#### K. Rama Satwik

#### 18CE01022

### 1st solution:

## 1 (a) - Infiltration capacity curve;



## 1 (b) - Graph of In(fp - fc) Vs Time



# 1 (c) -

| Time (min) | Precipitation rate (cm/hr) | Infiltration<br>capacity rate<br>(cm/hr) | Excess rainfall rate (cm/hr) | Excess rainfall (mm) | Cumulative<br>excess rainfall<br>(mm) |
|------------|----------------------------|------------------------------------------|------------------------------|----------------------|---------------------------------------|
| 1          | 5                          | 3.9                                      | 1.1                          | 0.183                | 0.183                                 |
| 2          | 5                          | 3.4                                      | 1.6                          | 0.2667               | 0.45                                  |
| 3          | 5                          | 3.1                                      | 1.9                          | 0.3167               | 0.767                                 |
| 4          | 5                          | 2.7                                      | 2.3                          | 0.383                | 1.15                                  |
| 5          | 5                          | 2.5                                      | 2.5                          | 0.4167               | 1.567                                 |
| 6          | 7.5                        | 2.3                                      | 5.2                          | 0.8667               | 2.43                                  |
| 8          | 7.5                        | 2                                        | 5.5                          | 1.833                | 4.267                                 |
| 10         | 7.5                        | 1.8                                      | 5.7                          | 1.9                  | 6.167                                 |
| 12         | 7.5                        | 1.54                                     | 5.96                         | 1.986                | 8.153                                 |
| 14         | 7.5                        | 1.43                                     | 6.07                         | 2.023                | 10.176                                |
| 16         | 2.5                        | 1.36                                     | 1.14                         | 0.38                 | 10.556                                |
| 18         | 2.5                        | 1.31                                     | 1.19                         | 0.3967               | 10.953                                |
| 20         | 2.5                        | 1.28                                     | 1.22                         | 0.4067               | 11.36                                 |
| 22         | 2.5                        | 1.25                                     | 1.25                         | 0.4167               | 11.776                                |
| 24         | 2.5                        | 1.23                                     | 1.27                         | 0.423                | 12.2                                  |
| 26         | 2.5                        | 1.22                                     | 1.28                         | 0.4267               | 12.626                                |
| 28         | 2.5                        | 1.2                                      | 1.3                          | 0.433                | 13.06                                 |
| 30         | 2.5                        | 1.2                                      | 1.3                          | 0.433                | 13.493                                |

Total excess rainfall = 13.4909mm

4/11/20 WRE ASSIGNMENT - 2.

16 From graph;

The equation of line;

y = -0.1932 + 1.247

in here, the actual Equation is in form of;

In (fo-fc) = In (fo-fc) - kt.

: ln(fp-fc) = 1.247 - 0.193t.

- The value of , K = 0.193.

fe = 1.2 cm/hr

-: fo-fc=(e) 1.247

: fo = 4.679 cm (hr.

: fp = 1.2 + 3.439 e

Fp=1.2+3.479e

where; fp , in conthr.

the time the sin minutes.

2 salution :

| (min)   | otorn state<br>Com hor. | down rate in increasing order (N=6)   | storm<br>erate.<br>(N=5).                                             |
|---------|-------------------------|---------------------------------------|-----------------------------------------------------------------------|
| 0-30    | 1.6                     | 1                                     |                                                                       |
| 30-60   | 3.6                     | 1.6                                   | 1.6                                                                   |
| 60-90   | 5.0                     | 2.2                                   | 2.82                                                                  |
| 90-120  | 2.8                     | 2.8                                   | 2.8                                                                   |
| 120-150 | 2.2                     | 3.6                                   | 3 - 6                                                                 |
| 150-180 | EH O IN                 | It suls 5                             | 5                                                                     |
|         | 1.2 Callar              | $\Rightarrow 16.2-60 = 3.6$ $0 = 1.5$ | $\frac{1}{3} \frac{15.2 - 50}{2} = 3.6$ $\Rightarrow \boxed{0} = 1.6$ |

: The value of \$ - Inden = 1.6.

391d solution >

(i) Form factor: It is defined as the ratio of avail width to the axial length of the basin.

(00)

It is defined as the ratio of water shed area to the square of the length of the water shed.

The values of form factor;

for Elongated basins -> 20.78.

for Circular basins -> > 0.78

observations.

1, For for Lo. 78 -> Low Peak of lows for a longer duration.

2, For for > 0.78 -> High peak flows for shorter duration.

2 Form factor suppresented by Fa.

# (ii) Compactness Co-efficient :-

It is defined as the statio of perimeter of watershed to the circumference of the circle having same area as the watershed. It is represented as Cc.

 $C_{c} = \frac{P_{b}}{2N\pi A}$ 

(iii) Elongation Ratio:

It is defined as the ratio of diameter of the circle having some area as the basin to the maximum basin length, the values ranges from 0.4 to 1.0. High elongation ratio refers to circular water shed whereas low elongation ratio refers to elongated water shed.

\* Elongation ratio supresented as Ex.

(iv) Circularity ratio: It is defined as the natio of diameter the basin area to the area of circle having same perimeter as the 4 The values rayes from 0.2 to 0.8. 4 It is suppresented as Con. 45 Low Con salue reports to no structural disturbance and high Convalues refers to existence of strong structural Contribution on the water shed: Formula of Con Con LATAB as we since grand about the self-more salt de Ely polerolad. It is presented as C. Given; Ab = 26560 km². Pb = 965 km Lb = 230km., Wb = 115.5 km. a, Form factor = 115.5 = 0.502. 5) Compartness Co-efficient = 965 = 965 2 VAA 3/3.14x26560 C= 1.67) En =  $2 \times \sqrt{\frac{26560}{3.14}}$   $= \left[\frac{E_n = 0.8}{3.14}\right]$ 

4th solution:

given; Land Use (1. area);

Mard surface = 10%, waste land = 5%,

orchard = 30%, Cultivated, Poor = 55%.

under broup -B -> 60% Assea.

under Group-C -> 40%. Area.

given P=125 mm;

Kana Stork

Curve Number - Mard surface = (0.6 x 86) + (0.4 x91)

whate land = (0.6 x80) + (0.4 x85)

orchard = (0.6×53)+ (0.4×67).

= 58.6

Cultivated land = (0.6x74)+ (0.4x80)
(tennaced Export (andition) = 76.4.

$$= (0.1 \times 88) + (0.05 \times 82) + (0.3 \times 58.6) +$$

$$= (0.1 \times 88) + (0.05 \times 82) + (0.3 \times 58.6) +$$

$$= (0.55 \times 78.4)$$

$$= 73.5$$

$$\vdots = (1000 - 10) \times 2.54$$

$$\vdots = (9.634 \text{ cm}) \text{ (on)}$$

$$= (9-0.25) = (125-0.2 \times 96.34)^{2}$$

$$= (9-0.25) = (125-0.2 \times 96.34)$$

$$= (125+0.8 \times 96.34)$$

$$= (125+0.8 \times 96.34)$$

By, K. Rama Satwik 18CE01022.