מבוא וסדר ראשון

הגדרות כלליות

- מד"ר: קשר מהצורה $F(x,y,y',\dots,y^{(n)})=0$ מד"ר: סדר הנגזרת הגבוהה ביותר. סדר: סדר הנגזרת הגבוהה ביותר (לאחר שהמשוואה מעלה: החזקה של הנגזרת מהסדר הגבוה ביותר (לאחר שהמשוואה פולינומיאלית בנגזרות).
- תנאי התחלה: מד"ר מסדר n דורשת n תנאי התחלה לקביעת פתרון
- $a_n(x)y^{(n)}+\cdots+a_0(x)y=R(x)$ לינאריות: אם ניתן לכתוב כ-
- G(x,y)=C) סתום (עם ת"ה), פרטי (עם קבועים), פרטי (סתום סללי (עם קבועים), סינגולרי (לא נובע מהכללי).

משוואות פריקות (Separable)

- M(x)dx + N(y)dy = 0 או y' = f(x)g(y) פורה:
 - . $\int \frac{dy}{g(y)} = \int f(x)dx + C$: פתרון:
- המאפסים $y=y_0$ הערה חשובה: יש לבדוק בנפרד פתרונות הבועים \bullet את $g(y_0)$, שכן ייתכן שהם "הולכים לאיבוד" בחלוקה.

משוואות הומוגניות

- .y'=f(y/x) אורה: . $z=y/x \implies y'=z'x+z$ המשוואה הופכת פתרון: הצבה . $\frac{dz}{f(z)-z}=\frac{dx}{x}$ המשוואה

משוואות "כמעט הומוגניות"

$$(a_1x+b_1y+c_1)dx+(a_2x+b_2y+c_2)dy=0$$
 צורה.

- מצא נקודת חיתוך ($(a_1b_2 \neq a_2b_1)$ הצב ישרים נחתכים ($(a_1b_2 \neq a_2b_1)$ X, Y-המשוואה הופכת להומוגנית ב- $X + x_0, \ y = Y + y_0$
- ישרים מקבילים $(a_1b_2=a_2b_1)$ הצב ישרים מקבילים הופכת לפריקה.

משוואות מדויקות

- M(x,y)dx + N(x,y)dy = 0 צורה:
- . $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ אם ורק אם הפתיון מדויקת אם ורק אם $\phi(x,y)=\phi(x,y)$ והפתרון הוא פוטנציאל •
- וחשב: y וחשב: x וחשב: y וחשב: ϕ ואינטגרל על x וחשב: ϕ וחשב:

$$\phi(x,y) = \int M(x,y) dx + \int N(x,y) dy$$

 $\phi(x,y)=C$ התעלם מהאיברים שחוזרים פעמיים. הפתרון הוא (μ) גורם אינטגרציה

מטרה. הופך משוואה לא מדויקת למדויקת.

- $\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=f(x)\Rightarrow \mu(x)=e^{\int f(x)\,dx}$ אם •
- $rac{1}{M}\left(rac{\partial N}{\partial x}-rac{\partial M}{\partial y}
 ight)=g(y)\Rightarrow \mu(y)=e^{\int g(y)\,dy}$ אם המשוואה הומוגנית אז $\mu=rac{1}{Mx+Ny}$ כאשר •

משוואות לינאריות מסדר ראשון

- .y'+P(x)y=Q(x) צורה: $.\mu(x)=e^{\int P(x)dx}$ אינטגרציה: $.y(x)=\frac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C\right)$ הפתרון הכללי: $.y(x)=\frac{1}{\mu(x)}\left(\int \mu(x)Q(x)dx+C\right)$
 - $y(x) = y_h(x) + y_p(x)$ מבנה: •

משוואת ברנולי

- $(t \neq 0, 1)$, $y' + P(x)y = Q(x)y^t$ צורה: •
- בתרון: הצבה $z=y^{1-t}$ הופכת את המשוואה ללינארית: z' + (1-t)P(x)z = (1-t)Q(x)

מסובכת, נסו y'=f(x,y) אם המשוואה y'=f(x,y) מסובכת, נסו לפתור את $rac{dx}{dy} = rac{dx}{dy} = rac{1}{f(x,y)}$ עבור x(y) שימושי במיוחד כשהמשוואה .x(y)-הופכת ללינארית ב

משוואת קלרו

- y = xy' + f(y') צורה:
- y = Cx + f(C) פתרון כללי:

מד"ר מסדר שני

הורדת סדר (מקרים מיוחדים)

- .z'=y'' , z(x)=y' אבר (F(x,y',y'')=0) אורה בי חסר בי וורה בי וורה מסדר הפתרון מסדר הפתרון הסופי הוא .F(x,z,z')=0 אורה מד"ר מסדר בי ווירה מסדר הפתרון הסופי הוא $y(x) = \int z(x) dx + C_2$
- y''=y''=z(y)=y' אורה 2: חסר ג'F(y,y',y'')=0, ואז סרר 3: מתקבלת מד"ר מסדר 1, $F\left(y,z,zrac{dz}{dy}
 ight)=0$. לאחר מציאת $zrac{dz}{dy}$ $\frac{dy}{dx}=z(y)$ את, פותרים, z(y)

מד"ר לינארית, מקדמים קבועים - הומוגנית

.ay'' + by' + cy = 0 צורה.

