# 15 YEARS OF PARAGANGLIOMA

# The association of pituitary adenomas and phaeochromocytomas or paragangliomas

# Samuel M O'Toole, Judit Dénes, Mercedes Robledo<sup>1</sup>, Constantine A Stratakis<sup>2</sup> and Márta Korbonits

Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK

<sup>1</sup>Hereditary Endocrine Cancer Group, Spanish National Cancer Center, Madrid and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain

<sup>2</sup>Section on Endocrinology and Genetics, *Eunice Kennedy Shriver* Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA

Correspondence should be addressed to M Korbonits

#### **Email**

m.korbonits@qmul.ac.uk

#### **Abstract**

The combination of pituitary adenomas (PA) and phaeochromocytomas (phaeo) or paragangliomas (PGL) is a rare event. Although these endocrine tumours may occur together by coincidence, there is mounting evidence that, in at least some cases, classical phaeo/PGL-predisposing genes may also play a role in pituitary tumorigenesis. A new condition that we termed '3Pas' for the association of PA with phaeo and/or PGL was recently described in patients with succinate dehydrogenase mutations and PAs. It should also be noted that the classical tumour suppressor gene, *MEN1* that is the archetype of the PA-predisposing genes, is also rarely associated with phaeos in both mice and humans with MEN1 defects. In this report, we review the data leading to the discovery of 3PAs, other associations linking PAs with phaeos and/or PGLs, and the corresponding clinical and molecular genetics.

#### **Key Words**

- pituitary
- ▶ phaeochromocytoma
- paraganglioma
- ► SDH
- ▶ pathogenesis

Endocrine-Related Cancer (2015) 22, T105–T122

# Introduction

Pituitary adenomas (PA) and phaeochromocytomas/paragangliomas (phaeo/PGL) are relatively rare tumours. The prevalence of symptomatic PA in the general population is around 1 in 1000 (Daly *et al.* 2006, Fernandez *et al.* 2010). The prevalence of pituitary incidentalomas is much higher and reaches over 20% in some imaging series (Ezzat *et al.* 2004) although the clinical and pathological significance of such lesions detected on imaging performed for an unrelated reason is debatable. Phaeo/PGL are less common, with a prevalence ranging from 1:2500 (Mazzaglia 2012) to 1:6667

(Eisenhofer et al. 2013). Up to 40% occur within increasingly well-defined genetic syndromes (Raygada et al. 2011). Phaeos account for  $\sim 5\%$  of all adrenal incidentalomas (Young 2000), although they are frequently first detected on imaging (Motta-Ramirez et al. 2005) and merit definitive management regardless of the method of their discovery.

The coexistence of two rare endocrine tumours within the same patient may be either entirely coincidental or a result of a common pathogenesis. Possible explanations include: a phaeo/PGL-predisposing mutation also causing

PAs; a PA-predisposing mutation also causing phaeo/PGL; mutations in two different genes; a mutation in a novel gene causing both pathologies; and ectopic hormone secretion by a phaeo/PGL mimicking a PA.

Ever since the first description of coexisting PA and phaeo/PGL (Iversen 1952), there have been arguments for and against a connection (Schimke 1990). Converting association into causality has only begun to occur in the last few years due to the identification of the seemingly ever increasing multiple phaeo/PGL and PA-predisposing genes. Using a combination of tumour DNA analysis to look for loss of heterozygosity (LOH) at specific loci and immunohistochemistry for their related gene products, it has been possible to begin to identify causal relationships (Xekouki *et al.* 2012, Papathomas *et al.* 2014, Dénes *et al.* 2015). Indeed, the term '3Pas' representing the association of three tumour types – pituitary, phaeo and PGL – has been coined to identify this clinical scenario (Xekouki *et al.* 2015).

A total of 72 patients have been described in the published literature who harbour both a phaeo/PGL and a PA. Twenty-one (29%) are patients with identified mutations in predisposing phaeo/PGL or PA genes (Table 1), 23 (32%) are in patients with a personal or family history that is suggestive of a hereditary endocrine syndrome (Table 2) and 28 (39%) are isolated cases (Table 3). These figures correspond to cases in which both pathologies occur in the same individual and many have not undergone genetic testing.

This review examines the evidence for the role of the known genetic determinants in the association of PAs with phaeo/PGLs, as well as highlighting potential masquerading pathologies.

# Phaeo/PGL-predisposing genes

#### Succinate dehydrogenase

The succinate dehydrogenase (SDH) complex consists of four subunits A, B, C and D. The hydrophilic A and B subunits form the catalytic core of the enzyme and contain the substrate binding site for succinate whilst the hydrophobic C and D subunits anchor the complex to the inner mitochondrial membrane as mitochondrial complex II. SDH is part of both the tricarboxylic acid (TCA) cycle and the electron transport chain. It catalyses the succinate to fumarate step and transfers electrons to the ubiquinone pool. Disruption of SDH function leads to succinate accumulation which inhibits prolyl hydroxylases (PHDs) which are unable to hydroxylate the transcription factor hypoxia-inducible factor 1 alpha (HIF1 $\alpha$ ) resulting in the

transcription of HIF-responsive genes and a state of tissue pseudohypoxia (Selak *et al.* 2005). Succinate inhibits additional  $\alpha$ -ketoglutarate dependent enzymes including histone demethylases (Smith *et al.* 2007) resulting in potential epigenetic modification (Letouzé *et al.* 2013). Disrupting the electron transport chain results in superoxide generation which also contributes to PHD inhibition (Gerald *et al.* 2004), although is insufficient to be genotoxic in its own right (Smith *et al.* 2007).

Mutations in any of the four genes encoding the SDH subunits (*SDHx; SDHA, SDHB, SDHC, SDHD*) or its associated assembly factor (*SDHAF2*) can result in hereditary phaeo/PGL. *SDHx* mutations are also responsible for some cases of Carney-Stratakis syndrome (McWhinney *et al.* 2007) and polymorphisms have been related to Cowden-like syndrome, although this association requires further elucidation (Ni *et al.* 2008).

The presence of *SDHx* mutations in PAs is rare in both unselected PA (Gill *et al.* 2014, Papathomas *et al.* 2014) and *SDHx* mutation carrier cohorts (Benn *et al.* 2006) but are more likely if phaeo/PGL are also present or if there is a positive family history of phaeo/PGL (Xekouki *et al.* 2015).

Following a case report of an *SDHB* mutation positive family with PGLs and macroprolactinomas in 2009 (Brahma *et al.* 2009), Xekouki *et al.* (2012) demonstrated loss of heterozygosity at the *SDHD* locus along with reduced SDHD protein expression in a growth hormone (GH)-secreting macroadenoma in a patient with a germline *SDHD* mutation.

In the largest study to date to look at the co-existence of phaeo/PGL and PA, Dénes *et al.* (2015) identified eight patients with *SDHx* mutations or variants and both phaeo/PGL and PA within an international cohort of 19 patients. They also demonstrated that SDHx related PAs have a unique and specific histological phenotype characterised by intracytoplasmic vacuoles (Fig. 1), although the exact nature of the vacuoles requires further elucidation and holds promise in providing additional information to unravel its pathogenesis.

#### **SDHB**

Mutations in the *SDHB* gene give rise to Familial Paragangliomas Type 4 (OMIM #115310) with a predominance of paragangliomas displaying increased malignant potential (Neumann *et al.* 2004, Timmers *et al.* 2007).

Six cases of patients with an *SDHB* mutation who have both a PA and phaeo/PGL have been reported (Table 1; Dénes *et al.* 2015, Xekouki *et al.* 2015). All but two patients had functional PAs, one of which was a macroadenoma. Five

 Table 1
 Patients with pituitary adenoma and phaeochromocytoma/paraganglioma with identified genetic mutations

| Patient |     |                | •     | Pituitary          |     |               | Phaeo/PGL          |     |                                                                      |                                                            |                                                                                      |                                     |
|---------|-----|----------------|-------|--------------------|-----|---------------|--------------------|-----|----------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|
| - 1     | Sex | Туре           | Size  | Treatment          | Age | Туре          | Treatment          | Age | Family history                                                       | Mutation                                                   | Other info                                                                           | Reference                           |
|         | ш   | PRL            | ¥     | Ä                  | 27  | Phaeo         | X                  | ¥   | N.                                                                   | SDHA c.91C>T<br>p.Arg31Ter, VHL<br>c.589G>A<br>p.Asp197Asn |                                                                                      | Dénes e <i>t al.</i><br>(2015)      |
|         | Σ   | H <sub>D</sub> | Macro | SSA                | 84  | PGL           | ΙΪ                 | 84  |                                                                      | O<br>^                                                     | HNPGL                                                                                | Dénes <i>et al.</i><br>(2015)       |
|         | Σ   | PRL            | Macro | Macro DA, surgery  | 33  | PGL           | Surgery            | 33  | Mother: PRL,<br>Brother: PGL                                         | <i>SDHB</i> c.298T > C<br>p.Ser100Pro                      | HNPGL<br>PA: LOH at S <i>DHB</i><br>locus, intracyto-<br>plasmic vacuoles            | Dénes et al.<br>(2015)              |
|         | ட   | NFPA           | Macro | Surgery x3,<br>RT  | 23  | PGL           | RT                 | 28  | Sister: glioma                                                       | <i>SDHB c</i> .587G>A<br>p.Cys196Tyr                       | HNPGL<br>PA: LOH at SDHB<br>locus, intracyto-<br>plasmic granules                    | Dénes e <i>t al.</i><br>(2015)      |
|         | ட   | PRL            | Macro | DA, RT             | 09  | PGL           | RT                 | 09  | Not known                                                            | SDHB c.423+1G>A                                            | HNPGL                                                                                | Dénes <i>et al.</i><br>(2015)       |
|         | ட   | NFPA           | Micro | Ξ                  | 20  | Phaeo         | Surgery            | 20  | Not known                                                            | SDHB c.770dupT<br>p.Asn258GlufsTer17                       | Adrenal cortical hyperplasia                                                         | Dénes e <i>t al.</i><br>(2015)      |
|         | Σ   | Ħ              | ¥     | SSA                | 72  | PGL           | I.                 | 70  | Brother & niece:<br>PA, sister:<br>bilateral<br>HNPGL                | <i>SDHB</i> c.689G > A p.Arg230His                         | Bilateral HNPGL                                                                      | Xekouki <i>et al.</i><br>(2015)     |
|         | ш   | PRL            | Micro | ¥                  | 20  | PGL           | X                  | 47  | Brother: HNPGL,<br>grandmother:<br>GIST                              | SDHB c.642+1G>A, splice site alteration                    | Metastatic PGL<br>GIST (age 38)                                                      | Xekouki <i>et al.</i><br>(2015)     |
|         | Σ   | PRL            | Macro | DA                 | 23  | PGL           | Surgery            | 38  | Cousin: PA,<br>Brother: PGL                                          | SDHC c.380A > G                                            | HNPGL                                                                                | Dénes e <i>t al.</i><br>(2015)      |
|         | ш   | PRL            | Macro | X                  | 09  | PGL           | ¥                  | 09  |                                                                      | SDHC c256-<br>257insTTT<br>pPhe85dup                       | HNPGL                                                                                | López-Jiménez<br>et al. (2008)      |
|         | ட   | PRL            | Macro | Surgery, DA        | 23  | PGL           | Surgery            | 32  | Sister, aunt and<br>grandmother:<br>PA; sister<br>bilateral<br>HNPGL | <i>SDHD</i> c.242C>T,<br>p.Pro81Leu                        | Bilateral HNPGL                                                                      | Xekouki <i>et al.</i><br>(2015)     |
|         | Σ   | PRL            | Macro | DA, surgery        | 09  | PGL,<br>Phaeo | Surgery<br>(Phaeo) | 62  | Y                                                                    | SDHD c.274G>T<br>p.Asp92Tyr                                | HNPGL<br>PA: LOH at <i>SDHD</i><br>locus, SDHB IHC<br>negative, SDHA<br>IHC positive | Papathomas<br>e <i>t al.</i> (2014) |
|         | ட   | <del>5</del>   | Macro | Macro Surgery, SSA | 26  | PGL           | ¥                  | 26  | Father and<br>2 sisters:<br>HNPGL; sister:<br>GIST                   | SDHD c.274G>T<br>p.Asp92Tyr                                | NHPGL<br>PA: no LOH at<br><i>SDHD</i> locus,<br>SDHA and SDHB<br>IHC positive        | Papathomas<br>et al. (2014)         |
|         |     |                |       |                    |     |               |                    |     |                                                                      |                                                            |                                                                                      |                                     |

