Instituto Teci	nológico de Costa Rica		
Escuela de In	geniería Electrónica		
EL-2207 Elementos Activos		Total de Puntos:	45
Profesores:	DrIng. Juan José Montero Rodríguez	Puntos obtenidos:	
	Ing. Mauricio Segura Quiros	Damantaia	
	Ing. Anibal Ruiz Barquero	Porcentaje:	
I Semestre 2019		Nota:	
Primer Exa	men Parcial		
16 de marzo	m de~2019		
Nombre:		Carné:	

Instrucciones Generales:

- Resuelva el examen en forma ordenada y clara.
- No se aceptarán reclamos de desarrollos con lápiz, borrones o corrector de lapicero.
- Si trabaja con lápiz, debe encerrar en recuadro su respuesta final con lapicero.
- El uso de lapicero rojo **no** está permitido.
- El uso del teléfono celular no es permitido. Este tipo de dispositivos debe permanecer **total**mente apagado durante el examen.
- No se permite el uso de calculadora programable.
- Únicamente se atenderán dudas de forma.
- El instructivo de examen debe ser devuelto junto con su solución.
- El examen es una prueba individual.
- El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el examen.
- Esta prueba tiene una duración de 3 horas, a partir de su hora de inicio.

rırma:			

Escogencia múltiple	de 15
Problema 1	de 10
Problema 2	de 10
Problema 3	de 10

Escogencia múltiple

15 Pts

Escriba F o V, según corresponda a Falso o Verdadero en todas las opciones. Cada pregunta vale 1 punto. Si necesita corregir, escriba una X sobre la letra incorrecta y escriba F o V a la izquierda de la línea. La ponderación será: cinco opciones buenas es 1 punto; cuatro opciones buenas es 0.8 puntos; 3 opciones buenas es 0.6 puntos; 2 opciones buenas es 0.4 puntos y 1 buena es 0.2 puntos. No es necesario que justifique su respuesta.

1. Con respecto a los conceptos de hueco y electrón se afirma correctamente que:	1 Pt
Electrones y huecos interactúan en el proceso de conducción de corriente.	
Los huecos se mueven en la banda de conducción y los electrones en la de valencia.	
El hueco es un espacio vacío representado por una carga positiva.	
El electrón y el hueco tienen igual magnitud de carga.	
El concepto de hueco es una representación de la banda de valencia con un estado electroscio.	rónico
2. De la corriente de huecos se afirma correctamente que:	1 Pt
La corriente de electrones tiene la misma dirección que la corriente técnica.	
El movimiento de portadores de carga libres causa un flujo de corriente en el semicond	uctor.
La corriente de huecos tiene la misma dirección que la corriente de electrones.	
En un contacto Schottky, los electrones se mueven del semiconductor N al metal.	
En un contacto Schottky, los huecos se mueven del semiconductor P al metal.	
3. Con respecto la generación y recombinación se afirma correctamente que:	1 Pt
La energía térmica produce la ruptura de algunos enlaces covalentes, situación que i generación.	nduce
Existe equilibrio térmico por la inexistencia de intercambio de energía del sistema medio exterior.	con el
Si la población de portadores de ambos tipos es alta, la tasa de recombinación es baj	a.
Para que la recombinación exista basta con que dos huecos en movimiento se encuen	tren.
Si se mantiene la temperatura constante hasta alcanzar equilibrio, la tasa de generacion portadores es igual a la de recombinación de los mismos.	ión de
4. Con respecto al dopado de semiconductores se afirma correctamente que:	1 Pt
El dopado con fósforo produce una oblea de tipo P.	

