SECUR AD-AZ41 9Z1	
SECON STREET, AND STREET TIME THE PROPERTY OF THE SECOND	MENTATION PAGE
Ta. RE.	16. RESTRICTIVE MARKINGS
UNCL 23. SECURITY CLASSIFICATION AUTHORITY ELECT:	3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION / DOWNGRADING SCHEDUCE 2 5 1991	Approved for public release; distribution is unlimited
4. PERFORMING ORGANIZATION REPORT COMBER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)
NMRI 91-68.	·
6a. NAME OF PERFORMING ORGANIZATION Naval Medical Research Institute 6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Naval Medical Command
6c ADDRESS (Gry, State, and ZIP Code) 8901 Wisconsin Avenue Bethesda, MD 20889-5055	7b. ADDRESS (City, State, and ZIP Code) Department of the Navy Washington, DC 20372-5120
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Medical Research & Development Comman	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
	10. SOURCE OF FUNDING NUMBERS
8c ADDRESS (City, State, and ZIP Code) 8901 Wisconsin Avenue Bethesda, HD 20889-5044	PROGRAM PROJECT TASK WORK UNIT ACCESSION NO.
bethesda, No 20009 50	63706N M0095.003 1007 DNG77130
11. TITLE (Include Security Classification) Allostimulatory analysis of a newly-defined and widely-dis	tributed M1s superantigen
12. PERSONAL AUTHOR(S) Ryan JJ, LeJeune HB, Mond JJ, Finke	lman ' FD
13a. TYPE OF REPORT 13b. TIME COVERED. FROM TO	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT . 1991
16. SUPPLEMENTARY NOTATION	•
Reprinted from Immunogenetics 1991 Vol.34 pp. 88-100	
	Continue on reverse if necessary and identify by block number) ells; UB usage; proliferation
FIELD GROUP SUB-GROUP superantigen; I c	eris; ob usage; profiteration
19. ABSTRACT (Continue on reverse if necessary and identify by block n	umber).
,	
·.	
·	
· ·	•
	′,
·	
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT .	21. ABSTRACT SECURITY CLASSIFICATION
ZUNCLASSIFIEDAINLIMITED SAME AS RPT. DTIC USERS 223. NAME OF RESPONSIBLE INDIVIDUAL	Unclassified 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
22a. NAME OF RESPONSIBLE INDIVIDUAL Phyllis Blum, Librarian.	:(301).295-2188 MRL/NMRI
DD FORM 1473, 84 MAR 83 APR edition may be used un All other editions are ob	

UNCLASSIFIED

Allostimulatory analysis of a newly-defined and widely-distributed Mls superantigen

John J. Ryan¹, H. Baltzer LeJeune¹, James J. Mond², and Fred D. Finkelman²

¹ Immunobiology and Transplantation Department, Naval-Medical Research Institute, Mail Stop #36, Rockville Pike, Bethesda, MD 20889-5055, USA

² Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA

Received November 26, 1990; revised-version received January-31, 1991

Abstract. We previously noted that Mis^{a, c} C58/J responder cells proliferated unexpectedly to H-2k-compatible MIs^a or MIs^c prototypic stimulator cells in a primary mixed lymphocyte reaction. The present investigation was performed to evaluate whether the response of C58/J-T cells to these H-2- and Mls-compatible stimulator cells could functionally identify a newlydefined member of the MIs superantigen family through its allostimulatory ability. We observed that C58/J responder cells: also proliferated when cultured with H-2-compatible prototypic Mls^{null}, Mls^b (nonstimulatory), or MIsa.c splenic stimulator cells. The widely distributed nature of the non-MHC ligand recognized by C58/J T cells is indicated by the finding that 11 of 12 H-2k inbred mouse strains clearly expressed this specificity. A gradient of stimulatory capacity from low to high across this newly-defined non-MHC difference was detected with splenocytes from these different inbred mouse strains. The MIsac genetic composition of C58/J was confirmed by the observation that crossing C58/J with parental B10.BR (responsive to both MIs^a and MIs^c determinants) generated F₁ progeny that were unresponsive to H-2^k-compatible MIs^a, MIs^c, or MIs^{a, c} stimulator cells. Like prototypic Mls and Mls, the non-MHC specificity recognized by C58/J responder cells, termed Mls^f, was particularly sensitive to radiation (versus mitomycin C) treatment of the stimulator cells, was greatly augmented after anti-IgD activation of splenic stimulator cells, was blocked with anti-MHC class-II antibody, and was effectively presented by phenotypically normal female but not B cell-defective xid male CBA/N F₁ stimulator cells.

Introduction

Mouse minor-lymphocyte stimulating (MIs) determinants were first identified by the capacity of stimulator popula-

Address correspondence and offprint requests to: J.J. Ryan.

tions expressing these antigens to trigger proliferation of H-2-compatible responder T cells in a primary mixed lymphocyte reaction (MLR; Festenstein 1970, 1973). These non-major histocompatibility complex (MHC) moieties stimulated both CD4⁺ (Janeway et al. 1980) and CD8⁺ (Webb and Sprent 1990) T cells in vitro with a high precursor frequency (Janeway et al. 1980; Miller and Stutman 1982).

More recently the important role of MIs antigens in shaping the T cell repertoire has received considerable attention. In mice expressing Mls² as a self-antigen, mature thymocytes and peripheral T cells were depleted of those populations that expressed $V\beta6^+$ (MacDonald et al. 1988), $V\beta 8.1^+$ (Kappler et al. 1988), or $V\beta 9^+$ (Happ et al. 1989; Vacchio and Hodes 1989) T cell receptor (Tcr) segments. In mice expressing Misc, T cells that bear the $V\beta3$ (Abe et al. 1988; Pullen et al. 1988, 1989) segment were largely depleted. The MHC haplotype of the mouse strain also influenced this process of intra-thymic clonal deletion of self-reactive T cells mediated by Mls antigen (Kappler et al. 1988; Pullen et al. 1988). The high precursor frequency of Mls responsive T cells observed earlier in the primary MLR (Janeway et al. 1980; Miller and Stutman 1982) correlated with the finding that T cell expression of $V\beta6$, $V\beta8.1$, and $V\beta9$ (Kappler et al. 1988; Mac-Donald et al. 1988; Happ et al. 1989) or $V\beta 3$ (Abe et al. 1988: Pullen et al. 1988, 1989) was associated with T cell reactivity to MIs or MIs, respectively. Other α or β chain segments of the Tcr did not appear to contribute to specificity in the T cell response to these MIs antigens (Abe et al. 1988; Kappler et al. 1988; Pullen et al. 1988).

In the first demonstration that self-tolerance can be generated by clonal elimination of self-reactive T cells during development in the thymus, the deletion of $V\beta 17a^+$ peripheral T cells and mature thymocytes in mice expressing MHC class II-H-2E molecules was described (Kappler et al. 1987). This deletion probably resulted from self-tolerance induction, since most random

Vβ17a⁺ T cell hybridomas were responsive to E⁺ splenocytes, B cell lymphomas, and B cell hybridomas (Kappler et al. 1987). Further studies showed that an undefined superantigen expressed by B cells (but not other E⁺ cell types) was recognized in association with the E molecule by VB17a⁺ T cells (Marrack and Kappler 1988). E-expressing mouse strains were also found to eliminate $V\beta 5.2^+$ (Woodland et al. 1990), $V\beta 7^+$ (Vacchio and Hodes 1989), and $V\beta 11^+$ (Bill et al. 1988, 1989; Vacchio and Hodes 1989) T cells; undefined non-MHC gene products also influenced this deletion-process (Bill et al. 1988; Vacchio and Hodes 1989; Woodland et al. 1990). In confirming and extending the range of documented $V\beta$ deletions in the T cell repertoire of inbred mice, substantial decreases in expression of $V\beta 3$, 5. 6, 7, 9, 11, 12, and 16 due to self-determinants were observed (Vacchio and Hodes 1989). In this study. C58/J animals, unlike other E+ animals, showed no quantitative decrease in expression of VBH and VB12 bearing T cells in their periphery. Non-MHC ligands not encoded in C58/J mice but expressed in other mouse strains were subsequently demonstrated to delete T cells expressing either of these two segments of the Tcr (Vacchio et al. 1990).

In studying nonprototypic mouse strains as responders and stimulators in an MIs-defined MLR (Ryan et al. 1990a), this laboratory observed additional intriguing properties associated with C58/J lymphocytes. As stimulator cells, C58/J splenocytes presented the MIs^c determinant (formerly considered a weak-to-intermediate stimulatory moiety) in an autosomally dominant superstimulatory form. In addition, although considered genotypically Mls^{a,c}, C58/J responder T cells proliferated vigorously to H-2^k-compatible Mls² or Mls^c prototypic stimulator cells. Studies of $V\beta$ usage and deletion in inbred mice-have provided clues that undefined self-deleting superantigens-exist that are distinct from Mls^a and Mls^c (Marrack and Kappler 1988; Bill et al. 1989; Vacchio and Hodes 1989; Woodland et al. 1990). Thus the purpose of the present investigation was to evaluate the possibility that the unanticipated proliferative response of naive C58/J T cells to H-2 and Mls-compatible stimulator cells observed in earlier studies (Ryan et al. 1990a; Vacchio et al. 1990), could functionally identify a newly-defined member of the MIs superantigen: family through its allostimulatory capacity.

