2016年嘉定区初三物理一模

(试卷含答案)

(满分 150 分, 考试时间 100 分钟)

一、选择题(共16分)

下列各题均只有一个正确选项,请将正确选项的代号用 2B 铅笔填涂在答题纸的相应 位置上,更改答案时,用橡皮擦去,重新填涂。

- 1. 光的三原色是:
- A. 红、黄、蓝 B. 赤、橙、绿 C. 赤、绿、紫 D. 红、绿、蓝

- 2. "文明伴我行,在公交车上不能大声喧哗"这里的"大声"是指声音的
- B. 音调
- C. 音色
- 3. 四冲程汽油机在工作过程中,将机械能转化为内能的冲程是
- A. 吸气冲程
- B. 压缩冲程
- C. 做功冲程 D. 排气冲程
- 4. 第一个用实验的方法测定大气压强值的科学家
- A. 牛顿
- B. 帕斯卡
- C. 托里拆利 D. 阿基米德
- 5. 如图 1 所示,分别用力 F_1 、 F_2 、 F_3 匀速提起同一物体。若不考虑滑轮重和摩擦,则三个 力的大小关系是
- A. $F_1 = F_2 = F_3$
- B. $F_1 = F_2 > F_3$
- C. $F_1 = F_2 < F_3$ D. $F_1 < F_2 < F_3$

- 6. 两个质量不同的金属块,放出相同的热量,降低了相同的温度,则
- A. 质量大的金属块的比热容小
- B. 质量大的金属块的比热容大

C. 两金属块的比热容相同

- D. 两金属块的比热容大小无法确定
- 7. 在图 2 所示的电路中电源电压不变,将电流表 A₁、A₂正确连入电路 A、B 或 C 处, 闭合电键 S, 电路正常工作, 各电表的示数均不为零。当移动滑动变阻器 R₂的滑片 P 时, 电流表 A₁与电流表 A₂示数的差值不发生变化。则
- A. 电流表 A₁ 一定串联在 C 点
- B. 电流表 A₁ 可能串联在 A 点
- C. 电流表 A_2 一定串联在 B 点
- D. 电流表 A₂一定不串联在 A 点
- 8. 如图 3 所示, 甲、乙两个实心均匀正方体分别放在水平地面上, 它们对地面的压强相

等。若将乙叠放在甲的上表面中央,甲对地面的压强增加量为 $\triangle p$ $_{\mathbb{P}}$,将甲叠放在乙的上表面中央,乙对地面的压强增加量为 $\triangle p$ $_{\mathbb{Z}}$,则

- A. $\triangle p \neq \geq \triangle p \angle$
- B. $\triangle p = \triangle p_{7}$
- C. $\triangle p \neq \leq \triangle p \angle$
- D. 以上都有可能

二、填空题(共26分)

请将结果填入答题纸的相应位置。

- 9. 城市景观路灯的工作电压与家用照明电路一样都是<u>(1)</u>伏;这些路灯是<u>(2)</u>(选填"串联"或"并联")连接的。一到夜晚,所有路灯工作,甚是美丽,若有一盏路灯突然熄灭,则电路中的总电阻将(3)(选填"增大"、"不变"或"减小")。
- 10. 8月6日,中国选手宁泽涛以 47 秒 84 的成绩获得 2015 年游泳世锦赛男子自由泳冠军,这是亚洲选手第一次在男子短距离游泳世界大赛中获得金牌。比赛哨声响起时,他用力蹬出发台后飞跃入水,这说明力可以改变物体的_(4)__,在他奋力加速的过程中,他的惯性_(5)__,动能_(6)__。(后两空均选填"增大"、"不变"或"减小")。
- 11. 双休日小明骑自行车去郊游,骑行中为了减小车速,要捏紧车闸,这是通过<u>(7)</u>的方法增大摩擦,此时刹车皮会发热,这是通过<u>(8)</u>的方式增加内能。用碳纤维材料制成的自行车比同款其他材料制成的质量小得多,这是利用了碳纤维材料<u>(9)</u>的特点。
- 12. 甲、乙两车同时同地反方向做匀速直线运动,它们的*s-t*图像如图4所示。12秒钟时甲乙两车相距<u>(10)</u>米,以甲车为参照物,乙车是<u>(11)</u>(选填"运动"或"静止")的,甲车(12) (选填"一定"或"可能")受的是平衡力。

