Határozatlan integrál II.

A helyettesítéses integrálás tétele

Aki nem keresi az előre nem láthatót, nem lát semmit, ugyanis a járt út zsákutca.

(Hérakleitosz.)

A gyakorlat célja

Miután valós függvények határozatlan integráljának fogalmával valamint a parciális integrálás tételével már megismerkedtünk, ennek a gyakorlatnak az elsődleges célja, hogy a helyettesítéses integrálás tételével is megismerkedjünk. Sajnos, ahogyan az majd a gyakorlat során ki fog derülni, a helyettesítéses integrálás tétele nem egy algoritmikus dolog integrálok kiszámítására. Sok esetben rá kell érezni arra, hogy mi a célravezető helyettesítő függvény. Éppen ezért a konkrét feladatmegoldások során nagyon jól jön, ha nemcsak a helyettesítéses integrálás tételét, hanem annak néhány speciális esetét is ismerjük és tudjuk használni.

🗓 Felhasznált elméleti anyag

A feladatok megoldásához szükséges elméleti állítások:

- 1. A helyettesítéses integrálás tétele
- 2. A helyettesítéses integrálás tételének speciális esetei

🦰 További tudnivalók

Az alábbiakban a feladatlapon található példák részletes megoldása található. Az egyes feladatoknál található útmutatók hasznos információkat, módszereket tartalmaznak. Kérlek benneteket, hogy azokat is olvassátok el figyelmesen.

Norábbi előismeretek

Az utolsó feladat példáinak megoldása során szükség van egy-két trigonometrikus azonosságra, melyek közül a legfontosabbak az alábbiak.

(i)
$$\sin^2(x) + \cos^2(x) = 1 \qquad (x \in \mathbb{R}).$$

(ii)
$$\sin(2x) = 2\sin(x)\cos(x) \qquad (x \in \mathbb{R}).$$

(iii)
$$\cos^2(x) = \frac{1 + \cos(2x)}{2}$$
 és $\sin^2(x) = \frac{1 - \cos(2x)}{2}$ $(x \in \mathbb{R})$.

(iv)
$$tg(x) = \frac{\sin(x)}{\cos(x)} \quad \left(x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi\right) \quad \text{és} \quad ctg(x) = \frac{\cos(x)}{\sin(x)} \quad (x \in \mathbb{R}, x \neq k\pi)$$

-A helyettesítéses integrálás tétele

1. Tétel. Ha $f:]a,b[\to \mathbb{R}, g:]c,d[\to \mathbb{R}$ olyan függvények, melyek esetén létezik $g':]c,d[\to]a,b[$ és létezik $\int f(x)dx$ is, akkor létezik $\int (f \circ g)(x) \cdot g'(x)dx$ is, és van olyan $C \in \mathbb{R}$, hogy

$$\int f\left(g(x)\right)\cdot g'(x)dx = \left(\left(\int f\right)\circ g\right)(x) + C = \left.\int f(t)dt\right|_{t=g(x)} + C. \quad (x\in]c,d[)$$

Továbbá, ha a g függvény invertálható, akkor

$$\int f(x)dx = \left. \int f(g(t)) \cdot g'(t)dt \right|_{t=g^{-1}(x)} + C. \qquad (x \in]a,b[)$$

$f = \int f^{\alpha}(x) \cdot f'(x) dx$ alakú integrálok

2. Tétel. Legyen $f:]a, b[\to \mathbb{R}$ differenciálható $]a, b[-n, \alpha \in \mathbb{R} \setminus \{-1\}, ekkor f^{\alpha} \cdot f'$ függvénynek létezik a primitív függvénye]a, b[-n és

$$\int f^{\alpha}(x) \cdot f'(x) dx = \frac{f^{\alpha+1}(x)}{\alpha+1} + C, \qquad (x \in]a,b[)$$

teljesül valamely $C \in \mathbb{R}$ konstanssal.

$\int \frac{f'(x)}{f(x)} dx$ alakú integrálok

3. Tétel. Ha $f:[a,b] \to \mathbb{R}$ folytonos [a,b]-n, $f(x) \neq 0$ $(x \in [a,b])$, f differenciálható [a,b]-n, akkor az $\frac{J'}{f}$ függvénynek létezik a primitív függvénye, és létezik olyan $C \in \mathbb{R}$, hogy

$$\int \frac{f'(x)}{f(x)} dx = \ln\left(|f(x)|\right) + C. \qquad (x \in]a, b[)$$

$\mathbf{\hat{Q}}^{-} \mid f(\alpha x + \beta) dx$ alakú integrálok

4. Tétel. Legyen $f: \mathbb{R} \to \mathbb{R}$ függvény, $\alpha, \beta \in \mathbb{R}$, $\alpha \neq 0$ tetszőlegesek. Ha létezik $\int f$, akkor létezik $\int f(\alpha x + \beta) dx$ is, és létezik olyan $C \in \mathbb{R}$ konstans, hogy

$$\int f(\alpha x + \beta) dx = \frac{F(\alpha x + \beta)}{\alpha} + C, \quad (x \in \mathbb{R})$$

ahol F jelöli az f függvény primitív függvényét.

1. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit a 4. Tétel segítségével.

Útmutatás. Ahogyan az már a feladat megfogalmazásában is szerepel, az alábbi példák mindegyike esetében a 4. Tétel használható. Az egyetlen dolog, amit a konkrét feladatok esetében be kell gyakorolni az az, hogy a 4. Tétel jelöléseivel mit érdemes α-nak, β-nak, illetve f-nek választani.

$$\int (3x+2)^3 dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 3$$
 $\beta = 2$ és $f(x) = x^3$,

ezért

$$F(x) = \int f(x)dx = \int x^3 dx = \frac{x^4}{4}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int (3x+2)^3 = \frac{(3x+2)^4}{3\cdot 4} + C = \frac{(3x+2)^4}{12} + C.$$

$$\int (5x-4)^5 dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 5$$
 $\beta = -4$ és $f(x) = x^5$,

ezért

$$F(x) = \int f(x)dx = \int x^5 dx = \frac{x^6}{6}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int (5x-4)^5 dx = \frac{(5x-4)^6}{30} + C.$$

$$\int \sqrt[4]{7x - 16} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 7$$
 $\beta = -16$ és $f(x) = \sqrt[4]{x} = x^{\frac{1}{4}}$,

ezért

$$F(x) = \int f(x)dx = \int x^{\frac{1}{4}} = \frac{x^{\frac{5}{4}}}{\frac{5}{4}} = \frac{4}{5}x^{\frac{5}{4}}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \sqrt[4]{7x - 16} dx = \int (7x - 16)^{\frac{1}{4}} dx = \frac{(7x - 16)^{\frac{5}{4}}}{\frac{5}{4} \cdot 7} + C = \frac{4}{35} (7x - 16)^{\frac{5}{4}} + C.$$

(iv)

$$\int \frac{1}{\left(-3x+4\right)^4} dx$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -3$$
 $\beta = 4$ és $f(x) = \frac{1}{x^4} = x^{-4}$,

ezért

$$F(x) = \int f(x)dx = \int x^{-4}dx = \frac{x^{-3}}{-3}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \frac{1}{(-3x+4)^4} dx = \int (-3x+4)^{-4} dx = \frac{(-3x+4)^{-3}}{(-3)\cdot(-3)} + C = \frac{(-3x+4)^{-3}}{9} + C$$

(v)

$$\int (2x-3)^{10} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 2$$
 $\beta = -3$ és $f(x) = x^{10}$,

ezért

$$F(x) = \int f(x)dx = \int x^{10}dx = \frac{x^{11}}{11}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int (2x-3)^{10} dx = \frac{(2x-3)^{11}}{22} + C.$$