Materials and methods

Animals. AKR/J $(H-2^{l}, Mls^{a})$. BALB/c $(H-2^{l}, Mls^{c})$, $(BALB/c \times DBA/2)F_1$ $(H-2^d, Mls^{d,c})$, B6.AKR-H-2^k/ FlaEg (H-2k, Mlsb), B10.BR (H-2k, Mlsb), B10.D2 (H-2^d, Mls^b), CBA/CaJ (H-2^k, Mls^b), CBA/J (H-2^k, Mls^{a} .) CBA/N (H-2^k, Mls^{aull}). CE/J (H-2^k, Mls^{a} .),

C2H/HeJ (H-2^k, Mls^c), (C57BL/6 × DBA/2)F, (H-2^{b/d} $Mls^{a,b,c}$), C57BL/10Sn (H-2^b, Mls^{b}), C57BR/cdJ (H-2^k, Mls^{b}), C58/J ($H-2^{k}$, Mls^{a} .), MA/My ($H-2^{k}$, Mls^{a}), RF/J (H-2k, Mlsa), SJL/J (H-2s, Mls3) were obtained from the Jackson Laboratory, Bar Harbor, ME.(B10.BR × CBA/J)F, $(H-2^k, Mls^{a.b.c})$, $(B10.BR \times C58/J)F$, $(H-2^k, Mls^{a.b.c})$ $Mls^{a,b,\cdot}$), (B10.D2 × C58/J) F_1 (H-2^{d/l}, $Mls^{a,b,\cdot}$), (C57BL/ $10 \times C58/J$) F_1 (H-2^{b/k}, Mls^{a,b,c}), (CBA/CaJ×C58/J) F_1 $(H-2^k, Mls^{a,b,c})$; $(CBA/N \times AKR/J)F_1 (H-2^k, Mls^{null, u})$. $(CBA/N \times B10.BR)F_1$ (H-2^k, Mls^{null}, b), $(CBA/N \times CBA/N)$ CaJ) F_1 (H- 2^k , M[$s^{null.b}$), and (DBA/2×C58/J) F_1 (H- $2^{d/k}$. Mlsac) mice were bred at the Naval Medical Research Institute (NMRI) with parental breeding stock purchase from The Jackson Laboratory Bar Harbor, ME. BALB.K $(H-2^{k}, Mls^{c})$ and B10.Q $(H-2^{q}, Mls^{h})$ mice were kindly provided by Drs. Florence Rollwagen and Walter Weiss (NMRI), respectively. Because it is likely that both Mls" (Click et al. 1982; Ryan et al. 1990b) and Mls (Click and Adelmann 1988: Abe et al. 1989: Pullen et al. 1989) are the products of multiple genes, the original small case letter designations for MIs specificities have been utilized throughout this study as collective symbols for these goups of multi-gene products. CBA/N mice have been designated Mls^{null} rather than (nonstimulatory) Mls^b to indicate that their X-linked B cell defect usually precludes effective in vitro presentation of MIs determinants (Ahmed and Scher 1976). Experiments were performed with 8-20-week-old animals that were maintained in filteredair isolators in the animal colonies of the Naval Medical Research Institute.

Mixed lymphocyte reaction. Responder cells for the MLR were obtained by enriching for T cells by passage of splenocytes over a nylon wool column (Julius et al. 1973). Unprimed responder T cells were cultured at the density of 3×10^{5} cells/microtiter well, usually with $1.0 - 9 \times 10^{5}$ stimulator cells in a total volume of 0.2 ml. The MLR culture medium consisted of RPMI 1640 (Hazelton Laboratories, Lenexa, KA) with gentamicin (50 µg/ml), L-glutamine (2mM). HEPES buffer (25 mM). 5% fetal calf serum FCS; Hyclone, Ogden, UT), and 5×10^{-5} M 2-mercaptoethanol. Each MLR was performed with quadruplicate cultures in round-bottomed microculture plates (No. 3799: Costar, Cambridge, MA) and was maintained in a humidified atmosphere of 5% CO₂ at 37 °C. The culture was harvested after 72-96 h onto glass fiber filter paper after a 12 h pulse with I µCi (37KBq)/microtiter well of [3H]TdR (specific activity=2 Ci/mM; New England Nuclear, Boston, MA). Incorporated [3H]TdR was measured on a Beckman scintillation spectrometer. The results were calculated from uptake of [3H]TdR and are expressed as the arithmetic mean in cpm of triplicate or quadruplicate cultures. The standard errors were generally less than 10% of the mean. The statistical significance of the mean cpm of each experimental group was calculated with Student's t test. Mean differences were considered to be significant when P < 0.05. The monoclonal IA^k-specific antibody, 10-362, and the E-specific antibody, 14-4-4, that were used in MLR blocking experiments were kindly provided by Dr. Ada Kruisbeek (NIH. Bethesda, MD). The monoclonal K^k-specific antibody, 11-4.1 (#1320; Becton Dickinson, San Jose, CA), was also used in the MLR blocking studies.

In vivo anti-lgD treatment and in vitro preparation of MLR stimulator)13tr1but16 cells. Recipient mice were injected intravenously with 100 µg affinitypurified goat antimouse IgD (GaMD) reagent in a volume of 0.2 ml that AVA11 ab 114

NTIS OTIC TAB Justificat

DTIC INSPECTED Avall oeq3 90

was prepared as previously described (Finkelman et al. 1981). Twenty-four hours later, the spleens were removed and gently teased in Hanks' balanced salt solution (HBSS)-with 10% fetal calf-serum (FCS), then irradiated with 3000 R (137Cs) after the removal of the red blood cells with a hypotonic lysing buffer, washed again, and resuspended in the MLR medium described above. This laboratory has shown that in vivo (Ryan et al. 1983, 1987a, 1987b, 1988) or in vitro (Ryan et al. 1988) activation of splenic B cells with GaMD prior to irradiation substantially enhances the capacity to present both MIs and MIs specificities. When mitomycin C (85,549.9; Aldrich Chemical Co., Milwaukee, WI) was used instead of irradiation to prevent normal or GaMD-activated splenic stimulator cells from dividing in the primary MLR, the splenocytes (1×107/ml) were suspended in HBSS and exposed to mitomycin C (75 µg/ml) for 30 min at 37 °C in the absence of light; they were than washed three times before being added to the responder-T-cells.

T cell depletion of splenocyte populations. Spleens were gently teased in RPMI 1640 plus 1% FCS, depleted of red blood cells with ammonium-chloride lysing buffer, washed twice, and filtered through sterile nylon mesh (HC3-110; Tetco Inc., Elmsford, NY) to remove tissue clumps. The single cell preparation was then suspended in monoclonal anti-Thy 1.2 ascites fluid (NEI-001; New England Nuclear Research Products, Boston, MA) at 1:500 dilution or (for Thy 1.1/1.2 F₁ animals) a cocktail of anti-Thy 1.1 (NEI-002; New England Nuclear Research Products, Boston, MA) plus anti-Thy 1.2 at 1:500 dilution for half an hour at 4 °C. The treated cells were then washed twice and resuspended in a 1:8 dilution of rabbit complement (ACL 3051; Low-Tox M, Accurate Chemical & Scientific Corp., Westbury, NY) for 45 min at 37 °C. The remaining splenocytes were washed twice and refiltered through sterile nylon mesh to remove dead cells and tissue debris before treatment with mitomycin C.

Results

The Mlsac prototypic mouse strain, CBA/J, elicits unidirectional proliferation of H-2 and Mls-compatible C58/J. Previous studies with heterogeneous (Ryan et al. 1990a) or cloned (Abromson-Leeman et al. 1988a. 1988b) T cells have indicated that C58/J stimulator cells express both 'Mls' and Mls' determinants. Therefore, it is consistent with self-tolerance that the mature peripheral T-cell pools of C58/J is deleted of populations that express $V\beta6$ and $V\beta9$ (associated with responsiveness to Mls^u) and $V\beta3$ (associated with responsiveness to MIs.: Vacchio and Hodes 1989). Nevertheless, it was recently shown that C58/J responder cells proliferated at very detectable levels when cultured with H-2-compatible prototypic MIs (AKR/J) and MIs (C3H/HeJ) stimulator cells (Ryan et al. 1990a; Vacchio et al. 1990). Since the latterresult could be interpreted as conflicting with the other findings that suggested C58/J encodes MIs and MIs, we explored the non-MHC polymorphic similarities and differences between C58/J-and-the MIsa.c prototypic strain, CBA/J, in a primary MLR (Fig. 1).

