[I-The generated subkey must have this relation to one another? $k_{i+1} = K_{16-i}$ for $i = \beta, 1, ..., 7$

[2-Rotating all Ds or all Is is the only way. Because they always produce the same subkey in each round:

1. (= (FFFFFFF) and D. = (FFFFFFF) 16

2. (= (FFFFFFF) and D = (0000000) 16

3. (= (0000000) 16 and D. = (FFFFFF) 16

4. (= (0000000) 16 and D = (0000000) 16

The weak keys after PC-1 ares

1. (0000000000000)16

2. (0000000FFFFFFF) 16

3. (FFFFFFF0000000) 16

4. (FFFFFFFFFFFF)16

[3- The likely head of choosing one of these 4 at random? $\frac{4}{2^{56}} = \frac{2^2}{2^{56}} = \frac{1}{2^{54}}$

Example algorithms,

Because we will reach the plaintext again, after eg. 2 enurption with the same weak key - for example: By using the first weak key shown in part 2), after two following eneryption, the second cipher text will be just like the plaintext in the begining.

[5- There are 6 key pairs that are called semi-weak.

pairs &

		first			second				
۱.	OIFE	OIFE	OIFE	OUFE	FEOI	FEOI	FEOI	FEOI	
2.	1FE0	IFEO	OEF	OEFI	Eo1 F	E01F	F10E	F10 E	
3.	OI EO	OIEO	01F1	01F7	Eoo1	Eoo1	F701	F101	
4.	01 F E o 01 E o 1 F F E	1FFE	0EFE	o£FE	FEIF	FE1F	FEOF	FECE	
5.	ONF	011E .	010E	010£	1F01	1F01	0 Eo I	0 E01	
6.	EOFE	EOFE	FIFE	FIFE	FEEO	FEEO	FEF1	FEF1	

[6- These keys only produce 2 different subkeys, each used & times in the algorithm.

[7- total number of these keys of these keys of these keys:

$$\frac{64}{2^{56}} = \frac{2^6}{2^{56}} = \frac{1}{2^{50}} = 2^{-50} = 2^{15} \times 10^{-16}$$

Let is almost impossible

II- xis the plain text. IP(x) maps bit 57 to bit 33. This means : $L_0 = \emptyset \text{ and } R_0 = 2^{31}$

Now we should calculate f(Ro). the 1 in Ro is in position 1. E-Expansion box maps bit 1 to position 1 and 48. This means:

 $S_1 = 010000$, $S_2 = S_3 = S_4 = S_5 = S_6 = S_7 = 000000$, $S_8 = 000001$ $\frac{11}{2}$ S_0 $\frac{2}{2}$ $S_0 = S_0 = S$

5 BOX input output You Column S, => 010000 В 1100 S₂ => 000000 0 1111 S3 => 000000 1010 54 -> 000000 0 0111 5,000000 0010 56 -000000 1100 57 -000000 0100 58 -000001 0001

11010000010110000101101110011110 (I)

the same as up.

LI=R. =(08000000)16, RI=(D0585B9E)16

13- The minimum number of output bits that will be changed per S-Box as a result of a 1bit change in input, is 2.

[4] The all-zero case: S(0) = 1110, $S_2(0) = 1111$, $S_3(0) = 1010$, $S_4(0) = 0111$, $S_5(0) = 0010$, $S_6(0) = 1100$, $S_7(0) = 0100$, $S_8(0) = 1101$ La output of S-Boxes: 11101111010017001001101

Dalter permutation: 110 17 600110 1700011 01701110111100

Mow I should calculate the XOR of this code, with the one I calculated in part 2:

First step: initial to addition with plaintext:

2 B	28	AB	09	
78	AE	F7	C.F.	
15	D 2	15	4F	
16	A6	88	3 C	
Κφ				

	61	00	00	00	
\oplus	00	٥٥	00	00	
÷ 4	00	00	60	00	
	Uo	00	00	00	
input					

	•	1				
1	2 A	28	AB	09		
=	7E	AE	F7	CE		
	15	D2	15	45		
	16	Ab	88	36		
result of						

Wext; SubBytes:

	1		
£5	34	62	01
F3	E4	68	8A
59	B5	59	84
47	24	<u>C</u> 4	EB

West; ShiftRows:

