Credit Markets

Holger Kraft

UCLA Anderson

Fall 2019

Agenda: Multi-Name Credit

- Orrelated Defaults
- 10 Copulas and Homogenous Portfolios
- Multi-Name Credit Derivatives
- 12 CDOs and Copulas
- 13 Joint Defaults: Longstaff-Rajan Model
- Self-Exciting Framework

Longstaff-Rajan Model

- The model of Longstaff and Rajan is a top-down model.
- This means that the loss process itself is modeled.
- Losses are not directly attributed to particular firms.
- Contagion effects are modeled via joint defaults.
- More precisely, the model allows for
 - small losses (single firms)
 - medium losses (sector)
 - large losses (economy)

Longstaff-Rajan Model

- Let L_t denote the **total portfolio loss**. By definition, $L_0 = 0$.
- To model the dynamic evolution of L_t in a top down framework, we assume

$$dL_t = (1 - L_{t-}) \{ \bar{\gamma}_1 dN_{1t} + \bar{\gamma}_2 dN_{2t} + \bar{\gamma}_3 dN_{3t} \} ,$$
 with $\bar{\gamma}_i = 1 - e^{-\gamma_i}$, $i = 1, 2, 3$.

- The parameters γ_i are nonnegative constants that define the jump sizes and N_{it} are independent Cox processes.
- Note that for small values of γ_i , the jump size $\bar{\gamma}_i$ is essentially just γ_i .

Explicit Solution

Applying Ito's lemma to $H(L_t) = \ln(1 - L_t)$ yields

Loss Process

$$L_t = 1 - e^{-\gamma_1 N_{1t}} e^{-\gamma_2 N_{2t}} e^{-\gamma_3 N_{3t}}.$$

- The dynamics show that three factors generate portfolio losses.
- ullet Obviously, the consistency requirement $0 \leq L_t \leq 1$ is satisfied.
- Furthermore, we see that the total loss process is increasing in time which is also reasonable.

Example: Three Factors

- To illustrate the model, consider an example with three jump sizes 0.01, 0.1, and 0.5.
- For simplicity, recovery is zero.
- A realization of the first Cox process will result in a 1% portfolio loss → isolated default that affects only one firm.
- A realization of the second Cox process will result in a 10% portfolio loss → impact of a major event that decimates the ranks of firms in a specific sector or industry.
- After a jump in the third Cox process 50% of the remaining firms default → catastrophic event affecting the entire economy.
- Thus, the model captures both idiosyncratic and systematic risk.

Calculating Default Probabilities

 To specify the model, we choose a CIR process to model the intensities of the three Cox processes

$$d\lambda_{1t} = \kappa_1(\theta_1 - \lambda_{1t})dt + \sigma_1\sqrt{\lambda_{1t}}dW_{1t},$$

$$d\lambda_{2t} = \kappa_2(\theta_2 - \lambda_{2t})dt + \sigma_2\sqrt{\lambda_{2t}}dW_{2t},$$

$$d\lambda_{3t} = \kappa_3(\theta_3 - \lambda_{3t})dt + \sigma_3\sqrt{\lambda_{3t}}dW_{3t},$$

where W_{it} are independent Brownian motions.

- As seen before, L_t is a simple function of the values of the three Cox processes. Therefore, it is sufficient to compute the probability distribution for the single Cox processes.
- From previous results, we know that for i = 1, 2, 3

$$P(N_{iT} = k | \mathcal{G}_T) = \frac{1}{k!} e^{-\int_0^T \lambda_{is} ds} \left(\int_0^T \lambda_{is} ds \right)^k,$$

where \mathcal{G}_T is generated by λ_i .

Calculating Default Probabilities

• Let $P_k^i(\lambda_i, T)$ denote k! times the probability that $N_{iT} = k$ conditioned on $\lambda_{i0} = \lambda_i$. Then

$$P_k^i(\lambda_i, T) = \mathsf{E}\left[e^{-\int_0^T \lambda_{is} ds} \left(\int_0^T \lambda_{is} ds\right)^k\right].$$

 For k = 0 we know the explicit solution since the model is affine:

$$\begin{split} P_0^i(\lambda_i,T) &= e^{A^i(T) - B^i(T)\lambda_i}, \\ e^{A^i(T)} &= \left(\frac{2\gamma_i e^{(\kappa_i + \gamma_i)\frac{T}{2}}}{2\gamma_i + (\kappa_i + \gamma_i)(e^{\gamma_i T} - 1)}\right)^{\frac{2\kappa_i \theta_i}{\sigma_i^2}}, \, B^i(T) &= \frac{2(e^{\gamma_i T} - 1)}{2\gamma_i + (\kappa_i + \gamma_i)(e^{\gamma_i T} - T)}, \end{split}$$
 with $\gamma_i = \sqrt{\kappa_i^2 + 2\sigma_i^2}.$

Calculating Default Probabilities

Since $P_0^i(\lambda_i, T) = e^{A^i(T) - B^i(T)\lambda_i}$, we conjecture

Closed-form Solution

$$P_k^i(\lambda_i, T) = e^{A^i(T) - B^i(T)} \sum_{j=1}^k C_{k,j}^i(T) \lambda_i^k.$$