As expected, both C58/J and CBA/J splenocytes were capable of triggering vigorous proliferation of H-2^k-compatible Mis^b B10.BR T cells across the MIs^a and MIs^c specificities that have been reported to be expressed by both of these stimulator populations (Fig. 1, left panel). While CBA/J T cells remained unresponsive to H-2^k and

Fig. 1. Comparison of mutual MLR stimulatory capacity among H²2^k-compatible B10.BR, CBA/J, and C58/J splenocytes. Nylon woolpurified splenic T-cells (3×10⁵/well) from B10.BR (Mls^b), CBA/J (Mls^{b,c}), or C58/J (Mls^{a,c}) strains were cultured with normal mitomycin C-treated splenocytes from these H-2^k-compatible animals as well as from H-2-different C57BL/10 (H-2^b) mice, at the concentrations shown. The MLR culture was harvested after 72 h.

Mls^{a, c}-compatible mitomycin C-treated C58/J splenocytes (Fig. 1, center panel), C58/J T cells proliferated unambiguously in a dose-dependent manner to CBA/J stimulator cells (Fig. 1, right panel). Indeed, C58/J T cells also appeared to respond at a lower level to H-2-compatible Mls^b (so-called nonstimulatory) B10:BR splenocytes.

To test the functional capacity of parental C58/J to induce self-tolerance in F₁ progeny to prototypic Mls and Misc determinants, H-2k-compatible Misb B10.BR animals that are fully responsive to MIs and MIs were crossed with C58/J. B10.BR was also crossed with MIs CBA/J; the resulting F, was previously shown by this laboratory to be specifically unresponsive to Mis' (AKR/J) and Mls^c (C3H/HeJ) stimulator cells (Ryan et al. 1987). We observed that both (B10.BR \times C58/J)F₁ and (B10.BR × CBA/J)F₁ T cells were poorly responsive to prototypic MIs AKR/J, MIs C3H/HeJ, and MIs ... (C3H × AKR)F, mitomycin C-treated splenocytes (Table 1). The lack of response of (B10.BR × CBA/J)F, Tecells to C58/J-stimulator cells was in agreement with these results and the previous finding with heterogeneous (Ryan et al. 1990a) and cloned (Abromson-Leeman et al. 1988a. 1988b) T-cells that C58/J-expresses both Mls and Mls determinants. A similar conclusion could be reached with the observation that (B10.BR × C58/J)F, T cells did not vigorously proliferate to the prototypic Mis², Mis^c, and Mls^{a, c} stimulator cells.

However, because C58/J T cells could respond to H-2-compatible prototypic Mls^a and Mls^c (Ryan et al.

Table 1. Like Misac CBA/I, parental C58/I induces self-tolerance in F_L progeny to prototypic Misa and Misc determinants.

Stimulator cells*			Responder cells*			
Strain	H-2	Mls	B10.BR	(B10.BR×CBA/J)F	(B10.BR×C58/J)F ₁	
Syngeneic	k	-	3,196*	6,123	5,898	
AKR/J	k	a	128,414	7,607	10,589	
C3H/HeJ	k	С	20.885	6,388	5,703	
(C3H×AKR)F	k	· a, c	102,990	5,275	4,401	
CBA/J	k	a,c	203,068	8,016	7,957	
C58/J-	k	a, c	184,580	∈ 6,237 -	5.995	
C57BL/10	b	b	92,132	97,599	<u>82.510</u>	

^{*} Stimulator cells were normal (nonactivated) splenocytes (9 x 10 /well) treated with mitomycin C.

Table 2. The presentation of the non-MHC specificity recognized by C58/J T cells, like prototypic MIs^a and MIs^c, is impaired by irradiation and substantially augmented by stimulator pretreatment with GaMD antibody,

Stimulator cells*			Responder cells*			
H-2 ^k strain	Mis	-Inactivation treatment	GaMD treatment	BIO.BR (MIs MLR)	C58/J (non-H-2 MLR)	(BALB/c×DBA/2)F ₁ (H-2 MLR)
Experiment 1						
Syngeneic		M R	-	3.838* 2.338	6.466 4.983	10,318: 7,055
AKR/J	a	⁻M R	-	148,217- 17,218	43.306 - 5.082 -	124,156 65,684
CBA/CiJ	b	M R	-	7.532 3.632	106,388 25,536	173,988 103,182
-C3H/HēJ	-c	∰⁻ R	-	28.400 7.243	18,050 4,128	147,702 76,479
:CBA/J	a. c	M- R	-	213.097 53.930	77,565 13,907	173,942 98,842
.CBA/N	ņull	-M- R	-	6.788 2.380	40,036 5,209	135,020 63,060
Experiment 2						
Syngeneic		Ř	- +	3.029 3.764	4,958- 9,095	·
AKR/J	a	R	- +	24.807 261.103	9,692 64,723	
CBA/CaJ	-b	R	- +	2.747 2.993	9,726 -180,606	
Ĉ3H/HēJ:	c	R	- +	12.628 48.685	4,952 40,423	·
CBA/J-	a, c	R	- +	50.013 398.845	14,647 280,338	
CBA/N	null	R	 +	4.083 5.148	10.942 17.603	

^{*} Stimulator cells were normal (nonactivated) splenocytes (6×10⁵/well) that were irradiated (R) with 3 000 R-or-mitomycin C (M)-treated (Experiment 1) or normal or GaMD-activated splenocytes (6×10⁵/well) that were irradiated (R) with 3 000 R (Experiment 2).

Responder cells were nylon wool-purified splenic T cells (3×105/well).

^{*} Values are com of mean arithmetic [3 H]TdR uptake of quadruplicate cultures, harvested at 72 h. *Underlined numbers* are those that are significantly greater (p < 0.05) than responses to syngeneic stimulators.

See legend to Table 1.

[&]quot;See legend to Table 1.

1990a; Vacchio et al. 1990; see below) as well as prototypic Mlsb and Mlsa; splenocytes (Vacchio et al. 1990; Fig. 1), one could also conclude from the latter observation that a self-determinant expressed by Mlsb (non-stimulatory) B10.BR induced self-tolerance in the C58/J parental component of (B10.BR × C58/J)F₁ animals to each of the prototypic Mls-stimulator cells listed in Table 1.

The specificity recognized by C58/J T cells on H-2^k-comnatible stimulator-cells is sensitive to-irradiation and is augmented by GaMD exposure. The above results suggested that C58/J T cells were recognizing a newly-defined non-MHC MLR specificity that was co-expressed with previously defined Mls specificities on prototypic Mls presenting cells. To explore the functional similarity of this non-MHC antigen to prototypic Mls determinants, we wished to test the sensitivity of this moiety to irradiation and the effect of GaMD pretreatment on presenting capacity. It has previously been shown that irradiation of splenocytic stimulator cells substantially inhibits their capacity to present prototypic MIs^a (Webb et al. 1985) and Mls^c (Ryanget al. 1987a) specificities in a primary MLR. In addition, exposure of mouse splenocytes to heterologous (Ryan et al. 1983, 1987a, 1987b, 1988) or monoclonal (Ryan et al. 1983) GaMD in vivo for 24 h can substantially augmentathe presentation of both the MIs^a and MIs^c moieties that these cells express. Accordingly, prototypic Mlsa AKR/J, Mlsb CBA/CaJ, Mlsc C3H/HeJ, Mlsa,c CBA/J, and Mlsnell CBA/N normal splenocytes were either irradiated or mitomycin C-treated and cultured with MIsb B10.BR T cells in an MIs-defined MLR, MIsac H-2d (BALB/c×DBA/2)F, T cells in an H-2-defined MLR, and G58/J T cells in a presumably non-H-2-defined MLR (Table 2, experiment 1). As previously reported (Webb et al. 1985; Ryan et al. 1987a) for an Misdefined MER, irradiation substantially diminished the capacity of strongly-stimulatory AKR/J and CBA/J; as well as more poorly stimulatory C3H/HeJ splenocytes, to stimulate proliferation of H-2-compatible Mls^b B10.BR responder cells. The stimulatory ability of these splenocytes to present their MHC determinants was also noticably impaired after irradiation but the diminished level was never equivalent to that detected across a known MIs barrier. Like B10.BR responder cells, the capacity of C58/J T cells to respond was more greatly impaired after irradiation (versus mitomycin-C-treatment)-of-the H-2^k-compatible presenting cells than was the proliferation of the MHC-disparate BALB/c F1 T cells.

