

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

NASA CONTRACTOR REPORT 137803

(NASA-CR-137803) THE COST OF NOISE
REDUCTION FOR DEPARTURE AND ARRIVAL
OPERATIONS OF COMMERCIAL TILT ROTOR AIRCRAFT
(Massachusetts Inst. of Tech.) 118 p
HC A06/MF A01

N 82-29316

Unclassified
CSCL 01C G3/05
30236

THE COST OF NOISE REDUCTION FOR
DEPARTURE AND ARRIVAL OPERATIONS
OF COMMERCIAL TILT ROTOR AIRCRAFT

Henry B. Faulkner
William M. Swan

Flight Transportation Laboratory

CONTRACT NAS2-7620
February 1976

NASA

NASA CONTRACTOR REPORT 137803

THE COST OF NOISE REDUCTION FOR
DEPARTURE AND ARRIVAL OPERATIONS
OF COMMERCIAL TILT ROTOR AIRCRAFT

Henry B. Faulkner
William M. Swan

Flight Transportation Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Prepared for
Ames Research Center
under Contract No. NAS2-7620

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field California 94035

Table of Contents

	Page
1.0 Introduction	1
2.0 Design Procedure	3
2.1 Program Description	3
2.2 Calibration	7
3.0 Noise Evaluation Procedure	9
3.1 Departure Path	9
3.2 Arrival Path	14
3.3 Noise Measure	18
3.4 Noise Prediction Techniques	20
4.0 Study Method and Ground Rules	24
4.1 Variations	24
4.2 Constraints	28
4.3 Constants	28
5.0 Results and Discussion	32
5.1 Overview	32
5.2 The Quiet Designs	37
5.3 Characteristics of the Annoyance	39
6.0 Conclusions	44
References	50
Appendix 1: Computer Output for All Designs	
Appendix 2: Noise Maps for Basic Variation Aircraft	

Acknowledgements

The authors wish to thank Mr. J. Rabbott and Mr. J. McCloud of NASA Ames for their general guidance and technical suggestions. They also wish to thank Mr. M. Scully and Professor N. Ham of the VTOL Technology Laboratory at M.I.T. for their numerous helpful suggestions in regard to the design portion of the computer program.

This work was performed under Contract NAS2-7620 for the NASA Ames Research Center, Moffet Field, California.

1.0 Introduction

The tilt rotor VTOL aircraft configuration is a contender for future intercity public transportation, particularly in densely populated regions. Like other rotary wing aircraft types, the tilt rotor is inherently quiet due to its low disc loading and low flow velocities in and around the propulsion device. However, intercity service would likely involve large vehicles and high frequency of operations at some terminals. Because of the small area of vertiports, aircraft operations would be closer to the surrounding non-user population. Thus the vehicles should be as quiet as possible.

In order to help assess the potential of tilt rotor aircraft as a viable part of an intercity transportation system, the relationship between noise reduction and operational cost increases must be known. There are two methods of reducing the noise exposure due to aircraft operations: changes in flight profile and changes in design. The aircraft trajectory can be moved further from the listeners, the amount of noise generated can be reduced by reducing thrust, or the speed can be increased in order to reduce noise exposure time. This method of noise reduction is explored for VTOL aircraft in References 1 and 2. This method does not generally have a significant impact on direct operating cost (DOC). The second method is to change the design of the aircraft to reduce the noise generated at a given distance, thrust level, and speed. This is the method considered here.

Design changes for noise reduction in a 12,000 lb. gross weight tilt rotor aircraft are discussed in Reference 3 in considerable depth both from the military point of view (to reduce aural detectability) and the commercial point of view (to reduce noise annoyance). It was found that reduction of the rotor tip speed used in the helicopter mode and during conversion is the most

effective means of reducing noise annoyance. Other design changes which were considered include variations in number of blades, blade tip shape, blade planform, blade airfoil section, blade twist, and blade spacing. Dramatic noise reductions could not be accomplished with these changes and they would not result in a dramatic change in DOC. Therefore these types of changes were neglected.

The object of this study was to develop the relationship between direct operating cost and noise annoyance for tilt rotor aircraft. This was accomplished by generating a series of tilt rotor aircraft designs to meet various noise goals at minimum DOC. These vehicles ranged across the spectrum of possible noise levels from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. Optimization parameters were varied to find the minimum DOC. This basic variation was then extended to different aircraft sizes and technology time frames. This study is similar to one conducted previously by the Flight Transportation Laboratory for helicopters (Ref. 4). However, unlike the helicopter work, this study uses a single measure for evaluating total community annoyance due to a flight cycle composed of one departure and one arrival.

2.0 Design Procedure

In this study a large number of tilt rotor aircraft designs were created with the aid of a preliminary design computer program (Ref. 5). The purpose of this preliminary design program is to rapidly obtain parametric variations of the design for a set of particular requirements. The program does not internally optimize the design; this is done by the user. The program takes as input a set of design parameters sufficient to fix the design. It then performs the normal preliminary design calculations to obtain both the other design parameters of interest and various figures of merit. Figures of merit include performance parameters such as speed, payload-range, direct operating cost, and noise annoyance. The noise annoyance portion is the subject of section 3.

2.1 Program Description

A flow chart of the preliminary design computer program is shown in Figure 1. The program begins by reading input data. Various parameters which are independent of gross weight are then calculated: atmospheric properties, fuselage profile drag and constant weights.

Then the program goes into a design procedure which is an iteration on gross weight. Initially a gross weight is estimated from the constant weights; on succeeding iterations a new gross weight is found from those of the preceding two iterations.

Next rotors and wing are sized. The rotor radius is found from the input disc loading. The wing span is based on rotor-fuselage clearance. The wing loading is input and the area and aspect ratio are calculated. The hover thrust coefficient is found, using the input tip speed and corrected for wing download.

Fig. 1 Computer program flow chart

Fig. 1 Computer program flow chart (cont'd)

Then the rotor solidity is found using the input thrust coefficient to solidity ratio (C_T/σ).

The cruise lift to drag ratio is found from the wing and fuselage geometry. Then the cruise propulsive efficiency of the rotors is calculated according to an empirical formula from the cruise forward Mach number, the cruise tip Mach number, and the rotor solidity.

Next the airplane mode best rate of climb speed is calculated. Then the conversion speed and airplane mode wing lift coefficient are calculated, corresponding to the input helicopter mode maximum advance ratio. This lift coefficient and the ratio of the airplane mode best rate of climb speed to the conversion speed are output to evaluate conversion performance.

Then the powerplant is sized to the maximum of the requirements for emergency hover, conversion and cruise. The emergency hover requirement is for one engine out hover on a hot day at an input altitude. The conversion requirement is established by an input conversion power factor (labelled "Excess Factor Hel Mode" in the output) which is the ratio of conversion power desired to normal hover power. Power is corrected for temperature, altitude, forward speed and r.p.m. It is assumed that the engines operate at rated r.p.m. in hover and a penalty is accepted for any reduction in r.p.m. in the airplane mode. This completes the selection of design parameters.

The aircraft is then flown through the design mission to find the fuel consumed. The assumed mission profile consists of ten phases: takeoff, acceleration and conversion to the airplane mode, airplane mode climb, acceleration to cruise speed, cruise, airplane mode descent, deceleration and conversion to helicopter mode, hover, landing, and reserve. The portion which is independent of cruise altitude is done separately, so that it will not be repeated in the stage length variation later. The fuel burn rate is corrected

in each phase for power setting, r.p.m., forward speed and altitude. Optional provision is made for the aircraft to obey the FAA speed limit of 250 kt. IAS below 10,000 feet. If the aircraft has more installed power than that required for cruise at design cruise speed, and if the drive system and rotor limits permit, then the aircraft is allowed to cruise faster, up to these limits. Cruise fuel is calculated according the Breguet method.

Then the component weights are calculated. Both the rotor and drive system weights are taken to be the highest resulting from helicopter mode and airplane mode hover coning angle exceeds 8.5°, weight is added to approximate tip weight and blade weight necessary to reduce coning to this amount. Here it is assumed that the rotor is of the gimbaled type having a first flatwise bending mode frequency of 2 per rev. The wing weight is independent of flap area, but is adjusted for the lift coefficient required in conversion.

Now the component weights and fuel weights are summed, which results in a new gross weight. If the difference between the new and old gross weights is greater than ten pounds, the design procedure goes through another cycle. When the iteration is complete, the parameters describing the final design are printed.

The vehicle is then flown through various input stage lengths which are less than the design range, with appropriate input cruise altitudes. The time, distance and fuel for each stage is calculated and printed. Then the program calculates the direct operating cost (DOC) for each stage length, by category, and prints this out. The DOC is calculated according the Lockheed/New York Airways formula. (Ref. 6)

2.2 Calibration

In order to calibrate the computer program, the program was used to produce approximations of two existing tilt rotor designs. These were the Bell D302

(Ref. 7) of 44,100 lb. gross weight and the Vertol 215 (Ref. 8) of 67,000 lb. gross weight. These designs were picked because they represent the experience of two different firms and they are near the middle of the size range of interest. Both were configured as transport aircraft. However, they were designed to meet military requirements which compromised their effectiveness as commercial aircraft. By making allowances for the military requirements in the inputs to the computer program, good agreement with the original designs was obtained. Both of these designs are intended to represent approximately 1975 technology, and therefore the values of the technology factors which gave the best agreement in the calibration were considered to be 1975 values.

3.0 Noise Evaluation Procedure

3.1 Departure Path

After the direct operating cost portion of the computer program, the departure trajectory to 10,000 feet altitude is calculated in detail. The result is a time history of the distance, altitude, flight path angle, thrust and rotor tilt angle relative to the flight path. This history then is input to the noise annoyance calculation.

The departure path is shown schematically in Figure 2. (This path is intended to be an approximation of the minimum trip time path with the obstacle clearance constraint.) Throughout this path, acceleration is constrained by power available. There are three other constraints for passenger comfort. The acceleration builds up smoothly over a specified time to its allowable input maximum, which is used for all phases of flight. The rate of rotation of the acceleration vector after obstacle clearance is specified. Finally, the maximum fuselage pitch angle is specified.

To determine the departure path prior to the airplane mode climb, the program considers steps in velocity, of input size, and calculates the acceleration magnitude according to the routine shown in Figure 3. The rotor tilt angle is first found from the balance of forces perpendicular to the acceleration vector and the power limited acceleration magnitude is found from the force balance parallel to the acceleration vector. If the power limited acceleration is larger than the allowable acceleration, the force balances are set up again and solved for the thrust and a new tilt angle. The time, distance, altitude, and flight path angle are found from the acceleration and velocity. The forces and angular relationships are shown in Figure 4. The nomenclature is given in Table 1.

Fig. 2 Departure path schematic

Fig. 3 Flow chart for acceleration routine

CHAPTER 4
OF POOR QUALITY

Fig. 4 Forces and angular relationships

Table 1 Conversion Nomenclature

Symbol	Computer Output Label	Description
V	VEL	Freestream Velocity, ft/sec
v_{ind}	not shown	Induced Velocity of Rotors, ft/sec
THRUST	THRUST	Total Rotor Thrust, lb.
HFORCE	Not shown	Total Rotor In-Plane Force, lb.
L_{wgo}	LWGO	Lift of Wing Portion not Influenced by Rotor Flow, lb.
L_{wgi}	LWGI	Lift of Wing Portion Influenced by Rotor Flow, lb.
L_{wg}	LWG	Lift of Wing, lb.
D_{wg0}	DWGO	Drag of Wing Portion not Influenced by Rotor Flow, lb.
D_{wgi}	DWGI	Drag of Wing Portion Influenced by Rotor Flow, lb.
D_{wg}	DWG	Drag of Wing, lb.
D_{nac}	DNAC	Drag of Nacelles, lb.
D_{lg}	DLG	Drag of Landing Gear, lb.
D_{ft}	DFUST	Drag of Fuselage and Tail, lb.
γ	GAM	Flight Path Angle, deg.
α_p	ALP	Angle between Rotor Mast and Freestream Velocity, deg.
θ	THE	Angle between Wing Zero Lift Line and Horizontal, deg.
α_{wgo}	AWO	Angle of Attack of Wing Portion not Influenced by Rotor Flow, deg.
α_v	ALV	Wing Angle of Attack Change Induced by Rotors, deg.

A simple model is used to predict the performance of the rotor and wing through the complete range of rotor tilt angles. Elementary helicopter blade element and momentum theory formulae are used to find the rotor thrust, since the advance and inflow ratios are not large. To predict the wing forces, it is assumed that the flow through the rotor is fully developed when it reaches the wing. Hence the portion of the wing that is influenced by the rotor is that portion which is overlapped by the inner half of the disc area. On this portion of the wing the total slipstream velocity is assumed to be the vector sum of the freestream velocity and the fully developed induced velocity of the rotor. The optimum flap deflection cannot be conveniently found, so it is assumed to be equal to the flight path angle. The aircraft is assumed to be pitched up to the input maximum, or until the angle of attack of the rotor-influenced portion of the wing is 3° less than stall, whichever is less, until the aircraft reaches the speed where the wing lift is equal to the gross weight.

Conventional fixed wing methods are used to calculate performance at the beginning of the airplane mode climb and at 10,000 feet altitude.

3.2 Arrival Trajectory

The arrival trajectory is calculated in a manner analogous to the departure trajectory. Again the result is a table of time, distance, altitude, flight path angle, and rotor tilt angle relative to the flight path. The noise annoyance calculation is then repeated using this data. Finally, the annoyance for one departure operation and the annoyance for one arrival operation are added to give total annoyance.

The arrival path is shown schematically in Figure 5. This path is intended to be representative of realistic tilt rotor approach paths under instrument flight rules, assuming no fail-safe guidance or stability augmentation devices

FIGURE 5: ARRIVAL PATH SCHEMATIC

are available. This path is not simply a reversal of the departure path for several reasons. Some deceleration is required in the airplane mode prior to conversion because the airplane mode descent speed is higher than the airplane mode climb speed.

Deceleration to 200 knots must occur at or above 3,000 feet in order to comply with FAA speed restrictions within five miles of airports having control towers. It is desirable to continue in the airplane mode as long as possible to minimize trip time. Also, the maximum deceleration during the deceleration and conversion phase is too slow if the aircraft is permitted to descend at the same time. Hence, the deceleration and conversion is at 1,500 feet. The final helicopter mode approach phase must be at constant speed and at a shallow angle to prevent the rotors entering the vortex ring state, to avoid excessive pilot workload, and to allow a reasonable missed approach procedure.

In the straight line deceleration phases, the deceleration is always along the flight path and may not exceed the input maximum. The deceleration is smoothed as is done for the departure trajectory.

The trajectory for the airplane mode phases is calculated using conventional fixed wing methods. The airplane mode deceleration phase is divided into an input number of steps in velocity. The deceleration at each velocity is found using a routine shown in Figure 6. The descent and deceleration phases are joined by circular arc path segments.

The remaining phases of the arrival trajectory are handled in a way very closely analogous to that of the departure trajectory. The deceleration phases are each divided into an input number of steps and the descent phases are represented by points at each end. The first point in the deceleration and conversion phase is calculated using the airplane mode deceleration routine.

At all remaining points the conversion and helicopter mode deceleration

~~Calculation
OF PULLBACK~~

17

FIGURE 6: FLOW CHART FOR AIRPLANE MODE DECELERATION

routine shown in Figure 7 is applied, whether or not there is deceleration. The pitch altitude is kept constant at the value required to keep wing lift equal to weight at the first point of the phase throughout the deceleration and conversion phase. During the circular arc that follows the aircraft is pitched down to obtain the input maximum downward fuselage angle, and this altitude is held through to hover. During the final vertical descent the aircraft is rotated to 3° nose up for landing. The minimum practical power during conversion and helicopter mode phases is assumed to be 20 percent of the induced power in hover, following Reference 2. Flap deflection is scheduled according to dynamic pressure, being 0° at 250 knots indicated airspeed and 90° at 0 knots.

3.3 Noise Measure

The noise measure used in this work is essentially the same as employed in a previous study on this topic (Ref. 16). Predicted noise output (Sound Pressure Level) is referenced to points on the ground allowing for absorption and attenuation. Time and octave band distributions are combined to form loudness. EPNdb is the best generally accepted measure for comparing noise of different types. EPNdb is converted by the following formula to annoyance:

$$\text{annoyance} = 10^{(\text{EPNdb} - \text{background})/33.2}$$

The annoyance over a surrounding population is summed for both departure and landing to calculate the total noise impact.

This annoyance measure is based on the following principles:

- 1) a noise 10 db louder is twice as annoying
- 2) a noise quieter than the background level produces no annoyance

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 7: FLOW CHART FOR CONVERSION AND HELICOPTER
MODE DECELERATION ROUTINE

- 3) the total annoyance resulting from two people listening to a noise is twice the annoyance of one person listening to the same noise.

Figure 8 shows the small airport and the buffer zone included in the analysis. Otherwise a constant population distribution is assumed. If nine out of ten vertiport sites had an approach free from residential population then different ground population assumptions would be appropriate. Different vehicle designs would result.

3.4 Noise Prediction Techniques

3.4.1 Tactical Approach

A detailed calculation of the noise at 300 different time intervals for 9 octave bands at 1300 ground reference points did not appear practical. Instead, interpolation was used between detailed calculations which covered variations in distance, viewing angle, closing speed, and thrust. Interpolation was not linear, but rather associated with functional shapes appropriate to the phenomena. Accuracy within one or two decibels was generally attained, with greater errors occurring only in extreme cases for the noisiest vehicle.

3.4.2 Noise Prediction Formula

Vortex noise was predicted in the same manner as in the previous work (Ref. 16). The sound pressure level formula was derived from Schlegel et al. (Ref. 10):

$$L_p = 10 \log \frac{7.62 \times 10^{-2} T^2 (v_{tip})^2}{\rho^2 A_b} \quad \text{at 300 feet.}$$

ORIGINAL PAGE IS
OF POOR QUALITY.

Fig. 8 Land use plan

Peak frequency was calculated by:

$$f_{\text{peak}} = V_{\text{tip}}/c$$

Directionality was calculated by the formula:

$$\text{DIR} = 10 \log_{10} \frac{\cos^2 \phi + 0.1}{0.21}$$

Rotational noise was found to be significant for the lower octaves in all designs. The prediction method was developed entirely from the work of Ollerhead and Lowson (Ref. 9). The appendix to Reference 9 provides a graphical method for predicting the sound at several harmonics of the blade passing frequency. The sound pressure level is

$$\text{SPL} = I_n + 10 \log_{10} \frac{T\sigma}{R^2}$$

where I_n is a value obtained from Figure 29 of Reference 9 using the appropriate viewing angle and effective blade Mach number.

Following the lead of Ollerhead and Lowson in Reference 9, no change in the fall off of SPL with harmonic number was made for changes in advance ratio. Although there is little knowledge of the exact nature of the decrease of rotational noise with greater advance ratios, it is generally assumed that this phenomenon exists. Although Schmit, Stepniewski, et al. (Ref. 2) have presented one correction on the basis of the available evidence, it was not employed in the current work. First, the correction is small for the range of operations in this work. Second, the correction is smallest for the lower harmonics of blade loadings. In the tilt rotor designs studied, vortex noise dominates the higher harmonics, so errors in rotational noise in these frequencies are unimportant.

3.4.3 Minimum Noise Levels

It appears from work by Widnall (Ref. 11) and also by Leverton (Ref. 18)

as well as unpublished experimental data at M.I.T., that below thrust levels in the neighborhood of 70% of design thrust, noise levels do not decrease with thrust. Widnall bases this cutoff on blade C_L. Noise levels experienced in this condition are a combination of vortex and rotational noise. No information as to the relative importance of the two is available. The conditions at the cutoff thrust level were used for all lesser thrust level in this study.

Vortex noise at zero thrust would seem to come from drag, and rotational noise from higher order loadings, which are not zero even when the mean thrust is zero.

The formula suggested by Reference 11 for the minimum thrust is:

$$T_{\min} = 1.5 \times A_b (V_{tip}/100)^2$$

3.4.4 Blade Slap

When blade slap exists, it is the dominant noise pattern for existing helicopters. Unfortunately, while crude prediction methods exist for vortex and the lower levels of rotational noise, there are no good estimates of levels of noise from blade slap.

The noisiest design studied here most probably experiences blade slap in descent. The quieter designs may well avoid it due to drastically reduced tip speeds. In any case blade slap is so loud and so annoying that it is unlikely that any commercial tilt rotor vehicle will operate which produces this phenomenon. The ground rules for the study eliminated blade slap from consideration, and no attempt to predict the noise from blade slap was made.

4.0 Study Method and Ground Rules

4.1 Variations

The basic variation consisted of five aircraft designs of 1980 time frame having 50 seats. These vehicles ranged across the spectrum of possible noise levels, from completely unconstrained to the quietest vehicle that could be designed within the study ground rules. The aircraft designs generated in this study are designated by codes consisting of a letter mnemonic indicating the noise class, a number indicating the time frame and a number indicating the size in terms of passenger seats. The noise goals that were used for design optimization were in terms of total annoyance calculated by the computer program. The goals are arranged so that adjacent designs differ in annoyance by about a factor of five. The basic variation aircraft and their noise goals are shown in Table 3. The parameters that were varied to find the minimum DOC aircraft for each noise goal are shown in Table 4, along with the approximate range over which they were varied. The final optimal values of these parameters are given in Table 10, section 5.

In size the basic variation was repeated for sizes of 20, 80 and 110 seats. The gross weight did not converge for S-80-110, as discussed in Section 5, so it is not included here. In time the basic variation was repeated for time frames of 1975 and 1985. In this study, the time frame is intended to be the year of initial prototype flight testing, with airline service following two to five years later. The values of the parameters which were changed to produce the size and time frame variations are given in Tables 5 and 6, respectively. The 1975 values of the parameters used in the time frame variation are based on the calibration of the computer program as discussed in Section 2. The 1980 and 1985 values were derived extrapolating historical trends and knowledge of projected technological developments. The optimality

Table 3 Basic Variation Noise Ranges

Designation	Mnemonic	Approximate Noise Range Arbitrary Units
C-80-50	Conventional	Unconstrained
M-80-50	Modern	9
Q-80-50	Quiet	3
D-80-50	Double Quiet	1.5
S-80-50	Silent	Minimum

Table 4 Design Optimization Parameters

Parameter	Units	Range
Cruise Speed	mph	260-425
Disc Loading	lbs/ft^2	5.5-14
Helicopter Mode Tip Speed	ft/sec	350-850
Airplane Mode Tip Speed	ft/sec	350-600
Wing Loading	lbs/ft^2	50-100
Conversion Power Factor*		1.20-1.70

* Ratio of power desired in conversion to that required in a normal hover.

26 ORIGIN OF
OF POOR QUALITY

Table 5 Design Parameters Varied with Size

Parameter	20	50	30	110
Cabin Crew	0	1	2	3
Fuselage Length, ft.	55	80	95	110
Fuselage Diameter, ft.	8.5	10	11.5	13

Table 6 Design Parameters Varied with Time Frame

Parameter	1975	1980	1985
Rotor Hover Efficiency	0.83	0.85	0.87
Rotor Conversion Efficiency	0.81	0.83	0.85
Specific Fuel Consumption, lb/hp. hr.	0.42	0.40	0.38
Airframe Weight Technology Factor	0.80	0.78	0.76
Rotor Weight Technology Factor	1.05	1.00	.95
Drive System Weight Technology Factor	0.85	0.83	0.81
Engine Power/Weight, hp/lb	7.0	8.5	10.0

of the values of the optimization parameters found in the basic variation was checked by varying each of these parameters singly for extreme points of the size and time frame variations, namely C-75-20, C-80-110, S-80-60, C-75-50, and S-85-50, S-75-50, and S-85-50. No significant improvements could be found so these parameters were kept constant for each noise class throughout the size and time frame variations.

In all the previous variations the departure obstacle clearance path was kept fixed at 60° to 100 feet. In order to assess how this choice of path might affect the results, the departure obstacle clearance path was varied. Eight other departure paths were considered with obstacle heights of 50, 100 and 200 feet and obstacle clearance angles of 30°, 60° and 90°. It was found that the basic variation aircraft did not have sufficient power in the conversion phase to execute the departure paths having greater obstacle heights or steeper obstacle clearance angles. The reason for this is the assumption in the departure path calculation that the vertical speed built up in the obstacle clearance phase is maintained through the acceleration and conversion phase. The higher paths require that conversion be executed while maintaining a greater vertical speed requiring extra power which the basic variation aircraft do not have. Therefore the path variation was accomplished using a more powerful aircraft, QP-80-50. This design is similar to Q-80-50 but the conversion power factor has been increased from 1.40 to 2.00.

Finally a hovering case was run to develop a standard level of total annoyance. A vehicle was found which generated 95.0 PNdB at 500 ft. distance while hovering at 100 ft. altitude. This is approximately the noise level of the Vertol 347 helicopter. Then this vehicle was hovered over the center of the vertiport for one minute at 100 ft. altitude to obtain a standard level of total annoyance. All gross levels of annoyance produced by other vehicles were divided by this value to obtain relative annoyance, which is used for all plots.

4.2 Constraints

Several constraints, which are external to the computer program, were obeyed during the variations described above. A rotor solidity of 0.25 was considered the arbitrary maximum.. The wing aspect ratio was kept below 8.0 to avoid aeroelastic problems. The wing loading was kept above 50 to permit reasonable ride quality. Finally the conversion speed was not permitted to be less than two thirds of the airplane mode best rate-of-climb speed, in order to have an adequate conversion corridor.

4.3 Constants

The values of significant constants which were used throughout the study are shown in Tables 7, 8, 9 and 10. Complete data on all the aircraft designs discussed in this report is presented in Appendix 1. Direct operating cost was calculated at a variety of stage lengths. The cost over two 200 mile segments, with the engines not shut down at the intermediate stop, was selected as representative of typical high-density short haul operations. DOC is in 1973 dollars.

Table 7 Design Constants

Parameter	Value
Design Range, stat. mi.	500
Cruise Altitude, ft.	15,000
Max. Helicopter Mode Advance Ratio	0.40
Wing Thickness/Chord Ratio	0.21
Wing Taper Ratio	0.70
Flap Area/Wing Area	0.25
Wing Max. Clean Lift Coefficient	1.40
Number of Engines	2
Emergency/Normal Power	1.40
Climb/Normal Power	1.20
Cruise/Normal Power	0.90
Field Elevation, ft.	0
Emergency Hover Altitude, ft.	2000
Maximum Acceleration, g.	0.25
Maximum Deceleration, g.	0.20
Hot Day Temperature, °F.	95
Standard Day Temperature, °F	59

Table 8 Operating Cost Constants

Parameter	Value
Utilization, hr./yr.	2000
Depreciation Period, yr.	10
Residual Value, \$	0
Airframe Cost, \$/lb.	80
Engine Cost, \$/hp.	60
Fuel Cost \$/gal.	18
Hull Insurance Rate, % per yr.	4.0
Maintenance Labor Rate, \$/hr.	7.00

Table 9 Departure Path Constants

Parameter	Value
Max. Fuselage Pitch Angle, deg.	20
Max. Accel. Vector Rotation Rate, deg./sec.	20
Acceleration Buildup Time, sec.	5
Obstacle Clearance Angle, deg.	60*
Obstacle Clearance Height, ft.	100*

*Except in Path Variation

Table 10. Arrival Path Constants

<u>Parameter</u>	<u>Value</u>
Max. Downward Fuselage Pitch Angle, deg.	10
Deceleration Buildup Time, sec.	5
Altitude of Airplane Mode Deceleration, ft.	3000
Altitude of Deceleration and Conversion, ft.	1500
Speed at End of Airplane Mode Deceleration, kt.	200
Final Approach Speed, kt.	60
Final Approach Path Angle, deg.	8

5.0 Results and Discussion

5.1 Overview

A very small sacrifice in direct operating cost can reduce the annoyance of tilt rotor vehicle operations from a quite substantial level to a very modest amount. However, eliminating all annoyance is technically very difficult and simultaneously quite expensive. Silent designs, when possible, represented a 30% increase in DOC.

Figure 9 illustrates this relationship for fifty seat vehicles in the 1980 time frame. The conventional, modern, quiet, and double quiet vehicles (C, M, Q, and D respectively) have almost the same cost. Yet, the annoyance ranges from 25 to 1.

Table 11 describes more completely the vehicles under discussion. The process of quieting is to reduce disc loading and hover tip speed. Even though the arrival sideline noise is several decibels below that of departures, arrival annoyance is the greater number due to the lower flight angle and subsequent longer footprint on arrival.

There is little change in the relationship with changes in technology level as represented by the year of first prototype. Figure 10 shows identical curves for the different time frames, although displaced by approximately \$1.00 per seat trip which is saved on each vehicle by the changes in weights and efficiencies.

Small vehicles tend to be quite expensive, as well as a little noisier than large vehicles of similar design. Figure 11 suggests that vehicles with 80 seats have attained most of the economies of vehicle size which might be available without creating excessive amounts of noise.

