Compter

© N. Brauner, 2019, M. Stehlik 2020

Permutations

Compétences de cette séquence

- Connaître les **définitions** de
 - Permutations et factorielle
 - Arrangements
 - Combinaisons et coefficients binomiaux
- Connaître **l'usage** pour l'énumération et la preuve
 - Permutations et factorielle
 - Arrangements
 - Combinaisons et coefficients binomiaux
 - Mots (Chaînes de caractères)
- Pouvoir expliquer la formule du binôme de Newton
- Preuves
 - Comprendre le principe de **double dénombrement** et pouvoir l'utiliser pour faire des preuves
 - Connaître le Principe des tiroirs et savoir l'utiliser
- Programmer le calcul de ces objets en Python

•oooo Plan

- Permutations et factorielles
- 2 Arrangements
- 3 Combinaisons et coefficients binomiaux
- 4 Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

Permutations et factorielles

Une **permutation** de *n* objets distincts rangés dans un certain ordre, correspond à un changement de l'ordre de succession de ces n objets.

Exemple

Permutations

00000

Les permutations de $\{A, B, C\}$ sont : ABC, ACB, BAC, BCA, CAB, CBA.

La **factorielle** d'un entier naturel n, notée n!, est le produit des nombres entiers strictement positifs inférieurs ou égaux à n.

Exemple

 $4! = 1 \times 2 \times 3 \times 4 = 24$

On définit 0! = 1.

Permutations et factorielles

Proposition

Le nombre de permutations de n objets est égal à n!.

Permutations et factorielles

Proposition

Permutations

Le nombre de permutations de *n* objets est égal à *n*!.

Démonstration.

- Il y a *n* choix pour le premier terme de la liste.
- Puis pour chacun de ces premiers choix, il y a n-1 possibilités pour le deuxième choix, n-2 pour le troisième, et ainsi de suite.
- Finalement il y a n! choix possibles pour constituer une liste.

Exemple

Combien y-a-t-il de façons différentes d'asseoir les 120 étudiants de cet amphi sur les 120 chaises?

Une illustration

6

Calcul récursif de la factorielle

```
Calcul récursif de la factorielle factorielle(0) = 1 factorielle(n) = n * factorielle(n-1) pour n \ge 1
```

```
Calcul récursif de la factorielle factorielle(0) = 1 factorielle(n) = n * factorielle(n-1) pour n \ge 1
```

Calcul itératif de la factorielle

Permutations

00000

Vous pouvez la programmer en Python avec correction automatique sur caseine

Plan

Permutations

- Permutations et factorielles
- 2 Arrangements
- Combinaisons et coefficients binomiaux
- Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

Arrangements

Permutations

Un k-arrangement d'un ensemble est une liste ordonnée de cardinalité k.

Exemple

2-arrangements de $\{A, B, C\}$: AB, AC, BA, BC, CA, CB.

Proposition

Le nombre de k-arrangements d'un n-ensemble est $\frac{n!}{(n-k)!}$.

Arrangements

Un k-arrangement d'un ensemble est une liste ordonnée de cardinalité k.

Exemple

2-arrangements de $\{A, B, C\}$: AB, AC, BA, BC, CA, CB.

Proposition

Le nombre de k-arrangements d'un n-ensemble est $\frac{n!}{(n-k)!}$.

Démonstration.

Il y a n choix pour le premier terme de la liste. Puis pour chacun de ces premiers choix, il y a n-1 possibilités pour le deuxième choix, n-2 pour le troisième, et ainsi de suite jusqu'à (n-(k-1)) choix pour le k^{ime} choix. Finalement il y a $n(n-1)...(n-k+1) = \frac{n!}{(n-k)!}$ choix possibles.

Plan

- Permutations et factorielles
- 2 Arrangements
- 3 Combinaisons et coefficients binomiaux
- 4 Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

Le **coefficient binomial** $\binom{n}{k}$, défini pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donne le nombre de sous-ensembles différents à k éléments que l'on peut former à partir d'un ensemble contenant *n* éléments.

