

Exam Review II

Confounders

- A confounder is a variable that influences both X and Y.
- Creates a spurious association between X and Y.
- Key: If we don't account for confounders, we may wrongly conclude X causes Y.

Confounder Generalizable Logic

- Confounder must:
 - Be associated with the independent variable (X).
 - Be associated with the dependent variable (Y).
 - Not lie on the causal pathway from $X \rightarrow Y$.

Confounder Example

- Observed: People who carry lighters are more likely to get lung cancer.
- Hidden confounder: Smoking.
- Smoking → people carry lighters.
- Smoking → higher lung cancer risk.
- So the lighter-cancer correlation is spurious.

Mediator

- A mediator explains how causality flows and usually should not be adjusted away if you care about the total effect.
 - Be caused by the independent variable (X).
 - Be associated with the dependent variable (Y).
 - Lie on the causal pathway from $X \rightarrow Y$.

Mediator Example

- Does higher education lead to higher income — and if so, is the effect direct, or does it work through the kinds of jobs people get?
- Education → better jobs → higher income.
- The effect of education on income is partly explained through job type

Mediator

- A mediator explains how causality flows and usually should not be adjusted away if you care about the total effect.
 - Be caused by the independent variable (X).
 - Be associated with the dependent variable (Y).
 - Lie on the causal pathway from $X \rightarrow Y$.

Mediator Example

- Does higher education lead to higher income — and if so, is the effect direct, or does it work through the kinds of jobs people get?
- Education → better jobs → higher income.
- The effect of education on income is partly explained through job type

Collider

- A collider is a variable that:
 - Is influenced by both X and Y.
 - Conditioning on Z produces an artificial association between X and Y.

Collider Example

- Among admitted students, why do we see that higher GPA
 applicants seem less athletic is there really a trade-off, or is
 this a statistical artifact of how admissions decisions are made?
- Why? Admissions depends on both GPA and athletics.
 - $-GPA \rightarrow Admission$
 - –Athletics → Admission
- If we condition on "admitted students" (the collider), GPA and athletics appear negatively correlated, even if they aren't in the full population.
 - -Among admitted students:
 - If a student has a low GPA, they probably got in because of strong athletics.
 - If a student has weak athletics, they probably got in because of a high GPA.
 - This creates an artificial negative correlation between GPA and athletics in the admitted group.

Summary

Partial Correlation Outcomes

Scenario	Naive Correlation	Partial Correlation	Interpretation
Confounder (Lighter– Cancer)	~0.22	~0.01	Effect vanishes → confounder explained the spurious link.
Mediator (Education– Income)	~0.50	~0.33	Effect weakens \rightarrow mediator explains part of the effect.
Collider (GPA–Athletics)	~0.01	~-0.19	Effect appears → conditioning on collider creates a false link.

Transforming

- What it does: Changes the shape of the distribution.
- Examples: log, square root, reciprocal, Box-Cox, sigmoid.
- Why: Fix skewness, stabilize variance, reveal hidden linearity.
- Effect on correlation: Can change Pearson correlation by altering relationships between variables.
- Critical for some modeling assumptions (mostly statistical)

Normalizing

- In statistics / ML preprocessing: Often used interchangeably with "scaling," meaning "rescale to a standard range or distribution" (e.g., z-score standardization).
- Changes the **scale** of the data, but preserves the **shape** of the distribution.
- Example: z-score, mean = 0, std = 1.
 - Critical to realize you can normalize/scale over different values (subjects/time)

Scaling

- What it does: Changes the range or unit of a variable, but not its shape.
- Examples: min-max scaling to [0,1], dividing by max, unit norm scaling.
- Why: Put different variables on comparable ranges (important for distance-based ML).
- Effect on correlation: Does not change Pearson correlation (linear rescaling leaves r the same).

Transform vs Technique

• Transform when:

- Relationship is monotonic but nonlinear (log, sqrt help).
- Skew or outliers distort correlation.
- Model assumptions (e.g., normality, homoscedasticity) need to be met.
- You want to reveal hidden linear structure.