- 13. 某导体两端的电压为 3 伏,通过它的电流为 0.3 安,10 秒内通过该导体横截面的电荷量为 (13) 库,其电阻为 (14) 欧。当通过该导体的电流为 0.5 安时,其电阻为 (15) 欧。
- 14. 重力为 50 牛的物体在大小为 10 牛的水平拉力作用下,10 秒内在水平地面上沿拉力方向匀速前进 3 米,则物体与地面之间的摩擦力为 (16) 牛,拉力做的功为 (17) 焦,功率为 (18) 瓦。

15. 如图 5 所示电路中,电源电压保持不变。闭合电键 S 后,两个电表中只有一个电表有示数。若电路中除了 R_1 、 R_2 外,其它电路元件均完好。

图 5

- (1) 电路中存在的故障可能是_____。
- (2) 若将 R_1 和 R_2 交换位置,再次闭合电键后,两电表均有示数,则电路中的故障一定是_____。

16.	初中	物理	中已经	经学过许多	复合单	单位,	其物理	里意	义同学	色们还	会说	吗?	例如:	在え	力学中,
" 牧	勿体在	单位	时间	内通过的	路程"	用'	"速度	"这	个物	理量	表示,	它自	的主单	单位是	是"米/
秒"	,如是	果物作	本的速	度是5米	长/秒,	表示	的物理	ままり とうしゅう はいしょう はいしょう はいし	义是'	'该物]体每	1秒	通过	的路	程是 5
米"	。而	"某和	物质	单位体积	的质量	"用	"密度	き"表	表示,	水的	密度是	是 <u>(2</u>	1)	克/厘	重米 3,
表示	的物	理意	义是"	'1厘米³	水的质	量是	(22)			在电	以学中	,"单	位时	间通	过导体
横截	战面的	电荷	量"月	目"电流"	'这个特	勿理』	量表示	,若	通过	某导	体的目	电流ガ	√J 0.5	安,	其物理
意义	人是"	每秒	通过i	亥导体横	截面的	电荷	量是_	(23)		"。禕	青根据	已学	的知	识,	请你推
断:	如果	" 单	位时	间通过某	水管横	截面	的水的	J体彩	!"用	"水	流量"	表示	、 那	么某	水管的
水	流	量	是	500米	3/秒	,	表	示	的	物	理	意	义	是	"
(2	4)														

三. 作图题(共8分)

请将图直接画在答题纸的相应位置,作图必须使用 2B 铅笔。

- 17. 在图 6 中,根据给出的反射光线 OB 画出入射光线 AO,并标出入射角及其度数。
- 18. 如图 7 所示,一个重为 20 牛的物体静止在水平桌面上,请在图中用力的图示法画出物体受到的重力。
- 19. 在图 8 中的〇里填上适当的电表符号, 电键闭合时电路能正常工作。

四. 计算题(共22分)

请将计算过程和答案写入答题纸的相应位置。

20. 重为 5 牛, 体积为 2×10^{-4} 米 3 的小球浸没在水中, 求: 小球受到的浮力 $F_{\mathbb{F}}$

- 21. 如图 9 所示的电路中,电源电压恒为 18V,电阻 R_1 的阻值为 10Ω ,电流表 A 的 $0\sim3$ A 量程损坏。闭合开关 S,电压表示数为 13 伏,两电表的表盘如图 10 所示。求:
- (1) 通过电阻 R_1 的电流 I_1 ;
- (2) 电阻 R_2 的阻值;
- (3) 若用标有" 100Ω 1A"字样的滑动变阻器 R_3 替换电阻 R_2 ,在保证电路各元件安全的情况下,电压表示数的最大变化量。

- 22. 如图 11 所示薄壁轻质柱形容器甲、乙放置在水平地面上,已知底面积为 2×10^{-2} 米 2 的 乙容器中装有 1×10^{-2} 米 3 的水,且 A 点离水面 0.2 米。
- (1) 求乙容器中水的质量 $m_{\text{ }N}$ 。

