Course Syllabus

ISYE 6644

Simulation and Modeling for Engineering and Science

Summer 2019

Professor: Dr. David Goldsman

Course Description

This course covers modeling of discrete-event dynamic systems and introduces simulation-based methods for using these models to solve engineering design and analysis problems.

Prerequisites

 You will be expected to come in knowing a bit of basic calculus, probability, and statistics. But don't worry too much – we'll provide bootcamps on that material so as to make the class pretty much self-contained. In addition, this course will involve extensive computer programming, so it would be nice to have at least a little experience in something like Excel, just to bring back the programming memories.

Course Goals

- Learn how to develop simulation models and conduct simulation studies.
- Become familiar with the organization of simulation languages. In particular, we will do
 a great deal of modeling with Arena, a comprehensive simulation package with
 animation capabilities.
- Review statistical aspects including input analysis, random variate generation, output analysis, and variance reduction techniques.

Grading Policy

- There will be two midterms and one final exam.
- There will be 10 Homework assignments (not as bad as it sounds).
- You must achieve an overall weighted average of 60% to pass the course.
- Breakdown

0	Homeworks	10%
0	Midterm Quiz 1	30%
0	Midterm Quiz 2	30%
0	Final Quiz 3	30%
		
	Total	100%

Homework and Quiz Due Dates

All homeworks and quizzes will be due at the times in the table at the end of this syllabus. These times are subject to change so please check back often. Please convert from Eastern Daylight Savings Time (EDST) to your local time zone using a <u>Time Zone Converter</u>.

Timing Policy

- The Modules follow a logical sequence, so they (mostly) need to be done in order.
- Homework Assignments should be completed by their due dates.
- Quizzes must be completed during the time allotted on the schedule.
- You will have access to the course content for the scheduled duration of the course.

Quiz Policy

- For Quiz x (x = 1,2,3), you are allowed to use x sheets of paper, either 8.5"x11" or A4, with handwritten notes (both sides of the sheet, 2x sides total).
- For all quizzes, you are allowed a blank sheet of paper for scratch work. (All OMS
 Analytics degree students will be proctored; you will have to show the front and back of
 the blank sheet while you are being proctored.)
- You are also allowed to bring any reasonable calculator.

Attendance Policy

- This is a fully online course.
- Login on a regular basis to complete your work, so that you do not have to spend a lot of time reviewing and refreshing yourself regarding the content.

Plagiarism Policy

 Plagiarism is considered a serious offense. You are not allowed to copy and paste or submit materials created or published by others, as if you created the materials. All materials submitted and posted must be your own.

Student Honor Code

All OMS Analytics degree students should abide by the Georgia Tech Student Honor Code.

- Review the Georgia Tech Student Honor Code: <u>www.honor.gatech.edu</u>.
- You are responsible for completing your own work.
- Any OMS Analytics degree student suspected of behavior in violation of the Georgia Tech Honor Code will be referred to Georgia Tech's Office of Student Integrity.

Communication

 Please contact your instructor, teaching assistants, and fellow learners via the Piazza discussion forums. Often, discussions with fellow learners (and your highly engaging and enthusiastic prof) are the sources of key pieces of learning.

Netiquette

• Netiquette refers to etiquette that is used when communicating on the Internet. Review the Core Rules of Netiquette. When you are communicating via email, discussion forums

- or synchronously (in real-time), please use correct spelling, punctuation, and grammar consistent with the academic environment and scholarship¹.
- We expect all participants in Georgia Tech's MS in Analytics program, (learners, faculty, teaching assistants, staff) to interact respectfully. Learners who do not adhere to this guideline may be removed from the course.
 - ¹Conner, P. (2006–2014). Ground Rules for Online Discussions, Retrieved 4/21/2014 from http://teaching.colostate.edu/tips/tip.cfm?tipid=128

Course Topics and Sample Pacing Schedule

The table below contains a course topic outline and homework due dates. [Note that some topics below are marked as OPTIONAL. You will not be given homework nor will you be tested on those topics; but we have nevertheless included this material in case you need additional review or would like to delve into a topic further.]

Weeks	Course Topics	Release Dates
Week 1	 Module 1: Whirlwind Tour of Simulation Lesson 1: Getting to Know You Lesson 2: Syllabus Lesson 3: Whirlwind Tour Lesson 4: Whirlwind Tour – History Lesson 5: What Can We Do For You Lesson 6: Some Baby Examples Lesson 7: More Baby Examples Lesson 8: Generating Randomness Lesson 9 [OPTIONAL]: Simulation Output Analysis 	May 13, 2019 at 8:00 a.m. EDST
Week 1 Homework	Homework 1	May 17 at 8:00 a.m. EDST – May 24 at 11:59 p.m. EDST
Week 2	 Module 2: Bootcamps Lesson 1 [OPTIONAL]: Calculus Primer Lesson 2 [OPTIONAL]: Saved By Zero! Solving Equations Lesson 3 [OPTIONAL]: Integration Lesson 4 [OPTIONAL]: Integration Computer Exercises Lesson 5: Probability Basics Lesson 6: Simulating Random Variables 	May 20, 2019 at 8:00 a.m. EDST

