系统管理指南:高级管理

Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A.

文件号码 819-6951-12 2008 年 4 月 版权所有 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. 保留所有权利。

对于本文档中介绍的产品,Sun Microsystems, Inc. 对其所涉及的技术拥有相关的知识产权。需特别指出的是(但不局限于此),这些知识产权可能包含一项或多项美国专利,或在美国和其他国家/地区申请的待批专利。

美国政府权利-商业软件。政府用户应遵循 Sun Microsystems, Inc. 的标准许可协议,以及 FAR(Federal Acquisition Regulations,即"联邦政府采购法规")的适用条款及其补充条款。

本发行版可能包含由第三方开发的内容。

本产品的某些部分可能是从 Berkeley BSD 系统衍生出来的,并获得了加利福尼亚大学的许可。UNIX 是 X/Open Company, Ltd. 在美国和其他国家/地区种家许可的注册商标。

Sun、Sun Microsystems、Sun 徽标、Solaris 徽标、Java 咖啡杯徽标、docs.sun.com、Java、OpenSolaris 和 Solaris 是 Sun Microsystems, Inc. 在美国和其他国家/地区的商标或注册商标。所有 SPARC 商标的使用均已获得许可,它们是 SPARC International Inc. 在美国和其他国家/地区的商标或注册商标。标有 SPARC 商标的产品均基于由 Sun Microsystems, Inc. 开发的体系结构。Adobe 是 Adobe Systems, Incorporated 的注册商标。PostScript 是 Adobe Systems, Incorporated 的商标或注册商标,后者可能在某些司法管辖区域注册。

OPEN LOOK 和 Sun^{TM} 图形用户界面是 Sun Microsystems, Inc. 为其用户和许可证持有者开发的。Sun 感谢 Xerox 在研究和开发可视或图形用户界面的概念方面为计算机行业所做的开拓性贡献。Sun 已从 Xerox 获得了对 Xerox 图形用户界面的非独占性许可证,该许可证还适用于实现 OPEN LOOK GUI 和在其他方面遵守 Sun 书面许可协议的 Sun 许可证持有者。

本出版物所介绍的产品以及所包含的信息受美国出口控制法制约,并应遵守其他国家/地区的进出口法律。严禁将本产品直接或间接地用于核设施、导弹、生化武器或海上核设施,也不能直接或间接地出口给核设施、导弹、生化武器或海上核设施的最终用户。严禁出口或转口到美国禁运的国家/地区以及美国禁止出口清单中所包含的实体,包括但不限于被禁止的个人以及特别指定的国家/地区的公民。

本文档按"原样"提供,对于所有明示或默示的条件、陈述和担保,包括对适销性、适用性或非侵权性的默示保证,均不承担任何责任,除非此免责 声明的适用范围在法律上无效。

目录

	前言	15
1	管理终端和调制解调器(概述)	19
	管理终端和调制解调器方面的新增功能	19
	SPARC: 相关控制台	19
	SPARC: 对如何设置控制台的 \$TERM 值的更改	20
	系统控制台上由 SMF 管理的 ttymon 调用	20
	终端、调制解调器、端口和服务	20
	终端描述	21
	调制解调器描述	21
	端口描述	21
	服务描述	22
	端口监视器	22
	终端和调制解调器的管理工具	22
	串行端口工具	23
	服务访问工具	23
2	设置终端和调制解调器(任务)	25
	设置终端和调制解调器(任务图)	25
	使用串行端口工具设置终端和调制解调器(概述)	26
	设置终端	26
	设置调制解调器	27
	如何设置终端、调制解调器和初始化端口(任务)	28
	▼如何设置终端	28
	▼如何设置调制解调器	29
	▼如何初始化端口	30
	解决终端和调制解调器问题	31

3	使用服务访问工具管理串行端口(任务)	33
	管理串行端口(任务图)	34
	使用服务访问工具	34
	整体 SAF 管理 (sacadm)	35
	服务访问控制器(SAC程序)	35
	SAC 初始化进程	36
	端口监视器服务管理 (pmadm)	36
	ttymon端口监视器	36
	端口初始化进程	37
	双向服务	
	TTY 监视器和网络侦听器端口监视器	37
	TTY 端口监视器 (ttymon)	38
	ttymon 和控制台端口	38
	特定于ttymon 的管理命令 (ttyadm)	38
	网络侦听器服务(listen)	39
	特殊 listen 专用管理命令 (nlsadmin)	39
	管理 ttymon 端口监视器	40
	▼如何设置 ttymon 控制台终端类型	40
	▼如何在ttymon控制台终端上设置波特率速度	40
	▼如何添加 ttymon端口监视器	41
	▼如何查看 ttymon端口监视器状态	42
	▼如何停止ttymon端口监视器	43
	▼如何启动ttymon端口监视器	43
	▼如何禁用 ttymon端口监视器	43
	▼如何启用 ttymon端口监视器	44
	▼如何删除 ttymon端口监视器	
	管理 ttymon 服务(任务图)	44
	管理 ttymon 服务	45
	▼如何添加服务	
	▼ 如何查看 TTY 端口服务的状态	46
	▼如何启用端口监视器服务	48
	▼如何禁用端口监视器服务	48
	服务访问工具管理(参考)	
	与 SAF 关联的文件	48
	/etc/saf/_sactab 文件	49
	/etc/saf/pmtab/ pmtab 文件	49

	服务状态	51
	端口监视器状态	51
	端口状态	52
4	管理系统资源(概述)	53
	系统资源管理方面的新增功能	
	用于显示产品名称的新增 prtconf 选项	53
	识别芯片多线程功能的新增 psrinfo 命令选项	
	新增 localeadm 命令	
	管理系统资源(指南)	
5	显示和更改系统信息(任务)	57
	显示系统信息(任务图)	
	显示系统信息	
	▼ 如何确定系统启用了 32 位还是 64 位 Solaris 功能	
	▼如何显示 Solaris 发行版信息	
	▼如何显示常规系统信息	
	▼ 如何显示系统的主机 ID 号	
	▼如何显示系统的产品名称	
	▼如何显示系统的已安装内存	
	▼ 如何显示日期和时间	
	▼如何显示系统的物理处理器类型	
	▼如何显示系统的逻辑处理器类型	64
	▼如何显示系统中安装的语言环境	65
	▼如何确定系统中是否安装了语言环境	65
	更改系统信息(任务图)	66
	更改系统信息	66
	▼如何手动设置系统的日期和时间	67
	▼如何设置每日消息	67
	▼如何更改系统的主机名	
	▼如何向系统中添加语言环境	
	▼如何从系统中删除语言环境	

6	管理磁盘使用(任务)	71
	管理磁盘使用(任务图)	71
	显示有关文件和磁盘空间的信息	
	▼如何显示有关文件和磁盘空间的信息	72
	检查文件大小	
	▼如何显示文件大小	
	▼如何查找大文件	
	▼如何查找超过指定大小限制的文件	77
	检查目录大小	
	▼如何显示目录、子目录和文件的大小	
	▼如何显示本地 UFS 文件系统的用户拥有权	
	查找并删除旧文件或非活动文件	80
	▼如何列出最新文件	80
	▼如何查找并删除旧文件或非活动文件	81
	▼如何清除临时目录	82
	▼如何查找并删除 core 文件	
	▼如何删除故障转储文件	83
7	管理配额(任务)	85
•	什么是配额?	
	使用配额	
	设置配额的软限制和硬限制	
	磁盘块与文件限制之间的区别	
	设置配额	
	设置配额的原则	
	设置配额(任务图)	
	▼如何为文件系统配置配额	
	▼ 如何为用户设置配额	
	▼ 如何为多个用户设置配额	
	▼ 如何检查配额一致性	
	▼ 如何启用配额	
	维护配额(任务图)	
	<u> </u>	
	型	
	▼如何检查文件系统中的配额	0.2

	更改和删除配额	94
	▼如何更改软限制缺省值	95
	▼如何为用户更改配额	96
	▼如何为用户禁用配额	97
	▼ 如何禁用配额	98
8	调度系统任务(任务)	99
	创建和编辑 crontab 文件(任务图)	99
	自动执行系统任务的方法	100
	用于调度重复性作业:crontab	100
	用于调度单个作业: at	101
	调度重复性系统任务 (cron)	101
	在 crontab 文件内	
	cron 守护进程处理调度的方法	
	crontab 文件项的语法	103
	创建和编辑 crontab 文件	
	▼ 如何创建或编辑 crontab 文件	104
	▼ 如何验证 crontab 文件是否存在	
	显示 crontab 文件	
	▼如何显示 crontab 文件	
	删除 crontab 文件	107
	▼ 如何删除 crontab 文件	
	控制对 crontab 命令的访问	108
	▼ 如何拒绝 crontab 命令访问	109
	▼如何将 crontab 命令访问限制于指定的用户	109
	如何验证受限的 crontab 命令访问	110
	使用 at 命令(任务图)	111
	调度单个系统任务 (at)	112
	at 命令的说明	112
	控制对 at 命令的访问	112
	▼ 如何创建 at 作业	113
	▼ 如何显示 at 队列	114
	▼如何验证 at 作业	114
	▼ 如何显示 at 作业	114
	▼如何删除 at 作业	115

	▼ 如何拒绝对 at 命令的访问	115
	▼如何验证 at 命令访问已被拒绝	116
9	管理系统记帐(任务)	117
	系统记帐方面的新增功能	117
	Solaris 进程记帐和统计信息改进	117
	什么是系统记帐?	118
	系统记帐的工作原理	118
	系统记帐组件	118
	系统记帐(任务图)	122
	设置系统记帐	122
	▼如何设置系统记帐	123
	对用户计费	125
	▼如何对用户计费	125
	维护记帐信息	
	修复损坏的文件并更正 wtmpx 错误	126
	▼ 如何修复损坏的 wtmpx 文件	126
	更正 tacct 错误	126
	▼ 如何修复 tacct 错误	127
	重新启动 runacct 脚本	
	▼ 如何重新启动 runacct 脚本	128
	停止和禁用系统记帐	128
	▼如何暂时停止系统记帐	128
	▼如何永久禁用系统记帐	129
10	系统记帐(参考)	131
	runacct 脚本	131
	每日记帐报告	133
	每日报告	134
	每日使用情况报告	135
	每日命令摘要	136
	每月命令摘要	137
	上次登录报告	138
	使用 acctcom 检查 pacct 文件	138
	系统记帐文件	140

	runacct 脚本生成的文件	142
11	管理系统性能(概述)	145
	管理系统性能方面的新增功能	
	增强的 pfiles 工具	
	CPU 性能计数器	
	有关系统性能任务的参考信息	
	系统性能和系统资源	146
	进程和系统性能	147
	关于监视系统性能	148
	监视工具	148
12	管理系统进程(任务)	
	管理系统进程(任务图)	
	用于管理系统进程的命令	
	使用 ps 命令	
	使用 /proc 文件系统和命令	
	▼如何列出进程	
	▼ 如何列出近程▼ 如何显示有关进程的信息	
	▼ 如何控制进程	
	▼ 知門空間が程	
	▼ 如何终止进程 (pkitt)	
	▼ 如何终止进程 (kill)	
	调试进程(pargs、preap)	
	管理进程类信息(任务图)	
	管理进程类信息	
	更改进程的调度优先级 (priocntl)	
	▼如何显示有关进程类的基本信息 (priocntl)	
	▼如何显示进程的全局优先级	
	▼如何指定进程优先级 (priocntl)	
	▼如何更改分时进程的调度参数 (priocntl)	
	▼ 如何更改进程的类 (priocntl)	
	更改分时进程的优先级 (nice)	166
	▼如何更改进程的优先级 (nice)	

	系统进程问题的疑难解答	167
13	监视系统性能(任务)	169
	显示系统性能信息(任务图)	
	显示虚拟内存统计信息 (vmstat)	
	▼如何显示虚拟内存统计信息 (vmstat)	
	▼如何显示系统事件信息 (vmstat -s)	
	▼如何显示交换统计信息 (vmstat -S)	
	▼如何显示每台设备的中断次数 (vmstat -i)	173
	显示磁盘使用率信息 (iostat)	173
	▼如何显示磁盘使用率信息(iostat)	173
	▼如何显示扩展磁盘统计信息 (iostat -xtc)	175
	显示磁盘空间统计信息 (df)	175
	▼如何显示磁盘空间信息 (df -k)	176
	监视系统活动(任务图)	177
	监视系统活动 (sar)	178
	▼如何检查文件访问 (sar -a)	178
	▼如何检查缓冲区活动 (sar -b)	179
	▼如何检查系统调用统计信息 (sar -c)	180
	▼如何检查磁盘活动 (sar -d)	182
	▼如何检查页出和内存 (sar -g)	
	检查内核内存分配	
	▼如何检查内核内存分配 (sar -k)	
	▼如何检查进程间通信 (sar -m)	186
	▼如何检查页入活动 (sar -p)	
	▼如何检查队列活动 (sar -q)	
	▼ 如何检查未使用的内存 (sar - r)	
	▼ 如何检查 CPU 使用率 (sar -u)	
	▼如何检查系统表状态 (sar -v)	
	▼如何检查交换活动 (sar -w)	
	▼如何检查终端活动 (sar -y)	
	▼如何检查总体系统性能 (sar -A)	
	自动收集系统活动数据 (sar)	
	引导时运行 sadc 命令	
	使用 sa1 脚本定期运行 sadc 命令	196

	使用 sa2 Shell 脚本生成报告	196
	设置自动数据收集 (sar)	197
	▼如何设置自动数据收集	198
14	软件问题疑难解答(概述)	199
	疑难解答方面的新增内容	199
	Common Agent Container 问题	199
	x86: SMF 引导归档文件服务可能在系统重新引导期间失败	200
	动态跟踪功能	200
	kmdb 取代 kadb 作为标准的 Solaris 内核调试程序	200
	有关软件疑难解答任务的参考信息	
	用于系统和软件问题疑难解答的其他资源	201
	系统崩溃疑难解答	201
	系统崩溃时应执行的操作	201
	收集疑难解答数据	202
	系统崩溃疑难解答核对表	203
15	管理系统消息	205
	查看系统消息	205
	▼ 如何查看系统消息	206
	系统日志轮转	207
	自定义系统消息日志	208
	▼如何自定义系统消息日志	209
	启用远程控制台消息传送	210
	在运行级转换期间使用辅助控制台消息传递	210
	在交互式登录会话期间使用 consadm 命令	211
	▼如何启用辅助(远程)控制台	
	▼如何显示辅助控制台的列表	212
	▼如何在系统重新引导期间启用辅助(远程)控制台	
	▼如何禁用辅助(远程)控制台	213
16	管理核心转储文件(任务)	215
	管理核心转储文件(任务图)	215
	管理核心转储文件概述	216

	配置核心转储文件路径	216
	扩展的核心转储文件名	216
	设置核心转储文件名称模式	
	启用 setuid 程序以生成核心转储文件	
	如何显示当前的核心转储配置	218
	▼如何设置核心转储文件名称模式	
	▼如何启用每进程核心转储文件路径	219
	▼如何启用全局核心转储文件路径	219
	核心转储文件问题疑难解答	220
	检查核心转储文件	220
17	管理系统故障转储信息(任务)	221
	管理系统故障转储信息(任务图)	221
	系统崩溃(概述)	
	x86: GRUB 引导环境中的系统崩溃	
	系统故障转储文件	222
	保存故障转储	222
	dumpadm 命令	
	dumpadm 命令的工作原理	
	转储设备和卷管理器	
	管理系统故障转储信息	
	▼如何显示当前的故障转储配置	
	▼如何修改故障转储配置	
	▼如何检查故障转储	
	▼如何从完整的故障转储目录中恢复(可选)	
	▼如何禁用或启用故障转储的保存	227
18	各种软件问题的疑难解答(任务)	
	重新引导失败时应执行的操作	
	忘记超级用户口令时应执行的操作	
	x86: SMF 引导归档文件服务在系统重新引导期间失败时应执行的操作	
	系统挂起时应执行的操作	
	文件系统已满时应执行的操作	
	由于创建了大文件或目录导致文件系统已满	236
	由于系统内存不足导致 TMPFS 文件系统变满	236

	复制或恢复后文件 ACL 丢失时应执行的操作	236
	备份问题疑难解答	236
	备份文件系统后根(/)文件系统变满	236
	确保备份和恢复命令相匹配	237
	检查以确保当前目录正确	237
	交互命令	237
	Solaris OS中 Common Agent Container 问题的疑难解答	238
	端口号冲突	238
	▼如何检查端口号	238
	超级用户口令的安全性被破坏	239
	▼如何为 Solaris OS 生成安全密钥	239
19	文件访问问题疑难解答(任务)	241
	解决搜索路径的问题(Command not found)	241
	▼如何诊断和更正搜索路径问题	242
	解决文件访问问题	243
	更改文件和组的拥有权	243
	识别网络访问问题	244
20	解决 UFS 文件系统不一致问题(任务)	245
	新的 fsck 错误消息	245
	fsck 错误消息	246
	一般 fsck 错误消息	247
	初始化阶段的 fsck 消息	249
	阶段1: 检查块和大小消息	251
	阶段 1B: 重新扫描更多 DUPS 消息	255
	Solaris 10: 阶段 1B: 重新扫描更多 DUPS 消息	256
	阶段 2: 检查路径名消息	256
	阶段 3: 检查连通性消息	262
	阶段 4: 检查引用计数消息	265
	阶段 5: 检查柱面组消息	268
	Solaris 10: 阶段 5: 检查柱面组消息	269
	fsck 摘要消息	270
		270

21	软件包问题疑难解答(任务)	273
	软件包符号链接问题疑难解答	273
	特定软件包安装错误	274
	一般软件包安装问题	274
	索引	2.75

前言

《系统管理指南:高级管理》是介绍 Solaris™ 系统管理信息重要内容的一套书中的一本。该指南包含基于 SPARC* 和基于 x86 的系统的信息。

本书假设您已经安装了 SunOS™ 5.10 操作系统。同时假设您已经设置了任何计划使用的网络软件。SunOS 5.10 操作系统属于 Solaris 10 产品系列,它还具有许多功能,其中包括 GNOME 桌面环境。SunOS 5.10 操作系统与 AT&T 的 System V, Release 4 操作系统兼容。

对于 Solaris 10 发行版,系统管理员感兴趣的新增功能已在相应各章的名为"...的新增功能"的各节中加以介绍。

注-此 Solaris 发行版支持使用以下 SPARC 和 x86 系列处理器体系结构的系统: UltraSPARC*、SPARC64、AMD64、Pentium 和 Xeon EM64T。支持的系统可以在http://www.sun.com/bigadmin/hcl 上的 Solaris OS: Hardware Compatibility Lists 中找到。本文档列举了在不同类型的平台上进行实现时的所有差别。

在本文档中,这些与 x86 相关的术语表示以下含义:

- "x86" 泛指 64 位和 32 位的 x86 兼容产品系列。
- "x64" 指出了有关 AMD64 或 EM64T 系统的特定 64 位信息。
- "32 位 x86" 指出了有关基于 x86 的系统的特定 32 位信息。

若想了解本发行版支持哪些系统,请参见 Solaris 10 硬件兼容性列表。

目标读者

本书适用于负责管理一个或多个运行 Solaris 10 发行版的系统的所有用户。要使用本书,您应当具备 1 到 2 年的 UNIX* 系统管理经验。参加 UNIX 系统管理培训课程可能会对您有所帮助。

系统管理系列书籍的结构

下面是系统管理指南系列书籍中各本书包含的主题列表。

书名	主题
《系统管理指南:基本管理》	用户帐户和组、服务器和客户机支持、关闭和启动系统、管 理服务以及管理软件(软件包和修补程序)
《系统管理指南:高级管理》	终端和调制解调器、系统资源(磁盘配额、记帐和 crontab)、系统进程以及 Solaris 软件问题疑难解答
《系统管理指南:设备和文件系统》	可移除介质、磁盘和设备、文件系统以及备份和还原数据
《系统管理指南: IP 服务》	TCP/IP 网络管理、IPv4 和 IPv6 地址管理、DHCP(动态主机配置协议)、Ipsec(Internet 协议安全)、IKE(Internet密钥交换)、Solaris IP 过滤器、移动 IP、IP 网络多路径 (IP network multipathing, IPMP) 以及 IPQoS
《系统管理指南:名称和目录服务(DNS、NIS 和 LDAP) 》	DNS、NIS 和 LDAP 命名和目录服务,包括从 NIS 转换到 LDAP 以及从 NIS+ 转换到 LDAP
$\langle\!\langle System\ Administration\ Guide:$ Naming and Directory Services (NIS+) $\rangle\!\rangle$	NIS+命名和目录服务
《系统管理指南:网络服务》	Web 高速缓存服务器、与时间相关的服务、网络文件系统 (NFS 和 Autofs)、邮件、SLP(服务定位协议)和 PPP (点对点协议)
$\langle\!\langle System\ Administration\ Guide: Solaris\ Printing\rangle\!\rangle$	Solaris 打印主题和任务,使用服务、工具、协议和技术来设置及管理打印服务和打印机
《系统管理指南:安全性服务》	审计、设备管理、文件安全、BART(基本审计和报告工具)、Kerberos 服务、PAM(可插拔验证模块)、Solaris 加密框架、权限、RBAC(基于角色的存取控制)、SASL(简单身份认证和安全层)和Solaris 安全 Shell
《系统管理指南:Solaris Containers-资源管理和 Solaris Zones》	资源管理主题项目和任务、扩展记帐、资源控制、公平份额调度器 (fair share scheduler, FSS)、使用资源上限设置守护进程 (rcapd) 的物理内存控制,以及资源池;使用 Solaris Zones 软件分区技术和 Lx 标记区域的虚拟功能
《Solaris ZFS 管理指南》	ZFS(Zettabyte 文件系统)存储工具以及文件系统的创建和管理、快照、克隆、备份、使用访问控制列表 (Access Control List, ACL) 保护 ZFS 文件、在安装区域的 Solaris 系统中使用 ZFS、仿真卷以及疑难解答和数据恢复
$\langle\!\langle SolarisTrustedExtensionsAdministrator \\ `sProcedures \\ \rangle\!\rangle$	介绍如何管理 Solaris Trusted Extensions 系统。
《Solaris Trusted Extensions Configuration Guide》	从 Solaris 10 5/08 发行版开始,介绍如何规划、启用及初始 配置 Solaris Trusted Extensions。

相关的第三方 Web 站点引用

注-Sun 对本文档中提到的第三方 Web 站点的可用性不承担任何责任。对于此类站点或资源中的(或通过它们获得的)任何内容、广告、产品或其他资料,Sun 并不表示认可,也不承担任何责任。对于因使用或依靠此类站点或资源中的(或通过它们获得的)任何内容、产品或服务而造成的或连带产生的实际或名义损坏或损失,Sun 概不负责,也不承担任何责任。

文档、支持和培训

Sun Web 站点提供有关以下附加资源的信息:

- 文档(http://www.sun.com/documentation/)
- 支持(http://www.sun.com/support/)
- 培训(http://www.sun.com/training/)

印刷约定

下表介绍了本书中的印刷约定。

表P-1 印刷约定

字体或符号	含义	示例
AaBbCc123	命令、文件和目录的名称; 计算机屏幕输出	编辑.login文件。
		使用 ls -a 列出所有文件。
		machine_name% you have mail.
AaBbCc123	用户键入的内容,与计算机屏幕输出的显示	machine_name% su
	不同	Password:
aabbcc123	要使用实名或值替换的命令行占位符	删除文件的命令为 rm filename。
AaBbCc123	保留未译的新词或术语以及要强调的词	这些称为 Class 选项。
		注意 :有些强调的项目在联机时以粗体显示。
新词术语强调	新词或术语以及要强调的词	高速缓存 是存储在本地的副本。
		请 勿 保存文件。
《书名》	书名	阅读《用户指南》的第6章。

命令中的shell提示符示例

下表列出了 C shell、Bourne shell 和 Korn shell 的缺省 UNIX 系统提示符和超级用户提示符。

表P-2 shell提示符

shell	提示符
C shell 提示符	machine_name%
C shell 超级用户提示符	machine_name#
Bourne shell 和 Korn shell 提示符	\$
Bourne shell 和 Korn shell 超级用户提示符	#

一般约定

请注意本书中使用的以下约定。

- 执行步骤或使用示例时,请确保完全按照括号中所示键入双引号 (")、左单引号 (') 和右单引号 (')。
- 在某些键盘上,回车键被标记为 Enter。
- 已假设根路径包括 /sbin、/usr/sbin、/usr/bin 和 /etc 目录,因此,对于本书中的步骤,在显示这些目录中的命令时不带绝对路径名。对于那些使用其他不太常见目录中命令的步骤,在示例中会显示其绝对路径。
- 本书中的示例涉及的是基本 SunOS 5.10 软件安装,其中未安装二进制兼容性软件包,路径中也不带 /usr/ucb。

注意 – 如果搜索路径中包含 /usr/ucb,该目录应当始终位于搜索路径的末尾。除格式和选项之外,/usr/ucb 中类似 ps 或 df 的命令与 SunOS 5.10 命令相同。

管理终端和调制解调器(概述)

本章提供管理终端和调制解调器的概述信息。

以下是本章中概述信息的列表:

- 第19页中的"管理终端和调制解调器方面的新增功能"
- 第20页中的"终端、调制解调器、端口和服务"
- 第22页中的"终端和调制解调器的管理工具"
- 第23页中的"串行端口工具"
- 第23页中的"服务访问工具"

有关如何使用串行端口工具设置终端和调制解调器的逐步说明,请参见第2章。

有关如何使用服务访问工具 (Service Access Facility, SAF) 设置终端和调制解调器的逐步说明,请参见第 3 章。

管理终端和调制解调器方面的新增功能

本节描述 Solaris 发行版中管理终端和调制解调器方面的新增或已更改的功能。有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

SPARC:相关控制台

Solaris 10 8/07:相关控制台子系统功能可实现部分内核控制台子系统,以便呈现控制台输出。相关控制台使用 Solaris 内核机制而不是可编程只读存储器 (Programmable Read-Only Memory, PROM) 接口来呈现控制台输出。这降低了控制台转译对 OpenBoot PROM (OBP) 的依赖性。相关控制台使用内核驻留帧缓冲区驱动程序生成控制台输出。生成的控制台输出比使用 OBP 转译的效率更高。相关控制台还避免了 SPARC 控制台输出过程中使 CPU 处于空闲状态,并且也改善了用户体验。

SPARC: 对如何设置控制台的 \$TERM 值的更改

Solaris 10 8/07: \$TERM 值现在是动态派生的,具体取决于控制台所使用的终端仿真器。在基于 x86 的系统上,由于始终使用内核的终端仿真器,因此 \$TERM 值为 sun-color。

在基于 SPARC 的系统上, \$TERM 值如下:

sun-color 如果系统使用内核的终端仿真器,则 \$TERM 使用此值。

sun 如果系统使用 PROM 的终端仿真器,则 \$TERM 使用此值。

此更改不会影响为串行端口设置终端类型的方式。如以下示例所示,您仍然可以使用 svccfg 命令修改 \$TERM 值:

svccfa

svc:> select system/console-login
svc:/system/console-login> setprop ttymon/terminal_type = "xterm"
svc:/system/console-login> exit

系统控制台上由 SMF 管理的 ttymon 调用

Solaris 10: 系统控制台上的 ttymon 调用由 SMF 管理。通过将属性添加到 svc:/system/console-login:default 服务,可以使用 svccfg 命令指定 ttymon 命令参数。请注意,这些属性特定于 ttymon,不是通用的 SMF 属性。

注-您无法再在/etc/inittab文件中定义ttymon调用。

有关如何使用 SMF 指定 ttymon 命令参数的逐步说明,请参见第 40 页中的 "如何设置 ttymon 控制台终端类型"。

有关 SMF 的完整概述,请参见《系统管理指南:基本管理》中的第 14 章 "管理服务(概述)"。有关与 SMF 关联的逐步过程的信息,请参见《系统管理指南:基本管理》中的第 15 章 "管理服务(任务)"。

终端、调制解调器、端口和服务

终端和调制解调器提供对系统和网络资源的本地和远程访问。设置终端和调制解调器访问是系统管理员的重要职责。本节解释 Solaris 操作系统中调制解调器和终端管理所涉及的一些概念。

终端描述

系统的位映射图形显示器与字母数字终端并不相同。字母数字终端连接到串行端口, 并仅显示文本。您不必执行任何特殊步骤以管理图形显示器。

调制解调器描述

可以采用以下三种基本配置来设置调制解调器:

- 拨出
- 拨入
- 双向

连接到家庭计算机的调制解调器可以设置为提供**拨出**服务。通过拨出服务,您可以从 自己的家里访问其他计算机。但是,任何人都无法从外部访问您的计算机。

拨入服务正好相反。通过拨入服务,用户可以从远程站点访问系统。但是,它不允许 对外进行呼叫。

顾名思义, 双向访问既提供拨入功能又提供拨出功能。

端口描述

端口是设备与操作系统进行通信的通道。从硬件的角度来看,端口是终端或调制解调器电缆可以用物理方式连入的"插口"。

然而,严格来讲,端口并不是物理容器,而是具有硬件(管脚和连接器)和软件(设备驱动程序)组件的实体。单个物理容器通常提供多个端口,允许连接两个或多个设备。

常见的端口类型包括:串行端口、并行端口、小型计算机系统接口 (Small Computer Systems Interface, SCSI) 端口和以太网端口。

串行端口使用标准的通信协议,通过一条线路逐位传输一个字节的信息。

按照 RS-232-C 或 RS-423 标准设计的设备包括大多数调制解调器、字母数字终端、绘图 仪和一些打印机。可以使用标准电缆,将这些设备互换连接到具有类似设计的计算机 的串行端口。

当必须将许多申行端口设备连接到单台计算机时,您可能需要为系统添加**适配器板**。 适配器板及其驱动程序软件可提供额外申行端口,以连接更多设备。

服务描述

调制解调器和终端使用串行端口软件来访问计算资源。必须设置串行端口软件,以便为连接到端口的设备提供特定的"服务"。例如,您可以设置串行端口来为调制解调器提供双向服务。

端口监视器

获得对服务的访问的主要机制是通过**端口监视器**。端口监视器是持续监视对打印机或 文件的登录和访问请求的程序。

当端口监视器检测到请求时,它将设置在操作系统和请求服务的设备之间建立通信所需的任何参数。然后,端口监视器将控制转移到提供所需服务的其他进程。

下表介绍了 Solaris 操作系统中包括的两种类型的端口监视器。

表1-1 端口监视器类型

手册页	端口监视器	说明
listen(1M)	listen	控制对网络服务的访问,例如在 Solaris 2.6 以前的发行版中处理远程打印请求。缺省的 Solaris 操作系统不再使用此端口监视器类 型。
ttymon(1M)	ttymon	提供对调制解调器和字母数字终端所需的登录服务的访问。串行端口工具自动设置 ttymon端口监视器,以处理来自这些设备的 登录请求。

您可能熟悉较早的端口监视器 getty。新增的 ttymon 端口监视器功能更加强大。一个 ttymon 端口监视器可以取代多个 getty 实例。在其他方面,这两个程序具有相同的功能。有关更多信息,请参见 getty(1M) 手册页。

终端和调制解调器的管理工具

下表列出了用于管理终端和调制解调器的工具。

表 1-2 用于管理终端和调制解调器的工具

终端和调制解调器的管理方式	工具	更多信息
最全面	服务访问工具 (Service Access Facility, SAF) 命令	第23页中的"服务访问工具"
最快设置	Solaris Management Console 的串行端 口工具	第 2 章和 Solaris Management Console 联机帮助

串行端口工具

串行端口工具使用相应的信息调用 pmadm 命令,将串行端口软件设置为使用终端和调制解调器。

该工具还提供以下内容:

- 用于终端和调制解调器常用配置的模板
- 多个端口的设置、修改或删除
- 每个端口的快速可视状态

服务访问工具

SAF 是用于管理终端、调制解调器和其他网络设备的工具。

特别是,借助SAF可以设置以下各项:

- ttymon和listen端口监视器(使用sacadm命令)
- ttymon端口监视器服务(使用 pmadm 和 ttyadm 命令)
- listen端口监视器服务(使用 pmadm 和 nlsadmin命令)
- ttv设备疑难解答
- 打印服务的传入网络请求疑难解答
- 服务访问控制器疑难解答(使用 sacadm 命令)

SAF 是一个开放系统解决方案,可控制通过 tty 设备和局域网 (local-area network, LAN) 对系统和网络资源的访问。SAF 不是一个程序,而是一个后台进程和管理命令的分层结构。

设置终端和调制解调器(任务)

本章提供了使用 Solaris Management Console 的串行端口工具设置终端和调制解调器的逐步说明。

有关终端和调制解调器的概述信息,请参见第1章。有关管理系统资源的概述信息,请参见第4章。

有关使用 Solaris Management Console 的串行端口工具设置终端和调制解调器的关联过程的信息,请参见第 25 页中的 "设置终端和调制解调器(任务图)"。

设置终端和调制解调器(任务图)

任务	说明	参考
设置终端。	通过使用 Solaris Management Console 的串行端口工具设置终端。通过从"操作"菜单中选择 相应的选项来配置终端。	第 28 页中的 "如何设置终端"
设置调制解调器。	通过使用 Solaris Management Console 的串行端口工具设置调 制解调器。通过从"操作"菜单 中选择相应的选项来配置调制解 调器。	第29页中的"如何设置调制解调器"
初始化端口。	要初始化端口,请使用 Solaris Management Console 的串行端口 工具。从"操作"菜单中选择相 应的选项。	第30页中的"如何初始化端口"

使用串行端口工具设置终端和调制解调器(概述)

您可以使用 Solaris Management Console 的串行端口工具设置串行端口。

从"串行端口"窗口中选择一个串行端口,然后从"操作"菜单中选择"配置"选项以配置以下各项:

- 终端
- 调制解调器-拨入
- 调制解调器-拨出
- 调制解调器-拨入/拨出
- 仅初始化-无连接

通过"配置"选项可以访问用于配置这些服务的模板。您可以查看每个串行端口的两个级别的详细信息:"基本"和"高级"。在通过选择串行端口再从"操作"菜单中选择"属性"选项配置串行端口后,您可以访问每个串行端口的"高级"级别的详细信息。在配置串行端口后,可以使用 SAF 命令禁用或启用该端口。有关使用 SAF 命令的信息,请参见第3章。

有关使用串行端口命令行接口的信息,请参见smserialport(1M)手册页。

设置终端

下表介绍了使用串行端口工具设置终端时的各菜单项(及其缺省值)。

表2-1 终端缺省值

详细信息	项	缺省值
基本	端口	_
	说明	终端
	服务状态	已启用
	波特率	9600
	终端类型	vi925
	登录提示	ttyn login:
高级	载体检测	软件
	选项:在载体上连接	不可用
	选项: 双向	可用
	选项: 仅初始化	不可用

表2-1 终端缺省值	(续)	
详细信息	项	缺省值
	超时(秒)	从不
	端口监视器	zsmon
	服务程序	/usr/bin/login

设置调制解调器

下表介绍了使用串行端口工具设置调制解调器时可用的三个调制解调器模板。

表2-2 调制解调器模板

调制解调器配置	说明
仅拨入	用户可以拨入调制解调器但无法拨出。
仅拨出	用户可以从调制解调器拨出但无法拨入。
拨入和拨出 (双向)	用户可以拨入调制解调器或从中拨出。

下表介绍了每个模板的缺省值。

表2-3 调制解调器模板的缺省值

项	调制解调器-仅拨入	调制解调器-仅拨出	调制解调器-拨入和拨出
端口名	_	_	_
说明	调制解调器-仅拨入	调制解调器一仅拨出	调制解调器-拨入和拨出
服务状态	已启用	已启用	已启用
波特率	9600	9600	9600
登录提示	ttyn login:	ttyn login:	ttyn login:
载体检测	软件	软件	软件
选项:在载体上连接	不可用	不可用	不可用
选项:双向	不可用	不可用	可用
选项: 仅初始化	不可用	可用	不可用
超时(秒)	从不	从不	从不
端口监视器	zsmon	zsmon	zsmon
	端口名 说明 服务状态 波特率 登录提示 载体检测 选项:在载体上连接 选项:双向 选项:仅初始化 超时(秒)	端口名 一 说明 调制解调器 - 仅拨入 服务状态 已启用 波特率 9600 登录提示 ttyn login: 载体检测 软件 选项: 在载体上连接 不可用 选项: 双向 不可用 选项: 仅初始化 不可用 超时(秒) 从不	端口名 — — 说明 调制解调器—仅拨入 调制解调器—仅拨出 服务状态 已启用 已启用 波特率 9600 9600 登录提示 ttyn login: ttyn login: 载体检测 软件 软件 选项: 在载体上连接 不可用 不可用 选项: 双向 不可用 可用 选项: 仅初始化 不可用 可用 超时(秒) 从不 从不

表 2-3 调制解调器模板的缺省值	(续)		
详细信息 项	调制解调器-仅拨入	调制解调器-仅拨出	调制解调器-拨入和拨出
服务程序	/usr/bin/login	/usr/bin/login	/usr/bin/login

下表介绍了"仅初始化"模板的缺省值。

表2-4 "仅初始化一无连接"的缺省值

详细信息	项	缺省值
基本	端口名	_
	说明	仅初始化-无连接
	服务状态	已启用
	波特率	9600
	登录提示	ttyn login:
高级	载体检测	软件
	选项: 在载体上连接	不可用
	选项:双向	可用
	选项: 仅初始化	可用
	超时 (秒)	从不
	端口监视器	zsmon
	服务程序	/usr/bin/login

如何设置终端、调制解调器和初始化端口(任务)

▼ 如何设置终端

1 启动 Solaris Management Console(如果尚未运行)。

% /usr/sadm/bin/smc &

有关启动 Solaris Management Console 的信息,请参见《系统管理指南:基本管理》中的"启动 Solaris Management Console"。

2 单击"导航"窗格中的"本计算机"图标。

- **3 单击"设备和硬件"—>"串行端口"。** 将显示"串行端口"菜单。
- 4 选择将与终端一起使用的端口。
- 5 从"操作"菜单中选择"配置"—>"终端"。 将在基本详细信息模式下显示"配置串行端口"窗口。 有关"终端"菜单项的说明,请参见表 2-1。
- 6 单击"确定"。
- 7 要配置高级项,请选择配置为终端的端口。然后,从"操作"菜单中选择"属性"。
- 8 更改模板项的值(如果需要)。
- 9 单击"确定"配置端口。
- 10 验证是否已添加了终端服务。

\$ pmadm -l -s ttyn

▼ 如何设置调制解调器

1 启动 Solaris Management Console (如果尚未运行)。

% /usr/sadm/bin/smc &

有关启动 Solaris Management Console 的信息,请参见《系统管理指南:基本管理》中的"启动 Solaris Management Console"。

- 2 单击"导航"窗格中的"本计算机"图标。
- **3 单击"设备和硬件"—>"串行端口"。** 将显示"串行端口"菜单。
- 4 选择将与调制解调器一起使用的端口。
- 5 从"操作"菜单中选择以下"配置"选项之一。
 - a. "配置"—>"调制解调器(拨入)"
 - b. "配置"—>"调制解调器(拨出)"
 - c. "配置"—>"调制解调器(拨入/拨出)"

将在基本详细信息模式下显示"配置串行端口"窗口。 有关"调制解调器"菜单项的说明,请参见表 2-3。

- 6 单击"确定"。
- 7 要配置高级项,请选择配置为调制解调器的端口。然后,从"操作"菜单中选择"属性"。
- 8 更改模板项的值(如果需要)。
- 9 单击"确定"配置端口。
- 10 验证是否已配置了调制解调器服务。

\$ pmadm -l -s ttyn

▼ 如何初始化端口

1 启动 Solaris Management Console (如果尚未运行)。

% /usr/sadm/bin/smc &

有关启动 Solaris Management Console 的信息,请参见《系统管理指南:基本管理》中的"启动 Solaris Management Console"。

- 2 单击"导航"窗格中的"本计算机"图标。
- **3 单击"设备和硬件"—>"串行端口"。** 将显示"串行端口"菜单。
- 4 选择要初始化的端口。
- 5 选择"配置"—>"仅初始化-无连接"。 将在基本详细信息模式下显示"串行端口"窗口。 有关"仅初始化"菜单项的说明,请参见表 2-4。
- 6 单击"确定"。
- 7 要配置高级项,请选择配置为仅初始化的端口。然后,从"操作"菜单中选择"属性"。
- 8 更改模板项的值(如果需要)。

- 9 单击"确定"配置端口。
- 10 验证是否已初始化调制解调器服务。

\$ pmadm -l -s ttyn

解决终端和调制解调器问题

如果在您添加终端或调制解调器并设置适当的服务后,用户无法通过串行端口线路登录,请考虑以下可能的失败原因:

■ 与用户进行核对。

终端和调制解调器使用中的故障通常由无法登录或拨入的用户报告。因此,请通过 检查桌面上是否存在问题来开始排除故障。

登录失败的一些常见原因包括:

- 登录ID或口令不正确
- 终端正在等待 X-ON 流控制键 (Ctrl-Q)
- 串行电缆连接不牢固或者已拔下
- 终端配置不正确
- 终端已关闭或者由于其他原因未通电
- 检查终端。

通过检查终端或调制解调器的配置继续排除故障。确定用于与终端或调制解调器进行通信的正确 ttvlabel。验证终端或调制解调器设置是否与 ttvlabel 设置匹配。

检查终端服务器。

如果终端没有问题,请继续在终端或调制解调器服务器上搜索问题的根源。使用 pmadm 命令验证是否已将一个端口监视器配置为向终端或调制解调器提供服务,以及该端口监视器是否具有与之关联的正确 *ttvlabel*。例如:

\$ pmadm -l -t ttymon

检查 /etc/ttydefs 文件,并根据终端配置仔细检查标签定义。使用 sacadm 命令检查端口监视器的状态。使用 pmadm 检查与终端所用的端口关联的服务。

■ 检查串行连接。

如果服务访问控制器**正在启动**TTY端口监视器且以下条件为真:

- pmadm 命令报告已启用终端端口的服务。
- 终端的配置与端口监视器的配置匹配。

然后,通过检查串行连接继续搜索问题。串行连接由串行端口、电缆和终端组成。通过将一个部件与已知可靠的其他两个部件一起使用,对其中的每个部件进行测试。

测试以下所有部件:

- 串行端口
- 调制解调器
- 电缆
- 连接器
- 如果串行端口用作控制台,请不要使用串行端口工具修改串行端口设置。从 Solaris 10 发行版开始,控制台上的 ttymon 调用由 SMF 进行管理。有关如何更改控制台终端类型的逐步说明,请参见第 40 页中的 "如何设置 ttymon 控制台终端类型"。

有关 ttymon 和 SMF 的更多信息,请参见第 19 页中的 "管理终端和调制解调器方面的新增功能"。

◆ ◆ ◆ 第 3 章

使用服务访问工具管理串行端口(任务)

本章描述如何使用服务访问工具 (Service Access Facility, SAF) 管理串行端口服务。

此外,本章还包括有关如何使用服务管理工具 (Service Management Facility, SMF) 执行控制台管理的信息。

注-SAF和 SMF是 Solaris OS 中的两种不同工具。从 Solaris 10 发行版开始,系统控制台上的 ttymon 调用由 SMF 进行管理。SAF工具仍用于管理终端、调制解调器和其他网络设备。

以下是本章中概述信息的列表。

- 第34页中的"使用服务访问工具"
- 第 35 页中的 "整体 SAF 管理 (sacadm)"
- 第36页中的"端口监视器服务管理(pmadm)"
- 第37页中的"TTY监视器和网络侦听器端口监视器"

有关与管理串行端口关联的逐步过程的信息,请参见以下内容:

- 第34页中的"管理串行端口(任务图)"
- 第44页中的"管理 ttymon 服务(任务图)"

有关 SAF 的参考信息,请参见第 48 页中的"服务访问工具管理(参考)"。

管理串行端口(任务图)

任务	说明	参考
执行控制台管理。	您可能需要执行以下控制台管理任务: U置 ttymon 控制台终端类型。 从 Solaris 10 发行版开始,您必须使用 svccfg 命令指定ttymon 控制台终端类型。 U置 ttymon 控制台终端类型。	第 40 页中的 "如何设置 ttymon 控制台终端类型" 第 40 页中的 "如何在 ttymon 控制台终端上设置波特率速度"
添加 ttymon 端口监视器。	使用 sacadm 命令添加 ttymon 端 口监视器。 第 41 页中的 "如何添加 ttymo 端口监视器"	
查看 ttymon 端口监视器状态。	使用 sacadm 命令查看 ttymon 端口监视器状态。	第 42 页中的 "如何查看 ttymon 端口监视器状态"
停止 ttymon 端口监视器。	使用 sacadm 命令停止 ttymon 端 口监视器。	第 43 页中的 "如何停止 ttymon 端口监视器"
启动ttymon端口监视器。	使用 sacadm 命令启动 ttymon 端 口监视器。	第43页中的"如何启动ttymon端口监视器"
禁用 ttymon 端口监视器。	使用 sacadm 命令禁用 ttymon 端 口监视器。	第 43 页中的 "如何禁用 ttymon 端口监视器"
启用 ttymon 端口监视器。	使用 sacadm 命令启用 ttymon 端 口监视器。	第 44 页中的 "如何启用 ttymon 端口监视器"
删除 ttymon 端口监视器。	使用 sacadm 命令删除 ttymon 端 口监视器。	第 44 页中的 "如何删除 ttymon 端口监视器"

使用服务访问工具

您可以使用 Solaris Management Console 的串行端口工具或 SAF 命令设置终端和调制解调器。

SAF 是一种用于管理终端、调制解调器和其他网络设备的工具。顶层 SAF 程序是服务访问控制器 (Service Access Controller, SAC)。SAC 通过 sacadm 命令控制您管理的端口监视器。每个端口监视器可以管理一个或多个端口。

可以通过 pmadm 命令管理与端口关联的服务。尽管通过 SAC 提供的服务可能随网络的不同而不同,但是 SAC 及其管理命令 sacadm 和 pmadm 与网络无关。

下表介绍了 SAF 控制分层结构。 sacadm 命令用于管理 SAC(它控制 ttymon 和 listen 端口监视器)。

ttymon 和 listen 的服务又是由 pmadm 命令控制的。一个 ttymon 实例可以为多个端口提供服务。一个 listen 实例可以在一个网络接口上提供多个服务。

表3-1 SAF控制分层结构

功能	程序	说明
整体管理	sacadm	用于添加和删除端口监视器的命令
服务访问控制器	sac	SAF的主程序
端口监视器	ttymon	监视串行端口登录请求
	listen	监视网络服务请求
端口监视器服务管理员	pmadm	用于控制端口监视器服务的命令
服务	登录、远程过程调 用	SAF 提供对其访问的服务
控制台管理	控制台登录	控制台服务由 SMF 服务 svc:/system/console-login:default 进行管理。此服务调用 ttymon 端口监视器。不要使用 pmadm 或 sacadm 命令管理控制台。有关更多信息,请参见第 38 页中的 "ttymon 和控制台端口"、第 40 页中的 "如何设置 ttymon 控制台终端类型"和第 40 页中的 "如何在 ttymon 控制台终端上设置波特率速度"。

整体 SAF 管理 (sacadm)

sacadm 命令是 SAF 的顶层。sacadm 命令主要用于添加和删除端口监视器,如 ttymon 和 listen。sacadm 的其他功能包括列出端口监视器的当前状态和管理端口监视器配置脚本。

服务访问控制器(SAC程序)

服务访问控制器 (Service Access Controller, SAC) 程序可监视所有端口监视器。在进入多用户模式时,系统自动启动 SAC。

SAC程序在被调用时首先查找并解释每个系统的配置脚本。您可以使用配置脚本定制 SAC程序环境。缺省情况下,此脚本为空。对 SAC环境进行的修改由 SAC的所有"子进程"继承。此继承的环境可能会被子进程修改。

SAC程序在解释了每系统配置脚本后,将读取其管理文件并启动指定的端口监视器。 对于每个端口监视器,SAC程序运行它自己的副本,从而派生一个子进程。然后,每 个子进程解释它的每端口监视器配置脚本(如果存在这样的脚本)。

对在每端口监视器配置脚本中指定的环境进行的任何修改都会影响端口监视器,并将由其所有子进程继承。最后,子进程通过使用在 SAC 程序管理文件中找到的命令运行端口监视器程序。

SAC初始化进程

以下步骤概括说明了首次启动 SAC 时发生的情况:

- 1. SAC 程序由 SMF 服务 syc:/system/sac:default 启动。
- 2. SAC程序读取每系统配置脚本 /etc/saf/ sysconfig。
- 3. SAC程序读取 SAC管理文件 /etc/saf/ sactab。
- 4. SAC程序为它启动的每个端口监视器派生一个子讲程。
- 5. 每个端口监视器读取每端口监视器配置脚本 /etc/saf/pmtag/ config。

端口监视器服务管理 (pmadm)

通过 pmadm 命令可以管理端口监视器的服务。特别是,使用 pmadm 命令可以添加或删除服务以及启用或禁用服务。您还可以安装或替换每服务配置脚本,或列显有关服务的信息。

服务的每个实例必须由端口监视器和端口唯一标识。使用 pmadm 命令管理服务时,可以用 pmtag 参数指定特定的端口监视器,用 svctag 参数指定特定的端口。

对于每种端口监视器类型,SAF需要一个专用命令来设置端口监视器特定的配置数据的格式。此数据由 pmadm 命令使用。对于 ttymon 和 listen 类型的端口监视器,这些专用命令分别是 ttyadm 和 nlsadmin。

ttymon 端口监视器

只要您尝试通过使用直接连接的调制解调器或字母数字终端进行登录,ttymon 便会开始执行。首先,SMF 启动 SAC 进程。然后 SAC 自动启动在其管理文件 /etc/saf/_sactab 中指定的端口监视器。启动 ttymon 端口监视器后,该端口监视器对服务请求的串行端口线路进行监视。

当有人尝试通过使用字母数字终端或调制解调器进行登录时,串行端口驱动程序会将该活动传递给操作系统。ttymon端口监视器记录串行端口活动,并尝试建立通信链路。ttymon端口监视器确定与设备进行通信所需的数据传输率、线路规程和握手协议。

确定用于与调制解调器或终端通信的适当参数后,ttymon端口监视器将这些参数传递给登录程序并将控制权转移给它。

端口初始化进程

当 SAC 调用 ttymon 端口监视器的实例时,ttymon 开始监视其端口。对于每个端口,ttymon 端口监视器首先初始化线路规程(如果指定)、速度和终端设置。用于初始化的值是从 /etc/ttydefs 文件中的相应项提取的。

然后 ttymon 端口监视器写入提示符,并等待用户输入。如果用户通过按 Break 键指示速度不合适,则 ttymon 端口监视器将尝试下一个速度,并再次写入提示符。

如果为端口启用了 *autobaud*,则 ttymon 端口监视器将尝试自动确定端口上的波特率。用户必须按回车键,ttymon 端口监视器才能识别波特率并列显提示符。

在收到有效输入时, ttymon 端口监视器会执行以下任务:

- 解释端口的每服务配置文件
- 创建 /etc/utmpx 项 (如果需要)
- 建立服务环境
- 调用与端口关联的服务

服务终止后,ttymon端口监视器将清除 /etc/utmpx 项(如果该项存在),并将端口恢复到其初始状态。

双向服务

如果将端口配置为用于双向服务,则 ttymon 端口监视器会执行以下操作:

- 允许用户连接到服务
- 如果端口是空闲的,则允许 uucico、cu 或 ct 命令使用该端口进行拨出
- 在列显提示符之前等待读取字符
- 如果设置了"在载体上连接"标志,则在请求连接时,调用端口的关联服务而不发送提示消息

TTY监视器和网络侦听器端口监视器

虽然 SAF 提供了用于管理任何将来的或第三方端口监视器的通用方法,但是在 Solaris 操作系统中仅实现了两个端口监视器: ttymon 和 listen。

TTY端口监视器(ttymon)

ttymon端口监视器基于 STREAMS,可执行以下操作:

- 监视端口
- 设置终端模式、波特率和线路规程
- 调用登录讲程

ttymon 端口监视器为 Solaris 用户提供的服务与 getty 端口监视器在 SunOS 4.1 软件的早期版本中提供的服务相同。

ttymon端口监视器在 SAC 程序下运行,并且是使用 sacadm 命令配置的。ttymon的每个实例可以监视多个端口。这些端口在端口监视器的管理文件中指定。管理文件是通过使用 pmadm 和 ttyadm 命令配置的。

ttymon 和控制台端口

控制台服务既不由服务访问控制器 (Service Access Controller, SAC) 管理,也不由任何显式的 ttymon 管理文件管理。ttymon 调用由 SMF 管理。因此,无法再通过向 /etc/inittab 文件中添加项来调用 ttymon。类型为 application、名称为 ttymon 的属性组已添加到 SMF 服务 svc:/system/console-login:default 中。此属性组内的属性由方法脚本 /lib/svc/method/console-login 使用。此脚本将属性值用作 ttymon 调用的参数。通常,如果这些值为空,或者如果没有为任一属性定义值,则不会将值用于ttymon。但是,如果 ttymon 设备值为空或者未设置,则 /dev/console 将用作缺省值以便 ttymon 可以运行。

以下属性在 SMF 服务 svc:/system/console-login:default 下可用:

ttymon/nohangup 指定 nohangup 属性。如果设置为 true,则在设置缺省或指定

的速度之前,不要通过将线路速度设置为零来强制线路挂

起。

ttymon/prompt 指定控制台端口的提示字符串。

ttymon/terminal_type 指定控制台的缺省终端类型。

ttymon/device 指定控制台设备。

ttymon/label 指定/etc/ttydefs线路中的TTY标签。

特定于ttymon的管理命令(ttyadm)

ttymon 管理文件由 sacadm 和 pmadm 命令以及 ttyadm 命令更新。ttyadm 命令设置特定于ttymon 的信息的格式并将其写入标准输出,从而提供一种向 sacadm 和 pmadm 命令呈现已设置格式的、特定于 ttymon 的数据的方法。

