Citric Vindicators - Team notebook

Contents

1	Template 1		
	1.1	Template C++	
2	Math 1		
	2.1	Fast pow - inverse with mod	
	2.2	Primes	
	2.3	Bit operations	
	2.4	Matrix multiplication and exponentation	
	2.5	Binamial coefficient	
	2.6	Catalan numbers	
3	Data	a structure 3	
	3.1	Union find (DSU)	
	3.2	Union find (DSU) with rollback	
	3.3	Monotonic stack	
	3.4	Binary indexed tree	
	3.5	Fenwick tree	
	3.6	Segmente tree	
	3.7	Segmente tree with lazy propagation	
	3.8	Segmente tree RMQ with lazy propagation	
	3.9	Segment tree of DSU with rollback	
	3.10	Sparse table	
	3.11	Order statistics tree	
	3.12	Binary search tree	
	G	.1	
4	Graj		
	4.1	Graph traversal	
	4.2	Dijkstra	
	4.3	Bellman-Ford	
	4.4	Floyd-Warshal	
	4.5	Topological sort	
	4.6	Lexicographic graphs/topological sort	
	4.7	Prim	
	4.8	Kruskal	
	4.9	Tarjan	
	4.10	Kosaraju	
	4.11	Bridges and articulation points	
	4.12	2 SAT	
	4.13	Lowest common ancestor	
	4.14	Max-flow (Dinic)	
	4.15	Min-cost max-flow	
	4.16	Kuhn BPM	
5	Stri	ngs 13	
	5.1	Knuth Morris Pratt (KMP)	
	5.2	Trie	
	5.3	Hashing	
	5.4	Aho-Corasick	
6	Dynamic programming 14		
	6.1	Knapsack	
	6.2	Knapsack 2	
	6.3	Longest increasing subsequence	
	6.4	Sum of digits in a range	
	6.5	Enigma regional 2017	
	6.6	Little elephant and T shirts - CodeChef	
	6.7	O-Matching AtCoder	
		-	

1 Template

1.1 Template C++

```
#include <bits/stdc++.h>
//Pura gente del coach moy
using namespace std;
#define ENDL '\n'
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int) x.size()
#define FOR(x, b) for(int x = 0; x < b; x++) #define FORE(x, a, b) for(int x = a; x <= b; x++)
#define FORR(x, a, b) for (int x = a; x >= b; x--) #define deb(x) cerr << \daggerx << " = " << x << '\n'; #define deb(x, y) cerr << \daggerx << " = " << x << '\n'; #define deb(x, y) cerr << \daggerx << " = " << x << ", " << \daggery << " = " << y << '\n';
#define _ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long ll;
typedef unsigned long ull;
typedef pair<int,int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const 11 MOD = 1e9+7, INF = 1e18;
11 gcd(ll a, ll b) { return (b ? gcd(b, a % b) : a); }
11 1cm(11 a, 11 b) { if(!a || !b) return 0; return a * b / gcd(a, b); }
void solve(){
int main(){_
      int to:
      cin>>tc;
      while (tc--)
          solve();
      return 0;
```

2 Math

2.1 Fast pow - inverse with mod

```
// Retorna a % m, asegurando siempre una respuesta positiva
ll mod(ll a, ll m) { return (a % m + m) % m; }
ll modPow(ll b, ll p, ll m) {
                                              // Primero se aplica modulo a la base
    11 \text{ ans} = 1;
                                               // Caso base p = 0
    while(p){
                                              // (ans \star b) % m, si p es impar // (b ^ 2) % m // p /= 2
        if(p \& 1) ans = mod(ans * b, m);
        b = mod(b * b, m);
        p >>= 1;
    return ans;
                                              // Retorna el resultado
int extEuclid(int a, int b, int &x, int &y) { // Pasa x e y por referencia
    int xx = y = 0;
    int yy = x = 1;
    while (b) {
                                                  // Repetir hasta que b == 0
        int q = a/b;
        tie(a, b) = tuple(b, a%b);
tie(x, xx) = tuple(xx, x-q*xx);
        tie(y, yy) = tuple(yy, y-q*yy);
    return a:
                                                   // Retorna gcd(a, b)
int modInverse(int b, int m) {
                                                   // Retorna b^(-1) (mod m)
   int x, y;
int d = extEuclid(b, m, x, y);
                                                   // Para obtener b*x + m*y == d
    if (d != 1) return -1;
                                                   // Para indicar fallo
    // b*x + m*y == 1, ahora se aplica (mod m) para obtener b*x == 1 (mod m)
    return mod(x, m);
// Solo cuando m es primo
int modInverse(int b, int m) { return modPow(b, m - 2, m) % m; }
```

