### Mortality Modelling with R

#### Andrés M. Villegas

School of Risk and Actuarial Studies, UNSW Sydney



15 January 2020, Living to 100 Symposium Orlando, Florida

# Slides Available at:

https://github.com/amvillegas/LT100\_2020

#### **Aims**

Gain familiarity with use of the R packages **demography**, **StMoMo** and **lifecontingencies** to:

- Obtain mortality data from Human Mortality Database
- ► Fit stochastic mortality models (including Lee-Carter model)
- Compare goodness of fit of mortality models
- ► Forecast future mortality rates (deterministic and using Monte Carlo simulations)
- Compute demographic and actuarial quantities

## Agenda

- Motivation
- ► Review of mortality modelling metodologies
- Mortality modelling with R
  - Downloading mortality data with demography
  - Fitting, comparing and projecting mortality model with StMoMo
  - ► Turning mortality projections into demographic calculations with lifecontingencies
- Conclusions and Summary
- Preview of recent **StMoMo** developments (if time permits!)

# Motivation and Review of Mortality Modelling

# Recent trends in mortality and life expectancy



Source: United Nations World Population Prospects 2017

- Good-news!
- ► Important social and financial implications for governments, insurers, individuals.
- Need to model and project these trends

# Mortality forecasting methodologies

A good overview of methodologies is given in the review papers by Booth and Tickle (2008), Wong-Fupuy and Haberman (2004), Pitacco (2004) and in the by Pitacco et al. (2009)

- Expert based
- Explanatory
  - Structural Modelling (Explanatory or Econometric).
  - Cause of death decomposition
- Extrapolation
  - Trend modelling

# A timeline of "recent" mortality modelling methodologies



Time

# Advances in single population mortality modelling

- ► Lee-Carter model (Lee and Carter 1992)
  - ► Add more bilinear age-period components (Renshaw and Haberman 2003)
  - Add a cohort effect (Renshaw and Haberman 2006)
- Two factor CBD model (Cairns, Blake, and Dowd 2006)
  - ► Add cohort effect, quadratic age term (Cairns et al. 2009)
  - ► Combine with features of the Lee-Carter (Plat 2009)
- ▶ Many more models proposed in the literature (e.g. Aro and Pennanen (2011), O'Hare and Li (2012), Börger, Fleischer, and Kuksin (2013), Alai and Sherris (2014))









USA: male death rates (1940)







USA: male death rates (1950)



USA: male death rates (1955)



USA: male death rates (1960)



USA: male death rates (1965)



USA: male death rates (1970)



USA: male death rates (1975)



USA: male death rates (1980)



USA: male death rates (1985)



USA: male death rates (1990)



USA: male death rates (1995)



USA: male death rates (2000)



USA: male death rates (2005)



USA: male death rates (2010)



USA: male death rates (2015)



USA: male death rates (2017)



USA: male death rates (1933-2017)



$$\log \mu_{\mathsf{xt}} =$$

USA: male death rates (1933-2017)



$$\log \mu_{xt} = \alpha_x$$

USA: male death rates (1933-2017)



$$\log \mu_{\mathsf{x}\mathsf{t}} \quad = \quad \alpha_{\mathsf{x}} \quad + \qquad \qquad \kappa_{\mathsf{t}}$$

USA: male death rates (1933-2017)



$$\log \mu_{xt} = \alpha_x + \beta_x \kappa_t$$







#### Cairns-Blake-Dowd model

$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







#### Cairns-Blake-Dowd model

$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







#### Cairns-Blake-Dowd model

$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







$$\operatorname{logit} q_{xt} = \kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$$







