PLOTS OF CLOSED FORMS

PETRO KOLOSOV

ABSTRACT. Let P(m, X, N) be an m-degree polynomials in $X \in \mathbb{R}$ having fixed non-negative integers m and N. In this manuscript an efficient method of spline approximation for power function is shown and discussed. Approximation technique is based on the fact that polynomial P(m, X, N) approximates odd-power function X^{2m+1} for a in some neighborhood of fixed N.

Contents

1.	Introduction	2
1.1.	Definitions	2
1.2.	Polynomials $P(1,X,N)$	5
1.3.	Polynomial $P(1,X,6)$ Table of values	6
1.4.	Polynomial P(1,X,6) plot with cubes	7
1.5.	Polynomials $Q(1,X,N)$	8
1.6.	Polynomial $Q(1,X,6)$ Table of values	9
1.7.	Polynomial $Q(1,X,6)$ plot with cubes	10
1.8.	Polynomials $P(2,X,N)$	11
1.9.	Polynomial $P(2,X,4)$ Table of values	12
1.10	O. Polynomial $P(2,X,4)$ plot with fifth	12
1.11	1. Polynomials $Q(2,X,N)$	13
1.12	2. Polynomial $Q(2,X,4)$ Table of values	14
1.13	B. Polynomial $Q(2,X,4)$ plot with fifth	14
1.14	4. Polynomials P(3,X,N)	15
1.15	5. Polynomial $P(3,X,3)$ Table of values	16
1.16	3. Polynomial $P(3,X,3)$ plot with seventh	16

1.17.	Polynomials $Q(3,X,N)$	17
1.18.	Polynomial $Q(3,X,3)$ Table of values	18
1.19.	Polynomial $Q(3,X,3)$ plot with seventh	18
Refere	ences	19

1. Introduction

1.1. Definitions.

Definition 1.1. (Polynomial P(m,X,N)).

$$P(m, X, N) = \sum_{r=0}^{m} \sum_{k=1}^{N} \mathbf{A}_{m,r} k^{r} (X - k)^{r}$$

fixed non-negative integers m and N. For example

$$P(2, X, 0) = 0$$

$$P(2, X, 1) = 30X^{2} - 60X + 31$$

$$P(2, X, 2) = 150X^{2} - 540X + 512$$

$$P(2, X, 3) = 420X^{2} - 2160X + 2943$$

Definition 1.2. (Definition of coefficient $A_{m,r}$.)

$$\mathbf{A}_{m,r} = \begin{cases} (2r+1)\binom{2r}{r} & \text{if } r = m \\ (2r+1)\binom{2r}{r} \sum_{d \ge 2r+1}^{m} \mathbf{A}_{m,d} \binom{d}{2r+1} \frac{(-1)^{d-1}}{d-r} B_{2d-2r} & \text{if } 0 \le r < m \\ 0 & \text{if } r < 0 \text{ or } r > m \end{cases}$$
(1)

where B_t are Bernoulli numbers [1]. It is assumed that $B_1 = \frac{1}{2}$. For example,

m/r	0	1	2	3	4	5	6	7
0	1							
1	1	6						
2	1	0	30					
3	1	-14	0	140				
4	1	-120	0	0	630			
5	1	-1386	660	0	0	2772		
6	1	-21840	18018	0	0	0	12012	
7	1	-450054	491400	-60060	0	0	0	51480

Table 1. Coefficients $\mathbf{A}_{m,r}$. See OEIS sequences [2, 3].

Properties of the coefficients $\mathbf{A}_{m,r}$

- $\mathbf{A}_{m,m} = \binom{2m}{m}$
- $\mathbf{A}_{m,r} = 0$ for m < 0 and r > m
- $\mathbf{A}_{m,r} = 0 \text{ for } r < 0$
- $\mathbf{A}_{m,r} = 0$ for $\frac{m}{2} \le r < m$
- $\mathbf{A}_{m,0} = 1$ for $m \geq 0$
- $\mathbf{A}_{m,r}$ are integers for $m \leq 11$
- Row sums: $\sum_{r=0}^{m} \mathbf{A}_{m,r} = 2^{2m+1} 1$

More detailed discussions about these coefficients at [4, 5, 6, 7].

