

planetmath.org

Math for the people, by the people.

first isomorphism theorem

Canonical name FirstIsomorphismTheorem1

Date of creation 2013-03-22 13:50:42 Last modified on 2013-03-22 13:50:42

Owner almann (2526) Last modified by almann (2526)

Numerical id 10

Author almann (2526) Entry type Theorem Classification msc 03C07 Let Σ be a fixed signature, and \mathfrak{A} and \mathfrak{B} structures for Σ . If $f: \mathfrak{A} \to \mathfrak{B}$ is a homomorphism, then there is a unique bimorphism $\phi: \mathfrak{A}/\ker(f) \to \operatorname{im}(f)$ such that for all $a \in \mathfrak{A}$, $\phi(\llbracket a \rrbracket) = f(a)$. Furthermore, if f has the additional property that for each $n \in \mathbb{N}$ and each n-ary relation symbol R of Σ ,

$$R^{\mathfrak{B}}(f(a_1),\ldots,f(a_n)) \Rightarrow \exists a'_i[f(a_i) = f(a'_i) \land R^{\mathfrak{A}}(a'_1,\ldots,a'_n)],$$

then ϕ is an isomorphism.

Proof. Since the homomorphic image of a Σ -structure is also a Σ -structure, we may assume that $\operatorname{im}(f) = \mathfrak{B}$.

Let $\sim = \ker(f)$. Define a bimorphism $\phi \colon \mathfrak{A}/\sim \to \mathfrak{B} : \llbracket a \rrbracket \mapsto f(a)$. To verify that ϕ is well defined, let $a \sim a'$. Then $\phi(\llbracket a \rrbracket) = f(a) = f(a') = \phi(\llbracket a' \rrbracket)$. To show that ϕ is injective, suppose $\phi(\llbracket a \rrbracket) = \phi(\llbracket a' \rrbracket)$. Then f(a) = f(a'), so $a \sim a'$. Hence $\llbracket a \rrbracket = \llbracket a' \rrbracket$. To show that ϕ is a homomorphism, observe that for any constant symbol c of Σ we have $\phi(\llbracket c^{\mathfrak{A}} \rrbracket) = f(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$. For each $n \in \mathbb{N}$ and each n-ary function symbol F of Σ ,

$$\phi(F^{\mathfrak{A}/\sim}([a_1], \dots, [a_n])) = \phi([F^{\mathfrak{A}}(a_1, \dots, a_n)])$$

$$= f(F^{\mathfrak{A}}(a_1, \dots, a_n))$$

$$= F^{\mathfrak{B}}(f(a_1), \dots, f(a_n))$$

$$= F^{\mathfrak{B}}(\phi([a_1], \dots, \phi([a_n])).$$

For each $n \in \mathbb{N}$ and each n-ary relation symbol R of Σ ,

$$R^{\mathfrak{A}/\sim}(\llbracket a_1 \rrbracket, \dots, \llbracket a_n \rrbracket) \Rightarrow R^{\mathfrak{A}}(a_1, \dots, a_n)$$

$$\Rightarrow R^{\mathfrak{B}}(f(a_1), \dots, f(a_n))$$

$$\Rightarrow R^{\mathfrak{B}}(\phi(\llbracket a_1 \rrbracket, \dots, \phi(\llbracket a_n \rrbracket)).$$

Thus ϕ is a bimorphism.

Now suppose f has the additional property mentioned in the statement of the theorem. Then

$$R^{\mathfrak{B}}(\phi(\llbracket a_1 \rrbracket), \dots, \phi(\llbracket a_n \rrbracket)) \Rightarrow R^{\mathfrak{B}}(f(a_1), \dots, f(a_n))$$
$$\Rightarrow \exists a'_i [a_i \sim a'_i \wedge R^{\mathfrak{A}}(a'_1, \dots, a'_n)]$$
$$\Rightarrow R^{\mathfrak{A}/\sim}(\llbracket a_1 \rrbracket, \dots, \llbracket a_n \rrbracket).$$

Thus ϕ is an isomorphism.