

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/53, 9/02, 1/15, A61K 7/13, 7/06,
D21C 5/00, C12N 15/80 // (C12N 1/15,
C12R 1:66)

(11) International Publication Number:

WO 96/00290

(43) International Publication Date:

4 January 1996 (04.01.96)

(21) International Application Number:

PCT/US95/07536

A1

(22) International Filing Date:

15 June 1995 (15.06.95)

(30) Priority Data:

08/265,534 24 June 1994 (24.06.94) US 08/441,147 15 May 1995 (15.05.95) US (81) Designated States: AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MN, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

(71) Applicants: NOVO NORDISK BIOTECH, INC. [US/US]; 1445 Drew Avenue, Davis, CA 95616-4880 (US). NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd

(DK).

(72) Inventors: YAVER, Debbie, Sue; 2809 Albany Avenue, Davis, CA 95616 (US). XU, Feng; 1534 Carmel Valley Drive, Woodland, CA 95776 (US). DALBØGE, Henrik; Parkvej 28, DK-2830 Virum (DK). SCHNEIDER, Palle; Rydtoften 43, DK-2750 Ballerup (DK). AASLYNG, Dorrit, Anita; Gartnerkrogen 69, DK-3500 Værløse (DK).

(74) Agents: ZELSON, Steve, T. et al.; Novo Nordisk of North America, Inc., Suite 6400, 405 Lexington Avenue, New York, NY 10174 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PURIFIED POLYPORUS LACCASES AND NUCLEIC ACIDS ENCODING SAME

(57) Abstract

The present invention relates to isolated nucleic acid constructs containing a sequence encoding a *Polyporus* laccase, and the laccase proteins encoded thereby.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

PURIFIED POLYPORUS LACCASES AND NUCLEIC ACIDS ENCODING SAME

5

10

Field of the Invention

The present invention relates to isolated nucleic acid fragments encoding a fungal oxidoreductase enzyme and the purified enzymes produced thereby. More particularly, the invention relates to nucleic acid fragments encoding a phenol oxidase, specifically a laccase, of a basidiomycete, *Polyporus*.

15 Background of the Invention

Laccases (benzenediol:oxygen oxidoreductases) are multi-copper-containing enzymes that catalyze the oxidation of phenolics. Laccase-mediated oxidations result in the production of aryloxy-radical intermediates from suitable 20 phenolic substrate; the ultimate coupling of the intermediates so produced provides a combination of dimeric, oligomeric, and polymeric reaction products. Such reactions are important in nature in biosynthetic pathways which lead to the formation of melanin, alkaloids, toxins, lignins, and 25 humic acids. Laccases are produced by a wide variety of fungi, including ascomycetes such as Aspergillus, Neurospora, and Podospora, the deuteromycete Botrytis, and basidiomycetes such as Collybia, Fomes, Lentinus, Pleurotus, Trametes, Polyporus and perfect forms of Rhizoctonia. 30 Laccases exhibit a wide range of substrate specificity, and each different fungal laccase usually differs only quantitatively from others in its ability to oxidize phenolic substrates. Because of the substrate diversity, laccases generally have found many potential industrial

applications. Among these are lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, juice manufacture, phenol resin production, and waste water treatment.

5 Although the catalytic capabilities are similar, laccases made by different fungal species do have different temperature and pH optima, and these may also differ depending on the specific substrate. A number of these fungal laccases have been isolated, and the genes for 10 several of these have been cloned. For example, Choi et al. (Mol. Plant-Microbe Interactions 5: 119-128, 1992) describe the molecular characterization and cloning of the gene encoding the laccase of the chestnut blight fungus, Cryphonectria parasitica. Kojima et al. (J. Biol. Chem. 15 <u>265</u>: 15224-15230, 1990; JP 2-238885) provide a description of two allelic forms of the laccase of the white-rot basidiomycete Coriolus hirsutus. Germann and Lerch (Experientia 41: 801,1985; PNAS USA 83: 8854-8858, 1986) have reported the cloning and partial sequencing of the 20 Neurospora crassa laccase gene. Saloheimo et al. (J. Gen.

Microbiol. 137: 1537-1544, 1985; WO 92/01046) have disclosed a structural analysis of the laccase gene from the fungus *Phlebia radiata*.

Attempts to express laccase genes in heterologous

fungal systems frequently give very low yields (Kojima et al., supra; Saloheimo et al., Bio/Technol. 9: 987-990, 1991). For example, heterologous expression of Phlebia radiata laccase in Trichoderma reesei gave only 20 mg per liter of active enzyme in lab-scale fermentation (Saloheimo, 1991, supra). Although laccases have great commercial potential, the ability to express the enzyme in significant quantities is critical to their commercial utility. Previous attempts to express basidiomycete laccases in recombinant hosts have resulted in very low yields. The

present invention now provides novel basidiomycete laccases which are well expressed in Aspergillus.

Summary of the Invention

5

The present invention relates to a DNA construct containing a nucleic acid sequence encoding a Polyporus The invention also relates to an isolated laccase encoded by the nucleic acid sequence. Preferably, the laccase is substantially pure. By "substantially pure" is 10 meant a laccase which is essentially (i.e.,≥90%) free of other non-laccase proteins.

In order to facilitate production of the novel laccase, the invention also provides vectors and host cells comprising the claimed nucleic acid sequence, which vectors 15 and host cells are useful in recombinant production of the laccase. The sequence is operably linked to transcription and translation signals capable of directing expression of the laccase protein in the host cell of choice. A preferred host cell is a fungal cell, most preferably of the genus 20 Aspergillus. Recombinant production of the laccase of the invention is achieved by culturing a host cell transformed or transfected with the construct of the invention, or progeny thereof, under conditions suitable for expression of the laccase protein, and recovering the laccase protein from 25 the culture.

The laccases of the present invention are useful in a number of industrial processes in which oxidation of phenolics is required. These processes include lignin manipulation, juice manufacture, phenol polymerization and 30 phenol resin production.

Brief Description of the Figures

Figure 1 shows the DNA sequence and translation of genomic clone 21GEN, containing LCC1 (SEQ ID NO. 1)

Figure 2 shows the DNA sequence and translation of genomic clone 23GEN, containing LCC2 (SEQ ID NO. 3)

Figure 3 shows the DNA sequence and translation of genomic clone 24GEN, containing LCC3 (SEQ ID NO. 5)

Figure 4 shows the DNA sequence and translation of genomic clone 31GEN, containing LCC4 (SEQ ID NO. 7)

Figure 5 shows the DNA sequence and translation of genomic clone 41GEN, containing LCC5 (SEQ ID NO. 9)

Figure 6 shows the structure of vector pMWR1

Figure 7 shows the structure of vector pDSY1

Figure 8 shows the structure of vector pDSY10

Figure 9 shows the pH profile of the laccase produced by pDSY2; (A) syringaldazine oxidation; (B) ABTS oxidation.

Figure 10 illustrates a comparison of the use of laccase vs. H_2O_2 , with various dye precursors, in hair dyeing, as a measurement of DL*.

Figure 11 illustrates a comparison of the use of laccase vs. H_2O_2 , with various dye precursors, in hair dyeing, as a measurement of Da*.

Figure 12 illustrates a comparison of the use of laccase vs. H_2O_2 , with various dye precursors and modifiers, in hair dyeing, as a measurement of DL*.

Figure 13 illustrates a comparison of the wash stability of hair dyed with laccase vs. H_2O_2 .

Figure 14 illustrates the light fastness of hair dyed with laccase vs. H_2O_2 .

Detailed Description of the Invention

Polyporus pinsitus is a basidiomycete, also referred to as Trametes villosa. Polyporus species have previously been identified as laccase producers (Fahraeus and Lindeberg, Physiol. Plant. 6: 150-158, 1953). However, there has been no previous description of a purified laccase from Polyporus pinsitus. It has now been determined that Polyporus

pinsitus produces at least two different laccases, and the genes encoding these laccases can be used to produce relatively large yields of the enzyme in convenient host systems such as Aspergillus. In addition, three other genes which appear to code for laccases have also been isolated.

Initial screenings of a variety of fungal strains indicate that Polyporus pinisitus is a laccase producer. The production of laccase by P. pinsitus is induced by 2,5xylidine. Attempts are first initiated to isolate the 10 laccase from the supernatant of the induced strains. exchange chromatography identifies an approximately 65 kD(on SDS-PAGE) protein which exhibits laccase activity. enzyme is purified sufficiently to provide several internal peptide sequences, as well as an N-terminal sequence. 15 initial sequence information indicates the laccase has significant homology to that of Coriolus hirsutus, as well as to an unidentified basidiomycete laccase (Coll et al., Appl. Environ. Microbiol. 59: 4129-4135, 1993. Based on the sequence information, PCR primers are designed and PCR 20 carried out on cDNA isolated from P. pinsitus. the expected size is obtained by PCR, and the isolated fragment linked to a cellulase signal sequence is shown to express an active laccase in A. oryzae, but at low levels. One of the PCR fragments is also used as a probe in 25 screening a P. pinsitus cDNA library. In this manner, more than 100 positive clones are identified. The positive clones are characterized and the ends of the longest clones sequenced; none of the clones are found to be full-length.

Further attempts to isolate a full length clone are made.

30 A 5-6 kb BamHI size-selected *P. pinsitus* genomic library is probed with the most complete cDNA fragment isolated as described above. Initial screening identifies one clone 24GEN(LCC3) having homology to the cDNA, but which is not the cDNA-encoded laccase and also not full length.

Subsequent screening of a 7-8kb BamHI/EcoRi size-selected library indicates the presence of at least two laccases; partial sequencing shows that one, called 21GEN(LCC1), is identical to the original partial cDNA clone isolated, and 5 the second, called 31GEN(LCC4) is a new, previously unidentified laccase. Secondary screenings of an EMBL4 genomic bank with LCC1 as probe identifies a class of clone containing the entire LCC1 insert as well as the 5' and 3' flanking regions. Screening of the EMBL bank with LCC3 10 identifies two additional clones encoding laccases which had not previously been identified, 41GEN(LCC5) and 23GEN(LCC2) and which differed structurally from the other three clones LCC1, LCC3, and LCC4. The nucleic acid and predicted amino acid sequences of each of the laccases is presented in 15 Figures 1-5, and in SEQ ID NOS. 1-10. A comparison of the structural organization of each of the laccases is presented in Table 2. The laccases are generally optimally active at acid pH, between about 4-5.5.

LCC1 is used to create expression vectors, which are in turn used to transform various species of Aspergillus.

Transformation is successful in all species tested, although expression levels are highest in Aspergillus niger. Shake flask cultures are capable of producing 15 or more mg/liter of laccase, and in lab-scale fermentors, yields of over 300mg/liter are observed. This is a significant improvement over laccase levels observed previously with other laccases and other fungal host cells.

According to the invention, a *Polyporus* gene encoding a laccase can be obtained by methods described above, or any alternative methods known in the art, using the information provided herein. The gene can be expressed, in active form, using an expression vector. A useful expression vector contains an element that permits stable integration of the vector into the host cell genome or autonomous replication

of the vector in a host cell independent of the genome of the host cell, and preferably one or more phenotypic markers which permit easy selection of transformed host cells. expression vector may also include control sequences 5 encoding a promoter, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes. To permit the secretion of the expressed protein, nucleotides encoding a signal sequence may be inserted prior to the coding sequence of the gene. For 10 expression under the direction of control sequences, a laccase gene to be used according to the invention is operably linked to the control sequences in the proper reading frame. Promoter sequences that can be incorporated into plasmid vectors, and which can direct the transcription 15 of the laccase gene, include but are not limited to the prokaryotic &-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A. <u>75</u>:3727-3731) and the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Further references can also be found in 20 "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; and in Sambrook et al., Molecular Cloning, 1989.

The expression vector carrying the DNA construct of the invention may be any vector which may conveniently be

25 subjected to recombinant DNA procedures, and the choice of vector will typically depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is

30 independent of chromosomal replication, e.g. a plasmid, or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host

cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the laccase DNA sequence should be operably connected to a suitable promoter sequence. The promoter 5 may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA construct of the invention. 10 especially in a bacterial host, are the promoter of the lac operon of E.coli, the Streptomyces coelicolor agarase gene dagA promoters, the promoters of the Bacillus licheniformis α -amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the 15 promoters of the Bacillus amyloliquefaciens α -amylase (amyQ), or the promoters of the Bacillus subtilis xylA and In a yeast host, a useful promoter is the eno-1 xylB genes. promoter. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding A. 20 oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α -amylase, A. niger acid stable α -amylase, A. niger or A. awamori glucoamylase (glaA), Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase. Preferred 25 are the TAKA-amylase and glaA promoters.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the laccase of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter. The vector may further comprise a DNA sequence enabling the vector to

replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

a gene the product of which complements a defect in the host cell, such as the dal genes from B. subtilis or B. licheniformis, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracycline
resistance. Examples of Aspergillus selection markers include amds, pyrG, argB, niaD, sC, trpC and hygB, a marker giving rise to hygromycin resistance. Preferred for use in an Aspergillus host cell are the amds and pyrG markers of A. nidulans or A. oryzae. A frequently used mammalian marker is the dihydrofolate reductase (DHFR) gene. Furthermore, selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

It is generally preferred that the expression gives 20 rise to a product which is extracellular. The laccases of the present invention may thus comprise a preregion permitting secretion of the expressed protein into the culture medium. If desirable, this preregion may be native to the laccase of the invention or substituted with a differ-25 ent preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions. For example, the preregion may be derived from a glucoamylase or an amylase gene from an Aspergillus species, an amylase gene from a Bacillus species, a lipase 30 or proteinase gene from Rhizomucor miehei, the gene for the $\alpha\text{-factor from }\textit{Saccharomyces cerevisiae} \text{ or the calf}$ preprochymosin gene. Particularly preferred, when the host is a fungal cell, is the signal sequence for A. oryzae TAKA amylase, A. niger neutral amylase, the Rhizomucor miehei

aspartic proteinase signal, the Rhizomucor miehei lipase signal, the maltogenic amylase from Bacillus NCIB 11837, B. stearothermophilus α -amylase, or B. licheniformis subtilisin.

The procedures used to ligate the DNA construct of the invention, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, 10 Sambrook et al. Molecular Cloning, 1989).

5

The cell of the invention either comprising a DNA construct or an expression vector of the invention as defined above is advantageously used as a host cell in the 15 recombinant production of a enzyme of the invention. The cell may be transformed with the DNA construct of the invention, conveniently by integrating the DNA construct in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more 20 likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in 25 connection with the different types of host cells.

The host cell may be selected from prokaryotic cells, such as bacterial cells. Examples of suitable bacteria are gram positive bacteria such as Bacillus subtilis, Bacillus 30 licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, or Streptomyces lividans or Streptomyces

murinus, or gram negative bacteria such as *E.coli*. The transformation of the bacteria may for instance be effected by protoplast transformation or by using competent cells in a manner known per se.

The host cell may also be a eukaryote, such as mammalian cells, insect cells, plant cells or preferably fungal cells, including yeast and filamentous fungi. For example, useful mammalian cells include CHO or COS cells. A yeast host cell may be selected from a species of

10 Saccharomyces or Schizosaccharomyces, e.g. Saccharomyces cerevisiae. Useful filamentous fungi may be selected from a species of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger. Alternatively, a strain of a Fusarium species, e.g. F. oxysporum, can be used as a host cell.

15 Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus

host cells is described in EP 238 023. A suitable method of

20 transforming Fusarium species is described by Malardier et

al., 1989.

The present invention thus provides a method of producing a recombinant laccase of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the enzyme and recovering the enzyme from the cells and/or culture medium. The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the laccase of the invention. Suitable media are available from commercial suppliers or may be prepared according to published formulae (e.g. in catalogues of the American Type Culture Collection).

In a preferred embodiment, the recombinant production of laccase in culture is achieved in the presence of an excess amount of copper. Although trace metals added to the culture medium typically contain a small amount of copper, 5 experiments conducted in connection with the present invention show that addition of a copper supplement to the medium can increase the yield of active enzyme many-fold. Preferably, the copper is added to the medium in soluble form, preferably in the form of a soluble copper salt, such 10 as copper chloride, copper sulfate, or copper acetate. final concentration of copper in the medium should be in the range of from 0.2-2mM, and preferably in the range of from 0.05-0.5mM. This method can be used in enhancing the yield of any recombinantly produced fungal laccase, as well as 15 other copper-containing enzymes, in particular oxidoreductases.

The resulting enzyme may be recovered from the medium by conventional procedures including separating the cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, followed by purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gel filtration chromatography, affinity chromatography, or the like.

25 Preferably, the isolated protein is about 90% pure as determined by SDS-PAGE, purity being most important in food, juice or detergent applications.

In a particularly preferred embodiment, the expression of laccase is achieved in a fungal host cell, such as

30 Aspergillus. As described in detail in the following examples, the laccase gene is ligated into a plasmid containing the Aspergillus oryzae TAKA α -amylase promoter, and the Aspergillus nidulans amdS selectable marker.

Alternatively, the amdS may be on a separate plasmid and

used in co-transformation. The plasmid (or plasmids) is used to transform an Aspergillus species host cell, such as A. oryzae or A. niger in accordance with methods described in Yelton et al. (PNAS USA 81: 1470-1474,1984).

It is of particular note that the yields of *Polyporus* laccase in the present invention, using *Aspergillus* as host cell are unexpectedly and considerably higher than has previously been reported for expression of other laccases in other host cells. It is expected that the use of

10 Aspergillus as a host cell in production of laccases from other basidiomycetes, such as Coriolus or Trametes, will also produce larger quantities of the enzyme than have been previously obtainable. The present invention therefore also encompasses the production of such Polyporus-like laccases in Aspergillus recombinant host cells.

Those skilled in the art will recognize that the invention is not limited to use of the nucleic acid fragments specifically disclosed herein, for example, in Figures 1-5. It will also be apparent that the invention 20 encompasses those nucleotide sequences that encode the same amino acid sequences as depicted in Figure 1-5, but which differ from the specifically depicted nucleotide sequences by virtue of the degeneracy of the genetic code. reference to Figures 1-5 in the specification and the claims 25 will be understood to encompass both the genomic sequence depicted therein as well as the corresponding cDNA and RNA sequences, and the phrases "DNA construct" and "nucleic acid sequences" as used herein will be understood to encompass all such variations. "DNA construct" shall generally be 30 understood to mean a DNA molecule, either single- or doublestranded, which may be isolated in partial form from a naturally occurring gene or which has been modified to contain segments of DNA which are combined and juxtaposed in a manner which would not otherwise exist in nature.

In addition, the invention also encompasses other
Polyporus laccases, including alternate forms of laccase
which may be found in Polyporus pinsitus and as well as
laccases which may be found in other fungi falling within
the definition of Polyporus as defined by Fries, or synonyms
thereof as stated in Long et al., 1994, ATCC Names of
Industrial Fungi, ATCC, Rockville, Maryland. Identification
and isolation of laccase genes from sources other than those
specifically exemplified herein can be achieved by

- utilization of the methodology described in the present examples, with publicly available *Polyporus* strains.

 Alternately, the sequence disclosed herein can be used to design primers and/or probes useful in isolating laccase genes by standard PCR or southern hybridization techniques.
- Other named Polyporus species include, but are not limited to, P. zonatus, P. alveolaris, P. arcularius, P. australiensis, P. badius, P. biformis, P. brumalis, P. ciliatus, P. colensoi, P. eucalyptorum, P. meridionalis, P. varius, P. palustris, P. rhizophilus, P. rugulosus, P.
- 20 squamosus, P. tuberaster, and P. tumulosus . Also encompassed are laccases which are synonyms, e.g., anamorphs or perfect states of species or strains of the genus Polyporus. Strains of Polyporus are readily accessible to the public in a number of culture collections, such as the
- American Type Culture Collection (ATCC), e.g., ATCC 26721, 9385, 11088, 22084, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM),e.g., DSM 1021, 1023, and 1182; and Centraalbureau Voor Schimmelcultures (CBS), e.g., CBS 678.70, 166.29, 101.15, 276.31, 307.39, 334.49, and 332.49.
- 30 The invention also encompasses any variant nucleotide sequence, and the protein encoded thereby, which protein retains at least about an 80% homology, preferably at least about 85%, and most preferably at least about 90-95% homology with any one of the amino acid sequences depicted

in Figures 2-5, and which qualitatively retains the laccase activity of the sequence described herein. Useful variants within the categories defined above include, for example, ones in which conservative amino acid substitutions have 5 been made, which substitutions do not significantly affect the activity of the protein. By conservative substitution is meant that amino acids of the same class may be substituted by any other of that class. For example, the nonpolar aliphatic residues Ala, Val, Leu, and Ile may be 10 interchanged, as may be the basic residues Lys and Arg, or the acidic residues Asp and Glu. Similarly, Ser and Thr are conservative substitutions for each other, as are Asn and It will be apparent to the skilled artisan that such substitutions can be made outside the regions critical to 15 the function of the molecule and still result in an active enzyme. Retention of the desired activity can readily be determined by conducting a standard ABTS oxidation method, such as is described in the present examples.

The protein can be used in number of different
industrial processes. These processes include polymerization
of lignin, both Kraft and lignosulfates, in solution, in
order to produce a lignin with a higher molecular weight.
Such methods are described in, for example, Jin et al.,
Holzforschung 45(6): 467-468, 1991; US Patent No. 4,432,921;
EP 0 275 544; PCT/DK93/00217, 1992.

The laccase of the present invention can also be used for in-situ depolymerization of lignin in Kraft pulp, thereby producing a pulp with lower lignin content. This use of laccase is an improvement over the current use of chlorine for depolymerization of lignin, which leads to the production of chlorinated aromatic compounds, which are an environmentally undesirable by-product of paper mills. Such uses are described in, for example, Current opinion in

Biotechnology 3: 261-266, 1992; J. Biotechnol. 25: 333-339, 1992; Hiroi et al., Svensk papperstidning 5: 162-166, 1976.

Oxidation of dyes or dye precursors and other chromophoric compounds leads to decolorization of the compounds. Laccase can be used for this purpose, which can be particularly advantageous in a situation in which a dye transfer between fabrics is undesirable, e.g., in the textile industry and in the detergent industry. Methods for dye transfer inhibition and dye oxidation can be found in WO 92/01406, WO 92/18683, EP 0495836 and Calvo, Mededelingen van de Faculteit Landbouw-wetenschappen/Rijiksuniversitet Gent. 56: 1565-1567, 1991; Tsujino et al., J. Soc. Chem. 42: 273-282, 1991.

The laccase is particularly well-suited for use in hair 15 dyeing. In such an application, the laccase is contacted with a dye precursor, preferably on the hair, whereby a controlled oxidation of the dye precursor is achieved to convert the precursor to a dye, or pigment producing compound, such as a quinoid compound. The dye precursor is 20 preferably an aromatic compound belonging to one of three major chemical families: the diamines, aminophenols (or aminonaphthols) and the phenols. The dye precursors can be used alone or in combination. At least one of the intermediates in the copolymerization must be an ortho- or 25 para-diamine or aminophenol(primary intermediate). Examples of such are found in Section V, below, and are also described in US Patent No. 3,251,742, the contents of which are incorporated herein by reference. In one embodiment, the starting materials include not only the enzyme and a 30 primary intermediate, but also a modifier(coupler) (or combination of modifiers), which modifier is typically a meta-diamine, meta-aminophenol, or a polyphenol. The modifier then reacts with the primary intermediate in the presence of the laccase, converting it to a colored

compound. In another embodiment, the laccase can be used with the primary intermediate directly, to oxidize it into a colored compound. In all cases, the dyeing process can be conducted with one or more primary intermediates, either alone or in combination with one or more modifiers. Amounts of components are in accordance with usual commercial amounts for similar components, and proportions of components may be varied accordingly.

The use of this laccase is an improvement over the more traditional use of H₂O₂, in that the latter can damage the hair, and its use usually requires a high pH, which is also damaging to the hair. In contrast, the reaction with laccase can be conducted at alkaline, neutral or even acidic pH, and the oxygen needed for oxidation comes from the air, rather than via harsh chemical oxidation. The result provided by the use of the *Polyporus* laccase is comparable to that achieved with use of H₂O₂, not only in color development, but also in wash stability and light fastness. An additional commercial advantage is that a single container package can be made containing both the laccase and the precursor, in an oxygen free atmosphere, which arrangement is not possible with the use of H₂O₂.

The present laccase can also be used for the polymerization of phenolic or aniline compounds present in liquids. An example of such utility is the treatment of juices, such as apple juice, so that the laccase will accelerate a precipitation of the phenolic compounds present in the juice, thereby producing a more stable juice. Such applications have been described in Stutz, Fruit processing 7/93, 248-252, 1993; Maier et al., Dt. Lebensmittel-rindschau 86(5): 137-142, 1990; Dietrich et al., Fluss. Obst 57(2): 67-73, 1990.

Laccases such as the *Polyporus* laccase are also useful in soil detoxification (Nannipieri et al., J. Environ. Qual.

<u>20</u>: 510-517,1991; Dec and Bollag, Arch. Environ. Contam. Toxicol. <u>19</u>: 543-550, 1990).

The invention is further illustrated by the following non-limiting examples.

5

EXAMPLES

I. ISOLATION OF A POLYPORUS PINISITUS LACCASE ENZYME MATERIALS AND METHODS

1. Enzymatic assays

Unless otherwise stated, throughout the examples, 10 laccase activity is determined by syringaldazine and 2,2'bisazino(3-ethylbenzthiazoline-6-sulfonic acid)(ABTS), as The oxidation of syringaldazine is monitored at 530 nm with 19 μM substrate. In 25 mM sodium acetate, 40 μM cupric sulfate, pH 5.5, at 30°C, the activity is expressed 15 as LACU(μmole/min). For pH profile studies, Britton & Robinson(B&R) buffers are used, and are prepared according to the protocol described in Quelle, Biochemisches Taschenbuch, H.M. Raven, II. Teil, S.93 u. 102, 1964. ABTS oxidation is carried out with 1mM ABTS in 0.1 M NaAc, pH 5.0 20 at room temperature by monitoring either ΔAbs_{405} in a 96-well plate (Costar) or ΔAbs_{418} in a quartz cuvette. ABTS oxidase activity assay is carried out by pouring cooled ABTS-agarose(0.03-0.1 g ABTS, 1 g agarose, 50 ml H_2O , heated to dissolve agarose) over a native IEF gel or PAGE and 25 incubating at room temperature.

2. Initial isolation of laccase

In order to isolate the laccase, 800 ml of culture fluid is filtered by HFSC on a Supra filter(slow filtering). The clear filtrate is then concentrated and washed on an Amicon cell with a GR81 PP membrane to a volume of 72 ml.

One ml aliquots of laccase are bound to a Q-sepharose HP(Pharmacia, Sweden) column, equilibrated with 0.1 M phosphate, pH7 and the laccase is eluted with a NaCl gradient. In all, $10 \times 1 \text{ ml}$ samples are purified, pooled,

concentrated and washed by ultrafiltration using a membrane with a molecular weight cut-off of 6kD.

3. Secondary purification

In a second purification, a fermentation broth is 5 filtered and concentrated by ultrafiltration. The starting material contains 187 LACU/ml. The concentrate is quickfiltered on a Propex 23 filter(P & S Filtration), with 3% Hyflo Cuper-Cel(HSC; Celite Corporation), followed by two ultrafiltration on a Filtron filter with two membranes, each 10 with a molecular weight cutof of 3 kD. The resulting sample (2.5 mS/cm, pH 7.0, at 4°C) is applied to a 130 ml Q-Sepharose column, equilibrated with sodium phosphate 1.1 mS/cm, pH 7.0. Under these conditions the laccase does not bind to the column, but elutes slowly from the column during 15 the application and wash with the equilibration buffer, resulting in a partial separation from other brownish material.

This partially purified preparation of 1.0mS, pH 7.0 at 20°C is applied to a Q-sepharose column. The column is equilibrated with 20mM sodium phosphate, 2.2 mS, pH 7.0. Under these conditions, the laccase binds to the column and is eluted by a gradient of 0-1 M NaCl over 20 column volumes.

3. Sequencing

30

25 For internal peptide sequencing, the purified protein is digested with trypsin, followed by peptide purification with HPLC. Purified peptides are sequenced in an Applied Biosystems 473A sequencer.

B. RESULTS AND DISCUSSION

1. Initial characterization

Total yield of the initial purification is about 50 mg(estimated at A280nm). The purified enzyme has a rich blue color, and appears as only two very close bands on SDS-PAGE at about 65 kd. A native PAGE overlaid with substrate

shows that both bands have laccase activity with ABTS. The absorption spectrum shows that besides an absorption at A280nm, the purified laccase also shows absorption at about 600nm.

5 <u>2. Sequencing</u>

10

A N-terminal determination of the protein initially purified shows a single sequence:

Gly-Ile-Gly-Pro-Val-Ala-Asp-Leu-Thr-Ile-Thr-Asn-Ala-Ala-Val-Ser-Pro-Asp-Gly-Phe-Pro...

Since the N-terminal sequence is not the ideal sequence for constructing a probe, additional experiments with a trypsin digest are conducted, followed by further purification(described above) and sequencing of fragments

2. Secondary purification and characterization

In the second purification, the second Q-Sepharose chromatographic step yields the following pools:

Q-Sepharose-2-pool-1 40 ml 112 LACU 47 LACU/ A_{280} Q-Sepharose-2-pool-3 80 ml 385 LACU 65 LACU/ A_{280} The elution yields >80% of the applied amount. The highly

purified preparation Q-Sepharose-2-pool-3 has an $A_{280} = 5.9$, and $A_{280}/A_{260} = 1.4$. The purity of the laccase in the starting material is extremely high on a protein basis but the starting material is a very dark brown color. In SDS-PAGE, a double band is seen, with a dominating 65 kD band and a smaller 62 kD band. By anionic chromatography, only the dominating band is seen in the first peak(Q-Sepharose-2-pool-1), whereas both bands are seen in the second peak(Q-Sepharose-2-pool-3).

