prior_montecarlo

May 11, 2019

1 Run and process the prior monte carlo and pick a "truth" realization

A great advantage of exploring a synthetic model is that we can enforce a "truth" and then evaluate how our various attempts to estimate it perform. One way to do this is to run a monte carlo ensemble of multiple parameter realizations and then choose one of them to represent the "truth". That will be accomplished in this notebook.

```
In [1]: import os
    import shutil
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    plt.rcParams['font.size']=12
    import flopy
    import pyemu
```

flopy is installed in /Users/jeremyw/Dev/gw1876/activities_2day_mfm/notebooks/flopy

1.0.1 set the t_d or "template directory" variable to point at the template folder and read in the PEST control file

1.0.2 Decide what pars are uncertain in the truth

We need to decide what our truth looks like - should the pilot points or the grid-scale pars be the source of spatial variability? or both?

```
In [3]: par = pst.parameter_data
    # grid pars
    #should_fix = par.loc[par.pargp.apply(lambda x: "gr" in x), "parnme"]
    # pp pars
    #should_fix = par.loc[par.pargp.apply(lambda x: "pp" in x), "parnme"]
    #pst.npar - should_fix.shape[0]
```

1.0.3 run the prior ensemble in parallel locally

This takes advantage of the program pestpp-swp which runs a parameter sweep through a set of parameters. By default, pestpp-swp reads in the ensemble from a file called sweep_in.csv which in this case we made just above.

print('number of realization in the ensemble before dropping: ' + str(obs_df.shape[0])

number of realization in the ensemble before dropping: 200

drop any failed runs

1.0.5 confirm which quantities were identified as forecasts

1.0.6 now we can plot the distributions of each forecast

We see that under scenario conditions, many more realizations for the flow to the aquifer in the headwaters are postive (as expected). Lets difference these two:

```
In [10]: sfnames = [f for f in fnames if "1980" in f or "_001" in f]
    hfnames = [f for f in fnames if "1979" in f or "_000" in f]
    diff = obs_df.loc[:,hfnames].values - obs_df.loc[:,sfnames].values
    diff = pd.DataFrame(diff,columns=sfnames)
    diff.hist(figsize=(10,10))
    plt.show()
```


We now see that the most extreme scenario yields a large decrease in flow from the aquifer to the headwaters (the most negative value)

1.0.7 setting the "truth"

We just need to replace the observed values (obsval) in the control file with the outputs for one of the realizations on obs_df. In this way, we now have the nonzero values for history matching, but also the truth values for comparing how we are doing with other unobserved quantities. I'm going to pick a realization that yields an "average" variability of the observed gw levels:

idx hist_swgw

Out[11]:	run_id	
	76	243.0713
	165	245.4841
	149	253.9859
	186	302.7784
	161	316.2889
	51	334.9378
	187	339.2126
	40	352.3095
	39	353.5649
	191	375.6852
	78	388.5967
	97	396.5381
	132	398.9588
	30	402.3243
	9	413.6731
	37	415.8716
	77	436.9160
	120	442.8409
	180	452.2230
	196 100	461.4423 484.2079
	3	487.8409
	56	492.3636
	57	495.2174
	46	500.2236
	43	505.0375
	75	510.1112
	138	510.2362
	61	511.1681
	130	512.5389
	42	2794.8200
	29	3083.3470
	179	3299.9120
	47	3306.0520
	27	4015.0000
	71	4015.0000
	36	4015.0000
	16	4015.0000
	194	4015.0000
	12	4015.0000
	6	4015.0000
	185	4015.0000
	19	4015.0000

```
159
                4015.0000
         82
                4015.0000
         160
                4015.0000
         107
                4015.0000
         108
                4015.0000
         117
                4015.0000
         173
                4015.0000
         118
                4015.0000
         125
                4015.0000
         131
                4015.0000
         169
                4015.0000
         153
                4015.0000
         154
                4015.0000
         166
                4015.0000
         157
                4015.0000
         73
                4015.0000
                4015.0000
         Name: part_time, Length: 200, dtype: float64
In [12]: obs_df.loc[idx,pst.nnz_obs_names]
Out[12]: fo_39_19791230
                                11693.000000
         hds_00_002_009_000
                                   41.737926
         hds_00_002_015_000
                                   34.961693
         hds_00_003_008_000
                                   42.291515
         hds_00_009_001_000
                                   43.447071
         hds_00_013_010_000
                                   37.594856
         hds_00_015_016_000
                                   34.993023
         hds_00_021_010_000
                                   37.685677
         hds_00_022_015_000
                                   34.358593
         hds_00_024_004_000
                                   41.239319
         hds_00_026_006_000
                                    39.924770
         hds_00_029_015_000
                                    34.695927
         hds_00_033_007_000
                                    36.626369
         hds_00_034_010_000
                                    34.268597
         Name: 100, dtype: float64
   Lets see how our selected truth does with the sw/gw forecasts:
```

```
In [13]: obs_df.loc[idx,fnames]
```

```
Out[13]: fa_hw_19791230
                               -872.033000
         fa_hw_19801229
                               -275.564050
         fa_tw_19791230
                               -801.765690
         fa_tw_19801229
                               -293.516600
         hds_00_013_002_000
                                 43.294212
         hds_00_013_002_001
                                 40.301617
         part_time
                                484.207900
                                  2.000000
         part_status
```

Name: 100, dtype: float64

Assign some initial weights. Now, it is custom to add noise to the observed values...we will use the classic Gaussian noise...zero mean and standard deviation of 1 over the weight

```
In [14]: pst = pyemu.Pst(os.path.join(t_d,"freyberg.pst"))
        obs = pst.observation_data
        obs.loc[:,"obsval"] = obs_df.loc[idx,pst.obs_names]
        obs.loc[obs.obgnme=="calhead","weight"] = 10.0
        obs.loc[obs.obgnme=="calflux","weight"] = 1.0
```

here we just get a sample from a random normal distribution with mean=0 and std=1. The argument indicates how many samples we want - and we choose pst.nnz_obs which is the the number of nonzero-weighted observations in the PST file

```
In [15]: np.random.seed(seed=0)
         snd = np.random.randn(pst.nnz_obs)
         noise = snd * 1./obs.loc[pst.nnz_obs_names,"weight"]
         pst.observation_data.loc[noise.index,"obsval"] += noise
         noise
Out[15]: obsnme
         fo_39_19791230
                               1.764052
         hds_00_002_009_000
                               0.040016
         hds_00_002_015_000
                               0.097874
         hds_00_003_008_000
                               0.224089
         hds_00_009_001_000
                               0.186756
         hds_00_013_010_000
                              -0.097728
         hds_00_015_016_000
                               0.095009
         hds_00_021_010_000
                              -0.015136
         hds_00_022_015_000
                              -0.010322
         hds_00_024_004_000
                               0.041060
         hds 00 026 006 000
                               0.014404
         hds_00_029_015_000
                               0.145427
         hds 00 033 007 000
                               0.076104
         hds_00_034_010_000
                               0.012168
         Name: weight, dtype: float64
```

Then we write this out to a new file and run pestpp-ies to see how the objective function looks

Now we can read in the results and make some figures showing residuals and the balance of the objective function

