

NOVEMBER 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709 /3, 8719 /3

MATHEMATICS (Pure 3)

Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	3

to the second

- 12.4° .

1	EITHER:	State or imply non-modular inequality $(9-2x)^2 < 1$, or a correct pair of linear inequalities,		
		combined or separate, e.g. $-1 < 9 - 2x < 1$	Bl	
		Obtain both critical values 4 and 5	B1	
		State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$	Bl	
	OR:	State a correct equation or pair of equations for both critical values e.g. $9 - 2x = 1$ and $9 - 2x = -1$,		
		or $9-2x=\pm 1$	Bl	
		Obtain critical values 4 and 5	Bl	
	O.D.	State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$	Bl	
	OR:	State one critical value (probably $x = 4$) from a graphical method or by inspection or by	D .	
		solving a linear inequality or equation	Bl	
		State the other critical value correctly State correct answer $4 < x < 5$; accept $x > 4$, $x < 5$	Bl Bi	2
		[Use of \leq , throughout, or at the end, scores a maximum of B2.]	B1	3
		Cose of S, unroughout, of at the end, scores a maximum of b2.]	٠	
				•
2	EITHER:	State first step of the form $kx^2 \ln x \pm \int kx^2 \cdot \frac{1}{x} dx$	Ml	
•		Obtain correct first step i.e. $\frac{1}{2}x^2 \ln x - \int \frac{1}{2}x dx$	Al	
		Complete a second integration and substitute both limits correctly	Ml	
		Obtain correct answer 2 ln $2 - \frac{3}{4}$, or exact two-term equivalent	Al	
			AI	
	OR:	State first step of the form $I = x(x \ln x \pm x) \pm \int (x \ln x \pm x) dx$	Ml	
		Obtain correct first step i.e. $I = x(x \ln x - x) - I + \int x dx$	Al	
		Complete a second integration and substitute both limits correctly	Ml	
		Obtain correct answer 2 ln $2 - \frac{3}{4}$, or exact two-term equivalent	A1	4
	(i) Healt	aw for addition (or subtraction) of logarithms or indices	M1*	-
3		$\log_{10} 100 = 2$ or $10^2 = 100$		~*\
		$n x^2 + 5x = 100$, or equivalent, correctly	M1(de A1	₽·) 3
		a three-term quadratic equation	M1	3
			1441	
	State	answer 7.81(allow 7.80 or 7.8) or any exact form of the answer i.e. $\frac{\sqrt{425}-5}{2}$ or better	A1	2
				-
4	(i) Obtai	n derivative $e^x - 8e^{-2x}$ in any correct form	B1	
7		te derivative to zero and simplify to an equation of the form $e^{kx} = a$, where $a \neq 0$	Ml*	
		out method for calculating x with $a > 0$	M1(de	n*)
		in answer $x = \ln 2$, or an exact equivalent (also accept 0.693 or 0.69)	A1	4
		ept statements of the form $u^k = a$, where $u = e^x$ for the first M1.		-
		out a method for determining the nature of the stationary point	Mi	
		that the point is a minimum correctly, with no incorrect work seen	Al	2
	אטונט	mai die ponit is a minimum correctly, with no mouriou work soon	A1	-