3. Sequence

A number of internal peptide sequences are determined, and compared with the *Coriolus hirsutus(Ch)* laccase sequence. The identified fragments are as follows:

Tryp 13:

Ser-Pro-Ser-Thr-Thr-Ala-Ala-Asp-Leu

Tryp 14:

Ser-Ala-Gly-Ser-Thr-Val-Tyr-Asn-Tyr-Asn-Pro-Ile-Phe Arg Tryp 16:

Sequence 1:

5 Ser-Thr-Ser-Ile-His-Trp-His-Gly-Phe-Phe-Gln-Lys

Sequence 2:

Gly-Ile-Gly-Pro-Val-Ala-Asp-Leu-Thr-Ile-Thr-Asn-Ala-Ala-Val Tryp 18:

Gly-Ile-Gly-Pro-Val-Ala-Asp-Leu-Thr-Ile-Thr-Asn

10 Tryp 19:

Sequence 1:

Leu-Gly-Pro-Ala-Phe-Pro-Leu-Gly-Ala-Asp-Ala-Thr-Leu-Ile-Sequence 2:

Phe-Gln-Leu-Asn-Val-Ile-Asp-Asn-Asn-Thr-His-Thr-Met

15 Tryp 25:

Tyr-Ser-Phe-Val-Leu-Glu-Ala-Asn-Gln-Ala-Val-Asp-Asn-Tyr-Trp-Ile-Arg

Tryp 27

Gly-Thr-Asn-Trp-Ala-Asp-Gly-Pro-Ala-Phe

20 II. ISOLATION OF A POLYPORUS PINISITUS LACCASE CDNA CLONE

A. MATERIALS AND METHODS

1. RNA preparation

RNA is isolated from 10 grams of *P. pinsitus* mycelium grown under xylidine induction for 6.5 hours, using the guanidium/CsCl cushion method. The RNA is poly-A selected on an oligo-dT column, using standard conditions. 120µg mRNA is obtained and stored as lyophilized pellet in 5µg aliquots at -80°C.

2. Single stranded cDNA

Single stranded cDNA is synthesized using the reverse transcriptase "Super Script" (BRL) according to manufacturer's directions.

3. Construction of cDNA library

A cDNA library is constructed using the librarian IV cDNA kit (Invitrogen). Fifty cDNA pools, each containing approximately 5000 individual transformants, are obtained.

4. PCR

PCR is conducted under the following standard conditions: 100pmol of each primer, 10μl 10x PCR buffer(Perkin-Elmer), 40μl dNTP 0.5 mM, 2μl single stranded cDNA(or approximately 100 ng chromosomal DNA or 100 ng PCR fragment), H₂O to 100 μl, 2.5U Taq polymerase. The cycles are 3x(40°C/two minutes, 72°C/two minutes, 94°C/one minute) followed by 30x(60°C/two minutes, 72°C/two minutes, 94°C/1 minute).

B. RESULTS AND DISCUSSION

1. Cloning of Polyporus pinsitus laccase

PCR is carried out with the primer #3331:

ACCAGNCTAGACACGGGNTC/AGATACTG/ACGNGAGAGCGGAC/TTGCTGGTC

ACTATCTTCGAAGATCTCG

and primer #33332:

CGCGGCCGCTAGGATCCTCACAATGGCCAA/CTCTCTG/CCTCG/ACCTTC.

- 20 A clear band of about 1500bp is obtained. The DNA is digested with NotI/HindIII, and fractionated on an agarose gel. The upper band(fragment #42) is purified and cloned into the Aspergillus vector pHD423. No transformants are obtained. Several attempts are carried out in order to
- clone the fragment, including redigestion with the restriction enzymes, phosphorylation of the ends, filling in with klenow and blunt-end cloning in SmaI cut puC18, without success. Hybridization with a laccase probe based on the laccase described in Coll et al., supra, indicates that the
- PCR product could be the *P. pinsitus* laccase. In a new attempt to clone the PCR fragment, a new PCR reaction is carried out, using the same conditions as for fragment #42. Again the result is a fragment of about 1500 bp(fragment #43). This time the fragment is cut with HindIII/BamHI, and

ligated to HindIII/BamHI-cut pUC18. Three clones, #43-/A,-B,-G are found to contain a fragment of 1500 bp. Partial sequencing reveals that these fragments are laccase related.

2.Expression of Polyporus pinsitus laccase

The PCR generated DNA from the reaction with a primer pHD433 and template 43-A and 43-G is cut with HindIII/BamHI and cloned into the *Aspergillus* expression vector pHD414(described in detail below). Several transformants

15 pHD414 (described in detail below). Several transformants are obtained.

Clones pHD433/43A-1,2, pHD433/43G-2,-3 are transformed into A. oryzae. The transformants from each transformation (between 3-10) are analyzed for laccase production.

Activity is only obtained with pHD433/43G-3. The positive transformants (numbers 1, 4, 6) are reisolated on amdS plates, and retested. In an additional transformation round a further ten transformants are obtained with pHD433/43G-3. The clones #20, 23, 26, 28, and 29 are positive. The clones are reisolated and two single isolates are analyzed for laccase expression semiquantitatively by color development in an ABTS assay at pH 4.5. On a scale of +-+++, several

clones show moderate to strong expression of laccase.

Further cloning is conducted to identify a full length clone. A xylidine-induced cDNA library consisting of approximately 350,000 transformants is screened using fragment #42-4 as a probe. More than 100 positive clones are detected. The clones are purified, rescreened, and analyzed on Southern blots. Two of the longest clones are

further characterized by DNA sequence determination. The longest clones are found to be identical and found to contain a poly-A stretch in the 3'end and to start at the amino acid number 4 in the amino terminus. A partial DNA sequence is determined from different clones.

pHD433/43G-3 is then used in further cloning studies as described in the following Section IV.

III. PURIFICATION AND CHARACTERIZATION OF ADDITIONAL POLYPORUS PINSITUS LACCASE WILD-TYPE ENZYMES

A. MATERIALS AND METHODS

1.Culture conditions

10

Shake flasks(250 ml medium/2.8 l baffled flask)are inoculated with several agar plugs taken from a week-old PDA plate of P. pinsitus. The medium contains, per liter, 10 g glucose, 2.5 g L-asparagine, 0.2 g L-phenylalanine, 2.0 g yeast extract, 2.0 g KH₂PO₄, 0.5 g MgSO₄·7H₂O, 2.0 mlAMG trace metals, 0.002 g CuSO₄·7H₂O, 1.0 g citric acid, made with tape water, pH 5.0 before autoclaving. The cultures are grown at 18-22°C on a rotary shaker with low agitiation (~100 rpm).

20 After 7 days, the pH of each shake flask is adjusted to ~6.0 by the addition of 0.25 ml 5 N NaOH and the cultures are induced by adding 0.5 ml of a 2,5-xylidine stock solution(xylidine diluted 1:10 into ethanol) to each flask. Flasks are incubated for an additional 24 hours, at which time the culture supernatant from each flask is recovered.

2. Materials.

Chemicals used as buffers are commercial products of at least reagent grade. Endo/N-glucosidase F is from Boehringer-Mannheim. Chromatography is performed on Pharmacia FPLC. Spectroscopic assays are conducted on either a spectrophotometer(Shimadzu PC160) or a microplate reader(Molecular Devices).

3. Purification

Culture broth is filtered first on cheesecloth and centrifuged at 1000 x g to remove gelatinous pinkish xylidine polymer. The supernatant is then filtered on Whatman #2 paper and concentrated from 1500 to 250 ml on 5 S1Y100 (Amicon, Spiral concentrator) at 4°C. concentrated broth is diluted with water until it reaches 0.8 mS(from 2.5 mS) and then concentrated on S1Y100 to 250 The washed broth, thawed from -20°C freezing overnight, is subjected to Whatman #2 paper filtration to remove 10 residual pinkish material, and then pH adjusted by NaOH from pH 6.1 to pH 7.7. This yellowish broth, 275 ml with 0.8 mS, is applied on a Q-Sepharose XK-26 column(~64 ml gel) equilibrated with 10 mM Tris-HCl, pH 7,7, 0.7 mS. The first active laccase fraction runs through during loading and 15 washing by the equilibrating buffer. The elution is carried out by a linear gradient of 0-0.5 M NaCl in the equilibrating buffer over 8.8 bed-volume. The second and third active fractions are eluted around 0.15 and 0.35M NaCl, respectively. No more active fractions are detected 20 when the column is washed sequentially with 2 M NaCl and with 1 mM NaOH. The active fractions are pooled, adjusted to ~10mS, concentrated on Centricon-10(Amicon), and then applied onto Superdex 75 (HR10/30, 24 ml, Pharmacia) equilibrated with 10mM Tris-HCl, 0.15 M NaCl, pH 8, 14 mS. 25 During elution with the application buffer, laccase fractions are eluted off using the same elution volume for all three Q-Sepharose fractions, indicating very similar native molecular weight. The purity of the laccase is tested on SDS-PAGE.

4. Protein analysis

30

PAGE and native IEF are carried out on a Mini Protean II and a Model 111 Mini IEF cells(Bio-Rad). Western blots are carried out on a Mini trans-blot cell(Bio-Rad) with an alkaline phosphatase assay kit(Bio-Rad). The primary

antibodies are diluted 1000-fold during blotting. Nterminus sequencing is performed on an Applied Biosystems
(ABI) 476A protein sequencer using liquid phase TFA delivery
for cleavage and on-line HPLC for identification of PTH
5 amino acids. Standard Fast Cycles and Pre-Mix Buffer System
is used according to manufacturer's instructions.

Deglycosylation with glycosidase is done as follows: 3µg of
protein and 3.6 units of glycosidase in 0.25M NaAc, pH 5, 20

mM EDTA, 0.05% 2-mercaptoethanol is incubated at 37°C for 18

10 hours with ovalbumin and bovine serum albumin serving as
positive and negative control, respectively, and the
mobility is detected by SDS-PAGE.

Amino acid analysis for determining extinction coefficients is done using Amino Quant 1090 HPLC system from Hewlett Packard. Microwave facilitated vapor phase hydrolysis of lyophilized samples is done using the MDS-2000 hydrolysis-station(CEM, Matthews, NC). 6N HCl containing 1% phenol as a scavenger is used to create the acid vapors. Hydrolysis time is 20 minutes at 70 psi (~148°C).

20 Hydrolyzed samples are lyophilized and redissolved in 20 μl of 500pmol/μl sarcosine and norvaline as internal standards. 1μl is injected and analyzed according to manufacturer's instructions.

B. RESULTS AND DISCUSSION

1. Purification

25

The previously characterized *P. pinsitus* laccase has a pI of ~3.5. However, considerable laccase activity is detected in the run-through fraction of Q-Sepharose preequilibrated at pH 7.7. Upon a gradient elution, one more active fraction comes off the column before the active fraction initially anticipated. UV-visible spectra and SDS-PAGE show that all three fractions contain mainly laccase. After further purification by gel filtration, different pI's under native non-denaturing conditions are detected for the

two new fractions and shown to be consistent with the elution order.

2. Characterization

The pure laccase preparations derived from Q-Sepharose eluates behave as a rather well-defined band on SDS-PAGE at ~63 kDa. Deglycosylation detects ~14% w/w carbohydrates based on mobility change on SDS-PAGE. On native-IEF, the laccase preparations have bands of pI 6-6.5, 5-6.5, and 3.5. ABTS-agarose overlay show that all bands are active. Each form in turn shows multiple isoforms under the IEF conditions.

The neutral and acidic forms have a typical UV-visible spectrum with maxima at 605 and 275 nm. The ratio of A_{275}/A_{605} is 30-40. The spectrum for the acidic-neutral form 15 has a peak at 276 nm and a shoulder around 600 nm.

The N-terminal sequencing shows that the neutral and neutral-acidic forms have the same first 29 residues(Table 1). The N-terminus of the acidic form matches 100% to that of the previously characterized form. All three forms exhibit comparable cross-reactivity toward antibodies raised against previously characterized form.

Table 1. Structural and enzymatic properties of *P. pinsitus* laccases

	Form	N-terminus	LACU	ΔA ₄₀₅ min-1(ABTS)
5	Acidic	GIGPVA D LTITNAAVSPDGFSRQAVVVNG	92	4000
	Acidic-	A*****(*)*VVA**P*****L*D*I****	75	4000
	Neutral			
	Neutral	A*****(*)*VVA**P*****L*D*I****	32	1000

^{10 *:} Same residue as compared with the acidic form. (): weak signal

3. Laccase Activity

The specific activities (per A₂₇₅) of the three forms are tested by both ABTS and syringaldazine oxidations. The

15 shapes and optima of the pH activity profiles for the three forms are very close: all have optima at ≤pH4 and pH 5-5.5 for ABTS and syringaldazine oxidations, respectively.

IV. ISOLATION OF MULTIPLE COPIES OF POLYPORUS PINSITUS 20 LACCASE ENZYMES AND GENES

A. MATERIALS AND METHODS

1. Strains

The following strains are employed in the methods described below: E. coli K802(e14-(mrca), mcrB, hsdR2, galK2, galT22, supE44, metB1; Clonetech); E. coli XL-1 Blue(recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac[F'proAB, lacIqZDM15, Tn10(tetr)]; Stratagene) and Polyporus pinsitus CBS 678.70.

2. Genomic DNA isolation

Cultures of *P.pinsitus* are grown in 500 ml YG (0.5% yeast extract, 2% dextrose) at room temperature for 3 to 4 days. Mycelia are harvested through miracloth, washed twice with TE and frozen quickly in liquid nitrogen. The frozen mycelia are stored at -80°C. To isolate DNA, the mycelia

are ground to a fine powder in an electric coffee grinder. The powdered mycelia are resuspended in TE to a final volume of 22 ml. Four ml 20% SDS is added with mixing by inversion followed by incubation at room temperature for 10 minutes. 5 The sample is gently extracted with phenol:chloroform and centrifuged to separate the phases. The aqueous phase is collected and 400µl proteinase A(10 mg/ml stock) is added. The sample is incubated at 37°C for 30 minutes followed by a phenol:chloroform extraction. The aqueous phase is 10 precipitated by the addition of 0.1 volumes of 3 M Na acetate, pH 5.2 and 2.5 volumes 95% ethanol and freezing at 20°C for one hour. After centrifugation to precipitate the DNA, the pellet is resuspended in 6 ml TE, and 200 µl boiled RNase A(10 mg.ml stock) is added. After incubation at 37°C, 15 100 µl proteinase A(10 mg/ml stock) is added followed by incubation at 37°C for 30 minutes. The sample is phenol:chloroform extracted twice. To the aqueous phase, 0.1 volumes 3 M Na acetate and 2.5 volumes are added, and teh sample is frozen at -20°C for 1 hour. Following 20 centrifugation, the pellet is gently resuspended in 400 μl TE, and $40 \mu l$ Na acetate and 1 ml 95% ethanol are added. The DNA is pelleted by centrifugation, and the pellet is washed in 70% ethanol. The final pellet is resuspended in

3. RNA preparation

250 µl TE.

25

RNA is isolated from mycelia which are harvested from P. pinisitus cultures which are either induced for laccase expression by the addition of 2,5-xylidine or are uninduced. The mycelia are washed and frozen quickly in liquid N_2 .

30 Frozen mycelia are ground to a fine powder in an electric coffee grinder. The powder is immediately suspended in 20 ml extraction buffer (0.2 M Tris-HCl, 0.25 M NaCl, 50 mM EGTA, 0.8% tri-isopropyl naphthalene sulfonic acids, 4.8% paminosalicylic acid, pH 8.5). All solutions for RNA

extraction are made with diethylpyrocarbonate (DEP)-treated water. The sample is kept on ice and 0.5 volumes TE-saturated phenol:chloroform is added. The sample is mixed well by inversion for 2 minutes, and the phases are separated by centrifugation. The aqueous phase is saved, and the organic phase is extracted with 2 ml extraction buffer and incubated at 68°C for 5 minutes. After centrifugation to separate the phases, the aqueous phases are pooled and extracted several time with phenol:chloroform until there is no longer any protein at the interface. To the aqueous phase 0.1 volume 3 M Na-acetate, pH 5.2 and 2.5 volumes 95% ethanol are added to precipitate the RNA, and the sample is frozen at -20°C for 2 hours. The RNA is pelleted and resuspended in DEP water with RNase inhibitor.

15 <u>4. DNA sequencing</u>

Nucleotide sequences are determined using TAQ polymerase cycle sequencing with fluorescent-labeled nucleotides, and reactions are electrophoresed on an Applied Biosystems automatic DNA sequencer (Model 363A, version 1.2.0).

5. Preparation of genomic libraries

Two size-selected genomic libraries of *P. pinsitus* are constructed. A library of 5 to 6 kb BamHI fragments are constructed in pBluescript+. Genomic DNA is digested with BamHI, and the digest is electrophoresed on a preparative agarose(IBI) gel. The region containing the 5 to 6 BamHI fragments is sliced from the gel. The DNA is isolated from teh gel using a Geneclean kit(BIO 101). The DNA is ligated into pBluescript plasmid previously digested with BamHI and dephosphorylated with BAP(GIBCO BRL), *E. coli* XL-1 Blue competent cells (Stratagene) are transformed with the ligation, and 12,000 white colonies are obtained.

A library of 7 to 8 kb BamHI/EcoRI fragments is constructed in pUC118. Ten μg genomic DNA is digested with

BamHI and EcoRI and treated with BAP(GIBCO BRL). Competent E. coli XL-1 Blue cells are transformed with the ligation, and the library contains ~8000 recombinants.

For the preparation of a total genomic library in

lambda EMBL4, 25 µg of P. pinsitus genomic DNA is partially digested with Sau3A. After digestion, the DNA is electrophoresed on a preparative low-melt agarose gel, and a band containing the 9 to 23 kb sized DNA is sliced from the gel. The DNA is extracted from the gel using ß-agarose(New England Biolabs). The isolated EMBL4 arms (Clonetech) according to the supplier's directions. The ligation is packaged in vitro using a Gigapack II kit(Stratagene). The library is titered using E. coli K802 cells. The unamplified library is estimated to contain 35,000 independent recombinants. The library is amplified using E. coli K802 cells.

6. Southern and Northern Blots

DNA samples are electrophoresed on agarose gels in TAE buffer using standard protocols. RNA samples are electrophoresed on agarose gels containing formaldehyde. Both DNA and RNA gels are transferred to Zeta-Probe membrane(BIO-RAD) using either capillary action under alkaline conditions or a vacuum blotter. After transfer, the DNA gels are UV crosslinked. Blots are prehybridized at 65°C in 1.5X SSPE, 1% SDS, 0.5% non-fat dried milk and 200 µg/ml salmon sperm DNA for 1 hour. Radioactive probes are added directly to the prehybridization solutions, and hybridizations are continued overnight at 65°C. Blots are washed with 2XSSC for 5 minutes at 65°C and with 0.2XSSC, 1%SDS, 0.1% Na-pyrophosphate at 65°C for 30 minutes twice.

Radioactive labeled probes are prepared using a α -32P-dCTP and a nick translation kit(GIBCO-BRL).

7. Library screening

For screening of the size-selected 5-6 kb BamHI and 7-8 kb BamHI/EcoRI libraries ~500 colonies on LB carb plates and lifted the colonies to Hybond N+ filters(Amersham) using standard procedures. The filters are UV crosslinked following neutralization. The filters are prehybridized at 65°C in 1,5X SSPE, 1% SDS, 0.5% non-fat dried milk, 200 µg/ml salmon sperm DNA for 1 hour. Nick-translated probes are added directly to the prehybridization solution, and hybridizations are done overnight at 65°C.

10 For screening of the genomic bank in EMBL, appropriate dilutions of the amplified library are plated with *E. coli* K802 cells on 100mM NZY top agarose. The plaques are lifted to Hybond N+ membranes (Amersham) using standard procedures. The DNA is crosslinked to the membranes using UV crosslinking. The filters are prehybridized and hybridized using the same conditions as those mentioned above. RESULTS AND DISCUSSION

1. Isolation of multiple copies of laccase gene

P. pinsitus genomic DNA is digested with several different restriction enzymes for southern analysis. The blot is probed with the cDNA insert(isolated as a BamHI/SphI fragment from the pYES vector) which is labeled with α-P³²-dCTP. The blot is hybridized and washed as described above. The cDNA hybridizes to several restriction fragments for most of the enzymes suggesting that there are multiple laccase genes in the genome. Because the cDNA hybridizes to a BamHI fragment of ~5.5 kb, a library of 5-6 kb BamHI fragments from P. pinisitus is constructed.

2. Screening of Genomic Libraries

30

The results from screening of the libraries are summarized in Table 2. The 5-6 kb BamHI size-selected library is screened with the original cDNA clone labeled with ³²P. Approximately 30,000 colonies are screened with hybridizations done at 65°C. Plasmid DNA is isolated from

two positive colonies and digested with BamHI to check for insert size. Both clones contain an ~5.5 kb BamHI insert. The cloned insert(LCC3) is sequenced from either end; the sequence has homology to the cDNA, but is clearly not the cDNA encoded laccase. The partial DNA sequence of LCC3 also indicates that the LCC3 pUC118 clone does not contain the full gene.

From a southern blot of BamHI/EcoRI double digested DNA it is demonstrated that the cDNA hybridizes to an ~7.7 kb fragment. A size-selected library in pUC118 is constructed 10 containing 7-8 BamHI/EcoRI fragments. A total of ~8000 independent colonies are obtained and screened by hybridization with a 32P labeled insert. Plasmid DNA is isolated from the positive colonies and digested with BamHI 15 and EcoRI. Restriction analysis of the plasmids demonstrate that they fall into two classes. One class (LCC4) contains four clones which are all identical and have an ~7.7 kb BamHI/EcoRI insert which hybridizes to the cDNA. A second class(LCC1) contains two clones which are identical and have 20 inserts of ~7.2 kb which hybridize to the cDNA. Partial DNA sequencing of clones LCC1 and LCC4 demonstrate that clone 21 is the genomic clone of the original cDNA, while LCC4 codes for another laccase. The partial DNA sequence of LCC1 shows that the pUC118 clone does not contain the full gene and 25 that a fragment upstream of the EcoRI site is needed.

At the same time the size selected 7-8 BamHI/EcoRI library is being constructed, a *P. pinisitus* genomic bank in EMBL4 is constructed containing ~35,000 independent recombinant phage. Ten positive plaques are picked and purified. DNA is isolated from the purified phage lysates. Restriction digests of EMBL DNAs demonstrates that there are three classes of clones. The first class(11GEN) is defined by two sibs whose inserts contain a BamHI/EcoRI fragment of the same size as LCC1 which hybridizes to the LCC1 insert.

The second class(12GEN) contains one clone which has a different restriction pattern than the 11GEN class and whose insert contains a different restriction pattern than the 11GEN class and whose insert contains an ~5.7 kb BamHI/EcoRI fragment. The third class is defined by a single clone whose insert contains an ~3.2 kb BamHI/EcoRI fragment which hybridizes to the LCC1 insert. DNA sequence analysis demonstrates that clone 11GEN contains the LCC1 BamHI/EcoRI fragment and both 5' and 3" flanking regions. It is also demonstrated that clone 12GEN contains a portion of the LCC1 insert.

The P. pinisitus EMBL genomic bank is also screened with the LCC3 BamHI insert in order to clone the full gene. Approximately 30,000 plaques are plated and lifted from 15 hybridization. Five plaques which hybridize to the LCC3(BamHI/EcoRI) insert are identified and purified. DNA is isolated from the purified phage stocks. analysis of P. pinisitus genomic DNA demonstrates that the LCC3 BAmHI insert hybridizes to an ~7kb EcoRI fragment. 20 Restriction digests and southerns demonstrate that 4 of the clones contain restriction fragments which hybridize to the EcoRI/BamHI(1.6 kb) fragment and that the clones fall into three classes. Class one is defined by a single clone(LCC5) whose insert contains a 3kb EcoRI fragment which hybridizes 25 to the LCC3 BamHI/EcoRI fragment. Another class is defined by clone (LCC2) whose insert contains an ~11 kb EcoRI fragment which hybridizes to the LCC3 BamHI/EcoRI insert. The third class is defined by two clones which are not identical but contain many of the same restriction 30 fragments; these clones both contain an ~7.5 kb EcoRI fragment which hybridizes to the LCC3 insert. analysis of this third class indicates that they are identical to clone LCC4. Partial DNA sequencing of LCC5 and LCC2 indicates that both of these clones code for laccases;

however, neither is identical to any of the above mentioned laccase genes (LCC1, LCC3, or LCC4). At this point, five unique laccase genes are cloned; however, the fragments subcloned from LCC5 and LCC2 do not contain the full genes.

5

From the DNA sequencing of the 3 kb EcoRI fragment from clone LCC5 it is determined that ~200 base pairs of the Nterminus are upstream of the EcoRI site. A 380 bp EcoRI/MluI fragment from LCC5 is used to identify for subcloning a MluI fragment from the LCC5 EMBL clone. 10 ~4.5 MluI fragment from the LCC5 EMBL clone is subcloned for sequencing and shown to contain the N-terminal sequence.

To clone the N-terminal half of the LCC3 laccase gene, the P. pinsitus EMBL genomic bank is probed with an ~750 bp BamHI/StuI restriction fragment from the LCC3 pUC118 clone. 15 Approximately 25,000 plaques are screened and five plaques appear to hybridize with the probe. Upon further purification only three of the clones are still positive. Two of the clones give very strong signals and the restrictions digests of DNA isolated from these phage 20 demonstrate that both contain an ~750 bp BamHI/StuI fragment in their inserts and that the two clones are not identical but overlapped. Based on results of Southern analysis, an ~8.5 kb fragment from these clones are subcloned for sequencing. The EcoRI fragment is shown to contain the 25 entire gene.

To clone the N-terminal half of the LCC2 laccase gene, the P. pinsitus genomic bank in EMBL4 is probed with an ~680 bp EcoRI/PvuI of the EMBL LCC2 clone. Thirty thousand plaques are screened by hybridization at 65°C, and 15 30 plaques appear to hybridize with the probe. All fifteen are purified, and DNA is isolated. The clones can be placed in four classes based on restriction patterns, Seven of the clones are all sibs, and are identical to the original EMBL clone of LCC2. The second class is defined by 3 clones

which are sibs. An ~4 kb HindIII fragment is subcloned from this class for sequencing and is shown to contain the N-terminal half of LCC2. A third class is defined by a single clone and is not characterized further.

5 <u>3. DNA sequencing</u>

The complete DNA sequences of the five genomic clones is determined as described in Materials and Methods. Sequencing of clone LCC2 demonstrate that it probably codes for the second form of laccase(neutral pI) isolated from 10 culture broth from an induced P. pinsitus culture as described above. The N-terminal protein sequence from the neutral pI laccase and the predicted N-terminus for the protein coded for by LCC2 are compared, and show identity. The predicted pI for the protein coded for by clone LCC2 is 15 5.95, which is in good agreement with the experimental pI determined for the second form of laccase being between 5.0 and 6.5. Figures 1-5 (SEQ ID NOS. 1-5) show the DNA sequences and predicted translation products for the genomic clones. For LCC1, the N-terminus of the mature protein as 20 determined by protein sequencing and predicted by Von Heijne rules is Gly at position 22. The N-terminus is Gly-Ile-Gly-Pro-Val-Ala-. For LCC2 the N-terminal amino acid of the mature protein as determined by protein sequencing is Ala at The N-terminus is Ala-Ile-Gly-Pro-Val-Ala-. 25 For LCC3 the predicted N-terminal amino acid of the mature protein is Ser at position 22, with the N terminus being Ser-Ile-Gly-Pro-Val-Thr-Glu-Leu-. For LCC4, the predicted N-terminal amino acid is Ala at position 23 with the Nterminus being Ala-Ile-Gly-Pro-Val-Thr-. For LCC5 the 30 predicted N-terminal amino acid is Ala at position 24 with the N-terminus being Ala-Ile-Gly-Pro-Val-Thr-Asp. A comparison of the structural organization of the genes and the predicted proteins they code for is presented in Table 1. It will be seen that the five genes have different

structural organizations and code for proteins of slightly different sizes. Comparisons between the predicted proteins of the genomic clones and other fungal laccase are also Table 2 shows a comparison of the predicted laccase 5 to each other and to other fungal laccases. Clone LCC1(the induced laccase first characterized) has the most identity(90%) to the Coriolus hirsutus laccase and the PM1 basidiomycete laccase(Coll et al., supra). The other four laccases have between 64 and 80% identity to the C. hirsutus laccase. The laccase coded for by LCC3 has the least identity to the LCC1 laccase and the other fungal laccases shown in Table 2. LCC2 appears to be the second wild-type laccase isolated as described above; based on the N-terminal sequences of the isolated clones, it also appears that the 15 "neutral" and acidic neutral" wild-type laccases are the same enzyme which is encoded by the LCC2 sequence.

Table 1 Comparison of Structural Organization and Predicted Proteins of the P. pinsitis Genomic Clones.

<u>Gene</u>	# Introns	Size of Predicted Precursor Protein	Size of Predicted Mature Protein	Predicted Isolelectric Point
21GEN	<u># 1111.011.0</u> 8	520	499	4.49
23GEN	10	519	498	5.95
24GEN	12	516	495	5.23
31GEN	11	510	488	4.06
41GEN	11	527	504	4.07

Table 2 Amino Acid Identity Between P. pinsitis Laccases and Other Fungal Laccases.

