Генеративные модели для изображений

Что вообще есть генеративные модели?

"What I cannot create, I do not understand."

-Richard Feynman

Формулируем задачу

Generative Adversarial Networks

GAN

Игра

- $p_{data}(x)$ реальное распределение
- \bullet $p_z(x)$ распределение нашего шума
- \bullet G генератор
- \bullet D дискриминатор
- \bullet G(x) выход нашего генератора, x случайный шум
- D(x) выход нашего дискриминатора, $D(x) \in [0,1], (1$ настоящая картинка, 0 фейк)

Обучаем генератор, чтоб минимизировать

$$E_{z \in p_z(x)}(\log(1 - D(G(z))))$$

Обучаем дискриминатор, чтоб максимизировать

$$E_{x \in p_{data}(x)}[\log(D(x))] + E_{z \in p_z(x)}[\log(1 - D(G(z)))]$$

Итого получаем minimax игру с такой функцией V(G,D)

$$\min_{G} \min_{D} V(D,G) = E_{x \in p_{data}(x)}[\log(D(x))] + E_{z \in p_{z}(x)}[\log(1 - D(G(z)))]$$

Обучение GAN'ов

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Обучение GAN'ов

Ideal label distribution

Ideal marginal distribution

Fréchet Inception Distance

$$d^{2}((\boldsymbol{m}, \boldsymbol{C}), (\boldsymbol{m}_{w}, \boldsymbol{C}_{w})) = \|\boldsymbol{m} - \boldsymbol{m}_{w}\|_{2}^{2} + \text{Tr}(\boldsymbol{C} + \boldsymbol{C}_{w} - 2(\boldsymbol{C}\boldsymbol{C}_{w})^{1/2}).$$

FID vs IS

Применение GAN'ам

- Generate Examples for Image **Datasets** Generate Photographs of Human Faces **Generate Realistic Photographs Generate Cartoon Characters Image-to-Image Translation Text-to-Image Translation Semantic-Image-to-Photo Translation Face Frontal View Generation**
- Generate New Human Poses
 Photos to Emojis
 Photograph Editing
 Face Aging
 Photo Blending
 Super Resolution
 Photo Inpainting
 Clothing Translation
 Video Prediction

3D Object Generation

Проблемы GAN'ов

Variational Autoencoders

Задача уменьшения размерности

Data in the full initial space

In order to reduce dimensionality, PCA and linear autoencoder target, in theory, the same optimal subspace to project data on...

(contrarily to PCA, linear autoencoder can end up with any basis)

Data projected on the best linear subspace

... but not necessarily with the same basis due to different constraints (in PCA the first component is the one that explains the maximum of variance and components are orthogonal)

Автоэнкодер

x = d(e(x))
lossless encoding no information is lost when reducing the number of dimensions

Автоэнкодер на основе нейронной сети

loss =
$$||\mathbf{x} - \hat{\mathbf{x}}||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{z})||^2 = ||\mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x}))||^2$$

Визуализация двумерного скрытого пространства

Вариационный автоэнкодер

Преимущество VAE

Standard Autoencoder (direct encoding coordinates)

Variational Autoencoder (μ and σ initialize a probability distribution)

На проблему напали...

what we want to obtain with regularisation

KL-дивергенция

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$

loss =
$$\|\mathbf{x} - \mathbf{x}'\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)] = \|\mathbf{x} - \mathbf{d}(\mathbf{z})\|^2 + \text{KL}[N(\mu_x, \sigma_x), N(0, I)]$$

Итог

Секреты реализации

$$z = h(x)\zeta + g(x)$$
 $\zeta \sim \mathcal{N}(0, I)$

$$\zeta \sim \mathcal{N}(0, I)$$

no problem for backpropagation

backpropagation is not possible due to sampling

sampling without reparametrisation trick

sampling with reparametrisation trick

Векторная алгебра

Face without glasses

Conditional VAE

β-VAE и GAN

Сравнение

VAE

- Более высокая скорость обучения
- Вариативность полученных изображений
- Отсутствие mode collapce

GAN

- Более высокая резкость изображений
- Отсутствие блюра

Normalizing Flows

Fig. 1. Comparison of three categories of generative models.

VAE и GAN преобразуют Z в X необратимо.

Для преобразования X в Z требуется обучать отдельную сеть ${\sf Encoder}$.

Нормализационные потоки выучивают обратимое преобразование Z в X.

Нормализационные потоки позволяют посчитать $p_x(x)$.

$$z = f(x)$$

$$x_i \sim p_x(x)$$

 $p_x(x)$ - ?

$$z_i \sim p_z(z)$$
 $p_z(z)$ - известно

Теорема о замене переменной

Пусть даны $p_z(z)$ и z = f(x), тогда $p_x(x)$ находим так:

$$p_x(x_i) = p_z(f(x_i)) \left| \det \frac{\partial f(x_i)}{\partial x_i} \right|,$$

Отношение объема ∂z к новому объему ∂x

где матрица первых производных определяется так:

$$\frac{\partial f(x_i)}{\partial x_i} = \begin{pmatrix} \frac{\partial f(x_i)_1}{\partial x_{i1}} & \dots & \frac{\partial f(x_i)_1}{\partial x_{in}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_i)_m}{\partial x_{i1}} & \dots & \frac{\partial f(x_i)_m}{\partial x_{in}} \end{pmatrix}.$$

Обратная замена

Пусть даны $p_z(z)$ и z = f(x), тогда $p_x(x)$ находим так:

$$p_x(x_i) = p_z(f(x_i)) \left| \det \frac{\partial f(x_i)}{\partial x_i} \right|,$$

Отношение объема ∂z к новому объему ∂x

Обратная замена переменных:

$$p_{\mathbf{z}}(z_i) = p_{\mathbf{x}}\left(\mathbf{f}^{-1}(z_i)\right) \left| \det \frac{\partial \mathbf{f}^{-1}(z_i)}{\partial z_i} \right|$$

Постановка задачи

$$z = f(x) - ?$$

- **Дано:** матрица реальных объектов X
- **Задача:** найти такую $z_i = f(x_i)$, чтобы $z_i \sim p_z(z)$. При этом, $p_z(z)$ известно и задано.
 - ightharpoonup Как будем находить $z_i = f(x_i)$?
 - Ответ: методом градиентного спуска!

