Coordinate Descent for SLOPE

Johan Larsson¹ Quentin Klopfenstein^{2,3} Jonas Wallin¹

Mathurin Massias^{3,4}

¹Department of Statistics, Lund University ²Luxembourg Centre for Systems Biomedicine ³University of Luxembourg, Luxembourg ⁴University of Lyon, Inria, CNRS, ENS de Lyon ⁵UCB Lyon 1, LIP UMR 5668, F-69342

March 31, 2023

Synopsis

The Problem

SLOPE is a sparsity-inducing model with appealing properties, but the best algorithms (up til now) for solving SLOPE are slow.

Our Contribution

A hybrid algorithm based on coordinate descent and proximal gradient descent.

Sorted L-One Penalized Estimation (SLOPE)

For a design matrix $X \in \mathbb{R}^{n \times p}$ and response vector $y \in \mathbb{R}^n$, the solution to SLOPE is

$$\beta^* \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \left\{ P(\beta) = \frac{1}{2} \|y - X\beta\|^2 + J(\beta) \right\}$$

where

$$J(\beta) = \sum_{j=1}^{p} \lambda_j |\beta_{(j)}|$$

is the sorted ℓ_1 norm, defined through

$$|\beta_{(1)}| \ge |\beta_{(2)}| \ge \dots \ge |\beta_{(p)}|,$$
 (1)

with λ being a fixed non-increasing and non-negative sequence.

Sorted L-One Penalized Estimation (SLOPE)

For a design matrix $X \in \mathbb{R}^{n \times p}$ and response vector $y \in \mathbb{R}^n$, the solution to SLOPE is

$$\beta^* \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \left\{ P(\beta) = \frac{1}{2} \|y - X\beta\|^2 + J(\beta) \right\}$$

where

$$J(\beta) = \sum_{j=1}^{p} \lambda_j |\beta_{(j)}|$$

is the sorted ℓ_1 norm, defined through

$$|\beta_{(1)}| \ge |\beta_{(2)}| \ge \dots \ge |\beta_{(p)}|,$$
 (1)

with λ being a fixed non-increasing and non-negative sequence.

Generalizations

- $\lambda_1 = \cdots = \lambda_p \to \ell_1$ (the lasso penalty)
- $\lambda_1 > \lambda_2 = \dots = \lambda_p = 0 \to \ell_\infty$

Properties

- Clustering (Bogdan, Dupuis, et al. 2022; Schneider and Tardivel 2020; Figueiredo and Nowak 2016)
- Control of false discovery rate (Bogdan, Berg, Su, et al. 2013; Bogdan, Berg, Sabatti, et al. 2015)
- Recovery of sparsity and ordering patterns (Bogdan, Dupuis, et al. 2022)
- Convexity

Figure 1: The SLOPE solution seen as a constrained problem.

Why Does Not Everyone Use SLOPE?

 The lasso is much more popular than SLOPE.

Figure 2: CRAN download statistics for the SLOPE and glmnet (lasso) packages.

Why Does Not Everyone Use SLOPE?

- The lasso is much more popular than SLOPE.
- One reason is that current state-of-the-art algorithms for fitting the lasso are faster.

Example: Fitting the bcTCGA data set with the R-package SLOPE takes 43 seconds versus 0.14 seconds for glmnet (lasso).

Figure 2: CRAN download statistics for the SLOPE and glmnet (lasso) packages.

Coordinate Descent

 Coordinate descent (CD) works great for the lasso (Friedman, Hastie, and Tibshirani 2010).

Figure 3: Coordinate descent versus proximal gradient descent for the lasso.

Coordinate Descent

- Coordinate descent (CD) works great for the lasso (Friedman, Hastie, and Tibshirani 2010).
- Unfortunately, we cannot directly use CD for SLOPE since the sorted ℓ_1 norm is not separable:

$$J(\beta) = \sum_{j=1}^{p} \lambda_j |\beta_{(j)}|.$$

Figure 3: Coordinate descent versus proximal gradient descent for the lasso.

The SLOPE Problem is Not Separable

Figure 4: A naive coordinate descent algorithm cannot advance from the current iterate (●) to reach the optimum (※).

Clusters Are Not Known In Advance

If the clusters were known, the problem would become separable,

$$\min_{z \in \mathbb{R}^{m^*}} \left(\frac{1}{2} \left\| y - X \sum_{i=1}^{m^*} \sum_{j \in \mathcal{C}_i^*} z_i \operatorname{sign}(\beta_j^*) e_j \right\|^2 + \sum_{i=1}^{m^*} |z_i| \sum_{j \in \mathcal{C}_i^*} \lambda_j \right),$$

and we could solve it using CD.

Clusters Are Not Known In Advance

If the clusters were known, the problem would become separable,

$$\min_{z \in \mathbb{R}^{m^*}} \left(\frac{1}{2} \left\| y - X \sum_{i=1}^{m^*} \sum_{j \in \mathcal{C}_i^*} z_i \operatorname{sign}(\beta_j^*) e_j \right\|^2 + \sum_{i=1}^{m^*} |z_i| \sum_{j \in \mathcal{C}_i^*} \lambda_j \right),$$

and we could solve it using CD.