21GEN	21GEN	23GEN 79%	24GEN 64%	31GEN 70%	41GEN 72%	CRIPHA 90%	CRIPHE 91%	PBILAC 64%	PM1 80%
23GEN	79%		65%	66%	69%	80%	81%	62%	74%
24GEN	64%	65%		61%	65%	64%	65%	61%	63%
31GEN	70%	66%	61%		75%	69%	70%	64%	69%
41GEN	72%	69%	65%	75%		71%	72%	64%	71%
CRIPHA		80%	64%	69%	71%		99%	64%	80%
CRIPHE	91%	81%	65%	70%	72%	99%		65%	81%
PBILAC	64%	62%	61%	64%	64%	64%	65%		65%
PMI	80%	74%	63%	69%	71%	80%	81%	65%	

21GEN, 23GEN, 24GEN, 31GEN and 41GEN= P. pinsitis laccase clones

CRIPHA= Coriolus hirsutis laccase A

CRIPHE= C. hirsutis laccase B

PBILAC= Phlebia radiata laccase

PM1= Basidiomycete PM1 laccase (CECT2971)

5. Northern blots

RNA is isolated from mycelia from both a xylidineinduced culture and an uninduced culture. RNA is blotted to
membrane after electrophoresis, and the blot is probed with
the cDNA insert, or a small fragment containing ~100 bp of
the 23GEN promoter and the first 100 bp of the coding
region. A transcript of about 1.8 kb hybridizes to both the
induced and uninduced RNA samples; however, transcription of
this message is clearly induced by the addition of xylidine
to the culture.

III. EXPRESSION OF P. PINSITUS LACCASE IN ASPERGILLUS MATERIALS AND METHODS

1. Strains

A. oryzae A1560, A. oryzae HowB104(fungamyl delete, pyrg), A. oryzae HowB101pyrg, A. niger Bo-1, A. niger Bo-80, A. niger ATCC1040, A. niger NRRL337, A. niger NRRL326, A. niger NRRL326, A. niger NRRL326, A. niger ATCC11358, A. niger NRRL322, A. niger AT10864, A. japonicus A1438, A. phoenicis, A. foetidus N953.

20 <u>2. Media</u>

For the shake flask cultivation of the A. niger, A. foetidus, and A. phoenicis MY50 (per liter:50 g maltodextrin, 2 g MgSO₄·H₂O, 10 gKH₂PO₄, 2 g K₂SO₄, 2 g citric acid, 10 g yeast extract, 0.5 ml trace metals, 2 g urea, pH 6.0) media is used. For the shake flask cultivation of the A. oryzae A1560 and HowB101 strains MY51(per liter: 30 g maltodextrin, 2 mg MgSO₄, 10 g KH₂PO₄, 2 g K₂SO₄, 2 g citric acid, 10 g yeast extract, 0.5 ml trace metals, 1 g urea, 2 g(NH₄)₂SO₄, pH 6.0) is used. For the shake flask analysis of the A.oryzae HowB104 strains, MY51 maltose(same as MY51 but with 50g of maltose instead of maltodextrin) media is used. For the shake flask analysis of the A. japonicus strains M400 media(per liter: 50 g maltodextrin, 2 g MgSO₄, 2 g

 KH_2PO_4 , 4 g citric acid, 8 g yeast extract, 0.5 ml trace metals, 2 g urea, pH 6.0.

Cultures grown overnight for protoplast formation and subsequent transformation are grown in YEG(0.5% yeast extract, 2% dextrose). For strains that are pyrg, uridine is supplemented to 10 mM final concentration.

3. Screening for laccase production

Primary transformants are screened first on a minimal medium plates containing 1% glucose as the carbon source and 10 1mM ABTS to test for production of laccase. Transformants that give green zones on the plates are picked and spore purified before shake flask analysis is done.

Shake flask samples are centrifuged to clear the broth. Dilute or undiluted broth samples are assayed with ABTS

15

RESULTS AND DISCUSSION

1. Expression in shake flasks

The first expression vector constructed is pDSY1, which contains the TAKA promoter, TAKA signal sequence, P. pinisitus laccase cDNA beginning at the mature N-terminus and the AMG terminator. The TAKA signal sequence: laccase insert is constructed in 2 steps. First by site directed mutagenesis, an AgeI site beginning at bp 107 of the laccase mature coding region is created by a single base change and 25 a NsiI site is created ~120 bp downstream of the laccase stop codon(ACG GGT->ACC GGT and TTC GCT->ATG CAT, respectively). A small PCR fragment beginning with an SfiI site and ending with the AgeI site at 107 bp in laccase is PCR amplified. This fragment contains a piece of the TAKA signal sequence and the first ~107 bp of the mature laccase cDNA. Further DNA sequencing of this fragment shows it has a single base change that leads to a substitution of Asn for Thr at position 9 in mature laccase. This substitution creates a potential N-linked glycosylation site.

fragment and AgeI/NsiI fragments are cloned into pMWR1(Figure 6) which has been digested with SfiI/NsiI. The vector pMWR1 contains the TAKA promoter, a portion of the TAKA signal sequence which ends with an SfiI site, and the TAKA terminator with a NsiI site inserted directly 5' to the terminator. The resulting expression vector (Figure 7) is used to cotransform several hosts. Methods for cotransformation of Aspergillus strains are as described in Christensen et al., supra.

In the second laccase expression vector, the base change in DSY1 which leads to the substitution of Asn for Thr at amino acid 9 is reverted back to wild type by a PCR reaction. The second expression vector pDSY2 is identical to pDSY1 except for this single base change. Three different A. oryzae strains and several A. niger strains are cotransformed with pDSY2 and either pTOC90(WO 91/17243) which carries the A. nidulans amdS gene or pSO2 which carries the A. oryzae pyrG gene.

Expression of laccase is observed in all hosts tested,
with both DSY1 and DSY2. Yields range from 0.1-12.0
Δabs/min/ml, with highest yields being observed with A.
niger strains.

A construct pDSY10 is made which contains the TAKA

25 promoter, laccase full-length cDNA including its own signal sequence and the AMG terminator. A 200 bp BamHI/AgeI fragment which has a BamHI site immediately 5' to the ATG of the initiation codon and an AgeI site at the same position as in pDSY1 is PCR amplified using lac1 as template. A

30 MluI/HindIII fragment is PCR amplified using pDSY2 as template and begins with the MluI site present in the cDNA and ends with a HindII site directly 3' to the stop codon of laccase. The above two fragments and the AgeI/MluI fragment

from pDSY2 are ligated into pHD414 to yield pDSY10(Figure 8).

The vector pHD414 used in expression of laccase is a derivative of the plasmid p775(EP 238 023). In contrast to 5 this plasmid, pHD414 has a string of unique restriction sites between the TAKA promoter and the AMG terminator. plasmid is constructed by removal of an approximately 200 bp long fragment (containing undesirable RE sites) at the 3' end of the terminator, and subsequent removal of an 10 approximately 250 bp long fragment at the 5' end of the promoter, also containing undesirable sites. The 200 bp region is removed by cleavage with NarI (positioned in the pUC vector) and XbaI (just 3' to the terminator), subsequent filling in the generated ends with Klenow DNA polymerase + 15 dNTP, purification of the vector fragment on a gel and religation of the vector fragment. This plasmid is called pHD413. pHD413 is cut with StuI (positioned in the 5' end of the promoter) and PvuII (in the pUC vector), fractionated on gel and religated, resulting in pHD414. Cotransformation 20 of A. oryzae HowB104 and A. niger Bo-1 are done using pToC90 for selection. Yields in shake flask are comparable to those seen with pDSY2.

2. Expression in fermentors

A 1 ml aliquot of a spore suspension of Aspergillus

niger transformant Bo-1-pDSY10-4(approximately 10° spores/ml)
is added aseptically to a 500 ml shake flask containing 100
ml of sterile shake flask medium (glucose, 75g/l; soya meal,
20 g/l; MgSO₄·7H₂O, 2g/l; KH₂PO₄, 10g/l; K₂SO₄, 2g/l;
CaCl₂·2H₂O 0.5 g/l; Citric acid, 2g/l; yeast extract, 10g/l;
trace metals[ZnSO₄·7H₂O, 14.3 g/l; CuSO₄·5H₂O, 2.5 g/l;
NiCl₂·6H₂O, 0.5 g/l; FeSO₄·7H₂O, 13.8 g/l, MnSO₄·H₂O, 8.5 g/l;
citric acid, 3.0 g/l], 0.5 ml/l; urea, 2g/l, made with tap
water and adjusted to pH 6.0 before autoclaving), and
incubated at 37°C on a rotary shaker at 200 rpm for 18

hours. 50 ml of this culture is aseptically transferred to a 3 liter fermentor containing 1.8 liters of the fermentor media (maltodextrin MD01 300 g/l; MgSO₄·7H₂O, 2g/l; KH₂PO₄, 2g/l; citric acid 2g/l; K₂SO₄, 2.7 g/l;CaCl₂·2H₂O, 2g/l; trace metals, 0.5 ml/l; pluronic antifoam, 1ml/l; made with tap water and pH adjusted to 6.0 before autoclaving). The fermentor temperature is maintained at 34°C by the circulation of cooling water through the fermentor jacket.

- Sterile air is sparged through the fermentor at a rate of 1.8 liter/min (1v/v/m). The agitation rate is maintained at 800 rpm for the first 24 hours after inoculation and at 1300 rpm for the remainder of the fermentation. The pH of the fermentation is kept at 4.0 by the automatic addition of 5N NaOH or H₃PO₄. Sterile feed (urea, 50 g/l; pluronic antifoam,
- 1.5 ml/l, made up with distilled water and autoclaved) is added to the fermentor by use of a peristaltic pump. The feed rate profile during the fermentation is as follows: 40 g of feed is added initially before inoculation; after inoculation, feed is at a constant rate of 2.5 g/l h.

Copper is made as a 400% stock in water or a suitable buffer, filter sterilized and added aseptically to the tank to a final level of 0.5 mM. Samples for enzyme activity determination are withdrawn and filtered through Miracloth to remove mycelia. These samples are assayed for laccase activity by a LACU assay. Laccase activity is found to increase continuously during the course of the fermentation, with a value of approximately 55 LACU/ml is achieved after 190 hours. This corresponds to approximately 350mg/l of recombinant laccase expressed.

30 IV. PURIFICATION OF RECOMBINANT LACCASE

MATERIALS AND METHODS

1. Materials.

Chemicals used as buffers and substrates are commercial products of at least reagent grade. Endo/N-glycosidase G is

from Boehringer-Mannheim. Chromatography is performed on either a Pharmacia's FPLC or a conventional open column low pressure system. Spectroscopic assays are conducted on a Shimadzu PC160 spectrophotometer.

Purification

- (a) DSY2
- 2.8 liters cheese-cloth filtered broth(pH 7, 19mS) obtained from an A. oryzae pDSY2 transformant as described above is filtered on 0.45 $\boldsymbol{\mu}$ Corning filter and concentrated 10 on Spiral Concentrator (Amicon) with S1Y30 membrane to 200ml. The concentrate pH is adjusted to 7.5, diluted with 4.8 1 water to achieve 1.2 mS, and concentrated on S1Y30 to 200ml. 50ml of this broth solution is applied onto a Q-Sepharose column(XK16, 34ml gel), pre-equilibrated with 10mM Tris, pH 15 7.5, 0.7 mS(Buffer A). The blue laccase band that migrates slowly during loading is eluted by a linear gradient of Buffer B(Buffer A plus 0.5 M NaCl). 24 ml of pooled laccase fractions are concentrated on Centricon-100(Amicon) to 4.5 ml and applied onto a Superdex 200 column(HiLoad 16/60, 120 20 ml gel). During the development with Buffer C(Buffer A plus 0.15 M NaCl, 14.4 mS), the blue laccase fractions elute followed by brownish contaminant fractions. Only the first half of the elution band(detected by Abs₆₀₀) show a high laccase to contaminant ratio and are pooled. The pooled 25 fractions are dialyzed in 10mM Bis-Tris, pH 6.8, 0.6mS(Buffer D), applied onto a Mono-Q column(Mono-Q 5/5, 1ml) equilibrated with Buffer D, and eluted with Buffer E(Bufer D plus 0.5 M NaCl) using a linear gradient. laccase fractions, which ome out round 27% Buffer E, are 30 pure as judged by SDS-PAGE. At each step, the laccase fractions are routinely checked by ABTS oxidation, SDS-PAGE, and Western Blot.
 - (b) DSY10

2.8 liters cheese-cloth filtered broth(pH 7.3, 24mS) obtained from HowB104-pDSY10 is filtered on Whatman #2 paper and concentrated on Spiral Concentrator (Amicon) with S1Y100 membrane to 210ml. The concentrate pH is diluted with 5 water to achieve 1.2 mS, and concentrated on S1Y100 to 328 This broth solution is applied onto a Q-Sepharose column(XK26, 120 ml gel), pre-equilibrated with 10mM Tris, pH 7.5, 0.7 mS(Buffer A). The blue laccase band that migrates slowly during loading is eluted by a linear 10 gradient of Buffer B(Buffer A plus 2 M NaCl). 120 ml of pooled laccase fractions are diluted with water to achieve 1.1mS and then concentrated on SIY100 to 294 ml and applied onto a Mono-Q column (HiLoad 16/10, 40 ml gel) preequilibrated with Buffer A. The laccase slowly passes 15 through the column during loading and washing with Buffer A. The pooled fractions which have a pH reading of 5.6, are loaded on a Mono-Q column(HiLoad 16/10, 40 ml gel), preequilibrated with Buffer C(10mM MES, pH 5.5, 0.1 mS). laccase fractions elute by a very shallow gradient of Buffer 20 D(Buffer C + 1M NaCl). Enzymatic assays are conducted as described above.

3. Protein analysis

Total amino acid analysis, N-terminal sequencing, deglycosylation, SDS-PAGE, IEF, and Western blots are performed as decribed above.

B. RESULTS AND DISCUSSION

1. Purification and Characterization

Overall a 256-fold purification and a yield of 37% are achieved for DSY10, and a 246-fold purification and a yield of 14% are achieved for DSY2. In terms of electorphoretic pattern, spectral properties and activity, purified DSY2 and DSY10 are indistinguishable. Purified recombinant laccases behave as a dimer on gel filtration, and exhibit subunit molecular weight which is somewhat larger than that of the

wild type laccase, indicating a post-translational processing in A. oryzae that results in the extra glycosylation on the recombinants. Deglycosylation has confirmed the difference in mass arising from extra sugars (Table 3).

Table 3. Molecular and spectral properties of recombinant and wild-type laccase

5	MW, kDa		Carbohydrate	pI	$\lambda_{\text{max}}, \text{nm}(\epsilon, 1/g*cm)$	
	Native	subunit	w/w%			
WT	~130	~63	~7	3.5	275(1.8)615(0.12)	
Rec.	~130	~67	~13	3.5	275(1.7)615(0.11)	

10

The spectra of the purified laccases have maxima of 615 nm and 275, with the ratio of absorbance at 275 nm to that at 615 nm being 16, indicating one Type I Cu per subunit. The ratio of absorbance at 330nm to that at 615nm is 1.0, close 15 to the 0.75 value of Rhus vernicefera laccase, suggesting the presence of one Type II and two Type III copper ions per subunit. The extinction coefficient determined by amino acid analysis is 1.71/(g*cm),

3. Activity

20

The laccase activity is measured by syringaldazine and ABTS oxidations. Expressed per A_{275} , the laccase has a value of 83 for LACU. Expressed per mg, it has a LACU of 141. The pH profile of the laccase is provided in Figure 9.

25 V. USE OF POLYPORUS LACCASE TO DYE HAIR

The dyeing effect of Polyporus pinsitus laccase is tested and compared to the dyeing effect of 3% H2O2 on various dye precursors (listed below) and further on 0.1% pphenylenediamine compared with a number of modifiers.

30

Materials:

Dve precursors:

0.1 % p-phenylene-diamine in 0.1 M K-phosphate buffer, pH 7.0.(pPD)

- 0.1 % p-toluylene-diamine in 0.1 M K-phosphate buffer, pH 7.0.
- 0.1 % chloro-p-phenylenediamine in 0.1 M K-phosphate buffer, pH 7.0.
- 5 0.1 % p-aminophenol in 0.1 M K-phosphate buffer, pH 7.0.
 - 0.1 % o-aminophenol in 0.1 M K-phosphate buffer, pH 7.0.
 - 0.1 % 3,4-diaminotoluene in 0.1 M K-phosphate, buffer pH 7.0.

10 Modifiers:

- 0.1 % m-phenylene-diamine in 0.1 M K-phosphate buffer, pH 7.0.
- 0.1 % 2,4-diaminoanisole in 0,1 M K-phosphate buffer, pH 7.0.
- 15 0.1 % α -naphthol in 0.1 M K-phosphate buffer, pH 7.0.
 - 0.1 % hydroquinone in 0.1 M K-phosphate buffer, pH 7.0.
 - 0.1 % pyrocatechol in 0.1 M K-phosphate buffer, pH 7.0.
 - 0.1% resorcinol in 0.1 M K-phosphate buffer, pH 7.0.
- 0.1 % 4-chlororesorcinol in 0.1 M K-phosphate buffer, pH 20 7.0.

When a modifier is used, the dye precursor p-phenylenediamine is combined with one of the above indicated modifiers so that the final concentration in the dyeing 25 solution is 0.1 % with respect to precursor and 0.1 % with respect to modifier. The enzyme used is a recombinant

respect to modifier. The enzyme used is a recombinant laccase from *Polyporus pinisitus*, at a concentration of 10 LACU/ml.

30 Other solutions used in the process are $3\% H_2O_2$ (in the final dye solution), and a commercial shampoo.

The quantitative color of the hair tresses is determined on a Datacolor Textflash 2000 (CIE-Lab) by the use of

CIE-Lab parameters L* ("0"=black and "100"=white) combined with a* ("-"=green and "+"=red). DL* and Da* are the delta values of L* and a*, respectively, of a sample when compared to L* and a* of untreated hair. The Light fastness is determined under a day light bulb (D65) at 1000 LUX.

Hair tresses of blond European hair (1 gram) are used.

4 ml dye precursor solution (including modifier) is mixed with 1 ml laccase or 1 ml H₂O₂ on a Whirley mixer, applied to

10 the hair tresses and kept at 30°C for 60 minutes. The hair tresses are then rinsed with running water, combed, and air dried.

The results of the dyeing effect test are displayed below in Table 4-6 and further in the graphs in Figures 10 to 12.

Table 4

Sample no.	Sample ID	L*	a*	DL*	Da*
	Untreated blond hair	72.25	2.42		
1	p-phenylenediamine (Reference)	62.85	4.03	-9.41	1,61
2	p-phenylenediamine + Laccase	28.70	0.33	-43.56	-2,10
3	p-phenylenediamine + 3% H ₂ O ₂	21.88	2.04	-50.37	-0,39
4	p-Toluylenediamine (Reference)	58.14	4.34	-14.11	1.92
5	p-Toluylenediamine + Laccase	36.70	8.09	-35.56	5.67
6	p-Toluylenediamine + 3% H ₂ O ₂	42.30	6.24	-29.95	3.81
7.	chloro-p-phenylenediamine (Reference)	69.82	3.23	-2.43	0.81
9	chloro-p-phenylenediamine + Laccase	35.58	9.36	-36.68	6.93
9	chloro-p-phenylenediamine + $3 \% H_2O_2$	45.42	9.59	-26.84	7.17
10	p-aminophenol (Reference)	66.62	5.03	-5.63	2.61
11	p-aminophenol + Laccase	42,42	7.38	-29,84	4.95
12	p-aminophenol + 3% H ₂ O ₂	50.54	9.42	-21.72	7.26
13	o-aminophenol (Reference)	69.39	4.82	-2.89	2.39
14	o-aminophenol + Laccase	60.20	12.92	-12.05	10.50
15	o-aminophenol + 3% H ₂ O ₂	63.49	10.38	-8.77	7.96
16	3,4-diaminotoluene (Reference)	69.62	3.57	-2.63	1.15
17	3,4-diaminotoluene + Laccase	39.51	3.15	-32.74	0.73
18	3,4-diaminotoluene + 3% H ₂ O ₂	59.32	4.16	-12.94	1.74

L*: 0=black, 100=white a*: -=green, +=red

Table 5

Sample no.	Sample ID	L*	a*	DL*	Da*
	Untreated blond hair	72.25	2.42		
19	p-phenylenediamine+ m- phenylenediamin (Reference)	58.82	0.43	-13,44	-1,99
20	p-phenylenediamine + m-phenylenediamin + Laccase	27.20	0.83	-45,05	-1,59
21	p-phenylenediamine + m-phenylenediamine + 3% H2O2	16.96	0.13	-55,29	-2,59
22	p-phenylenediamine + 2,4 - diaminoanisole (Reference)	35.37	-0.02	-36,89	-2,45
23	p-phenylenediamine + 2,4 - diaminoanisole + Laccase	24.56	2.99	-47,70	0,57
24	p-phenylenediamine + 2,4-diaminoanisole + 3% H2O2	15.06	2.21	-57,20	-0,21
25	p-phenylenediamine + α-naphthol (Reference)	54.33	2.54	-17,93	0,12
26	p-phenylenediamine + α-naphthol + Laccase	29.53	4.03	-42,72	1,60
27	p-phenylenediamine + α-naphthol + 3% H2O2	19.58	3.90	-52,68	1,47
28	p-phenylenediamine + hydroquinone (Reference)	53.25	4.08	-19,01	1,65
29	p-phenylenediamine + hydroquinone + Laccase	40.48	5.00	-31,77	2,58
30	p-phenylenediamine + hydroquinone + 3% H2O2	29.06	4.96	-43,20	2,53

L*: 0=black, 100=white a*: -=green, +=red

Table 6

Sample no.	Sample ID	L*	a*	DL*	Da*
	Untreated blond hair	72.25	2.42		
31	p-phenylenediamine + pyrocatechol (Reference)	53.78	1.68	-18.47	-0.74
32	p-phenylenediamine + pyrocatechol + Laccase	30.77	2.64	-41.49	0.22
33	p-phenylenediamine + pyrocatechol + 3% H ₂ O ₂	22.15	3.30	-50.11	0.88
34	p-phenylenediamine + resorcinol (Reference)	62.12	4.23	-10.14	1.81
35	p-phenylenediamine + resorcinol + Laccase	36.14	2.91	-36.11	0.49
36	p-phenylenediamine + resorcinol + 3% H ₂ O ₂	23.94	3.16	-48.31	0.74
40	p-phenylenediamine + 4-chlororesorcinol (Reference)	61.18	4.70	-11.07	2.28
41	p-phenylenediamine + 4-chlororesorcinol + Laccase	36.00	2.76	-36.26	0.34
42	p-phenylenediamine + 4-chlororesorcinol + 3% H ₂ O ₂	22.63	2.60	-49.63	0.18

L*: 0=black, 100=white a*: -=green, +=red

The oxidative hair dyeing is carried out as described above, except that 50 LACU/ml *Polyporus pinsitus* laccase was used.

To test wash stability, the dyed hair tresses are wetted and washed for 15 seconds with 50 μ l of commercial shampoo, and rinsed with water for 1 minute. The hair tresses are washed up to 20 times.

The results of the hair wash test are displayed in figure 13. It can be seen in figure 13 that the wash stability of hair washed up to 20 times is excellent, when using *Polyporus pinsitus* laccase for oxidative dyeing.

To test light fastness, tresses of blond european hair are used for testing the light fastness of hair dyed using Polyporus pinsitus laccase in comparison to hair dyed using H₂O₂. p-phenylene-diamine is the dye precursor. The dyeing of the hair is carried out as described above. One hair tress is kept dark, while an other is kept at day light (i.e. under a day light bulb (D65)), at approximately 1000 LUX) for up to 275 hours. The CIE-Lab-values are determined immediately after the dyeing of the hair, and further during exposure to day light.

The results of the test are displayed in figure 14. Figure 14 shows that the hair dyed with p-phenylene-diamine using *Polyporus pinsitus* laccase has the same light fastness as hair dyed using H_2O_2 .

25

Deposit of Biological Materials

The following biological materials have been deposited under the terms of the Budapest Treaty with the Agricultural Research Service Patent Culture Collection, Northern Regional Research Center, 1815 University Street, Peoria,

Illinois, 61604 on May 25, 1994 and given the following accession numbers.

	Deposit	Accession	Number
	E. coli DH5α containing	NRRL	B-21263
5	pDSY22(41GEN; an ~3.0 kb EcoRI insert)		
	E. $coli$ DH5 α containing	NRRL	B-21268
	pDSY23(41GEN; an ~4.5 kb MluI insert;		
	insert contains a small portion of the		
	EcoRI fragment of pDSY22 and sequences		
10	5' to the EcoRI fragment)		
	E. coli XL-1 Blue containing	NRRL	B-21264
	pDSY21(31GEN; an ~7.7 kb EcoRI/BamHI		
	insert)		
	E. coli XL-1 Blue containing	NRRL	B-21265
15	pDSY18(21GEN; an ~8.0 kb BamHI insert)		
	E. coli DH5 α containing	NRRL	B-21266
	pDSY19(23GEN; an ~4 kb HindIII insert)		
	E. $coli$ DH5 α containing	NRRL	B-21267
	pDSY20(24GEN; an ~8.5 kb EcoRI insert)		
20			

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT:
 - (A) NAME: Novo Nordisk Biotech, Inc.
 - (B) STREET: 1445 Drew Avenue(C) CITY: Davis, California

 - (D) COUNTRY: United States of America
 - (E) POSTAL CODE (ZIP): 95616-4880
 - (F) TELEPHONE: (916) 757-8100
 - (G) TELEFAX: (916) 758-0317
- (i) APPLICANT:
 - (A) NAME: Novo Nordisk A/S
 - (B) STREET: Novo Alle
 - (C) CITY: Bagsværd
 - (D) COUNTRY: Denmark
 - (E) POSTAL CODE (ZIP): DK-2880
 - (F) TELEPHONE: +45 ,4444 8888
 - (G) TELEFAX: +45 4449 3256 (F) TELEX: 37304
- (ii) TITLE OF INVENTION: PURIFIED POLYPORUS LACCASES AND NUCLEIC ACIDS ENCODING SAME
- (iii) NUMBER OF SEQUENCES: 10
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Novo Nordisk of North America, Inc.
 - (B) STREET: 405 Lexington Avenue, Suite 6400
 - (C) CITY and STATE: New York, New York
 - (D) COUNTRY: U.S.A.
 - (E) ZIP: 10174-6401
- (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS

 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: to be assigned
 - (B) FILING DATE: 15-June-1995
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/265,534
 - (B) FILING DATE: 24-June-1994
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lowney, Karen A.
 - (B) REGISTRATION NUMBER: 31,274
 - (C) REFERENCE/DOCKET NUMBER: 4185.204-WO
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 212 867 0123
 - (B) TELEFAX: 212 878 9655
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2418 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE: (A) ORGANISM: Polyporus pinsitus	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 414464	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 534589	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 710764	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 879934	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 10011050	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 11471197	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 13541410	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 16091662	•
<pre>(ix) FEATURE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
AGATTTCTGA CACCGGTGCA ATCTTGACAC TGTACCAACC GGGCAAGTCT CGTCCTTGGT	60
TCTCGGGGACT GGCGCCGGT CGCTACCCCT TGGTCATTCA CTCTACCAGA GCGCTGGCTT	120
CGCCGAGGTA TAAAGGATGT TGCGCGACAC CCTCAACACC CCAACTCAAG CCCCACTTGA	180
GCTTTTGCGA GATCCTCCAC ATACCACTCA CTACTTTCAA GTTCTTCAAC ATG TCG AGG Met Ser Arg 1	239
TTT CAC TCT CTC GCT TTC GTC GTT GCT TCC CTT ACG GCT GTG GCC Phe His Ser Leu Leu Ala Phe Val Val Ala Ser Leu Thr Ala Val Ala 5 10 15	287
CAC GCT GGT ATC GGT CCC GTC GCC GAC CTA ACC ATC ACC AAC GCA GCG His Ala Gly Ile Gly Pro Val Ala Asp Leu Thr Ile Thr Asn Ala Ala 20 35	335
GTC AGC CCC GAC GGG TTT TCT CGC CAG GCC GTC GTC GTG AAC GGC GGC Val Ser Pro Asp Gly Phe Ser Arg Gln Ala Val Val Asn Gly Gly 35	383
ACC CCT GGC CCT CTC ATC ACG GGT AAC ATG GTTCGTCTCG GCTCGCACTA Thr Pro Gly Pro Leu Ile Thr Gly Asn Met 50 55	433