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	3

5	(i) State or imply at any stage that $R = 5$ Use trig formula to find α Obtain answer $\alpha = 36.87^{\circ}$	B1 M1 A1	3
	(ii) EITHER: Carry out, or indicate need for, calculation of $\sin^{-1}(\frac{2}{5})$	M1	
	Obtain answer 60.4° (or 60.5°) Carry out correct method for second root i.e. 180° – 23.578° + 36.870° Obtain answer 193.3° and no others in range	A1 M1 A1:^	
	OR: Obtain a three-term quadratic equation in $\sin \theta$ or $\cos \theta$ Solve a two- or three- term quadratic and calculate an angle Obtain answer 60.4° (or 60.5°) Obtain answer 193.3° and no others in range	M1 M1 A1 A1	4
	(iii) State greatest value is 1 [Treat work in radians as a misread, scoring a maximum of 7. The angles are 0.644, 1.06 and 3.37.]	B1 ✓	1
6	(i) State or imply $f(x) = \frac{A}{(2-x)} + \frac{Bx+C}{(x^2+1)}$	B1*	
	State or obtain $A = 4$ Use any relevant method to find B or C Obtain both $B = 4$ and $C = 1$	B1(dep M1 A1	*) 4
	(ii) EITHER: Use correct method to obtain the first two terms of the expansion of $(1-\frac{1}{2}x)^{-1}$,		
	or $(1+x^2)^{-1}$, or $(2-x)^{-1}$ Obtain unsimplified expansions of the fractions e.g. $\frac{4}{2}(1+\frac{1}{2}x+\frac{1}{4}x^2+\frac{1}{8}x^3)$;	M1*	
	$(4x + 1)(1-x^2)$ A1 Carry out multiplication of expansion of $(1+x^2)^{-1}$ by $(4x + 1)$ Obtain given answer correctly	√+ A1 √ M1(dep A1	*)
	[Binomial coefficients involving -1 , such as $\begin{pmatrix} -1\\1 \end{pmatrix}$, are not sufficient for the first M1.]	d	
	[f.t. is on A, B, C.] [Apply this scheme to attempts to expand $(6+7x)(2-x)^{-1}(1-x^2)^{-1}$, giving M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for reaching the given answer.] OR: Differentiate and evaluate $f(0)$ and $f'(0)$ Obtain $f(0) = 3$ and $f'(0) = 5$ Differentiate and obtain $f''(0) = -1$	M1 A1 √ A1 √	
	Differentiate, evaluate $f'''(0)$ and form the Maclaurin expansion up to the term in x^3 Simplify coefficients and obtain given answer correctly [f.t. is on A , B , C .] [SR: B or C omitted from the form of partial fractions. In part (i) give the first $B1$, and $M1$ for the use of a relevant method to obtain A , B , or C , but no further marks. In part (ii) only the first $M1$ and $A1\sqrt{+} A1\sqrt{-}$ are available if an attempt is based on this form of partial fractions.]		5

Mark Schem	ie	Syllabus	Paper
A & AS Level Examinations	– November 2002	9709, 8719	3
,			
.			
420 1420			
	A & AS Level Examinations	A & AS Level Examinations – November 2002	A & AS Level Examinations – November 2002 9709, 8719

	7		· · · · · · · · · · · · · · · · · · ·	B1	
				B1	_
				Bl : Ml	3
•				Al	2
			If calculations are not given but the given statement is justified using correct statements about the signs of a suitable function or the difference between a pair of suitable functions, award B1.]		4
		(iii)		B1	
			Rearrange this in the form given in part (i) (or vice versa)	Bl	2
		(iv) 1	Use the method of iteration at least once with $0.1 \le x_n \le 0.5$	Ml	
1144				Al	2
		[SR:	both the M marks are available if calculations are attempted in degree mode.]		
	8	(a)		Ml	
				Al	
				M1	
				Al	
			Obtain final answers $\pm (1 + 2i)$ and no others [Accept $\pm 1 \pm 2i$, or $x = 1$, $y = 2$ and $x = -1$, $y = -2$ as final answers, but not $x = \pm 1$, $y = \pm 2$.]	A1	
				M1	
		•	<u> </u>		
				Ml	
			Obtain one root in polar form e.g. $(\sqrt{5},63.4^{\circ})$ (allow 63.5°; argument is 1.11 radians)	Al	
			Obtain answer 1 + 2i	A1	
				Al	5
		(b		Ml	
			Obtain answer $\frac{1}{5} + \frac{7}{5}i$ or $0.2 + 1.4i$	A1	2
			(ii) Show all three points on an Argand diagram in relatively correct positions [Accept answers on separate diagrams.]	Bl√	1
			(iii) State that $OC = \frac{OA}{OB}$, or equivalent	B1	1
			[Accept the answer $OA.OC = 2OB$, or equivalent.]		
			[Accept answers with $ OA $ for OA etc.]		
	9	(i)	da	B1	
			W .	Bl	2
		(ii)	. 1	Bl	-
			Separate variables obtaining $\int \frac{da}{a(10-a)} = \int k dt$ and attempt to integrate both sides	M1	
			Obtain $\frac{1}{10} \ln a - \frac{1}{10} \ln (10-a)$	A1 √	
				A1	
				M1	
			Obtain answer $t = 25 \ln \left(\frac{a}{10 - a} \right)$, or equivalent	A 1	6
		(iii)	Substitute $a = 9$ and calculate t	M1	
		-	Obtain answer $t = 54.9$ or 55	Al	2
			[Substitution of $a = 0.9$ scores M0.]		

.

