OTIMIZAÇÃO DE PORTFÓLIO CONSIDERANDO RASTREAMENTO DE ÍNDICE APRIMORADO

Dennis Lemes, Murilo Poloi

Universidade Federal do Paraná - Programação Não Linear - Ensino Remoto Emergencial 2 de 2020

dennis.lemes@gmail.com, murlo.poloi@gmail.com

1. Introdução

Através da construção de modelos matemáticos financeiros, pode-se considerar situações como minimizar a perda ou maximizar o lucro ao investir em ações escolhidas por alguém que investe no mercado de ações, sendo estas limitadas por risco que está disposto a sofrer, número de ações, entre outros. Dessa forma, percebe-se a importância da otimização, seja ela linear ou não, nessa área visto que um modelo bem feito pode poupar perdas de modo geral.

Afim de obter uma carteira de ações otimizada, o economista Harry Markowitz (1952) propôs um modelo que faz isso, e apesar de ser funcional até certo ponto, o modelo proposto por Markowitz possui alguns problemas como [6]:

- O retorno da carteira possui sensibilidade alta para pequenas alterações nos retornos dos ativos;
- Instabilidade entre o modelo de média-variância e dados de entrada alteram muito o portfólio, causando gastos extras com transações e coisas do tipo;
- Devido a quantidade de valores na matriz de covariância, uma análise subjetiva se torna complicada.

Com novos estudos e mudanças na área de economia, foram criados diferentes métodos ou modificações de métodos já existentes para otimizar carteiras, de modo que se tenha uma estabilidade maior e valores mais condizentes com a realidade do mercado financeiro atual.

Neste projeto, usaremos o Rastreamento de Índice Aprimorado, ou *Enhanced Index Tracking*, com implementação e cálculos em Python, Julia 1.5.2 e modelagem em JuMP, com o uso do solver Ipopt.

2. Fundamentação teórica

2.1. Otimização

Após fazer a modelagem de algum problema real, temos uma função objetivo, a qual queremos maximizar ou minimizar dependendo das circunstâncias e o problema pode também ter restrições. Um problema de otimização comum é dado por:

$$\min_{x} f(x) \text{s.a.} g_{i}(x) \leq 0, \quad i = 1, ..., l h_{i}(x) = 0, \quad j = 1, ..., m$$
 (1)

em que:

- $f \mathbb{R}^n \to \mathbb{R}$ é a função objetivo a ser, nesse caso, minimizada e x é um vetor de tamanho n;
- $g_i(x) \le 0$ são restrições de desigualdade;
- $h_i(x) = 0$ são restrições de igualdade;
- $l, m \ge 0$ são inteiros.

2.2. Modelo de Markowitz

O Modelo de Markowitz consiste em minimizar a covariância. A covariância é usada para relacionar dois dados diferentes, e ela pode ser negativa ou positiva. Se for negativa, isso significa que o retorno de uma ação tende a estar acima de sua média enquanto a outra está abaixo, e vice-versa.

Ele é apresentado da seguinte forma:

$$\min \qquad \qquad w^T Q w \tag{2a}$$

subject to
$$\sum_{i=1}^{n} w_i = 1$$
 (2b)

$$\mu^T w = R \tag{2c}$$

$$w_i \ge 0, i = 1, ..., n$$
 (2d)

Em que:

- Q é uma matriz simétrica que contém os valores de covariância de um ativo em relação a outro;
- w é um vetor que representa o montante disponível para investimento, ou seja, w_i é o valor investido no ativo i;
- $\sum_{i=1}^{n} w_i = 1$ indica que a soma dos pesos das ações deve ser igual a 1;
- μ representa o retorno esperado, sendo μ_i o retorno esperado para o ativo i;
- R é o retorno mínimo esperado do portfólio;
- *n* é o total de ativos no portfólio.

2.2.1. Modelo da Fronteira Eficiente

Têm-se ainda o Modelo da Fronteira Eficiente, que é o Modelo de Markowitz sobre uma parametrização. Ele mostra ao investidor o maior retorno possível dos seus portfólios de acordo com o risco disposto a se enfrentar.

