Chapter 17

Problems 17.1

1.
$$f(x, y) = 2x^2 + 3xy + 4y^2 + 5x + 6y - 7$$

 $f_x(x, y) = 2(2x) + 3(1)y + 0 + 5(1) + 0 - 0$
 $= 4x + 3y + 5$
 $f_y(x, y) = 0 + 3x(1) + 4(2y) + 0 + 6(1) - 0$
 $= 3x + 8y + 6$

2.
$$f(x, y) = 2x^2 + 3xy$$

 $f_x(x, y) = 2(2x) + 3(1)y = 4x + 3y$
 $f_y(x, y) = 0 + 3x(1) = 3x$

3.
$$f(x, y) = 2y + 1$$

 $f_x(x, y) = 0 + 0 = 0$
 $f_y(x, y) = 2(1) + 0 = 2$

4.
$$f(x, y) = \ln 2$$

 $f_x(x, y) = 0$
 $f_y(x, y) = 0$

5.
$$g(x, y) = 3x^4y + 2xy^2 - 5xy + 8x - 9y$$

 $g_x(x, y) = 3(4)x^3y + 2(1)y^2 - 5(1)y + 8(1)$
 $= 12x^3y + 2y^2 - 5y + 8$
 $g_y(x, y) = 3x^4(1) + 2x(2)y - 5x(1) - 9(1)$
 $= 3x^4 + 4xy - 5x - 9$

6.
$$g(x, y) = (x^2 + 1)^2 + (y^3 - 3)^3 + 5xy^3 - 2x^2y^2$$

 $g_x(x, y) = 2(x^2 + 1)(2x) + 0 + 5(1)y^3 - 2(2x)y^2$
 $= 4x(x^2 + 1) + 5y^3 - 4xy^2$
 $g_y(x, y)$
 $= 0 + 3(y^3 - 3)^2(3y^2) + 5x(3y^2) - 2x^2(2y)$
 $= 9y^2(y^3 - 3)^2 + 15xy^2 - 4x^2y$

7.
$$g(p, q) = \sqrt{pq} = (pq)^{\frac{1}{2}}$$

 $g_p(p, q) = \frac{1}{2}(pq)^{-\frac{1}{2}} \cdot q = \frac{q}{2\sqrt{pq}}$
 $g_q(p, q) = \frac{1}{2}(pq)^{-\frac{1}{2}} \cdot p = \frac{p}{2\sqrt{pq}}$

8.
$$g(w, z) = \sqrt[3]{w^2 + z^2} = \left(w^2 + z^2\right)^{\frac{1}{3}}$$

 $g_w(w, z) = \frac{1}{3}\left(w^2 + z^2\right)^{-\frac{2}{3}}(2w) = \frac{2w}{3\left(w^2 + z^2\right)^{\frac{2}{3}}}$
 $g_z(w, z) = \frac{1}{3}\left(w^2 + z^2\right)^{-\frac{2}{3}}(2z) = \frac{2z}{3\left(w^2 + z^2\right)^{\frac{2}{3}}}$

9.
$$h(s,t) = \frac{s^2 + 4}{t - 3}$$

 $h_s(s,t) = \frac{1}{t - 3}(2s) = \frac{2s}{t - 3}$
Rewriting $h(s,t)$ as $\left(s^2 + 4\right)(t - 3)^{-1}$, we have $h_t(s,t) = \left(s^2 + 4\right)\left[(-1)(t - 3)^{-2}(1)\right] = -\frac{s^2 + 4}{(t - 3)^2}$

10.
$$h(u, v) = \frac{8uv^2}{u^2 + v^2}$$

$$h_u(u, v) = 8v^2 \frac{\left(u^2 + v^2\right)(1) - u(2u)}{\left(u^2 + v^2\right)^2}$$

$$= \frac{8v^2 \left(v^2 - u^2\right)}{\left(u^2 + v^2\right)^2}$$

$$h_v(u, v) = 8u \frac{\left(u^2 + v^2\right)(2v) - v^2(2v)}{\left(u^2 + v^2\right)^2}$$

$$= \frac{16u^3v}{\left(u^2 + v^2\right)^2}$$

11.
$$u(q_1, q_2) = \ln \sqrt{q_1 + 2} + \ln \sqrt[3]{q_2 + 5}$$

 $= \frac{1}{2} \ln(q_1 + 2) + \frac{1}{3} \ln(q_2 + 5)$
 $u_{q_1}(q_1, q_2) = \frac{1}{2} \cdot \frac{1}{q_1 + 2} + 0 = \frac{1}{2(q_1 + 2)}$
 $u_{q_2}(q_1, q_2) = 0 + \frac{1}{3} \cdot \frac{1}{q_2 + 5} = \frac{1}{3(q_2 + 5)}$

12.
$$Q(l, k) = 2l^{0.38}k^{1.79} - 3l^{1.03} + 2k^{0.13}$$

 $Q_l(l, k) = 2(0.38)l^{0.38-1}k^{1.79} - 3(1.03)l^{1.03-1} + 0 = 0.76l^{-0.62}k^{1.79} - 3.09l^{0.03}$
 $Q_k(l, k) = 2l^{0.38}(1.79)k^{1.79-1} - 0 + 2(0.13)k^{0.13-1} = 3.58l^{0.38}k^{0.79} + 0.26k^{-0.87}$

13.
$$h(x, y) = \frac{x^2 + 3xy + y^2}{\sqrt{x^2 + y^2}}$$

$$= \frac{\left(x^2 + y^2\right)^{\frac{1}{2}} [2x + 3y] - \left(x^2 + 3xy + y^2\right) \left[\frac{1}{2}\left(x^2 + y^2\right)^{-\frac{1}{2}} (2x)\right]}{\left[\left(x^2 + y^2\right)^{\frac{1}{2}}\right]^2}$$

$$= \frac{\left(x^2 + y^2\right)^{-\frac{1}{2}} \left[\left(x^2 + y^2\right)(2x + 3y) - \left(x^2 + 3xy + y^2\right)x\right]}{x^2 + y^2}$$

$$= \frac{2x^3 + 3x^2y + 2xy^2 + 3y^3 - x^3 - 3x^2y - xy^2}{\left(x^2 + y^2\right)^{\frac{3}{2}}} = \frac{x^3 + xy^2 + 3y^3}{\left(x^2 + y^2\right)^{\frac{3}{2}}}$$

$$h_y(x, y) = \frac{\left(x^2 + y^2\right)^{\frac{1}{2}} [3x + 2y] - \left(x^2 + 3xy + y^2\right) \left[\frac{1}{2}\left(x^2 + y^2\right)^{-\frac{1}{2}} (2y)\right]}{\left[\left(x^2 + y^2\right)^{\frac{1}{2}}\right]^2}$$

$$= \frac{\left(x^2 + y^2\right)^{-\frac{1}{2}} \left[\left(x^2 + y^2\right)(3x + 2y) - \left(x^2 + 3xy + y^2\right)y\right]}{x^2 + y^2}$$

$$= \frac{3x^3 + 2x^2y + 3xy^2 + 2y^3 - x^2y - 3xy^2 - y^3}{\left(x^2 + y^2\right)^{\frac{3}{2}}} = \frac{3x^3 + x^2y + y^3}{\left(x^2 + y^2\right)^{\frac{3}{2}}}$$

14.
$$h(x, y) = \frac{\sqrt{x+9}}{x^2y+y^2x}$$

$$h_x(x, y) = \frac{\left(x^2y+y^2x\right)\frac{1}{2}(x+9)^{-\frac{1}{2}} - (x+9)^{\frac{1}{2}}\left(2xy+y^2\right)}{\left(x^2y+y^2x\right)^2}$$

$$= \frac{\frac{1}{2}(x+9)^{-\frac{1}{2}}\left[x^2y+y^2x-2(x+9)\left(2xy+y^2\right)\right]}{\left(x^2y+y^2x\right)^2}$$

$$= \frac{y\left[x^2+xy-2(x+9)(2x+y)\right]}{2(x+9)^{\frac{1}{2}}\left[xy(x+y)\right]^2}$$

$$= \frac{y\left[x^2+xy-4x^2-36x-2xy-18y\right]}{2(x+9)^{\frac{1}{2}}x^2y^2(x+y)^2} = \frac{-\left(3x^2+xy+36x+18y\right)}{2x^2y\sqrt{x+9}(x+y)^2}$$

Since
$$h(x, y) = \sqrt{x+9} \left(x^2 y + y^2 x\right)^{-1}$$
, then
$$h_y(x, y) = \sqrt{x+9} (-1) \left(x^2 y + y^2 x\right)^{-2} \left(x^2 + 2xy\right)$$

$$= \frac{-\sqrt{x+9} \left(x^2 + 2xy\right)}{\left(x^2 y + y^2 x\right)^2} = \frac{-x\sqrt{x+9} (x+2y)}{x^2 y^2 (x+y)^2} = \frac{-\sqrt{x+9} (x+2y)}{xy^2 (x+y)^2}$$

15.
$$z = e^{5xy}$$

 $\frac{\partial z}{\partial x} = e^{5xy} (5y) = 5ye^{5xy}; \frac{\partial z}{\partial y} = e^{5xy} (5x) = 5xe^{5xy}$

16.
$$z = (x^3 + y^3)e^{xy+3x+3y}$$

$$\frac{\partial z}{\partial x} = (x^3 + y^3)[e^{xy+3x+3y}(y+3)] + e^{xy+3x+3y}[3x^2]$$

$$= [3x^2 + (x^3 + y^3)(y+3)]e^{xy+3x+3y}$$

$$\frac{\partial z}{\partial y} = (x^3 + y^3)[e^{xy+3x+3y}(x+3)] + e^{xy+3x+3y}[3y^2]$$

$$= [3y^2 + (x^3 + y^3)(x+3)]e^{xy+3x+3y}$$

17.
$$z = 5x \ln\left(x^2 + y\right)$$

$$\frac{\partial z}{\partial x} = 5\left\{x \left[\frac{1}{x^2 + y}(2x)\right] + \ln\left(x^2 + y\right)[1]\right\} = 5\left[\frac{2x^2}{x^2 + y} + \ln\left(x^2 + y\right)\right]$$

$$\frac{\partial z}{\partial y} = 5x \left(\frac{1}{x^2 + y}[1]\right) = \frac{5x}{x^2 + y}$$

18.
$$z = \ln(5x^3y^2 + 2y^4)^4 = 4\ln(5x^3y^2 + 2y^4)$$

$$\frac{\partial z}{\partial x} = 4 \cdot \frac{1}{5x^3y^2 + 2y^4} [5(3x^2)y^2 + 0] = \frac{60x^2y^2}{5x^3y^2 + 2y^4} = \frac{60x^2y^2}{y^2(5x^3 + 2y^2)} = \frac{60x^2}{5x^3 + 2y^2}$$

$$\frac{\partial z}{\partial y} = 4 \cdot \frac{1}{5x^3y^2 + 2y^4} [5x^3(2y) + 2(4y^3)] = \frac{4(10x^3y + 8y^3)}{5x^3y^2 + 2y^4} = \frac{8y(5x^3 + 4y^2)}{y(5x^3y + 2y^3)} = \frac{8(5x^3 + 4y^2)}{5x^3y + 2y^3}$$

19.
$$f(r, s) = (r+2s)^{\frac{1}{2}} \left(r^3 - 2rs + s^2 \right)$$

$$f_r(r, s) = (r+2s)^{\frac{1}{2}} \left[3r^2 - 2s \right] + \left(r^3 - 2rs + s^2 \right) \left[\frac{1}{2} (r+2s)^{-\frac{1}{2}} (1) \right]$$

$$= \sqrt{r+2s} \left(3r^2 - 2s \right) + \frac{r^3 - 2rs + s^2}{2\sqrt{r+2s}}$$

$$f_s(r, s) = (r+2s)^{\frac{1}{2}} \left[-2r + 2s \right] + \left(r^3 - 2rs + s^2 \right) \left[\frac{1}{2} (r+2s)^{-\frac{1}{2}} (2) \right]$$

$$= 2(s-r)\sqrt{r+2s} + \frac{r^3 - 2rs + s^2}{\sqrt{r+2s}}$$

20.
$$f(r, s) = (rs)^{\frac{1}{2}} e^{2+r}$$

 $f_r(r, s) = (rs)^{\frac{1}{2}} \left[e^{2+r} (1) \right] + e^{2+r} \left[\frac{1}{2} (rs)^{-\frac{1}{2}} (s) \right] = \left[\sqrt{rs} + \frac{s}{2\sqrt{rs}} \right] e^{2+r}$
 $f_s(r, s) = e^{2+r} \left[\frac{1}{2} (rs)^{-\frac{1}{2}} (r) \right] = \frac{re^{2+r}}{2\sqrt{rs}}$

21.
$$f(r, s) = e^{3-r} \ln(7-s)$$

 $f_r(r, s) = \ln(7-s) \left[e^{3-r} (-1) \right] = -e^{3-r} \ln(7-s)$
 $f_s(r, s) = e^{3-r} \left[\frac{1}{7-s} (-1) \right] = \frac{e^{3-r}}{s-7}$

22.
$$f(r, s) = (5r^2 + 3s^3)(2r - 5s)$$

 $f_r(r, s) = (5r^2 + 3s^3)[2] + (2r - 5s)[10r] = 2(5r^2 + 3s^3) + 10r(2r - 5s)$
 $f_s(r, s) = (5r^2 + 3s^3)[-5] + (2r - 5s)[9s^2] = -5(5r^2 + 3s^3) + 9s^2(2r - 5s)$

23.
$$g(x, y, z) = 2x^3y^2 + 2xy^3z + 4z^2$$

 $g_x(x, y, z) = 2y^2(3x^2) + 2y^3z(1) + 0 = 6x^2y^2 + 2y^3z$
 $g_y(x, y, z) = 2x^3(2y) + 2xz(3y^2) + 0 = 4x^3y + 6xy^2z$
 $g_z(x, y, z) = 0 + 2xy^3(1) + 4(2z) = 2xy^3 + 8z$

24.
$$g(x, y, z) = 2xy^2z^6 - 4x^2y^3z^2 + 3xyz$$

 $g_x(x, y, z) = 2(1)y^2z^6 - 4(2x)y^3z^2 + 3(1)yz$
 $= 2y^2z^6 - 8xy^3z^2 + 3yz$
 $g_y(x, y, z) = 2x(2y)z^6 - 4x^2(3y^2)z^2 + 3x(1)z$
 $= 4xyz^6 - 12x^2y^2z^2 + 3xz$
 $g_z(x, y, z) = 2xy^2(6z^5) - 4x^2y^3(2z) + 3xy(1)$
 $= 12xy^2z^5 - 8x^2y^3z + 3xy$

25.
$$g(r, s, t) = e^{s+t} (r^2 + 7s^3)$$

 $g_r(r, s, t) = e^{s+t} [2r+0] = 2re^{s+t}$
 $g_s(r, s, t) = e^{s+t} [0+21s^2] + (r^2 + 7s^3) [e^{s+t} (1)]$
 $= (7s^3 + 21s^2 + r^2) e^{s+t}$
 $g_t(r, s, t) = (r^2 + 7s^3) [e^{s+t} (1)] = e^{s+t} (r^2 + 7s^3)$

26.
$$g(r, s, t, u) = rs \ln(t)e^{u}$$

$$g_{r}(r, s, t, u) = s \ln(t)e^{u}$$

$$g_{s}(r, s, t, u) = r \ln(t)e^{u}$$

$$g_{t}(r, s, t, u) = rs\left(\frac{1}{t}\right)e^{u} = \frac{rse^{u}}{t}$$

$$g_{u}(r, s, t, u) = rs \ln(t)e^{u}$$

27.
$$f(x, y) = x^3y + 7x^2y^2$$

 $f_x(x, y) = 3x^2y + 14xy^2$
 $f_x(1, -2) = 3(1)^2(-2) + 14(1)(-2)^2 = 50$

28.
$$z = \sqrt{2x^3 + 5xy + 2y^2}$$

$$\frac{\partial z}{\partial x} = \frac{6x^2 + 5y}{2\sqrt{2x^3 + 5xy + 2y^2}}$$

$$\frac{\partial z}{\partial x}\Big|_{(0, 1)} = \frac{5}{2\sqrt{2}}$$

29.
$$g(x, y, z) = e^x \sqrt{y + 2z}$$

 $g_z(x, y, z) = e^x \left[\frac{1}{2} (y + 2z)^{-\frac{1}{2}} (2) \right] = \frac{e^x}{\sqrt{y + 2z}}$
 $g_z(0, 6, 4) = \frac{1}{\sqrt{6 + 8}} = \frac{1}{\sqrt{14}}$

30.
$$g(x, y, z) = \frac{3x^2y^2 + 2xy + x - y}{xy - yz + xz}$$
$$g_y(x, y, z) = \frac{(xy - yz + xz)(6x^2y + 2x - 1) - (3x^2y^2 + 2xy + x - y)(x - z)}{(xy - yz + xz)^2}$$
$$g_y(1, 1, 5) = \frac{(1 - 5 + 5)(6 + 2 - 1) - (3 + 2 + 1 - 1)(1 - 5)}{(1 - 5 + 5)^2} = 27$$

31.
$$h(r, s, t, u) = (rst^2u)\ln(1 + rstu)$$

 $h_t(r, s, t, u) = [rs(2t)u]\ln(1 + rstu) + (rst^2u) \cdot \frac{rsu}{1 + rstu}$
 $h_t(1, 1, 0, 1) = 0$

32.
$$h(r, s, t, u) = \frac{7r + 3s^2u^2}{s}$$

 $h_t(r, s, t, u) = 0$
 $h_t(4, 3, 2, 1) = 0$

33.
$$f(r, s, t) = rst(r^2 + s^3 + t^4) = r^3 st + rs^4 t + rst^5$$

 $f_s(r, s, t) = r^3(1)t + r(4s^3)t + r(1)t^5 = r^3t + 4rs^3t + rt^5$
 $f_s(1, -1, 2) = 2 + (-8) + 32 = 26$

34.
$$z = \frac{x^2 + y^2}{e^{x^2 + y^2}} = (x^2 + y^2)e^{-(x^2 + y^2)}$$

$$\frac{\partial z}{\partial x} = (2x)e^{-(x^2 + y^2)} + (x^2 + y^2)e^{-(x^2 + y^2)}(-2x)$$

$$= 2xe^{-(x^2 + y^2)}[1 - (x^2 + y^2)]$$

$$\frac{\partial z}{\partial x}\Big|_{\substack{x=0 \ y=0}} = 2(0)e^0[1 - (0)] = 0$$
By symmetry, $\frac{\partial z}{\partial y} = 2ye^{-(x^2 + y^2)}[1 - (x^2 + y^2)].$

 $\frac{\partial z}{\partial y}\Big|_{x=1} = 2(1)e^{-2}[1-(2)] = -\frac{2}{e^2}$

35.
$$z = xe^{x-y} + ye^{y-x}$$

$$\frac{\partial z}{\partial x} = \left[xe^{x-y} + e^{x-y} \right] + \left[ye^{y-x} (-1) \right]$$

$$\frac{\partial z}{\partial y} = \left[xe^{x-y} (-1) \right] + \left[ye^{y-x} + e^{y-x} \right]$$
Thus $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = e^{x-y} + e^{y-x}$, as was to be shown.

36.
$$u = f(t, r, z) = \frac{(1+r)^{1-z} \ln(1+r)}{(1+r)^{1-z} - t}$$

$$\frac{\partial u}{\partial z} = \ln(1+r) \frac{\partial}{\partial z} \left[\frac{(1+r)^{1-z}}{(1+r)^{1-z} - t} \right]$$

$$= \ln(1+r) \frac{\left[(1+r)^{1-z} - t \right] \frac{\partial}{\partial z} \left[(1+r)^{1-z} \right] - (1+r)^{1-z} \left\{ \frac{\partial}{\partial z} \left[(1+r)^{1-z} \right] - 0 \right\}}{\left[(1+r)^{1-z} - t \right]^2}$$

$$= \ln(1+r) \frac{-t \frac{\partial}{\partial z} \left[(1+r)^{1-z} \right]}{\left[(1+r)^{1-z} - t \right]^2}$$

$$= \ln(1+r) \frac{-t \left\{ (1+r)^{1-z} \ln(1+r)[-1] \right\}}{\left[(1+r)^{1-z} - t \right]^2}$$

$$= \frac{t(1+r)^{1-z} \ln^2(1+r)}{\left[(1+r)^{1-z} - t \right]^2}, \text{ as was to be shown.}$$

37.
$$F(b, C, T, i) = \frac{bT}{C} + \frac{iC}{2}$$
$$\frac{\partial F}{\partial C} = \frac{\partial}{\partial C} \left[\frac{bT}{C} \right] + \frac{\partial}{\partial C} \left[\frac{iC}{2} \right] = -\frac{bT}{C^2} + \frac{i}{2}$$

38. From
$$\eta = \frac{\frac{r}{D}}{\frac{\partial r}{\partial D}}$$
, we have $\frac{\partial r}{\partial D} = \frac{r}{D\eta}$. Substituting into Equation (3) gives

$$r_{L} = r + D \cdot \frac{r}{D\eta} + \frac{dC}{dD}$$

$$r_{L} = r + \frac{r}{\eta} + \frac{dC}{dD}$$

$$r_{L} = r \left[1 + \frac{1}{\eta} \right] + \frac{dC}{dD}$$

$$r_{L} = r \left[\frac{\eta + 1}{\eta} \right] + \frac{dC}{dD}$$

$$r_{L} = r \left[\frac{1 + \eta}{\eta} \right] + \frac{dC}{dD}$$

which is Equation (4).

