WHAT IS CLAIMED IS:

1	1. In an integrated circuit multichannel packet transfer device, an apparatus			
2	for transferring a plurality of data packets, comprising:			
3	a first interface circuit for receiving packet data on a first channel;			
4	a memory;			
5	a packet manager circuit coupled between the first interface circuit and the			
6	memory to receive data on the first channel from the first interface circuit, wherein the			
7	packet manager circuit is configured to write at least a first data packet fragment to the			
8	memory under control of a first descriptor, and is configured to write at least a second			
9	data packet fragment to the memory under control of a second descriptor;			
10	a timer for generating a first time-out signal at a predetermined time after the first			
11	descriptor is ready for transfer; and			
12	a controller for controlling descriptor write back operations to memory in either			
13	read-modify-write mode or write-invalidate mode, wherein the controller writes a			
14	plurality of descriptors together to memory in a single write-invalidate operation if the			
15	plurality of descriptors is ready for transfer before the first time-out signal is generated.			
1	2. The apparatus recited in claim 1, wherein the controller writes the plurality			
2				
	of descriptors separately to memory as a sequence of read-modify-write operations if the			
3	plurality of descriptors is not ready for transfer before the first time-out signal is			
4	generated.			
1	3. The apparatus recited in claim 1, wherein the timer comprises			
2	a multi-bit counter,			
3	a multiplexer having one select line, one output and multiple inputs, with			
4	each input coupled to a corresponding bit of the multi-bit counter,			
5	a timer control register coupled to the select line of the multiplexer, and			
6	a first pulse generator coupled to the multiplexer output for generating the			
7	first time-out signals,			

8	wherein the multiplexer selects one of the bits in the multi-bit counter for output			
9	to the pulse generator in response to the timer control register to generate the first time-			
10	out signal.			
1	4. The apparatus recited in claim 1, where the memory comprises a cache			
1	•	141.		
2	memory having a line width of 2N, and the first and second descriptors each have a width			
3	of N.			
1	5. The apparatus recited in claim 1, where the memory comprises a system			
2	memory and a cache memory, such that the packet manager writes data packets or			
3	descriptors to the system memory or cache memory.			
1	6. The apparatus recited in claim 1, further comprising a register for storing	gа		
2	minimum descriptor count, whereby the controller writes a plurality of descriptors			
3	together to memory in a single write-invalidate operation only if the plurality of			
4	descriptors that are ready for transfer meets or exceeds the minimum descriptor count.			
1	7. The apparatus recited in claim 1, where the timer comprises a memory			
2	device for programmably storing a timer setting to selectively determine the			
3	predetermined time at which the first time-out signal is generated.			
1	8. The apparatus recited in claim 1, comprising:			
2	a second interface circuit for transmitting packet data on a second channel;			
3	an packet manager output circuit coupled between the memory and the second			
4	interface circuit to transmit data from the memory on the second channel, wherein the			
5	packet manager output circuit is configured to write output data packets to the second			
6	interface circuit under control of a plurality of output descriptors;			
7	a timer for generating a second time-out signal a predetermined time after a first			
8	output descriptor is ready for transfer; and			
9	a output controller for controlling output descriptor write back operations to			

memory in either read-modify-write mode or write-invalidate mode, wherein the output

controller writes a plurality of output descriptors together to memory in a single write-

10

11

- invalidate operation if the plurality of output descriptors is ready for transfer before the second time-out signal is generated.
- 1 9. The apparatus recited in claim 8, wherein the output controller writes the 2 plurality of output descriptors separately to memory as a sequence of read-modify-write 3 operations if the plurality of output descriptors is not ready for transfer before the second 4 time-out signal is generated.
- 1 10. A data transfer controller for managing the direct memory transfer of data 2 on a first channel by releasing one or more descriptors associated with said first channel, 3 where said data transfer controller is coupled to receive a time-out pulse for the first 4 channel and is configured to delay release of said one or more descriptors until after 5 receiving the time-out pulse for the first channel.
- 1 11. The data transfer controller recited in claim 10, wherein a plurality of
 2 descriptors received before the time-output pulse is generated are released together with a
 3 write-invalidate command.
 - 12. The data transfer controller recited in claim 10, wherein a plurality of descriptors are released sequentially with read-modify-write commands when only one of the plurality of descriptors is received before the time-output pulse is generated.

1

2

3

1

2

3

- 13. The data transfer controller recited in claim 10, comprising a timer for generating a time-out pulse at a predetermined time interval after a first of the plurality of descriptors is received.
- 1 14. The data transfer controller recited in claim 13, wherein the predetermined 2 time interval may be programmably selected from a plurality of timer interval values.
- 1 15. The data transfer controller recited in claim 10, comprising a packet 2 manager input circuit for transferring a plurality of packets to memory under control of 3 said one or more descriptors.

1	16.	The data transfer controller recited in claim 10, comprising a packet			
2	manager output circuit for transferring a plurality of packets from memory under control				
3	of said one or more descriptors.				
1	17.	A method comprising:			
2	receiving a first packet fragment in an interface circuit;				
3	receiving a second packet fragment in the interface circuit;				
4	transmitting the first and second packet fragments from the interface circuit to a				
5	memory under control of the first and second descriptors, respectively;				
6	setting a timer to expire a predetermined time interval after the first descriptor for				
7	the first packet fragment is released; and				
8	writing the first and second descriptors back to memory together as a write-				
9	invalidate command if the second descriptor is released before expiration of the timer.				
1	18.	The method recited in claim 17, further comprising writing the first and			
2	second descri	ptors back to memory separately as a sequence of read-modify-write			
3	commands if the second descriptor is not released before expiration of the timer.				
1	19.	The method recited in claim 17, wherein the first and second descriptors			
2	are written ba	ick to a cache memory having a line width of 2N, and the first and second			
3	descriptors each have a width of N.				
1	20.	The method of claim 19, wherein the first and second descriptors are			
2	written back to a cache memory having a line width of 32B, and the first and second				
3	descriptors each have a width of 16B.				