DREHBUCH RENDERING

Computergrafik.Online

Betreuer: Prof. Jirka Dell'Oro-Friedl Wintersemester 2018/2019

Hochschule Furtwangen University Fakultät Digitale Medien

Version: 1.5

Letzte Änderung: 06.12.2018

Autor: Berdan Der

9.1 Einleitung/Anwendung	1
9.2 Modell-Transformation	2
9.3 Kamera-Transformation	3
9.4 Projektions-Transformation	4
9.5 Clipping	5
9.6 Culling	6
9.7 Rasterisierung	7
9.8 Verdeckungsberechnung – z-Buffer	8
9.9 Raytracing	9
9.10 Raytracing - Interaktion	10
9.11 Volumengrafik	1

9.1 Einleitung/Anwendung

Sprechertext	Screentext / Notizen	Regieanweisungen
090101	090101	090101
Rendern stammt vom englischen Wort "to render" und heißt	- Rendern	-Es erscheint eine Einblendung der
zu deutsch "etwas ausgeben". Das Rendering bezeichnet den	(dt. Bildsynthese)	Begrifflichkeit
Vorgang, ein Bild zu generieren. Beim Rendern aus einer	- Aus einer Szene wird	-Danach erscheint eine Szene mit
3D-Szene werden insbesondere Meshes, Kameras und Licht-	ein Bild erzeugt	Objekt, Kamera und Licht
quellen berücksichtigt.		-Daraufhin wird das fertig gerenderte
	090102	Bild angezeigt
090102	Prozess des Renderings	
In der Rendering-Pipeline durchläuft ein Mesh mehrere	in der Rendering Pipe-	090102
Schritte, um am Ende als ein rasterisiertes Bild dargestellt	line	-Es erscheint eine Rendering Pipe-
werden zu können. Hierbei sind die wichtigsten Stationen die		line, die in Transformation und Rast-
Umwandlung der Koordinaten des Meshes und die		erisieung aufgeteilt wird.
Rasterisierung.		- Daraufhin läuft ein Mesh durch
090103		
Des Weiteren werden aber auch Sichtbarkeits- und Beleuchtungsberechnungen durchgeführt, Texturen gemappt und spezielle Effekte dargestellt.		

9.2 Modell Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
090201 Ein Objekt, dass sich in einem dreidimensionalen Raum aufhält, wird normalerweise durch sein lokales Koordinatensytem definiert. Ohne Transformationen würden alle Objekte im Weltursprung liegen.	090201 lokales Koordinatensytem = Objektkoordinaten	090201 -Es erscheint ein Koordinatensystem mit einem Objekt (roboterarm) -Auf dem Objekt erscheint ein Objekt-koordinatensystem
090202 Durch Translationen, Rotationen und Skalierungen wird ein Mesh an die gewünschte Stelle im Raum gebracht. 090203 Die endgültige Position eines Objektes hängt von der Reihenfolge der Transformationen in der Szenenhirarchie ab.	090202 Verschiebung (Translation) Drehung (Rotation) Vergrößerung bzw. Verkleinerung (Skalierung)	090202 -Das Objekt wird verschiedenen Transformationen unterzogen 090203 -auf den verschiedenen hierachien erscheinen Objektkoordinatensysteme und es wird eine verkettete Transformation ausgeführt
090204 Um diese Transformationsverkettung aufzulösen werden die Objekte in ein Weltkoordinatensystem übertragen. 090205 Von nun an liegen die Koordinaten nicht mehr in lokalen Koordinaten, sondern in Weltkoorinaten vor.	090204 Modelltransformation: lokales Koordinatensystem > globales Koordinaten- system	090204 Der Großteil der Arms bist auf eine Hierarchiestufe verschwindet, da man diese nun alleine betrachten kann 090205 Es erscheint ein Schema, in welchem klar wird, welche Koordinaten zu diesem Zeitpunkt vorliegen.

9.3 Kamera-Transformation

090301	090301
Augenpunkt-Transfor- mation = (engl.) View- ing Transformation	-Es erscheint eine Einblendung der Begrifflichkeit 090302 -Es erscheint ein Koordinatensystem mit Kamera und Objekt und einem Sichtvolumen 090303 Das Sichtvolumen wird hervorgehoben
090304 Veränderung der Posi- tion und Blickrichtung der Kamera	090304 Die Kamera mitsamt Meshes wird in den Ursprung verschoben 090306 Es erscheint ein Schema, in welchem klar wird, welche Koordinaten zu diesem
r i	nation = (engl.) View- ng Transformation 090304 Veränderung der Posi- ion und Blickrichtung

