AGH University of Science and Technology

June 2018

REV	Data	Zmiany
1.0.0		Michał Berdzik (michalberdzik97@gmail.com)

Kalkulator

Autor: Michał Berdzik
Akademia Górniczo-Hutnicza
Im. Stanisława Staszica

Kraków (C) 2018

Factorical Deposit	Day 4.0.0
「echnical Report	Rev. 1.0.0

	June 2018
Lista oznaczeń	2
Wstęp	3
Wymagania systemowe	3
Funkcjonalność	3
Analiza problemu	4
Projekt techniczny	5
Opisy klas	5
Klasa Main Page	5
Klasa Calculator	6
Klasa Converter	7
Klasy Conversion	8
Klasa NumbSysInterpreter	9
Klasa Infix2Postfix	10
Klasa calcRPN	10
Algorytm działania klasy Infix2Postfix	11
Algorytm działania klasy calcRPN	12
Diagram klas	13
Opis realizacji	13
Podręcznik użytkownika	14
Opis aplikacji	14
Metodologia rozwoju i utrzymania systemu	16

AGH University of Science and Technology

June 2018

Lista oznaczeń

RPN (ONP)	Reverse Polish Notation (Odwrotna Notacja Polska)
NSI	Number System Interpreter

AGH University of Science and Technology

June 2018

Wstęp

Dokument dotyczy opracowania aplikacji kalkulatora wraz z wbudowanym konwerterem jednostek. Program został wykonany jako Uniwersalna Aplikacja Windows, więc może być obsługiwana na różnych urządzeniach.

Wymagania systemowe

- Windows 10 lub nowszy
- Aplikacja jest przystosowana do użytku na różnych urządzeniach (PC, smartfon, XBOX)

Funkcjonalność

Do funkcjonalności programu możemy zaliczyć:

- Łatwy sposób wprowadzania wyrażenia
- Realizacja obliczeń z zachowaniem kolejności wykonywania działań
- Automatyczna konwersja systemów możliwość wykonywania działań na liczbach z różnych systemów liczbowych
- Konwersja jednostek długości, wagi, wartości elektronicznych (mocy, wzmocnienia), temperatury oraz systemów liczbowych
- Zapamiętywanie wartości ostatnio obliczonego wyrażenia
- Możliwość przerwania obliczeń w dowolnym momencie

AGH University of Science and Technology

June 2018

Analiza problemu

• Implementacja algorytmu do RPN: Algorytm potrzebny, aby kalkulator mógł zrealizować działania zachowując ich kolejność.

- Stworzenie klasy do obliczenia RPN: Program liczący wartość podanego wyrażenia RNP.
- Stworzenie algorytmu do interpretacji NSI: Algorytm analizuje podane mu wyrażenie, rozpoznając typ systemu liczbowego i odpowiednio przekształcając wyrażenie dopasowuje je aby móc je przekazać do algorytmu RPN.
- Klasa konwertera: Klasa pozwalające na konwersję różnych typów jednostek.

Projekt techniczny

Opisy klas

Klasa Main Page

- Klasa odpowiedzialna za działanie całej aplikacji
- Zawiera metody do obsługi przycisków użytych w aplikacji takich jak przyciski do wyboru cyfr oraz przyciski specjalne.

June 2018

Klasa Calculator

- Klasa Calculator korzysta z klas calcRPN, Infix2Postfix, NumbSysInterpreter oraz NumbSysConverter
- Stanowi uproszczenie wykonywania obliczeń przez hermetyzacje całego procesu obliczeń do jednej klasy.

June 2018

Klasa Converter

- Klasa Converter łączy w sobie funkcjonalności klas do konwersji długości, wagi, mocy, temperatury oraz systemów liczbowych
- Aby zapewnić bezproblemowe działanie bez błędów konwersji (typu konwersja kg -> mV) zastosowałem różne wersje konstruktorów, aby zapewnić dopasowanie wejściowego i wyjściowego typu konwersji. Ponadto zastosowałem tryb wyliczeniowy *enum*, aby móc rozpoznawać jaki typ konwersji jest ustalony, dzięki czemu przy ustawianiu wartości *SetInputVal()* program wie jaką konwersje zrealizować.

