Filmmaking Is A Calculated Art

Can You Determine A Movie's Success?

Presented By:

SC1015 - Group 3

- Que An Tran
- Duc Anh Do
- Justin Tan

Problem Statement

- Concrete evidences of failures and successes in movies & films
- Is it possible to predict the success of a movie based on various parameters?
- We deem the success and failures as:
 - Success → Revenue Budget = Positive
 - Failure → Revenue Budget = Negative

The Dataset

- 'The Movies Dataset' created by TMDB and GroupLens
- Metadata of 45,000 movies released on or before July 2017
- Ratings from 270,000 users
- Contains 6 CSV files

Breaking Down The Problem

Pre-Element

Pre-production variables

- Budget
- Num_cast
- Num_crew

The Movies Dataset

Credits.csv

Summary:

movie_id: id of the movie

title: title of the movie

cast: information of cast in the movie

crew: information of cast in the movie

There are 4803 records

Movies.csv

Summary:

Budget: budget of the company **genres**: show genres of the movie **homapage**: link to the homepage

id: id of the movie

keywords: show keywords of the data

original_language : show the language of the movie

original_title : original title of the movie overview : overview of the movie popularity : popularity rate of the movie

production_companies : name of production company production_countries : name of production countries

release_date : date of release revenue : revenue of the movie runtime : runtime of the movie

spoken_languages : list of spoken language **status** : status of the movie (ex. released)

tagline: tagline of the movie

vote_average : average of vote grade

vote_count : number of vote

Cleaning The Dataset

- Selection of relevant columns
 - Budget, Revenue, Num_cast, Num_crew, Popularity, Vote_count, Vote_average
- Check for missing values
 - Missing values will be filled with default values (Null or 0)
- Perform One-Hot Encoding on categorical variables

	drama	animation	foreign	fantasy	horror	thriller	sciencefiction	tvmovie	comedy	romance	family	music	history	action	documentary	war	wester
0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	
1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	
2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	
3	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	
4	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	

• Concatenate relevant variables into a single dataframe

Preparing The Dataset

- Normalise the distribution of the variables
- Remove outliers
 - Remove variables containing 0
 - log(0) leads to infinity
- Measure the Skewness & Kurtosis of Data
 - Clearly positively skewed
 - Use log scaling from SKLEARN

Exploratory Data Analysis

- Statistics of relevant variables
 - o Data is normalised
 - o Forms a normal distribution

	budget	revenue	num_cast	num_crew	popularity	vote_count	vote_average
count	3098.000000	3098.000000	3098.000000	3098.000000	3098.000000	3098.000000	3098.000000
mean	16.949055	17.714582	26.576501	34.863460	2.986412	6.131337	6.325339
std	1.273891	1.576674	21.665511	35.371232	0.931786	1.344940	0.844225
min	11.805632	11.894112	0.000000	1.000000	-0.179585	2.079442	3.000000
25%	16.300417	16.782571	15.000000	12.000000	2.420102	5.299564	5.800000
50%	17.111347	17.909855	20.000000	21.000000	3.055700	6.210600	6.400000
75%	17.854137	18.832300	31.000000	45.000000	3.640710	7.075809	6.900000
max	19.755682	21.748578	224.000000	435.000000	6.073686	9.528940	8.500000

Revenue chart

Multivariate Exploratory Analysis

- Presence of correlation with revenue:
 - o Pre-elements:
 - Num_cast
 - Num_crew
 - Budget
 - Post-elements:
 - Popularity
 - Vote_count
 - Vote_average

sciencefiction	-0.204297
music	-0.084818
romance	-0.071965
fantasy	-0.070136
mystery	-0.067081
thriller	-0.057001
tvmovie	-0.034417
family	-0.026968
foreign	-0.004931
adventure	-0.004499
animation	-0.002778
war	0.010767
documentary	0.095733
vote_average	0.125916
drama	0.161806
comedy	0.162234
action	0.169732
crime	0.196366
horror	0.262147
num_cast	0.282160
num_crew	0.349847
budget	0.638766
popularity	0.652001
vote_count	0.707789
revenue	1.000000

Multivariate Exploratory Analysis: Pre-elements

Multivariate Exploratory Analysis: Post-elements

Building our Models based on Data

- Model 1 Linear Regression
 - Supervised Learning Model
 - Existence of multiple independent variables
 - Fits a straight line or surface
 - Minimizes discrepancies between predicted and output values
- Model 2 Extreme Gradient Boosting (XGBoost)
 - Improve speed and performance
 - Consists of an ensemble machine learning algorithms
 - Parallelizable and takes advantage of multi-core machines
 - Feasible to train on large datasets

Linear Regression on Pre-Production Elements

Test Data Set

XGBoost on Pre-Production Elements

Training Data Set

Test Data Set

Linear Regression vs XGBoost (Pre-Production Elements)

Linear Regression

Goodness of Eit of Model

doodness of FIL of Model	Train Dataset
Explained Variance (R^2)	: 0.4456528538387208
Mean Squared Error (MSE)	: 1.3372998265889882
Goodness of Fit of Model	Test Dataset
Explained Variance (R^2)	: 0.4474267030299425