Polynomial identities found, these polynomial identities allow us to assume that N-1, N, N+1 interval has quite precise convergence.

$$P(m, N, N) = N^{2m+1}$$

$$Q(m, N, N) = N^{2m+1}$$

$$P(m, N+1, N) = (N+1)^{2m+1} - 1 \qquad (verified)$$

$$Q(m, N-1, N) = (N-1)^{2m+1} + 1 \qquad (verified)$$

The function U(m, N, r) rises as $O(N^{2m+1-r})$ having fixed values for m and r

$$U(m, N, r) = O(N^{2m+1-r})$$

$$U(3, N, 1) = 70N^6 + 210N^5 + 175N^4 - 42N^2 - 7N$$

The function V(m, N, r) rises as $O(N^{2m+1-r})$ having fixed values for m and r

$$V(m, N, r) = O(N^{2m+1-r})$$

$$V(3, N, 2) = -14N + 140N^3 - 210N^4 + 84N^5$$

Error of approximation, fixed m and N

$$E = (X+1)^{2m+1} - P(m, X, N)$$

$$E = \sum_{k=0}^{N} {N \choose k} X^k - P(m, X, N)$$

About interval of convergence, we say that having fixed points m and N, the polynomial P(m, X, N) approximates odd power function X^{2m+1} in some interval of convergence $a_1 \leq N \leq b_1$. For example,

$$P(1, X, 6) = 126X - 540$$

so that it approximates odd power function X^3 in some neighborhood of point X=6, more precisely $5.5 \le X \le 7.9$ with the maximal percentage error 8%.

Having N=10 the convergence interval with cubes in neighborhood of X=10 is: $8.9 \le X \le 13$ with maximal percentage error $E \le 10\%$.

Having N=70 the convergence interval with cubes in neighborhood of X=70 is: $60.1 \le X \le 87.6$ with maximal percentage error $E \le 10\%$.

Having N=150 the convergence interval with cubes in neighborhood of X=150 is: $128.4 \le X \le 187.1$ with maximal percentage error $E \le 10\%$. Within interval $142.5 \le X \le 159.9$ the maximal percentage error E < 1%.

Which implies that convergence interval rises as N rise.

Which makes the method quite fit for spline approximation.

1.2. Polynomials P(1,X,N).

$$P(1, X, 0) = 0$$

$$P(1, X, 1) = 6X - 5$$

$$P(1, X, 2) = 18X - 28$$

$$P(1, X, 3) = 36X - 81$$

$$P(1, X, 4) = 60X - 176$$

$$P(1, X, 5) = 90X - 325$$

$$P(1, X, 6) = 126X - 540$$

$$P(1, X, 7) = 168X - 833$$

$$P(1, X, 8) = 216X - 1216$$

$$P(1, X, 9) = 270X - 1701$$

$$P(1, X, 10) = 330X - 2300$$

$$P(1, X, 11) = 396X - 3025$$

$$P(1, X, 12) = 468X - 3888$$

$$P(1, X, 13) = 546X - 4901$$

$$P(1, X, 14) = 630X - 6076$$

$$P(1, X, 15) = 720X - 7425$$

$$P(1, X, 16) = 816X - 8960$$

$$P(1, X, 17) = 918X - 10693$$

$$P(1, X, 18) = 1026X - 12636$$

$$P(1, X, 19) = 1140X - 14801$$

$$P(1, X, 20) = 1260X - 17200$$

Figure 1. Polynomials P(1, X, N) for N=1..4

Intervals of convergence:

- 6X 5: $1 \le X \le 1$ with $E \le 0\%$
- 18X 28: $2 \le X \le 3$ with $E \le 10\%$
- 36X 81: $2.9 \le X \le 4.1$ with $E \le 5\%$
- 60X 176: $3.9 \le X \le 5.3$ with $E \le 5\%$

1.3. Polynomial P(1,X,6) Table of values.

Figure 2. Polynomial plot P(1, X, 6) with cubes X^3 . Points of intersection X = 6, X = 6.94987. Interval of convergence: $5.9 \le X \le 7.2$ with $E \le 2\%$.

