CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE I

Q1. La matrice A est symétrique réelle et donc diagonalisable dans $\mathcal{M}_3(\mathbb{R})$ d'après le théorème spectral.

 $\operatorname{rg}(A-I_3) = \operatorname{rg}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 1$ (car les trois colonnes sont égales et non nulles). D'après le théorème du rang,

 $\dim (\operatorname{Ker} (A - I_3)) = 3 - 1 = 2$. Donc, 1 est valeur propre de A d'ordre au moins 2 et même exactement 2 car A est diagonalisable.

La dernière valeur propre λ est fournie par la trace de $A:\lambda+1+1=\mathrm{Tr}(A)=6$ et donc $\lambda=4$. Ainsi,

$$\operatorname{Sp}(A) = (1, 1, 4) \text{ et } \chi_A = (X - 1)^2 (X - 4).$$

 $\mathsf{E}_1(A) \text{ est le plan d'équation } x+y+z=0. \text{ Donc, } \mathsf{E}_1(A) = \mathrm{Vect}\left(\mathsf{U}_1,\mathsf{U}_2\right) \text{ où } \mathsf{U}_1 = \left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right) \text{ et } \mathsf{U}_2 = \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array}\right) \left(\mathsf{U}_1 \text{ et } \mathsf{U}_2\right) \left(\mathsf{U}_1 \text{ et } \mathsf{U}_2\right)$

sont deux vecteurs non colinéaires du plan $E_1(A)$ et donc (U_1,U_2) est une base de $\dot{E}_1(A)$).

On sait que les sous-espaces propres d'une matrice symétrique réelle sont orthogonaux (pour le produit scalaire usuel).

$$\mathrm{Donc},\, \mathsf{E}_4(A) = (\mathsf{E}_1(A))^\perp = \mathrm{Vect}\,(\mathsf{U}_3) \,\,\mathrm{où}\,\,\mathsf{U}_3 = \left(\begin{array}{c} 1\\1\\1\end{array}\right)\!.\,\,\mathrm{Ainsi},$$

$$A = PDP^{-1} \text{ où } D = \operatorname{diag}(1,1,4) \text{ et } P = \left(\begin{array}{ccc} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{array} \right).$$

Déterminons P^{-1} (pour la suite de l'exercice). Notons $\mathscr{B}=(E_1,E_2,E_3)$ la base canonique de $\mathscr{M}_{3,1}(\mathbb{R})$ et \mathscr{B}' la base (U_1,U_2,U_3) . On a $P=\mathscr{P}_{\mathscr{B}}^{\mathscr{B}'}$ et donc $P^{-1}=\mathscr{P}_{\mathscr{B}'}^{\mathscr{B}}$. Or,

$$\left\{ \begin{array}{l} U_1 = E_1 - E_2 \\ U_2 = E_1 - E_3 \\ U_3 = E_1 + E_2 + E_3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} E_2 = E_1 - U_1 \\ E_3 = E_1 - U_2 \\ U_3 = E_1 + (E_1 - U_1) + (E_1 - U_2) \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} E_1 = \frac{1}{3} \left(U_1 + U_2 + U_3 \right) \\ E_2 = \frac{1}{3} \left(-2U_1 + U_2 + U_3 \right) \\ E_3 = \frac{1}{3} \left(U_1 - 2U_2 + U_3 \right) \end{array} \right.$$

et donc

$$P^{-1} = \frac{1}{3} \left(\begin{array}{ccc} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right).$$

 $\mathbf{Q2.}$ Soit $B = P\Delta P^{-1}$ où $\Delta = \mathrm{diag}(1,1,2)$. Alors, $B^2 = P\Delta^2 P^{-1} = PDP^{-1} = A$. Déterminons B explicitement.

$$\begin{split} B &= P \Delta P^{-1} = \frac{1}{3} \left(\begin{array}{cccc} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{array} \right) \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right) \left(\begin{array}{cccc} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) = \frac{1}{3} \left(\begin{array}{cccc} 1 & 1 & 2 \\ -1 & 0 & 2 \\ 0 & -1 & 2 \end{array} \right) \left(\begin{array}{cccc} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{array} \right) \\ &= \frac{1}{3} \left(\begin{array}{cccc} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{array} \right). \end{split}$$

Si
$$B = \frac{1}{3} \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
, alors $B^2 = A$.

