

Chapitre 1: k plus proches voisins (KNN)

Ibrahima Sy

Université Cheikh Anta Diop de Dakar(UCAD) Master Modélisation Statistique et Informatique(MSI) Faculté des Sciences et Techniques (FST)

April 14, 2021

Plan

Rappels Mathématiques

Fonctionnement de L'algorithme

Comment choisir la valeur K?

Avantages & Limitations de K-NN

References

Distance

Distance

On appelle distance sur un ensemble E toute application d définie sur le produit $E^2=E\times E$ et à valeurs dans l'ensemble \mathbb{R}^+ des réels positifs ou nuls, vérifiant les propriétés suivantes :

- ▶ (P_1) : $\forall (a, b) \in E^2$, d(a, b) = d(b, a) (symétrie)
- $ightharpoonup (P_2): \forall (a,b) \in E^2, \ d(a,b) = 0 \Leftrightarrow a = b \ (séparation)$
- ▶ (P_2) : $\forall (a, b, c) \in E^3$, $d(a, c) \ge d(a, b) + d(b, c)$ (inégalité triangulaire)

Un ensemble muni d'une distance s'appelle un espace métrique.

Norme

Notion de Norme

Une application $N: E \mapsto \mathbb{R}$ est appelé norme, si les trois propriétés suivantes sont vérifiées

- $|x| = 0 \Leftrightarrow x = 0$, pour tout $x \in E$
- Soit $\lambda \in \mathbb{R}, ||\lambda x|| = |\lambda|||x||$
- $\forall (x,y) \in \mathbb{E}^2, ||x+y|| \le ||x|| + ||y||$ (Inégalité triangulaire)

Distance sur des espaces vectoriels

Sur un espace vectoriel normé ($\mathbb{E},||.||$), la distance d « induite par » la norme ||.|| est définie par :

$$\forall (x,y) \in E^2, d(x,y) = ||x-y||$$

En particulier, dans \mathbb{R}^n , on peut définir de plusieurs manières la distance entre deux points, bien qu'elle soit généralement donnée par la distance euclidienne (ou 2-distance). Soit deux points de \mathbb{E} , (x_1, x_2, \ldots, x_n) et (y_1, y_2, \ldots, y_n) , on exprime les différentes distances ainsi :

Nom	Paramètre	Fonction
distance de Manhattan	1-distance	$\sum_{i=1}^n x_i-y_i $
distance euclidienne	2-distance	$\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$
distance de Minkowski	<i>p</i> -distance	$\sqrt[p]{\sum_{i=1}^n x_i-y_i ^p}$
distance de Tchebychev	∞-distance	$\lim_{p \to \infty} \sqrt[p]{\sum_{i=1}^{n} x_i - y_i ^p} = \sup_{1 \le i \le n} x_i - y_i $

Figure 1: distance dans \mathbb{R}^n

Principe

L'algorithme K-NN (K-nearest neighbors) est une méthode d'apprentissage supervisé. Il peut être utilisé aussi bien pour la régression que pour la classification.

Principe

Principe de K-NN : dis moi qui sont tes voisins, je te dirais qui tu es !

Comment K-NN effectue une prédiction ?

Pour effectuer la prédiction d'une entrée x_{test} dans le test set (\mathcal{D}_{test}) va suivre les étapes suivantes :

- 1. I'algorithme K-NN av utiliser tout le training set (\mathcal{D}_{train})
- 2. l'algorithme va chercher les K entrées du $\mathcal{D}_{\text{train}}$ les plus proches de notre entrée x_{test} qu'on veurt prédire
- 3. Ensuite pour ces K voisins dans \mathcal{D}_{train} , l'algorithme se basera sur leurs variables de sortie (output variable) y pour calculer la valeur de la variable y de l'observation qu'on souhaite prédire.

Comment K-NN effectue une prédiction ?