1.4. Polynomial P(1,X,6) plot with cubes.

1.5. Polynomials Q(1,X,N).

$$Q(1, X, 0) = 0$$

$$Q(1, X, 1) = 1$$

$$Q(1, X, 2) = 6X - 4$$

$$Q(1, X, 3) = 18X - 27$$

$$Q(1, X, 4) = 36X - 80$$

$$Q(1, X, 5) = 60X - 175$$

$$Q(1, X, 6) = 90X - 324$$

$$Q(1, X, 7) = 126X - 539$$

$$Q(1, X, 8) = 168X - 832$$

$$Q(1, X, 9) = 216X - 1215$$

$$Q(1, X, 10) = 270X - 1700$$

$$Q(1, X, 11) = 330X - 2299$$

$$Q(1, X, 12) = 396X - 3024$$

$$Q(1, X, 13) = 468X - 3887$$

$$Q(1, X, 14) = 546X - 4900$$

$$Q(1, X, 15) = 630X - 6075$$

$$Q(1, X, 16) = 720X - 7424$$

$$Q(1, X, 17) = 816X - 8959$$

$$Q(1, X, 18) = 918X - 10692$$

$$Q(1, X, 19) = 1026X - 12635$$

Q(1, X, 20) = 1140X - 14800

Figure 3. Polynomials Q(1, n, k)

1.6. Polynomial Q(1,X,6) Table of values.

Figure 4. Polynomial plot Q(1, X, 6) with cubes X^3 . Points of intersection: X = 6, X = 4.93725. Interval of convergence: $4.9 \le X \le 6.3$ with $E \le 3\%$.

1.7. Polynomial Q(1,X,6) plot with cubes.

1.8. Polynomials P(2,X,N).

$$P(2, X, 0) = 0$$

$$P(2, X, 1) = 30X^{2} - 60X + 31$$

$$P(2, X, 2) = 150X^{2} - 540X + 512$$

$$P(2, X, 3) = 420X^{2} - 2160X + 2943$$

$$P(2, X, 4) = 900X^{2} - 6000X + 10624$$

$$P(2, X, 5) = 1650X^{2} - 13500X + 29375$$

$$P(2, X, 6) = 2730X^{2} - 26460X + 68256$$

$$P(2, X, 7) = 4200X^{2} - 47040X + 140287$$

$$P(2, X, 8) = 6120X^{2} - 77760X + 263168$$

$$P(2, X, 9) = 8550X^{2} - 121500X + 459999$$

$$P(2, X, 10) = 11550X^{2} - 181500X + 760000$$

$$P(2, X, 11) = 15180X^{2} - 261360X + 1199231$$

$$P(2, X, 12) = 19500X^{2} - 365040X + 1821312$$

$$P(2, X, 13) = 24570X^{2} - 496860X + 2678143$$

$$P(2, X, 14) = 30450X^{2} - 661500X + 3830624$$

$$P(2, X, 15) = 37200X^{2} - 864000X + 5349375$$

$$P(2, X, 16) = 44880X^{2} - 1109760X + 7315456$$

$$P(2, X, 17) = 53550X^{2} - 1404540X + 9821087$$

$$P(2, X, 18) = 63270X^{2} - 1754460X + 12970368$$

$$P(2, X, 19) = 74100X^{2} - 2166000X + 16879999$$

$$P(2, X, 20) = 86100X^{2} - 2646000X + 21680000$$

Figure 5. Polynomials P(2, n, k)

1.9. Polynomial P(2,X,4) Table of values.

Figure 6. Polynomial plot P(2, X, 4) with fifth power X^5 . Points of intersection X = 4, X = 4.42472, X = 4.99181. Interval of convergence: $3.9 \le X \le 5.3$ with $E \le 2\%$.

