In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

In [2]: df= pd.read_csv(r"C:\Users\dhruv\Desktop\ASI 2019\DataTEST\HST.csv")

C:\Users\dhruv\Anaconda3\lib\site-packages\IPython\core\interactiveshell.p
y:2785: DtypeWarning: Columns (2,23) have mixed types. Specify dtype option
on import or set low memory=False.

interactivity=interactivity, compiler=compiler, result=result)

In [3]: df.head()

Out[3]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	PACK	WHO	 LVL2QTY	LVL2PRIC
(230	2008- 01-01	2008- 01-31	3	0.0	0.0	NaN	1	1	asi	 0	0.
1	230	2008- 02-01	2008- 02-29	2	0.0	0.0	NaN	1	1	asi	 0	0.
2	230	2008- 03-01	2008- 03-31	8	0.0	0.0	NaN	1	1	asi	 0	0.
3	230	2008- 04-01	2008- 04-30	5	0.0	0.0	NaN	1	1	asi	 0	0.
4	230	2008- 05-01	2008- 05-31	2	0.0	0.0	NaN	1	1	asi	 0	0.

5 rows × 24 columns

In [5]: pd.set_option('display.max_columns', None)
 df.tail()

Out[5]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	PACK	WHO	TSTAMP	LVL1C
574744	34073	2019- 01-29	NaN	3	42.97	21.00	CLUB	4	1	pos	2019- 01-29 14:11:08	
574745	33631	2019- 01-29	NaN	3	44.97	32.01	NaN	4	1	pos	2019- 01-29 14:11:08	
574746	32945	2019- 01-29	NaN	4	38.96	23.96	CLUB	4	1	pos	2019- 01-29 14:11:08	
574747	32684	2019- 01-29	NaN	3	36.97	26.07	CLUB	4	1	pos	2019- 01-29 14:11:08	
574748	33447	2019- 01-29	NaN	2	19.98	13.34	CLUB	4	1	pos	2019- 01-29 14:11:08	

In [6]: | df.tail()

Out[6]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	PACK	WHO	TSTAMP	LVL1C
574744	34073	2019- 01-29	NaN	3	42.97	21.00	CLUB	4	1	pos	2019- 01-29 14:11:08	
574745	33631	2019- 01-29	NaN	3	44.97	32.01	NaN	4	1	pos	2019- 01-29 14:11:08	
574746	32945	2019- 01-29	NaN	4	38.96	23.96	CLUB	4	1	pos	2019- 01-29 14:11:08	
574747	32684	2019- 01-29	NaN	3	36.97	26.07	CLUB	4	1	pos	2019- 01-29 14:11:08	
574748	33447	2019- 01-29	NaN	2	19.98	13.34	CLUB	4	1	pos	2019- 01-29 14:11:08	

In [7]: | df.drop('PACK',axis=1, inplace=True)

```
In [8]: df.drop('WHO',axis=1, inplace=True)
    df.head()
```

Out[8]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	TSTAMP	LVL1QTY	LVL1PRICE	l
3317	1288	2008- 05-07	NaN	12	9.49	6.80	NaN	1	2008- 05-07 14:07:10	0	0.0	•
3318	146	2008- 05-07	NaN	60	27.98	23.10	NaN	1	2008- 05-07 14:07:11	0	0.0	
3319	1062	2008- 05-07	NaN	36	25.98	21.00	NaN	1	2008- 05-07 14:07:10	0	0.0	
3320	996	2008- 05-07	NaN	6	8.49	5.89	NaN	1	2008- 05-07 14:07:10	0	0.0	
3321	100	2008- 05-07	NaN	24	15.49	14.00	NaN	1	2008- 05-07 14:07:10	0	0.0	

```
In [9]: tf=df[df.SENT == True]
tf
```

Out[9]:

SKU DATE EDATE QTY PRICE COST PROMO STORE TSTAMP LVL1QTY LVL1PRICE LVL1C

```
In [10]: df.drop('SENT',axis=1, inplace=True)
    df.head()
```

Out[10]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	TSTAMP	LVL1QTY	LVL1PRICE	I
3317	1288	2008- 05-07	NaN	12	9.49	6.80	NaN	1	2008- 05-07 14:07:10	0	0.0	_
3318	146	2008- 05-07	NaN	60	27.98	23.10	NaN	1	2008- 05-07 14:07:11	0	0.0	
3319	1062	2008- 05-07	NaN	36	25.98	21.00	NaN	1	2008- 05-07 14:07:10	0	0.0	
3320	996	2008- 05-07	NaN	6	8.49	5.89	NaN	1	2008- 05-07 14:07:10	0	0.0	
3321	100	2008- 05-07	NaN	24	15.49	14.00	NaN	1	2008- 05-07 14:07:10	0	0.0	

