[30240604 面向计算机科学的离散数学-图论 2023]

面向计算机科学的离散数学

图论—树

苏航

suhangss@mail.tsinghua.edu.cn 清华大学 计算机系

图的分类

- ◆非连通图
- ◆ 连通图
 - □回路: 欧拉回路、H回路、旅行商、邮路

没有回路是什么情况? 如何深入探讨?

◈ 树: 从一串串定义开始……

存在性, 唯一性? 数数看?

第三章 树

- ◆树的有关定义
- ◆基本关联矩阵及其性质
- ◆支撑树的计数

树的有关定义

- ◈ 什么是树?
 - □ 一个图G=(V, E), 若不含任何回路,则称为林;若此图是 连通的,则称为树

树的有关定义(2)

特殊情况?

- ◆ 定义3.1.1 树
 - 。一个不含任何回路的连通图称为树,用T表示
 - 。T中的边称为树枝,度为1的结点称为树叶

树是一种广泛使用的结构表达方式

树是一种广泛使用的结构表达方式

有机化学

- ◆ 1857年, 凯莱研究碳氢化合物, 并特别研究了饱和碳氢 化合物
- 通过对这些图的数学分析,预言了新的饱和碳氢化合物

电路网络

- ◆ 古斯塔夫·罗伯特·基尔霍夫:德国物理学家,在电路、光谱学的基本原理有重要贡献
 - 在多个领域都留下了以自己名字命名的定律(定理), 其中包括著名的基尔霍夫电路定律(基尔霍夫电压定律、基尔霍夫电流定律)
- ◆ 1847年,基尔霍夫在关于电路网络的分析中首次用 到了树

石油管线铺设问题

- ◆要为一个地区铺设石油管线
- ◆考虑不同的贮藏设施,以便能从一个贮藏设施向其它设施传输石油
- ◆ 考虑成本等因素希望建造尽量少的管道
- ◆ 寻找铺设的方案

树的有关定义(2)

计算机网络

从拓扑图到基于最短路径树的转发,潜在问题?

- ◈ 定义3.1.2 割边(割边是关键路径)
 - □设e是图G的一条边,若 G'=G-e比G的连通支数目 增加,称e是G的一条割边
 - 。树枝都是割边么?
 - 。思考: 什么样的边是割边呢?

存在性? 判定?

树的有关定义(4)

- ◆ 定理 3.1.1
 - e=(u, v)是割边,当且仅当e不属于G的任何回路
 - □证明(反证法):

必要性

若e=(u, v)属于G的某个回路,则G'=G-e中仍存在u到v的道路

故结点u和v属于G'中的同一连通支,即连通支数目没有增加,根据割边定义可知e不是割边,与已知矛盾

充分性

反之, 若e不是割边, 则G'与G的连通支数一样

于是G'中u和v仍属同一连通支,即G'中存在道路p(u, v)

p(u, v)+e就是G的一个回路

树的有关定义(5)

- ◆ 定理3.1.2 (树的等价定义)
 - 。对于n ≥ 2的图T(树),下列性质等价:
 - T连通无回路
 - 2 T连通且每条边都是割边
 - 3 T连通且有n-1条边
 - ₄ T有n-1条边且无回路
 - 5. T的任意两结点间有唯一道路
 - 。T无回路,但在任两结点间加上一条边后恰有一个回路

如何证明等价性?

树的有关定义(6)

♦ 证明

- 。只需要证明
 - 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4, 4 \rightarrow 5, 5 \rightarrow 6, 6 \rightarrow 1
 - 1 →2 (T连通无回路→T连通且每条边都是割边)
 - T无回路,即T的任意边e都不属于回路
 - 由定理3.1.1(e=(u, v)是割边,当且仅当e不属于G的任何回路),e是割边

树的有关定义(7)

◈ 证明(续)

- 2 →3 (T连通且每条边都是割边→T连通且有n-1条边)
- 对结点数n进行归纳
- 令n(T), m(T)分别表示树T的结点数与边数
- 当n=2时命题成立
- 设n≤k时m(T)= n(T)-1成立
- 则n=k+1时,由于任一边e都是割边
- 故G'=G-e有两个连通支T₁和T₂,即n(T)=n(T₁)+n(T₂)
- 由于 $n(T_i) \leq k$, i=1, 2, 故 $m(T_i) = n(T_i) 1$
- 所以 $m(T) = m(T_1) + m(T_2) + 1 = n(T_1) 1 + n(T_2) 1 + 1 = n(T) 1 也成立$

树的有关定义(8)

◈ 证明 (续)

- 3→4(T连通且有n-1条边→T有n-1条边且无回路)
- (反证法:假定图T有回路,进而考虑在C的基础上构造T所需要使用的最少边数)
- 设C是其中一条含有k(<n)个结点的初级回路,即E(C)=k
- 因为T连通,所以V(T)-V(C)中一定有结点u与C上某个结点v相邻即存在边(u, v)∈E(T)
- 最终要连接 V(T)-V(C)中的n-k个结点,至少还需要n-k条边,才
 可能保持T连通
- 因此边数至少为k+(n-k)=n,与有(n-1)条边矛盾

无回路的简单连通图,最大边数=n-1

树的有关定义(9)

◆ 证明(续)

- 4→5 (T有n-1条边且无回路→T的任意两结点间有唯一道路)
- 先证道路P(u, v)的存在性(反证法)
 - 设u, v是T的任意两结点
 - 如果不存在 P(u, v), 则u, v属于不同连通支T₁, T₂
 - 由于m(T)=n-1
 - 则至少有一个支,比如T₁,使n(T₁)≤m(T₁)成立
 - 这样T₁中有回路,矛盾,所以存在P(u,v)
- 再证唯一性(对称差):
 - 若存在两条不同的道路P(u, v)和 P'(u, v),则其对称差
 P(u, v)⊕P'(u, v)至少含有一个回路,故而得证

树的有关定义(10)

◆ 证(续)

- 5→6(T的任意两结点间有唯一道路→T无回路,但在任两结点间加上一条边后恰有一个回路)
- 显然
- 6→1(T无回路,但在任两结点间加上一条边后恰有一个回路→T连通无回路)
- 显然
- 。 因此等价定理得证

树的有关定义(11)

- 定理3.1.2 (树的等价定义)
 - 对于n ≥ 2的图T(树), 下列性质等价:
 - 1. T连通无回路
 - 2. T连通且每条边都是割边
 - 3. T连通且有n-1条边
 - 4. T有n-1条边且无回路
 - 5. T的任意两结点间有唯一道路
 - 6. T无回路, 但在任两结点间加上一条边后恰有一个回路

其它证明路径?

特殊情况:割边?树叶?

树的有关定义(12)

- ◆ 定理3.1.3
 - 。 树T一定存在叶结点
 - □证明(基本方法?)
 - 反证法
 - 由于T是连通图,所以任意结点v_i,有d(v_i)≥ 1
 - 若无树叶,则有d(v_i) ≥ 2
 - 这样,有

$$n-1 = m = \frac{1}{2} \sum_{i=1}^{n} d(v_i) \ge n$$

• 得出矛盾,因此T一定存在叶结点

树的有关定义(13)

- ◆ 定义3.1.3 支撑树,生成树
 - 。如果T是图G的支撑子图,而且又是一棵树,则称T是G的一棵支撑树,或生成树,简称为G的树
- ◆ 余树
 - □设T是G的支撑树,则称G-T为G的余树

牛定义后呢?

存在? 唯一? 多少个? **算算看**?

有向图 不考虑 边的方 向

第三章 树

- ◆树的有关定义
- ◆基本关联矩阵及其性质
- ◆支撑树的计数

基本关联矩阵及其性质(1)

- ◆回顾关联矩阵(代数表示!!)
 - 。点和边的关联关系
 - □ 每行都是有价值的信息吗?

呼唤个定理?

