Université A/Mira de Béjaia Département d'Informatique  $2^e$  année Licence Académique (2016/2017).

## Examen de Théorie des Graphes Durée 2h00

Date: 18/06/2017

Exercice 1. (08 pts)

(A) On considère le graphe G' = (X', U') suivant :



- 1. Le graphe G' est-il connexe? Justifier.
- 2. Déterminer le degré de chaque sommet du graphe G'.
- 3. G' possède-t-il une chaîne Eulerienne? Justifier.
- 4. Déterminer un encadrement du nombre chromatique  $\gamma(G')$  du graphe G'.
- 5. Déterminer  $\gamma(G')$ .
- (B) Voici le plan d'un musée :



Les petits rectangles noirs matérialisent les portes. Les visiteurs partent de l'accueil, visitent le musée et doivent terminer la visite à la boutique.

- 1. Représenter la situation par un graphe.
- 2. Pourquoi est-il possible de trouver un parcours où les visiteurs passent une et une seule fois par toutes les portes?
- 3. Donner un exemple d'un tel parcours.
- 4. Comment colorier les salles y compris l'accueil et la boutique, en utilisant un minimum de couleurs, pour que deux salles qui communiquent par une porte aient des couleurs différentes?

**Exercice 2.** (09 pts) Soit le réseau R = (X, U, d) suivant :



- 1. Donner la matrice d'adjacence du graphe G = (X, U).
- 2. Le graphe  ${\cal G}$  admet-il un circuit ? si non, donner sa mise à niveau.
- 3. Déterminer son noyau s'il existe.
- 4. En utilisant l'algorithme le mieux approprié (justifier votre choix), déterminer dans le réseau R un plus court chemin entre les sommets 1 et 7 du graphe.
- 5. Considérons le réseau R sans orientation des arcs. Déterminer un arbre couvrant de poids minimum du graphe obtenu.
- 6. Comparer les deux solutions obtenues en 4. et 5. Que peut-on conclure?

**Exercice 3.** (03 pts) Montrer que si  $G = (X \cup Y, U)$  est un graphe biparti k-régulier, alors |X| = |Y|.

\* Afud igerrzen \* Bon courage \*