Francis shows that A^i , B^i , and $C_{k,j}$ satisfy a system of **first-order ODE's**

$$\begin{split} &\partial_{t}C_{k,k}^{i} = kC_{k-1,k-1}^{i} - (\sigma_{i}^{2}B^{i}(t) + \kappa_{i})kC_{k,k}^{i} \\ &\partial_{t}C_{k,j}^{i} = kC_{k-1,j-1}^{i} - (\sigma_{i}^{2}B^{i}(t) + \kappa_{i})jC_{k,j}^{i} + (j+1)(\kappa_{i}\theta_{i} + 0.5j\sigma_{i}^{2})C_{k,j+1}^{i} \\ &\partial_{t}C_{k,0}^{i} = \kappa_{i}\theta_{i}C_{k,1}^{i} \end{split}$$

where $1 \le j \le k-1$ and $C_{k,j}^i(0) = 0$ for all k > 0.

Expected Portfolio Loss

- Following a **recursive** algorithm, this system of ODEs can be solved **numerically**: For each k, one has to solve for $C_{k,j}^i$ where j runs backwards from k to 0.
- After computing the solutions, the expectation of every function $G(L_t)$ of the **portfolio loss** at time t can be calculated.

Expected portfolio loss

$$E[G(L_t)] = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{P_j^1(\lambda_{10}, t)}{j!} \frac{P_k^2(\lambda_{20}, t)}{k!} \frac{P_l^3(\lambda_{30}, t)}{l!} G(j, k, l),$$

with
$$G(j, k, l) \equiv G\left(1 - e^{-\gamma_1 j} e^{-\gamma_2 k} e^{-\gamma_3 l}\right)$$
.

• One only has to **compute** the **first few arguments** of the sum since higher-order terms are negligible.

Example: Pricing CDO Tranches

- As a numerical illustration, let r = 0.05, $\delta = 0.25$, T = 5.
- Furthermore, the tranches are characterized by the following attachment and detachment points $K_0 = 0$, $K_1 = 0.03$, $K_2 = 0.07$, $K_3 = 0.1$, $K_4 = 0.15$, $K_5 = 0.3$, and $K_6 = 1$.
- The jump sizes and volatilities of the three intensities read

$$\gamma_1 = 0.004, \ \gamma_2 = 0.06, \ \gamma_3 = 0.3, \ \sigma_1 = 0.17, \ \sigma_2 = 0.25, \ \sigma_3 = 0.3.$$

- The mean reversion speed is $\kappa_i = 0.5$ for all processes.
- We set the start intensities as $\lambda_1=0.8$, $\lambda_2=0.03$, $\lambda_3=0.001$, which are assumed to be equal to the mean reversion levels.
- Since each firm has a weight of 1/125 = 0.008 in the portfolio, a jump size in the first Poisson process of 0.004 represents the idiosyncratic default of an individual firm, where the implicit recovery rate for the firm's debt is 50 percent.

0-3-Tranche Spread: Jump Size of First Poisson Proc.

0-3-Tranche Spread: Jump Size of Second Poisson Proc.

0-3-Tranche Spread: Jump Size of Third Poisson Proc.

6-9-Tranche Spread: Jump Size of First Poisson Proc.

6-9-Tranche Spread: Jump Size of Second Poisson Proc.

6-9-Tranche Spread: Jump Size of Third Poisson Proc.

22-100-Tranche Spread: Jump Size of First Poisson Proc.

22-100-Tranche Spread: Jump Size of Second Poisson Proc.

22-100-Tranche Spread: Jump Size of Third Poisson Proc.

0-3-Tranche Spread: Intensity of First Poisson Proc.

0-3-Tranche Spread: Intensity of Second Poisson Proc.

0-3-Tranche Spread: Intensity of Third Poisson Proc.

6-9-Tranche Spread: Intensity of First Poisson Proc.

6-9-Tranche Spread: Intensity of Second Poisson Proc.

6-9-Tranche Spread: Intensity of Third Poisson Proc.

22-100-Tranche Spread: Intensity of First Poisson Proc.

22-100-Tranche Spread: Intensity of Second Poisson Proc.

22-100-Tranche Spread: Intensity of Third Poisson Proc.

Agenda: Multi-Name Credit

- Orrelated Defaults
- 10 Copulas and Homogenous Portfolios
- Multi-Name Credit Derivatives
- CDOs and Copulas
- Joint Defaults: Longstaff-Rajan Model
- Self-Exciting Framework

Self-Exciting Framework

- Empirical evidence suggests that defaults cluster.
- A single default sometimes triggers a widening of credit spreads across the board.
- In this section, we use a top down approach where credit derivatives are path-dependent claims on the total portfolio loss L.
- In order to evaluate these derivatives, we need a model for N
 and L.
- We specify these processes in terms of a risk-neutral **intensity** process λ and a distribution ν for the random loss at default.
- The intensity process is modeled as an affine jump diffusion model where the loss process itself is a risk factor.
- This so-called self-exciting property captures default clustering.