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	1	0	0	0	0
v_2	0	-1	1	0	1	0
v_3	0	0	0	0	0	-1
v_4	-1	0	0	-1	-1	1
v_5	0	0	-1	1	0	0 _

关联矩阵B

基本关联矩阵及其性质(2)

- 定理3.2.1
 - 有向图G=(V, E) 关联矩阵B的秩ran B < n
 - 证明:
 - B中每列都只有1和-1两个非0元素
 - 因此B的任意n-1行加到第n行后,第n行为全0
 - 即B的n个行向量线性相关, ranB<n

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	1	0	0	0	0
v_2	0	-1	1	0	1	0
v_3	0	0	0	0	0	-1
v_4	-1	0	0	-1	-1	1
$\lfloor v_5 \rfloor$	0	0	-1	1	0	0_

少一行是不 是就线性无 关了呢?

基本关联矩阵及其性质(3)

- ◆ 定理3. 2. 3
 - □ 有向连通图G=(V, E) 关联矩阵B的秩ran B=n-1
 - 。证明(重点)
 - 由定理3. 2. 1知ranB<n, 现只需证ranB≥n-1
 - 不失一般性,设B中最少的线性相关的行数为I
 - 显然I≤n
 - 设这I行分别与结点v(i₁), v(i₂), ···, v(i₁)相对应
 - 因此有

$$k_1b(i_1)+k_2b(i_2)+\cdots+k_1b(i_1)=0, k_j\neq 0, j=1, 2, \cdots$$
 其中 $b(i)$ 为节点 i 对应的行向量

基本关联矩阵及其性质(4

- ◆ 定理3.2.3 (证明续)
 - 。由于矩阵B每列只有2个非零元
 - 所以在这I个行向量b(i_j)中,其
 第t(t=1, 2, ···, m)个分量最多只有
 2个为非零元(当然也可能全为零)
 - 。 但是可以断言: 不可能只有一个为非零
 - 否则因任意k_i≠0,式(1)不会成立
 - $k_1b(i_1)+k_2b(i_2)+\cdots+k_1b(i_1)=0$, $k_1\neq 0$, $j=1, 2, \cdots$ (1
 - 。对矩阵B"行列变换",使前1行是线性相关的诸行
 - 。这在Ⅰ行中每列都有2个非零元的换 到前r列,其余m-r列它们全都是零 元这样矩阵B变换为:

$$\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v_2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 & -1 \\ v_4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v_5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

B中最少的 线性相关的行数为I

$$\mathbf{B'} = \begin{bmatrix} \mathbf{P} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q} \end{bmatrix} \mathbf{n-1}$$

$$\mathbf{r} \quad \mathbf{m-r}$$

基本关联矩阵及其性质(5)

- ◆ 定理3. 2. 3 (证明续)
 - 。但ranB'=ranB,且B'依然是G 的一个关联矩阵,与B相比只是 结点与边的编号不同而已
 - 。若n-1>0,由B'可见,G至少分为2个连通支
 - 其中r条边只与I个结点相关,而其余 m-r条边只与n-I个结点相关
 - 。这与G是连通图矛盾!
 - 。因此一定有n-I=0,即I=n
 - 。即B中最少需要n行才能线性相关
 - 。而任何n-1行都将线性无关,即ranB≥n-1
 - 。所以ranB=n-1,证毕

B中最少的线性相关的行数为I

物理意义是 什么?

然后呢?

基本关联矩阵及其性质(6)

- ◆ 定义3. 2. 1 基本关联矩阵
 - 。在有向连通图G=(V, E)的关联矩阵B中划去任意结点 v_k 所对应的行,得到一个 $(n-1)\times m$ 的矩阵 B_k ,称为G的一个基本关联矩阵

基本关联矩阵B₃

基本关联矩阵及其性质(7)

- 定理3. 2. 3: 有向连通图G=(V, E) 关联矩阵B的秩ran B=n-1
- 定理3. 2. 4
 - 有向连通图G=(V, E)的基本关联矩阵B_k的秩ran B_k=n-1
 - 证:由以上定理3.2.3的证明过程可知,任意n-1个行向量是线性无关的,可得此结论

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	1	0	0	0	0
v_2	0	-1	1	0	1	0
v_3	0	0	0	0	0	-1
v_4	-1	0	0	-1	-1	1
v_5	0	0	-1	1	0	0

行向量?

Γ	e_1	e_2	e_3	e_4	e_5	e_6
<i>v</i> 1						
v2	0	-1	1	0	1	0
v4	-1	0	0	-1	-1	1
v5						

基本关联矩阵B3

关联矩阵B

秩不变的边数最少什么情况?

基本关联矩阵及其性质(8)

- ◈ 思考-行列之间的关系?
 - 直通图基本关联矩阵B_k的秩是n-1, B_k中一定存在n-1个 线性无关的列(对连通图有m>=n-1)
 - 。哪些列线性无关的、哪些列线性相关?
- ◆推论3.2.1-树T(特殊的连通图)
 - 。n个结点的树T的基本关联矩阵(方阵)的秩是n-1.

思考

树枝边构成线性无关的列? 那线性相关的列是什么呢?

基本关联矩阵及其性质(9)

- ◆ 定理3. 2. 5
 - 。设B_k是连通图G的基本关联矩阵, C是G中的一个回路,则C中各边 所对应B_k的各列线性相关。
 - 。证明: (针对C是初级回路讨论)
 - 设C包含了G的I个结点I条边(不妨设I<n)
 - 这 I 条边对应关联矩阵B的 I 列,它们构成了B的子阵B(G_c)
 - C本身是含Ⅰ个点Ⅰ条边的连通子图,所以B(C)是Ⅰ阶方阵
 - 而ranB(C)=I-1, 故B(C)的I列线性相关,且是B(Gc)的子阵
 - 由于 $B(G_c)$ 对应的各边只经过回路C的结点,而与其他结点无关,因此 $B(G_c)$ 中其余结点 所对应的行元素全为零
 - 因此B(G_c)中这I列仍是线性相关
 - 显然B_k(G_c)的这I列也线性相关

证明思路: ranB(C), B(C)列线性相关, B(G_C), B_k(G_C)

基本关联矩阵及其性质(10)

- ◆ 定理3. 2. 5的理解
 - □ B_k中回路的各列线性相关
- ◈ 推论3.2.2
 - 。设H是连通图G的子图,如果H含有回路,则H的诸边对应的G的基本关联矩阵各列线性相关
- ◆ 定理3. 2. 6
 - 。 令B_k是有向连通图G的基本关联矩阵,那么B_k的任意n-1阶子阵行 列式非零的充要条件是其各列所对应的边构成G的一棵支撑树

思考:线性无关的列?最多是什么?

v1

 $e_{\scriptscriptstyle \! \it \Delta}$

回顾: 行列式

 文定义:
 由 n^2 个数 a_{ij} 组成如下数阵称为 n 阶行列

 式,其中 $D_1 = |a_{11}| = a_{11}$

$$D_n = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

行列向量 线性相关 矩阵的秩

◆ 行列式计算

。在 n 阶行列式中, 把元素 a_{ij} 所在的第 i 行和第 j 列划去后, 留下来的 n-1 阶行列式叫做元素 a_{ij} 的余子式,记作 M_{ij} ; 元素 a_{ij} 的余子式为:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

行列式

◆ 二阶行列式计算举例

$$D = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \times (-1)^{1+1} |4| + 2 \times (-1)^{1+2} |3| = 1 \times 4 - 2 \times 3 = -2$$

◆ 三阶行列式计算举例

$$\begin{vmatrix} 1 & 3 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = 1 \times \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix} - 1 \times \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = -2 - 7 = -9$$

$$\begin{vmatrix} 1 & 1 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{vmatrix} = 1 \times \begin{vmatrix} 3 & 2 \\ 0 & 3 \end{vmatrix} = 1 \times 3 \times 3 = 9$$
$$\begin{vmatrix} 1 & 1 & 2 \\ 3 & 3 & 2 \\ 0 & 0 & 0 \end{vmatrix} = ?$$

