POLI TÉLNILO GUARDA

Fundamentals of Digital Forensics

- Digital Fundamentals
- The Digital Forensics Process
- Volatility Tool
- Wireshark
- (Autopsy)

Docente

Pedro Pinto

- CISO do Instituto Politécnico da Guarda (IPG)
- Responsável pelo Centro de Resposta a Incidentes do IPG
- Membro da Rede Nacional de Resposta a Incidentes Informáticos
- Membro da Metared
 - Curso CIO, CISO e Responsabilidades Jurídicas
- Responsável e formador da C-ACADEMY
- Membro do projeto Ciberia (POCTEP)
- Administrador do maior site de tecnologia em Portugal (Pplware.sapo.pt)
- Administrador do Grupo de Emergência da Guarda
- +info: https://www.linkedin.com/in/infopedropinto/

Digital forensics

 is a forensic science branch that focuses on recovering material found in digital devices during cybercrime investigation.

Fundamentals of Digital Forensics

- Digital Evidence
 - includes information on computers, audio files, video recordings and digital images (nist.gov)
- CSIRT or Computer Security Incident Response Team

 group of professionals responsible for responding to an incident and assisting with analyzing evidence collected during the investigation of cybercrime.

- Many branches in which data can be collected, including:
 - Network Forensics
 - Computer Forensics
 - Mobile Forensics
 - Database Forensics
 - Forensic Data Analysis

The Digital Forensics Process (Framework)

The Digital Forensics Process: Identification

- Locard's Exchange Principle, a theory developed by Dr. Edmond Locard (1877–1966).
 - "Any action of an individual, and obviously the violent action constituting a crime, cannot occur without leaving a trace."
- This theory correlates with digital forensic because cybercriminals often leave traces of their presence after an attack (trace evidence)

The Digital Forensics Process: Identification

Example

 individual tries to SSH into a system but enters an incorrect password, that attempt is logged into the /var/log/auth.log file, which can be used as evidence

- Once the evidence has been identified, the next step is to preserve the evidence
- Safeguarding the evidence from being manipulated or deleted.
- In some cases, controls may be set to prevent unauthorized access to a system containing evidence
 - **Example**: isolating the system on the network or even restricting physical access to the system

Techniques used to preserve evidence, some of which include:

Imaging drives

 The process of creating a forensic digital copy of a hard drive to retain evidence and to be used in an investigation.

Hashing values

• Involves generating a cryptographic hash such as MD5, SHA-1, or SHA-256 to verify the integrity of the digital evidence.

Following the Chain of Custody (CoC)

Document all activity that occurs with the evidence.

Techniques used to preserve evidence, some of which include:

- Do not change the current state of a device
 - If a device is ON, do not turn it OFF and vice versa. If a device is ON, consult a forensic expert before turning the device OFF.
- Ensure the device is physically secured
 - Do not leave the device in an open or unsecured location; follow the CoC and keep a
 documented log detailing who has the device, its location, along with the date and time it was
 moved.
- Do not open any files
 - The examiner runs the risk of overwriting or losing data.

Drive Imaging (Preservation)

- process of creating a bit-by-bit copy of a hard drive
- Forensically imaging a drive plays a crucial part in preserving an exact copy of a storage device
- It is ideal for the forensic examiner to analyze the duplicate image rather than the original media
- Once the drive has been imaged, the system itself should no longer be operated on and isolated from incoming and outgoing connections
- Doing this limits the risk of the evidence being altered or destroyed if it needs to be used in court

Drive Imaging (Preservation)

- Using hardware such as a write blocker can aid the examiner with the imaging process and prevent any data from being written to the hard drive
- PassMark's OSForensics[™] software has a drive imaging function

Drive Imaging (Preservation) - OSForensics

Other software that can be used for forensic drive imaging

- Sleuth Kit (+Autopsy)
- EnCase
- PALADIN
- CAINE
- SANS SIFT
- FTK Image

Hashing Values (Preservation)

- To **generate a cryptographic hash** (MD5, SHA-1, SHA-256) of the evidence during the imaging process, specific software is used
- If any data within the evidence is altered, a new hash will be generated

Browse

Copy MD5

Copy SHA-256 Copy SHA-512

Copy All

Paste

The Digital Forensics Process: Preservation

Hashing Values (Preservation)