Table 1 Continued

| Patient |     |             | -        | Pituitary                |     |               | Phaeo/PGL  |     |                                  |                                                                                                 |                                                                                                                                          |                                                  |
|---------|-----|-------------|----------|--------------------------|-----|---------------|------------|-----|----------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| О       | Sex | Туре        | Size     | Treatment                | Age | Type          | Treatment  | Age | Family history                   | Mutation                                                                                        | Other info                                                                                                                               | Reference                                        |
| 14      | ட   | PRL         | Macro    | DA, surgery              | 33  | PGL           | Surgery x2 | 39  | Aunt, uncle,<br>brother<br>HNPGL | <i>SDHD</i> c.242C>T<br>p.Pro81Leu                                                              | Bilateral HNPGL                                                                                                                          | Varsavsky <i>et al.</i><br>(2013)                |
| 15      | Σ   | Н           | Macro    | Macro SSA, surgery       | 37  | PGL,<br>Phaeo | Surgery    | 37  | Uncle HNPGL                      | SDHD c.298_301del,<br>premature stop at<br>codon 133<br>AIP & CDKN1B<br>polymorphism            | HNPGL, abdo and pelvic PGL, bilateral Phaeo PA: LOH at <i>SDHD</i> locus, reduced SDHD protein                                           | Xekouki et al.<br>(2012)                         |
| 91      | Σ   | GH/P-<br>RL |          | Macro Surgery, RT,<br>DA | 27  | Phaeo         | Surgery    | 21  | I <del>.</del> Z                 | <i>MEN1</i> c.1452delG<br>p.Thr557Ter                                                           | HPTH, carcinoid Pheo: LOH at MEN1 locus, negative menin staining                                                                         | Dénes e <i>t al.</i><br>(2015)                   |
| 71      | ш   | ¥           | Macro NK | ¥                        | 45  | PGL           | ¥          | 45  | Ī                                | MEN1 c.196_200dupAG- CCC -> frameshift (pathogenic), polymorphism C423T -> no amino acid change | Abdominal DGL, breast cancer, adrenal ade- noma, uterine leiomyoma, parathyroid adenomas, thymic carcinoid, lung hamatoma; raised IGF-1, | Jeong e <i>t al.</i><br>(2014)                   |
| 8       | ¥   | PRL         | X        | X                        | ¥   | Phaeo         | Surgery    | 48  | NK                               | <i>MEN1</i> p.Lys119Ter                                                                         | HPTH, pNET                                                                                                                               | Langer e <i>t al.</i><br>(2002)                  |
| 19      | ¥   | ¥           | ¥        | ¥                        | ¥   | Phaeo         | ¥          | ž   | X                                | MEN1 c.320del2                                                                                  | HPTH, pNET,<br>adrenal<br>adenoma                                                                                                        | (2002 <i>)</i><br>Dackiw <i>et al.</i><br>(1999) |
| 70      | Σ   | В           | Macro    | Macro Surgery            | 62  | Phaeo         | Surgery    | 62  | Nil                              | RET p.Cys618Ser                                                                                 | нртн, мтс                                                                                                                                | Heinlen <i>et al.</i><br>(2011)                  |
| 21      | Σ   | АСТН        |          | Micro Surgery x2         | 89  | Phaeo         | Surgery    | 99  | Son: HPTH                        | <i>RET</i> c.1900T > C,<br>p.Cys634Arg                                                          | Bilateral pheo<br>HPTH, MTC                                                                                                              | Naziat e <i>t al.</i><br>(2013)                  |
|         |     |             |          |                          |     |               |            |     |                                  |                                                                                                 |                                                                                                                                          |                                                  |

M, male; F, female; NFPA, non-functional pituitary adenoma; PRL, prolactinoma; GH, acromegaly; ACTH, Cushing's disease; PA, pituitary adenoma; Macro, macroadenoma; Micro, microadenoma; DA, dopamine agonist; RT, radiotherapy; SSA, somatostatin analogue; Phaeo, phaeochromocytoma; PGL, paraganglioma; HNPGL, head and neck paraganglioma; LOH, loss of heterozygosity; PTC, papillary thyroid cancer; GIST, gastrointestinal stromal tumour; pNET, pancreatic neuroendocrine tumour; MTC, medullary thyroid carcinoma; HPTH, hyperparathyoidism; IGF-1, insulin-like growth factor 1; UFC, urinary free cortisol; NK, not known.

**Endocrine-Related Cancer** 

 Table 2
 Patients with pituitary adenoma and phaeochromocytoma/paraganglioma without identified mutations but with suspicious features

| Patient |     |              |       | Pituitary               |     | -             | Phaeo/PGL     |     |                                                    |                                                                                                                         |                                                                                                                                       |                                                         |
|---------|-----|--------------|-------|-------------------------|-----|---------------|---------------|-----|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 90.     | Sex | Туре         | Size  | Treatment               | Age | Туре          | Treatment     | Age | Family history                                     | Genetics tested                                                                                                         | Other info                                                                                                                            | Reference                                               |
| -       | ш   | <del>В</del> | Macro | Surgery, RT,<br>DA, SSA | 26  | Phaeo         | Surgery       | 99  | Ξ                                                  | SDHA-D, AF2,<br>MEN1, RET, AIP,<br>VHL, TMEM127,<br>MAX, FH,<br>CDKN1B                                                  | GIST, thyroid follicular<br>adenoma                                                                                                   | Boguszewski<br>et al. (2012),<br>Dénes et al.<br>(2015) |
| 8       | Σ   | NFPA         | Macro | Surgery                 | 23  | PGL           | Surgery       | 20  | Father: PA                                         | SDHA C.969C>T<br>p.Gly323Gly <sup>a</sup><br>SDHB-D, AF2,<br>MEN1, RET, AIP,<br>VHL, TMEM127,<br>MAX, FH,<br>CDKN1B all | Abdominal PGL Wilms tumour, liposarcoma, renal oncocytoma; PA: no LOH at SDHA locus, intracyto- plasmic vacuoles, SDHA and B staining | Dénes <i>et al.</i><br>(2015)                           |
| m       | ш   | АСТН         | ¥     | X                       | 61  | PGL           | ¥             | 19  | N.                                                 | SDHA-D, MEN1,<br>RFT AIP                                                                                                | Bilateral HNPGL                                                                                                                       | Xekouki <i>et al.</i><br>(2015)                         |
| 4       | щ   | PRL          | ¥     | X                       | 35  | Phaeo         | Y             | 22  | Nii                                                | SDHA-D, MEN1,<br>RET, AIP                                                                                               | Bilateral phaeo                                                                                                                       | Xekouki <i>et al.</i><br>(2015)                         |
| 2       | ш   | PRL          | Macro | X                       | 09  | PGL           | RT            | 09  | N:I                                                | SDHB                                                                                                                    | HNPGLs                                                                                                                                | Parghane <i>et al.</i><br>(2014)                        |
| 9       | ш   | PRL          | Micro | PA                      | 33  | PGL           | Surgery       | 43  | Brain tumour                                       | SDHB c.18C>A<br>p.Ala6Ala <sup>b</sup><br>3 PTEN<br>polymorphisms                                                       | HNPGL<br>PTC, features of<br>Cowden syndrome                                                                                          | Efstathiadou<br>et al. (2014)                           |
| 7       | Σ   | H            | Macro | Surgery                 | 59  | Phaeo         | Surgery       | 59  | N:I                                                | Nil                                                                                                                     | Bilateral phaeo<br>Linoma metastatic PTC                                                                                              | Sisson <i>et al.</i> (2012)                             |
| ∞       | ¥   | Э            | ¥     | ¥                       | ¥   | Phaeo         | ¥             | ¥   | MEN1                                               | ΞZ                                                                                                                      | Bilateral phaeo<br>HPTH, pNET<br>Clinical features NF1                                                                                | Gatta-Cherifi<br>et al. (2012)                          |
| o       | Σ   | 퓽            | Macro | Surgery                 | 45  | PGL,<br>Phaeo | Surgery<br>x3 | 54  | Father HNPGL,<br>Sister:<br>adrenal<br>abnormality | Ξ.                                                                                                                      | Abdominal, HN,<br>cardiac PGLs                                                                                                        | Zhang e <i>t al.</i><br>(2011)                          |
| 10      | Σ   | NFPA         | Micro | <del>.</del> Z          | 43  | Phaeo         | Surgery       | 43  | ΞZ                                                 | RET                                                                                                                     | Lipoma, pectus excavatum, pleomorphic parotid adenoma. Acromegaly cured by adrenalectomy                                              | Baughan e <i>t al.</i><br>(2001)                        |
| 17      | Σ   | Н            | ⊃     | Surgery                 | 20  | Phaeo,<br>PGL | Surgery       | 20  | ΞZ                                                 | RET                                                                                                                     | Bilateral phaeo<br>Abdominal PGL                                                                                                      | Teh <i>et al.</i><br>(1996)                             |
| 12      | Σ   | PRL          | ¥     | X                       | 32  | Phaeo         | ¥             | 32  | MEN1                                               | ΞΞ                                                                                                                      | Malignant phaeo<br>HPTH                                                                                                               | Carty <i>et al.</i><br>(1998)                           |
| 13      | Σ   | PRL          | Macro | Surgery                 | 56  | Phaeo         | X             | 56  | NK                                                 | Nil                                                                                                                     | нртн, мтс                                                                                                                             | Bertrand e <i>t al.</i><br>(1987)                       |
|         |     |              |       |                         |     |               |               |     |                                                    |                                                                                                                         |                                                                                                                                       |                                                         |

