CLAIMS

1. A compound of formula (I),

$$\begin{array}{c}
R^4 \\
R^5 \\
R^6
\end{array}$$
 R^2
 R^3
 R^3
 R^4
 R^2
 R^3
 R^4
 R^4
 R^2
 R^3
 R^4
 R^4

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

5

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =O;

R³ is a radical selected from

20
$$-(CH_2)_s$$
- NR^8R^9 (a-1),
-O-H (a-2),
-O- R^{10} (a-3),
-S- R^{11} (a-4), or
— $C\equiv N$ (a-5),

wherein

s is 0, 1, 2 or 3;

$$\begin{split} R^8 \text{ is -CHO, } C_{1\text{-}6}alkyl, \text{ hydroxy} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ carbonyl,} \\ \text{di}(C_{1\text{-}6}alkyl)\text{amino} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ oxy} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ carbonylamino} C_{1\text{-}6}alkyl, \\ \text{piperidinyl} C_{1\text{-}6}alkyl, \text{ piperidinyl} C_{1\text{-}6}alkyl \text{ aminocarbonyl, } C_{1\text{-}6}alkyl \text{ oxy,} \end{split}$$

thienyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl; R^9 is hydrogen or C_{1-6} alkyl;

$$\begin{split} R^{10} \text{ is } C_{1\text{-}6} \text{alkyl}, C_{1\text{-}6} \text{alkylcarbonyl or } \text{di}(C_{1\text{-}6} \text{alkyl}) \text{amino} C_{1\text{-}6} \text{alkyl}; \text{ and } \\ R^{11} \text{ is } \text{di}(C_{1\text{-}6} \text{alkyl}) \text{amino} C_{1\text{-}6} \text{alkyl}; \end{split}$$

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

5 wherein

20

25

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

HN
$$R^{12}$$
 HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} (c-4)

10 $R^{12} \qquad HN \qquad NH \qquad R^{12} \qquad R^{12} \qquad R^{12}$

$$R^{13}$$
 R^{12}
 R^{12}

wherein each R^{12} independently is hydrogen, C_{1-6} alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$, $-C_{1-6}$ alkanediyl N O

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; and each R^{13} independently is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1),
-O-(CH₂)₂-O- (d-2),
-CH=CH-CH=CH- (d-3), or
-NH-C(O)-NR¹⁴=CH- (d-4),
wherein R¹⁴ is
$$C_{1-6}$$
alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that when

5

15

n is 0, X is N, R^1 is C_{1-6} alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen; then at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

- A compound as claimed in claim 1 wherein
 n is 0 or 1; X is N or CR⁷, wherein R⁷ is hydrogen; R¹ is C₁₋₆alkyl; R² is hydrogen;
 R³ is a radical selected from (a-1) or (a-2) or is group of formula (b-1); s is 0, 1 or 2;
 R⁸ is C₁₋₆alkyl or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0, 1 or 2; Z is a
 heterocyclic ring system selected from (c-1), (c-2), (c-3), (c-4), (c-5) or (c-11); each
 R¹² independently is hydrogen or C₁₋₆alkyloxyC₁₋₆alkylamino; each R¹³
 independently is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from
 hydrogen, halo or C₁₋₆alkyl.
- 3. A compound according to claim 1 and 2 wherein
 n is 0 or 1; X is N; R¹ is C₁-6alkyl; R² is hydrogen; R³ is a radical of formula (a-1)
 or is a group of formula (b-1); s is 0; R³ is arylC₁-6alkyl(C₁-6alkyl)aminoC₁-6alkyl;
 30 t is 0; Z is a heterocyclic ring system selected from (c-1) or (c-2); each R¹² independently is hydrogen or C₁-6alkyloxyC₁-6alkylamino; each R¹³ independently is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from hydrogen or halo.
- 4. A compound according to claim 1, 2 and 3 selected from compound No 5, compound No 9, compound No 2 and compound No 1.

compound 5

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

- 5. A compound as claimed in any of claims 1 to 4 for use as a medicine.
- 5 6. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 4.
- 7. A process of preparing a pharmaceutical composition as claimed in claim 6 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 4 are intimately mixed.
 - 8. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein said compound is a compound of formula (I)

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

20

15

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

5 R^1 is C_{1-6} alkyl or thienyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =O;

R³ is a radical selected from

10
$$-(CH_2)_{s}$$
- NR^8R^9 (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R^{11} (a-4), or

—C≡N (a-5),

wherein

s is 0, 1, 2 or 3;

$$\begin{split} R^8 \text{ is -CHO, } C_{1\text{-}6}alkyl, \text{ hydroxy} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ carbonyl,} \\ \text{di}(C_{1\text{-}6}alkyl)\text{amino} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ oxy} C_{1\text{-}6}alkyl, C_{1\text{-}6}alkyl \text{ carbonylamino} C_{1\text{-}6}alkyl, \\ \text{piperidinyl} C_{1\text{-}6}alkyl, \text{ piperidinyl} C_{1\text{-}6}alkyl \text{ amino} \text{ carbonyl,} C_{1\text{-}6}alkyl \text{ oxy,} \end{split}$$

thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl, arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl,

haloindozolylpiperidinylC₁₋₆alkyl, or

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl;

