MULTISCALE AND MULTIPHYSICS MODELS: HIGH LEVEL IMPLEMENTATION & PRECONDITIONING

MIROSLAV KUCHTA

SIMULA RESEARCH LABORATORY & UNIVERSITY OF USLO

ENUMATH 2019, Egmond aan Zee

October 3, 2019

TWO LANGUAGE PROBLEM OF FENICS

Behind the scenes of "Hello World!" problem

$$-\Delta u = f$$
 in Ω ,
 $u = g$ on $\Gamma^D \cup \Gamma$,
 $\partial_n u = o$ on Γ^N .

Assembly (C++)code generated by FFC(Python) from UFL definition

```
from fenics import *
mesh = UnitSquareMesh(32, 32)

V = FunctionSpace(mesh, "Lagrange", 1)
bc = DirichletBC(V, 1, 'on_boundary')

u, v = TrialFunction(V), TestFunction(V)
a = inner(grad(u), grad(v))*dx
L = inner(Constant(1), v)*dx

A, b = assemble_system(a, L, bc)
```


TWO LANGUAGE PROBLEM OF FENICS

Making multiscale "Hello World!" problem work¹

$$-\Delta u = f$$
 in Ω ,
(weakly) $u = g$ on Γ ,
 $u = g$ on Γ^D ,
 $\partial_n u = 0$ on Γ^N .

'A diamond is very pretty. But it is very hard to add to a diamond.'

¹ Babuška, I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179-192.

TWO LANGUAGE PROBLEM OF FENICS

Making multiscale "Hello World!" problem work¹

$$-\Delta u = f$$
 in Ω ,
(weakly) $u = g$ on Γ ,
 $u = g$ on Γ^D ,
 $\partial_D u = 0$ on Γ^N .

'A diamond is very pretty. But it is very hard to add to a diamond.'

'A ball of mud is not so pretty. But you can always add more mud to a ball of mud.'

Babuška. I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179-192.

OBSERVATIONS ON STRUCTURE OF MULTISCALE PROBLEMS

Block structured operators in $W = V \times Q$, $V = V(\Omega)$, $Q = Q(\Gamma)$

$$\mathcal{A} = \begin{pmatrix} A & B' \\ B \end{pmatrix} : W \to W' \qquad \qquad \langle Bu, q \rangle = \int_{\Gamma} uq \, \mathrm{d}x$$

Coupling operator is composite $B = M \circ T$ using trace space V_T

$$T: V \to V_T, Tu = \bar{u} = u|_{\Gamma}$$
 $M: V_T \to Q', \langle Mu, q \rangle = \int_{\Gamma} uq dx$

² Mardal, K. A., & Haga, J. B. (2012). Block preconditioning of systems of PDEs. In Automated solution of differential equations by the finite element method (pp. 643-655). Springer, Berlin, Heidelberg.

OBSERVATIONS ON STRUCTURE OF MULTISCALE PROBLEMS

Block structured operators in $W = V \times Q$, $V = V(\Omega)$, $Q = Q(\Gamma)$

$$\mathcal{A} = \begin{pmatrix} A & B' \\ B & \end{pmatrix} : W \to W' \qquad \qquad \langle Bu, q \rangle = \int_{\Gamma} u q \mathrm{d}x$$

Coupling operator is composite $B = M \circ T$ using trace space V_T

$$T:V o V_T, Tu = \bar{u} = u|_{\Gamma} \qquad M:V_T o Q', \langle Mu,q \rangle = \int_{\Gamma} uq \mathrm{d}x$$

Matrix-expression language to represent the structure²

Computations are delayed until application needed

² Mardal, K. A., & Haga, J. B. (2012). Block preconditioning of systems of PDEs. In Automated solution of differential equations by the finite element method (pp. 643-655). Springer, Berlin, Heidelberg.

ASSEMBLY OF MULTISCALE FORMS

Reflect composition structure; $u \in V(\Omega)$, $p \in Q(\Gamma)$, $\bar{u} \in V_T(\Gamma)$

UFL expression is transformed into matrix expression

ASSEMBLY OF MULTISCALE FORMS

Reflect composition structure; $u \in V(\Omega)$, $p \in Q(\Gamma)$, $\bar{u} \in V_T(\Gamma)$

UFL expression is transformed into matrix expression

```
# xii.pv
   def assemble(form):
     ""Assemble multidimensional form"
     if isinstance(form, Form):
       arity = form arity(form)
       tensor = trace assembler.assemble(form. arity)
       if tensor is not None:
         return tensor
       # Fallhack
       return dolfin.assemble(form) # <---
12
     # We might get number
13
     if is number(form): return form
16
     # Recurse on block structured
17
     blocks = reshape list(
        map(assemble, flatten_list(form)).
19
        shape list(form)
20
     # cbc.block object
21
     return (block vec
22
             if len(shape) == 1 else block mat)(blocks)
23
```

```
# trace assembler.pv
def assemble(self, form, arity):
  ""Trace assembler""
  trace integrals = self.select integrals(form)
  # Signal for ii assembler
  if not trace integrals: return None
  # Otherwise we can reduce
  integral = trace integrals()[0]
  trace mesh = integral.ufl domain().ufl cargo()
  # ... Find argument to be restriced (termimal)
  V = terminal.function space()
  TV = self.trace space(V. trace mesh)
  # Make matrix of trace operator
  T = self.trace matrix(V. TV)
  if is_trial_function(terminal):
    ubar = dolfin.TrialFunction(TV)
    # Transform form
    integrand = replace(integrand, terminal, ubar)
    trace form = Form([integral.reconstruct(#...)])
    # Call outside for the rest
    return xii.assemble(trace form)*T # <---
```

