# Sets

# **Emily**

## February 27, 2023

#### INTRODUCTION

This chapter is supposed to eventually contain stuff on axiomatic set theory, although currently it has very little material in this direction.

Section A also contains a discussion of negative thinking in the sense of [nLab23] and how sets may be viewed as categories enriched in truth values (see in particular Section A.5).

### NOTES TO MYSELF

- 1. https://mathoverflow.net/questions/436346/zorns-1
   emma-old-friend-or-historical-relic
- 2. Improve the typography of the table of analogies between set theory and category theory.
- 3. von Neumann hierarchy and sets hereditarily of cardinality less than  $\boldsymbol{\kappa}$
- 4. Axiom of regularity consequences:
  - (a) No set is an element of itself.
  - (b) There exists no infinite sequence  $(a_i)_{i \in I}$  such that  $a_{i+1} \in a_i$  for each  $i \in I$ .
- 5. construction of real numbers via dedekind cuts
- 6. TODO: NBG set theory.
- 7. ETCS.
- 8. Ultrafilters as probability measures

Contents 2

# **Contents**

| 1 | Zerr  | nelo–Fraenkel Set Theory                                  | 2  |
|---|-------|-----------------------------------------------------------|----|
|   | 1.1   | Foundations                                               | 2  |
|   | 1.2   | Functions                                                 | 6  |
|   | 1.3   | The Axiom of Choice                                       | 8  |
|   | 1.4   | The Set of Natural Numbers                                | 8  |
| 2 |       | er Set Theories                                           |    |
|   | 2.1   | Von Neumann–Bernays–Gödel Set Theory                      | 9  |
|   | 2.2   | Quine's New Foundations                                   | 9  |
| A | Арр   | endix The Enrichment of Sets in Classical Truth Values    | 9  |
|   | A.1   | (-2)-Categories                                           | 9  |
|   | A.2   | (-1)-Categories                                           | 9  |
|   |       | 0-Categories                                              |    |
|   | A.4   | Setoids                                                   | 14 |
|   | A.5   | Table of Analogies Between Set Theory and Category Theory | 14 |
| В | Арр   | endix Miscellany                                          | 16 |
|   |       | Grothendieck Universes                                    |    |
|   | B.2   | Foundations                                               | 17 |
| С | Арр   | endix Other Chapters                                      | 18 |
|   | • • • | •                                                         |    |

# 1 Zermelo-Fraenkel Set Theory

# 1.1 Foundations

# DEFINITION 1.1.1 ► ZERMELO—FRAENKEL SET THEORY

**Zermelo–Fraenkel set theory** (ZF) is the theory determined by the primitive notions of:

- 1. "Sets";
- 2. "Belonging" to a set;

together with the following axioms:1,2

1.1 Foundations 3

- 1. The Axiom of Set Existence. There exists a set.3
- 2. The Axiom of Extensionality. Let X and Y be sets. The following conditions are equivalent:
  - (a) We have X = Y.
  - (b) The sets X and Y have the same elements.
- 3. The Axiom of Regularity<sup>4</sup>. Every set X contains an element Y such that  $X \cap Y = \emptyset$ .
- 4. The Axiom Scheme of Restricted Comprehension For each
  - (a) Set *X*;
  - (b) Formula  $\phi(x, w_1, \dots, w_n)$  with free variables  $x, w_1, \dots, w_n$ ;

the set<sup>7</sup>

$$\{x \in X \mid \phi(x, w_1, \ldots, w_n)\}$$

exists.

- 5. The Axiom of Pairing. For each pair of sets X and Y, there exists a set Z containing both X and Y as elements.
- 6. The Axiom of Union. For each set  $\mathcal{F} = \{A_i\}_{i \in I}$ , there exists a set F containing each element of each of the elements of  $\mathcal{F}$  (i.e. containing the union of the elements of  $\mathcal{F}$ ).
- 7. The Axiom Scheme of Replacement. For each
  - · Formula  $\phi(s, t, U, w)$  with free variables s, t, U, and w;
  - · Set X;
  - · Parameter *p*;

If  $\phi(s, t, X, p)$  defines a function F on X by

$$F(x) = y \iff \phi(x, y, A, p),$$

then there exists a set Y with  $Im(f) \subset Y$ .

- 8. The Axiom of Infinity. There exists a set X satisfying the following conditions:<sup>8</sup>
  - · We have  $\emptyset \in X$ :

1.1 Foundations 4

- · If  $x \in X$ , then  $succ(x) \in X$ .
- 9. The Axiom of Powerset. For each each set X, there exists a set P containing every subset of X as an element.

<sup>1</sup>Or "axiom schemes", which comprise an infinite number of axioms.

<sup>2</sup>The axioms of

- · Pairing;
- · Union;
- · Powerset;
- · Replacement;

don't produce exactly

- · The pairing  $\{X, Y\}$  of two sets;
- · The union of the sets in a family, nor;
- · The powerset of a set;
- The image of a definable function f;

but only sets containing these as subsets. (So, for instance, all that the axiom of pairing guarantees is the existence of a set containing the sets X and Y as elements, but not necessarily *only these* as elements: it may very well have the form  $Z = \{X, Y, \text{ other stuff}\}$ .)

To actually construct these operations, we need instead to combine the above axioms with the axiom scheme of restricted comprehension; see Constructions With Sets, Definitions 2.3.1, 2.4.1 and 3.2.1.

<sup>3</sup>The axiom of set existence follows from the axiom of infinity, and is hence often omitted in a number of presentations of the ZF axioms.

<sup>4</sup> Further Terminology: Also called the **axiom of foundation**.

<sup>5</sup>The "restricted" in the name "axiom scheme of restricted comprehension" refers to the fact that this axiom can only be used to construct subsets of already existing sets, having the form

$$\{x \in X \mid \phi(x, w_1, \ldots, w_n)\}.$$

Naive set theory, on the other hand, has an "axiom scheme of unrestricted comprehension", which can build "sets" of the more general form

$$\{x \mid \phi(x, w_1, \ldots, w_n)\}.$$

The problem with unrestricted comprehension, however, is that it gives rise to contradictions, such as Russell's paradox.

