

A Study on a Lead Prediction System for World Plus Using Machine Learning in R

by

Group 7

Advisor: Prof. Nursen Aydin, PHD

Table of content

1. Introduction	1
2. Business Understanding	1
3. Literature Review	2
4. Data Understanding	4
5. Data Preparation	5
5.1 Standardizing the Data	5
5.2 Data partitioning and balancing	6
5.3 Features selection	6
6. Modelling	7
7. Results and Evaluation	8
7.1 Confusion Matrix	8
7.2 Receiver Operating Characteristic Curve (ROC) and area under (A	۹UC)
	10
7.3 Precision recall (PR) curve and area under (AUCPR)	11
8. Conclusion	13
9. References	14
10. Appendix	19
Appendix A. The supplement to the literature review and corresponding	g
justifications	19
Appendix B. Confusion Matrices to Respective Models	24
Appendix C. The Supplements of Techniques	26
Appendix D. Features selection techniques (a two-step process)	28

List of Figures

Figure 1 The main steps of this report using CRISP-DM methodology	1
Figure 2 Information gain values of each variable	7
Figure 3 ROC curves of all models	.10
Figure 4 & 5 Precision-Recall Curves for Decision Tree (left) and Random	
Forest (right)	.12
Figure 6 & 7 Precision-Recall Curves for Logistic Regression (left) and SVM	Λ
(right)	.13

List of Tables

Table 1 Data Dictionary for World-Plus' Dataset	5
Table 2 Structure of Variables by Data Type and Values	6
Table 3 Comparison of models between classification metrics before model	
tuning	9
Table 4 Area under ROC curve (AUC) across respective models	11
Table 5 Area under PR curve (AUCPR) across respective models	11

1. Introduction

World-Plus, a mid-size private bank, requested a proposal to develop a lead prediction system to target prospective customers for their new term deposit product. Figure 1 shows how the CRISP-DM methodology is used in this report. Shi *et al.* (2022) found that classifiers like Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RT) and Logistic Regression (LR) are more effective than statistical methods and will be applied as baseline models in our analysis.

Figure 1 The main steps of this report using CRISP-DM methodology

2. Business Understanding

Studies have found that the banking sector's main challenge is dealing with the overflowing information caused by uncertain speeds and volume in the significant data era (Bedeley, 2014; Hassani *et al.*, 2018). Hence, correctly targeting potential

1

customers for World-Plus will facilitate the efficiency of sales and marketing operations - both in terms of cost and time.

3. Literature Review

Moro *et al.* (2011) proposed a paper regarding the application of CRISP-DM to Bank Direct Marketing, which can be applied to our case (see Appendix A). While some models like DT work well with missing data, others like SVM require missing data deletion or substitution. Therefore, this report tries to manage the instances instead of ignoring the NA value. For data partitioning, it is stated that given the many instances, two out of three of the instances are considered good enough to train the models.

The LR model is a classical classification method under traditional statistical analysis (Tamaddoni *et al.*, 2015). Caigny *et al.* (2022) proposed the logit leaf model (LLM), which is a new hybrid algorithm concept after the improvement of the LR model (see Appendix A). By combining DT feature selection and LR, LLM can retain its advantages and minimize its disadvantages, which provides sufficient evidence for using LR in this report (see Appendix C). Therefore, this report will first select a subset of relevant features through Decision Trees and then use the LR model instead of the linear model to predict.

SVM is a popular prediction method derived from the Vapnik-Chervonenkis (VC) theory, which makes it possible to achieve an optimal classification surface (Shao & Cherkassky, 1999). He *et al.* (2014) chose three models to predict the churn of customers in commercial banks. The result showed that the radial basis function (RBF)

SVM model outperforms the linear SVM model and the LR model, as the kernel function transforms nonlinear classifications into linear by projecting the latitude of samples from low to high (see Appendix C). Similarly, since the customer data provided by World Plus is also personalized and multidimensional (see Appendix A), the RBF SVM model will be chosen for predictive analysis.

RF model can be used for categorical and continuous predictors and response variables (see Appendix C). In the classification data, random forest imputes missing values using the majority value (Adele *et al.*, 2011). This also further supports the argument of using the mode in categorical data to impute missing values. It works on a tree-based ensemble technique and creates a prediction function, which is determined by a loss function and defined to minimize the expected loss value. The essential features are then chosen and used to build the RF model (see Appendix A).

