Munkres 1.2

ID: 14221

November 2022

1. Let $f: A \to B$. Let $A_0 \subset A$ and $B_0 \subset B$. a. Show that $A_0 \subset f^{-1}(f(A_0))$ and that equality holds if f is injective.

Let there be $x \in A_0$ and y = f(x) so $y \in f(A_0)$, $f(x) = y \in f(A_0)$. So, $x \in f^{-1}(f(A_0))$. Thus, $A_0 \subset f^{-1}(f(A_0))$. If f is injective, $y = f(x) \in f(A_0)$. Then $x' \in A_0$ where f(x') = y = f(x). Since f is injective, $x = x' \in A_0$. Therefore, $f^{-1}(f(A_0)) \subset A_0$ follows.

b. Show that $f(f^{-1}(B_0)) \subset B_0$ and that equality holds if f is surjective.

Given y is an element in $f(f^{-1}(B_0))$ and $x \in f^{-1}(B_0)$ where f(x) = y. If $x \in f^{-1}(B_0)$, $y = f(x) \in B_0$. Thus, $f(f^{-1}(B_0)) \subset B_0$. If f is surjective and $y \in B_0$, $y \in B$ as $B_0 \subset B$. Since f is surjective, $x \in A$ where f(x) = y. Then $x \in f^{-1}(B_0)$ since $f(x) = y \in B_0$. Therefore, $y = f(x) \in f(f^{-1}(B_0))$ so $B_0 \subset f(f^{-1}(B_0))$ and the equality holds.

2. Let $f: A \to B$ and let $A_i \subset A$ and $B_i \subset B$ for i = 0 and i = 1. Show that f^{-1} preserves inclusions, unions, intersections, and differences of sets:

a.
$$B_0 \subset B_1 \to f^{-1}(B_0) \subset f^{-1}(B_1)$$

Given $B_0 \subset B_1$, let there be $x \in f^{-1}(B_0)$. There is $f(x) \in B_0$ so $f(x) \in B_1$ as $B_0 \subset B_1$. Therefore, $x \in f^{-1}(B_1)$ and $f^{-1}(B_0) \subset f^{-1}(B_1)$.

b.
$$f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$$

 $x \in f^{-1}(B_0 \cup B_1) \iff f(x) \in B_0 \cup B_1$
 $\iff f(x) \in B_0 \lor f(x) \in B_1$
 $\iff x \in f^{-1}(B_0) \lor x \in f^{-1}(B_1)$
 $\iff x \in f^{-1}(B_0) \cup f^{-1}(B_1)$

c.
$$f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$$

 $x \in f^{-1}(B_0 \cap B_1) \iff f(x) \in B_0 \cap B_1$
 $\iff f(x) \in B_0 \wedge f(x) \in B_1$
 $\iff x \in f^{-1}(B_0) \wedge x \in f^{-1}(B_1)$
 $\iff x \in f^{-1}(B_0) \cap x \in f^{-1}(B_1)$

```
d. f^{-1}(B_0 - B_1) = f^{-1}(B_0) - f^{-1}(B_1)

x \in f^{-1}(B_0 - B_1) \iff f(x) \in B_0 - B_1

\iff f(x) \in B_0 \land f(x) \notin B_1

\iff x \in f^{-1}(B_0) \land x \notin f^{-1}(B_1)

\iff x \in f^{-1}(B_0) - f^{-1}(B_1)
```

e. $A_0 \subset A_1 \to f(A_0) \subset f(A_1)$

Given $A_0 \subset A_1$, let there be $y \in f(A_0)$. There is an $x \in A_0$ where y = f(x). Since $A_0 \subset A_1$, $x \in A_1$ and thus $y = f(x) \in f(A_1)$. Therefore, $f(A_0) \subset f(A_1)$.

```
f. f(A_0 \cup A_1) = f(A_0) \cup f(A_1)

y \in f(A_0 \cup A_1) \iff (x \in A_0 \cup A_1) \land (y = f(x))

\iff (x \in A_0 \lor x \in A_1) \land (y = f(x))

\iff (x \in A_0 \land y = f(x)) \lor (x \in A_1 \land y = f(x))

\iff y \in f(A_0) \lor y \in f(A_1)

\iff y \in f(A_0) \cup f(A_1)
```

g. $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$; show that equality holds if f is injective.

