

Computer Architecture and Logic Design (CALD) Lecture 14

Dr. Sorath Hansrajani

Assistant Professor

Department of Software Engineering

Bahria University Karachi Campus

Email: sorathhansrajani.bukc@bahria.edu.pk

Design Process of Synchronous Sequential Circuits

These slides were assembled by Mustafa Kemal Uyguroğlu, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

⁺ Analysis of Clocked Sequential **Circuits**

- The State
 - State = Values of all Flip-Flops

Example

AB=00

+

Analysis of Clocked Sequential

Circuits

■ State Equations

$$A(t+1) = D_A$$

$$= A(t) x(t) + B(t) x(t)$$

$$= A x + B x$$

$$B(t+1) = D_B$$

$$= A'(t) x(t)$$

$$= A' x$$

$$y(t) = [A(t)+B(t)] x'(t)$$
$$= (A+B) x'$$

Analysis of Clocked Sequential

Circuits

■ State Table (Transition Table)

Pres Sta		Input		ext ate	Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0:	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0
		University	<i>t</i> +1	<u>7</u>	

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

Analysis of Clocked Sequential Circuits

■ State Table (Transition Table)

Present	N	ext	State		Output	
State	x =	= ()	<i>x</i> =	= 1	x = 0	x = 1
AB	A	B	A	B	y	y
0 0	0	0	0	1	0	0
0 1	0	0	1	1	1	0
1 0	0	0	1	0	1	0
11	0	0	1	0	1	0

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

Analysis of Clocked Sequential

Circuits

■ State Diagram

Present	N	Vext	Stat	Output		
State	x = 0		x = 1		x = 0	x = 1
AB	A	B	A	B	y	y
0 0	0	0	0	1	0	0
0 1	0	0	1	1	1	0
1 0	0	0	1	0	1	0
1 1	0	0	1	0	1	0

Eastern Mediterranean

Analysis of Clocked Sequential Circuits

■ D Flip-Flops

Example:

Present State	Inj	put	Next State
A	20	y	A
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A(t+1) = D_A = A \oplus x \oplus y$$

Analysis of Clocked Sequential Circuits

- JK Flip-Flops
- Example:

	sent ate	I/P		ext ate	Flip-Flop Inputs)	
A	B	X	A	В	J_A	K_{A}	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

$$J_A = B$$
 $K_A = B x'$
 $J_B = x'$ $K_B = A \oplus x$

$$A(t+1) = J_A Q'_A + K'_A Q_A$$

= $A'B + AB' + Ax$
 $B(t+1) = J_B Q'_B + K'_B Q_B$
= $B'x' + ABx + A'Bx'$

⁺ Analysis of Clocked Sequential Circuits

■ JK Flip-Flops

Example:

	sent ate	I/P		ext ate		Flip- Inp	Flop outs)
A	B	X	A	B	J_A	K_{A}	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Analysis of Clocked Sequential Circuits

■ TFlip-Flops

Example:

	sent ate	I/P		ext ate	F. Inp		O/P
A	B	x	A	B	T_A	T_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

$$T_{A} = B x \qquad T_{B} = x$$

$$y = A B$$

$$A(t+1) = T_{A} Q'_{A} + T'_{A} Q_{A}$$

$$= AB' + Ax' + A'Bx$$

$$B(t+1) = T_{B} Q'_{B} + T'_{B} Q_{B}$$

$$= x \oplus B$$

Analysis of Clocked Sequential Circuits

■ TFlip-Flops

Example:

	sent ate	I/P		ext ate	F. Inp		O/P
A	B	X	A	B	T_A	T_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

State Reduction and Assignment

- State Reduction
- Reductions on the number of flipflops and the number of gates.
 - A reduction in the number of states may result in a reduction in the number of flip-flops.
 - An example state diagram showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

State: a a b c d e f f g f g a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

- Only the input-output sequences are important.
- Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - The number of states is not important.

Fig. 5.25 State diagram

■ Equivalent states

- Two states are said to be equivalent
 - For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
 - One of them can be removed.