GGGGGTTGTA TCGTTCCTGA CGTTGTTGGA G GGG GAT CGC TTC CAG CTC AAT GTC ATC 491

Gly Asp Arg Phe Gln Leu Asn Val Ile 65

				0.5
GAC AAC CTT ACC Asp Asn Leu Thr	AAC CAC ACG ATG Asn His Thr Met 70	GTG AAG AGC A Val Lys Ser T 75	CG AGT ATT GTGAGCTGCT hr Ser Ile	543
ATTTCTCCGG ACGGG	GCTTC ATTGTGCTA	A TAATCGTCGT G	TGCAG CAC TGG CAC GGT His Trp His Gly 80	601
TTC TTC CAG AAG Phe Phe Gln Lys 85	GGT ACC AAC TGG Gly Thr Asn Trp 90	GCC GAC GGT COAla Asp Gly P.	CC GCC TTC ATC AAC ro Ala Phe Ile Asn 5	649
CAG TGC CCG ATC Gln Cys Pro Ile 100	TCA TCT GGT CAC Ser Ser Gly His 105	TCG TTC CTG T Ser Phe Leu T 110	AC GAC TTC CAG GTT yr Asp Phe Gln Val 115	697
CCT GAC CAG GCT Pro Asp Gln Ala	GTAAGTACGG TCGTT	ATGGA GTATACT	GCG CATTGCTAAA	749
CCACATGGTG AACAG	GGT ACC TTC TGG Gly Thr Phe Trp 120	TAT CAC AGT (Tyr His Ser) 125	CAC TTG TCT ACG CAG His Leu Ser Thr Gln 130	800
TAC TGT GAT GGT Tyr Cys Asp Gly 135	TTG AGG GGT CCG Leu Arg Gly Pro	TTC GTT GTT TO Phe Val Val TY 140	AC GAC CCG AAT GAC yr Asp Pro Asn Asp 145	848
CCG GCC GCC GAC Pro Ala Ala Asp 150	CTG TAC GAC GTC Leu Tyr Asp Val 155	GAC AAC GTAAG Asp Asn	GACGA ATTCGAACCG	898
TAAATACTTG CTTAC	TGATA CTTCTCGATG		AC ACT GTC ATT sp Thr Val Ile 160	949
ACC CTT GTG GAT Thr Leu Val Asp 165	TGG TAC CAC GTC Trp Tyr His Val 170	GCC GCG AAG C Ala Ala Lys L	TG GGC CCC GCA TTC eu Gly Pro Ala Phe 175	997
CCT GTAAGTCCAT G	AGTATTCTG CTGTTC	SAATC TGTCTTAA	CT GTGCATATCA CTC Leu 180	1053
GGC GCC GAC GCC Gly Ala Asp Ala	ACC CTC ATC AAC Thr Leu Ile Asn 185	GGT AAG GGA CG Gly Lys Gly A 190	GC TCC CCC AGC ACG rg Ser Pro Ser Thr 195	1101
ACC ACC GCG GAC Thr Thr Ala Asp 200	CTC TCA GTT ATC Leu Ser Val Ile	AGC GTC ACC CO Ser Val Thr P: 205	CG GGT AAA CGC ro Gly Lys Arg 210	1146
GTATGCTATA TCTTA	TCTTA TCTGATGGCA	TTTCTCTGAG A	CATTCTCCA G	1197
TAC CGT TTC CGC Tyr Arg Phe Arg 215	CTG GTG TCC CTG Leu Val Ser Leu	TCG TGC GAC CO Ser Cys Asp P: 220	CC AAC TAC ACG TTC ro Asn Tyr Thr Phe 225	1245
AGC ATC GAT GGT Ser Ile Asp Gly 230	CAC AAC ATG ACG His Asn Met Thr 235	ATC ATC GAG AG Ile Ile Glu T	CC GAC TCA ATC AAC hr Asp Ser Ile Asn 240	1293
ACG GCG CCC CTC Thr Ala Pro Leu 245	GTC GTC GAC TCC Val Val Asp Ser 250	Ile Gln Ile P	TC GCC GCC CAG CGT he Ala Ala Gln Arg 55	1341
TAC TCC TTC GTG	GTAAGTTCGA TTCAT	CCTCT AACGTTG	GTC GCTGTTAGTG	1393

ATCGTATGGT CATGTAG CTC GAG GCC AAC CAG GCC GTC GAC AAC TAC TGG Leu Glu Ala Asn Gln Ala Val Asp Asn Tyr Trp 265 270	1443
ATT CGC GCC AAC CCG AAC TTC GGT AAC GTC GGG TTC ACC GGC GGC ATT Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly Gly Ile 275 280 285 290	1491
AAC TCG GCT ATC CTC CGC TAC GAT GGT GCC GCT GCC GTG GAG CCC ACC Asn Ser Ala Ile Leu Arg Tyr Asp Gly Ala Ala Ala Val Glu Pro Thr 295	1539
ACA ACG CAA ACC ACG TCG ACT GCG CCG CTC AAC GAG GTC AAC CTG CAC Thr Thr Gln Thr Thr Ser Thr Ala Pro Leu Asn Glu Val Asn Leu His 310	1587
CCG CTG GTT ACC ACC GCT GTG GTATGTAATA TTGTCGGTAA TGTAATACAT Pro Leu Val Thr Thr Ala Val 325	1638
TGTTGCTGAC CTCGACCCCC ACAG CCT GGC TCG CCC GTC GCT GGT GGT GTC Pro Gly Ser Pro Val Ala Gly Gly Val 330 335	1689
GAC CTG GCC ATC AAC ATG GCG TTC AAC TTC AAC GGC ACC AAC TTC TTC Asp Leu Ala Ile Asn Met Ala Phe Asn Phe Asn Gly Thr Asn Phe Phe 340 345 350	1737
ATC AAC GGC ACG TCT TTC ACG CCC CCG ACC GTG CCT GTC CTG CTC CAG Ile Asn Gly Thr Ser Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln 355 360 365 370	1785
ATC ATC AGC GGC GCG CAG AAC GCG CAG GAC CTC CTG CCC TCC GGT AGC Ile Ile Ser Gly Ala Gln Asn Ala Gln Asp Leu Leu Pro Ser Gly Ser 375 380 385	1833
GTC TAC TCG CTT CCC TCG AAC GCC GAC ATC GAG ATC TCC TTC CCC GCC Val Tyr Ser Leu Pro Ser Asn Ala Asp Ile Glu Ile Ser Phe Pro Ala 390 395 400	1881
ACC GCC GCC GCC CCC GGT GCG CCC CAC CCC TTC CAC TTG CAC GGG CAC Thr Ala Ala Pro Gly Ala Pro His Pro Phe His Leu His Gly His 405 410 415	1929
GCG TTC GCG GTC GTC CGC AGC GCC GGC AGC ACG GTT TAC AAC TAC GAC Ala Phe Ala Val Val Arg Ser Ala Gly Ser Thr Val Tyr Asn Tyr Asp 420 430	1977
AAC CCC ATC TTC CGC GAC GTC GTC AGC ACG GGG ACG CCT GCG GCC GGT Asn Pro Ile Phe Arg Asp Val Val Ser Thr Gly Thr Pro Ala Ala Gly 435 440 445 450	2025
GAC AAC GTC ACC ATC CGC TTC CGC ACC GAC AAC CCC GGC CCG TGG TTC Asp Asn Val Thr Ile Arg Phe Arg Thr Asp Asn Pro Gly Pro Trp Phe 455 460 465	2073
CTC CAC TGC CAC ATC GAC TTC CAC CTC GAG GCC GGC TTC GCC GTC GTG Leu His Cys His Ile Asp Phe His Leu Glu Ala Gly Phe Ala Val Val 470 475 480	2121
TTC GCG GAG GAC ATC CCC GAC GTC GCG TCG GCG AAC CCC GTC CCC CAG Phe Ala Glu Asp Ile Pro Asp Val Ala Ser Ala Asn Pro Val Pro Gln 485 490 495	2169
GCG TGG TCC GAC CTC TGT CCG ACC TAC GAC GCG CTC GAC CCG AGC GAC	2217

Ala Trp Ser Asp Leu Cys Pro Thr Tyr Asp Ala Leu Asp Pro Ser Asp 500 505 510	
CAG TAAATGGCTT GCGCCGGTCG ATGATAGGAT ATGGACGGTG AGTTCGCACT Gln 515	2270
TGCAATACGG ACTCTCGCCT CATTATGGTT ACACACTCGC TCTGGATCTC TCGCCTGTCG	2330
ACAGAACAAA CTTGTATAAT TCGCTTAATG GTTGAAACAA ATGGAATATT GGGGTACTAT	2390
GCACGCATCT CGCTGGGTGA GCTTTCGT	2418
(2) INFORMATION FOR SEQ ID NO: 2:	

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 520 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Polyporus pinsitus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ser Arg Phe His Ser Leu Leu Ala Phe Val Val Ala Ser Leu Thr

Ala Val Ala His Ala Gly Ile Gly Pro Val Ala Asp Leu Thr Ile Thr 20 25

Asn Ala Ala Val Ser Pro Asp Gly Phe Ser Arg Gln Ala Val Val

Asn Gly Gly Thr Pro Gly Pro Leu Ile Thr Gly Asn Met Gly Asp Arg 50 60

Phe Gln Leu Asn Val Ile Asp Asn Leu Thr Asn His Thr Met Val Lys 65 70 75 80

Ser Thr Ser Ile His Trp His Gly Phe Phe Gln Lys Gly Thr Asn Trp

Ala Asp Gly Pro Ala Phe Ile Asn Gln Cys Pro Ile Ser Ser Gly His

Ser Phe Leu Tyr Asp Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp

Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro

Phe Val Val Tyr Asp Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val

Asp Asn Asp Asp Thr Val Ile Thr Leu Val Asp Trp Tyr His Val Ala

Ala Lys Leu Gly Pro Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile 185

Asn Gly Lys Gly Arg Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val 200

Ile Ser Val Thr Pro Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu

210 215 220

Ser Cys Asp Pro Asn Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr 225 230 235 240 Ile Ile Glu Thr Asp Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser 245 250 255 Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn 275 280 285 Val Gly Phe Thr Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly 290 295 300 Ala Ala Ala Val Glu Pro Thr Thr Thr Gln Thr Thr Ser Thr Ala Pro Leu Asn Glu Val Asn Leu His Pro Leu Val Thr Thr Ala Val Pro Gly Ser Pro Val Ala Gly Gly Val Asp Leu Ala Ile Asn Met Ala Phe Asn Phe Asn Gly Thr Asn Phe Phe Ile Asn Gly Thr Ser Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln Ile Ile Ser Gly Ala Gln Asn Ala Gln Asp Leu Leu Pro Ser Gly Ser Val Tyr Ser Leu Pro Ser Asn Ala Asp Ile Glu Ile Ser Phe Pro Ala Thr Ala Ala Ala Pro Gly Ala Pro His Pro Phe His Leu His Gly His Ala Phe Ala Val Val Arg Ser Ala Gly Ser Thr Val Tyr Asn Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser Thr Gly Thr Pro Ala Ala Gly Asp Asn Val Thr Ile Arg Phe Arg Thr 450 460 Asp Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu 465 470 475 Glu Ala Gly Phe Ala Val Val Phe Ala Glu Asp Ile Pro Asp Val Ala Ser Ala Asn Pro Val Pro Gln Ala Trp Ser Asp Leu Cys Pro Thr Tyr 500 505 510 Asp Ala Leu Asp Pro Ser Asp Gln

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2880 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:

515

(A) NAME/KEY: intron

•	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 837899	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 10141066	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 11331187	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 12841342	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 17521815	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 18731928	
<pre>(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 21362195</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: join(364543, 593661, 716835, 9001013, 10671132, 11881283, 13431498, 15541751, 18161872, 19292135, 21962489)	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 662715	
(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 14991553	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GCGGCGCACA AACCGTGGGA GCCAACACAC TCCCGTCCAC TCTCACACTG GCCAGATTCG	60
CGCGACCGCC GCCTTTCAGG CCCAAACAGA TCTGGCAGGT TTCGATGGCG CACGCCGCCG	120
TGCCTGCCGG ATTCAATTGT GCGCCAGTCG GGCATCCGGA TGGCTCTACC AGCGCGGTTG	180
ACTGGAAGAG AACACCGAGG TCATGCATTC TGGCCAAGTG CGGCCAAAGG ACCGCTCGCT	240
GGTGCGGATA CTTAAAGGGC GGCGCGGGGA GGCCTGTCTA CCAAGCTCAA GCTCGCCTTG	300
GGTTCCCAGT CTCCGCCACC CTCCTCTTCC CCCACACAGT CGCTCCATAG CACCGTCGGC	360
GCC ATG GGT CTG CAG CGA TTC AGC TTC TTC GTC ACC CTC GCG CTC GTC Met Gly Leu Gln Arg Phe Ser Phe Phe Val Thr Leu Ala Leu Val 1 5 10 15	408
GCT CGC TCT CTT GCA GCC ATC GGG CCG GTG GCG AGC CTC GTC GCG Ala Arg Ser Leu Ala Ala Ile Gly Pro Val Ala Ser Leu Val Val Ala 20 25 30	456
AAC GCC CCC GTC TCG CCC GAC GGC TTC CTT CGG GAT GCC ATC GTG GTC Asn Ala Pro Val Ser Pro Asp Gly Phe Leu Arg Asp Ala Ile Val Val 35	504.

(B) LOCATION: 544..592

AAC GGC GTG GTC CCT TCC CCG CTC ATC ACC GGG AAG AAG GTCGGCGTGT Asn Gly Val Val Pro Ser Pro Leu Ile Thr Gly Lys Lys 50 55 60	553
TCGTCGTCGT CCTACTCCTT TGCTGACAGC GATCTACAG GGA GAC CGC TTC CAG Gly Asp Arg Phe Gln 65	607
CTC AAC GTC GTC GAC ACC TTG ACC AAC CAC AGC ATG CTC AAG TCC ACT Leu Asn Val Val Asp Thr Leu Thr Asn His Ser Met Leu Lys Ser Thr 70 75 80	655
AGT ATC GTAAGTGTGA CGATCCGAAT GTGACATCAA TCGGGGCTAA TTAACCGCGC Ser Ile	711
ACAG CAC TGG CAC GGC TTC TTC CAG GCA GGC ACC AAC TGG GCA GAA GGA His Trp His Gly Phe Phe Gln Ala Gly Thr Asn Trp Ala Glu Gly 85 90 95	760
CCC GCG TTC GTC AAC CAG TGC CCT ATT GCT TCC GGG CAT TCA TTC CTG Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His Ser Phe Leu 100 105 110	808
TAC GAC TTC CAT GTG CCC GAC CAG GCA GTAAGCAGGA TTTTCTGGGG Tyr Asp Phe His Val Pro Asp Gln Ala 115 120	855
TCCCCGTGTG ATGCAATGTT CTCATGCTCC GACGTGATCG ACAG GGG ACG TTC TGG Gly Thr Phe Trp 125	911
TAC CAC AGT CAT CTG TCT ACG CAG TAC TGT GAC GGG CTG CGG GGG CCG Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro 130 135 140	959
TTC GTC GTG TAC GAC CCC AAG GAC CCG CAC GCC AGC CGT TAC GAT GTT Phe Val Val Tyr Asp Pro Lys Asp Pro His Ala Ser Arg Tyr Asp Val 145 150 155	1007
GAC AAT GTACGTGCGC CACGGAGTAT ATCACACAGC ATGCGTTGAC GTCGGGCCAA Asp Asn 160	1063
CAG GAG AGC ACG GTC ATC ACG TTG ACC GAC TGG TAC CAC ACC GCT GCC Glu Ser Thr Val Ile Thr Leu Thr Asp Trp Tyr His Thr Ala Ala 165 170 175	1111
CGG CTC GGT CCC AAG TTC CCA GTAAGCTCGC AATGGCTTAG TGTTCACAGG Arg Leu Gly Pro Lys Phe Pro 180	1162
TTCTTTGCTT ATGTTGCTTC GATAG CTC GGC GCG GAC GCC ACG CTC ATC AAC Leu Gly Ala Asp Ala Thr Leu Ile Asn 185 190	1214
GGT CTG GGG CGG TCG GCC TCG ACT CCC ACC GCT GCG CTT GCC GTG ATC Gly Leu Gly Arg Ser Ala Ser Thr Pro Thr Ala Ala Leu Ala Val Ile 195 200 205	1262
AAC GTC CAG CAC GGA AAG CGC GTGAGCATTC TCTTGTATGC CATTTCAATG Asn Val Gln His Gly Lys Arg 210 215	1313
CTTTGTGCTG ACCTATCGGA ACCGCGCAG TAC CGC TTC CGT CTC GTT TCG ATC Tyr Arg Phe Arg Leu Val Ser Ile 220	1366

Ser Cys Asp Pro Asn Tyr Thr Phe Ser Ile Asp Gly His Asn Leu Thr 225 230 235	1414
GTC ATC GAG GTC GAC GGC ATC AAT AGC CAG CCT CTC CTT GTC GAC TCT Val Ile Glu Val Asp Gly Ile Asn Ser Gln Pro Leu Leu Val Asp Ser 240 255	1462
ATC CAG ATC TTC GCC GCA CAG CGC TAC TCC TTC GTG GTAAGTCCTG Ile Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val 260 265	1508
GCTTGTCGAT GCTCCAAAGT GGCCTCACTC ATATACTTTC GTTAG TTG AAT GCG Leu Asn Ala 270	1562
AAT CAA ACG GTG GGC AAC TAC TGG GTT CGT GCG AAC CCG AAC TTC GGA Asn Gln Thr Val Gly Asn Tyr Trp Val Arg Ala Asn Pro Asn Phe Gly 275 280 285	1610
ACG GTT GGG TTC GCC GGG GGG ATC AAC TCC GCC ATC TTG CGC TAC CAG Thr Val Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr Gln 290 295 300	1658
GGC GCA CCG GTC GCC GAG CCT ACC ACG ACC CAG ACG CCG TCG GTG ATC Gly Ala Pro Val Ala Glu Pro Thr Thr Thr Gln Thr Pro Ser Val Ile 305	1706
CCG CTC ATC GAG ACG AAC TTG CAC CCG CTC GCG CGC ATG CCA GTG Pro Leu Ile Glu Thr Asn Leu His Pro Leu Ala Arg Met Pro Val 320 325 330	1751
GTATGTCTCT TTTTCTGATC ATCTGAGTTG CCCGTTGTTG ACCGCATTAT GTGTTACTAT	1811
CTAG CCT GGC AGC CCG ACA CCC GGG GGC GTC GAC AAG GCG CTC AAC CTC Pro Gly Ser Pro Thr Pro Gly Gly Val Asp Lys Ala Leu Asn Leu	1860
335 340 345	
	1912
335 340 345 GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe	1912 1961
335 340 345 GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe 350 TCATACGGTG CTTCAG AAC GGC ACC AAC TTC TTC ATC AAC AAC GCG ACT Asn Gly Thr Asn Phe Phe Ile Asn Asn Ala Thr	
GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe 350 TCATACGGTG CTTCAG AAC GGC ACC AAC TTC TTC ATC AAC AAC GCG ACT Asn Gly Thr Asn Phe Phe Ile Asn Asn Ala Thr 355 TTC ACG CCG CCG ACC GTC CCG GTA CTC CTC CAG ATT CTG AGC GGT GCG Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala	1961
GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe 350 TCATACGGTG CTTCAG AAC GGC ACC AAC TTC TTC ATC AAC AAC GCG ACT Asn Gly Thr Asn Phe Phe Ile Asn Asn Ala Thr 355 TTC ACG CCG CCG ACC GTC CCG GTA CTC CTC CAG ATT CTG AGC GGT GCG Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala 365 CAG ACC GCA CAA GAC CTG CTC CCC GCA GGC TCT GTC TAC CCG CTC CCG Gln Thr Ala Gln Asp Leu Leu Pro Ala Gly Ser Val Tyr Pro Leu Pro	1961 2009
GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe 350 TCATACGGTG CTTCAG AAC GGC ACC AAC TTC TTC ATC AAC AAC GCG ACT Asn Gly Thr Asn Phe Phe Ile Asn Asn Ala Thr 355 TTC ACG CCG CCG ACC GTC CCG GTA CTC CTC CAG ATT CTG AGC GGT GCG Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala 365 CAG ACC GCA CAA GAC CTG CTC CCC GCA GGC TCT GTC TAC CCG CTC CCG Gln Thr Ala Gln Asp Leu Leu Pro Ala Gly Ser Val Tyr Pro Leu Pro 380 GCC CAC TCC ACC ATC GAG ATC ACG CTG CCC GCG ACC GCC TTG GCC CCG Ala His Ser Thr Ile Glu Ile Thr Leu Pro Ala Thr Ala Leu Ala Pro	1961 2009
GCG TTT AAC TTC GTAAGTATCT CTACTACTTA GGCTGGAGGC TCGTCGCTGA Ala Phe Asn Phe 350 TCATACGGTG CTTCAG AAC GGC ACC AAC TTC TTC ATC AAC AAC GCG ACT Asn Gly Thr Asn Phe Phe Ile Asn Asn Ala Thr 355 TTC ACG CCG CCG ACC GTC CCG GTA CTC CTC CAG ATT CTG AGC GGT GCG Phe Thr Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala 365 CAG ACC GCA CAA GAC CTG CTC CCC GCA GGC TCT GTC TAC CCG CTC CCG Gln Thr Ala Gln Asp Leu Leu Pro Ala Gly Ser Val Tyr Pro Leu Pro 380 GCC CAC TCC ACC ATC GAG ATC ACG CTG CCC GCG ACC GCC TTG GCC CCG Ala His Ser Thr Ile Glu Ile Thr Leu Pro Ala Thr Ala Leu Ala Pro 400 GGT GCA CCG CAC CCC TTC CAC CTG CAC GGT GTATGTTCCC CTGCCTTCCC Gly Ala Pro His Pro Phe His Leu His Gly	1961 2009 2057 2105

CGC Arg	GAC Asp	GTC Val 445	GTG Val	AGC Ser	ACG Thr	GGC Gly	ACG Thr 450	CCC Pro	GCC Ala	GCG Ala	GGC Gly	GAC Asp 455	AAC Asn	GTC Val	ACG Thr		2306
ATC Ile	CGC Arg 460	TTC Phe	CAG Gln	ACG Thr	GAC Asp	AAC Asn 465	CCC Pro	GGG Gly	CCG Pro	TGG Trp	TTC Phe 470	CTC Leu	CAC His	TGC Cys	CAC His		2354
ATC Ile 475	GAC Asp	TTC Phe	CAC His	CTC Leu	GAC Asp 480	GCA Ala	GGC Gly	TTC Phe	GCG Ala	ATC Ile 485	GTG Val	TTC Phe	GCA Ala	GAG Glu	GAC Asp 490		2402
GTT Val	GCG Ala	GAC Asp	GTG Val	AAG Lys 495	GCG Ala	GCG Ala	AAC Asn	CCG Pro	GTT Val 500	CCG Pro	AAG Lys	GCG Ala	TGG Trp	TCG Ser 505	GAC Asp		2450
CTG Leu	TGC Cys	CCG Pro	ATC Ile 510	TAC Tyr	GAC Asp	GGG Gly	CTG Leu	AGC Ser 515	GAG Glu	GCT Ala	AAC Asn	CAG Gln	TGA	GCGG?	AGG		2499
GCG!	rggt	TT (GAGC	STAA	AG C	rcgg	CGTC	GAG	CTG	GGG	GTT	GAAGO	STG :	TTCT(SATTGA	1	2559
AAT	GTC:	rrr (GGT"	TAT'	rT G	rtgt:	TATTO	TAI	ACTC	GTT	CTCT	CACGO	CAA	GGAC	CGAGGA	1	2619
TTG	rata(GA S	rgaa(GTAA(T T	CCT	AATGI	r atr	ratg/	TAT	CAAT	TGAC	CGG 2	AGGC?	ATGGAC	:	2679
TGC	GAAG!	rgt (GTAC	AATG'	rg g	ragt(GTCI	r Ago	CCT	rgga	GAC	AGCT	CT (GGAT'	TTTCI	•	2739
TGG	GGA!	rga z	AGAG	CGT	GA A	GCT	GAGAC	G CT	ATGC	IATG	CCTA	AGTG#	ACG !	IGGT	TATAGI		2799
AAA!	rgrc	CAT 1	TACA!	ITGA(CC A	AGAA	CGAC	A AG	AACC	AATA	GCT	rgcTc	GAG (GATAC	SATGGG	}	2859
GGC	GCGT(CCG (CGAA	CGAC'	TT G												2880

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 519 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Gly Leu Gln Arg Phe Ser Phe Phe Val Thr Leu Ala Leu Val Ala 10 15

Arg Ser Leu Ala Ala Ile Gly Pro Val Ala Ser Leu Val Val Ala Asn

Ala Pro Val Ser Pro Asp Gly Phe Leu Arg Asp Ala Ile Val Val Asn

Gly Val Val Pro Ser Pro Leu Ile Thr Gly Lys Lys Gly Asp Arg Phe 50 60

Gln Leu Asn Val Val Asp Thr Leu Thr Asn His Ser Met Leu Lys Ser 65 70 75 80

Thr Ser Ile His Trp His Gly Phe Phe Gln Ala Gly Thr Asn Trp Ala 85 90 95

Glu Gly Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His Ser 100 105 110

Phe Leu Tyr Asp Phe His Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr 120

His	Ser 130	His	Leu	Ser	Thr	Gln 135		Cys	Asp	Gly	Leu 140		g Gly	Pro	Phe
Val 145	Val	Tyr	Asp	Pro	Lys 150		Pro	His	Ala	Ser 155		туг	Asp	Val	. Asp 160
Asn	Glu	Ser	Thr	Val 165		Thr	Leu	Thr	Asp 170		Tyr	His	Thr	175	Ala
Arg	Leu	Gly	Pro 180	Lys	Phe	Pro	Leu	Gly 185		Asp	Ala	Thr	Leu 190		. Asn
Gly	Leu	Gly 195	Arg	Ser	Ala	Ser	Thr 200		Thr	Ala	Ala	Leu 205		Val	Ile
Asn	Val 210	Gln	His	Gly	Lys	Arg 215	Tyr	Arg	Phe	Arg	Leu 220		Ser	Ile	Ser
Cys 225	Asp	Pro	Asn	Tyr	Thr 230	Phe	Ser	Ile	Asp	Gly 235	His	Asn	Leu	Thr	Val 240
Ile	Glu	Val	Asp	Gly 245	Ile	Asn	Ser	Gln	Pro 250	Leu	Leu	Val	Asp	Ser 255	Ile
Gln	Ile	Phe	Ala 260	Ala	Gln	Arg	Tyr	Ser 265	Phe	Val	Leu	Asn	Ala 270		Gln
Thr	Val	Gly 275	Asn	Tyr	Trp	Val	Arg 280	Ala	Asn	Pro	Asn	Phe 285		Thr	Val
Gly	Phe 290	Ala	Gly	Gly	Ile	Asn 295	Ser	Ala	Ile	Leu	Arg 300	Tyr	Gln	Gly	Ala
Pro 305	Val	Ala	Glu	Pro	Thr 310	Thr	Thr	Gln	Thr	Pro 315	Ser	Val	Ile	Pro	Leu 320
Ile	Glu	Thr	Asn	Leu 325	His	Pro	Leu	Ala	Arg 330	Met	Pro	Val	Pro	Gly 335	Ser
Pro	Thr	Pro	Gly 340	Gly	Val	Asp	Lys	Ala 345	Leu	Asn	Leu	Ala	Phe 350	Asn	Phe
Asn	Gly	Thr 355	Asn	Phe	Phe	Ile	Asn 360	Asn	Ala	Thr	Phe	Thr 365	Pro	Pro	Thr
Val	Pro 370	Val	Leu	Leu	Gln	Ile 375	Leu	Ser	Gly	Ala	Gln 380	Thr	Ala	Gln	Asp
Leu 385	Leu	Pro	Ala	Gly	Ser 390	Val	Tyr	Pro	Leu	Pro 395	Ala	His	Ser	Thr	Ile 400
Glu	Ile	Thr	Leu	Pro 405	Ala	Thr	Ala	Leu	Ala 410	Pro	Gly	Ala	Pro	His 415	Pro
Phe	His	Leu	His 420	Gly	His	Ala	Phe	Ala 425	Val	Val	Arg	Ser	Ala 430	Gly	Ser
Thr	Thr	Tyr 435	Asn	Tyr	Asn	Asp	Pro 440	Ile	Phe	Arg	Asp	Val 445	Val	Ser	Thr
Gly	Thr 450	Pro	Ala	Ala	Gly	Asp 455	Asn	Val	Thr	Ile	Arg 460	Phe	Gln	Thr	Asp
Asn 465	Pro	Gly	Pro	Trp	Phe 470	Leu	His	Сув	His	Ile 475	Asp	Phe	His	Leu	Asp 480
Ala	Gly	Phe	Ala	Ile 485	Val	Phe	Ala	Glu	Asp 490	Val	Ala	Asp	Val	Lys 495	Ala

Ala Asn Pro Val Pro Lys Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp 505 510

Gly Leu Ser Glu Ala Asn Gln 515

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3102 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Polyporus pinsitus
 - (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 666..720
 - (ix) FEATURE:

 - (A) NAME/KEY: intron (B) LOCATION: 790..845
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 1125..1182
 - (ix) FEATURE:

 - (A) NAME/KEY: intron (B) LOCATION: 1390..1450
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 1607..1661
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 1863..1918
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 1976..2025
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 2227..2285
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 2403..2458
 - (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 2576..2627
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join (665..721, 789..846, 1124..1183, 1389..1451, 1606..1662, 1862..1919, 1975..2026, 2226..2286, 2402..2459, 2575..2628).
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTCTCTATCC AAGCTGTCCA TAAGAAGACG TTCAAATGCC GCAGCAAGCG AGGAAATAAG	120
CATCTAACAG TGTTTTTCCC ATAGTCGCAT TTGCGCCGCC TGTCGGACCG ACGCCCCTAG	180
AGCGCTTTGG GAAACGTCGC AAGTGGCGGG TGTTATTCGT GTAGACGAGA CGGTATTTGT	240
CTCATCATTC CCGTGCTTCA GGTTGACACA GCCCAAAGGT CTATGTACGG CCCTTCACAT	300
TCCCTGACAC ATTGACGCAA CCCTCGGTGC GCCTCCGACA GTGCCTCGGT TGTAGTATCG	360
GGACGCCCTA GGATGCAAGA TTGGAAGTCA CCAAGGCCCG AAGGGTATAA AATACCGAGA	420
GGTCCTACCA CTTCTGCATC TCCAGTCGCA GAGTTCCTCT CCCTTGCCAG CCACAGCTCG	480
AG ATG TCC TTC TCT AGC CTT CGC CGT GCC TTG GTC TTC CTG GGT GCT Met Ser Phe Ser Ser Leu Arg Arg Ala Leu Val Phe Leu Gly Ala 1 5 10 15	527
TGC AGC AGT GCG CTG GCC TCC ATC GGC CCA GTC ACT GAG CTC GAC ATC Cys Ser Ser Ala Leu Ala Ser Ile Gly Pro Val Thr Glu Leu Asp Ile 20 25 30	575
GTT AAC AAG GTC ATC GCC CCG GAT GGC GTC GCT CGT GAT ACA GTC CTC Val Asn Lys Val Ile Ala Pro Asp Gly Val Ala Arg Asp Thr Val Leu 35 40 45	623
GCC GGG GGC ACG TTC CCG GGC CCA CTC ATC ACA GGA AAG AAG Ala Gly Gly Thr Phe Pro Gly Pro Leu Ile Thr Gly Lys Lys 50 55 60	665
GTATGCTAAG TAGTCCCGCC CCCATCATCC TGTGGCTGAC GTTCGACGCC GCCAG	720
GGT GAC AAC TTC CGC ATC AAC GTC GTC GAC AAG TTG GTT AAC CAG ACT Gly Asp Asn Phe Arg Ile Asn Val Val Asp Lys Leu Val Asn Gln Thr 65 70 75	768
ATG CTG ACA TCC ACC ACC ATT GTATGTCACT AGCTCTCGCT ATCTCGAGAC Met Leu Thr Ser Thr Thr Ile 80	819
CCGCTGACCG ACAACATTTG CCGTAG CAC TGG CAC GGG ATG TTC CAG CAT His Trp His Gly Met Phe Gln His 85	859
ACG ACG AAC TGG GCG GAT GGT CCC GCC TTT GTG ACT CAA TGC CCT ATC Thr Thr Asn Trp Ala Asp Gly Pro Ala Phe Val Thr Gln Cys Pro Ile 95 100 105	917
ACC ACT GGT GAT GAT TTC CTG TAC AAC TTC CGC GTG CCC GAC CAG ACA Thr Thr Gly Asp Asp Phe Leu Tyr Asn Phe Arg Val Pro Asp Gln Thr 110 115 120	965
GTACGCAAAG GGCAGCATGC GTACTCAAAG ACATCTCTAA GCATTTGCTA CCTAG	1020
GGA ACG TAC TGG TAC CAT AGC CAT CTG GCC TTG CAG TAC TGT GAT GGG Gly Thr Tyr Trp Tyr His Ser His Leu Ala Leu Gln Tyr Cys Asp Gly 125 130 135 140	1068
CTT CGC GGC CCC CTG GTG ATT TAC GAT CCC CAT GAT CCG CAG GCA TAC Leu Arg Gly Pro Leu Val Ile Tyr Asp Pro His Asp Pro Gln Ala Tyr 145 150 155	1116
CTG TAT GAC GTC GAT GAC GTACGCAGCA CAGTTTCCCT AAAACGGTTA Leu Tyr Asp Val Asp Asp 160	1164
ACTTCTAATT CTGTAAATAT CTTCATAG GAG AGC ACC GTT ATC ACT CTG Glu Ser Thr Val Ile Thr Leu 165	1213

