EE 2000 SIGNALS AND SYSTEMS

Ch. 1 Continuous-Time Signals

OUTLINE

- Introduction: what are signals and systems?
- Signals
- Classifications
- Basic Signal Operations
- Elementary Signals

INTRODUCTION

• Examples of signals and systems (Electrical Systems)

- Voltage divider
 - Input signal: x = 5V
 - Output signal: y = Vout
 - The system output is a fraction of the input $(y = \frac{R_2}{R_1 + R_2}x)$

- Input: the voltage across the battery
- Output: the voltage reading on the LCD display
- The system measures the voltage across two points
- Radio or cell phone
 - Input: electromagnetic signals
 - Output: audio signals
 - The system receives electromagnetic signals and convert them to audio signal

Voltage divider

multimeter

INTRODUCTION

- Examples of signals and systems (Biomedical Systems)
 - Central nervous system (CNS)
 - Input signal: a nerve at the finger tip senses the high temperature, and sends a neural signal to the CNS
 - Output signal: the CNS generates several output signals to various muscles in the hand
 - The system processes input neural signals, and generate output neural signals based on the input
 - Retina
 - Input signal: light
 - Output signal: neural signals
 - Photosensitive cells called rods and cones in the **retina** convert incident light energy into signals that are carried to the brain by the optic nerve.

Examples of signals and systems (Biomedical Instrument)

- EEG (Electroencephalography) Sensors
 - Input: brain signals
 - Output: electrical signals
 - Converts brain signal into electrical signals

ORNOSED ECOSONAL - Time Range - 45, 55 is a second second

EEG signal collection

- Magnetic Resonance Imaging (MRI)
 - Input: when apply an oscillating magnetic field at a certain frequency, the hydrogen atoms in the body will emit radio frequency signal, which will be captured by the MRI machine
 - Output: images of a certain part of the body
 - Use strong magnetic fields and radio waves to form images of the body.

INTRODUCTION

Signals and Systems

- Even though the various signals and systems could be quite different, they share some common properties.
- In this course, we will study:
 - How to represent signal and system?
 - What are the properties of signals?
 - What are the properties of systems?
 - How to process signals with system?
- The theories can be applied to any general signals and systems, be it electrical, biomedical, mechanical, or economical, etc.

OUTLINE

- Introduction: what are signals and systems?
- Signals
- Classifications
- Basic Signal Operations
- Elementary Signals

SIGNALS AND CLASSIFICATIONS

What is signal?

- Physical quantities that carry information and changes with respect to time.
- E.g. voice, television picture, telegraph.

• Electrical signal

- Carry information with electrical parameters (e.g. voltage, current)
- All signals can be converted to electrical signals
 - Speech → Microphone → Electrical Signal → Speaker → Speech

audio signal

Signals changes with respect to time

SIGNALS AND CLASSIFICATIONS

- Mathematical representation of signal:
 - Signals can be represented as a function of time t

$$s(t), t_1 \le t \le t_2$$

- Support of signal: $t_1 \le t \le t_2$

- E.g.
$$s_1(t) = \sin(2t)$$
 $-\infty \le t \le +\infty$
- E.g. $s_2(t) = \sin(2t)$ $0 \le t \le \pi$

- $s_1(t)$ and $s_2(t)$ are two different signals!
- The mathematical representation of signal contains two components:
 - The expression: s(t)
 - The support: $t_1 \le t \le t_2$
 - The support can be skipped if $-\infty \le t \le +\infty$
 - E.g. $s_1(t) = \sin(2t)$

SIGNALS AND CLASSIFICATIONS

- Classification of signals: signals can be classified as
 - Continuous-time signal v.s. discrete-time signal
 - Analog signal v.s. digital signal
 - Finite support v.s. infinite support
 - Even signal v.s. odd signal
 - Periodic signal v.s. Aperiodic signal
 - Power signal v.s. Energy signal
 - **–**

