Project Design Phase-IITechnologyStack(Architecture&Stack)

TeamID	PNT2022TMID50471	
ProjectName	ectName Project-Real-	
	TimeCommunicationSystemPoweredbyAlfo	
	rSpeciallyAbled	
MaximumMarks	4Marks	

TechnicalArchitecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1& table 2.

Example:Real-TimeCommunicationSystemPoweredbyAlforSpeciallyAbled

Table-1:Components&Technologies:

S.No	Component	Description	Technology
1.	User	Deaf and dumb people willing to communicateefficiently, without any has slew ithout hersintheir Surrounding environment	Altechniques
2.	FlaskUI	The components of Flask's User Interface allowonetointeractwithclientsthatmakeuseofyou r applicationandgatherinformation.	Canbeexecutedusingexistingcloudte chnologies
3.	ImageDataset	Theinitialprototypeofthisapplicationistrainedon a subset of the dataset containing 20 differentsignsadheringtotheAmericanSignLang uage	Altechniques
4.	ImagePreprocessing	The images in the dataset are preprocessed toincreasethesharpness/clarityandremoveanyn oise	ANN,CNN,OpenCV
5.	Training	SVM is run on the training dataset to extractattributes from the images which are then fed totheNeuralNetworkinordertomaketheprediction	Scikit- learn,NaturalLanguageProces sing(NLP)
6.	Testing	Thetrainedmodelisthenrunonanadditionalunte sted10-15sign-languageimagesandtheperformance parameters are evaluated andrecorded	Scikit-learn,NLP
7.	NeuralNetwork	Thesameneuralnetworkarchitectureisusedfor bothtop-viewandbottom-viewmodels;theonlydifferenceliesinthenumbero foutputunits	ANN
8.	Evaluation	Recordsthegeneralizationaccuracyofthepr oposedmodelonfuture/unseendata	
9.	Model	MLalgorithmslikeSVM(SupportVectorMachine)ar eappliedtoclassifythegivenimagedataset	MachineLearning
10.	Prediction	The attributes extracted from the images areexaminedandpredictionsaremadeinorderto convertthesign-languagetothecorrespondingtext	ANN,CNN

Table-2:ApplicationCharacteristics:

S.No	Characteristics	Description	Technology
1.	Open-SourceFrameworks	RobotsandvariousotherAltoolshavemadeit Possibleforpeoplewithdisabilitiestoliveco mfortably	Altechniqueslikeself- movingrobotsandothersoftwaresyste ms
2.	SecurityImplementations	Users are authenticated based on theirusername/passwordpairand/orOTPsenttothe irgiven mobilenumbers	SHA-1,Encryptions,IAMControls
3.	ScalableArchitecture	We implement a modular 3-tier client- serverapplicationarchitecturethatimprovesscala bility,availability,andperformance.Individualtiers arecontainerized	Presentationlayer, Application layera ndDataLayermodularity, Docker
4.	Availability	Theapplicationhasanextremelylowdowntimean d load balancers forward request to otheravailablemachinesincaseoffailures	Keyperformanceindicators(KPI)
5.	Performance	Theapplicationperformsefficientlyunderaheavy Loadoftranslationrequestswithoutanysignificantre ductionintheconversionaccuracy	Numberofrequestsperminute, accuracyoftranslation(sign-languagetospeech&texttosign-language)