שיעור 12 העתקות לינאריות

12.1 תחום, מול-תחום, גרעין ותמונה

הגדרה 12.1 התחום והטווח של פונקציה

 $f(a)\in B$ איבר יחיד $a\in A$ איבר לכל המתאים לכל המתאים מ- A ל- B מ- A מ- B איבר יחיד פונקציה ו- B ל- מסמן

$$f:A\to B$$
.

f של הטווח נקראת נקראת התחום של f הקבוצה f נקראת נקראת התחום אל

הגדרה 12.2 פונקציה

 $X \in \mathbb{R}^m$ פונקציה $X \in \mathbb{R}^n$ ווקטור יחיד היא כלל המתאים לכל המתאים לכל ווקטור יחיד \mathbb{R}^m ל-

T(X) תחת לווקטור T(X) קוראים התמונה של

T(X) יקרא המקור של X

הגדרה 12.3 גרעין ותמונה של פונקציה

תהי

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
.

התמונה של T, מסומנת $\operatorname{Im}(T)$ ומוגדרת

$$\operatorname{Im}(T) = \{ T(X) | X \in \mathbb{R}^n \}$$

ומוגדר $\operatorname{Ker}(T)$ מסומן T ומוגדר

$$Ker(T) = \{ X \in \mathbb{R}^n | T(X) = 0 \}$$

דוגמה 12.1

נסמן

$$A = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} , \qquad u = \begin{pmatrix} 2 \\ -1 \end{pmatrix} , \qquad b = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix} , \qquad c = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} .$$

נגדיר $T:\mathbb{R}^2 o\mathbb{R}^3$ ע"י

$$T(X) = A \cdot X \qquad \forall X \in \mathbb{R}^2 .$$

$$Tinom{x_1}{x_2}$$
 מצאו נוסחה ל- T . כלומר, לכל T מצאו T מצאו מצאו (א)

- T(u) מצאו את (ב)
- (ג) מצאו ל- .b כך ש- $X \in \mathbb{R}^2$ מצאו ווקטור מקור במילים במילים מיותר במילים אחרות.

$$.T \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 מצאו (ה)

$$?egin{pmatrix} 0 \ 0 \ 0 \end{pmatrix} \in \operatorname{Ker}(T)$$
 האם (1)

$$?ig(egin{array}{c} 0 \ 0 \end{array} \in \operatorname{Ker}(T)$$
 האם (1)

$$\mathrm{Ker}(T)$$
 מצאו (ח)

פתרון:

$$.inom{x_1}{x_2}\in\mathbb{R}^2$$
 יהי (א)

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix}$$

(ב) לפי הנוסחה שמצאנו בסעיף הקודם

$$T(u) = T \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 - 3(-1) \\ 3 \cdot 2 + 5(-1) \\ -2 + 7 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ -9 \end{pmatrix}$$

:u -ב A את לכפול אם כמובן אפשר גם

$$T(u) = A \cdot u = T \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ -9 \end{pmatrix}$$

: כך ש-
$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = b$$
 -ע כך $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ בעתי דרכים: דרך רשאונה:

נדרוש

$$\begin{pmatrix} x_2 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix} = T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = b = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$$
$$x_1 - 3x_2 = 3$$
$$3x_1 + 5x_2 = 2$$
$$-x_1 + 7x_2 = -5$$

$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{14}R_2} \begin{pmatrix} 1 & -3 & 3 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 3R_2} \begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

-טר כך כך כך גין גין א $x_2 = -\frac{1}{2}$ ילכן גמצא כי גין ולכן ו

$$T\begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$$

דרך שניה:

נדרוש

$$A \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = b$$

נדרג את המטריצה המורחבת הבאה:

$$\begin{pmatrix}
A & b \\
1 & -3 & 3 \\
3 & 5 & 2 \\
-1 & 7 & -5
\end{pmatrix}$$

יש אלא לענות האם אלא כר אלא מתבקשים למצוא אנו אנו האם אלא לענות האם אלא לענות האם שפתרו, האם אלא לענות האם שפתרון למשוואה מקור. במילים אחרות, האם יש פתרון למשוואה

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = c.$$

נקבל

$$\begin{pmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & -3 & 3 \\ R_3 \to R_3 + R_1 \to R_1 + R_2 \to R_2 - 3R_1 & R_3 \to \frac{1}{2}R_3 \to \frac{1}{2}R_$$

.c למערכת אין פתרון, ולכן אין מקור לווקטור

. לא מוגדר
$$Tegin{pmatrix}1\\2\\3\end{pmatrix}$$
 ולכן קולכן $T:\mathbb{R}^2 o\mathbb{R}^3$ לא מוגדר (ה

בפרט .Ker $(T)\subseteq\mathbb{R}^2$ ולכן , $T:\mathbb{R}^2 o\mathbb{R}^3$ בפרט (1)

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \notin \operatorname{Ker}(T) \ .$$

(ז) קל לראות שהתשובה חיובית, שכן

$$T\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}0-3\cdot0\\3\cdot0+5\cdot0\\-0+7\cdot0\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix} ,$$

ולכן

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \operatorname{Ker}(T) \ .$$

משוואה את לפתור לפתור ב- \mathbb{R}^3 , עלינו למצוא את כל המקורות ב- \mathbb{R}^2 של ווקטור האפס ב- אווקטור למצוא את כל המקורות למצוא את כל המקורות ב-

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} .$$

ניתן להשתמש בחישובים לעיל:

$$\begin{pmatrix} 1 & -3 & 0 \\ 3 & 5 & 0 \\ -1 & 7 & 0 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R_1} \begin{pmatrix} 1 & -3 & 0 \\ R_3 \to R_3 + R_1 \\ \hline \end{pmatrix} \begin{pmatrix} 1 & -3 & 0 \\ 0 & 14 & 0 \\ 0 & 4 & 0 \end{pmatrix} \xrightarrow{R_3 \to \frac{1}{14}R_2} \begin{pmatrix} 1 & -3 & 0 \\ R_3 \to \frac{1}{2}R_3 \\ \hline \end{pmatrix} \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 + 3R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ולמערכת של הפס ב- \mathbb{R}^3 הוא רק ווקטור האפס כלומר, המקור של ווקטור האפס הפתרון הטריוויאלי. כלומר, המקור של ווקטור האפס ב- \mathbb{R}^2 . במילים אחרות,

$$\operatorname{Ker}(T) = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

12.2 הגדרה של העתקה לינארית

הגדרה 12.4 העתקה לינארית

באים: מתקיימים שני התנאים הבאים: $T:\mathbb{R}^n o \mathbb{R}^m$ פונקציה

(1)

$$T(u+w) = T(u) + T(w)$$

לכל $u,w\in\mathbb{R}^n$ לכל לכל

(2)

$$T(\alpha \cdot u) = \alpha \cdot T(u)$$

לכל בסקלר). אומרת על כפל בסקלר) ולכל $u \in \mathbb{R}^n$ לכל

דוגמה 12.2

רת ע"י המוגדרת $T:\mathbb{R}^2 o \mathbb{R}^3$ האם הפונקציה

$$T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} , \qquad A = \begin{pmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{pmatrix}$$

העתקה לינארית?