- $ar^2+br+c=0$ משוואה אופיינית: r_1,r_2 משוואה $y_h(x)$ תלוי בשורשים •
- $y_h(x) = C_1 e^{r_1 x} + C_2 e^{r_2 x}$.1. ממשיים ושונים:
 - $y_h(x) = (C_1 + C_2 x) e^{rx}\,$.2
 - :($r=lpha\pm ieta$) מרוכבים צמודים:
 - $y_h(x) = e^{\alpha x} (C_1 \cos(\beta x) + C_2 \sin(\beta x))$
- הרחבה למשוואות מסדר גבוה יותר: אם למשוואה האופיינית יש הרחבה למשוואות מסדר גבוה יותר: או איברים מהצורה: r שורש r

$$(C_1 + C_2x + \dots + C_kx^{k-1})e^{rx}$$

 e^{rx} כלומר, עבור כל שורש עם ריבוי k, יש ריבוי את הפונקציה ולשים אותה בפולינום מדרגה k-1 (עם מקדמים בלתי תלויים).

מד"ר לינארית, מקדמים קבועים - לא הומוגנית

$$.ay'' + by' + cy = R(x)$$
 צורה.

- $y(x)=y_h(x)+y_p(x)$ פתרון כללי: y_p שיטת הניחוש המושכל (מקדמים לא ידועים) למציאת
- 1. בניית קבוצת הניחוש (S): בהתבסס על אגף ימין R(x), בנה קבוצה הכוללת את כל הפונקציות שמופיעות ב-R(x) וכל הנגזרות הבלתי Sתלויות-לינארית שלהן. השתמש בטבלה הבאה:

ונכו ווני כנאו וני סכוון: ווסונבוס בסבכור וובאווו:		
אז קבוצת הניחוש S מכילה את האיברים	אם $R(x)$ מכיל איבר מהצורה תכי	
$\{x^n, x^{n-1}, \dots, x, 1\}$	(פולינום) $P_n(x)$	
$\{e^{\alpha x}\}$	$e^{\alpha x}$	
$\{\sin(\beta x),\cos(\beta x)\}$	$\cos(eta x)$ או $\sin(eta x)$	
שילובים (לפי מכפלות)		
$\{x^n e^{\alpha x}, \dots, e^{\alpha x}\}$	$P_n(x)e^{\alpha x}$	
$\{e^{\alpha x}\sin(\beta x), e^{\alpha x}\cos(\beta x)\}$	$e^{\alpha x}\sin(\beta x)$	
$\{x^k \sin(\beta x), x^k \cos(\beta x) \mid k = 1\}$	$P_n(x)\sin(\beta x)$	
$0,\ldots,n\}$		
$\{x^k e^{\alpha x} \sin(\beta x), x^k e^{\alpha x} \cos(\beta x) \mid$	$P_n(x)e^{\alpha x}\sin(\beta x)$	
$k=0,\ldots,n\}$		

- האיברים לכל אינארי אירוף הפרטי הפתרון הפרטי הפתרון הפרטי אירוף לינארי הפתרון הפרטי .2 (A,B,C...) בקבוצה S עם מקדמים לא ידועים
- 3. בדיקת תהודה (Resonance) ותיקון: אם איבר כלשהו בניחוש הראשוני (y_h) , הוא החומוגנית של פתרון של פתרון הוא y_p תהודה. התיקון: יש להכפיל את כל הניחוש ב- x^k , כאשר k היא החזקה השלמה החיובית הנמוכה ביותר שמבטלת את כל החפיפות y_h עם

שיטת האופרטור המפרק.

• שלב 1: פירוק האופרטור. כותבים את המשוואה כ:

$$(D-r_1)(D-r_2)y = \frac{R(x)}{a}$$

. כאשר $D=rac{d}{dx}$ הם שורשי המשוואה האופיינית.