- Какую функцию потерь будем оптимизировать?
- Ответ: логарифм правдоподобия:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \log p_x(x_i)$$

Функция потерь

Функция потерь:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \log p_{x}(x_{i})$$

Замена переменных:

$$p_x(x_i) = p_z(f(x_i)) \left| \det \frac{\partial f(x_i)}{\partial x_i} \right|$$

Подставим в функцию потерь:

$$L = -\frac{1}{n} \sum_{i=1}^{n} \left(\log \mathbf{p_z}(f(x_i)) + \log \left| \det \frac{\partial f(x_i)}{\partial x_i} \right| \right)$$

Алгоритм

Flow-based generative models: minimize the negative log-likelihood

Алгоритм обучения

for number of training iterations do:

- Sample m of real objects $\{x_1, x_2, ..., x_m\}$.
- Calculate loss function:

$$L = -\frac{1}{m} \sum_{i=1}^{m} \left(\log \mathbf{p_z}(f(x_i)) + \log \left| \det \frac{\partial f(x_i)}{\partial x_i} \right| \right)$$

• Update parameters of the function $z_i = f(x_i)$:

$$\theta_f = \theta_f - \nabla_{\theta_f} L$$

Алгоритм генерации

- Sample m of noise objects $\{z_1, z_2, ..., z_m\}$.
- Generate new objects using the learned function:

$$x_i = f^{-1}(z_i)$$

Добавление слоёв

Пример с двумя слоями

Пусть
$$z_i = f_2(y_i), y_i = f_1(x_i).$$

Тогда:

$$p_{x}(x_{i}) = p_{y}(f_{1}(x_{i})) \left| \det \frac{\partial f_{1}(x_{i})}{\partial x_{i}} \right|$$

$$p_y(y_i) = p_z(f_2(y_i)) \left| \det \frac{\partial f_2(y_i)}{\partial y_i} \right|$$

В итоге получим:

$$p_{x}(x_{i}) = p_{z}\left(f_{2}(f_{1}(x_{i}))\right) \left| \det \frac{\partial f_{2}(y_{i})}{\partial y_{i}} \right| \left| \det \frac{\partial f_{1}(x_{i})}{\partial x_{i}} \right|$$

Критерии функции f

Как выбрать такую функцию $z_i = f(x_i)$, чтобы она:

- была дифференцируемой,
- была обратимой?

Примеры:

Real-NVP

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

где:

- $ightharpoonup z_{1:d}$ первые d компонент вектора z;
- $ightharpoonup s(x_{1:d})$ и $t(x_{1:d})$ нейронные сети с d входами и D-d выходами;
- О поэлементное умножение.

Real-NVP

Матрица первых производных:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \mathbb{I}_d & 0 \\ \frac{\partial z_{1:d}}{\partial x_{1:d}} & diag\left(\exp(s(x_{1:d}))\right) \end{pmatrix}$$

Значение Якобиана:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp\left(\sum_{j=d+1}^{D} s(x_{1:d})_j \right)$$

$$x = f^{-1}(z) = \begin{cases} x_{1:d} = z_{1:d} \\ x_{d+1:D} = (z_{d+1:D} - t(x_{1:d})) \odot \exp(-s(x_{1:d})) \end{cases}$$

Рис.: https://github.com/laurent-dinh/laurent-dinh.github.io/blob/master/img/real_nvp_fig/celeba_samples.png

Masked Autoregressive Flow

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_d = (x_d - \mu_d(x_{1:d-1})) \odot \exp(-s_d(x_{1:d-1})) \end{cases}$$

где:

- $ightharpoonup z_{1:d}$ первые d компонент вектора z;
- $ightharpoonup \mu_d(x_{1:d-1})$ и $s_d(x_{1:d-1})$ нейронные сети с d-1 входами и 1 выходом;
- О поэлементное умножение.
- Матрица первых производных нижнетреугольная:

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \exp(-s_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \frac{\partial z_D}{\partial x_1} & \cdots & \exp(-s_D(x_{1:D-1})) \end{pmatrix}$$

Masked Autoregressive Flow

Значение Якобиана:

$$\left| \det \frac{\partial f(x)}{\partial x} \right| = \exp(-\sum_{j=1}^{D} s_d(x_{1:d-1}))$$

$$x = f^{-1}(z) = \begin{cases} x_1 = z_1 \exp(s_1) + \mu_1 \\ x_d = z_d \exp(s_d(x_{1:d-1})) + \mu_d(x_{1:d-1}) \end{cases}$$

(a) Generated images

(b) Real images

Inverse Autoregressive Flow (IAF)

$$z = f(x) = \begin{cases} z_1 = (x_1 - \mu_1) \exp(-s_1) \\ z_d = (x_d - \mu_d(z_{1:d-1})) \exp(-s_d(z_{1:d-1})) \end{cases}$$

$$x = f^{-1}(z) = \begin{cases} x_1 = z_1 \exp(s_1) + \mu_1 \\ x_d = z_d \exp(s_d(z_{1:d-1})) + \mu_d(z_{1:d-1}) \end{cases}$$

Спасибо за внимание