2.2 Primes

```
// Implementacion de muchas funciones utiles respecto a primos
typedef long long 11;
typedef vector<11> v11;
bitset<10000010> bs;
                                                        // 10^7 es el limite
vll p;
                                                        // Vector de primos
void sieve(ll upperbound) {
                                                        // Rango = [0..upperbound]
    _sieve_size = upperbound+1;
                                                       // Para incluir el upperbound
    bs.set();
                                                       // Asigna 1 en todas las posiciones
    bs[0] = bs[1] = 0;
                                                        // Excepto indice 0 y 1
    for (11 i = 2; i < _sieve_size; ++i) if (bs[i]){</pre>
        // Tacha los multiplos de i a partir de i \star i
        for (l1 j = i*i; j < _sieve_size; j += i) bs[j] = 0;</pre>
        p.push_back(i);
                                                       // Agrega el primo i a la lista
bool isPrime(11 N) {
                                                       // Prueba de primalidad suficientemente buena
    if (N < _sieve_size) return bs[N];</pre>
                                                       // O(1) para primos pequenios
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i)
        if (N%p[i] == 0)
        return false;
    return true:
                                                       // Lento si N es un primo grande
   // Nota: Solo se garantiza su funcionamiento para N <= (ultimo primo en vll p)^2
vll primeFactors(ll N) {
                                                       // Pre-condicion, N >= 1
    vll factors;
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i)</pre>
        while (N%p[i] == 0) {
                                                       // Se encontro un primo para N
            N /= p[i];
                                                       // Se remueve de N
            factors.push_back(p[i]);
    if (N != 1) factors.push_back(N);
                                                       // La N que queda es un primo
    return factors;
int numPF(11 N) {
    int ans = 0;
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i)
while (N%p[i] == 0) { N /= p[i]; ++ans; }</pre>
    return ans + (N != 1);
int numDiffPF(11 N) {
    int ans = 0;
    for (int i = 0; i < p.size() && p[i]*p[i] <= N; ++i) {</pre>
        if (N%p[i] == 0) ++ans;
                                                      // Cuenta este factor primo
        while (N%p[i] == 0) N /= p[i];
                                                        // Solo una vez
    if (N != 1) ++ans:
    return ans;
11 sumPF(11 N) {
    for (int i = 0; i < p.size() && p[i] * p[i] <= N; ++i) while (N%p[i] == 0) { N /= p[i]; ans += p[i]; }
    if (N != 1) ans += N;
    return ans;
int numDiv(11 N) {
                                                       // Inicia de ans = 1
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i) {</pre>
        int power = 0;
                                                       // Cuenta la potencia
        while (N%p[i] == 0) { N /= p[i]; ++power; }
        ans \star= power+1:
                                                        // Sique la formula
    return (N != 1) ? 2*ans : ans:
                                                       // Ultimo factor = N^1
ll sumDiv(ll N) {
    11 ans = 1;
    for (int i = 0; i < (int)p.size() && p[i]*p[i] <= N; ++i) {</pre>
         11 multiplier = p[i], total = 1;
         while (N%p[i] == 0) {
            N /= p[i];
            total += multiplier;
            multiplier *= p[i];
                                                       // Total para
        ans *= total:
                                                       // este factor primo
    if (N != 1) ans *= (N+1);
                                                       // N^2-1/N-1 = N+1
    return ans;
ll EulerPhi(ll N) {
```