Camera-Transformation

= Viewing Transformation

9.4 Projektions Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
090401	090401	090401
Nach der Modell- und der Kamera Transformation befinden sich alle Eckpunkte, welche auch Vertices genannt werden, an den gewünschten Positionen. 090402 Bei der Projektions-Transformation wird das View Frustrum näher betrachtet. Das Frustrum hat die Form eines Pyramidenstumpfes und besteht aus einer Far Clipping Plane und einer Near Clipping Plane, die auch Projektionsebene genannt wird.	Eckpunkt = Vertice	Es erscheint eine Kurze Animation zu den vorherigen Transformationen 090402 Es erscheint ein Frustrum, und die Bestandteile werden aufgezeigt 090403 Die Meshes erscheinen innerhalb des
090403 Die Meshes die dargestellt werden sollen liegen innerhalb des Frustrums. 090404 Um eine orthografische Projektion zu ermöglichen, muss die Near Clipping Plane derartig transformiert werden, dass ein Einheitswürfel entsteht.		Frustrums 090404 Die Near Clipping Plane wird auf die selbe Größe der Far Clipping Plane transformiert 090405 -Es erscheinen parallele Strahlen von
090405 Daraufhin werden die Vertices orthogonal auf die Projektionsebene projiziert.		den Vertces aus auf die Projektions- ebene -Das Bild darauf wird erkennbar und das Frustrum staucht sich zusammen zu einer Ebene
090406 Nach diesem Schritt liegen die Koordinaten als Clip-Koordinaten vor.		090406 Die Clip-Koordinaten erscheinen im Schema

Text einblenden

Sprechertext	Screentext / Notizen
090501 Beim Clipping geht es darum Flächen, die vom sichtbaren Volumen nicht mehr eingefangen werden können aus der Szene zu entfernen.	090501 Clipping dient dazu Geometrien außerhalb des sichtbaren Volu-

090501

Clipping dient dazu Geometrien außerhalb des sichtbaren Volumens wegzuschneiden

090501-090503

Regieanweisungen

-es erscheint nach und nach ein Sichtfenster mit Objekten, bei dem Objekte die gänzlich außerhalb liegen komplett entfernt werden und Objekte die teilweise im Sichtfenster liegen nur teilweise beschnitten werden

090503

090502

Elemente die gänzlich außerhalb des Sichtfensters liegen werden komplett entfernt.

Nach der Projektionstransformation wird überprüft, welche

Meshes vollständig im sichtbarem Bereich liegen.

090504

Für jede Kante des Sichtfensters wird geprüft, ob sich der Vertex eines Objekts inner- oder außerhalb der Kante befindet.

090505

Punkte die innerhalb der Grenze liegen werden in ihrer Geometrie belassen. Punkte außerhalb entfernt.

An der Grenze des Sichtfensters werden neue Vertices kreiert. Dieses Verfahren wird auch Sutherland Hodgeman Clipping genannt.

090504

-Es erscheint ein Objekt mit Vertices und eine kante des Sichtfensters -Daraufhin werden neue Vertices berechnet und der überstehende Teil wird abgeschnitten

Sprechertext	Screentext / Notizen	Regieanweisungen
Deim Culling geht es darum Flächen, die vom Betrachter nicht mehr wahrgenommen werden können aus der Szene zu entfernen. Deromatien das Backface-Culling werden die Polygone aus der Szene entfernt, die vom Betrachter abgewandt sind. De eine Fläche sichtbar oder nicht sichtbar ist wird mit Hilfe des Normalenvektors entschieden. De ook de Ein Normalenvektor ist ein Vektor einer Fläche, der zu diesem orthogonal ist. De ook de Damit kann diese Fläche entfernt werden.	090601 Culling dient dazu Meshes die komplett außerhalb des sichtbaren Volumens wegzuschneiden 090602 -spezielle Form: Backfaceculling 090605 Normalenvektor steht senkrecht zur Fläche	090602 -Es erscheint ein Objekt mit Vorder- und Hinteransicht. Auf das Objekt ist eine Kamera gerichtet und der hintere wird entfernt 090603-090604 -Es erscheint ein Objekt auf dem Normalen erscheinen. die Normalen die von der Kamera abgewandt sind werden entfernt.