OUTLINE

- Introduction: what are signals and systems?
- Signals
- Classifications
- Basic Signal Operations
- Elementary Signals

SIGNALS: CONTINUOUS-TIME V.S. DISCRETE-TIME

Continuous-time signal

- If the signal is defined over continuous-time, then the signal is a continuous-time signal
 - E.g. sinusoidal signal $s(t) = \sin(4t)$
 - E.g. voice signal
 - E.g. Rectangular pulse function

$$p(t) = \begin{cases} A, & 0 \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

SIGNALS: CONTINUOUS-TIME V.S. DISCRETE-TIME

Discrete-time signal

- If the time t can only take discrete values, such as,

$$t = kT_s k = 0, \pm 1, \pm 2, \cdots$$

then the signal $s(t) = s(kT_s)$ is a discrete-time signal

- E.g. the monthly average precipitation at Fayetteville, AR (weather.com)

$$T_s = 1$$
 month

$$k = 1, 2, \dots, 12$$

- What is the value of s(t) at $(k-1)T_s < t < kT_s$?
 - Discrete-time signals are undefined at $t \neq kT_s$!!!
 - Usually represented as *s*(*k*)

SIGNALS: ANALOG V.S. DIGITAL

- Analog v.s. digital
 - Continuous-time signal
 - continuous-time, continuous amplitude → analog signal
 - Example: speech signal

- Example: traffic light

• Discrete-time, discrete-amplitude → digital signal

- Discrete-time, continuous-amplitude
 - Example: samples of analog signal, average monthly temperature

Different types of signals

SIGNALS: EVEN V.S. ODD

Even v.s. odd

- x(t) is an even signal if: x(t) = x(-t)
 - E.g. $x(t) = \cos(2t)$
- x(t) is an odd signal if: E.g. $x(t) = \sin(2t)$ x(-t) = -x(t)
- Some signals are neither even, nor odd
 - $x(t) = \cos(2t), t > 0$ • E.g. $x(t) = e^t$
- Any signal can be decomposed as the sum of an even signal and odd signal

$$y(t) = y_e(t) + y_o(t)$$

even odo
 $y_e(t) = 0.5[y(t) + y(-t)]$
 $y_o(t) = 0.5[y(t) - y(-t)]$

proof

SIGNALS: EVEN V.S. ODD

Example

- Find the even and odd decomposition of the following signal

$$x(t) = e^t$$

SIGNALS: EVEN V.S. ODD

Example

- Find the even and odd decomposition of the following signal

$$x(t) = \begin{cases} 2\sin(4t), & t > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Periodic signal v.s. aperiodic signal
 - An analog signal is periodic if
 - There is a positive real value T such that s(t) = s(t + nT)
 - It is defined for all possible values of t, $-\infty \le t \le \infty$ (why?)
 - Fundamental period T_0 : the smallest positive integer T_0 that satisfies $s(t) = s(t + nT_0)$
 - E.g. $T_1 = 2T_0$ $s(t + nT_1) = s(t + 2nT_0) = s(t)$
 - So T_1 is a period of s(t), but it is not the fundamental period of s(t)

Example

- Find the period of $s(t) = A\cos(\Omega_0 t + \theta)$ $-\infty \le t \le \infty$

- Amplitude: A
- Angular frequency: Ω_0
- Initial phase: θ
- Period: T_0 =
- Linear frequency: f_0 =

- **Complex exponential signal**
 - $e^{jx} = \cos(x) + j\sin(x)$ - Euler formula:
 - Complex exponential signal

$$e^{j\Omega_0 t} = \cos(\Omega_0 t) + j\sin(\Omega_0 t)$$

- Complex exponential signal is periodic with period $T_0 = \frac{2\pi}{\Omega_0}$

$$T_0 = \frac{2\pi}{\Omega_0}$$

• Proof:

Complex exponential signal has same period as sinusoidal signal!