Specification of Intensity Process

Self-Exciting Intensity Model

The intensity process has the dynamics

$$d\lambda_t = \kappa(\theta - \lambda_t) dt + \delta dL_t.$$

Applying Ito's lemma yields

$$\lambda_t = \theta + (\lambda_0 - \theta)e^{-\kappa t} + \delta \int_0^t e^{-\kappa(t-s)} dL_s.$$

- Upon default the intensity increases by the realized loss scaled by the sensitivity parameter δ .
- The impact of an default event **exponentially decays** over time with rate κ .
- The processes are said to be self-exciting since defaults trigger jumps of the default intensity.
- This makes future defaults more likely, i.e. defaults are positively correlated.

Loss Process: Poisson

Loss Process: Inhomogeneous Poisson

Loss Process: CIR

Loss Process: Self-Exciting without Diffusion

Loss Process: Self-Exciting with Diffusion

Some Properties

- The process λ_t is the **intensity** of N_t and L_t .
- N_t and L_t have common event times.
- Whereas the jumps of the default process are unit-sized, the jump sizes of the loss process are drawn from the independent jump size process ν .
- The two dimensional process $J_t \equiv (L_t, N_t)^{\top}$ is called a Hawkes Process.
- There are two special cases:
 - **1** $\kappa = 0$: Birth process

Expected Portfolio Losses and Defaults

Since we are an an **affine** framework, we can compute the expected losses explicitly:

Expected Loss

With ℓ being loss given default we get that

$$\mathsf{E}_t[L_T] = \mathcal{A}(t,T) + \mathcal{B}(t,T)\lambda_t + L_t,$$

where

$$egin{aligned} \mathcal{B}(t,T) &= rac{\ell}{\kappa - \delta \ell} \left(1 - e^{-(\kappa - \delta \ell)(T - t)}
ight), \ \mathcal{A}(t,T) &= rac{\ell \kappa heta}{\kappa - \delta \ell} \left(rac{e^{-(\kappa - \delta \ell)(T - t)} - 1}{\kappa - \delta \ell} + T - t
ight). \end{aligned}$$

The expected number of jumps $E_t[N_T]$ can be computed in the same way by setting $\ell = 1$ and replacing L_t by N_t .

Pricing Multi-name Products

Recall that the fair spread of an index CDS reads

$$S_t = \frac{p(t,T)\mathsf{E}_t[L_T] - L_t - \int_t^T \mathsf{E}_t[L_s]\partial_s p(t,s)\,ds}{\int_t^T p(t,s)\left(1 - \mathsf{E}_t[N_s]/I\right)\,ds}.$$

- With the previous results, we are able to price this contract.
- We have already seen that CDO tranches consist of options on the loss process

$$\mathsf{E}[(L_T - K)^+] = \int_K^\infty (x - K) f(x) \, dx.$$

The density f can be obtained by **inverting the conditional transform** of the loss process.

• Hence, we can compute both index spreads and CDO spreads in this model.

Index Spread and Mean Reversion Speed

125 Firms, r = 0.05, $\theta = 1$, $\lambda_0 = 0.5$, $\delta = 1$, $\ell \in \{0.4, 0.6, 0.8, 1\}$ uniform, quarterly payments

Index Spread and Jump Size

125 Firms, r=0.05, $\kappa=1$ $\theta=1$, $\lambda_0=0.5$, $\ell\in\{0.4,0.6,0.8,1\}$ uniform, quarterly payments

0-3-Tranche Spread and Jump Size

125 Firms, r=0.05, $\kappa=1$ $\theta=1$, $\lambda_0=0.5$, $\ell\in\{0.4,0.6,0.8,1\}$ uniform, quarterly payments

3-6-Tranche Spread and Jump Size

125 Firms, r=0.05, $\kappa=1$ $\theta=1$, $\lambda_0=0.5$, $\ell\in\{0.4,0.6,0.8,1\}$ uniform, quarterly payments

6-9-Tranche Spread and Jump Size

125 Firms, r = 0.05, $\kappa = 1$ $\theta = 1$, $\lambda_0 = 0.5$, $\ell \in \{0.4, 0.6, 0.8, 1\}$ uniform, quarterly payments

9-12-Tranche Spread and Jump Size

125 Firms, r=0.05, $\kappa=1$ $\theta=1$, $\lambda_0=0.5$, $\ell\in\{0.4,0.6,0.8,1\}$ uniform, quarterly payments

12-22-Tranche Spread and Jump Size

125 Firms, r = 0.05, $\kappa = 1$ $\theta = 1$, $\lambda_0 = 0.5$, $\ell \in \{0.4, 0.6, 0.8, 1\}$ uniform, quarterly payments

12-22-Tranche Spread and Mean Reversion Speed

125 Firms, r=0.05, $\theta=1$, $\lambda_0=0.5$, $\delta=1$, $\ell\in\{0.4,0.6,0.8,1\}$ uniform, quarterly payments