Q3. Soit $n \in \mathbb{N}$.

$$A^{n} = PD^{n}P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4^{n} \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 1 & 1 & 4^{n} \\ -1 & 0 & 4^{n} \\ 0 & -1 & 4^{n} \end{pmatrix} \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 4^{n} + 2 & 4^{n} - 1 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \end{pmatrix}.$$
Pour tout $n \in \mathbb{N}$, $A^{n} = \frac{1}{3} \begin{pmatrix} 4^{n} + 2 & 4^{n} - 1 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \\ 4^{n} - 1 & 4^{n} + 2 & 4^{n} - 1 \end{pmatrix}.$

 $\mathbf{Q4.}\ \mu_A$ est un diviseur unitaire de χ_A d'après le théorème de Cayley-Hamilton, admettant toute valeur propre de A pour racine et à racines simples car A est diagonalisable. Donc,

$$\mu_A = (X-1)(X-4).$$

Soit $n \in \mathbb{N}$. La division euclidienne de X^n par μ_A s'écrit $X^n = Q_n \times \mu_A + a_n X + b_n$ (*) où $Q_n \in \mathbb{R}[X]$ et $(a_n, b_n) \in \mathbb{R}^2$. Puisque μ_A est un polynôme annulateur de A, en évaluant en A, on obtient

$$A^n = a_n A + b_n I_3$$
.

Déterminons a_n et b_n . En évaluant les deux membres de l'égalité (*) en 1 et 4, on obtient $\begin{cases} a_n + b_n = 1 & (I) \\ 4a_n + b_n = 4^n & (II) \end{cases}$ et donc $a_n = \frac{4^n - 1}{3} \; ((II)\text{-}(I))$ et $b_n = \frac{4 - 4^n}{3} \; (4(I)\text{-}(I))$. Donc,

Pour tout
$$n \in \mathbb{N}$$
, $A^n = \frac{4^n - 1}{3}A + \frac{4 - 4^n}{3}I_3$.

EXERCICE II

Q5. Pour $p \in \mathbb{N}^*$, posons $A_p = \frac{1}{p}I_n$. Pour tout $p \in \mathbb{N}^*$, $A_p \in GL_n(\mathbb{R})$ (car det $(A_p) = \frac{1}{p^n} \neq 0$). La suite $(A_p)_{p \in \mathbb{N}^*}$ est une suite convergente, de limite 0_n qui n'est pas inversible

Ainsi, il existe une suite convergente d'éléments de $GL_n(\mathbb{R})$ qui converge et dont la limite n'est pas dans $GL_n(\mathbb{R})$. Donc,

$$GL_n(\mathbb{R})$$
 n'est pas fermé dans $\mathscr{M}_n(\mathbb{R})$.

Q6. On sait que l'application $d:A\mapsto \det(A)$ est continue sur $\mathcal{M}_n(\mathbb{R})$ à valeurs dans \mathbb{R} . De plus, $GL_n(\mathbb{R})=\{A\in\mathcal{M}_n(\mathbb{R})/\det(A)\in\mathbb{R}^*\}=d^{-1}(]-\infty,0[\cup]0,+\infty[].]-\infty,0[\cup]0,+\infty[$ est un ouvert de \mathbb{R} en tant que réunion de deux ouverts de \mathbb{R} . Donc, $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image réciproque d'un ouvert par une application continue.

$$\mathsf{GL}_{\mathfrak{n}}(\mathbb{R})$$
 est ouvert dans $\mathscr{M}_{\mathfrak{n}}(\mathbb{R})$.

Q7. Soit $M \in \mathcal{M}_n(\mathbb{R})$. M admet un nombre fini de valeurs propres non nulles et on peut considérer $\rho = \text{Min}\{|\lambda|, \ \lambda \in \operatorname{Sp}(M) \setminus \{0\}\}$. Par construction, pour tout $\lambda \in]0, \rho[, \lambda \text{ n'est pas valeur propre de } M \text{ et donc } M - \lambda I_n \in GL_n(\mathbb{R})$.

