Layer Cake 1 challenge

In the Layer Cake 1 challenge, I located the datasheet for the main controller and found that it uses an LQFP100 package. While the microcontroller features multiple UART channels, our focus is on UART4. According to the datasheet, the TX and RX pins for UART4 are assigned to pins 23 and 24, respectively. I traced these pins on the multi-layer PCB and found that the traces lead to connector J20. Specifically, the RX pin is connected to pin 11, and the TX pin is connected to pin 9.

Submit

Flag

Layer Cake 2 challenge

The lythos_processor-F_Silkscreen.gto file appears to be a Gerber file, commonly used in PCB design to define the graphical elements of printed circuit boards. This file specifically contains details about the PCB's layers, apertures, and drawing instructions for the silkscreen (the top legend layer in this case). I used the Online Gerber Viewer tool from PCBWay to identify the processor name. The microcontroller is labeled MCF5213 - QFP100. After searching for the name online, I found its datasheet, which revealed the debug protocol used: BDM (Background Debug Mode).

Spy By Wire 1

We analyzed the memory.sal file using Saleae's Logic Analyzer software. The 24LC001 EEPROM communicates via the I2C protocol, a widely used communication standard, particularly for microcontrollers interfacing with peripheral ICs on the same PCB. I2C operates with two lines: the SDA (data) line and the SCL (clock) line. The SCL provides a periodic clock signal, while the SDA transmits data, which should only change when SCL is low. Given this, we deduced that SCL is likely mapped to Channel 1 and SDA to Channel 0. Using the Logic Analyzer, we applied an I2C protocol filter to extract all relevant data in .csv format. We then sorted the data into read and write operations. During the sorting process, we observed that the data repeats in 16-byte sections.

Submit

Flag: 0x691E5E4219581B44190C1F421E471B58

Flag

write	to	0x54	ack	data:	0x01	0x69	0x00	
read	to	0x54	ack	data:	0x1E	0x1E	0x01	
write	to	0x54	ack	data:	0x0E	0x5E	0x02	
read	to	0x54	ack	data:	0x1B	0x42	0x03	
write	to	0x53	ack	data:	0x02	0x19	0x04	
read	to	0x53	ack	data:	0x5E	0x58	0x05	
write	to	0x52	ack	data:	0x05	0x1B	0x06	
read	to	0x52	ack	data:	0x58	0x44	0x07	
write	to	0x57	ack	data:	0x03	0x19	0x08	
read	to	0x57	ack	data:	0x42	0x0C	0x09	
write	to	0x56	ack	data:	0x07	0x1F	0x0A	
read	to	0x56	ack	data:	0x44	0x42	0x0B	
write	to	0x51	ack	data:	0x08	0x1E	0x0C	
read	to	0x51	ack	data:	0x19	0x47	0x0D	
write	to	0x51	ack	data:	0x0A	0x1B	0x0E	
read	to	0x51	ack	data:	0x1F	0x58	0x0F	
write	to	0x54	ack	data:	0x00			
read	to	0x54	ack	data:	0x69			
write	to	0x50	ack	data:	0x0B			
read	to	0x50	ack	data:	0x42			
write	to	0x54	ack	data:	0x0C			
read	to	0x54	ack	data:	0x1E			
write	to	0x51	ack	data:	0x0F			
read	to	0x51	ack	data:	0x58			
write	to	0x53	ack	data:	0x0D			
read	to	0x53	ack	data:	0x47			
write	to	0x50	ack	data:	0x04			
read	to	0x50	ack	data:	0x19			
write	to	0x56	ack	data:	0x06			
read	to	0x56	ack	data:	0x1B			
writa	to	0.56	ack	data.	0~00			

Spy By Wire 2

SPI typically uses four signals: a Clock signal, two data lines (MISO and MOSI), and an Enable signal. While this is the most common SPI configuration, other variants exist. We filtered the MOSI, MISO, Enable, and Clock channels based on the signal sources. After reviewing the filtered data, we exported it to a .csv file.Upon inspection, we observed that MOSI and MISO alternate communication, though MOSI transmits more data than MISO. There were six exchanges between them, but only one contains the output we need. To proceed, we first need to convert the hex data from the first exchange—after cleaning it of "Ox" prefixes and spaces—into bytes using CyberChef. Finally, we will decrypt the bytes using AES.

