Lesson 11: Interactions Continued

Nicky Wakim

2024-02-26

Learning Objective

5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modifier.

Do we think food supply is an effect modifier for female literacy rate?

- We can start by visualizing the relationship between life expectancy and female literacy rate by food supply
- Questions of interest: Does the effect of female literacy rate on life expectancy differ depending on food supply?
 - This is the same as: Is food supply is an effect modifier for female literacy rate? Is food supply an effect modifier of the association between life expectancy and female literacy rate?
- Let's run an interaction model to see!

Model with interaction between two continuous variables

Model we are fitting:

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \beta_3 F L R^c \cdot F S^c + \epsilon$$

- LE as life expectancy
- FLR^c as the **centered** around the mean female literacy rate (continuous variable)
- FS^c as the **centered** around the mean food supply (continuous variable)
- ► Code to center FLR and FS

In R:

```
1 m_int_fs = lm(LifeExpectancyYrs ~ FLR_c + FS_c + FLR_c*FS_c, data = gapm_sub)
```

OR

```
1 m_int_fs = lm(LifeExpectancyYrs ~ FLR_c*FS_c, data = gapm_sub)
```

Displaying the regression table and writing fitted regression equation

```
1 tidy_m_fs = tidy(m_int_fs, conf.int=T)
2 tidy_m_fs %>% gt() %>% tab_options(table.font.size = 35) %>% fmt_number(decimals =
```

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	70.32060	0.72393	97.13721	0.00000	68.87601	71.76518
FLR_c	0.15532	0.03808	4.07905	0.00012	0.07934	0.23130
FS_c	0.00849	0.00182	4.67908	0.00001	0.00487	0.01212
FLR_c:FS_c	-0.00001	0.00008	-0.06908	0.94513	-0.00016	0.00015

$$\begin{split} \widehat{LE} = & \widehat{\beta}_0 + \widehat{\beta}_1 F L R^c + \widehat{\beta}_2 F S^c + \widehat{\beta}_3 F L R^c \cdot F S^c \\ \widehat{LE} = & 70.32 + 0.16 \cdot F L R^c + 0.01 \cdot F S^c - 0.00001 \cdot F L R^c \cdot F S^c \end{split}$$

Comparing fitted regression lines for various food supply values

$$\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 F L R^c + \widehat{\beta}_2 F S^c + \widehat{\beta}_3 F L R^c \cdot F S^c$$

$$\widehat{LE} = 70.32 + 0.16 \cdot F L R^c + 0.01 \cdot F S^c - 0.00001 \cdot F L R^c \cdot F S^c$$

To identify different lines, we need to pick example values of Food Supply:

Food Supply of 1812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot (-1000) + \ & \widehat{eta}_3 FLR^c \cdot (-1000) \ \widehat{LE} = & (\widehat{eta}_0 - 1000\widehat{eta}_2) + \ & (\widehat{eta}_1 - 1000\widehat{eta}_3) FLR^c \end{aligned}$$

Food Supply of 2812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot 0 + \ & \widehat{eta}_3 FLR^c \cdot 0 \ \widehat{LE} = & (\widehat{eta}_0) + \ & (\widehat{eta}_1) FLR^c \end{aligned}$$

Food Supply of 3812 kcal PPD

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \ & \widehat{eta}_2 \cdot 1000 + \ & \widehat{eta}_3 FLR^c \cdot 1000 \ \widehat{LE} = & (\widehat{eta}_0 + 1000\widehat{eta}_2) + \ & (\widehat{eta}_1 + 1000\widehat{eta}_3) FLR^c \end{aligned}$$

Poll Everywhere Question??

Interpretation for interaction between two continuous variables

$$egin{aligned} \widehat{LE} = & \widehat{eta}_0 + \widehat{eta}_1 FLR^c + \widehat{eta}_2 FS^c + \widehat{eta}_3 FLR^c \cdot FS^c \ \widehat{LE} = & \left[\widehat{eta}_0 + \widehat{eta}_2 \cdot FS^c
ight] + \left[\widehat{eta}_1 + \widehat{eta}_3 \cdot FS^c
ight] FLR \ & ext{FLR's effect} \end{aligned}$$

- Interpretation:
 - lacksquare eta_3 = mean change in female literacy rate's effect, for every one kcal PPD increase in food supply
- In summary, the interaction term can be interpreted as "difference in adjusted female literacy rate effect for every 1 kcal PPD increase in food supply"
- It will be helpful to test the interaction to round out this interpretation!!