因此,ttyadm命令不会直接管理ttymon。ttyadm命令是对通用管理命令sacadm和pmadm的补充。有关更多信息,请参见ttyadm(1M)手册页。

网络侦听器服务(listen)

listen端口监视器在 SAC 下运行,可执行以下操作:

- 监视网络中的服务请求
- 在请求到达时接受请求
- 作为对那些服务请求的响应,调用服务器

listen端口监视器是通过使用 sacadm 命令配置的。listen 的每个实例可以提供多个服务。这些服务在端口监视器的管理文件中指定。此管理文件是通过使用 pmadm 和 nlsadmin 命令配置的。

网络侦听器进程可以用于符合传输层接口 (Transport Layer Interface, TLI) 规范的任何面向连接的传输提供者。在 Solaris 操作系统中,listen 端口监视器可以提供 inetd 服务未提供的其他网络服务。

特殊 listen 专用管理命令 (nlsadmin)

listen端口监视器的管理文件由 sacadm 和 pmadm 命令以及 nlsadmin 命令更新。 nlsadmin 命令设置 listen 特定的信息的格式并将其写入标准输出,从而提供一种向 sacadm 和 pmadm 命令呈现已设置格式的、listen 特定的数据的方法。

因此,nlsadmin 命令不会直接管理 listen。该命令是对通用管理命令 sacadm 和 pmadm 的补充。

单独配置的每个网络可以具有至少一个与之关联的网络侦听器进程实例。nlsadmin 命令控制 listen 端口监视器的操作状态。

nlsadmin 命令可以为给定的网络建立 listen 端口监视器,配置该端口监视器的特定属性以及对监视器执行 *start* 和 *kill* 操作。nlsadmin 命令还可以对计算机上的 listen 端口监视器进行报告。

有关更多信息,请参见 nlsadmin(1M) 手册页。

管理 ttymon 端口监视器

ttymon 的控制台管理现在由 SMF 管理。可使用 svccfg 命令设置 ttymon 系统控制台属性。仍可使用 SAF 命令 sacadm 添加、列出、中止、启动、启用、禁用和删除 ttymon 端口监视器。

▼ 如何设置 ttymon 控制台终端类型

此过程说明如何使用 svccfq 命令更改控制台终端类型。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 运行 svccfq 命令以设置要更改的服务实例的属性。

svccfg -s console-login setprop ttymon/terminal_type = "xterm"

其中, "xterm" 是可能要使用的终端类型。

3 (可选)重新启动服务实例。

svcadm restart svc:/system/console-login:default

注意-如果您选择立即重新启动服务实例,则将从控制台注销。如果您不立即重新启动服务实例,则下次在控制台上显示登录提示时将应用属性更改。

▼ 如何在 ttymon 控制台终端上设置波特率速度

此过程说明如何在 ttymon 控制台终端上设置波特率速度。基于 x86 的系统上支持的控制台速度取决于特定的平台。

在基于 SPARC 的系统上支持以下控制台速度:

- 9600 bps
- 19200 bps
- 38400 bps

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 使用 eeprom 命令设置适合您系统类型的波特率速度。

eeprom ttya-mode=baud-rate,8,n,1,-

例如,要将基于 x86 的系统控制台上的波特率更改为 38400,请键入:

eeprom ttya-mode=38400,8,n,1,-

3 按如下所示在 /etc/ttydefs 文件中更改控制台线路。

console baud-rate hupcl opost onlcr:baud-rate::console

4 进一步对您的系统类型进行以下更改。

请注意,这些更改与平台相关。

■ **在基于 SPARC 的系统上**:在 /kernel/drv/options.conf 文件中更改波特率速度。使用以下命令将波特率更改为 9600。

9600 : bd

ttymodes="2502:1805:bd:8a3b:3:1c:7f:15:4:0:0:0:11:13:1a:19:12:f:17:16";

使用以下命令将波特率速度更改为19200。

19200 :be

ttymodes="2502:1805:be:8a3b:3:1c:7f:15:4:0:0:0:11:13:1a:19:12:f:17:16";

使用以下命令将波特率速度更改为38400。

38400 :bf:

ttymodes="2502:1805:bf:8a3b:3:1c:7f:15:4:0:0:0:11:13:1a:19:12:f:17:16";

■ **在基于 x86 的系统上**:如果启用了 BIOS 串行重定向,请更改控制台速度。用来更改 控制台速度的方法与平台有关。

▼ 如何添加 ttymon 端口监视器

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 添加 ttymon 端口监视器。

sacadm -a -p mbmon -t ttymon -c /usr/lib/saf/ttymon -v 'ttyadm
-V' -y "TTY Ports a & b"

-a 指定添加端口监视器的选项。

- -p 将 pmtag mbmon 指定为端口监视器标记。
- -t 将端口监视器 type 指定为 ttymon。
- -c 定义用于启动端口监视器的 command 字符串。
- -v 指定端口监视器的 version 号。
- -v 定义描述此端口监视器实例的注释。

▼ 如何查看 ttymon 端口监视器状态

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 查看 ttymon 端口监视器的状态。

sacadm -l -p mbmon

- -1 指定 list 端口监视器的状态标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。

示例3-1 查看 ttymon 端口监视器状态

此示例说明如何杳看名为mbmon的端口监视器。

sacadm -l -p mbmon

PMTAG PMTYPE FLGS RCNT STATUS COMMAND

mbmon ttymon - 0 STARTING /usr/lib/saf/ttymon #TTY Ports a & b

PMTAG 标识端口监视器名称 mbmon。
PMTYPE 标识端口监视器类型 ttymon。

FLGS 指示是否设置了以下标志:

d-不启用新的端口监视器。x-不启动新的端口监视器。短划线(-)-未设置任何标志。

RCNT 指示返回计数值。返回计数为 0 指示如果端口监视器出现故障则

不重新启动。

STATUS 指示端口监视器的当前状态。

COMMAND 标识用于启动端口监视器的命令。

#TTY Ports a & b 标识用于描述端口监视器的任何注释。

▼ 如何停止 ttymon 端口监视器

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 停止ttymon端口监视器。

sacadm -k -p mbmon

- -k 指定 kill 端口监视器的状态标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。

▼ 如何启动 ttymon 端口监视器

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 启动已中止的 ttymon 端口监视器。

sacadm -s -p mbmon

- -s 指定 start 端口监视器的状态标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。

▼ 如何禁用 ttymon 端口监视器

禁用端口监视器可防止新服务启动,且不影响现有的服务。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 禁用 ttymon 端口监视器。

sacadm -d -p mbmon

- -d 指定 disable 端口监视器的状态标志。
- -p 将 *pmtag* mbmon 指定为端口监视器标记。

▼ 如何启用 ttymon 端口监视器

通过启用 ttymon 端口监视器,可以使其为新请求提供服务。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 启用 ttymon 端口监视器。

sacadm -e -p mbmon

- -e 指定 enable 端口监视器的状态标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。

▼ 如何删除 ttymon 端口监视器

删除端口监视器将删除与之关联的所有配置文件。

注-端口监视器配置文件不能通过使用 sacadm 命令进行更新或更改。要重新配置端口监视器,请先将其删除,然后添加一个新端口监视器。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 删除 ttymon 端口监视器。

sacadm -r -p mbmon

- -r 指定 remove 端口监视器的状态标志。
- -p 将 *pmtag* mbmon 指定为端口监视器标记。

管理 ttymon 服务(任务图)

任务	说明	参考
添加 ttymon 服务。	使用 pmadm 命令添加服务。	第 45 页中的 "如何添加服务"
查看 TTY 端口服务的状态。	使用 pmadm 命令查看 TTY 端口的 状态。	第 46 页中的 "如何查看 TTY 端口服务的状态"

任务	说明	参考
启用端口监视器服务。	使用带有 -e 选项的 pmadm 命令 启用端口监视器。	第 48 页中的 "如何启用端口监 视器服务"
禁用端口监视器服务。	使用带有 -d 选项的 pmadm 命令禁用端口监视器。	第 48 页中的 "如何禁用端口监 视器服务"

管理 ttymon 服务

使用 pmadm 命令可以添加服务、列出与端口监视器关联的一个或多个端口的服务以及启用或禁用服务。

▼ 如何添加服务

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 将标准终端服务添加到 mbmon 端口监视器。

```
# pmadm -a -p mbmon -s a -i root -v 'ttyadm -V' -m "'ttyadm -i 'Terminal
disabled' -l contty -m ldterm,ttcompat -S y -d /dev/term/a
-s /usr/bin/login'"
```

注-在此示例中,输入内容自动换到下一行。请勿使用回车键或换行。

- -a 指定 add 端口监视器状态标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。
- -s 将 svctag a 指定为端口监视器 service 标记。
- -i 指定在服务运行时要指定给 svctag 的 identity。
- -v 指定端口监视器的 version 号。
- -m 指定由 ttyadm 设置其格式的特定于 ttymon 的配置数据。

前面的 pmadm 命令包含嵌入的 ttyadm 命令。此嵌入命令中的选项如下所示:

- -b 指定 bidirectional 端口标志。
- -i 指定 inactive (禁用) 响应消息。
- -1 指定要使用 /etc/ttydefs 文件中的哪个 TTY label。

- -m 指定在调用此服务之前要推送的 STREAMS modules。
- -d 指定要用于 TTY 端口的 device 的全路径名。
- -s 指定收到连接请求时要调用的 *service* 的全路径名。如果需要参数,请将命令及其 参数用引号 (") 括起来。

▼ 如何查看 TTY 端口服务的状态

使用此过程中所示的 pmadm 命令可以列出某个 TTY 端口的状态,或与端口监视器关联的所有端口的状态。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 列出端口监视器的一项服务。

pmadm -l -p mbmon -s a

- -1 列出有关系统的服务信息。
- -p 将 pmtag mbmon 指定为端口监视器标记。
- -s 将 svctag a 指定为端口监视器 service 标记。

示例3-2 查看TTY端口监视器服务的状态

此示例列出了端口监视器的所有服务。

pmadm -l -p mbmon

PMTAG PMTYPE SVCTAG FLAGS ID <PMSPECIFIC>

mbmon ttymon a - root /dev/term/a - - /usr/bin/login - contty

ldterm, ttcompat login: Terminal disabled tvi925 y #

PMTAG 标识通过使用 pmadm - p 命令设置的端口监视器名称

mbmon •

PMTYPE 标识端口监视器类型 ttymon。

SVCTAG 指示通过使用 pmadm - s 命令设置的服务标记值。

FLAGS 标识是否通过使用 pmadm - f 命令设置了以下标志。

■ x-不启用服务。

■ u一为服务创建 utmpx 项。

■ 短划线(-)-未设置任何标志。

指示启动服务时为其指定的标识。该值是通过使用 pmadm

标识使用 pmadm -y 命令指定的任何注释。在此示例中没

	-i 命令设置的。
<pmspecific></pmspecific>	信息
/dev/term/a	指示通过使用 ttyadm -d 命令设置的 TTY 端口路径名。
-	指示是否通过使用 ttyadm -c -b -h -I -r 命令设置了以 下标志。
	 c-为端口设置"在载体上连接"标志。 b-将端口设置为双向,从而允许传入和传出通信。 h-禁止在收到外来调用之后立即自动挂起。 I-初始化端口。 r-强制 ttymon 在列显 login: 消息之前一直等待,直到它收到来自端口的字符。 短划线 (-)一未设置任何标志。
-	指示通过使用 ttyadm -r count 选项设置的值。此选项确定在收到来自端口的数据之后 ttymon 何时显示提示符。如果 count 为 0,则 ttymon 将一直等待,直到它收到某个字符。如果 count 大于 0,则 ttymon 将一直等待,直到收到 count 个换行符。在此示例中未设置值。
/usr/bin/login	标识在收到连接时要调用的服务的全路径名。该值是通过使用 ttyadm -s 命令设置的。
-	标识 ttyadm -t 命令的超时值。此选项指定:如果端口成功打开,且在 <i>timeout</i> 秒内未收到输入数据,则 ttymon 应该关闭该端口。在此示例中没有超时值。
contty	标识 /etc/ttydefs 文件中的 TTY 标签。该值是通过使用ttyadm -l 命令设置的。
ldterm,ttcompat	标识要推送的 STREAMS 模块。这些模块是通过使用ttyadmin -m 命令设置的。
login: Terminal disabled	标识在禁用端口时要显示的无效消息。此消息是通过使用 ttyadm -i 命令设置的。
tvi925	标识终端类型(如果使用 ttyadm -T 命令进行了设置)。 在此示例中,终端类型为 tvi925。
У	标识通过使用 ttyadm -S 命令设置的软件载体值。n 关闭软件载体。y 打开软件载体。在此示例中打开了软件载

有注释。

ID

▼ 如何启用端口监视器服务

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 启用已禁用的端口监视器服务。

pmadm -e -p mbmon -s a

- -e 指定 enable 标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。
- -s 将 svctag a 指定为端口监视器 service 标记。

▼ 如何禁用端口监视器服务

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 禁用端口监视器服务。

pmadm -d -p mbmon -s a

- -d 指定 disable 标志。
- -p 将 pmtag mbmon 指定为端口监视器标记。
- -s 将 svctag a 指定为端口监视器 service 标记。

服务访问工具管理(参考)

本章包括服务访问工具管理的参考信息。

与SAF关联的文件

SAF使用可通过 sacadm 和 pmadm 命令修改的配置文件。您无需手动编辑配置文件。

文件名	说明	
/etc/saf/_sysconfig	每系统配置脚本。	
/etc/saf/_sactab	SAC的管理文件,该文件包含 SAC 控制的端口监视器的配置数据。	
/etc/saf/pmtag	端口监视器 pmtag 的起始目录	
/etc/saf/pmtag/_config	端口监视器 pmtag 的每端口监视器配置脚本(如果存在)	
/etc/saf/pmtag/_pmtab	端口监视器 pmtag 的管理文件,该文件包含 pmtag 所提供服务的特定于端口监视器的配置数 据	
/etc/saf/pmtag/svctag	服务 svctag 的每服务配置脚本	
/var/saf/log	SAC的日志文件	
/var/saf/pmtag	pmtag 创建的文件(例如日志文件)的目录	

/etc/saf/_sactab 文件

/etc/saf/ sactab 文件中的信息如下所示:

VERSION=1

zsmon:ttymon::0:/usr/lib/saf/ttymon

#

VERSION=1 指示服务访问工具的版本号。

zsmon 端口监视器的名称。 ttymon 端口监视器的类型。

:: 指示是否设置了以下两个标志:

■ d-不启用端口监视器。

■ x-不启动端口监视器。在此示例中未设置标志。

0 指示返回代码值。返回计数为0指示如果端口监视器出现故障

则不重新启动。

/usr/lib/saf/ttymon 指示端口监视器路径名。

/etc/saf/pmtab/_pmtab文件

/etc/saf/pmtab/_pmtab 文件(如 /etc/saf/zsmon/_pmtab)与如下所示内容类似:

VFRSTON=1

ttya:u:root:reserved:reserved:/dev/term/a:I::/usr/bin/login::9600:

ldterm,ttcompat:ttya login\: ::tvi925:y:#

指示服务访问工具的版本号。 # VFRSTON=1

指示服务标记。 ttya

标识是否设置了以下标志: x.u

■ x-不启用服务。

■ u-为服务创建 utmpx 项。

指示为服务标记指定的标识。 root

保留此字段供将来使用。 reserved

保留此字段供将来使用。 reserved 保留此字段供将来使用。 reserved

指示TTY 端口路径名。 /dev/term/a

标识在收到连接时要调用的服务的全路径名。 /usr/bin/login

指示是否设置了以下标志: :c.b.h.I.r:

c-为端口设置"在载体上连接"标志。

b-将端口设置为双向,从而允许传入和传出通信。

h-禁止在收到外来调用之后立即自动挂起。

T一初始化端口。

r-强制 ttymon 在 ttymon 列显 login: 消息之前一直等待, 直到它

收到来自端口的字符。

标识在 /etc/ttvdefs 文件中定义的 TTY 标签。 9600

标识要推送的 STREAMS 模块。 ldterm, ttcompat

标识要显示的提示符。 ttya login\: 指示响应或不响应。

:y/n:

标识任何无效(禁用)的响应消息。 message

标识终端类型。 tvi925

指示是否设置了软件载体 (y/n)。 У

服务状态

sacadm命令可控制服务的状态。下表介绍了服务的可能状态。

状态	说明
Enabled	缺省状态 -在添加端口监视器时,服务将运行。
Disabled	缺省状态 一在删除端口监视器时,服务将停止。

要确定任何特定服务的状态,请使用以下命令:

pmadm -l -p portmon-name -ssvctag

端口监视器状态

sacadm 命令可控制 ttymon 和 listen 端口监视器的状态。下表介绍了可能的端口监视器状态。

状态	说明	
Started	缺省状态 -在添加端口监视器时,它将自动启动。	
Enabled	缺省状态 -在添加端口监视器时,它将自动准备接受服务请求。	
Stopped	缺省状态 -在删除端口监视器时,它将自动停止。	
Disabled	缺省状态 -在删除端口监视器时,它将自动继续使用现有服务并拒绝添加 新服务。	
Starting	中间状态-端口监视器处于启动过程中。	
Stopping	中间状态 -端口监视器已手动终止,但是它尚未完成其关闭过程。端口监视器正在停止。	
Notrunning	非活动状态 -端口监视器已中止。以前监视的所有端口都是无法访问的。 外部用户无法断定端口处于 disabled 还是 notrunning 状态。	
Failed	非活动状态 -端口监视器无法启动和保持运行。	

要确定任何特定端口监视器的状态,请使用以下命令:

sacadm -l -p portmon-name

端口状态

根据控制端口的端口监视器的状态,可以启用或禁用端口。

状态	说明
串行(ttymon)端口状态	
Enabled	ttymon端口监视器向端口发送提示消息,并为其提供登录服务。
Disabled	如果 ttymon 已中止或禁用,则为所有端口的缺省状态。如果指定此状态,则 ttymon 在收到连接请求时将发出 disabled 消息。

◆ ◆ ◆ 第 4 章

管理系统资源(概述)

本章简要介绍了 Solaris 操作系统 中可用的系统资源管理功能,并提供了用于管理系统资源的指南。

使用这些功能,可以显示常规系统信息、监视磁盘空间、设置磁盘配额并使用记帐程序。此外,还可以调度 cron 和 at 命令以自动运行常规命令。

本节中不包括可用来灵活分配、监视和控制系统资源的 Solaris 资源管理的有关信息。

有关与管理系统资源(不通过 Solaris 资源管理)相关的过程的信息,请参见第 54 页中的 "管理系统资源(指南)"。

有关通过 Solaris 资源管理来管理系统资源的信息,请参见《系统管理指南: Solaris Containers – 资源管理和 Solaris Zones》中的第 1 章 "Solaris 10 Resource Manager 介绍"。

系统资源管理方面的新增功能

本节介绍此 Solaris 发行版中用于管理系统资源的新增功能或已更改的功能。有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

用于显示产品名称的新增 prtconf 选项

Solaris 10 1/06: prtconf 命令中添加了一个新的 -b 选项,用于显示系统的产品名称。此选项与 uname -i 命令类似。不过,prtconf -b 命令专门用于确定产品的市场营销名称。

使用 prtconf 命令的 -b 选项显示的固件设备树根属性如下所示:

- name
- compatible

- banner-name
- model

要显示特定于平台的其他可用输出,请使用 prtconf - vb 命令。有关更多信息,请参见 prtconf(1M) 手册页和第 62 页中的 "如何显示系统的产品名称"。

识别芯片多线程功能的新增 psrinfo 命令选项

Solaris 10: psrinfo 命令经过修改,不仅可以提供有关虚拟处理器的信息,还可以提供有关物理处理器的信息。添加此增强功能是为了识别芯片多线程 (CMT) 功能。新增的-p选项可报告系统中物理处理器的总数。使用 psrinfo-pv 命令可列出系统中所有的物理处理器,以及与每个物理处理器关联的虚拟处理器。psrinfo 命令的缺省输出仍然可显示系统的虚拟处理器信息。

有关更多信息,请参见psrinfo(1M)手册页。

有关与此功能关联的过程的信息,请参见第 63 页中的 "如何显示系统的物理处理器类型"。

新增 localeadm 命令

Solaris 10:通过新增的 localeadm 命令可以更改系统中的语言环境,而无需重新安装 OS 或手动添加和删除软件包。使用此命令还可以查询系统,从而确定已安装的语言环境。要运行 localeadm 命令,必须具有超级用户权限或通过基于角色的访问控制 (role-based access control, RBAC) 承担等效角色。

有关更多信息,请参见localeadm(1M)手册页。

有关本指南中该命令的更多信息,请参见第5章。

有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

管理系统资源(指南)

任务	说明	参考
显示并更改系统信息	使用各种命令显示并更改系统信息,如 常规系统信息、语言环境、日期和时间 以及系统的主机名。	第5章

任务	说明	参考
管理磁盘使用	确定磁盘空间的使用情况并采取措施删 除旧文件和未使用的文件。	第6章
管理配额	使用 UFS 文件系统配额管理用户使用的 磁盘空间量。	第7章
调度系统事件	使用 cron 和 at 作业帮助调度系统例程, 其中可以包括清除旧文件和未使用的文 件。	第8章
管理系统记帐	使用系统记帐来确定用户和应用程序使 用系统资源的情况。	第9章
管理系统资源(通过 Solaris 资源管理)	使用资源管理器控制应用程序使用可用 系统资源的方式,跟踪资源使用情况并 对其进行收费。	《系统管理指南: Solaris Containers-资源管理和 Solaris Zones》中的第 1 章 "Solaris 10 Resource Manager 介绍"

显示和更改系统信息(任务)

本章介绍显示和更改最常用的系统信息所需执行的任务。

有关与显示和更改系统信息相关的过程的信息,请参见以下各节:

- 第57页中的"显示系统信息(任务图)"
- 第66页中的"更改系统信息(任务图)"

有关管理系统资源的概述信息,请参见第4章。

显示系统信息(任务图)

任务	说明	参考
确定系统启用了32位还是64位功能。	使用 isainfo 命令确定系统启用了 32 位还是 64 位功能。在基于x86 的系统中,可以使用isalist 命令来显示此信息。	第 59 页中的 "如何确定系统启用了 32 位还是 64 位 Solaris 功能"
显示 Solaris 发行版信息	显示 /etc/release 文件的内容,以确定 Solaris 发行版的版本。	第 61 页中的 "如何显示 Solaris 发行版信息"
显示常规系统信息。	使用 showrev 命令显示常规系统信息。	第 61 页中的 "如何显示常规系 统信息"
显示系统的主机 ID 号。	使用 hostid 命令显示系统的主机 ID。	第 62 页中的 "如何显示系统的 主机 ID 号"
显示系统的产品名称	从 Solaris 10 1/06 发行版开始, 可以使用 prtconf -b 命令显示系 统的产品名称。	第 62 页中的 "如何显示系统的产品名称"

任务	说明	参考
显示系统的已安装内存	使用 prtconf 命令显示有关系统的已安装内存的信息。	第 63 页中的 "如何显示系统的 已安装内存"
显示系统的日期和时间。	使用 date 命令显示系统的日期和时间。	第63页中的"如何显示日期和时间"
显示系统的物理处理器类型。	使用 psrinfo -p 命令列出系统中 物理处理器的总数。	第 63 页中的 "如何显示系统的 物理处理器类型"
	使用 psrinfo-pv 命令列出系统中的所有物理处理器以及与每个物理处理器关联的虚拟处理器。	
显示系统的逻辑处理器类型。	使用 psrinfo -v 命令显示系统的逻辑处理器类型。	第 64 页中的 "如何显示系统的 逻辑处理器类型"
显示系统中安装的语言环境。	使用 localeadm 命令显示系统中安装的语言环境。	第 65 页中的 "如何显示系统中 安装的语言环境"
确定系统中是否安装了语言环境。	使用 localeadm 命令的 -q 选项和语言环境来确定系统中是否安装了语言环境。	第 65 页中的 "如何确定系统中 是否安装了语言环境"

显示系统信息

下表介绍了可用于显示常规系统信息的命令。

表5-1 用于显示系统信息的命令

命令	显示的系统信息	手册页
date	日期和时间	date(1)
hostid	主机 ID 号	hostid(1)
isainfo	正在运行的系统中 本机 应用程序所支持的 位数,该位数可以作为标记传递给脚本	isainfo(1)
isalist	用于基于 x86 的系统的处理器类型	isalist(1)
localeadm	系统中安装的语言环境	localeadm(1M)
prtconf	系统配置信息,已安装的内存和产品名称	prtconf(1M)
psrinfo	处理器类型	psrinfo(1M)
showrev	主机名、主机 ID、发行版、内核体系结构、应用程序体系结构、硬件提供者、域和内核版本	${\tt showrev}(1M)$

	表 5-1	用于昂	示系统	信息的命令	(续)
--	-------	-----	-----	-------	-----

命令	显示的系统信息	手册页
uname	操作系统名称、发行版、版本、节点名 称、硬件名称和处理器类型	uname(1)

▼ 如何确定系统启用了32位还是64位Solaris功能

● 使用 isainfo 命令可确定系统启用了32 位还是64 位功能。

isainfo options

当运行未指定任何选项的 isainfo 命令时,将显示当前 OS 版本所支持应用程序的本机指令集的一个或多个名称。

- -v 列显有关其他选项的详细信息。
- -b 列显本机指令集的地址空间中的位数。
- -n 列显当前版本的 OS 支持的可移植应用程序所使用的本机指令集的名称。
- -k 列显 OS 内核组件(例如设备驱动程序和 STREAMS 模块)所使用的一个或多个指令集的名称。

注-在基于 x86 的系统中,也可以使用 isalist 命令来显示此信息。

示例5-1 SPARC: 确定系统启用了32位还是64位 Solaris 功能

在运行以前的 Solaris OS 发行版(使用 32 位内核)的 UltraSPARC 系统中,isainfo 命令的输出如下所示:

\$ isainfo -v

32-bit sparc applications

此输出表明,该系统只能支持32位应用程序。

在当前的 Solaris OS 发行版中,只有基于 SPARC 的系统才提供 64 位内核。在运行 64 位内核的 UltraSPARC 系统中,isainfo 命令的输出如下所示:

\$ isainfo -v

64-bit sparcv9 applications

32-bit sparc applications

此输出表明,该系统既可以支持32位应用程序,又可以支持64位应用程序。

使用 isainfo-b 命令可以显示正在运行的系统中的本机应用程序所支持的位数。

在运行 32 位 Solaris 操作系统的基于 SPARC 的系统、基于 x86 的系统或 UltraSPARC 系统中,isainfo 命令的输出如下所示:

\$ isainfo -b

32

在运行 64位 Solaris 操作系统的 64位 UltraSPARC 系统中,isainfo 命令的输出如下所示 ·

\$ isainfo -b

64

该命令只返回 64。即使 64 位 UltraSPARC 系统可以运行两种类型的应用程序,64 位应用程序也是最适合在 64 位系统中运行的应用程序。

示例 5-2 x86: 确定系统启用了 32 位还是 64 位 Solaris 功能

在运行64位内核的基于x86的系统中, isainfo命令输出如下所示:

\$ isainfo

amd64 i386

此输出表明,该系统可以支持64位应用程序。

使用 isainfo-v 命令可以确定基于 x86 的系统是否能够运行 32 位内核。

\$ isainfo -v

64-bit amd64 applications

fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2 32-bit i386 applications

fpu tsc cx8 cmov mmx ammx a3dnow a3dnowx fxsr sse sse2

此输出表明,该系统既可以支持64位应用程序,又可以支持32位应用程序。

使用 isainfo-b 命令可以显示正在运行的系统中的本机应用程序所支持的位数。

在运行 32 位 Solaris 操作系统的基于 x86 的系统中, isainfo 命令的输出如下所示:

\$ isainfo -b

32

在运行 64 位 Solaris 操作系统的基于 x86 的系统中, isainfo 命令的输出如下所示:

\$ isainfo -b

64

您也可以使用 isalist 命令,来确定基于 x86 的系统是以 32 位模式还是以 64 位模式运行。

\$ isalist

amd64 pentium_pro+mmx pentium_pro pentium+mmx pentium i486 i386 i86

在上面的示例中, amd64 表示系统启用了 64 位 Solaris 功能。

▼ 如何显示 Solaris 发行版信息

● 显示 /etc/release 文件的内容,以确定 Solaris 发行版的版本。

\$ cat /etc/release

Solaris 10 s10_51 SPARC
Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
Use is subject to license terms.
Assembled 21 January 2004

▼ 如何显示常规系统信息

● 要显示常规系统信息,请使用 showrev 命令。

\$ showrev options

-a 列显所有可用的系统修订版信息。

-c (command) 列显有关命令的修订版信息

-p 只列显有关修补程序的修订版信息。

-R (root path) 定义要用作 root_path 的目录的全路径名。

-s (host name) 对指定的主机名执行此操作

-w 只列显 OpenWindows 修订版信息。

也可以使用 uname 命令来显示系统信息。以下示例显示 uname 命令输出。 - a 选项显示操作系统名称和系统节点名称、操作系统发行版、操作系统版本、硬件名称和处理器类型。

\$ uname

Sun0S

\$ uname -a

SunOS starbug 5.10 Generic sun4u sparc SUNW,Ultra-5_10
\$

示例5-3 显示常规系统信息

以下示例显示 showrev 命令的输出。-a 选项显示所有可用的系统信息。

\$ showrev -a

Hostid: 8099dfb9 Release: 5.10

Kernel architecture: sun4u
Application architecture: sparc
Hardware provider: Sun_Microsystems
Domain: boulder.Central.Sun.COM
Kernel version: SunOS 5.10 s10 46

OpenWindows version:

Solaris X11 Version 6.6.2 20 October 2003

No patches are installed

▼ 如何显示系统的主机ID号

● 要以十六进制格式显示主机 ID 号,请使用 hostid 命令。

示例5-4 显示系统的主机 ID 号

以下示例显示hostid命令的样例输出。

\$ hostid

80a5d34c

▼ 如何显示系统的产品名称

Solaris 10 1/06:在 prtconf 命令中使用 -b 选项可以显示系统的产品名称。有关此功能的更多信息,请参见 prtconf(1M)手册页。

● 要显示系统的产品名称,请将 prtconf 命令与 -b 选项结合使用。

示例5-5 显示系统的产品名称

此示例显示 prtconf -b 命令的样例输出。

prtconf -b

name: SUNW,Ultra-5_10
model: SUNW.375-0066

banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 333MHz)

此示例显示 prtconf-vb 命令的样例输出。

prtconf -vb

name: SUNW,Ultra-5_10
model: SUNW,375-0066

banner-name: Sun Ultra 5/10 UPA/PCI (UltraSPARC-IIi 333MHz)

idprom: 01800800.20a6c363.00000000.a6c363a9.00000000.00000000.405555aa.aa555500

openprom model: SUNW, 3.15

openprom version: 'OBP 3.15.2 1998/11/10 10:35'

▼ 如何显示系统的已安装内存

● 要显示系统中已安装的内存量,请使用 prtconf 命令。

示例5-6 显示系统的已安装内存

以下示例显示 prtconf 命令的样例输出。grep Memory 命令选择 prtconf 命令的输出,以便只显示内存信息。

prtconf | grep Memory Memory size: 128 Megabytes

▼ 如何显示日期和时间

● 要根据系统时钟显示当前的日期和时间,请使用 date 命令。

示例5-7 显示日期和时间

以下示例显示 date 命令的样例输出。

\$ date

Wed Jan 21 17:32:59 MST 2004 \$

▼ 如何显示系统的物理处理器类型

● 使用 psrinfo -p 命令可以显示系统中物理处理器的总数。

```
$ psrinfo -p
1
```

使用 psrinfo-pv 命令可以显示有关系统中的每个物理处理器的信息以及与每个物理处理器关联的虚拟处理器。

\$ psrinfo -pv

```
The UltraSPARC-IV physical processor has 2 virtual processors (8, 520) The UltraSPARC-IV physical processor has 2 virtual processors (9, 521) The UltraSPARC-IV physical processor has 2 virtual processors (10, 522) The UltraSPARC-IV physical processor has 2 virtual processors (11, 523) The UltraSPARC-III+ physical processor has 1 virtual processor (16) The UltraSPARC-III+ physical processor has 1 virtual processor (17) The UltraSPARC-III+ physical processor has 1 virtual processor (18) The UltraSPARC-III+ physical processor has 1 virtual processor (19) 在基于 x86的系统中使用 psrinfo-pv 命令时,将显示以下输出:
```

\$ psrinfo -pv

```
The i386 physical processor has 2 virtual processors (0, 2)
The i386 physical processor has 2 virtual processors (1, 3)
```

▼ 如何显示系统的逻辑处理器类型

● 使用 psrinfo -v 命令可以显示有关系统的处理器类型的信息。

```
$ psrinfo -v
```

在基于 x86 的系统中,使用 isalist 命令可以显示虚拟处理器类型。

\$ isalist

示例5-8 SPARC: 显示系统的处理器类型

此示例说明如何显示有关基于SPARC的系统的处理器类型的信息。

\$ psrinfo -v

```
Status of virtual processor 0 as of: 04/16/2004 10:32:13 on-line since 03/22/2004 19:18:27.

The sparcv9 processor operates at 650 MHz, and has a sparcv9 floating point processor.
```

示例 5-9 x86: 显示系统的处理器类型

此示例说明如何显示有关基于 x86 的系统的处理器类型的信息。

\$ isalist

pentium pro+mmx pentium pro pentium+mmx pentium i486 i386 i86

▼ 如何显示系统中安装的语言环境

1 成为超级用户或承担等效角色。

localeadm -l

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用 localeadm 命令显示系统中当前安装的语言环境。-l 选项显示系统中安装的语言环境。例如:

▼ 如何确定系统中是否安装了语言环境

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用 localeadm 命令确定系统中是否安装了语言环境。-q 选项和语言环境会查询系统,以确定该系统中是否安装了语言环境。例如,要确定系统中是否安装了中欧 (Central European, ceu) 地区语言环境,可以运行以下命令:

```
# localeadm -q ceu
locale/region name is ceu
Checking for Central Europe region (ceu)
.
```

The Central Europe region (ceu) is installed on this system

更改系统信息(任务图)

任务	说明	参考
手动设置系统的日期和时间。	使用 date mmddHHMM[[cc]yy] 命令行语法手动设置系统的日期 和时间。	第 67 页中的 "如何手动设置系 统的日期和时间"
设置每日消息。	通过编辑 /etc/motd 文件在系统中设置每日消息。	第 67 页中的 "如何设置每日消息"
更改系统的主机名。	通过编辑以下文件来更改系统的主机名: ■ /etc/nodename ■ /etc/hostname.*host-name ■ /etc/inet/hosts 注 - 如果运行的是 Solaris 3/05、1/06、6/06 或 11/06 发行版,则还需要更新 /etc/inet/ipnodes文件。从 Solaris 10 8/07 发行版开始,Solaris OS 不再有两个独立的 hosts文件。/etc/inet/hosts文件是同时包含 IPv4 项和 IPv6 项的单个 hosts文件。	第68页中的"如何更改系统的主机名"
向系统中添加语言环境。	使用 localeadm 命令可以向系统中添加语言环境。	如何向系统中添加语言环境
从系统中删除语言环境。	使用localeadm命令的-r选项和语言环境从系统中删除语言环境。	如何从系统中删除语言环境

更改系统信息

本节介绍可用来更改常规系统信息的命令。

▼ 如何手动设置系统的日期和时间

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 输入新的日期和时间。

date mmddHHMM[[cc]yy]

mm 月份,使用两位数。

dd 月份中的某日,使用两位数。

HH 小时,使用两位数和24小时制。

MM 分钟,使用两位数。

cc 世纪,使用两位数。

yy 年份,使用两位数。

有关更多信息,请参见 date(1)手册页。

3 使用不带选项的 date 命令验证是否正确重置了系统日期。

示例5-10 手动设置系统的日期和时间

以下示例说明如何使用date命令手动设置系统的日期和时间。

date

Wed Mar 3 14:04:19 MST 2004

date 0121173404

Thu Jan 21 17:34:34 MST 2004

▼ 如何设置每日消息

编辑每日消息文件 /etc/motd,以包括在系统的所有用户登录时都会显示的声明或询问。请尽量少使用此功能,并定期编辑此文件,以删除过时的消息。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 编辑 /etc/motd 文件并添加您选择的消息。

编辑文本以包括要在用户登录期间显示的消息。包括空格、制表符和回车。

3 通过显示 /etc/motd 文件的内容来验证更改。

\$ cat /etc/motd

Welcome to the UNIX Universe. Have a nice day.

示例5-11 设置每日消息

安装 Solaris 软件时提供的缺省每日消息中包含 SunOS 版本信息。

\$ cat /etc/motd

Sun Microsystems Inc. SunOS 5.10 Generic May 2004

以下示例显示一个已编辑的 /etc/motd 文件,该文件可向登录的每个用户提供有关系统可用性的信息。

\$ cat /etc/motd

The system will be down from 7:00 a.m to 2:00 p.m. on Saturday, July 7, for upgrades and maintenance. Do not try to access the system during those hours. Thank you.

▼ 如何更改系统的主机名

系统的主机名在多个不同位置指定。

请记得更新名称服务器数据库,以反映新的主机名。

使用以下过程更改或重命名系统的主机名。

也可以使用 sys-unconfig 命令来重新配置系统,包括主机名。有关更多信息,请参见 sys-unconfig(1M) 手册页。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 在以下文件中更改系统的主机名:

- /etc/nodename
- /etc/hostname.*interface
- /etc/inet/hosts
- /etc/inet/ipnodes 仅适用于 Solaris 10 的某些发行版。

注 - 从 Solaris 10 8/07 发行版开始,不再有两个独立的 hosts 文件。/etc/inet/hosts 文件是同时包含 IPv4 项和 IPv6 项的单个 hosts 文件。无需在始终要求同步的两个 hosts 文件中维护 IPv4 项。为了向后兼容,/etc/inet/ipnodes 文件被替换为与/etc/inet/hosts 文件同名的符号链接。有关更多信息,请参见 hosts(4) 手册页。

- 3 (可选的)如果您使用了名称服务,则在 hosts 文件中更改系统的主机名。
- 4 重命名 /var/crash 目录中的主机名目录。
 - # cd /var/crash
 - # mv old-host-name new-host-name
- 5 重新引导系统,以激活新的主机名。
 - # init 6

▼ 如何向系统中添加语言环境

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用 Localeadm 命令添加要在系统中安装的语言环境的软件包。-a 选项后跟语言环境 (标识您要添加的语言环境)。-d 选项后跟设备(标识含有您要添加的语言环境软件 包的设备)。例如,要向系统中添加中欧 (Central European, ceu) 地区语言环境,可运行 以下命令:

localeadm -a ceu -d /net/install/latest/Solaris/Product

locale/region name is ceu

Devices are /net/install/latest/Solaris/Product

.

One or more locales have been added.

To update the list of locales available at

.

.

▼ 如何从系统中删除语言环境

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用 localeadm 命令删除系统中已安装的语言环境软件包。-r 选项后跟语言环境(标识您要从系统中删除的语言环境)。例如,要从系统中删除中欧 (Central European, ceu) 地区语言环境,可运行以下命令:

```
# localeadm -r ceu
locale/region name is ceu
Removing packages for Central Europe (ceu)
.
.
.
One or more locales have been removed.
To update the list of locales available
at the login screen's "Options->Language" menu,
.
.
```


管理磁盘使用(任务)

本章介绍如何通过查找未使用的文件和大型目录来优化磁盘空间。

有关与管理磁盘使用关联的过程信息,请参见第71页中的"管理磁盘使用(任务图)"。

管理磁盘使用(任务图)

任务	说明	参考
显示有关文件和磁盘空间的信息。	使用 df 命令显示有关磁盘空间 使用情况的信息。	第72页中的"如何显示有关文件和磁盘空间的信息"
显示文件的大小。	使用带有 - lh 选项的 ls 命令显示有关文件大小的信息。	第 75 页中的 "如何显示文件大小"
查找大文件。	使用 ls -s 命令可按大小对文件 进行降序排序。	第76页中的"如何查找大文件"
查找超过指定大小限制的文件。	使用带有 -size 选项和指定的大小限制值的 find 命令来查找并显示超过指定大小的文件的名称。	第77页中的"如何查找超过指定大小限制的文件"
显示目录、子目录和文件的大小。	使用 du 命令显示一个或多个目录、子目录和文件的大小。	第 78 页中的 "如何显示目录、 子目录和文件的大小"
显示本地 UFS 文件系统的拥有权。	使用 quot -a 命令显示文件的拥有权。	第79页中的"如何显示本地 UFS文件系统的用户拥有权"
列出最新的文件。	使用 ls-t命令先显示最新创建 或更改的文件。	第80页中的"如何列出最新文件"

任务	说明	参考
查找并删除旧文件或非活动文件。	使用带有 -atime 和 -mtime 选项的 find 命令查找在指定天数内未访问的文件。可以使用 rm 'cat filename'命令来删除这些文件。	第81页中的"如何查找并删除 旧文件或非活动文件"
清除临时目录。	查找临时目录,然后使用 rm -r *命令删除整个目录。	第82页中的"如何清除临时目录"
查找并删除核心转储文件。	使用 findname core -exec rm {}\;命令查找并删除核心转 储文件。	第83页中的"如何查找并删除core 文件"
删除故障转储文件。	使用 rm * 命令删除 /var/crash/ 目录中的故障转储文件。	第83页中的"如何删除故障转储文件"

显示有关文件和磁盘空间的信息

此表概括说明了可用于显示有关文件大小和磁盘空间信息的命令。

命令	说明	手册页
df	报告空闲磁盘块和文件的数量	df(1M)
du	概述分配给每个子目录的磁盘空 间	du(1)
find -size	根据 - size 选项指定的大小递归 搜索目录	find(1)
ls -lh	以1024幂的形式列出文件大小	ls(1)

▼ 如何显示有关文件和磁盘空间的信息

● 使用 df 命令可显示有关磁盘空间使用情况的信息。

\$ df [directory] [-h] [-t]

df 没有任何选项时,该命令将列出所有已安装文件系统及其设备名称、使用的 512 字节块的数量以及文件数量。

directory 指定要检查其文件系统的目录。

- -h 以 1024 幂的形式显示磁盘空间。
- -t 显示块总数以及用于所有已安装文件系统的块数。

示例6-1 显示有关文件大小和磁盘空间的信息

在以下示例中,所列的所有文件系统都是本地挂载的,但 /usr/dist 除外,该文件系统是从系统 venus 远程挂载的。

\$ df (/dev/dsk/c0t0d0s0): 101294 blocks 105480 files /devices (/devices): 0 blocks 0 files /system/contract (ctfs): 0 blocks 2147483578 files): 1871 files /proc (proc 0 blocks /etc/mnttab (mnttab): 0 blocks 0 files /etc/svc/volatile (swap): 992704 blocks 16964 files /system/object (objfs): 0 blocks 2147483530 files /usr (/dev/dsk/c0t0d0s6): 503774 blocks 299189 files /dev/fd (fd): 0 blocks 0 files): 992704 blocks 16964 files /var/run (swap): 992704 blocks 16964 files /tmp (swap /opt (/dev/dsk/c0t0d0s5): 23914 blocks 6947 files (/dev/dsk/c0t0d0s7): 16810 blocks 7160 files /export/home

示例6-2 以1024字节为单位显示文件大小信息

在以下示例中,以1024字节为单位显示文件系统信息。

\$	df -h	
_	-	

Filesystem	size	used	avail	capacity	Mounted on
/dev/dsk/c0t0d0s0	249M	200M	25M	90%	/
/devices	0K	0K	0K	0%	/devices
ctfs	0K	0K	0K	0%	/system/contract
proc	0K	0K	0K	0%	/proc
mnttab	0K	0K	0K	0%	/etc/mnttab
swap	485M	376K	485M	1%	/etc/svc/volatile
objfs	0K	0K	0K	0%	/system/object
/dev/dsk/c0t0d0s6	3.2G	2.9G	214M	94%	/usr
fd	0K	0K	0K	0%	/dev/fd
swap	485M	40K	485M	1%	/var/run
swap	485M	40K	485M	1%	/tmp
/dev/dsk/c0t0d0s5	13M	1.7M	10M	15%	/opt
/dev/dsk/c0t0d0s7	9.2M	1.0M	7.3M	13%	/export/home

尽管 /proc 和 /tmp 是本地文件系统,但却不是 UFS 文件系统。/proc 是 PROCFS 文件系统,/var/run 和 /tmp 是 TMPFS 文件系统,/etc/mnttab 是 MNTFS 文件系统。

示例6-3 显示文件系统分配的总块数和总文件数

以下示例显示所有已挂载文件系统、设备名称、使用的 512 字节块的总数以及文件数量的列表。每个两行项的第二行都显示文件系统分配的总块数和总文件数。

\$ df -t						
/	(/dev/dsk/c0t0	d0s0):	101294	blocks	105480	files
		total:	509932	blocks	129024	files
/devices	(/devices):	0	blocks	0	files
		total:	0	blocks	113	files
/system/contract	(ctfs):	0	blocks	214748357	78 files
		total:	0	blocks	69	files
/proc	(proc):	0	blocks	1871	files
		total:	0	blocks	1916	files
/etc/mnttab	(mnttab):	0	blocks	0	files
		total:	0	blocks	1	files
/etc/svc/volatile	(swap):			16964	
		total:	993360	blocks	17025	files
/system/object	(objfs):			214748353	
				blocks		files
/usr	(/dev/dsk/c0t0					
		total:	6650604			
/dev/fd	(fd):		blocks		files
		total:		blocks		files
/var/run	(swap):		blocks		
		total:		blocks		
/tmp	(swap):		blocks		
		total:			17025	
/opt	(/dev/dsk/c0t0	,			6947	
			27404			files
/export/home	(/dev/dsk/c0t0	•	16810			files
		total:	18900	blocks	7168	files

检查文件大小

使用 ls 命令可以检查文件的大小并对文件排序。使用 find 命令可以查找超过大小限制的文件。有关更多信息,请参见 ls(1) 和 find(1) 手册页。

注-如果/var目录中的空间不足,请不要象征性地将/var目录链接至文件系统中具有更多磁盘空间的目录。这种做法即使作为一种临时措施,也会导致某些Solaris 守护进程和实用程序出现问题。

▼ 如何显示文件大小

- 1 转到要检查的文件所在的目录。
- 2 显示文件的大小。

\$ ls [-lh] [-s]

- -1 以长格式显示文件和目录的列表,以字节为单位显示大小。(请参见下面的示例。)
- -h 文件或目录大小大于 1024 字节时,请以 KB、MB、GB 或 TB 来表示文件大小和目录大小。此选项还可以修改 -o、-n、-@和-g 选项显示的输出,以使用新格式显示文件或目录大小。有关更多信息,请参见 ls(1) 手册页。
- -s 显示文件和目录(以块为单位)的列表。

示例6-4 显示文件大小

\$ cd /var/adm

以下示例表明,lastlog和 messages文件比 /var/adm 目录中的其他文件大。

```
$ ls -lh
total 148
drwxrwxr-x 5 adm
                                     512 Nov 26 09:39 acct/
                        adm
- rw-----
             1 uucp
                        bin
                                       0 Nov 26 09:25 aculog
drwxr-xr-x
            2 adm
                        adm
                                     512 Nov 26 09:25 exacct/
-r--r--r--
            1 root
                        other
                                    342K Nov 26 13:56 lastlog
drwxr-xr-x 2 adm
                        adm
                                     512 Nov 26 09:25 log/
- rw-r--r--
             1 root
                                     20K Nov 26 13:55 messages
                        root
drwxr-xr-x 2 adm
                        adm
                                     512 Nov 26 09:25 passwd/
                                     512 Nov 26 09:39 sa/
drwxrwxr-x 2 adm
                        sys
                                     512 Nov 26 09:49 sm.bin/
drwxr-xr-x 2 root
                        SVS
- rw - rw - rw -
             1 root
                        bin
                                       0 Nov 26 09:25 spellhist
                                     512 Nov 26 09:25 streams/
drwxr-xr-x 2 root
                        sys
-rw-r--r-- 1 root
                                    3.3K Nov 26 13:56 utmpx
                        bin
- rw- r- - r- -
            1 root
                                       0 Nov 26 10:17 vold.log
                        root
- rw- r- - r- -
             1 adm
                        adm
                                     19K Nov 26 13:56 wtmpx
```

以下示例说明 lpsched.1 文件使用了两个块。

▼ 如何查找大文件

- 1 转到要搜索的目录。
- 2 以块为单位按从大到小的顺序显示文件大小。
 - 如果文件的字符或列**不同**,请使用以下命令按块大小从大到小的顺序对文件列表进 行排序。

```
$ ls -l | sort +4rn | more
```

请注意,此命令按照第四个字段中的字符(从左侧开始)对列表中的文件排序。

■ 如果文件的字符或列**相同**,请使用以下命令按块大小从大到小的顺序对文件列表进 行排序。

```
$ ls -s | sort -nr | more
```

请注意,此命令从最左侧的字符开始对列表中的文件排序。

示例6-5 查找大文件(按第五个字段的字符排序)

```
$ cd /var/adm
```

```
$ ls -l | sort +4rn | more
-r--r--r--
             1 root
                        root
                                 4568368 Oct 17 08:36 lastlog
-rw-r--r--
            1 adm
                        adm
                                  697040 Oct 17 12:30 pacct.9
-rw-r--r--
            1 adm
                        adm
                                  280520 Oct 17 13:05 pacct.2
                                  277360 Oct 17 12:55 pacct.4
-rw-r--r--
           1 adm
                        adm
                                  264080 Oct 17 12:45 pacct.6
-rw-r--r--
            1 adm
                        adm
-rw-r--r--
           1 adm
                        adm
                                  255840 Oct 17 12:40 pacct.7
            1 adm
                                  254120 Oct 17 13:10 pacct.1
- rw-r--r--
                        adm
                                  250360 Oct 17 12:25 pacct.10
-rw-r--r--
           1 adm
                        adm
                                  248880 Oct 17 13:00 pacct.3
-rw-r--r--
            1 adm
                        adm
                                  247200 Oct 17 12:35 pacct.8
-rw-r--r--
           1 adm
                        adm
            1 adm
                                  246720 Oct 17 13:15 pacct.0
-rw-r--r--
                        adm
-rw-r--r--
            1 adm
                        adm
                                  245920 Oct 17 12:50 pacct.5
-rw-r--r--
           1 root
                        root
                                  190229 Oct 5 03:02 messages.1
-rw-r--r--
             1 adm
                        adm
                                  156800 Oct 17 13:17 pacct
-rw-r--r--
             1 adm
                        adm
                                  129084 Oct 17 08:36 wtmpx
```

示例6-6 查找大文件(按最左侧的字符排序)

在以下示例中,lastlog和 messages文件是/var/adm 目录中最大的文件。

```
$ cd /var/adm
$ ls -s | sort -nr | more
```

- 48 lastlog
- 30 messages
- 24 wtmpx
- 18 pacct
- 8 utmpx
- 2 vold.log
- 2 sulog
- 2 sm.bin/
- 2 sa/
- 2 passwd/
- 2 pacct1
- 2 log/
- 2 acct/
- 0 spellhist
- 0 aculog

total 144

▼ 如何查找超过指定大小限制的文件

● 要查找并显示超过指定大小的文件的名称,请使用 find 命令。

\$ find directory -size +nnn

directory 标识要搜索的目录。

-size+nnn 512字节块的数量。将列出超过此大小的文件。

示例6-7 查找超过指定大小限制的文件

以下示例显示如何在当前工作目录中查找大于 400 块的文件。-print 选项显示 find 命令的输出。

\$ find . -size +400 -print

- ./Howto/howto.doc
- ./Howto/howto.doc.backup
- ./Howto/howtotest.doc
- ./Routine/routineBackupconcepts.doc
- ./Routine/routineIntro.doc
- ./Routine/routineTroublefsck.doc
- ./.record
- ./Mail/pagination
- ./Config/configPrintadmin.doc
- ./Config/configPrintsetup.doc
- ./Config/configMailappx.doc
- ./Config/configMailconcepts.doc
- ./snapshot.rs

检查目录大小

可以使用 du 命令及选项显示目录的大小。此外,还可以使用 quot 命令来查找本地 UFS 文件系统中的用户帐户所使用的磁盘空间量。有关这些命令的更多信息,请参见 du(1) 和 quot(1M) 手册页。

▼ 如何显示目录、子目录和文件的大小

● 使用 du 命令显示一个或多个目录、子目录和文件的大小。以 512 字节块为单位显示大小。

\$ **du** [-**as**] [directory ...]

du 显示您指定的每个目录的大小,其中包括目录下的每个子目录。

-a 显示每个文件和子目录的大小,以及指定目录中包含的总块数。

-s 显示指定目录中包含的总块数。

-h 以 1024 字节块为单位显示每个目录的大小。

-H 以 1000 字节块为单位显示每个目录的大小。

[directory...] 标识要检查的一个或多个目录。命令行语法中的多个目录以空格分

隔。

示例6-8 显示目录、子目录和文件的大小

以下示例显示两个目录的大小。

\$ du -s /var/adm /var/spool/lp

130 /var/adm 40 /var/spool/lp

以下示例显示两个目录的大小,其中包括每个目录下的所有子目录和文件的大小。还显示每个目录中包含的总块数。

\$ du /var/adm /var/spool/lp

- 2 /var/adm/exacct
- 2 /var/adm/log
- 2 /var/adm/streams
- 2 /var/adm/acct/fiscal
- 2 /var/adm/acct/nite
- 2 /var/adm/acct/sum
- 8 /var/adm/acct
- 2 /var/adm/sa
- 2 /var/adm/sm.bin

- 258 /var/adm
- 4 /var/spool/lp/admins
- 2 /var/spool/lp/requests/printing.Eng.Sun.COM
- 4 /var/spool/lp/requests
- 4 /var/spool/lp/system
- 2 /var/spool/lp/fifos
- 24 /var/spool/lp

以下示例以1024字节块为单位显示目录大小。

\$ du -h /usr/share/audio

796K /usr/share/audio/samples/au
797K /usr/share/audio/samples

798K /usr/share/audio

▼ 如何显示本地 UFS 文件系统的用户拥有权

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 显示用户、目录或文件系统以及使用的1024字节块数。

quot [-a] [filesystem ...]