- שלב 2: פתרון מדורג. $.g(x) = (D - r_2)y$ (א)
- ב) הפתרון $g'-r_1g=rac{R(x)}{a}$ בסדר ראשון: מסדר מסדר מסדר את במחרון (ב) $.C_1$ יכיל קבוע g(x)
- הוא y(x) הפתרון $y'-r_2y=g(x)$ השנייה: (ג) $\tilde{C_2}$ הפתרון הכללי המבוקש ויכיל קבוע נוסף

(p=y' פתרון סינגולרי: פתרון המערכת (עם •

$$\begin{cases} y = xp + f(p) \\ x + f'(p) = 0 \end{cases}$$

בעיות פיזיקליות נפוצות

- (חיובי גידול, שלילי דעיכה) קבוע קצב k
 - . תאוצת הכובד -g
- .(מיקום/מהירות) ערכי התחלה $-y_0, v_0, x_0$
- . פפיץ מסה; א (שוב) מקדם חיכוך; א (שוב) קבוע קפיץ m
- . תדירות תנודה במתנד מרוסן תליה $-\omega = \sqrt{rac{k}{m} \left(rac{\gamma}{2m}
 ight)^2}$
- . שורשים אופייניים במתנד מרוסן הזק. שורשים אופייניים $-r_{1,2}=-rac{\gamma}{2m}\pm\sqrt{\left(rac{\gamma}{2m}
 ight)^2-rac{k}{m}}$

פתרון / פירוש קצר	משוואה טיפוסית	בעיה
$y(t)=y_0e^{kt}$ - $k<0$ גידול, $k>0$ דעיכה	$\frac{dy}{dt} = k y$	קצב פרופורציונלי לגודל
$x(t) = \frac{1}{2}gt^2 + v_0t + x_0$	$\ddot{x} = g$	תאוצה קבועה
$m\ddot{x}+\gamma\dot{x}+kx=0$ מתנד הרמוני מרוסן		
$x(t) = e^{-\frac{\gamma}{2m}t} [C_1 \cos \omega t +$	$\gamma^2 < 4mk$	ריסון <u>חסר</u> (חלש)
$C_2 \sin \omega t$		
$x(t) = (C_1 + C_2 t) e^{-\frac{\gamma}{2m}t}$	$\gamma^2 = 4mk$	ריסון <u>קריטי</u>
$x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ $r_{1,2} < 0$	$\gamma^2 > 4mk$	ריסון <u>יתר</u> (חזק)
$r_{1,2} < 0$		

אינטגרלים נפוצים

אינטגרל	פונקציה	אינטגרל	פונקציה
$x \ln(x) - x$	$\int \ln(x) dx$	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\int x^n dx$
$\frac{1}{a}$ arctan $\left(\frac{x}{a}\right)$	$\int \frac{dx}{x^2 + a^2}$	$\ln x $	$\int \frac{1}{x} dx$
$\arcsin\left(\frac{x}{a}\right)$	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\frac{1}{a}e^{ax}$	$\int e^{ax} dx$
$\cosh x$	$\int \sinh x dx$	$\frac{a^x}{\ln a}$	$\int a^x dx$
$\sinh x$	$\int \cosh x dx$	$-\frac{1}{a}\cos(ax)$	$\int \sin(ax) dx$
tan x	$\int \sec^2 x dx$	$\frac{1}{a}\sin(ax)$	$\int \cos(ax) dx$
$\ln \sec x + \tan x $	$\int \sec x dx$	$-\ln \cos x $	$\int \tan x dx$
$-\ln \csc x + \cot x $	$\int \csc x dx$	$\ln \sin x $	$\int \cot x dx$

זהויות טריגונומטריות

- $\sin^2(x) = \frac{1 \cos(2x)}{2} \bullet$ $\sin^2(x) + \cos^2(x) = 1 \bullet$
- $\cos^2(x) = \frac{1 + \cos(2x)}{2} \bullet$ $\tan^2(x) + 1 = \sec^2(x)$ •
- $\cot^2(x) + 1 = \csc^2(x) \bullet$ $\sin(x \pm y) = \sin(x)\cos(y) \pm \bullet$
 - $\sin(2x) = 2\sin(x)\cos(x) \bullet$ $\cos(x)\sin(y)$ $\cos(2x) = \cos^2(x) - \sin^2(x) \bullet$
- $\cos(x \pm y) = \cos(x)\cos(y) \mp \bullet$ $\sin(x)\sin(y)$ $\cos(2x) = 2\cos^2(x) - 1 \bullet$
 - $\cos(2x) = 1 2\sin^2(x) \bullet$

שיטות אינטגרציה

• אינטגרציה בחלקים:

$$\int u \, dv = uv - \int v \, du$$

• שיטת ההצבה (שינוי משתנה):

$$\int f(g(x))g'(x) dx = \int f(u) du, \quad u = g(x)$$

שימושי כאשר חלק מהאינטגרנד הוא נגזרת של ביטוי פנימי.

