Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch *kolejnych* rzutach pojawią się "reszki". Oblicz wartość oczekiwaną liczby wykonanych rzutów.

- (A) 7
- (B) 8
- (C) 9
- (D) 10
- (E) 6

Wskazówka: jeśli w rzucie numer n jest orzeł to przyjmijmy, że "układ jest w stanie 0". Jeśli w rzucie numer n jest reszka a w rzucie n-1 był orzeł, to "układ jest w stanie 1". Kończymy, gdy "układ znajdzie się w stanie 2". W ten sposób definiujemy łańcuch Markowa. Rozpatrz wartość oczekiwaną liczby rzutów w zależności od stanu układu.

Zadanie 2. Rozważmy niezależne zmienne losowe $W_0,W_1,...,W_n,...$ o jednakowym rozkładzie wykładniczym z wartością oczekiwaną μ . Niech N będzie zmienną losową o rozkładzie Poissona wartością oczekiwaną λ , niezależną od $W_0,W_1,...,W_n,...$ Oblicz dystrybuantę rozkładu prawdopodobieństwa zmiennej losowej

$$Y = \min\{W_0, W_1, ..., W_N\}.$$

(A)
$$\Pr(Y \le y) = 1 - \exp \left[\lambda \left(e^{-y/\mu} - 1 \right) - y/\mu \right]$$

(B)
$$\Pr(Y \le y) = 1 - \exp[\lambda(e^{-y/\mu} - 1)]$$

(C)
$$Pr(Y \le y) = 1 - \exp[-\lambda y/\mu]$$

(D)
$$Pr(Y \le y) = 1 - \exp[-y/(\mu\lambda)]$$

(E)
$$Pr(Y \le y) = 1 - \frac{\lambda}{\lambda + y/\mu}$$

Zadanie 3. Rozpatrzmy standardowy model jednokierunkowej analizy wariancji. Niech X_{ij} będą niezależnymi zmiennymi losowymi o rozkładach normalnych $(i=1,...,k;\ j=1,...n_i)$, przy czym $E[X_{ij}]=\mu_i$ i $Var[X_{ij}]=\sigma^2$. Przyjmijmy typowe oznaczenia:

$$SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_i)^2, \quad SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X})^2,$$

gdzie

$$\overline{X}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij} , \qquad \overline{X} = \frac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} X_{ij} , \qquad n = \sum_{i=1}^k n_i .$$

Przy założeniu, że hipoteza o jednorodności jest prawdziwa, czyli że $\mu_1 = ... = \mu_k$, oblicz

$$E\frac{SSW}{SST}$$
.

(A)
$$\frac{\sum_{i=1}^{k} n_i^2}{k + \sum_{i=1}^{k} n_i^2}$$

(B)
$$\frac{\sum_{i=1}^k n_i^2}{n^2}$$

(C)
$$\frac{n-k-1}{n-1}$$

(D)
$$\frac{n-k}{n-1}$$

(E)
$$\frac{n-k}{n}$$

Zadanie 4. Niech $W_1, W_2, ..., W_n$ (n > 1) będzie próbką z rozkładu wykładniczego o wartości oczekiwanej μ . Rozważmy estymatory parametru μ postaci

$$\hat{\mu} = aS$$
, gdzie $S = \sum_{i=1}^{n} W_i$.

Znajdź liczbę a, dla której błąd średniokwadratowy estymatora, czyli wielkość

$$E(\hat{\mu}-\mu)^2$$

jest najmniejszy.

(A)
$$a = \frac{1}{n}$$

(B)
$$a = \frac{1}{n-1}$$

(C)
$$a = \frac{1}{n+1}$$

(D)
$$a = \frac{1}{n + \sqrt{n}}$$

(E) nie istnieje liczba a dla której błąd średniokwadratowy odpowiadającego jej estymatora jest jednostajnie najmniejszy (najmniejszy przy każdej wartości μ)

Zadanie 5. Załóżmy, że $U_1, U_2, ..., U_n, ...$ są niezależnymi zmiennymi losowymi o jednakowym rozkładzie jednostajnym na przedziale [0,1]. Rozważmy ciąg średnich geometrycznych $\sqrt[n]{U_1U_2...U_n}$. Wybierz prawdziwe stwierdzenie.