2.3 Bit operations

```
// NOTA - Si i > 30, usar 1LL
 // Siendo S un numero y {i, j} indices 0-indexados:
#define isOn(S, j) (S & (1 << j))
#define clearBit(S, j) (S &= ~(1 << j))
#define togqleBit(S, j) (S ~= (1 << j))
#define togqleBit(S, j) (S ~= (1 << j))
#define lowBit(S) (S & (-S))
#define setAll(S, n) (S = (1 << n) - 1)
#define modulo(S, N) ((S) & (N - 1)) // retorna S % N, siendo N una potencia de 2
#define isOdd(S) (s & 1)
#define isPowerOfTwo(S) (!(S & (S - 1)))
#define nearestPowerOfTwo(S) (1 << lround(log2(S)))
#define turnOffLastBit(S) ((S) & (S - 1))
#define turnOnLastZero(S) ((S) | (S + 1))
#define turnOffInRange(S, i, j) s &= (((~0) << (j + 1)) | ((1 << i) - 1));
#define turnOffLastConsecutiveBits(S) ((S) & (S + 1))
#define turnOnLastConsecutiveZeroes(S) ((S) | (S - 1))
Si en un problema tenemos un conjunto de menos de 30 elementos y tenemos que probar cual es el "bueno"
Podemos usar una mascara de bits e intentar cada combinacion.
int \ limit = 1 << (n + 1);
for (int i = 1; i < limit; i++) {
// Funciones integradas por el compilador GNU (GCC)
// IMPORTANTE ---> Si x cabe en un int quitar el 11 de cada metodo :D
// Numero de bits encendidos de x
__builtin_popcountll(x);
// Indice del primer (de derecha a izquierda) bit encendido de \boldsymbol{x}
// Por ejemplo __builtin_ffs(0b0001'0010'1100) = 3
 builtin ffsll(x);
// Cuenta de ceros a la izquierda del primer bit encendido de {\bf x}
// Utilizado para calcular piso(\log 2(x)) -> 63 - _builtin_clzll(x) // Si x es int, utilizar 31 en lugar de 63
// Por ejemplo __builtin_clz(0b0001'0010'1100) = 23 (YA QUE X SE TOMA COMO ENTERO)
 builtin clzll(x);
// Cuenta de ceros a la derecha del primer uno (de derecha a izquierda
// Por ejemplo __builtin_ctzl1(0b0001'0010'1100) = 2
 _builtin_ctzll(x);
```

2.4 Matrix multiplication and exponentation

```
typedef long long 11;
template<typename T>
    using VVT = vector<vector<T>>;
    int n, m;
    Matrix (VVT aux) : M(aux), n(M.size()), m(M[0].size()) {}
    Matrix operator * (Matrix& other) const {
        int k = other.M[0].size();
        VVT C(n, vector<T>(k, 0));
        for(int i=0; i<n; i++)</pre>
            for(int j=0; j<k; j++)</pre>
                     C[i][j] = (C[i][j] % MOD + (M[i][1] % MOD * other.M[1][j] % MOD) % MOD) % MOD;
        return Matrix(C);
   // O(n^3 * log p)
Matrix operator ^ (ll p) const {
        assert(p >= 0);
        Matrix ret(VVT(n, vector<T>(n))), B(*this);
        for(int i=0; i<n; i++)</pre>
            ret.M[i][i] = 1;
```

```
while (p) {
    if (p & 1)
        ret = ret * B;
    p >> = 1;
    B = B * B;
    }
    return ret;
}

// Ejemplo de uso calculando el n-esimo fibonacci
// Para una mayor velocidad realizarlo con 4 variables
Matrix<ll> fibMat({{1, 1}, {1, 0});
1 fibonacci(11 n) { return (n <= 2) ? (n != 0) : (fibMat^n).M[1][0]; }</pre>
```

2.5 Binamial coefficient

```
//Binomial Coefficient n choose k
//DP top down manner (memset initialization requiered)
11 comb[MAX][MAX];
11 nCk(11 n, 11 k){
    if(k < 0 || k > n){
        return 0;
    }

    if(n == k || k == 0){
        return 1;
    }

    if(comb[n][k] != -1){
        return comb[n][k];
    }

    return comb[n][k] = (nCk(n - 1, k - 1) + nCk(n - 1, k)) % MOD;
}
```

2.6 Catalan numbers

```
# Solution for small range ---> k <= 510. if k is greater, use Java's BigInteger class. if we need to only store catalan[i] % m, use c++ catalan = [0 for i in range (510)] def precalculate(): catalan[0] = 1 for i in range (509): catalan[i] + 1] = ((2*(2*i+1) * catalan[i])/(i+2)) precalculate() print(int(catalan[505]))
```

3 Data structure

3.1 Union find (DSU)

```
// Union-Find Disjoint Sets escrito en POO, usando las heuristicas de compresion de camino y union por
typedef vector<int> vi;
class UnionFind {
                                                               // Estilo POO
private:
     vi p, rank, setSize;
                                                               // vi p es la parte clave
     int numSets;
 public:
     UnionFind(int N) {
         p.assign(N, 0); for (int i = 0; i < N; ++i) p[i] = i;
          rank.assign(N, 0);
                                                               // Aceleracion opcional
         setSize.assign(N, 1);
                                                                // Caracteristica opcional
         numSets = N;
                                                                // Caracteristica opcional
      \textbf{int} \  \, \texttt{findSet}(\textbf{int} \ i) \  \, \{ \  \, \textbf{return} \  \, (\texttt{p[i]} == i) \  \, ? \  \, i \  \, : \  \, (\texttt{p[i]} = \texttt{findSet}(\texttt{p[i]})); \  \, \} 
    bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
int numDisjointSets() { return numSets; } // Opcions
                                                                      // Opcional
     int sizeOfSet(int i) { return setSize[findSet(i)]; }
                                                                        // Opcional
     void unionSet(int i, int j) {
         if (isSameSet(i, j)) return;
                                                               // i y j estan en el mismo set
         int x = findSet(i), y = findSet(j);
                                                               // Encuentra los representantes de ambos
```

```
if (rank[x] > rank[y]) swap(x, y);
    p[x] = y;
    if (rank[x] == rank[y]) ++rank[y];
    setSize[y] += setSize[x];
    --numSets;
}

// Para mantener x mas pequenio que y
// Set x bajo y
// Acelaracion opcional
// Combina los tamanios de los sets en y
// Una union reduce el numSets
}
```

