M1441 (Calc I)

Instructor: J. S. Zheng

§5.3 The Definite Integral (Continued)

Exercise 20. Evaluate $\int_{-1}^{1} (1-|x|) dx$.

Definition. If f is integrable on [a, b], then its **average value on** [a, b], which is also called its **mean**, is $av(f) = \frac{1}{b-a} \int_a^b f(x) dx$.

Example 5. Find the average value of $f(x) = \sqrt{4 - x^2}$ on [-2, 2].

Video The Integral (28 min) Definition of the integral. Signed area. Interval additivity property.

§5.4 The Fundamental Theorem of Calculus

Theorem 3 (The Mean Value Theorem for Definite Integrals). If f is continuous on [a,b], then at some point c in [a,b], $f(c)=\frac{1}{b-a}\int_a^b f(x)dx$.

Theorem 4 (The Fundamental Theorem of Calculus, Part 1). If f is continuous on [a,b], then $F(x)=\int_a^x f(t)\ dt$ is continuous on [a,b] and differentiable on (a,b) and its derivative is f(x): $F'(x)=\frac{d}{dx}\int_a^x f(t)dt=f(x)$.

Example 2. Find dy/dx if

(a)
$$y = \int_{a}^{x} (t^3 + 1)dt$$
 (b) $y = \int_{x}^{5} 3t \sin t dt$ (c) $y = \int_{1}^{x^2} \cos t dt$ (d) $y = \int_{1+3x^2}^{4} \frac{1}{2 + e^t} dt$.
Exercise 80. Find $f(4)$ if $\int_{0}^{x} f(t)dt = x \cos(\pi x)$.

Theorem 4 Continued (The Fundamental Theorem of Calculus, Part 2). If f is continuous over [a, b] and F is any antiderivative of f on [a, b], then $\int_a^b f(x)dx = F(b) - F(a)$.

Example 3. Calculate (a)
$$\int_{-\pi/4}^{0} \sec x \tan x dx$$
 (c) $\int_{1}^{4} \left(\frac{3}{2}\sqrt{x} - \frac{4}{x^{2}}\right) dx$ (d) $\int_{0}^{1} \frac{dx}{x^{2} + 1}$.

Theorem 5 (The Net Change Theorem). The net change in a differentiable function F(x) over an interval [a,b] is the integral of its rate of change: $F(b) - F(a) = \int_a^b F'(x) dx$.

Example 8. Find the area of the region between the x-axis and the graph of $f(x) = x^3 - x^2 - 2x$, $-1 \le x \le 2$.

Video The Fundamental Theorem of Calculus (26 min) Average value theorem. The function $F(x) = \int_a^x f(s) ds$. The fundamental theorem of calculus.

§5.5 Indefinite Integrals and the Substitution Method

Example 1. Find the integral $\int (x^3 + x)^5 (3x^2 + 1) dx$.

Theorem 6 (The Substitution Rule). If u = g(x) is a differentiable function whose range is an interval I, and f is continuous on I, then $\int f(g(x)) \cdot g'(x) dx = \int f(u) du$.

Example 4. Find $\int \cos(7\theta + 3)d\theta$.

Example 5. Find $\int x^2 e^{x^3} dx$.

Example 6. Evaluate $\int x\sqrt{2x+1} \ dx$.

Integrals of the Tangent, Cotangent, Secant, and Cosecant Functions.

$$\int \tan x dx = \ln|\sec x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

$$\int \cot x dx = \ln|\sin x| + C$$

$$\int \csc x dx = -\ln|\csc x + \cot x| + C$$

Video Change of Variables (Substitution) (21 minutes)

Differentials. Using basic "u-substitutions" to find indefinite integrals and compute definite integrals.

§5.6 Definite Integral Substitutions and the Area Between Curves

Theorem 7 (Substitution in Definite Integrals). If g' is continuous on the interval [a,b] and f is continuous on the range of g(x)=u, then $\int_a^b f(g(x)) \cdot g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$.

Example 1. Evaluate $\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} dx$.

Example 2. Evaluate (a) $\int_{\pi/4}^{\pi/2} \cot \theta \csc^2 \theta d\theta$.

Definition. If f and g are continuous with $f(x) \ge g(x)$ throughout [a, b], then the **area of** the region between the curves $\mathbf{y} = f(\mathbf{x})$ and $\mathbf{y} = g(\mathbf{x})$ from \mathbf{a} to \mathbf{b} is the integral of (f - g) from \mathbf{a} to \mathbf{b} : $A = \int_a^b [f(x) - g(x)] dx$.

Example 4. Find the area of the region bounded above by the curve $y = 2e^{-x} + x$, below by the curve $y = e^x/2$, on the left by x = 0, and on the right by x = 1.

Example 5. Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

Examples 6 & 7. Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x - 2.

Video Areas Between Curves (19 minutes)