```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
0000
      THETA(1)=ABSORPTION RATE CONSTANT (1/HR)
      THETA(2) - ELIMINATION RATE CONSTANT (1/HR)
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
      DATREC(1) = DOSE (MG)
Ċ
      DATREC(2)=TIME (HR)
C
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, A, B, C, D
С
      A=EXP (-THETA(2)*DATREC(2))
      B=EXP(-THETA(1)*DATREC(2))
      C=THETA(1)-THETA(2)
      D-A-B
      F=((DATREC(1)*THETA(1))/(THETA(3)*C))*D
      G(1)=1.
      RETURN
      END
```

```
FILE
        NULL
        SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT
PROB
DATA
            0
                0 10
                        3
ITEM
            0
                3 0
                         0
                            1
LABL
        DOSE
                 TIME
                            CP
FORM
(3F10.0)
                  .27
       320
                            1.71
                  .52
       320
                            7.91
       320
                 1.0
                            8.31
       320
                 1.92
                            8.33
       320
                 3.5
                            6.85
       320
                 5.02
                            6.08
       320
                 7.03
                            5.4
       320
                 9.0
                            4.55
       320
                12.0
                            3.01
       320
                24.3
                            .90
STRC
            3
                                 1
                1
            1
THCN
              1.7
THTA
                     .102
                               29.
                     .025
LOWR
                               10.
              7.
UPPR
                     . 4
                               80.
DIAG
ESTM
            0 240
                    4
                        2
COVR
           0
TABL
           0
                1
TABL
           1
                2
SCAT
           0
               4
           2
                3
SCAT
           2
                4
SCAT
            2
                5
SCAT
           3
                4
SCAT
                                 1
```

SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT

2 NO. OF DATA RECS IN DATA SET: NO. OF DATA ITEMS IN DATA SET: DEP VARIABLE IS DATA ITEM NO.:

LABELS TO BE USED FOR ITEMS APPEARING

IN TABLES AND SCATTERPLOTS ARE:

WRES មិ TIME DOSE

FORMAT FOR DATA IS:

(3E10.0)

2 2 TOT. NO. OF OBS RECS: TOT. NO. OF INDIVIDUALS:

LENGIH OF THEIA:

OMEGA HAS SIMPLE DIAGONAL FORM WITH DIMENSION:

INITIAL ESTIMATE OF THETA: LOWER BOUND

0.7000e+01 0.4000e+00 0.8000e+02 UPPER BOUND 0.1020e+00 0.2900e+02 INITIAL EST 0.17008+01 0.40000+00 0.1000e+02 0.2500e - 01

ESTIMATION STEP OMITTED:

240 NO. OF FUNCT. EVALS. ALLOWED: NO. OF SIG. FIGURES REQUIRED:

22 INTERMEDIATE PRINTOUT: CONVERGENCE REPEATED: MSF OUTPUT:

COVARIANCE STEP OMITTED:

8

Š ဋ SPECIAL COMPUTATION: RIGENVLS. PRINTED:

잁 TABLES STEP OMITTED: NO. OF TABLES:

YES TABLES PRINTED:

ջ TABLES FILE USED:

IN THE ORDER THEY WILL APPEAR IN THE TABLE, ARE: USER CHOSEN DATA ITEMS FOR TABLE

NO. OF PAIRS OF ITEMS GENERATING FAMILIES OF SCATTERPLOTS: SCATTERPLOT STEP OMITTED:

```
ITEMS TO BE SCATTERED ARE: TIME CP
ITEMS TO BE SCATTERED ARE: TIME PRED
ITEMS TO BE SCATTERED ARE: TIME RES
ITEMS TO BE SCATTERED ARE: CP PRED
UNIT SLOPE LINE INCLUDED
```

在安全在中央企业中的企业的企业中的企业和企业的企业的企业的企业的企业的企业。	*************************************	在在在在在在在在在在在在在在在在中间,
在水水水水水水水水水水水水水水水水水水水水水水水水		
· · · · · · · · · · · · · · · · · · ·	TAITIBI DARBARTED ROTTMAN	
中部 中華		
化化水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水	在中央市场的现在分词中的市场的市场的市场的市场的市场的市场的市场的市场的市场的市场的市场的市场的市场的	

OMEGA - COV MATRIX FOR RANDOM RFFECTS - BIAS ******

BTA1

1.178+00 ETA1

THEIR - VECTOR OF FIXED EFFECTS ************** 1.700+00 1.020-01 2.900+01 TH 3 TH 2 TH I

MONITORING OF SEARCH;

NO. OF FUNC. EVALS .: PARAMETER: 0.1000e+00 0.1000e+00 0.1000e+00 0.1000e+00 GRADIENT: 0.2395e+02 -0.2631e+03 -0.6027e+03 0.3695e-04 OBJECTIVE VALUE: 0.1157e+02 0 TERRATION NO.:

NO. OF FUNC. EVALS.: 0.1059e+00 0.1031e+00 0.9106e-01 OBJECTIVE VALUE: 0.98070+01 PARAMETER: 0.1102e+00 N ITERATION NO.:

NO. OF FUNC. EVALS.: OBJECTIVE VALUE: 0.9577@+01 NC 0.9850@-01 0.1079@+00 0.7942@-01 0.1051e+03 -0.3883e+02 -0.3453e+03 -0.2402e+01 PARAMETER: 0.1153e+00 * ITERATION NO.: GRADIENT:

NO. OF FUNC. EVALS.: -0.6965e+02 -0.2652e+03 -0.6587e+02 0.9997e-01 0.1085e+00 0.8684e-01 OBJECTIVE VALUE: 0.8943@+01 PARAMETER: 0.1098e+00 0.9697a+02 9 ITERATION NO.: GRADIENT:

NO. OF FUNC. EVALS.: 0.4124e+01 -0.5664e+00 -0.1038e+02 -0.4515e+01 OBJECTIVE VALUE: 0.8940e+01 8 ITERATION NO.: GRADIENT:

0.9978e-01 0.1087e+00 0.8768e-01 0.4162e-01 -0.5070e-01 0.1247e-01 OBJECTIVE VALUE: 0.89406+01 PARAMETER: 0.1097e+00 0.59236-01 ITERATION NO.: 10 GRADIENT:

NO. OF FUNC. RVALS.:

NO. OF FUNC. EVALS .: 0.9978e-01 0.1087e+00 0.8768e-01 0.0000e+00 -0.2194e-05 0.0000e+00 0.9978m-01 0.1087m+00 0.8768m-01 0.4554m-03 0.5354m-03 0.3576m-04 OBJECTIVE VALUE: 0.8940m+01 PARAMETER: 0.1096e+00 PARANETER: 0.1096e+00 -0.2348e-03 ITERATION NO.: GRADIENT:

NO. OF FUNC. EVALS.: 0.9978e-01 0.1087e+00 0.8768e-01-0.2861e-04-0.6857e-04-0.6557e-05 OBJECTIVE VALUE: 0.8940e+01 PARAMETER: 0.1096e+00 GRADIENT: 0.1359e-04 -0.5436e-05 7 ITERATION NO.:

GRADIENT:

OF FUNC. EVALS.: 1 NO. 0.9978e-01 0.1087e+00 0.8768e-01 0.2384e-05 -0.2194e-05 0.0000e+00 OBJECTIVE VALUE: 0.8940e+01 PARAMETER: 0.1096e+00 -0.1087e-05 76 ITERATION NO.: GRADIENT:

0.00000+00

MINIMIZATION ROUTINE SUCCESSFULLY TERMINATED

114 & . NO. OF FUNCTION EVALUATIONS USED: OF SIG. DIGITS IN FINAL EST .:

**** MINIMUM VALUE OF OBJECTIVE FUNCTION 8.940 **在在水板在水板在水板在水板在水板板板板** ****

· 在我的最后的人工工作的,我们们们们们们们们的一个人的一个人们们的一个人们们们们们们们们们们们们们们们们们们	· 有有有的,我们的,我们的,我们的,我们的,我们的,我们的的,我们的人们的,我们的人们的,我们的人们的,我们的人们的人们的人的人的人的人的人的人的人,我们的人们的人们的人的人的人的人的人的人,我们也不会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	在
在在在在在我们的我们的我们的人们的人们们们们们们们们们们们们们们们们们们们们们们		******
化工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作	FINAL PARAMETER ESTINATE	在 · · · · · · · · · · · · · · · · · · ·
农业农业农业农业农业农业农业农业农业农业农业		经验证证明证明证明证明证明证明证明证明
	你你我的时代的你的我们的我们是我们的,我们们的我们的我们的,我们也是我们的,我们们的我们的,我们们们的,我们们们们们的,我们们们们们的一个一个,我们们们的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	***********************

THETA - VECTOR OF FIXED EFFECTS **************

TH 3 TH 2 TH 1 1.94e+00 1.02e-01 3.20e+01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS *******

ETA1

8.99e-01 ETAL

不安全的 医克里氏性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	建建设设施的设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计	· · · · · · · · · · · · · · · · · · ·
我我我在我我也也也也也也也是我们的		
我我我 我我我我我我我我我我我我我我我我我我	STANDARD ERROR OF ESTINATE	
安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安		
	李俊俊 张 斯 古 在 医 医 医 是	

THEIR - VECTOR OF FIXED EFFECTS ********************

TH 3 TH 2 TH 1 6.28e-01 7.37e-03 1.25e+00

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ******

ETA1

5.45e-01 ETA1

Fig. 8

* * * * *		*****	*********	**************************************
***	**************	***		COVARIANCE MATRIX OF ESTIMATE
****	经存在的 经存在的 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	***		在前在在中书情的的的人的是是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一
***	********	****	*********	在 医
	TH 1	TB 2	TH 3	OM11
	3.956-01			
Z BI	-3.376-03	-3.37e-03 5.43e-05		
TH 3	4.916-01	4.916-01 -7.906-03	1.57e+00	
OMII	-1.530-01	2.64e-03	-1.53@-01 2.64@-03 -4.56@-01 2.97@-01	2.978-01

化学学业业学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学学	如果我们的人,我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们	在在在在水中中中有水水水水水水水水水水水水水水水水水水水水水水水水
在我我我就是我我我们是我们的人们的人们们们们们们们们们们们们们们们们们们们们们们们们们们们		经存在存在存在存在 经有限条件 医水子氏病
本本本的社会大学工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作工作	CORRELATION MATRIX OF ESTIMATE	· · · · · · · · · · · · · · · · · · ·
在水水水水水水水水水水水水水水水水水水水水水水水		· 在 · · · · · · · · · · · · · · · · · ·
· 在安全市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场市场	在种种种种的人,是是是有一种,我们是有一种,我们也是是是有一种,我们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	

OM11

TH 3

TH 2

1H 1

1.00@+00

-7.27e-01 1.00e+00

6.24e-01 -8.55e-01 1.00e+00 TH 3

-4.48e-01 6.59e-01 -6.67e-01 1.00e+00 OM11

	NAMES AND ADDRESS OF TAXABLE PARTY.		- 古名古可以大名名名名的英名名的名词名为古古古古的名词名为古古古	化复数分类 医乳球球球 医多种性 医多种性 医二种性 医二种性 医二种性 医二种性 医二种性 医二种性 医二种性 医二	
*************				*	在在本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本
安全外的 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性		ži.	INVERSE COVARIANCE MATRIX OF ESTIMATE		我在我我也我也还是我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我们的我
********				*	在在在在外的人的人们的人们的人们的人们的人们的人们们们们们们们们们们们们们们们们
化化物物 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性	*****	****	T 化安全分类 化安全分类 医克里特氏 医克里特氏病 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	在一种,我们们们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的	
181	TH 2	TH 3	040.1		

TH 1 5.40e+00 TH 2 3.42e+02 9.41e+04 TH 3 -7.86e-02 3.14e+02 2.55e+00 -3.83e-01 -1.80e+02 1.08e+00 6.44e+00

0411

有有的的的现在分词有有有的的的的形式的有效的 TABLES OF DATA AND PREDICTIONS ******************

,	
Ž	į
Ę	
٥	ļ
Ε	ı

WRES

RES

PRED

មិ

TIME

LINE NO.

