

AD A 025077

12
FLG.

BEHAVIORAL TECHNOLOGY LABORATORIES

Department of Psychology
University of Southern California

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

DEPARTMENT OF PSYCHOLOGY
UNIVERSITY OF SOUTHERN CALIFORNIA

Technical Report No. 77

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
OVER AN INFINITE PLANNING HORIZON
WITH DISCOUNTING

March 1976

Richard D. Wollmer

Sponsored by

Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

and

Advanced Research Project Agency
Under Contract No. N00014-75-C-0838

The views and conclusions contained in this document
are those of the authors and should not be interpreted
as necessarily representing the official policies,
either expressed or implied of the Office of Naval
Research, the Advanced Research Projects Agency, or
the U.S. Government.

Approved for public release: distribution unlimited.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NTR- Technical Report 177	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER 9
4. TITLE (and Subtitle) PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES OVER AN INFINITE PLANNING HORIZON WITH DISCOUNTING,		5. TYPE OF REPORT & PERIOD COVERED Technical Report 1 Jan - 31 March 1976
7. AUTHOR(s) Richard D. Wollmer 10		8. CONTRACT OR GRANT NUMBER(s) N00014-75-C-0838 NARPA Order-2284
9. PERFORMING ORGANIZATION NAME AND ADDRESS Behavioral Technology Laboratories University of Southern California Los Angeles, California 90007		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program element: 61153N Project: RR042-06 Task area: RR042-06-01 Work Unit: 154-355
11. CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Programs Office of Naval Research (Code 458) Arlington, Virginia 22217		12. REPORT DATE March 1976
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 18
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Operations Research Dynamic Programming Computer Aided Instruction		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This is the last in a series of technical reports concerned with mathematical approaches to instructional sequence optimization in instructional systems. The problem treated here is very closely related to that treated by Smallwood and Sondik (4). Both papers deal with Markov decision processes where the true state of the system is not known with certainty. Hence the state of the system is characterized by a probability vector. Each action yields an expected reward, transforms the system to a new state and yields		

→ an observable outcome. One wishes to determine an action for each probability state vector so as to maximize the total expected reward. Smallwood and Sondik (4) solve this problem exactly for a finite time horizon. This report treats the infinite time horizon with a discount factor, using a partial N dimensional Maclaurin series to approximate the total optimal reward as a function of the probability state vector. While this model was developed for computer aided instruction, it is applicable to other situations as well. This model also is of considerable theoretical value.

ARPA TECHNICAL REPORT

March 1976

1. ARPA Order Number	:	2284
2. ONR NR Number	:	154-355
3. Program Code Number	:	1 B 729
4. Name of Contractor	:	University of Southern California
5. Effective Date of Contract	:	76 January 1
6. Contract Expiration Date	:	76 December 31
7. Amount of Contract	:	\$200,000.00
8. Contract Number	:	N00014-75-C-0838
9. Principal Investigator	:	J. W. Rigney (213) 746-2127
10. Scientific Officer	:	Marshall Farr
11. Short Title	:	Learning Strategies

This Research Was Supported

by

The Advanced Research Projects Agency

and by

The Office of Naval Research

And Was Monitored by

The Office of Naval Research

SUMMARY

This is the last in a series of technical reports concerned with mathematical approaches to instructional sequence optimization in instructional systems. The problem treated here is very closely related to that treated by Smallwood and Sondik (4). Both papers deal with Markov decision processes where the true state of the system is not known with certainty. Hence the state of the system is characterized by a probability vector. Each action yields an expected reward, transforms the system to a new state and yields an observable outcome. One wishes to determine an action for each probability state vector so as to maximize the total expected reward. Smallwood and Sondik (4) solve this problem exactly for a finite time horizon. This report treats the infinite time horizon with a discount factor, using a partial N dimensional Maclaurin series to approximate the total optimal reward as a function of the probability state vector. While this model was developed for computed aided instruction, it is applicable to other situations as well. This model also is of considerable theoretical value.

ABSTRACT

This paper describes a system that may be in any one of states $1, 2, \dots, N$. The true state of the system is not known with certainty and consequently is described by a probability vector. At each stage an action must be chosen from a finite set. Each possible action returns an expected reward, transforms the system to a new state in accordance with a Markov transition matrix, and yields an observable outcome. It is required to determine an action for each possible state vector in order to maximize the total expected reward over an infinite time horizon under a discount factor, β , where $0 < \beta < 1$.

The problem of finding the total maximum discounted reward as a function of the probability state vector may be formulated as a linear program with an infinite number of constraints. The reward function may be expressed as an N dimensional Maclaurin series and in this paper it is approximated by a partial series consisting of terms up to degree n . The coefficients in this series are also determined as an optimal solution to a linear program with an infinite number of constraints. A sequence of related finitely constrained linear programs are solved which generate a sequence of solutions that converge to a local minimum for the infinitely constrained program. It is an open question as to whether this local minimum is actually a global minimum. However it should be noted that the function being approximated is convex and consequently has the property that any local minimum is a global one as well.

ACKNOWLEDGEMENTS

The research discussed in this report was monitored by Dr. Marshall Farr and Dr. Joseph Young, Personnel and Training Research Programs, Office of Naval Research, and Dr. Harry F. O'Neil, Jr., Program Manager, Human Resources Research, Advanced Research Projects Agency. Their support and encouragement is gratefully acknowledged.

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
I. INTRODUCTION	1
II. FORMULATION	2
III. A LEARNING EXAMPLE	4
IV. THE MAXIMUM REWARD FUNCTION	7
V. LINEAR PROGRAM FORMULATION	9
VI. COMPUTATIONAL PROCEDURE	13
VII. BOUNDS ON ACCURACY	17
REFERENCES	18

PARTIALLY OBSERVABLE MARKOV DECISION
PROCESSES OVER AN INFINITE PLANNING
HORIZON WITH DISCOUNTING

1. Introduction

This paper describes a system that may be in anyone of states 1, 2, ..., N. The true state of the system is not known with certainty and consequently is described by a probability vector. At each stage an action must be chosen from a finite set. This action returns an expected reward, transforms the system to a new (but not necessarily different) state according to a Markov process, and yields an observable outcome. The problem addressed here is that of determining an action for each possible state vector in order to maximize the total expected reward over an infinite horizon under a discount factor, β , where $0 < \beta < 1$.