### Other Stochastic Mortality Models

| Name  | Form                                                                                                     | Parameters         |
|-------|----------------------------------------------------------------------------------------------------------|--------------------|
| LC    | $\alpha_x + \beta_x^{(1)} \kappa_t^{(1)}$                                                                | $2n_a + n_y$       |
| LC2   | $\alpha_{x} + \beta_{x}^{(1)} \kappa_{t}^{(1)} + \beta_{x}^{(2)} \kappa_{t}^{(2)}$                       | $3n_a + 2n_y$      |
| RH    | $\alpha_{x} + \beta_{x}^{(1)} \kappa_{t}^{(1)} + \beta_{x}^{(0)} \gamma_{c}$                             | $3n_a + n_y + n_c$ |
| APC   | $\alpha_{x} + \kappa_{t}^{(1)} + \gamma_{c}$                                                             | $n_a + n_y + n_c$  |
| CBD   | $\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$                                                           | $2n_y$             |
| M7    | $\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + ((x - \bar{x})^2 - \sigma_x^2)\kappa_t^{(3)} + \gamma_c$ | $3n_y + n_c$       |
| sPLAT | $\alpha_{x} + \kappa_{t}^{(1)} + (\bar{x} - x)\kappa_{t}^{(2)} + \gamma_{c}$                             | $n_a + 2n_y + n_c$ |
| cPLAT | $\alpha_x + \kappa_t^{(1)} + (\bar{x} - x)\kappa_t^{(2)} + (\bar{x} - x)^+ \kappa_t^{(3)} + \gamma_c$    | $n_a + 3n_y + n_c$ |

### Generalised Age-Period-Cohort stochastic mortality models

Recent research has proposed a unifying framework discrete stochastic mortality models

- General Age-Period-Cohort model structure (Hunt and Blake 2015)
- ► Generalised (non-)linear model (Currie 2014)
- ▶ R Implementation of GAPC models (Villegas, Millossovich, and Kaishev 2018)

### Generalised Age-Period-Cohort stochastic mortality models

#### 1. Random Component:

$$D_{xt} \sim \mathsf{Poisson}(E_{xt}^c \mu_{xt})$$
 or  $D_{xt} \sim \mathsf{Binomial}(E_{xt}, q_{xt})$ 

2. Systematic Component:

$$\eta_{xt} = \alpha_x + \sum_{i=1}^N \beta_x^{(i)} \kappa_t^{(i)} + \beta_x^{(0)} \gamma_{t-x}$$

- ► Lee-Carter type  $\rightsquigarrow \beta_x^{(i)}$ , non-parametric
- ► CBD type  $\leadsto \beta_x^{(i)} \equiv f^{(i)}(x)$ , pre-specified parametric function
- 3. Link Function:

$$g\left(\mathbb{E}\left(\frac{D_{\mathsf{x}t}}{E_{\mathsf{x}t}}\right)\right) = \eta_{\mathsf{x}t}$$

- ▶ log-Poisson:  $\eta_{xt} = \log \mu_{xt}$
- ▶ logit-Binomial:  $\eta_{xt} = \text{logit } q_{xt}$

### Generalised Age-Period-Cohort stochastic mortality models

- 4. Set of parameter constraints:
  - ▶ Need parameters constraints to ensure identifiability
- 5. Forecasting and simulation
  - ▶ Period indexes: Multivariate random walk with drift

$$m{\kappa}_t = m{\delta} + m{\kappa}_{t-1} + m{\xi}_t^\kappa, \qquad m{\kappa}_t = \left(egin{array}{c} \kappa_t^{(1)} \ dots \ \kappa_t^{(N)} \end{array}
ight), \qquad m{\xi}_t^\kappa \sim m{\mathsf{N}}(m{0}, m{\Sigma}),$$

► Cohort effect: ARIMA(p, q, d) with drift

$$\Delta^{d} \gamma_{c} = \delta_{0} + \phi_{1} \Delta^{d} \gamma_{c-1} + \dots + \phi_{p} \Delta^{d} \gamma_{c-p} + \epsilon_{c} + \delta_{1} \epsilon_{c-1} + \dots + \delta_{q} \epsilon_{c-q}$$

# Mortality Modelling with R

### Mortality modelling in R

- **▶ Demography** (Hyndman 2014)
  - Download data from the Human Mortality Database
  - ► Lee-Carter model and several of its variants
- ▶ ilc (Butt, Haberman, and Shang 2014)
  - ► Lee-Carter with cohorts and Lee-Carter under a Poisson framework
- ► **Lifemetrics** (http://www.macs.hw.ac.uk/~andrewc/lifemetrics/)
  - CBD and extensions
  - Lee-Carter with cohorts and Lee-Carter under a Poisson framework
- ► StMoMo (Villegas, Millossovich, and Kaishev 2018)
  - ► Implements Generalised Age-Period-Cohort Models

### Installation of R Packages

► To install the pacakges we use:

```
install.packages("demography")
install.packages("StMoMo")
install.packages("lifecontingencies")
```

