Convert the following decimals into single-precision floating point numbers.

1111110000101011

0100110000011000

Convert the given single-precision floating point number into binary number.

1 10000001 0100100111000100000000

- 1. Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.
- Express the decimal number −33 as an 8-bit binary number in the 1's complement system.
- Express the decimal number -46 as an 8-bit binary number in the 2's complement system.

Express the decimal number -39 as an 8-bit number in the sign-magnitude, 1's complement, and 2's complement forms.

8-bit number for +39.

00100111

In the *sign-magnitude form*, -39 is produced by changing the sign bit to a 1 and leaving the magnitude bits as they are. The number is

10100111

Express the decimal number -39 as an 8-bit number in the sign-magnitude, 1's complement, and 2's complement forms.

8-bit number for +39.

00100111

In the 1's complement form, -39 is produced by taking the 1's complement of +39 (00100111).

11011000

Express the decimal number -39 as an 8-bit number in the sign-magnitude, 1's complement, and 2's complement forms.

8-bit number for +39.

00100111

In the 2's complement form, -39 is produced by taking the 2's complement of +39 (00100111) as follows:

Determine the decimal values of the signed binary numbers expressed in 2's complement:

(a) 01010110

(b) 10101010

Parity Method for Error Detection The BCD code with parity bits.

Any group of bits contain either an
even or an odd number of 1s.
A parity bit is attached to a group of
bits to make the total number of 1s in a
group always even or always odd. An
even parity bit makes the total number
of 1s even, and an odd parity bit
makes the total odd.

Even	Parity	Odd	Parity
P	BCD	P	BCD
0	0000	1	0000
1	0001	0	0001
1	0010	0	0010
0	0011	1	0011
1	0100	0	0100
0	0101	1	0101
0	0110	1	0110
1	0111	0	0111
1	1000	0	1000
0	1001	1	1001
		I	

Parity Method for Error Detection

An odd parity system receives the following code groups: 10110, 11010, 110011, 110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of 1s is incorrect. The following groups are in error: 110011 and 11000101010.

Parity Method for Error Detection

Assign the proper even parity bit to the following code groups:

(a) 1010

(b) 111000

(c) 101101

(d) 1000111001001

(e) 101101011111

Note: Active states are shown in yellow.

$$F(A,B,C) = \Pi(0,3,6,7)$$

$$F(A,B,C,D) = \Sigma (0,1,2,5,7,8,10,13,15)$$

$$F(A,B,C) = \Pi(0,3,6,7)$$

0	0	
	0	0

1	1		1
	1	1	
	1	1	
1			1

0	
	0
0	0