פתרון:

נבדוק את שני התנאיים ההרכחים:

-כך ש
$$X,Y\in\mathbb{R}^2$$
 יהיו (1)

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} , \quad Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$T(X+Y) = A \cdot (X+Y) = \begin{pmatrix} 1(x_1+y_1) - 3(x_2+y_2) \\ 3(x_1+y_1) + 5(x_2+y_2) \\ -(x_1+y_1) + 7(x_2+y_2) \end{pmatrix} = \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix} + \begin{pmatrix} y_1 - 3y_2 \\ 3y_1 + 5y_2 \\ -y_1 + 7y_2 \end{pmatrix} = A \cdot X + A \cdot Y$$

-כד ש $lpha\in\mathbb{R}$ ו $X\in\mathbb{R}^2$ כד ש $X\in\mathbb{R}^2$

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$T(\alpha \cdot X) = \begin{pmatrix} 1(\alpha x_1) - 3(\alpha x_2) \\ 3(\alpha x_1) + 5(\alpha x_2) \\ -(\alpha x_1) + 7(\alpha x_2) \end{pmatrix} = \alpha \begin{pmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{pmatrix} = \alpha A \cdot X$$

משפט 12.1

(עיין משפט 3.4.) נניח ש- $A\in\mathbb{R}^{m imes n}$ ו- $u,w\in\mathbb{R}^n$ ו- $u,w\in\mathbb{R}^n$ מתקיים:

(1)

$$A \cdot (u + w) = A \cdot u + A \cdot w$$

(2)

$$A \cdot (\alpha \cdot u) = \alpha \cdot (A \cdot u)$$

משפט 12.2

תהי $A \in \mathbb{R}^{m imes n}$ ההעתקה $A \in \mathbb{R}^{m imes n}$ המוגדרת ע"י

$$T(x) = A \cdot x$$

לכל $x \in \mathbb{R}^n$ לכל איניארית $x \in \mathbb{R}^n$

הוכחה:

יהיי 12.1 מתקיים לפי משפט $\alpha\in\mathbb{R}$ ויהי $u,w\in\mathbb{R}^n$ יהיי

(1)

$$T(u+v) = A \cdot (u+w) = A \cdot u + A \cdot w = T(u) + T(w)$$

(2)

$$T(\alpha \cdot u) = A \cdot (\alpha \cdot u) = \alpha \cdot (A \cdot u)\alpha \cdot T(u)$$

" משפט 12.3 משפט בכונות חשובות של העתקה לינארית 2

. תהי $T:\mathbb{R}^n o\mathbb{R}^m$ העתקה ליניארית. מתקיים

$$T(0) = 0$$

(2)

$$T(\alpha v + \beta u) = \alpha T(v) + \beta T(u)$$

 $lpha,eta\in\mathbb{R}$ לכל $u,v\in\mathbb{R}^n$ ולכל

מכאן נובע כי עבור T העתקה ליניארית, מתקיים (3)

$$T(\alpha_1 v_1 + \dots + \alpha_n v_n) = \alpha_1 T(v_1) + \dots + \alpha_n T(v_n) .$$

בקצרה, תכונה יסודית של העתקה ליניארית:

$$T(0) = 0 \quad \Leftarrow \quad T$$
העתקה ליניארית T

דוגמה 12.3

נגדיר
$$T:\mathbb{R}^7 o\mathbb{R}^7$$
 ע"י

$$T(w) = 5w \qquad \forall w \in \mathbb{R}^7 .$$

?האם T העתקה ליניארית

פתרון:

כן. הוכחה:

יהיו $u,w\in\mathbb{R}^7$ מתקיים: lpha

$$T(u+w) = 5 \cdot (u+w) = 5 \cdot u + 5 \cdot w = T(u) + T(w)$$
 (1)

$$T(\alpha \cdot u) = 5 \cdot (\alpha \cdot u) = \alpha \cdot (5 \cdot u) = \alpha \cdot T(u)$$
 (2)

דוגמה 12.4

$$T:\mathbb{R}^2 o\mathbb{R}^2$$
 נגדיר $T:\mathbb{R}^2 o\mathbb{R}^2$

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+1 \\ 0 \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

האם T העתקה ליניארית?

פתרון:

לא. כל העתקה ליניארית S מקיימת S בדוגמה הזו

$$T\begin{pmatrix}0\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$

ולכן T איננה העתקה ליניארית.

דוגמה 12.5

נגדיר
$$T:\mathbb{R}^2 o\mathbb{R}^3$$
 ע"י

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 3y \\ 0 \\ 5x + 2y \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 .$$

האם T העתקה ליניארית?

