Fondamenti di Automatica

Giorgio Battistelli

Dipartimento di Ingegneria dell'Informazione, Università di Firenze

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI
INGEGNERIA
DELL'INFORMAZIONE

2 Analisi dei sistemi dinamici

2.12 Risposta permanente e transitoria nei sistemi LTI TC

Risposta in continua e in frequenza

Consideriamo un sistema LTI TC

$$\begin{array}{rcl}
\dot{x} & = & Ax + Bu \\
y & = & Cx + Du
\end{array}$$

Obiettivo: ottenere informazioni sul comportamento dell'uscita di un sistema LTI in risposta a **segnali di ingresso tipici (gradino, sinusoide)** senza dover calcolare in modo esatto le soluzioni

- Risposta in continua fornisce il valore asintotico della risposta nell'uscita a segnali di ingresso a gradino
- Risposta in frequenza fornisce il valore asintotico della risposta nell'uscita a segnali di ingresso di tipo sinusoidale

Rappresentazione di funzione di trasferimento e ingresso

• Consideriamo un sistema LTI TC SISO con funzione di trasferimento

$$G(s) = \frac{b(s)}{a(s)} = \frac{b(s)}{\prod_{i=1}^{n} (s - p_i)}$$

ullet Consideriamo un segnale di ingresso u(t) con trasformata di Laplace razionale

$$U(s) = \frac{\tilde{b}(s)}{\tilde{a}(s)} = \frac{\tilde{b}(s)}{\prod_{i=1}^{\tilde{n}} (s - \tilde{p}_i)}$$

 ${\rm con\ grado}\ \tilde{b}(s)\ <\ {\rm grado}\ \tilde{a}(s)$

Nota: segnali di ingresso con trasformata di Laplace razionale includono molti segnali di interesse (polinomi, sinusoidi, esponenziali, combinazioni lineari e prodotti di questi)

Scompsizione della risposta forzata

Ipotesi: supponiamo per semplicità che

- tutti i poli della G(s) siano distinti, ossia $p_i \neq p_\ell$ per ogni $i \neq \ell$
- tutti i poli della U(s) siano distinti, ossia $\tilde{p}_i \neq \tilde{p}_\ell$ per ogni $i \neq \ell$
- i poli di U(s) e G(s) sino distinti, ossia $p_i \neq \tilde{p}_\ell$ per ogni i,ℓ

Consideriamo la risposta forzata

$$Y_f(s) = G(s) U(s) = \frac{b(s) \tilde{b}(s)}{\prod_{i=1}^{n} (s - p_i) \prod_{i=1}^{\tilde{n}} (s - \tilde{p}_i)}$$

Scomponendo in fratti semplici

$$Y_f(s) = \sum_{i=1}^n \frac{K_i}{s - p_i} + \sum_{i=1}^n \frac{\tilde{K}_i}{s - \tilde{p}_i}$$

Transitorio e regime permanente

• Scomposizione della risposta forzata in Laplace

$$Y_{f}(s) = \underbrace{\sum_{i=1}^{n} \frac{K_{i}}{s - p_{i}}}_{Y_{f}^{G}(s)} + \underbrace{\sum_{i=1}^{\tilde{n}} \frac{\tilde{K}_{i}}{s - \tilde{p}_{i}}}_{Y_{f}^{U}(s)} = Y_{f}^{G}(s) + Y_{f}^{U}(s)$$

• Scomposizione della risposta forzata nel tempo

$$y_f(t) = y_f^G(t) + y_f^U(t)$$

• **Transitorio** parte di $y_f(t)$ dipendente dai poli di G(s)

$$y_f^G(t) = \mathcal{L}^{-1}\{Y_f^G(s)\}$$

• Regime permanente parte di $y_f(t)$ dipendente dai poli di U(s)

$$y_f^U(t) = \mathcal{L}^{-1}\left\{Y_f^U(s)\right\}$$

Esempio: transitorio e regime permanente

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{2}{s+1}$$

Consideriamo un ingresso a gradino

$$U(s) = \frac{1}{s}$$

Risposta forzata in Laplace

$$Y_f(s) = G(s)U(s) = \frac{2}{(s+1)s} = \underbrace{\frac{-2}{s+1}}_{Y_f^G(s)} + \underbrace{\frac{2}{s}}_{Y_f^U(s)}$$

