Assignment AE4350

In the course AE4350 on bio-inspired intelligence for aerospace applications, we introduce various bio-inspired algorithms in the lectures. The goal of the assignment is that students implement their own bio-inspired intelligence algorithm on a task they propose.

What type of task can be studied in the assignment?

The following table shows per main topic some guidelines about the type of task that can be studied.

Reinforcement	Evolutionary	Insect (swarm)	Spiking neural	Physical
learning	Robotics	intelligence	networks	interaction
Control of	Control of	Any swarming	Exploration /	Learning or
(simulated)	(simulated)	task in which a	investigation of	design the
(electro)	(electro)	(preferably large)	SNN learning /	control of a
mechanical	mechanical	number of agents	encoding /	robot or robot
systems:	systems:	/ robots perceives	decoding /	arm that
aerospace,	aerospace,	and acts locally,	adaptation	interacts with
robotics,	robotics,	or a single agent	algorithms	its
automotive, etc.	automotive, etc.	task relevant to		environment.
		robots and		
		insects		
		(navigation,)		
Any type of game	Any type of game	Make a	Tasks like	A combination
where a player	where a player	combination with	classification,	of
(agent) interacts	(agent) interacts	a learning method like ER	regression, ER,	(automatically)
with the	with the environment:	method like EK	RL, navigation	designing a
environment: Cardgame,	computer / card /			body and a controller for
boardgame,	board game etc.			interaction
computer game	Doard game etc.			with the
etc.				environment.
Agent-based	Agent-based	Tasks like	Work with	Learning
optimization of	optimization of	formation flight,	event-based	control for a
processes:	processes:	foraging,	datasets or	robot that has
scheduling, path	scheduling, path	construction,	encode	compliance,
planning, etc.	planning, etc.	exploration,	traditional	comparing it
. 5,	. 0,	coverage,	datasets in a	with a rigid
		J ,	spiking manner	setup.

Students need to propose a task to the teachers (including "AE4350 assignment" in the mail's subject) and need a positive response before actually starting to work on them. We expect the students to first attend the lectures and make the exercises *before* choosing a task. However, the topic needs to be defined maximally two weeks after the last lecture. The "product" of the assignment is a report of maximally 10 pages (in <u>TU Delft report style</u>) together with a link to code on github (preferably public, but in case it is private, invite the teachers to the repo). The **deadline** for the assignment report is August 31, 2023, and the assignment has to be handed in on Brightspace.

What should the report be like?

The report should contain an introduction to the topic, with adequate references from the literature. For clarity: The methods studied in the assignment do not necessarily have to be novel with respect to the literature, although this is also not discouraged. The method followed by the student should be described, together with the results, and how those results depend on parameters of the algorithm. It is highly appreciated if the solution found by learning methods is analyzed to some extent. The rubric below is our guideline for assessing the assignment report.

	Sub-par (<=5)			Excellent (9-10)
Complexity	Only 2-3 parameters			State-of-the-art method,
of the				continuous, high-dimensional
method		7		problem
Environment	Low number of states and			Continuous, high-dimensional
/ application	actions, small dataset, few	<		problem, real-world problems
complexity	learning "runs"		,	
Scientific	Many elements missing (no			All elements as required in a
reporting	references, no introduction,			scientific report are present, incl.
	etc.), bad English, unreadable	h		introduction of abbreviations,
	labels / captions / figures	1	P	symbols, frames of reference, solid
				referencing to the literature,
				placing the work in context, etc.
Description	Missing, basic elements unclear			Clear description, easily
of the				reproducible, all variables and
method			V	parameters explained, open source
				code
Description	Unclear, missing legends, axis			Very clear, informative graphs,
of the results	labels, etc.	╽		descriptions, broader
				interpretation of the results,
				including statistics on multiple runs
				(uncertainty)
Sensitivity	Just a single result, no			Varying multiple parameters in a
analysis	sensitivity analysis			sensible way, giving insight into the
		1		most vital parts of the learning
				process
Analysis of	No analysis is performed of			Profound analysis of the solution
the found	what the learning method has	\ \	1	found by learning, clear
solution(s)	found			explanation of the learned strategy

Each category (color) weighs equally in the determination of the grade.

Checklist report:

- Is it handed in on time? (before or on August 31)
- Does the report contain a link to github? If private, were teachers invited to the repo?
- Does the report have the elements in the rubric mentioned above?