39.
$$R = f(r, a, n) = \frac{r}{1 + a(\frac{n-1}{2})} = r \left[1 + a(\frac{n-1}{2}) \right]^{-1}$$

$$\frac{\partial R}{\partial n} = r(-1) \left[1 + a(\frac{n-1}{2}) \right]^{-2} \cdot \frac{a}{2}$$

$$= -\frac{ra}{2 \left[1 + a(\frac{n-1}{2}) \right]^{2}}$$

Problems 17.2

1.
$$c = 7x + 0.3y^2 + 2y + 900$$

 $\frac{\partial c}{\partial y} = 0.6y + 2$
When $x = 20$ and $y = 30$, then $\frac{\partial c}{\partial y} = 0.6(30) + 2 = 20$.

2.
$$c = 2x\sqrt{x+y} + 6000$$

$$\frac{\partial c}{\partial x} = \frac{x}{\sqrt{x+y}} + 2\sqrt{x+y}$$
When $x = 70$ and $y = 74$, then
$$\frac{\partial c}{\partial x} = \frac{70}{\sqrt{70+74}} + 2\sqrt{70+74} = \frac{179}{6}.$$

3.
$$c = 0.03(x + y)^3 - 0.6(x + y)^2 + 9.5(x + y) + 7700$$

 $\frac{\partial c}{\partial x} = 0.09(x + y)^2 - 1.2(x + y) + 9.5$
When $x = 50$ and $y = 80$, then
 $\frac{\partial c}{\partial x} = 0.09(130)^2 - 1.2(130) + 9.5 = 1374.5$.

4.
$$P = 15lk - 3l^{2} + 5k^{2} + 500$$
$$\frac{\partial P}{\partial k} = 15l + 10k$$
$$\frac{\partial P}{\partial l} = 15k - 6l$$

5.
$$P = 2.314l^{0.357}k^{0.643}$$

$$\frac{\partial P}{\partial l} = 2.314(0.357)l^{-0.643}k^{0.643}$$

$$= 0.826098 \left(\frac{k}{l}\right)^{0.643}$$

$$\frac{\partial P}{\partial k} = 2.314(0.643)l^{0.357}k^{-0.357}$$

$$= 1.487902 \left(\frac{l}{k}\right)^{0.357}$$

6.
$$P = Al^{\alpha}k^{\beta}$$

a.
$$\frac{\partial P}{\partial l} = A\alpha l^{\alpha - 1} k^{\beta} = \left(\frac{\alpha}{l}\right) A l^{\alpha} k^{\beta} = \frac{\alpha P}{l}$$

b.
$$\frac{\partial P}{\partial k} = A\beta l^{\alpha} k^{\beta-1} = \left(\frac{\beta}{k}\right) A l^{\alpha} k^{\beta} = \frac{\beta P}{k}$$

c. From parts (a) and (b),

$$l \frac{\partial P}{\partial l} + k \frac{\partial P}{\partial k} = l \left(\frac{\alpha P}{l} \right) + k \left(\frac{\beta P}{k} \right)$$

$$= \alpha P + \beta P = P(\alpha + \beta) = P(1) = P(1)$$

7.
$$\frac{\partial q_{\rm A}}{\partial p_{\rm A}} = -40$$
, $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} = 3$, $\frac{\partial q_{\rm B}}{\partial p_{\rm A}} = 5$, $\frac{\partial q_{\rm B}}{\partial p_{\rm B}} = -20$
Since $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} > 0$ and $\frac{\partial q_{\rm B}}{\partial p_{\rm A}} > 0$ the products are competitive.

8.
$$\frac{\partial q_{\rm A}}{\partial p_{\rm A}} = -1$$
, $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} = -2$, $\frac{\partial q_{\rm B}}{\partial p_{\rm A}} = -2$, $\frac{\partial q_{\rm B}}{\partial p_{\rm B}} = -3$
Since $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} < 0$ and $\frac{\partial q_{\rm B}}{\partial p_{\rm A}} < 0$ the products are complementary.

9.
$$q_{A} = 100 p_{A}^{-1} p_{B}^{-\frac{1}{2}}$$

$$q_{B} = 500 p_{B}^{-1} p_{A}^{-\frac{1}{3}}$$

$$\frac{\partial q_{A}}{\partial p_{A}} = 100(-1) p_{A}^{-2} p_{B}^{-\frac{1}{2}} = \frac{-100}{p_{A}^{2} p_{B}^{\frac{1}{2}}}$$

$$\frac{\partial q_{A}}{\partial p_{B}} = 100 \left(-\frac{1}{2}\right) p_{A}^{-1} p_{B}^{-\frac{3}{2}} = \frac{-500}{p_{A} p_{B}^{2}}$$

$$\frac{\partial q_{B}}{\partial p_{A}} = 500 \left(-\frac{1}{3}\right) p_{B}^{-1} p_{A}^{-\frac{4}{3}} = \frac{-500}{3p_{B} p_{A}^{\frac{4}{3}}}$$

$$\frac{\partial q_{B}}{\partial p_{B}} = 500(-1) p_{B}^{-2} p_{A}^{-\frac{1}{3}} = -\frac{500}{p_{B}^{2} p_{A}^{\frac{1}{3}}}$$

Since $\frac{\partial q_{\rm A}}{\partial p_{\rm B}}$ < 0 and $\frac{\partial q_{\rm B}}{\partial p_{\rm A}}$ < 0, the products are complementary.

10.
$$\frac{\partial P}{\partial l} = 15.18l^{-0.54}k^{0.52}$$
$$\frac{\partial P}{\partial k} = 17.16l^{0.46}k^{-0.48}$$
If $l = 1$ and $k = 1$, then $\frac{\partial P}{\partial l} = 15.18$ and
$$\frac{\partial P}{\partial k} = 17.16$$

11.
$$\frac{\partial P}{\partial B} = 0.01A^{0.27}B^{-0.99}C^{0.01}D^{0.23}E^{0.09}F^{0.27}$$
$$\frac{\partial P}{\partial C} = 0.01A^{0.27}B^{0.01}C^{-0.99}D^{0.23}E^{0.09}F^{0.27}$$

a.
$$\frac{\partial P}{\partial k} = \frac{l(3k+5l)-kl(3)}{(3k+5l)^2} = \frac{5l^2}{(3k+5l)^2}$$
$$\frac{\partial P}{\partial l} = \frac{k(3k+5l)-kl(5)}{(3k+5l)^2} = \frac{3k^2}{(3k+5l)^2}$$

12. $P = \frac{kl}{2k+5l}$

b. When
$$k = l$$
, then
$$\frac{\partial P}{\partial k} + \frac{\partial P}{\partial l} = \frac{5l^2}{(3l+5l)^2} + \frac{3l^2}{(3l+5l)^2}$$

$$= \frac{8l^2}{64l^2}$$

$$= \frac{1}{8}$$

13. $\frac{\partial z}{\partial x}$ = 4480. If a staff manager with an M.B.A. degree had an extra year of work experience before the degree, the manager would receive \$4480 more per year in extra compensation.

14. $S_{g} = 7S_{\rho}^{\frac{1}{3}}S_{i}^{\frac{1}{2}}$

$$\frac{\partial S_g}{\partial S_e} = 7\left(\frac{1}{3}\right) S_e^{-\frac{2}{3}} S_i^{\frac{1}{2}} = \left(\frac{7}{3}\right) \frac{\sqrt{S_i}}{\sqrt[3]{S_e^2}}$$

$$\frac{\partial S_g}{\partial S_i} = 7\left(\frac{1}{2}\right) S_e^{\frac{1}{3}} S_i^{-\frac{1}{2}} = \left(\frac{7}{2}\right) \frac{\sqrt[3]{S_e}}{\sqrt[3]{S_i}}$$
If $S_e = 125$ and $S_i = 100$, then
$$\frac{\partial S_g}{\partial S_e} = \left(\frac{7}{3}\right) \frac{10}{5^2} = \frac{14}{15} \text{ and } \frac{\partial S_g}{\partial S_i} = \left(\frac{7}{2}\right) \frac{5}{10} = \frac{7}{4}.$$
Thus if S_e increases to 126 and S_i remains at 100, then S_g increases by approximately $\frac{14}{15}$; if S_i increases to 101 and S_e remains at 125, then S_g increases by approximately $\frac{7}{4}$.

15. a.
$$\frac{\partial R}{\partial w} = -1.015$$
; $\frac{\partial R}{\partial s} = -0.846$

b. One for which $w = w_0$ and $s = s_0$ since increasing w by 1 while holding s fixed decreases the reading ease score.

16.
$$\omega = b^{-1}L^{-1}\sqrt{\frac{\tau}{\pi\rho}} = \frac{1}{bL}\sqrt{\frac{\tau}{\pi}}\rho^{-\frac{1}{2}} = \frac{1}{bL}\sqrt{\frac{1}{\pi\rho}}\tau^{\frac{1}{2}}$$
$$\frac{\partial\omega}{\partial b} = (-1)b^{-2}L^{-1}\sqrt{\frac{\tau}{\pi\rho}} = -\frac{1}{b^{2}L}\sqrt{\frac{\tau}{\pi\rho}}$$
$$\frac{\partial\omega}{\partial L} = b^{-1}(-1)L^{-2}\sqrt{\frac{\tau}{\pi\rho}} = -\frac{1}{bL^{2}}\sqrt{\frac{\tau}{\pi\rho}}$$

$$\begin{split} \frac{\partial \omega}{\partial \rho} &= \frac{1}{bL} \sqrt{\frac{\tau}{\pi}} \left(-\frac{1}{2} \right) \rho^{-\frac{3}{2}} = -\frac{1}{2bL \rho^{\frac{3}{2}}} \sqrt{\frac{\tau}{\pi}} \\ \frac{\partial \omega}{\partial \tau} &= \frac{1}{bL} \sqrt{\frac{1}{\pi \rho}} \left(\frac{1}{2} \right) \tau^{-\frac{1}{2}} = \frac{1}{2bL} \sqrt{\frac{1}{\pi \rho \tau}} \end{split}$$

17. $\frac{\partial g}{\partial x} = \frac{1}{V_F} > 0$ for $V_F > 0$. Thus if x increases and V_F and V_S are fixed, then g increases.

18.
$$q_{\rm A} = e^{-(p_{\rm A} + p_{\rm B})}$$
 and $q_{\rm B} = \frac{16}{p_{\rm A}^2 p_{\rm B}^2} = 16 p_{\rm A}^{-2} p_{\rm B}^{-2}$

a.
$$\frac{\partial q_{\rm A}}{\partial p_{\rm B}} = -e^{-(p_{\rm A} + p_{\rm B})} < 0$$
$$\frac{\partial q_{\rm B}}{\partial p_{\rm A}} = -32 p_{\rm A}^{-3} p_{\rm B}^{-2} < 0$$

Since both are < 0, A and B are complementary.

b. Note that $p_{\rm A}$ and $p_{\rm B}$ are in units of thousands of dollars. When $p_{\rm A}$ = 1 and $p_{\rm A}$ = 2, then $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} = -e^{-3} = -\frac{1}{e^3}.$

A decrease in the price of B of \$20 is a decrease in $p_{\rm B}$ of $\frac{20}{2000} = 0.01$. Thus the change in $q_{\rm B}$ is approximately $-\frac{1}{e^3}(-0.01) = \frac{0.01}{e^3}$. So demand increases by approximately $\frac{0.01}{e^3}$ unit.

19. a.
$$\frac{\partial q_{A}}{\partial p_{A}} = 10\sqrt{p_{B}} \left(-\frac{1}{2} p_{A}^{-\frac{3}{2}} \right)$$
$$\frac{\partial q_{A}}{\partial p_{B}} = \frac{10}{\sqrt{p_{A}}} \left(\frac{1}{2} p_{B}^{-\frac{1}{2}} \right)$$

When $p_{\rm A} = 9$ and $p_{\rm B} = 16$, then $\frac{\partial q_{\rm A}}{\partial p_{\rm A}} = 10(4) \left(-\frac{1}{2} \cdot \frac{1}{27} \right) = -\frac{20}{27}$ and $\frac{\partial q_{\rm A}}{\partial p_{\rm B}} = \frac{10}{3} \left(\frac{1}{2} \cdot \frac{1}{4} \right) = \frac{5}{12}$.

b. From (a), when $p_A = 9$ and $p_B = 16$, then $\frac{\partial q_A}{\partial p_B} = \frac{5}{12}$. Hence each \$1 reduction in p_B decreases q_A by approximately $\frac{5}{12}$ unit. Thus a \$2 reduction in p_B (from \$16 to \$14) decreases the demand for A by approximately $\frac{5}{12}(2) = \frac{5}{6}$ unit.

20.
$$c = \frac{q_A^2 \left(q_B^3 + q_A\right)^{\frac{1}{2}}}{17} + q_A q_B^{\frac{1}{3}} + 600$$

$$\mathbf{a.} \quad \frac{\partial c}{\partial q_{\mathrm{A}}} = \frac{1}{17} \left[q_{\mathrm{A}}^{2} \cdot \frac{1}{2} \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{-\frac{1}{2}} + \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{\frac{1}{2}} \left(2q_{\mathrm{A}} \right) \right] + q_{\mathrm{B}}^{\frac{1}{3}}$$

$$= \frac{1}{17} \left[\frac{1}{2} q_{\mathrm{A}}^{2} \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{-\frac{1}{2}} + 2q_{\mathrm{A}} \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{\frac{1}{2}} \right] + q_{\mathrm{B}}^{\frac{1}{3}}$$

$$\frac{\partial c}{\partial q_{\mathrm{B}}} = \frac{1}{17} \left[q_{\mathrm{A}}^{2} \cdot \frac{1}{2} \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{-\frac{1}{2}} \left(3q_{\mathrm{B}}^{2} \right) \right] + q_{\mathrm{A}} \cdot \frac{1}{3} q_{\mathrm{B}}^{-\frac{2}{3}}$$

$$= \frac{1}{17} \left[\frac{3}{2} q_{\mathrm{A}}^{2} q_{\mathrm{B}}^{2} \left(q_{\mathrm{B}}^{3} + q_{\mathrm{A}} \right)^{-\frac{1}{2}} \right] + \frac{1}{3} q_{\mathrm{A}} q_{\mathrm{B}}^{-\frac{2}{3}}$$

b. When $q_A = 17$ and $q_B = 8$, then

$$\frac{\partial c}{\partial q_{\rm A}} = \frac{1}{17} \left[\frac{1}{2} (17)^2 \left(\frac{1}{23} \right) + 2(17)(23) \right] + 2 = \left[\frac{1}{2} (17) \frac{1}{23} + 2(23) \right] + 2 \approx 48.37 \ .$$

c. From (b), if q_A is reduced by one unit (from 17 to 16) while q_B remains at 8, then the cost will decrease by approximately \$48.37.

21. a.
$$\frac{\partial R}{\partial E_r} = 2.5945 - 0.1608E_r - 0.0277I_r$$

If $E_r = 18.8$ and $I_r = 10$, then $\frac{\partial R}{\partial E_r} = -0.70564$. Since $\frac{\partial R}{\partial E_r} < 0$, such a candidate should not be so advised.

b.
$$\frac{\partial R}{\partial N} = 0.8579 - 0.0122N$$

If $\frac{\partial R}{\partial N} < 0$, then $N > 70.3 \approx 70\%$

22. $S = \frac{AT + 450}{\sqrt{A + T^2}}$. Note: A is expressed in hundreds of dollars.

a.
$$\frac{\partial S}{\partial T} = \frac{\left(A + T^2\right)^{\frac{1}{2}} (A) - (AT + 450) \left[\frac{1}{2} \left(A + T^2\right)^{-\frac{1}{2}} (2T)\right]}{\left(\sqrt{A + T^2}\right)^2}$$
$$= \frac{\left(A + T^2\right)^{-\frac{1}{2}} \left[\left(A + T^2\right)A - (AT + 450)T\right]}{A + T^2} = \frac{A^2 - 450T}{\left(A + T^2\right)^{\frac{3}{2}}}$$

as was to be shown.

- **b.** We want to find when $\frac{\partial S}{\partial T} < 0$ and $A = \frac{9000}{100} = 90$. First we find when $\frac{\partial S}{\partial T} = 0$ and A = 90: $\frac{90^2 450T}{\left(90 + T^2\right)^{\frac{3}{2}}} = 0 \Rightarrow 90^2 450T = 0$ $\Rightarrow T = \frac{90^2}{450} = 18.$ $\frac{\partial S}{\partial T} > 0 \text{ for } T < 18, \text{ and } \frac{\partial S}{\partial T} < 0 \text{ for } T > 18.$ Thus 18 months elapse before the sales volume begins to decrease.
- 23. $q_{\rm A}=1000-50\,p_{\rm A}+2\,p_{\rm B}$ $\eta_{p_{\rm A}}=\left(\frac{p_{\rm A}}{q_{\rm A}}\right)\frac{\partial\,q_{\rm A}}{\partial\,p_{\rm A}}=\left(\frac{p_{\rm A}}{q_{\rm A}}\right)(-50)$ $\eta_{p_{\rm B}}=\left(\frac{p_{\rm B}}{q_{\rm A}}\right)\frac{\partial\,q_{\rm A}}{\partial\,p_{\rm B}}=\left(\frac{p_{\rm B}}{q_{\rm A}}\right)(2)$ When $p_{\rm A}=2$ and $p_{\rm B}=10$, then $q_{\rm A}=920$, from which $\eta_{p_{\rm A}}=-\frac{5}{46}$ and $\eta_{p_{\rm B}}=\frac{1}{46}$
- 24. $q_A = 60 3 p_A 2 p_B$ $\eta_{p_A} = \left(\frac{p_A}{q_A}\right) \frac{\partial q_A}{\partial p_A} = \left(\frac{p_A}{q_A}\right) (-3)$ $\eta_{p_B} = \left(\frac{p_B}{q_A}\right) \frac{\partial q_A}{\partial p_B} = \left(\frac{p_B}{q_A}\right) (-2)$ When $p_A = 5$ and $p_B = 3$, then $q_A = 39$, from which $\eta_{p_A} = -\frac{5}{13}$ and $\eta_{p_B} = -\frac{2}{13}$.
- 25. $q_{A} = \frac{100}{p_{A}\sqrt{p_{B}}}$ $\eta_{p_{A}} = \left(\frac{p_{A}}{q_{A}}\right)\frac{\partial q_{A}}{\partial p_{A}} = \left(\frac{p_{A}}{q_{A}}\right)\left(\frac{-100}{p_{A}^{2}\sqrt{p_{B}}}\right)$ $\eta_{p_{B}} = \left(\frac{p_{B}}{q_{A}}\right)\frac{\partial q_{A}}{\partial p_{B}} = \left(\frac{p_{B}}{q_{A}}\right)\left(\frac{-50}{p_{A}\sqrt{p_{B}^{3}}}\right)$ When $p_{A} = 1$ and $p_{B} = 4$, then $q_{A} = 50$. This gives $\eta_{p_{A}} = -1$ and $\eta_{p_{B}} = -\frac{1}{2}$.