HELLO WORLD PROBLEM REVISITED

With $V_H = V_H(\Omega)$, $Q_h = Q_h(\Gamma)$ we consider problem³: Find $u \in V_H$, $p \in Q_h$

$$\begin{split} \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x + & \int_{\Gamma} p v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x \quad \forall v \in V_H, \\ \int_{\Gamma} q u \, \mathrm{d}x + & -\sum_{F \in \partial \mathcal{S}} \int_{F} h^2 \llbracket p \rrbracket \llbracket q \rrbracket \, \mathrm{d}x = \int_{\Gamma} g q \, \mathrm{d}x \quad \forall q \in Q_h. \end{split}$$


```
1 from xii import *
2 # ... define domains
3 V = FunctionSpace(omega, 'CG', 1)
4 Q = FunctionSpace(gamma, 'DG'. 0) # <--
  W = [V, 0]
   u, p = map(TrialFunction, W)
  v. g = map(TestFunction, W)
  Tu, Tv = Trace(u, gamma), Trace(v, gamma)
11 # The line integral
12 dx = Measure('dx', domain=gamma)
14 a = block form(W, 2)
a[0][0] = inner(grad(u), grad(v))*dx
16 a[0][1] = inner(p, Tv)*dx
17 a[1][0] = inner(q, Tu)*dx
18 # Stabilization term
19 hk = CellDiameter(gamma)
20 a[1][1] = -avg(hk)**2*inner(jump(p), jump(q))*dS
22 A = assemble(a)
```

³ Burman, E. (2014). Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries. Numerical Methods for Partial Differential Equations, 30(2), 567-592.

HANDLING NON-CONFORMING GEOMETRIES

With $V_H = V_H(\Omega)$, $Q_h = Q_h(\Gamma)$ we consider problem⁴: Find $u \in V_H$, $p \in Q_h$

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx + \int_{\Gamma} p v \, dx = \int_{\Omega} f v \, dx \quad \forall v \in V_{H},$$

$$\int_{\Gamma} q u \, dx + - \sum_{F \in \partial S} \int_{F} h^{2} \llbracket p \rrbracket \llbracket q \rrbracket dx = \int_{\Gamma} g q \, dx \quad \forall q \in Q_{h}.$$

Geometric conformity of meshes is not required


```
omega = UnitSquareMesh(32, 32)
facets = MeshFunction('size_t', omega, 2, 1)
CompiledSubDomain('near(x[o], 0.5)').mark(facets, 1)
gamma = EmbeddedMesh(facets, 1)
```


The only difference is dedicated trace matrix **T**

⁴ Burman, E. (2014). Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries. Numerical Methods for Partial Differential Equations, 30(2), 567-592.

HANDLING NON-CONFORMING GEOMETRIES

Error convergence using stabilized formulation with P1-P0 elements

	3	5		
H/H_o	$ u - u_H _1$	$ p - p_{H} _{o}$		
1	8.62E-1(-)	1.04E0(-)		
2^{-1}	4.4E-1(0.99)	3.8E-1(1.46)		
2^{-2}	2.2E-1(1.00)	1.4E-1(1.49)		
2^{-3}	1.1E-1(1.00)	4.8E-2(1.50)		
2^{-4}	5.5E-2(1.00)	1.7E-2(1.50)		
2-5	2.7E-2(1.00)	6.0E-3(1.50)		
H/H _o	$ u - u_H _1$	$ p - p_h _0$		
1	8.6E-1(-)	5.4E-1(-)		
2^{-1}	4.3E-1(0.98)	2.3E-1(1.20)		
2^{-2}	2.2E-1(1.00)	1.0E-1(1.19)		
2^{-3}	1.1E-1(1.00)	4.7E-2(1.13)		
2^{-4}	5.5E-2(1.00)	2.2E-2(1.08)		
2-5	2.7E-2(1.00)	1.1E-2(1.04)		
H/H _o	$ u - u_H _1$	$ p-p_h _0$		
1	1.3Eo(-)	1.7EO(-)		
2^{-1}	8.2E-1(0.68)	9.2E-1(0.92)		
2^{-2}	5.4E-1(0.63)	4.6E-1(1.00)		
2^{-3}	3.6E-1(0.58)	2.3E-1(1.01)		
2-4	2.5E-1(0.54)	1.1E-1(1.01)		
2 ⁻⁵	1.7E-1(0.52)	5.7E-2(1.01)		

OPERATOR PRECONDITIONING

Robust preconditioners by mapping properties⁵

- Let $A: W \to W'$ an isomorphism (by Brezzi theory)
- lacktriangle Preconditioner $\mathcal B$ an isomorphism W' o W; e.g. Riesz map
- Stable discretization yields bounded condition number of $\mathcal{B}_h \mathcal{A}_h$

⁵ Mardal, K., & Winther, R. (2011). Preconditioning discretizations of systems of partial differential equations. Numerical Lin. Alg. with Applic., 18,

MAPPING PROPERTIES OF H1-TRACE

Enforcing Dirichlet boundary condition on Γ by Lagrange multiplier

$$-\Delta u = f$$
 in Ω ,
 $u = g$ on $\Gamma^D \cup \Gamma$,
 $\partial u \cdot n = 0$ on Γ^N .