פתרון:

כן. הוכחה:

$$lpha\in\mathbb{R}\,egin{pmatrix}x_1\\y_1\end{pmatrix},\,\,inom{x_2}{y_2}\in\mathbb{R}^2$$
 יהיו נבדוק האם שני התנאים של הגדרה 12.4 מתקיימים:

(1)

(2)

$$T\left(\binom{x_1}{y_1} + \binom{x_2}{y_2}\right) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} = \begin{pmatrix} 2(x_1 + x_2) - 3(y_1 + y_2) \\ 0 \\ 5(x_1 + x_2) + 2(y_1 + y_2) \end{pmatrix} = \begin{pmatrix} 2x_1 + 2x_2 - 3y_1 - 3y_2) \\ 0 \\ 5x_1 + 5x_2 + 2y_1 + 2y_2 \end{pmatrix}$$

$$= \begin{pmatrix} 2x_1 - 3y_1 \\ 0 \\ 5x_1 + 2y_1 \end{pmatrix} + \begin{pmatrix} 2x_2 - 3y_2 \\ 0 \\ 5x_2 + 2y_2 \end{pmatrix}$$

$$= T\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + T\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

. מתקיים $T\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \right) = T\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + T\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ לכן

$$T\left(\alpha \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}\right) = T\begin{pmatrix} \alpha x_1 \\ \alpha y_1 \end{pmatrix} = \begin{pmatrix} 2(\alpha x_1) - 3(\alpha y_1) \\ 0 \\ 5(\alpha x_1) + 2(\alpha y_1) \end{pmatrix}$$
$$= \alpha \cdot \begin{pmatrix} 2x_1 - 3y_1 \\ 0 \\ 5x_1 + 2y_1 \end{pmatrix}$$
$$= \alpha \cdot T\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

. מתקיים
$$T\left(lpha\left(egin{array}{c} x_1 \\ y_1 \end{array}
ight)
ight)=lpha\cdot T\left(egin{array}{c} x_1 \\ y_1 \end{array}
ight)$$
 לכן

דוגמה 12.6

ע"י
$$T:\mathbb{R}^2 o\mathbb{R}^3$$
 ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 \\ 9x + 5y \\ x + 7y \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2.$$

האם T העתקה ליניארית?

פתרון:

לא. ניקח למשל

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\9\\1\end{pmatrix}$$

אמת כי

$$T\left(2\cdot \begin{pmatrix}1\\0\end{pmatrix}\right) = T\begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}4\\18\\2\end{pmatrix}$$

אבל

$$2 \cdot T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 9 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 18 \\ 2 \end{pmatrix}$$

כך ש-

$$T\left(2\cdot \begin{pmatrix} 1\\0\end{pmatrix}\right) \neq 2\cdot T\begin{pmatrix} 1\\0\end{pmatrix}$$

ולכן בגלל שמצאנו דוגמה המקיימת

$$T(\alpha \cdot u) \neq \alpha \cdot T(u)$$

. איננה מתקיימת איננה $T\left(\alpha\cdot u\right)=\alpha\cdot T(u)$ ההכרחית אז התכונה ההכרחית

דוגמה 12.7

תהי המקיימת ליניארית העתקה $T:\mathbb{R}^2 o \mathbb{R}^4$ העתקה

$$T\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\2\\3\\4\end{pmatrix} , \qquad T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}5\\6\\7\\8\end{pmatrix} .$$

- $T \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ את מצאו את
- $.T \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ את מצאו (ב)
- $T \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ מצאו את מצאו (ג
- $Tegin{pmatrix}x\\y\end{pmatrix}\in\mathbb{R}^2$ מצאו נוסחה לT. כלומר, לכל (T

פתרון:

$$T\begin{pmatrix} 3\\0 \end{pmatrix} = T\left(3 \cdot \begin{pmatrix} 1\\0 \end{pmatrix}\right) = 3 \cdot T\begin{pmatrix} 1\\0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} = \begin{pmatrix} 3\\6\\9\\12 \end{pmatrix}$$

$$T\begin{pmatrix} 0 \\ 5 \end{pmatrix} = T\left(5 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = 5 \cdot T\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 5 \cdot \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix} = \begin{pmatrix} 25 \\ 30 \\ 35 \\ 40 \end{pmatrix}$$

$$T\begin{pmatrix} 3\\5 \end{pmatrix} = T\begin{pmatrix} \binom{3}{0} + \binom{0}{5} \end{pmatrix} = T\begin{pmatrix} 3\\0 \end{pmatrix} + T\begin{pmatrix} 0\\5 \end{pmatrix} = \begin{pmatrix} 3\\6\\9\\12 \end{pmatrix} + \begin{pmatrix} 25\\30\\35\\40 \end{pmatrix} = \begin{pmatrix} 28\\36\\44\\52 \end{pmatrix}$$

$$T \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \end{pmatrix} \end{pmatrix} = T \begin{pmatrix} x \\ 0 \end{pmatrix} + T \begin{pmatrix} 0 \\ y \end{pmatrix} = T \begin{pmatrix} x \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} + T \begin{pmatrix} y \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

$$= x \cdot T \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + y \cdot \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix} = \begin{pmatrix} x \\ 2x \\ 3x \\ 4x \end{pmatrix} + \begin{pmatrix} 5y \\ 6y \\ 7y \\ 8y \end{pmatrix}$$

$$= \begin{pmatrix} x + 5y \\ 2x + 6y \\ 3x + 7y \\ 4x + 8y \end{pmatrix}$$

במילים אחרות:

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} T\begin{pmatrix} 1 \\ 0 \end{pmatrix} & T\begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

12.3 מטריצה המייצגת הסטנדרטית

משפט 12.4 מטריצה המייצגת הסטנדרטית

-כך ש $A\in\mathbb{R}^{m imes n}$ העתקה העתקה ליניארית. אז קיימת מטריצה אחת ויחידה $T:\mathbb{R}^n o R^m$

$$T(X) = A \cdot X$$

לכל $X \in \mathbb{R}^n$ לכל

$$A = \begin{pmatrix} | & | & | \\ T(e_1)_E & T(e_2)_E & \cdots & T(e_n)_E \\ | & | & | \end{pmatrix}$$

 \mathbb{R}^m כאשר e_1,e_2,\cdots,e_n הווקטורים של הבסיס הסטנדרטי של ו- e_1,e_2,\cdots,e_n כאשר

T נקראת α המטריצה המייצגת הסטנדרטית (ממ"ס) של ההעתקה ליניארית A

משפט 12.5 תנאי מספיק של העתקה ליניארית

נתונה
$$X \in \mathbb{R}^n$$
 לכל $T(X) = A \cdot X$ אם $A \in \mathbb{R}^{m imes n}$ נתונה

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

הינו העתקה ליניארית.