 $^6$  Further Terminology: Also called the **axiom scheme of specification** or the **axiom scheme of separation**.

 $^7$ For  $\phi$ :  $X \to \{$ true, false $\}$  a formula with one free variable x, this set is a decategorified form of the category of elements of a functor, being the pullback

1.1 Foundations 5

while the category of elements of a functor F is the pullback

$$\int_{C} F \cong C \times_{\mathsf{Sets}} \mathsf{Sets}_{\mathsf{pt/}}, \qquad \qquad \int_{C} F \longrightarrow \mathsf{Sets}_{\mathsf{pt/}}$$

$$\downarrow \qquad \qquad \downarrow \stackrel{\mathbb{Z}}{\swarrow}$$

$$C \xrightarrow{F} \mathsf{Sets}.$$

<sup>8</sup>See ?? and Definition 1.4.2 for the definitions of the empty set and the succ operator.

### REMARK 1.1.2 ► SLOGANS FOR THE ZF AXIOMS

The ZF axioms may be roughly summarised by the following slogans:

- 1. The Axiom of Set Existence. There exists a set.
- 2. The Axiom of Extensionality. A set is uniquely determined by its elements.
- 3. The Axiom of Regularity. A set contains a set disjoint to itself.
- 4. The Axiom Scheme of Restricted Comprehension. Given a set X and a formula  $\phi$ , there is a subset U of X whose elements are the elements of X satisfying  $\phi$ .
- 5. The Axiom of Pairing. Given two sets, there exists a set containing them both.
- 6. The Axiom of Union. Given a family of sets, there exists a set containing the elements of each set in this family.
- 7. The Axiom Scheme of Replacement. The image of a definable function exists.
- 8. The Axiom of Infinity. There exists an infinite set (of a certain form).
- 9. The Axiom of Powerset. Given a set X, there exists a set containing every subset of X.

### PROPOSITION 1.1.3 ► ELEMENTARY CONSEQUENCES OF THE ZF AXIOMS

Let *X* be a set.

1. Non-Existence of the Set of All Sets. There is no set of all sets.

1.2 Functions 6

### PROOF 1.1.4 ▶ PROOF OF PROPOSITION 1.1.3

### Item 1: Non-Existence of the Set of All Sets

If there were a set of all sets S, then we would be able to construct the set from Russell's paradox by applying the axiom scheme of restricted comprehension (Item 4 of Definition 1.1.1) to the formula  $x \notin x$ :

$$R \stackrel{\text{def}}{=} \{ X \in S \mid x \notin x \}.$$

This then leads to a contradiction as soon as one asks: "Does R contain itself?".

### 1.2 Functions

Let A and B be sets.

### **DEFINITION 1.2.1** ► FUNCTIONS

A **function from** A **to**  $B^1$  is a relation  $f: A \longrightarrow B$  from A to B such that if  $a \sim_f b$  and  $a \sim_f c$ , then b = c.

### **DEFINITION 1.2.2** ► THE CATEGORY OF SETS

The category of sets is the category Sets where

- · Objects. The objects of Sets are sets;
- · Morphisms. The morphisms of Sets are functions;
- · Identities. For each  $X \in Obj(Sets)$ , the unit map

$$\mathbb{F}_X^{\mathsf{Sets}} \colon \mathsf{pt} \to \mathsf{Sets}(X,X)$$

of Sets at X is defined by

$$id_X^{Sets} \stackrel{\text{def}}{=} id_X;$$

· Composition. For each  $X, Y, Z \in Obj(Sets)$ , the composition map

$$\circ_{XYZ}^{\mathsf{Sets}} \colon \mathsf{Sets}(Y,Z) \times \mathsf{Sets}(X,Y) \to \mathsf{Sets}(X,Z)$$

of Sets at (X, Y, Z) is defined by

$$g \circ_{X,Y,Z}^{\mathsf{Sets}} f \stackrel{\mathsf{def}}{=} g \circ f$$

for each  $f \in \mathsf{Sets}(X,Y)$  and each  $g \in \mathsf{Sets}(Y,Z)$ .

<sup>&</sup>lt;sup>1</sup> Further Terminology: Also called a **map of sets from** A **to** B.

1.2 Functions 7

### 1.2.1 The Associated Inclusion of Characteristic Relations

Let  $f: A \rightarrow B$  be a map of sets.

# DEFINITION 1.2.3 ► THE INCLUSION OF CHARACTERISTIC RELATIONS ASSOCIATED TO A FUNCTION

The inclusion of characteristic relations associated to  $\boldsymbol{f}$  is the inclusion of relations

### PROOF 1.2.4 ▶ PROOF OF DEFINITION 1.2.3

We claim that we indeed have the stated inclusion of relations:

1. If  $\chi_A(x, y) = \text{true}$ , then x = y and we have

$$\chi_B(f(x), f(y)) = \chi_B(f(x), f(x))$$
= true,

so that we have a morphism

$$\chi_A(x,y) \to \chi_B(f(x),f(y))$$

given by  $id_{true}$ : true  $\rightarrow$  true;

- 2. If  $\chi_A(x, y) = \text{false, then:}$ 
  - (a) If  $f(x) \neq f(y)$ , then  $\chi_B(f(x), f(y)) = \text{false}$ , and we have a morphism

$$\chi_A(x,y) \to \chi_B(f(x),f(y))$$

given by  $id_{false}$ : false  $\rightarrow$  false;

(b) If f(x) = f(y), then  $\chi_B(f(x), f(y)) = \text{true}$ , and we have a morphism

$$\chi_A(x,y) \to \chi_B(f(x),f(y))$$

given by !: false  $\rightarrow$  true.