As expected, the prototypic Mls^b CBA/CaJ and Mls^{null} CBA/N mitomycin C-treated stimulator cells failed to stimulate effective levels of proliferation of Mls^b B10.BR T cells in an Mls-defined MLR. The finding that C58/J T cells proliferated to these splenocytes, which were formerly considered virtually nonstimulatory

across a non-MHC barrier, was provocative (Table 2, experiment-1). Those splenocytes that were the most capable after mitomycin C treatment of eliciting high levels of DNA synthesis by B10.BR of C58/J responder cells were also the most mitogenic for these T cells when the presenting cells were pretreated with GaMD in vivo and then irradiated (Table 2, experiment 2). GaMD-treated splenocytes showed a peak in augmented presentation of this newly-defined non-MHC specificity one day after in vivo administration of this B cell mitogen; stimulatory capacity then diminished to control values seven days after injection of GaMD (data-not shown). Prototypic MIs determinants show a similar time course in stimulating ability after in vivo GaMD treatment (Ryan-et al. 1983).

C58/J T cells recognize a non-MHC MLR stimulatory specificity that is widely distributed among H-2^k-compatible mouse strains. Although C58/J mice have been assumed to be totally H-2-compatible with other H-2^k mouse strains, the possibility exists that C58/J may express an aberrant MHC; thus, the response of C58/J T cells to the Mls prototypic stimulator cells seen previously could be directed to their "conventional" MHC-associated antigens. Alternatively, C58/J T cells may be recognizing a shared non-MHC (perhaps Mls-like) moiety expressed by each of these Mls prototypic splenic stimulator cells. Indeed, the extreme radiation sensitivity and GaMD augmentability (Table 2) might argue for the latter possibility.

To distinguish formally between these two alternatives. C58/J mice were crossed with congenic H-2k B10.BR, $H-2^d$ B10.D2, and $H-2^h$ C57BL/10 mice. If the C58/J T cell response was directed at an H-2^k component of the Mls prototypic stimulator cells, only the $(B10.BR \times C58/J)F_1$ responder cells should be deleted of responsiveness to these-H-2^k-stimulator cells. If C58/J responder cells recognize a non-MHC component present in the background of each of the MHC-disparate B10 congenic strains (and shared with the Mis prototypic strains), the T cells from (B10.BR \times C58/J) \mathbf{F}_{i} , (B10.D2 \times C58/J) E₁, and (C57BL/10×C58/J)F₁ animals should all be nonresponsive to this stimulator panel. In the four experiments compiled in Table 3. additional H-2^k Mls nonprototypic stimulator cells were included to obtain a more comprehensive appreciation of the strain distribution of the non-MHC specificity recognized by C58/J. Because each of the three H-2-different B10 congenic F, responder-cell populations was largely unresponsive to the Mls prototypic stimulator cells as well as the other H-2^k-compatible stimulator cells tested, it is likely that C58/J T cells recognize in a primary MLR a widelydistributed, non-MHC moiety shared by most of the H-2k splenocytes examined. The ability of parental H-2d, MIsa.c DBA/2 to delete this responsiveness in (DBA/2×C58/J)F₁ animals suggests that this Mls^a pro-

Table 3. C58/J responder cells recognize a non-MHC specificity that is widely-distributed among H-2*-compatible inbred mice.

Stimulator cel	ls'		Responder cells						
Strain	H-2	Mis	C58/J	(B10.BR×C58)F	(B10.D?×C58)F ₁	(C57BL/10×C53)F,	(DBA/2 × C58)F ₁		
Syngeneic	-		6,141*	7,938	5.198-	3,691	5,926		
ÁKR/J	k	- a	60,064	4.445	4.325	1,471	4,625		
MA/My	k	а	174,665	23:112	24.644		·		
B10.BR	k	b	13,590	3.459	2.540	1,606			
CBA/CaJ	k	b	209.348	6.336	3.451	4,549	4,627		
C57BR/cdf	k	b -	187,480	14.633	<u> 15.255</u>				
B6.AKR	k	b	104,662	9.156	10.269				
C3H/HeJ	k	c	31,166	5.622	3.098	2.093	3,826		
BALB,K	k	c	54,923	3.920	2.969	2,185			
CBA/J	k	a,č	144,950	7.271	4.306	4.631	4,651		
CE:J	·k-	a.c	125.868.	10.936	-11.738	4.196	5,467		
RĒ/J	k	a.c	6.838	3.915	4.422		2.073		
C57BL/10=	b .	-b	60,100	92,418	57.484	-	-		
B10.D2	ď	b	109,256	-		76.559			
SJL/J	S	?	43,408		_	********	38.082		

^{*} Stimulator cells were splenocytes (6×10⁵/well) that were irradiated with 3 000 R after being obtained from animals that were injected 24 h beforehand with:100 µg of GaMD i.v.

totypic mouse strain also encodes the non-MHC ligand shared by the H-2^k mouse strains tested:

The large variation in the capacity of stimulator cells from different H-2k mouse strains to trigger C58/J T cells across this non-MHC difference was also an important feature of these experiments. A gradient of stimulatory ability was noted, with B10.BR being among the poorest and CBA/CaJ, CBA/J, and C57BR/cdJ strains being among the best presenters of this non-MHC moiety. This laboratory previously reported that a diversity in presenting capacity also existed for the MIsc specificity among different H-2k mouse strains; this phenomenon reflected the influence of non-MHC background genes encoded by the stimulator cells (Ryan et al. 1990a). One additional example of the non-MHC regulated presentation of this newly-defined specificity may involve the B6 and B10 non-MHC backgrounds (both Mlsb) that were formerly considered to be quite similar. It was interesting to find that in this, as well as in other experiments not shown, the B6.AKR stimulator cells were superior in comparison with B10.BR splenocytes for the presentation of this non-H-2-MLR stimulatory determinant to C58/J T cells. The only H-2k-compatible stimulator cells tested that did not elicit detectable levels of C58/J responder proliferation (in this and other experiments) were those from RF/J mice. Because Misa.c RF/J T cells are not responsive to Mist, Mist (Ryan et al. 1990a), or Mist (J.J. Ryan, unpublished observation) H-2k-compatible stimulator cells, there is no evidence to suggest that RF/J responder cells also recognize the newly-defined, widelydistributed non-MHC moiety that stimulates C58/J T

cells. Thus it is possible than spleen cells from RF/J mice encode this specificity but are not able to present this determinant effectively in vitro. We attempted to determine whether the RF/J parent was capable of deleting responsiveness in the (RF/J × C58/J)F₁ animal to this non-MHC specificity recognized by C58/J. T cells. However, after more than one year, we did not obtain productive matings between these parental strains:

The largest residual response of (B10.BR × C58/J)F₁ and (B10.D2 × C58/J)F₁. T cells to the panel of H-2^k stimulator cells was directed to the MA/My splenocytes. This could relate to the previous report that MA/My expresses a weak, non-MHC MER stimulatory determinant, distinct from Mls^a and Mls^c (Ryan et al. 1990a). It is possible that this MA/My determinant is not a self-component of C58/J or the B10 congenic mice and is therefore responsible for eliciting the low level of residual F₁ responder proliferation detected in the MLR shown in Table 3.

Having shown that MIs only CBA/N splenocytes also stimulate C58/J responder cells (Table 2, experiment 1); we wished to determine whether the specificity recognized on these xid stimulator cells was similar to the widely-distributed; non-MHC determinant discussed above. Mitomycin C was used to inactivate normal splenic stimulator cells in this experiment, since we previously observed that GaMD-treated irradiated CBA/N splenocytes were not particularly effective in presenting this non-MHC specificity to C58/J-T cells, unlike B-cell normal stimulator cells (Table 2, experiment 2). Accordingly, the response of C58/J T cells to mitomycin C-treated

^{&#}x27; See legend to Table 1.

^{*} See legend to Table 1: the oppy-values represent the averages of four separate experiments,

Table 4. Although: formerly considered MIs^{nut}, 'CEA/N splenocytes express-an MLR stimulatory-non-MHC specificity-recognized by C58'J responder cells that is shared with other H-2^k Mouse Strains.

Stimulator-cells*			Responder cells			
Strain	H-2	Mis	C58/J	CBA/CaJ	(CBA·Cป × C58ป)F ₁	
Syngeneic	k		9,490*	1.720	2:179	
CBA/J	⁼k	a,c		194.281	3:395	
CBA/N	⁼k	null	39,280	3.162	9.648	
B10.Q	- q	ь	51,071 39,280 82,634	3.162 67.228	9.648 82.721	

^{*} See legend to Table 1.

Table 5. Monoclonal antibody to class II MHC inhibits the response to the non-MHC specificity recognized by C58/J T cells.

Responder-cells*	Antibody	-	Stimulator cells*			
-		C58/J	CBA/Cai	CBA/J	B10.D2	
Experiment I	7 7			~_		·
C58/J-	Medium 10-362	15,527* 13,574	104,438 28,372	56,192 19,594	179,483 142,571	
Experiment 2					-	
CS§/J-	Medium 14-4-4 MK-D6 CBPC-101	5,299 7,577 6,294 9,449	47,055 8,782 46,498 48,496	45,753 13,381 32,801 44,275	117,798 102,602 48,931 128,749	

^{*} See legend to Table 1.