It must be noted that large vehicles of very quiet design (the S-80-110

FIGURE 9: BASIC VARIATION, DOC VS RELATIVE ANNOYANCE

~~ONE HUNDRED PERCENT
OF POOR QUALITY~~

Table 11. Characteristics of Basic Variation Aircraft

	C	M	Q	D	S
EPNdb @500' Sideline					
Departure	107.6	99.4	93.8	91.1	80
Arrival	105.7	94.5	91.0	87.6	80
Relative Annoyance					
Departure	16.6	3.22	.86	.40	0
Arrival	20.9	5.61	2.15	1.14	.021
Total	37.5	7.72	3.00	1.55	.021
DOC, \$/Seat Trip for Two 200 Mile Trips					
	14.20	14.29	14.02	14.99	19.07
Disc Loading 1bs/ft²					
Radius	13.0	10.0	8.5	7.0	5.5
Soildity	22.9	26.2	28.7	32.0	39.3
Tip Speed, hover	0.093	0.093	0.098	0.087	0.174
Tip Speed, cruise	800	700	630	607	380
Wing Loading	570	550	540	540	380
Cruise Speed	102	84.0	72.0	62.0	52
Gross Wt	446	427	411	401	323
Fuel Wt	42883	43006	44115	45116	53479
Cruise L/D	4430	3921	3746	3633	3795
Number of Blades	9.78	9.91	9.93	9.94	13.15
Conversion Power Factor	3	3	3	3	6
	1.3	1.25	1.4	1.4	1.5

Aspect ratio = 8.0; Payload = 10,500 lbs; Capacity = 50 seats

FIGURE 10: TIME FRAME VARIATION

FIGURE 11: SIZE VARIATION, DOC vs RELATIVE ANNOYANCE

vehicle) may be impossible. The design program increases structural weight with increases in gross weight. The large and heavy rotors on this S vehicle cause structural weight increases. This increased the gross weight without bound. It is this effect, basically an example of the cube-square law, which forces the bend upward in the total operating cost line for silent vehicles in Figure 12. Otherwise, total operating cost seems to be linear with size.

5.2 The Quiet Designs

The basic mechanism for quiet tilt rotor designs is a reduction in the hover and tip speed. This has the effect of reducing both vortex and rotational noise. The lower blade passing frequencies also push the rotational noise into the lower ranges of human hearing, where people do not hear as well. Table 11 shows that hover tip speeds are reduced from 800 to 600 feet per second.

The other major modification is a steady reduction in disc loading. The combination of this and the tip speed reduction requires larger and heavier rotors, which increases costs. However, improved cruise and hover efficiencies compensate somewhat for the slower and heavier vehicles, and the cost rise is not severe.

The constraints on wing design are: 1) the aspect ratio should not rise above 8, to assure structural roundness; and 2) that the tip rotors clear the fuselage by a foot. These rules drive the quieter designs to larger wings and lower wing loadings as noted in Table 11. This is a consequence rather than an objective of the quieting process.

As tip speeds in hover are reduced, a modest reduction in cruise tip speeds is useful, along with a minor sacrifice in cruise speed. These

OPERATING COST
OF FOUR QUALITY

FIGURE 12: TOC VS VEHICLE SIZE FOR VEHICLES OF APPROXIMATELY THE SAME NOISE LEVELS

tradeoffs are in part controlled by the growth of the wing, which forces slower cruise speeds even at some sacrifice in cruise times and thus DOC.

The number of blades in all designs is at a minimum, and the noise for increased numbers of blades would be much higher. Any increase in blades increases the blade passing frequency, which drives rotational noise upward toward sensitive aural ranges. In order to avoid this effect, no increase in solidity is sought as vehicles become quieter. This is counter to the tradeoffs dependent entirely on vortex noise as given by Reference 16.

It is this same reduction in blade passing frequency in the larger designs which explains the very minor reduction in noise annoyance of larger vehicles. Apparently, it more than makes up for the increase in thrust.

5.3 Characteristics of the Annoyance

The annoyance on approach is far greater than that of departure, particularly for the quieter designs, because the low approach path exposes more ground area to noise. The modest changes in departure annoyance with flight path that are illustrated in Figure 13 do not have a large influence on the total annoyance, or the DOC.

From a systems view the noise per seat can be made quite small for the larger designs. It would appear that a quiet or double quiet design in the 80 passenger range can be both economical and quiet. While the 110 passenger design is quieter still, its use would reduce frequency of service. The noise per seat is illustrated in Figure 14. This statistic is somewhat misleading, since it is usually impractical to substitute one large aircraft for two departures of smaller aircraft.

It is interesting to note that annoyance, measured as the sum of the number of people annoyed weighted by the degree of annoyance, is sensitive to only

CONFIDENTIAL
GPO

FIGURE 13: FLIGHT PATH VARIATION

FIGURE 14: RELATIVE ANNOYANCE PER SEAT

modest reductions in sideline noise measurements. Figure 15 shows relative annoyances being reduced by one quarter when noise at the sideline is halved (reduced by ten decibels).

FIGURE 15: DOC vs SIDELINE NOISE

6.0 Conclusions

Preliminary design studies suggest that the noise annoyance of commercial tilt rotor vehicle operations can be either substantially reduced or nearly eliminated. Significant reductions in tip speeds and disc loadings appear to be possible without undue sacrifices in operating costs. The resulting noise levels are not much above background noise levels for reasonable departure and arrival trajectories.

Office of Transportation

Table 12. "Conventional" Vehicle Designs (c)

	20	50	80	110	1975	1985
DOC per seat, two 200 mi. hops:	\$24.12	\$14.20	\$12.11	\$11.70	\$15.12	\$13.65
DOC per seat mile	0.0421	0.0250	0.0213	0.0208	0.0266	0.0241
DOC per seat departure	3.35	1.90	1.63	1.57	2.04	1.83
Total Annoyance	45.2	37.5	36.4	33.1	38.4	37.3
departure "	28.2	16.6	17.1	16.1	16.7	15.8
arrival "	27.0	20.9	19.4	17.0	21.7	21.5
EPNdb at 500' sideline						
departure	108.3	107.6	107.7	107.6	107.4	107.3
arrival	106.8	105.7	105.8	105.7	105.8	105.9

Table 13. "Modern" Vehicle Designs (M)

	1980				50 seats	
	20	50	80	110	1975	1985
DOC per seat, two 200 mile hops:	\$24.28	\$14.29	\$12.19	\$11.74	\$15.18	\$13.74
DOC per seat mile	0.0429	0.0255	0.0217	0.0209	0.027	0.0246
DOC per seat departure	3.25	1.85	1.57	1.51	1.96	1.77
Total Annoyance	10.25	8.81	7.72	6.70	8.59	9.58
departure "	3.4	3.22	2.8	2.5	3.3	3.5
arrival "	6.8	5.61	4.9	4.2	5.3	6.1
EPNdb at 500' sideline						
departure	99.9	99.4	99.6	98.1	99.4	100.1
arrival	97.5	94.5	93.9	93.6	94.1	96.6

Table 14. "Quiet" Vehicle Designs (Q)

	1980				50 seats	
	20	50	80	110	1975	1985
DOC per seat, two 200 mile hops:	\$24.64	\$14.62	\$12.66	\$12.21	\$15.60	\$14.10
DOC per seat mile	0.044	0.0265	0.0229	0.0220	0.0281	0.0255
DOC per seat departures	3.21	1.81	1.57	1.52	1.95	1.76
Total Annoyance	3.79	3.00	2.31	1.76	2.93	3.11
departure "	1.1	0.86	0.7	0.6	1.01	1.0
arrival "	2.6	2.15	1.6	1.2	1.9	2.1
EPNdB at 500' sideline						
departure	94.4	93.8	92.5	91.6	93.6	98.9
arrival	91.4	91.0	89.0	87.8	90.5	90.8

Or 1

Table 15. "Double Quiet" Vehicle Designs (D)

	20	50	1980 80	110	1975	1985 50 seats
DOC per seat, two 200 mile hops:	\$25.37	\$14.99	\$13.12	\$12.84	\$16.10	\$14.62
DOC per seat mile	0.0454	0.0273	0.0239	0.0233	0.0291	0.0265
DOC per seat departure	3.27	1.82	1.58	1.55	1.97	1.81
Total Annoyance	2.05	1.55	1.04	0.61	1.51	1.56
departure "	0.5	0.40	0.3	0.2	0.4	0.5
arrival "	1.5	1.14	0.7	0.4	1.1	1.1
EPNdb at 500' sideline						
departure	91.7	91.1	89.4	88.3	90.8	91.0
arrival	88.1	87.6	85.2	83.9	87.2	87.4

COSTS OF
CIVIL AIR TRAFFIC

Table 16. "Silent" Vehicle Designs (5)

	1980				50 seats	
	20	50	80	110	1975	1985
DOC per seat, two 200 mile hops:	\$30.93	\$19.07	\$19.80	∞	\$18.43	\$21.13
DOC per seat mile	0.0592	0.0366	0.0384	-	0.0406	0.0356
DOC per seat departure	3.20	1.96	1.98	-	2.17	1.85
Total Annoyance departure "	0.0405	0.021	0.004	-	0.025	0.020
arrival "	0	0	0	-	0	0
	0.045	0.021	0.004	-	0.025	0.020
EPN db at 500' sideline departure	75.8	< 80	< 80	-	< 80	< 80
arrival	72.1	< 80	< 80	-	< 80	< 80

References

1. Hays, A.P. "Noise Minimization of Helicopter Takeoff and Climbout Flight Paths Using Dynamic Programming," M.S. Thesis, May 1971, Dept. of Aeronautics and Astronautics, M.I.T., Cambridge, Mass.
2. Schmitz, F.H., Stepniewski, W.Z., Gibbs, J., and Hinterkeuser, E. "A Comparison of Optimal and Noise Abatement Trajectories of a Tilt Rotor Aircraft," CR-2034, May 1972, NASA.
3. Gibbs, J., Stepniewski, W.Z., Spencer, R., and Kohler, G. "Noise Reduction of a Tilt Rotor Aircraft Including Effects on Weight and Performance," CR-114648, June 1973, NASA.
4. Faulkner, H.B. "The Cost of Noise Reduction in Intercity Commercial Helicopters," Journal of Aircraft, Vol. II, No. 2, Feb. 1974, M.I.T. Flight Transportation Lab., Cambridge, Mass.
5. Faulkner, H.B. "A Computer Program for the Design and Evaluation of Tilt Rotor Aircraft," TM 74-3, Feb. 1974, M.I.T. Flight Transportation Lab., Cambridge, Mass.
6. Stoessel, R.F., and Gallagher, J.E. "A Standard Method for Estimating VTOL Operating Expense," CA/TSA/013, Oct. 1967, Lockheed California Co.
7. Anon. "V/STOL Tilt-Rotor Study, Task I, Conceptual Design, Vol I," CR-114441, 1972, NASA.
8. Richardson, D.A., Liiva, J., et al. "Configuration Design Analysis of a Prop/Rotor Aircraft," TR-70-40, April 1970, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.
9. Ollerhead, J.B., and Lowson, M.V. "Problems of Helicopter Noise Estimation and Reduction," AIAA Paper 69-195, Atlanta, Ga., 1969.
10. Schlegel, R., King, R., and Mull, H. "Helicopter Rotor Noise Generation and Propagation," TR66-4, Oct. 1966, U.S. Army Aviation Labs., Fort Eustis, Va.
11. Widnall, S. "A Correlation of Vortex Noise Data from Helicopter Main Rotors," Journal of Aircraft, Vol. 6., No. 3, May-June 1969, pp. 279-281.
12. Marte, J.E., and Kurtz, D.W. "A Review of Aerodynamic Noise from Propellers, Rotors, and Lift Fans," TR32-1462, Jan. 1970, NASA.
13. Hays, A.P., and Simpson, R.W. "A Proposed System of Aviation Noise Measurement and Control," R73-2, Jan. 1973, M.I.T. Flight Transportation Lab., Cambridge, Mass.
14. Schmitz, F.H., and Stepniewski, W.Z. "Reduction of VTOL Operational Noise Through Flight Trajectory Management," Journal of Aircraft, Vol. 10, No. 7, July 1973, pp. 394-395.

15. Swan, W.M. "Aircraft and Airport Noise for Laymen," M.I.T. Flight Transportation Lab. Memorandum M73-8, March 1973, Cambridge, Mass.
16. Faulkner, H.B. The Cost of Noise Reduction in Commercial Tilt Rotor Aircraft, M.I.T. Flight Transportation Lab. Report, R74-5, August 1974.
17. Penker, R.A. "Mathematical Formulation of the Noy Tables," Journal of Sound and Vibration, Vol. 8, No. 3, 1968, pp. 488-493.
18. Leverton, J.W. "The Noise Characteristics of a Large 'Clear' Rotor," Journal of Sound and Vibration, Vol. 27, No. 3, 1973, pp. 357-376.

Appendix 1: Computer Output for All Designs

TILT ROTOR DESIGN PROGRAM 1974

C-80-20

DESIGN ILLUSTRATIONS: 3

OVERALL		POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	19654.	*INST NORMAL PWR (HP)	5195.	*LENGTH (FT)	55.0	*ROTOR	1.00
EMPTY WEIGHT (LB)	13336.	*NUMBER OF ENGINES	2.	*DIAMETER (FT)	8.5	*TRANSMISSION	0.33
PAYOUT (LR)	2318.	*EXCESS FACTOR HEL MODE	1.35	*DRAG FACTOR	1.00	*AIRFRAME	0.78
PAYOUT SPEED (MPH)	4000.	*% RATED ENRG HVR	140.			*ENGINE (HP/LB)	6.30
L/D CRUISE	441.	CCNv + CLIMB	120.	PLAT PLATE AREAS (SP)		*ENGINE INSTALLATION	1.50
*RANGE (STAT MI)	8.33	CROUSe	90.	WING PROFILE	1.38		
*PASSENGER SEATS	500.	TNST PWR ERG HVR (HP)	4490.	FUSELAGE	3.34	DESIGN MISSION	
*CARGO (LB)	20.	CNPER (HP)	3290.	ENPENNAGE	0.83	*FIELD ELEVATION (FT)	0.
	0.	CRUISE (HP)	5195.	TOTAL PROFIL P	6.72	SOUND SPEED HVR (FPS)	1117.
		*SPC (LB/HP BR)	0.400	WING INDUCED	0.81	*STD DAY TEMP (DEG F)	59.
						*HTD DAY TEMP (DEG F)	2000.
MOTORS	13.00	DRIVE SYSTEM	0.97	COMPONENT WEIGHTS (LB)	1432.	*ACT/SIG MAX	0.50
*DISC LOADING (PSF)	15.5	*EFFICIENCY	0.97	BOTRS	1688.	*MAX ACCELERATION (G)	0.25
RADIUS (FT)	0.087	HEL MODE WTIGHT (LB)	1278.	DRIVE SYSTEM	917.	*DESIGN CRUISE (BPH)	440.
FLIPE CHORD (FT)	1.42	AIRFLENE WEIGHT (LB)	1648.	POWERPLANT	59.	*CRUISE ALTITUDE (FT)	15000.
TOTAL BLADES	6			MACHINES	128.	SOUND SPEED CBSZ (FPS)	1056.
*CT/SIG HOVER	0.120	WING	1.41	PULL : STEM	1233.	*MAX DECELERATION (G)	0.20
*PROFILE DRAG COEFF	0.010	AREA (SP)	102.0	WING	2699.	*STRUCT LOAD FACTOR	4.5
*DNCHLAD	9.3	*ICADING (PSF)	102.0	FUSELAGE	383.	*FLIGHT CRW	2.
*EFFICIENCY HOVER	0.85	AFFECT RATIO	8.95	ENPENNAGE	599.	*CABIN CREW	0.
*CCNPER	0.83	SPAN (FT)	41.5	LANDING GEAR	602.	*ATC SPEED LIMIT	YPS
CRUISE	0.75	PEAN CHCSD (FT)	4.64	FLIGHT CONTROLS	181.		
HEL HOOP WEIGHT (LB)	1432.	*THICKNESS/CHORD RATIO	1.20	HYDRAULICS	221.		
AIRPLANE WEIGHT (LB)	1153.	*TAPER RATIO	0.70	ELECTRICAL			
*TIP SPEED HOVER	825.	SLEEP (DEG)	-5.1	INST. AVIONICS	580.		
	570.	CRUISE LIFT COFF CONVR	0.33	AIR CONDITIONING	760.		
	1.0	*MAX LIFT COFF CONVR	0.93	PURFISHINGS	1300.		
	0.40	*MAX LIFT COFF CLEN	1.40	FLUIDS	98.		
		*FLAP AREA/HVING ABZA	0.25	FLIGHT CREW	400.		
		CLIMB SED/CVNEA SD	0.71	CABIN CREW	0.		
* INDICATES INPUT VARIABLE							
DESIGN MISSION		SPEED	HEIGHT	DIST	TIME	FUEL	
TAKEOFF & LANDING	MPH	FT	MI	MIN	LB		
ACCEL. & CCHV.				2.00	43.		
AIRPLANE CLIMB	161..197.	1600.	1.6	1.23	32.		
ACCEL. TO CRUISE		13400.	9.4	3.16	92.		
CRUISE	441.		11.9	1.98	61.		
AIRPLANE DESCENT	441..301.	12300.	442.7	60.27	1631.		
APPROACH		3000.	29.4	6.16	17.		
			10.6	3.99	17.		
TOTAL		500.0	16.79	1893.			
		20.00	426.				

2252272

III. ROTOR DESIGN PROGRAM 1574

C-90-S

DESIGN IERATIONS: 5

POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	42863.	INST NORMAL PAR (HP)	\$776.	*LENGTH (FT)	80.0
EMPTY WEIGHT (LB)	28333.	NUMBER OF ENGINES	2.	*DIAMETER (FT)	10.0
FUEL WEIGHT (LB)	14430.	*EXCESS FACTOR F-EL *CCDE	1.30	*DRAG FACTOR	1.00
FAYLAC (LB)	10150.	*% RATED ENRGY MVR	140.	*ENGINE (HP/LB)	0.63
CRUISE SPEED (MPH)	146.	*ENV + CLIMB	125.	*ENGINE INSTALLATION	0.78
L/D CRUISE	5.78	*CLIMB	90.		6.50
**RANGE (STAT MI)	500.	INST PAR ENRGY MVR (HP)	\$770.	2.83	1.50
PASSENGER SEATS	50.	COVER (HP)	6890.	DESIGN MISSION	
SEATING (LB)	0.	CRUISE (HP)	5502.	*FLD ELEVATION (FT)	0.
		*SFC (LB/HP-HR)	6.40	*SUND SPEED FVR (FPS)	117.
ROTORS				*STD DAY TEMP (DEG F)	59.
*DISC LADING (PSF)	13.00	DRIVE SYSTEM	Cruise Input Weights (LB)	*STD HOVER ALT (FT)	2000.
RADIUS (FT)	22.9	*EFFICIENCY	J-97	*STD DAY TEMP (CEG F)	55.
SOLIDITY	6.053	*HEL MODE WEIGHT (LB)	3231.	*CT/SIG MAX	0.150
ELATE C/H/C (FT)	2.24	AIRPLANE WEIGHT (LB)	4267.	*MAX ACCELERATION (G)	0.25
TOTAL BLADES	6			*DESIGN CRUISE (MPH)	440.
*CT/SIG HOVER	0.120	WING		*CRUISE ALTITUDE (FT)	15000.
*PROFILE DRAG C/EFF	0.010	AREA (SF)	420.	*SUOND SPEED CPSE (FPS)	105.
CANLAD	5.5	*LOADING (PSF)	102.0	*MAX ACCELERATION (G)	0.20
*EFFICIENCY HOVER	0.85	ASPECT RATIO	7.55	*STRUCT LOAD FACTOR	4.5
COVER	0.93	SPAN (FT)	57.8		
CRUISE	0.74	MEAN CHORD (FT)	7.27	*FLIGHT CREW	2.
*EL MCE WEIGHT (LB)	3318.	*THICKNESS/CHORD RATIO	0.210	*CABIN CREW	1.
AIRPLANE WEIGHT (LB)	2700.	*TAPER RATIO	0.70	*ATC SPEC LIMIT	YES
*TIP SPEED COVER	800.	SWEET DECI	7.3		
CAROUSE	570.	CRUISE LIFT C/EFF	6.32		
*FUSELAGE CLEARANCE (FT)	1.0	MAX LIFT C/EFF COVVER	0.28		
*PAX HEL *CCDE ACY RATIO	0.40	*MAX LIFT COEFF CLEAN	1.40		
		*FLAP PREV/ING AREA	0.25		
* INDICATES INPUT VARIABLE		CLIMB SP/D/CVVER SPD	0.89		
DESIGN MISSION	SPEED MPH	HEIGHT FT	LIST FT	TIME MIN	FUEL LB
TAKEOFF & LANDING				2.00	50.
ACCEL. & CLAV.				1.13	60.
AIRPLANE CL IMB	175.0.214.	1600.	1.6		
ACCEL. TO CRUISE		13400.	12.3	3.00	209.
CRUISE	446.		13.5	2.22	129.
AIRPLANE DESCENT	446.0.301.	12500.	134.0	56.36	2578.
APP/ACH		3200.	28.6	4.66	36.
			10.0	3.59	32.
TOTAL					
RESERVE					

DESIGN MISSION	SPEED MPH	HEIGHT FT	LIST FT	TIME MIN	FUEL LB
TAKEOFF & LANDING				2.00	50.
ACCEL. & CLAV.				1.13	60.
AIRPLANE CL IMB	175.0.214.	1600.	1.6		
ACCEL. TO CRUISE		13400.	12.3	3.00	209.
CRUISE	446.		13.5	2.22	129.
AIRPLANE DESCENT	446.0.301.	12500.	134.0	56.36	2578.
APP/ACH		3200.	28.6	4.66	36.
			10.0	3.59	32.
TOTAL					
RESERVE					

ORIGINAL DRAWING NO.
OF POOR QUALITY

STILL FUTUR DESIGN FLIGHTGRAM 1974

C-80-8C

DESIGN ITERATIONS: 6

OVERALL		FUEL & PLANT		FUSELAGE		STRUCTURE		TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	69817.	INIT INTERNAL FUEL (LB)	15915.	* LENGTH [FT]	95.0	* S2 TOR			
EMPTY WEIGHT (LB)	46487.	* NUMBER OF ENGINES	2.	* DIAMETER [FT]	11.5	* TRANSMISSION	1.00		
FULL WEIGHT (LB)	7530.	* ENGINE FAIRINGS	1.30	* DRAG FACTOR	1.00	* AIRFRAME	0.83		
PAYOUT (LB)	16320.	* FAIRING ENGIN HVR	14.3.			* ENGINE (HP/LB)	0.78		
CRUISE SPEED (MPH)	462.	CCW + CLW	12.1.			* ENGINE INSTALLATION	0.50		
L/D CRUISE	10.27	CRUISE	9.0.				1.50		
* RANGE (STAT MI)		INST PWG EADG HVR (HP)	15915.	WING PEGPILE		6.95 DESIGN MISSION		* FIELD ELEVATION [FT]	
* PASSENGER SEATS		CCWVER (HP)	11229.	EMERGENCY		2.66 *FIELD ELEVATION [FT]		0.	
* CARGO (LB)		CRUISE (HP)	14C9.	TOTAL PROFILE		16.99 *SOUND SPEED HVR (PPS)		1117.	
* TOICPS		*SPC (LB/HP ER)	C.400	WING INDUCED		2.05 *STD DAY TEMP (CEG F)		59.	
* DISC LOADING (PPS)		13.00 DRIVE SYSTEM		COMPONENT WEIGHTS (LB)		*EMERG HOVER ALT (FT)		2000.	
BAEUS (FT)		29.2 *EFFICIENCY	C.97	ROTORS		*HOT DAY TEMP (DEG F)		*HOT DAY TEMP (DEG F)	
SCLINITY		0.593	REL BOGE WEIGHT (LB)	5802.	DRIVE SYSTEM	5750.	*CL/SIG MAX	0.150	
BLADE CHORD (FT)		2.86	LIFPLANE WEIGHT (LB)	7658.	POWERPLANT	7698.	*MAX ACCELERATION (G)	C.25	
TOTAL ELDES		6		NACELLES		809.	*DESIGN CRUISE (PPH)	0.80.	
*CL/SIG HOSES		0.120	WING	PUEL SYSTEM		839.	*CRUISE ALTITUDE (FT)	1500C.	
*PROPILE TAIL COEFF		0.10	AREA (SF)	685.	WING	859.	SOUND SPEED CRSE (PPS)	1058.	
*TECHNICAL		10.2	TCA DING (PS)	102.0	PUSELAGE	5368.	*MAX DECELERATION (G)	0.20	
*EFFICIENCY HCVER		C.05	ASPECT RATIC	7.57	EMERGAGE	7992.	*STRUCT LOAD FACTOR	0.5	
CCVES		0.83	SPAN (FT)	72.0	LANDING GEAR	1.361.	*PLIGHT CRSP	2.	
CRUISE		C.73	LEAN CRSED (FT)	9.51	FLIGHT CONTROLS	2095.	*CABIN CAP	2.	
* REL BOGE WEIGHT (LB)		5750.	*THICKNESS/SECORD-RATIO	C.210	HYDRAULICS	3397.	*ATC SPEED LIMIT	YRS	
AIRPLANE WEIGHT (LB)		4670.	*TAKE OFF RATIO	0.7C	ELECTRICAL	302.			
* TIP SPFT HJPER		8.00.	SLEEP (DEG)	-5.3	INSTA. AVICICS	1330.			
CRUISE		570.	CRUISE LIP	CC2F	AIR CONDITIONING	866.			
*FUSELAG-CLEARANCE (FT)		1.0.	PAX LIF COEFF CCVER	0.30	FURNISHINGS	1540.			
*MAX HEL ADV RTIC		0.40	PAX LIF COEFF CLEAN	0.88	FLUIDS	3700.			
* INDICIES INPUT VARIABLE			*FLAP ABL/WING AREA	1.4C	FLIGHT CREW	349.			
			CLIMB SFC/CCNVE SPD	0.83	CABIN CREW	30C.			
DESIGN MISSION		SPEED	WEIGHT	DIST	TIME	FUEL			
TAKEOFF & LANDING		MPH	LB	MI	HR	LB			
*JCCEL. E CCNV.					2.0C	146.			
AIRPLANE CLIB		182.0	224.	1600.	1.6	1.0E			
*JCCEL. TC CRUISE				\$3400.	12.8	94.			
CROISZ					3.78	341.			
AIRPLANE DESCENT		462.	301.	12000.	14.2	2.27			
APPROACH				300J.	10.0	5.18			
TOTAL		500.0	74.21		3.39	53.			
RESERVE									
					20.00	1460.			

OF FUTURE FLIGHTGRAM

TILT RCTCB DESIGN PROGRAM 1974

C-8C-110

DESIGN ITERATIONS: 6

OVERALL		FOLIENPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	102692.	INST NORMAL FWA (HPT)	23409.	* LENGTH (PT)	110.0	* ROTOR	1.00
EMPTY WEIGHT (LB)	6985.	* NUMBER OF ENGINES	2.	* DIAMETER (PT)	13.0	* TRANSMISSION	0.83
FUEL WEIGHT (LB)	10216.	* EXCESS PACKAGE HLT ADJ	1.30	* DRAG FACTOR	1.00	* AIRBRAKE	0.78
PAYOUT (LB)	22450.	* 1 RATIC BMRC HVR	140.			* ENGINE (HP/LB)	0.50
CRUISE SPEED (MPH)	470.	CONN + CLIMB	120.	PLAT PLATE AREAS (SP)		* ENGINE INSTALLATION	1.50
1/C CRUISE	10.57	CRUISE	90.	WING PROFILE	6.33		
*BARGE (STAT WT)	505.	INST FB5 ERIG HVR (HPT)	23009.				
*PASSENGER SEATS	110.	COVER (HPT)	16508.				
*CARGO (LB)	C.	CRUISE (HPT)	1946.	TOTAL PROFILE	3.80	* FIELD ELEVATION (PT)	0
TOILES		* SPC. (LB/HP RR)	C.400	WING INDUCED	23.03	SOUND SPEED (DEG HVR (PPS))	1117.
*DISC LOADING (PPS)	13.00	DRIVE SYSTEM			3.89	* SID DAY TEMP (DEG F)	59.
RADIUS (FT)	35.5	* EFFICIENCY	C.97	COMPONENT WEIGHTS (LB)		* ZONE HOVER ALT (FT)	2000.
SOLIDITY	0.93	BEL MOLE WEIGHT (LB)	517.	ROTOR	8754.	* HOT DAY TEMP (DEG F)	95.
ELIDE CHORD (PT)	3.47	AIRPLANE WEIGHT (LB)	1227.	DRIVE SYSTEM	12270.	* CYCLIC MAX	0.150
TOTAL BLADES	6			POWERPLANT	4131.	* MAX ACCELERATION (G)	0.25
*C/SIG HOVER	C.120	WING		NACELLES	2091.	* DESIGN CRUISE (MMH)	440.
*PPCPFL LEAD COEFF	0.10	ARPA (SP)	1006.	FUEL SYSTEM	1628.	* CRUISE ALTITUDE (PT)	15000.
*EFFICIENCY HC72B	10.3	* LACAFG (FSM)	102.3	WING	8066.	* SOUND SPEED CRSE (PPS)	1058.
*EFFICIENCY CCN18	0.83	AFFECT RATIO	7.33	POSTLAGE	10879.	* MAX. DECCELERATION (G)	0.20
CRUISE	C.72	PPAN CTCRD (PT)	11.72	EMPEINAGE	2002.	* STRUCT LOAD FACTOR	4.5
BEL MOLE WEIGHT (LB)	8754.	* THICKNESS/CHORD RATIO	65.9	LANDING GEAR	3079.	* CABIN CREW	2.
AIRPLANE WEIGHT (LB)	7020.	* TAIERS RATIO	7.30	FLIGHT CONTROLS	6193.	* CABIN CREW	3.
*TIP SPEED HOVER	300.	STEEP IDEG	-5.4	HYDRAULICS	415.	* ATC SPEED LIMIT	YES
*CRUISE	570.	CRUISE LIFE COEFF	C.28	ELECTRICAL	2296.		
*FUSelage CLEARANCE (PT)	1.0	MAX LIFT COEFF CCRB	C.88	INST+AVIONICS	949.		
*MAX BEL ADCP ADV RATIC	0.40	* MAX LIFT COEFF CCRM	C.40	AIR CONDITIONING	1930.		
*INDICATES INPUT VARIABLE		* FLAP AREA/WING AREA	0.25	PURFISHINGS	4900.		
		CLIMB SEC/CONVEV SBD	0.06	FLUIDS	513.		
				FLIGHT CREW	400.		
				CABIN CREW	450.		
DESIGN MISSION		SPEED	WEIGHT	TIME	FUEL		
		RFH	PI	BI	LB		
TAKEOFF & LANDING							
ACCEL. & CCNV.							
AIRPLANE CLIPS	188..230.	1600.	1.6	2.0	215.		
ACCEL. TO CRUISE	13400.	13.1	1.35	1.35	134.		
CRUISE	470.	14.6	1.37	1.37	501.		
AIRPLANE DESCENT	470..301.	420.4	5.73	6715.	323.		
AFFCACH	30000.	32.2	5.40	95.			
		10.0	3.99	76.			
TOTAL	500.0	13.22	8060.				
RESUME	23.00	2187.					

