Covariance and Contravariance in Scala

Michael Peyton Jones

michaelpj@gmail.com
 @mpeytonjones
www.termsandtruthconditions.com

Section 1

Introduction

The WTF

```
What is going on here?
sealed abstract class List[+A] {
    def head : A
    def ::[B >: A](x : B) : List[B] = ...
}
"Covariant" type parameter. "Contravariant". "Covariant position". Gibberish.
```

A little bit of category theory

Oh God, category theory.

Section 2

Category Theory

Categories recap

Definition

- ► Objects
- ► Morphisms
- ▶ Composition
 - ► Associative
 - Identity

Examples:

- ► Sets and functions
- ► Types and functions
- ▶ Monoids

The category of types

Category of types.

- ► Objects = types
- ► Morphisms = functions
- ► Composition = composition

Functors

Definition

Functor: $F: \mathbf{C} \to \mathbf{D}$

- \triangleright F(C) is an object in **D**
- ▶ $F(f): F(C) \rightarrow F(D)$ is a morphism in **D**
- $ightharpoonup F(id_C) = id_{F(C)}$
- $ightharpoonup F(f \circ g) = F(f) \circ F(g)$

Functors

Type Constructors

(Some) type constructors are functors on the category of types.

- ► e.g. List
- ▶ map(f) instead of List(f).

Type Constructors

(Some) type constructors are functors on the category of types.

- ► e.g. List
- ▶ map(f) instead of List(f).

Contravariance

Switches the arrows:

- ▶ $f: A \to B$ goes to $F(f): FB \to FA$ instead of $F(f): FA \to FB$.
- ► Contravariant functors.
- ► Covariance is the opposite, i.e. normal.

Contravariance

Switches the arrows:

- ▶ $f: A \rightarrow B$ goes to $F(f): FB \rightarrow FA$ instead of $F(f): FA \rightarrow FB$.
- ► Contravariant functors.
- ► Covariance is the opposite, i.e. normal.

Section 3

Subtyping

Subtyping

Subtyping: class hierarchy.

- "A < B iff A is a subtype of B" is a partial order.
- Which we can look at as a category.
 - ► Objects = types
 - ► Morphisms = the existence of a relationship
 - ► Composition = the relation is transitive

e.g. Sets with inclusion

Type constructors again

Type constructors are still (maybe) functors

Mapped "function" is the subtyping relationship on the new objects.

Type constructors again

Type constructors are still (maybe) functors

- Mapped "function" is the subtyping relationship on the new objects.
- ► Might go one way, or the other, or none.
 - ► List is covariant, so Child < Parent implies List[Child] < List[Parent]
- ► Covariant, contravariant, invariant.

Section 4

Scala

Type annotations

Scala type annotations for variance:

- ► + for covariant
- ► for contravariant
- ► nothing for invariant (default)

Type annotations

Scala type annotations for variance:

- ► + for covariant
- ► for contravariant
- nothing for invariant (default)

So

- ► Foo[+A] means Foo[Child] < Foo[Parent]
- ▶ Bar[-A] means Bar[Child] > Bar[Parent]
- ► Sock[A] means no relationship.

Example

```
class GParent
class Parent extends GParent
class Child extends Parent
class Box[+A]
class Box2[-A]
def foo(x : Box[Parent]) : Box[Parent] = identity(x)
def bar(x : Box2[Parent]) : Box2[Parent] = identity(x)
foo(new Box[Child]) // success
foo(new Box[GParent]) // type error
bar(new Box2[Child]) // type error
bar(new Box2[GParent]) // success
```

But...

```
... what about the really cryptic errors?

class Box[+A] {
    def set(x : A) : Box[A]
}
```

// won't compile

... what about the really cryptic errors?

```
class Box[+A] {
    def set(x : A) : Box[A]
}
// won't compile
```

It's all about functions (and methods).

Functions

The function trait:

```
trait Function1[-T1, +R] {
    def apply(t : T1) : R
...
}
```

Functions

The function trait:

```
trait Function1[-T1, +R] {
    def apply(t : T1) : R
...
}
```

Weird, huh? We get:

Function1[GParent, Child] < Function1[Parent, Parent]</pre>

Why are functions like that?

Why are functions like that?

► What are the subtypes of Function1[A, B]?

Why are functions like that?

- ▶ What are the subtypes of Function1[A, B]?
- ► Say f: Function1[A, B], what can we substitute for f?

Why are functions like that?

