[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

Amplificadores y Fuentes de Corriente

- 1. Cálculo de parámetros de un Amplificador Emisor Común
- 2. Cálculo de parámetros de un Amplificador Source Común
- 3. Fuente de Corriente Espejo Simple.

Una fuente de corriente en espejo está implementada con 2 MOSFET canal P con los siguientes paráemtros: $\mu C'_{OX} = 400 \ \mu A/V^2$; $(W/L)_1 = 100$; $(W/L)_2 = 125$; $V_T = -0.8 \ V$; $\lambda = 0.05 \ V^{-1}$.

La tensión de alimentación de la misma es $V_{DD} = 5 \text{ V}$, y la corriente de referencia es $I_{RFF} = 800 \mu\text{A}$.

Determinar el valor de la corriente de salida (I_{OUT}) y el rango de tensión de salida de funcionamiento del circuito como fuente de corriente.

Antes de empezar... ¿Cómo funciona esta fuente de corriente?

Antes de empezar... ¿Cómo funciona esta fuente de corriente?

Resolvamos la referencia de tensión...

Datos $\mu C'_{OX} = 400 \mu A/V^2$ $(W/L)_1 = 100; (W/L)_2 = 125$ $V_T = -0.8 V; λ = 0.05 V^{-1}$ $V_{DD} = 5 V; I_{RFF} = 800 \mu A$

Se trata de un transistor conectado en modo diodo al que se le fuerza una corriente I_{REF}.

Modo diodo: $V_G = V_D \rightarrow V_{GS} = V_{DS} \rightarrow V_{DS} < V_{GS} - V_T siempre$

- Si I_D = 0 → Corte
- Si I_D ≠ 0 → Saturación

Resolviendo el nodo de Drain:

•
$$I_D + I_G + I_{RFF} = 0 \rightarrow I_D = -I_{RFF} \neq 0 \rightarrow Saturación$$

Despreciando el efecto de modulación:

$$V_{GS} = V_T - \sqrt{\frac{I_{REF}}{\mu C'_{OX}} \left(\frac{L}{W}\right)_1} = -1 \text{ V} \quad \Rightarrow \quad V_{REF} = V_{DD} + V_{GS} = 5 \text{ V} - 1 \text{ V} = 4 \text{ V}$$

¿Cuál es la corriente de salida?

$\frac{\text{Referencia}}{V_{GS1}} = -1 \text{ V}$

$$V_{RFF} = 4 V$$

<u>Datos</u>

$$\mu C'_{OX} = 400 \,\mu A/V^2$$
 $(W/L)_1 = 100; (W/L)_2 = 125$
 $V_T = -0.8 \,V; \, \lambda = 0.05 \,V^{-1}$
 $V_{DD} = 5 \,V; \, I_{REF} = 800 \,\mu A$

Es **fundamental** notar que
$$V_{GS1} = V_{GS2}$$

Transistores iguales con mismas tensiones, tienen mismas corrientes

M1 y M2 sólo difieren en la geometría (W/L)

$$\frac{I_{D1}}{(W/L)_1} = \frac{I_{D2}}{(W/L)_2} = -\frac{\mu C'_{OX}}{2} (V_{GS} - V_T)^2 = -8 \mu A$$

$$I_{D2} = (W/L)_2 \times \frac{I_{D1}}{(W/L)_1} = -125 \times 8 \ \mu \text{ A} = -1 \text{ mA}$$

Pero ojo que...

•
$$I_{OUT} = -I_{D2}$$

¿Cuál es el rango de tensión de salida?

$\frac{\text{Referencia}}{V_{GS1}} = -1 V$ $V_{REF} = 4 V$ $I_{OUT} = 1 \text{ mA}$

<u>Datos</u> 2' = 400 μΑ

 $\mu C'_{OX} = 400 \,\mu A/V^2$ $(W/L)_1 = 100; (W/L)_2 = 125$ $V_T = -0.8 \,V; \, \lambda = 0.05 \,V^{-1}$ $V_{DD} = 5 \,V; \, I_{RFF} = 800 \,\mu A$

Para que la copia de corriente funcione, M₂ debe trabajar en régimen de saturación

$$V_{DS2} = V_{OUT} - V_{DD} < V_{DS_{sat}} = V_{GS} - V_{T} = -0.2 \text{ V}$$

 $\Rightarrow V_{OUT} < V_{DD} + V_{DS_{sat}} = 5 \text{ V} - 0.2 \text{ V} = 4.8 \text{ V}$

En este caso no existe un límite inferior impuesto por ${\rm M_2}$

$$0 \le V_{OUT} < 4.8 \text{ V}$$

Si la carga fuese una R, su valor máximo sería

$$R < \frac{V_{OUT, max}}{I_{OUT}} = \frac{4.8 \text{ V}}{1 \text{ mA}} = 4.8 \text{ k}\Omega$$

Bonus Track I: ¿Cómo afecta el efecto de modulación?

 $\begin{array}{c} \underline{\text{Datos}} \\ \mu\text{C'}_{\text{OX}} = 400 \ \mu\text{A/V}^2 \\ \left(\text{W/L}\right)_1 = 100; \left(\text{W/L}\right)_2 = 125 \\ \text{V}_{\text{T}} = -0.8 \ \text{V}; \ \lambda = 0.05 \ \text{V}^{-1} \\ \text{V}_{\text{DD}} = 5 \ \text{V}; \ \text{I}_{\text{RFF}} = 800 \ \mu\text{A} \end{array}$

Bonus Track II: ¿Cómo implementar I_{REF}?

La forma más sencilla es reemplazar la fuente por una resistencia.

(aunque existen muchas formas distintas)

$$V_R = V_{REF} = R_{REF} \cdot I_{REF} \Rightarrow R_{REF} = \frac{V_{REF}}{I_{REF}} = \frac{4 \text{ V}}{800 \mu \text{ A}} = 5 \text{ k}\Omega$$

Si no conocemos I_{REF}, hay que resolver la malla de refernecia

$$\begin{aligned} V_{DD} + V_{GS} - V_{REF} &= 0 \\ V_{DD} + V_{GS} - I_{REF} \cdot R_{REF} &= 0 \\ V_{DD} + V_{GS} + I_{D} \cdot R_{REF} &= 0 \\ I_{D} &= -\frac{\mu C'_{OX}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2} \end{aligned}$$

Bonus Track III: ¿Puedo hacerlo con TBJ?

•
$$V_{BE1} = V_{BE2} \rightarrow J_{C1} = J_{C2}$$

•
$$I_c = A J_c$$

•
$$I_{REF} + I_{C1} + I_{B1} + I_{B2} = 0$$

• En MAD:
$$I_C = \beta I_B$$

$$I_{REF} + I_{C1} + I_{C1}/\beta + I_{C2}/\beta = 0$$

 $I_{C2} = A_2 J_C = A_2 I_{C1}/A_1$

$$I_{REF} + I_{C1} \left(1 + \frac{1}{\beta} \left(1 + \frac{A_2}{A_1} \right) \right) = 0 \Rightarrow I_{C1} \approx I_{REF}$$