9.7 Rasterisierung

Sprechertext	Screentext / Notizen	Regieanweisungen
090701		090701
Bis zu diesem Zeitpunkt liegt für jeden Vertex eines Polygons		Es erscheint Polygon, dessen Verti
ein Farbwert vor. Um Das Bild jedoch später auf einem Monitor		ce Farbwerte enthalten
darstellen zu können, muss für jedes Pixel der Farbwert, durch		Es erscheint ein Raster
Beleuchtungsberechnungen, berechnet werden.		
090702	090702	090702
Zur besseren Unterscheidbarkeit werden die Pixel in diesem	Fragment = stellvertre-	Im Raster leuchtet eine Fläche auf,
Schritt Fragmente genannt.	tend für Pixel	die ein Pixel darstellt. Anhand
		dessen wird der Begriff Fragment
090703		eingeführt
Ein weiterer Grund für die Unterschiedliche Bezeichnung ist,		
dass ein Fragment mehrere Daten speichern kann.		090703
Dazu gehört zum Beispiel der Alpha-Wert, der Transparenzen		Es wird eine Linie bzw ein anderes
beschreibt, und der z-Wert, der für die Verdeckungsberechnung		beliebiges Objekt eingeblendet,
wichtig ist.		welches den Flächen angenähert
		wird.
090704		
Bei diesem Schritt werden die Flächen in Fragmente aufgeteilt.		

9.8 Verdeckungsberechnung/z-Buffer

5	5	5	5	5	5	5	00
5	5	5	5	5	5	∞	∞
5	5	5	5	5	∞	∞	∞
5	5	5	5	∞	∞	∞	∞
4	5	5	7	00	00	∞	∞
3	4	5	6	7	∞	∞	00
2	3	4	5	6	7	00	00
00	00	00	00	00	00	00	00

\cap	19	Λ	0	Λ	1
	リソ	u	n	11	- 1

Sprechertext

Bei einer Szene in der mehrere Objekte zu sehen sind, kann es dazu kommen, dass ein Objekt A vor einem Objekt B ist, oder dieses auch schneidet.

090802

Um dies korrekt darzustellen, werden in der Computergrafik Verdeckungsberechnungen, wie z. B. der z-Buffer-Algorithmus angewandt.

090803

Die Grundidee des z-Buffer-Algorithmuses ist es für jeden Pixel die Tiefeninformation bzw. den z-Wert zu speichern.

090804

Es muss geprüft werden ob ein Pixel näher an der Kamera liegt als ein vorher berechneter. Dazu muss der z-Wert kleiner sein.

090805

Falls ja, werden Farbwerte und z-Buffer für den Pixel überschrieben , andernfalls werden die alten Werte beibehalten.

090802

Verdeckungsberechnung durch z-Buffer-Algorithmus

Screentext / Notizen

090803

z-Buffer-Algorithmus speichert für jeden Pixel z-Wert

090805

Je kleiner der z-Wert eines Pixels, desto näher ist er am Betrachter

090801

Regieanweisungen

- -Es erscheint ein Bild, bei welchem sich Objekte überschneiden
- -Daraufhin erscheint das gleicheBild nur mit falscher Verdeckungsberechnung

090803-090805

Auf dem Frustrum wird ein Raster dargestellt.

Alle Objekte werden auf dem Raster abgebildet. Gleichzeitig dazu wird ein 2-D-Schema nebenan gerastert

Falls der aktuell gerasterte Punkt näher am Betrachter liegt als der davor gerasterte Punkt, wird dieser durch das aktuelle ersetzt.

Dabei wird die Distanz zum Betrachter eingetragen.

Anhand dieser weiß an, welche Objekte wie überschnitten und überlagert sind und wie die Objekte dartgestellt werden müssen.

5	5	5	5	5	5	5
5	5	5	5	5	5	
5	5	5	5	5	Г	
5	5	5	5			
5	5	5		50		
5	5					
5	П					

5	5	5	5	5	5	5	00
5	5	5	5	5	5	∞	00
5	5	5	5	5	∞	∞	00
5	5	5	5	∞	∞	∞	∞
5	5	5	00	00	∞	00	00
5	5	00	00	00	00	00	00
5	∞	∞	∞	00	∞	00	00
00	∞	00	00	00	00	∞	00

7					
6	7				
5	6	7			
4	5	6	7		
3	4	5	6	7	
2	3	4	5	6	7

5	5	5	5	5	5	5	00
5	5	5	5	5	5	∞	∞
5	5	5	5	5	∞	∞	00
5	5	5	5	00	00	00	00
4	5	5	7	00	00	00	00
3	4	5	6	7	00	∞	∞
2	3	4	5	6	7	00	00
∞	00	00	00	00	00	00	00

