Chapter 3

Diagnostics and Remedial Measures

Instructor: Li, Caixia

Outline

Diagnostics (using plots and tests)

- Diagnostics for prediction variable
- Diagnostics for residuals
 - L.I.N.E(Linearity; Independence; Normality; Equality of variance)
 - Outliers
 - Lack of fit

Remedial Measures

- Remedial action when violation of L.I.N.E.
- Presence of outliers
- Lack of fit

Diagnostics

- Procedures to determine appropriateness of the model and check assumptions used in the standard inference
- If there are violations, inference and model may not be reasonable thereby resulting in faulty conclusions
- Always check before any inference!
- Procedures involve both graphical methods and formal statistical tests

3.1 Diagnostics for Predictor Variables

- Scatterplot of *Y* vs *X* common diagnostic
 - Is linear trend reasonable?
 - Any unusual/influential (*X*, *Y*) observations?
- Can also look at distribution of *X* alone
 - Unusual or outlying values?
 - Does *X* have pattern over time (order collected)?
- If *Y* depends on *X*, looking at *Y* alone may be deceiving (i.e.,mixture of normal dists)

Graphical diagnostics for X

Useful plots of *X* levels

- Dot plot or bar plot for discrete variable
- Histogram or stem-and-leaf plot
- Box Plot
- Sequence Plot (*X* versus Run #)

3.2 Residuals

• In a normal regression model the \mathcal{E}_i 's are assumed to be i.i.d $N(0, \sigma^2)$ distributed.

$$\varepsilon_i = Y_i - E(Y_i) = Y_i - (\beta_0 + \beta_1 X_i) \sim i.i.d. N(0, \sigma^2)$$

• Recall the definition of residuals:

$$e_i = Y_i - \hat{Y}_i = Y_i - (b_0 + b_1 X_i) = Y_i - \overline{Y} - b_1 (X_i - \overline{X})$$
 $i = 1, ..., n$

• The properties of the residuals

(1)
$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} X_i e_i = \sum_{i=1}^{n} \hat{Y}_i e_i = 0$$

(2) In normal error model, e_i 's are normal distributed, but not independent. When n large, the dependency can be ignored.

$$e_i = Y_i - \hat{Y}_i \sim N(0, (1 - h_{ii})\sigma^2), \quad \text{cov}(e_i, e_j) = -h_{ij}\sigma^2 \neq 0, \quad i \neq j$$

where
$$h_{ij} = \frac{1}{n} + \frac{\left(X_i - \overline{X}\right)\left(X_j - \overline{X}\right)}{SS_{yy}}$$

Proof

$$\operatorname{var}(e_{i}) = \operatorname{var}(Y_{i}) - \operatorname{var}(\overline{Y}) - \operatorname{var}(b_{1}) \left(X_{i} - \overline{X}\right)^{2} - 2\operatorname{cov}(Y_{i}, \overline{Y}) - 2\left(X_{i} - \overline{X}\right)\operatorname{cov}(Y_{i}, b_{1})$$

$$= \sigma^{2} + \frac{\sigma^{2}}{n} + \frac{\left(X_{i} - \overline{X}\right)^{2} \sigma^{2}}{SS_{XX}} - \frac{2\sigma^{2}}{n} - \frac{2\left(X_{i} - \overline{X}\right)^{2} \sigma^{2}}{SS_{XX}}$$

$$= \sigma^{2} \left(1 - \frac{1}{n} - \frac{\left(X_{i} - \overline{X}\right)^{2}}{SS_{XX}}\right)$$

$$\begin{aligned} & \operatorname{cov}(e_{i}, e_{j}) = \operatorname{cov}\left(Y_{i} - \overline{Y} - b_{1}\left(X_{i} - \overline{X}\right), Y_{j} - \overline{Y} - b_{1}\left(X_{j} - \overline{X}\right)\right) \\ &= \operatorname{cov}\left(Y_{i} - \overline{Y}, Y_{j} - \overline{Y}\right) - \left(X_{j} - \overline{X}\right)\operatorname{cov}\left(Y_{i}, b_{1}\right) - \left(X_{i} - \overline{X}\right)\operatorname{cov}\left(Y_{j}, b_{1}\right) + \left(X_{i} - \overline{X}\right)\left(X_{j} - \overline{X}\right)\operatorname{var}(b_{1}) \\ &= -\frac{\sigma^{2}}{n} - 2\frac{\left(X_{i} - \overline{X}\right)\left(X_{j} - \overline{X}\right)\sigma^{2}}{SS_{XX}} + \frac{\left(X_{i} - \overline{X}\right)\left(X_{j} - \overline{X}\right)\sigma^{2}}{SS_{XX}} \\ &= -\sigma^{2}\left(\frac{1}{n} + \frac{\left(X_{i} - \overline{X}\right)\left(X_{j} - \overline{X}\right)}{SS_{XX}}\right) \end{aligned}$$

