Formale Sprachen und Automaten

Robin Rausch

19. Oktober 2022

Inhaltsverzeichnis

1	Grundlagen	2
	1.1 Alphabet	2
	1.2 Wort	2
	1.1 Alphabet	2
	1.4 Kleene Stern	2
2	Reguläre Sprachen und endliche Ausdrücke 2.1 Reguläre Ausdrücke	2 2
3	Chomsky Grammatiken und kontextfreie Sprachen	3
4	Turing Maschine	3
5	Entscheidbarkeit	3
6	Berechenbarkeit	3
7	Komplexität	3

1 Grundlagen

1.1 Alphabet

Ein Alphabet Σ ist eine nicht-leere Menge von Symbolen(Zeichen, Buchstaben). Beispiel: $\Sigma_{ab}=a,b$

1.2 Wort

Ein Wort w über dem Alphabet Σ (Sigma) ist eine endliche Folge von Symbolen aus Σ . Das Wort w = abaabab wurde beispielsweise aus dem Alphabet Σ_{ab} gebildet.

Die Länge eines Wortes kann durch Betragsstriche angegeben werden. Beispiel: |w|=7 Ebenso kann man die Anzahl bestimmter Symbole in einem Wort bestimmen: $|w|_b=3$ Ein einzelnes Zeichen kann durch eckige Klammern angegeben werden: w[2]=b Wörter können bliebig konkateniert werden(hintereinanderschreiben ohne abstand): $w_1w_2=$

 $abbabaab ext{ mit } w_1 = abba ext{ und } w_2 = baab.$ Wörter dürfen auch potenziert werden: $w^3 = abaabababaababaabababaababa = www$

Wörter dürfen auch potenziert werden: $w^3 = abaabababababababababab = www$ Das leere Wort lautet ϵ .

1.3 Formale Sprachen

Eine formale Sprache L über einem Alphabet Σ ist eine Menge von Wörtern aus $\Sigma^*:L\subseteq \Sigma^*$. Eine Sprache kann sowohl endlich als auch unendlich sein.

Beispiel: $L_1 = \{w \in \Sigma_{bin}^* | |w| \ge 2 \land w[|w|-1] = 1\}$ ist die Menge aller Binärwörter, an deren vorletzter Stelle 1 steht.

Das Produkt zweier formaler Sprachen: $L_1 \cdot L_2 = \{abac, abcb, bcac, bccb\}$ mit $L_1 = \{ab, bc\}$ und $L_2 = \{ac, cb\}$.

Sprachen können ebenfalls potenziert werden: $L^2 = \{ab, ba\} \cdot \{ab, ba\} = \{abab, abba, baab, baba\}$

1.4 Kleene Stern

Für ein Alphabet Σ und eine formale Sprache $L\subseteq \Sigma^*$ ist der Operator Kleene Stern wie folgt definiert: $L^*=\bigcup_{n\in\mathbb{N}}L^n$.

Beispiel: Sei $L_1 = \{ab, ba\}$, dann $L^* = \{\epsilon, ab, ba, abab, abab, baba, baba, ababab, ...\}$.

2 Reguläre Sprachen und endliche Ausdrücke

2.1 Reguläre Ausdrücke

Reguläre Ausdrücke sind

- 3 Chomsky Grammatiken und kontextfreie Sprachen
- 4 Turing Maschine
- 5 Entscheidbarkeit
- 6 Berechenbarkeit
- 7 Komplexität