Análise de Decisão e Valor da Informação

Raul A. Teixeira*, Lúcio T. Santos

Resumo

O presente trabalho trata sobre o uso de Análise de Decisão e Valor da Informação para determinar se é financeiramente viável pagar por informações novas durante a tomada de decisões que envolvam investimentos, lucros e perdas. É tratado em específico o caso em que uma indústria petrolífera estuda se deve perfurar um poço de petróleo ou não, levando em consideração a possibilidade de adquirir dados sísmicos sobre o local a ser perfurado que podem melhorar o seu conhecimento sobre as probabilidades de haver pétroleo.

Palavras-chave:

Decisão, valor da informação, utilidade.

Introdução

Quando se tomam decisões importantes, todas as possibilidades devem ser consideradas. Quando essas decisões envolvem valores monetários, deve haver uma análise mais minuciosa ainda do problema. A Análise Estatística de Decisão fornece ferramentas para a resolução desses problemas.

O objetivo nesse projeto foi em primeiro lugar estudar as bases da Análise de Decisão, Valor da Informação e Teoria da Utilidade para depois aplicá-las na resolução de um problema na área de Geofísica, estudando assim o funcionamento dessas ferramentas.

Resultados e Discussão

Consideremos que uma determinada empresa precisa decidir se deve ou não perfurar um poço de petróleo em um lugar específico, considerando que há probabilidades de o poço estar seco ou possuir petróleo pesado, médio ou leve, que são seus possíveis estados naturais. Além disso, a empresa leva em consideração a possibilidade de pagar por algumas medições sísmicas do solo que vão modificar as probabilidades do estado natural do poço, indicando propensão à existência de petróleo ou não.

Assumindo que a empresa inicialmente conhece probabilidades em relação à existência de petróleo no local (Tabela 1), que há determinada precisão para o experimento (Tabela 2) e construindo lucros baseando-se em valores reais de gastos da Petrobras no Pré-Sal em 2013³ (Tabela 3), calculamos o lucro esperado sem a compra das informações (L_{SI}) utilizando uma $\acute{A}rvore$ de Decisão. Em seguida, aplicamos o Teorema de Bayes na Tabela 2 e construímos outra árvore de decisão considerando cada resultado da experimentação, e calculamos o valor do lucro esperado com a medição (L_{CI}). O Valor da Informação será, então, $V_I = L_{CI} - L_{SI}$.

Com os valores adotados, obtivemos $L_{SI} = US\$16$ milhões e $L_{CI} = US\$26,5$ milhões. Assim, o valor máximo a se pagar pelas medições sísmicas é de $V_I = L_{CI} - L_{SI} = US\$10,5$ milhões. Ou seja, pagando até no máximo esse valor, é vantajoso comprar as medições sísmicas. Além disso, analisamos os retornos na árvore de decisão com experimentação de acordo com os possíveis resultados da medição sísmica. Se o resultado for "propenso a petróleo", deve-se perfurar o solo com esperança de lucro de US\$50 milhões. Do contrário, se a medição indicar a não-propensão ao petróleo, não se deve perfurá-lo.

Tabela 1. Probabilidades a priori dos Estados Naturais.

Estado Natural	Probabilidades
Poço seco	0,35
Petróleo pesado	0,35
Petróleo médio	0,20
Petróleo leve	0,10

Tabela 2. Probabilidades de Resultado das Medições Sísmicas dado o Estado Natural.

	Resultados das Medições	
Estado Natural	Propenso	Não propenso
Poço seco	0,10	0,90
Petróleo pesado	0,70	0,30
Petróleo médio	0,80	0,20
Petróleo leve	0,90	0,10

Tabela 3. Pagamentos dos Estados Naturais.

Estado Natural	Pagamentos (milhões de US\$)
Poço seco	-60
Petróleo pesado	50
Petróleo médio	60
Petróleo leve	75

Conclusões

A Análise Estatística de Decisão pode auxiliar na tomada de decisão e evitar gastos desnecessários, além de aumentar o lucro em geral de empresas das mais diversas áreas. Apesar de ter sido resolvido um problema relativamente simples, pode-se modificá-lo para questões mais complexas, como decidir um local dentro de determinada região para perfurar um poço, e envolver inúmeros experimentos e medições com respectivos custos.

Agradecimentos

 Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – agência de fomento).

¹ BEKMAN, O. R.; NETO, P. L. O. C. Análise Estatística da Decisão. São Paulo: Edgard Blücher, 1980.

² RAVINDRAN, A; PHILLIPS, D. T.; SOLBERG, J. J. Operations Research: Principles and Practice. Ed. 2. Canadá: John Wiley & Sons, 1987.

³ Reduzimos em 55% o tempo de perfuração de poços no pré-sal. **Petrobras**, 01 de jul. de 2014. Disponível em: http://www.petrobras.com.br/fatos-e-dados/reduzimos-em-55-o-tempo-de-perfuração-de-pocos-no-pre-sal.htm. Acesso em: 08 de jul. de 2019.