Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	Е
1.1 Описание входных данных	7
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм конструктора класса cl_1	10
3.2 Алгоритм метода resolve класса cl_1	10
3.3 Алгоритм конструктора класса cl_2	10
3.4 Алгоритм метода resolve класса cl_2	11
3.5 Алгоритм конструктора класса cl_3	11
3.6 Алгоритм метода resolve класса cl_3	12
3.7 Алгоритм конструктора класса cl_4	12
3.8 Алгоритм метода resolve класса cl_4	12
3.9 Алгоритм функции main	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	14
5 КОД ПРОГРАММЫ	19
5.1 Файл cl_1.cpp	19
5.2 Файл cl_1.h	19
5.3 Файл cl_2.cpp	20
5.4 Файл cl_2.h	20
5.5 Файл cl_3.cpp	20
5.6 Файл cl_3.h	21
5.7 Файл cl_4.cpp	21
5.8 Файл cl_4.h	22
5.9 Файл main.cpp	22
6 ТЕСТИРОВАНИЕ	24

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	25
----------------------------------	----

1 ПОСТАНОВКА ЗАДАЧИ

Полиморфизм в иерархии классов

Описать четыре класса которые последовательно наследуют друг друга, с номерами классов 1, 2, 3, 4. В каждом классе реализовать виртуальный метод с открытым доступом и одинаковым именем. Метод вычисляет значение многочлена степени номера класса и возвращает полученный результат. Коэффициенты и переменная многочлена целочисленные.

В основной функции реализовать алгоритм, в котором использовать один указатель на объект класса. Алгоритм:

- 1. Объявление указателя на объект класса.
- 2. Объявление четырех целочисленных переменных a1, a2, a3 a4, которые соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
- 3. Объявление целочисленной переменной x, которая соответствует <u>переменной</u> многочлена.
- 4. Ввод значения переменных а1, а2, а3 а4.
- 5. Создание объекта класса 4 посредством параметризированного конструктора, передав в качестве аргументов а1, а2, а3 а4. Обеспечить передачу необходимых коэффициентов объектам согласно наследственности классов.

6. Начало цикла

- 6.1. Реализовать ввод значения переменной х.
- 6.2. Если значение х равно нулю, то завершить цикл.
- 6.3. Иначе, реализовать ввод значения номера класса.
- 6.4. Согласно номеру класса вызвать метод вычисления многочлена

посредством объекта, который соответствует номеру класса и результат вывести.

7. Конец цикла.

1.1 Описание входных данных

Первая строка:

«целое число, значение a1» «целое число, значение a2» «целое число, значение a3» «целое число, значение a4»

Начиная со второй строки, построчно:

«целое число, значение х» «целое число, номер класса»

1.2 Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

Со второй строки и далее построчно:

Фрагменту «F(» предшествует 4 пробела

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- функция main для Основная функция;
- Объект стандартного потока ввода/ вывода cin/cout.

Класс cl_1:

- свойства/поля:
 - о поле Значение переменной:
 - наименование int_1;
 - тип Целочисленное;
 - модификатор доступа protected;
- функционал:
 - о метод cl_1 Параметризированный конструктор;
 - о метод resolve Виртуальный метод вычисления значения.

Kласс cl_2:

- свойства/поля:
 - о поле Значение переменной:
 - наименование int_2;
 - тип Целочисленное;
 - модификатор доступа protected;
- функционал:
 - о метод cl_2 Параметризированный конструктор;
 - метод resolve Виртуальный метод вычисления значения.

Kласс cl_3:

- свойства/поля:
 - о поле Значение переменной:
 - наименование int_3;

- тип Целочисленное;
- модификатор доступа protected;
- функционал:
 - о метод cl_3 Параметризированный конструктор;
 - о метод resolve Виртуальный метод вычисления значения.