Thus, we have  $\chi_A \subset \chi_B \circ (f \times f)$ .

## 1.3 The Axiom of Choice

### DEFINITION 1.3.1 ► THE AXIOM OF CHOICE

The axiom of choice is the following axiom:

 $(\star)$  For each family  $\{S_i\}_{i\in I}$  of nonempty sets, there exists an indexed set  $\{x_i\}_{i\in I}$  such that, for each  $i\in I$ , we have  $x_i\in S_i$ .

### PROPOSITION 1.3.2 ► EQUIVALENTS OF THE AXIOM OF CHOICE

Let  $\{S_i\}_{i\in I}$  be a family of sets. The following conditions are equivalent:

- 1. The axiom of choice is true.
- 2. If, for each  $i \in I$ , we have  $S_i \neq \emptyset$ , then  $\prod_{i \in I} S_i \neq \emptyset$ .
- 3. There exists a choice function for  $\{S_i\}_{i \in I}$ .

### PROOF 1.3.3 ► PROOF OF PROPOSITION 1.3.2

Omitted.



### 1.4 The Set of Natural Numbers

### DEFINITION 1.4.1 ► THE AXIOMS OF PEANO ARITHMETIC

The axioms of Peano arithmetic<sup>1</sup> are the following axioms:

- 1. For each  $n \in \mathbb{N}$ , we have  $0 \neq \text{succ}(n)$ .
- 2. For each  $n, m \in \mathbb{N}$ , if succ(n) = succ(m), then n = m.
- 3. If 0 has property P and, for each  $n \in \mathbb{N}$ , the condition
  - $(\star)$  If n has property P, then succ(n) has property P.

is true, then n has property P for each  $n \in \mathbb{N}$ .

<sup>1</sup>Further Terminology: Also called the **Peano axioms**, the **Dedekind-Peano axioms**, or the **Peano postulates**.

#### 1.4.1 Successors

Let A be a set.

## DEFINITION 1.4.2 ► THE SUCCESSOR OF A SET

The **successor of** A is the set succ(A) defined by

$$\operatorname{succ}(A) \stackrel{\text{def}}{=} A \cup \{A\}.$$

- 2 Other Set Theories
- 2.1 Von Neumann-Bernays-Gödel Set Theory
- 2.2 Quine's New Foundations

# **Appendices**

# A The Enrichment of Sets in Classical Truth Values

# A.1 (-2)-Categories

## Definition A.1.1 $\triangleright$ (-2)-Categories

A (-2)-category is the "necessarily true" truth value. 1,2,3

 $^{1}$ That is, there is only one (-2)-category: "necessarily true".

 $^2$ A (-n)-category for  $n=3,4,\ldots$  is also the "necessarily true" truth value, coinciding with a (-2)-category.

<sup>3</sup>For motivation, see [BB10, p. 13].

# A.2 (-1)-Categories

### A.2.1 Foundations

### Definition A.2.1 $\triangleright$ (-1)-Categories

A (-1)-category is a classical truth value.

### Remark A.2.2 $\blacktriangleright$ Motivation for (-1)-Categories

 $^{1}(-1)$ -categories should be thought of as being "categories enriched in (-2)-categories", having a collection of objects and, for each pair of objects, a Homobject Hom(x, y) that is a (-2)-category (i.e. trivial).

Therefore, a (-1)-category C is either ([BB10, pp. 33–34]):

- 1. *Empty*, having no objects;
- 2. Contractible, having a collection of objects  $\{a, b, c, ...\}$ , but with  $Hom_C(a, b)$  being a (-2)-category (i.e. trivial) for all  $a, b \in Obj(C)$ , forcing all objects of C to be uniquely isomorphic to each other.

As such, there are only two (-1)-categories, up to equivalence:

- · The (-1)-category false (the empty one);
- · The (-1)-category true (the contractible one).

## **A.2.2** The Set of (-1)-Categories

### Definition A.2.3 $\blacktriangleright$ The Set of (-1)-Categories

The **set of** (-1)-categories is the set Cats<sub>-1</sub> defined by

$$Cats_{-1} \stackrel{\text{def}}{=} \{true, false\}.$$

### REMARK A.2.4 ► ALGEBRAIC STRUCTURES ON Cats\_1

The set  $Cats_{-1}$  admits a number of algebraic structures, each carrying a different name:

- The Field With One Element. The field with one element  $\mathbb{F}_1$  of Monoids With Zero, Example 1.1.4;
- The Boolean Monoid. The Boolean monoid  $\mathbb B$  of Monoids, Example 1.1.4;
- The Group of Integers Modulo 2. The group  $\mathbb{Z}_{/2}$  of Groups, Definition 3.1.4;
- The Boolean Semiring. The Boolean semiring B of Commutative Semirings,
   ??;

<sup>&</sup>lt;sup>1</sup>For more motivation, see [BB10, p. 13].

• The Ring of Integers Modulo 2. The ring  $\mathbb{Z}_{/2}$  of Commutative Rings, Example 1.1.5.

Among these, it is the algebraic structure of the field with one element that comes into play when trying to express sets as being enriched over {true, false}: indeed, we have an isomorphism of categories<sup>1</sup>

$$\mathsf{Sets} \cong \mathsf{Cats}_{\mathbb{F}^{\mathsf{disc}}_{\bullet}}.$$

## **A.2.3** The Poset of (-1)-Categories

## Definition A.2.5 $\blacktriangleright$ The Poset of (-1)-Categories

The **poset of** (-1)-categories is the poset  $\left(\mathsf{Cats}^{\mathsf{Pos}}_{-1}, \leq\right)$  consisting of

