

ASSIGNMENT

FUNDAMENTALS IN PREDICTIVE MODELING

REPORT

Pillar1-e

Prepared By

William C. Phiri

PG Dip in Data Science Student No. 4295158639

+353-87-3502102

Athlone, IRELAND

BACKGROUND:

The data for modelling provided contained information on the selling price of each house in million Rs. It also contained Carpet area in square feet, Distance from nearest metro station and number of schools within a 2 km distance. The data has 198 rows and 5 columns.

ASSIGNMENT OBJECTIVE:

To establish the following below using Python programming.

- 1. Build a regression model on training data to estimate selling price of a House.
- 2. List down significant variables and interpret their regression coefficients.
- 3. What is the R2 and adjusted R2 of the model? Give interpretation.
- 4. Is there a multicollinearity problem? If yes, do the necessary steps to remove it.
- 5. Are there any influential observations in the data?
- 6. Can we assume that errors follow 'Normal' distribution?
- 7. Is there a Heteroscedasticity problem? Check using residual vs. predictor plots.
- 8. Calculate the RMSE for the Training and Testing data.

RESULTS:

Question 1: Build a regression model on training data to estimate selling price of a House.

OUTPUT: Refer to code on GitHub at the <u>LINK HERE</u> for the model created

Refer to app location **HERE** for the prediction app built off the training data

The project structure outline was laid out as follows.

```
FPM_Assignment_PY/
   dashboard/
    └─ app.py
                                        # ☑ Streamlit app
   data/
      - raw/
        └─ House Price Data.csv
       processed/
         - hse_price_cleaned.csv
          - hse price optimized.csv
          - incoming_house_data.csv # 🗹 For dashboard input testing
          - X train.csv
          - X test.csv
          y train.csv
          - y_test.csv
   environment/
      environment.yml
      requirements.txt
   models/
    └─ house_price_model.pkl
  notebooks/
      — 01_EDA.ipynb
      02_Model_Building.ipynb
    ☐ 03_Evaluation_Report.ipynb
   reports/
      - summary.txt

    — 03_objective_evaluation_report.pdf

   src/
      data_prep.py
      - train model.py
      - utils.py
   .gitignore
   main.py
   README.md
```

Question 2: List down significant variables and interpret their regression coefficients.

OUTPUT:

Model Summary Results.

OLS Regression Results							
Dep. Variable	:: ::	рı	rice OLS		 ared: R-squared:		0.808 0.804
Method:		Least Squ	ares	F-sta	tistic:		215.9
Date:	S	un, 20 Apr 1	2025	Prob	(F-statistic):	6.08e-55
Time:		14:30	5:40	Log-L	ikelihood:		-348.18
No. Observati	ions:		158	AIC:			704.4
Df Residuals:	:		154	BIC:			716.6
Df Model:			3				
Covariance Ty	/pe:	nonrol	bust				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	-9.5704	1.935	-4	1.947	0.000	-13.392	-5.748
area	0.0343	0.002	14	1.867	0.000	0.030	0.039
distance	-1.8737	0.178	-16	3.552	0.000	-2.224	-1.523
schools	1.4379	0.447	3	3.216	0.002	0.555	2.321
Omnibus:		13	 .376	Durbi	 n-Watson:	=======	2.259
Prob(Omnibus)):	0	.001	Jarqu	e-Bera (JB):		14.373
Skew:		-0	.726	Prob(JB):		0.000757
Kurtosis:		3	. 270	Cond.	No.		1.15e+04
=======================================		========			=======================================	=======	=======

EXPLANATION:

Variable	Coefficient	P-value	Interpretation
Carpet Area	0.0343	<0.05	For each additional sq. ft. , the selling price increases by 0.034 million Rs , holding other variables constant.
Distance to Nearest Metro	-1.8737	<0.05	For each additional km away from metro , the price decreases by 1.87 million Rs , all else equal.
Schools	1.4379	<0.05	Each additional school nearby increases the price by 1.3 million Rs , if other factors are held constant.

Question 3: What is the R2 and adjusted R2 of the model? Give interpretation.

OUTPUT: $R^2 = 0.808 \rightarrow ~80\%$ of the variation in house price can be explained by this model.

Adjusted R 2 = 0.808 \Rightarrow Similar value after adjusting for number of predictors, confirms the model strength.

This is a strong model with a good explanatory power.

Question 4: Is there a multicollinearity problem? If yes, do the necessary steps to remove it.

VIF Output:

	△ Variable	# VIF
0	Intercept	119.98940511378272
1	area	1.6985770212861035
2	distance	1.05520609424952
3	schools	1.7641262589958706

Multicollinearity was checked using the variance inflation factor and all variables had VIFs <5 indicating that there was no multicollinearity and hence all variables were retained in the model.

Question 5: Are there any influential observations in the data?

OUTPUT: Cooks distance check revealed influential points above the threshold, these points can disproportionately affect the regression. The model was re-run with the influential observations removed for comparison to initial model.

