Семинар 6. Непрерывность функции.

Скубачевский Антон

8 октября 2021 г.

Определение 1. Непрерывность. Функция f называется непрерывной в точке x_0 , если у нее в этой точке существует предел и $\lim_{x\to x_0} f(x) = f(x_0)$

Определение 2. Непрерывность. По Коши. Функция f называется непрерывной в точке x_0 , если:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon$$

Определение 3. Непрерывность. По Гейне. Функция f называется непрерывной в точке x_0 , если $\forall \{x_n\} \to x_0 \; \hookrightarrow \; f(x_n) \to f(x_0)$.

Эти 3 определения эквивалентны. Можно дать еще несколько эквивалентных определений, в т.ч. с помощью определения предела функции по Гейне.

Определение. Непрерывность на множестве (например, отрезке или интервале). Функция f называется непрерывной на множестве $E \in \overline{\mathbb{R}}$, если она непрерывна в каждой точке этого множества.

Утверждение. Сумма, разность, произведение и частное(если, конечно, знаменатель не обращается в ноль) непрерывных функций - непрерывная функция.

Пример 1. Доказать, что \sqrt{x} непрерывна в любой точке $x_0 > 0$ Доказательство:

$$0 \leqslant |\sqrt{x} - \sqrt{x_0}| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} \leqslant \frac{|x - x_0|}{\sqrt{x_0}} \to 0$$
 при $x \to x_0$

Следовательно, f - непрерывна по теореме о двух милиционерах. Ну или можно по определению:

$$\forall \varepsilon > 0 \\ \exists \delta = \varepsilon \sqrt{x_0} : \forall x : |x - x_0| < \delta \, \, \mathbf{i} \, \, \, |f(x) - f(x_0)| \leqslant \frac{|x - x_0|}{\sqrt{x_0}} < \frac{\varepsilon \sqrt{x_0}}{\sqrt{x_0}} = \varepsilon$$

Пример 2. Доказать, что если f непрерывна в точке x_0 , то она ограничена в некоторой окрестности этой точки.

Доказательство:

По определению непрерывности:

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon$$

Значит,

for
$$\varepsilon = 1 \exists \delta(1) > 0 : \forall x : |x - x_0| < \delta(1) \rightarrow f(x_0) - 1 < f(x) < f(x_0) + 1$$

Таким образом, в $U_{\delta(1)}(x_0)$ функция f ограничена сверху числом $f(x_0)+1$, а снизу - числом $f(x_0)-1$, следовательно, она ограничена на этой окрестности, ч.т.д.

Более общий вариант данного утверждения:

Теорема(Вейерштрасса). Функция, непрерывная на отрезке, ограничена и достигает своих верхней и нижней граней.

Эта теорема КРАЙНЕ важна, ее нужно знать, желательно, с доказательством.

Решим с помощью нее следующий пример:

Пример 3. Пусть функция f непрерывна на $[a, +\infty)$; $\exists \lim_{x \to +\infty} f(x) = A < \infty$

Доказать: f - ограничена на $[a, +\infty)$.

Доказательство:

В силу существования предела

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : x > \delta \rightarrow |f(x) - A| < \varepsilon$$

Тогда

for
$$\varepsilon = 1 \exists \delta(1) : \forall x : x > \delta(1) \rightarrow |f(x) - A| < 1$$

Это означает, что функция ограничена при $x > \delta(1)$.

Осталось показать, что функция ограничена при $x \in [a, \delta(1) + 1]$. Но это автоматически выполняется по теореме Вейерштрасса, т.к. наша функция непрерывна, а это отрезок.

Т.о., функция ограничена на $x \in [a, \delta(1)]$ и $x > \delta(1)$. Следовательно, f ограничена на всем полуинтервале $[a, +\infty)$, ч.т.д.

Теорема о непрерывности сложной функции. Пусть f непрерывна в точке $x_0, \ \varphi$ непрерывна в точке $t_0, \ \varphi(t_0) = x_0$. Тогда $f(\varphi(t))$ непрерывна в точке t_0 .

Т.е. по этой теореме $sinx^2$ - непрерывная функция, т.к. sinx и x^2 - непрерывные функции, что доказывается куда проще.