Risposta forzata nel tempo

$$y_f(t) = \mathcal{L}^{-1} \{Y_f(s)\} = \underbrace{-2 e^{-t} 1(t)}_{y_f^G(t)} + \underbrace{2 \cdot 1(t)}_{y_f^U(t)}$$

Stabilità e regime permanente

Risposta complessiva

$$y(t) = y_{\ell}(t) + y_f^G(t) + y_f^U(t)$$

con

$$y_{\ell}(t) = \mathcal{L}^{-1} \{ C(sI - A)^{-1} x(0) \}$$
 $y_{f}(t) = \mathcal{L}^{-1} \{ G(s) U(s) \}$

- Stabilità esterna \Rightarrow tutti i poli di G(s) hanno parte reale < 0
 - \Rightarrow transitorio $y_f^G(t)$ converge a 0

$$\Rightarrow \lim_{t \to \infty} [y_f(t) - y_f^U(t)] = 0$$

- ullet Stabilità asintotica \Rightarrow tutti autovalori di A con parte reale < 0
 - $\Rightarrow \quad {
 m risposta\ libera\ } y_\ell(t) \ {
 m e\ transitorio\ } y_f^G(t) \ {
 m convergono\ a} \ 0$
 - $\Rightarrow \lim_{t \to \infty} [y(t) y_f^U(t)] = 0$

 $\textbf{Stabilit\`a esterna} \qquad \Rightarrow \quad \textbf{risposta forzata} \text{ converge al regime permanente}$

Stabilità asintotica ⇒ **risposta complessiva** converge al regime permanente

Regime permanente per segnali tipici

- Regime permanente è di più semplice valutazione rispetto all'intera risposta forzata
- Fornisce indicazioni sulla risposta dopo il transitorio iniziale
- Sono di pratico interesse i casi in cui l'ingresso è una segnale limitato ma persistente nel tempo (ossia che non tende a zero):
 - Regime permanente in risposta al gradino (risposta in continua)

$$u(t) = 1(t) \quad \longleftrightarrow \quad U(s) = \frac{1}{s}$$

• Regime permamente in risposta alla sinusoide (risposta in frequenza)

$$u(t) = \sin(\omega_0 t) 1(t)$$
 \longleftrightarrow $U(s) = \frac{\omega_0}{s^2 + \omega_0^2}$

Risposta in continua

ullet Consideriamo un ingresso a gradino di ampiezza U_0

$$u(t) = U_0 \cdot 1(t) \quad \longleftrightarrow \quad U(s) = \frac{U_0}{s}$$

Consideriamo la risposta forzata

$$Y_f(s) = G(s)U(s) = G(s)\frac{U_0}{s}$$

• Supponendo che G(s) non abbia poli in zero

$$Y_f(s) = Y_f^G(s) + Y_f^U(s) = Y_f^G(s) + \frac{K}{s}$$

dove il residuo $ilde{K}$ vale

$$\tilde{K} = \lim_{s \to 0} s Y_f(s) = \lim_{s \to 0} G(s) U_0 = G(0) U_0$$

Guadagno in continua

Ingresso a gradino di ampiezza $U_0 \Rightarrow \operatorname{regime}$ permanente a gradino di ampiezza G(0) U_0

$$Y_f^U(s) = \frac{\tilde{K}}{s} = \frac{G(0) U_0}{s} \quad \Rightarrow \quad y_f^U(t) = G(0) U_0 1(t)$$

- $\bullet \;$ Ingresso amplificato/attenuato di un fattore G(0) detto ${\bf guadagno}\;{\bf in}\;{\bf continua}\;$ del sistema
- Il guadagno in continua è ben definito quando G(s) non ha poli in 0
- Per sistemi SISO, G(0) è uno scalare
- Per sistemi con più ingressi e più uscite, G(0) matrice costante di dimensione $\dim(y) \times \dim(u)$