Test interaction between two continuous variables

• We run an F-test for a single coefficients (β_3) in the below model (see lesson 9)

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \beta_3 F L R^c \cdot F S^c + \epsilon$$

 $\mathsf{Null}\,H_0$

$$\beta_3 = 0$$

Alternative H_1

$$\beta_3 \neq 0$$

Null / Smaller / Reduced model

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c + \epsilon$$

Alternative / Larger / Full model

$$LE = \beta_0 + \beta_1 F L R^c + \beta_2 F S^c +$$

 $\beta_3 F L R^c \cdot F S^c + \epsilon$

Test interaction between two continuous variables

Fit the reduced and full model

▶ Display the ANOVA table with F-statistic and p-value

term	df.residual	rss	df	sumsq	statistic	p.value
LifeExpectancyYrs ~ FLR_c + FS_c	69.000 2,0	05.556	NA	NA	NA	NA
LifeExpectancyYrs ~ FLR_c + FS_c + FLR_c * FS_c	68.000 2,0	05.415	1.000	0.141	0.005	0.945

• Conclusion: There is not a significant interaction between female literacy rate and food supply (p = 0.945). Food supply is not an effect modifier of the association between female literacy rate and life expectancy.

Learning Objective

5. Interpret the interaction component of a model with **two continuous covariates**, and how the main variable's effect changes.

6. When there are only two covariates in the model, test whether one is a confounder or effect modifier.

Deciding between confounder and effect modifier

- This is more of a model selection question (in coming lectures)
- But if we had a model with **only TWO covariates**, we could step through the following process:
 - 1. Test the interaction (of potential effect modifier): use a partial F-test to test if interaction term(s) explain enough variation compared to model without interaction
 - Recall that for two continuous covariates, we will test a single coefficient
 - For a binary and continuous covariate, we will test a single coefficient
 - For two binary categorical covariates, we will **test a single coefficient**
 - For a multi-level categorical covariate (with any other type of covariate), we must test a group of coefficients!!
 - 2. Then look at the main effect (or potential confounder)
 - If interaction already included, then automatically included as main effect (and thus not checked for confounding)
 - For variables that are not included in any interactions:
 - Check to see if they are confounders by seeing whether exclusion of the variable changes any of the main effect of the primary explanatory variable by more than 10%

Reminder from Lesson 9: General steps for F-test

- 1. Met underlying LINE assumptions
- 2. State the null hypothesis

$$H_0: eta_1=eta_2=\ldots=eta_k=0 \ ext{vs.}\ H_A: ext{At least one}\ eta_j
eq 0, ext{for}\ j=1,2,\ldots,k$$

3. Specify the significance level.

Often we use lpha=0.05

4. Specify the test statistic and its distribution under the null

The test statistic is F, and follows an F-distribution with numerator df=k and denominator df=n-k-1. (n = # obversation, k = # covariates)

5. Compute the value of the test statistic

The calculated **test statistic** is

$$F^{=rac{SSE(R)-SSE(F)}{df_R-df_F}} = rac{MSR_{full}}{MSE_{full}}$$

6. Calculate the p-value

We are generally calculating: $P(F_{k,n-k-1} > F)$

7. Write conclusion for hypothesis test

We (reject/fail to reject) the null hypothesis at the $100\alpha\%$ significance level.

Step 1: Testing the interaction

- We test with $\alpha=0.10$
- Follow the F-test procedure in Lesson 9 (MLR: Inference/F-test)
 - This means we need to follow the 7 steps of the general F-test in previous slide (taken from Lesson 9)
- Use the hypothesis tests for the specific variable combo:

Binary & continuous variable (Lesson 11, LOB 2)

Testing a single coefficient for the interaction term using F-test comparing full model to reduced model

Multi-level & continuous variables (Lesson 11, LOB 3)

Testing group of coefficients for the interaction terms using F-test comparing full to reduced model

Binary & multi-level variable (Lesson 11, LOB 4)

Testing group of coefficients for the interaction terms using F-test comparing full to reduced model

