where $b = a_{22} - \mathbf{a}'_{12} \mathbf{A}_{11}^{-1} \mathbf{a}_{12}$. As another special case of (2.50), we have

$$\begin{pmatrix} \mathbf{A}_{11} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_{22} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}_{11}^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}_{22}^{-1} \end{pmatrix}. \tag{2.52}$$

If a square matrix of the form $\mathbf{B} + \mathbf{c}\mathbf{c}'$ is nonsingular, where \mathbf{c} is a vector and \mathbf{B} is a nonsingular matrix, then

$$(\mathbf{B} + \mathbf{c}\mathbf{c}')^{-1} = \mathbf{B}^{-1} - \frac{\mathbf{B}^{-1}\mathbf{c}\mathbf{c}'\mathbf{B}^{-1}}{1 + \mathbf{c}'\mathbf{B}^{-1}\mathbf{c}}.$$
 (2.53)

In more generality, if A, B, and A + PBQ are nonsingular, then

$$(\mathbf{A} + \mathbf{PBQ})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{PB}(\mathbf{B} + \mathbf{BQA}^{-1}\mathbf{PB})^{-1}\mathbf{BQA}^{-1}.$$
 (2.54)

Both (2.53) and (2.54) can be easily verified (Problems 2.33 and 2.34).

2.6 POSITIVE DEFINITE MATRICES $\stackrel{\circ}{\downarrow} = 1$ $\stackrel{\circ}{\downarrow} =$

$$3y_1^2 + y_2^2 + 2y_3^2 + 4y_1y_2 + 5y_1y_3 - 6y_2y_3 = \mathbf{y}'\mathbf{A}\mathbf{y},$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \qquad \mathbf{A} = \begin{pmatrix} 3 & 4 & 5 \\ 0 & 1 & -6 \\ 0 & 0 & 2 \end{pmatrix}.$$

However, the same quadratic form can also be expressed in terms of the symmetric matrix

$$\frac{1}{2}(\mathbf{A} + \mathbf{A}') = \begin{pmatrix} 3 & 2 & \frac{5}{2} \\ 2 & 1 & -3 \\ \frac{5}{2} & -3 & 2 \end{pmatrix}.$$

In general, any quadratic form y'Ay can be expressed as

$$\mathbf{y}'\mathbf{A}\mathbf{y} = \mathbf{y}'\left(\frac{\mathbf{A} + \mathbf{A}'}{2}\right)\mathbf{y},\tag{2.55}$$

and thus the matrix of a quadratic form can always be chosen to be symmetric (and thereby unique).

The sums of squares (we will encounter in regression (Chapters 6-11) and analysis-of-variance (Chapters 12-15) can be expressed in the form y'Ay, where y is an observation vector. Such quadratic forms remain positive (or at least nonnegative) for all possible values of y. We now consider quadratic forms of this type.

If the symmetric matrix A has the property y'Ay > 0 for all possible y except y = 0, then the quadratic form y'Ay is said to be positive definite, and A is said to be a positive definite matrix. Similarly, if $y'Ay \ge 0$ for all y and there is at least positive of matrices are illustrated in the following example.

UAu=0号 欧西市 u≠p el y オ ながま かり ありまけい

Example 2.6. To illustrate a positive definite matrix, consider

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$

and the associated quadratic form $(y_1, y_2) \begin{pmatrix} 2 & 7 \\ -1 & 9 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = (2y_1 - y_2, -y_1 + 3y_2) \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = 2y_1^2 - y_1 y_2 - y_1 y_2 + 3y_3^2$ $y' Ay = 2y_1^2 - 2y_1 y_2 + 3y_2^2 = 2(y_1 - \frac{1}{2}y_2)^2 + \frac{5}{2}y_2^2,$

which is clearly positive as long as y_1^* and y_2^* are not both zero. To illustrate a positive semidefinite matrix, consider

$$(2y_1 - y_2)^2 + (3y_1 - y_3)^2 + (3y_2 - 2y_3)^2$$

which can be expressed as y'Ay, with

$$\mathbf{A} = \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix}.$$

If $2y_1 = y_2, 3y_1 = y_3$, and $3y_2 = 2y_3$, then $(2y_1 - y_2)^2 + (3y_1 - y_3)^2 + (3y_2 - 2y_3)^2 = 0$. Thus $\mathbf{y}' \mathbf{A} \mathbf{y} = 0$ for any multiple of $\mathbf{y} = (1, 2, 3)'$. Otherwise $\mathbf{y}' \mathbf{A} \mathbf{y} > 0$ (except for $\mathbf{y} = \mathbf{0}$).

