Studio 07 - Robust Regression with Heavy-Tailed Errors

Groups: work in teams of 2-4.

1. Objective

The goal of today's lab is to better understand the effect of heavy-tailed errors on the performance of linear regression estimators in high-dimensional settings. You will implement and analyze a simulation study to compare several estimators of the regression coefficients, varying factors such as tail heaviness, signal strength, dimensionality and design matrix structure.

2. Experimental setup

Consider the following linear model

$$y = X\beta + \varepsilon$$
, $\varepsilon_i \stackrel{\mathrm{iid}}{\sim} F$,

where F is some univariate error distribution, $X \in \mathbb{R}^{n \times p}$ and $\beta \in \mathbb{R}^p$.

Parameters to vary

Parameter	Meaning	Examples / Suggestions
Tail heaviness	Tails of error distribution F .	Student- t ($\mathrm{df}=1,2,3,20,+\infty$)
Aspect ratio	$\gamma = p/n$ controls the dimensionality regime.	Try $\gamma \in \{0.2, 0.5, 0.8\}.$
Design structure	Correlation among predictors.	Autoregressive: $(\operatorname{Cov}(X_j, X_k) = \rho^{\ j-k\ })$.
Signal-to-noise ratio	Overall signal strength.	Vary by scaling β or noise variance so that $\mathrm{SNR} = \frac{\beta^{\top} X' X \beta}{\sigma^2} \in \{1,5,10\}.$

3. Estimators to Compare

Estimate β using the following methods:

Method	Implementation	Description
Ordinary Least Squares (OLS)	sklearn.linear_model.LinearRegression()	Sensitive to outliers and heavy tails.
Least Absolute Deviation (LAD)	sklearn.linear_model.QuantileRegressor(alpha=0.)	Minimizes the sum of absolute residuals; robust to outliers.
Huber Regression	sklearn.linear_model.HuberRegressor()	Interpolates between OLS and LAD.

4. Evaluation Metric

For each scenario and each method, estimate the mean-squared error (MSE) $\mathbb{E}\|\hat{\beta} - \beta\|^2$.

5. Implementation Guidelines

• Divide tasks: Within your group, assign roles for simulation generation, estimator fitting, and analysis/visualization.

- Design a results schema: Agree on a shared data contract (e.g. a pandas.DataFrame where each row corresponds to one simulation run, including columns like method, n, p, df, rho, SNR, rep, mse).
- Write modular code: You do *not* need to use classes, but functions should be modular (e.g. generate_data(), fit_model(), evaluate()).
- Store reproducible results: Use consistent random seeds, and save results to CSV or pickle file for analysis.

6. Analysis/Visualization

Create at least one publication-quality figures summarizing your findings. Each figure should be:

- Appropriately sized (roughly 4-6" wide, 2.5-4" tall)
- · Labeled with readable fonts and clear legends
- Styled for clarity and professionalism: avoid unnecessary gridlines, use consistent color palettes. Generally question all of the defaults of matplotlib.

Suggested plot:

- MSE versus degrees of freedom (t-distribution) for each method
- Small multiples varying other factors (e.g. SNR and aspect ratio)

7. Deliverables

Each group should submit the full pipeline, along with generated figure(s),