Конспект по курсу

Методы оптимизаций

Contributors: Андрей Степанов Лектор: Мусатов Д.В.

МФТИ

Последнее обновление: 25 февраля 2015 г.

Содержание

1	Вво	дная лекция	2 ения														
	1.1	Базовые определения															2
	1.2	Линейное программирование															2

Оценка за зачет:

- 1. 40% от оценки за 2 контрольные работы (не переписываются)
- 2. 30% от оценки за 2 домашние задания
- 3. 30% от оценки индивидуальный проект, например:
 - (а) Теоретический (реферат)
 - (b) Теоретико-программистский (анализ времени работы, скорости сходимости)
 - (с) Практический (нужно самому найти данные для применения)

1 Вводная лекция

1.1 Базовые определения

Определение 1.1 (общая задача оптимизации). Пусть $f: X \mapsto \mathbb{R}$. Нужно найти точку экстремума, т.е. минимума или максимума (локального или глобального) (строго или нестрогого).

Определение 1.2 (задача условной оптимизации). Пусть $f: Y \mapsto \mathbb{R}, X \subset Y$. Нужно минимизировать f на X.

Замечание. Часто Х задается условиями вида:

$$\begin{cases} g_1(x) \le 0, \\ g_2(x) \le 0, \\ \dots \\ g_k(x) \le 0, \\ g_{k+1}(x) = 0, \\ \dots \\ g_n(x) = 0. \end{cases}$$

Замечание. Методы оптимизации можно условно разделить на аналитические и численные. Например, градиентный спуск — численный метод, метод Лагранжа — аналитический. Широкий класс численных методов — это итеративные алгоритмы. Можно условно разделить итеративные методы на точные и приближённые.

1.2 Линейное программирование

Определение 1.3. Задача линейного программирования — минимизация линейной функции на многограннике.

Более строго: пусть дана линейная функция $f: \mathbb{R}^n \mapsto \mathbb{R}$, имеющая вид

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \alpha_i x_i$$

. Пусть также дана система линейных уравнений и неравенств: $A_1x \leq b_1$, $A_2x = b_2$. Задача стоит в нахождении минимума f на множестве, на котором выполнена система уравнений.

Определение 1.4. Систему линейных уравнений и неравенств $A_1x \leq b_1$, $A_2x \leq b_2$ назовём системой ограничений.

Определение 1.5. Ограничения со знаком неравенства будем называть уравнениями-неравенствами.

Определение 1.6. Ограничения со знаком равенства будем называть уравнениямиравенствами.

Пример. Производственная задача: даны товары g_1, \ldots, g_n и ресурсы $r_1, \ldots r_m$. Ресурсов ограниченное число. Ресурсов i-того типа: ω_i . На производство g_i необходимо $c_{i,j}$ ресурсов r_j . p_i — цена g_i . Нужно максимизировать прибыль.

Обозначим x_i — сколько товаров g_i было произведено. Тогда есть следующая задача максимизации:

$$\max \sum_{i=0}^{n} p_i x_i$$

$$x_1 \ge 0$$
...

$$\begin{cases} x_1 \ge 0 \\ \dots \\ x_n \ge 0 \\ \sum_{j=1}^n x_j c_{j,1} \le \omega_1 \\ \dots \\ \sum_{j=1}^n x_j c_{j,m} \le \omega_m \end{cases}$$

Замечание. Сначала считаем, что уравнений-равенств нет.

Определение 1.7. Грань k-той размерности — это множество точек, в которой ровно n-k неравенств обратились в равенство, а остальные неравенства верны.

Утверждение 1.1. Если минимум достигается, то он достигается на какой-то грани.

Утверждение 1.2. Если минимум достигается во внутренней точке грани, то он достигается на всей грани.

Следствие. Если минимум достигается, то есть вершина многогранника, в которой он достигается.

Следствие. Есть экспоненциальный алгоритм решения задачи линейного программирования – простой перебор всех вершин.

Замечание. Есть симплекс метод.