Loss Function Formula -
$$\sum_{XY} (L(Y, f(X)))$$

Song and Lu (2015) mentioned that DT models are one of the best modeling techniques for Data Mining. They have been widely utilized in various fields because they are simple to use and quickly deal with unclean data and missing values. DT models can be used to select the most relevant input features to build later decision trees, which can formulate clinical hypotheses and facilitate subsequent research (see Appendix A and Appendix C). This report will use the DT algorithm to identify critical variables and build one of the models.

For evaluation, Thorleuchter *et al.* (2011)'s paper has been used due to the likeness of our research focus, as it talks about using historic customer data to build models and

identify new potential acquisition targets in a business-to-business environment (see Appendix A). The core of this research revolves around finding the optimal approach to estimate the future profitability of these customers by efficiently and effectively targeting them. Given the common objective of developing a successful lead prediction system that accurately identifies leads while avoiding unnecessary costs, attributes and evaluation metrics mentioned in this paper, i.e., Confusion Matrix, Precision-Recall Curve, and Receiver Operator Characteristic (ROC), would be used for the comparative analysis.

In summary, this report combines the listed methods to pinpoint the target customers.

Particularly, references are taken from past research that applied the new hybrid algorithm LLM mechanism to predict target customers in the banking industry.

4. Data Understanding

In our research, we obtained a dataset containing 220,000 records of historical customer data with 16 variables, with each variable explained in Table 1. We tried to investigate the relationships between features and the conversion of customers.

Variables	Attribute information
1) ID	customer identification number
2) Gender	gender of the customer
3) Age	age of the customer in years
4) Dependent	whether the customer has a dependent or not
5) Marital_Status	marital state (1=married, 2=single, 0 = others)
6) Region_Code	code of the region for the customer
7) Years_at_Residence	the duration in the current residence (in years)
8) Occupation	occupation type of the customer
9) Channel_Code	acquisition channel code used to reach the customer when they opened their bank account
10) Vintage	the number of months that the customer has been associated with the company.
11) Credit_Product	if the customer has any active credit product (home loan, personal loan, credit card etc.)
12) Avg_Account_Balance	average account balance for the customer in last 12 months
13) Account_Type	account type of the customer with categories Silver, Gold and Platinum
14) Active	if the customer is active in last 3 months
15) Registration	whether the customer has visited the bank for the offered product registration(1 = yes; 0 = no)
16) Target	whether the customer has purchased the product
	0: Customer did not purchase the product
	1: Customer purchased the product

Table 1 Data Dictionary for World-Plus' Dataset

5. Data Preparation

At first glance, we removed the customer ID column as it does not affect customers' decision to purchase a product. As shown in Table 2, we also checked the data types and encoded them.

5.1 Standardizing the Data

For the "Dependent" variable, some inaccurate data entries with "-1" were found when they were supposed to be "0" or "1". This error constitutes 118 instances, at about 0.05%. It is said that if NA values are less than 1% or up to 5%, they are considered trivial or manageable, while a ratio of over 5% needs to be treated (Elhassan *et al.*, 2021). Thus, we removed all "-1" entries from the "Dependent" column.

Regarding missing values (8% in the "Credit Product" field), we decided to replace them with "No" as it has a significantly higher proportion than "Yes." This treatment was

based on Silva-Ramírez *et al.*'s paper (2010), where "qualitative variables like NA can be imputed with the mode." Table 2 shows the list of selected variables.

Feature Name	Data Type / Values	Feature Name	Data Type / Values
Gender	Factor: "0","1"	Vintage	Integer: 38 49 88
Age	Integer: 73 30 56	Credit_Product	Factor: "0","1","2"
Dependent	Factor: "0","1"	Avg_Account_Balance	Integer: 1045696 581988
Marital_Status	Factor: "0","1","2"	Account_Type	Factor: "1","2","3","4"
Region_Code	Factor: "RG250", "RG251",	Active	Factor: "0","1","2"
Years_at_Residence	Integer: 135	Registration	Factor: "0","1","2"
Occupation	Factor: "1","2","3","4"	Target	Factor: "0","1","2"
Channel_Code	Factor: "1","2","3","4"		

Table 2 Structure of Variables by Data Type and Values

5.2 Data partitioning and balancing

For the partitioning part, we divided the datasets into training and test by the proportion of $\frac{2}{3}$ and $\frac{1}{3}$, respectively, with stratified sampling, which was considered good enough to build the models (Moro *et al.*, 2011). Since the dataset was skewed, we decided to use the both-sampling method. Seiffert *et al.* (2008) explained that this hybrid method usually improves performance compared to using only a single sampling procedure, as fewer observations are removed from the data, decreasing the loss of information.