3.2 Union find (DSU) with rollback

```
// \ {\it Union-Find Disjoint-set con la operacion de deshacer una uniones previas y regresar a un tiempo "t"}
// Si no es necesaria esta operacion, eliminar st, time() y rollback()
// Time complexity O(log n)
typedef vector<int> vi;
typedef pair<int, int> ii;
struct RollbackUF {
    vi e;
    vector<ii> st;
    RollbackUF(int n) : e(n, -1) {}
    int size(int x) { return -e[find(x)]; }
int find(int x) { return e[x] < 0 ? x : find(e[x]); }</pre>
    int time() { return (int) st.size(); }
    void rollback(int t) {
        for (int i = time(); i-- > t;){
            e[st[i].first] = st[i].second;
        st.resize(t):
    bool join(int a, int b) {
        a = find(a), b = find(b);
        if (a == b) return false;
        if (e[a] > e[b]) swap(a, b);
        st.push_back({a, e[a]});
        st.push_back({b, e[b]});
        e[a] += e[b];
        e[b] = a:
        return true;
1:
int main(){
    // Ejemplo de uso
    RollbackUF UF(5);
                             // Creacion del DSU
    UF.join(0, 1);
                             // Union de los elementos 0 y 1
    cout<<UF.size(0)<<ENDL; // Ahora el tamanio del set del elemento 0 es 2
    UF.rollback(0);
                             // Regresar al tiempo 0
    cout<<UF.size(0)<<ENDL; // Ahora el tamanio del set del elemento 0 es 1 de nuevo, porque se
          deshizo el cambio
    return 0;
```

3.3 Monotonic stack

```
// Time complexity O(n)
typedef vector<int> vi;
    int n = 6, arr[] = {7, 1, 4, 3, 5, 2};
    vi nextGreater(n, -1); // Para cada posicion se guarda cual es el siguiente elemento mayor
    for(int i=0; i<n; i++) {
       while(!st.empty() && arr[i] > arr[st.top()]){ // Mientras la pila no este vacia y el i-esimo
              elemento sea mavor al top
            nextGreater[st.top()] = arr[i];
                                                        // El siquiente mayor del elemento en el top
                es el elemento en la i-esima posicion
           st.pop();
                                                        // Se saca el elemento del top
       st.push(i);
                                                        // Se inserta la i-esima posicion en la pila
        - Para obtener los mayores previos, se hace un for reverso
        - Para obtener los menores, solo se invierte la segunda condicion en el ciclo while
```

3.4 Binary indexed tree

```
int n, bit[MAXN]; // Utilizar a partir del 1
int query(int index) {
   int sum = 0;
   while (index > 0) {
       sum += bit[index];
       index -= index & (-index);
   }
   return sum;
}

void add(int index, int val) {
   while (index <= n) {
       bit[index] += val;
       index += index & (-index);
   }
}</pre>
```