(vi)

$$\int \sqrt[3]{1-3x} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -3$$
 $\beta = 1$ és $f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$,

ezért

$$F(x) = \int f(x)dx = \int x^{\frac{1}{3}} = \frac{x^{\frac{4}{3}}}{\frac{4}{2}} = \frac{3}{4}x^{\frac{4}{3}}.$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \sqrt[3]{1-3x} dx = \int (1-3x)^{\frac{1}{3}} dx = \frac{(1-3x)^{\frac{4}{3}}}{\frac{4}{3} \cdot (-3)} + C = -\frac{(1-3x)^{\frac{4}{3}}}{4} + C$$

(vii)

$$\int \frac{1}{\sqrt{2-5x}} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -5$$
 $\beta = 2$ és $f(x) = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$,

ezért

$$F(x) = \int f(x)dx = \int x^{-\frac{1}{2}}dx = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} = 2x^{\frac{1}{2}}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \frac{1}{\sqrt{2-5x}} dx = \int (2-5x)^{-\frac{1}{2}} dx = \frac{(2-5x)^{\frac{1}{2}}}{\frac{1}{2} \cdot (-5)} + C = -\frac{2}{5} (2-5x)^{\frac{1}{2}} + C$$

(viii)

$$\int \frac{1}{(5x-2)^{\frac{5}{2}}} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 5$$
 $\beta = -2$ és $f(x) = \frac{1}{x^{\frac{5}{2}}} = x^{-\frac{5}{2}},$

ezért

$$F(x) = \int f(x)dx = \int x^{-\frac{5}{2}}dx = \frac{x^{-\frac{3}{2}}}{\frac{3}{2}} = -\frac{2}{3}x^{-\frac{3}{2}}.$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \frac{1}{(5x-2)^{\frac{5}{2}}} dx = \int (5x-2)^{-\frac{5}{2}} dx = \frac{(5x-2)^{-\frac{3}{2}}}{-\frac{3}{2} \cdot 5} + C = -\frac{2}{15} (5x-2)^{-\frac{3}{2}} + C.$$

(ix)

$$\int e^{5x+4}dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 5$$
 $\beta = 4$ és $f(x) = e^x$,

ezért

$$F(x) = \int f(x)dx = \int e^x dx = e^x$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int e^{5x+4} dx = \int \frac{e^{5x+4}}{5} + C.$$

(x)

$$\int \frac{2}{3}e^{3x-2}dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 3$$
 $\beta = -2$ és $f(x) = \frac{2}{3}e^x$,

ezért

$$F(x) = \int f(x)dx = \int \frac{2}{3}e^x dx = \frac{2}{3}e^x.$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \frac{2}{3}e^{3x-2}dx = \frac{2}{3} \cdot \frac{e^{3x-2}}{3} + C = \frac{2e^{3x-2}}{9} + C.$$

(xi)

$$\int 3^{4x-7} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 4$$
 $\beta = -7$ és $f(x) = 3^x$,

ezért

$$F(x) = \int f(x)dx = \int 3^x dx = \frac{3^x}{\ln(3)}$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int 3^{4x-7} dx = \frac{3^{4x-7}}{\ln(3) \cdot 4} + C.$$

(xii)

$$\int 5^{2-3x} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -3$$
 $\beta = 2$ és $f(x) = 5^x$,

ezért

$$F(x) = \int f(x)dx = \int 5^x dx = \frac{5^x}{\ln(5)}.$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int 5^{2-3x} dx = \frac{5^{2-3x}}{\ln(5) \cdot (-3)} + C = -\frac{5^{2-3x}}{\ln(5) \cdot 3} + C.$$

(xiii)

$$\int \sin(6x+4)\,dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 6$$
 $\beta = 4$ és $f(x) = \sin(x)$,

ezért

$$F(x) = \int f(x)dx = \int \sin(x)dx = -\cos(x)$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \sin(6x+4) \, dx = \frac{-\cos(6x+4)}{6} + C.$$

(xiv)

$$\int \cos\left(-4-5x\right)dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -5$$
 $\beta = -4$ és $f(x) = \cos(x)$,

ezért

$$F(x) = \int f(x)dx = \int \cos(x)dx = \sin(x)$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \cos(-4 - 5x) \, dx = \frac{\sin(-4 - 5x)}{-5} + C.$$

(xv)

$$\int \frac{1}{\sin^2(3x+2)} dx,$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = 3$$
 $\beta = 2$ és $f(x) = \frac{1}{\sin^2(x)}$

ezért

$$F(x) = \int f(x)dx = \int \frac{1}{\sin^2(x)} dx = -\operatorname{ctg}(x)$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \frac{1}{\sin^2(3x+2)} dx = -\frac{\cot(3x+2)}{3} + C$$

(xvi)

$$\int \sinh\left(2-7x\right)dx$$

Megoldás. Ebben az esetben, a 4. Tétel jelöléseivel

$$\alpha = -7$$
 $\beta = 2$ és $f(x) = \sinh(x)$,

ezért

$$F(x) = \int f(x)dx = \int \sinh(x)dx = \cosh(x)$$

Ezeket felhasználva, a 4. Tétel miatt

$$\int \sinh(2-7x) \, dx = \frac{\cosh(2-7x)}{-7} + C.$$

2. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit a 2. Tétel segítségével.

Útmutatás. Ebben a feladatban minden példa esetében egyszerű algebrai átalakításokkal, illetve a határozatlan integrál homogenitásának felhasználásával elérhető, hogy az integrandus $f^{\alpha} \cdot f'$ alakú legyen. Ezek után már a 2. Tétel segítségével az integrálok minden esetben könnyedén kiszámíthatóak.

(i)
$$\int x^2 (2x^3 + 4)^2 dx,$$

Megoldás. Ebben az esetben

$$f(x) = 2x^3 + 4$$
 $f'(x) = 6x^2$ és $\alpha = 2$,

igy
$$\int x^2 (2x^3 + 4)^2 dx = \frac{1}{6} \int 6x^2 (2x^3 + 4)^2 dx = \frac{1}{6} \cdot \frac{(2x^3 + 4)^3}{3} + C.$$

$$\int \sin(x)\cos(x)dx,$$

Megoldás. Ebben az esetben

$$f(x) = \sin(x)$$
 $f'(x) = \cos(x)$ és $\alpha = 1$,

$$\int \sin(x)\cos(x)dx = \frac{\sin^2(x)}{2} + C.$$

$$\int \frac{\ln(x)}{x} dx,$$

Megoldás. Ebben az esetben

$$f(x) = \ln(x)$$
 $f'(x) = \frac{1}{x}$ $\acute{e}s$ $\alpha = 1$,

$$\int \frac{\ln(x)}{x} dx = \int \frac{1}{x} \ln(x) dx = \frac{\ln^2(x)}{2} + C.$$

(iv)

$$\int (2x^3 + 4)^5 x^2 dx$$

Megoldás. Ebben az esetben

$$f(x) = 2x^3 + 4$$
 $f'(x) = 6x^2$ és $\alpha = 5$,

így

$$\int (2x^3 + 4)^5 x^2 dx = \frac{1}{6} \int (2x^3 + 4)^5 \cdot 6x^2 = \frac{1}{6} \cdot \frac{(2x^3 + 4)^6}{6} + C$$

(v)

$$\int x^2 \sqrt{6x^3 + 1} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 6x^3 + 1$$
 $f'(x) = 18x^2$ és $\alpha = \frac{1}{2}$

