### Yesterday...

Understand discrete and continuous r.v.

Plot pmf/pdf in R

 Calculate mean and variance of some r.v. by hand (then verify in R)

Generate some common r.v. in R

BTW readings on blackboard

Charlesworth & Charlesworth (2010)

## Today

Multivariate random variable

Independence

Likelihood function (finally!)

#### Multivariate r.v.

- Sometimes events happen at the same time, or interact with each other
- e.g. Rolling two dice, flipping two coins, the temperature in London and Oxford
- The pmf/pdf isn't univariate anymore
- For two r.v., X and Y, the joint distribution is  $f_{XY}(x,y)$
- $f_{XY}(x,y)$  looks like a landscape.

#### Bivariate normal distribution

• 
$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right)$$

• 
$$\binom{X}{Y} \sim MVN \left( \binom{\mu_1}{\mu_2}, \Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \right)$$

http://socr.ucla.edu/htmls/HTML5/BivariateNormal/

### Independence

- Two events are independent if the occurrence of one does not affect the probability of the other.
- i.e. Event A gives no extra information about the occurrence of Event B
- Perhaps the strongest assumption in statistics (we cannot actually test for independence).
- If X and Y are independent then cor(X,Y) = 0
- But cor(X,Y) = 0 does **NOT** imply independence!

• If *X* and *Y* are independent, then the joint probability density function of *X* and *Y* is just the product of their own:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

 Remember our definition to independence: "The outcome of X provides no extra information about Y"

• 
$$var(X + Y) = var(X) + var(Y)$$

 This is very important when we construct our likelihood function later on.

#### Maximum Likelihood Estimation

- Likelihood is the central idea of statistics
- Invented (?) by Sir Ronald Fisher in this country
- "One of the greatest ideas of the 20<sup>th</sup> century and probably one of the greatest of civilisation" –Dan Reuman, who taught this module last year

#### **MLE**

 Maximum Likelihood estimation (MLE) is a method to estimate parameters of a statistical model

- When the method is applied to a dataset with a statistical model, maximum likelihood estimation provides estimates for the parameters.
- "The parameter values that makes the observed dataset most probable."

• The likelihood function  $L(\underline{\theta})$  is used to quantify such "probability". The symbol  $\underline{\theta}$  is used to denote a vector of parameters.

 $x_i$  given  $\theta$ 

• If  $\underline{x}=x_1,\cdots,x_n$  are i.i.d. samples from a population with pdf (or pmf)  $f(x_i|\underline{\theta})$ , then likelihood function is defined by the **joint density** of  $\underline{x}$ 

$$L(\underline{\theta}|\underline{x}) = f(x_1, \dots, x_n|\underline{\theta}) = \prod_{i=1}^n f(x_i|\underline{\theta})$$

• Once  $\underline{x}$  is observed,  $L(\underline{\theta}|\underline{x})$  becomes a function of  $\underline{\theta}$  only (does not depend on anything else)

• For each sample  $\underline{x}$  (fixed) and given a model, let  $\hat{\theta}$  be a parameter value at which  $L(\underline{\theta}|\underline{x})$  attains its maximum.  $\hat{\theta}$  is the maximum likelihood estimate for the observed data  $\underline{x}$ .

 Maximising the log-likelihood function is equivalent to maximising the likelihood function.  Treat the parameters as unknown (a bit counter-intuitive)

#### • The triplets:

- Model
- Parameters
- Data

# Example 1: Coin tossing

- If we flip 10 coins, independently, and observe 7 heads and 3 tails
- If we define p as Prob(head), what is the MLE of p?
- Each coin toss is a Bernoulli trial, and the joint density of 10 independent coin tosses is binomial(n, p).
- Let Y be the number of heads out of 10 tosses

$$f(Y = y) = C_y^{10} p^y (1 - p)^{10 - y}$$

• Now, put y = 7 as this is what we observed  $f(V - 7) = C^{10} n^7 (1 - n)^{10}$ 

$$f(Y=7) = C_7^{10} p^7 (1-p)^{10-7}$$

And this is just our likelihood function

$$L(p) = f(Y = 7) = C_7^{10} p^7 (1 - p)^3$$

The likelihood function depends on p only after observing the data.