3.5 Fenwick tree

```
#define LSOne(S) ((S) & -(S))
                                                  // La operacion clave (Bit menos significativo)
typedef long long 11;
typedef vector<11> v11;
typedef vector<int> vi;
class FenwickTree {
                                                     // El indice O no se usa
private:
                                                     // Internamente el FT es un vector
    v11 ft:
 public:
    FenwickTree(int m) { ft.assign(m+1, 0); }
                                                     // Crea un FT vacio
    void build(const vll &f) {
        int m = (int) f.size()-1;
                                                     // Nota: f[0] siempre es 0
        ft.assign(m+1, 0);
        for (int i = 1; i <= m; ++i) {
                                                     // O(m)
            ft[i] += f[i];
                                                     // Agrega este valor
            if (i+LSOne(i) <= m)
                                                     // i tiene padre
                ft[i+LSOne(i)] += ft[i];
                                                     // Se agrega al padre
    FenwickTree(const vll &f) { build(f); }
                                                     // Crea un FT basado en f
    FenwickTree(int m, const vi &s) {
                                                     // Crea un FT basado en s
        vll f(m+1, 0);
        for (int i = 0; i < (int)s.size(); ++i)</pre>
                                                     // Se hace la conversion primero
            ++f[s[i]];
                                                     // En O(n)
        build(f):
                                                     // En O(m)
    11 rsq(int j) {
                                                     // returns RSQ(1, j)
        11 sum = 0;
        for (; j; j -= LSOne(j))
           sum += ft[j];
        return sum:
    11 rsq(int i, int j) { return rsq(j) - rsq(i-1); } // inc/exclusion
    // Actualiza el valor del i-esimo elemento por v (v+ = inc / v- = dec)
    void update(int i, 11 v) {
        for (; i < (int) ft.size(); i += LSOne(i))</pre>
            ft[i] += v;
    int select(ll k) { // O(log m)
        int n = 1
        while (p*2 < (int)ft.size()) p *= 2;
        int i = 0:
        while (p) {
            if (k > ft[i+p]) {
               k -= ft[i+p];
               i += p;
            p /= 2;
        return i+1;
};
class RUPQ {
                        // Variante RUPO
private:
    FenwickTree ft;
                       // Internamente usa un FT PURO
public:
    RUPO(int m) : ft(FenwickTree(m)) {}
    void range_update(int ui, int uj, ll v) {
        ft.update(ui, v);
                                                     // [ui, ui+1, .., m] +v
        ft.update(uj+1, -v);
                                                     // [uj+1, uj+2, .., m] -v
```

```
// [ui, ui+1, .., uj] +v
    11 point_query(int i) { return ft.rsq(i); }
                                                     // rsq(i) es suficiente
};
class RURQ {
                        // Variante RURQ
                        // Necesita dos FTs de ayuda
private:
    RUPQ rupq;
                        // Un RUPQ y
                        // un PURQ
    FenwickTree purq;
 public:
    {\tt RURQ(int\ m)\ :\ rupq(RUPQ(m)),\ purq(FenwickTree(m))\{}\}\ //\ {\tt Inicializacion}
    void range_update(int ui, int uj, ll v) {
        rupq.range_update(ui, uj, v);
                                                          // [ui, ui+1, .., uj] +v
        purq.update(ui, v*(ui-1));
                                                          // -(ui-1) *v antes de ui
        purq.update(uj+1, -v*uj);
                                                          // +(uj-ui+1) *v despues de uj
    il rsq(int j) {
                                                         // Calculo optimista - factor de cancelacion
        return rupq.point_query(j)*j - purq.rsq(j);
    11 rsq(int i, int j) { return rsq(j) - rsq(i-1); } // standard
};
```

3.6 Segmente tree

```
/* Implementacion de segment tree para obtener la suma en un rango, pero es posible usar cualquier
operacion conmutativa como la multiplicacion, XOR, AND, OR, MIN, MAX, etc.*/
typedef vector<int> vi;
class SegmentTree {
 private:
   int n;
    vi arr, st;
    int 1(int p) { return p << 1; }</pre>
                                          // ir al hijo izquierdo
    int r(int p) { return (p << 1) + 1; } // ir al hijo derecho</pre>
    void build(int index, int start, int end) {
        if (start == end) {
            st[index] = arr[start];
        l else (
            int mid = (start + end) / 2;
            build(l(index), start, mid);
            build(r(index), mid + 1, end);
            st[index] = st[l(index)] + st[r(index)];
    int query(int index, int start, int end, int i, int j) {
        if (j < start || end < i)</pre>
            return 0; // Si ese rango no nos sirve, retornar un valor que no cambie nada
        if (i <= start && end <= j)</pre>
            return st[index];
        int mid = (start + end) / 2;
        int q1 = query(l(index), start, mid, i, j);
        int q2 = query(r(index), mid + 1, end, i, j);
        return q1 + q2;
    void update(int index, int start, int end, int idx, int val) {
        if (start == end) {
            st[index] = val;
        } else {
            int mid = (start + end) / 2;
            if (start <= idx && idx <= mid)</pre>
                update(l(index), start, mid, idx, val);
            else
                update(r(index), mid + 1, end, idx, val);
            st[index] = st[l(index)] + st[r(index)];
    SegmentTree(int sz) : n(sz), st(4 * n) {} // Constructor de st sin valores
    SegmentTree(const vi &initialArr) : SegmentTree((int)initialArr.size()) { // Constructor de st con
          arreglo inicial
        arr = initialArr:
        build(1, 0, n - 1);
    void update(int i, int val) { update(1, 0, n - 1, i, val); }
    int query(int i, int j) { return query(1, 0, n - 1, i, j); }
};
```