基本关联矩阵及其性质(11)

◈ 证明(必要性):

要证: B_k的n-1阶子阵行列式非零,则各列/边构成G的支撑树

- 。如果某个n-1阶子阵 $B_k(G_T)$ 的行列式非零
- 。则由推论3.2.2(如果H含有回路,则H的诸边对应的G的基本关联 矩阵各列线性相关),T中不含回路
- 。因为 $B_k(G_T)$ 是基本关联矩阵的(n-1)阶子阵,所以其对应的图包含 n个结点、n-1条边
- 。根据定理3.1.2的等价定义4(T有n-1条边且无回路), T是G的一棵 树

基本关联矩阵及其性质(12)

- 证明(充分性)
 - 要证:支撑树=>B_k的对应n−1阶子阵行列式非零
 - 设T是G的一棵树,包含n个 结点,n-1条边

- $\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$
- 子图T的基本关联矩阵B_k(T)是n-1阶方阵,其秩 ran B_k(T) = n-1,即满秩,所以行列式非零
 (定理3.2.4:有向连通图G基本关联矩的秩ran B_k=n-1)
- 因为T是G的子图、B_k(T)恰好对应B_k的某个n-1阶子阵(即使用了T的n-1条边)
- 即B_k对应的该n-1阶行列式非零

基本关联矩阵及其性质(11)

- ◆ 回顾: 定理3.2.6
 - 。 令B_k是有向连通图G的基本关联矩阵,那么B_k的任意n-1阶子 阵行列式非零的充要条件是其各列所对应的边构成G的一棵支 撑树

◆ 思考?

- 。行列式非零的n-1阶子 阵与支撑树——对应吗?
- 。如何计算支撑树的数目?
- 。图G的基本关联矩阵B_k中,行列式非零的n-1阶 子阵数目与G不同的支撑树数目,对应吗?

$$\begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

基本关联矩阵

♦ 行向量

你能发明出来吗?

- □ 关联矩阵B为(n*m), 行向量相关, ran(B)=n-1
- 基本关联矩阵B_k为(n-1)*m, ran(B_k)=n-1
- 。B和Bょ中(n-1)行向量线性无关

◈ 列向量

横看成岭侧成峰,排列组合求创新

- 。设H是连通图G的子图,如果H含有回路,则H的诸边对应的G的基本关联矩阵各列线性相关
- 。 B_k 的任意n-1阶子阵行列式非零的充要条件是其各列所对应的边构成G的一棵支撑树($det(B_0)=0/1/-1$)
- 。B_k中行列式非零的n-1阶子阵的数目与G不同的支撑树数目之间——对应

第三章 树

◈树的有关定义

◆基本关联矩阵及其性质

◆支撑树的计数

基本关联矩阵及其性质(12)

- 再看看B
 - 欲求数目(最大非零行列式)
 - 必先理解(每个行列式)

子阵的 行列式呢?

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	1	1	0	0	0	0
v_2	0	1 -1	1	0		0
v_3	0	0	0	0	0	-1
v_4	-1	0	0	-1	-1	1
$\lfloor v_5 \rfloor$	0	0	-1	1	0	0

基本关联矩阵及其性质(13)

- ◆ 定理3. 2. 2
- 设B₀是有向图G=(V, E) 关联矩阵
 B的k阶方阵,则det(B₀)=0,1,-1

◈ 证明:

- 。因为 B_0 是B的某一k阶子阵, B_0 每列最多只有2个非零元
- □ 若其中某列全为零元,则det(B₀)=0
- 。若 B_0 每列都有2个非零元,则线性相关,有 $det(B_0)=0$
- 。否则B₀中存在某列只有一个非零元
 - 按该列展开得到det(B₀)={±det(B₁)
 - 但B₁ 的阶为k-1
 - 依次类推,可知最终det(B₀)为0,1,或-1

支撑树的计数

$$\mathsf{B}_{\mathsf{k}} = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

文撑树数目: 有多少个n-1 阶非零行列式?

- ◆ 定理3. 3. 1 (Binet-Cauchy定理)
 - □ 已知两个矩阵 $A=(a_{ij})_{m\times n}$ 和 $B=(b_{ij})_{n\times m}$ 满足 $m \leq n$,则 det(AB)= $\sum_{i=1}^{n} A_{i}B_{i}$
 - □ A_i:A中不同的m列构成的行列式
 - □ B_i:B中相应的m行构成的行列式

组合累加:子阵行列式的乘积

支撑树的计数(2)

◆ 例

□ 已知矩阵A和B如下, 求det(AB)

$$A = \begin{bmatrix} 4 & 3 & 2 \\ -2 & 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 5 & 1 \\ 0 & 3 \\ 4 & 2 \end{bmatrix}$$

- □解
- □ 由矩阵乘法,

$$AB = \begin{vmatrix} 28 & 17 \\ 2 & 16 \end{vmatrix}$$

□ 所以det(AB)=414

支撑树的计数(3)

◈ 例 ′′-`

$$A = \begin{bmatrix} 4 & 3 & 2 \\ -2 & 4 & 3 \end{bmatrix}, B = \begin{bmatrix} 5 & 1 \\ 0 & 3 \\ 4 & 2 \end{bmatrix}$$

□由比内-柯西定理计算

$$\det(AB) = \sum_{i} A_{i}B_{i}$$

$$= \begin{vmatrix} 4 & 3 & 5 & 1 \\ -2 & 4 & 0 & 3 \end{vmatrix} + \begin{vmatrix} 4 & 2 & 5 & 1 \\ -2 & 3 & 4 & 2 \end{vmatrix} + \begin{vmatrix} 3 & 2 & 0 & 3 \\ 4 & 3 & 4 & 2 \end{vmatrix}$$

$$= 414$$

支撑树的计数(4)

$det(AB) = \sum A_i B_i$

◆ 例(续)

显然可见,用比内一柯西定理 计算乘积矩阵的行列式比通常 方法复杂

更复杂???

- 。但该定理揭示了乘积矩阵的行列式与各矩阵子行列式之 间的关系
- □ 连通图 G 不同支撑树的计数,恰好利用了这种关系

支撑树的计数(5)

- ◆ 有向连通图的树计数
- ◆ 定理3.3.2
 - 设B_k是有向连通图G=(V, E)的
 某一基本关联矩阵,则G的不同树的树目是det(B_kB_k^T)

 $\begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$

- 证明: 设B_k=(b_{ij})_{(n-1)xm},由于G是连通图,故n-1 ≤m
 - 由比内-柯西定理,得

$$\det(B_k B_k^T) = \sum_{i} |B_i| |B_i^T|$$

- 其中|B_i|是B_k的某个 n-1阶子阵的行列式
- |B_iT|是B_i转置的行列式

支撑树的计数(6)

◈证(续)

由于B_i^T是n-1阶子阵B_i的转置,因此 B_i^T = B_i

$$\det(B_k B_k^T) = \sum_i |B_i| |B_i^T| = \sum_i |B_i|^2$$

- 由定理3.2.6, 若|B_i|≠0, 则对应边构成G的一棵树
- 由定理3.2.2,此时|B_i|=1或-1,即|B_i|²=1
- 这说明若B_i的各列对应的边构 成G的一棵树,则对det(B_kB_k^T) 中的贡献为1
- 上式是对|B_i|²的全部组合求和
- 因此det(B_kB_k^T)是G中
 不同树的数目

$$\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v4 & -1 & 0 & 0 & -1 & -1 & 1 \\ v5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

支撑树的计数(7)

- ◈ 例 3.3.2
 - □ 求下图中树的数目(不考虑边的方向)
 - 解: 任取一个基本关联矩阵,如B4

$$B_4 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

 $\therefore \det(B_4 B_4^T) = \det \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix} = 8$

