1. Problem

Finished follows problems by the algorithm in class

- 1 1D 2-class Gaussian discriminant analysis
- (2) nD 2-class Gaussian discriminant analysis
- 3 nD k-class Gaussian discriminant analysis
- 4 Naive Bayes with Bernoulli features
- 5 Naive Bayes with Binomioal features

2. Proposed Solution

1 1D 2-class Gaussian discriminant analysis Get model parameters using follow equation:

$$u = \frac{1}{m} \sum x^{(i)}$$
$$\sum = \frac{1}{m} (x^{(i)} - u)(x^{(i)} - u)^{T}$$

Discriminant Function:

$$g_i(x) = P(y = i \mid x) = \log(\frac{1}{2\pi}) - \log(\sigma_i) - \frac{1}{2} \frac{(x - u_i)^2}{\sigma_i^2} + \log(p \mid y = i)$$

Confusion Matrix

	P	N
P	TP	FP
N	FN	TN

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$
Accuracy = $\frac{TP + TN}{TP + FP + FN + TN}$

2) nD K-class(2-class)Gaussian discriminant analysis

$$m_{i} = \sum_{i=1}^{m} 1(y^{(j)} = i)$$

$$u_{i} = \frac{1}{m} \sum_{i=1}^{m} 1(y^{(j)} = i)x^{(i)}$$

$$\sum_{i} = \frac{1}{m_{i}} \sum_{i=1}^{m} 1(y^{(j)} = i)(x^{(i)} - u_{i})(x^{(i)} - u_{i})^{T}$$

Discriminant Function:

$$g_i(x) = P(y = i \mid x) = \log(\frac{1}{2\pi}) - \log(\sigma_i) - \frac{1}{2} \frac{(x - u_i)^2}{\sigma_i^2} + \log(p \mid y = i)$$

Precision

	C1	C2	C3	•••	Cn
C1					
C2					
C3					
Cn					

Precision (Ci)=
$$\frac{c_{ii}}{\sum_{ij} c_{ij}}$$

Recall (Ci)=
$$\frac{c_{ii}}{\sum_{j} c_{ij}}$$

F-Measure =
$$2 \frac{precisson \times recall}{precission + recall}$$

3 Naive Bayes

Classification

Find :p(y=j|x)

100	
X1	Y1
X2 X3	
X3	
Xm	
$\begin{array}{c} X_{m+1} \\ X_{m+2} \end{array}$	Y2
X_{m+2}	
X_k	
•••	

Bayes rule

$$p(y = j \mid x) = \frac{p(y = j, x)}{p(x)} = \frac{p(x \mid y = j)p(y = j)}{p(x)} = \frac{p(x \mid y = j)p(y = j)}{\sum p(x \mid y = j)p(y = j)}$$

3. Implementation Detail

For Gaussian Discriminant

1 Read data

Iris <- iris[1:100,4:5]

Iris <- droplevels(Iris)</pre>

- ② using linear Discriminant Analysis get model model <- lda(Species ~ ., data = Iris)
- get prediction
 pred <- predict(model, Iris[,1:2])</pre>

```
yhat=apply(pred$posterior,1,which.max)
4 get confusion matrix
     table(yhat, Iris[,2])
(5) Get precision recall
     pred <- prediction(pred$posterior[,1],y)</pre>
     perf <- performance(pred, "prec", "rec")</pre>
     plot(perf, xlim = c(0,1), ylim = c(0,1))
6 Get F-measure
     fmeasure <- performance(pred, "f")</pre>
     plot(fmeasure)
(7) Get Accuracy
     accuracy <- performance(pred, "acc")</pre>
     plot(accuracy)
(8)
          Cross Validation
For Naive Bayes with Bernoulli feature
(1) Read Data
SPEC <- read.table("F:/SPEC.data",sep=",")# 23 columns
SPEC <- droplevels(SPEC)
② Get Bayes model
model<-naiveBayes(SPEC[,1:22], SPEC[,23])
(3) Get Prediction
yhat = predict(model, SPEC[,-23])
4) Get precision recall
yhat = predict(model, SPEC[,-23],type="raw")
pred <- prediction(yhat[,1],y)</pre>
perf <- performance(pred, "prec", "rec")</pre>
(5) Get f-measure
fmeasure <- performance(pred, "f")
plot(fmeasure)
6 Get accuracy
accuracy <- performance(pred,"acc")</pre>
For Naive Bayes with Binomioal feature
(1) Read Data
Toe <- read.table("F:/TOE.data",sep=",")# 23 columns
Toe <- droplevels(Toe)Get Bayes model
② Get naiveBays model
model<-naiveBayes(Toe[,1:9], Toe[,10])
Get Prediction
yhat = predict(model, Toe[,-10])
4 Get precision recall
yhat = predict(model, Toe[,-10],type="raw")
pred <- prediction(yhat[,1],y)</pre>
perf <- performance(pred, "prec", "rec")</pre>
(5) Get f-measure
```

fmeasure <- performance(pred,"f")
plot(fmeasure)
 Get accuracy
accuracy <- performance(pred,"acc")</pre>

4. Results and discussion

1D 2-Class Gaussian discriminant analysis

Confusion Matrix

yhat	setosa	versicolor
1	50	0
2	0	50

Cross Validation

yhat	setosa	versicolor
1	50	0
2	0	50

Precision, recall

F-measure

Accuracy

n D 2-Class Gaussian discriminant analysis

Confusion matrix

yhat	setosa	versicolor
1	50	0
2	0	50

Cross Validation

yhat	setosa	versicolor
1	50	0
2	0	50

F-measure

Accuracy

n D K-Class Gaussian discriminant analysis

Confusion matrix

yhat	setosa	versicolor	virginica
1	50	0	0
2	0	48	1
3	0	2	49

Cross Validation

yhat	setosa	versicolor	virginica
1	50	0	0
2	0	48	1
3	0	2	49

Precision, Recall

F-measure

accuracy

Naive Bayes with Bernoulli features(2-class)

Confusion matrix:

yhat	one	zero
one	87	1
zero	85	4

Cross Validation

yhat	one	zero
one	70	1

zero 102 14

Precision-recall

F-measure

Accuracy

Naive Bayes with Binomioal features(2-class)

Confusion Matrix

yhat	negative	positive
negative	148	105
positive	184	521

Cross Validation

yhat	negative	positive
negative	142	91
positive	190	535

Precision,recall

F-measure

Accuracy

5. Reference

Elements of Statistical Learning (Second Edition)

http://www-users.cs.york.ac.uk/~jc/teaching/arin/R_practical/

 $\underline{http://stat.ethz.ch/R-manual/R-patched/library/MASS/html/lda.html}$

 $\underline{http://lausanne.isb\text{-}sib.ch/}{\sim} \underline{darlene/gda/tp/tp01.html}$

http://cran.r-project.org/web/packages/cvTools/cvTools.pdf

 $\underline{http://cran.r\text{-}project.org/web/packages/ROCR/ROCR.pdf}$