Chapter 12 - Optimisation

- Newton's method for optimisation
- The golden-section method
- Multivariate optimisation
- Steepest ascent
- Newton's method in higher dimensions
- A curve-fitting example

12 - Introduction: 1D Optimisation

Suppose $f: \mathbb{R} \to \mathbb{R}$ with continuous first and second derivatives:

- ▶ f has a global maximum at x^* if $f(x) \le f(x^*)$ for all x.
- ▶ f has a *local maximum* at x^* if $f(x) \le f(x^*)$ for all x in a neighbourhood of x^* .

Conditions for local maximum:

- Necessary condition for x^* to be a local maximum is $f'(x^*) = 0$ and $f''(x^*) \le 0$.
- Sufficient condition is $f'(x^*) = 0$ and $f''(x^*) < 0$.

A *local search* technique generates a sequence of points, x(0), x(1), x(2), ..., which (hopefully) converge to a local maximum of f.

Given a prospective solution x(n), we look for the next prospective solution x(n+1) in some neighbourhood of x(n).

12 - Introduction: 1D Optimisation (cont.)

- Because they never consider the whole space of possible solutions, local search techniques can only ever be guaranteed to find local maxima.
- Let x^* be a local maximum of f. Supposing $x(n) \to x^*$ as $n \to \infty$, we need *stopping criteria* to decide when to stop searching:
 - $|x(n)-x(n-1)| \leq \varepsilon;$
 - $|f(x(n))-f(x(n-1))|\leq \varepsilon;$
 - ▶ $|f'(x(n))| \leq \varepsilon$.
- Local search techniques may not converge at all.
 - ▶ For example if f is unbounded then $x(n) \rightarrow \infty$.
 - Usually specify a maximum number of iterations n_{max}.

12.1 - Newton's method for optimisation

If $f : [a,b] \to \mathbb{R}$ has a continuous derivative f', then the maximum of f is the maximum of

- \vdash f(a), f(b), and
- $ightharpoonup f(x_1), \ldots, f(x_n)$, where x_1, \ldots, x_n are the roots of f'.

If we apply the Newton-Raphson method for root-finding to f', we get the Newton method for optimising f:

$$x(n+1) = x(n) - \frac{f'(x(n))}{f''(x(n))}.$$

12.1 - Newton's method for optimisation

```
newton \leftarrow function(f3, x0, tol = 1e-9, n.max = 100) {
    # Newton's method for optimisation, starting at x0
    # f3 is a function that given x returns the vector
    \# (f(x), f'(x), f''(x)), \text{ for some } f
    x < -x0
    f3.x < - f3(x)
    n < -0
    while ((abs(f3.x[2]) > tol) & (n < n.max)) 
        x < -x - f3.x[2]/f3.x[3]
        f3.x < - f3(x)
        n < -n + 1
    if (n == n.max) { cat('newton failed to converge\n')}
       else { return(x)}
newton(gamma.2.3, 0.25)
```

12.1 - Newton's method for optimisation (cont.)

- When the Newton algorithm converges, we can end up with a minimum or a maximum since all such stationary points satisfy $f'(x^*) = 0$.
- ▶ Because we are searching for a point x^* such that $f'(x^*) = 0$, we will use $|f'(x(n))| < \varepsilon$ as our stopping condition.
- ▶ Provided x(0) is close to x^* , $x(n) \rightarrow x^*$ quickly, as $n \rightarrow \infty$.
- We revisit Newton's method later, on a higher plane (that is, in higher dimensions).

12.2 - The golden-section method

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function.

The golden-section method works in one dimension only, but does not need f'.

The golden-section method is similar to the root-bracketing technique for root-finding.

▶ To determine if we have a local maximum we need three points: if $x_l < x_m < x_r$ and $f(x_l) \le f(x_m)$ and $f(x_m) \le f(x_r)$ then there must be a local maximum in the interval [a,b].

12.2 - The golden-section method

12.2 - The golden-section method: Algorithm

How to choose y?:

- Suppose that (x_m, x_r) is the larger interval
- let $a = x_m x_l$, $b = x_r x_m$, and $c = y x_m$.
- ▶ The golden-section algorithm chooses *y* so that the ratio of the lengths of the larger to the smaller interval stays the same at each iteration.
- ▶ That is, if the new bracketing interval is $[x_l, y]$ then

$$\frac{a}{c} = \frac{b}{a}$$

while if the new bracketing interval is $[x_m, x_r]$ then

$$\frac{b-c}{c}=\frac{b}{a}$$

12.2 - The golden-section method: Algorithm

Put $\rho = b/a$ then solving these for c we get

$$\rho^2 - \rho - 1 = 0$$
 so $\rho = \frac{1 + \sqrt{5}}{2}$

which is the famous golden ratio. We also get a=b-c, so $c=b/(1+\rho)$ and thus $y=x_m+c=x_m+(x_r-x_m)/(1+\rho)$.