Smallwood and Sondik (4) have treated this problem for the finite horizon case without a discount factor and have determined that the total maximum expected reward is a piecewise linear function of the probability state vector. Their results can be trivially extended to include the discount case.

The observable state case, that is the case where the true state of the system is known with certainty has been treated extensively. For both the finite and infinite horizon under a discount factor, Howard (1) developed a policy improvement routine for determining an optimal action and the optimal cost for each state.

II. Formulation

In this formulation, the notation of Smallwood and Sondik will be used. It is assumed that this system can be modeled by an N -state discrete time Markov decision process.

The observed state of the system is characterized by a probability vector π where π_i is the probability the true state of the system is i .

At each point in time an action must be selected from a finite set. Associated with an action, a , is a probability transition matrix P^a where P_{ij}^a is the conditional probability the system will make its next transition to state j given the current state is i and action a is taken. An observed outcome follows each action with $r_{j\theta}^a$ denoting the probability of observing output θ given the new state of the system is j and action a was taken. In addition an immediate reward $w_{ij\theta}^a$ is incurred if action a is taken, output θ is observed, and the system makes the transition from state i to state j . Thus if action a is taken and output θ is observed, the new state is π' where

$$\pi'_j = \left[\sum_i \pi_i P_{ij}^a r_{j\theta}^a \right] / \left[\sum_{ij} \pi_i P_{ij}^a r_{j\theta}^a \right] \quad (1)$$

The above transformation is summarized by

$$\pi' = T(\pi/a, \theta) \quad (2)$$

A policy is a rule that assigns an action to each possible state vector. It is required to find a policy that maximizes the expected discounted rewards over all periods for each possible state vector. Let $V(\pi)$ be the total discounted reward associated with such a policy.

Then $V(\pi)$ must satisfy the following recursive equation.

$$V(\pi) = \max_a \left[\sum_{i=1}^N \pi_i \sum_{j=1}^N p_{ij}^a \sum_{\theta} r_{j\theta}^a \left\{ w_{ij\theta}^a + \beta T(\pi/a, \theta) \right\} \right] \quad (3)$$

$$\text{Letting } q_i^a = \sum_{j, \theta} p_{ij}^a r_{j\theta}^a w_{ij\theta}^a \quad (4)$$

equation (3) is simplified somewhat to equation (5)

$$V(\pi) = \max_a \left[\sum_i \pi_i q_i^a + \beta \sum_{i,j,\theta} \pi_i p_{ij}^a r_{j\theta}^a V[T(\pi/a, \theta)] \right] \quad (5)$$

Once the function for $V(\pi)$ is known, an optimal action for π can be determined as one which maximizes the right hand side of (5).

III. A Learning Example

As an illustration, it will be shown how the system described in the previous section may be applied to the human learning process.

Consider a course which is given in several levels of instruction. The levels are denoted $1, 2, \dots, N$ with N being the easiest and 1 the hardest. The structure of the levels is a definite hierarchy in the sense that if a student knows the material at level i he must also know the material at any level $j > i$. Several examples where this situation may apply follow:

The first situation is one where the material covered at one level includes all that covered at preceding levels, plus some additional material. An example of this is a program developed at Behavioral Technology Laboratories (BTL) to teach students Kirchoff's Laws. This course is comprised of eleven levels with the lowest level defining the units for voltage, current and resistance up to the highest level which deals with the application of Ohm's Law and Kirchoff's voltage and current laws in complex networks. Another program developed at BTL is a short course in trigonometry consisting of five levels. At the lowest level students are given the definitions of the six basic trigonometric ratios. Then the student is given a right triangle in which the lengths of the sides are determined by a random number generator and the student is asked to determine these ratios for one of the acute angles. Succeeding levels deal with material on relationships between these ratios and problems testing the student's knowledge of these relationships.

A second situation is one where the material and problems covered at a particular level are virtually the same as the immediately preceding level except more clues and hints are given at the preceding level. A good example of this is a version of the Kirchoff's laws program considered

earlier at BTL in which problems would be given in level as follows:

1. Problems are given in steps with cues and knowledge of results at each step.
2. Problems are given in steps with no cues or knowledge of results at each step.
3. The student solves problems in steps but he chooses the steps.
4. The student is simply given problems and asked to solve them.

A third situation is one in which a student is to be drilled in a skill in order that he be able to perform it rapidly. Thus the exercises are virtually the same at all levels but the time constraints are tighter at the higher levels. In the BTL intercept trainer for the radar intercept observer function, the student is trying to fire a missile at the nose of a target and then turn around and fire another missile at the tail of that aircraft. The first missile is a radar guided missile fired when in the forward quarter and the second a heat seeker fired when in the rear quarter of the enemy aircraft. He is given a radar reading and must correct his angle of approach so as to be on a lead collision course that will insure a high hit probability when he fires the missile. At higher levels the student is given such problems at faster aircraft speeds.

Note, however, the assumption given for this model would not be applicable for the situation where a given level did not use certain material introduced at preceding levels.

A student is in state i if he knows the material of level i but not at any level more difficult than i and in state $N+1$ if he does not know the material at any level.

There are N actions and action i consists of instructing the student in the material of level i and then giving the student a test

on that material. For each action there are two possible outcomes-- either the student passes the test or he fails it. The objective is to develop an adaptive instructional sequence so that the student demonstrates knowledge of the material at level 1 as quickly as possible.

Knowledge at level 1 is demonstrated by passing a test on the material at level 1. The reward, $w_{ij\theta}^a$, would be the negative of the expected time it would take to obtain instruction at level a and the system goes from state i to state j and θ (success or failure at a) is observed.