Let there be $y \in f(A_0 \cap A_1)$, there is an $x \in A_0 \cap A_1$ where y = f(x) and $x \in A_0$ and $x \in A_1$. Since y = f(x), $y \in f(A_0)$ and $y \in f(A_1)$ and therefore $y \in f(A_0) \cap f(A_1)$. Given that f is injective and $y \in f(A_0) \cap f(A_1)$, $y \in f(A_0)$ and $y \in f(A_1)$. Then, $f(x_0) = y = f(x_1)$ so $x_0 = x_1$ since f is injective. Thus $x_0 \in A_0$ and $x_0 = x_1 \in A_1$ so $x_0 \in A_0 \cap A_1$. Since $y = f(x_0)$, $y \in f(A_0 \cap A_1)$. Therefore $f(A_0) \cap f(A_1) \subset f(A_0 \cap A_1)$.

h. $f(A_0 - A_1) \supset f(A_0) - f(A_1)$; show that equality holds if f is injective.

Let there be $y \in f(A_0) - f(A_1)$ so $y \in f(A_0)$ and $y \notin f(A_1)$. Then, let there be $x \in A_0$ where y = f(x). There is also no $x' \in A_1$ given y = f(x'). Since y = f(x), $x \notin A_1$. Thus, $x \in A_0 - A_1$ so $y \in f(A_0 - A_1)$ since y = f(x). Therefore, $f(A_0 - A_1) \supset f(A_0) - f(A_1)$.

Given that f is injective and $y \in f(A_0) - f(A_1)$, $x \in A_0 - A_1$ where y = f(x). Also, $x \in A_0$ but $x \notin A_1$. Then, $y \in f(A_0)$ since y = f(x) and $x \in A_0$. Given $x' \in A_1$, y = f(x') cannot happen because if it happened, f(x) = y = f(x') so x = x' since f is injective. This would be a contradiction since $x' = x \notin A_1$. Therefore, $y \notin f(A_1)$ and $y \in f(A_0) - f(A_1)$ so $f(A_0 - A_1) \subset f(A_0) - f(A_1)$.

- 3. Show that b, c, f, and g of Exercise 2 hold for arbitrary unions and intersections.
 - b. Arbitrary unions for b. Prove that $f^{-1}(\bigcup_{B'\in B} B') = \bigcup_{B'\in B} f^{-1}(B')$

```
x \in f^{-1}(\bigcup_{B' \in B} B') \iff f(x) \in \bigcup_{B' \in B} B'
\iff B' \in B(f(x) \in B')
\iff B' \in B(x \in f^{-1}(B'))
\iff x \in \bigcup_{B' \in B} f^{-1}(B')
c. Arbitrary intersections for c. Prove that f^{-1}(\bigcap_{B' \in B} B') = \bigcap_{B' \in B} f^{-1}(B')
x \in f^{-1}(\bigcap_{B' \in B} B') \iff f(x) \in \bigcap_{B' \in B} B'
\iff B' \in B(f(x) \in B')
\iff B' \in B(x \in f^{-1}(B'))
\iff x \in \bigcap_{B' \in B} f^{-1}(B')
f. Arbitrary unions for f. Prove that f(\bigcup_{A' \in A} A') = \bigcup_{A' \in A} f(A')
y \in f(\bigcup_{A' \in A} A') \iff x \in (\bigcup_{A' \in A} A') \land (y = f(x))
\iff A' \in A(x \in A') \land (f(x))
\iff A' \in A(y \in f(A'))
y \in \bigcup_{A' \in A} f(A')
```

g. Arbitrary intersections for g. Prove that $f(\bigcap_{A'\in A} A') \subset \bigcap_{A'\in A} f(A')$ while the equality holds if f is injective.

Let there be $y \in f(\bigcap_{A' \in A} A')$ so $x \in \bigcap_{A' \in A} A'$ where y = f(x). Then $x \in A'$ for every $A' \in A$. For $A' \in A$, $x \in A'$ and y = f(x) so $y \in f(A')$. Therefore, $y \in \bigcap_{A' \in A} f(A')$.

