

Computer Programming

Dr. Deepak B Phatak
Dr. Supratik Chakraborty
Department of Computer Science and Engineering
IIT Bombay

Session: Representing Floating Point Numbers

Quick Recap of Relevant Topics

- Architecture of a simple computer
- Representation of integers

Overview of This Lecture

- A computer's internal representation of numbers
 - Floating point numbers
- C++ declarations of floating point variables

Recap from Earlier Lecture

Snapshot:

• How do we represent numbers like 3.14 x 10⁻²³ in a computer?

Representing Floating Point Numbers

- Numbers with fractional values, very small or very large numbers cannot be represented as integers
- Floating point number

- Mantissa = $-(3 \times 10^{0} + 1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3})$
- Binary: -1.1101×2^{110}
 - Mantissa = $-(1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}) = -1.8125$
 - Exponent = $(1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0) = 6$

Representing Floating Point Numbers

- Normalized mantissa: single non-0 digit to left of radix point
 - $0.02345 \times 10^{12} = 2.345 \times 10^{10}$
 - $110.101 \times 2^{110} = 1.10101 \times 2^{1000}$
 - Binary: Implicit 1 always on left of radix point; need not be stored
- Floating point numbers represented by allocating fixed number of bits for mantissa and exponent
 - Cannot represent all real numbers
 - Finite precision artifacts
 - What is $0.101 \times 2^{111} + 1$ if we have only 3 bits to represent mantissa?

Floating Point Numbers in C++

- float and double data types
- float
 - 32 bits (4 bytes): 1 sign, 8 exponent, 23 mantissa
 - Approximate range of magnitude: 10^{-44.85} to 10^{34.83}

double

- 64 bits (8 bytes): 1 sign, 11 exponent, 52 mantissa
- Approximate range of magnitude: 10^{-323.3} to 10^{308.3}
- Special bit patterns reserved for 0, infinity, NaN (not-a-number: result of 0/0), ...
- C++ declarations: float temperature; double verticalSpeed;

Floating Point Numbers in C++

- Floating point constants can be specified in C++ programs as
 - 23.572 (can have non-normalized mantissa in programs)
 - 2357.2e-2 or 2357.2E-2 (scientific notation)
 - 2357.2 x 10⁻² (base 10)
- C++ constant floating point declaration
 - const float pi = 3.1415
 - const double e = 2.7183
 - Values of pi and e cannot change during program execution

Summary

- Binary representation of floating point numbers
 - Sign, mantissa and exponent
 - C++ declarations