For completeness a trap state ϕ would be needed. The student goes to state ϕ with probability one once he successfully completes the material at level 1. The only action in state ϕ is to do nothing which yields a zero reward and keeps the student in state ϕ with probability one.

Wollmer (6) treats the more restricted problem where $p_{ij}^a = 0$ unless $i=j$ or if $i=a$ and $j=i+1$. Thus if a student is in state i, he remains in state i unless he receives instruction at level $i+1$, in which case he either remains in state i or advances to state $i+1$. This would not allow the possibility of forgetting.

Other situations where partially observable Markov Decision processes occur are in machine replacement, decoding from sources transmitting over a noisy channel, medical diagnosis, and searching for a moving object.

Note, that if the assumption of a strict hierarchy in levels were dropped, the set of states would expand from $N+2$ to 2^N+1 including the trap state.

IV. The Maximum Reward Function

In this section it will be shown that a maximum reward function exists and that it is a convex function of the reward π .

Let $V_n(\pi)$ be the maximum reward function for the n period horizon. Then

$$V_n(\pi) = \max_a \left[\sum_i \pi_i q_i^a + \beta \sum_{i,j,\theta} p_{ij}^a r_{j\theta}^a V_{n-1}[T(\pi/a, \theta)] \right] \quad (6)$$

Smallwood and Sondik (4) have shown that $V_n(\pi)$ is *

1. Convex

2. Piecewise Linear

$\lim_{n \rightarrow \infty} V_n(\pi)$ exists and is convex in π .

Define f_n so that $|V_n(\pi) - V_{n-1}(\pi)| \leq f_n$ all n and f_n is the smallest real number with this property and $V_0(\pi) = 0$. The f_n 's are well defined since all $V_n(\pi)$ are bounded above and below.

Lemma 1: $f_{n+1} \leq \beta f_n$

Proof : Choose $a(\pi)$ as the action that maximizes the right hand side of (6) for $V_{n+1}(\pi)$ if $V_{n+1}(\pi) \geq V_n(\pi)$ or for $V_n(\pi)$ otherwise.

$$\begin{aligned} \text{Then } |V_{n+1}(\pi) - V_n(\pi)| &\leq \left| \beta \sum_{i,j,\theta} p_{ij}^a r_{j\theta}^a (V_n[T(\pi/a, 0)] \right. \\ &\quad \left. - V_{n-1}[T(\pi/a, 0)] \right| \leq \beta f_n. \end{aligned}$$

Corollary 1: For $n^* > n$, $|V_{n^*}(\pi) - V_n(\pi)| < \epsilon(n)$

where $\epsilon(n) \rightarrow 0$.

* While Smallwood and Sondik assume $\beta=1$, their results hold for $0 < \beta \leq 1$.

Proof: From lemma 1, $f_n \leq \beta^{n-1} f_1$ and consequently

$$|V_n^*(\pi) - V_n(\pi)| \leq \sum_{i=n+1}^{n^*} f_1 \leq \beta^n f_1 \sum_{i=0}^{\infty} \beta^i = f_1 \beta^n / (1-\beta)$$

Theorem 1: The function $V_n(\pi)$ is absolutely convergent.

Proof: Choose any particular $\pi = \bar{\pi}$. By Corollary 1, the $V_n^*(\pi)$ is bounded above and below and hence has an infinite convergent subsequence with limit $V^*(\pi)$. Choose $\epsilon > 0$ and n such that $\epsilon(n) < \epsilon$ for $N \geq n$ and $\epsilon(n)$ is as defined in corollary 1. For any $N \geq n$ and $\bar{n} \geq n$ in the convergent subsequence $|V_N(\pi) - V_{\bar{n}}(\pi)| < \epsilon$ and consequently $|V_N(\pi) - V^*(\pi)| < \epsilon$. Since n is independent of π , the theorem is proven.

Thus $V(\pi) = \lim_{n \rightarrow \infty} V_n(\pi)$ is well defined.

Theorem 2: $V(\pi)$ is convex in π .

Proof: Define $f(V, \pi_1, \pi_2) = V(\frac{1}{2}\pi_1 + \frac{1}{2}\pi_2) - \frac{1}{2}V(\pi_1) - \frac{1}{2}V(\pi_2)$.

Assume $V(\pi)$ is not convex and choose π_1 and π_2 such that $f(V, \pi_1, \pi_2) = k > 0$. Choose n such that $N > n \rightarrow |V_N(\pi) - V(\pi)| < K/2$. $|f(V, \pi_1, \pi_2) - f(V_N, \pi_1, \pi_2)| < K$. Thus $f(V_N, \pi_1, \pi_2) > 0$ which is impossible since $V_N(\pi)$ is convex.

Note, that the piecewise linear property of $V_n(\pi)$ does not imply piecewise linearity of $V(\pi)$ as any continuous function may be expressed as the limit of a sequence of piecewise linear functions.

V. Linear Program Formulation

In the case of the observable finite state Markov decision processes with a discount factor, the problem of finding a maximum return for each state may be formulated as a linear program. The development of this may be found in Ross (6). In this section it is shown that a modification of this formulation extends to the problem formulated in Section II. Portions of the development which are similar to the finite state case will be outlined but without rigorous proofs.

Consider the set B of all continuous bounded functions defined on $S = \left\{ \pi / \pi_i \geq 0 \text{ all } i, \sum_{i=1}^n \pi_i = 1 \right\}$. Let the operator A be defined on this set as follows.

$$Au(\pi) = \max_a \left[\sum_i \pi_i q_i^a + \beta \sum_{i,j,\theta} \pi_i p_{ij}^a r_j^a U[T(\pi)/a, \theta] \right] \quad (7)$$

Note that

1. $u \leq v \rightarrow Au \leq Av$
2. $Au \in B$ all $u \in B$
3. $A: B \rightarrow B$ is a contraction mapping on B .