TILT RCTC DESIGN PROGRAM 1974

C-75-50

DESIGN ITERATIONS: 5

OVERALL		POWERPLANT		PURSLAGE		STRUCTURE TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	67055.	1NST NORMAL FWR (HP)	1C981.	* LENGTH (FT)	80.0	* ROTOR	1.05
EMPTY WEIGHT (LB)	31765.	* NUMBER OF ENGINES	2.	* DIAMETER (PT)	10.0	* TRANSMISSION	0.85
PULWY WEIGHT (LB)	5139.	* EXCESS FACTOR BEL MODE	1.35	* DRAG FACTOR	1.00	* AIRBRAKE	0.80
PAYOUT (LB)	10150.	* 3 FAILED ENGR HWS	16.1.			* ENGINE (HP/LB)	7.50
CRUISE SPEED (MPH)	457.	CCW + CLBW	12.1.			* ENGINE INSTALLATION	1.50
L/D CRUISE	9.86	CRUISE	9.0.	WING PROFILE	3.08		
* RANGE (STAT MI)	50.5.	1NST PWB FBG HVR (HP)	1C981.		5.23	DESIGN MISSION	
* PASSENGER SEATS	50.	CCWVR (HP)	EC07.	* PIVOT ELEVATION (DEG)	0.		
* CARGO (LB)	0.	CACISE (HP)	1CC01.	* SOUND SPEED HVR (IPS)	1117.		
• DISC LOADING (PSF)	13.00	CCOMPONENT WEIGHTS (LB)		* STD DAY TEMP (DEG F)	59.		
BILLET (PSF)	24.0	* EFFICIENCY	C.97	* HGT DAY TEMP (DEG F)	95.		
SOLLENT	0.593	- HEL MODE 62IGHT (LB)	388.	* ROTORS	4008.	* CT/SIG RAY	0.150
ELADE CHRD (ST)	2.34	- PURSLAGE WEIGHT (LB)	4593.	DRIVE SYSTEM	4990.	* MAX ACCELERATION (G)	C.25
TOTAL BLADES	6			POWERPLANT	5253.	* DESIGN CRUISE (MPH)	440.
* CT/SIG HOLES	0.120	WING		MATERIAL	567.	* CRUISE ALTITUDE (FT)	15000.
* PROFILE FRAG COZP	C.010	AERA (SP)	461.	FUEL SYSTEM	502.	* SOUND SPEED CFS (IPS)	1058.
% TOWLOAD	10.0	* ICADIG (FSE)	162.0	WING	3370.	* MAX DECCELERATION (G)	6.20
* EFFICIENCY HCZR	C.83	* ASPECIATIC	7.80	PUSLAGE	5266.	* STRUCT LOAD FACTOR	4.5
CCNVE2	0.81	SPAN (FT)	69.0	ESCAPE	941.	* FLIGHT CREW	2.
CRUISE	C.74	PEAN CHCRD (PT)	7.69	LANDING GEAR	1912.	* CABIN CREW	1.
BEL HOPC WEIGHT (LB)	4008.	* THICKNESS/CBCD RATIO	C.213	FLIGHT CONTROLS	2062.	* ATC SPEED LIMIT	725.
AIRPLANE WEIGHT (LB)	3165.	* TAFFS RATIO	C.72	HYDRAULICS	281.		
* TIP SPEED HOVER	800.	* SLEEP (CEG)	-5.3	ELECTRICAL	761.		
CRUISE	570.	CRUISE LIFT (CEG)	0.30	INST/B. AVIONICS	703.		
* PURSLAGE CLEARANCE (PT)	1.0	PAX LIFT COFFEE CCNVE2	C.68	AIR CONDITIONING	1150.		
* MAX EPL ADC ADV BATIC	0.40	PAX LIFT COFFEE CLEAN	1.90	PUBLISHINGS	2500.		
		* FLIP AREA/BING AREA	0.25	PLUTES	235.		
* INDICATES INPUT VARIABLE		CLIME SITE/CCAVES SPD	C.81	FLIGHT CREW	400.		
				CABIN CREW	150.		

DESIGN MISSION		SPEED MPH	WEIGHT PT	CLIM SITE	TIME	FUEL
TAKEOFF & LANDING						
ACCEL. & CCWV.						
AIRPLANE CLIMB	178.00	134CO.	12.5	2.00	106.	
ACCEL. TO CRUISE						
CRUISE	457.		14.4	1.11	72.	
AIRPLANE DESCENT	456.0301.	12000.	432.2	56.32	3617.	
APPBACH		3000.	12.5	3.79	246.	
TOTAL		500.0	14.57	4081.		

RESERVE

TILT ROTOR DESIGN PROGRAM 1514

M-80-20

DESIGN ITERATIONS: 3

OVERALL		FUSELAGE		STRUCTURE	
CROSS WEIGHT (LB)	19623.	INST NORMAL PAY (HPI)	4451.	*LENGTH (FT)	55.0
EMPTY WEIGHT (LB)	13616.	*NUMBER OF ENGINES	2.	*DIAMETER (FT)	8.0
FUEL WEIGHT (LB)	13017.	*EXCESS FACTOR HEL PAYCE	1.35	*CRAG FACTOR	1.00
PAYLOAD %	50.0%	*2 RATED EMGR FVR	140.	*AIRFRAME	0.78
CRUISE SPEED (MPH)	421.	*CONV + CLIMB	120.	*ENGINE IMPLIES	8.59
L/C CRUISE	6.50	*CLIMB	90.	*ENGINE INSTALLATION	1.55
*RANGE (STAT MIL)	50.0	INST PAY EMGR HVR (HPI)	3914.	DESIGN MISSION	
*PASSENGER SEATS	20.	COVER (HPI)	2662.	EXPERIENCE	3.36
*CARGO (LB)	0.	CRUISE (HPI)	4451.	TOTAL PROFILE	1.00
FOTORS		*SFC (LB/HF HPI)	0.400	SOUND SPEED FVR (FPS)	0.
*DISC LOADING (PSI)		WING INFLUENCED		STD DAY TEMP ICEG F1	1117.
RADIUS (FT)	11.0	COMPONENT WEIGHTS (LB)		STD DAY TEMP ALT (FT)	59.
SOLIDITY	11.7	*EFFICIENCY	0.97	*EMGR MOVER ALT (FT)	2000.
BLADE CHRC (FT)	0.053	HEL MODE WEIGHT (LB)	1448.	*HOT DAY TEMP ICEG F1	95.
TOTAL BLADES	1.72	AIRPLANE WEIGHT (LB)	1565.	*CT/SIG MAX	0.150
*CT/SIG FLYER	6	NACELLES		*MAX ACCELERATION (G)	0.25
*PROFILE CRAG COEF	0.120	WING		*CESIGA CRUISE (MPH)	420.
*DEMO DAC	0.010	AREA (SEA)	234.	*CRUISE ALTITUDE (FT)	1500.
*EFFICIENCY HOVER	0.85	*LOADING (PSF)	84.0	SOUND SPEED CEST (FPS)	1038.
COVER	0.85	ASPECT RATIO	9.00	*MAX ACCELERATION (G)	0.23
CRUISE	0.75	SPAN (FT)	45.9	*STRUCT LOAD FACTOR	4.5
HEL PAYE WEIGHT (LB)	1557.	MEAN CHORG (FT)	5.10	*FLIGHT CREW	2.
AIRPLANE WEIGHT (LB)	13616.	*THICKNESS/CHORD RATIO	0.210	*CABIN CREW	0.
*TIP SPEED HOVER	70.0	STAPER RATIO	0.70	*ATC SPEED LIMIT	YES
CRUISE	35.0	SWEET (CEC)	-5.1		
*FUSELAGE CLEARANCE (FT)	1.0	CRUISE LIFT CCEFF	0.29	INST AVIONICS	58.
*MAX HEL MODE ADV RATIO	0.46	MAX LIFT CCEFF CCVER	0.56	AIR CIRCUTIGNING	76.
* INDICATES INPUT VARIABLE		MAX LIFT CCEFF CLEAN	1.40	FURNISHINGS	110.
CLIMB SPD/COVER SPD		*FLAP AREA/bING AREA	0.25	FLUIDS	58.
CLIMB SPD/CCVER SPD		CLIMB TIME	0.18	FLIGHT CREW	400.
CABIN AREA				CABIN CREW	0.
DESIGN MISSION	SPEC	HEIGHT	CLIMB TIME	FUEL	
TAKEOFF & LANDING	MPH	FT	MIN	LB	
ACCEL. & CONV.					
AIRPLANE CLIMA	149.0, 184.	1500.	1.6	2.00	
ACCEL. TG CLIMA		13500.	5.5	27.	
CRUISE			3.42	28.	
AIRPLANE DESCENT	421.0, 301.	12000.	11.3	24.	
APPCLASH		3000.	1.58	52.	
			63.30	52.	
			1418.		
			4.15	13.	
			3.59	15.	
TOTAL		EGOUG	1647		
RESERVE		23.00	379.		

III.1.1 DESIGN PROGRAM ISIA

B-80-50

DESIGN ITERATIONS: 5

OVERALL		POWERPLATE		FUSELAGE		STRUCTURAL		TECHNICAL FEATURES	
GROSS WEIGHT (LB)	43006.	INST NCPIAL PWR (HP)	8533.	*LENGTH (FT)	80.0	*ROTOP	1.00		
EMPTY WEIGHT (LB)	28934.	NUMBER OF ENGINES	2.	*DIAMETER AFT	10.0	*TRANSMISSION	0.83		
FUEL WEIGHT (LB)	3921.	*EXCESS FACTOR REL MCCE	1.25	*PROP. FACTOR	1.00	*WINGFRONT	0.78		
PAYLOAD (LB)	10150.	*RATED ENGRG. HPH	140.			*ENGINE (HP/LB)	0.50		
CRUISE SPEED (MPH)	427.	CCNV + CLIMB	120.	FLAT PLATE AREAS (SF)		*ENGINE INSTALLATION	1.50		
L/D CRUISE	9.51	*		LNG PROFILE	3.43				
* RANGE (STAT MH)	5.0.	INST PWR ENGR HPH (HP)	8533.						
*PASSENGER SEATS	50.	LEAVES (LB)	28122.						
*CAGC (LPH)	0.	CRUISE (HP)	8310.						
FACTORS		*SPEC. SLPHT ER.	0.400	TOTAL PROFILE	13.01	SPIND SPEED FWD (FPS)	1117.		
*ELSC. LOCATING (PSI)	10.00	DRIVE SYSTEM		LNG INDUCED	1.87	*STD DAY TEMP (CEG F)	59.		
RADIUS (FT)	26.2	*EFFICIENCY	0.97	ROTORS		*THERM H OVER ALT (FT)	2000.		
-	C. C. 3	HEL. MODE. HEIGHT (LB)	36934.	SPINE SYSTEM					
-	BLADE C-GROD (FT)	2.56	AIRPLANE WEIGHT (LB)	4543.	POWERPLANT				
-	TOTAL BLADES								
-	*CTSIG HOVER	0.120	WING	NACLES					
-	*PROJILE FEAG CCCEE	0.11C	AREA (SF)	FUEL SYSTEM					
*OCNLAD	5.5	*LOADING (PSF)	512.	WING					
-		*ASPECT RATIO	84.0	FUSELAGE					
-	*EFFICIENCY HOVER	0.95		BLD					
-	COVER	0.83	SPAN (FT)	EMPNENTAGE					
-	CRUISE	0.75	MEAN CHORD (FT)	54.3	LANDING GLAR				
-	REL. MCCE WEIGHT (LB)	3571.	*THICKNESS/CORD RATIO	7.96	FLIGHT CONTROLS				
-	ALSPANE MELCH (LB)	2125.	*TAPER RATIO	0.210	HYDRAULICS				
-	*TIP SFEET PCV ²	700.	SWEET (CEG)	0.70	ELECTRICAL				
-	*BLADE	554.	CRUISE LIFT (CEG)	0.29	INSTR+AVIONICS				
-	*FUSELAGE CLEARANCE (FT)	1.0	MAX LIFT CCEFF COVER	0.54	AIR CONDITIONING				
-	SPX REL. MCCE AREA RATIO	0.40	MAX. LIFT LOADEE CLEAR	1.64	FURNISHINGS				
-			*FLAP ANGLE/WING AREA	0.25	FLUIDS				
-			CLIMB SPOUT. INVR. SPD	0.05	FLIGHT CREW				
-					CABIN CREW				
* INDICATES INPUT VARIABLE									
DESIGN MISSION	SPEED MPH	HEIGHT FT	LIFT PI	TIME MIN	FUEL LB				
TAKEOFF & LANDING									
ACCEL. & CCNV.									
AIRPLANE CLIMB	162.0155.	1500.	1.6	1.19	75.				
ACCEL. TO CRUISE	427.	13500.	12.3	6.11	54.				
CRUISE	427. 301.	12300.	13.9	2.38	119.				
AIRPLANE DESCENT	427.	32000.	4.70	61.04	2620.				
APPROACH		10.0	4.65	30.	420.				
TOTAL		51,000.	3.55	28.	150.				
RESERVE									
		20,000.	767.						
					3134.				

DESIGN MISSION		SPECIFIC		HEIGHT		LIFT		TIME		FUEL	
TAKEOFF & LANDING											
ACCEL. & CCNV.											
AIRPLANE CLIMB	162.0155.	1500.	1.6	1.19	75.						
ACCEL. TO CRUISE	427.	13500.	12.3	6.11	54.						
CRUISE	427.	12300.	13.9	2.38	119.						
AIRPLANE DESCENT	427.	32000.	4.70	61.04	2620.						
APPROACH		10.0	4.65	30.	420.						
TOTAL		51,000.	3.55	28.	150.						
RESERVE											
		20,000.	767.								
					3134.						

TILT RCTCB DESIGN PROGRAM 1574

A-80-80

DESIGN MISSIONS: 6

OVERALL		STRUCTURE		FUSELAGE		DESIGN MISSIONS	
GROSS WEIGHT (LB)	70492.	INST NORMAL FVR (FT)	14076.	* LENGTH (FT)	95.0	* ROTOR	1.00
PHTY WEIGHT (LB)	47924.	* SUPER CP ENGINES	2.	* DIAMETER (FT)	11.5	* TRANSMISSION	0.83
FUEL WEIGHT (LB)	6268.	* EXCESS PACIFIC HEL MODE	1.30	* DRAG FACTOR	1.00	* AIRFRAME	0.78
PASSENGER (LB)	16300.	* FAID ENRG HVB	140.			* ENGINE (HP/LB)	8.50
CRUISE SPEED (MPH)	442.	CCWY + CILW	123.	PLAT PLATE AREAS (SF)	5.30	* ENGINE INSTALLATION	1.55
L/C CRUISE	1C.37	CBOUSE	90.	WING PROFILE			
* RANGE (STAT MI)	500.	INST PLS ERG HVB (HP)	14C16.				
* PASSENGER SEATS	AO.	CCHVER (HP)	5912.	SUPERLAGE	6.99	DESIGN MISSION	
* CARGO (LB)	0.	CBOUSE (HP)	12376.	TOTAL PROFILE	18.92	* SPILL ELIMINATE (FT)	
ACROS		* EFC (LB/HP HB)	0.400	WING INDUCED	2.78	* SOUND SPEED HVB (FPS)	1117.
* DISC LOADING (PSF)	10.00	DRIVE SYSTEM					
RADIUS (FT)	33.5	* EFFICIENCY		COMPONENT WEIGHTS (LB)			
SOLARIS	0.C94	HEL MOLE WEIGHT (LB)	C.57	BOTOMS	6205.	SHOT DAY TEMP (F)	95.
ELATE CHCBB (PT)	3.28	AIRPLANE WEIGHT (LB)	C.525.	DRIVE SYSTEM	8255.	EMERG HOVER ALT (FT)	2000.
TOTAL BLADES	6	E255.		POWERPLANT	2567.	SHOT DAY TEMP (F)	95.
* C/SIG HOVER	C.120	WING		KACELLS	678.	MAX ACCELERATION (G)	0.150
* EFP/EGL COEFF	0.010	ARPA (PS)	C.39.	PUEL SYSTEM	706.	* DESIGN CRUISE (MPH)	0.25
* DCN/CD	9.7	* ICODING (PSF)	84.0	PUEL SYSTEM	6216.	* CRUISE ALTITUDE (FT)	15000.
* EFFICIENCY HC72R	0.85	* ICODING (PSF)	7.72	WING	1375.	SOUND SPEED CASE (FPS)	1056.
* CCN/25	0.93	SEAN (FT)	C.05.	EXPERIENCE	8004.	* MAX FUELERTATION (G)	0.20
CROISE	0.78	PEAN CHCBB (FT)	C.05.	LANDING GEAR	2115.	* CABIN CREW	2.
AIRPLANE WEIGHT (LB)	6205.	* THICKNESS/CHORD RATIO	10.43	FLIGHT CONTROLS	3646.	* MAX SPEED LIMIT	YES
* TIP SPED HOVER	5373.	* TAFFER RATIO	C.210	HYDRAULICS	344.		
CROISE	700.	SLEEP DEG	C.76	ELECTRICAL	1398.		
* FUSELAGE CLEARANCE (FT)	550.	CLOSE LIP CCFP	-5.3	INSTANTANICICS	826.		
* MAX HEL MODE ADV BATIO	1.0	PAY LIFT CCFP CCFVFB	C.27	PIR CONDITIONING	1540.		
	0.40	* PAY LIFT CCFP CLEAN	0.98	FURISHINGS	3700.		
* INDICATES INPUT VARIABLE		* PLAP & SPAWING AREA	1.40	PLUIES	352.		
		CLINE SED/CCVFS SPD	0.08	FLIGHT CREW	400.		
				CABIN CREW	300.		
DESIGN MISSION		SPEED	FLIGHT	FLIGHT	FUEL		
TAKEOFF & LANDING		MPH	FT	MI	M		
ACCEL. & CCN/				2.00	18		
AIRPLANE CLIMB	168..2C7.	15000.	1.6	1.11	129.		
ACCEL. *C CRUISE		13500.	12.8	85.			
AIRPLANE DESCENT	432..301.	12500.	43C.7	260.			
APPROACH		3000.	30.4	4140.			
		10.0	5.18	52.			
			2.9	97.			
TOTAL		500.0	77.33	9577.			

BESTEST

21.63

1291.

DESIGN INTEGRATIONS: 6

ORIGINAL PAGE IS
OF POOR QUALITY

TILT ROLLER DESIGN PROGRAM 1974

E-75-50

DESIGN ITERATIONS: 5

OVERVIEW		EFFECTS/ANALYSIS		FUSELAGE		STRUCTURE	
							TECHNOLOGY FACTORS
GROSS WEIGHT (LB)	46682.	TOTAL INCREDIBLE FWD (HP)	\$605.	* LENGTH (FT)	80.0	* SECTION	1.05
EMPTY WEIGHT (LB)	32281.	* NUMBER OF ENGINES	2.	* DIAMETER (FT)	10.0	* TRANSMISSION	0.85
FUEL WEIGHT (LB)	4551.	* EXCESS PACIFIC BIL BOCHE	1.25	* DURABILITY	1.00	* WINGSPAN	0.60
PASSENGER (LB)	10150.	* 1% SATED ENGR BUB	180.	* ENGINE (HP/LB)	7.00	* ENGINE INSTALLATION	1.55
CRUISE SPEED (HP/H)	433.	CROSS + CLIMB	120.				
L/T CRUISE	5.89.	CRUISE	90.				
* RANGE (STAT MI)	530.	100% ENGR HVR (HE)	\$605.				
* PASSENGER SEATS	50.	COVER (HE)	\$503.				
* CABIN (LB)	0.	CRUISE (HP)	\$742.				
		* SFC (HP/HR BB)	C.920.				
ROTOR							
* TINC LOADING (PSL)	10.00	CRUISE SYSTEM	C.57	COMPONENT WEIGHTS (LB)	3.72		
QUOTUS (FT)	27.3	* EFFICIENCY	C.57	ROTOR	\$168.		
SOLIDITY	C.193	BEL NOSE WEIGHT (LB)	\$055.	DRIVE SYSTEM	5281.	* MAX ACCELERATION (G)	0.150
ELIDE CHORD (FT)	2.68	NISPLANE WEIGHT (LB)	\$281.	POWERPLANT	2127.	* 0.25IN CHROSE (LB/H)	0.25
TOTAL BLADES	6			MACHINES	846.	* CHOICE ALTITUDE (FT)	15000.
* C/SIG HOVER	0.120	CLING		POEL SYSTEM	3891.	* SWORD SPEED CBRZ (PSL)	1058.
* FBCPLN DSG COEFF	0.313	AREA (SP)	559.	WING	5764.	* 0.15P L/CIEFAPIH (G)	0.20
* COWNLOAD	9.5	CLIDING (SP)	F.R.0	POUSELAGE		* STRUCT LOAD FACTOR	4.5
* EFFICIENCY RATIO	0.83	AFFECT RATIO	7.95	RAPERAGE			
		SEIN (FT)	66.7	LANDING GEAR	1810.	* PIAGHT CRW	2.
COVER	0.81					* CCBIN CRW	1.
CROUSE	C.78	PEAN CRCD (FT)	8.39	FLIGHT CONTROLS	2058.	* ATIC SPEED LIMIT	YES
BEL BOLE WEIGHT (LB)	9168.	* THICKNESS/CHCET RATIO	C.210	HIDRAULICS	280.		
AISPLANE WEIGHT (LB)	3650.	* PLATES FAITO	3.70	ELECTRICAL	759.		
* TIP SPEED HOVER	730.	SWEP (DEG)	-5.3	INSTAVIGNICS	703.		
		Cruise LIFC COPP	0.27	AIR CONDITIONING	1150.		
* FUSELAGE CLEARANCE (FT)	1.0	PAT LIFC COEFF COVZER	0.94	FURNISHINGS	2500.		
* MAX BEL MODE ADV RATIO	0.40	* PAT LIFC COFF CLEAN	1.40	PLICCS	235.		
		* PLAP AREA/WING AREA	C.25	PLIGUT CRW	400.		
		CLMB SFD/CCMVER SPD	C.86	CABIN CRW	150.		
* INDICATES INPUT VARIABLE							
DESIGN MISSION		SPEED	ENGBL	DISI	1.MI	FUEL	
		HPH	FT	HR	LB	LB	
TAKEOFF & LANDING							
ACCEL. & CCW							
AIRPLANE CLIMB	164..222.	1500.	1.6	1.0	4.00	93.	
ACCEL. & CCW		13500.	12.5	3.1	6.1.		
					229.		
CRUISE	433.	433..3	6C.02	3033.			
ATPLANE DESCENT	333..301.	26.8	4.94	35.			
APPSCAH	3200.	11.0	3.39	33.			
TOTAL	500.G	78.60	3626.				
RESERVE		20.CC	925.				

HILL BCTC RESCUE TEAM GUIDE 1974

85-50

卷之三

תְּהִלָּה כַּאֲמֵתָה וְעַמְּדָה

THE
TEN

€ 83

DESIGN ITERATIONS: 3

0 = 88 - 36

OVERALL		POWERPLANT		STRUCTURE		TECHNOLOGY FACILITIES	
GRJS	WEIGHT (LB)	20181.	INST NORMAL PWR (HP)	4305.	FUSELAGE LENGTH (FT)	55.0	*RADAR
EMPTY WEIGHT (LB)	14246.	NUMBER OF ENGINES	2.	DIAMETER (FT)	8.5	*TRANSMISSION	
FUEL WEIGHT (LB)	1934.	EXCESS FACTOR HEL MODE	1.40	*DRAG FACTOR	1.03	*AEROFRAME	
PAYOUT (LB)	4444.	*2 RATED EPPG MVR	140.	*ENGINE IMPULSE	8.53	*ENGINE INSTALLATION	
CRUISE SPD (IMPH)	411.	C/LN * CLIMB	120.			1.72	
L/C CRUISE	8.52	L/C LBLSE	90.	WING PROFILE	1.98		
* RANGE INST MI	550.	INST PWR EPPG AVW (HP)	3658.		3.37	DESIGN MISSION	
* PASSENGER SEATS	20.	CRIVER (HP)	2813.		1.19	* FIELD ELEVATION (FT)	
* CARGO (LB)	0.	CHISE (HP)	4335.	TOTAL O/B FILE	7.90	SURFACE SPEED FVR (FPS)	
			L+40	WING INDUCED	0.00	* STD DAY TEMP (DEG F)	
						59.	
FIGURES		COMBINED WEIGHTS (LB)		* ENERGY REVER. AT (FT)		2000.	
RADIUS (FT)	8.51	DRIVE SYSTEM					
SOLIDITY	19.4	*EFFICIENCY					
BLADE CHORD (FT)	0.558	HEL MODE WEIGHT (LB)	1672.				
TOTAL BLADES	1.55	AIRPLANE WEIGHT (LB)	2147.				
*CT/SIG OVER SPRFILE ERAG.CREEF	0.120	WING					
4. CANNAD	0.11	ALFA (SEL)					
* EFFICIENCY HCVER	0.85	*LOADING (FSF)	280.				
0. CCOVER	0.83	ASPECT RATIO	72.0				
CRUISE	0.80	SPAN (FT)	8.10				
HEL MODE WEIGHT (LB)	1718.	MEAN CHORD (FT)	19.4				
AIRPLANE WEIGHT (LB)	1635.	*THICKNESS/CHORD RATIO	5.00				
* TIP SPEED MVR	633.	STAPER RATIO	0.20				
		SKEEP (FT)	5.2				
		CRUISE LIFT COEFF	0.26				
		MAX LIFT COEFF CLAWER	1.00				
		*MAX LIFT COEFF CLEAN	1.00				
		*FLAP AREA/HNG AREA	0.25				
		CLIMB SPEED/CRV.SPD.	0.83				
* INDICATES INFLU VARIABLE							
DESIGN MISSION		SPEED MPH	HEIGHT FT	LIFT MIN	LIFT MAX	FUEL	
TAKEOFF & LANDING				2.00	3.5.		
ACCEL. & CONV.				1.12	2.41		
AIRPLANE CLIMB	163.000.	1500.	1.3			1300.	
ACCEL. TO CRUISE	163.000.	13500.	5.2			101.	
CRUISE	411.		10.9	1.96		411.	
AIRPLANE DESCENT	410.000.	3000.	545.0	545.0		1368.	
APPROACH			22.6	4.11		12.	
			5.9	3.55		14.	