Two continuous variables (Lesson 11, LOB 5)

Testing a single coefficient for the interaction term using F-test comparing full to reduced model

Poll Everywhere Questions 2-4

Step 2: Testing a confounder

- If interaction already included:
 - Meaning: F-test showed evidence for alternative/full model
 - Then the variable is an effect modifier and we don't need to consider it as a confounder
 - Then automatically included as main effect (and thus not checked for confounding)
- For variables that are not included in any interactions:
 - Check to see if they are confounders
 - One way to do this is by seeing whether exclusion of the variable changes any of the main effect of the primary explanatory variable by more than 10%
- If the main effect of the primary explanatory variable changes by less than 10%, then the additional variable is neither an effect modifier nor a confounder
 - We leave the variable out of the model

Testing for percent change ($\Delta\%$) in a coefficient

- Let's say we have X_1 and X_2 , and we specifically want to see if X_2 is a confounder for X_1 (the explanatory variable or variable of interest)
- ullet If we are only considering X_1 and X_2 , then we need to run the following two models:
 - ullet Fitted model 1 / reduced model (mod1): $\widehat{Y} = \widehat{eta}_0 + \widehat{eta}_1 X_1$
 - \circ We call the above \widehat{eta}_1 the reduced model coefficient: $\widehat{eta}_{1, \mathrm{mod}1}$ or $\widehat{eta}_{1, \mathrm{red}}$
 - ullet Fitted model 2 / Full model (mod2): $\widehat{Y}=\widehat{eta}_0+\widehat{eta}_1X_1+\widehat{eta}_2X_2$
 - \circ We call this \widehat{eta}_1 the full model coefficient: $\widehat{eta}_{1, \mathrm{mod}2}$ or $\widehat{eta}_{1, \mathrm{full}}$

Calculation for % change in coefficient

$$\Delta\% = 100\% \cdot rac{\widehat{eta}_{1, ext{mod}1} - \widehat{eta}_{1, ext{mod}2}}{\widehat{eta}_{1, ext{mod}2}} = 100\% \cdot rac{\widehat{eta}_{1, ext{red}} - \widehat{eta}_{1, ext{full}}}{\widehat{eta}_{1, ext{full}}}$$

Is food supply a confounder for female literacy rate? (1/3)

1. Run models with and without food supply:

```
• Model 1 (reduced): LE=eta_0+eta_1FLR^c+\epsilon
```

```
1 mod1_red = lm(LifeExpectancyYrs ~ FLR_c, data = gapm_sub)
```

• Model 2 (full): $LE=eta_0+eta_1FLR^c+eta_2FS^c+\epsilon$

```
1 mod2_full = lm(LifeExpectancyYrs ~ FLR_c + FS_c, data = gapm_sub)
```

- Note that the full model when testing for confounding was the reduced model for testing an interaction
- Full and reduced are always relative qualifiers of the models that we are testing

Is food supply a confounder for female literacy rate? (2/3)

2. Record the coefficient estimate for centered female literacy rate in both models: • Model 1 (reduced):

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	70.29722	0.72578	96.85709	0.00000	68.84969	71.74475
FLR_c	0.22990	0.03219	7.14139	0.00000	0.16570	0.29411

Model 2 (full):

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	70.29722	0.63537	110.63985	0.00000	69.02969	71.56475
FLR_c	0.15670	0.03216	4.87271	0.00001	0.09254	0.22085
FS_c	0.00848	0.00179	4.72646	0.00001	0.00490	0.01206

3. Calculate the percent change:

$$\Delta\% = 100\% \cdot \frac{\widehat{eta}_{1, ext{mod}1} - \widehat{eta}_{1, ext{mod}2}}{\widehat{eta}_{1, ext{mod}2}} = 100\% \cdot \frac{0.22990 - 0.15670}{0.15670} = 46.71\%$$

Is food supply a confounder for female literacy rate? (3/3)

The percent change in female literacy rate's coefficient estimate was 46.71%.

Thus, food supply is a confounder of female literacy rate in the association between life expectancy and female literacy rate.

