6.4 다중공선성과 변수 선택

다중공선성(multicollinearity)란 독립 변수의 일부가 다른 독립 변수의 조합으로 표현될 수 있는 경우이다. 독립 변수들이 서로 독립이 아니라 상호상관관계가 강한 경우에 발생한다. 이는 독립 변수의 공분산 행렬이 full rank 이어야 한다는 조건을 침해한다.

다음 데이터는 미국의 거시경제지표를 나타낸 것이다.

- TOTEMP Total Employment
- GNPDEFL GNP deflator
- GNP GNP
- UNEMP Number of unemployed
- · ARMED Size of armed forces
- POP Population
- YEAR Year (1947 1962)

스캐터 플롯에서 보듯이 독립변수간의 상관관계가 강하다.

In [1]:

```
from statsmodels.datasets.longley import load_pandas

dfy = load_pandas().endog
 dfX = load_pandas().exog
 df = pd.concat([dfy, dfX], axis=1)
 sns.pairplot(dfX)
 plt.show()
```


상관관계는 상관계수 행렬로도 살펴볼 수 있다.

In [2]:

dfX.corr()

Out[2]:

	GNPDEFL	GNP	UNEMP	ARMED	POP	YEAR
GNPDEFL	1.000000	0.991589	0.620633	0.464744	0.979163	0.991149
GNP	0.991589	1.000000	0.604261	0.446437	0.991090	0.995273
UNEMP	0.620633	0.604261	1.000000	-0.177421	0.686552	0.668257
ARMED	0.464744	0.446437	-0.177421	1.000000	0.364416	0.417245
POP	0.979163	0.991090	0.686552	0.364416	1.000000	0.993953
YEAR	0.991149	0.995273	0.668257	0.417245	0.993953	1.000000

In [3]:

```
cmap = sns.light_palette("darkgray", as_cmap=True)
sns.heatmap(dfX.corr(), annot=True, cmap=cmap)
plt.show()
```


다중 공선성이 있으면 독립변수의 공분산 행렬의 조건수(conditional number)가 증가한다.

In [4]:

```
from sklearn.model_selection import train_test_split

def get_model1(seed):
    df_train, df_test = train_test_split(df, test_size=0.5, random_state=seed)
    model = sm.OLS.from_formula("TOTEMP ~ GNPDEFL + POP + GNP + YEAR + ARMED + UNEMP", data=df_train
    return df_train, df_test, model.fit()

df_train, df_test, result1 = get_model1(3)
print(result1.summary())
```

OLS Regression Results

Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance	vations: als:	TOTEMP R-squared: OLS Adj. R-squared: Least Squares F-statistic: Sun, 23 Jun 2019 Prob (F-statistic): Log-Likelihood: 8 AIC: 1 BIC: 6 nonrobust		ic):	1.000 0.997 437.5 0.0366 -44.199 102.4 103.0		
	coef	std err		t	P> t	[0.025	0.975]
Intercept GNPDEFL POP GNP YEAR ARMED UNEMP	-1.235e+07 106.2620 2.2959 -0.3997 6300.6231 -0.2450 -6.3311	75.709 0.725 0.120 1498.900	1. 3. -3. 4. -0.	. 165 . 404 . 167 . 339 . 203 . 609	0.150 0.394 0.195 0.185 0.149 0.652 0.131	-5e+07 -855.708 -6.915 -1.920 -1.27e+04 -5.354 -23.153	2.53e+07 1068.232 11.506 1.121 2.53e+04 4.864 10.491
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ous):	0. 0.	258 879 300 258		-):	1.713 0.304 0.859 2.01e+10

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.01e+10. This might indicate that there are strong multicollinearity or other numerical problems.

또한 다음처럼 학습용 데이터와 검증용 데이터로 나누어 회귀분석 성능을 비교하면 과최적화가 발생하였음을 알 수 있다.

In [5]:

```
def calc_r2(df_test, result):
    target = df.loc[df_test.index].TOTEMP
    predict_test = result.predict(df_test)
    RSS = ((predict_test - target)**2).sum()
    TSS = ((target - target.mean())**2).sum()
    return 1 - RSS / TSS

test1 = []
for i in range(10):
    df_train, df_test, result = get_model1(i)
    test1.append(calc_r2(df_test, result))
```

Out[5]:

```
[0.9815050656837723,
```

- 0.9738497543069347,
- 0.9879366369871746,
- 0.7588861967897188,
- 0.980720608930437.
- 0.8937889315168234,
- 0.8798563810651999,
- 0.9314665778963799,
- 0.8608525682180641,
- 0.9677198735170137]

독립변수가 서로 의존하게 되면 이렇게 과최적화(over-fitting) 문제가 발생하여 회귀 결과의 안정성을 해칠 가능성이 높아진다. 이를 방지하는 방법들은 다음과 같다.

