Training Models 2: Stochastic Gradient Descent

Glenn Bruns CSUMB

Learning outcomes

After this lecture you should be able to:

- 1. Explain three methods for gradient descent:
 - batch gradient descent
 - stochastic gradient descent
 - mini-batch gradient descent
- 2. Explain how these methods can be used to fit a linear model

Recap

How to use optimization to find the "best" line through a set of training data?

- 1. We have a linear model, with parameters for slope and y-intercept
- 2. We have a bunch of training data
- 3. We define a cost function, where the "cost" is high if the line fits the data poorly
- 4. We get the best line by finding the parameter values that minimize the cost function
- 5. We can find the minimum using gradient descent.

Linear regression

Reminder: Geron writes $\mathbf{x}^{(i)}$ for the ith row of matrix X.

MSE <u>cost function</u> for linear regression:

$$MSE(\mathbf{X}, \theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T \cdot \mathbf{x}^{(i)} - y^{(i)})^2$$

Given training data X, find the θ that minimizes $MSE(X, \theta)$

Partial derivative of the cost function, for some θ_i :

$$\frac{\partial}{\partial \theta_j} MSE(\mathbf{X}, \theta) = \frac{2}{m} \sum_{i=1}^m \left(\theta^T \cdot x^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Gradient of the cost function

Partial derivative of the cost function, for some θ_i :

$$\frac{\partial}{\partial \theta_j} MSE(\mathbf{X}, \theta) = \frac{2}{m} \sum_{i=1}^m \left(\theta^T \cdot x^{(i)} - y^{(i)} \right) x_j^{(i)}$$

The vector of all the partial derivatives is the gradient of the function:

$$\nabla_{\theta} \text{ MSE}(\theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \text{ MSE}(\theta) \\ \frac{\partial}{\partial \theta_1} \text{ MSE}(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \text{ MSE}(\theta) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T \cdot (\mathbf{X} \cdot \theta - \mathbf{y})$$

Batch gradient descent

```
eta = 0.1 # learning rate
n_iterations = 1000
m = 100

theta = np.random.randn(2,1) # random initialization

for iteration in range(n_iterations):
    gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
    theta = theta - eta * gradients
```

theta that maximizes negative cost = theta that minimizes cost

source: Géron, Hands-On Machine Learning text

Run it on test data

generate test data:

progress of gradient descent:

source: Géron, Hands-On Machine Learning text

Stochastic gradient descent

Batch gradient descent:

- the definition of the gradient uses <u>all</u> the training data
- at each step, all the data is used in updating theta
- cost of algorithm is high if lots of data

Stochastic gradient descent:

- at each step, one training example is used to update theta
- the example is chosen randomly

Stochastic gradient descent

```
n = 50
t0, t1 = 5, 50 # learning schedule hyperparameters
def learning schedule(t):
    return t0 / (t + t1)
theta = np.random.randn(2,1) # random initialization
for epoch in range(n_epochs):
    for i in range(m):
        random index = np.random.randint(m)
        xi = X_b[random_index:random_index+1]
        yi = y[random index:random index+1]
        gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
        eta = learning schedule(epoch * m + i)
        theta = theta - eta * gradients
```

Run it on test data

stochastic gradient descent

Mini-batch gradient descent

Totally simple if you understand batch and stochastic versions.

Question: what is a hybrid of the batch and stochastic versions?

Key observation: gradient calculation can use training data of any size

- □ batch: each step uses all training data
- stochastic: each step uses 1 random row of training data
- mini-batch: each step uses a small random set of training data

Run it on test data

Comparing methods

method	large m	large n	hyper- params	scaling needed?	Scikit-Learn
normal equation	fast	slow	0	no	LinearRegression
batch GD	slow	fast	2	yes	N/A
stochastic GD	fast	fast	≥ 2	yes	SGDRegressor
mini-batch GD	fast	fast	≥ 2	yes	N/A

m: number of training examples

n: number of features

source: Géron, Hands-On Machine Learning text

Summary

- 1. We looked at three methods for gradient descent:
 - batch gradient descent
 - stochastic gradient descent
 - mini-batch gradient descent
- 2. Pros/cons of gradient descent for linear regression:
 - + handle large datasets, with many features
 - need scaling; tuning of hyperparameters