Problems 17.3

1.
$$4x+0+10z\frac{\partial z}{\partial x} = 0$$

$$\frac{\partial z}{\partial x} = -\frac{4x}{10z} = -\frac{2x}{5z}$$

2.
$$2z \frac{\partial z}{\partial x} - 10x + 0 = 0$$

$$\frac{\partial z}{\partial x} = \frac{10x}{2z} = \frac{5x}{z}$$

3.
$$6z \frac{\partial z}{\partial y} - 0 - 14y = 0$$
$$\frac{\partial z}{\partial y} = \frac{14y}{6z} = \frac{7y}{3z}$$

4.
$$0 + 2y + 6z^2 \frac{\partial z}{\partial y} = 0$$
$$\frac{\partial z}{\partial y} = \frac{-2y}{6z^2} = -\frac{y}{3z^2}$$

5.
$$x^{2} - 2y - z^{2} + y(x^{2}z^{2}) = 20$$

 $2x - 0 - 2z\frac{\partial z}{\partial x} + y\left[x^{2} \cdot 2z\frac{\partial z}{\partial x} + z^{2} \cdot 2x\right] = 0$
 $(2x^{2}yz - 2z)\frac{\partial z}{\partial x} = -2x - 2xyz^{2}$
 $\frac{\partial z}{\partial x} = \frac{-2x(1+yz^{2})}{2z(x^{2}y - 1)} = \frac{x(yz^{2} + 1)}{z(1-x^{2}y)}$

6.
$$3z^{2} \frac{\partial z}{\partial x} + 2x^{2} \left(2z \frac{\partial z}{\partial x} \right) + 2z^{2} (2x) - y = 0$$
$$(3z^{2} + 4x^{2}z) \frac{\partial z}{\partial x} = y - 4xz^{2}$$
$$\frac{\partial z}{\partial x} = \frac{y - 4xz^{2}}{3z^{2} + 4x^{2}z}$$

7.
$$0 + e^{y} + e^{z} \frac{\partial z}{\partial y} = 0$$
$$\frac{\partial z}{\partial y} = -\frac{e^{y}}{e^{z}} = -e^{y-z}$$

- 8. $xyz + xy^2z^3 \ln z^4 = 0$ so $xyz + xy^2z^3 - 4\ln z = 0$. $xz + xy\frac{dz}{dy} + 2xyz^3 + 3xy^2z^2\frac{dz}{dy} - \frac{4}{z}\cdot\frac{dz}{dy} = 0$ $\left(xy + 3xy^2z^2 - \frac{4}{z}\right)\frac{dz}{dy} = -xz - 2xyz^3$ $\left(\frac{xyz + 3xy^2z^3 - 4}{z}\right)\frac{dz}{dy} = -(xz + 2xyz^3)z$ $\frac{dz}{dy} = -\frac{(xz + 2xyz^3)z}{xyz + 3xy^2z^3 - 4}$
- 9. $\frac{1}{z} \frac{\partial z}{\partial x} + 9 \frac{\partial z}{\partial x} y = 0$ $\left(\frac{1}{z} + 9\right) \frac{\partial z}{\partial x} = y$ $\left(\frac{1 + 9z}{z}\right) \frac{\partial z}{\partial x} = y$ $\frac{\partial z}{\partial x} = \frac{yz}{9 + z}$
- 10. $\frac{1}{x} + 0 \frac{1}{z} \frac{\partial z}{\partial x} = 0$ $-\frac{1}{z} \frac{\partial z}{\partial x} = -\frac{1}{x}$ $\frac{\partial z}{\partial x} = \frac{z}{x}$
- 11. $\left(2z\frac{\partial z}{\partial y} + 6x\right)\sqrt{x^3 + 5} = 0$ $2z\frac{\partial z}{\partial y} + 6x = 0$ $\frac{\partial z}{\partial y} = \frac{-6x}{2z} = -\frac{3x}{z}$
- 12. xz(1+y) 5 = 0 $\left[x\frac{\partial z}{\partial x} + z \cdot 1\right](1+y) 0 = 0$ $x\frac{\partial z}{\partial x} + z = 0$ $\frac{\partial z}{\partial x} = -\frac{z}{x}$ If x = 1, y = 4, z = 1, then $\frac{\partial z}{\partial x} = -\frac{1}{1} = -1$.

- 13. $z^2 + 2xz \frac{\partial z}{\partial x} + 2yz \frac{\partial z}{\partial x} 2xy = 0$ $(2xz + 2yz) \frac{\partial z}{\partial x} = 2xy - z^2$ $\frac{\partial z}{\partial x} = \frac{2xy - z^2}{2z(x + y)}$ $\frac{\partial z}{\partial x}\Big|_{(1, 0, 1)} = \frac{2(1)(0) - 1^2}{2(1)(1 + 0)} = -\frac{1}{2}$
- 14. $e^{zx} \cdot x \frac{\partial z}{\partial y} = x \left[y \frac{\partial z}{\partial y} + z \cdot 1 \right]$ $\left(x e^{zx} x y \right) \frac{\partial z}{\partial y} = x z$ $\frac{\partial z}{\partial y} = \frac{x z}{x \left(e^{zx} y \right)}$ $\frac{\partial z}{\partial y} = \frac{z}{e^{zx} y}$ If $x = 1, \ y = -e^{-1}, z = -1$, then $\frac{\partial z}{\partial y} = \frac{-1}{e^{-1} \left(-e^{-1} \right)} = -\frac{e}{2}.$
- 15. $e^{yz} \cdot y \frac{\partial z}{\partial x} = -y \left[x \frac{\partial z}{\partial x} + z \cdot 1 \right].$ $\left(y e^{yz} + x y \right) \frac{\partial z}{\partial x} = -y z$ $\frac{\partial z}{\partial x} = -\frac{y z}{y \left(e^{yz} + x \right)}$ $\frac{\partial z}{\partial x} = -\frac{z}{e^{yz} + x}$ If $x = -\frac{e^2}{2}$, y = 1, z = 2, then $\frac{\partial z}{\partial x} = -\frac{2}{e^2 + \frac{-e^2}{2}} = -\frac{2}{\frac{e^2}{2}} = -\frac{4}{e^2}.$

16.
$$\frac{1}{2} \left(xz + y^2 \right)^{-\frac{1}{2}} \left[x \frac{\partial z}{\partial y} + 2y \right] - x = 0$$

$$\frac{x}{2\sqrt{xz + y^2}} \frac{\partial z}{\partial y} = x - \frac{y}{\sqrt{xz + y^2}} = \frac{x\sqrt{xz + y^2} - y}{\sqrt{xz + y^2}}$$

$$\frac{\partial z}{\partial y} = \frac{2\left(x\sqrt{xz + y^2} - y \right)}{x}$$
If $x = 2$, $y = 2$, $z = 6$, then $\frac{\partial z}{\partial y} = \frac{2(2 \cdot 4 - 2)}{2} = 6$.

17.
$$\frac{1}{z} \frac{\partial z}{\partial x} = 4 + 0$$

$$\frac{\partial z}{\partial x} = 4z$$
If $x = 5$, $y = -20$, $z = 1$, then $\frac{\partial z}{\partial x} = 4$.

18.
$$\frac{(s^2 + t^2) \left[2rs^2 \frac{\partial r}{\partial t} \right] - r^2 s^2 [2t]}{(s^2 + t^2)^2} = t$$

$$2rs^2 (s^2 + t^2) \frac{\partial r}{\partial t} - 2r^2 s^2 t = t(s^2 + t^2)^2$$

$$2rs^2 (s^2 + t^2) \frac{\partial r}{\partial t} = t(s^2 + t^2)^2 + 2r^2 s^2 t$$

$$\frac{\partial r}{\partial t} = \frac{t[(s^2 + t^2)^2 + 2r^2 s^2]}{2rs^2 (s^2 + t^2)}$$
If $r = 1$, $s = 1$, $t = 1$, then $\frac{\partial r}{\partial t} = \frac{1[(1^2 + 1^2)^2 + 2(1)^2(1)^2]}{2(1)(1)^2 (1^2 + 1^2)} = \frac{6}{4} = \frac{3}{2}$.

19.
$$\frac{(rs)\left[2t\frac{\partial t}{\partial r}\right] - \left(s^2 + t^2\right)[s]}{(rs)^2} = 0 \quad 2rst\frac{\partial t}{\partial r} - s\left(s^2 + t^2\right) = 0$$
$$2rst\frac{\partial t}{\partial r} = s\left(s^2 + t^2\right)$$
$$\frac{\partial t}{\partial r} = \frac{s\left(s^2 + t^2\right)}{2rst} = \frac{s^2 + t^2}{2rt}$$
If $r = 1$, $s = 2$, $t = 4$, then $\frac{\partial t}{\partial r} = \frac{4 + 16}{2 \cdot 1 \cdot 4} = \frac{20}{8} = \frac{5}{2}$.

20.
$$\frac{1}{x+y+z} \left(1 + \frac{\partial z}{\partial x} \right) + yz + xy \frac{\partial z}{\partial x}$$
$$= \frac{\partial z}{\partial x} e^{x+y+z} + ze^{x+y+z} \left(1 + \frac{\partial z}{\partial x} \right)$$

When
$$x = 0$$
, $y = 1$, and $z = 0$, then
$$\frac{1}{1} \left(1 + \frac{\partial z}{\partial x} \right) + (1)(0) + (0)(1) \frac{\partial z}{\partial x}$$
$$= \frac{\partial z}{\partial x} e^1 + 0(e^1) \left(1 + \frac{\partial z}{\partial x} \right)$$

$$1 + \frac{\partial z}{\partial x} = e \frac{\partial z}{\partial x}, \ 1 = \frac{\partial z}{\partial x}(e - 1), \frac{\partial z}{\partial x} = \frac{1}{e - 1}$$

- **21.** $c + \sqrt{c} = 12 + q_A \sqrt{9 + q_B^2}$
 - **a.** If $q_A = 6$ and $q_B = 4$, then $c + \sqrt{c} = 12 + 6(5) = 42$, $\sqrt{c} = 42 c$, $c = (42 c)^2 = 42^2 84c + c^2$, $c^2 85c + 1764 = 0$, $c = \frac{85 \pm \sqrt{(-85)^2 4(1)(1764)}}{2} = \frac{85 \pm \sqrt{169}}{2} = \frac{85 \pm 13}{2}$.

Thus c = 49 or c = 36. However c = 49 is extraneous but c = 36 is not. Thus c = 36.

b. Differentiating with respect to q_A :

$$\frac{\partial c}{\partial q_{\rm A}} + \frac{1}{2\sqrt{c}} \cdot \frac{\partial c}{\partial q_{\rm A}} = \sqrt{9 + q_{\rm B}^2} \cdot \left(1 + \frac{1}{2\sqrt{c}}\right) \frac{\partial c}{\partial q_{\rm A}} = \sqrt{9 + q_{\rm B}^2} \ .$$

When
$$q_A = 6$$
 and $q_B = 4$, then $c = 36$ and $\left(1 + \frac{1}{12}\right) \frac{\partial c}{\partial q_A} = 5$, $\frac{13}{12} \cdot \frac{\partial c}{\partial q_A} = 5$, or $\frac{\partial c}{\partial q_A} = \frac{60}{13}$.

Differentiating with respect to $q_{\rm B}$:

$$\frac{\partial c}{\partial q_{\rm B}} + \frac{1}{2\sqrt{c}} \cdot \frac{\partial c}{\partial q_{\rm B}} = q_{\rm A} \cdot \frac{q_{\rm B}}{\sqrt{9 + q_{\rm B}^2}}$$

$$\left(1 + \frac{1}{2\sqrt{c}}\right) \frac{\partial c}{\partial q_{\rm B}} = \frac{q_{\rm A}q_{\rm B}}{\sqrt{9 + q_{\rm B}^2}}$$

When $q_A = 6$ and $q_B = 4$, then c = 36 and

$$\left(1+\frac{1}{12}\right)\frac{\partial c}{\partial q_{\rm B}} = \frac{24}{5}, \frac{13}{12}\cdot\frac{\partial c}{\partial q_{\rm B}} = \frac{24}{5}, \text{ or } \frac{\partial c}{\partial q_{\rm B}} = \frac{288}{65}.$$

Problems 17.4

1.
$$f_x(x, y) = 6(1)y^2 = 6y^2$$

 $f_{xy}(x, y) = 6(2y) = 12y$
 $f_y(x, y) = 6x(2y) = 12xy$
 $f_{yx}(x, y) = 12(1)y = 12y$

2.
$$f_x(x, y) = 6x^2y^2 + 12xy^3 - 3y$$

 $f_{xx}(x, y) = 12xy^2 + 12y^3$

- 3. $f_y(x, y) = 3$ $f_{yy}(x, y) = 0$ $f_{yyx}(x, y) = 0$
- 4. $f_x(x, y) = (x^2 + xy + y^2)[y+1] + (xy + x + y)[2x + y]$ $= 3x^2y + 3x^2 + 2xy^2 + 4xy + y^3 + 2y^2$ $f_{xy}(x, y) = 3x^2 + 0 + 2x(2y) + 4x(1) + 3y^2 + 4y$ $= 3x^2 + 4xy + 4x + 3y^2 + 4y$
- 5. $f_y(x, y) = 9 \Big[e^{2xy} (2x) \Big] = 18xe^{2xy}$ $f_{yx}(x, y) = 18 \Big[x \Big(e^{2xy} \cdot 2y \Big) + e^{2xy} (1) \Big] = 18e^{2xy} (2xy+1)$ $f_{yxy}(x, y) = 18 \Big[e^{2xy} (2x) + (2xy+1) \Big(e^{2xy} \cdot 2x \Big) \Big]$ $= 18e^{2xy} (2x) [1 + (2xy+1)] = 18e^{2xy} (2x) [2 + 2xy]$ $= 72x(1+xy)e^{2xy}$
- **6.** $f_x(x, y) = \frac{1}{x^2 + y^2} \cdot 2x = \frac{2x}{x^2 + y^2}$ $f_{xx}(x, y) = \frac{\left(x^2 + y^2\right)[2] (2x)[2x]}{\left(x^2 + y^2\right)^2} = \frac{2\left(y^2 x^2\right)}{\left(x^2 + y^2\right)^2}$ $f_{xy}(x, y) = (2x)(-1)\left(x^2 + y^2\right)^{-2}[2y] = -\frac{4xy}{\left(x^2 + y^2\right)^2}$
- 7. $f(x, y) = (x+y)^{2}(xy) = (x^{2} + 2xy + y^{2})(xy) = x^{3}y + 2x^{2}y^{2} + xy^{3}$ $f_{x}(x, y) = 3x^{2}y + 4xy^{2} + y^{3}$ $f_{y}(x, y) = x^{3} + 4x^{2}y + 3xy^{2}$ $f_{xx}(x, y) = 6xy + 4y^{2}$ $f_{yy}(x, y) = 4x^{2} + 6xy$
- 8. $f_x(x, y, z) = 2xy^3 z^4$ $f_{xz}(x, y, z) = 8xy^3 z^3$ $f_z(x, y, z) = 4x^2 y^3 z^3$ $f_{zx}(x, y, z) = 8xy^3 z^3$

9.
$$z = \ln \sqrt{x^2 + y^2} = \frac{1}{2} \ln(x^2 + y^2)$$

 $\frac{\partial z}{\partial y} = \frac{1}{2} \cdot \frac{1}{x^2 + y^2} \cdot (2y) = \frac{y}{x^2 + y^2}$
 $\frac{\partial^2 z}{\partial y^2} = \frac{(x^2 + y^2)(1) - y(2y)}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$

10.
$$\frac{\partial z}{\partial x} = \frac{1}{y} \cdot \frac{1}{x^2 + 5} (2x) = \frac{2x}{y(x^2 + 5)}$$

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{2x}{x^2 + 5} \left(-\frac{1}{y^2} \right) = -\frac{2x}{y^2 (x^2 + 5)}$$

11.
$$f_y(x, y, z) = 0$$

 $f_{yx}(x, y, z) = 0$
 $f_{yxx}(x, y, z) = 0$
Thus $f_{yxx}(4, 3, -2) = 0$.

12.
$$f_x(x, y, z) = z^2 (6x - 4y^3)$$

 $f_{xy}(x, y, z) = z^2 (-12y^2) = -12y^2z^2$
 $f_{xyz}(x, y, z) = -24y^2z$. Thus
 $f_{xyz}(1, 2, 3) = -24(4)(3) = -288$.

13.
$$f_k(l, k) = 18l^3k^5 - 14l^2k^6$$

 $f_{kl}(l, k) = 54l^2k^5 - 28lk^6$
 $f_{klk}(l, k) = 270l^2k^4 - 168lk^5$
Thus $f_{klk}(2, 1) = 270(4)(1) - 168(2)(1) = 744$.

14.
$$f_x(x, y) = 3x^2y^2 + 2xy - 2xy^2$$

 $f_{xx}(x, y) = 6xy^2 + 2y - 2y^2$
 $f_{xxy}(x, y) = 12xy + 2 - 4y$
 $f_{xy}(x, y) = 6x^2y + 2x - 4xy$
 $f_{xyx}(x, y) = 12xy + 2 - 4y$
Thus
 $f_{xyy}(2, 3) = f_{xyy}(2, 3) = 12(2)(3) + 2 - 4(3) = 62$.

15.
$$f_x(x, y) = y^2 e^x + \frac{1}{x}$$

 $f_{xy}(x, y) = 2ye^x$
 $f_{xyy}(x, y) = 2e^x$
Thus $f_{xyy}(1, 1) = 2e$.

16.
$$f_x(x, y) = 3x^2 - 6y^2 + 2x$$

 $f_{xy}(x, y) = -12y$
Thus $f_{xy}(1, -1) = 12$.

17.
$$\frac{\partial c}{\partial q_{B}} = \frac{1}{3} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(3q_{B}^{2} \right)$$

$$= q_{B}^{2} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}}$$

$$\frac{\partial^{2} c}{\partial q_{A} \partial q_{B}} = -\frac{2}{3} q_{B}^{2} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{5}{3}} \left(6q_{A} \right)$$

$$= -4q_{A} q_{B}^{2} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{5}{3}}$$
When $p_{A} = 25$ and $p_{B} = 4$, then
$$q_{A} = 10 - 25 + 16 = 1 \text{ and } q_{B} = 20 + 25 - 44 = 1,$$
and
$$\frac{\partial^{2} c}{\partial q_{A} \partial q_{B}} = -4(8)^{-\frac{5}{3}} = -\frac{4}{32} = -\frac{1}{8}.$$

18.
$$f_x(x, y) = 4x^3y^4 + 9x^2y^2 - 7$$

 $f_{xy}(x, y) = 16x^3y^3 + 18x^2y$
 $f_{xx}(x, y) = 12x^2y^4 + 18xy^2$
 $f_{xyx}(x, y) = 48x^2y^3 + 36xy$
 $f_{xxy}(x, y) = 48x^2y^3 + 36xy$
Thus $f_{xyx}(x, y) = f_{xxy}(xy)$.

19.
$$f_{x}(x, y) = (2x + y)e^{x^{2} + xy + y^{2}}$$

$$f_{y}(x, y) = (x + 2y)e^{x^{2} + xy + y^{2}}$$

$$f_{xy}(x, y)$$

$$= (2x + y)(x + 2y)e^{x^{2} + xy + y^{2}} + e^{x^{2} + xy + y^{2}}$$

$$f_{yx}(x, y)$$

$$= (x + 2y)(2x + y)e^{x^{2} + xy + y^{2}} + e^{x^{2} + xy + y^{2}}$$
Thus $f_{xy}(x, y) = f_{yx}(x, y)$.