Above, we dropped a couple unnecessary columns.

```
In [11]: | tf= df[df.PRICE < 0]</pre>
          tf.count()
Out[11]: SKU
                        1355
          DATE
                        1355
          EDATE
                           0
          QTY
                        1355
          PRICE
                        1355
          COST
                        1355
          PROMO
                          50
          STORE
                        1355
          TSTAMP
                        1355
          LVL1QTY
                        1355
          LVL1PRICE
                        1355
          LVL1COST
                        1355
          LVL2QTY
                        1355
          LVL2PRICE
                        1355
          LVL2C0ST
                        1355
          LVL3QTY
                        1355
          LVL3PRICE
                        1355
          LVL3C0ST
                        1355
          LVL4QTY
                        1355
          LVL4PRICE
                        1355
          LVL4C0ST
                        1355
          dtype: int64
```

Here we can see that about 1322 rows of data have prices and costs in the negative range. We shall remove these rows from our dataset.

```
In [12]: | df = df[df.PRICE > 0]
          df = df[df.COST > 0]
In [13]: df.describe()
```

Out[13]:

	SKU	QTY	PRICE	COST	STORE	LVL1
count	569429.000000	569429.000000	569429.000000	569429.000000	569429.000000	569429.000
mean	11524.053622	20.165016	24.666444	19.697673	1.000037	5.388
std	10991.314509	41.659781	35.094940	45.318014	0.010518	10.473
min	3.000000	0.000000	0.010000	0.010000	1.000000	-108.000
25%	815.000000	6.000000	8.990000	6.650000	1.000000	0.000
50%	11990.000000	10.000000	14.290000	10.780000	1.000000	3.000
75%	20117.000000	18.000000	26.970000	20.340000	1.000000	6.000
max	34407.000000	1590.000000	1531.670000	24475.350000	4.000000	1062.000

Here we can see that the Mean or Average Price of an item is 24.66 and the average cost of the item is 19.69 and we have no prices in the negative range.

Now we can begin our analysis.

Figure out the profit margins of each product and add the column to the datatable.

In [14]: df['PROFIT'] = df['PRICE']-df['COST']
 df.head()

Out[14]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	TSTAMP	LVL1QTY	LVL1PRICE	l
3317	1288	2008- 05-07	NaN	12	9.49	6.80	NaN	1	2008- 05-07 14:07:10	0	0.0	
3318	146	2008- 05-07	NaN	60	27.98	23.10	NaN	1	2008- 05-07 14:07:11	0	0.0	
3319	1062	2008- 05-07	NaN	36	25.98	21.00	NaN	1	2008- 05-07 14:07:10	0	0.0	
3320	996	2008- 05-07	NaN	6	8.49	5.89	NaN	1	2008- 05-07 14:07:10	0	0.0	
3321	100	2008- 05-07	NaN	24	15.49	14.00	NaN	1	2008- 05-07 14:07:10	0	0.0	

In [15]: df.head()

Out[15]:

	SKU	DATE	EDATE	QTY	PRICE	COST	PROMO	STORE	TSTAMP	LVL1QTY	LVL1PRICE	I
3317	1288	2008- 05-07	NaN	12	9.49	6.80	NaN	1	2008- 05-07 14:07:10	0	0.0	
3318	146	2008- 05-07	NaN	60	27.98	23.10	NaN	1	2008- 05-07 14:07:11	0	0.0	
3319	1062	2008- 05-07	NaN	36	25.98	21.00	NaN	1	2008- 05-07 14:07:10	0	0.0	
3320	996	2008- 05-07	NaN	6	8.49	5.89	NaN	1	2008- 05-07 14:07:10	0	0.0	
3321	100	2008- 05-07	NaN	24	15.49	14.00	NaN	1	2008- 05-07 14:07:10	0	0.0	

Here we can see that all the losses added up to \$216,517 over the course of 4913 items sold within the history of this dataset.

```
In [17]: plt.scatter(df.SKU,df.PROFIT)

Out[17]: <matplotlib.collections.PathCollection at 0x1e2a3d45278>

-5000
-10000
-25000
0 5000 10000 15000 20000 25000 30000 35000
```

```
In [18]: df= df[np.abs(df.PROFIT-df.PROFIT.mean()) <= (3*df.PROFIT.std())]</pre>
```

Removed the single outlier

```
In [19]: plt.scatter(df.PRICE,df.PROFIT)
Out[19]: <matplotlib.collections.PathCollection at 0x1e2a3d9f668>
```


In [1]: #pd.to_datetime(df.DATE)