CBA/N stimulator cells was compared to that of (CBA/CaJ × C58/J)F₁ T cells (Table 4). Crossing C58/J with CBA/CaJ was previously shown to produce an F₁ animal that is unresponsive to each of the H-2^k stimulator cells listed in Table 3. Similarly, in this experiment the F₁ T cells were largely deleted of responsiveness not only to H-2^k-compatible CBA/J, but also to CBA/N splenic stimulator cells. Because some significant residual proliferation of the (CBA/CaJ × C58/J)F₁ responder cells to CBA/N stimulator cells was noted in this and other experiments not shown, it is possible that CBA/N splenocytes also express an additional non-MHC determinant not shared with CBA/CaJ or CBA/J that stimulates C58/J T cells.

The finding that the F₁ responder cells were unresponsive to CBA/J stimulator cells, while parental CBA/CaJ and C58/J proliferated to these splenocytes is not inconsistent. It supports instead the concept of gene complementation in which the CBA/CaJ partner contributed the newly-defined, non-MHC stimulatory specificity and the C58/J partner contributed the prototypic

MIs and MIs to yield an F₁ animal depleted of T cells that could respond to these three specificities expressed on H-2-compatible CBA/J stimulator cells. In summary, it is most likely that all H-2^k strains tested (with the possible exception of RF/J) share the widely-distributed, non-MHC MLR specificity recognized by C58/J heterogenous T cells.

Monoclonal anti-la antibody blocks the responsiveness of C58/J T cells to the widely-distributed, non-MHC MLR stimulatory specificity. Studies from other laboratories have consistently demonstrated that monoclonal or polyclonal antibodies to MHC class II subregion antigens A or E block the proliferation of responsive T cells across an Mls^a (Janeway et al. 1980; Macphail and Stutman 1984; Janeway and Katz 1985) and an Mls^c (Abe and Hodes 1988) barrier. Therefore, we wished to test the effect of monoclonal Ia-specific antibodies on the recognition of the widely-distributed (non-Mls^{a,c}), non-MHC MLR stimulatory specificity recognized by C58/J T cells. Accordingly, monoclonal 10-362 A^k- (Table 5, experi-

² See legend to Table 1.

^{**} Values are cpm of mean arithmetic (¹H) TdR uptake of quadruplicate cultures, harvested at 96 h. *Underlined numbers* are those that are significantly greater. (p < 0.05) than response to syngeneic stimulators.

See legend to Table 1.

^{*}See legend to Table 4; the monoclonal 10—362 (A*-specific) antibody (50 μg/ml) and 14-4-4 (E-specific) antibody (8 μg/ml) were purified from ascites fluid by ammonium sulfate precipitation and Sephadex column chromatography; the monoclonal MK-D6 (A*-specific) antibody (40 μg/ml) and CBPC-101 (no known specificity) antibody (10 μg/ml) were purified by Protein A-Sepharose column chromatography.

ment 1) or 14-4-4 E- (Table 5, experiment 2) specific antibody was added to the primary MLR between C58/J T cells and H-2-compatible mitomycin C-treated CBA/CaJ and CBA/J or H-2-disparate B10.D2 splenic stimulator. cells. Very substantial blocking of C58/J responsiveness to the non-H-2 specificity presented by the H-2k stimulator cells was observed with the addition of each of these monoclonal antibodies; however, much less effect was noted on the proliferation of C58/J T cells to H-2^d-disparate B10.D2 splenocytes, MK-D6 A^d-specific monoclonal antibody had only a small effect on the response of C58/J T cells to the newly-defined-non-MHC specificity expressed by H-21-compatible CBA/CaJ and CBA/J: however, a substantial reduction in the C58/J T cell response to H-2^d B10.D2 was observed. The CBPC-101 antibody (with no known antigen specificity) has an IgG, isotype-like 10-362, 14-4-4, and MK-D6. This isotype-matched control reagent had no effect on the anti-non-MHC or anti-MHC response of C58/J T cells in a primary MLR. Thus, as with prototypic MIs² and MIs^c, class II MHC molecules influence the recognition of this newly-defined, non-MHC MLR stimulatory specificity and specific antibodies to Ia antigen prevent effective presentation/recognition of this moiety. In a preliminary experiment, monoclonal anti-H-2Kk antibody 11-4.1 also reduced the C58/JT cell proliferative response to the newly-defined, non-MHC determinant (data not shown). This is compatible with the previous report that an anti-MHC class I antibody partially blocked responder T cell proliferation to prototypic Mls^a (Macphail and Stutman 1984).

Phenotypically normal CBAIN F₁ female but not-xid⁺ B cell-defective CBA/N F, male stimulator cells effectively present the newly-defined, non-MHC MLR stimulatory specificity recognized by C58/J T cells. For both the MIs (Ryan et al. 1983; Webb et al. 1984) and the MIs (Ahmed and Scher 1976; Ryan et al. 1990a) specificities, B cell-defective xid + CBA/N F, male splenic stimulator cells are poor presenters of these non-MHC moieties while B cell-normal CBA/N:F1 female splenocytes more. effectively stimulate responder T cells across these barriers. Substantial differences in the ability to present MHC determinants have not been observed for CBA/N F₁ male and female stimulator cells (Webb et al. 1984). To examine the functional similarities and differences between prototypic MIs antigens and the newly-defined; non-MHC MLR stimulatory specificity further, the capacity of splenocytes from CBA/N F, male and female animals to present the latter determinant and prototypic MIs in a primary MLR was compared (Table 6).

Because the frequency of Ig-positive spleen cells in xid * CBA/N F₁ male mice is approximately 40% less than that found in their phenotypically B cell-normal female F₁ littermates (Scher et al. 1975), male and

female CBA/N F₁ stimulator cells were T cell-depleted (before mitomycin C treatment) to obtain approximately equivalent numbers of non-T MIs presenting cells in both groups. Consistent with previous reports (Ryan et al. 1983: Webb et al. 1984), C3H/HeJ T cells proliferated vigorously to the Mls^a difference expressed by phenotypically normal female but not xid male (CBA/N× AKR/J)F, splenic stimulator cells (Table 6, experiment 1). Interestingly, although C58/J animals encode MIs² (Abromson-Leeman et al. 1988a, 1988b; Ryan et al. 1990a) and are deleted of T-cells that express the VB segments that are predictive of responsiveness to MIs (Vacchio and Hodes 1989), C58/J responder cells also proliferated vigorously to the $(CBA/N \times AKR/J)F_1$ female but not male stimulator cells. Based on the results of Tables 3 and 4, it is likely that both CBA/N and AKR/J partners contribute to their F1 the widely-distributed non-MIIC MLR stimulatory specificity, distinct from prototypic Mls antigens, recognized by C58/J.

In the next series of experiments, MIsnull CBA/N mice were crossed with H-2k-compatible animals. MIsh B10.BR and CBA/CaJ, that were not known to express a stimulatory (previously defined) Mls specificity. The latter prototypic Mls nonstimulatory strains nevertheless expressed the widely-distributed, non-MHC MLR stimulatory specificity recognized by C58/J T cells (Table 3). The resulting normal female and defective xid⁺ male F₁ splenocytes were examined for a differential capacity to present this newly-defined non-MHC MLR stimulatory specificity to C58/J T cells (Table 6, experiments 2 and 3). As with the presentation of prototypic MIs² by (CBA/ N x AKR/J)F, splenocytes (Table 6, experiment 1), the non-MHC specificity recognized by unprimed C58/J responder cells was more effectively presented by stimulator cells from B-cell-normal (CBA/N×B10.BR) F₁ female than the xid⁺ F₁ male littermates. A comparable result was obtained with normal mitomycin Ctreated (CBA/N×CBA/CaJ)F, male and female spleno-

The response of C58/J T cells to H-2k-compatible parental xid+ CBA/N splenocytes (observed in Tables 1 and 4) appeared to be somewhat more vigorous than to the xid+ CBA/N F₁ male stimulator cells detected in Table 6. This could be explained in part by the previous observation that CBA/N splenocytes may express an additional non-MHC specificity stimulatory for C58/J T cells (Table 4); this determinant, that is not extremely stimulatory when presented by homozygous CBA/N, might be undetected in the heterozygous CBA/N F, male splenocytes. Nevertheless, parental xid CBA/N splenocytes were less stimulatory for C58/J T cells than the phenotypically B cell-normal CBA/N F₁ female splenocytes (Table 6, experiment 2) and presenting cells from CBA/CaJ and CBA/J (Tables 2 and 4) mice to which the immunodeficient CBA/N strain is related. The non-MHC

Table 6. The non-MHC specificity recognized by C58/J-T cells is well presented by phenotypically normal CBA/N F_j-female but not XID * CBA/N F_j male stimulator cells.