(2) A 点处水的压强 p_{A} 。

(3) 将一体积 2×10^{-3} 米 3 密度为 ρ 物的物块浸没在乙容器的水中。再在甲容器中注入密度为 ρ 液的液体后,甲、乙两液面相平,液体均不溢出。若乙容器对水平地面压强的增加量 Δp $_{\mathrm{Zh}}$ 与甲容器中液体对底部的压强 p $_{\mathrm{Hg}}$ 相等,求 ρ 物与 ρ 液之比。

五. 实验题(共18分)

请根据要求在答题纸的相应位置作答。

23. 如图 12 所示的各实验器材中,使用前需要调零的有<u>(1)</u>;选择实验器材<u>(2)</u>可测量体温;选择实验器材<u>(3)</u>可测定物质的密度(均选填序号)。图 12 (e)中的器材必须<u>(4)</u>(选填"串联"或"并联")在待测电路两端。

24. 在"探究平面镜成像的特点"实验中,在水平桌面上垂直放置一块透明玻璃板作为平面镜,这样做的目的是___(5)___; 当找到像的位置后,在玻璃板后面挡一张黑纸,__(6)___(选填"能"或"不能")看到玻璃板内点燃的蜡烛的像。在"验证凸透镜成像规律"的实验中,当处于如图 13 所示位置时,在光屏上得到了清晰的烛焰像,可判断这个像是___(7)__(选填"放大"或"缩小")的,若将蜡烛再远离凸透镜一些,这时光屏应向__(8)___(选填"左"或"右")移动,以获得清晰的实像。

图 13

25. 甲、乙两组同学分别做"用电流表、电压表测电阻"的实验,所用的器材齐全并完好,电源电压恒定不变。为了能够获得多组测量数据,其中甲组选择用串联滑动变阻器的方法、而乙组选择用改变串联电池节数的方法。

甲组同学正确串联实验器材,并将滑片放置于变阻器的一端,然后将电压表并联在电路中。闭合电键后,观察到电压表示数如图 14(a)所示。接着移动滑动变阻器的滑片,发现电压表和电流表示数均变小,其中电流表示数的变化范围为 0.20 安~0.58 安。当滑片移到变阻器中点附近某位置时,电压表、电流表的示数如图 14(b)、(c)所示。

- (1) 从实验操作的便捷性和电路的安全性考虑, (9) (选填"甲组"或"乙组") 选择的方案更好。
- (2) 甲组同学所用的电源电压是<u>(10)</u>伏,滑动变阻器的最大电阻约为<u>(11)</u>欧。
- (3)根据实验过程中记录的数据,则待测电阻的电阻平均值是<u>(12)</u>欧。(计算电阻时,精确到0.1 欧)
- 26. 某小组同学通过如图 15 所示电路实验研究"串联电路电压的规律",他们将电阻 R_1 、 R_2 串联在电路中,用电压表测出电路中的电源电压以及 R_1 、 R_2 两端的电压,用电流表测出通过电路中的电流,并改

变电源电压和 R_1 、 R_2 的阻值进行了多次实验,实验中记录的数据如下表所示。

图 15

物理量	电源电压 U	R_I 的阻值	电路中的电	R_I 两端电压 U_I	R_2 两端电压 U_2
实验序号	(V)	(Ω)	流 I (A)	(V)	(V)
1	6	5	1	5	1
2	6	5	0.5	2.5	3.5
3	6	5	0.2	1	5
4	12	10	1	10	2
5	12	10	0.5	5	7
6	12	10	0.2	2	10
7	18	6	1	6	12
8	18	6	0.5	3	15
9	18	6	1.5		

- (1) 分析实验序号 1 与 2 与 3 (或 4 与 5 与 6,或 7 与 8 与 9)的数据中电路中的电流 I 与 R_1 两端电压 U_I 的倍数关系,可以得出的结论是 (13)
- (2) 分析实验数据中每一行的电源电压 U 及各串联电阻两端电压的大小关系可以得出的结论是_____。
- (3) 根据 (1)、(2) 得出的规律,实验序号 9 中 U_1 和 U_2 的数值应该分别是 (15) V、 (16) V。
 - (4) 进一步分析实验序号1与2与3(或4与5与6,或7与8与9)中第二、三、