Kласс cl_4:

- свойства/поля:
 - о поле Значение переменной:
 - наименование int_4;
 - тип Целочисленное;
 - модификатор доступа protected;
- функционал:
 - о метод cl_4 Параметризированный конструктор;
 - о метод resolve Виртуальный метод вычисления значения.

Таблица 1 – Иерархия наследования классов

No	Имя класса	Классы- наследники	Модификатор доступа при	Описание	Номер
			наследовании		
1	cl_1				
		cl_2	public		2
2	cl_2				
		cl_3	public		3
3	cl_3				
		cl_4	public		4
4	cl_4				

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса cl_1

Функционал: Параметризированный конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl_1

N₂	Предикат	Действия	N₂
			перехода
1		Параметризированный конструктор	Ø

3.2 Алгоритм метода resolve класса cl_1

Функционал: Виртуальный метод вычисления значения.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода resolve класса cl_1

N₂	Предикат	Действия	No
			перехода
1		Возвращение значения int_1 * x	Ø

3.3 Алгоритм конструктора класса cl_2

Функционал: Параметризированный конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl_2

N₂	Предикат	Действия	N₂
			перехода
1		Параметризированный конструктор	Ø

3.4 Алгоритм метода resolve класса cl_2

Функционал: Виртуальный метод вычисления значения.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода resolve класса cl_2

N₂	Предикат	Действия	No
			перехода
1		Возвращение значения int_2 * x * x	Ø

3.5 Алгоритм конструктора класса cl_3

Функционал: Параметризированный конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса cl_3

No	Предикат	Действия	N₂
			перехода
1		Параметризированный конструктор	Ø

3.6 Алгоритм метода resolve класса cl_3

Функционал: Виртуальный метод вычисления значения.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода resolve класса cl_3

N	Предикат	Действия	No
			перехода
1		Возвращение значения int_3 * x * x * x	Ø

3.7 Алгоритм конструктора класса cl_4

Функционал: Параметризированный конструктор.

Параметры: нет.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса cl_4

No	Предикат	Действия	No
			перехода
1		Параметризированный конструктор	Ø

3.8 Алгоритм метода resolve класса cl_4

Функционал: Виртуальный метод вычисления значения.

Параметры: нет.

Возвращаемое значение: Целочисленное.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода resolve класса cl_4

N₂	Предикат	Действия	No
			перехода
1		Возвращение значения int_4 * x * x * x * x	Ø

3.9 Алгоритм функции main

Функционал: Основная функция.

Параметры: нет.

Возвращаемое значение: Целочилсенное.

Алгоритм функции представлен в таблице 10.

Таблица 10 – Алгоритм функции таіп

N₂	Предикат	Действия	N₂
			перехода
1		Объявление указателя на объект класса	2
2		Объявление четырех целочисленных переменных a1, a2, a3 a4, которые соответствуют коэффициентам многочлена (a1* x + a2* x * x +	
		a3*x*x*x + a4*x*x*x*x).	
3		Объявление целочисленной переменной x, которая соответствует переменной многочлена	4
4		Ввод значения переменных а1, а2, а3 а4	5
5		Создание объекта класса 4 посредством параметризированного конструктора, передав в качестве аргументов а1, а2, а3 а4. Обеспечить передачу необходимых коэффициентов объектам согласно наследственности классов.	
6		Выполнение цикла	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-5.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl_1.cpp

 $Листинг 1 - cl_1.cpp$

```
#include "cl_1.h"

cl_1::cl_1(int int_1, int int_2, int int_3, int int_4)\
{
    this->int_1 = int_1;
    this->int_2 = int_2;
    this->int_3 = int_3;
    this->int_4 = int_4;
}

int cl_1::resolve(int x)
{
    return int_1 * x;
}
```

5.2 Файл cl_1.h

 $Листинг 2 - cl_1.h$

```
#ifndef __CL_1__H
#define __CL_1__H

#include <iostream>
    class cl_1
    {
    public:
        cl_1(int int_1, int int_2, int int_3, int int_4);
        virtual int resolve(int);
    protected:
        int int_1;
        int int_2;
        int int_2;
        int int_3;
        int int_4;
    };
```

