CC131: BASIC ELECTRICAL TECHNOLOGY CREDITS = 5 (L=3, T=0, P=2)

COURSE OBJECTIVE:

The subject aims to provide the student of various disciplines with:

- **C1**. An understanding of basic abstractions of major fields of electrical engineering on which analysis and design of electrical systems are based
- **C2.** The capability to use abstractions to comprehend and analyze electrical devices, equipments & systems in terms of performance and discrepancies.
- **C3.** Knowledge for learning advanced topics in electrical engineering
- **C4.** The capability to incorporate the knowledge of electrical engineering in their respective field while designing and executive their own systems.

Teaching & Assessment Scheme:

Teaching Scheme			Credit	Examination Mar ks				Total
L	T	P	C	Theory		Pra	ctical	Marks
				ESE	CE	ESE	CE	
3	0	2	5	70	30	30	20	150

Course contents:

Unit	Topics	Teaching Hours
1	Steady-state DC circuit analysis: Types of electrical sources. Series &	05
	parallel resistances, Solution of electrical circuits using KVL & KCL, star-	
	delta conversion, nodal, mesh and loop analysis.	
2	Capacitance: Dielectric strength; Capacitor; Charging & discharging of	04
	capacitor; Capacitor in series and parallel; Energy stored in a capacitor.	
3	Electromagnetism:	05
	Faradays Laws; Lenz's Law; Fleming's Rules; Effect of magnetic field on	
	current carrying conductor; Magnetic circuits; Rise & decay of current in	
	an inductive circuit; Statically and dynamically induced EMF; Concepts	
	of self-inductance, mutual inductance and coefficient of coupling;	
	Inductance in series and parallel; Hysteresis and eddy current losses;	
	Energy stored in magnetic fields. Comparison of R, L & C	

4	Single Phase A. C. Circuits:	08		
	Generation of a. c. voltage; Vector & phasor representation of a. c.			
	quantities; Analysis of R, L, C, R-L, R-C and R-L-C circuits with			
	phasor diagrams; Concepts of real, reactive & apparent power and power			
	factor; Series, parallel and series - parallel a.c. circuits; Resonance in			
	series and parallel circuits, Concept of power factor improvement;			
5	Three Phase A. C. Circuits:	04		
	Advantages of three phase systems; Generation of three phase power;			
	Phase sequence; Balanced supply and load; Relationship between line and			
	phase values of balanced three phase circuit; Power Measurement in			
	single phase & balanced three phase circuits.			
6	Electrical Machines	08		
	Principle of operation of transformer, a.c.& d.c. motors and generators;			
	Classification of transformers & electrical machines; Their constructional			
	features and Applications; Concept of losses & efficiency			
7	Electrical Measurement	04		
	Classification of measuring instruments; Elementary treatment of			
	PMMC, Moving iron and Digital meters.			
8	Allied topics:	04		
	Single line diagram of electrical power system; Classification of wiring;			
	Simple control circuit in domestic installation; Concept of fuse, MCB,			
	ELCB and earthing.			

List of References:

- 1. B. L. Theraja, Electrical Technology, Vol 1 & 2, S. Chand.
- 2. D. P. Kothari and I. J. Nagrath, Theory and Problems in Basic Electrical Engineering, Prentice Hall, India.
- 3. V. K. Mehta, Rohit Mehta, Principles of Electrical Engineering, S. Chand.
- 4. Vincent Del. Toro, Principles of Electrical Engineering, Prentice Hall, India
- 5. Martin U. Reissland, Electrical Measurements: Fundamentals, Concepts, Applications, New Age International Publication

Course Outcomes (COs):

After learning this course the students will be able to:

- **CO1.** Assess the knowledge about the electric and magnetic circuits.
- **CO2.** Practice the fundamentals of AC supply systems and their applications.
- **CO3.** Interpret the working and applications of various electrical machines.
- **CO4.** Associate the knowledge about various measuring instruments and wiring system.
- **CO5**. Comprehend the advance subjects of electrical engineering.