Final Project

2024-06-03

 $\# Data\ Collection\ This\ data\ set\ is\ downloaded\ from\ Kaggle.\ https://www.kaggle.com/datasets/aadarshvelu/aids-virus-infection-prediction$

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
             1.1.3
                       v readr
                                    2.1.4
## v forcats 1.0.0
                     v stringr
                                    1.5.0
## v ggplot2 3.4.4
                        v tibble
                                    3.2.1
## v lubridate 1.9.3
                       v tidyr
                                    1.3.0
## v purrr
              1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(survival)
library(cluster)
library(ggplot2)
library(dplyr)
library(broom)
library(caret)
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:survival':
##
##
       cluster
##
## The following object is masked from 'package:purrr':
##
      lift
library(stats)
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
```

```
set.seed(333)
data <- read.csv("AIDS_Classification.csv")</pre>
```

Before we begin, we check if there happen to be missing values for this dataset

```
cat("Number of missing values per column:\n")
```

Number of missing values per column:

```
sapply(data, function(x) sum(is.na(x)))
```

##	time	trt	age	wtkg	hemo	homo	drugs	karnof
##	0	0	0	0	0	0	0	0
##	oprior	z 30	preanti	race	gender	str2	strat	symptom
##	0	0	0	0	0	0	0	0
##	treat	offtrt	cd40	cd420	cd80	cd820	infected	
##	0	0	0	0	0	0	0	

#Exploratory Data Analysis There doesn't seem to be any missing data, now we can look at the frequencies of the classes to look at the distribution of the data

```
#raw number of infect and noninfected
ggplot(data, aes(x=factor(infected), fill=factor(infected))) +
  geom_bar() +
  scale_fill_manual(values=c("green", "blue"), labels=c("Non-Infected", "Infected")) +
  labs(x="Infection Status", y="Number of People", fill="Status") +
  ggtitle("Histogram of Infected vs Non-Infected Individuals")
```


The data is not horribly imbalanced but still shows slight signs of imbalance. Checking the specific distributive percentages of the classes

```
data_percentage <- data %>%
  group_by(infected) %>%
  summarise(Count = n()) %>%
  mutate(Percentage = Count / sum(Count) * 100)

print(data_percentage)
```

##Visualizing key variables

```
# visualize distributions of key variables
ggplot(data, aes(x=age)) + geom_histogram(bins=30, fill="blue") + ggtitle("Age Distribution")
```


ggplot(data, aes(x=wtkg)) + geom_histogram(bins=30, fill="green") + ggtitle("Weight Distribution")

Weight Distribution


```
# check for outliers
ggplot(data, aes(y=age)) + geom_boxplot(fill="coral") + ggtitle("Age Boxplot")
```


ggplot(data, aes(y=wtkg)) + geom_boxplot(fill="lightblue") + ggtitle("Weight Boxplot")

Weight Boxplot

$\#\# Correlation\ Matrix$

```
data$infected <- as.numeric(data$infected)
numerical_data <- select_if(data, is.numeric)

correlation_matrix <- cor(numerical_data)

melted_correlation_matrix <- melt(correlation_matrix)

ggplot(melted_correlation_matrix, aes(Var1, Var2, fill = value)) +
    geom_tile(color = "white") +
    scale_fill_gradient2(limit = c(-0.5, 1), mid = "white", high = "red", low = "blue", midpoint = 0) +
    theme_minimal() +
    theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust = 1)) +
    labs(title = "Correlation Matrix", x = "", y = "")</pre>
```

Correlation Matrix

The vast number of variables make the correlation matrix hard to analyze.

##Feature Selection Using statistical techniques to identify the most important features

```
# using recursive feature elimination
control <- rfeControl(functions=rfFuncs, method="cv", number=10)</pre>
results <- rfe(data[, -ncol(data)], data[, ncol(data)], sizes=c(1:5), rfeControl=control)
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
```

