

EXAM
PRESENTATION

Gavriliuc Tudor

Introduction

Raw data

age	workclass	fnlwgt	education	education.	marital.sta	occupation	relationshi	race	sex	capital.gai	capital.los	hours.per.	native.cou	income
90			HS-grad		Widowed		Not-in-fan		Female	0	4356		United-Sta	
										_				
	Private		HS-grad		Widowed				Female	0	4356		United-Sta	
66		186061	Some-colle	10	Widowed	?	Unmarried	Black	Female	0	4356	40	United-Sta	<=50K
54	Private	140359	7th-8th	4	Divorced	Machine-c	Unmarried	White	Female	0	3900	40	United-Sta	<=50K
41	Private	264663	Some-colle	10	Separated	Prof-specia	Own-child	White	Female	0	3900	40	United-Sta	<=50K
34	Private	216864	HS-grad	9	Divorced	Other-serv	Unmarried	White	Female	0	3770	45	United-Sta	<=50K
38	Private	150601	10th	6	Separated	Adm-cleric	Unmarried	White	Male	0	3770	40	United-Sta	<=50K
74	State-gov	88638	Doctorate	16	Never-mai	Prof-specia	Other-rela	White	Female	0	3683	20	United-Sta	>50K
68	Federal-go	422013	HS-grad	9	Divorced	Prof-specia	Not-in-fan	White	Female	0	3683	40	United-Sta	<=50K
41	Private	70037	Some-colle	10	Never-mai	Craft-repa	Unmarried	White	Male	0	3004	60	?	>50K
45	Private	172274	Doctorate	16	Divorced	Prof-specia	Unmarried	Black	Female	0	3004	35	United-Sta	>50K
38	Self-emp-r	164526	Prof-schoo	15	Never-mai	Prof-specia	Not-in-fan	White	Male	0	2824	45	United-Sta	>50K
52	Private	129177	Bachelors	13	Widowed	Other-serv	Not-in-fan	White	Female	0	2824	20	United-Sta	>50K
32	Private	136204	Masters	14	Separated	Exec-mana	Not-in-fan	White	Male	0	2824	55	United-Sta	>50K
51	?	172175	Doctorate	16	Never-mai	?	Not-in-fan	White	Male	0	2824	40	United-Sta	>50K
46	Private	45363	Prof-schoo	15	Divorced	Prof-specia	Not-in-fan	White	Male	0	2824	40	United-Sta	>50K
45	Private	172822	11th	7	Divorced	Transport-	Not-in-fan	White	Male	0	2824	76	United-Sta	>50K
57	Private	317847	Masters	14	Divorced	Exec-mana	Not-in-fan	White	Male	0	2824	50	United-Sta	>50K
22	Private	119592	Assoc-acd	12	Never-mai	Handlers-c	Not-in-fan	Black	Male	0	2824	40	?	>50K
34	Private	203034	Bachelors	13	Separated	Sales	Not-in-fan	White	Male	0	2824	50	United-Sta	>50K
37	Private	188774	Bachelors	13	Never-mai	Exec-mana	Not-in-fan	White	Male	0	2824	40	United-Sta	>50K

Data analysis

General info

df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns): Column Non-Null Count Dtype 32561 non-null int64 age 32561 non-null object workclass fnlwgt 32561 non-null int64 education 32561 non-null object education.num 32561 non-null int64 marital.status 32561 non-null object occupation 32561 non-null object relationship 32561 non-null object 32561 non-null object race 32561 non-null object sex capital.gain 32561 non-null int64 capital.loss 32561 non-null int64 hours.per.week 32561 non-null int64 native.country 32561 non-null object income 32561 non-null object dtypes: int64(6), object(9) memory usage: 3.7+ MB

df.describe()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000


```
age - 0.43642622245443646
education.num - 3.6665949534376248
capital.gain - 8.335126164059378
capital.loss - 4.668531210621754
hours.per.week - 27.66696376432984
```

Interquartile range (IQR)

Workclass Distribution

We can see that people working at Federal-gov and Self-emp-inc have a higher income comparative to other workclasses, and the private workclass is the most popular one.