Well-posed⁶ saddle point problem $W = H^1_{0,\Gamma^D}(\Omega) \times H^{-1/2}(\Gamma)$

$$\mathcal{A}_1 = egin{pmatrix} -\Delta_\Omega & T' \\ T \end{pmatrix} ext{ preconditioned by } \mathcal{B} = egin{pmatrix} -\Delta_\Omega & \\ & -\Delta_\Gamma^{-1/2} \end{pmatrix}^{-1}$$

def preconditioner(AA, W):
 '''Babuska preconditioner'''
 _, Q = W
 frac_lap = HsNorm(Q, s=-0.5)
 return block_mat([[AMC(A[0][0]), 0]
 [0, frac_lap**-1]])

Babuška, I. (1973). The finite element method with Lagrangian multipliers. Numerische Mathematik, 20(3), 179-192.

MAPPING PROPERTIES OF H(DIV)-TRACE

Enforcing Dirichlet boundary condition on Γ by Lagrange multiplier

$$-\nabla(\nabla \cdot u) = f \qquad \text{in } \Omega,$$

$$u \cdot n = g \qquad \text{on } \Gamma^D \cup \Gamma,$$

$$\nabla \cdot u = 0 \qquad \text{on } \Gamma^N.$$

Well-posed saddle point problem $W = H_{0,\Gamma^D}(\operatorname{div},\Omega) \times H^{1/2}(\Gamma)$

$$\mathcal{A}_{\text{div}} = \begin{pmatrix} -\nabla_{\Omega}(\nabla_{\Omega} \cdot) + I & T'_{n} \\ T_{n} \end{pmatrix} \qquad \mathcal{B} = \begin{pmatrix} -\nabla_{\Omega}(\nabla_{\Omega} \cdot) + I & \\ -\Delta_{\Gamma}^{1/2} \end{pmatrix}^{-1}$$

RTo-Po elements, H(div) algebraic multigrid⁷

⁷ Kolev, T. V., & Vassilevski, P. S. (2012). Parallel auxiliary space AMG solver for H(div) problems. SIAM Journal on Scientific Computing, 34(6), A3079-A3098.

REALIZATION OF FRACTIONAL OPERATORS

Eigenvalue decomposition

■ approx. in terms of matrix powers: $-\Delta_h \leftrightarrow A$, $-\Delta^s \approx H^s$

$$H^s = (MU)\Lambda^s(MU)^T$$
 where $AU = MU\Lambda$ and $U^TMU = I$

Geometric multigrid approach⁸

- additive to avoid $-\Delta^s u = f$ on each level, Jacobi smoothers
- extension to s < o by composition⁹

$$-\Delta^{s} = \left(-\Delta\right)^{\frac{1+s}{2}} \left(-\Delta\right)^{-1} \left(-\Delta\right)^{\frac{1+s}{2}}$$

MINRES iterations for $A_{ ext{div}}$, A_1 , with Riesz map preconditioners

	s = 1/2				S = -1/2				
h	#MG			#Eig		#Eig			
	J=2 $J=3$ $J=4$ #Lig	J = 2	J = 3	J = 4	#LIS				
2-6	25	27	28	22	67	93	103	36	
2-7	25	27	29	22	68	92	111	35	
2-8	23	27	27	22	66	90	112	35	
2-9	22	27	29	22	64	90	112	34	
2-10	22	25	29	22	64	88	108	33	

⁸ Bærland, T., K., M., & Mardal, K. A. (2019). Multigrid Methods for Discrete Fractional Sobolev Spaces. SIAM SISC, 41(2), A948-A972.

⁹ Bærland, T. (2019). An Auxiliary Space Preconditioner for Fractional Laplacian of Negative Order. arXiv preprint arXiv:1908.04498.

Coupled Darcy-Stokes

$$\begin{split} -\nabla \cdot (\sigma(u_0, p_0)) &= f_0 & \text{in } \Omega_0, \\ \nabla \cdot u_0 &= 0 & \text{in } \Omega_0, \\ \sigma(u_0, p_0) &= -p_0 I + 2\mu \nabla u_0, \\ K^{-1}u_1 + \nabla p_1 &= f_1 & \text{in } \Omega_1, \\ \nabla \cdot u_1 &= 0 & \text{in } \Omega_1, \\ u_0 \cdot n - u_1 \cdot n &= g_0 & \text{on } \Gamma, \\ -n \cdot (\sigma \cdot n) &= p_1 - g_n & \text{on } \Gamma, \\ u_1 \cdot \tau &= -\alpha \frac{-1}{\text{BJS}} \sqrt{\frac{K}{\mu}} \tau \cdot (\sigma \cdot n) + g_t & \text{on } \Gamma. \end{split}$$