Given that f is injective and $y \in \bigcap_{A' \in A} f(A')$. Then $y \in f(A')$ for every $A' \in A$. For $A_0 \in A$, $y \in f(A_0)$ so there is a $x_0 \in A_0$ where $y = f(x_0)$. Given that $x_0 \notin \bigcap_{A' \in A} A'$ so $A_1 \in A$ where $x_0 \notin A_1$. Since $A_1 \in A$, $y \in f(A_1)$, and $x_1 \in A_1$ where $y = f(x_1)$. Then, $f(x_0) = y = f(x_1)$ so $x_0 = x_1$ since f is injective and $x_0 \notin A_1$ and $x_0 = x_1 \in A_1$. This is a contradiction so $x_0 \in \bigcap_{A' \in A} A'$. Since $y = f(x_0)$, $y \in f(\bigcap_{A' \in A} A')$. Therefore, $f(\bigcap_{A' \in A} A') \supset \bigcap_{A' \in A} f(A')$.

4. Let $f: A \to B$ and $g: B \to C$.

```
a. If C_0 \subset C, show that (g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0)).

x \in (g \circ f)^{-1}(C_0) \iff (g \circ f)(x) \in C_0

\iff g(f(x)) \in C_0

\iff f(x) \in g^{-1}(C_0)

\iff x \in f^{-1}(g^{-1}(C_0))
```

b. If f and g are injective, show that $g \circ f$ is injective. Let there be $x,y \in A$ and $x \neq y$. If f is injective, $f(x) \neq f(y)$. So, $(g \circ f)(x) = g(f(x)) \neq g(f(y)) = (g \circ f)(y)$ as $f(x) \neq f(y)$ and g is injective. Therefore, $g \circ f$ is injective.

c. If $g \circ f$ is injective, what can you say about injectivity of f and g? If $g \circ f$ is injective, f is injective but g isn't.

Given that $g \circ f$ is injective but that f isn't. Let there be $x, y \in A$ where $x \neq y$ but f(x) = f(y). This would mean that $(g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y)$. This contradicts $g \circ f$ being injective since $x \neq y$ so f must be injective.

Proof that g isn't injective:

Let there be sets $A = \{0, 1\}, B = \{0, 1, 2\}, C = \{a, b\} \text{ and } f = \{(0, 0), (1, 1)\}, g = \{(0, a), (1, b), (2, b)\}$. From the given sets, we can see that $f : A \to B$ is injective as well as $g \circ f = \{(0, a), (1, b)\}$. However, $g : B \to C$ isn't as g(1) = b = g(2)

d. If f and g are surjective, show that $g \circ f$ is surjective.

Given that f and g are surjective and let there be $z \in C$. Then $y \in B$ where z = g(y) since g is surjective. Since f is surjective, $x \in A$ where y = f(x). Therefore, $(g \circ f)(x) = g(f(x)) = g(y) = z$.

e. If $g \circ f$ is surjective, what can you say about surjectivity of f and g?

If $g \circ f$ is surjective, g is surjective but f isn't.

Given that $g \circ f$ is surjective and let there be $z \in C$, $x \in A$ where $(g \circ f)(x) = z$. Then, g(f(x)) = z so y = f(x) is part of set B where g(y) = z. Therefore, g is surjective.

Proof that f isn't surjective:

Using the sets from part c, we can see that $g \circ f$ and g are surjective but f isn't since no element in A corresponds to $2 \in B$

- f. Summarize your answers to b-e in the form of a theorem.
- 1. If f and g are injective then $g \circ f$ is injective.
- 2. If $g \circ f$ is injective then f is injective
- 3. If f and q are surjective then $q \circ f$ is surjective.
- 4. If $g \circ f$ is surjective then g is surjective.
- 5. In general, let us denote the identity function for a set C by i_C . That is, define $i_C: C \to C$ to be the function given by the rule $i_C(x) = x$ for all $x \in C$. Given $f: A \to B$, we say that a function $g: B \to A$ is a left inverse for f if $g \circ f = i_A$; and we say that $h: B \to A$ is a right inverse for f if $f \circ h = i_B$.
 - a. Show that if f has a left inverse, f is injective; and if f has a right inverse, f is surjective.

Given that f has a left inverse $g: B \to A$ so $g \circ f = i_A$ and let there be $x, y \in A$ where f(x) = f(y). Then, $x = i_A(x) = (g \circ f)(x) = g(f(x)) = g(f(x))$

 $g(f(y)) = (g \circ f)(y) = i_A(y) = y$ and f is injective.

