

编译原理

实验二: 自底向上的语法分析LR(1)

规格严格, 功夫到家

上课时间

✓12个学时,共计4次实验课,完成4个实验;

▶1、2、3、4、5班

上课时间: 【10】周五1-2节, 【11】周四9-12节, 【13】周六5-8节, 【14】周三11-12节;

▶6、7班

上课时间: 【10】周五1-2节, 【11】周四5-8节, 【13】周五9-12节, 【14】周五1-2节;

1、2、3、4、5班实验提交时间说明

2020秋_编译原理_1&2&3&4&5班作业

6、7班实验提交时间说明

2020秋_编译原理_6&7班作业

编译程序的总体结构

01 实验目的 02 实验内容 03 实验步骤 04 实验报告

实验目的

- 1. 深入了解语法分析程序实现原理及方法。
- 2. 理解LR(1)分析法是严格的从左向右扫描和自底向上的语法分析方法。

实验学时数: 4学时。

实验内容

- 1. 利用LR(1)分析法,设计一个语法分析程序,对输入单词符号串进行<mark>语法</mark> 分析;
- 2. 输出推导过程中所用产生式序列并保存在输出文件中;
- 3. 较低完成要求: 书本P186, 例5.17中的文法或者PPT中参考文法;
- 4. 较优完成要求: 自行设计文法并完成实验。

知识回顾(LR语法分析器的总体结构)

02 实验内容

14.

分析器的四种动作

✓ 移进:

将下一输入符号移入栈

✓ 归约:

用产生式左侧的非终结 符替换栈顶的句柄(某产生 式右部)

✓ 接受: 分析成功

✓ 出错: 出错处理

输出结果表示——用产生式序列表示语法分析树

例: E→E+E|E*E|(E)|id

分析的句子: id+id*id

语法分析输出结果:产生式序列

$$E \rightarrow id$$

$$E \rightarrow id$$

$$E \rightarrow id$$

$$\mathbf{E} \to \mathbf{E} * \mathbf{E}$$

$$\mathbf{E} \to \mathbf{E} + \mathbf{E}$$

用产生式序列表示的语法分析树

实验总体步骤

- 1. 定义描述程序设计语言语法的文法,并编写拓广文法;
- 2. 求Follow集;
- 3. 求识别所有活前缀的DFA;
- 4. 构造LR分析表,以此编写代码;
- 5. 输入符号串进行语法分析;
- 6. 输出产生式序列并保存在文件中;
- 7. 完成实验报告;

S

LR(1)分析表构造

核心思想:

- ✓ 构造识别拓广文法全部活前缀的DFA;
- ✔ 求每个项目集的有效活前缀。

例:参考拓广文法G (算术表达式)

E->T

T->T*F

T->F

 $F \rightarrow (E)$

F->id

求规范项目集规范族10

注: 求项目集规范族方法参考教材P186

求所有项目

集规范族

参文的部前的穷动(1考法全活缀有自机)

参文的部前的穷动(2考法全活缀有自机)

参考文法的LR(1)分析表

转移表 goto

移进-归约

思考:

设计分析表的存储结构?

利用辅助工具生成LR(1)分析表

>>

生成分析表步骤:

- 1. Windows环境安装编译工作台;
- 2. 创建一个语法文件并保存;
- 3. 点击生成-生成分析表;

动态分析步骤:

- 1. 新建一个源文件,输入要分析的句子;
- 2. 点击生成-动态分析;

附加功能

非必要完成项,如完成,请在实验报告中另行标注实现方法并画出完整的有穷自动机,酌情加分但不超出实验部分的总分。

利用**算符优先分析法**,设计一个分析程序,对输入符号串进行语法分析,输出推导过程中所用产生式序列并保存在输出文件中。

- (1) 求出各非终结符的FIRSTVT和LASTVT集
- (2) 构造算符优先矩阵
- (3) 设计存放上述算符优先矩阵的数据结构
- (4) 主要模块的算法功能
- (5) 实验中用到的特色方法或设计技巧

03 实验步骤

实验报告

- 1. 画出识别文法活前缀的有穷自动机;
- 2. 构造所给文法的LR(1)分析表;
- 3. 设计上述LR(1)分析表的存储结构;
- 4. 主要模块的算法功能;
- 5. 实验中用到的特色方法或设计技巧。
- 6. 实验中遇到的问题及解决方案。

语法分析器举例

词法分析器输入代码:

```
result = s + 2*s - (s + 4);
```

语法分析器输入(词法分析输出):

文法定义:

状态	ACTION											GOTO		
Men	+ =	-	*	()	ID	INT_NUM	int	\$	S	A P	3 C	2	
0						shift 2		shift 3					1	
1									accept					
2	shi	ft 4												
3						shift 5								
4				shift 9		shift 10	shift 11			6	7 8	3		
5									reduce S' -> int ID					
6	shift 12	shift 13							reduce S' -> ID = S					
7	reduce S -> A	reduce S -> A	shift 14						reduce S -> A					
3	reduce A -> B	reduce A -> B	reduce A -> B						reduce A -> B					
9				shift 18	3	shift 19	shift 20			15	16 1	17		
10	reduce B -> ID	reduce B -> ID	reduce B -> ID						reduce B -> ID					
11	reduce B -> INT_NUM	reduce B -> INT_NUM	reduce B -> INT_NUM						reduce B -> INT_NUM					
12				shift 9		shift 10	shift 11				21 8	3		
13				shift 9		shift 10	shift 11				22 8	3		
14				shift 9		shift 10	shift 11				2	23		
15	shift 24	shift 25			shift 26									
16	reduce S -> A	reduce S -> A	shift 27		reduce S -> A									
17	reduce A -> B	reduce A -> B	reduce A -> B		reduce A -> B									
18				shift 18	3	shift 19	shift 20			28	16 1	17		
19	reduce B -> ID	reduce B -> ID	reduce B -> ID		reduce B -> ID								Г	
20	reduce B -> INT_NUM	reduce B -> INT_NUM	reduce B -> INT_NUM		reduce B -> INT_NUM	Ĭ.								
21	reduce S -> S + A	reduce S -> S + A	shift 14						reduce S -> S + A					
22	reduce S -> S - A	reduce S -> S - A	shift 14						reduce S -> S - A					
23	reduce A -> A * B	reduce A -> A * B	reduce A -> A * B						reduce A -> A * B					
24				shift 18	3	shift 19	shift 20				29 1	17		
25				shift 18	3	shift 19	shift 20				30 1	17		
26	reduce B -> (S)	reduce B -> (S)	reduce B -> (S)						reduce B -> (S)					
27				shift 18	3	shift 19	shift 20				3	31		
28	shift 24	shift 25			shift 32									
29	reduce S -> S + A	reduce S -> S + A	shift 27		reduce S -> S + A									
30	reduce S -> S - A	reduce S -> S - A	shift 27		reduce S -> S - A									
31	reduce A -> A * B	reduce A -> A * B	reduce A -> A * B		reduce A -> A * B									
32	reduce B -> (S)	reduce B -> (S)	reduce B -> (S)		reduce B -> (S)									

语法分析器举例

>>

语法树:

产生式列表:

B -> ID
A -> B
S -> A
B -> INT_NUM
A -> B
B -> ID
A -> A * B
S -> S + A
B -> ID
A -> B
S -> A
B -> INT_NUM
A -> B
S -> S + A
B -> (S)
A -> B
S -> S - A
S' -> ID = S

同学们, 请开始实验