- 数数看?
- 5边去2边: C(5,2)-2=5*4/2-2=8

支撑树的计数(8)

- ◆ 不含或必含特定边的树计数
 - □有向连通图
 - 。若不含特定边e
 - 则G'=G-e的树就与之——对应
 - 。若必含特定边e
 - 计算G的树的数目,减去G'=G-e的树的数目
 - 可将e的两个端点收缩成一个点,则得到n-1个结点的新图G',G'
 的树与G的必含e的树——对应

支撑树的计数(9)

- ◈ 例3. 3. 3
 - □求图中不含e₄的树数目

• 解: 作G-e₄, 得到下图。

$$B_4 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\therefore \det(B_4 B_4^T) = \det \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 3$$

支撑树的计数(10)

- ◈ 例3. 3. 4
 - □ 求图中必含e₃的树数目

解:将图中 v_2 , v_4 收缩为 $v_{2,4}$

$$B_3 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

$$\therefore \det(B_3 B_3^T) = \det \begin{vmatrix} 2 & -2 \\ -2 & 4 \end{vmatrix} = 4$$

支撑树的计数(11)

- ◆ 无向连通图的树计数
 - 。将无向图G的各边加一方向,得有向图G',G'的树与G的树一一对应
- ◈ 例: 求完全图K,中不同树的数目
 - □对各边任给一方向,得到有向完全图G, G中v_k对应的基本关联矩阵是B_k。可得

$$\therefore \det(B_k B_k^T) = \det \begin{bmatrix} n-1 & -1 & -1 \\ -1 & n-1 & \ddots & -1 \\ -1 & -1 & n-1 \end{bmatrix} = n^{n-2}$$

支撑树的计数(12)

- ◆ 有向连通图G根树的计数
- ◆ 定义3.3.1 根树
 - □ T是有向树

存在某结点 v_0 的负度为0,其余结点负度为1,则称T是以 v_0 为根的外向树,或称根树T

- 。根树能否从树根沿着正向边走到任意叶子?
 - 考虑关键路径
 - 不断去掉负度为0的点

透过现象看本质 连问三个为什么! det(B_kB_k^T)???

支撑树的计数(13)

例

。下图是一棵根树,求<mark>根结点</mark>基本关联矩阵B₁

	e_1	e_{2}	e_3	e_4 \rceil
v_2	-1	0	1	1
v_3	0	-1	0	0
v_4	0	0	-1	0
v_5	0	0	0	-1

- □根结点基本关联矩阵B₁的特点
 - 由于v₁的负度为0,其余结点负度均为1
 - 因此根结点的基本关联矩阵一定是: 每行每列只有1个-1元素

支撑树的计数(14)

- ◆ 根树基本关联矩阵的特征
 - 。若对根树的结点和边序号重新编号
 - 。使得每条边e_j=(v_i, v_{j+1}), 且满足i<j+1
 - 。则得到根结点基本关联矩阵B₀'为 上三角矩阵,对角元均为-1
 - 若把根树基本关联矩阵的所有1均变为零,行列式值不变
 - 。其他的树呢?
 - 一定存在节点(如根节点)负度为0,修改后出现全0行,即行列式值变为0

_				_
	e_1	e_2	e_3	e_4
v_2	-1	0	1	1
v_3	0	-1	0	0
v_4	0	0	-1	0
v_5	0	0	0	-1_

支撑树的计数(15)

◆ 定理3.3.3

- ·设 $\mathbf{B}_{\mathbf{k}}$ 表示有向连通图 \mathbf{G} 的基本关联矩阵 $\mathbf{B}_{\mathbf{k}}$ 中将全部 $\mathbf{1}$ 改为 $\mathbf{0}$ 之后的 矩阵,则
- G中以 V_k 为根的根树数目是 $det(B_kB_{\nu}^T)$

◈ 证明

- . 由比内-柯西定例 $\det(\vec{B}_k B_k^T) = \sum \left| \vec{B}_i \right| \left| B_i^T \right|$
- . 若 | B_i | ≠ 0, 说明这n-1条边构成一棵树
- . 此时如果 $\left|\overrightarrow{\mathbf{B}}_{i}\right| \neq 0$,说明此树是以 \mathbf{v}_{k} 为根的根树 . 此时 $\left|\overrightarrow{\mathbf{B}}_{i}\right| = \left|\overrightarrow{B}_{i}^{T}\right|$,因此它们在 $\det(\overrightarrow{\mathbf{B}}_{k}\mathbf{B}_{k}^{T})$ 中的贡献为1
- ・由于遍历了所有n-1条边的组合,所以 v_k 为根的根树数目是 $\det(\mathbf{B}_k\mathbf{B}_k^T)$

支撑树的计数(16)

- 例3.3.6 计算下图中以v₁为根的根树数目
 - 解: v₁所对应的基本关联矩阵是

$$\mathbf{B}_{1} = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 & -1 \\ 0 & -1 & 0 & -1 & 1 & 0 \end{bmatrix}$$

$$\vec{B}_{1}B_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 3 & -1 \\ -1 & 0 & 2 \end{bmatrix}$$
• ...det($\vec{B}_{1}B_{1}^{T}$)=6

数数v₁为根的根树数目? 考虑是否要e。及连接v₃方式, 结果3*2条

支撑树的计数(17)

- 例3.3.7
 - 求图中以v₁为根不含e₅的根树数目
 - 解: 作G'=G- e_5 ,则G'的以 v_1 为根的根树数目正是所求,于是

$$\mathbf{B}_{1} = \begin{bmatrix} -1 & 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & 0 & -1 & 0 \end{bmatrix}$$

$$det(\vec{B}_1 \vec{B}_1^T) = det \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix} = 4$$

基本关联矩阵及支撑树计数

♦ 行向量

你能发明出来吗?

- □ 关联矩阵B为(n*m), 行向量相关, ran(B)=n-1
- 基本关联矩阵B_k为(n-1)*m, ran(B_k)=n-1
- 。B和Bょ中(n-1)行向量线性无关

◆ 列向量

横看成岭侧成峰, 排列组合求创新

- 。设H是连通图G的子图,如果H含有回路,则H的诸边对应的G的基本关 联矩阵各列线性相关
- 。 B_k 的任意n-1阶子阵行列式非零的充要条件是其各列所对应的边构成G的一棵支撑树(G_0)=0/1/-1)
- B_k中行列式非零的n-1阶子阵的数目与G不同的支撑树数目之间——对应
- ◆ 基于比内柯西定理,实现支撑树的计数

第三章 树

支撑树不唯一?

多少个(计数)?? 最优树??

关联矩阵不仅用于计算支撑树,还有呢?

- 回路矩阵与割集矩阵计算
- Huffman树算法
- 最短树算法

可逆矩阵

- **◈ 定义**:设A为n级方阵,若存在n级方阵B,使得AB=BA=I,则称A为可逆矩阵,称B为A的逆矩阵,即B=A $^{-1}$.
- ◈ 初等变换法求解逆矩阵
 - □ 矩阵的初等变换
 - (1)互换任意两行的位置 $r_i \leftrightarrow r_j$
 - •(2)用非零数乘某行 kr_i
 - (3)用一个常数乘矩阵的某一行,再加到另一行上去 $r_i + kr_j$
 - 。初等变换法

$$(A|I)$$
 一行初等变换 $\rightarrow (I|A^{-1})$

可逆矩阵

$$A^{-1}$$

$$A^{-1} = \begin{bmatrix} 1 & 1/2 \\ -1 & 0 \end{bmatrix}$$

$$(A|I) = \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 3 & 2 & 1 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix}$$

3.4回路矩阵

考虑每条余树边是否使用……

3.4回路矩阵

• 例3.4.1 回路

如何进行代数表示?

$$\begin{bmatrix} & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\ v_1 & 1 & 1 & 0 & 0 & 0 & 0 \\ v_2 & 0 & -1 & 1 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 0 & 0 & 0 & -1 \\ v_4 & -1 & 0 & 0 & -1 & 1 & 1 \\ v_5 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

最多可能包含2m-n+1-1个不同的初级回路

回路矩阵(2)

● 回路的代数表示

- 。给定C的一参考方向
 - 该回路的边若与参考方向一致 就称为正向边
 - 否则就称为反向边
- □ 有向连通图G的全部初级回路构成的矩阵,称为G的完全回路矩阵,记为C。

回路矩阵(4)

- 例3.4.1
 - 完全回路矩阵

$$C_e = egin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \ -1 & 0 & 1 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 \ 0 & 1 & 1 & -1 & 0 \ -1 & 0 & 1 & -1 & 0 & 1 \ 1 & 1 & 0 & 0 & 1 & 1 \ \end{pmatrix}$$
这此回路是否是独立的?