Proposition

Permutations

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Le **coefficient binomial** $\binom{n}{k}$, défini pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donne le nombre de sous-ensembles différents à k éléments que l'on peut former à partir d'un ensemble contenant n éléments.

Proposition

Permutations

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Démonstration.

- Il y a $\frac{n!}{(n-k)!}$ k-arrangements par la proposition précédente.
- Chaque ensemble de *k* éléments peut être arrangé de *k*! façons différentes.
- Autrement dit, en comptant tous les *k*-arrangements, chaque sous-ensemble de *k* éléments est compté *k*! fois.
- Donc, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Proposition

$$\binom{n}{k} = \binom{n}{n-k}.$$

Proposition

$$\binom{n}{k} = \binom{n}{n-k}.$$

Démonstration 1.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 et $\binom{n}{n-k} = \frac{n!}{(n-k)!k!}$.

Proposition

Permutations

$$\binom{n}{k} = \binom{n}{n-k}$$
.

Démonstration 1.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 et $\binom{n}{n-k} = \frac{n!}{(n-k)!k!}$.

Démonstration 2.

- Soit X un ensemble à n éléments.
- Si Y est un sous-ensemble de X à k éléments, alors $X \setminus Y$ est un sous-ensemble de X à n-k éléments.
- De même, si Y est un sous-ensemble de X à n-k éléments, alors $X\setminus Y$ est un sous-ensemble de X à k éléments.
- Il y a autant de façons différentes de construire X que de construire Y.
- Donc, $\binom{n}{k} = \binom{n}{n-k}$.

Relation de Pascal

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Relation de Pascal

Permutations

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Démonstration.

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} = \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \frac{(n-1)!}{(k-1)!(n-k-1)!} \frac{n}{k(n-k)} = \frac{n!}{k!(n-k)!} = \binom{n}{k}.$$

Démonstration 2.

- Soit X un ensemble de cardinalité n.
- Fixons un élément x de X. On cherche le nombre de sous-ensembles de X à k éléments :
 - $\binom{n-1}{k-1}$ sous-ensembles de X de cardinalité k qui contiennent x,
 - $\binom{n-1}{k}$ sous-ensembles de X de cardinalité k qui ne contiennent pas x.

Le triangle de Pascal.

121 1331

> 14641 1 5 10 10 5 1

> > $\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$

 $\binom{\mathbf{1}}{\mathbf{1}}$ (1₀)

 $\binom{2}{0}$ $\binom{3}{0}$ (2₁)

 $\binom{3}{2}$

 $\binom{3}{3}$

(4₀)

(3₁) (4₁)

(4₂)

 $\binom{2}{2}$

 $\binom{5}{1}$ $\binom{5}{2}$ $\binom{5}{3}$

 $\binom{5}{0}$

(4₃)

Identités remarquables

Permutations

$$(x+y)^{0} = 1$$

$$(x+y)^{1} = x + y$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

Permutations

$$(x+y)^{0} = 1$$

$$(x+y)^{1} = x + y$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

Formule du binôme de Newton

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Formule du binôme de Newton

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Permutations

Formule du binôme de Newton

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

Démonstration.

- Si on écrit $(x+y)^n$ comme $(x+y)(x+y)\cdots(x+y)$, alors par distributivité il y aura un terme dans l'expansion pour chaque choix de x ou y de chaque binôme (x+y) du produit.
- Par exemple, il y aura un seul terme xⁿ correspondant aux choix de x dans chaque binôme.
- En général, il y a (ⁿ_i) façons d'obtenir xⁿ⁻ⁱyⁱ, donc le coefficient de xⁿ⁻ⁱyⁱ est (ⁿ_i).