The sum of two periodic signals

- x(t) has a period T_1
- y(t) has a period T_2
- Define z(t) = a x(t) + b y(t)
- Is z(t) periodic?

$$z(t+T) = ax(t+T) + by(t+T)$$

- In order to have x(t)=x(t+T), T must satisfy $T=kT_1$
- In order to have y(t)=y(t+T), T must satisfy $T=lT_2$
- Therefore, if $T = kT_1 = lT_2$ $z(t+T) = ax(t+kT_1) + by(t+lT_2) = ax(t) + by(t) = z(t)$
- The sum of two periodic signals is periodic if and only if the ratio of the two periods can be expressed as a rational number.

$$\frac{T_1}{T_2} = \frac{l}{k}$$

• The period of the sum signal is $T = kT_1 = lT_2$

Example

$$x(t) = \sin(\frac{\pi}{3}t) \qquad y(t) = \exp(j\frac{2\pi}{9}t) \qquad z(t) = \exp(j\frac{2}{9}t)$$

- Find the period of x(t), y(t), z(t)
- Is 2x(t) 3y(t) periodic? If periodic, what is the period?
- Is x(t) + z(t) periodic? If periodic, what is the period?
- Is y(t)z(t) periodic? If periodic, what is the period?

Aperiodic signal: any signal that is not periodic.

SINGALS: ENERGY V.S. POWER

Signal energy

- Assume x(t) represents voltage across a resistor with resistance R.
- Current (Ohm's law): i(t) = x(t)/R
- Instantaneous power: $p(t) = x^2(t) / R$
- Signal power: the power of signal measured at R = 1 Ohm: $p(t) = x^2(t)$
- Signal energy at: $[t_n, t_n + \Delta t]$

$$E_n \approx p(t_n) \Delta t$$

Total energy

$$E = \lim_{\Delta t \to 0} \sum_{n} p(t_n) \Delta t = \int_{-\infty}^{+\infty} p(t) dt$$

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

Review: integration over a signal gives the area under the signal.

SINGALS: ENERGY V.S. POWER

• Energy of signal x(t) over $t \in [-\infty, +\infty]$

$$E = \int_{-\infty}^{\infty} \left| x(t) \right|^2 dt$$

- If $0 < E < \infty$, then x(t) is called an energy signal.
- Average power of signal x(t)

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

- If $0 < P < \infty$, then x(t) is called a power signal.
- A signal can be an energy signal, or a power signal, or neither, but not both.

SINGALS: ENERGY V.S. POWER

$$x(t) = A \exp(-t)$$

$$x(t) = A\sin(\Omega_0 t + \theta)$$

$$x(t) = (1+j)e^{j\pi t}$$

$$0 \le t \le 10$$

• All periodic signals are power signal with average power:

$$P = \frac{1}{T} \int_0^T \left| x(t) \right|^2 dt$$

OUTLINE

- Introduction: what are signals and systems?
- Signals
- Classifications
- Basic Signal Operations
- Elementary Signals

OPERATIONS: SHIFTING

- **Shifting operation**
 - $x(t-t_0)$: shift the signal x(t) to the right by t_0

Shifting to the right by two units

- Why right?

$$x(0) = A$$

$$y(t) = x(t - t_0)$$

$$y(t) = x(t - t_0)$$
 $y(t_0) = x(t_0 - t_0) = x(0) = A$

$$x(0) = y(t_0)$$

OPERATIONS: SHIFTING

Example

$$x(t) = \begin{cases} t+1 & -1 \le t \le 0 \\ 1 & 0 < t \le 2 \\ -t+3 & 2 < t \le 3 \\ 0 & \text{o.w.} \end{cases}$$

- Find
$$x(t+3)$$

OPERATIONS: REFLECTION

Reflection operation

 $-\chi(-t)$ is obtained by reflecting x(t) w.r.t. the y-axis (t=0)

OPERATIONS: REFLECTION

• Example:

$$x(t) = \begin{cases} t+1 & -1 \le t \le 0 \\ 1 & 0 < t \le 2 \\ 0 & \text{o.w.} \end{cases}$$

- Find x(3-t)

• The operations are always performed w.r.t. the time variable t directly!