Let's try this out on one of our potential effect modifiers or confounders

- Look back at income level and world region: is income level an effect modifier, confounder, or has no effect on the association between life expectancy and world region?
- We can start by visualizing the relationship between life expectancy and world region by income level
- So we'll need to revisit the work we did in previous slides on the interaction, then check fo condounding

Determining if income level is an effect modifier, confounder, or neither

- Step 1: Testing the interaction/effect modifier
 - Compare model with and without interaction using F-test to see if interaction is significant
 - Models
 - \circ Model 1 (red): $LE = \beta_0 + eta_1 I(ext{Americas}) + eta_2 I(ext{Asia}) + eta_3 I(ext{Europe}) + eta_4 I(ext{high income}) + \epsilon_1 I(ext{Americas})$

$$LE = eta_0 + eta_1 I(ext{Americas}) + eta_2 I(ext{Asia}) + eta_3 I(ext{Europe}) + eta_4 I(ext{high income}) +$$
 \circ Model 2 (full): $eta_5 \cdot I(ext{high income}) \cdot I(ext{Americas}) + eta_6 \cdot I(ext{high income}) \cdot I(ext{Asia}) +$
 $eta_7 \cdot I(ext{high income}) \cdot I(ext{Europe}) + \epsilon$

- Step 2: Testing a confounder (only if not an effect modifier)
 - Compare model with and without main effect for additional variable (income level) using F-test to see if additional variable (income level) is a confounder
 - Models
 - \circ Model 1 (reduced): $LE=eta_0+eta_1I(ext{Americas})+eta_2I(ext{Asia})+eta_3I(ext{Europe})+\epsilon$
 - \circ Model 2 (full): $LE = eta_0 + eta_1 I(ext{Americas}) + eta_2 I(ext{Asia}) + eta_3 I(ext{Europe}) + eta_4 I(ext{high income}) + \epsilon_1 I(ext{Americas})$

Step 1: Results from Lesson 11 LOB 4

Fit the reduced and full model

Display the ANOVA table with F-statistic and p-value

term	df.residual	rss	df	sumsq	statistic	p.value
LifeExpectancyYrs ~ income_levels2 + four_regions	67.000	1,693.242	NA	NA	NA	NA
LifeExpectancyYrs ~ income_levels2 + four_regions + income_levels2 * four_regions	64.000	1,681.304	3.000	11.938	0.151	0.928

- Conclusion: There is not a significant interaction between world region and income level (p = 0.928).
- Thus, income level is not an effect modifier of world region. However, we can continue to test if income level is a confounder.

Fit the reduced and full model for testing the confounder

• Model 1 (reduced): $LE = \beta_0 + \beta_1 I(\mathrm{Americas}) + \beta_2 I(\mathrm{Asia}) + \beta_3 I(\mathrm{Europe}) + \epsilon$

• Model 2 (full): $LE = \beta_0 + \beta_1 I(\text{Americas}) + \beta_2 I(\text{Asia}) + \beta_3 I(\text{Europe}) + \beta_4 I(\text{high income}) + \epsilon$

```
1 mod1_wr_inc_full = lm(LifeExpectancyYrs ~ four_regions + income_levels2,
2 data = gapm_sub)
```

• Record the coefficient estimate for centered female literacy rate in both models:

• Model 1 (reduced):
$$\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 I(\operatorname{Americas}) + \widehat{\beta}_2 I(\operatorname{Asia}) + \widehat{\beta}_3 I(\operatorname{Europe})$$

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	61.27000	1.16508	52.58870	0.00000	58.94512	63.59488
four_regionsAmericas	14.33000	1.90257	7.53193	0.00000	10.53349	18.12651
four_regionsAsia	8.11824	1.71883	4.72313	0.00001	4.68837	11.54810
four_regionsEurope	14.78217	1.59304	9.27924	0.00000	11.60332	17.96103

• Model 2 (full):
$$\widehat{LE} = \widehat{\beta}_0 + \widehat{\beta}_1 I(\operatorname{Americas}) + \widehat{\beta}_2 I(\operatorname{Asia}) + \widehat{\beta}_3 I(\operatorname{Europe}) + \widehat{\beta}_4 I(\operatorname{high\ income})$$