5.3 Features selection

Next, we made feature selection through a two-step process, as it is an essential phase in pattern recognition and model performance (Zhou *et al.*, 2020; V. *et al.*, 2006; Sadhasivam *et al.*, 2021). We first used the information gain function with the median method and then applied the DT model for further selection. Consequently, the top four features are Age, Registration, Vintage, and Channel Code, as they improve

understanding of customer preferences, customer behavior, temporal dimension, and guiding force (Stanley *et al.*, 1985; Tao & Rosa Yeh, 2003; Robertson et al., 1998; Goić, Jerath, & Kalyanam, 2022). Here, only the top four most dominant features are identified as suggested by the J48 algorithm (V. *et al.*, 2006) (see Appendix D). Since classification is the process of labeling and categorizing the input data, it is assumed that the provided data categories can predict the target variable using the models above. Thus, we hold the assumption that the chosen variables are interconnected.

Figure 2 Information gain values of each variable

6. Modelling

By filtering the features, a feature subset can be generated and used in the four selected classifiers, including the LR, RBF SVM, DT, and RF models. Due to respective advantages and limitations, each of the four models outperformed in different scenarios (see Appendix C).

The RBF SVM model can correctly separate multiple dimensions and maximize their boundaries (Xia & Jin, 2008; Shabankareh *et al.*, 2021). It becomes beneficial to use the C5.0 algorithm because it can perform feature selection and give high accuracy with low memory usage (Pandya *et al.*, 2015). For RF, the report will consider a higher number of trees to ensure less out-of-bag error and avoid data pruning (Adele *et al.*, 2011).

7. Results and Evaluation

The model-evaluation process involves identifying potential candidates and modeltuning to find the best-fitting model.

7.1 Confusion Matrix

The confusion matrix can calculate several evaluation metrics (See Appendix B). Table 3 shows the results of 5 key attributes.

Model	Instances	Accuracy	Precision	Recall	F1	Error
					Score	Rate
Logistic	65064	0.9011	0.6571	0.5405	0.5985	0.1090
Regression	65964	0.8911	0.6571	0.5495	0.5965	0.1089
SVM	65964	0.8931	0.6518	0.5935	0.6212	0.1069
Decision	GEOG4	0.9539	0.5041	0.6274	0.5630	0.1462
Tree	65964	0.8538	0.5041	0.6371	0.5629	0.1462
Random	GEOGA	0.9675	0.5460	0.6424	0.5770	0.4225
Forest	65964	0.8675	0.5460	0.6121	0.5772	0.1325

Table 3 Comparison of models between classification metrics before model tuning

In the case of an imbalanced dataset, classifiers are often more inclined to predict the majority class correctly. Hence, general classification rules like accuracy fail to measure the model's predictive power effectively (He et al., 2014). As such, more emphasis will be placed on precision and recall.

A more considerable precision indicates that the model can correctly classify the observations and, in this case, cut costs of uninterested customers.

$$Precision = \frac{TP}{TP + FP}$$

A higher recall indicates a higher proportion of accurate labels being identified and not missing any potential customers.

$$Recall = \frac{TP}{TP + FN}$$

When precision and recall are similar across different models and no single model outperforms the rest, the F1 Score is used to find the right balance between the two.

$$F1 \, Score = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

From Table 3, SVM has the highest F1 score of 0.6212, followed by LR (0.5985), RF (0.5772) and DT (0.5629). Given World Plus's objective of targeting prospective customers and avoiding unnecessary expenses on uninterested customers, a balanced model with the highest F1 score is preferred.

To further explore precision and recall, the error rate will be examined (Das, 2015).

$$Error\ Rate\ = \frac{FP + FN}{TP + TN + FP + FN}$$

Once again, SVM has the lowest error rate of 0.1069, followed by LR (0.1089), RF (0.1325) and DT (0.1462).

7.2 Receiver Operating Characteristic Curve (ROC) and area under (AUC)

The ROC curve (See Figure 2) is a visual representation depicting the effectiveness of binary classifiers by comparing the true positive rate (TPR) to the false positive rate (FPR); as stated by Zhang *et al.* (2015), it is a valuable instrument in evaluating paired classifiers.

Figure 3 ROC curves of all models

As shown in Figure 3, we compared the ROC curves for all models. However, according to Drummond & Holte (2000), ROC curves have significant disadvantages when evaluating imbalanced data models, as the curve does not explicitly represent

decision thresholds.

In this context, ROC curves may not provide a complete picture of classifier performance because the TPR is calculated based on the number of positive instances and the majority class, not the minority class (Manel *et al.*, 2001).