► To load within R:

```
library(demography)
library(StMoMo)
library(lifecontingencies)
```

### Downloading Data from the Human Mortality Database

- ► Human Mortality Database (http://www.mortality.org/) contains population mortality data for 39 countries under consistent data protocol and in consistent format
  - Very useful for cross-country comparisons
  - Need to register to obtain username and password
- ► Subregional versions available for:
  - USA (https://usa.mortality.org/)
  - ► Japan (http://www.ipss.go.jp/p-toukei/JMD/index-en.asp)
  - Australia (http:
    - //demography.cass.anu.edu.au/research/australian-human-mortality-database)
  - Canada (http://www.bdlc.umontreal.ca/CHMD/)
- ▶ For this example, we will use male USA data from 1950 to 2014

### Australian Data from Human Mortality Database

#### USdata

```
## Mortality data for AUS
## Series: female male total
## Years: 1921 - 2016
## Ages: 0 - 110
```

### USA Data from Human Mortality Database

#### USA: male death rates (1933-2017)



### USA Data from Human Mortality Database

#### USA: male death rates (1933-2017)









### Overview of the structure of **StMoMo**



### GAPC stochastic mortality models with **StMoMo**

| Model | Predictor $(\eta_{xt})$                                                                                            |
|-------|--------------------------------------------------------------------------------------------------------------------|
| LC    | $\alpha_{x} + \beta_{x}^{(1)} \kappa_{t}^{(1)}$                                                                    |
| APC   | $\alpha_{x} + \kappa_{t}^{(1)} + \gamma_{t-x}$                                                                     |
| CBD   | $\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)}$                                                                     |
| M7    | $\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + ((x - \bar{x})^2 - \hat{\sigma}_x^2)\kappa_t^{(3)} + \gamma_{t-x}$ |

► For consistency, all under a log-Poisson setting:

$$D_{xt} \sim \text{Poisson}(E_{xt}^c \mu_{xt})$$

$$\log \mu_{xt} = \eta_{xt}$$



### Model definition: Predefined functions for common models

```
LC <- lc()
CBD <- cbd(link = "log")
APC <- apc()
M7 <- m7(link = "log")</pre>
```

### Model definition: Predefined functions for common models

```
LC <- lc()
CBD <- cbd(link = "log")
APC <- apc()
M7 <- m7(link = "log")</pre>
```

```
## Poisson model with predictor: log m[x,t] = a[x] + b1[x] k1[t]
## Poisson model with predictor: log m[x,t] = k1[t] + f2[x] k2[t]
```

```
## Poisson model with predictor: \log m[x,t] = a[x] + k1[t] + g[t-x]
```

```
## Poisson model with predictor: log m[x,t] = k1[t] + f2[x] k2[t] + f3[x] k3[t] + g[t-x]
```

### Model fitting: Lee-Carter Example

```
USmale <- StMoMoData(USdata, series = "male")
LCfit <- fit(LC, data = USmale)
plot(LCfit)</pre>
```







### Model fitting: Concentrate on older ages

```
#Ages for fitting
ages.fit <- 60:89
years.fit <- 1968:2017
#Fit all models
LCfit <- fit(LC, data=USmale, ages.fit=ages.fit,
             years.fit=years.fit)
CBDfit <- fit(CBD, data=USmale, ages.fit=ages.fit,
              vears.fit=vears.fit)
APCfit <- fit(APC, data=USmale, ages.fit=ages.fit,
              years.fit=years.fit)
M7fit <- fit(M7, data=USmale, ages.fit=ages.fit,
               years.fit=years.fit)
```

## Parameter estimates – LC $(\log \mu_{xt} = \alpha_x + \beta_x^{(1)} \kappa_t^{(1)})$

plot(LCfit)







### Parameter estimates – APC (log $\mu_{xt} = \alpha_x + \kappa_t^{(1)} + \gamma_{t-x}$ )

plot(APCfit, parametricbx = FALSE)







# Parameter estimates – CBD (log $\mu_{xt} = \kappa_t^{(1)} + (x - ar{x})\kappa_t^{(2)}$ )

plot(CBDfit, parametricbx = FALSE)





### Goodness-of-fit: Deviance Residuals

$$r_{xt} = \operatorname{sign}(d_{xt} - \hat{d}_{xt}) \sqrt{\frac{\operatorname{dev}(x,t)}{\hat{\phi}}}$$

