Capabilities of Human Beings

Sameer Kharel

(Chapter 2: McCracken and Wolfe – Capabilities of Human Beings)

Overview

In this lecture you will learn about:

- Human senses, perception, memory
- Mental models, metaphors
- Some design guidelines based on these topics

Definitions

- Cognitive psychology: the study of how people perceive, learn, and remember
- Cognition: the act or process of knowing
- The issue: confronted with a new experience (or website) how does a user draw on past experience to make sense of it?
- Example: underlined blue text is understood to be a link

Why do we care?

- Because when people try to understand something, they use a combination of
 - What their senses are telling them
 - The past experience they bring to the situation
 - Their expectations

Senses

- Senses (sight, hearing, smell, taste, touch)
 provide data about what is happening around
 us
- We are visual beings ("See what I mean?")
- Designing good Web materials requires knowledge about how people perceive

Sameer Kharel

Four stage model of information processing

- Encoding information from environment into some internal representation
- Comparison internal representation with previous memorised representations
- Selection decision on appropriate response to encoded stimulus
- Execution organisation of response into action

Sensory Memory and Perception

- Separate memory buffers associated with encoding stage
 - iconic memory stores visual images (persists approx 0.2 seconds)
 - echoic memory stores auditory images (persists approx 2.0 seconds)
- Conscious data transfer rate is slow
 - (reading rate in range of 300 words/minute)
- Subconscious transfer much faster

Example: familiar objects that we see, but don't store in detail

- How many links are there on top menu of amazon.com?
- Who cares?
- Moral: People filter out irrelevant factors and save only the important ones
- What are the current news item on the KU Website
- Moral: just because the information is there, doesn't mean people attend to it

Context

- Context plays a major role in what people see in an image
- Mind set: factors that we know and bring to a situation
- Mind set can have a profound effect on the usability of a web site

Example of context: What do you see?

Sameer Kharel

Why couldn't you see the cow's face at first?

- It's blurry and too contrasty, of course, but more:
- You had no idea what to expect, because there was no context
- Now that you do have a context, you will have little difficulty recognizing it the next time

Example of context: What do you see?

Sameer Kharel

Another example of context: are these letters the same?

Well, yes, but now in context:

tep ace

Figure and ground: What do you see?

Gestalt psychology

- "Gestalt" is German for "shape," but as the term is used in psychology it implies the idea of perception in context
- We don't see things in isolation, but as parts of a whole

Four Gestalt Psychology Principle

1. Proximity

2. Similarity

3. Common Fate

4. Closure

Principle 1: Proximity

- Our eyes/brain logically group together visual elements that are "proximate" (close) to one another.
- Given the following image, do you see
 - Six squares?
 - Three groups of two squares?

More will answer "Three groups of two squares"

Proximity Example

- Items close together appear to have a relationship
- Distance implies no relationship

Time:		

Time:

Proximity

Proximity to Create Structure

Name Addr1 Addr2 City	Name Addr1 Addr2 City State	Name Addr1 Addr2 City
State Phone Fax	Phone Fax	State Phone Fax

Principle 2: Similarity

- Our eyes/brain logically group together visual elements that are similar to one another.
- Given the following image, do you see
 - Six circles
 - Three groups of two circles

More will answer "Three groups of two circles"

Similarity Example

- Given the following image, do you see
 - Six letter 'A's?
 - Three groups of two 'A's?

AAAAAA

More will answer "Three groups of two 'A's"

Similarity

Principle 3: Common Fate

- Our eyes/brain associate elements that are similar to one another (not same as similarity for grouping).
- What associations do you see here?