Models	Area under ROC curve (AUC)
Decision Tree	0.8192
Random Forest	0.8435
Logistic Regression	0.8557
SVM	0.8434

Table 4 Area under ROC curve (AUC) across respective models

From table 4, LR has the highest AUC (0.8557), followed by RF (0.8435), SVM (0.8434) and DT (0.8192).

7.3 Precision recall (PR) curve and area under (AUCPR)

Models	Area under PR curve (AUCPR)
Decision Tree	0.5151
Random Forest	0.5683
Logistic Regression	0.6265
SVM	0.5855

Table 5 Area under PR curve (AUCPR) across respective models

The PR curve is a better alternative to the ROC curve, which highlights performance differences lost in ROC curves (Goodrich *et al.*, 2006). It must incorporate correctly

predicted instances and be more prone to exaggerate model performance for unbalanced datasets (Sofaer et al., 2018).

Although LR has a larger AUCPR, the optimal points for SVM and LR are almost identical. For instance, if a 0.605 recall benchmark was chosen, LR and SVM will have a precision of about 0.646 (See Figure 6 & 7). As for DT and RF, the precision is just about 0.5 (See Figure 4 & 5). The SVM model is still chosen since we value the equal balance and performance between both elements.

Figure 4 & 5 Precision-Recall Curves for Decision Tree (left) and Random Forest (right)

Figure 6 & 7 Precision-Recall Curves for Logistic Regression (left) and SVM (right)

Summarizing the results, SVM outperforms the others by having the highest F1 score and lowest error rate. Precision and recall are not the greatest, but a well-balanced model is the first prioritization.

8. Conclusion

This report applied CRISP-DM methodology to improve the lead prediction system. The dominant four features we suggested for the bank are Age, Registration, Vintage, and Channel Code. As World Plus embarks on lead prediction, these dominant features and the SVM model synergy become a powerful guide, steering strategic decisions and optimizing outcomes for sustained success. For further improvement, model tuning is suggested.

9. References

- Bedeley, R. (2014) Big Data Opportunities and challenges: The case of banking industry, AIS Electronic Library (AISeL). Available at: https://aisel.aisnet.org/sais 2014/2/ (Accessed: 20 November 2023).
- Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. *Ensemble Machine Learning*, 157–175. doi:10.1007/978-1-4419-9326-7
- Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. Ensemble
 Machine Learning, 157–175. doi:10.1007/978-1-4419-9326-7_5 De Caigny, A.,
 Coussement, K. and De Bock, K.W. (2018) 'A new hybrid classification algorithm
 for customer churn prediction based on logistic regression and decision trees',
 European Journal of Operational Research, 269(2), pp. 760–772.
 doi:10.1016/j.ejor.2018.02.009.
- Drummond, C., & Holte, R. C. (2000). Explicitly representing expected cost.
 Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
 Discovery and Data Mining. doi:10.1145/347090.347126
- Elhassan, A. et al. (2021) *ILA4: Overcoming missing values in machine learning datasets an inductive learning approach, ScienceDirect.* Available at: https://www.sciencedirect.com/science/article/pii/S1319157821000501 (Accessed: 20 November 2023).
- Goadrich, M., Oliphant, L., Shavlik, J. (2006) 'Gleaner: Creating ensembles of first-order clauses to improve recall-precision curves', *Machine Learning*, 64, pp. 231–262
- 7. Goić, M., Jerath, K., & Kalyanam, K. (2022). The roles of multiple channels in predicting website visits and purchases: Engagers versus closers. *International*

- Journal of Research in Marketing, 39(3), 656–677. doi:10.1016/j.ijresmar.2021.12.004
- 8. Hassani, H., Huang, X. and Silva, E. (2018) *Digitalisation and big data mining in banking, MDPI*. Available at: https://www.mdpi.com/2504-2289/2/3/18 (Accessed: 20 November 2023).
- He, B. et al. (2014) 'Prediction of customer attrition of commercial banks based on SVM model', *Procedia Computer Science*, 31, pp. 423–430.
 doi:10.1016/j.procs.2014.05.286.
- Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence absence models in ecology: The need to account for prevalence. *Journal of Applied Ecology*, 38, 921–931.
- 11. Moro, S., Laureano, R. and Cortez, P. (2011) Using data mining for Bank Direct Marketing: An application of the CRISP-DM methodology, RepositoriUM. Available at: https://repositorium.uminho.pt/handle/1822/14838 (Accessed: 07 November 2023).
- 12. Pandya, R. (2015) C5.0 Algorithm to Improved Decision Tree with Feature Selection and Reduced Error Pruning. International Journal of Computer Applications, 117(16). Available at https://www.academia.edu/download/57522627/15dbc3f753304c8ea8ebebc677b 3b6b12125_1.pdf SONG, Y.-y., 2015.
- 13. Sadhasivam, J. et al. (2021) Diabetes disease prediction using decision tree for feature selection, IOP Science. Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1964/6/062116/meta?gclid=CjwKCAiAvJarBhA1EiwAGgZl0PVal8VNI8S-I7xSRM93FQ9lwj-4ViMx4W-I-JN5y99ZJQgQD78cexoCNqoQAvD_BwE (Accessed: 28 November 2023).