20.
$$f_x(x, y) = ye^{xy}$$

 $f_{xx}(x, y) = y^2e^{xy}$
 $f_{xy}(x, y) = y(xe^{xy}) + e^{xy}(1) = e^{xy}(xy+1)$
 $f_y(x, y) = xe^{xy}$
 $f_{yy}(x, y) = x^2e^{xy}$
 $f_{yx}(x, y) = x(ye^{xy}) + e^{xy}(1) = e^{xy}(xy+1)$
Thus, $f_{xx}(x, y) + f_{xy}(x, y) + f_{yx}(x, y) + f_{yy}(x, y)$
 $= y^2e^{xy} + e^{xy}(xy+1) + e^{xy}(xy+1) + x^2e^{xy}$
 $= e^{xy}(x^2 + 2xy + y^2 + 2)$
 $= f(x, y)((x + y)^2 + 2)$

21.
$$\frac{\partial^{z}}{\partial x} = \frac{2x}{x^{2} + y^{2}}$$

$$\frac{\partial^{2}z}{\partial x^{2}} = \frac{\left(x^{2} + y^{2}\right)(2) - (2x)(2x)}{\left(x^{2} + y^{2}\right)^{2}} = \frac{2\left(y^{2} - x^{2}\right)}{\left(x^{2} + y^{2}\right)^{2}}$$

$$\frac{\partial z}{\partial y} = \frac{2y}{x^{2} + y^{2}}$$

$$\frac{\partial^{2}z}{\partial y^{2}} = \frac{\left(x^{2} + y^{2}\right)(2) - (2y)(2y)}{\left(x^{2} + y^{2}\right)^{2}} = \frac{2\left(x^{2} - y^{2}\right)}{\left(x^{2} + y^{2}\right)^{2}}$$

$$\frac{\partial^{2}z}{\partial x^{2}} + \frac{\partial^{2}z}{\partial y^{2}} = \frac{2\left(y^{2} - x^{2}\right)}{\left(x^{2} + y^{2}\right)^{2}} + \frac{2\left(x^{2} - y^{2}\right)}{\left(x^{2} + y^{2}\right)^{2}} = 0$$

22.
$$6z \frac{\partial z}{\partial x} - 6x^2 = 0$$

$$\frac{\partial z}{\partial x} = \frac{6x^2}{6z} = \frac{x^2}{z}$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{z(2x) - x^2 \frac{\partial z}{\partial x}}{z^2} = \frac{2xz - x^2 \left(\frac{x^2}{z}\right)}{z^2} = \frac{2xz^2 - x^4}{z^3}$$

23.
$$2z\frac{\partial z}{\partial y} + 2y = 0$$

$$\frac{\partial z}{\partial y} = -\frac{2y}{2z} = -\frac{y}{z}$$

$$\frac{\partial^2 z}{\partial y^2} = -\frac{z(1) - y \cdot \frac{\partial z}{\partial y}}{z^2} = -\frac{z - y\left(-\frac{y}{z}\right)}{z^2} = -\frac{z^2 + y^2}{z^3}$$

From the original equation, $z^2 + y^2 = 3x^2$. Thus $\frac{\partial^2 z}{\partial v^2} = -\frac{3x^2}{x^3}.$

24.
$$2z^2 = x^2 + 2xy + xz$$
 (Eq. 1).
Differentiating both sides of Eq. 1 with respect to y :
$$4z\frac{\partial z}{\partial y} = 0 + 2x + x\frac{\partial z}{\partial y}, \quad (4z - x)\frac{\partial z}{\partial y} = 2x,$$

$$\frac{\partial z}{\partial y} = \frac{2x}{4z - x}.$$
Differentiating both sides of Eq. 1 with respect to x :
$$4z\frac{\partial z}{\partial x} = 2x + 2y + x\frac{\partial z}{\partial x} + z(1),$$

$$4z \frac{\partial}{\partial x} = 2x + 2y + x \frac{\partial}{\partial x} + z(1),$$

$$(4z - x) \frac{\partial z}{\partial x} = 2x + 2y + z, \quad \frac{\partial z}{\partial x} = \frac{2x + 2y + z}{4z - x}.$$

Differentiating $\frac{\partial z}{\partial y}$ with respect to x:

$$\frac{\partial^2 z}{\partial x \partial y} = 2 \cdot \frac{(4z - x)[1] - x \left[4\frac{\partial z}{\partial x} - 1 \right]}{(4z - x)^2}$$

$$= 2 \cdot \frac{(4z - x) - x \left[\frac{4(2x + 2y + z)}{4z - x} - 1 \right]}{(4z - x)^2}$$

$$= 2 \cdot \frac{(4z - x)^2 - x[4(2x + 2y + z) - (4z - x)]}{(4z - x)^3}$$

$$= 2 \cdot \frac{16z^2 - 8xz - 8x^2 - 8xy}{(4z - x)^3}$$

$$= 16 \cdot \frac{2z^2 - xz - x^2 - xy}{(4z - x)^3}$$

$$= 16 \cdot \frac{\left(x^2 + 2xy + xz\right) - xz - x^2 - xy}{(4z - x)^3}$$

$$= \frac{16xy}{(4z - x)^3}.$$

Problems 17.5

1.
$$z = 5x + 3y$$
, $x = 2r + 3s$, $y = r - 2s$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = (5)(2) + (3)(1) = 13$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = (5)(3) + (3)(-2) = 9$$

2.
$$z = 2x^{2} + 3xy + 2y^{2}, \quad x = r^{2} - s^{2}, \quad y = r^{2} + s^{2}$$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$= (4x + 3y)(2r) + (3x + 4y)(2r)$$

$$= 14r(x + y)$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$= (4x + 3y)(-2s) + (3x + 4y)(2s)$$

$$= -2s(x - y)$$

3.
$$z = e^{x+y}, \ x = t^2 + 3, \ y = \sqrt{t^3}$$
$$\frac{dz}{dt} = \frac{\partial t}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$
$$= e^{x+y} (2t) + e^{x+y} \left(\frac{3}{2} t^{1/2}\right)$$
$$= e^{x+y} \left(2t + \frac{3}{2} \sqrt{t}\right)$$

4.
$$z = \sqrt{8x + y}$$
, $x = t^2 + 3t + 4$, $y = t^3 + 4$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt} = \frac{4}{\sqrt{8x + y}} (2t + 3) + \frac{1}{2\sqrt{8x + y}} (3t^2)$$

$$= \frac{3t^2 + 16t + 24}{2\sqrt{8x + y}}$$

5.
$$w = x^2 yz + xy^2 z + xyz^2$$
, $x = e^t$, $y = te^t$, $z = t^2 e^t$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

$$= (2xyz + y^2 z + yz^2)e^t + (x^2 z + 2xyz + xz^2)e^t (1+t) + (x^2 y + xy^2 + 2xyz)e^t (2t + t^2)$$

6.
$$w = \ln\left(x^2 + y^2 + z^2\right), x = 2 - 3t, y = t^2 + 3, z = 4 - t$$

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$$

$$= \frac{2x}{x^2 + y^2 + z^2} (-3) + \frac{2y}{x^2 + y^2 + z^2} (2t) + \frac{2z}{x^2 + y^2 + z^2} (-1)$$

$$= \frac{-2(3x - 2yt + z)}{x^2 + y^2 + z^2}$$

7.
$$z = \left(x^2 + xy^2\right)^3, x = r + s + t, y = 2r - 3s + 8t$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$= 3\left(x^2 + xy^2\right)^2 \left(2x + y^2\right) [1] + 3\left(x^2 + xy^2\right)^2 (2xy)[8]$$

$$= 3\left(x^2 + xy^2\right)^2 \left(2x + y^2 + 16xy\right)$$

8.
$$z = \sqrt{x^2 + y^2}$$
, $x = r^2 + s - t$, $y = r - s + t$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{x}{\sqrt{x^2 + y^2}} (2r) + \frac{y}{\sqrt{x^2 + y^2}} (1) = \frac{2xr + y}{\sqrt{x^2 + y^2}}$$

9.
$$w = x^2 + xyz + z^2$$
, $x = r^2 - s^2$, $y = rs$, $z = r^2 + s^2$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$= (2x + yz)(-2s) + (xz)(r) + (xy + 2z)(2s)$$

$$= -2s(2x + yz) + r(xz) + 2s(xy + 2z)$$

10.
$$w = \ln(xyz)$$
, $x = r^2s$, $y = rs$, $z = rs^2$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= \frac{yz}{xyz} (2rs) + \frac{xz}{xyz} (s) + \frac{xy}{xyz} (s^2)$$

$$= \frac{2rs}{x} + \frac{s}{y} + \frac{s^2}{z}$$

11.
$$y = x^2 - 7x + 5$$
, $x = 19rs + 2s^2t^2$
 $\frac{\partial y}{\partial r} = \frac{dy}{dx} \frac{\partial x}{\partial r} = (2x - 7)(19s) = 19s(2x - 7)$

12.
$$y = 4 - x^2$$
, $x = 2r + 3s - 4t$

$$\frac{\partial y}{\partial t} = \frac{dy}{dx} \frac{\partial x}{\partial t} = (-2x)(-4) = 8x$$

13.
$$z = (4x+3y)^3, \ x = r^2s, \ y = r - 2s; \ r = 0, \ s = 1$$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$= 12(4x+3y)^2(2rs) + 9(4x+3y)^2(1)$$

$$= 3(4x+3y)^2(8rs+3)$$

When r = 0, s = 1, then x = 0, y = -2, and $\frac{\partial z}{\partial r} = 324$.

14.
$$z = \sqrt{2x+3y}$$
, $x = 3t+5$, $y = t^2 + 2t+1$; $t = 1$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= \frac{2}{2\sqrt{2x+3y}} (3) + \frac{3}{2\sqrt{2x+3y}} (2t+2)$$

$$= \frac{3(t+2)}{\sqrt{2x+3y}}$$

When t = 1, then x = 8, y = 4 and $\frac{dz}{dt} = \frac{9}{\sqrt{28}} = \frac{9}{2\sqrt{7}}$.

15.
$$w = e^{x+y+z}(x^2 + y^2 + z^2), \quad x = (r-s)^2, \quad y = (r+s)^2, \quad z = (s-r)^2$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$= [e^{x+y+z}(x^2 + y^2 + z^2) + e^{x+y+z}(2x)][2(r-s)(-1)] + [e^{x+y+z}(x^2 + y^2 + z^2) + e^{x+y+z}(2y)][2(r+s)]$$

$$+ [e^{x+y+z}(x^2 + y^2 + z^2) + e^{x+y+z}(2z)][2(s-r)]$$
When $r = 1$, $s = 1$, then $s = 0$, $s = 4$, $s = 0$.
$$\frac{\partial w}{\partial s} = e^4(16+8)(4) = 96e^4$$

16.
$$y = \frac{x}{x-5}$$
, $x = 2t^2 - 3rs - r^2t$; $r = 0$, $s = 2$, $t = -1$

$$\frac{\partial y}{\partial t} = \frac{dy}{dx} \frac{\partial x}{\partial t} = \frac{-5}{(x-5)^2} \left(4t - r^2\right)$$
When $r = 0$, $s = 2$ and $t = -1$, then $r = 2$ and $\frac{\partial y}{\partial t} = \frac{2}{3}$

When r = 0, s = 2, and t = -1, then x = 2 and $\frac{\partial y}{\partial t} = \frac{20}{9}$

17.
$$\frac{\partial c}{\partial p_{A}} = \frac{\partial c}{\partial q_{A}} \frac{\partial q_{A}}{\partial p_{A}} + \frac{\partial c}{\partial q_{B}} \frac{\partial q_{B}}{\partial p_{A}}$$

$$= \left[\frac{1}{3} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(6q_{A} \right) \right] (-1) + \left[\frac{1}{3} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(3q_{B}^{2} \right) \right] (1)$$

$$= \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(-2q_{A} + q_{B}^{2} \right)$$

$$\frac{\partial c}{\partial p_{B}} = \frac{\partial c}{\partial q_{A}} \frac{\partial q_{A}}{\partial p_{B}} + \frac{\partial c}{\partial q_{B}} \frac{\partial q_{B}}{\partial p_{B}}$$

$$= \left[\frac{1}{3} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(6q_{A} \right) \right] (2p_{B}) + \left[\frac{1}{3} \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(3q_{B}^{2} \right) \right] (-11)$$

$$= \left(3q_{A}^{2} + q_{B}^{3} + 4 \right)^{-\frac{2}{3}} \left(4q_{A}p_{B} - 11q_{B}^{2} \right)$$
When $p_{A} = 25$ and $p_{B} = 4$, then $q_{A} = 10 - 25 + 16 = 1$, $q_{B} = 20 + 25 - 44 = 1$, and $\frac{\partial c}{\partial p_{A}} = (8)^{-\frac{2}{3}} (-1) = -\frac{1}{4}$ and $\frac{\partial c}{\partial p_{B}} = (8)^{-\frac{2}{3}} (5) = \frac{5}{4}$.

18. a.
$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

b. Since
$$\frac{dy}{dt} = 1$$
, from (a), $\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y}$

19. a.
$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t}$$

b.
$$w = 2x^2 \ln|3x - 5y|$$
, $x = s\sqrt{t^2 + 2}$ and $y = t - 3e^{2-s}$.

$$\frac{\partial w}{\partial t} = \left[4x \ln|3x - 5y| + \frac{2x^2(3)}{3x - 5y} \right] \frac{s(2t)}{2\sqrt{t^2 + 2}} + \left[\frac{2x^2}{3x - 5y} (-5) \right] (1)$$
When $s = 1$ and $t = 0$, then $x = \sqrt{2}$ and $y = -3e$.

$$\frac{\partial w}{\partial t} = \left[4\sqrt{2} \ln|3\sqrt{2} - 5(-3e)| + \frac{2(2)(3)}{\sqrt{2}} \right] (0) + \left[\frac{2(2)}{\sqrt{2}} (-5) \right]$$

$$\frac{\partial w}{\partial t} = \left[4\sqrt{2} \ln \left| 3\sqrt{2} - 5(-3e) \right| + \frac{2(2)(3)}{3\sqrt{2} - 5(-3e)} \right] (0) + \left[\frac{2(2)}{3\sqrt{2} - 5(-3e)} (-5) \right]$$
$$= -\frac{20}{3\sqrt{2} + 15e}$$

20.
$$p = aP - whL$$
, where $P = f(l, k)$ and $l = Lg(h)$.

$$\frac{\partial p}{\partial L} = a \frac{\partial P}{\partial L} - wh = a \left[\frac{\partial P}{\partial l} \frac{\partial l}{\partial L} + \frac{\partial P}{\partial k} \frac{\partial k}{\partial L} \right] - wh$$

$$= a \left[\frac{\partial P}{\partial l} g(h) + \frac{\partial P}{\partial k} \cdot 0 \right] - wh = a \frac{\partial P}{\partial l} g(h) - wh$$

$$\frac{\partial p}{\partial h} = a \frac{\partial P}{\partial h} - wL = a \left[\frac{\partial P}{\partial l} \frac{\partial l}{\partial h} + \frac{\partial P}{\partial k} \frac{\partial k}{\partial h} \right] - wL$$

$$= a \left[\frac{\partial P}{\partial l} L g'(h) + \frac{\partial P}{\partial k} \cdot 0 \right] - wL$$

$$= a \frac{\partial P}{\partial l} L g'(h) - wL$$

Problems 17.6

1.
$$f(x, y) = x^2 - 3y^2 - 8x + 9y + 3xy$$

$$\begin{cases} f_x(x, y) = 2x - 8 + 3y = 0 \\ f_y(x, y) = -6y + 9 + 3x = 0 \end{cases}$$

Solving the system gives the critical point (1, 2).

2.
$$f(x, y) = x^2 + 4y^2 - 6x + 16y$$

$$\begin{cases} f_x(x, y) = 2x - 6 = 0 \\ f_y(x, y) = 8y + 16 = 0 \end{cases}$$
Critical point: (3, -2)

3.
$$f(x, y) = \frac{5}{3}x^3 + \frac{2}{3}y^3 - \frac{15}{2}x^2 + y^2 - 4y + 7$$

$$\begin{cases} f_x(x, y) = 5x^2 - 15x = 0 \\ f_y(x, y) = 2y^2 + 2y - 4 = 0 \end{cases}$$

Both equations are easily solved by factoring. Critical points: (0, -2), (0, 1), (3, -2), (3, 1)

4.
$$f(x, y) = xy - x + y$$

 $f_x(x, y) = y - 1$
 $f_y(x, y) = x + 1$

Critical point: (-1, 1)

5.
$$f(x, y, z) = 2x^{2} + xy + y^{2} + 100 - z(x + y - 200)$$

$$\begin{cases} f_{x}(x, y, z) = 4x + y - z = 0 \\ f_{y}(x, y, z) = x + 2y - z = 0 \\ f_{z}(x, y, z) = -x - y + 200 = 0 \end{cases}$$

Solving the system gives the critical point (50, 150, 350).

6.
$$f(x, y, z, w) = x^{2} + y^{2} + z^{2} + w(x + y + z - 3)$$

$$\begin{cases} f_{x}(x, y, z, w) = 2x + w = 0 \\ f_{y}(x, y, z, w) = 2y + w = 0 \\ f_{z}(x, y, z, w) = 2z + w = 0 \\ f_{w}(x, y, z, w) = x + y + z - 3 = 0 \end{cases}$$

Solving the system gives the critical point (1, 1, 1, -2).

7.
$$f(x, y) = x^2 + 3y^2 + 4x - 9y + 3$$

$$\begin{cases} f_x(x, y) = 2x + 4 = 0 \\ f_y(x, y) = 6y - 9 = 0 \end{cases}$$

Critical point $\left(-2, \frac{3}{2}\right)$

Second-Derivative Test

$$f_{xx}(x, y) = 2$$
, $f_{yy}(x, y) = 6$, $f_{xy}(x, y) = 0$. At

$$\left(-2, \frac{3}{2}\right)$$
, $D = (2)(6) - 0^2 = 12 > 0$ and

$$f_{xx}(x, y) = 2 > 0$$
. Thus at $\left(-2, \frac{3}{2}\right)$ there is a

relative minimum.

8.
$$f(x, y) = -2x^2 + 8x - 3y^2 + 24y + 7$$

$$\begin{cases} f_x(x, y) = -4x + 8 = 0 \\ f_y(x, y) = -6y + 24 = 0 \end{cases}$$
Critical point: (2, 4)

Second-Derivative Test
$$f_{xx}(x, y) = -4$$
, $f_{yy}(x, y) = -6$, $f_{xy}(x, y) = 0$. At (2, 4), $D = (-4)(-6) - 0^2 = 24 > 0$ and $f_{xx}(x, y) = -4 < 0$; thus there is a relative maximum at (2, 4).

9.
$$f(x, y) = y - y^2 - 3x - 6x^2$$

$$\begin{cases} f_x(x, y) = -3 - 12x = 0 \\ f_y(x, y) = 1 - 2y = 0 \end{cases}$$
Critical point $\left(-\frac{1}{4}, \frac{1}{2}\right)$
Second-Derivative Test $f_{xx}(x, y) = -12$, $f_{yy}(x, y) = -2$, $f_{xy}(x, y) = 0$
At $\left(-\frac{1}{4}, \frac{1}{2}\right)$, $D = (-12)(-2) - 0^2 = 24 > 0$ and $f_{xx}(x, y) = -12 < 0$. Thus at $\left(-\frac{1}{4}, \frac{1}{2}\right)$ there is a

10.
$$f(x, y) = 2x^2 + \frac{3}{2}y^2 + 3xy - 10x - 9y + 2$$

$$\begin{cases} f_x(x, y) = 4x + 3y - 10 = 0 \\ f_y(x, y) = 3y + 3x - 9 = 0 \end{cases}$$
Critical point: (1, 2)
Second-Derivative Test

$$f_{xx}(x, y) = 4, f_{yy}(x, y) = 3, f_{xy}(x, y) = 3.$$
At (1, 2), $D = (4)(3) - 3^2 = 3 > 0$ and $f_{xx}(x, y) = 4 > 0$; thus there is a relative minimum at (1, 2).

relative maximum.

11.
$$f(x, y) = x^2 + 3xy + y^2 - 9x - 11y + 3$$

$$\begin{cases} f_x(x, y) = 2x + 3y - 9 = 0 \\ f_y(x, y) = 3x + 2y - 11 = 0 \end{cases}$$
Critical point: (3, 1)
Second-Derivative Test

$$f_{xx}(x, y) = 2, \ f_{yy} = 2, f_{xy} = 3. \text{ At (3, 1),}$$

$$D = (2)(2) - (3)^2 = -5 < 0, \text{ so there is no}$$
relative extremum at (3, 1).

12.
$$f(x, y) = \frac{x^3}{3} + y^2 - 2x + 2y - 2xy$$

$$\begin{cases} f_x(x, y) = x^2 - 2 - 2y = 0 \\ f_y(x, y) = 2y + 2 - 2x = 0 \end{cases}$$

Critical points: (2, 1), (0, -1) Second-Derivative Test $f_{xx}(x, y) = 2x$, $f_{yy}(x, y) = 2$, $f_{xy}(x, y) = -2$. At (2, 1), $D = (4)(2) - (-2)^2 = 4 > 0$ and $f_{xx}(x, y) = 4 > 0$, so a relative minimum at (2, 1). At (0, -1), $D = (0)(2) - (-2)^2 = -4 < 0$; thus neither at (0, -1).

