Advanced Optics (PHYS690)

HEEDEUK SHIN

Lecture 19

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, KOREA

Electro-Optic modulator

Birefringence

the index ellipsoid:

$$\sum_{ii} \eta_{ij} x_i x_j = 1$$

is in the principal coordinate system:

$$\frac{x_1^2}{n_1^2} + \frac{x_2^2}{n_2^2} + \frac{x_3^2}{n_3^2} = 1$$

uniaxial crystals (n₁=n₂≠n₃):

$$\frac{1}{n^2(\theta)} = \frac{\cos^2(\theta)}{n_0^2} + \frac{\sin^2(\theta)}{n_e^2}$$

$$n_a = n_0$$

 $n_b = n(\theta)$ $n(0^\circ) = n_0$ $n(90^\circ) = n_e$

preferred crystals:

- LiNbO₃
- LiTaO₃
- KDP (KH₂PO₄)
- KD*P (KD₂PO₄)
- ADP (NH₄H₂PO₄)
- BBO (Beta-BaB₂O₄)

TABLE 8.4 Electro-optic constants (room temperature, $\lambda_0 = 546.1$ nm).

Material	r_{63} (units of 10^{-12} m/V)	n_o (approx.)	$V_{\lambda/2}$ (in kV)
ADP (NH ₄ H ₂ PO ₄	8.5	1.52	9.2
KDP (KH ₂ PO ₄)	10.6	1.51	7.6
KDA (KH ₂ AsO ₄)	~13.0	1.57	~6.2
KD*P (KD ₂ PO ₄)	~23.3	1.52	~3.4

Electro-Optic Effect

for certain materials n is a function of E, as the variation is only slightly we can Taylor-expand n(E):

$$n(E) = n + a_1 E + \frac{1}{2} a_2 E^2 + \dots$$

linear electro-optic effect (**Pockels effect**, 1893):

$$n(E) = n - \frac{1}{2}r \cdot n^3 E$$
$$r = -2\frac{a_1}{n^3}$$

quadratic electro-optic effect (**Kerr effect**, 1875):

$$n(E) = n - \frac{1}{2}s \cdot n^3 E^2$$
$$s = -\frac{a_2}{n^3}$$

Kerr vs Pockels

the electric impermeability $\eta(E)$:

$$\eta = \frac{\varepsilon_0}{\varepsilon} = \frac{1}{n^2}$$

$$\Delta \eta(E) = \left(\frac{d\eta}{dn}\right) \cdot \Delta n = \left(\frac{-2}{n^3}\right) \cdot \left(-\frac{1}{2}r \cdot n^3 E - \frac{1}{2}s \cdot n^3 E^2\right) = r \cdot E + s \cdot E^2$$

...explains the choice of r and s.

Pockels effect:

typical values for r: 10⁻¹² to 10⁻¹⁰ m/V

 $\Delta n \text{ for E} = 10^6 \text{ V/m} : 10^{-6} \text{ to } 10^{-4} \text{ (crystals)}$

Kerr effect:

typical values for s: 10^{-18} to 10^{-14} m²/V²

 Δn for E=10⁶ V/m : 10⁻⁶ to 10⁻² (crystals)

10⁻¹⁰ to 10⁻⁷ (liquids)

Electro-Optic Effect

$$n_o(E) \approx n_o - \frac{1}{2} n_o^3 \mathfrak{r}_{13} E$$

$$n_e(E) \approx n_e - \frac{1}{2} n_e^3 \mathfrak{r}_{33} E.$$

Modification of the index ellipsoid of a trigonal 3m crystal such as LiNbO₃.

$$n_1(E) \approx n_o - \frac{1}{2} n_o^3 \mathfrak{r}_{63} E$$

$$n_2(E) \approx n_o + \frac{1}{2} n_o^3 \mathfrak{r}_{63} E$$

$$n_3(E) = n_e.$$

Modification of the index ellipsoid of a uniaxial tetragonal $\overline{4}2m$ crystal such as KDP.

Pockels Cells

Construction

Longitudinal Pockels Cell (d=L)

- $\bullet V_{\pi} = \frac{\lambda}{r \cdot n^3}$
- V_{π} scales linearly with λ
- large apertures possible

Transverse Pockels Cell

- $V_{\pi} = \frac{d}{L} \frac{\lambda}{r \cdot n^3}$
- V_{π} scales linearly with λ
- aperture size restricted

Wave retarders

Pockels Cells

XA

Pockels Cell can be used as dynamic wave retarders

Input light is vertical, linear polarized with rising electric field (applied Voltage) the transmitted light goes through

elliptical polarization

• circular polarization @ $V_{\pi/2}$ (U $_{\pi/2}$)

elliptical polarization (90°)