Table 5.6 *State Table*

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	g	f	0	1	
g	$\overset{\circ}{a}$	f	0	1	

■ Reducing the state table

- e = g (remove g);
- d = f (remove f);

Table 5.7 *Reducing the State Table*

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

The reduced finite state machine

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	C	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	а	d	0	1	

State: a a b c d e d d e d e a

Input: 0 1 0 1 0 1 1 0 1 0 0

Output: 0 0 0 0 0 1 1 0 1 0 0

- The checking of each pair of states for possible equivalence can be done systematically using Implication Table.
- The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Fig. 5.26 Reduced State diagram

State Assignment

- State Assignment
- To minimize the cost of the combinational circuits.
 - Three possible binary state assignments. (m states need n-bits, where $2^n > m$)

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot	
a	000	000	00001	
b	001	001	00010	
c	010	011	00100	
d	011	010	01000	
e	100	110	10000	

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- Use binary assignment 1.

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next State		Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Design Procedure

- Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

State	AB
S_0	0 0
S_1	0 1
S_2	1 0
S_3	1 1

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

Pres Sta	sent ate	Input		ext ate	Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0.	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Design of Clocked Sequential Circuits

■ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis using *D* Flip-Flops

$$A(t+1) = D_A(A, B, x)$$

= $\sum (3, 5, 7)$
 $B(t+1) = D_B(A, B, x)$
= $\sum (1, 5, 7)$
 $y(A, B, x) = \sum (6, 7)$

+

Design of Clocked Sequential Circuits with D F.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using **D** Flip-Flops

$$D_A(A, B, x) = \sum (3, 5, 7)$$

= $A x + B x$

$$D_B(A, B, x) = \sum (1, 5, 7)$$

= $A x + B'x$

$$y(A, B, x) = \sum (6, 7)$$
$$= A B$$

,					
	0	0	1	0	
$oldsymbol{A}$	0	1	1	0	
-		ر ر	r		

•			<u> </u>		
	0	0	0	0	
\overline{A}	0	0	1	1	
_		ג	c		

Design of Clocked Sequential Circuits with D F.F.

■ *Example*:

Detect 3 or more consecutive 1's

Synthesis using *D* Flip-Flops

$$D_A = A x + B x$$

$$D_B = A x + B'x$$

$$y = A B$$

+ Flip-Flop Excitation Tables

Present		F.F.
State	State	Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F.F. Input	
Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

		(No change) (Reset)	
		(Set) (Toggle)	
,	0 1	(Reset) (Toggle)	≺
	00	(No change) (Set)	≺

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

+

Design of Clocked Sequential Circuits with *JK* F.F.

■ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Ne Sta	ext ate	Flip-Flo _l Inputs			
A	B	<u>X</u>	A	B	J_A	K_{A}	J_{B}	K
0	 •••	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	X	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	X	0

Synthesis using JK F.F.

$$J_A(A, B, x) = \sum (3)$$

 $d_{JA}(A, B, x) = \sum (4,5,6,7)$
 $K_A(A, B, x) = \sum (4,6)$
 $d_{KA}(A, B, x) = \sum (0,1,2,3)$
 $J_B(A, B, x) = \sum (1,5)$
 $d_{JB}(A, B, x) = \sum (2,3,6,7)$
 $K_B(A, B, x) = \sum (2,3,6)$
 $d_{KB}(A, B, x) = \sum (0,1,4,5)$

+

Design of Clocked Sequential

Circuits with JK F.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using JK Flip-Flops

$$J_A = B x \qquad K_A = x'$$

$$J_B = x K_B = A' + x'$$

,			$oxedsymbol{oldsymbol{B}}$		
	0	0	1	0	
$oldsymbol{A}$	X	X	X	X	
		ر ا			

			$oxedsymbol{B}$		
	X	X	X	X	
\overline{A}	1	0	0	1	
		\overline{x}			

Design of Clocked Sequential

Circuits with TF.F.

■ Example:

Detect 3 or more consecutive 1's

Pre- Sta	sent ate	Input	Ne Sta			F. put
A	B	X	A	B	T_A	T_{B}
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Synthesis using T Flip-Flops

$$T_A(A, B, x) = \sum (3, 4, 6)$$

 $T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$

Design of Clocked Sequential

Circuits with TF.F.

■ Example:

Detect 3 or more consecutive 1's

Synthesis using T Flip-Flops

$$T_A = A x' + A'B x$$

$$T_B = A'B + B \oplus x$$