• **Change Technique** when:

- Relationship is inherently nonlinear or non-monotonic (U-shape, quadratic).
- No reasonable transformation improves correlation.
- Ordinal/rank information matters more than exact values \rightarrow switch to Spearman/Kendall.
- Binary or categorical outcomes → logistic regression, classification, or nonparametric methods.
- Rule of thumb: If a simple monotonic transformation improves linear correlation, transform. If the pattern stays nonlinear or non-monotonic, switch to a different analytic technique.
- Key Message: Both are valid judgment depends on your analytic goal

Log Transform: Visual

Suppose you're a seismologist studying earthquakes. The energy released by earthquakes varies enormously: tiny
tremors release barely anything, while large quakes release millions of times more energy. If we plot energy on a raw
scale, the big ones dominate and the small ones disappear. To compare patterns across all magnitudes, we use a log
transform.

Log Transform Correlation

- Raw: Pearson correlation weak or unstable (dominated by outliers)
- After log: Pearson correlation strong, linear, interpretable
- Spearman correlation was always high (monotonic)
 → log transform brings Pearson in line

Log Transform Correlation

- Raw: Pearson correlation weak or unstable (dominated by outliers)
- After log: Pearson correlation strong, linear, interpretable
- Spearman correlation was always high (monotonic)
 → log transform brings Pearson in line

Square Root Transform: Intro

- Purpose: moderate skew reduction
- Common for counts/frequencies
- Gentle correction for right skew

Square Root Transform: Visual

- Histogram of variable before and after square root transform
- Distribution or scale changes visibly

Thresholding/Quantiling

- Splits continuous data into quantiles or bins
- Useful for skewed data, group comparisons
- Risk: arbitrary cutoffs, information loss
- Continuous ages -> binary: Age > 65 = 1, else 0, or smaller: Ages 0 > 40 = 1, Ages > 45 < 65 = 2, etc.
- Pearson weakens with thresholding
- Point-biserial/chi square correlation may be more appropriate

Thresholding/Quantile Example

- Suppose we want to understand how income relates to whether someone defaults on a loan.
- If we use income as a continuous predictor, Pearson correlation might be weak.
- But if we chop the income distribution into quantiles, the relationship becomes clear:
 - default rates are much higher in the lowest group and drop off in the higher groups.

Transformations

Transformation	Effect on Data	When to Use	
Log	Compresses large values, reduces right skew, stabilizes variance.	Data spanning multiple orders of magni (income, population, energy).	itude
Square Root	Gentle compression, reduces moderate skew.	Count data (Poisson-like), event frequen	ncies.
Reciprocal (1/x)	Flips and compresses large values, spreads out small values.	Inverse relationships (time → rate, speed diminishing returns).	d,
Box-Cox	Optimizes $\boldsymbol{\lambda}$ to best normalize skew.	Positive data where you want automated transformation.	d
Yeo-Johnson	Like Box-Cox, but works with zero/negative values.	Skewed data that may include negatives	5.
Sigmoid	Squashes to [0,1], emphasizes mid-range differences.	Probability mapping, logistic regression	prep.
Thresholding/Binning	Converts continuous → categorical.	Interpretability, policy thresholds, noisy predictors.	

Transformations change the distributions of variables, use with caution!

Min-Max Scaling

- Rescales values to [0,1].
- Preserves shape of distribution, compresses outliers into narrow bands.
- Often used in neural networks and when absolute range matters.
- Histogram of income before and after min-max scaling (same shape, but squashed into [0,1]).

$$x' = rac{x - x_{\min}}{x_{\max} - x_{\min}}$$

What are the units?

Z-Score Standardization

- Centers data at mean = 0, scales to standard deviation = 1.
- Distributions keep shape but are re-centered and rescaled.
- Useful for comparability when units differ (e.g., height vs weight).
- Visual: Histogram showing shift to mean 0. spread 1. Overlay normal curve.

$$x' = \frac{x - \mu}{\sigma}$$

What are the units?

