

Introduction to Reproducible Research

Roger D. Peng @rdpeng, @simplystats, simplystatistics.org

UW SISBID July 2016

How Do You Know if a Data Analysis is Successful?

Parable

ARTICLES

Genomic signatures to guide the use of chemotherapeutics

Anil Potti^{1,2}, Holly K Dressman^{1,3}, Andrea Bild^{1,3}, Richard F Riedel^{1,2}, Gina Chan⁴, Robyn Sayer⁴, Janiel Cragun⁴, Hope Cottrill⁴, Michael J Kelley², Rebecca Petersen⁵, David Harpole⁵, Jeffrey Marks⁵, Andrew Berchuck^{1,6}, Geoffrey S Ginsburg^{1,2}, Phillip Febbo^{1–3}, Johnathan Lancaster⁴ & Joseph R Nevins^{1–3}

Deception at Duke

"Rock Star" Statisticians

How Bright Promise in Cancer Testing Fell Apart

Michael Stravato for The New York Times

"Deception" at MDACC

Roger D. Peng <rpeng@jhsph.edu>

to Keith 🖃

Best, -roger

Follow-up Discussion

Steve Goodman sgoodman@jhmi.edu via googlegroups.com Unsubscribe

to reproducible-r. 💌

BTW, I felt that Keith and Kevin's 45 seconds was akin to listening to "Ride of the Valkyries"in a TV commercial instead of hearing the whole of Die Walkure. There ain't nothin' better than the full Die Baggerly, as long as Keith is singing!

Lessons?

Institute of Medicine Committee

REPORT BRIEF SMARCH 2012

INSTITUTE OF MEDICINE

OF THE NATIONAL ACADEMIES

Advising the nation • Improving health

For more information visit www.iom.edu/translationalomics

Evolution of Translational Omics

Lessons Learned and the Path Forward

The IOM Report

- Data/metadata used to develop test should be made publicly available
- The computer code and fully specified computational procedures used or development of the omics-based test should be made available
- Ideally, the computer code that is released will encompass all of the steps of computational analysis, including all data preprocessing steps

Replication and Reproducibility

Replication

- Focuses on the validity of the scientific claim
- "Is this claim true?"
- Ultimate standard for scientific evidence
- New investigators, data, analytic methods, labs, instruments, etc.
- Important in studies that can impact policy or regulation

Reproducibility

- Focuses on the validity of the data analysis
- "Can we trust this analysis?"
- A minimum standard
- New investigators, same data, same methods
- Important when replication is impossible

What's Wrong with Replication?

- Nothing, but...
- Some studies cannot be replicated
 - No time, opportunistic
 - No money
 - Unique
- Reproducible Research: Make analytic data and code available so that others may reproduce findings

Upon Seeing Your Work...

Information Required

Why Do We Need Reproducible Research?

- New technologies increasing data collection throughput
- Data are more complex and high dimensional
- Existing databases can be merged into new and bigger databases
- Computing power is greatly increased, allowing more sophisticated/complicated analyses
- For every field "X" there is a field "Computational X"

Air Pollution and Health: A Perfect Storm?

- Estimating small health effects in the presence of much stronger signals
- Results inform substantial policy decisions and affect many stakeholders
- EPA regulations can cost billions of dollars
- Complex statistical methods are needed and subjected to intense scrutiny

The End Result

- Basic analyses can be difficult to describe
- Heavy computational requirements are thrust upon people without adequate training in statistics and computing
- Errors are more easily introduced into long and complex analysis pipelines
- Knowledge transfer is limited
- Complicated analyses cannot be trusted

Published Article

Author

Published Article

Reader

Author

Published Article

Express train to nature

Reader

- Analytic data are available
- Analytic (and preprocessing) code are available
- Documentation of code and data
- Standard means of distribution

- Authors
 - Want to make their research reproducible
 - Want tools for RR to make their lives easier (or at least not much harder)
- Readers
 - Want to reproduce (and perhaps expand upon) interesting findings
 - Want tools for RR to make their lives easier

Challenges

- Authors must undertake considerable effort to put data and results on the web (may not have resources like a web server)
- Readers must download data/results individually and piece together which data go with which code sections, etc.
- Readers may not have the same resources as authors
- Few tools to help authors/readers (although toolbox is growing!)

