Vaja 44, Sila na vodnik v magnetnem polju

Jure Kos

3.3.2022

Uvod

Na vodnik, ki leži v homogenem magetnem polju pravokotno na smer silnic, deluje sila, ki je sorazmerna s tokom I skozi vodnik in z dolžino l vodnika v polju:

$$F = BIl$$

Sorazmernostni koeficient B je gostota magnetnega polja. Magnetni pretok ϕ_m skozi okvir, ki je pravokoten na silnicah, je v homogenem polju enak produktu:

$$\phi_m = BS$$

kjer je S ploščina okvirja. Enota za B je $T(esla) = Vs/m^2$, enota za ϕ_m pa Vs.

Naloga

- 1. S tehtanjem pokazati, da je sila na vodnik sorazmerna s tokom.
- 2. Določiti gostoto magnetnega polja in magnetni pretok med poloma magneta.

Potrebščine

- 1. Občutljiva tehtnica z magnetom,
- 2. stojalo s prečko,
- 3. izvir napetosti
- 4. 4 žice.

Meritve

I[mA]	m[g]
250	0,19
500	0,42
750	0,64
1000	0,87
1250	1,11
1500	1,32
1750	1,55
2000	1,76
2250	2,00
2500	2,22
2750	2,45
3000	2,68
250	0,21
500	0,41
750	0,64
1000	0,86
1250	1,08
1500	1,30
1750	1,53
2000	1,75
2250	1,98
2500	2,19
2750	2,41
3000	2,64

Dimenzije magnetov:

 $a=2cm\,\pm\,0.5mm$

 $b = 1 \text{cm} \pm 0.5 \text{mm}$

Rezultati

Magnetno polje

Po enačbi

$$B = \frac{F}{Il}$$

za magnetno polje dobimo

$$B = 0,43 \cdot (1 \pm 0,05)T$$

Magnetni pretok

Magnetni pretok med magnetoma izračunamo po enačbi

$$\phi_m = BS$$

Za rezultat dobimo

$$\phi_m = 8, 5 \cdot 10^{-5} \cdot (1 \pm 0, 13) Vs$$

Grafi

Graf mase v odvisnosti od toka