GCA GAC TGG TAC CAT ACC CCG GCG CCT CTG CTG CCG CCT GCC GCG Ala Asp Trp Tyr His Thr Pro Ala Pro Leu Leu Pro Pro Ala Ala 170 180	1258
GTACGCCTCC ACACATCTGC ACAGCGTTCC GTATCTCATA CCCTTAAAGT TTATCGGACA	1318
ACT TTG ATT AAT GGC CTG GGT CGC TGG CCT GGC AAC CCC ACC GCC GAC Thr Leu Ile Asn Gly Leu Gly Arg Trp Pro Gly Asn Pro Thr Ala Asp 185 190 195 200	1366
CTA GCC GTC ATC GAA GTC CAG CAC GGA AAG CGC GTATGTCATA GCTCGGTTAT Leu Ala Val Ile Glu Val Gln His Gly Lys Arg 205 210	1419
CTATTCATAC TCGCGGCCTC GAAGCTAAAA CCTTGTTCCA G TAC CGG TTC CGA Tyr Arg Phe Arg 215	1472
CTG GTC AGC ACC TCA TGC GAC CCC AAC TAC AAC TTC ACT ATC GAT GGC Leu Val Ser Thr Ser Cys Asp Pro Asn Tyr Asn Phe Thr Ile Asp Gly 220 225	1520
CAC ACC ATG ACA ATC ATC GAG GCG GAT GGG CAG AAC ACC CAG CCA CAC His Thr Met Thr Ile Ile Glu Ala Asp Gly Gln Asn Thr Gln Pro His 235 240 245	1568
CAA GTC GAC GGA CTT CAG ATC TTC GCG GCA CAG CGG TAC TCC TTC GTT Gln Val Asp Gly Leu Gln Ile Phe Ala Ala Gln Arg Tyr Ser Phe Val 250 260	1616
GTATGTTTC CGCATTCGG GAAAAGGAAT TGCGCTGACA GCTCGAGTGT GCGTAG	1672
CTT AAC GCT AAC CAA GCG GTC AAC AAC TAC TGG ATC CGT GCG AAC CCT Leu Asn Ala Asn Gln Ala Val Asn Asn Tyr Trp Ile Arg Ala Asn Pro 265 270 275	1720
AAC CGT GCT AAC ACT ACG GGC TTC GCC AAC GGC ATC AAC TCC GCC ATC Asn Arg Ala Asn Thr Thr Gly Phe Ala Asn Gly Ile Asn Ser Ala Ile 280 295	1768
CTG CGC TAC AAG GGG GCG CCG ATT AAG GAG CCT ACG ACG AAC CAG ACT Leu Arg Tyr Lys Gly Ala Pro Ile Lys Glu Pro Thr Thr Asn Gln Thr 300 305 310	1816
ACC ATC CGG AAC TTT TTG TGG GAG ACG GAC TTG CAC CCG CTC ACT GAC Thr Ile Arg Asn Phe Leu Trp Glu Thr Asp Leu His Pro Leu Thr Asp 315 320 325	1864
CCA CGT GCA GTAAGTTCTA CACAGTCACC AACGGTGAGC TGTTGTCTGA Pro Arg Ala 330	1913
TTGCACTGTG TTATAG CCT GGC CTT CCT TTC AAG GGG GGC GTT GAC CAC Pro Gly Leu Pro Phe Lys Gly Gly Val Asp His 335 340	1962
GCT TTG AAC CTC AAC CTC ACT TTC GTACGTAGCG CCTCAGATAT CGAGTAGTCT Ala Leu Asn Leu Asn Leu Thr Phe 345	2016
ATCTCCTGAC CGATTGACAG AAT GGA TCG GAG TTC TTC ATC AAC GAT GCG Asn Gly Ser Glu Phe Phe Ile Asn Asp Ala 350 355	2066
CCT TTC GTC CCT CCG ACT GTC CCG GTG CTA CTG CAG ATC CTG AAC GGA Pro Phe Val Pro Pro Thr Val Pro Val Leu Gln Ile Leu Asn Gly 360 365 370 375	2114

ACG CTC GAC GCG AAC GAC CTC CTG CCG CCC GGC AGC GTC TAC AAC CTT Thr Leu Asp Ala Asn Asp Leu Leu Pro Pro Gly Ser Val Tyr Asn Leu 380 385 390	2162
CCT CCG GAC TCC ACC ATC GAG CTG TCC ATT CCC GGA GGT GTG ACG GGT Pro Pro Asp Ser Thr Ile Glu Leu Ser Ile Pro Gly Gly Val Thr Gly 395 400 405	
GGC CCG CAC CCA TTC CAT TTG CAC GGG GTAATAATCT CTCTTTATAC Gly Pro His Pro Phe His Leu His Gly 410 415	2257
TTTGGTCTCC CGATGCTGAC TTTCACTGCT CATCTTCAG CAC GCT TTC TCC GTC His Ala Phe Ser Val 420	2311
GTG CGT AGC GCC GGC AGC ACC GAA TAC AAC TAC GCG AAC CCG GTG AAG Val Arg Ser Ala Gly Ser Thr Glu Tyr Asn Tyr Ala Asn Pro Val Lys 425 430 435	2359
CGC GAC ACG GTC AGC ATT GGT CTT GCG GGC GAC AAC GTC ACC GTG CGC Arg Asp Thr Val Ser Ile Gly Leu Ala Gly Asp Asn Val Thr Val Arg 440 445 450	2407
TTC GTG GTATGTTTTA CAGCCTCTCT ATCTCCGTGG GCGTTCGGAA GTTGACTGGG Phe Val 455	2463
GCGTAG ACC GAC AAC CCC GGC CCG TGG TTC CTC CAC TGT CAC ATC GAC Thr Asp Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp 460 465	2511
TTC CAT TTG CAA GCA GGC CTC GCC ATC GTG TTC GCG GAG GAC GCG CAG Phe His Leu Gln Ala Gly Leu Ala Ile Val Phe Ala Glu Asp Ala Gln 475 480 485	2559
GAC ACG AAG CTT GTG AAC CCC GTC CCT GTACGTCTTC TGGATGCATG Asp Thr Lys Leu Val Asn Pro Val Pro 490	2606
CGCTCCGCAC AGTGACTCAT CTTTTGCAAC AG GAG GAC TGG AAC AAG CTG TGC Glu Asp Trp Asn Lys Leu Cys 495	2659
CCC ACC TTC GAT AAG GCG ATG AAC ATC ACG GTT TGAGCGATGC Pro Thr Phe Asp Lys Ala Met Asn Ile Thr Val 505 510	2702
GTGGCGCTCA TGGTCATTTT CTTGGAATCT TTGCATAGGG CTGCAGCACG CTGGATACT	C 2762
TTTCCCTTAG CAGGATATTA TTTAATGACC CCTGCGTTTA GTGCTTAGTT AGCTTTACT	A 2822
CTGGTTGTAA TGTACGCAGC ATGCGTAATT CGGATAATGC TATCAATGTG TATATTATG	A 2882
CACGCGTCAT GCGCGATGCT TGAGTTGCAA GGTCGGTTTC CGATGCTCGA CATAAACGT	T 2942
TCACTTACAT ACACATTGGG TCTAGAACTG GATCTATCCA TGTATACAAA AACTCCTCA	AT 3002
ACAGCTGACT GGGGCGCTCT AGAGCATGGG TCCGATTGAT CAGATGTCGC GAACACGAG	3062
CTCCTGAGCT CGAGGACTCT GAGAAGCGGC GGTGCGTTCT	3102

(2) INFORMATION FOR SEQ ID NO: 6

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Polyporus pinsitus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Ser Phe Ser Ser Leu Arg Arg Ala Leu Val Phe Leu Gly Ala Cys
1 10 15

Ser Ser Ala Leu Ala Ser'Ile Gly Pro Val Thr Glu Leu Asp Ile Val 20 25 30

Asn Lys Val Ile Ala Pro Asp Gly Val Ala Arg Asp Thr Val Leu Ala 35 40 45

Gly Gly Thr Phe Pro Gly Pro Leu Ile Thr Gly Lys Lys Gly Asp Asn 50 60

Phe Arg Ile Asn Val Val Asp Lys Leu Val Asn Gln Thr Met Leu Thr 65 70 75 80

Ser Thr Thr Ile His Trp His Gly Met Phe Gln His Thr Thr Asn Trp 85 90 95

Ala Asp Gly Pro Ala Phe Val Thr Gln Cys Pro Ile Thr Thr Gly Asp 100 105 110

Asp Phe Leu Tyr Asn Phe Arg Val Pro Asp Gln Thr Gly Thr Tyr Trp 115 120 125

Tyr His Ser His Leu Ala Leu Gln Tyr Cys Asp Gly Leu Arg Gly Pro 130 135 140

Leu Val Ile Tyr Asp Pro His Asp Pro Gln Ala Tyr Leu Tyr Asp Val 145 150 155 160

Asp Asp Glu Ser Thr Val Ile Thr Leu Ala Asp Trp Tyr His Thr Pro 165 170 175

Ala Pro Leu Leu Pro Pro Ala Ala Thr Leu Ile Asn Gly Leu Gly Arg 180 185 190

Trp Pro Gly Asn Pro Thr Ala Asp Leu Ala Val Ile Glu Val Gln His 195 200 205

Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Thr Ser Cys Asp Pro Asn 210 215 220

Tyr Asn Phe Thr Ile Asp Gly His Thr Met Thr Ile Ile Glu Ala Asp 225 230 240

Gly Gln Asn Thr Gln Pro His Gln Val Asp Gly Leu Gln Ile Phe Ala 245 250 255

Ala Gln Arg Tyr Ser Phe Val Leu Asn Ala Asn Gln Ala Val Asn Asn 260 265 270

Tyr Trp Ile Arg Ala Asn Pro Asn Arg Ala Asn Thr Thr Gly Phe Ala 275 280 285

Asn Gly Ile Asn Ser Ala Ile Leu Arg Tyr Lys Gly Ala Pro Ile Lys 290 295 300

Glu Pro Thr Thr Asn Gln Thr Thr Ile Arg Asn Phe Leu Trp Glu Thr 305 310 315 320

Asp Leu His Pro Leu Thr Asp Pro Arg Ala Pro Gly Leu Pro Phe Lys

Gly Gly Val Asp His Ala Leu Asn Leu Asn Leu Thr Phe Asn Gly Ser

Glu Phe Phe Ile Asn Asp Ala Pro Phe Val Pro Pro Thr Val Pro Val

Leu Leu Gln Ile Leu Asn Gly Thr Leu Asp Ala Asn Asp Leu Leu Pro

Pro Gly Ser Val Tyr Asn Leu Pro Pro Asp Ser Thr Ile Glu Leu Ser

Ile Pro Gly Gly Val Thr Gly Gly Pro His Pro Phe His Leu His Gly 410

His Ala Phe Ser Val Val Arg Ser Ala Gly Ser Thr Glu Tyr Asn Tyr

Ala Asn Pro Val Lys Arg Asp Thr Val Ser Ile Gly Leu Ala Gly Asp

Asn Val Thr Val Arg Phe Val Thr Asp Asn Pro Gly Pro Trp Phe Leu

His Cys His Ile Asp Phe His Leu Gln Ala Gly Leu Ala Ile Val Phe

Ala Glu Asp Ala Gln Asp Thr Lys Leu Val Asn Pro Val Pro Glu Asp 490

Trp Asn Lys Leu Cys Pro Thr Phe Asp Lys Ala Met Asn Ile Thr Val 505

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2860 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:

 - (A) NAME/KEY: intron (B) LOCATION: 851..905
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1266..1320
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1351..1376
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1416..1468
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 1625..1683
- (ix) FEATURE:

 - (A) NAME/KEY: intron
 (B) LOCATION: 1882..1934

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 2202..2252

(ix) FEATURE:
(A) NAME/KEY: intron
(B) LOCATION: 2370..2425

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 2543..2599

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: join(540..725, 782..850, 906..1025, 1086..1265, 1321..1350, 1377..1415, 1469..1624, 1684..1881, 1935..2201, 2253..2369, 2426..2542, 2600..2653)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGGGGGCGCG TCAATGGTCC GTTTGCGAAC ACATATGCAG GATAAACAGT GCGAAATATC	60
AATGTGGCGG CGACACAACC TCGCCGGCCG ACACTCGACG CTGTTGATCA TGATCATGTC	120
TTGTGAGCAT TCTATACGCA GCCTTGGAAA TCTCAGGCGA ATTTGTCTGA ATTGCGCTGG	180
GAGGCTGGCA GCGCAGATCG GTGTGTCGGT GCAGTAGCCG ACGCAGCACC TGGCGGAAGC	240
CGACATCTCG GGTACGACTT GATCTCCGCC AGATCACTGC GGTTCCGCCA TCGGCCGCGG	300
GGCCCATTCT GTGTGCGC TGTAGCACTC TGCATTCAGG CTCAACGTAT CCATGCTAGA	360
GGACCGTCCA GCTGTTGGCG CACGATTCGC GCAGAAAGCT GTACAGGCAG ATATAAGGAT	420
GTCCGTCCGT CAGAGACTCG TCACTCACAA GCCTCTTTTC CTCTTCGCCT TTCCAGCCTC	480
TTCCAACGCC TGCCATCGTC CTCTTAGTTC GCTCGTCCAT TCTTTCTGCG TAGTTAATC	539
ATG GGC AGG TTC TCA TCT CTC TGC GCG CTC ACC GCC GTC ATC CAC TCT Met Gly Arg Phe Ser Ser Leu Cys Ala Leu Thr Ala Val Ile His Ser 1 5 15	587
TTT GGT CGT GTC TCC GCC GCT ATC GGG CCT GTG ACC GAC CTC ACC ATC Phe Gly Arg Val Ser Ala Ala Ile Gly Pro Val Thr Asp Leu Thr Ile 20 25 30	635
TCC AAT GGG GAC GTT TCT CCC GAC GGC TTC ACT CGT GCC GCA GTG CTT Ser Asn Gly Asp Val Ser Pro Asp Gly Phe Thr Arg Ala Ala Val Leu 35 40 45	683
GCA AAC GGC GTC TTC CCG GGT CCT CTT ATC ACG GGA AAC AAG Ala Asn Gly Val Phe Pro Gly Pro Leu Ile Thr Gly Asn Lys 50 55 60	725
GTACGTGGCA TGCGTTCAGT CTACACCCTA CAAGCCTTCT AACTCTTTTA CCACAG	781
GGC GAC AAC TTC CAG ATC AAT GTT ATC GAC AAC CTC TCT AAC GAG ACG Gly Asp Asn Phe Gln Ile Asn Val Ile Asp Asn Leu Ser Asn Glu Thr 65	829
ATG TTG AAG TCG ACC TCC ATC GTATGTGCTT CTACTGCTTC TTAGTCTTGG Met Leu Lys Ser Thr Ser Ile . 80 85	880
CAATGGCTCA AGGTCTCCTC CGCAG CAT TGG CAC GGC TTC TTC CAG AAG GGT His Trp His Gly Phe Phe Gln Lys Gly 90	932
ACT AAC TGG GCT GAT GGA GCT GCC TTC GTC AAC CAG TGC CCT ATC GCG	980

95 100 105 110	
ACG GGG AAC TCT TTC CTT TAC GAC TTC ACC GCG ACG GAC CAA GCA Thr Gly Asn Ser Phe Leu Tyr Asp Phe Thr Ala Thr Asp Gln Ala 115 120 125	1025
GTCAGTGCCT GTGGCGCTTA TGTTTTCCCG TAATCAGCAG CTAACACTCC GCACCCACAG	1085
GGC ACC TTC TGG TAC CAC AGT CAC TTG TCT ACG CAG TAC TGC GAT GGT Gly Thr Phe Trp Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly 130 135 140	1133
TTG CGG GGC CCG ATG GTC GTA TAC GAC CCG AGT GAC CCG CAT GCG GAC Leu Arg Gly Pro Met Val Val Tyr Asp Pro Ser Asp Pro His Ala Asp 145	1181
CTT TAC GAC GTC GAC GAC GAG ACC ACG ATC ATC ACG CTC TCT GAT TGG Leu Tyr Asp Val Asp Asp Glu Thr Thr Ile Ile Thr Leu Ser Asp Trp 160 165 170	1229
TAT CAC ACC GCT GCT TCG CTC GGT GCC TTC CCG GTAAGTTTAC Tyr His Thr Ala Ala Ser Leu Gly Ala Ala Phe Pro 175 180 185	1275
CCCAGCGCAC GGAGTTAAGA CCGGATCTAA CTGTAATACG TTCAG ATT GGC TCG Ile Gly Ser	1329
GAC TCT ACC CTG ATT AAC GGC GTTGGCCGCT TCGCGGGTGG TGACAG ACT GAC Asp Ser Thr Leu Ile Asn Gly 190 195	1382
CTT GCG GTT ATC ACT GTC GAG CAG GGC AAG CGC GTTAGTGATA CCCTCTACAG Leu Ala Val Ile Thr Val Glu Gln Gly Lys Arg	1435
200 205	
200 205 TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 215	1489
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser	1489 1537
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 215 CTG TCT TGC GAC CCC AAC TAT GTC TTC TCC ATT GAC GGC CAC AAC ATG Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met	
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 CTG TCT TGC GAC CCC AAC TAT GTC TTC TCC ATT GAC GGC CAC AAC ATG Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met 220 ACC ATC ATC GAG GCC GAC GCC GTC AAC CAC GAG CCC CTC ACG GTT GAC Thr Ile Ile Glu Ala Asp Ala Val Asn His Glu Pro Leu Thr Val Asp	1537
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 CTG TCT TGC GAC CCC AAC TAT GTC TTC TCC ATT GAC GGC CAC AAC ATG Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met 220 ACC ATC ATC GAG GCC GAC GCC GTC AAC CAC GAG CCC CTC ACG GTT GAC Thr Ile Ile Glu Ala Asp Ala Val Asn His Glu Pro Leu Thr Val Asp 235 TCC ATC CAG ATC TAC GCC GGC CAA CGT TAC TCC TTC GTC GTACGTATTC Ser Ile Gln Ile Tyr Ala Gly Gln Arg Tyr Ser Phe Val	1537 1585
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 CTG TCT TGC GAC CCC AAC TAT GTC TTC TCC ATT GAC GGC CAC AAC ATG Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met 220 ACC ATC ATC GAG GCC GAC GCC GTC AAC CAC GAG CCC CTC ACG GTT GAC Thr Ile Ile Glu Ala Asp Ala Val Asn His Glu Pro Leu Thr Val Asp 235 TCC ATC CAG ATC TAC GCC GGC CAA CGT TAC TCC TTC GTC GTACGTATTC Ser Ile Gln Ile Tyr Ala Gly Gln Arg Tyr Ser Phe Val 250 CGAACAGCCA TGATCACGCC AAGCCCGATG CTAACGCGCC TACCCTCAG CTT ACC	1537 1585 1634
TTGACACTGT GCCATTGCTG ACAGTACTCT CAG TAC CGT ATG CGT CTT CTC TCG Tyr Arg Met Arg Leu Leu Ser 210 CTG TCT TGC GAC CCC AAC TAT GTC TTC TCC ATT GAC GGC CAC AAC ATG Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met 220 ACC ATC ATC GAG GCC GAC GCC GTC AAC CAC GAG CCC CTC ACG GTT GAC Thr Ile Ile Glu Ala Asp Ala Val Asn His Glu Pro Leu Thr Val Asp 235 TCC ATC CAG ATC TAC GCC GGC CAA CGT TAC TCC TTC GTC GTACGTATTC Ser Ile Gln Ile Tyr Ala Gly Gln Arg Tyr Ser Phe Val 250 CGAACAGCCA TGATCACGCC AAGCCCGATG CTAACGCGCC TACCCTCAG CTT ACC Leu Thr GCT GAC CAG GAC ATC GAC AAC TAC TTC ATC CGT GCC CTG CCC AGC GCC Ala Asp Gln Asp Ile Asp Asn Tyr Phe Ile Arg Ala Leu Pro Ser Ala	1537 1585 1634 1689

CTC CCC CTC GAC GAG GCG AAC CTC GTG CCC CTT GAC AGC CCC GCT GCT Leu Pro Leu Asp Glu Ala Asn Leu Val Pro Leu Asp Ser Pro Ala Ala 315 320 325	1881
GTACGTCGTA TTCTGCGCTT GCAAGGATCG CACATACTAA CATGCTCTTG TAG CCC Pro	1937
GGT GAC CCC AAC ATT GGC GGT GTC GAC TAC GCG CTG AAC TTG GAC TTC Gly Asp Pro Asn Ile Gly Gly Val Asp Tyr Ala Leu Asn Leu Asp Phe 330 340	1985
AAC TTC GAT GGC ACC AAC TTC TTC ATC AAC GAC GTC TCC TTC GTG TCC Asn Phe Asp Gly Thr Asn Phe Phe Ile Asn Asp Val Ser Phe Val Ser 345 350 355	2033
CCC ACG GTC CCT GTC CTC CAG ATT CTT AGC GGC ACC ACC TCC GCG Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Thr Thr Ser Ala 360 365 370 375	2081
GCC GAC CTT CTC CCC AGC GGT AGT CTC TTC GCG GTC CCG TCC AAC TCG Ala Asp Leu Leu Pro Ser Gly Ser Leu Phe Ala Val Pro Ser Asn Ser 380 385 390	2129
ACG ATC GAG ATC TCG TTC CCC ATC ACC GCG ACG AAC GCT CCC GGC GCG Thr Ile Glu Ile Ser Phe Pro Ile Thr Ala Thr Asn Ala Pro Gly Ala 395 400 405	2177
CCG CAT CCC TTC CAC TTG CAC GGT GTACGTGTCC CATCTCATAT GCTACGGAGC Pro His Pro Phe His Leu His Gly 410 415	2231
TCCACGCTGA CCGCCCTATA G CAC ACC TTC TCT ATC GTT CGT ACC GCC GGC His Thr Phe Ser Ile Val Arg Thr Ala Gly 420 425	2282
AGC ACG GAT ACG AAC TTC GTC AAC CCC GTC CGC CGC GAC GTC GTG AAC Ser Thr Asp Thr Asn Phe Val Asn Pro Val Arg Arg Asp Val Val Asn 430 435 440	2330
ACC GGT ACC GTC GGC GAC AAC GTC ACC ATC CGC TTC ACG GTACGCAGCA Thr Gly Thr Val Gly Asp Asn Val Thr Ile Arg Phe Thr 445 450	2379
CTCTCCTAAC ATTCCCACTG CGCGATCACT GACTCCTCGC CCACAG ACT GAC AAC Thr Asp Asn 455	2434
CCC GGC CCC TGG TTC CTC CAC TGC CAC ATC GAC TTC CAC TTG GAG GCC Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Phe His Leu Glu Ala 460 465 470	2482
GGT TTC GCC ATC GTC TTC AGC GAG GAC ACC GCC GAC GTC TCG AAC ACG Gly Phe Ala Ile Val Phe Ser Glu Asp Thr Ala Asp Val Ser Asn Thr 475 480 485	253 0
ACC ACG CCC TCG GTACGTTGTG CTCCCGTGCC CATCTCCGCG CGCCTGACTA Thr Thr Pro Ser 490	2582
ACGAGCACCC CTTACAG ACT GCT TGG GAA GAT CTG TGC CCC ACG TAC AAC Thr Ala Trp Glu Asp Leu Cys Pro Thr Tyr Asn 495 500	2632
GCT CTT GAC TCA TCC GAC CTC TAATCGGTTC AAAGGGTCGC TCGCTACCTT Ala Leu Asp Ser Ser Asp Leu 505 510	2683

AGTAGGTAGA	CTTATGCACC	GGACATTATC	TACAATGGAC	TTTAATTTGG	GTTAACGGCC	2743
GTTATACATA	CGCGCACGTA	GTATAAAGGT	TCTCTGGATT	GGTCGGACCT	ACAGACTGCA	2803
ATTTTCGTGA	CCTATCAACT	GTATATTGAA	GCACGACAGT	GAATGGAAAT	AGAGACA	2860

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 511 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Gly Arg Phe Ser Ser Leu Cys Ala Leu Thr Ala Val Ile His Ser Phe Gly Arg Val Ser Ala Ala Ile Gly Pro Val Thr Asp Leu Thr Ile 20 25 30 Ser Asn Gly Asp Val Ser Pro Asp Gly Phe Thr Arg Ala Ala Val Leu 35 Ala Asn Gly Val Phe Pro Gly Pro Leu Ile Thr Gly Asn Lys Gly Asp 50 60 Asn Phe Gln Ile Asn Val Ile Asp Asn Leu Ser Asn Glu Thr Met Leu 65 70 75 80 Lys Ser Thr Ser Ile His Trp His Gly Phe Phe Gln Lys Gly Thr Asn 85 90 Trp Ala Asp Gly Ala Ala Phe Val Asn Gln Cys Pro Ile Ala Thr Gly 105 Asn Ser Phe Leu Tyr Asp Phe Thr Ala Thr Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Met Val Val Tyr Asp Pro Ser Asp Pro His Ala Asp Leu Tyr Asp 145 150 155 160 Val Asp Asp Glu Thr Thr Ile Ile Thr Leu Ser Asp Trp Tyr His Thr Ala Ala Ser Leu Gly Ala Ala Phe Pro Ile Gly Ser Asp Ser Thr Leu 185 Ile Asn Gly Thr Asp Leu Ala Val Ile Thr Val Glu Gln Gly Lys Arg Tyr Arg Met Arg Leu Leu Ser Leu Ser Cys Asp Pro Asn Tyr Val Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Ala Asp Ala Val Asn His Glu Pro Leu Thr Val Asp Ser Ile Gln Ile Tyr Ala Gly Gln Arg 250

Tyr Ser Phe Val Leu Thr Ala Asp Gln Asp Ile Asp Asn Tyr Phe Ile 260 265 270 265

Arg Ala Leu Pro Ser Ala Gly Thr Thr Ser Phe Asp Gly Gly Ile Asn

Ser Ala Ile Leu Arg Tyr Ser Gly Ala Ser Glu Val Asp Pro Thr Thr

Thr Glu Thr Thr Ser Val Leu Pro Leu Asp Glu Ala Asn Leu Val Pro

Leu Asp Ser Pro Ala Ala Pro Gly Asp Pro Asn Ile Gly Gly Val Asp 325

Tyr Ala Leu Asn Leu Asp Phe Asn Phe Asp Gly Thr Asn Phe Phe Ile

Asn Asp Val Ser Phe Val Ser Pro Thr Val Pro Val Leu Leu Gln Ile

Leu Ser Gly Thr Thr Ser Ala Ala Asp Leu Leu Pro Ser Gly Ser Leu

Phe Ala Val Pro Ser Asn Ser Thr Ile Glu Ile Ser Phe Pro Ile Thr

Ala Thr Asn Ala Pro Gly Ala Pro His Pro Phe His Leu His Gly His

Thr Phe Ser Ile Val Arg Thr Ala Gly Ser Thr Asp Thr Asn Phe Val

Asn Pro Val Arg Arg Asp Val Val Asn Thr Gly Thr Val Gly Asp Asn

Val Thr Ile Arg Phe Thr Thr Asp Asn Pro Gly Pro Trp Phe Leu His 455

Cys His Ile Asp Phe His Leu Glu Ala Gly Phe Ala Ile Val Phe Ser

Glu Asp Thr Ala Asp Val Ser Asn Thr Thr Pro Ser Thr Ala Trp 490

Glu Asp Leu Cys Pro Thr Tyr Asn Ala Leu Asp Ser Ser Asp Leu 505 500

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2925 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Polyporus pinsitus
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 734..808
- (ix) FEATURE:
 - (A) NAME/KEY: intron
 - (B) LOCATION: 878..932
- (ix) FEATURE:
 - (A) NAME/KEY: intron

(B) LOCATION: 1051..1104

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 1219..1270

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 1336..1397

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 1713..7744

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 2030..2085

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 2308..2375

(ix) FEATURE:

(A) NAME/KEY: intron
(B) LOCATION: 2492..2569

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: join (733..809, 877..933, 1050..1105, 1218..1271, 1335..1398, 1712..1775, 2029..2086, 2307..2376, 2492..2570). 2542..2600).

