Trig Final (SLTN v670)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The angle measure is 2.7 radians. The arc length is 100 meters. How long is the radius in meters?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

r = 37.04 meters.

Question 2

Consider angles $\frac{-13\pi}{4}$ and $\frac{19\pi}{6}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-13\pi}{4}\right)$ and $\sin\left(\frac{19\pi}{6}\right)$ by using a unit circle (provided separately).

Find $cos(-13\pi/4)$

$$\cos(-13\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $sin(19\pi/6)$

$$\sin(19\pi/6) = \frac{-1}{2}$$

Question 3

If $\sin(\theta) = \frac{-40}{41}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 40^{2} = 41^{2}$$

$$A = \sqrt{41^{2} - 40^{2}}$$

$$A = 9$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{9}{41}$$

Question 4

A mass-spring system oscillates vertically with an amplitude of 5.6 meters, a midline at y = -8.73 meters, and a frequency of 4.07 Hz. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -5.6\cos(2\pi 4.07t) - 8.73$$

or

$$y = -5.6\cos(8.14\pi t) - 8.73$$

or

$$y = -5.6\cos(25.57t) - 8.73$$