-כך ש $A\in\mathbb{R}^{m imes n}$ אם $T:\mathbb{R}^n o\mathbb{R}^m$ העתקה ליניארית אז קיימת $T:\mathbb{R}^n$

$$T(X) = A \cdot X$$

 $X \in \mathbb{R}^n$ לכל

דוגמה 12.8

נתונה פונקציה $T:\mathbb{R}^2 o\mathbb{R}^3$ המוגדרת ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - 3y \\ 0 \\ 5x + 2y \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$$

המהווה העתקה ליניארית. מצאו ממ"ס שלה.

פתרון:

ווקטורי היחידה של \mathbb{R}^2 הינם

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \ , \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ .$$

לכן, הממ"ס של T היא:

$$A = \left(T \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad T \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right) = \begin{pmatrix} 2 & -3 \\ 0 & 0 \\ 5 & 2 \end{pmatrix}$$

12.4 פונקציה על ופונקציה חח"ע

הגדרה 12.5 פונקציה על ופונקציה חח"ע

 $T:\mathbb{R}^n o\mathbb{R}^m$ נתונה פונקציה

-ע כך $X\in\mathbb{R}^n$ (לפחות אחד) קיים $b\in\mathbb{R}^m$ אם לכל T (i)

$$T(X) = b$$
.

-אחד ערכית (חח"ע) אם לכל $B\in\mathbb{R}^m$ קיים לכל היותר אחד ערכית (וו) אחד כך ש $X\in\mathbb{R}^n$

$$T(X) = b$$
.

דוגמה 12.9

תהי $T_1:\mathbb{R}^3 o\mathbb{R}^2$ מוגדרת ע"י

$$T_1 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x - 2y + z \\ x + |y| - z \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

תהי

$$T_2: \mathbb{R}^3 \to \mathbb{R}^3$$

מוגדרת ע"י

$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+y \\ z \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

תהי

$$T_3: \mathbb{R}^3 \to \mathbb{R}^2$$

מוגדרת ע"י

$$T_3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ x^2 \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

(א) הוכיחו או הפריכו:

העתקה ליניארית. T_1

(ב) הוכיחו או הפריכו:

.העתקה ליניארית T_2

(ג) הוכיחו או הפריכו:

.העתקה ליניארית T_3

לכל אחת מההעתקות הלינאריות שמצאת,

(ד) מצא מטריצה מייצגת סטנדרטית.

- (ה) האם ההעתקה על?
- (ו) האם ההעתקה חח"ע?

פתרון:

משל ניקח ניקח למשל איננה העתקה ליניארית. איננה העתקה ל T_1

$$T_{1}\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}3\cdot 0 - 2\cdot 1 + 0\\0 + |1| - 0\end{pmatrix} = \begin{pmatrix}-2\\1\end{pmatrix}$$

$$T_{1}\begin{pmatrix}-1\cdot\begin{pmatrix}0\\1\\0\end{pmatrix}\end{pmatrix} = T_{1}\begin{pmatrix}0\\-1\\0\end{pmatrix} = \begin{pmatrix}3\cdot 0 - 2\cdot(-1) + 0\\0 + |-1| - 0\end{pmatrix} = \begin{pmatrix}2\\1\end{pmatrix}$$
אבל
$$-1\cdot T_{1}\begin{pmatrix}0\\1\\0\end{pmatrix} = -1\cdot\begin{pmatrix}-2\\1\end{pmatrix} = \begin{pmatrix}2\\-1\end{pmatrix}$$

$$T_{1}\begin{pmatrix}-1\cdot\begin{pmatrix}0\\1\\0\end{pmatrix}\end{pmatrix} \neq -1\cdot T_{1}\begin{pmatrix}0\\1\\0\end{pmatrix}$$

 $T_2: \mathbb{R}^3 \to \mathbb{R}^3$

מוגדרת ע"י

(ב)

$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+y \\ z \end{pmatrix} \qquad \forall \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

נתבונן במטריצה

$$A = \begin{pmatrix} T_2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & T_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} & T_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

:נשים לב שלכל $egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$ מתקיים

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+y \\ z \end{pmatrix} = T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

כלומר, לכל $X \in \mathbb{R}^3$ מתקיים

$$T_2(X) = AX$$

.ולכן, לפי משפט 12.5 העתקה T_2 (i), ולכן, לפי

T שימו לב ש- A הינה הממ"ס של

למשל ניקח איננה של T_1 איננה העתקה ליניארית בדומה ליניארית איננה העתקה ליניארית ליניארית איננה איננה איננה איננה איננה איננה ליניארית בדומה ליניארית בדומה ליניארית איננה איננה

$$T_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$T_3\left(2\cdot \begin{pmatrix}1\\0\\0\end{pmatrix}\right) = T_3\begin{pmatrix}2\\0\\0\end{pmatrix} = \begin{pmatrix}0\\4\end{pmatrix}$$

אבל

$$2 \cdot T_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

ולכן

$$T_3 \left(2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right) \neq 2 \cdot T_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

(ד) עיין סעיף (ב)

-ש כך $egin{pmatrix} x \ y \ z \end{pmatrix} \in \mathbb{R}^3$ (לפחות אחד) קיים לכל $b \in \mathbb{R}^3$ כך ש-

$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b ,$$

כלומר, אם"ם לכל $b \in \mathbb{R}^3$ למערכת

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b$$

יש פתרון.

:דרג את המטריצה:

$$\begin{pmatrix} 1 & 1 & 1 & b_1 \\ 1 & 1 & 0 & b_2 \\ 0 & 0 & 1 & b_3 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 1 & 1 & b_1 \\ 0 & 0 & -1 & b_2 - b_1 \\ 0 & 0 & 1 & b_3 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 1 & 1 & 1 & b_1 \\ 0 & 0 & -1 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 + b_2 - b_1 \end{pmatrix}$$

על סמך הדרוג, קיים \mathbb{R}^3 כך שלמערכת $b\in\mathbb{R}^3$ אין פתרון (כי תיתכן שורת סתירה) , ולכן $b\in\mathbb{R}^3$ איננה על.

-שחד כך אחד $egin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ היותר לכל $b \in \mathbb{R}^3$ אחד כך שההעתקה היא חח"ע אם לכל $b \in \mathbb{R}^3$

$$T_2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b ,$$

כלומר, אם"ם לכל $b\in\mathbb{R}^3$ למערכת

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b$$

יש לכל היותר פתרון אחד.