The influential points were noted as follows

Influential points: [6 23 24 27 51 62 65 97 103 109 115 116 125 140 141 145 149]

Model re-fit after removing the influential points

OLS Regression Results						
Dep. Variable:		rice				0.858
Model:		OLS	Adj.	R-squared:		0.855
Method:	Least Squ	ıares	F-st	atistic:		275.2
Date:	Sun, 20 Apr	2025	Prob	(F-statistic)		8.66e-58
Time:	14:2	28:17	Log-	Likelihood:		-274.07
No. Observations:		141	AIC:			556.1
Df Residuals:		137	BIC:			567.9
Df Model:		3				
Covariance Type:	nonro	bust				
==========					=======	
со	ef std err		t	P> t	[0.025	0.975]
Intercept -12.00	73 1.899	- -	5.322	0.000	-15.763	-8.251
area 0.03	97 0.002	17	7.164	0.000	0.035	0.044
distance -2.12	19 0.160	-13	3.221	0.000	-2.439	-1.805
schools 0.51	22 0.399	1	1.285	0.201	-0.276	1.300
Omnibus:	و	 9.670	Durb:	======= in-Watson:	======	2.280
Prob(Omnibus):	6	8.008	Jarq	ue-Bera (JB):		10.140
Skew:	-6	9.656	Prob	(JB):		0.00628
Kurtosis:		3.051	Cond	. No.		1.37e+04
	========				======	

Model Summary Comparison Original vs Cleaned(Influential points removed)

Variable	Coefficient		P-value		
variable	Original	Cleaned	Original	Cleaned	Conclusion
Carpet Area	0.0346	0.0397	< 0.05	< 0.05	There is no significant difference between the two models as it relates to carpet area
Distance to Nearest Metro	-1.8704	-2.1219	< 0.05	< 0.05	There is no significant difference between the two models as it relates to distance to nearest Metro station
Schools	1.3187	0.5122	< 0.05	0.201	There is a significant difference between the two models as it relates to schools nearby. The cleaned model has a p-value greater >0.05. This suggests that those outlier rows were contributing to the apparent importance of this variable.

R² and Adjusted R² Value comparison

Metric Original Model		Cleaned Model
R ² 0.808		0.858
Adjusted R ²	0.804	0.855

Key Takeaway:

After the removal of the influential points it was observed that the p-value for schools became >0.05 indicating that the schools variable is not statistically significant and it was the influential observations that were contributing to the apparent importance of this variable. In the light of this new information we need to re-fit the model after removing the schools variable seeing as it is not statistically significant. So next key steps will include;

- 1- Drop the schools variable from the data set
- 2- Re-split the remaining data set into train and test sets (80/20)
- 3- Re-fit the model and print model summary
- 4- Assess R² and Adjusted R² and reconfirm statistical significance of variables.

Re-fit model summary after influential points removed and statistically insignificant variable removed.

OLS Regression Results							
Dep. Variable: Model: Method: Date:	OLS Least Squares		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic):		0.795 0.792 300.5 4.58e-54		
Time: No. Observations: Df Residuals: Df Model: Covariance Type:		15:21	:18 158 155 2		ikelihood:	, .	-353.32 712.6 721.8
	coef	std err		t	P> t	[0.025	0.975]
	6139 0391 0031	1.964 0.002 0.178		.404 .416 .249	0.000 0.000 0.000	-14.494 0.035 -2.355	-6.734 0.043 -1.651
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.0 -0.1	999				2.289 17.806 0.000136 1.13e+04

EXPLANATION:

Variable	Coefficient	P-value	Interpretation
Carpet Area	0.0391	<0.05	For each additional sq. ft. , the selling price increases by 0.039 million Rs , holding other variables constant.
Distance to Nearest Metro	-2.0031	<0.05	For each additional km away from metro , the price decreases by 2 million Rs , all else equal.

Key Takeaway:

Based on the model summary above we can conclude that the remaining variables are significant and we can proceed to re-build the model with the said variables.

 $R^2 = 0.795 \rightarrow \sim 80\%$ of the variation in house price can be explained by this model.

Adjusted R 2 = 0.792 \Rightarrow Similar value after adjusting for number of predictors, confirms the model strength.

This is a strong model with a good explanatory power.

Question 6: Can we assume that errors follow 'Normal' distribution?

To check for normality among the residuals(errors), we ran the Shapiro-Wilk test and made a QQ plot of the residuals.

Shapiro-Wilk Test p-value:	Conclusion
0.0001	p-value <0.05 therefore we fail to reject normality

QQ-Plot of Residuals.

The points in the QQ plot fall along the 45° line, residuals(errors) are likely to be normally distributed.

Based on both the Shapiro-Wilk test and QQ plot indicate that the residuals follow normal distribution.

Question 7: Is there a Heteroscedasticity problem?

Heteroscedasticity was analysed using the Residuals vs Fitted values plot.

Seeing as the spread of variance is random, we can conclude that there is no heteroscedasticity, and we have homoscedasticity inherent between the residuals and the fitted values.

Question 7: Calculate the RMSE for the Training and Testing data

RMSE(Training Data)	2.264
RMSE(Test Data)	2.291

The RMSE is consistent between the train and the test data sets, indicating a well generalized model. Ideally you want the training RMSE to be lower than the test data which is the case in point.