(A)
$$\lim_{n \to \infty} \Pr\left(\sqrt[n]{U_1 U_2 ... U_n} \le \frac{1}{2} \right) = 0$$

(B)
$$\lim_{n \to \infty} \Pr\left(\sqrt[n]{U_1 U_2 ... U_n} \le \frac{1}{3} \right) = 0$$

(C)
$$\lim_{n \to \infty} \Pr\left(\sqrt[n]{U_1 U_2 ... U_n} \le \frac{1}{2} \right) = \frac{1}{2}$$

(D)
$$\lim_{n\to\infty} \Pr\left(\sqrt[n]{U_1U_2...U_n} \le \frac{1}{e}\right) = 1$$

(E)
$$\lim_{n \to \infty} \Pr\left(\sqrt[n]{U_1 U_2 ... U_n} \le \frac{1}{3}\right) = 1$$

Zadanie 6. Zakładamy, że każda pojedyncza szkoda, niezależnie od pozostałych, jest likwidowana:

- W roku, w którym została zgłoszona z prawdopodobieństwem θ ;
- W drugim roku po zgłoszeniu z prawdopodobieństwem $\theta(1-\theta)$;
- W trzecim roku lub później z prawdopodobieństwem $(1-\theta)^2$.

Dane, którymi dysponujemy dotyczą n szkód. Wiemy, że spośród nich:

- n_1 zostało zlikwidowanych w roku, w którym zostały zgłoszone;
- n_2 zostało zlikwidowanych w drugim roku po zgłoszeniu;
- n₃ zostało zlikwidowanych w trzecim roku lub póżniej,

gdzie
$$n_1 + n_2 + n_3 = n$$
.

Podaj estymator największej wiarogodności parametru θ na podstawie tych danych.

$$(A) \quad \hat{\theta} = \frac{n_1 + n_2}{n + n_3}$$

(B)
$$\hat{\theta} = \frac{n_1 + n_2}{2n - n_1}$$

$$(C) \qquad \hat{\theta} = \frac{n_1 + n_2}{2n - n_3}$$

(D)
$$\hat{\theta} = \frac{n_1}{n}$$

(E)
$$\hat{\theta} = \frac{n_1^2}{n^2} + \left(1 - \sqrt{\frac{n_3}{n}}\right) \frac{n_2 + n_3}{n}$$

Zadanie 7. Rozpatrzmy następujący schemat losowania. Mamy sześć urn, ponumerowanych liczbami 1,2,3,4,5,6.

W urnie nr. i znajduje się i kul czarnych i 7-i kul białych (i = 1,2,3,4,5,6).

Najpierw rzucamy kostką do gry. Jeśli otrzymamy i oczek, to wybieramy urnę oznaczoną numerem i. Losujemy z tej urny kolejno, bez zwracania, 2 kule. Niech B_1 oznacza zdarzenie losowe polegające na wyciągnięciu białej kuli w pierwszym losowaniu, zaś B_2 - zdarzenie polegające na wyciągnięciu białej kuli w drugim losowaniu.

Oblicz prawdopodobieństwo warunkowe $Pr(B_2 | B_1)$.

(A)
$$Pr(B_2 | B_1) = 5/9$$

(B)
$$Pr(B_2 | B_1) = 4/9$$

(C)
$$Pr(B_2 \mid B_1) = 1/2$$

(D)
$$Pr(B_2 \mid B_1) = 20/41$$

(E)
$$Pr(B_2 | B_1) = 5/7$$

Zadanie 8. $X_1, X_2, ..., X_{10}$ jest próbką z rozkładu normalnego o *znanej* wartości oczekiwanej μ i *nieznanej* wariancji σ^2 . Rozważmy test hipotezy

$$H_0: \sigma^2 \leq 4$$

przeciwko alternatywie

$$H_1: \sigma^2 > 4,$$

który jest najmocniejszy na poziomie istotności $\alpha=0.05$. Dla jakich wartości wariancji moc tego testu jest niemniejsza, niż 0.95? Podaj zbiór

$$M = \left\{ \sigma^2 : moc \ testu \ge 0.95 \right\}$$

- (A) $M = [9.29, \infty)$
- (B) $M = [4.46, \infty)$
- (C) $M = [18.58, \infty)$
- (D) $M = [20.35, \infty)$
- (E) $M = [31.08, \infty)$

Zadanie 9. Zakładamy, że $X_1,...,X_{10}$ są niezależnymi zmiennymi losowymi o rozkładach normalnych, przy czym :

 $E[X_i] = \mu$ - wartość oczekiwana wszystkich zmiennych jest jednakowa i nieznana;

 $Var[X_i] = \frac{\sigma^2}{w_i}$ - wariancje zmiennych są różne; wagi w_i są znane a σ^2 jest nieznanym parametrem.