Lagrange multiplier to enforce mass conservation, $\lambda = n \cdot \sigma \cdot n$

$$\mathcal{A} = \begin{pmatrix} \alpha_{\text{BJS}} \sqrt{\frac{\mu}{K}} T_{\tau}' T_{\tau} - 2\mu \Delta_{\Omega_{\text{o}}} & (\nabla_{\Omega_{\text{o}}} \cdot)' & & T_{\text{o}}' \\ \nabla_{\Omega_{\text{o}}} \cdot & & & K^{-1} I & (\nabla_{\Omega_{\text{1}}} \cdot)' & -T_{\text{1}}' \\ & & & \nabla_{\Omega_{\text{1}}} \cdot & \\ T_{\text{o}} & & & -T_{\text{1}} \end{pmatrix}$$

A well posed problem¹⁰ in $H^1(\Omega_0) \times L^2(\Omega_0) \times H(\text{div}, \Omega_1) \times L^2(\Omega_1) \times H^{1/2}(\Gamma)$ Corresponding Riesz map preconditioner not parameter robust

¹⁰ Layton, W. J., Schieweck, F., & Yotov, I. (2002). Coupling fluid flow with porous media flow. SINAL, 40(6), 2195-2218.

Alternative function space setting¹¹

$$(K^{-1/2}L^2(\Omega_1)\cap K^{-1/2}H(\operatorname{div},\Omega_1))\times K^{1/2}L^2(\Omega_1)$$

Related Riesz map yields K-robust Darcy preconditioner

$$\mathcal{B} = \begin{pmatrix} K^{-1}(I - \nabla(\nabla \cdot)) & & \\ & KI \end{pmatrix}^{-1}$$

V			h		
K	2-4	2-5	2-6	2-7	2-8
1	6	6	6	6	6
10-2	6	6	6	6	6
10 ⁻⁴	6	6	6	7	7
	6	6	7	7	7
₁₀ -8	6	7	7	6	7

¹¹ Vassilevski, P. S., & Villa, U. (2013). A block-diagonal algebraic multigrid preconditioner for the Brinkman problem. SIAM SISC, 35(5), S3-S17.

Alternative function space setting¹¹

$$(K^{-1/2}L^2(\Omega_1)\cap K^{-1/2}H(\operatorname{div},\Omega_1))\times K^{1/2}L^2(\Omega_1)$$

Related Riesz map yields K-robust Darcy preconditioner

$$\mathcal{B} = \begin{pmatrix} K^{-1}(I - \nabla(\nabla \cdot)) & & \\ & KI \end{pmatrix}^{-1}$$

K			h		
K	2-4	₂ -5	₂ -6	2-7	2-8
1	6	6	6	6	6
10-2	6	6	6	6	6
10-4	6	6	6	7	7
₁₀ -6	6	6	7	7	7
10-8	6	7	7	6	7

Reinterpret the mass conservation coupling term

$$\langle \underbrace{u_0 \cdot n - u_1 \cdot n}_{V = \mu^{1/2} H^{1/2}(\Gamma) \cup K^{-1/2} H^{-1/2}(\Gamma)}, p \rangle \text{ then } p \ni V' = \mu^{-1/2} H^{-1/2}(\Gamma) \cap K^{1/2} H^{1/2}(\Gamma)$$

¹¹ Vassilevski, P. S., & Villa, U. (2013). A block-diagonal algebraic multigrid preconditioner for the Brinkman problem. SIAM SISC, 35(5), S3-S17.

Alternative function space setting¹¹

$$(K^{-1/2}L^2(\Omega_1) \cap K^{-1/2}H(\text{div},\Omega_1)) \times K^{1/2}L^2(\Omega_1)$$

Related Riesz map yields K-robust Darcy preconditioner

$$\mathcal{B} = \begin{pmatrix} K^{-1}(I - \nabla(\nabla \cdot)) & & \\ & KI \end{pmatrix}^{-1}$$

V	h							
K	2-4	2-5	2-6	2-7	2-8			
1	6	6	6	6	6			
10-2	6	6	6	6	6			
10-4	6	6	6	7	7			
₁₀ -6	6	6	7	7	7			
10-8	6	7	7	6	7			

Reinterpret the mass conservation coupling term

$$\langle \underbrace{u_0 \cdot n - u_1 \cdot n}_{V = \mu^{1/2} H^{1/2}(\Gamma) \cup K^{-1/2} H^{-1/2}(\Gamma)}, p \rangle \text{ then } p \ni V' = \mu^{-1/2} H^{-1/2}(\Gamma) \cap K^{1/2} H^{1/2}(\Gamma)$$

Coupled Darcy-Stokes preconditioner using intersection space of $H^s(\Gamma)$

$$\begin{pmatrix} \alpha_{\mathsf{BJS}} \sqrt{\frac{\mu}{\mathsf{K}}} \mathsf{T}_\tau' \mathsf{T}_\tau - 2\mu\Delta & & & \\ \mu^{-1} \mathsf{I} & & & \\ \mathsf{K}^{-1} (\mathsf{I} - \nabla(\nabla \cdot)) & & & \\ & & \mathsf{K} \mathsf{I} & \\ & & & -\mu^{-1} \Delta_\Gamma^{-1/2} - \mathsf{K} \Delta_\Gamma^{1/2} \end{pmatrix}^{-1}$$

¹¹ Vassilevski, P. S., & Villa, U. (2013). A block-diagonal algebraic multigrid preconditioner for the Brinkman problem. SIAM SISC, 35(5), S3-S17.