——— Al dopar con átomos donadores, la concentración de huecos disminuye.
Una oblea de tipo N tiene carga eléctrica negativa, en comparación con silicio intrínseco.
El dopado P desplaza el nivel de Fermi hacia la banda de valencia.
Para la misma concentración de átomos dopantes, el silicio P tiene una resistividad menor que el silicio N.
5. Con respecto a los mecanismos de conducción se afirma correctamente que: 1 Pt
Un hueco se difunde más rápidamente que un electrón.
En un semiconductor N con dopado fuerte, la corriente de arrastre de huecos es despreciable
El límite máximo de la velocidad de arrastre en el silicio es la velocidad de la luz.
En equilibrio térmico, los portadores de carga no se mueven.
Si la movilidad aumenta, el coeficiente de difusión también aumenta.
6. Del efecto de la temperatura en semiconductores extrínsecos se afirma correctamente: 1 Pt Al aumentar la temperatura, el nivel de Fermi se aleja de Ei.
Un semiconductor dopado N a 0 K tiene conductividad cero, y se comporta como un aislante
La aproximación $N_D \approx n$ es válida para cualquier temperatura.
A muy altas temperaturas, el silicio dopado se comporta como silicio intrínseco.
A 300 K, si $N_D = N_A$, el silicio N tiene más portadores libres que el silicio P.
7. De la teoría de diagrama de bandas se afirma correctamente que:
La afinidad electrónica es la energía que un electrón debe adquirir para convertirse en un electrón libre.
El nivel de vacío se referencia sólo para semiconductores.
La función de trabajo se da soló para el análisis de materiales metálicos.
El dopado modifica el nivel de Fermi de un material.
El nivel de Fermi intrínseco está ubicado aproximadamente a la mitad de la banda prohibida
8. Con respecto al nivel de Fermi y su función se afirma correctamente que: 1 Pt
La función de Fermi-Dirac es una función de distribución de probabilidad.
La función de Fermi-Dirac es válida cuando hay potencial externo aplicado.
El nivel de Fermi intrínseco ubica la probabilidades de ocupación de los portadores en el 50% de la banda prohibida.
El valor del nivel de Fermi no depende de las concentraciones del material.
Valores del nivel de Fermi en 10 ¹⁹ igualan a la banda de conducción del Si a 300K

9. Con respecto al contacto Schottky se afirma correctamente que:	1 Pt
Se establece que es un contacto Schottky, si $\phi_M > \phi_S$ para semiconductores P.	
Conduce si la tensión aplicada en polarización directa es positiva y mayor que cero.	
La corriente en polarización directa es una función exponencial de la tensión aplicad	a.
El potencial de contacto V_{bi} se puede ajustar con el dopado.	
La barrera Schottky ϕ_B se puede ajustar con el dopado.	
10. Con respecto al contacto Óhmico se afirma correctamente que:	1 Pt
Son parte esencial de dispositivos modernos.	
Puede producirse en la práctica, inmediatamente por debajo de un contacto N, cuya for de trabajo es mayor que la del metal al que se conectará.	ınción
El valor energético definido entre la banda de conducción y el nivel del vacío, se como función de trabajo.	conoce
El nivel de vacío es el requerido para que un electrón salga de la banda de valencia.	
Por sus características un fuerte dopado P permite ser el contacto óhmico de un mate	erial N
11. Del contacto Semiconductor-Semiconductor se afirma correctamente que:	1 Pt
Se da una difusión de huecos del lado P al lado N.	
El semiconductor tipo P tiene un aporte de portadores minoritarios de electrones.	
El potencial de contacto Vbi a través de la unión depende de la concentración de porta mayoritarios.	adores
Conduce corriente en ambas direcciones.	
El semiconductor tipo N tiene un aporte de portadores minoritarios de huecos.	
12. De la zona de vaciamiento se afirma correctamente que:	1 Pt
La longitud de la zona de vaciamiento del lado N, depende directamente de la concent del lado P.	ración
La longitud total de la zona de vaciamiento se puede calcular de la resta de x_n y x_p .	
El aumento en el dopado en ambas regiones, manteniendo la relación $N_a/N_d=cte$ que tanto x_n como x_p aumenten.	hacen
x_n y x_p denotan el inicio y el final respectivamente, del doblamiento de las bandas juntura.	en la
El potencial de contacto se mide a partir del punto medio entre x_n y x_p .	

13. Del diodo se afirma correctamente que:	1 Pt
Es un dispositivo de dos terminales que bloquea la corriente en una dirección y perpaso en la otra dirección.	mite su
Se polariza en directo aplicando un voltaje positivo al ánodo y negativo al cátodo.	
El voltaje y la corriente a la que opera en un circuito se conoce como punto de oper	ración.
Los diodos que operan en la región de ruptura, se conocen como diodos de ruptura	
En el diodo la capacitancia de difusión predomina en polarización directa y la capacide agotamiento predomina en polarización inversa.	itancia
14. De los modelos del diodo se afirma correctamente que:	1 Pt
La tensión de contacto de un diodo de silicio es 0.7 V y es independiente de I_D .	
En polarización inversa, la corriente real de un diodo de silicio es I_S .	
La resistencia estática R_D es válida únicamente en corriente directa.	
La resistencia dinámica r_d representa al diodo como un elemento lineal.	
Un diodo Zener bloquea la corriente en polarización inversa.	
15. Con respecto a la capacidad del diodo se afirma correctamente que:	1 Pt
Es estrictamente una característica estrictamente de la polarización inversa del dioc	lo.
C_{j0} es considerada la capacidad en inversa del diodo.	
La capacidad en inversa es válida para tensiones positivas aplicadas al diodo menomitad de la tensión de contacto.	res a la
La capacidad en inversa del diodo crece conforme crece la tensión en inversa.	
Cuando la unión pn está polarizada en sentido inverso, se vuelve funcionalmente equi a un condensador.	valente