Key: 691e5e4219581b44190c1f421e471b58

Mode: CBC

Clean Hex Data:

D9F8520E73DE46E72783BD2A7F8EF86CC34FEB63AE0A100A264CDBB33B41B59C

Flag: flag{my_dr34ms_4nd_pr1d3_l0st}

Time [s]	Time [s]	MOSI	MISO
1.806671504	0	0x00	0x03
1.806683432	0	0x00	0x0A
1.806693008	0	0x00	0x2F
1.80684196	0	0xD9	0x00
1.806851536	0	0xF8	0x00
1.806861112	0	0x52	0x00
1.806870688	0	0x0E	0x00
1.806880264	0	0x73	0x00
1.80688984	0	0xDE	0x00
1.806899416	0	0x46	0x00
1.806908992	0	0xE7	0x00
1.806918568	0	0x27	0x00
1.806928144	0	0x83	0x00
1.80693772	0	0xBD	0x00
1.806947296	0	0x2A	0x00
1.806956872	0	0x7F	0x00
1.806966448	0	0x8E	0x00
1.806976024	0	0xF8	0x00
1.8069856	0	0x6C	0x00
1.806995176	0	0xC3	0x00
1.807004752	0	0x4F	0x00
1.807014328	0	0xEB	0x00
1.807023904	0	0x63	0x00
1.80703348	0	0xAE	0x00
1.807043056	0	0x0A	0x00
1.807052632	0	0x10	0x00
1.807062208	0	0x0A	0x00
1.807071784	0	0x26	0x00
1.80708136	0	0x4C	0x00
1 207000036	n	U^UB	0~00

First	Second	Third	Fourth	Fifth	Sixth	
0xD9	0xE0	0xD9	0x62	0x8B	0xE0	
¹0xF8	0x2C	0xF8	0x3D	0xE2	0x2C	
0x52	0x94	0x52	0x62	0xD8	0x94	
₁0x0E	0x0E	0x0E	0x79	0x1F	0x0E	
0x73	0x45	0x73	0x74	0x52	0x45	
0xDE	0x59	0xDE	0x65	0xEC	0x59	
¹ 0x46	0x96	0x46	0x73	0x08	0x96	
0xE7	0xE7	0xE7	0x0A	0xC6	0xE7	
i0x27	0x1B	0x27	0x73	0x2C	0x1B	
0x83	0x8B	0x83	0x68	0xD3	0x8B	
i0xBD	0x6A	0xBD	0x61	0x42	0x6A	
¹0x2A	0x43	0x2A	0x2E	0x13	0x43	
0x7F	0xFD	0x7F	0x75	0x6B	0xFD	
₁0x8E	0x76	0x8E	0x70	0x1C	0x76	
0xF8	0x44	0xF8	0x64	0x7D	0x44	
0x6C	0x9F	0x6C	0x61	0x59	0x9F	
i0xC3	0xB2	0xC3	0x74	0xED	0xB2	
¦0x4F	0xEB	0x4F	0x65	0xDD	0xEB	
ı0xEB	0x1C	0xEB	0x28	0x1E	0x1C	
0x63	0x7B	0x63	0x6B	0xC0	0x7B	
i0xAE	0x1D	0xAE	0x2B	0xFD	0x1D	
A0x0	0x17	0x0A	0x62	0xF9	0x17	
0x10	0x74	0x10	0x27	0x07	0x74	
10x0A	0xAE	0x0A	0x62	0x18	0xAE	
0x26	0xDE	0x26	0x6C	0xFB	0xDE	
i0x4C	0x84	0x4C	0x75	0x69	0x84	
!0xDB	0x53	0xDB	0x65	0x85	0x53	
¦0xB3	0x71	0xB3	0x73	0x78	0x71	
ı0x3B	0x70	0x3B	0x6B	0x4A	0x70	
0x41	0xA1	0x41	0x79	0x37	0xA1	
i0xB5	0x1E	0xB5	0x73	0xD9	0x1E	
0x9C	0xDB	0x9C	0x61	0x5F	0xDB	
			0x6E	0xFA		
I			0x64	0xB3		
			0x61	0xE2		
i			0x62	0xBD		