így

$$\int x^2 \sqrt{6x^3 + 1} dx = \int x^2 (6x^3 + 1)^{\frac{1}{2}} dx = \frac{1}{18} \int 18x^2 (6x^3 + 1)^{\frac{1}{2}} dx = \frac{1}{18} \frac{(6x^3 + 1)^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{(6x^3 + 1)^{\frac{3}{2}}}{27} + C.$$

(vi)

$$\int \frac{x}{\sqrt{x^2 + 1}} dx,$$

Megoldás. Ebben az esetben

$$f(x) = x^2 + 1$$
 $f'(x) = 2x$ $és$ $\alpha = -\frac{1}{2}$

így

$$\int \frac{x}{\sqrt{x^2 + 1}} dx = \int x(x^2 + 1)^{-\frac{1}{2}} dx = \frac{1}{2} \int 2x(x^2 + 1)^{-\frac{1}{2}} dx = \frac{1}{2} \cdot \frac{(x^2 + 1)^{\frac{1}{2}}}{\frac{1}{2}} + C = (x^2 + 1)^{\frac{1}{2}} + C$$

(vii)

$$\int \frac{5x^2}{\sqrt[3]{3x^3 + 18}} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 3x^3 + 18$$
 $f'(x) = 9x^2$ és $\alpha = -\frac{1}{2}$

így

$$\int \frac{5x^2}{\sqrt[3]{3x^3 + 18}} dx = \int 5x^2 (3x^3 + 18)^{-\frac{1}{3}} dx = \frac{5}{9} \int 9x^2 (3x^3 + 18)^{-\frac{1}{3}} dx$$
$$= \frac{5}{9} \cdot \frac{(3x^3 + 18)^{\frac{2}{3}}}{\frac{2}{3}} + C = \frac{5(3x^3 + 18)^{\frac{2}{3}}}{6} + C.$$

(viii)

$$\int e^x \sqrt{1 - e^x} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 1 - e^x$$
 $f'(x) = -e^x$ $\acute{e}s$ $\alpha = \frac{1}{2}$

így

$$\int e^x \sqrt{1 - e^x} dx = -\int -e^x (1 - e^x)^{\frac{1}{2}} dx = -\frac{(1 - e^x)^{\frac{3}{2}}}{\frac{3}{2}} + C = -\frac{2}{3} (1 - e^x)^{\frac{3}{2}} + C.$$

(ix)

$$\int \frac{x}{\sqrt{1-x^2}} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 1 - x^2$$
 $f'(x) = -2x$ $\acute{e}s$ $\alpha = -\frac{1}{2}$

így

$$\int \frac{x}{\sqrt{1-x^2}} dx = -\frac{1}{2} \int -2x(1-x^2)^{-\frac{1}{2}} dx = -\frac{1}{2} \cdot \frac{(1-x^2)^{\frac{1}{2}}}{\frac{1}{2}} + C = -(1-x^2)^{\frac{1}{2}} + C.$$

(x)

$$\int x \sqrt[3]{1+x^2} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 1x^2$$
 $f'(x) = 2x$ $\acute{e}s$ $\alpha = \frac{1}{2}$,

így

$$\int x\sqrt[3]{1+x^2}dx = \frac{1}{2}\int 2x(1+x^2)^{\frac{1}{3}}dx = \frac{1}{2}\cdot\frac{(1+x^2)^{\frac{4}{3}}}{\frac{4}{3}} + C = \frac{3(1+x^2)^{\frac{4}{3}}}{8} + C$$

(xi)

$$\int \frac{x}{3 - 2x^2} dx,$$

Megoldás. Ebben az esetben nem a 2., hanem a 3. Tétel alkalmazható, ugyanis

$$f(x) = 3 - 2x^2$$
 és $f'(x) = -4x$,

ezért

$$\int \frac{x}{3 - 2x^2} dx = -\frac{1}{4} \int \frac{-4x}{3 - 2x^2} x = -\frac{1}{4} \ln \left(|3 - 2x^2| \right) + C.$$

(xii)

$$\int \frac{x}{(1+x^2)^2} dx,$$

Megoldás. Ebben az esetben

$$f(x) = 1 + x^2$$
 $f'(x) = 2x$ és $\alpha = -2$,

így

$$\int \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \int 2x(1+x^2)^{-2} dx = \frac{1}{2} \frac{(1+x^2)^{-1}}{-1} + C = -\frac{1}{2} (1+x^2)^{-1} + C.$$

(xiii)

$$\int \frac{\ln^5(x)}{x} dx,$$

Megoldás. Ebben az esetben

$$f(x) = \ln(x)$$
 $f'(x) = \frac{1}{x}$ és $\alpha = 5$,

így

$$\int \frac{\ln^5(x)}{x} dx = \frac{\ln^6(x)}{6} + C.$$

(xiv)

$$\int \sin^5(x)\cos(x)dx,$$

Megoldás. Ebben az esetben

$$f(x) = \sin(x)$$
 $f'(x) = \cos(x)$ és $\alpha = 5$,

így

$$\int \sin^5(x)\cos(x)dx = \frac{\sin^6(x)}{6} + C.$$

(xv)

$$\int \frac{\sin(x)}{\sqrt{\cos^3(x)}} dx,$$

Megoldás. Ebben az esetben

$$f(x) = \cos(x)$$
 $f'(x) = -\sin(x)$ $\acute{e}s$ $\alpha = -\frac{3}{2}$,

így

$$\int \frac{\sin(x)}{\sqrt{\cos^3(x)}} dx = -\int -\sin(x)\cos^{-\frac{3}{2}}(x)dx = -\frac{\cos^{-\frac{1}{2}}(x)}{-\frac{1}{2}} + C = 2\cos^{-\frac{1}{2}}(x) + C.$$

(xvi)

$$\int \frac{\sinh(x)}{\cosh^2(x)} dx,$$

Megoldás. Ebben az esetben

$$f(x) = \cosh(x)$$
 $f'(x) = \sinh(x)$ és $\alpha = -2$,

így

$$\int \frac{\sinh(x)}{\cosh^2(x)} dx = \int \sinh(x) \cosh^{-2}(x) dx = \frac{\cosh^{-1}(x)}{-1} + C = -\cosh^{-1}(x) + C.$$

(xvii)

$$\int \frac{1}{\sin^2(x)\sqrt[4]{\cot(x)}} dx$$

Megoldás. Ebben az esetben

$$f(x) = \operatorname{ctg}(x)$$
 $f'(x) = -\frac{1}{\sin^2(x)}$ és $\alpha = -\frac{1}{4}$

így

$$\int \frac{1}{\sin^2(x)\sqrt[4]{\cot(x)}} dx = -\int -\frac{1}{\sin^2(x)} \cdot \cot^{-\frac{1}{4}}(x) dx = -\frac{\cot^{\frac{3}{4}}(x)}{\frac{3}{4}} + C = -\frac{4}{3} \cot^{\frac{3}{4}}(x) + C.$$

3. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit a 3. Tétel segítségével.

Útmutatás. Ebben a feladatban minden példa esetében egyszerű algebrai átalakításokkal, illetve a határozatlan integrál homogenitásának felhasználásával elérhető, hogy az integrandus $\frac{f'}{f}$ alakú legyen. Ezek után már a 3. Tétel segítségével az integrálok minden esetben könnyedén kiszámíthatóak.

