Math 101 HW 27

Jeff Carney

April 14, 2017

1

 $\mathbf{Q}:$ Let $f:(a,b)\to\mathbb{R}$ be uniformly continuous.

- (a) Prove that there exists a $p \in \mathbb{R}$ such that for any $\{x_n\} \subseteq (a,b)$ with $x_n \to a$, then $f(x_n) \to p$.
- (b) Let $g:[a,b)\to\mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{ll}p&\text{if }x=a\\f(x)&\text{if }x\in(a,b)\end{array}\right.$ Prove that g is continuous.
- (a) Let $\{x_n\} \subseteq (a,b)$ s.t. $x_n \to a$. Since $\{x_n\}$ converges we know that $\{x_n\}$ is Cauchy. Since f is uniformly continuous and $\{x_n\}$ is Cauchy, we know that $\{f(x_n)\}$ is Cauchy. Since $\{f(x_n)\}$ is Cauchy, we know $\exists p \in \mathbb{R} \text{ s.t. } f(x_n) \to p$. Let $\{y_n\} \subseteq (a,b)$ s.t. $y_n \to a$. Since $\{y_n\}$ converges, then $\{y_n\}$ is Cauchy. Since f is uniformly continuous we know that $\{f(y_n)\}$ is Cauchy. Since $\{f(y_n)\}$ is Cauchy we know that $\{f(y_n)\}$ converges. Now let $\{z_n\} \subseteq (a,b)$ s.t. $z_{2n} = x_n$ and $z_{2n-1} = x_n \ \forall n$. Since $\{x_n\}$ and $\{y_n\}$ are two subsequences of $\{z_n\}$ that span all of $\{z_n\}$ and they both converge to a then we know $\{z_n\}$ converges to a. Since $\{z_n\}$ converges we know $\{z_n\}$ is Cauchy and thus $\{f(z_n)\}$ is Cauchy. Since $\{f(z_n)\}$ is Cauchy it converges. We know that $\lim f(z_n) = \lim f(x_n) = p$. We also know that $\lim f(y_n) = \lim f(z_n) = p$. Since $\{y_n\}$ was an arbitrary sequence we know that $\exists p \in \mathbb{R}$ s.t. for any $\{x_n\} \subseteq (a,b)$ with $x_n \to a$ then $f(x_n) \to p$.

(b) Let $\{x_n\} \subseteq [a,b)$ s.t. $x_n \to a$. By homework 19 Q2, we know that $g(x_n) \to p$. Thus, g is continuous at a. Let $\varepsilon > 0$. Then $\exists \delta_f > 0$ s.t. if $x,y \in (a,b)$

and $|x-y| < \delta_f$, then $|g(x) - g(y)| = |f(x) - f(y)| < \varepsilon$. Since g is continuous at a, $\exists \delta_a > 0$ s.t. if $x \in [a,b)$ and $|x-a| < \delta_a$, then $|g(x) - g(a)| < \varepsilon$. Let $\delta = \min\{d_f, d_a\}$. Let $x, y \in [a,b)$ s.t. $|x-y| < \delta$. If x, y > a, then $|x-y| < \delta_f$, so $|g(x) - g(y)| = |f(x) - f(y)| < \varepsilon$. If WLOG y = a, then $|x-y| = |x-a| < \delta_a$, so $|g(x) - g(y)| < \varepsilon$. $\therefore g$ is uniformly continuous.

2

 \mathbf{Q} : Prove that every bounded infinite subset of \mathbb{R} has an accumulation point.

Let $A \subseteq \mathbb{R}$ be a bounded infinite set. Then $\exists \{x_n\} \subseteq A$ of distinct points. Since A is bounded we know $\{x_n\}$ is bounded and so $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$. Let $x \in \mathbb{R}$ s.t. $x_{n_k} \to x$. Since all terms of $\{x_{n_k}\}$ are distinct, there is at most one k s.t. $x_{n_k} = x$. Let $\{y_n\} = \{x_{n_k}\}$ if x is not one of the terms of $\{x_{n_k}\}$ or $\{y_n\} = \{x_{n_1}, x_{n_2}, ..., x_{n_{k-1}}, x_{n_{k+1}}, ...\}$ where $x_{n_k} = x$. Then $\{y_n\} \subseteq A - \{x\}$ of distinct points s.t. $y_n \to x$. By problem 3, x is an accumulation point of A.

3

Q: Let $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Prove that x is an accumulation point of A iff there exists a sequence $\{x_n\}$ of distinct points in $A - \{x\}$ that converges to x.

 (\Rightarrow)

Assume that x is an accumulation point of A. We know 1>0, so $\exists x_1 \in A$ s.t. $0<|x_1-x|<1$. Now $\forall n>1$, $\exists x_n \in A$ s.t. $0<|x_n-x|<\min\{\frac{1}{n},x_{n-1}\}$. Let $\{x_n\}$ be as above. Then $\forall n \in \mathbb{N} \ |x_n-x|< frac1n \Rightarrow x-\frac{1}{n}< x_n < x+\frac{1}{n}$ and so, by squeeze theorem, $x_n\to x$. Let $n,m\in\mathbb{N}$ and assume WLOG n>M. Then $|x_n-x|<|x_{n-1}-x|<\dots<|x_{m+1}-x|<|x_m-x|\Rightarrow x_n\neq x_m$. Thus $\{x_n\}$ is a sequence of distinct points, $\{x_n\}\subseteq A-\{x\}$ s.t. $x_n\to x$.

 (\Leftarrow)

Assume that there exists a sequence $\{x_n\}$ of distinct points in $A - \{x\}$ that

converges to x. Let $\varepsilon > 0$. Then $\exists N \in \mathbb{N}$ s.t. if n > N then $|x_n - x| < \varepsilon$. Let n > N. We know $0 < |x_n - x|$ because $\{x_n\}$ is a sequence of distinct points in $A - \{x\}$ and we know $|x_n - x| < \varepsilon$ because n > N. Thus x is an accumulation point of A.