Soit $\varepsilon > 0$. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme $\| \|_{\infty}$. Il existe $\lambda \in]0, \varepsilon[$ tel que la matrice $N = M - \lambda I_n$ soit inversible. De plus, $\|M - N\|_{\infty} = \|\lambda I_n\|_{\infty} = \lambda < \varepsilon$. Ainsi,

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \ \forall \varepsilon > 0, \ \exists N \in GL_n(\mathbb{R})/ \ \|M - N\|_{\infty} < \varepsilon.$$

Ceci montre que

$$\mathsf{GL}_{\mathfrak{n}}(\mathbb{R})$$
 est dense dans $\mathscr{M}_{\mathfrak{n}}(\mathbb{R}).$

Q8. Soit $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2$. On suppose d'abord A inversible :

$$\chi_{AB} = \det\left(XI_n - AB\right) = \det\left(A\left(XI_n - BA\right)A^{-1}\right) = \det(A) \times \det\left(XI_n - BA\right) \times \frac{1}{\det(A)} = \det\left(XI_n - BA\right) = \det\left(XI_n - BA\right) = \frac{1}{\det(A)} = \det\left(XI_n - BA\right) = \frac{1}{\det(A)} = \frac{1}$$

On suppose maintenant A quelconque. Puisque $GL_n(\mathbb{R})$ est dense dans $\mathscr{M}_n(\mathbb{R})$, il existe une suite $(A_p)_{p\in\mathbb{N}}$ de matrices inversibles, convergente, de limite A.

$$\begin{split} \chi_{AB} &= \det \left(X I_n - A B \right) = \det \left(\lim_{p \to +\infty} \left(X I_n - A_p B \right) \right) \\ &= \lim_{p \to +\infty} \det \left(X I_n - A_p B \right) \text{ (par continuit\'e du déterminant)} \\ &= \lim_{p \to +\infty} \det \left(X I_n - B A_p \right) \text{ (car } A_p \in GL_n(\mathbb{R})) \\ &= \det \left(X I_n - B A \right) = \chi_{AB}. \end{split}$$

On a montré que

$$\forall (A,B) \in (\mathscr{M}_n(\mathbb{R}))^2, \chi_{AB} = \chi_{BA}.$$

 $A = E_{1,1} \in \mathcal{M}_2(\mathbb{R})$ et $B = E_{2,1} \in \mathcal{M}_2(\mathbb{R})$. $AB = 0_2$ et $BA = E_{2,1} = B$. Puisque $AB = 0_2$, $\mu_{AB} = X$. Puisque $B \neq 0$ et $B^2 = 0$, $\mu_{BA} = X^2$. A et B sont un exemple de matrices telles que AB et BA n'aient pas même polynôme minimal.

Q9. Si $GL_n(\mathbb{R})$ est connexe par arcs, par continuité du déterminant et d'après le théorème des valeurs intermédiaires, $\det(GL_n(\mathbb{R})) =]-\infty, 0[\cup]0, +\infty[$ est un connexe par arcs de \mathbb{R} ce qui est faux (car les connexes par arcs de \mathbb{R} sont les intervalles). Donc,

 $\mathsf{GL}_{\mathsf{n}}(\mathbb{R})$ n'est pas connexe par arcs.

PROBLEME

Partie I - Exemples, propriétés

Q10. On note
$$\mathcal{B}$$
 la base canonique de \mathbb{R}^2 et on munit \mathbb{R}^2 de sa structure euclidienne canonique. Soit \mathfrak{u} l'endomorphisme de \mathbb{R}^2 canoniquement associé à A . $A=\sqrt{5}B$ où $B=\begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$.

