Intégration et théorie de la mesure Examen

15 mai 2012

Documents, calculatrices et téléphones interdits.

Exercice 1. Soit X un ensemble, soit \mathcal{C} une collection de parties de X telle que $\emptyset \in \mathcal{C}$ et $X \in \mathcal{C}$, et $\mu : \mathcal{C} \to [0, +\infty]$ une application telle que $\mu(\emptyset) = 0$. Pour tout $E \subset X$, on définit $\mu^*(E)$ comme étant la borne inférieure dans $[0, +\infty]$ des sommes

$$\sum_{n=1}^{+\infty} \mu(E_n),$$

où $(E_n)_{n\geq 1}$ est une suite d'ensembles de $\mathcal C$ tels que $E\subset \cup_{n\geq 1}E_n$.

- (1) Montrer que pour tout $E \subset X$, il un tel recouvrement de E.
- (2) Montrer que μ^* est une mesure extérieure, c'est-à-dire: $\mu^*(\emptyset) = 0$ et si A et $(A_n)_{n \in \mathbb{N}^*}$ sont des parties de X telles que $A \subset \bigcup_{n \in \mathbb{N}^*} A_n$, alors $\mu^*(A) \leq \sum_{n=1}^{+\infty} \mu^*(A_n)$.

Exercice 2. On se donne une suite $(b_n)_{n\geq 1}$ de nombres positifs tels que $\sum_{n=1}^{+\infty} b_n = +\infty$, et on étudie

la série de fonctions $\sum_{n=1}^{+\infty} b_n |\sin(2\pi nt)|$, pour $t \in [0,1]$. On dénote par m la mesure de Lebesgue.

- (1) Linéariser la fonction $\theta \to (\sin \theta)^2$.
- (2) Montrer que pour tout $E \subset [0,1]$ mesurable,

$$\lim_{n\to +\infty} \int_E \sin(2\pi nt) dt = 0 \text{ et } \lim_{n\to +\infty} \int_E (\sin(2\pi nt))^2 dt = \frac{m(E)}{2}.$$

(3) On suppose que $\sum_{n=1}^{+\infty} b_n = +\infty$. En utilisant l'identité $|\sin \theta| \ge (\sin \theta)^2$, montrer que

$$\int_{E} \left(\sum_{n=1}^{+\infty} b_n |\sin(2\pi nt)| \right) dt = +\infty.$$

- (4) Soit $r \in [0, +\infty[$ et E_r l'ensemble des points $t \in [0, 1]$ tels que $\sum_{n=1}^{+\infty} b_n |\sin(2\pi nt)| \le r$. Montrer que $m(E_r) = 0$.
- (5) En déduire que $\sum_{n=1}^{+\infty} b_n |\sin(2\pi nt)| = +\infty$ pour presque tout $t \in [0,1]$.

PROBLÈME.

Le but du problème est de trouver une série trigonométrique convergent en tout point vers une fonction qui n'est pas intégrable.

Première partie. Soit $f \in L^1(0,1)$. Pour tout $k \in \mathbb{N}^*$ on pose $b_k = \int_0^1 \sin(2\pi ks) f(s) ds$. Pour tout $t \in [0,1]$, soit $F(t) = \int_0^t f(s) ds$.

- (1) Question de cours : énoncer le théorème de Dirichlet. Pour quoi peut-on l'appliquer à F?
- (2) pour tout $(s,t) \in [0,1]^2$ et $k \in \mathbb{N}^*$ on pose $\varphi(s,t) = \cos(2\pi kt)f(s)$ si s < t, et $\varphi(s,t) = 0$ sinon. Montrer que φ est integrable sur $[0,1]^2$, par rapport à la mesure de Lebesgue.
- (3) Montrer que $\int_0^1 \left(\int_0^1 \varphi(s,t) ds \right) dt = \int_0^1 F(t) \cos(2\pi kt) dt$.
- (4) Montrer que $\int_0^1 \left(\int_0^1 \varphi(s,t) dt \right) ds = -\frac{b_k}{2\pi k}$.
- (5) Appliquer le théorème de Dirichlet à F en 0. En déduire que la série $\sum_{k=1}^{+\infty} \frac{b_k}{k}$ est convergente.

Seconde partie. Soit $(b_k)_{k \in \mathbb{N}^*}$ une suite de nombres positifs ou nuls, décroissante, tendant vers 0. Pour tout $t \in [0,1]$ et $n \in \mathbb{N}^*$ on pose

$$f_n(t) = \sum_{k=1}^n b_k \sin(2\pi kt)$$
 et $g_n(t) = \sum_{k=1}^n \sin(2\pi kt)$.

Le but est de montrer que $f_n(t)$ converge pour tout $t \in [0,1]$. C'est évident si t = 0 ou t = 1, on supposera donc que 0 < t < 1.

(1) Pour tout
$$n \in \mathbb{N}^*$$
 et $0 < t < 1$, calculer $\sum_{k=1}^n e^{2i\pi kt}$, et montrer que

$$g_n(t) = \frac{\sin(\pi nt)\sin(\pi(n+1)t)}{\sin(\pi t)}.$$

(2) Soit $n, m \in \mathbb{N}$ tels que 1 < n < m. Montrer que

$$\sum_{k=n}^{m} b_k \sin(2\pi kt) = \sum_{k=n}^{m} b_k (g_k(t) - g_{k-1}(t)) = \sum_{k=n}^{m-1} (b_k - b_{k+1}) g_k(t) + b_m g_m(t) - b_n g_{n-1}(t).$$

- (3) En utilisant la décroissance de b_k , montrer que $\sum_{k=n}^{m-1} |(b_k b_{k+1})g_k(t)| \le \frac{b_n b_m}{|\sin(\pi t)|}.$
- (4) Déduire de (2) et (3) que $|f_n(t) f_m(t)| \le \frac{2b_n}{|\sin(\pi t)|}$ (*). Conclure. Troisième partie.
- (1) Soit $p \in \mathbb{N}^*$ et 0 < t < 1. Calculer $\sum_{k=-p+1}^p e^{i(2k-1)\pi t}$ et en déduire que $\left|\frac{\sin(2\pi pt)}{\sin(\pi t)}\right| \le 2p$.
- (2) Montrer en utilisant (*) que pour $p \in \mathbb{N}^*$ fixé, on a $|f_n(t)\sin(2\pi pt) f(t)\sin(2\pi pt)| \le 4pb_n$ pour tout $n \ge 2$ et tout $t \in [0,1]$.
- (3) En déduire que pour tout $p \in \mathbb{N}^*$, $t \to f(t) \sin(2\pi pt)$ est continue sur [0,1], et que

$$\int_0^1 f(t)\sin(2\pi pt)dt = \frac{b_p}{2}.$$

On énoncera le théorème d'échange de limite et d'intégrale utilisé.

Conclusion. Donner un exemple de suite $b_k \geq 0$ décroissante, tendant vers 0, telle que $\sum_{k=1}^{+\infty} \frac{b_k}{k}$ diverge. En déduire que la série trigonométrique $\sum_{k=1}^{+\infty} b_k \sin(2\pi kt)$ converge pour tout $t \in [0,1]$ vers une fonction f non intégrable.