The Operator A is the optimal return function for the one period problem in which a terminal reward $u(\pi)$ is given for the terminal state. Since $A: B \rightarrow B$ is a contraction mapping, it has a unique fixed point, $V = Av = \lim_{n \rightarrow \infty} A^n u$ for any $u \in B$. By Equation (3), this unique fixed point must be the optimal reward function. Let us consider any u such that $Au \leq u$. Then $u \geq Au \geq A^2 u \geq \lim_{n \rightarrow \infty} A^n u = v$. Thus the optimal return function V minimizes $u(\pi)$ for each $\pi \in S$ among all functions u satisfying $Au \leq u$.

In the finite state case where the above conditions also hold, it is noted that minimizing u_i for each state i may be accomplished by

minimizing the sum of the u_i 's. For this problem where such a sum would be infinite, the average value of $u(\pi)$ may be minimized. Thus, finding the function $u(\pi)$ is equivalent to solving the following infinite constrained program.

Find $\min Z$, u such that

$$Z = \int \dots \int u(\pi) d\pi_n d\pi_{n-1} \dots d\pi_1 \quad (8)$$

$\sum \pi_i = 1, \quad \pi_i \geq 0$

subject to

$$\sum_i \pi_i^a + \beta \sum_{i,j,\theta} \pi_i^a p_{ij}^a r_{j\theta}^a u[T(\pi/a, \theta)] \leq u(\pi) \text{ for} \quad (9)$$

$$\pi_i \geq 0, \quad \sum_i \pi_i = 1$$

Since the function $u(\pi)$ is continuous and defined on a closed bounded set, it may be expressed in an N -dimensional Maclaurin series:

$$V(\pi) = c_0 + \sum_{i_1, i_2, \dots, i_n} c_{i_1, i_2, \dots, i_n} \frac{\pi_1^{i_1} \pi_2^{i_2} \dots \pi_N^{i_N}}{i_1! i_2! \dots i_n!} \quad (10)$$

If $V(\pi)$ is expressed as such a series or approximated by a partial series consisting of terms up to degree n , the coefficient of c_{i_1, i_2, \dots, i_n} in (8) is simply

$$\int_{\pi_1=0}^1 \int_{\pi_2=0}^{1-\pi_1} \dots \int_{\pi_N=0}^{1-\pi_1-\pi_2-\dots-\pi_{N-1}} d\pi_N d\pi_{N-1} \dots d\pi_1 \quad (11)$$

In evaluating the integral the following lemma is needed.

$$\text{Lemma 2: } \int_0^a (a-x)^m x^n dx = \frac{m! n!}{(m+n+1)!} a^{m+n+1}$$

Proof: Integrating by parts one obtains for the above

$$\begin{aligned}
 \text{integral} &= -\frac{1}{m+1} x^{n-1} (a-x)^m \Big|_0^a + \frac{n}{m+1} \int_0^a (a-x)^{m+1} x^{n-1} dx \\
 &= \frac{n}{m+1} \int_0^a (a-x)^{m+1} x^{n-1} dx. \text{ Applying this relationship} \\
 \text{recursively, one obtains } &\frac{n!m!}{(m+n)!} \int_0^a (a-x)^{m+n} dx = \frac{m!n!}{(m+n+1)!} a^{m+n+1}
 \end{aligned}$$

From this lemma, expression (11) can be evaluated.

Theorem 3: The value of expression (11) is $\prod_{j=1}^n i_j! / \left[\sum_{j=1}^n (i_j + 1) \right]!$

Proof: Integrating (11) with respect to π_n gives

$$\frac{i_n!}{(i_n+1)!} \int_0^1 \pi_1^{i_1} \int_0^{1-\pi_1} \pi_2^{i_2} \cdots \int_0^{1-\sum_{j=1}^{n-2} \pi_j} (1 - \sum_{j=1}^{n-1} \pi_j)^{i_n+1} \pi_{n-1}^{i_{n-1}} d\pi_{n-1} \cdots d\pi_1$$

Applying lemma 1 with $a=1 - \sum_{j=1}^{n-2} \pi_j$ and integrating with respect to π_{n-1} yields

$$\frac{i_n! i_{n-1}!}{(i_n+1 i_{n-1}+2)!} \int_0^1 \pi_1^{i_1} \int_0^{1-\pi_1} \pi_2^{i_2} \cdots \int_0^{1-\sum_{j=1}^{n-3} \pi_j} (1 - \sum_{j=1}^{n-2} \pi_j)^{i_n+1 i_{n-1}+2} d\pi_{n-2} \cdots d\pi_1$$

Continual application of lemma 2 yields $\prod_{j=1}^n i_j! / \left[\sum_{j=1}^n (i_j + 1) \right]!$

Thus if $V(\pi)$ is to be approximated by an n^{th} degree polynomial function in π , then substituting the expression of theorem 3 and (1) in (8) and (9) and rearranging terms yields:

Find $c_0, c_{i_1 i_2 \dots i_n}$, $\min z$ such that

$$z = c_0 + \sum \left[\left(\prod_{j=1}^n i_j! \right) / \left(\sum_{j=1}^n (i_j + 1) \right)! \right] c_{i_1 i_2 \dots i_n} \quad (12)$$

$$(1-\beta)c_0 + \sum \left(\prod_{j=1}^n \pi_j^{i_j} - \beta \sum \left[k_{i_1 i_2 \dots i_n}^{(\theta)} / d_{i_1 i_2 \dots i_n}^{(\theta)} \right] \right) \times \\ c_{i_1 i_2 \dots i_n} \geq \sum_{i=1}^n \pi_i q_i^a \quad (13)$$

$$\text{where } k_{i_1 i_2 \dots i_n}^{(\theta)} = \prod_{j=1}^n (\sum_i \pi_i p_{ij}^a r_{j\theta}^a)^{i_j} \quad (14)$$

$$d_{i_1 i_2 \dots i_n}^{(\theta)} = (\sum_{i,j} \pi_i p_{ij}^a r_{j\theta}^a)^{\sum (i_j - 1)} \quad (15)$$

for all θ , all $\pi \geq 0$ such that $\sum_i \pi_i = 1$

Thus the problem of solving the program (8-9) with a multinomial approximation of $u(\pi)$ becomes a linear program (12-15) with an infinite number of constraints and unrestricted variables. Note that the minimum value of z obtained in the linear program (12-15) would actually be larger than that obtained in the program (8-9).

