Collaborative Filtering Methods in Recommendation System

Jihwan Lee **2022.03.18**

Contents

- [1] CF Methods with Machine Learning
- [2] CF Methods with Deep Learning

Recommender Systems What is a recommendation system?

- A recommendation system refers to a system that shows information (movies, music, etc.) that a specific user may be interested in.
- Click prediction, Top-k recommendation, cold-start problem,....

Recommender Systems

Taxonomy

Traditional Methods Content-Based Filtering

- Content-Based algorithms aim to suggest items or product which are alike to that items that user enjoyed in past or is looking at in the present-day.
- Advantages
 - [1] Other user's data not required.
 - [2] No data sparsity as well as cold start.
- Disadvantages
 - [1] Content analysis is essential to define the item features.
 - [2] The excellence of the product can't be estimated.
 - The likeness calculation is incomplete to the product description.

[fig 01] content-based filtering

Traditional Methods Memory Based Collaborative Filtering

- Collaborative filtering is based on the fact that relationships exist between products and people's interests.
- Collaborative filtering has two approaches:
 - [1] User-Based Collaborative Filtering
 Based on user's neighborhood
 - [2] Item-Based Collaborative Filtering
 Based on items' similarity

[fig 02] collaborative filtering

Traditional Methods Memory Based Collaborative Filtering

User id	Item id	Rating
User 1	Item A	4
User 1	Item C	3
User 2	Item A	3
User 2	Item B	2
User 3	Item D	5

	Item A	Item B	Item C	Item 4
User 1	4		3	
User 2	3	3		
User 3				5

Traditional Methods User-Based Collaborative Filtering

ļ		ltem1	ltem2	ltem3	ltem4	Item5	
ĺ	Alice	5	3	4	4	?	$\int sim = 0.85$
-	User1	3	1	2	3	3	$\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)$
Ĭ	User2	4	3	4	3	5	$\sin(a,b) = \frac{2p \in P(-a,p) - a \setminus (-b,p)}{\left[\sum_{n} (n-\bar{n})^2 \sum_{n} (n-\bar{n})^2\right]}$
	User3	3	3	1	5	4	$\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}$ $Sim = -D.19$
	User4	1	5	5	2	1	Pearson Correlation

Das, Debashis, Laxman Sahoo, and Sujoy Datta. "A survey on recommendation system." International Journal of Computer Applications 160.7 (2017).

Traditional Methods

Item-Based Collaborative Filtering

	1				
	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1
	CONTRACTOR AND				

$$similarity(i,j) = \frac{\sum_{u}^{U} r_{(u,i)} r_{(u,j)}}{\sqrt{\sum_{u}^{U} r_{(u,i)}^2} \sqrt{\sum_{u}^{U} r_{(u,j)}^2}}$$

Traditional Methods

Problems of collaborative filtering

Data Sparsity

users in general rate only a limited a number

of items

- Cold Start

Difficulty in recommendation to new

users or new items

Scalability

Increase in number of users of items

[fig 03] Cold Start Problem

Traditional Methods

Collaborative Filtering: Matrix Factorization (Model-Based)

 Matrix Factorization (MF) algorithms work by decomposing the user-item interaction matrix into the product of two dimensionality rectangular matrices.

- This MF model enables the integration of additional information.

Overfitting

Das, Debashis, Laxman Sahoo, and Sujoy Datta. "A survey on recommendation system." International Journal of Computer Applications 160.7 (2017).

Recommendation System Problems of Matrix Factorization

- NCF model emphasizes the matrix factorization limitation caused by using an inner product.
- The most limitation of Matrix Factorization caused by the use of a simple and fixed inner product is that estimate complex user-item interactions in the low-dimensional latent space.
- Show the example (fig 04)

new user u4 measure the similarity with Jaccard coefficient (left).

$$\rightarrow$$
 s41(0.6) > s43(0.4) > s42(0.2)

In the latent space (right), placing p4 closet to p1 makes p4 closer to p2 than p3, incurring a large ranking loss.

$$\hat{y}_{ui} = f(u, i | \mathbf{p}_u, \mathbf{q}_i) = \mathbf{p}_u^T \mathbf{q}_i = \sum_{k=1}^K p_{uk} q_{ik}$$