1.10. Polynomial P(2,X,4) plot with fifth.

1.11. Polynomials Q(2,X,N).

$$Q(2,X,0) = 0$$

$$Q(2,X,1) = 1$$

$$Q(2,X,2) = 30X^2 - 60X + 32$$

$$Q(2,X,3) = 150X^2 - 540X + 513$$

$$Q(2,X,4) = 420X^2 - 2160X + 2944$$

$$Q(2,X,5) = 900X^2 - 6000X + 10625$$

$$Q(2,X,6) = 1650X^2 - 13500X + 29376$$

$$Q(2,X,7) = 2730X^2 - 26460X + 68257$$

$$Q(2,X,8) = 4200X^2 - 47040X + 140288$$

$$Q(2,X,9) = 6120X^2 - 77760X + 263169$$

$$Q(2,X,10) = 8550X^2 - 121500X + 460000$$

$$Q(2,X,11) = 11550X^2 - 181500X + 760001$$

$$Q(2,X,12) = 15180X^2 - 261360X + 1199232$$

$$Q(2,X,13) = 19500X^2 - 365040X + 1821313$$

$$Q(2,X,14) = 24570X^2 - 496860X + 2678144$$

$$Q(2,X,15) = 30450X^2 - 661500X + 3830625$$

$$Q(2,X,16) = 37200X^2 - 864000X + 5349376$$

$$Q(2,X,17) = 44880X^2 - 1109760X + 7315457$$

$$Q(2,X,18) = 53550X^2 - 1404540X + 9821088$$

$$Q(2,X,19) = 63270X^2 - 1754460X + 12970369$$

 $Q(2, X, 20) = 74100X^2 - 2166000X + 16880000$

Figure 7. Polynomials Q(2, n, k)

1.12. Polynomial Q(2,X,4) Table of values.

Figure 8. Polynomial plot Q(2, X, 4) with fifth power X^5 . Points of intersection $X=3.02414,\ X=3.36852,\ X=4.$ Interval of convergence: $3.0\leq X\leq 4.2$ with $E\leq 2\%$.

1.13. Polynomial Q(2,X,4) plot with fifth.

1.14. Polynomials P(3,X,N).

$$P(3,X,0) = 0$$

$$P(3,X,1) = 140X^3 - 420X^2 + 406X - 125$$

$$P(3,X,2) = 1260X^3 - 7140X^2 + 13818X - 9028$$

$$P(3,X,3) = 5040X^3 - 41160X^2 + 115836X - 110961$$

$$P(3,X,4) = 14000X^3 - 148680X^2 + 545860X - 684176$$

$$P(3,X,5) = 31500X^3 - 411180X^2 + 1858290X - 2871325$$

$$P(3,X,6) = 61740X^3 - 955500X^2 + 5124126X - 9402660$$

$$P(3,X,7) = 109760X^3 - 1963920X^2 + 12182968X - 25872833$$

$$P(3,X,8) = 181440X^3 - 3684240X^2 + 25945416X - 62572096$$

$$P(3,X,9) = 283500X^3 - 6439860X^2 + 50745870X - 136972701$$

$$P(3,X,10) = 423500X^3 - 10639860X^2 + 92745730X - 276971300$$

$$P(3,X,11) = 609840X^3 - 16789080X^2 + 160386996X - 524988145$$

$$P(3,X,12) = 851760X^3 - 25498200X^2 + 264896268X - 943023888$$

$$P(3,X,13) = 1159340X^3 - 37493820X^2 + 420839146X - 1618774781$$

$$P(3,X,14) = 1543500X^3 - 53628540X^2 + 646725030X - 2672907076$$

$$P(3,X,15) = 2016000X^3 - 74891040X^2 + 965662320X - 4267591425$$

$$P(3,X,16) = 2589440X^3 - 102416160X^2 + 1406064016X - 6616398080$$

$$P(3,X,17) = 3277260X^3 - 137494980X^2 + 2002403718X - 9995653693$$

$$P(3,X,18) = 4093740X^3 - 181584900X^2 + 2796022026X - 14757360516$$

$$P(3,X,19) = 5054000X^3 - 236319720X^2 + 3835983340X - 21343778801$$

$$P(3,X,20) = 6174000X^3 - 303519720X^2 + 5179983060X - 30303773200$$

Figure 9. Polynomials P(3, n, k)

1.15. Polynomial P(3,X,3) Table of values.

Figure 10. Polynomial plot P(3, X, 3) with seventh power X^7 . Points of intersection $X=2.87643, \ X=3, \ X=3.89662, \ X=3.99457$. Interval of convergence: $2.8 \le X \le 4.3$ with $E \le 2\%$.