VI. Computational Procedure

Given an optimal solution to the linear program (12-15), consider the set of constraints for which the $C_{i_1 i_2 \dots i_N}$ are basic. If the program was solved with these constraints only, the same solution would be obtained and all other constraints would be satisfied. Thus, while the program consists of an infinite number of constraints, only a finite number need to be included provided the correct ones are chosen. This will be taken advantage of by solving the program with a finite subset of the constraints, introducing an unsatisfied constraint, then dropping any that are not binding, and continuing until an optimal solution is obtained.

Let the quantity $f(\pi, C)$ be defined as follows.

$$F(\pi, C) = (1-\beta)C_0 + \sum_{j=1}^n \pi_j^{i_j} - \beta \sum_{\theta} [k_{i_1 i_2 \dots i_N}^{(\theta)} d_{i_1 i_2 \dots i_N}^{(\theta)}] \times \\ C_{i_1 i_2 \dots i_N} - \sum_{i=1}^n \pi_i q_i^a \quad (16)$$

The constraints (13) are equivalent to $F(\pi, C) \geq 0$ all π . Thus if at least one constraint is not satisfied for a given C vector, the value of π that minimizes $F(\pi, C)$ is the most unsatisfied one.

The procedure for solving the linear program (12-15) is given in algorithm 1.

Algorithm 1

1. Formulate the linear program with any finite subset of the constraints in (13).
2. Solve the linear program for C .
3. Delete any constraints for which a slack variable is basic.
4. Solve the following non-linear program.

Find $\pi \geq 0$, $\min z$ such that

$$z' = f(\pi, C) \quad (17)$$

$$\sum_{i=1}^N \pi_i = 1 \quad (18)$$

If $z' \geq 0$, terminate as C is optimal. Otherwise introduce the constraint corresponding to the value of π that optimizes (17-18) and go back to Step 2.

A local optimum to (17-18) may be found by algorithm 2.

Algorithm 2

1. Choose an arbitrary probability vector and evaluate $f(\pi, C)$.
2. Find an order pair (i, j) such that increasing π_i by ϵ and decreasing π_j by ϵ decreases $f(\pi, C)$ without violating $0 \leq \pi_i \leq 1$ and $0 \leq \pi_j \leq 1$. If no such pair can be found, terminate as π is a local optimum.
3. Increase π_i to $\bar{\pi}_i$ and decrease π_j to $\bar{\pi}_j$ such that neither the pair (i, j) or (j, i) satisfied the conditions of Step 2. Then go back to Step 2.

For finiteness, the ϵ of Step 2 would be chosen ahead of time.

There are several ways of performing Step 3 to find the new value of π_i and π_j . One efficient way is to first bracket π_i and π_j between π'_i , π'_j and π''_i and π''_j and continually reduce the difference between these by a factor of one half, thus converging on a single point.

Initially π'_i and π'_j would be the current values of π_i and π_j and $\pi''_i = \pi_i + \delta$, $\pi''_j = \pi_j - \delta$ where $\delta = \min [1 - \pi_i, \pi_j]$. Then consider the pair $\bar{\pi}_i = \frac{1}{2}(\pi'_i + \pi''_i)$ and $\bar{\pi}_j = \frac{1}{2}(\pi'_j + \pi''_j)$. If $f(\bar{\pi}, C)$ is a local

minimum under the restriction that all components of π other than π_j and π_j' are held constant, then $\bar{\pi}$ is the desired point. Otherwise, let $\bar{\pi}_i$ and $\bar{\pi}_j$ replace π_j' and π_j'' if the direction of decrease is towards π_i'' and π_j'' but let $\bar{\pi}_i$ and $\bar{\pi}_j$ replace π_i'' and π_j'' if the direction of decrease is towards π_i' and π_j' . If neither direction yields a decrease, let $\bar{\pi}_i$ and $\bar{\pi}_j$ replace π_i' and π_j' if $f(\bar{\pi}') > f(\bar{\pi}'')$ but replace π_i'' and π_j'' otherwise. Step 3 would terminate when $\pi_i'' - \pi_i' < \epsilon_1$ where $\epsilon_1 < \epsilon$.

Note that if the C vector approximation of $U(\pi)$ were exact, any local minimum of $f(\pi, C)$ would be a global minimum due to the convexity of $V(\pi)$. While this is not guaranteed in the approximation, one could take random samples of π in an attempt to find a vector yielding a lower value of Z' than the local minimum or evaluate Z' for all π vectors whose components are multiples of $1/n$ where n is large if the result $\min Z' = 0$ is obtained.

When introducing an unsatisfied constraint, it is recommended that the dual simplex method be used to solve the resulting program which is already dual feasible.

The sequence of $\min Z$ values generated by algorithm 1 is non-decreasing, bounded above, and hence must have a limit. It is an open question as to whether this limit is the true $\min Z$ or in particular if the sequence of Z' values in algorithm 2 tend to zero. Consider the sequence of linear programs solved by algorithm 1 and assume the number of equations in each equals the number of components in the C vector plus one. It has already been shown that it will not exceed this number and if it is less, additional constraints with all coefficients being zero may be added. Consider also the sequence of matrices formed by the probability vectors that generate these constraints. Since these

are bounded above, these matrices, and consequently the set of linear programs for algorithm 1 must have a convergent subsequence. Consider now the sequence of constraints generated by this sequence in algorithm 2. By the same argument this sequence must have a convergent subsequence. In this latter sequence, either $f(\pi, C) \rightarrow 0$ or else the cost coefficient in the pivot column tends to zero for if not the increase in $\min z$ would not tend to zero which is impossible since $\min z$ is bounded above.