Soit ν l'endomorphisme de \mathbb{R}^2 canoniquement associé à B. La matrice de ν dans la base orthonormée \mathcal{B} , à savoir B, est une matrice orthogonale car ses deux colonnes sont unitaires et orthogonales (pour le produit scalaire canonique de $\mathcal{M}_2(\mathbb{R})$). Donc ν est un automorphisme orthogonal et $u = \sqrt{5\nu}$. Puisque ν est un automorphisme orthogonal, pour tout x dans E,

$$\|\mathbf{u}(\mathbf{x})\| = \|\sqrt{5}\nu(\mathbf{x})\| = \sqrt{5}\|\nu(\mathbf{x})\| = \sqrt{5}\|\mathbf{x}\|.$$

A est la matrice d'une similitude de rapport $\sqrt{5}$.

Q11. Puisque $\begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}\begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$, le point M' a pour coordonnées (4,-3). De même, les points N' et P' ont pour coordonnées respectives (6,-7) et (8,-6).

aire (MNP) = $\frac{MN \times NP}{2} = \frac{2 \times 1}{2} = 1$. D'autre part,

$$\operatorname{aire}\left(M'N'P'\right) = \frac{1}{2}\operatorname{abs}\left(\operatorname{det}\left(\overrightarrow{M'N'}, \overrightarrow{M'P'}\right)\right) = \frac{1}{2}\operatorname{abs}\left(\left|\begin{array}{cc}2 & 4\\ -4 & -3\end{array}\right|\right) = 5.$$

Donc, aire $(M'N'P') = (\sqrt{5})$ aire (MNP).

Q12. Soit $u \in \text{Sim}(E)$. Il existe k > 0 tel que pour tout $x \in E$, ||u(x)|| = k||x||. Si pour $x \in E$, on a u(x) = 0 alors $\|x\| = \frac{1}{k}\|u(x)\| = 0$ et donc x = 0. Ceci montre que $\operatorname{Ker}(u) = \{0\}$ puis que u est injectif. Puisque $\dim(E) < +\infty$, on en déduit que $u \in GL(E)$.

 $Sim(E) \subset GL(E)$.

Vérifions maintenant que Sim(E) est un sous-groupe de GL(E).

- $\bullet \text{ Pour tout } x \in E, \, \|\mathrm{Id}_E(x)\| = \|x\| = 1\|x\| \text{ avec } 1 > 0. \text{ Donc } \mathrm{Id}_E \text{ est un \'el\'ement de } \mathrm{Sim}(E).$
- Soit $(u, u') \in (\operatorname{Sim}(E))^2$. Il existe $(k, k') \in (\mathbb{R}^{+*})^2$ tel que pour tout $x \in E$, ||u(x)|| = k||x|| et ||u'(x)|| = k'||x||. Mais alors, pour tout $x \in E$,

$$\|\mathbf{u} \circ \mathbf{u}'(\mathbf{x})\| = \|\mathbf{u}(\mathbf{u}'(\mathbf{x})\| = \mathbf{k}\|\mathbf{u}'(\mathbf{x})\| = \mathbf{k}\mathbf{k}'\|\mathbf{u}(\mathbf{x})\|.$$

Puisque kk' > 0, ceci montre que $u \circ u' \in Sim(E)$.

• Soit $u \in Sim(E)$. Soit k > 0 tel que pour tout $x \in E$, ||u(x)|| = k||x||. Alors, pour tout $x \in E$,

$$\|\mathbf{x}\| = \|\mathbf{u}(\mathbf{u}^{-1}(\mathbf{x}))\| = \mathbf{k}\|\mathbf{u}^{-1}(\mathbf{x})\|$$

et donc $\|u^{-1}(x)\| = \frac{1}{k}\|x\|$. Puisque $\frac{1}{k} > 0$, ceci montre que $u^{-1} \in \text{Sim}(E)$.

En résumé, Sim(E) est contenu dans GL(E), contient Id_E , est stable pour la loi \circ et pour le passage à l'inverse. Ceci montre que Sim(E) est un sous-groupe de $(GL(E), \circ)$ et donc que

$$(Sim(E), \circ)$$
 est un groupe.