OPERATIONS: TIME-SCALING

- Time-scaling operation
 - x(at) is obtained by scaling the signal x(t) in time.
 - |a| > 1, signal shrinks in time domain
 - |a| < 1, signal expands in time domain

Time scaling

OPERATIONS: TIME-SCALING

• Example:

$$x(t) = \begin{cases} t+1 & -1 \le t \le 0 \\ 1 & 0 < t \le 2 \\ -t+3 & 2 < t \le 3 \\ 0 & \text{o.w.} \end{cases}$$

- Find x(3t-6)

$$x(at+b)$$
 1. scale the signal by a: $y(t) = x(at)$

- 2. left shift the signal by b/a: z(t) = y(t+b/a) = x(a(t+b/a)) = x(at+b)
- The operations are always performed w.r.t. the time variable *t* directly (be careful about –*t* or *at*)!

OUTLINE

- Signals
- Classifications
- Basic Signal Operations
- Elementary Signals

Unit step function

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

Example: rectangular pulse

$$p_{\Delta}(t) = \begin{cases} \frac{1}{\Delta}, & -\frac{\Delta}{2} \le t \le \frac{\Delta}{2} \\ 0, & \text{otherwise} \end{cases}$$

Express $p_{\Lambda}(t)$ as a function of u(t)

 $\mathbf{u}(t)$

Rectangular pulse

ELEMENTARY SIGNALS: RAMP FUNCTION

The Ramp function

$$r(t) = t \cdot u(t)$$

- The Ramp function is obtained by integrating the unit step function u(t)

$$\int_{-\infty}^{t} u(t)dt =$$

Unit impulse function (Dirac delta function)

$$\delta(0) = \infty$$

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{t} \delta(t)dt = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

delta function can be viewed as the limit of the rectangular pulse

$$\delta(t) = \lim_{\Delta \to 0} p_{\Delta}(t)$$

- Relationship between $\delta(t)$ and u(t)

$$\delta(t) = \frac{du(t)}{dt}$$

Sampling property

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

Shifting property

$$\int_{-\infty}^{+\infty} x(t)\delta(t-t_0)dt = x(t_0)$$

- Proof:

Scaling property

$$\delta(at+b) = \frac{1}{|a|} \delta\left(t + \frac{b}{a}\right)$$

- Proof:

Examples

$$\int_{-2}^{4} (t + t^2) \delta(t - 3) dt =$$

$$\int_{-2}^{1} (t+t^2) \delta(t-3) dt =$$

$$\int_{-2}^{3} \exp(t-1)\delta(2t-4)dt =$$

ELEMENTARY SIGNALS: SAMPLING FUNCTION

Sampling function

$$Sa(x) = \frac{\sin x}{x}$$

Sampling function can be viewed as scaled version of sinc(x)

Sinc
$$(x) = \frac{\sin \pi x}{\pi x} = sa(\pi x)$$

ELEMENTARY SIGNALS: COMPLEX EXPONENTIAL

Complex exponential

$$x(t) = e^{(r+j\Omega_0)t}$$

- Is it periodic?

• Example:

- Use Matlab to plot the real part of $x(t) = e^{(-1+j2\pi)t}[u(t+2) - u(t-4)]$

SUMMARY

Signals and Classifications

- Mathematical representation s(t), $t_1 \le t \le t_2$
- Continuous-time v.s. discrete-time
- Analog v.s. digital
- Odd v.s. even
- Periodic v.s. aperiodic
- Power v.s. energy

• Basic Signal Operations

- Time shifting
- reflection
- Time scaling

• Elementary Signals

- Unit step, unit impulse, ramp, sampling function, complex exponential