- Seiffert, C., Khoshgoftaar, T.M. and Hulse, J.V. (2008) Hybrid sampling for imbalanced data, IEEE Xplore. Available at: https://ieeexplore.ieee.org/document/4583030 (Accessed: 20 November 2023).
- Shabankareh, M.J. et al. (2021) 'A stacking-based data mining solution to customer churn prediction', *Journal of Relationship Marketing*, 21(2), pp. 124– 147. doi:10.1080/15332667.2021.1889743.
- Shao, X. and Cherkassky, V. (1999) 'Multi-resolution support Vector Machine',
 IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339) [Preprint]. doi:10.1109/ijcnn.1999.831103.
- 17. Shi, S., Tse, R., Luo, W., D'Addona, S., Pau, G.: Machine learning-driven credit risk: a systemic review. *Neural Comput.* Appl. 34, 14327–14339 (2022))
- 18. Silva-Ramírez a, E.-L. et al. (2010) Missing value imputation on missing completely at random data using multilayer perceptrons, ScienceDirect. Available at: https://www.sciencedirect.com/science/article/pii/S0893608010001735?fr=RR-2&ref=pdf_download&rr=82d2f36bda317786 (Accessed: 19 November 2023).
- Sofaer R. Helen, Hoeting A. Jennifer, Jarnevich S. Catherine S. (2018). The area under the precision-recall curve as a performance metric for rare binary events.
 British Ecological Society, pp. 565. https://doi.org/10.1111/2041-210X.13140
- 20. Song, Y.Y. and Ying, L.U., 2015. Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), p.130.
- Stanley, T. O., Ford, J. K., & Richards, S. K. (1985). Segmentation of bank customers by age. *International Journal of Bank Marketing*, 3(3), 56–63. doi:10.1108/eb010761
- Sugumaran, V., Muralidharan, V. and Ramachandran, K.I. (2007) Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), p. 130. available at : https://doi.org/10.11919%2Fj.issn.1002-

- 0829.215044" \t "_blank
- 23. T. K. Das. (2015) "A customer classification prediction model based on machine learning techniques," 2015 International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 321-326, doi: 10.1109/ICATCCT.2015.7456903.
- Tamaddoni, A., Stakhovych, S. and Ewing, M. (2015) 'Comparing churn prediction techniques and assessing their performance', *Journal of Service Research*, 19(2), pp. 123–141. doi:10.1177/1094670515616376.
- Tao, Y.-H., & Rosa Yeh, C.-C. (2003). Simple database marketing tools in customer analysis and Retention. *International Journal of Information Management*, 23(4), 291–301. doi:10.1016/s0268-4012(03)00052-5
- 26. Thorleuchter, Dirk, Van den Poel, Dirk, Prinzie, Anita. (2011). Analyzing existing customers' websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing. *Elsevier Ltd.* https://doi.org/10.1016/j.eswa.2011.08.115
- 27. V., S., V., M. and K.I., R. (2006) Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of Roller Bearing, ScienceDirect. Available at: https://www.sciencedirect.com/science/article/pii/S0888327006001142 (Accessed: 28 November 2023).
- XIA, G. and JIN, W. (2008) 'Model of customer churn prediction on support vector machine', Systems Engineering - Theory & En
- 29. Xiahou, X. and Harada, Y. (2022) 'B2C e-commerce customer churn prediction based on K-means and SVM', *Journal of Theoretical and Applied Electronic Commerce Research*, 17(2), pp. 458–475. doi:10.3390/jtaer17020024.

- 30. Zhang, X., Li, X., Feng, Y. & Liu, Z. (2015), 'The use of roc and auc in the validation of objective image fusion evaluation metrics', *Signal processing* 115, 38–48.
- 31. Zhou, H. et al. (2020) A feature selection algorithm of decision tree based on feature weight, ScienceDirect. Available at:

https://www.sciencedirect.com/science/article/pii/S0957417420306515

(Accessed: 28 November 2023).

