Programme de la semaine 19 (du 05/03 au 12/03).

Systèmes linéaires, matrices

- Systèmes linéaires : opérations élémentaires sur les lignes, algorithme du pivot sur des exemples.
- Matrice de $\mathcal{M}_{n,p}(\mathbb{K})$. Matrice nulle, matrices lignes, matrices colonnes, matrices carrées, diagonales, identité, triangulaires supérieures et inférieures.
- Opérations : somme, multiplication par un scalaire, produit, transpositions, propriétés.
- Stabilité de l'ensemble des matrices carrées par $+, ., \times$. Puissances, formule du binôme. Stabilité des ensembles des matrices diagonales et triangulaires par $+, ., \times$, des ensembles des matrices symétriques et antisymétriques par + et .
- Matrices carrées inversibles : définition, propriétés de base en particulier produit et transposition. Cas des matrices diagonales. Lien entre inversibilité et système : première méthode de calcul de l'inverse. Cas des matrices triangulaires. Deuxième méthode de calcul de l'inverse par l'algorithme du pivot simultanément sur la matrice identité.

Espaces vectoriels

- Définition d'un espace vectoriel, exemples de référence $(\mathbb{K}, \mathbb{K}^n, \mathbb{K}^{\Omega}, \mathbb{K}^{\mathbb{N}}, \mathcal{M}_{n,p}(\mathbb{K}))$. Règles de calcul. Combinaison linéaire d'une famille finie de vecteurs.
- Sous-espaces vectoriels : définition, caractérisation, c'est un ev. Exemples et contre-exemples. Notion de sous-espace vectoriel engendré par une famille finie de vecteurs.
- Somme de deux sev, somme directe (définition : unicité de l'écriture d'un vecteur de F + G, caractérisation par la condition $F \cap G = \{0\}$, sev supplémentaires, caractérisation.

Questions de cours

Demander:

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - $(A \times B) \times C = A \times (B \times C)$.
 - Si A et B sont inversibles alors AB et ^tA aussi, expression des inverses.
 - Pour F et G des sev d'un \mathbb{K} -ev E, $F \cap G$ et F + G sont des sev de E.
 - Pour F et G des sev d'un \mathbb{K} -ev E, alors F et G sont en somme directe ssi $F \cap G = \{0\}$.

Semaine suivante : Matrices, espaces vectoriels, applications linéaires.