- The length ratio of the new interval to the old is either b/(a+b) or (a+c)/(a+b), which both work out as $\rho/(1+\rho)$.
- ▶ An analogous argument applies if (x_l, x_m) is the larger interval.

The argument above shows that if we start with x_m chosen so that the ratio $(x_r - x_m)/(x_m - x_l) = \rho$ or $1/\rho$, then at each iteration the width of the bracketing interval is reduced by a factor of $\rho/(1+\rho)$ and so must eventually go to zero.

12.2 - The golden-section method: Algorithm

Golden-section method 2 Start with
$$x_l < x_m < x_r$$
 such that $f(x_l) \le f(x_m)$ and $f(x_r) \le f(x_m)$

1 if $x_r - x_l \le \varepsilon$ then stop

2 if $x_r - x_m > x_m - x_l$ then do 2a otherwise do 2b

2a let $y = x_m + (x_r - x_m)/(1 + \rho)$

if $f(y) \ge f(x_m)$ then put $x_l = x_m$ and $x_m = y$ otherwise put $x_r = y$

2b let $y = x_m - (x_m - x_l)/(1 + \rho)$

if $f(y) \ge f(x_m)$ then put $x_r = x_m$ and $x_m = y$ otherwise put $x_l = y$

3 go back to step 1

```
gsection \leftarrow function(ftn, x.I, x.r, x.m, tol = 1e-9) {
 # applies the golden-section algorithm to maximise ftn
 # we assume that ftn is a function of a single variable
 # and that x.I < x.m < x.r and ftn(x.I), ftn(x.r) <= ftn(x.m)
 #
 # the algorithm iteratively refines x.l, x.r, and x.m and terminates
 # when x.r - x.l \le tol, then returns x.m
 # golden ratio plus one
 qr1 < -1 + (1 + sqrt(5))/2
 return(x.m)
f \leftarrow function(x) if ext{ifelse}(x==0, 0, abs(x)*log(abs(x)/2)*exp(-abs(x)))
curve(f, -10, 10, n = 501)
gsection(f, 1, 5, 2)
gsection(f, -1, 1, .1)
```

Let $f: \mathbb{R}^d \to \mathbb{R}$ and suppose that all of the first- and second-order partial derivatives of f exist and are continuous everywhere.

- We write $\mathbf{x} = (x_1, \dots, x_d)^T$ for an element of \mathbb{R}^d and
- **e**_i for the *i*-th co-ordinate vector: $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_d \mathbf{e}_d$.
- ▶ The *i*-th partial derivative at **x** will be denoted $f_i(\mathbf{x}) = \partial f(\mathbf{x})/\partial x_i$ and we define the *gradient*

$$\nabla f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_d(\mathbf{x}))^T$$

and the Hessian

$$\mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_d \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_d \partial x_d} \end{pmatrix}.$$

▶ The slope at \mathbf{x} in direction $\mathbf{v} \neq \mathbf{0}$ is given by

$$\mathbf{v}^T \nabla f(\mathbf{x}) / \|\mathbf{v}\|,$$

where $\|\mathbf{v}\| = \sqrt{v_1^2 + \dots + v_d^2}$ is the Euclidean norm.

The curvature at x in direction v is given by

$$\mathbf{v}^T \mathbf{H}(\mathbf{x}) \mathbf{v} / \|\mathbf{v}\|^2$$
.

• f has a local maximum at \mathbf{x} if for all $\varepsilon > 0$ small enough, $f(\mathbf{x} + \varepsilon \mathbf{e}_i) \le f(\mathbf{x})$ for $i = 1, \dots, d$.

- ▶ f has a local maximum at \mathbf{x} if for all $\varepsilon > 0$ small enough, $f(\mathbf{x} + \varepsilon \mathbf{e}_i) \le f(\mathbf{x})$ for i = 1, ..., d.
- ► A necessary (but not sufficient) condition for a local maximum at **x** is:
 - $\mathbf{V} f(\mathbf{x}) = \mathbf{0} = (0, \dots, 0)^T$ and for all $\mathbf{v} \neq \mathbf{0}$
 - ▶ the curvature at x in direction v is ≤ 0 (we say that the Hessian is negative semi-definite).
- A sufficient (but not necessary) condition for f to have a local maximum at x is that:
 - $\nabla f(\mathbf{x}) = \mathbf{0}$ and
 - the curvature in all directions is < 0 (in which case we say that the Hessian H(x) is negative-definite).