-12-

MÉTACRÈTE

MÉTIER

1

1

III. FLIGUE DESIGN PEGGAP 1574

Q-6C-59

DESIGN ITERATIONS: 5

OVERALL		POWERPLANT		FL SELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	44115.	INST NORML FWR (HP)	1196.	* LENGTH (FT)	80.0	* ROTOR	1.00
EMPTY WEIGHT (LB)	30219.	* NUMBER OF ENGINES	2.	* DIAMETER (FT)	10.0	* TRANSMISSION	0.83
FUEL WEIGHT (LB)	3746.	* EXCESS FACTR FEL MODE	1.40	* DRAG FACTR	1.00	* AIRFRAME	0.78
PASSENGER (LB)	10150.	* ² RATED EPHG HVR	140.			* ENGINE (HP/LB)	8.50
CRUISE SPEC (HP/H)	411.	* CCRV + CLTMB	120.	FLAT PLATE AREAS (SF)		* ENGINE INSTALLATION	1.50
L/D CRUISE	9.93	* CALISE	90.	WING PROFILE	4.66		
** RANGE (STAT MI)	500.	INST PBR FPRG HVR (HP)	8056.	FUSELAGE	5.29	DESIGN MISSION	
* PASSENGER SEATS	50.	CCVER (HP)	6136.	EPENNAGE	2.43	* FLD ELEVATION (FT)	0.
* CARGO (LB)	0.	CRUISE (HP)	BULL.	TOTAL PROFILE	14.25	* FLD SPEED HVR (FPS)	1117.
ACIORS		* SFC (LB/H-F HR)	C.400	WING INFLUENCE	1.89	* STD DAY TEMP (CEG F)	59.
* CIVIC LDADING (PSF)	8.50	DRIVE SYSTEM		COMPONENT WEIGHTS (LB)		* EMERG HOVER ALT (FT)	2030.
RADIALS (FT)	28.7	* EFFICIENCY		ROD/CFS	4035.	* HT DAY TEMP (CEG F)	0.95.
SOLIDITY	0.958	HEL MODE WEIGHT (LB)	3.57	DRIVE SYSTEM	4893.	* CT/SIG MAX	0.150
BLADE CHORG (FT)	2.55	AIRPLANE WEIGHT (LB)	4275.	FECHPLANT	4893.	* MAX ACCELERATION (G)	0.25
ICIAL FLACES			4853.	FUEL SYSTEM	1429.	* DESIGN CRUISE (MPH)	410.
* CT/SIG HCVER	0.120	WING		FUEL SYSTEM	170.	* CRUISE ALTITUDE (FT)	1500.
* PROFILE FRAG COEFF	0.010	AREA (SF)	613.	WING	292.	* SUND SPEED CSE (FPS)	1058.
* EFFICIENCY HOVER	0.85	*LOADING (F/SF)	72.0	EPENNAGE	4947.	* MAX DECELERATION (G)	0.20
* CCALCAC	0.83	* ASPECT RATIC	7.08	LANDING GEAR	5567.	* STRUCT LOAD FACTOP	4.5
CRUISE	0.83	SPAN (FT)	65.5	FLIGHT CONTROLS	860.	* FLIGHT CREW	2.
AIRPLANE WEIGHT (LB)	4035.	* THICKNESS/CHORD RATIO	0.210	ELECTRICAL	1324.	* CABIN CREW	1.
* TIP SPEED HOVER	3656.	* TAPER RATIO	0.210	HYDRAULICS	272.	* ATC SPEED LIMIT	YES
CRUISE	540.	SHEEP (DEG)	8.82	INST+AVIONICS	703.		
* FUSELAGE CLEARANCE (FT)	1.0	CRUISE LIFT COEFF	0.26	AIR CONDITINING	1150.		
* MAX FEL MODE ADV RATIO	0.40	MAX LIFT COEFF COVER	1.00	FURNISHINGS	250.		
* MAX FEL MODE ADV RATIO	0.40	* MAX LIFT COEFF CLEAN	1.00	FLUIDS	221.		
* INDICATES INFIT VARIABLE		*FLAP AREA/WING AREA	0.25	FLIGHT CREW	400.		
		CLIMB SPD/CC,VER SPD	0.90	CABIN CREW	150.		
DESIGN MISSION	SPEED	HEIGHT	DISI	TIME	FUEL		
	MPH	FT	MI	MN	LR		
TAKEOFF & LANDING							
ACCEL. & CCNV.							
AIRPLANE CLIPB	154.0+185.	1500.	1.3	2.00	76.		
ACCEL. TO CRUISE		13500.	12.1	4.24	48.		
CRUISE	411.		12.2	2.15	102.		
AIRPLANE DESCENT	411.0-301.	12000.	436.9	62.85	235.		
APPROACH		3900.	27.6	4.81	26.		
		5.9	3.55	21.			
TOTAL		500.0	62.66	3003.			
RESERVE		20.00	142.				

Information Please Center

WILL FELICIA DESIGN PRIMAVERA 1574

DESIGN ILLUSTRATIONS:

TITEL READER CE SIGA SECUREAM 1674

C=80(11)

DESIGN INTELLIGENCE

OVERALL		POWERPLANT		FUSELAGE		STRUCT-TECHNOLOGY-FACILITIES	
GROSS WEIGHT (LB)	108382.	INST INCAP FTR (IHP)	19507.	LENGTH (FT)	110.0	*ROTOR	1.00
EMPTY WEIGHT (LB)	77147.	NUMBER OF ENGINES	2.	DIA METER (FT)	13.0	*TRANSMISSION	0.83
FUEL WEIGHT (LB)	8766.	*EXCESS FACTOR FEL MODE	1.40	C RAG FACTOR	1.00	*AIRFRAME	0.78
PAX/LCAC (LB)	22450.	*% RATED ENRG HVR	1.40.			*ENGINE (IHP/LB)	0.50
CRUISE SPEED (IHPH)	438.	CCV + CLIMB	120.	FLAT PLATE AREAS (SF)		*ENGINE INSTALLATION	1.72
L/D CRUISE	10.75	CLIMB	90.	WING PROFILE			
SPAN (STAT MM)	50.0	INST PWR ENRG HVR (IHP)	1557.	FUSELAGE			
*PASSENGER SEATS	110.	COVER (IHP)	1508.	EMBODIMENT			
*CARGO (LB)	0.	DISF (IHF)	16321.	TOTAL PROFILE			
		*SFC (LB/HY TR)	5.460	WING INCIDENCE			
ROTORS		COMPONENT WEIGHTS (LB)		DESIGN MISSION		*SDP DAY TEMP (ICEG F1)	
*CLASS LOADING (PSF)		DRIVE SYSTEM		5.58		*FIELD ELEVATION (FT)	
RACILS (FT)		*EFFECTIVENESS		28.65		*SDP SPEED HVR (IHP)	
SOLVILITY	45.0	HEL MODE WEIGHT (LB)	0.67	ROTORS	4.01	*SDP DAY TEMP (ICEG F1)	
ELAICE CFCRC (IFT)	C. CSE	HEL MODE WEIGHT (LB)	0.67	LEVE SYSTEM		*EMERG HOVER ALT (FT)	
	4.64	AIRPLANE WEIGHT (LP)	12592.	PCU/PLANT		*SDP DAY TEMP (ICEG F1)	
TOTAL ELICES			14482.	NACELLES		*EMERG DAY TEMP (ICEG F1)	
*CT/SIG HOVER	0.120	WING AREA (SF)	1.55.	WING		*MAX ACCELERATION (G)	
*PARALLEL DRAG COEFF	0.310	*LOADING (IPSF)	72.0	FUSELAGE		*DESIGN CRUISE (IHP)	
3. DCM/LCD	1.0.C	ASPECT RATIO	7.36	EMBODIMENT		*CRUISE ALTITUDE (FT)	
*EFFICIENCY COVER	0.85	SPAN (FT)	105.1	LANDING GEAR		*MAX DECELERATION (G)	
	0.83	MEAN CHORD (FT)	14.32	FLIGHT CONTROLS		*STRUCT LAD FATOR	
HEL MODE WEIGHT (LB)	C.75	*THICKNESS/CHORD RATIO	C.210	HYPFAULCS	211.	*FLIGHT CREW	
AIRPLANE WEIGHT (LB)	5762.	*STAGER RATIO	0.70	ELECTRICAL	32.2.	*CAPN (PFW)	
*TIP SPEED HOVER	630.	SWEET (CEC)	-5.4	INST+AVIONICS	6611.	*ATC SPEED LIMIT	
	540.	CRUISE LIFT COEFF	0.23	AIR CONDITIONING	426.	*ATC SPEED LIMIT	
*FUSELAGE CLEARANCE (FT)	1.0	MAX LIFT COEFF COVER	1.00	FURNISHINGS	2475.		
*MAR FEL MODE ADV RATIO	0.44	*MAX LIFT COEFF CLEAN	1.43	FLUINS			
		*FLAP AREA/WING AREA	0.25	FLIGHT OPEN			
* INDICATES JAFLI VARIABLE		CLIMB SPEED COVVER SPC	0.96	CABIN OPEN			
TESTING MISSION		SPECIFIC	HEIGHT	DIST	TIME	FUEL	
		MPH	FT	M	LB		
TAKEOFF & LANDING				2	CC		
ACCEL. & COV.				1.3	CC	183.	
AIRPLANE CLIMB				0.58		113.	
ACCEL. TO CRUISE				12.9		560.	
CRUISE	438.			14.7		286.	
AIRPLANE DESCENT	438.0.3C1.			425.8		5781.	
APPROACH				21.4		72.	
				5.37		65.	
				3.55			

卷之三

TILT ROTOR DESIGN EECGRAB 1974

C-75-50

DESIGN ITERATIONS: - 5 -

GENERAL		STRUCTURE		POWERPLANT		FOULAGE		STRENGTH		TECHNOLOGY		FACTORS	
GROSS WEIGHT (LB)	98851.	INST NORMAL FWR (HPH)	\$183.	* LENGTH (FT)	80.0	* PROPS	1.05						
EMPTY WEIGHT (LE)	34316.	* NUMBER OF ENGINES	2.	* DIAMETER (IN)	10.0	* TRANSMISSION	0.85						
FUEL WEIGHT (LF)	4385.	* EXCESS FACTOR HFL MODE	1.40	* DEAG. FACTOR	1.00	* AIRFRAME	0.80						
PAYOUT (LB)	10150.	* MAX RATED FWR HVA	140.			* ENGINE (HP/LB)	7.00						
CRUISE SPEED (MPH)	420.	CCLV * CLIMB	120.	FLAT PLATE AREAS (SP)		* ENGINE INSTALLATION	1.72						
L/C CRUISE	9.98	* CRUISE	9.	WING PROFILE	5.95								
* RANGE (STAT MI)	500.	INST PWS FWR HVA (H)	9183.										
* PASSENGERS SEATS	50.	CCVER (H)	6560.	PROPULSION	2.67	* FIELD ELEVATION (FT)	0.						
* CARGO (LB)	0.	CRUISE (HP)	615.	EXPANSE	15.02	SOUND SPEED HVR (PPS)	1117.						
TCFARS				TOTAL PROFILE									
* DISC LOADING (PSF)	8.50	DRIVE SYSTEM											
RADIUS (FT)	30.2	* EFFICIENCY	6.57	ROTORS	4774.	* CTY SIG MAX	0.150						
SCLIDITY	C.98	HEL MOCP WEIGHT (LB)	5043.	DRIVE SYSTEM	5781.	* MAX ACCELERATION (G)	0.25						
FLATE CRSSD (FT)	3.11	HEL MOCP WEIGHT (LB)	5781.	POWERPLANT	2256.	* DESIGN CRUISE (HPP)	410.						
TOTAL ELADES	6	AIRPLANE WEIGHT (LB)		MACHINES	513.	* CRUISE ALTITUDE (FT)	15000.						
* CT/SIG NOVR	0.120	WING		FUEL SYSTEM	383.	SOUND SPEED CRSP (PPS)	1058.						
*ARCFILE DRAG COEFF	0.010	AREA (SF)	679.	WING	4352.	* MAX DECELERATION (G)	0.20						
X TAILCND	9.7	* LOADING (PSF)	72.0	FUSELAGE	5798.	* STRUCT LOAD FACTR	4.5						
*EFFICIENCY HCVER	C.93	ASPECT RATIO	7.79	EXPANSE	977.	* PLIGHT CFFN	2.						
CINV28	0.81	SPAN (FT)	72.5	LANDING GEAR	1466.	* CABIN CREW	1.						
CRUISE	C.80	PEAN CHCBO (FT)	9.36	FLIGHT CONTROLS	2174.	* ATC SPEED LIMIT	YES						
*REL MOCP WEIGHT (LB)	9774.	*THICKNESS/CHCBO RATIO	C.210	HYDRAULICS	286.								
AIRPLANE WEIGHT (LE)	9328.	*TAPEZ FATIO	C.70	ELECTRICAL	802.								
*TIP SPEED NOVR	630.	SHREEF (DEG)	5.3	INST+AVIONICS	703.								
		CRUISE LIFT COEFF	C.25	AIR CONDITIONING	1150.								
*FOULAGE CLEARANCE (FT)	540.	PAX LIFT CCFFY CCNTER	1.00	FURNISHINGS	2500.								
*MAX REL NCDF ADV RATIO	1.0	PAX LIFT CCFFY CLEAN	1.40	PLUTCS	249.								
	0.43	SEFLAP AREA/WING AREA	0.25	FLIGHT CREW	400.								
* INDICATES INPUT VARIABLE		CLIMB SEC/CCVER SED	C.91	CABIN CREW	150.								

DESIGN MISSION

SPEED	WEIGHT	TIME	FUEL
MPH	FT	MIN	LB
TAKEOFF & LANDING			
ACCEL. C CCHV.		4.00	88.
AIRPLANE CLIMB	156.192.	1.3	58.
ACCEL. TC CRUISE		1.03	
CRUISE	420.	14.0	135.
AIRPLANE DESCENT	420.301.	62.01	2914.
APPBACH	3000.	28.4	32.
		9.9	3.95
			2.
TOTAL	500.0	64.55	3501.
RESERVE		20.00	884.

Tilt Rotor Design Program 1974

0-85-50

DESIGN LIBERATIONS: 4

CRAFT		POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	42159.	INST NORMAL FUR (HP)	7603.	* LENGTH (FT)	80.0	* ROTOR TRANSMISSION	0.95
EMPTY WEIGHT (LP)	28198.	* SUPER CP ENGINES	2.	* DIAMETER (PT)	10.0	* AIRFRAME	0.81
FUEL WEIGHT (LB)	3411.	* EXCESS FUEL LOAD	1.60	* DRAG FACTOR	1.00	* ENGINE (HP/LB)	0.76
PAYOUT (LB)	10150.	* TAILED ENGR HVR	140.			* ENGINE INSTALLATION	10.00
CRUISE SPEED (MPH)	10150.	CNV + CLIMB	.20.	* PLAT PLATE AREA (SP)			1.72
L/D CRUISE	9.44	*		MING PROFILE	3.89		
* RANGE (STAT M)	561.	INST FUR ENGR HVR (HP)	755.				
* PASSENGER SEATS	59.	CCNVER (HP)	572.	* SPANNEGE	5.29	* PULL ELEVATION (PT)	
* CARGO (LB)	9.	CRUISE (HP)	780.	TOTAL PROFILE		* SOUND SPEED HVR (FPS)	1117.
BOTCRS			0.380	WING INDUCED		* STD DAY TEMP (DEG F)	0.
* DISC LOADING (PSY)	8.59	DRIVE SYSTEM	6.67			* HOT DAY TEMP (DEG F)	59.
RADIUS (FT)	28.1	EFFICIENCY	6.67	ROTOR		* 24HR HOVER ALT (PT)	2000.
SCLICITY	0.098	REL NOE WEIGHT (LB)	3882.	DRIVE SYSTEM			
FLACF CHCBB (PT)	2.88	AIRPLANE WEIGHT (LB)	9550.	POWERPLANT			
TOTAL FLADES				MACHINES			
* C1/SIG HOVER	0.120	WING AREA (SF)	586.	FUEL SYSTEM			
* FRCPPLF DRAG COEFF	0.010	AFFECT RATIC	7.94				
* DCHBLCD	9.6	WICADING (FSE)	72.6				
* EFFICIENCY HCVER	0.87	SEAN (PT)	68.2				
CCNVER	0.85	PEAN CHCCE (PT)	8.59				
CRUISE	0.80	* THICKNESS/CBCBD RATIO	0.10				
BEL NOE WEIGHT (LB)	3620.	STAFFER RATIO	0.70				
AIRPLANE WEIGHT (LB)	3313.	SWEEP (DEG)	-5.3				
* TIP SPEED HOVER	630.	CRUISE LIFT COEFF	0.26				
CRUISE	540.	PAX LIFT COEFF CNVER	1.00				
* FUSELAGE CLEARANCE (PT)	1.0	PAX LIFT COEFF CLEAN	1.40				
* BIX BPL MODE ADV RATIC	0.40	* PIAP AREA/WING AREA	0.25				
* INDICATES INPUT VARIABLE		CLINE SEL/CNPER SPD	0.89				
DESIGN MISSION	SPEC	HEIGHT	DIST	TIME	FUEL		
	MPH	FT	MI	MIN	LE		
TAKEOFF & LANDING							
ACCEL. & CCNV.		1500.	1.3	2.00	66.		
AIRPLANE CLIMB	153.1, 188.	13500.	11.5	1.05	44.		
ACCEL. TO CRUISE							
CRUISE	411.	437.9	63.99	2333.			
AIRPLANE DESCENT	411.-301.	12000.	27.3	4.75	24.		
APPBACH		3000.	9.9	3.95	24.		
TOTAL			500.0	81.57	2748.		
FESTIVE			20.00	662.			

DESIGN LIBERATIONS: 4							
TAKEOFF & LANDING							
ACCEL. & CCNV.							
AIRPLANE CLIMB							
ACCEL. TO CRUISE							
CRUISE	411.	437.9	63.99	2333.			
AIRPLANE DESCENT	411.-301.	12000.	27.3	4.75	24.		
APPBACH		3000.	9.9	3.95	24.		
TOTAL			500.0	81.57	2748.		
FESTIVE			20.00	662.			

LITERATOR DESIGN PROGRAM 1974

D-80-23

ACC 201 INVESTIGATIONS

DESIGN ITERATIONS: 5

TILT ROTOR DESIGN PROGRAM 1974

D-6J-83

DESIGN ITERATIONS: 6

OVERALL		POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	75976.	INST NORMAL PWR (HP)	12740.	*LENGTH (FT)	95.0	*ROTOR	1.00
EMPTY WEIGHT (LB)	52802.	NUMBER OF ENGINES	2.	*DIAMETER (FT)	11.5	*TRANSMISSION	0.83
FUEL WEIGHT (LB)	5874.	EXCESS FACTOR HEL MODE	1.43	*DRAG FACTOR	1.00	*AIRFRAME	0.78
PAYOUT (LB)	16300.	** RATED EMRG HVR	140.			*ENGINE (HP/LB)	8.50
CRUISE SPEED (MPH)	409.	* CONV + CLIMB	120.	FLAT PLATE AREAS (SF)		*ENGINE INSTALLATION	2.22
L/D CRUISE	12.54	* CRUISE	90.	WING PROFILE			
RANGE (STAT MILE)	500.	INST PWR EMRG HVR	1HP	12740.	7.73	DESIGN MISSION	Q.
PASSENGER SEATS	80.	CUNVER	(HP)	9668.	7.04	*FIELD ELEVATION (FT)	
CARGO (LB)	0.	CRUISE	(HP)	11920.	6.64	SOUND SPEED HVR	
ROTORS		*SFC (LB/HP HR)	0.400	TOTAL PROFILE	23.48	(FPS)	1117.
*DISC LOADING (PSF)	7.00	DRIVE SYSTEM		WING INDUCED	2.95	*STD DAY TEMP (DEG F)	59.
RADIUS (FT)	41.6	*EFFICIENCY				*EMERG HOVER ALT (FT)	2000.
SOLIDITY	0.088	HEL MODE WEIGHT (LB)	8542.	COMPONENT WEIGHTS (LB)		*HOT DAY TEMP (DEG F)	95.
L-ADe CHORD (FT)	3.81	AIRPLANE WEIGHT (LB)	9596.	ROTOR	7392.	*C/SIG MAX	0.153
TOTAL BLADES	6			DRIVE SYSTEM	9594.	*MAX ACCELERATION (G)	0.25
*C/SIG -LAYER	0.120	WING		POWERPLANT	3028.	*DESIGN CRUISE (MPH)	400.
*PROFILE DRAG COEFF.	0.010	AREA (SF)	1225.	VACUUM	1C03.	*CRUISE ALTITUDE (FT)	15000.
* DOWNLOAD	9.6	*LOADING (PSF)	62.0	FUEL SYSTEM	632.	*SOUND SPEED CASE (FPS)	1058.
*EFFICIENCY HOVER	0.85	ASPECT RATIO	7.62	FUSELAGE	7925.	*MAX DECELERATION (G)	0.20
CUNVER	0.83	SPAN (FT)	96.6	ENGINAGE	8094.	*STRUCT LOAD FACTOR	4.5
CRUISE	0.82	MEAN CHORD (FT)	12.68	LANDING GEAR	1482.	*FLIGHT CREW	2.
HEL MODE WEIGHT (LB)	7392.	*THICKNESS/CHORD RATIO	0.210	FLIGHT CONTROLS	2279.	*CABIN CREW	2.
AIRPLANE WEIGHT (LB)	6923.	*TAPER RATIO	0.70	HYDRAULICS	4052.	*ATC SPEED LIMIT	
*TIP SPEED HOVER	65.5	SWEET (DEG)	-5.3	ELECTRICAL	357.		
CRUISE	542.	CRUISE LIFT COEFF	0.23	INSTR-AVIONICS	1499.		
*FUSELAGE CLEARANCE (FT)	1.0	MAX LIFT COEFF CONVER	0.93	AIR CONDITIONING	826.		
*MAX HEL MODE ADV RATIO	0.40	MAX LIFT COEFF CLEAN	1.46	FURNISHINGS	1540.		
		*FLAP AREA/WING AREA	0.25	FLUIDS	3700.		
		CLIMB SPD/CUNVER SPD	0.92	FLIGHT CREW	380.		
				CABIN CREW	300.		
DESIGN MISSION	SPEED KPH	HEIGHT FT	DIST MI	TIME MIN	FUEL LB		
TAKOFF & LANDING				2.00	117.		
ACCEL. & COV.				1.24	92.		
AIRPLANE CLIMB	151.0..186.	1500.	12.6	4.50	311.		
ACCEL. TO CRUISE		13500.	13.8	2.46	180.		
CRUISE	409.	432.8	63.52	392.			
AIRPLANE DESCENT	409..301.	12000.	29.3	5.11	43.		
APPROACH	3303.	10.0	3.99	42.			
TOTAL		500.0	82.82	775.			
RESERVE		20.00	1169.				

תורת הרים ותורת מים

בג'ון

DESIGN ITERATIONS 5

TILT ROTOR DESIGN PROGRAM 1974

D-75-50

DESIGN IERATIONS: 5

OVERALL		POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	50338.	INST NORMAL PWR (HP)	8642.	* LENGTH (FT)	80.0	* ROTOR DIAMETER (FT)	1.05
EMPTY WEIGHT (LB)	35983.	NUMBER OF ENGINES	2.	* DIAMETER (FT)	10.0	* TRANSMISSION	0.05
FUEL WEIGHT (LB)	4205.	EXCESS FACTOR HEL MODE	1.4J	* DRAG FACTOR	1.00	* AIRFRAME	0.40
PAYOUT (LB)	10153.	% RATED ENRG + HVR	140.	FLAT PLATE AREAS (SF)	1.4J	* ENGINE (HP/LB)	7.00
CRUISE SPEED (MPH)	407.	CONV + CLIMB	120.	WING PROFILE	1.4J	ENGINE INSTALLATION	2.02
L/D CRUISE	10.19	CRUISE	90.	FUSELAGE	1.4J	DESIGN MISSION	-
RANGE (STAT MIN)	523.	INST PWR ENRG +VR (HP)	8642.	EMPERNAGE	1.4J	FIELD ELEVATION (FT)	-
PASSENGER SEATS	52.	CORRIDOR (HP)	6598.	TOTAL PROFILE	16.65	SOUND SPEED MVR (FPS)	0.
CARGO (LB)	3.	CRUISE (HP)	8357.	WING INDUCED	2.03	STD DAY TEMP (DEG F)	59.
ROTORS		*SFC (LB/HP *RI)	0.420			*EMERG HOVER ALT (FT)	2000.
*DISC LOADING (PSF)		7.00	DRIVE SYSTEM	COMPONENT WEIGHTS (LB)		*STD DAY TEMP (DEG F)	95.
RADIUS (FT)	33.8	*EFFICIENCY	0.97	ROTOR	4995.	*CITSIG MAX	0.150
SOLIDITY	0.088	HEL MODE WEIGHT (LB)	5439.	DRIVE SYSTEM	6298.	*MAX ACCELERATION (G)	0.25
BLADE C-1RD (FT)	3.10	AIRPLANE WEIGHT (LB)	6098.	POWERPLANT	2494.	*DESIGN CRUISE (MPH)	400.
TOTAL BLADES	6			NACELLES	356.	*CRUISE ALTITUDE (FT)	1500.
*CT/SIG HOVER		WING		FUEL SYSTEM	356.	SOUND SPEED CRSE (FPS)	1058.
*PROFILE DRAG COEFF	0.120	AREA (SF)	812.	WING	4900.	*MAX DECELERATION (G)	0.25
Z DOWNLOAD	9.5	*LOADING (PSF)	62.0	FUSELAGE	5824.	*STRUCT LOAD FACTOR	4.5
*EFFICIENCY HOVER	0.83	ASPECT RATIO	7.82	EMPERNAGE	1007.	*FLIGHT CREW	2.
CONVER	0.81	SPAN (FT)	79.7	LANDING GEAR	1510.	*CABIN CREW	1.
CRUISE	0.82	MEAN CHORD (FT)	10.19	FLIGHT CONTROLS	2268.	*ATC SPEED LIMIT	YES
HEL MODE WEIGHT (LB)	4995.	*THICKNESS/CHORD RATIO	0.210	HYDRAULICS	290.		
AIRPLANE WEIGHT (LB)	6675.	*TAPER RATIO	0.70	ELECTRICAL	837.		
*TIP SPEED HVR	605.	SWEET (DEG)	-5.3	INSTR/AVIONICS	-		
CRUISE	540.	CRUISE LIFT COEFF	0.25	AIR CONDITIONING	1150.		
*FUSELAGE CLEARANCE (FT)	1.3	MAX LIFT COEFF COVER	0.93	FURNISHINGS	2500.		
*MAX HEL MODE ADV RATIO	0.40	*MAX LIFT COEFF CLEAN	1.40	FLUIDS	-		
		*FLAP AREA/WING AREA	0.25	FLIGHT CREW	430.		
* INDICATES INPUT VARIABLE		CLIMB SPD/CONVER SPD	0.89	CABIN CREW	150.		

DESIGN MISSION	SPEED MPH	HEIGHT FT	DIST MI	TIME MIN	FUEL LB
TAKEOFF & LANDING				2.00	83.
ACCEL. & CONV		1533.	1.6	1.27	67.
AIRPLANE CLIMB	148.182.	13563.	12.3	4.51	221.
ACCEL. TO CRUISE				2.66	139.
CRUISE	437.	433.3	63.94	2803.	
AIRPLANE DESCENT	407.301.	12300.	27.9	6.87	29.
APPRAJACH		3000.	10.0	3.99	30.
TOTAL		500.0	83.24	3372.	
RESERVE		20.03	833.		