Semi-studentized residuals

Actually,
$$e_i \sim N \left[0, \sigma^2 \left[1 - \left(\frac{1}{n} + \frac{(X_i - \overline{X})^2}{\sum_{j=1}^n (X_j - \overline{X})^2} \right) \right] \right]$$

- It may be useful sometimes to look at a standardized set of residuals, for instance in outlier detection.
- Studentized residual

$$\frac{e_i}{s\{e_i\}} = \frac{e_i}{\sqrt{(1-h_{ii})MSE}}$$

• Semi-studentized residual.

$$e_i^* = \frac{e_i}{\sqrt{MSE}}$$

Departures from Model...

To be studied by residuals

- Regression function not linear (L)
- Error terms are not independent (I)
- Error terms are not normally distributed (N)
- Error terms do not have equal variance (E)
- Model fits all but one or a few outlier observations
- One or more **predictor** variables have been **omitted** from the model

3.3 Diagnostics for Residuals

Common Plots

- Residuals / Absolute Residuals versus Predictor Variable
- Residuals / Absolute Residuals versus Predicted Values
- Residuals versus Omitted variables
- Residuals versus Time
- Box Plots, Histograms, Normal Probability Plots

Nonlinearity of Regression Function

- PlotY versus X
- Plot Residuals versus X
 - Random Cloud around regression line $/0 \Rightarrow$ Linear Relation
 - U-Shape or Inverted U-Shape \Rightarrow Nonlinear Relation

Y vs X

Residual vs X

Nonlinearity of Regression Function

 Transit example : ridership increase vs. num. maps distributed (Table 3.1, Figure 3.5, p.10)

100 120 140 160 180 200 220 240

Nonconstancy of Error Variance

- Plot Residuals versus X or Predicted Values
 - Funnel Shape ⇒ Non-constant Variance
- Plot absolute Residuals/squared residuals
 - Positive Association ⇒ Non-constant Variance

Presence of Outliers

- Outliers can strongly effect the fitted values of the regression line.
- Rule of thumb: say it is an outlier, if $e_i^* = \frac{e_i}{\sqrt{MSE}} > 4$

Non-independence of Error Terms

- Sequential observations can exhibit observable trends in error distribution.
- Application: Time series.

Linear Trend

Cyclical Trend

Non-Normal Errors

- Distribution plots of residuals
 - e.g., boxplot Can confirm symmetry and lack of outliers
- Check Proportion that lie within 1 standard deviation from 0, 2 SD, etc, where SD=sqrt(MSE)
- Normal probability plot of residual
 - Q-Q plot—should fall approximately on a straight line (Only works well with moderate to large samples)
 - qqnorm(e); qqline(e) in R

Normal Quantile-Quantile(Q-Q) Plot

- Step 1. First sort the sample data by arranging the values in order from lowest to highest. $e_{(1)}, e_{(2)}, e_{(n)}$
- Step 2. With a sample of size n, each $e_{(i)}$ represents a sample quantile corresponding to a proportion p_i . Roughly speaking, we expect the first ordered value to be in the interval (0, 1/n), the second to be in the interval (1/n, 2/n), and the last to be in of the interval ((n-1)/n, 1).

$$p_i = (i - a)/(n + 1 - 2a)$$
, a in the range from 0 to $\frac{1}{2}$

e.g.
$$a=0$$
, $p_i=i/(n+1)$; $a=1/2$, $p_i=(i-1/2)/n$
 $a=3/8$, $p_i=(i-3/8)/(n+1/4)$.

In R, a=3/8 if $n \le 10$ and a=1/2 if n > 10.

Step 3. Use the standard normal distribution to find the theoretical quantile q_i corresponding to p_i in step 2.

$$q_i = \Phi^{-1}(p_i)$$

- Step 4. plot the points $(q_i, e_{(i)})$, where each $e_{(i)}$ is a sample quantile and q_i is the theoretical quantile.
- Step 5. Examine the normal quantile plot and determine whether or not the distribution is normal.

