Сколько элементов порядков 2, 3, 4 и 6 в группе $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$?

Решая уравнение $x^k = 0$ мы получаем все x, степень которых делит k. Для нашего удобства представим данные в удобной табличке:

Степень	\mathbb{Z}_3	\mathbb{Z}_4	\mathbb{Z}_6	$\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$
1	0	0	0	1 шт
2	0	0, 2	0, 3	$11 \times 2 \times 2 - 1 = 3 \text{ mf}$
3	0, 1, 2	0	0, 2, 4	$3 \times 1 \times 3 - 1 = 8 \text{ mt}$
4	0	0, 1, 2, 3	0, 3	$1 \times 4 \times 2 - 1 - 3 = 4 \text{ mT}$
6	0, 1, 2	0, 2	0, 1, 2, 3, 4, 5	$3 \times 2 \times 6 - 1 - 3 - 8 = 24 \text{ m}$

Таким образом, получаем ответ 24.

Задача 2

Сколько подгрупп порядков 3 и 15 в нециклической абелевой групппе порядка 45?

 $45 = 5 \cdot 3 \cdot 3$. Это значит, что существуют только 2, с точностью до изоморфизма группы \mathbb{Z}_{45} и $\mathbb{Z}_3 \times \mathbb{Z}_{15}$. Первая не подходит так как циклическая, остается вторая. По теореме о разложении в сумму примарных циклических групп, данная группа изоморфна $\mathbb{Z}_5 \times \mathbb{Z}_3 \times \mathbb{Z}_3$.

Так как число 3 - простое, то каждый (ненулевой элемент) порядка 3 пораждает группу порядка 3. Однако группы не должны пересекаться, а это значит у них не должно быть общих порождающих элементов. Аналогичо первой задаче, элементов порядка 3 у нас $1 \times 3 \times 3 - 1 = 8$. Так как в любой подгруппе порядка 3 есть ровно 2 элемента порядка 3, то итоговый ответ: 8/2 = 4.

Любая группа порядка 15 изоморфна произведению групп порядка 3 и 5. В группе \mathbb{Z}_5 ровно 4 элемента порядка 5, в группах \mathbb{Z}_3 ровно по одному. Аналогично предыдущим высказываниям, различных элементов в группе получаем $(5 \times 1 \times 1 - 1)/4 = 1$. В итоге, имеем количество различных групп порядка 10: $1 \times 4 = 4$.

Задача 3

Найдите в группе $\mathbb{G} = \mathbb{Z} \times \mathbb{Z}$ подгруппу H, для которой $G \setminus H \simeq \mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$.

$$\mathbb{Z}_{mn} = \mathbb{Z}_m \times \mathbb{Z}_n \simeq (n, m) = 1$$

Отсюда получаем: $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} = (\mathbb{Z}_2 \times \mathbb{Z}_5) \times (\mathbb{Z}_3 \times \mathbb{Z}_4) \times (\mathbb{Z}_3 \times \mathbb{Z}_5) \simeq (\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5) \times (\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5) \equiv \mathbb{Z}_{30} \times \mathbb{Z}_{60}$.

$$H = H_1 \times H_2$$
.

Из курса лекций знаем, что если $G = (\mathbb{Z}, +)$ и $H = n\mathbb{Z}$, то $G \setminus H = (\mathbb{Z}_n, +)$.

Возьмем $H_1 = 30\mathbb{Z}, H_2 = 60\mathbb{Z}$. При этом H_1 и H_2 нормальны в $\mathbb{Z}, \mathbb{Z} \setminus H_1 \simeq \mathbb{Z}_{30}, \mathbb{Z} \setminus H_1 \simeq \mathbb{Z}_{60}$. Собирая все фрагменты получаем:

$$(\mathbb{Z} \times \mathbb{Z}) \setminus H \simeq \mathbb{Z} \setminus H_1 \times \mathbb{Z} \setminus H_2 \simeq \mathbb{Z}_{30} \times \mathbb{Z}_{60} \simeq \mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$$

Задача 4

Пусть порядок конечной абелевой группы A делится на m. Докажите, что в A есть подгруппа порядка m.

Доказательство будет основано на индукции. База. Если G - циклическая группа порядка N, и f ее образующая, то циклическая группа порожденная элементом $f^{\frac{N}{n}},$ имеет порядок n для любого делителя n числа N.

Пусть G не является цикилической. Это значит, что она изоморфна прямому произведению абелевых групп меньших размеров: $G\simeq G_1\times G_2$, где $|G_1|=N_1,\ |G_2|=N_2$. При этом $|G|=N_1\times N_2$ Тогда найдутся такие числа $n_1|N_1,\ n_2|N_2,$ что $n=n_1n_2$. Тогда по индукционному предположению существуют группы $H_1\leq G_1,\ H_2\leq G_2,$ такие что $|H_1|=n_1,\ |H_2|=n_2$. Получаем $H_1\times H_2\leq G,\ |H_1\times H_2|=n_1\times n_2=n,$ что и требовалось доказать.