If the sequence of $f(\pi, C)$ values generated by problem 2 did not appear to tend to zero after many iterations while the change in $\min z$ did appear to tend to zero, some possible ways out are as follows. First one may sample a large number of probability vectors and find one which would give the largest increase in z on a single pivot. Second, one may search all probability vectors that are multiples of $1/n$ where n is a large number and find the one which gives the largest increase in z for one pivot.

It should be noted that if the sequence of z' values obtained in algorithm 2 do not tend to zero, then one has a situation somewhat analogous to cycling in the dual simplex method. Since cycling almost never occurs in the primal simplex method, there appears to be some basis for thinking that the sequence of z' values would tend to zero the majority of times.

One could of course only consider constraints generated by probability vectors whose components are multiples of $1/n$. By imposing a lexicographic ordering, one could insure a true optimum in a finite number of steps.

VII. Bounds on Accuracy

In solving the non-linear program (17-18) in Step 4 of the algorithm to find the most unsatisfied constraint of the linear program (12-15), one may wish to terminate the program when $Z' > -\delta$ rather than for $Z \geq 0$ where δ is a small positive number. If so, the value of Z obtained for (12) will be less than the true minimum for Z since the program has been optimized for only a subset of the constraints. However, it is easy to see from (12) and (13) that increasing C_0 by $\delta/(1-\beta)$ yields a feasible solution and increases Z by that same amount. Consequently, this feasible set would come to within $\delta/(1-\beta)$ of minimizing Z .

The question now arises as to how close $\tilde{v}(\pi)$, the Maclaurin series approximation to $V(\pi)$, is to the true value of $V(\pi)$. To answer this consider the operator $Au(\pi)$ defined in equation (7) and define:

$$\|Au - u\| = \max_{\pi} \|Au - u\| \quad (19)$$

Since the operator A is a contraction mapping with $\|Au - Av\| \leq \beta|u - v|$ it can be shown that $\|A^{n+1}u - A^n u\| \leq \beta^n \|Au - u\|$ and $\|A^n u - u\| \leq (1-\beta^n) \|Au - u\| / (1-\beta)$ and $V(\pi) = \lim_{n \rightarrow \infty} A^n u$, it follows that

$$|V(\pi) - \tilde{V}(\pi)| \leq \|Av - \tilde{v}\| / (1-\beta) \quad (20)$$

One could find a local maximum to $|Av - \tilde{v}|$ by an incremental procedure similar to that used to find the most unsatisfied constraint to introduce into the linear programming problem. Alternatively, one could enumerate (20) for all possible probability vectors whose components are multiples of $1/n$.

REFERENCES

1. Howard, R. A. Dynamic Programming and Markov Processes, John Wiley and Sons, New York, 1960.
2. Manne, A. "Linear Programming and Sequential Decisions," Management Science 6, 259-267 (1960).
3. Ross, S. M. Applied Probability Models with Optimization Applications, Holden-Day, San Francisco, 1970.
4. Smallwood, R. D. & E. J. Sondik, "The Optimal Control of Partially Observable Markov Processes Over a Finite Horizon," Operations Research 21, 1071-1087, (1973).
5. Wolfe, P., and Dantzig, G. B. "Linear Programming in a Markov Chain, Operations Research 10, 702-710 (1962).
6. Wollmer, R. D., "A Markov Decision Model for Computer-Aided Instruction," Behavioral Technology Laboratories, University of Southern California, Technical Report #72, December 1973.

ONR DISTRIBUTION LIST

Navy

4 Dr. Marshall J. Farr, Director
Personnel and Training Research
Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

1 ONR Branch Office
495 Summer Street
Boston, MA 02210
ATTN: Dr. James Lester

1 ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
ATTN: Dr. Eugene Gloye

1 ONR Branch Office
536 South Clark Street
Chicago, IL 60605
ATTN: Dr. Charles E. Davis

1 Dr. M. A. Bettin, Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco 96503

1 Office of Naval Research
Code 200
Arlington, VA 22217

1 Dr. H. Wallace Sinaiko
Office of Naval Research
Code 450
Arlington, VA 22217

6 Director
Naval Research Laboratory
Code 2627
Washington, D.C. 20390

1 Technical Director
Navy Personnel Research and
Development Center
San Diego, CA 92152

1 Assistant Deputy Chief of Naval
Personnel for Retention Analysis
and Coordination (Pers 12)
Room 2403, Arlington Annex
Washington, D.C. 20370

1 LCDR Charles J. Theisen, Jr., MSC, USN
4024
Naval Air Development Center
Warminster, PA 18974

1 Dr. Lee Miller
Naval Air Systems Command
AIR-413E
Washington, D.C. 20361

1 Commanding Officer
U. S. Naval Amphibious School
Coronado, CA 92155

1 Commanding Officer
Naval Health Research Center
San Diego, CA 92152
ATTN: Library

1 Chairman
Behavioral Science Department
Naval Command & Management Division
U.S. Naval Academy
Annapolis, MD 21402

1 Chief of Naval Education & Training
Naval Air Station
Pensacola, FL 32508
ATTN: CAPT Bruce Stone, USN

1 Mr. Arnold I. Rubinstein
Human Resources Program Manager
Naval Material Command (0344)
Room 1044, Crystal Plaza #5
Washington, D.C. 20360

1 Dr. Jack R. Borsting
U.S. Naval Postgraduate School
Department of Operations Research
Monterey, CA 93940

1 Director, Navy Occupational Task Analysis Program (NOTAP)
Naval Personnel Program Support Activity
Building 1304, Bolling AFB
Washington, D.C. 20336

1 Office of Civilian Manpower Management
Code 64
Washington, D.C. 20390
ATTN: Dr. Richard J. Niehaus

1 Office of Civilian Manpower Management
Code 263
Washington, D.C. 20390

1 Chief of Naval Reserve
Code 3055
New Orleans, LA 70146

1 Chief of Naval Operations
OP-987P7
Washington, D.C. 20350
ATTN: CAPT H. J. M. Connery

1 Superintendent
Naval Postgraduate School
Monterey, CA 93940

1 Mr. George N. Graine
Naval Sea Systems Command
SEA 047C12
Washington, D.C. 20362

1 Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
ATTN: Dr. Norman J. Kerr

1 Commanding Officer
Service Schools Command
U.S. Naval Training Center
San Diego, CA 92133
ATTN: Code 3030

1 Principal Civilian Advisor for Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508
ATTN: Dr. Williams L. Maloy

1 Director
Training Analysis & Evaluation Group
Code N00t
Department of the Navy
Orlando, FL 32813
ATTN: Dr. Alfred F. Smode