- Hashing tools that can be used
 - CertUtil (CMD)
 - Get-FileHash (Powershell)

MD5 & SHA Checksum Utility 2.1

Check out Pro Version

Z:\Desktop\Jsr.exe

A22BF78D65C96A7C2F3C22D983A24916

- Hash Generator (by OpenSSL Group, Paulo S. L. M. Barreto & Vincent Rijmen)
- MD5 & SHA Checksum Utility (by Raymond Lin)
- HashMyFiles (by Nir Sofer)

Collection

- In the collection stage, digital forensics examiners will begin the process of acquiring volatile digital evidence
- Volatile evidence is evidence that can be lost when a system is powered down

Volatile data

- active connections
- log data stored on a network device
- running memory
- remotely logged data
- Address Resolution Protocol cache

Collection – Example order of volatility

- 1. CPU, cache, and register content
- 2. Routing table, ARP cache, process table, kernel statistics
- 3. Memory
- 4. Temporary file system/swap space
- 5. Data on a hard disk
- 6. Remotely logged data
- 7. Data contained on archival media

Lastly, all evidence that has been collected should be documented

The Digital Forensics Process: Collection

Chain of Custody (Collection)

 documentation of an evidence life cycle during an investigation

The Digital Forensics Process: Examination and Analysis

Examination and Analysis

- involves **discovering and extracting** data from the evidence using specific tools and techniques.
- The evidence is then seized as part of the incident
- The analysis process varies depending on the type of digital evidence
- The analysis process helps to determine the origin of the data

The Digital Forensics Process: Examination and Analysis

Examination and Analysis – Tools

Autopsy/The Sleuth Kit

 Designed to perform analysis of disk images, filesystems and includes a wide variety of other features.

AccessData FTK

A toolkit that focuses on aiding examiners with a quick analysis process.

Paraben Suite

A suite of forensics tools, some of which include smartphone and cloud analysis tools.

Volatility

A tool used in memory forensics, it extracts information from running processes.

Presentation

- forensic examiners must prepare a detailed written report to address the actions performed to obtain the evidence, including any limitations encountered during the investigation
- This report must be clear, concise, and unbiased
- Digital forensics reports should typically be organized in this fashion
 - Executive summary
 - Findings
 - Appended reports
 - Conclusion

EXECUTIVE SUMMARY

Language: Non-technical

Purpose: High-level description of analysis findings in easily understood, non-technical language.

FINDINGS

Language: Technical

Purpose: Technical details of analysis to clearly describe the repeatable and defensible process. Include diagrams, charts, pictures.

APPENDED REPORTS

Language: Technical

Purpose: Further support the analysis of relevant information through presentation of highly detailed technical information, including evidence that can produce a tremendous amount of data such as email or chat message analysis.

CONCLUSION

Language: Non-technical

Purpose: Provide subjective analysis and expert opinions. Wrap up the analysis in a direct and concise manner.

References

ENISA - cyberskills

- is an open-source tool used for analyzing memory dumps (RAM captures) of computers.
- It extracts digital artefacts from memory images, useful for digital forensics, incident response, and malware analysis.

- What type of dump am I going to analyze ?
 - \$ volatility -f MyDump.dmp imageinfo

```
root®kali)-[/media/ppinto/evidence/Windows]
 -# vol.py -f memory.img imageinfo
Volatility Foundation Volatility Framework 2.6.1
        : volatility.debug : Determining profile based on KDBG search...
INFO
         Suggested Profile(s): Win10×86, Win81U1×86, Win8SP0×86, Win10×86_10586, Win8SP1×86, Win10×86_10240_17770
                    AS Layer1 : IA32PagedMemoryPae (Kernel AS)
                    AS Layer2 : FileAddressSpace (/media/ppinto/evidence/Windows/memory.img)
                     PAE type : PAE
                          DTB: 0×1a8000L
                         KDBG: 0×82461820L
         Number of Processors: 1
     Image Type (Service Pack): 0
               KPCR for CPU 0 : 0×8248b000L
             KUSER SHARED DATA: 0×ffdf0000L
          Image date and time : 2016-08-17 12:00:47 UTC+0000
     Image local date and time : 2016-08-17 14:00:47 +0200
```

- Which process are running?
 - volatility -f MyDump.dmp --profile=MyProfile pslist

Volatility Offset(V)	Name	PID	PPID	Thds	Hnds	Sess	Wow64	Start		Exit
 0×868a7700	System	4	0	104	0		0	2016-08-16	12:54:24 UTC+0000	
0×8d2af5c0	smss.exe	244		2	0	—	0	2016-08-16	12:54:24 UTC+0000	
0×8f7e3040	csrss.exe	324	316	10	0	0	0	2016-08-16	12:54:27 UTC+0000	
0×9487c640	smss.exe	388	244	0 -		1	0	2016-08-16	12:54:28 UTC+0000	2016-08-16 12:54:28 UTC+0
00 0×8b9bf300	wininit.exe	396	316	2	0	0	0	2016-08-16	12:54:28 UTC+0000	
0×8f71d2c0	csrss.exe	408	388	11	0	1	0	2016-08-16	12:54:28 UTC+0000	
0×94863c40	winlogon.exe	460	388	4	0	1	0	2016-08-16	12:54:28 UTC+0000	
0×8b9bc300	services.exe	488	396	6	Ø	0	0	2016-08-16	12:54:29 UTC+0000	
0×948c3040	lsass.exe	516	396	7	Ø	0	0	2016-08-16	12:54:29 UTC+0000	
0×948fb180	svchost.exe	576	488	19	0	0	0	2016-08-16	12:54:30 UTC+0000	

- Which process are running?
 - volatility -f MyDump.dmp --profile=MyProfile pstree

Offset(V)	Name	PID	PPID	Thds	Hnds	Sess	Wow64	Start	Exit
 0×868a7700	System	4	0	104	0		0	2016-08-16 12:54:24 UTC+0000	
0×8d2af5c0	smss.exe	244		2	0		0	2016-08-16 12:54:24 UTC+0000	
0×8f7e3040	csrss.exe	324	316	10	0	0	0	2016-08-16 12:54:27 UTC+0000	
0×9487c640	smss.exe	388	244	0 -		1	0	2016-08-16 12:54:28 UTC+0000	2016-08-16 12:54:28 UTC+06
00 0×8b9bf300	wininit.exe	396	316	2	0	0	0	2016-08-16 12:54:28 UTC+0000	
0×8f71d2c0	csrss.exe	408	388	11	0	1	0	2016-08-16 12:54:28 UTC+0000	
0×94863c40	winlogon.exe	460	388	4	Ø	1	0	2016-08-16 12:54:28 UTC+0000	
0×8b9bc300	services.exe	488	396	6	Ø	0	0	2016-08-16 12:54:29 UTC+0000	
0×948c3040	lsass.exe	516	396	7	0	0	0	2016-08-16 12:54:29 UTC+0000	
0×948fb180	svchost.exe	576	488	19	0	0	0	2016-08-16 12:54:30 UTC+0000	

- Which process are running?
 - volatility -f MyDump.dmp --profile=MyProfile psxview

	<pre>-f memory.imgprofi Foundation Volatility</pre>				xview					
Offset(P)	Name				thrdproc	pspcid	csrss	session	deskthrd	ExitTime
0×d9bbf300	wininit.exe	396	True	True	True	False	True	True	False	
0×d9bbc300	services.exe	488	True	True	True	False	True	True	False	
0×1d7d7c40	svchost.exe	2168	True	True	True	False	True	True	False	
0×0a0c3040	lsass.exe	516	True	True	True	False	True	True	False	
0×13018040	spoolsv.exe	1212	True	True	True	False	True	True	False	
0×13118380	svchost.exe	1540	True	True	True	False	True	True	False	
0×d9a520c0	SearchIndexer.	2532	True	True	True	False	True	True	False	
0×13039040	svchost.exe	1380	True	True	True	False	True	True	False	
0×0a0fb180	svchost.exe	576	True	True	True	False	True	True	False	
0×db522c40	ShellExperienc	2432	True	True	True	False	True	True	False	
0×0a063c40	winlogon.exe	460	True	True	True	False	True	True	False	
0×71e96740	update.exe	5172	True	True	True	False	True	True	False	
0×cfec9240	TrustedInstall	6108	True	True	True	False	True	True	False	
0×1d629300	SystemSettings	5268	True	True	True	False	True	True	False	
0×0a154380	svchost.exe	620	True	True	True	False	True	True	False	
0×db586c40	Skype.exe	5128	True	True	True	False	True	True	False	
0×db55f040	SkypeHost.exe	2220	True	True	True	False	True	True	False	
0×a0921480	SearchUI.exe	7360	True	True	True	False	True	True	False	
0×251e74c0	explorer.exe	4872	True	True	True	False	True	True	False	
0×a09a3500	conhost.exe	16756	True	True	True	False	True	True	False	
0×c3c06c40	RamCapture.exe	16740	True	True	True	False	True	True	False	
0×a0689640	SystemSettings	4968	True	True	True	False	True	True	False	
0×0a15d6c0	svchost.exe	800	True	True	True	False	True	True	False	

- List open TCP/UDP connection
 - volatility -f MyDump.dmp --profile=MyProfile netscan

		profile=Win10×86_10586 netscan ility Framework 2.6.1					
Offset(P)	Proto	Local Address	Foreign Address	State	Pid	Owner	Created
0×85b63230	TCPv4	192.168.5.100:59280	168.63.15.132:443	ESTABLISHED	5128	Skype.exe	
0×86963230	TCPv4	192.168.5.100:59280	168.63.15.132:443	ESTABLISHED	5128	Skype.exe	
0×8ada4678	UDPv4	127.0.0.1:512	*:*		5128	Skype.exe	2016-08-16 1
2:57:46 UTC+0000							
0×8ad0bc30	TCPv4	192.168.5.100:59277	2.21.242.237:80	ESTABLISHED	5128	Skype.exe	
0×8c15e930	UDPv4	0.0.0.0:0	*:*		1132	svchost.exe	2016-08-17 1
2:01:09 UTC+0000							
0×8c15e930	UDPv6	:::0	*:*		1132	svchost.exe	2016-08-17 1
2:01:09 UTC+0000					5400		2045 00 47 4
0×8c16c008 2:01:04 UTC+0000	UDPv4	0.0.0.0:512	*:*		5128	Skype.exe	2016-08-17 1
0×9490d480	UDPv4	0.0.0.0:512	*:*		1132	svchost.exe	2016-08-17 1
2:00:28 UTC+0000	UDPV4	0.0.0.0.512	*.*		1132	SVCIIOSC. exe	2010-00-1/ 1
0×9492fbd8	UDPv4	0.0.0.0:0	*:*		800	svchost.exe	2016-08-16 1
2:57:14 UTC+0000	001.14	0.0.0.0			000	3 veniose i exe	2010 00 10 1
0×94975f40	UDPv4	192.168.5.100:512	*:*		4	System	2016-08-17 1
2:00:28 UTC+0000							
0×9497e008	UDPv6	fe80::28b6:9b1e:817d:11e5:5888	*:*		848	svchost.exe	2016-08-17 1
2:00:24 UTC+0000							
0×94980a08	UDPv4	0.0.0.0:0	*:*		1132	svchost.exe	2016-08-17 1
2:00:28 UTC+0000							
0×94980a08	UDPv6	:::0	*:*		1132	svchost.exe	2016-08-17 1

- What commands were lastly run on the computer
 - volatility -f MyDump.dmp --profile=MyProfile cmdline

```
vol.py -f memory.img -- profile=Win10×86 10586 cmdline
Volatility Foundation Volatility Framework 2.6.1
***************************
System pid:
Command line : \SystemRoot\System32\smss.exe
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows SharedSection=1024,12288,512 Windows=On SubSystemType=Windows
ServerDll=basesrv,1 ServerDll=winsrv:UserServerDllInitialization,3 ServerDll=sxssrv,4 ProfileControl=Off MaxRequestThreads=16
************************
smss.exe pid:
*****************************
wininit.exe pid:
Command line : wininit.exe
****************************
Command line : %SystemRoot%\system32\csrss.exe ObjectDirectory=\Windows SharedSection=1024,12288,512 Windows=On SubSystemType=Windows
ServerDll=basesrv.1 ServerDll=winsrv:UserServerDllInitialization.3 ServerDll=sxssrv.4 ProfileControl=Off MaxRequestThreads=16
******************************
winlogon.exe pid:
Command line : winlogon.exe
************************************
services.exe pid:
Command line : C:\Windows\system32\services.exe
```

- Dump processes exe and memory
 - volatility -f MyDump.dmp --profile=MyProfile procdump -p MyPid --dump-dir

- Mem Dump processes exe and memory
 - volatility -f MyDump.dmp --profile=MyProfile memdump -p MyPid --dump-dir .