Stimulator cells*		_	Responder cells		
Strain	Mis	GaMD treatment	Cell no. × 10 ⁻⁵	(MIs ^{a,} MLR) C3H/HeJ	(Non-H-2 MLR) C58/J
Experiment-1					
Syngeneic	-	-	3 6	2,509 * 3,054	1,551 2,638
(CBA/N×AKR)F ₁ female	nulla	-	3 -6	138.062 141.791	47,431 65,657
(CBA/N×AKR)F ₁ male	nul <u>i</u> a	-	3 :6	13.360 19.531	2.988 3.519
Experiment-2				(Non-H-2:MLR) C58/J	(H-2 MLR) B6D2F,
Syngeneic	-	-	3 ≈6	8,586 9,327	4,526
(CBA/N×B10.BR)F ₁ female	null. b	-	3 6	58.619 77.403	82,223
(CBA/N×B10.BR)F ₁ male	null, b	-	3	10.549 11.293	61.871
CBAIN	null	-	3	23,748	54.233
Experiment 3				(Non-H-2 MLR) C58/J	(H-2 MLR) BALB/C
Syngeneic	-	-	3 6	1.573	3.566 3.384
		+	3 6	5.844 4.574	3.512 3.093
(CBA/N×CBA/CaJ)F ₁ female	null,-b	-	3 6	36.339 48.465	39.909 35.001
		+	-3- 6	190,127 158,159	48.328 30.226
(CBA/N×CBA/CaJ)F ₁ male	null_b	-	3	4,213	32.039
		+	6 3	<u>5.550</u> 17.831	28.932 30.8 5 6
			6	15.619	18.944

Stimulator cells were normal or GaMD-activated splenocytes that were treated with anti-Thy 1.2+C and then mitomycin C-treated (Experiments 2..3) or normal splenocytes treated with anti-Thy 1.1+anti-Thy 1.2+C and then mitomycin C-treated (Experiment 1).

stimulatory capacity of the (CBA/N×CBA/Ca)F₁ female splenocytes for C58/J responder cells was substantially enhanced after GaMD treatment (Table 6, experiment 3). In-contrast, the xid+ GaMD-activated (CBA/N×CBA/Ca)F₁ male-splenocytes showed a modest increase in stimulatory ability across this non-MHC barrier. The latter observation does not necessarily conflict with our original report that GaMD treatment of xid* CBA/N F₁ male stimulator cells had no effect on the presentation of prototypic MIs antigen (Ryan et al. 1983). In that study, the stimulator cells were irradiated while in these experiments, the presenting cells in the MLR were mitomycin C-treated. Given the extreme radiation sensitivity of B cells with the xid* phenotype (Riggs et al. 1988), the MIs augmenting effect of GaMD pretreatment

might not be detected subsequent to a high dose of irradiation given to xid stimulator cells in the earlier study.

Discussion

For many years, a strong MIs antigen was considered an in vitro curiosity that could trigger the explosive proliferation of H-2-compatible responder cells in a primary MLR due to the large precursor frequency of T cells that were precommitted to recognize this non-MHC moiety. More recently, however, MIs^a and MIs^c determinants have been recognized to belong to a class of "superantigens" that play an important role in the elimination of self-reactive T cells during development in the thymus (Kappler

^{*} See legend to Table 1.

[≠]See legend to Table 1,

et al. 1988; MacDonald et al. 1988; Pullen et al. 1988). In addition, studies of the depletion of mature T cells expressing $V\beta 5.2^+$ (Woodland et al. 1990), $V\beta 7^+$ (Vacchio and Hodes 1989), Vβ11⁺ (Bill et al. 1989; Vacchio and Hodes 1989), or $V\beta 17a^+$ (Marrack and Kappler 1988) Ter segments in mice bearing a class II $E\alpha E\beta$ product suggested that undefined non-MHC self-deleting ligands besides MIs² and MIs^c could exist.

In a comprehensive investigation of the range of selfantigens that influence $V\beta$ usage, it was reported that C58/J animals, unlike other E+ mouse strains, were not deleted of VB11+ or VB12+ T cells (Vacchio and Hodes 1989). These authors further determined that non-MHC ligands, not encoded in C58/J animals, mediate the deletion of $V\beta 11^+$ or $V\beta 12^+$ T cells in the periphery of other inbred strains (Vacchio et al. 1990). In addition, this laboratory has found that MIs3.c C58/J-T cells responded to H-2-compatible MIs AKR/J and MIs C3H/HeJ stimulator cells in a primary MLR (Ryan et al. 1990a). These observations were in agreement with the limited MLR data included in another study (Vacchio et al. 1990) of the negative selection of $V\beta 11$ - and $V\beta 12$ -expressing T cells. However, there remains an additional need to determine whether unique allostimulatory characteristics commonly associated with prototypic MIs and MIs are shared with non-MHC antigen recognized by C58/J T cells in a primary MLR.

Before addressing the nature of the specificity recognized by C58/J T cells in a non-MHC-defined MLR, it is first necessary to establish firmly that C58/J animals are genotypically MIsacc and thus self-tolerant to these prototypic Mls determinants. In this regard, both Mls or MIs^x-specific T cell clones proliferated to C58/J splenic stimulator cells (Abromson-Leeman et al. 1988a, 1988b). In a primary MLR, H-2-compatible MIs AKR/J and MIsc C3H/HeJ but not MIsc. (AKR/J×C3H/HeJ)F (Ryan et al. 1990a) or CBA/J (Fig. 1) T-cells responded to C58/J stimulator cells. Parental Misa.c prototypic CBA/J mice when crossed with MIsh B10.BR mice induced unresponsiveness in the (B10.BR \times CBA/J) F_1 progeny not only to H-2-compatible MIs prototypic AKR/J, MIsc prototypic C3H/HeJ, and MIsc. (AKR/J×C3H/ HeJ)F₁ (Ryan et al. 1987b; Table 1) but also to C58/J stimulator cells. In addition, C58/J animals are depleted of T cells that express $V\beta6$ and $V\beta9$ Tcr segments, that are associated with responsiveness to MIs2, as well as $V\beta 3$ Ter segments, and that are associated with responsiveness to MIsc (Vacchio and Hodes 1989). Taken together, these observations indicate that proliferation across a non-MHC difference by C58/J responder-cells would be directed to a moiety other than MIs2 or MIs2.

A related issue to resolve at the outset was the possibility that C58/J mice express aberrant MHC antigen, so that the proliferative response of C58/J T cells to Misa. Misa, or Misa, stimulator cells (that are

supposedly H-2-compatible with C58/J) would directed at their conventional H-2^k MHC determinants. This possibility was excluded by generating a series of F1 responders by crossing C58/J animals with H-2k B10.BR, H-2^d B10.D2, or H-2^b C57BL/10 mice. If the response of C58/J T cells to the H-2k stimulator cells tested (Table 3) was actually directed at their MHC-encoded determinants, only the (B10.BR x C58/J)F, mice among these F₁ responders would be self-tolerant to this panel of stimulators. Because the (B10.D2×C58/J) F_1 and $(C57BL/10 \times C58/J)F_1$, as well as the $(B10.BR \times$ C58/J)F₁ T cells were no longer responsive to these H-2^k stimulator cells (Table 3), we concluded that C58/J responder cells recognize a non-MHC ligand, distinct from previously defined MIs2 or MIs2, that is present in the B10 congenic background and is widely distributed

among other inbred-mouse strains.

Subsequently, we analyzed additional functional properties of the non-MHC moiety recognized by C58/J T cells in a primary-MLR to determine if it had characteristics common to established members of the MIs superantigen family. Since no biochemical or serological criteria exist that characterize prototypic Mls determinants, the decision whether a newly-defined, non-MHC MLR stimulatory specificity belongs to this family of superantigens must be based largely on functional evidence. Taken together, our observations that the non-MHC MLR stimulatory specificity recognized by heterogenous C58/J T cells (like prototypic MIs² and Mls^c), is particularly radiation sensitive, is dramatically augmented after stimulator cell GaMD treatment and riggers high levels of T cell proliferation, is influenced in its presenting capacity by non-MHC stimulator background genes, is blocked with anti-class II MHC antibody, and is presented much more effectively by B cell-normal female than by B cell-defective xid* male CBA/N F. splenic stimulator cells strongly suggest that this moiety should be considered a new member of the Mis superantigen family. Upon examination of these functional properties, the B lymphocyte appears to play as prominent a role in the presentation of the newly-defined, non-MHC MLR stimulatory specificity as was previously documented for prototypic MIs determinants (Webb et al. 1985; Ryan et al. 1988) and at least one undefined superantigen (Marrack and Kappler 1988).