1.16. Polynomial P(3,X,3) plot with seventh.

1.17. Polynomials Q(3,X,N).

$$Q(3,X,0) = 0$$

$$Q(3,X,1) = 1$$

$$Q(3,X,2) = 140X^3 - 420X^2 + 406X - 124$$

$$Q(3,X,3) = 1260X^3 - 7140X^2 + 13818X - 9027$$

$$Q(3,X,4) = 5040X^3 - 41160X^2 + 115836X - 110960$$

$$Q(3,X,5) = 14000X^3 - 148680X^2 + 545860X - 684175$$

$$Q(3,X,6) = 31500X^3 - 411180X^2 + 1858290X - 2871324$$

$$Q(3,X,7) = 61740X^3 - 955500X^2 + 5124126X - 9402659$$

$$Q(3,X,8) = 109760X^3 - 1963920X^2 + 12182968X - 25872832$$

$$Q(3,X,9) = 181440X^3 - 3684240X^2 + 25945416X - 62572095$$

$$Q(3,X,10) = 283500X^3 - 6439860X^2 + 50745870X - 136972700$$

$$Q(3,X,11) = 423500X^3 - 10639860X^2 + 92745730X - 276971299$$

$$Q(3,X,12) = 609840X^3 - 16789080X^2 + 160386996X - 524988144$$

$$Q(3,X,13) = 851760X^3 - 25498200X^2 + 264896268X - 943023887$$

$$Q(3,X,14) = 1159340X^3 - 37493820X^2 + 420839146X - 1618774780$$

$$Q(3,X,15) = 1543500X^3 - 53628540X^2 + 646725030X - 2672907075$$

$$Q(3,X,16) = 2016000X^3 - 74891040X^2 + 965662320X - 4267591424$$

$$Q(3,X,17) = 2589440X^3 - 102416160X^2 + 1406064016X - 6616398079$$

$$Q(3,X,18) = 3277260X^3 - 137494980X^2 + 2002403718X - 9995653692$$

$$Q(3,X,19) = 4093740X^3 - 181584900X^2 + 2796022026X - 14757360515$$

 $Q(3, X, 20) = 5054000X^3 - 236319720X^2 + 3835983340X - 21343778800$

Figure 11. Polynomials Q(3, n, k)

1.18. Polynomial Q(3,X,3) Table of values.

Figure 12. Polynomial plot Q(3, X, 3) with seventh power X^7 . Points of intersection X=1.80948,~X=2.01364,~X=2.84612,~X=3. Interval of convergence: $2.7 \le X \le 3.1$ with $E \le 2\%$.

1.19. Polynomial Q(3,X,3) plot with seventh.

References

- [1] Harry Bateman. Higher transcendental functions [volumes i-iii], volume 1. McGRAW-HILL book company, 1953.
- [2] Petro Kolosov. Entry A302971 in The On-Line Encyclopedia of Integer Sequences, 2018. https://oeis.org/A302971.
- [3] Petro Kolosov. Entry A304042 in The On-Line Encyclopedia of Integer Sequences, 2018. https://oeis.org/A304042.
- [4] Alekseyev, Max. MathOverflow answer 297916/113033, 2018. https://mathoverflow.net/a/297916/ 113033.
- [5] Kolosov, Petro. On the link between binomial theorem and discrete convolution. arXiv preprint arXiv:1603.02468, 2016. https://arxiv.org/abs/1603.02468.
- [6] Kolosov, Petro. 106.37 An unusual identity for odd-powers. The Mathematical Gazette, 106(567):509-513,2022. https://doi.org/10.1017/mag.2022.129.
- [7] Petro Kolosov. History and overview of the polynomial P(m,b,x), 2024. https://kolosovpetro.github.io/pdf/HistoryAndOverviewOfPolynomialP.pdf.