```
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
```

```
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
## Warning in randomForest.default(x, y, importance = TRUE, ...): The response has
## five or fewer unique values. Are you sure you want to do regression?
```

print(results)

```
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
##
   Resampling performance over subset size:
##
##
                RMSE Rsquared
                                  MAE RMSESD RsquaredSD
                                                            MAESD Selected
    Variables
##
            1 0.3748
                        0.2956 0.2168 0.02777
                                                  0.06483 0.02188
            2 0.3138
                        0.4943 0.2313 0.02408
                                                  0.06806 0.01845
##
                                                  0.06667 0.01911
##
            3 0.2965
                        0.5521 \ 0.2125 \ 0.02613
            4 0.2921
                        0.5712 0.2100 0.02565
                                                  0.06430 0.01770
##
            5 0.3015
                        0.5580 0.2261 0.02743
##
                                                  0.06109 0.02387
           22 0.2812
                        0.5738 0.1755 0.02069
                                                  0.05274 0.01550
##
##
##
  The top 5 variables (out of 22):
      time, offtrt, cd420, preanti, age
```

Plotting feature importance plot(results)

##model biulding

```
# Logistic regression with qlm
model <- glm(infected ~ age + time + cd40 + offtrt + preanti, data = data, family = binomial())</pre>
summary(model)
##
## Call:
## glm(formula = infected ~ age + time + cd40 + offtrt + preanti,
      family = binomial(), data = data)
##
## Deviance Residuals:
##
      Min 1Q Median
                               3Q
                                      Max
## -2.4444 -0.5025 -0.3479 -0.1373
                                   2.8969
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.4339395 0.4345856 10.203 < 2e-16 ***
            ## time
             ## cd40
## offtrt
            -1.8331326  0.1914483  -9.575  < 2e-16 ***
## preanti
             0.0007763 0.0001389 5.588 2.30e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2375.0 on 2138 degrees of freedom
## Residual deviance: 1507.8 on 2133 degrees of freedom
## AIC: 1519.8
## Number of Fisher Scoring iterations: 5
# extracting model coefficients
tidy_model <- tidy(model)</pre>
tidy_model$importance <- abs(tidy_model$estimate / tidy_model$std.error)</pre>
# plotting variable importance
ggplot(tidy_model, aes(x = reorder(term, importance), y = importance)) +
 geom_bar(stat = "identity") +
 coord_flip() +
 labs(title = "Variable Importance Plot", x = "Predictors", y = "Importance (|Coefficient/SE|)")
```

Variable Importance Plot

##
clustering Lets begin by determining the #
of clusters we want to use for k

```
numeric_columns <- sapply(data, is.numeric)
data[numeric_columns] <- scale(data[numeric_columns])

#Elbow method
wss <- sapply(1:10, function(k) sum(kmeans(data[numeric_columns], centers=k, nstart=10)$withinss))
plot(1:10, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares")</pre>
```


4 seems to be a reasonable choice

i Please use 'linewidth' instead.

generated.

This warning is displayed once every 8 hours.

```
# K-means clustering
kmeans_result <- kmeans(data[numeric_columns], centers=4, nstart=25)
data$cluster <- kmeans_result$cluster

# visualizing in pca
pca_results <- prcomp(data[numeric_columns])
pca_data <- data.frame(PC1 = pca_results$x[,1], PC2 = pca_results$x[,2], cluster = as.factor(kmeans_results)
# Assuming 'pca_data' contains the PCA results and cluster assignments
ggplot(pca_data, aes(x = PC1, y = PC2, color = cluster)) +
    geom_point(alpha=0.7) +
    stat_ellipse(type = "t", linetype = 2, size = 1, level = 0.95) + # Adds ellipses
    labs(title = "PCA of Dataset with K-Means Clusters", x = "Principal Component 1", y = "Principal C
```

Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was

The axes (PC1 and PC2) represent the principal components that account for the most variance in the data ##Hierarchical clustering