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CTCATAACTC TTCGCTTCTA GCATGGGGGC TGCGCACACC TGACAGACCC TTCGGGAGGC	60
GAACTCGAAT GCAGCGTACT CTATCNCACC TCCAGGAAAG GTAGGGATGG ACNCCGTGCA	120
CCAACAACTG TCTCTCCACC AGCAACCATC CCTTGGATAT GTCTCCACAC ACCCGGTGTC	180
TACAAGCGGG GATCTGTGCT GGTGAAGTGC TGTCTCCGGA GCGGCGGCGG CGAGCGACCA	240
GAACCCGAAC CAGTGCTAGT GCCCGACACC CGCGAGACAA TTGTGCAGGG TGAGTTATAT	300
TCTTCGTGAG ACGGCGCTGC GCGTCGGCAC TGAAAGCGTC GCAGTTAGGT GATGCAGCGG	360
TCCGCGCTAT TTTTGACGTC TGGCAGCTAT CCTAAGCCGC GCCTCCATAC ACCCCAGGCG	420
CTCTCGTTTG CTATAGGTAT AAATCCCTCA GCTTCAGAGC GTCGATCCTC ATCCCACACG	480
ACACCCGTTT CAGTCTTCTC GTAGCGCATT CCCTAGCCGC CCAGCCTCCG CTTTCGTTTT	540
CAAC ATG GGC AAG TAT CAC TCT TTT GTG AAC GTC GTC GCC CTT AGT CTT Met Gly Lys Tyr His Ser Phe Val Asn Val Val Ala Leu Ser Leu 1 5	589
TCT TTG AGC GGT CGT GTG TTC GGC GCC ATT GGG CCC GTC ACC GAC TTG Ser Leu Ser Gly Arg Val Phe Gly Ala Ile Gly Pro Val Thr Asp Leu 20 30	637
ACT ATC TCT AAC GCC GAT GTT ACG CCT GAC GGC ATT ACT CGT GCT Thr Ile Ser Asn Ala Asp Val Thr Pro Asp Gly Ile Thr Arg Ala Ala 35	685
GTC CTC GCG GGC GGC GTT TTC CCC GGG CCC CTC ATT ACC GGC AAC AAG Val Leu Ala Gly Gly Val Phe Pro Gly Pro Leu Ile Thr Gly Asn Lys 50 55	733
GTGAGCCGCG AAACCTTCTA CTAGCGCGCT CGTACGGTGC ACCGTTACTG AAGCCACACT	793

TTGCGCTGTC AACAG GGG GAT GAA TTC CAG ATC AAT GTC ATC GAC AAC CTG Gly Asp Glu Phe Gln Ile Asn Val Ile Asp Asn Leu 65 70 75	844
ACC AAC GAG ACC ATG TTG AAG TCG ACC ACA ATC GTAAGGTGCT TGCTCCCATA Thr Asn Glu Thr Met Leu Lys Ser Thr Thr Ile 80 85	897
ATTAAGCCCG TCGCTGACTC GAAGTTTATC TGTAG CAC TGG CAT GGT ATC TTC His Trp His Gly Ile Phe 90	950
CAG GCC GGC ACC AAC TGG GCA GAC GGC GCG GCC TTC GTG AAC CAG TGC Gln Ala Gly Thr Asn Trp Ala Asp Gly Ala Ala Phe Val Asn Gln Cys 95 100 105	998
CCT ATC GCC ACG GGA AAC TCG TTC TTG TAC GAC TTC ACC GTT CCT GAT Pro Ile Ala Thr Gly Asn Ser Phe Leu Tyr Asp Phe Thr Val Pro Asp 110 115 120	1046
CAA GCC GTACGTTTAT ACACTTCCCT TTCTGCGGCA TACTCTGACG CGCCGCTGGA Gln Ala 125	1102
TCAG GGC ACC TTC TGG TAC CAC AGC CAC CTG TCC ACC CAG TAC TGT GAC Gly Thr Phe Trp Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp 130 135 140	1151
GGC CTG CGC GGT CCT CTT GTG GTC TAC GAC CCC GAC GAT CCC AAC GCG Gly Leu Arg Gly Pro Leu Val Val Tyr Asp Pro Asp Asp Pro Asn Ala 145 150 155	1199
TCT CTT TAC GAC GTC GAT GAC GTAAGCAGGC TACTTGTGGA CTTGTATGGA Ser Leu Tyr Asp Val Asp Asp 160	1250
TGTATCTCAC GCTCCCCTAC AG GAT ACT ACG GTT ATT ACG CTT GCG GAC TGG Asp Thr Thr Val Ile Thr Leu Ala Asp Trp 165 170	1302
TAC CAC ACT GCG GCG AAG CTG GGC CCT GCC TTC CCC GTGAGTCTAC Tyr His Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro 175 180 185	1348
Tyr His Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro	1348 1405
Tyr His Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro 175 180 185 TCTTCCTCGT GTGTTAACAT AGGTGACGGC CGCTGATACG AGAGCTACCA G GCG GGT	
Tyr His Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro 175 180 185 TCTTCCTCGT GTGTTAACAT AGGTGACGGC CGCTGATACG AGAGCTACCA G GCG GGT Ala Gly CCG GAT AGC GTC TTG ATC AAT GGT CTT GGT CGG TTC TCC GGC GAT GGT Pro Asp Ser Val Leu Ile Asn Gly Leu Gly Arg Phe Ser Gly Asp Gly	1405
TYT HIS THY ALA ALA LYS LEU GLY PRO ALA PHE PRO 175 TCTTCCTCGT GTGTTAACAT AGGTGACGGC CGCTGATACG AGAGCTACCA G GCG GGT Ala GLY CCG GAT AGC GTC TTG ATC AAT GGT CTT GGT CGG TTC TCC GGC GAT GGT PRO ASP Ser Val Leu Ile Asn Gly Leu Gly Arg Phe Ser Gly Asp Gly 190 GGA GGA GCG ACA AAC CTC ACC GTG ATC ACC GTC ACG CAA GGC AAA CGG GLY GLY ALA THY ASN Leu THY Val Ile THY Val ThY Gln Gly Lys Arg	1405 1453
TYT HIS Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro 175 TCTTCCTCGT GTGTTAACAT AGGTGACGGC CGCTGATACG AGAGCTACCA G GCG GGT Ala Gly CCG GAT AGC GTC TTG ATC AAT GGT CTT GGT CGG TTC TCC GGC GAT GGT Pro Asp Ser Val Leu Ile Asn Gly Leu Gly Arg Phe Ser Gly Asp Gly 190 GGA GGA GCG ACA AAC CTC ACC GTG ATC ACC GTC ACG CAA GGC AAA CGG Gly Gly Ala Thr Asn Leu Thr Val Ile Thr Val Thr Gln Gly Lys Arg 205 210 220	1405 1453 1501
TYT HIS THY ALA ALA LYS LEU GLY PRO ALA PHE PRO 175 TCTTCCTCGT GTGTTAACAT AGGTGACGGC CGCTGATACG AGAGCTACCA G GCG GGT ALA GLY CCG GAT AGC GTC TTG ATC AAT GGT CTT GGT CGG TTC TCC GGC GAT GGT PRO ASP SER Val Leu Ile Asn Gly Leu Gly Arg Phe Ser Gly Asp Gly 190 195 GGA GGA GCG ACA AAC CTC ACC GTG ATC ACC GTC ACG CAA GGC AAA CGG Gly Gly Ala Thr Asn Leu Thr Val Ile Thr Val Thr Gln Gly Lys Arg 205 GTGAGTCCGC CCTGAGCTGG CCTCAATAGC GATATTGACG AGTCCATGCC CTCCCAG TAC CGC TTC CGC CTT GTG TCG ATC TCG TGC GAC CCC AAC TTC ACG TTC TYR Arg Phe Arg Leu Val Ser Ile Ser Cys Asp Pro Asn Phe Thr Phe	1405 1453 1501 1558

TAC TCC TTC ATC GTACGTTCCC TTGCCCTCGT GCTATATCCG CCCGTCTGCT Tyr Ser Phe Ile 270	1754
CACAGAGGCT TCTATATCGC AG CTC AAC GCC AAC CAG TCC ATC GAC AAC Leu Asn Ala Asn Gln Ser Ile Asp Asn 275 280	1803
TAC TGG ATC CGC GCG ATC CCC AAC ACC GGT ACC ACC GAC ACC ACG GGC Tyr Trp Ile Arg Ala Ile Pro Asn Thr Gly Thr Thr Asp Thr Thr Gly 285 290 295	1851
GGC GTG AAC TCT GCT ATT CTT CGC TAC GAC ACC GCA GAA GAT ATC GAG Gly Val Asn Ser Ala Ile Leu Arg Tyr Asp Thr Ala Glu Asp Ile Glu 300 305 310	1899
CCT ACG ACC AAC GCG ACC ACC TCC GTC ATC CCT CTC ACC GAG ACG GAT Pro Thr Thr Asn Ala Thr Thr Ser Val Ile Pro Leu Thr Glu Thr Asp 315 320 325	1947
CTG GTG CCG CTC GAC AAC CCT GCG GCT CCC GGT GAC CCC CAG GTC GGC Leu Val Pro Leu Asp Asn Pro Ala Ala Pro Gly Asp Pro Gln Val Gly 330 345	1995
GGT GTT GAC CTG GCT ATG AGT CTC GAC TTC TCC TTC GTGAGTCCCA Gly Val Asp Leu Ala Met Ser Leu Asp Phe Ser Phe 350 355	2041
CAGCACTCCG CGCCATTTCG CTTATTTACG CAGGAGTATT GTTCAG AAC GGT TCC Asn Gly Ser 360	2096
AAC TTC TTT ATC AAC AAC GAG ACC TTC GTC CCG CCC ACA GTT CCC GTG Asn Phe Phe Ile Asn Asn Glu Thr Phe Val Pro Pro Thr Val Pro Val 365 370 375	2144
CTC CTG CAG ATT TTG AGT GGT GCG CAG GAC GCG GCG AGC CTG CTC CCC Leu Leu Gln Ile Leu Ser Gly Ala Gln Asp Ala Ala Ser Leu Leu Pro 380 385 390	2192
AAC GGG AGT GTC TAC ACA CTC CCT TCG AAC TCG ACC ATT GAG ATC TCG Asn Gly Ser Val Tyr Thr Leu Pro Ser Asn Ser Thr Ile Glu Ile Ser 395 400 405	2240
TTC CCC ATC ATC ACC ACC GAC GGT GTT CTG AAC GCG CCC GGT GCT CCG Phe Pro Ile Ile Thr Thr Asp Gly Val Leu Asn Ala Pro Gly Ala Pro 410 415 420	2288
CAC CCG TTC CAT CTC CAC GGC GTAAGTCCTT GCTTTCCTCA GTGCCTCGCT His Pro Phe His Leu His Gly 425 430	2339
TCCACGACGT CCACTGATCC CACACATCCC ATGTGCAG CAC ACC TTC TCG GTG His Thr Phe Ser Val 435	2392
GTG CGC AGC GCC GGG AGC TCG ACC TTC AAC TAC GCC AAC CCA GTC CGC Val Arg Ser Ala Gly Ser Ser Thr Phe Asn Tyr Ala Asn Pro Val Arg 440 455 450	2440
CGG GAC ACC GTC AGT ACT GGT AAC TCT GGC GAC AAC GTC ACT ATC CGC Arg Asp Thr Val Ser Thr Gly Asn Ser Gly Asp Asn Val Thr Ile Arg 455 460 465	2488
TTC ACG GTACGTCTTC TCCGGAGCCC TCCCACCCGT GTGTCCGCTG AGCGCTGAAC Phe Thr 470	2544
ACCGCCCACC GTGCTGCTGC TGCGCAG ACC GAC AAC CCA GGC CCG TGG TTC	2595

Thr Asp Asn Pro Gly Pro Trp Phe 475

CTC CAC TGC CAC ATC GAC TTC CAC CTG GAG GCC GGC TTC GCC ATC GTC Leu His Cys His Ile Asp Phe His Leu Glu Ala Gly Phe Ala Ile Val 480 485 490	2643
TGG GGG GAG GAC ACT GCG GAC ACC GCG TCC GCG AAT CCC GTT CCT Trp Gly Glu Asp Thr Ala Asp Thr Ala Ser Ala Asn Pro Val Pro 495 505	2688
GTACGTCGTG CCTGCTGAGC TCTTTGTGCC CGAACAGGGT GCTGATCGTG CCTTCCTCCG	2748
TGCAG ACG GCG TGG AGC GAT TTG TGC CCC ACT TAC GAT GCT TTG GAC TCG Thr Ala Trp Ser Asp Leu Cys Pro Thr Tyr Asp Ala Leu Asp Ser 510 520	2798
TCC GAC CTC TGATCGACAA GGCATGAAGG CTGAAGCAGC TGCGGTCAAT Ser Asp Leu 525	2847
TCTCGAACAC ACTTTACTCG AACATTCATT TTTCTTTGGC TCGGGATCGG AACAAATCAT	2907
GGGGGGCCG GACCGTCT	2925
(2) INFORMATION FOR SEQ ID NO: 10	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 527 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	,
(ii) MOLECULE TYPE: protein	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Polyporus pinsitus	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
Met Gly Lys Tyr His Ser Phe Val Asn Val Val Ala Leu Ser Leu Ser 1 5 10 15	
Leu Ser Gly Arg Val Phe Gly Ala Ile Gly Pro Val Thr Asp Leu Thr 20 25 30	
Ile Ser Asn Ala Asp Val Thr Pro Asp Gly Ile Thr Arg Ala Ala Val 35 40 45	
Leu Ala Gly Gly Val Phe Pro Gly Pro Leu Ile Thr Gly Asn Lys Gly 50 60	
Asp Glu Phe Gln Ile Asn Val Ile Asp Asn Leu Thr Asn Glu Thr Met 70 75 80	
Leu Lys Ser Thr Thr Ile His Trp His Gly Ile Phe Gln Ala Gly Thr 85 90 95	
Asn Trp Ala Asp Gly Ala Ala Phe Val Asn Gln Cys Pro Ile Ala Thr 100 105 110	
Gly Asn Ser Phe Leu Tyr Asp Phe Thr Val Pro Asp Gln Ala Gly Thr	
115 120 125	

Asp Val Asp Asp Thr Thr Val Ile Thr Leu Ala Asp Trp Tyr His 170 165 Thr Ala Ala Lys Leu Gly Pro Ala Phe Pro Ala Gly Pro Asp Ser Val Leu Ile Asn Gly Leu Gly Arg Phe Ser Gly Asp Gly Gly Ala Thr Asn Leu Thr Val Ile Thr Val Thr Gln Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Ile Ser Cys Asp Pro Asn Phe Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Val Asp Gly Val Asn His Glu Ala Leu 245 250 255 Asp Val Asp Ser Ile Gln Ile Phe Ala Gly Gln Arg Tyr Ser Phe Ile Leu Asn Ala Asn Gln Ser Ile Asp Asn Tyr Trp Ile Arg Ala Ile Pro Asn Thr Gly Thr Thr Asp Thr Thr Gly Gly Val Asn Ser Ala Ile Leu Arg Tyr Asp Thr Ala Glu Asp Ile Glu Pro Thr Thr Asn Ala Thr Thr 305 310 315 Ser Val Ile Pro Leu Thr Glu Thr Asp Leu Val Pro Leu Asp Asn Pro 325 Ala Ala Pro Gly Asp Pro Gln Val Gly Gly Val Asp Leu Ala Met Ser 340 345 Leu Asp Phe Ser Phe Asn Gly Ser Asn Phe Phe Ile Asn Asn Glu Thr 355 360 365 Phe Val Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala 370 380 Gln Asp Ala Ala Ser Leu Leu Pro Asn Gly Ser Val Tyr Thr Leu Pro Ser Asn Ser Thr Ile Glu Ile Ser Phe Pro Ile Ile Thr Thr Asp Gly Val Leu Asn Ala Pro Gly Ala Pro His Pro Phe His Leu His Gly His Thr Phe Ser Val Val Arg Ser Ala Gly Ser Ser Thr Phe Asn Tyr Ala Asn Pro Val Arg Arg Asp Thr Val Ser Thr Gly Asn Ser Gly Asp Asn 455 Val Thr Ile Arg Phe Thr Thr Asp Asn Pro Gly Pro Trp Phe Leu His 465 470 475 Cys His Ile Asp Phe His Leu Glu Ala Gly Phe Ala Ile Val Trp Gly 490 Glu Asp Thr Ala Asp Thr Ala Ser Ala Asn Pro Val Pro Thr Ala Trp 500 505 Ser Asp Leu Cys Pro Thr Tyr Asp Ala Leu Asp Ser Ser Asp Leu 520

4185.204-WO

International application

to be assigned

PCT/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism refers on page 55, line	red to in the description
B. IDENTIFICATION OF	Further deposits are identified on an additional sheet
Name of depository institution Agricultural Research Service Patent Culture	Collection (NRRL)
Address of depository institution (including postal code and coun	try)
Northern Regional Research Center 1815 University Street Peoria, IL 61604, US	·
Date of deposit May 25, 1995	Accession Number NRRL B-21263
C. ADDITIONAL INDICATIONS (leave blank if not applicate	ble) This information is continued on an additional sheet -
In respect of those designations in which a E during the pendency of the patent application only to be provided to an independent expert (Rule 28(4) EPC/Regulation 3.25 of Australia	, a sample of the deposited microorganism is nominated by the person requesting the sample
D. DESIGNATED STATES FOR WHICH INDICATIONS A	RE MADE (if the indications are not for all designated States)
	•
E. SEPARATE FURNISHING OF INDICATIONS (leave blan	k if not applicable)
The indication listed below will be submitted to the International "Accession Number of Deposit")	Bureau Later (specify the general nature of the indications e.g.
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received with the International Bureau on:
Authorized officer Dorls L. Brock ICLS PCT International Division	Authorized officer

4185.204-WO

International application N to be assigned

PCT/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page	d to in the description
B. IDENTIFICATION OF	Further deposits are identified on an additional sheet
Name of depository institution Agricultural Research Service Patent Culture	e Collection (NRRL)
Address of depository institution (including postal code and country	у)
Northern Regional Research Center 1815 University Street	
Peoria, IL 61604, US	
Date of deposit May 25, 1995	Accession Number NRRL B-21268
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional sheet
	on, a sample of the deposited microorganism is a nominated by the person requesting the sample
D. DESIGNATED STATES FOR WHICH INDICATIONS AR	E MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank	if not applicable)
The indication listed below will be submitted to the International B "Accession Number of Deposit")	ureau Lates (specify the general nature of the indications e.g.
•	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received with the International Bureau on:
Authorized officer Dorls L. Brook QUIS PCT International Division	Authorized officer
orm PCT/RO/134 (July 1992)	

Form PCT/RO/134 (Inlv 1992)

4185.204-WO

International application N to be assigned

PCT/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

<u></u>	
A. The indications made below relate to the microorganism referred to on page	o in the description
B. IDENTIFICATION OF	Further deposits are identified on an additional sheet
Name of depository institution Agricultural Research Service Patent Culture	Collection (NRRL)
Address of depository institution (including postal code and country)	
Northern Regional Research Center 1815 University Street Peoria, IL 61604, US	
Date of deposit May 25, 1995	Accession Number NRRL B-21264
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
In respect of those designations in which a E during the pendency of the patent application only to be provided to an independent expert (Rule 28(4) EPC/Regulation 3.25 of Australia	a, a sample of the deposited microorganism is nominated by the person requesting the sample
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE	MADE (if the indications are not for all designated States)
	·
E. SEPARATE FURNISHING OF INDICATIONS (leave blank if	f not applicable)
The indication listed below will be submitted to the International But "Accession Number of Deposit")	rean Later (specify the general nature of the indications e.g.
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received with the International Bureau on:
Authorized officer Dorls L. Brock Dorls PCT International Division	Authorized officer

4185.204-WO

International application 1 to be assigned PCT/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

B. IDENTIFICATION OF	Further deposits are identified on an additional sheet
Name of depository institution Agricultural Research Service Patent Cu	ulture Collection (NRRL)
Address of depository institution (including postal code and a	country)
Northern Regional Research Center	
1815 University Street	
Peoria, IL 61604, US	•
Date of deposit May 25, 1995	Accession Number NRRL B-21265
C. ADDITIONAL INDICATIONS (leave blank if not app	clicable) This information is continued on an additional sheet
during the pendency of the patent application only to be provided to an independent e (Rule 28(4) EPC/Regulation 3.25 of Au	th a European and/or Australia Patent is sought, cation, a sample of the deposited microorganism is expert nominated by the person requesting the sample istralia Statutory Rule 1991 No. 71). IS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave	blank if not applicable)
E. SEPARATE FURNISHING OF INDICATIONS (leave of the indication listed below will be submitted to the Internation "Accession Number of Deposit")	blank if not applicable) onal Bureau Later (specify the general nature of the indications e.g.
The indication listed below will be submitted to the Internation	
The indication listed below will be submitted to the Internation "Accession Number of Deposit")	For International Bureau use only

4185.204-WO

International application No

to be assigned

PCT/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page55, line16	to in the description
B. IDENTIFICATION OF	Further deposits are identified on an additional sheet 🗵
Name of depository institution Agricultural Research Service Patent Culture	Collection (NRRL)
Address of depository institution (including postal code and country)	
Northern Regional Research Center 1815 University Street Peoria, IL 61604, US	
Date of deposit May 25, 1995	Accession Number NRRL B-21266
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
In respect of those designations in which a E during the pendency of the patent application only to be provided to an independent expert (Rule 28(4) EPC/Regulation 3.25 of Australia	a, a sample of the deposited microorganism is nominated by the person requesting the sample
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE	MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave blank ij	f not applicable)
The indication listed below will be submitted to the International Bu "Accession Number of Deposit")	rean Later (specify the general nature of the indications e.g.
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received with the International Bureau on:
Authorized officer Dorls L. Brock PCT International Division	Authorized officer

4185.204-WO

International application N US 95/07536 to be assigned PCI/US 95/07536

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

A. The indications made below relate to the microorganism referred on page	to in the description
B. IDENTIFICATION OF	Further deposits are identified on an additional sheet
Name of depository institution Agricultural Research Service Patent Culture	Collection (NRRL)
Address of depository institution (including postal code and country)
Northern Regional Research Center 1815 University Street Peoria, IL 61604, US	
Date of deposit May 25, 1995	Accession Number NRRL B-21267
C. ADDITIONAL INDICATIONS (leave blank if not applicable)	This information is continued on an additional sheet
• • • • • • • • • • • • • • • • • • • •	, a sample of the deposited microorganism is nominated by the person requesting the sample
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE	MADE (if the indications are not for all designated States)
. •	
E. SEPARATE FURNISHING OF INDICATIONS (leave blank ij	not applicable)
The indication listed below will be submitted to the International Buraccession Number of Deposit*)	reau Later (specify the general nature of the indications e.g.
•	
For receiving Office use only	For International Bureau use only
This sheet was received with the international application	This sheet was received with the International Bureau on:
Authorized officer Dorls L. Brock LLCA PCT International Division	Authorized officer
orm PCT/RO/134 (July 1992)	

What we claim is:

1. A DNA construct containing a sequence encoding a *Polyporus* laccase.

5

- 2. The construct of Claim 1 which comprises a sequence encoding a *Polyporus pinsitus* laccase.
- 3. The construct of Claim 1 which comprises a nucleic acid sequence encoding the amino acid sequence depicted in SEQ ID NO. 2.
 - 4. The construct of Claim 1, which comprises the nucleic acid sequence depicted in SEQ ID NO. 1.

15

- 5. The construct of Claim 1 which comprises a nucleic acid sequence encoding the amino acid sequence depicted in SEQ ID NO. 4.
- 20 6. The construct of Claim 1, which comprises the nucleic acid sequence depicted in SEQ ID NO. 3.
- 7. The construct of Claim 1 which comprises a nucleic acid sequence encoding the amino acid sequence depicted in SEQ ID NO. 6.
 - 8. The construct of Claim 1, which comprises the nucleic acid sequence depicted in SEQ ID NO. 5.
- 30 9. The construct of Claim 1 which comprises a nucleic acid sequence encoding the amino acid sequence depicted in SEQ ID NO. 8.

- 10. The construct of Claim 1, which comprises the nucleic acid sequence depicted in SEQ ID NO. 7.
- 11. The construct of Claim 1 which comprises a nucleic acid sequence encoding the amino acid sequence depicted in SEQ ID NO. 10.
 - 12. The construct of Claim 1, which comprises the nucleic acid sequence depicted in SEQ ID NO. 9.

- 13. The construct of Claim 1, which comprises the nucleic acid sequence selected from those contained in NRRL B-21263, 21264, 21265, 21266, 21267, and 21268.
- 15 14. A substantially pure Polyporus laccase enzyme.
 - 15. The enzyme of Claim 14 which is a *Polyporus pinsitus* laccase.
- 20 16. The enzyme of Claim 14 which comprises the amino acid sequence selected from the group consisting of the sequences depicted in SEQ ID NOS. 4, 6, 8, and 10 or a sequence with at least about 80% homology thereto.
- 25 17. A recombinant vector comprising an DNA construct containing a sequence encoding a *Polyporus* laccase.
 - 18. The vector of Claim 17 in which the construct is operably linked to a promoter sequence.

, 30

19. The vector of Claim 18 in which the promoter is a fungal or yeast promoter.

- 20. The vector of Claim 19 in which the promoter is the TAKA amylase promoter of Aspergillus oryzae.
- 21. The vector of Claim 18 in which the promoter is the glucoamylase (glaA) promoter of Aspergillus niger or Aspergillus awamori.
 - 22. The vector of Claim 17 which also comprises a selectable marker.

- 23. The vector of Claim 22 in which the selectable marker is selected from the group consisting of amdS, pyrG, argB, niaD, sC, trpC and hygB.
- 15 24. The vector of Claim 22 in which the selectable marker is the amdS marker of Aspergillus nidulans or Aspergillus oryzae, or the pyrG marker of Aspergillus nidulans, Aspergillus niger, Aspergillus awamori, or Aspergillus oryzae.

20

- 25. The vector of Claim 18 which comprises both the TAKA amylase promoter of Aspergillus oryzae and the amdS or pyrG marker of Aspergillus nidulans or Aspergillus oryzae.
- 25 26. A recombinant host cell comprising a heterologous DNA construct containing a sequence encoding a *Polyporus* laccase.
 - 27. The cell of Claim 26 which is a fungal cell.

30

- 28. The cell of Claim 27 which is an Aspergillus cell.
- 29. The cell of Claim 26 in which the construct is integrated into the host cell genome.

- 30. The cell of Claim 26 in which the construct is contained on a vector.
- 5 31. The cell of Claim 26 which comprises a construct containing a sequence encoding an amino acid sequence selected from the group consisting of those depicted in SEQ ID NOS. 2, 4, 6, 8, and 10.
- 10 32. A method for obtaining a laccase enzyme which comprises culturing a recombinant host cell comprising a DNA construct containing a nucleic acid sequence encoding a *Polyporus* laccase enzyme, under conditions conducive to expression of the enzyme, and recovering the enzyme from the culture.

- 33. A method for obtaining a laccase enzyme which comprises culturing a recombinant Aspergillus host cell comprising a DNA construct containing a nucleic acid sequence encoding a Polyporus-like laccase enzyme, under conditions conducive to expression of the enzyme, and recovering the enzyme from the culture.
 - 34. A Polyporus enzyme obtained by the method of Claim 33.
- 25 35. A method for polymerizing a lignin or lignosulfate substrate in solution which comprises contacting the substrate with a *Polyporus* laccase.
- 36. A method for in situ depolymerization in Kraft pulp which comprises contacting the pulp with a *Polyporus* laccase.

- 37. A method for oxidizing dyes or dye precursors which comprises contacting the dye or dye precursor with a *Polyporus* laccase.
- 5 38. A method for dyeing hair which comprises contacting a *Polyporus* laccase, in the presence or absence of at least one modifier, with at least one dye precursor, for a time and under conditions sufficient to permit oxidation of the dye precursor to a dye.

- 39. The method of claim 38 in which the dye precursor is selected from the group consisting of a diamine, aminophenol, and a phenol.
- 15 40. The method of claim 38, wherein the modifier, when used, is a meta-diamine, a meta-aminophenol or a polyphenol.
- 41. The method of claim 38 in which the dye precursor is a primary intermediate selected from the group consisting of an ortho- or para-diamine or aminophenol.
 - 42. The method of claim 38 in which more than one dye precursor is used.
- 25 43. The method of claim 38 in which more than one modifier is used.
 - 44. The method of claim 38 in which both a primary intermediate and a modifier are used.

30

45. A dye composition comprising a *Polyporus* laccase combined with at least one dye precursor.

- 46. A dye composition comprising a *Polyporus* laccase combined with at least one primary intermediate and at least one modifier.
- 5 47. A container containing a dye composition comprising a *Polyporus* laccase and at least one dye precursor in an oxygen-free atmosphere.
- 48. The container of claim 47 which contains at least one primary intermediate dye precusor combined with at least one modifier.
- 49. A method of polymerizing or oxidizing a phenolic or aniline compound which comprises contacting the phenolic or aniline compound with a *Polyporus* laccase.