Należy zbudować przedział ufności $[\hat{\sigma}_1^2, \hat{\sigma}_2^2]$ dla σ^2 na poziomie ufności $1-\alpha=0.90$. Dla którego z poniższych przedziałów prawdziwa jest równość

$$\Pr(\hat{\sigma}_1^2 \le \sigma^2 \le \hat{\sigma}_2^2) = 0.90$$
 ?

(A)
$$[\hat{\sigma}_1^2, \hat{\sigma}_2^2] = \left[\frac{\sum_{i=1}^{10} w_i (X_i - \overline{X})^2}{16.9190}, \frac{\sum_{i=1}^{10} w_i (X_i - \overline{X})^2}{3.3251}\right], \text{ gdzie } \overline{X} = \frac{\sum_{i=1}^{10} X_i}{10}$$

(B)
$$[\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}] = \left[\frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{16.9190}, \frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{3.3251}\right], \text{ gdzie } \overline{X}_{w} = \frac{\sum_{i=1}^{10} w_{i} X_{i}}{\sum_{i=1}^{10} w_{i}}$$

(C)
$$[\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}] = \left[\frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{18.3070}, \frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{3.9403}\right], \text{ gdzie } \overline{X}_{w} = \frac{\sum_{i=1}^{10} w_{i} X_{i}}{\sum_{i=1}^{10} w_{i}}$$

(D)
$$[\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}] = \left[\frac{\sum_{i=1}^{10} (X_{i} - \overline{X}_{w})^{2}}{18.3070 \sum_{i=1}^{10} w_{i}}, \frac{\sum_{i=1}^{10} (X_{i} - \overline{X}_{w})^{2}}{3.9403 \sum_{i=1}^{10} w_{i}}\right], \text{ gdzie } \overline{X}_{w} = \frac{\sum_{i=1}^{10} w_{i} X_{i}}{\sum_{i=1}^{10} w_{i}}$$

(E)
$$[\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}] = \left[\frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{\gamma_{0.95} \left(\sum_{i=1}^{10} w_{i} / 2; 1 / 2\right)}, \frac{\sum_{i=1}^{10} w_{i} (X_{i} - \overline{X}_{w})^{2}}{\gamma_{0.05} \left(\sum_{i=1}^{10} w_{i} / 2; 1 / 2\right)}\right], \text{ gdzie } \overline{X}_{w} = \frac{\sum_{i=1}^{10} w_{i} X_{i}}{\sum_{i=1}^{10} w_{i}},$$

zaś symbol $\gamma_p(\alpha,\lambda)$ oznacza kwantyl rzędu p rozkładu Gamma z parametrem kształtu α i parametrem skali λ

Zadanie 10. Załóżmy, że $U_0, U_1, ..., U_n$ są niezależnymi zmiennymi losowymi o jednakowym rozkładzie jednostajnym na przedziale [0,1]. Oblicz warunkową wartość oczekiwaną

$$E(\max\{U_0, U_1, ..., U_n\} | U_0).$$

(A)
$$E(\max\{U_0, U_1, ..., U_n\} | U_0) = \frac{n}{n+1}$$

(B)
$$E(\max\{U_0, U_1, ..., U_n\} | U_0) = \frac{n + U_0^n}{n+1}$$

(C)
$$E(\max\{U_0, U_1, ..., U_n\} | U_0) = \frac{n + U_0^{n+1}}{n+1}$$

(D)
$$E(\max\{U_0, U_1, ..., U_n\} | U_0) = \frac{n + U_0}{n + 1}$$

(E)
$$E(\max\{U_0, U_1, ..., U_n\} | U_0) = \frac{n}{n + U_0}$$

XXXI Egzamin dla Aktuariuszy z 6 grudnia 2003 r.

Prawdopodobieństwo i Statystyka

Arkusz odpowiedzi*

Imię i nazwisko	KLUCZ	ODPOWIEDZI.	
· ·			
Pasal			

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	A	
3	D	
4	С	
5	В	
6	В	
7	A	
8	С	
9	В	
10	С	

11

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.