Problemas

Problema 1 Física básica de semiconductores

10 Pts

Se tiene una oblea de Si de tipo P dopada con boro, con una concentración de aceptores dada por $N_A = 2 \times 10^{15}$ cm⁻³. Para fabricar un diodo Schottky (ver Figura 1.1) se requiere dopar una pequeña región con arsénico, con el propósito de invertir su dopado a N, por medio de implantación iónica con una concentración de donadores dada por $N_D = 4 \times 10^{15}$ cm⁻³. La oblea final está a temperatura ambiente.

Figura 1.1: Fabricación de un diodo Schottky en una oblea P.

- 1.1. Calcule la concentración de electrones y de huecos en la oblea P original (región 1). 2 Pts
- 1.2. Calcule el dopado efectivo, la concentración de electrones y la concentración de huecos en la región N (región 2), considerando que esta región tiene ambos tipos de dopado.

 3 Pts
- 1.3. Calcule la posición del Nivel de Fermi con respecto a Ei en la oblea P (región 1) y en la región N (región 2).
- 1.4. Calcule la resistividad de la oblea P (región 1) y la resistividad de la región N (región 2). Asuma que el dopado es relativamente ligero en ambas regiones y no afecta el valor de las movilidades intrínsecas ($\mu_n = 1350 \text{ cm}^2/\text{Vs}$, $\mu_p = 480 \text{ cm}^2/\text{Vs}$).
- 1.5. Calcule cuál es la concentración máxima permitida de átomos de arsénico que se podría implantar para crear una región n+ (región 3), cumpliendo la condición de que el silicio siga siendo un material no-degenerado $(E_C E_F > 3kT)$.

Problema 2 Capacidad en inversa y contactos

10 Pts

Considere el gráfico dado en la Figura 1.1, que corresponde a la capacidad en inversa de una unión pn, expresada por unidad de área. Considere además que la unión tiene un área transversal de 2000 μ m² y que la tensión térmica es de 26 mV.

Figura 2.1: Capacidad de unión en polarización inversa

Determine:

- 2.1. La capacidad de la unión en 0 V de tensión aplicada.
- 2.2. El nivel de dopado N_a y N_d , sabiendo que $N_a/N_d=2.22$ y el potencial en x_n es de 0.3573V.
- 2.3. El potencial de contacto de la unión PN.
- 2.4. La capacidad de la unión en -2 V de tensión aplicada.
- 2.5. La longitud de la zona de vaciamiento del lado N (x_p) .
- 2.6. La longitud de toda la zona de vaciamiento (x_B) .
- 2.7. El diagrama de bandas del dispositivo en estado de equilibrio térmico, mostrando la deformación de bandas e indicando los niveles de E_C , E_V , E_i , E_F , x_n y x_p . 3 Pts

Problema 3 Rectificador de media onda

10 Pts

Considere un rectificador de media onda a una tensión de entrada de 12 Vp con comportamiento senoidal. La frecuencia de la tensión de entrada es de 60 Hz. La resistencia de carga es de $R_L = 1k\Omega$. Los diodos son de germanio con caída constante de 0.3 V.

- 3.1. Grafique la tensión de salida (el gráfico debe incluir el valor pico máximo de voltaje de salida y los valores de tiempo de la forma de onda).
- 3.2. Agregue un capacitor de filtrado de 8 μ F. Encuentre ¿Cuál es el valor de la tensión máxima y mínima en la carga bajo estas condiciones? Grafique la tensión de salida (el gráfico debe incluir el valor pico máximo y mínimo de voltaje de salida, así como los valores de tiempo de la forma de onda en esos puntos).
- 3.3. Obtenga el valor del capacitor para que el voltaje de rizado sea de 1% de la tensión de entrada. Grafique la tensión de salida.
- 3.4. Encuentre la concentración de los portadores de carga de los diodos, siendo uno 10 veces mayor que el otro, para un $V_D = 0.43 \text{ V}$.