Esempio: guadagno in continua

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{2s+5}{s^2+3s+4}$$

ullet Consideriamo un ingresso a gradino di ampiezza U_0

$$U(s) = \frac{U_0}{s}$$

• G(s) non ha poli in zero \Rightarrow regime permanente

$$y_f^U(t) = G(0) U_0 1(t)$$

con guadagno in continua pari a

$$G(0) = G(s)|_{s=0} = \frac{5}{4}$$

• Sistema esternamente stabile \Rightarrow $y_f(t)$ converge al regime permanente

$$\lim_{t \to \infty} y_f(t) = G(0) U_0 = \frac{5}{4} U_0$$

Osservazione sulla risposta in continua

Ricordiamo che

$$G(s) = C(sI - A)^{-1}B + D$$

⇒ guadagno in continua

$$G(0) = G(s)|_{s=0} = -CA^{-1}B + D$$

- Per un sistema asintoticamente stabile l'uscita converge al regime permanente
 - \Rightarrow se sollecitiamo un sistema asintoticamente stabile con un **ingresso a gradino** di ampiezza U_0 , l'uscita converge al valore costante

$$\lim_{t \to \infty} y(t) = G(0) U_0 = (-CA^{-1}B + D) U_0$$

Nota: avevamo già visto questo risultato in riferimento agli **equilibri** dei sistemi LTI asintoticamente stabili

 $G(0)\,U_0$ uscita di equilibrio associata all'equilibrio globalmente asintoticamente stabile $\,x_e=-A^{-1}\,B\,U_0\,$ e $\,u_e=U_0\,$

Risposta in frequenza

ullet Consideriamo un **ingresso sinusoidale** di ampiezza U_0 e frequenza ω_0

$$u(t) = U_0 \sin(\omega_0 t) 1(t) \quad \longleftrightarrow \quad U(s) = \frac{U_0 \omega_0}{s^2 + \omega_0^2}$$

Consideriamo la risposta forzata

$$Y_f(s) = G(s)U(s) = G(s)\frac{U_0 \omega_0}{s^2 + \omega_0^2}$$

• Supponendo che G(s) non abbia poli in $\pm j\omega_0$

$$Y_f(s) = Y_f^G(s) + \underbrace{\frac{\tilde{K}_1}{s - j\omega_0} + \frac{\tilde{K}_2}{s + j\omega_0}}_{Y_f^U(s)}$$

con $ilde{K}_2$ complesso coniugato di $ilde{K}_1$

Risposta in frequenza

Regime permanente

$$Y_f^U(s) = \frac{\tilde{K}_1}{s - j\omega_0} + \frac{\tilde{K}_2}{s + j\omega_0}$$

Applicando il teorema dei residui

$$\begin{split} \tilde{K}_1 &= \lim_{s \to j\omega_0} (s - j\omega_0) Y_f(s) = \lim_{s \to j\omega_0} (s - j\omega_0) \frac{G(s)U_0 \,\omega_0}{s^2 + \omega_0^2} \\ &= \lim_{s \to j\omega_0} (s - j\omega_0) \frac{G(s)U_0 \,\omega_0}{(s - j\omega_0)(s + j\omega_0)} = \lim_{s \to j\omega_0} \frac{G(s)U_0 \,\omega_0}{s + j \,\omega_0} \\ &= \frac{G(j\omega_0)U_0 \,\omega_0}{2 \,j \,\omega_0} = -\frac{j}{2} \,G(j\omega_0) \,U_0 \end{split}$$

In termini di parte reale e immaginaria

$$\tilde{K}_{1} = -\frac{j}{2} G(j\omega_{0}) U_{0} = -\frac{j}{2} \left[\text{Re} \{ G(j\omega_{0}) \} + j \text{Im} \{ G(j\omega_{0}) \} \right] U_{0}
= \frac{1}{2} \left[\text{Im} \{ G(j\omega_{0}) \} - j \text{Re} \{ G(j\omega_{0}) \} \right] U_{0}$$