How does age influence capital gain and income?

According to the plot above older people have a bigger income

Older people also reach a capital.gain but the values are not so high

We can notice that education.num has a linear relatioship with income, the same relation can noticed with hours.per.week and age columns

Data Engineering

Total number of '?' in df

check the case when '?' is present in workclass and occupation

```
k = 0
for i in range(len(df)):
    if df.iloc[i,1]==df.iloc[i,6]=='?':
        k = k + 1
print(k)
```

1836

8

check the case when '?' is present in workclass and native.country

```
k = 0
for i in range(len(df)):
    if df.iloc[i,1]==df.iloc[i,14]=='?':
        k = k + 1
print(k)
```

check the case when '?' is present in native country and occupation

```
k = 0
for i in range(len(df)):
    if df.iloc[i,6]==df.iloc[i,14]=='?':
        k = k + 1
print(k)
```

check the case when '?' is present in workclass, occupation and native.country

```
k = 0
for i in range(len(df)):
    if df.iloc[i,1]==df.iloc[i,6]=='?':
        k = k + 1
print(k)
```

Analyzing the '?

So far we can observe that the number of '?' in columns[occupation and workclass] is almost the same which means that we can not drop them since they have a valuable information [If X doesn't have a workclass results that it doesn't have an accupation]

```
def replace_inter(df):
    df['workclass'] = df['workclass'].str.replace('?','unemployed')
    df['occupation'] = df['occupation'].str.replace('?','no_occupation')
    df['native.country'] = df['native.country'].str.replace('?','unknown')
    return df
df = replace_inter(df)
```

```
k = 0
for i in df.workclass:
    if i == '?':
        k = k + 1
print(k)

1836
```

Check the number of '?' in occupation

```
k = 0
for i in df.occupation:
    if i == '?':
        k = k + 1
print(k)
1843
```

Check the number of '?' in native.country

```
k = 0
for i in df['native.country']:
    if i == '?':
        k = k + 1
print(k)
```

Categorical features

Binary_encoder

Map function

```
def binary_encoder(df,column_list):
    for i in column_list:
        rep = len(df[i].unique())
        if rep > 3:
            li1.append(i)
        encoder = ce.BinaryEncoder(cols=li1, return_df = True)
        df = encoder.fit_transform(df)
        return df
df = binary_encoder(df,lista)
```

```
def map_binar(df):
    df['income'] = df['income'].map({'<=50K' : 0, '>50K' : 1})
    df['sex'] = df['sex'].map({'Female' : 0, 'Male' : 1})
    return df
df = map_binar(df)
```

Class balancing

SMOTENC

```
from imblearn.over_sampling import SMOTENC
from sklearn.model_selection import train_test_split

def get_smotenc(df,target,num):
    X = df.drop(target, axis=1)
    Y = df[target]
    X_train, X_test, y_train, y_test = train_test_split(X,Y, random_state = 12, test_size=0.25)
    sm = SMOTENC(random_state=42, categorical_features=[num])
    X_res, y_ress = sm.fit_resample(X_train,y_train)
    y_ress.value_counts().plot.pie()
    df_balanced = pd.concat([X_res, y_ress], axis = 1)
    return df_balanced

df = get_smotenc(df,'income',34)
df
```


32537

After

37186

Outliers

IsolationForest EllipticEnvelope LocalOutlierFactor

According to the result above IsolationForest algorithm has the best result since it is capable to identify outliers in non-linear data distributions.

age - 0.47047492035267097
education.num - 0.048158850114840335
capital.gain - 13.2807290509002
capital.loss - 6.271764095724976
hours.per.week - 9.36504408387049

age - 0.7111482953357038 education.num - 0.40039441838228707 capital.gain - 12.872381749185765 capital.loss - 0.020916126333403055 hours.per.week - 16.89425404129441

age - 0.6837002328117172 education.num - 0.4449945480800401 capital.gain - 10.897945952317803 capital.loss - 5.160168567471193 hours.per.week - 12.775174608787907

Feature Selection

from kydavra import PValueSelector
from kydavra import BregmanDivergenceSelector
from kydavra import JensenShannonSelector

As we can see the output of first two columns is very similar.