O Modelo da Fronteira Eficiente considera a relação entre risco e retorno, e é dado por:

$$\min \qquad \lambda w^T Q w - (1 - \lambda) \mu^T w \tag{3a}$$

subject to
$$\sum_{i=1}^{n} w_i = 1$$
 (3b)

$$0 \le \lambda \le 1 \tag{3c}$$

$$w_i \ge 0, i = 1, ..., n$$
 (3d)

Veja que, se $\lambda = 0$, considera-se somente o retorno, caso $\lambda = 1$, somente o risco.

Na representação gráfica deste modelo, é possível que o consumidor verifique que portfólio satisfaz suas necessidades mediante ao risco e retorno destes através do princípio da dominância.

Na imagem acima, retirada de [4], o investidor analisa o diferente risco e retorno esperado de três portfólio ao mesmo tempo, ou seja, se desejar menor risco e maior retorno, escolherá o portfólio B e assim por diante.

2.3. Rastreamento de Índice

O Rastreamento de Índice ou *Index Tracking* é uma estratégia usada para acompanhar o índice do mercado, que é um indicador utilizado para apontar o desempenho do mercado de ações e auxiliar na hora de fazer investimentos.

Estratégias de investimento ativas consideram o mercado como não totalmente eficiente, ou seja, nele haverá preços e previsões erradas, que são verificados pelos própios investidores, enquanto estratégias passivas, como o Rastreamento de Índice, tem como objetivo construir um *tracking portfolio* cujos retornos seguem um índice de mercado.

2.4. Erro de Rastreamento

Erro de Rastreamento ou *Tracking error* é a diferença entre o retorno obtido do *tracking portfolio* (Rastreamento de Índice) e do retorno obtido do *benchmark portfolio* (Portfólio de referência do mercado), que por sua vez é o portfólio de referência de mercado.

O ideal é que o *tracking error* seja o menor possível. Veja que, se o *tracking portfolio* e o *benchmark portfolio* forem iguais, então o *tracking error* será igual a zero.

2.5. Rastreamento de Índice Aprimorado

Neste projeto, utilizaremos uma solução analítica para o problema de rastreamento de índice aprimorado, ou *Enhanced Index Tracking*, que é um método de obter retornos acima do índice de referência de modo que o erro de rastreamento é minimizado. O excesso de retorno representa o quanto o *tracking portfolio* supera o índice de referência do mercado.

A solução apresentada por [2] e/ou [3] é:

min
$$w^T Q w - 2\sigma_M^2 w^T \beta + \sigma_M^2 - \phi(w^T r - \mu_m)$$
 (4a)

subject to
$$\sum_{i=1}^{n} w_i = 1 \tag{4b}$$

$$w_i \ge w_i^-, i = 1, ..., n$$
 (4c)

$$w_i \le w_i^+, i = 1, ..., n$$
 (4d)

Em que:

- w é o vetor com o peso dos ativos;
- Q é a matriz de covariância;
- σ_M^2 é a variância do índice de mercado;
- β é calculado como sendo a covariância entre os retornos do referido ativo e índices de cada data, dividido pela variância destes índices;
- $\phi \ge 0$ é um parâmetro de regularização (*trade-off*). Escolhido pelo investidor, quanto menor o seu valor, maior risco relativo e assim por diante;
- *r* é o vetor com retorno dos ativos;
- μ_m é a média geral dos índices.

3. Resultados

Para o exemplo 1, os dados foram retirados do apêndice de [2].

Para os demais exemplos, todas as ações são da Ibovespa, os valores dos betas das ações (β) e os retornos dos ativos foram retirados do [1] Vale ressaltar que o beta das ações fornecidos por são cálculados dentro de um período de cinco anos usando dados mensais, enquanto o retorno dos ativos é cálculado com os dados dos últimos doze meses.

O valor de σ_M é calculado pela soma das variâncias dos valores de fechamento de cada ativo dividido pela quantidade de dados usados vezes a quantidade de ativos vezes cem.

O valor de μ_M é calculado pela média dos valores de fechamento de cada ativo dividido pela quantidade de dados usados vezes a quantidade de ativos vezes cem.

A matriz de covariância foi calculada no Python utilizando os pacotes Pandas e Pandas_DataReader [5].

3.1. Exemplo 1

Tabela 1: Lista de Ativos da S&P 500

Código	Nome da Ação	Descrição de Ação
APA	Apache Corp	Empresa de exploração e produção de petróleo e gás natural
CAT	Caterpillar	Corporação que projeta desenvolve, fabrica e comercializa
CAI	Caterpinal	máquinas
APC	Anadarko Petroleum Corp	Empresa de exploração e produção de petróleo e gás natural
HPQ	Hewlett-Packward	Empresa multinacional de tecnologia da informação
ABT	Abbot Laboratories	Empresa de assistência médica
CHK	Chesapeake Energy	Empresa de exploração e produção de petróleo e gás natural
ALB	Albemarle Corp	Empresa especializada na produção de produtos químicos
AAP	Advance Auto Parts Inc.	Varejista de autopeças e acessórios
KR	Kroger Co	Maior varejista em receita. segunda maior varejista geral e
KN	Kroger Co	décima sétima maior empresa do país
		Empresa global de serviços de corretagem de seguros e
AJG	Arthur J Gallagher & Co	gerenciamento de risco, terceira maior corretora de
		seguros do mundo

Observação: A tabela acima contém apenas ações de empresas estadunidenses, com dados retirados de Maio de 2010 à Julho de 2014.

Tabela 2: Dados de entrada para o exemplo 1

	APA	CAT	APC	HPQ	ABT	СНК	ALB	AAP	KR	AJG
Retorno Médio	-0.00353	0.00480	0.00540	-0.00280	0.00860	-0.00428	0.01053	0.01803	0.01939	0.00977
Beta das Ações	1.578	1.648	1.728	1.615	0.900	1.768	1.885	0.794	0.717	1.020

Assim, com os seguintes parâmetros $\sigma_1=0.00127$ e $\mu_1=0.00978$, comparamos a influência de $\phi_1=0.6882701131824347$, $\phi_2=0.0053$ e $\phi_3=5$ na seguinte tabela:

Tabela 3: Resultados exemplo 1

	APA	CAT	APC	HPQ	ABT	СНК	ALB	AAP	KR	AJG
ϕ_1	0.0	0.0	0.0	0.0	1.0e-6	0.0	1.0e-6	0.328335	0.671662	1.0e-6
ϕ_2	0.080088	9.0e-6	3.0e-6	3.0e-6	0.257239	7.0e-6	3.0e-6	0.130959	0.259598	0.272091
$\overline{\phi_3}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0e-6	0.999996	0.0

3.2. Exemplos 2, 3 e 4

Tabela 4: Lista de ativos da Ibovespa usados [7]

Código	Nome da Ação	Descrição da Ação
ITSA4.SA	ITAUSA	Financeiro e Outros / Intermediários Finan-
113A4.3A	TIAUSA	ceiros / Bancos
CRFB3.SA	CARREFOUR BR	Consumo não Cíclico / Comércio e Distribui-
CRFD3.3A	CARREFOUR DR	ção / Alimentos
BRDT3.SA	PETROBRAS BR	Petróleo. Gás e Biocombustíveis
BBDC3.SA	BRADESCO	Financeiro e Outros / Intermediários Finan-
DDDC3.3A	DIADESCO	ceiros / Bancos
BBAS3.SA	BANCO DO BRASIL	Financeiro e Outros / Intermediários Finan-
DD/133.3/1	DAINCO DO DIVISIL	ceiros / Bancos
CIEL3.SA	CIELO	Financeiro e Outros / Serviços Financeiros
CILLS.5/1	CILLO	Diversos / Serviços Financeiros Diversos
GOLL4.SA	GOL	Bens Industriais / Transporte / Transporte
	GOL	Aéreo
MGLU3.SA	MAGAZ LUIZA	Consumo Cíclico / Comércio
LAME4.SA	LOJAS AMERIC	Consumo Cíclico / Comércio
LREN3.SA	LOJAS RENNER	Consumo Cíclico / Comércio
SANBB11.SA	SANTANDER BR	Financeiro e Outros/ Intermediários Finan-
	SHVII INDER BR	ceiros / Bancos
EMBR3.SA	EMBRAER	Bens Industriais / Material de Transporte
MRFG3.SA	MARFRIG	Consumo não Cíclico / Alimentos Pro-
	WILLIAM INO	cessados / Carnes e Derivados
MRVE3.SA	MRV	Consumo Cíclico / Construção Civil /
		Edificações
RADL3.SA	RAIADROGASIL	Saúde / Comércio e Distribuição

3.2.1. Exemplo 2

Para o exemplo 2 vamos considerar 3 ações: ITSA4.SA, CRFB3.SA e BRDT3.SA.