	 Lesson 7: Great Expectations Lesson 8: Functions of a Random Variable Lesson 9: Jointly Distributed Random Variables Lesson 10 [OPTIONAL]: Conditional Distributions / Expectation Lesson 11: Covariance and Correlation Lesson 12: Probability Distributions Lesson 13: Limit Theorems Lesson 14 [OPTIONAL]: Introduction to Estimation Lesson 15 [OPTIONAL]: Confidence Intervals 	
Week 2 Homework	Homework 2	May 24 at 8:00 a.m. EDST – May 31 at 11:59 p.m. EDST
Week 3	 Lesson 1: Stepping Through Differential Equation Lesson 2: Monte Carlo Integration Lesson 3: Monte Carlo Integration Demo Lesson 4: Making Some Pi Lesson 5: A Single-Server Queue Lesson 6: An (s,S) Inventory System Lesson 7: An (s,S) Inventory System Demo Lesson 8: Simulating Random Variables Lesson 9: Simulating Random Variables Demo Lesson 10: Spreadsheet Simulation Module 4: General Simulation Principles Lesson 1: Steps in a Simulation Study Lesson 3: Time-Advance Mechanisms Lesson 4: Two Modeling Approaches Lesson 5: Simulation Languages 	May 27, 2019 (Memorial Day) at 8:00 a.m. EDST
Week 3 Homework	Homework 3	May 31 at 8:00 a.m. EDST – June 7 at 11:59 p.m. EDST

Week 4	 Module 5: The Arena Simulation Language Lesson 1: Introduction Lesson 2: Process-interaction Lesson 3: Let's Meet Arena! Lesson 4: The Arena Basic Template Lesson 5: Create-Process-Dispose Modules Lesson 6: The Process Module Lesson 7: Resource, Schedule, and Queue Spreadsheets Lesson 8: The Decide Module Lesson 9: The Assign Module Lesson 10: Attribute, Variable, and Entity Spreadsheets Lesson 11: Arena Internal Variables Lesson 12: Displaying Stuff 	June 3, 2019 at 8:00 a.m. EDST
Week 4 Homework	Homework 4	June 7 at 8:00 a.m. EDST – June 14 at 11:59 p.m. EDST
Midterm Exam 1	Midterm Exam 1 [Covers up to and including Week 3 material + maybe a tiny bit of Arena material from Week 4]	June 7 at 8:00 a.m. EDST – June 16 at 11:59 p.m. EDST
Week 5	 Module 5 (cont.): More Arena Lesson 13: Batch, Separate and Control Lesson 14: Run Setup and Control Lesson 15: Two-Channel Manufacturing Example Lesson 16: Fake Customers Lesson 17: The Advanced Process Template Lesson 18: Resource Failures + Maintenance Lesson 19: The Blocks Template Lesson 20: The Joy of Sets Lesson 21: Description of Call Center Lesson 22: Call Center Demo Lesson 23: An Inventory Model Lesson 24: One Line vs Two Lines? Lesson 25 [OPTIONAL]: A Re-entrant Queue 	June 10, 2019 at 8:00 a.m. EDST

	 Lesson 26 [OPTIONAL]: SMARTS Files + Rockwell Demos Lesson 27: A Manufacturing System Demo 	
Week 5 Homework	Homework 5	June 14 at 8:00 a.m. EDST – June 21 at 11:59 p.m. EDST
Week 6	 Module 6: Random Number Generation Lesson 1: Introduction Lesson 2: Some Lousy Generators Lesson 3: Linear Congruential Generators Lesson 4: Tausworthe Generators Lesson 5: Generalization of LCGs Lesson 6: Choosing a Generator – Some Theory Lesson 7: Choosing a Generator – Statistics Test, Intro Lesson 8: Choosing a Generator – Goodness of Fit Tests Lesson 9: Choosing a Generator – Independence Tests, I Lesson 10 [OPTIONAL]: Choosing a Generator – Independence Tests, II 	June 17, 2019 at 8:00 a.m. EDST
Week 6 Homework	Homework 6	June 21 at 8:00 a.m. EDST – June 28 at 11:59 p.m. EDST
Week 7	 Module 7: Random Variate Generation Lesson 1: Introduction Lesson 2: Inverse Transform Method Lesson 3.1: ITM – Continuous Examples Lesson 3.2: ITM – Continuous Examples DEMO 1 Lesson 3.3: ITM – Continuous Examples DEMO 2 Lesson 4: ITM – Discrete Examples Lesson 5 [OPTIONAL]: ITM – Empirical Distributions Lesson 6.1: Convolution Method Lesson 6.2: Convolution DEMO Lesson 7: Acceptance-Rejection Method Lesson 8 [OPTIONAL]: Proof of the A-R Method Lesson 9.1: A-R Method – Continuous Examples 	June 24, 2019 at 8:00 a.m. EDST