3.7 Segmente tree with lazy propagation

```
// Implementacion de segment tree con lazy propagation
typedef vector<int> vi;
class LazySegmentTree {
 private:
    int n:
    vi A, st, lazy;
    int 1(int p) { return p << 1; }</pre>
                                            // ir al hijo izquierdo
    int r(int p) { return (p << 1) + 1; } // ir al hijo derecho</pre>
    void build(int index, int start, int end) {
        if (start == end) {
            st[index] = A[start];
        } else {
            int mid = (start + end) / 2;
            build(l(index), start, mid);
            build(r(index), mid + 1, end);
            st[index] = st[l(index)] + st[r(index)];
    void propagate(int index, int start, int end) {
        if (lazy[index] != 0) {
             st[index] += (end - start + 1) * lazy[index];
             if (start != end) {
                 lazy[l(index)] += lazy[index];
                lazy[r(index)] += lazy[index];
             lazy[index] = 0;
    void update(int index, int start, int end, int i, int j, int val) {
        propagate (index, start, end);
        if ((end < i) || (start > j))
        if (start >= i && end <= j) {</pre>
             st[index] += (end - start + 1) * val;
             if (start != end) {
                 lazy[l(index)] += val;
                lazy[r(index)] += val;
            return;
        int mid = (start + end) / 2;
        update(l(index), start, mid, i, j, val);
        update(r(index), mid + 1, end, i, j, val);
        st[index] = (st[l(index)] + st[r(index)]);
    int query(int index, int start, int end, int i, int j) {
        propagate(index, start, end);
        if (end < i || start > j)
            return 0;
        if ((i <= start) && (end <= j))</pre>
            return st[index];
        int mid = (start + end) / 2;
int q1 = query(l(index), start, mid, i, j);
        int q2 = query(r(index), mid + 1, end, i, j);
        return (q1 + q2):
    Lazy Segment Tree (\textbf{int} sz) : n(sz), st (4 \star n), lazy (4 \star n) \ \{\} \ // \ \textit{Constructor de st sin valores}
    LazySegmentTree(const vi &initialA) : LazySegmentTree((int)initialA.size()) { // Constructor de st
           con arreglo inicial
        A = initialA;
        build(1, 0, n - 1);
    void update(int i, int j, int val) { update(1, 0, n - 1, i, j, val); }
    int query(int i, int j) { return query(1, 0, n - 1, i, j); }
};
```

3.8 Segmente tree RMQ with lazy propagation

```
// Implementacion de segment tree lazy para obtener una RMQ
typedef vector<int> vi;
class LazyRMQ {
 private:
    int n;
    vi A, st, lazy;
    int l(int p) { return p << 1; } // ir al hijo izquierdo</pre>
    int r(int p) { return (p << 1) + 1; } // ir al hijo derecho</pre>
    int conquer(int a, int b) {
   if (a == -1)
            return b:
        if (b == -1)
            return a;
        return min(a, b); // RMQ - Cambiar esta linea para modificar la operacion del st
    void build(int p, int L, int R) { // O(n)
        if (L == R)
            st[p] = A[L];
        else {
            int m = (L + R) / 2;
            build(l(p), L, m);
            build(r(p), m + 1, R);
            st[p] = conquer(st[l(p)], st[r(p)]);
    void propagate(int p, int L, int R) {
        if (lazy[p] != -1) {
   st[p] = lazy[p];
            if (L != R)
                                                       // chechar que no es una hoja
                 lazy[l(p)] = lazy[r(p)] = lazy[p]; // propagar hacia abajo
            lazy[p] = -1;
    int query(int p, int L, int R, int i, int j) { // O(log \ n)
        propagate(p, L, R);
        if (i > j)
            return -1;
        if ((L >= i) && (R <= j))
           return st[p];
        int m = (L + R) / 2;
        return conquer(query(l(p), L, m, i, min(m, j)),
                        query(r(p), m + 1, R, max(i, m + 1), j));
    void update(int p, int L, int R, int i, int j, int val) { // O(log \ n)
        propagate(p, L, R);
        if (i > j)
            return:
        if ((L >= i) && (R <= j)) {
            lazy[p] = val;
            propagate(p, L, R);
            int m = (L + R) / 2;
            update(l(p), L, m, i, min(m, j), val);
update(r(p), m + 1, R, max(i, m + 1), j, val);
int lsubtree = (lazy[l(p)] ! = -1) ? lazy[l(p)] : st[l(p)];
            int rsubtree = (lazy[r(p)] != -1) ? lazy[r(p)] : st[r(p)];
            st[p] = (lsubtree <= rsubtree) ? st[l(p)] : st[r(p)];
    }
  public:
    LazyRMQ(int sz) : n(sz), st(4 * n), lazy(4 * n, -1) {} // Constructor de st sin valores
    LazyRMO(const vi &initialA) : LazyRMO((int)initialA.size()) { // Constructor de st con arreglo
          inicial
        A = initialA;
        build(1, 0, n - 1);
    void update(int i, int j, int val) { update(1, 0, n - 1, i, j, val); }
    int query(int i, int j) { return query(1, 0, n - 1, i, j); }
};
int main(){
    // Implementacion
    vi A = {18, 17, 13, 19, 15, 11, 20, 99};
    LazyRMQ st(A);
    st.query(1, 3); // RMQ(1,3);
    st.update(5, 5, 77); // actualiza A[5] a 77
```

```
st.update(0, 3, 30); // actualiza A[0..3] a 30
return 0;
}
```