Because unresponsiveness to the newly-defined, non-MHC MLR stimulatory determinant is dominant in F₁ animals obtained by crossing CS8/J mice with mouse strains that encode this non-MHC antigen (Tables 1, 3, and 4), it is likely that this ligand mediates in vivo the negative selection of T cell populations that are self-reactive to it. This functional observation compliments the finding that deletion of $V\beta 11^+$ or $V\beta 12^+$ T cells is dominant in F_t mice obtained by crossing $\langle V\beta 11^{-1}\rangle$ $V\beta 12^{-}$) strains that express this newly-defined, nonMHC determinant and (V\$11⁺ V\$12⁺) parental C58/J (Vacchio et al. 1990). This self-deleting property is now considered a hallmark of prototypic MIs antigens (Abe et al. 1988; Kappler et al. 1988; MacDonald et al. 1988; Pullen et al. 1988; Pullen et al. 1989; Vacchio and Hodes 1989).

Although a low level of C58/J-T-cell proliferation was elicited across this non-MHC barrier by B10.BR splenocytes, (B10.BR × C58/J)F₁ animals were effectively deleted of functional responsiveness to this newlydefined specificity (Table 3). In addition, crossing C58/J with B10 congenic mice yielded Fi animals that lacked $V\beta 11^+$ or $V\beta 12^+$ T-cells in their periphery (Vacchio et al. 1990). Therefore, it is possible that the efficiency with which this non-MHC determinant evokes the negative clonal selection process in vivo for a particular inbred mouse strain may not correlate with its potency as:a T cell-stimulatory antigen in vitro. The congenic B10.BR strain derived its H-2k haplotype from C57BR/cd mice that very effectively present this newly-defined, non-MHC MLR stimulatory specificity recognized by C58/J T cells (Table 3). Consequently, it is likely that the action of non-MHC genes present in the B10 background rather than the expression of an "inappropriate" or aberrant MHC accounts for the poor in vitro presentation of this non-MHC MLR stimulatory specificity by B10.BR splenocytes. Previous studies from this laboratory have confirmed the importance of non-MHC gene influences in regulating the presentation of prototypic MIs2 and Misc determinants (Ryan et al. 1990a).

The finding that monoclonal E-specific antibody blocks responsiveness of C58/J T cells to this MLR stimulatory non-MHC antigen (Table 5, Experiment 2). is consistent with other studies indicating that expression of the Emolecule is critical for self-recognition of a widely-distributed, non-MHC moiety and subsequent clonal deletion of self-reactive T cells that are VBII+ (Bill et al. 1989; Vacchio and Hodes 1989). The reason why monoclonal A-specific antibody is as effective as Especific antibody in climinating proliferation of heterogénous C58/J T cells to this ligand that may be corecognized with the class II E molecule is not immediately obvious. However, it is important to emphasize that mouse Ticell responsiveness to the prototypic Mist determinant, that is clearly restricted by the E molecule of the stimulator cells (Ryan et al. 1987; Abe and Hodes 1988). is also blocked by monoclonal E- and A-specific antibodies (Abe and Hodes 1988).

The importance of the MHC in the presentation of previously defined MIs specificities has been carefully documented by several laboratories (Peck et al. 1977; Lynch et al. 1985; Macphail and Stutman 1986; Ryan et al. 1987a; Abe and Hodes 1988); H-2-different congenic and recombinant mouse strains have often been employed as stimulator cells in those studies to map the critical H-2

subregion that is co-recognized with the prototypic Mls determinant. However, the extremely wide distribution of the newly-defined, non-MHC MLR stimulatory specificity among inbred mice may make this type of immunogenetic analysis for this antigen difficult with unprimed heterogenous responder T cells. For example, to generate appropriate F₁ responder cells tolerant to allogeneic MHC yet potentially responsive to the newly-defined, non-MHC determinant, C58/J mice should be crossed with H-2-disparate mouse strains that do not encode this non-MHC antigen as a self-component. Since most inbred strains tested (Tables 3 and 4) – except C58/J – encode this non-MHC determinant, finding such an H-2-different partner lacking the non-MHC antigen may be difficult.

Furthermore, backcross analysis experiments that would attempt to determine whether the newly-defined. non-MHC MLR stimulatory determinant(s) segregates independently of prototypic Mls² or Mls^c antigen requires that one of the parental strains does not encode the former specificity. Thus, the widespread distribution of this determinant complicates segregation analysis as well. In addition, two or more genes were shown to encode this non-MHC ligand(s) based on the deletion of $V\beta 11^+$ T cells in (CBA/Ca × C58/J)F, × C58/J first backcross animals (Vacchio et al. 1990). Given that multiple genes also encode MIs^e (Click and Adelman 1988; Abe et al. 1989; Pullen et al. 1989) and possibly MIs2 (Click et al. 1982; Ryan et al. 1990b), evaluation of allelism between this newly-defined, non-MHC specificity or specificities and previously-defined Mls gene products would be an extremely difficult immunogenetic exercise. However, the observation that this newly-defined, non-MHC determinant is simultaneously expressed by MIs210 mouse strains (e.g., CBA/J and CE/J; Table 3), suggests, but does not prove, that it is not an allele of at least some of the gene products associated with the Misa or Misc phenomena. Clearly, cloned T cells specific for the non-H-2 MLR stimulatory determinant recognized by CS8/J responder cells must be derived in order to address effectively the issues of MHC restriction and of possible allelic relationships with previously defined Mis antigens.

The MIs² and Mis² specificities were shown to be distinct nonallelic unlinked moieties that segregate independently of one another (Abe et al. 1987a). The MIs² designation was used classically to indicate the absence of MIs² and MIs² on presenting cells and thus their nonstimulatory nature in a non-H-2-defined MLR (Festenstein 1976). The MIs² determinant was Gemonstrated to represent the simultaneous expression of MIs² and MIs² antigens (Abe et al. 1987b; Ryan et al. 1987b). MIs² was assigned in one report to a non-MHC MLR stimulatory determinant expressed by C3H/Tif mice that was presumably distinct from MIs² and MIs² (Coutinho et al. 1977). The original small case letter nomenclature,

as opposed to the revised numerical designations (Abromson-Leeman et al. 1988a; Janeway et al. 1989), offers the advantage of providing collective symbols that can be used to convey correctly the multigenic nature (Click et al. 1982; Click and Adelman 1988; Abe et al. 1989; Pullen et al. 1989; Ryan et al. 1990b) of the known Mls determinants. Because $V\beta$ usage and deletion studies suggest that multiple genes encode the non-MHC ligand(s) recognized by C58/J T cells (Vacchio et al. 1990), the use of a letter designation to label this morety also seems appropriate. Thus we propose that the latter newlydefined and widely-distributed non-MHC MLR stimulatory determinant(s), that shares very similar functional allostimulatory properties with prototypic Mls and Mls be assigned the Mls designation.

Acknowledgments. The authors thank Drs. Ryo Abe, Robert Hartzman, and Richard Hodes for critical review of this manuscript and valuable discussions during the course of the experiments. The authors also thank Ms. Joann Harrigan for excellent editorial assistance. This work was supported by Naval Medical Research and Development Task No. M0095.003.1007 and by grants RCR308 (Uniformed University of the Health Sciences) and R01-A121328 (National Institutes of Health). The opinions and assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Navy Department or the naval service at large. The experiments reported herein were conducted according to the principles set forth in the current edition of the Guide for the Care and Use of Laboratory Animals. Institute of Laboratory Animals. Institute of Laboratory Animal Resources, National Research Council.