#endif

5.3 Файл cl_2.cpp

 $Листинг 3 - cl_2.cpp$

```
#include "cl_2.h"

cl_2::cl_2(int int_1, int int_2, int int_3, int int_4):cl_1(int_1,int_2, int_3, int_4){}

int cl_2::resolve(int x)
{
    return int_1 * x + int_2 * x * x;
}
```

5.4 Файл cl_2.h

 $Листинг 4 - cl_2.h$

```
#ifndef __CL_2__H
#define __CL_2__H

#include "cl_1.h"

class cl_2: public cl_1
{
  public:
    cl_2(int int_1, int int_2, int int_3, int int_4);
    virtual int resolve(int);
};

#endif
```

5.5 Файл cl_3.cpp

Листинг 5 – cl_3.cpp

```
#include "cl_3.h"
```

```
cl_3::cl_3(int int_1, int int_2, int int_3, int int_4):cl_2(int_1, int_2,
int_3, int_4){}
int cl_3::resolve(int x)
{
    return int_1 * x + int_2 * x * x + int_3 * x * x * x;
}
```

5.6 Файл cl_3.h

 $Листинг 6 - cl_3.h$

```
#ifndef __CL_3__H
#define __CL_3__H

#include "cl_2.h"

class cl_3: public cl_2
{
  public:
    cl_3(int int_1, int int_2, int int_3, int int_4);
    virtual int resolve(int);
};

#endif
```

5.7 Файл cl_4.cpp

 $Листинг 7 - cl_4.cpp$

```
#include "cl_4.h"

cl_4::cl_4(int int_1, int int_2, int int_3, int int_4):cl_3(int_1, int_2, int_3, int_4){}

int cl_4::resolve(int x)
{
    return int_1 * x + int_2 * x * x + int_3 * x * x * x + int_4 * x * x * x * x;
}
```

5.8 Файл cl_4.h

Листинг 8 – cl_4.h

```
#ifndef __CL_4__H
#define __CL_4__H

#include "cl_3.h"

class cl_4: public cl_3
{
  public:
    cl_4(int int_1, int int_2, int int_3, int int_4);
    virtual int resolve(int);
};

#endif
```

5.9 Файл таіп.срр

Листинг 9 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "cl_4.h"
using namespace std;
int main()
  cl_4* obj;
  int int_1, int_2, int_3, int_4, x, id, result;
  cin >> int_1 >> int_2 >> int_3 >> int_4;
  obj = new cl_4(int_1, int_2, int_3, int_4);
  cout << "a1 = " << int 1 << " a2 = " << int 2 << " a3 = " << int 3
      a4 = " << int_4;
  while(true)
  {
     cin >> x;
     if(x == 0)
     {
        break;
     cin >> id;
     if(id < 1 || id > 4)
        continue;
     }
```

```
switch(id)
     {
        case 1:
           result = obj ->cl_1::resolve(x);
           break;
        case 2:
           result = obj->cl_2::resolve(x);
           break;
        case 3:
           result = obj-> cl_3::resolve(x);
        case 4:
           result = obj->resolve(x);
           break;
        default:
           result = 0;
           break;
     }
     cout << endl << "Class " << id << " F( "<< x << " ) = " << result;
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 11.

Таблица 11 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные		Фактические выходные данные	
4 3 2 1 9 1 8 2 7 3 6 4 0	a1 = 4 a3 = 2 Class 1 36 Class 2 224 Class 3 861 Class 4 1860	a2 = 3 a4 = 1 F(9) = F(8) = F(7) = F(6) =	a1 = 4 a3 = 2 Class 1 36 Class 2 224 Class 3 861 Class 4 1860	a2 = 3 a4 = 1 F(9) = F(8) = F(7) = F(6) =

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).