על סמך הדרוג, קיים $b \in \mathbb{R}^3$ (למשל, ווקטור האפס) על

$$A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = b$$

יש אינסוף פתרונות (כי יש משתנה חופשי), ולכן ההעתקה איננה חח"ע.

משפט 12.6

תהי הסטנדרטית הסטנדרטית ותהי ותהי המייצגת ותהי אליניארית ותהי התנאים $A\in\mathbb{R}^{m\times n}$ המטריצה העתקה ליניארית העתקה ליניארית ותהי ותהי $A\in\mathbb{R}^{m\times n}$ הבאים שקולים:

- (\mathbb{R}^m) על T (א)
- (ב) במדורגת המתקבלת מ-A קיים איבר מוביל בכל
 - \mathbb{R}^m עמודות A פורשות את

משפט 12.7

תהי המייצגת הסטנדרטית של $A\in\mathbb{R}^{m\times n}$ התנאים ליניארית העתקה ליניארית ותהי ותהי $A\in\mathbb{R}^{m\times n}$ הבאים שקולים:

- ע. חח"ע.T
- (ב) במדורגת המתקבלת מ-A קיים איבר מוביל בכל עמודה
 - (ג) עמודות A בת"ל.

12.5 הצגת העתקה לינארית בבסיסים שונים

משפט 12.8

יהי V מרחב ווקטורי עם בסיס סדור

$$B = \{b_1, b_2, \dots, b_n\} ,$$

יהי W מרחב ווקטורי עם בסיס סדור

$$C = \{c_1, c_2, \dots, c_m\}$$

ותהי

$$T:V\to W$$

העתקה לינארית. אזי, לכל $X \in V$ מתקיים

$$[T(X)]_C = [T]_C^B \cdot [X]_B$$

$$[T]_C^B = \begin{pmatrix} | & | & | \\ [T(b_1)]_C & [T(b_2)]_C & \dots & [T(b_n)]_C \end{pmatrix} \in \mathbb{R}^{m \times n} .$$

C -ו -ו ביחס לבסיסים T ההעתקה של המייצגת המטריצה וים נקראת נקראת $\left[T\right]_{C}^{B}$

דוגמה 12.10

נתון

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$

העתקה לינאירת המוגדרת ע"י

$$Tinom{x}{y}=egin{pmatrix} 3x-4y\ 4x+5y\ 6y \end{pmatrix}$$
לכל $inom{x}{y}\in\mathbb{R}^2$, ונתון $inom{x}{y}\in\mathbb{R}^2$.

 \mathbb{R}^2 בסיס של

- (א) מהי המטריצה המייצגת הסטנדרטית?
- B מהי המטריצה המייצגת ביחס לבסיס (ב)
- נתון הווקטור E בעל קואורדינטות ביחס לבסיס ביחס לבסיס אווקטור $X=inom{2}{4}$ מהו הווקטור X ביחס לבסיס X ביחס לבסיס X
 - (ד) הוכיחו כי

$$[T]_{\bar{E}}^{E}[X]_{E} = [T]_{\bar{E}}^{B}[X]_{B}$$

 \mathbb{R}^3 כאשר $ar{E}$ הבסיס הסטנדרטי של

פתרון:

נתון ווקטור

$$\begin{pmatrix} x \\ y \end{pmatrix} = x \cdot e_1 + y \cdot e_2$$

של ההעתקה לינארית Tמחזירה לינארית אז ההעתקה של $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right\}$ מחזירה ווקטור ביחס לבסיס הסטנדרטית

$$(3x-4y) \cdot e_1 + (4x+5y) \cdot e_2 + 6y \cdot e_3$$

$$ar{E}=\left\{ar{e}_1=egin{pmatrix}1\\0\\0\end{pmatrix},ar{e}_2=egin{pmatrix}0\\1\\0\end{pmatrix},ar{e}_3=egin{pmatrix}0\\0\\1\end{pmatrix}
ight\}$$
 של $ar{E}$

(א) ניתן לכתוב את ההעתקה לינאירת באמצעות המטריצה המייצגת הסטנדרטית בצורה

$$[T(X)]_{\bar{E}} = [T]_{\bar{E}}^{E} \cdot [X]_{E}$$

כאשר

$$[T]_{\bar{E}}^{E} = \begin{pmatrix} | & | \\ T(e_1) & T(e_2) \\ | & | \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 4 & 5 \\ 0 & 6 \end{pmatrix}$$

המטריצה המייצגת הסטנדרטית.

ניתנת ע"י B ניתנת ביחס לבסיס ניתנת ע"י

$$[T]_{\bar{E}}^{B} = \begin{pmatrix} | & | \\ T(b_1) & T(b_2) \\ | & | \end{pmatrix}.$$

שים לב,

$$b_1 = e_1 + e_2$$
, $b_2 = e_1 - e_2$, \Leftrightarrow $e_1 = \frac{1}{2} \cdot b_1 + \frac{1}{2} \cdot b_2$, $e_2 = \frac{1}{2} \cdot b_1 - \frac{1}{2} \cdot b_2$,

כך ש-

$$T(b_1) = T(e_1) + T(e_2) = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} + \begin{pmatrix} -4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} -1 \\ 9 \\ 6 \end{pmatrix}$$

$$T(b_2) = T(e_1) - T(e_2) = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} - \begin{pmatrix} -4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ -6 \end{pmatrix}$$

ולכן

$$[T]_{\bar{E}}^{B} = \begin{pmatrix} | & | \\ T(b_1) & T(b_2) \\ | & | \end{pmatrix} = \begin{pmatrix} -1 & 7 \\ 9 & -1 \\ 6 & -6 \end{pmatrix} .$$

(2)

$$[X]_E = \binom{2}{4}_E = 2 \cdot e_1 + 4 \cdot e_2 = 2\left(\frac{1}{2} \cdot b_1 + \frac{1}{2} \cdot b_2\right) + 4\left(\frac{1}{2} \cdot b_1 - \frac{1}{2} \cdot b_2\right) = 3 \cdot b_1 - 1 \cdot b_2 = \binom{3}{-1}_B$$

(T)

$$[T]_{\bar{E}}^{E} \cdot [X]_{E} = \begin{pmatrix} 3 & -4 \\ 4 & 5 \\ 0 & 6 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \end{pmatrix}_{E} = \begin{pmatrix} -10 \\ 28 \\ 24 \end{pmatrix}_{\bar{E}}$$