**Thematic Review** 

Table 2 Continued

|           |                        | erna-<br>al.                                             | et al.                                          | vers-<br>81)                 | al.                                  |                                | 1977)                                   |                                                              |                          | al.                                                    |
|-----------|------------------------|----------------------------------------------------------|-------------------------------------------------|------------------------------|--------------------------------------|--------------------------------|-----------------------------------------|--------------------------------------------------------------|--------------------------|--------------------------------------------------------|
|           | Reference              | Larraza-Herna-<br>ndez et <i>al.</i><br>(1982)           | Anderson e <i>t al.</i><br>(1981)               | Myers & Evers-<br>man (1981) | Alberts <i>et al.</i> (1980)         | Manger &<br>Glifford<br>(1977) | Melicow (1977)<br>Farhi e <i>t al</i> . | (1976)<br>Berg e <i>t al.</i><br>(1976)                      | Wolf <i>et al.</i>       | Steiner <i>et al.</i><br>(1968)                        |
|           | Other info             | Bilateral HNPGL<br>HPTH, PTC, gastric<br>leiomyoma,      | Malignant phaeo<br>HPTH, elevated<br>calcitonin | НРТН                         | HPTH, gastrinoma,<br>adrenal adenoma | НРТН                           | PTC<br>PGL (HN, pelvis)                 | HPIH<br>HNPGL<br>HPTH, hyperplasia of<br>antral and duodenal | yasımı Cens<br>HPTH, MTC | Bilateral phaeo<br>MTC, FH MEN1 for six<br>generations |
|           | <b>Genetics tested</b> | Ξ                                                        | <del></del> Z                                   | Nil                          | N:I                                  | <del></del><br>Z               | N. I.i.                                 | Ξ                                                            | Nil                      | Nil                                                    |
|           | Family history         | Daughter and<br>granddaughter:<br>PA, bilateral<br>HNPGI | NK<br>::                                        | X                            | X                                    | NK<br>N                        | N N<br>N<br>N<br>N<br>N                 | ¥                                                            | X                        | NK<br>N                                                |
|           | Age                    | 70                                                       | ¥                                               | 23                           | 23                                   | 15                             | 52<br>19                                | 36                                                           | 43                       | 14                                                     |
| Phaeo/PGL | Treatment              | X                                                        | ¥                                               | ¥                            | X                                    | ¥                              | ¥¥                                      | ¥<br>Z                                                       | ¥                        | Surgery                                                |
| _         | Type                   | PGL                                                      | Phaeo                                           | Phaeo                        | Phaeo                                | Phaeo                          | Phaeo<br>PGL                            | PGL                                                          | Phaeo                    | Phaeo                                                  |
|           | Age                    | 70                                                       | ⊃                                               | 23                           | 23                                   | 15                             | 52<br>19                                | 36                                                           | 43                       | 21                                                     |
| Pituitary | Treatment              | ¥                                                        | ¥                                               | X                            | ¥                                    | ¥                              | 폴 폴                                     | X                                                            | X                        | RT                                                     |
| Œ         | Size                   | ¥                                                        | Macro                                           | Macro                        | ¥                                    | Macro                          | ¥¥                                      | ¥                                                            | ¥                        | ¥                                                      |
|           | Туре                   | NFPA                                                     | H5                                              | H <sub>B</sub>               | PRL                                  | ъ                              | Chrom<br>GH                             | Н                                                            | NFPA                     | 표                                                      |
| _         | Sex                    | ш                                                        | щ                                               | ட                            | ட                                    | ш                              | டட                                      | щ                                                            | щ                        | Σ                                                      |
| Patient   | no.                    | 4                                                        | 15                                              | 16                           | 17                                   | 8                              | 19<br>20                                | 21                                                           | 22                       | 23                                                     |

M, male; F, female; NFPA, non-functional pituitary adenoma; PRL, prolactinoma; GH, acromegaly; Chrom, chromophobic; Macro, macroadenoma; Micro, microadenoma; DA, dopamine agonist; RT, radiotherapy; SSA, somatostatin analogue; Phaeo, phaeochromocytoma; PGL, paraganglioma; HNPGL, head and neck paraganglioma; PTC, papillary thyroid cancer; GIST, gastrointestinal stromal tumour; NTC, medullary thyroid carcinoma; HPTH, hyperparathyoidism; NK, not known; MEN1, multiple endocrine neoplasia type 1; NF1, neurofibromatosis

sgingle nucleotide polymorphism with a frequency of 3.5% (Bayley *et al.* 2005). <sup>b</sup>Single nucleotide polymorphism with a minor allele frequency of 0.2% and a genotype frequency of 0.5% (Abecasis *et al.* 2012).

 Table 3
 Patients with pituitary adenoma and phaeochromocytoma/paraganglioma without identified mutations or other suspicious features

| Patient  |     |      | _     | Pituitary           |     | ā         | Phaeo/PGL |     | Family           |                                                                     |                                             |                                 |
|----------|-----|------|-------|---------------------|-----|-----------|-----------|-----|------------------|---------------------------------------------------------------------|---------------------------------------------|---------------------------------|
| О        | Sex | Туре | Size  | Treatment           | Age | Туре      | Treatment | Age | history          | Genetics tested                                                     | Other info                                  | Reference                       |
| _        | ш   | H.B  | ¥     | X                   | 35  | PGL       | X         | 28  | Ξ                | SDHA-D, MEN1, RET,                                                  | Bladder PGL                                 | Xekouki et al.                  |
| 7        | ш   | NFPA | ¥     | NK                  | 39  | Phaeo     | N<br>X    | 34  | Ξ                | SDHA-D, MEN1, RET,<br>AIP                                           |                                             | Xekouki <i>et al.</i><br>(2015) |
| m        | ш   | HB   | Macro | Surgery, RT,<br>SSA | 39  | Phaeo     | Surgery   | 50  | Ξ                | SDHA-D, AF2, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH, CDKN1B |                                             | Dénes <i>et al.</i><br>(2015)   |
| 4        | ட   | NFPA | Macro | Surgery, RT         | 73  | PGL       | RT        | 73  | Ξ                | SDHA-D, AF2, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH, CDKN1B | HNPGL                                       | Dénes <i>et al.</i><br>(2015)   |
| ιν       | Σ   | H    | Macro | Infarcted           | 16  | Phaeo     | N<br>X    | 16  | Ξ                | SDHA-D, AF2, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH, CDKN1B |                                             | Dénes e <i>t al.</i><br>(2015)  |
| 9        | Σ   | PRL  | Macro | Surgery             | 40s | PGL       | NK        | 52  | Ξ                | SDHA-D, AF2, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH CDKN1R  | HNPGL                                       | Dénes e <i>t al.</i><br>(2015)  |
| 7        | ட   | PRL  | ¥     | ¥                   | 27  | Phaeo     | X         | 14  | Ξ                | SDHA-D, AFZ, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH CDKN1R  |                                             | Dénes <i>et al.</i><br>(2015)   |
| œ        | Σ   | ¥    | ¥     | ¥                   | ž   | Phaeo/PGL | N         | ¥   | <del></del><br>Z | SDHA-D, AFZ, MEN1, RET, AIP, VHL, TMEM127, MAX, FH CDKN1R           |                                             | Dénes <i>et al.</i><br>(2015)   |
| 6        | ட   | PRL  | Micro | DA                  | 40  | Phaeo     | Surgery   | 38  | Ξ                | SDHA-D, AFZ, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH CDKN1R  |                                             | Dénes <i>et al.</i><br>(2015)   |
| 0        | Σ   | PRL  | Micro | DA                  | 26  | Phaeo     | Surgery   | 26  | Ξ                | SDHA-D, AFZ, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>EH, CDKN1R |                                             | Dénes e <i>t al.</i><br>(2015)  |
| =        | ட   | PRL  | Macro | DA                  | 61  | Phaeo     | Surgery   | 61  | Ξ                | SDHA-D, AFZ, MEN1,<br>RET, AIP, VHL,<br>TMEM127, MAX,<br>FH CDKN1R  |                                             | Dénes <i>et al.</i><br>(2015)   |
| 12       | ш   | NFPA | Micro | II.                 | 52  | Phaeo     | Surgery   | 25  | ΞZ               | SDHA-D, AF2, RET,<br>MAX, TMEM127,<br>VHI                           | GHRH secreting<br>Phaeo                     | Mumby <i>et al.</i><br>(2014)   |
| <u>£</u> | Σ   | NFPA | Micro | N:                  | 64  | Phaeo     | Surgery   | 64  | Ξ                | Nii                                                                 | Cushing's<br>(cured post-<br>adrenalectomy) | Yaylali <i>et al.</i><br>(2008) |

Table 3 Continued

| Patient  |     |                | <b>-</b>    | Pituitary |     | Ā            | Phaeo/PGL |     | Family  |                 |                           |                                                   |
|----------|-----|----------------|-------------|-----------|-----|--------------|-----------|-----|---------|-----------------|---------------------------|---------------------------------------------------|
| 9        | Sex | Туре           | Size        | Treatment | Age | Type         | Treatment | Age | history | Genetics tested | Other info                | Reference                                         |
| 41       | Σ   | NFPA           | Macro       | Surgery   | 29  | Phaeo        | Surgery   | 29  | Ξ       | ΞZ              |                           | Breckenridge                                      |
| 15       | Σ   | NFPA           | Macro       | Surgery   | 26  | Phaeo        | ΞZ        | 26  | Ξ       | Nii             |                           | Dünser et al.                                     |
| 16       | ш   | В              | Macro       | Surgery   | 22  | Phaeo        | Surgery   | 22  | Ξ       | N:I             |                           | (2002)<br>Sleilati <i>et al.</i>                  |
| 17       | ш   | NFPA           | Micro       | ΞZ        | 44  | Phaeo        | Surgery   | 44  | Ξ<br>Z  | N:I             | Cushing's<br>(cured post- | (2002 <i>)</i><br>Khalil e <i>t al.</i><br>(1999) |
| 81       | Σ   | PRL            | Macro       | Surgery   | 20  | PGL          | Surgery   | 20  | X       | NK              | adrenalectomy)<br>HNPGL   | Azzarelli <i>et al.</i><br>(1088)                 |
| 19<br>20 | т¥  | PRL<br>NK      | Micro<br>NK | N N<br>N  | ¥⊃  | Phaeo<br>PGL | ¥ ¥       | ¥¥  | ¥¥      | NK<br>N:I       | HNPGL                     | Meyers (1982)<br>Blumenkopf &                     |
|          |     |                |             |           |     |              |           |     |         |                 |                           | Boekelheide<br>(1982)                             |
| 21       | ш   | В              | ¥           | Ϋ́        | ¥   | Phaeo        | X         | ¥   | X       | - I             |                           | Anderson <i>et al.</i> (1981)                     |
| 22       | ш   | ¥              | Macro       | Ϋ́        | 22  | Phaeo        | ¥         | 22  | X       | ΞZ              |                           | Janson et al. (1978)                              |
| 23       | X   | НВ             | ¥           | NK        | ¥   | Phaeo        | NK        | ¥   | NK      | ΞZ              |                           | (1976)<br>Kadowaki <i>et al.</i><br>(1976)        |
| 24       | ш   | H <sub>D</sub> | ¥           | NK        | D   | Phaeo        | N<br>X    | ¥   | X       | ΞZ              |                           | Miller & Wynn                                     |
| 25       | ш   | НВ             | ¥           | NK        | )   | Phaeo        | NK        | ¥   | NK      | ΞZ              |                           | O'Higgins et al.                                  |
| 56       | Σ   | H <sub>D</sub> | Macro       | RT        | 23  | Phaeo        | Ξ         | 41  | X       | ΞZ              |                           | Kahn & Mullon                                     |
| 27       | Σ   | НВ             | ¥           | NK        | ⊃   | Phaeo        | NK<br>K   | ¥   | ¥       | Nil             |                           | German &<br>Flanigan                              |
| 28       | Ä   | В              | ¥           | NK        | )   | Phaeo        | N<br>N    | ¥   | X       | N:II            |                           | (1964)<br>Iversen (1952)                          |

M, male; F, female; NFPA, non-functional pituitary adenoma; PRL, prolactinoma; GH, acromegaly; Macro, macroadenoma; Micro, microadenoma; DA, dopamine agonist; RT, radiotherapy; SSA, somatostatin analogue; Phaeo, phaeochromocytoma; PGL, paraganglioma; HNPGL, head and neck paraganglioma; NK, not known.