Следующая теорема (доказываемая как раз аналогично теореме о непрерывности сложной функции) иллюстрирует то, каким должно было быть условие в примере 11 с предыдущего семинара, чтобы утверждение было верно.

Теорема о переходе к пределу под знаком непрерывной функции. Пусть функция f непрерывна в точке $x_0, \, \varphi$ определена на $\overset{\circ}{U}(t_0); \, \exists \underset{t \to t_0}{lim} \varphi(t) = x_0.$ Тогда $\exists \underset{t \to t_0}{lim} f(\varphi(t)) = f(\underset{t \to t_0}{lim} \varphi(t)) = f(x_0)$

Подобно определению односторонних пределов, введем понятие односторонней непрерывности.

Определение. Функция f, определенная на $U(x_0 + 0)$, называется непрерывной справа в точке x_0 , если $\exists \lim_{x \to x_0 + 0} f(x) = f(x_0)$.

Теперь можно ввести определение и классификацию точек разрыва.

Определение. Точка x_0 называется точкой разрыва функции f, если она не является непрерывной в этой точке. Точка x_0 разрыва функции называется точкой разрыва первого рода, если $\lim_{x\to x_0+0} f(x)$ и $\lim_{x\to x_0-0} f(x)$ (т.е. пределы слева и справа) существуют и конечны. Если они в добавок равны, точка называется точкой устранимого разрыва. Если же хотя бы одного из них не существует или он бесконечен, то x_0 называется точкой разрыва второго рода.

Пример 4. Функция $(signx)^2$ имеет в точке 0 устранимый разрыв, signx имеет в 0 разрыв первого рода(неустранимый), а функция tgx имеет в точках $\pi/2 + \pi n$ разрывы второго рода.

Пример 5. Выяснить, какого типа и в каком количестве разрывы могут быть у функции, монотонной на отрезке.

Решение:

Пусть для определенности функция возрастает.

1). Покажем, что разрывы могут быть только неустранимыми первого рода.

Во-первых, устранимых разрывов быть не может, т.к. в этом случае должно быть: $f(x_0+0) = f(x_0-0)$. Но функция определена во всех точках отрезка, следовательно, и в точке разрыва, т.е. $f(x_0) > f(x_0-0)$ (для меньше рассуждения аналогичные). Но тогда $f(x_0)$ также $> f(x_0+0)$, что нарушает условие монотонного возрастания.

Во вторых, разрывов второго рода также не может быть. Пусть у функции в точке a разрыв. Функция возрастает при x < a и f(x) < f(a) в силу монотонности, т.е. функция ограничена сверху, а значит, имеет предел $\lim_{x\to a-0} f(x)$, т.е. предел слева, причем конечный. Аналогично доказывается существование предела справа. Значит, разрыва второго рода быть не может.

2). Покажем, что разрывов не более, чем счетное число.

Рассмотрим точку разрыва a. Обозначим $A = \lim_{x \to a-0} f(x)$, $B = \lim_{x \to a+0} f(x)$. Как было доказано выше, $A \neq B$. Оба числа действительные, очевидно. Но тогда, т.к. между любыми двумя действительными числами всегда найдется рациональное(например, см.Ильин-Садовничий матан, гл.2§3,лемма-2(с.45 в некоторых изданиях)), $\exists C \in \mathbb{Q} : A \leqslant C \leqslant B$. Таким образом, мы поставили в соответствие каждому разрыву некоторое рациональное число. Причем числа все время разные в силу монотонности и того, что разрывы неустранимые. Множество рациональных чисел счетно, следовательно, множество точек разрыва также не более, чем счетно, ч.т.д.

Есть еще пара теорем, очень нужных в доказательствах и теоретических выкладках.

Теорема о сохранении знака. Пусть f непрерывна в $x_0, f(x_0) \neq 0$. Тогда $\exists U(x_0) : \forall x \in U(x_0) \Rightarrow signf(x) = signf(x_0)$

Теорема о промежуточных значения непрерывной функции. Пусть функция f непрерывна на отрезке [a,b], f(a) = A, f(b) = B. Пусть С находится между A и B. Тогда $\exists \xi \in [a,b]: f(\xi) = C$

Есть аналог этой теоремы и для интервала.

