3월 9일 (목)

Week 03: Simple amplification with MOSFET

20210207 이지현

담당교수: 정윤영 (ychung@postech.ac.kr)

담당조교: 김윤식 (ys.kim@postech.ac.kr)

1. 실험 개요

- 1.1. MOSFET 디바이스를 이용하여 Common Source Amplifier를 설계 후 분석한다.
- 1.2. Common Source Amplifier 회로 분석을 통해 게이트 전압 (V_G), 소스 전압 (V_S), 드레인 전압 (V_D)의 이론 값을 계산한 후 측정 값과 비교해본다.
- 1.3. 측정을 통해 설계한 Common Source Amplifier의 전압 이득을 구한다.
- 1.4. 측정 결과를 이론 값 및 LT Spice를 이용한 시뮬레이션 결과와 비교한 후 분석해 본다.
- 1.5. 실험 측정을 진행하기 전 이론 값 분석 및 LT Spice 시뮬레이션을 마무리 한다.

2. 준비물

LTspice, Spice Model "2N7002" (N-channel MOSFET), ADALM2000, Breadboard

Resistor: 20 Ω (1), 100 Ω (1), 220 Ω (3), 1K Ω (1), 100K Ω (2)

Capacitor: 10 uF (1)

MOSFET: 2N7002

3. 실험 과정

3.1. Common Source Amplifier

<Figure 3.1>

위 그림 3.1과 같이 회로를 구성한다.

3.1.1. Common Source Amplifier 회로를 설계하여 $V_{DC} = 5$ V 일 때의 동작점 V_G , V_D , V_S 를 측정한 후 이론 값과 비교해본다. (K와 V_{TH} 값은 실험 2의 결과를 이용하고 Capacitor는 Open 시킨 후, 값을 구한다)

	시뮬레이션값	측정값	이론값
V _G	2.5V	2.5V	2.5V
V_{D}	3V	3.25V	4.47V
V _S	0.4V	0.363V	0.106V

3월 9일 (목)

< 이론값 계산 >

① R12+ R261 622 2021 201 (Capacitor open)

(5-VG)/100+Ω = VG/100+Ω

$$\frac{1}{2} V_{G} = 25V$$
② Ismin 2+ Isource = $\frac{1}{2}$ =

3.1.2. Common Source Amplifier의 입력으로 V_{AC} : 100 m V_{pp} & 1 kHz의 신호를 넣고, 출력의 Peak-to-Peak 전압을 비교하여 전압 이득을 구한다.

(V_{DC}: 5 V, r₀의 영향은 무시한다.)

	시뮬레이션값	측정값	이론값
gm	X	X	0.036
입력 전압	99mVpp	134mVpp	100mVpp
출력 전압	301.7mVpp	310mVpp	360mVpp
전압 이득	3.05	2.313	3.6

< 이론값 계산 >

$$I_{b} = k(V_{aS} - V_{PM})^{2} = 61.73 \times 10^{-3} (2.5 - 0.106 - 2.1)^{2} = 0.0053$$

$$g_{m} = \frac{2I_{b}}{V_{aS} - V_{PM}} = 0.026 \qquad , g_{a}\bar{l}_{n} = g_{m}R_{d} = 0.036 \times 100 = 3.6$$

$$V_{as} - V_{PM}$$

$$V_{as} - V_{PM} = 0.036 \times 100 = 3.6$$

$$V_{as} - V_{PM} = 0.036 \times 100 = 3.6$$

3월 9일 (목)

3.1.3. MOSFET의 Drain과 V_{DD} 사이의 저항 R_3 의 값을 변경하며, Common Source Amplifier의 전압 이득의 변화를 살펴본다. 그리고 변화의 원인을 간단히 설명 한다. (HINT : DC 동작점)

 $(V_{AC}: 100 \text{ mV}_{pp} \& 1 \text{ kHz}, V_{DC}: 5 \text{ V})$

전압 이득	$R_3 = 220$	$R_3 = 660$	$R_3 = 1K$
시뮬레이션값	2.83 (=280/99)	0.67 (=66/99)	0.036 (=3.72/99)
측정값	3.877 (=504/130)	0.16 (=21/130)	0.093 (=13/140)

 $Gain = \frac{R_3}{\frac{1}{gm} + R_4}$ 인데 R_3 의 특정 값까지는 동작점 V_{DS} 가 $V_{GS} - V_{TH}$ 보다 크기 때문에 gm은 $gm = \frac{2I_D}{V_{GS} - V_{TH}}$ 에 거의 비례하는데, 특정 값 이상으로는 V_{DS} 에 따른 I_D 증가 폭이 적어지고 공식에 따라 gm도 급격하게 감소하고 따라서 Gain이 감소하게 된다. 위 실험에서는 특정 값보다 큰 R3으로 값을 키워가며 실험을 진행했기에 점점 Gain이 감소하는 모습을 볼 수 있다.

4. 평가 지표

• MOSFET을 이용한 간단한 증폭 회로를 이해하고, 교류 전기 신호가 증폭기를 통해 가공되는 signal conditioning에 대한 이론/실험적인 분석을 진행한다.