Idea

Alternate between gradient descent steps that identify the clusters (via partial smoothness) and coordinate descent steps on the clusters, which enable fast convergence.

Hybrid Algorithm

- ullet Every vth iteration, take a full proximal gradient step. This allows clusters to split (or merge).
- At all other iterations, take coordinate descent steps on the clusters.

Hybrid Algorithm

- Every vth iteration, take a full proximal gradient step. This allows clusters to split (or merge).
- At all other iterations, take coordinate descent steps on the clusters.

Figure 5: Our algorithm (hybrid) is a combination of CD and PGD.

Coordinate Descent Steps

When updating the kth cluster, we let

$$eta_i(z) = egin{cases} \mathrm{sign}(eta_i)z, & \mathrm{if} \ i \in \mathcal{C}_k, \ eta_i, & \mathrm{otherwise}. \end{cases}$$

Coordinate Descent Steps

When updating the kth cluster, we let

$$\beta_i(z) = \begin{cases} \operatorname{sign}(\beta_i)z, & \text{if } i \in \mathcal{C}_k, \\ \beta_i, & \text{otherwise.} \end{cases}$$

Minimizing the objective in this direction amounts to solving the following one-dimensional problem:

$$\min_{z \in \mathbb{R}} \Big(G(z) = P(\beta(z)) = \frac{1}{2} ||y - X\beta(z)||^2 + H(z) \Big),$$

where

$$H(z) = |z| \sum_{j \in \mathcal{C}_k} \lambda_{(j)_z^-} + \sum_{j \notin \mathcal{C}_k} |\beta_j| \lambda_{(j)_z^-}$$

is the partial sorted ℓ_1 norm with respect to the k-th cluster and where we write $\lambda_{(j)_z^-}$ to indicate that the inverse sorting permutation $(j)_z^-$ is defined with respect to $\beta(z)$.

The Partial Sorted ℓ_1 Norm

Figure 6: The partial sorted ℓ_1 norm with $\beta = [-3,1,3,2]^T$, k=1, and so $c_1,c_2,c_3=(3,2,1)$.

How Do We Minimize Over One Cluster?

The optimality condition, using the directional derivative, is

$$\forall \delta \in \{-1, 1\}, \quad G'(z; \delta) \ge 0,$$

with

$$G'(z; \delta) = \delta \sum_{j \in \mathcal{C}_k} X_{:j}^{\top} (X\beta(z) - y) + H'(z; \delta).$$

Figure 7: G and its directional derivative $G'(\cdot; \delta)$ for an example with $\beta = [-3, 1, 3, 2]^T$, k = 1, and consequently $c^{\setminus k} = \{1, 2\}$.

The SLOPE Thresholding Operator

Figure 8: The SLOPE Thresholding Operator

Experiments

Real Data

Figure 9: Benchmarks on real data

Experiments

Simulated Data

Figure 10: Benchmarks on simulated data. Scenario 1: n=200 and $p=20\,000$, X. Scenario 2: $n=20\,000$ and p=200. Scenario 3: n=200, $p=200\,000$, and sparse X.

Wrap Up

- Experiments were set up using Benchopt (benchopt.github.io)
- Code is available at github.com/jolars/slopecd
- Add your own solver for SLOPE at github.com/benchopt/benchmark_SLOPE

References I

- [1] Małgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, et al. "SLOPE Adaptive Variable Selection via Convex Optimization". In: The annals of applied statistics 9.3 (Sept. 2015), pp. 1103—1140. ISSN: 1932-6157. DOI: 10.1214/15-AOAS842. pmid: 26709357. URL: https://projecteuclid.org/euclid.aoas/1446488733 (visited on 12/17/2018).
- [2] Małgorzata Bogdan, Ewout van den Berg, Weijie Su, et al. "Statistical Estimation and Testing via the Sorted L1 Norm". Oct. 29, 2013. arXiv: 1310.1969 [math, stat]. URL: http://arxiv.org/abs/1310.1969 (visited on 04/16/2020).
- [3] Małgorzata Bogdan, Xavier Dupuis, et al. "Pattern Recovery by SLOPE". May 17, 2022. DOI: 10.48550/arXiv.2203.12086. arXiv: 2203.12086 [math, stat]. URL: http://arxiv.org/abs/2203.12086 (visited on 06/03/2022).

References II

- [4] Mario Figueiredo and Robert Nowak. "Ordered Weighted L1 Regularized Regression with Strongly Correlated Covariates: Theoretical Aspects". In: Artificial Intelligence and Statistics. Artificial Intelligence and Statistics. May 2, 2016, pp. 930–938. URL: http://proceedings.mlr.press/v51/figueiredo16.html (visited on 11/05/2019).
- [5] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. "Regularization Paths for Generalized Linear Models via Coordinate Descent". In: *Journal of Statistical Software* 33.1 (Jan. 2010), pp. 1–22. DOI: 10.18637/jss.v033.i01. URL: http://www.jstatsoft.org/v33/i01/.
- [6] Ulrike Schneider and Patrick Tardivel. "The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation". Aug. 18, 2020. DOI: 10.48550/arXiv.2004.09106. arXiv: 2004.09106 [math, stat]. URL: http://arxiv.org/abs/2004.09106 (visited on 06/03/2022).