Nombre de sous-ensembles d'un ensemble à n éléments

Proposition

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

Nombre de sous-ensembles d'un ensemble à *n* éléments

Proposition

Permutations

$$\sum_{i=0}^{n} \binom{n}{i} = 2^{n}.$$

Démonstration.

La somme compte tous les sous-ensembles d'un ensemble. Il y en a 2^n . On peut le montrer de plusieurs façons, par exemple avec la formule du binôme de Newton.

- il y a $\binom{n}{0}$ parties à 0 élément,
- il y a $\binom{n}{1}$ parties à 1 élément,
- il y a $\binom{n}{2}$ parties à 2 éléments,
 - • •
- il y a $\binom{n}{n}$ parties à n éléments.

Soit au total : $\sum_{i=0}^{n} {n \choose i} = (1+1)^n$ sous-ensembles d'un ensemble à n élements.

Plan

- Permutations et factorielles
- 2 Arrangements
- 3 Combinaisons et coefficients binomiaux
- 4 Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

Mots (Chaînes de caractères)

Un **mot** (ou chaîne de caractères) est une suite ordonnée de caractères.

Proposition

Le nombre de mots de longueur n composés de k caractères est égal à k^n .

Mots (Chaînes de caractères)

Un **mot** (ou chaîne de caractères) est une suite ordonnée de caractères.

Proposition

Le nombre de mots de longueur n composés de k caractères est égal à k^n .

Démonstration.

Il y a k possibilités pour chaque lettre du mot, donc il y a k^n mots différents au total.

Une illustration

Il y a $2^3 = 8$ mots de longueur 3 composés des lettres A et B.

Mots (Chaînes de caractères)

Proposition

Le nombre de mots de longueur n composés de k uns et n-k zéros est $\binom{n}{k}$.

Mots (Chaînes de caractères)

Proposition

Le nombre de mots de longueur n composés de k uns et n-k zéros est $\binom{n}{k}$.

Démonstration.

- Le nombre de permutations du mot est *n*!.
- Pour chaque permutation, toutes les permutations des uns sont équivalentes (donnent le même mot).
- Pareil pour les zéros.
- Donc, le nombre de mots est $\frac{n!}{k!(n-k)!} = \binom{n}{k}$ (en fait il suffit de choisir la place des k uns parmi les n places possibles).

Remarque

Le même genre de raisonnement peut-être utilisé pour dénombrer les anagrammes d'un mot.

Par exemple, le mot "ananas" a $\frac{6!}{3! \times 2!} = 60$ anagrammes.

Plan

- Permutations et factorielles
- 2 Arrangements
- 3 Combinaisons et coefficients binomiaux
- 4 Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

On compte la cardinalité d'un ensemble X de deux manières différentes. Cela fournit deux expressions différentes pour |X|. Donc, elles sont égales.

Exemple (de l'école primaire)

$$m \times n = n \times m$$

On compte la cardinalité d'un ensemble X de deux manières différentes. Cela fournit deux expressions différentes pour |X|. Donc, elles sont égales.

Exemple (de l'école primaire)

$$m \times n = n \times m$$

On compte la cardinalité d'un ensemble X de deux manières différentes. Cela fournit deux expressions différentes pour |X|. Donc, elles sont égales.

Exemple (de l'école primaire)

$$m \times n = n \times m$$

Proposition

La somme des n premiers entiers impairs $(n \ge 1)$ est égale à n^2 .

Proposition

Permutations

La somme des n premiers entiers impairs (n > 1) est égale à n^2 .

Démonstration par récurrence sur n.

- Si n=1, la somme est égale à $1=1^2$ (initialisation).
- Supposons que la propriété soit vraie pour un n > 1quelconque. Considérons la somme des n+1 premiers entiers impairs. Par l'hypothèse de récurrence, on sait que $1+3+...+(2n-1)=n^2$. Donc, $1+3+...+(2n-1)+(2n+1)=n^2+(2n+1)=(n+1)^2$ et donc la propriété est vraie à l'ordre n + 1. (hérédité)
- Conclusion : la propriété est vraie pour tout $n \ge 1$.