### Goodness-of-fit: Deviance Residuals

$$r_{xt} = \operatorname{sign}(d_{xt} - \hat{d}_{xt}) \sqrt{\frac{\operatorname{dev}(x,t)}{\hat{\phi}}}$$

```
#Compute residuals
LCres <- residuals(LCfit)
APCres <- residuals(APCfit)
CBDres <- residuals(CBDfit)
M7res <- residuals(M7fit)</pre>
```

### Goodness-of-fit: Residual heatmaps

plot(LCres, type = "colourmap", reslim = c(-3.5, 3.5))



### Goodness-of-fit: Residual scatterplots

plot(CBDres, type = "scatter", reslim = c(-3.5, 3.5))



CBD

# Goodness-of-fit vs Parsimony: AIC and BIC

 $AIC = -2\mathcal{L} + 2 \times \nu$   $BIC = -2\mathcal{L} + \log K \times \nu$ 

# Goodness-of-fit vs Parsimony: AIC and BIC

```
AIC = -2\mathcal{L} + 2 \times \nu BIC = -2\mathcal{L} + \log K \times \nu
```

```
#Compute residuals
AIC(CBDfit)
```

```
## [1] 74754.48
```

```
BIC(CBDfit)
```

```
## [1] 75285.8
```

# Goodness-of-fit vs Parsimony: AIC and BIC

$$AIC = -2\mathcal{L} + 2 \times \nu$$
  $BIC = -2\mathcal{L} + \log K \times \nu$ 

```
#Compute residuals
AIC(CBDfit)
```

## [1] 74754.48

BIC(CBDfit)

| Criterion  | LC | APC            | CBD | M7 |
|------------|----|----------------|-----|----|
| AIC<br>BIC |    | 32063<br>32892 |     |    |

### Forecasting and simulation

▶ Period indexes: Multivariate random walk with drift

$$m{\kappa}_t = m{\delta} + m{\kappa}_{t-1} + m{\xi}_t^\kappa, \qquad m{\kappa}_t = \left(egin{array}{c} \kappa_t^{(1)} \ dots \ \kappa_t^{(N)} \end{array}
ight), \qquad m{\xi}_t^\kappa \sim m{N}(m{0}, m{\Sigma}),$$

▶ **Cohort effect:** ARIMA(p, q, d) with drift

$$\Delta^{d} \gamma_{c} = \delta_{0} + \phi_{1} \Delta^{d} \gamma_{c-1} + \dots + \phi_{p} \Delta^{d} \gamma_{c-p} + \epsilon_{c} + \delta_{1} \epsilon_{c-1} + \dots + \delta_{q} \epsilon_{c-q}$$

# Forecasting

| Model | Model for $\gamma_{t-x}$    |
|-------|-----------------------------|
| APC   | ARIMA(1,1,0) with zero mean |
| M7    | ARIMA(0,0,0) with zero mean |

### Forecasting

| Model | Model for $\gamma_{t-x}$    |
|-------|-----------------------------|
| APC   | ARIMA(1,1,0) with zero mean |
| M7    | ARIMA(0,0,0) with zero mean |

30-year ahead (h = 30) central projections: period indexes, cohort index, and death rates probabilities:

### Forecasted period and cohort indexes

plot(M7for, parametricbx = FALSE)



## Forecasted period and cohort indexes

plot(APCfor, parametricbx = FALSE)







#### Simulation

#### Simulation



#### **Fancharts**

```
library(fanplot)
mxt <- LCfit$Dxt/LCfit$Ext
plot(LCfit$years, mxt["65",], pch=20, xlim=c(1968,2047),
        ylim=c(0.0045,0.04), log="y", xlab="year", ylab="m(65,t)")
fan(t(LCsim$rates["65",,]), start=2017, probs=c(50,75,90,97.5),
        n.fan=4, ln=NULL, fan.col=colorRampPalette(c("black","white")))</pre>
```



#### **Fancharts**



# Obtaining projected life tables for a cohort

```
chosen cohort <- 1950
#observed rates for ages 0-59
hist rates <- extractCohort(USmale$Dxt/USmale$Ext,
                                cohort = chosen cohort)[1:60]
#fitted historical rates for ages 60-67
lc fit rates <- extractCohort(fitted(LCfit, type = "rates"),</pre>
                                cohort = chosen cohort)
#forcasted rates for ages 68-89
lc for rates <- extractCohort(LCfor$rates,</pre>
                               cohort = chosen cohort)
#all rates
lc rates 1950 <- c(hist rates, lc fit rates, lc for rates)</pre>
```