4.02e+00 -2.31e+00 -2.43e+00	+00 1.85e+00	-01 3.15e-01	-02 -9.65e-02	-01 -5.55e-01	-2.49e-01 -2.63e-01	-01 2.53m-01	-01 3.45e-01	3.11e+00 -1.03e-01 -1.08e-01
-2.310	1.758+00	2.988-01	-9.15e-02	-5.26e-01	-2.49	2.4001	3.274-01	-1.03
4.020+00	6.16e+00	8.016+00	8.426+00	7.386+00	6.33@+00	5.16e+00	4.22@+00	3.118+00
1.716+00	7.916+00	8.31e+00	8.336+00	6.85e+00	6.086+00	5.408+00	4.55a+00	3.01@+00
2.70e-01	5.208-01	1.000+00	1.92@+00	3.500+00	5.02@+00	7.03@+00	9.000+00	1.200+01
-	~	m	~	N)	φ		c c	•

2.43e+01 9.00e-01 8.91e-01 8.82e-03 9.29e-03

10

化水水水水水水水水水水水水水水水水水水水 SCATTERS

1. 100+100. 4. 20+00. 9. 40+00. 1. 46+01. 1. 98+01.	8.000-01	CP VS. TIME 2.34e+00	ei	3.88@+00	Û	5.42@+00	6.96	6.96=+00	8.50@+00
	-1.00e+00.				•		•		
		*							
									* *
								•	
	4.20e+00.							k	
							•		
	• •					*			• •
									•
	9.404+00.				*				
•••••••••••••••••••••••••••••••••••••••									
46a+01. >8a+01.	TIME		*						• •
46e+01.									• • •
98e+01.	.10+09								
N8e+01.									
88+01.									• •
88+401.									
00+01									
00+01									: .

10e+01.	,								
	2.50e+01.		•	•	•	•	1		•

	10-400	PRED VS. TIME	TIME 2 340-100	_	2 88e+00	Cana	420400		6.960+00	001		8.504+00
									}	·		
	-1.006+00.		•		• •	•			•			•
	• •					*		•				
								•				*
												*
	• •											
	.200+00.									*	_	
	•								4			
							*					
	• •											
	• •					*						
· · · · · · · · · · · · · · · · · · ·	.400+00.											
	• •	_										
				*								
	• •											
· · · · · · · · · · · · · · · · · · ·	. TO400.											
· · · · · · · · · · · · · · · · · · ·	• •											
	• •											
	• •											
· · · · · · · · · · · · · · · · · · · ·	. 98 0+ 01.											
: : :	•											
*												
	• •											
		*										
	.500+01.	:	:			:	•					


```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
      THETA(1)=ABSORPTION RATE CONSTANT (1/HR)
Ċ
      THETA(2)=ELIMINATION RATE CONSTANT (1/HR)
С
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
Ċ
      DATREC(1) = DOSE (MG)
C
      DATREC(2)=TIME (HR)
C
                                         COMPUTED VALUES
С
Č
      C=CONCENTRATION IN PLASMA AT CURRENT TIME (MG/L)
С
      DO-DOSE IN DEPOT AT CURRENT TIME (MG)
C
      DELTA-INCREMENTAL DIFFERENCE IN TIME FROM PREVIOUS TIME
C
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, DO, A, B, BA, C
С
      IF (NEWIND.NE.0) GO TO 10
С
                                         INITIALIZE RECURSION
      C=0.
      TIME=0.
      DO=DATREC(1)
C
                                         COMPUTE TIME INCREMENT
   10 DELTA=DATREC(2)-TIME
C
                                         COMPUTE EXPONENTIALS
      A=EXP(-THETA(2)*DELTA)
      B=EXP(-THETA(1)*DELTA)
С
                                         GET BATEMAN VALUE
      CALL BATE (DO, DELTA, THETA(1), THETA(2), THETA(3), A, B, BA)
С
                                         UPDATE C AND DO
      C=BA+C*A
      DO=DO*B
С
                                         UPDATE TIME
      TIME=DATREC(2)
C
                                         SET OUTPUTS
      F=C
      G(1)=1.
      RETURN
      END
```

```
SUBROUTINE BATE (DO, DELTA, KA, KD, VL, A, B, BA)
С
Ċ
                                          INPUTS
      DO=DOSE
Ċ
      DELTA-TIME
c
c
      KA=MEAN ABSORPTION RATE
      KD=MEAN ELIMINATION RATE
C
      VL=VOLUME OF DISTRIBUTION
      A=EXP (-KD*DELTA)
С
      B=EXP (-KA*DELTA)
С
                                          OUTPUTS
C
      BA=BATEMAN VALUE
С
      DOUBLE PRECISION DO, KA, KD, VL, A, B, BA, C, D
С
      C=KA-KD
      D=A-B
      BA=DO*KA/(VL*C)*D
      RETURN
      END
```

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
C
Č
      THETA(1) = ABSORPTION RATE CONSTANT (1/HR)
      THETA(2)=ELIMINATION RATE CONSTANT (1/HR)
C
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
      INDXS(1) = DOSE (MG)
С
      INDXS(2) = TIME (HR)
С
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, A, B, C, D
С
      DO=DATREC(INDXS(1))
      TIME=DATREC(INDXS(2))
      A=EXP(-THETA(2)*TIME)
      B=EXP (-THETA (1) *TIME)
      C=THETA(1)-THETA(2)
      D=A-B
      F=((DO*THETA(1))/(THETA(3)*C))*D
      G(1)=1.
      RETURN
      END
```

FILE	NUL	ıL.													
PROB	SIM	IP L	E NO	NLIN	EAR	REGE	ESSION	OF	CP	VS	TIME	DATA	FROM	ONE	SUBJECT
DATA		0	0	10	3		,				_				0020201
ITEM		0	3	0	2	1									
INDX		1	2												
LABL	DOS	E	T	IME		CP									
FORM															
(3F10.	0)														
	320			.27		1.7	1								
	320			. 52		7.9									
	320			. 0		8.3									
	320			. 92		8.3									
	320		3	. 5		6.8	5								
	320			.02		6.0									
	320		7	.03		5.4									
	320		9	. 0		4.5	5								
	320		12	. 0		3.0									
	320		24			. 9									
STRC		3	1				1								
THCN		1													
THTA			1.7	. 1	102		29.								
LOWR			. 4	. (25		10.								
UPPR		•	7.	. 4	1		80.								
DIAG	2														
ESTM		0 2	240	4	2										
COVR		0													
TABL		0	1												
TABL		1	2												
SCAT		0	4												
SCAT		2	3												
SCAT		2	4 3 4												
SCAT		2 3	5												
SCAT		3	4				1								

•

```
FILE
        NULL
        SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT
PROB
DATA
            0
                0 10
                         3
ITEM
            0
                3
                         2
                   0
                             1
INDX
            2
                1
LABL
        TIME
                DOSE
                            CP
FORM
(3F10.0)
       .27
                  320
                            1.71
       . 52
                  320
                            7.91
                            8.31
      1.0
                  320
      1.92
                  320
                            8.33
      3.5
                  320
                            6.85
      5.02
                  320
                            6.08
      7.03
                  320
                            5.4
      9.0
                  320
                            4.55
     12.0
                  320
                            3.01
     24.3
                  320
                             .90
STRC
            3
                1
                                 1
THCN
            1
ATHT
             1.7
                     .102
                               29.
LOWR
                     .025
                               10.
              . 4
             7.
UPPR
                     . 4
                               80.
DIAG
       2
ESTM
           0 240
                    4 2
COVR
           0
TABL
           0
                1
TABL
           1
                1
SCAT
           0
                4
SCAT
           1
                3
SCAT
           1
                4
           1
                5
SCAT
           3
SCAT
                4
                                 1
```

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
С
      THETA(1) = ABSORPTION RATE CONSTANT (1/HR)
С
      THETA(2) = ELIMINATION RATE CONSTANT (1/HR)
С
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
Ç
      DATREC(1)=TIME (HR)
С
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, A, B, C, D
C
      IF (ICALL.EQ.0) RETURN
      IF (ICALL.EQ.1) THEN
С
                                INPUT DOSE
      READ (5,5) DOSE
    5 FORMAT (F10.0)
      RETURN
С
      ELSEIF (ICALL.EQ.2) THEN
C
                                  COMPUTE F AND G
      A=EXP(-THETA(2)*DATREC(1))
      B=EXP(-THETA(1)*DATREC(1))
      C=THETA(1)-THETA(2)
      D=A-B
      F = ((DOSE * THETA(1)) / (THETA(3) * C)) * D
      G(1)=1.
      RETURN
С
      ENDIF
      END
```

```
FILE
        NULL
        SIMPLE NONLINEAR REGRESSION OF CP VS TIME DATA FROM ONE SUBJECT
PROB
DATA
           0
                0 10
                       2
ITEM
                2
           0
                   0
                         0
                             1
LABL
        TIME
                   CP
FORM
(2F10.0)
       .27
                 1.71
      .52
1.0
                 7.91
                 8.31
      1.92
                 8.33
      3.5
                 6.85
      5.02
                 6.08
      7.03
                 5.4
      9.0
                 4.55
                3.01
     12.0
     24.3
                  .90
STRC
            3
                                 1
THCN
            1
              1.7
ATHT
                     .102
                               29.
LOWR
                     .025
              . 4
                               10.
              7.
UPPR
                     . 4
                               80.
DIAG
       2
           0 240
                    4 2
ESTM
COVR
            0
            0
TABL
                1
TABL
           1
                1
SCAT
           0
                4
SCAT
           1
                2
           1
                3
SCAT
           1
                4
SCAT
           2
                3
SCAT
                                 1
      320.
```

FILE PROB DATA	NU: SI			NON 0	LII 12	IEAR 5	REG	RES	SIO	n of	CP	vs	TIME	DATA	FROM	ONE	SUBJECT
ITEM		5		3	4	0	1										
LABL FORM	DO	SE		TI	ME		CP		M	DV		ID					
(5F10.	01																
(01101	320				27		1.	71			0		•	1			
	320				52		7.				0		;	1 2			
	320			1.			8.				0			3			
	320 320			3.	92 5		8.	33 85			0		•	4 5 6 7			
	320				02		6.				Ŏ		,	6			
	320				03		5.				0		•	7			
	320			9.			4. 3.	55			0			8			
	320 320			12. 16.			٥.	OI			1			9 9 9			
	320			20.							1						
	320			24.	3		•	90	_		0		1	0			
STRC		3 1		1					1	•							
THCN THTA		7	1.	7		.102		29	١.								
LOWR						025		10									
UPPR			7.			. 4		80	١.								
DIAG	2	^	2.4	^		2											
ESTM COVR		0	24	U	4	2											
TABL		ŏ		1													
TABL		1		2													
SCAT		0 2		4													
SCAT SCAT		2		3 6													
SCAT		2		7													
SCAT		3		6					1								