-a 列出每个已挂载 UFS 文件系统的所有用户以及所用的 1024 字节块数。

filesystem 标识 UFS 文件系统。将显示该文件系统的用户以及所用块数。

注-quot 命令仅适用于本地 UFS 文件系统。

示例6-9 显示本地 UFS 文件系统的用户拥有权

在以下示例中,将显示根 (/) 文件系统的用户。在后续的示例中,将显示所有已安装 UFS 文件系统的用户。

quot /

/dev/rdsk/c0t0d0s0:

43340 root

3142 rimmer

47 uucp

35 lp

30 adm

```
daemon
# quot -a
/dev/rdsk/c0t0d0s0 (/):
43340
       root
3150
       rimmer
  47
       uucp
  35
       lρ
  30
       adm
   4
       bin
   4
       daemon
/dev/rdsk/c0t0d0s6 (/usr):
460651 root
206632 bin
  791
       uucp
  46 lp
   4
       daemon
   1
       adm
/dev/rdsk/c0t0d0s7 (/export/home):
```

4 bin

查找并删除旧文件或非活动文件

root

清理负载较大的文件系统的工作包括查找并删除最近未使用的文件。使用 ls 或 find 命令可以查找未使用的文件。有关更多信息,请参见 ls(1) 和 find(1) 手册页。

节省磁盘空间的其他方法包括清空临时目录(例如 /var/tmp 或 /var/spool 中的目录)以及删除 core 文件和故障转储文件。有关故障转储文件的更多信息,请参阅第 17 章。

▼ 如何列出最新文件

● 使用 ls-t 命令列出文件,首先会显示最近创建或更改的文件。

\$ ls -t [directory]

-t 先按最近的时间标记对文件排序。

directory 标识要搜索的目录。

示例6-10 列出最新文件

以下示例显示如何使用 ls -tl 命令在 /var/adm 目录中查找最近创建或更改的文件。sulog 文件是最近创建或编辑的文件。

\$ ls -tl /var/adm

```
total 134
- 104----
             1 root
                        root
                                     315 Sep 24 14:00 sulog
-r--r--r--
            1 root
                        other
                                  350700 Sep 22 11:04 lastlog
-rw-r--r--
            1 root
                        bin
                                    4464 Sep 22 11:04 utmpx
- rw-r--r--
            1 adm
                        adm
                                   20088 Sep 22 11:04 wtmpx
- rw - r - - r - -
            1 root
                        other
                                       0 Sep 19 03:10 messages
            1 root
                        other
                                       0 Sep 12 03:10 messages.0
- rw - r - - r - -
- rw-r--r--
            1 root
                        root
                                   11510 Sep 10 16:13 messages.1
                                       0 Sep 10 16:12 vold.log
-rw-r--r-- 1 root
                        root
drwxr-xr-x 2 root
                                     512 Sep 10 15:33 sm.bin
                        sys
                                     512 Sep 10 15:19 acct
drwxrwxr-x 5 adm
                        adm
drwxrwxr-x 2 adm
                        sys
                                     512 Sep 10 15:19 sa
- rw----
                                       0 Sep 10 15:17 aculog
             1 uucp
                        bin
            1 root
                        bin
                                       0 Sep 10 15:17 spellhist
- rw - rw - rw -
drwxr-xr-x 2 adm
                        adm
                                     512 Sep 10 15:17 log
drwxr-xr-x 2 adm
                        adm
                                     512 Sep 10 15:17 passwd
```

▼ 如何查找并删除旧文件或非活动文件

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 查找在指定的天数内未被访问的文件并在一个文件中列出这些文件。

find directory -type f[-atime +nnn] [-mtime +nnn] -print > filename &

directorv 标识要搜索的目录。还会搜索此目录下面的子目录。

-atime +nnn 查找在您指定的天数内 (nnn) 未被访问的文件。

-mtime +nnn 查找在您指定的天数内 (nnn) 未被修改的文件。

filename 标识包含非活动文件列表的文件。

3 删除在前面的步骤中列出的非活动文件。

rm 'cat filename'

其中filename标识在前面的步骤中创建的文件。此文件包含非活动文件的列表。

示例6-11 查找并删除旧文件或非活动文件

以下示例显示 /var/adm 目录及子目录中在过去 60 天内未被访问的文件。 /var/tmp/deadfiles 文件包含非活动文件的列表。rm 命令将删除这些非活动文件。

```
# find /var/adm -type f -atime +60 -print > /var/tmp/deadfiles &
# more /var/tmp/deadfiles
/var/adm/aculog
/var/adm/spellhist
/var/adm/wtmpx
/var/adm/sa/sa13
/var/adm/sa/sa27
/var/adm/sa/sall
/var/adm/sa/sa23
/var/adm/sulog
/var/adm/vold.log
/var/adm/messages.1
/var/adm/messages.2
/var/adm/messages.3
# rm 'cat /var/tmp/deadfiles'
#
```

▼ 如何清除临时目录

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 转到要清除的目录。

cd directory

注意 - 在完成步骤 3 之前,确保您处于正确的目录中。步骤 3 将删除当前目录中的所有文件。

3 删除当前目录中的文件和子目录。

rm -r *

4 更改到包含不必要、临时或旧子目录和文件的其他目录。通过重复步骤3删除这些子目录和文件。

示例6-12 清除临时目录

以下示例显示如何清除 mywork 目录以及如何验证是否已删除所有文件和子目录。

cd mywork
ls
filea.000

```
fileb.000
filec.001
# rm -r *
# ls
#
```

▼ 如何查找并删除 core 文件

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- 2 转到要搜索 core 文件的目录。
- 3 查找并删除此目录及其子目录中的所有 core 文件。

```
# find . -name core -exec rm {} \;
```

示例6-13 查找并删除 core 文件

以下示例显示如何使用 find 命令查找并删除 jones 用户帐户的 core 文件。

```
# cd /home/jones
# find . -name core -exec rm {} \;
```

▼ 如何删除故障转储文件

故障转储文件可能会很大。如果允许系统存储这些文件,除非必要,否则不要使其保留太长时间。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 转到存储故障转储文件的目录。

cd /var/crash/system

其中system标识创建了故障转储文件的系统。

注意-在完成步骤3之前,请确保您处于正确的目录中,步骤3将删除当前目录中的所有文件。

3 删除故障转储文件。

rm *

4 验证是否已删除故障转储文件。

ls

示例6-14 删除故障转储文件

以下示例显示如何从系统 venus 中删除故障转储文件,以及如何验证是否已删除故障转储文件。

cd /var/crash/venus

rm *

ls

管理配额(任务)

本章介绍如何设置和管理磁盘空间和 inode 的配额。

有关与管理配额相关的信息,请参见以下内容:

- 第88页中的"设置配额(任务图)"
- 第92页中的"维护配额(任务图)"

什么是配额?

利用配额,系统管理员可以控制 UFS 文件系统的大小。配额会限制磁盘空间量和 inode 数量,这些数量与各个用户可以获取的文件数量大致对应。因此,配额在用户起始目录驻留的文件系统中特别有用。通常,建立配额对 public 和 /tmp 文件系统不会有明显的益处。

使用配额

设置配额后,即可更改配额,以调整用户可以占用的磁盘空间量或 inode 数量。此外,随着系统需要的变化,还可以添加或删除配额。有关更改配额或配额可以超出的时间、禁用各配额或从文件系统中删除配额的说明,请参见第 94 页中的 "更改和删除配额"。

此外,还可以监视配额状态。使用配额命令,管理员可以显示有关文件系统中配额的信息,或搜索已超过配额的用户。有关介绍如何使用这些命令的过程,请参见第92页中的"检查配额"。

设置配额的软限制和硬限制

既可以设置软限制,也可以设置硬限制。系统不允许用户超过其硬限制。但是系统管理员可能会设置软限制,用户可以临时性地超过该软限制。软限制必须低于硬限制。

一旦用户超过软限制,配额计时器便开始计时。在配额计时器计时期间,用户可以使用高于软限制的配额,但不能超过硬限制。一旦用户低于软限制,计时器就将复位。但当计时器过期时,如果用户的使用配额一直在软限制以上,则会将软限制强制作为硬限制。缺省情况下,软限制计时器设置为七天。

repquota 和 quota 命令中的 timeleft 字段显示了计时器的值。

例如,假定某用户的软限制为10,000块,硬限制为12,000块。如果该用户的块使用量超过10,000块并且七天计时器已过期,则在用户的使用量降到软限制以下之前,该用户不能在该文件系统中分配更多磁盘块。

磁盘块与文件限制之间的区别

文件系统可为用户提供两种资源:用于数据的块和用于文件的 inode。每个文件占用一个 inode。文件数据存储在数据块中。数据块通常由 1 KB 的块组成。

假定不存在任何目录,则用户可以通过创建所有空文件而不使用任何块来超过其 inode 配额。用户也可以使用一个 inode 超过其块配额,方法是创建一个足够大的文件来占用用户配额中的所有数据块。

设置配额

设置配额包括以下常规步骤:

- 1. 通过向 /etc/vfstab 文件项中添加一个配额选项,来确保每次重新引导系统时都会执行配额。此外,在文件系统的顶层目录中创建一个 quotas 文件。
- 2. 为一次使用创建配额后,将其作为样例进行复制即可设置其他用户配额。
- 3. 在启用配额之前,请先检查建议的配额与当前磁盘使用量之间的一致性,以确保没有冲突。
- 4. 为一个或多个文件系统启用配额。

有关这些过程的特定信息,请参见第88页中的"设置配额(任务图)"。

下表介绍了用于设置磁盘配额的命令。

表7-1 用于设置配额的命令

命令	任务	手册页
edquota	针对每个用户设置 inode 数量和磁盘 空间量的硬限制和软限制。	edquota(1M)

表7-1 用于设置配额的命令 (续)

命令	任务	手册页
quotacheck	检查每个已挂载的 UFS 文件系统,将 文件系统的当前磁盘使用量与文件系 统磁盘配额文件中存储的信息进行比 较。然后,解决不一致问题。	${\sf quotacheck}(1M)$
quotaon	为指定的文件系统激活配额。	quotaon(1M)
quota	显示用户在已挂载文件系统中的磁盘 配额,以验证是否已正确设置配额。	$quota(1\mathrm{M})$

设置配额的原则

设置配额之前,需要确定要分配给每个用户的磁盘空间量和 inode 数量。如果要确保始终不超过文件系统总空间量,可根据用户数来划分文件系统空间。例如,如果三个用户共享 100 MB 的磁盘分片并且所需的磁盘空间相同,则可为每个用户分配 33 MB。

在并非所有用户都希望施加限制的环境中,您可能需要单独设置各用户的配额,以使配额总数大于文件系统的总大小。例如,如果三个用户共享 100 MB 的磁盘分片,则可为每个用户分配 40 MB。

使用 edquota 命令为一个用户建立配额后,可以将此配额用作样例,为同一文件系统中的其他用户设置相同配额。

在启用配额之前,请执行以下操作:

- 首先,为配额配置 UFS 文件系统。
- 为每个用户建立配额,并运行 quotacheck 命令检查当前磁盘使用量与配额文件之间的一致性。
- 定期运行 quotacheck 命令,前提是不会经常重新引导系统。

只有使用 quotaon 命令启用配额,才会执行使用 edquota 命令设置的配额。如果已正确配置了配额文件,则每次重新引导系统和挂载文件系统时,将自动启用配额。

设置配额(任务图)

任务	说明	参考
1. 为文件系统配置配额。	编辑 /etc/vfstab 文件,以便在 每次挂载文件系统时激活配额。 此外,还应创建一个 quotas 文 件。	第 88 页中的 "如何为文件系统 配置配额"
2. 为用户设置配额。	使用 edquota 命令为单个用户帐户创建磁盘配额和 inode 配额。	第89页中的"如何为用户设置 配额"
3. (可选) 为多个用户设置配额。	使用 edquota 命令将样例配额应 用于其他用户帐户。	第90页中的"如何为多个用户设置配额"
4. 检查一致性。	使用 quotacheck 命令将配额与 当前磁盘使用量进行比较,以确 保一个或多个文件系统中的一致 性。	第 90 页中的 "如何检查配额一 致性"
5. 启用配额。	使用 quotaon 命令在一个或多个 文件系统中启动配额。	第 91 页中的 "如何启用配额"

▼ 如何为文件系统配置配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- 2 对于要获取配额的每个 UFS 文件系统,编辑 /etc/vfstab 文件并向 mount options 字段中添加 rg。
- 3 将目录转到将获取配额的文件系统的根目录。
- 4 创建一个名为 quotas 的文件。
 - # touch quotas
- 5 更改读取/写入权限,以便仅供超级用户访问。
 - # chmod 600 quotas

示例7-1 针对配额配置文件系统

以下 /etc/vfstab 示例显示,系统 pluto 中的 /export/home 目录在本地系统中作为 NFS 文件系统挂载。通过 mount options 列下的 rq 项可以判断已启用了配额。

device device mount fsck mount mount FS # to mount to fsck point type pass at boot options # pluto:/export/home - /export/home nfs yes

/etc/vfstab 文件中的以下示例行说明本地 /work 目录在挂载时已启用配额, mount options 列下的 rg 项指明了这一点。

#device device mount FS fsck mount mount to fsck #to mount point type pass at boot options #/dev/dsk/c0t4d0s0 /dev/rdsk/c0t4d0s0 /work ufs 3

- 另请参见 第89页中的"如何为用户设置配额"
 - 第90页中的"如何为多个用户设置配额"
 - 第90页中的"如何检查配额一致性"
 - 第91页中的"如何启用配额"

▼ 如何为用户设置配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南 :安全性服务》中的"配置 RBAC (任务列表)"。

- 2 使用配额编辑器创建一个临时文件,对于在文件系统的根目录中包含 quotas 文件的每 个已挂载的UFS文件系统,该临时文件都包含一行配额信息。
 - # edquota username

其中, username 是要为其设置配额的用户。

- 3 将 1 KB 磁盘块的数量(软限制和硬限制)和 inode 数量(软限制和硬限制)从缺省值 0 更改为针对每个文件系统指定的配额。
- 4 验证用户的配额。

quota -v username

在存在配额的所有已挂载文件系统中显示用户的配额信息。

指定要查看配额限制的用户名。 username

示例7-2 为用户设置配额

以下示例显示了 edguota 在某个系统中打开的临时文件的内容,在该系统中,/files 是 根目录中包含 quotas 文件的唯一已挂载文件系统。

fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

以下示例显示了设置配额后临时文件中的同一行。

fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)

▼ 如何为多个用户设置配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用配额编辑器将已为样例用户建立的配额应用到您指定的其他用户。

edquota -p prototype-user username ...

prototype-user 已为其设置了配额的帐户的用户名。

username... 指定其他帐户的一个或多个用户名。通过以空格分隔每个用户名来指

定多个用户名。

示例7-3 为多个用户设置样例配额

以下示例说明如何将为用户 bob 建立的配额应用到用户 mary 和 john。

edquota -p bob mary john

▼ 如何检查配额一致性

重新引导系统时会自动运行 quotacheck 命令。通常不需要在具有配额的空文件系统中运行 quotacheck 命令。但是,如果要在包含现有文件的文件系统中设置配额,则需要运行 quotacheck 命令,以使配额数据库与文件系统中已存在的文件或 inode 同步。

此外应谨记,在大型文件系统中运行 quotacheck 命令会非常耗时。

注 – 为确保磁盘数据的准确性,在手动运行 quotacheck 命令时,检查的文件系统应处于停顿状态。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 对UFS 文件系统运行一致性检查。

quotacheck [-va] filesystem

- -v (可选)确定每个用户在特定文件系统中的磁盘配额。
- -a 检查 /etc/vfstab 文件中包含 rq 项的所有文件系统。

filesystem 指定要检查的文件系统。

有关更多信息,请参见 quotacheck(1M)手册页。

示例7-4 检查配额一致性

以下示例说明如何检查 /dev/rdsk/c0t0d0s7 磁盘分片中 /export/home 文件系统的配额。/export/home 文件系统是 /etc/vfstab 文件中具有 rg 项的唯一文件系统。

quotacheck -va

*** Checking quotas for /dev/rdsk/c0t0d0s7 (/export/home)

▼ 如何启用配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 启用文件系统配额。

quotaon [-v] -a filesystem ...

- -v 启用配额后为每个文件系统显示一条消息。
- -a 为在 /etc/vfstab 文件中包含 rg 项的所有文件系统启用配额。

filesystem... 为指定的一个或多个文件系统启用配额。指定多个文件系统时,需要用 空格来分隔每个文件系统的名称。

示例7-5 启用配额

以下示例说明如何为 /dev/dsk/c0t4d0s7 和 /dev/dsk/c0t3d0s7 磁盘分片上的文件系统启用配额。

quotaon -v /dev/dsk/c0t4d0s7 /dev/dsk/c0t3d0s7

/dev/dsk/c0t4d0s7: quotas turned on
/dev/dsk/c0t3d0s7: quotas turned on

维护配额(任务图)

任务	说明	参考
检查超过的配额。	显示在使用 quota 命令激活配额 的文件系统中各用户的配额和磁 盘使用情况。	第 92 页中的 "如何检查超过的 配额"
检查文件系统中的配额。	使用 repquota 命令显示一个或 多个文件系统中所有用户的配额 和磁盘使用情况。	第93页中的"如何检查文件系统中的配额"
更改软限制缺省值。	使用 edquota 命令更改用户可以 超过其磁盘空间配额或 inode 配 额的时间长度。	第 95 页中的 "如何更改软限制 缺省值"
更改用户的配额。	使用配额编辑器 edquota 更改单个用户的配额。	第 96 页中的 "如何为用户更改 配额"
为用户禁用配额。	使用配额编辑器 edquota 为单个用户禁用配额。	第 97 页中的 "如何为用户禁用 配额"
禁用配额。	使用 quotaoff 命令禁用配额。	第98页中的"如何禁用配额"

检查配额

设置并启用磁盘配额和 inode 配额后,即可检查是否有用户超过了其配额。此外,还可以检查整个文件系统的配额信息。

下表介绍了用于检查配额的命令。

表7-2 用于检查配额的命令

命令	任务
quota(1M)	显示用户配额和当前磁盘使用情况,以及有关超过其配额的用户的信息
repquota(1M)	显示指定文件系统所拥有的配额、文件和空间量

▼ 如何检查超过的配额

对于已使用 quota 命令激活配额的文件系统中的各个用户,您可以显示其配额和磁盘使用情况。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 显示启用配额的已挂载文件系统的用户配额。

quota [-v] username

-v 显示在具有配额的所有已挂载文件系统中的一个或多个用户的配额。

username 用户帐户的登录名或 UID。

示例7-6 检查超过的配额

以下示例显示由 UID 301 标识的用户帐户有一个 1KB 的配额,但尚未使用任何磁盘空间。

quota -v 301

Disk quotas for bob (uid 301):

Filesystem usage quota limit timeleft files quota limit timeleft

/export/home 0 1 2 0 2

Filesystem 文件系统的挂载点。

usage 当前的块使用情况。

quota 软块限制。

limit 硬块限制。

timeleft 配额计时器中剩余的时间,以天为单位。

files 当前的 inode 使用情况。

quota 软 inode 限制。

limit 硬 inode 限制。

timeleft 配额计时器中剩余的时间,以天为单位。

▼ 如何检查文件系统中的配额

使用 repquota 命令显示一个或多个文件系统中所有用户的配额和磁盘使用情况。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 显示一个或多个文件系统的所有配额(即使未使用也显示)。

repquota [-v] -a filesystem

-v 报告所有用户的配额,包括那些不占用资源的用户。

-a 报告所有文件系统。

filesystem 报告指定的文件系统。

示例7-7 检查文件系统中的配额

以下示例显示在仅对一个文件系统 (/export/home) 启用配额的系统中 repquota 命令的输出。

repquota -va

/dev/dsk/c0t3d0s7 (/export/home):

Block limits File limits soft hard timeleft used soft hard timeleft User used #301 --1 2.0 days 0 2 3 #341 --57 50 7.0 days 2 90 100

Block limits 定义

used 当前的块使用情况。

soft 软块限制。 hard 硬块限制。

timeleft 配额计时器中剩余的时间,以天为单位。

File limits 定义

used 当前的 inode 使用情况。

soft软 inode 限制。hard硬 inode 限制。

timeleft 配额计时器中剩余的时间,以天为单位。

更改和删除配额

您可以更改配额,以调整用户可以占用的磁盘空间量或 inode 数量。还可以根据需要,为个别用户或从整个文件系统中删除配额。

下表介绍了用于更改配额或删除配额的命令。

表7-3 用于更改配额和删除配额的命令

命令	手册页	说明
edquota	edquota(1M)	更改每个用户的 inode 数量或磁盘空间量的硬限制和软限制。此外,还要更改具有配额的每个文件系统的软限制。
quotaoff	$quotaon(1\mathrm{M})$	禁用指定文件系统的配额。

▼ 如何更改软限制缺省值

缺省情况下,用户可以超过其配额软时间限制一周。因此,在重复违反磁盘空间配额 或 inode 配额软时间限制一周后,系统将禁止用户使用更多的 inode 或磁盘块。

使用 edguota 命令可以更改用户可超过其磁盘空间配额或 inode 配额的时间长度。

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 使用配额编辑器创建包含软时间限制的临时文件。

edquota -t

其中,-t 选项指定为每个文件系统编辑软时间限制。

3 将时间限制从 0 (缺省值) 更改为指定的时间限制。因此,可使用数字和关键字 month、week、day、hour、min 或 sec。

注-此过程不会影响当前的配额违反者。

示例7-8 更改软限制缺省值

以下示例显示了 edquota 命令在某一系统(其中 /export/home 是唯一具有配额的已挂载文件系统)中打开的临时文件的内容。缺省值 ø 表示使用的缺省时间限制为一周。

fs /export/home blocks time limit = 0 (default), files time limit = 0 (default)

以下示例显示了在将超过块配额的时间限制更改为2周之后的同一临时文件。而且,超过文件数的时间限制已更改为16天。

fs /export/home blocks time limit = 2 weeks, files time limit = 16 days

▼ 如何为用户更改配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 使用配额编辑器打开临时文件,对于在文件系统的根目录中具有 quotas 文件的每个已 挂载文件系统,该文件都包含一行配额信息。

edquota username

其中, username 指定要更改其配额的用户名。

注意 – 可以将多个用户指定为 edquota 命令的参数。但不显示此信息所属的用户。为避免混乱,请仅指定一个用户名。

- 3 指定 1 KB 磁盘块的数量(软限制和硬限制)和 inode 数量(软限制和硬限制)。
- 4 验证是否已正确更改了用户的配额。

quota -v username

·v 显示已启用配额的所有已挂载文件系统中的用户配额信息。

username 指定要检查其配额的用户名。

示例7-9 为用户更改配额

以下示例显示了由 edquota 命令打开的临时文件的内容。在打开此临时文件的系统中,/files 是在文件系统的根目录中包含 quotas 文件的唯一已挂载文件系统。

fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

以下输出显示了更改配额后的同一临时文件。

fs /files blocks (soft = 0, hard = 500) inodes (soft = 0, hard = 100)

示例7-10 验证是否已更改了硬配额

以下示例说明如何验证用户 smith 的硬配额已更改为 500 个 1KB 块和 100 个 inode。

quota -v smith

Disk quotas for smith (uid 12):

Filesystem usage quota limit timeleft files quota limit timeleft

/files 1 0 500 1 0 100

▼ 如何为用户禁用配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 使用配额编辑器创建一个临时文件,对于在顶层目录中包含 quotas 文件的每个已挂载 文件系统,该临时文件都包含一行配额信息。

edquota username

其中, username 指定要禁用其配额的用户名。

注意 – 可以将多个用户指定为 edquota 命令的参数。但不显示此信息所属的用户。为避免混乱,请仅指定一个用户名。

3 将1KB磁盘块的数量(软块和硬块)和inode数量(软inode和硬inode)更改为0。

注-确保将上述值更改为零。请勿从文本文件中删除该行。

4 验证是否已禁用用户的配额。

quota -v username

-v 显示已启用配额的所有已挂载文件系统中的用户配额信息。

username 指定要检查其配额的用户名(UID)。

示例7-11 为用户禁用配额

以下示例显示了由 edquota 命令在某一系统中打开的临时文件的内容,在该系统中, /files 是在文件系统的根目录中包含配额文件的唯一已挂载文件系统。

fs /files blocks (soft = 50, hard = 60) inodes (soft = 90, hard = 100)

以下示例显示了禁用配额后的同一临时文件。

fs /files blocks (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

▼ 如何禁用配额

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 禁用文件系统配额。

quotaoff [-v] -a filesystem ...

- -v 显示禁用配额时每个文件系统中的消息。
- -a 为所有文件系统禁用配额。

filesystem 为指定的一个或多个文件系统禁用配额。指定多个文件系统时,需要用空格来分隔每个文件系统的名称。

示例7-12 禁用配额

以下示例说明如何为 /export/home 文件系统禁用配额。

quotaoff -v /export/home
/export/home: quotas turned off

调度系统任务(任务)

本章介绍如何使用 crontab 和 at 命令来调度例程或单个(一次)系统任务。

本章还说明如何使用以下文件来控制对上述命令的访问:

- cron.deny
- cron.allow
- at.deny

有关与调度系统任务关联的过程信息,请参见以下内容:

- 第99页中的"创建和编辑 crontab 文件(任务图)"
- 第 111 页中的 "使用 at 命令(任务图)"

创建和编辑 crontab 文件(任务图)

任务	说明	参考
创建或编辑 crontab 文件。	使用 crontab -e 命令来创建或编辑 crontab 文件。	第 104 页中的 "如何创建或编辑 crontab 文件"
验证 crontab 文件是否存在。	使用 ls -l 命令验证 /var/spool/cron/crontabs 文件的内容。	第 105 页中的 "如何验证 crontab 文件是否存在"
显示 crontab 文件。	使用 ls -l 命令显示 crontab 文件。	第 106 页中的 "如何显示 crontab 文件"
删除 crontab 文件	crontab 文件设置时使用了受限权限。使用 crontab -r 命令而不是 rm 命令删除 crontab 文件。	第 107 页中的 "如何删除 crontab 文件"

任务	说明	参考
拒绝 crontab 访问	要拒绝用户对 crontab 命令的访问,请通过编辑 /etc/cron.d/cron.deny 文件将用户名添加到该文件中。	第 109 页中的 "如何拒绝 crontab 命令访问"
将 crontab 访问限制于指定的用户。	要允许用户访问 crontab 命令,请将用户名添加到 /etc/cron.d/cron.allow文件中。	第 109 页中的 "如何将 crontab 命令访问限制于指定的用户"

自动执行系统任务的方法

可以设置多个要自动执行的系统任务。其中有些任务应该以固定间隔进行。其他任务只需运行一次,可能是在晚间或周末等非高峰时间。

本节包含有关 crontab 和 at 这两个命令的概述信息,使用这两个命令可以调度要自动执行的例程任务。crontab 命令用于调度重复性任务。at 命令则用于调度只执行一次的任务。

下表概括说明了 crontab 和 at 命令,以及可用来控制对这些命令的访问的文件。

表8-1 命令摘要:调度系统任务

命令	调度内容	文件位置	控制访问的文件
crontab	固定间隔的多 个系统任务	/var/spool/cron/crontabs	/etc/cron.d/cron.allow和 /etc/cron.d/cron.deny
at	单个系统任务	/var/spool/cron/atjobs	/etc/cron.d/at.deny

也可以使用 Solaris Management Console 的调度作业工具来调度例程任务。有关使用和启动 Solaris Management Console 的信息,请参见《系统管理指南:基本管理》中的第 2章 "使用 Solaris Management Console(任务)"。

用于调度重复性作业:crontab

可以使用 crontab 命令来调度例程系统管理任务,使其每日、每周或每月执行一次。

每日 crontab 系统管理任务可能包括以下内容:

- 从临时目录中删除几天前的文件
- 执行记帐摘要命令
- 使用 df 和 ps 命令捕获系统快照
- 执行每日安全监视
- 运行系统备份

每周 crontab 系统管理任务可能包括以下内容:

- 重新生成 catman 数据库以供 man -k 命令使用
- 运行 fsck -n 命令以列出任何磁盘问题

每月 crontab 系统管理任务可能包括以下内容:

- 列出在特定月份中未使用的文件
- 生成每月记帐报告

此外,用户还可以调度 crontab 命令以执行其他例程系统任务,例如发送提醒和删除备份文件。

有关调度 crontab 作业的逐步说明,请参见第 104 页中的 "如何创建或编辑 crontab 文件"。

用于调度单个作业:at

通过 at 命令可以调度要在以后执行的作业。该作业可由单个命令或脚本组成。

与 crontab 类似,使用 at 命令可以调度例程任务的自动执行。但与 crontab 文件不同的是,at 文件只执行一次任务。然后,便从目录中删除这些文件。因此,在运行将输出定向到独立文件中以供以后检查的单个命令或脚本时,at 命令很有用。

提交 at 作业包括键入命令并按照 at 命令语法指定选项来调度执行作业的时间。有关提交 at 作业的更多信息,请参见第 112 页中的 "at 命令的说明"。

at 命令在 /var/spool/cron/atjobs 目录中存储您运行的命令或脚本以及当前环境变量的副本。at 作业文件名是一个长数字,用于指定该文件在 at 队列中的位置,后跟 .a 扩展名,例如 793962000 .a。

cron 守护进程在启动时检查 at 作业并侦听是否提交了新作业。cron 守护进程执行 at 作业后,将从 at jobs 目录中删除 at 作业的文件。有关更多信息,请参见 at(1) 手册页。

有关调度 at 作业的逐步说明,请参见第 113 页中的 "如何创建 at 作业"。

调度重复性系统任务(cron)

以下各节介绍如何创建、编辑、显示和删除 crontab 文件,以及如何控制对这些文件的访问。

在 crontab 文件内

cron 守护进程会根据在每个 crontab 文件中找到的命令来调度系统任务。crontab 文件由命令组成,每个命令占据一行,这些命令将以固定间隔执行。每行开头包含日期和时间信息,以告知 cron 守护进程何时执行命令。

例如,在 SunOS 软件安装期间将提供名为 root 的 crontab 文件。该文件的内容包括以下命令行:

```
10 3 * * * /usr/sbin/logadm (1)
15 3 * * 0 /usr/lib/fs/nfs/nfsfind (2)
1 2 * * * [ -x /usr/sbin/rtc ] && /usr/sbin/rtc -c > /dev/null 2>&1 (3)
30 3 * * * [ -x /usr/lib/gss/gsscred clean ] && /usr/lib/gss/gsscred clean (4)
```

下面介绍了上述每个命令行的输出:

- 第一行在每天凌晨 3:10 运行 logadm 命令。
- 第二行在每个星期日凌晨 3:15 执行 nfsfind 脚本。
- 第三行在每天凌晨 2:10 运行用于检查夏时制时间(并根据需要进行更正)的脚本。如果没有 RTC 时区,也没有 /etc/rtc config 文件,则此项不执行任何操作。

```
仅适用于x86-/usr/sbin/rtc脚本只能在基于x86的系统上运行。
```

■ 第四行在每天凌晨 3:30 检查(并删除)通用安全服务表 /etc/gss/gsscred_db 中的 重复项。

有关 crontab 文件中各行语法的更多信息,请参见第 103 页中的 "crontab 文件项的语法"。

crontab 文件存储在 /var/spool/cron/crontabs 目录中。在 SunOS 软件安装期间,会提供包括 root 在内的若干个 crontab 文件。请参见下表。

	たも ノい		7 14
表 8-2	世 白	crontal	n X 11+

crontab文件	功能
adm	记帐
lp	打印
root	一般系统功能和文件系统清除
sys	性能数据收集
uucp	一般 uucp 清除

除了缺省的 crontab 文件之外,用户还可以创建 crontab 文件,以调度自己的系统任务。其他 crontab 文件按用来创建它们的用户帐户名称(如 bob、mary、smith 或 jones)命名。

要访问属于 root 或其他用户的 crontab 文件,需要具有超级用户权限。

以下各节介绍了说明如何创建、编辑、显示和删除 crontab 文件的过程。

cron 守护进程处理调度的方法

cron 守护进程可管理 crontab 命令的自动调度。cron 守护进程将检查/var/spool/cron/crontabs 目录中是否存在 crontab 文件。

cron 守护进程在启动时执行以下任务:

- 检查新的 crontab 文件。
- 阅读文件中列出的执行时间。
- 在话当时间提交执行命令。
- 侦听来自 crontab 命令的有关更新的 crontab 文件的通知。

cron 守护进程以几乎相同的方式来控制 at 文件的调度。这些文件存储在/var/spool/cron/atjobs 目录中。cron 守护进程还侦听来自 crontab 命令的有关已提交的 at 作业的通知。

crontab 文件项的语法

crontab 文件由命令组成,每个命令占据一行,这些命令将按每个命令行的前五个字段 指定的时间自动执行。下表中介绍了这五个字段,它们以空格分隔。

表8-3 crontab时间字段的可接受值

时间字段	值
分钟	0-59
小时	0-23
月中某日	1-31
月份	1-12
星期中某日	0-6 (0=星期日)

在 crontab 时间字段中使用特殊字符时请遵循以下规则:

- 使用空格分隔每个字段。
- 使用逗号分隔多个值。

- 使用连字符指定某一范围的值。
- 使用星号作为通配符来包括所有可能值。
- 在一行开头使用注释标记(#)来表示注释或空白行。

例如,以下 crontab 命令项将于每月第一天和第十五天下午 4 点在用户的控制台窗口中显示提醒。

0 16 1,15 * * echo Timesheets Due > /dev/console

crontab 文件中的每个命令必须只占据一行,即使这一行非常长也是如此。crontab 文件不识别额外的回车。有关 crontab 项和命令选项的更多详细信息,请参阅 crontab(1) 手册页。

创建和编辑 crontab 文件

创建 crontab 文件的最简单方法是使用 crontab -e 命令。此命令会调用已为系统环境设置的文本编辑器。系统环境的缺省编辑器在 EDITOR 环境变量中定义。如果尚未设置此变量,crontab 命令将使用缺省编辑器 ed。最好选择您熟悉的编辑器。

以下示例说明如何确定是否已定义编辑器,以及如何将vi设置为缺省值。

\$ which \$EDITOR

ф

- \$ EDITOR=vi
- \$ export EDITOR

创建 crontab 文件时,该文件会自动放入 /var/spool/cron/crontabs 目录,并以您的用户名命名。如果具有超级用户权限,则可为其他用户或 root 创建或编辑 crontab 文件。

▼ 如何创建或编辑 crontab 文件

开始之前 如果要创建或编辑属于 root 或其他用户的 crontab 文件,您必须成为超级用户或承担等效角色。角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

无需成为超级用户,便可编辑自己的 crontab 文件。

1 创建新的 crontab 文件,或编辑现有文件。

\$ crontab -e [username]

其中,username 指定您要为其创建或编辑 crontab 文件的用户帐户的名称。无需具有超级用户权限便可创建自己的 crontab 文件,但如果要为 root 或其他用户创建或编辑 crontab 文件,则必须具有超级用户权限。

注意 - 如果意外键入了无选项的 crontab 命令,请按下编辑器的中断字符。使用此字符将退出而不会保存更改。如果保存了更改并退出文件,现有的 crontab 文件将被空文件 覆写。

2 向 crontab 文件中添加命令行。

按照第 103 页中的 "crontab 文件项的语法"中所述的语法操作。将 crontab 文件放入 /var/spool/cron/crontabs 目录。

3 验证 crontab 文件更改。

crontab -l [username]

示例8-1 创建 crontab 文件

以下示例说明如何为其他用户创建 crontab 文件。

crontab -e jones

添加到新 crontab 文件中的以下命令项将在每个星期日的凌晨 1:00 自动删除用户起始目录中的所有日志文件。由于该命令项不重定向输出,因此将重定向字符添加到*.log之后的命令行中。这样可以确保正常执行命令。

This command helps clean up user accounts.
1 0 * * 0 rm /home/jones/*.log > /dev/null 2>&1

▼ 如何验证 crontab 文件是否存在

● 要验证用户的 crontab 文件是否存在,请在 /var/spool/cron/crontabs 目录中使用 ls -l 命令。例如,以下输出说明用户 jones 和 smith 的 crontab 文件存在。

\$ ls -l /var/spool/cron/crontabs

```
-rw-r--r-- 1 root
                     SVS
                                  190 Feb 26 16:23 adm
                                  225 Mar 1 9:19 jones
-rw----- 1 root
                     staff
-rw-r--r-- 1 root
                     root
                                 1063 Feb 26 16:23 lp
-rw-r--r-- 1 root
                                  441 Feb 26 16:25 root
                     sys
-rw----- 1 root
                     staff
                                   60 Mar 1 9:15 smith
-rw-r--r-- 1 root
                                  308 Feb 26 16:23 sys
                     SVS
```

使用 crontab -l 命令验证用户的 crontab 文件的内容,如第 106 页中的 "如何显示 crontab 文件"中所述。

显示 crontab 文件

crontab -l 命令显示 crontab 文件内容的方式与 cat 命令显示其他类型文件内容的方式 非常相似。无需转到 /var/spool/cron/crontabs 目录(crontab 文件所在的目录),便 可使用此命令。

缺省情况下,crontab -1 命令显示您自己的 crontab 文件。要显示属于其他用户的 crontab 文件,您必须是超级用户。

▼ 如何显示 crontab 文件

开始之前 成为超级用户或承担等效角色,以显示属于 root 或其他用户的 crontab 文件。角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

无需成为超级用户或承担等效角色,即可显示您自己的 crontab 文件。

● 显示 crontab 文件。

\$ crontab -l [username]

其中,*username* 指定了要为其显示 crontab 文件的用户帐户的名称。显示其他用户的 crontab 文件需要超级用户权限。

注意 - 如果意外键入了无选项的 crontab 命令,请按下编辑器的中断字符。使用此字符将退出而不会保存更改。如果保存了更改并退出文件,现有的 crontab 文件将被空文件覆写。

示例8-2 显示 crontab 文件

此示例说明如何使用 crontab -1 命令来显示用户的缺省 crontab 文件的内容。

\$ crontab -l
13 13 * * * chmod q+w /home1/documents/*.book > /dev/null 2>&1

示例8-3 显示缺省的 root crontab 文件

此示例说明如何显示缺省的 root crontab 文件。

```
# The root crontab should be used to perform accounting data collection.
#
#
10 3 * * * /usr/sbin/logadm
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
30 3 * * * [ -x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean
#10 3 * * * /usr/lib/krb5/kprop script slave kdcs
```

示例8-4 显示其他用户的 crontab 文件

此示例说明如何显示属于其他用户的 crontab 文件。

删除 crontab 文件

缺省情况下,会设置 crontab 文件保护,以防止使用 rm 命令意外删除 crontab 文件。请改用 crontab - r 命令删除 crontab 文件。

缺省情况下, crontab - r 命令会删除您自己的 crontab 文件。

无需转到 /var/spool/cron/crontabs 目录(crontab 文件所在的目录),便可使用此命令。

▼ 如何删除 crontab 文件

开始之前 成为超级用户或承担等效角色,以删除属于 root 或其他用户的 crontab 文件。角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

无需成为超级用户或承担等效角色,即可删除您自己的 crontab 文件。

1 删除 crontab 文件。

\$ crontab -r [username]

其中 *username* 指定要为其删除 crontab 文件的用户帐户的名称。为其他用户删除 crontab 文件需要超级用户权限。

注意 - 如果意外键入了无选项的 crontab 命令,请按下编辑器的中断字符。使用此字符将退出而不会保存更改。如果保存了更改并退出文件,现有的 crontab 文件将被空文件覆写。

2 验证是否已删除 crontab 文件。

ls /var/spool/cron/crontabs

示例8-5 删除 crontab 文件

以下示例说明用户 smith 如何使用 crontab - r 命令删除他的 crontab 文件。

```
$ ls /var/spool/cron/crontabs
adm jones lp root smith sys uucp
$ crontab -r
$ ls /var/spool/cron/crontabs
adm jones lp root sys uucp
```

控制对 crontab 命令的访问

可以使用 /etc/cron.d 目录中的两个文件来控制对 crontab 命令的访问: cron.deny 和 cron.allow。这些文件只允许指定的用户执行 crontab 命令任务,例如创建、编辑、显示或删除自己的 crontab 文件。

cron.deny和cron.allow文件包含用户名的列表,每行一个用户名。

这些访问控制文件按以下方式协同工作:

- 如果存在 cron.allow,则只有此文件中列出的用户可以创建、编辑、显示或删除 crontab 文件。
- 如果不存在 cron.allow,则所有用户都可以提交 crontab 文件(cron.deny 中列出的用户除外)。
- 如果 cron.allow 和 cron.deny 都不存在,则运行 crontab 命令需要超级用户权限。

编辑或创建 cron.deny 和 cron.allow 文件需要超级用户权限。

在 SunOS 软件安装期间创建的 cron.deny 文件包含以下用户名:

\$ cat /etc/cron.d/cron.deny

daemon bin smtp nuucp listen nobody noaccess 缺省 cron.deny 文件中的用户名都不能访问 crontab 命令。您可以编辑此文件,以添加被拒绝访问 crontab 命令的其他用户名。

未提供缺省的 cron.allow 文件。因此,在安装 Solaris 软件后,所有用户(缺省 cron.deny 文件中列出的用户除外)都可以访问 crontab 命令。如果创建 cron.allow 文件,则只有这些用户可以访问 crontab 命令。

▼ 如何拒绝 crontab 命令访问

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 编辑 /etc/cron.d/cron.deny 文件并添加用户名,每个用户占据一行。将拒绝访问 crontab 命令的用户包括在内。

daemon
bin
smtp
nuucp
listen
nobody
noaccess
username1
username3
.

3 验证 /etc/cron.d/cron.deny 文件是否包含新项。

cat /etc/cron.d/cron.deny

daemon bin nuucp listen nobody

noaccess

▼ 如何将 crontab 命令访问限制于指定的用户

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

- 2 创建/etc/cron.d/cron.allow文件。
- **3** 将 root 用户名添加到 cron.allow 文件中。 如果未将 root 添加到该文件中,则会拒绝超级用户访问 crontab 命令。
- 4 添加用户名,每行一个用户名。将允许使用 crontab 命令的用户包括在内。

root

username1 username2 username3

.

示例8-6 将 crontab 命令访问限制于指定的用户

以下示例显示一个 cron.deny 文件,该文件用于禁止用户名 jones、 temp 和 visitor 访问 crontab 命令。

\$ cat /etc/cron.d/cron.deny

daemon

bin

smtp

nuucp

listen

nobody

noaccess

jones

temp

visitor

以下示例显示一个 cron.allow 文件。用户 root、jones、lp 和 smith 是仅有的可以访问 crontab 命令的用户。

\$ cat /etc/cron.d/cron.allow

root

iones

lp

smith

如何验证受限的 crontab 命令访问

要验证特定用户是否可以访问 crontab 命令,请在使用该用户帐户登录后执行 crontab -1 命令。

\$ crontab -l

如果用户可以访问 crontab 命令并已创建 crontab 文件,则会显示该文件。否则,如果用户可以访问 crontab 命令但不存在 crontab 文件,则会显示与以下消息类似的消息:

crontab: can't open your crontab file

此用户已列在 cron.allow 文件中(如果存在该文件),或者该用户未列在 cron.deny 文件中。

如果用户不能访问 crontab 命令,则无论是否存在以前的 crontab 文件,都会显示以下消息:

crontab: you are not authorized to use cron. Sorry.

此消息表明,该用户未列在 cron.allow 文件(如果该文件存在)中,或者该用户已列在 cron.deny 文件中。

使用 at 命令(任务图)

任务	说明	参考
创建 at 作业。	使用 at 命令执行以下操作: 从命令行启动 at 实用程序。 键入要执行的命令或脚本,每行一个。 退出 at 实用程序并保存作业。	第113页中的"如何创建 at 作业"
显示at队列。	使用 atq 命令显示 at 队列。	第 114 页中的 "如何显示 at 队列"
验证 at 作业。	使用 atq 命令确认属于特定用户的 at 作业已提交至队列。	第 114 页中的 "如何验证 at 作业"
显示 at 作业。	使用 at -1[<i>job-id</i>] 显示已提交至 队列的 at 作业。	第 114 页中的 "如何显示 at 作业"
删除at作业。	使用 at -r [job-id] 命令从队列中 删除 at 作业。	第 115 页中的 "如何删除 at 作业"
拒绝访问 at 命令。	要拒绝用户访问 at 命令,请编辑 /etc/cron.d/at.deny 文件。	第 115 页中的 "如何拒绝对 at 命令的访问"

调度单个系统任务(at)

以下各节介绍如何使用 at 命令来执行下列任务:

- 调度作业(命令和脚本)以供以后执行
- 如何显示和删除这些作业
- 如何控制对 at 命令的访问

缺省情况下,用户可以创建、显示和删除自己的 at 作业文件。要访问属于 root 或其他用户的 at 文件,您必须具有超级用户权限。

提交 at 作业时,会为该作业分配作业标识号和 .a 扩展名。此指定将成为该作业的文件名,以及其队列编号。

at 命令的说明

提交 at 作业文件需执行以下步骤:

- 1. 调用 at 实用程序并指定命令执行时间。
- 2. 键入以后要执行的命令或脚本。

注-如果此命令或脚本的输出很重要,请确保将输出定向到一个文件中,以便以后 检查。

例如,以下 at 作业将在 7 月的最后一天接近午夜时删除用户帐户 smith 的 core 文件。

\$ at 11:45pm July 31
at> rm /home/smith/*core*
at> Press Control-d
commands will be executed using /bin/csh
job 933486300.a at Tue Jul 31 23:45:00 2004

控制对 at 命令的访问

您可以设置一个文件来控制对 at 命令的访问,只允许指定的用户创建、删除或显示有关 at 作业的队列信息。控制对 at 命令的访问的文件 /etc/cron.d/at.deny 由用户名列表构成,每个用户名占据一行。此文件中列出的用户不能访问 at 命令。

在 SunOS 软件安装期间创建的 at.denv 文件包含以下用户名:

daemon bin smtp nuucp listen nobody noaccess

使用超级用户权限,您可以编辑 at.deny 文件,以添加要限制其对 at 命令访问的其他用户名。

▼ 如何创建 at 作业

1 启动 at 实用程序,指定所需的作业执行时间。

\$ at [-m] *time* [*date*]

-m 在作业完成后发送邮件。

time 指定要调度作业的小时。如果不按 24 小时制指定小时,请添加 am 或 pm。可接受的关键字包括 midnight、noon 和 now。分钟是可选的选项。

date 指定月份的前三个或更多字母、一周中的某日或关键字 today 或 tomorrow。

2 在 at 提示符下,键入要执行的命令或脚本,每行一个。

通过在每行结尾处按回车键,可以键入多个命令。

3 按Ctrl-D组合键,以退出 at 实用程序并保存 at 作业。

at 作业将被分配一个队列编号,它也是该作业的文件名。退出 at 实用程序时将显示该编号。

示例8-7 创建 at 作业

以下示例显示了用户 jones 创建的 at 作业,该作业用于在下午 7:30 删除其备份文件。由于她使用了 -m 选项,因此她会在该作业完成后收到电子邮件。

\$ at -m 1930

at> rm /home/jones/*.backup

at> Press Control-D

job 897355800.a at Thu Jul 12 19:30:00 2004

她收到一封确认已执行 at 作业的电子邮件。

Your "at" job "rm /home/jones/*.backup" completed.

以下示例说明 jones 如何调度在星期六凌晨 4:00 执行的大型 at 作业。该作业输出被定向到名为 big, file 的文件中。

\$ at 4 am Saturday
at> sort -r /usr/dict/words > /export/home/jones/big.file

▼ 如何显示 at 队列

● 要检查在 at 队列中等待的作业,请使用 atq 命令。此命令可以显示您已创建的 at 作业的状态信息。

\$ ata

▼ 如何验证 at 作业

● 要验证您是否已创建了at作业,请使用atq命令。在以下示例中,atq命令确认已将属于jones的at作业提交至队列。

\$ atq

Rank	Execution Date	0wner	Job	Queue	Job Name
1st	Jul 12, 2004 19:30	jones	897355800.a	а	stdin
2nd	Jul 14, 2004 23:45	jones	897543900.a	а	stdin
3rd	Jul 17, 2004 04:00	jones	897732000.a	а	stdin

▼ 如何显示 at 作业

● 要显示有关 at 作业的执行时间信息,请使用 at -1 命令。

\$ at -l [*job-id*]

其中,-1 job-id 选项表示要显示其状态的作业的标识号。

示例8-8 显示 at 作业

以下示例显示 at -1 命令的输出,该输出提供有关用户已提交的所有作业的状态信息。

\$ at -l

```
897543900.a Sat Jul 14 23:45:00 2004
897355800.a Thu Jul 12 19:30:00 2004
897732000.a Tue Jul 17 04:00:00 2004
```

以下示例显示使用 at -l 命令指定单个作业时所显示的输出。

\$ at -l 897732000.a

897732000.a Tue Jul 17 04:00:00 2004

▼ 如何删除 at 作业

开始之前 成为超级用户或承担等效角色,以删除属于 root 或其他用户的 at 作业。角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

无需成为超级用户或承担等效角色,便可删除自己的 at 作业。

1 在作业执行之前从队列中删除 at 作业。

s at -r [*iob-id*]

其中, -r job-id 选项指定要删除的作业的标识号。

2 使用 at -l(或 atq)命令,验证是否已删除 at 作业。 at -l 命令显示 at 队列中剩余的作业。不应显示已指定标识号的作业。

\$ at -l [*job-id*]

示例8-9 删除 at 作业

在以下示例中,用户要删除计划在7月17日凌晨4点执行的at作业。首先,该用户显示 at 队列,以找到作业标识号。然后,用户从 at 队列中删除此作业。最后,该用户验证是否已从队列中删除此作业。

\$ at -l

897543900.a Sat Jul 14 23:45:00 2003 897355800.a Thu Jul 12 19:30:00 2003 897732000.a Tue Jul 17 04:00:00 2003

\$ at -r 897732000.a
\$ at -l 897732000.a

at: 858142000.a: No such file or directory

▼ 如何拒绝对 at 命令的访问

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 编辑 /etc/cron.d/at.deny 文件并添加要禁止其使用 at 命令的用户名,每行一个用户名。

daemon

bin

smtp

nuucp listen nobody noaccess username1 username2 username3

示例8-10 拒绝 at 访问

以下示例显示了一个 at . deny 文件,该文件已被编辑过,因此用户 smith 和 jones 无法 访问 at 命令。

\$ cat at.deny

daemon bin smtp nuucp listen nobody noaccess

jones smith

▼ 如何验证 at 命令访问已被拒绝

● 要验证是否已将用户名正确添加到 /etc/cron.d/at.deny 文件,请在以该用户身份登录 后使用 at -1 命令。如果用户 smith 不能访问 at 命令,则将显示以下消息。

su smith

Password:

\$ at -l

at: you are not authorized to use at. Sorry.

类似地,如果该用户尝试提交 at 作业,则将显示以下消息:

\$ at 2:30pm

at: you are not authorized to use at. Sorry.

此消息确认该用户已列在 at.deny 文件中。

如果允许访问 at 命令,则 at -1 命令不会返回任何内容。

管理系统记帐(任务)

本章介绍如何设置和维护系统记帐。

以下是本章中概述信息的列表。

- 第118页中的"什么是系统记帐?"
- 第122页中的"设置系统记帐"

有关使用扩展记帐的信息,请参见《系统管理指南: Solaris Containers — 资源管理和 Solaris Zones》中的第 4 章 "扩展记帐(概述)"。

有关与系统记帐相关的逐步过程的信息,请参见第122页中的"系统记帐(任务图)"。

有关各种系统记帐报告的参考信息,请参见第10章。

系统记帐方面的新增功能

本节介绍 Solaris 发行版在系统记帐方面新增或更改的功能。有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

Solaris 进程记帐和统计信息改进

Solaris 10:对平均负荷的内部实现 cpu usr/sys/idle 以及记帐功能进行了更改。微状态记帐取代了原有的记帐机制,并在缺省情况下一直启用。因此,您可能会注意到进程使用情况和计时统计信息与以往稍有不同。

改用微状态记帐,可针对用户进程及其在各个状态上所花费的时间来提供更为准确的信息。此外,这些信息还用于从 /proc 文件系统中生成更精确的负荷平均值和统计信息。有关更多信息,请参见 proc(4) 手册页。

什么是系统记帐?