References

- Abe, R. and Hodes, R.J.: T cell recognition of MIs^c. I. Influence of MHC gene products in MIs^c-specific T cell recognition. *J Immunol* 140: 4132-4138, 1988
- Abe. R., Ryan, J. J., and Hodes, R. J.: MIs is not a single gene, allelic system. Different stimulatory MIs determinants are the products of at least two nonallelic, unlinked genes. J Exp Med 166: 1150-1155, 1987a
- Abe. R., Ryan, J.J., and Hodes, R.J.: Clonal analysis of the MIs system. A reappraisal of polymorphism and allelism among MIs⁴, MIs⁶, and MIs⁶. J Exp Med 165: 1113-1129, 1987b
- Abe. R., Vacchio, M. S., Fox, B., and Hodes, R. J.: Preferential expression of T-cell receptor Vβ3 gene by MIs' reactive T cells. *Nature* 335: 827-830, 1988
- Abe. R., Foo-Philips, M., and Hodes, R.J.: Analysis of MIs^c genetics. A novel instance of genetic redundancy. *J Exp Med 170*: 1059-1073, 1989
- Abromson-Leeman, S.R., Laning, J.C., and-Dorf, M.E.: T cell recognition of Mls^{c. v} determinants. *J Immunol 140*: 1726-1731, 1988a
- Abromson-Leeman, S. R., Laning, J. C., Crowell, J., and Dorf, M. E.: The relationship of Mis^v to Mis^c, *J. Immunogenet 15:* 21-30, 1988b
- Ahmed, A. and Scher, L.: Studies on non-H-2-linked lymphocyte-activating determinants. II. Nonexpression of Mls determinants in a mouse strain with an X-linked B lymphocyte immune defect. J Immunol 117: 1922-1926, 1976
- Bill. J., Appel, V.B., and Palmer, E.: An analysis of T-cell receptor variable region gene expression in major histocompatibility com-

- plex disparate mice. Proc Natl Acad Sci USA 85: 9184-9188, 1988.
 Bill, J., Kanagawa, O., Woodland, D. L., and Palmer, E.: The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ11-bearing T cells. J Exp Med 169: 1405-1419, 1989
- Click, R.E. and Adelmann, A.: Multigene control of Misc. Immunogenetics 28: 412-416, 1988
- Click, R.E., Azar, M.M., and Anderson, V.E.: Immune responses in vitro. XII. Two-independently segregating loci control MIsa product(s). J Immunol 128: 1502-1506, 1982
- Coutinho, A., Meo, T., and Watanabe, T.: Independent segregation of two functional markers expressed on the same B-cell subset in the mouse: The MIs determinants and LPS receptors. Scand J Immunol 6: 1005-1013, 1977
- Festenstein, H.: Strong and weak histocompatibility antigens, Transplant Rev 3: 74-77, 1970
- Festenstein, H.: Immunogenetic and biological aspects of in vitro lymphocyte allotransformation (MLR) in the mouse, Transplant Rev 15: 62-68, 1973
- Festenstein, H.: The Mls system. Transplant Proc 8: 339-342, 1976 Finkelman, F. D., Kessler, S. W., Mushinski, J. F., and Potter, M.: IgD secreting murine plasmacytomas: Identification and partial characterization of two IgD myeloma proteins. J-Immunol 126: 680-687, 1981
- Happ, M. P., Woodland D. L., and Palmer, E.: A third T-cell receptor β-chain variable region gene encodes reactivity to MIs-1² gene products, Proc Natl Acad Sci USA-86: 6293-6296, 1989.
- Janeway, C. A., Jr. and Katz, M. E.: The immunobiology of the T cell-response to Mls-locus-disparate stimulator cells. I. Unidirectionality, new strain combinations, and role of la-antigens. J Immunol 134: 2057-2063, 1985
- Janeway, C. A., Jr., Lerner, E. A., Jason, J.-M., and Jones, B.: T-lymphocytes responding to MIs-locus antigens are Lyt-1*, 2*, and I-A restricted. *Immunogenetics* 10: 481-497, 1980
- Janeway, C. A., Jr., Yāgi, J., Conrad, P. J., Katz, M. E., Jones, B., Vroegop, S., and Buxser, S.: T cell responses to Mls and to bacterial proteins that mimic its behavior. *Immunol Rev* 107: 61-88, 1989-
- Julius, M. H., Simpson, E., and Herzenberg, L. A.: A rapid methodfor the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol 3: 645-649, 1973-
- Kappler, J. W., Wade, T., White, J., Kushnir, E., Blackman, M., Bill, J., Roehm, N., and Marrack, P.: A T-cell receptor Vβ segmentthat imparts reactivity to class II major histocompatibility complex product. Cell-49: 263-271, 1987
- Kappler, J. W., Staerz, V., White, J., and Marrack, P. C.: Self-toler-ance eliminates T-cells specific for Mls modified products of the major histocompatibility complex. *Nature* 332: 35-40, 1988
- Lynch, D. H., Gress, R. E., Needleman, B. W., Rosenberg, S. A., and Hodes, R. J.: T-cell responses to MIs determinants are restrictedby crossreactive MHC determinants. J Immunol-134: 2071–2078, 1985
- MacDonald, H. R., Schneider, R., Lees, R. K., Howe, R. C., Acha-Orbea, H., Festenstein, H., Zinkernagel, R. M., and Hengartner, H.: T-cell receptor Vβ use predicts reactivity and tolerance to MIs³-encoded antigens. Nature 332: 40-45, 1988
- Macphail. S. and Stutman. O.: Independent inhibition of 1L2 synthesis and cell proliferations by anti-la antibodies in mixed lymphocyte responses to Mls. Eur J Immunol 14: 318-324, 1984
- Macphuil. S. and Stutman. O.: H-2-linked genes determine the levelof the primary in vitro anti-Mls response. *Immunogenetics* 24: 139-145, 1986
- Marrack, P. and Kappler, J.: T cells distinguish between allogeneic major histocompatibility complex products on different-cell-types. *Nature* 332: 840-843, 1988
- Miller. R. A. and Stutman, O.: Enumeration of 1L2-secreting helper-T-cells by limiting dilution analysis, and demonstration of unexpectedly high levels of 1L2 production per-responding cell. J. Immunol 128: 2258-2264, 1982

- Peck, A. B., Janeway, Jr., C. A., and Wigzell, H.: T-lymphocyte responses to MIs antigens involve recognition of H-2 I region pene products. *Nature* 266: 840-842, 1977
- Pullen, A. M., Marrack, P., and Kappler, J. W.: The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. *Nature* 335: 796-801, 1988
- Pullen, A. M., Marrack, P., and Kappler, J. W.: Evidence that Mls-2 antigens which delete Vβ3⁺ T-cells are controlled by multiple genes. J Immunol 142: 3033-3037, 1989
- Riggs, J. E., Lussier, A. M., Lee, S.-K., Appel, M. C., and Woodland, R. T.: Differential radiosensitivity among B cell subpopulations. J. Immunol 141: 1799-1807; 1988
- Ryan, J. J., Mond, J. J., Finkelman, F. D., and Scher, I.: Enhancement of the mixed lymphocyte reaction by in vivo treatment of stimulator spleen cells with anti-IgD antibody. *J Immunol* 130: 2534-2541, 1983
- Ryan, J. J., Miner, D. W., Mond, J. J., Finkelman, F. D., and Woody, J. N.: Regulation of the in vitro presentation of minor lymphocyte stimulating determinants by major histocompatibility complex-encoded immune response genes. J Immunol 138: 2392-2401, 1987a
- Ryan, J.J., Mond, J.J., and Finkelman, F.D.: The Mls^d-defined primary mixed lymphocyte reaction: A composite response to Mls^a and Mls^c determinants. *J Immunol* 138: 4085-4092, 1987b
- Ryan, J. J., Thompson, C. B., Mond, J. J., and Finkelman, F. D.: Augmented in vitro presentation of Mls determinants after anti-immunoglobulin-induced B cell activation: Ontogeny and role of purified B cell. *J. Immunogenet* 15: 121-133, 1988
- Ryan, J. J., LeJeune, H. B., Mond, J. J., and Finkelman, F. D.: Genetic analysis of the presentation of minor lymphocyte stimulating determinants. II. Differing non-MHC control of superstimulatory and

- more poorly stimulatory MIs phenotypes. I funnanol 144 2506-2517, 1990a
- Ryan, J. J., Mond, J. J., and Finkelman, F. D.: The heterogeneous 1 cell response to prototypic Mis^a reflects dual specificity. FASEB J 4(7): A1728, 1990b
- Scher, I., Ahmed, A., Strong, D. M., Steinberg, A. D., and Paul W. E.: X-linked B-lymphocyte immune defect CBA/HN mice. I Studies on the function and composition of spleen cells. J Exp Med. 141: 788-803, 1975.
- Vacchio, M. S. and Hodes, R. J.: Selective decreases in T cell receptor Vβ expression. Decreased expression of specific Vβ families is associated with expression of multiple MHC and non-MHC gene products. J Exp Med 170: 1335-1346, 1989
- Vacchio, M. S., Ryan, J. J., and Hodes, R. J.: Characterization of the ligand(s) responsible for negative selection of Vβ11- and Vβ12-expressing T cells: Effects of a new MIs determinant. J Exp Med 172 807-813, 1990
- Webb. S. R. and Sprent, J.: Response of mature unprimed CD8⁻ 1 cells to MIs^a determinants. J Exp Med 171: 953-958, 1990
- Webb, S. R., Mosier, D. E., Wilson, D. B., and Sprent, J.: Negative selection in vivo reveals expression of strong Mls determinants in mice with X-linked immunodeficiency. J Exp Med 160: 108-115, 1984
- Webb, S. R., Li, J. H., Wilson, D. B., and Sprent, J.: Capacity of small B cell-enriched populations to stimulate mixed lymphocyte reactions: Marked differences between irradiated vs. mitomycin Ctreated stimulators. Eur J Immunol 15: 92-96, 1985
- Woodland, D., Happ, M. P., Bill, J., and Palmer, E.: Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T cells. Science 247: 964-967, 1990