Que l'on se trouve dans le cas de la régression ou de la classification le traitement de la variable y est différente :

- ► Régression: c'est la moyenne (ou la médiane) des variables y des K plus proches observations qui servira pour la prédiction
- ► <u>Classification</u>: C'est le mode des variables *y* des *K* plus proches observations qui servira pour la prédiction

Pseudo code

```
Algorithm 2: Algorithme des K-plus proches voisins
Input: Données d'apprentissage ; \mathbf{X}^{\text{train}} = (\mathbf{x}_1^{\text{train}}, ..., \mathbf{x}_n^{\text{train}}); classes des données d'apprentissage \mathbf{z}^{\text{train}} = (z_1^{\text{train}}, ..., z_n^{\text{train}}); \mathbf{X}^{\text{test}} = (\mathbf{x}_1^{\text{test}}, ..., \mathbf{x}_n^{\text{test}}); nombre des
           ppv K
Algorithme Knn:
for i \leftarrow 1 to m do
     for i \leftarrow 1 to n do
         Calculer la distance euclidienne d_{ij} entre \mathbf{x}_i^{\text{test}} et \mathbf{x}_i^{\text{train}} en utilisant l'équation (1)
          d_i \leftarrow d_{ii}
     end
     Calculer la classe z_i^{\text{test}} du ième exemple qui vaut la classe de son pvv :
     /* trouver les K-ppv de \mathbf{x}_i^{\text{test}} */:
     Trier les distances d_i selon un ordre croissant pour j = 1, ..., n
     Récupérer en même temps les indices IndVoisins avant le tri des d_i
     Récupérer les classes des K premiers ppv à partir des indices IndVoisins et en
     trouver la classe majoritaire :
     C_k \leftarrow 0 \quad (k = 1, \dots, K)
     for k \leftarrow 1 to K do
          ind\_voisin_k \leftarrow IndVoisins_k
     end
     /* trouver la classe du ppv de xiest :
      (la classe majoritaire de celles de ses K-ppv) */:
     z_i^{\text{test}} = \arg \max_{k=1}^K C_k
end
```

La distance Comme mesure de similarité

Mesure de Similarité

Comme on vient de le voir dans notre écriture algorithme, K-NN a besoin d'une fonction de calcul de distance entre deux observations. Plus deux points sont proches l'un de l'autre, plus ils sont similaires et vice versa.

Choisir la bonne valeur pour k

Pour sélectionner la valeur de k qui convient à vos données, nous exécutons plusieurs fois l'algorithme KNN avec différentes valeurs de k. Puis nous choisissons le k qui réduit le nombre d'erreurs rencontrées tout en maintenant la capacité de l'algorithme à effectuer des prédictions avec précision lorsqu'il reçoit des données nouvelles .

Lorsque nous diminuons la valeur de k = 1, nos prédictions deviennent moins stables.

Avantages

- ► Facile à comprendre
- ► Apprentissage rapide

Inconvénients

- ▶ Pas efficace pour des jeux de données larges.
- L'estimation de ce modèle devient de mauvaise qualité quand le nombre de variables explicatives est grand.

References I

- ▶ Hugo Larochelle, Professeur associé, Université de Montréal, Google
- Pierre-Marc Jodoin, Professeur titulaire Université Sherbrooke
- Bayesian Reasoning and Machine Learning de David Barber
- The Elements of Statistical Learning de Trevor Hastie,
- Robert Tibshirani et Jerome Friedman
- Information Theory, Inference, and Learning Algorithms de David J.C. MacKay
- Convex Optimization de Stephen Boyd et Lieven Vandenberghe
- Natural Image Statistics de Aapo Hyvärinen, Jarmo Hurri et Patrik O. Hoyer
- The Quest for Artificial Intelligence A History of Ideas and Achievements de Nils J. Nilsson
- ▶ Gaussian Processes for Machine Learning de Carl Edward Rasmussen et Christopher K. I. Williams
- Introduction to Information Retrieval de Christopher D. Manning, Prabhakar Raghavan et Hinrich Schütze