- 这些回路是否是独立的?
- 秩是多少?哪些回路独立?

$$C_1 \oplus C_2 = C_5$$
 $C_1 \oplus C_3 = C_7$ 进一步考虑余树边?

回路矩阵(5)

- ◆ 设T是图G=(V,E)的一棵支撑树
- → 对任意余树边e∈E(G)- E(T),T+e都构成一个唯一回路C
- ◆ 当有向图G=(V,E)的树T确定 后,每条余树边e与T的子集 所对应的回路称为基本回路
- ◆ 基本回路的方向与余树边e 的方向一致

◆ 由全部基本回路构成的矩阵称为G的基本回路矩阵,记为C_f (m-n+1)*m

回路矩阵(6)

- 例3.4.2
 - 给定图的一棵树 $T=\{e_1, e_5, e_6\}$,则其基本回路矩阵是

- 显然基本回路矩阵中每个回路都是独立的
- 因此ran C_f=m-n+1

其他回路呢? Ce的秩呢?

关联矩阵及其性质

- ◆ 定理3. 2. 3
 - 有向连通图G=(V, E) 关联矩阵B的秩ran B=n-1

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	<i>e</i> ₁ 1	1	0	0	0	0
	0					
v_3	0	0	0	0	0	-1
v_4	-1	0	0	-1	-1	1
v_5	-1 0	0	-1	1	0	$0 \rfloor$

回路矩阵(7)

- ◆ 定理3.4.1 (引理)
 - 。有向连通图G=(V, E)的关联矩阵 $B_{n\times m}$ 与完全回路矩阵 $C_{e(\sim)\times m}$ 的边次序一致时,恒有:

$$BC_e^T = 0$$

B: 结点和边的关系

C: 回路和边的关系

证明:
$$D=BC_e^T, d_{ij} = \sum_{k=1}^m b_{ik} \cdot c_{jk}$$

- 。其中b_{ik}是结点v_i与边e_k的关联状况
- 。c_{ik}是回路 c_i与边e_k的相关情况
- odij不为0:给定vi和cj,存在边ek与vi和cj都关联

回路矩阵(8)

- 证(续)
- 考虑回路C_i与结点 v_i的相处,只有两种可能:
- (1) C_j不经过v_i,则与v_i关联的任一边都不是C_j中的 边,所以b_{ik}=0,即d_{ii}=0
- (2) \mathbf{C}_{j} 经过 \mathbf{v}_{i} , 则必定经过与 $\mathbf{D}=\mathbf{B}\mathbf{C}_{e}^{T},\mathbf{d}_{ij}=\sum_{k=1}^{m}b_{ik}$ • \mathbf{c}_{jk} \mathbf{v}_{i} 关联的2条边 \mathbf{e}_{p} 和 \mathbf{e}_{q}
 - 如果 e_p 和 e_q 在 C_j 中方向相反,对 v_i 它们却是同进同出的,因此对 e_p 和 e_q 有b不变而c相反,即 $d_{i,j}=0$
 - 若 e_p 和 e_q 在 C_j 中方向一致,则对 v_i 来说它们是一进一出的,因此对 e_p 和 e_q 有 e_p 不变而 e_p 相反,即 e_p 0
- 由于 d_{ij} 的任意性,故定理得证 $\frac{\mathbf{B}\mathbf{C}_{e}^{\mathrm{T}}=\mathbf{0}}{\mathbf{C}_{e}}$

回路矩阵(11)

- . 呼唤定理
 - 有向连通图G=(V, E)的完全回路矩阵Ce的秩是m-n+1

如何证明呢?

- . 苦思冥想不得其解◎
- . 找找数学系的朋友:
 - Sylvester定理指出,两个矩阵A_{n×s}, B_{s×m},
 如果 AB=0,则ran A+ran B ≤s

回路矩阵(12)

- ◆ 定理3.4.2
 - □ 有向连通图G=(V, E)的完全回路矩阵Ce的秩是m-n+1

◈ 证明:

- 由于基本回路矩阵C_f 是完全回路矩阵C_e 的子阵且ran C_f =m-n+1, 故ran C_e ≥m-n+1
- □ 现证ran C_p ≤m-n+1
- □ Sylvester定理指出,两个矩阵A_{n×s}, B_{s×m}, 如果 AB=0, 则 ran A+ran B ≤s
- □ 由定理3.4.1 $\mathbf{BC}_{\mathrm{e}}^{\mathrm{T}}=\mathbf{0}$,得到 ran B+ran $\mathbf{C}_{\mathrm{e}} \leq$ m,关 联矩阵B有ran B=n-1
- 。因此 ran C_e ≤m−n+1

回路矩阵(13)

◈ 基本回路矩阵Cf有多少个?等价吗?

- ◆ 定义3.4.3: 回路矩阵
 - 由连通图G中m-n+1个互相 独立的回路组成的矩阵,称 为G的回路矩阵,记为C
- ◆ 回路矩阵的简单性质:
 - 基本回路矩阵C_f是回路矩阵
 - 2 BCT=0, (其中B和C的边次序一致)
 - 3 C=P C_f , 其中P是非奇异(即行列式不为0)的方阵, C与基本回路矩阵C_f的边次序一致

回路矩阵(14)

例3. 4. 2: 给定图的一棵树T={e₁, e₅, e₆} ,

则其基本回路矩阵是

$$\mathbf{C}_{\mathbf{f}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{bmatrix}$$

e₁ e₂ e₃ e₄ e₅ e₆ • 每条余树边用且仅用1次

- ran C_e ran C_f =m-n+1

如何给出基本回路?设计算法还是矩阵运算?

回路矩阵(15)

- 每条余树边用且仅用1次
 - 将行、列分别进行交换, 使树枝边放在后, 余树边放 在前且次序与它所构成的回路一致,就可以写成分块 矩阵形式

$$\begin{split} \mathbf{C}_{\mathrm{f}} = & \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{bmatrix} & \mathbf{C}_{\mathrm{f}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix} \\ \mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} & \mathbf{e}_{5} & \mathbf{e}_{6} \\ & & & & & & & & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & & \\ \mathbf{\hat{F}} \mathbf{M} \dot{\mathbf{D}} & & & & \\ \mathbf{\hat{F}} \mathbf{\hat{$$

- 亦即 $C_f = \begin{pmatrix} I & C_{f_1} \end{pmatrix}$ 其中 C_f 是树枝边所对应的子阵

BC^T=0: 呼唤定理

回路矩阵(9)

- 定理3.4.1 (引理)
 - 有向连通图G=(V, E) 的关联矩阵 $B_{n\times m}$ 与完全回路矩阵 $C_{e(\sim)\times m}$ 的边次序一致时,恒有:

$$BC_e^T = 0$$

推论: 有向连通图的基本关联矩阵Bk,基本回路矩阵Cf,在边次序一致的情况下,有

$$B_k C_f^T = 0$$

回路矩阵(10)