8.0001	PRED VS. TIME 2.3	IMB 2.34@+00	3.88@+00	PRED	5.42=+00	6.96+00	8.500+00
-1.00@+00.					•		
• • • •			•	•		*	• • • •
• • • •							•
						*	• • •
4.20e+00.						•	:.
					•		
• • •					*		
9.40+00.				•			:
• • •							
TIME		*					
• •							
1.460+01.							.:
• •		*					
							• • •
1.980+01.	*						.:
							• •
							• •
2.50@+01.							
•	•		•				

FILE			STRE													
PROB	SI	MP:	LE N	10V	LIN	EAR	REGR	ESSION	OF	CP	VS	TIME	DATA	FROM	ONE	SUBJECT
DATA		0	()	10	3										0020201
ITEM		0		3	0	0	1	-								
LABL	DO	SE		TI	ME		CP									
FORM																
(3F10.0	0)															
	320				27		1.7	1								
	320				52		7.9									
	320			1.			8.3									
	320				92		8.3									
	320			3.			6.8									
	320				02		6.0									
	320				03		5.4									
	320			9.			4.5									
	320		1	2.			3.0									
	320			24.			.9									
STRC		3	1		•		• •	1								
THCN		3	_					_								
THTA		_	1.7	•		102		29.								
LOWR			. 4			025		10.								
UPPR			7.			4		80.								
DIAG	2		• •		•	•										
ESTM	_	0	50	l	4	2		1								
COVR		ŏ	•		•	_		•								
TABL		ŏ	1													
TABL		ĭ	2													
SCAT		ō	4													
SCAT			4 3													
SCAT		2	4													
SCAT		2 2 2	- T													
SCAT		3	5 4					1								
~ ~		_	- 4													

MSFO **** MSF1

MONITORING OF SEARCH:

OF FUNC. EVALS.: ITERATION NO.: 0 OBJECTIVE VALUE: 0.1157e+02 NO. PARAMETER: 0.1000e+00 0.1000e+00 0.1000e+00 0.1000e+00 0.1000e+00 0.2395e+02 -0.2631e+03 -0.6027e+03 0.3695e-04

O.: 2 OBJECTIVE VALUE: 0,9807e+01 NO. OF FUNC. EVALS.: 0.1102e+00 0.1059e+00 0.1031e+00 0.9106e-01 0.1051e+03 -0.3883e+02 -0.3453e+03 -0.2402e+01 ITERATION NO.: PARAMETER: GRADIENT:

ITERATION NO.: 4 OBJECTIVE VALUE: 0.9577e+01 NO. OF FUNC. EVALS.: 7
PARAMETER: 0.1153e+00 0.9850e-01 0.1079e+00 0.7942e-01
GRADIENT: 0.9697e+02 -0.6965e+02 -0.2652e+03 -0.6587e+02

O.: 6 OBJECTIVE VALUE: 0.8943e+01 NO. OF FUNC. EVALS.: 0.1098e+00 0.9997e-01 0.1085e+00 0.8684e-01 0.4124e+01 -0.5664e+00 -0.1038e+02 -0.4515e+01 ITERATION NO.: PARAMETER: GRADIENT:

MINIMIZATION ROUTINE TERMINATED

DUE TO MAX. NO. OF FUNCTION EVALUATIONS EXCREDED NO. OF FUNCTION EVALUATIONS USED: 51 MO. OF FUNCTION EVALUATIONS USED: 51 MO. OF SIG. DIGITS IN FINAL EST.: 1.7

FILE			REAM													
PROB	SIM	PLE	NON	LINE	AR	REGRE	SSION	OF	CP	VS	TIME	DATA	FROM	ONE	SUBJECT	
DATA		0	0	10	3	_										
ITEM		0	3	0	0	1										
LABL FORM	DOS	E	TI	ME		CP										
(3F10.	٥,															
(3210.	320			27		1.71										
	320			52		7.91										
	320		1.			8.31										
	320			92		8.33										
	320		3.			6.85										
	320			02		6.08										
	320			03		5.4										
	320		9.			4.55										
	320		12.			3.01										
FIND	320		24.	3		.90										
ESTM	1	0 1	50	4	2		1									
COVR		ָ ס		3	-		1									
TABL		0	1													
TABL		1	2													
SCAT	(0	4													
SCAT		2	4 3 4 5 4													
SCAT	•	2 2 3	4													
SCAT	j	2	5													
SCAT		3	4				1									

MSFO MSF2 MSFI MSF1

MONITORING OF SEARCH:

NO. OF FUNC. BVALS.: 5 0.9997e-01 0.1085e+00 0.8684e-01 -0.5664e+00 -0.1038e+02 -0.4515e+01 OBJECTIVE VALUE: 0.8943e+01 PARAMETER: 0.10980+00 GRADIENT: 0.41240+01 0 ITERATION NO.:

NO. OF FUNC. EVALS.: 6 OBJECTIVE VALUE: 0.8940+01 MC 0.9978-01 0.1087+00 0.8768-01 N ITERATION NO.:

NO. OF FUNC. EVALS.: 6 OBJECTIVE VALUE: 0.8940e+01 NO 0.9978e-01 0.1087e+00 0.8768e-01 0.4554e-03 0.5354e-03 0.3576e-04 0.12474-01 0.41626-01 -0.50706-01 PARAMETER: 0.1097e+00 GRADIENT: 0.5923e-01 PARAMETER: 0.1096+00 • ITERATION NO.:

NO. OF FUNC. EVALS .: 0.9978m-01 0.1087m+00 0.8768m-01 0.0000m+00 -0.2194m-05 0.0000m+00 OBJECTIVE VALUE: 0.8940++01 PARAMETER: 0.1096+100 -0.2348e-03 ø ITERATION NO.: GRADIENT:

NO. OF FUNC. EVALS.: 0.9978e-01 0.1087e+00 0.8768e-01 -0.2861e-04 -0.6857e-04 -0.6557e-05 OBJECTIVE VALUE: 0.8940e+01 PARAMETER: 0.1096e+00 GRADIENT: 0.1359e-04 -0.5436e-05 • ITERATION NO.: GRADIENT:

NO. OF FUNC. BVALS.: 1 OBJECTIVE VALUE: 0.8940e+01 MG 0.9978e-01 0.1087e+00 0.8768e-01 0.2384e-05 -0.2194e-05 0.0000e+00 PARAMETER: 0.1096+100 -0.1087e-05 ITERATION NO.: 10 GRADIENT:

MINIMIZATION ROUTINE SUCCESSFULLY TERMINATED

OF SIG. DIGITS IN FINAL EST .: NO. OF FUNCTION EVALUATIONS USED:

FILE PROB DATA ITEM	NU: SI		LE N 0 3	10	IEAR 3 0	REGRES	SION	OF	CP	vs	TIME	DATA	FROM	ONE	SUBJECT
LABL FORM	DO		-	TIME	·	CP									
(3F10.															
	320			.27		1.71									
	320			.52		7.91									
	320			1.0		8.31									
	320			1.92		8.33									
	320			3.5		6.85									
	320			5.02		6.08									
	320			7.03		5.4									
	320			9.0		4.55									
	320			2.0		3.01									
	320	_		4.3		.90	_								
STRC		3	1				1								
THCN		1													
THTA					102	29									
LOWR			4		025	10									
UPPR	_		7.		4	80	•								
DIAG	2	_			_										
ESTM		0	240	4	2										•
COVR		0	_												
TABL		0	1												
TABL		1	2												
SCAT		0	4 3												
SCAT		2	3												
SCAT		2 2 3	4 5 4												
SCAT		2	5				-								
SCAT		3	4				1								

	MENNEMENT KONTER KERKEKEN KERKEKEN KERKEKEN KERKEKERKE	******
建筑的设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计	有有有故情也有我有	我我我我我我我我我我我我我我我的我们的我们
经验证的证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证	INITIAL PARAMETER ESTIMATE	***************
化学校园 化安全存储器 化安全存储器 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	在教育技术的	经有效的 医有性性 医克里特氏 医克里特氏病 医克里特氏病 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
化物物的 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	,我们也是我们的,我们也是我们的,我们们也是这一个,我们也是我们的,我们们,我们们的,我们们的,我们们的,我们们的,我们们的,我们们们的,我们们们的,我们们们的,	*********

THEIR - VECTOR OF FIXED RFFECTS ***************

TH 3 TH 2 TH 1 1.50e+00 1.02e-01 2.90e+01

OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS *******

ETAL

1.200+00 ETA1

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
С
      THETA(1) = ABSORPTION RATE CONSTANT (1/HR)
С
      THETA(2)=ELIMINATION RATE CONSTANT (1/HR)
Ċ
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
С
      THETA (4) = POWER PARAMETER
C
      DATREC(1) = DOSE (MG)
C
      DATREC(2)=TIME (HR)
C
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, A, B, C, D
С
      A=EXP (-THETA (2) *DATREC (2))
      B=EXP(-THETA(1)*DATREC(2))
      C=THETA(1)-THETA(2)
      D=A-B
      F = ((DATREC(1) * THETA(1)) / (THETA(3) * C)) * D
      G(1) = F^*THETA(4)
      RETURN
      END
```

```
FILE
        NULL
PROB
        NONLINEAR REGRESSION WITH POWER FUNCTION VARIANCE MODEL
           0 0 10
DATA
                      3
ITEM
           0
               3 0
                       0
                          1
        DOSE
               TIME
                          CP
LABL
FORM
(3F10.0)
       320
                          1.71
                .27
       320
                .52
                          7.91
       320
                1.0
                          8.31
       320
                1.92
                          8.33
       320
                3.5
                          6.85
       320
                5.02
                          6.08
       320
                7.03
                          5.4
               9.0
                          4.55
       320
       320
               12.0
                          3.01
               24.3
                          .90
       320
STRC
           4
             1
                               1
THCN
           1
                  10
                  .102
THTA
             1.7
                             29.
                   .025
LOWR
             . 4
                             10.
                                      0.
UPPR
             7.
                    . 4
                             80.
                                      3.
       2
DIAG
           0 240
                   4
                       2
ESTM
COVR
           0
           0
TABL
               1
               2
TABL
           1
              4
           0
SCAT
SCAT
           2
              3
           2
SCAT
              4
SCAT
           2
              6
SCAT
           3
               4
                               1
```

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
CC
      THETA(1) = PROPORTIONALITY CONSTANT
      THETA(2)=ELIMINATION RATE CONSTANT (1/HR)
C
      THETA(3)=VOLUME OF DISTRIBUTION (LITERS)
      DATREC(1) = DOSE (MG)
С
      DATREC(2)=TIME (HR)
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, B, C
С
      B=EXP (-THETA(2)*DATREC(2))
      C=DATREC(1)/THETA(3)*B
      F=C
      IF (DATREC(4).EQ.1.) F=THETA(1)*C
      G(1)=1.-DATREC(4)
      G(2) = DATREC(4)
      RETURN
      END
```

