CSC384 A4 Q3

Jenney Ren

August 2020

Question 3: Fairness

1. Separation but not sufficiency:

С	Y	A	Probability
c	y	a	0.35
c	y	$\neg a$	0
c	$\neg y$	a	0.21
c	$\neg y$	$\neg a$	0.18
$\neg c$	y	a	0
$\neg c$	y	$\neg a$	0
$\neg c$	$\neg y$	a	0.14
$\neg c$	$\neg y$	$\neg a$	0.12

Proof:

$$P(c \mid y) = \frac{P(c \land y)}{P(y)}$$

$$= \frac{0.35}{0.35}$$

$$= 1$$

$$P(c \mid y, a) = \frac{P(c \land y \land a)}{P(y \mid a)P(a)}$$

$$= \frac{P(c \land y \land a)}{\frac{P(y \land a)}{P(a)}P(a)}$$

$$= \frac{P(c \land y \land a)}{\frac{P(y \land a)}{P(a)}P(a)}$$

$$= \frac{P(c \land y \land a)}{P(y \land a)}$$

$$= \frac{0.35}{0.35}$$

$$= 1$$

So, $P(c \mid y, a) = P(c \mid y)$ and separation holds.

$$P(y \mid c) = \frac{P(y \land c)}{P(c)}$$

$$= \frac{0.35}{0.74}$$

$$= 0.473$$

$$P(y \mid c, a) = \frac{P(y \land c \land a)}{P(c \land a)}$$

$$= \frac{0.35}{0.56}$$

$$= 0.625$$

So, $P(y \mid c, a) \neq P(y \mid c)$ and sufficiency does not hold.

2. Sufficiency but not separation:

С	Y	A	Probability
c	y	a	0.35
c	y	$\neg a$	0
c	$\neg y$	a	0
c	$\neg y$	$\neg a$	0
$\neg c$	y	a	0.21
$\neg c$	y	$\neg a$	0.18
$\neg c$	$\neg y$	a	0.14
$\neg c$	$\neg y$	$\neg a$	0.12

Proof:

$$P(y \mid c) = \frac{P(y \land c)}{P(c)}$$

$$= \frac{0.35}{0.35}$$

$$= 1$$

$$P(y \mid c, a) = \frac{P(y \land c \land a)}{P(c \land a)}$$

$$= \frac{0.35}{0.35}$$

$$= 1$$

So, $P(y \mid c, a) = P(y \mid c)$ and sufficiency holds.

$$P(c \mid y) = \frac{P(c \land y)}{P(y)}$$

$$= \frac{0.35}{0.74}$$

$$= 0.473$$

$$P(c \mid y, a) = \frac{P(c \land y \land a)}{P(y \land a)}$$

$$= \frac{0.35}{0.56}$$

$$= 0.625$$

So, $P(c \mid y, a) \neq P(c \mid y)$ and separation does not hold.