

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Krakow

Implementacja algorytmu NEAT na CUDA

Michał Michniak, Zofia Jankowska, Julia Zoń

Wydział EAliIB

Gra Flappy Bird

Rysunek: Gra zręcznościowa Flappy Bird

- heurystyczne metody optymalizacji zainspirowane naturalną selekcją i teoria ewolucji
- należą do klasy algorytmów ewolucyjnych
- rozważają całą populację rozwiązań umożliwiając równoległą ewaluację rozwiązań
- elementy prostego algorytmu genetycznego:
 - mechanizm kodowania rozwiązania
 - funkcja celu
 - mechanizm selekcji
 - operatory genetyczne (krzyżowania i mutacji)

Genes Se		Node	sor	Node 3 Sensor	Node 4 Output	Node Hide				
connect.	T- 1									
W E	In I Out 4 Weight Enabled Innov 1		DIS		In 3 Out 4 Weight Enabled Innov 3	d	In 2 Out 5 Weight 0.2 Enabled Innov 4	In 5 Out 4 Weight 0.4 Enabled Innov 5	In 1 Out 5 Weight 0.6 Enabled Innov 6	In 4 Out 5 Weight 0.6 Enabled Innov 11

Rysunek: Instancja populacji

NEAT Mutacje

Rysunek: Mutacja: dodanie krawędzi

NEAT Mutacje

AGH

Rysunek: Mutacja: dodanie wierzchołka

NEAT Krzyżowanie

Rysunek: Krzyżowanie

AGH

Jeżeli przyjmiemy, że wierzchołki rodziców to zbiory:

$$V_1 = \{v_1, v_2, \cdots\}$$
 $V_2 = \{v'_1, v'_2, \cdots\}$

zbiór wierzchołków potomka przyjmie postać:

$$V_{1,2}=V_1\cup V_2$$

Podobnie dla krawędzi, tylko względem numeru innowacji. Wartości wag krawędzi potomka są średnią arytmetyczną wag krawędzi rodziców.

$$E_{1} = \{(e_{1}, w_{1}), (e_{2}, w_{1}), \cdots\} \quad E_{2} = \{(e'_{1}, w_{1}), (e'_{2}, w_{1}), \cdots\}$$

$$E_{1,2} = \left\{(e_{i}, w_{i}) : \exists_{(e_{i}, w'_{i}) \in E_{1}} \exists_{(e_{i}, w''_{i}) \in E_{2}} w_{i} = \frac{w'_{i} + w''_{i}}{2}\right\}$$

$$\cup \left\{(e_{i}, w_{i}) : \exists_{(e_{i}, w'_{i}) \in E_{1}} \neg \exists_{(e_{i}, w''_{i}) \in E_{2}} w_{i} = w'_{i}\right\}$$

$$\cup \left\{(e_{i}, w_{i}) : \neg \exists_{(e_{i}, w'_{i}) \in E_{1}} \exists_{(e_{i}, w''_{i}) \in E_{2}} w_{i} = w''_{i}\right\}$$

Zapis populacji odbywa się w 8-śmiu wektorach (konkatenacja instancji populacji):

- $blocks_nodes \in \mathbb{N}^{N+1}$ histogram skumulowany ilości wierzchołków (node) instancji (zaczynający się od 0)
- $translation \in \mathbb{N}^{blocks_nodes[N]}$ mapowanie odcinków liczb naturalnych [0,n] do rzeczywistych numerów wierzchołków (założenie, że w instancjach posortowane rosnąco)
- $in \in \mathbb{N}^{blocks_edges[N]}$ wejścia synaps (krawędzi) instancji zmapowane do odcinka [0,n]

- ullet $out \in \mathbb{N}^{blocks_edges[N]}$ wyjścia synaps (krawędzi) instancji zmapowane do odcinka [0,n]
- $w \in \mathbb{R}^{blocks_edges[N]}$ wagi synaps (krawędzi) instancji
- $enabled \in \{0,1\}^{blocks_edges[N]}$ flagi opisujące aktywność krawędzi (true jeżeli biorą udział w ewaluacji, w przeciwnym wypadku - false)
- $innov \in \mathbb{N}^{blocks_edges[N]}$ numer innowacji, unikatowy numer rozróżniający krawędzie pomiędzy genami

Symulacja

Zmiana zapisu populacji na macierze CSR [wzorzec skanu + zrównoleglenie na poziomie instancji] o postaci (w czasie jednego kroku symulacji jedna iteracja sieci Hopfielda) [zrównoleglane na poziomie wierszy wyjściowych + wzorzec redukcji do kryterium STOP-u 2]:

Michał Michniak, Zofia Jankowska, Julia Zoń

Generacja nowej populacji

Maska binarna, która instancja przetrwa jest generowana poprzez tzw. selekcje turniejową [zrównoleglenie na poziomie turniejów]:

Następnie na CPU zliczane są instancje z maski i przyporządkowywana jest im kolejność w nowej populacji (jedyna część sekwencyjna w programie).

Generacja nowej populacji

Dobieranie rodziców także za pomocą turniejów [zrównoleglenie na poziomie turniejów]:

Po wybraniu rodziców, a także instancji, które przechodzą do następnej populacji oraz instancji, które dołączymy do populacji z mutacjami, liczy się potrzebną ilość miejsca do alokacji (dynamicznie dla każdej populacji) [zrównoleglenie na poziomie instancji + wzorzec skan hierarchiczny].

Po obliczeniu pamięci i offsetów dla każdej instancji następuje wygenerowanie (lub przepisanie) ich w wybrane miejsca w nowej populacji. [zrównoleglenie na poziomie instancji]. Następnie mutacje wag w krawędziach [zrównoleglenie na poziomie krawędzi].

Na koniec działania algorytmu wybierana jest najlepsza instancja i jest ona zapisywana [wzorzec skan].

Bibliografia I

Stanley, Kenneth O., and Risto Miikkulainen. "Evolving neural networks through augmenting topologies." Evolutionary computation 10.2 (2002): 99-127.https:

//nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf