# Linear Transformation on Linear Space

## Internship Report

Fida Salim

July 16, 2019

## 1 Linear Transformation

Let V and W be an n-dimensional vector space over a field  $\mathbb{F}$ . Let  $T:V\to W$  be a function with V as its domain and its range contained in W.

$$T(V) \subset W$$

T is linear in the sense that

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

$$T(\alpha v_1) = \alpha T(v_1)$$

 $\forall v_1, v_2 \in V \text{ and } \alpha \in \mathbb{F}.$ 



Let L(V, W) denote the set of linear transformation from V to W. If  $T \in L(V, W)$ , T is defined if we prescribe the action of T on a basis of V.

Let  $\mathcal{B}=v_1,v_2,...,v_n$  be a basis of V. Then  $v\in V$  given by  $v=x_1v_1+x_2v_2+...+x_nv_n$ ,  $\forall \ x_i\in\mathbb{F}$ 

$$T(v) = T(x_1v_1 + x_2v_2 + \dots + x_nv_n)$$
$$= x_1T(v_1) + x_2T(v_2) + \dots + x_nT(v_n)$$

If we know every  $T(v_i)$  we will get T(v).

Let T be the linear transformation from  $\mathbb{P}_2(\mathbb{R})$  to  $\mathbb{R}^3$  defined by  $\phi(p) := (p_0 \ p_1 \ p_2)$ . Let  $\mathcal{B}_1 = \{1, t, t^2\}$  be the basis for the vector space  $\mathbb{P}_2(\mathbb{R})$ . So the function can be represented as  $p_0 + p_1 t + p_3 t^2 \to (p_0 \ , \ p_1 \ , \ p_2)$ .

$$T_{\mathcal{B}_1} = \phi$$

Let  $\mathcal{B}_2 = \{1+t, 1-t, t+t^2\}$  be another basis in  $\mathbb{P}_2(\mathbb{R})$ . Then

$$p = q_0(1+t) + q_1(1-t) + q_2(t+t^2)$$

$$= (q_0 + q_1) + (q_0 - q_1 + q_2)t + (q_2t^2)$$

$$\implies q_0 + q_1 = p_0, q_0 - q_1 + q_2 = p_1, q_2 = p_2$$

$$q_0 = \frac{1}{2}(p_0 + p_1 - p_2), q_1 = \frac{1}{2}(p_0 + p_1 + p_2), q_2 = p_2$$

The transformation with respect to the basis  $\mathcal{B}_2$  can be represented as

$$T_{\mathcal{B}_2} = \psi(p) = (q_0, q_1, q_2)$$
  
= $(\frac{1}{2}(p_0 + p_1 - p_2), \frac{1}{2}(p_0 1 p_1 + p_2), p_2)$ 



## 2 Matrix Representation of Linear Transformation

Let U be an n-dimensional vector space over the field  $\mathbb{F}$  and V an m-dimensional vector space over  $\mathbb{F}$ . Let  $\mathcal{B}$ := $\{u_1, u_2, ..., u_n\}$  be an ordered basis for U and  $\mathcal{B}'$ := $\{v_1, v_2, ..., v_m\}$  an ordered basis for V. For each linear transformation T from U into V, there is an  $m \times n$  matrix  $\mathbf{A}$  with entries in  $\mathbb{F}$ .

Let T be given by

$$T(u_i) = a_{1i}v_1 + a_{2i}v_2 + \dots + a_{mi}v_m$$

$$i = (1,2,...,n)$$

Let 
$$u \in U$$
, then  $u = x_1u_1 + x_2u_2 + ... + x_nu_n$ 

$$T(u) = x_1 T(u_1) + x_2 T(u_2) + \dots + x_n T(u_n)$$
  
=  $x_1 (a_{11}v_1 + \dots + a_{1n}v_m) + \dots + x_n (a_{m1}v_1 + \dots + a_{mn}v_m)$ 

The matrix representation of T, that is **A** is given by  $a_{ij}$ .

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} , \text{an } m \times n \text{ matrix.}$$



Let 
$$u \in U$$
 and  $T(u) = v$ , where  $v \in V$ .  
Let  $\phi_{\mathcal{B}}(u) = x, x \in \mathbb{F}^n$ ,  
 $\phi_{\mathcal{B}'}(v) = y, y \in \mathbb{F}^n$   
 $\Longrightarrow \phi_{\mathcal{B}'}(Tu) = y$ 

$$\Rightarrow \phi_{\mathcal{B}}, \circ T(u) = y$$

$$\Rightarrow \phi_{\mathcal{B}}, \circ T(\phi_{\mathcal{B}}^{-1}x) = y , \phi_{\mathcal{B}}u = x$$

$$\Rightarrow \phi_{\mathcal{B}}, \circ T \circ \phi_{\mathcal{B}}^{-1}(x) = y$$
Since  $\mathbf{A}x = y$ , we will get  $\mathbf{A} = \phi_{\mathcal{B}}, \circ T \circ \phi_{\mathcal{B}}^{-1}$ 

## 3 Similarity Transformation

Let V be an n-dimensional vector space. T is a linear transformation such that  $T \in L(V)$ . Let  $\mathcal{B}:=\{v_1, v_2, ..., v_n\}$  and  $\mathcal{B}':=\{v_1, v_2, ..., v_m\}$  be an ordered basis for V.  $\phi$  is a function under basis  $\mathcal{B}$ ,  $\phi = \phi_{\mathcal{B}}$ .  $\psi$  is a function under basis  $\mathcal{B}'$ ,  $\psi = \psi_{\mathcal{B}'}$ .



$$[T]_{\phi} = \phi \psi^{-1} [T]_{\psi} (\phi \psi^{-1})^{-1}$$

 $\Longrightarrow$ 

$$\mathbf{B} = \mathbf{C}^{-1} \mathbf{A} \mathbf{C}$$

where C is an invertible  $n \times n$  matrix, and  $\mathbf{C} = \phi \psi^{-1}$ 

If **A** and **B** be  $n \times n$  (square) matrices over field  $\mathbb{F}$ . We say that **B** is similar to **A** over  $\mathbb{F}$ , if there is an invertible  $n \times n$  matrix **C** over  $\mathbb{F}$  such that  $\mathbf{B} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$ . There exist

an equivalence relation between the matrices which have this properties.

 $Proof : \text{Let } \mathbf{X}, \mathbf{Y}, \mathbf{Z} \in \mathbf{M}_{n \times n}(\mathbb{R}),$ 

$$\forall \ \mathbf{X} \in \mathbf{M}_{n \times n}(\mathbb{R}) \ , \ \mathbf{X} = \mathbf{I}^{-1}\mathbf{X}\mathbf{I}$$

 $So, \mathbf{X} \sim \mathbf{X}, (Reflexive relation)$ 

Let 
$$X \sim Y$$
, then  $X = C^{-1}YC$ 

$$\implies$$
 Y = CXC<sup>-1</sup>, so Y  $\sim$  X ,(Symmetric relation)

Let  $\mathbf{X} \sim \mathbf{Y}, \mathbf{Y} \sim \mathbf{X}$  then,

$$\mathbf{X} = \mathbf{C}^{-1}\mathbf{Y}\mathbf{C}$$

$$\mathbf{Y} = \mathbf{D}^{-1}\mathbf{Z}\mathbf{D},$$

C and D are invertible matrix.

$$\implies$$
  $X = C^{-1}D^{-1}ZDC$ 

$$= (\mathbf{DC})^{-1}\mathbf{ZDC}$$

 $\implies \mathbf{X} \sim \mathbf{Z}(\text{Transitive Relation})$ 

Thus  $B=C^{-1}AC$  an equivalence relation.

This relation  $\sim$  induces a partition within the matrices



Equivalent matrix represents the same linear transformation. The matrices which are not in the same partition cannot involve in the same linear transformation.

**Example**: Zero matrix is the only element in its partition as well identity matrix is the only element in its partition.

## 4 Diagonal Matrix

Does there exist a 'simple' matrix with as many zero entries representing a given linear transformation?

A simple non-trivial matrix will be diagonal matrix.

Let  $T: V \to V$  and  $\mathfrak{B} = \{u_1, u_2, ..., u_n\}$  be the basis for the set V.

If f(t) is a polinomial in  $\mathbb{F}$  and T is represented by a diagonal matrix .  $\Lambda$ 

$$\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

then P(T) is presented with respect to the same basis by  $P_{\lambda} = \begin{bmatrix} P_{\lambda_1} & 0 & \dots & 0 \\ 0 & P_{\lambda_2} & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & P_{\lambda_n} \end{bmatrix}$ 

When  $T \in L(V)$ , does there exist an ordered basis for V with respect to T so that T has a diagonal representation? If such a diagonal representation exists, how to find the ordered basis?



 $\Lambda$  maps  $\mathbb{F}^n$  to  $\mathbb{F}^n$  and has the property that

$$\Lambda e_i = \lambda e_i$$

$$T(u_i) = \lambda e_i$$

where  $u_i = \phi^{-1}(e_i)$ , (i = 1, 2, 3, ...n)

 $\implies \lambda_1, \lambda_2, ... \lambda_n$  are the eigen values of T and  $u_1, u_2, ..., u_n$  are the corresponding eigen vectors.

$$Tu_i = \lambda_i u_i$$

$$T(\phi^{-1}e_i) = \lambda_i \phi^{-1}e_i$$

$$(\phi T \phi^{-1})(e_i) = \Lambda e_i = \lambda_i e_i = \lambda_i \phi(u_i)$$

$$\phi^{-1} \phi T(\phi^{-1}e_i) = \phi^{-1} \lambda_i \phi(u_i)$$

$$T(\phi^{-1}e_i) = \lambda_i \phi^{-1}e_i$$

$$T(\phi^{-1}(e_i)) = \lambda_i u_i$$

$$Tu_i = \lambda_i u_i$$

So the problem reduces to finding  $u_i$ 's which are eigen vectors of T such that  $\{u_1, u_2, ..., u_n\}$ forms an ordered basis for V. However, finding such eigen vectors which spans the V is not always possible.  $\Longrightarrow$  Every linear transformation cannot be represented as diagonal matrices.

Let us see some examples.

#### Example: 1

T is a linear transformation in  $P_2(\mathbb{R})$ 

$$T(1) = 5 + 1t + 3t^2$$

$$T(t) = -6 + 4t - 6t^2$$

$$T(t^2) = -6 + 2t + -4t^2$$

Find a diagonal represention for T

Ans:

Ans: The matrix representation corresponding to the linear transformation T is  $\begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & 4 \end{bmatrix}$ .

If T is diagonizable, the  $\det[T - \lambda I] = 0$  for  $\lambda$  is the eigen value.

If 
$$I$$
 is diagonizable, the  $\det[I - \lambda I] = 0$  for  $\lambda$  is the  $T - \lambda I = \begin{bmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & 4 - \lambda \end{bmatrix}$ .

$$\det\begin{bmatrix} 5 - \lambda & -6 & -6 \\ -1 & 4 - \lambda & 2 \\ 3 & -6 & 4 - \lambda \end{bmatrix} = -(\lambda^3 - 3\lambda^2 + 6\lambda - 4)$$
Since  $\det[T - \lambda I] = 0$ ,
$$\lambda^3 + 3\lambda^2 - 6\lambda - 4 = 0$$
.
$$(\lambda - 1)(\lambda - 2)^2 = 0$$

So, the eigen values are 1,2,2.

When  $\lambda = 1$ ,

$$[T - 1I] = \begin{bmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -6 & -6 \\ -1 & 3 & 2 \\ 3 & -6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 4x_1 - 6x_2 - 6x_3 = 0.$$

$$-x_1 + 3x_2 + 2x_3 = 0.$$

$$\Rightarrow x_1 = x_3, x_1 = -3x_2.$$
So. 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3x_2 \\ x_2 \\ -3x_2 \end{bmatrix}$$
When  $x_2 = -1$ , 
$$\begin{bmatrix} -3x_2 \\ x_2 \\ -3x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

$$W_1 = Nullspace(T - I).$$

When 
$$\lambda = 2$$
,  

$$[T - 2I] = \begin{bmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -6 & -6 \\ -1 & 2 & 2 \\ 3 & -6 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\implies -x_1 + 2x_2 + 2x_3 = 0.$$

$$\implies x_1 = 0, x_2 = 1, x_3 = -1.$$

$$x_1 = 2, x_2 = 0, x_3 = -1.$$

$$W_2 = Nullspace(T - 2I).$$

$$\{(0, 1, -1), (2, 0, 1)\} \text{ spans } W_2.$$

The linear transformation T can be also expressed in terms of a diagonal matrix with the ordered basis  $\mathcal{B}' = \{(1 + 2t + 2t^2), (t - t^2), (2 + t^2)\}.$ 

$$p_1 = 1 + 2t + 2t^2$$
  
 $p_2 = t - t^2$   
 $p_3 = 2 + t^2$   
 $p_1, p_2$  and  $p_3$  are the eigen vectors of T.  
 $Tp_1 = 1p_1 + 0p_2 + 0p_3$ 

$$Tp_1 = 0p_1 + 20p_2 + 0p_3$$

$$Tp_1 = 0p_1 + 0p_2 + 2p_3$$

$$[T]_{\{p_1, p_2, p_3\}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
So  $T$  is diagonizable.

### Example(2)

T is a linear transformation in  $P_2(\mathbb{R})$ 

$$T(1) = 3 + 2t + 2t^2$$
$$T(t) = 1 + 2t + 2t^2$$

$$T(t^2) = -1 + -1t$$

Find a diagonal represention for T

Ans:

Ans: The matrix representation corresponding to the linear transformation T is  $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}.$ 

If T is diagonizable, the  $det[T - \lambda I] = 0$  for  $\lambda$  is the eigen value.

$$T - \lambda I = \begin{bmatrix} 3 - \lambda & 1 & -1 \\ 2 & 2 - \lambda & -1 \\ 2 & 2 & -\lambda \end{bmatrix}.$$

$$\det \begin{bmatrix} 3 - \lambda & 1 & -1 \\ 2 & 2 & -\lambda \end{bmatrix} = -(\lambda^3 - 3\lambda^2 + 6\lambda - 4)$$
Since  $\det[T - \lambda I] = 0$ .

$$\lambda^3 + 3\lambda^2 - 6\lambda - 4 = 0.$$

$$(\lambda - 1)(\lambda - 2)^2 = 0$$

So, the eigen values are 1,2,2.

When 
$$\lambda = 1$$
,
$$[T - I] = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 1 & -1 \\ 2 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 2x_1 + 2x_2 - 1x_3 = 0.$$

$$\Rightarrow 2x_1 + 1x_2 - 1x_3 = 0.$$

$$\Rightarrow x_2 = 0$$

$$\Rightarrow 2x_1 = x_3.$$
So. 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ 2x_1 \end{bmatrix}$$
When  $x_1 = 1$ , 
$$\begin{bmatrix} -x_1 \\ 0 \\ 2x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

$$W_1 = Nullspace(T - I).$$

$$\{(1,0,2)\} \text{ spans } W_1.$$
When  $\lambda = 2$ ,
$$[T - 2I] = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 2x_1 - x_3 = 0.$$

$$\Rightarrow 2x_1 = x_3, x_2 = x_1.$$
So. 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ 2x_1 \end{bmatrix}$$
When  $x_1 = 1$ , 
$$\begin{bmatrix} x_1 \\ x_1 \\ 2x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$W_2 = Nullspace(T - 2I).$$

So, T cannot be diagonized.

 $\{(1,1,2)\}$  does not span  $W_2$ .

\*\*\*\*\*\*\*\*\*\*\*

## 5 Diagonizability

T is diagonizable if there exists an ordered basis for V consisting of eigenvectors of T.

## 5.1 Diagonizable Operators

Let  $T \in L(V)$  be diagonizable.  $\exists$  distinct eigenvalues  $\lambda_1, \lambda_2, ..., \lambda_k$  each of algebric multiplicity  $n_1, n_2, ..., n_k$  respectively, and eigen spaces  $W_1, W_2, ..., W_k$  respectively with  $\dim(W_i) = n_i$ .

$$n_1 + n_2 + \dots + n_k = n$$

$$W_i = N(T - \lambda_i I)$$

 $V = W_1 \oplus W_2 \oplus ... \oplus W_k$ ,  $(W_i \cap W_j = \{0\})$  for eigen spaces  $W_i$  and  $W_j$  belonging to the eigenvalues  $\lambda_i$  and  $\lambda_j$  whenever  $\lambda_i \neq \lambda_j$ . That is,  $v \in V$  has a unique representation

$$v = w_1 + w_2 + \dots + w_k, (w_i \in W_i)$$

When dim  $W_i = n_i$ , basis for  $W_i$  is  $\{w_{i1}, w_{i2}, ..., w_{in_i}\}$ .

$$Tw_{ij} = \lambda_i w_{ij}$$

Then  $\{w_{11}, w_{12}, ..., w_{1n_1}, w_{21}, w_{22}, ..., w_{2n_2}, ..., w_{k1}, w_{k2}, ..., w_{kn_k}\}$  forms a basis for V. Then the characteristic polynomial p is given by

$$p(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} ... (\lambda - \lambda_k)^{n_k}$$

 $n_i$  is the algebraic multiplicity of  $\lambda_i$  and dim  $W_i$  is called the algebraic multiplicity of  $\lambda_i$ .

T is diagonizable if and only if the algebraic multiplicity of each eigen values should be the geometric multiplicity.

**Example(1)** was diagonalized with the help of the eigen values 1,2,2. However the matrix in **Example(2)** had the same eigen value of **Example(1)**, **Example(2)** was not diagonizable because the geometrical multiplicity of the eigen value, 2 = 1 is not equal to the algebraic multiplicity of the eigen value, 2 = 2.

#### Spectral Thoery 5.2

One can define,  $P_i: V \to V$  by  $P_i v = w_i$ 

Then  $P_i$  's are linear and  $P_i^2 = P_i$  (Idempotent). Then  $P_i$  is called projection on  $W_i$ along  $W_i$  where

$$W_i = W_1 \oplus W_2 \oplus \dots \oplus W_{i-1} \oplus W_{i+1} \oplus \dots \oplus W_k$$

So, 
$$V = W_i \oplus W_i$$

Now, 
$$v = w_1 + w_2 + ... + w_k = P_1 v + P_2 v + ... + P_k v$$
  
 $\implies I = P_1 + P_2 + ... + P_k$  - (1)

$$Tv = Tw_1 + Tw_2 + \dots + Tw_k$$

$$. = \lambda_1 w_1 + \lambda_2 w_2 + ... \lambda_k w_k$$

$$. = \lambda_1 P_1 + \lambda_2 P_2 + \dots \lambda_k P_k$$

$$\implies \boxed{T = \lambda_1 P_1 + \lambda_2 P_2 + \dots \lambda_k P_k} - (2)$$

(1) and (2) constitute the celebrated **Spectral Theorom**.

\*\*\*\*\*\*\*\*\*\*

Q1. Let T be a linear transformation with respect to the ordered basis  $\mathcal{B} :=$  $\{1, t, t^2\}$ .  $T(1) = 3 + 2t + 4t^2$ 

$$T(t) = 2 + 2t * 2$$

$$T(t^2) = 4 + 2t + 3t^2$$

Analyse this example and verify the spectral theory.

Ans:

Ans: The matrix representation corresponding to the linear transformation T is  $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ .

If T is diagonizable, the  $\det[T - \lambda I] = 0$  for  $\lambda$  is the eigen value.

$$T - \lambda I = \begin{bmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{bmatrix}.$$

$$\det \begin{bmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{bmatrix} = -(\lambda^3 + 6\lambda^2 + 15\lambda + 8)$$

Since 
$$\det[T - \lambda I] = 0$$
,

$$\lambda^3 + 6\lambda^2 + 15\lambda + 8 = 0.$$

$$(\lambda - 8)(\lambda + 1)^2 = 0$$

So, the eigen values are 8,-1,-1.

When 
$$\lambda = 8$$
,
$$[T - 8I] = \begin{bmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix}$$

$$\begin{bmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 2x_1 + -8x_2 + 2x_3 = 0.$$

$$4x_1 + -2x_2 + -5x_3 = 0.$$

$$\Rightarrow x_1 = x_3, x_1 = 2x_2.$$
So. 
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 \\ 2x_2 \end{bmatrix}$$
When  $x_2 = 1$ , 
$$\begin{bmatrix} 2x_2 \\ x_2 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

$$W_1 = Nullspace(T - 8I).$$

$$\{(2, 1, 2)\} \text{ spans } W_1.$$
When  $\lambda = -1$ ,
$$[T - (-1)I] = \begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow 2x_1 + 1x_2 + 2x_3 = 0.$$

$$x_1 = 0, x_2 = -2, x_3 = 1.$$

$$x_2 = 0, x_1 = 1.x_3 = -1. \text{ So,} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} and \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

 $W_2 = Nullspace(T - 8I).$ {(0, -2, 1), (1, 0, -1)} spans  $W_1$ .

$$(x_1, x_2, x_3) \in \mathbb{R}^3$$
 then,  $p(t) = x_1 + x_2 t + x_3 t^2$ 

$$= ((2y_1 + y_3), (y_1 - 2y_2), (2y_1 + y_2 - y_3))$$

$$2y_1 + y_3 = x_1,$$

$$y_1 - 2y_2 = x_2,$$

$$2y_1 + y_2 - y_3 = x_3$$

$$\Rightarrow y_1 = \frac{1}{9}(2x_1 + 1x_2 + 2x_3)$$

$$y_2 = \frac{1}{9}(1x_1 + -4x_2 + 1x_3)$$

$$y_3 = \frac{1}{9}(5x_1 + -2x_2 + -4x_3)$$

$$\therefore (x_1, x_2, x_3) = \left[\frac{1}{9}(2x_1 + 1x_2 + 2x_3)\right](2, 1, 2) + \frac{1}{9}(x_1 + -4x_2 + x_3)](0, -2, 1) + \left[\frac{1}{9}(5x_1 + -2x_2 + -4x_3)\right](1, 0, -1).$$

$$P_1(x_1, x_2, x_3) = \left[\frac{1}{9}(2x_1 + 1x_2 + 2x_3)\right](2, 1, 2)]$$

$$\cdot = \left[\frac{1}{9}(4x_1 + 2x_2 + 4x_3), \frac{1}{9}(2x_1 + 1x_2 + 2x_3), \frac{1}{9}(4x_1 + 2x_2 + 4x_3)\right]$$

$$So \left[P_1\right] = \begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{3}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{1}{9} & \frac{2}{9} & \frac{4}{9} \end{bmatrix}$$

$$P_2(x_1, x_2, x_3) = \frac{1}{9}(x_1 + -4x_2 + x_3)](0, -2, 1) + \left[\frac{1}{9}(5x_1 + -2x_2 + -4x_3)\right](1, 0, -1)$$

$$\cdot = \left[\frac{1}{9}(5x_1 + -2x_2 + -4x_3), \frac{1}{9}(-2x_1 + 8x_2 + -2x_3), \frac{1}{9}(-4x_1 + -2x_2 + 5x_3)\right]$$

$$So \left[P_2\right] = \begin{bmatrix} \frac{5}{9} & \frac{-2}{9} & \frac{4}{9} \\ \frac{-2}{9} & \frac{3}{9} & \frac{-2}{9} \\ \frac{-2}{9} & \frac{3}{9} & \frac{-2}{9} \end{bmatrix}$$

$$P_2\left[\frac{1}{9} + P_2\right] = \begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{1}{9} & \frac{2}{9} & \frac{4}{9} \end{bmatrix} + \begin{bmatrix} \frac{5}{9} & \frac{-2}{9} & \frac{-4}{9} \\ \frac{-2}{9} & \frac{3}{9} & \frac{-2}{9} \\ \frac{-4}{9} & \frac{-2}{9} & \frac{5}{9} \end{bmatrix}$$

$$P_1\left[P_1\right] + P_2\left[\frac{1}{9}\right] = \begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{1}{9} & \frac{2}{9} & \frac{4}{9} \end{bmatrix} + \begin{bmatrix} \frac{5}{9} & \frac{-2}{9} & \frac{-4}{9} \\ \frac{-2}{9} & \frac{3}{9} & \frac{-2}{9} \\ \frac{-4}{9} & \frac{-2}{9} & \frac{5}{9} \end{bmatrix}$$

$$P_2\left[\frac{1}{9} + \lambda_2\left[\frac{1}{9}\right] + \frac{1}{9} + \frac{1}{9}$$

 $(x_1, x_2, x_3) = y_1(2, 1, 2) + y_2(0, -2, 1) + y_3(1, 0, -1)$ 

Thus the properties of spectral theory have been verified with the help of the example. Moreover, the linear transformation T can be also expressed in terms of a diagonal matrix with the ordered basis  $\mathcal{B}' = \{(2+t+2t^2), (-2t+t^2), (1-t^2)\}.$ 

$$[T]_{\{(2+t+2t^2),(-2t+t^2)(1-t^2)\}} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*