Problem:

Suppose that we the following vectors:

$$\boldsymbol{v_1} = \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}; \, \boldsymbol{v_2} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}; \, \boldsymbol{v_3} = \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}; \, \boldsymbol{v_4} = \begin{bmatrix} 2 \\ 1 \\ 1.5 \end{bmatrix}$$

- a) Determine the length of vector v_1 .
- b) Determine the length of vector $(v_2 + v_3)$.
- c) Determine the angle between vectors $(v_2 + v_3)$ and v_4 .

Solution:

- a) Length of vector v_1 $|v_1|$ $= \sqrt{3^2 + 0^2 + (4)^2}$ $= \sqrt{9 + 0 + 16}$ $= \sqrt{25}$ = 5
- b) Length of vector $(v_2 + v_3)$.

$$(v_2 + v_3)$$

$$= \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 \\ 0 \\ -4 \end{bmatrix}$$

$$|v_2 + v_3|$$
= $\sqrt{3^2 + 0^2 + (-4)^2}$
= $\sqrt{9 + 0 + 16}$
= $\sqrt{25}$
= **5**

c) Angle between vectors $(v_2 + v_3)$ and v_4 cos θ

$$= \frac{(v_2 + v_3) \cdot v_4}{\|v_2 + v_3\| \cdot \|v_4\|}$$

$$= \frac{\begin{bmatrix} 3 \\ 0 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 1.5 \end{bmatrix}}{(5)(2.693)}$$

$$= \frac{6 + 0 + (-6)}{13.463}$$

$$= 0$$

So,
$$\theta = \frac{\pi}{2}$$