שעור 10 משפט הפירוק הפרימרי

ניתן לסכם את כל המושגים הנלמדים על העתקות נורמליות במשפט הבא:

משפט 10.1 סכום ישר של מרחבים עצמיים של העתקה נורמלית

T העתקה נורמלית במרחב מכפלה אוניטרי V ויהיו ויהיו במרחב מכפלה במרחב העצמיים האונים על האונים ל $\lambda_1,\dots,\lambda_k$ האונים העצמיים העצמיים העצמיים האיכים ל- V_1,\dots,V_k הם התת-מרחבים העצמיים האיכים ל-

$$V=V_1\oplus V_2\oplus \cdots \oplus V_k$$
 (1

$$.i \neq j$$
 לכל $V_i \perp V_i$ (2

הוכחה:

מרחביים של כל התת-מרחביים לכסון אוניטרי (8.15). לכן לכסינה אוניטרי אוניטרי (משפט לכסון אוניטרי לכסון דער לכסון אוניטרי לכסון אוניטרי לכסינה אוניטרי (משפט לכסון אוניטרי לכסון אוניטרי לכסינה אוניטרי (משפט לכסון אוניטרי לכסינה אוניטרי לכסינה אוניטרי (משפט לכסון אוניטרי לכסינה אוניטרי (משפט לכסינה אוניטרי לכסינה אוניטרי לכסינה אוניטרי (משפט לכסינה אוניטרי לכסינה אוניטרי לכסינה אוניטרי (משפט לכסינה אוניטרי לכסי

$$\dim{(V)}=\dim{(V_1)}+\ldots+\dim{(V_k)}$$
 .
$$\{{\bf v}_{i1},\ldots,{\bf v}_{in_i}\}$$
 בסיס של V_i . אז הקבוצה
$$\bigcup_{k=1}^k \{{\bf v}_{i1},\ldots,{\bf v}_{in_i}\}$$

 $u \in V$ היא בסיס של V ז"א כל וקטור של אירוף לינארי של לינארי של הוקטורים לכן לכל ז"א כל וקטור של אירוף לינארי היא

$$u \in V_1 + V_2 + \ldots + V_k$$
.

 λ_i אפשר להראות כי $V_i\cap V_j=\{ar 0\in V_i\cap V_j\ \exists$ עניח נניח שלילה. אפשר להראות כי $V_i\cap V_j=\{ar 0\}$ דרך השלילה. אז $T(u)=\lambda_i\cdot u$ וגם און $T(u)=\lambda_i\cdot u$, ומכאן ומכאן $V_i\cap V_j=\{a_i\}$

$$\lambda_i u = \lambda_j u \quad \Rightarrow \quad (\lambda_i - \lambda_j) u = 0$$

. סתירה, א $\lambda_i=\lambda_j$ כי הוא וקטור עצמי לכן $u
eq ar{0}$

לכו

$$V = V_1 \oplus \cdots \oplus V_k$$
.

עבור T נורמלית, וקטורים עצמיים השייכים לערכים עצמיים שונים הם אורתוגונלים (משפט 8.8), לכן לT . $\forall i \neq i \ V_i \perp V_i$

המטרה שלנו היא לנסח משפט שקול הידוע בשם "משפט הפירוק הספקטרלי". אנחנונראה כי כל עתקה נורמלית במרחב מכפלה פנימית נוצר סופית היא צירוף לינארי של הטלת אורתוגונלית על המרחבים העצמיים שלה. המקדמים של הצירוף הלינארי הם הערכים העצמיים של ההעתקה. נראה את זה קודםם בדוגמה.