Table 2. Comparison of X^3 , P(1, X, 6) = 126X - 540, Absolute, Relative, and Percentage Error

X	X^3	126X - 540	ABS	Relative	% Error
5.3	148.877	127.8	21.077	0.141573	14.1573
5.4	157.464	140.4	17.064	0.108368	10.8368
5.5	166.375	153.0	13.375	0.0803907	8.03907
5.6	175.616	165.6	10.016	0.0570335	5.70335
5.7	185.193	178.2	6.993	0.0377606	3.77606
5.8	195.112	190.8	4.312	0.0221001	2.21001
5.9	205.379	203.4	1.979	0.00963584	0.963584
6.0	216.0	216.0	0.0	0.0	0.0
6.1	226.981	228.6	1.619	0.00713276	0.713276
6.2	238.328	241.2	2.872	0.0120506	1.20506
6.3	250.047	253.8	3.753	0.0150092	1.50092
6.4	262.144	266.4	4.256	0.0162354	1.62354
6.5	274.625	279.0	4.375	0.0159308	1.59308
6.6	287.496	291.6	4.104	0.014275	1.4275
6.7	300.763	304.2	3.437	0.0114276	1.14276
6.8	314.432	316.8	2.368	0.00753104	0.753104
6.9	328.509	329.4	0.891	0.00271225	0.271225
7.0	343.0	342.0	1.0	0.00291545	0.291545
7.1	357.911	354.6	3.311	0.0092509	0.92509
7.2	373.248	367.2	6.048	0.0162037	1.62037
7.3	389.017	379.8	9.217	0.0236931	2.36931
7.4	405.224	392.4	12.824	0.0316467	3.16467
7.5	421.875	405.0	16.875	0.04	4.0
7.6	438.976	417.6	21.376	0.0486951	4.86951
7.7	456.533	430.2	26.333	0.0576804	5.76804
7.8	474.552	442.8	31.752	0.0669094	6.69094
7.0	402 020	455.4	27 620	0.0762409	7 62409

Table 3. Comparison of X^3 , Q(1,X,6) = 90X - 324, Absolute, Relative, and Percentage Error

\mathbf{X}	X^3	90X - 324	ABS	Relative	% Error
4.5	91.125	81.0	10.125	0.111111	11.1111
4.6	97.336	90.0	7.336	0.0753678	7.53678
4.7	103.823	99.0	4.823	0.0464541	4.64541
4.8	110.592	108.0	2.592	0.0234375	2.34375
4.9	117.649	117.0	0.649	0.00551641	0.551641
5.0	125.0	126.0	1.0	0.008	0.8
5.1	132.651	135.0	2.349	0.0177081	1.77081
5.2	140.608	144.0	3.392	0.0241238	2.41238
5.3	148.877	153.0	4.123	0.027694	2.7694
5.4	157.464	162.0	4.536	0.0288066	2.88066
5.5	166.375	171.0	4.625	0.0277986	2.77986
5.6	175.616	180.0	4.384	0.0249636	2.49636
5.7	185.193	189.0	3.807	0.0205569	2.05569
5.8	195.112	198.0	2.888	0.0148018	1.48018
5.9	205.379	207.0	1.621	0.00789273	0.789273
6.0	216.0	216.0	0.0	0.0	0.0
6.1	226.981	225.0	1.981	0.0087276	0.87276
6.2	238.328	234.0	4.328	0.0181598	1.81598
6.3	250.047	243.0	7.047	0.0281827	2.81827
6.4	262.144	252.0	10.144	0.0386963	3.86963
6.5	274.625	261.0	13.625	0.0496131	4.96131
6.6	287.496	270.0	17.496	0.0608565	6.08565
6.7	300.763	279.0	21.763	0.0723593	7.23593
6.8	314.432	288.0	26.432	0.0840627	8.40627
6.9	328.509	297.0	31.509	0.0959152	9.59152
7.0	343.0	306.0	37.0	0.107872	10.7872

