实验题目: 拉格朗日 (Lagrange) 插值

```
实验题目: 拉格朗日 (Lagrange) 插值
    问题分析
     数学原理
       插值基函数
       Lagrange插值公式
     程序设计流程
       流程图
       代码
          函数实现
          交互脚本
     实验结果、结论与讨论
            输出结果:
            回答
          问题2
            输出结果
            回答
          问题4
            结果输出
            回答
```

问题分析

- 1. 利用拉格朗日插值算法,根据参考程序流程实现算法,利用多项式 $P_n(x)$ 来求f(x)的近似值。
- 2. 通过对具体实例的分析探索插值多项式次数对结果的影响
- 3. 通过对具体实例的分析探索插值区间大小对结果的影响
- 4. 理解插值问题的内插与外推的方法,对两者可靠性进行比较

数学原理

插值基函数

令插值基函数 $l_j(x)$ (j = 0, 1, 2, ..., n) 为如下的多项式:

$$l_j(x) = egin{cases} 0, & i
eq j \ 1, & i = j \end{cases}$$

Lagrange插值公式

显然存在某多项式

$$y(x) = \sum_{j=0}^{n} f(x_j)l_j(x) \tag{1}$$

满足插值条件, $l_i(x)$ 有 n 个零点 $x_0, x_1, x_2, \ldots, x_{i-1}, x_i + 1, \ldots, x_n$, 所以应当具有形式

$$l_j(x) = A_j(x-x_0)(x-x_1)\dots(x-x_{j-1})(x-x_{j+1})\dots(x-x_n),$$

结合 $l_i(x_i) = 1$ 可求得 A_i , 综合得

$$l_i(x) = \frac{(x - x_0)(x - x_1)\dots(x - x_{j-1})(x - x_{j+1})\dots(x - x_n)}{(x - x_0)(x - x_1)\dots(x - x_{j-1})(x - x_{j+1})\dots(x - x_n)}, \quad j = 0, 1, 2, \dots, n \quad (2)$$

```
(x_j-x_0)(x_j-x_1)\dots(x_j-x_{j-1})(x_j-x_{j+1})\dots(x_j-x_n)
```

其中式(1)称为Lagrange插值公式,式(2)称为 Lagrange 插值多项式,记作 $L_n(x)$

程序设计流程

流程图

代码

函数实现

```
1 | %-----file name: Lagrange_vec-----
   function v = lagrange_vec(x_in, y_in, u)
2
   n = length(x_in);
4
   v = zeros(size(u));
5
   for k = 1:n
       w = ones(size(u));
6
7
       for j = [1:k-1 k+1:n] %除去它自己不要乘
           w = (u-x_in(j))./(x_in(k)-x_in(j)).*w; %Lagrange多项式
8
9
       end
       v = v + w*y_in(k);
10
11
   end
```

```
1 | %-----file name: Lagrange_vec_interactive-----
2
   syms x;
 3
   format long;
   n = input('多项式的次数n: ');
   u = input('请输入待估值点序列u的值(例如:[1,2,3,4]): ');
   a = input('请输入区间下界a的值: ');
7
   b = input('请输入区间上界b的值: ');
8
   f = input('请输入函数f(x)的表达式(如1+x^2):');
   x = linspace(a,b,n);
10
   y = subs(f, symvar(f), x);
   lagrange_vec(x,y,u);
11
12
   ans = lagrange_vec(x,y,u);
13
   exact_value = subs(f,symvar(f),u);
14
   fprintf('\t\t\t结果表格\n');
15
   fprintf('-----
    -\n');
   fprintf('\t u \t f(u) \t\t exact \t\t error\n');
16
   fprintf('\t %2.3f \t %2.9f \t %2.9f\t %2.9f\n ',
17
    [u;ans;exact_value;exact_value-ans]);
18
```

实验结果、结论与讨论

问题1

拉格朗日插值多项式的次数n越大越好吗?

输出结果:

• 1.(1)
$$f(x) = \frac{1}{1+x^2}$$

```
结果表格(n=5)
     u f(u) exact error 0.750 0.905441810 0.640000000 -0.265441810
3
4
     1.750 0.525799901 0.246153846
5
                                    -0.279646054
     2.750 0.009553216 0.116788321
6
                                    0.107235105
7
      3.750 -0.356826094 0.066390041
                                   0.423216136
     4.750 -0.159544927 0.042440318 0.201985245
8
9
                 结果表格(n=10)
10
             f(u)
                          exact
11
        u
                                     error
     0.750 0.690717622 0.640000000 -0.050717622
12
     1.750 0.232998135 0.246153846 0.013155711
13
14
     2.750 0.112245498 0.116788321 0.004542823
15
      3.750 0.108400418
                       0.066390041
                                    -0.042010377
     4.750 -0.236036985 0.042440318
16
                                    0.278477303
17
18
                  结果表格(n=20)
19
                         exact
      u
20
             f(u)
                                     error
     21
```

23 2.750 0.128218767 0.116788321 -0.011430446 24 3.750 0.190261670 0.066390041 -0.123871629 25 4.750 6.415032061 0.042440318 -6.372591743	22	1.750	0.249055753	0.246153846	-0.002901907	
	23	2.750	0.128218767	0.116788321	-0.011430446	
25 4 750 6 415032061 0 042440318 -6 372591743	24	3.750	0.190261670	0.066390041	-0.123871629	
7.730 0.413032001 0.042440310 0.372331743	25	4.750	6.415032061	0.042440318	-6.372591743	