Q13. Posons $\mathscr{B} = (e_1, \dots, e_n)$ et $A = (\mathfrak{a}_{i,j})_{1 \leqslant i,j \leqslant n}$. Pour $(i,j) \in [\![1,n]\!]^2$, $\mathfrak{a}_{i,j}$ est la i-ème coordonnée de $\mathfrak{u}(e_j)$ dans la base \mathscr{B} .

$$\label{eq:AA} \begin{split} {}^{t}AA &= I_{n} \Leftrightarrow \forall (i,j) \in [\![1,n]\!]^{2}, \ \sum_{k=1}^{n} \alpha_{k,i} \alpha_{k,j} = \delta_{i,j} \\ &\Leftrightarrow \forall (i,j) \in [\![1,n]\!]^{2}, \ \langle u\left(e_{i}\right), u\left(e_{j}\right) \rangle = \delta_{i,j} \ (\text{car} \ \mathscr{B} \ \text{est orthonorm\'ee}) \\ &\Leftrightarrow u(\mathscr{B}) \ \text{est une base orthonorm\'ee} \ \text{de E} \\ &\Leftrightarrow u \in O(E) \ (\text{d'apr\`es un th\'eor\`eme de cours}). \end{split}$$

On a montré que $\mathfrak{u}\in O(E)\Leftrightarrow \operatorname{Mat}_{\mathbb{B}}(\mathfrak{u})\in O_{\mathfrak{n}}(\mathbb{R}).$

Soit u une similitude de rapport k>0. Pour tout $x\in E$, $\left\|\frac{1}{k}u(x)\right\|=\frac{1}{k}\|u(x)\|=\|x\|$ et donc $\frac{1}{k}u\in O(E)$ puis $\frac{1}{k}\mathrm{Mat}_{\mathbb{B}}(u)\in O_{n}(\mathbb{R})$. Inversement, si $\frac{1}{k}\mathrm{Mat}_{\mathbb{B}}(u)\in O_{n}(\mathbb{R})$, alors $\frac{1}{k}u\in O(E)$ et donc u est une similitude de rapport k. Dit autrement,

$$u \text{ est une similitude de rapport } k \text{ si et seulement si } \operatorname{Mat}_{\mathscr{B}}(u) = kM \text{ avec } M \in \operatorname{O}_n(\mathbb{R}).$$

Q14. En notant C_1 , C_2 et C_3 les trois colonnes de A, on a $\|C_1\| = \|C_2\| = \|C_3\| = 3$ et $\langle C_1, C_2 \rangle = \langle C_1, C_3 \rangle = \langle C_2, C_2 \rangle = 0$. Donc, $\frac{1}{3}A \in O_3(\mathbb{R})$ puis l'endomorphisme de matrice u dans la base canonique de \mathbb{R}^3 est une similitude de rapport 3. Soit $v = \frac{1}{3}u$ de sorte que $v \in O\left(\mathbb{R}^3\right)$ et u = 3v.

Soit $f \in O(E)$. $u^{-1} \circ f \circ u = \frac{1}{3} \times 3v^{-1} \circ f \circ v = v^{-1} \circ f \circ v \in O(E)$ car $(O(E), \circ)$ est un groupe.

Q15. Par hypothèse, l'image par u de la sphère unité et une certaine sphère de centre 0 et de rayon r > 0. Soit $x \in E \setminus \{0\}$. Alors, $\left\| \frac{1}{\|x\|} x \right\| = \frac{1}{\|x\|} \|x\| = 1$. Donc, $\left\| u \left(\frac{1}{\|x\|} x \right) \right\| = r$ puis $\frac{1}{\|x\|} \|u(x)\| = r$ et finalement, $\|u(x)\| = r \|x\|$ ce qui reste vrai pour x = 0.

Ainsi, il existe k > 0 (à savoir k = r), tel que pour tout $x \in E$, ||u(x)|| = k||x|| et donc u est une similitude de E.

Partie II - Assertions équivalentes

Q16. Soit u une similitude de rapport k > 0. Soit $v = \frac{1}{k}u$. Alors $v \in O(E)$ et $u = kv = (kId_E) \circ v$. u est donc la composée d'une homothétie non nulle de E et d'un élément de O(E).

