GATE - 2017- MA

EE1030 : Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1 1 - 13

- 1) Consider the vector space $V = \{a_0 + a_1x + a_2x^2 : a_i \in \mathbb{R} \text{ for } i = 0, 1, 2\}$ of polynomials of degree at most 2. Let $f: V \to \mathbb{R}$ be a linear function such that f(1+x) = 0, $f(1-x^2) = 0$ and $f(x^2-x) = 2$. Then $f(1+x+x^2)$ equals ____.
- 2) Let A be a 7×7 matrix such that $2A^2 A^4 = I$, where I is the identity matrix. If A has two distinct eigenvalues and each eigenvalue has geometric multiplicity 3, then the total number of nonzero entries in the Jordan canonical form of A equals ____.
- 3) Let $f(z) = (x^2 + y^2) + i2xy$ and $g(z) = 2xy + i(y^2 x^2)$ for $z = x + iy \in \mathbb{C}$. Then, in the complex plane \mathbb{C} ,
 - a) f is analytic and g is NOT analytic
 - b) f is NOT analytic and g is analytic
 - c) neither f nor g is analytic
 - d) both f and g are analytic
- 4) If $\sum_{n=-\infty}^{\infty} a_n (z-2)^n$ is the Laurent series of function $f(z) = \frac{z^4 + z^3 + z^2}{(z-2)^3}$ for $z \in \mathbb{C} \setminus \{2\}$, then a_{-2} equals ____.
- 5) Let $f_n: [0,1] \to \mathbb{R}$ be given by

$$f_n(x) = \frac{2x^2}{x^2 + (1 - 2nx)^2}, n = 1, 2, \cdots$$

Then the sequence (f_n)

- a) converges uniformly on [0,1]
- b) does NOT converge uniformly on [0,1] but has a subsequence that converges uniformly on [0,1]
- c) does NOT converge pointwise on [0,1]
- d) converges pointwise on [0,1] but does NOT have a subsequence that converges uniformly on [0,1]

1

6) Let $C: x^2 + y^2 = 9$ be the circle in \mathbb{R}^2 oriented positively. Then

$$\frac{1}{\pi} \oint_C \left(3y - e^{\cos x^2}\right) dx + \left(7x + \sqrt{y^4 + 11}\right) dy$$

equals ____.

7) Consider the following statements:

(P): There exists an unbounded subset of \mathbb{R} whose Lebesgue measure is equal to 5. (Q): If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $g: \mathbb{R} \to \mathbb{R}$ is such that f = g almost everywhere on \mathbb{R} , then g must be continuous almost everywhere on \mathbb{R} .

Which of the above statements hold TRUE?

- a) Both P and Q
- b) Only P
- c) Only Q
- d) Neither P nor Q

8) If x^3y^2 is an integrating factor of

$$(6y^2 + axy) dx + (6xy + bx^2) dy = 0,$$

where $a, b \in \mathbb{R}$, then

- a) 3a 5b = 0
- b) 2a b = 0
- c) 3a + 5b = 0
- d) 2a + b = 0
- 9) If x(t) and y(t) are the solutions of the system $\frac{dx}{dt} = y$ and $\frac{dy}{dt} = -x$ with the initial conditions x(0) = 1 and y(0) = 1, then $x\left(\frac{\pi}{2}\right) + y\left(\frac{\pi}{2}\right)$ equals _____.
- 10) If $y = 3e^{2x} + e^{-2x} \alpha x$ is the solution of the initial value problem

$$\frac{d^2y}{dx^2} + \beta y = 4\alpha x$$
, $y(0) = 4$ and $\frac{dy}{dx}(0) = 1$, where $\alpha, \beta \in \mathbb{R}$,

then

- a) $\alpha = 3$ and $\beta = 4$
- b) $\alpha = 1$ and $\beta = 2$
- c) $\alpha = 3$ and $\beta = -4$
- d) $\alpha = 1$ and $\beta = -2$
- 11) Let G be a non-abelian group of order 125. Then the total number of elements in

$$Z(G) = \{x \in G : gx = xg \text{ for all } g \in G\}$$

equals ____.

- 12) Let F_1 and F_2 be subfields of a finite F consisting of 2^9 and 2^6 elements, respectively. Then the total number of elements in $F_1 \cap F_2$ equals _____.
- 13) Consider the normed linear space \mathbb{R}^2 equipped with the norm given by ||(x,y)|| = |x| + |y| and the subspace $X = \{(x,y) \in \mathbb{R}^2 : x = y\}$. Let f be the linear functional on X given by f(x,y) = 3x. If $g(x,y) = \alpha x + \beta y$, α , $\beta \in \mathbb{R}$, is a Hahn-Banach extension of f on \mathbb{R}^2 , then $\alpha \beta$ equals ____.