Name:

$\begin{array}{c} \text{Summer 2017} - \text{Math 110} \\ \text{Final Exam} \end{array}$

Section	Max	Score
Part I — True/False	15	
Part II — Examples	10	
Part III — Calculations	20	
Part IV — Proofs	10	
Total	55	

Part I — True/False. You will get 1 point for each correct answer, 0 points for each blank answer, and -1 point for each incorrect answer. The minimum possible score for this section is 0.

(1) Let $V = \{(a, b) : a, b \in \mathbf{R}\}$. Define addition on V coordinate-wise, and define a scalar T F multiplication operation @ by the formula

$$\lambda@(a,b) = (0,\lambda b)$$

for all $(a, b) \in V$ and $\lambda \in \mathbf{R}$. Then V, equipped with these operations, is a vector space over \mathbf{R} .

- (2) The set $\{(a,b,c) \in \mathbf{R}^3 : a^3 = b^3\}$ is a subspace of \mathbf{R}^3 .
- (3) Suppose p_0, p_1, p_2 is a list of four polynomials in $\mathcal{P}_2(\mathbf{R})$ with the property that $p_i(1) = 0$ T F for each i. Then the list p_0, p_1, p_2 is linearly dependent.
- (4) Suppose U is a subspace of a vector space V and define a map $T: V \to V$ by

$$T(v) = \begin{cases} v & \text{if } v \in U \\ 0 & \text{if } v \notin U. \end{cases}$$

Then T is linear.

- (5) Every basis for $\mathcal{P}_3(\mathbf{F})$ contains a degree 2 polynomial.
- (6) Suppose v_1, v_2, v_3 is a basis for V and U is a subspace of V such that $v_1 \in U$ but $v_2, v_3 \notin U$. Then $U = \text{span}(v_1)$.
- (7) If V and W are vector spaces, $T \in \mathcal{L}(V, W)$, and v_1, \ldots, v_n is a list in V such that $T = Tv_1, \ldots, Tv_n$ is linearly independent, then v_1, \ldots, v_n is linearly independent.
- (8) Suppose V is a finite dimensional inner product space. Every self-adjoint $T \in \mathcal{L}(V)$ has a T F cube root.
- (9) There exists $T \in \mathcal{L}(\mathbf{R}^4, \mathbf{R}^2)$ such that null $T = \{(0, 0, 0, x) : x \in \mathbf{R}\}.$
- (10) Suppose W_1, W_2 and U are all subspaces of a vector space V such that $U \oplus W_1 = V$ and T F $U \oplus W_2 = V$. Then $W_1 = W_2$.
- (11) Suppose V is a finite dimensional inner product space, $U = \text{span}(u_1, u_2, u_3)$ is a subspace, T F and $v \in V$ is a vector such that

$$|\langle v, u_1 \rangle|^2 + |\langle v, u_2 \rangle|^2 + |\langle v, u_3 \rangle|^2 = 0.$$

Then $v \in E(1, P_{U^{\perp}})$.

- (12) Suppose $T \in \mathcal{L}(\mathbf{R}^4)$ is not injective and dim E(9,T)=3. Then T is diagonalizable.
- (13) Suppose $T \in \mathcal{L}(\mathbf{C}^4)$ satisfies (T-3I)(T-2I)(T-I)=0. Then the minimal polynomial T p_{\min} of T is $p_{\min}(z)=(z-3)(z-2)(z-1)$.
- (14) Suppose V is a vector space, $T \in \mathcal{L}(V)$ is an operator, and $v \in V$ is a vector such that T = (T 3I)(T + 3I)v = 0. Then v is an eigenvector of T, with eigenvalue either 3 or -3.
- (15) Suppose V is the inner product space of continuous functions $[-1,1] \to \mathbf{R}$, with inner T F product given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

Let $h \in V$ be given by h(x) = |x|. Then $P_{\text{span}(1,x,x^2)}(h) = P_{\text{span}(1,x^2)}(h)$.

Part II — **Examples**. For each of the following, give an example of an operator $T \in \mathcal{L}(\mathbb{C}^4)$ that has the required properties by writing down a matrix in Jordan form that represents the operator, if it is possible. If it is impossible, write "impossible." A correct answer is worth 2 points, a blank answer is 0.5 points, and an incorrect answer is 0 points. No justification is required.

(1) T has precisely 3 distinct eigenvalues and its minimal polynomial is of degree 3.

(2) T is nilpotent and there does not exist a basis of \mathbb{C}^4 of the form T^3v, T^2v, Tv, v for some $v \in \mathbb{C}^4$.

(3) $\dim \operatorname{null}(T-2I)=2$, $\dim \operatorname{null}(T-2I)^2=3$ and $\dim \operatorname{null}(T-2I)^3=4$.

(4) There is no 3 dimensional subspace of \mathbb{C}^4 invariant under T.

(5) The quotient operator T/U is not injective, where U = null T.

Part III — **Calculations**. In each of the following, you are asked to calculate the dimension of a vector space. Write the dimension inside the box on the right. If the dimension is infinite, write " ∞ ." A correct answer is worth 2 points, a blank answer is 0.5 points, and an incorrect answer is 0 points. No justification is required.

(1) Let $U = \{(x, y, z) \in \mathbf{R}^3 : x + 2y + 3z = 0\}$. Calculate dim(\mathbf{R}^3/U).	
(2) Calculate dim $\mathcal{L}(\mathcal{P}_2(\mathbf{R})) \times \mathcal{P}_3(\mathbf{R})'$.	
(3) Let $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}), \mathcal{P}_3(\mathbf{R}))$ be defined by $T(f)(z) = zf''(z)$. Calculate dim range T .	
(4) Suppose $T \in \mathcal{L}(\mathbf{C}^4)$ has 4 distinct eigenvalues and $p_{\text{char}}(0) = 0$. Calculate dim range T .	
(5) Suppose U is the space of self-adjoint operators inside $\mathcal{L}(\mathbf{R}^3)$. Calculate dim U .	
(6) Suppose $T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^3)$ and dim null $T = 2$. Calculate dim null T' .	
(7) Suppose $T \in \mathcal{L}(\mathbf{F}^{\infty})$ is the forward shift operator $T(x_0, x_1, x_2, \dots) = (0, x_0, x_1, \dots)$ and define $U = \text{range } T$. Calculate dim \mathbf{F}^{∞}/U .	
(8) Suppose V is the vector space of infinitely differentiable functions $\mathbf{R} \to \mathbf{R}$ and $T \in \mathcal{L}(V)$ is the operator $T(f) = f' - f$. Calculate dim null T .	
(9) Suppose $S, T \in \mathcal{L}(\mathbf{R}^3, \mathbf{R})$ are nonzero linear maps with distinct null spaces. Calculate $\dim(\operatorname{null} S) \cap (\operatorname{null} T)$.	
(10) Regard \mathbb{C}^2 as a real vector space and \mathbb{R}^2 as a subspace of \mathbb{C}^2 . Calculate dim($\mathbb{C}^2/\mathbb{R}^2$).	

Part IV — Proofs. You must write rigorous arguments using complete sentences for full credit. Each problem is worth a maximum of 5 points.

(1) For an arbitrary vector space V, prove that $\mathcal{L}(\mathbf{F}^2, V)$ is isomorphic to $V \times V$.

(2) Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{F}))$ is injective and $\deg Tp \leq \deg p$ for all $p \in \mathcal{P}(\mathbf{F})$. Prove that T is invertible.