[fig 04]Limitation of matrix factorization

Jaccard coefficient similarity

Let Ru be the set of items that user u has interacted with, then the Jaccard similarity of users i and j is defined as

$$s_{ij} = \frac{|\mathcal{R}_i| \cap |\mathcal{R}_j|}{|\mathcal{R}_i| \cup |\mathcal{R}_j|}$$

- Neural Collaborative Filtering (NCF)
- NCF explore the central theme of how to utilize
 DNNs to model noisy implicit feedback signals.
- Binary classification: interaction \rightarrow 1, no interaction \rightarrow 0
- Paper proposes three NCF methods
 - [1] Generalized Matrix Factorization (GMF)
 - [2] Multi-Layer Perceptron (MLP)
 - [3] Ensemble of GMP and MLP (NeuMF)

[fig 05] NCF framework

Neural Collaborative Filtering (NCF)

- Input Layer: user (or item) one hot-encoding
- Embedding Layer: Input Sparse Layer Mapping to K(<m) layer → User (or Item) Latent Vector
- Neural CF Layers: Fully-Connected Layer

[fig 06] NCF framework

- Output Layers

$$\hat{y}_{u,i} = f(P^T v_u^U, Q^T v_i^I | P, Q, \Theta_f) = \phi_{out}(\phi_X(\dots \phi_2(\phi_1(P^T v_u^U, Q^T v_i^I)) \dots)), \quad 0 \leq \hat{y}_{u,i} \leq 1$$

→ Predicted value means how user u and item I interact on each other.

He, Xiangnan, et al. "Neural collaborative filtering." Proceedings of the 26th international conference on world wide web. 2017.

Input

 $(M \times 1)$

 $(M \times k)$

hidden

(k x 1)

Neural Matrix Factorization: GMP + MLP

 It unifies the strengths of linearity of MF and non-linearity of MLP for modeling the user-item latent structures.

$$\phi^{GMF} = \mathbf{p}_{u}^{G} \odot \mathbf{q}_{i}^{G},$$

$$\phi^{MLP} = a_{L}(\mathbf{W}_{L}^{T}(a_{L-1}(...a_{2}(\mathbf{W}_{2}^{T}\begin{bmatrix}\mathbf{p}_{u}^{M}\\\mathbf{q}_{i}^{M}\end{bmatrix} + \mathbf{b}_{2})...)) + \mathbf{b}_{L}),$$

$$\hat{y}_{ui} = \sigma(\mathbf{h}^{T}\begin{bmatrix}\phi^{GMF}\\\phi^{MLP}\end{bmatrix}),$$

[fig 07] NeuMF Framework

Experiments

Figure 4: Performance of HR@10 and NDCG@10 w.r.t. the number of predictive factors on the two datasets.

Figure 5: Evaluation of Top-K item recommendation where K ranges from 1 to 10 on the two datasets.

- Wide & Deep Learning
- It was initially introduced for an app recommendation for Google play.
- Memorization: It can achieve through wide learning component (linear wide model)
- Generalization: Deep learning model can catch generalization by producing more general and abstract representations. (non-linear deep learning model) → That is wide and deep model.

[fig 08] App pipeline & Wide Deep Models Architecture

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.

Wide & Deep Learning – Wide component

[fig 09] Wide learning components

where,
$$\mathbf{x} = [x_1, x_2, ..., x_d]$$

 $\mathbf{w} = [w_1, w_2, ..., w_d]$
 $b = \text{bias}$

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." Proceedings of the 1st workshop on deep learning for recommender systems. 2016.

Wide & Deep Learning – Deep component

[fig 10] Wide component

ONCF (Outer Product-based Neural Collaborative Filtering)

- This model is also called ConvNCF.
- NeuMF conducts concatenation two vectors(user&item latent vector), but ConvNCF proposes to outer product operation to obtain the interaction map.
- Hidden layer: Convolutional network with 6 layers
 → 64X64X1 feature map change to 1X1X32.
- ConvNCF applies a linear projection on the 1X1X32 tensor to obtain the prediction. $\hat{y}_{ui} = \mathbf{w}^T \mathbf{g}$
- ConvNCF is the first work that uses CNN to learn the interaction function between user embedding and item embedding.