13.
$$f(x, y) = \frac{1}{3}(x^3 + 8y^3) - 2(x^2 + y^2) + 1$$

$$\begin{cases} f_x(x, y) = x^2 - 4x = 0 \\ f_y(x, y) = 8y^2 - 4y = 0 \end{cases}$$
Critical points: $(0, 0)$, $\left(4, \frac{1}{2}\right)$, $\left(0, \frac{1}{2}\right)$, $(4, 0)$
Second-Derivative Test $f_{xx}(x, y) = 2x - 4$, $f_{yy}(x, y) = 16y - 4$, $f_{xy}(x, y) = 0$. At $(0, 0)$, $D = (-4)(-4) - 0^2 = 16 > 0$ and $f_{xx}(x, y) = -4 < 0$; thus a relative maximum. At $\left(4, \frac{1}{2}\right)$, $D = (4)(4) - 0^2 = 16 > 0$ and $f_{xx}(x, y) = 4 > 0$; thus a relative minimum. At $\left(0, \frac{1}{2}\right)$, $D = (-4)(4) - 0^2 = -16 < 0$; thus neither. At $(4, 0)$, $D = (4)(-4) - 0^2 = -16 < 0$, thus

14.
$$f(x, y) = x^2 + y^2 - xy + x^3$$

$$\begin{cases} f_x(x, y) = 2x - y + 3x^2 = 0 \\ f_y(x, y) = 2y - x = 0 \end{cases}$$
Critical points: $(0, 0)$, $\left(-\frac{1}{2}, -\frac{1}{4}\right)$
Second-Derivative Test $f_{xx}(x, y) = 2 + 6x$, $f_{yy}(x, y) = 2$, $f_{xy}(x, y) = -1$. At $(0, 0)$, $D = (2)(2) - (-1)^2 = 3 > 0$ and $f_{xx}(x, y) = 2 > 0$; thus relative minimum.
At $\left(-\frac{1}{2}, -\frac{1}{4}\right)$, $D = (-1)(2) - (-1)^2 = -3 < 0$; thus neither.

neither.

15.
$$f(l, k) = \frac{l^2}{2} + 2lk + 3k^2 - 69l - 164k + 17$$

$$\begin{cases} f_l(l, k) = l + 2k - 69 = 0 \\ f_k(l, k) = 2l + 6k - 164 = 0 \end{cases}$$
Critical point: (43, 13)
Second-Derivative Test $f_{ll}(l, k) = 1$, $f_{kk}(l, k) = 6$, $f_{lk}(l, k) = 2$
At (43, 13), $D = (1)(6) - 2^2 = 2 > 0$ and $f_{ll}(l, k) = 1 > 0$; thus there is a relative minimum at (43, 13).

16.
$$f(l, k) = l^2 + 4k^2 - 4lk$$

$$\begin{cases} f_l(l, k) = 2l - 4k \\ f_k(l, k) = 8k - 4l \end{cases}$$
Critical points: $(2r, r)$ where r is any real number.
Second Derivative Test
$$f_{ll}(l, k) = 2, f_{kk}(l, k) = 8, \text{ and } f_{lk}(l, k) = -4.$$
At $(2r, r)$, $D = (2)(8) - (-4)^2 = 0$, thus we cannot make a conclusion.

17. $f(p,q) = pq - \frac{1}{p} - \frac{1}{q}$

$$\begin{cases} f_p(p, q) = q + \frac{1}{p^2} = 0 \\ f_q(p, q) = p + \frac{1}{q^2} = 0 \end{cases}$$
Critical point: (-1, -1)
Second-Derivative Test
$$f_{pp}(p, q) = -\frac{2}{p^3}, \ f_{qq}(p, q) = -\frac{2}{q^3},$$

$$f_{pq}(p, q) = 1. \text{ At } (-1, -1),$$

$$D = (2)(2) - 1^2 = 3 > 0 \text{ and } f_{pp}(p, q) = 2 > 0;$$
thus there is a relative minimum at (-1, -1).

18.
$$f(x, y) = (x-3)(y-3)(x+y-3)$$

 $= (y-3)(x^2 + xy - 6x - 3y + 9)$
 $= (x-3)(xy - 3x + y^2 - 6y + 9)$
 $\begin{cases} f_x(x, y) = (y-3)(2x + y - 6) = 0 \\ f_y(x, y) = (x-3)(x + 2y - 6) = 0 \end{cases}$
 Critical points: $(2, 2), (3, 3), (3, 0), (0, 3)$
 Second-Derivative Test
 $f_{xx}(x, y) = 2(y-3), f_{yy}(x, y) = 2(x-3),$
 $f_{yy}(x, y) = 2x + 2y - 9$. At $(2, 2)$,

$$D = (-2)(-2) - (-1)^2 = 3 > 0$$
 and $f_{xx}(x, y) = -2 < 0$; thus relative maximum.
At $(3, 3)$, $D = (0)(0) - 3^2 = -9 < 0$; thus neither.
At $(3, 0)$, $D = (-6)(0) - (-3)^2 = -9 < 0$; thus neither. At $(0, 3)$, $D = (0)(-6) - (-3)^2 = -9 < 0$; thus neither.

19.
$$f(x, y) = (y^2 - 4)(e^x - 1)$$

$$\begin{cases} f_x(x, y) = e^x (y^2 - 4) = 0 & (1) \\ f_y(x, y) = 2y(e^x - 1) = 0 & (2) \end{cases}$$
Critical points: $(0, -2)$, $(0, 2)$
[Note that $y = 0$ does not give rise to a common solution of (1) and (2) .]
Second-Derivative Test
$$f_{xx}(x, y) = e^x (y^2 - 4), f_{yy}(x, y) = 2(e^x - 1),$$

$$f_{xy}(x, y) = 2ye^x. \text{ At } (0, -2),$$

$$D = (0)(0) - (-4)^2 = -16 < 0 \text{ ; thus neither. At } (0, 2), D = (0)(0) - (4)^2 = -16 < 0 \text{ ; thus neither.} \end{cases}$$

$$\begin{cases} f_x(x, y) = \frac{1}{x} + 4x - y - 6 = 0 \\ f_y(x, y) = \frac{1}{y} - x = 0 \end{cases}$$
The only critical point is $\left(\frac{3}{2}, \frac{2}{3}\right)$.
$$f_{xx}(x, y) = -\frac{1}{x^2} + 4, \ f_{yy}(x, y) = -\frac{1}{y^2},$$

$$f_{xy}(x, y) = -1. \text{ At } \left(\frac{3}{2}, \frac{2}{3}\right),$$

$$D = \left(\frac{32}{9}\right) \left(\frac{-9}{4}\right) - (-1)^2 = -9 < 0 \text{ ; thus neither.}$$

20. $f(x, y) = \ln(xy) + 2x^2 - xy - 6x$

21.
$$P = f(l, k) = 2.18l^2 - 0.02l^3 + 1.97k^2 - 0.03k^3$$

$$\begin{cases} P_l = 4.36l - 0.06l^2 = 0 \\ P_k = 3.94k - 0.09k^2 = 0 \end{cases}$$
Critical points: $(0, 0), \left(0, \frac{394}{9}\right), \left(\frac{218}{3}, 0\right), \left(\frac{218}{3}, \frac{394}{9}\right)$

Second-Derivative Test
$$P_{ll} = 4.36 - 0.12l$$
, $P_{kk} = 3.94 - 0.18k$, $P_{lk} = 0$. At $(0,0)$, $D = (4.36)(3.94) - 0^2 > 0$ and $P_{ll} = 4.36 > 0$; thus relative minimum. At $\left(0,\frac{394}{9}\right)$, $D = (4.36)(-3.94) - 0^2 < 0$; thus no extremum. At $\left(\frac{218}{3},0\right)$, $D = (-4.36)(3.94) - 0^2 < 0$; thus no extremum. At $\left(\frac{218}{3},\frac{394}{9}\right)$, $D = (-4.36)(-3.94) - 0^2 > 0$ and $P_{ll} = -4.36 < 0$; thus $l = \frac{218}{3} \approx 72.67$, $k = \frac{394}{9} \approx 43.78$ gives a relative maximum.

$$\begin{cases} Q_c = 18 - 4c - d = 0 \\ Q_d = 20 - 8d - c = 0 \end{cases}$$
Critical point: $c = 4$, $d = 2$

$$Q_{cc} = -4$$
, $Q_{dd} = -8$, $Q_{cd} = -1$
When $c = 4$ and $d = 2$, then
$$D = (-4)(-8) - (-1)^2 > 0 \text{ and } Q_{cc} = -4 < 0 \text{ ;}$$
thus relative maximum at $c = 4$, $d = 2$.

22. $Q = 18c + 20d - 2c^2 - 4d^2 - cd$

23. Profit per lb for A =
$$p_A$$
 - 60.
Profit per lb for B = p_B - 70.
Total Profit = $P = (p_A - 60)q_A + (p_B - 70)q_B$
 $P = (p_A - 60)[5(p_B - p_A)]$
 $+(p_B - 70)[500 + 5(p_A - 2p_B)]$
Thus
$$\left[\frac{\partial P}{\partial p_A} = -10(p_A - p_B + 5) = 0\right]$$

$$\left[\frac{\partial P}{\partial p_B} = 10(p_A - 2p_B + 90) = 0\right]$$
Critical point: $p_A = 80$, $p_B = 85$

$$\frac{\partial^2 P}{\partial p_A^2} = -10$$
, $\frac{\partial^2 P}{\partial p_B^2} = -20$, $\frac{\partial^2 P}{\partial p_B \partial p_A} = 10$.
When $p_A = 80$ and $p_B = 85$, then
$$D = (-10)(-20) - (10)^2 = 100 > 0 \text{ and}$$

$$\frac{\partial^2 P}{\partial p_A^2} = -10 < 0 \text{; thus relative maximum at}$$

$$p_A = 80, p_B = 85.$$

24. Profit per lb for $A = p_A - a$.

Profit per lb for $B = p_B - b$.

Total Profit = $P = (p_A - a)q_A + (p_B - b)q_B$

$$P = (p_A - a) [5(p_B - p_A)] + (p_B - b) [500 + 5(p_A - 2p_B)]$$

$$\begin{cases} \frac{\partial P}{\partial p_{A}} = -5(2p_{A} - 2p_{B} + b - a) = 0\\ \frac{\partial P}{\partial p_{B}} = 5(2p_{A} - 4p_{B} + 2b - a + 100) = 0 \end{cases}$$

Critical point: $p_A = 50 + \frac{a}{2}$, $p_B = 50 + \frac{b}{2}$

$$\frac{\partial^2 P}{\partial p_{\rm A}^2} = -10, \ \frac{\partial^2 P}{\partial p_{\rm B}^2} = -20, \ \frac{\partial^2 P}{\partial p_{\rm B} \partial p_{\rm A}} = 10$$

When $p_A = 50 + \frac{a}{2}$ and $p_B = 50 + \frac{b}{2}$, then $D = (-10)(-20) - (10)^2 = 100 > 0$ and $\frac{\partial^2 P}{\partial p_A^2} = -10 < 0$; thus a relative

maximum at $p_A = 50 + \frac{a}{2}$, $p_B = 50 + \frac{b}{2}$.

25. $p_A = 100 - q_A$, $p_B = 84 - q_B$, $c = 600 + 4(q_A + q_B)$.

Revenue from market $A = r_A = p_A q_A = (100 - q_A)q_A$. Revenue from market $B = r_B = p_B q_B = (84 - q_B)q_B$.

Total Profit = Total Revenue – Total Cost

$$P = (100 - q_{\rm A})q_{\rm A} + (84 - q_{\rm B})q_{\rm B} - [600 + 4(q_{\rm A} + q_{\rm B})]$$

$$\begin{cases} \frac{\partial P}{\partial q_{A}} = 96 - 2q_{A} = 0 \\ \frac{\partial P}{\partial q_{A}} \end{cases}$$

$$\begin{cases} \frac{\partial P}{\partial q_{\rm B}} = 80 - 2q_{\rm B} = 0 \end{cases}$$

Critical point: $q_A = 48$, $q_B = 40$

$$\frac{\partial^2 P}{\partial q_{\rm A}^2} = -2 \; , \; \frac{\partial^2 P}{\partial q_{\rm B}^2} = -2 \; , \; \frac{\partial^2 P}{\partial q_{\rm B} \partial q_{\rm A}} = 0 \; . \label{eq:delta_P}$$

At $q_A = 48$ and $q_B = 40$, then $D = (-2)(-2) - 0^2 = 4 > 0$ and $\frac{\partial^2 P}{\partial q_A^2} = -2 < 0$; thus relative maximum at

 $q_{\rm A}=48$, $q_{\rm B}=40$. When $q_{\rm A}=48$ and $q_{\rm B}=40$, then selling prices are $p_{\rm A}=52$, $p_{\rm B}=44$, and profit = 3304.

26. $q_A = 16 - p_A + p_B$, $q_B = 24 + 2p_A - 4p_B$

Revenue from $A = p_A q_A$. Revenue from $B = p_B q_B$.

Total cost of producing q_A units of A and q_B units of B is $2q_A + 4q_B$.

Total Profit = Total Revenue - Total Cost

$$P = p_{A}q_{A} + p_{B}q_{B} - (2q_{A} + 4q_{B})$$

$$P = 16p_{A} - p_{A}^{2} + p_{A}p_{B} + 24p_{B} + 2p_{A}p_{B} - 4p_{B}^{2} - 32 + 2p_{A} - 2p_{B} - 96 - 8p_{A} + 16p_{B}$$

$$= -p_{A}^{2} - 4p_{B}^{2} + 3p_{A}p_{B} + 10p_{A} + 38p_{B} - 128$$

$$\begin{cases} \frac{\partial P}{\partial p_{A}} = -2p_{A} + 3p_{B} + 10\\ \frac{\partial P}{\partial p_{B}} = 3p_{A} - 8p_{B} + 38 \end{cases}$$

Critical point: $p_A = \frac{194}{7}$, $p_B = \frac{106}{7}$

$$\frac{\partial^2 P}{\partial p_{\rm A}^2} = -2, \frac{\partial^2 P}{\partial p_{\rm B}^2} = -8, \frac{\partial^2 P}{\partial p_{\rm B} \partial p_{\rm A}} = 3$$

At $p_A = \frac{194}{7}$, $p_B = \frac{106}{7}$, then $D = (-2)(-8) - 3^2 = 7 > 0$ and $\frac{\partial^2 P}{\partial p_A^2} = -2 < 0$; thus relative maximum at

$$p_{\rm A} = \frac{194}{7}, p_{\rm B} = \frac{106}{7}.$$

$$q_{\rm A} = 16 - \frac{194}{7} + \frac{106}{7} = \frac{24}{7}$$

$$q_{\rm B} = 24 + 2\left(\frac{194}{7}\right) - 4\left(\frac{106}{7}\right) = \frac{132}{7}$$

So, $\frac{24}{7} \approx 3$ of A and $\frac{132}{7} \approx 19$ of B should be sold.

27.
$$c = \frac{3}{2}q_{A}^{2} + 3q_{B}^{2}$$
, $p_{A} = 60 - q_{A}^{2}$, $p_{B} = 72 - 2q_{B}^{2}$

Total Profit = Total Revenue – Total Cost

$$P = \left(p_{\rm A}q_{\rm A} + p_{\rm B}q_{\rm B}\right) - c$$

$$P = 60q_{A} - q_{A}^{3} + 72q_{B} - 2q_{B}^{3} - \left(\frac{3}{2}q_{A}^{2} + 3q_{B}^{2}\right)$$

$$\begin{cases}
\frac{\partial P}{\partial q_{A}} = 60 - 3q_{A} - 3q_{A}^{2} = 3(5 + q_{A})(4 - q_{A}) \\
\frac{\partial P}{\partial q_{B}} = 72 - 6q_{B} - 6q_{B}^{2} = 6(4 + q_{B})(3 - q_{B})
\end{cases}$$

Since we want $q_A \ge 0$ and $q_B \ge 0$, the critical point occurs when $q_A = 4$ and $q_B = 3$.

$$\frac{\partial^2 P}{\partial q_{\rm A}^2} = -3 - 6q_{\rm A}$$
, $\frac{\partial^2 P}{\partial q_{\rm B}^2} = -6 - 12q_{\rm B}$, $\frac{\partial^2 P}{\partial q_{\rm B}\partial q_{\rm A}} = 0$. When $q_{\rm A} = 4$ and $q_{\rm B} = 3$, then $D = (-27)(-42) - 0^2 > 0$

and $\frac{\partial^2 P}{\partial q_{\rm A}^2}$ = -27 < 0; thus relative maximum at $q_{\rm A}$ = 4, $q_{\rm B}$ = 3.

28.
$$c = 2(q_A + q_B + q_A q_B),$$

Total Profit = Total Revenue - Total Cost

$$\begin{split} P &= (p_{\rm A}q_{\rm A} + p_{\rm B}q_{\rm B}) - c \\ &= p_{\rm A}(20 - 2p_{\rm A}) + p_{\rm B}(10 - p_{\rm B}) - [20 - 2p_{\rm A} + 10 - p_{\rm B} + (20 - 2p_{\rm A})(10 - p_{\rm B})] \\ &= -2p_{\rm A}^2 - p_{\rm B}^2 - 2p_{\rm A}p_{\rm B} + 42p_{\rm A} + 31p_{\rm B} + 230 \end{split}$$

$$\begin{cases} \frac{\partial P}{\partial p_{A}} = -4p_{A} - 2p_{B} + 42\\ \frac{\partial P}{\partial p_{B}} = -2p_{A} - 2p_{B} + 31 \end{cases}$$

Critical point: $p_A = \frac{11}{2}$, $p_B = 10$

$$\frac{\partial^2 P}{\partial p_{\rm A}^2} = -4, \frac{\partial^2 P}{\partial p_{\rm B}^2} = -2, \frac{\partial^2 P}{\partial p_{\rm B} \partial p_{\rm A}} = -2$$

When $p_A = \frac{11}{2}$, $p_B = 10$, then $D = (-4)(-2) - (-2)^2 = 4 > 0$, and $\frac{\partial^2 p}{\partial p_A^2} = -4 < 0$, so the maximum profit occurs

when $p_A = 5.5$ and $p_B = 10$. At these prices, $q_A = 9$, $q_B = 0$, and the total profit is 40.5.

29. Refer to the diagram in the text.

$$xyz = 6$$

$$\dot{C} = 3xy + 2[1(xz)] + 2[0.5(yz)]$$

Note that
$$z = \frac{6}{xy}$$
. Thus

$$C = 3xy + 2xz + yz = 3xy + 2x\left(\frac{6}{xy}\right) + y\left(\frac{6}{xy}\right) = 3xy + \frac{12}{y} + \frac{6}{x}$$

$$\int \frac{\partial C}{\partial x} = 3y - \frac{6}{x^2} = 0$$

$$\begin{cases} \frac{dC}{dy} = 3x - \frac{12}{v^2} = 0 \end{cases}$$

A critical point occurs at x = 1 and y = 2. Thus z = 3.

$$\frac{\partial^2 C}{\partial x^2} = \frac{12}{x^3}, \ \frac{\partial^2 C}{\partial y^2} = \frac{24}{y^3}, \ \frac{\partial^2 C}{\partial x \partial y} = 3.$$

When x = 1 and y = 2, then $d = (12)(3) - (3)^2 = 27 > 0$ and $\frac{\partial^2 C}{\partial x^2} = 12 > 0$. Thus we have a minimum. The

dimensions should be 1 ft by 2 ft by 3 ft.

30. $p = 92 - q_A - q_B$, $c_A = 10q_A$, $c_B = 0.5q_B^2$

Since Profit = Total Revenue – Total Cost,

then

Profit of A =
$$pq_A - c_A$$
 and

Profit of B =
$$pq_B - c_B$$
.

Thus profit P of monopoly is

$$P = pq_{A} - c_{A} + pq_{B} - c_{B}$$

$$= p(q_A + q_B) - c_A - c_B$$

$$=(92-q_A-q_B)(q_A+q_B)-10q_A-0.5q_B^2$$

$$=82q_{\rm A}+92q_{\rm B}-q_{\rm A}^2-2q_{\rm A}q_{\rm B}-1.5q_{\rm B}^2$$

$$\begin{cases} \frac{\partial P}{\partial q_{\mathrm{A}}} = 82 - 2q_{\mathrm{A}} - 2q_{\mathrm{B}} = 0\\ \frac{\partial P}{\partial q_{\mathrm{B}}} = 92 - 2q_{\mathrm{A}} - 3q_{\mathrm{B}} = 0 \end{cases}$$

Critical point: $q_A = 31$, $q_B = 10$

$$\frac{\partial^2 P}{\partial q_{\rm A}^2} = -2, \frac{\partial^2 P}{\partial q_{\rm B}^2} = -3, \frac{\partial^2 P}{\partial q_{\rm B} \partial q_{\rm A}} = -2$$

When $q_A = 31$ and $q_B = 10$, then

$$D = (-2)(-3) - (-2)^2 = 2 > 0$$
 and

$$\frac{\partial^2 P}{\partial q_{\rm A}^2} = -2 < 0$$
; thus relative maximum at

$$q_{\rm A} = 31, q_{\rm B} = 10.$$

31.
$$y = 2 - x$$

$$f(x, y) = x^2 + 3(2-x)^2 + 9$$

Setting the derivative equal to 0 gives

$$2x + 6(2 - x)(-1) = 0.$$

$$2x - 12 + 6x = 0$$
, $8x - 12 = 0$,

8x = 12, or $x = \frac{3}{2}$. The second-derivative is

8 > 0, so we have a relative minimum. If $x = \frac{3}{2}$,

then $y = \frac{1}{2}$. Thus there is a relative minimum at $\left(\frac{3}{2}, \frac{1}{2}\right)$.

