica	2.3	5.1	3.1	6.9
Iris-setosa	0.2	1.4	3.0	4.9
Iris-versicolo	1.5	4.5	3.0	5.6
Iris-setosa	0.2	1.6	3.1	4.8
Iris-virginica	2.4	5.1	2.8	5.8
Iris-virginica	2.5	6.1	3.6	7.2
Iris-setosa	0.3	1.4	3.5	5.1
Iris-setosa	0.2	1.6	3.2	4.7
Iris-versicolo	1.4	4.4	3.0	6.6

Fig.1: Iris dataset having three categories

Multiclass Classification Confusion Matrix

Cross Entropy

$$-(y \log(p) + (1 - y) \log(1 - p))$$

$$-\sum_{c=1}^{M}y_{o,c}\log(p_{o,c})$$

Categorical Cross Entropy Loss (Softmax Loss)

- It is a Softmax activation plus a cross-entropy loss

- Example:

```
True Label: Rabbit
```

Prediction: Dog = 1, Cat = 4, Rabbit = 8, Squirrel = 2
Softmax : D =
$$e^1/SUM$$
, C = e^4/SUM , R = e^8/SUM , S = e^2/SUM
CE Loss = - (0 * ln(D) + 0 * ln(C) + 1 * ln(R) + 0 * ln(S))
= - (0 + 0 + (-?) + 0)

Logistic Regression Network Graph

 $W_{3,2}$

 X_3

Linear Model Limitations

Convolution Operation

$$S_{ij} = (I * K)_{ij} = \sum_{a=0}^{m-1} \sum_{b=0}^{n-1} I_{i+a,j+b} K_{a,b}$$

Convolution Operation

aw+bx+ey+fz bw+cx+fy+gz cw+dx+gy+hz

Digit Classification Problem

Digit Classification Problem

Code Review