

Claims:

- 1 1. A method of optically converting a digital signal to an analog signal, by
2 employing a conversion module, comprising the steps of:
 - 3 receiving a predetermined optical signal;
 - 4 splitting the received optical signal into a plurality of mutually coherent
5 optical beams;
 - 6 supplying said plurality of optical beams on a one-to-one basis to a
7 corresponding plurality of optical phase shifters;
 - 8 supplying bits of a digital data sequence to said plurality of optical phase
9 shifters for controlling the phase shift of the optical beams supplied to the individual
10 ones of said plurality of phase shifters;
 - 11 supplying said phase shifted optical beams to a combiner for recombining
12 mutually coherent phase shifted optical beams; and
 - 13 said combined mutually coherent phase shifted optical beams representing an
14 optically converted digital-to-analog optical signal.
- 1 2. The method as defined in claim 1 wherein said plurality of optical phase
2 shifters includes at least two (2) optical phase shifters.
- 1 3. The method as defined in claim 1 wherein said plurality of optical phase
2 shifters includes at least four (4) optical phase shifters.
- 1 4. The method as defined in claim 1 wherein said plurality of optical phase
2 shifters includes at least eight (8) optical phase shifters.
- 1 5. The method as defined in claim 2 further including a step of generating a
2 laser optical signal.
- 1 6. The method as defined in claim 5 wherein said step of generating said laser
2 optical signal includes generating a continuous wave optical signal.
- 1 7. The method as defined in claim 5 wherein said step of generating said laser
2 optical signal includes generating a pulsed optical signal.
- 1 8. The method as defined in claim 6 further including a photodiode for
2 detecting said recombined optical signal representing said optically converted digital-
3 to-analog optical signal.
- 1 9. The method as defined in claims 8 wherein in response to said recombined
2 mutually coherent optical signals said photodiode develops current i_{PD} as follows:

$$3 \quad i_{PD} = RP_m \left| \sum_i \exp \left(j\pi \frac{V_i}{V_\pi} \right) \right|^2,$$

4 where i_{PD} is the photodiode current, R is the responsivity of the photodiode, P_{in} is he
 5 launched optical power, V_i is the control voltage for the i -th optical phase shift
 6 modulator developed in response to said bits of said digital data sequence and V_π is
 7 the switching voltage for an optical phase shift modulator.

1 10. The method as defined in claim 9 further including configuring each of
 2 said control voltages V_i so that each has two voltage levels, $V_{i,low}$ and $V_{i,hi}$, thereby
 3 generating 2^i output current i_{PD} levels.

1 11. The method as defined in claim 10 further including switching said
 2 control voltage levels at a predetermined rate for generating an arbitrary waveform at
 3 an output of said photodiode.

1 12. The method as defined in claim 7 further including controlling said pulsed
 2 laser optical signal to have the same repetition rate as bits being supplied from a
 3 memory unit to control the phase shift of each of said optical phase shifters.

1 13. The method as defined in claim 12 further including a photodiode for
 2 detecting said recombined optical signal representing said optically converted digital-
 3 to-analog optical signal, and wherein in response to said recombined mutually
 4 coherent optical signals said photodiode develops current i_{PD} as follows:

$$5 \quad i_{PD} = RP_m \left| \sum_i \exp \left(j\pi \frac{V_i}{V_\pi} \right) \right|^2,$$

6 where i_{PD} is the photodiode current, R is the responsivity of the photodiode, P_{in} is he
 7 launched optical power, V_i is the control voltage for the i -th optical phase shift
 8 modulator developed in response to said bits of said digital data sequence and V_π is
 9 the switching voltage for an optical phase shift modulator.

1 14. The method as defined in claim 13 further including configuring each of
 2 said control voltages V_i so that each has two voltage levels, $V_{i,low}$ and $V_{i,hi}$, thereby
 3 generating 2^i output current i_{PD} levels.

1 15. The method as defined in claim 14 further including switching said
 2 control voltage levels at a predetermined rate for generating an arbitrary waveform at
 3 an output of said photodiode.

1 16. The method as defined in claim 6 further including cascading a plurality
 2 of said conversion modules each including a predetermined plurality of optical phase
 3 shifters for generating said converted digital-to-analog optical signal.

1 17. The method as defined in claim 16 further including a photodiode for
 2 detecting said optically converted digital-to-analog optical signal.

1 18. The method as defined in claims 17 wherein in response to said
 2 recombined mutually coherent optical signals said photodiode develops current i_{PD}
 3 as follows:

$$4 \quad i_{PD} = RP_m \prod_j \left| \sum_i \exp\left(j\pi \frac{V_{i,j}}{V_\pi}\right) \right|^2,$$

5 where j is the running index for the j -th stage, i_{PD} is the photodiode current, R is the
 6 responsivity of the photodiode, P_m is the launched optical power, V_{ij} is the control
 7 voltage for the i -th optical phase shift modulator in the j -th stage developed in
 8 response to said bits of said digital data sequence and V_π is the switching voltage for
 9 an optical phase shift modulator.

1 19. The method as defined in claim 18 further including configuring each of
 2 said control voltages V_{ij} so that each has two voltage levels, $V_{ij,low}$ and $V_{ij,hi}$, thereby
 3 generating 2^j output current i_{PD} levels.

1 20. The method as defined in claim 19 further including switching said
 2 control voltage levels at a predetermined rate for generating an arbitrary waveform at
 3 an output of said photodiode.

1 15. The method as defined in claim 14 further including switching said
 2 control voltage levels at a predetermined rate for generating an arbitrary waveform at
 3 an output of said photodiode.

1 16. The method as defined in claim 6 further including cascading a plurality
 2 of said conversion modules each including a predetermined plurality of optical phase
 3 shifters for generating said converted digital-to-analog optical signal.

1 17. The method as defined in claim 16 further including a photodiode for
 2 detecting said optically converted digital-to-analog optical signal.

1 18. The method as defined in claims 17 wherein in response to said
 2 recombined mutually coherent optical signals said photodiode develops current i_{PD}
 3 as follows:

$$4 \quad i_{PD} = RP_m \prod_j \left| \sum_i \exp\left(j\pi \frac{V_{i,j}}{V_\pi}\right) \right|^2,$$

5 where j is the running index for the j -th stage, i_{PD} is the photodiode current, R is the
 6 responsivity of the photodiode, P_m is the launched optical power, V_{ij} is the control
 7 voltage for the i -th optical phase shift modulator in the j -th stage developed in
 8 response to said bits of said digital data sequence and V_π is the switching voltage for
 9 an optical phase shift modulator.

1 19. The method as defined in claim 18 further including configuring each of
 2 said control voltages V_{ij} so that each has two voltage levels, $V_{ij,low}$ and $V_{ij,hi}$, thereby
 3 generating 2^j output current i_{PD} levels.

1 20. The method as defined in claim 19 further including switching said
 2 control voltage levels at a predetermined rate for generating an arbitrary waveform at
 3 an output of said photodiode.