C
OF FLOOR
QUALITY

DESIGN ITEM LISTS 4

TILT ROTOR DESIGN PROGRAM 1974

๘๙๓

III. ROTOR DESIGN PROGRAM 1514

S-20-50

DESIGN ITERATIONS: 4

OVERALL		FUSELAGE		STRUCTURAL MECHANICALS	
GROSS WEIGHT (LB)	53415.	INST NEUTRAL PWR (HPI)	7649.	*LENGTH (FT)	80.0
EMPTY WEIGHT (LB)	30134.	NUMBER OF ENGINES	2.	*DIAMETER (FT)	*ROT3P *TRANS-15 SIGN
FUEL WEIGHT (LB)	3755.	*EXCESS FACTOR FOR FUEL WEIGHT	1.45	*DRAG FACTOR	10.0 1.00
FAYLAR (LB)	10150.	*X EATED FUEL HPI	150.	*AIRCRAFT	0.78
CRUISE SPEED (MPH)	321.	CNV + CLIMB	120.	*ENGINE (HPI/LBI)	6.50
L/D COEFFICIENT	1.215.	CLIMB	90.	*ENGINE INSTALLATION	1.50
**RANGE (STAT MILE)	510.	INST PWR EMERG HPI	7645.	DESIGN MISSION	
*PASSENGER SEATS	50.	CLIMB	5523.	*FIELD ELEVATION (FT)	1.00
*CARGO (LB)	Co.	CRUISE (HPI)	6989.	SURFACE SPEED MAX (FPS)	6.33
		SSFC, ILR/BP FBI	6.440	*STD DAY TEMP (CEG F)	0.
FACTORS				*EMERG HOVER ALT (FT)	59.
*CIVIC LANDING, PSF1	5.50	DRIVE SYSTEM		*STD DAY TEMP (CEG F)	200.
RADIUS (FT)	35.3	*EFFICIENCY	0.57	*STD DAY TEMP (CEG F)	55.
SOLIDITY	0.125	*HEL MODE WEIGHT (LB)	2052.	*CIVIC MAX	0.150
PLACE C-CFD (FT)	3.58	AIRPLANE WEIGHT (LB)	8432.	*MAX ACCELERATION (G)	0.25
TOTAL PLACES	12			*DESIGN CRUISE (MPH)	310.
*CIVIC HOVER COEFF	0.120	WING AREA (SF)	1126.	*CRUISE ALTITUDE (FT)	15000.
4 DYNALCAO	5.1	*LOADING (PSF)	52.0	*SUSP. SPEED CASE (EPSI)	1C5E.
*EFFICIENCY HOVER	0.85	*SPEC TRAILIN	7.55	*MAX DECLINATION (G)	0.20
COVER	0.83	SPAN (FT)	9C.7	*STRICT LOAD FACTOR	4.5
CRUISE	0.66	MEAN CHGE (FT)	11.1	*FLIGHT CASE	2.
HEL PGCE WEIGHT (LB)	6716.	*THICKNESS/CHORD RATIO	0.210	*CABIN CREW	1.
AIRPLANE WEIGHT (LB)	6842.	STAPER RATIO	0.70	*A/C SPEED LIMIT	YES
*TIP SPEED HOVER	3.50.	SWEEP (CC)	-5.3		
*APLICE	3.50.	CRUISE LIFT CHGE	0.21		
*FUSELAGE CLEARANCE (FT)	1.0	MAX LIFT COEFF COVER	1.98		
*MAX FUEL MODE AVAILABILITY	0.40	*MAX LIFT CHGE CLEAN	1.45		
*INDICATES INPUT VARIABLE		*FLAP AREA/MIN ARE	0.25		
		FLIMA SPECIFICATIVE SED	1.32		
DESIGN PISSILA		SPEED MPH	HEIGHT FT	TIME PI	FUEL LBS
TAKEOFF & LADING				2.00	
ACCE. & CCN.					
AIRPLANE CLIMB	136.1FT.	1500.	1.6	1.41	66.
ACCE. TO CRUISE		13500.	1.4		
CRUISE	323.	5.1	1.17	51.	
AIRPLANE DESCENT	223.268.	4.80.2	81.26	26.8.	
APPROACH		226.6	6.65	32.	
		34.0	12.0	4.46	25.
ICLAL		500.0	102.02	1097.	
RESERVE		20.00			

TITEL FICCA CESICA PATECEAN 1574

5-86-66

DESIGN INTERACTIONS: 12

HILY JET DESIGN PROGRAM 1974

S-75-50

DESIGN ITERS: 6

OVERALL		POWERPLANT		FUSELAGE		STRUCT TECHNOLOGY FACTORS	
GROSS WEIGHT (LB)	66347.	INST NORMAL PWR (HP)	9426.	* LENGTH (FT)	80.0	* ROTOR	1.05
EMPTY WEIGHT (LB)	49418.	* NUMBER OF ENGINES	2.	* DIAMETER (FT)	10.0	* TRANSMISSION	0.65
FUEL WEIGHT (LB)	6778.	* EXCESS FACTOR HEL MODE	1.45	* DRAG FACTOR	1.00	* AIRFRAME	0.85
PAYOUT (LB)	10150.	*% RATED ENG HVR	140.			* ENGINE (HP/LB)	7.00
CRUISE SPEED (MPH)	334.	CONV + CLIMB	120.			* ENGINE INSTALLATION	2.55
L/D CRUISE	13.33	Cruise	90.				
* RANGE (STAT MII)	50J.	INST PWR ERG HVR (HP)	9426.				
* PASSENGER SEATS	50.	CONVER (HP)	7360.				
* CARGO (LB)	0.	CRUISE (HP)	8088.				
		* SFC (LB/HP HR)	0.423				
ROTOR							
* DISC LOADING (PSF)		5.50	DRIVE SYSTEM				
RADIUS (FT)	43.1	* EFFICIENCY	0.97	COMPONENT WEIGHTS (LB)	8865.		
SOLIDITY		HEL MODE WEIGHT (LB)	10513.	ROTORS	11006.	* ENERGY HOVER ALT (FT)	2000.
BLADE CHORD (FT)	3.93	AIRPLANE WEIGHT (LB)	11006.	DRIVE SYSTEM	3434.	* SHOT DAY TEMP (DEG F)	95.
TOTAL BLADES	12			POWERPLANT	1385.	* CRUISE ALTITUDE (FT)	1000.
* T/SIG - OVER	0.120	WING		ACELLLES	1443.	* SOUND SPEED CRSE (FPS)	1056.
* PROFILE DRAG COEFF	0.010	AREA (SF)	1237.	FUEL SYSTEM	5555.	* MAX DECELERATION (G)	0.20
Z DOWNLOAD	9.2	*LOADING (PSF)	52.3	WING	6043.	* STRUCT LOAD FACTOR	4.5
* EFFICIENCY - OVER	0.83	ASPECT RATIO	7.81	FUSELAGE	1287.	* FLIGHT CREW	2.
C CONVER	0.81	SPAN (FT)	98.3	EMPIENNAGE	1930.	* CABIN CREW	1.
CRUISE		MEAN CHORD (FT)	12.5	LANDING GEAR			
HEL MODE WEIGHT (LB)	0.66	* THICKNESS/CHORD RATIO	0.210	FLIGHT CONTROLS	3205.		
AIRPLANE WEIGHT (LB)	8695.	* TAPER RATIO	0.7	HYDRAULICS	326.		
* CLIP SPEED HOVER	8865.	SWEET (DEG)	-5.3	ELECTRICAL	1185.		
C CRUISE	383.	CRUISE LIFT COEFF	0.29	INSTR+AVIONICS	733.		
* FUSELAGE CLEARANCE (FT)	385.	MAX LIFT COEFF CONVER	1.98	AIR CONDITIONING	1150.		
* MAX HEL MODE ADV RATIO	1.0	* MAX LIFT COEFF CLEAN	1.40	FURNISHINGS	2500.		
	0.40	*FLAP ARMING AREA	0.25	FLUIDS	322.		
		CLIMB SPD/CONVER SPD	1.35	FLIGHT CREW	400.		
				CABIN CREW	150.		
DESIGN MISSION	SPED	HEIGHT	DIST	TIME	FUEL		
	MPH	FT	Mi	MIN	LB		
TAKEOFF & LAND							
ACCEL. & COV.							
AIRPLANE CLIMB	150.		1.4	1.21	90.		
ACCEL. TO CRUISE	13500.		12.8	5.96	263.		
CRUISE	334.		5.7	1.27	71.		
AIRPLANE DESCENT	334.0277.		437.1	78.46	3303.		
APPROACH			33.2	6.56	40.		
			3303.	4.20	35.		
TOTAL	503.0		98.64	3875.			
RESERVE			20.00	904.			

OF HUMAN QUALITY

TILT DESIGN PROGRAM 1974

550

Appendix 2: Noise Maps for Basic Variation Aircraft

卷之三

STAGE LENGTH	25.	50.	75.	100.	125.	200.	300.	400.	500.	700.	900.
AC. CYCLES/STARTS	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
FLIGHT CYCLE	C.642	L.464	0.367	0.358	0.315	0.261	C.246	0.253	0.245	C.373	0.323
FUEL & DIL	C.222	J.222	0.234	C.221	C.212	C.203	C.199	C.195	C.186	D.226	0.212
FULL INSURANCE	0.261	J.272	0.223	C.221	C.177	J.142	C.145	D.142	C.128	C.271	0.218
TOTAL FLIGHT CPS	1.324	1.001	J.254	C.743	J.704	0.661	C.517	D.555	C.550	C.754	0.711
LAUNCH AIRFARE	0.312	C.236	J.254	C.215	C.146	C.105	C.115	C.129	C.123	C.215	0.665
POTENTIAL AIRFARE	0.196	C.115	J.159	C.974	E.255	D.172	C.144	C.144	C.137	C.272	0.557
LAUNCH VEHICLES	C.225	C.186	C.129	C.121	G.075	D.072	C.072	C.072	C.072	C.072	0.050
MATERIAL ENGINES	J.251	J.296	1.217	C.162	C.116	C.116	C.116	C.116	C.116	C.116	0.657
WAT. PUSSEN	1.093	L.664	0.496	L.415	C.331	0.217	0.217	0.221	C.359	J.144	0.144
TOTAL MAINTENANCE	2.661	1.585	1.173	C.571	C.363	C.365	C.365	C.365	C.365	C.365	0.329
DEPRECATION	1.49	1.792	0.645	L.585	L.515	C.374	C.374	C.374	C.374	C.374	0.329
LAST STAGE OPERATING COST											0.511
\$/AIRCRAFT MILE			5.54	5.54	3.35	1.982	1.71	1.518	1.518	1.442	2.311
\$/FLIGHT HOUR			76.6	77.6	63.0	63.0	55.1	581.2	572.5	566.6	622.5
\$/SEAT MILE			0.1011	C.0111	0.0535	0.0467	0.0356	0.0358	0.0358	0.0358	0.0460
\$/SEAT-TRIP			2.53	3.36	4.01	4.67	5.55	7.16	5.55	12.41	14.42

DEPARTURE

TYPE MISTIC FA ST SUU FT SICELINE
 TYPE = 1.5 4.5 7.5 10.5 1.
 61.5 64.5 67.5 7C.5
 FAU = 100.6 101.1 101.5 102.9 103.

ARRIVAL

TIME HISTORY AT 500 FT SLIDE LINE

C-ECL-SC

DEFIATURE PATH T1 10,000 FT FS
MAX FUSE ANGLE=20°, OBSTACLE CLEAR ANGLE=60°, OBSTACLE HEIGHT=100. MAX ACCEL FGATION RATE=20. ACCFL BUILDUP TIME= 5.

OBSTACLE CLEARENCE	TIME SEC	DIST FT	ALT FT	VEL FPS	ACC GFM	GAM DEG	THFSLT LB	LNGC LB	LNGI LB	LWGC LB			DFUST ALP LB			THI AIV LB			LAMA LB			HU CT			POWER HP						
										DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG	DEG					
0.0	0.0	0.0	0.0	0.0	4419.2	0.0	0.0	1298.	0.0	30.1	2.9-57.1	30.5	0.0	0.0662	0.0	0.0	0.0088	0.0	0.0	6312.											
8.6	1.1	19.5	5.0	0.036	60.0	4458.0	-1.0	-511.	1.0	29.7	24.6-35.4	28.2	0.0	0.0658	J-131	0.0	0.093	J-131	0.0	0.0	6757.										
16.5	31.1	31.0	0.0	0.124	60.0	4827.5	-6.0	-666.	3.0	66.4	1.8	27.5	24.6-35.4	25.0	0.0	0.0752	J-1057	0.0	0.0097	J-1057	0.0	0.0	7652.								
21.6	42.9	15.0	0.0	0.153	60.0	4541.0	-13.0	-656.	6.0	64.8	4.0	26.9	24.6-35.4	24.0	0.0	0.0786	J-0786	0.0	0.0097	J-0786	0.0	0.0	8576.								
21.8	35.5	61.1	21.0	0.0	0.117	60.0	4802.5	-22.0	-714.	11.0	581.	71.0	27.7	24.6-35.4	22.0	0.0	0.0809	J-0113	0.0	0.0098	J-0113	0.0	0.0	8376.							
14.2	53.1	91.1	25.0	0.0	0.084	60.0	4681.2	-36.0	-702.	13.0	559.	11.0	28.5	24.6-35.4	21.0	0.0	0.0830	J-0145	0.0	0.0093	J-0145	0.0	0.0	8076.							
14.7	58.0	100.0	26.0	0.0	0.049	60.0	4550.0	-52.0	-703.	26.0	534.	159.	29.3	24.6-35.4	21.0	0.0	0.0853	J-1791	1.0	0.0091	J-1791	1.0	0.0	8276.							
17.0	67.0	156.0	34.0	0.0	0.195	52.0	4421.8	-80.0	-937.	25.0	307.	137.	27.8	24.6-27.6	20.0	0.0	0.0683	J-0204	0.0	0.0093	J-0204	0.0	0.0	8076.							
18.5	135.0	199.0	49.0	0.0	0.179	41.0	4425.6	-149.	-1261.	25.0	211.	110.	39.6	24.6-17.0	20.0	0.0	0.083	J-0316	0.0	0.093	J-0316	0.0	0.0	8276.							
20.1	191.0	243.0	48.0	0.0	0.176	34.0	4445.2	-200.	-1539.	26.0	165.	72.0	47.4	24.6-16.0	25.0	0.0	0.083	J-0432	0.0	0.0093	J-0432	0.0	0.0	8076.							
21.1	262.0	287.0	55.0	0.0	0.180	29.0	4452.5	50.	-1714.	23.0	148.	53.0	52.6	24.6-16.0	24.0	0.0	0.0877	J-0544	0.0	0.0093	J-0544	0.0	0.0	8076.							
21.2	345.0	329.0	64.0	0.0	0.184	24.0	4457.0	285.	-1552.	28.0	135.	43.	56.3	24.6-16.0	20.0	0.0	0.0875	J-0556	0.0	0.0093	J-0556	0.0	0.0	8076.							
21.8	439.0	370.0	72.0	0.0	0.154	21.0	4462.6	-635.	-2218.	40.0	137.	43.	58.6	24.6-16.0	20.0	0.0	0.0873	J-0766	0.0	0.0093	J-0766	0.0	0.0	8076.							
21.9	444.0	415.0	81.0	0.0	0.156	19.0	4458.0	166.	-2454.	61.0	140.	51.	60.7	24.6-16.0	25.0	0.0	0.0873	J-0877	0.0	0.0093	J-0877	0.0	0.0	8276.							
21.8	662.0	448.0	89.0	0.0	0.196	17.0	4447.0	1563.	-2712.	85.	171.	69.	62.4	24.6-16.0	23.0	0.0	0.0874	J-0988	0.0	0.0093	J-0988	0.0	0.0	8076.							
21.2	75.0	466.0	58.0	0.0	0.193	15.0	4436.0	2146.	-3000.	125.	156.	90.	63.8	24.6-16.0	20.0	0.0	0.0876	J-1095	0.0	0.0093	J-1095	0.0	0.0	8076.							
33.0	548.0	530.0	107.0	0.0	0.175	14.5	4228.0	3466.	-3466.	165.	116.	131.	64.9	24.6-16.0	18.0	0.0	0.0993	J-1201	0.0	0.0093	J-1201	0.0	0.0	8076.							
32.3	1118.0	572.0	116.0	0.0	0.161	13.4	4154.0	3550.	-116.	219.	72.	176.	63.3	24.6-16.0	11.0	0.0	0.072	J-1309	0.0	0.0093	J-1309	0.0	0.0	8076.							
32.5	1257.0	613.0	125.0	0.0	0.184	12.4	4120.0	4372.	-144.	279.	61.	230.	62.7	24.6-16.0	12.0	0.0	0.0961	J-1392	0.0	0.0093	J-1392	0.0	0.0	8276.							
35.4	1495.0	655.0	134.0	0.0	0.181	11.0	3625.1	5277.	-1526.	345.	91.	293.	61.5	24.6-16.0	13.0	0.0	0.0916	J-1411	0.0	0.0083	J-1411	0.0	0.0	8076.							
37.1	1715.0	658.0	143.0	0.0	0.172	10.8	3616.0	6151.	-2757.	407.	129.	35.5	60.8	24.6-16.0	8.0	0.0	0.0976	J-1555	0.0	0.0076	J-1555	0.0	0.0	8076.							
33.9	1576.0	746.0	152.0	0.0	0.166	10.2	3466.	6156.	-3175.	452.	165.	39.9.	61.3	24.6-16.0	13.0	0.0	0.0993	J-1701	0.0	0.0093	J-1701	0.0	0.0	8076.							
40.8	2273.0	758.0	161.0	0.0	0.151	9.6	3215.0	7737.	-4515.	50.0	214.	44.0.	55.6	24.6-16.0	13.0	0.0	0.0955	J-1755	0.0	0.0093	J-1755	0.0	0.0	8076.							
32.5	1257.0	613.0	125.0	0.0	0.184	12.4	4120.0	4372.	-144.	279.	61.	230.	62.7	24.6-16.0	12.0	0.0	0.0961	J-1392	0.0	0.0093	J-1392	0.0	0.0	8276.							
34.5	1495.0	655.0	134.0	0.0	0.181	11.0	3625.1	5277.	-1526.	345.	91.	293.	61.5	24.6-16.0	13.0	0.0	0.0916	J-1411	0.0	0.0083	J-1411	0.0	0.0	8076.							
37.1	1715.0	658.0	143.0	0.0	0.172	10.8	3616.0	6151.	-2757.	407.	129.	35.5	60.8	24.6-16.0	8.0	0.0	0.0976	J-1555	0.0	0.0076	J-1555	0.0	0.0	8076.							
32.6	4712.0	1119.0	217.0	0.0	0.137	7.0	2297.	1139.	-1139.	1139.	1139.	737.	737.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
55.5	5139.0	1205.0	216.0	0.0	0.182	7.1	2057.	12463.	-12463.	12463.	12463.	711.	711.	24.6-16.0	13.0	0.0	0.0956	J-1756	0.0	0.0093	J-1756	0.0	0.0	8076.							
59.1	5916.0	130.0	225.0	0.0	0.178	6.8	1837.	1458.	-1458.	1458.	1458.	843.	843.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
62.2	6761.0	1359.0	234.0	0.0	0.176	6.6	1625.	1574.	-1574.	1574.	1574.	937.	937.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
66.5	7646.0	1459.0	243.0	0.0	0.178	6.3	1434.	1655.	-1655.	1655.	1655.	1060.	1060.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
70.0	8515.0	1594.0	253.0	0.0	0.183	6.1	1287.	1827.	-1827.	1827.	1827.	1123.	1123.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
71.1	8835.0	1624.0	256.0	0.0	0.184	6.0	1241.	1858.	-1858.	1858.	1858.	1152.	1152.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
E7.6	12869.0	2135.0	256.0	0.0	0.193	5.0	1405.	1405.	-1405.	1405.	1405.	1129.	1129.	24.6-16.0	13.0	0.0	0.0953	J-1753	0.0	0.0093	J-1753	0.0	0.0	8076.							
E19.3	47518.0	16000.0	251.0	0.0	0.144	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

ORIGINAL PAGE IS
OF POOR QUALITY

THE NOISE AMPLITUDE IS C-887E2U+C7

AT 500. FI. SIDELINE AND U. FI. FORWARD, NJIS=1.0, EPNDB

AT 1000. FI. SIDELINE AND J. FI. FORWARD, NJIS=1.0, EPNDB

AT 2000. FI. SIDELINE AND O. FI. FORWARD, NJIS=1.0, EPNDB

AT 3000. FI. SIDELINE AND Q. FI. FORWARD, NJIS=1.0, EPNDB

AT 4000. FI. SIDELINE AND -5CL0. FI. FORWARD, NJIS=0.9, FPNDB

AT 5000. FI. SIDELINE AND 6CL0. FI. FORWARD, NJIS=0.9, FPNDB

AT 6000. FI. SIDELINE AND 3000. FI. FORWARD, NJIS=0.9, FPNDB

AT 7000. FI. SIDELINE AND 5110. FI. FORWARD, NJIS=0.9, FPNDB

AT 8000. FI. SIDELINE AND 7500. FI. FORWARD, NJIS=0.9, FPNDB

AT 9000. FI. SIDELINE AND 10000. FI. FORWARD, NJIS=0.9, FPNDB

C-EC-SC

APPROVAL PATH FROM 10,000 FT 'SSL'
FINAL AREA SPT ETC = 2.0. KIAS, FINAL VERT FOR SPEED = C. KIAS, FINAL APPROACH SLOPE = 8.0 DEG, ACCL BUILDUP TIME = 5.0 SEC

TIME SEC	C/LST F1	ALT FT	VEL FPS	ACC G	THRUST DEG	LNG LB	DWG LB	DNAC Lb	DLG Lb	DFUST LB	ALP DEG	THS DEG	AMO DEG	ALV DEG	LAMBDA MU	CT DEG	POWER HP
AIRPLANE MODE DESCENT																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	195.0	50045.	316.0	.41.	0.0	-4.8	1.	-	-	-	-	-	-	-	-	-	-
-	204.1	94568.	360.0	.441.	0.0	-4.8	0.	-	-	-	-	-	-	-	-	-	-
AIRPLANE MODE DECELERATION																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	217.3	1CC27E.	3CCC.	.423.	-C.083	C.0	0.	-	-	-	-	-	-	-	-	-	-
-	223.7	1D2935.	360.0	.406.	-C.088	C.0	-	-	-	-	-	-	-	-	-	-	-
-	225.0	1C5252.	360.0	.388.	-C.057	0.0	-	-	-	-	-	-	-	-	-	-	-
-	225.4	1C7237.	3CCC.	.371.	-C.107	0.0	-	-	-	-	-	-	-	-	-	-	-
-	245.3	111351.	3JJ-J.	.353.	C.0	0.0	-	-	-	-	-	-	-	-	-	-	-
AIRPLANE MODE DESCENT																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	260.0	116518.	261.	.353.	0.0	-8.1	0.	-	-	-	-	-	-	-	-	-	-
-	275.0	122805.	1757.	.345.	0.0	-8.1	0.	-	-	-	-	-	-	-	-	-	-
-	291.2	125522.	15CC.	.345.	C.0	C.0	-	-	-	-	-	-	-	-	-	-	-
HELICOPTER MODE CONVERSATION																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	295.2	125455.	150C.	.328.	-C.200	0.0	-	-	-	-	-	-	-	-	-	-	-
-	301.5	130455.	151C.	.293.	-C.203	0.0	-	-	-	-	-	-	-	-	-	-	-
-	304.6	131222.	150L.	.276.	-C.2L0	0.0	-	-	-	-	-	-	-	-	-	-	-
-	307.3	121938.	150R.	.259.	-L.2C0	0.0	-	-	-	-	-	-	-	-	-	-	-
-	310.0	1326.9.	150C.	.242.	-J.2D0	0.0	-	-	-	-	-	-	-	-	-	-	-
-	312.6	132223.	150C.	.224.	-C.2C0	0.0	-	-	-	-	-	-	-	-	-	-	-
-	315.3	133810.	150U.	.207.	-C.20J	0.0	-	-	-	-	-	-	-	-	-	-	-
-	318.0	134342.	150C.	.190.	-C.260	0.0	-	-	-	-	-	-	-	-	-	-	-
-	320.7	134823.	150C.	.173.	-L.204	0.0	-	-	-	-	-	-	-	-	-	-	-
-	323.3	135261.	150J.	.155.	-C.157	0.0	-	-	-	-	-	-	-	-	-	-	-
-	326.0	135658.	1500.	.138.	-C.159	0.0	-	-	-	-	-	-	-	-	-	-	-
-	329.7	133605.	1500.	.121.	-C.170	0.0	-	-	-	-	-	-	-	-	-	-	-
-	334.1	136666.	150J.	.104.	C.0	0.0	-	-	-	-	-	-	-	-	-	-	-
HELICOPTER MODE FINAL APPROACH																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	335.6	137369.	1468.	.104.	C.0	-8.0	27448.	1851.	1105.	584.	248.	90.	94.9	-5.4	2.6	25.3	0.0078
-	340.0	E 146425.	153.	161.	0.0	-8.0	31648.	1351.	1169.	534.	243.	90.	94.9	-5.4	2.6	25.8	0.0075
TECHNICAL INFORMATION CENTER																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	436.1	147169.	085.	.81.	-J.2.0	-8.0	43024.	1263.	756.	372.	172.	62.	167.5	-5.4	2.6	42.6	0.0080
-	436.7	1471C4.	57.	.68.	-C.2C0	-8.0	4C767.	688.	676.	240.	10.	40.	167.9	-5.4	2.6	59.4	0.0228
-	441.3	147257.	36.	.51.	-C.200	-8.0	41465.	160.	749.	119.	62.	22.	108.2	-5.4	2.6	76.0	0.0384
-	443.0	147367.	2L.	.34.	-C.25J	-8.0	42522.	-185.	561.	68.	26.	10.	108.3	-5.4	2.6	89.0	0.0513
-	446.6	E 147432.	11.	.17.	-C.20J	-8.0	42316.	-325.	1036.	26.	7.	2.	108.5	-5.4	2.6	99.4	0.0558
-	451.8	147476.	.5.	.1.	C.1.	-8.0	45455.	-457.	554.	12.	1.	6.	97.9	-5.4	2.6	97.8	0.0635
LANDING																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	456.0	8 147476.	0.	0.	0.	-90.0	45556.	35.	-1CF2.	12.	0.	0.	0.	0.	0.	0.	0.0081
Information Processing Center																	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	456.0	8 147476.	0.	0.	0.	-90.0	45556.	35.	-1CF2.	12.	0.	0.	0.	0.	0.	0.	0.0081

THE NOISE ANNOYANCE IS CALLED +CB	CF POINT IN THE EPIC WAS USED
AT 50J. F1. SIDELINE AND -5110. F1. FORWARD, NJSE=115.7 EPNR	AT 50J. F1. FORWARD, NJSE=115.7 EPNR
AT 160. F1. SIDELINE AND 6WJ. F1. FORWARD, NJSE=105.6 EPNR	AT 160. F1. FORWARD, NJSE=105.6 EPNR
AT 160. F1. SIDELINE AND 30WJ. F1. FORWARD, NJSE=110.3 EPNR	AT 160. F1. FORWARD, NJSE=110.3 EPNR
AT 160. F1. SIDELINE AND 51WJ. F1. FORWARD, NJSE=75.7 EPNR	AT 160. F1. FORWARD, NJSE=75.7 EPNR
AT C. F1. SIDELINE AND 2500. F1. FORWARD, NJSE=105.1 EPNR	AT C. F1. SIDELINE AND 2500. F1. FORWARD, NJSE=105.1 EPNR

ORIGINAL PAGE IS
OF POOR QUALITY

C-80-50 DEPARTURE

53.3 93.2 93.0 92.4 92.0 91.4 91.1 90.6 90.1 90.9
94.4 94.3 94.0 93.7 93.3 93.5 91.6 91.3 91.7 90.1
95.5 95.4 95.2 94.7 94.3 93.7 93.5 92.1 91.6 90.8
96.6 96.5 96.3 96.0 95.3 94.6 93.5 93.1 92.1 91.9
96.2 96.0 97.5 96.9 96.2 95.5 94.7 93.9 92.8 91.9
97.3 96.2 97.0 97.1 97.3 96.4 95.5 94.6 93.7 92.9
101.1 101.2 101.1 101.0 101.1 96.4 96.3 96.2 94.3 93.0
104.5 103.9 102.1 101.0 100.3 96.0 96.9 95.0 94.6 93.7
105.3 105.1 104.9 104.7 104.1 96.1 97.0 96.3 95.8 94.6
105.4 105.8 105.5 96.3 97.5 96.6 95.5 94.6
106.0 110.3 111.3 96.0 98.2 96.4 95.7 94.6
106.9 110.1 109.4 95.7 96.3 97.0 95.6 94.7
108.5 117.7 116.4 115.3 114.3 95.3 96.3 97.6 95.9 94.8
111.7 111.6 110.4 110.2 110.1 99.5 98.2 97.0 95.8 94.5
110.7 110.7 110.6 110.5 110.7 95.3 95.5 96.8 95.7 94.4
115.7 114.6 113.6 113.4 113.6 94.0 97.6 96.7 95.4 94.2
115.1 114.4 112.5 111.4 110.6 98.7 97.5 96.4 95.1 94.1
114.3 113.9 112.6 111.9 99.6 98.3 97.2 95.9 94.9 93.7
113.6 112.7 111.6 110.4 99.1 97.9 96.7 95.7 94.6 93.4
113.0 112.2 111.1 110.6 99.8 98.6 97.4 96.3 95.3 93.1
112.2 111.1 110.4 99.2 98.1 97.0 95.9 95.6 94.6 92.8
111.6 111.6 110.8 99.8 98.7 97.6 96.6 95.5 94.6 92.5
111.0 110.3 110.3 99.3 98.3 97.2 96.2 95.2 94.3 92.2
110.9 99.8 98.8 97.8 96.8 95.8 94.8 93.9 92.6 91.9
110.3 99.4 98.4 97.4 96.4 95.5 94.5 93.6 92.6 91.6
99.8 99.0 98.1 97.1 96.2 95.2 94.3 93.3 92.4 91.3
106.0 80.9 97.6 96.5 95.9 95.6 94.6 93.2 92.2 91.2
99.2 98.6 97.6 96.7 95.7 94.8 93.9 93.0 92.6 91.0
99.7 98.5 97.5 96.5 95.0 94.6 93.8 92.8 92.6 91.9
99.1 98.3 97.3 96.3 95.4 94.5 93.6 92.7 91.5 90.9
99.1 98.1 97.1 96.2 95.3 94.4 93.5 92.6 91.7 90.7
97.9 100.0 97.6 96.6 95.1 94.2 93.3 92.4 91.6 90.6
96.5 97.6 96.8 95.9 95.0 94.1 93.2 92.4 91.4 90.5
95.0 97.7 96.7 95.8 94.8 94.0 93.1 92.2 91.3 90.4

E1

STATION 1.0 (M.L.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
GRADIENT ALTITUDE (FT.L.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
GRADIENT SLOPE (DEG)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
CARIST DIST 1.0	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	12.34	
CARIST DISTANCE (M.L.)	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4	13.4
MILE TIME 0.412.1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
BLDC SPEED (M.L.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
BLDC SPEED (FT.L.)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

CLIPER OPERATING COST	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
AIRFARE COST (5/12) =	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
COST = 0.35 + 0.0255 * 1.0 / (1.0 - 1.0) = 0.35 + 0.0255 * 1.0 = 0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	0.375	
HALF LENGTHS = 0.5 * 1.0 + 1.0 = 1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	

STATION LENGTH	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ACCELERATION	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FLIGHT TIME	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FUEL CONSUMPTION	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
FUEL INGRAMS	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TOTAL FLIGHT TIME	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME HISTORY	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME = 0.45 * 67.5 + 7.0 * 13.5 + 16.5 + 19.5 + 22.5 + 25.5 + 28.5 + 31.5 + 34.5 + 37.5 + 40.5 + 43.5 + 46.5 + 49.5 + 52.5 + 55.5 + 58.5	61.5	64.5	67.5	70.5	73.5	76.5	80.5	84.5	88.5	92.5	96.5	100.5	104.5	108.5	112.5	116.5	120.5	124.5	128.5	132.5
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	54.5	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1	

ORIGINAL PAGE
OF POOR QUALITY

DEPARTURE

TIME HISTORY 1.0 500 FT SIDELINE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME = 0.45 * 67.5 + 7.0 * 13.5 + 16.5 + 19.5 + 22.5 + 25.5 + 28.5 + 31.5 + 34.5 + 37.5 + 40.5 + 43.5 + 46.5 + 49.5 + 52.5 + 55.5 + 58.5	61.5	64.5	67.5	70.5	73.5	76.5	80.5	84.5	88.5	92.5	96.5	100.5	104.5	108.5	112.5	116.5	120.5	124.5	128.5	132.5
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1	
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1	

ARRIVAL

TIME HISTORY 1.0 500 FT SIDELINE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TIME = 0.45 * 67.5 + 7.0 * 13.5 + 16.5 + 19.5 + 22.5 + 25.5 + 28.5 + 31.5 + 34.5 + 37.5 + 40.5 + 43.5 + 46.5 + 49.5 + 52.5 + 55.5 + 58.5	61.5	64.5	67.5	70.5	73.5	76.5	80.5	84.5	88.5	92.5	96.5	100.5	104.5	108.5	112.5	116.5	120.5	124.5	128.5	132.5
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1	
FUEL = 0.079 * 88.7 + 0.05 * 92.1 + 0.04 * 96.6 + 0.03 * 101.1 + 0.02 * 105.2 + 0.01 * 110.9 + 0.005 * 116.7 + 0.002 * 122.3 + 0.001 * 127.9 + 0.0005 * 132.5 + 0.0002 * 137.5 + 0.0001 * 142.5 + 0.00005 * 147.5	64.5	63.0	61.5	59.0	57.8	56.9	55.7	53.3	52.1	50.9	49.7	48.5	47.3	46.1	44.9	43.7	42.5	41.3	40.1	

ORIGINAL PAGE IS
OF POOR QUALITY

C-80-50 ARRIVAL

94.4	94.3	94.1	93.6	93.2	92.8	92.3	91.0	91.2	90.7				
95.4	95.2	95.0	94.7	94.2	93.9	93.0	92.4	91.6	91.2				
96.3	96.1	95.9	95.5	95.0	94.4	93.9	92.9	92.3	91.6				
97.4	97.2	96.8	96.4	95.8	95.1	94.5	93.7	92.8	92.1				
98.6	98.7	97.5	97.3	96.5	95.8	95.0	94.3	93.2	92.5				
100.1	99.7	99.0	98.2	97.3	96.4	95.8	94.7	93.4	92.8				
101.8	101.2	100.9	100.1	97.0	96.5	95.1	94.2	93.1					
104.1	103.0	101.6	100.8	98.8	97.6	96.4	95.4	94.5	93.6				
				102.9	100.8	99.3	97.5	96.8	95.7	94.8	93.9		
				103.8	101.3	99.6	98.2	97.0	95.9	95.0	94.1		
				104.1	103.5	99.8	98.3	97.1	96.1	95.1	94.2		
				104.2	101.7	100.6	98.6	97.4	96.3	95.3			
				112.4	107.2	104.6	101.8	100.2	98.8	97.6	96.5	95.6	94.7
				111.5	107.1	104.7	101.9	100.4	98.6	97.9	96.8	95.9	94.8
				110.7	107.1	104.2	102.2	101.0	98.2	98.1	97.1	96.1	94.9
				110.6	107.0	104.4	102.4	101.0	98.8	98.3	97.3	96.3	95.2
				109.6	107.6	104.6	102.6	101.0	98.7	98.5	97.5	96.4	95.4
				109.1	106.9	104.6	101.2	100.8	98.7	98.7	97.6	96.5	95.6
				108.6	106.6	104.6	102.6	101.6	98.6	98.5	97.7	96.7	95.8
				108.5	106.6	104.7	102.4	101.4	98.6	98.5	97.9	96.9	95.9
				107.5	105.4	104.6	103.0	101.5	100.2	99.1	98.0	97.1	96.1
				107.0	105.6	104.5	103.0	101.6	100.3	99.2	98.2	97.2	96.2
				106.8	105.6	104.5	103.0	101.4	100.4	99.3	98.3	97.3	96.3
				106.5	105.8	104.4	103.0	101.7	101.5	99.4	98.4	97.4	96.5
				106.1	105.6	104.6	103.0	101.6	100.6	99.5	98.5	97.6	96.6
				105.8	105.2	104.7	103.0	101.7	100.7	99.6	98.6	97.7	96.7
				105.5	105.2	104.4	102.9	101.7	101.7	99.7	98.7	97.8	96.8
				105.2	105.0	104.6	102.9	101.6	100.7	99.7	98.7	97.9	96.9
				105.0	104.8	104.3	102.8	101.7	100.8	99.8	98.8	97.8	96.9
				104.8	104.6	103.9	102.6	101.6	100.8	99.8	98.9	97.9	96.9
				104.5	104.2	103.7	102.7	101.7	100.8	99.9	98.9	97.9	97.1
				104.3	104.2	103.5	102.6	101.7	100.8	99.9	98.9	97.9	97.1
				104.1	104.0	103.6	102.6	101.6	100.8	99.9	98.9	97.9	97.2
				103.9	103.6	102.5	101.6	100.7	99.9	99.9	98.9	98.2	97.2

MAX FUSE ANGLE=20°. OBSTACLE CLEARANCE=6°. MAX ACCEL PELATIN RATE=10G. ACCEL BUILDUP TIME= 5.