Lines are not vertically aligned

- => do not have common fate
- => do not seem grouped together

Lines are vertically aligned

- => do have common fate
- => do seem grouped together

Grids Provide Structure Using Common Fate

- Grids are (hidden) horizontal and vertical lines
 - They help place graphic elements
- Alignment to same grid line creates logical grouping
 - Common fate
- Grids avoid disconcerting irregularities
 - That attract the eye

Grids Provide Structure Using Common Fate

- Grids are (hidden) horizontal and vertical lines
 - They help place graphic elements
- Alignment to same grid line creates logical grouping
 - Common fate
- Grids avoid disconcerting irregularities
 - That attract the eye

Grid Example

Principle 4: Closure

- Our eyes/brain logically group together visual elements that approximate a closed shape, to form that closed shape
- Given the following image, do you see
 - Twelve dots?
 - A circle?

More will answer "A circle"

Closure Example

- Given the following image, do you see
 - Eleven dots?
 - A circle?

More will answer "A circle" - despite the missing dot

Closure Example – Each Palette Has Progressively Less Closure - and Works

Contd...

LOOK IN IDE

This example likely requires too much effort to allow closure to occur and the message may be lost.

LOOK INSIDE

This example makes it easy for closure to occur. Therefore the message is clear.

Combining Gestalt Principles

- Several Principles can be combined
 - Proximity reinforces similarity

- Proximity reinforces closure[]
- Proximity opposes closureI I

Use Visual Structure to Reinforce Logical Structure

Proximity reinforces alphabetization

ATE	GET
BAT	GOT
BIT	HAT
CAT	HIT
DOG	HOT
EAT	LAP
FAR	MAP
FAT	PAT

ATE BAT BIT CAT DOG EAT

FAR FAT GET GOT HAT HIT

HOT LAP MAP PAT

Combining Principles – Web Example

Grouping: Poor Dialogue Box Design

Logical structure hard to understand – proximity problem

Which is the Logical Structure?

Combine Similarity + Common Fate => Stronger Typographical Hierarchy

This is a level 1 heading

This is a level 2 heading

This is another level 2 heading

This is a level 3 heading

Yet another level 3 heading

Back up to level 2

Down to level 3

Still at level 3

Back to level 1

Bad

- No gridding
- Inconsistent use of visual cues for grouping
- Inconsistent space between label and data

Sameer Kharel

A Well-Designed Dialogue Box

Strong grid structure (common fate)

Another Well-Designed Dialogue Box

Memory

Hierarchical Model

"The Magic Number 7, Plus or Minus 2"

- 'chunk' meaningful item of information
- We can hold 7 + or 2 'chunks' of information in short term memory
- What constitutes a chunk varies by individual (and their level of expertise) and context
- Think of looking up a phone number, closing the phone and then dialling
 - 009468484950 vs 009 46 8 484950
 - 132781243 vs 1 3 27 81 243

Recognition vs. recall

- Why is a multiple choice test easier than an essay test?
 - Multiple choice: you can recognize the answer
 - Essay: you must recall the answer
- A computer with a GUI allows us to recognize commands on a menu, instead of remembering them as in DOS and UNIX

Design Implications

- support user by reducing demands on working memory
- do not require user to remember temporary operating states and labels
- help the user remember how far the task they have progressed
- help the user remember what the system expects them to do next
- leads to the important principle of visibility of current state and feedback about current action

Data entered to define a query...

...reproduced on next page

Sameer Kharel

Mental Models

- How do people use knowledge to understand or make predictions about new situations?
- People build mental models
- Think of how many windows there are in the house or flat you currently live in
- How do you arrive at the answer?
- Is the answer a fact about your house you have previously learnt?

Metaphors

- Way to relate a difficult or more abstract concept to a familiar one
 - -Open file

-Save file

In the shop...

Look in the basket....

Sameer Kharel

Metaphors have problems

- Disadvantage: metaphor may not be widely known or correctly understood
- The mailbox icon meant nothing outside rural United States until explained. And it's backwards: we put the flag up to tell the mailman that we have put mail in the box to be picked up.

Design Guidelines for the Web

- Lessen burden on user's memory:
 - Use recognition instead of recall
 - Help users chunk information
 - Require as little short-term memory as possible
- Consider user's mental models
- Provide visual clues and memory aids
- Provide feedback: let users know their input was received

THANK YOU!!!