DARCY-STOKES COUPLING

Discretization by (RTo-Po)-(P2-P1)-Po elements¹²

0		К			h		
lpha BJS	α_{BJS} μ		2-4	2-5	2-6	2-7	2-8
		1	38	38	36	36	36
	1	10-4	40	40	41	41	40
		10-8	31	31	31	31	30
1		1	52	53	55	55	55
1	10-4	10-4	42	44	45	47	47
		10-8	34	34	34	34	35
		1	52	55	56	56	58
	10-8	10-4	52	54	55	56	56
		10-8	42	44	45	47	48
		1	38	38	37	36	36
	1	10-4	40	40	40	39	39
		10-8	31	31	31	31	32
10-2	10-4	1	54	56	56	56	56
10 ~		10-4	42	44	45	47	49
		10-8	34	34	34	34	35
		1	51	53	55	59	60
	10-8	10-4	52	54	54	56	56
		₁₀ -8	42	44	45	46	48
		1	38	38	37	36	36
	1	10-4	40	40	40	40	40
		10-8	30	30	30	30	30
10-4		1	54	56	56	56	56
10 4	10-4	10-4	44	44	46	48	48
		₁₀ -8	34	34	35	35	34
		1	54	57	58	58	62
	10-8	10-4	52	53	55	58	59
		₁₀ -8	42	44	45	47	47

¹² Holter, K. E., K., M. & Mardal, K.-A. (in prep). Robust preconditioning of monolithically coupled multiphysics problems.

H^S INTERSECTION PRECONDITIONER FOR STOKES-BIOT COUPLING

Simplified problem $\delta t=\lambda= u=$ 1, null storage coefficient and $lpha_{ m BJS}$

```
1 # Stokes
  Vo = VectorFunctionSpace(omegao, 'CG', 2)
  00 = FunctionSpace(omegao, 'CG', 1)
4 # Biot
  W = VectorFunctionSpace(omega1, 'CG', 2)
  V1 = FunctionSpace(omega1, 'RT', 1)
7 Q1 = FunctionSpace(omega1, 'DG', 0)
  # Lagrange
8
  Q = FunctionSpace(gamma, 'DG', 0)
10
   M = [V_0, Q_0, W, V_1, Q_1, Q]
11
12
13 uo, po, eta, u1, p1, p = map(TrialFunction, M)
  v_0, q_0, w, v_1, q_1, q = map(TestFunction, <math>M)
14
  # Traces
15
  Tw, Tvo, Tv1 = (Trace(f, gamma) for f in (w, vo, v1))
16
17
18 dX = Measure('dx', domain=gamma) # Iface measure
19 no = Constant((1, 0)) # Normal from Stokes
20 # Ambartsumyan, Khattatov, Yotov, Zunino (2018)
21 a = block form(M, 2)
   a.add(2*nu*inner(sym(grad(u0)), sym(grad(y0)))*dx
22
         -inner(po, div(vo))*dx) # Stokes bit
23
24
   a.add(2*mu*inner(sym(grad(eta)), sym(grad(w)))*dx +\
25
26
         lmbda*inner(div(eta), div(w))*dx -\
         inner(p1, div(w))*dx) # Biot bit
27
28
29
   a.add((1./K)*inner(u1. v1)*dx
         -inner(p1, div(v1))*dx) # Darcy part
30
31
32
   # Interface coupling uo.no + (u1 + eta).n1 = ...
   a.add(inner(p, dot(Tvo, no))*dX +\
33
               inner(p, dot(Tw, -no))*dX +\
34
35
               inner(p, dot(Tv1, -no))*dX)
36
   a = make selfadjoint(a) # Save us some typing
```

H^S INTERSECTION PRECONDITIONER FOR STOKES-BIOT COUPLING

Simplified problem $\delta t = \lambda = \nu =$ 1, null storage coefficient and $\alpha_{\rm BJS}$

```
# Stokes
   Vo = VectorFunctionSpace(omegao, 'CG', 2)
   00 = FunctionSpace(omegao, 'CG', 1)
   # Rint
  W = VectorFunctionSpace(omega1, 'CG', 2)
  V1 = FunctionSpace(omega1, 'RT', 1)
7 Q1 = FunctionSpace(omega1, 'DG', 0)
   # Lagrange
  Q = FunctionSpace(gamma, 'DG', 0)
10
   M = [V_0, Q_0, W, V_1, Q_1, Q]
11
12
13 uo, po, eta, u1, p1, p = map(TrialFunction, M)
   vo, go, w, v1, g1, g = map(TestFunction, M)
  # Traces
15
  Tw, Tvo, Tv1 = (Trace(f, gamma) for f in (w, vo, v1))
16
17
18 dX = Measure('dx', domain=gamma) # Iface measure
19 no = Constant((1, 0)) # Normal from Stokes
  # Ambartsumyan, Khattatov, Yotov, Zunino (2018)
20
21 a = block form(M, 2)
   a.add(2*nu*inner(sym(grad(u0)), sym(grad(y0)))*dx
22
         -inner(po, div(vo))*dx) # Stokes bit
23
24
   a.add(2*mu*inner(svm(grad(eta)), svm(grad(w)))*dx +\
25
26
         lmbda*inner(div(eta), div(w))*dx -\
         inner(p1, div(w))*dx) # Biot bit
27
28
29
   a.add((1./K)*inner(u1. v1)*dx
         -inner(p1, div(v1))*dx) # Darcy part
30
31
   # Interface coupling uo.no + (u1 + eta).n1 = ...
32
   a.add(inner(p, dot(Tvo, no))*dX +\
33
               inner(p, dot(Tw, -no))*dX +\
34
35
               inner(p, dot(Tv1, -no))*dX)
36
   a = make selfadjoint(a) # Save us some typing
```