Different Types of Scaling

Method	Equation	Effect on Data	When to Use
Min–Max	$x' = rac{x - x_{min}}{x_{max} - x_{min}}$	Rescales to [0,1]; shape preserved.	Neural nets, when bounded inputs are useful; visualization.
Z-Score	$x'=rac{x-\mu}{\sigma}$	Centers mean = 0, std = 1; shape preserved.	When comparing across different units (height vs weight).
Robust Scaling	$x' = \frac{x - \text{median}}{IQR}$	Median = 0, spread = 1 (IQR units).	Heavy-tailed or outlier-heavy data.
Group vs Global Scaling	Apply formulas per-group vs full dataset.	Changes interpretability: global = compare across groups; group-level = compare fairly within groups.	

Transforms vs. Scaling

Aspect	Transformations	Scaling/Normalization
Goal	Change the <i>shape</i> of the distribution (reduce skew, linearize relationships, stabilize variance).	Change the <i>scale</i> of the variable for comparability.
Examples	Log, sqrt, reciprocal, Box-Cox, sigmoid, thresholding/binning.	Min–Max, Z-score, Robust scaling.
Effect on Relationships	Can change correlation values (esp. Pearson), reveal hidden linearity, reduce outlier influence.	Pearson correlation unchanged (linear rescaling); Spearman unchanged.
Units	May change units (e.g., log-income = log dollars).	Removes or redefines units (e.g., SD units, IQR units, or unitless [0,1]).
When to Use	Skewed data, heavy tails, nonlinear relationships, inverse effects, categorical thresholds.	Distance-based models (kNN, clustering), gradient descent models (NNs), mixed-unit datasets.

Wide vs Long Format

Wide vs Long Format Example

Wide Format Long Format

Student	Math	English	Science
Α	90	85	95
В	80	88	78

Student	Subject	Score
Α	Math	90
A	English	85
Α	Science	95
В	Math	80
В	English	88
В	Science	78

Joining Basics - Keys

- Joins use keys (IDs).
- Primary key
 - A unique identifier for rows in a table
 - Each value appears only once in that table.
- Foreign key
 - A column in one table that refers to a primary key in another table.
 - Values can repeat (many students can take the same exam)

StudentID (PK)	Name	GradeLevel
101	Alice	10
102	Bob	11
103	Carol	10

ExamID	StudentID (FK)	Exam	Score
1	101	Math	90
2	102	Math	80
3	101	English	85

Joining Basics - Types of Joins

- Inner Join
 - Returns only rows with keys present in both tables.
- Left Join
 - Returns all rows from the left table, with matching rows from the right.
 - Missing matches in the right table become NULL.
- Right Join
 - Returns all rows from the right table, with matching rows from the left.
 - Missing matches in the left table become NULL.
- Full Outer Join
 - Returns all rows from both tables.
 - Where no match exists, fills with NULL.
- Cross Join (Cartesian Product)
 - Every row in the left table combines with every row in the right.
 - Rarely used, but useful for generating combinations
- If keys don't align → missing values or extra rows.

■ Table 1: Student Roster

StudentID	Name	GradeLevel
101	Alice	10
102	Bob	11
103	Carol	10
104	David	12

■ Table 2: Exam Scores

StudentID	Exam	Score
101	Math	90
102	Math	80
105	Math	85

Label Encoding

- Assigns <u>arbitrary</u> integers to categories.
 - Example: red=0, blue=1, green=2.
 - Fast and simple.
 - Dangerous if the model interprets the numbers as ordered.
 - Use only when categories are nominal and the model doesn't assume order (tree-based models are okay).

Ordinal Encoding

- Numbers are assigned to respect a real, meaningful order.
 - Example: shirt sizes Small=1, Medium=2, Large=3.
 - Encodes the rank information.
 - Doesn't capture distances (Medium isn't necessarily "twice" Small).
 - Use when categories are truly ordinal.