- ▶ What are the subtypes of Function1[A, B]?
- ► Say f: Function1[A, B], what can we substitute for f?
 - ► Needs to accept a *less* specialized type as input.
 - ► Can only return a *more* specialized type.

Section 5

Function Functors

Back to Category Theory

Setup:

- For any category C we can have the category of the Hom-sets of C, Hom.
 - ▶ Objects = Hom-sets (sets of functions between objects in C
 - ► Morphisms = higher-order functions
 - ► Composition = composition

Back to Category Theory

Setup:

- For any category C we can have the category of the Hom-sets of C, Hom.
 - ▶ Objects = Hom-sets (sets of functions between objects in C
 - ► Morphisms = higher-order functions
 - ► Composition = composition
- ▶ Hom-functor $Hom(-,-): \mathbf{C} \times \mathbf{C} \to \mathbf{Hom}$, corresponding to the type constructor Function1[-, -].

Back to Category Theory

Setup:

- For any category C we can have the category of the Hom-sets of C, Hom.
 - ▶ Objects = Hom-sets (sets of functions between objects in C
 - ► Morphisms = higher-order functions
 - ► Composition = composition
- ▶ Hom-functor $Hom(-,-): \mathbf{C} \times \mathbf{C} \to \mathbf{Hom}$, corresponding to the type constructor Function1[-, -].
- ▶ Claim: Hom(-, -) is contravariant in the first parameter and covariant in the second.
- ► Actually a bifunctor, let's partially apply.

On the one hand...

Looking at Hom(A, -).

- ▶ Takes an object B to the set of functions $A \rightarrow B$.
- ▶ On functions: given $f: B \to B'$, need a function $Hom(A, f): Hom(A, B) \to Hom(A, B')$
- ► $Hom(A, f)(g) = f \circ g$ is the only thing that really works.
- ► So it's covariant.

Looking at Hom(A, -).

- ▶ Takes an object B to the set of functions $A \rightarrow B$.
- ▶ On functions: given $f: B \to B'$, need a function $Hom(A, f): Hom(A, B) \to Hom(A, B')$
- ► $Hom(A, f)(g) = f \circ g$ is the only thing that really works.
- ► So it's covariant.

Looking at Hom(-, B).

- ► Can't really make it covariant.
- ► $Hom(f, B)(g) = g \circ f$ works, though.
- ▶ So it's really contravariant, as g needs to be in Hom(A', B) rather than Hom(A, B).

... on the other hand.

Looking at Hom(-, B).

- Can't really make it covariant.
- ► $Hom(f, B)(g) = g \circ f$ works, though.
- ▶ So it's really contravariant, as g needs to be in Hom(A', B) rather than Hom(A, B).

So we've really got a more general result that applies in any category!

Section 6

Back to Earth

- ► They do!
- ▶ It's not visible in the type system, but it is enforced.

- ► They do!
- ▶ It's not visible in the type system, but it is enforced.
- ► Hence the error, otherwise:
 - ► replace an instance of Box[A] with Box[B]
 - ▶ so replacing an instance of Box[A].set(x) with Box[B].set(x), where x:B.
 - can't do this: set has to be contravariant in input!

- ► They do!
- ▶ It's not visible in the type system, but it is enforced.
- ► Hence the error, otherwise:
 - ► replace an instance of Box[A] with Box[B]
 - ▶ so replacing an instance of Box[A].set(x) with Box[B].set(x), where x:B.
 - can't do this: set has to be contravariant in input!
- ► Likewise if we'd declared A to be contravariant, problems with the return type of set.
- ► So A has to be invariant.

Java has covariant arrays: BAD.

```
Integer[] ints = [1,2]
Object[] objs = ints
objs[0] = "I'm an integer!"
```

Compiles, but throws ArrayStoreException at runtime.

Alternatives

We don't have to make things invariant: we have type bounds:

```
class BoundedBox[+A] {
    set[B >: A](x : B) : Box[B]
}
```

Bound ensures that the variance requirements are satisfied.

Why bother?

Variance is useful!

- ► Container types usually want to be covariant.
 - ► So you can substitute in containers full of subtypes!
 - ► e.g. List, Stream, etc.
- Types which have an "input" type of some kind usually want to be contravariant.
 - Often this is because there is a function under the hood somewhere

Summary

- ► Type constructors may preserve or reverse the subtyping relationship on their input types.
- ► This is specified by variance annotations.
- Functions have weird variance.
- Methods are (morally) functions!
- Everything is a method!
- ▶ Problems? Might need a type bound somewhere.