32.
$$y = \frac{x-10}{4}$$

$$f(x, y) = x^2 + 4\left(\frac{x-10}{4}\right)^2 + 6$$

Setting the derivative equal to 0 gives

$$2x + 4(2)\left(\frac{x-10}{4}\right)\left(\frac{1}{4}\right) = 0$$
, from which $x = 2$.

The second-derivative is $\frac{5}{2} > 0$, so we have a

relative minimum If x = 2, then y = -2. Thus at (2, -2) there is a relative minimum

33.
$$c = q_A^2 + 3q_B^2 + 2q_Aq_B + aq_A + bq_B + d$$

We are given that $(q_A, q_B) = (3, 1)$ is a critical point.

$$\begin{cases} \frac{\partial c}{\partial q_{A}} = 2q_{A} + 2q_{B} + a = 0 \\ \frac{\partial c}{\partial q_{B}} = 6q_{B} + 2q_{A} + b = 0 \end{cases}$$

Substituting the given values for q_A and q_B into both equations gives a = -8 and b = -12. Since

c = 15 when $q_A = 3$ and $q_B = 1$, from the joint-cost function we have

$$15 = 3^{2} + 3(1^{2}) + 2(3)(1) + (-8)(3) + (-12) + d,$$

$$15 = -18 + d$$
, $33 = d$. Thus $a = -8$, $b = -12$, $d = 33$.

34.
$$D(a, b) > 0$$

$$f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2 > 0$$

$$f_{xx}(a, b)f_{yy}(a, b) > (f_{xy}(a, b))^2 \ge 0$$

- **a.** Since the product $f_{xx}(a, b)f_{yy}(a, b)$ is positive, $f_{xx}(a, b)$ and $f_{yy}(a, b)$ must have the same sign. That is $f_{xx}(a, b) < 0$ if and only if $f_{yy}(a, b) < 0$.
- **b.** Since the product $f_{xx}(a, b) f_{yy}(a, b)$ is positive, $f_{xx}(a, b)$ and $f_{yy}(a, b)$ must have the same sign. That is $f_{xx}(a, b) > 0$ if and only if $f_{yy}(a, b) > 0$.

35. a. Profit = Total Revenue – Total Cost

$$P = p_A q_A + p_B q_B - \text{total cost}$$

$$= \left(35 - 2q_{\rm A}^2 + q_{\rm B}\right)q_{\rm A} + \left(20 - q_{\rm B} + q_{\rm A}\right)q_{\rm B} - \left(-8 - 2q_{\rm A}^3 + 3q_{\rm A}q_{\rm B} + 30q_{\rm A} + 12q_{\rm B} + \frac{1}{2}q_{\rm A}^2\right)$$

$$P = 5q_{\rm A} - \frac{1}{2}q_{\rm A}^2 - q_{\rm A}q_{\rm B} + 8q_{\rm B} - q_{\rm B}^2 + 8$$

$$\begin{cases} \frac{\partial P}{\partial q_{A}} = 5 - q_{A} - q_{B} = 0 \\ \frac{\partial P}{\partial q_{B}} = -q_{A} + 8 - 2q_{B} = 0 \end{cases}$$

Critical point: $q_A = 2$, $q_B = 3$

$$\frac{\partial^2 P}{\partial q_{\rm A}^2} = -1 \,, \; \frac{\partial^2 P}{\partial q_{\rm B}^2} = -2 \,, \; \frac{\partial^2 P}{\partial q_{\rm B} \partial q_{\rm A}} = -1$$

At $q_A = 2$ and $q_B = 3$, then $D = (-1)(-2) - (-1)^2 = 1 > 0$ and $\frac{\partial^2 P}{\partial a_1^2} = -1 < 0$; thus there is a relative

maximum profit for 2 units of A and 3 units of B.

b. Substituting $q_A = 2$ and $q_B = 3$ into the formulas for p_A , p_B , and P gives a selling price for A of 30, a selling price for B of 19, and a relative maximum profit of 25.

36.
$$P = 300 \left[\frac{7x}{2+x} + \frac{4y}{5+y} \right] - x - y$$

$$\left[\frac{\partial P}{\partial x} = 300 \cdot \frac{(2+x)(7) - 7x}{(2+x)^2} - 1 = \frac{4200}{(2+x)^2} - 1 = 0\right]$$

$$\begin{cases} \frac{\partial P}{\partial x} = 300 \cdot \frac{(2+x)(7) - 7x}{(2+x)^2} - 1 = \frac{4200}{(2+x)^2} - 1 = 0\\ \frac{\partial P}{\partial y} = 300 \cdot \frac{(5+y)(4) - 4y}{(5+y)^2} - 1 = \frac{6000}{(5+y)^2} - 1 = 0 \end{cases}$$

$$4200 = (2+x)^{2}$$

$$\pm \sqrt{4200} = 2+x$$

$$x = -2 \pm \sqrt{4200} = -2 \pm 10\sqrt{42}$$

$$\pm \sqrt{6000} = 5 + y$$
$$y = -5 \pm \sqrt{6000} = -5 \pm 20\sqrt{15}$$

The values of x and y must be nonnegative.

Critical point: $x = 10\sqrt{42} - 2$, $y = 20\sqrt{15} - 5$

$$\frac{\partial^2 P}{\partial x^2} = -\frac{8400}{(2+x)^3}, \quad \frac{\partial^2 P}{\partial y^2} = -\frac{12,000}{(5+y)^3}, \quad \frac{\partial^2 P}{\partial y \partial x} = 0$$

At
$$x = 10\sqrt{42} - 2$$
 and $y = 20\sqrt{15} - 5$, then $D \approx (0.031)(0.026) - 0^2 > 0$ and $\frac{\partial^2 P}{\partial x^2} \approx -0.031 < 0.000$

Thus relative maximum profit at $x = 10\sqrt{42} - 2 \approx 62.81$, $y = 20\sqrt{15} - 5 \approx 72.46$.

37. a. $P = 5T(1 - e^{-x}) - 20x - 0.1T^2$

b.
$$\frac{\partial P}{\partial T} = 5\left(1 - e^{-x}\right) - 0.2T$$

$$\frac{\partial P}{\partial x} = 5Te^{-x} - 20$$

At the point
$$(T, x) = (20, \ln 5)$$
,

$$\frac{\partial P}{\partial T} = 5\left(1 - e^{-\ln 5}\right) - 0.2(20) = 5\left(1 - \frac{1}{5}\right) - 4 = 0$$

$$\frac{\partial P}{\partial x} = 5(20)e^{-\ln 5} - 20 = 100\left(\frac{1}{5}\right) - 20 = 0$$

Thus (20, ln 5) is a critical point. In a similar fashion we verify that $\left(5, \ln \frac{5}{4}\right)$ is a critical point.

c.
$$\frac{\partial^2 P}{\partial T^2} = -0.2$$
, $\frac{\partial^2 P}{\partial x^2} = -5Te^{-x}$, $\frac{\partial^2 P}{\partial T \partial x} = 5e^{-x}$
At $(20, \ln 5)$, $D = (-0.2) \Big[-5(20)e^{-\ln 5} \Big] - \Big(5e^{-\ln 5} \Big)^2 = 20 \Big(\frac{1}{5} \Big) - \Big[5\Big(\frac{1}{5} \Big) \Big]^2 = 3 > 0$, and $\frac{\partial^2 P}{\partial T^2} = -0.2 < 0$. Thus we get a relative maximum at $(20, \ln 5)$. At $\Big(5, \ln \frac{5}{4} \Big)$, $D = (-0.2) \Big[-5(5)e^{-\ln(\frac{5}{4})} \Big] - \Big[5e^{-\ln(\frac{5}{4})} \Big]^2 = 5\Big(\frac{4}{5} \Big) - \Big[5\Big(\frac{4}{5} \Big) \Big]^2 = -12 < 0$, so there is no relative extremum at $\Big(5, \ln \frac{5}{4} \Big)$.

Problems 17.7

1.
$$f(x, y) = x^2 + 4y^2 + 6$$
, $2x - 8y = 20$
 $F(x, y, \lambda) = x^2 + 4y^2 + 6 - \lambda(2x - 8y - 20)$

$$\begin{cases} F_x = 2x - 2\lambda = 0 & (1) \\ F_y = 8y + 8\lambda = 0 & (2) \\ F_{\lambda} = -2x + 8y + 20 = 0 & (3) \end{cases}$$
From (1), $x = \lambda$; from (2), $y = -\lambda$. Substituting $x = \lambda$ and $y = -\lambda$ into (3) gives $-2\lambda - 8\lambda + 20 = 0$, $-10\lambda = -20$, so $\lambda = 2$. Thus $x = 2$ and $y = -2$. Critical point of F : (2, -2, 2). Critical point of f : (2, -2).

2.
$$f(x, y) = 3x^2 - 2y^2 + 9$$
, $x + y = 1$
 $F(x, y, \lambda) = 3x^2 - 2y^2 + 9 - \lambda(x + y - 1)$

$$\begin{cases} F_x = 6x - \lambda = 0 & (1) \\ F_y = -4y - \lambda = 0 & (2) \\ F_{\lambda} = -x - y + 1 = 0 & (3) \end{cases}$$

$$F_{\lambda} = -x - y + 1 = 0$$
 (3)

From (1), $x = \frac{\lambda}{6}$; from (2), $y = -\frac{\lambda}{4}$.

Substituting $x = \frac{\lambda}{6}$ and $y = -\frac{\lambda}{4}$ into (3) gives $-\frac{\lambda}{6} + \frac{\lambda}{4} + 1 = 0$, from which $\lambda = -12$. Thus x = -2 and y = 3. Critical point of F: (-2, 3, -12). Critical point of f: (-2, 3).

3.
$$f(x, y, z) = x^{2} + y^{2} + z^{2}, 2x + y - z = 9$$

$$F(x, y, z, \lambda) = x^{2} + y^{2} + z^{2} - \lambda(2x + y - z - 9)$$

$$\begin{cases} F_{x} = 2x - 2\lambda = 0 & (1) \\ F_{y} = 2y - \lambda = 0 & (2) \\ F_{z} = 2z + \lambda = 0 & (3) \\ F_{\lambda} = -2x - y + z + 9 = 0 & (4) \end{cases}$$

From (1),
$$x = \lambda$$
; from (2), $y = \frac{\lambda}{2}$; from (3),
 $z = -\frac{\lambda}{2}$. Substituting into (4) gives
 $-2\lambda - \frac{\lambda}{2} + \left(\frac{-\lambda}{2}\right) + 9 = 0$, $-6\lambda + 18 = 0$, so
 $\lambda = 3$. Thus $x = 3$, $y = \frac{3}{2}$, $z = -\frac{3}{2}$. Critical point

of
$$F: \left(3, \frac{3}{2}, -\frac{3}{2}, 3\right)$$
. Critical point of f :
$$\left(3, \frac{3}{2}, -\frac{3}{2}\right)$$
.

4.
$$f(x, y, z) = x + y + z, xyz = 8$$

 $F(x, y, z, \lambda) = x + y + z - \lambda(xyz - 8)$

$$\begin{cases}
F_x = 1 - \lambda yz = 0 & (1) \\
F_y = 1 - \lambda xz = 0 & (2) \\
F_z = 1 - \lambda xy = 0 & (3) \\
F_{\lambda} = -xzy + 8 = 0 & (4)
\end{cases}$$

From (1) and (2), $\lambda yz = \lambda xz$, so y = x. From (2) and (3), $\lambda xz = \lambda xy$, so y = z. Therefore x = y = z, so from (4), x = y = z = 2. Hence, Critical point of f is (2, 2, 2). Note that it is not necessary to determine λ .

5.
$$f(x, y, z) = 2x^2 + xy + y^2 + z, x + 2y + 4z = 3$$

 $F(x, y, z, \lambda)$
 $= 2x^2 + xy + y^2 + z - \lambda(x + 2y + 4z - 3)$

$$\begin{cases} F_x = 4x + y - \lambda = 0 \\ F_y = x + 2y - 2\lambda = 0 \end{cases}$$

$$\begin{cases} F_z = 1 - 4\lambda = 0 \\ F_\lambda = -x - 2y - 4z - 3 = 0 \end{cases}$$

From the third equation we have $\lambda = \frac{1}{4}$. Substituting this value into the first two equations and then eliminating y gives x = 0 and $y = \frac{1}{4}$. Finally, solving for z in the last equation gives

$$z = -\frac{7}{8}.$$
Critical point of $F: \left(0, \frac{1}{4}, -\frac{7}{8}, \frac{1}{4}\right)$
Critical point of $f: \left(0, \frac{1}{4}, -\frac{7}{8}\right)$

6.
$$f(x, y, z) = xyz^2, x - y + z = 20 (xyz^2 \neq 0)$$

 $f(x, y, z, \lambda) = xyz^2 - \lambda(x - y + z - 20)$

$$\begin{cases} F_x = yz^2 - \lambda = 0 & (1) \\ F_y = xz^2 + \lambda = 0 & (2) \\ F_z = 2xyz - \lambda = 0 & (3) \\ F_{\lambda} = -x + y - z + 20 = 0 & (4) \end{cases}$$

From (1) and (2), y = -x, From (1) and (3), z = 2x. Hence from (4), x = 5, so y = -5 and z = 10. Critical point of f is (5, -5, 10). Note that it is not necessary to determine λ .

$$F(x, y, z, \lambda) = xyz - \lambda(x + y + z - 1)$$

$$\begin{cases} F_x = yz - \lambda = 0 & (1) \\ F_y = xz - \lambda = 0 & (2) \end{cases}$$

$$\begin{cases} F_z = xy - \lambda = 0 & (3) \\ F_{\lambda} = -x - y - z + 1 = 0 & (4) \end{cases}$$
From (1) and (2), $y = x$. From (1) and (3), $x = z$.

Hence from (4) $x = y = z = \frac{1}{3}$. Critical point of f is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Note that it is not necessary to

7. $f(x, y, z) = xyz, x + y + z = 1 (xyz \neq 0)$

determine λ .

8.
$$f(x, y, z) = x^{2} + y^{2} + z^{2}, x + y + z = 3$$

$$F(x, y, z, \lambda) = x^{2} + y^{2} + z^{2} - \lambda(x + y + z - 3)$$

$$\begin{cases} F_{x} = 2x - \lambda = 0 & (1) \\ F_{y} = 2y - \lambda = 0 & (2) \\ F_{z} = 2z - \lambda = 0 & (3) \\ F_{\lambda} = -x - y - z + 3 = 0 & (4) \end{cases}$$

From (1)–(3),
$$x = y = z = \frac{\lambda}{2}$$
. Substituting into (4), $-\frac{\lambda}{2} - \frac{\lambda}{2} - \frac{\lambda}{2} + 3 = 0$, so $\lambda = 2$. Thus $x = 1$, $y = 1$, $z = 1$. Critical point of F : (1, 1, 1, 2). Critical point of f : (1, 1, 1).

9. $f(x, y, z) = x^2 + 2y - z^2$, 2x - y = 0, y + z = 0

Since there are two constraints, two Lagrange multipliers are used.

$$F(x, y, z, \lambda_1, \lambda_2) = x^2 + 2y - z^2 - \lambda_1(2x - y) - \lambda_2(y + z)$$

$$\int F_x = 2x - 2\lambda_1 = 0 \tag{1}$$

$$F_{v} = 2 + \lambda_1 - \lambda_2 = 0 \qquad (2)$$

$$\begin{cases} F_z = -2z - \lambda_2 = 0 \end{cases} \tag{3}$$

$$\begin{cases} F_z = -2z - \lambda_2 = 0 \\ F = 2z + z = 0 \end{cases} \tag{3}$$

$$\begin{cases} F_x = 2x - 2\lambda_1 = 0 & (1) \\ F_y = 2 + \lambda_1 - \lambda_2 = 0 & (2) \\ F_z = -2z - \lambda_2 = 0 & (3) \\ F_{\lambda_1} = -2x + y = 0 & (4) \\ F_{\lambda_2} = -y - z = 0 & (5) \end{cases}$$

From (1),
$$x = \lambda_1$$
. From (3), $z = -\frac{\lambda_2}{2}$. From (4) and (5), $2x = -z$, so $\lambda_1 = \frac{\lambda_2}{4}$. Substituting $\lambda_1 = \frac{\lambda_2}{4}$ into (2)

yields
$$\lambda_2 = \frac{8}{3}$$
. Thus $\lambda_1 = \frac{2}{3}$, $x = \frac{2}{3}$, and $z = -\frac{4}{3}$. From (5), $y = -z$ and hence $y = \frac{4}{3}$. Critical point of f .

$$\left(\frac{2}{3}, \frac{4}{3}, -\frac{4}{3}\right)$$

10. $f(x, y, z) = x^2 + y^2 + z^2, x + y + z = 4, x - y + z = 4$

Since there are two constraints, two Lagrange multipliers are used.

$$F(x, y, z, \lambda_1, \lambda_2) = x^2 + y^2 + z^2 - \lambda_1(x+y+z-4) - \lambda_2(x-y+z-4)$$

$$\int F_x = 2x - \lambda_1 - \lambda_2 = 0 \tag{1}$$

$$F_{y} = 2y - \lambda_{1} + \lambda_{2} = 0$$
 (2)

$$\begin{cases} F_z = 2z - \lambda_1 - \lambda_2 = 0 \end{cases} \tag{3}$$

$$\begin{cases} F_x = 2x - \lambda_1 - \lambda_2 = 0 & (1) \\ F_y = 2y - \lambda_1 + \lambda_2 = 0 & (2) \\ F_z = 2z - \lambda_1 - \lambda_2 = 0 & (3) \\ F_{\lambda_1} = -x - y - z + 4 = 0 & (4) \end{cases}$$

$$F_{\lambda_2} = -x + y - z + 4 = 0 \tag{5}$$

From (4) and (5), y = 0. From (1) and (3), z = x. Substituting into (5) gives x = 2. Thus z = 2.

Critical point of f: (2, 0, 2)

11. $f(x, y, z) = xy^2z$, x + y + z = 1, x - y + z = 0 ($xyz \neq 0$)

Since there are two constraints, two Lagrange multipliers are used.

$$F(x, y, z, \lambda_1, \lambda_2) = xy^2 z - \lambda_1(x + y + z - 1) - \lambda_2(x - y + z)$$

$$F_x = y^2 z - \lambda_1 - \lambda_2 = 0 \tag{1}$$

$$F_{v} = 2xyz - \lambda_{1} + \lambda_{2} = 0 \tag{2}$$

$$\begin{cases} F_{x} = y^{2}z - \lambda_{1} - \lambda_{2} = 0 & (1) \\ F_{y} = 2xyz - \lambda_{1} + \lambda_{2} = 0 & (2) \\ F_{z} = xy^{2} - \lambda_{1} - \lambda_{2} = 0 & (3) \\ F_{\lambda_{1}} = -x - y - z + 1 = 0 & (4) \\ F_{\lambda_{2}} = -x + y - z = 0 & (5) \end{cases}$$

$$F_{\lambda_1} = -x - y - z + 1 = 0$$
 (4)

$$F_{\lambda_2} = -x + y - z = 0 \tag{5}$$

Subtracting (3) from (1) gives $y^2z - xy^2 = 0$, so x = z (since $xy^2z \neq 0$). Subtracting (5) from (4) gives

$$-2y + 1 = 0$$
, so $y = \frac{1}{2}$. Substituting $z = x$ and $y = \frac{1}{2}$ in (5) gives $-2x + \frac{1}{2} = 0$, so $x = \frac{1}{4}$. Thus, $z = \frac{1}{4}$. Critical

point of
$$f$$
: $\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$.

12.
$$f(x, y, z, w) = x^{2} + 2y^{2} + 3z^{2} - w^{2}, \ 4x + 3y + 2z + w = 10$$

$$F(x, y, z, w, \lambda) = x^{2} + 2y^{2} + 3z^{2} - w^{2} - \lambda(4x + 3y + 2z + w - 10)$$

$$\begin{cases} F_{x} = 2x - 4\lambda = 0 \\ F_{y} = 4y - 3\lambda = 0 \\ F_{z} = 6z - 2\lambda = 0 \\ F_{w} = -2w - \lambda = 0 \\ F_{\lambda} = -4x - 3y - 2z - w + 10 = 0 \end{cases}$$

Solving the first four equations for x, y, z, and w in terms of λ gives $x = 2\lambda$, $y = \frac{3\lambda}{4}$, $z = \frac{\lambda}{2}$, and $w = -\frac{\lambda}{2}$

Substituting into the last equation gives $\lambda = \frac{24}{25}$. Thus $x = \frac{48}{25}$, $y = \frac{18}{25}$, $z = \frac{8}{25}$, and $w = -\frac{12}{25}$.

