Notações

 $\mathbb{N} = \{1,2,3,\dots\}$: conjunto dos números naturais.

 \mathbb{R} : conjunto dos números reais.

 ${\Bbb C}$: conjunto dos números complexos.

i: unidade imaginária, $i^2 = -1$.

 $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}.$

 \overline{AB} : segmento de reta de extremidades nos pontos $A \in B$.

 $A\hat{O}B$: ângulo formado pelos segmentos \overline{OA} e \overline{OB} , com vértice no ponto O.

 $C \cup D$ = união entre os conjuntos $C \in D$.

Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

Questão 1. Seja λ a circunferência que passa pelos pontos $P=(1,1),\ Q=(13,1)$ e R=(7,9). Determine:

- a) A equação de λ .
- b) Os vértices do quadrado ABCD circunscrito a λ , sabendo que R é o ponto médio de \overline{AB} .

Questão 2. Lançando três dados de 6 faces, numeradas de 1 a 6, sem ver o resultado, você é informado de que a soma dos números observados na face superior de cada dado é igual a 9. Determine a probabilidade de o número observado em cada uma dessas faces ser um número ímpar.

Questão 3. Dizemos que um número natural n é um cubo perfeito se existe um número natural a tal que $n=a^3$. Determine o subconjunto dos números primos que podem ser escritos como soma de dois cubos perfeitos.

Questão 4. Sejam a e b dois números reais. Sabendo que o conjunto dos números reais k para os quais a reta y = kx intersecta a parábola $y = x^2 + ax + b$ é igual a $(-\infty, 2] \cup [6, +\infty)$, determine os números a e b.

Questão 5. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^6 - 10x^4 - 4x^3 + 25x^2 + 20x + 28$.

- a) Determine dois números reais α e β de modo que f possa ser reescrita como $f(x) = (x^3 5x + \alpha)^2 + \beta$.
- b) Determine o valor mínimo de f.
- c) Determine o(s) ponto(s) $x \in \mathbb{R}$ onde f assume seu valor mínimo.

Questão 6. Seja $z \in \mathbb{C}$ uma raiz da equação $4z^2 - 4z \operatorname{sen} \alpha + 1 = 0$, para $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. Determine, em função de α , todos os possíveis valores para:

a)
$$2z + \frac{1}{2z}$$
 b) $(2z)^{15} + \frac{1}{(2z)^{15}}$

Questão 7. Seja H o hexágono no plano de Argand-Gauss cujos vértices são as raízes do polinômio $p(x) = (x - \sqrt{3})^6 + 64$. Determine $z \in \mathbb{C}$ sabendo que o conjunto $M = \{zx \in \mathbb{C} : x \in H\}$ é o hexágono que possui $v_1 = -1 + \sqrt{3}i$, $v_2 = 1 - \sqrt{3}i$ e $v_3 = 5 - \sqrt{3}i$ como três vértices consecutivos.

Questão 8. Considere a circunferência λ de centro O passando por um ponto A. Sejam B um ponto tal que A é o ponto médio de \overline{OB} e M um ponto de λ tal que $A\hat{O}M=100^\circ$. Seja r a reta tangente à λ passando por M. Seja \overline{DE} a projeção ortogonal dos segmento \overline{AB} sobre a reta r. Determine, em graus, a medida do ângulo $A\hat{E}B$.

Questão 9. Determine todos os números inteiros k entre 0 e 200 para os quais o polinômio $p_k(x) = x^3 - x^2 - k$ possui uma única raiz inteira. Para cada um desses valores de k, determine a raiz inteira correspondente.

Questão 10. Considere uma pirâmide reta P cuja base é um hexágono regular de lado l. As faces laterais dessa pirâmide formam um ângulo diedro de 75° com a base da própria pirâmide. Sabendo que P está inscrita em uma esfera, determine o raio dessa esfera.