Solaris OS 中的系统记帐软件是一组程序,用于收集和记录有关用户连接时间、进程占用的 CPU 时间和磁盘使用情况的数据。收集到此数据后,即可生成报告并针对系统使用情况收取费用。

可以使用每日或每月系统记帐。或者,也可以按用户跟踪磁盘使用情况。

使用记帐程序可以执行以下任务:

- 监视系统使用情况
- 查找并更正性能问题
- 维护系统安全

在设置系统记帐程序后,这些程序大部分时间会自行运行。

系统记帐的工作原理

设置自动记帐时,先要将记帐启动脚本放入根的 crontab 文件中。然后,cron 命令即可自动启动该记帐启动脚本。

以下概述介绍了系统记帐过程。

- 1. 在系统启动和关闭期间,会在记帐文件中收集有关系统使用(如用户登录、运行进程和数据存储)的原始数据。
- 2. /usr/lib/acct/runacct 脚本会定期(通常一天一次)处理各种记帐文件并生成累积 概要文件和每日记帐报告。然后,/usr/lib/acct/prdaily 脚本将打印每日报告。 有关 runacct 脚本的更多信息,请参见第 131 页中的 "runacct 脚本"。
- 3. 可以通过执行 monacct 脚本每月处理并打印一次累积 runacct 摘要文件。 monacct 脚本生成的摘要报告提供了一种按月或按其他财务周期对用户计费的有效方法。

系统记帐组件

系统记帐软件提供了可将数据组织为摘要文件和报告的 C 语言程序和 Shell 脚本。这些程序驻留在 /usr/lib/acct 目录中。记帐报告驻留在 /var/adm/acct 目录中。

每日记帐有助于执行四种类型的审计:

- 连接记帐
- 讲程记帐
- 磁盘记帐
- 费用计算

连接记帐

通过连接记帐可以确定以下信息:

- 用户已登录的时间
- ttv线的使用情况
- 系统重新引导的次数
- 已关闭和打开记帐软件的次数

要提供有关连接会话的记帐信息,系统需要存储以下数据:

- 时间调整的记录
- 引导时间
- 关闭和打开记帐软件的次数
- 运行级的更改
- 用户进程(login 进程和 init 进程)的创建
- 进程的终止

这些记录是从系统程序(如 date、init、login、ttymon 和 acctwtmp)的输出中生成的。这些记录存储在 /var/adm/wtmpx 文件中。

wtmpx 文件中的项可以包含以下信息:

- 登录名称
- 设备名称
- 进程 ID
- 项类型
- 指明项创建时间的时间标记

讲程记帐

通过进程记帐可以跟踪有关系统中运行的每个进程的以下数据:

- 使用进程的用户的用户 ID 和组 ID
- 进程的启动时间和已用时间
- 进程的 CPU 时间 (用户时间和系统时间)
- 进程使用的内存量
- 进程运行的命令
- 控制进程的 tty

每次进程终止时,exit 程序便会收集此信息并将其写入 /var/adm/pacct 文件。

磁盘记帐

通过磁盘记帐可以收集有关每个用户在磁盘中的文件的以下数据并设置数据格式:

- 用户的用户名和用户 ID
- 用户的文件占用的块数

/usr/lib/acct/dodisk Shell 脚本以一定的时间间隔收集上述数据,该时间间隔是由您向 /var/spool/cron/crontabs/root 文件中添加的项确定的。反过来,dodisk 脚本会调用 acctdisk 和 acctdusg 命令。这些命令按登录名称收集磁盘使用情况的信息。

注意 - 通过运行 dodisk 脚本收集的信息存储在 /var/adm/acct/nite/disktacct 文件中。 下次运行 dodisk 脚本时将覆写此信息。因此,请避免在同一天中两次运行 dodisk 脚本。

对于随机写入的文件,acctdusg 命令计算的磁盘占用量可能比实际多,这会在文件中形成空洞。出现这种问题是由于 acctdusg 命令在确定文件大小时未读取文件的间接块。更确切地说,acctdusg 文件是通过检查文件 inode 中的当前文件大小值来确定文件大小的。

费用计算

chargefee 实用程序在 /var/adm/fee 文件中存储为用户提供的特殊服务的费用。例如,特殊服务可以是文件恢复。文件中的每项都由用户登录名、用户 ID 和费用组成。runacct 每天都会检查此文件,并将新项合并到记帐记录中。有关运行 chargefee 脚本以对用户计费的说明,请参见第 125 页中的 "如何对用户计费"。

每日记帐的工作原理

以下是每日记帐的工作原理的分步概要说明:

- 1. 将系统切换到多用户模式时,执行 /usr/lib/acct/startup 程序。startup 程序会执行多个调用每日记帐的其他程序。
- 2. acctwtmp 程序向 /var/adm/wtmpx 文件中添加一条"引导"记录。在此记录中,系统名显示为 wtmpx 记录中的用户名。下表汇总了原始记帐数据的收集方式及存储位置。

/var/adm中的文件	存储的信息	写入程序	格式
wtmpx	连接会话	login · init	二进制
	更改	date	二进制
	重新引导	acctwtmp	二进制
	关闭	shutacct	二进制
pacctn	进程	Kernel(当进程结束 时)	二进制

/var/adm中的文件	存储的信息	写入程序	格式
		turnacct switch(当 原有文件达到 500 块 时创建一个新文件)	二进制
fee	特殊费用	chargefee	ASCII
acct/nite/disktacct	使用的磁盘空间	dodisk	二进制

- 3. 使用 -on 选项调用的 turnacct 脚本开始进程记帐。具体来讲,就是 turnacct 脚本使用 /var/adm/pacct 参数执行 accton 程序。
- 4. 删除 Shell 脚本会"清除"由 runacct 脚本留在 sum 目录中的已保存的 pacct 和 wtmpx 文件。
- 5. login 和 init 程序通过向 /var/adm/wtmpx 文件中写入记录来记录连接会话。日期更改(使用带参数的日期)也会写入 /var/adm/wtmpx 文件中。使用 acctwtmp 命令进行重新引导和关闭也会记录到 /var/adm/wtmpx 文件中。
- 6. 进程结束时,内核会使用 acct.h 格式在 /var/adm/pacct 文件中为每个进程写入一条记录。
 - cron 命令每小时执行一次 ckpacct 脚本,以检查 /var/adm/pacct 文件的大小。如果文件大小超出了 500 块(缺省值),则会执行 turnacct switch 命令。(程序将pacct 文件移至 pacctn文件并创建一个新文件。)如果由于处理这些记录时出现故障而尝试重新启动 runacct 脚本,则有多个小型 pacct 文件的优点是显而易见的。
- 7. cron 命令每晚都会执行 runacct 脚本。runacct 脚本会对记帐文件进行处理,从而按用户名生成命令概要和使用情况概要。将处理以下记帐文件:/var/adm/pacctn、/var/adm/wtmpx、/var/adm/fee 和 /var/adm/acct/nite/disktacct。
- 8. runacct 脚本每天执行一次 /usr/lib/acct/prdaily 脚本,以便将每日记帐信息写入 /var/adm/acct/sum/rprt*MMDD* 文件中。
- 9. monacct 脚本应每月执行一次(或以您确定的时间间隔执行,例如在每个财务周期结束时执行)。monacct 脚本会基于 sum 目录中存储的数据创建一个报告,该目录每天通过 runacct 脚本更新一次。创建报告后,monacct 脚本将"清除" sum 目录,以便为新的 runacct 数据准备目录文件。

系统关闭时执行的操作

如果使用 shutdown 命令关闭系统,则会自动执行 shutacct 脚本。 shutacct 脚本会向 /var/adm/wtmpx 文件中写入一条**原因记录**并关闭进程记帐。

系统记帐(任务图)

任务	说明	参考
设置系统记帐。	通过执行以下任务来设置系统记帐: ■ 创建 /etc/rc0.d/K22acct 和 /etc/rc2.d/S22acct 文件。	第 123 页中的 "如何 设置系统记帐"
	■ 修改 /var/spool/cron/crontabs/adm 和 /var/spool/cron/crontabs/root crontab 文件。	
对用户计费。	运行 /usr/lib/acct/chargefee username amount 命令。	第 125 页中的 "如何 对用户计费"
修复损坏的 wtmpx 文 件。	将 wtmpx 文件从二进制转换为 ASCII 格式。	第 126 页中的 "如何 修复损坏的 wtmpx 文件 "
修复 tacct 错误。	运行 prtacct 脚本以检查 /var/adm/acct/sum/tacctprev 文件。然后,修补最 新的 /var/adm/acct/sum/tacct <i>MMDD</i> 文件。您将需 要重新创建 /var/adm/acct/sum/tacct 文件。	第 127 页中的 "如何 修复 tacct 错误"
重新启动 runacct 脚本。	删除 lastdate 文件以及任何锁定文件。然后,手动 重新启动 runacct 脚本。	第128页中的"如何 重新启动 runacct 脚本
临时禁用系统记帐。	编辑 adm crontab 文件,以阻止 ckpacct、runacct 和 monacct 程序运行。	第 128 页中的 "如何 暂时停止系统记帐"
永久禁用系统记帐。	删除 adm 和 crontab 文件中用于 ckpacct、 runacct 和 monacct 程序的项。	第 129 页中的 "如何 永久禁用系统记帐"

设置系统记帐

可将系统记帐设置为在系统处于多用户模式时运行(运行级 2)。通常,此任务涉及以下步骤:

- 1. 创建/etc/rc0.d/K22acct 和/etc/rc2.d/S22acct 启动脚本
- 2. 修改 /var/spool/cron/crontabs/adm 和 /var/spool/cron/crontabs/root crontab 文件

下表介绍了缺省记帐脚本。

表9-1 缺省记帐脚本

目的	记帐脚本	手册页	运行频率
检查 /usr/adm/pacct 日志文件的大小并确保该文件不会太大。	ckpacct	acctsh(1M)	定期
处理连接、磁盘和费用 记帐的信息。如果不想 执行某些记帐功能,则 可从此脚本中删除相应 命令。	runacct	runacct(1M)	每日
每月生成一次财务记帐 摘要报告。您可以确定 此脚本的运行频率。如 果不想使用某些记帐功 能,则可从此脚本中删 除相应命令。	monacct	acctsh(1M)	按财务周期

可以选择缺省情况下运行的记帐脚本。将这些项添加到 crontab 文件后,系统记帐应自动运行。

▼ 如何设置系统记帐

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

- 2 如有必要,请使用 pkgadd 命令在系统中安装 SUNWaccr 和 SUNWaccu 软件包。
- 3 安装 /etc/init.d/acct 作为运行级 2 的启动脚本。
 - # In /etc/init.d/acct /etc/rc2.d/S22acct
- 4 安装 /etc/init.d/acct 作为运行级 0 的停止脚本。
 - # In /etc/init.d/acct /etc/rc0.d/K22acct
- 5 向 adm crontab 文件中添加以下行,以自动启动 ckpacct 、runacct 和 monacct 脚本。
 - # EDITOR=vi; export EDITOR
 - # crontab -e adm
 - 0 * * * * /usr/lib/acct/ckpacct
 - 30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
 - 30 7 1 * * /usr/lib/acct/monacct

6 向 root crontab 文件中添加以下行,以自动启动 dodisk 脚本。

```
# crontab -e
30 22 * * 4 /usr/lib/acct/dodisk
```

- **7** 编辑 /etc/acct/holidays 以包括国定假日和当地假日。 有关更多信息,请参见 holidays(4) 手册页及后面的示例。
- 8 重新引导系统或键入以下内容手动启动系统记帐:

/etc/init.d/acct start

示例 9-1 设置记帐 (adm crontab)

这一修改的 adm crontab 包含 ckpacct、runacct 和 monacct 脚本的项。

```
#ident "@(#)adm 1.5 92/07/14 SMI" /* SVr4.0 1.2 */
#
# The adm crontab file should contain startup of performance
# collection if the profiling and performance feature has been
# installed.
0 * * * * /usr/lib/acct/ckpacct
30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log
30 7 1 * * /usr/lib/acct/monacct
```

示例9-2 设置记帐 (root crontab)

这一修改的 root crontab 包含 dodisk 程序的项。

```
#ident "@(#)root 1.19 98/07/06 SMI" /* SVr4.0 1.1.3.1 */
#
# The root crontab should be used to perform accounting data collection.
#
#
10 3 * * * /usr/sbin/logadm
15 3 * * 0 /usr/lib/fs/nfs/nfsfind
30 3 * * * [ -x /usr/lib/gss/gsscred_clean ] && /usr/lib/gss/gsscred_clean
30 22 * * 4 /usr/lib/acct/dodisk
```

示例9-3 设置记帐 (/etc/acct/holidays)

以下示例显示一个 /etc/acct/holidays 文件样例。

```
* @(#)holidays January 1, 2004
*
* Prime/Nonprime Table for UNIX Accounting System
*
```

```
* Curr
          Prime
                   Non-Prime
* Year
          Start
                   Start
 2004
          0800
                  1800
* only the first column (month/day) is significant.
* month/day
               Company
          Holiday
1/1
           New Years Day
7/4
           Indep. Day
             Christmas
12/25
```

对用户计费

如果按请求提供特殊的用户服务,则可能需要运行 chargefee 实用程序来对用户计费。特殊服务包括恢复文件或远程打印。chargefee 实用程序会在 /var/adm/fee 文件中记录费用。每次执行 runacct 实用程序时,都会将新项合并到总记帐记录中。

有关更多信息,请参见 acctsh(1M) 手册页。

▼ 如何对用户计费

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 向用户收取特殊服务的费用。

/usr/lib/acct/chargefee username amount

username 要对其计费的用户帐户。

amount 指定要对用户计费的单位数量。该值是设置的用于根据打印或恢复文件等

任务向用户收费的任意单位。必须编写一个脚本,以调用 chargefee 实用

程序并向用户收取特定任务的费用。

示例9-4 对用户计费

在以下示例中,向用户 print customer 收取了 10 个单位的费用。

/usr/lib/acct/chargefee print_customer 10

维护记帐信息

本节介绍如何修复损坏的系统记帐文件以及如何重新启动 runacct 脚本。

修复损坏的文件并更正wtmpx错误

遗憾的是,系统记帐并不十分安全。有时候,文件会损坏或丢失。有些文件可以忽略,也可以从备份中恢复。但是,有些文件则必须修复,才能维护系统记帐的完整性。

wtmpx 文件可能会引发每日系统记帐操作中的大多数问题。手动更改日期并且系统处于多用户模式时,会向 /var/adm/wtmpx 文件中写入一组日期更改记录。wtmpfix 实用程序旨在出现日期更改时调整 wtmp 记录中的时间标记。但是,部分日期更改和重新引导的组合会跳过 wtmpfix 实用程序并导致 acctcon 程序失败。

▼ 如何修复损坏的 wtmpx 文件

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

- 2 转到 /var/adm 目录。
- 3 将 wtmpx 文件从二进制格式转换为 ASCII 格式。 # /usr/lib/acct/fwtmp < wtmpx > wtmpx.ascii
- 4 编辑 wtmpx.ascii 文件以删除损坏的记录。
- 5 将 wtmpx.ascii 文件转换回二进制文件。
 # /usr/lib/acct/fwtmp -ic < wtmpx.ascii > wtmpx
 有关更多信息,请参见 fwtmp(1M) 手册页。

更正 tacct 错误

如果要向用户收取系统资源费用,则 /var/adm/acct/sum/tacct 文件的完整性极为重要。有时候,会出现异常的 tacct 记录,其中包括负值、重复的用户 ID 或用户 ID 65535。首先,使用 prtacct 脚本列显 /var/adm/acct/sum/tacctprev 文件,以检查该文件。如果内容没有问题,则修补最新的 /var/adm/acct/sum/tacct *MMDD* 文件。然后,重新创建 /var/adm/acct/sum/tacct 文件。以下步骤概括了一个简单的修补过程。

▼ 如何修复 tacct 错误

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- 2 转到 /var/adm/acct/sum 目录。
- **3** 将 tacct*MMDD* 文件从二进制格式转换为 ASCII 格式。 # /usr/lib/acct/acctmerg -v < tacct*MMDD* > xtacct *MMDD* 是一对表示月份和日期的两位数。
- 4 编辑 xtacct 文件,删除损坏的记录并将重复记录写入另一个文件。
- 5 将 xtacct 文件从 ASCII 格式转换为二进制格式。
 # /usr/lib/acct/acctmerg -i < xtacct > tacct MMDD
- 6 将文件tacctprev和tacct.MMDD合并到tacct文件中。
 # /usr/lib/acct/acctmerg < tacctprev tacctMMDD > tacct

重新启动 runacct 脚本

runacct 脚本失败的原因可能有多种。

以下是最常见的原因:

- 系统崩溃
- /var 目录空间不足
- wtmpx 文件损坏

如果存在 active.*MMDD* 文件,请先检查该文件中是否有错误消息。如果存在 active 和 lock 文件,请检查 fd2log 文件中是否有任何相关消息。

如果不带任何参数运行 runacct 脚本,则该脚本会假定这一次调用是当天的第一次调用。如果 runacct 脚本正在重新启动并指定 runacct 脚本重新运行记帐的月份和日期,则参数 MMDD 是必需的。进行处理的入口点基于 statefile 文件的内容。要覆盖 statefile 文件,请在命令行中包括所需的状态。有关可用状态的说明,请参见 runacct(1M) 手册页。

注意 – 手动运行 runacct 程序时,请确保以用户身份 adm 运行该程序。

▼ 如何重新启动 runacct 脚本

- 1 转到 /var/adm/acct/nite 目录。
 - \$ cd /var/adm/acct/nite
- 2 删除 lastdate 文件和所有 lock* 文件(如果有)。
 - \$ rm lastdate lock*

lastdate 文件包含上次运行 runacct 程序的日期。在下一步中重新启动 runacct 脚本将重新创建此文件。

- 3 重新启动 runacct 脚本。
 - \$ /usr/lib/acct/runacct MMDD [state] 2> /var/adm/acct/nite/fd2log &

MMDD 由两位数指定的月份和日期。

state 指定 runacct 脚本处理开始的状态或起始点。

停止和禁用系统记帐

可以暂时停止或永久禁用系统记帐。

▼ 如何暂时停止系统记帐

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 编辑 adm crontab 文件,通过注释掉相应行来停止运行 ckpacct、runacct 和 monacct 程序。

EDITOR=vi; export EDITOR

crontab -e adm

#0 * * * * /usr/lib/acct/ckpacct

#30 2 * * * /usr/lib/acct/runacct 2> /var/adm/acct/nite/fd2log

#30 7 1 * * /usr/lib/acct/monacct

3 编辑 root crontab 文件,通过注释掉相应行来停止运行 dodisk 程序。

crontab -e

#30 22 * * 4 /usr/lib/acct/dodisk

- 4 停止系统记帐程序。
 - # /etc/init.d/acct stop
- 5 (可选)从 crontab 文件中删除新增的注释符号。
- 6 重新启动系统记帐程序,以重新启用系统记帐。
 - # /etc/init.d/acct start

▼ 如何永久禁用系统记帐

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- 2 编辑 adm crontab 文件并删除 ckpacct、runacct 和 monacct 程序的项。
 - # EDITOR=vi; export EDITOR
 - # crontab -e adm
- 3 编辑 root crontab 文件并删除 dodisk 程序的项。
 - # crontab -e
- 4 删除运行级2的启动脚本。
 - # unlink /etc/rc2.d/S22acct
- 5 删除运行级0的停止脚本。
 - # unlink /etc/rc0.d/K22acct
- 6 停止系统记帐程序。
 - # /etc/init.d/acct stop

◆ ◆ ◆ 第 1 0 章

系统记帐(参考)

本章提供有关系统记帐的参考信息。

以下是本章中参考信息的列表。

- 第131页中的 "runacct 脚本"
- 第133页中的"每日记帐报告"
- 第140页中的"系统记帐文件"

有关系统记帐任务的更多信息,请参见第9章。

runacct 脚本

主要的每日记帐脚本 runacct 通常由 cron 命令在正常工作时间之外调用。runacct 脚本可以处理连接、费用、磁盘和进程记帐文件。此脚本还可准备每日摘要文件和累积摘要文件,以供 prdaily 和 monacct 脚本记帐。

runacct脚本可在发生错误时防止文件受到损坏。

使用一系列保护机制来执行以下任务:

- 识别错误
- 提供智能诊断
- 以特定方式完成处理,从而以最少的介入重新启动 runacct 脚本

该脚本通过向 active 文件中写入描述性消息来记录其进度。除非另有说明,否则假定 runacct 脚本所使用的文件位于 /var/adm/acct/nite 目录中。runacct 脚本执行期间的 所有诊断输出都写入 fd2log 文件中。

调用 runacct 脚本时,它将创建 lock 和 lock1 文件。这些文件可防止同时执行 runacct 脚本。如果调用 runacct 程序时已经存在上述文件,则该程序将列显错误消息。 lastdate 文件中包含上次调用 runacct 脚本的月份和日期,以避免每天多次执行脚本。

如果 runacct 脚本检测到错误,则会发生以下情况:

- 向控制台写入一条消息
- 向 root 和 adm 发送电子邮件
- 可能删除锁定
- 保存诊断
- 执行结束

有关如何重新启动 runacct 脚本的说明,请参见第 128 页中的 "如何重新启动 runacct 脚本"。

要允许重新启动 runacct 脚本,需要将处理细分为不同的可重复执行状态。statefile 文件用于跟踪完成的上一个状态。当每个状态完成时,都会更新 statefile 文件,以反映下一个状态。该状态的处理完成后,将读取 statefile 文件并处理下一个状态。当 runacct 脚本达到 CLEANUP 状态时,它将删除锁定并结束。将按下表所示来执行状态。

表10-1 runacct 脚本的状态

状态	说明
SETUP	执行 turnacct switch 命令以创建新的 pacct 文件。/var/adm/pacct n 进程记帐文件(pacct 文件除外)被移至 /var/adm/Spacct n.MMDD文件。/var/adm/wtmpx 文件被移至 /var/adm/acct/nite/wtmp.MMDD文件(在结尾添加了当前时间记录)并创建一个新 /var/adm/wtmp文件。closewtmp 和 utmp2wtmp 程序将向 wtmp.MMDD 文件和新的 wtmpx 文件中添加记录,以便对当前登录的用户进行说明。
WTMPFIX	wtmpfix 程序检查 nite 目录中的 wtmp. MMDD 文件是否正确。由于某些日期更改会导致 acctcon 程序失败,所以 wtmpfix 程序会在有日期更改记录时尝试调整 wtmpx 文件中的时间标记。此程序还可删除 wtmpx 文件中的任何已损坏项。将 wtmp. MMDD 文件的已修复版本写入 tmpwtmp 文件。
CONNECT	acctcon 程序用于在文件 ctacct. <i>MMDD</i> 中记录连接记帐记录。这些记录使用 tacct.h 格式。此外,acctcon 程序还创建 Lineuse 和 reboots 文件。reboots 文件会记录在 wtmpx 文件中找到的所有引导记录。
PROCESS	acctprc 程序用于将 /var/adm/Spacct <i>n.MMDD</i> 进程记帐文件转换为 ptacct <i>n.MMDD</i> 文件中的完整记帐记录。Spacct 和 ptacct 文件通过数字进 行关联,这样在 runacct 脚本失败时,将不处理 Spacct 文件。
MERGE	acctmerg 程序将进程记帐记录与连接记帐记录合并,以形成 daytacct 文件。
FEES	acctmerg 程序将 fee 文件中的 ASCII tacct 记录合并到 daytacct 文件中。
DISK	dodisk 脚本可生成 disktacct 文件。如果 dodisk 脚本已运行并生成 disktacct 文件,则 DISK 程序会将该文件合并到 daytacct 文件中,并将 disktacct 文件移至 /tmp/disktacct. <i>MMDD</i> 文件。

状态	说明
MERGETACCT	acctmerg 程序将 daytacct 文件与 sum/tacct 文件(累计总记帐文件)合并。每天都将 daytacct 文件保存到 sum/tacct . <i>MMDD</i> 文件中,这样便可在 sum/tacct 文件损坏或丢失时重新创建该文件。
CMS	acctcms 程序多次运行。第一次运行该程序是为了使用 Spacct n 文件生成命令摘要,并向 sum/daycms 文件写入数据。第二次运行 acctcms 程序是为了将 sum/daycms 文件与 sum/cms 累积命令摘要文件合并。最后,再运行 acctcms 程序,以生成 nite/daycms 和 nite/cms,即分别来自 sum/daycms 和 sum/cms 的 ASCII 文件。lastlogin 程序用于创建/var/adm/acct/sum/loginlog 日志文件。此文件将报告每个用户的上次登录时间。如果 runacct 脚本在午夜后运行,则显示某些用户上次登录时间的日期会与正确日期相差一天。
USEREXIT	任何与安装相关(本地)的记帐程序都可在此点运行。runacct 脚本预计此程序为/usr/lib/acct/runacct.local 程序。
CLEANUP	此状态可清除临时文件、运行 prdaily 脚本、将其输出保存至 sum/rpt. MMDD 文件、删除锁定,然后退出。

注意 – 如果以 CLEANUP 状态重新启动 runacct 脚本,请删除最后一个 ptacct 文件,因为该文件将不完整。

每日记帐报告

runacct Shell 脚本可在每次调用时生成五个基本报告。下表对这些报告进行了描述。

表10-2 每日记帐报告

报告类型	说明
第134页中的"每日报告"	按tty数显示终端线使用率。
第 135 页中的 "每日使用情况 报告"	按用户指明系统资源的使用情况(按用户 ID 的顺序列出)。
第136页中的"每日命令摘要"	按命令指明系统资源的使用率,按内存使用的降序列出。换言之,使用内存最多的命令列在最前面。在每月命令摘要中会为当月报告此信息。
第137页中的"每月命令摘要"	反映自上次调用 monacct 程序以来所累积数据的累计摘要。
第138页中的"上次登录报告"	显示每位用户上次登录的时间(按年代顺序列出)。

每日报告

此报告提供了所使用的每个终端线的信息。下面是一个每日报告样例。

Jan 16 02:30 2004 DAILY REPORT FOR venus Page 1

from Mon Jan 15 02:30:02 2004 to Tue Oan 16 02:30:01 2004 1 runacct 1 accton

TOTAL DURATION IS 1440 MINUTES

LINE MINUTES PERCENT # SESS # ON # OFF console 868 60 1 1 2 2 TOTALS 868 -- 1 1 2

from 和 to 行指定报告中反映的时间段。此时间段包含自上次生成每日报告到生成当前每日报告之间的时间。然后,报告将显示有关系统重新引导、关机、电源断电恢复的日志以及由 acctwtmp 程序写入 /var/adm/wtmpx 文件的其他任何记录。有关更多信息,请参见 acct(1M) 手册页。

报告的第二部分是对终端线使用情况的细分。TOTAL DURATION 指出系统处于多用户模式(可通过终端线访问)的时间。下表介绍了每日报告所提供的数据。

表10-3 每日报告数据

列	说明
LINE	终端线或访问端口。
MINUTES	在记帐期间使用该线的分钟数。
PERCENT	按 MINUTES 数划分的 TOTAL DURATION。
# SESS	登录会话访问此线或端口的次数。
# ON	与 SESS 相同。(此列不再有意义。以前,此列可列出用户使用某线或端口登录的次数。)
# OFF	用户注销的次数以及该线中出现的任何中断。通常,在系统进入多用户模式后初次调用 ttymon 时,端口中会发生中断。如果 # 0FF 超出 # SESS 很多,则多路复用器、调制解调器或电缆可能存在问题。或者,某处存在连接问题。最常见的原因是电缆与多路复用器的连接不牢固。

在实际使用中,应监视 /var/adm/wtmpx 文件,因为连接记帐源自该文件。如果 wtmpx 文件快速增大,请执行以下命令确定哪条 tty 线噪音最大。

/usr/lib/acct/acctcon -l file < /var/adm/wtmpx</pre>

如果不断发生中断,则总体系统性能将受到影响。此外,还可能损坏 wtmp 文件。要更正此问题,请参见第 126 页中的 "如何修复损坏的 wtmpx 文件"。

每日使用情况报告

每日使用情况报告按用户细分系统资源使用情况。下面是此报告的一个样例。

Jan 16 02:30 2004 DAILY USAGE REPORT FOR skisun Page 1

	LOGIN	CPU	(MINS)	KCORE-	MINS	CONNECT	(MINS)	DISK	# OF	# OF	# DISK	FEE
UID	NAME	PRIME	NPRIME	PRIME	NPRIME	PRIME	NPRIME	BLOCKS	PROCS	SESS	SAMPLES	
0	TOTAL	72	148	11006173	51168	26230634	57792	539	330	0	2150	1
0	root	32	76	11006164	33664	26230616	22784	0	0	0	127	0
4	adm	0	0	22	51	0	0	0	420	0	0	0
101	rimmer	39	72	894385	1766020	539	330	0	1603	1	0	0

下表描述每日使用情况报告所提供的数据。

表10-4 每日使用情况报告数据

列	说明
UID	用户 ID 号。
LOGIN NAME	用户的登录(或用户)名。标识有多个登录名的用户。
CPU (MINS)	用户的进程使用中央处理器的时间长度(分钟)。使用情况分为 PRIME 和 NPRIME(非主要)。此数据的记帐系统版本位于 /etc/acct/holidays 文件中。
KCORE-MINS	进程运行时每分钟所使用内存量(千字节)的累计度量。使用情况分为 PRIME 和 NPRIME。
CONNECT (MINS)	用户登录到系统的时间长度(分钟),或"实际时间"。使用情况分为 PRIME 和 NPRIME。如果这些数字很大而 # 0F PROCS 很小,则可推断出, 用户早晨先登录,然后在一天的其余时间内几乎未连接终端。
DISK BLOCKS	acctdusg 程序的输出,该程序运行磁盘记帐程序并合并记帐记录 (daytacct)。用于记帐的块的大小为512字节。
# OF PROCS	用户调用的进程数。如果出现的数字很大,则表明用户可能有一个 shell 过程在运行时无法受到控制。
# OF SESS	用户登录系统的次数。
# DISK SAMPLES	运行磁盘记帐以获得 DISK BLOCKS 平均数的次数。

表 10-4	每日使用情况报告数据	(续)
列	说明	
FEE	此字; 此字;	设表示 chargefee 脚本对用户收取费用的总累积单位,通常不使用设。

每日命令摘要

每日命令摘要报告按命令显示系统资源使用情况。通过此报告,可以确定使用率最高的命令。根据这些命令使用系统资源的方式,可以准确掌握对系统进行调优的最佳方式。

这些报告按 TOTAL KCOREMIN排序,它是任意衡量,但常用于计算系统中的垃圾箱。

下面是一个每日命令摘要样例。

			TOTAI	L COMMAND :	SUMMARY				
COMMAND	NUMBER	TOTAL	TOTAL	TOTAL	MEAN	MEAN	HOG	CHARS	BLOCKS
NAME	CMDS	KCOREMIN	CPU-MIN	REAL-MIN	SIZE-K	CPU-MIN	FACTOR	TRNSFD	READ
TOTALS	2150	1334999.75	219.59	724258.50	6079.48	0.10	0.00	39733898	2 419448
netscape	43	2456898.50	92.03	54503.12	26695.51	L 2.14	0.00	94777491	2 225568
adeptedi	7	88328.22	4.03	404.12	21914.95	0.58	0.01	9315516	0 8774
dtmail	1	54919.17	5.33	17716.57	10308.94	1 5.33	0.00	21384396	8 40192
acroread	8	31218.02	2.67	17744.57	11682.66	0.33	0.00	33145446	4 11260
dtwm	1	16252.93	2.53	17716.57	6416.05	2.53	0.00	15866265	6 12848
dtterm	5	4762.71	1.30	76300.29	3658.93	0.26	0.00	3382835	2 11604
dtaction	23	1389.72	0.33	0.60	4196.43	0.01	0.55	1865318	4 539
dtsessio	1	1174.87	0.24	17716.57	4932.97	0.24	0.00	2353561	6 5421
dtcm	1	866.30	0.18	17716.57	4826.21	0.18	0.00	301209	6 6490

下表介绍了每日命令摘要提供的数据。

表10-5 每日命令摘要数据

列	说明
COMMAND NAME	命令的名称。由于进程记帐系统只报告对象模块,因此所有 Shell 过程都集中在名称 sh 下。应对名为 a.out、core 或其他任何意外名称的程序的频率进行监视。可以使用 acctcom 程序来确定哪个用户执行了名称奇怪的命令以及是否使用了超级用户权限。
NUMBER CMDS	运行此命令的总次数。
TOTAL KCOREMIN	进程运行时每分钟所使用千字节内存段的累计度量。

表10-5 每日命令摘要数据	(续)
列	说明
TOTAL CPU-MIN	此程序累积的总处理时间。
TOTAL REAL-MIN	此程序累积的总实时(挂钟)分钟数。
MEAN SIZE-K	在 NUMBER CMDS 所反映的调用次数中 TOTAL KCOREMIN 的平均值(平均数)。
MEAN CPU-MIN	源自 NUMBER CMDS 和 TOTAL CPU-MIN 的平均值(平均数)。
HOG FACTOR	CPU 总时间除以已用时间。显示系统可用性与系统使用率之比, 提供进程在执行期间可用的总 CPU 时间的相对测量。
CHARS TRNSFD	由读和写系统调用传送的字符数。可能因溢出而为负值。
BLOCKS READ	一个进程执行的物理块读取和写入总数。

每月命令摘要

每日命令摘要报告的格式实际上与每月命令摘要报告的格式相同。但是,每日摘要只针对当前记帐期间进行报告,而每月摘要则针对从财务期间开始到当前日期之间的时间段进行报告。换言之,每月报告是一个累计摘要,它反映自上次调用 monacct 程序以来累积的数据。

下面是一个每月命令摘要样例。

Jan 16 02:30 2004 MONTHLY TOTAL COMMAND SUMMARY Page 1

				TOTAL COMMA	AND SUMMAI	RY			
COMMAND	NUMBER	TOTAL	TOTAL	TOTAL	MEAN	MEAN	HOG	CHARS	BLOCKS
NAME	CMDS	KCOREMIN	CPU-MIN	REAL-MIN	SIZE-K	CPU-MIN	FACTOR	TRNSFD	READ
TOTALS	42718	4398793.50	361.92	956039.00	12154.09	0.01	0.00	16100942848	825171
netscape	789	3110437.25	121.03	79101.12	25699.58	0.15	0.00	3930527232	302486
adeptedi	84	1214419.00	50.20	4174.65	24193.62	0.60	0.01	890216640	107237
acroread	145	165297.78	7.01	18180.74	23566.84	0.05	0.00	1900504064	26053
dtmail	2	64208.90	6.35	20557.14	10112.43	3.17	0.00	250445824	43280
dtaction	800	47602.28	11.26	15.37	4226.93	0.01	0.73	640057536	8095
soffice.	13	35506.79	0.97	9.23	36510.84	0.07	0.11	134754320	5712
dtwm	2	20350.98	3.17	20557.14	6419.87	1.59	0.00	190636032	14049

有关每月命令摘要所提供数据的描述,请参见第136页中的"每日命令摘要"。

上次登录报告

此报告给出上次进行特定登录的日期。使用此信息可以找出未使用的登录以及可以存档和删除的登录目录。下面是一个上次登录报告。

Jan 16 02:30 2004 LAST LOGIN Page 1

01-06-12	kryten	01-09-08	protoA	01-10-14	ripley
01-07-14	lister	01-09-08	protoB	01-10-15	scutter1
01-08-16	pmorph	01-10-12	rimmer	01-10-16	scutter2

使用 acct com 检查 pacct 文件

您随时都可以使用 acctcom 程序来检查 /var/adm/pacctn 文件的内容,或含有 acct.h 格式的记录的任何文件的内容。如果运行此命令时不指定任何文件也不提供任何标准输入,acctcom 命令将读取 pacct 文件。acctcom 命令所读取的每条记录都表示有关已终止进程的信息。可通过运行 ps 命令来检查活动进程。

acctcom命令的缺省输出提供以下信息:

# acctcom							
COMMAND			START	END	REAL	CPU	MEAN
NAME	USER	TTYNAME	TIME	TIME	(SECS)	(SECS)	SIZE(K)
#accton	root	?	02:30:01	02:30:01	0.03	0.01	304.00
turnacct	adm	?	02:30:01	02:30:01	0.42	0.01	320.00
mv	adm	?	02:30:01	02:30:01	0.07	0.01	504.00
utmp_upd	adm	?	02:30:01	02:30:01	0.03	0.01	712.00
utmp_upd	adm	?	02:30:01	02:30:01	0.01	0.01	824.00
utmp_upd	adm	?	02:30:01	02:30:01	0.01	0.01	912.00
utmp_upd	adm	?	02:30:01	02:30:01	0.01	0.01	920.00
utmp_upd	adm	?	02:30:01	02:30:01	0.01	0.01	1136.00
utmp_upd	adm	?	02:30:01	02:30:01	0.01	0.01	576.00
closewtm	adm	?	02:30:01	02:30:01	0.10	0.01	664.00

字段	说明
COMMAND NAME	命令名称(如果以超级用户权限执行命令,则带 有井号(#))
USER	用户名
TTYNAME	tty 名称(如果未知则列为?)
START TIME	命令执行开始时间

字段	说明
END TIME	命令执行结束时间
REAL (SECS)	实时(秒)
CPU (SECS)	CPU时间(秒)
MEAN SIZE (K)	平均大小(千字节)

通过使用 acct com 命令选项可以获得以下信息。

- fork/exec 标志的状态(1表示不带 exec 的 fork)
- 系统退出状态
- 扰乱因子
- kcore总分钟数
- CPU 因子
- 传送的字符
- 已读的块

下表介绍了 acctcom 命令选项。

表10-6 acctcom命令的选项

	说明
- a	显示有关选定进程的平均统计信息。记录输出后将列显该统计信息。
- b	向后读取文件,先显示最新命令。如果读取标准输入,此选项将无效。
-f	列显 fork/exec 标志和系统退出状态列。输出是一个八进制数字。
-h	显示扰乱因子而不是平均内存大小,扰乱因子是进程在执行期间使用的总可用 CPU 时间的分数。扰乱因子 = 总 <i>CPU</i> 时间/已用时间。
-i	列显输出中包含 I/O 计数的列。
- k	显示总 kcore minutes 而不是内存大小。
- m	显示平均核心转储大小。此大小是缺省值。
- q	列显平均统计信息,而不是输出记录。
- r	显示 CPU 因子: user-time/(system-time + user-time)。
-t	显示单独的系统和用户 CPU 时间。
- V	从输出中排除列标题。
- C sec	只显示总 CPU 时间(系统加用户)超过 sec 秒的进程。
- e time	显示在 time(给定格式 hr[:min[:sec]])时或之前存在的进程。

表 10-6 acct com fi 选项	^う 令的选项 (续) 说明
-E time	显示在 $time$ (给定格式 $hr[:min[:sec]]$)时或之前开始的进程。对 -S 和 -E 使用相同时间,以显示在该时间存在的进程。
-g group	只显示属于 group 的进程。
-H factor	只显示超出 factor 的进程,其中 factor 是"扰乱因子"(请参见 -h 选项)。
-I chars	只显示传送的字符数大于 chars 所指定的分界数的进程。
-1 line	只显示属于终端 /dev/line 的进程。
-n pattern	只显示与 pattern(正则表达式,只是 "+" 表示出现一次或多次)匹配的命令。
-o ofile	不列显记录,而以acct.h格式将其复制到ofile文件中。
-0 <i>sec</i>	只显示 CPU 系统时间超出 sec 秒的进程。
-s time	显示在 time(给定格式 hr[:min[:sec]])时或之后存在的进程。
-S time	显示在 time(给定格式 hr[:min[:sec]])时或之后开始的进程。
- u <i>user</i>	只显示属于 user 的进程。

系统记帐文件

/var/adm 目录包含活动的数据收集文件。下表介绍了此目录中的记帐文件。

表 10-7 / var/adm 目录中的文件

文件	说明
dtmp	acctdusg 程序的输出
fee	chargefee 程序的输出,该输出为 ASCII tacct 记录
pacct	活动进程记帐文件
pacctn	通过运行 turnacct 脚本切换的进程记帐文件
Spacct <i>n.MMDD</i>	执行 runacct 脚本期间用于 MMDD 的进程记帐文件

/var/adm/acct 目录包含 nite、sum 和 fiscal 目录。这些目录包含实际的数据收集文件。例如,nite 目录包含 runacct 脚本每天重用的文件。下面是 /var/adm/acct/nite 目录中文件的简短摘要。

表10-8 /var/adm/acct/nite 目录中的文件

文件	说明
active	由 runacct 脚本用来记录进度并列显警告和错误消息
active. $MMDD$	与 runacct 脚本检测到错误后的 active 文件相同
cms	prdaily 脚本使用的 ASCII 总命令摘要
ctacct. <i>MMDD</i>	tacct.h格式的连接记帐记录
ctmp	acctcon1 程序的输出,其中包括 ctmp.h 格式的连接会话记录(提供acctcon1 和 acctcon2 是为了兼容)
daycms	prdaily 脚本使用的 ASCII 每日命令摘要
daytacct	tacct.h 格式的一天总记帐记录
disktacct	tacct.h格式的磁盘记帐记录,由 dodisk 脚本创建
fd2log	执行 runacct 脚本期间的诊断输出
lastdate	上次执行 runacct 脚本的日期(以 date +%m%d 格式)
lineuse	prdaily脚本使用的tty线使用情况报告
lock	用于控制 runacct 脚本的串行使用
log	acctcon 程序的诊断输出
log.MMDD	与 runacct 脚本检测到错误后的 log 文件相同
owtmpx	前一天的 wtmpx 文件
reboots	wtmpx 文件中的开始和结束日期,以及重新启动的列表
statefile	用于在执行 runacct 脚本期间记录当前状态
tmpwtmp	由 wtmpfix 程序更正的 wtmpx 文件
wtmperror	包含wtmpfix错误消息
${\tt wtmperror} MMDD$	与 runacct 脚本检测到错误后的 wtmperror 文件相同
wtmp $MMDD$	runacct 脚本的 wtmpx 文件副本

sum 目录中包含由 runacct 脚本更新并由 monacct 脚本使用的累积摘要文件。下表汇总了 /var/adm/acct/sum 目录中的文件。

表10-9 /var/adm/acct/sum 目录中的文件

文件	说明
cms	当前财务期间的二进制格式的总命令摘要文件

文件	说明
cmsprev	没有最新更新的命令摘要文件
daycms	表示日使用情况的内部摘要格式的命令摘要文件
loginlog	用户上次登录日期的记录;由 lastlogin 脚本创建,在 prdaily 脚本中使用
rprt. <i>MMDD</i>	已保存的 prdaily 脚本的输出
tacct	当前财务期间的累计总记帐文件
tacctprev	与没有最新更新的 tacct 文件相同
${\tt tacct.} {\it MMDD}$	MMDD的总记帐文件

fiscal 目录中包含由 monacct 脚本创建的定期摘要文件。下表汇总了/var/adm/acct/fiscal 目录中的文件。

表10-10 /var/adm/acct/fiscal 目录中的文件

文件	说明
cmsn	财务期间 n 的内部摘要格式的总命令摘要文件
fiscrpt <i>n</i>	与财务期间 n 的 rprtn 类似的报告
tacctn	财务期间 n 的总记帐文件

runacct 脚本生成的文件

下表汇总了 runacct 脚本生成的最有用的文件。这些文件位于 /var/adm/acct 目录中。

表10-11 runacct 脚本创建的文件

文件	说明
nite/daytacct	某日的 tacct.h 格式的总记帐文件。
nite/lineuse	runacct 脚本调用 acctcon 程序以从 /var/adm/acct/nite/tmpwtmp 文件中收集有关终端线使用情况的数据,并将数据写入 /var/adm/acct/nite/lineuse 文件。prdaily 脚本使用此数据来报告线使用情况。此报告对于检测故障线特别有用。如果退出数与登录数之比大于三比一,该线很可能出现了故障。
sum/cms	此文件是每天的命令摘要的累积。该累积在 monacct 脚本执行时重新启动。ASCII 版本是 nite/cms 文件。

表 10-11 runacct 脚本创建的文件 (续)		
文件	说明	
sum/daycms	runacct 脚本调用 acctcms 程序以处理该日使用的命令,从而创建每日命令摘要报告并将数据存储在 /var/adm/acct/sum/daycms 文件中。ASCII版本是 /var/adm/acct/nite/daycms 文件。	
sum/loginlog	runacct 脚本调用 lastlogin 脚本,以便对 /var/adm/acct/sum/loginlog 文件中的登录更新上次登录日期。lastlogin 命令还从此文件中删除不 再有效的所有登录。	
sum/rprt. <i>MMDD</i>	每次执行 runacct 脚本都会保存 prdaily 脚本所列显的每日报告的副本。	
sum/tacct	包含每天的 nite/daytacct 数据的累积并用于记帐目的。monacct 脚本在每月或每个财务期间重新开始累积此数据。	

◆ ◆ ◆ 第 11 章

管理系统性能(概述)

从计算机或网络中获取良好性能是系统管理的重要部分。本章概述与管理计算机系统的性能有关的一些因素。

以下是本章中概述信息的列表。

- 第145页中的"管理系统性能方面的新增功能"
- 第146页中的"有关系统性能任务的参考信息"
- 第146页中的"系统性能和系统资源"
- 第147页中的"进程和系统性能"
- 第148页中的"关于监视系统性能"

管理系统性能方面的新增功能

本节介绍 Solaris 发行版在管理系统性能方面新增或更改的功能。有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

增强的 pfiles 工具

Solaris 10: /proc 文件系统已得到增强,目前在 /proc/pic/path 目录中包含文件名信息。pfiles 使用此信息显示进程中每个文件的文件名。这一更改使用户能以全新的方式洞察进程的行为。有关更多信息,请参见第 156 页中的 "如何显示有关进程的信息"和 proc(1) 手册页。

CPU性能计数器

Solaris 10: CPU 性能计数器 (CPU Performance Counter, CPC) 系统进行了更新,从而能够更好地访问运行 Solaris 操作系统的 SPARC 和 x86 平台中提供的性能分析功能。

CPC 命令 cpustat 和 cputrack 增强了用于指定 CPU 信息的命令行语法。例如,在以前的 Solaris OS 版本中,您需要指定两个计数器。现在,这两个命令的配置都允许您仅指定一个计数器,如以下示例中所示:

```
# cputrack -c pic0=Cycle_cnt ls -d .
time lwp event pic0 pic1
.
0.034 1 exit 841167
```

对于简单的测量, 您甚至可以省略计数器配置, 如以下示例中所示:

有关使用 cpustat 命令的更多信息,请参见 cpustat(1M) 手册页。有关使用 cputrack 命令的更多信息,请参见 cputrack(1) 手册页。

有关系统性能任务的参考信息

系统性能任务	更多信息
管理进程	第 12 章
监视系统性能	第 13 章
更改 Solaris 可调参数	$\langle\!\langle$ Solaris Tunable Parameters Reference Manual $\rangle\!\rangle$
管理系统性能任务	《系统管理指南:Solaris Containers-资源管理和 Solaris Zones》中的第 2 章 "项目和任务(概述)"
使用 FX 和 FS 调度程序管理进程	《系统管理指南: Solaris Containers - 资源管理和 Solaris Zones》中的第 8 章 "公平份额调度器(概述)"

系统性能和系统资源

计算机系统的性能取决于该系统使用和分配其资源的方式。定期监视系统的性能,以便了解系统在正常情况下的行为。应当明确了解预期情况,并能够在出现问题时进行识别。

下表介绍了影响性能的系统资源。

系统资源	说明
中央处理器 (Central processing unit, CPU)	CPU 通过从内存中提取并执行指令来对指令进行处理。
输入/输出 (Input/Output, I/O) 设备	I/O 设备可向计算机传入信息,并可从中传出信息。此类设备可能是终端和键盘、磁盘驱动器或打印机。
内存	物理(或主)内存是系统中的随机访问存储器 (Random Access Memory, RAM) 量。

第13章对显示有关系统活动和性能统计信息的工具进行了介绍。

进程和系统性能

下表介绍了与进程相关的术语。

表11-1 进程术语

术语	说明
Process (进程)	任何系统活动或作业。每次引导系统、执行命令或启动应用程序时, 系统都会激活一个或多个进程。
Lightweight Process, LWP(轻量级进程)	虚拟 CPU 或执行资源。LWP 由内核预定,以根据其预定类和优先级来使用可用的 CPU 资源。LWP 包括一个内核线程和一个 LWP。内核线程包含必须始终位于内存中的信息。LWP 包含可交换的信息。
Application thread(应用程序 线程)	具有单独栈的一系列指令,这些指令可在用户的地址空间中独立执行。可在 LWP 顶部复用应用程序线程。

一个进程可以由多个 LWP 和多个应用程序线程组成。内核预定内核线程结构,该结构是 SunOS 环境中的预定实体。下表介绍了各种进程结构。

表11-2 进程结构

结构	说明
proc	包含与整个进程有关的信息,该信息必须始终位于主内存中
kthread	包含与LWP有关的信息,该信息必须始终位于主内存中
user	包含可交换的"每进程"信息
klwp	包含可交换的"每 LWP 进程"信息

下图显示了这些进程结构之间的关系。

图11-1 进程结构之间的关系

进程中的所有线程都可以访问大多数进程资源。几乎所有进程虚拟内存都是共享的。一个线程对共享数据的更改可供进程中的其他线程使用。

关于监视系统性能

计算机运行时,操作系统中的计数器会增加,以跟踪各种系统活动。

跟踪的系统活动如下所示:

- 中央处理器 (Central Processing Unit, CPU) 使用率
- 缓冲区使用情况
- 磁盘和磁带输入/输出 (Input/Output, I/O) 活动
- 终端设备活动
- 系统调用活动
- 上下文切换
- 文件访问
- 队列活动
- 内核表
- 进程间通信
- 分页
- 可用内存和交换空间
- 内核内存分配 (Kernel Memory Allocation, KMA)

监视工具

Solaris软件提供了多种工具,以帮助您跟踪系统的执行情况。下表介绍了这些工具。

表11-3 性能监视工具

命令	说明	更多信息
cpustat和cputrack命令	使用 CPU 性能计数器监视系统或进程的性能。	cpustat(1M)和 cputrack(1)
netstat和nfsstat命令	显示有关网络性能的信息	netstat($1M$)和 nfsstat($1M$)
ps和 prstat命令	显示有关活动进程的信息	第12章
sar和 sadc 命令	收集并报告系统活动数据	第13章
Sun Enterprise SyMON	收集有关 Sun 的企业级系统的系统活动数据	《Sun Enterprise SyMON 2.0.1 Software User's Guide》
swap 命令	显示有关系统中的可用交换空间的信 息	《系统管理指南:设备和文件 系统》中的第21章"配置其他 交换空间(任务)"
vmstat和iostat命令	汇总系统活动数据,如虚拟内存统计信息、磁盘使用情况和 CPU 活动	第 13 章
cputrack和cpustat命令	协助访问微处理器提供的硬件性能计 数器功能	cputrack(1) 和 cpustat(1M) 手 册页
kstat和mpstat命令	检查系统中可用的内核统计信息或 kstats,并报告与命令行上指定的条 件匹配的统计信息。mpstat命令以表 格形式报告处理器统计信息。	kstat(1M)和mpstat(1M)手册 页

◆ ◆ ◆ 第 1 2 章

管理系统进程(任务)

本章介绍用于管理系统进程的过程。

有关与管理系统进程相关的过程的信息,请参见以下主题:

- 第151页中的"管理系统进程(任务图)"
- 第161页中的"管理进程类信息(任务图)"

有关管理系统进程的概述信息,请参见以下主题:

- 第152页中的"用于管理系统进程的命令"
- 第162页中的"管理进程类信息"

管理系统进程(任务图)

任务	说明	参考
列出进程。	使用 ps 命令列出系统中的所有 进程。	第 155 页中的 "如何列出进程"
显示有关进程的信息。	使用 pgrep 命令获取要显示其详细信息的进程的进程 ID。	第 156 页中的 "如何显示有关进程的信息"
控制进程。	使用 pgrep 命令找到进程。然后,使用相应的 pcommand (/proc) 来控制进程。有关(/proc) 命令的说明,请参见表 12-3。	第 157 页中的 "如何控制进程"

任务	说明	参考
中止进程。	通过进程名称或进程 ID 找到进程。然后可以使用 pkill 或 kill命令终止进程。	第 158 页中的 "如何终止进程 (pkill)" 第 159 页中的 "如何终止进程 (kill)"

用于管理系统进程的命令

下表介绍了用于管理系统进程的命令。

表12-1 用于管理进程的命令

命令	说明	手册页
ps、pgrep、prstat、pkill	检查系统中活动进程的状态,并 显示有关这些进程的详细信息	$ps(1)$ 、 $pgrep(1)$ 和 $prstat(1\mathrm{M})$
pkill	功能与 pgrep 相同,但通过名称 pgrep(1) 和 pkill(1) 或其他属性来查找进程或向进程 发送信号,然后终止进程。像 kill 命令一样向每个匹配的进程 发送信号,而不列显进程 ID。	
pargs v preap	帮助进行进程调试	pargs(1)和 $preap(1)$
dispadmin	列出缺省进程调度策略	$\operatorname{dispadmin}(1M)$
priocntl	为优先级类分配进程并管理进程 优先级	priocntl(1)
nice	更改分时进程的优先级	nice(1)
psrset	将特定进程组绑定到一组处理器 而非一个处理器	psrset(1M)

Solaris Management Console 的进程工具使您可通过用户友好的界面来管理进程。有关使用和启动 Solaris Management Console 的信息,请参见《系统管理指南:基本管理》中的第 2 章 "使用 Solaris Management Console(任务)"。

使用 ps 命令

使用 ps 命令可以检查系统中活动进程的状态,并可显示有关进程的技术信息。此数据对于管理任务(例如,确定设置进程优先级的方式)很有用。

根据您所使用的选项, ps 命令会报告以下信息:

- 进程的当前状态
- 讲程 ID
- 父进程ID
- 用户 ID
- 调度类
- 优先级
- 进程的地址
- 已用内存
- 已用 CPU 时间

下表介绍了 ps 命令报告的一些字段。具体显示哪些字段取决于您选择的选项。有关所有可用选项的说明,请参见 ps(1) 手册页。

表12-2 ps报告中字段的汇总

字段	说明
UID	进程属主的有效用户 ID。
PID	进程 ID。
PPID	父进程 ID。
С	用于调度的处理器使用率。使用 - c 选项时,将不显示此字段。
CLS	进程所属的调度类,例如实时、系统或分时。只有 - c 选项包括此字段。
PRI	内核线程的调度优先级。数值越大,表示优先级越高。
NI	进程的 nice 数值,该数值对其调度优先级有影响。进程的 nice 值越高,意味着其优先级越低。
ADDR	proc 结构的地址。
SZ	进程的虚拟地址大小。
WCHAN	进程休眠的事件或锁定的地址。
STIME	以小时、分钟和秒表示的进程开始时间。
TTY	从中启动进程或其父级的终端。问号表示没有控制终端。
TIME	进程自开始以来使用的 CPU 时间总量。
CMD	生成进程的命令。

使用/proc文件系统和命令

使用进程命令可以显示 /proc 目录中所列进程的详细信息。下表列出了 /proc 进程命令。/proc 目录也称为进程文件系统 (Process File System, PROCFS)。活动进程的映像按进程 ID 号存储在此位置。

表12-3 进程命令(/proc)

进程命令	说明
pcred	显示进程凭证信息
pfiles	为进程中打开的文件报告 fstat 和 fcntl 信息
pflags	列显 /proc 跟踪标志、暂挂信号和保留信号以及其他状态信息
pldd	列出链接至进程中的动态库
pmap	列显每个进程的地址空间图
psig	列出每个进程的信号操作和处理程序
prun	启动每个进程
pstack	为每个进程中的每个 lwp 列显十六进制符号栈跟踪
pstop	停止每个进程
ptime	使用微状态记帐记录进程的时间
ptree	显示包含该进程的进程树
pwait	在进程终止后显示状态信息
pwdx	显示进程的当前工作目录