	PValue Selector	Jensen Shannon Selector	BregmanDivergenceSelector
0	age	age	workclass_0
1	workclass_2	workclass_2	workclass_1
2	workclass_3	fnlwgt	workclass_2
3	fnlwgt	education_2	workclass_3
4	education_1	education_3	education_0
5	education_2	education_4	education_1
6	education_3	education.num	education_2
7	education_4	marital.status_0	education_3
8	education.num	marital.status_2	education_4
9	marital.status_0	occupation_1	marital.status_0
10	marital.status_1	occupation_2	marital.status_1
11	marital.status_2	relationship_0	marital.status_2
12	occupation_0	relationship_2	occupation_0
13	occupation_1	race_2	occupation_1
14	occupation_2	sex	occupation_2
15	occupation_3	capital.gain	occupation_3
16	relationship_0	hours.per.week	relationship_0

Data Correlation

Principal component analysis & ICAReducer

PCA from 36 to 30 columns

ICAReducer from 36 to 36

Feature Scaling - Standartization

	0	1	2	3	4	5	6	7	8	9	 26	27	28	29
0	0.872712	-0.019407	-0.442500	0.510810	-0.462514	0.092040	-0.032815	-0.424906	-0.547292	1.048787	 -0.196578	-0.255178	0.267353	-0.08584
1	-1.470061	-0.019407	-0.442500	0.510810	-0.462514	-0.795088	-0.032815	-0.424906	1.827179	-0.953482	 -0.196578	-0.255178	-1.042844	-0.08584
2	1.195853	-0.019407	-0.442500	0.510810	-0.462514	2.608657	-0.032815	-0.424906	1.827179	1.048787	 -0.196578	-0.255178	1.577549	-0.08584
3	-0.419853	-0.019407	-0.442500	0.510810	-0.462514	-0.450815	-0.032815	2.353460	-0.547292	1.048787	 -0.196578	-0.255178	-0.518765	-0.08584
4	-0.339067	-0.019407	-0.442500	0.510810	-0.462514	0.391721	-0.032815	-0.424906	-0.547292	-0.953482	 -0.196578	-0.255178	-0.606112	-0.08584
37181	-0.500638	-0.019407	-0.442500	0.510810	-0.462514	-1.066124	-0.032815	-0.424906	-0.547292	-0.953482	 -0.196578	-0.255178	1.053471	-0.08584
37182	0.791926	-0.019407	-0.442500	0.510810	-0.462514	-0.295012	-0.032815	-0.424906	-0.547292	-0.953482	 -0.196578	4.373423	-0.169380	-0.08584
37183	0.388000	-0.019407	-0.442500	0.510810	-0.462514	1.079886	-0.032815	-0.424906	1.827179	1.048787	 -0.196578	-0.255178	0.704085	-0.08584
37184	0.064859	-0.019407	-0.442500	0.510810	-0.462514	-0.750734	-0.032815	-0.424906	1.827179	1.048787	 -0.196578	-0.255178	0.704085	-0.08584
37185	0.630356	-0.019407	2.259885	-1.957674	2.162095	-0.719079	-0.032815	-0.424906	-0.547292	1.048787	 -0.196578	-0.255178	-0.169380	-0.08584
37186 r	ows × 36 c	olumns												

Standardization is less sensitive to outliers compared to normalization (Min-Max scaling).