Figure 1

Clinico-pathological examples of coexistent PA and phaeo/PGL in a patient with an *SDHB* mutation. Magnetic resonance image (A) of a pituitary macroadenoma (upper arrow) and glomus vagale tumour (lower arrow) in a 33-year-old man with a germline *SDHB* mutation. He presented with visual loss due to the macroadenoma and pituitary imaging also revealed a mass arising in the carotid space. There is loss of heterozygosity (B) at the *SDHB* locus in a pituitary adenoma, which contains intracytoplasmic vacuoles (C; hematoxylin and eosin,  $\times$ 40) and stains negative for SDHB

(D; ×20, inset: positively staining paraganglioma). Reproduced, with permission, from Dénes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C, et al. 2015 Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma – results from a large patient cohort. Journal of Clinical Endocrinology & Metabolism 100 E531–E541. Published under the Creative Commons Attribution (CC BY) license.

of the six patients had PGL. An additional three patients with *SDHB* mutations with a PA but without a phaeo/PGL have been described (Benn *et al.* 2006, Dénes *et al.* 2015). LOH at the *SDHB* locus and intracytoplasmic vacuoles were identified in two of the three PAs in which it was examined.

A patient with a microprolactinoma and a head and neck PGL as well as multiple features of Cowden syndrome (papillary thyroid cancer, macrocephaly, skin plaques, fibrocystic mammary disease, uterine leiomyofibroma) in association with an *SDHB* variant has also been described (Table 2; Efstathiadou *et al.* 2014). This synonymous *SDHB* variant occurs with a population frequency of 3.5% in the TCA Cycle Gene Mutation Database and is not thought to be pathogenic (Bayley *et al.* 2005).

Heterozygous *Sdhb* knock out mice have abnormal pituitary morphology, developing hyperplastic pituitaries with cellular abnormalities including intranuclear inclusions, altered chromatin nuclear pattern, abnormal mitochondria and increased HIF1 $\alpha$  expression. Circulating pituitary hormone levels were not significantly affected (Xekouki *et al.* 2015).

#### **SDHD**

Mutations in the *SDHD* gene cause Familial Paragangliomas Type 1 (OMIM #168000), which features a high

prevalence of head and neck PGL but also phaeos (Neumann et al. 2004, Ricketts et al. 2010).

Five patients with *SDHD* mutations and both a PA and phaeo/PGL have been reported (Table 1; Xekouki *et al.* 2012, Xekouki *et al.* 2015, Varsavsky *et al.* 2013, Papathomas *et al.* 2014). All patients had functional macroadenomas and head and neck PGLs (two had phaeos in addition). Loss of heterozygosity at the *SDHD* locus was demonstrated in the PA of one patient (Xekouki *et al.* 2012) along with reduced SDHD protein content by western blot and immunohistochemistry. Of two patients identified by Papathomas *et al.* (2014) one PA displayed LOH at the *SDHD* locus and negative SDHB staining whilst one did not

Heterozygous *Sdhd* knockout mice do not develop PA or phaeo/PGL (Piruat *et al.* 2004, Bayley *et al.* 2009) but have carotid body overactivity and glomus cell hyperplasia and hypertrophy, which is a potential prelude to tumour formation (Piruat *et al.* 2004).

## **SDHC**

Mutations in the *SDHC* gene cause Familial Paragangliomas Type 3 (OMIM #605373) in which head and neck PGLs predominate (Schiavi *et al.* 2005).

Two cases of a PA and phaeo/PGL occurring in individuals with SDHC mutations have been described (López-Jiménez et al. 2008, Dénes et al. 2015). Both had a head and neck PGL and a macroprolactinoma treated with dopamine agonist therapy. As a result, no tumour tissue is available for analysis.

#### **SDHA**

Mutations in the SDHA gene cause the rare Familial Paragangliomas Type 5 (OMIM #614165 (Burnichon et al. 2010).

Germline SDHA mutations were described in a patient with a head and neck PGL and her son with a nonfunctional PA (NFPA) (Dwight et al. 2013). Immunohistochemistry (IHC) for SDHA was negative in both the proband's PA and his mother's PGL.

Dénes et al. (2015) identified two patients with PA and phaeo/PGL with SDHA variants (Tables 1 and 2). One was a synonymous variant with a population frequency of 0.5% (Abecasis et al. 2012) in a patient who in addition to an abdominal PGL and NFPA also had a Wilms tumour, retroperitoneal liposarcomas and a renal oncocytoma. The pituitary adenoma retained staining for SDHA and SDHB and there was no loss of heterozygosity at the SDHA locus, although intracytoplasmic vacuoles were observed. The second patient had a truncating variant in the SDHA gene with a population frequency of 0.3% and is thought to be probably pathogenic with a very low penetrance (Bayley et al. 2005). In addition, this patient also had a VHL mutation which is discussed elsewhere.

# SDHAF2

Mutations in SDHAF2 cause Familial Paraganglioma type 2 (OMIM #601650) which is characterised by head and neck paragangliomas (Hao et al. 2009).

A single patient with an SDHAF2 variant and PA and phaeo/PGL has been reported (Table 1). He was an elderly man with a somatotroph macroadenoma and head and neck PGL; no tumour tissue was available for analysis (Dénes et al. 2015). The variant is located in the 5' UTR and has not been described in a reference population (Abecasis et al. 2012).

Thus there is increasing evidence that SDHx mutations may play a role in pituitary tumorigenesis in patients with germline mutations and appear to give rise to a specific PA phenotype. Further characterisation of this may provide insight into the mechanisms of pathogenesis.

# Von Hippel-Lindau

Von Hippel-Lindau syndrome (VHL; OMIM #193300) is an inherited cancer syndrome characterised by haemangioblastomas of the central nervous system, retinal haemangiomas, renal cysts and cancer, pancreatic cysts and pancreatic neuroendocrine tumours (NETs), and phaeos. It is caused by heterozygous mutations in the VHL tumour suppressor gene on chromosome 3p25 which encodes protein VHL (pVHL). The VHL protein has a number of functions that have been implicated in tumorigenesis. Its best-established role is as an E3-ubiquitin ligase that targets the α-subunits of HIF for degradation by the proteasome. When this does not occur, as is the case with mutant pVHL, HIFα heterodimerizes with HIFβ and translocates into the nucleus resulting in upregulation of the transcription of multiple genes involved in angiogenesis, glycolysis and cell proliferation.

Pituitary adenomas are not an established feature of VHL syndrome although a role for pVHL in pituitary tumorigenesis has been postulated. VHL protein is expressed in the cytoplasm of normal pituitary cells but is more variably distributed within different PA subtypes. Somatotropinomas, the least vascularized tumour type, displayed frequent predominantly nuclear staining for pVHL suggesting a possible inhibitory role for pVHL in pituitary angiogenesis (Vidal et al. 1999). In a study of 30 NFPAs, low expression of pVHL was associated with increased vascular endothelial growth factor expression and an increased risk of tumour recurrence or regrowth but not with proliferative index (Shimoda et al. 2013).

Only two cases of a PA in the context of a VHL mutation have been described. A 15-year-old boy with a pathogenic VHL mutation developed an aggressive and recurrent GH/prolactin secreting macroadenoma that required multi-modal intervention (Tudorancea et al. 2012). Examination of the PA did not reveal intracytoplasmic vacuoles and there was no LOH at the VHL locus in the tumour specimen (Dénes et al. 2015), although this is not an absolute requirement in VHL-related tumours (Banks et al. 2006). The second patient had a prolactinoma and phaeo, and variants in both VHL and SDHA (Dénes et al. 2015). The VHL variant is pathogenic (D'Elia et al. 2013). The SDHA variant is truncating and classed as probably pathogenic (Bayley et al. 2005), but as no PA tissue was available the role of either variants in the PA pathogenesis is unknown.

The low number of reported cases of PAs in VHL is somewhat surprising given the frequency with which patients undergo regular surveillance imaging of the brain and thus have the potential for incidentalomas to be discovered, suggesting that this association of VHL and PA may not represent a syndrome and could be coincidence. However, this association has not been studied formally.

#### MEN2

MEN2A (OMIM #171400) and 2B (#162300) are autosomal dominantly inherited syndromes resulting from gainof-function mutations in the rearranged during transfection (RET) proto-oncogene on chromosome 10q11, which is also responsible for Familial Medullary Thyroid Carcinoma (FMTC, OMIM #155240). MEN2A and 2B consist of medullary thyroid cancer (MTC), phaeo and hyperparathyroidism in addition to marfinoid features and mucosal neuromas in MEN2B (also previously known as MEN3). The RET protein is a tyrosine kinase receptor for the glial cell line-derived neutrophic factor (GDNF) family of ligands. There is a close genotype-phenotype correlation in MEN2.

RET is expressed in pituitary somatotrophs (Urbano et al. 2000) and somatotropinomas (Japón et al. 2002), and its knockout in mice, although lethal, results in an enlarged pituitary gland due to somatotroph hyperplasia (Cañibano et al. 2007). It interacts with aryl hydrocarbon receptorinteracting protein (AIP) conveying possible synergistic activity in regulating somatotroph proliferation and tumorigenesis (Vargiolu et al. 2009). Despite this potential role in pituitary tumorigenesis, neither somatic (Yoshimoto et al. 1999) nor pathogenic germline (Heliövaara et al. 2011) RET mutations have been identified in PAs.

Two cases of co-existing phaeo/PGL and PA in patients with confirmed RET mutations (Table 1; Heinlen et al. 2011, Naziat et al. 2013) have been reported. In both cases the PAs were functional (one Cushing's, one acromegaly) but no tumour analysis was performed. A further four cases of co-existing phaeo/PGL and PA have been reported in patients with a clinical diagnosis of MEN2 but without a proven RET mutation (Table 2; Steiner et al. 1968, Wolf et al. 1972, Anderson et al. 1981, Bertrand et al. 1987). In these patients there were no PGLs, and all but one PA was functional.

One additional case of a patient with a confirmed RET mutation developing a PA without phaeo/PGL has been reported (Saito et al. 2010), although no tumour analysis was undertaken.

Thus, although PAs have been described in MEN2 patients including some with confirmed RET mutations, there is insufficient evidence available at present to conclude whether it plays a role in pituitary tumorigenesis.

# **Neurofibromatosis type 1**

Neurofibromatosis type 1 (NF1, OMIM #162200) is an autosomal dominantly inherited neurocutaneous syndrome caused by mutations in the neurofibromin 1 gene and features café au lait spots, Lisch nodules, neurofibromas and optic pathway gliomas. Phaeochromocytoma is an associated tumour type and it occurs in up to 5% of patients with NF1 (Gutmann et al. 1997).

No cases have been reported of a co-existing phaeo/PGL and PA in a patient with NF1. Six reports of a PA in NF1 have been described (Boudin et al. 1970, Barberis et al. 1979, Adelove 1979, Pinnamaneni et al. 1980, Nakajima et al. 1990, Kurozumi et al. 2002) although none have undergone further analysis of the PAs and a clinical rather than genetic diagnosis of NF1 was made in all cases.