有关更多信息,请参见 proc(1)。

进程工具与 ps 命令的某些选项相似,区别在于这些命令提供的输出更详细。

通常, 进程命令可执行以下操作:

- 显示有关进程的更多信息,例如 fstat 和 fcntl、工作目录以及父进程和子进程树
- 通过允许用户停止或恢复进程来提供对进程的控制

使用进程命令管理进程(/proc)

通过使用一些进程命令,可以显示有关进程的详细技术信息或者控制活动进程。 表 12-3 列出了一些 /proc 命令。 如果某个进程陷入无限循环或者执行时间过长,则可能需要停止(中止)该进程。有 关使用 kill 或 pkill 命令停止进程的更多信息,请参见第 12 章。

/proc 文件系统是一个目录分层结构,其中包括状态信息和控制功能的附加子目录。

/proc 文件系统还提供了 xwatchpoint功能,用于重新映射在进程地址空间各页中的读写 权限。该工具没有限制,并且是 MT-safe(多线程安全)的。

为了使用 /proc 的 xwatchpoint 功能,已修改调试工具,这意味着整个 xwatchpoint 进程会更快。

使用 dbx 调试工具设置 xwatchpoint 时,已删除以下限制:

- 由于基于 SPARC 的系统注册窗口而在栈的本地变量中设置 xwatchpoint
- 在多线程进程中设置 xwatchpoint

有关更多信息,请参见 proc(4) 和 mdb(1) 手册页。

▼ 如何列出进程

● 使用 ps 命令可列出系统中的所有进程。

\$ ps [-efc]

- ps 只显示与您的登录会话关联的进程。
- -ef 显示系统中正在执行的所有进程的全部信息。
- -c 显示进程调度程序信息。

示例12-1 列出进程

以下示例显示ps命令在不带任何选项时的输出。

\$ ps

```
PID TTY TIME COMD
1664 pts/4 0:06 csh
2081 pts/4 0:00 ps
```

以下示例显示 ps -ef 命令的输出。此输出显示,系统启动时最先执行的进程是 sched (交换程序),然后是 init 进程、pageout 等。

\$ ps -ef

UID	PID	PPID	C	STIME	TTY	TIME	CMD	
root	0	0	0	Dec 20	?	0:17	sched	
root	1	0	0	Dec 20	?	0:00	/etc/init	-
root	2	0	0	Dec 20	?	0:00	pageout	
root	3	0	0	Dec 20	?	4:20	fsflush	

```
374
               367
                   Ø
                        Dec 20 ?
                                        0:00 /usr/lib/saf/ttymon
 root
         367
                 1
                        Dec 20 ?
                                        0:00 /usr/lib/saf/sac -t 300
  root
        126
                 1 0
                        Dec 20 ?
                                        0:00 /usr/sbin/rpcbind
 root
         54
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/sysevent/syseventd
 root
 root
         59
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/picl/picld
 root
         178
                 1 0
                        Dec 20 ?
                                        0:03 /usr/lib/autofs/automountd
        129
                 1 0
                        Dec 20 ?
 root
                                        0:00 /usr/sbin/kevserv
        213
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/lpsched
 root
 root
         154
                 1 0
                        Dec 20 ?
                                        0:00 /usr/sbin/inetd -s
        139
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/netsvc/yp/ypbind ...
 root
 root
        191
                 1 0
                        Dec 20 ?
                                        0:00 /usr/sbin/syslogd
        208
                 1 0
                        Dec 20 ?
                                        0:02 /usr/sbin/nscd
 root
        193
                 1 0
                        Dec 20 ?
 root
                                        0:00 /usr/sbin/cron
                 1 0
                        Dec 20 ?
 root
        174
                                        0:00 /usr/lib/nfs/lockd
        175
                 1 0
                       Dec 20 ?
daemon
                                        0:00 /usr/lib/nfs/statd
 root
        376
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/ssh/sshd
 root
        226
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/power/powerd
 root
        315
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/nfs/mountd
 root
        237
                 1 0
                        Dec 20 ?
                                        0:00 /usr/lib/utmpd
```

▼ 如何显示有关进程的信息

1 获得要显示更多信息的进程的进程 ID。

pgrep process

其中,*process* 是要显示更多信息的进程的名称。 进程 ID 显示在输出的第一列中。

2 显示所需进程信息。

/usr/bin/pcommand pid

 pcommand
 是要运行的 (/proc) 命令。表 12-3 列出并介绍了这些命令。

 pid
 标识进程 ID。

示例12-2 显示有关进程的信息

以下示例显示如何使用进程命令来显示有关cron进程的更多信息。

```
# pgrep cron 1
4780
```

pwdx 4780 2

4780: /var/spool/cron/atjobs

ptree 4780 3

4780 /usr/sbin/cron

pfiles 4780

4780: /usr/sbin/cron

Current rlimit: 256 file descriptors

/devices/pseudo/mm@0:null

- 1: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
 O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
 /var/cron/log
- 2: S_IFREG mode:0600 dev:32,128 ino:42054 uid:0 gid:0 size:9771
 O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE
 /var/cron/log
- 3: S_IFIFO mode:0600 dev:32,128 ino:42049 uid:0 gid:0 size:0
 O_RDWR|O_LARGEFILE
 /etc/cron.d/FIFO
- 4: S_IFIFO mode:0000 dev:293,0 ino:4630 uid:0 gid:0 size:0 O RDWR|O NONBLOCK
- 1. 获得 cron 进程的进程 ID
- 2. 显示 cron 进程的当前工作目录
- 3. 显示包含 cron 进程的进程树
- 4. 显示 fstat 和 fcntl 信息

▼ 如何控制进程

1 获得要控制的进程的进程 ID。

pgrep process

其中, process 是要控制的进程的名称。

进程 ID 显示在输出的第一列中。

2 使用相应的进程命令来控制进程。

/usr/bin/pcommand pid

pcommand 是要运行的进程 (/proc) 命令。表 12-3 列出并介绍了这些命令。

pid 标识进程 ID。

3 验证进程状态。

ps -ef | grep pid

示例12-3 控制进程

以下示例显示如何使用讲程命令来停止和重新启动 dtpad 进程。

pgrep dtpad 2921 # pstop 2921 2 # prun 2921 3

- 1. 获得 dtpad 进程的进程 ID
- 2. 停止 dtpad 进程
- 3. 重新启动 dtpad 进程

终止进程(pkill、kill)

有时候,您可能需要停止(中止)进程。该进程可能处于无限循环中。或者,您可能启动了一个大型作业,并且希望在完成之前使其停止。您可以中止属于您的任何进程。超级用户可以中止系统中的任何进程,但进程 ID 为 0、1、2、3 和 4 的进程除外。中止这些进程很可能会使系统崩溃。

有关更多信息,请参见 pgrep(1)、pkill(1)和 kill(1)手册页。

▼ 如何终止进程 (pkill)

- 1 (可选的)成为超级用户或等效角色便可以终止其他用户的进程。
- 2 获得要终止的进程的进程ID。

\$ pgrep process

其中, process 是要终止的进程的名称。

例如:

\$ pgrep netscape

587

566

在输出中显示进程 ID。

注-要获得有关 Sun Ray™ 的进程信息,请使用以下命令:

ps -fu user

此命令将列出所有用户讲程。

ps -fu user | grep process

此命令可为用户找到特定进程。

3 终止进程。

\$ pkill [signal] process

signal 当 pkill 命令行语法中不包括任何信号时,使用的缺省信号为 -15

(SIGTERM)。将 -9 信号 (SIGKILL) 与 pkill 命令一起使用,可以确保进程快速终止。但是,不应使用 -9 信号来中止特定进程,例如数据库进程或 LDAP 服务器进程。结果是可能丢失数据。

process 是要停止的进程的名称。

提示 – 使用 pkill 命令终止进程时,先尝试使用该命令本身,而不包括信号选项。等待几分钟确定进程是否终止,然后再使用带有 -9 信号的 pkill 命令。

4 验证进程是否已终止。

\$ pgrep process

pgrep命令的输出中应不再列出已终止的进程。

▼ 如何终止进程(kill)

- 1 (可选的)成为超级用户或等效角色便可以终止其他用户的进程。
- 2 获得要终止的进程的进程ID。

\$ ps -fu user

其中, user 是要为其显示进程的用户。

例如:

\$ ps -fu userabc

userabc 328 323 2 Mar 12 ?
:0 -nobanner -auth /var/dt/A:0-WmayOa

userabc 366 349 0 Mar 12 ?

10:18 /usr/openwin/bin/Xsun

0:00 /usr/openwin/bin/fbconsole

```
485
                     0 Mar 12 ?
userabc
         496
                                          0:09 /usr/dt/bin/sdtperfmeter
 -f -H -t cpu -t disk -s 1 -name fpperfmeter
               332
                         Mar 12 ?
                                          0:00 /bin/ksh /usr/dt/bin/Xsession
userabc
         349
                     0
         440
               438
                         Mar 12 pts/3
                                          0:00 -csh -c unsetenv PWD;
userabc
                     0
unsetenv DT:
                setenv DISPLAY :0;
userabc
         372
                1
                     0
                         Mar 12 ?
                                          0:00 /usr/openwin/bin/speckeysd
                         Mar 12 pts/3
                                          0:00 /usr/dt/bin/sdt shell -c
userabc
         438
               349
unset
```

进程ID显示在输出的第一列中。

3 终止进程。

\$ kill [signal-number] pid

signal 当 kill 命令行

当 kill 命令行语法中不包括任何信号时,使用的缺省信号为 –15 (SIGKILL)。将 –9 信号 (SIGTERM) 与 kill 命令一起使用,可以确保进程快速终止。但是,不应使用 –9 信号来中止特定进程,例如数据库进程或 LDAP 服务器进程。结果是可能丢失数据。

pid 是要终止的进程的进程 ID。

提示 - 使用 kill 命令停止进程时,先尝试使用该命令本身,而不包括信号选项。等待几分钟以确定进程是否终止,然后再使用带有 -9 信号的 kill 命令。

4 验证进程是否已终止。

\$ pgrep pid

pgrep命令的输出中应不再列出已终止的进程。

调试进程(pargs、preap)

pargs 命令和 preap 命令可以改进进程调试。pargs 命令可以列显与实时进程或核心转储文件关联的参数和环境变量。preap 命令可以删除不再存在(僵停)的进程。僵停进程尚不具有由父进程请求的退出状态。这些进程通常是无害的,但如果数量众多,则会占用系统资源。可以使用 pargs 和 preap 命令检查您有权检查的任何进程。作为超级用户,您可以检查任何进程。

有关使用 preap 命令的信息,请参见 preap(1) 手册页。有关使用 pargs 命令的信息,请参见 pargs(1) 手册页。另请参见 proc(1) 手册页。

示例12-4 调试进程(pargs)

pargs 命令可以解决一个长期存在的问题,即使用 ps 命令无法显示传递给进程的所有参数。以下示例显示如何通过结合使用 pargs 命令和 pgrep 命令来显示传递给进程的参数。

pargs 'pgrep ttymon'

579: /usr/lib/saf/ttymon -g -h -p system-name console login:

-T sun -d /dev/console -l

argv[0]: /usr/lib/saf/ttymon

argv[1]: -g
argv[2]: -h
argv[3]: -p

argv[4]: system-name console login:

argv[5]: -T
argv[6]: sun
argv[7]: -d

argv[8]: /dev/console

argv[9]: -l
argv[10]: console
argv[11]: -m

argv[11]: ldterm,ttcompat

548: /usr/lib/saf/ttymon argv[0]: /usr/lib/saf/ttymon

以下示例显示如何使用 pargs -e 命令来显示与某一进程关联的环境变量。

\$ pargs -e 6763 6763: tcsh

0703. (6311

envp[0]: DISPLAY=:0.0

管理进程类信息(任务图)

任务	说明	参考
显示有关进程类的基本信息。	使用 priocntl -l 命令可以显示 进程调度类和优先级范围。	第 163 页中的 "如何显示有关进程类的基本信息 (priocntl)"
显示进程的全局优先级。	使用 ps -ecl 命令可以显示进程的全局优先级。	第 163 页中的 "如何显示进程的 全局优先级"
指定进程优先级。	使用 priocntl - e -c 命令以指定的优先级启动进程。	第 164 页中的 "如何指定进程优先级 (priocntl)"

任务	说明	参考
更改分时进程的调度参数。	使用 priocntl -s -m 命令可以更改分时进程中的调度参数。	第 164 页中的 "如何更改分时进程的调度参数 (priocntl)"
更改进程的类。	使用 priocntl -s -c 命令可以更改进程的类。	第 165 页中的 "如何更改进程的 类 (priocntl)"
更改进程的优先级。	使用 /usr/bin/nice 命令及相应 选项可以降低或提高进程的优先 级。	第 166 页中的 "如何更改进程的 优先级 (nice)"

管理进程类信息

以下列表列出了可在系统中配置的进程调度类。其中还包括分时类的用户优先级范围。

可能的进程调度类如下所示:

- 公平份额 (FSS)
- 固定 (FX)
- 系统 (SYS)
- 交互(IA)
- 实时 (RT)
- 分时 (TS)
 - 用户提供的优先级范围为 -60 到 +60。
 - 进程的优先级是从父进程继承的。此优先级称为**用户模式优先级**。
 - 系统会在分时分发参数表中查找用户模式优先级。然后,系统将添加任何 nice 或 priocntl(用户提供的)优先级并确保范围在 0-59 之间,以创建**全局优先** 级。

更改进程的调度优先级(priocntl)

进程的调度优先级是进程调度程序根据调度策略分配的优先级。dispadmin 命令可以列出缺省调度策略。有关更多信息,请参见 dispadmin(1M) 手册页。

可以使用 priocntl 命令将进程分配给优先级类并管理进程优先级。有关使用 priocntl 命令管理进程的说明,请参见第 164 页中的 "如何指定进程优先级 (priocntl)"。

▼ 如何显示有关进程类的基本信息 (priocntl)

● 使用 priocntl -l 命令可显示进程调度类和优先级范围。 \$ priocntl -l

示例12-5 显示有关进程类的基本信息 (priocntl)

以下示例显示 priocntl -l 命令的输出。

▼ 如何显示进程的全局优先级

● 使用 ps 命令可显示进程的全局优先级。

\$ ps -ecl

PRI 列下列出了全局优先级。

示例12-6 显示进程的全局优先级

以下示例显示 ps -ecl 命令的输出。PRI 列中的值显示,pageout 进程优先级最高,而sh进程的优先级最低。

\$ ps -ecl F S UID PID PPID CLS PRI ADDR SZ WCHAN TTY TTMF COMD 19 T 0 0 0 SYS 96 f00d05a8 0 ? 0:03 sched 8 S 0 1 TS 50 ff0f4678 185 ff0f4848 ? 36:51 init 19 S 0 2 0 SYS 98 ff0f4018 0 f00c645c? 0:01 pageout 19 S 0 3 SYS 60 ff0f5998 0 f00d0c68 ? 241:01 fsflush 8 S 0 269 1 TS 58 ff0f5338 303 ff49837e ? 0:07 sac 8 S 0 204 1 TS 43 ff2f6008 50 ff2f606e console 0:02 sh

▼ 如何指定进程优先级 (priocntl)

1 (可选的)承担主管理员角色,或成为超级用户。

主管理员角色包括主管理员配置文件。有关如何创建该角色并将其指定给用户,请参见《系统管理指南:基本管理》中的第 2 章 "使用 Solaris Management Console(任务)"。

2 以指定的优先级启动进程。

priocntl -e -c class -m user-limit -p pri command-name

-e 执行该命令。

-c class 指定要在其中运行进程的类。有效类包括 TS (分时)、RT

(实时)、IA(交互)、FSS(公平份额)和FX(固定优先

级)。

-m user-limit 使用 -p 选项时,可以指定可将优先级提高或降低的最大量。

-p pri command-name 允许您为实时线程指定在 RT 类中的相对优先级。对于分时进

程而言,使用-p选项可以指定用户提供的优先级,该优先级

范围是-60到+60。

3 验证进程状态。

ps -ecl | grep command-name

示例12-7 指定进程优先级(priocntl)

以下示例显示如何以用户提供的最高优先级启动 find 命令。

```
# priocntl -e -c TS -m 60 -p 60 find . -name core -print
# ps -ecl | grep find
```

▼ 如何更改分时进程的调度参数(priocntl)

1 (可选的)承担主管理员角色,或成为超级用户。

主管理员角色包括主管理员配置文件。有关如何创建该角色并将其指定给用户,请参见《系统管理指南:基本管理》中的第 2 章 "使用 Solaris Management Console(任务)"。

2 更改正在运行的分时进程的调度参数。

priocntl -s -m user-limit [-p user-priority] -i idtype idlist

-s 允许设置用户优先级范围的上限并更改当前优先级。

-m user-limit 使用 -p 选项时,可以指定可将优先级提高或降低的最大量。

-p user-priority 允许指定优先级。

-i xidtype xidlist 结合使用 xidtype 和 xidlist 以标识一个或多个进程。xidtype 指定 ID

的类型,例如进程 ID 或用户 ID。使用 xidlist 可以标识进程 ID 或用

户ID的列表。

3 验证进程状态。

ps -ecl | grep idlist

示例12-8 更改分时进程的调度参数 (priocntl)

以下示例显示如何以 500 毫秒的时间片、RT 类中的优先级 20 以及全局优先级 120 来执行命令。

priocntl -e -c RT -m 500 -p 20 myprog
ps -ecl | grep myprog

▼ 如何更改进程的类 (priocntl)

- 1 (可选的)成为超级用户或承担等效角色。
- 2 更改进程的类。

priocntl -s -c class -i idtype idlist

- -s 允许设置用户优先级范围的上限并更改当前优先级。
- -c class 为分时或实时指定要更改进程的类 TS 或 RT。
- -i idtype idlist 结合使用 xidtype 和 xidlist 以标识一个或多个进程。xidtype 指定 ID 的

类型,例如进程 ID 或用户 ID。使用 xidlist 可以标识进程 ID 或用户 ID

的列表。

注-只有超级用户或在实时 Shell 中工作的用户才能将某一进程更改为实时进程或将实时进程更改为该进程。如果超级用户将用户进程更改为实时类,那么该用户以后不能使用 priocntl-s 命令来更改实时调度参数。

3 验证进程状态。

ps -ecl | grep idlist

示例12-9 更改进程的类(priocntl)

以下示例显示如何将属于用户15249的所有进程都更改为实时进程。

priocntl -s -c RT -i uid 15249
ps -ecl | grep 15249

更改分时进程的优先级(nice)

支持 nice 命令的目的只是为了向下兼容以前的 Solaris 发行版。priocntl 命令在管理进程方面提供了更多的灵活性。

进程的优先级由其调度类的策略和 *nice* **数值**决定。每个分时进程都有全局优先级。全局优先级的计算方法是用户提供的优先级(该优先级可能受 nice 或 priocntl 命令影响)加上系统计算的优先级。

进程的执行优先级数由操作系统分配。优先级数由多个因素决定,其中包括进程的调度类、进程使用的 CPU 时间以及进程的 nice 数值(对于分时进程的情况)。

每个分时进程都以缺省 nice 数值启动,它从父进程中继承该数值。nice 数值显示在 ps 报告的 NI 列中。

用户可通过提高用户提供的优先级来降低进程的优先级。但是,只有超级用户能够通过降低 nice 数值来提高进程的优先级。此限制使用户无法提高自己所拥有进程的优先级,因此会独占更大的 CPU 份额。

nice 数值的范围是从 0 到 +39, 其中 0 表示最高优先级。每个分时进程的缺省 nice 值为 20。有两个可用的命令版本:标准版本 /usr/bin/nice 以及 C Shell 内置命令。

▼ 如何更改进程的优先级 (nice)

通过使用此过程,用户可以降低进程的优先级。而超级用户可以提高或降低进程的优先级。

注 – 本节介绍的是 /usr/bin/nice 命令而非 C-shell 内置 nice 命令的语法。有关 C-shell nice 命令的信息,请参见 csh(1) 手册页。

- 1 确定要以用户身份还是超级用户身份更改进程的优先级。然后,选择以下两项之一:
 - 以用户身份,按照步骤2中的示例降低命令的优先级。
 - 以超级用户的身份,按照步骤3中的示例提高或降低命令的优先级。

2 以用户身份,通过增大 nice 数值降低命令的优先级。

以下 nice 命令使 nice 数值增大 5 个单位,从而以更低的优先级执行 command-name。

\$ /usr/bin/nice -5 command-name

在前面的命令中,减号指定后面的内容是一个选项。也可以通过以下方式来指定此命令:

% /usr/bin/nice -n 5 command-name

以下 nice 命令使 nice 数值增大 10 个单位(缺省增量)但未超出最大值 39,从而降低了 command-name 的优先级。

% /usr/bin/nice command-name

3 作为超级用户或等效角色,通过更改 nice 数值来提高或降低命令的优先级。

以下 nice 命令使 nice 数值降低 10 个单位但不低于最小值 0,从而提高了 command-name 的优先级。

/usr/bin/nice --10 command-name

在前面的命令中,第一个减号指定后面的内容是一个选项。第二个减号指示一个负数。

以下 nice 命令使 nice 数值增大 5 个单位但未超出最大值 39,从而降低了 command-name 的优先级。

/usr/bin/nice -5 command-name

另请参见 有关更多信息,请参见 nice(1) 手册页。

系统进程问题的疑难解答

下面就您可能遇到的突出问题给出了一些提示:

- 查找同一用户所有的多个相同作业。出现此问题可能是由于正在运行的某个脚本启动了多个后台作业,而未等待任何作业完成。
- 查找累积了大量 CPU 时间的进程。通过检查 ps 输出中的 TIME 字段可以确定此问题。此进程可能处于无限循环中。
- 查找运行优先级过高的进程。使用 ps c 命令检查 CLS 字段,其中显示每个进程的调度类。作为实时 (RT) 进程执行的进程会独占 CPU。或者,查找 nice 数值很大的分时 (TS) 进程。具有超级用户特权的用户可能提高了某一进程的优先级。系统管理员可以使用 nice 命令来降低优先级。
- 查找失控进程。失控进程会逐渐使用越来越多的 CPU 时间。通过查看进程启动时的时间 (STIME) 并监视一会儿 CPU 时间累积 (TIME),便可确定此问题。

◆ ◆ ◆ 第 13 章

监视系统性能(任务)

本章介绍使用 vmstat、iostat、df 和 sar 命令监视系统性能的过程。

有关与监视系统性能相关的过程的信息,请参见以下主题:

- 第169页中的"显示系统性能信息(任务图)"
- 第177页中的"监视系统活动(任务图)"

显示系统性能信息(任务图)

任务	说明	参考
显示虚拟内存统计信息。	使用 vmstat 命令收集虚拟内存 统计信息。	第 171 页中的 "如何显示虚拟内 存统计信息 (vmstat)"
显示系统事件信息。	使用 vmstat 命令和 -s 选项显示 系统事件信息	第 171 页中的 "如何显示系统事件信息 (vmstat -s)"
显示交换统计信息。	使用 vmstat 命令和 -S 选项显示 交换统计信息。	第 172 页中的 "如何显示交换统 计信息 (vmstat -S)"
显示每台设备的中断。	使用 vmstat 命令和 -i 选项显示 每台设备的中断次数。	第 173 页中的 "如何显示每台设备的中断次数 (vmstat -i)"
显示磁盘使用率。	使用 iostat 命令报告磁盘输入 和输出统计信息。	第 173 页中的 "如何显示磁盘使 用率信息 (iostat)"
显示扩展磁盘统计信息。	使用 iostat 命令和 -xtc 选项显示扩展磁盘统计信息。	第 175 页中的 "如何显示扩展磁盘统计信息 (iostat -xtc)"
显示磁盘空间信息。	df-k命令以千字节为单位显示 磁盘空间信息。	第 176 页中的 "如何显示磁盘空间信息 (df-k)"

显示虚拟内存统计信息(vmstat)

可以使用 vmstat 命令报告虚拟内存统计信息,以及有关系统事件(例如 CPU 负载、分页、上下文切换数、设备中断和系统调用)的信息。vmstat 命令还可以显示有关交换、高速缓存刷新和中断的统计信息。

下表介绍了 vmstat 命令输出中的字段。

表13-1 vmstat命令的输出

类别	字段名	说明
procs		报告以下内容:
	r	分发队列中的内核线程数
	b	正在等待资源的阻塞内核线程数
	W	正在等待处理中的资源完成的换出 LWP 数
memory		报告实际内存和虚拟内存的使用情况:
	swap	可用交换空间
	free	可用列表的大小
page		以秒为单位报告页面错误和分页活动:
	re	回收的页面
	mf	次要错误和主要错误
	рi	页入的千字节数
	ро	页出的千字节数
	fr	释放的千字节数
	de	最近换入的进程所需的预计内存
	sr	由 page 守护程序扫描的当前未使用的页数。如果 sr 不等于零,则 page 守护程序一直在运行。
disk		报告每秒的磁盘操作数,最多显示四个磁盘中的数据
faults		报告每秒的陷阱/中断速率:
	in	每秒的中断次数
	sy	每秒的系统调用数
	CS	CPU上下文切换速率
cpu		报告 CPU 使用时间:

表 13-1	vmstat命令的输出	(续)	
类别	字段名	说明	
	us	用户时间	
	sy	系统时间	
	id	空闲时间	

有关此命令的更多详细说明,请参见 vmstat(1M) 手册页。

▼ 如何显示虚拟内存统计信息 (vmstat)

● 使用 vmstat 命令以秒为时间间隔单位收集虚拟内存统计信息。

\$ vmstat n

其中,n是两次报告之间的间隔秒数。

示例13-1 显示虚拟内存统计信息

以下示例显示了以5秒为间隔收集的统计信息的 vmstat 显示。

\$ vmstat 5

ktl	ır		memo	ory			pag	ge				di	sk			fa	aults		срі	J	
r	b	W	swap	free	re	mf	рi	ро	fr	de	sr	dd	f0	s1		in	sy	CS	us	sy	id
0	0	0	863160	365680	0	3	1	0	0	0	0	0	0	0	0	406	378	209	1	0	99
0	0	0	765640	208568	0	36	0	0	0	0	0	0	0	0	0	479	4445	1378	3	3	94
0	0	0	765640	208568	0	0	0	0	0	0	0	0	0	0	0	423	214	235	0	0	100
0	0	0	765712	208640	0	0	0	0	0	0	0	3	0	0	0	412	158	181	0	0	100
0	0	0	765832	208760	0	0	0	0	0	0	0	0	0	0	0	402	157	179	0	0	100
0	0	0	765832	208760	0	0	0	0	0	0	0	0	0	0	0	403	153	182	0	0	100
0	0	0	765832	208760	0	0	0	0	0	0	0	0	0	0	0	402	168	177	0	0	100
0	0	0	765832	208760	0	0	0	0	0	0	0	0	0	0	0	402	153	178	0	0	100
0	0	0	765832	208760	0	18	0	0	0	0	0	0	0	0	0	407	165	186	0	0	100

▼ 如何显示系统事件信息 (vmstat -s)

● 运行 vmstat -s 命令,以显示自上次引导系统以来发生的系统事件数。

\$ vmstat -s

- 0 swap ins
- 0 swap outs
- 0 pages swapped in
- 0 pages swapped out

522586 total address trans. faults taken

```
17006 page ins
      25 page outs
   23361 pages paged in
      28 pages paged out
  45594 total reclaims
   45592 reclaims from free list
       0 micro (hat) faults
  522586 minor (as) faults
  16189 major faults
  98241 copy-on-write faults
  137280 zero fill page faults
   45052 pages examined by the clock daemon
       0 revolutions of the clock hand
      26 pages freed by the clock daemon
    2857 forks
      78 vforks
    1647 execs
34673885 cpu context switches
65943468 device interrupts
  711250 traps
63957605 system calls
 3523925 total name lookups (cache hits 99%)
   92590 user
              cpu
  65952 system cpu
16085832 idle cpu
    7450 wait cpu
```

▼ 如何显示交换统计信息 (vmstat -S)

● 运行 vmstat -S,以显示交换统计信息。

```
\$ vmstat -S
```

```
kthr memory page disk faults cpu r b w swap free si so pi po fr de sr dd f0 sl -- in sy cs us sy id 0 0 0 862608 364792 0 0 1 0 0 0 0 0 0 0 0 406 394 213 1 0 99
```

以下列表介绍了交换统计信息字段。有关其他字段的说明,请参见表 13-1。

- si 每秒换入的平均 LWP 数
- so 换出的完整进程数

注 - vmstat 命令会截断 si 和 so 字段的输出。应使用 sar 命令显示更精确的交换统计信息记录。

▼ 如何显示每台设备的中断次数 (vmstat -i)

● 运行 vmstat -i 命令,以显示每台设备的中断次数。

示例13-2 显示每台设备的中断次数

以下示例显示 vmstat -i 命令的输出。

<pre>\$ vmstat -i</pre>		
interrupt	total	rate
clock	52163269	100
esp0	2600077	4
zsc0	25341	0
zsc1	48917	0
cgsixc0	459	0
lec0	400882	0
fdc0	14	0
bppc0	0	0
audiocs0	0	0
Total	55238959	105

显示磁盘使用率信息 (iostat)

使用 iostat 命令可以报告有关磁盘输入和输出的统计信息,以及生成对吞吐量、使用率、队列长度、事务速率和服务时间的测量值。有关此命令的详细说明,请参阅 iostat(1M) 手册页。

▼ 如何显示磁盘使用率信息(iostat)

● 使用 iostat 命令和时间间隔秒数可以显示磁盘使用率信息。

\$ iostat 5 tty fd0 sd3 nfs1 nfs31 cpu tin tout kps tps serv kps tps serv kps tps serv kps tps serv us sy wt id 0 1 0 0 410 3 0 29 0 0 9 3 0 47 4 2 0 94

输出的第一行显示自上次引导系统以来的统计信息。后面的每行显示间隔的统计信息。缺省情况下会显示终端(tty)、磁盘(fd 以及 sd)和 CPU(cpu)的统计信息。

示例13-3 显示磁盘使用率信息

以下示例显示每隔5秒收集的磁盘统计信息。

\$ iostat 5

tty	sd0 sd6					nfs1			nfs49				cpu			
tin	tout	kps	tps	serv	kps	tps	serv	kps	tps	serv	kps	tps	serv	us	sy	wt id
0	0	1	0	49	0	0	0	0	0	0	0	0	15	0	0	0 100
0	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	44	6	132	0	0	0	0	0	0	0	0	0	0	0	1 99
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	3	1	23	0	0	0	0	0	0	0	0	0	0	0	1 99
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 100

下表介绍了 iostat n 命令输出中的字段。

设备类型	字段名	说明
终端	设备类型	
	tin	终端输入队列中的字符数
	tout	终端输出队列中的字符数
磁盘	设备类型	
	bps	每秒块数
	tps	每秒事务数
	serv	平均服务时间,以毫秒为单位
CPU	设备类型	
	us	在用户模式下
	sy	在系统模式下
	wt	等待 I/O
	id	空闲

▼ 如何显示扩展磁盘统计信息 (iostat -xtc)

● 运行 iostat -xtc 命令,以显示扩展磁盘统计信息。

\$ iostat -xtc

		tty		cpu											
device	r/s	W/S	kr/s	kw/s	wait	actv	svc_t	%W	%b	tin tout	u	s s	y wt	id	
fd0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0 0		0 (0 0	100	
sd0	0.0	0.0	0.4	0.4	0.0	0.0	49.5	0	0						
sd6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0						
nfs1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0						
nfs49	0.0	0.0	0.0	0.0	0.0	0.0	15.1	0	0						
nfs53	0.0	0.0	0.4	0.0	0.0	0.0	24.5	0	0						
nfs54	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0	0						
nfs55	0.0	0.0	0.0	0.0	0.0	0.0	4.9	0	0						

iostat -xtc 命令对每个磁盘显示一行输出。以下列表介绍了输出字段。

r/s 每秒读取次数

w/s 每秒写入次数

kr/s 每秒读取的千字节数

kw/s 每秒写入的千字节数

wait 等待服务的平均事务数(队列长度)

actv 处于活动服务状态的平均事务数

svc_t 平均服务时间,以毫秒为单位

w 队列不为空的时间百分比

%b 磁盘繁忙的时间百分比

显示磁盘空间统计信息(df)

使用 df 命令可以显示挂载的每个磁盘中的可用磁盘空间量。df 报告的**可用**磁盘空间只反映全部容量的 90%,因为报告统计信息留出总可用空间的 10% 以上。此**头空间**通常保持为空,以实现更好的性能。

df命令实际报告的磁盘空间百分比是已用空间除以可用空间。

如果文件系统超出容量的 90%,则可使用 cp 命令将文件转移至具有可用空间的磁盘。或者,使用 tar 或 cpio 命令将文件转移至磁带。也可以删除文件。

有关此命令的详细说明,请参见 df(1M) 手册页。

▼ 如何显示磁盘空间信息 (df -k)

● 使用 df-k 命令以千字节为单位显示磁盘空间信息。

\$ **df** -k

Filesystem	kbytes	used	avail	capacity	Mounted	on
/dev/dsk/c0t3d0s0	192807	40231	133296	24%	/	

示例13-4 显示文件系统信息

以下示例显示 df-k 命令的输出。

4	-1-6	
Ψ.	αт	

Filesystem	kbytes	used	avail	capacity	Mounted on
/dev/dsk/c0t0d0s0	254966	204319	25151	90%	/
/devices	0	0	0	0%	/devices
ctfs	0	0	0	0%	/system/contract
proc	0	0	0	0%	/proc
mnttab	0	0	0	0%	/etc/mnttab
swap	496808	376	496432	1%	/etc/svc/volatile
objfs	0	0	0	0%	/system/object
/dev/dsk/c0t0d0s6	3325302	3073415	218634	94%	/usr
fd	0	0	0	0%	/dev/fd
swap	496472	40	496432	1%	/var/run
swap	496472	40	496432	1%	/tmp
/dev/dsk/c0t0d0s5	13702	1745	10587	15%	/opt
/dev/dsk/c0t0d0s7	9450	1045	7460	13%	/export/home

下表介绍了 df-k 命令的输出。

字段名	说明
kbytes	文件系统中可用空间的总大小
used	已用空间量
avail	可用空间量
capacity	已用空间量,表示为总容量的百分比
mounted on	挂载点

监视系统活动(任务图)

任务	说明	参考		
检查文件访问。	使用带有 -a 选项的 sar 命令显示文件访问操作状态。	第 178 页中的 "如何检查文件访问 (sar -a)"		
检查缓冲区活动。	使用带有 -b 选项的 sar 命令显示缓冲区活动统计信息。	第 179 页中的 "如何检查缓冲区活动 (sar -b)"		
检查系统调用统计信 息。	使用带有 - c 选项的 sar 命令显示系统调用统计信息。	第 180 页中的 "如何检查系 统调用统计信息 (sar -c)"		
检查磁盘活动。	使用带有 -d 选项的 sar 命令检查磁盘活动。	第 182 页中的 "如何检查磁 盘活动 (sar -d)"		
检查页出和内存。	使用带有 -g 选项的 sar 命令显示页出内存释 放活动。	第 183 页中的 "如何检查页 出和内存 (sar -g)"		
检查内核内存分配。	内核内存分配 (Kernel Memory Allocation, KMA) 允许内核子系统根据需要分配和释放内 存。使用带有-k选项的sar命令检查KMA。	第 185 页中的 "如何检查内 核内存分配 (sar -k)"		
检查进程间通信。	使用带有-m选项的sar命令报告进程间通信活动。	第 186 页中的 "如何检查进 程间通信 (sar -m)"		
检查页入活动。	使用带有 -p 选项的 sar 命令报告页入活动。	第 187 页中的 "如何检查页 入活动 (sar -p)"		
检查队列活动。	使用带有 - q 选项的 sar 命令检查以下内容: 占用队列时的平均队列长度 占用队列时的时间百分比	第 188 页中的 "如何检查队列活动 (sar -q)"		
检查未使用的内存。	使用带有 - r 选项的 sar 命令报告当前使用的 内存页数和交换文件磁盘块数。	第 190 页中的 "如何检查未 使用的内存 (sar -r)"		
检查 CPU 使用率。	使用带有 -u 选项的 sar 命令显示 CPU 使用率 统计信息。	第 191 页中的 "如何检查 CPU 使用率 (sar -u)"		
检查系统表状态。	使用带有 -v 选项的 sar 命令报告有关以下系统表的状态: 进程 Inode 文件 共享内存记录	第 192 页中的 "如何检查系统表状态 (sar -v)"		
检查交换活动。	使用带有 -w选项的 sar 命令检查交换活动。	第 193 页中的 "如何检查交 换活动 (sar -w)"		
检查终端活动。	使用带有-y选项的sar命令监视终端设备活动。	第 194 页中的 "如何检查终端活动 (sar -y)"		

任务	说明	参考
检查总体系统性能。	sar - A 命令可通过显示所有选项的统计信息提供总体系统性能信息。	第 195 页中的 "如何检查总 体系统性能 (sar -A)"
设置自动数据收集。	要设置系统以自动收集数据并运行 sar 命令,请执行以下操作: 运行 svcadm enable system/sar:default 命令 编辑 /var/spool/cron/crontabs/sys 文件	第 198 页中的 "如何设置自 动数据收集"

监视系统活动(sar)

使用 sar 命令可执行以下任务:

- 组织并查看有关系统活动的数据。
- 根据特殊请求访问系统活动数据。
- 生成自动报告以测量和监视系统性能,并生成特殊请求报告以确定特定性能问题。 有关如何设置要在系统上运行的 sar 命令的信息以及相应工具的说明,请参见第 195 页中的"自动收集系统活动数据 (sar)"。

有关此命令的详细说明,请参见 sar(1)手册页。

▼ 如何检查文件访问 (sar -a)

● 使用 sar -a 命令可显示文件访问操作统计信息。

\$ sar -a

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

iget/s	namei/s	dirbk/s
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	3	0
0	10	0
0	1	0
	0 0 0 0 0 0 0	0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3

10:00:02 0 5

Average 0 4 0

以下列表介绍了 sar -a 命令报告的操作系统例程的字段名和说明。

iget/s 对不位于目录名称查找高速缓存 (Directory Name Look-up Cache, DNLC) 中的 inode 发出的请求数。

namei/s 每秒搜索的文件系统路径数。如果 namei 在 DNLC 中找不到目录名称,它会调用 iget 以获取文件或目录的 inode。因此,大多数 igets 都是 DNLC 遗漏的结果。

dirbk/s 每秒发出的目录块读取数。

对这些操作系统例程报告的值越大,内核访问用户文件时花费的时间越多。时间的长短将反映程序和应用程序使用文件系统的程度。-a 选项有助于查看磁盘与应用程序的相关情况。

▼ 如何检查缓冲区活动 (sar -b)

● 使用 sar -b 命令可显示缓冲区活动统计信息。

缓冲区用于高速缓存元数据。元数据包括 inode、柱面组块和间接块。

\$ sar -b

00:00:00 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s 01:00:00 0 0 100 0 0 55 0 0

示例13-5 检查缓冲区活动 (sar -b)

下面的 sar -b 命令输出示例说明 %rcache 和 %wcache 缓冲区未引起速率下降。所有数据都在可接受的限制范围内。

\$ sar -b

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04	bread/s	lread/s	%rcache	bwrit/s	lwrit/s	%wcache	pread/s	pwrit/s
01:00:00	0	0	100	0	0	94	0	0
02:00:01	0	0	100	0	0	94	0	0
03:00:00	0	0	100	0	0	92	0	0
04:00:00	0	1	100	0	1	94	0	0
05:00:00	0	0	100	0	0	93	0	0
06:00:00	0	0	100	0	0	93	0	0
07:00:00	0	0	100	0	0	93	0	0
08:00:00	0	0	100	0	0	93	0	0

08:20:00	0	1	100	0	1	94	0	0
08:40:01	0	1	100	0	1	93	0	0
09:00:00	0	1	100	0	1	93	0	0
09:20:00	0	1	100	0	1	93	0	0
09:40:00	0	2	100	0	1	89	0	0
10:00:00	0	9	100	0	5	92	0	0
10:20:00	0	0	100	0	0	68	0	0
10:40:00	0	1	98	0	1	70	0	0
11:00:00	0	1	100	0	1	75	0	0
Average	0	1	100	0	1	91	0	0

下表介绍了 -b 选项显示的缓冲区活动。

字段名	说明
bread/s	从磁盘提交至高速缓存存储区的每秒平均读取数
lread/s	每秒从高速缓存存储区进行的平均逻辑读取数
%rcache	在高速缓存存储区中找到的逻辑读取的分数(100 %减去 bread/s 与 l read/s 之比)
bwrit/s	每秒平均从高速缓存存储区写入磁盘的物理块数 (512块)
lwrit/s	每秒平均对高速缓存存储区进行的逻辑写入数
%wcache	在高速缓存存储区中找到的逻辑写入的分数(100 %减去 bwrit/s 与 lwrit/s 之比)
pread/s	每秒平均使用字符设备接口的物理读取数
pwrit/s	每秒平均使用字符设备接口的物理写入请求数

最重要的项是高速缓存命中率 %rcache 和 %wcache。这两项用于度量系统缓冲的有效性。如果 %rcache 低于 90% 或者 %wcache 低于 65%,则可通过增加缓冲区空间来改善性能。

▼ 如何检查系统调用统计信息 (sar -c)

● 使用 sar -c 命令可显示系统调用统计信息。

```
$ sar -c
00:00:00 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
01:00:00 38 2 2 0.00 0.00 149 120
```

示例13-6 检查系统调用统计信息 (sar -c)

以下示例显示 sar -c 命令的输出。

\$ sar -c

SunOS ba	lmyday 5	.10 s10_5	51 sun4u	03/18	3/2004		
00:00:04	scall/s	sread/s	swrit/s	fork/s	exec/s	rchar/s	wchar/s
01:00:00	89	14	9	0.01	0.00	2906	2394
02:00:01	89	14	9	0.01	0.00	2905	2393
03:00:00	89	14	9	0.01	0.00	2908	2393
04:00:00	90	14	9	0.01	0.00	2912	2393
05:00:00	89	14	9	0.01	0.00	2905	2393
06:00:00	89	14	9	0.01	0.00	2905	2393
07:00:00	89	14	9	0.01	0.00	2905	2393
08:00:00	89	14	9	0.01	0.00	2906	2393
08:20:00	90	14	9	0.01	0.01	2914	2395
08:40:01	90	14	9	0.01	0.00	2914	2396
09:00:00	90	14	9	0.01	0.01	2915	2396
09:20:00	90	14	9	0.01	0.01	2915	2396
09:40:00	880	207	156	0.08	0.08	26671	9290
10:00:00	2020	530	322	0.14	0.13	57675	36393
10:20:00	853	129	75	0.02	0.01	10500	8594
10:40:00	2061	524	450	0.08	0.08	579217	567072
11:00:00	1658	404	350	0.07	0.06	1152916	1144203
Average	302	66	49	0.02	0.01	57842	55544

下表介绍了-c 选项报告的系统调用类别。通常,读取和写入占系统调用总数的一半。但是,该百分比会因系统所执行的活动而产生极大的变化。

字段名	说明
scall/s	每秒中所有类型的系统调用数,在具有4到6位 用户的系统中,通常每秒大约有30个系统调用。
sread/s	每秒的 read 系统调用数。
swrit/s	每秒的 write 系统调用数。
fork/s	每秒的 fork 系统调用数,在具有 4 到6 位用户的系统中,每秒中大约有 0.5 个该系统调用。如果正在运行 Shell 脚本,此数字会增加。
exec/s	每秒的 exec 系统调用数。如果 exec/s 除以 fork/s 的结果大于 3,请确定是否存在无效的 PATH 变量。

字段名	说明
rchar/s	每秒由 read 系统调用传送的字符数(字节)。
wchar/s	每秒由 write 系统调用传送的字符数(字节)。

▼ 如何检查磁盘活动 (sar -d)

● 使用 sar -d 命令可显示磁盘活动统计信息。

\$ sar -d

00:00:00 device %busy avque r+w/s blks/s avwait avserv

示例13-7 检查磁盘活动

此缩写示例演示了 sar -d 命令的输出。

\$ sar -d

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

12:36:32	device	%busy	avque	r+w/s	blks/s	avwait	avserv
12:40:01	dad1	15	0.7	26	399	18.1	10.0
	dad1,a	15	0.7	26	398	18.1	10.0
	dad1,b	0	0.0	0	1	1.0	3.0
	dad1,c	0	0.0	0	0	0.0	0.0
	dad1,h	0	0.0	0	0	0.0	6.0
	fd0	0	0.0	0	0	0.0	0.0
	nfs1	0	0.0	0	0	0.0	0.0
	nfs2	1	0.0	1	12	0.0	13.2
	nfs3	0	0.0	0	2	0.0	1.9
	nfs4	0	0.0	0	0	0.0	7.0
	nfs5	0	0.0	0	0	0.0	57.1
	nfs6	1	0.0	6	125	4.3	3.2
	nfs7	0	0.0	0	0	0.0	6.0
	sd1	0	0.0	0	0	0.0	5.4
	ohci0,bu	0	0.0	0	0	0.0	0.0
	ohci0,ct	0	0.0	0	0	0.0	0.0
	ohci0,in	0	0.0	7	0	0.0	0.0
	ohci0,is	0	0.0	0	0	0.0	0.0
	ohci0,to	0	0.0	7	0	0.0	0.0

下表介绍了-d 选项报告的磁盘设备活动。

字段名	说明
device	监视的磁盘设备的名称。
%busy	设备忙于为传送请求提供服务的时间份额。
avque	设备忙于为传送请求提供服务期间的平均请求 数。
r+w/s	每秒对设备进行的读取和写入传送数。
blks/s	每秒传送给设备的512字节块的数量。
avwait	传送请求在队列中空闲等待的平均时间,以毫秒 为单位。仅当队列被占用时才测量此时间。
avserv	设备完成传送请求所需的平均时间,以毫秒为单位。对于磁盘而言,此值包括查找时间、旋转延 迟时间和数据传送时间。

请注意,在队列不为空时测量队列长度和等待时间。当%busy 很小时,如果队列和服务时间很大,则可能表示系统进行周期性的努力,以确保将警报块快速写入磁盘。

▼ 如何检查页出和内存 (sar -g)

● 使用 sar -g 命令可显示平均页出和内存释放活动。

```
$ sar -g
```

sar -g 命令的输出可以明确指示是否需要更多内存。使用 ps -elf 命令显示 page 守护程序使用的周期数。如果周期数很大,并且 pgfree/s 和 pgscan/s 字段的值也很大,则表明内存不足。

sar -q 命令还可表明是否回收 inode 的速率过快而引起可重用页丢失。

示例13-8 检查页出和内存 (sar - q)

以下示例显示 sar -q 命令的输出。

\$ sar -g

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

00:00:00 pgout/s ppgout/s pgfree/s pgscan/s %ufs ipf 01:00:00 0.00 0.00 0.00 0.00 0.00 02:00:00 0.01 0.01 0.01 0.00 0.00 03:00:00 0.00 0.00 0.00 0.00 0.00

04:00:00	0.00	0.00	0.00	0.00	0.00
05:00:00	0.00	0.00	0.00	0.00	0.00
06:00:00	0.00	0.00	0.00	0.00	0.00
07:00:00	0.00	0.00	0.00	0.00	0.00
08:00:00	0.00	0.00	0.00	0.00	0.00
08:20:01	0.00	0.00	0.00	0.00	0.00
08:40:00	0.00	0.00	0.00	0.00	0.00
09:00:00	0.00	0.00	0.00	0.00	0.00
09:20:01	0.05	0.52	1.62	10.16	0.00
09:40:01	0.03	0.44	1.47	4.77	0.00
10:00:02	0.13	2.00	4.38	12.28	0.00
10:20:03	0.37	4.68	12.26	33.80	0.00
Average	0.02	0.25	0.64	1.97	0.00

下表介绍了-g 选项的输出。

字段名	说明
pgout/s	每秒的页出请求数。
ppgout/s	每秒调出的页的实际数量。单个页出请求可能涉 及多个页的调出。
pgfree/s	每秒放置在可用列表中的页数。
pgscan/s	page 守护程序每秒扫描的页数。如果此值很大,则表明 page 守护程序花费大量时间来检查可用内存。此情况暗示,可能需要更多内存。
%ufs_ipf	具有关联的可重用页的 iget 从可用列表中取消的 ufs inode 的百分比。这些页面被刷新,并且不能由进程回收。因此,此字段表示具有页面刷新的 igets 的百分比。如果该值很大,则表明 inode 的可用列表页面密集,并且可能需要增加 ufs inode 的数量。

检查内核内存分配

KMA 允许内核子系统根据需要分配和释放内存。

KMA并不是静态分配在峰值载荷下预计所需的最大内存量,而是将内存请求划分为三个类别:

- 小型 (少于256字节)
- 大型 (512字节至4千字节)
- 超大型 (大于4千字节)

KMA 保留两个内存池,以满足小型和大型请求。超大型请求则通过从系统页面分配器中分配内存来满足。

如果您所检查的系统用来编写使用 KMA 资源的驱动程序或 STREAMS,则 sar -k 命令可能很有用。否则,您可能不需要它所提供的信息。使用 KMA 资源但不一定在退出前返回资源的所有驱动程序或模块都可能产生内存泄漏。内存泄漏会导致 KMA 分配的内存量随事件而增加。因此,如果 sar -k 命令的 alloc 字段随时间稳定增加,则可能存在内存泄漏。表明存在内存泄漏的另一种情况是请求失败。如果出现此问题,内存泄漏很可能导致 KMA 无法保留和分配内存。

如果似乎存在内存泄漏,则应检查可能从 KMA 请求内存但未返回内存的所有驱动程序或 STREAMS。

▼ 如何检查内核内存分配 (sar -k)

● 使用 sar -k 命令可报告内核内存分配器 (Kernel Memory Allocator, KMA) 的以下活动。

```
$ sar -k
00:00:00 sml_mem alloc fail lg_mem alloc fail ovsz_alloc fail
01:00:00 2523136 1866512  0 18939904 14762364  0 360448  0
02:00:02 2523136 1861724  0 18939904 14778748  0 360448  0
```

示例 13-9 检查内核内存分配 (sar -k)

下面是 sar -k 输出的缩写示例。

\$ sar -k

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

```
00:00:04 sml mem
                   alloc fail lg mem
                                         alloc fail ovsz alloc fail
                                                   156
01:00:00 6119744 4852865
                             0 60243968 54334808
                                                           9666560
02:00:01 6119744 4853057
                             0 60243968 54336088
                                                           9666560
03:00:00 6119744 4853297
                             0 60243968 54335760
                                                   156
                                                           9666560
04:00:00 6119744 4857673
                             0 60252160 54375280
                                                   156
                                                           9666560
05:00:00 6119744 4858097
                             0 60252160 54376240
                                                   156
                                                           9666560
06:00:00 6119744 4858289
                             0 60252160 54375608
                                                   156
                                                           9666560
07:00:00 6119744 4858793
                             0 60252160 54442424
                                                           9666560
                                                   156
08:00:00 6119744 4858985
                             0 60252160 54474552
                                                   156
                                                           9666560
08:20:00 6119744 4858169
                             0 60252160 54377400
                                                   156
                                                           9666560
08:40:01 6119744 4857345
                             0 60252160 54376880
                                                   156
                                                           9666560
09:00:00 6119744 4859433
                             0 60252160 54539752
                                                   156
                                                           9666560
09:20:00 6119744 4858633
                             0 60252160 54410920
                                                   156
                                                           9666560
                                                                       0
09:40:00 6127936 5262064
                             0 60530688 55619816
                                                   156
                                                           9666560
                                                                       0
10:00:00 6545728 5823137
                             0 62996480 58391136
                                                           9666560
                                                   156
                                                                       0
10:20:00 6545728 5758997
                             0 62996480 57907400
                                                   156
                                                           9666560
```

10:40:00	6734144	6035759	0	64389120	59743064	156	10493952	0	
11:00:00	6996288	6394872	0	65437696	60935936	156	10493952	0	
Average	6258044	5150556	0	61138340	55609004	156	9763900	0	

下表介绍了-k 选项的输出。

字段名	说明
sml_mem	KMA 在小型内存请求池中可用的内存量,以字节 为单位。在此池中,小型请求小于 256 字节。
alloc	KMA 已从其小型内存请求池向小型内存请求分配的内存量,以字节为单位。
fail	请求少量内存并失败的请求数。
lg_mem	KMA 在大型内存请求池中可用的内存量,以字节为单位。在此池中,大型请求介于 512 字节到 4 千字节之间。
alloc	KMA 已从其大型内存请求池向大型内存请求分配的内存量,以字节为单位。
fail	请求大量内存并失败的请求数。
ovsz_alloc	为大于4千字节的超大型请求分配的内存量。这些请求可通过页面分配器来满足。因此,不存在 池。
fail	因请求超大量内存而失败的请求数。

▼ 如何检查进程间通信 (sar -m)

● 使用 sar -m 命令可报告进程间通信活动。

\$ sar -m

00:00:00 msg/s sema/s 01:00:00 0.00 0.00

除非运行使用消息或信号的应用程序,否则这些数字通常都为零 (0.00)。

以下列表介绍了-m选项的输出。

msg/s 每秒的消息操作(发送和接收)数

sema/s 每秒的信号操作数

示例13-10 检查进程间通信 (sar -m)

以下缩写示例显示 sar -m 命令的输出。

\$ sar -m

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

00:00:00	msg/s	sema/s
01:00:00	0.00	0.00
02:00:02	0.00	0.00
03:00:00	0.00	0.00
04:00:00	0.00	0.00
05:00:01	0.00	0.00
06:00:00	0.00	0.00
Average	0.00	0.00

▼ 如何检查页入活动 (sar -p)

● 使用 sar -p 命令可报告页入活动,其中包括保护错误和转换错误。

```
$ sar -p
00:00:00 atch/s pgin/s ppgin/s pflt/s vflt/s slock/s
01:00:00 0.07 0.00 0.00 0.21 0.39 0.00
```