定理3.4.4 若有向连通图G=(V, E)的基本关联矩阵

Bk是和基本回路矩阵Cf的边次序一致,其中

$$C_f = (I; C_{f_{12}}) \quad B_k = (B_{11}; B_{12})$$

$$C_{f_{12}} = -B_{11}^T (B_{12}^{-1})^T$$

,则

证明: 由推论知 , 写成块矩阵形式

$$(B_{11} \quad B_{12}) \begin{bmatrix} I \\ C_{f_{12}}^T \end{bmatrix} = 0 \quad B_{12} \cdot C_{f_{12}}^T = -B_{11}$$

根据基本关联矩阵,可以通过计算得到基本回路矩阵

回路矩阵(16)

◆ 定理3.4.4

$$BC^T=0$$

余树边

。若有向连通图G=(V, E)的基本关联矩阵 B_k 和基本回路矩阵 C_f 的<mark>边次序一致</mark>,并设 $C_f=(I C_{f12})$, $B_k=(B_{11} B_{12})$,分别对应余树边和树枝边,则

$$\mathbf{C}_{\mathbf{f}_{12}} = -\mathbf{B}_{11}^{\mathrm{T}} \mathbf{B}_{12}^{\mathrm{-T}}$$

◆ 已知回路矩阵C的秩为(m-n+1),

那么哪(m-n+1) 列线性无关?

(回路矩阵的大小C(m-n+1, m))

- ◆ 定理3.4.3
 - 直通图G的回路矩阵C的任一 (m-n+1) 阶子阵行列式非零, 当且 仅当这些列对应于G的某一棵余树
 - 。即去掉的(n-1)条边不含基本回路

树枝边

$$\mathbf{C}_{\mathrm{f}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix}$$

e₂ e₃ e₄ e₁ e₅ e₆ **余树边** 树枝边

回路矩阵(17)

◆ 例3. 4. 3: 已知图3. 11基本关联矩阵

$$\mathbf{B}_{4} = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
$$\mathbf{e}_{1} \ \mathbf{e}_{2} \ \mathbf{e}_{3} \ \mathbf{e}_{4} \ \mathbf{e}_{5} \ \mathbf{e}_{6}$$

- ◆ 其中e₁, e₅, e₅所对应的矩阵行列式非零
- ◆ 求基本回路矩阵C_f

分析: B子阵行列式非零即边无回路, 4点3边?

回路矩阵(18)

解:由e₁, e₅, e₅可构成G的一棵树,对B₄进行列变换,得到

$$\mathbf{B}_{4} = \begin{bmatrix} -1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & 0 \end{bmatrix} = (\mathbf{B}_{11} \ \mathbf{B}_{12})$$

 $\mathbf{e}_{2} \ \mathbf{e}_{3} \ \mathbf{e}_{4} \ \mathbf{e}_{1} \ \mathbf{e}_{5} \ \mathbf{e}_{6}$

余树边 树枝边

$$\mathbf{B}_{11} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{B}_{12} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \quad \mathbf{B}_{12}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$C_{f_{12}} = -B_{11}^T B_{12}^{-T}$$

回路矩阵(19)

• 基本回路矩阵的右子阵

$$\mathbf{C}_{\mathbf{f}_{12}} = -\mathbf{B}_{11}^{\mathsf{T}} \mathbf{B}_{12}^{\mathsf{-T}} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 0 \\ 0 & -1 & -1 \end{bmatrix}$$

• 基本回路矩阵

$$\mathbf{C}_{\mathrm{f}} = egin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix}$$
 $\mathbf{e}_{2} \ \mathbf{e}_{3} \ \mathbf{e}_{4} \ \mathbf{e}_{1} \ \mathbf{e}_{5} \ \mathbf{e}_{6}$ 软校边

回路矩阵(20)

- ◈ 回顾: 回路矩阵的创新思路
 - □ 回路的代数表示(方向)
 - □ 有多少个回路呢?
 - 。完全回路矩阵,相关性和秩?
 - □ 如何构造独立的回路(树)
 - 。基于BCT=O计算C
- ◆ 于是接着如何写书呢?

照回路 画割集

边集合: 道路、回路、树, 还有什么?

3.4 割集矩阵(1)

- ◆ 定义3.4.4 割集
 - 。设S是有向图G=(V, E)的边子集, 若同时满足:
 - 1. G'=(V, E-S) 比G的连通 支数多1
 - 2. 对任意 S'⊂S, G与G"=(V, E-S')的连通支数相同
 - 。则称S是G的一个割集

S₁={e₂, e₃, e₄} 是割集

下图中关于割边割集的说法,正确的是:

- A {(a, d)}是割边
- B {(a, d)}是割集
- (d, e)}是割集
- D {(a, d) ,(a, c)}是割集

提交

割集矩阵(2)

◈ 割集能有方向吗?

- 。给S确定一个方向,则S中 每条边e与S 同向或反向
- □ 例3.4.4
 - e₂与S₁方向相反,
 e₃、e₄与S₁方向相同

如何代数表示?

$$\mathbf{B}_{4} = \begin{bmatrix} 1 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} \quad \mathbf{C}_{f} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix}$$

$$\mathbf{e}_{1} \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4} \mathbf{e}_{5} \mathbf{e}_{6} \qquad \mathbf{e}_{2} \mathbf{e}_{3} \mathbf{e}_{4} \mathbf{e}_{1} \mathbf{e}_{5} \mathbf{e}_{6}$$

割集矩阵(3)

- ◆ 定义3.4.5
 - 。有向连通图G的全部割集组成的矩阵,称为完全割集矩阵。记作S_e,其元素

$$S_{ij} = \begin{cases} 1, & e_j \text{在} \mathbf{S}_{i} \text{中且方向一致} \\ -1, & \mathbf{e}_{j} \text{在} \mathbf{S}_{i} \text{中且方向相反} \\ 0, & 其他 \end{cases}$$

割集矩阵(4)

◈ 例3.4.5 求左图的完全割集矩阵

割集的独立性? 如何构造独立的割集?

割集矩阵(4)

◈ 例3.4.5 求左图的完全割集矩阵

割集的独立性? 如何构造独立的割集?

割集矩阵(5)

- 定义3.4.6
 - 设T是连通图G的一棵树, e;是一个树枝。
 - 对树枝边e;存在G的割集S; ,S;只包括一条树枝边e;及某些余树边,且与e;方向一致。
 - 这时S_i为G的对应树T的一个基本割集。
- 定义3.4.7
 - 给定有向连通图G的一棵树T,则由全部基本割集组成的矩阵成为基本割集矩阵。记为S_f。
 - ran $S_f = n 1$

集矩阵(6)

$$\mathbf{S}_{\mathrm{f}} = \begin{bmatrix} -1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & -1 \\ e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} \end{bmatrix}$$

$$\mathbf{S}_{\mathrm{f}} = \begin{bmatrix} -1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \\ \mathbf{e}_{1} & \mathbf{e}_{5} & \mathbf{e}_{6} & \mathbf{e}_{2} & \mathbf{e}_{3} & \mathbf{e}_{4} \end{bmatrix}$$

 e_3 $T = \{e_2, e_3, e_4\}$

余树边 & 树枝边 完全割集矩阵Se的秩?

割集矩阵(7)

- 定理3.4.5
 - 当有向连通图G的完全回路矩阵 C_e 和完全割集矩阵 S_e 的边次序一致时,有 $S_eC_e^T=0$

证明: 设
$$D = S_e C_e^T \qquad d_{ij} = \sum_{k=1}^m S_{ik} \cdot C_{jk}$$

其中 S_{ik} 是第i个割集 S_i 中 e_k 的情况 e_{jk} 是第j个回路 e_k 的情况

考虑: BC^T=0 回路和割集必重复偶数条边

割集矩阵(7)

- 定理3.4.5
 - 当有向连通图G的完全回路矩阵 C_e 和完全割集矩阵 S_e 的边次序一致时,有 $S_eC_e^T=0$

- 定理3.4.6
 - 连通图G的完全割集矩阵Se的秩是n-1
 - 基本割集矩阵S_f是S_e的子矩阵, 而ran S_f = n 1,
 因此ran S_e ≥n-1
 - 由定理3. 4. 5及Sylvester定理
 - ran S_e +ran C_e ≤m, 而ran C_e = m-n+1,
 故ran S_e ≤n-1
 这 (n-1) 个割集很重要?