- The Underlying Set. The set Cats<sub>-1</sub> of Definition A.2.3;
- · The Partial Order. The partial order

$$\leq \colon \mathsf{Cats}_{-1} \times \mathsf{Cats}_{-1} \to \underbrace{\{\mathsf{true}, \mathsf{false}\}}_{\stackrel{\mathsf{def}}{\subseteq} \mathsf{Cats}_{-1}}$$

on Cats-1 defined by

$$\begin{split} & \text{false} \leq \text{false} \stackrel{\text{def}}{=} \text{true}, \\ & \text{true} \leq \text{false} \stackrel{\text{def}}{=} \text{false}, \\ & \text{false} \leq \text{true} \stackrel{\text{def}}{=} \text{true}, \\ & \text{true} \leq \text{true} \stackrel{\text{def}}{=} \text{true}. \end{split}$$

 $^{1}$ As a posetal category,  $\mathsf{Cats}^{\mathsf{Pos}}_{-1}$  is the category  $\mathsf{Cats}^{\mathsf{cat}}_{-1}$  where

· We have

$$\begin{aligned} \mathsf{Obj}\big(\mathsf{Cats}^{\mathsf{cat}}_{-1}\big) &\stackrel{\mathsf{def}}{=} \mathsf{Cats}_{-1} \\ &\stackrel{\mathsf{def}}{=} \{\mathsf{true}, \mathsf{false}\}; \end{aligned}$$

· Morphisms. We have

$$\begin{split} &\mathsf{Hom}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}(\mathsf{true},\mathsf{true}) \overset{\mathsf{def}}{=} \{\mathsf{id}_{\mathsf{true}}\} \ \cong \mathsf{pt}, \\ &\mathsf{Hom}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}(\mathsf{true},\mathsf{false}) \overset{\mathsf{def}}{=} \emptyset \qquad \overset{\mathsf{def}}{=} \emptyset, \\ &\mathsf{Hom}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}(\mathsf{false},\mathsf{true}) \overset{\mathsf{def}}{=} \{!\} \qquad \cong \mathsf{pt}, \\ &\mathsf{Hom}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}(\mathsf{false},\mathsf{false}) \overset{\mathsf{def}}{=} \{\mathsf{id}_{\mathsf{false}}\} \cong \mathsf{pt}; \end{split}$$

<sup>&</sup>lt;sup>1</sup>A small subtlety here is that we need to allow categories to be enriched not only over monoidal categories, but also over monoidal categories with zero.

· Identities. The two unit maps

of Cats<sup>cat</sup> are defined by

$$\begin{split} & id_{true}^{\text{Cats}^{\text{cat}}_{-1}} \overset{\text{def}}{=} id_{true}, \\ & id_{false}^{\text{Cats}^{\text{cat}}_{-1}} \overset{\text{def}}{=} id_{false}; \end{split}$$

- Composition. The composition maps of  $\mathsf{Cats}_{-1}^{\mathsf{cat}}$  are completely determined by the axioms for it to be a category.

Thus, the sole difference between  $\mathsf{Cats}^{\mathsf{cat}}_{-1}$  and  $\mathsf{Cats}^{\mathsf{disc}}_{-1}$  is that in  $\mathsf{Cats}^{\mathsf{cat}}_{-1}$  we have a morphism false  $\to$  true, whereas in  $\mathsf{Cats}^{\mathsf{disc}}_{-1}$  we have none:

$$\begin{aligned} & \mathsf{Hom}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}(\mathsf{false},\mathsf{true}) \stackrel{\mathsf{def}}{=} \mathsf{pt}, \\ & \mathsf{Hom}_{\mathsf{Cats}^{\mathsf{disc}}_{-1}}(\mathsf{false},\mathsf{true}) \stackrel{\mathsf{def}}{=} \emptyset. \end{aligned}$$

Here is a picture of  $Cats_{-1}^{disc}$  vs.  $Cats_{-1}^{cat}$ :

## REMARK A.2.6 ► MONOIDAL STRUCTURES ON Cats<sup>cat</sup><sub>-1</sub>

The category  $\mathsf{Cats}^{\mathsf{cat}}_{-1}$  admits two symmetric monoidal category structures:

1. We have the Cartesian monoidal structure, whose tensor product is given by the categorical product, which is given on objects by 1

| ×     | false | true  |
|-------|-------|-------|
| false | false | false |
| true  | false | true  |

This monoidal structure is both symmetric and closed, with internal **Hom** being given by

A.3 0-Categories

| $Hom_{\{t,f\}}(1,2)$ | false | true |
|----------------------|-------|------|
| false                | true  | true |
| true                 | false | true |

2. We have the coCartesian monoidal structure, whose tensor product is given by the categorical coproduct, which is given on objects by<sup>2</sup>

| П     | false | true |
|-------|-------|------|
| false | false | true |
| true  | true  | true |

This monoidal structure is symmetric, but it isn't closed.

# REMARK A.2.7 ► THE MONOIDAL CATEGORY WITH ZERO STRUCTURE ON Cats<sup>cat</sup><sub>-1</sub>

The Cartesian monoidal category ( $Cats_{-1}^{cat}$ ,  $\times$ , true) of Remark A.2.6 is more naturally thought of as a symmetric monoidal category with zero, and its monoidal product coincides on objects with the monoid with zero structure of the field with one element  $\mathbb{F}_1$  of Monoids With Zero, Example 1.1.4.

Categories enriched in  $(Cats_{-1}^{cat}, \times, true)$  are precisely the posets:

$$\mathsf{Pos} \cong \mathsf{Cats}_{\mathsf{Cats}^{\mathsf{cat}}_{-1}}.$$

# A.3 0-Categories

## **DEFINITION A.3.1** ► 0-CATEGORIES

A 0-category is a poset.1

<sup>&</sup>lt;sup>1</sup> Further Notation: We also write  $\land$  (read "and") for  $\times$ .

<sup>&</sup>lt;sup>2</sup> Further Notation: We also write ∨ (read "or") for [].

<sup>&</sup>lt;sup>1</sup>A 0-category is precisely a category enriched in the poset of (-1)-categories; see Remark A.2.7.