	4. 4	2 1 100		1
E5	34	62	01	
E4	68	8 A	F3	
59	84	59	B5	
EB	47	24	4	

West; Mix Columns:

$$\begin{bmatrix} G_{0} \\ G_{1} \\ G_{2} \\ G_{3} \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 03 & 01 & 01 & 02 \end{bmatrix} = \begin{bmatrix} C_{0} \\ C_{1} \\ C_{2} \\ C_{3} \end{bmatrix}$$

each column of the motrix alcolated in the

himer step. (input columns)

first column:
$$\begin{bmatrix} 02 \times E5 + 03 \times E4 + 01 \times 59 + 01 \times EB \\ 07 \times E5 + 02 \times E4 + 03 \times 59 + 01 \times EB \\ 07 \times E5 + 01 \times E4 + 02 \times 59 + 03 \times EB \\ 03 \times E5 + 01 \times E4 + 01 \times 59 + 02 \times EB \end{bmatrix}$$

forth colum:
$$\int_{0}^{0.2 \times 01+0.3} x F_{3} + 01 \times B_{5} + 01 \times C_{4}$$

$$01 \times 01 + 02 \times F_{3} + 03 \times B_{5} + 01 \times C_{4}$$

$$01 \times 01 + 01 \times F_{3} + 02 \times B_{5} + 03 \times C_{4}$$

$$03 \times 01 + 01 \times F_{3} + 01 \times B_{5} + 62 \times C_{4}$$

the produced state:

54	13	36	7D
36	34	A2	FC
95	86	36	D4
44	3E	3D	D6

(P(x) = x + x + x + x + x + 1)

West; AddRoundkey:

Ao	88	23	2 A
FA	54	A3	6c.
FE	20	39	76
17	B1	39	05

Ky

<u>+</u>

	54	13	3C	70
7	36	34	AZ	£c
	25	46	34	DH
İ	44	3 E	3 D	06
Ļ				

input

F4	9B	1F	57
CC	60	oi.	90
6B	AA	٥F	Az
53	8 F	04	D3
		•	

result of this step

Her So, the output of first round is:

(F4CC 6B539B 60AA&F1F010F045790AZD3)16

[2 - The kp and k+ are the same as part.

of plaintext with the Ko, will be just the Ko:

(28	28	AB	09
	7E	AE	F7	CF
	15	D2	15	4.5
	16	A6	22	30

Ho Next; SubBytes:

F1	34		62		01	
F3	£4		68	1	ZA	7
59	B <i>5</i>	1	59	Ī	84	1
47	24	,	C4		EB	

Mext; Shift Rows:

F7	134	62	01	
E4	68	ВA	F3	
59	84	59	ß5	
ΕB	47	24	C4-	

Wext; MixColumns: the formulation is just like the part 7:

second, third and forth columns are just like part 1.

Ho the produced state :

(P(X) = x2 + x+ x3 + X+1)

7C	13	3c	7D	
22	34	AZ	FC	
81	86	36	D4	
78	3E	3D	D6	

Her Next; AddRoundkey: the formulation is like part 7.

	DC	98	1 <i>F</i>	57
1	D8	60	01	90
١	1F	AA	OF	A 2
	6F	8F	04	D3

HD So, the output of first round is a

(DCD87F6F9B60AA8F1F010F045790A2D3)16

[3- By Koring the two output values together, we can see how many output bits have been altered.

Just the first column is altered after first round:

(28141436) = (001010000001010000101000111100) b

the 1s in this, correspond to output bits which have changed. There are Ten of them.

So, the number of output bits which have charged due to a 1 bit change in input, is 10 after the first round.

(5)

 $P(x) = x^{\frac{3}{4}} + x + 1$

	0	1.	<u></u>	x+1	2 72	22+1	2 X+X	2 2 + 2 + 1
0	0	O	0		. 0	0	C	0
,1	0	1	X	×+1	x²	×2+1	2 X+X	スナメル
×	0	*	χ^2	x ² +x	7.41	1	x2+X4(2+1
741	0	X4(X+X	72+1	x2+x1+1	X X	(1)	×
x ²	o	χ^2	X+1	2 X+X+1	× +×	x	72+1	1
2+1	o	x2+1	<i>i</i> 1	2 ²	×	2 + 2 + 1	×+1	x+x
x2+x	0	2 7 + X	2 **+**+1	1 -	22+1	741	×	×
x+x+(0	2 72+22+1	×2+1	26	1	x +x	×2	2 x+x+1 x+1 x 1 x+x 2 x+x