К	h h							
K	μ	2-5	2-6	2-7	2-8			
	1	60	60	62	62			
	10-2	65	65	67	68			
1	10-4	74	74	72	72			
	10-8	75	75	75	74			
	10-10	73	73	73	71			
	1	72	73	73	74			
2	10-2	74	74	73	73			
10-2	10-4	79	77	76	75			
	10-8	75	75	74	74			
	10-10	73	73	72	72			
	1	72	75	75	73			
_/	10-2	72	73	73	73			
10-4	10-4	74	76	77	75			
	10-8	71	73	74	74			
	10-10	68	70	71	71			
	1	50	48	48	50			
_8	10-2	50	51	51	53			
10-8	10-4	54	54	54	55			
	10-8	54	54	56	57			
	10-10	53	54	54	56			
	1	48	46	47	48			
10	10-2	49	50	50	50			
10-10	10-4	53	53	52	52			
	10-8	53	53	53	54			
	10-10	53	53	53	53			

3D-1D COUPLED PROBLEMS

CRUDE TAXONOMY OF 3D-1D MULTISCALE MODELS

Simple coupled diffusion with $\Omega \subset \mathbb{R}^3$, Γ of codimension 1

$$\begin{split} -\nabla \cdot (\kappa_0 \nabla u_0) &= 0 &\quad \text{in } \Omega_0, \\ -\nabla \cdot (\kappa_1 \nabla u_1) &= 0 &\quad \text{in } \Omega_1, \\ -(\kappa_0 \nabla u_0) \cdot n + (\kappa_1 \nabla u_1) \cdot n &= 0 &\quad \text{on } \Gamma, \\ u_0 - u_1 - \epsilon^{-1} (\kappa_0 \nabla u_0) \cdot n &= g_\Gamma &\quad \text{on } \Gamma. \end{split}$$

Two variable formulation

Lagrange multiplier formulation (p)

$$\mathcal{A}_{0} = \begin{pmatrix} -\Delta + \epsilon T_{0}' T_{0} & -\epsilon T_{1}' \\ -\epsilon T_{0} & -\Delta + \epsilon I \end{pmatrix} \qquad \mathcal{A}_{1} = \begin{pmatrix} -\Delta & T_{0}' \\ -\Delta & -T_{1}' \\ T_{0} & -T_{1} & -\epsilon^{-1} I \end{pmatrix}$$

Typical coupling terms

$$\int_{\Gamma} u_{o} v_{o} dx, \int_{\Gamma} u_{o} v_{1} dx \qquad \int_{\Gamma} v_{o} p dx, \int_{\Gamma} v_{1} p dx$$

Assume $|\Omega_1| \ll |\Omega_0|$, model order reduction $\Omega_1 \to 0$, Γ a curve, $\Omega = \Omega_0$ For Γ of codimension 2 models differ by "generalization" of coupling terms

NON-SYMMETRIC PROBLEM IN WEIGHTED SPACES

Generalize coupling terms for $u_0 \in H^1_{\alpha}(\Omega)$, $v_0 \in H^1_{-\alpha}(\Omega)^{13}$

$$\begin{split} &\int_{\Gamma} u_{\rm o} v_{\rm o} {\rm d}x &\to \int_{\Gamma} (T v_{\rm o}) (\Pi u_{\rm o}) {\rm d}x, \\ &\int_{\Gamma} u_{\rm o} v_{\rm 1} {\rm d}x &\to \int_{\Gamma} (\Pi u_{\rm o}) v_{\rm 1} {\rm d}x, \\ &\int_{\Gamma} v_{\rm o} u_{\rm 1} {\rm d}x &\to \int_{\Gamma} (T v_{\rm o}) u_{\rm 1} {\rm d}x. \end{split}$$

Problem operator $\mathcal{A}: (H^1_{\alpha}(\Omega) \times H^1(\Gamma)) \to (H^1_{-\alpha}(\Omega) \times H^1(\Gamma))'$, but standard FEM

$$\mathcal{A} = \begin{pmatrix} -\Delta + \epsilon \mathsf{T}' \mathsf{\Pi} & -\epsilon \mathsf{T}' \\ -\epsilon \mathsf{\Pi} & -\pi \mathsf{R}^2 \Delta + \epsilon \mathsf{I} \end{pmatrix}$$

Newly $\epsilon \sim R$

¹³ D'Angelo, C., & Quarteroni, A. (2008). On the coupling of 1d and 3d diffusion-reaction equations: application to tissue perfusion problems. Mathematical Models and Methods in Applied Sciences, 18(08), 1481-1504.