• linear polarization (90°) @ V_{π}

Phase modulator

Phase modulation leads to frequency modulation

definition of frequency:

$$2\pi \cdot f(t) = \frac{d\Phi(t)}{dt} = \omega$$
 [15]

with a phase modulation

$$2\pi \cdot f(t) = \frac{d\Phi(t)}{dt} = \omega + \frac{d\phi(t)}{dt}$$
$$\phi(t) = m\sin(\Omega t)$$

- \Rightarrow frequency modulation at frequency Ω with 90° phase lag and peak to peak excursion of $\text{2m}\Omega$
- \Rightarrow Fourier components: power exists only at discrete optical frequencies $\omega \pm k~\Omega$

Phase shift

$$\phi = k_0 (S + \Delta S) = k_0 (n_0 + \Delta n) L = \frac{2\pi}{\lambda_0} \left(n_0 - \frac{1}{2} n_0^3 r_{eff} E \right) L$$

$$= \phi_0 - \frac{\pi}{\lambda_0} n_0^3 r_{eff} \frac{V}{d} L$$

$$\equiv \phi_0 - \pi \frac{V}{V_{\pi}}$$

$$V_{\pi} \equiv \frac{d}{L} \frac{\lambda_0}{n_0^3 r_{eff}}$$
 "Half-wave voltage"

Transit-time limited bandwidth

$$\approx \frac{1}{T} = \frac{c}{n_0 L}$$

Mach-Zender modulator

Phase-shifting Mach-Zender

$$T = \frac{1}{2} (1 + \cos \phi)$$
$$= \cos^2 \left(\frac{\phi_0}{2} - \frac{\pi V}{2 V_\pi} \right)$$

Amplitude modulator

- Polarizer
- Electro-Optic Crystal acts as a variable waveplate
- Analyser

transmits only the component that has been rotated -> sin² transmittance characteristic

Variable retarder between crossed polarizers

$$\Gamma(V) = k_0 [n_1(V) - n_2(V)]L$$

$$= k_0 [n_1 - n_2]L - \frac{\pi}{\lambda_0} (n_1^3 r_1 - n_2^3 r_2) \frac{V}{d} L$$

$$= \Gamma_0 - \pi \frac{V}{V_{\pi}}$$

$$V_{\pi} = \frac{d}{L} \frac{\lambda_0}{(n_1^3 r_1 - n_2^3 r_2)}$$

$$T = \sin^2\left(\frac{\Gamma_0}{2} - \frac{\pi V}{2V_\pi}\right)$$

Electro Optic Devices

Figure 18.1-3 An integrated-optical phase modulator using the electro-optic effect.

Figure 18.1-5 An integrated-optical intensity modulator (or optical switch). A Mach-Zehnder interferometer and an electro-optic phase modulator are implemented using optical waveguides fabricated from a material such as LiNbO₃.

Figure 18.1-10 An integrated electro-optic directional coupler.

Acousto-Optic modulator

Acousto-optic modulator

Photon-phonon interactions

- The refractive index of an optical medium is altered by the presence of sound.
- Sound can control light.
- Acousto-optic effect.

Photoelastic effect

A strain is measure of deformation representing the displacement between particles in the body relative to a reference length.

The strain (relative displacement)

$$S_0=rac{\partial (x-X)}{\partial X}$$
 where X is the reference position of material points $s(x,t)=S_0\cos(\Omega t-qx)$ $q=2\pi/\Lambda$ wavenumber

The strain creates a proportional perturbation of the refractive index as,

$$\Delta n(x,t) = -\frac{1}{2} \mathfrak{p} n^3 s(x,t)$$

Phenomenological dimensionless coefficient known as the photo-elastic constant.

The medium has a time-varying inhomogeneous refractive index as

$$n(x,t) = n - \Delta n_0 \cos(\Omega t - qx), \quad \Delta n_0 = \frac{1}{2} \mathfrak{p} n^3 S_0.$$

Photoelasticity

Direction of

➤ NASA scientist Peter Wasilewski painting with ice and light: Peter.J.Wasilewski.1@gsfc.nasa.gov

Stress induced birefringence

Photoelastic effect

$$\eta_{ij}(s_{kl}) \approx \eta_{ij}(0) + \sum_{kl} \mathfrak{p}_{ijkl} s_{kl}, \qquad i, j, l, k = 1, 2, 3,$$

• The electric impermeability tensor characterizes the optical properties of an anisotropic medium.

$$\mathfrak{p}_{ijkl} = \partial \mathfrak{q}_{ij} / \partial s_{kl}$$

Strain-optic tensor or photoelastic tensor

$$\mathfrak{p}_{IK} = \begin{bmatrix} \mathfrak{p}_{11} & \mathfrak{p}_{12} & \mathfrak{p}_{12} & 0 & 0 & 0 \\ \mathfrak{p}_{12} & \mathfrak{p}_{11} & \mathfrak{p}_{12} & 0 & 0 & 0 \\ \mathfrak{p}_{11} & \mathfrak{p}_{12} & \mathfrak{p}_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathfrak{p}_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathfrak{p}_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathfrak{p}_{44} \end{bmatrix}$$