Model Training

-SVC

-RandomForestClassifier

-MLPClassifier

-KNeighborsClassifier

Model: SVC

```
elif isinstance(model, SVC):
    clf = SVC()
    clf.fit(X_train, y_train)
    output69 = clf.predict(X_test)
    f1 = accuracy_score(y_test,output69)
    lista4.append(f1)
```

fun1(SVC())

Simple df

0.8911108669376991

PCA dataframe

0.8910009889023184

Isolation Forest dataframe

0.8929225137278829

EllipticEnvelope dataframe

0.8860944939567819

LocalOutlierFactor dataframe

0.8881423856671381

Model: RandomForestClassifier

```
elif isinstance(model, RandomForestClassifier):
    tuned_parameters = {
    'criterion': ['gini', 'entropy', 'log_loss'],
    'max_features': ['log2', 'sqrt',None],
    'class_weight': ['balanced', 'balanced_subsample']
    }
    clf = GridSearchCV(RandomForestClassifier(), tuned_parameters,scoring='recall')
    clf.fit(X_train, y_train)
    output69 = clf.predict(X_test)
    f1 = accuracy_score(y_test,output69)
    lista2.append(f1)
```

fun1(RandomForestClassifier())

Simple df
0.8978134270959235
PCA dataframe
0.8905614767607956
Isolation Forest dataframe
0.8942953020134228
EllipticEnvelope dataframe
0.8902453912831156
LocalOutlierFactor dataframe
0.8892032060348892

Model: KNeighborsClassifier

```
elif isinstance(model, KNeighborsClassifier):
    tuned_parameters = {
    'weights': ['uniform', 'distance'],
    'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']
    }
    clf = GridSearchCV(KNeighborsClassifier(), tuned_parameters,scoring='recall')
    clf.fit(X_train, y_train)
    output69 = clf.predict(X_test)
    f1 = accuracy_score(y_test,output69)
    lista3.append(f1)
```

fun1(KNeighborsClassifier())

Simple df 0.8674870893308427 PCA dataframe 0.8692451378969344 Isolation Forest dataframe 0.87614399023795 EllipticEnvelope dataframe 0.8670492003418386 LocalOutlierFactor dataframe 0.8640971239981141

Model: MLPClassifier

```
elif isinstance(model, MLPClassifier):
    tuned_parameters = {
    'activation':['identity', 'logistic', 'tanh', 'relu'],
    'solver': ['lbfgs', 'sgd', 'adam'],
    'learning_rate':['constant', 'invscaling', 'adaptive']
    }
    clf = GridSearchCV(MLPClassifier(), tuned_parameters,scoring='recall')
    clf.fit(X_train, y_train)
    output69 = clf.predict(X_test)
    f1 = accuracy_score(y_test,output69)
    lista8.append(f1)
```

fun1(MLPClassifier())

Simple df
0.878694648939677
PCA dataframe
0.8845181848148556
Isolation Forest dataframe
0.5846552776082977
EllipticEnvelope dataframe
0.8879257721889879
LocalOutlierFactor dataframe
0.8843705799151343

	LocalOutlierFactor	EllipticEnvelope	Index Isolation Forest	PCA	Simple df
LogisticRegression -	0.86	0.87	0.87	0.87	0.87
DecisionTreeClassifier -	0.85	0.85	0.85	0.84	0.85
RandomForestClassifier -	0.89	0.89	0.89	0.89	0.9
KNeighborsClassifier -	0.86	0.87	0.88	0.87	0.87
- SVC -	0.89	0.89	0.89	0.89	0.89
GaussianNB -	0.62	0.59	0.73	0.8	0.6
AdaBoostClassifier -	0.88	0.87	0.88	0.87	0.88
QuadraticDiscriminantAnalysis -	0.55	0.53	0.63	0.85	0.54
MLPClassifier -	0.88	0.89	0.58	0.88	0.88
1.00	0.75	0.25 0.50	- 0.00	- 0.50 - 0.25	- 0.75

Model: Hyperparameter tuning

```
RandomForestClassifier

RandomForestClassifier(class_weight='balanced_subsample', criterion='entropy',

max_features=None)
```

Model Interpretation

RandomForestClassifier

Multumesc pentru Atentie!