Inference for RCTs How to get your *p*-values right

Simon Heß

November 15, 2017

Intro

- What do we need standard error (SE) estimates for?
- What econometric choices influence SE estimates?
- When to do what?

Table of contents

Relevant design aspects of experiments

Stratification in RCTs Clustered assignment

Inference

TE regressions

Resampling methods

Some examples for issues with estimation

Covariate balancing

Why?

- reduce imbalances
- subgroup analysis

How?

▶ blocked, paired (lagged DV, Mahalanobis), re-randomize

Covariate balancing

Why?

- reduce imbalances
- subgroup analysis

How?

blocked, paired (lagged DV, Mahalanobis), re-randomize

Consequences?

- ▶ increased precision of $\hat{\beta}_{OLS}$ and treatment correlated across observations and with covariates.
- \Rightarrow usual $\hat{V}[\hat{\beta}_{\mathsf{OLS}}]$ doesn't account for this: too large
- \Rightarrow CI too large, t-stat too small, p-values too large (on average)

Clustered assignment to treatment

Why?

- organizational, costs
- group TE study objective.

How?

- natural clusters (village, school class, state)
- artificial clusters (e.g. lab sessions)

Clustered assignment to treatment

Why?

- organizational, costs
- group TE study objective.

How?

- natural clusters (village, school class, state)
- artificial clusters (e.g. lab sessions)

Consequences?

- ▶ reduced precision of $\hat{\beta}_{OLS}$
- \Rightarrow usual $\hat{V}[\hat{eta}_{\mathsf{OLS}}]$ doesn't 'know' this: too small
- \Rightarrow CI too small, t-stat too large, p-values too small (on average)

Other designs aspects to consider

- sample size, sizes and no of clusters, sizes and no of strata
- multi-stage treatment assignments
- survey sampling
- attrition
- **•** ...

Estimating TEs

$$y_i = \alpha + \tau D_i + x_i \beta + \varepsilon_i$$

regress y treatment x1 x2 x3

Stata time (1)

[introductory simulation]

Data analysis

Standard solutions

Stratified assignment \Rightarrow allow for strata FX¹

regress y treatment x1 x2 x3 i.strata_id

Clustered assignment \Rightarrow adjust inference using CRSE

regress y treatment x1 x2 x3, cluster(cluster_id)

¹conventional wisdom, *but* Bugni et al. (2017) show only valid if $\pi = 1/2$.

Data analysis

Standard solutions

Stratified assignment \Rightarrow allow for strata FX¹

regress y treatment x1 x2 x3 i.strata_id

Clustered assignment \Rightarrow adjust inference using CRSE

regress y treatment x1 x2 x3, cluster(cluster_id)

Issues:

- few clusters
- small strata (few clusters per strata)
- clusters of varying sizes
- **...**

¹conventional wisdom, *but* Bugni et al. (2017) show only valid if $\pi = 1/2$.

Data analysis

Resampling methods

When standard methods fail:

- bootstrap, and
- randomization inference
 can quantify estimator uncertainty.

Issues:

- computationally intensive
- no standard [software]

Useful methods (1) – Randomization inference (RI)

RI obtains the distribution of any test statistic under the null of "No TE" by resampling the treatment assignment.

Useful methods (1) – Randomization inference (RI)

RI obtains the distribution of any test statistic under the null of "No TE" by resampling the treatment assignment.

- 1. define suitable test statistic (e.g. $\hat{\tau}_{OLS}$)
- 2. R times: draw a treatment vector D^r and compute $\hat{\tau}_{\mathrm{OLS}}^r$
 - \Rightarrow distribution of the test statistic under the H_o "No TE"

Testing step: compare original $\hat{\tau}_{OLS}$ to this distribution.

Useful methods (2) – [Wild-]Bootstrap

Bootstrap obtains the distribution of a test-statistic under the null of "No TE" by resampling the data.

Useful methods (2) – [Wild-]Bootstrap

Bootstrap obtains the distribution of a test-statistic under the null of "No TE" by resampling the data.

- 1. estimate $y_{ic} = \alpha + \tau D_c + x_{ic}\beta + \varepsilon_{ic}$ with imposed H_o to obtain $\hat{\alpha}^o, \hat{\tau}^o, \hat{\beta}^o, \hat{\varepsilon}^o_{ic}$.
- 2. B times: generate bootstrap data set (y_{ic}^b, D_c, x_{ic}) :

$$y_{ic}^b := \hat{\alpha}^o + \hat{\tau}^o D_c + x_{ic} \hat{\beta}^o + w_c \cdot \hat{\varepsilon}_{ic}^o$$

$$w_c = egin{cases} -1 & ext{with prob} = 1/2 \ +1 & ext{with prob} = 1/2 \end{cases}$$

- 3. on each data set, estimate $\hat{t}_{\mathrm{wald}}^{b}$
 - \Rightarrow distribution of the test statistic under the H_o "No [A]TE"

Testing step: compare original \hat{t}_{wald} to the obtained distribution

Issues (1) Few treatment clusters

Problem:

- \blacktriangleright estimation of CRSEs relies on $N_{\rm clusters}$ going to infinity, not sample size N. (Cameron and Miller, 2015)
 - ⇒ Over-rejection, with CRSE

- get more data
- bootstrap
- randomization inference

Stata time (2)

[cluster simulation]

Issues (2)

Many small strata + clustered treatment

Problem:

► CRSEs over-reject, even with many clusters (unclear why)

- increase clusters/strata
- bootstrap (?)
- randomization inference

Issues (3)

"Wildly varying cluster-sizes"

Problem:

Over-rejection, even with 'many' clusters.

(MacKinnon and Webb, 2017)

- weight or drop observations
- cluster SEs at stratum-level
- bootstrap
- randomization inference

Issues (4)

Baseline balance achieved through re-randomization

Problem:

▶ Under-rejection, but no way to control for strata-fixed effects

- control for testing variables
- randomization inference

Takeaways

- 1. plan your inference as early as possible
 - simulations can help foresee and understand issues
- experimental design affects what is 'correct' (Abadie et al., 2017; Bruhn and McKenzie, 2009)
 - control variables can matter (strata fixed effects)
 - clusters matter
- 3. resampling methods can help when the rest fails
 - bootstrap
 - randomization inference

References I

- ABADIE, A., S. ATHEY, G. IMBENS, AND J. WOOLDRIDGE (2017): "When Should You Adjust Standard Errors for Clustering?" arXiv preprint arXiv:1710.02926.
- Bruhn, M. and D. McKenzie (2009): "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," *American Economic Journal: Applied Economics*, 1, 200–232.
- BUGNI, F. A., I. A. CANAY, AND A. M. SHAIKH (2017): "Inference under covariate-adaptive randomization," *Journal of the American Statistical Association*.
- CAMERON, A. C. AND D. L. MILLER (2015): "A practitioner's guide to cluster-robust inference," *Journal of Human Resources*, 50, 317–372.
- MACKINNON, J. G. AND M. D. WEBB (2017): "Wild bootstrap inference for wildly different cluster sizes," *Journal of Applied Econometrics*, 32, 233–254.