Colore Modeling

De Color is the aspect of things that is caused by differentiating qualities of light being reflected or emitted by them.

Additive	Substractive
RGB, HSV, HSL	CHY, CHYK
Add colores to generate multiple colors	Substract colors to generate diff colors.
Active Display > TV, Mobile	Device that deposite > printer.
No data > black	No data > white 1 d)
Increase brightness	Decrease Brightness.

Primary colors of light (RGB): Red (R), Green (G), Blue (B)

Secondary Colors of light (CMY):

> Cyan > Green + Blue

> Magenta > Red + Blue

> Yellow > Red + green '

Scanned with CamScanner

a by pailaridans taken. He a not a con-

Monochromatic -> Mono (single) > a single light.

RGB (1,0,0) -> Red (0,1) RGB (1,1,0) -> Yellow ...

GI

Black

Each colon & bit . Total combination = 28 x 28 x 28 = 16 million

Scanned with CamScanner

white

CMY Colon cube

$$\begin{bmatrix} RG_1B \rightarrow CMY \\ G_1B \end{bmatrix} = 1 - \begin{bmatrix} C \\ H \\ Y \end{bmatrix} = 1 - \begin{bmatrix} R \\ G_1B \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{e} \\ \mathbf{h} \\ \mathbf{r} \end{bmatrix} = \mathbf{1} - \begin{bmatrix} \mathbf{e} \\ \mathbf{G} \\ \mathbf{g} \end{bmatrix}$$

... Gwitching between ROB and CMY

$$RGIB = \begin{bmatrix} 0.2 \\ 0.7 \\ 0.6 \end{bmatrix} \qquad \therefore CMY = \begin{bmatrix} 1-0.2 \\ 1-0.7 \\ 1-0.6 \end{bmatrix} = \begin{bmatrix} 0.8 \\ 0.3 \\ 0.4 \end{bmatrix}$$

- The human life can see 128 different hues, 130 diff saturations and number of values between 16 (Blue) and 23 (yellow)
- · Red (0-60%)
- · Yellow (61-120)
- · Green (121 180°)
- · Cyan (181-240°)
- · plue (24-300)
- Magenta (301-360)

Scanned with CamScanner

RGB to HSL / HSY Step 01 Find out the max and minimum value from RGB. Max = max (R,G,B) Mim = min (R, G, B) 1 = Max - Hin Step: 2 Find out linghtness and gaturation for HSL Saturation for HSV and Value Max + Mira 7 Lightness HSL Saturcation 1-12L-1 here L= Lightness 7 Saturation 1 Hax HSV Value Max (Max Lightness) Step 03 Calculate Hue

if
$$R = Hax$$
: $H = \left(\frac{G-B}{\lambda}\right) *60$. $\begin{bmatrix} if H < 0 \\ H = H + 360 \end{bmatrix}$

Scanned with CamScanner

Scanned with CamScanner