Risposta in frequenza

• Regime permanente in Laplace

$$Y_f^U(s) = \frac{\ddot{K}_1}{s - j\omega_0} + \frac{\ddot{K}_2}{s + j\omega_0}$$

Regime permanente nel tempo

$$y_f^U(t) = \mathcal{L}^{-1} \left\{ \frac{\tilde{K}_1}{s - j\omega_0} + \frac{\tilde{K}_2}{s + j\omega_0} \right\}$$

$$= 2 \left[\operatorname{Re}\{\tilde{K}_1\} \cos(\omega_0 t) - \operatorname{Im}\{\tilde{K}_1\} \sin(\omega_0 t) \right] 1(t)$$

$$= \left[\operatorname{Re}\{G(j\omega_0)\} U_0 \sin(\omega_0 t) + \operatorname{Im}\{G(j\omega_0)\} U_0 \cos(\omega_0 t) \right] 1(t)$$

Ingresso sinusoidale di frequenza ω_0 e ampiezza U_0

Regime permanente combinazione lineare di sinusoide e cosinusoide di frequenza ω_0 e ampiezze $\operatorname{Re}\{G(j\omega_0)\}\ U_0$ e $\operatorname{Im}\{G(j\omega_0)\}\ U_0$

Teorema della risposta in frequenza

Teorema 26 (teorema della risposta in frequenza). Per un sistema LTI TC con funzione di trasferimento G(s) priva di poli sull'asse immaginario

lacktriangle Regime permanente in risposta a un ingresso a gradino $u(t)=U_0\,1(t)$

$$y_f^U(t) = G(0) U_0 1(t)$$

② Regime permanente in risposta a un ingresso sinusoidale $u(t) = U_0\,\sin(\omega_0\,t) \mathbb{1}(t)$

$$y_f^U(t) = \left[\operatorname{Re}\{G(j\omega_0)\} U_0 \sin(\omega_0 t) + \operatorname{Im}\{G(j\omega_0)\} U_0 \cos(\omega_0 t) \right] 1(t)$$

Stabilità esterna ⇒ risposta forzata converge al regime permanente

$$\lim_{t \to +\infty} [y_f(t) - y_f^U(t)] = 0$$

Stabilità asintotica ⇒ risposta complessiva converge al regime permanente

$$\lim_{t \to +\infty} [y(t) - y_f^U(t)] = 0$$

Osservazioni sul teorema della risposta in frequenza

- La funzione $G(j\,\omega)$ è detta **risposta in frequenza** o **risposta armonica** (funzione complessa di variabile reale ω)
- Il teorema della risposta in frequenza vale anche per sistemi con più ingressi e più uscite
- Il teorema della risposta in frequenza consente di calcolare il regime permanente in risposta a segnali costanti o sinusoidali
- Quando l'ingresso è una **cosinusoide** vale $u(t) = U_0 \, \cos(\omega_0 \, t) 1(t)$

$$y_f^U(t) = \left[\operatorname{Re}\{G(j\omega_0)\} U_0 \cos(\omega_0 t) - \operatorname{Im}\{G(j\omega_0)\} U_0 \sin(\omega_0 t) \right] 1(t)$$

- Per il principio di sovrapposizione degli effetti, il teorema consente anche di determinare il regime permanente in risposta a
 - segnali ottenibili come combinazione lineare di un termine costante più sinusoidi e cosinusoidi anche di diversa frequenza
 - **segnali periodici** sviluppabili in serie di Fourier