10. Appendix

Appendix A. The supplement to the literature review and corresponding justifications

Authors	Title	Year	What?	Techniques	Justifications
Moro, S.,	Using data	2011	This paper	CRISP-DM,	The paper includes all
Laureano,	mining for Bank		imp l emented	Three DM	the processes from data
R. and	Direct Marketing:		DM project	algorithms	preparation to model
Cortez, P.	An application of		based on the	(i.e. NB, DT	evaluation; this allows us
	the CRISP-DM		CRISP-DM	and SVM),	to understand more
	methodology		methodology.	AUC plot,	about how CRISP-DM
			The data were	ROC	can be used.
			collected from	analysis	During the Data
			a Portuguese		Preparation phase of the
			marketing		paper, there were also
			campaign		lots of observations with
			related with		missing values that were
			bank deposit		dealt with; it was
			subscription.		explained that while
			The objective		some models like
			is to find a		Decision Trees work well
			model that		with missing data, there
			can develop		are others like SVM that
			campaign		require missing data
			efficiency by		deletion or substitution.
			identifying the		As a result, instead of
			main		ignoring the NA value, we
			characteristics		try to find a way to deal
			that help		with the instances that
			classify		contain missing values.
			potential		For the part of data
			buying		partitioning the article
			customers.		explained that as there
					are many instances, two
					out of three of the
					instances are considered
					good enough to build the

						and the Thomas and the
						models. Therefore, the
						authors and our group
						randomly divided the
						datasets into training and
						test by the proportion of
						⅔ and ⅓ respectively.
Benlan	Prediction of	2014	Comparation	Support	•	The paper and this report
He,Yong	customer attrition		between	vector		have similar data
Shi, Qian	of commercial		linear SVM	machine		qualities, such as high
Wan	banks based on		model, radial	(SVM),		dimension and
, and Xi	SVM		basis function	Logistic		personalization.
Zhao	model		(RBF) SVM	regression	•	The advantages and
			and logistic	(LR)		disadvantages of
			regression			different SVM types and
			model on			logistic regression and
			predicting the			the model performance
			churn of			situation contribute to the
			customers in			model selection in this
			commercial			paper.
			bank			
Arno De	A new hybrid	2018	This paper	Logistic	•	The analysis logic of LLM
Caigny,	classification		introduced a	regression		can reduce data
Kristof	a l gorithm for		new hybrid	(LR),		heterogeneity.
Cousseme	customer churn		algorithm.	Random	•	Through the feature
nt and	prediction		Logit leaf	forests (RF),		selection of DT, the LR
Koen W.	based on logistic		model	Logistic		model can analyze the
De Bock	regression and		contains two	model trees		corresponding subsets to
	decision trees		stages: a	(LMT),		reduce the interactions
			segmentation	Decision tree		between variables.
			stage	(DT)	•	As one of the innovations
			dominated by	Logistic Leaf		of this paper, the feature
			decision tree	model (LLM)		selection led by the
			and a			leading DT model is
			prediction			more convincing than the
			stage			common information gain
			dominated by			method.
			logistic			The target variable is
			regression.			binary (refers to 1 and 0).
•	1					, · · · · · · · · · · · · · · · · · · ·

					I	
						This report cannot
						choose the linear model
						because it will make the
						target variable fall
						outside of the range.
Dirk	Analyzing	2011	Investigates	Evaluation	•	The paper focuses on
Thorleucht	existing		the issue of	metrics:		using predictive analytics
er, Dirk	customers'		predicting	precision,		to help identify new
Van den	websites to		new	recall, area		potential acquisition
Poel, Anita	improve the		customers as	under the		targets.
Prinzie	customer		profitable	receiver	•	Although the authors
	acquisition		based on	operating		conducted analysis on
	process as well		information	characteristic		textual information of
	as the profitability		about existing	s curve		existing customers'
	prediction in B-to-		customers in	(AUC),		websites, the ultimate
	B marketing		a business-to-	sensitivity,		goal of both predictive
			business	and		systems are highly
			environment.	specificity		similar, hence useful
						evaluation metrics from
						this paper will be
						extracted
Yan-yan	Decision tree	2015	Advantage of	CART, C4.5,	•	This paper describes
SONG ,Yi	methods:		using	CHA I D, and		how the DT model works
ng LU	applications for		Decision tree	QUEST		well with missing data
	classification and		algorithm with			and also provides
	prediction		feature			important features which
			selection.			makes the model less
						complex .
					•	Pruning method is used
						to find the optimal size of
						DT if the dataset is very
						large with lots of
						variab l es
						Stopping rules must be
						applied to the DT model ,
						to avoid overfitting .
L]	