EXTENDING MULTISCALE ASSEMBLER AND INTERPRETER

Multiscale assemblers loop to transform UFL expression to matrix expression

```
1 def assemble(form):
2 '''Assemble multidimensional form'''
3 if isinstance(form, form):
4    arity = form_arity(form)
5    
6    
7    
8    tensor = trace_assembler.assemble(form, arity)
9    if tensor is not None:
10     return tensor
1    # Fallback
12    return dolfin.assemble(form) # <---
13    # Handle other form types as before</pre>
```

```
def assemble(form):
    '''Assemble multidimensional form'''
if isinstance(form, Form):
    arity = form_arity(form)

assemblers = (trace_assembler, avg_assembler)
    for assembler in assemblers:
    tensor = trace_assembler.assemble(form, arity)
    if tensor is not None:
        return tensor
# Fallback
    return dolfin.assemble(form) # <---
# ... rest remains unchanged</pre>
```

Multiscale assemblers loop to transform UFL to matrix expression

```
def assemble(form):
    ''Assemble multidimensional form'''
    if isinstance(form, Form):
        arity = form_arity(form)

    tensor = trace_assembler.assemble(form, arity)
    if tensor is not None:
        return tensor
    # Fallback
    return dolfin.assemble(form) # <---
    # Handle other form types as before</pre>
```

```
def assemble(form):
    '''Assemble multidimensional form'''
    if isinstance(form, Form):
        arity = form_arity(form)

        assemblers = (trace_assemler, avg_assembler)
        for assembler in assemblers:
        tensor = trace_assembler.assemble(form, arity)
        if tensor is not None:
            return tensor
        # Fallback
        return dolfin.assemble(form) # <---
# ... rest remains unchanged</pre>
```

Average operator adds new form transformation and discrete Π

```
def assemble(form):
     '''Trace assembler'''
     trace_integrals = self.select_integrals(form)
     # Signal for ii assembler
     if not trace integrals: return None
     # Otherwise we can reduce
     integral = trace integrals()[0]
     trace mesh = integral.ufl domain().ufl cargo()
     # ... Find argument to be restriced (termimal)
10
11
     V = terminal.function space()
     TV = self.trace space(V. trace mesh)
12
     # Make matrix of trace operator
13
     T = self.trace matrix(V. TV)
15
     if is_trial_function(terminal):
17
       # ... as before
       return xii.assemble(trace form)*T # <---
```

```
def assemble(form):
  '''Average assembler'''
  avg integrals = self.select integrals(form) # <-
  # Signal for ii assembler
  if not avg integrals: return None
  # Otherwise we can reduce
  integral = avg integrals()[0]
  line mesh = integral.ufl domain().ufl cargo()
  # ... Find argument to be restriced (termimal)
  V = terminal.function space()
  TV = self.average space(V, line mesh)
  # Make matrix of trace operator
  Pi = self.average matrix(V. TV. #...) # <-
  if is trial function(terminal):
    # Identical to trace -> avg form
    return xii.assemble(avg form)*Pi # <-
```

SYMMETRIC PROBLEM IN STANDARD SPACES

Every 3d-1d of u_0 , v_0 rescriction realized by Π yields¹⁴

$$\mathcal{A} = \begin{pmatrix} -\Delta + \epsilon \Pi' \Pi & -\epsilon \Pi' \\ -\epsilon \Pi & -\pi R^2 \Delta + \epsilon I \end{pmatrix}$$

Well posed as $A: W \to W'$, $W = H^1(\Omega) \times H^1(\Gamma)$

Functional setting inspired preconditioners

$$\mathcal{B}_1 = \begin{pmatrix} -\Delta + \epsilon \Pi' \Pi & \\ -\pi R^2 \Delta + \epsilon I \end{pmatrix}^{-1} \quad \mathcal{B}_2 = \begin{pmatrix} -\Delta & \\ & -\pi R^2 \Delta + \epsilon I \end{pmatrix}^{-1}$$

In addition, system amenable to AMG as \mathcal{A} SPD PCG iterations¹⁵ for R = 0.1, 0.05, 0.025

N	\mathcal{B}_1			\mathcal{B}_2			A^{-1}		
4	32	29	29	35	27	28	3	3	3
8	33	32	33	35	27	31	3	3	3
16	36	30	33	39	28	31	3	3	3
32	37	31	33	36	27	32	4	4	4
64	40	30	32	40	26	31	4	4	4

¹⁴ Cerroni, D., Laurino, F., & Zunino, P. (2019). Mathematical analysis, finite element approximation and numerical solvers for the interaction of 3D reservoirs with 1D wells. GEM-International Journal on Geomathematics, 10(1), 4.

¹⁵Structured mesh of $[-1, 1]^3$ with 6N³ cells, wireframe Γ

SYMMETRIC PROBLEM WITH FRACTIONAL SPACES FOR MULTIPLIER

The coupling manifold not necessary identical to reduced domain 16

$$\mathcal{A}_{1} = \begin{pmatrix} -\kappa \Delta_{\Omega} & \epsilon \Pi' \\ -R^{2} \hat{\kappa} \Delta_{\Gamma} & -I' \end{pmatrix}$$

$$(-\kappa \Delta_{\Omega} & \Pi')$$

$$\mathcal{A}_2 = \begin{pmatrix} -\kappa \Delta_{\Omega} & \Pi' \\ -R^2 \hat{\kappa} \Delta_{\Lambda} & -\hat{\Pi}' \\ \Pi & -\hat{\Pi} \end{pmatrix}$$

Uniform extension (1*d*-2*d*) operator Λ to Γ $\hat{\Pi}u_1|_{\mathcal{C}_R(y)}=u_1(y)$

¹⁶ K., M., Laurino, F., Mardal, K.A., & Zunino, P. (in prep. 2019). Coupling PDEs on 3D-1D domains with Lagrange multipliers.