(i)

$$\int \frac{xe^{x^2}}{e^{x^2}+1} dx,$$

Megoldás. Legyen $f(x) = e^{x^2} + 1$, ekkor $f'(x) = 2xe^{x^2}$, ezért

$$\int \frac{xe^{x^2}}{e^{x^2}+1} dx = \frac{1}{2} \int \frac{2xe^{x^2}}{e^{x^2}+1} dx = \frac{1}{2} \ln \left(|e^{x^2}+1| \right) + C.$$

(ii)

$$\int \frac{e^x}{e^x + 2} dx,$$

Megoldás. Legyen $f(x) = e^x + 2$, ekkor $f'(x) = e^x$, ezért

$$\int \frac{e^x}{e^x + 2} dx = \ln|e^x + 2| + C.$$

(iii)

$$\int \frac{1}{x \ln(x) \ln(\ln(x))} dx,$$

Megoldás. Legyen $f(x) = \ln(\ln(x))$, ekkor $f'(x) = \frac{1}{\ln(x)} \cdot \frac{1}{x} = \frac{1}{x \ln(x)}$, ezért

$$\int \frac{1}{x \ln(x) \ln(\ln(x))} dx = \int \frac{\frac{1}{x \ln(x)}}{\ln(\ln(x))} dx = \ln|\ln(\ln(x))| + C.$$

П

(iv)

$$\int \frac{2x}{x^2 + 7} dx$$

Megoldás. Legyen $f(x) = x^2 + 7$, ekkor f'(x) = 2x, ezért

$$\int \frac{2x}{x^2 + 7} dx = \ln|x^2 + 7| + C.$$

(v)

$$\int \frac{5x^2}{x^3 + 4} dx,$$

Megoldás. Legyen $f(x) = x^3 + 4$, ekkor $f'(x) = 3x^2$, ezért

$$\int \frac{5x^2}{x^3 + 4} dx = \frac{5}{3} \int \frac{3x^2}{x^3 + 4} dx = \frac{5}{3} \ln |x^3 + 4| + C$$

(vi)

$$\int \frac{4\sin(x)}{5\cos(x) + 4} dx,$$

Megoldás. Legyen $f(x) = 5\cos(x) + 4$, ekkor $f'(x) = -5\sin(x)$, ezért

$$\int \frac{4\sin(x)}{5\cos(x) + 4} dx = -\frac{4}{5} \int \frac{-5\sin(x)}{5\cos(x) + 4} dx = -\frac{4}{5} \ln|5\cos(x) + 4| + C.$$

(vii)

$$\int \frac{5\sin(2x)}{\sin^2(x) + 12\pi} dx,$$

Megoldás. Legyen $f(x) = \sin^2(x) + 12\pi$, ekkor $f'(x) = 2\sin(x)\cos(x)$. Első ránézésre nem biztos, hogy világos, hogy mi köze van a nevező deriváltjának a számlálóhoz. Idézzük fel azonban, hogy

$$\sin(2x) = 2\sin(x)\cos(x) \qquad (x \in \mathbb{R}),$$

ezért

$$\int \frac{5\sin(2x)}{\sin^2(x) + 12\pi} dx = 5 \int \frac{\sin(2x)}{\sin^2(x) + 12\pi} dx = 5 \int \frac{2\sin(x)\cos(x)}{\sin^2(x) + 12\pi} dx = 5 \ln\left|\sin^2(x) + 12\pi\right| + C.$$

(viii)

$$\int \frac{-\sin{(2x)}}{5 + \cos^2(x)} dx$$

Megoldás. Legyen $f(x) = 5 + \cos^2(x)$, ekkor $f'(x) = 2\cos(x) \cdot (-\sin(x)) = -2\sin(x)\cos(x) = -2\sin(2x)$, ezért

 $\int \frac{-\sin(2x)}{5 + \cos^2(x)} dx = \ln|5 + \cos^2(x)| + C.$

(ix)

$$\int \frac{1}{\cos^2(x) \operatorname{tg}(x)} dx,$$

Megoldás. Legyen $f(x) = \operatorname{tg}(x)$, ekkor $f'(x) = \frac{1}{\cos^2(x)}$, ezért

$$\int \frac{1}{\cos^2(x)\operatorname{tg}(x)} dx = \int \frac{\frac{1}{\cos^2(x)}}{\operatorname{tg}(x)} dx = \ln\left|\operatorname{tg}(x)\right| + C.$$

(x)

$$\int \frac{1}{\sin^2(x)\operatorname{ctg}(x)} dx,$$

Megoldás. Legyen $f(x) = \operatorname{tg}(x)$, ekkor $f'(x) = -\frac{1}{\sin^2(x)}$, ezért

$$\int \frac{1}{\sin^2(x)\operatorname{ctg}(x)} dx = -\int \frac{-\frac{1}{\sin^2(x)}}{\operatorname{ctg}(x)} dx = -\ln\left|\operatorname{ctg}(x)\right| + C.$$

(xi)

$$\int \mathsf{tg}(x) dx$$

Megoldás. Először használjuk a tangens függvény definícióját, vagyis azt, hogy

$$tg(x) = \frac{\sin(x)}{\cos(x)} \qquad \left(x \in \mathbb{R}, x \neq \frac{\pi}{2} + k\pi\right)$$

és legyen $f(x) = \cos(x)$, ekkor $f'(x) = -\sin(x)$, ezért

$$\int \operatorname{tg}(x)dx = -\int \frac{-\sin(x)}{\cos(x)}dx = -\ln|\cos(x)| + C.$$

(xii)

$$\int \frac{1}{x \ln(x)} dx,$$

Megoldás. Legyen $f(x) = \ln(x)$, ekkor $f'(x) = \frac{1}{x}$, ezért

$$\int \frac{1}{x \ln(x)} dx = \int \frac{\frac{1}{x}}{\ln(x)} dx = \ln|\ln(x)| + C.$$

(xiii)

$$\int \frac{e^{2x}}{e^{2x} + 3} dx$$

Megoldás. Legyen $f(x) = e^{2x+3}$, ekkor $f'(x) = 2e^{2x+3}$, ezért

$$\int \frac{e^{2x}}{e^{2x} + 3} dx = \frac{1}{2} \int \frac{2e^{2x}}{e^{2x} + 3} dx = \frac{1}{2} \ln \left| e^{2x} + 3 \right| + C.$$

4. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit az 1. Tétel segítségével.

(i)

$$\int e^{\sin(x)}\cos(x)dx,$$

Megoldás. Az 1. Tétel jelöléseivel legyen

$$f(x) = e^x$$
 és $g(x) = \sin(x)$.

Ekkor

$$F(x) = \int f(x)dx = \int e^x dx = e^x,$$

ezért

$$\int e^{\sin(x)} \cos(x) dx = \int f(g(x)) \cdot g'(x) dx = \int f(t) dt \Big|_{t=g(x)} + C = e^{t} \Big|_{t=\sin(x)} + C = e^{\sin(x)} + C.$$

(ii)

$$\int (3x^2 + 2)\sin(x^3 + 2x - 4)dx,$$

Megoldás. Az 1. Tétel jelöléseivel legyen

$$f(x) = \sin(x)$$
 és $g(x) = x^3 + 2x - 4$ $g'(x) = 3x^2 + 2x$

Ekkor

$$F(x) = \int f(x)dx = \int \sin(x)dx = -\cos(x),$$

ezért

$$\int (3x^2 + 2)\sin(x^3 + 2x - 4)dx = \int f(g(x)) \cdot g'(x)dx$$

$$= \int f(t)dt \Big|_{t=g(x)} + C = -\cos(t)|_{t=x^3 + 2x - 4} + C = -\cos(x^3 + 2x - 4) + C.$$

(iii)

$$\int \frac{e^{2x}}{1+e^x} dx,$$

Megoldás. Ebben a feladatban az 1. Tételben található második formulát érdemes alkalmazni, azaz, a helyettesítéses integrálás tételét abban az esetben fogjuk használni, amikor a g helyettesítő függvény invertálható. Legyen

$$f(x) = \frac{e^{2x}}{1 + e^x}$$
 $t = e^x = g^{-1}(x)$ $azaz$ $x = g(t) = \ln(t)$.