FILE PROB DATA	nu no	NLI 0	0	23	4		WITH	TWO	TYPES	OF	OBSERVATIONS
ITEM	20	2	3	0	0	1	_	n / n			
LABL FORM	DO	SE	T.	IME	C	ONC		P/S			
(4F10.	.0}										
,	160		1			5.3	32		0		
	160		2			4.			0		
	160		3			4.			0		
	160		4			4.	21		0		
	160 160		4 5			2.2 3.5			1 0		
	160		5			2.	30 31		1		
	160		6			3.	76		ō		
	160		6			2.6			1		
	160			.17		3.			0		
	160			. 17		1.5			1		
	160		8			3.4			0		
	160 160		8	.78		1.5			1 0		
	160			.78		1.			1		
	160			. 95		1.			1		
	160		12	.00		1.	47		1		
	160			.50		1.3			1		
	160			. 92		1.			1		
	160 160		24 26	. 33		1.	0 <i>3</i> 89		0 0		
	160		28				78		Ö		
	160		32				56		Ö		
STRC		3	2					1	-		
STRC		1	2								
THCN		1	60		0.7		00 1				
THTA			.60		.07		28.1				
LOWR UPPR		-	.12		.01 .40	1.	6.0 40.0				
BLST	2	_			. 10	_	10.0				
ESTM		0	450	4	5						
COVR		0									
TABL		0 2	1 2	_	_	_					
TABL		0	2	2	4	1					
SCAT SCAT		2	3 8								
SCAT		2	3	1	4						
SCAT		2	8 3 3 5 5 6 6	_	-						
SCAT		2	5	1	4						
SCAT		2	6	_	_						
SCAT		2	6 5	1	4		7				
SCAT SCAT		2 2 3 3	5 5	1	4		1 1				

Š.
-
Ę

LINE	Š.	8/8	TIME	CONC	PRED	RES	WRES
-		0.00@+00	1.000+00	5.32e+00	5.09@+00	2.318-01	1.36e+00
8	J	0.000+00	2.00+00	4.88e+00	4.788+00	9.79a-02	5.776-01
(C)	J	0.008+00	3.00+00	4.10e+00	4.498+00	-3.94e-01	-2.326+00
4	J	0.000+00	4.00*+00	4.216+00	4.22m+00	-1.310-02	-1.19e-01
ΙŊ	-	0.00+00	5.00m+00	3.96e+00	3.97e+00	-8.65-03	-3.134-02
v	-	0.000+00	6.000+00	3.76e+00	3.73@+00	3.050-02	1.640-01
-	-	0.000+00	7.176+00	3.61e+00	3.47m+00	1.420-01	8.25e-01
œ	0	0.000+00	8.000+00	3.408+00	3.29@+00	1.0601	6.40e-01
64	J	0.00+00	8.78e+00	3.148+00	3.14@+00	2.2803	3.30e-02
10	_	0.00+00	2.430+01	1.03e+00	1.198+00	-1.64@-01	-9.65e-01
1	J	0.00@+00	2.600+01	8.908-01	1.08@+00	-1.864-01	-1.10@+00
12	3	0.000+00	2.800+01	7.808-01	9.500-01	-1.704-01	-1.00@+00
13	3	0.000+00	3.20@+01	5.600-01	7.418-01	-1.814-01	-1.07e+00
14	_	1.000+00	4.000+00	2.248+00	2.38e+00	-1.448-01	-2.180+00
15	-	1.00*+00	5.00@+00	2.31e+00	2.240+00	6.950-02	1.05@+00
16	-	1.00*+00	6.000+00	2.05e+00	2.116+00	-5.554-02	-8.286-01
11	-	00+00	7.176+00	1.91e+00	1.96a+00	-4.78a-02	-6.810-01
18	н	00++00	8.00*+00	1.900+00	1.86e+00	4.064-02	6.428-01
19	-	00++00	8.788+00	1.84e+00	1.77e+00	6.86-02	1.030+00
20	-	00+00	9.950+00	1.670+00	1.650+00	2.28*-02	3.430-01
21	-	00+00	1.200+01	1.476+00	1.450+00	1.994-02	2.99e-01
22	-	.00+000	1.450+01	1.316+00	1.248+00	6.868-02	1.03e+00
23	-	1.00++00	1.59m+01	1.176+00	1.148+00	3.340-02	5.038-01

1.100+00	CONC VS.	CONC VS. TIME 1.36m+00	POINTS ARE ONLY FOR 1.620+00	ONLY FOR - 1.620+00	P/S =	1.00@+00	2.14@+00	00	2.400+00
3.00@+00.	•	•		•	• •				
								*	
									*
. 809+00.									
• • •							*		- • •
• • • •						*			
						*			
8.60@+00.						*			
TIME					*				
• • •									•••
. 104841.1			*						
• • •									
• •									•••
1.420+01.		*							• • •
• •									• •
• •	*								• • •
									• • •
. 104401.1		•		· · · · · · · · · · · · · · · · · · ·		: .			: .

6.00.01	1r	1.528+00	0.444400	2.448+00	3	3.364+00	•			
0.00@+00.	•			•	•	•	•	•	. :	· ·
• •									*	*
• •								*	*	
• • •							*			
6.60++00.							*			
						* *				
• • •										
1.32e+01.										
TIME .										
,										
1.98@+01.										
• • •		•								
2.648+01.		*								
	*									•
	•									
3.30@+01.	•	•	•	•	•		•			
•		•	•	•	•	•	•	• •	•	•

3.80a+00. 5.60a+00. 1.14a+01.	1.104+00	PRED VS. TIME	VS.	1.36e+00		rs A	ER ONI	POINTS ARE ONLY FOR 1.620+00	- P/S = Pred		1.00@+00 1.88@+00			2.148+00	0		ά.	2.400+00
	• • • • •	:		•		:	•	•	•			•	•	•	•	•		:
																*		*
														*				• • • •
												*						• • • • •
										*	•							
	• • • • •								*									• • • • •
*	· · · · · ·					•												• • • • • • •
*			•															• • • • • •
	<u>.</u>		*															
				•	•	• •			•	•	• •	:	•					•

-1.508-01	RES	VS. TIME -1.04e-01		POINTS ARE ONLY FOR -5.80@-02	- P/S =	1.00m+00 -1.20m-02	.,	3.400-02	&	8.00-02
		•			•		•		•	
3.00e+00.	:			•	:		: : : : :			
• •										
•	+									
	k									•
•										
•										*
5.80m+00.				,			•			•
				-	ķ		•			
•										
• •					•					•
•					ı					
•										
								*		•
8.60@+00.										. :
•							•			
• •										
								•		
								k		•
•										
										•
1.140+01.										. :
•								4		•
• •								•		
•										•
										•
•										
•										
1.428+01.										•
•										•
										•
• •										•
•										
							•	*		•
•										٠.
1.700+01							•			•
		· ·	•				:			
		•		•	•	•	•	•	• •	

PROBLEM NO.

NONLINEAR REGRESSION WITH TWO TYPES OF OBSERVATIONS

NO. OF DATA RECS IN DATA SET: NO. OF DATA ITEMS IN DATA SET:

ID DATA ITEM IS DATA ITEM NO.: DEP VARIABLE IS DATA ITEM NO.:

LABELS TO BE USED FOR ITEMS APPEARING

IN TABLES AND SCATTERPLOTS ARE:

WALES RES PRED **5/3** TIME DOSE

FORMAT FOR DATA IS:

(4F10.0)

TOT. NO. OF OBS RECS: TOT. NO. OF INDIVIDUALS:

23 17

LENGTH OF THETA:

OMEGA HAS BLOCK FORM:

INITIAL ESTIMATE OF THETA:

0.4000@+00 UPPER BOUND 0.30000+01 0.7000e-01 0.2810e+02 INITIAL EST 0.6000e+00 0.1000e-01 0.6000e+01 LOWER BOUND 0.12006+00

ESTIMATION STEP OMITTED:

450 NO. OF FUNCT. EVALS. ALLOWED: OF SIG. FIGURES REQUIRED: INTERMEDIATE PRINTOUT: Š.

CONVERGENCE REPEATED: MSF OUTPUT:

2 2 2 COVARIANCE STEP OMITTED: EIGENVLS. PRINTED:

õ

SPECIAL COMPUTATION:

엹 TABLES STEP OMITTED: NO. OF TABLES:

TABLES FILE USED: TABLES PRINTED:

USER CHOSEN DATA ITEMS FOR TABLE 1, IN THE ORDER THEY WILL APPEAR IN THE TABLE, ARE: USER CHOSEN DATA ITEMS FOR TABLE

THE FIRST 2 OF THESE WILL BE SORTED IN THE ORDER IN WHICH THEY APPEAR

SCATTERPLOT STEP OMITTED: NO NO. OF PAIRS OF ITEMS GENERATING FAMILIES OF SCATTERPLOTS: 9

CONC	CONC	P/S	PRED	PRED	P/S	RES	RES	P/S	WRES	P/S	PRED		PRED	P/8	
TIME	TIME	MS:	TIME	TIME	MS:	TIME	TIME		TIME	MS:	CONC	۵	CONC	MS:	0
ITEMS TO BE SCATTERED ARE:	ITEMS TO BE SCATTERED ARE:	FOR FIXED VALUES OF ITEMS:	ITEMS TO BE SCATTERED ARE:	ITEMS TO BE SCATTERED ARE:	FOR PIXED VALUES OF ITEMS:	ITEMS TO BE SCATTERED ARE:	ITEMS TO BE SCATTERED ARE:	FOR FIXED VALUES OF ITEMS:	ITEMS TO BE SCATTERED ARE:	FOR PIXED VALUES OF ITEMS:	ITEMS TO BE SCATTERED ARE:	UNIT SLOPE LINE INCLUDED	ITEMS TO BE SCATTERED ARE:	FOR FIXED VALUES OF ITEMS:	UNIT SLOPE LINE INCLUDED
ITEMS TO BE	ITEMS TO BE	FOR FIX	ITEMS TO BE	ITEMS TO BE	FOR PIX	ITEMS TO BE	ITEMS TO BE	FOR FIX	ITEMS TO BE	FOR FIX	ITEMS TO BE	ONIT SI	ITEMS TO BE	FOR FIX	ONIT SI

计可引用 医医性性性 医乳状性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球性 医乳球	**************************************	
有效性病者不会在我们的有效的		
化子类类类形式等的分类形式等的形式等的形式等的形式等的形式等的形式等的形式等的形式等的形式等的形式等的	PINEL DECEMBER PETERS	
· · · · · · · · · · · · · · · · · · ·		
· 经销售的证据的 医克里耳氏征 医克里耳氏征 医克里氏征 医皮氏征 医皮氏征 医皮氏征 医皮氏征 医皮氏征 医皮氏征 医皮氏征 医皮	中国的一个人,这个人,这个人,这个人,这个人,我们就不会有一个,我们就是一个人,我们就是一个人,我们这一个人,我们这一个人,我们这一个人,我们这一个人,我们就会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	
		N N N N N N N N N N N N N N N N N N N