June 2018

Klasy Conversion

- Zasada działania tych klas jest prosta i opiera się na rozpoznaniu typu wejściowego i wyjściowego a następnie wartość wejściowa jest odpowiednio mnożona lub dzielona, aby uzyskać skonwertowana wartość.
- W każdej z klas jest zastosowany tryb wyliczeniowy enum do określania typów konwersji
- W każdej typie enum występuje element NSF oznaczający typ nie określony (Not Specified)

June 2018

Klasa NumbSysInterpreter

- Klasa zrealizowana jako wzorzec projektowy 'Interpreter' służąca do interpretacji wyrażenia matematycznego, gdzie elementy są podane w różnych systemach liczbowych
- Klasa dokonuje interpretacji wszystkich elementów wyrażenia i konwertuje je do typu DEC

June 2018

Klasa Infix2Postfix

- Klasa zrealizowana jako wzorzec projektowy 'Interpreter' służąca do interpretacji wyrażenia matematycznego. Klasa przekształca wyrażenie podane jako typ Infix do wyrażenia typu Postfix (przekształca wyrażenie matematyczne do postaci RPN)
 - Schemat algorytmu działania klasy jest dostępny na stronie 12

Klasa calcRPN

- Klasa przyjmuje wyrażenie RPN i na jego podstawie liczy jego wartość, którą zwraca jako *double* lub *string*. Klasa obsługuje takie operatory jak: +,-,*,/,^,% (jako pierwiastek) i \$ (jako eksponenta).
- Możliwość dodania innych operatorów realizujących inne zaprogramowane im funkcje.
 - Schemat algorytmu działania klasy jest dostępny na stronie 13

June 2018

Algorytm działania klasy Infix2Postfix

June 2018

Algorytm działania klasy calcRPN

June 2018

Diagram klas

Opis realizacji

Program został napisany w Visual Studio 2015 wykorzystując szablon Uniwersalnej Aplikacji Windows. Szablon ten daje możliwość zaprojektowania działania aplikacji (w C++) oraz jej wyglądu i funkcji poszczególnych dodanych w niej elementów (w XAML).

Możliwości aplikacji:

- Wprowadzanie liczb możliwość wprowadzenia liczb przez wbudowaną klawiaturę
 lub przez wpisanie wyrażenia do pierwszego okna programu
- Zapamiętanie wyniku po kliknięciu przycisku "Ans" na ekranie zostaje wyświetlony wynik ostatniej operacji, który można użyć w kolejnych obliczeniach
- Kasowanie ekranu kliknięcie przycisku "Clr" powoduje natychmiastowe zresetowanie wszystkich wartości użytych w programie
- Podstawowe operacje matematyczne
- Konwerter jednostek po wybraniu typu wejściowego i wyjściowego wartość wpisana w okno wejściowe zostanie przekonwertowana i wyświetlona w drugim oknie

June 2018

Podręcznik użytkownika

Opis aplikacji

- **1.** Okno wpisywania wyrażenia (wpisywanie na klawiaturze (3))
- **2.** Okno obliczonej bądź skonwertowanej wartości.
- **3.** Klawiatura numeryczna wraz z przyciskami specjalnymi
- **4.** Lista wyboru typu wejściowego do konwersji jednostek
 - 5. Lista wyboru typu wyjściowego konwersji
- Przycisk % odpowiada za pierwiastek
 n-tego stopnia (np. 10%4 odpowiada [∜]√10)
- Przycisk <- odpowiada za usunięcie ostatniego znaku wpisanego do wyrażenia

Przyciski 0x, ox i bx służą do określania systemu w jakim liczba będzie zapisywana, dzięki temu możemy zapisać wyrażenie 0xA0 + bx10010 / ox32, które będzie poprawnie obliczone, a wynik będzie podany w systemie wejściowym określonym przez typ pierwszej liczby wyrażenia (w podanym wcześniej przykładzie wynik zostanie podany w systemie HEX).

June 2018

Lista 1 po wybraniu typu wejściowego konwersji automatycznie aktualizuje Listę 2 odpowiednimi typami konwersji zgodnymi z typem wybranym w Liście 1. (na rysunku obok został zaprezentowany przykład takiego automatycznego uzupełniania) Dzięki takiemu zabiegowi można zapobiec niewłaściwym typom konwersji, takim jak kg -> V.

Przykład konwersji 20 km do mil.

AGH University of Science and Technology

June 2018

Metodologia rozwoju i utrzymania systemu

- Dodanie możliwości zapamiętywania historii operacji wykorzystując wzorzec projektowy memorial
- Poprawienie kontroli wprowadzanych liczb
- Dokładniejsza kontrola wprowadzanego wyrażenia ulepszenie zabezpieczeń programu
- Wprowadzenie operacji na liczbach zespolonych
- Wykonywanie działań na macierzach
- Wprowadzenie obsługi wykonywania poleceń tekstowych uruchamianie odpowiedniego programu przez rozpoznawanie poleceń wpisywanych w okno (np. fft([1,2,3,4]))