

Genome Sequence Assembly

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

Availability of slides

All materials are freely available (CC BY) - after the lectures:

StudIP: GE31/MM12

GitHub: https://github.com/bpucker/teaching

Questions: Feel free to ask at any time

Feedback, comments, or questions: b.pucker[a]tu-braunschweig.de

My figures and content can be re-used in accordance with CC BY 4.0, but this might not apply to all images/logos. Some figure were constructed using bioRender.com.

The assembly problem

- Reads are shorter than the chromosome
 even long reads
- Multiple copies of the genome (DNA exist that can be subjected to sequencing
- Assembly = putting sequence pieces together (finding the common string of all substrings)
- Genome = DNA in a cell
- Genome sequence = representation of the DNA in a cell

Contigs, scaffolds, pseudochromosomes

ACGACAGTACGACACTTACAGGATCATTACGACGNNNNAGGACGGGACCTTCAGGACGTACNNNNNNNGGATCATTACACATTACACATTAC SCAFFOld

Pseudochromosomes = scaffolds representing an entire chromosome **Gaps** = regions between contigs that are represented by Ns

Sequencing coverage depth vs. coverage extent

Sequencing coverage depth

Sequencing coverage extent

Sequencing coverage depth

- Coverage depth = average number of times a given base is being sequenced
- Calculation:
 - N = number of reads
 - L = read length in base pairs
 - G = genome size in base pairs
 - Coverage depth d = N X L / G
- Coverage (depth) reflects total amount of sequencing data
- Coverage (depth) is very important parameter for sequencing projects

Sequencing coverage extent

- Coverage extent = ratio of genome covered by at least one base
- Informative to calculate required sequencing depth for a project
- Coverage extent follows a Poisson distribution
- Calculation of coverage extent (c):
 - Non-coverage extent: P(X=0) = e^{-c}
 - Probability of coverage extent: P(X>0) = 1 e^{-c}
- Complete coverage of genome requires G x e^{-c} < 1
- Larger genomes required higher sequencing depth
- Real coverage extent is often suffering from sequencing bias

Assembly paradigms

- Greedy
- Overlap layout consensus (OLC)
- De Bruijn Graph (DBG)

Greedy

- Assemble reads that overlap best
- Choices are inherently local => paired-end / mate pair information not used
- Heuristics needed to avoid misassembling repeats
- Paradigm was used for early assemblers: phrap, TIGR

Overlap layout consensus (OLC)

- 1) Identification of all reads with sufficient overlaps (all vs. all comparison)
- 2) Construction of graph based on layout information
 - Nodes represent reads
 - Edges represent overlaps
- 3) Inference of consensus sequence from graph
- Complexity/Problems:
 - Number of nodes is equal to number of reads
 - Number of edges increases logarithmically
 - Hamiltonian path problem is NP-hard

```
TTTCCGCAACTCCAA
TTTC
TTCC
TCCG
CCGC
CGCA
GCAA
CAAC
AACT
ACTC
CTCC
TCCA
CCAA
```


De Brujin graph (DBG)

- 1) Reads are broken into smaller k-mers
- 2) K-mers represented in a "De Bruijn graph"
- 3) Inference of genome sequence from graph
- Paradigm used in many assemblers: Velvet, ABySS, AllPath-LG, SOAPdenovo
- Complexity:
 - Number of nodes and links equal to genome size
 - Eulerian path problem is easier to solve than Hamiltonian path problem

```
TTTCCGCAACTCCAA
        TTTC
         TTCC
          TCCG
           CCGC
            CGCA
              GCAA
               CAAC
                AACT
                 ACTC
                  CTCC
                   TCCA
                     CCAA
Eulerian
TTTC O TTCC O TCCA O CCAA O CAAA
```


K-mer size

- Larger k-mers increase the assembly continuity by spanning repeats
- Larger k-mers are more sensitive to sequencing errors
- Removal of low abundance k-mers (caused by sequencing errors)
- K-mer size should be 0.5 to 0.75 of the read length
- Typical k-mer sizes:
 - 87 or 97 for 2x150bp reads

Assembly challenges

- Collapsed repeats
- Inversions
- Overstretched repeats

Miss-assembly:

Correct assembly:

Assembly challenges (2)

 Genome size: variation from 65 Mbp to 149 Gbp

Genlisea violacea: https://commons.wikimedia.org/wiki/File:Genlisea_violacea_giant.jpg
Utricularia_gibba: https://commons.wikimedia.org/wiki/File:Utricularia_gibba:flower_01.jpg
Arabidopsis thaliana: https://commons.wikimedia.org/wiki/File:Arabidopsis_thaliana.s110.jpg
Dioscorea dumetorum: https://commons.wikimedia.org/wiki/File:PamsatBrixtonMarket.jpg
Beta vulgaris: https://de.wikipedia.org/wiki/File:Vilts_vinifera_20120823.jpg
Vitis vinifera: https://commons.wikimedia.org/wiki/File:Vilts_vinifera_20120823.jpg
Sequioa_giganteurn: https://commons.wikimedia.org/wiki/File:Vilts_vinifera_Collant_Mariposa_Grove.jpg
Paris japonica. https://commons.wikimedia.org/wiki/File-Pile:Paris_japonica_Kinugassou_in_Hakusan_2003_7_27.jpg

 Ploidy: haploid/diploid genomes are much easier to analyze than polyploid genomes

Assembly polishing

Illumina reads

GACGTAAAAAAA - CGATAGTACGTGTTAGCGTACGTAC

ATGACGTAAAAAAA - CGATAGTACGTGTT

CGTAAAAAAA - CGATAGTACGTGTTAGCGTAC

ACATGACGTAAAAAAA - CGATAGTACGT

CGTAAAAAAA - CGATAGTACGTGTTAGCGT

GACGTAAAAAAA - CGATAGTA

Assembly evaluation

- Continuity: Does the assembly represent a genome in a small number of contigs?
- Completeness: Are all parts of the genome represented?
- Correctness: Is the assembly a correct representation of the genome?

