Модуль 2 «Математические методы, модели и алгоритмы компьютерной геометрии». Домашнее задание

к.ф.-м.н., доц. каф. ФН-11 Захаров Андрей Алексеевич, ауд.: 930a(УЛК)

моб.: 8-910-461-70-04, email: azaharov@bmstu.ru

10 ноября 2024 г.

Примечания к выполнению. Для выполнения заданий нужно использовать функции библиотеки Three.js.

По результатам выполнения домашнего задания необходимо написать отчёт и выслать его преподавателю. Отчёт обязательно должен содержать:

- 1. Формулировку задания.
- 2. Описание графических функций, которые использовались при написании программы.
- 3. Результат работы программы.
- 4. Часть кода программы, в которой выполняются основные построения.

Варианты заданий

Рис. 1: Мяч, катящийся по наклонной и горизонтальной плоскости

Елисеев: Напишите программу, которая показывает анимацию скатывания мяча сначала по неподвижной наклонной плоскости, а затем по горизонтальной плоскости (см. рис. 1). Мяч катится без проскальзывания.

Кожемякин: Напишите программу, которая показывает анимацию движения мяча, брошенного с заданной начальной скоростью в сторону стены, и **неупруго** отскакивающего от неё (см. рис. 4, а также стр. 109–110 книги [1]).

Используйте элементы пользовательского интерфейса или кнопки клавиатуры для задания горизонтальной v_x и вертикальной v_y составляющих начальной скорости, величины ускорения свободного падения g и «упругости» мяча. Анимация заканчивается, когда мяч попадает на пол.

Уравнения, описывающие движения мяча, приведены в варианте задания у Мишаковой.

Миневич: С помощью примитива параметрической поверхности визуализируйте суперэллипсоид. Добавьте в пользовательский интерфейс возможность изменять геометрические размеры суперэллипсоида и размер аппроксимационной сетки.

Рис. 2:

Мишакова: Напишите программу, которая показывает анимацию движения мяча, брошенного с заданной начальной скоростью под действием силы тяжести, подобно той, что описана на стр. 109 книги [1].

Используйте элементы пользовательского интерфейса или кнопки клавиатуры для задания горизонтальной v_x и вертикальной v_y составляющих начальной скорости и ускорения свободного падения g.

 $\Pi odc \kappa a z \kappa a$. Уравнение, определяющее горизонтальное движение мяча, в зависимости от времени t, имеет следующий вид:

$$x(t) = v_x t$$

где v_x — горизонтальная составляющая начальной скорости.

Вертикальное движение мяча определяется зависимостью:

$$y(t) = v_y t - \frac{g}{2}t^2,$$

где v_y — вертикальная составляющая начальной скорости, а g — ускорение свободного падения.

Движение осуществляется с помощью функции перемещения на вектор (x(t), y(t), 0), где t каждый раз увеличивается на 1.

Незлуханова: В варианте Шепелевой добавьте спутник сферы, который будет вращаться вместе со сферой (см. рис. 2).

Рис. 3: Движение бильярдного шара по столу

Непомнящих: Напишите программу, которая показывает анимацию движения бильярдного шара, движущегося по бильярдному столу. Стол имеет форму прямоугольника, окруженного четырьмя стенками (лузы можно не делать, см. рис. 3).

Изначально мяч неподвижен в заданном положении на столе. Используйте элементы пользовательского интерфейса или кнопки клавиатуры для задания направления и скорости движения мяча (кий рисовать не нужно). Анимируйте последующее движение мяча, катящегося по поверхности стола и отскакивающего от его сторон. Считайте, что на мяч действует сила сопротивления среды, пропорциональная его скорости. Уравнения, описывающие движения мяча, приведены в варианте задания у Севумяна.

Очкин: Напишите программу, обеспечивающую воспроизведение движения планет вокруг Солнца в трёхмерном пространстве подобно той, что описана на стр. 135—138 книги [2]. Задайте угловую скорость вращения каждой планеты. Наклоните оси планет. Добавьте к паре планет их спутники (например, Луну для Земли и Фобос и Деймос для Марса).

Рис. 4: Мяч, отскакивающий от стены

Севумян: Напишите программу, которая показывает анимацию движения мяча, брошенного с заданной начальной скоростью в сторону стены, и отскакивающего от неё (см. рис. 4, а также стр. 109–110 книги [1]).

Используйте элементы пользовательского интерфейса или кнопки клавиатуры для задания горизонтальной v_x и вертикальной v_y составляющих начальной скорости, коэффициента трения среды и величины ускорения свободного падения g. Анимация заканчивается, когда мяч попадает на пол. Примите, что мяч отскакивает от стены абсолютно упруго.

Добавьте имитацию невидимой вязкой среды, через которую движется мяч.

Подсказка. Реализуемое уравнение движения учитывает сопротивление трения которое пропорционально его скорости:

$$\mathbf{a} = d \cdot \mathbf{v}$$
,

где d является постоянной величиной, зависящей от среды, в которой движется объект, а также от его формы. Далее можно воспользоваться формулами кинематики равноускоренного (равнозамедленного) движения, описанных в варианте Мишаковой.

Рис. 5: Детская горка

Сокорев: Напишите программу, которая показывает анимацию скатывания мяча по изогнутой детской горке (рис. 5). Поверхность горки считать частью цилиндрической поверхности.

Узденов: С помощью примитива параметрической поверхности визуализируйте параболоид. Параметрические уравнения параболоида имеют следующий вид:

$$x = u;$$
 $y = v;$ $z = u^2 + v^2.$

Добавьте в пользовательский интерфейс возможность изменять размер аппроксимационной сетки.

Фролова: В варианте Шепелевой добавьте ещё две сферы, так чтобы они находились на расстоянии 120° друг от друга и при вращении следовали синхронно друг за другом.

Рис. 6: Четыре сегмента, развертывающие квадрат в прямую линию

Рис. 7:

Худякова: Напишите программу, которая показывает анимацию движения четырёх прямоугольных параллелепипедов, которые изначально образуют стороны квадрата и затем плавно переходят в прямую (см рис. 6).

Шепелева: Напишите программу, визуализирующую вращение сферы вокруг тора вдоль продольного C_1 и поперечного C_2 направлений (см. рис. 7). Предусмотрите в интерфейсе возможность изменения точки обзора и скорости анимации.

Шукаев: В варианте Незлухановой добавьте второй спутник. Оба спутника должны вращаться вокруг сферы, но по различным орбитам.

Список литературы

- [1] Sumanta Guha. Computer graphics through OpenGL. CRC Press, 3rd edition, 2019. https://clck.ru/3EWtfm
- [2] Ву М., Девис Т., Нейдер Дж., Шрайнер Д. OpenGL. Руководство по программированию. СПб: Питер, 2006. 624 с. http://www.cosmic-rays.ru/books61/M_Vu_OpenGL.pdf