דוגמה 10.1

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T(\mathbf{v}) = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \cdot \mathbf{v}$$

. העתקה סימטרית במרחב אוקלידי, לכן היא נורמלית T

$$T - \lambda I = \begin{vmatrix} 3 - \lambda & 2 \\ 2 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda - 4 = (\lambda + 1)(\lambda - 4) = 0$$

 $\lambda_2=-1$, $\lambda_1=4$ ערכים עצמיים:

 $\lambda = 4$

$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_1 \to -R_1} \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$
$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2y \\ y \end{pmatrix} = y \begin{pmatrix} 2 \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = 2y$$
$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

$$.V_4$$
 בסיס של $\mathrm{v}_1=egin{pmatrix}2\\1\end{pmatrix}$

$$\lambda = -1$$

$$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{4} \cdot R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{pmatrix}$$

$$\cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \cdot y \\ y \end{pmatrix} = y \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} . y \in \mathbb{R} , x = -\frac{1}{2}y$$

$$V_{-1} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$$

$$.V_{-1}$$
 בסיס של $\mathbf{v}_2=inom{-1}{2}$, $\mathbf{v}\in\mathbb{R}^2$ לכן לכל $.\mathbb{R}^2$ לכן לכל יין בסיס של

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 \ .$$

מכאן

$$\mathbf{v} = \alpha_1 \lambda_1 \mathbf{v}_1 + \alpha_2 \lambda_2 \mathbf{v}_2 = 4\alpha_1 \mathbf{v}_1 - \alpha_2 \mathbf{v}_2.$$

נשים לב ש- $-\alpha_2 {
m v}_2$ -ו V_1 של י של (2.4 הגדרה 1.4) ההיטל האורתוגונלי האורתוגונלי האורתוגונלי $\alpha_1 {
m v}_1$ של י על אי

אם נוכל לרשום את על תת המרחב אם נסמן ההטלה העתקת העתקת את (i=1,2) את נסמן ב-

$$P_1(\mathbf{v}) = \alpha_1 \mathbf{v}_1 , \qquad P_2(\mathbf{v}) = \alpha_2 \mathbf{v}_2 .$$

מכאן

$$T(\mathbf{v}) = 4P_1(\mathbf{v}) + (-1)P_2(\mathbf{v}) = (4P_1 - P_2)(\mathbf{v}).$$

 $T=4P_1-P_2$ כלומר

ומקדמי T ומקדמי ו- P_2 על המרחבים העצמיים של T ומקדמי ומקדמי ווא ההעתקה היא צירוף לינארי של הטלות אורתוגונליות ווא היא אירוף הם העצמיים המתאימים.

במילים אחרות, כדי להפעיל את T על וקטור ע, צריך להטיל אותו על המרחבים V_1 ו- V_2 , לכפול את במילים אחרות, כדי להפעיל את הוקטורים המתקבלים.

נשים לב: ההטלות P_1 ו- P_2 מקיימות שתי תכונות נוספות:

$$P_1 + P_2 = I$$
 (1

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (2

<u>הוכחה:</u>

$$\mathbf{v} \in V$$
 לכל (1

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = P_1(\mathbf{v}) + P_2(\mathbf{v}) = (P_1 + P_2)(\mathbf{v})$$

$$.P_1 + P_2 = I$$
 לכן

(2

$$(P_1 \cdot P_2)(\mathbf{v}) = P_2(P_1(\mathbf{v})) = P_2(\alpha_1 \mathbf{v}_1) = 0$$

.
$$lpha_1$$
יי בי V_2 כי

$$P_1 \cdot P_2 = P_2 \cdot P_1 = 0$$
 (3

המשפט הבא הנקרא "המשפט הפירוק הספקטרלי" מכליל את הדוגמה האחרונה.

משפט 10.2 משפט הפירוק הספקטרלי

תהי $\lambda_1,\dots,\lambda_k$ כל הערכים העצמיים השונים של נוצר העתקה האניטרי ענוצר מופית האינים וורמלית במרחב אוניטרי ענוצר חופית לכל $1\leq i\leq k$ את ההעתקה ההטלה האורתוגונלית על N_i . אזי

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
 (1

$$I = P_1 + \ldots + P_k$$
 (2)

$$P_i \cdot P_j = 0$$
 , $i \neq j$ לכל (3

$$P_i^2=P_i$$
 , i לכל (4

$$ar{P}_i = P_i$$
 , i לכל (5

הוכחה:

כאשר
$$V_i \in V_i$$
. אז $1 \leq i \leq k$). אז

$$T(\mathbf{v}) = T(\mathbf{v}_1) + \ldots + T(\mathbf{v}_k) = \lambda_1 \mathbf{v}_1 + \ldots + \lambda_k \mathbf{v}_k = \lambda_1 P_1(\mathbf{v}) + \ldots + \lambda_k P_k(\mathbf{v}) = (\lambda_1 P_1 + \ldots + \lambda_k P_k) \ (\mathbf{v}) \ .$$
לכן

$$T = \lambda_1 P_1 + \ldots + \lambda_k P_k$$
.

$$\mathbf{v} \in V$$
 לכל (2

$$(P_1 + \dots + P_k)(\mathbf{v}) = P_1(\mathbf{v}) + \dots + P_k(\mathbf{v}) = \mathbf{v}_1 + \dots + \mathbf{v}_k = \mathbf{v}$$

$$.P_1 + \ldots + P_k = I$$
 לכן

$$\mathbf{v} \in V$$
 ולכל $i \neq j$ לכל (3

$$(P_i P_j)(v) = P_i(P_j(v)) = P_i(v_j) = 0$$

$$.i
eq j$$
 לכל לכל אכן לכל לכן לכל $V_i \perp V_j$ כי

$$\mathbf{v} \in V$$
 לכל (4

$$P_i^2(\mathbf{v}) = P_i(P_i(\mathbf{v})) = P_i(\mathbf{v}_i) = \mathbf{v}_i = P_i(\mathbf{v})$$

$$P_i^2=P_i$$
 לכן

$$u,\mathbf{v}\in V$$
 לכל (5

$$u = u_1 + \ldots + u_k$$
, $v = v_1 + \ldots + v_k$

כאשר (
$$1 \leq i \leq k$$
) $u_i, v_i \in V_i$ כאשר

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}_i, u_1 + \ldots + u_k \rangle = \langle \mathbf{v}_i, u_i \rangle$$

מצד שני:

$$\langle \mathbf{v}, P_i(u) \rangle = \langle \mathbf{v}_1 + \ldots = + \mathbf{v}_k, u_i \rangle = \langle \mathbf{v}_i, u_i \rangle$$

ז"א

$$\langle P_i(\mathbf{v}), u \rangle = \langle \mathbf{v}, P_i(u) \rangle$$

$$ar{P_i} = P_i$$
 לכל $u, \mathbf{v} \in V$ לכל

10.1 שימושים של הפירוק הספקטרלי

דוגמה 2.01

נתונה העתקה
$$T = \sum\limits_{i=1}^k \lambda_i P_i$$
 אזי

$$T^{2} = \left(\sum_{i=1}^{k} \lambda_{i} P_{i}\right)^{2}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_{i} \lambda_{j} P_{i} P_{j}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}^{2}$$

$$= \sum_{i=1}^{k} \lambda_{i}^{2} P_{i}$$

קל להוכיח באינדוקציה:

$$T^n = \sum_{i=1}^k \lambda_i^n P_i$$

דוגמה 10.3

$$: \mathbb{F} = \mathbb{C}$$
 במקרה של

$$\bar{T} = \overline{\left(\sum_{i=1}^{k} \lambda_i P_i\right)}$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i \bar{P}_i$$

$$= \sum_{i=1}^{k} \bar{\lambda}_i P_i$$

לכן, אם כל העריכם עצמיים הם ממשיים, אז

$$\bar{T} = \sum_{i=1}^{k} \bar{\lambda}_i P_i$$
$$= \sum_{i=1}^{k} \lambda_i P_i = T$$

כלומר T צמודה לעצמה.

דוגמה 10.4

אם לא ו $|\lambda_i|=1$ מקיימים העצמיים הערכים אם כל א

$$T \cdot \bar{T} = \left(\sum_{i=1}^{k} \lambda_i P_i\right) \cdot \left(\sum_{i=1}^{k} \bar{\lambda}_i P_i\right)$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \lambda_i \bar{\lambda}_j P_i P_j$$

$$= \sum_{i=1}^{k} |\lambda_i|^2 P_i^2$$

$$= \sum_{i=1}^{k} |P_i|$$

$$= I$$

. אוניטרית T