Evaluation: continuity

- Check assembly continuity: calculation based on sequences in FASTA file
- Number of contigs, assembly size, N50

assembler	Canu	FALCON	Miniasm	Flye
number of contigs	69	26	72	44
assembly size	123.5 Mbp	119.5 Mbp	120.2 Mbp	117 Mbp
maximal contig length	15.9 Mbp	15.9 Mbp	14.3 Mbp	14.9 Mbp
N50	13.4 Mbp	9.3 Mbp	8.6 Mbp	10.6 Mbp
N90	2.9 Mbp	2.8 Mbp	1.4 Mbp	2.5 Mbp

Evaluation - completeness

- Check assembly completeness: inspection for presence of conserved genes
- BUSCO = Benchmarking Universal Single-Copy Orthologue
- BUSCO genes are used to assess assembly completeness

BUSCO v5.3.2 is the current stable version!
Gitlab [2], a Conda package [2] and Docker container [2] are also available.

Evaluation - assembly correctness

- Check assembly correctness: analyses of read mappings
- Integrated Genomics Viewer (IGV) can visualize read mappings
- Tools: REAPR, SQUAT

IGV: Thorvaldsdottir et al., 2013: 10.1093/bib/bbs017 REAPR: Hunt et al., 2013: 10.1186/gb-2013-14-5-r47 SQUAT: Yang et al., 2019: 10.1186/s12864-019-5445-3

Read mappings (1)

Read mapping of paired-end sequenced fragments (blue) to assembly

Coverage is too high to show all individual fragments at some positions

Read mappings (2)

Musa acuminata (banana) read mapping

Arabidopsis thaliana At7 read mapping

Pucker et al., 2019: 10.3390/genes10090671 Busche & Pucker et al., 2020: 10.1534/g3.119.400847

Advantages of long reads

- Span larger regions and enable assembly of repeats
- Specific mapping to repetitive regions possible
- Generation of larger contigs (no scaffolding)
- Contigs can represent entire chromosomes

Long read assemblers

- Canu: https://github.com/marbl/canu
 Nurk et al., 2020: 10.1101/gr.263566.120
- Miniasm: https://github.com/lh3/miniasm
 Li, 2016: 10.1093/bioinformatics/btw152
- FALCON: https://github.com/PacificBiosciences/FALCON
 Chin et al., 2016: 10.1038/nmeth.4035
- Shasta: https://github.com/chanzuckerberg/shasta
 Shafin et al., 2020: 10.1038/s41587-020-0503-6

Importance of error rate

- Correction step is computationally extremely intense
 - Computation of all-vs-all alignments
- Direct assembly is possible with >99% raw read accuracy
- Higher accuracy allows to filter read overlaps more strictly

Integration of genetic linkage information (1)

- Classical genetic markers: SSR, CAPS, KASP
 - SSR = Simple Sequence Repeats
 - CAPS = Cleaved Amplified Polymorphic Sequences
 - KASP = Kompetitive Allele Specific PCR

SSR: Simple Sequence Repeats

- A: CATAGAGAGAGAGAGATGAC
- B: CATAGAGAGAGAGATGAC
- C: CATAGAGAGATGAC
- D: CATAGAGAGAGAGAGATGAC
- E: CATAGAGAGAGAGATGAC
- F: CATAGAGAGAGAGAGAGATGAC
- G: ACATA<u>GAGA</u>TGAC

Length analysis via capillary electrophoresis

CAPS: Cleaved Amplified Polymorphic Sequences

CATAGACACTG[G/A]GTTAGAGATGAC

KASP: Kompetetive

Allele Specific PCR

PCR & restriction digest

qPCR with fluorescently labeled primers

SSR: Holtgräwe et al., 2020: 10.3389/fpls.2020.00156

CAPS: Konieczny & Ausubel, 1993: 10.1046/j.1365-313x.1993.04020403.x

KASP: He et al., 2014: 10.1007/978-1-4939-0446-4_7

Integration of genetic linkage information (2)

Genotyping-by-sequencing: SNPs inferred from sequencing data

Hi-C: chromatin interaction information for long range scaffolding

Checking challenging regions

- Resolving the centromeres and NORs are the last big challenges
- Centromeres = repeats in the middle of chromosomes
- Nucleolus Organizing Regions (NORs) = ribosomal RNA encoding repeats (rDNA)
- Checking presence of telomers at contig ends

NLRome

- NLR genes (NLRome) are often clustered in tandem repeat arrays
- NLR gene clusters are particularly tricky to assemble
- NLRome used for benchmarking high quality assembly

Van de Weyer et al., 2019: 10.1016/j.cell.2019.07.038

Time for questions!

Questions

- 1. What is the difference between a contig and a scaffold?
- 2. What is sequencing coverage depth and coverage extent?
- 3. What is the N50 length?
- 4. Which methods can be used to assess the assembly quality?
- 5. What information can be used for the construction of pseudochromosomes?
- 6. Which aspects of the assembly can be evaluated?
- 7. How is the completeness of an assembly evaluated?