 $Ekkor g'(t) = \frac{1}{t} \, \acute{e}s$

$$\int \frac{e^{2x}}{1+e^x} dx = \int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)}$$

$$= \int \frac{t^2}{t+1} \cdot \frac{1}{t} dt \Big|_{t=e^x} = \int \frac{t}{t+1} dt \Big|_{t=e^x} = \int \frac{(t+1)-1}{t+1} dt \Big|_{t=e^x} = e^x$$

$$= \int 1 - \frac{1}{t+1} dt \Big|_{t=e^x} = t - \ln(|t+1|)|_{t=e^x} + C = e^x - \ln(|e^x+1|) + C.$$

(iv)

$$\int \frac{1}{x^2 + \alpha^2} dx, \quad (\alpha \neq 0)$$

Megoldás. Legyen $\alpha \in \mathbb{R} \setminus \{0\}$ tetszőleges, de rögzített. Ekkor

$$\frac{1}{x^2 + \alpha^2} = \frac{1}{\alpha^2 \left(\frac{x^2}{\alpha^2} + 1\right)} = \frac{1}{\alpha^2} \cdot \frac{1}{\left(\frac{x}{\alpha}\right)^2 + 1}$$

Legyen

$$f(x) = \frac{1}{x^2 + \alpha^2} \qquad t = \frac{x}{\alpha} = g^{-1}(x) \qquad azaz \qquad x = g(t) = \alpha t.$$

Ebben az esetben $g'(t) = \alpha$, ezért

$$\int \frac{1}{x^2 + \alpha^2} dx = \int \frac{1}{\alpha^2} \cdot \frac{1}{\left(\frac{x}{\alpha}\right)^2 + 1} dx = \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t = g^{-1}(x)}$$

$$= \int \frac{1}{\alpha^2} \cdot \frac{1}{t^2 + 1} \cdot \alpha dt \Big|_{t = \frac{x}{\alpha}} = \int \frac{1}{\alpha} \cdot \frac{1}{t^2 + 1} dt \Big|_{t = \frac{x}{\alpha}}$$

$$= \frac{1}{\alpha} \operatorname{arctg}(t) \Big|_{t = \frac{x}{\alpha}} + C = \frac{1}{\alpha} \operatorname{arctg}\left(\frac{x}{\alpha}\right) + C.$$

(v)

$$\int \frac{1}{x^2} \sin\left(\frac{1}{x}\right) dx,$$

Megoldás. Az 1. Tétel jelöléseivel legyen

$$f(x) = -\sin(x)$$
 és $g(x) = \frac{1}{x}$ $g'(x) = -\frac{1}{x^2}$

Ekkor

$$F(x) = \int f(x)dx = \int -\sin(x)dx = \cos(x),$$

ezért

$$\int \frac{1}{x^2} \sin\left(\frac{1}{x}\right) dx = \int f(g(x)) \cdot g'(x) dx = \int f(t) dt \Big|_{t=g(x)} + C = \cos(t)|_{t=\frac{1}{x}} + C = \cos\left(\frac{1}{x}\right) + C.$$

$$\int \frac{1}{\sqrt{x}(x+1)} dx,$$

Megoldás. Ebben a feladatban az 1. Tételben található második formulát érdemes alkalmazni, azaz, a helyettesítéses integrálás tételét abban az esetben fogjuk használni, amikor a g helyettesítő függvény invertálható. Legyen

$$f(x) = \frac{1}{\sqrt{x(x+1)}}$$
 $t = \sqrt{x} = g^{-1}(x)$ $azaz$ $x = g(t) = t^2$.

 $Ekkor\ g'(t) = 2t\ \acute{e}s$

$$\int \frac{1}{\sqrt{x}(x+1)} dx \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)}$$

$$= \int \frac{1}{t(t^2+1)} \cdot 2t dt \Big|_{t=\sqrt{x}} = \int \frac{2}{t^2+1} dt \Big|_{t=\sqrt{x}} = 2 \operatorname{arctg}(t) \Big|_{t=\sqrt{x}} + C = 2 \operatorname{arctg}(\sqrt{x}) + C.$$

$$\int \frac{1}{e^x + e^{-x}} dx,$$

Megoldás. Ebben a feladatban az 1. Tételben található második formulát érdemes alkalmazni, azaz, a helyettesítéses integrálás tételét abban az esetben fogjuk használni, amikor a g helyettesítő függvény invertálható. Legyen

$$f(x) = \frac{1}{e^x + e^{-x}} = \frac{1}{e^x + \frac{1}{e^x}}$$
 $t = e^x = g^{-1}(x)$ $azaz$ $x = g(t) = \ln(t)$.

 $Ekkor g'(t) = \frac{1}{t} \, \acute{e}s$

$$\int \frac{1}{e^x + e^{-x}} dx = \frac{1}{e^x + \frac{1}{e^x}} dx = \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)}$$

$$= \int \frac{1}{t + \frac{1}{t}} \cdot \frac{1}{t} \Big|_{t=e^x} = \int \frac{1}{t^2 + 1} \Big|_{t=e^x} = \operatorname{arctg}(x) \Big|_{t=e^x} + C = \operatorname{arctg}(e^x) + C.$$

(viii)

$$\int \frac{1}{\sqrt{1+e^{2x}}} dx,$$

Megoldás. Próbálkozzunk meg újra a $t = g^{-1}(x) = e^x$ helyettesítésével, ami reményteli lehet, mert az $\frac{1}{\sqrt{1+x^2}}$ függvénynek ismerjük a primitív függvényét. Legyen tehát $t = g^{-1}(x) = e^x$ és így $g(t) = \ln(t)$,

illetve $g'(t) = \frac{1}{t}$. Ebből

$$\int \frac{1}{\sqrt{1+e^{2x}}} dx = \int \frac{1}{\sqrt{1+t^2}} \cdot \frac{1}{t} dt,$$

ami nem túl bizalomgerjesztő. Egy másik lehetőség, hogy egy egész gyökjel alatti kifejezést próbáljuk meg helyettesíteni, azaz

$$t = g^{-1}(x) = 1 + e^{2x},$$

de sajnos ez sem vezet eredményre (próbáljuk meg!). Végül, egy harmadik lehetőség, hogy a teljes gyökös kifejezést helyettesítjük. Legyen ehhez $t = g^{-1}(x) = \sqrt{1 + e^{2x}}$, ekkor

$$t = \sqrt{1 + e^{2x}}$$

$$t^2 = 1 + e^{2x}$$

$$t^2 - 1 = e^{2x}$$

$$\sqrt{t^2 - 1} = e^x$$

$$\ln \sqrt{t^2 - 1} = x,$$

valamint

$$g(t) = \ln \sqrt{t^2 - 1} = \frac{1}{2} \ln(t^2 - 1)$$
$$g'(t) = \frac{1}{2} \cdot \frac{2t}{t^2 - 1} = \frac{t}{t^2 - 1}.$$

