"Multimodal Breast Cancer Classification with Medical Based Transfer Learning CNN Algorithms"

A Dissertation

Submitted in partial fulfillment of the requirements for the award of the degree of

Post Graduate Diploma in Bioinformatics

Submitted by

SANKET M. CHAUDHARY

Enrolment No.: 231451302004

Under Guidance of

Dr. Kshipra Chauhan

Prof. Mahesh Panchal

Assistant Professor

Assistant Professor

SAST, GTU

GSET, GTU

School of Applied Sciences and Technology
Gujarat Technological University
May, 2024

Declaration by Student

I hereby declare that the work incorporated in this dissertation report entitled "Multimodal Breast Cancer Classification with Medical Based Transfer Learning CNN Algorithms" is original and has not been submitted to any University or Institution for the award of a Degree.

I further declare that the results presented in this dissertation and the consideration made there in, is carried out by me in the School of Applied Science and Technology, Gujarat Technological University, Ahemadabad-382424.

1	N 4 .	
	Date.	

Place:

SANKET M. CHAUDHARY

Sanket Chaudhary_231451302004.docx

ORIGINALITY REPORT

7% SIMILARITY INDEX

PRIMARY SOURCES

Gaojing Wang, Qingquan Li, Lei Wang, Wei Wang, Mengqi Wu, Tao Liu. "Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors", Sensors, 2018

www.mdpi.com 28 words — 1%

mindthegraph.com $_{\text{Internet}}$ 26 words -<1%

assets.researchsquare.com 19 words -<1%

suspace.su.edu.bd 19 words -<1%

Huma Naz, Rahul Chamola, Jaleh Sarafraz, Mahdi 18 words — < 1% Razabizadeh, Siddharth Jain. "An efficient densenet-based deep learning model for Big-4 snake species classification", Toxicon, 2024

Parita Oza. "AI in breast imaging: Applications, challenges, and future research", Elsevier BV, $\frac{14 \text{ words}}{14 \text{ crossref}}$

8	iieta.org Internet	14 words — <	1%
9	www.coursehero.com	14 words — <	1%
10	www.ncbi.nlm.nih.gov Internet	13 words — <	1%
11	Chong Shang, Haizhou Ai, Bo Bai. "End-to-end crowd counting via joint learning local and global count", 2016 IEEE International Conference on Improcessing (ICIP), 2016		1%
12	Ton Duc Thang University Publications	12 words — <	1%
13	Selvakanmani S, G Dharani Devi, Rekha V, J Jeyalakshmi. "Privacy-Preserving Breast Cancer Classification: A Federated Transfer Learning App Journal of Imaging Informatics in Medicine, 2024 Crossref	11 words — < roach",	1%
14	Joshua J. Podmore, Toby P. Breckon, Nik K. N. Aznan, Jason D. Connolly. "On the Relative Contribution of Deep Convolutional Neural Network SSVEP-Based Bio-Signal Decoding in BCI Speller A IEEE Transactions on Neural Systems and Rehabil Engineering, 2019	pplications",	1%
15	fount.aucegypt.edu Internet	10 words — <	1%
16	"Pediatric State of the Art Symposium", Epilepsia, 10/2006	9 words — <	1%

17	"Proceeding of 2022 International Conference on Wireless Communications, Networking and Applications (WCNA 2022)", Springer Science and E Media LLC, 2023 Crossref	9 words — < 1% Business
18	Asmaa S. Alsolami, Wafaa Shalash, Wafaa Alsaggaf, Sawsan Ashoor, Haneen Refaat, Mohammed Elmogy. "King Abdulaziz University Bro Mammogram Dataset (KAU-BCMD)", Data, 2021 Crossref	9 words — < 1% east Cancer
19	www.slideshare.net	9 words — < 1%
20	Lecture Notes in Computer Science, 2015. Crossref	8 words — < 1 %
21	fastercapital.com Internet	8 words — < 1 %
22	wiredspace.wits.ac.za Internet	8 words — < 1%
23	Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh. "A Fast Learning Algorithm for Deep Belief Nets", Neural Computation, 2006 Crossref	7 words — < 1 %
24	"Proceedings of the Second International Conference on Advances in Computing Research (ACR'24)", Springer Science and Business Media LL Crossref	6 words — < 1% C, 2024
25	publications.polymtl.ca	6 words — < 1 %

 $\begin{array}{ll} \begin{array}{ll} \text{26} & \text{docdrop.org} \\ \text{Internet} \end{array} & \text{4 words} - < 1\% \\ \\ \text{27} & \text{medicaz.com} \\ \text{Internet} \end{array} & \text{4 words} - < 1\% \\ \end{array}$

EXCLUDE QUOTES ON EXCLUDE SOURCES OFF
EXCLUDE BIBLIOGRAPHY ON EXCLUDE MATCHES OFF

SCHOOL OF APPLIED SCIENCES & TECHNOLOGY (SAST-GTU)

GUJARAT TECHNOLOGICAL UNIVERSITY

(Established by Government of Gujarat Under Guajarat Act No. 20 of 2007)

Certificate

This is to certify that dissertation entitled "Multimodal Breast Cancer Classification With Medical Based Transfer Learning CNN Algorithms" submitted to the School of Applied Sciences and Technology (SAST), Gujarat Technological University (GTU), Chandkheda-382424, Ahmedabad, Gujarat, in partial fulfilment for the degree of Postgraduate Diploma in Bioinformatics is a bonafide record of research work carried out by Mr. Sanket Mansangbhai Chaudhary, under my supervision and guidance. No part of this dissertation has been reproduced elsewhere for any degree. All kind of help received by him have been duly acknowledged.