Esempio: teorema della risposta in frequenza

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s^2 + s + 2}$$

Consideriamo un ingresso composto da gradino più sinusoide

$$u(t) = [3 + \sin(2t)]1(t)$$

- ullet G(s) non ha poli sull'asse immaginario \Rightarrow possiamo applicare il teorema della rispsota in frequenza
- Per il principio di sovrapposizione degli effetti, regime permanente

$$y_f^U(t) = y_f^{U_1}(t) + y_f^{U_2}(t)$$

dove

 $ullet y_{\scriptscriptstyle f}^{U_1}(t)$ regime permanente in risposta all'ingresso

$$u_1(t) = 3 \cdot 1(t)$$

 $ullet y_f^{U_2}(t)$ regime permanente in risposta all'ingresso

$$u_2(t) = \sin(2t) \, 1(t)$$

Esempio: teorema della risposta in frequenza

• Per l'ingresso $u_1(t) = 3 \cdot 1(t)$ abbiamo

$$y_f^{U_1}(t) = G(0) \cdot 3 \cdot 1(t)$$

 $\mathsf{con}\,G(0) = 1/2$

• Per l'ingresso $u_2(t) = \sin(2t) \, 1(t) \, \mathsf{con} \, \omega_0 = 2 \, \mathsf{e} \, U_0 = 1 \, \mathsf{abbiamo}$

$$y_f^{U_2}(t) = \left[\text{Re}\{G(j2)\} \sin(2t) + \text{Im}\{G(j2)\} \cos(2t) \right] 1(t)$$

dove

$$G(j2) = G(s)|_{s=j2} = \frac{1}{s^2 + s + 2} \Big|_{s=j2} = \frac{1}{j2 - 2}$$
$$= \frac{1}{j2 - 2} \frac{j2 + 2}{j2 + 2} = \frac{j2 + 2}{-8} = -\frac{1}{4} - j\frac{1}{4}$$

Complessivamente, regime permanente

$$\begin{aligned} y_f^U(t) &= & \left[3\,G(0) + \mathrm{Re}\{G(j\,2)\}\,\sin(2\,t) + \mathrm{Im}\{G(j\,2)\}\,\cos(2\,t) \right] 1(t) \\ &= & \left[\frac{3}{2} - \frac{1}{4}\sin(2\,t) - \frac{1}{4}\cos(2\,t) \right] 1(t) \end{aligned}$$

Rappresentazioni grafiche della risposta in frequenza

- Risposta in frequenza $G(j\omega_0)$ fornisce **informazioni complete** sul comportamento asintotico di un sistema LTI asintoticamente stabile in risposta a un ingresso sinusoidale al variare di ω_0
- comprendere il comportamento macroscopico del sistema

• Rappresentazioni grafiche della risposta in frequenza utili per meglio

- Rappresentazioni grafiche tipiche: Diagrammi di Nyquist, Diagrammi di Bode
- Diagramma di Nyquist
 - grafico della parte immaginaria ${
 m Im}\{G(j\omega)\}$ (in ordinate) rispetto alla parte reale ${
 m Re}\{G(j\omega)\}$ (in ascisse)
 - descrive come si sposta nel piano complesso il numero complesso $G(j\omega)$ al variare della frequenza ω

Esempio: diagramma di Nyquist

• Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s+1}$$

Risposta in frequenza

$$G(j\omega_0) = \frac{1}{j\omega_0 + 1} = \frac{1 - j\omega_0}{1 + \omega_0^2}$$

 In termini di parte reale e immaginaria

$$\operatorname{Re}\{G(j\omega_0)\} = \frac{1}{1+\omega_0^2}$$
$$\operatorname{Im}\{G(j\omega_0)\} = -\frac{\omega_0}{1+\omega_0^2}$$

 Per il tracciamento Matlab nyquist, Python control.nyquist_plot

Rappresentazione polare di un numero complesso

- Diagrammi di Bode si basano sulla rappresentazione polare dei numeri complessi
- Un numero complesso K=a+jb può essere espresso in coordinate polari come

$$K = |K|e^{j\angle K}$$

$$|K| = \sqrt{a^2 + b^2}$$

$$\angle K = \operatorname{atan2}(b, a)$$

con |K| modulo $e \angle K$ fase

Vale anche la relazione inversa

$$\operatorname{Re}[K] = |K| \cos(\angle K) \qquad \operatorname{Im}[K] = |K| \sin(\angle K)$$