Пример 6. Функция f непрерывна на интервале $(a,b), m = \inf_{(a,b)} f$

$$M=\sup_{(a,b)}$$
. Доказать, что $\forall C\in(m,M)\exists x\in(a,b):f(x)=y$

Доказательство:

 $\forall C \in (m,M) \exists x',x'': m < f(x') < C < f(x'') < M$ по определению точной верхней и точной нижней граней. Теперь, применив к отрезку [x',x'']

теорему о промежуточных значениях непрерывной функции, получаем то, что и требовалось доказать.

Определение. Функция Дирихле:

$$D(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$$

Пример 7. Доказать, что функция Дирихле разрывна в любой точке. Доказательство:

Предположим, $\exists \lim_{x\to x_0} f(x) = c$. (Если покажем, что это утверждение неверно, т.е. предела нет, то функция уж точно не непрерывна). Тогда:

$$orall arepsilon>0$$
 : $orall x:|x-x_0|<\delta \mapsto |f(x)-c| Для $x\in\mathbb{Q}$ (т.к. $f(\mathbf{x})=1$ для рациональных):$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : |x - x_0| < \delta \mapsto |1 - c| < \varepsilon \Rightarrow 1 - \varepsilon < c < 1 + \varepsilon$$
 Для $x \notin \mathbb{Q}$ (т.к. $f(x) = 0$ для иррациональных):

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0 : \forall x : |x - x_0| < \delta \mapsto |0 - c| < \varepsilon \Rightarrow -\varepsilon < c < +\varepsilon$$

Получим тогда, что, например, при $\varepsilon = 0.25\ c$ должно $\in (3/4, 5/4)$ и одновременно $\in (-1/4, 1/4)$. Противоречие.

Пример 8. Построить функцию, определенную на всем множестве действительных чисел и непрерывную лишь в одной точке.

Решение:

Функция xD(x), где D(x) - функция Дирихле, непрерывна лишь в нуле (т.к. $\underset{x\to 0}{lim} xD(x)=0$ как произведение бесконечно малой функции на ограниченную, и этот предел равен значению функции в нуле).

Определение. Функция Римана:

$$f(x) = \begin{cases} 1/n, x \in \mathbb{Q}, x = m/n, m \in \mathbb{Z}, n \in \mathbb{N} \\ 0, x \notin \mathbb{Q} \end{cases}$$

Пример 9. Доказать, что функция Римана непрерывна лишь в иррациональных точках.

Доказательство:

1). Докажем, что функция непрерывна в иррациональных точках.

Для любого $\varepsilon > 0$ рассмотрим множество $M = \{x \in \mathbb{R} : f(x) \ge \varepsilon\}$. По условию, очевидно, иррациональных точек в этом множестве нет, т.к. в них f(x) = 0. Далее на этом множестве из $f(x) = 1/n \ge \varepsilon \Rightarrow n \le 1/\varepsilon$ (т.е. n - конечное число штук можем выбрать). Следовательно, пересечение множества М и любого ограниченного интервала (что накладывает ограничение на количество m, которые можем выбрать) состоит из конечного числа точек.

Пусть a - произвольная иррациональная точка, т.е. f(a) = 0. Мы можем выбрать окрестность a: не содержит точек множества М(можем взять произвольную окрестность, и, т.к. ее пересечение с M - конечное множество точек, сузить ее до интервала между двумя ближайшими от a точками). Следовательно, $f(x) < \varepsilon$ в ней, следовательно, f непрерывна.

2). Теперь докажем, что функция Римана разрывна во всех рациональных точках. Действительно, существует хотя бы одно иррациональное число сколь угодно близко к любому рациональному числу. Тем самым, мы можем выбрать последовательность иррациональных чисел, стремящуюся к данному рациональному числу. Тогда предел соответствующих значений функции (для членов данной последовательности) будет равен нулю, что отличается от значения функции в данной точке. Следовательно, функция не непрерывна (по Гейне).