In the matrices in Example 2.6, the diagonal elements are positive. For positive definite matrices, this is true in general.

Theorem 2.6a 95 WET YOU CHAP YAY >0.

- (i) If A is positive definite, then all its diagonal elements a_{ii} are positive.
- (ii) If **A** is positive semidefinite, then all $a_{ii} \ge 0$.

PROOF

- (i) Let $\mathbf{y}' = (0, \dots, 0, 1, 0, \dots, 0)$ with a 1 in the *i*th position and 0's elsewhere.
- (ii) Let $\mathbf{y}' = (0, \dots, 0, 1, 0, \dots, 0)$ with a 1 in the *i*th position and 0's elsewhere. Then $\mathbf{y}'\mathbf{A}\mathbf{y} = a_{ii} \geq 0$.

Some additional properties of positive definite and positive semidefinite matrices are given in the following theorems.

Theorem 2.6b. Let P be a nonsingular matrix.

P'P = I

P = I

(i) If A is positive definite the P' > 0.

- (i) If \mathbf{A} is positive definite, then $\mathbf{P}'\mathbf{AP}$ is positive definite.
- (ii) If \bf{A} is positive semidefinite, then $\bf{P'AP}$ is positive semidefinite.

PROOF

Z=Py 라 하면、(Py)'A(Py) = Z'AZ. 発記 zfo のしては対え'Az>0 発生を見る

- (i) To show that y'P'APy > 0 for $y \neq 0$, note that y'(P'AP)y = (Py)'A(Py). Since A is positive definite, (Py)'A(Py) > 0 provided that $Py \neq 0$. By (2.47), $\mathbf{P}\mathbf{y} = \mathbf{0}$ only if $\mathbf{y} = \mathbf{0}$, since $\mathbf{P}^{-1}\mathbf{P}\mathbf{y} = \mathbf{P}^{-1}\mathbf{0} = \mathbf{0}$. Yet $\mathbf{P}^{-1}\mathbf{P}\mathbf{y} = \mathbf{0}$. See problem 2.36.
- (ii) See problem 2.36.

Corollary 1. Let A be a $p \times p$ positive definite matrix and let B be a $k \times p$ matrix of rank $k \le p$. Then **BAB**' is positive definite. Ba rank & KR Z +0 0/123 Kxk ZERK, ZEROM CHETY GZ'(BAB')Z = (BZ'A(B'Z)

Corollary 2. Let A be a $p \times p$ positive definite matrix and let B be a $k \times p$ matrix. If k > p or if rank(**B**) = r, where r < k and r < p, then **BAB**' is positive semidefinite.

क्षेत्रेश्व AT क्य स्थिपम, इ. y'Ay>ozher, A=P'Pडे एक्स म्हल्संहरार स्म,

Theorem 2.6c. A symmetric matrix **A** is positive definite if and only if there exists a nonsingular matrix **P** such that A = P'P.

3

PROOF. We prove the "if" part only. Suppose A = P'P for nonsingular P. Then

A=PP을 만족하는 비통이행정 P가 존재한다면,
$$p'Ay = y'P'Py = (Py)'(Py).$$
 AL 대립함방생이다.
$$y'Ay = y'P'Py = (Py)'(Py).$$

This is a sum of squares [see (2.20)] and is positive unless Py = 0. By (2.47), Py = 0only if $\mathbf{v} = \mathbf{0}$. (Py)'(Py) >0 es 19 +0 2 HPP Py +0

Corollary 1. A positive definite matrix is nonsingular.

A positive definite matrix is nonsingular. 4 LAI > 0. 2 = 0.