示例13-11 检查页入活动 (sar -p)

以下示例显示 sar -p 命令的输出。

\$ sar -p

SunOS balmyday 5.10 s10_51 sun4u 03/18/2004

00:00:04	atch/s	pgin/s	ppgin/s	pflt/s	vflt/s	slock/s
01:00:00	0.09	0.00	0.00	0.78	2.02	0.00
02:00:01	0.08	0.00	0.00	0.78	2.02	0.00
03:00:00	0.09	0.00	0.00	0.81	2.07	0.00
04:00:00	0.11	0.01	0.01	0.86	2.18	0.00
05:00:00	0.08	0.00	0.00	0.78	2.02	0.00
06:00:00	0.09	0.00	0.00	0.78	2.02	0.00
07:00:00	0.08	0.00	0.00	0.78	2.02	0.00
08:00:00	0.09	0.00	0.00	0.78	2.02	0.00
08:20:00	0.11	0.00	0.00	0.87	2.24	0.00
08:40:01	0.13	0.00	0.00	0.90	2.29	0.00

09:00:00	0.11	0.00	0.00	0.88	2.24	0.00
09:20:00	0.10	0.00	0.00	0.88	2.24	0.00
09:40:00	2.91	1.80	2.38	4.61	17.62	0.00
10:00:00	2.74	2.03	3.08	8.17	21.76	0.00
10:20:00	0.16	0.04	0.04	1.92	2.96	0.00
10:40:00	2.10	2.50	3.42	6.62	16.51	0.00
11:00:00	3.36	0.87	1.35	3.92	15.12	0.00
Average	0.42	0.22	0.31	1.45	4.00	0.00

下表介绍了通过 -p 选项报告的统计信息。

字段名	说明
atch/s	每秒通过回收当前在内存中的页来满足的页面错误数(每秒附加数)。例如从可用列表中回收无效的页,以及共享其他进程当前正在使用的文本页。例如,两个或多个进程同时访问同一程序文本。
pgin/s	文件系统每秒接收页入请求的次数。
ppgin/s	每秒调进的页数。单个页入请求(例如软件锁定请求,请参见 slock/s)或块大小很大时可能涉及多个页的调进。
pflt/s	因保护错误引起的页面错误数。保护错误实例表明非法访问页面和"写复制"。通常,此数目主要来自于"写复制"错误。
vflt/s	每秒的地址转换页面错误数。这些错误称为有效性错误。当给定虚拟地址的有效进程表项不存在时,会发生有效性错误。
slock/s	每秒内由要求物理 I/O 的软件锁定请求引起的错误数。从磁盘向内存传送数据时,就会出现软件锁定请求。系统锁定了要接收数据的页,因此其他进程无法请求和使用该页。

▼ 如何检查队列活动 (sar -q)

● 使用 sar -q 命令可报告以下信息:

- 队列被占用时的平均队列长度。
- 队列处于占用状态的时间百分比。

\$ sar -q

00:00:00 rung-sz %runocc swpq-sz %swpocc

以下列表介绍了-q选项的输出。

runq-sz 内存中等待 CPU 以便运行的内核线程数。通常,此值应小于 2。如果此值 持续很高,则表明系统可能是 CPU 限制系统。

%runocc 占用分发队列的时间百分比。

swpq-sz 不再由 sar 命令报告。

%swpocc 不再由 sar 命令报告。

示例13-12 检查队列活动

以下示例显示 sar -q 命令的输出。如果 %runocc 值较大(大于 90%)并且 runq-sz 值大于 2,则表明 CPU 负载较大,并且响应变慢。在此情况下,可能需要提供附加的 CPU 容量,才能获得可接受的系统响应速度。

\$ sar -q

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

00:00:04	runq-sz	%runocc	swpq-sz	%swpocc	
01:00:00	1.0	0	0.0	0	
02:00:01	1.3	0	0.0	0	
03:00:00	1.0	0	0.0	0	
04:00:00	1.0	0	0.0	0	
05:00:00	1.0	0	0.0	0	
06:00:00	2.0	0	0.0	0	
07:00:00	0.0	0	0.0	0	
08:00:00	1.0	0	0.0	0	
08:20:00	1.0	0	0.0	0	
08:40:01	2.0	0	0.0	0	
09:00:00	0.0	0	0.0	0	
09:20:00	1.0	0	0.0	0	
09:40:00	1.2	2	0.0	0	
10:00:00	1.2	2	0.0	0	
10:20:00	1.0	1	0.0	0	
10:40:00	1.3	9	0.0	0	
11:00:00	1.2	7	0.0	0	
Average	1.2	1	0.0	0	

▼ 如何检查未使用的内存 (sar -r)

● 使用 sar - r 命令可报告当前未使用的内存页数和交换文件磁盘块数。

\$ sar -r
00:00:00 freemem freeswap
01:00:00 2135 401922

以下列表介绍了 - r 选项的输出。

freemem 在该命令采样的时间间隔内可供用户进程使用的平均内存页数。页面大小 与计算机有关。

freeswap 可用于页交换的 512 字节磁盘块数。

示例 13-13 检查未使用的内存 (sar - r)

以下示例显示 sar -r 命令的输出。

\$ sar -r

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

▼ 如何检查 CPU 使用率 (sar -u)

● 使用 sar -u 命令可显示 CPU 使用率统计信息。

\$ sar -u
00:00:00 %usr %sys %wio %idle
01:00:00 0 0 0 100

没有任何选项的 sar 命令与 sar -u 命令等效。在任意给定时刻,处理器都会处于繁忙或空闲状态。繁忙时,处理器可能处于用户模式或系统模式。空闲时,处理器可能在等待 I/O 完成,或"静止"而不执行任何操作。

03/18/2004

以下列表介绍了-u 洗项的输出。

%usr 列出处理器处于用户模式的时间百分比

%sys 列出处理器处于系统模式的时间百分比

%wio 列出处理器空闲并等待 I/O 完成的时间百分比

%idle 列出处理器空闲并且未等待 I/O 的时间百分比

%wio 值越大,通常表示磁盘速率变慢。

示例 13-14 检查 CPU 使用率 (sar -u)

以下示例显示 sar -u 命令的输出。

SunOS balmvdav 5.10 s10 51 sun4u

\$ sar -u

Julios	Du ciny (auy 3.10	310_31	Juli-u	05/ 10/ 2	-00-
00:00:	04	%usr	%sys	%WiO	%idle	
01:00:	00	0	0	0	100	
02:00:	01	0	0	0	100	
03:00:	00	0	0	0	100	
04:00:	00	0	0	0	100	
05:00:	00	0	0	0	100	
06:00:	00	0	0	0	100	
07:00:	00	0	0	0	100	
08:00:	00	0	0	0	100	
08:20:	00	0	0	0	99	
08:40:	01	0	0	0	99	
09:00:	00	0	0	0	99	
09:20:	00	0	0	0	99	
09:40:	00	4	1	0	95	
10:00:	00	4	2	0	94	
10:20:	00	1	1	0	98	
10:40:	00	18	3	0	79	

11:00:00 25 3 0 72

Average 2 0 0 98

▼ 如何检查系统表状态 (sar -v)

● 使用 sar -v 命令可报告进程表、inode 表、文件表和共享内存记录表的状态。

\$ sar -v

00:00:00 proc-sz ov inod-sz ov file-sz ov lock-sz 01:00:00 43/922 0 2984/4236 0 322/322 0 0/0

示例 13-15 检查系统表状态 (sar - v)

SunOS balmyday 5.10 s10 51 sun4u

以下缩写示例显示 sar -v 命令的输出。此示例表明,所有表都足够大,因此没有溢出。这些表都基于物理内存量进行动态分配。

03/18/2004

\$ sar -v

00:00:04 proc-sz ov inod-sz ov file-sz ΟV lock-sz 01:00:00 69/8010 0 3476/34703 0/0 0 0/0 02:00:01 69/8010 0 3476/34703 0/0 0/0 0 03:00:00 69/8010 0 3476/34703 0 0/0 0 0/0 04:00:00 69/8010 0 3494/34703 0/0 0 0/0 05:00:00 69/8010 0 3494/34703 0 0/0 0 0/0 06:00:00 69/8010 0 3494/34703 0/0 0 0/0 0 07:00:00 0 3494/34703 69/8010 0/0 0 0/0 08:00:00 69/8010 0 3494/34703 0/0 0 0/0 08:20:00 69/8010 0 3494/34703 0/0 0 0/0 08:40:01 69/8010 0 3494/34703 0/0 0 0/0 09:00:00 69/8010 0 3494/34703 0/0 0/0 09:20:00 69/8010 0 3494/34703 0/0 0 0/0 09:40:00 74/8010 0 3494/34703 0 0/0 0 0/0 10:00:00 75/8010 0 4918/34703 0 0/0 0 0/0 10:20:00 72/8010 0 4918/34703 0/0 0 0/0 0 10:40:00 71/8010 0 5018/34703 0 0/0 0 0/0 77/8010 11:00:00 0 5018/34703 0 0/0 0 0/0

下表介绍了 - v 选项的输出。

字段名	说明
proc-sz	内核中当前正在使用或已分配的进程项(proc 结 构)数。
inod-sz	与内核中分配的最大 inode 数相比,内存中的 inode 总数。此数字不是严格的高水位标记。该数字可以溢出。
file-sz	打开的系统文件表的大小。由于文件表的空间是 动态分配的,因此 sz 被给定为 0。
ov	在每个表的采样点之间发生的溢出。
lock-sz	内核中当前正在使用或分配的共享内存记录表项的数量。由于共享内存记录表的空间是动态分配的,因此 sz 被给定为 0。

▼ 如何检查交换活动 (sar -w)

● 使用 sar -w 命令可报告交换和切换活动。

\$ sar -w

00:00:00 swpin/s bswin/s swpot/s bswot/s pswch/s 01:00:00 0.00 0.00 0.00 0.00 22

以下列表介绍了 sar -w 命令输出的目标值和观测值。

swpin/s 每秒传入内存的 LWP 数。

bswin/s 每秒为换入传送的块数。

swpot/s 每秒换出内存的平均进程数。如果该数字大于 1,则可能需要增大内存。

bswot/s 每秒为换出传送的块数。 pswch/s 每秒的内核线程切换数。

注-所有进程换入都包括进程初始化。

示例13-16 检查交换活动 (sar -w)

以下示例显示 sar -w 命令的输出。

\$ sar -w

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

00:00:04 swpin/s bswin/s swpot/s bswot/s pswch/s

01:00:00	0.00	0.0	0.00	0.0	132
02:00:01	0.00	0.0	0.00	0.0	133
03:00:00	0.00	0.0	0.00	0.0	133
04:00:00	0.00	0.0	0.00	0.0	134
05:00:00	0.00	0.0	0.00	0.0	133
06:00:00	0.00	0.0	0.00	0.0	133
07:00:00	0.00	0.0	0.00	0.0	132
08:00:00	0.00	0.0	0.00	0.0	131
08:20:00	0.00	0.0	0.00	0.0	133
08:40:01	0.00	0.0	0.00	0.0	132
09:00:00	0.00	0.0	0.00	0.0	132
09:20:00	0.00	0.0	0.00	0.0	132
09:40:00	0.00	0.0	0.00	0.0	335
10:00:00	0.00	0.0	0.00	0.0	601
10:20:00	0.00	0.0	0.00	0.0	353
10:40:00	0.00	0.0	0.00	0.0	747
11:00:00	0.00	0.0	0.00	0.0	804
Average	0.00	0.0	0.00	0.0	198

▼ 如何检查终端活动 (sar -y)

● 使用 sar -y 命令可监视终端设备活动。

如果有多个终端 I/O,则可使用此报告来确定是否存在任何错误行。以下列表中定义了记录的活动。

rawch/s 每秒输入字符数(原始队列)

canch/s canon (规则队列) 每秒处理的输入字符

outch/s 每秒输出字符数(输出队列)

rcvin/s 每秒接收器硬件中断次数

xmtin/s 每秒传送器硬件中断次数

mdmin/s 每秒调制解调器中断次数

每秒调制解调器中断次数 (mdmin/s) 应接近于零。每秒的接收和传送中断次数(rcvin/s和 xmtin/s)应分别小于或等于传入或传出字符数。否则,请检查是否存在错误行。

示例13-17 检查终端活动 (sar -y)

以下示例显示 sar -y 命令的输出。

\$ sar -y

SunOS balmyday 5.10 s10 51 sun4u 03/18/2004

00:00:04	rawch/s	canch/s	outch/s	rcvin/s	xmtin/s	mdmin/s
01:00:00	0	0	0	0	0	0
02:00:01	0	0	0	0	0	0
03:00:00	0	0	0	0	0	0
04:00:00	0	0	0	0	0	0
05:00:00	0	0	0	0	0	0
06:00:00	0	0	0	0	0	0
07:00:00	0	0	0	0	0	0
08:00:00	0	0	0	0	0	0
08:20:00	0	0	0	0	0	0
08:40:01	0	0	0	0	0	0
09:00:00	0	0	0	0	0	0
09:20:00	0	0	0	0	0	0
09:40:00	0	0	1	0	0	0
10:00:00	0	0	37	0	0	0
10:20:00	0	0	0	0	0	0
10:40:00	0	0	3	0	0	0
11:00:00	0	0	3	0	0	0
Average	0	0	1	0	0	0

▼ 如何检查总体系统性能 (sar -A)

● 使用 sar -A 命令可显示所有选项的统计信息,以提供总体系统性能的综览。 此命令可提供更具全局性的透视。如果显示来自多个单时间段的数据,则该报告会包 括平均值。

自动收集系统活动数据(sar)

自动收集系统活动数据时涉及三个命令: sadc、 sal 和 sa2。

sadc 数据收集实用程序定期收集系统数据,并以二进制格式的文件保存数据,每 24 小时保存一个文件。可以将 sadc 命令设置为定期运行(通常每小时一次),并在系统引导到多用户模式时运行。数据文件放置在 /var/adm/sa 目录中。每个文件都命名为 sadd,其中 dd 是当前日期。命令的格式如下:

/usr/lib/sa/sadc [t n] [ofile]

该命令以t秒为间隔采样n次,两次采样之间的间隔应大于5秒。然后,此命令将向二进制ofile 文件或标准输出中写入数据。

引导时运行 sadc 命令

sadc 命令应在系统引导时运行,以记录自计数器重置为零以来的统计信息。为确保在引导时运行 sadc 命令,svcadm enable system/sar:default 命令会向每日数据文件中写入一条记录。

该命令项格式如下:

/usr/bin/su sys -c "/usr/lib/sa/sadc /var/adm/sa/sa'date +%d'"

使用 sal 脚本定期运行 sadc 命令

为了生成定期记录,您需要定期运行 sadc 命令。最简单的方法是在 /var/spool/cron/crontabs/sys 文件中取消对下列行的注释:

0 * * * 0-6 /usr/lib/sa/sa1
20,40 8-17 * * 1-5 /usr/lib/sa/sa1
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A

sys crontab 项执行以下操作:

- 前两个 crontab 项可在星期一到星期五从上午 8 点到下午 5 点,每 20 分钟或每小时向 /var/adm/sa/sadd 文件写入一条记录。
- 第三项可从星期一到星期五每小时向 /var/adm/sa/sar dd 文件写入一条记录,并且可以包括所有 sar 选项。

可以更改这些缺省设置,以满足您的需要。

使用 sa2 Shell 脚本生成报告

另一个 Shell 脚本 sa2 可生成报告,而不是二进制数据文件。sa2 命令调用 sar 命令,并将 ASCII 输出写入报告文件。

设置自动数据收集(sar)

sar 命令可用于自行收集系统活动数据,或报告 sadc 命令所创建的每日活动文件中收集的内容。

sar 命令格式如下:

sar [-aAbcdgkmpgruvwy] [-o file] t [n]

sar [-aAbcdgkmpqruvwy] [-s time] [-e time] [-i sec] [-f file]

以下 sar 命令每隔 t 秒对操作系统中的累积活动计数器进行采样,共进行 n 次。 t 应大于或等于 5 秒。否则,命令本身会对样本产生影响。必须指定采样的时间间隔。否则,命令将根据第二种格式运行。n 的缺省值为 1 。以下示例以 10 秒为间隔提取两个样本。如果指定 -0 选项,则以二进制格式保存样本。

\$ sar -u 10 2

有关 sar 命令的其他重要信息包括:

- 不指定采样间隔或样本数时,sar命令将从以前记录的文件中提取数据。该文件是由 -f 选项为最近一天指定的文件,或对应于最近一天的标准每日活动文件 /var/adm/sa/sa dd(缺省设置)。
- -s 和 -e 选项定义报告的开始时间和结束时间。开始时间和结束时间的格式为 hh[:mm[:ss]],其中 hh、mm 和 ss 表示小时、分钟和秒。
- -i 选项以秒为单位指定记录所选内容之间的时间间隔。如果不包括 -i 选项,则报告在每日活动文件中找到的所有间隔。

下表列出了 sar 选项及其操作。

表13-2 sar命令的选项

选项	操作
-a	检查文件访问操作
- b	检查缓冲区活动
- C	检查系统调用
- d	检查每个块设备的活动
- g	检查页出和内存释放
- k	检查内核内存分配
- m	检查进程间通信

表 13-2 sari	表13-2 sar命令的选项 (续)				
选项	操作				
-nv	检查系统表状态				
- p	检查交换和分发活动				
- q	检查队列活动				
- r	检查未使用的内存				
- u	检查 CPU 使用率				
-W	检查交换和切换卷				
- y	检查终端活动				
-A	报告总体系统性能,这与输入所有选项等效。				

不使用任何选项等效于调用带 -u 选项的 sar 命令。

▼ 如何设置自动数据收集

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- **2** 运行 svcadm enable system/sar:default 命令。 此版本的 sadc 命令会写入一条特殊记录,其中标记了将计数器重置为零的时间(引导时间)。
- 3 编辑 /var/spool/cron/crontabs/sys crontab 文件。

注 – 不要直接编辑 crontab 文件。而要改用 crontab -e 命令对现有 crontab 文件进行更改。

crontab -e sys

4 取消对以下行的注释:

0 * * * 0-6 /usr/lib/sa/sal 20,40 8-17 * * 1-5 /usr/lib/sa/sal 5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 1200 -A 有关更多信息,请参见 crontab(1) 手册页。

◆ ◆ ◆ 第 1 4 章

软件问题疑难解答(概述)

本章提供软件问题疑难解答的一般概述,其中包括有关系统崩溃的疑难解答以及查看系统消息的信息。

以下是本章中的信息列表。

- 第199页中的"疑难解答方面的新增内容"
- 第201页中的"有关软件疑难解答任务的参考信息"
- 第201页中的"系统崩溃疑难解答"
- 第203页中的"系统崩溃疑难解答核对表"

疑难解答方面的新增内容

本节介绍此 Solaris 发行版中新增或已更改的疑难解答信息。

有关 Solaris 10 发行版中新增或已更改的疑难解答功能的信息,请参见以下内容:

- 第200页中的"动态跟踪功能"
- 第 200 页中的 "kmdb 取代 kadb 作为标准的 Solaris 内核调试程序"

有关 Solaris 新增功能的完整列表以及 Solaris 发行版的说明,请参见《Solaris 10 新增功能》。

Common Agent Container 问题

Solaris 10 6/06: Common Agent Container 是现已包括在 Solaris OS 中的独立 Java 程序。此程序可为 Java 管理应用程序实现容器。Common Agent Container 提供一种针对基于 Java Management Extensions (JMX) 和 Java Dynamic Management Kit (Java DMK) 的功能设计的管理基础结构。该软件由 SUNWcacaort 软件包安装,并且驻留在 /usr/lib/cacao 目录中。

通常,容器是不可见的。但在以下两种情况下,您可能需要与容器守护进程交互:

- 其他应用程序可能会尝试使用为 Common Agent Container 保留的网络端口。
- 如果证书库遭到破坏,则可能需要重新生成 Common Agent Container 证书密钥。

有关如何解决这些问题的信息,请参见第 238 页中的 "Solaris OS 中 Common Agent Container 问题的疑难解答"。

x86: SMF 引导归档文件服务可能在系统重新引导期间失败

Solaris 10 1/06:如果系统在基于 GRUB 的引导环境中发生崩溃,可能是 SMF 服务 svc:/system/boot-archive:default 在系统重新引导时失败。如果出现此问题,请重新 引导系统并在 GRUB 引导菜单中选择 Solaris 故障安全归档文件。请按照提示重新生成 引导归档文件。重新生成归档文件后,重新引导系统。要继续引导过程,可以使用 svcadm命令清除 svc:/system/boot-archive:default 服务。有关说明,请参见第 234 页中的 "x86: SMF 引导归档文件服务在系统重新引导期间失败时应执行的操作"。有关基于 GRUB 进行引导的更多信息,请参见《系统管理指南:基本管理》中的第 11章 "基于 GRUB 的引导(任务)"。

动态跟踪功能

Solaris 10: Solaris 动态跟踪 (Dynamic Tracing, DTrace) 功能是一项全面的动态跟踪功能,借助该功能,可在一个全新级别观察 Solaris 内核和用户进程。使用 Dtrace 可以动态检测操作系统内核和用户进程,并记录您在所关注的位置(称为探测器)指定的数据,从而帮助您了解系统。每个探测器均可与用新的 D 编程语言编写的自定义程序相关联。DTrace 的所有检测过程都是完全动态的,并且可用于产品化的系统。有关更多信息,请参见 dtrace(1M) 手册页和《Solaris 动态跟踪指南》。

kmdb 取代 kadb 作为标准的 Solaris 内核调试程序

Solaris 10: kmdb 已取代 kadb, 作为标准的"现场" Solaris 内核调试程序。

在进行实时内核调试时,kmdb 可实现 mdb 的所有强大功能和灵活性。kmdb 支持以下功能:

- 调试程序命令(dcmds)
- 调试程序模块 (dmods)
- 访问内核类型数据
- 内核执行控制
- 检查
- 修改

有关更多信息,请参见 kmdb(1) 手册页。有关使用 kmdb 对系统进行故障排除的逐步说明,请参见《系统管理指南:基本管理》中的"如何使用内核调试器 (kmdb) 引导系统"。

有关软件疑难解答任务的参考信息

疑难解答任务	更多信息
管理系统故障转储信息	第 17 章
管理核心转储文件	第 16 章
重新引导失败和备份问题等软件问题的疑难解答	第 18 章
文件访问问题疑难解答	第 19 章
打印问题疑难解答	《System Administration Guide: Solaris Printing》中 的第 11 章 "Troubleshooting Printing Problems (Tasks)"
解决UFS文件系统不一致问题	第 20 章
软件包问题疑难解答	第 21 章

用于系统和软件问题疑难解答的其他资源

可以使用 Sun Explorer 软件收集数据以便对系统和软件问题进行疑难解答。有关下载 Sun Explorer 软件的更多信息,请参见《Sun Explorer User's Guide》。

系统崩溃疑难解答

如果运行 Solaris 操作系统的系统崩溃,请向服务提供商提供尽可能多的信息,包括故障转储文件。

系统崩溃时应执行的操作

要记住的最重要的事情包括:

1. 记录系统控制台消息。

如果系统崩溃,则使其重新运行可能是最紧迫的事情。但是,在重新引导系统之前,请先检查控制台屏幕上的消息。这些消息可能有助于了解导致崩溃的原因。即使系统自动重新引导并且控制台消息已从屏幕上消失,仍然可以通过查看系统错误日志(/var/adm/messages 文件)来检查这些消息。有关查看系统错误日志文件的更多信息,请参见第 206 页中的 "如何查看系统消息"。

如果系统频繁发生崩溃并且无法确定其原因,请收集可从系统控制台或/var/adm/messages 文件中获取的所有信息,并准备好以供客户服务代表检查。有关要为服务提供商收集的疑难解答信息的完整列表,请参见第 201 页中的 "系统崩溃疑难解答"。

如果系统在崩溃后无法成功重新引导,请参见第18章。

2. 同步磁盘并重新引导。

ok sync

如果系统在崩溃后无法成功重新引导,请参见第18章。

查看系统崩溃后是否生成了系统故障转储。缺省情况下,会保存系统故障转储。有关故障转储的信息,请参见第 17 章。

收集疑难解答数据

请回答以下问题,以帮助隔离系统问题。有关收集崩溃的系统的疑难解答数据的信息,请参见第 203 页中的 "系统崩溃疑难解答核对表"。

表14-1 确定系统崩溃数据

问题	说明
是否可以重现问题?	这一点很重要,因为在调试很难的问题时,可重现的测试 案例是必不可少的。通过重现问题,服务提供商可以使用 特殊设备构造内核,以触发、诊断和更正错误。
是否使用了任何第三方驱动程序?	具有相同权限的多个驱动程序在内核所在的同一地址空间 中运行,如果这些驱动程序存在错误,则会导致系统崩 溃。
系统在崩溃之前正在执行什么操作?	如果系统在执行异常的操作,例如运行新的负荷测试或遇 到特别高的负荷,则可能导致系统崩溃。
在系统崩溃之前,是否有任何异常的控 制台消息?	有时,系统会在实际崩溃前显示故障信号,此信息通常很 有用。
是否向 /etc/system 文件中添加了任何 调优参数?	有时,调优参数(如增大共享内存段,以使系统尝试分配 比实际拥有内存更多的内存)会导致系统崩溃。
问题是在最近开始的吗?	如果是这样,问题是否与对系统的更改同时出现?例如新的驱动程序、新软件、不同工作负荷、CPU升级或内存升级。

系统崩溃疑难解答核对表

可在为崩溃的系统收集系统数据时使用此核对表。

项	数据
系统故障转储是否可用?	
确定操作系统发行版以及相应软件应用程序的发行版级别。	
确定系统硬件。	
包括 sun4u 系统的 prtdiag 输出。包括其他系统的资源管理器输出。	
是否安装了修补程序?如果已安装,请包括 showrev -p 输出。	
问题是否可重现?	
系统中是否有任何第三方驱动程序?	
系统在崩溃前正在执行什么操作?	
在系统崩溃前是否有任何异常的控制台消息?	
是否向 /etc/system 文件中添加了任何参数?	
问题是在最近开始的吗?	

◆ ◆ ◆ 第 15 章

管理系统消息

本章介绍 Solaris 操作系统中的系统消息传送功能。

查看系统消息

系统消息显示在控制台设备中。大多数系统消息的文本如下所示:

[ID msgid facility. priority]

例如:

[ID 672855 kern.notice] syncing file systems...

如果消息来自内核,则会显示内核模块名称。例如:

Oct 1 14:07:24 mars ufs: [ID 845546 kern.notice] alloc: /: file system full

当系统崩溃时,系统控制台可能会显示如下消息:

panic: error message

少数情况下,可能会显示以下消息而非故障消息:

Watchdog reset !

错误日志守护进程 syslogd 可在消息文件中自动记录各种系统警告和错误。缺省情况下,其中许多系统消息都会在系统控制台中显示,并存储在 /var/adm 目录中。通过设置系统消息日志可以指示这些消息的存储位置。有关更多信息,请参见第 208 页中的 "自定义系统消息日志"。这些消息可以提醒您系统出现问题,例如设备将要出现故障。

/var/adm 目录中包含若干个消息文件。最新消息位于 /var/adm/messages 文件中(和 messages.*中),而最旧的消息位于 messages.3 文件中。经过一段时间后(通常为每

隔十天),会创建一个新的 messages 文件。 messages.0 文件被重命名为 messages.1,messages.1被重命名为 messages.2,而 messages.2被重命名为 messages.3。当前的 /var/adm/messages.3 文件将被删除。

由于 /var/adm 目录存储包含消息、故障转储和其他数据的大型文件,因此该目录可能会占用许多磁盘空间。为防止 /var/adm 目录变得过大,并确保可以保存将来的故障转储,应定期删除不需要的文件。可以使用 crontab 文件自动执行此任务。有关自动执行此任务的更多信息,请参见第83页中的"如何删除故障转储文件"和第8章。

▼ 如何查看系统消息

● 使用 dmesq 命令显示由系统崩溃或重新引导生成的最新消息。

\$ dmesg

或者,使用 more 命令逐屏显示消息。

\$ more /var/adm/messages

示例15-1 查看系统消息

以下示例显示 dmesq 命令的输出。

\$ dmesg

```
Jan 3 08:44:41 starbug genunix: [ID 540533 kern.notice] SunOS Release 5.10 ...
Jan 3 08:44:41 starbug genunix: [ID 913631 kern.notice] Copyright 1983-2003 ...
Jan 3 08:44:41 starbug genunix: [ID 678236 kern.info] Ethernet address ...
Jan 3.08:44:41 starbug unix: [ID 389951 kern.info] mem = 131072K (0x8000000)
Jan 3 08:44:41 starbug unix: [ID 930857 kern.info] avail mem = 121888768
Jan 3 08:44:41 starbug rootnex: [ID 466748 kern.info] root nexus = Sun Ultra 5/
10 UPA/PCI (UltraSPARC-IIi 333MHz)
Jan 3 08:44:41 starbug rootnex: [ID 349649 kern.info] pcipsy0 at root: UPA 0x1f0x0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] pcipsy0 is /pci@1f,0
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1,1, simba0
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simba0 is /pci@1f,0/pci@1,1
Jan 3 08:44:41 starbug pcipsy: [ID 370704 kern.info] PCI-device: pci@1, simbal
Jan 3 08:44:41 starbug genunix: [ID 936769 kern.info] simbal is /pci@lf,0/pci@l
Jan 3 08:44:57 starbug simba: [ID 370704 kern.info] PCI-device: ide@3, uata0
Jan 3 08:44:57 starbug genunix: [ID 936769 kern.info] uata0 is /pci@1f,0/pci@1,
1/ide@3
Jan 3 08:44:57 starbug uata: [ID 114370 kern.info] dad0 at pci1095,6460
```

另请参见 有关更多信息,请参见 dmesg(1M) 手册页。

系统日志轮转

使用 root crontab 中的一个项内的 logadm 命令,可以轮转系统日志文件。不再使用 /usr/lib/newsyslog 脚本。

系统日志轮转在 /etc/logadm.conf 文件中定义。此文件包含用于 syslogd 等进程的日志轮转项。例如,/etc/logadm.conf 文件中的一个项指定,除非 /var/log/syslog 文件为空,否则该文件每周轮转一次。最新的 syslog 文件成为 syslog.0,下一个最新的文件成为 syslog.1,依此类推。会保留八个以前的 syslog 日志文件。

/etc/logadm.conf 文件还包含记录最后一次日志轮转发生时间的时间标记。

可以使用 logadm 命令来自定义系统日志,并可根据需要在 /etc/logadm.conf 文件中添加其他日志。

例如,要轮转 Apache 访问和错误日志,请使用以下命令:

```
# logadm -w /var/apache/logs/access_log -s 100m
# logadm -w /var/apache/logs/error log -s 10m
```

在此示例中,Apache access_log 文件会在大小达到 100 MB 时进行轮转,以 .0、.1等作为后缀,并保留旧 access_log 文件的 10 个副本。error_log 会在大小达到 10 MB 时进行轮转,后缀和副本数与 access log 文件相同。

用于上述 Apache 日志轮转示例的 /etc/logadm.conf 项与以下示例类似:

cat /etc/logadm.conf

.

/var/apache/logs/error_log -s 10m /var/apache/logs/access_log -s 100m

有关更多信息,请参见logadm(1M)。

可以超级用户身份或通过承担等效角色(具有日志管理权限)来使用 logadm命令。通过基于角色的访问控制 (role-based access control, RBAC),您可以通过提供对 logadm命令的访问来授予非超级用户维护日志文件的权限。

例如,可通过向 /etc/user_attr 文件添加以下项,授予用户 andy 使用 logadm 命令的权限:

andy::::profiles=Log Management

或者,也可以使用 Solaris 管理控制台来设置用于日志管理的角色。有关设置角色的更多信息,请参见《系统管理指南:安全性服务》中的"基于角色的访问控制(概述)"。

自定义系统消息日志

通过修改 /etc/syslog.conf 文件,可以捕获各个系统进程生成的其他错误消息。缺省情况下,/etc/syslog.conf 文件会将许多系统进程消息定向到 /var/adm/messages 文件。崩溃和引导消息也存储在这些文件中。要查看 /var/adm 消息,请参见第 206 页中的 "如何查看系统消息"。

/etc/syslog.conf 文件有两个通过制表符分隔的列:

facility.level ... action

facility.level

消息或情况的**工具**或系统源。可能是由逗号分隔的工具列表。表 15-1 中列出了工具值。*level*,表示所记录情况的严重程度或优先级。表 15-2 中列出了优先级。

如果同一工具的两个项用于不同优先级,则不要将这两个项放在同一行中。在 syslog 文件中放置优先级表示将记录该优先级或更高优先级的所有消息,最后一条消息优先。对于给定的工具和级别, syslogd 将匹配该级别以及所有更高级别的所有消息。

action

操作字段表示将消息转发到的位置。

以下示例显示缺省的 /etc/syslog.conf 文件中的样例行。

user.err user.alert user.emerg /dev/sysmsg
/var/adm/messages
'root, operator'
*

这意味着将自动记录以下用户消息:

- 将用户错误列显到控制台,同时将其记录到 /var/adm/messages 文件中。
- 将需要立即操作的用户消息 (alert) 发送给超级用户和操作员用户。
- 将用户紧急消息发送给各用户。

注-如果在/etc/syslog.conf文件中多次指定一个日志目标,则将各项分别放置在不同的行中可能会导致消息的记录顺序混乱。请注意,可在一个行项中指定多个选择器,每个选择器之间用分号分隔。

下表中显示了最常见的错误情况源。表 15-2 按严重程度显示最常见的优先级。

表15-1 syslog.conf消息的源工具

源	说明
kern	内核
auth	验证
daemon	所有守护进程
mail	邮件系统
lp	假脱机系统
user	用户进程

注-可在/etc/syslog.conf文件中激活的syslog工具数没有限制。

表15-2 syslog.conf消息的优先级

优先级	说明
emerg	系统紧急情况
alert	需要立即更正的错误
crit	严重错误
err	其他错误
info	提示性消息
debug	用于调试的输出
none	此设置不记录输出

▼ 如何自定义系统消息日志

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

- 2 编辑 /etc/syslog.conf 文件,根据 syslog.conf(4) 中介绍的语法添加或更改消息源、优先级和消息位置。
- 3 退出文件,保存更改。

示例15-2 自定义系统消息日志

此样例 /etc/syslog.conf user.emerg 工具可向超级用户**和**个人用户发送用户紧急消息。

user.emera

'root, *'

启用远程控制台消息传送

以下新增控制台功能可以提高您对远程系统进行故障排除的能力:

■ 利用 consadm命令,您可以选择串行设备作为辅助(或远程)控制台。使用 consadm命令,系统管理员可以配置一个或多个串行端口,以便当系统在不同运行级之间转换时显示重定向的控制台消息,并托管 sulogin 会话。借助此功能,您可用调制解调器拨入并连接到串行端口,以监视控制台消息并参与 init 状态转换。(有关更多信息,请参见 sulogin(1M) 和后面的逐步过程。)

使用配置为辅助控制台的端口登录系统时,它主要用作输出设备,其中显示的信息也在缺省控制台中显示。如果引导脚本或其他应用程序从缺省控制台中读取内容或向其中写入内容,则写入输出将在所有辅助控制台上显示,但输入只从缺省控制台中读取。(有关在交互式登录会话过程中使用 consadm 命令的更多信息,请参见第 211 页中的 "在交互式登录会话期间使用 consadm 命令"。)

- 控制台输出包括内核和写入新的伪设备 /dev/sysmsg 的 syslog 消息。此外,rc 脚本启动消息也将写入 /dev/msglog。以前,所有这些消息都写入 /dev/console。如果希望看到显示在辅助控制台中的脚本消息,那么需要把将控制台输出定向到/dev/console的脚本更改为 /dev/msglog。如果希望将消息重定向到辅助设备,则应该将引用 /dev/console 的程序显式修改为使用 syslog()或 strlog()。
- consadm命令运行守护进程来监视辅助控制台设备。指定为辅助控制台并且已断 开、挂起或失去载体的任何显示设备都将从辅助控制台设备列表中删除,并且不再 处于活动状态。启用一个或多个辅助控制台不会禁用缺省控制台上的消息显示,消 息将继续在 /dev/console 中显示。

在运行级转换期间使用辅助控制台消息传递

在运行级转换期间使用辅助控制台消息传递时,请记住以下几点:

- 如果在系统引导时运行的 rc 脚本期望用户输入,则输入不能来自辅助控制台。输入 必须来自缺省控制台。
- 由 init 调用以用于在运行级之间转换时提示输入超级用户口令的 sulogin 程序已被 修改,除了缺省控制台设备之外,还可以向每个辅助设备发送超级用户口令提示。

- 当系统处于单用户模式并且使用 consadm 命令启用一个或多个辅助控制台时,将在第一个设备上运行控制台登录会话,以便为 sulogin 提示提供正确的超级用户口令。从控制台设备收到正确口令时,sulogin 将禁用来自所有其他控制台设备的输入。
- 如果其中一个控制台承担了单用户特权,将在缺省控制台和其他辅助控制台上显示一条消息。此消息指出已通过接受正确的超级用户口令而成为控制台的设备。如果运行单用户 shell 的辅助控制台中丢失载体,则会执行以下两种操作之一:
 - 如果辅助控制台代表一个处于运行级1的系统,则系统会继续到缺省运行级。
 - 如果辅助控制台代表一个处于运行级 S 的系统,则系统会显示已通过 Shell 输入 init s 或 shutdown 命令的设备中的 ENTER RUN LEVEL (0-6, s or S): 消息。如果 该设备中也没有任何载体,则必须重新建立载体并输入正确的运行级。init 或 shutdown 命令不再重新显示运行级提示。
- 如果使用串行端口登录系统,并发出 init 或 shutdown 命令以转换到其他运行级,则无论此设备是否为辅助控制台,登录会话都将丢失。此情况与没有辅助控制台功能的 Solaris 发行版相同。
- 一旦使用 consadm 命令将设备选作辅助控制台,该设备将一直用作辅助控制台,直 到重新引导系统或取消选中辅助控制台。但是,consadm 命令有一个选项,可在系 统重新引导期间将设备设置为辅助控制台。(有关逐步说明,请参见以下过程。)

在交互式登录会话期间使用 consadm 命令

如果要通过使用与串行端口连接的终端登录系统,再使用 consadm 命令查看终端的控制 台消息的方式来运行交互式登录会话,请注意以下行为。

- 如果在辅助控制台处于活动状态时将终端用于交互式登录会话,则会向/dev/sysmsg 或 /dev/msglog 设备发送控制台消息。
- 在终端发出命令时,输入将转到交互式会话而非缺省控制台 (/dev/console)。
- 如果运行 init 命令更改运行级,远程控制台软件将中止交互式会话并运行 sulogin 程序。此时,只接受来自终端的输入,并将其视为来自控制台设备的输入。这样您 便可以按第 210 页中的 "在运行级转换期间使用辅助控制台消息传递"中所述为 sulogin 程序输入口令。

然后,如果您在(辅助)终端中输入正确口令,辅助控制台将运行交互式 sulogin 会话,并锁定缺省控制台和任何竞争性的辅助控制台。这意味着,终端基本上可用作系统控制台。

■ 此时,您可以更改到运行级3或转到其他运行级。如果更改运行级,sulogin将在所有控制台设备中再次运行。如果您退出或指定系统应达到运行级3,则所有辅助控制台都将丧失提供输入的能力。它们将恢复为控制台消息的显示设备。

随着系统的提升,您必须为缺省控制台设备中的 rc 脚本提供信息。在系统恢复启动后,login程序将在串行端口上运行,您可以重新登录到其他交互式会话中。如果已将该设备指定为辅助控制台,您将继续在终端中获得控制台消息,但来自该终端的所有输入都将转至交互式会话。

▼ 如何启用辅助(远程)控制台

在您使用 consadm 命令添加辅助控制台之前,consadm 守护进程不会开始监视端口。作为一种安全功能,在载体脱机或取消选择辅助控制台设备之前,控制台消息只能重定向。这意味着必须在端口中建立载体,才能成功使用 consadm 命令。

有关启用辅助控制台的更多信息,请参见 consadm(1m) 手册页。

- 1 以超级用户身份登录系统。
- 2 启用辅助控制台。

consadm -a devicename

3 验证当前连接是否为辅助控制台。

consadm

示例15-3 启用辅助(远程)控制台

consadm -a /dev/term/a
consadm
/dev/term/a

▼ 如何显示辅助控制台的列表

- 1 以超级用户身份登录系统。
- 2 选择以下步骤之一:
 - a. 显示辅助控制台的列表。

consadm
/dev/term/a

b. 显示持久性辅助控制台的列表。

consadm -p
/dev/term/b

▼ 如何在系统重新引导期间启用辅助(远程)控制台

- 1 以超级用户身份登录系统。
- 2 在系统重新引导期间启用辅助控制台。

consadm -a -p devicename

这将会向持久性辅助控制台列表中添加设备。

3 验证设备是否已添加至持久性辅助控制台的列表中。

consadm

示例15-4 在系统重新引导期间启用辅助(远程)控制台

```
# consadm -a -p /dev/term/a
# consadm
/dev/term/a
```

▼ 如何禁用辅助(远程)控制台

- 1 以超级用户身份登录系统。
- 2 选择以下步骤之一:
 - a. 禁用辅助控制台。

```
# consadm -d devicename
或
```

b. 禁用辅助控制台并从持久性辅助控制台列表中将其删除。

consadm -p -d devicename

3 验证是否已禁用辅助控制台。

consadm

示例15-5 禁用辅助(远程)控制台

consadm -d /dev/term/a
consadm

◆ ◆ ◆ 第 16章

管理核心转储文件(任务)

本章介绍如何使用 coreadm 命令管理核心转储文件。

有关与管理核心转储文件相关的过程的信息,请参见第 215 页中的 "管理核心转储文件 (任务图)"。

管理核心转储文件(任务图)

任务	说明	参考
1.显示当前的核心转储配 置	使用 coreadm 命令显示当前的核心转储配置。	第 218 页中的 "如何显示当 前的核心转储配置"
2. 修改核心转储配置	修改核心转储配置,以执行下列操作之一: 设置核心转储文件名称模式。 启用每进程核心转储文件路径。 启用全局核心转储文件路径。	第 218 页中的 "如何设置核心转储文件名称模式" 第 219 页中的 "如何启用每进程核心转储文件路径" 第 219 页中的 "如何启用全局核心转储文件路径"
3. 检查核心转储文件	使用 proc 工具查看核心转储文件。	第 220 页中的 "检查核心转储文件"

管理核心转储文件概述

核心转储文件是在异常终止进程或应用程序时生成的。使用 coreadm 命令可以管理核心转储文件。

例如,可以使用 coreadm 命令来配置系统,以便将所有进程核心转储文件都放在一个系统目录中。这意味着,当 Solaris 进程或守护进程异常终止时,可通过检查特定目录中的核心转储文件来跟踪问题。

配置核心转储文件路径

可以独立启用或禁用的两个新的可配置 core 文件路径是:

- 每进程核心转储文件路径,缺省为 core 并在缺省情况下启用。如果启用,则每进程核心转储文件路径会导致在进程异常终止时生成 core 文件。每进程路径由新进程从其父进程处继承。
 - 生成每进程核心转储文件时,该文件由具有属主读/写权限的进程属主拥有。只有属主用户可以查看此文件。
- 全局核心转储文件路径,缺省为 core 并在缺省情况下禁用。如果启用,则会使用全局核心转储文件路径生成内容与每进程核心转储文件相同的**附加**核心转储文件。 生成全局核心转储文件时,该文件只属于具有超级用户读/写权限的超级用户所有。 非特权用户不能查看此文件。

当进程异常终止时,缺省情况下会在当前目录中生成一个核心转储文件。如果启用了全局核心转储文件,则每个异常终止的进程可能会生成两个文件,一个在当前工作目录中,另一个在全局核心转储文件位置。

缺省情况下, setuid 进程不使用全局或每进程路径生成核心转储文件。

扩展的核心转储文件名

如果启用了全局核心转储文件目录,则可使用下表中介绍的变量来区分 core 文件。

变量名	变量定义
%d	可执行文件目录名,最多包含 MAXPATHLEN 个字符
%f	可执行文件名,最多包含 MAXCOMLEN 个字符
%g	有效组ID
%m	机器名 (uname -m)

变量名	变量定义
%n	系统节点名 (uname -n)
%p	进程 ID
%t	时间的十进制值 (2)
%u	有效用户 ID
%Z	在其中执行进程的区域的名称 (zonename)
9,96	字面值%

例如,如果全局核心转储文件路径设置为:

/var/core/core.%f.%p

并且 PID 为 12345 的 sendmail 进程异常终止,则会生成以下 core 文件:

/var/core/core.sendmail.12345

设置核心转储文件名称模式

可以按全局、区域或进程设置核心转储文件名称模式。此外,还可以设置在系统重新引导时持续存在的每进程缺省值。

例如,以下 coreadm 命令将设置缺省的每进程核心转储文件模式。此设置适用于未显式 覆盖缺省核心转储文件模式的所有进程。此设置在系统重新引导后继续存在。

coreadm -i /var/core/core.%f.%p

此 coreadm 命令可为任何进程设置每进程核心转储文件名称模式:

\$ coreadm -p /var/core/core.%f.%p \$\$

\$\$符号表示当前正在运行的 Shell 的进程 ID 的占位符。所有子进程都会继承每进程核心转储文件名称模式。

一旦设置了全局或每进程核心转储文件模式,就必须使用 coreadm -e 命令启用该模式。有关更多信息,请参见以下过程。

通过在 \$HOME/.profile 或 .login 文件中放置该命令,便可为用户登录会话期间运行的所有进程设置核心转储文件名称模式。

启用 setuid 程序以生成核心转储文件

可以使用 coreadm 命令启用或禁用 setuid 程序,以便通过设置以下路径来为所有系统进程或每个进程生成核心转储文件:

- 如果启用了全局 setuid 选项,则全局核心转储文件路径允许系统中所有 setuid 程序生成 core 文件。
- 如果启用了每进程 setuid 选项,则每进程核心转储文件路径只允许特定 setuid 过程生成 core 文件。

缺省情况下,这两个标志都被禁用。由于安全原因,全局核心转储文件路径必须为全路径名,以斜杠/开头。如果超级用户禁用每进程核心转储文件,则各个用户都无法获取核心转储文件。

setuid 核心转储文件只属于具有超级用户读/写权限的超级用户所有。即使生成 setuid 核心转储文件的进程属于普通用户所有,常规用户也不能访问这些文件。

有关更多信息,请参见 coreadm(1M)。

如何显示当前的核心转储配置

使用不带任何选项的 coreadm 命令可以显示当前的核心转储配置。

\$ coreadm

```
global core file pattern:
global core file content: default
init core file pattern: core
init core file content: default
global core dumps: disabled
per-process core dumps: enabled
global setid core dumps: disabled
per-process setid core dumps: disabled
global core dump logging: disabled
```

▼ 如何设置核心转储文件名称模式

- 确定要设置每进程核心转储文件还是全局核心转储文件,并选择下列项之一:
 - a. 设置每进程文件名称模式。
 - \$ coreadm -p \$HOME/corefiles/%f.%p \$\$
 - b. 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

c. 设置全局文件名称模式。

coreadm -g /var/corefiles/%f.%p

▼ 如何启用每进程核心转储文件路径

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 启用每进程核心转储文件路径。

coreadm -e process

3 显示当前的进程核心转储文件路径,以验证配置。

\$ coreadm \$\$

1180: /home/kryten/corefiles/%f.%p

▼ 如何启用全局核心转储文件路径

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 启用全局核心转储文件路径。

coreadm -e global -g /var/core/core.%f.%p

3 显示当前的进程核心转储文件路径,以验证配置。

coreadm

```
global core file pattern: /var/core/core.%f.%p
global core file content: default
init core file pattern: core
init core file content: default
global core dumps: enabled
per-process core dumps: enabled
global setid core dumps: disabled
per-process setid core dumps: disabled
global core dump logging: disabled
```

核心转储文件问题疑难解答

错误消息

NOTICE: 'set allow_setid_core = 1' in /etc/system is obsolete NOTICE: Use the coreadm command instead of 'allow setid core'

原因

存在一个过时的参数,它允许 setuid 核心转储文件位于 /etc/system 文件中。

解决方案

从 /etc/system 文件中删除 allow_setid_core=1。然后使用 coreadm 命令启用全局 setuid 核心转储文件路径。

检查核心转储文件

有些 proc 工具已得到增强,可以检查进程核心转储文件和实时进程。这些 proc 工具是可以管理 /proc 文件系统功能的实用程序。

通过在命令行中指定核心转储文件的名称(方法与向命令指定进程 ID 的方法相似),可将 /usr/proc/bin/pstack、pmap、pldd、pflags 和 pcred 工具应用于核心转储文件。

有关使用 proc 工具检查核心转储文件的更多信息,请参见 proc(1)。

示例 16-1 使用 proc 工具检查核心转储文件

\$./a.out

Segmentation Fault(coredump)

\$ /usr/proc/bin/pstack ./core

core './core' of 19305: ./a.out

000108c4 main (1, ffbef5cc, ffbef5d4, 20800, 0, 0) + 1c

00010880 start (0, 0, 0, 0, 0, 0) + b8

◆ ◆ ◆ 第 17 章

管理系统故障转储信息(任务)

本章介绍如何在 Solaris 操作系统中管理系统故障转储信息。

有关与管理系统故障转储信息相关的过程信息,请参见第 221 页中的 "管理系统故障转储信息(任务图)"。

管理系统故障转储信息(任务图)

以下任务图提供了管理系统故障转储信息所需的过程。

任务	说明	参考
1.显示当前的故障转储配 置。	使用 dumpadm 命令显示当前的故障转储配置。	第 224 页中的 "如何显示当前的故障转储配置"
2. 修改故障转储配置。	使用 dumpadm 命令指定要转储的数据类型、系统是否使用专用转储设备和用于保存故障转储文件的目录,以及在写入故障转储文件后必须保持可用的空间量。	第 225 页中的 "如何修改故障转储配置"
3. 检查故障转储文件。	使用 mdb 命令查看故障转储文件。	第 226 页中的 "如何检查故障转储"
4. (可选) 从完整的故障 转储目录中恢复。	系统崩溃,但 savecore 目录中没有可用空间,并且您需要保存一些关键的系统故障转储信息。	第 227 页中的 "如何从完整 的故障转储目录中恢复(可 选)"
5. (可选)禁用或启用故障转储文件的保存。	使用 dumpadm 命令禁用或启用故障转储文件的保存。缺省情况下,会启用故障转储文件的保存。	第 227 页中的 "如何禁用或 启用故障转储的保存"

系统崩溃(概述)

系统崩溃可能是由于存在硬件故障、I/O 问题和软件错误而引起的。如果系统崩溃,则会在控制台中显示一条错误消息,然后向转储设备中写入物理内存的副本。然后,将自动重新引导系统。重新引导系统时,将执行 savecore 命令,以从转储设备中检索数据,并将保存的故障转储文件写入 savecore 目录。保存的故障转储文件为支持提供商提供了非常有价值的信息,可帮助诊断问题的原因所在。

x86: GRUB 引导环境中的系统崩溃

Solaris 10 1/06:如果在 GRUB 引导环境中基于 x86 的系统发生系统崩溃,则管理 GRUB 引导归档文件的 SMF 服务 svc:/system/boot-archive:default 可能在下一次系统重新 引导时失败。要解决此类问题,请参见第 234 页中的 "x86: SMF 引导归档文件服务在系统重新引导期间失败时应执行的操作"。有关基于 GRUB 进行引导的更多信息,请参见《系统管理指南:基本管理》中的第 11 章 "基于 GRUB 的引导(任务)"。

系统故障转储文件

savecore 命令在系统崩溃后自动运行,以便从转储设备检索故障转储信息,并写入名为 unix.X 和 vmcore.X 的两个文件,其中 X 标识转储序列号。这些文件共同表示保存的系统故障转储信息。

故障转储文件有时容易与**核心转储**文件混淆,后者是在应用程序异常终止时写入的用 户应用程序的映像。

故障转储文件保存在预先确定的目录中,该目录缺省为 /var/crash/hostname。在以前的 Solaris 发行版中,除非手动使系统将物理内存的映像保存到故障转储文件中,否则系统重新引导时会覆写故障转储文件。现在,缺省情况下便可保存故障转储文件。

使用 dumpadm 命令可以管理系统故障转储信息。有关更多信息,请参见第 223 页中的 "dumpadm 命令"。

保存故障转储

使用 mdb 实用程序可以检查控制结构、活动表、正常运行或崩溃的系统内核的内存映像,以及有关内核运行的其他信息。要最大程度地发挥 mdb 的作用,需要具备有关内核的详细知识,这超出了本手册的范围。有关使用此实用程序的信息,请参见 mdb(1)手册页。

此外,还可以将 savecore 保存的故障转储发送给客户服务代表,这有助于他们分析系统崩溃的原因。

dumpadm 命令

使用 dumpadm 命令可以管理 Solaris 操作系统中的系统故障转储信息。

- 使用 dumpadm 命令可以配置操作系统的故障转储。 dumpadm 配置参数包括转储内容、转储设备和保存故障转储文件的目录。
- 转储数据以压缩格式存储在转储设备中。内核故障转储映像的大小可以是 4 GB 或更大。压缩数据意味着转储速度更快,且转储设备所需的磁盘空间更小。
- 当专用转储设备(而不是交换区域)属于转储配置的一部分时,会在后台运行故障转储文件的保存。这意味着引导系统不等待 savecore 命令完成,便转到下一步。在较大的内存系统中,可在 savecore 完成前使用系统。
- 缺省情况下,会保存 savecore 命令生成的系统故障转储文件。
- savecore -L 命令是一个新增功能,通过该功能可以获取正常运行的 Solaris OS 的故障转储。此命令用于通过在某些发生故障的状态下(例如瞬态性能问题或服务故障)捕获内存快照,对正在运行的系统进行故障排除。如果系统已启动,并且您仍可以运行一些命令,则可执行 savecore -L 命令将系统快照保存到转储设备,然后立即将故障转储文件写入 savecore 目录。由于系统仍在运行,因此如果配置了专用转储设备,则只能使用 savecore -L 命令。

下表介绍了 dumpadm 的配置参数。

转储参数	说明
转储设备	在系统崩溃时临时存储转储数据的设备。当转储设备不是交换区域时,savecore 将在后台运行,这样可以加快引导过程进行的速度。
savecore 目录	存储系统故障转储文件的目录。
转储内容	要转储的内存数据的类型。
最小空闲空间	保存故障转储文件后 savecore 目录中所需的最小空闲空间量。如果未配置最小空闲空间,则缺省值为 1 MB。

有关更多信息,请参见 dumpadm(1M)。

转储配置参数由 dumpadm 命令管理。

dumpadm 命令的工作原理

在系统启动过程中,svc:/system/dumpadm:default 服务调用 dumpadm 命令以配置故障转储参数。

具体地说,dumpadm通过/dev/dump接口来初始化转储设备和转储内容。

完成转储配置后,savecore 脚本会查找故障转储文件目录的位置。然后,会调用 savecore 来检查故障转储,并检查故障转储目录中 minfree 文件的内容。

转储设备和卷管理器

由于可访问性和性能原因,请不要配置受卷管理产品(例如 Solaris Volume Manager)控制的专用转储设备。可以使交换区域受 Solaris Volume Manager 控制,这是推荐的做法,但应使转储设备保持独立。

管理系统故障转储信息

在处理系统故障转储信息时,请记住以下几点重要内容:

- 只有超级用户或承担等效角色的用户,才能访问和管理系统故障转储信息。
- 不要禁用保存系统故障转储的选项。系统故障转储文件提供了用于确定系统崩溃原因的非常有价值的方法。
- 在将重要的系统故障转储信息发送给客户服务代表之前,不要删除这些信息。

▼ 如何显示当前的故障转储配置

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 显示当前的故障转储配置。

dumpadm

Dump content: kernel pages

Dump device: /dev/dsk/c0t3d0s1 (swap)
Savecore directory: /var/crash/venus

Savecore enabled: yes

前面的示例输出表明:

- 转储内容是内核内存页面。
- 内核内存将在交换设备 /dev/dsk/c0t3d0s1 中转储。使用 swap -1 命令可以确定所有 交换区域。
- 系统故障转储文件将写入 /var/crash/venus 目录。
- 已启用故障转储文件的保存。

▼ 如何修改故障转储配置

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 确定当前的故障转储配置。

dumpadm

Dump content: kernel pages

Dump device: /dev/dsk/c0t3d0s1 (swap)

Savecore directory: /var/crash/pluto

Savecore enabled: yes

此输出标识了运行 Solaris 10 发行版的系统的缺省转储配置。

3 修改故障转储配置。

dumpadm -c content -d dump-device -m nnnk | nnnm | nnn% -n -s savecore-dir

-c content 指定要转储的数据类型。使用 kernel 转储所有内核内存,使

用 all 转储所有内存,或使用 curproc 转储内核内存以及在发生崩溃时其线程正在执行的进程的内存页面。缺省转储内容

是内核内存。

-d dump-device 指定在系统崩溃时临时存储转储数据的设备。主交换设备是

缺省转储设备。

-m *nnnk* | *nnnm* | *nnn*% 通过在当前的 savecore 目录中创建 minfree 文件,指定用于

保存故障转储文件的最小空闲磁盘空间。可以 KB (nnnk)、MB (nnnm) 或文件系统大小百分比 (nnn%) 的形式指定此参数。savecore 命令会在写入故障转储文件之前访问此文件。如果写入故障转储文件(根据大小)会减少空闲空间量并使其低于 minfree 阈值,则不写入转储文件,并记录一条错误消息。有关从此情况中恢复的信息,请参见第 227 页中的 "如何从完

整的故障转储目录中恢复(可选)"。

-n 指定重新引导系统时不应运行 savecore。不推荐使用此转储

配置。如果已将系统故障转储信息写入交换设备并且未启用

savecore,则系统开始交换时将覆写故障转储信息。

-s 指定用于存储故障转储文件的备用目录。缺省目录为

/var/crash/hostname, 其中 hostname 是 uname -n 命令的输

出。

示例 17-1 修改故障转储配置

在此示例中,所有内存都会转储到专用转储设备 /dev/dsk/c0t1d0s1 中,并且在保存故障转储文件后必须可用的最小空闲空间为文件系统空间的 10%。

dumpadm

Dump content: kernel pages

Dump device: /dev/dsk/c0t3d0s1 (swap)

Savecore directory: /var/crash/pluto

Savecore enabled: yes

dumpadm -c all -d /dev/dsk/c0tld0s1 -m 10%

Dump content: all pages

Dump device: /dev/dsk/c0t1d0s1 (dedicated)

Savecore directory: /var/crash/pluto (minfree = 77071KB)

Savecore enabled: yes

▼ 如何检查故障转储

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

2 使用 mdb 实用程序检查故障转储。

/usr/bin/mdb [-k] crashdump-file

-k 通过假定文件为操作系统故障转储文件来指定内核调试模式。

crashdump-file 指定操作系统故障转储文件。

3 显示崩溃状态信息。

/usr/bin/mdb file-name

> ::status

.

