Homework 9 Brendan Busey

1) W know that any matrix in O(2) must either take the form of

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

or

$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

And, since any matrix in O(2) either reflects or rotates a vector in \mathbb{R}^2 , the determinant of any matrix in O(2) will be ± 1 . Therefore, the only elements that commute are $Z(G) = \{\pm I\}$, or the identity matrix.

2)

Proof. Doing the prime-factorization of 2016, we get $2016 = 2^5 \cdot 3^2 \cdot 7$. So, by the Fundamental Theorem of Finitely Generated Abelian Groups, we have

$$\begin{split} \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_{16} \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_{16} \times \mathbb{Z}_9 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_7 \\ \mathbb{Z}_{32} \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7 \\ \mathbb{Z}_{32} \times \mathbb{Z}_9 \times \mathbb{Z}_7 \end{split}$$

3)

4)

Proof. Let the order of G be $m=p_1^{\alpha_1}\dots p_k^{\alpha_k}$. It is known that G is a direct product of p-groups, say:

$$G = G_1 \times \ldots \times G_k$$

where each G_i is a p_i -group. By the fundamental theorem of finite abelian groups, each G_i is isomorphic to a direct product of cyclic groups of the form

Page 1

Homework 9 Brendan Busey

$$\mathbb{Z}_{p_i^{\beta_1}} \times \ldots \times \mathbb{Z}_{p_i^{\beta_l}},$$

where β_1, \ldots, β_l are positive integers such that $\sum_{j=1}^{l} \beta_j = \alpha_i$.

Now if n divides m, then we must have

$$n = p_1^{\gamma_1} \dots p_k^{\gamma_k}$$
 for some $\gamma_1, \dots, \gamma_k$ with $0 \le \gamma_i \le \alpha_i$.

Which brings us to the following claim: Each G_i has a subgroup of order $p_i^{\gamma_i}$ Proof: As above, we have that

 $G_i \cong \mathbb{Z}_{p_i^{\beta_1}} \times \ldots \times \mathbb{Z}_{p_i^{\beta_l}}$ where β_1, \ldots, β_l are positive integers such that

 $\sum_{j=1}^{i} \beta_j = \alpha_i.$ Now since $0 \le \gamma_i \le \alpha_i$, we can find numbers $\delta_1, \ldots, \delta_l$ such that

$$\gamma_i = \sum_{j=1}^l \delta_j$$
, and $0 \le \delta_j \le \beta_j$. (This choice of numbers is not necessarily

unique). Then, $p_i^{\delta_j}|p_i^{\beta_j}$ for each $j=1,\ldots,l$. Hence, for each factor $\mathbb{Z}_{p_i^{\beta_j}}$, there exists a subgroup of order $p_i^{\delta_j}$, namely $\mathbb{Z}_{p_i^{\delta_j}}$ (using the fact that the converse of Lagrange's theorem is true for finite cyclic groups). Taking the direct product of each of these subgroups, we get a new subgroup G_i' of G_i :

$$G_i' \cong \mathbb{Z}_{p_i^{\delta_1}} \times \ldots \times \mathbb{Z}_{p_i^{\delta_l}}$$

The order of this subgroup is $p_i^{\delta_1} \times \ldots \times p_i^{\delta_l} = p_i^{\delta_1 + \ldots + \delta_l} = p_i^{\gamma_i}$. So, we have found a subgroup of G_i of order $p_i^{\gamma_i}$, as required. So, each factor G_i in the product $G = G_1 \times \ldots \times G_k$ has a subgroup G_i' of order $p_i^{\gamma_i}$. Therefore, G has a subgroup

$$G_1' \times G_2' \times \ldots \times G_k'$$

of order $p_1^{\gamma_i} \ldots p_k^{\gamma_k} = n$,

which completes the proof.

5)

Proof. Similar to problem 2, we first compute the prime factorization of 16

$$16 = 2^4$$

Then, by the Fundamental Theorem of Finitely Generated Abelian Groups, we have

Homework 9 Brendan Busey

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$$

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_8$$

$$G \cong \mathbb{Z}_4 \times \mathbb{Z}_4$$

$$G \cong \mathbb{Z}_{16}$$

Now, if we can rule out $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_8$, and \mathbb{Z}_{16} , as \mathbb{Z}_4 , \mathbb{Z}_8 , and \mathbb{Z}_{16} each have elements of order 2, but $a^2 = b^2$ in each case. However, in $\mathbb{Z}_4 \times \mathbb{Z}_4$, the order of (1,0) is 4 and $(1,0)^2 = (2,0)$, and for (0,1), the order is also 4. But, $(0,1)^2 = (0,2) \neq (2,0)$. Therefore, the isomorphism class of G is $\mathbb{Z}_4 \times \mathbb{Z}_4$.

Page 3