3.9 Segment tree of DSU with rollback

```
// Union find rollback y segment tree para poder responder queries del numero de componentes que hay
     en cada instante de tiempo
typedef vector<int> vi;
struct dsu save { // Struct de los datos de cada set
   int v. rnkv. u. rnku:
   dsu_save(int _v, int _rnkv, int _u, int _rnku) : v(_v), rnkv(_rnkv), u(_u), rnku(_rnku) {}
struct dsu_with_rollbacks { // Dsu con rollback
   vi p, rnk;
                          // Vectores de padres y rangos
   int comps;
                           // Numero de componentes
   stack<dsu_save> op;
   dsu_with_rollbacks(int n) {
                                 // Constructor donde n es el numero inicial de sets
       p.resize(n), rnk.resize(n);
       for (int i = 0; i < n; i++) {
           p[i] = i;
           rnk[i] = 0;
       comps = n;
   int find_set(int v) { return (v == p[v]) ? v : find_set(p[v]); } // Regresa si estan en el
   bool unite(int v, int u) { // Une 2 sets
       v = find_set(v), u = find_set(u);
       if (v == u) return false;
       if (rnk[v] > rnk[u]) swap(v, u);
       op.push(dsu_save(v, rnk[v], u, rnk[u]));
       if (rnk[u] == rnk[v]) rnk[u]++;
       return true:
   void rollback() { // Revierte la ultima union hecha
       if (op.empty()) return;
       dsu_save x = op.top(); op.pop();
       p[x.v] = x.v, rnk[x.v] = x.rnkv;
       p[x.u] = x.u, rnk[x.u] = x.rnku;
};
struct query {
                   // Struct para las queries
                   // v= primer elemento, u= segundo elemento
   int v, u;
                  // Para saber si estan unidos
   bool united:
   query(int _v, int _u) : v(_v), u(_u) { }
// Time complexity build O(T(n)), delete (T(n) \log n). T(n) = time
struct QueryTree {
                              // Struct de un segment tree para resolver las queries
   vector<vector<query>> t;
                              // Vector para almacenar las queries
   dsu_with_rollbacks dsu;
   inicial de sets
dsu = dsu_with_rollbacks(n);
       t.resize(4 * T + 4);
   void add_to_tree(int v, int l, int r, int ul, int ur, query& q) {    // Metodo para agregar una
         query al tree
       if (ul > ur)
           return:
       if (1 == ul && r == ur) {
           t[v].push_back(q);
           return;
       add_to_tree(2 * v, 1, mid, ul, min(ur, mid), q);
       add_to_tree(2 * v + 1, mid + 1, r, max(ul, mid + 1), ur, q);
    // Las queries se agregan de la manera UF.add query(query(v, u), l, r)
   // Donde v y u son los elementos a unir, mientras que l y r representan el rango de tiempo en el
         que estan unidos
   void add_query(query q, int 1, int r) {
```

```
add to tree(1, 0, T - 1, 1, r, q);
    void dfs(int v, int 1, int r, vi& ans) {
                                             // DFS para recorrer las queries
       for (query& q : t[v])
           q.united = dsu.unite(q.v, q.u);
        if (1 == r)
           ans[1] = dsu.comps;
       else {
           int mid = (l + r) / 2;
           dfs(2 * v, 1, mid, ans);
           dfs(2 * v + 1, mid + 1, r, ans);
       for (query q : t[v])
           if (q.united)
                dsu.rollback();
    vi solve() { // Retorna un vector con el numero de componentes en cada instante de tiempo
       dfs(1, 0, T - 1, ans);
       return ans;
1:
int main(){
    // Ejemplo de uso
    OuervTree UF(5.5):
                                       // Se crea el segment tree para resolver las gueries
    UF.add_query(query(0, 1), 2, 3); // Se agrega una querie indicando que los elementos v=0 y u=1
         estan unidos desde t=2 hasta t=3
    UF.add_query(query(2, 3), 1, 4); // Se agrega una querie indicando que los elementos v=2 y u=3
         estan unidos desde t=1 hasta t=4
    vi res = UF.solve();
                                       // Se llama el metodo para resolver las queries
    for(auto u : res)
       cout<<u<<" "; // Se imprime 5 4 3 3 4, representando el numero de disjoint sets en cada
             instante de tiempo
    return 0;
```