答案要点和评分参考

1222mm1222							
题 号	答案要点及评分说明						
一、选择题 共 16 分 (每 题 2 分)	1. D。 2. A。 3. B。 4. C。 5. B。 6. A。 7. D。 8. C。						
二、填空题 共 26 分 (15 题每空 2 分,其余每空 1 分)	9. 220; 并联;增大。 10. 运动状态;不变;增大。 11. 增大压力;做功;密度小。 12. 32;运动;一定。 13. 3; 10; 10。 14. 10; 30; 3。 15. (1) R_1 断路; R_1 短路; R_1 断路且 R_2 短路。(2) R_1 短路。 16. 1; 1克; 0.5 库仑;每秒通过该水管横截面的水的体积是 500 米 3。						
三、作图题 (共 8 分)	17. 入射光线 1 分, 入射角 1 分, 度数 1 分。18. 作用点、大小和方向各 1 分。19. 填写正确得 2 分						
四、计算题 (共 22 分)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

	(1) $U_1 = U - U_2 = 18$ 伏 -13 伏 $= 5$ 伏 $I_1 = U_1/R_1 = 5$ 伏 $= 0.5$ 安	1分 2分
21. (8 分)	(2) $R_2 = U_2/I_2 = U_2/I_1$ = 13 伏/0.5 安=26 欧 (3) 当电路中的电流最大时, R_2 两端的电压最变阻器允许通过的最大电流为 1 安,所以 $I_{\text{最大}} = 1$ 安 又:电流表 0~3A 量程损坏。 :电路允许通过的最大电流为 $I_{\text{最大}} = 0.6$ 安。 $U_{1 \pm} = I_{1 \pm} R_1 = 0.6$ 安 10 欧=6 伏 $U_{2 \text{ y}} = U - U_{1 \pm} = 18$ 伏 -6 伏 = 12 伏 当电路中的电流最小时, R_2 两端的电压最大 $U_{1 \text{ y}} = I_{1 \text{ y}} R_1 = U R_1/(R_1 + R_2 \pm) = 18$ 伏×10 欧 100 欧)=1.6 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \pm 1} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{1 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ 伏 $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$ $U_{2 \text{ y}} = U - U_{2 \text{ y}} = 18$	1分 / (10欧+ 5伏
	$U_{2\pm} = 15$ 伏 $\Delta U_{\pm} = U_{2\pm} - U_{2\pm} = 15$ 伏 -12 伏 -13 伏	1分 1分
22. (10 分)	① $m_{x} = \rho V = 1 \times 10^{3} + \bar{p}/ + 3 \times 1 \times 10^{2} + 3 = 10 + \bar{p}$ ② $p_{A} = \rho g h = 1 \times 10^{3} + \bar{p}/ + 3 \times 9.8 + / + \bar{p} \times 0.2 + 3 = 1960 $ 帕 3 分 ③ $h_{B} = h_{Z} = V_{\dot{B}}/ + S_{Z} = (1 \times 10^{-2} + 3 + 2 \times 10^{-3} + 3) / 2 \times 10^{-6} + 2 \times 10^$	· 10 ⁻² 米 ⁻² 分

	1	
	23. (4 分)	(1)(d)(e); (2)(b); (3)(a)(c); (4) 并联。
	24. (4 分)	确定像的位置; 能; 放大; 左。
五、实验题 (共 18 分)	25. (4 分)	(1) 甲组; (2) 6伏; 20欧; (3) 10.0欧
(共10万)	26. (最 后空	(1) 同一导体,通过导体的电流与导体两端的电压成正比; (2) 同一串联电路中,各串联电阻两端的电压之和等于电源电
	2分 其余 每空 1 分)	压; (3) 9; (17) 9; (4) 各串联电阻两端的电压变化量相等。

像平时有价值的升学文章,像自招、校园开放日消息、历年中考分数线,那些文章我都放在公众号菜单栏那个按钮上的专题那里了,还有什么细化的升学问题,你们可以关注公众号给我留言,我看到会第一时间回复你们的。

——小编编