On aurait pu aussi utiliser la formule de la somme des termes d'une suite arithmétique.

Proposition

La somme des n premiers entiers impairs $(n \ge 1)$ est égale à n^2 .

Proposition

Permutations

La somme des n premiers entiers impairs $(n \ge 1)$ est égale à n^2 .

Démonstration par double comptage.

- On va compter le nombre de disques dans le carré de deux façons différentes.
- Si on compte par couleur, on obtient l'expression $1 + 3 + 5 + \cdots + (2n 1)$.
- Le côté du carré contient n disques, donc le nombre de disques est n².
- On a donc prouvé que : $1 + 3 + 5 + \cdots + (2n 1) = n^2$.

Proposition

La somme des n premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Proposition

La somme des n premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Démonstrations possibles.

- par récurrence sur n,
- avec formule suite arithmétique,
- par double-comptage,
- ...

Proposition

La somme des n premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Proposition

Permutations

La somme des *n* premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Démonstration par double comptage.

- Soit S la valeur de la somme.
- Écrivons la somme deux fois, sur deux lignes, dans des ordres inverses:

$$S = 1 + 2 + \cdots + n-1 + n$$

 $S = n + n-1 + \cdots + 2 + 1$

Permutations

Principe du double comptage

Suite démonstration par double comptage.

$$S = 1 + 2 + ... + n - 1 + n$$

 $S = n + n - 1 + ... + 2 + 1$

- If y a n lignes, et la somme de chaque ligne vaut n + 1.
- Ainsi, 2S = n(n+1), soit S = n(n+1)/2.

Proposition

La somme des n premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Proposition

La somme des *n* premiers entiers $(n \ge 1)$ est égale à n(n+1)/2.

Démonstration par double comptage (autre).

Chaque disque jaune correspond à une combinaison unique de deux disgues bleus. If y a 1+2+...+ndisques jaunes et n+1 disques bleus. Donc.

$$1+2+...+n=\binom{n+1}{2}=n(n+1)/2.$$

Plan

- Permutations et factorielles
- 2 Arrangements
- Combinaisons et coefficients binomiau:
- Mots
- 5 Principe du double comptage
- 6 Principe des tiroirs

Principe des tiroirs

ou principe des cages à pigeon

Principe des tiroirs

Si n chaussettes occupent m tiroirs, et si n > m, alors au moins un tiroir doit contenir strictement plus d'une chaussette.

J	J	J
J	J	J
J	J	JJ

Principe des tiroirs

Il doit y avoir au moins deux personnes dans l'agglomération de Grenoble avec le même nombre de cheveux sur leur tête.

Principe des tiroirs

Il doit y avoir au moins deux personnes dans l'agglomération de Grenoble avec le même nombre de cheveux sur leur tête.

Démonstration.

Une tête normale a environ 150 000 cheveux et il est raisonnable de supposer que personne n'a plus de 300 000 de cheveux sur la tête. Il y a plus de 400 000 personnes dans l'agglomération de Grenoble. Si nous associons à chaque nombre de cheveux sur une tête un tiroir, et si nous plaçons chaque habitant de Grenoble dans le tiroir correspondant à son nombre de cheveux sur la tête, alors d'après le principe des tiroirs, il y a nécessairement au moins deux personnes ayant exactement le même nombre de cheveux sur la tête dans l'agglomération de Grenoble.

Principe des tiroirs : version plus générale

Principe des tiroirs général

Si n chaussettes occupent m tiroirs, alors au moins un tiroir doit contenir au moins $\left\lceil \frac{n}{m} \right\rceil$ chaussettes (où $\left\lceil x \right\rceil$ désigne l'entier immédiatement supérieur ou égal à x).

Exemple

Dans une classe de n étudiants, il doit y avoir au moins $\lceil \frac{n}{12} \rceil$ étudiants qui sont nés le même mois.