Date:

Place:

(Signature of Supervisor)

Dr. Kshipra Chauhan,

Assistant Professor School of Applied Science & Technology,

Gujarat Technological University,

Ahemadabad

(Signature of Director, SAST)

Dr. Vaibhav Bhatt,

Professor & Director

School of Applied Science and Technology,

Gujarat Technological University, Ahemadabad

orfaul

(Signature of Supervisor)

Prof. Mahesh Panchal,

Assistant Professor
Graduate School of
Engineering &Technology
Gujarat Technological University,

Ahemadabad

Acknowledgments

I would like to thank my project advisor, **Dr. Kshipra Chauhan** for guiding and supporting me throughout this entire dissertation project. Her knowledge and experience was invaluable and helped make my project's direction more clear.

I also want to extend my gratitude toward my other project advisor, **Prof. Mahesh Panchal**, Assistant professor at the Graduate School of Engineering and Technology, GTU, for always being available to assist whenever I needed help of him.

I am humble and grateful to my family and friends for pushing me to be better and always supporting me.

Lastly, I would like to appreciate School of Applied Science and Technology, GTU for providing me with this opportunity to learn and grow.

Sanket Mansangbhai Chaudhary

Abstract

According to WHO, more than 2.3 million new cases of breast cancer occurs each year worldwide, which makes it the most common type of cancer among women. Breast cancer treatment can be highly effective at an early stage. But individual medical diagnostic methods have limitations to cover up whole spectrum of complexity to detect cancer in early phase, which motivates to consider multiple medical image modalities to make diagnosis. The first aim of the project was to apply medical based pre-trained CNN models on different medical image modalities separately, changing the parameters of settings for these models, and using data augmentations methods to the medical images to get better classification accuracy. In the next step, to create feature-level fusion based multimodal CNN classification model using most accurate pre-trained model found for each image modality. During this work, have used five different models on three specific breast image modalities datasets: Mammograms, Ultrasound and Thermal images, where each dataset divided into malignant, benign and normal classes and also implemented RadImagenet and chexnet weights on DenseNet121, Resnet50, Inception-v3, Inception-Resnet-v2 CNN architectures. Almost all models performed well after fine-tuning except chexnet, but Inception-Resnet-v2 showed the best result across all modalities with 66%, 81%, 99% accuracy for Mammograms, Ultrasound and Thermal dataset respectively. In addition, it performed better at accuracy as single model used in method1 than three distinct models to create multimodal CNN model mentioned in method 2.

Table of Contents

Acknowledgments

Abstract

Table of Contents

Chapter 1: Introduction	1
1.1: Breast Cancer: A Global Challenge	1
1.2: Limitations of Single Modality Diagnosis	1
1.3: Potential of Multimodal Medical Imaging	1
1.4: Background Information	2
1.5: Aim & Objective	4
Chapter 2: Literature Review	5
2.1: Ovecoming the Tradition CNN Challenges for Medical Diagnosis	5
2.2: Transfer Learning in Deep Learning	5
2.3: Pretrained CNN Models	8
2.4: Multi-Modal Models: Medical Image Fusion for Breast cancer Classification	11
2.5: Role of Breast Diagnostic Image Modalities in cancer Diagnosis	15
Chapter 3: Methodology	19
3.1: Proposed Method	19
3.2: Datasets Curation & Description	19
3.3: Data Preparation for training	21
3.4: Classification Models	22
3.5: Model Evaluation Metrics	27
3.6: Resources & Computing Tools Used	28
Chapter 4: Results & Discussion	29
4.1 Introduction	29
4.2 Results from Unimodal Testing for Three Image Modalities	29
4.2.1 Trained Models with Mammography Dataset	30
4.2.2 Trained Models with Ultrasound Dataset	30
4.2.3 Trained Models with Thermal Dataset	31
4.3 Results from Unimodal Testing	33
4.3.1 Multimodal Models with Method1	33
4.3.2 Multimodal Models with Method2	34
4.4. Overall Results Analysis and Discussion	36

Chapter 5: Conclusion		37	
References		39	
Appendix		B-1	
Appendix A: To access Used code & dataset in this project		B-1	
Appendix B: Code of Self-Created Model Code		B-1	
Appendix C: Ethical Concepts for Medical Implications of Deep Learning for Cancer Classification	Breast	D-1	