Velocity and Acceleration

Lecture for 6/12

Definition of Velocity and Acceleration

- Suppose **r**(t) is our vector function
- Then $\mathbf{v}(t) = \mathbf{r}'(t)$ and $\mathbf{a}(t) = \mathbf{r}''(t)$

Decomposition of Acceleration

- Recall unit tangent T and unit normal N
- We can express $\mathbf{a} = \mathbf{a}_{\mathsf{T}} \mathbf{T} + \mathbf{a}_{\mathsf{N}} \mathbf{N}$
- Define $s = ||\mathbf{v}||$ as speed
- $\mathbf{a}_{\mathrm{T}} = \mathbf{s}' = (\mathbf{r}' \cdot \mathbf{r}'')/||\mathbf{r}'||$ $\mathbf{a}_{\mathrm{N}} = \kappa \mathbf{s}^2 = ||\mathbf{r}' \times \mathbf{r}''||/||\mathbf{r}'||$

Formula Derivation Scratchwork

Extra Space

Practice

One big problem

- If the acceleration is given by $\mathbf{a} = (1, 2, 6t)$, find the position r given that $\mathbf{v}(0) = (0, 1, -1)$ and $\mathbf{r}(0) = (1, -2, 3)$
- Find the unit tangent and unit normal for **r**
- Find the tangential and normal components of acceleration

Find the tangential and normal components of acceleration for the object whose position is $\mathbf{r}(t) = (\cos(2t), -\sin(2t), 4t)$

Scratch Work

Extra Space