- As in one dimension, we will use iterative local search techniques to find local maxima.
- ▶ Define $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$ (the L_{∞} norm).
- In higher dimensions we use stopping conditions that are combinations of the following:
 - $\|\mathbf{x}(n) \mathbf{x}(n-1)\|_{\infty} \leq \varepsilon$;
 - $|f(\mathbf{x}(n)) f(\mathbf{x}(n-1))| \leq \varepsilon$;
 - $\|\nabla f(\mathbf{x}(n))\|_{\infty} \leq \varepsilon$.
- To guard against non-convergence, we should also specify a maximum number of iterations n_{max}, then stop when n = n_{max}.

12.4 - Steepest Ascent

Put $\mathbf{x}(n+1) = \mathbf{x}(n) + \alpha \mathbf{v}$, where α is a positive scalar and the direction \mathbf{v} is the direction with largest slope.

At point \mathbf{x} , the direction with largest slope is $\nabla f(\mathbf{x})$.

Thus, the steepest method has the form

$$\mathbf{x}(n+1) = \mathbf{x}(n) + \alpha \nabla f(\mathbf{x}(n)),$$

for some $\alpha \geq 0$.

12.4 - Steepest Ascent

Given $\mathbf{x}(n+1) = \mathbf{x}(n) + \alpha \nabla f(\mathbf{x}(n))$, we choose $\alpha \geq 0$ to maximise

$$g(\alpha) = f(\mathbf{x}(n) + \alpha \nabla f(\mathbf{x}(n))).$$

- If $\alpha = 0$ then we have reached a local maximum.
- If $\alpha > 0$ then $f(\mathbf{x}(n+1)) > f(\mathbf{x}(n))$.

If f is bounded above then, because $f(\mathbf{x}(n+1)) \ge f(\mathbf{x}(n))$, the sequence $\{f(\mathbf{x}(n))\}_{n=1}^{\infty}$ must converge. This suggests that we can use the stopping condition:

▶ $f(\mathbf{x}(n)) - f(\mathbf{x}(n-1)) \le \varepsilon$, for some small tolerance ε .

It can be shown that if f is bounded and ∇f is 'well behaved', then the sequence $\{\mathbf{x}(n)\}_{n=1}^{\infty}$ will converge to a local maximum.

12.4 - Steepest Ascent

```
ascent \leftarrow function(f, grad.f, x0, tol = 1e-9, n.max = 100) {
    # steepest ascent algorithm
    # find a local max of f starting at x0
    # function grad.f is the gradient of f
    x.old <- x0
    x \leftarrow line.search(f, x0, grad.f(x0))
    n <- 1
    while ((f(x) - f(x.old) > tol) & (n < n.max)) 
        x.old < -x
        x \leftarrow line.search(f, x, grad.f(x))
        n < -n + 1
    return(x)
```

12.4.1 - Line Search

To maximise $g(\alpha) = f(\mathbf{x}(n) + \alpha \nabla f(\mathbf{x}(n)))$ over $\alpha \ge 0$, golden-section algorithm will be used.

We require three initial points $\alpha_l < \alpha_m < \alpha_r$ such that $g(\alpha_m) \ge g(\alpha_l)$ and $g(\alpha_m) \ge g(\alpha_r)$:

- Put $\alpha_l = 0$.
- In theory, if $\|\nabla f(\mathbf{x}(n))\| > 0$ then g'(0) > 0 and thus there must be some $\varepsilon > 0$ such that $g(\varepsilon) > g(0)$, so we can put $\alpha_m = \varepsilon$.
- ▶ Unfortunately there is not even a theoretical guarantee that a suitable α_r exists, because we may have g increasing over the whole interval $[0,\infty)$.
 - Hence, we specify a *maximum step size* α_{max} and if we cannot find $\alpha_r \leq \alpha_{max}$ such that $g(\alpha_r) \leq g(\alpha_m)$, we just return α_{max} .

12.4.1 - Line Search

12.4.1 - Line Search

 $f(x,y)=\sin(x^2/2-y^2/4)\cos(2x-\exp(y))$

The basis of the method is a second-order Taylor expansion of f. For any ${\bf x}$ and ${\bf y}$ close together we have

$$f(\mathbf{y}) \approx f(\mathbf{x}) + (\mathbf{y} - \mathbf{x})^T \nabla f(\mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T \mathbf{H}(\mathbf{x}) (\mathbf{y} - \mathbf{x}).$$

Taking partial derivatives w.r.t. y we get

$$\nabla f(\mathbf{y}) \approx \nabla f(\mathbf{x}) + \mathbf{H}(\mathbf{x})(\mathbf{y} - \mathbf{x}).$$

If **y** is a local maximum then $\nabla f(\mathbf{y}) = \mathbf{0}$ and, solving the equation above, we get

$$\mathbf{y} = \mathbf{x} - \mathbf{H}(\mathbf{x})^{-1} \nabla f(\mathbf{x}).$$

Suppose $\mathbf{x}(n)$ is our current estimate, then we would like our next estimate $\mathbf{x}(n+1)$ to be a local maximum (at least approximately) ...