Table 4. Comparison of X^5 , $P(2, X, 4) = 900X^2 - 6000X + 10624$, Absolute, Relative, and Percentage Error

X	X^5	$900X^2 - 6000X + 10624$	ABS	Relative	% Error
3.6	604.662	688.0	83.3382	0.137826	13.7826
3.7	693.44	745.0	51.5604	0.0743546	7.43546
3.8	792.352	820.0	27.6483	0.034894	3.4894
3.9	902.242	913.0	10.758	0.0119236	1.19236
4.0	1024.0	1024.0	0.0	0.0	0.0
4.1	1158.56	1153.0	5.56201	0.00480079	0.480079
4.2	1306.91	1300.0	6.91232	0.00528905	0.528905
4.3	1470.08	1465.0	5.08443	0.0034586	0.34586
4.4	1649.16	1648.0	1.16224	0.000704746	0.0704746
4.5	1845.28	1849.0	3.71875	0.00201528	0.201528
4.6	2059.63	2068.0	8.37024	0.00406395	0.406395
4.7	2293.45	2305.0	11.5499	0.00503605	0.503605
4.8	2548.04	2560.0	11.9603	0.00469393	0.469393
4.9	2824.75	2833.0	8.24751	0.00291973	0.291973
5.0	3125.0	3124.0	1.0	0.00032	0.032
5.1	3450.25	3433.0	17.2525	0.00500036	0.500036
5.2	3802.04	3760.0	42.0403	0.0110573	1.10573
5.3	4181.95	4105.0	76.9549	0.0184017	1.84017
5.4	4591.65	4468.0	123.65	0.0269294	2.69294
5.5	5032.84	4849.0	183.844	0.0365288	3.65288
5.6	5507.32	5248.0	259.318	0.047086	4.7086
5.7	6016.92	5665.0	351.921	0.0584885	5.84885
5.8	6563.57	6100.0	463.568	0.0706274	7.06274
5.9	7149.24	6553.0	596.243	0.0833995	8.33995
6.0	7776.0	7024.0	752.0	0.0967078	9.67078
6.1	8445.96	7513.0	932.963	0.110463	11.0463

Table 5. Comparison of X^5 , $Q(2,X,4)=420X^2-2160X+2944$, Absolute, Relative, and Percentage Error

X	X^5	$420X^2 - 2160X + 2944$	ABS	Relative	% Error
2.7	143.489	173.8	30.3109	0.211242	21.1242
2.8	172.104	188.8	16.6963	0.0970131	9.70131
2.9	205.111	212.2	7.08851	0.0345593	3.45593
3.0	243.0	244.0	1.0	0.00411523	0.411523
3.1	286.292	284.2	2.09151	0.00730553	0.730553
3.2	335.544	332.8	2.74432	0.00817871	0.817871
3.3	391.354	389.8	1.55393	0.00397065	0.397065
3.4	454.354	455.2	0.84576	0.00186146	0.186146
3.5	525.219	529.0	3.78125	0.00719938	0.719938
3.6	604.662	611.2	6.53824	0.0108131	1.08131
3.7	693.44	701.8	8.36043	0.0120565	1.20565
3.8	792.352	800.8	8.44832	0.0106623	1.06623
3.9	902.242	908.2	5.95801	0.00660356	0.660356
4.0	1024.0	1024.0	0.0	0.0	0.0
4.1	1158.56	1148.2	10.362	0.00894385	0.894385
4.2	1306.91	1280.8	26.1123	0.0199802	1.99802
4.3	1470.08	1421.8	48.2844	0.0328447	3.28447
4.4	1649.16	1571.2	77.9622	0.0472738	4.72738
4.5	1845.28	1729.0	116.281	0.0630155	6.30155
4.6	2059.63	1895.2	164.43	0.0798346	7.98346
4.7	2293.45	2069.8	223.65	0.0975169	9.75169
4.8	2548.04	2252.8	295.24	0.115869	11.5869

