Тема учебного предмета: «Материалы высокой проводимости, сверхпроводниковые материалы»

Лабораторная работа № 2

Тема работы: «Определение температурного коэффициента электрического сопротивления проводников»

1. Цель работы

Научить измерять сопротивление проводников и рассчитывать температурный коэффициент сопротивления проводников.

2. Задание

Измерить сопротивление проводников и рассчитать температурный коэффициент сопротивления

3. Оснащение работы

- 1. Стенд НТЦ 05.13 «Электротехнические материалы».
- 2. Модуль №1 «Проводники».
- 3. Мультиметр.
- 4. Измеритель RLC.
- 5. Канцелярские принадлежности (ручка, карандаш, линейка и др.).
- 6. Калькулятор.

4. Основные теоретические сведения

Концентрация n электронов проводимости в металлических проводниках от температуры не зависит, однако от температуры зависит их подвижность a. С увеличением температуры возрастают тепловые колебания узлов кристаллической решетки и создаются большие препятствия на пути дрейфа электронов, что приводит к снижению их подвижности a; в результате удельная электропроводность γ уменьшается (формула 1.1), а обратная ей величина удельное сопротивление ρ =1/ γ растет

Величина, на которую изменится удельное сопротивление проводника при изменении его температуры на 1 К, называется *температурным коэффициентом* удельного сопротивления TK_{ρ} (α_{ρ}). Дифференциальное выражение TK_{ρ} , K^{-1} , имеет вид

$$TK_{\rho} = \alpha_{\rho} = \frac{1}{\rho} \frac{d\rho}{dT}$$

На практике пользуются средним значением $TK_{\rho,cp}$, K^{-1} , для определенного интервала температур:

$$TK_{\rho.\mathrm{cp}} = \alpha_{\rho.\mathrm{cp}} = \frac{1}{\rho_2} \frac{\rho_2 - \rho_1}{T_2 - T_1}$$

где ρ_1 и ρ_2 – удельные сопротивления проводника при температурах T_1 и T_2 соответственно, при этом $T_2 > T_1$.

Таким образом, сопротивление проводника R при температуре t находится по формуле

$$R = R_0 (1 + \alpha_{\rho, cp}(t - t_0)), \tag{1}$$

где R_0 – сопротивление проводника при температуре t_0 = 20 °C.

Из (1) следует, что зависимость R(t) имеет вид

$$R = R_0(1 + \alpha t), \tag{2}$$

где $\alpha=R_0\alpha_{
ho.cp}$ – угловой коэффициент графика.

Из графика зависимости R(t) (рисунок 1) определяются коэффициенты α_1 и R_0 .

Рисунок $1 - \Gamma$ рафик зависимости R(t)

Коэффициент α находится как тангенс угла наклона графика

$$\alpha = \frac{\Delta R}{\Delta T}.$$
 (3)

Коэффициент α находится из выражения

$$\alpha_{\rho, \text{cp}} = \frac{\alpha}{R_0},\tag{4}$$

где R_0 - значение R при $t=20^{\circ}\mathrm{C}$, определяется из графика.

5 Порядок выполнения работы

- 5.1 Изучите основные теоретические сведения.
- 5.2 Согласно рисунку 2 выполнить электрические соединения для проведения измерений.
 - !!! Монтаж схемы производить при отключенном питании.
- В качестве источника питания для нагрева в данной схеме используется источник напряжения «Source Voltage» стенда.
- B качестве омметра использовать измеритель RLC, выбрать режим измерения сопротивления, нажимая кнопку L/C/R; диапазон измерения выбирается автоматически при измерении.
- B качестве термометра использовать мультиметр. Установить режим измерения температуры « ${}^{\circ}C$ ».

Рисунок 2 — Схема соединений типового комплекта для измерения ТКС проводников

- 5.3 Поверните ручку потенциометра RP1 на 4 деления вверх от нуля.
- 5.4 Подайте напряжение питания на комплект включением кнопки SB1 на стенде.
- 5.5 Включите мультиметры. Если термопара не соединена с гнездами мультиметра на его индикаторе будет отображена комнатная температура. Подключите термопару к входу «ТЕМР» мультиметра и, если показания температуры ниже комнатной, измените полярность подключения (переверните вилку термопары).
- 5.6 Постепенно поворачивая ручку потенциометра RP1 вправо, наблюдайте за показаниями термометра и омметра, и через каждые $5\,^{\circ}\mathrm{C}$ одновременно заносите

значения сопротивлений проводника и температуры в таблицу 1. Измерения проводить до 85°C.

!!! Не допускается нагревать модуль выше 90°C.

- 5.7~ После завершения измерений поверните ручку потенциометра RP1~ до упора влево и отключите стенд кнопкой SB1.
- 5.8 Разберите схему, предоставьте комплекс в полной комплектности и исправности преподавателю или лаборанту.
 - 5.9 По данным опыта (таблица 1) постройте график зависимости R(t).
- 5.10 По графику определите коэффициент α , как тангенс угла наклона графика и по формуле (4) рассчитайте $\alpha_{\rho, {\rm cp}}$.
- 5.11 Сделайте обобщающий вывод о характере температурной зависимости сопротивления проводников.
 - 5.12 Оформите отчет по рекомендуемой форме.

6	Форма отчета о работе
П	абораторная работа №

	Thooparophan phoofa Ma			
Номер учебной групп	Ы			
Фамилия, инициалы обучающегося				
Дата выполнения работы				
Тема работы				
Цель работы				
Задание:				
Оснащение работы:				
Результаты выполнения работы:				
	•			
Таблица 1 – Результат	гы измерений			
№ п/п	t, °C	R, Ом		
1				
2				
Γ рафик зависимости $R(t)$. $\alpha =$				
- F - F	-(-).			
$\alpha_{\rho,cp} =$				
~ρ.cp				
Отреты на контрольн	TIE BOIIDOCKI			
Ответы на контрольные вопросы: 1.				
2.				
3.				
4.				
5.				
J.				
Dimon				
Вывод:				

7 Контрольные вопросы и задания

- 1. Опишите механизм проводимости электрического тока в проводнике.
- 2. Объясните влияние температуры проводника на его сопротивление.
- 3. Дайте определение понятию «температурный коэффициент удельного сопротивления».
 - 4. Приведите формулу для расчета сопротивления проводника.

Рекомендуемая литература

- 1. Берлин, В.И. Материаловедение: учебник для техникумов / В. И. Берлин, П.С. Костяев, К.Д. Шапкин. М.: Транспорт, 1979. 382 с.
- 2. Гелин, Ф. Д. Материаловедение: пособие с элементами программирования для металлистов / Ф. Д. Гелин, Э. И. Крупицкий, И. П. Позняк. Минск: Вышэйшая школа, 1977. 269 с.
- 3. Журавлева, Л.В. Электроматериаловедение: учебник для нач. проф. образования / Л. В. Журавлева. М.: Издательский центр "Академия", 2008. 352 с.
- 4. Красько, А.С., Павлович С.Н. Электроматериаловедение: учеб. пособие / А.С. Красько, С.Н. Павлович. Минск: РИПО, 2012. 210 с.