Figura 1: O gráfico acima mostra as séries temporais dos três índices para o período considerado junto do mercado BVSP.

Figura 2: O gráfico acima mostra os retornos diários para os três índices no período considerado junto do mercado BVSP.

As tabelas com o retorno dos ativos, o beta das ações e a matriz de covariância são:

Tabela 5: Dados de entrada para o exemplo 2

	BRDT3.SA	CRFB3.SA	ITSA4.SA
Retorno Médio	0.0431	0.0633	0.0041
Betas das Ações	0.92	0.43	1.17

Tabela 6: Matriz de Covariância do exemplo 2

	BRDT3.SA	CRFB3.SA	ITSA4.SA
BRDT3.SA	0.223279	0.050646	0.102968
CRFB3.SA	0.050646	0.108627	0.044862
ITSA4.SA	0.102968	0.044862	0.121053

 $\operatorname{Com}\sigma_M=0.0003393265815161344, \mu_M=0.017816086356275304 \text{ e } \phi_1=0.6882701131824347, \\ \phi_2=0.0053 \text{ e } \phi_3=5 \text{ verificamos os resultados na seguinte tabela:}$

Tabela 7: Resultados exemplo 2

	BRDT3.SA	CRFB3.SA	ITSA4.SA
ϕ_1	1e-6	0.594061	0.405938
ϕ_2	0.037063	0.538454	0.424483
ϕ_3	1e-6	0.905219	0.094781

3.2.2. Exemplo 3

Para o exemplo 3 vamos considerar 10 ações: BRDT3.SA, CRFB3.SA, ITSA4.SA, LREN3.SA, BBDC3.SA, BBAS3.SA, CIEL3.SA, GOLL4.SA, MGLU3.SA, LAME4.SA.

Figura 3: O gráfico acima mostra as séries temporais dos dez índices para o período considerado junto do mercado BVSP.

Figura 4: O gráfico acima mostra os retornos diários para os dez índices no período considerado junto do mercado BVSP.

As tabelas com o retorno dos ativos, o beta das ações e a matriz de covariância são:

Tabela 8: Resultados exemplo 3

	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA
Retorno Médio	0.0431	0.0633	0.0041	0.0584	0.0099	0.0103	0.0063	-0.0241	0.0258	0.0317
Betas das Ações	0.92	0.43	1.17	0.96	1.36	1.36	1.09	2.22	0.83	0.84

Tabela 9: Matriz de Covariância do exemplo 3

	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA
BRDT3.SA	0.223274	0.050651	0.102972	0.128344	0.120082	0.146923	0.111919	0.228058	0.126618	0.119423
CRFB3.SA	0.050651	0.108627	0.044869	0.060202	0.058166	0.057372	0.048330	0.098897	0.070295	0.067059
ITSA4.SA	0.102972	0.044869	0.121076	0.102162	0.126835	0.129980	0.091465	0.169910	0.091560	0.088373
LREN3.SA	0.128344	0.060202	0.102162	0.205449	0.127876	0.143027	0.097140	0.224341	0.142861	0.129363
BBDC3.SA	0.120082	0.058166	0.126835	0.127876	0.177950	0.166299	0.098543	0.210882	0.114012	0.110818
BBAS3.SA	0.146923	0.057372	0.129980	0.143027	0.166299	0.216354	0.123415	0.248592	0.144094	0.129073
CIEL3.SA	0.111919	0.048330	0.091465	0.097140	0.098543	0.123415	0.313549	0.198984	0.108612	0.109576
GOLL4.SA	0.228058	0.098897	0.169910	0.224341	0.210882	0.248592	0.198984	0.669325	0.236727	0.210251
MGLU3.SA	0.126618	0.070295	0.091560	0.142861	0.114012	0.144094	0.108612	0.236727	0.298378	0.169989
LAME4.SA	0.119423	0.067059	0.088373	0.129363	0.110818	0.129073	0.109576	0.210251	0.169989	0.209906