-1

$$[T]_{\bar{E}}^{B} \cdot [X]_{B} = \begin{pmatrix} -1 & 7\\ 9 & -1\\ 6 & -6 \end{pmatrix} \cdot \begin{pmatrix} 3\\ -1 \end{pmatrix}_{B} = \begin{pmatrix} -10\\ 28\\ 24 \end{pmatrix}_{\bar{E}}$$

דוגמה 12.11

נתון

$$T: \mathbb{R}^2 \to \mathbb{R}^3$$

העתקה לינאירת המוגדרת ע"י

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x + y \\ 2x - y \\ 3y \end{pmatrix}$$

לכל $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ ונתון

$$C = \left\{ c_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , c_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} , c_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

 $.\mathbb{R}^3$ בסיס של

- (א) מהי המטריצה המייצגת הסטנדרטית?
- ${f ?}C$ מהי המטריצה המייצגת ביחס לבסיס
- נתון הווקטור המתקבל מההעתקה ביחס לבסיס הסטנדרטית $X_E = \begin{pmatrix} 1 \\ 2 \end{pmatrix}_E$ נתון הווקטור $X_E = \begin{pmatrix} 1 \\ 2 \end{pmatrix}_E$ ליוארית

$$[T]_C^E X_E$$

הוא שקול לווקטור המתקבל מההעתקה לינארית

$$[T]_{\bar{E}}^E X_E$$

פתרון:

קרי
$$\mathbb{R}^3$$
, ערי $E=\left\{e_1=\begin{pmatrix}1\\0\end{pmatrix},e_2=\begin{pmatrix}0\\1\end{pmatrix}\right\}$ קרי \mathbb{R}^2 , קרי על \mathbb{R}^2 אוז (א) נתון בסיס הסטנדרטי של $\bar{E}=\left\{\bar{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix},\bar{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix},\bar{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}$

$$[T(e_1)]_{\bar{E}} = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}_{\bar{E}} = 4 \cdot \bar{e}_1 + 2 \cdot \bar{e}_2 + 0 \cdot \bar{e}_3$$
$$[T(e_2)]_{\bar{E}} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}_{\bar{E}} = 1 \cdot \bar{e}_1 - 1 \cdot \bar{e}_2 + 3 \cdot \bar{e}_3$$

כך ש-

$$[T]_{\bar{E}}^{E} = \begin{pmatrix} | & | & | \\ [T(e_1)]_{\bar{E}} & [T(e_2)]_{\bar{E}} \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix}$$

שים לב (ב)

$$\begin{array}{lll} c_1 = \bar{e}_1 & & \bar{e}_1 = c_1 \\ c_2 = \bar{e}_1 + \bar{e}_2 & \Rightarrow & \bar{e}_2 = c_2 - c_1 \\ c_3 = \bar{e}_1 + \bar{e}_2 + \bar{e}_3 & & \bar{e}_3 = c_3 - c_2 \end{array}$$

כד ש-

$$[T(e_1)]_C = 4 \cdot c_1 + 2 \cdot (c_2 - c_1) = 2 \cdot c_1 + 2 \cdot c_2 + 0 \cdot c_3$$

$$= \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}_C$$

$$[T(e_2)]_C = 1 \cdot c_1 - 1 \cdot (c_2 - c_1) + 3 \cdot (c_3 - c_2) = 2 \cdot c_1 + 0 \cdot c_2 + 1 \cdot c_2 = \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}_C$$

ולכן

$$[T]_C^E = \begin{pmatrix} | & | & | \\ [T(e_1)]_C & [T(e_2)]_C \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & -4 \\ 0 & 3 \end{pmatrix}$$

(د)

$$[T(X)]_{\bar{E}} = [T]_{\bar{E}}^{E} \cdot [X]_{E} = \begin{pmatrix} 4 & 1 \\ 2 & -1 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix}_{\bar{E}}$$

$$[T(X)]_C = [T]_C^E \cdot [X]_E = \begin{pmatrix} 4 & 2 \\ 2 & -4 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ -6 \\ 6 \end{pmatrix}_C$$

$$\begin{pmatrix} 6 \\ -6 \\ 6 \end{pmatrix}_C = 6 \cdot c_1 - 6 \cdot c_2 + 6 \cdot c_3 = 6 \cdot \bar{e}_1 - 6 \left(\bar{e}_1 + \bar{e}_2 \right) + 6 \cdot \left(\bar{e}_1 + \bar{e}_2 + \bar{e}_3 \right) = 6 \cdot \bar{e}_1 + 0 \cdot \bar{e}_2 + 6 \cdot \bar{e}_3 = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix}_{\bar{E}}.$$

דוגמה 12.12

נתונה העתקה לינארית

$$T: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 3}[x]$$

המוגדרת ע"י

$$T(a + bx + cx^{2}) = a + 2b + 3c + (2a + 4b + 5c)x + (3a + 6b + 9c)x^{2} + (4a + 8b + 12c)x^{3}$$

- T של A מצאו את המטריצה המייצגת אמייצגת מטריצה (א
 - $Im \ T$ מצאו את המימד ובסיס של (ב)
 - Γ מצאו את המימד ובסיס של.
- u את המטריצה המייצגת של ההעתק ביחס לבסיסים הסדורים

$$B = \{b_1 = 1 + x , b_2 = x^2 , b_3 = x\}$$

של $\mathbb{R}_{\leq 2}[x]$ וביחס לבסיס

$$C = \{c_1 = x^3, c_2 = x^2, c_3 = x, c_4 = 1\}$$

$$\mathbb{R}_{\leq 3}[x]$$
 של

מצאו את (ה)

$$[T(1+x+x^2+x)]_C$$

פתרון:

נסמן (א)

$$E = \{e_1 = 1, e_2 = x, e_3 = x^2\}$$

-ו $\mathbb{R}_{\leq 2}[x]$ ו-

$$\bar{E} = \{\bar{e}_1 = 1, \bar{e}_2 = x, \bar{e}_3 = x^2, \bar{e}_4 = x^3\}$$

הבסיס הסטנדרטי של $\mathbb{R}_{\leq 3}[x]$ המטריצה המייצגת הסטנדרטית היא

$$A = \begin{pmatrix} | & | & | & | \\ [T(e_1)]_{\bar{E}} & [T(e_2)]_{\bar{E}} & [T(e_3)]_{\bar{E}} \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ [T(1)]_{\bar{E}} & [T(x)]_{\bar{E}} & [T(x^2)]_{\bar{E}} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix}$$