		2015	In this	In this		Decision trace can
	OF O Almonithus to	2015			•	Decision trees can
 	C5.0 Algorithm to		research work	research		handle both numerical
Rutvija	Improved		the framework	work,		and categorical data
Pandya	Decision Tree		proposed	comparison		without extensive data
	with Feature		used C5.0	between ID3		processing.
	Selection and		classifier that	C4.5 and	•	The tree structure
	Reduced Error		Performs	C5.0 is		presents a series of
	Pruning		high l ight	presented.		direct choices, making it
			determination			an important algorithm
			and			for understanding and
			diminished			visualizing.
			mistake		•	While analyzing different
			pruning			model results, it was
			methods			easier to get an idea
			which are			about the attribute
			depicted in			weightage of different
			this paper.			variables by looking at
						the tree model.
Adele	Random Forest	2011	This paper	Random	•	The paper justifies that
Cutler,			covers the	Forest,		Random Forest is
David			algorithm and	Confusion		appealing as it measures
Richard			how it	Matrix,		variable importance,
Cutler,			performs	Tuning		class weightage and can
John R			differently in			also treat missing values.
Stevens			classification		•	The paper explains that
			prob l em,			loss function is a
			variable			measure of how close is
			importance,			f(X) to Y and works on a
			missing value			zero – one loss model for
			imputation,			classification. The
			out of Bag			esemble constructs f in
			data and			terms of collection of
			tuning			"base learners" which are
			hyperparamet			combined to give
			ers of model			predictors. Y which is the
						response variable is the
						most frequently predicted
						class f(x) in classification.

		•	The paper emphasis on a
			common misconception
			in case of calculating Out
			– of – Bag error rate in
			similar problem as
			classification which is
			computing by averaging
			error rates for each tree.
			Instead, we can use error
			rate of out – of – bag
			predictions. This helps us
			to obtain class wise error
			rate for each class.
		•	The paper explain
			through a graph inverse
			relationship between
			number of trees and out
			of bag error rate. We
			have considered 500 no.
			of tree to create a model
			which is computationally
			efficient with minimum
			error rate.
		•	Tuning (to update basis if
			we will tune RF model or
			not)
	•		

Appendix B. Confusion Matrices to Respective Models

		Actual		
		0	1	
Predicted	0	53133 (TN)	3960 (FN)	
	1	3089 (FP)	5782 (TP)	

Table 1. Confusion Matrix for SVM

		Actual	
		0	1
Predicted	0	51264 (TN)	3779 (FN)
	1	4958 (FP)	5963 (TP)

Table 2. Confusion Matrix for Random Forest

		Actual		
		0	1	
Predicted 0		50116 (TN)	3535 (FN)	
	1	6106 (FP)	6207 (TP)	

Table 3. Confusion Matrix for Decision Tree

		Actual	
		0	1
Predicted	0	53429 (TN)	4389 (FN)
	1	2793 (FP)	5333 (TP)

Table 4. Confusion Matrix for Logistic Regression

	TPR	TNR	FPR	FNR
SVM	0.5485	0.9503	0.0497	0.4515
Decision Tree	0.6371	0.8914	0.1086	0.3629
Random Forest	0.6121	0.9118	0.0882	0.3879
Logistic	0.5935	0.9451	0.0549	0.4065
Regression				

Table 5. True Positive Rate (TPR), True Negative Rate (TNR), False Positive Rate (FPR) and False Negative Nate (FNR) for all models