Ezt felhasználva

$$\int \frac{1}{\sqrt{1+e^{2x}}} dx \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)} = \int \frac{1}{t} \cdot \frac{t}{t^2 - 1} dt \Big|_{t=\sqrt{1+e^{2x}}}$$

$$= \int \frac{1}{t^2 - 1} dt \Big|_{t=\sqrt{1+e^{2x}}} = -\operatorname{arcoth}(t)|_{t=\sqrt{1+e^{2x}}} + C = -\operatorname{arcoth}(\sqrt{1+e^{2x}}) + C.$$

5. Feladat. Határozzuk meg az alábbi függvények primitív függvényeit az 1. Tétel segítségével.

(i)

$$\int \frac{1}{\sqrt{\alpha^2 - \beta^2 x^2}} dx$$

Megoldás. A megoldás során azt fogjuk használni, hogy

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C.$$

Figyeljük meg, hogy az integrandust a következőképpen át lehet alakítani.

$$\int \frac{1}{\sqrt{\alpha^2 - \beta^2 x^2}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{1 - \frac{\beta^2}{\alpha^2} x^2}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{1 - \left(\frac{\beta}{\alpha} x\right)^2}} dx.$$

Legyen

$$t = \frac{\beta}{\alpha}x = g^{-1}(x),$$

ekkor

$$x = g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$,

valamint

$$= \frac{1}{\alpha} \int \frac{1}{\sqrt{1 - \left(\frac{\beta}{\alpha}x\right)^2}} dx = \int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)}$$

$$= \frac{1}{\alpha} \int \frac{1}{\sqrt{1 - t^2}} \cdot \frac{\alpha}{\beta} dx \Big|_{t=g^{-1}(x)} = \frac{1}{\beta} \int \frac{1}{\sqrt{1 - t^2}} dx \Big|_{t=g^{-1}(x)} = \frac{1}{\beta} \arcsin(t) \Big|_{t=\frac{\beta}{2}x} + C = \frac{1}{\beta} \arcsin\left(\frac{\beta}{\alpha}\right) + C.$$

Ígу,

$$\int \frac{1}{\sqrt{\alpha^2 - \beta^2 x^2}} dx = \frac{1}{\beta} \arcsin\left(\frac{\beta}{\alpha}\right) + C.$$

(ii)

$$\int \frac{1}{\sqrt{\alpha^2 + \beta^2 x^2}} dx,$$

Megoldás. A megoldás során azt fogjuk használni, hogy

$$\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arsinh}(x) + C.$$

Figyeljük meg, hogy az integrandust a következőképpen át lehet alakítani.

$$\int \frac{1}{\sqrt{\alpha^2 + \beta^2 x^2}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{1 + \frac{\beta^2}{\alpha^2} x^2}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{1 + \left(\frac{\beta}{\alpha} x\right)^2}} dx.$$

Legyen

$$t = \frac{\beta}{\alpha}x = g^{-1}(x),$$

ekkor

$$x = g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$,

valamint

$$\begin{split} &=\frac{1}{\alpha}\int\frac{1}{\sqrt{1+\left(\frac{\beta}{\alpha}x\right)^2}}dx = \int f(x)dx = \int f(g(t))\cdot g'(t)dt\bigg|_{t=g^{-1}(x)} \\ &=\frac{1}{\alpha}\int\frac{1}{\sqrt{1+t^2}}\cdot\frac{\alpha}{\beta}dx\bigg|_{t=g^{-1}(x)} = \frac{1}{\beta}\int\frac{1}{\sqrt{1+t^2}}dx\bigg|_{t=g^{-1}(x)} = \frac{1}{\beta}\mathrm{arsinh}(t)\bigg|_{t=\frac{\beta}{\alpha}x} + C = \frac{1}{\beta}\mathrm{arsinh}\left(\frac{\beta}{\alpha}\right) + C. \end{split}$$

Ígу,

$$\int \frac{1}{\sqrt{\alpha^2 + \beta^2 x^2}} dx = \frac{1}{\beta} \operatorname{arsinh} \left(\frac{\beta}{\alpha} \right) + C.$$

(iii)

$$\int \frac{1}{\sqrt{\beta^2 x^2 - \alpha^2}} dx$$

Megoldás. A megoldás során azt fogjuk használni, hogy

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcosh}(x) + C.$$

Figyeljük meg, hogy az integrandust a következőképpen át lehet alakítani.

$$\int \frac{1}{\sqrt{\beta^2 x^2 - \alpha^2}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{\frac{\beta^2}{\alpha^2} x^2 - 1}} dx = \frac{1}{\alpha} \int \frac{1}{\sqrt{\left(\frac{\beta}{\alpha} x\right)^2 - 1}} dx.$$

Legyen

$$t = \frac{\beta}{\alpha}x = g^{-1}(x),$$

ekkor

$$x = g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$,

valamint

$$\begin{split} &=\frac{1}{\alpha}\int\frac{1}{\sqrt{\left(\frac{\beta}{\alpha}x\right)^2-1}}dx = \int f(x)dx = \int f(g(t))\cdot g'(t)dt\bigg|_{t=g^{-1}(x)} \\ &=\frac{1}{\alpha}\int\frac{1}{\sqrt{t^2-1}}\cdot\frac{\alpha}{\beta}dx\bigg|_{t=g^{-1}(x)} = \frac{1}{\beta}\int\frac{1}{\sqrt{t^2-1}}dx\bigg|_{t=g^{-1}(x)} = \frac{1}{\beta}\mathrm{arcosh}(t)\bigg|_{t=\frac{\beta}{\alpha}x} + C = \frac{1}{\beta}\mathrm{arcosh}\left(\frac{\beta}{\alpha}\right) + C. \end{split}$$

Ígу,

$$\int \frac{1}{\sqrt{\beta^2 x^2 - \alpha^2}} dx = \frac{1}{\beta} \operatorname{arcosh} \left(\frac{\beta}{\alpha} \right) + C.$$

(iv)

$$\int \frac{1}{\sqrt{9-16x^2}} dx,$$

Megoldás. Használjuk (i)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 3$$
 és $\beta = 4$

választással.

(v)

$$\int \frac{1}{\sqrt{4+25x^2}} dx,$$

Megoldás. Használjuk (ii)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 2$$
 és $\beta = 5$

választással.

(vi)

$$\int \frac{1}{\sqrt{114x^2 - 4}} dx$$

Megoldás. Használjuk (iii)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 2$$
 és $\beta = \sqrt{114}$

választással.

(vii)

$$\int \sqrt{1-x^2} dx,$$

Megoldás. Ebben a feladatban a

$$\sin^2(t) + \cos^2(t) = 1 \qquad (t \in \mathbb{R}),$$

pontosabban a vele ekvivalens

$$\cos(t) = \sqrt{1 - \sin^2(t)}$$

azonosságot fogjuk használni. Legyen

$$x = \sin(t) = g(t).$$

Ekkor

$$g'(t) = \cos(t)$$
 és $t = \arcsin(x) = g^{-1}(x)$.