## Obtaining projected life tables for a cohort

#### Cohort 1950 mortality rate



# Computing life expectancies using lifecontingencies

## [1] 17.373

# Computing life expectancies using lifecontingencies

## [1] 17.373

| Model        | LC         | APC        | CBD        | M7         |
|--------------|------------|------------|------------|------------|
| LE at age 65 | 17.3729974 | 17.4886457 | 17.254208  | 17.5034425 |
| LE at age 75 | 10.3314105 | 10.6308337 | 10.3993284 | 10.5521274 |

#### Summary

- ▶ This has been a whistle-stop introduction to fitting mortality models in R
- Useful example for using **StMoMo** in the package vignette at https://cran.r-project.org/web/packages/StMoMo/vignettes/ StMoMoVignette.pdf
  - ▶ Also, references within this useful for understanding more about mortality models
- ► Useful examples of integrating **StMoMo** with **lifecontingencies** at https: //rdrr.io/cran/lifecontingencies/f/inst/doc/mortality\_projection.pdf

#### Summary

- ➤ **StMoMo provides** easy implementation and comparison of a wide range of models making it useful for:
  - ► Actuaries analysing longevity risk → Model risk
  - ► Use in the classroom
- ► Standard packages are starting point however, to go beyond them you need to understand the principles behind their operation

#### Work in progress

- ► Available in the development version and expected to be released in next six months
  - Selection of models using cross-validation
  - Construction of models using regularisation techniques
- Sister packages iMoMo for mortality improvement rate modelling
  - Expected to be released in the next year
- Other development plans
  - Multipopulation models
  - Model combination

# Cross validation and regularisation

# Mortality Models: Key research questions

1. What model features are desired for different applications?

2. Why do we only consider a fixed set of models?

3. How can we be confident we have selected the best model?

# Objective

Provide a comprehensive framework to **construct**, **select**, and **evaluate** discrete-time mortality models for forecasting applications, using various **statistical learning** and predictive analytics techniques.

- ► Construction based on regularisation techniques
- ► **Selection** based on cross-validation techniques

- ► Training/Test Set
- ► **Test Set Width**: Depending on forecasting Horizon
- ► **Metric**: MSE on the test set

- ► Training/Test Set
- ► **Test Set Width**: Depending on forecasting Horizon
- ► **Metric**: MSE on the test set

```
# install.packages("devtools")
# devtools::install qithub("amvillegas/StMoMo",
                              ref = "GroupLasso")
#
#CV for 1 year ahead
LCcv1 <- cv.StMoMo(LC, h = 1, data=USmale, ages.train=ages.fit,
             vears.train=years.fit, type = "logrates")
APCcv1 <- cv.StMoMo(APC, h = 1, data=USmale, ages.train=ages.fit,
             vears.train=years.fit, type = "logrates")
CBDcv1 <- cv.StMoMo(CBD, h = 1, data=USmale, ages.train=ages.fit,
             years.train=years.fit, type = "logrates")
M7cv1 <- cv.StMoMo(M7, h = 1, data=USmale, ages.train=ages.fit,
             years.train=years.fit, type = "logrates")
```

```
#CV for 10 year ahead
LCcv10 <- cv.StMoMo(LC, h = 10, data=USmale, ages.train=ages.fit,
             years.train=years.fit, type = "logrates")
APCcv10 <- cv.StMoMo(APC, h = 10, data=USmale, ages.train=ages.fit
             years.train=years.fit, type = "logrates")
CBDcv10 <- cv.StMoMo(CBD, h = 10, data=USmale, ages.train=ages.fit,
             years.train=years.fit, type = "logrates")
M7cv10 <- cv.StMoMo(M7, h = 10, data=USmale, ages.train=ages.fit,
             years.train=years.fit, type = "logrates")
```

```
LCcv1$cv.mse
## [1] 0.001367588
```

LCcv10\$cv.mse

```
## [1] 0.004095502
```

```
LCcv1$cv.mse
```

```
## [1] 0.001367588
```