A.4 Setoids 14

## **DEFINITION A.3.2** ► 0-GROUPOIDS

A **0-groupoid** is a **0**-category in which every morphism is invertible.<sup>1</sup>

<sup>1</sup>That is, a set.

# A.4 Setoids

### **DEFINITION A.4.1** ► **SETOIDS**

A **setoid** is a pair  $(X, \sim)$ 

## PROPOSITION A.4.2 ► PROPERTIES OF SETOIDS

1. Equivalence With Sets. We have an equivalence of categories Setd  $\cong$  Sets.

### PROOF A.4.3 ► PROOF OF PROPOSITION A.4.2

Item 1: Equivalence With Sets

# A.5 Table of Analogies Between Set Theory and Category Theory

Here we record some analogies between notions in set theory and category theory. Note that the analogies relating to presheaves relate equally well to copresheaves, as the opposite  $X^{op}$  of a set X is just X again.

| Set Theory                                                                                                                                             | Category Theory                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrichment in {true, false}                                                                                                                            | Enrichment in Sets                                                                                                                                   |
| Set X                                                                                                                                                  | Category <i>C</i>                                                                                                                                    |
| Element $x \in X$                                                                                                                                      | $ObjectX \in Obj(\mathcal{C})$                                                                                                                       |
| Function                                                                                                                                               | Functor                                                                                                                                              |
| Function $X \to \{\text{true}, \text{false}\}$                                                                                                         | Functor $C \rightarrow Sets$                                                                                                                         |
| Function $X \to \{\text{true}, \text{false}\}$                                                                                                         | Presheaf $C^{op} \to Sets$                                                                                                                           |
| Characteristic function $\chi_{\{x\}}$<br>Characteristic embedding $\chi_{(-)} \colon X \hookrightarrow \mathcal{P}(X)$                                | Representable presheaf $h_X$<br>Yoneda embedding<br>$\&prices$ : $C^{\mathrm{op}} \hookrightarrow PSh(C)$                                            |
| Characteristic relation $\chi_X(-1,-2)$                                                                                                                | Hom profunctor $Hom_C(-1, -2)$                                                                                                                       |
| The Yoneda lemma for sets $\chi_{\mathcal{P}(X)}^{Pos}(\chi_x, \chi_U) = \chi_U(x)$                                                                    | The Yoneda lemma for categories $Nat(h_X,\mathcal{F})\cong\mathcal{F}(X)$                                                                            |
| The characteristic<br>embedding is fully faithful,<br>$\chi_{\mathcal{P}(X)}^{Pos}(\chi_x, \chi_y) = \chi_X(x, y)$                                     | The Yoneda embedding is fully faithful, $Nat(h_X, h_Y) \cong Hom_C(X, Y)$                                                                            |
| Powerset $\mathcal{P}(X)$                                                                                                                              | Presheaf category $PSh(C)$                                                                                                                           |
| Relation $R: X \times Y \rightarrow \{\text{true}, \text{false}\}$                                                                                     | Profunctor $\mathfrak{p} \colon \mathcal{D}^{op} \times C \to Sets$                                                                                  |
| Relation $R: X \to \mathcal{P}(Y)$<br>Relation as a<br>cocontinuous morphism of posets<br>$R: (\mathcal{P}(X), \subset) \to (\mathcal{P}(Y), \subset)$ | Profunctor $\mathfrak{p} \colon C \to PSh(\mathcal{D})$ Profunctor as a colimit-preserving functor $\mathfrak{p} \colon PSh(C) \to PSh(\mathcal{D})$ |
| Restricted comprehension Direct image function $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$                                                          | Categories of elements Inverse image functor $f^{-1} \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$                                                   |
| Inverse image function $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ Direct image with                                                                   | Direct image functor $f_* \colon PSh(\mathcal{D}) \to PSh(\mathcal{C})$ Direct image with                                                            |
| compact support function $f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$                                                                                | compact support functor $f_! \colon PSh(\mathcal{C}) \to PSh(\mathcal{D})$                                                                           |

# **B** Miscellany

## B.1 Grothendieck Universes

### **B.1.1** Foundations

### DEFINITION B.1.1 ► GROTHENDIECK UNIVERSES

A **Grothendieck universe**<sup>1</sup> is a nonempty set  $\mathcal U$  satisfying the following conditions:

- 1. If  $x \in \mathcal{U}$  and  $y \in x$ , then  $y \in \mathcal{U}$ .
- 2. If  $x, y \in \mathcal{U}$ , then  $\{x, y\} \in \mathcal{U}$ .
- 3. If  $x \in \mathcal{U}$ , then  $\mathcal{P}(x) \in \mathcal{U}$ .
- 4. If  $I \in \mathcal{U}$  and, for each  $\alpha \in I$ , we have  $x_{\alpha} \in \mathcal{U}$ , then  $\bigcup_{\alpha \in I} X_{\alpha} \in \mathcal{U}$ .

### Example B.1.2 ► The Universe Containing the Empty Set

The universe generated by the empty set is the universe  $\mathcal{U}_\emptyset$  defined by

$$\mathcal{U}_{\emptyset} \stackrel{\text{def}}{=} \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots\}.$$

# Proposition B.1.3 ➤ Universes Are Closed Under Set-Theoretical Constructions

Grothendieck universes are closed under unions, formation of ordered pairs, Cartesian products, and exponentiation<sup>1</sup>

<sup>1</sup>I.e. taking Hom's.

## PROOF B.1.4 ► PROOF OF PROPOSITION B.1.3

Clear.



## AXIOM B.1.5 ► EXISTENCE OF GROTHENDIECK UNIVERSES

Every set X is contained in some universe  $\mathcal{U}_X$ .

<sup>&</sup>lt;sup>1</sup>Or simply a universe.