- Example 随机选取10个零件,测得其直径与标准尺寸的偏差如下: (单位: 丝)
- 9.4 8.8 9.6 10.2 10.1 7.2 11.1 8.2 8.6 9.6 Q-Q图步骤如下:
- (1) 首先将数据排序: 7.2 8.2 8.6 8.8 9.4 9.6 9.8 10.1 10.2 11.1;
- (2) 对每一个i, 计算a=3/8=0.375对应的修正频率 p_i =(i-0.375)/(n+0.25), i=1,2,...,n;
- (3) 对每一个i, 计算 p_i 对应的理论分位数 $q_i = \Phi^{-1}(p_i), i = 1, 2, ..., n;$
- (4) 将二维坐标系中绘出n个点 $(q_i, x_{(i)}), i=1,2,...,n$

rank	$x_{(i)}$	p_i	q_i
1	7.2	0.061	-1.547
2	8.2	0.159	-1.000
3	8.6	0.256	-0.655
4	8.8	0.354	-0.375
5	9.4	0.451	-0.123
6	9.6	0.549	0.123
7	9.6	0.646	0.375
8	10.1	0.744	0.655
9	10.2	0.841	1.000
10	11.1	0.939	1.547

Normal Q-Q Plot

• Figure : Examples of non-normality in distribution of error terms

Omission of Important Predictor Variables

- Example
 - Qualitative variable
 - Type of machine
- Partitioning data can reveal dependence on omitted variable(s)
- Works for quantitative variables as well
- Can suggest that inclusion of other inputs is important

3.4 Tests involving residuals

- Tests for randomness (run test, Durbin-Watson test, Chapter
 12)
- Tests for constancy of variance (Brown-Forsythe test, Breusch-Pagan test, Section 3.6)
- Tests for outliers (fit a new regression line to the other *n*−1 observations. detail in Chapter 10)
- Tests for normality of error distribution (will discuss now)

3.5 Tests for Normality of Residuals

- Correlation Test
 - 1) Obtain correlation between observed residuals and expected values under normality
 - Compare correlation with critical value based on α -level from Table B.6, page 1329. A good approximation for the α =0.05 critical value is: 1.02-1/sqrt(10n)
 - 3) Reject the null hypothesis of normal errors if the correlation falls below the table value
- Shapiro-Wilk Test Performed by most software packages. Related to correlation test, but more complex calculations

3.6 Tests for Constancy of Error Variance

- 1. Brown-Forsythe test for constant variance. (It is applicable when the variance increasing or decreasing in *X*)
- Divide dataset into 2 groups based on levels of with sample size n_1 , n_2 . Compute $d_{ii} = |e_{ii} \tilde{e}_i|$ $i = 1, ..., n_i$ i = 1, 2
- The test statistic for comparing the means of the absolute deviations of the residuals around the group medians

$$t_{BF} = \frac{\overline{d}_1 - \overline{d}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2), \text{ approximately.}$$

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

where $\overline{d}_1, s_1^2, \overline{d}_2, s_2^2$ are the mean and variance for each group of d_{ij} .

Tests for Equal Variance - II

2. Breusch-Pagan (aka Cook-Weisberg) Test:

$$H_0$$
: Equal Variance Among Errors $\sigma^2 \{ \varepsilon_i \} = \sigma^2 \ \forall i$

$$H_A$$
: Unequal Variance Among Errors $\sigma^2 \{ \varepsilon_i \} = \sigma^2 h (\gamma_1 X_{i1} + ... + \gamma_p X_{ip})$

- 1) Let $SSE = \sum_{i=1}^{n} e_i^2$ from original regression
- 2) Fit Regression of e_i^2 on $X_{i1},...X_{ip}$ and obtain $SS(\text{Reg}^*)$

Test Statistic:
$$X_{BP}^2 = \frac{SS(\text{Reg}^*)/2}{(SSE/n)^2} \sim \chi_p^2$$
, approximately

Reject H₀ if
$$X_{BP}^2 \ge \chi^2 (1-\alpha; p)$$
 $p = \#$ of predictors

3.7 F test for lack of fit

- Formal test for determining whether a specific type of regression function adequately fits the data.
- Test for linearity of regression

