作业3 (DDL:12月23日 上课时提交)

- 0 完整阅读lecture 5.ppt lecture 6.ppt(包含课上未讲解的最后几页)。
- 1 关于子集反演公式的两个形式:
 - (1) 若 $f(S) = \sum_{T \subseteq S} g(T)$,则 $g(S) = \sum_{T \subseteq S} (-1)^{|S|-|T|} f(T)$ 。
 - (2) 若 $f(S) = \sum_{T \supseteq S} g(T)$,则 $g(S) = \sum_{T \supseteq S} (-1)^{|S|-|T|} f(T)$ 。假定(1)成立。利用(1)来证明(2)。仅需给出(2)的证明。
- 2. 证明以下等式。 σ_l σ 的定义见lecture 6 例1.
 - id * $\mathbf{1} = \sigma_I$ 。 $\mathbf{1}^*\mathbf{1} = \sigma$ 。 这里 $\mathbf{1}$ 表示常数函数f(n) = 1。
- 3. 证明迪利克雷卷积符合
 - 结合律: $(a*b)*c=a*(b*c)_{\circ}$

- 4. 从 $\{1,2,...,n\}$ 中取r个数 $(1 \le r \le n)$ 。不能选相邻元素。求方案数。
- 5. 证明 $n! = \sum_{i=0}^{n} \binom{n}{i} D_i$. $(D_n 表示 n 元素 的错排的方案数)$ 然后利用此公式,通过反演求出 D_n 的计算公式,并算出 D_6 。 最后,用 $D_n = (n-1)[D_{n-1} + D_{n-2}]$ 验证计算结果。
- 6. 课上提到 $\sum_{i=1}^{\left\lceil \frac{|T|}{2}\right\rceil} {|T| \choose 2i-1} = 2^{|T|-1}$ 。 求证 $\sum_{i=1}^{\left\lceil \frac{t}{2}\right\rceil} {t \choose 2i-1} = 2^{t-1}$ 。 $(t \ge 1)$
- *. 证明 *i* | gcd(*a*,*b*) 等价于 *i*|*a* 且 *i*|*b*。 (无需提交)
- *. 记忆 (无需提交)
 - 子集反演公式、二项式反演公式(2个形式都需要记)
 - 迪利克雷卷积定义、莫比乌斯反演公式

思考题 (不提交)

- 1. 求证 $D_n = n \times D_{n-1} + (-1)^n$ 。
- 2. 设 Q_n 是 $\{1,...,n\}$ 的排列中不出现 $\{12,23,...,(n-1)n\}$ 的排列数。
- 3. https://www.luogu.com.cn/problem/P5505 分特产
- 4. https://darkbzoj.cc/problem/2839 集合计数
- 5. https://cses.fi/problemset/task/1082 约数和之和

思考题 (不提交)

- 6. 用讲义4的double counting方法解决 例6(恰好k种颜色)。
- 7. \Re iff : $g(n) = \sum_{n|N} f(N) \Leftrightarrow f(n) = \sum_{n|N} g(N) \mu\left(\frac{N}{n}\right)$
- 8. 求证: if $F(n) = \prod_{d|n} f(d)$, then $f(n) = \prod_{d|n} F\left(\frac{n}{d}\right)^{\mu(d)}$.

更难的思考题

• 项链计数IV:n个珠子,**恰好用k种颜色**,**无循环节**,项链个数=?