TIME SEC	DIST FT	ALJ FT	VEL FPS	ACC G	GAM DEG	THRUST LA	LEG LB	LBDT LP	LBDT LR	LBDT LU	DEFL DEG	ALV REC	LAMA REC	MU REC	CT REC	PWEP HO	
OBSTACLE CLEARANCE																	
0.0	0.	0.	0.	C. C. C	6.0. 6	4425.6	0.5	-56.	0.	125.7	0.	30.1	2.0. 57.1	30.5	0.0. 663	0.0. 0	
3.6	11.	19.	5.	C. E. E	6.0. 0	45.72.	-2.	-5.2.	1.	107.	4.	29.7	2.0. 6.35.4	23.0	0.715	J. J. 35	
10.5	18.	21.	16.	E. D. E	6.0. 0	4358.1	-7.	-6.4.	2.	625.	18.	27.5	2.0. 6.35.4	24.7	0.0. 761	0.0. 066	
11.5	27.	47.	15.	C. E. E	6.0. 0	4725.5	-1.5.	-6.5.	8.	576.	20.	28.2	2.0. 6.35.4	23.4	0.0. 799	0.0. 094	
13.9	44.	77.	20.	D. D. D	6.1. 1	4655.4	-27.	-6.5.	14.	547.	71.	29.0	2.0. 6.35.4	22.5	0.0. 811	0.0. 125	
14.6	56.	100.	21.	D. D. D	6.0. 0	4559.4	-4.3.	-5.3.	21.	218.	111.	30.0	2.0. 6.25.4	25.4	0.0. 836	0.0. 089	
ACCELERATION AND CC VERSIION																	
18.8	116.	185.	29.	C. D. D	51.4	4286.6	-2.9.	-7.9.	21.	215.	55.	33.6	2.0. 6.26.8	23.5	0.0. 856	0.0. 0225	
21.3	171.	242.	35.	C. D. D	40.2	4354.6	-138.	-123.9	21.	138.	66.	45.0	2.0. 6.15.6	30.0	0.0. 854	0.0. 0348	
23.5	241.	293.	42.	D. D. D	32.5	4412.5	-119.	-115.5	21.	156.	47.	51.8	2.0. 6.24.6	32.1	0.0. 849	0.0. 0467	
25.6	320.	335.	45.	D. D. D	27.1	4423.5	98.	-1739.	20.	132.	35.	56.7	2.0. 6.24.6	31.7	0.0. 866	0.0. 0583	
23.4	411.	331.	57.	D. D. D	23.6	4436.5	398.	-1662.	29.	126.	31.	59.9	2.0. 6.24.6	31.	0.0. 899	0.0. 092	
29.1	507.	421.	65.	D. D. D	21.2	4444.1	756.	-2152.	46.	127.	35.	61.7	2.0. 6.24.6	4.4	27.9	0.0. 841	
30.2	611.	455.	72.	C. D. D	17.8	4460.2	1225.	-2241.	69.	132.	48.	63.5	2.0. 6.24.6	6.7	25.5	0.0. 841	
32.3	727.	491.	82.	C. D. D	16.6	4425.6	1736.	-3718.	65.	141.	69.	65.3	2.0. 6.24.6	9.6	23.1	0.0. 841	
33.5	E57.	526.	91.	C. D. D	14.2	4257.5	235w.	-2865.	139.	162.	57.	66.3	2.0. 6.24.6	10.1	20.5	0.0. 846	
35.4	595.	561.	58.	C. D. D	13.2	4255.6	3649.	-1553.	187.	179.	133.	65.3	2.0. 6.24.6	11.4	17.6	0.0. 873	
36.5	1153.	596.	1.7.	D. D. D	12.1	4171.5	3831.	-265.	243.	178.	178.	64.6	2.0. 6.24.6	12.4	15.5	0.0. 897	
38.5	1324.	631.	115.	C. D. D	11.2	3856.2	4698.	1147.	307.	68.	231.	63.8	2.0. 6.24.6	13.3	12.7	0.0. 849	
40.2	1521.	669.	124.	D. D. D	10.5	3732.1	5412.	2231.	321.	96.	270.	63.9	2.0. 6.24.6	14.2	10.9	0.0. 899	
42.0	1745.	719.	132.	D. D. D	9.8	3575.5	6137.	3227.	39.	133.	308.	63.4	2.0. 6.24.6	15.2	13.5	0.0. 891	
43.9	2111.	251.	141.	C. D. D	9.2	3411.4	4910.	4335.	181.	349.	349.	64.9	2.0. 6.24.6	16.5	13.5	0.0. 892	
45.5	2288.	797.	149.	J. D. D	8.7	3223.8	7729.	55.6.	487.	239.	392.	62.	2.0. 6.24.6	17.5	13.5	0.0. 891	
48.0	2615.	145.	156.	J. D. D	8.2	3221.4	5555.	676.5.	533.	307.	457.	61.1	2.0. 6.24.6	18.5	13.5	0.0. 892	
50.4	2592.	896.	166.	C. D. D	7.8	2816.3	5555.	592.	592.	489.	59.7	21.2	13.5	0.0. 895	0.0. 089		
52.9	3126.	935.	175.	D. D. D	7.4	2555.5	5655.	618.	618.	539.	59.0	21.9	13.5	0.0. 896	0.0. 089		
55.4	3523.	1618.	183.	C. C. D	7.0	2274.	1147.	1057.	707.	561.	593.	55.7	2.0. 6.24.6	13.5	12.5	0.0. 897	
59.0	4522.	1691.	192.	D. D. D	6.7	2124.5	12530.	12546.	262.	566.	653.	53.3	2.0. 6.24.6	14.5	12.5	0.0. 898	
62.6	5235.	1173.	261.	C. C. D	6.4	1950.1	13631.	14323.	822.	714.	714.	49.3	15.5	2.0. 6.24.6	15.5	13.5	0.0. 899
66.4	6034.	1262.	225.	C. C. D	6.2	1658.2	14775.	15523.	855.	891.	771.	43.8	13.5	1.5	0.0. 898	0.0. 089	
70.7	1353.	175.	211.	D. D. D	5.9	1443.7	1557.	1172.	563.	115.	136.	36.1	19.7	13.5	0.0. 899	0.0. 089	
74.6	2223.	1411.	226.	D. D. D	5.5	1255.5	17215.	15556.	1031.	1452.	903.	55.7	2.0. 6.24.6	12.5	12.5	0.0. 899	
78.2	8611.	1541.	235.	D. D. D	5.5	11234.	16505.	2150.	1115.	1260.	973.	11.8	10.9	13.5	0.0. 894	0.0. 089	
79.3	8196.	1541.	237.	D. D. D	5.4	11091.	18128.	21261.	1122.	1319.	589.	8.5	19.9	13.5	0.0. 895	0.0. 089	
AIRPLANE MODE CLIMB TO 10,000 FT																	
93.1	12242.	1673.	227.	D. D. D	5.3	12515.	231.	1224.	265.	120.	1224.	36.1	19.7	13.5	0.0. 896	0.0. 089	
236.2	47666.	1000.	126.	D. D. D	5.0	12243.	231.	1224.	265.	120.	1224.	36.1	19.7	13.5	0.0. 896	0.0. 089	

THE ACCEL. AMMANCE IS C.17655D+27

THE PJINI IN L. G. GID WAS USED

AT 500. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 99.4 SPNDR

AT 1000. F1. SIDELINE AND 0. F1. FORWARD. NCISE= 92.6 SPNDR

QUALITY

ORIGINAL RECORD
OF POLICE ACTIVITY

M-80-SO DEPARTURE

↓ 66.6 12.6 51.6 42.3 51.5 81.4 10.4 3.0.3 75.7 76.0
63.6 12.9 62.7 62.4 82.1 92.4 81.8 81.1 80.4 79.3
84.3 84.2 83.8 83.4 32.9 92.5 82.3 81.9 81.2 86.4
85.6 85.5 85.2 84.6 94.0 83.3 82.6 82.4 82.0 81.1
87.9 87.2 86.7 86.6 85.1 84.3 83.3 82.6 82.8 81.6
85.5 85.1 88.4 87.4 86.4 85.3 84.2 83.2 82.5 82.4
91.5 91.1 89.9 89.3 87.7 86.4 85.1 83.9 82.9 83.0
89.1 88.9 82.9 80.4 48.9 87.4 85.9 84.6 83.4 82.8
94.5 92.1 90.1 86.2 86.6 85.2 82.9 82.0
↓ 96.5 93.4 91.0 89.0 87.2 88.6 84.2 83.1
97.7 94.3 91.7 89.5 87.6 85.9 84.5 83.3
97.7 94.0 92.0 89.7 87.8 86.1 84.6 83.3
162.21LC.1 97.2 94.2 91.9 89.7 87.8 86.1 84.6 93.3
1.1.2 96.0 86.4 43.8 91.7 89.6 87.0 86.1 84.7 84.6
50.1 97.6 93.4 93.4 91.2 89.3 87.9 85.5 84.4 84.1
97.1 96.9 97.0 92.6 91.6 88.6 87.1 85.6 84.5 84.1
96.4 95.3 93.7 91.4 90.1 89.2 88.6 85.1 84.5 83.9
93.2 94.2 92.0 91.4 89.2 87.6 86.0 85.2 84.1 83.5
94.3 94.1 91.7 91.1 88.4 87.0 85.0 84.3 83.6 83.3
91.5 92.0 90.7 89.2 87.9 86.5 85.4 84.3 83.4 83.1
92.4 91.2 89.9 89.5 87.2 88.0 84.9 83.9 83.6 82.7
71.2 96.3 87.2 87.5 86.6 85.4 84.3 83.4 82.6 82.0
50.3 85.0 83.0 87.2 86.1 84.9 83.6 83.1 82.1 81.0
↓ 87.5 87.9 81.7 89.5 84.4 84.4 81.3 81.4 81.2
85.6 87.6 87.7 87.7 87.1 86.1 85.1 85.0 84.9 84.7
80.3 88.1 87.1 86.1 85.9 85.1 84.0 83.9 83.7 81.
80.1 86.0 80.9 80.8 84.0 83.8 83.1 82.3 81.2 80.1
88.3 87.7 86.6 86.5 84.5 83.6 82.6 81.3 81.0 80.4
81.5 87.2 80.3 83.3 84.2 83.2 81.1 81.0 80.3 80.3
80.1 87.9 80.1 81.1 84.0 83.6 82.6 81.5 81.4 81.1
80.3 87.0 85.0 84.2 83.8 82.8 81.5 81.0 80.4 80.9
81.4 86.5 81.1 81.7 83.8 82.6 81.7 81.6 81.4 81.4
80.1 86.0 80.1 80.2 83.5 82.6 81.1 80.7 80.3 80.0

ORIGINAL PAGE IS
OF POOR QUALITY

M-80-50 ARRIVAL

83.7 83.3 43.6 83.7 82.3 92.7 92.2 81.3 E..7 E...
84.7 84.6 64.3 84.6 63.7 83.6 82.6 82.1 F1.3 83.5
85.6 85.6 85.4 84.6 84.5 84.6 83.5 82.6 81.6 80.9
87.3 86.9 86.5 86.0 85.4 84.6 82.6 83.3 82.5 81.3
88.5 88.3 87.5 87.1 86.3 85.3 84.4 83.4 83.0 81.9
89.4 89.1 89.4 88.4 87.2 85.9 84.6 83.7 82.5 82.3
92.5 91.9 90.8 90.0 88.3 86.9 85.1 83.8 82.7 82.5
95.6 94.6 92.6 90.2 88.2 86.7 85.0 83.6 82.3 81.6
99.9 91.0 88.4 86.2 84.5 83.5 81.9 81.0
93.2 89.1 87.2 86.2 83.7 82.3 81.5 F1.5
92.2 89.5 87.7 85.6 84.3 83.2 82.1 81.3
94.6 94.4 84.8 84.8 85.3 84.1 82.9 82.0
105.0 98.5 94.3 91.2 89.4 87.5 85.9 84.6 83.5 82.6
154.0 98.3 94.1 91.2 89.6 87.9 85.4 85.1 84.6 83.7
163.1 98.3 94.0 91.7 89.7 88.1 87.7 85.4 84.3 83.7
162.3 94.3 94.0 91.3 89.8 88.2 87.2 85.7 84.8 83.9
161.0 98.2 94.7 92.1 91.6 89.4 87.6 85.9 84.6 84.2
160.7 98.1 94.9 92.3 91.2 89.4 87.2 86.2 85.7 84.4
160.0 94.6 95.1 92.0 91.8 89.1 87.7 86.4 85.5 84.5
99.0 97.5 95.2 92.9 91.0 89.3 87.3 86.7 85.7 84.9
98.6 97.3 95.1 93.1 91.1 89.4 88.0 86.8 85.6 85.0
98.1 97.2 95.1 93.1 91.2 89.7 87.2 87.0 85.6 85.1
97.6 96.8 95.0 95.2 91.4 89.5 86.5 87.1 86.1 85.2
97.1 96.5 94.5 93.2 91.5 90.0 89.6 87.4 86.3 85.4
96.7 96.2 94.8 93.2 91.0 89.1 87.7 87.5 86.4 85.5
96.4 96.0 94.6 93.2 91.7 91.2 89.5 87.2 86.9 85.6
96.1 95.7 94.5 93.1 91.7 90.3 89.1 87.7 86.7 85.8
95.3 95.5 94.4 93.0 91.7 90.4 89.1 87.7 86.9 85.6
95.4 95.2 94.2 93.0 91.7 90.4 89.1 87.7 86.9 85.1
95.1 94.9 94.1 92.9 91.7 90.0 89.1 87.7 86.1 85.3
94.9 94.7 94.6 92.8 91.6 90.5 89.3 87.7 86.3 85.7
94.6 94.5 93.8 92.7 91.6 90.8 89.1 87.7 86.3 85.5
94.4 94.2 93.6 92.6 91.6 90.5 89.4 87.4 86.4 85.6

DATA

STAGE LENGTH (MI.)	25.	50.	100.	150.	200.	250.	300.
CRUISE ALTITUDE (FT.)	20,000.	40,000.	60,000.	80,000.	100,000.	120,000.	140,000.
CRUISE SPEED (MPH)	256.	307.	357.	407.	457.	507.	557.
CRUISE DISTANCE (MIL.)	11.54	11.54	11.54	11.54	11.54	11.54	11.54
BLOCK TIME (MIN.)	10.5	21.1	24.1	26.2	28.3	30.4	32.5
BLOCK FUEL (LBS.)	16.0	16.1	16.1	16.1	16.1	16.1	16.1
BLOCK SPEED (MPH)	245.	31.1	44.4	57.7	71.0	84.3	97.6

DIRECT OPERATING COST - AN UTILIZATION (H-S)=7.00c. DIRECT OPERATING COST (H-S)= 1.00c.
 AIRFARE COST (L/LB)= 1.00c. FLIGHT FACT (L/H-LB)= 0.00.
 C1C=1.01+0.0265*SL 1/SEAT-Trip (SL= 25.00*25.00)
 FLT LENGTHS 50+15.0 0+ 25.0 100.0 25.0 3+ 6+ 100.0 250.0+25.0 + 0+ 3+ C=6.0

STAGE LENGTH	25.	50.	100.	150.	200.	250.	300.
N. CYCLES/STARTS	1/1	1/1	1/1	1/1	1/1	1/1	1/1
FLIGHT CREW	0.425	0.455	0.483	0.512	0.541	0.568	0.596
FUEL & OIL	0.277	0.212	0.181	0.151	0.177	0.195	0.212
FUEL INSURANCE	0.371	0.281	0.217	0.162	0.113	0.077	0.047
TOTAL FLIGHT LFS	1.033	0.943	0.772	0.671	0.595	0.541	0.495
LAP. & AIRPORT	0.247	0.266	0.229	0.192	0.171	0.147	0.127
WAITING AIRFRANE	0.277	0.126	0.081	0.055	0.037	0.024	0.014
LAP. & SIGNING	0.211	0.122	0.054	0.023	0.012	0.007	0.004
WATER-LINE ENGINES	0.26	0.173	0.137	0.103	0.062	0.037	0.020
PAT. EXPENSE	1.033	0.652	0.545	0.446	0.341	0.256	0.193
TOTAL MAINTENANCE	2.652	1.057	1.013	0.955	0.773	0.670	0.514
DEPRECIACTION	1.416	0.513	0.382	0.252	0.152	0.092	0.059
TOTAL DIRECT SP/QT/HR	CCST						
1/SEAT-CRAFT MILE	0.523	0.226	0.115	0.071	0.047	0.031	0.020
1/SEAT-TRIP MILE	0.515	0.215	0.105	0.065	0.042	0.027	0.017
1/SEAT-TRIP	0.515	0.215	0.105	0.065	0.042	0.027	0.017

ARRIVAL

TIME HISTORY AT 500 FT SHEDLINE
 TIME = 1.5 7.5 13.5 16.5 19.5 22.5 25.5 28.5 31.5 34.5 37.5 40.5 43.5 46.5 49.5
 RNL = 66.0 67.1 89.1 91.3 92.1 91.3 89.1 86.0 82.2 77.9 73.5 69.3 66.5 64.4 62.2 60.2

DEPARTURE

TIME HISTORY AT 500 FT SHEDLINE
 TIME = 1.5 6.5 11.5 16.5 21.5 26.5 31.5 36.5 41.5 46.5 51.5 56.5 61.5 66.5 71.5 76.5
 RNL = 28.0 29.0 39.0 49.0 59.0 69.0 79.0 89.0 99.0 109.0 119.0 129.0 139.0 149.0 159.0 169.0

Q-60-50

DEPARTURE PATH TC 1G, CCG FT MSL
MAX FUSE ANGLE=20°, OBSTACLE CLEAR ANGLE=60°, OBSTACLE HEIGHT=1.0, MAX ACCEL ROTATION PATH=20°, ACCEL BUILDUP TIME= 5°.

TIME SEC	DIST FT	ALT FT	VEL FFS	ACC GFM	YAW RFLST	LWGT LA	LWT LP	FLWC LR	DFLST LR	ALP LR	TIE DEG	AHD DEG	ALV DEG	LANDA DEG	MU DEG	CTI DEG	POWER HP		
ACCELERATION AND CONVERSION																			
16.0	88.	0.	0.0	60.0	45420.	0.	-55.	0.	1267.	C.	30.1	2.6-57.1	30.5	0.6679	0.0	0.0092	5219.		
16.6	111.	5.	0.0	60.0	46246.	-2.	-531.	1.	712.	4.	29.7	24.6-35.4	27.5	0.6721	0.1335	0.0095	5630.		
17.3	118.	10.	0.0	61.0	46621.	-8.	-674.	4.	646.	18.	27.5	24.6-35.4	24.5	0.6786	0.1373	0.0102	6438.		
18.6	160.	217.	46.	0.188	37.2	45535.	-210.	-1534.	35.	158.	50.	43.8	24.6-12.7	24.0	0.3976	0.0497	0.0098	7203.	
19.9	214.	254.	52.	0.183	32.0	46022.	-181.	-1752.	35.	174.	70.	49.4	24.6-7.4	24.7	0.6973	0.0623	0.0098	7203.	
21.3	279.	291.	59.	0.183	27.9	46665.	102.	-2645.	34.	163.	57.	53.4	24.6-3.3	24.1	0.6971	0.0747	0.0098	7203.	
22.6	353.	328.	66.	0.191	24.7	46115.	455.	-2311.	42.	160.	50.	56.1	24.6-3.1	22.9	0.6969	0.0879	0.0098	7203.	
23.5	426.	364.	74.	0.190	22.1	46C75.	884.	-2545.	58.	162.	58.	58.5	24.6-2.5	21.4	0.6968	0.0593	0.0098	7203.	
25.2	531.	490.	91.	0.187	20.0	45586.	1395.	-2567.	81.	169.	58.	60.5	24.6-4.6	19.7	0.6969	0.1116	0.0198	7203.	
26.5	637.	437.	88.	0.182	18.2	45828.	1576.	-3254.	112.	160.	72.	62.2	24.6-6.3	17.9	0.6970	0.1239	0.0098	7203.	
27.5	760.	476.	96.	0.171	16.8	44556.	2642.	-2272.	152.	123.	92.	62.8	24.6-7.8	15.7	0.6997	0.1348	0.0095	7203.	
29.3	891.	514.	144.	0.193	15.5	43185.	2285.	-3552.	112.	160.	51.	13.6	24.6-5.1	11.6	0.1026	0.1456	0.0192	7203.	
34.7	1036.	552.	111.	0.163	14.4	41C75.	1219.	-488.	254.	32.	155.	61.2	24.6-12.5	11.1	0.1077	0.1551	0.0098	7203.	
32.1	1199.	593.	119.	0.174	13.5	35256.	6131.	-1521.	318.	197.	61.8	24.6-10.2	11.6	0.116	0.1124	0.1654	0.0194	7203.	
33.9	1377.	634.	127.	0.158	12.6	36648.	6125.	-2560.	299.	162.	244.	56.4	24.6-12.0	8.4	0.1193	0.1742	0.0179	7203.	
35.2	1582.	679.	134.	0.149	11.9	34545.	7203.	-52683.	463.	243.	58.0	24.6-12.7	7.0	0.1274	0.1925	0.0174	7203.		
36.9	1813.	726.	142.	0.139	11.2	31555.	6365.	-745.	556.	362.	56.1	24.6-13.4	5.8	0.1375	0.1955	0.1668	7203.		
39.8	2080.	771.	150.	0.125	10.6	25C52.	6354.	-6613.	622.	447.	54.9	24.6-13.5	4.8	0.1479	0.1952	0.0163	7203.		
40.5	2389.	834.	159.	0.116	10.9	21545.	16294.	-16294.	679.	533.	454.	53.2	23.6-13.5	4.0	0.1589	0.2026	0.1359	7203.	
43.0	2739.	895.	166.	0.118	9.6	25411.	11281.	-11281.	738.	625.	501.	53.0	23.6-13.5	3.3	0.1722	0.2071	0.1054	7203.	
45.4	3135.	909.	173.	0.100	9.2	2185.	12214.	-13049.	900.	735.	549.	48.1	22.7	0.1896	0.2086	0.0150	7203.		
48.0	3595.	1033.	181.	0.058	8.8	2155.	13292.	-14736.	865.	615.	44.8	22.3	13.5	2.1	0.2111	0.2337	0.1044	7203.	
54.5	4121.	1113.	185.	0.084	8.4	19555.	14515.	-16365.	933.	571.	533.	39.6	22.6	13.5	1.5	0.2366	0.1933	0.0060	7203.
56.8	4688.	1195.	157.	0.082	8.1	16486.	16486.	-16486.	679.	533.	454.	53.2	23.6-13.5	4.0	0.1589	0.2026	0.1359	7203.	
58.0	5281.	1277.	215.	0.083	7.8	14715.	1691.	-21167.	176.	735.	765.	23.6-13.5	3.7	0.1722	0.1319	0.1331	7203.		
59.6	5851.	1359.	213.	0.084	7.5	13994.	19174.	-22122.	1152.	1363.	825.	12.1	21.0	6.3	0.3341	0.0721	0.0150	7203.	
62.8	5543.	1443.	221.	0.078	7.2	12682.	15466.	-24636.	1233.	1573.	889.	-0.8	29.7	13.5	0.3539	0.0747	0.0207	7203.	
64.9	7130.	1549.	226.	0.076	7.0	12421.	15756.	-24353.	1213.	1473.	884.	-3.2	29.1	13.1	0.0	0.3612	0.0212	0.0207	7203.
79.1	10170.	1904.	226.	0.074	6.5	14324.													
82.5	45465.	1111.	257.	0.07	6.2	12585.													