```
hc_result <- hclust(dist(data[numeric_columns]), method="ward.D2")
plot(hc_result, main = "Customized Dendrogram", xlab = "Index of Data Points", ylab = "Height",
    lty = 2, col = "blue", sub = "", cex = 0.6)
rect.hclust(hc_result, k = 4, border = "red")</pre>
```

Customized Dendrogram

Index of Data Points

##Do AIDS patients exhibit different patterns of treatment response based on the type of treatment received? How do CD4/CD8 counts change over time for patients under different treatment regimens?

Box plots

```
data <- read.csv("AIDS_Classification.csv")
data$trt <- as.factor(data$trt)

#CD4 counts at baseline
ggplot(data, aes(x = factor(trt), y = cd40, fill = factor(trt))) +
    geom_boxplot() +
    scale_fill_brewer(palette = "Pastel1") +
    labs(title = "CD4 Counts at Baseline by Treatment", x = "Treatment Group", y = "CD4 Count") +
    theme_minimal()</pre>
```



```
#D4 counts at 20 week
ggplot(data, aes(x = factor(trt), y = cd420, fill = factor(trt))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(title = "CD4 Counts at 20 Weeks by Treatment", x = "Treatment Group", y = "CD4 Count") +
  theme_minimal()
```



```
# CD8 counts at baseline
ggplot(data, aes(x = factor(trt), y = cd80, fill = factor(trt))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(title = "CD8 Counts at Baseline by Treatment", x = "Treatment Group", y = "CD8 Count") +
  theme_minimal()
```



```
#CD8 counts at 20 week
ggplot(data, aes(x = factor(trt), y = cd820, fill = factor(trt))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(title = "CD8 Counts at 20 Weeks by Treatment", x = "Treatment Group", y = "CD8 Count") +
  theme_minimal()
```


Change plots


```
ggplot(data, aes(x = factor(trt), y = cd8_change,fill = factor(trt))) +
  geom_boxplot() +
  scale_fill_brewer(palette = "Pastel1") +
  labs(title = "Change in CD8 Counts by Treatment from Baseline to 20 Weeks", x = "Treatment Group", y = theme_minimal()
```


Histogram

```
#histogram for cd4-cd4 20 weeks
par(mfrow=c(1,2))
hist(data$cd40, main="Histogram of CD40", xlab="CD4 at baseline")
hist(data$cd420, main="Histogram of CD420", xlab="CD4 at follow-up")
```



```
par(mfrow=c(1,1))

#histogram for cd8-cd8 20 weeks
par(mfrow=c(1,2))
hist(data$cd80, main="Histogram of CD80", xlab="CD8 at baseline")
hist(data$cd820, main="Histogram of CD820", xlab="CD8 at follow-up")
```

Histogram of CD80

Histogram of CD820


```
par(mfrow=c(1,1))
```

ANOVA tables

```
# ANOVA for CD4 counts from baseline to follow-up
anova_cd4 <- aov(cd40 \sim cd420 + trt, data = data)
summary(anova_cd4)
##
                      Sum Sq Mean Sq F value
                                               Pr(>F)
                  1 10237263 10237263 1123.5 < 2e-16 ***
## cd420
## trt
                  3
                      377202
                               125734
                                         13.8 6.51e-09 ***
               2134 19445303
                                 9112
## Residuals
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# ANOVA for CD8 counts from baseline to follow-up
anova_cd8 <- aov(cd80 ~ cd820 + trt, data = data)</pre>
summary(anova_cd8)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## cd820     1 281930714 281930714 2859.166 <2e-16 ***
## trt     3 645363 215121 2.182 0.0882 .
## Residuals 2134 210425085 98606
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

```
# ANOVA to test for differences in changes in CD4 counts across treatment groups
anova_result <- aov(cd4_change ~ factor(trt), data = data)
summary(anova_result)</pre>
```