Rappresentazione polare della risposta in frequenza

• Per un sistema SISO, regime permanente in risposta a un ingresso sinusoidale $u(t) = U_0 \, \sin(\omega_0 t) \, 1(t)$

$$y_f^U(t) = \left[\operatorname{Re} \{ G(j\omega_0) \} U_0 \sin(\omega_0 t) + \operatorname{Im} \{ G(j\omega_0) \} U_0 \cos(\omega_0 t) \right] 1(t)$$
$$= U_0 |G(j\omega_0)| \left[\cos(\angle G(\omega_0)) \sin(\omega_0 t) + \sin(\angle G(\omega_0)) \cos(\omega_0 t) \right] 1(t)$$

• Ricordando che $\sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) = \sin(\alpha + \beta)$

$$y_f^U(t) = U_0 |G(j\omega_0)| \sin \left[\omega_0 t + \angle G(j\omega_0)\right] 1(t)$$

- Un sistema LTI asintoticamente stabile opera come un filtro
 - Il sistema non altera la frequenza della sinusoide in ingresso
 - La sinusoide in ingresso viene **amplificata/attenuata** di un fattore $|G(j\omega)|$
 - La sinusoide in ingresso viene **sfasata** di $\angle G(j\omega)$

Diagrammi di Bode

- I grafici di modulo $|G(j\omega)|$ e fase $\angle G(j\omega)$ in funzione della frequenza ω sono detti **Diagrammi di Bode**
- Diagramma di Bode del modulo
 - ullet in ascisse frequenza in scala logaritmica $\log_{10}(\omega_0)$
 - in ordinate il modulo della risposta in frequenza in decibel $|G(j\omega)|_{dB}=20\,\log_{10}(|G(j\omega_0)|)$
- Diagramma di Bode della fase
 - ullet in ascisse frequenza in scala logaritmica $\log_{10}(\omega_0)$
 - in ordinate la fase della risposta in frequenza $\angle G(j\omega_0)$ in gradi o radianti
- Dai diagrammi di Bode si può conoscere il comportamento macroscopico di un sistema LTI asintoticamente stabile in funzione della frequenza (ad esempio, passa-basso, passa-alto, passa-banda, ecc.)
- Diagrammi di Bode possono essere tracciati per via sperimentale (sollecitando il sistema con sinusoidi di diversa frequenza e osservando il comportamento a regime)

Corrispondenza scala lineare/decibel

• Un'intensità K può essere espressa in decibel (dB)

$$K_{dB} = 20\log_{10}(K)$$

Corrispondenza tra scala lineare e decibel

Scala lineare	Scala in dB
1000	60
100	40
10	20
1	0
0.1	-20
0.01	-40
0.001	-60
0	-∞

ullet Tipicamente si dice che una frequenza ω viene "tagliata" quando

$$|G(j\omega)|_{dB} < -3 \, dB$$

corrispondente a circa $\sqrt{2}/2$ in scala lineare

Esempio: diagrammi di Bode

Consideriamo un sistema LTI con funzione di trasferimento

$$G(s) = \frac{1}{s+1}$$

Risposta in frequenza

$$G(j\omega_0) = \frac{1}{j\omega_0 + 1} = \frac{1 - j\omega_0}{1 + \omega_0^2}$$

In termini di modulo e fase

$$|G(j\omega)| = \frac{1}{\sqrt{1+\omega_0^2}} \qquad \quad \angle G(j\omega) = -\mathrm{atan}(\omega_0)$$

- Per il tracciamento Matlab bode, Python control.bode_plot
- Sistema si comporta come un filtro passa-basso
 - alle basse frequenze $|G(j\omega)| \approx 1$
 - alle alte frequenze $|G(j\omega)| pprox 0$

Esempio: diagrammi di Bode

Bode Diagrams

Frequency (rad/sec)

Esempio: diagrammi di Bode

Risposta forzata di un sistema con G(s)=1/(s+1) a sinusoidi di diversa frequenza (0.5,1,5 e 10 rispettivamente). In blu l'ingresso, in rosso la risposta forzata