> ::svstem

.

示例17-2 检查故障转储

以下示例显示 mdb 实用程序的样例输出,其中包括系统信息,并列出在此系统的 /etc/system 文件中设置的可调参数。

/usr/bin/mdb -k unix.0

Loading modules: [unix krtld genunix ip nfs ipc ptm] > ::status

debugging crash dump /dev/mem (64-bit) from ozlo
operating system: 5.10 Generic (sun4u)
> ::system

set ufs_ninode=0x9c40 [0t40000]
set ncsize=0x4e20 [0t20000]
set pt cnt=0x400 [0t1024]

▼ 如何从完整的故障转储目录中恢复(可选)

在此情况下,系统崩溃,但 savecore 目录中没有任何可用空间,并且您要保存一些关键的系统故障转储信息。

- 1 在系统重新引导之后,以超级用户身份登录或承担等效角色。
- 2 通过删除已发送给服务提供商的现有故障转储文件来清除 savecore 目录,通常为 /var/crash/hostname。或者,运行 savecore 命令,并指定具有足够磁盘空间的备用目录。请参见下一步。
- 3 手动运行 savecore 命令,并在需要时指定备用的 savecore 目录。

savecore [directory]

▼ 如何禁用或启用故障转储的保存

1 成为超级用户或承担等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

2 在系统中禁用或启用故障转储的保存。

dumpadm -n | -y

示例17-3 禁用故障转储的保存

此示例说明如何在系统中禁用故障转储的保存。

dumpadm -n

Dump content: all pages

Dump device: /dev/dsk/c0tld0s1 (dedicated)

Savecore directory: /var/crash/pluto (minfree = 77071KB)

Savecore enabled: no

示例17-4 启用故障转储的保存

此示例说明如何在系统中启用故障转储的保存。

dumpadm -y

Dump content: all pages

Dump device: /dev/dsk/c0tld0s1 (dedicated)

Savecore directory: /var/crash/pluto (minfree = 77071KB)

Savecore enabled: yes

◆ ◆ ◆ 第 1 8 章

各种软件问题的疑难解答(任务)

本章介绍可能偶然发生并且相对易于修复的各种软件问题。对各种软件问题的疑难解答包括解决不与特定软件应用程序或主题相关的问题,如不成功的重新引导或整个文件系统。以下各节中介绍了这些问题的解决方法。

以下是本章中信息的列表。

- 第229页中的"重新引导失败时应执行的操作"
- 第 234 页中的 "x86: SMF 引导归档文件服务在系统重新引导期间失败时应执行的操作"
- 第235页中的"系统挂起时应执行的操作"
- 第235页中的"文件系统已满时应执行的操作"
- 第236页中的"复制或恢复后文件ACL丢失时应执行的操作"
- 第236页中的"备份问题疑难解答"
- 第 238 页中的 "Solaris OS 中 Common Agent Container 问题的疑难解答"

重新引导失败时应执行的操作

如果系统未完全重新引导,或者重新引导后再次崩溃,则可能存在使系统无法成功引导的软件或硬件问题。

系统未引导的原因	解决该问题的办法
系统找不到 /platform/'uname -m'/kernel/unix。	您可能需要在基于 SPARC 的系统上更改 PROM中的 boot-device 设置。有关更改缺省引导设备的信息,请参见《系统管理指南:基本管理》中的第10章"引导系统(任务)"。

系统未引导的原因	解决该问题的办法
Solaris 10:基于 x86 的系统中没有缺省引导设备。该消息显示为:	Solaris 10:使用配置辅助/引导软盘引导系统, 并选择要从中引导的磁盘。
Not a UFS filesystem.	
Solaris 10 1/06:GRUB 引导归档文件已损坏。或者,SMF 引导归档文件服务失败。如果运行 svcs -x 命令,则会显示一条错误消息。	Solaris 10 1/06 : 引导故障安全归档文件。
/etc/passwd 文件中存在无效项。	有关在 Solaris 10 OS 中从无效 passwd 文件恢复的信息,请参见《系统管理指南:基本管理》中的第 10 章 "引导系统(任务)"或《系统管理指南:基本管理》中的第 12 章 "引导系统(任务)"。有关在 Solaris 10 1/06 发行版中从无效 passwd 文件恢复的信息,请参见《系统管理指南:基本管理》中的第 11 章 "基于 GRUB 的引导(任务)"。
磁盘或其他设备存在硬件问题。	检查硬件连接: ■ 确保已插入设备。 ■ 确保所有交换机都已正确设置。 ■ 查看所有连接器和电缆,包括以太网电缆。 ■ 如果所有上述操作都失败,请关闭系统电源,等待10到20秒,然后再次打开电源。

如果采用上述建议仍无法解决问题,请与当地服务提供商联系。

忘记超级用户口令时应执行的操作

如果忘记了超级用户口令并且无法登录系统,必须执行以下操作:

- 使用键盘停止序列停止系统。
- **Solaris 10 1/06**: 在基于 x86 的系统上,在 Solaris 故障安全归档文件中引导系统。
- Solaris 10: 从引导服务器或安装服务器或者本地 CD-ROM 中引导系统。
- 挂载根(/)文件系统。
- 从/etc/shadow文件中删除超级用户口令。
- 重新引导系统。
- 登录并设置超级用户的口令。

《系统管理指南:基本管理》中的"引导基于 SPARC 的系统"、《系统管理指南:基本管理》中的"在基于 GRUB 的引导环境中引导系统"和《系统管理指南:基本管理》中的"引导基于 x86 的系统"完整介绍了这些过程。

注-在此Solaris发行版中,基于GRUB的引导在基于SPARC的系统中不可用。

以下示例介绍在基于 SPARC 和 x86 的系统中,如何恢复忘记的超级用户口令。

示例18-1 SPARC: 忘记超级用户口令时应执行的操作

以下示例说明在忘记超级用户口令时,如何通过从网络引导来进行恢复。此示例假定引导服务器已经可用。请确保在重新引导系统后应用一个新的超级用户口令。

```
(Use keyboard abort sequence--Press Stop A keys to stop the system)
ok boot net -s
# mount /dev/dsk/c0t3d0s0 /a
# cd /a/etc
# TERM=vt100
# export TERM
# vi shadow
(Remove root's encrypted password string)
# cd /
# umount /a
# init 6
```

示例 18-2 x86: 忘记超级用户口令时执行基于 GRUB 的引导

Solaris 10 1/06:此示例假定引导服务器已经可用。请确保在重新引导系统后应用一个新的超级用户口令。

```
示例 18-2 x86: 忘记超级用户口令时执行基于 GRUB 的引导
                                                (续)
 | module /boot/x86.miniroot-safe
Booting command-list
root (hd0,2,a)
Filesystem type is ufs, partition type 0x000000bf
kernel /boot/multiboot -B console=ttya kernel/unix -s
[Multiboot-elf, <0x1000000:0x13f3b:0x3941d>, shtab=0x104e258, entry=0x100000
01...
module /boot/x86.miniroot-safe
SunOS Release 5.10.1 Version snv 14 32-bit
Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Booting to milestone "milestone/single-user:default".
Configuring devices.
Searching for installed OS...
      /dev/dsk/c1t0d0s0 -- Solaris 10.1 nv 14 X86
Do you wish to automatically update boot archives? [y,n,?] n
#mount /dev/dsk/c0t0d0s0 /a
# cd /a/etc
# vi shadow
(Remove root's encrypted password string)
# cd /
# umount /a
# init 6
示例18-3 x86: 忘记超级用户口令时引导系统
Solaris 10:以下示例说明在忘记超级用户口令时,如何通过从网络引导来进行恢复。
此示例假定引导服务器已经可用。请确保在重新引导系统后应用一个新的超级用户口
令。
Press any key to reboot.
Resetting...
```

```
( 续 )
示例 18-3 x86: 忘记超级用户口令时引导系统
Initializing system
Please wait...
                    <<< Current Boot Parameters >>>
Boot path: /pci@0,0/pci-ide@7,1/ide@0/cmdk@0,0:a
Boot args:
Type
       b [file-name] [boot-flags] <ENTER> to boot with options
or
       i <ENTER>
                                             to enter boot interpreter
       <ENTER>
                                              to boot with defaults
or
                 <<< timeout in 5 seconds >>>
Select (b)oot or (i)nterpreter: b -s
SunOS Release 5.10 Version amd64-gate-2004-09-30 32-bit
Copyright 1983-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
DEBUG enabled
Booting to milestone "milestone/single-user:default".
Hostname: venus
NIS domain name is example.com
Requesting System Maintenance Mode
SINGLE USER MODE
Root password for system maintenance (control-d to bypass): xxxxxx
Entering System Maintenance Mode
# mount /dev/dsk/c0t0d0s0 /a
# cd /a/etc
# vi shadow
(Remove root's encrypted password string)
# cd /
# umount /a
# init 6
```

x86: SMF 引导归档文件服务在系统重新引导期间失败时应 执行的操作

Solaris 10 1/06:如果系统崩溃,引导归档文件 SMF 服务svc:/system/boot-archive:default 可能会在系统重新引导时失败。如果引导归档文件服务已失败,则运行 svcs -x 命令时将显示以下类似消息:

svc:/system/boot-archive:default (check boot archive content) State: maintenance since Fri Jun 03 10:24:52 2005 Reason: Start method exited with \$SMF EXIT ERR FATAL. See: http://sun.com/msq/SMF-8000-KS See: /etc/svc/volatile/system-boot-archive:default.log Impact: 48 dependent services are not running. (Use -v for list.) svc:/network/rpc/gss:default (Generic Security Service) State: uninitialized since Fri Jun 03 10:24:51 2005 Reason: Restarter svc:/network/inetd:default is not running. See: http://sun.com/msq/SMF-8000-5H See: qssd(1M) Impact: 10 dependent services are not running. (Use -v for list.) svc:/application/print/server:default (LP print server) State: disabled since Fri Jun 03 10:24:51 2005 Reason: Disabled by an administrator. See: http://sun.com/msg/SMF-8000-05 See: lpsched(1M)

要解决问题,请执行以下操作:

- 1. 重新引导系统并从 GRUB 引导菜单中选择 Solaris 故障安全归档文件选项。
- 2. 系统提示重新构造引导归档文件时,回答 y。 重新构造引导归档文件后,系统准备引导。
- 3. 要继续引导,请使用以下命令清除 SMF 引导归档文件服务。

Impact: 1 dependent service is not running. (Use -v for list.)

svcadm clear boot-archive

请注意,只有超级用户或等效角色才能运行此命令。

有关重新构造 GRUB 引导归档文件的更多信息,请参见《系统管理指南:基本管理》中的"如何为恢复目的而引导故障安全归档文件"和 bootadm(1M) 手册页。

系统挂起时应执行的操作

如果某些软件进程出现问题,系统可以冻结或挂起,而不是完全崩溃。遵循以下步骤 可以从挂起的系统中进行恢复。

- 1. 确定系统是否正在运行窗口环境并遵循以下建议。如果这些建议无法解决问题,请 转到步骤 2。
 - 确保指针位于正在键入命令的窗口中。
 - 如果用户意外按下了可冻结屏幕的 Ctrl-s, 请按下 Ctrl-q。 Ctrl-s 仅会冻结窗口, 而不是整个屏幕。如果一个窗口被冻结,请尝试使用其他窗口。
 - 如果可能,请从网络中的其他系统中远程登录。使用 pgrep 命令查找挂起的进程。如果窗口系统看似已挂起,请标识进程并将其中止。
- 2. 按 Ctrl-\强制从运行的程序中"退出",并(可能)写出 core 文件。
- 3. 按Ctrl-c中断正在运行的程序。
- 4. 远程登录并尝试确定和中止使系统挂起的进程。
- 5. 远程登录,成为超级用户或承担等效角色,并重新引导系统。
- 6. 如果系统仍然无法响应,请强制进行故障转储并重新引导。有关强制进行故障转储和引导的信息,请参见《系统管理指南:基本管理》中的"强制实施崩溃转储和重新引导系统"或《系统管理指南:基本管理》中的"强制实施崩溃转储和系统重新引导"。
- 7. 如果系统仍然无法响应,请关闭电源,等待一分钟左右,然后重新打开电源。
- 8. 如果根本无法使系统做出响应,请联系当地服务提供商获取帮助。

文件系统已满时应执行的操作

当根(/)文件系统或任何其他文件系统已满时,您将在控制台窗口中看到以下消息:

.... file system full

系统已满的原因可能有多种。以下各节介绍了从已满文件系统中进行恢复的几种方案。有关定期清除旧文件和未使用的文件以防止文件系统变满的信息,请参见第6章。

由于创建了大文件或目录导致文件系统已满

出现错误的原因	解决该问题的办法
有人意外地将文件或目录复制到错误位置。当应 用程序崩溃并将大型 core 文件写入文件系统时, 也会出现这种情况。	以超级用户身份登录或承担等效角色,在特定文件系统中使用 ls-tl命令确定新创建的大文件并将其删除。有关删除 core 文件的信息,请参见第 83 页中的"如何查找并删除 core 文件"。

由于系统内存不足导致 TMPFS 文件系统变满

出现错误的原因	解决该问题的办法
如果 TMPFS 尝试写入的内容比允许量多或者有些 当前进程使用了大量内存,则可能出现此情况。	有关利用与 tmpfs 相关的错误消息进行恢复的信息,请参见 tmpfs(7FS) 手册页。

复制或恢复后文件ACL丢失时应执行的操作

出现错误的原因	解决该问题的办法
如果将具有 ACL 的文件或目录复制或恢复到 /tmp 目录,则会丢失 ACL 属性。/tmp 目录通常作为临时文件系统挂载,而临时文件系统不支持 ACL等 UFS 文件系统属性。	将文件复制或恢复到 /var/tmp 目录中。

备份问题疑难解答

本节介绍在备份和恢复数据时使用的一些基本的疑难解答方法。

备份文件系统后根(/)文件系统变满

备份一个文件系统,然后根(/)文件系统变满。未向介质中写入任何内容,ufsdump命令会提示您插入介质的第二个卷。

出现错误的原因	解决该问题的办法
如果将无效的目标设备名用于 -f 选项,ufsdump命令将向根(/)文件系统中的/dev目录写入内容,将其填满。例如,如果键入的是/dev/rmt/st0而不是/dev/rmt/0,则会在磁盘中创建备份文件/dev/rmt/st0,而不将其发送至磁带机。	在 /dev 目录中使用 ls -tl 命令确定新创建的特别大的文件并将其删除。

确保备份和恢复命令相匹配

仅能使用 ufsrestore 命令恢复通过 ufsdump 命令备份的文件。如果使用 tar 命令备份,则可使用 tar 命令进行恢复。如果使用 ufsrestore命令恢复通过其他命令写入的磁带,则会显示一条错误消息,指明磁带格式不是 ufsdump。

检查以确保当前目录正确

很容易将文件恢复到错误位置。由于 ufsdump 命令复制文件时总是使用相对于文件系统根目录的全路径名,因此在运行 ufsrestore 命令之前,通常应转到文件系统的根目录。如果转到较低级别的目录,则在恢复文件后,将看到在该目录下创建的一棵完整的文件树。

交互命令

使用交互命令时,将显示 ufsrestore>提示符,如下例所示:

ufsrestore ivf /dev/rmt/0

Verify volume and initialize maps

Media block size is 126

Dump date: Fri Jan 30 10:13:46 2004

Dumped from: the epoch

Level 0 dump of /export/home on starbug:/dev/dsk/c0t0d0s7

Label: none

Extract directories from tape

Initialize symbol table.

ufsrestore >

在 ufsrestore>提示符下,可以使用《系统管理指南:设备和文件系统》中的第 28章 "UFS 备份和恢复命令(参考)"中列出的命令,来查找文件、创建要恢复的文件的列表以及恢复这些文件。

Solaris OS 中 Common Agent Container 问题的疑难解答

本节将解决使用 common agent container 共享组件时可能遇到的问题。从 Solaris 10 6/06 发行版开始,Solaris OS 中包括 common agent container Java 程序。该程序将为 Java 管理应用程序实现容器。通常,容器是不可见的。

以下是可能遇到的问题:

- 端口号冲突
- 超级用户口令的安全性被破坏

端口号冲突

缺省情况下, common agent container 占用以下端口号:

- JMX 端口 (TCP) = 11162
- SNMPAdaptor 端口 (UDP) = 11161
- SNMPAdaptor 陷阱端口 (UDP) = 11162
- Commandstream 适配器端口 (TCP) = 11163
- RMI 连接器端口 (TCP) = 11164

注-如果对Sun Cluster的安装进行疑难解答,端口指定会有所不同。

如果安装已保留其中所有的端口号,则更改 common agent container 占用的端口号,如以下过程所述。

▼ 如何检查端口号

此过程说明如何验证 Solaris 端口。

1 成为超级用户或作为等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC (任务列表)"。

- 2 停止 common agent container 管理守护进程。
 - # /usr/sbin/cacaoadm stop
- 3 使用以下语法更改端口号:
 - # /usr/sbin/cacaoadm set-param param=value

例如,要将 SNMPAdaptor 占用的端口由缺省的 11161 更改为 11165,请键入:

/usr/sbin/cacaoadm set-param snmp-adaptor-port=11165

4 重新启动 common agent container 管理守护进程。

/usr/sbin/cacaoadm start

超级用户口令的安全性被破坏

可能需要在运行 Java ES 的主机上重新生成安全密钥。例如,如果存在超级用户口令被曝露或破坏的风险,则应重新生成安全密钥。common agent container 服务使用的密钥存储在 /etc/cacao/instances/instance-name/security 目录中。以下任务说明如何为Solaris OS 生成安全密钥。

▼ 如何为 Solaris OS 生成安全密钥

1 成为超级用户或作为等效角色。

角色包含授权和具有一定权限的命令。有关角色的更多信息,请参见《系统管理指南:安全性服务》中的"配置 RBAC(任务列表)"。

- 2 停止 common agent container 管理守护进程。
 - # /usr/sbin/cacaoadm stop
- 3 重新生成安全密钥。
 - # /usr/sbin/cacaoadm create-keys --force
- 4 重新启动 common agent container 管理守护进程。
 - # /usr/sbin/cacaoadm start

注-对于Sun Cluster软件,必须在群集的所有节点中传播此更改。

◆ ◆ ◆ 第 1 9 章

文件访问问题疑难解答(任务)

本章提供有关解决文件访问问题(例如与不正确的权限和搜索路径有关的问题)的信息。

以下是本章中疑难解答主题的列表。

- 第 241 页中的 "解决搜索路径的问题(Command not found)"
- 第243页中的"解决文件访问问题"
- 第244页中的"识别网络访问问题"

用户经常由于无法访问以前可用的程序、文件或目录等问题,而向系统管理员寻求帮助。

当您遇到此类问题时,请检查是否是由以下三个方面的某一问题引起:

- 用户的搜索路径可能已更改,或者搜索路径中的目录顺序不正确。
- 文件或目录可能不具有正确的权限或拥有权。
- 通过网络访问的系统配置可能已更改。

本章简要介绍如何识别上述每个方面的问题,并提出可能的解决方案。

解决搜索路径的问题(Command not found)

Command not found 消息表示存在以下情况之一:

- 命令在系统中不可用。
- 命令目录不在搜索路径中。

要解决搜索路径问题,您需要知道存储命令的目录的路径名。

如果找到了该命令的错误版本,则一个包含同名命令的目录会出现在搜索路径中。在这种情况下,正确的目录可能稍后会出现在搜索路径中,或者根本不会出现。

使用 echo \$PATH 命令可以显示当前的搜索路径。例如:

\$ echo \$PATH

/home/kryten/bin:/sbin:/usr/sbin:/usr/bin:/usr/dt:/usr/dist/exe

使用 which 命令可以确定您所运行的命令是否是一个错误版本。例如:

\$ which acroread

/usr/doctools/bin/acroread

注 – which 命令在 .cshrc 文件中查找路径信息。如果从 Bourne 或 Korn shell 中执行 which 命令,并且有一个 .cshrc 文件中包含 which 命令的别名,则该命令可能会提供误导性的结果。为确保结果的准确性,请在 C shell 中使用 which 命令,或在 Korn shell 中使用 whence 命令。

▼ 如何诊断和更正搜索路径问题

1 显示当前搜索路径,以验证命令的目录是否不在路径中,或验证该路径是否有拼写错误。

\$ echo \$PATH

2 检查以下各项:

- 搜索路径是否正确?
- 该搜索路径是否在找到了该命令另一个版本的其他搜索路径之前列出?
- 命令是否位于其中一个搜索路径中?

如果需要更正路径, 请转到步骤3。否则, 请转到步骤4。

3 将路径添加到相应文件,如下表所示。

Shell	文件	语法	说明
Bourne 和	\$HOME/.profile	\$ PATH=\$HOME/bin:/sbin:/usr/local/bin	用冒号分隔路径
Korn		\$ export PATH	名。
С	\$HOME/.cshrc	hostname% set path=(~bin /sbin /usr/local/bin)	
	或		名。
	\$HOME/.login		

4 按以下方式激活新路径:

Shell	路径所在的文件	激活路径的命令
Bourne 和 Korn	.profile	\$/.profile
С	.cshrc	hostname% source .cshrc
	.login	hostname% source .login

5 验证新路径。

\$ which command

示例19-1 诊断和更正搜索路径问题

此示例显示执行 which 命令后发现,mytool 可执行文件并不存在于搜索路径中的任何目录内。

venus% mytool

mytool: Command not found

venus% which mytool

no mytool in /sbin /usr/sbin /usr/bin /etc /home/ignatz/bin .

venus% echo \$PATH

/sbin /usr/sbin /usr/bin /etc /home/ignatz/bin

venus% vi ~/.cshrc

(Add appropriate command directory to the search path)

venus% source .cshrc

venus% mvtool

如果找不到某一命令,请在手册页中查看其目录路径。例如,如果找不到 lpsched 命令(lp 打印机守护进程),lpsched(lM) 手册页会告知您路径是 /usr/lib/lp/lpsched。

解决文件访问问题

当用户无法访问以前可以访问的文件或目录时,可能是这些文件或目录的权限或拥有 权已经更改。

更改文件和组的拥有权

通常,文件和目录的拥有权会因为有人以超级用户的身份编辑文件而发生变化。在为新用户创建起始目录时,务必要使该用户成为起始目录中的点(.)文件的属主。如果用户不是"."的属主,他们将无法在自己的起始目录中创建文件。

当组拥有权发生变化或从 /etc/group 数据库中删除了某用户所属的组时,也可能会发生访问问题。

有关如何更改存在访问问题的文件的权限或拥有权的信息,请参见《系统管理指南:安全性服务》中的第6章"控制对文件的访问(任务)"。

识别网络访问问题

如果用户在使用 rcp 远程复制命令通过网络复制文件时遇到问题,则可能是通过设置 权限对远程系统中的目录和文件进行了访问限制。另一个可能的原因是未将远程系统 和本地系统配置为允许访问。

有关网络访问以及通过 AutoFS 访问系统时遇到的问题的信息,请参见《系统管理指南:网络服务》中的"NFS 疑难解答的策略"。

◆ ◆ ◆ 第 2 0 章

解决 UFS 文件系统不一致问题(任务)

本章介绍 fsck 错误消息以及为解决错误消息问题所能做出的可能响应。

以下是本章中信息的列表:

- 第 247 页中的 "一般 fsck 错误消息"
- 第249页中的"初始化阶段的fsck消息"
- 第251页中的"阶段1:检查块和大小消息"
- 第 255 页中的 "阶段 1B: 重新扫描更多 DUPS 消息"
- Solaris 10: 第 256 页中的 "Solaris 10: 阶段 1B: 重新扫描更多 DUPS 消息"
- 第256页中的"阶段2: 检查路径名消息"
- 第262页中的"阶段3:检查连通性消息"
- 第265页中的"阶段4: 检查引用计数消息"
- 第268页中的"阶段5: 检查柱面组消息"
- **Solaris 10**: 第 269 页中的 "Solaris 10: 阶段 5: 检查柱面组消息"
- 第 270 页中的 "fsck 摘要消息"
- Solaris 10: 第 270 页中的 "清除阶段消息"

有关 fsck 命令以及如何使用该命令检查文件系统完整性的信息,请参见《系统管理指南:设备和文件系统》中的第22章"检查 UFS 文件系统一致性(任务)"。

新的 fsck 错误消息

Solaris 10 6/06:在此 Solaris 发行版中,运行 fsck 命令时显示的错误消息已更改。本节包括修改过的 fsck 错误消息。如果运行的版本低于 Solaris 10 6/06 发行版, 请参阅本章中标记为 "Solaris 10" 的错误消息。有关当前 Solaris 发行版中所有 fsck 改进的详细说明,请参见《系统管理指南:设备和文件系统》。

fsck错误消息

通常,fsck命令在系统突然停机(其中未将最新文件系统更改写入磁盘)之后以非交互方式运行,以便整理文件系统。整理会自动修复所有基本的文件系统不一致问题,但不会尝试修复更严重的错误。整理文件系统时,fsck命令将修复它所预期的突然停机所导致的不一致问题。对于更严重的情况,该命令将报告错误并终止。

以交互方式运行 fsck 命令时,它会报告发现的每个不一致问题并修复无害的错误。但对于更严重的错误,该命令将报告一致性问题并提示您选择响应。运行带有 -y 或 -n 选项的 fsck 命令时,响应会预定义为执行或不执行 fsck 命令针对每种错误状态建议的缺省响应。

某些更正操作会导致数据丢失。数据丢失的数量和严重性可通过 fsck 诊断输出确定。

fsck命令是一个多遍文件系统检查程序。每遍检查操作都将调用具有不同消息集的fsck命令的不同阶段。初始化之后,fsck命令会对每个文件系统执行多遍操作,检查块和大小、路径名、连通性、引用计数和空闲块图(可能重新生成该图)。此外还会执行一些清除操作。

fsck 命令的 UFS 版本所执行的操作阶段(各遍操作)包括:

- 初始化
- 阶段1-检查块和大小
- 阶段 2a-检查重复的名称
- 阶段 2b-检查路径名
- 阶段3-检查连通性
- 阶段 3b-验证阴影/ACL
- 阶段4-检查引用计数
- 阶段5-检查柱面组

以下各节介绍在每个阶段中可能检测到的错误状态、生成的消息和提示以及可以做出的可能响应。

第 247 页中的 "一般 fsck 错误消息"中介绍了可能在多个阶段中出现的消息。对于其他消息,将根据消息产生的阶段按字母顺序分别加以介绍。

下表列出了 fsck 错误消息中包括的许多缩写。

表20-1 错误消息缩写

缩写	含义
BLK	块编号
DUP	重复的块编号
DIR	目录名

表20-1 错误消息缩写	(续)
缩写	含义
CG	柱面组
MTIME	上次修改文件的时间
UNREF	未引用

许多消息还包括变量字段,例如 inode 编号,在本书中变量字段以斜体字表示,例如 inode-number。例如,以下屏幕消息:

INCORRECT BLOCK COUNT I=2529

显示为:

INCORRECT BLOCK COUNT I=inode-number

一般 fsck 错误消息

在初始化之后,任何阶段中都可能显示本节的错误消息。尽管这些消息提供了可供继续的选项,但通常最佳做法是将其视为致命错误。它们反映了严重的系统故障,应立即进行处理。遇到此类消息时,请通过输入 n(o) 终止程序。如果无法确定引起问题的原因,请与当地服务提供商或其他有资格的人员联系。

CANNOT SEEK: BLK disk-block-number (CONTINUE)

Solaris 10:

CANNOT SEEK: BLK block-number (CONTINUE)

原因

移动到文件系统中指定块编号 disk-block-number 的请求失败。此消息表示存在严重问题,很可能是硬件故障。

Solaris 10:移动到文件系统中指定块编号 block-number 的请求失败。此消息表示存在严重问题,很可能是硬件故障。

如果要继续进行文件系统检查,fsck将重试该移动并显示无法移动的扇区编号的列表。如果块属于虚拟内存高速缓存存储区的一部分,fsck将终止并显示致命 I/O 错误消息。

操作

如果磁盘遇到硬件问题,该问题将一直存在。再次运行 fsck,重新检查文件系统。如果重新检查失败,请与当地服务提供商或其他有资格的人员联系。

CANNOT READ: DISK BLOCK disk-block-number: I/O ERROR

CONTINUE?

Solaris 10:

CANNOT READ: DISK BLOCK block-number: I/O ERROR

CONTINUE?

原因

读取文件系统中指定块编号 disk-block-number 的请求失败。此消息表示存在严重问题,可能是硬件故障。

Solaris 10:读取文件系统中指定块编号 *block-number* 的请求失败。此消息表示存在严重问题,可能是硬件故障。

如果要继续进行文件系统检查,fsck将重试读取并显示无法读取的扇区编号列表。如果块属于虚拟内存高速缓存存储区的一部分,fsck将终止并显示致命 I/O 错误消息。如果fsck尝试回写读取失败的一个块,则会显示以下消息:

WRITING ZERO'ED BLOCK sector-numbers TO DISK

操作

如果磁盘遇到硬件问题,该问题将一直存在。再次运行 fsck,重新检查文件系统。如果重新检查失败,请与当地服务提供商或其他有资格的人员联系。

CANNOT WRITE: BLK disk-block-number (CONTINUE)

Solaris 10:

CANNOT WRITE: BLK block-number (CONTINUE)

原因

写入文件系统中指定块编号 disk-block-number 的请求失败。

如果要继续进行文件系统检查,fsck将重试写入并显示无法写入的扇区编号列表。如果块属于虚拟内存高速缓存存储区的一部分,fsck将终止并显示致命 I/O 错误消息。

Solaris 10:写入文件系统中指定块编号 block-number 的请求失败。

如果要继续进行文件系统检查,fsck将重试写入并显示无法写入的扇区编号列表。如果块属于虚拟内存高速缓存存储区的一部分,fsck将终止并显示致命 I/O 错误消息。

操作

磁盘可能设置了写保护。检查驱动器上的写保护锁。如果磁盘出现硬件问题,该问题可能一直存在。再次运行 fsck,重新检查文件系统。如果写保护不会导致问题或者重新检查失败,请与当地服务提供商或其他有资格的人员联系。

初始化阶段的 fsck 消息

在初始化阶段,将检查命令行语法。在可以执行文件系统检查之前,fsck 将设置表并打开文件。

本节中的消息与命令行选项、内存请求、打开文件、文件状态、文件系统大小检查和创建临时文件所导致的错误状态相关。当 fsck 整理文件系统时,所有此类初始化错误都会使其终止。

Can't roll the log for device-name.

DISCARDING THE LOG MAY DISCARD PENDING TRANSACTIONS. DISCARD THE LOG AND CONTINUE?

原因

fsck 在检查文件系统错误之前,无法刷新日志 UFS 文件系统的事务日志。

操作

回答是意味着在日志中但尚未应用于文件系统的文件系统操作将丢失。在此情况下,fsck 将运行它通常运行的相同检查,并在阶段 5 中提出以下问题:

FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)

在此时回答是将回收用于日志的块。下次在启用日志的情况下挂载文件系统时,将重新创建日志。

回答否将保留日志并退出,但文件系统不可挂载。

bad inode number inode-number to ginode

原因

由于不存在 inode inode-number 而发生内部错误。fsck 退出。

操作

请与当地服务提供商或其他有资格的人员联系。

cannot alloc *size-of-block map* bytes for blockmap cannot alloc *size-of-free map* bytes for freemap cannot alloc *size-of-state map* bytes for statemap cannot alloc *size-of-lncntp* bytes for lncntp

原因

对内部表的内存请求失败。fsck 终止。此消息表示存在严重的系统故障,应立即进行处理。如果其他进程正在使用大量系统资源,则可能会出现此情况。

操作

中止其他进程可能会解决该问题。如果未解决,请与当地服务提供商或其他有资格的人员联系。

Can't open checklist file: filename

原因

无法打开文件系统核对表文件 *filename*(通常为 /etc/vfstab)以供读取。fsck 终止。

操作

检查该文件是否存在以及其访问模式是否允许读取访问。

Can't open filename

原因

fsck 无法打开文件系统 *filename*。以交互方式运行时,fsck 将忽略此文件系统并继续检查给定的下一个文件系统。

操作

检查是否允许对文件系统的原始设备文件进行读取和写入访问。

Can't stat root

原因

对有关根目录的统计信息的 fsck 请求失败。fsck 终止。

操作

此消息表示存在严重的系统故障。请与当地服务提供商或其他有资格的人员联系。

Can't stat filename

Can't make sense out of name filename

原因

对有关文件系统 *filename* 的统计信息的 fsck 请求失败。以交互方式运行时, fsck 将 忽略此文件系统并继续检查给定的下一个文件系统。

操作

检查该文件系统是否存在并检查其访问模式。

filename: (NO WRITE)

原因

已指定 -n 选项,或者 fsck 无法打开文件系统 *filename* 以供写入。当 fsck 以禁止写入模式运行时,将显示所有诊断消息,但 fsck 不会尝试进行任何修复。

操作

如果未指定 -n, 请检查所指定文件的类型。它可能是一个常规文件的名称。

IMPOSSIBLE MINFREE=percent IN SUPERBLOCK (SET TO DEFAULT)

原因

超级块最小空间百分比大于99%或小于0%。

操作

要将 minfree 参数设置为缺省的 10%,请在缺省提示符下键入 y。要忽略该错误状态,请在缺省提示符下键入 n。

filename: BAD SUPER BLOCK: message
USE AN ALTERNATE SUPER-BLOCK TO SUPPLY NEEDED INFORMATION;
e.g., fsck[-f ufs] -o b=# [special ...]
where # is the alternate superblock. See fsck_ufs(1M)

原因

超级块已损坏。

操作

可能显示以下消息之一:

CPG OUT OF RANGE
FRAGS PER BLOCK OR FRAGSIZE WRONG
INODES PER GROUP OUT OF RANGE
INOPB NONSENSICAL RELATIVE TO BSIZE
MAGIC NUMBER WRONG
NCG OUT OF RANGE
NCYL IS INCONSISTENT WITH NCG*CPG
NUMBER OF DATA BLOCKS OUT OF RANGE
NUMBER OF DIRECTORIES OUT OF RANGE
ROTATIONAL POSITION TABLE SIZE OUT OF RANGE
SIZE OF CYLINDER GROUP SUMMARY AREA WRONG
SIZE TOO LARGE
BAD VALUES IN SUPERBLOCK

尝试使用备用超级块重新运行 fsck。最佳选择是指定块 32。通过在分区中运行 newfs -N 命令可以找到超级块的备用副本。务必要指定 -N 选项;否则,newfs 将覆写现有的文件系统。

UNDEFINED OPTIMIZATION IN SUPERBLOCK (SET TO DEFAULT)

原因

超级块优化参数既不是 OPT TIME 也不是 OPT SPACE。

操作

要最大程度地减少在文件系统中执行操作的时间,请在 SET TO DEFAULT 提示符下键入 y。要忽略此错误状态,请键入 n。

阶段1:检查块和大小消息

此阶段检查 inode 列表。它会报告在以下情况下遇到的错误状态:

- 检查 inode 类型
- 设置零链接计数表

- 检查坏块或重复块的 inode 块编号
- 检查 inode 大小
- 检查 inode 格式

整理文件系统时,此阶段中除了 INCORRECT BLOCK COUNT、PARTIALLY TRUNCATED INODE、PARTIALLY ALLOCATED INODE 和 UNKNOWN FILE TYPE 之外的所有错误都会终止fsck。

阶段1中可能出现以下消息(按字母顺序):

block-number BAD T=inode-number

原因

Inode *inode-number* 包含一个块编号 *block-number*,其编号小于文件系统中第一个数据块的编号或大于文件系统中最后一个块的编号。如果 inode *inode-number* 有太多的块编号超出文件系统范围,则此错误状态可能会在阶段 1 中生成 EXCESSIVE BAD BLKS错误消息。此错误状态会在阶段 2 和 4 中生成 BAD/DUP 错误消息。

操作

N/A

BAD MODE: MAKE IT A FILE?

原因

给定 inode 的状态都设置为 1,表示文件系统损坏。除非此消息在 fsck -y 运行后重复显示,否则此消息不表示物理磁盘损坏。

操作

键入 y, 以便将 inode 重新初始化为合理值。

BAD STATE state-number TO BLKERR

原因

内部错误使 fsck 状态图变得杂乱,因此它会显示不可能的值 *state-number*。fsck 将立即退出。

操作

请与当地服务提供商或其他有资格的人员联系。

fragment-number DUP I=inode-number

Solaris 10:

block-number DUP I=inode-number

原因

Inode *inode-number* 包含一个块编号 *fragment-number*,该块编号已被该 inode 或其他 inode 请求。如果 inode *inode-number* 具有太多已被该 inode 或其他 inode 请求的块编

号,此错误状态可能会在阶段 1 中生成 EXCESSIVE DUP BLKS 错误消息。此错误状态将调用阶段 1B 并在阶段 2 和 4 中生成 BAD/DUP 错误消息。

Solaris 10: Inode *inode-number* 包含一个块编号 *block-number*,该块编号已被该 inode 或其他 inode 请求。如果 inode *inode-number* 具有太多已被该 inode 或其他 inode 请求的块编号,此错误状态可能会在阶段 1 中生成 EXCESSIVE DUP BLKS 错误消息。此错误状态将调用阶段 1B 并在阶段 2 和 4 中生成 BAD/DUP 错误消息。

操作

N/A

DUP TABLE OVERFLOW (CONTINUE)

原因

fsck 无法分配用于跟踪重复片段的内存。如果指定了 -op 选项,程序将终止。

Solaris 10:在包含重复块编号的 fsck 的内部表中没有更多空间。如果指定了 -op 选项,程序将终止。

操作

要继续该程序,请在 CONTINUE 提示符下键入 y。如果出现此错误,则无法进行完整的文件系统检查。如果找到其他的重复片段,将重复出现此错误状态。增加可用的虚拟内存量(通过中止一些进程,增加交换空间)并再次运行 fsck,以重新检查文件系统。要终止该程序,请键入 n。

Solaris 10:要继续该程序,请在 CONTINUE 提示符下键入 y。如果出现此错误,则无法进行完整的文件系统检查。如果找到其他重复块,将重复出现此错误状态。增加可用的虚拟内存量(通过中止一些进程,增加交换空间)并再次运行 fsck,以重新检查文件系统。要终止该程序,请键入 n。

EXCESSIVE BAD FRAGMENTS I=inode-number (CONTINUE)

Solaris 10:

EXCESSIVE BAD BLOCKS I=inode-number (CONTINUE)

原因

太多(通常多于 10 个)片段表示磁盘地址无效。如果指定 -op(整理)选项,程序将终止。

Solaris 10: 太多(通常多于 10 个)块的编号小于文件系统中第一个数据块的编号或大于文件系统中与 inode *inode-number* 关联的最后一个块的编号。如果指定 -o p(整理)选项,程序将终止。

操作

要继续该程序,请在 CONTINUE 提示符下键入 y。如果出现此错误,则无法进行完整的文件系统检查。应再次运行 fsck,以重新检查文件系统。要终止该程序,请键入 n。

EXCESSIVE DUP BLKSDUPLICATE FRAGMENTS I=inode-number (CONTINUE)

Solaris 10:

EXCESSIVE DUP BLKS I=inode-number (CONTINUE)

原因

该 inode、其他 inode 或可用列表已请求太多(通常多于 10 个)片段。如果指定了 -o p 选项,程序将终止。

Solaris 10:该 inode、其他 inode 或可用列表已请求太多(通常多于 10 个)块。如果指定了 -0 p 选项,程序将终止。

操作

要继续该程序,请在 CONTINUE 提示符下键入 y。如果出现此错误,则无法进行完整的文件系统检查。应再次运行 fsck,以重新检查文件系统。要终止该程序,请键入 n。

INCORRECT DISK BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)

Solaris 10:

INCORRECT BLOCK COUNT I=inode-number (number-of-BAD-DUP-or-missing-blocks should be number-of-blocks-in-filesystem) (CORRECT)

原因

inode inode-number 的磁盘块计数不正确。整理时,fsck 将更正该计数。

Solaris 10: inode inode-number 的块计数是 number-of-BAD-DUP-or-missing-blocks,但应该是 number-of-blocks-in-filesystem。整理时, fsck 将更正该计数。

操作

要按 number-of-blocks-in-filesystem 更正 inode inode-number 的磁盘块计数,请在 CORRECT 提示符下键入 v。

Solaris 10:要用 *number-of-blocks-in-filesystem* 替换 inode *inode-number* 的块计数,请在 CORRECT 提示符下键入 y。要终止该程序,请键入 n。

LINK COUNT TABLE OVERFLOW (CONTINUE)

原因

对于包含链接计数为零的已分配 inode 的 fsck 而言,内部表内已没有可用空间。如果指定了 -op(整理)选项,程序将退出,必须手动完成 fsck。

操作

要继续该程序,请在 CONTINUE 提示符下键入 y。如果找到具有零链接计数的其他已分配 inode,则会重复出现此错误状态。如果出现此错误,则无法进行完整的文件系统检查。应再次运行 fsck,以重新检查文件系统。通过中止一些进程或增加交换空

间来增加可用虚拟内存,然后再次运行 fsck。要终止该程序,请键入n。

PARTIALLY ALLOCATED INODE I=inode-number (CLEAR)

原因

未分配 Inode *inode-number*,也未取消其分配。如果指定了 -o p(整理)选项,则会清除该 inode。

操作

要通过清空内容来取消分配 inode *inode-number*,请键入 y。这可能会在阶段 2 中针对指向此 inode 的每个目录项生成 UNALLOCATED 错误状态。要忽略该错误状态,请键入 n。仅当要采取其他措施来修复问题时,才可以不做出响应。

PARTIALLY TRUNCATED INODE I=inode-number (SALVAGE)

原因

fsck 发现大小小于为其分配的片段数的 inode *inode-number*。仅当系统在截断文件的过程中崩溃时,才会出现此情况。整理文件系统时,fsck 将以指定大小完成截断。

Solaris 10: fsck 发现大小小于为其分配的块数的 inode *inode-number*。仅当系统在截断文件的过程中崩溃时,才会出现此情况。整理文件系统时,fsck 将以指定大小完成截断。

操作

要以 inode 中指定的大小完成截断, 请在 SALVAGE 提示符下键入 y。要忽略此错误状态, 请键入 n。

UNKNOWN FILE TYPE I=inode-number (CLEAR)

原因

inode *inode-number* 的模式字表明,该 inode 不是管道、字符设备、块设备、常规文件、符号链接、FIFO 文件或目录 inode。如果指定了 -o p 选项,则会清除 inode。

Solaris 10: inode *inode-number* 的模式字表明,该 inode 不是管道、特殊字符 inode、特殊块 inode、常规 inode、符号链接、FIFO 文件或目录 inode。如果指定了 -o p 选项,则会清除 inode。

操作

要通过清空其内容来取消分配 inode *inode-number*(这将导致阶段 2 中指向此 inode 的每个目录项都出现 UNALLOCATED 错误状态),请在 CLEAR 提示符下键入 y。要忽略此错误状态,请键入 n。

阶段 1B: 重新扫描更多 DUPS 消息

本节包含当前 Solaris 发行版中的阶段 1B fsck 消息。

在文件系统中找到重复片段时,将显示此消息:

fragment DUP I=inode-number

原因

Inode *inode-number* 包含已由该 inode 或其他 inode 请求的片段编号 *fragment-number*。此错误状态将在阶段 2 中生成 BAD/DUP 错误消息。通过检查此错误状态和阶段 1 中的 DUP 错误状态,可以确定具有重复片段的 inode。在 fsck 运行时生成的重复片段报告可以简化此操作。

操作

发现重复块时,将重新扫描文件系统,以查找以前请求过该块的 inode。

Solaris 10:阶段 1B:重新扫描更多 DUPS 消息

本节包含 Solaris 10 发行版中的 fsck 消息。

在文件系统中发现重复块时,将显示此消息:

block-number DUP I=inode-number

原因

Inode *inode-number* 包含已由该 inode 或其他 inode 请求的块编号 *block-number*。此错误状态将在阶段 2 中生成 BAD/DUP 错误消息。通过检查此错误状态以及阶段 1 中的 DUP 错误状态,可以确定具有重复块的 inode。

操作

发现重复块时,将重新扫描文件系统,以查找以前请求过该块的 inode。

阶段2:检查路径名消息

此阶段将删除指向阶段 1 和 1B 中所找到的坏 inode 的目录项。它将报告下列原因所导致的错误状态:

- 不正确的根 inode 模式和状态
- 目录 inode 指针超出范围
- 目录项指向坏 inode
- 目录完整性检查

整理(-o-p选项)文件系统时,此阶段中的所有错误都会终止 fsck,但与不是块大小倍数的目录、重复块和坏块、超出范围的 inode 以及多余的硬链接相关的错误除外。

阶段2中可能出现以下消息(按字母顺序):

BAD INODE state-number TO DESCEND

原因

fsck 内部错误将一个无效状态 *state-number* 传递给由文件系统目录结构向下派生的例程。fsck 退出。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

BAD INODE NUMBER FOR '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个目录 inode-number, 其用于"."的 inode 编号不等于 inode-number。

操作

要更改"."的 inode 编号以使其等于 *inode-number*,请在 FIX 提示符下键入 y。要使 "."的 inode 编号保持不变,请键入 n。

BAD INODE NUMBER FOR '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个目录 inode-number,其用于".."的 inode 编号不等于 inode-number 的父级。

操作

要更改"..."的 inode 编号以使其等于 *inode-number* 的父级,请在 FIX 提示符下键入 y。(请注意,根 inode 中的".."指向本身。)要使"..."的 inode 编号保持不变,请 键入 n。

BAD RETURN STATE state-number FROM DESCEND

原因

fsck 内部错误从文件系统目录结构向下派生的例程中返回不可能的状态 state-number。fsck 退出。

操作

如果显示此消息,请与当地服务提供商或其他有资格的人员联系。

BAD STATE state-number FOR ROOT INODE

原因

内部错误为根 inode 指定了不可能的状态 state-number。fsck 退出。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

BAD STATE state-number FOR INODE=inode-number

原因

内部错误为 inode inode-number 指定了不可能的状态 state-number。fsck 退出。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

DIRECTORY TOO SHORT I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

发现大小 file-size 小于最小目录大小的目录 filename。此时将显示属主 UID、模式 file-mode、大小 file-size、修改时间 modification-time 和目录名称 filename。

操作

要将目录的大小增大至最小目录大小,请在 FIX 提示符下键入 y。要忽略此目录,请键入 n。

DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)

Solaris 10:

DIRECTORY filename: LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)

原因

找到一个目录 filename, 其大小 file-size 不是目录块大小 disk-block-size 的倍数。

Solaris 10:

找到一个目录 filename, 其大小 file-size 不是目录块大小 block-number 的倍数。

操作

要将长度舍入为合适的磁盘块大小,请键入 y。整理文件系统(-o p 选项)时,fsck 只显示警告并调整目录。要忽略此状态,请键入 n。

Solaris 10:

要将长度舍入为合适的块大小,请键入 y。整理文件系统(-op 选项)时,fsck 只显示警告并调整目录。要忽略此状态,请键入 n。

DIRECTORY CORRUPTED I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (SALVAGE)

原因

找到了具有不一致的内部状态的目录。

操作

要丢弃达到下一目录边界(通常为512字节边界)的所有项,请在SALVAGE 提示符下键入y。此极端操作最多可丢弃42个项。仅在其他恢复努力失败之后,才能采取此操作。要跳到下一个目录边界并继续阅读,但不修改目录,请键入n。

DUP/BAD I=inode-number OWNER=0 MODE=M SIZE=file-size MTIME=modification-time TYPE=filename (REMOVE)

原因

阶段 1 或阶段 1B 发现与目录或文件项 filename、inode inode-number 相关的重复片段或坏片段。此时将显示属主 UID、模式 file-mode、大小 file-size、修改时间 modification-time 以及目录或文件名 filename。如果指定了 -op(整理)选项,则会删除重复/坏片段。

Solaris 10:

阶段 1 或阶段 1B 发现与目录或文件项 $filename \cdot inode inode number$ 相关的重复块或坏块。此时将显示属主 $UID \cdot$ 模式 $file-mode \cdot$ 大小 $file-size \cdot$ 修改时间 modification-time 以及目录名称或文件名 $filename \cdot$ 如果指定了 -op (整理) 选项,则会删除重复/坏块。

操作

要删除该目录或文件项 filename,请在 REMOVE 提示符下键入 y。要忽略此错误状态,请键入 n。

DUPS/BAD IN ROOT INODE (REALLOCATE)

原因

阶段1或阶段1B在文件系统的根inode(inode编号20)中发现重复片段或坏片段。

Solaris 10:

阶段 1 或阶段 1B 在文件系统的根 inode(通常为 inode 编号 2)中发现重复块或坏块。

操作

要清除根 inode 的现有内容并对其重新分配,请在 REALLOCATE 提示符下键入 y。通常在根 inode 中找到的文件和目录将在阶段 3 中恢复,并被放入 lost+found 目录中。如果尝试分配根时失败,fsck 将退出并显示以下消息:CANNOT ALLOCATE ROOT INODE。键入 n 获取 CONTINUE 提示符。键入 y 以对 CONTINUE 提示符做出响应,忽略根 inode 中的 DUPS/BAD 错误状态并继续运行文件系统检查。如果根 inode 不正确,则可能会生成许多其他错误消息。键入 n 终止程序。

EXTRA '.' ENTRY I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个"."有多个项的目录 inode-number。

操作

要删除"."的多余项,请在 FIX 提示符下键入 y。要使该目录保持不变,请键入 n。

EXTRA '...' ENTRY I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个".."(父目录)有多个项的目录 inode-number。

操作

要删除".."(父目录)的多余项,请在FIX提示符下键入y。要使该目录保持不变,请键入n。

hard-link-number is an extraneous hard link to a directory filename (remove)

原因

fsck 发现链接到目录 filename 的多余硬链接 hard-link-number。整理(-op选项)时,fsck 将忽略多余硬链接。

操作

要删除多余项 hard-link-number,请在 REMOVE 提示符下键入 y。要忽略该错误状态,请键入 n。

inode-number OUT OF RANGE I=inode-number NAME=filename (REMOVE)

原因

目录项 filename 有一个 inode 编号 inode-number 大于 inode 列表的最后一个数。如果指定了 -p(整理)选项,则会自动删除该 inode。

操作

要删除目录项 filename,请在 REMOVE 提示符下键入 y。要忽略该错误状态,请键入 n。

MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个第一项(用于"."的项)尚未分配的目录 inode-number。

操作

要为"." 生成一个 inode 编号等于 *inode-number* 的项,请在 FIX 提示符下键入 y。要 使该目录保持不变,请键入 n。

MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename CANNOT FIX, FIRST ENTRY IN DIRECTORY CONTAINS filename

原因

找到一个第一项为 filename 的目录 inode-number。fsck 无法解决此问题。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

MISSING '.' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename CANNOT FIX, INSUFFICIENT SPACE TO ADD '.'