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	60.54716	1.16190	52.11048	0.00000	58.22800	62.86632
four_regionsAmericas	12.04102	2.05816	5.85038	0.00000	7.93292	16.14912
four_regionsAsia	7.77808	1.66414	4.67394	0.00001	4.45645	11.09971
four_regionsEurope	12.51938	1.79139	6.98864	0.00000	8.94375	16.09501
income_levels2Higher income	3.61419	1.46967	2.45917	0.01651	0.68070	6.54767

• Calculate the percent change for $\widehat{\beta}_1$:

$$\Delta\% = 100\% \cdot \frac{\widehat{eta}_{1, ext{mod}1} - \widehat{eta}_{1, ext{mod}2}}{\widehat{eta}_{1, ext{mod}2}} = 100\% \cdot \frac{14.33000 - 12.04102}{12.04102} = 19.01$$

• Calculate the percent change for $\widehat{\beta}_2$:

$$\Delta\% = 100\% \cdot rac{\widehat{eta}_{2, ext{mod}1} - \widehat{eta}_{2, ext{mod}2}}{\widehat{eta}_{2, ext{mod}2}} = 100\% \cdot rac{8.11824 - 7.77808}{7.77808} = 4.37$$

• Calculate the percent change for $\widehat{\beta}_3$:

$$\Delta\% = 100\% \cdot \frac{\widehat{eta}_{3, ext{mod}1} - \widehat{eta}_{3, ext{mod}2}}{\widehat{eta}_{3, ext{mod}2}} = 100\% \cdot \frac{14.78217 - 12.51938}{12.51938} = 18.07$$

• Note that two of these % changes are greater than 10%, and one is less than 10%...

- There is no set rule when we have more than one estimated coefficient that we examine for confoundeing
- In this, I would consider
 - The majority of coefficients (2/3 coefficients)
 changes more than 10%
 - The change in coefficients for all three are in the same direction
 - The plot of life expectancy vs world region by income level have a shift in mean life expectancy from lower to higher income level
- Thus, I would conclude that income level is a confounder, so we would leave income level's main effect in the model

If you want extra practice

• Try out this procedure to determine if a variable is an effect modifier or confounder or nothing on the other interactions we tested out in Lesson 11

Extra Reference Material

General interpretation of the interaction term (reference)

$$E[Y \mid X_1, X_2] = eta_0 + \underbrace{(eta_1 + eta_3 X_2)}_{X_1 ext{'s effect}} X_1 + \underbrace{eta_2 X_2}_{X_2 ext{ held constant}} \ = eta_0 + \underbrace{(eta_2 + eta_3 X_1)}_{X_2 ext{'s effect}} X_2 + \underbrace{eta_1 X_1}_{X_1 ext{ held constant}}$$

- Interpretation:
 - β_3 = mean change in X_1 's effect, per unit increase in X_2 ;
 - ullet = mean change in X_2 's effect, per unit increase in X_1 ;
 - where the " X_1 effect" equals the change in E[Y] per unit increase in X_1 with X_2 held constant, i.e. "adjusted X_1 effect"
- In summary, the interaction term can be interpreted as "difference in adjusted X_1 (or X_2) effect per unit increase in X_2 (or X_1)"

A glimpse at how interactions might be incorporated into model selection

- 1. Identify outcome (Y) and primary explanatory (X) variables
- 2. Decide which other variables might be important and could be potential confounders. Add these to the model.
 - This is often done by indentifying variables that previous research deemed important, or researchers believe could be important
 - From a statistical perspective, we often include variables that are significantly associated with the outcome (in their respective SLR)
- 3. (Optional step) Test 3 way interactions
 - This makes our model incredibly hard to interpret. Our class will not cover this!!
 - We will skip to testing 2 way interactions
- 4. Test 2 way interactions
 - When testing a 2 way interaction, make sure the full and reduced models contain the main effects
 - ullet First test all the 2 way interactions together using a partial F-test (with alpha=0.10)
 - If this test not significant, do not test 2-way interactions individually
 - If partial F-test is significant, then test each of the 2-way interactions
- 5. Remaining main effects to include of not to include?
 - For variables that are included in any interactions, they will be automatically included as main effects and thus not checked for confounding
 - For variables that are not included in any interactions:
 - Check to see if they are confounders by seeing whether exclusion of the variable(s) changes any of the coefficient of the primary explanatory variable (including interactions) X by more than 10%
 - If any of X's coefficients change when removing the potential confounder, then keep it in the model