割集矩阵(8)

- 定义3.4.8
 - 连通图G的n-1个互相独立的割集构成的矩阵成为G的 割集矩阵,记为S。
- 割集矩阵S有以下性质
 - 基本割集矩阵S_f是割集矩阵
 - SCT=0, S和C的边次序一致
 - S_f = PS, 其中P是非奇异方阵, S与S_f的边次序一致

如何给出基本割集?设计算法还是矩阵运算?

割集矩阵(9)

- 定理3.4.8
 - 设S_f和C_f分别是连通图G中关于某棵树T的基本割集矩阵和基本 回路矩阵,且边次序一致,并设

$$S_f = (S_{f_{11}} \ I), C_f = (I \ C_{f_{12}})$$

则
$$S_{f_{11}} = -C_{f_{12}}^{T}$$

- 由定理3. 4. 5 $S_e C_e^T = 0$ 易证
- 推论 已知 $C_{f_{12}} = -B_{11}^{T}B_{12}^{-T}$
 - 当连通图G的基本割集矩阵与基本关联矩阵的边次序一致时, 有 $S_{f,j} = B_{12}^{-1}B_{11}$

第三章 树

- 树的有关定义
- 基本关联矩阵及其性质
- 支撑树的计数
- 回路矩阵与割集矩阵
- Huffman树
- 最短树

Huffman树

- ◈ 例3. 6. 1
 - 。已知13个英文字母构成字符串adacatedecade。试用二进制字符串代替字母,并保证该英文字符串与二进制串能够一一对应。
 - □ 例如ASCII码
 - a=0x61, c=0x63,, t=0x74
 - 总长度: 8bit * 13=104 bit
 - □其他方法
 - 用0表示a, 用1表示d, 用00表示c ·····?
 - 接收到: 010000---
 - □如何编码(保证能唯一解码), 能够使总长最小?

接收端 不能恢复

Huffman树(1)

- ◆ 定义3.6.1 (二叉树与完全二叉树)
 - 。除树叶外,其余结点的正度最 多为2的外向树称为二叉树
 - □ 正度都是2的称为完全二叉树
 - □ 为什么学二叉树而不是三叉树?

◆ 赋权二叉树

- 。二叉树T的每一个叶结点vi都分别赋以一个正实数wi
- ◈ 带权路径总长度(WPL)
 - □ 树根v₀到叶结点v;的路径P(v₀, v;)所包含的边数记为路径的长度I;,则二叉树T带权的路径长度总长是

$$WPL=\sum_{i}l_{i}w_{i},v_{i}$$
是树叶

Huffman树(2)

◆ 最优二叉树

。若给定了树叶树目以及它们的权,可以构造出不同的赋权 二叉树,在这些二叉树中,带权路径总长WPL最小的二叉树 称为最优二叉树

Huffman树(2)

- ◈ 例3. 6. 1
 - □ 已知英文字符串adacatedecade
 - 。试用二进制字符串代替某个字母,并保证 该英文字符串与二进制串构成一一对应
 - □解: 该字符串中有字母a, d, e, c, t
 - 。令每个字母对应二叉树的一个树叶

Huffman树(3)

- ◆例(续:adacatedecade)
 - 根到树叶的路径是唯一的,而且这条路径绝不会是树根到另一个树叶路径的一部分
 - 。构造一一映射:根到树叶的路径与字母
 - 如果在树T中令向左的边为0,向右的边为1,那么这些路径又与二进制 串构成了一一映射

Huffman树(4)

◈ 例(续)

- □ 英文字符串adacatedecade
- 。例如令d, a, e, c, t分别对应左图的v₃, v₅, v₆, v₇v₃ 则d←00, a ←010, e ←011, c ←10, t ←11 d
- 。该英文字符串对应 010000101001011000111001000011
- 如果字母与树叶的对应情况如下图,即a←00, t←010, c←011, e ←10, d←11
- 。则对应字符串是00110001100010101110011001110 a
- 。这两种情况下字符串的总长分别是33和29
- □ 如何构造总长最短的二叉树?
- 。字母a, d, e, c, t分别出现4, 3, 3, 2, 1次

树的结构?字母的位置? 重要性相同的节点位置相同

Huffman树(6)

- ◈ 例3. 6. 2
 - □ 字母a, d, e, c, t分别出现4, 3, 3, 2, 1次
 - □ 构造权序列为(1, 2, 3, 3, 4)的Huffman树

Huffman树(5)

◆ Huffman树

。Huffman给出了构造n个树叶的最优二叉树算法,由此算法得到的树称为Huffman树

◆ 算法描述如下

- 对n个权值(叶子节点)由小到大进行排序,满足 $w_{i1} \leq w_{i2} \leq w_{i3} \leq \cdots \leq w_{in}$
- 2 计算<mark>虚拟权值 $w_i = w_{i1} + w_{i2}$,作为新增中间结点 v_i 的权, v_i 的左儿子为 v_{i1} ,右儿子为 v_{i2} </mark>
- ュ 在权序列中删除 w_{i1} , w_{i2} , 加入新的虚拟节点 w_{i} , n=n-1。当m=1时结束,否则,转(1)

Huffman树(7)

◆ 复杂度分析

- □ 算法的计算复杂度主要取决于步骤1,而且是n个权值的第一次排序,它一般需进行nlogn次比较
- 。之后每当产生w_i时,只需在新序列中进行插入运算,其复杂度 是logn
- 。总共进行n-2次循环
- □ 因此整个算法的计算复杂度是0(nlogn)

◆ 定理3. 6. 1

。 由Huffman算法得到的二叉树为最优二叉树

Huffman树(8)

- Huffman树和Huffman编码
 - 使用熵编码的无损压缩
- 广泛应用于各种压缩算法中
 - ZIP(无损压缩)
 - MP3, JPEG(有损压缩)
- 例: JPEG文件格式

SOI DH [*]	APP0	 EOI
文件头 定义Huffi	an表 JFIF应用数据块	文件尾

- IP分组压缩,流量压缩仪
- 讨论: 能唯一解码,是否能抗差错?

01000010100101011000111001000011

第三章 树

- 树的有关定义
- 基本关联矩阵及其性质
- 支撑树的计数
- 回路矩阵与割集矩阵
- Huffman树
- 最短树

支撑树不唯一

计数? 最优树??

最短树

◆ 铺设输油管道

已知任两个加油站之间输油 管道的铺设费用,要让每个 站都能供应上油,怎么铺?

◆ 最短树和最长树问题

- 。赋权连通图中,总长最小的支撑树叫最 短树
- 在赋权连通图中,求总长 最小或最大的支撑树

需求驱动!!!

曾学过最短***?