10	20	30	40	50	60 70	ı
AGATTTCTGA CACC	ggtg <u>ca a</u> tctt	GACAC TGTAC	CAACC GGGCAA	STOT COTCOTT	TGGT TCTCGGGGAC	
80	90	100	110	120	130 140	l
TGGCGCCGGT CGCT	ACCCCT TGGTO	ATTCA CTCTA	CCAGA GCGCTG	GCTT CGCCGAG	CGTA TAAAGGATGT	
150	160	170	180	190	200 210	
TGCGCGACAC CCTC	AACACC CCAAC	TCAAG CCCCA	CTTGA GCTTTT	GCGA GATCCTO	CCAC ATACCACTCA	ı
220	230	239	248	257	266	
CTACTTTCAA GTTC			CAC TCT CTT (His Ser Leu			
275 .	284	293	302	311	320	
GCT TCC CTT ACG						
329	338	347	356	365	374	
ATC ACC AAC GCA						
383	392	401	410	423	433	
AAC GGC GGC ACC Asn Gly Gly Thr					GCTCGC <u>ACTA</u>	
443	453	463	473	482	491	
CCCCCTTCTA TCCT	TCCTGA CGTT(GAT CGC TTC Asp Arg Phe			
500	509	518	527		543 553	3
GAC AAC CTT ACC Asp Asn Leu Thr					TGCT ATTTCTCCG	3

FIG.1A 1/38

	56	3		573	3		583		5	92		(501		(610		
ACGO	GGC1	TTC A	ATTGT	GCT.	VA TA	ATC	TCG1	GTO	CAG							CAG GIn		
	619			628			637			646			655			664		
		AAC Asn																
•	673		•	682	·	·	691			700			709				720	
		TCG Ser													GTA	AGTA	CGG	
•	730			740	·		750			760			77(•	779	9	
TCGT	TATO	GGA (TAT	ACTG(o o	ATTG	CTAA	A CC/	ACATO	GTG	AAC	AG G				TA'		
		788			797			806			815			824			833	i
		CAC His																
		842			851			860			869			878				889
		CCG Pro														GTA	AGGA	CGA
	. 8	B 9 9		9(09		919	9		929			94	‡ 0		94	49	
ATTO	CGAA	CCG .	TAAA	T <u>ACT</u>	ig C	TTAC	TGAT	A CT	TCTC	GATG	AAT [*]	TAG Z				TC AT		
		958			967			976			985			994				1009
		GTG Val															GTA	AGTCCAT

FIG.1B

	1019	•	1	1029		10	039		10	49			10	60		10	69	
GAG1	TATTO	CTG (CTGT	ΓG A A [*]	TC TO	GTCT	TAA <u>C</u>	<u>I</u> GT(GCAT	ATCA	G T					GCC		
	1	1078	•	•	1087			1096			1105			1114		,	1123	
																TCA Ser		
	1	1132	·		1141				1	156		116	66		117	6		1186
						AAA Lys		GTA [*]	TGCT	ATA '	TCTT	ATCT1	TA TO	CTGA	TGGC	A TTI	rctc'	TGAG
	11	196			12	207		1:	216		12	225		1	234			
ACAT	тстс	CA (AAC 1 Asn 1		
1243		1	252			1261			1270		•	279			1288			
																ATC Ile		
1297		1	306			1315			1324		1	333			1342			
																TAC Tyr		
1351			13	364		137	74		1384	,	1	394		14	404			
TTC Phe		GTA	GTTC	CGA 1	TTCA"	TCCT	CT A	ACGT	rgg t (C GC1	IGTT#	CTG	ATC)TAT	GGT (CATGT	AG	
1414		• 1	423		•	1432		•	1441		1	450			1459			
																AAC Asn		

FIG.1C

1468		•	1477		•	1486		,	1495			1504			1513		
	AAC																
Gly	Asn	Val	Gly	Phe	Thr	Gly	Gly	He	Asn	Ser	Ala	He	Leu	Arg	Tyr	Asp	Gly
1522		•	1531		,	1540		•	1549		•	1558		•	1567		
	GCT																
Alo	Ala	Ala	Vai	Glu	Pro	Thr	Thr	ihr	Gln	Thr	Thr	Ser	Thr	Ala	Pro	Leu	Asn
1576		•	1585		•	1594		,	1603				16	519		162	29
	GTC	-										GTA	GTA	ATA '	TTGT(CGGTA	VA
Glu	Val	Asn	Leu	His	Pro	Leu	Val	Thr	Thr	Alo	Val						
	16	539		164	49		1659	9		166	59		167	78		168	37
TGT	AATA(CAT	IGTT	GCTG/	AC_C	rcga(CCCC	C AC									
									Pr	o G	ly So	er Pr	o Vo	al Al	la G	ly GI	y
	•	1696		•	1705		,	1714		•	1723		1	1732		1	741
	GAC	CTG		ATC	AAC	ATG	GCG	TTC	AAC	TTC	AAC	GGC	ACC	AAC		TTC	ATC
		CTG		ATC	AAC	ATG	GCG	TTC	AAC	TTC	AAC	GGC	ACC	AAC		TTC	ATC
	GAC Asp	CTG		ATC Ile	AAC	ATG MET	GCG Ala	TTC	AAC Asn	TTC Phe	AAC Asn	GGC	ACC Thr	AAC		TTC Phe	ATC
Vo I AAC	GAC Asp	CTG Leu 1750 ACG	Ala TCT	ATC I I e	AAC Asn 1759 ACG	ATG MET	GCG Alo	TTC Phe 1768	AAC Asn GTG	TTC Phe	AAC Asn 1777 GTC	GGC Gly	ACC Thr	AAC Asn 1786 CAG	Phe ATC	TTC Phe	ATC 11e 795 AGC
Vo I AAC	GAC Asp	CTG Leu 1750 ACG	Ala TCT	ATC I I e	AAC Asn 1759 ACG	ATG MET	GCG Alo	TTC Phe 1768	AAC Asn GTG	TTC Phe	AAC Asn 1777 GTC	GGC Gly	ACC Thr	AAC Asn 1786 CAG	Phe ATC	TTC Phe	ATC 11e 795 AGC
Vo I AAC	GAC Asp GGC GIy	CTG Leu 1750 ACG	Ala TCT	ATC I I e	AAC Asn 1759 ACG	ATG MET	GCG Ala CCG Pro	TTC Phe 1768	AAC Asn GTG	TTC Phe CCT Pro	AAC Asn 1777 GTC	GGC Gly	ACC Thr	AAC Asn 1786 CAG	Phe ATC	TTC Phe 1 ATC I I e	ATC 11e 795 AGC
AAC Asn	GAC Asp GGC GTy	CTG Leu 1750 ACG Thr 1804	TCT Ser	ATC I le TTC Phe	AAC Asn 1759 ACG Thr 1813	ATG MET CCC Pro	GCG Ala CCG Pro	TTC Phe 1768 ACC Thr 1822 CTG	AAC Asn GTG Val	TTC Phe CCT Pro	AAC Asn 1777 GTC Val 1831 GGT	GGC Gly CTG Leu	ACC Thr	AAC Asn 1786 CAG GIn 1840 TAC	Phe ATC I I e	TTC Phe 1 ATC I le	ATC 11e 795 AGC Ser 849 CCC
AAC Asn	GAC Asp GGC GIy	CTG Leu 1750 ACG Thr 1804	TCT Ser	ATC I le TTC Phe	AAC Asn 1759 ACG Thr 1813	ATG MET CCC Pro	GCG Ala CCG Pro	TTC Phe 1768 ACC Thr 1822 CTG	AAC Asn GTG Val	TTC Phe CCT Pro	AAC Asn 1777 GTC Val 1831 GGT	GGC Gly CTG Leu	ACC Thr	AAC Asn 1786 CAG GIn 1840 TAC	Phe ATC I I e	TTC Phe 1 ATC I le	ATC 11e 795 AGC Ser 849 CCC
AAC Asn	GAC Asp GGC GTy GCG ATa	CTG Leu 1750 ACG Thr 1804	TCT Ser	ATC I le TTC Phe	AAC Asn 1759 ACG Thr 1813	ATG MET CCC Pro	GCG Ala CCG Pro	TTC Phe 1768 ACC Thr 1822 CTG	AAC Asn GTG Val	TTC Phe CCT Pro TCC Ser	AAC Asn 1777 GTC Val 1831 GGT	GGC Gly CTG Leu	ACC Thr	AAC Asn 1786 CAG GIn 1840 TAC	Phe ATC I I e	TTC Phe 1 ATC I le CTT Leu	ATC 11e 795 AGC Ser 849 CCC
AAC Asn GGC Gly	GAC Asp GGC GTy GCG ATa	CTG Leu 1750 ACG Thr 1804 CAG GIn 1858	TCT Ser AAC Asn	ATC I I e TTC Phe GCG Alo	AAC Asn 1759 ACG Thr 1813 CAG GIn 1867 GAG	ATG MET CCC Pro GAC Asp	GCG Ala CCG Pro	TTC Phe 1768 ACC Thr 1822 CTG Leu 1876	AAC Asn GTG Val CCC Pro	TTC Phe CCT Pro TCC Ser	AAC Asn 1777 GTC Vol 1831 GGT GTy 1885 ACC	GGC Gly CTG Leu AGC Ser	ACC Thr	AAC Asn 786 CAG GIn 840 TAC Tyr 894 GCC	ATC I I e TCG Ser	TTC Phe 1 ATC I le CTT Leu 1 GGT	ATC Ile 795 AGC Ser 849 CCC Pro 903

FIG.1D

1912		1921		1930		•	1939			1948			1957	
CCC CAC CCC	TTC C	CAC TTG	CAC GGG	CAC	GCG	TTC	GCG	GTC	GTC	CGC	AGC	GCC	GGC	
Pro His Pro														
1966		1975		1984		1	1993		;	2002		;	2011	
AGC ACG GT														
Ser Thr Val	Tyr A	Asn Tyr	Asp Asr	Pro	lle	Phe	Arg	Asp	Val	Val	Ser	Thr	Gly	
2020		2029		2038		2	2047			2056		:	2065	
ACG CCT GCG	GCC G	GGT GAC	AAC GTO	ACC	ATC	CCC	$\overline{\rm TTC}$	$\overline{\text{CGC}}$	ACC	\overline{GAC}	$\overline{\text{AAC}}$	$\overline{\text{ccc}}$	GGC	
Thr Pro Ala	Ala G	Gly Asp	Asn Val	Thr	He	Arg	Phe	Arg	Thr	Asp	Asn	Pro	Gly	
2074		2083		2092		2	2101		:	2110		4	2119	
CCG TGG TTC	CTC C	CAC TGC	CAC ATO	GAC	TTC	CAC	CTC	GAG	\overline{GCC}	\overline{GGC}	TTC	\overline{GCC}	GTC	
Pro Trp Phe														
2128		2137		2146		:	2155			2164	•	•	2173	
GTG TTC GCG	GAG C	GAC ATC	CCC GAG	GTC	GCG	TCG	GCG	AAC	\overline{ccc}	GTC	$\overline{\text{ccc}}$	CAG	GCG	
Val Phe Ala	Glu A	Asp Ile	Pro Asp	Va i	Alo	Ser	Ala	Asn	Pro	Va I	Pro	Gln	Alo	
2182		2191		2200		:	2209			2218			22	231
TGG TCC GAC	CTC 1	TGT CCG	ACC TAC	GAC	GCG	CTC	GAC	CCG	AGC	GAC	CAG	TAA	ATGGC	TT:
Trp Ser Asp	Leu (Cys Pro	Thr Tyr	Asp	Ala	Leu	Asp	Pro	Ser	Asp	GIn			
2241		2251	226	51	•	2271		22	281		229	91		2301
GCGCCGGTCG	ATGATA	AGGAT A	TGGACGG	G AG	TTCG	CACT	TGC	AATAC	CGG A	ACTC	rcgcc	CT CA	TATTA	GGTT
2311		2321	23.	31	:	2341		23	351		236	51		2371
ACACACTCGC	TCTGG/	ATCTC TO	CGCCTGT(CG AC	AGAA	CAAA	CTTO	TAT	AAT '	TCGCT	TAAT	rg g	TTGAA	ACAA
2381		2391	240)1	:	2411								
ATGGAATATT (GGGGT	ACTAT G	CACGCAT	CT CG	CTGG	GTGA	GCT.	TTCGT	ſ					

FIG.1E 5/38

10	20	30	40	50	60	70
GCGGCGCACA	AACCGTGGGA	GCCAACACAC	TCCCGTCCAC	TCTCACACTG	GCCAGATTCG	CGCGACCGCC
80	90	100	110	120	130	140
GCCTTTCAGG	CCCAAACAGA	TCTGGCAGGT	TTCGATGGCG	CACGCCGCCG	TGCCTGCCGG	ATTCAATTGT
150	160	170	180	190	200	210
GCGCCAGTCG	GGCATCCGGA	TGGCTCTACC	AGCGCGGTTG	ACTGGAAGAG	AACACCGAGG	TCATGCATTC
220	230	240	250	260	270	280
TGGCCAAGTG	CGGCCAAAGG	ACCGCTCGCT	GGTGCGGATA	CTTAAAGGGC	GGCGCGGGA	GGCCTGTCTA
290	. 300	310	320	330	340	350
CCAAGCTCAA	GCTCGCCTTG	GGTTCCCAGT	CTCCGCCACC	стсстсттсс	CCCACACAGT	CGCTCCATAG
360	369	9 3	78 3	387	396	405
CACCGTCGGC	GCC ATG GG		GA TTC AGC T			
CACCGTCGGC 414	GCC ATG GG MET GI	y Leu Gin Ai				
414 GTC GCT CGC	GCC ATG GG MET G1 4: TCT CTT G	y Leu Gin Ai 23 GCC ATC (rg Phe Ser F	Phe Phe Vol 441 GCG AGC CTO	Thr Leu Ald 450 GTC GTC G	459 CG AAC
414 GTC GCT CGC	GCC ATG GG MET G1 4 TCT CTT G Ser Leu A	y Leu Gin Ai 23 - A CA GCC ATC (10 Alo Ile (rg Phe Ser F 432 GGG CCG GTG	Phe Phe Vol 441 GCG AGC CTO	Thr Leu Ald 450 GTC GTC G	459 CG AAC
414 GTC GCT CGC Vol Ala Arg 468 GCC CCC GTC	GCC ATG GG MET G1 TCT CTT GI Ser Leu A TCG CCC G	y Leu Gin Ai CA GCC ATC (I a Ala Ile (AC GGC TTC (rg Phe Ser F 432 GGG CCG GTG Gly Pro Val	He Phe Vol 441 GCG AGC CTC Ala Ser Lec 495 GCC ATC GTC	Thr Leu Ald 450 GTC GTC GC Val Val Al 504 GTC AAC GC	459 CG AAC Ia Asn 513 CC GTG
414 GTC GCT CGC Vol Ala Arg 468 GCC CCC GTC	GCC ATG GG MET GI TCT CTT GG Ser Leu A TCG CCC GG Ser Pro A	ZA GCC ATC (In Ala IIe (AC GGC TTC (sp Gly Phe I	rg Phe Ser F 432 GGG CCG GTG Gly Pro Vol 486 CTT CGG GAT Leu Arg Asp	He Phe Vol 441 GCG AGC CTC Ala Ser Lec 495 GCC ATC GTC	Thr Leu Ald 450 GTC GTC GC Val Val Al 504 GTC AAC GC	459 CG AAC Ia Asn 513 CC GTG

FIG.2A 6/38

TGCTGACAGC GATCTACAG GGA GAC CGC GTC CAG CTC AAC GTC GTC GAC ACC TTG Gly Asp Arq Phe Gln Leu Asn Val Val Asp Thr Leu ACC AAC CAC AGC ATG CTC AAG TCC ACT AGT ATC GTAAGTGTGA CGATCCGAAT GTGACATCAA Thr Asn His Ser MET Leu Lys Ser Thr Ser Ile TCGGGGCTAA TTAACCGCGC ACAG CAC TGG CAC GGC TTC TTC CAG GCA GGC ACC AAC His Trp His Gly Phe Phe Gln Ala Gly Thr Asn 757 -TGG GCA GAA GGA CCC GCG TTC GTC AAC CAG TGC CCT ATT GCT TCC GGG CAT TCA Trp Ala Glu Gly Pro Ala Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His Ser TTC CTG TAC GAC TTC CAT GTG CCC GAC CAG GCA G GTAAGCAGGA TTTTCTGGGG Phe Leu Tyr Asp Phe His Val Pro Asp Gln Ala Gly TCCCCGTGTG ATGCAATGTT CTCATGCTCC GACGTGATCG ACAG GG ACG TTC TGG TAC CAC Thr Phe Trp Tyr His AGT CAT CTG TCT ACG CAG TAC TGT GAC GGG CTG CGG GGG CCG TTC GTC GTG TAC Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr GAC CCC AAG GAC CCG CAC GCC AGC CGT TAC GAT GTT GAC AAT G Asp Pro Lys Asp Pro His Ala Ser Arg Tyr Asp Val Asp Asn Glu

FIG.2B

1	034	1044	1054	1064	1075	1084
CACGGAG	TAT ATC	ACACAGC A	TGCGTTGAC GT	CGGGCCAA CAG	AG AGC ACG GTC Ser Thr Vo	
	1093	1102	1111	1120	1129	1141
					CCC AAG TTC CO	
1	151	1161	1171	1181	1190	1199
AATGGCT	TAG TGT	TCACAGG T	TCTTTGCTT AT	GTTGCTTC GATA	AG A CTC GGC GC Leu Gly Al	
1208		1217	1226	1235	1244	1253
					CCC ACC GCT GC Pro Thr Ala Al	
1262		1271	1280	1292	1302	1312
			GGA AAG CG Gly Lys Arg		ICTTGTATGC CATT	TCAATG
1.	322	1332	1341	1351	1360	1369
CTTTGTG	CTG ACC	TATCGGA A	_		GT CTC GTT TCG	
	1378	1387	1396	1405	1414	1423
					AAC CTG ACC GT Asn Leu Thr Vo	
	1432	1441	1450	1459	1468	1477
					TCT ATC CAG ATC	
	1486	1495	1508	1518	1528	1538
		TCC TTC Ser Phe		CTG GCTTGTCGA	IT GCTCCAAAGT G	GCCTCACTC

FJG.28

	15	548			1559)		1568	3		1577	7		158	6			
ATA	[ACT]	TTC (STTAG							GTC Val								
1595		1	1604		1	1613		1	1622		1	1631		,	1640			
										GCC Ala								
1649		4	1658		1	1667		•	1676		1	1685			1694			
										CCT Pro								
1703		•	1712		•	1721		•	1730		•	1739		•	1748			1761
										CCG Pro							GTAT	GTCTCT
	17	771		178	31		179	1	,	1801		18	B11			1821		
TTT	TCTG/	ATC /	ATCT(GAGT	rg co	CCGT	TGTT	G AC	CGCA	TTAT	GTG'	TTAC'	TAT (CTAG		GGC Gly		
	1830		1	1839			1848			1857			1866		•		18	82
										AAC Asn						GTA	AGTAT	CT
	18	892		190	02		191	2		1922		19	931		19	940		
CTA	CTAC	TT G	GCTG	GAGG	C TG(GTCG	CTGA	TCA	TACG	GTG (CTTC							
	1949			1958			1967			1976			1985) i ÿ	Thr <i>i</i>	1994	116	
										ACC Thr								

FIG.2D 9/38

2003	2012	2021	2030 203	39 2048
CTG AGC GGT GCG	CAG ACC GCA	CAA GAC CTG	CTC CCC GCA GC	GC TCT GTC TAC CCG
Leu Ser Gly Ala	Gin Thr Ala	Gin Asp Leu	Leu Pro Ala G	ly Ser Val Tyr Pro
2057	2066	2075	2084 209	2102
CTC CCG GCC CAC	TCC ACC ATC	GAG ATC ACG	CTG CCC GCG AC	CC GCC TTG GCC CCG
Leu Pro Ala His	Ser Thr Ile	Glu Ile Thr	Leu Pro Ala Th	nr Ala Leu Ala Pro
2111	2120	2129	2145	2155 2165
GGT GCA CCG CAC	CCC TTC CAC	CTG CAC GGT	GTATGTTCCC CTC	SCCTTCCC TTCTTATCCC
Gly Alo Pro His	Pro Phe His	Leu His Gly		
2175	2185	2195	2204 22	213 2222
CGAACCAGTG CTCA	CGTCCG TCCCA			GTT CGC AGC GCG /al Arg Ser Ala
2231	2240	2249	2258	2267 2276
GGG AGC ACC ACG	TAT AAC TAC	AAC GAC CCG	ATC TTC CGC GA	AC GTC GTG AGC ACG
GGG AGC ACC ACG	TAT AAC TAC	AAC GAC CCG	ATC TTC CGC GA	
GGG AGC ACC ACG	TAT AAC TAC	AAC GAC CCG	ATC TTC CGC GA	AC GTC GTG AGC ACG
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA	AC GTC GTG AGC ACG Sp Val Val Ser Thr 2321 2330 AG ACG GAC AAC CCC
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA	AC GTC GTG AGC ACG sp Val Val Ser Thr 2321 2330
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA	AC GTC GTG AGC ACG Sp Val Val Ser Thr 2321 2330 AG ACG GAC AAC CCC
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC Gly Thr Pro Alo 2339	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC Ala Gly Asp 2348	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG Asn Val Thr 2357	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA I le Arg Phe GI 2366	AC GTC GTG AGC ACG sp Val Val Ser Thr 2321 2330 AG ACG GAC AAC CCC In Thr Asp Asn Pro
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC Gly Thr Pro Alo 2339 GGG CCG TGG TTC	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC Ala Gly Asp 2348 CTC CAC TGG	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG Asn Vol Thr 2357 CAC ATC GAC	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA I le Arg Phe GI 2366 TTC CAC CTC GA	AC GTC GTG AGC ACG Sp Val Val Ser Thr 2321 2330 AG ACG GAC AAC CCC In Thr Asp Asn Pro 2375 2384
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC Gly Thr Pro Alo 2339 GGG CCG TGG TTC	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC Ala Gly Asp 2348 CTC CAC TGG	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG Asn Vol Thr 2357 CAC ATC GAC	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA I le Arg Phe GI 2366 TTC CAC CTC GA	AC GTC GTG AGC ACG Sp Val Val Ser Thr 2321 2330 AG ACG GAC AAC CCC In Thr Asp Asn Pro 2375 2384 AC GCA GGC TTC GCG
GGG AGC ACC ACG Gly Ser Thr Thr 2285 GGC ACG CCC GCC Gly Thr Pro Alo 2339 GGG CCG TGG TTC Gly Pro Trp Phe 2393	TAT AAC TAC Tyr Asn Tyr 2294 GCG GGC GAC Ala Gly Asp 2348 CTC CAC TGG Leu His Cys 2402	AAC GAC CCG Asn Asp Pro 2303 AAC GTC ACG Asn Vol Thr 2357 CAC ATC GAC His Ile Asp 2411	ATC TTC CGC GA I le Phe Arg As 2312 ATC CGC TTC CA I le Arg Phe GI 2366 TTC CAC CTC GA Phe His Leu As 2420	2321 2330 AG ACG GAC AAC CCC In Thr Asp Asn Pro 2375 2384 AC GCA GGC TTC GCG AD AIG GIY Phe AIG

FIG.2E 10/38

2447	7 245	i6 24	165	2474	2483	2499
				CTG AGC GAG Leu Ser Glu		.> NG TGAGCGGAGG In
2509	2519	2529	2539	2549	2559	2569
CCCTCCTCTC	GAGCGTAAAG	CTCGCGCGTC	CACCTGGGGG	GTTGAAGGTG	TTCTGATTGA	AATGGTCTTT
2579	2589	2599	2609	2619	2629	2639
GGGTTTATTT	GTTGTTATTC	TAACTCCGTT	CTCTACGCAA	GGACCGAGGA	TTGTATAGGA	TGAAGTAACT
2649	2659	2669	2679	2689		
TTCCTAATGT	ATTATGATAT	CAATTGACGG	AGGCATGGAC	TCCGAAGTGT		

FIG.2F

10 TTTCCCGACT	aaa <u>ccaat</u>	20 CT CAGNC	30 CGCTT C	4 CTCCTAGG	O G AACCGAG(50 CGA TGTGO	60 222233	70 CTCTCTATCC
80 AAGCTGTCCA	TAAGAAGA	90 CG TTCAA	100 ATGCC G	11 CAGCAAGO	O G AGGAAATA	120 AAG CATC1	130 FAACAG	140 TGTTTTTCCC
150 ATAGTCGCAT	TTGCGCCG	60 CC TGTCG	170 GACCG A	18 ACGCCCCTA	O G AGCGCTT	190 TGG GAAAC	200 GTCGC	210 AAGTGGCGGG
220 TGTTATTCGT	GTAGACGA	30 GA CGGTA	240 TTTGT C	25 CTCATCATT	O CCGTGCT	260 TCA GGTTC	270 SACACA	280 GCCCAAAGGT
290 CTATGTACGG	CCCTTCAC	00 AT TCCCT	310 GACAC A	32 ATTGACGCA	O A CCCTCGG	330 TGC GCCT(340 CGACA	350 GTGCCTCGGT
360 TGTAGTATCG	GGACGCCC	TA GGATG	CAAGA 1	TGGAAGTO		CCG AAGG(TATAA	420 AATACCGAGA
430 GGTCCTACCA					O T CCCTTGC			AG
49	1	500	50)9	518	527		536
ATG TCC TTO	C TCT AGO e Ser Ser	CTT CGC	CGT GG	CC TTG G1	C TTC CTG I Phe Leu	GGT GCT Gly Ala	TGC AG Cys Se	C AGT r Ser
54	5	554	56	33	572	581		590
GCG CTG GC	C TCC ATO	GGC CCA	GTC AC	CT GAG C1 nr Glu Le	C GAC ATC u Asp lle	GTT AAC Val Asn	AAG GT Lys Vo	C ATC
59	9	608	61	17	626	635		644
GCC CCG GA Ala Pro As								
65	3	662		675	685	695	;	705
CCA CTC AT Pro Leu II				CTAAG TA(TCCCGCC C	CCATCATCO	; tgtgg	CTGAC

FIG.3A 12/38

715	726	735	744	753	
GTTCGACGCC GCCAC			AAC GTC GTC Asn Vol Vol		
762 771	780	789	799	809	819
AAC CAG ACT ATG Asn Gln Thr MET			GTATGTCACT AG	CTCTCGCT AT	CTCGAGAC
829	839	848	857	866	875
CCGCTGACCG ACAA	CATTIG CCGTAG		GGG ATG TTC		
884	893	902	911	920	929
AAC TGG GCG GAT Asn Trp Ala Asp					
938	947	956	965	976	986
GAT TTC CTG TAC Asp Phe Leu Tyr				TACGCAAAG G	GCAGCATGC
996	1006	1016	1026	1035	1044
GTACTCAAAG ACAT	CTCTAA GCATTI	GCTA CCTAG		TAC CAT AG Tyr His Se	
1053	1062	1071	1080	1089	1098
CTG GCC TTG CAG Leu Alo Leu Gin					
1107	1116	1125	1134	1145	1155
CAT GAT CCG CAG His Asp Pro GIn				TACGCAGCA C	AGTTTCCCT

FIG.3B

	1165		117	75		1185	5			119	В		120	7			
AAA	ACGGTTA	AÇTT(CTAAT	TT C	TGTA	ATA	ГСТ	TCAT	AG A			C GT r Va					
1216	1	225		•	1234			1243			1252				1	267	
	GAC TGG Asp Trp													GTA	CCCC	TCC	
,	1277		128	37		1297	7		1307		1.	317			1.	328	
ACA	CATCTGC	ACAG	CGTT(C G	TATC'	CAT/	A CC	CTTA	AAGT	TTA	TCGG	ACA (ACT Thr			
	1337	•	1	346		1	1355			1364			1373			1382	
	GGC CTG																
	1391					14	109		14	19 .		1429	9		1439		1449
	CAG CAC				GTA [*]	TGTC/	ATA (GCTC	GGTT	AT C	TATTO	CATA(C TC	CCCC	CCTC	GAAG	CTAAAA
٠	1459			14	470		1.	479		14	488		14	497			
CCT.	IGTTCCA			-				GTC /									
1506		1515			1524			1533		•	1542			1551			
	TTC ACT																
1560		1569			1578			1587		•	1596		1	1605			
	CAG CCA																

FIG.3C

1614	1	627	1637		1647	,	•	1657		1	667			
TTC GTT Phe Val	GTATGTT	TTC CGCA	ATTTCGG	GAAAA	GGAAT	TGC	CCTO	GACA	GCT	CGAG	TGT	GCGTA	AG	
1676	1685		1694		1703		•	1712			1721			
CTT AAC	GCT AAC	CAA GCG	GTC AA	C AAC	TAC	TGG	ATC	CGT	GCG	AAC	CCT	\overline{AAC}	$\overline{\text{CGT}}$	•
Leu Asn	Ala Asn	Gin Ala	Val As	n Asn	Tyr	Trp	He	Arg	Ala	Asn	Pro	Asn	Arg	
1730	1739	•	1748	•	1757		1	766			1775			
GCT AAC	ACT ACG	GGC TTC	GCC AA	GGC	ATC A	AAC	TCC	GCC	$\overline{\text{ATC}}$	$\overline{\text{CTG}}$	$\overline{\text{CCC}}$	TAC	AAG	
Ala Asn	Thr Thr	Gly Phe	Ala Asi	n Gly	lle	Asn	Ser	Ala	He	Leu	Arg	Tyr	Lys	
1784	1793		1802	•	1811		1	820		1	1829			
GGG GCG	CCG ATT	AAG GAG	CCT AC	ACG	AAC (CAG	ACT	ACC	ATC	CGG	AAC	TTT	TTG	
Gly Alo	Pro lle	Lys Glu	Pro Th	Thr	Asn (GIn	Thr	Thr	He	Arg	Asn	Phe	Leu	
1838	1847		1856	1	1865		1	874		18	3 8 4		189	4
	ACG GAC								GTA/	GTTC	CTA C	CACAG	TCAC	С
Trp Glu	Thr Asp	Leu His	Pro Lei	ı Thr	Asp f	Pro /	Arg	Alo						
19	904	1914	192	24 .	19	933		1	942		1	951		
AACGGTGA	AGC TGTT	STCTGA T	TGCACTG	IG TTA										
					F	Pro (Gly	Leu	Pro	Phe	Lys-	Gly	Gľy	
1960	•	1969	1978	3	19	987		19	97		200	7		2017
	CAC GCT						GTAC	GTAG	CG C	CTCA	GATA	T CG	AGTA	GTCT
Val Asp	His Ala	Leu Asn	Leu Asr	Leu	Thr F	he								
20)27	2037	20)46		2055	5		206	4		207	3	