Critical point of $F: \left(\frac{48}{25}, \frac{18}{25}, \frac{8}{25}, -\frac{12}{25}, \frac{24}{25}\right)$

Critical point of f: $\left(\frac{48}{25}, \frac{18}{25}, \frac{8}{25}, -\frac{12}{25}\right)$

13. We minimize $c = f(q_1, q_2) = 0.1q_1^2 + 7q_1 + 15q_2 + 1000$ subject to the constraint $q_1 + q_2 = 100$.

$$F(q_1, q_2, \lambda) = 0.1q_1^2 + 7q_1 + 15q_2 + 1000 - \lambda(q_1 + q_2 - 100)$$

$$\int F_{q_1} = 0.2q_1 + 7 - \lambda = 0 \tag{1}$$

$$\begin{cases} F_{q_1} = 0.2q_1 + 7 - \lambda = 0 & (1) \\ F_{q_2} = 15 - \lambda = 0 & (2) \\ F_{\lambda} = -q_1 - q_2 + 100 = 0 & (3) \end{cases}$$

$$F_{\lambda}^{12} = -q_1 - q_2 + 100 = 0$$
 (3)

From (2), $\lambda = 15$. Substituting $\lambda = 15$ into (1) gives $0.2q_1 + 7 - 15 = 0$, so $q_1 = 40$. Substituting $q_1 = 40$ into (3) gives $-40-q_2+100=0$, so $q_2=60$. Thus $\lambda=15$, $q_1=40$, and q=60. Thus plant 1 should produce 40 units and plant 2 should produce 60 units.

14. We minimize $c = 3q_1^2 + q_1q_2 + 2q_2^2$ subject to the constraint $q_1 + q_2 = 200$.

$$F(q_1, q_2, \lambda) = 3q_1^2 + q_1q_2 + 2q_2^2 - \lambda(q_1 + q_2 - 200)$$

$$\int F_{q_1} = 6q_1 + q_2 - \lambda = 0 \tag{1}$$

$$\begin{cases} F_{q_1} = 6q_1 + q_2 - \lambda = 0 & (1) \\ F_{q_2} = q_1 + 4q_2 - \lambda = 0 & (2) \\ F_{\lambda} = -q_1 - q_2 + 200 = 0 & (3) \end{cases}$$

$$F_{\lambda} = -q_1 - q_2 + 200 = 0 \tag{3}$$

Eliminating λ from (1) and (2) yields $q_1 = \frac{3}{5}q_2$. Substituting $q_1 = \frac{3}{5}q_2$ into (3) yields $q_2 = 125$ and thus $q_1 = 75$. Thus plant 1 should produce 75 units and plant 2 should produce 125 units.

15. We maximize $f(l,k) = 12l + 20k - l^2 - 2k^2$ subject to the constraint 4l + 8k = 88.

$$F(l, k, \lambda) = 12l + 20k - l^2 - 2k^2 - \lambda(4l + 8k - 88)$$

$$\int F_l = 12 - 2l - 4\lambda = 0 \tag{1}$$

$$\left\{ F_k = 20 - 4k - 8\lambda = 0 \right. \tag{2}$$

$$\begin{cases} F_l = 12 - 2l - 4\lambda = 0 & (1) \\ F_k = 20 - 4k - 8\lambda = 0 & (2) \\ F_{\lambda} = -4l - 8k + 88 = 0 & (3) \end{cases}$$

Eliminating λ from (1) and (2) yields k = l - 1. Substituting k = l - 1 into (3) yields l = 8, so k = 7. Therefore the greatest output is f(8, 7) = 74 units (when l = 8, k = 7).

16. We maximize $f(l,k) = 20l + 25k - l^2 - 3k^2$ subject to the constraint 2l + 4k = 50.

$$F(l, k, \lambda) = 20l + 25k - l^2 - 3k^2 - \lambda(2l + 4k - 50)$$

$$\begin{cases} F_l = 20 - 2l - 2\lambda = 0 \end{cases} \tag{1}$$

$$\begin{cases} F_k = 25 - 6k - 4\lambda = 0 \end{cases}$$
 (2)

$$\begin{cases} F_{l} = 20 - 2l - 2\lambda = 0 & (1) \\ F_{k} = 25 - 6k - 4\lambda = 0 & (2) \\ F_{\lambda} = -2l - 4k + 50 = 0 & (3) \end{cases}$$

From (1), $l = 10 - \lambda$ and from (2), $k = \frac{25}{6} - \frac{2}{3}\lambda$. Substituting these expressions for l and k into (3) yields

$$\lambda = -\frac{20}{7}$$
. Thus $l = \frac{90}{7}$ and $k = \frac{85}{14}$. Therefore the greatest output is $f\left(\frac{90}{7}, \frac{85}{14}\right) = \frac{3725}{28} \approx 133$ units (when

$$l = \frac{90}{7}, \ k = \frac{85}{14}$$
.

17. We maximize $P(x, y) = 8x^{1/4}y^{3/4} - x - y$ subject to the constraint x + y = 20,000.

$$F(x, y, \lambda) = 8x^{1/4}y^{3/4} - x - y - \lambda(x + y - 20,000)$$

$$\int F_r = 2x^{-3/4} y^{3/4} - 1 - \lambda = 0 \tag{1}$$

$$\begin{cases} F_x = 2x^{-3/4}y^{3/4} - 1 - \lambda = 0 & (1) \\ F_y = 6x^{1/4}y^{-1/4} - 1 - \lambda = 0 & (2) \\ F_{\lambda} = -x - y + 20,000 = 0 & (3) \end{cases}$$

$$F_{\lambda} = -x - y + 20,000 = 0$$
 (3)

- Solving (2) for λ and substituting in (1) gives $2x^{-3/4}y^{3/4} 6x^{1/4}y^{-1/4} = 0$, $2x^{-3/4}y^{3/4} = 6x^{1/4}y^{-1/4}$, y = 3x. Substituting for y in (3) gives -4x + 20,000 = 0, so x = 5,000, from which y = 15,000. Thus each month \$5000
- should be spent on newspaper advertising and \$15,000 on TV advertising.
- **18.** We maximize $f(l, k) = 6l^{\frac{2}{5}}k^{\frac{3}{5}}$ subject to the constraint 25l + 69k = 25,875.

$$F(l, k, \lambda) = 6l^{\frac{2}{5}}k^{\frac{3}{5}} - \lambda(25l + 69k - 25,875)$$

$$\int F_l = \frac{12}{5} l^{-\frac{3}{5}} k^{\frac{3}{5}} - 25\lambda = 0$$

$$\begin{cases} F_k = \frac{18}{5} l^{\frac{2}{5}} k^{-\frac{2}{5}} - 69\lambda = 0 \end{cases}$$

$$\begin{cases} F_l = \frac{12}{5} l^{-\frac{3}{5}} k^{\frac{3}{5}} - 25\lambda = 0 \\ F_k = \frac{18}{5} l^{\frac{2}{5}} k^{-\frac{2}{5}} - 69\lambda = 0 \\ F_{\lambda} = -25l - 69k + 25,875 = 0 \end{cases}$$

- From the first two equations, $\frac{12}{5}l^{-\frac{3}{5}}k^{\frac{3}{5}} = 25\lambda$ and $\frac{18}{5}l^{\frac{2}{5}}k^{-\frac{2}{5}} = 69\lambda$. Thus, $\frac{\frac{12}{5}l^{-\frac{3}{5}}k^{\frac{3}{5}}}{\frac{18}{5}l^{\frac{2}{5}}k^{-\frac{2}{5}}} = \frac{25\lambda}{69\lambda} = \frac{25}{29}$, from which
- $k = \frac{25}{46}l$. Substituting this for k in the third equation and solving for l gives l = 414 so k = 225.
- 414 units of labor and 225 units of capital should be invested.
- **19.** We minimize $B(x, y, z) = x^2 + y^2 + 2z^2$ subject to x + y = 20 and y + z = 20.

Since there are two constraints, two Lagrange multipliers are used.

$$F(x, y, z, \lambda_1, \lambda_2) = x^2 + y^2 + 2z^2 - \lambda_1(x + y - 20) - \lambda_2(y + z - 20)$$

$$\begin{cases} F_x = 2x - \lambda_1 = 0 & (1) \\ F_y = 2y - \lambda_1 - \lambda_2 = 0 & (2) \\ F_z = 4z - \lambda_2 = 0 & (3) \\ F_{\lambda_1} = -x - y + 20 = 0 & (4) \\ F_{\lambda_2} = -y - z + 20 = 0 & (5) \end{cases}$$

Eliminating y from (4) and (5) gives x = z. From (1) and (3), $\lambda_1 = 2x$ and $\lambda_2 = 4z$. Substituting in (2) we have 2y - 2x - 4z = 0, 2y - 2x - 4x = 0, 2y - 6x = 0, y = 3x. Substituting in (5) gives -(3x) - x + 20 = 0, so x = 5. Thus z = 5 and y = 15. Therefore, x = 5, y = 15, z = 5.

20. a.
$$P = TR - TC = 64q - (8l + 16k)$$

= $64 \left[\frac{65 - 4(l - 4)^2 - 2(k - 5)^2}{16} \right] - 8l - 16k$
 $P = -196 - 16l^2 + 120l - 8k^2 + 64k$

b.
$$P_l = -32l + 120 = 0 \Rightarrow l = \frac{15}{4}$$

 $P_k = -16k + 64 = 0 \Rightarrow k = 4$

Thus there is one critical point: $(l, k) = \left(\frac{15}{4}, 4\right)$

Second-Derivative Test: $P_{ll} = -32$, $P_{kk} = -16$, $P_{lk} = 0$.

Thus
$$D(l, k) = P_{ll}P_{kk} - [P_{lk}]^2 = (-32)(-16) - 0^2 = 512$$
. At $\left(\frac{15}{4}, 4\right)$, $D\left(\frac{15}{4}, 4\right) = 512 > 0$ and $P_{ll} = -32 < 0$.

Thus there is a relative maximum at $l = \frac{15}{4}$, k = 4. Substituting these values into the profit function gives a relative maximum profit of \$157.00.

c.
$$F(l, k, q, \lambda) = 64q - 8l - 16k - \lambda \left[16q - 65 + 4(l - 4)^2 + 2(k - 5)^2 \right]$$

$$\begin{cases} F_l = -8 - 8\lambda(l - 4) = 0 & (1) \\ F_k = -16 - 4\lambda(k - 5) = 0 & (2) \\ F_q = 64 - 16\lambda = 0 & (3) \\ F_{\lambda} = -16q + 65 - 4(l - 4)^2 - 2(k - 5)^2 = 0 & (4) \end{cases}$$

From (3), $\lambda = 4$. Substituting $\lambda = 4$ into (1) gives -8 - 32(l - 4) = 0, so $l = \frac{15}{4}$. Similarly, from (2)

we get k = 4. Substituting for l and k in (4) gives $q = \frac{251}{64}$. Thus $(l, k, q) = \left(\frac{15}{4}, 4, \frac{251}{64}\right)$.

21.
$$U = x^3 y^3$$
, $p_X = 2$, $p_Y = 3$, $I = 48 \left(x^3 y^3 \neq 0 \right)$

We want to maximize $U = x^3y^3$ subject to 2x + 3y = 48.

$$F(x, y, \lambda) = x^3 y^3 - \lambda (2x + 3y - 48)$$

$$\begin{cases} F_x = 3x^2y^3 - 2\lambda = 0 & (1) \\ F_y = 3x^3y^2 - 3\lambda = 0 & (2) \\ F_{\lambda} = -2x - 3y + 48 = 0 & (3) \end{cases}$$

$$\begin{cases} F_{v} = 3x^{3}y^{2} - 3\lambda = 0 \end{cases} \tag{2}$$

$$F_{\lambda} = -2x - 3y + 48 = 0 \tag{3}$$

From (1), $\lambda = \frac{3}{2}x^2y^3$ and from (2), $\lambda = x^3y^2$. Thus $\frac{3}{2}x^2y^3 = x^3y^2$, so $x = \frac{3}{2}y$.

Substituting this expression for x into (3) yields y = 8. Hence $x = \left(\frac{3}{2}\right)8 = 12$.

22.
$$U = 40x - 8x^2 + 2y - y^2$$
, $p_X = 4$, $p_Y = 6$, $I = 100$

We want to maximize $U = 40x - 8x^2 + 2y - y^2$ subject to 4x + 6y = 100.

$$F(x, y, \lambda) = 40x - 8x^2 + 2y - y^2 - \lambda(4x + 6y - 100) \begin{cases} F_x = 40 - 16x - 4\lambda = 0 \\ F_y = 2 - 2y - 6\lambda = 0 \\ F_{\lambda} = -4x - 6y + 100 = 0 \end{cases}$$

From the first equation, $x = \frac{5}{2} - \frac{\lambda}{4}$ and from the second equation $y = 1 - 3\lambda$.

Substituting these values into the third equation gives $\lambda = -\frac{84}{10}$. Thus $x = \frac{137}{38}$ and $y = \frac{271}{10}$.

23.
$$U = f(x, y, z) = xyz$$

$$p_X = p_Y = p_Z = 1, I = 100$$

$$(xyz \neq 0)$$

We want to maximize U = xyz subject to

$$x + y + z = 100$$
.

$$F(x, y, z, \lambda) = xyz - \lambda(x + y + z - 100)$$

$$\int F_{x} = yz - \lambda = 0 \tag{1}$$

$$F_{y} = xz - \lambda = 0 \tag{2}$$

$$\begin{cases} F_x = yz - \lambda = 0 & (1) \\ F_y = xz - \lambda = 0 & (2) \\ F_z = xy - \lambda = 0 & (3) \\ F_{\lambda} = -x - y - z + 100 = 0 & (4) \end{cases}$$

$$F_{\lambda} = -x - y - z + 100 = 0 \tag{4}$$

From (1) and (2), yz = xz, so y = x. Similarly, from (1) and (3), z = x. Substituting y = x and z = x into (4) yields

$$x = \frac{100}{3}$$
. Thus $y = \frac{100}{3}$ and $z = \frac{100}{3}$.

24. To maximize U = f(x, y) subject to the constraint $xp_X + yp_Y = I$, we consider

$$F(x, y, \lambda) = f(x, y) - \lambda (xp_X + yp_Y - I).$$

For maximum satisfaction,

$$F_x = f_x(x, y) - \lambda p_X = 0 \tag{1}$$

$$F_{v} = f_{v}(x, y) - \lambda p_{Y} = 0 \qquad (2)$$

From (1),
$$\lambda = \frac{f_X(x, y)}{p_X}$$
 and from (2), $\lambda = \frac{f_Y(x, y)}{p_Y}$. Thus $\lambda = \frac{f_X(x, y)}{p_X} = \frac{f_Y(x, y)}{p_Y}$

Since $f_X(x, y)$ represents change in total utility from a one unit change in X (which costs p_X), then $\frac{f_X(x, y)}{p_X}$ is

the marginal utility of a dollar's worth of X. Likewise $\frac{f_y(x,y)}{p_{xy}}$ is the marginal utility of a dollar's worth of Y.

Thus maximum satisfaction is obtained when the consumer allocates the budget so that the marginal utility of a dollar's worth of X is equal to the marginal utility of a dollars worth of Y. Similarly, for

U = f(x, y, z, w) subject to the constraint $xp_X + yp_Y + zp_Z + wp_W = I$, U is maximized when

$$\begin{split} \lambda &= \frac{f_x(x,y,z,w)}{p_X} = \frac{f_y(x,y,z,w)}{p_Y} \\ &= \frac{f_z(x,y,z,w)}{p_Z} = \frac{f_w(x,y,z,w)}{p_W} \,. \end{split}$$

That is, U is maximized when the marginal utility of a dollar's worth of each of the products is the same.

Problems 17.8

 $\hat{y} = 3.12$.

1. n = 6, $\Sigma x_i = 21$, $\Sigma y_i = 18.6$, $\Sigma x_i y_i = 75.7$, $\Sigma x_i^2 = 91$. a = 0.98 b = 0.61 Thus $\hat{y} = 0.98 + 0.61x$. When x = 3.5, then

2. n = 7, $\Sigma x_i = 28$, $\Sigma y_i = 29.3$, $\Sigma x_i y_i = 154.1$, $\Sigma x_i^2 = 140$. a = -1.09, b = 1.32. Thus $\hat{y} = -1.09 + 1.32x$.

When x = 3.5, then $\hat{y} = 3.53$.

3. n = 5, $\Sigma x_i = 22$, $\Sigma y_i = 37$, $\Sigma x_i y_i = 189$, $\Sigma x_i^2 = 112.5$. a = 0.057, b = 1.67. Thus $\hat{y} = 0.057 + 1.67x$. When x = 3.5, then $\hat{y} = 5.90$.

4. n = 6, $\Sigma x_i = 27$, $\Sigma y_i = 21.6$, $\Sigma x_i y_i = 105.8$, $\Sigma x_i^2 = 139$. a = 1.39, b = 0.49. Thus $\hat{y} = 1.39 + 0.49x$. When x = 3.5, then $\hat{y} = 3.12$.

- **5.** n = 6, $\Sigma p_i = 250$, $\Sigma q_i = 322$, $\Sigma p_i q_i = 11,690$, $\Sigma p_i^2 = 13,100$. a = 80.5 b = -0.643 Thus $\hat{q} = 80.5 0.643 p$.
- **6.** n = 4, $\sum x_i = 80$, $\sum y_i = 23.9$, $\sum x_i y_i = 498.4$, $\sum x_i^2 = 1920$, a = 4.7, b = 0.06. Thus $\hat{y} = 4.7 + 0.06x$. When x = 20, then $\hat{y} = 5.9$.
- 7. n = 4, $\Sigma x_i = 160$, $\Sigma y_i = 420.8$, $\Sigma x_i y_i = 16,915.2$, $\Sigma x_i^2 = 7040$. a = 100, b = 0.13. Thus $\hat{y} = 100 + 0.13x$. When x = 40, then $\hat{y} = 105.2$.
- **8.** n = 4, $\sum x_i = 539$, $\sum y_i = 569$, $\sum x_i y_i = 76,736$, $\sum x_i^2 = 72,691$, a = 1.95, b = 1.04. Thus $\hat{y} = 1.95 + 1.04x$.

9.
$$\frac{\text{Year }(x)}{\text{Production }(y)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 15 & 16 & 18 & 21 \end{vmatrix}$$

 $n = 5, \ \Sigma x_i = 15, \ \Sigma y_i = 80, \ \Sigma x_i y_i = 265, \ \Sigma x_i^2 = 55.$
 $a = 8.5$
 $b = 2.5$
Thus $\hat{y} = 8.5 + 2.5x$

10.
$$\frac{\text{Year }(x)}{\text{Index }(y)} \begin{vmatrix} 1 & 3 & 5 & 7 \\ 100 & 126 & 134 \end{vmatrix}$$

$$n = 4, \ \Sigma x_i = 16, \ \Sigma y_i = 437, \ \Sigma x_i y_i = 1945,$$

$$\Sigma x_i^2 = 84 . \ a = 69.85, \ b = 9.85. \text{ Thus}$$

$$\hat{y} = 69.85 + 9.85x.$$

11. a.
$$\frac{\text{Year }(x)}{\text{Quantity }(y)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 35 & 31 & 26 & 24 & 26 \end{vmatrix}$$

 $n = 5$, $\sum x_i = 15$, $\sum y_i = 142$, $\sum x_i y_i = 401$, $\sum x_i^2 = 55$. $a = 35.9$, $b = -2.5$. Thus $\hat{y} = 35.9 - 2.5x$.

b.
$$\frac{\text{Year }(x)}{\text{Quantity }(y)} \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ 35 & 31 & 26 & 24 & 26 \end{vmatrix}$$

$$n = 5, \ \Sigma x_i = 0, \ \Sigma y_i = 142, \ \Sigma x_i y_i = -25,$$

$$\Sigma x_i^2 = 10. \ a = \frac{\Sigma y_i}{n} = 28.4 \text{ and}$$

$$b = \frac{\Sigma x_i y_i}{\Sigma x_i^2} = -2.5. \text{ Thus } \hat{y} = 28.4 - 2.5x.$$

12.
$$\frac{\text{Year}(x)}{\text{Index}(y)} \begin{vmatrix} -2 & -1 & 0 & 1 & 2 \\ 357 & 380 & 403 & 434 & 462 \end{vmatrix}$$

 $n = 5$, $\sum x_i = 0$, $\sum y_i = 2036$, $\sum x_i y_i = 264$,
 $\sum x_i^2 = 10$. $a = \frac{\sum y_i}{n} = 407.2$ and
 $b = \frac{\sum x_i y_i}{\sum x_i^2} = 26.4$. Thus $\hat{y} = 407.2 + 26.4x$.