Inversement, soient α un réel non nul et $\nu \in O(E)$ puis $u=(\alpha Id_E)\circ \nu$. Si $\alpha>0$, $u=\alpha \nu$ est une similitude de rapport α . Si $\alpha<0$, on écrit $u=\alpha'\nu'$ où $\alpha'=-\alpha>0$ et $\nu'=-\nu\in O(E)$ (car si A est la matrice de ν dans une certaine base orthonormée de E, alors A'=-A est la matrice de $-\nu$ dans cette même base puis ${}^tA'A'={}^tAA=I_n$).

Q17. On munit \mathbb{R}^2 de sa structure euclidienne canonique et de son orientation canonique. On note \mathscr{B} la base canonique de \mathbb{R}^2 . On note \mathfrak{u} l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

 $\|C_1\| = \|C_2\| = \sqrt{5} \text{ puis } A = \sqrt{5}M \text{ où } M = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}. \text{ Les colonnes de } M \text{ sont unitaires et orthogonales et donc } M \in O_2(\mathbb{R}. \det(M) = 1 \text{ et donc } M \in SO\left(\mathbb{R}^2\right). \text{ On sait alors que } M \text{ est la matrice dans } \mathscr{B} \text{ d'une certaine rotation } \nu. \text{ Soit } \theta \text{ la mesure élément de }] - \pi, \pi], \text{ de l'angle de } \nu. \text{ Alors } \cos(\theta) = \frac{1}{\sqrt{5}} > 0 \text{ et } \sin(\theta) = -\frac{2}{\sqrt{5}} < 0. \text{ Donc, } \theta \in \left] -\frac{\pi}{2}, 0\right[\text{ puis } \theta = \operatorname{Arcsin}\left(-\frac{2}{\sqrt{5}}\right) = -\operatorname{Arcsin}\left(\frac{2}{\sqrt{5}}\right).$

u est la composée de l'homothétie de rapport $\sqrt{5}$ et de la rotation d'angle $-\operatorname{Arcsin}\left(\frac{2}{\sqrt{5}}\right)$.

Q18. Soit $(x, y) \in E^2$.

$$\|x + y\|^2 - \|x - y\|^2 = (\|x\|^2 + 2\langle x, y \rangle + \|y\|^2) - (\|x\|^2 - 2\langle x, y \rangle + \|y\|^2) = 4\langle x, y \rangle$$

$$\mathrm{et\ donc\ }\langle x,y\rangle = \frac{1}{4}\left(\|x+y\|^2 - \|x-y\|^2\right).$$

Supposons que pour tout $(x,y) \in E^2$, $\langle u(x), u(y) \rangle = k^2 \langle x,y \rangle$. En particulier, pour tout $x \in E$, $\|u(x)\|^2 = k^2 \|x\|^2$ puis $\|u(x)\| = k \|x\|$ (en supposant que l'énoncé sous-entend que k > 0). Donc, u est une similitude de rapport k.

Réciproquement, soit u une similitude de rapport k > 0. Alors, pour tout $(x, y) \in E^2$,

$$\begin{split} \langle u(x), u(y) \rangle &= \frac{1}{4} \left(\| u(x) + u(y) \|^2 - \| u(x) - u(y) \|^2 \right) = \frac{1}{4} \left(\| u(x+y) \|^2 - \| u(x-y) \|^2 \right) \\ &= k^2 \times \frac{1}{4} \left(\| x+y \|^2 - \| x-y \|^2 \right) = k^2 \langle x, y \rangle. \end{split}$$

On a montré que

 $\mathfrak{u} \text{ est une similitude de rapport } k>0 \text{ si et seulement si pour tout } (x,y) \in E^2, \ \langle \mathfrak{u}(x),\mathfrak{u}(y)\rangle = k^2\langle x,y\rangle.$

Q19. Soit $\mathfrak u$ une similitude de rapport k. Soit $(x,y) \in E^2$ tel que $\langle x,y \rangle = 0$. Alors, $\langle \mathfrak u(x), \mathfrak u(y) = k^2 \langle x,y \rangle = 0$. Donc, $\mathfrak u$ conserve l'orthogonalité.

