# **CS180** Discussion

Week 6

## **Lecture Recap**

- Bellman Ford
- Floyd Warshall
- Closest pair of points
- Celebrity problem

### **Bellman-Ford**

Bellman-Ford vis



#### BellmanFord(0)

There is no change in the last pass, we can stop Bellman Ford's now. The highlighted edges are the current SSSP spanning tree so far.

#### ini+ CCCD

#### for i = 1 to |V|-1

```
for each edge(u, v) in E // in Edge List order
  relax(u, v, w(u, v))

for each edge(u, v) in E
  if can still relax that edge, -∞ cycle found
// ch4_06_bellman_ford.cpp/java, ch4, CP3
```

## Floyd-Warshall

|   | Cost Table |     |     |     |     |     |     |     |  |  |  |  |
|---|------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|
|   | 0          | 1   | 2   | 3   | 4   | 5   | 6   | 7   |  |  |  |  |
| 0 | INF        | 9   | INF | 4   | 8   | INF | INF | INF |  |  |  |  |
| 1 | 2          | INF | INF | 6   | 10  | INF | INF | INF |  |  |  |  |
| 2 | INF        | 4   | INF | INF | INF | INF | 6   | INF |  |  |  |  |
| 3 | INF        | INF | INF | INF | INF | 2   | INF | INF |  |  |  |  |
| 4 | INF        | INF | 6   | INF | INF | INF | INF | INF |  |  |  |  |
| 5 | INF        | INF | INF | INF | INF | INF | 9   | 3   |  |  |  |  |
| 6 | INF        | INF | INF | INF | INF | INF | INF | INF |  |  |  |  |
| 7 | INF        | INF | INF | INF | INF | INF | INF | INF |  |  |  |  |

| Faul lable |    |    |    |    |    |    |    |    |  |  |
|------------|----|----|----|----|----|----|----|----|--|--|
|            | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  |  |  |
| 0          | -1 | 0  | -1 | 0  | 0  | -1 | -1 | -1 |  |  |
| 1          | 1  | -1 | -1 | 0  | 0  | -1 | -1 | -1 |  |  |
| 2          | -1 | 2  | -1 | -1 | -1 | -1 | 2  | -1 |  |  |
| 3          | -1 | -1 | -1 | -1 | -1 | 3  | -1 | -1 |  |  |
| 4          | -1 | -1 | 4  | -1 | -1 | -1 | -1 | -1 |  |  |
| 5          | -1 | -1 | -1 | -1 | -1 | -1 | 5  | 5  |  |  |
| 6          | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |  |  |
| 7          | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |  |  |
|            |    |    |    |    |    |    |    |    |  |  |

Path Table



2 + 8 < INF



Floyd-warshall vis

### **Closes Pair**

We are given an array of n points in the plane. Find out the closest pair of points in the array.

The Brute force solution is  $O(n^2)$ , compute the distance between each pair and return the smallest.

### **Closes Pair**

- 1. Sort points according to their x-coordinates.
- 2. Split the set of points into two equal-sized subsets by a vertical line x=xmid.
- 3. Solve the problem recursively in the left and right subsets. This yields the left-side and right-side minimum distances  $\mathbf{d}_{l,min}$  and  $\mathbf{d}_{Rmin}$ , respectively.
- 4. \*Find the minimal distance  $\mathbf{d}_{\mathsf{LRmin}}$  among the set of pairs of points in which one point lies on the left of the dividing vertical and the other point lies to the right.
- 5. The final answer is the minimum among  $\mathbf{d}_{Lmin}$ ,  $\mathbf{d}_{Rmin}$ , and  $\mathbf{d}_{LRmin}$ .



\*We already know that the closest pair of points is no further apart than dist=  $\min(d_{Lmin}, d_{Rmin})$ . Therefore, for each point p to the left of the dividing line we have to compare the distances to the points that lie in the rectangle of dimensions (dist, 2 · dist). And what is more, this rectangle can contain at most six points with pairwise distances at least  $d_{Rmin}$ .

## **Closes Pair**



## **Celebrity Problem**

A party of N people, only one person is known to everyone. Such a person may be present in the party, if yes, (s)he doesn't know anyone in the party. We can only ask questions like "does A know B? ". Find the stranger (celebrity) in minimum number of questions.

## **Celebrity Problem Solution**

- Ask 1 if they know 2:
  - If yes, we know that 1 is not famous and 2 could be famous
  - If no, we know that 1 could be famous and 2 is not famous
  - Eliminate one person with each step
- ... for n 1 questions
- n -> n 1 -> ... -> 2 -> 1 person in asking n 1 questions, then go back and ask everyone if they know the last person and if the last person knows everyone else (additional 2(n 1) questions)
- Improved complexity: 3(n 1) ~ n
  - Went from n<sup>2</sup> to n

ilisuolisano malanta Ritarian Ouestions!!!

## **Triple Step**

A child is running up a staircase with n steps and can hop either 1 step, 2 steps, or 3 steps at a time. Implement a method to count how many possible ways the child can run up the stairs.

## **Triple Step Code**

```
int countWays(int n) {
      int[] memo = new int[n + 1];
      Arrays.fill(memo, -1);
      return countWays(n, memo);
5
6
   int countWays(int n, int[] memo) {
      if (n < 0) {
8
        return 0;
      } else if (n == 0) {
10
11
         return 1;
12
      } else if (memo[n] > -1) {
        return memo[n];
13
14
      } else {
15
         memo[n] = countWays(n - 1, memo) + countWays(n - 2, memo) +
16
                   countWays(n - 3, memo);
         return memo[n];
17
18
19 }
```