Cardinality and Countability

Section 1.1: Countable Sets

Definition (Denumerable Set). A set S is denumerable if there exists a function $f: S \to \mathbb{N}$ with f a bijection. We also say S is countably infinite.

Definition (Countable Set). We say S is countable if S is either finite or denumerable.

Theorem (Countability of Unions). *If* A *and* B *are countable sets, then* $A \cup B$ *is countable.*

Theorem (Countability of Subsets). *If* $A \subseteq B$, *then if* B *is countable, then* A *is countable.*

Theorem (Union of Finite Sets). *If* A *and* B *are finite, then* $A \cup B$ *is finite.*

Proof. If A is finite and |B| has one element, then we show that $A \cup B$ is finite (with two cases).

Afterward, for |B| > 1, we use induction on |B|.

Definition (Finite Set). A set A is finite if there exists a bijection $f: S \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N} = \{0, 1, ...\}$.

We write |A| = n.

Theorem (Disjoint Union of Countable Sets). *If* A *is denumerable,* B *is finite, and* $A \cap B = \emptyset$ *, then* $A \cup B$ *is denumerable.*

Proof. There exists a bijection $f : A \to \mathbb{N}$ (since A is denumerable), and a bijection $g : B \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ (since B is finite).

We create a new bijection $h : A \cup B \rightarrow \mathbb{N}$ by:

$$h(x) = \begin{cases} g(x) - 1 & x \in B \\ f(x) + n & x \in A \end{cases}.$$

Since $A \cap B = \emptyset$, we know that h is well-defined.

Now, we must show that h is a bijection.

Suppose h(x) = h(y).

Case 1: If $x, y \in B$, then h(x) = g(x) - 1, and h(y) = g(y) - 1, meaning g(x) - 1 = g(y) - 1, meaning g(x) = g(y). Since g is a bijection, x = y.

Case 2: If $x, y \in A$, a similar argument yields that x = y

Case 3: Without loss of generality, let $x \in A$ and $y \in B$. If $x \in A$, then h(x) = f(x) + n and h(y) = g(y) - 1. Thus, f(x) + n = g(y) - 1. However, since $f(x) + n \ge n$ and $0 \le g(y) - 1 \le n - 1$. Thus, we get that $0 \le n \le n - 1$, which is a contradiction.

Thus, we have shown that h is injective.

Theorem (Cartesian Product of Natural Numbers). $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. We consider $\mathbb{N} \times \mathbb{N}$ as

$$\mathbb{N} \times \mathbb{N} = \mathbb{N} \times \{0\} \cup \mathbb{N} \times \{1\} \cup \cdots$$

Then, we can find an (informal) bijection as follows:

$$\mathbb{N} \times \{0\} : (0,0)^{-0} (1,0)^{-2} (2,0)^{-5} (3,0)^{-9} \cdots$$
 $\mathbb{N} \times \{1\} : (0,1)^{-1} (1,1)^{-4} (2,1)^{-8} (3,1) \cdots$
 $\mathbb{N} \times \{2\} : (0,2)^{-3} (1,2)^{-7} (2,2) (3,2) \cdots$
 $\mathbb{N} \times \{3\} : (0,3)^{-6} (1,3) (2,3) (3,3) \cdots$
 $\vdots \vdots \vdots \vdots \vdots \vdots \cdots$

We can also find a bijection $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, with

$$P(x,y) = \frac{(x+y)(x+y+1)}{2} + x$$

A fun challenge is to prove that P is a bijection.

Theorem (Countability of the Rationals). *Q is denumerable.*

Theorem (Countability of the Integers). *The set* \mathbb{Z} *is denumerable.*

Proof. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

Definition (Cardinality). We say two sets, A and B, have the same cardinality if there exists a bijection $f: A \to B$.

Theorem (Finite Subset Cardinality). *If* $m, n \in \mathbb{N}$ *and* $m \neq n$, *then* $\{1, 2, ..., m\}$ *and* $\{1, 2, ..., n\}$ *do not have the same cardinality.*

Theorem (Infinitude of the Natural Numbers). N is not finite.

