Práctica Nº 10: Trabajo, Calor, Energía interna, Entalpía

- **4.** a) w = 1550J b) W = 2150 J c) Q = W d) $\Delta U = \Delta H = 0$
- 5. a) W = -92.8kJ; b) W = -60.6kJ; c) $W = -128 kJ = \Delta U = 128 kJ$
- **6.** a) Q = W = -17.3kJ, $\Delta U = \Delta H = 0$ b) Q = 0, W = -22kJ, $\Delta U = 22kJ$, $\Delta H = 36.6kJ$
- 7. a) Q=W=-303.5 kJ; b) Q=W=-1925 kJ
- **8.** ΔU =106.2 kcal; Q=148.8 kcal; W= -42.6 kcal; b) ΔU =106.2 kcal=Q; W=0
- **9.** a) W = R T ln(3) $^{2}/_{3}$ R a T $^{2}/V_{o}$
 - b) $W = 2 V_o P_{ext}$
 - c) $\Delta U = \frac{2}{3} R a T^2/V_0$ en ambos casos; $Q = \Delta U + W$
- 11. a) No, hay una expansión brusca dado que Pgas \neq Pext=0;
 - b) $\Delta U = 0 = W$
 - c) TB = 298.6K, PB = 4.42atm
 - d) $\Delta H_{AB} = 4.1 \text{ l.atm}$
- **12.** a) Q = W = 832.5 cal; b) $\Delta H = 0$
- 13. a) T = 300 K; W= -120 kJ b) W = 0; Δ U = -4.62 kcal; Δ H = 10.1 kcal
- **14.** a) T = 273K; sí.
 - b) Cuando V gas =10 l pasaron 11 g de agua líquida a hielo (tendré 2.011kg de hielo y 1.989 kg de agua);
 - c) la cantidad de agua líquida que pasa a sólida es m=2.4 g