 $\operatorname{Com}\sigma_M=0.0013057476956257327, \mu_M=0.22697953501619436 \text{ e}\ \phi_1=0.6882701131824347, \\ \phi_2=0.0053 \text{ e}\ \phi_3=5 \text{ verificamos os resultados na seguinte tabela:}$

Tabela 10: Resultados exemplo 3

	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA
ϕ_1	0.082028	0.650042	0.161291	0.093056	0.0	0.0	0.013584	0.0	0.0	0.0
ϕ_2	0.027651	0.530311	0.397786	1e-6	0.0	0.0	0.043625	0.0	0.0	0.000625
ϕ_3	0.0	0.81321	0.0	0.18679	0.0	0.0	0.0	0.0	0.0	0.0

3.2.3. Exemplo 4

Para o exemplo 4 vamos considerar as 15 ações da Tabela 4.

Figura 5: O gráfico acima mostra as séries temporais dos quinze índices para o período considerado junto do mercado BVSP.

Figura 6: O gráfico acima mostra os retornos diários para os quinze índices no período considerado junto do mercado BVSP.

Temos as seguintes tabelas com o retorno dos ativos, o beta das ações e a matriz de covariância :

Tabela 11: Dados de entrada exemplo 4

	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA
Retorno Médio	0.0431	0.0633	0.0041	0.0584	0.0099	0.0103	0.0063	-0.0241	0.0258	0.0317
Beta das Ações	0.92	0.43	1.17	0.96	1.36	1.36	1.09	2.22	0.83	0.84
	RADL3.SA	SANB11.SA	EMBR3.SA	MRFG3.SA	MRVE3.SA					
Retorno Médio	0.0453	SANB11.SA 0.0160	-0.0111	MRFG3.SA 0.1321	MRVE3.SA 0.0280					

Tabela 12: Matriz de Covariância do exemplo 4

-	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA	RADL3.SA	SANB11.SA	EMBR3.SA	MRFG3.SA	MRVE3.SA
BRDT3.SA	0.223288	0.050652	0.102957	0.128362	0.120065	0.146878	0.111906	0.227998	0.126598	0.119388	0.051751	0.116938	0.111963	0.084496	0.140179
CRFB3.SA	0.050652	0.108610	0.044846	0.060217	0.058135	0.057322	0.048314	0.098807	0.070283	0.067022	0.042916	0.053272	0.048237	0.053975	0.061422
ITSA4.SA	0.102957	0.044846	0.121068	0.102158	0.126818	0.129976	0.091462	0.169875	0.091570	0.088371	0.047177	0.117218	0.100949	0.060702	0.099709
LREN3.SA	0.128362	0.060217	0.102158	0.205463	0.127876	0.143001	0.097134	0.224326	0.142843	0.129343	0.063639	0.114827	0.118427	0.088922	0.137700
BBDC3.SA	0.120065	0.058135	0.126818	0.127876	0.177921	0.166278	0.098534	0.210812	0.114019	0.110803	0.052976	0.144763	0.127518	0.080755	0.120062
BBAS3.SA	0.146878	0.057322	0.129976	0.143001	0.166278	0.216385	0.123419	0.248569	0.144132	0.129098	0.052900	0.151390	0.139234	0.096961	0.143744
CIEL3.SA	0.111906	0.048314	0.091462	0.097134	0.098534	0.123419	0.313549	0.198969	0.108623	0.109580	0.058604	0.092486	0.112651	0.080204	0.108351
GOLL4.SA	0.227998	0.098807	0.169875	0.224326	0.210812	0.248569	0.198969	0.669174	0.236763	0.210236	0.096014	0.204521	0.241052	0.159675	0.257796
MGLU3.SA	0.126598	0.070283	0.091570	0.142843	0.114019	0.144132	0.108623	0.236763	0.298400	0.170018	0.069938	0.104620	0.111852	0.139053	0.138709
LAME4.SA	0.119388	0.067022	0.088371	0.129343	0.110803	0.129098	0.109580	0.210236	0.170018	0.209926	0.071191	0.100983	0.092266	0.112925	0.129654
RADL3.SA	0.051751	0.042916	0.047177	0.063639	0.052976	0.052900	0.058604	0.096014	0.069938	0.071191	0.121865	0.049436	0.049885	0.051211	0.062107
SANB11.SA	0.116938	0.053272	0.117218	0.114827	0.144763	0.151390	0.092486	0.204521	0.104620	0.100983	0.049436	0.166618	0.120087	0.075124	0.115066
EMBR3.SA	0.111963	0.048237	0.100949	0.118427	0.127518	0.139234	0.112651	0.241052	0.111852	0.092266	0.049885	0.120087	0.284394	0.093561	0.123463
MRFG3.SA	0.084496	0.053975	0.060702	0.088922	0.080755	0.096961	0.080204	0.159675	0.139053	0.112925	0.051211	0.075124	0.093561	0.300972	0.097687
MRVE3.SA	0.140179	0.061422	0.099709	0.137700	0.120062	0.143744	0.108351	0.257796	0.138709	0.129654	0.062107	0.115066	0.123463	0.097687	0.269449