<Figure size 432x288 with 0 Axes>

<Figure size 576x756 with 0 Axes>

Out[17]:			name	group	measured	modelled	\
	name						
	fo_39_19791230	fo_39_1979	1230	calflux	11694.764052	11430.000000	
	hds_00_002_009_000	hds_00_002_009	_000	calhead	41.777942	37.107498	
	hds_00_002_015_000	hds_00_002_015	_000	calhead	35.059567	35.045185	
	hds_00_003_008_000	hds_00_003_008	_000	calhead	42.515605	37.397289	
	hds_00_009_001_000	hds_00_009_001	_000	calhead	43.633827	39.546417	
	hds_00_013_010_000	hds_00_013_010	_000	calhead	37.497128	35.571774	
	hds_00_015_016_000	hds_00_015_016	_000	calhead	35.088032	34.835716	
	hds_00_021_010_000	hds_00_021_010	_000	calhead	37.670541	35.386250	
	hds_00_022_015_000	hds_00_022_015	_000	calhead	34.348271	34.577492	
	hds_00_024_004_000	hds_00_024_004	_000	calhead	41.280379	36.760464	
	hds_00_026_006_000	hds_00_026_006	_000	calhead	39.939175	35.896149	
	hds_00_029_015_000	hds_00_029_015	_000	calhead	34.841354	34.453842	
	hds_00_033_007_000	hds_00_033_007	_000	calhead	36.702473	34.678810	
	hds_00_034_010_000	hds_00_034_010	_000	calhead	34.280764	34.118073	
		residual we	ight				
	name	004 504050	4 0				
	fo_39_19791230	264.764052	1.0				
	hds_00_002_009_000		10.0				
	hds_00_002_015_000		10.0				
	hds_00_003_008_000		10.0				
	hds_00_009_001_000		10.0				
	hds_00_013_010_000		10.0				
	hds_00_015_016_000		10.0				
	hds_00_021_010_000		10.0				
	hds_00_022_015_000		10.0				
	hds_00_024_004_000		10.0				
	hds_00_026_006_000		10.0				
	hds_00_029_015_000		10.0				
	hds_00_033_007_000		10.0				
	hds_00_034_010_000	0.162692	10.0				

Publication ready figs - oh snap!

Depending on the truth you chose, we may have a problem - we set the weights for both the heads and the flux to reasonable values based on what we expect for measurement noise. But the contributions to total phi might be out of balance - if contribution of the flux measurement to total phi is too low, the history matching excersizes (coming soon!) will focus almost entirely on minimizing head residuals. So we need to balance the objective function. This is a subtle but very important step, especially since some of our forecasts deal with sw-gw exchange

```
In [18]: pc = pst.phi_components
    #target = {"calflux":0.3 * pc["calhead"]}
    target = {"calhead":500,"calflux":500}
```

```
pst.adjust_weights(obsgrp_dict=target)
pst.plot(kind='phi_pie')
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x18194315c0>

Lets see what the new flux observation weight is:

```
In [19]: pst.observation_data.loc[pst.nnz_obs_names,"weight"]
```

```
hds_00_009_001_000
                      2.086905
hds_00_013_010_000
                      2.086905
hds_00_015_016_000
                      2.086905
hds_00_021_010_000
                      2.086905
hds 00 022 015 000
                      2.086905
hds 00 024 004 000
                      2.086905
hds 00 026 006 000
                      2.086905
hds_00_029_015_000
                      2.086905
hds_00_033_007_000
                      2.086905
hds_00_034_010_000
                      2.086905
Name: weight, dtype: float64
```

Now, for some super trickery: since we changed the weight, we need to generate the observation noise using these new weights for the error model (so meta!)