THEIR - VECTOR OF FIXED RFFECTS ************

TH 3 TH 2 TH 1 5.65e-01 6.22e-02 2.95e+01

OMEGA - COV MATRIX FOR RANDOM REFECTS - BIAS ******

ETA2 ETAL

2.88e-02 ETAL

ETA2

-7.55e-04 4.42e-03

***** 在我在我我我我我我我我我我也会我我我也会 ****** STANDARD ERROR OF ESTIMATE **化物水水水水水水水水水水水水水水水水水 化化水水水水水水水水水水水水水水水水水水**

THEIR - VECTOR OF FIXED EFFECTS ************

TH 1 TH 2 TH 3

1.21e-02 5.65e-03 1.12e+00

OMEGA - COV MATRIX FOR RANDOM RFFECTS - RIAS ******

ETA2 7.11e-04 3.34e-03

ETA1 ETA2 ETA1 2.13e-02

						中华南部全部中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中	· 中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国
* * * *		***		Č			专业的专业专业专业专业专业专业的专业专业
****		4 4 4		3	KKELATION	CORRELATION MATRIX OF BSTIMMIN	化水物化物水水物物水水物物水水水水水水水水水水水水水水水水水水水水水水水水水
							安全的专业的专业专业的专业的专业的专业
t t		***			*****	在《《《《《《《《《《《《《《《《《《《《《《《》》》》》》,《《《《》》《《《》》《《《》》《《《《》》《《《》》《《《《》》《《《》》《《《》》《《《》《《《》《《》《《》《《》《《》《》	化分分子 经存货 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性
	TH I	TH 2	E 88	OHE 11	OM12	OM22	
re 1	1.00@+00						
1H 2	3.768-01	3.76@-01 1.00@+00					
E 33	-1.13e-01 -9.37e-01	-9.37@-01	1.008+00				
DM11	-1.42m-01 -8.94m-01	-8.94e-01	9.258-01	9.25@-01 1.00@+00			
OMCI 2	-1.540-01	7.988-01	-9.03@-01	-1.54e-01 7.98e-01 -9.03e-01 -9.01e-01 1.00e+00	1.000+00		
OM22	1.078-01	8.428-01	-7.7001	1.07e-01 8.42e-01 -7.70e-01 -7.83e-01 8.00e-01 1.00e+00	8.0001	1.00*+00	

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)

C THETA(1) = SLOPE (LITERS/HR/KG)
C THETA(2) = INTERCEPT (LITERS/HR)
C DATREC(2) = WEIGHT (KG)
C
DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
DOUBLE PRECISION THETA, F, G, H

C
F=THETA(1) *DATREC(2) + THETA(2)
G(1) = 1.
H(1) = 1.
RETURN
END
```

```
FILE
        NULL
        LIN REGRESSION OF CLEARANCE VS WT; REPEATED MEASURES
PROB
                         3
DATA
            0
                0 72
ITEM
            1
                3
                   0
                         0
                             1
LABL
           ID
                   WT
                            CL
FORM
(F2.0, 3X, F4.0, 1X, F6.0)
     79.6 1.850
 1
     79.6 2.642
     79.6 1.963
 1
 1
     79.6 2.415
 1
     79.6 1.905
     79.6 2.120
 1
     72.4 3.270
 2
 2
     72.4 3.600
 2
     72.4 3.530
 2
     72.4 3.689
 2
     72.4 3.940
 2
     72.4 4.526
 3
     70.5 2.977
 3
     70.5 3.143
 3
     70.5 3.497
 3
     70.5 3.264
 3
     70.5 3.447
 3
     70.5 3.652
 4
     72.7 2.768
 4
     72.7 3.183
 4
     72.7 3.119
     72.7 3.435
 4
     72.7 3.520
 4
 4
     72.7 3.603
 5
     54.6 2.335
 5
     54.6 2.241
 5
     54.6 2.149
 5
     54.6 2.381
 5
     54.6 2.184
 5
     54.6 1.805
 6
     80.0 3.885
     80.0 3.079
 6
 6
     80.0 3.600
 6
     80.0 3.963
 6
     80.0 3.598
 6
     80.0 3.415
 7
     64.6 3.175
     64.6 3.260
 7
 7
     64.6 3.590
 7
     64.6 3.154
 7
     64.6 3.616
 7
     64.6 3.027
     70.5 3.140
 8
 8
     70.5 3.310
 8
     70.5 3.426
 8
     70.5 3.445
     70.5 3.237
 8
 8
     70.5 3.279
 9
     86.4 3.247
 9
     86.4 2.628
 9
     86.4 3.296
 9
     86.4 3.380
 9
     86.4 3.621
 9
     86.4 3.240
```

```
58.2 1.889
10
      58.2 2.800
10
      58.2 1.865
10
      58.2 1.828
10
      58.2 3.106
58.2 2.386
10
10
11
      65.0 3.674
      65.0 4.151
11
11
      65.0 3.670
      65.0 3.324
11
      65.0 4.941
11
      65.0 4.129
11
      60.5 2.331
60.5 2.521
12
12
      60.5 3.194
12
      60.5 2.928
12
      60.5 2.868
12
      60.5 2.406
12
STRC
             2
                  1
                      1
                                     1
                                              1
             1
THCN
                           0
THTA
               .04
         -1000000
LOWR
                           0
           1000000
                           0
UPPR
DIAG
                 . 4
                 .1
DIAG
ESTM
             0 150
                       4
COVR
             0
             0
                 1
TABL
                 1 2 5
TABL
             2
                           2
             0
SCAT
             2
SCAT
                  6
SCAT
```

	在在有效在有效的有效的的的现在分词有效的的的的现在分词 医克勒特氏征 医克勒特氏病 医克勒氏病 医克勒特氏病 医克勒氏病 医克勒特氏病 医克勒特氏病 医克勒特氏病 医克勒氏病 医克勒特氏病 医克勒特氏病 医克勒特氏病 医克勒特氏病 医克勒特氏病 医克勒特氏病 医克勒氏病 医克勒氏病 医克勒氏病 医克勒特氏病 医克勒氏病 医克勒特氏病 医克勒氏病 医克克勒氏病 医克克勒氏病 医克克勒氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克克克克克氏病 医克克克克克克克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医皮氏炎 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克氏病 医克克克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克克克克克克克氏病 医克克克克氏病 医克克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克氏病 医克克克氏病 医克克氏病 医克克克氏病 医尿管皮氏病 医尿管皮氏病 医尿管皮氏病 医尿管皮氏病 医皮氏炎 克克氏病 医克克氏病 医克克氏病	

有有有力 使自由力力的 计记录 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	FINAL PARAMETER RESTINATE	
我我我们我在我们在我们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们的人们		
《《《《》》《《《《》》《《《》》《《《》》《《》》《《》》《《》》《《》》		
		计加热间接 医环状球状 医环球球球球 医牙状 医牙牙皮皮炎

THEIR - VECTOR OF FIXED EFFECTS *************

TH 1 TH 2

4.41e-02 0.00e+00

OMEGA - COV MATRIX FOR RANDOM RETECTS - BIAS *******

KIN

3.26a-01

ETA1

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

000

EPS1 1.25e-01

***** ***** STANDARD ERROR OF ESTINATE ****

THEIR - VECTOR OF FIXED RFFECTS ***************

TH 1 TH 2

2.568-03

OMEGA - COV MATRIX FOR RANDOM RFFECTS - ETAS ******

A L

ETA1 1.610-01

SIGHA - COV MATRIX FOR RANDOM RFFECTS - EPSILONS ****

200

EPS1 2.65e-02

* * * * * * * * * * * * * * * * * * * *		*****	***************************************	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	* * * * * * * * * * * * * * * * * * * *
	TH T	TH 2	08(11	SG11	
TB 1	1.008+00				
TH 2		:			
OMI 1	-3.75@-01		1.000+00		

2.90e-01 2.87e-01 1.00e+00

3G11

5.30e+01. 6.00e+01. 7.40e+01. 8.10e+01. 8.80e+01.	-1.700+00	RES VS.	WT -9.20e-01		-1.408-01	RES	6.40m-01	.	1.426+00	00		2.204+00
* * * * * * * * * * * * * * * * * * *	5.30@+01.			• •	•	•		•			• :	•
* * * * * * * * * * * * * * * * * * *				*	* *							
** * * * * * * * * * * * * * * * * * *	• •											
				7	*							
	6.00m+01.				,							
* * * * * * * * * * * * * * * * * * *	- • •				* * *		*					
* * * * * * * * * * * * * * * * * * *	• •											
	• •					*	#	22	*			
	6.70e+01.											
* 2 *2* 3 * * * * * 2 2 * * * * * * 2 2 * * * *												
	i				*	• • • • •	# m					
						*	2 2	*	*			
	7.400+01.											
	• • •											
5 ** 5		•	,									
5	8.100+01.	k	k K				*					
2**												
*	• • •											
8.80e+01.	• • •		*	2*								
	8.80e+01.			: .				: .	•	· · ·		•

-2.200+00	WRES VS.	HT -1.04@+00		1.20	1.2001	WRES	1.280+00	2.440+00	00	3.608+00
5.30e+01.		•	•		:	• •		•		•
		*		*	. *	*				
- • •										
- · ·	*	*			• 🛊 - :		*	*		
6.000+01.										
		*	*			*	*			
		*	-	# M	*		**			*
6.70@+01.										
<u>.</u>			•	*	*	*	*			
•		*		~ *	*	*	* *		*	
7.400+01.										
	*	*		*		*				
8.100+01.		*	•	_			*			
• • •										
• • • •	*			*	42	*				
8.80e+01.	•		•	•		•	•	•		
•	•		•		•	•	•	, , ,	•	

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
С
С
      THETA(1) - SLOPE (LITERS/HR/KG)
С
      THETA(2)=INTERCEPT (LITERS/HR)
Ċ
      THETA(3) = MEAN KE (1/HR)
С
      DATREC(2)=WEIGHT (KG)
Č
      DATREC(4)=TYPE DATA ITEM
С
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H
С
      IF (DATREC(4).EQ.O.) THEN
         F=THETA(1)*DATREC(2)+THETA(2)
         G(1)=1.
         G(2)=0.
         H(1)=1.
         H(2) = 0.
      ELSE
         F=THETA(3)
         G(1)=0.
         G(2)=1.
         H(1)=0.
         H(2)=1.
      ENDIF
      RETURN
      END
```

```
NULL
FILE
        MULTIV LIN REG OF CLEARANCE AND RATE CONSTANT VS WT; REPEATED MEASURES
PROB
DATA
           0
                0 144
                        5
                3
ITEM
           1
                  0
                        0
                            1
          L1
                   WT
                           CL
                                            L2
LABL
                                  TYPE
FORM
(F2.0,3X,F4.0,1X,F6.0,2(1X,F1.0))
     79.6 1.850
1
     79.6 .0475 1
     79.6 2.642
 1
 1
     79.6 .0558 1 1
     79.6 1.963
 1
 1
     79.6 .0440 1
     79.6 2.415
 1
     79.6 .0560 1 1
79.6 1.905
 1
 1
 1
     79.6 .0442 1
     79.6 2.120
1
 1
     79.6 .0513 1 1
 2
     72.4 3.270
 2
     72.4
          .0996 1
 2
     72.4 3.600
 2
     72.4 .0919 1 1
 2
     72.4 3.530
     72.4 .0961 1
72.4 3.689
 2
 2
 2
     72.4 .0940 1 1
 2
     72.4 3.940
 2
     72.4 .0996 1
 2
     72.4 4.526
                    1
 2
     72.4 .0996 1 1
 3
     70.5 2.977
 3
     70.5 .0942 1
 3
     70.5 3.143
 3
     70.5 .0731 1 1
     70.5 3.497
 3
     70.5 .1000 1
 3
 3
     70.5 3.264
 3
     70.5 .0843 1 1
 3
     70.5 3.447
 3
     70.5
          .0818 1
 3
     70.5 3.652
 3
     70.5 .0986 1 1
 4
     72.7 2.768
     72.7 .0922 1
 4
     72.7 3.183
 4
 4
     72.7 .0885 1 1
 4
     72.7 3.119
 4
     72.7 .0859 1
     72.7 3.435
 4
     72.7 .0926 1 1
 4
     72.7 3.520
 4
 4
     72.7 .0968 1
     72.7 3.603
     72.7 .0880 1 1
```

```
54.6 2.335
5
5
    54.6
          .0840 1
    54.6 2.241
                    1
    54.6
          .0907 1 1
    54.6 2.149
5
    54.6
          .0910 1
5
    54.6 2.381
                    1
    54.6
          .0866 1 1
    54.6 2.184
5
5
    54.6
          .0842 1
5
    54.6 1.805
                    l
5
    54.6
          .0651 1 1
    80.0 3.885
6
          .0881 1
6
    80.0
    80.0 3.079
6
                    1
6
          .0758 1 1
    80.0
6
    80.0 3.600
    80.0
6
          .0739 1
б
    80.0 3.963
6
          .0982 1 1
    80.0
6
    80.0 3.598
6
    80.0
          .0751 1
6
    80.0 3.415
                    1
6
    80.0
          .0947 1 1
7
    64.6 3.175
          .0897 1
7
    64.6
7
    64.6 3.260
7
    64.6
          .0997 1 1
7
    64.6 3.590
7
    64.6
          .1033 1
7
    64.6 3.154
                    1
7
    64.6
          .0890 1 1
7
    64.6 3.616
7
    64.6
          .0951 1
7
    64.6 3.027
                    1
7
    64.6
          .0871 1 1
    70.5 3.140
8
8
    70.5
          .0814 1
8
    70.5 3.310
          .0859 1 1
8
    70.5
8
    70.5 3.426
8
    70.5
          .0875 1
8
    70.5 3.445
                    1
8
    70.5
           .0732 1 1
    70.5 3.237
8
8
    70.5
          .0767 1
8
    70.5 3.279
                    1
8
    70.5
          .0834 1 1
9
    86.4 3.247
9
    86.4
          .0784 1
9
    86.4 2.628
9
    86.4
          .0550 1 1
9
    86.4 3.296
9
    86.4
          .0878 1
    86.4 3.380
9
                    1
9
          .0663 1 1
    86.4
9
    86.4 3.621
9
    86.4
          .0761 1
9
    86.4 3.240
9
    86.4
          .0741 1 1
```

```
10
     58.2 1.889
     58.2 .0722 1
10
10
     58.2 2.800 1
     58.2 .0900 1 1
10
10
     58.2 1.865
10
     58.2
          .0578 1
     58.2 1.828
10
                   1
     58.2
          .0575 1 1
10
     58.2 3.106
10
     58.2
10
          .0957 1
     58.2 2.386
10
     58.2 .0730 1 1
10
11
     65.0 3.674
11
     65.0
          .0945 1
     65.0 4.151 1
11
     65.0
          .1026 1 1
11
     65.0 3.670
11
     65.0 .1092 1
11
     65.0 3.324
11
                 1
          .0911 1 1
11
     65.0
     65.0 4.941
11
     65.0
          .0939 1
11
     65.0 4.129 1
11
11
     65.0 .0947 1 1
     60.5 2.331
12
          .1039 1
12
     60.5
     60.5 2.521 1
12
          .0807 1 1
     60.5
12
     60.5 3.194
12
          .1006 1
12
     60.5
12
     60.5 2.928 1
     60.5 .1131 1 1
12
     60.5 2.868
12
12
     60.5
          .1000 1
     60.5 2.406
12
                   1
12
     60.5 .0730 1 1
STRC
           3 2
                   2
                                   1
                                           1
               2
           1
STRC
           1
               2
STRC
           1
THCN
                     0 .08
             .04
THTA
        -1000000
                       0-1000000
LOWR
         1000000
                      0 1000000
UPPR
              . 4
                    .006 .0002
BLST
BLST
              .1
                    .002
                          .00008
           0 500
ESTM
                      5
COVR
           0
           0
TABL
           3
                   2
                       2
                           0
                               4
TABL
               1
                                   1
           0
               2
SCAT
           2
               7
SCAT
                   1
                       4
           2
               8
                       4
SCAT
                   1
```