ORIGINAL PAGE IS
OF POOR QUALITY

THE NOISE AMPLITUDE IS J-4746D+6

THE POINT IN 1 JF TH-1 GPI WAS USED

AT 560. F1. SIDELINE AND	C. F1. FORWARD, NCISE=0.2
AT 1000. FT. SIDELINE AND	U. F1. FORWARD, NCISE=0.2
AT 1CCC. F1. SIDELINE AND	O. F1. FORWARD, NCISE=0.2
AT 2CCG. F1. SIDELINE AND	O. F1. FORWARD, NCISE=0.2
AT 1. F1. SIDELINE AND-210.	F1. FORWARD, NCISE=0.2
AT 0. F1. SIDELINE AND-5600.	F1. FORWARD, NCISE=0.2
AT 0. F1. SIDELINE AND 6600.	F1. FORWARD, NCISE=0.4
AT 0. F1. SIDELINE AND 3000.	F1. FORWARD, NCISE=0.0
AT 0. F1. SIDELINE AND 5000.	F1. FORWARD, NCISE=0.0
AT 3. F1. SIDELINE AND.	F1. FORWARD, NCISE=0.2

G-EE-5

ARRIVAL PATH FROM 1L, LOC FT MSL
 TERMINAL AREA SPEC = 2.1. KIAS, FINAL APPROACH SLCFE = 8.0 DEG, ACCEL BUILDUP TIME = 5. SEC
 MAX FORWARD FLSE ANGLE = 10.0 DEG

TIME	CIST SEC	ALT FT	VEL FT FPS	ACC GFM	TRAIL DEG	TWG LB	TWG LB	CRAC LB	DLG LB	CFUST LB	ALP DEG	AWD DEG	ALV DEG	LAMBOA	MU	CT	POWER HP	
AIRPLANE MODE DESCENT																		
0.0	0.0	10000.	491.	0.0	-5.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
- 184.5	184.5	55626.	3185.	441.	0.0	-5.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
- 194.5	194.5	51555.	3931.	441.	0.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
AIRPLANE MODE DECCELERATION																		
207.0	207.0	55481.	3000.	406.	-0.0	0.94	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
- 218.5	218.5	101515.	3000.	388.	-0.0	1.06	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
- 223.4	223.4	102005.	3000.	371.	-0.0	1.15	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
- 232.6	232.6	10326.	3100.	353.	0.0	0.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
AIRPLANE MODE DESCENT																		
247.0	247.0	110642.	2633.	353.	0.0	-7.9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
267.2	267.2	117386.	1781.	345.	0.0	-7.9	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
ACCELERATION AND CLIMB																		
275.6	275.6	121454.	1566.	345.	0.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
ACCELERATION AND CLIMB																		
284.4	284.4	122257.	1500.	328.	-0.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
287.1	287.1	124921.	1500.	293.	-0.0	2.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
285.7	285.7	124921.	1500.	211.	-0.0	2.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
292.4	292.4	125083.	1500.	276.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
295.1	295.1	126400.	1500.	255.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
297.8	297.8	127373.	1500.	242.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
300.5	300.5	127654.	1500.	224.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
303.2	303.2	128272.	1500.	207.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
305.8	305.8	12894.	1500.	193.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
308.5	308.5	125269.	1500.	173.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
311.2	311.2	129726.	1500.	155.	-0.0	2.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
312.5	312.5	130127.	1500.	138.	-0.0	1.60	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
316.7	316.7	130494.	1500.	121.	-0.0	1.86	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
318.4	318.4	131135.	1500.	104.	-0.0	1.00	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
HELICOPTER MODE FINAL APPROXACH																		
326.5	326.5	131056.	1468.	104.	-0.0	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
414.1	414.1	140425.	226.	101.	0.0	-6.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
DECELERATION AND FLYOVER																		
424.3	424.3	141372.	94.	84.	-1.0	1.03	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
427.7	427.7	14123.	57.	66.	-0.0	2.00	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
430.4	430.4	141786.	36.	51.	-0.0	2.00	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
433.0	433.0	141058.	26.	34.	-0.0	2.00	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
435.6	435.6	141561.	11.	17.	-0.0	2.00	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
440.8	440.8	142055.	5.	0.	0.0	-8.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
LAND																		
445.8	445.8	142055.	0.	0.	0.0	-9.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
ORIGINAL PAGE IS OF POOR QUALITY																		

OF POOR QUALITY

AT	J.	F1.	SIDELINE AND 2 JUGS.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	O.	FT.	SIDELINE AND -5 W.J.	FT.	FORWARD.	NOISE = 0.0	EPNDB
AT	O.	F1.	SIDELINE AND GND.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	O.	F1.	SIDELINE AND 3 JUGS.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	J.	F1.	SIDELINE AND SLUGS.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	C.	F1.	SIDELINE AND 25L0.	F1.	FORWARD.	NOISE = 94.9	EPNDB

THE NOISE ATTENUANCE IS C. 116170+CT THE CELC WAS USED

AT	S.	F1.	FORWARD IN A CT.	NOISE = 0.0	EPNDB
AT	J.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	O.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	O.	F1.	FORWARD.	NOISE = 0.0	EPNDB
AT	J.	F1.	FORWARD.	NOISE = 0.0	EPNDB

ORIGINAL PAGE IS
OF POOR QUALITY

Q-80-50 DEPARTURE

72.2 71.3 71.4 70.6 68.6 65.2 0.6 0.0 0.0
74.9 74.7 74.4 74.0 74.1 70.6 68.2 0.0 0.0 0.0
77.5 77.6 76.1 75.0 74.6 73.8 71.8 69.9 0.0 0.0
79.1 78.9 78.4 77.7 76.2 75.2 74.0 71.2 65.7 0.0
81.0 80.7 80.1 79.2 78.2 76.7 75.4 73.3 71.5 0.0
83.2 82.7 81.9 80.9 79.7 78.5 76.3 75.1 72.5 71.0
84.3 83.6 83.2 74.9 81.6 79.6 78.2 75.5 74.1 71.5
85.2 87.8 84.6 86.8 82.3 80.6 79.0 76.0 75.1 72.8
88.3 84.6 83.5 81.4 79.6 77.8 75.5 73.1
90.4 85.9 84.4 82.2 80.3 78.4 76.2 73.9
91.3 86.9 84.5 82.6 80.5 78.0 76.3 73.6
91.2 86.8 85.1 82.7 80.6 78.7 76.4 73.7
92.6 92.5 92.1 87.5 84.5 82.6 84.5 78.2 76.6 73.6
94.6 92.3 89.2 85.9 84.7 82.5 80.6 78.2 76.1 74.2
93.0 91.3 88.9 86.5 84.3 82.3 80.0 78.3 75.5 74.5
91.7 90.0 87.9 85.7 83.7 81.6 79.7 77.7 75.9 72.0
90.4 86.6 86.5 84.5 82.8 80.9 78.9 77.3 75.1 71.7
88.9 87.0 85.8 84.0 82.1 80.3 78.7 76.6 74.9 73.0
87.5 86.4 84.5 83.2 81.4 79.8 78.2 76.6 72.6 0.0
85.5 85.4 84.0 82.4 80.8 79.3 77.3 74.8 70.2 0.0
85.4 84.5 83.1 81.5 80.6 78.1 76.1 73.0 68.3 0.0
85.0 83.7 82.2 80.6 79.1 77.0 74.4 72.7 68.2 0.0
84.6 83.2 81.0 79.9 79.1 76.3 74.1 71.2 68.2 0.0
84.0 82.7 81.1 79.5 77.9 75.9 73.4 71.0 68.1 0.0
84.0 82.0 80.6 79.2 77.7 76.0 72.5 71.0 68.1 0.0
83.1 82.0 80.5 78.9 77.2 74.5 73.1 71.0 68.2 0.0
82.4 81.7 80.3 78.6 76.5 74.8 72.2 70.7 68.1 0.0
82.3 81.2 79.6 77.9 76.1 74.1 72.6 69.1 64.6 0.0
82.0 81.6 79.1 77.0 76.1 73.9 71.6 70.2 68.2 0.0
81.6 80.6 79.1 77.7 76.6 74.6 70.0 68.6 68.6 0.0
81.6 79.8 78.3 76.9 75.5 73.2 71.9 65.5 65.5 0.0
81.1 79.6 78.1 76.7 75.3 73.8 71.6 69.0 69.0 0.0
80.0 79.1 78.0 76.6 75.2 73.4 70.1 69.0 69.0 0.0
84.2 78.5 77.1 75.9 74.2 72.3 68.4 68.0 68.0 0.0

ALL INFORMATION
OF POOR QUALITY

9-80-50 ARRIVAL

75.9	75.0	75.5	75.0	74.5	72.7	73.1	69.4	66.1	65.5
77.5	77.1	76.7	76.3	75.6	74.9	73.5	70.2	69.3	64.2
79.1	78.9	78.5	77.9	76.7	75.9	74.9	72.8	70.0	69.0
80.8	80.6	79.5	79.2	78.3	76.8	75.7	74.6	70.4	65.5
82.6	82.3	81.6	80.7	79.6	78.2	76.5	75.2	72.6	65.8
84.8	84.3	83.4	82.1	80.6	79.2	77.4	75.6	73.6	70.0
86.8	86.0	84.6	83.8	81.7	79.9	78.2	76.2	73.8	65.9
88.7	89.1	88.5	82.9	82.6	80.4	78.4	76.0	73.5	67.3
95.5	92.6	88.6	84.6	82.8	80.4	78.2	75.9	71.5	65.7
102.4	94.2	89.9	83.6	82.3	74.9	77.7	75.4	75.1	67.0
104.1	95.2	89.4	84.6	83.6	80.7	78.6	75.7	71.1	69.7
102.1	95.1	89.8	85.3	83.0	81.5	79.4	77.3	73.5	71.4
100.3	94.1	85.4	85.3	84.1	81.9	75.9	77.3	74.3	71.6
99.3	93.9	85.6	84.2	84.2	82.1	80.2	78.2	75.2	70.9
98.5	93.7	85.3	86.4	84.1	82.1	80.4	78.4	75.5	65.5
97.7	93.6	85.3	86.3	84.1	82.1	80.3	78.5	75.4	65.3
96.5	93.4	85.4	86.4	84.1	82.1	80.4	78.4	74.6	69.0
96.1	93.1	89.4	86.5	84.2	82.2	80.3	78.1	75.1	66.4
95.3	92.7	89.4	86.7	84.4	82.2	80.2	78.0	76.0	70.1
94.6	92.4	86.3	86.7	84.4	82.1	80.2	79.2	75.6	72.2
94.3	92.3	87.2	86.7	84.4	82.3	80.5	78.4	76.3	73.0
93.5	91.6	85.1	86.7	84.6	82.5	80.5	78.5	76.5	73.2
93.1	91.3	89.0	86.3	84.6	82.6	80.7	78.7	76.1	73.5
92.4	91.0	88.6	86.7	84.7	82.7	80.9	78.6	76.9	74.2
91.7	90.6	88.7	86.7	84.7	82.8	81.0	79.1	77.1	74.9
91.2	90.5	88.5	86.7	84.6	82.9	81.1	79.4	77.5	75.4
90.6	90.3	86.9	86.0	84.6	83.0	81.4	79.5	77.7	75.6
90.4	89.7	86.2	86.5	84.8	82.1	81.4	79.7	77.8	75.7
90.1	89.1	86.4	86.4	84.7	82.1	81.4	79.6	78.1	76.2
89.6	89.1	87.6	86.3	84.7	83.1	81.5	80.6	78.2	76.3
89.3	88.8	87.2	86.2	84.7	83.1	81.6	80.0	78.5	76.4
87.9	87.0	87.0	84.6	83.7	81.7	80.7	79.1	77.1	75.1
86.5	86.4	87.2	85.9	84.5	83.1	81.6	80.1	78.6	76.6
85.3	87.9	87.0	85.8	84.5	83.0	81.7	80.1	78.4	76.6

۱۵

EFFECT **CONSTANT** **INITIAL** **FINAL** **TIME** **FUEL** **DATA**
 $A_{12} = 0.15 \cdot CST \cdot L^2 / L_0^2 = 0.15 \cdot 1.73 \cdot 1.5^2 / 1.5^2 = 0.15$ $C_{12} = 1 - 2 \cdot 0.15 \cdot 1.73 \cdot 1.5^2 / 1.5^2 = 1 - 0.15 = 0.85$ $L = 1.5$ $L_0 = 1.5$ $T = 10$ $T_0 = 10$ $\Delta T = 0$ $\Delta L = 0$
 $HCF \cdot LENGTHS = 0.15 \cdot 1.5 = 0.225$ $L = 1.5 + HCF \cdot LENGTHS = 1.5 + 0.225 = 1.725$ $L_0 = 1.5 + 0 = 1.5$

$\frac{1}{\lambda} \ln C_{\text{eff}} / \ln C_{\text{tot}}$	$\frac{1}{\lambda} \ln F_{\text{eff}} / \ln F_{\text{tot}}$	$\frac{1}{\lambda} \ln G_{\text{eff}} / \ln G_{\text{tot}}$	$\frac{1}{\lambda} \ln H_{\text{eff}} / \ln H_{\text{tot}}$	$\frac{1}{\lambda} \ln I_{\text{eff}} / \ln I_{\text{tot}}$
1.00	1.00	1.00	1.00	1.00
0.95	0.95	0.95	0.95	0.95
0.90	0.90	0.90	0.90	0.90
0.85	0.85	0.85	0.85	0.85
0.80	0.80	0.80	0.80	0.80
0.75	0.75	0.75	0.75	0.75
0.70	0.70	0.70	0.70	0.70
0.65	0.65	0.65	0.65	0.65
0.60	0.60	0.60	0.60	0.60
0.55	0.55	0.55	0.55	0.55
0.50	0.50	0.50	0.50	0.50
0.45	0.45	0.45	0.45	0.45
0.40	0.40	0.40	0.40	0.40
0.35	0.35	0.35	0.35	0.35
0.30	0.30	0.30	0.30	0.30
0.25	0.25	0.25	0.25	0.25
0.20	0.20	0.20	0.20	0.20
0.15	0.15	0.15	0.15	0.15
0.10	0.10	0.10	0.10	0.10
0.05	0.05	0.05	0.05	0.05
0.00	0.00	0.00	0.00	0.00

DEPARTURE

TIME HISTORY AT 500 FT SIDELINE						
TIME = 1.5	4.5	7.5	10.5	13.5	16.5	19.5
PNL = 63.0	83.6	84.2	86.2	88.4	89.2	89.7

ARRIVAT

LIME HISTO-FY 21 SW FT SIZELINE
 TIME = 2370.5 100.5 603.5 400.5 412.5 410.5 424.5 427.5 429.5 430.5 431.5
 Δ TIME = 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6
 FNL = 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6 66.6

CEPARIURE PATH TC 10,000 FT FSL

MAX FALSE ANGLE=2U. OBSTACLES CLEAR. ANGLE=5.0. OBSTACLE HEIGHT=5.0. MAX ACCEL FCTN RATE=20. ACCEL BUILDUP TIME=5.

LINE	DISL	ALT	MEL	ACC	GAY	IR-FLST	LNG	LUGI	DGS	LGL	IRFL	ALP	IRB	AMG	ALV	LAD	MU	LA	CT	POWER
SEC	FT	FT	FT	FPS	C	DEG	LP	LP	1H	1A	1P	LB	DEG	DEG	DEG	DEG	DEG	DEG	HP	
OBSTACLE CLEARANCE																				
0.0	0.0	0.0	0.0	0.0	J.	0.0	6.0	6.0	4.415.	1.	-5.0.	1.	1.52.	6.	30.1	2.5-57.1	33.5	0.639	4889.	
0.8	0.6	1.1	0.	1.5	5.	0.034	6.0	5.21C	-2.	-5.1.	1.	1.52.	9.	29.7	2.5-55.4	27.7	0.6f83	J..J..J..J..J..		
1.0	1.5	1.8	—	3.1	10.	0.124	6.0	5.724.	-5.	-6.73.	5.	1.35.	18.	27.5	2.4-6-35.4	24.2	0.6747	J..J..J..J..J..		
1.1	1.5	2.4	—	4.2	15.	0.124	6.0	5.192	22.	-7.53.	10.	5.91.	40.	26.0	24.6-35.4	21.7	0.6076	0.0093		
1.2	4.4	3.2	—	5.0	20.	0.142	6.0	5.150.	-37.	-6.55.	13.	5.41.	71.	27.1	24.6-35.4	20.0	0.6835	J..J..J..J..J..		
1.3	4.7	3.1	—	25.	1.96	6.0	5.0	4.721.	-58.	-7.56.	2.	5.12.	112.	28.2	23.5-35.4	15.2	0.6865	0.0138		
14.3	58.	160.	26.	C.C51	66.0	47566.	-734.	-762.	41.	456.	161.	29.3	24.6-35.4	18.4	0.6896	0.0233	0.6085	6739.		
ACCELERATION ANC CLIMB																				
16.5	93.	153.	33.	0.166	53.5	46451.	-117.	-550.	35.	323.	140.	28.1	24.6-28.5	17.5	0.6932	0.0257	0.0086	6739.		
17.5	125.	191.	36.	0.167	44.4	46552.	-129.	-1255.	245.	19.	31.	21.5	0.6929	0.0376	0.0086	6739.				
19.3	165.	229.	44.	0.158	37.5	4673.	-314.	-1524.	41.	21.	E5.	45.2	24.6-13.0	23.8	0.6924	0.0502	3.01087	6739.		
20.8	226.	268.	51.	0.156	3.	3.6519.	-212.	-1020.	37.	177.	67.	50.6	24.6-7.7	26.2	0.6921	0.0625	0.0097	6739.		
22.2	253.	308.	56.	0.156	28.2	46566.	76.	-266.	36.	166.	55.	54.4	24.6-3.6	23.5	0.6919	0.1174	0.0187	6739.		
23.6	308.	345.	63.	0.170	25.0	37.544.	541.	-2345.	42.	161.	48.	56.5	24.6-0	22.2	0.6916	0.1664	0.0087	6729.		
25.0	451.	382.	70.	0.169	22.4	47005.	891.	-2654.	59.	167.	49.	59.3	24.6	20.5	0.6915	0.0985	0.0087	6739.		
26.4	545.	418.	71.	0.169	23.3	46531.	151.	-2551.	82.	175.	55.	61.2	24.6	4.3	18.8	0.00715	0.1104	0.0087	6739.	
27.8	652.	456.	84.	0.166	18.5	46771.	23.2.	-236P.	113.	107.	67.	63.2	24.6	6.1	17.0	0.0917	0.1124	0.0087	6739.	
25.2	165.	494.	91.	0.165	17.0	46337.	2086.	-2059.	153.	112.	85.	62.5	24.6	7.6	14.8	0.0944	0.1331	0.0284	6729.	
30.6	897.	531.	98.	0.160	15.7	42538.	-3454.	-677.	201.	87.	110.	62.4	24.6	8.8	12.7	0.2980	0.1431	0.0281	6739.	
32.1	164.	570.	105.	0.152	19.6	41650.	-306.	-800.	256.	90.	151.	61.7	24.6	9.5	16.5	0.1023	0.1531	0.0277	6739.	
33.6	1199.	610.	112.	0.149	13.7	35521.	5242.	-23F8.	323.	123.	177.	61.1	24.6	10.9	9.2	0.1377	0.1625	0.0273	6739.	
35.2	1277.	652.	120.	0.147	12.8	37254.	46263.	-4666.	392.	165.	220.	55.6	24.6	11.8	7.8	0.1161	0.1715	0.0269	6739.	
36.8	1575.	656.	127.	0.135	12.0	34663.	7370.	-587.	473.	275.	269.	56.4	24.6	12.5	6.4	0.1224	0.1794	0.0264	6739.	
38.6	1799.	742.	134.	0.129	11.4	32014.	5562.	-7812.	289.	325.	56.2	24.6	13.2	5.3	0.1324	0.1863	0.0259	6739.		
40.5	2157.	793.	142.	0.115	10.8	29365.	5676.	-9602.	639.	505.	375.	54.6	24.6	13.5	4.3	0.1440	0.1919	0.0254	6739.	
42.6	2358.	849.	145.	0.115	10.3	27112.	1155.	-11163.	651.	61.	415.	52.9	23.8	13.5	3.6	0.1556	0.1976	0.0250	6739.	
44.5	271.	91.	156.	0.110	9.8	24931.	1166.	-12678.	756.	705.	451.	50.4	23.	13.5	2.9	0.1695	0.2112	0.0246	6739.	
47.4	3101.	977.	169.	0.105	9.3	22355.	12725.	-14365.	822.	501.	47.6	42.6	22.9	13.5	2.4	0.1995	0.2090	0.0241	6735.	
50.2	3567.	1052.	171.	0.105	8.9	17634.	14994.	-17547.	557.	555.	457.	43.3	22.4	13.5	1.8	0.2135	0.1944	0.0237	6739.	
53.2	6082.	1131.	178.	0.106	8.6	17676.	16200.	-16200.	1029.	1213.	645.	22.7	13.5	1.3	0.2379	1.1801	0.0033	6739.		
56.2	4625.	1212.	186.	0.106	8.2	15785.	16200.	-15919.	1213.	658.	21.7	13.5	0.9	0.2702	0.1523	0.0229	6739.			
29.3	5155.	1293.	193.	0.107	7.9	14125.	16555.	-21526.	1104.	1321.	658.	19.1	21.5	13.5	0.3064	0.1355	0.0226	6732.		
42.2	5751.	1374.	201.	0.106	7.6	13030.	19756.	-23099.	1181.	1500.	752.	6.3	21.1	13.5	0.1	0.3320	0.0372	0.0024	6729.	
45.5	6439.	1459.	208.	0.105	7.3	12536.	15235.	-25322.	1219.	1569.	785.	-3.3	21.6	13.2	0.1	0.3452	0.0233	0.0203	6729.	
67.8	6913.	1519.	213.	0.099	7.2	12243.	15763.	-25353.	1177.	1513.	767.	-3.2	19.2	12.6	0.0	0.3536	0.0200	0.0023	6739.	
81.6	8823.	1911.	213.	0.098	7.1	14645.	2350.	-2420.	1213.	1213.	645.	21.7	13.5	0.9	0.2702	0.1523	0.0229	6739.		
2354.43876.	16220.	242.	0.098	7.0	14645.	2350.	-2420.	1213.	1213.	645.	21.7	13.5	0.9	0.2702	0.1523	0.0229	6739.			

END

THE NOISE ATTENUANCE IS 0.222820+6	AT	SIDELINE AND	FI	FL	FORWARD, NOISE = 91.1 ENFB
AT 100. FI. SIDE LINE AND	J.	FI.	FORWARD, NOISE = 82.8 ENFB		
AT 1000. FI. SIDE LINE AND	O.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT 2000. FI. SIDE LINE AND	C.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT 20000. FI. SIDE LINE AND-20000. FI. FORWARD, NOISE = 0.0 ENFB	Q.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT 0. FI. SIDE LINE AND-5000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT J. FI. SIDE LINE AND-6000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT J. FI. SIDE LINE AND-3000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT J. FI. SIDE LINE AND-5000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT J. FI. SIDE LINE AND-5000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		
AT J. FI. SIDE LINE AND-5000. FI. FORWARD, NOISE = 0.0 ENFB	J.	FI.	FORWARD, NOISE = 0.0 ENFB		

ORIGINAL PAGE IS
OF POOR QUALITY

D-80-50 DEPARTURE

EE.4 EE.2 EE.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0
74.0 73.7 73.5 72.2 64.7 1.0 1.0 1.0 1.0 1.0 1.0
76.7 76.0 15.0 74.1 73.7 67.0 .0.0 .0.0 .0.0 .0.0
79.5 79.0 78.1 76.2 74.5 71.8 .0.0 .0.0 .0.0 .0.0
75.2 0.0 0.0 0.0 76.4 74.7 71.4 0.0 0.0 0.0 0.0
EE.2 EE.4 78.1 C.0 78.7 75.0 72.1 64.0 C.0 0.0
F3.0 .0.0 79.9 77.1 74.6 71.2 C.0 0.0
E6.0 E80.5 80.0 78.0 75.4 71.0 C.0 0.0
E8.1 82.3 81.5 78.7 75.7 72.0 C.0 0.0
87.5 82.7 81.6 78.6 75.9 72.4 67.5 0.0
94.1 96.7 64.5 61.0 61.4 78.4 75.0 72.4 C.0 0.0
91.4 EE.0 E.0 E5.7 E2.2 81.0 78.5 75.9 72.9 65.0 0.0
EE.8 EE.0 E5.5 82.0 84.3 77.8 75.1 72.0 C.0 0.0
EE.1 E6.5 E5.4 82.0 79.8 77.3 74.1 70.0 C.0 0.0
EE.4 E5.1 E3.2 E6.5 76.0 76.2 73.5 69.0 C.0 0.0
E5.1 E3.7 81.5 80.0 72.5 75.2 72.1 0.0 1.0 0.0
E3.7 E2.1 E5.6 70.5 74.3 74.4 70.0 0.0 C.0 0.0
E2.2 E1.0 79.4 77.6 75.7 72.3 0.0 0.0 0.0 0.0
81.5 F0.0 78.3 76.5 74.2 71.7 0.0 0.0 0.0 0.0
EE.2 79.0 77.5 75.5 72.5 70.5 0.0 0.0 C.0 0.0
C.1 78.5 76.5 74.0 72.0 69.0 0.0 0.0 0.0 0.0
79.0 77.0 75.1 73.9 72.0 66.0 0.0 0.0 0.0 0.0
79.2 77.5 75.6 74.1 71.7 68.7 0.0 1.0 C.0 0.0
7E.2 76.8 75.1 73.0 71.5 68.4 0.0 0.0 C.0 0.0
7E.4 76.0 75.1 72.0 70.5 66.2 0.0 0.0 C.0 0.0
77.2 75.5 74.7 72.5 65.5 65.0 1.0 0.0 C.0 0.0
77.4 75.0 73.0 71.0 69.2 65.0 0.0 0.0 C.0 0.0
76.6 75.2 73.6 71.4 68.6 0.0 0.0 0.0 0.0
75.4 73.7 71.4 69.7 65.3 C.0 C.0 0.0 0.0
75.2 73.6 71.4 66.4 66.0 0.0 0.0 0.0 0.0
75.7 73.0 71.8 65.1 C.0 0.0 0.0 0.0 C.0 0.0
74.4 73.1 73.5 64.3 64.0 0.0 0.0 0.0 0.0

ORIGINAL DOCUMENT
OF HIGH QUALITY

D-80-50 ARRIVAL

65.7	65.6	65.3	65.6	C.O	C.C	0.0	0.0	0.0	0.0	0.0	0.0
70.2	69.5	69.1	68.6	65.7	65.0	L.O	L.O	C.C	0.0		
74.0	73.6	72.7	71.1	69.2	66.1	65.2	0.0	C.C	0.0		
76.7	75.8	74.8	74.0	72.4	69.4	66.1	65.0	U.C	0.0		
78.4	78.0	77.2	75.8	74.2	70.4	69.6	65.6	C.C	0.0		
E6.7	E5.1	E5.6	E7.6	76.1	73.7	69.7	66.0	C.C	0.0		
E1.5	E9.4	E5.6	E6.0	77.1	74.4	70.1	66.2	U.C	0.0		
E7.1	E5.3	E8.6	E7.0	77.5	75.2	70.2	66.0	C.L	L.O		
				E4.1	E5.5	E6.4	E5.2	69.9	65.5	0.0	0.0
				E4.5	E5.1	E8.3	E5.1	69.1	J.O	C.C	0.0
				E5.6	E5.3	E8.7	E5.5	68.9	0.0	L.C	0.0
				E6.4	E6.2	E5.9	E6.8	72.3	65.1	0.0	0.0
				E7.7	E1.1	E5.5	E5.5	80.2	77.5	73.9	66.5
				E6.4	E0.4	E4.6	E4.6	74.1	77.5	72.5	66.5
				E5.7	E5.8	E5.5	E2.6	E0.0	77.3	71.2	66.6
				E4.8	E0.8	E6.6	E2.6	80.1	77.0	72.6	66.6
				E4.6	E0.6	E6.6	E2.6	79.6	76.5	72.5	65.2
				E3.1	E0.3	E5.5	E2.3	79.5	76.9	72.6	11.0
				E2.3	E9.6	E5.7	E2.5	79.6	76.9	73.5	0.0
				E1.6	E5.1	E5.7	E2.6	79.7	76.8	73.8	0.0
				E1.0	E5.6	E5.5	E2.6	79.9	77.4	74.5	0.0
				E6.6	E8.2	E5.4	E2.7	80.2	77.6	74.8	65.7
				E5.0	E7.9	E5.3	E2.3	80.2	77.7	75.0	67.0
				E5.5	E7.4	E5.1	E2.7	80.3	78.1	75.6	71.2
				E5.3	E7.0	E4.9	E2.7	E0.4	78.2	75.7	71.4
				E7.8	E6.7	E4.6	E2.6	E0.5	78.3	75.8	72.4
				E7.3	E6.4	E4.6	E2.5	80.4	78.3	75.9	72.5
				E6.8	E6.0	E4.3	E2.4	E0.4	78.4	76.0	72.6
				E6.3	E5.7	E4.1	E2.3	E0.5	78.4	76.0	73.4
				E5.9	E5.5	E3.9	E2.1	E0.4	78.4	76.1	73.4
				E5.5	E4.9	E3.7	E2.1	E0.2	78.3	76.4	73.5
				E5.1	E4.6	E3.4	E2.1	E0.1	78.5	76.4	73.5
				E4.8	E4.3	E3.2	E2.8	E0.1	78.4	76.4	73.5
				E4.4	E4.6	E3.6	E1.5	E0.0	78.2	76.0	73.5

DEPARTURE PATH IC 10.000 FT ASL
— MAX FUSE. ANGLE=20.0.—OBSTACLE CLEAR_ANGLE=10.0.—INSTALLED LIGHT=1.0.—MAX ACCEL_TRAILRATE=2.0.—ACCEL BUILDUP TIME= 5.