Ha ezzel a helyettesítéssel élünk, akkor

$$\int \sqrt{1 - x^2} dx = \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t = g^{-1}(x)}$$

$$= \int \sqrt{1 - \sin^2(t)} \cdot \cos(t) dt \Big|_{t = g^{-1}(x)} = \int \cos^2(t) dt \Big|_{t = g^{-1}(x)} = \int \frac{1 + \cos(2t)}{2} dt \Big|_{t = g^{-1}(x)}$$

$$= \frac{t}{2} + \frac{\sin(2t)}{4} \Big|_{t = \arcsin(x)} + C = \frac{\arcsin(x)}{2} + \frac{\sin(2\arcsin(x))}{4} + C.$$

Bár ez csak "esztétikai kérdés", a $\frac{\sin(2\arcsin(x))}{4}$ kifejezés bántja a szemünket, ezért ezt még próbáljuk meg egyszerűbb alakra hozni.

$$\frac{\sin(2\arcsin(x))}{4} = \frac{\sin(2t)}{4} \Big|_{t=\arcsin(x)} = \frac{2\sin(t)\cos(t)}{4} \Big|_{t=\arcsin(x)}$$

$$= \frac{\sin(t)\cos(t)}{2} \Big|_{t=\arcsin(x)} = \frac{\sin(t)\sqrt{1-\sin^2(t)}}{2} \Big|_{t=\arcsin(x)} = \frac{x\sqrt{1-x^2}}{2}$$

Így,

$$\int \sqrt{1 - x^2} dx = \frac{\arcsin(x)}{2} + \frac{x\sqrt{1 - x^2}}{2} + C.$$

(viii)

$$\int \sqrt{1+x^2} dx$$

Megoldás. Ebben a feladatban az alábbi trigonometrikus azonosságot fogjuk használni.

$$\frac{1}{\cos(t)} = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{\cos^2(t)}} = \sqrt{1 + tg^2(t)}.$$

Ehhez legyen $x = \operatorname{tg}(t) = g(t)$, ekkor $g'(t) = \frac{1}{\cos^2(t)}$ és $t = \operatorname{arctg}(x) = g^{-1}(x)$. Ezzel a helyettesítéssel

$$\int \sqrt{1+x^2} dx = \int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)}$$

$$= \int \sqrt{1+tg^2(t)} \cdot \frac{1}{\cos^2(t)} dt \Big|_{t=g^{-1}(x)} = \int \frac{1}{\cos^3(t)} dt \Big|_{t=g^{-1}(x)}.$$

A folytatáshoz írjuk át más formába az integrandust

$$\int \frac{1}{\cos^3(t)} dt = \int \frac{1}{\cos(t)} \cdot \frac{1}{\cos^2(t)} dt.$$

Ez utóbbi alak esetében próbálkozzunk meg a parciális integrálás tételével, hiszen az első tényezőt könnyen tudjuk deriválni, a másodikat pedig integrálni. Válasszuk meg tehát így a tényezőket a parciális integráláshoz

$$\int \underbrace{\frac{1}{\cos(t)} \cdot \underbrace{\frac{1}{\cos^2(t)}}_{g'} dt} = \underbrace{\frac{1}{\cos(t)} \cdot \underbrace{\operatorname{tg}(t)}_{g} - \int \underbrace{-\frac{1}{\cos^2(t)} \cdot (-\sin(t))}_{f'} \cdot \underbrace{\operatorname{tg}(t)}_{g} dt$$

ami már biztató, de sajnos még mindig nem vagyunk készen. Az utolsó tagban szereplő integrálhoz vegyük észre, hogy

$$tg^{2}(t) = \frac{\sin^{2}(t)}{\cos^{2}(t)} = \frac{1}{\cos^{2}(t)} \cdot (1 - \cos^{2}(t)) = \frac{1}{\cos^{2}(t)} - 1,$$

amit felhasználva

$$\frac{\operatorname{tg}(t)}{\cos(t)} - \int \frac{\operatorname{tg}^2(t)}{\cos(t)} dt = \frac{\operatorname{tg}(t)}{\cos(t)} - \int \left(\frac{1}{\cos^3(t)} - \frac{1}{\cos(t)}\right) dt = \frac{\operatorname{tg}(t)}{\cos(t)} - \int \frac{1}{\cos^3(t)} dt + \int \frac{1}{\cos(t)} dt.$$

Tartsuk észben az eredeti feladatot:

$$\int \frac{1}{\cos^3(t)} dt = \frac{\operatorname{tg}(t)}{\cos(t)} - \int \frac{1}{\cos^3(t)} dt + \int \frac{1}{\cos(t)} dt,$$

amire egyenletként tekintve és átrendezve kapjuk, hogy

$$2\int \frac{1}{\cos^3(t)}dt = \frac{\operatorname{tg}(t)}{\cos(t)} + \int \frac{1}{\cos(t)}dt.$$

Tehát már csak az utolsó tagot kellene meghatároznunk. Ehhez egy kis trükköt alkalmazunk

$$\int \frac{1}{\cos(t)} dt = \int \frac{\frac{1}{\cos(t)} \left(\frac{1}{\cos(t)} + \operatorname{tg}(t)\right)}{\frac{1}{\cos(t)} + \operatorname{tg}(t)} dt,$$

 $valamint\ legyen\ s = g(t) = \frac{1}{\cos(t)} + \operatorname{tg}(t),\ amib \'ol\ g'(t) = \frac{\operatorname{tg}(t)}{\cos(t)} + \frac{1}{\cos^2(t)}\ \'es\ \'igy$

$$\int \frac{\frac{1}{\cos(t)} \left(\frac{1}{\cos(t)} + \operatorname{tg}(t)\right)}{\frac{1}{\cos(t)} + \operatorname{tg}(t)} dt = \int \frac{1}{s} ds = \ln|s| + C = \ln\left|\frac{1}{\cos(t)} + \operatorname{tg}(t)\right| + C.$$

Most már visszatérhetünk az előző feladatrészhez

$$2\int \frac{1}{\cos^3(t)} dt = \frac{\operatorname{tg}(t)}{\cos(t)} + \int \frac{1}{\cos(t)} dt = \frac{\operatorname{tg}(t)}{\cos(t)} + \ln\left|\frac{1}{\cos(t)} + \operatorname{tg}(t)\right|,$$
$$\int \frac{1}{\cos^3(t)} dt = \frac{\operatorname{tg}(t)}{2\cos(t)} + \frac{1}{2}\ln\left|\frac{1}{\cos(t)} + \operatorname{tg}(t)\right|.$$

Legvégül visszahelyettesítve a legelső $x = \operatorname{tg}(t)$ helyettesítésünkből, valamint figyelembe véve, hogy $\sqrt{1+x^2} = 1/\cos(t)$, kapjuk a végső megoldást

$$\frac{\lg(t)}{2\cos(t)} + \frac{1}{2}\ln\left|\frac{1}{\cos(t)} + \lg(t)\right| = \frac{1}{2}x\sqrt{1+x^2} + \frac{1}{2}\ln\left|\sqrt{1+x^2} + x\right| + C.$$

 $\int \sqrt{x^2 - 1} dx$

Megoldás. Nagyon hasonló az előző feladathoz, de most az $x = g(t) = \frac{1}{\cos(t)}$ helyettesítést alkalmazzuk, amivel $g'(t) = \frac{\operatorname{tg}(t)}{\cos(t)}$. Így

$$\int \sqrt{x^2 - 1} dx = \int \sqrt{\frac{1}{\cos^2(t)} - 1} \cdot \frac{\operatorname{tg}(t)}{\cos(t)} dt = \int \frac{\operatorname{tg}^2(t)}{\cos(t)} dt,$$

ahol felhasználva az előző feladatban felidézett azonosságot tg²-re, kapjuk hogy

$$\int \frac{\mathrm{tg}^2(t)}{\cos(t)} dt = \int \left(\frac{1}{\cos^2(t)} - 1\right) \frac{1}{\cos(t)} dt = \int \frac{1}{\cos^3(t)} dt - \int \frac{1}{\cos(t)} dt.$$

Ezt a két integrált az előző feladatban már meghatároztuk, amelyekkel

$$\int \frac{1}{\cos^3(t)} dt - \int \frac{1}{\cos(t)} dt = \frac{\operatorname{tg}(t)}{2\cos(t)} - \frac{1}{2} \ln \left| \frac{1}{\cos(t)} + \operatorname{tg}(t) \right| + C.$$

Már csak a visszahelyettesítés van hátra

$$\frac{\mathsf{tg}(t)}{2\cos(t)} - \frac{1}{2}\ln\left|\frac{1}{\cos(t)} + \mathsf{tg}(t)\right| + C = \frac{x\sqrt{x^2 - 1}}{2} - \frac{1}{2}\ln\left|x + \sqrt{x^2 - 1}\right| + C,$$

ahol felhasználtuk, hogy $tg(t) = \sqrt{x^2 - 1}$.