#### Other phaeo susceptibility genes

Pituitary adenomas have not been reported in patients with mutations in the most recently discovered phaeo/PGL susceptibility genes: MYC-associated factor X (MAX), transmembrane protein 127 (TMEM127), kinesin family member 1B (KIF1B), endothelial PAS domain protein 1 (EPAS1), PHD 1 and 2 (PHD1, PHD2), fumarate hydratase (FH), or malate dehydrogenase 2 (MDH2).

# Pituitary adenoma-predisposing genes

#### MEN1

MEN1 (OMIM #131100) is an autosomal dominantly inherited syndrome comprising of tumours of the parathyroids, endocrine pancreas and pituitary. It arises due to mutations in the tumour suppressor gene MEN1 which encodes menin, a 610 amino acid nuclear scaffold protein with roles in cell division (Schnepp et al. 2004), genome stability (Hughes et al. 2004) and transcription regulation (Agarwal et al. 1999).

Although described, the association of phaeos with MEN1 is rare, being present in <1% of large series (Skogseid et al. 1992, Burgess et al. 1996, Trump et al. 1996, Marx et al. 1998, Langer et al. 2002, Gatta-Cherifi et al. 2012). The prevalence of phaeos is significantly higher, up to 7%, in the Men1 heterozygous knockout mouse model (Crabtree et al. 2001).

Only four cases of co-existing phaeo/PGL and PA have been reported in patients with MEN1 mutations (Table 1; Dackiw et al. 1999, Langer et al. 2002, Jeong et al. 2014,



Figure 2 Clinico-pathological examples of coexistent PA and phaeo/PGL in a patient with an MEN1 mutation. A 31-year-old man with an MEN1 germline mutation c.1452delG and a history of a mixed growth hormone-prolactin secreting macroadenoma was diagnosed with a phaeochromocytoma. Analysis of the phaeochromocytoma demonstrated LOH at the MEN1 locus (A) and absent menin staining (B; x20, inset: positively staining murine pancreatic islet). Reproduced, with permission, from Dénes J, Swords F,

Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C, et al. 2015 Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma – results from a large patient cohort. Journal of Clinical Endocrinology & Metabolism 100 E531-E541. Published under the Creative Commons Attribution (CC BY) license.

Dénes et al. 2015); three had a phaeo, one had an abdominal PGL. Loss of heterozygosity at the MEN1 locus combined with absent menin staining in the phaeo sample was demonstrated in one of these cases (Fig. 2; Dénes et al. 2015) suggesting a role in pathogenicity.

A number of other cases have been reported in which patients have both phaeo/PGL and PA with a clinical suspicion of MEN1 but without genetic confirmation, mainly because genetic testing was not performed or available at the time of publication (Table 2).

Phaeo/PGL without PAs have been reported three times in patients with confirmed MEN1 mutations (Dackiw et al. 1999, Jamilloux et al. 2013, Dénes et al. 2015). In one of these cases, LOH at the MEN1 locus and weak menin staining was identified in the phaeo (Dénes et al. 2015). Other cases of phaeo (Trump et al. 1996, Marx et al. 1998) and PGL (Hashimoto et al. 1986) have been described in patients with a clinical diagnosis of MEN1 but in whom genetic information is not available.

The existence of an MEN1/2 overlap syndrome has previously been proposed and there are numerous examples of phaeo/PGL being associated with pancreatic NETs (Tateishi et al. 1978, Carney et al. 1980, Zeller et al. 1982, Tamasawa et al. 1994), although without additional germline or tumour genetic data.

Thus there is evidence that phaeos can form part of the MEN1 syndrome and that in some cases, at least, MEN1 mutations contribute to pathogenesis as

evidenced by LOH at the MEN1 locus and resultant reduced menin staining.

#### MEN4

MEN4 (OMIM #610755) is a recently described syndrome with clinical features similar to MEN1 resulting from mutations in the CDKN1B gene.

Its identification stemmed from the observation of the spontaneous development of endocrine neoplasia occurring within the first year of life in a Sprague-Dawley rat colony (Fritz et al. 2002). This syndrome, termed MENX, consisted of bilateral phaeo, paraganglioma, parathyroid hyperplasia and pituitary adenomas preceded by juvenile cataracts. Despite the clear overlap in clinical features with both MEN1 and MEN2, no identified mutations in MEN1 or RET were identified and inheritance was autosomal recessive (Fritz et al. 2002). Subsequent work identified the causative gene to be Cdkn1b which encodes the cyclindependent kinase inhibitor p27Kip1 (Pellegata et al. 2006), a tumour suppressor previously implicated in pituitary tumorigenesis in knockout mice (Nakayama et al. 1996) and known to be downregulated in human pituitary adenomas (Lidhar et al. 1999, Korbonits et al. 2002). A pathogenic truncating mutation in the human orthologue CDKN1B was identified in a 48-year-old woman with a personal history of acromegaly and primary hyperparathyroidism and a family history of renal



Figure 3 Summary of published cases of coexisting PA and phaeo/PGL. The details of 72 patients with coexisting PA and phaeo/PGL have been published. Twenty one patients (29%, Table 1) have either a confirmed genetic mutation in a recognised PA or phaeo/PGL-predisposing gene or a variant which is either thought to be pathogenic or has not been described as a polymorphism. Twenty three patients (32%, blue, Table 2) do not have a confirmed pathogenic genetic mutation in a PA or phaeo/PGL-predisposing gene but have features that are suggestive of a genetic link (family history of PA or phaeo/PGL, multifocal phaeo/PGL or associated endocrine pathology). Twenty eight (39%, red, Table 3) have arisen in patients without additional identified features.

angiomyolipoma in a confirmed mutation carrier (Pellegata et al. 2006). Subsequently, a number of cases of both functional (Georgitsi et al. 2007, Agarwal et al. 2009, Tichomirowa et al. 2012, Occhi et al. 2013, Sambugaro et al. 2015) and non-functional (Molatore et al. 2010) PAs have been reported in patients with germline mutations in CDKN1B, although they account for only a minority of MEN1 mutation negative patients (Ozawa et al. 2007, Igreja et al. 2009). Mutations in other cyclin-dependent kinase inhibitors have also been linked to MEN. Combined knockout of p18 and p27 in mice results in a similar MEN1/MEN2 overlap syndrome with development of PAs and phaeos in combination with parathyroid, thyroid C cell and pancreatic hyperplasia (Franklin et al. 2000). Agarwal et al. (2009) identified mutations in three other cyclin-dependent kinase inhibitor genes (p15, p18 and p21) in a large cohort of mutation-negative MEN1 patients, albeit with a low overall prevalence. None of these patients had a phaeo/PGL.

In spite of the very high prevalence of phaeo/PGL in these animal models - 95% for phaeo, 85% for PGL in MENX rats (Fritz et al. 2002), 91% for phaeo in double p18 and p27 knockout mice (Franklin et al. 2000) – no case of a phaeo or PGL has been reported in the context of MEN4 or a germline mutation in a cyclin-dependent kinase inhibitor gene in humans.

# Aryl hydrocarbon receptor-interacting protein

Pituitary adenomas and

phaeo/PGL

Phaeo/PGL have not been reported in patients with mutations in AIP (Beckers et al. 2013, Hernández-Ramírez et al. 2015). No pheo/PGL or mutations in pheo/PGLpredisposing genes have been identified in 23 families with AIP mutation negative familial isolated pituitary adenomas (Dénes et al. 2015).

#### **Mimics**

When considering the coexistence of two rare diagnoses, Occam's razor dictates that it is necessary to be aware of other pathologies that might masquerade as either a pituitary lesion or pituitary hyper-function.

Pheo/PGL can rarely secrete pituitary hormones, such as ACTH, mimicking a functional PA, although a pituitary lesion is usually absent, unless an incidentaloma co-exists (Khalil et al. 1999, Yaylali et al. 2008). Ectopic hypothalamic hormone secretion, such as GHRH, by a phaeo/PGL is even rarer but constant trophic stimulation can result in pituitary hyperplasia (Roth et al. 1986) which could be interpreted as a PA and potentially lead to an unnecessary pituitary procedure (Vieira Neto et al. 2007).



Schematic of potential mechanisms of the development of coexisting PA and phaeo/PGL. The development of PA and phaeo/PGL in the same individual may occur by coincidence or due to a shared pathogenesis. At present, there is evidence to suggest a role for both SDHx and MEN1 mutations in the development of both these tumours. Ectopic secretion of hypothalamic or pituitary hormones by a phaeo/PGL may mimic a coexisting pituitary adenoma and should be a diagnostic consideration. More cases have been described in the literature of ectopic hormone secretion by a phaeo/PGL than by bone fide coexisting PA and phaeo/PGL.

phaeo/PGL

Lesions within and around the sella can mimic PAs and might be coincidental, for example, Rathke's cleft cyst in VHL (Huff *et al.* 2014), related to a particular syndrome, such as haemangioblastomas in VHL (Goto *et al.* 2001, Lonser *et al.* 2009, Kanno *et al.* 2013), or the other pathology as in the case of an intrasellar PGL (Boari *et al.* 2006).

We summarise the genetic background of the published cases of coexisting PA and phaeo/PGL in Figure 3 and show the potential mechanisms leading to the development of coexisting PA and phaeo/PGL in Figure 4.

#### Summary

In conclusion, mutations in *SDHA*, *SDHB*, *SDHD*, *MEN1* and probably *SDHC* have already been heavily implicated in the rare association of PA and phaeo/PGL. Given the recent advances in this area it is likely that additional genetic culprits will be identified.

#### Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

#### **Funding**

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

# References

- Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT & McVean GA 2012 An integrated map of genetic variation from 1,092 human genomes. *Nature* **491** 56–65. (doi:10.1038/nature11632)
- Adeloye A 1979 Coexistence of acromegaly and neurofibromatosis in a Nigerian. *East African Medical Journal* **56** 38–39.
- Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM *et al.* 1999 Menin interacts with the AP1 transcription factor JunD and represses JunDactivated transcription. *Cell* **96** 143–152. (doi:10.1016/S0092-8674(00)80967-8)
- Agarwal SK, Mateo CM & Marx SJ 2009 Rare germline mutations in cyclindependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. *Journal of Clinical Endocrinology and Metabolism* **94** 1826–1834. (doi:10.1210/jc.2008-2083)
- Alberts WM, McMeekin JO & George JM 1980 Mixed multiple endocrine neoplasia syndromes. *Journal of the American Medical Association* **244** 1236–1237. (doi:10.1001/jama.1980.03310110046029)
- Anderson RJ, Lufkin EG, Sizemore GW, Carney JA, Sheps SG & Silliman YE 1981 Acromegaly and pituitary adenoma with phaeochromocytoma: a variant of multiple endocrine neoplasia. *Clinical Endocrinology* 14 605–612. (doi:10.1111/j.1365-2265.1981.tb02971.x)
- Azzarelli B, Felten S, Muller J, Miyamoto R & Purvin V 1988 Dopamine in paragangliomas of the glomus jugulare. *Laryngoscope* **98** 573–578. (doi:10.1288/00005537-198805000-00020)

- Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, Maher ER, Stanley AJ, Harnden P, Joyce A *et al.* 2006 Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. *Cancer Research* **66** 2000–2011. (doi:10.1158/0008-5472.CAN-05-3074)
- Baughan J, De Gara C & Morrish D 2001 A rare association between acromegaly and pheochromocytoma. *American Journal of Surgery* **182** 185–187. (doi:10.1016/S0002-9610(01)00678-X)
- Barberis M, Gambacorta M, Versari P & Filizzolo F 1979 [About a case of Recklinghausen's disease associated with pituitary adenoma (author's transl)]. *Pathologica* **71** 265–272.
- Bayley J-P, Devilee P & Taschner PEM 2005 The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. *BMC Medical Genetics* **6** 39. (doi:10.1186/1471-2350-6-39)
- Bayley J-P, van Minderhout I, Hogendoorn PCW, Cornelisse CJ, van der Wal A, Prins FA, Teppema L, Dahan A, Devilee P & Taschner PEM 2009 Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. *PLoS ONE* **4** e7987. (doi:10.1371/journal.pone. 0007987)
- Beckers A, Aaltonen LA, Daly AF & Karhu A 2013 Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. *Endocrine Reviews* **34** 239–277. (doi:10.1210/er.2012-1013)
- Benn DE, Gimenez-Roqueplo A-P, Reilly JR, Bertherat J, Burgess J, Byth K, Croxson M, Dahia PLM, Elston M, Gimm O *et al.* 2006 Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. *Journal of Clinical Endocrinology and Metabolism* **91** 827–836. (doi:10.1210/jc.2005-1862)
- Berg B, Biörklund A, Grimelius L, Ingemansson S, Larsson LI, Stenram U & Akerman M 1976 A new pattern of multiple endocrine adenomatosis: chemodectoma, bronchial carcinoid, GH-producing pituitary adenoma, and hyperplasia of the parathyroid glands, and antral and duodenal gastrin cells. *Acta Medica Scandinavica* **200** 321–326. (doi:10.1111/j.0954-6820.1976.tb08239.x)
- Bertrand JH, Ritz P, Reznik Y, Grollier G, Potier JC, Evrad C & Mahoudeau JA 1987 Sipple's syndrome associated with a large prolactinoma. *Clinical Endocrinology* **27** 607–614. (doi:10.1111/j.1365-2265.1987.tb01191.x)
- Blumenkopf B & Boekelheide K 1982 Neck paraganglioma with a pituitary adenoma. Case report. *Journal of Neurosurgery* **57** 426–429. (doi:10.3171/jns.1982.57.3.0426)
- Boari N, Losa M, Mortini P, Snider S, Terreni MR & Giovanelli M 2006 Intrasellar paraganglioma: a case report and review of the literature. *Acta Neurochirurgica* **148** 1311–1314; discussion 1314. (doi:10.1007/s00701-006-0895-1)
- Boguszewski CL, Fighera TM, Bornschein A, Marques FM, Dénes J, Rattenbery E, Maher ER, Stals K, Ellard S & Korbonits M 2012 Genetic studies in a coexistence of acromegaly, pheochromocytoma, gastrointestinal stromal tumor (GIST) and thyroid follicular adenoma. *Arquivos Brasileiros de Endocrinologia e Metabologia* **56** 507–512. (doi:10.1590/S0004-27302012000800008)
- Boudin G, Pepin B & Vernant CL 1970 [Multiple tumours of the nervous system in Recklinghausen's disease. An anatomo-clinical case with chromophobe adenoma of the pituitary gland]. *La Presse Médicale* **78** 1427–1430.
- Brahma A, Heyburn P & Swords F 2009 Familial prolactinoma occuring in association with SDHB mutation positive paraganglioma. *Endocrine Abstracts* **19** P239.
- Breckenridge SM, Hamrahian AH, Faiman C, Suh J, Prayson R & Mayberg M 2003 Coexistence of a pituitary macroadenoma and pheochromocytoma a case report and review of the literature. *Pituitary* **6** 221–225. (doi:10.1023/B:PITU.0000023429.89644.7b)
- Burgess JR, Harle RA, Tucker P, Parameswaran V, Davies P, Greenaway TM & Shepherd JJ 1996 Adrenal lesions in a large kindred with multiple

- endocrine neoplasia type 1. *Archives of Surgery* **131** 699–702. (doi:10.1001/archsurg.1996.01430190021006)
- Burnichon N, Brière J-J, Libé R, Vescovo L, Rivière J, Tissier F, Jouanno E, Jeunemaitre X, Bénit P, Tzagoloff A *et al.* 2010 SDHA is a tumor suppressor gene causing paraganglioma. *Human Molecular Genetics* **19** 3011–3020. (doi:10.1093/hmg/ddq206)
- Cañibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG, Vidal A, Costantini F, Japon M, Dieguez C *et al.* 2007 The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. *EMBO Journal* **26** 2015–2028.
- Carney JA, Go VL, Gordon H, Northcutt RC, Pearse AG & Sheps SG 1980 Familial pheochromocytoma and islet cell tumor of the pancreas. *American Journal of Medicine* **68** 515–521. (doi:10.1016/0002-9343(80)90295-8)
- Carty SE, Helm AK, Amico JA, Clarke MR, Foley TP, Watson CG, Mulvihill JJ, Marx S & Skogseid B 1998 The variable penetrance and spectrum of manifestations of multiple endocrine neoplasia type 1. *Surgery* **124** 1106–1114. (doi:10.1067/msy.1998.93107)
- Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ et al. 2001 A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. PNAS 98 1118–1123. (doi:10.1073/pnas.98.3.1118)
- D'Elia AV, Grimaldi F, Pizzolitto S, De Maglio G, Bregant E, Passon N, Franzoni A, Verrienti A, Tamburrano G & Durante C 2013 A new germline VHL gene mutation in three patients with apparently sporadic pheochromocytoma. *Clinical Endocrinology* **78** 391–397. (doi:10.1111/cen.12032)
- Dackiw APB, Cote GJ, Fleming JB, Schultz PN, Stanford P, Vassilopoulou-Sellin R, Evans DB, Gagel RF & Lee JE 1999 Screening for MEN1 mutations in patients with atypical endocrine neoplasia. *Surgery* **126** 1097–1104. (doi:10.1067/msy.2099.101376)
- Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA & Beckers A 2006 High prevalence of pituitary adenomas: a cross-sectional study in the Province of Liège. Belgium. *Journal of Clinical Endocrinology and Metabolism* **91** 4769–4775. (doi:10.1210/jc.2006-1668)
- Dénes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, Xekouki P, Moran L, Kumar A, Wassif C et al. 2015 Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma – results from a large patient cohort. Journal of Clinical Endocrinology and Metabolism 100 E531–E541. (doi:10.1210/jc.2014-3399)
- Dünser MW, Mayr AJ, Gasser R, Rieger M, Friesenecker B & Hasibeder WR 2002 Cardiac failure and multiple organ dysfunction syndrome in a patient with endocrine adenomatosis. *Acta Anaesthesiologica Scandinavica* **46** 1161–1164. (doi:10.1034/j.1399-6576.2002.460918.x)
- Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, Winship I & Clifton-Bligh RJ 2013 Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. *Journal of Clinical Endocrinology and Metabolism* **98** 1103–1108. (doi:10.1210/jc.2013-1400)
- Efstathiadou ZA, Sapranidis M, Anagnostis P & Kita MD 2014 Unusual case of Cowden-like syndrome, neck paraganglioma, and pituitary adenoma. *Head & Neck* **36** E12–E16. (doi:10.1002/hed.23420)
- Eisenhofer G, Pacak K, Maher ER, Young WF & de Krijger RR 2013 Pheochromocytoma. *Clinical Chemistry* **59** 466–472. (doi:10.1373/clinchem.2013.208017)
- Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML & McCutcheon IE 2004 The prevalence of pituitary adenomas: a systematic review. *Cancer* 101 613–619. (doi:10.1002/cncr.20412)
- Farhi F, Dikman SH, Lawson W, Cobin RH & Zak FG 1976 Paragangliomatosis associated with multiple endocrine adenomas. *Archives of Pathology & Laboratory Medicine* **100** 495–498.
- Fernandez A, Karavitaki N & Wass JAH 2010 Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). *Clinical Endocrinology* **72** 377–382. (doi:10.1111/j. 1365-2265.2009.03667.x)

Franklin DS, Godfrey VL, O'Brien DA, Deng C & Xiong Y 2000 Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. *Molecular and Cellular Biology* **20** 6147–6158. (doi:10.1128/MCB.20.16.6147-6158.2000)

Pituitary adenomas and

phaeo/PGL

- Fritz A, Walch A, Piotrowska K, Rosemann M, Scha E, Weber K, Timper A, Wildner G, Graw J & Ho H 2002 Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. *Cancer Research* **62** 3048–3051.
- Gatta-Cherifi B, Chabre O, Murat A, Niccoli P, Cardot-Bauters C, Rohmer V, Young J, Delemer B, Du Boullay H, Verger MF *et al.* 2012 Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d'étude des Tumeurs Endocrines database. *European Journal of Endocrinology* **166** 269–279. (doi:10.1530/EJE-11-0679)
- Georgitsi M, Raitila A, Karhu A, Van Der Luijt RB, Aalfs CM, Sane T, Vierimaa O, Mäkinen MJ, Tuppurainen K, aschke R et al. 2007 Brief report: germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. Journal of Clinical Endocrinology and Metabolism 92 3321–3325. (doi:10.1210/jc.2006-2843)
- Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouysségur J, Yaniv M & Mechta-Grigoriou F 2004 JunD reduces tumor angiogenesis by protecting cells from oxidative stress. *Cell* **118** 781–794. (doi:10.1016/j.cell.2004.08.025)
- German WJ & Flanigan S 1964 Pituitary adenomas: a follow-up study of the Cushing series. *Clinical Neurosurgery* **10** 72–81.
- Gill AJ, Toon CW, Clarkson A, Sioson L, Chou A, Winship I, Robinson BG, Benn DE, Clifton-Bligh RJ & Dwight T 2014 Succinate dehydrogenase deficiency is rare in pituitary adenomas. *American Journal of Surgical Pathology* 38 560–566. (doi:10.1097/PAS.0000000000000149)
- Goto T, Nishi T, Kunitoku N, Yamamoto K, Kitamura I, Takeshima H, Kochi M, Nakazato Y, Kuratsu J & Ushio Y 2001 Suprasellar hemangio-blastoma in a patient with von Hippel-Lindau disease confirmed by germline mutation study: case report and review of the literature. *Surgical Neurology* **56** 22–26. (doi:10.1016/S0090-3019(01)00482-7)
- Gutmann DH, Aylsworth A, Carey JC, Korf B, Marks J, Pyeritz RE, Rubenstein A & Viskochil D 1997 The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. *Journal of the American Medical Association* 278 51–57. (doi:10.1001/jama.1997.03550010065042)
- Hao H-X, Khalimonchuk O, Schraders M, Dephoure N, Bayley J-P, Kunst H, Devilee P, Cremers CWRJ, Schiffman JD, Bentz BG et al. 2009 SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325 1139–1142. (doi:10.1126/science. 1175689)
- Hashimoto K, Suemaru S, Hattori T, Sugawara M, Ota Z, Takata S, Hamaya K, Doi K & Chrétien M 1986 Multiple endocrine neoplasia with Cushing's syndrome due to paraganglioma producing corticotropin-releasing factor and adrenocorticotropin. *Acta Endocrinologica* **113** 189–195.
- Heinlen JE, Buethe DD, Culkin DJ & Slobodov G 2011 Multiple endocrine neoplasia 2a presenting with pheochromocytoma and pituitary macroadenoma. *ISRN Oncology* **2011** 1–4. (doi:10.5402/2011/732452)
- Heliövaara E, Tuupanen S, Ahlsten M, Hodgson S, de Menis E, Kuismin O, Izatt L, McKinlay Gardner RJ, Gundogdu S, Lucassen A *et al.* 2011 No evidence of RET germline mutations in familial pituitary adenoma. *Journal of Molecular Endocrinology* **46** 1–8. (doi:10.1677/JME-10-0052)
- Hernández-Ramírez LC, Gabrovska P, Dénes TA, Stals K, Trivellin G, Tilley D, Ferraú F, Evanson J, Ellard S, Grossman AB, Roncaroli F, Gadelha MR, Korbonits M & The International FIPA Consortium 2015 Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. *Journal of Clinical Endocrinology and Metabolism* [in press]. (doi:10.1210/jc.2015-1869)
- Huff WX, Bonnin JM & Fulkerson DH 2014 Rathke's cleft cysts in twins with type 2C von Hippel-Lindau disease. *Journal of Neurosurgery*. *Pediatrics* 14 145–148. (doi:10.3171/2014.5.PEDS13541)
- Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA et al. 2004 Menin associates with a trithorax family histone methyltransferase

