Unit 11 利用中规模芯片设计 时序逻辑电路

■ 计数器芯片

■寄存器芯片

计数器芯片

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192(双时钟),74LS190(单时钟)
- 、□ 同步4位二进制加/减计数器: 74LS193 (双时钟),74LS191(单时钟)

置数功能

时钟边沿到来时,且置数使能信号有效,向计数器装入用户指定的初始值

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

清零只需要1个条件:清零端给有效信号立即回零。

清零需要2个条件同时 具备:清零端给有效 信号+时钟边沿到来

异步清零只需要1

个条件: 清零端给

有效信号立即回零

设计M进制计数器:

需要M+1个状态

1010

例1: 利用74LS161设计模10 计数器

① 清零法——利用清零端

1010只在极短的瞬态出现,不包括在稳定的循环中

例2: 利用74LS163 设计模10 计数器

① 清零法——利用清零端

同步清零需要2个条件 同时具备:清零端给有 效信号+时钟边沿到来

设计M进制计数器: 需要M个状态

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

74LS163/162功能表

		输入		新	計出			
СР	CLRN	LDN	ENT	ENP	\mathbf{Q}_{D}	Q _C	Q_B	Q_A
• 1	0	X	Х	Х	0	0	0	0
†	1	0	X	X	D	С	В	Α
X	1	1	0	X		仔	禄持	
X	1	1	X	0		仔	禄持	
<u> </u>	1	1	1	1	计	数, 计》	满时RC	O=1

注意:同步清零和异步 清零在设计中的不同

74LS161/160功能表

	输入						出	
СР	CLRN	LDN	ENT	ENP	Q_D	Q _C	Q _B	Q_A
Х	0	Х	Х	Х	0	0	0	0
†	1	0	1	0	D	С	В	Α
X	1	1	0	X		仴	禄	
X	1	1	Х	0	保持			
↑	1	1	1	1	计数	仗, 计 滞	睛时 R(CO=1

74LS163/162功能表

	输入						出	
СР	CLRN	LDN	ENT	ENP	Q_D	Q _C	Q _B	Q _A
†	0	Х	Χ	Х	0	0	0	0
†	1	0	1	0	D	С	В	Α
X	1	1	0	X		伢	禄	
X	1	1	Х	0	保持			
1	1	1	1	1	计数		睛时 R(CO=1

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

例3: 利用74LS161(或74LS163) 设计模10计数器

② 置数法——利用置数端

设计M进制计数器:需要M个状态

设计M进制计数器总结

异步清零

设计M进制计数器: 需要M+1个状态

有毛刺

① 清零法

同步清零

设计M进制计数器: 需要M个状态

没有毛刺

② 置数法

设计M进制计数器: 需要M个状态

没有毛刺

□ 计数器的级联——利用进位信号

(2) 异步串行进位连接方式

□ 计数器的应用——节拍发生器

例:利用74LS163设计实现一个8节拍发生器

芯片型号	计数进制	输出特点	置数方式	清零方式
74LS160	十进制	8421BCD码	同步	异步
74LS161	十六进制	4位二进制码	同步	异步
74LS162	十进制	8421BCD码	同步	同步
74LS163	十六进制	4位二进制码	同步	同步

计数器芯片

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192(双时钟),74LS190(单时钟)

0

、□ 同步4位二进制加/减计数器: 74LS193 (双时钟),74LS191 (单时钟)

 CPA
 模2计数

 CPB
 QB

 QCPB
 QC

 QB
 QC

异步清零

74LS90/290功能表

	1	输入				辅	出	
СР	R ₀ (1)	R ₀ (2)	S ₉ (1)	S ₉ (2)	Q_D	Q _C	Q _B	Q _A
Х	1	1	0	Х	0	0	0	0
X	1	1	Х	0	0	0	0	0
X	Χ	X	1	1	1	0	0	1
↓	X	0	Х	0		허	数	
↓	0	X	0	X			-数	
↓	0	X	X	0		ᆟ	数	
↓	X	0	0	X		ᆟ	-数	

□ 应用——① 8421-BCD 码模10计数器

	74L390/290功能农								
	输入						出		
СР	R ₀ (1)	R ₀ (2)	S ₉ (1)	S ₉ (2)	\mathbf{Q}_{D}	Q _C	Q_B	\mathbf{Q}_{A}	
X	1	1	0	X	0	0	0	0	
X	1	1	X	0	0	0	0	0	
X	X	X	1	1	1	0	0	1	
↓	X	0	X	0		计	数		
↓	0	X	0	X		भे	-数		
↓	0	X	X	0		计	-数		
1 1	Y	Λ	0	X		++	- 迷		

7/1 900/2007 分學主

□ 应用——③ 5421-BCD 码模10计数器

□ 应用——④ 设计节拍发生器

2) 以模7计数器为输入,设计译码器

输入			译码输出						
Q_{c}	Q_B	Q_A	Y_1	Y ₂	Y_3	Y_4	Y ₅	Y_6	Y ₇
0	0	0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0
0	1	1	0	0	0	1	0	0	0
1	0	0	0	0	0	0	1	0	0
1	0	1	0	0	0	0	0	1	0
1	1	0	0	0	0	0	0	0	1