• For each value of p, there is a corresponding value of the likelihood function L(p)

| p   | L(p)                                   |
|-----|----------------------------------------|
| 0   | $C_7^{10}0^7(1-0)^8=0$                 |
| 0.1 | $C_7^{10}0.1^70.9^3 = 8.748 * 10^{-6}$ |
| 0.2 | $C_7^{10}0.2^70.8^3 = 0.000786$        |
| 0.3 | $C_7^{10}0.3^70.7^3 = 0.0090$          |
| 0.4 | $C_7^{10}0.4^70.6^3 = 0.0424$          |
| :   | i                                      |



#### Some R code

```
# WRITE OUR OWN LIKELIHOOD FUNCTION
binomial.likelihood<-function(p) {</pre>
choose (10,7) *p^7* (1-p)^3
# LET'S CHECK WHAT THE LIKELIHOOD VALUE IS FOR p=0.1
binomial.likelihood(p=0.1)
        # YOU GOT SOMETHING AROUND 8.748e-06, RIGHT?
# PLOT THE LIKELIHOOD FUNCTION AGAINST p
p < -seq(0,1,0.01)
likelihood.values<-binomial.likelihood(p)
plot(p, likelihood.values, type='l')
```

Always ?function\_name if you have doubts.
Say, ?choose

```
# WE CAN LOOK AT THE LOG-LIKELIHOOD AS WELL
# WE CAN REUSE THE FUNCTION WE'VE JUST WRITTEN
log.binomial.likelihood<-function(p) {
log(binomial.likelihood(p=p))
}

# PLOT THE LOG-LIKELIHOOD
p<-seq(0,1,0.01)
log.likelihood.values<-log.binomial.likelihood(p)
plot(p, log.likelihood.values, type='l')</pre>
```

We can see that both the likelihood and log-likelihood function are maximised when p is around 0.7 (our best guess)



 Remember in day 1 we made some probabilistic statements: If we toss n fair coins, independently, then the probability of getting 7 heads out of 10 tosses is

 Today we make some statistical inferences: If we observed 7 heads out of 10 tosses, what can we say about the coin?

# Maximisation: some mathematical considerations

- If we want to maximise the likelihood function, we may need to solve  $\frac{\partial l}{\partial \theta} = 0$ . We also need to check for other conditions as well.
- Some knowledge in calculus is required, and things can be very complicated if we have more than one parameter (multivariate calculus).



- However, in many real cases, because of the complexity of the model, or the high dimensionality of the parameters (or both!), MLE cannot be solved explicitly.
- The good thing is, in R, we can do it through optim() or optimize().

```
optimize(binomial.likelihood, interval=c(0,1), maximum=TRUE)
```

```
$maximum
[1] 0.6999843
$objective
[1] 0.2668279
```

## Solve MLE analytically

In general, if we obtain y heads out of n tosses, the likelihood function is

$$L(p) = f(y|p) = C_y^n p^y (1-p)^{n-y}$$

and the log-likelihood is

$$l(p) = \ln(L(p)) = \ln(C_y^n) + y \ln p + (n - y) \ln(1 - p)$$

Differentiate l(p) w.r.t. p

$$\frac{\partial}{\partial p}l(p) = 0 + y\left(\frac{1}{p}\right) + (n - y)\left(\frac{-1}{1 - p}\right)$$

Then find  $p=\hat{p}$  such that  $\frac{\partial}{\partial p}l(p)|_{p=\hat{p}}=0$ 

$$\frac{y}{\hat{p}} + (n - y) \left(\frac{-1}{1 - \hat{p}}\right) = 0$$

$$\frac{y}{\hat{p}} = \frac{n - y}{1 - \hat{p}}$$
...
$$\hat{p} = \frac{y}{n}$$

Hui 2015. CMEE MSc

 $\hat{p}$  is called the maximum likelihood estimator for the parameter p

## Example 2: i.i.d. normal samples

- $X_1, X_2, ..., X_n$  are i.i.d. random samples from  $N(\mu, 1)$ . Variance is known but we need to estimate the mean.
- Parameter of interest:  $\mu$

• 
$$L(\mu) = f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$$
  

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \exp(-\frac{(x_i - \mu)^2}{2})$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \exp(-\frac{1}{2}\sum_{i=1}^n (x_i - \mu)^2)$$

Because of independence!