Assumes
$$Y|X \stackrel{ind}{\sim} N(\mu(X), \sigma^2)$$

$$H_0: \mu(X) = \beta_0 + \beta_1 X \qquad \text{(Reduced model)}$$

$$H_a: \mu(X) \neq \beta_0 + \beta_1 X \qquad \text{(Full model)}$$

• Will use full/reduced model framework

Test for Linearity

$$H_0: E(Y_i) = \beta_0 + \beta_1 X_i$$

$$H_A: E(Y_i) = \mu_i \neq \beta_0 + \beta_1 X_i$$

Requires: repeat observations at one or more *X* levels (called replicates)

Notation

- Define X levels as X_1, X_2, \ldots, X_c
- There are n_j replicates at level X_j ($\sum n_j = n$)
- $-Y_{ij}$ is the i^{th} replicate at X_j

Branch <i>i</i>	Size of Minimum Deposit (dollars) Xi	Number of New Accounts Y _i
1	125	160
2	100	112
3	200	124
4	75	28
5	150	152
6	175	156
7	75	42
8	175	124
9	125	150
10	200	104
11	100	136

	Size of Minimum Deposit (dollars)					
Replicate	$ j = 1 X_1 = 75 $	$J = 2$ $X_2 = 100$	$j=3$ $X_3=125$	$j = 4$ $X_4 = 150$	$j = 5$ $X_5 = 175$	$j = 6$ $X_6 = 200$
i = 1	28	112	160	152	156	124
i = 2	42	136	150		124	104
Mean \bar{Y}_j	35	124	155	152	140	114

Bank example

Replicate	Size of Minimum Deposit (dollars)					
	$ j = 1 X_1 = 75 $	$ J = 2 \\ X_2 = 100 $	$j=3$ $X_3=125$	$j = 4$ $X_4 = 150$	$j = 5$ $X_5 = 175$	$j=6$ $X_6=200$
i = 1	28	112	160	152	156	124
i = 2	42	136	150		124	104
Mean \bar{Y}_j	35	124	155	152	140	114

(b) ANOVA Table				
Source of Variation	SS	df	MS	
Regression	5,141.3	1	5,141.3	
Error	14,741.6	9	1,638.0	
Total	19,882.9	10		

Test for Linearity

• The SSE for the reduced model is as before. $\hat{Y}_{ij} = b_0 + b_1 X_{ij}$

$$SSE(R) = \sum_{i=1}^{c} \sum_{j=1}^{n_j} (Y_{ij} - \hat{Y}_{ij})^2 \quad df_R = n - 2$$

• In full model, there are c parameters $\hat{\mu}_j = \overline{Y}_j$,

$$SSE(F) = \sum_{i=1}^{c} \sum_{j=1}^{n_j} \left(Y_{ij} - \overline{Y}_j \right)^2 \quad df_F = n - c$$

Test statistic

$$F^* = \frac{\left[\left(SSE(R) - SSE(F) \right) / \left(df_R - df_F \right) \right]}{\left[SSE(F) / df_F \right]}$$

- Decision rule:
 - Reject H_0 if $F^* \ge F(1-\alpha; df_R df_F, df_F)$.

Bank example

- SSE(R)=14716.6, $df_R=11-2=9$
- SSE(F)=1148.0, $df_F=11-6=5$
- SSLF = SSE(R) SSE(F) = 13593.6, $df_{LF} = 4$

$$F^* = \frac{13,593.6}{4} \div \frac{1,148.0}{5}$$
$$= \frac{3,398.4}{229.6} = 14.80 > F(0.95;4,5)$$

• Decision rule: Reject H_0

3.8 Overview of Remedial Measures

If simple regression model is not appropriate then there are two choices:

- Abandon simple regression model and develop and use a more appropriate model, e.g., generalized linear regression, nonparametric regression, etc...
 - may yield better insights, but a more complex model lead to more complex procedures for estimating the parameters.
- Employ some transformation of the data so that the simple regression model is appropriate for the transformed data. (This chapter)

Remedial Measures

- Nonlinearity of regression function Transformation(s) or nonlinear regression(Chapter 13)
- Nonconstancy of error variance Weighted least squares (Chapter 11) and transformations
- Non-independence of error terms Directly model correlation or use first differences (Chapter 12)
- Non-normality of error terms Transformation(s) or fit Generalized Linear Model(Chapter 14)
- Omission of Important Predictor Variables Include important predictors in a multiple regression model (Chapter 6 and later on)
- Outlying observations Robust regression (Chapter 11)

Nonlinear Relationships

• Can model many nonlinear relationships with linear models, some with several explanatory variables

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 \log(X_i) + \varepsilon_i$$