¹⁷ Kuchta, M., Mardal, K. A., & Mortensen, M. (2019). Preconditioning trace coupled 3d-1d systems using fractional Laplacian. Numerical Methods for Partial Differential Equations, 35(1), 375-393.

SYMMETRIC PROBLEM WITH FRACTIONAL SPACES FOR MULTIPLIER

The coupling manifold not necessary identical to reduced domain ¹⁶

$$\mathcal{A}_{1} = \begin{pmatrix} -\kappa \Delta_{\Omega} & \epsilon \Pi' \\ -R^{2} \hat{\kappa} \Delta_{\Gamma} & -I' \\ \epsilon \Pi & -I \end{pmatrix}$$

$$\mathcal{A}_{2} = \begin{pmatrix} -\kappa \Delta_{\Omega} & \Pi' \\ -R^{2} \hat{\kappa} \Delta_{\Lambda} & -\hat{\Pi}' \\ \Pi & -\hat{\Pi} \end{pmatrix}$$

Uniform extension (1d-2d) operator Λ to Γ $\hat{\Pi}u_1|_{\mathcal{C}_R(y)}=u_1(y)$

Well-posed operators $A_i: W \to W'$ with $W = H^1(\Omega) \times H^1(\Lambda) \times H^{-1/2}(\Gamma)$

$$\mathcal{B} = \begin{pmatrix} -\Delta_{\Omega} & & & \\ & -R^2 \Delta_{\Lambda} & & \\ & & (-\Delta_{\Gamma})^{-1/2} \end{pmatrix}^{-1}$$

$$\frac{h}{\text{cond}(\mathcal{B}A_1)} \begin{vmatrix} 2^{-2} & 2^{-3} & 2^{-4} & 2^{-5} \\ 40.5 & 40.6 & 40.6 & 40.6 \\ \text{cond}(\mathcal{B}A_2) & 27.4 & 27.5 & 27.6 & 27.6 \end{vmatrix}$$

If 3*d*-1*d* trace used in A_1 then *B* based on unusual(s = -0.14) powers of $-\Delta_{\Gamma}^{17}$

¹⁶ K., M., Laurino, F., Mardal, K.A., & Zunino, P. (in prep. 2019). Coupling PDEs on 3D-1D domains with Lagrange multipliers.

¹⁷ Kuchta, M., Mardal, K. A., & Mortensen, M. (2019). Preconditioning trace coupled 3d-1d systems using fractional Laplacian. Numerical Methods for Partial Differential Equations, 35(1), 375-393.

CONCLUSIONS AND ONGOING WORK

Robust monolithic solvers for multiphysics/multiscale problems rely on operators in fractional Sobolev spaces

■ Intersection spaces require efficient solvers for

$$(-\alpha \Delta^{\mathsf{s}} - \beta \Delta^{\mathsf{t}}) \mathsf{u} = \mathsf{f}$$

- H^s algebraic multigrid
- Analysis/solvers for floating domains and self-intersecting interfaces

CONCLUSIONS AND ONGOING WORK

Robust monolithic solvers for multiphysics/multiscale problems rely on operators in fractional Sobolev spaces

https://github.com/MiroK/fenics_ii/

■ Intersection spaces require efficient solvers for

$$(-\alpha \Delta^{s} - \beta \Delta^{t})u = f$$

- H^s algebraic multigrid
- Analysis/solvers for floating domains and self-intersecting interfaces

Thank you for your attention

FEM IMPLEMENATION OF STOKES-DARCY PROBLEM

```
# Stokes
Vo = VectorFunctionSpace(mesho, 'CG', 2)
Qo = FunctionSpace(mesho, 'CG', 1)
# Darcy
V1 = FunctionSpace(mesh1, 'RT', 1)
Q1 = FunctionSpace(mesh1, 'DG', 0)
# The multiplier
Q = FunctionSpace(gamma, 'DG', 0)
W = [V_0, Q_0, V_1, Q_1, Q]
uo, po, u1, p1, p = map(TrialFunction, W)
vo, qo, v1, q1, q = map(TestFunction, W)
# Stokes traces
Tuo, Tvo = Trace(uo, gamma), Trace(vo, gamma)
# Darcy traces
Tu1, Tv1 = Trace(u1, gamma), Trace(v1, gamma)
# The line integral
dX = Measure('dx', domain=gamma)
n = OuterNormal(gamma)
tau = dot(Constant(((0, 1), (-1, 0))), n) # Tangent
# ... constants
a = block form(W, 2)
# Stokes contribution
a.add(inner(2*mu*eps(u0), eps(v0))*dx +\
      BJS*inner(dot(Tuo, tau), dot(Tvo, tau))*dX-\
      inner(po, div(vo))*dx)
# Darcy contribution
a.add((1/K)*inner(u1. v1)*dx-inner(p1. div(v1))*dx)
# Coupling
a.add(inner(p, dot(Tvo, n))*dX-inner(p, dot(Tv1, n))*dX)
a = make selfadjoint(a) # Save time
```