B.2 Foundations 17

## DEFINITION B.1.6 ► TARSKI—GROTHENDIECK SET THEORY

### PROPOSITION B.1.7 ► GROTHENDIECK UNIVERSES AND INACCESSIBLE CARDINALS

The following statements are equivalent:

- 1. Grothendieck Universes exist (Axiom B.1.5).
- 2. Inaccessible Cardinals exist.

### Proof B.1.8 ▶

Omitted.



### B.1.2 *U*-Small Sets

Let  $\mathcal{U}$  be a Grothendieck universe.

## Definition B.1.9 $\blacktriangleright$ $\mathcal{U}$ -Small Sets

A set is  $\mathcal{U}$ -small if it is isomorphic to an element of  $\mathcal{U}$ .

### **B.2** Foundations

## DEFINITION B.2.1 ► THE ETCS AXIOMS

The **ETCS axioms** state that there exists a category Sets satisfying the following conditions:

- 1. Finite Bicompleteness. The category Sets is finitely bicomplete, admitting:
  - (a) *Initial Objects*. An initial object ∅;
  - (b) Terminal Objects. A terminal object pt;
  - (c) Binary Products. For each  $A, B \in Obj(Sets)$ , a product  $A \times B$ ;
  - (d) Binary Coproducts. For each  $A, B \in Obj(Sets)$ , a coproduct  $A \coprod B$ ;
  - (e) Equalisers. For each parallel pair  $f, g: A \Longrightarrow B$  of morphisms of Sets, an equaliser Eq(f,g);
  - (f) Coequalisers. For each parallel pair  $f, g: A \Longrightarrow B$  of morphisms of Sets, a coequaliser CoEq(f, g);

2. Exponentials. The category Sets is Cartesian closed, add

# **C** Other Chapters

## **Logic and Model Theory**

- 1. Logic
- 2. Model Theory

## Type Theory

- 3. Type Theory
- 4. Homotopy Type Theory

## **Set Theory**

- 5. Sets
- 6. Constructions With Sets
- 7. Indexed and Fibred Sets
- 8. Relations
- 9. Posets

### Category Theory

- 10. Categories
- 11. Constructions With Categories
- 12. Limits and Colimits
- 13. Ends and Coends
- 14. Kan Extensions
- 15. Fibred Categories
- 16. Weighted Category Theory

### Categorical Hochschild Co/Homology

- Abelian Categorical Hochschild Co/Homology
- Categorical Hochschild Co/Homology

## **Monoidal Categories**

- 19. Monoidal Categories
- 20. Monoidal Fibrations

- 21. Modules Over Monoidal Categories
- 22. Monoidal Limits and Colimits
- 23. Monoids in Monoidal Categories
- 24. Modules in Monoidal Categories
- 25. Skew Monoidal Categories
- 26. Promonoidal Categories
- 27. 2-Groups
- 28. Duoidal Categories
- 29. Semiring Categories

## Categorical Algebra

- 30. Monads
- 31. Algebraic Theories
- 32. Coloured Operads
- 33. Enriched Coloured Operads

## **Enriched Category Theory**

- 34. Enriched Categories
- 35. Enriched Ends and Kan Extensions
- 36. Fibred Enriched Categories
- Weighted Enriched Category Theory

## **Internal Category Theory**

- 38. Internal Categories
- 39. Internal Fibrations
- 40. Locally Internal Categories
- 41. Non-Cartesian Internal Categories
- 42. Enriched-Internal Categories

### Homological Algebra

- 43. Abelian Categories
- 44. Triangulated Categories
- 45. Derived Categories

## **Categorical Logic**

- 46. Categorical Logic
- 47. Elementary Topos Theory
- 48. Non-Cartesian Topos Theory

### Sites, Sheaves, and Stacks

- 49. Sites
- 50. Modules on Sites
- 51. Topos Theory
- 52. Cohomology in a Topos
- 53. Stacks

### **Complements on Sheaves**

54. Sheaves of Monoids

## **Bicategories**

- 55. Bicategories
- 56. Biadjunctions and Pseudomonads
- 57. Bilimits and Bicolimits
- 58. Biends and Bicoends
- 59. Fibred Bicategories
- 60. Monoidal Bicategories
- 61. Pseudomonoids in Monoidal Bicategories

### **Higher Category Theory**

- 62. Tricategories
- 63. Gray Monoids and Gray Categories
- 64. Double Categories
- 65. Formal Category Theory
- 66. Enriched Bicategories
- 67. Elementary 2-Topos Theory

### Simplicial Stuff

- 68. The Simplex Category
- 69. Simplicial Objects
- 70. Cosimplicial Objects
- 71. Bisimplicial Objects
- 72. Simplicial Homotopy Theory
- 73. Cosimplicial Homotopy Theory

### Cyclic Stuff

- 74. The Cycle Category
- 75. Cyclic Objects

### **Cubical Stuff**

- 76. The Cube Category
- 77. Cubical Objects
- 78. Cubical Homotopy Theory

### Globular Stuff

- 79. The Globe Category
- 80. Globular Objects

#### Cellular Stuff

- 81. The Cell Category
- 82. Cellular Objects

### Homotopical Algebra

- 83. Model Categories
- 84. Examples of Model Categories
- 85. Homotopy Limits and Colimits
- 86. Homotopy Ends and Coends
- 87. Derivators

### Topological and Simplicial Categories

- 88. Topologically Enriched Categories
- 89. Simplicial Categories
- 90. Topological Categories

### Quasicategories

- 91. Quasicategories
- 92. Constructions With Quasicategories
- 93. Fibrations of Quasicategories
- Limits and Colimits in Quasicategories
- Ends and Coends in Quasicategories
- 96. Weighted ∞-Category Theory
- 97. ∞-Topos Theory