ORIGINAL PAGE IS
OF POOR QUALITY

AFFILIATE FAITH FFCM 10-CGU FT MSL
TERMINAL AREA SPEED = 200 KIAS. FINAL APPROXIMATE SPEED = 65 KIAS. FINALE APPROXIMATE SLOPE = 2.0 DEG. ACCEL. BUILDUP TIME = 5.0 SEC

卷之三

DESIGN ILLUSTRATIONS: 6

ORIGINAL RECORDING
OF FLYING QUALITY

HOVER

NOISE FOOTPRINT IN EPHDB. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GPM

— 81.0 80.9 80.6 83.3 82.7 82.2 81.5 80.9 80.2 79.5
— 82.4 82.3 81.9 81.5 80.9 83.3 82.5 81.7 81.0 80.2
— 84.0 83.8 83.4 82.8 82.1 81.3 80.5 82.6 81.7 80.9
— 85.9 85.6 85.0 84.3 83.4 82.4 81.5 80.5 82.5 81.5
— 88.1 87.6 86.9 85.9 84.7 83.6 82.4 81.3 83.3 82.2
— 90.8 90.1 89.0 87.6 86.2 84.7 83.4 82.1 80.9 82.7
— 94.2 93.2 91.5 89.5 87.6 85.9 84.3 82.8 81.5 83.3
— 99.0 97.0 94.2 91.5 90.0 86.9 85.0 83.4 81.9 80.6
— 97.0 93.2 90.1 87.6 85.6 83.8 82.3 80.9
— 99.0 94.2 90.8 88.1 85.9 84.0 82.8 81.0
x 99.0 94.3 90.8 88.1 85.9 84.0 82.4 81.0
— 97.0 93.2 90.1 87.6 85.6 83.8 82.3 80.9
— 99.1 97.0 94.2 91.5 90.0 86.9 85.0 83.4 81.9 80.0
— 94.2 91.2 91.5 89.5 87.6 85.9 84.3 81.8 81.5 83.3
— 97.8 95.1 83.0 87.6 86.2 84.7 83.4 82.1 80.9 82.7
— 88.1 87.6 86.9 85.2 84.7 83.6 82.4 81.3 81.3 82.2
— 85.7 85.6 85.0 84.3 83.4 82.4 81.5 80.5 82.5 81.5
— 84.5 83.8 83.4 82.8 82.1 81.3 80.5 82.0 81.7 80.9
— 82.4 82.3 81.9 81.5 80.9 83.3 82.5 81.7 81.3 80.2
— 81.0 80.9 80.6 80.3 82.7 82.2 81.5 80.9 80.2 79.5
— 82.7 82.6 82.4 82.0 81.6 81.1 80.6 80.0 79.4 78.8
— 81.5 81.4 81.2 81.0 80.6 80.2 79.7 79.2 78.7 78.2
— 80.4 80.4 80.2 80.1 79.7 79.3 79.0 78.5 78.0 78.0
— 79.4 79.4 79.2 79.0 78.9 78.5 78.1 78.0 78.0 78.0
— 78.5 78.5 78.3 78.2 77.9 78.0 78.0 78.0 78.0 78.0
— 77.5 77.5 77.3 77.2 77.0 77.0 77.0 77.0 77.0 77.0
— 76.5 76.5 76.3 76.2 76.0 76.0 76.0 76.0 76.0 76.0

TILT ROTOR DESIGN PROGRAM 1974

QP-80-50

DESIGN ITERATIONS: 5

OVERALL GROSS WEIGHT (LB)	48527.	POWERPLANT INST NORMAL PWR (HP)	9642.	FUSELAGE LENGTH (FT)	80.5	STRUCT TECHNOLOGY FACTORS *ROTOR
EMPTY WEIGHT (LB)	34209.	*NUMBER OF ENGINES 2.	*DIAMETER (FT)	10.0	*TRANSMISSION	
FUEL WEIGHT (LB)	4167.	*EXCESS FACTOR HEL MODE 2.00	*DRAG FACTOR 1.00	1.00	*AIRCRAFT	
PAYOUT (LB)	10150.	*% RATED FCRG HVR 140.			*ENGINE (HP/LB)	
CRUISE SPEED (MPH)	429.	*CONV + CLIMB 120.			*ENGINE INSTALLATION 1.	
L/C CRUISE	9.83	*CRUISE 90.	WING PROFILE	4.39		
*RANGE (STAT MI)	500.	INST PWR EMRG HVR (HP) 8954.	FUSELAGE	5.31	DESIGN MISSION	
*PASSENGER SEATS	50.	CONVER (HP) 9642.	EMPENNAE	2.63	*FIELD ELEVATION (FT)	
*CARGO (LB)	0.	CRUISE (HP) 8040.	TOTAL PROFILE	14.92	SOUND SPEED MVR (FPS) 1117.	
ROTORS		*SFC (LB/HP HR)	WING INDUCED	1.85	*STD DAY TEMP (DEG F) 55.	
*DISC LOADING (PSF)		8.50 DRIVE SYSTEM			*EMRG HOVER ALT (FT) 400.	
RADIUS (FT)	30.1	*EFFICIENCY 0.97	COMPONENT WEIGHTS (LB) —		*HOT DAY TEMP (DEG F) 90.	
SOLICITY	0.098	*HEL MODE WEIGHT (LB) 6382.	ROTORS		*CT/SIG MAX 0.12.	
BLADE CHORD (FT)	3.10	AIRPLANE WEIGHT (LB) 5854.	DRIVE SYSTEM		*MAX ACCELERATION (G) 3.2.	
TOTAL BLADES	6	WING AREA (SF) 665.	POWERPLANT		*DESIGN CRUISE (MPH) 450.	
*CT/SIG FCOV		*LOADING (PSF) 73.0	NACELLES		*CRUISE ALTITUDE (FT) 15000.	
*PRCFILE DRAG COEFF		9.6 ASPECT RATIO 7.86	FUEL SYSTEM		*SOUND SPEED CRSE (FPS) 155.	
*DOWNLOAD		0.120 SPAN (FT) 72.3	FUSELAGE		*STRUCT LOAD FACTOR 4.5.	
*EFFICIENCY HOVER.		0.83 PEAN CHORD (FT) 9.2C	MING		*FLIGHT CREW 2.	
CONVER		0.90 *THICKNESS/CHORD RATIO 0.210	LANDING GEAR		*CABIN CREW 1.	
CRUISE		5044. *TAPER RATIO 0.70	FLIGHT CONTROLS		*ATC SPEED LIMIT YES	
HEL *GCE WEIGHT (LB)		4167. SWEEP (DEG) -5.3	HYDRAULICS			
AIRPLANE WEIGHT (LB)		630. CRUISE LIFT COEFF 0.25	ELECTRICAL			
*TIP SPEED HOVER		540. MAX LIFT COEFF CONVER 1.01	INSTR+AVIONICS	703.		
*CRUISE		1.0 *MAX LIFT COEFF CLEAN 1.01	AIR CONDITIONING	1150.		
*FUSELAGE CLEARANCE (FT)		0.40 *FLAP AREA/WING AREA 0.25	FURNISHINGS	2500.		
*MAX FEL MODE ADV RATIO		CLIMA SPD/CONVER SPD 0.91	FLUIDS	243.		
			FLIGHT CREW	400.		
			CABIN CREW	150.		

* INDICATES INPUT VARIABLE

DESIGN MISSION	SPEED MPH	HEIGHT FT	DIST MI	TIME MIN	FUEL LB
TAKEOFF & LANDING				2.00	83.
ACCEL. & CCNV.				1.03	73.
AIRPLANE CLIMB	156., 192.	1500.	1.3		
ACCEL. TO CRUISE		13500.	11.0	3.81	200.
CRUISE	429.		12.7	2.18	122.
AIRPLANE DESCENT	429., 294.	13500.	419.6	58.65	2743.
APPROACH		1500.	31.9	5.6C	37.
			23.4	9.55	79.
TOTAL			500.0	82.82	3337.
RESERVE				20.00	831.

OPTIMUM
OF PRIOR QUALITY

QP-80-50

STAGE LENGTH (MI.)	25.	50.	75.	100.	150.	200.	300.	400.	500.
CRUISE ALTITUDE (FT.)	2000.	4000.	10001.	12500.	15000.	15030.	15900.	15500.	15500.
CRUISE SPEED (MPH)	296.	395.	436.	439.	438.	438.	438.	438.	438.
CRUISE L/D	12.38	12.38	8.40	8.84	9.33	9.33	9.33	9.33	9.33
CRUISE DISTANCE (MI.)	-3.9	14.2	-2.3	22.4	66.8	116.8	216.8	316.8	416.8
BLOCK TIME (MIN.)	0.0	18.0	0.0	26.4	33.7	40.6	54.2	67.9	81.6
BLOCK FUEL (LB.)	0.	400.	0.	735.	1086.	1436.	2129.	2811.	3483.
BLOCK SPEED (MPH)	0.	166.	0.	227.	267.	295.	332.	353.	367.

DIRECT OPERATING COST - ANN UTILIZATION (HR)=2000. DEPRECIATION PERIOD(YR)=10. LABOR RATE(\$/HR)= 7.00
 AIRFRAME COST (\$/LB)= 80.0 ENGINE COST (\$/HP)= 60.0 INSURANCE RATE=0.040 FUEL COST (CENTS/GAL)= 18.0
 DCC=.86+.0344*SL \$/SEAT-TRIP (SL= 25.509.)

HOP LENGTHS	50+150+	0+	0+ 0=200	100+200+	0+ 0+ C=300	200+200+	0+ 0+ 0=400	
STAGE LENGTH	25.	50.	75.	100.	150.	200.	300.	400.
NO. CYCLES/STARTS	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
FLIGHT CREW	0.0	0.581	0.0	0.426	0.362	0.291	0.274	0.263
FUEL & OIL	0.0	0.223	0.0	0.204	0.201	0.197	0.195	0.194
HULL INSURANCE	0.0	0.380	0.0	0.278	0.237	0.214	0.190	0.179
TOTAL FLIGHT OPS	0.0	1.183	0.0	0.908	0.800	0.740	0.679	0.648
LAECR AIRFRAME	0.0	0.395	0.0	0.262	0.212	0.185	0.159	0.145
MATERIAL AIRFRAME	0.0	0.151	0.0	0.095	0.075	0.065	0.054	0.049
LABOR ENGINES	0.0	0.189	0.0	0.108	0.079	0.065	0.050	0.043
MATERIAL ENGINES	0.0	0.304	0.0	0.169	0.123	0.099	0.075	0.063
MAT. BURDEN	0.0	0.759	0.0	0.480	0.379	0.325	0.272	0.245
TOTAL MAINTENANCE	0.0	1.797	0.0	1.115	0.868	0.739	0.610	0.545
DEPRECIATION	0.0	1.096	0.0	0.803	0.683	0.616	0.550	0.516
TOTAL DIRECT OPERATING COST	0.0	4.076	0.0	2.826	2.351	2.095	1.839	1.710
\$/AIRCRAFT MILE	0.0	678.5	0.0	641.8	627.8	620.0	610.0	603.9
\$/FLIGHT HOUR	0.0	0.0815	0.0	0.0565	0.0470	0.0419	0.0358	0.0342
\$/SEAT MILE	0.0	4.08	0.0	5.65	7.05	8.38	11.03	13.68
\$/SEAT-TRIP	0.0	4.08	0.0	5.65	7.05	8.38	11.03	13.68

ON
OF POOR QUALITY

50' 30'

CHICAGO
CHICAGO QUALITY

13.5 16.5 19.5 22.5 25.5 28.5 31.5 34.5 37.5
20.5 20.7 20.8 24.1 28.7 22.9 28.4 24.7 29.4

NOISE FOCUSED IN EPNDB. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GRID

72.2 72.0 72.9 69.1 68.6 65.3 0.0 0.0 0.0
74.2 74.0 73.7 73.2 72.0 69.0 65.4 0.0 0.0
76.0 75.8 75.4 74.9 73.7 72.3 70.4 0.0 0.0
78.1 77.9 77.4 76.1 75.4 74.5 72.3 0.0 0.0
79.9 79.6 78.9 78.1 77.1 75.4 74.4 77.1 69.9 0.0
82.2 81.7 82.8 79.7 78.3 77.1 75.2 75.4 71.5 0.0
83.0 81.4 79.1 0.0 79.4 78.2 75.9 74.5 72.7 64.8
87.6 86.2 83.8 79.6 80.5 78.7 77.1 74.1 73.0 67.9
82.4 81.4 81.5 79.4 77.6 74.9 72.2 65.1
X 87.4 83.1 82.2 79.8 77.3 75.0 72.9 68.1
83.0 83.5 82.4 80.0 78.0 74.9 72.7 64.9
87.0 83.6 82.5 80.1 78.1 75.1 72.2 65.6
97.8 93.4 83.1 84.1 82.6 80.3 78.2 75.7 73.3 69.1
95.6 91.9 87.0 82.7 82.2 80.2 78.1 75.8 72.7 70.7
94.6 90.6 84.7 84.0 81.8 79.8 77.6 75.0 72.9 71.7
91.6 88.2 83.1 83.4 81.4 79.3 77.4 75.5 73.5 70.5
91.6 87.9 85.7 82.8 80.7 79.0 77.5 75.5 73.2 70.2
86.9 86.5 81.1 82.0 80.2 78.5 76.6 75.2 73.0 71.0
89.6 86.0 81.1 81.6 80.0 78.5 76.8 74.9 72.7 64.9
87.3 85.5 81.1 81.3 79.7 78.2 76.5 75.3 72.3 0.0
87.3 84.5 81.1 80.7 79.0 77.5 75.9 75.2 70.0 0.0
87.1 85.1 82.1 80.7 78.9 77.4 75.7 75.5 67.9 0.0
87.4 84.9 82.1 80.6 78.9 77.1 75.3 73.0 64.9 0.0
82.3 86.1 83.1 82.9 78.8 77.1 75.2 73.0 68.4 0.0
87.0 85.8 81.1 81.1 79.1 77.1 75.1 75.5 70.5 0.0
85.9 84.4 81.1 80.7 78.9 77.0 75.3 71.6 70.9 67.9
84.2 83.2 81.1 80.1 78.3 76.8 74.7 72.7 70.1 68.4
82.3 81.6 80.1 79.5 77.5 76.7 74.2 72.7 70.1 68.7
81.1 80.3 79.1 78.2 76.3 75.1 73.5 71.1 70.0 68.8
79.7 79.0 71.1 77.0 75.5 74.4 72.9 71.3 69.8 67.1
78.2 77.6 71.1 75.8 74.6 73.2 71.5 70.5 69.5 66.3
77.6 76.7 71.1 75.1 73.1 71.7 70.9 70.0 69.1 66.0
76.3 75.5 71.1 75.1 73.2 70.9 69.5 66.6 65.7
74.6 74.1 72.1 72.1 72.7 70.2 69.9 66.9 61.1 65.3

QP-80-50 - 50' 60°

TIME HISTORY AT 500 FT SIDELINE

TIME =	1.5	4.5	7.5	10.5	13.5	16.5	19.5	22.5	25.5	28.5	31.5	34.5	37.5
PNL =	85.8	86.4	86.9	88.9	92.0	91.9	90.0	86.3	80.9	75.0	69.3	64.8	60.4

NOISE FOOTPRINT IN EPNDB. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GRID

72.7	71.8	71.6	71.1	70.6	68.5	65.2	0.0	0.0	0.0			
74.6	74.4	74.2	73.7	72.6	71.0	70.2	65.2	0.0	0.0			
76.3	75.8	75.5	74.9	74.2	72.9	72.1	70.2	64.9	0.0			
78.7	78.5	78.0	77.1	75.4	74.5	73.0	72.0	69.9	0.0			
80.5	80.2	79.6	78.7	77.8	75.9	74.5	72.8	71.7	64.8			
82.7	82.2	81.4	80.3	79.0	77.8	75.7	74.5	72.2	69.8			
84.0	83.2	81.0	75.4	80.3	78.8	77.1	75.1	72.7	71.4			
88.9	87.5	84.1	81.1	81.5	79.7	78.0	75.6	73.7	71.7			
87.7	83.9	82.6	80.5	78.5	76.0	74.0	72.6					
89.6	85.0	83.3	81.0	79.0	76.8	74.1	72.6					
X	90.4	85.8	83.6	81.2	79.2	76.9	74.1	70.9				
90.0	85.4	83.6	81.1	79.0	76.4	74.4	70.8					
97.0	93.4	88.8	85.3	83.5	81.2	79.2	76.6	74.2	71.9			
94.9	91.7	88.1	84.6	83.1	81.0	78.9	76.5	74.6	71.9			
92.8	90.4	87.5	84.9	82.7	80.7	78.3	76.6	74.3	72.3			
91.3	88.6	86.1	83.8	81.7	79.5	77.8	75.6	73.8	68.5			
88.8	87.0	84.8	82.7	80.6	78.9	77.3	75.9	72.0	68.2			
87.8	85.3	83.2	81.3	79.6	78.1	76.4	73.9	70.5	65.1			
85.4	84.1	82.4	80.8	79.3	77.9	76.4	74.1	72.3	0.0			
86.2	83.6	81.8	80.3	78.8	77.3	75.8	73.7	71.1	0.0			
83.4	82.4	81.1	79.7	78.2	76.8	75.4	72.6	68.0	0.0			
84.3	82.4	80.8	79.3	77.9	76.6	74.7	71.5	0.0	0.0			
84.2	82.5	80.8	79.3	77.8	76.0	74.2	72.4	0.0	0.0			
64.3	82.9	81.0	79.2	77.7	75.8	74.5	72.5	64.8	0.0			
83.6	82.5	80.8	79.1	77.5	76.0	74.1	71.3	68.3	0.0			
82.5	81.6	80.4	78.8	77.1	75.7	73.8	71.5	68.7	0.0			
81.0	80.4	79.4	78.0	76.8	75.1	73.0	70.7	69.0	65.0			
80.1	79.5	78.5	77.1	75.8	74.1	72.9	70.4	69.1	65.4			
78.7	78.1	77.4	75.7	74.7	73.7	71.4	70.2	69.0	65.5			
77.3	76.9	75.9	74.8	73.5	71.9	70.9	69.8	66.6	65.5			
76.5	75.9	74.4	72.6	71.9	71.1	70.3	69.4	66.4	65.4			
74.8	74.3	73.5	71.7	71.1	70.4	69.7	66.9	66.1	65.2			
73.9	72.8	72.2	70.8	70.3	69.8	69.2	66.4	65.7	64.9			
73.4	72.7	71.4	70.0	69.6	67.1	66.5	65.9	65.2	0.0			

OF THE QUALITY

QP-80-50 100' 30°

TIME HISTORY AT 500 FT SIDELINE

TIME	1.5	4.5	7.5	10.5	13.5	16.5	19.5	22.5	25.5	28.5	31.5	34.5	37.5
PNL	85.7	86.0	86.2	87.5	90.5	91.7	89.1	85.0	79.4	73.2	68.2	63.3	59.8

PRECISE FCCTPRINT IN EPN08. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GRID

OR PCL. QUALITY

72.3	72.2	71.1	70.6	68.8	68.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
74.8	74.6	74.3	73.3	72.1	70.5	68.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
76.2	76.0	75.6	75.1	74.5	72.5	70.7	68.3	0.0	0.0	0.0	0.0	0.0	0.0
78.3	78.0	77.6	76.3	75.6	74.7	73.2	70.6	68.0	0.0	0.0	0.0	0.0	0.0
80.3	79.9	79.3	78.5	77.3	75.7	74.6	73.1	70.2	0.0	0.0	0.0	0.0	0.0
82.4	81.9	81.1	80.0	78.8	77.5	75.4	73.7	72.6	64.9	0.0	0.0	0.0	0.0
83.2	81.6	79.1	0.0	79.7	78.5	76.5	74.8	73.0	69.8	0.0	0.0	0.0	0.0
87.8	86.4	83.3	79.0	80.9	79.1	77.4	75.0	73.4	71.2	0.0	0.0	0.0	0.0
X	86.9	81.8	81.9	79.8	78.0	75.4	73.5	70.3	0.0	0.0	0.0	0.0	0.0
X	88.8	83.6	82.6	80.4	78.3	75.6	73.6	70.4	0.0	0.0	0.0	0.0	0.0
X	89.7	84.2	83.0	80.6	78.6	75.6	73.5	71.4	0.0	0.0	0.0	0.0	0.0
X	89.7	85.0	83.2	80.8	78.8	76.2	73.7	71.4	0.0	0.0	0.0	0.0	0.0
X	97.7	94.0	88.9	85.3	83.3	81.0	78.9	76.5	74.4	71.7	0.0	0.0	0.0
X	95.6	92.2	88.3	84.4	83.0	80.9	78.8	76.5	75.0	72.7	0.0	0.0	0.0
X	94.1	90.6	87.3	84.6	82.3	80.2	78.0	76.4	74.2	70.7	0.0	0.0	0.0
X	91.5	88.8	86.1	83.7	81.7	79.6	77.7	76.2	72.8	70.7	0.0	0.0	0.0
X	89.8	87.1	84.6	82.5	80.4	78.7	77.2	75.2	72.4	70.4	0.0	0.0	0.0
X	88.0	85.8	83.8	81.9	80.3	78.6	77.2	75.7	73.1	71.2	0.0	0.0	0.0
X	87.3	85.1	83.1	81.4	79.8	78.4	76.8	74.5	72.8	69.7	0.0	0.0	0.0
X	85.0	83.7	82.1	80.6	79.2	77.7	76.1	74.1	72.4	0.0	0.0	0.0	0.0
X	85.2	83.4	81.8	80.2	78.7	77.3	75.8	74.2	71.1	0.0	0.0	0.0	0.0
X	85.2	83.4	81.8	80.2	78.7	77.3	75.8	74.2	71.1	0.0	0.0	0.0	0.0
X	84.7	83.4	81.7	80.0	78.5	77.1	75.5	73.4	68.0	0.0	0.0	0.0	0.0
X	85.4	83.4	81.7	80.0	78.5	76.8	75.1	72.8	0.0	0.0	0.0	0.0	0.0
X	86.3	84.2	82.1	80.2	78.5	76.8	74.9	73.6	65.5	0.0	0.0	0.0	0.0
X	85.6	84.1	82.2	80.3	78.3	76.7	75.2	72.6	68.6	0.0	0.0	0.0	0.0
X	84.3	83.2	81.7	79.9	78.3	76.4	74.9	72.3	69.3	0.0	0.0	0.0	0.0
X	82.8	82.0	80.9	79.3	77.7	76.3	74.5	72.3	69.6	68.1	0.0	0.0	0.0
X	81.2	80.6	79.7	78.6	77.0	75.5	73.7	72.3	69.7	68.4	0.0	0.0	0.0
X	80.2	79.4	78.5	77.3	75.7	74.6	73.4	70.9	69.7	68.5	0.0	0.0	0.0
X	78.7	78.2	77.3	75.8	75.0	74.0	72.5	70.6	69.5	66.0	0.0	0.0	0.0
X	77.3	76.9	76.0	74.9	73.6	72.8	71.1	70.2	69.2	65.9	0.0	0.0	0.0
X	76.1	75.5	74.4	73.3	72.0	71.3	70.5	69.7	68.8	65.7	0.0	0.0	0.0
X	75.2	74.2	73.5	71.6	71.1	70.6	69.9	69.2	66.2	65.4	0.0	0.0	0.0
X	73.7	72.7	72.1	70.7	70.3	69.9	69.3	66.5	65.8	65.1	0.0	0.0	0.0

QP-80-50 60° 100'

TIME HISTORY AT 500 FT SIDELINE
TIME= .5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5 31.5 34.5 37.5 40.5 43.5
PNL = 85.8 86.4 86.9 88.9 92.7 90.2 86.8 82.5 77.3 71.4 65.9 62.3 50.9 57.1

NOISE FCCTPRINT IN EPNDB. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GRID

72.9 72.7 72.5 72.1 70.8 70.0 65.0 0.0 0.0 0.0
75.1 75.0 74.2 73.8 72.7 72.1 70.3 65.2 0.0 0.0
76.8 76.3 76.0 75.5 74.9 73.1 72.3 71.4 65.0 0.0
78.9 78.7 78.2 77.4 76.1 75.3 73.9 72.3 71.3 0.0
80.9 80.6 80.0 79.0 78.0 76.3 75.3 73.0 72.0 69.8
83.0 82.6 81.7 80.7 79.5 78.3 76.2 75.0 73.4 71.4
84.1 83.3 81.3 79.2 80.8 79.4 77.8 75.7 74.0 72.8
89.1 87.7 84.8 81.4 82.1 80.4 78.8 76.7 74.5 73.2
88.1 84.4 83.2 81.2 79.4 77.2 75.4 73.5
X 90.2 86.0 84.1 81.8 79.9 77.8 75.7 74.3
91.0 86.6 84.6 82.2 80.1 78.0 75.8 74.4
90.6 86.3 84.6 82.3 80.3 78.0 75.9 74.4
96.0 92.9 89.3 86.3 84.4 82.2 80.2 77.9 76.1 73.3
93.4 91.3 88.5 85.2 84.1 82.0 80.0 77.9 76.1 73.8
92.0 90.4 88.3 86.1 84.0 82.0 79.8 78.2 76.6 74.9
90.8 89.2 87.3 85.2 83.3 81.2 79.5 77.7 75.9 74.0
89.4 87.9 86.2 84.3 82.4 80.5 78.9 77.1 75.4 72.9
87.9 86.6 85.0 83.3 81.6 80.0 78.5 76.9 74.3 72.2
86.6 85.2 83.7 82.2 80.6 79.1 77.7 75.7 74.0 0.0
85.2 83.9 82.5 81.1 79.6 78.1 76.2 74.9 69.6 0.0
83.9 82.7 81.3 80.0 78.5 77.2 75.6 73.5 0.0 0.0
82.9 81.3 79.8 78.5 77.2 75.7 73.7 0.0 0.0 0.0
81.0 80.2 79.1 78.0 76.7 74.5 71.6 67.9 0.0 0.0
79.9 78.6 77.8 76.6 74.9 73.0 71.2 0.0 0.0 0.0
80.2 79.4 78.2 77.1 75.2 74.0 71.3 0.0 0.0 0.0
80.5 79.5 78.1 76.8 75.6 73.8 70.8 67.8 0.0 0.0
81.5 80.2 78.9 77.4 76.0 74.7 70.2 68.7 0.0 0.0
81.5 80.5 79.2 77.8 76.2 74.2 72.0 69.1 65.1 0.0
81.3 80.5 79.2 77.8 76.0 74.6 72.4 71.0 65.6 0.0
80.4 79.9 78.0 77.5 76.2 74.1 72.7 71.3 68.6 0.0
79.6 79.0 78.2 77.2 73.4 74.1 72.9 71.4 68.9 64.9
78.4 77.8 77.2 76.1 75.0 73.9 72.5 71.4 69.1 68.0
76.9 76.6 76.1 75.4 74.0 73.1 72.2 70.1 69.1 68.1
75.9 75.0 74.6 74.0 73.3 72.6 70.8 69.9 60.0 65.4

ADDITIONAL PAGE IS
NOT OF QUALITY

QP-BO-50 100' 90°

TIME HISTORY AT 500 FT SIDELINE

TIME= 1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5 31.5 34.5 37.5 40.5 43.5
PNL = 85.8 86.5 87.2 89.4 93.6 94.1 91.0 88.2 84.8 81.3 78.0 74.1 70.3 67.0 63.2

NOISE FOOTPRINT IN EPNDB. FLIGHT DIRECTION DOWN THE PAGE. 250 FT. GRID

74.1 74.0 73.2 72.9 72.4 70.9 70.3 68.0 0.0 0.0
76.3 76.1 75.8 75.5 74.0 72.9 72.2 70.5 68.0 0.0
77.5 77.3 77.0 76.2 75.6 75.0 73.2 72.3 70.4 64.9
79.9 79.7 79.3 78.3 77.1 76.1 75.2 73.8 72.2 70.1
81.8 81.5 80.9 80.1 79.2 77.7 76.5 75.2 73.7 71.9
83.9 83.5 82.7 81.7 80.6 79.4 77.7 76.4 74.0 73.2
85.4 84.3 83.0 79.5 82.0 80.5 79.0 77.4 75.9 73.8
86.1 86.8 86.2 83.3 83.3 81.7 80.2 78.1 76.5 75.3
89.2 85.8 84.5 82.6 80.9 79.1 77.0 75.7
X 91.3 87.0 85.4 83.2 81.4 79.5 77.9 76.3
91.9 87.8 85.8 83.7 81.7 80.0 78.2 76.6
91.2 87.6 85.9 83.8 82.0 80.1 78.3 76.7
94.1 92.3 89.7 87.1 85.6 83.7 81.9 80.0 78.4 76.7
91.4 90.2 88.3 86.1 85.2 83.4 81.7 79.9 78.4 76.7
90.3 89.3 87.9 86.4 84.7 83.1 81.3 79.8 78.1 76.3
89.1 88.3 87.1 85.7 84.2 82.6 81.1 79.5 77.8 75.9
88.4 87.6 86.5 85.2 83.7 82.3 80.8 79.4 78.1 75.8
87.6 86.9 85.8 84.6 83.3 82.0 80.7 79.3 77.3 75.6
86.9 86.1 85.2 84.0 82.8 81.5 80.3 78.6 77.0 75.4
86.1 85.4 84.5 83.5 82.3 81.0 79.6 78.0 76.6 75.1
85.3 84.6 83.8 82.8 81.6 80.4 79.0 77.7 75.9 74.3
84.6 83.9 83.1 82.1 81.1 79.6 78.4 76.6 75.4 73.9
83.8 83.2 82.4 81.5 80.3 78.8 77.3 76.1 75.0 72.8
82.9 82.3 81.4 80.4 79.3 78.1 77.0 75.5 74.0 72.2
82.1 81.4 80.5 79.6 78.5 77.5 76.3 74.9 73.4 71.6
81.3 80.7 79.9 79.0 78.0 76.8 75.3 74.3 72.7 66.2
80.8 80.0 79.0 78.1 77.2 76.1 75.1 73.0 70.1 0.0
79.9 79.4 78.6 77.6 76.4 75.4 74.0 71.5 0.0 0.0
79.7 78.7 77.7 76.8 75.7 74.3 72.0 69.8 0.0 0.0
78.8 77.9 76.8 75.8 74.2 73.1 71.4 64.8 0.0 0.0
77.9 77.1 76.2 74.6 72.9 71.0 68.3 0.0 0.0 0.0
77.4 76.2 74.7 73.3 72.2 68.9 64.8 0.0 0.0 0.0
75.6 74.7 72.6 71.7 70.5 65.3 0.0 0.0 0.0 0.0
72.8 72.3 71.3 69.0 65.0 0.0 0.0 0.0 0.0 0.0