(ב) מתקיים:

 ${\rm Im}\ T={\rm Col}A\ .$

נדרג את המטריצה המייצגת הסטנדרטית:

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

נקבל ש-

$$\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 3\\5\\9\\12 \end{pmatrix} \right\}$$

 $\dim (\operatorname{Col} A) = 2$. ולכן , $\operatorname{Col} A$ מהווה בסיס של

מכאן בסיס של $\operatorname{Im} T$ הוא

$${1+2x+3x^2+4x^3, 3+5x+9x^2+12x^3}$$

 $\dim (\operatorname{Im} T) = 2$ ולכן

(ג) מתקיים

$$\operatorname{Ker} T \approx \operatorname{Nul} A .$$

$$\text{Nul } A = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 \middle| \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

על סמך החישוב לעיל נקבל

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0 \\
3 & 6 & 9 & 0 \\
4 & 8 & 12 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

כד ש-

$$\operatorname{Nul} A = \begin{pmatrix} a \\ b \\ c \end{pmatrix} = b \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \qquad b \in \mathbb{R} .$$

לכן בסיס של Nul A הוא

$$B_{\text{Nul }A} = \left\{ \begin{pmatrix} -2\\1\\0 \end{pmatrix}_{E} \right\}$$

-1

$$Dim(Nul A) = 1$$
.

מכאן נקבל

$$B_{\text{Ker }T} = \{-2 + x\}$$

-1

$$Dim(Ker T) = 1$$
.

(ד) נחשב את התמונות של ווקטורי הבסיס,

$$T(1+x) = 3 + 6x + 9x^2 + 12x^3 , \qquad T(x^2) = 3 + 5x + 9x^2 + 12x^3 , \qquad T(x) = 2 + 4x + 6x^2 + 8x^3 .$$

נזכיר ש-

$$C = \{c_1 = x^3, c_2 = x^2, c_3 = x, c_4 = 1\}$$

ולכן המטריצה המבוקשת היא

$$[T]_{C}^{B} = \begin{pmatrix} | & | & | & | \\ [T(b_{1})]_{C} & [T(b_{2})]_{C} & [T(b_{3})]_{C} \end{pmatrix} = \begin{pmatrix} 12 & 12 & 8 \\ 9 & 9 & 6 \\ 6 & 5 & 4 \\ 3 & 3 & 2 \end{pmatrix}$$

(n)

$$\left[T \left(1 + x + x^2 + x \right) \right]_C = \left[T \right]_C^B \cdot \left[T \left(1 + x + x^2 + x \right) \right]_B = \begin{pmatrix} 12 & 12 & 8 \\ 9 & 9 & 6 \\ 6 & 5 & 4 \\ 3 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 32 \\ 24 \\ 15 \\ 8 \end{pmatrix}$$

12.6 קשר בין מרחב העמודות ומרחב האפס להעתקות לינאריות

משפט 12.9 קשר בין מרחב העמודות ומרחב האפס להעתקות לינאריות

עבור מרחבים ווקטורים V ו-V והעתקה לינארית

$$T:U\to V$$

כך ש-

$$\operatorname{Im} T = \left\{ T(u) \in V \middle| u \in U \right\}$$

-1

$$\operatorname{Ker} T = \left\{ u \in U \middle| T(u) = 0 \right\} .$$

נשים לב שאם

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

אז T מוגדרת ע"י כפל במטריצה, כלומר

$$T(X) = A \cdot X$$

עבור מטריצה מסדר m imes n במקרה זה,

$$\operatorname{Im} T = \operatorname{Col} A$$

-1

$$\mathrm{Ker}\ T=\mathrm{Nul}\ A$$

12.7 הגדרה של איזומורפיזם

משפט 12.10

יהי V מ"ו ויהי

$$B = \{b_1, b_2, \dots, b_n\}$$

בסיס סדור של V ההעתקה

$$T:V\to\mathbb{R}^n$$

הנתונה ע"י

$$T(X) = [X]_B \quad \forall \ X \in V$$

היא העתקה לינאירת חח"ע ועל.

הגדרה 12.6 איזומורפיזם בין מרחבים ווקטורים

יהיו מעל $\mathbb R$. אם קיימת העתקה לינאירת חח"ע ועל יהיו V ,U

$$T:U\to V$$
,

Upprox V נאמר ש-זומורפיים ונסמן ו- U איזומורפיים ונסמן נאמר בנוסף, נאמר איזומורפיים ונסמן

12.8 האיזומורפיזמים הטבעיים

נתון העתקה לינארית (1)

$$T: \mathbb{R}_{\leq 3}[x] \to \mathbb{R}^4$$

ובסיס

$$E = \{1, x, x^2, x^3\}$$

על $\mathbb{R}_{\leq 3}[x]$ כך ש- $\mathbb{R}_{\leq 3}[x]$

$$T(a+bx+cx^2+dx^3) = \left[a+bx+cx^2+dx^3\right]_E = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}_E.$$

XI

$$\mathbb{R}_{\leq 3}[x] \approx \mathbb{R}^4$$

ע"י האיזומורפיזם הטבעי

$$a + bx + cx^2 + dx^3 \rightarrow \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$
.