- complex and with the hoxc8 locus. Molecular Cell 13 587-597. (doi:10.1016/S1097-2765(04)00081-4)
- Igreja S, Chahal HS, Akker SA, Gueorguiev M, Popovic V, Damjanovic S, Burman P, Wass JA, Quinton R, Grossman AB et al. 2009 Assessment of p27 (cyclin-dependent kinase inhibitor 1B) and aryl hydrocarbon receptor-interacting protein (AIP) genes in multiple endocrine neoplasia (MEN1) syndrome patients without any detectable MEN1 gene mutations. Clinical Endocrinology 70 259-264. (doi:10.1111/j.1365-2265.2008.03379.x)
- Iversen K 1952 Acromegaly associated with phaeochromocytoma. Acta Medica Scandinavica 142 1-5. (doi:10.1111/j.0954-6820.1952. tb13837.x)
- Jamilloux Y, Favier J, Pertuit M, Delage-Corre M, Lopez S, Teissier M-P, Mathonnet M, Galinat S, Barlier A & Archambeaud F 2013 A MEN1 syndrome with a paraganglioma. European Journal of Human Genetics 22 283-285. (doi:10.1038/ejhg.2013.128)
- Janson KL, Roberts JA & Varela M 1978 Multiple endocrine adenomatosis: in support of the common origin theories. Journal of Urology 119 161-165.
- Japón MA, Urbano AG, Sáez C, Segura DI, Cerro AL, Diéguez C & Alvarez CV 2002 Glial-derived neurotropic factor and RET gene expression in normal human anterior pituitary cell types and in pituitary tumors. Journal of Clinical Endocrinology and Metabolism 87 1879–1884. (doi:10.1210/jcem.87.4.8383)
- Jeong YJ, Oh HK & Bong JG 2014 Multiple endocrine neoplasia type 1 associated with breast cancer: a case report and review of the literature. Oncology Letters 8 230-234. (doi:10.3892/ol.2014.2144)
- Kadowaki S, Baba Y, Kakita T, Yamamoto H, Fukase M, Goto Y, Seino Y, Kato Y, Matsukara S & Imura H 1976 A case of acromegaly associated with pheochromocytoma [in Japanese]. Saishin Igaku 31 1402–1409.
- Kahn MT & Mullon DA 1964 Phoechromocytoma without hypertension. Report of a patient with acromegaly. Journal of the American Medical Association 188 74-75.
- Kanno H, Kuratsu J, Nishikawa R, Mishima K, Natsume A, Wakabayashi T, Houkin K, Terasaka S & Shuin T 2013 Clinical features of patients bearing central nervous system hemangioblastoma in von Hippel-Lindau disease. Acta Neurochirurgica 155 1-7. (doi:10.1007/ s00701-012-1514-y)
- Khalil WKA, Vadasz J, Rigo E, Kardos L, Tiszlavicz L & Gaspar L 1999 Pheochromocytoma combined with unusual form of Cushing's syndrome and pituitary microadenoma. European Journal of Endocrinology **141** 653–654. (doi:10.1530/eje.0.1410653)
- Korbonits M, Chahal HS, Kaltsas G, Jordan S, Urmanova Y, Khalimova Z, Harris PE, Farrell WE, Claret F-X & Grossman AB 2002 Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. Journal of Clinical Endocrinology and Metabolism 87 2635–2643. (doi:10.1210/jcem.87.6.8517)
- Kurozumi K, Tabuchi A, Ono Y, Tamiya T, Ohmoto T, Furuta T & Hamasaki S 2002 [Pituitary adenoma associated with neurofibromatosis type 1: case report]. No Shinkei Geka. Neurological Surgery 30 741-745.
- Langer P, Cupisti K, Bartsch DK, Nies C, Goretzki PE, Rothmund M & Röher HD 2002 Adrenal involvement in multiple endocrine neoplasia type 1. World Journal of Surgery 26 891-896. (doi:10.1007/s00268-002-6492-4)
- Larraza-Hernandez O, Albores-Saavedra J, Benavides G, Krause LG, Perez-Merizaldi JC & Ginzo A 1982 Multiple endocrine neoplasia. Pituitary adenoma, multicentric papillary thyroid carcinoma, bilateral carotid body paraganglioma, parathyroid hyperplasia, gastric leiomyoma, and systemic amyloidosis. American Journal of Clinical Pathology 78 527-532.
- Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P et al. 2013 SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23 739-752. (doi:10.1016/j.ccr.2013.04.018)
- Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM et al. 1999 Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph

- tumors, and malignant pituitary tumors. Journal of Clinical Endocrinology and Metabolism 84 3823–3830. (doi:10.1210/jcem.84.10.6066)
- Lonser RR, Butman JA, Kiringoda R, Song D & Oldfield EH 2009 Pituitary stalk hemangioblastomas in von Hippel-Lindau disease. Journal of Neurosurgery 110 350-353. (doi:10.3171/2008.4.17532)

Pituitary adenomas and

phaeo/PGL

- López-Jiménez E, de Campos JM, Kusak EM, Landa I, Leskelä S, Montero-Conde C, Leandro-García LJ, Vallejo LA, Madrigal B, Rodríguez-Antona C et al. 2008 SDHC mutation in an elderly patient without familial antecedents. Clinical Endocrinology 69 906-910.
- Manger W & Glifford R 1977 Pheochromocytoma. New York, NY: Springer. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS & Liotta LA 1998 Multiple endocrine neoplasia type 1: clinical and genetic topics. Annals of Internal Medicine 129 484-494. (doi:10.7326/0003-4819-129-6-199809150-00011)
- Mazzaglia PJ 2012 Hereditary pheochromocytoma and paraganglioma. Journal of Surgical Oncology 106 580-585. (doi:10.1002/jso.23157)
- McWhinney SR, Pasini B & Stratakis CA 2007 Familial gastrointestinal stromal tumors and germ-line mutations. New England Journal of Medicine 357 1054-1056. (doi:10.1056/NEJMc071191)
- Melicow MM 1977 One hundred cases of pheochromocytoma (107 tumors) at the Columbia-Presbyterian Medical Center, 1926-1976: a clinicopathological analysis. Cancer 40 1987-2004. (doi:10.1002/1097-0142(197711)40:5 < 1987::AID-CNCR2820400502 > 3.0.CO;2-R)
- Meyers DH 1982 Association of phaeochromocytoma and prolactinoma. Medical Journal of Australia 1 13-14.
- Miller GL & Wynn J 1971 Acromegaly, pheochromocytoma, toxic goiter, diabetes mellitus, and endometriosis. Archives of Internal Medicine 127 299-303. (doi:10.1001/archinte.1971.00310140127019)
- Molatore S, Marinoni I, Lee M, Pulz E, Ambrosio MR, Uberti ECD, Zatelli MC & Pellegata NS 2010 A novel germline CDKN1B mutation causing multiple endocrine tumors: clinical, genetic and functional characterization. Human Mutation 31 1825-1835. (doi:10.1002/humu.21354)
- Motta-Ramirez GA, Remer EM, Herts BR, Gill IS & Hamrahian AH 2005 Comparison of CT findings in symptomatic and incidentally discovered pheochromocytomas. American Journal of Roentgenology 185 684-688. (doi:10.2214/ajr.185.3.01850684)
- Mumby C, Davis JRE, Trouillas J & Higham CE 2014 Phaeochromocytoma and acromegaly: a unifying diagnosis. Endocrinology, Diabetes & Metabolism Case Reports 2014 140036. (doi:10.1530/EDM-14-0036)
- Myers JH & Eversman JJ 1981 Acromegaly, hyperparathyroidism, and pheochromocytoma in the same patient. A multiple endocrine disorder. Archives of Internal Medicine 141 1521-1522. (doi:10.1001/ archinte.1981.00340120129027)
- Nakajima M, Nakasu Y, Nakasu S, Matsuda M & Handa J 1990 [Pituitary adenoma associated with neurofibromatosis: case report]. Nihon Geka Hokan. Archiv für Japanische Chirurgie 59 278-282.
- Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY & Nakayama KI 1996 Mice lacking p27Kip1 display increased body size. multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85 707-720. (doi:10.1016/S0092-8674(00)81237-4)
- Naziat A, Karavitaki N, Thakker R, Ansorge O, Sadler G, Gleeson F, Cranston T, McCormack A, Grossman AB & Shine B 2013 Confusing genes: a patient with MEN2A and Cushing's disease. Clinical Endocrinology 78 966-968. (doi:10.1111/cen.12072)
- Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, Buchta M, Franke G, Klisch J, Bley T et al. 2004 Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. Journal of the American Medical Association 292 943-951. (doi:10.1001/jama.292.8.943)
- Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, Platzer P, Orloff MS, Waite KA & Eng C 2008 Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. American Journal of Human Genetics 83 261-268. (doi:10.1016/j.ajhg.2008.07.011)
- Occhi G, Regazzo D, Trivellin G, Boaretto F, Ciato D, Bobisse S, Ferasin S, Cetani F, Pardi E, Korbonits M et al. 2013 A novel mutation in the

- upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. *PLoS Genetics* **9** e1003350. (doi:10.1371/journal.pgen. 1003350)
- O'Higgins NJ, Cullen MJ & Heffernan AG 1967 A case of acromegaly and phaeochromocytoma. *Journal of the Irish Medical Association* **60** 213–216.
- Ozawa A, Agarwal SK, Mateo CM, Burns AL, Rice TS, Kennedy PA, Quigley CM, Simonds WF, Weinstein LS, Chandrasekharappa SC *et al.* 2007 The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. *Journal of Clinical Endocrinology and Metabolism* **92** 1948–1951. (doi:10.1210/jc. 2006-2563)
- Papathomas TG, Gaal J, Corssmit EPM, Oudijk L, Korpershoek E, Heimdal K, Bayley JP, Morreau H, Van Dooren M, Papaspyrou K *et al.* 2014 Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. *European Journal of Endocrinology* **170** 1–12. (doi:10.1530/EJE-13-0623)
- Parghane RV, Agrawal K, Mittal BR, Shukla J, Bhattacharya A & Mukherjee KK 2014 68Ga DOTATATE PET/CT in a rare coexistence of pituitary macroadenoma and multiple paragangliomas. *Clinical Nuclear Medicine* 39 91–93. (doi:10.1097/RLU.0b013e3182a77b78)
- Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J & Atkinson MJ 2006 Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. *PNAS* **103** 15558–15563. (doi:10.1073/pnas.0603877103)
- Pinnamaneni K, Birge SJ & Avioli LV 1980 Prolactin-secreting pituitary tumor associated with von Recklinghausen's disease. *Archives of Internal Medicine* **140** 397–399. (doi:10.1001/archinte.1980.00330150111026)
- Piruat JI, Pintado CO, Ortega-Sáenz P, Roche M & López-Barneo J 2004 The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. *Molecular and Cellular Biology* **24** 10933–10940. (doi:10.1128/MCB.24.24.10933-10940.2004)
- Raygada M, Pasini B & Stratakis CA 2011 Hereditary paragangliomas.

