Circuitos de Corriente Alterna Parámetros de medición

Julio E. Rodríguez L. Universidad Nacional de Colombia

Circuito desarrollado

Primera Práctica Parámetros utilizados

• Inductancia: $L = 0.12 \pm 0.02 \ mH$

• Capacitancia: $C = 47.0 \pm 0.1 \ nf$

• Resistencia: $R = 2.2k\Omega$ Tolerancia 5 %

• Resistencia Inductor: $R_L = 3.5 \pm 0.1 \ \Omega$

 \bullet Voltaje entrada: $V_i = 4.5 \pm 0.1 \ V_{PP}$

Se tomaron datos de voltaje de salida (V_O) en función de la frecuencia (F) y ángulo de desfase ϕ entre el voltaje de entrada (V_i) y el voltaje de salida (V_O) . Estos datos se muestran en los siguientes archivos y tienen las siguientes incertidumbres:

 \blacksquare f1(kHz)-Vo1(volts).dat; con $f1=f1\pm0.1kHz,\,V_{O1}=V_{O1}\pm0.02V$

• f1-phi1.dat; con $f_1 = f_1 \pm 0.01kHz$, $\phi = \phi \pm 0.1grad$

Segunda Práctica Parámetros utilizados

• Inductancia: $L = 30.2 \pm 0.1 \ mH$

• Capacitancia: $C = 10.0 \pm 0.1 \ nf$

• Resistencia: $R = 3.3k\Omega$ Tolerancia 5 %

 \bullet Resistencia Inductor: $R_L = 20.0 \pm 0.1~\Omega$

 \bullet Voltaje entrada: $\underline{V_i = 5.5 \pm 0.1~V_{PP}}$

Se tomaron datos de voltaje de salida (V_O) en función de la frecuencia (F) y ángulo de desfase ϕ entre el voltaje de entrada (V_i) y el voltaje de salida (V_O) . Estos datos están en los siguientes archivos:

- f2(kHz)-Vo2(V).dat; con $f2 = f2 \pm 0.01kHz$, $V_{O2} = V_{O2} \pm 0.01V$
- f2-phi2.dat; con $f_2 = f_2 \pm 0.01 kHz$, $\phi_2 = \phi_2 \pm 0.1 grad$