

Partial Orderings

Section 9.6

Section Summary

- Partial Orderings
- Hasse Diagrams
- Special elements

Partial Orderings

Definition 1: A relation R on a set S is called a partial ordering (偏序), or partial order, if it is reflexive, antisymmetric, and transitive. A set together with a partial ordering R is called a partially ordered set, or poset(偏序集), and is denoted by (S, R). Members of S are called elements of the poset.

- $\langle x,y \rangle \in \mathbb{R} \iff x \in \mathbb{R} y \iff x \leq y$

Partial Orderings (continued)

Example 1: Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

- Reflexivity: $a \ge a$ for every integer a.
- Antisymmetry: If $a \ge b$ and $b \ge a$, then a = b.
- Transitivity: If $a \ge b$ and $b \ge c$, then $a \ge c$.

Partial Orderings (continued)

Example 2: Show that the divisibility relation (|) is a partial ordering on the set of integers.

- Reflexivity: a | a for all integers a.
- Antisymmetry: If a and b are positive integers with $a \mid b$ and $b \mid a$, then a = b.
- Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is transitive.
- (**Z**⁺, |) is a poset.

Partial Orderings (continued)

Example 3: Show that the inclusion relation (\subseteq) is a partial ordering on the power set of a set S.

- Reflexivity: $A \subseteq A$ whenever A is a subset of S.
- Antisymmetry: If A and B are positive integers with $A \subseteq B$ and $B \subseteq A$, then A = B.
- Transitivity: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

$$\{1\} \leq \{1,2\}$$

The properties all follow from the definition of set inclusion.

Comparability

Definition 2: The elements a and b of a poset (S, \leq) are *comparable* if either $a \leq b$ or $b \leq a$. When a and b are elements of S so that neither $a \leq b$ nor $b \leq a$, then a and b are called incomparable.

The symbol ≤ is used to denote the relation in any poset.

Definition 3: If (S, \leq) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \leq is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Hasse Diagrams

A *Hasse diagram*(哈斯图) is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.

It is simpler that digraph. (simplified version)

Procedure for Constructing a Hasse Diagram

- To represent a finite poset (S,≤) using a Hasse diagram, start with the directed graph of the relation:
 - Remove the loops (a, a) present at every vertex due to the reflexive property.
 - Remove all edges (x, y) for which there is an element $z \in S$ such that $x \prec z$ and $z \prec y$. These are the edges that must be present due to the transitive property.
 - Arrange each edge so that its initial vertex is below the terminal vertex. Remove all the arrows, because all edges point upwards toward their terminal vertex.

• $A=\{2, 4, 6, 8\}, D=\{\langle 2,2 \rangle, \langle 4,4 \rangle, \langle 6,6 \rangle, \langle 8,8 \rangle, \langle 2,4 \rangle, \langle 2,6 \rangle, \langle 2,8 \rangle, \langle 4,8 \rangle\}$

• ({1,2,3,4,5,6}, |)

- (a) $P = \{1,2,3,4\}, \langle P, \leq \rangle$
- (b) $A=\{2,3,6,12,24,36\}, \langle A, | \rangle$

Try to get the original set and partial ordering by means of the following graph.

Solution: $A = \{ a, b, c, d, e, f, g, h \}$ $R = \{ \langle b, d \rangle, \langle b, e \rangle, \langle c, d \rangle, \langle c, e \rangle, \langle c, f \rangle, \langle d, f \rangle, \langle e, f \rangle, \langle g, h \rangle \}$ $\bigcup I_A$

Maximal and Minimal Elements

- Let <B, ≤> be a poset,
- y is maximal element in B

$$\Leftrightarrow \forall x (x \in B \land y \leq x \rightarrow x = y)$$

There is no x such that y < x

y is minimal element in B

$$\Leftrightarrow \forall x (x \in B \land x \leq y \rightarrow x = y)$$

There is no x such that x < y

Greatest and least Elements

- Let <B, ≤> be a poset,
- y is the greatest element in B $\Leftrightarrow \forall x (x \in B \rightarrow x \leqslant y)$
- y is the least element in B

$$\Leftrightarrow \forall x (x \in B \rightarrow y \leqslant x)$$

 The greatest and least elements are unique if they exist.

Try to spot some unusual elements, such as maximal element, minimal element, the greatest and least elements.

maximal element : a, f, h

minimal element: a, b, c, g

The greatest and least elements: none

maximal element : b, c, d

minimal element: a

The greatest element: no

The least element: no

maximal element : d

minimal element: a

The greatest element: d

The least element: a

Upper and lower bounds

Let $\langle A, \leq \rangle$ be a poset, $B \subseteq A$, $y \in A$ y is upper bound in B

$$\Leftrightarrow \forall x (x \in B \rightarrow x \leq y)$$

y is lower bound in B

$$\Leftrightarrow \forall x (x \in B \rightarrow y \leq x)$$

Find the lower and upper bounds of the subset B={b,c,d} in the poset with the Hasse diagram as follows

the lower bounds: no

the upper bounds: d, f

Glb and lub

- The element x is called the least upper bound of the subset B if x is an upper bound that is less than every other upper bound of A.
- The element x is called the greatest lower bound of the subset B if x is a lower bound that is greater than every other upper bound of A.

Homework

Discrete Mathematics

• 9.6 P662

1(a)(c)(e) 9 10 15 22 25 32 33