  \*Advances in Oto-Rhino-Laryngology 70 99–106. (doi:10.1159/000322484)
- Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, Cole TR, Armstrong R, Kumar VKA, Morrison PJ *et al.* 2010 Tumor risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD. *Human Mutation* **31** 41–51. (doi:10.1002/humu.21136)
- Roth KA, Wilson DM, Eberwine J, Dorin RI, Kovacs K, Bensch KG & Hoffman AR 1986 Acromegaly and pheochromocytoma: a multiple endocrine syndrome caused by a plurihormonal adrenal medullary tumor. *Journal of Clinical Endocrinology and Metabolism* **63** 1421–1426. (doi:10.1210/jcem-63-6-1421)
- Saito T, Miura D, Taguchi M, Takeshita A, Miyakawa M & Takeuchi Y 2010 Coincidence of multiple endocrine neoplasia type 2A with acromegaly. *American Journal of the Medical Sciences* **340** 329–331. (doi:10.1097/MAJ. 0b013e3181e73fba)
- Sambugaro S, Di Ruvo M, Ambrosio MR, Pellegata NS, Bellio M, Guerra A, Buratto M, Foschini MP, Tagliati F, degli Uberti E *et al.* 2015 Early onset acromegaly associated with a novel deletion in CDKN1B 5'UTR region. *Endocrine* **49** 58–64. (doi:10.1007/s12020-015-0540-y)
- Schiavi F, Boedeker CC, Bausch B, Peçzkowska M, Gomez CF, Strassburg T, Pawlu C, Buchta M, Salzmann M, Hoffmann MM *et al.* 2005 Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. *Journal of the American Medical Association* **294** 2057–2063. (doi:10.1001/jama.294.16.2057)
- Schimke RN 1990 Multiple endocrine neoplasia: how many syndromes? American Journal of Medical Genetics **37** 375–383. (doi:10.1002/ajmg. 1320370317)
- Schnepp RW, Hou Z, Wang H, Petersen C, Silva A, Masai H & Hua X 2004 Functional interaction between tumor suppressor menin and activator of S-phase kinase. *Cancer Research* 64 6791–6796. (doi:10.1158/0008-5472.CAN-04-0724)

Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB & Gottlieb E 2005 Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. *Cancer Cell* **7** 77–85. (doi:10.1016/j.ccr.2004.11.022)

Pituitary adenomas and

phaeo/PGL

- Shimoda Y, Ogawa Y, Watanabe M & Tominaga T 2013 Clinicopathological investigation of vascular endothelial growth factor and von Hippel-Lindau gene-related protein expression in immunohistochemically negative pituitary adenoma possible involvement in tumor aggressiveness. *Endocrine Research* **38** 242–250. (doi:10.3109/07435800.2013.774411)
- Sisson JC, Giordano TJ & Avram AM 2012 Three endocrine neoplasms: an unusual combination of pheochromocytoma, pituitary adenoma, and papillary thyroid carcinoma. *Thyroid* **22** 430–436. (doi:10.1089/thy. 2011.0345)
- Skogseid B, Larsson C, Lindgren PG, Kvanta E, Rastad J, Theodorsson E, Wide L, Wilander E & Oberg K 1992 Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. *Journal of Clinical Endocrinology and Metabolism* 75 76–81.
- Sleilati GG, Kovacs KT & Honasoge M 2002 Acromegaly and pheochromocytoma: report of a rare coexistence. *Endocrine Practice* 8 54–60. (doi:10.4158/EP.8.1.54)
- Smith EH, Janknecht R & Maher LJ 2007 Succinate inhibition of α-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. *Human Molecular Genetics* **16** 3136–3148. (doi:10.1093/hmg/ddm275)
- Steiner A, Goodman A & Powers S 1968 Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing's disease: multiple endocrine neoplasia, type 2. *Medicine* **47** 371–409. (doi:10.1097/00005792-196809000-00001)
- Tamasawa N, Terada A, Kodama T, Ishigame M, Ishimaru K, Hishida R, Satoh T, Takebe K, Sasaki M & Imamura K 1994 Pheochromocytoma with multiple islet cell carcinoma. *Presse Médicale* **23** 32–34.
- Tateishi R, Wada A, Ishiguro S, Ehara M, Sakamoto H, Miki T, Mori Y, Matsui Y & Ishikawa O 1978 Coexistence of bilateral pheochromocytoma and pancreatic islet cell tumor: report of a case and review of the literature. *Cancer* **42** 2928–2934. (doi:10.1002/1097-0142(197812)42:6<2928::AID-CNCR2820420657>3.0.CO;2-S)
- Teh BT, Hansen J, Svensson PJ & Hartley L 1996 Bilateral recurrent phaeochromocytoma associated with a growth hormone-secreting pituitary tumour. *British Journal of Surgery* **83** 1132. (doi:10.1002/bjs. 1800830832)
- Tichomirowa MA, Lee M, Barlier A, Daly AF, Marinoni I, Jaffrain-Rea ML, Naves LA, Rodien P, Rohmer V, Faucz FR *et al.* 2012 Cyclin-dependent kinase inhibitor 1B(CDKN1B) gene variants in AIP mutation-negative familial isolated pituitary adenoma kindreds. *Endocrine-Related Cancer* **19** 233–241. (doi:10.1530/ERC-11-0362)
- Timmers HJLM, Kozupa A, Eisenhofer G, Raygada M, Adams KT, Solis D, Lenders JWM & Pacak K 2007 Clinical presentations, biochemical phenotypes, and genotype-phenotype correlations in patients with succinate dehydrogenase subunit B-associated pheochromocytomas and paragangliomas. *Journal of Clinical Endocrinology and Metabolism* 92 779–786. (doi:10.1210/jc.2006-2315)
- Trump D, Farren B, Wooding C, Pang JT, Besser GM, Buchanan KD, Edwards CR, Heath DA, Jackson CE, ansen S *et al.* 1996 Clinical studies of multiple endocrine neoplasia type 1 (MEN1). *QJM: Monthly Journal of the Association of Physicians* **89** 653–669. (doi:10.1093/qjmed/89.9.653)
- Tudorancea A, François P, Trouillas J, Cottier J-P, Girard J-J, Jan M, Gilbert-Dussardier B, Richard S & Lecomte P 2012 Von Hippel-Lindau disease and aggressive GH-PRL pituitary adenoma in a young boy. *Annales d'Endocrinologie* **73** 37–42. (doi:10.1016/j.ando.2011.12.001)
- Urbano AG, Suárez-Peñaranda JM, Diéguez C & Alvarez CV 2000 GDNF and RET-gene expression in anterior pituitary-cell types. *Endocrinology* **141** 1893–1896. (doi:10.1210/endo.141.5.7548)
- Vargiolu M, Fusco D, Kurelac I, Dirnberger D, Baumeister R, Morra I, Melcarne A, Rimondini R, Romeo G & Bonora E 2009 The tyrosine kinase receptor RET interacts *in vivo* with aryl hydrocarbon

- receptor-interacting protein to alter survivin availability. Journal of Clinical Endocrinology and Metabolism 94 2571-2578. (doi:10.1210/jc. 2008-1980)
- Varsavsky M, Sebastián-Ochoa A & Torres Vela E 2013 Coexistence of a pituitary macroadenoma and multicentric paraganglioma: a strange coincidence. Endocrinología y Nutrición 60 154–156. (doi:10.1016/ j.endoen.2012.02.009)
- Vidal S, Stefaneanu L, Kovacs K & Scheithauer BW 1999 Expression of von Hippel-Lindau protein (VHL-P) in nontumorous and adenomatous human pituitaries. Pituitary 1 227-232. (doi:10.1023/ A:1009990005835)
- Vieira Neto L, Taboada GF, Corrêa LL, Polo J, Nascimento AF, Chimelli L, Rumilla K & Gadelha MR 2007 Acromegaly secondary to growth hormone-releasing hormone secreted by an incidentally discovered pheochromocytoma. Endocrine Pathology 18 46-52. (doi:10.1007/ s12022-007-0006-8)
- Wolf LM, Duduisson M, Schrub JC, Metayer J & Laumonier R 1972 [Sipple's syndrome associated with pituitary and parathyroid adenomas]. Annales d'Endocrinologie 33 455-463.
- Xekouki P, Pacak K, Almeida M, Wassif CA, Rustin P, Nesterova M, De La Luz Sierra M, Matro J, Ball E, Azevedo M et al. 2012 Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growthhormone-producing pituitary tumor: a new association for SDH? Journal of Clinical Endocrinology and Metabolism 97 357-366. (doi:10.1210/jc.2011-1179)

Xekouki P, Szarek E, Bullova P, Giubellino A, Quezado M, Mastroyannis SA, Mastorakos P, Wassif CA, Raygada M & Rentia N 2015 Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in human and mice. Journal of Clinical Endocrinology and Metabolism 100 E710-E719. (doi:10.1210/ ic 2014-4297)

Pituitary adenomas and

phaeo/PGL

- Yaylali GF, Akin F, Bastemir M, Yaylali YT & Ozden A 2008 Phaeochromocytoma combined with subclinical Cushing's syndrome and pituitary microadenoma. Clinical & Investigative Medicine 31 176-181.
- Yoshimoto K, Tanaka C, Moritani M, Shimizu E, Yamaoka T, Yamada S, Sano T & Itakura M 1999 Infrequent detectable somatic mutations of the RET and glial cell line-derived neurotrophic factor (GDNF) genes in human pituitary adenomas. Endocrine Journal 46 199-207. (doi:10.1507/endocrj.46.199)
- Young WF 2000 Management approaches to adrenal incidentalomas. A view from Rochester, Minnesota. Endocrinology and Metabolism Clinics of North America 29 159-185. (doi:10.1016/S0889-8529(05)70122-5)
- Zeller JR, Kauffman HM, Komorowski RA & Itskovitz HD 1982 Bilateral pheochromocytoma and islet cell adenoma of the pancreas. Archives of Surgery 117 827-830. (doi:10.1001/archsurg.1982.01380300067014)
- Zhang C, Ma G, Liu X, Zhang H, Deng H, Nowell J & Miao Q 2011 Primary cardiac pheochromocytoma with multiple endocrine neoplasia. Journal of Cancer Research and Clinical Oncology 137 1289–1291. (doi:10.1007/s00432-011-0985-1)

Received in final form 9 June 2015 Accepted 15 June 2015 Made available online as an Accepted Preprint 25 June 2015