Given that f has a right inverse $h: B \to A$ so $f \circ h = i_B$ and $y \in B$. Then, $y = i_B(y) = (f \circ h)(y) = f(h(y))$. So, x = h(y) is an element of A where f(x) = y and therefore, f is surjective.

b. Give an example of a function that has a left inverse but no right inverse.

Given the sets $A = \{0, 1\}$, $B = \{a, b, c\}$, and $f = \{(0, a), (1, b)\}$. Then, from the function $g : B \to A$, $g = \{(a, 0), (b, 1), (c, 1)\}$. Therefore, this is a left inverse of f since $(g \circ f)(0) = g(f(0)) = g(a) = 0$ and $(g \circ f)(2) = g(f(2)) = g(b) = 2$ so $g \circ f = i_A$ so $g \circ f = i_A$.

Also, f isn't surjective since no element of A that maps to $c \in B$ so f can't have a right inverse.

c. Give an example of a function that has a right inverse but no left inverse.

Given the sets $A = \{0, 1, 2\}$, $B = \{a, b\}$, and $f = \{(0, a), (1, b), (2, a)$. Then, from the function $h : B \to A$, $h = \{(a, 0), (b, 1)\}$. $(f \circ h)(a) = f(h(a)) = f(0) = a$ and $(f \circ h)(b) = f(h(b)) = f(1) = b$. Therefore, $f \circ h = i_B$ and h is a right inverse of f. Also, f isn't injective since f(1) = a = f(2) so f can't have a left inverse.

d. Can a function have more than one left inverse? More than one right inverse?

A function can have more than one left inverse or right inverse. Using the example given in part b, use sets $A = \{0, 1\}$, $B = \{a, b, c\}$, and $f = \{(0, a), (1, b)\}$. In this example, $g_1 = \{(a, 0), (b, 1), (c, 1)\}$ was proved to be a left inverse. Given that $g_2 = \{(a, 0), (b, 1), (c, 0) \text{ so } g_1 \neq g_2.$ g_2 is also a left inverse of f so therefore, there can be more than one left inverse for f.

Using the example given in part c, $A = \{0, 1, 2\}$, $B = \{a, b\}$, and $f = \{(0, a), (1, b), (2, a)\}$. In this example, $h_1 = \{(a, 0), (b, 1)\}$ was proved to be a right inverse. Given that $h_2 = \{(a, 2), (b, 1)\}$ so $h_1 \neq h_2$. h_2 is also a right inverse of f so therefore, there can be more than one right inverse for f.

e. Show that if f has both a left inverse g and a right inverse h, f is bijective and $g = h = f^{-1}$.

Consider that f has left inverse g and right inverse h. f must be both

injective and surjective to prove that it is bijective. Then, $f^{-1}: B \to A$. Let there be $y \in B$ and $x = f^{-1}(y)$, y = f(x). Then, $g(y) = g(f(x)) = (g \circ f)(x) = i_A(x) = x$ since g is a left inverse of f. Also, $f(h(y)) = (f \circ h)(y) = i_B(y) = y$ so $h(y) = f^{-1}(f(h(y))) = f^{-1}(y) = x$. Therefore, $x = f^{-1}(y) = g(y) = h(y)$ which is $f^{-1} = g = h$.

6. Let $f: \mathbb{R} \to \mathbb{R}$ be the function $f(x) = x^3 - x$. By restricting the domain and range of f appropriately, obtain from f a bijective function g. Draw the graphs of g and g^{-1} .

Using the subsets $A=[1,\infty)$ and $B=[0,\infty)$. The function $g:A\to B$ when $g(x)=f(x)=x^3-x$ for $x\in A$ is bijective.

First, I'll prove that B can be a range for g so $g(x) \in B$ for $x \in A$. Given $x \in A$, $x \ge 1$ and $x^2 \ge 1$ also. Then, $x^2 - 1 \ge 0$ so $x(x^2 - 1) \ge 0$ since $x \ge 1 > 0$. Therefore, $g(x) = f(x) = x^3 - x = x(x^2 - 1) \ge 0$ so $g(x) \in B$.

For graph g, the domain will be $[1, \infty)$ and range will be $[0, \infty)$. For graph g^{-1} , the domain will be $[0, \infty)$ and range will be $[1, \infty)$.

Graph for g^{-1} :

