Towards Faster Internet with Reinforcement Learning

Viswanath Sivakumar

Facebook Al Research (FAIR)

Global Internet Traffic (PB/month)

Network Congestion

Computer Networks 101

Computer Networks 101

ACK tells you:

- The largest packet number received
- Measured round-trip time (RTT)

• ...

Traditional Congestion Control

- Hand-engineered
- Decentralized
- Reactive, not predictive
- Often too conservative

Experimental evaluation of TCP congestion control mechanisms in short and long distance networks, Mohamad et al.

Traditional Congestion Control

- Hand-engineered
- Decentralized
- Reactive, not predictive
- Often too conservative

Experimental evaluation of TCP congestion control mechanisms in short and long distance networks, Mohamad et al.

30+ years of active research!

mvfst-rl

An asynchronous RL platform for congestion control in QUIC transport protocol

mvfst-rl 1/3

QUIC Networking Stack:

- Handles Facebook production traffic
- UDP-based
- User-space (as opposed to Kernel) congestion control

github.com/facebookincubator/mvfst

mvfst-rl 1/3

MVF5f

QUIC Networking Stack:

- Handles Facebook production traffic
- UDP-based
- User-space (as opposed to Kernel) congestion control

github.com/facebookincubator/mvfst

Rapid Experimentation

mvfst-rl 2/3

Pantheon Network Emulator:

- Emulation of 18 real-world network scenarios
- Bayesian Optimization for calibration

- 1. Calibrated emulator (Nepal to AWS India)
- 2. Calibrated emulator (Mexico cellular to AWS California)
- 3. Calibrated emulator (AWS Brazil to Colombia cellular)
- 4. Calibrated emulator (India to AWS India)
- Calibrated emulator (AWS Korea to China)
- 6. Calibrated emulator (AWS California to Mexico)
- 7. Token-bucket based policer (bandwidth 12mbps, RTT 20ms)
- 8. Token-bucket based policer (bandwidth 60mbps, RTT 20ms)
- 9. Token-bucket based policer (bandwidth 108mbps, RTT 20ms)
- 10. Token-bucket based policer (bandwidth 12mbps, RTT 100ms)
- 11. Token-bucket based policer (bandwidth 60mbps, RTT 100ms)
- 12. Token-bucket based policer (bandwidth 108mbps, RTT 100ms)
- Severe ACK aggregation (1 ACK every 100ms)
- Severe ACK aggregation (10 ACKs every 200ms)
- 15. Bottleneck buffer = BDP/10
- 16. Bottleneck buffer = BDP/3
- 17. Bottleneck buffer = BDP/2
- 18. Bottleneck buffer = BDP

pantheon.stanford.edu

mvfst-rl 2/3

Pantheon Network Emulator:

- Emulation of 18 real-world network scenarios
- Bayesian Optimization for calibration

- 1. Calibrated emulator (Nepal to AWS India)
- 2. Calibrated emulator (Mexico cellular to AWS California)
- 3. Calibrated emulator (AWS Brazil to Colombia cellular)
- 4. Calibrated emulator (India to AWS India)
- Calibrated emulator (AWS Korea to China)
- 6. Calibrated emulator (AWS California to Mexico)
- 7. Token-bucket based policer (bandwidth 12mbps, RTT 20ms)
- 8. Token-bucket based policer (bandwidth 60mbps, RTT 20ms)
- 9. Token-bucket based policer (bandwidth 108mbps, RTT 20ms)
- 10. Token-bucket based policer (bandwidth 12mbps, RTT 100ms)
- 11. Token-bucket based policer (bandwidth 60mbps, RTT 100ms)
- 12. Token-bucket based policer (bandwidth 108mbps, RTT 100ms)
- Severe ACK aggregation (1 ACK every 100ms)
- Severe ACK aggregation (10 ACKs every 200ms)
- 15. Bottleneck buffer = BDP/10
- 16. Bottleneck buffer = BDP/3
- 17. Bottleneck buffer = BDP/2
- 18. Bottleneck buffer = BDP

pantheon.stanford.edu

Real World Training Arena

mvfst-rl 3/3

Torchbeast PyTorch RL:

- Asynchronous RL training
- Distributed actors
- PyTorch frontend
- Highly efficient C++ implementation

github.com/facebookresearch/torchbeast

mvfst-rl 3/3

Torchbeast PyTorch RL:

- Asynchronous RL training
- Distributed actors
- PyTorch frontend
- Highly efficient C++ implementation

github.com/facebookresearch/torchbeast

Fast Training

RL Basics

<S, A, R, S'>

Markov Decision Process (MDP)

 Next state S' depends only on current state S and action A

RL Basics

<S, A, R, S'>

Markov Decision Process (MDP)

 Next state S' depends only on current state S and action A Policy Gradient Methods:

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

States:

Network conditions:

- Round-trip time
- Bytes sent
- Packets dropped
- Network delay
- •

Heterogeneous state space

```
struct TransportInfo {
  std::chrono::microseconds srtt;
  std::chrono::microseconds rttvar;
  std::chrono::microseconds lrtt;
  std::chrono::microseconds mrtt;
  uint64_t writableBytes;
  uint64_t congestionWindow;
  uint64_t pacingBurstSize;
  std::chrono::microseconds pacingInterval;
  uint32_t packetsRetransmitted;
  uint32_t timeoutBasedLoss;
  std::chrono::microseconds pto;
  uint64_t bytesSent;
  uint64_t bytesAcked;
  uint64_t bytesRecvd;
  uint64_t totalBytesRetransmitted;
  uint32_t ptoCount;
  uint32_t totalPT0Count;
  PacketNum largestPacketAckedByPeer;
  PacketNum largestPacketSent;
};
```

Action:

- Modify congestion window (cwnd)
- Max unacknowledged outstanding bytes

Action:

- Modify congestion window (cwnd)
- Max unacknowledged outstanding bytes

$$A = \{ \mathit{cwnd}, \mathit{cwnd}/2, \mathit{cwnd} - 10, \mathit{cwnd} + 10, \mathit{cwnd} \times 2 \}$$

Action:

- Modify congestion window (cwnd)
- Max unacknowledged outstanding bytes

$$A = \{ \mathit{cwnd}, \mathit{cwnd}/2, \mathit{cwnd} - 10, \mathit{cwnd} + 10, \mathit{cwnd} \times 2 \}$$

$$cwnd_{t+1} = \text{clip}(\text{update}(cwnd_t, a_t, A), 2, 2000)$$

Reward:

- Maximize throughput
- Minimize delay

Reward:

- Maximize throughput
- Minimize delay

```
reward = throughput - alpha * delay
```

Traditional RL Environments

```
env = ...
state = env.reset()
for _ in range(1000):
   action = model(state)
   state, reward, done = env.step(action)
   if done:
      state = env.reset()
```

Traditional RL Environments

```
env = ...
state = env.reset()
for _ in range(1000):
   action = model(state) # Blocks the environment
   state, reward, done = env.step(action)
   if done:
     state = env.reset()
```


25ms Policy Lookup => 1.1% fewer bytes sent

50ms Policy Lookup => 11.4% fewer bytes sent

Asynchronous Environment

Asynchronous Environment

Not Markovian!

MDP with Delayed Actions

Augmented State Space: $\hat{S} = S \times A^k$

k = Action history length

MDP with Delayed Actions

Augmented State Space:
$$\hat{S} = S \times A^k$$

k = Action history length

Environment State:

- 20 raw features
- Summary statistics:
 - sum, mean, max, mean, std
 - 20 features x 5 metrics =100 features
- Action history: one-hot actions + cwnd

State Vector:
$$100 + k \times (|A| + 1)$$

Asynchronous Off-Policy Training

Asynchronous Off-Policy Training

Synchronous Actor-Critic

Asynchronous Off-Policy Training

Synchronous Actor-Critic

Asynchronous Actor-Critic

IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures, Espeholt et al.

mvfst-rl Training Architecture

IMPALA:

- Async Actor-Learner
- Sync Environment-Actor

mvfst-rl Training Architecture

IMPALA:

- Async Actor-Learner
- Sync Environment-Actor

mvfst-rl:

- Async Actor-Learner
- Async Environment-Actor

Results

(c) With LSTM

(d) Without LSTM

Open Research Questions

Generalization across network policies

Faster policy lookup time

Online learning

RL as an alternative to hand-engineered systems
Internet as a platform for real-world RL system
Slow and steady research

github.com/facebookresearch/mvfst-rl

RL as an alternative to hand-engineered systems
Internet as a platform for real-world RL system
Slow and steady research

github.com/facebookresearch/mvfst-rl

RL as an alternative to hand-engineered systems
Internet as a platform for real-world RL system
Slow and steady research

Questions?