# Московский государственный технический университет им. Н. Э. Баумана

# Курс «Технологии машинного обучения» Отчёт по рубежному контролю №1 «Технологии разведочного анализа и обработки данных.»

Вариант № 14

Выполнил: Проверил: Насруллаев А. Гапанюк Ю.Е. группа ИУ5-62Б Дата: 14.04.25 Дата:

Подпись:

Подпись:

# РК1 по дисциплине Технологии машинного обучения

## Задание (вариант 14):

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Дополнительное задание (группа ИУ5-62Б): для произвольной колонки данных построить гистограмму

Датасет: https://www.kaggle.com/mohansacharya/graduate-admissions (файл Admission\_Predict\_Ver1.1.csv)

#### Загрузка данных

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     sns.set(style="whitegrid")
     plt.rcParams["figure.figsize"] = (10, 5)
     df = pd.read_csv("D:/Загрузки/Admission_Predict_Ver1.1.csv")
     df.columns = df.columns.str.strip().str.replace(" ", "_")
     # Проверка количества пропусков
     print("Пропуски до обработки:\n", df.isnull().sum())
     Пропуски до обработки:
      Serial_No.
     TOEFL_Score
     University_Rating 0
     CGPA
     Research
     Chance_of_Admit
```

#### Так как в исходном датасете нет пропусков, создадим их искусственно.

```
[11]: # Создаём копию и вносим ИСКУССТВЕННЫЕ ПРОПУСКИ
      df_missing = df.copy()
      # В 10% случайных строк делаем пропуски в GRE_Score и University_Rating
      df_missing.loc[df_missing.sample(frac=0.1, random_state=42).index, 'GRE_Score'] = np.nan
      df_missing.loc[df_missing.sample(frac=0.1, random_state=1).index, 'University_Rating'] = np.nan
      # Проверка количества пропусков
      print("Пропуски до обработки:\n", df_missing.isnull().sum())
      Пропуски до обработки:
       Serial_No.
      GRE_Score
                           50
      TOEFL_Score
                            0
      University_Rating
                           50
      SOP
                            0
      LOR
                            0
      CGPA
                            0
      Research
                            0
      Chance_of_Admit
      dtype: int64
```

#### Визуализация распределения до обработки



#### Обработка пропусков и визуализация

#### Количественный признак: 'GRE Score'

Для обработки пропусков в признаке 'GRE Score' (оценка за тест GRE) был использован метод импутации с использованием медианы. Медиана устойчива к выбросам и подходит для данных с потенциально несимметричным распределением. Это позволяет сохранить центральную тенденцию данных без значительного искажения их структуры

#### Категориальный признак: 'University Rating'

Для обработки пропусков в признаке 'University Rating' (рейтинг университета) был использован метод импутации с использованием моды. Мода — это наиболее часто встречающееся значение в категориальном признаке, и она является стандартным выбором для заполнения пропусков, когда нет дополнительной информации для более сложных методов



### Выбор признаков для модели

#### Оставляем следующие признаки:

- GRE Score
- TOEFL Score
- University Rating
- SOP
- LOR
- CGPA
- Research

Все признаки могут влиять на вероятность поступления.

Research — бинарный категориальный, важно учитывать для вероятности поступления в магистратуру.

GRE, TOEFL, CGPA — ключевые метрики при поступлении.

University Rating, SOP, LOR — менее объективны, но всё равно используются

| [15]: | df.des | cribe()    |            |             |                   |            |           |            |            |                 |
|-------|--------|------------|------------|-------------|-------------------|------------|-----------|------------|------------|-----------------|
| [15]: |        | Serial_No. | GRE_Score  | TOEFL_Score | University_Rating | SOP        | LOR       | CGPA       | Research   | Chance_of_Admit |
|       | count  | 500.000000 | 500.000000 | 500.000000  | 500.000000        | 500.000000 | 500.00000 | 500.000000 | 500.000000 | 500.00000       |
|       | mean   | 250.500000 | 316.472000 | 107.192000  | 3.114000          | 3.374000   | 3.48400   | 8.576440   | 0.560000   | 0.72174         |
|       | std    | 144.481833 | 11.295148  | 6.081868    | 1.143512          | 0.991004   | 0.92545   | 0.604813   | 0.496884   | 0.14114         |
|       | min    | 1.000000   | 290.000000 | 92.000000   | 1.000000          | 1.000000   | 1.00000   | 6.800000   | 0.000000   | 0.34000         |
|       | 25%    | 125.750000 | 308.000000 | 103.000000  | 2.000000          | 2.500000   | 3.00000   | 8.127500   | 0.000000   | 0.63000         |
|       | 50%    | 250.500000 | 317.000000 | 107.000000  | 3.000000          | 3.500000   | 3.50000   | 8.560000   | 1.000000   | 0.72000         |
|       | 75%    | 375.250000 | 325.000000 | 112.000000  | 4.000000          | 4.000000   | 4.00000   | 9.040000   | 1.000000   | 0.82000         |
|       | max    | 500.000000 | 340.000000 | 120.000000  | 5.000000          | 5.000000   | 5.00000   | 9.920000   | 1.000000   | 0.97000         |

# Построим гистограмму для признака TOEFL\_Score