Newton's algorithm

$$\mathbf{x}(n+1) = \mathbf{x}(n) - \mathbf{H}(\mathbf{x}(n))^{-1} \nabla f(\mathbf{x}(n)).$$

- ▶ Clearly if $\mathbf{H}(\mathbf{x}(n))$ is singular (has no inverse), then Newton's method breaks down.
- Even if H(x(n)) is non-singular at each step, Newton's method may not converge.
- Despite this, if f has a local maximum at x*, f is 'nicely behaved' near x*, and if our initial point x(0) is 'close enough' to x*, then Newton's method will converge to x* quickly.

- In implementing Newton's method we will assume that we have some function £3 that takes argument \mathbf{x} and returns a list containing f(x), $\nabla f(x)$, and $\mathbf{H}(x)$.
- ▶ For our stopping condition we will use $\|\nabla f(\mathbf{x}(n))\|_{\infty} \leq \varepsilon$.

```
newton \leftarrow function(f3, x0, tol = 1e-9, n.max = 100) {
    # f3 returns the list \{f(x), \text{ grad } f(x), \text{ Hessian } f(x)\}, for some f
    x < -x0
    f3.x < - f3(x)
    n < -0
    while ((\max(abs(f3.x[[2]])) > tol) & (n < n.max)) {
        x < -x - solve(f3.x [[3]], f3.x [[2]])
        f3.x < - f3(x)
        n < -n + 1
    if (n == n.max) { cat('newton failed to converge\\n') }
       else { return(x)}
```

 $f(x,y)=\sin(x^2/2-y^2/4)\cos(2^*x-\exp(y))$

- Newton's method needs to calculate the gradient and Hessian.
- Steepest ascent only requires the gradient, but sometimes even this can be difficult.

If ∇f is unavailable then there are two approaches we can take:

- ► The first assumes that even if we don't know what they are, H and/or ∇f do exist, in which case we can try and estimate them.
- The second approach is to use an optimisation method that does not require the gradient.
 - Such approaches tend to be relatively slow, but relatively reliable. In one dimension the golden-section algorithm is an example of a derivative-free approach.
 - ► In higher dimensions there is an algorithm due to Nelder & Mead, which is well accepted and again is derivative-free.

12.7 - Curve fitting

Suppose we have observations $(x_1, y_1), \dots, (x_n, y_n)$ and we want to find a function f such that $y_i \approx f(x_i)$ for $i = 1, \dots, n$.

Further suppose that f can be *parameterised* by some vector of parameters $\theta = (\theta_1, \dots, \theta_d)^T$. For example, if we restrict f to be a quadratic then it has the form $f(x) = ax^2 + bx + c$, in which case $\theta = (a, b, c)^T$.

We write $f(x; \theta)$ for f(x) to emphasise the dependence on θ .

The problem of finding the parameter θ^* , such that the fitted points $\hat{y}_i = f(x_i; \theta^*)$ are 'closest' to the observations y_i , is called *curve fitting*.

Curve fitting

To measure how close the fitted points are to the observed points, we use a *loss function*. Two popular choices are the sum of squares

$$L_2(\theta) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

and the sum of absolute differences

$$L_1(\theta) = \sum_{i=1}^n |y_i - \hat{y}_i|.$$

Note that we consider a loss function to be a function of θ , rather than a function of \mathbf{y} , because we are interested in how the loss changes as we change θ .

Given a loss function L, we choose θ^* to be that θ that minimises $L(\theta)$.

Tree 1.3.11

12.7 - Curve fitting

```
richards <- function(t, theta)
  theta[1]*(1 - \exp(-\text{theta}[2]*t))^{\text{theta}[3]}
loss.L2 <- function(theta, age, vol)
  sum((vol - richards(age, theta))^2)
loss.L1 <- function(theta, age, vol)
  sum(abs(vol - richards(age, theta)))
trees <- read.csv("../data/trees.csv")
tree <- trees[trees$ID=="1.3.11", 2:3]
theta0 < c(1000, 0.1, 3)
theta.L2 <- optim(theta0, loss.L2, age=tree$Age, vol=tree$Vol)
theta.L1 <- optim(theta0, loss.L1, age=tree$Age, vol=tree$Vol)
```

12.7 - Curve fitting