 $x_i$  are the observed samples, fixed.  $\mu$  is the only quantity to be estimated.

The log-likelihood is

$$l(\mu) = constant - \frac{1}{2} (\sum_{i=1}^{n} (x_i - \mu)^2)$$

Differentiate the log-likelihood wr.t.  $\mu$ 

Does not depend on  $\mu$ 

$$\frac{\partial l}{\partial \mu} = 0 - \frac{1}{2} \left[ -2 \sum_{i=1}^{n} (x_i - \mu) \right]$$

Find  $\mu = \hat{\mu}$  such that the derivative is zero

$$\sum_{i=1}^{n} (x_i - \hat{\mu}) = 0$$

$$\sum_{i=1}^{n} x_i - n\hat{\mu} = 0$$

$$\hat{\mu} = \frac{\sum_{i=1}^{n} x_i}{n}$$

So according to MLE, the best guess for  $\mu$  is the sample average (mean) of all the samples.

# Example 3: normal samples with unknown variance

- $X_1, X_2, ..., X_n$  are i.i.d. random samples from  $N(\mu, \sigma^2)$ . Both  $\mu, \sigma^2$  are unknown.
- Parameters of interest:  $\mu$ ,  $\sigma^2$  (bivariate parameter space)
- Similar to the previous example, the likelihood function is  $L(\mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2}\sum_{i=1}^n \left(\frac{x_i-\mu}{\sigma}\right)^2\right)$

$$l(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma}\right)^2$$

We need to find  $\frac{\partial l}{\partial \mu}$  and  $\frac{\partial l}{\partial \sigma^2}$  (exercise)

The remaining question is to find  $(\hat{\mu}, \widehat{\sigma^2})$  such that  $\frac{\partial l}{\partial \mu} = 0$  and  $\frac{\partial l}{\partial \sigma^2} = 0$  simultaneously. (more exercise!)

You are getting there!

## Example 4: Linear regression

The model

$$y_i = a + bx_i + \varepsilon_i$$

with i.i.d. normally distributed error term  $\varepsilon_i \sim N(0, \sigma^2)$ , i = 1, 2, ..., n

- Data:  $\begin{cases} x_i & \text{independent variable} \\ y_i & \text{response} \end{cases}$
- Parameters:  $\underline{\theta} = \begin{cases} a & \text{intercept} \\ b & \text{slope} \\ \sigma^2 & \text{variance} \end{cases}$
- If we rearrange the terms such that  $\varepsilon_i$  is the subject, the model becomes  $\varepsilon_i = y_i a bx_i$

• 
$$L(\underline{\theta}) = f(\underline{\varepsilon}|\underline{\theta}) = f(\varepsilon_1|\underline{\theta}) f(\varepsilon_2|\underline{\theta}) \cdots f(\varepsilon_n|\underline{\theta})$$

$$= \prod_{i=1}^n f(\varepsilon_i|\underline{\theta})$$

$$= \prod_{i=1}^n f(y_i - a - bx_i|\underline{\theta})$$

Note:  $f(\varepsilon_i|\underline{\theta})$  is the pdf of normal distribution

And the log-likelihood becomes

$$l(\underline{\theta}) = \sum_{i=1}^{n} \ln(f(\varepsilon_i | \underline{\theta}))$$

Can you see why we prefer log-likelihood to the original likelihood?

- We can find a set of a, b and  $\sigma^2$  such that the likelihood function is maximised.
- Can we write down the log-likelihood function in R?
- Can we optimise the log-likelihood function?
- Now we have a dataset on a mark-recapture experiment

#### This afternoon

- A rabbit example
  - Get your hands dirty...