Bragg reflection

Photo-elastic effect

$$n(x) = n - \Delta n_0 \cos(qx - \varphi), \ \varphi = \Omega t$$

$$\Delta n = -\frac{1}{2} p n_0^3 S_0 \cos(\Omega t - \vec{K} \cdot \vec{r})$$

$$\sin \theta = \frac{\lambda}{2\Lambda}$$

$$\Lambda = v_s/f$$

Bragg condition

Reflection

Amplitude reflectance

$$\mathbf{r}_{\pm} = \pm j\mathbf{r}_0 \operatorname{sinc}\left[(2k\sin\theta \mp q)\frac{L}{2\pi}\right]e^{\pm j\Omega t}$$

$$\operatorname{sinc}(x) \equiv \sin(\pi x)/(\pi x)$$

$$\mathcal{R}=2\pi^2 n^2 \frac{L^2 \Lambda^2}{\lambda_o^4} \, \mathcal{M} I_s.$$
 Power reflectance

$$\mathcal{M} = \frac{\mathfrak{p}^2 n^6}{\varrho \, v_s^3}$$

Acousto-Optic effect

Bragg diffraction & Raman-Nath diffraction

Dimensionless parameter :

$$Q = \frac{4\pi\theta_B}{\Phi} = \frac{2\pi\lambda L}{n\Lambda^2}$$

> 1: Bragg diffraction

<1:Raman-Nath diffraction

Example) Water, n=1.33, W=6MHz (v_s =1,500 m/s), l=632.8 nm

$$\Lambda = v_s / \Omega = 250 \,\mu\text{m}$$

 $L << \Lambda^2 n/(2\pi\lambda) \approx 2$ cm: Raman-Nath Regime

>> 2 cm

: Bragg Regime

Bragg diffraction : Single order diffraction

Raman-Nath diffraction : Multiple order diffraction

Acoustooptic cell

Acoustic

transducer

Applications

Modulator

Modulated beam

Deflector

$$\theta = \sin^{-1}\frac{\lambda}{2\Lambda} = \sin^{-1}\frac{f\lambda}{2v_s} \approx \frac{\lambda}{2v_s}f$$

Fiber pigtailed AOM

Modulator

Frequency shifter

Wavelength of Operation

Optical Range

Maximum Optical Power

Frequency Shift

Frequency Shift Range (3dB)

Beam Diameter Inside the Crystal

Rise Time

Digital Modulation Bandwidth

Acoustic Velocity (m/sec)

Maximum RF Power (Watt)

RF Connector

Extinction Ratio

Input Impedance

V.S.W.R.

Optical Polarization

Case Type

Type of Fiber, Port 1 and 2

Fiber Connector Type

Polishing of the Fiber End

Fiber Length

Fiber Jacket

Back Reflection*

Total Insertion Loss**

PER

1550 nm

±25 nm

230 mW

+75 MHz or -75 MHz

5 MHz

0.4 mm

140 nsec

5 Mhz

2.5E+3

< 0.5 W

SMB

>50 dB

50 ohms

2.1:1

Linear

2 Port Fiber Optically Pigtailed

8 μm core, 125 μm cladding SM PM

FC

APC

1 m

900 µm OD

40 dB

3.0 - 4.0 dB at the center wavelength

16 - 19 dB

Modulators

- The amplitude of an acoustic wave of frequency f_0
- A function of time by amplitude modulation
- A signal of bandwidth B.

$$\theta = \sin^{-1}\frac{\lambda}{2\Lambda} = \sin^{-1}\frac{f\lambda}{2v_s} \approx \frac{\lambda}{2v_s} f$$

Maximum rate of modulation of science and technology

- T is the transit time of sound across the waist of the light beam.
- It takes time *T* to change the amplitude of the sound wave at all points in the light-sound interaction region.
- The maximum rate of modulation is 1/T Hz
- Beam width: D

$$B = \frac{1}{T}, \qquad T = \frac{D}{v_s}, \qquad B = v_s \frac{\delta \theta}{\lambda} = \frac{v_s}{D},$$

Spectrum analyzer

Space switches

Frequency shifters

$$\mathbf{r}_{\pm} = \pm j\mathbf{r}_0 \operatorname{sinc}\left[(2k\sin\theta \mp q)\frac{L}{2\pi}\right]e^{\pm j\Omega t}$$

$$E_{refl} \propto E_{in} e^{\pm j\Omega t} = E_0 e^{j(\omega \pm \Omega)t}$$

Tunable Acousto-Optic Filters