## **Cubical Quasicategories**

| 98.                  | Cubical Quasicategories                                                            | 117. Condensed Mathematics                                                                                           |  |  |
|----------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Comp                 | olete Segal Spaces                                                                 | Monoids                                                                                                              |  |  |
| 99.<br>∞ <b>-Co</b>  | Complete Segal Spaces                                                              | <ul><li>118. Monoids</li><li>119. Constructions With Monoids</li><li>120. Tensor Products of Monoids</li></ul>       |  |  |
| 100.                 | ∞-Cosmoi                                                                           | <ul><li>121. Indexed and Fibred Monoids</li><li>122. Indexed and Fibred Commutative</li></ul>                        |  |  |
| Enric<br>ory         | hed and Internal ∞-Category The-                                                   | Monoids<br>123. Monoids With Zero                                                                                    |  |  |
| 101.                 | Internal ∞-Categories                                                              | Groups                                                                                                               |  |  |
| 102.                 | Enriched ∞-Categories                                                              | 124. Groups                                                                                                          |  |  |
| $(\infty, 2)$        | )-Categories                                                                       | 125. Constructions With Groups                                                                                       |  |  |
| 103.                 | $(\infty, 2)$ -Categories                                                          | Algebra                                                                                                              |  |  |
| 104.                 | 2-Quasicategories                                                                  | 126. Rings                                                                                                           |  |  |
| $(\infty, n$         | )-Categories                                                                       | 127. Fields<br>128. Linear Algebra                                                                                   |  |  |
|                      | Complicial Sets                                                                    | 129. Modules                                                                                                         |  |  |
| 106.                 | Comical Sets                                                                       | 130. Algebras                                                                                                        |  |  |
| Doub                 | le ∞-Categories                                                                    | Near-Semirings and Near-Rings                                                                                        |  |  |
| 107.                 | Double ∞-Categories                                                                | <ul><li>131. Near-Semirings</li><li>132. Near-Rings</li></ul>                                                        |  |  |
| Highe                | er Algebra                                                                         | Semirings                                                                                                            |  |  |
| 109.<br>110.<br>111. | Differential Graded Categories Stable ∞-Categories ∞-Operads Monoidal ∞-Categories | <ul><li>133. Semirings</li><li>134. Commutative Semirings</li><li>135. Semifields</li><li>136. Semimodules</li></ul> |  |  |
| 112.                 | Monoids in Symmetric Monoidal ∞-<br>Categories                                     | Hyper-Algebra                                                                                                        |  |  |
|                      | Modules in Symmetric Monoidal ∞-<br>Categories<br>Dendroidal Sets                  | <ul><li>137. Hypermonoids</li><li>138. Hypersemirings and Hyperrings</li><li>139. Quantales</li></ul>                |  |  |
|                      | ed Algebraic Geometry                                                              | Commutative Algebra                                                                                                  |  |  |
|                      |                                                                                    | _                                                                                                                    |  |  |
|                      | Derived Algebraic Geometry                                                         | 140. Commutative Rings                                                                                               |  |  |
| 116.                 | Spectral Algebraic Geometry                                                        | More Algebra                                                                                                         |  |  |

141. Plethories

**Condensed Mathematics** 

- 142. Graded Algebras
- 143. Differential Graded Algebras
- 144. Representation Theory
- 145. Coalgebra
- 146. Topological Algebra

# Real Analysis, Measure Theory, and Probability

- 147. Real Analysis
- 148. Measure Theory
- 149. Probability Theory
- 150. Stochastic Analysis

### **Complex Analysis**

- 151. Complex Analysis
- 152. Several Complex Variables

### **Functional Analysis**

- 153. Topological Vector Spaces
- 154. Hilbert Spaces
- 155. Banach Spaces
- 156. Banach Algebras
- 157. Distributions

### **Harmonic Analysis**

158. Harmonic Analysis on  $\mathbb{R}$ 

### Differential Equations

- 159. Ordinary Differential Equations
- 160. Partial Differential Equations

### p-Adic Analysis

- 161. p-Adic Numbers
- 162. p-Adic Analysis
- 163. p-Adic Complex Analysis
- 164. p-Adic Harmonic Analysis
- 165. p-Adic Functional Analysis
- 166. *p*-Adic Ordinary Differential Equations

167. *p*-Adic Partial Differential Equations

### **Number Theory**

- 168. Elementary Number Theory
- 169. Analytic Number Theory
- 170. Algebraic Number Theory
- 171. Class Field Theory
- 172. Elliptic Curves
- 173. Modular Forms
- 174. Automorphic Forms
- 175. Arakelov Geometry
- 176. Geometrisation of the Local Langlands Correspondence
- 177. Arithmetic Differential Geometry

## Topology

- 178. Topological Spaces
- 179. Constructions With Topological Spaces
- 180. Conditions on Topological Spaces
- 181. Sheaves on Topological Spaces
- 182. Topological Stacks
- 183. Locales
- 184. Metric Spaces

### Differential Geometry

- 184. Topological and Smooth Manifolds
- 185. Fibre Bundles, Vector Bundles, and Principal Bundles
- Differential Forms, de Rham Cohomology, and Integration
- 187. Riemannian Geometry
- 188. Complex Geometry
- 189. Spin Geometry
- 190. Symplectic Geometry
- 191. Contact Geometry
- 192. Poisson Geometry
- 193. Orbifolds
- 194. Smooth Stacks
- 195. Diffeological Spaces