Change 3

[fig 11] ONCF (ConvNCF) Framework

ONCF Experiments

	Gowalla					Yelp							
	HR@k			NDCG@k		HR@k		NDCG@k			RI		
	k = 5	k = 10	k = 20	k=5	k = 10	k = 20	k=5	k = 10	k = 20	k=5	k = 10	k = 20	
ItemPop	0.2003	0.2785	0.3739	0.1099	0.1350	0.1591	0.0710	0.1147	0.1732	0.0365	0.0505	0.0652	+227.6%
MF-BPR	0.6284	0.7480	0.8422	0.4825	0.5214	0.5454	0.1752	0.2817	0.4203	0.1104	0.1447	0.1796	+9.5%
MLP	0.6359	0.7590	0.8535	0.4802	0.5202	0.5443	0.1766	0.2831	0.4203	0.1103	0.1446	0.1792	+9.2%
JRL	0.6685	0.7747	0.8561	0.5270	0.5615	0.5821	0.1858	0.2922	0.4343	0.1177	0.1519	0.1877	+3.9%
NeuMF	0.6744	0.7793	0.8602	0.5319	0.5660	0.5865	0.1881	0.2958	0.4385	0.1189	0.1536	0.1895	+3.0%
ConvNCF	0.6914*	0.7936*	0.8695*	0.5494*	0.5826*	0.6019*	0.1978*	0.3086*	0.4430*	0.1243*	0.1600*	0.1939*	-

Graph Neural Network

- Each node is characterized by having a different neural network structure.
- Node Aggregation methods are various. (e.g. Mean-pooling, Normalization,...)

Wu, Shiwen, et al. "Graph neural networks in recommender systems: a survey." arXiv preprint arXiv:2011.02260 (2020).

Graph Neural Networks for Recommendations

- Graph neural networks can be used to model feature interactions and generate high-quality embeddings for all users and items.
- GNNs can be used for different types of recommendations. General recommendations disregard the notion of time and deals with user-item interactions but sequential recommendation seeks to capture transitional patterns in the user's behavior.
- The knowledge graph can explain why user was recommended the item. (explainable AI)

Graph Convolutional Matrix Completion (GC-MC)

- **Graph Auto-Encoder**: The auto-encoder produces latent features of user and item nodes through a form of message passing on the bipartite interaction graph.
- **Bilinear Decoder**: Latent user and item representations are used to reconstruct the rating links through a bilinear decoder. (Link prediction)

- Graph Convolutional Matrix Completion (GC-MC)
 - Step 1) User-Item Rating Matrix

- Creating user-item rating matrix M: row users and column items
- Matrix encode either an observed rating from a set of discrete possible rating values, or unobserved rating fill in 0.
- Users & Items: Node Rating value: edge

- Graph Convolutional Matrix Completion (GC-MC)
 - **Step 2) Graph auto-encoders :** graph auto-encoder produces latent features of user and item nodes with graph convolutional network (GCN).
 - Graph Convolutional Network also has two characteristics: abstract feature + weight sharing

[fig 12] Convolutional Neural Network characteristics

Graph Convolutional Network (GCN)

$$H = \psi(X, A) = \sigma(AXW)$$

Node Update

Graph Convolutional Matrix Completion (GC-MC) - Encoder

- **Graph Auto-Encoder**: The auto-encoder produces latent features of user and item nodes through a form of message passing on the bipartite interaction graph.

Graph Convolutional Encoder Example

User latent vectors example

→ Message Passing, Hidden Layer, Transformation three step

- 1. Message Passing

$$\mu_{j o i,r}:=W_rx_j^T$$

(User i & Item j & rating edge r)

$$\sigma\left[\operatorname{accum}(\mu_{3\to1,1},\mu_{2\to1,5},\mu_{1\to1,5})\right]$$

$$\bullet \; \mu_{1 \to 1,5} = W_{r=5} x_{j=1}^T = \begin{bmatrix} W_{11}^5 & W_{12}^5 & \dots & W_{1D}^5 \\ W_{21}^5 & W_{22}^5 & \dots & W_{2D}^5 \\ \dots & \dots & \dots & \dots \\ W_{E1}^5 & W_{E2}^5 & \dots & W_{ED}^5 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{12} \\ \dots \\ x_{1D} \end{bmatrix} = \begin{bmatrix} s_{11}^5 \\ s_{12}^5 \\ \dots \\ s_{1E}^5 \end{bmatrix}$$

