

Übungen zur Vorlesung

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2022/2023

Prof. Dr.-Ing. Sebastian Schlesinger

Besprechung in nächster Vorlesung

Blatt 2

Aufgabe 2.1 (Mengen)

(9 Punkte)

Bestimmen Sie die folgenden Mengen:

- (i) $\{a, b, c\} \cup \{b, c, d\}$
- (ii) $\{a, b, c\} \cap \{b, c, d\}$
- (iii) $\{a, b, c\} \setminus \{b, c, d\}$
- (iv) $\mathcal{P}(\{1, a\})$
- (v) $\mathcal{P}(\{1,\{1\}\})$
- (vi) $\mathcal{P}(\{1,2,3\}) \setminus \mathcal{P}(\{1,2\})$
- (vii) $\bigcap_{i \in \{2,6\}} \{\frac{i}{2}, i+1\}$ (Hinweis: $\bigcap_{i \in I} A_i = \{x | \forall i \in I : x \in A_i\}$ für eine Indexmenge I)
- (viii) $\bigcup_{n\in\mathbb{N}}\{n,n+1,2n\}$ (Hinweis: $\bigcup_{i\in I}A_i=\{x|\exists i\in I:x\in A_i\}$ für eine Indexmenge I)
- (ix) $\mathscr{P}(\mathscr{P}(\mathscr{P}(\emptyset)))$

Aufgabe 2.2 (Beweis)

(4 Punkte)

Seien A und B Mengen. Beweisen Sie: $A \subseteq B \Leftrightarrow A \cup B = B$

Aufgabe 2.3 (Beweis)

(5 Punkte)

Seien A, B, C Mengen. Beweisen Sie

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$$