Поиск булевой производной

Метод булевой производной рассчитан на синтез тестов для одиночных константных неисправностей и использует аналитическую форму функционального описания ОД. Булевой производной функции $f(x_1, x_2, ..., x_n)$ по x_i называется функция:

$$\frac{df(x)}{dx_i} = f(x_1, x_2, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n) \oplus f(x_1, x_2, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n).$$

Булева производная принимает единичное значение на тех наборах значений логических переменных $x_1, x_2, ..., x_n$ (кроме x_i), при которых изменение состояния x_i приводит к изменению значения функции $f(x_1, x_2, ..., x_n)$. Тестовым набором для неисправности $x_i / 0$ ($x_i / 1$) являются наборы значения логических переменных, при которых функция $x_i \cdot \frac{df(x)}{dx_i} \left(\overline{x_i} \cdot \frac{df(x)}{dx_i} \right)$

принимает единичное значение.

Ниже приведены примеры, поясняющие вычисление тестовых наборов методом булевой производной.

\$Пример 5.1.

Дана схема, реализующая функцию $f(x) = x_1 x_2 \lor x_3$. Найти тесты неисправностей $x_1/0$ и $x_1/1$.

$$\frac{df(X)}{dx_1} = (1 \cdot x_2 \vee x_3) \oplus (0 \cdot x_2 \vee x_3) = (x_2 \vee x_3) \oplus x_3 = x_2 \overline{x_3}.$$

Тестовый набор для $x_1/0$ определяется исходя из условия $x_i \cdot \frac{df(x)}{dx} = 1$, т.е. $x_1x_2\overline{x_3} = 1$. Следовательно, входной набор 110 обнаруживает неисправность $x_1/0$. Аналогичным образом, для неисправности $x_1/1$ необходимо, чтобы $\overline{x_i} \cdot \frac{df(x)}{dx} = 1$, следовательно входной набор 010 обнаруживает неисправность $x_1/1$.

♥Пример 5.2.

Дана схема (рис.5.5), реализующая функцию $f(X) = x_1x_2 \lor x_1\overline{x_2}$ Найти тесты неисправностей $x_2/0$ и $x_2/1$.

$$\frac{df(X)}{dx_1} = (1 \cdot x_1 \vee 0 \cdot x_1) \oplus (0 \cdot x_1 \vee 1 \cdot x_1) = 0.$$

 $\exists TO OSHBUBET UTO f(X) HE SBRUCKT OF V.$

₿ Пример 5.3.

Дана схема, изображенная на рис.5.6. Найти тест неисправности $y_6/0$. Сначала необходимо выразить f(x) через внутренние переменные схемы:

$$f(X) = \overline{y_5 \vee y_6}$$
.

Затем найти булеву производную:

$$\frac{df(X)}{dy_6} = \overline{(y_5 \vee 0)} \oplus \overline{(y_5 \vee 1)} = \overline{y_5} = x_1 \vee x_2.$$

Тестовый набор для неисправности $y_6/0$ находится исходя из условия $y_6 \cdot \frac{df(X)}{dy_6} = 1$. Нетрудно убедиться в том, что тестовые наборы 1x00 и x100 обнаруживают неисправность $y_6/0$.

Т

Метод поиска частных булевых производных:

Частной булевой производной называется $\frac{dy}{dx} = y(x_1...x_i...x_n) \oplus y(\overline{x}_1...\overline{x}_i...\overline{x}_n)$ (1)

Так как в булевой {0,1}

$$\frac{dy}{dx} = y(x_1...1...x_n) \oplus y(\overline{x}_1...0...\overline{x}_n)$$
 (0)

Выполняется условие проявления неисправности (\forall неисправность – инверсия правильного сигнала.)

Пусть будет существенным $\frac{dy}{dx} = 1$ и активизированным условие транспортировки

неисправности.

$$x_i^{e_i}*rac{dy}{dx_i}=1$$
 , (4) где $e_i=\{0,1\}$ $egin{cases} x_i^{e_i}=x_i,e_i=1 \ x_i^{e_i}=\overline{x}_i,e_i=0 \end{cases}$

 ${(3) \atop (4)}$ - решая эту систему можно найти все наборы, которые могут быть включены в тесты.

Чтобы получить полный тест необходимо найти производную для всех комбинаций. $\{x_i, y_i\}, i = \overline{1, n}, j = \overline{1, m}$ для всех одномерных путей.