Recent Developments

- Software: iPython Notebooks, knitr, markdown, LONI, Galaxy
- Repositories: GitHub, NCBI, ICPSR, Dataverse
- Policy: Science, Nature, PLOS ONE, OSTP, NIH

Literate Statistical Programming

- An article/report is a stream of text and code
- Analysis code is divided into text and code "chunks"
- Each code chunk loads data and computes results
- Presentation code formats results (tables, figures, etc.)
- Article text explains what is going on
- Literate programs can be weaved to produce humanreadable documents and tangled to produce machine-readable documents
- See Literate Programming by Donald Knuth

Literate Statistical Programming

- Literate programming is a general concept that requires
 - A documentation language (human readable)
 - A programming language (machine readable)
- Sweave uses LaTeX and R as the documentation and programming languages
- Sweave was developed by Friedrich Leisch (member of the R Core) and is maintained by R core
- Main web site: http://www.statistik.lmu.de/~leisch/Sweave

Literate Statistical Programming

- knitr is package that brings together many features added on to Sweave to address limitations
- knitr uses R as the programming language knitr was developed by Yihui Xie (while a graduate student in statistics at Iowa State, now at RStudio)
- knitr uses the R programming language (although others are allowed) and variety of documentation languages
 - LaTeX, Markdown, HTML
- Built into RStudio pipeline
- See http://yihui.name/knitr/

What Problem Does Reproducibility Solve?

- What we get
 - Transparency / Improved knowledge transfer
 - Data availability
 - Software / Methods
- What we do NOT get
 - Validity / Correctness of the analysis

Computational Research has a Communication Problem


```
Intro:
E (p.m.)
Verse:
E (p.m.)
Code Monkey get up get coffee
E (p.m.)
Code Monkey go to job
E (p.m.)
Code Monkey have boring meeting
E (p.m.)
With boring manager Rob
E B/E
         A/E
Rob say Code Monkey very dilligent
       B/E A/E
But his output stink
   B/E
        A/E
His code not "functional" or "elegant"
           B/E
                   A/E
What do Code Monkey think?
Pre-chorus:
N.C.
                               в7
                                                     G#
                 А
Code Monkey think maybe manager wanna write god damned login page himself
    В
       A
Code Monkey not say it out loud
Code Monkey not crazy, just proud
Chorus:
в7
                E Emaj7
Code Monkey like Fritos
                E6
                                     Е
Code Monkey like Tab and Mountain Dew
                Amaj7sus2 Amaj7 Amaj7sus2
Code Monkey very simple man
        Amaj7 B7
With big warm fuzzy secret heart:
Code Monkey like you
```

```
Intro:
E (p.m.)
Verse:
E (p.m.)
Code Monkey get up get coffee
E (p.m.)
Code Monkey go to job
E (p.m.)
Code Monkey have boring meeting
E (p.m.)
With boring manager Rob
             A/E
    B/E
Rob say Code Monkey very dilligent
        B/E
               A/E
But his output stink
              A/E
His code not "functional" or "elegant"
                           A/E
What do Code Monkey think?
Pre-chorus:
N.C.
Code Monkey think maybe manager wanna writ-
                Α
Code Monkey not say it out loud
Code Monkey not crazy, just proud
Chorus:
                        Emaj7
Code Monkey like Fritos
Code Monkey like Tab and Mountain Dew
                 Amaj7sus2 Amaj7 Amaj7sus:
Code Monkey very simple man
         Amaj7
                    В7
With big warm fuzzy secret heart:
```

Code Monkey like you

I. TEIL.

Aufführungsrecht vorbehalten Hymnus: Veni, ereator spiritus. Droits desicution réservés. Baß-Klartnette in B 1.2.8.4. Pagott. Kontra-Fagott. 1.2.3.4.Trompete in P. 1.2.3.4. Pressure. Pauken. 1.2. Sopran. 1.2.Alt. Терог. Bariton. Baß. Knabenchor. Sopran. Alt. Tenor. Sopran, Alt. Tenor. Be5. 1. Violine. 2. Violine. Bratsche, Vloloncell. Copyright 1911 by Universal-Edition

U. E. 9778, 8000

The Central Problem

Data Analysis = ???

What's Next?

- Reproducibility is critical for communicating a data analysis
- One cannot sufficiently describe an analysis in words
- General consensus about its importance
- Infrastructure for making all research reproducible is not there yet, but things are ever improving

How Do You Know if a Data Analysis is Successful?

- Reproducible
- Uses the best available statistical methods of analysis

"There ain't nothin' better than the full Die Baggerly, as long as Keith is singing!"

-Steve Goodman