One Hot vs Dummy Encoding

One-Hot Encoding (All Columns)

→ Multicollinearity Risk

Dummy Encoding (Drop Red)

→ No Redundancy

Student	Color	Red	Blue	Green
Α	Red	1	0	0
В	Blue	0	1	0
Ċ	Green	Ö	Ö	1

Student	Color	Blue	Green
Α	Red	0	0
В	Blue	1	0
C	Green	Ō	1

- One-Hot Encoding (Red, Blue, Green all included) → multicollinearity risk because one column can be perfectly predicted from the others.
 - If you know Red and Blue, you can always infer Green.
 - That's perfect multicollinearity.
 - In linear models (regression, logistic regression), this makes the design matrix singular (can't invert), so the model parameters can't be estimated uniquely.
- Dummy Encoding (drop Red as baseline) → removes redundancy, no multicollinearity.

Toy Example

- A correlation heatmap of 10 synthetic variables.
- Clear clusters of strong correlations (Var1-Var3, Var4-Var6, Var7-Var9), plus a mixed variable (Var10).
- We have redundancy. PCA can simplify this

PCA Interpretation

Reduce the feature space from 15 to 4 variables and capture almost 100% of the variance

Central Limit Theorem

As sample size ↑:

Sampling distribution gets narrower.

Shape approaches normal, even if population not normal.

The law that makes inference nossible

Bigger Samples = More Precision

 $n = 10 \rightarrow wide variability.$

 $n = 100 \rightarrow narrower variability.$

What is a Confidence Interval?

A range of plausible values for a population parameter.

Based on sampling variability.

Example: "Average sleep = 6.8 hours (95% CI: 6.3 - 7.3)."

Key message: Don't trust just a point estimate.

Example: Go / No-Go Logic for ML

Example scenario:

You're evaluating whether to build a churn prediction model.

Feature	Estimated Effect	95% CI	Interpretation
Calls to support	+0.25	(0.10, 0.40)	Stable signal → predictive
Region	+0.03	(-0.15, +0.21)	Unclear → weak
Age	-0.01	(-0.05, +0.03)	No signal
Random noise feature	0.00	(-0.10, +0.10)	Overfitting risk

Takeaway: Focus only on variables with **tight**, **directional CIs**.

Build the Null Distribution

Collect all shuffled differences → histogram.

Centered around 0 (since under null, no difference).

Mark the observed difference with a vertical line.

What a p-value Means

p-value = measure of data-model compatibility.

Small $p \rightarrow$ data are less compatible with the null.

Large $p \rightarrow data$ are plausible under the null.

Not a probability the null is true.

Not evidence strength on a graded scale.

What Is an Effect Size?

Quantifies the magnitude of a relationship or difference. Independent of sample size.

<i>d</i> —	\bar{X}_2	_	\bar{X}_1
u =		s_p	

_	_				
	\ /	n		C	•
	V	l)	\Box		
	•	\sim	_	_	•

Mean difference Correlation (r, R²) Standardized difference (Cohen's d Odds ratio or risk ratio

d	Magnitude
0.2	Small
0.5	Medium
0.8	Large

Summary

Classical stats: Is there an effect?

Data science: Is it big enough to matter, predict, or act on?

Effect size connects the two.

Concept	Question it answers	DS connection
p-value	"Is there signal beyond chance?"	Detects presence
Effect size	"How strong is the signal?"	Measures predictability
CI	"How stable is that estimate?"	Quantifies reliability

Example Questions

Which of the following best describes an **ordinal** variable?

- A. Favorite color
- **B.** Temperature in Fahrenheit
- C. Customer satisfaction: Very Unsatisfied, Unsatisfied, Neutral, Satisfied, Very Satisfied
- **D.** ZIP code

You receive a dataset where the income variable is heavily right-skewed.

- a) What kind of transformation would you apply to normalize the distribution?
- **b)** How would you check whether the transformation worked?

Which correlation method is best for detecting a **nonlinear but monotonic** association between two variables?

- A. Pearson correlation
- B. Spearman correlation
- C. Kendall's tau
- D. Point-biserial correlation

You perform a left join between two tables and discover that the number of rows has **doubled**.

Explain what likely caused this. How would you fix it?