9.9 Raytracing

Sprechertext	Screentext / Notizen	Regieanweisungen
Beim realistischen Rendern liegt das Hauptaugenmerk auf der physikalischen Korrektheit der Darstellung des gerenderten Bildes. Dafür sollte jedoch eine höhere Rechenzeiten in Kauf genommen werden. 090902 Raytracing – zu Deutsch "Strahlen verfolgen" – ist in erster Linie ein Algorithmus zu Verdeckungsberechnung. 090903 Dies basiert auf dem Aussenden von Strahlen vom Betrachterblickpunkt aus. Abgesehen vom Betrachterblickpunkt ist eine Bildebene vorhanden, die in Pixel unterteilt ist und dem später gerenderten Rasterbild entspricht. 090904 Für jeden Pixel wird ein Strahl ausgesandt. Diese werden Primärstrahl genannt. 090905 Die Primärstrahlen ermitteln Schnittpunkte mit Primitiven. 090906 Anschließend werden die gebrochenen bzw. die reflektierten Strahlen berechnet. Diese werden als Sekundärstrahlen bezeichnet. 090907 Der Strahl endet, wenn er die maximale Anzahl von Schritten erreicht, auf kein weiteres Objekt oder auf eine Lichtquelle trifft. 090908 Das Raytracing bringt den Vorteil, dass korrekte Objektspiegelungen und Schatten dargestellt werden können.	090902 Raytracing (dt. Strahlen verfolgen") 090903 -Aussendung von Strahlen vom Betrachter aus -Für jedes Rasterelement ein Strahl 090904 Primärstrahl: Strahl von Betrachter auf Pixel 09097 Sekundärstrahl: reflektierte/ gebrochene Strahlen	090901 Es wird ein Bild von eien Szene gezeigt, welches den Raytracing-Algorithmus verwendet. 090903 Es wird ein Auge eingeblendet Es wird eine Bildeben eingeblendet 090904 Es erscheint ein Raster. Es schießen Strahlen aus dem Auge durch jedes Rasterelement. Daraufhin wird geprüft, ob der Strahl ein Objekt trifft. 090906 Es erscheinen Normalen Oberflächenstücke bekommen eine Farbe 090907 Sekundärstrahlen enstehen 090908 Ein fertig gerendertes Bild entsteht

9.10 Raytracing – Interaktion

- Shading
- Raytracing

Anweisungen

091001

Wähle mittels der Radio Button zwischen reinem Shading und Raytracing aus und betrachte die Änderungen.

9.11 Volumengrafik

CC

Text einblenden

Sprechertext	Screentext / Notizen	Regieanweisungen
Volumengrafiken sind in der Lage transparente Objekte und Objekte ohne scharfe Abgrenzungen, wie z. B. Wolken, zu modellieren. Diese bestehen aus Voxeln. Voxel bezeichnet einen Gitterpunkt in einem dreidimensionalen Gitter. Dies entspricht einem Pixel in einem 2D-Bild, einer Rastergrafik. 091102 Die Volumengrafik basiert auf dem Strahlentransport, der beschreibt, wie sich Licht auf dem Weg durch ein Volumen verhält.	091101 Volumengrafik = transparente Objekte Voxel = Gitterpunkt in einem dreidimensionalen Gitter.	091101 Es wird ein Voxelgitter eingebledet und anhanddessen ein Voxel gezeigt
091103 Beim Rendern einer Volumengrafik unterscheidet man vier Schritte:		
091104 1. der Klassifikation: Hier werden den Voxeln Materialeigenschaften gegeben. Bei der Erzeugung des Voxels besitzt dieser zunäckhst nur eine Eigenschaft. Weitere müssen bei der Kalssifikation vom Benutzer vorgegeben werden. Eine Eigenschaft könnte zum Beispiel sein, wie sehr das Voxel spiegeln soll. 091105 2. der Interpolation: Da es sich bei Voxeln um Punkte handelt, ist es unwahrscheinlich, dass sie von einem Strahl getroffen werden. Deswegen werden die Materialeigenschaften an Punkten zwischen den Voxeln aus benachbarten	091103-091107 vier Render Schritte: 1. Klassifikation 2. Interpolation 3. Shading 4. Composition	091103-091107 Die vier Schritte werden erklärt: 1) Es werden Eigenschaften verschiedener Transparenzstufen gezeigt 2) Voxel werden am Lichtstrahl

Materialeigenschaften an Punkten zwischen den Voxeln aus benachbarten Voxeln angenähert.

091106

- 3. dem Shading: Beim Shading wird bestimmt, wie viel Licht von einem Voxel aus in Richtung des Betrachters reflektiert wird und welche Farbe es hat. 091107
- 4. der Composition: Beim durchqueren des Lichts durch Voxel ändert sich die Farbe und die Intensität. Bis der Lichtstrahl auf die Bildebene fällt, kann dieser mehrere Voxel durchqueren. Die letzten Eigenschaften des Strahles, färben den Pixel auf der Bildebene.

- Eigenschaften veransparenzstufen
- 2) Voxel werden am Lichtstrahl interpoliert
- 3) Die Voxelflächen erhalten Normalen und eine Beleuchtung
- 4) Die unterchsiedlichen Lichtstufen einer Linie werden miteinander verrechnet

Zum Schluss wird eine Volumengrafik eingeblendet, die sich dreht.