One method of factoring a positive definite matrix A into a product P'P as in Theorem 2.6c is provided by the Cholesky decomposition (Seber and Lee 2003, pp. 335-337), by which A can be factored uniquely into A = T'T, where T is a nonsingular upper triangular matrix.

For any square or rectangular matrix \bf{B} , the matrix $\bf{B}'\bf{B}$ is positive definite or positive semidefinite.

Theorem 2.6d. Let **B** be an $n \times p$ matrix.

- (i) If $rank(\mathbf{B}) = p$, then $\mathbf{B}'\mathbf{B}$ is positive definite.
- (ii) If $rank(\mathbf{B}) < p$, then $\mathbf{B}'\mathbf{B}$ is positive semidefinite.

PROOF

(i) To show that $\mathbf{v}'\mathbf{B}'\mathbf{B}\mathbf{v} > 0$ for $\mathbf{v} \neq \mathbf{0}$, we note that

$$y'B'By = (By)'(By),$$

which is a sum of squares and is thereby positive unless $\mathbf{B}\mathbf{y} = \mathbf{0}$. By (2.37), we can express By in the form

$$\mathbf{B}\mathbf{y}=y_1\mathbf{b}_1+y_2\mathbf{b}_2+\cdots+y_p\mathbf{b}_p$$
. $=$ ਹ ਤੇ ਦੜਿਆਰ
 $y=0$ ਸਥਾਹਵਿਧੇ ਕੈਸ਼ਜ਼ $=$ p ਪਾਸ

This linear combination is not 0 (for any $y \neq 0$) because rank(B) = p, and the columns of **B** are therefore linearly independent [see (2.40)].

(ii) If rank(**B**) $\leq p$, then we can find $y \neq 0$ such that

$$\mathbf{B}\mathbf{y} = y_1\mathbf{b}_1 + y_2\mathbf{b}_2 + \dots + y_p\mathbf{b}_p = \mathbf{0}$$

since the columns of **B** are linearly dependent [see (2.40)]. Hence $\mathbf{y}'\mathbf{B}'\mathbf{B}\mathbf{y} > 0.$

Note that if **B** is a square matrix, the matrix $\mathbf{BB} = \mathbf{B}^2$ is not necessarily positive semidefinite. For example, let

Then
$$\mathbf{B} = \begin{pmatrix} 1 & -2 \\ 1 & -2 \end{pmatrix}.$$

$$\begin{pmatrix} \begin{vmatrix} -2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \begin{vmatrix} -2 \\ 1 & -2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} -2 \\ 1-2 & -2+4 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}.$$

$$\mathbf{B}^{2} = \begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix}, \quad \mathbf{B}'\mathbf{B} = \begin{pmatrix} 2 & -4 \\ -4 & 8 \end{pmatrix}.$$

In this case, \mathbf{B}^2 is not positive semidefinite, but $\mathbf{B}'\mathbf{B}$ is positive semidefinite, since $\mathbf{y}'\mathbf{B}'\mathbf{B}\mathbf{y} = 2(y_1 - 2y_2)^2$. $\geqslant \circ$

Two additional properties of positive definite matrices are given in the following theorems.

Theorem 2.6e. If A is positive definite, then A^{-1} is positive definite.

PROOF. By Theorem 2.6c, $\mathbf{A} = \mathbf{P'P}$, where \mathbf{P} is nonsingular. By Theorems 2.5a and 2.5b, $\mathbf{A}^{-1} = (\mathbf{P'P})^{-1} = \mathbf{P}^{-1}(\mathbf{P'})^{-1} = \mathbf{P}^{-1}(\mathbf{P'})^{-1}$, which is positive definite by Theorem 2.6c.

Theorem 2.6f. If **A** is positive definite and is partitioned in the form

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix},$$

where A_{11} and A_{22} are square/then A_{11} and A_{22} are positive definite.

PROOF. We can write A_{11} , for example, as $A_{11} = (I, O)A \begin{pmatrix} I \\ O \end{pmatrix}$, where I is the same size as A_{11} . Then by Corollary 1 to Theorem 2.6b, A_{11} is positive definite.

2.7 SYSTEMS OF EQUATIONS

The system of n (linear) equations in p unknowns