Page 4	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	3

10 (i) Find a direction vector for AB or CD e.g. $\overrightarrow{AB} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$ or $\overrightarrow{CD} = -2\mathbf{i} - \mathbf{j} - 4\mathbf{k}$ EITHER: Carry out the correct process for evaluating the scalar product of two relevant vectors is component form	B1 in M1
component form	
\	
Evaluate $\cos^{-1}\left(\frac{\overrightarrow{AB}.\overrightarrow{CD}}{ \overrightarrow{AB} \overrightarrow{CD} }\right)$ using the correct method for the moduli	M1
Obtain final answer 45.6°, or 0.796 radians, correctly	A1
OR: Calculate the sides of a relevant triangle using the correct method Use the cosine rule to calculate a relevant angle Obtain final answer 45.6°, or 0.796 radians, correctly	M1 M1 A1
[SR: if a vector is incorrectly stated with all signs reversed and 45.6° is obtained, award B0M1N [SR: if 45.6° is followed by 44.4° as final answer, award A0.]	M1A1.]
 (ii) EITHER: State both line equations e.g. 4i + k + λ(i - 2j - 3k) and i + j + μ(2i + j + 4k) Equate components and solve for λ or for μ Obtain value λ = -1 or μ = 1 Verify that all equations are satisfied, so that the lines do intersect, or equivalent [SR: if both lines have the same parameter, award B1M1 if the equations are inconsist and B1M1A1 if the equations are consistent and shown to be so.] 	B1 ✓ MI A1 A1 stent
OR: State both line equations in Cartesian form Solve simultaneous equations for a pair of unknowns e.g. x and y Obtain a correct pair e.g. $x = 3$, $y = 2$ Obtain the third unknown e.g. $z = 4$ and verify the lines intersect	Bl 🗸 Ml Al Al
OR: Find one of $\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{DA}, \overrightarrow{DB}, \dots$, e.g. $\overrightarrow{CA} = 3\mathbf{i} - \mathbf{j} + \mathbf{k}$	B1
Carry out correct process for evaluating a relevant scalar triple product e.g. $\overrightarrow{CA}.(\overrightarrow{AB} \times \overrightarrow{CA})$ Show the value is zero State that (a) this result implies the lines are coplanar, (b) the lines are not parallel, a	, A1
thus the lines intersect (condone omission of one of (a) and (b))	A1
OR: Carry out correct method for finding a normal to the plane through three of the points Obtain a correct normal vector Obtain a correct equation e.g. $x+2y-z=3$ for the plane of A, B, C	M1 A1 A1
Verify that the fourth point lies in the plane and conclude that the lines intersect	A1
 OR: State a relevant plane equation e.g. r = 4i + k + λ(i - 2j - 3k) + μ(-3i + j - k) for the plane of A, B, C Set up equations in λ and μ, using components of the fourth point, and solve for λ or Obtain value λ = 1 or μ = 2 Verify that all equations are satisfied and conclude that the lines intersect 	B 1 √

(continued)

Page 5	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	3

10 (continued)

(iii) EITHER:	Find \overline{PQ} for a general point Q on AB e.g. $3\mathbf{i} - 5\mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - 3\mathbf{k})$	B1 🖍
	Calculate $\overrightarrow{PQ} \cdot \overrightarrow{AB}$ correctly and equate to zero	Ml
	Solve for λ obtaining $\lambda = -2$	Al
	Show correctly that $PQ = \sqrt{3}$, the given answer	A1
OR:	State \overrightarrow{AP} (or \overrightarrow{BP}) and \overrightarrow{AB} in component form	BI 🗸
	Carry out correct method for finding their vector product	Ml
	Obtain correct answer e.g. $\overrightarrow{AP} \times \overrightarrow{AB} = -5\mathbf{i} - 4\mathbf{j} + \mathbf{k}$	A1
	Divide modulus by $ \overrightarrow{AB} $ and obtain the given answer $\sqrt{3}$	A1
OR:	State \overrightarrow{AP} (or \overrightarrow{BP}) and \overrightarrow{AB} in component form	B1 ✓
	Carry out correct method for finding the projection of AP (or BP) on AB i.e. $ \overrightarrow{AP}.\overrightarrow{AB} $	Ml
·	Obtain correct answer e.g. $AN = \frac{28}{\sqrt{14}}$ or $BN = \frac{42}{\sqrt{14}}$	Al
	Show correctly that $PN = \sqrt{3}$, the given answer	Al
OR:	State two of $\overrightarrow{AP}, \overrightarrow{BP}, \overrightarrow{AB}$ in component form	Bl√
	Use the cosine rule in triangle ABP , or scalar product, to find the cosine of A , B , or P	M1
	Obtain correct answer e.g. $\cos A = \frac{-28}{\sqrt{14.\sqrt{59}}}$	A1
	Deduce the exact length of the perpendicular from P to AB is $\sqrt{3}$, the given answer	. A1