Inversement, soit $\mathfrak u$ un endomorphisme de E conservant l'orthogonalité. Soit $(\mathfrak i,\mathfrak j)\in [\![1,\mathfrak n]\!]^2$.

$$\langle e_i + e_j, e_i - e_j \rangle = \|e_i\|^2 - \|e_j\|^2 = 1 - 1 = 0.$$

On en déduit que

$$0 = \langle u(e_i + e_j), u(e_i - e_j) \rangle = \langle u(e_i) + u(e_j), u(e_i) - u(e_j) \rangle = \|u(e_i)\|^2 - \|u(e_j)\|^2$$

et donc que $\|\mathfrak{u}(e_i)\| = \|\mathfrak{u}(e_j)\|$. Posons alors $k = \|\mathfrak{u}(e_1)\| = \ldots = \|\mathfrak{u}(e_n)\|$.

Si k=0, alors pour tout $i \in [1,n]$, $\|u(e_i)\|=0$ puis $u(e_i)=0$. u s'annule sur une base de E et donc u=0. Dans ce cas, u n'est pas une similitude.

 $\mathrm{Si}\ k>0,\ \mathrm{alors}\ \mathrm{pour}\ \mathrm{tout}\ i\in [\![1,n]\!],\ \left\|\frac{1}{k}\mathfrak{u}\left(e_{i}\right)\right\|=1.\ \mathrm{D'autre}\ \mathrm{part},\ \mathrm{puisque}\ \mathfrak{u}\ \mathrm{conserve}\ \mathrm{l'orthogonalit\'e},\ \mathrm{les}\ \mathrm{vecteurs}\ \mathfrak{u}\left(e_{i}\right)$

sont deux à deux orthogonaux et il en est de même des vecteurs $\frac{1}{k}u(e_i)$. En résumé, la famille $\left(\frac{1}{k}u(e_1),\dots,\frac{1}{k}u(e_n)\right)$ est une base orthonormée de E.

Puisque l'endomorphisme $\frac{1}{k}u$ transforme une base orthonormée en une base orthonormée, on sait que $\frac{1}{k}u$ est un automorphisme orthogonal et donc u est une similitude de rapport k. En résumé,

Pour tout endomorphisme non nul $\mathfrak u, \mathfrak u$ est une similitude si et seulement si $\mathfrak u$ conserve l'orthogonalité.

Q20. Soient $(x, y) \in E^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\begin{split} \left\|u\left(\lambda x + \mu y\right) - \lambda u(x) - \mu u(y)\right\|^2 &= \left\langle u\left(\lambda x + \mu y\right) - \lambda u(x) - \mu u(y), u\left(\lambda x + \mu y\right) - \lambda u(x) - \mu u(y)\right\rangle \\ &= \left\langle u\left(\lambda x + \mu y\right), u\left(\lambda x + \mu y\right)\right\rangle + \lambda^2 \langle u(x), u(x)\rangle + \mu^2 \langle u(y), u(y)\rangle \\ &- 2\lambda \langle u\left(\lambda x + \mu y\right), u\left(x\right)\rangle - 2\mu \langle u\left(\lambda x + \mu y\right), u\left(y\right)\rangle + 2\lambda \mu \langle u\left(x\right), u\left(y\right)\rangle \\ &= k^2 \left(\langle \lambda x + \mu y, \lambda x + \mu y\rangle + \lambda^2 \langle x, x\rangle + \mu^2 \langle y, y\rangle \right. \\ &- 2\lambda \langle \lambda x + \mu y, x\rangle - 2\mu \langle \lambda x + \mu y, y\rangle + 2\lambda \mu \langle x, y\rangle) \\ &= k^2 \left\|(\lambda x + \mu y) - \lambda x - \mu y\right\|^2 = 0 \end{split}$$

et donc $u(\lambda x + \mu y) = \lambda u(x) + \mu u(y)$. Ceci montre que $u \in \mathcal{L}(E)$. Mais alors, d'après la question Q18, si $u \neq 0$, u est une similitude de rapport k.