Problems 17.9

1.
$$\int_0^3 \int_0^4 x \, dy \, dx = \int_0^3 xy \Big|_0^4 \, dx = \int_0^3 4x \, dx = 2x^2 \Big|_0^3 = 18$$

2.
$$\int_{1}^{4} \int_{0}^{3} y \, dy \, dx = \int_{1}^{4} \frac{y^{2}}{2} \bigg|_{0}^{3} dx = \int_{1}^{4} \frac{9}{2} \, dx = \frac{9x}{2} \bigg|_{1}^{4} = \frac{27}{2}$$

3.
$$\int_0^1 \int_0^1 xy \, dx \, dy = \int_0^1 \frac{x^2 y}{2} \bigg|_0^1 \, dy = \int_0^1 \frac{y}{2} \, dy = \frac{y^2}{4} \bigg|_0^1 = \frac{1}{4}$$

4.
$$\int_{0}^{1} \int_{0}^{1} x^{2} y^{2} dy dx = \int_{0}^{1} x^{2} \cdot \frac{y^{3}}{3} \Big|_{0}^{1} dx$$
$$= \frac{1}{3} \int_{0}^{1} x^{2} dx$$
$$= \frac{1}{3} \cdot \frac{x^{3}}{3} \Big|_{0}^{1}$$
$$= \frac{1}{9}$$

5.
$$\int_{1}^{3} \int_{1}^{2} \left(x^{2} - y \right) dx \, dy = \int_{1}^{3} \left(\frac{x^{3}}{3} - xy \right) \Big|_{1}^{2} \, dy$$

$$= \int_{1}^{3} \left[\left(\frac{8}{3} - 2y \right) - \left(\frac{1}{3} - y \right) \right] dy = \int_{1}^{3} \left(\frac{7}{3} - y \right) dy$$

$$= \left(\frac{7}{3} y - \frac{y^{2}}{2} \right) \Big|_{1}^{3} = \left(7 - \frac{9}{2} \right) - \left(\frac{7}{3} - \frac{1}{2} \right) = \frac{2}{3}$$

6.
$$\int_{-2}^{3} \int_{0}^{2} (y^{2} - 2xy) dy dx = \int_{-2}^{3} \left[\frac{y^{3}}{3} - xy^{2} \right]_{0}^{2} dx$$
$$= \int_{-2}^{3} \left[\left(\frac{8}{3} - 4x \right) - 0 \right] dx = \int_{-2}^{3} \left(\frac{8}{3} - 4x \right) dx$$
$$= \left(\frac{8}{3}x - 2x^{2} \right)_{-2}^{3} = (8 - 18) - \left(-\frac{16}{3} - 8 \right)$$
$$= \frac{10}{2}$$

7.
$$\int_0^1 \int_0^2 (x+y) dy dx = \int_0^1 \left(xy + \frac{y^2}{2} \right) \Big|_0^2 dx$$

$$= \int_0^1 (2x+2) dx = \left(x^2 + 2x \right) \Big|_0^1 = 3$$

8.
$$\int_0^3 \int_0^x \left(x^2 + y^2 \right) dy \, dx = \int_0^3 \left(x^2 y + \frac{y^3}{3} \right) \Big|_0^x dx$$

$$= \int_0^3 \left(x^3 + \frac{x^3}{3} \right) dx = \int_0^3 \frac{4x^3}{3} \, dx = \frac{x^4}{3} \Big|_0^3 = 27$$

9.
$$\int_{2}^{3} \int_{0}^{2x} y \, dy \, dx = \int_{2}^{3} \frac{y^{2}}{2} \Big|_{0}^{2x} dx$$
$$= \int_{2}^{3} 2x^{2} dx$$
$$= \frac{2}{3} x^{3} \Big|_{2}^{3}$$
$$= \frac{2}{3} (27 - 8)$$
$$= \frac{38}{3}$$

10.
$$\int_{1}^{2} \int_{0}^{x-1} 2y \, dy \, dx = \int_{1}^{2} y^{2} \Big|_{0}^{x-1} \, dx$$
$$= \int_{1}^{2} (x-1)^{2} \, dx = \frac{(x-1)^{3}}{3} \Big|_{1}^{2} = \frac{1}{3}$$

11.
$$\int_0^1 \int_{3x}^{x^2} 14x^2 y \, dy \, dx = \int_0^1 \left(7x^2 y^2\right) \Big|_{3x}^{x^2} dx$$

$$= \int_0^1 \left(7x^6 - 63x^4\right) dx = \left(x^7 - \frac{63x^5}{5}\right) \Big|_0^1 = -\frac{58}{5}$$

12.
$$\int_0^2 \int_0^{x^2} xy \, dy \, dx = \int_0^2 \frac{xy^2}{2} \Big|_0^{x^2} dx$$

$$= \int_0^2 \frac{x^5}{2} \, dx = \frac{x^6}{12} \Big|_0^2 = \frac{16}{3}$$

13.
$$\int_0^3 \int_0^{\sqrt{9-x^2}} y \, dy \, dx = \int_0^3 \frac{y^2}{2} \Big|_0^{\sqrt{9-x^2}} dx$$

$$= \int_0^3 \left(\frac{9-x^2}{2} - 0 \right) dx = \frac{1}{2} \int_0^3 (9-x^2) dx$$

$$= \frac{1}{2} \left(9x - \frac{x^3}{3} \right) \Big|_0^3 = \frac{1}{2} (27 - 9) - 0 = 9$$

14.
$$\int_{0}^{1} \int_{y^{2}}^{y} x \, dx \, dy = \int_{0}^{1} \frac{x^{2}}{2} \Big|_{y^{2}}^{y} \, dy$$
$$= \frac{1}{2} \int_{0}^{1} (y^{2} - y^{4}) \, dy$$
$$= \frac{1}{2} \left(\frac{y^{3}}{3} - \frac{y^{5}}{5} \right) \Big|_{0}^{1}$$
$$= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right)$$
$$= \frac{1}{15}$$

15.
$$\int_{-1}^{1} \int_{x}^{1-x} 3(x+y) dy dx = \int_{-1}^{1} 3 \left(xy + \frac{y^{2}}{2} \right) \Big|_{x}^{1-x} dx$$

$$= \int_{-1}^{1} 3 \left[x(1-x) + \frac{(1-x)^{2}}{2} - \left(x^{2} + \frac{x^{2}}{2} \right) \right] dx$$

$$= \int_{-1}^{1} 3 \left[x - \frac{5x^{2}}{2} + \frac{(1-x)^{2}}{2} \right] dx$$

$$= 3 \left[\frac{x^{2}}{2} - \frac{5x^{3}}{6} - \frac{(1-x)^{3}}{6} \right] \Big|_{-1}^{1}$$

$$= 3 \left[\frac{1}{2} - \frac{5}{6} - 0 \right] - 3 \left[\frac{1}{2} + \frac{5}{6} - \frac{4}{3} \right] = -1$$

16.
$$\int_0^3 \int_{y^2}^{3y} 5x \, dx \, dy = \int_0^3 \frac{5x^2}{2} \Big|_{y^2}^{3y} \, dy$$

$$= \int_0^3 \left(\frac{45y^2}{2} - \frac{5y^4}{2} \right) dy$$

$$= \left(\frac{15y^3}{2} - \frac{y^5}{2} \right) \Big|_0^3 = \frac{405}{2} - \frac{243}{2} = 81$$

17.
$$\int_0^1 \int_0^y e^{x+y} dx dy = \int_0^1 e^{x+y} \Big|_0^y dy = \int_0^1 \left(e^{2y} - e^y \right) dy$$
$$= \left[\frac{e^{2y}}{2} - e^y \right]_0^1 = \frac{e^2}{2} - e - \left(\frac{1}{2} - 1 \right) = \frac{e^2}{2} - e + \frac{1}{2}$$

- **18.** $\int_{0}^{1} \int_{0}^{1} e^{y-x} dx dy = \int_{0}^{1} -e^{y-x} \Big|_{0}^{1} dy$ $= \int_{0}^{1} (-e^{y-1} + e^{y}) dy = (-e^{y-1} + e^{y}) \Big|_{0}^{1}$ $= (-e^{0} + e^{1}) (-e^{-1} + e^{0}) = -1 + e + e^{-1} 1$ $= -2 + e + e^{-1}$
- 19. $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xy^{2} z^{3} dx dy dz = \int_{0}^{1} \int_{0}^{2} \frac{1}{2} x^{2} y^{2} z^{3} \Big|_{0}^{3} dy dz$ $= \frac{9}{2} \int_{0}^{1} \int_{0}^{2} y^{2} z^{3} dy dz$ $= \frac{9}{2} \int_{0}^{1} \frac{1}{3} y^{3} z^{3} \Big|_{0}^{2} dz$ $= \frac{9}{2} \cdot \frac{8}{3} \int_{0}^{1} z^{3} dz$ $= 12 \cdot \frac{z^{4}}{4} \Big|_{0}^{1}$ = 3
- $20. \int_{0}^{1} \int_{0}^{x} \int_{0}^{x+y} x^{2} dz dy dx = \int_{0}^{1} \int_{0}^{x} x^{2} z \Big|_{0}^{x+y} dy dx$ $= \int_{0}^{1} \int_{0}^{x} [x^{2} (x+y) 0] dy dx = \int_{0}^{1} \int_{0}^{x} (x^{3} + x^{2} y) dy dx$ $= \int_{0}^{1} \left(x^{3} y + \frac{x^{2} y^{2}}{2} \right) \Big|_{0}^{x} dx = \int_{0}^{1} \left[\left(x^{4} + \frac{x^{4}}{2} \right) 0 \right] dx$ $= \int_{0}^{1} \frac{3x^{4}}{2} dx = \frac{3x^{5}}{10} \Big|_{0}^{1} = \frac{3(1)^{5}}{10} 0 = \frac{3}{10}$
- 21. $\int_{0}^{1} \int_{x^{2}}^{x} \int_{0}^{xy} dz \, dy \, dx = \int_{0}^{1} \int_{x^{2}}^{x} z \Big|_{0}^{xy} dy \, dx$ $= \int_{0}^{1} \int_{x^{2}}^{x} xy \, dy \, dx = \int_{0}^{1} \frac{xy^{2}}{2} \Big|_{x^{2}}^{x} dx$ $= \int_{0}^{1} \left[\frac{x^{3}}{2} \frac{x^{5}}{2} \right] dx = \left[\frac{x^{4}}{8} \frac{x^{6}}{12} \right]_{0}^{1} = \frac{1}{24}$

- 22. $\int_{1}^{e} \int_{\ln x}^{x} \int_{0}^{y} dz \, dy \, dx = \int_{1}^{e} \int_{\ln x}^{x} z \Big|_{0}^{y} \, dy \, dx$ $= \int_{1}^{e} \int_{\ln x}^{x} y \, dy \, dx = \int_{1}^{e} \frac{y^{2}}{2} \Big|_{\ln x}^{x} dx = \int_{1}^{e} \frac{x^{2}}{2} \frac{(\ln x)^{2}}{2} dx$ $= \left[\frac{x^{3}}{6} \frac{1}{2} (x \ln^{2} x 2x \ln x + 2x) \right]_{1}^{e}$ $= \frac{e^{3}}{6} \frac{e}{2} \left(\frac{1}{6} 1 \right) = \frac{e^{3}}{6} \frac{e}{2} + \frac{5}{6}$
- 23. $P(0 \le x \le 2, 1 \le y \le 2) = \int_{1}^{2} \int_{0}^{2} e^{-(x+y)} dx \, dy$ $= \int_{1}^{2} -e^{-(x+y)} \Big|_{0}^{2} dy = \int_{1}^{2} \Big[-e^{-(2+y)} + e^{-y} \Big] dy$ $= \Big[e^{-(2+y)} e^{-y} \Big]_{1}^{2} = e^{-4} e^{-2} e^{-3} + e^{-1}$
- 24. $P(1 \le x \le 3, \ 2 \le y \le 4)$ $= \int_{2}^{4} \int_{1}^{3} 6e^{-(2x+3y)} dx \, dy$ $= \int_{2}^{4} (-3e^{-2x-3y}) \Big|_{1}^{3} dy$ $= \int_{2}^{4} (-3e^{-6-3y} + 3e^{-2-3y}) dy$ $= (e^{-6-3y} e^{-2-3y}) \Big|_{2}^{4}$ $= e^{-18} e^{-14} e^{-12} + e^{-8}$
- **25.** $P\left(x \ge \frac{1}{2}, y \ge \frac{1}{3}\right) = \int_{1/3}^{1} \int_{1/2}^{1} 1 \, dx \, dy$ $= \int_{1/3}^{1} x \Big|_{1/2}^{1} \, dy = \int_{1/3}^{1} \left(1 - \frac{1}{2}\right) \, dy$ $= \int_{1/3}^{1} \frac{1}{2} \, dy = \frac{1}{2} y \Big|_{1/3}^{1} = \frac{1}{2} \left(1 - \frac{1}{3}\right) = \frac{1}{2} \left(\frac{2}{3}\right) = \frac{1}{3}$
- **26.** $\int_0^1 \int_0^1 \frac{1}{8} dx dy = \int_0^1 \frac{x}{8} \Big|_0^1 dy = \int_0^1 \frac{1}{8} dy = \frac{y}{8} \Big|_0^1 = \frac{1}{8}$

Chapter 17 Review Problems

1.
$$f_x(x, y) = \frac{1}{x^2 + y^2} (2x) = \frac{2x}{x^2 + y^2}$$

 $f_y(x, y) = \frac{1}{x^2 + y^2} (2y) = \frac{2y}{x^2 + y^2}$

2.
$$\frac{\partial P}{\partial l} = 3l^2 + 0 - (1)k = 3l^2 - k$$

 $\frac{\partial P}{\partial k} = 0 + 3k^2 - l(1) = 3k^2 - l$

3.
$$\frac{\partial z}{\partial x} = \frac{(x+y)(1) - x(1)}{(x+y)^2} = \frac{y}{(x+y)^2}$$
Because $z = x(x+y)^{-1}$,
$$\frac{\partial z}{\partial y} = x \left[(-1)(x+y)^{-2} (1) \right] = -\frac{x}{(x+y)^2}.$$

4.
$$f_{p_B}(p_A, p_B) = 0 + 5(1 - 0) = 5$$

5.
$$f(x, y) = \ln \sqrt{x^2 + y^2} = \frac{1}{2} \ln (x^2 + y^2)$$

 $\frac{\partial}{\partial y} [f(x, y)] = \frac{1}{2} \cdot \frac{1}{x^2 + y^2} (2y) = \frac{y}{x^2 + y^2}$

6.
$$w = \sqrt{x^2 + y^2} = (x^2 + y^2)^{1/2}$$

$$\frac{\partial w}{\partial y} = \frac{1}{2}(x^2 + y^2)^{-1/2}(2y) = \frac{y}{\sqrt{x^2 + y^2}}$$

7.
$$w_x(x, y, z) = 2xyze^{x^2yz}$$

 $w_{xy}(x, y, z) = 2xz \left[y \left(e^{x^2yz} \cdot x^2z \right) + e^{x^2yz} \cdot 1 \right]$
 $= 2xze^{x^2yz} \left(x^2yz + 1 \right)$

8.
$$f_x(x, y) = y \left[x \left(\frac{1}{xy} \cdot y \right) + \ln(xy) \cdot 1 \right]$$
$$= y[1 + \ln(xy)]$$
$$f_{xy}(x, y) = y \left[\frac{1}{xy} \cdot x \right] + [1 + \ln(xy)] \cdot 1$$
$$= 1 + 1 + \ln(xy) = 2 + \ln(xy)$$

9.
$$\frac{\partial}{\partial z} [f(x, y, z)]$$

$$= (x + y + z)(2z) + (x^2 + y^2 + z^2)(1)$$

$$= 3z^2 + 2z(x + y) + x^2 + y^2$$

$$\frac{\partial^2}{\partial z^2} [f(x, y, z)] = 6z + 2(x + y) = 2x + 2y + 6z$$

10.
$$z = (x^2 - y)(y^2 - 2xy) = x^2y^2 - 2x^3y - y^3 + 2xy^2$$

$$\frac{\partial z}{\partial y} = 2x^2y - 2x^3 - 3y^2 + 4xy$$

$$\frac{\partial^2 z}{\partial y^2} = 2x^2 - 6y + 4x$$

11.
$$w = e^{x+y+z} \ln(xyz) = e^{x+y+z} (\ln x + \ln y + \ln z)$$

$$\frac{\partial w}{\partial x} = e^{x+y+z} (\ln x + \ln y + \ln z) + e^{x+y+z} \left(\frac{1}{x}\right)$$

$$= e^{x+y+z} \left[\ln(xyz) + \frac{1}{x}\right]$$

$$\frac{\partial^2 w}{\partial y \partial x} = e^{x+y+z} \left[\ln(xyz) + \frac{1}{x}\right] + e^{x+y+z} \left[\frac{1}{y}\right]$$

$$= e^{x+y+z} \left[\ln(xyz) + \frac{1}{x} + \frac{1}{y}\right].$$

$$\frac{\partial^3 w}{\partial z \partial y \partial x} = e^{x+y+z} \left[\ln(xyz) + \frac{1}{x} + \frac{1}{y}\right] + e^{x+y+z} \left[\frac{1}{z}\right]$$

$$= e^{x+y+z} \left[\ln(xyz) + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right]$$

12.
$$\frac{\partial P}{\partial l} = 100 \left[(0.11)l^{0.11-1} \right] k^{0.89} = 11l^{-0.89} k^{0.89}$$
$$\frac{\partial^2 P}{\partial k \partial l} = 11l^{-0.89} \left[(0.89)k^{0.89-1} \right] = 9.79l^{-0.89} k^{-0.11}$$

13.
$$f(x, y, z) = \frac{x+y}{xz} = \frac{1}{z} + \frac{y}{xz}$$

$$f_x(x, y, z) = -\frac{y}{x^2 z}$$

$$f_{xy}(x, y, z) = -\frac{1}{x^2 z}$$

$$f_{xyz}(x, y, z) = \frac{1}{x^2 z^2}$$

$$f_{xyz}(x, y, z) = \frac{1}{2^2 z^2}$$

- 14. $f_x(x, y, z) = 6e^{y^2 \ln(z+1)}$ $f_{xy}(x, y, z) = 12y \ln(z+1)e^{y^2 \ln(z+1)}$ $f_{xyz}(x, y, z) = 12y \left[\ln(z+1) \left\{ e^{y^2 \ln(z+1)} \cdot \frac{y^2}{z+1} \right\} + e^{y^2 \ln(z+1)} \cdot \frac{1}{z+1} \right]$ $f_{xyz}(0, 1, 0) = 12[0+1] = 12$
- 15. $\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} = (2x + 2y) \left(e^r \right) + (2x + 6y) \left(\frac{1}{r + s} \right)$ $= 2(x + y)e^r + \frac{2(x + 3y)}{r + s}$ $\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} = (2x + 2y)(0) + (2x + 6y) \left(\frac{1}{r + s} \right)$ $= \frac{2(x + 3y)}{r + s}$
- 16. $\frac{\partial z}{\partial r} \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$ $= \frac{\partial z}{\partial x} \left[\frac{\partial x}{\partial r} \frac{\partial x}{\partial s} \right] + \frac{\partial z}{\partial y} \left[\frac{\partial y}{\partial r} \frac{\partial y}{\partial s} \right]$ $= \frac{1}{\frac{x}{y}} \left(\frac{1}{y} \right) [2r 2s] + \frac{1}{\frac{x}{y}} \left(-\frac{x}{y^2} \right) [2(r+s) 2(r+s)]$ $= \frac{1}{x} (2r 2s)$ $= \frac{2}{x} (r-s)$ $= \frac{2(r-s)}{r^2 + s^2}$
- 17. $2x + 2y 4z \frac{\partial z}{\partial x} + \left[x \frac{\partial z}{\partial x} + z(1) \right] + 0 = 0$ $(-4z + x) \frac{\partial z}{\partial x} = -(2x + 2y + z)$ $\frac{\partial z}{\partial x} = \frac{-(2x + 2y + z)}{-4z + x} = \frac{2x + 2y + z}{4z x}$