***** **电影的复数形式 医多种性性性性性性性性性性的** ************* FINAL PARAMETER ESTIMATE 我我我我也我也我也我也我也也也也 化 ***********

THEIR - VECTOR OF FIXED BFFECTS ************

TH 3 TH 2 TH 1 4.46e-02 0.00e+00 8.43e-02

OMEGA - COV MATRIX FOR RANDOM RFFECTS - RIAS ******

ETAL

ETA2

6.72e-03 1.54e-04 ETA2

3.27e-01

ETA1

SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS ****

KP S2 EPS1

1.258-01 **EPS1**

1.73e-03 9.21e-05 EPS2

***** *********** **我在我我也也也不不不不不不不不不不不** STANDARD ERROR OF ESTIMATE 我在我也在在我的在我的我的我的我们

THETA - VECTOR OF FIXED RFFECTS ************

TH 2 TH 1

3.684-03 2.30e-03 OMEGA - COV MATRIX FOR RANDOM RFFECTS - ETAS ******

ETA1

3.71e-03 9.05e-05 ETA2

1.620-01

RTA1

SIGMA - COV MATRIX FOR RANDOM RFFECTS - RESILONS ****

EPS2 EPS1

2.658-02

EPS1

6.18e-04 2.23e-05 EPS2

* * * * * * * * * * * * * * * * * * * *		*****		CC	PRELATION PRELATION	CORRELATION MATRIX OF BSTIMATE	BSTIMATE ************************************		TATATATATATATATATATATATATATATATATATATA
	T ##	Z HJ	TH 3	0911	OMIZ	OM22	5611	8612	SG22
TB 1	1.000+00								
TB 2	•								
TB 3	9.088-01		1.000+00						
11110	-3.160-01			-5.17e-01 1.00e+00					
OMI 2	-5.054-01		ė.	43m-01 9.61m-01 1.00m+00	1.000+00				
OM22	-6.104-01	-6.104-01	9	87e-01 8.86e-01 9.77e-01 1.00e+00	9.778-01	1.000+00			
SG11	2.22-01	2.220-01	3.926-02	2.78-01	1.428-01	92e-02 2.78e-01 1.42e-01 4.07e-02 1.00e+00	1.00+00		
SG12	-4.020-01	:	m,	-2.140-01	-1.250-01	50m-01 -2.14m-01 -1.25m-01 -5.05m-02 4.03m-01 1.00m+00	4.034-01	1.00*+00	
SG22	-1.678-01	•	ų	-3.710-01	-3,390-01	13e-02 -3.71e-01 -3.39e-01 -2.71e-01 2.83e-01	2.836-01	8.25@-01 1.00@+00	1.00@+00

-4
NO.
TABLE

LINE N	NO. TYPE	1	IM	ಕ	PRED	RES	WRES
-	0.000+00	1.000+00	7.966+01	1.85e+00	3.556+00	-1.70e+00 -	-1.80@+00
8	0.000+00	1.004+00	7.968+01	2.410+00	3.55e+00	-1.130+00	-2.110-01
6	0.000+00	1.000+00	7.968+01	2.640+00	3.55e+00	-9.050-01	4.35e-01
_	0.000+00	1.004+00	7.968+01	1.960+00	3.55⊕+00	-1.588+00	-1.486+00
IO.	0.000+00	1.000+00	7.968+01	2.120+00	3,550+00	-1.430+00 -	-1.040+00
9	0.000+00	1.000+00	7.96++01	1.900+00	3.55@+00	-1.64@+00 -	-1.648+00
_	0.000+00	2.000+00	7.240+01	3.270+00	3.23@+00	4.354-02 -	-1.03e+00
e o	0.00@+00	2.00@+00	7.246+01	3.946+00	3.23@+00	7.130-01	8.760-01
σ.	0.00+00	2.00@+00	7.240+01	3.69@+00	3.23@+00	4.6201	1.708-01
10	0.00+00	2.000+00	7.240+01	3.600+00	3.23@+00	3.730-01 -	-7.94m-02
11	0.00*+00	2.000+00	7.248+01	3.530+00	3.23@+00	3.030-01 -	-2.85e-01
12	0.000+00	2.000+00	7.240+01	4.530+00	3.23@+00	1.306+00	2.548+00
13	0.00+00	3.00@+00	7.058+01	2.98e+00	3.14@+00	-1.65e-01 -	-8.840-01
7.	0.008+00	3.000+00	7.050+01	3.146+00	3.14@+00	1.146-03 -	-3.77-01
1.5	0.000+00	3.000+00	7.05@+01	3.450+00	3.14@+00	3.05e-01	4.730-01
16	0.000+00	3.00+00	7.050+01	3.65@+00	3.140+00	5.10e-01	1.03@+00
11	0.00+00	3.004+00	7.05e+01	3.260+00	3.146+00	1.224-01 -	-5.15@-02
18	0.00+00	3.00@+00	7.05@+01	3.500+00	3.14@+00	3.55e-01	5.86m-01
19	0.00+00	4.00@+00	7.27•+01	3.520+00	3.240+00	2.8001	7.1001
20	0.00+00	4.00@+00	7.278+01	3.186+00	3.24@+00	-5.69e-02 -	-2.354-01
21	0.000+00	4.00@+00	7.278+01	3.600+00	3.24e+00	3.638-01	9.610-01
22	0.00@+00	4.008+00	7.276+01	3.430+00	3.246+00	1.95e-01	4.75e-01
23	0.000+00	4.000+00	7.276+01	2.778+00	3.240+00	-4.72e-01 -	-1.42@+00
24	0.000+00	4.008+00	7.270+01	3.126+00	3.240+00	-1.210-01 -	-4.130-01
25	0.000+00	5.00e+00	5.460+01	2.186+00	2.436+00	-2.498-01 -	-1.770-01

WRES	-1.600+00	7.698-01	1.030-01	1.028-02 -5.098-01	1.048-02 -1.238+00	1.83e-02 -3.09e-01	9.654-03 -2.664+00	2.49m-02 1.28m+00	6.858-03 -3.488-01	2.63@+00	1.144+00	-6.320-01	6.784-01	2.490+00	-1.38e+00
RES	8.43m-02 -2.65m-02 -1.60m+00	5.754-03	8.43@-02 -1.21@-02	1.020-02	1.040-02	1.834-02	9.654-03	2.494-02	6.854-03	2.888-02	8.430-02 1.570-02	8.43@-02 -3.55@-03 -6.32@-01	8.43@-02 1.63@-02	1.966-02	8.43e-02 -1.13e-02 -1.38e+00
PRED	8.430-02	8.430-02	8.4302	8.436-02	8.430-02	8.43a-02	8.434-02	8.430-02	8.43e-02	8.438-02	8.430-02	8.434-02	8.43e-02	8.43€-02	8.430-02
ដ	5.784-02	9.000-02	7,224-02	9.45e-02	9.474-02	1.030-01	9.394-02	1.094-01	9.118-02	1.130-01	1.000-01	8.0702	1.014-01	1.048-01	7.304-02
Ţ	5.820+01	5.820+01	5.82@+01	6.50+01	6.504+01	6.500+01	6.500+01	6.500+01	6.50@+01	6.05@+01	6.050+01	6.050+01	6.05@+01	6.05m+01	6.05@+01
13	1.000+01	1.000+01	1.000+01	1.104+01	1.10++01	1.100+01	1.100+01	1.100+01	1.100+01	1.200+01	1.200+01	1.200+01	1.200+01	1.20@+01	1.20+01
O. TYPE	1.000+00	1.000+00	1.000+00	1.00*+00	1.00*+00	1.00=+00	1.00*+00	1.000+00	1.00+00	1.000+00	1.000+00	1.000+00	1.00*+00	1.00@+00	1.00*+00
LINE NO.	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144