Table 6. Comparison of X^7 , $P(3, X, 3) = 5040X^3 - 41160X^2 + 115836X - 110961$, Absolute, Relative, and Percentage Error

X	X^7	$5040X^3 - 41160X^2 + 115836X - 110961$	ABS	Relative	% Error
2.7	1046.04	942.12	103.915	0.0993421	9.93421
2.8	1349.29	1323.48	25.8129	0.0191307	1.91307
2.9	1724.99	1728.36	3.37237	0.00195501	0.195501
3.0	2187.00	2187.00	0.0	0.0	0.0
3.1	2751.26	2729.64	21.6214	0.00785873	0.785873
3.2	3435.97	3386.52	49.4538	0.014393	1.4393
3.3	4261.84	4187.88	73.9643	0.017355	1.7355
3.4	5252.34	5163.96	88.375	0.0168259	1.68259
3.5	6433.93	6345.00	88.9297	0.013822	1.3822
3.6	7836.42	7761.24	75.1764	0.00959321	0.959321
3.7	9493.19	9442.92	50.2677	0.00529514	0.529514
3.8	11441.6	11420.3	21.2783	0.00185973	0.185973
3.9	13723.1	13723.6	0.459332	0.0000334715	0.00334715
4.0	16384.0	16383.0	1.0	0.0000610352	0.00610352
4.1	19475.4	19428.8	46.5874	0.00239211	0.239211
4.2	23053.9	22891.3	162.613	0.0070536	0.70536
4.3	27181.9	26800.7	381.181	0.0140234	1.40234
4.4	31927.8	31187.2	740.621	0.0231968	2.31968
4.5	37366.9	36081.0	1285.95	0.034414	3.4414
4.6	43581.8	41512.4	2069.33	0.0474815	4.74815
4.7	50662.3	47511.7	3150.59	0.0621881	6.21881
4.8	58706.8	54109.1	4597.75	0.0783172	7.83172
4.9	67822.3	61334.8	6487.55	0.0956551	9.56551
5.0	78125.0	69219.0	8906.0	0.113997	11.3997
5.1	89741.1	77792.0	11949.0	0.13315	13.315

Table 7. Comparison of X^7 , $Q(3,X,3)=1260X^3-7140X^2+13818X-9027$, Absolute, Relative, and Percentage Error

X	X^7	$1260X^3 - 7140X^2 + 13818X - 9027$	ABS	Relative	% Error
1.7	41.0339	19.38	21.6539	0.527707	52.7707
1.8	61.222	60.12	1.102	0.0180001	1.80001
1.9	89.3872	94.14	4.75283	0.0531712	5.31712
2.0	128.0	129.0	1.0	0.0078125	0.78125
2.1	180.109	172.26	7.84885	0.0435784	4.35784
2.2	249.436	231.48	17.9558	0.0719856	7.19856
2.3	340.483	314.22	26.2625	0.0771333	7.71333
2.4	458.647	428.04	30.6071	0.0667335	6.67335
2.5	610.352	580.5	29.8516	0.0489088	4.89088
2.6	803.181	779.16	24.021	0.0299074	2.99074
2.7	1046.04	1031.58	14.4553	0.0138192	1.38192
2.8	1349.29	1345.32	3.97285	0.0029444	0.29444
2.9	1724.99	1727.94	2.95237	0.00171153	0.171153
3.0	2187.0	2187.0	0.0	0.0	0.0
3.1	2751.26	2730.06	21.2014	0.00770607	0.770607
3.2	3435.97	3364.68	71.2938	0.0207492	2.07492
3.3	4261.84	4098.42	163.424	0.0383459	3.83459
3.4	5252.34	4938.84	313.495	0.0596868	5.96868
3.5	6433.93	5893.5	540.43	0.0839968	8.39968
3.6	7836.42	6969.96	866.456	0.110568	11.0568
3.7	9493.19	8175.78	1317.41	0.138774	13.8774