Foot classifier Progetto IC

Luigi Lomasto, Marco Mecchia

29 Febbraio 2016

Prof. Roberto Tagliaferri

Dott. Michele Fratello

Dott. Paola Galdi Dott. Angela Serra

Outline

- 💶 Introduzione al problema
- Dataset
- Preprocessing
 - Trasformazione delle immagini
 - Divisione, rotazione e cropping delle immagini
- Features extraction
 - Features primo classificatore
 - Features secondo classificatore
- Features Selection
- 📵 Infrastruttura
- 🕜 Scelta dei classificatori

II problema

Dato un insieme di immagini piedebarometriche, classificare automaticamente le seguenti patologie:

- Cavo
- Piatto
- Normale
- Valgo

Patologie

Struttura del dataset

Il dataset è costituito da 190 piedi (95 coppie) di cui:

- 121 Cavi
- 13 Piatti
- 56 Normali

per la prima classe di patologie, mentre:

- 88 Valghi
- 102 Normali

per la seconda classe di patologie.

Panoramica

Nella fase di preprocessing, abbiamo eseguito le seguenti operazioni.

- Conversione delle immagini .bmp in .png.
- Pulizia delle immagini (rimozione del baricentro).
- Trasformazione delle immagini in scala di grigio.
- Divisione, rotazione e cropping dei piedi.

Trasformazione delle immagini

- Trasformazione da uno spazio 3D (R,G,B) ad uno spazio 1D.
- Necessaria per valutare la pressione in un pixel dell'immagine.
- Problema: Come associare ad ogni tripla (R,G,B) il valore di intensitá corretto?

Prima soluzione

- Clustering sulle immagini.
- Trovati i centroidi, sostituire ogni pixel dell'immagine con il rappresentante del proprio cluster.
- Ordinare i centroidi per intensitá crescente e associare valori compresi tra 0 e 1.
- Problemi: Trovare il k adatto, trovare un ordinamento per i cluster.

Soluzione definitiva

- Variante della prima soluzione.
- Possibile grazie alla scala colorata delle pressioni fornita dal medico.

Rotazione e cropping delle immagini

- La divisione é stata necessaria per separare piede destro da piede sinistro.
- La rotazione non é strettamente necessaria.
- Il cropping rimuove la parte di sfondo superflua.

Rotazione del piede

Per ruotare il piede abbiamo utilizzato un algoritmo molto semplice:

Abbiamo trovato il centro

Features extraction

Terminata la fase di preprocessing siamo passati alla fase di features exstraction. Nel nostro caso, le regioni d'interesse di ogni piede differiscono significativamente tra loro. Per questo motivo, è stato necessario implementare algoritmi ad-hoc per l'estrazione delle features.

Dovendo lavorare con due classi di patologie:

- Cavo, piatto e normale.
- Valgo e normale.

sono stati implementati due algoritmi per l'estrazione delle features.

Features primo classificatore (1/2)

Le features estratte per le patologie appartenenti alla prima classe sono le seguenti:

- lengthMinIstmo: esprime la lunghezza minima che assume l'istmo.
- lengthMedialstmo: esprime la lunghezza media dell'istmo.
- lengthMaxAvampiede: esprime la massima lunghezza che assume l'avampiede.
- ullet indexPathology: Si ottiene dal rapporto ${{\it lengthMaxAvampiede} \over {\it lengthMinlstmo}}$
- mediumPressure: Indica la pressione media esercitata dal piede.

Features primo classificatore (2/2)

Features secondo classificatore (1/2)

Le features estratte per le patologie appartenenti alla seconda classe sono le seguenti:

- juve
- juve

Features secondo classificatore (2/2)

immagine

Features Selection

La features selection è stata fatta in modo esaustivo.

Motivi:

- Basso numero di features usate.
- Si valutano tutti i possibili sottoinsiemi di features.

Sottoinsiemi valutati:

- 31 per il primo classificatore.
- 15 per il secondo classificatore.

Infrastruttura

L'infrastruttura software è la seguente:

- ▼ Sottoinsieme di features
 - Per N volte
 - Dividiamo il dataset in train e test
 - Cross Validation sul train per stimare la configurazione migliore.
 - Calcolo delle accuratezze sul test.
 - Calcolo delle accuratezze medie.

Il sottoinsieme scelto è quello con accuratezza totale media più alta.

SVM Gaussiano (Radial-Basis-Function) (1/2)

Classificatore usato: SVM Gaussiano (Radial-Basis-Function).

Scelta dovuta ai seguenti motivi :

- RBF ben di adatta a problemi di classificazione dove il dataset è significativamente più grande rispetto al numero di dimensioni.
- Reti Neurali troppo complesse per il problema affrontato.
- SVM lineare generalmente usato quando si ha alta dimensionalità.

SVM Gaussiano (Radial-Basis-Function) (2/2)

L' RBF è uno dei kernel più popolari. Esso aggiunge un "bump" attorno a ciascun punto di dati.

E' espresso come:
$$f(x) = \sum_{i=1}^{m} \alpha_i exp(-\gamma ||x_i - x||^2) + b$$