 $\int \sqrt{\alpha^2 - \beta^2 x^2} dx$

Megoldás. Ebben a példában a (vii) feladat eredményei fogjuk felhasználni. Ahhoz, hogy ezt könnyen meg tudjuk tenni, alakítsuk át az integrandust.

$$\int \sqrt{\alpha^2 - \beta^2 x^2} dx = \int \alpha \sqrt{1 - \frac{\beta^2}{\alpha^2} x^2} dx = \int \alpha \sqrt{1 - \left(\frac{\beta x}{\alpha}\right)^2} dx = \alpha \int \sqrt{1 - \left(\frac{\beta x}{\alpha}\right)^2} dx.$$

Használjuk most a

$$t = \frac{\beta}{\alpha}x = g^{-1}(x)$$

helyettesítést. Ekkor

$$g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$

valamint

$$\alpha \int \sqrt{1 - \left(\frac{\beta x}{\alpha}\right)^2} dx = \int f(x) dx = \int f(g(t)) \cdot g'(t) dt \Big|_{t=g^{-1}(x)}$$

$$= \alpha \int \sqrt{1 - t^2} \cdot \frac{\alpha}{\beta} dt \Big|_{t=g^{-1}(x)} = \alpha \int \sqrt{1 - t^2} \cdot \frac{\alpha}{\beta} dt \Big|_{t=g^{-1}(x)} = \frac{\alpha^2}{\beta} \int \sqrt{1 - t^2} dt \Big|_{t=g^{-1}(x)} =$$

$$\frac{\alpha^2}{\beta} \left\{ \frac{\arcsin(t)}{2} + \frac{x\sqrt{1 - t^2}}{2} \right\} \Big|_{t=\frac{\beta}{\alpha}} + C = \frac{\alpha^2}{\beta} \left\{ \frac{\arcsin\left(\frac{\beta}{\alpha}\right)}{2} + \frac{\frac{\beta}{\alpha}x\sqrt{1 - \left(\frac{\beta}{\alpha}x\right)^2}}{2} \right\} + C$$

$$\int \sqrt{\alpha^2 + \beta^2 x^2} dx$$

Megoldás. Ebben a példában a (viii) feladat eredményei fogjuk felhasználni. Ahhoz, hogy ezt könnyen meg tudjuk tenni, alakítsuk át az integrandust.

$$\int \sqrt{\alpha^2 + \beta^2 x^2} dx = \int \alpha \sqrt{1 + \frac{\beta^2}{\alpha^2} x^2} dx = \int \alpha \sqrt{1 + \left(\frac{\beta x}{\alpha}\right)^2} dx = \alpha \int \sqrt{1 + \left(\frac{\beta x}{\alpha}\right)^2} dx.$$

Használjuk most a

$$t = \frac{\beta}{\alpha}x = g^{-1}(x)$$

helyettesítést. Ekkor

$$g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$,

valamint

$$\alpha \int \sqrt{1 + \left(\frac{\beta x}{\alpha}\right)^2} dx = \int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)}$$

$$= \alpha \int \sqrt{1 + t^2} \cdot \frac{\alpha}{\beta} dt \Big|_{t=g^{-1}(x)} = \alpha \int \sqrt{1 + t^2} \cdot \frac{\alpha}{\beta} dt \Big|_{t=g^{-1}(x)} = \frac{\alpha^2}{\beta} \int \sqrt{1 + t^2} dt \Big|_{t=g^{-1}(x)}$$

$$= \frac{\alpha^2}{\beta} \left\{ \frac{1}{2} t \sqrt{1 + t^2} + \frac{1}{2} \ln \left| \sqrt{1 + t^2} + t \right| + \right\} \Big|_{t=\frac{\beta}{\alpha}x} + C$$

$$= \frac{\alpha^2}{\beta} \left\{ \frac{1}{2} \cdot \frac{\beta}{\alpha} x \sqrt{1 + \left(\frac{\beta}{\alpha}x\right)^2} + \frac{1}{2} \ln \left| \sqrt{1 + \left(\frac{\beta}{\alpha}x\right)^2} + \frac{\beta}{\alpha}x \right| + \right\} + C$$

(xii)
$$\int \sqrt{\beta^2 x^2 - \alpha^2} dx$$

Megoldás. Ebben a példában a (ix) feladat eredményei fogjuk felhasználni. Ahhoz, hogy ezt könnyen meg tudjuk tenni, alakítsuk át az integrandust.

$$\int \sqrt{\beta^2 x^2 - \alpha^2} dx = \int \alpha \sqrt{\frac{\beta^2}{\alpha^2} x^2 - 1} dx = \int \alpha \sqrt{\left(\frac{\beta x}{\alpha}\right)^2 - 1} dx = \alpha \int \sqrt{\left(\frac{\beta x}{\alpha}\right)^2 - 1} dx.$$

Használjuk most a

$$t = \frac{\beta}{\alpha} x = g^{-1}(x)$$

helyettesítést. Ekkor

$$g(t) = \frac{\alpha}{\beta}x$$
 és $g'(t) = \frac{\alpha}{\beta}$,

valamint

$$\alpha \int \sqrt{\left(\frac{\beta x}{\alpha}\right)^{2} - 1} dx = \int f(x)dx = \int f(g(t)) \cdot g'(t)dt \Big|_{t=g^{-1}(x)}$$

$$= \alpha \int \sqrt{t^{2} - 1} \cdot \frac{\alpha}{\beta} dt \Big|_{t=g^{-1}(x)} = \frac{\alpha^{2}}{\beta} \int \sqrt{t^{2} - 1} dt \Big|_{t=g^{-1}(x)}$$

$$= \frac{\alpha^{2}}{\beta} \left\{ \frac{t\sqrt{t^{2} - 1}}{2} - \frac{1}{2} \ln\left|t + \sqrt{t^{2} - 1}\right| \right\} \Big|_{t=\frac{\beta}{\alpha}x} + C$$

$$= \frac{\alpha^{2}}{\beta} \left\{ \frac{\frac{\beta}{\alpha}x\sqrt{\left(\frac{\beta}{\alpha}x\right)^{2} - 1}}{2} - \frac{1}{2} \ln\left|\frac{\beta}{\alpha}x + \sqrt{\left(\frac{\beta}{\alpha}x\right)^{2} - 1}\right| + \right\} + C$$

(xiii)

$$\int \sqrt{36-49x^2} dx,$$

Megoldás. Használjuk (x)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 6$$
 és $\beta = 7$

választással.

(xiv)

$$\int \sqrt{1+9x^2} dx,$$

Megoldás. Használjuk (xi)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 1$$
 és $\beta = 3$

választással.

(xv)

$$\int \sqrt{169x^2 - 114} dx$$

Megoldás. Használjuk (xii)-t, vagy (gyakorlásképpen) alkalmazzuk az ottani helyettesítést az

$$\alpha = 13$$
 és $\beta = \sqrt{114}$

választással.