Main Page - Back

AIC with Groups

From sudokuwiki.com, the puzzle solver's site

2			
	3	6	
5		7	ļ

Grouped nodes were discussed on the Grouped X-Cycles page and it is very relevant to Alternating Inference Chains. Luckily, there's nothing too scary about them although they maybe harder to spot

The example on the right shows a classic and relatively simple deduction based on a loop that is predominantly candidate 7. But the two bi-value cells H2 and B7 containing 2/7 allow us to form strong links that change the number we're tracing from 2 to 7 and then back from 7 to 2. We end up with two weak links pointing to H7, where the 2 can be removed, thanks to Nice Loop Rule 3. Our grouped node on B2/C3 acts just as a normal cell. The solver gives us:

AIC Rule 1, 2 taken off H7 - chain ends: B7 H2 AIC on 2 (Grouped Alternating Inference Chain, length 6): 2[B7]=7[B7]-7[B3]=7[B2|C2]-7[H2]=2[H2]-

(Note: Solver strategies 29 and 30 needed to unticked for this result to appear)

1	2	3	4	5	6	7.	8	9
A 2	3	1	7	6	8	5	4	9
B 6	4 78	4(7)2	45 9	2 4 9	4 5	7	23 78	1
c 9	4 7/8	5	4	4	1 3	6	23 78	3 8
1	4 5 7 8 9	4 7 8	2 4 5	3	4 5 7	2 4 7 9	2 5 789	6
E 5	4 5 6 7 8	2	456	4 7	9	1	3 5 78	8
F 3	4 5 6 7 9	4 7	1 2 4 5 6	8	1 456 7	2 4 7 9	2 5 7 9	4
G 5	2 5 7	6	8	1 4 7 9	1 4	3	12	2 4
H 8	3	3	1 4 6 9	1 4 7 9	1 4 6 7	1 29	12	5
4	1	9	3	5	2	8	6	7

Let's trace the logic of what's we've done:

- If B7 is 2, then H7 is not 2.
- If B7 is not 2, then B7 is 7, which makes B3 not 7. If B3 is not 7, then one of the cells in B2/C2 must be a 7 (certainly not B2, since we've temporarily placed 7 in B7, but that's by the by). If one of B2/C2 is a 7, then H2 can't be a 7 - which means that it must be a 2 (strong link internal to H2). Hey - we've just found out that H2 is a 2 if B7 is not a 2.

Therefore, H7 is not a 2.

More examples to follow shortly

Add your comments

A confirmation email will be sent to you after submitting.

Your Name Email Address - required for confirmation (it will not be displayed here)

20.02.2010 19:45 1 von 2

Your comment or question	
Remember me	
Add Comment!	

Please keep your comments relevant to this article. **Email addresses are never displayed, but they are required** to confirm your comments.

When you enter your name and email address, you'll be sent a link to confirm your comment. If you want to be remembered, the check box above will store a cookie with your name and email address on your computer.

Line breaks and paragraphs are automatically converted - no need to use or
br> tags.

Article created on 12-April-2008. Views: 6619

This page was last modified on 5-August-2008, at 10:10.

All text is copyright and for personal use only but may be reproduced with the permission of the author.

Copyright Andrew Stuart @ Scanraid Ltd, 2008

2 von 2 20.02.2010 19:45