1 Chief of Naval Training Support
Code N-21
Building 45
Naval Air Station
Pensacola, FL 32508

1 LCDR C. F. Logan, USN
F-14 Management System
COMFITAEWWINGPAC
NAS Miramar, CA 92145

1 Navy Personnel Research and Development Center
Code 01
San Diego, CA 92152

5 Navy Personnel Research and Development Center
Code 02
San Diego, CA 92152
ATTN: A. A. Sjoholm

2 Navy Personnel Research and Development Center
Code 304
San Diego, CA 92152

2 Navy Personnel Research and Development Center
Code 306
San Diego, CA 92152
ATTN: Dr. J. H. Steinemann

1 Navy Personnel Research and Development Center
San Diego, CA 92152
ATTN: Library

1 Navy Personnel Research and Development Center
Code 9041
San Diego, CA 92152
ATTN: Dr. J. D. Fletcher

1 D. M. Gragg, CAPT, MC, USN
Head, Educational Programs Development
Department
Naval Health Sciences Education and
Training Command
Bethesda, MD 20014

1 Dr. Joseph Ward
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

Army

1 Technical Director
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 Armed Forces Staff College
Norfolk, VA 23511
ATTN: Library

1 Commandant
U.S. Army Infantry School
Fort Benning, GA 31905
ATTN: ATSH-DET

1 Deputy Commander
U.S. Army Institute of Administration
Fort Benjamin Harrison, IN 46216
ATTN: EA

1 Dr. Frank J. Harris
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 Dr. Stanley L. Cohen
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 Dr. Ralph Dusek
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 Dr. Leon H. Nawrocki
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 HQ USAREUR & 7th Army
ODCSOPS
USAREUR Director of GED
APO New York 09403

1 AIR Field Unit - Leavenworth
Post Office Box 3122
Fort Leavenworth, KS 66027

1 Mr. James Baker
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

1 Dr. Milton S. Katz, Chief
Individual Training & Performance
Evaluation
U.S. Army Research Institute for the
Behavioral and Social Sciences
1300 Wilson Blvd.
Arlington, VA 22209

Air Force

1 Research Branch
AF/DPMYAR
Randolph AFB, TX 78148

1 Dr. G.A. Eckstrand (AFHRL/AST)
Wright Patterson AFB
Ohio 45433

1 Dr. Ross L. Morgan (AFHRL/ASE)
Wright Patterson AFB
Ohio 45433

1 AFHRL/DOJN
Stop #63
Lakeland AFB, TX 78236

1 Dr. Martin Rockway (AFHRL/TT)
Lowry AFB
Colorado 80230

1 Instructional Technology Branch
AF Human Resources Laboratory
Lowry AFB, CO 80230

1 Dr. Alfred R. Fregly
AFOSR/NL
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Sylvia R. Mayer (MCIT)
Headquarters Electronics Systems
Division
LG Hanscom Field
Bedford, MA 01730

1 Capt. Jack Thorpe, USAF
Flying Training Division
AFHRL/FT
William AFB, AZ 85224

1 AFHRL/PED
Stop #63
Lackland AFB, TX 78236

Marine Corps

1 Director
Office of Manpower Utilization
Headquarters, Marine Corps
Code MPU)
MCB (Building 2009)
Wuantico, VA 22134

1 Dr. A. L. Slofkosky
Scientific Advisor (Code RD-1)
Headquarters, U.S. Marine Corps.
Washington, D.C. 20380

1 Chief, Academic Department
Education Center
Marine Corps Development and
Education Command
Marine Corps Base
Quantico, VA 22134

1 Mr. E. A. Dover
2711 South Veitch Street
Arlington, VA 22206

Coast Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch
(G-P-1/62)
U.S. Coast Guard Headquarters
Washington, D.C. 20590

Other DOD

1 Military Assistant for Human Resources
Office of the Secretary of Defense
Room 3D129, Pentagon
Washington, D.C. 20301

1 Advanced Research Projects
Administrative Services
1400 Wilson Blvd.
Arlington, VA 22209
ATTN: Ardella Holloway

1 Dr. Harold F. O'Neil, Jr.
Advanced Research Projects Agency
Human Resources Research Office
1400 Wilson Blvd.
Arlington, VA 22209

1 Dr. Robert Young
Advanced Research Projects Agency
Human Resources Research Office
1400 Arlington Blvd.
Arlington, VA 22209

12 Defense Documentation Center
Cameron Station, Building 5
Alexandria, VA 22314
ATTN: TC

Other Government

1 Dr. William Gorham, Director
Personnel Research and Development Center
U.S. Civil Service Commission
1900 E. Street, N.W.
Washington, D.C. 20415

1 Dr. Vern Urry
 Personnel Research and Development
 Center
 U.S. Civil Service Commission
 1900 E Street, N.W.
 Washington, D.C. 20415

1 Dr. Erik McWilliams, Director
 Technological Innovations in
 Education Group
 National Science Foundation
 1800 G Street, N.W., Room W 650
 Washington, D.C. 20550

1 Dr. Richard C. Atkinson
 Deputy Director
 National Science Foundation
 1800 G Street, N.W.
 Washington, D.C. 20550

1 Dr. Andrew R. Molnar
 Technological Innovations in
 Education Group
 National Science Foundation
 1800 G Street, N.W.
 Washington, D.C. 20550

1 Dr. Marshall S. Smith
 Assistant Acting Director
 Program on Essential Skills
 National Institute of Education
 Brown Building, Room 815
 19th and M Streets, N.W.
 Washington, D.C. 20208

