I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Dokazati da je niz $\{a_n\}$ definisan sa: $a_1=1,\ a_{n+1}=\sqrt[3]{2a_n+4}$ konvergentan i naći njegovu graničnu vrednost.
 - b) Pokazati da niz $\{b_n\}$ sa opštim članom

$$b_n = \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{(n+1)^2}}$$

konvergira i naći njegovu graničnu vrednost.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati tok i nacrtati grafik funkcije $f(x) = \frac{1 + \ln|x|}{x \cdot (1 - \ln|x|)}$.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Ako je proizvod tri pozitivna realna broja jednak 27, odrediti minimalnu vrednost njihovog zbira.

MATEMATIČKA ANALIZA

SIIT

13.05.2017.

I KOLOKVIJUM

- 1. (10 poena) GRANIČNE VREDNOSTI
 - a) Dokazati da je niz $\{a_n\}$ definisan sa: $a_1 = 1$, $a_{n+1} = \sqrt[3]{2a_n + 4}$ konvergentan i naći njegovu graničnu vrednost.
 - b) Pokazati da niz $\{b_n\}$ sa opštim članom

$$b_n = \frac{1}{\sqrt{n^2}} + \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{(n+1)^2}}$$

konvergira i naći njegovu graničnu vrednost.

2. (12 poena) FUNKCIJE JEDNE PROMENLJIVE

Detaljno ispitati tok i nacrtati grafik funkcije $f(x) = \frac{1 + \ln|x|}{x \cdot (1 - \ln|x|)}$.

3. (8 poena) FUNKCIJE VIŠE PROMENLJIVIH

Ako je proizvod tri pozitivna realna broja jednak 27, odrediti minimalnu vrednost njihovog zbira.