	-1.80@+00	RES	VS.	WT -1.02e+00	. PO.	CNTS A	RE ONI	POINTS ARE ONLY FOR - -2.400-01	- TYPE - RES		0.00@+00 5.40@-01		ਜੋ	1.32@+00		2.1	2.10@+00
	5.308+01		• •									•	•		•		
2* * * * * * * * * * * * * * * * * * *	• •						*	*				·	•	•	, ,	•	
2* * * * * * * * * * * * * * * * * * *	- •								• •								• •
	•								•								
	- • •					2*		-		*	*						
* * * * * * * * * * * * * * * * * * *	.000+01								•								•
* * * * * * * * * * * * * * * * * * * *									*	*	*						: .
* 2 22 *2* * * * * * * * * * * * * * *	- • •								• •								
	- •																• •
* 2 22 *2* * * * * * * * * * * * * * *	- • •								• •	*	** **	**2		~			•
* * * * * * * * * * * * * * * * * * * *	.700+01.																;
* 2 22 *2* * * * * * * * * * * * * * *									• • •								• •
	WI								+		*2* *						
	, ,						*		*		* ***	*		*			
	.408+01.								• •								. :
* * * * * * * * * * * * * * * * * * * *									• • •								• • •
																	• • •
		*	*	*	*		•		• •								• •
* 5* *	.10e+01.						•		• • •		*						.:.
* · · · · · · · · · · · · · · · · · · ·	• • •																
2* *	• •																
.80@+01.	• • •			*			2* *	*									• •
	.80@+01.	:		:	•		:	•		•	:	•	•	:	:	•	• :

		RES VS.	WT -2.68@-02	POINT:	POINTS ARE ONLY FOR -1.264-02	1	TYPB = RES	1.00@+00 1.60@-03	δο. Ευ	H	1.580-02		3.004-02
	-	•	•			. :	• •			•	•	• •	
					*			#	*	8			• •
				N		*			*	*			
													• •
						*		*			*	*	*
								•					• •
2 * 2 * * * * * * * * * * * * * * * * *													
2 * 5 * 5 * 4 * * * * * * * * * * * * * *								• •		*2*	•	*	*
2 * 2 * * 3 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *								• •					
2 * 2 * 2 * 2 * 4 * 4 * 2 * 4 * 4 * 4 *													
													•
5						~	*	2 #		*	*		• •
													•
								• •					• •
* * * * * * * * * * * * * * * * * * * *								•					•
								• •					
								• •					
*		*	*			*	‡	• •	*	*	*		• •
*								• •					•
*								•					•
*								• •					
								• •					
			*		*	*	*	• •	*				
	•	•				•				•	•	•	

5.30+01. 6.00+01. 7.40+01. 8.10+01.	-2.20@+00	WRES VS.	WT -1.048+00	POINTS ARE ONLY FOR 1.20@-01	ARE C	NLY FOR 204-01	TYPE =		0.00@+00 1.28@+00	2.4	2.446+00	3.60	3,600+00
	5.300+01.	•		•		•				•	•		
	• •		•		*	*							
	• •												• •
	•		*			• • •			*	*			• •
													• •
	.00e+01.		*	*	*			*	*				. : .
													• •
2. * 2. * * * * * * * * * * * * * * * *	•								•				• •
	• •		*		*	*2*.	*		+2+				*
	.700+01.												:
	TM			*	#			*	*				• • •
* * * * * * * * * * * * * * * * * * * *					4	*	*	*	*		*		
* * * * * * * * * * * * * * * * * * * *	.40#+01.												
* * * * * * * * * * * * * * * * * * * *													
2	• •	*		_	,	• •	*		•				• •
* CV	.10++01.		•		*	·			*				. : .
* CV	• •												
# CO .	• • •					• •							• •
•	• • •	*			6	• • •		*					• • •
	8.80e+01.	•	•	•	•	•	:	•	•		•	•	• :

5.30+011 6.00+111. 7.60+011. 7.60+011.	-2.80+00	WRES VS.	WT -1.70e+00	POINTS 0	POINTS ARE ONLY FOR - -6.00@-01	OR - TYPE = 01 WRES	1.000+00 5.000-01		1.60@+00	2.70•+00
	5.30@+01.	•		•	•			•		
		•	•	. *	• •			. *	· · · · · · · · · · · · · · · · · · ·	
										• •
	• • •			~		*		*		
										••
53				*	•			*	•	*
	• •									• • •
	• • •	•		-	•	* 23*			*	
	5.704+01.									•••
	• •									• • •
	···		*	*	:		. % .	•	*	• •
					*	•	*	*	*	• • •
	. 600+01.									
	- • •					- '				
	• •				*					• • •
	.10+01.			*	•	*		*	*	.:
	• •					- •				•
	• • •					•				
	• •					- •				•
.80s+01.	• •				*	*	*	•	*	
_	.800+01.	•	•	· ·		:		•		• •

```
SUBROUTINE PRED (ICALL, NEWIND, THETA, DATREC, INDXS, F, G, H)
C
С
      THETA(1) = MEAN ABSORPTION RATE CONSTANT (1/HR)
C
      THETA(2)=MEAN ELIMINATION RATE CONSTANT (1/HR)
С
      THETA(3)=SLOPE OF CLEARANCE VS WEIGHT RELATIONSHIP (LITERS/HR/KG)
С
      DATREC(2)=WEIGHT-ADJUSTED DOSE (MG/KG)
C
      DATREC(3)=TIME (HR)
C
      DATREC (5) = WEIGHT (KG)
С
      DIMENSION THETA(*), DATREC(*), INDXS(*), G(*), H(*)
      DOUBLE PRECISION THETA, F, G, H, A, B, C, D, E
      DOUBLE PRECISION DAD2, DBD1, DFD1, DFD2, DFDD, DFDE
C
      IF (NEWIND.NE.2) THEN
         DOSE=DATREC(2)
         WT=DATREC (5)
      ENDIF
      A=EXP(-THETA(2)*DATREC(3))
               DAD2=-DATREC(3)*A
      B=EXP (-THETA(1) *DATREC(3))
               DBD1=-DATREC(3) *B
      C=THETA(1)-THETA(2)
      D=A-B
      E=THETA(3)*C
      F=((DOSE*THETA(1)*THETA(2))/E)*D
               DFD1 = ((DOSE * THETA(2))/E) *D
               DFD2=((DOSE*THETA(1))/E)*D
               DFDD=(DOSE*THETA(1)*THETA(2))/E
               DFDE=-((DOSE*THETA(1)*THETA(2))/E**2)*D
      G(1) = DFD1 - DFDD * DBD1 + DFDE * THETA (3)
      G(2)=DFD2+DFDD*DAD2-DFDE*THETA(3)
      G(3) = DFDE * C/WT
      H(1)=1.
      RETURN
      END
```

FILE PROB		EAR REGR	ESSION OF	СР	vs	TIME	DATA	FROM	12	SUBJECT	s
DATA ITEM	0 1	0 132 4 0	5 0 1								
LABL	ID	DOSE	TIME	СР		WT					
FORM						***					
(5F10.		4 00						_			
	1 1	4.02	0. 0.25			74	79	. 6			
	1		0.23			84 57					
	1		1.12		10.						
	1		2.02			66					
	1 1		3.82 5.1			58					
	1		9.05			36 89					
	ī		7.03			47					
	1		12.12			94					
	1	4 4	24.37			28	70				
	2	4.4	0. .27		0.	72	72	. 4			
	2		.52			91					
	2		1.		8.	31					
	2		1.92			33					
	2		3.5 5.02			85 08					
	2		7.03		5.						
	2		9.			55					
	2		12. 24.3			01 90					
	3	4.53	0.		ο.		70	. 5			
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3		.27		4.	4					
	3		.58		6.						
	<i>3</i> 3		1.02 2.02		8. 7.						
	3		3.62		7.						
	3		5.08		6.	2					
	3 3		7.07 9.		5.						
			12.15		4. 3.						
	3		24.17			05					
	3 3 4 4	4.4	0.		0.		72.	. 7			
	4		.35 .6		1. 4.	89 6					
	4		1.07		8.						
	4		2.13		8.	38					
	4 4		3.5 5.02			54 88					
	4		7.02			78					
	4		9.02			33					
	4		11.98			19					
	4 5	5.86	24.65 0.		0.	15	54.	<i>C</i>			
	5	5.00	.3			02	54.	. 0			
	5		.52		5.	63					
	5		1.		11.						
	5 5		2.02 3.5		9. 8.	33 74					
	5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.02		7.	56					
	5		7.02			09					
	5 5		9.1 12.		5. 4	9 37					
	5 5		24.35			57					
					_						

666666666677	4.	0. .27 .58 1.15 2.03 3.57 5. 7.	0. 1.29 3.08 6.44 6.32 5.53 4.94 4.02 3.46	80.
6 7 7 7 7 7 7 7	4.95	12.1 23.85 0. .25 .5 1.02 2.02 3.48 5. 6.98	2.78 .92 .15 .85 2.35 5.02 6.58 7.09 6.66 5.25	64.6
7 7 8 8 8 8 8 8 8 8	4.53	9. 12.05 24.22 0. .25 0.52 .98 2.02 3.53 5.05 7.15	4.39 3.53 1.15 0. 3.05 3.05 7.31 7.56 6.59 5.88 4.73	70.5
8889999999999	3.1	9.07 12.1 24.12 .0 .3 .63 1.05 2.02 3.53 5.02 7.17 8.8	4.57 3. 1.25 .0 7.37 9.03 7.14 6.33 5.66 5.67 4.24 4.11	86.4
9 9 10 10 10 10 10 10 10 10	5.5	11.6 24.43 0. .37 .77 1.02 2.05 3.55 5.05 7.08 9.38 12.1 23.7	3.16 1.12 .24 2.89 5.22 6.41 7.83 10.21 9.18 8.02 7.14 5.68 2.42	58.2

```
4.92
                                        0.
4.86
         11
                             0.
                                                  65.
                              .25
         11
                              .5
         11
                                        7.24
                              .98
         11
                                        8.
         11
                             1.98
                                        6.81
         11
                             3.6
                                        5.87
         11
                             5.02
                                        5.22
         11
                             7.03
                                        4.45
         11
                             9.03
                                        3.62
         11
                            12.12
                                        2.69
         11
                            24.08
                                        .86
                                        0.
1.25
         12
                  5.3
                             0.
                                                  60.5
                             .25
         12
         12
                             . 5
                                        3.96
                             1.
         12
                                        7.82
         12
                             2.
                                        9.72
         12
                             3.52
                                        9.75
         12
                             5.07
                                        8.57
         12
                             7.07
                                        6.59
         12
                             9.03
                                        6.11
         12
                            12.05
                                        4.57
         12
                            24.15
                                        1.17
                3
STRC
            3
                     1
                                       1 1
STRC
            1
                 3
            1
THCN
               3.
THTA
                      .08
                                .04
LOWR
                      .008
                               .004
               . 1
                                 .9
UPPR
               5.
                      .5
BLST
                                 .3
               6.
                      .005
                                       .0002
                                                           . 4
                                                 .006
DIAG
              . 4
ESTM
            0 450
                     3
                         5
COVR
            0
TABL
            0
                1
TABL
            4
                1
                         2
                                  5
                                           3
            0
                2
SCAT
                7
            3
SCAT
                     1
                         1
SCAT
            3
                     1
                8
                         1
```