- פאשר $\frac{P(x)}{Q(x)}$ אינטגרל של פונקציה רציונלית (כאשר (Q קטנה ממעלת P
- -או ריבועיים ו/או ריבועיים איQ(x) איר פרק את פרק את פרק (א)
 - (ב) רשום את השבר כסכום של שברים חלקיים:
 - $\frac{A}{ax+b}$: תורם (ax+b) תורם $(ax+b)^k$ גורם $(ax+b)^k$ תורם: $(ax+b)^k$ גורם $(ax+b)^k$ תורם: $(ax+b)^k$ גורם $(ax+b)^k$
- ע"י השוואת מונים או הצבת ערכי (A,B,\ldots) ע"י העבועים (ג)

מד"ר לינארית, מקדמים כלליים

$$y'' + P(x)y' + Q(x)y = R(x)$$
 צורה.

- y_1 שלב 1: מציאת פתרון הומוגני •
- $1 + P(x) + Q(x) = 0 \iff y_1 = e^x$ אם -
- $1 P(x) + Q(x) = 0 \iff y_1 = e^{-x}$ אם - $P(x) + xQ(x) = 0 \iff y_1 = x$ אם -
- $m^2 + mP(x) + Q(x) = 0 \iff y_1 = e^{mx}$ אם -
 - :(סדר) אלב 2: מציאת עלב y_2 מציאת •

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1(x)^2} dx$$

 $y_h = C_1 y_1 + C_2 y_2$ הפתרון ההומוגני הכללי הוא: פרמטרים: פתרון לא-הומוגני (וריאציית פרמטרים: פתרון הפרטי הוא $y_p = u_1 y_1 + u_2 y_2$ כאשר:

$$u_1'(x) = -\frac{y_2 R}{W(y_1, y_2)}$$
 $u_2'(x) = \frac{y_1 R}{W(y_1, y_2)}$

ים, y_2 ור y_1 על Wronskian הוא ה $W(y_1,y_2)$ כלומר:

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2$$

פתרון בעזרת טורים

(נק' רגולרית): $x_0=0$ שיטה. מציאת פתרון סביב

- $y(x) = a_0 \cdot y_{\text{even}}(x) + a_1 \cdot y_{\text{odd}}(x)$.5. פתרון כללי:

טורי טיילור שימושיים (סביב 0)

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	e^x
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$	sin(x)
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$	$\cos(x)$
$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	sinh(x)
$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$\cosh(x)$
$\sum_{k=0}^{\infty} x^k$	1

טור חזקות	פונקציה
$\sum_{k=0}^{\infty} (-1)^k x^k$	$\frac{1}{1+x}$
$\sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{k}$	$\ln(1+x)$
$-\sum_{k=1}^{\infty} \frac{x^k}{k}$	$\ln(1-x)$
$\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$	arctan(x)
$\sum_{k=1}^{\infty} kx^{k-1}$	$\frac{1}{(1-x)^2}$
$\sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$	$(1+x)^{\alpha}$

משוואת אוילר-קושי

- $ax^2y'' + bxy' + cy = R(x)$ צורה כללית:
 - שלב 1: פתרון ההומוגנית

ננחש פתרון מהצורה $y=x^m$ ונחשב:

$$y' = mx^{m-1}, \quad y'' = m(m-1)x^{m-2}$$

נציב במשוואה ונקבל את המשוואה העזרית:

$$am(m-1) + bm + c = 0$$

נסמן את שורשי המשוואה ב־ m_1, m_2 , ואז הפתרון ההומוגני הוא:

- $y_h(x)=C_1|x|^{m_1}+C_2|x|^{m_2}$: שונים ממשיים: .1 $y_h(x)=(C_1+C_2\ln|x|)|x|^m$.2 בשורש כפול ממשי: אם $\alpha\pm i\beta$ אז: .3

$$y_h(x) = |x|^{\alpha} \left[C_1 \cos(\beta \ln|x|) + C_2 \sin(\beta \ln|x|) \right]$$

- שלב 2: פתרון פרטי
- ננחש פתרון פרטי $y_p(x)$ לפי צורת R(x) (למשל פולינום, טריגונומטרי או מעריכי), ונציב במשוואה כדי לקבוע את הפרמטרים. • שלב 3: פתרון כללי
 - $y(x) = y_h(x) + y_p(x)$
- ונמצא כבר בפתרון ההומוגני, יש R(x) אם R(x) אם \bullet $\ln x$ להכפיל את הניחוש ב־