 $\operatorname{Com}\sigma_M=0.0011428077267816744, \mu_M=0.21590323649932522 \text{ e}\ \phi_1=0.6882701131824347, \phi_2=0.0053 \text{ e}\ \phi_3=5 \text{ verificamos os resultados na seguinte tabela:}$

Tabela 13: Resultados exemplo 4

	BRDT3.SA	CRFB3.SA	ITSA4.SA	LREN3.SA	BBDC3.SA	BBAS3.SA	CIEL3.SA	GOLL4.SA	MGLU3.SA	LAME4.SA
ϕ_1	0.046	0.441629	0.030478	0.015325	0.0	0.0	0.0	0.0	0.0	0.0
ϕ_2	0.000231	0.364634	0.270489	0.0	0.0	0.0	0.010272	0.0	0.0	0.0
ϕ_3	0.0	0.248637	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RADL3.SA	SANB11.SA	EMBR3.SA	MRFG3.SA	MRVE3.SA					
ϕ_1	0.292899	0.0	0.0	0.173667	0.0					
ϕ_2	0.295113	0.0	0.007958	0.051301	0.0					
ϕ_3	0.0	0.0	0.0	0.751363	0.0					

4. Considerações finais

As carteiras teóricas propostas nos exemplos desse projeto, após serem otimizadas de acordo com o modelo de rastreamento de índice aprimorado apresentaram valores que condizem com a realidade.

Trabalhos futuros:

- Implementação da paridade de risco com esparsidade junto do rastreamento de índice aprimorado;
- Variações de otimização de carteira como VaR, CVaR e o modelo clássico afim de comparar eficácia com o rastreamento de índice aprimorado;
- Estudo sobre investimento na vida real usando esse modelo de otimização de carteira.

Referências

- [1] Finance, Y. Yahoo! Finance, 2020 (accessed December 7, 2020). URL https://finance.yahoo.com/.
- [2] Leite, A. S. B. Otimização de portfólios com estratégias de Rastreamento de Índice Aprimorado e Paridade de Risco com Esparsidade, 2019 (accessed December 1, 2020). URL http://www.cc.faccamp.br/Dissertacoes/AlessandroSoaresBorgesLeite.pdf.
- [3] Paulo, O. E. M. d., W. L. de e Costa, O. L. d. V. Enhanced index tracking optimal portfolio selection. URL https://businessperspectives.org/journals/investment-management-and-financial-innovations/issue-298/an-analysis-of-a-mean-variance-enhanced-index-tracking-problem.
- [4] Unknown. Princípio de dominância entre ativos, 2013 (accessed December 1, 2020). URL https://www.researchgate.net/figure/Figura-2-Principios-de-dominancia-entre-ativos_fig4_285017927.
- [5] Vieira, C. O coeficiente beta como comparar ações com o mercado local. URL https://medium.com/@cesar.vieira/o-coeficiente-beta-como-comparar-a \tilde{A} ğ \tilde{A} --es-com-o-mercado-local.
- [6] Wikipedia. *Modelo de Markowitz*, 2020 (accessed December 1, 2020). URL https://en.wikipedia.org/wiki/Markowitz_mode.
- [7] Wikipedia. Lista de companhias citadas no Ibovespa, 2020 (accessed December 7, 2020). URL https://pt.wikipedia.org/wiki/Lista_de_companhias_citadas_no_Ibovespa.