		化位置 化水杨烷 医克拉特氏 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
安安安全 化化合物化合物化合物化合物化合物	FIRAL PARAMETER ESTIMATE	我我我在我我我我我我我我我我我我我我我我
有我也不 化我们我也是我们的现在分词		我会会我我我我看着我看着我看着我的女女女女女女女女女女女女女女女女女女女女女女女女女女

THEIR - VECTOR OF FIXED EFFECTS **************

TH 1 TH 2 TH 3

2.77e+00 7.81e-02 3.63e-02

OMEGA - COV MATRIX FOR RANDOM EFFECTS - BIAS ******

ETA1 BTA2 BTA3

ETA1 5.55e+00

5.246-03 2.406-04

ETA2

ETA3 -1.28e-01 9.11e-03 5.15e-01

SIGHA - COV MATRIX FOR RANDOM REFECTS - RPSILONS ****

EPS

EPS1 3.88e-01

*********** **** **在在在我的我们的有什么的,我们也是我们的的,** 如果如果我们的有关的,我们也有一个人的,我们也有的,我们的,我们的,我们的,我们的有关,我们的,我们的有的,我们的的,我们的有的,我们的有的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们的自己的的,我们们的自己的的,我们们的自己的的,我们们的一个一 STANDARD ERROR OF ESTIMATE *************

THEIR - VECTOR OF FIXED RFFECTS ************

TH 2

7.01e-01 7.36e-03 4.66e-03

OMEGA - COV MATRIX FOR RANDOM EFFECTS - BIAS ******

ETAB ETA2

ETAI

1.248-02 1.188-04 4.78=+00

ETA1 **ETA2**

3.62e-03 2.08e-01 4.25a-01 ETA3

SIGMA - COV MATRIX FOR RANDOM REFECTS - RPSILONS ****

EPS1

1.068-01 EPS1

****	医医克耳氏试验检尿道医尿性尿道医尿道医尿道医尿栓尿道							***		医皮皮皮皮皮皮皮皮皮皮 医三角性 医毛球球 医牙线线 医皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮皮	
****	************	****		9	RRELATION	CORRELATION MATRIX OF ESTIMATE	RSTIMATE			**********	٠.
****	*************************	****		i						****	
***	****		*****	********	*******	***	*****	****	******	20.20.20.20.20.20.20.20.20.20.20.20.20.2	
	18 1	TB 2	TH 3	OMI1	0901.2	OM13	OM22	OM23	OM33	SG11	
TH 1	1.000+00										
TH 2	1.836-01	1.83e-01 1.00e+00									
TH 3	-1.614-02	9.524-01	1.000+00								
09/1.1	9.706-01	1.486-01	9.70e-01 1.48e-01 -3.71e-02 1.00e+00	1.00+00							
OMI 2	3.806-01	3.80e-01 7.48e-01		6.54e-01 2.82e-01 1.00e+00	1.000+00						
OM1.3	-9.826-02	-9.82e-02 4.62e-01		5.17e-01 -2.30e-01 6.93e-01 1.00e+00	6.930-01	1.000+00					
OM22	3.434-02	4.5501		3.90m-01 -4.95m-02		7.996-01 6.616-01	1.00*+00				
OM23	-3.25e-02	-9.02@-02	-3.25e-02 -9.02e-02 -5.88e-02 -1.64e-01	-1.640-01	3.57-01	6.190-01	6.696-01	1.000+00			
OM33	1.566-02	-2.648-01	1.56e-02 -2.64e-01 -1.75e-01 -1.08e-01 1.13e-01 4.75e-01 3.04e-01 8.93e-01	-1.080-01	1.130-01	4.75e-01	3.046-01	8.93@-01	1.000+00		
SG11	-1.704-01	-1.70e-01 2.57e-01		1,32m-01 -2.64m-01 4.84m-01 3.66m-01 6.11m-01 2.65m-01 -4.85m-02 1.00m+60	4.84*-01	3.668-01	6.110-01	2.658-01	-4.85e-02	1.00@+00	

RES	7.400-01	-1.440+00	-1.120-01	2.740+00	2.09++00	1.986+00	2.386+00	2.50@+00	2.336+00	2.496+00	1.950+00	0.00+00	-3.210+00	8.584-01	-9.234-02	-8.1203	-5,610-01	-5.02@-01	-2.250-01	-2.730-01	-8.05@-01	-5.59@-01	0.000+00	-6.78e-01	-6.798-01
PRED	0.00-+00	4.28e+00	6.680+00	7.760+00	7.57e+00	6.60++00	5.98@+00	4.390+00	5.140+00	3.450+00	1.330+00	0.000+00	4.934+00	7.058+00	8.40•+00	8.34*+00	7.418+00	6.58@+00	5.63@+00	4.820+00	3.826+00	1.468+00	0.000+00	5.08@+00	7.58e+00 ·
B	7.408-01	2.840+00	6.574+00	1.05@+01	9.664+00	8.58e+00	8.36@+00	6.89m+00	7.478+00	5.940+00	3.284+00	0.00+00	1,720+00	7.916+00	8.31•+00	8.33*+00	6.85@+00	6.08*+00	5.40++00	4.550+00	3.01@+00	9.000-01	0.00*+00	4.408+00	6.90@+00
TIME	0.00*+00	2.500-01	5.7001	1.120+00	2.020+00	3.82++00	5.100+00	9.05@+00	7.030+00	1.210+01	2.44@+01	0.000+00	2.704-01	5.200-01	1.000+00	1.920+00	3.50++00	5.02++00	7.03@+00	9.000+00	1.200+01	2.430+01	0.000+00	2.70@-01	5.8001
W	7.968+01	0.00*+00	0.00*+00	0.00+00	0.00*+00	0.00+00	0.00*+00	0.00*+00	0.00*+00	0.000+00	0.000+00	7.248+01	0.00*+00	0.00*+00	0.000+00	0.000+00	0.006+00	0.00@+00	0.000+00	0.000+00	0.000+00	0.004+00	7.05@+01	0.00@+00	0.000+00
DOSE	4.020+00	0.00+00	0.00+00	0.00@+00	0.00+00	0.000+00	0.00+00	0.00@+00	0.00+00	0.00+00	0.00+00	4.400+00	0.00+00	0.00•+00	0.000+00	0.000+00	0.000+00	0.00+00	0.00*+00	0.000+00	0.000+00	0.000+00	4.53e+00	0.000+00	0.000+00
e .	1.000+00	1.00@+00	1.000+00	1.000+00	1.000+00	1.000+00	1.000+00	1.00e+00	1.000+00	1.000+00	1.000+00	2.000+00	2.000+00	2.000+00	2.000+00	2.000+00	2.00@+00	2.000+00	2.000+00	2.00m+00	2.000+00	2.00@+00	3.00@+00	3.004+00	3.00e+00
LINK NO	Ħ	8	e	•	ю	v	•	•	ø	10	#	12	13	14	115	16	11	18	19	20	77	22	23	24	22

0.000+00

1.560+00

2.85e+00

6.288-01

-3.63e+00

2.060-01

-6.63@-01

5.940-02

3.90e-02 -7.76e-01 -4.81e-01 0.00*+00

-1.80e-01 -8.43e-02

1.376+00

9.26e-02

7.700-01

4.508-01

2.50+00

-1.35+00

-2.598-01

1.196+00

1.160+00

7.630-01

TABLE NO. 1

1. 500+000. 1. 520+01. 2. 66+401.	-4.000+00	RES	RES VS. TIME -3.	TIME -3.08@+00		POINTS ARE ONLY FOR -2.164+00	- ID -	4.00@+00 -1.24@+00	-3.200-01	н	6.000-01
	-1.00@+00.	•	•		- •	•	•			•	
	• •									**	. . .
					*						
											• •
	00+00										. :
											*
											• •
										*	
	9.80æ+00.										*
*											• • •
	TIME										*
											• •
	.e+01.										:
											• •
	• •										• •
	• •										
	2.06e+01.										.:
*											• •
	• •										• •
	• •										
	.10+0	•	•	•	•	•	•	•	•		•

-5.100+00	RES	VS. TIME -4.02@+00	POINTS ARE	ONLY FOR -	- ID -	5.00@+00 -1.86@+00		-7.80=-01		3.000-01
-1.00@+00.	•		•		•				•	•
	*		4							
							*			• •
										• • •
4.20@+00.								*		
								•		
- •								·		
• •									*	
•										
9.406+00.									*	
•										
• •										
TIME									*	
										•
1.460+01.										
• •										
• •										•
										, ,
•										
1.98@+01.										
• •										
• •										
, ,										
2.50@+01.	•	•	•	•	•		•		*	•
•			•	•	•	•	•	•	•	•

1.00e+00. 4.40e+00. 9.80e+00. 1.52e+01. 2.66e+01.	-1.700+00	WRES VS.	WRES VS. IIME -9.80e-01		POINTS ARE ONLY FOR - ID -2.60@-01 WRB	- ID =	4.00e+00 4.60e-01		1.18+00		1.900+00
	1.000+00		•	•		:		•		•	•
	•					• •					
	- •			*		•					
	•					•					*
	•					• *					
	• •				Í						
	•										
	4.40e+00.										
	. •	_									
	•					•					
	. •										
	•					•					
*	•										
*	•					•	*				
*	9.80e+00.					•					
*											
*	•					•	*				
	LIME .										
	. •										
	•										
	1.528+01.										
	•					•					
	•					•					
	• •										
	2.06@+01.										
	٠					•					
	• •										
	•					•					
	•					•					
	• •				.						
	2.600+01.	•			•	. :	•	•			

1. 20a+00. 4. 20a+00. 9. 40a+00. 1. 46a+01.	-2.60@+00	WRES VS. TIME 0 -1.	TIME -1.32m+00		POINTS ARE ONLY FOR -4.00@-02	t - ID =	5.00@+00	``	2.520+00	ei ei	3.80+00
	1.00+00.					•					
+01.	•					• *					•
	•	*			*	•					•
# # # # # # # # # # # # # # # # # # #	-										
+000. +01. +01. +01. +01. +01. +01. +01. +01.	- •		*								•
+00- +100 +101 +01 +01 +01 +01 +0	. •										
+01.	001006			•							•
+01.	001803-										
+01.	•			*							•
+01.	•										
+01. +01. +01.	•					*					•
+00. ++01. ++01. ++01.	. •										
+01. +01.	•	•				. •					•
+01.	40++00.										•
+01		, .									•
** -+01+01+01+01.	•										• •
	L ME				*						
	•										• •
	•	•				•					•
	.46e+01.										• •
	•										•
	- 1										•
											•
	•					•					•
	.98e+01.										
	•										•
	•										
	• •										• •
	•					•					•
	•				•						
•	.50@+01.			•	* · ·	•	•		•	•	•
	•					•	•	•			٠