- Hive and Registry key values
 - volatility -f MyDump.dmp --profile=MyProfile hivelist

```
vol.py -f memory.img --profile=Win10×86_10586 hivelist
Volatility Foundation Volatility Framework 2.6.1
          Physical Name
0×87c3f008 0×008e9008 \REGISTRY\MACHINE\HARDWARE
0×8c375008 0×03224008 \Device\HarddiskVolume1\Boot\BCD
0×8ee3b008 0×dc5e4008 \SystemRoot\System32\Config\SOFTWARE
0×93b0c008 0×024ef008 \SystemRoot\System32\Config\DEFAULT
0×9091e008 0×0cf54008 \SystemRoot\System32\Config\SECURITY
0×9096b008 0×929a4008 \SystemRoot\System32\Config\SAM
0×909a9008 0×0dc8b008 \??\C:\Windows\ServiceProfiles\NetworkService\NTUSER.DAT
0×97449008 0×0f6e2008 \??\C:\Windows\ServiceProfiles\LocalService\NTUSER.DAT
0×97431008 0×0f2e3008 \SystemRoot\System32\Config\BBI
0×9c260008 0×1e611008 \??\C:\Windows\AppCompat\Programs\Amcache.hve
0×8b32b0e0 0×01aaa0e0 \??\C:\Users\Peter\ntuser.dat
0×9e602008 0×01b3c008 \??\C:\Users\Peter\AppData\Local\Microsoft\Windows\UsrClass.dat
0×9fc13008 0×19ece008 \??\C:\Users\Peter\AppData\Local\Packages\Microsoft.Windows.ShellExperienceHost cw5n1h2txyewy\Microsoft.Windows
.ShellExperienceHost_10.0.10586.0_neutral_neutral_cw5n1h2txyewy\ActivationStore\ActivationStore.dat
0×9fccf008 0×1b253008 \??\C:\Users\Peter\AppData\Local\Packages\Microsoft.Windows.ShellExperienceHost_cw5n1h2txyewy\Settings\settings
0×a20c4008 0×2a3ce008 \??\C:\Users\Peter\AppData\Local\Packages\Microsoft.Messaging_8wekyb3d8bbwe\Microsoft.Messaging_2.15.20002.0_x8
6 8wekyb3d8bbwe\ActivationStore\ActivationStore.dat
0xa9d45008 0xa4499008 \??\C:\Windows\System32\config\COMPONENTS
0×b00fd008 0×6e8a2008 \??\C:\Windows\System32\SMI\Store\Machine\SCHEMA.DAT
```

- Hive and Registry key values (printkey)
 - volatility -f MyDump.dmp --profile=MyProfile printkey

```
ali)-[/media/ppinto/evidence/Windows]
    vol.py -f memory.img --profile=Win10×86_10586 printkey
Volatility Foundation Volatility Framework 2.6.1
Legend: (S) = Stable (V) = Volatile
Registry: \??\C:\Users\Peter\AppData\Local\Packages\Microsoft.Windows.Cortana_cw5n1h2txyewy\Settings\settings.dat
Key name: Test (S)
Last updated: 2012-05-22 00:00:08 UTC+0000
Subkeys:
  (S) LocalState
  (S) RoamingState
Values:
Registry: \??\C:\Users\Peter\AppData\Local\Packages\Microsoft.Windows.ShellExperienceHost_cw5n1h2txyewy\Settings\settings.dat
Key name: Test (S)
Last updated: 2012-05-22 00:00:08 UTC+0000
Subkeys:
  (S) LocalState
  (S) RoamingState
```

TCP Encapsulation

Protocol analysis tool that allows real-time capture of network traffic

Wireshark – Capturing Packets

Filters

- ΗΠΡ
- DNS
- ip.address == 192.168.0.1
- tcp.port == 22
- tcp.port == 80 || udp.port == 80
- ip.src == 192.168.1.1
- ip.dst == 192.168.1.1
- ip.addr == 192.168.1.1 && http
- tcp contains "GET

Follow HTTP Stream

Follow HTTP Stream (2)

Follow TCP Stream

Follow UDP STream

Follow TLS STream

Forensic Tools