FIG.3D 15/38

	2	2082			2091		:	2100		:	2109			2118			2127
																	GCG Al a
	2	2136		2	2145		. :	2154		•	2163			2172			2181
																	ATC Ile
	:	2190		2	2199		2	2208			2217			2226		•	2235
														TTC Phe			
		22	248		225	58		2268	3	2	2278		2	288		229	7
GGG Gly	GTA	ATAAT	ict (CTCT	TAT/	AC T	FTGGT	CTC	C CG/	ATGC:	IGAC	TTT	CACTO	GCT (CATC	TTCA	3
ţ	2	2306		2	2315		:	2324		:	2333		:	2342		:	2351
CAC	GCT	TTC		GTC	GTG	CCT	AGC	GCC	GGC	AGC	ACC		TAC	AAC		ccc	AAC
CAC	GCT	TTC		GTC	GTG	CCT	AGC	GCC	GGC	AGC	ACC		TAC			ccc	AAC
CAC	GCT Ala	TTC		GTC Val	GTG	CCT	AGC Ser	GCC	GGC	AGC	ACC	Glu	TAC Tyr	AAC		GCG Alo	AAC
CAC His	GCT Ala	TTC Phe 2360 AAG	Ser CGC	GTC Vol	GTG Vol 2369 ACG	CGT Arg	AGC Ser AGC	GCC Ala 2378 ATT	GGC Gly GGT	AGC Ser	ACC Thr 2387 GCG	Glu 7 GGC	TAC Tyr	AAC Asn 2396 AAC	Tyr GTC	GCG Alo	AAC Asn 2405 GTG
CAC His	GCT Ala	TTC Phe 2360 AAG	Ser CGC	GTC Vol	GTG Vol 2369 ACG	CGT Arg	AGC Ser AGC	GCC Ala 2378 ATT	GGC Gly GGT	AGC Ser	ACC Thr 2387 GCG	Glu 7 GGC	TAC Tyr	AAC Asn 2396	Tyr GTC	GCG Alo	AAC Asn 2405 GTG
CAC His	GCT Ala GTG Val	TTC Phe 2360 AAG Lys	Ser CGC Arg	GTC Val GAC Asp	GTG Val 2369 ACG Thr	CGT Arg GTC Val	AGC Ser AGC Ser	GCC Alo 2378 ATT Ile	GGC Gly GGT	AGC Ser CTT Leu	ACC Thr 2383 GCG Alo	Glu 7 GGC Gly	TAC Tyr	AAC Asn 2396 AAC Asn	Tyr GTC Val	GCG Alo	AAC Asn 2405 GTG
CAC His	GCT Ala GTG Val	TTC Phe 2360 AAG Lys 2414 GTG	Ser CGC Arg	GTC Vol GAC Asp	GTG Val 2369 ACG Thr	CGT Arg GTC Val	AGC Ser AGC Ser 243	GCC Ala 2378 ATT Ile	GGC Gly GGT GGT	AGC Ser CTT Leu 2444	ACC Thr 2387 GCG Ala	Glu GGC GIy	TAC Tyr GAC Asp	AAC Asn 2396 AAC Asn	Tyr GTC Val	GCG Alo ACC Thr	AAC Asn 2405 GTG
CAC His	GCT Ala GTG Val	TTC Phe 2360 AAG Lys 2414 GTG Val	CGC Arg	GTC Val GAC Asp	GTG Val 2369 ACG Thr 124	GTC Val	AGC Ser AGC Ser 243	GCC Alo 2378 ATT Ile 34	GGC Gly GGT GIy	AGC Ser CTT Leu 2444	ACC Thr 2387 GCG Alo	Glu GGC Gly 2	TAC Tyr GAC Asp 2454	AAC Asn 2396 AAC Asn	Tyr GTC Val	GCG Alo ACC Thr	AAC Asn 2405 GTG Val

FIG.3E 16/38

2528	253	7	2546		2555		2	2564		2	2573		
	CTC GC												
2582			2599	2	2609		2619)	2	2629		2	639
	CCT G	•	TCTTC T	GGATG	CATG CO	CTC	CAC	CAGT	GAC	CAT	CTT	TTGC	AAC
	2649		2658	2	2667		267	76		268	35		
	GAC TGG A												
2694	2704	,	2714	27	724	2	2734		27	744		27	54
> GTT TC/ Val	AGCGATGC	GTGGCG	CTCA TO	GTCAT	ITT CT	TGGAA	ATCT	TTGC	ATAC	GG (CTGCA	(GCA	CG
2	2764	2774		2784	;	2794		28	04		281	4	282
CTGGATA	ACTC TTT	CCCTTAG	CAGGAT	TATTA 1	TTAAT	GACC	CCTG	CCTT	TA C	STGC	TAGI	T AC	CTTTACT
2	2834	2844		2854	:	2864		28	74		288	34	289
CTGGTT	GTAA TGT	ACGCAGC	ATGCG1	TAATT (CGATA	ATGC	TATO	CAATG	TG 1	[ATA]	TATO	A C	ACGCGTCA
2	2904	2914		2924	;	2934		29	44		295	54	296
GCGCGA	TGCT TGA	GTTGCAA	GGTCG	STTTC (CATCC	TCGA	CATA	VAACG	ו דד	CACT	TACA	T AC	CACATTGG
:	2974	2984		2994		3004		30	14		302	24	303
TCTAGA	ACTG GAT	CTATCCA	TGTATA	ACAAA A	AACTCC	TCAT	ACAG	CTGA	CT C	GGGC	CCTC	T AC	SAGCATGG
;	3044	3054		3064		3074		30	84		309	14	310
TCCGAT	TGAT CAG	ATGTCGC	GAACAG	CGAGC (CTCCTG	AGCT	CGAG	GACT	CT C	SAGA/	/GCGG	C GC	STGCGTTC

FIG.3F

GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT CTICTCTCCA ATTGTGACCC CATAACAATT TCACACAGGA AACACCTATG ACATGATTAC GAATTCCGAT CGGCTTGCCC TCATTCCTCC ATGTTCCCCC GACCGAGCGG GCGCGTCAAT GGCCCGTTTG CGAACACATA TGCAGGATAA ACAGTGCGAA ATATCAATGT GGCGGCGACA CAACCTCGCC GGCCGACACT CGACGCTGTT GATCATGATC ATGTCTTGTG AGCATTCTAT ACGCAGCCTT GGAAATCTCA GGCGAATTTG TCTGAATTGC GCTGGGAGGC TGGCAGCGCA GATCGGTGTG TCGGTGCAGT AGCCGACGCA GCACCTGGCG GAAGCCGACA TCTCGGGTAC CACTTGATCT CCGCCAGATC ACTGCGGTTC CGCCATCGGC CGCGGGGCCC ATTCTGTGTG TGCGCTGTAG CACTCTGCAT TCAGGCTCAA CGTATCCATG CTAGAGGACC GTCCAGCTGT TGGCGCACGA TTCGCGCAGA AAGCTGTACA GGCAGATATA AGGATGTCCG TCCGTCAGAG ACTCGTCACT CACAAGCCTC

FIG.4A

710	720		730	7	40		750)		760			770
TTTTCCTC	TT CCCCT	TTTCCA G	CCTCTTC	CA AC	GCCT	GCCA	TCG	rcct(CTT /	AGTT	CGCT	CG T	CCATTCTTT
78	80	790	•	799			808			817			826
CTGCGTAG	TT AATC		AGG TTO										
i	835	844		853			862			871			880
CAC TCT His Ser													
i	889	898	}	907			916			925			934
TCC AAT													
!	943	952		961	ě		970			980		9	90
GGC GTC								GTA	CGTG(GCA '	TGCG	TTCA	GT ·
10	00	1010	10	20		1029		•	1038			1047	
CTACACCC	ta caag	CCTTCT A	ACTCTTT	TA CC	ACAG		GAC Asp						
1056		1065	107	4		1083			1092			1	105
ATC GAC											GTA [*]	rgt g (CTT
11	15	1125	11	35		1145			115	56		116	55
CTACTGCT	TC TTAG	TCTTGG (CAATGGCT	CA AG	GTCT	CCTC	CGC		AT TO				

FIG.4B 19/38

1174	1183	1192	1201	1210	1219
TTC CAG AAG GGT Phe Gin Lys gly	ACT AAC TGG thr Asn Trp	GCT GAT GGA Ala Asp Gly	GCT GCC TTC Ala Ala Phe	GTC AAC CAG Val Asn Gln	TGC CCT Cys Pro
1228	1237	1246	1235	1264	
ATC GCG ACG GGG lle Alo Thr Gly					
1281	1291	1301	1311 1	321 13	31
GTCAGTGCCT GTGG	CCCTTA TGTTT	TCCCG TAATCA	GCAG CTAACAC	TCC GCACCCAC	AG GC
1342	1351	1360	1369	1378	1387
ACC TTC TGG TAC Thr Phe Trp Tyr					
1396	1405	1414	1423	1432	1441
CCG ATG GTC GTA Pro MET Val Val	TAC GAC CCG Tyr Asp Pro	AGT GAC CCG Ser Asp Pro	CAT GCG GAC His Alo Asp	CTT TAC GAC Leu Tyr Asp	GTC GAC
1450	1459	1468	1477	1486	1495
GAC GAG ACC ACG Asp Glu Thr Thr					
1504	1	519 15	29 153	9 1549	1559
GGT GCT GCC TTC		TAC CCCAGCGC	AC GGAGTTAAG	A CCGATCTAA	CTGTAATACG
1568	1577	1586		1604	1614
TTCAG G ATT GGC		ACC CTG ATT		GGCCGCT TCGC	GGGTGG

FIG.4C

1624	1633	1642	1651	1669
			GAG CAG GGC AAG (
1679		1699 17	•	=
CCCTCTACAG TTGAC	CACTGT GCCATT	GCTG ACAGTACT	CT CAG C TAC CGT Tyr Arg	ATG CGT CTT MET Arg Leu
1737	1746	1755	1764 177	73 1782
			TC TCC ATT GAC GC	
1791	1800	1809	1818 182	27 1836
			AG CCC CTC ACG GT	
1845	1854	1863	1879	1889 1899
CAG ATC TAC GCC Gin lie Tyr Alo				NACAGCCA TGATCACGCC
1909	1919 1	928 19	37 1946	1955
AAGCCCGATG CTAAC	CCCCC TACCCT		CT GAC CAG GAC AT	
1964	1973 1	982 19	91 2000	2009
			CC TCG TTC GAC GO	
Phe lie Arg Ala	Leu Pro Ser	Ala Gly Thr T	hr Ser Phe Asp Gl	y Gly lle Asn
2018 2	2027 2	036 20	45 2054	2063
TCG GCT ATC CTG Ser Ala Ile Leu			AG GTT GAC CCG AC	G ACC ACG GAG

FIG.4D

207	72		208	31		209	90		209	99		210	08		21	17	
									GCG Alo								
	2126	5	2	136		214	1 6		215	5		2166		2	176		
	GCT Ala	GTA	CCTCC	STA T	TTCT(CCC T	TT GO	CAAG	GATC	G CA(CATA	CTAA	CATO	CTC	TTG '		CCC Pro
2185		:	2194		2	2203		:	2212		:	2221		4	2230		
									TAC Tyr								
2239		•	2248		2	2257		:	2266		:	2275		:	2284		
									GTC Val								
2293		:	2302		:	2311		•	2320		:	2329		:	2338		
									ACC Thr								
2347		4	2356		;	2 36 5			2374		:	2383		2	2392		
									TCG Ser								
2401		Ġ	2410		į	2419		•	2428		:	2437		2	2446		2456
									CAT His							GTAC	CTGTCC
	2	466		24	76		248	6	:	2496			250) 6		251	15
CAT	CTCA	TAT (GCTA	CGGA	GC T	CCAC	GCTG	A CC	GCCC.	TATA					T Al		

FIG.4E

2524	2533	2542	2551	2560	2569
CGT ACC GCC G	GC AGC ACG GAT	ACG AAC TTC Thr Asn Phe	GTC AAC CCC Val Asn Pro	GTC CGC CGC Val Arg Arg	GAC GTC Asp Val
2578	2587	2596	2605	2614	2624
	GT ACC GTC GGC Gly Thr Val Gly				CGCAGCA
2634	2644	2654	2664 2	673 20	582
CTCTCCTAAC AT	TCCCACTG CGCGA	NTCACT GACTCC		ACT GAC AAC (
2691	2700	2709	2718	2727	2736
	CTC CAC TGC CAC				
2745	2754	2763	2772	2781	2798
	GAG GAC ACC GCC				A GTACGTTGTG Thr
2808	2818	2828	2838	2850	2859
CTCCCGTGCC CA	ATCTCCGCG CGCC	IGACTA ACGAGO	ACCC CTTACAG	CT GCT TGG (
2868	2877	2886	2895	2908	2918
	ACG TAC AAC GC				AAAGGGTCGC
2928	2938	2948	2958 2	968 29	78 2988
TCGCTACCTT AC	STAGGTAGA CTTA	TGCACC GGACAT	TATC TACAATG	GAC TTTAATTT	GG GTTAACGGCC
2998	3008	3018	3028 2	038 30	48 3058
GTTATACATA CO	GCGCACGTA GTATA	AAAGGT TCTCTG	GATT GGTCGGA	CCT ACAGACTG	CA ATTTTCGTGA
3068	3078	3088	8098		
CCTATCAACT G	TATATTGAA GCAC	GCAGT GAATGGA	AAAT AGAGACA		

FIG.4F 23/38

	•					
10	20	30	40	50	60	70
CTCATAACTC	TTCGCTTCTA	GCATGGGGGC	TGCGCACACC	TGACAGACCC	TTCGGGAGGC	GAACTCGAAT
80 GCAGCGTACT	90 CTATCNCACC	100 TCCAGGAAAG	110 GTAGGGATGG	120 ACNCCGTGCA	130 CCAACAACTG	140 TCTCTCCACC
150	160	170	180	190	200	210
AGCAACCATC	CCTTGGATAT	GTCTCCACAC	ACCCGGTGTC	TACAAGCGGG	GATCTGTGCT	GGTGAAGTGC
220	230	240	250	260	270	280
TGTCTCCGGA	GCGGCGGCGG	CGAGCGACCA	GAACCCGAAC	CAGTGCTAGT	GCCCGACACC	CGCGAGA <u>CAA</u>
290	300	310	320	330	340	350
TTGTGCAGGG	TGAGTTATAT	TCTTCGTGAG	ACGCCCTCC	GCGTCGGCAC	TGAAAGCGTC	GCAGTTAGGT
360	370	380	390	400	410	420
GATGCAGCGG	TCCGCGCTAT	TTTTGACGTC	TGGCAGCTAT	CCTAAGCCGC	GCCTCCATAC	ACCCCAGGCG
430	440	450	460	470	480	490
CTCTCGTTTG	CTATAGG TAT	AAATCCCTCA	GCTTCAGAGC	GTCGATCCTC	ATCCCACACG	ACACCCGTTT
500	510	520	530	540	55	60
CAGTCTTCTC	GTAGCGCATT	CCCTAGCCGC	CCAGCCTCCG	CTTTCGTTTT	CAAC ATG GO MET GI	
559	568	577	586	595	5 60)4
				CTT TCT TTC Leu Ser Leu		
613	622	631	640	649	65	58
				ATC TCT AAC		

FIG.5A 24/38

	667			676			685			694			703			712		
	_														CCC Pro			
	721			730			•	743		7	53		76	3		773		783
		ACC Thr				GTG	AGCC	GCG A	AAAC	CTTC	TA C	TAGC	GCGC	T CG	TACG	GTGC	ACCO	STTACTG
	•	793		80	03			814			823			832			841	
AAG	CAC	ACT T	TTGC	CTG	TC A	ACAG									ATC le			
		850			859			868			877		1	B87		89	97	
			-			TTG Leu						GTA	AGGT(GCT '	TGCT	CCCAT	ГА	
	9	907		9	17		92	7		9	938		9	947		9	956	
ATTA			TCGC.			a agt'				CAC	TGG (GGT	ATC :	TTC (CAG C	SCC	
ATTA			TCGC'			AAGT"				CAC	TGG (GGT Z	ATC :		CAG (SCC	
GGC	AGC	965 AAC	TGG	IGAC	974 GAC	GGC	TATO GCG	983 GCC	TTC	CAC His	TGG (Trp 992	His (GGT A	ATC ITE I		CAG C GIn A	GCC Alla 1010 ACG	
GGC	ACC Thr	965 AAC	TGG	GCA	974 GAC	GGC	GCG Alo	983 GCC	TTC	CAC His	TGG (Trp 992	His (GGT A	ATC ITE I	The C	GCC Ala	GCC Alla 1010 ACG	·
GGC GTy	ACC Thr	965 AAC Asn 1019 TCG	TGG Trp	GCA A10	974 GAC Asp 1028	GGC Gly	GCG Alo	983 GCC A10 1037 ACC	TTC Phe	GTG Vol	992 AAC Asn 1046 GAT	His (TGC Cys	ATC Ile I 1001 CCT Pro	The C	GCC Ala	GCC Ala 1010 ACG Thr	
GGC GTy	ACC Thr AAC	965 AAC Asn 1019 TCG	TGG Trp	GCA A10	974 GAC Asp 1028 TAC Tyr	GGC Gly	GCG Alo	983 GCC A1a 1037 ACC Thr	TTC Phe	GTG Vol	992 AAC Asn 1046 GAT Asp	CAG GIn CAA GIn	TGC Cys	ATC Ile I 1001 CCT Pro	ATC I I e	GCC Ala	GCC Ala 1010 ACG Thr	

FIG.5B

25/38

1130	1139	,	1148	1157	1166	1175
					GGT CCT CTT (
1184	1193		1202	1211	1220	1231
				TAC GAC GTC Tyr Asp Vol	GAT GAC G Asp Asp Asp	GTAAGCAGGC
1241 TACTTGTGGA (12 CTTGTATG	51 GA TGTATO		1271 FCCCCTAC AG 7	AT ACT ACG GT Thr Thr Vo	1 <u>290</u> T ATT ACG I Ile Thr
1299		1308	1317	1326	1335	1347
CTT GCG GAC Leu Ala Asp	TGG TAC	CAC ACT His Thr	GCG GCG Ala Ala	AAG CTG GGC Lys Leu Gly	CCT GCC TTC (CC GTGAGTCTAC Pro
1357	13	67	1377	1387	1397	1408
TCTTCCTCGT (GTGTTAAC	AT AGGTG	ACGGC CG	CTGATACG AGA	GCTACCA G C GG	CG GGT CCG la Gly Pro
TCTTCCTCGT (AT: AGGTG	ACGGC CGG		A	la Gly Pro
1417 GAT AGC GTC	TTG ATO	1426 AAT GGT	1435	1444 CGG TTC TCC	A	1462 GGA GGA GCG
1417 GAT AGC GTC	TTG ATO	1426 AAT GGT Asn Gly	1435	1444 CGG TTC TCC Arg Phe Ser	1453 GGC GAT GGT (Gly Asp Gly (1462 GGA GGA GCG Gly Gly Ala
GAT AGC GTC Asp Ser Val 1471 ACA AAC CTC	TTG ATC Leu IIe	1426 AAT GGT Asn Gly 1480 ATC ACC	1435 CTT GGT Leu Gly 1489 GTC ACG	1444 CGG TTC TCC Arg Phe Ser 1498	1453 GGC GAT GGT GGT GGT GGT Asp GTy Asp GTy GTGAGTCCC	1462 GGA GGA GCG Gly Gly Ala 1520
GAT AGC GTC Asp Ser Val 1471 ACA AAC CTC	TTG ATO Leu IIe	1426 AAT GGT Asn Gly 1480 ATC ACC	1435 CTT GGT Leu Gly 1489 GTC ACG	1444 CGG TTC TCC Arg Phe Ser 1498 CAA GGC AAA	1453 GGC GAT GGT GGT GGT GGT Asp GTy Asp GTy GTGAGTCCC	1462 GGA GGA GCG Gly Gly Ala 1520

FIG.5C

1588	1597	1606	1615	1624	1633
ATC TCG TGC GAC	CCC AAC TTC	ACG TTC TC	G ATC GAC GGG	CAC AAC ATG	ACC ATC
lle Ser Cys Asp					
1642	1651	1660	1669	1678	1687
ATC GAG GTG GAC	GGT GTC AAC	CAC GAG GC	C TTG GAC GTC	GAC TCC ATT	CAG ATT
lle Glu Vol Asp					
1696	1705	1714	1724	1734	1744
TTT GCG GGG CAG	CGG TAC TCC	TTC ATC GT	ACGTTCCC TTGCC	CCTCGT GCTATA	ATCCG
Phe Ala Gly Gln					
1754	1764	1774	1785	1794	1803
CCCGTCTGCT CACA	GAGGCT TCTAT	ATCCC AC CT	C AAC GCC AAC	CAG TCC ATC	GAC AAC
			u Asn Ala Asn		
1812	1821	1830	1839	1848	1857
TAC TGG ATC CGC Tyr Trp Ile Arg	GCG ATC CCC	AAC ACC GG	T ACC ACC GAC	ACC ACG GGC	GGC GTG
TAC TGG ATC CGC	GCG ATC CCC	AAC ACC GG	T ACC ACC GAC	ACC ACG GGC	GGC GTG
TAC TGG ATC CGC Tyr Trp Ile Arg	GCG ATC CCC Alo lle Pro	AAC ACC GG Asn Thr G1	T ACC ACC GAC y Thr Thr Asp 1893	ACC ACG GGC Thr Thr Gly	GGC GTG Gly Val
TAC TGG ATC CGC Tyr Trp IIe Arg 1866	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC	AAC ACC GG Asn Thr G1 1884 GAC ACC GC	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG	GGC GTG Gly Val 1911 ACC AAC
TAC TGG ATC CGC Tyr Trp IIe Arg 1866 AAC TCT GCT ATT	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC	AAC ACC GG Asn Thr G1 1884 GAC ACC GC	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG	GGC GTG Gly Val 1911 ACC AAC
TAC TGG ATC CGC Tyr Trp IIe Arg 1866 AAC TCT GCT ATT Asn Ser Alg IIe	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC Leu Arg Tyr 1929	AAC ACC GG Asn Thr G1 1884 GAC ACC GC Asp Thr A1	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC a Glu Asp Ile 1947	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG Glu Pro Thr 1956 —————	GGC GTG Gly Val 1911 ACC AAC Thr Asn 1965
TAC TGG ATC CGC Tyr Trp Ile Arg 1866 AAC TCT GCT ATT Asn Ser Ala Ile 1920	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC Leu Arg Tyr 1929 GTC ATC CCT	AAC ACC GG Asn Thr G1 1884 GAC ACC GC Asp Thr A1 1938 CTC ACC GA	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC o Glu Asp Ile 1947 G ACG GAT CTG	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG Glu Pro Thr 1956 GTG CCG CTC	GGC GTG Gly Val 1911 ACC AAC Thr Asn 1965 GAC AAC
TAC TGG ATC CGC Tyr Trp lie Arg 1866 AAC TCT GCT ATT Asn Ser Ala lie 1920 GCG ACC ACC TCC Ala Thr Thr Ser	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC Leu Arg Tyr 1929 GTC ATC CCT	AAC ACC GG Asn Thr GI 1884 GAC ACC GC Asp Thr AI 1938 CTC ACC GA Leu Thr GI	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC o Glu Asp Ile 1947 G ACG GAT CTG	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG Glu Pro Thr 1956 GTG CCG CTC	GGC GTG Gly Val 1911 ACC AAC Thr Asn 1965 GAC AAC
TAC TGG ATC CGC Tyr Trp lie Arg 1866 AAC TCT GCT ATT Asn Ser Ala lie 1920 GCG ACC ACC TCC Ala Thr Thr Ser	GCG ATC CCC Alo Ile Pro 1875 CTT CGC TAC Leu Arg Tyr 1929 GTC ATC CCT Vol Ile Pro 1983	AAC ACC GG Asn Thr G1 1884 GAC ACC GC Asp Thr A1 1938 CTC ACC GA Leu Thr G1	T ACC ACC GAC y Thr Thr Asp 1893 A GAA GAT ATC o Glu Asp Ile 1947 G ACG GAT CTG u Thr Asp Leu 2001	ACC ACG GGC Thr Thr Gly 1902 GAG CCT ACG Glu Pro Thr 1956 GTG CCG CTC Vol Pro Leu 2010	GGC GTG Gly Val 1911 ACC AAC Thr Asn 1965 GAC AAC Asp Asn 2019

FIG.5D 27/38

202	28	20	41	205	1		2061		2	071		20	81
GAC TTC TASP Phe S		CTGAGTC	CCA CAG	GACTC	CG C	GCCA	TTTC	с ст	TATT	TACG	CAG	GAGT.	ATT
209	90	2099		2108		2	117		2	126		2	135
GTTCAG AA		TCC AAC Ser Asn I											
21	144	2153		2162			2171			2180	l	;	2189
GTT CCC C													
21	198	2207		2216			2225			2234		:	2243
CCC AAC C													
22	252	2261		2270			2279			2288		2	2297
CCC ATC A													
23	306	23	319	23	29		2339	9	:	2349		23	359
CAT CTC C		GTAAGTC	CTT GCT	TTCCT	CA G	TGCC	TCGC	T TC	CACG	ACGT	CCA	CTGAT	CC
236	59	2380		2389		2	2398			2407		2	416
CACACATCO	C ATGTO		ACC TT Thr Ph										
24	125	2434		2443		:	2452		2	2461		2	470
TTC AAC T													

FIG.5E 28/38

2479	2488		2504	2514	2524	2534	
GAC AAC GTO				TTC TCCGC	GAGCCC TCCCA	CCCGT GTGTCCC	CTG
2544	2554	4 256	54	2574	2583	2592	
AGCGCTGAAC	ACCGCCCACC	C GTGCTGCTG	C TGCGCA		AAC CCA GGG		
260	26	510	2619	2628	2637	2646	
					GGC TTC GCC		
Phe Leu His	Cys His I	lle Asp Phe	His Leu	Glu Alo	Gly Phe Ala	lie Val irp	
2655	5 . 26	664	2673	2682		2699	
					GTT CCT A	GTACGTCGTG	
Gly Glu Ası	Thr Ala A	Asp Thr Ald	Ser Alo	Asn Pro	Val Pro Thr		
2709	2710	0 272	29	2739	2749	2759	
CCTGCTGAGC	TCTTTGTGCC	C CCAACAGGO	ST GCTGAT	CGTC CCTT	CCTCCG TGCA	G CG GCG TGG Alo Trp	
2768	2777	2786	5	2795	2804	2817	
					TCC GAC CTC Ser Asp Leu	TGATCGACAA	
2827	2837	7 284	17	2857	2867	2877	2887
GGCATGAAGG	CTGAAGCAG	C TGCGGTCA/	AT TCTCGA	ACAC ACTI	TTACTCG AACA	ITCATT TTTCTT	TGGC
2897	2907	7 291	17				
TCGGGATCGG	AACAAATCA	T GGGGGGGC	CG GACCGT	СТ			

FIG.5F

29/38

FIG.6

"j

FIG.7

FIG.8

PCT/US 95/07536 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/53 C12N9/02 A61K7/06 C12N1/15 A61K7/13 //(C12N1/15,C12R1:66) D21C5/00 C12N15/80 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N A61K D21C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-48 GEN. TECH. REP. NC (NORTH CENT. FOR EXP. P,X STN.), vol. 175, 1994 pages 115-118, YAVER D.S. ET AL. 'The molecular cloning and expression of laccase genes from the white-rot basidiomycete Polyporus pinsitu' see the whole document WO,A,95 01426 (NOVONORDISK AS ; SCHNEIDER 15-17, P,X 35-41. PALLE (DK); PEDERSEN ANDERS HJELHOLT (DK) 45,48 12 January 1995 see page 6 - page 7; claim 22; example 2 15, 16, 35 X DE,C,40 33 246 (PFLEIDERER UNTERNEMENSVERWALTUNG GMBH & CO.) 27 February 1992 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance

filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or other means	document is combined with one or more other such docu- ments, such combination being obvious to a person skilled in the art.
P document published prior to the international filing date but later than the priority date claimed	'&' document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
10 October 1995	09.11.95
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Espen, J

	PCI/US 93/U/330			
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant w claim 110.		
X	APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 48, no. 4, 1984 pages 849-854, BOLLAG JM. ET AL. 'Comparative studies of extracellular fungal laccases' see page 851; figure 2	15,35		
A	DE,C,36 34 761 (HUTTERMANN, A.) 18 February 1988 see the whole document			
A	LES COLLOQUES DE L'INRA, vol. 40, 1987 PARIS, pages 223-229, TROJANOWSKI A. ET AL. 'Solubilization and polymerization of lignin by several wood-inhabiting fungi' see the whole document			
A	MICROBIOS LETT., vol. 29, no. 113, 1985 pages 37-43, ILAN CHET ET AL. 'Decolourization of the dye Poly B-411 and its correlation with lignin degradation by fungi' see the whole document			

PCT/US	95/0	7536
--------	------	------

Patent document cited in search report	Publication date	Patent mem		Publication date	
WO-A-9501426	12-01-95	AU-B-	6924594	24-01-95	
DE-C-4033246	27-02-92	NONE			
DE-C-3634761	18-02-88	EP-A-	0264076	20-04-88	