25 R^{10} is C_{1-6} alkyl, C_{1-6} alkylcarbonyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl; and R^{11} is di(C_{1-6} alkyl)amino C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z-$$
 (b-1),

wherein

30 t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

HN
$$R^{12}$$
 HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} (c-4)

5 wherein each R¹² independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, morpholino, C₁₋₆alkylimidazolyl, or pyridinylC₁₋₆alkylamino; and each R¹³ independently is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

10

15

25

aryl is phenyl or phenyl substituted with halo, $C_{1\text{-}6}$ alkyl or $C_{1\text{-}6}$ alkyloxy.

9. Use according to claim 8 of a PARP inhibitor of formula (I) for the manufacture of a medicament for the treatment of a PARP-1 mediated disorder.

- 10. Use according to claim 8 and 9 wherein the treatment involves chemosensitization.
- 11. Use according to claims 8 and 9 wherein the treatment involves radiosensitization.

12. A combination of a compound of formula (I) with a chemotherapeutic agent

$$\begin{array}{c} R^{4} \\ R^{5} \\ R^{6} \end{array} \qquad \begin{array}{c} R^{2} \\ (CH_{2})_{n} \\ X \\ \end{array} \qquad \begin{array}{c} H \\ I \\ N \\ \end{array} \qquad \qquad (I)$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

15

10

5

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

 R^1 is C_{1-6} alkyl or thienyl;

20

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

$$-(CH2)S-NR8R9 (a-1),$$
25 -O-H (a-2),
-O-R¹⁰ (a-3),
-S- R¹¹ (a-4), or
—C=N (a-5),

wherein

30 s is 0, 1, 2 or 3;

 R^8 , R^{10} and R^{11} are each independently selected from –CHO, $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, amino, $C_{1\text{-}6}$ alkylamino,

$$\label{eq:control_calkyl} \begin{split} &\text{di}(C_{1\text{-}6}\text{alkyl})\text{amino}C_{1\text{-}6}\text{alkyl},\ C_{1\text{-}6}\text{alkyloxycarbonyl},\ C_{1\text{-}6}\text{alkylcarbonylamino}C_{1\text{-}6}\text{alkyl},\\ &\text{piperidinyl}C_{1\text{-}6}\text{alkylaminocarbonyl},\ piperidinyl,\ piperidinyl}C_{1\text{-}6}\text{alkyl},\\ &\text{piperidinyl}C_{1\text{-}6}\text{alkylaminocarbonyl},\ C_{1\text{-}6}\text{alkyloxy},\ thienyl}C_{1\text{-}6}\text{alkyl},\\ &\text{pyrrolyl}C_{1\text{-}6}\text{alkyl},\ arylC_{1\text{-}6}\text{alkylpiperidinyl},\ arylcarbonyl}C_{1\text{-}6}\text{alkyl},\\ &\text{arylcarbonylpiperidinyl}C_{1\text{-}6}\text{alkyl},\ haloindozolylpiperidinyl}C_{1\text{-}6}\text{alkyl},\ or\\ &\text{aryl}C_{1\text{-}6}\text{alkyl}(C_{1\text{-}6}\text{alkyl})\text{amino}C_{1\text{-}6}\text{alkyl};\ and \end{aligned}$$

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

10 wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

HN
$$R^{12}$$
 HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} HN R^{12} (c-4)

15

5

$$R^{12}$$
 HN NH R^{12} R^{12}

$$R^{13}$$
 R^{12}
 R^{12}

wherein each R¹² independently is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino,

$$-C_{1\text{-}6} \text{alkanediyl} -N \\ \text{hydroxy, aryl,} \\ -C_{1\text{-}6} \text{alkanediyl} \\ O$$

 $C_{1\text{-}6}$ alkylamino $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl, piperidinyl $C_{1\text{-}6}$ alkyl,

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, or pyridinyl C_{1-6} alkylamino;

each R¹³ independently is hydrogen, piperidinyl or aryl;

5

10

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1),
-O-(CH₂)₂-O- (d-2),
15 -CH=CH-CH=CH- (d-3), or
-NH-C(O)-NR¹⁴=CH- (d-4),
wherein R¹⁴ is
$$C_{1-6}$$
alkyl;

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

20

25

13. A process for preparing a compound as claimed in claim 1, characterized by a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran.

30

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH, herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an

aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents.

5
$$R^{4} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{6} \longrightarrow R^$$

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) wherein R^h is C₁₋₆alkyl, into compounds of formula (I), wherein X is N, herein referred to as compounds of formula (I-i), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like.

10

15