- 변수 선택법으로 의존적인 변수 삭제
- PCA(principal component analysis) 방법으로 의존적인 성분 삭제
- 정규화(regularized) 방법 사용

VIF

다중 공선성을 없애는 가장 기본적인 방법은 다른 독립변수에 의존하는 변수를 없애는 것이다. 가장 의존적인 독립변수를 선택하는 방법으로는 VIF(Variance Inflation Factor)를 사용할 수 있다. VIF는 독립변수를 다른 독립변수로 선형회귀한 성능을 나타낸 것이다. i 번째 변수의 VIF는 다음과 같이 계산한다.

$$VIF_i = \frac{\sigma^2}{(n-1)Var[X_i]} \cdot \frac{1}{1 - R_i^2}$$

여기에서 R_i^2 는 다른 변수로 i 번째 변수를 선형회귀한 성능(결정 계수)이다. 다른 변수에 의존적일 수록 VIF가 커진다.

StatsModels에서는 variance_inflation_factor 명령으로 VIF를 계산한다.

In [6]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(
    dfX.values, i) for i in range(dfX.shape[1])]
vif["features"] = dfX.columns
vif
```

Out[6]:

	VIF Factor	features
0	12425.514335	GNPDEFL
1	10290.435437	GNP
2	136.224354	UNEMP
3	39.983386	ARMED
4	101193.161993	POP
5	84709.950443	YEAR

상관계수와 VIF를 사용하여 독립 변수를 선택하면 GNP, ARMED, UNEMP 세가지 변수만으로도 비슷한 수준의 성능이 나온다는 것을 알 수 있다.

In [7]:

Dep. Variable:

```
def get_model2(seed):
    df_train, df_test = train_test_split(df, test_size=0.5, random_state=seed)
    model = sm.OLS.from_formula("TOTEMP ~ scale(GNP) + scale(ARMED) + scale(UNEMP)", data=df_train)
    return df_train, df_test, model.fit()

df_train, df_test, result2 = get_model2(3)
print(result2.summary())
```

0.989

OLS Regression Results

R-squared:

TOTEMP

Date: Sun, 23 Jun		OLS east Squares 23 Jun 2019 18:13:39 8 4	Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:			0.981 118.6 0.000231 -57.695 123.4 123.7
Covariance Ty	pe: 	nonrobust 				
	coef	std err	t	P> t	[0.025	0.975]
Intercept scale(GNP) scale(ARMED) scale(UNEMP)	4338.7051 -812.1407	163.988 406.683 315.538 349.316	398.686 10.669 -2.574 -3.931	0.000 0.000 0.062 0.017	6.49e+04 3209.571 -1688.215 -2342.898	6.58e+04 5467.839 63.933 -403.187
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.628 0.731 0.390 1.958	Durbin- Jarque- Prob(JB Cond. N	Bera (JB):):		2.032 0.565 0.754 4.77

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

다중공선성을 제거한 경우에는 학습 성능과 검증 성능간의 차이가 줄어들었음을 확인할 수 있다. 즉, 과최적화가 발생하지 않는다.

In [8]:

```
test2 = []
for i in range(10):
    df_train, df_test, result = get_model2(i)
    test2.append(calc_r2(df_test, result))
test2
```

Out[8]:

- [0.9763608388904907,
- 0.9841984331185702,
- 0.9687069366140136,
- 0.9397304053201785,
- 0.9773357061188462,
- 0.9561262155732316,
- 0.980385249669863,
- 0.9917361722470804,
- 0.9837134067639467,
- 0.9789512977093212]

In [9]:

```
plt.subplot(121)
plt.plot(test1, 'ro', label="검증 성능")
plt.hlines(result1.rsquared, 0, 9, label="학습 성능")
plt.legend()
plt.xlabel("시드값")
plt.ylabel("성능(결정계수)")
plt.title("다중공선성 제거 전")
plt.ylim(0.5, 1.2)
plt.subplot(122)
plt.plot(test2, 'ro', label="검증 성능")
plt.hlines(result2.rsquared, 0, 9, label="학습 성능")
plt.legend()
plt.xlabel("시드값")
plt.ylabel("성능(결정계수)")
plt.title("다중공선성 제거 후")
plt.ylim(0.5, 1.2)
plt.suptitle("다중공선성 제거 전과 제거 후의 성능 비교", y=1.04)
plt.tight_layout()
plt.show()
```

다중공선성 제거 전과 제거 후의 성능 비교

보스턴 집값 예측 문제에 응용

In [10]:

```
from sklearn.datasets import load_boston
boston = load_boston()

dfX0 = pd.DataFrame(boston.data, columns=boston.feature_names)

from patsy import dmatrix

formula = "scale(CRIM) + scale(I(CRIM ** 2)) + " + \formula = "scale(ZN) + scale(I(ZN ** 2)) + scale(INDUS) + " + \formula = "scale(NOX) + scale(RM) + scale(AGE) + " + \formula = "scale(np.log(DIS)) + scale(RAD) + scale(TAX) + " + \formula = "scale(np.log(PTRATIO)) + scale(B) + scale(np.log(LSTAT)) + CHAS"

dfX = dmatrix(formula, dfXO, return_type="dataframe")
dfy = pd.DataFrame(boston.target, columns=["MEDV"])
```

In [11]:

```
idx_outlier = \( \text{mp.array([7, 54, 148, 152, 160, 214, 253, 267, 364, 365, 367, 368, 369, 371, 372, 374, 380, 385, 397, 398, 399, 400, 401, 405, 409, 410, 412, 413, 414, 415, 416, 418, 419, 426, 445, 489, 490, 492, 505, 161, 162, 163, 166, 186, 195, 204, 225, 257, 267, 283, 368, 369, 370, 371, 372])
idx = list(set(range(len(dfX))).difference(idx_outlier))
dfX = dfX.iloc[idx, :].reset_index(drop=True)
dfy = dfy.iloc[idx, :].reset_index(drop=True)
```

In [12]:

```
cmap = sns.light_palette("black", as_cmap=True)
sns.heatmap(dfX.corr(), annot=True, fmt='3.1f', cmap=cmap)
plt.show()
```


In [13]:

```
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(
    dfX.values, i) for i in range(dfX.shape[1])]
vif["features"] = dfX.columns
vif = vif.sort_values("VIF Factor").reset_index(drop=True)
vif
```

Out[13]:

	VIF Factor	features
0	1.061624	CHAS
1	1.338325	scale(B)
2	1.478553	Intercept
3	1.780320	scale(np.log(PTRATIO))
4	2.596496	scale(RM)
5	3.748931	scale(AGE)
6	3.807459	scale(INDUS)
7	4.682812	scale(np.log(LSTAT))
8	5.071802	scale(NOX)
9	5.215025	scale(np.log(DIS))
10	9.107858	scale(TAX)
11	10.218588	scale(I(CRIM ** 2))
12	11.254736	scale(RAD)
13	11.751869	scale(I(ZN ** 2))
14	14.646056	scale(ZN)
15	21.260182	scale(CRIM)

In [14]:

```
model_boston1 = sm.OLS(np.log(dfy), dfX)
result_boston1 = model_boston1.fit()
print(result_boston1.summary())
```

Regression	

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	MEDV OLS Least Squares Sun, 23 Jun 2019 18:13:41 456 440 15 nonrobust	Adj. F-sta Prob Log-L AIC: BIC:			0.872 0.868 199.9 1.56e-185 317.45 -602.9 -536.9
0.975]	coef	std err	t	P> t	[0.025
Intercept	3.0338	0.007	433.880	0.000	3.020
3.048 scale(CRIM)	-0.3471	0.044	-7.976	0.000	-0.433
-0.262					
scale(I(CRIM ** 2))	0.3075	0.071	4.331	0.000	0.168
0.447 scale(ZN)	-0.0465	0.022	-2.110	0.035	-0.090
-0.003					
scale(I(ZN ** 2))	0.0440	0.020	2.206	0.028	0.005
0.083 scale(INDUS)	0.0037	0.012	0.323	0.747	-0.019
0.026					
scale(NOX) -0.040	-0.0652	0.013	-5.001	0.000	-0.091
scale(RM)	0.0999	0.011	9.195	0.000	0.079
0.121					
scale(AGE) -0.005	-0.0273	0.011	-2.438	0.015	-0.049
scale(np.log(DIS))	-0.1008	0.014	-7.368	0.000	-0.128
-0.074	0. 1001	0.000	0.400	0.000	0.404
scale(RAD) 0.203	0.1634	0.020	8.106	0.000	0.124
scale(TAX) -0.058	-0.0934	0.018	-5.153	0.000	-0.129
scale(np.log(PTRATIO) -0.054	-0.0699	0.008	-8.872	0.000	-0.085
scale(B)	0.0492	0.007	6.699	0.000	0.035
0.064 scale(np.log(LSTAT))	-0.1487	0.013	-11.074	0.000	-0.175
-0.122 CHAS 0.116	0.0659	0.026	2.580	0.010	0.016
Omnibus: Prob(Omnibus): Skew: Kurtosis:	28.653 0.000 0.465 4.188	Jarqu Prob(1.309 43.266 4.03e-10 35.2

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [15]:

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	MEDN OLS Least Squares Sun, 23 Jun 2019 18:13:41 456 449 nonrobust	Adj. F-sta Prob Log-L AIC: BIC:			0.836 0.834 380.7 1.42e-172 260.52 -507.0 -478.2
0.975]	coef	std err	t	P> t	[0.025
Intercept 3.033	3.0192	0.007	445.252	0.000	3.006
CHAS 0.144	0.0884	0.028	3.141	0.002	0.033
scale(B) 0.072	0.0558	0.008	6.989	0.000	0.040
scale(CRIM) -0.092	-0.1179	0.013	-9.120	0.000	-0.143
scale(np.log(PTRATIO) -0.036) -0.0508	0.007	-6.936	0.000	-0.065
scale(RM) 0.136	0.1153	0.011	10.828	0.000	0.094
scale(np.log(LSTAT)) -0.135	-0.1570	0.011	-14.179	0.000	-0.179
Omnibus: Prob(Omnibus): Skew: Kurtosis:	29.141 0.000 0.483 4.145) Jarqu B Prob(1.113 42.637 5.51e-10 5.91

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.