1.
$$\frac{dy}{dx_i} = \frac{d\overline{y}}{dx_i} = \frac{dy}{d\overline{x_i}} = \frac{d\overline{y}}{d\overline{x_i}}$$

2.
$$\frac{d1}{dx_i} = \frac{d0}{dx_i} = 0$$
, $\frac{dy_i}{dx_i} = 1$

3.
$$\frac{d(k_i y(x...x_n))}{dx_i} = k \frac{dy(x...x_n)}{dx_i}$$

4.
$$\frac{d(y_1 * y_2)}{dx} = y_1 \frac{dy_2}{dx_i} \oplus y_2 \frac{dy_i}{dx_i} \oplus \frac{dy_1}{dx_i} \oplus \frac{dy_1}{dx_i}$$

5.
$$\frac{d(y_1 \vee y_2)}{dx} = \overline{y_1} \frac{dy_2}{dx_i} \oplus \overline{y_2} \frac{dy_i}{dx_i} \oplus \frac{dy_1}{dx_i} \oplus \frac{dy_1}{dx_i}$$

6.
$$\frac{d(y_1 \oplus y_2)}{dx_i} = \frac{dy_1}{dx_i} \oplus \frac{dy_2}{dx_i}$$

7. Если
$$y=x_1\cdot x_2\cdot ...x_i\cdot ...x_n$$
 коньюкция $\frac{dy}{dx_i}=x_1\cdot x_2\cdot ...x_i\cdot ...x_n$

8. Если
$$y=x_1+x_2+...x_i+...x_n$$
 дизъюнкция $\frac{dy}{dx_i}=\overline{x_1}\cdot\overline{x_2}\cdot...\overline{x_i}\cdot...\overline{x_n}$

9. Если
$$y = y(x_1, x_2, ...x_i, ...x_n)$$

$$y_n = y_n(x_1, x_2, ...x_i, ...x_n)$$

$$\frac{dy}{dx_i} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dx_i} \oplus \frac{dy}{dy_2} \cdot \frac{dy_2}{dx_i} \oplus \dots \oplus \frac{dy}{dy_m} \cdot \frac{dy_m}{dx_i} \oplus \frac{d^2y}{dy_1y_2} \oplus \dots \oplus \frac{d^my}{dy_1dy_2dy_m} \cdot \frac{dy_1}{dx_i} \cdot \frac{dy_2}{dx_i} \cdot \dots \cdot \frac{dy_m}{dx_i} \oplus \frac{dy_m}{dx_i}$$

$$y = y_1 \cdot y_2 \cdot y_3$$

$$y_1 = x_1 \cdot x_2 + x_3$$

$$y_2 = x_1 \cdot x_3 + x_2$$

$$y_3 = x_2 \cdot x_3$$

Тогда мы получим.

$$\frac{dy}{dx_2} = \frac{dy}{dy_1} \cdot \frac{dy_1}{dx_2} \oplus \frac{dy}{dy_2} \cdot \frac{dy_2}{dx_2} \oplus \dots \oplus \frac{dy}{dy_m} \cdot \frac{dy_m}{dx_2} \oplus \frac{d^2y}{dy_1y_2} \cdot \frac{dy_1}{dx_2} \oplus \dots \oplus \frac{d^2ydy_2}{dy_1dy_2dx_2} \cdot \frac{dy_3}{dx_2} \oplus \dots \oplus \frac{d^2ydy_2}{dx_2} \cdot \frac{dy_3}{dx_2} \oplus \dots \oplus \frac{d^2ydy_2}{dx_2} \cdot \frac{dy_3}{dx_2} \oplus \dots \oplus \frac{d^2ydy_2}{dx_2} \oplus \dots \oplus \frac{d^2ydy_2}{dx_2}$$

$$\frac{dy_1}{dx_2} = \frac{d(x_1 * x_2 * x_m)}{dx} = \overline{x_1} * \overline{x_2} \frac{dx_3}{dx_2} \oplus \overline{x_1} * \frac{dx_1 x_2}{dx_2} = \overline{x_2} * x_1$$

$$\frac{dy_2}{dx_2} = \frac{d(x_1x_3 + \overline{x_2})}{dx} = x_1x_3 \frac{d\overline{x_2}}{dx_2} + x_2 \frac{dx_1x_3}{dx_2} = \overline{x_1} \frac{1}{x_3} = \overline{x_1} + \overline{x_2}$$

После всех преобразований $\frac{dy}{dx_2} = x_1 x_3 \equiv 0$

	X_1	x_2	<i>x</i> ₃
	1	1	1
$x_2 \equiv 1$	1	0	1