	• Lesson 9.2: A-R Method – Continuous Examples DEMO	
Week 7 Homework	Homework 7	June 28 at 8:00 a.m. EDST – July 5 at 11:59 p.m. EDST
Week 8	 Module 7 (cont.): More RV Generation Lesson 10: A-R Method - Poisson Distribution Lesson 11 [OPTIONAL]: Composition Lesson 12: Box-Muller Normal RVs Lesson 13: Order Statistics Other Stuff Lesson 14: Multivariate Normal Distribution Lesson 15 [OPTIONAL]: Baby Stochastic Processes Lesson 16.1: Nonhomogeneous Poisson Processes Lesson 16.2: Nonhomogeneous Poisson Processes DEMO Lesson 17.1 [OPTIONAL]: Time Series Lesson 18 [OPTIONAL]: Time Series DEMO Lesson 18 [OPTIONAL]: Queueing Lesson 19.1: Brownian Motion Lesson 19.2: Brownian Motion DEMO 	July 1, 2019 at 8:00 a.m. EDST
Week 8 Homework	Homework 8	July 5 at 8:00 a.m. EDST – July 12 at 11:59 p.m. EDST
Midterm Exam 2	Midterm Exam 2 [Covers up to and including Week 7 material, but with emphasis on more-recent stuff]	July 5 at 8:00 a.m. EDST – July 14 at 11:59 p.m. EDST
Week 9	 Module 8: Input Analysis Lesson 1: Introduction Lesson 2: Identifying Distributions Lesson 3: Unbiased Point Estimation Lesson 4: Mean Squared Error Lesson 5: Maximum Likelihood Estimators Lesson 6: MLE Examples 	July 8, 2019 at 8:00 a.m. EDST

	 Lesson 7: Invariance Property of MLEs Lesson 8 [OPTIONAL]: The Method of Moments Lesson 9: Goodness of Fit Tests Lesson 10: Exponential Example Lesson 11: Weibull Example Lesson 12: Still More Goodness-of-Fit Tests Lesson 13: Problem Children Lesson 14: Demo Time 	
Week 9 Homework	Homework 9	July 12 at 8:00 a.m. EDST – July 19 at 11:59 p.m. EDST
Week 10	 Module 9: Output Analysis Lesson 1: Introduction Lesson 2 [OPTIONAL]: Mathematical Interlude Lesson 3: Finite-Horizon Analysis Lesson 4: Finite-Horizon Extensions Lesson 5: Simulation Initialization Issues Lesson 6: Steady-State Analysis Lesson 7 [OPTIONAL]: Properties of Batch Means Lesson 8: Other Steady-State Methods Module 10: Comparing Systems Lesson 1: Introduction Lesson 2: Confidence Interval for the Mean Lesson 3: Cls for the Difference in Two Means Lesson 4: Paired Cl for the Difference in Two Means Lesson 5: Cls for the Mean Difference in Simulations 	July 15, 2019 at 8:00 a.m. EDST
Week 10 HW	Homework 10	July 19 at 8:00 a.m. EDST – July 26 at 11:59 p.m. EDST
Week 11	 Module 10: Comparing Systems (cont'd) Lesson 6: Common Random Numbers Lesson 7 [OPTIONAL]: Antithetic Random Numbers Lesson 8 [OPTIONAL]: Control Variates 	July 22, 2019 at 8:00 a.m. EDST

	 Lesson 9: Ranking and Selection Methods Lesson 10: Normal Means Selection Lesson 11: Single-Stage Normal Means Procedure Lesson 12 [OPTIONAL]: Normal Means Extensions Lesson 13: Bernoulli Probability Selection Lesson 14 [OPTIONAL]: Bernoulli Extensions Lesson 15: Multinomial Cell Selection Lesson 16 [OPTIONAL]: Multinomial Procedure + Extensions Lesson 17: Summary 	
Week 11 HW	Homework 11	July 26 at 8:00 a.m. EDST – August 2 at 11:59 p.m. EDST
Final Exam	Final Exam [Covers everything, with emphasis on more-recent stuff]	July 26 at 8:00 a.m. EDST – August 4 at 11:59 p.m. EDST

Course Materials

- All content and course materials can be accessed online.
- There is no required textbook for this course, though students are encouraged to find copies of the following references:
 - Law, A. M., Simulation Modeling and Analysis, 5th edition, McGraw-Hill Education, New York, 2015. [This textbook is most for the "theory" aspects of the course.]
 - Kelton, W. D., Sadowski, R. P., and Zupick, N. B., Simulation with Arena, 6th edition, McGraw-Hill, New York, 2015. [This book covers the Arena simulation language.]

Technology/Software Requirements

- Internet connection (DSL, LAN, or cable connection desirable)
- R statistical software (free download; see cran.r-project.org)
- Arena simulation software (free student download;
 see www.arenasimulation.com/academic/students)
- Adobe Acrobat PDF reader (free download; see https://get.adobe.com/reader/)