1)设计模7计数器

计数器芯片

- □ 同步十进制加法计数器: 74LS160(异步清零),74LS162(同步清零)
- □ 同步4位二进制加法计数器: 74LS161 (异步清零),74LS163 (同步清零)
- □ 异步二-五-十进制加法计数器: 74LS90 (异步清零),74LS290 (异步清零)
- □ 同步十进制加/减计数器: 74LS192(双时钟),74LS190(单时钟)
- □ 同步4位二进制加/减计数器: 74LS193 (双时钟),74LS191(单时钟)

□ 计数器的综合应用——设计可变模值计数器

利用一片4位数码比较器74LS85及一片模16 计数器芯片74LS193设计一个模10计数器。

设计思路

■ 比较器:

 $A_3 \sim A_0$: 输入计数器模值 N

 $B_3 \sim B_0$: 连接计数器当前计数输出值

■ 如果计数器当前输出值Q_DQ_CQ_BQ_A = 模值N

比较器输出端 $Y_{A=B}=1$,该信号使计数器清零

□ 计数器的应用——

4位双向移位寄存器芯片——74X194 (Serial /Parallel input, Parallel out)

74LS194功能表

	输	λ			输	出	0
CP	CR	S ₁	S ₀	Q_A	Q_B	Q _C	\mathbf{Q}_{D}
X	0	X	X	0	0	0	0
0	1	X	X		保	持	
X	1	0	0		保	持	
†	1	0	1	D_SR	\mathbf{Q}_{A}	\mathbf{Q}_{B}	\mathbf{Q}_{C}
†	1	1	0	Q _B	Q_{C}	Q_D	D _{SL}
↑	1	1	1	Α	В	С	D

S₁ S₀ 工作方式 0 0 保持 0 1 右移 1 0 左移 1 1 并入

注:寄存器只在移位方式下才从左/右移串行输入 D_{SL} 和 D_{SR} 取数据

□ 寄存器应用——

1100

0001

 $Q_{A}Q_{B}Q_{C}Q_{D}$

1000

0000

① 4-bit 扭环形计数器

0011

② 寄存器级联构造 8-bit 移位寄存器设计要点 设计要点 两块芯片同步工作

▶工作方式相同▶左移方式下,高位

▶右移方式下,低位 芯片的Q_D连接低位芯 片的D_{SR}

环形计数器 该怎样设计?

1111

0111

dcr

LD

 Q_{Δ}

 Q_{R}

 Q_{D}

74LS194 Q_C

□寄存器应用——③节日彩灯(8位扭环形计数器)

工作原理:按下清0键,8个LED都亮;然后从L0开始,每来一个CP,各LED依次熄灭;当L7熄灭后,从L0开始,每来一个CP,各LED又依次点亮;重复此规律。

S₁ S₀ 工作方式 0 0 保持 0 1 右移 1 0 左移 1 1 并入

1	2
L_0 L_1 L_2 L_3	$L_4 L_5 L_6 L_7$
0 0 0 0 1 0 0 0	0 0 0 0
1 1 0 0 1 1 1 0	0 0 0 0 0 0 0 0 0
1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1	1 1 0 0
1 1 1 1 1 1 1 1 0 1 1 1	1 1 1 0 1 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1	1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1
0 0 0 0	0 1 1 1 0 0 1 1
0 0 0 0	0 0 0 1

凑齐7位

并行数据

□ 寄存器应用—— ④ 7位串/并行转换器

工作分析

- 1.CR=0,寄存器清零,F₇F₆F₅F₄F₃F₂F₁F₀= 00000000
- 2. ∵F₇ = 0, ∴ S₁S₀ = 11, LD=0,是并行输入方式
- 3. CP↑,并行输入,即 F₇F₆F₅F₄F₃F₂F₁F₀=1111110D₆

CP↑,左移,即 F₇F₆F₅F₄F₃F₂F₁F₀=111110D₆D₅

CP↑, 左移,即 F₇F₆F₅F₄F₃F₂F₁F₀=111110D₆D₅D₄ 反向后, S₀=1,S₁S₀

=11,下一刻并入

4. 返回步骤2

□ 寄存器应用—— ④ 串/并行转换器

工作原理

System A: 并行数据(例如8位)并行输入到寄存器中,通过并行→串行的转换(例如,可以使寄存器工作在单向右移方式下),传送到System B。

System B: 收到串行输入的数据,先进串行→并行的转换(上例),然后将并行输出的数据存放到寄存器中(可以使寄存器的并行输入工作式下)

回顾:利用JK触发器设计一个同步二进制串行加法器

方案2: 用一位全加器+D触发器实现

扩展——

能否用中规模芯片74194设计 一个n位同步二进制串行加法器,并能存放计算结果呢?