: 0.4474267030299425 Mean Squared Error (MSE) : 1.4928450364721926

XGBoost

Mean Squared Error (MSE)

Goodness of Fit of Model	Train Dataset
Explained Variance (R^2)	: 0.731856776268491
Mean Squared Error (MSE)	: 0.646865216282422
Goodness of Fit of Model	Test Dataset
Explained Variance (R^2)	: 0.4341405028002775

: 1.5287393480055018

- Visible improvement in performance
- Not a significant improvement
- Not a strong indicator for success

Linear Regression on Post-Production Elements

16 18 True values of revenue (Train)

Test Data Set

XGBoost on Post-Production Elements

Training Data Set

Test Data Set

Linear Regression vs XGBoost (Post-Production Elements)

Linear Regression

Mean Squared Error (MSE)

Goodness of Fit of Model Train Dataset Explained Variance (R^2) : 0.48844819672590856 Mean Squared Error (MSE) : 1.234060899468757 Goodness of Fit of Model Test Dataset Explained Variance (R^2)

: 0.533097817053046 : 1.2613939366095734

XGBoost

Goodness of Fit of Model

Mean Squared Error (MSE)

documess of the of model	II dill Dataset
Explained Variance (R^2)	: 0.6832158198980429
Mean Squared Error (MSE)	: 0.7642060251415664
Goodness of Fit of Model	Test Dataset
Explained Variance (R^2)	: 0.4942346588549833

Ingin Datacet

: 1.366387560325624

- Better results as compared to pre-production
- Slight improvement overall
- Room for improvement?

<u>Linear Regression Pre + Post Production Elements</u>

XGBoost on Pre + Post Production Elements

16 18 True values of revenue (Train)

Test Data Set

<u>Linear Regression vs XGBoost (Pre + Post-Production Elements)</u>

Linear Regression

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Train Dataset

: 0.651533835088266

: 0.8406352321565206

Test Dataset

: 0.6639350691672293

: 0.9079209340679699

XGBoost

Goodness of Fit of Model Explained Variance (R^2)

Mean Squared Error (MSE)

Goodness of Fit of Model

Explained Variance (R^2)

Mean Squared Error (MSE)

Train Dataset

: 0.8954700180286357

: 0.25216676541342986

Test Dataset

: 0.6432408006176993

: 0.9638290574915717

- Best of the 3 parameters
- Visible significant improvement

Conclusion

"Can a movie's success be determined?"

PERHAPS

Pre & Post Elements

Combination of Pre & Post production variables

What We Learned

- Data Extraction & Cleaning
- Data Normalization
- Linear Regression
- XGBoost

Outcome Of Project

- Movie producers may predict a movie's success
- Determined by:
 - Marketing to gain popularity
 - Production resources

Bonus Feature (Movie Recommendation)

- · director: A list of director in each movie
- name_cast: A list of list of cast in each movie
- name_keywords: The list of list of keywords in each movie
- name_genres: The list of list of genres in each movie

	title	combine
0	Avatar	cultureclash future spacewar action adventure
1	Pirates of the Caribbean: At World's End	ocean drugabuse exoticisland adventure fantasy
2	Spectre	spy basedonnovel secretagent action adventure
3	The Dark Knight Rises	dccomics crimefighter terrorist action crime d
4	John Carter	basedonnovel mars medallion action adventure s
	an .	
4798	El Mariachi	unitedstates-mexicobarrier legs arms action cr
4799	Newlyweds	comedy romance nicklove edwardburns kerrybishé
4800	Signed, Sealed, Delivered	date loveatfirstsight narration comedy drama r
4801	Shanghai Calling	asgharfarhadi danielhenney elizacoupe billpaxton
4802	My Date with Drew	obsession camcorder crush documentary justinmo

4803 rows × 2 columns

Bonus Feature (Movie Recommendation)

```
get_recommendations('Avatar', cosine_sim)
                                                                           get recommendations('Batman Begins', cosine sim)
                          The Time Machine
466
                                                                                      The Dark Knight Rises
26
                Captain America: Civil War
                                                                           65
                                                                                           The Dark Knight
47
                   Star Trek Into Darkness
                                                                           4638
                                                                                   Amidst the Devil's Wings
                                                                           982
                                                                                              Run All Night
94
                   Guardians of the Galaxy
                                                                                             Brick Mansions
                                                                          1742
206
                       Clash of the Titans
                                                                                                Harry Brown
                                                                          3332
10
                          Superman Returns
                                                                           3603
                                                                                          Lone Wolf McQuade
                               Man of Steel
14
                                                                                                Harsh Times
                                                                           4099
                X-Men: Days of Future Past
                                                                          3326
                                                                                             Black November
                         Jupiter Ascending
61
                                                                           1986
                                                                                                     Faster
       Captain America: The Winter Soldier
                                                                          Name: title, dtype: object
Name: title, dtype: object
                                 get recommendations('Romeo Is Bleeding', cosine sim)
                                 2154
                                                      Street Kings
                                            The Dark Knight Rises
                                 3
                                 1699
                                              Along Came a Spider
                                 4408
```

Jimmy and Judy 4638 Amidst the Devil's Wings 1986 Faster 3359 In Too Deep 1503 Takers Machine Gun McCain 2959 2915 Trash Name: title, dtype: object