$$\bullet \; \mu_{2 \to 1,5} = W_{r=5} x_{j=2}^T = \begin{bmatrix} W_{11}^5 & W_{12}^5 & \dots & W_{1D}^5 \\ W_{21}^5 & W_{22}^5 & \dots & W_{2D}^5 \\ \dots & \dots & \dots & \dots \\ W_{E1}^5 & W_{E2}^5 & \dots & W_{ED}^5 \end{bmatrix} \begin{bmatrix} x_{21} \\ x_{22} \\ \dots \\ x_{2D} \end{bmatrix} = \begin{bmatrix} s_{21}^5 \\ s_{22}^5 \\ \dots \\ s_{2E}^5 \end{bmatrix}$$

Identical Rating → Weight Sharing

$$egin{aligned} ullet \mu_{\mathbf{3} o 1, 1} &= W_{r=1} x_{j=3}^T \ egin{aligned} ullet W_{11}^1 & W_{12}^1 & \dots & W_{1D}^1 \ W_{21}^1 & W_{22}^1 & \dots & W_{2D}^1 \ \dots & \dots & \dots & \dots \ W_{E1}^1 & W_{E2}^1 & \dots & W_{ED}^1 \ \end{bmatrix} egin{bmatrix} x_{31} \ x_{32} \ \dots \ x_{3D} \end{bmatrix} = egin{bmatrix} s_{21}^1 \ s_{22}^1 \ \dots \ s_{2E}^1 \ \end{bmatrix}$$

Graph Convolutional Encoder Example

User latent vectors example

- 1.Message Passing

$$\mu_{j
ightarrow i,r} := W_r x_j^T$$

(User i & Item j & rating edge r)

$$\sigma \left[\operatorname{accum} \left(\mu_{3 \to 1,1}, \mu_{2 \to 1,5}, \mu_{1 \to 1,5} \right) \right]$$

Identical Rating → **Weight Sharing**

$$\bullet \ \mu_{\mathbf{3} \rightarrow 1,1} = W_{r=1} x_{j=\mathbf{3}}^T = \begin{bmatrix} W_{11}^1 & W_{12}^1 & \dots & W_{1D}^1 \\ W_{21}^1 & W_{22}^1 & \dots & W_{2D}^1 \\ \dots & \dots & \dots & \dots \\ W_{E1}^1 & W_{E2}^1 & \dots & W_{ED}^1 \end{bmatrix} \begin{bmatrix} x_{31} \\ x_{32} \\ \dots \\ x_{3D} \end{bmatrix} = \begin{bmatrix} s_{21}^1 \\ s_{22}^1 \\ \dots \\ s_{2E}^1 \end{bmatrix}$$

Normalization method

1. Left Normalization

$$\mu_{j
ightarrow i,r} = rac{1}{|\mathcal{N}_i|} W_r x_j$$

$$\mu_{j
ightarrow i,r} = rac{1}{|\mathcal{N}_i||\mathcal{N}_j|} W_r x_j$$

$$\sigma[\operatorname{accum}(\mu_{3\to 1,1},\mu_{2\to 1,5},\mu_{1\to 1,5})]$$

$$\operatorname{accum}(.) = \operatorname{sum}(.)$$

$$h_1 = egin{bmatrix} \sigma(s_{21}^1 + s_{11}^5) \ \sigma(s_{22}^1 + s_{12}^5) \ \cdots \ \sigma(s_{2E}^1 + s_{1E}^5) \end{bmatrix}$$

Berg, Rianne van den, Thomas N. Kipf, and Max Welling. "Graph convolutional matrix completion." arXiv preprint arXiv:1706.02263 (2017).

Graph Convolutional Encoder Example

User latent vectors example

- 2.Hidden Layer (Layer & weight dimension → hyperparameter)

Different Rating → **Different Weight Parameter**

Concatenate User Latent Vector

user, item latent vectors

Graph Auto-Encoder

By multiplying all user i by the same weight W, all users are represented in the same space.