נתון העתקה לינארית (2)

$$T: \mathbb{R}^{2 \times 3} \to \mathbb{R}^6$$

ובסיס

$$\bar{E} = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\}$$

של $\mathbb{R}^{2 imes 3}$ כך ש-T מוגדרת ע"י

$$T\left(\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}\right) = \begin{bmatrix} \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \end{bmatrix}_{\bar{E}} = \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix}_{\bar{E}} \ .$$

X

$$\mathbb{R}^{2\times3} \approx \mathbb{R}^6$$

ע"י האיזומורפיזם הטבעי

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \rightarrow \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix}_{\bar{p}} .$$

משפט 12.11 ע

ל מנת להכריע שאלות במ"ו מסוים (מעל $\mathbb R$) ניתן לעבור ל- $\mathbb R^n$ המתאים (ע"י ההעתקה לעיל ובחירת הבסיס הסטנדרטי).

$$[T(X)]_C = [T]_C^B \cdot [X]_B$$

דוגמה 12.13

נתונה טרנספורמציה לינארית

$$T: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}^{2 \times 2}$$

המוגדרת ע"י

$$T(a+bx+cx^{2}) = \begin{pmatrix} a+2b+3c & 2a+4b+5c \\ 3a+6b+9c & 4a+8b+12c \end{pmatrix}$$

- T מצאו את המטריצה המייצגת אמייצגת של מצאו את מטריצה של
 - $Im\ T$ מצאו את המימד ובסיס של
 - .Ker T מצאו את המימד ובסיס של
- (ד) מצאו את המטריצה המייצגת של ההעתקה ביחס לבסיס הסדור

$$B = \{b_1 = 1 + x, b_2 = x^2, b_3 = x\}$$

של $\mathbb{R}_{\leq 2}[x]$ וביחס לבסיס

$$C = \left\{ c_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , c_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , c_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , c_4 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

 $\mathbb{R}^{2 imes 2}$ של

פתרון:

$$[T]_{\bar{E}}^{E} \begin{pmatrix} a \\ b \\ c \end{pmatrix}_{E} = \begin{pmatrix} a+2b+3c \\ 2a+4b+5c \\ 3a+6b+9c \\ 4a+8b+12c \end{pmatrix}_{\bar{E}}$$
 (8)

$$[T]_{\bar{E}}^{E} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} =: A$$

Im
$$T = \operatorname{Col} A$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

הינו $\operatorname{Col} A$ הינו

$$B_{\text{Col }A} = \left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 3\\5\\9\\12 \end{pmatrix} \right\}$$

והוא Im T מכאן בסיס של .2 ומימדו

$$B_{\operatorname{Im}\ T} = \left\{ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} , \begin{pmatrix} 3 & 5 \\ 9 & 12 \end{pmatrix} \right\}$$

(k)

$$\operatorname{Ker} T \approx \operatorname{Nul} A .$$

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
2 & 4 & 5 & 0 \\
3 & 6 & 9 & 0 \\
4 & 8 & 12 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

ולכן

$$\operatorname{Nul} A = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \middle| b \in \mathbb{R} \right\}$$

ומימדו 1. מכאן

$$B_{\text{Ker }T} = \{-2 + x\}$$

 $[T]_{C}^{B} = \begin{pmatrix} | & | & | \\ [T(b_{1})]_{C} & [T(b_{2})]_{C} & [T(b_{3})]_{C} \end{pmatrix}$

T לפי ההגדרה של

$$T(b_1) = \begin{pmatrix} 3 & 6 \\ 9 & 12 \end{pmatrix} = 12c_1 + 9c_2 + 6c_3 + 3c_4 = \begin{pmatrix} 12 \\ 9 \\ 6 \\ 3 \end{pmatrix}_C$$

$$T(b_2) = \begin{pmatrix} 3 & 5 \\ 9 & 12 \end{pmatrix} = 12c_1 + 9c_2 + 5c_3 + 3c_4 = \begin{pmatrix} 12 \\ 9 \\ 5 \\ 3 \end{pmatrix}_C$$

$$T(b_3) = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} = 8c_1 + 6c_2 + 4c_3 + 2c_4 = \begin{pmatrix} 8 \\ 6 \\ 4 \\ 2 \end{pmatrix}_C$$

כד ש-

$$[T]_C^B = \begin{pmatrix} 12 & 12 & 8\\ 9 & 9 & 6\\ 6 & 5 & 4\\ 3 & 3 & 2 \end{pmatrix} .$$

דוגמה 12.14

$$T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^3$$

המוגדרת ע"י

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+2b+3c \\ 2b+3c+4d \\ 5a+3c+4d \end{pmatrix}$$

- T מצאו את המטריצה המייצגת אמייצגת את מצאו את מטריצה ומייצגת T
 - $Im \ T$ מצאו את המימד ובסיס של (ב)
 - (ג) מצאו את המימד ובסיס של T

פתרון:

(א) שימו לב, ביחס לבסיס הסטנדרטית

$$E = \left\{ e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

של $\mathbb{R}^{2 imes 2}$ וביחס לבסיס

$$\bar{E} = \left\{ \bar{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \ \bar{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} , \ \bar{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

של \mathbb{R}^3 של

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ae_1 + be_2 + ce_3 + de_4 = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}_E$$

$$[T]_{\bar{E}}^{E} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}_{E} = \begin{pmatrix} a+2b+3c \\ 2b+3c+4d \\ 5a+3c+4d \end{pmatrix}_{\bar{E}}$$
$$[T]_{\bar{E}}^{E} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 4 \\ 5 & 0 & 3 & 4 \end{pmatrix} = A.$$

.Im $T = \operatorname{Col} A$ (2)

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 2 & 3 & 4 \\ 5 & 0 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & \frac{3}{2} & 2 \\ 0 & -10 & -12 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 3 & 24 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 1 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 1 & 8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & -10 \\ 0 & 0 & 1 & 8 \end{pmatrix}$$

ולכן העמודות

$$B_{\text{Col}A} = \left\{ \begin{pmatrix} 1\\0\\5 \end{pmatrix} , \begin{pmatrix} 2\\2\\0 \end{pmatrix} , \begin{pmatrix} 3\\3\\3 \end{pmatrix} \right\}$$

3 ומימדו Im T ומימדו

.Ker T = Nul A (۵)

$$\left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 & 0 \\
0 & 2 & 3 & 4 & 0 \\
5 & 0 & 3 & 4 & 0
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 2 & 3 & 0 & 0 \\
0 & 1 & 0 & -10 & 0 \\
0 & 0 & 1 & 8 & 0
\end{array}\right)$$

ולכן

$$\operatorname{Nul} A = \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = d \begin{pmatrix} 4 \\ 10 \\ -8 \\ 1 \end{pmatrix} \middle| d \in \mathbb{R} \right\}$$

כך ש-

$$B_{\text{Nul }A} = \left\{ \begin{pmatrix} 4\\10\\-8\\1 \end{pmatrix} \right\}$$

.1 ומימדו

מכאן

$$B_{\text{Ker }T} = \left\{ \begin{pmatrix} 4 & 10 \\ -8 & 1 \end{pmatrix} \right\}$$