

Universidad Tecnológica Nacional Facultad Regional Córdoba

Trabajo Práctico 2

Electrónica Aplicada 1 3R2

Cabaleiro Martin 404821 Cortesini Luciano 402719 Ernst Pedro 400624

Fecha de entrega: 21 / 5 / 2025

Índice

1	Introducción	2
2	Planteamiento e introducción teórica 2.1 Transformador	
	2.3 Filtro	3
3	Ensayos y mediciones	4
4	Conclusiones	10

Introducción

En este trabajo práctico de laboratorio se llevara a cabo el análisis y construcción de una fuente de alimentación de tensión variable. Luego se realizaran todos los ensayos pertinentes pare verificar que la fuente cumple con las especificaciones de diseño y asegurar un correcto funcionamiento.

La fuente contará con las siguientes especificaciones:

- Salida regulada de 0 a 30 V.
- Corriente máxima de 1.5 A.

Planteamiento e introducción teórica

El siguiente diagrame en bloques sintetiza las distintas etapas de la fuente, Desde la entrada de 220V en CA hasta llegar a la tension en CC a la salida.

Figura 2.1: Diagrama en bloques

A contunuación, se explica detaladamente cada uno de estos bloques.

Transformador

El transformador tiene dos funciones:

- Aislar galvánicamente el circuito de la red electrica.
- Reducir la tension de entrada al valor necesario para la fuente.

Rectificador

Filtro

Regulador de circuito integrado

Ensayos y mediciones

a. Medición de ripple.

Para poder realizar las siguiente mediciones en este primer ensayo, previamente se realizo en la placa la soldadura del puente diodo y el filtro.

i. En el filtro capacitivo y determinación de parámetros.

Se tomaran medidas de la tension tanto desde el punto bajo (desde 0 hasta 10 V) como desde el punto alto (desde 15 hasta 30 V) variando la corriente desde el vacio (0 A) hasta llegar a plena carga (1,5 A). Con las mediciones vamos a poder calcular los siguientes tres factores: Regulacion de voltaje, resistencia variable y factor de ripple.

\mathbf{T}		1 .	
Ρ	unto	ha.i	w.
_	and		\circ

V_{vacio}	17,71 V
$V_{0,5A}$	15,80 V
$V_{0,75A}$	15,27 V
V_{1A}	14,63 V
$V_{1,25A}$	14,10 V
$V_{PlenaCarga}$	13,69 V

Grafico Vout vs Iout punto bajo

Punto alto:

V_{vacio}	36,86 V
$V_{0,5A}$	31,89 V
$V_{0,75A}$	31,05 V
V_{1A}	29,83 V
$V_{1,25A}$	28,55 V
$V_{PlenaCarga}$	27,47 V

Grafico Vout vs Iout punto alto

ii. Determinación de resistencia interna del transformador más la de los diodos.

Punto bajo:

• Para calcular la regulacion de voltaje se utiliza la siguiente formula:

$$RV = \frac{V_{vacio} - V_{PlenaCarga}}{V_{PlenaCarga}} 100 \%$$

$$RV = \frac{17,71 - 13,69}{13,69} 100 \% = 29,36 \%$$

• La resistencia interna esta dada por:

$$R_{i}nt = \frac{V_{PlenaCarga} - V_{vacio}}{-I_{carga}}$$
$$R_{i}nt = \frac{13,69 - 17,71}{-1,5} = 2,68\Omega$$

• Ahora mediremos el voltaje del ripple tanto con multimetro true RMS, como en el osciloscopio:

$$V_{Ripple Multimetro} = 908 mV$$

 $V_{Ripple Osciloscopio} = 972 mV$
 $V_{Picoa Pico} = 2,75 V$

• Factor de ripple:

$$F_{R} = \frac{V_{eficaz}}{V_{PlenaCarga}} 100 \%$$

$$F_{R} = \frac{908mV}{13,69V} 100 \%$$

$$F_{R} = 6,6325 \%$$

Para el punto alto repetiremos las formulas del punto bajo cambiando por los valores correspondientes:

• Regulacion de voltaje:

$$RV = \frac{36,68 - 27,43}{27,43} 100\% = 33,72\%$$

• Resistencia interna:

$$R_i nt = \frac{27,43 - 36,68}{-1.5} = 6,16\Omega$$

• Ripple:

$$V_{RippleMultimetro} = 0,83V$$

 $V_{RippleOsciloscopio} = 0,88V$
 $V_{PicoaPico} = 2,5V$

• Factor de ripple:

$$F_R = \frac{0,83V}{27,43V} 100 \%$$

$$F_R = 3,0258$$

b. Mediciones finales

Antes de continuar con las ultimas mediciones, se debera soldar el resto de la placa, osea; el regulador lm317, la fuente auxiliar, las borneras que conectan al potenciometro y el led. A continuación mediremos la caida de tensión en el lm317 y la corriente para llevarlo a su maxima potencia la cual es 15 W, luego mediremos la tensión en el vació y a plena carga para calcular la regulación de voltaje, a continuación observaremos la salida a plena carga por el osciloscopio para calcular la tensión eficaz del ripple y calcular el factor de ripple, y por ultimo mediremos la temperatura en la carcasa del regulador para poder determinar su temperatura interna.

i. Regulación de voltaje.

ii. Factor de ripple.

$$V_{RippleEficaz} = 353, 55.10^{-6}V = 353, 5uV$$

$$F_R = \frac{353, 5uV}{16, 29V} 100\%$$

$$F_R = 2, 1703.10^{-3}\%$$

Figura 3.1: Visualizacion de riple en osciloscopio

iii. Cálculo de temperatura de juntura

$$T_J - T_C = \theta_{JC} \times P_D$$
 \Rightarrow $T_J = \theta_{JC} \times P_D + T_C$

Figura 3.2: Calculo de la temperatura

Siendo:

 $\theta_{jc} = 5 \frac{\circ C}{W}$: Resistencia termica de la juntura

 $T_J=135\circ C$: Temperatura de la juntura

$$135 \circ C = (5\frac{\circ C}{W}15, 19W) + T_C$$
$$135 \circ C - 75 \circ C = T_C$$

 $T_C = 60 \circ C$: Temperatura del chip

Conclusiones