• 1.(2) $f(x) = e^x$

1		结果表格	(n=5)	
2				
3	u	f(u)	exact	error
4	-0.95	0.386293876	0.386741023	0.000447148
5	-0.05	0.951334528	0.951229425	-0.000105103
6	0.05	1.051164240	1.051271096	0.000106857
7	0.95	2.586322530	2.585709659	-0.000612871
8		结果表格	(n=10)	
9				
10	u	f(u)	exact	error
11	-0.95	0.386741027	0.386741023	-0.00000003
12	-0.05	0.951229425	0.951229425	-0.00000000
13	0.05	1.051271096	1.051271096	-0.00000000
14	0.95	2.585709663	2.585709659	-0.00000004
15	结果表格(n=20)			
16				
17	u	f(u)	exact	error
18	-0.95	0.386741023	0.386741023	0.00000000
19	-0.05	0.951229425	0.951229425	0.00000000
20	0.05	1.051271096	1.051271096	0.00000000
21	0.95	2.585709659	2.585709659	0.000000000

回答

不是,次数过高的话会出现Runge现象,使用<u>切比雪夫节点</u>代替等距点可以减小震荡,在这种情况下,随着多项式阶次的增加最大误差逐渐减小。这个现象表明高阶多项式通常不适合用于插值。使用分段多项式<u>样条</u>可以避免这个问题。如果要减小插值误差,那么可以增加构成样条的多项式的数目,而不必是增加多项式的阶次。

参考: 维基百科: 龙格现象

问题2

插值区间越小越好吗?

输出结果

• 2.(1)

1	结果表格(n=5)				
2					
3	u	f(u)	exact	error	
4	-0.95	0.513552500	0.525624179	0.012071679	
5	-0.05	0.997752500	0.997506234	-0.000246266	
6	0.05	0.997752500	0.997506234	-0.000246266	
7	0.95	0.513552500	0.525624179	0.012071679	
9	结果表格(n=10)				
)					

4.0
12 -0.95 0.524273975 0.525624179 0.001350204
13 -0.05 0.997464702 0.997506234 0.000041533
14 0.05 0.997464702 0.997506234 0.000041533
15 0.95 0.524273975 0.525624179 0.001350204
16
17 结果表格(n=20)
18
19 u f(u) exact error
20 -0.95 0.525631202 0.525624179 -0.000007023
21 -0.05 0.997506234 0.997506234 0.000000000
22 0.05 0.997506234 0.997506234 0.000000000
23 0.95 0.525631202 0.525624179 -0.000007023

• 2.(2)

1	结果表格(n=5)			
2				
3	u	f(u)	exact	error
4	-4.75	-1.932149264	0.008651695	1.940800959
5	-0.25	1.427537021	0.778800783	-0.648736238
6	0.25	0.588185464	1.284025417	0.695839953
7	4.75	123.714558835	115.584284527	-8.130274308
8		结果表格(n=10)	
9				
10	u	f(u)	exact	error
11	-4.75	0.042515959	0.008651695	-0.033864263
12	-0.25	0.779562066	0.778800783	-0.000761282
13	0.25	1.284820075	1.284025417	-0.000794659
14	4.75	115.663039200	115.584284527	-0.078754673
15	结果表格(n=20)			
16				
17	u	f(u)	exact	error
18	-4.75		0.008651695	
19	-0.25	0.778800783	0.778800783	0.000000000
20	0.25	1.284025417	1.284025417	0.000000000
21	4.75	115.584284542	115.584284527	-0.000000014
			,	

回答

不一定,虽然从精度上考虑是区间变窄具有一定的合理性,但是过于密集时舍入误差被放大,而且计算量成本也大幅增加,但是却对精度的提升不大。实际计算时应当合理考虑,取合适的区间长度进行插值。

问题4

考虑拉格朗日插值问题,内插比外推更可靠吗?

结果输出

1		(1) 结果表格	x_in = [1,4,9]	
3	u	f(u)	exact	error
4	5.00	2.266666667	2.236067977	-0.030598689
5	50.00	-20.233333333	7.071067812	27.304401145
6	115.00	-171.900000000	10.723805295	182.623805295

7	185.00	-492.733333333	13.601470509	506.334803842	
8					
9		(2) 结果表格	$x_{in} = [36,49,6]$	54]	
10					
11	u	f(u)	exact	error	
12			2.236067977		
13	50.00	7.071794872	7.071067812	-0.000727060	
14	115.00	10.167032967	10.723805295	0.556772328	
15	185.00	10.038827839	13.601470509	3.562642670	
16					
17		(3) 结果表格	$x_{in} = [100, 115]$	5,185]	
18					
19			exact		
20	5.00	4.537585505	2.236067977	-2.301517527	
21	50.00	7.314155736	7.071067812	-0.243087924	
22	115.00	10.723805295	10.723805295	0.00000000	
23	185.00	13.601470509	13.601470509	0.00000000	
24					
25					
26	(4) 结果表格 x_in = [169,196,225]				
27					
28			exact		
29	5.00	5.497172049	2.236067977	-3.261104071	
30	50.00	7.800127714	7.071067812	-0.729059902	
31	115.00	10.800492611	10.723805295	-0.076687316	
32	185.00	13.600620325	13.601470509	0.000850184	

回答

不一定,取决于具体函数的形式,但通常来说连续函数内插的可靠程度更高。外推相当于根据已知点推测未知点的信息。而我们的已知区间内是不含有区间外的信息的。从上述结果也可以看出,当需要推测的点落在 x_in 的内部时,error 的值就会非常的小,精度明显比外推情况更高