## Rabbit example

- A number of rabbits are marked, then some 29 rabbits are recaptured
- day measures the days between mark and recapture (Explanatory variable)
- diff\_length is the grow in body length between mark and recapture (Response)
- We want to look at the relationship between these two variables



```
# READ IN DATASET
recapture.data<-read.csv('recapture.csv', header=T)

# PLOT IT OUT
plot(recapture.data$day, recapture.data$length_diff)</pre>
```



#### R code for the log-likelihood function

```
# THE LOG-LIKELIHOOD FOR THE LINEAR REGRESSION
# PARAMETERS HAVE TO BE INPUT AS A VECTOR
regression.log.likelihood<-function(parm, dat)
 DEFINE THE PARAMETERS parm
 WE HAVE THREE PARAMETERS: a, b, sigma. BE CAREFUL OF THE ORDER
a < -parm[1]
b<-parm[2]
sigma<-parm[3]</pre>
# DEFINE THE DATA dat
# FIRST COLUMN IS x, SECOND COLUMN IS y
x < -dat[, 1]
y<-dat[,2]
# DEFINE THE ERROR TERM
error.term<-(y-a-b*x)
# REMEMBER THE NORMAL pdf?
density<-dnorm(error.term, mean=0, sd=sigma, log=T)</pre>
# THE LOG-LIKELIHOOD IS THE SUM OF INDIVIDUAL LOG-DENSITY
return(sum(density))
```

```
# JUST TO SEE WHAT THE LOG-LIKELIHOOD VALUE IS WHEN a=1, b=1, and sigma=1
# YOU MAY TRY ANY DIFFERENT VALUES
regression.log.likelihood(c(1,1,1), dat=recapture.data)
```

[1] - 452.6903

```
# TO OPIMISE THE LOG-LIKELIHOOD FUNCTION IN R
# optimize() IS ONE-DIMENSIONAL,
# optim() GENERALISES TO MULTI-DIMENSIONAL CASES
optim(par=c(1,1,1), regression.log.likelihood, method='L-BFGS-B',
        lower=c(-1000,-1000,0.0001), upper=c(1000,1000,10000),
        control=list(fnscale=-1), dat=recapture.data, hessian=T)
```

#### \$par [1] 1.527870 2.676240 2.678428

\$value [1] -69.72089

\$counts function gradient 40 40

\$convergence [1] 0

\$message

[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR\*EPSMCH"

| par=c(1,1,1)                | Initial values for the parameters     |
|-----------------------------|---------------------------------------|
| log.likelihood.regression   | The function you wish to be optimised |
| method='L-BFGS-B'           | Optimisation algorithm                |
| lower=c(-1000,-1000,0.0001) | Lower bound of your parameter space   |
| upper=c(1000,1000,10000)    | Upper bound of your parameter space   |
| control=list((fnscale=-1))  | fnscale=-1 means to maximise          |

## Notes on using optim()

- You always need to give it an initial parameter vector by par=
- Choice of method can be tricky for advanced users: See R help for details
- If you use L-BFGS-B, then you need to specify the upper and lower bound of the parameter values for searching for the maximum. No need to specify if you use Nelder-Mead
- If you wish to maximise a function, put fnscale=-1 in your control list, default is to minimise. You can put multiple control parameters in the control list.
- Precision can be adjusted by tolerance or maximum number of iterations,
   say maxit or abstol within control
- The Hessian matrix (optional) tells you about the variance-covariance structure of your parameter estimates
- Try multiple sets of initial parameters and ensure they all go 'home'

- "Stumble around" the parameter space towards the best parameters, just like a drunkard trying to stumble home (the best place).
- Not every step is in the right direction, and it takes some time to go home.
- Ideal if the drunkard find his place.
- But also he may get stuck at the local minimum (not the most comfortable place, but, still, okay, like the tube station?)





Photo credit: Dan Reuman

#### • Of course you can perform the same analysis with lm()

```
# REGRESSION WITH THE BUILT-IN lm()
m<-lm(length diff~day, data=recapture.data)</pre>
summary(m)
> summary(m)
Call:
lm(formula = length diff ~ day, data = recapture.data)
Residuals:
   Min 10 Median 30 Max
-5.2499 -1.2226 -0.1297 0.9099 7.3179
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5279 0.8833 1.730 0.0951.
dav
      2.6762 0.3464 7.725 2.62e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.776 on 27 degrees of freedom
Multiple R-squared: 0.6885, Adjusted R-squared: 0.677
F-statistic: 59.67 on 1 and 27 DF, p-value: 2.622e-08
```

```
n<-nrow(recapture.data)
sqrt(var(m$residual)*(n-1)/n)</pre>
```