Cvičení č. 4 Fotony – záření černého tělesa

1.

Ve stěně pece je kruhový otvor o průměru d=40 mm vyzařující teplotní záření o energetickém toku $\Phi_e=1200~\mathrm{J~min^{-1}}$. **Vypočítejte**

- a) intenzitu vyzařování *H*
- b) teplotu uvnitř pece za předpokladu, ñe vyzařování pece se děje jako vyzařování absolutně černého tělesa,
- c) určete vlnovou délku $\lambda_{\rm m}$ pro níž má monochromatická intenzita vyzařování $H_{e\lambda}$ maximum,
- d) jaký je podíl zářivé energie emitované v intervalu vlnových délek λ (900 1100) nm?

2.

Ozáření na povrchu daného neprůhledného "šedého" tělesa je E= 50 Wm $^{-2}$. Povrch absorbuje E_{abs} = 20 Wm $^{-2}$. **Stanovte :**

- a) odrazivost povrchu r,
- b) pohltivost povrchu α ,
- c) je-li celkový povrch tělesa $S = 100 \text{ cm}^2$ jak velký zářivý tok dopadá na těleso,
- d) Jaká je intenzita vyzařování tělesa H v termodynamické rovnováze,
- e) jaká je teplota tělesa T,
- f) jaká by byla intenzita vyzařování absolutně černého tělesa $H_{\rm e}$, o stejné teplotě?