$$TPR = \frac{TP}{TP + FN}$$
 $TNR = \frac{TN}{TN + FP}$

$$FPR = \frac{FP}{FP + TN}$$
 $FNR = \frac{FN}{FN + TP}$

Appendix C. The Supplements of Techniques

Techniques	Definitions	Advantages	Disadvantages/	Formulars	References
			limitations		
Decision Tree	The use of decision	Easy to understand	DT mode can be		SONG, 2015
	tree methodology is	and present.	subject to		
	prevalent in data	Able to handle	overfitting and		
	mining, where it is	missing values.	underfitting,		
	commonly utilized to		while working		
	construct classification		with small		
	systems by		dataset.		
	considering multiple		Strong		
	covariates or to		correlation		
	develop prediction		between different		
	a l gorithms for a		input variab l es		
	specific target variable		can lead to		
			inaccurate		
			presentation of		
			the results		
Support	SVM model is a	Optimize nonlinear	Typically,		Shao and
Vector	machine learning	decision	compared to DT	$\mathcal{L}(\mathbf{x},\hat{\mathbf{x}},\mathbf{x}) = \frac{1}{2} \left[\mathbf{x} ^2 + \sum_{i=1}^{n} \alpha_i^2 (1 - y_i^2/2^2 x_i + \hat{x}_i^2) \right]$	Cherkassky,
Machine	based prediction	boundaries via the	and RF, SVM	$W = \sum_{i=1}^{m} a_i x_i y_i = 0$	1999; X I A
	method derived from	kernel function,	model perform	$\sum_{i=1}^{m} a_i y_i = 0$	and JIN,
	the Vapnik-	which improves	badly when	erije ijijameneta (a)=11e	2008;
	Chervonenkis (VC)	generalization and	dealing with		Shabankare
	theory, which makes it	avoids overfitting.	multidimensional		h et al., 2021
	possible to achieve an	They argued that	data because of		
	optimal classification	the kernel function	the inability to		
	surface. By finding a	can transform	perform feature		
	hyperplane that	nonlinear	filtering and		
	satisfies the	classification into	combination		
	classification	linear classification	processing.		
	requirements, this	by projecting the			
	popular machine	latitude of samples			
	learning method has	from low to high.			
	the advantage of being				
	able to correctly				
	separate multiple				

	dimensions and				
	dimensions and				
	maximize their				
	boundaries.				
Logistic	LR model is a classical		LR model cannot	$P(Y=1 X) = \frac{exp(wx+b)}{1 + exp(wx+b)}$	Xiahou and
regression	classification method	Solve and apply to	recognize and	$P(Y=0 X) = \frac{1}{1 + exp(wx+b)}$	Harada,
	under traditional	problems related to	hand l e		2022;
	statistical analysis. It	continuous and	interactions	$P(Y=1 X) = \frac{exp(wx+b)}{1 + exp(wx+b)} P(1)$	Tamaddoni,
	can predict the	categorical	between		Stakhovych
	probability of an	variables.	variables.		and Ewing,
	unknown category in				2015
	the data by combining				
	the categories already				
	present in the data.				
Random	Random forest is a	It can measure	It can be biased	D = {(x1,	Adele , John
Forest	tree – based ensemble	importance of each	in favor of	<i>y</i> 1), , (<i>xN</i> ,	& David,
	in which each tree	feature for the	attributes with	yN)}	2011
	depends on collection	training data.	different number	xi =	
	of random variable.	It can handle both	of levels.	(<i>xi</i> ,1, ,	
	The combination of	classification and	Pruning might	xi,p)T	
	variables are used to	regression.	not work best to		
	get the response.	It depends on only	overcome	P = all	
		2-3 tuning	overfitting in	variable	
		parameters.	Random forest.	predictors	
		Random		k = terminal	
		components are		node	
		based on 2 main		^h(x) =	
		factors – number of		<i>arg</i> maxyåni	
		trees using		=1 <i>I(yki</i> = <i>y</i>)	
		bootstrap sample		for	
		from original data		classification,	
		and other is		where <i>I(yki</i> =	
		splitting of		y) = 1	
		variables for each		if <i>yki</i> = <i>y</i> and 0	
		tree random l y			
		,			
<u> </u>					

Appendix D. Features selection techniques (a two-step process)

Step	Justifications
Step 1:	We used the information gain function with the median method
Information gain	to filter out seven features or half of all features since the DT
function with the	model is sensitive to irrelevant features which leads to less
median method	classification accuracy. We chose the median in feature weight
	as the threshold since setting the appropriate threshold value
	needs experience and experiments; using the adaptive method
	could help divide the features into two equal parts, high and low
	correlation (Zhou <i>et al.</i> , 2020).
Step 2:	Sugumaran <i>et al.</i> (2007) argued that the features which do not
Decision Trees	contribute significantly can be removed by deciding on a
model	suitable threshold. Reducing the unwanted features also
	reduces the complexity of the model. Therefore, we applied the
	DT model for further selection as the model works based on the
	information gain of the features; it is said that only those
	contributing to the classification appear.
	The result of attribution usage from DT is below:
	Attribute usage:
	100.00% Age
	100.00% Registration
	96.01% Vintage
	70.37% Channel_Code
	52.24% Occupation
	49.27% Region_Code 30.57% Credit Product
	30.3770 Credite Inounce