```
In [20]: obs = pst.observation_data
         np.random.seed(seed=0)
         snd = np.random.randn(pst.nnz_obs)
         noise = snd * 1./obs.loc[pst.nnz_obs_names,"weight"]
         obs.loc[:,"obsval"] = obs_df.loc[idx,pst.obs_names]
         pst.observation_data.loc[noise.index,"obsval"] += noise
         noise
Out[20]: obsnme
         fo_39_19791230
                               20.887453
         hds 00 002 009 000
                                0.191747
         hds_00_002_015_000
                                0.468990
         hds_00_003_008_000
                                1.073788
         hds 00 009 001 000
                                0.894894
         hds_00_013_010_000
                               -0.468291
         hds_00_015_016_000
                                0.455262
         hds_00_021_010_000
                               -0.072527
         hds_00_022_015_000
                               -0.049460
         hds_00_024_004_000
                                0.196750
         hds_00_026_006_000
                                0.069023
         hds_00_029_015_000
                                0.696857
         hds 00 033 007 000
                                0.364673
         hds_00_034_010_000
                                0.058304
         Name: weight, dtype: float64
In [21]: pst.write(os.path.join(t_d, "freyberg.pst"))
         pyemu.os_utils.run("pestpp-ies freyberg.pst",cwd=t_d)
         pst = pyemu.Pst(os.path.join(t_d, "freyberg.pst"))
         print(pst.phi)
         pst.plot(kind='phi_pie')
         plt.show()
noptmax:0, npar_adj:14819, nnz_obs:14
1161.7558803877937
```


Whew! confused yet? Ok, let's leave all this confusion behind...its mostly academic, just to make sure we are using weights that are in harmony with the noise we added to the truth...Just to make sure we have everything working right, we should be able to load the truth parameters, run the model once and have a phi equivalent to the noise vector:

we will run this with noptmax=0 to preform a single run. Pro-tip: you can use any of the pestpp-### binaries/executables to run noptmax=0

17.528847228089642

Out[23]:			name	group	measured	modelled	\
	name						
	fo_39_19791230	fo_39_	19791230	calflux	11713.887453	11693.000000	
	hds_00_002_009_000	hds_00_002	_009_000	calhead	41.929673	41.737926	
	hds_00_002_015_000	hds_00_002	_015_000	calhead	35.430683	34.961693	
	hds_00_003_008_000	hds_00_003	_008_000	calhead	43.365303	42.291515	
	hds_00_009_001_000	hds_00_009	_001_000	calhead	44.341965	43.447071	
	hds_00_013_010_000	hds_00_013	_010_000	calhead	37.126566	37.594856	
	hds_00_015_016_000	hds_00_015	_016_000	calhead	35.448285	34.993023	
	hds_00_021_010_000	hds_00_021	_010_000	calhead	37.613149	37.685677	
	hds_00_022_015_000	hds_00_022	_015_000	calhead	34.309133	34.358593	
	hds_00_024_004_000	hds_00_024	_004_000	calhead	41.436069	41.239319	
	hds_00_026_006_000	hds_00_026	_006_000	calhead	39.993793	39.924770	
	hds_00_029_015_000	hds_00_029	_015_000	calhead	35.392783	34.695927	
	hds_00_033_007_000	hds_00_033	_007_000	calhead	36.991042	36.626369	
	hds_00_034_010_000	hds_00_034	_010_000	calhead	34.326901	34.268597	
		residual	weight				
	name						
	fo_39_19791230	20.887453	0.084455				
	hds_00_002_009_000	0.191747	2.086905				
	hds_00_002_015_000	0.468990	2.086905				
	hds_00_003_008_000	1.073788	2.086905				
	hds_00_009_001_000	0.894894	2.086905				
	hds_00_013_010_000	-0.468291	2.086905				
	hds_00_015_016_000	0.455262	2.086905				
	hds_00_021_010_000	-0.072527	2.086905				
	hds_00_022_015_000	-0.049460	2.086905				
	hds_00_024_004_000	0.196750	2.086905				
	hds_00_026_006_000	0.069023	2.086905				
	hds_00_029_015_000	0.696857	2.086905				
	hds_00_033_007_000	0.364673	2.086905				
	hds_00_034_010_000	0.058304	2.086905				

The residual should be exactly the noise values from above. Lets load the model (that was just run using the true pars) and check some things

```
In [24]: m = flopy.modflow.Modflow.load("freyberg.nam",model_ws=m_d)
In [25]: a = m.upw.hk[0].array
    #a = m.rch.rech[0].array
```

```
a = np.ma.masked_where(m.bas6.ibound[0].array==0,a)
print(a.min(),a.max())
c = plt.imshow(a)
plt.colorbar()
plt.show()
```

0.6918969 100.5342

1.0.8 see how our existing observation ensemble compares to the truth

forecasts:

observations:

