ActiveRGCN: Finding Valuable Samples for Heterogeneous GNN Training

Xinyu Zhao, Haowei Jiang, Hang Zhang & Nuocheng Pan

Heterogeneous Information Network (HIN)

- Containing various types of nodes and edges (relationships)
- E.g.: Citation network
 - Node type: Papers, authors, conferences, ...
 - Edge type: Author-Paper, Paper-Conference, Paper-paper, ...
- Closer to more real world applications

Credit: picture from Heterogeneous Graph Neural Network

Relational Graph Convolutional Network

- An extension of GCN on HIN
- Compared with GCN
 - Directed Graph v.s. Undirected Graph
 - Aggregate neighbourhood information independently for each edge (considering relationship type and direction)
- Similar to GCN in homogeneous setting, RGCN is a very classic baseline for HIN network embedding.

Credit: picture from Modeling Relational Data with Graph Convolutional Networks

ActiveHNE

- An Active learning framework for HIN.
- Proposed a new heterogeneous network embedding methods.
- Proposed informative scored-based active learning framework together with a multi-armed bandit mechanism to dynamic update weight.

Credit: picture from ActiveHNE: Active Heterogeneous Network Embedding

ActiveHNE Problem

- Experiment setting not fair enough
 - GCN as baseline while it is a homogeneous network
- Possible extension: Have active select working on other networks?
- Use Active Select on RGCN: ActiveRGCN

Active Select Strategy

- To select most representative nodes for learning without going through all
- Given Node **v**, evaluate following 3 rewards:
 - Network Centrality (NC)
 - The representativeness of \mathbf{v} , measure degree
 - Convolutional Information Entropy (CIE)
 - Uncertainty of \mathbf{v} , by weighted sum of neighbor uncertainties
 - Convolutional Information Density (CID)
 - Representativeness of \mathbf{v} in the embedding space based on neighbor nodes
- Weighted sum as a reward function
 - Rewards = NC_reward * NC_weight + CIE_reward * CIE_weight +
 CID_reward * CID_weight

Reward Function Tuning

- An AL strategy inspired from Combinatorial Multi-Arm Bandit (MAB) problem
 - A RL method
 - Given a budget number of iterations
 - What player should do with an Arm, to maximize reward
 - Combinatorial allows to play multiple Arms during one iteration
 - Each arm corresponds to one of our rewards
- Dynamic update of the weights
- An estimation of the importance of a given node
- Select nodes by highest reward function with most change embedding: more new information

Selection Process: Pseudocodes

for *ITER* times:

Select **BATCH** nodes from **Training Set** have top **Rewards**

Add selected nodes to Labeled Set, remove them from Training Set

Create new **Model** (Model on previous ITER is destroyed)*

for **EPOCH** passes:

Train Model on Labeled Set once

Take **Embedding** from **Model**

Update Weights in Rewards from Embedding using MAB

Final Labeled Set have Size= <u>ITER</u> * <u>BATCH</u>

Dataset & Setting

- ActiveHNE setting: epoch 200, iteration 40, batch size 20 for all dataset, save the last epoch result
- Our setting: epoch 50, iteration 40, batch size 80 for Cora, batch size 20 for DBLP and MovieLens, save the best model (lowest validation loss)

Dataset	Entities	Edges	Entity Type	Edge Type	class_n um	training set size
Cora	56,670	244,088	3	3	10	3911
DBLP	37,791	170,803	4	3	4	1014
MovieLe ns	28,491	138,352	4	4	3	918

Experiment Design

- Apply active select to RGCN model, compare performance of ActiveHNE and ActiveRGCN, show the applicability of active select
- 2. Compare ActiveRGCN and RGCN
- 3. Ablation Study

ActiveHNE vs ActiveRGCN

- ActiveRGCN has simpler
 network structure, less
 training time, but similar
 performance to ActiveHNE
- Active select could be apply to other graph neural network, not only depend on DHNE or RGCN

num_iteration

ActiveRGCN vs RGCN

- Tests on **all three** Dataset
- Compare to RGCN,
 ActiveRGCN increase 5%
 accuracy for limited
 budget(less than 400
 nodes), no significant
 difference in larger training
 set

ActiveRGCN vs RGCN

- Active Learning Selection Strategy (Multi-armed Bendit mechanism):
 - Rewards[i] = NC_reward * NC_weight +CIE_reward * CIE_weight +
 - CID_reward * CID_weight
- Among three components, which one is most useful for the Selection Strategy?
- We **tested each** component by **removing** the other two
 - Rewards_NC[i] = NC_reward * NC_weight
 - Rewards_CIE[i] = CIE_reward * CIE_weight
 - Rewards_CID[i] = CID_reward * CID_weight

- Tests on Cora Dataset
- All 4 tests used the same batch size and iteration number
- CIE component curve (orange line) has the best accuracy result, even better than the Multi-armed Bendit curve (yellow line)
- Compared to RGCN baseline, every reward is useful in finding valuable samples.

- We did same experiments on DBLP and MovieLens Dataset
- All rewards are useful in finding informative nodes
- CIE curve (orange) has least variance, with relatively best accuracy result in three datasets
- The Multi-armed Bendit setting curve did NOT achieve the best accuracy result in general

- **Conclusion** of the first ablation study:
 - CIE component contributes most to the Active Learning Reward System.
 - Each reward is a necessity in the Reward System
 - Multi-armed Bendit mechanism does NOT assign a good weight to each reward

- This Leads to the second ablation study
 - We want to examine the validity of the Multi-armed Bendit mechanism.

Ablation Study 2: validity of multi-armed bandit

Multi-armed Bendit mechanism updates weight of each reward dynamically:

- Is the weight update valid? Does it improve the performance of the Selection Strategy?
- We tested its weight update by comparing it with the constant same-weight setting:

Ablation Study 2: validity of multi-armed bandit

- Tests on Cora Dataset
- Both two tests used the same batch size and iteration number
- Simple Same-weight setting
 (orange line) has better
 accuracy result than the
 multi-armed bendit setting curve
 (blue line)

Ablation Study 2: validity of multi-armed bandit

- We did same experiments on **DBLP** and **MovieLens** Dataset
- The same-weight setting curve has less variance, with relatively better accuracy result
- The weight assignment logic in the Multi-armed Bendit mechanism needs to be improved

Conclusion of our Project

- Active Select Algorithm is not model specific and can be applied to other GNNs
- Compared to ActiveHNE, ActiveRGCN uses a simple GNN to achieve the same performance
- Under a specific budget, ActiveRGCN has a better performance than the RGCN
- Each reward is useful in finding informative samples
- **CIE component** has the **most contribution** to the Active Select Reward system
- The current Multi-armed Bendit mechanism needs to be improved in weight updates

Future Work

- Wrap up the current Active Learning Algorithm into an API
 - o so that it can be **easily applied** to other GNNs, such as NARS and HAN
- Improve the weight assignment logic in Multi-armed Bendit mechanism
- Utilize the one-step Active Learning Algorithm in GraphPart paper
 - so that we can select all informative nodes at once
 - and speed up our Active Learning process

Q&A