最短路径(树)

最短树(2)

- ◆ 最短树求解基本思路(Kruskal算法)
 - 。不断往边集T中加入全图最短边
 - 如果此时会构成回路,那么它一 定是这个回路中的最长边,删之
 - 。直至最后达到n-1条边为止
 - 。这时T中不包含任何回路, 因此构造出最短树。
- ♦ 最短路径
 - Dijkstra算法:每次加入到根结点最近的新结点
- ◈ 旅行商问题 (便宜算法)
 - 。不断加入距当前初级回路最近结点的启发式算法

"Al"

最短树(3)

◆ Kruska I 算法

```
    T←Φ
    当 | T | < n-1 且 E ≠ Φ 时,</li>
    Begin (迭代)
    e ← E中最短边
    E ← E-e
    若 | T | < n-1, 则G非连通, 否则输出最短树</li>
```

最短树(4)

- ◈ 例3.7.1
 - 执行Kruskal算法的过程
 - $T \leftarrow (v_4, v_3), (v_4, v_5), (v_1, v_2)$
 - 当加入(v₃, v₅)时构成回路,
 因此边(v₃, v₅)不加入T
 - 此后T ←T+ (v₂, v₄)
 - 这时|T|=n-1, T={(v₄, v₃), (v₄, v₅),
 (v₁, v₂), (v₂, v₄)}, 结束

最短树(5)

◆ Kruska I 算法计算复杂度

- 。Kruskal算法的计算复杂性主要取决于步骤4和6
- 。对m条边的权采用堆结构存放,可以保证根结点是当前的最小 权。
 - 堆结构是一种均衡二叉树,它满足对于任何一个父亲结点,其权都 小于其左右儿子的权。
 - 建堆的计算复杂性是0(m)
- □ 步骤4找最短边的计算复杂性是0(logm)
- □ 步骤2-6迭代次数p

◆ 定理3. 7. 2

□ Kruskal算法计算复杂性是0(m+plogm)

最短树(6)

◆ 定理3.7.1

最短树的判定和性质

T=(V, E')是赋权连通图G=(V, E)的最短树, 当且仅当对任意的余树边e∈E-E',满足其边权
 w(e) ≥w(a),其中a为对应回路 C^e(C^e⊆E'+e) 的任意树枝边a∈C^e(a≠e)

◈ 证明

- 必要性: (反证法)
 - 如果存在一条余树边e,
 满足w(e)⟨w(a), a∈C^e
 - 则T⊕ {a, e} 得到新树T'比T更短,与T是最短树矛盾

最短树(8)

◆ Kruska I 算法

- 。不断的往T(非连通子图)中加入当前的最短 边e,直到T中包含n-1条无回路的边
- T是最短边的集合(构造过程不保证连通性)

◆ Prim算法?

- □ 首先初始化集合V'为任选一结点v₀
- 。然后不断在V-V'中选一条距离V'中任意点 (如点v)最近的节点u进入树T(连通子树),并令V'=V'+u, 直至V'=V

最短树(9)

◆ 算法描述(初选v₁):

```
t ← v<sub>1</sub>, T ← Φ , U ← {t} //T为部分建成的连通
子树,
U为T的结点集, t为代表当前T的虚拟结点
while U≠V do // V为原图结点集
begin
```

```
w(t,u) = \min\{w(t,v)\}\
```

找:到T的最近结点u

T
$$\leftarrow$$
 T+e(t, u)

U ← U+u

for $v \in V-U$ do

w(t, v) ← min{w(t, v), w(u, v)}
//更新剩余各结点v到T的最短距离

end Prim算法的计算复杂度是多少?

O(n²)

不是到树根的最短距离!

最短树(10)

◆ 例3. 24(设首选U= {v₁})

```
3. min \{w(v_1, v_i)\} = w(v_1, v_2) = 15, U = \{v_1\} + v_2
```

o 6. w(t,
$$v_3$$
) =w(v_2 , v_3) =30, w(t, v_4) =w(v_2 , v_4) =20, w(t, v_5) =w(v_1 , v_5) =25

- 3. min $\{w(t, v_i)\} = w(v_2, v_4) = 20$, $U = \{v_1, v_2\} + v_4$
- □ 6. w(t, v_3) =w(v_4 , v_3) =10, w(t, v_5) =w(v_4 , v_5) =10
- 3. $\min\{w(t, v_i)\} = w(v_4, v_3) = 10, U = \{v_1, v_2, v_4\} + v_3$
- \circ 6. $w(t, v_5) = w(v_4, v_5) = 10$
- 3. $\min\{w(t, v_i)\} = w(v_4, v_5) = 10, U = \{v_1, v_2, v_4, v_3\} + v_5 = V$
- □结束
- □ 因此最短树T={ (v₁, v₂) , (v₂, v₄) , (v₄, v₃), (v₄, v₅) }

每次加入两个点集间的最短边,而不是便宜算法回路

最短树(11)

- ◆ 定理3.7.3
 - 。设V'是赋权连通图G=(V, E)的结点真子集, e是两端点分跨 在V'和V-V'的最短边,则G中一定存在包含e的最短树T
 - 。证明(构造法,注意最短树不唯一):
- 设 T_0 是G的一棵最短树,若上述e不属于 T_0 ,则 T_0 +e构成唯一回路。该回路一定包含e和至少一条分跨在V 和V-V 的边e'=(u, v), 其中 $u \in V$ ', $v \in V-V$ '
 - 由已知条件w(e) ≤ w(e'), 作T₀⊕ {e, e'}, 得到的仍然是最短树
 - 因此G中存在包含e的最短树T

最短树(12)

- ◆ 定理3.7.4
 - 。Pr im算法的结果是赋权连通图G的一棵最短树

◈ 证明:

- 。首先证明是一棵支撑树(n-1条边和n个节点)
 - 采用归纳法, 初始U={v₁}, T= Φ, 它是由U导出的树
 - 设|U|=i, T是U导出的树
 - •则下一次迭代时, U中增加一新结点u, T中也加入一条与u 相连的边
 - 因此T连通,有|U|-1条边,它是由U导出的一棵树
 - 因此最终T是G的支撑树

最短树(13)

- ◆ 证(续)
 - □再证明Prim算法产生的树T是一棵最短树
 - 设T。是G的一棵最短树
 - ●若T≠T₀,将T₀变换为Prim算法产生的T
 - 对任意的e $\in T-T_0$, Prim算法加入的每条边e都是
 - 一条连接两个节点集的最短边
 - 由定理3. 7. 3,对任意的e ∈ T-T₀, 一定能构造最短树T'=T₀⊕(e, e'), 其中e'∈ C°∩T₀
 - •继续对T'如此处理,直至最终T'=T,它仍然是最短树。

最短树(14)

- 最短树算法怎么办?
 - Kruskal算法复杂性0(m+plogm),与迭代次数p和边数m相关
 - Pr im算法复杂性0(n²)仅与节点数相关
 - 两个算法的适用范围?
 - 稀疏图与稠密图的不同选择

除了最短, 还有什么?

• 最长树问题

- 构造新图: 给定大数减边权作为新权值
- Kruskal算法(原为加入当前的最短边):将加入树的边次序按边权构成非增序列
- 最短路径->最长路径: 边数不定, 不适用大数减

最短树(15)

- ◆ Di jkstra算法(最短路径树)
- ◆ 互联网基本传输模式

□ 单播: Unicast

□ 广播: Broadcast

□ 组播: Multicast

□ 任意播: Anycast

◆ 最优组播树(Steiner树)

- □ 不必包含所有节点而必须包含组播组成员的最短树
- 。NPC问题
- 。 启发式算法,满足三角不等式、节点度约束

启发式图搜索

- ◈优先扩展"最佳"节点
- ◆利用知识来引导搜索,达到减少搜索范围,提高搜索效率的目的。
- ◆ 启发信息的强度
 - □强:降低搜索工作量,但可能导致找不到最优解
 - 。弱:一般导致工作量加大,极限情况下变为盲目搜索,但可能可以找到最优解

基本思想

- ◆ 引入启发知识,在保证找到最佳解的情况下,尽可能减少搜索范围,提高搜索效率。
- ◆ 定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有 希望的节点来扩展。

启发式搜索算法A (A算法)

◈评价函数的格式:

$$f(n) = g(n) + h(n)$$

f(n): 评价函数

h(n): 启发函数

一个A算法的例子

定义评价函数:

f(n) = g(n) + h(n)

g(n) 为从初始节点到当前节点的耗散值 h(n) 为当前节点"不在位"的将牌数

h计算举例

h(n) = 4