### Lie Groups and Lie Algebras

| 196.            | Lie Groups                     | 224. Nori's Fundamental Group Scheme                                                |
|-----------------|--------------------------------|-------------------------------------------------------------------------------------|
| 197.            | Lie Algebras                   | 225. Étale Homotopy of Schemes                                                      |
| 198.            | Kac–Moody Groups               | Cohomology of Schemes                                                               |
| 199.            | Kac–Moody Algebras             | <del></del>                                                                         |
| Homotopy Theory |                                | 226. Local Cohomology                                                               |
|                 |                                | 227. Dualising Complexes                                                            |
|                 | Algebraic Topology             | 228. Grothendieck Duality                                                           |
|                 | Spectral Sequences             | Group Schemes                                                                       |
|                 | Topological K-Theory           | 229. Flat Topologies on Schemes                                                     |
|                 | Operator K-Theory              | 230. Group Schemes                                                                  |
| 204.            | Localisation and Completion of | 231. Reductive Group Schemes                                                        |
|                 | Spaces                         | 232. Abelian Varieties                                                              |
|                 | Rational Homotopy Theory       | 233. Cartier Duality                                                                |
|                 | <i>p</i> -Adic Homotopy Theory | 234. Formal Groups                                                                  |
|                 | Stable Homotopy Theory         |                                                                                     |
|                 | Chromatic Homotopy Theory      | Deformation Theory                                                                  |
|                 | Topological Modular Forms      | 235. Deformation Theory                                                             |
|                 | Goodwillie Calculus            | 236. The Cotangent Complex                                                          |
| 211.            | Equivariant Homotopy Theory    | Étale Cohomology                                                                    |
| Scher           | nes                            |                                                                                     |
|                 | Calcana                        | 237. Étale Cohomology                                                               |
|                 | Schemes                        | 238. ℓ-Adic Cohomology                                                              |
|                 | Morphisms of Schemes           | 239. Pro-Étale Cohomology                                                           |
|                 | Projective Geometry            | Crystalline Cohomology                                                              |
| 215.            | Formal Schemes                 | <del>-</del> -                                                                      |
| Morp            | hisms of Schemes               | 240. Hochschild Cohomology                                                          |
| 216             | Finiteness Conditions on Mor-  | 241. De Rham Cohomology                                                             |
| 210.            | phisms of Schemes              | 242. Derived de Rham Cohomology                                                     |
| 217             | Étale Morphisms                | <ul><li>243. Infinitesimal Cohomology</li><li>244. Crystalline Cohomology</li></ul> |
|                 | •                              | 245. Syntomic Cohomology                                                            |
| Topic           | s in Scheme Theory             | 246. The de Rham–Witt Complex                                                       |
| 218.            | Varieties                      | 247. <i>p</i> -Divisible Groups                                                     |
| 219.            | Algebraic Vector Bundles       | 248. Monsky–Washnitzer Cohomology                                                   |
|                 | Divisors                       | 249. Rigid Cohomology                                                               |
|                 |                                | 250. Prismatic Cohomology                                                           |
| Funda           | amental Groups of Schemes      |                                                                                     |
| 221.            | The Étale Topology             | Algebraic <i>K-</i> Theory                                                          |
| 222.            | The Étale Fundamental Group    | 251. Topological Cyclic Homology                                                    |
|                 | Tannakian Fundamental Groups   | 252. Topological Hochschild Homology                                                |
|                 |                                |                                                                                     |

| 253.                           | Topological André–Quillen Homology    | 271.  | Log Schemes                               |
|--------------------------------|---------------------------------------|-------|-------------------------------------------|
| 254.                           | Algebraic <i>K</i> -Theory            | Analy | rtic Geometry                             |
|                                | Algebraic <i>K</i> -Theory of Schemes | 272.  | Real Algebraic Geometry                   |
| Intersection Theory            |                                       |       | Complex-Analytic Spaces                   |
|                                |                                       |       | Rigid Spaces                              |
|                                | Chow Homology                         |       | Berkovich Spaces                          |
| 257.                           | Intersection Theory                   |       | Adic Spaces                               |
| Mono                           | dromy Groups in Algebraic Geome-      | 277.  | Perfectoid Spaces                         |
| try                            |                                       | p-Adi | c Hodge Theory                            |
| 258.                           | Monodromy Groups                      | 278.  | Fontaine's Period Rings                   |
| Algeb                          | oraic Spaces                          | 279.  | The <i>p</i> -Adic Simpson Correspondence |
| 259.                           | Algebraic Spaces                      |       | dence                                     |
| 260.                           | Morphisms of Algebraic Spaces         | Algeb | oraic Geometry Miscellanea                |
| 261.                           | Formal Algebraic Spaces               | 280.  | Tropical Geometry                         |
| Delig                          | ne–Mumford Stacks                     | 281.  | $\mathbb{F}_1$ -Geometry                  |
| 262.                           | Deligne–Mumford Stacks                | Physi | cs                                        |
| Algeb                          | oraic Stacks                          |       | Classical Mechanics                       |
| 262                            | Algebraic Stacks                      |       | Electromagnetism                          |
|                                | Morphisms of Algebraic Stacks         |       | Special Relativity                        |
|                                |                                       | _     | Statistical Mechanics                     |
| Modu                           | ıli Theory                            |       | General Relativity                        |
| 265.                           | Moduli Stacks                         |       | Quantum Mechanics                         |
|                                |                                       |       | Quantum Field Theory                      |
| Motiv                          | ves .                                 |       | Supersymmetry                             |
| 266.                           | Tannakian Categories                  |       | String Theory                             |
|                                | Vanishing Cycles                      | 291.  | The AdS/CFT Correspondence                |
|                                | Motives                               | Misce | ellany                                    |
| 269.                           | Motivic Cohomology                    | 222   | To Do Dofostovod                          |
| 270.                           | Motivic Homotopy Theory               |       | To Be Refactored                          |
| l oco                          | ithmic Algobraic Coomotor             |       | Miscellanea                               |
| Logarithmic Algebraic Geometry |                                       |       | Questions                                 |

References 24

# References

[BB10] John C. Baez and Michael Shulman. "Lectures on *n*-Categories and Cohomology". In: *Towards higher categories*. Vol. 152. IMA Vol. Math. Appl. Springer, New York, 2010, pp. 1–68. DOI: 10.1007/978-1-4419-1524-5\_1. URL: https://doi.org/10.1007/978-1-4419-1524-5\_1 (cit. on pp. 9, 10).

[nLab23] The nLab Authors. Negative Thinking. 2023. URL: https://ncatlab.org/nlab/show/negative+thinking (cit. on p. 1).