1 Dr. Carl Frederiksen
 Learning Division, Basic Skills Group
 National Institute of Education
 1200 19th Street, N.W.
 Washington, D.C. 20208

1 Dr. John Annett
 Department of Psychology
 The University of Warwick
 Coventry CV47AL
 ENGLAND

1 Mr. Samuel Ball
 Educational Testing Service
 Princeton, N.J. 08540

1 Dr. Gerald V. Barrett
 University of Akron
 Department of Psychology
 Akron, OH 44325

1 Dr. Bernard M. Bass
 University of Rochester
 Graduate School of Management
 Rochester, NY 14627

1 Dr. Ronald L. Carver
 School of Education
 University of Missouri-Kansas City
 5100 Rockhill Road
 Kansas City, MO 64110

1 Century Research Corporation
 4113 Lee Highway
 Arlington, VA 22207

1 Dr. A. Charnes
 BEB 512
 University of Texas
 Austin, TX 78712

1 Dr. Kenneth E. Clark
 University of Rochester
 College of Arts and Sciences
 River Campus Station
 Rochester, NY 14627

1 Dr. Allan M. Collins
 Bolt Beranek and Newman, Inc.
 50 Moulton Street
 Cambridge, MA 02138

1 Dr. Rene' V. Dawis
 University of Minnesota
 Department of Psychology
 Minneapolis, MN 55455

Miscellaneous

1 Dr. Scarvia B. Anderson
 Educational Testing Service
 17 Executive Park Drive, N.E.
 Atlanta, GA 30329

1 Dr. Ruch Day
Yale University
Department of Psychology
2 Hillhouse Avenue
New Haven, CT 06520

1 ERIC
Processing and Reference Facility
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Barry M. Feinberg
Bureau of Social Science Res., Inc.
1990 M Street, N.W.
Washington, D.C. 20036

1 Dr. Victor Fields
Montgomery College
Department of Psychology
Rockville, MD 20850

1 Dr. Edwin A. Fleishman
Visiting Professor
University of California
Graduate School of Administration
Irvine, CA 92664

1 Dr. Robert Glaser, Co-Director
University of Pittsburgh
3939 O'Hara St.
Pittsburgh, PA 15213

1 Dr. Henry J. Hamburger
University of California
School of Social Sciences
Irvine, CA 92664

1 Dr. M. D. Havron
Human Sciences Research, Inc.
7710 Old Spring House Road
West Gate Industrial Park
McLean, VA 22101

1 HumRRO Central Division
400 Plaza Building
Pace Blvd., at Fairfield Drive
Pensacola, FL 32505

1 HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
ATTN: Library

1 HumRRO Central Division/Columbus Office
Suite 23, 2601 Cross Country Drive
Columbus, GA 31906

1 HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
ATTN: Dr. Robert Vineberg

1 HumRRO
Joseph A. Austin Building
1939 Goldsmith Lane
Louisville, KY 40218

1 Dr. Lawrence B. Johnson
Lawrence Johnson & Associates, Inc.
2001 S Street, N.W., Suite 502
Washington, D.C. 20009

1 Dr. Arnold F. Kanarick
Honeywell, Inc.
2600 Ridge Parkway
Minneapolis, MN 55413

1 Dr. Roger A. Kaufman
203 Dodd Hall
Florida State University
Tallahassee, FL 32306

1 Dr. Steven W. Keele
University of Oregon
Department of Psychology
Uegene, OR 97403

1 Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

1 Dr. Ezra S. Krendel
University of Pennsylvania
Wharton School, DH/CC
Philadelphia, PA 19174

1 Dr. Alma E. Lantz
University of Denver
Denver Research Institute
Industrial Economics Division
Denver, CO 80210

1 Mr. Brian McNally
Educational Testing Service
Princeton, NJ 08540

1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Corton Drive
Santa Barbara Research Park
Goleta, CA 93017

1 Dr. William C. Mann
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marine del Rey, CA 90291

1 Dr. Leo Munday, Vice President
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Donald A. Norman
Dept. of Psychology C-009
University of California, San Diego
La Jolla, CA 92093

1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P.O. Box 178
North Stonington, CT 06359

1 Mr. Luigi Petrullo
2431 North Edgewood St.
Arlington, VA 22207

1 Dr. Steven M. Pine
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

1 Dr. Dianne M. Ramsey-Klee
R-K Research & Systems Design
3947 Ridgement Drive
Malibu, CA 90265

1 Dr. Leonard L. Rosenbaum, Chairman
Montgomery College
Department of Psychology
Rockville, MD 20850

1 Dr. Arthur I. Siegel
Applied Psychological Services
404 East Lancaster Ave.
Wayne, PA 19087

1 Dr. Richard Snow
Stanford University
School of Education
Stanford, CA 94305

1 Dr. C. Harold Stone
1428 Virginia Ave.
Glendale, CA 91202

1 Mr. Dennis J. Sullivan
c/o HAISC, Building 119, M.S. 2
P.O. Box 90515
Los Angeles, CA 90009

1 Dr. K. W. Uncapher
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marine del Rey, CA 90291

1 Dr. Benton J. Underwood
Northwestern University
Department of Psychology
Evanston, IL 60201

1 Dr. Carl R. Vest
Battelle Memorial Institute
Washington Operations
2030 M Street, N.W.
Washington, D.C. 20036

1 Dr. David J. Weiss
University of Minnesota
Department of Psychology
N660 Elliott Hall
Minneapolis, MN 55455

1 Dr. K. Wescourt
Stanford University
Institute for Mathematical Studies
in the Social Sciences
Stanford, CA 94305

1 Dr. Anita West
Denver Research Institute
University of Denver
Denver, CO 80210

1 Dr. Kenneth N. Wexler
University of California
School of Social Sciences
Irvine, CA 92664

1 Dr. John J. Collins
Vice President
Essex Corporation
6305 Caminito Estrellado
San Diego, CA 92120

1 Dr. Patrick Suppes, Director
Institute for Mathematical Studies
in the Social Sciences
Stanford University
Stanford, CA 94305