Berg, Rianne van den, Thomas N. Kipf, and Max Welling. "Graph convolutional matrix completion." arXiv preprint arXiv:1706.02263 (2017).

Graph Convolutional Matrix Completion (GC-MC) - Decoder

- **Bilinear Decoder**: Latent user and item representations are used to reconstruct the rating links through a bilinear decoder. (Link prediction)

GC-MC Bilinear Decoder & Model Training

Bilinear Decoder – Predict Link

$$\hat{M}_{N_u \times N_v} = g(U, V)$$

$$\hat{M}_{ij} = \sum_{r \in R} r \ p(\hat{M}_{ij} = r), \ \text{ where } \ p(\hat{M}_{ij} = r) = \frac{e^{u_i^T Q_r v_j}}{\sum_{s \in R} e^{u_i^T Q_s v_j}}$$
Softmax

Rating of the user i for item j is predicted by weighted average of the rating.

Model Training – Negative log likelihood

$$\mathcal{L} = -\sum_{i,j;\;\Omega_{i,j}=1}\sum_{r=1}^R I[r=M_{ij}]\log p(\hat{M}_{ij}=r),\;\;\Omega\in\{0,1\}^{N_u imes N_v}$$

mask

Items

Link prediction

To calculate the loss only for links with ratings, multiply the mask matrix filled with 1 for the observed element and 0 for the unobserved element.

Berg, Rianne van den, Thomas N. Kipf, and Max Welling. "Graph convolutional matrix completion." arXiv preprint arXiv:1706.02263 (2017).

GC-MC Experiments

Model	Flixster	Douban	YahooMusic
GRALS	1.313/1.245	0.833	38.0
sRGCNN	1.179/0.926	0.801	22.4
GC-MC	0.941/0.917	0.734	20.5

Table 3: Average RMSE test set scores for 5 runs on Flixster, Douban, and YahooMusic, all of which include side information in the form of user and/or item graphs. We replicate the benchmark setting as in [22]. For Flixster, we show results for both user/item graphs (right number) and user graph only (left number). Baseline numbers are taken from [22].

GNN Model

Model	ML-1M	ML-10M
PMF [20]	0.883	_
I-RBM [26]	0.854	0.825
BiasMF [16]	0.845	0.803
NNMF [7]	0.843	_
LLORMA-Local [17]	0.833	0.782
I-AUTOREC [27]	0.831	0.782
CF-NADE [32]	0.829	0.771
GC-MC (Ours)	0.832	0.777

Table 4: Comparison of average test RMSE scores on five 90/10 training/test set splits (as in [32]) without the use of side information. Baseline scores are taken from [32]. For CF-NADE, we report the best-performing model variant. **MF Model**

References

- [1] Zhang, Shuai, et al. "Deep learning based recommender system: A survey and new perspectives." ACM Computing Surveys (CSUR) 52.1 (2019): 1-38.
- [2] Das, Debashis, Laxman Sahoo, and Sujoy Datta. "A survey on recommendation system." *International Journal of Computer Applications* 160.7 (2017).
- [3] MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
- (https://datajobs.com/data-science-repo/Recommender-Systems-[Netflix].pdf)
- [4] He, Xiangnan, et al. "Neural collaborative filtering." *Proceedings of the 26th international conference on world wide web.* 2017.
- [5] Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." *Proceedings of the 1st workshop on deep learning for recommender systems*. 2016.
- [6] He, Xiangnan, et al. "Outer product-based neural collaborative filtering." arXiv preprint arXiv:1808.03912 (2018).
- [7] Du, Xiaoyu, et al. "Modeling embedding dimension correlations via convolutional neural collaborative filtering." *ACM Transactions on Information Systems (TOIS)* 37.4 (2019): 1-22.
- [8] Zhu, Hangyu, and Maoting Gao. "Group recommendation method combining short-term interest and long-term preference." *Journal of Physics: Conference Series*. Vol. 2132. No. 1. IOP Publishing, 2021.
- [9] Wu, Shiwen, et al. "Graph neural networks in recommender systems: a survey." arXiv preprint arXiv:2011.02260 (2020).
- [10] Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.