LCcv10\$cv.mse

## [1] 0.004095502

| Criterion  | LC     | APC    | CBD    | M7     |
|------------|--------|--------|--------|--------|
| AIC        | 56814  | 32063  | 74754  | 27575  |
| BIC        | 57388  | 32892  | 75286  | 28775  |
| CV 1-year  | 0.0014 | 0.0007 | 0.0017 | 0.0005 |
| CV 10-year | 0.0041 | 0.0033 | 0.0050 | 0.0046 |

# Construction: "Formalised" Model-Building Framework

We start with a **huge** model,

$$ln(\mu_{x,t}) = \alpha_x + \sum_{i=1}^{B} f^{(i)}(x) \kappa_t^{(i)} + \gamma_{t-x},$$

where the suite of basis functions  $(f^{(i)}(x))$  included are:

$$f^{(i)}(x) = \begin{cases} 1, & \text{Unit} \\ (x - \bar{x})^n & \text{Polynomial} \\ (x - n)^+ & \text{Call} \\ (n - x)^+ & \text{Put} \\ 1_{x < n} & \text{Below} \\ 1_{x > n} & \text{Above} \end{cases}$$
(1)

#### Construction: Our Model



# Construction: GLM Representation

$$\eta_{x,t} = \ln(\mu_{x,t}) = \alpha_x + \sum_{i=1}^B f^{(i)}(x) \kappa_t^{(i)} + \gamma_c,$$

can be expressed as a GLM (Currie 2014),

$$\eta = \mathbf{X}\beta = \sum_{j=0}^{B+1} \mathbf{X}_j \boldsymbol{\beta}_j, \qquad \mathbf{X} = [\mathbf{X_0}: \mathbf{X_1}: \mathbf{X_2}: \dots: \mathbf{X_B}: \mathbf{X_{B+1}}],$$

where,

$$\beta = \{\beta_i\}_{i=0}^{B+1}, \quad \beta_0 = \{\alpha_x\}_{v=1}^{n_x}, \quad \beta_i = \{\kappa_t^{(i)}\}_{t=1}^{n_t}, \quad \beta_{B+1} = \{\gamma_c\}_{c=1}^{n_c}.$$

► Estimate parameters with group lasso using the R package **grpreg** (Breheny and Huang 2013)





















#### Implementation in StMoMo - Define model

```
## Gaussian model with predictor: \log m[x,t] = a[x] + k1[t] + f2[x] k2[t] + f3[x] k3[t] + f4[x] k4[t] + f5[x] k5[t] + f6[x] k6[t] + f7[x] k7[t] + f8[x] k8[t] + f9[x] k9[t] + f10[x] k10[t] + f11[x] k11[t] + f12[x] k12[t] + f13[x] k13[t] + f14[x] k14[t] + f15[x] k15[t] + f16[x] k16[t] + g[t-x]
```

# Implementation in StMoMo - Fit model with grouped penalised regularisation

## StMoMo: Start fitting with grpreg
## StMoMo: Finish fitting with grpreg

plot(extractStMoMo(bMgrpfit, 1), nCol = 3)



plot(extractStMoMo(bMgrpfit, 17), nCol = 3)



plot(extractStMoMo(bMgrpfit, 30), nCol = 3)



#### plot(extractStMoMo(bMgrpfit, 40), nCol = 5)



 $\kappa_t^{(2)}$  vs. t

vear

# Improvement rate modelling

#### The APCi model

- Modelling improvement rates rather than mortality rates is becoming commong
- Consider the APCi model which corresponds broadly to the lates CMI projection approach:

$$-\log\frac{\mu_{xt}}{\mu_{x,t-1}} = \alpha_x + \kappa_t + \gamma_{t-x}$$

#### Implementation in iMoMo

```
library(iMoMo) #Not yet publicly available
#Define model
APCi <- apci()
APCi
## indirect model with predictor: eta[x,t] = a[x] + k1[t] + g[t-x]
#fit the model
APCifit <- fit(APCi, data=USmale, ages.fit=ages.fit,
              vears.fit=vears.fit)
```

## StMoMo: Start fitting with gnm
## StMoMo: Finish fitting with gnm

#### Implementation in iMoMo

plot(APCifit, parametricbx = FALSE)







http://cran.r-project.org/web/packages/StMoMo/https://github.com/amvillegas

## Thank you!

a.villegas@unsw.edu.au andresmauriciovillegas@gmail.com



#### References I

Alai, Daniel H., and Michael Sherris. 2014. "Rethinking age-period-cohort mortality trend models." *Scandinavian Actuarial Journal*, no. 3: 208–27.