• Can sometimes transform nonlinear model into a linear model

$$Y_i = \beta_0 \exp(\beta_1 X_i) \varepsilon_i$$

$$\downarrow$$

$$\log(Y_i) = \log(\beta_0) + \beta_1 X_i + \log(\varepsilon_i)$$

Have altered our assumptions about error

Transformation on X

Prototype Regression Pattern

Transformations of X

$$X' = \log_{10} X$$
 $X' = \sqrt{X}$

$$X' = X^2$$
 $X' = \exp(X)$

(c)

$$X' = 1/X$$
 $X' = \exp(-X)$

Transformations on Y

- Nonconstancy of error variance--Transformations on Y
- Can be combined with transformation on X

$$y' = \sqrt{Y}$$

$$y' = \log_{10} Y$$

$$y' = 1/Y$$

Plasma example

Child	(1) Age	(2) Plasma Level	(3)
i	\tilde{X}_i	Y _i	$Y_i' = \log_{10} Y_i$
1	0 (newborn)	13.44	1.1284
2	0 (newborn)	12.84	1.1086
3	0 (newborn)	11.91	1.0759
4	0 (newborn)	20.09	1.3030
5	0 (newborn)	15.60	1.1931
6	1.0	10.11	1.0048
. 7	1.0	11.38	1.0561
19	3.0	6.90	.8388
20	3.0	6.77	.8306
21	4.0	4.86	.6866
22	4.0	5.10	.7076
23	4.0	5.67	.7536
24	4.0	5.75	.7597
25	4.0	6.23	.7945

$$\hat{Y}' = 1.135 - .1023X$$

Normality of error terms supported, regression model for transformed Y data appropriate.

Box Cox Transforms

- It can be difficult to graphically determine which transformation of Y is most appropriate for correcting
 - skewness of the distributions of error terms
 - unequal variances
 - nonlinearity of the regression function
- The Box-Cox procedure automatically identifies a transformation from the family of power transformations on *Y*

$$y_i^{(\lambda)} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0, \\ \ln(y_i) & \text{if } \lambda = 0, \end{cases}$$

• Maximum likelihood is a way to estimate λ .

Box Cox Transforms

- If you take least square criterion, care must be taken because the variance of the residuals is not comparable as λ varies.
- The observations are first standardized

$$y_i^{(\lambda)} = \begin{cases} \frac{y_i^{\lambda} - 1}{\lambda (GM(y))^{\lambda - 1}}, & \text{if } \lambda \neq 0\\ GM(y) \ln y_i, & \text{if } \lambda = 0 \end{cases}$$

where GM(y) represent the geometric mean of $y_1, y_2, \dots y_n$

- The linear regression of $y_i^{(\lambda)}$ on X_i is fitted.
 - work on a grid of λ values, say $\lambda = -2, -1.75, ..., 1.75, 2$, and construct regression models and calculate a list of SSE according to different values.

The plasma levels example

Homework

- Page 148: 3.5 (e),(f),(g)
- Page 150: 3.15; 3.16 (b) (c) (e) (f)

```
#### Plots for predictor x
toluca = read.table("D: \Data_4e \CH01TA01.txt",header=F)
x = toluca[,1]
y = toluca[,2]
library(graphics)
boxplot(x,horizontal = T)
stem(x,scale=3)
hist(x)
```

```
####Diagnostic plots and tests for residual
fit = lm(y \sim x)
resi = fit residuals
yfit = predict(fit)
plot(x, fit$resi,xlab="x",ylab="Residual")
plot(yfit, fit$resi,xlab="Fitted y",ylab="Residual")
qqnorm(resi)
qqline(resi)
shapiro.test(resi) ##Shapiro-Wilk Normality Test
```

```
####Brown-Forsythe Test using Toluca example
ind1 = which(x \le 80); ind2 = which(x \ge 80)
resi1 = resi[ind1]; resi2 = resi[ind2]
d1 = abs(resi1-median(resi1))
d2 = abs(resi2-median(resi2))
t.test(d1,d2)
####Lack of Fit Test using Bank example
data = read.table('CH03TA04.txt',header=F)
y = data[,2]; x = data[,1]
Reduced=lm(y\sim x)
Full=lm(y\sim as.factor(x)-1)
anova(Reduced, Full)
```

```
####Box-Cox transformation using Plasma example
library(MASS)
data = read.table('CH03TA08.txt',header=F)
y = data[,2]; x = data[,1]
fit = lm(y~x)
a = boxcox(fit)
a$x[which.max(a$y)] ##best transformation parameter
```