原因

找到一个第一项不是"."的目录 inode-number。fsck 无法解决此问题。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

MISSING '...' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (FIX)

原因

找到一个第二项尚未分配的目录 inode-number。

操作

要为".."生成一个 inode 编号等于 *inode-number* 的父级的项,请在 FIX 提示符下键入 v。(请注意,根 inode 中的".."指向本身。)要使该目录保持不变,请键入 n。

MISSING '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename CANNOT FIX, SECOND ENTRY IN DIRECTORY CONTAINS filename

原因

找到一个第二项为 filename 的目录 inode-number。fsck 无法解决此问题。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

MISSING '..' I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename CANNOT FIX, INSUFFICIENT SPACE TO ADD '..'

原因

找到一个第二项不是".."(父目录)的目录 inode-number。fsck 无法解决此问题。

操作

如果显示此错误消息,请与当地服务提供商或其他有资格的人员联系。

NAME TOO LONG filename

原因

发现一个超长的路径名,这通常表示文件系统名称空间中的循环。如果特权用户对目录创建了循环链接,则会出现此错误。

操作

删除循环链接。

ROOT INODE UNALLOCATED (ALLOCATE)

原因

根 inode (通常为 inode 编号 2) 没有分配模式位。

操作

要将 inode 2 分配为根 inode,请在 ALLOCATE 提示符下键入 y。通常在根 inode 中找到的文件和目录将在阶段 3 中恢复,并被放入 Lost+found 目录中。如果尝试分配根

inode 时失败,fsck 将显示此消息并退出:CANNOT ALLOCATE ROOT INODE。要终止该程序,请键入n。

ROOT INODE NOT DIRECTORY (REALLOCATE)

原因

文件系统的根 inode (通常为 inode 编号 2) 不是目录 inode。

操作

要清除根 inode 的现有内容并对其重新分配,请在 REALLOCATE 提示符下键入 y。通常在根 inode 中找到的文件和目录将在阶段 3 中恢复,并被放入 Lost+found 目录中。如果尝试分配根 inode 时失败,fsck 将显示此消息并退出:CANNOT ALLOCATE ROOT INODE。要使 fsck 提供带 FIX 的提示,请键入 n。

 $\label{eq:continuous} \begin{tabular}{ll} $\sf UNALLOCATED I=} inode-number \begin{tabular}{ll} $\sf OWNER=$UID MODE=$file-mode SIZE=$file-size MTIME=$modification-time type=$filename(REMOVE)$ \\ \end{tabular}$

原因

目录或文件项 filename 指向未分配的 inode inode-number。此时将显示属主 UID、模式 file-mode、大小 file-size、修改时间 modification-time 和文件名 filename。

操作

要删除目录项 filename,请在 REMOVE 提示符下键入 y。要忽略该错误状态,请键入 n。

ZERO LENGTH DIRECTORY I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time DIR=filename (REMOVE)

原因

目录项 filename 的大小 file-size 为零。此时将显示属主 UID、模式 file-mode、大小 file-size、修改时间 modification-time 和目录名称 filename。

操作

要删除目录项 *filename*,请在 REMOVE 提示符下键入 y。这将导致阶段 4 中出现 BAD/DUP 错误消息。要忽略该错误状态,请键入 n。

阶段3:检查连通性消息

此阶段将检查在阶段2中检查的目录,并报告以下原因所导致的错误状态:

- 非引用目录
- 缺失的或完整的 lost+found 目录

阶段3中可能出现以下消息(按字母顺序):

BAD INODE state-number TO DESCEND

原因

内部错误导致将不可能的状态 *state-number* 传递给从文件系统目录结构向下派生的例程。fsck 退出。

操作

如果出现此情况,请与当地服务提供商或其他有资格的人员联系。

DIR I=inode-number1 CONNECTED. PARENT WAS I=inode-number2

原因

这是一条建议性消息,表明一个目录 inode *inode-number1* 已成功连接到 lost+found 目录。目录 inode *inode-number1* 的父级 inode *inode-number2* 已由 lost+found 目录的 inode 编号替换。

操作

N/A

DIRECTORY filename LENGTH file-size NOT MULTIPLE OF disk-block-size (ADJUST)

Solaris 10:

DIRECTORY filename LENGTH file-size NOT MULTIPLE OF block-number (ADJUST)

原因

发现一个目录 filename, 其大小 file-size 不是目录块大小 B 的倍数(如果不在阶段 2 中进行调整,则阶段 3 中会重复出现此情况。)

操作

要将长度舍入为合适的磁盘块大小,请在 ADJUST 提示符下键入 y。整理时,fsck 将显示一条警告并调整目录。要忽略此错误状态,请键入 n。

Solaris 10:

要将长度舍入为合适的块大小,请在 ADJUST 提示符下键入 y。整理时, fsck 将显示一条警告并调整目录。要忽略此错误状态,请键入 n。

lost+found IS NOT A DIRECTORY (REALLOCATE)

原因

用于 lost+found 的项不是目录。

操作

要分配一个目录 inode 并更改 lost+found 目录以引用该 inode,请在 REALLOCATE 提示符下键入 y。lost+found 目录引用的上一个 inode 未清除,它将作为非引用 inode 回收或在此阶段的稍后部分调整其链接计数。无法创建 lost+found 目录时将显示以下消息:SORRY. CANNOT CREATE lost+found DIRECTORY,并放弃尝试链接到已丢失的inode,这将在阶段 4 中生成 UNREF 错误消息。要放弃尝试链接到已丢失的 inode(这将在阶段 4 中生成 UNREF 错误消息),请键入 n。

NO lost+found DIRECTORY (CREATE)

原因

文件系统的根目录中没有 lost+found 目录。整理时,fsck 将尝试创建一个 lost+found 目录。

操作

要在文件系统的根目录中创建一个 lost+found 目录,请在 CREATE 提示符下键入 y。这可能会生成消息 NO SPACE LEFT IN / (EXPAND)。如果无法创建 lost+found 目录,fsck 将显示以下消息: SORRY. CANNOT CREATE lost+found DIRECTORY,并放弃尝试链接到已丢失的 inode。这反过来将在后面的阶段 4 中生成 UNREF 错误消息。要放弃链接到已丢失 inode 的尝试,请键入 n。

NO SPACE LEFT IN /lost+found (EXPAND)

原因

由于没有可用空间,因此无法将另一项添加到文件系统根目录的 lost+found 目录中。整理时,fsck 将扩展 lost+found 目录。

操作

要扩展 lost+found 目录以便为新项留出空间,请在 EXPAND 提示符下键入 y。如果尝试扩展时失败,fsck 将显示:SORRY. NO SPACE IN lost+found DIRECTORY,并放弃将文件链接到 lost+found 目录的请求。此错误将在后面的阶段 4 中生成 UNREF 错误消息。删除 lost+found 目录中的任何不必要项。整理生效时,此错误将终止 fsck。要放弃尝试链接到已丢失的 inode,请键入 n。

 $\label{eq:connection} \begin{tabular}{ll} {\tt UNREF DIR I=} inode-number & {\tt OWNER=} UID & {\tt MODE=} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt RECONNECT}) & {\tt NODE-} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt RECONNECT}) & {\tt NODE-} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt RECONNECT}) & {\tt NODE-} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt RECONNECT}) & {\tt NODE-} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt RECONNECT}) & {\tt NODE-} file-mode & {\tt SIZE=} file-size \\ {\tt MTIME=} modification-time & ({\tt NODE-} file-mode) & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode & {\tt NODE-} file-mode & {\tt NODE-} file-mode \\ {\tt NODE-} file-mode \\ {\tt$

原因

遍历文件系统时,目录 inode *inode-number* 未连接到目录项。此时将显示属主 *UID*、模式 *file-mode*、大小 *file-size* 以及目录 inode *inode-number* 的修改时间 *modification-time*。整理时,如果目录大小不为零,fsck 将重新连接到非空目录 inode。否则,fsck 将清除该目录 inode。

操作

要将目录 inode inode-number 重新连接到 lost+found 目录,请在 RECONNECT 提示符下键入 y。如果目录重新连接成功,则会显示 CONNECTED 消息。否则,将显示一条 lost+found 错误消息。要忽略此错误状态,请键入 n。此错误会导致阶段 4 中出现 UNREF 错误状态。

阶段4:检查引用计数消息

此阶段将检查阶段2和3中获得的链接计数信息。它会报告以下原因所导致的错误状态:

- 非引用文件
- 缺失的或完整的 lost+found 目录
- 文件、目录、符号链接或特殊文件的链接计数不正确
- 非引用文件、符号链接和目录
- 文件或目录中存在坏片段或重复片段

Solaris 10:

文件或目录中存在坏块或重复块

■ 可用 inode 总计数不正确

整理文件系统时,此阶段的所有错误(lost+found 目录中空间不足的错误除外)都可以更正。

阶段4中可能出现以下消息(按字母顺序):

BAD/DUP $type \ I=inode-number \ OWNER=UID \ MODE=file-mode \ SIZE=file-size \ MTIME=modification-time (CLEAR)$

原因

阶段 1 或阶段 1B 发现与文件或目录 inode inode-number 相关的重复片段或坏片段。此时将显示属主 UID、模式 file-mode、大小 file-size 以及 inode inode-number 的修改时间 modification-time。

Solaris 10:

阶段 1 或阶段 1B 发现与文件或目录 inode inode-number 相关的重复块或坏块。此时将显示属主 UID、模式 file-mode、大小 file-size 以及 inode inode-number 的修改时间 modification-time。

操作

要通过清空其内容来取消分配 inode inode-number,请在 CLEAR 提示符下键入 y。要 忽略此错误状态,请键入 n。

(CLEAR)

原因

上面的 UNREF 错误消息中提及的 inode 无法重新连接。如果由于缺少重新连接文件的空间而终止 fsck,则整理文件系统时不会显示此消息。

操作

要通过清空其内容取消分配 inode,请在 CLEAR 提示符下键入 y。要忽略前面的错误状态,请键入 n。

LINK COUNT type I=inode-number OWNER=UID MODE=file-mode SIZE=file-size
MTIME=modification-time COUNT link-count SHOULD BE corrected-link-count (ADJUST)

原因

目录或文件 inode inode-number 的链接计数为 link-count,但应该为 corrected-link-count。此时将显示属主 UID、模式 file-mode、大小 file-size 以及 inode inode-number 的修改时间 modification-time。如果指定了 -op 选项,则除非引用数在增加,否则将调整链接计数。除非存在硬件故障,否则不会出现此情况。当引用数在整理期间增加时,fsck 将显示以下消息并退出:LINK COUNT INCREASING

操作

要用 *corrected-link-count* 替换目录或文件 inode *inode-number* 的链接计数,请在 ADJUST 提示符下键入 y。要忽略此错误状态,请键入 n。

lost+found IS NOT A DIRECTORY (REALLOCATE)

原因

用于 lost+found 的项不是目录。

操作

要分配一个目录 inode 并更改 lost+found 目录以引用该 inode,请在 REALLOCATE 提示符下键入 y。lost+found 目录以前引用的 inode 尚未清除。它将作为非引用 inode 回收或在此阶段的稍后部分调整其链接计数。无法创建 lost+found 目录时,将显示以下消息:SORRY. CANNOT CREATE lost+found DIRECTORY,并放弃尝试链接到已丢失的inode。此错误将在后面的阶段 4 中生成 UNREF 错误消息。要放弃链接到已丢失的inode 的尝试,请键入 n。

NO lost+found DIRECTORY (CREATE)

原因

文件系统的根目录中没有 lost+found 目录。整理时,fsck 将尝试创建一个 lost+found 目录。

操作

要在文件系统的根目录中创建一个 lost+found 目录,请在 CREATE 提示符下键入 y。如果无法创建 lost+found 目录,fsck 将显示以下消息:SORRY. CANNOT CREATE lost+found DIRECTORY,并放弃尝试链接到已丢失的 inode。此错误反过来会在后面的阶段 4 中生成 UNREF 错误消息。要放弃尝试链接到已丢失的 inode,请键入 n。

NO SPACE LEFT IN / lost+found (EXPAND)

原因

没有空间可用于将另一项添加到文件系统根目录的 lost+found 目录中。整理时,fsck 将扩展 lost+found 目录。

操作

要扩展 lost+found 目录以便为新项留出空间,请在 EXPAND 提示符下键入 y。如果尝试扩展时失败,fsck 将显示以下消息: SORRY. NO SPACE IN lost+found DIRECTORY,并放弃将文件链接到 lost+found 目录的请求。此错误将在后面的阶段 4 中生成 UNREF错误消息。删除 lost+found 目录中的任何不必要项。当整理(-op选项)生效时,此错误将终止 fsck。要放弃尝试链接到已丢失的 inode,请键入 n。

原因

遍历文件系统时,文件 inode inode-number 未连接到目录项。此时将显示属主 UID、模式 file-mode、大小 file-size 以及 inode inode-number 的修改时间 modification-time。当 fsck 进行整理时,如果文件的大小或链接计数为零,则清除该文件;否则,将重新连接该文件。

操作

要将 inode *inode-number* 重新连接到文件系统的 lost+found 目录,请键入 y。如果在将 inode *inode-number* 连接到 lost+found 目录时出现问题,此错误可能会在阶段 4 中生成 lost+found 错误消息。要忽略此错误状态,请键入 n。此错误始终会在阶段 4 中引发 CLEAR 错误状态。

UNREF type I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time (CLEAR)

原因

遍历文件系统时,inode inode-number(其 type 是目录或文件)未连接到目录项。此时将显示属主 UID、模式 file-mode、大小 file-size 以及 inode inode-number 的修改时间 modification-time。当 fsck 进行整理时,如果文件的大小或链接计数为零,则清除该文件;否则,将重新连接该文件。

操作

要通过清空其内容来取消分配 inode inode-number,请在 CLEAR 提示符下键入 y。要 忽略此错误状态,请键入 n。

ZERO LENGTH DIRECTORY I=inode-number OWNER=UID MODE=file-mode SIZE=file-size MTIME=modification-time(CLEAR)

原因

目录项 filename 的大小 file-size 为零。此时将显示属主 UID、模式 file-mode、大小 file-size、修改时间 modification-time 和目录名称 filename。

操作

要通过清空其内容来取消分配目录 inode *inode-number*,请键入 y。要忽略该错误状态,请键入 n。

阶段5:检查柱面组消息

本节包含当前 Solaris 发行版中的阶段 5 fsck 消息。

此阶段将检查可用片段和已用 inode 图。它将报告下列原因所导致的错误状态:

- 已用 inode 图中缺少已分配 inode
- 可用片段图中缺少可用片段
- 已用 inode 图中有可用 inode
- 可用片段总计数不正确
- 已用 inode 总计数不正确

阶段5中可能出现以下消息(按字母顺序):

FRAG BITMAP WRONG (CORRECTED)

原因

柱面组片段图缺少一些可用片段。在整理期间,fsck将重新构造这些图。

操作

要重新构造可用片段图,请在 SALVAGE 提示符下键入 y。要忽略此错误状态,请键入 n。

CG cg-number: BAD MAGIC NUMBER

原因

柱面组的魔数 cg-number 不正确。此错误通常表示柱面组图已被销毁。以交互方式运行时,柱面组标记为需要重新构造。如果正在整理文件系统,fsck 将终止。

操作

如果出现此情况,请与当地服务提供商或其他有资格的人员联系。

CORRECT GLOBAL SUMMARY (SALVAGE)

原因

摘要信息不正确。整理时, fsck 将重新计算摘要信息。

操作

要重新构造摘要信息,请在 SALVAGE 提示符下键入 y。要忽略此错误状态,请键入 n。

Solaris 10: 阶段 5: 检查柱面组消息

本节包含 Solaris 10 发行版中的 fsck 消息。

此阶段检查可用块和已用 inode 图。它将报告下列原因所导致的错误状态:

- 已用 inode 图中缺少已分配 inode
- 可用块图中缺少可用块
- 已用 inode 图中有可用 inode
- 可用块总计数不正确
- 已用 inode 总计数不正确

阶段5中可能出现以下消息(按字母顺序):

BLK(S) MISSING IN BIT MAPS (SALVAGE)

原因

柱面组块图缺少一些可用块。在整理期间,fsck将重新构造这些图。

操作

要重新构造可用块图,请在 SALVAGE 提示符下键入 y。要忽略此错误状态,请键入 n。

 ${\tt CG} \ \ character-for-command-option: \ {\tt BAD} \ \ {\tt MAGIC} \ \ {\tt NUMBER}$

原因

柱面组的魔数 *character-for-command-option* 不正确。此错误通常表示柱面组图已被销毁。以交互方式运行时,柱面组标记为需要重新构造。如果正在整理文件系统,fsck 将终止。

操作

如果出现此情况,请与当地服务提供商或其他有资格的人员联系。

FREE BLK COUNT(S) WRONG IN SUPERBLK (SALVAGE)

原因

实际可用块计数与文件系统超级块中的可用块计数不匹配。如果指定了 -op 选项,则会自动修复超级块中的可用块计数。

操作

要重新构造级超级块可用块信息,请在 SALVAGE 提示符下键入 y。要忽略此错误状态,请键入 n。

SUMMARY INFORMATION BAD (SALVAGE)

原因

摘要信息不正确。整理时, fsck 将重新计算摘要信息。

操作

要重新构造摘要信息,请在 SALVAGE 提示符下键入 y。要忽略此错误状态,请键入 n。

fsck摘要消息

本节包含当前 Solaris 发行版中的 fsck 摘要消息。如果运行的版本低于 Solaris 10 6/06 发行版,则会在清除阶段显示这些消息。有关更多信息,请参见第 270 页中的 "清除阶段消息"。

检查文件系统后, 会显示一些摘要消息。

number-of files, number-of-files
used, number-of-files free (number-of frags, number-of blocks,
percent fragmentation)

此消息表明,所检查的文件系统中包含 number-of 个使用 number-of 个片段大小块的文件,该文件系统中还有 number-of 个片段大小块可用。括号中的数字将可用计数细分为 number-of 个可用片段、number-of 个可用的完整大小块和 percent 分段。

***** FILE SYSTEM WAS MODIFIED *****

此消息表示,fsck 对文件系统进行了修改。如果看到此消息,则不需要重新运行fsck。此消息只是有关 fsck 的更正操作的信息。

清除阶段消息

本节包含 Solaris 10 发行版中的 fsck 清除阶段消息。在此 Solaris 发行版中,可在 fsck 摘要阶段找到类似消息。有关更多信息,请参见第 270 页中的 "fsck 摘要消息"。

检查文件系统后,将执行一些清除功能。清除阶段将显示以下状态消息。

 $number-of\ files$, number-of-files used, $number-of\ files$ free ($number-of\ frags$, $number-of\ blocks$, $percent\ fragmentation$)

此消息表明,所检查的文件系统中包含 number-of 个使用 number-of 个片段大小块的文件,该文件系统中还有 number-of 个片段大小块可用。括号中的数字将可用计数细分为 number-of 个可用片段、number-of 个可用的完整大小块和 percent 分段。

***** FILE SYSTEM WAS MODIFIED *****

此消息表示,fsck 对文件系统进行了修改。如果文件系统已挂载或为当前的根 (/) 文件系统,请重新引导。如果已挂载文件系统,则可能需要将其卸载并再次运行 fsck;否则,内核中的表副本可能会撤消 fsck 已执行的操作。

filename FILE SYSTEM STATE SET TO OKAY

此消息表示文件系统 filename 已标记为稳定。使用 fsck-m 命令确定文件系统是否需要检查。

filename FILE SYSTEM STATE NOT SET TO OKAY

此消息表明,文件系统文件名未标记为稳定。使用 fsck-m 命令确定文件系统是否需要检查。

◆ ◆ ◆ 第 2 1 章

软件包问题疑难解答(任务)

本章介绍在安装或删除软件包时可能遇到的问题。"特定软件包安装错误"一节介绍了可能遇到的软件包安装和管理错误。"一般软件包安装问题"一节介绍了可能不显示错误消息的行为问题。

以下是本章中的信息列表:

- 第274页中的"特定软件包安装错误"
- 第274页中的"一般软件包安装问题"

有关管理软件包的信息,请参见《系统管理指南:基本管理》中的第 16 章 "管理软件(概述)"。

软件包符号链接问题疑难解答

在以前的 Solaris 发行版中,创建软件包时无法在 pkgmap 文件中指定符号链接目标。这意味着在使用 pkgadd 命令添加软件包时,与软件包或修补程序相关的符号链接始终指向符号链接的源,而不是符号链接的目标。在升级更改符号链接目标所需的软件包或修补程序软件包时,这将产生问题。

现在,缺省行为是,如果软件包需要将符号链接的目标更改为其他内容,则 pkgadd 命令将检查符号链接的目标,而不检查符号链接的源。

不过,这意味着部分软件包可能符合或不符合新的 pkgadd 行为。

PKG_NONABI_SYMLINKS 环境变量将有助于在新旧 pkgadd 符号链接行为之间进行转换。如果此环境变量设置为 true,pkgadd 将指向符号链接的源。

如果在使用 pkgadd 命令添加软件包之前管理员已设置了软件包的行为,则设置此变量可使非一致的软件包恢复至原有行为。

新的 pkgadd 符号链接行为可能会导致使用 pkgadd 命令添加现有软件包失败。在此情况下,可能会看到以下错误消息:

unable to create symbolic link to <path>

如果软件包因为此问题而未安装, 请执行以下操作:

- 1. 如果这是 Sun 提供的软件包, 请致电解析中心并报告非一致性软件包的名称。
- 2. 设置 PKG NONABI SYMLINKS 环境变量并尝试使用 pkgadd 命令再次添加软件包。
 - # PKG NONABI SYMLINKS=true
 - # export PKG NONABI SYMLINKS
 - # pkgadd pkg-name

特定软件包安装错误

WARNING: filename <not present on Read Only file system>

出现错误的原因

此错误消息指示并非该软件包的所有文件都可以 安装。使用 pkgadd 在客户机上安装软件包时,通 常会出现这种情况。在此情况下, pkqadd 会尝试 见《系统管理指南:基本管理》中的第 16 章 "管 在从服务器挂载的文件系统中安装软件包,但 pkgadd 无权执行此操作。

解决该问题的办法

如果在软件包安装期间看到此警告消息, 还必须 在服务器上安装软件包。有关详细信息,请参 理软件(概述)"。

-般软件包安装问题

出现错误的原因

添加或删除在 Solaris 2.5 发行版和兼容版本之前开 发的一些软件包时,存在一个已知问题。有时 候,添加或删除这些软件包时,在用户交互期间 安装会失败,或者提示您进行用户交互并忽略您 的响应。

解决该问题的办法

设置以下环境变量并尝试再次添加软件包。

NONABI SCRIPTS=TRUE

索引

A	C
acct.h 格式文件,138,139	chargefee脚本,120,121,136
acctcms 命令,132,142	对用户计费,125
acctcom 命令,138,139	ckpacct脚本,121,122,124
acctcon 命令,126,132,140	closewtmp命令,132
acctdusg 命令,120,135,140	cmsprev 文件,141
acctprc 命令,132	Command not found 错误消息, 241
acctwtmp 命令,119,120,134	Common Agent Container
active. <i>MMDD</i> 文件,127,140	Solaris OS 中的疑难解答,199-200
active 文件,127,140	疑难解答,238-239
at.deny 文件,112,116	Common Agent Container 共享, 共享组件, 238-239
说明,100	Common Agent Container 共享组件
at 命令,112,113,116	端口编号(如何检查), 238-239
-1 选项(列表),114	问题类型
-m选项(邮件), 113	超级用户口令的安全性,238-239
错误消息,116	Common Agent container 共享组件
概述, 100, 101, 112	问题类型
拒绝访问,115-116	端口号冲突, 238-239
控制访问, 112,116	consadm 命令,212
概述, 100	禁用辅助控制台,213
自动调度, 103	启用辅助控制台,212
at 作业文件,112,115	在系统重新引导期间,212-213
创建, 113	显示辅助控制台的列表(如何),212
删除, 115	core 文件
说明, 101	查找并删除,83
提交, 112	使用 proc 工具检查,220
位置,101	core 文件, 自动删除, 112
显示, 114	coreadm 命令,216
atjobs 目录,103	管理核心转储文件,216
说明,100	设置核心转储文件名称模式,218 显示核心转储配置,218
	亚小伙心特阻乱具,218

CPU(central processing unit,中央处理器) 使用率高的进程,167 显示信息 时间使用情况,135,153,167 cron.allow文件,108,109,110 cron.deny文件,108,109 缺省值,108 cron守护进程,101,103 crontab命令,109 cron守护进程和,103 -e选项(编辑),104,105 -l选项(列表),106 -r选项(删除),107,108 /var/adm维护和,206 错误消息,111 调度,103 概述,100,101 控制访问,108,109,110 概述,100,108,109 仅限特定用户访问,108,109,110 拒绝访问,108,109	daytacct 文件 runacct 脚本和, 132,142 /var/adm/acct/nite 目录,位于, 141 每日使用情况报告和, 135 df 命令, 175,176 -h 选项, 73 -k 选项(千字节), 176 -t 选项(总块数), 74 概述, 72,175 示例, 73,176 disktacct.MMDD文件, 132 disktacct 文件, 121 disktacct 文件, 120,132,140 dispadmin 命令,概述, 162 dmesg 命令, 206 dodisk 脚本, 119 创建的文件, 120,121,132,140 概述, 119,120,121 运行的 crontab 项, 124 注意, 120
每日任务, 100 使用的文件, 103 退出而不保存更改, 105 运行的记帐脚本, 122,124	dtmp 文件,140 DTrace 功能,200 du 命令,78,79 dumpadm,管理系统故障转储信息,223
crontab 文件 编辑,104,105	
创建,104,105 创建和编辑,99-100 拒绝访问,109 缺省值,102 删除,107,108 说明,103 位置,102 显示,106 语法,103,104 ctacct. <i>MMDD</i> 文件,132,140 ctmp 文件,140	E edquota命令 -p选项(样例),90 -t选项(时间限制),95 概述,86,87,94 设置用户配额,90 为单个用户禁用配额,97 eeprom命令,用于在ttymon终端上设置波特率,41 /etc/acct/holidays文件,124 /etc/cron.d/at.deny文件,112,116 /etc/cron.d/cron.allow文件,108,109,110 /etc/cron.d/cron.deny文件,108,109
D date 命令 记帐数据和, 119,120	/etc/init.d/acct 文件,123 /etc/syslog.conf 文件,208 /etc/utmpx 文件,37 /etc/vfstab 文件,88

F	lock 文件,127,131
fcntl 信息,154,156	lock1 文件,131
fd2log 文件,127,131,140	log. <i>MMDD</i> 文件,140
fee 文件,121, 125, 132, 140	log 文件,140
find命令	loginlog 文件,132,141,142
core 文件,83	ls命令
查找超过大小限制的文件,77	检查目录大小,75
旧文件/非活动文件,80,81	-1 选项(以字节表示的大小),75
fiscrptn 文件, 142	-s 选项(以块表示的大小),76
fsck 命令,101	-t 选项(最新文件),80
fstat 信息,154,156	LWP(lightweight process,轻量级进程)
	结构, 147
	进程和, 147
<i>c</i>	显示信息,154
G	已定义, 147
getty, 22	
	M
H	mdb 实用程序,226
holidays 文件,124	messages. <i>n</i> 文件,205
hostid 命令,58	messages 文件,201,208
	monacct 脚本
	runacct脚本和,121,131
I	计划运行, 122
iostat 命令	每月命令摘要和, 136,137
概述, 173	使用的文件/生成的文件, 142
基本信息显示,174	运行的 crontab 项,124
经代目心业小,17年	motd 文件,67-68
	motd 文件,68
	MOTD(message of the day,每日消息)功
K	能, 67-68,68
klwp 结构,147	,
kmdb 实用程序,231-232, 232-233	
kthread 结构,147	
	N
	nice 命令,166,167
	nice 数值,153,166
L	nlsadmin命令, 39
lastdate 文件,131,140	
lastlogin命令, 132	
lineuse文件, 请参见 /var/adm/acct/nite/lineuse	_
文件	0
localeadm命令, 54	owtmpx 文件,141

P	ptacctn. <i>MMDD</i> 文件,133
pacctn 文件	ptime命令,154
概述,120,132,140	ptree 命令,154,156
监视大小,121,131	pwait命令,154
显示, 138,139	pwdx 命令,154,156
perf文件, 196	
pfiles 命令,154,156	
pflags命令,154	
pkill 命令, 155,158	Q
pldd 命令,154	quot 命令,79
pmadm命令	quota命令,87
禁用 ttymon 服务,48	quotacheck命令,86,91
列出 ttymon 服务,46	quotaon 命令,87,91
启用 ttymon 服务,48	guotas 文件,86,88
说明, 36	·
添加 ttymon 服务,45	
pmap 命令,154	
prdaily脚本	R
runacct 脚本和,131,142	reboots 文件,132,140
概述, 131	repquota命令, 92,93-94,94
使用的文件, 140, 141	rm 命令, 81,82
线使用情况报告和,142	rprt. <i>MMDD</i> 文件, 121,142
priocntl命令	rpt. <i>MMDD</i> 文件, 132,141
- c 选项(调度类指定),165	RS-232-C, 请参见 串行端口
- i 选项(ID 类型),164,165	runacct脚本,126,131
-1 选项(调度类显示), 163	monacct 脚本和,131
-m选项(最高/最低优先级), 164	prdaily脚本和, 131,142
-p选项(优先级指定), 164	错误防护,131
-s 选项(优先级上限/更改优先级), 164,165	错误消息, 127
概述,162	概述,121
/proc 目录,154	计划运行, 122
proc 工具, 检查核心转储文件, 220	进程文件, 131
proc 结构,147,153	上次执行, 140
PROCFS(process file system,进程文件系统), 154 prtconf 命令, 58,63	失败, 127
显示系统的产品名称, 62-63	使用的文件/生成的文件, 140,142
业小永纪时 山石树, 62-63 ps 命令,153,155	修复损坏的文件, 126, 132
-c 选项(调度类), 153,167	用户费用计算和, 125, 136
- c 选项(调及关),133,167 - ecl 选项(全局优先级),163	运行的 crontab 项, 131
-ect 选项(至两亿元级),163 -ef 选项(全部信息),155	诊断文件, 131
-er 起项(主部信息),155 报告的字段,153	重新启动,127,128,131,133
概述, 153	大态, 132
psig 命令,154	·//\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
pstg 响 文,134 pstack 命令,154	
Pacack HP 4, 101	

S	T
sa1命令, 195	tacct. <i>MMDD</i> 文件,127,132,141
sa2 命令,195,196	tacct 文件,127,132,141,142
SAC, 请参见 服务访问控制器	tacctn 文件,142
sacadm 命令,44	tacctprev 文件,141
启动 ttymon 端口监视器,43	/tmp/disktacct. <i>MMDD</i> 文件,132
说明, 35	tmpwtmp 文件,132, 140, 142
添加 ttymon 端口监视器,41	tty线
中止 ttymon 端口监视器,43	故障线疑难解答,134,135
sadc 命令,195,196,197	tty线,使用情况监视,134
sadd 文件,196	tty线
SAF, 请参见 服务访问工具	使用情况监视,119,135,142
sar 命令,178,197	ttyadm 命令,38-39 ttymon 端口监视器,44
-A 选项(总体性能), 195,197	(图), 36
-a 选项(文件访问), 178,179	启动, 43
-b 选项(缓冲区),179	双向调制解调器服务和,37
-c 选项(系统调用), 181	添加, 41
-e 选项(结束时间), 197	中止,43
-f 选项(要从中提取数据的文件), 197	ttymon服务
-i 选项(时间间隔), 197	禁用, 48
-m 选项(进程间通信), 186	列出, 46
-p 选项(页入/页面错误), 187	启用,48
-q选项(队列),188,189	添加, 45
-r选项(未使用的内存),190	turnacct switch 脚本,121
-s 选项(开始时间), 197	turnacct switch 脚本,132
-u 选项(CPU 使用情况),191	
-v 选项(系统表), 192	
-y 选项(终端设备), 194	U
概述,178,197	UFS 文件系统, 显示信息, 79
列出的选项, 197	UNIX系统(故障转储信息), 222
所有选项的说明, 197	user 结构,147
shutacct 脚本,120,121	/usr/adm/messages 文件,201
shutdown 命令,121	/usr/bin/mdb 实用程序,226
Solaris 进程记帐和统计信息改进,117	/usr/proc/bin 目录,154
Spacct <i>n.MMDD</i> 文件,132,140	utmp2wtmp 命令,132
startup命令, acct,120	
statefile 文件,127,132,140	
svcadm enable system/sar:default 命令, 196	v
sys crontab, 196	V
syslog.conf文件, 208	/var/adm/acct 目录,140
syslogd 守护进程,205	/var/adm/acct/fiscal 目录,140
, <u> </u>	/var/adm/acct/nite/active 文件,127,131,140 /var/adm/acct/nite/active. <i>MMDD</i> 文件,131,140
	/vai/auiii/acct/iiite/active. <i>WIWIDD</i> 文計,131,140

/var/adm/acct/nite/cms 文件, 132 /var/adm/acct/nite/cms 文件, 140 /var/adm/acct/nite/ctacct. MMDD 文件, 132, 140 /var/adm/acct/nite/ctmp 文件, 140 /var/adm/acct/nite/davcms 文件、132、140、142 /var/adm/acct/nite/daytacct 文件,请参 见davtacct 文件 /var/adm/acct/nite 目录, 140 /var/adm/acct/nite/disktacct 文件, 121 /var/adm/acct/nite/disktacct 文件, 120, 121, 132, /var/adm/acct/nite/disktacct. MMDD 文件, 132 /var/adm/acct/nite/fd2log 文件, 127, 131, 140 /var/adm/acct/nite/lastdate 文件, 131,140 /var/adm/acct/nite/lineuse 文件,132,140,142 /var/adm/acct/nite/lock 文件, 127, 131, 140 /var/adm/acct/nite/lock1 文件, 131 /var/adm/acct/nite/log 文件, 140 /var/adm/acct/nite/log.MMDD 文件, 140 /var/adm/acct/nite/owtmpx 文件, 141 /var/adm/acct/nite/reboots 文件, 132,140 /var/adm/acct/nite/statefile 文件, 127, 132, 140 /var/adm/acct/nite/tmpwtmp 文件, 132,140,142 /var/adm/acct/nite/wtmp.*MMDD* 文件, 132,141 /var/adm/acct/nite/wtmperror文件, 140 /var/adm/acct/nite/wtmperror. MMDD 文件, 140 /var/adm/acct/sum/cms 文件, 132 /var/adm/acct/sum/cms 文件, 141,142 /var/adm/acct/sum/cmsprev 文件, 141 /var/adm/acct/sum/daycms 文件,132,141,142 /var/adm/acct/sum 目录, 121,140,141 /var/adm/acct/sum/loginlog 文件,132,141,142 /var/adm/acct/sum/rprt.*MMDD* 文件, 142 /var/adm/acct/sum/rprt*MMDD* 文件, 121 /var/adm/acct/sum/rpt.*MMDD* 文件, 132 /var/adm/acct/sum/tacct 文件, 132 /var/adm/acct/sum/tacct 文件, 127, 141, 142 /var/adm/acct/sum/tacct. MMDD 文件, 132, 141 /var/adm/acct/sum/tacct*MMDD* 文件, 127 /var/adm/acct/sum/tacctprev 文件, 127,141 /var/adm/dtmp 文件, 140 /var/adm/fee 文件, 121, 125, 132, 140 /var/adm/messages 文件, 201,208 /var/adm/messages.n文件, 205

/var/adm/sa/sa/d 文件, 196
/var/adm/Spacctn.MMDD 文件, 132,140
/var/adm 目录
控制大小,81
说明,140
原始记帐数据,120
/var/spool/cron/atjobs 目录,100,101,103
/var/spool/cron/crontabs 目录,102,103
/var/spool/cron/crontabs/root 文件,102,120
/var/spool/cron/crontabs/sys crontab,196
vfstab 文件,配额和,88
vmstat命令
报告中的字段,170
概述,170

W

Watchdog reset!消息, 205 wtmp.MMDD文件, 132,141 wtmperror.MMDD文件, 140 wtmperror文件, 140 wtmpfix命令, 126,132,140 wtmpx文件, 126 概述, 120,126,132 关闭和, 121 每日报告和, 134 修复损坏的, 126,132

安

安全性 at 命令, 112 crontab 命令, 109

保

保存故障转储信息,222

崩

崩溃、208、235

崩溃 (续)

保存故障转储信息,222 保存其他系统信息,206 检查故障转储,226 客户服务和,202,222 显示生成的系统信息,205,226 以下过程,201,235 重新引导失败,之后,229-230

编

编辑

crontab 文件, 104,105

拨

拨出调制解调器服务, 21 拨入调制解调器服务, 21

波

波特率

如何使用 eeprom 命令设置,41 如何在 ttymon 终端上设置,40-41

查

查找

并删除旧文件/非活动文件 请参见删除 超过大小限制的文件,77 大文件,76

招

超级用户 (root) 口令, 忘记 SPARC, 231 x86, 231, 232 超级用户口令, 忘记 SPARC, 231 超级用户口令,忘记(续)

x86, 231, 232

x86

基于 GRUB 的引导, 231-232

超级用户口令的安全性

Common Agent Container 共享组件 疑难解答, 238-239

程

程序

磁盘相关性, 179 强制退出运行, 235 中断, 235

初

初始化配额、87,91

串

申行端口 适配器板,21 已定义,21 申行端口工具,终端和调制解调器,22

创

创建

at作业, 113 at作业, 113 crontab文件, 104,105

磁

磁盘记帐,请参见记帐,磁盘磁盘空间

查找并删除旧文件/非活动文件,80,84 查找超过大小限制的文件,77 查找大文件,76

磁盘空间(续) 显示信息 df 命令,175	大小(续) 文件,74,75,78,79
挂载点,176 每个用户拥有的磁盘空间,79 目录大小,78,79 文件大小,74,75,78 磁盘空间的用户拥有权,79 磁盘块和文件限制,区别,86 磁盘驱动器 查找并删除旧文件/非活动文件,105 显示信息	登 登录监视 登录次数, 135 上次登录, 132,138,142 时间使用情况, 119,121,135
可用磁盘空间,175	地 地址空间映射, 154
从	
从完整的故障转储目录中恢复, 227	
错误消息 at命令, 116 crontab命令, 111 runacct 脚本, 127 崩溃消息, 206 日志文件, 201,205 优先级, 209 与崩溃相关的, 205 源, 208 指定存储位置, 205,208 自定义日志, 208	调度 另请参见crontab 命令、at 命令 一次性系统任务, 101,112 重复性系统任务, 100,101 调度类, 162 更改, 165 更改优先级, 164,166 显示信息, 153,163 优先级和, 162,164 指定, 164 调优,每日命令摘要和, 136 调制解调器, 29-30 拨出服务, 21 拨入服务, 21 不同的使用方式, 21
打 打印,用户费用计算, 125	串行端口工具调制解调器模板,27 串行端口工具概述,26 管理工具,22 双向服务,21,37 已定义,21
大	
大文件, 76	动
大小 目录, 78,79	动力循环,235

端 端口, 30-31 初始化进程, 37 已定义, 21 状态(表), 52 端口号(如何检查) Common Agent Container 共享组件 cacao, 238-239 端口号冲突 Common Agent container 共享组件 疑难解答, 238-239 端口监视器	服 服务访问工具 概述, 23,34 关联的程序(表),35 何时使用,22 说明,22 所控制的服务 状态(表),51 用于,23,34 服务访问控制器,35,36
ttymon 和 listen(已定义), 22,37-39 定义, 22 状态(表),51	辅 辅助(远程)控制台, 210
断 断电恢复, 134	根 根 crontab 文件,120
对 对用户计费, 125 另请参见 chargefee 脚本	跟 跟踪标志,154
费 费用,用户, 121,125 费用 (用户), 136 分 分时进程 更改调度参数, 164 优先级	更 更改 crontab 文件, 104 单个用户的配额, 96 调度类, 165 每日消息, 68 日期, 67 软限制时间, 95 系统的主机名, 68-69 优先级, 164, 166 分时进程, 166
范围, 162 概述, 162 更改, 164,166	工 工具 进程, 154

工具(续)

系统性能监视, 148 用于显示进程信息, 154

#

共享内存,进程虚拟内存,148

故

故障消息,205 故障转储目录,从完整目录中恢复,227

关

关闭

监视, 120, 121, 134

管

管理系统故障转储信息,使用 dumpadm, 223 管理系统资源,指南, 53

核

核心转储配置,使用 coreadm 显示,218 核心转储文件,使用 coreadm 管理,216 核心转储文件名称模式,使用 coreadm 设置,217

恢

恢复,使用匹配的命令, 237 恢复超级用户口令 SPARC, 231 x86, 231,232

活

活动文件, 131

基

基于 GRUB 的引导 SMF 引导归档文件服务失败疑难解答,200 系统崩溃 失败的 SMF 引导归档文件服务,222

技

技术支持

发送故障转储信息,202 故障转储分析,222

记

记帐、126,128,142 另请参见对用户计费 报告, 133 概述、133 每日报告(tty线使用情况), 134,135 每日命令摘要, 136,142 每日使用情况报告, 135,136 全部命令摘要(每月),137,141,142 上次登录报告,138 磁盘、119、120、121 acctdusg程序, 135 概述、118 禁用、129 进程, 119, 120, 135, 136 类型、125 连接, 119 runacct 状态和, 132 /var/adm/acct/nite/directory 和, 140 /var/adm/wtmpx, 135 每日,120,142 另请参见记帐,报告

分步概要说明, 121

设置为自动运行(如何),123

启动、124

记帐(续)	进程(续)
停止,128-129	失控,167
维护, 128	使用 proc 工具命令显示信息,154
文件, 140,142	使用 proc 工具显示信息,154
修复损坏的文件	树, 154,156
tacct 文件, 127	显示信息,153
wtmpx 文件,126,132	
用户费用计算, 120	acctcom命令,138,139
另请参见 对用户计费	LWP, 154
原始数据,120	priocntl命令, 163
7,17,4,27,4,1	ps 命令,153, 155, 163
	列出进程, 155
	列出所执行的进程, 155
检	每日使用情况报告, 135, 136
一 检查核心转储文件,使用 proc 工具, 220	停用进程, 138
	显示信息(如何), 156-157
	信号操作, 154
	疑难解答,167
禁	已打开文件的 fstat 和 fcntl 信息,154,156
禁用	已定义,147
单个用户的配额,97	
辅助控制台,使用 consadm命令, 213	应用程序线程和, 147,148
系统记帐, 129	优先级,166
禁用配额,87	调度类和,162,164
37,18,200, 0	概述,162,166
	更改, 164, 166
	更改分时进程优先级,164,166
进	全局优先级,162,163
进程	显示信息,153,163
nice 数值,153,166,167	用户模式优先级,162
proc 工具命令,154	指定,164
当前工作目录,154,156	暂时停止, 154
地址空间映射, 154	栈跟踪, 154
调度类, 162	中止,155,158
更改, 165	重新启动, 154
更改优先级, 164, 166	术语, 147, 148
显示信息,153,163	进程记帐, 119, 120, 135, 136
优先级和, 162,164	原因记录,121
指定, 164	
跟踪标志, 154	进程文件系统 (process file system, PROCFS), 154
工具命令, 154	
记帐实用程序,119,120,135,136	
结构, 147, 153	客
控制, 157-158	客户服务,发送故障转储信息, 202
库链接到, 154	台厂加劳, 从处以PP 控制后息, 202

每月任务(使用 crontab 调度), 101 控 控制 每周仟条(使用 crontab 调度), 101 对 at 命令的访问、100,112,116 对 crontab 命令的访问, 109,110 概述、100 进程, 157-158 命令,监视使用情况、140 控制台 辅助 在系统重新引导期间启用、212-213 控制台终端,如何设置波特率,40-41 目 控制台终端波特率,使用 eeprom 命令设置, 41 目录 大小, 78,79 进程的当前工作目录, 154 临时,清除,80,82 显示信息、74,75,78,79 口令安全性冲突,超级用户,Common Agent Container, 238-239 内 内存 连 共享 连接记帐,请参见记帐,连接 进程虚拟内存、148 内存结构和、147 显示信息的示例,63 列 虚拟 进程, 148 列出 用于显示信息的命令,58 进程、155 内核线程 所执行的进程、155 调度和, 153 文件和目录、74,75,80 结构、147、153 临 配. 临时目录,80,82 配额, 93-94,95 初始化, 87,91 多个用户的样例、90 每 概述, 85 更改、94 每进程核心转储文件路径,使用 coreadm 设置, 216 每日记帐,请参见记帐,每日 更改软限制缺省值,95 每日任务(使用 crontab 调度), 100 检查,92 每日消息 (message of the day, MOTD) 功能, 67-68, 检查超过的,92-93 检查超过的用户配额,93 68 每月命令摘要、137 检查文件系统、94

配额(续) 全局优先级 (续) 命令、92 已定义、162 启用、86 启用、示例、91 启用和禁用、87 缺 软限制时间 更改,95 缺省值 nice数值、166 删除、94 每日消息、68 设置、86 设置软限制, 85-86 配额、95 软限制时间、95 设置硬限制, 85-86 使用,85-86 为单个用户更改、96 为单个用户禁用、97 \Box 显示、92-93 日志文件,自动删除,105 显示信息、92 验证, 86,92,96 要求、87 一致性检查、91 软 用户 软件包、安装疑难解答、273 检查超过的,93 软限制时间,更改,95 设置、90 为单个用户更改、96 删 删除 启 at 作业、115 启用 core 文件、83 辅助控制台、使用 consadm 命令、212 crontab 文件, 107,108 辅助控制台,在系统重新引导期间,212-213 查找并删除旧文件/非活动文件,80 启用配额、87 旧文件/非活动文件、101 启用配额,示例,91 临时文件,82 日志文件、105 强 强制程序退出,235 上 上次登录报告, 138 全 全部命令摘要, 137,141 设 全局核心转储文件路径,使用 coreadm 设置, 216

全局优先级 显示、163 设置,核心转储文件名称模式,使用 coreadm, 218

设置终端和调制解调器、任务图、25-26

失

失败,基于 x86 的系统重新引导,SMF 引导归档文件服务,200 失败的 SMF 引导归档文件服务,基于 GRUB 的引导的疑难解答,222 失控进程,167

实

实时进程,更改类,165

时

时间

CPU 使用情况, 135, 153, 167 累积大量 CPU 时间的进程, 167

使

使用 SAF 管理串行端口,任务图,34 使用配额,85-86

适

适配器板(串行端口),21

双

双向调制解调器服务, 21,37

搜

搜索路径,用于设置的文件,242

停

停止

进程,暂时,154

停止(续)

系统记帐, 128-129

退

退出,强制程序退出,235

XX

网络,识别访问问题,244

忘

忘记超级用户口令 SPARC, 231 x86, 231,232 x86 为恢复而引导故障安全归档文件, 231-232

文

文件

fstat 和 fcntl 信息显示, 154, 156 查找超过大小限制的文件, 77 大小, 74, 75, 78, 79 记帐, 140, 142 检查访问操作, 178, 179 删除

请参见删除

挂载点、176

使用情况监视, 119,120,135 显示大小, 75 显示信息 大小, 74,75,78,79 列出, 74,75 修复损坏的 wtmpx 文件, 132 用于设置搜索路径, 242 文件或组的拥有权,解决文件访问问题, 243 文件系统 磁盘空间使用情况, 175

系统管理指南:高级管理 • 2008年4月

文件系统 (续)	显示 (续)
恢复, 125, 136	pacctn 文件,138,139
	崩溃信息, 205
	调度类信息,153,163
_	故障转储信息,226
系	核心转储配置,使用 coreadm,218
系统崩溃疑难解答	进程信息(如何), 156-157
GRUB	链接库, 154
引导归档文件服务在重新引导时失败, 222	目录信息, 74,75,78
系统的产品名称,使用 prtconf 命令显示, 62-63	配额, 92-93
系统故障转储信息,使用 dumpadm 管理,223	配额信息, 86,92,93
系统活动	日期和时间,63
跟踪活动的列表, 148	文件大小,75
手动收集数据,197	文件系统信息,79
自动收集数据, 195, 196	文件信息
系统记帐,任务图, 122	列出最新,80
系统任务	使用 du 命令, 78
另请参见crontab 命令、at 命令	文件大小, 74,76
调度	系统的已安装内存,63
一次性任务,101,112	系统活动信息, 178, 197
重复性任务, 100,101	系统信息
自动调度, 100	命令, 58,63
系统消息	引导消息, 206
指定存储位置,205	优先级信息, 153,163
自定义日志(如何),209-210	主机 ID, 62
系统消息日志(自定义),208	显示产品名称信息, prtconf 命令, 62-63
系统资源	显示系统的物理处理器类型, psrinfo -p, 63-64
概述, 146	
记帐	
概述, 118	
监视, 113	线
崩溃, 208, 235	线路规程, 36
记帐, 128	线使用情况
记帐系统, 142	/var/adm/acct/nite/lineuse文件,142
配额, 94	连接记帐和, 119
自动, 113	每日报告和,134
	线使用情况监视,135
_	
显	
显示	新
acct.h 格式文件,138,139	新增功能
at 作业,114	CPU 性能计数器,145-146
crontab 文件,106	svcadm enable system/sar:default 命令, 196
LWP信息, 154	增强的 pfiles 工具,145

性 引 引导 性能 显示生成的消息, 206 报告, 178 跟踪的活动、148 运行 sadc 命令、196 引导归档文件, SMF 服务在重新引导时失败, 200 监视工具、148 引导归档文件服务失败 进程管理, 147, 155, 166 x86 手动收集活动数据、178,197 GRUB 疑难解答, 234 文件访问、178、179 引导归档文件服务失败时应执行的操作 系统活动监视、148,178,195 x86 自动收集活动数据, 195,196 引导故障安全归档文件,234 修 应 修复、126 应用程序线程、147、148 损坏的 tacct 文件、127 损坏的 wtmpx 文件, 126 修改消息优先级(对于sysload)、209 用 用户登录 登录次数, 135 验 上次登录监视、132、138、142 验证 时间监视、119、132、135 配额、92、96 用户费用, 120,121,136 另请参见对用户计费 用户讲程 CPU 使用情况、135 要 更改优先级、166 要求,配额,87 优先级、162 用户模式优先级、162 用户配额、92-93 疑 设置、90 为单个用户更改,96 疑难解答 为单个用户禁用、97 Common Agent Container, 199-200 Common Agent container 共享组件 问题类型, 238-239 tty线, 134,135 优 进程、167 优先级 (进程) 软件包安装/删除,273 调度类和、164 疑难解答任务,参考信息,201 概述、162、166 更改, 164, 166

分时进程、164、166

优先级(进程)**(续)** 全局 显示, 163 已定义, 162 显示信息, 153,163 用户模式优先级, 162 指定, 164

原

原因记录,进程记帐,121

远

远程打印,用户费用计算,125

在

在 ttymon 控制台终端上设置波特率, 如何, 40-41

针

针对 SMF 引导归档文件服务失败的疑难解答 x86 GRUB 故障安全归档文件,234

识

识别网络访问问题, 244 识别芯片多线程功能的 psrinfo 命令选项, psrinfo -p, 54

中

中断程序, 235 中止进程, 155, 158

终

终端, 28-29 申行端口工具概述, 26 申行端口工具中各项的说明, 26 故障线疑难解答, 134,135 管理工具, 22 进程控制, 153 类型之间的区别, 21 线使用情况 /var/adm/acct/nite/lineuse文件, 142 连接记帐和, 119 每日报告和, 134,135 已定义, 21 字母数字, 21

重

重复性系统任务, 109 重新启动 runacct 脚本, 127, 128, 131, 133 进程, 154 重新引导 崩溃后失败, 229-230 和 /var/adm/wtmpx 文件, 120 连接记帐和, 119 每日报告和, 134 重新引导基于 x86 的系统, 引导归档文件 SMF 服务 失败, 200

主

主机名,更改,68-69

状

状态, (runacct 脚本), 132

字

字母数字终端,请参见终端

自

自定义 系统消息日志,208 系统消息日志(如何),209-210 自动报告系统活动,195,196 自动启用配额,86 自动收集系统活动数据,195,196 自动执行例程任务(概述),100 自动执行系统任务,100 单个任务,112,113,116 重复性任务,109,110

最

最大值 nice 数值, 166 查找超过最大大小的文件, 77 最小值, nice 数值, 166