Example. If $A \subseteq B$ and |A| = |B|, then both A and B are infinite.

In order to prove this, we need to show that every injection from a finite set to itself is a bijection.

Section 1.2

Definition (Uncountable Set). A set is uncountable if it is not countable.

Theorem (Uncountability of \mathbb{R}). \mathbb{R} *is uncountable.*

Proof. For all $x \in \mathbb{R}$, and for all $j \in \mathbb{N}$, we define $[x]_j$ to denote the j + 1-th digit after the decimal point in the decimal expansion of x.

For example, $[\pi]_0 = 1$, $[\pi]_1 = 4$, etc.

Let $f : \mathbb{N} \to \mathbb{R}$. We will show that f is not surjective.

Let $y \in [0,1) \subseteq \mathbb{R}$ defined by $\forall j \in \mathbb{N}$,

$$[y]_j = \begin{cases} 0 & [f(j)]_j = 1\\ 1 & [f(j)]_j \neq 1 \end{cases}$$

We claim that $y \notin f(\mathbb{N})$. We will show that $\forall j \in \mathbb{N}$, $f(j) \neq y$.

We can see that if $[f(j)]_j = 1$, then $[y]_j = 0$. Similarly, if $[f(j)]_j \neq 1$, then $[y]_j = 1$. Either way, $[f(j)]_j \neq [y]_j$ for all $j \in \mathbb{N}$.

Remark: The above proof is an example of a diagonalization proof. It can be imagined as

Note: A substantial problem that we might need to deal with is that a real number does not necessarily have a unique decimal representation. For instance, $3.999 \cdots = 4.000 \ldots$

In order to resolve this issue, we can default to the option with trailing 0 over trailing 9.

Definition (Power Set). The power set of a set S is

$$\mathcal{P}(S) = \{A \mid A \subseteq S\}.$$

Theorem (Power Set Surjection). *Let* $f: S \to \mathcal{P}(S)$. *Then,* f *is not surjective.*

Proof. Let $T = \{x \in S \mid x \notin f(x)\}$. Then, $T \notin f(S)$.

Let $y \in S$. We want to show that $f(y) \neq T$. Suppose toward contradiction that f(y) = T. Then, if $y \in T$, then $y \in f(y)$, which implies that $y \notin T$.

If $y \notin T$, then $y \notin f(y)$, which implies that $y \in T$.

Thus, it cannot be the case that f(y) = T.

Definition (Cardinality Comparison). Let A and B be sets. Then, we write $card(A) \le card(B)$ if there exists an injective map $f : A \hookrightarrow B$.

We write card(A) < card(B) if there exists an injection $f : A \hookrightarrow B$ but no bijection.

Example (Cardinality of the Power Set). For every set,

$$card(S) < card(\mathcal{P}(S))$$
.

(1) We know that $card(S) \le card(\mathcal{P}(S))$, defining $f: S \hookrightarrow \mathcal{P}(S)$, $f(a) = \{a\}$, since if f(x) = f(y), then $\{x\} = \{y\}$, meaning $x \in \{y\}$, so x = y.

In the case of $f: \emptyset \to \{\emptyset\}$, we define $\emptyset = f \subseteq \emptyset \times \{\emptyset\}$.

(2) Since there exists no bijection $f: S \to \mathcal{P}(S)$, it is the case that $card(S) \neq card(\mathcal{P}(S))$.

Example (Decimal Expansion). We know that for some decimal expansion

$$3.14159... = 3 + \frac{1}{10} + \frac{4}{100} + \cdots$$
$$= \sum_{i=0}^{\infty} \frac{n_i}{10^i},$$

with $0 \le n_i \le 9$ for $i \ge 1$.

However, we can also write any real number as

$$\sum_{i=0}^{\infty} \frac{n_i}{3^i}$$

with $0 \le n_i \le 2$ for all $i \ge 1$.