扩展: 利用74LS194设计一个n位同步二进制串行加法器

序列信号发生器:能循环产生一组特定的串行数字序列信号的电路。

序列的长度:序列信号的位数。如:序列为00011,则序列长度为5。

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器 + 反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

例:用D触发器设计一个 110100 序列信号发生器

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

大体思路:

- 1. 实现序列信号一个 周期之内的波形
- 2. 将此波形循环再现

1. 画状态转换图

时序电路的不同 状态对应输出序 列中的各位。

2. 状态编码

$$S_0 \longrightarrow 000$$
, $S_3 \longrightarrow 011$
 $S_1 \longrightarrow 001$, $S_4 \longrightarrow 100$
 $S_2 \longrightarrow 010$, $S_5 \longrightarrow 101$

4.卡诺图化简

Q_1	Q_0			
Q_2	00	01	11	10
0	0	0	1	0
1	1	0	X	X

3. 状态转换真值

$Q_2Q_1Q_0$	Q_2^{n+1}	Q_1^{n-1}	Q_0^{n+1}	Υ
0 0 0	0	0	1	1
0 0 1	0	1	0	1
0 1 0	0	1	1	0
0 1 1	1	0	0	1
1 0 0	1	0	1	0
1 0 1	0	0	0	0

$$D_0 = Q_0'$$

$$D_1 = Q_2'Q_1'Q_0 + Q_1Q_0'$$

$$Y=Q_2'Q_1'+Q_1Q_0$$

 $D_2 = Q_2 Q_0' + Q_1 Q_0$

- 5. 电路实现(略)
- 6. 检查无关项

方法1: 利用D触发器

- □ 序列信号长度为 L,则取 L个不同的状态
- □ 每个状态下时序电路的输 出就是序列信号中的一位。

例:设计一个 110100 序列信号发生器

方法2: 利用计数器+数据选择器

Ħ

1. 实现序列信号一个 用期之内的波形

2. 循环再现

计数器+数据选择器 设计序列信号发生器的方法

- □ 数据选择器74151的输入 D₀-D₅接成110100。
- □ 74163接成模6加法计数器
- □ 计数器输出连接到数据选择 器的选择控制端CBA,经 过循环选择产生所需序列。

例:设计一个00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

例:设计一个00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)

具体方法

□确定移位寄存器的位数。

序列信号长度为L,则移位寄存器的位数n应满足:

$2^n \ge L$

试探法: n 为满足条件的最小值,将序列数据循环左移, 画状态图。检查状态图中所有 L 个状态是否两两不 同,是,则n 值可用;否则取n+1,重复上述操作。

- □ 画状态转换表,确定左移时最低位输入的卡诺图,求出 表达式。如果有无关项,检察电路的自启动能力
- □ 实现最低位反馈输入(逻辑门 or 译码器 or 数据选择器)
- □ 取移位寄存器的某位输出即为所要求的序列信号。

1. 确定移位寄存器位数

序列长度L=8,则n=3

2. 状态转换图

用74194的低3位 $Q_BQ_CQ_D$ 输出

例:设计一个00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计

3. 状态转换真值表

 Q_1Q_0

4.卡诺图化简

例:设计一个00010111序列信号发生器

方法3: 移位寄存器+反馈电路设计

1~4. 同上

 $L_{IN} = Q_B Q_C' Q_D + Q_B' Q_C + Q_B' Q_D'$ $= \sum m (0, 2, 3, 5)$

Q_BQ_CQ_D分别接**74151**的选 择控制端CBA,则:

转换为最小 项表达式

$$D_0 = D_2 = D_3 = D_5 = 1$$
,
 $D_1 = D_4 = D_6 = D_7 = 0$

反馈电路:

数据选择器

例:设计一个00010111序列信号发生器 1~4.同上

方法3: 移位寄存器+反馈电路设计

$$L_{IN} = Q_B Q_C' Q_D + Q_B' Q_C + Q_B' Q_D'$$

 $= \sum m (0, 2, 3, 5)$

转换为最小 项表达式 Q_BQ_CQ_D分别接74138的地 址输入端CBA,则:

Y₀, Y₂, Y₃, Y₅分别被译 中时, 反馈回1,否则反馈回**0**

序列信号发生器设计方法总结

方法总结

特殊类型

- □ 使用环形计数器设计
- □ 使用扭环计数器设计

任意类型

- □ 使用D触发器设计
- □ 使用计数器 + 数据选择器设计;
- □ 用移位寄存器+反馈电路设计(逻辑门 or译码器 or数据选择器)
- □ 用计数器 + PROM设计

□ 11位密码输入 按键,其中有 按键解7位,伪 对按键4位,有 效按键可重复 使用。 □ 预设密码为

302706429

CD4017 (模10计数器): 上升沿触发

R	EN	СР	$\boxed{ \mathbf{Q}_0 \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3 \mathbf{Q}_4 \mathbf{Q}_5 \mathbf{Q}_6 \mathbf{Q}_7 \mathbf{Q}_8 \mathbf{Q}_9 }$								
初始状态 (清零后)		1	0	0	0	0	0	0	0	0	
0	0	↑	0	1	0	0	0	0	0	0	0
0	0	↑									
0	0	↑	0	0	0	0	0	0	0	0	1

初始状态下:

计数器输出端 $Q_0 \sim Q_9$ 为 1000000000

随着计数脉冲到来: 高电平 1 从 Q_0 逐次移到 Q_9