Aro, Helena, and Teemu Pennanen. 2011. "A user-friendly approach to stochastic mortality modelling." *European Actuarial Journal* 1: 151–67.

Booth, Heather, and Leonie Tickle. 2008. "Mortality modelling and forecasting: A review of methods." *Annals of Actuarial Science* 1 (2). Faculty of Actuaries; Institute of Actuaries: 3–43.

Börger, Matthias, Daniel Fleischer, and Nikita Kuksin. 2013. "Modeling the mortality trend under modern solvency regimes." ASTIN Bulletin 44 (1): 1–38.

Breheny, Patrick, and Jian Huang. 2013. "Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors." *Statistics and Computing* 25 (2): 173–87.

#### References II

doi:10.1007/s11222-013-9424-2.

Brouhns, Natacha, Michel Denuit, and Ingrid Van Keilegom. 2005. "Bootstrapping the Poisson log-bilinear model for mortality forecasting." *Scandinavian Actuarial Journal*, no. 3: 212–24.

Butt, Zoltan, Steven Haberman, and Han Lin Shang. 2014. *ilc: Lee-Carter Mortality Models using Iterative Fitting Algorithms*. http://cran.r-project.org/package=ilc.

Cairns, Andrew J.G., David Blake, and Kevin Dowd. 2006. "A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration." *Journal of Risk and Insurance* 73 (4): 687–718.

Cairns, Andrew J.G., David Blake, Kevin Dowd, Guy D. Coughlan, D. Epstein, A. Ong, and I. Balevich. 2009. "A quantitative comparison of stochastic mortality models using data from England and Wales and the United States."

#### References III

North American Actuarial Journal 13 (1): 1-35.

Currie, Iain D. 2014. "On fitting generalized linear and non-linear models of mortality." *Scandinavian Actuarial Journal*.

Hunt, Andrew, and David Blake. 2015. "On the Structure and Classification of Mortality Models." *Pension Institute Working Paper*. http://www.pensions-institute.org/workingpapers/wp1506.pdf.

 $Hyndman,\ Rob\ J.\ 2014.\ demography:\ Forecasting\ mortality,\ fertility,\ migration\ and\ population\ data.\ http://cran.r-project.org/package=demography.$ 

Koissi, M.C., A Shapiro, and G Hognas. 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval." *Insurance: Mathematics and Economics* 38 (1): 1–20.

Lee, Ronald D., and Lawrence R. Carter. 1992. "Modeling and forecasting U.S. mortality." *Journal of the American Statistical Association* 87 (419):

### References IV

O'Hare, Colin, and Youwei Li. 2012. "Explaining young mortality." *Insurance: Mathematics and Economics* 50 (1): 12–25.

Pitacco, Ermanno. 2004. "Survival models in a dynamic context: a survey." *Insurance: Mathematics and Economics* 35 (April): 279–98. doi:10.1016/j.insmatheco.2004.04.001.

Pitacco, Ermanno, Michel Denuit, Steven Haberman, and Annamaria Olivieri. 2009. *Modelling longevity dynamics for pensions and annuity business*. Oxford: Oxford University Press.

Plat, Richard. 2009. "On stochastic mortality modeling." *Insurance: Mathematics and Economics* 45 (3): 393–404.

Renshaw, A.E., and Steven Haberman. 2003. "Lee-Carter mortality forecasting with age-specific enhancement." *Insurance: Mathematics and* 

#### References V

Economics 33 (2): 255–72.

———. 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors." *Insurance: Mathematics and Economics* 38 (3): 556–70.

Villegas, Andrés M., Pietro Millossovich, and Vladimir K Kaishev. 2018. "StMoMo: An R Package for Stochastic Mortality Modelling." *Journal of Statistical Software* 84 (3). doi:10.18637/jss.v084.i03.

Wong-Fupuy, C., and Steven Haberman. 2004. "Projecting mortality trends: recent developments in the United Kingdom and the United States." *North American Actuarial Journal* 8 (2). SOCIETY OF ACTUARIES: 56–83.