3.10 Sparse table

```
// Time complexity: Build O(n log n), Query O(1)
typedef vector<int> vi;
class SparseTable {
private:
    vi A, P2, L2;
                          // Vector base, potencias de 2 y logaritmos base 2
    vector<vi> SpT;
                          // La Sparse Table
public:
    SparseTable() {}
                         // Constructor default
    SparseTable(vi &initialA) : A(initialA) {
                                                        // Rutina de preprocesamiento
        int n = (int) A.size(), L2_n = (int) log2(n) +1;
        P2.assign(L2_n, 0), L2.assign(1<<L2_n, 0);
        for (int i = 0; i <= L2_n; ++i) {
             P2[i] = (1 << i);
             L2[(1 << i)] = i;
                                                         // Para acelerar log_2(i)
        for (int i = 2; i < P2[L2_n]; ++i)</pre>
             if (L2[i] == 0)
                 L2[i] = L2[i-1];
                                                         // Para llenar los vacios
        // Inicializacion
        SpT = vector<vi>(L2[n]+1, vi(n));
for (int j = 0; j < n; ++j)
    SpT[0][j] = j;</pre>
                                                         // RMO del sub array [j..j]
         // Ciclos con complejidad total O(n log n)
        for (int i = 1; P2[i] <= n; ++i)
                                                         // Para toda i s.t. 2^i <= n
             for (int j = 0; j+P2[i]-1 < n; ++j) {
                                                        // Para toda j valida
                                                        // [j..j+2^(i-1)-1]
// [j+2^(i-1)..j+2^i-1]
                 int x = SpT[i-1][j];
                 int y = SpT[i-1][j+P2[i-1]];
                 SpT[i][j] = A[x] \le A[y] ? x : y; // Guarda el indice del elemento menor
    int RMQ(int i, int j) {
        int k = L2[j-i+1];
                                           // 2^k \le (j-i+1)
                                           // Cubre [i..i+2^k-1]
// Cubre [j-2^k+1..j]
        int x = SpT[k][i];
        int v = SpT[k][i-P2[k]+1]:
        return A[x] <= A[v] ? x : v;
                                           // Retorna el indice del elemento menor
};
```

3.11 Order statistics tree

```
// Time complexity Insertion O(n log n), select-rank O(log n)
#include <bits/extc++.h>
#include <bits/stdc++.h>
using namespace std:
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ost;
/*(Posiciones indexadas en 0).
Funciona igual que un set (todas las operaciones en O(log n)), con 2 operaciones extra:
obj.find_by_order(k) - Retorna un iterador apuntando al elemento k-esimo mas grande
obj.order_of_key(x) - Retorna un entero que indica la cantidad de elementos menores a x
{\it Modificar\ unicamente\ primer\ y\ tercer\ parametro,\ que\ corresponden\ a\ el\ tipo\ de\ dato}
del ost y a la funcion de comparacion de valores (less<T>, greater<T>, less_equal<T>
o incluso una implementada por nosotros)
Si queremos elementos repetidos, usar less_equal<T> (sin embargo, ya no servira la
funcion de eliminacion).
Si queremos elementos repetidos y necesitamos la eliminacion, utilizar una
tecnica con pares, donde el second es un numero unico para cada valor.
// Implementacion
int main(){
    int n = 9:
    int A[] = {2, 4, 7, 10, 15, 23, 50, 65, 71}; // Arreglo de elementos
    ost tree:
    for (int i = 0; i < n; ++i) // O(n log n)
        tree.insert(A[i]);
    // O(log n) select
    cout << *tree.find_by_order(0) << "\n";  // 1-smallest = 2
cout << *tree.find_by_order(n - 1) << "\n"; // 9-smallest/largest = 71</pre>
    cout << *tree.find_by_order(4) << "\n"; // 5-smallest = 15
    // O(log n) rank
    cout << tree.order_of_key(2) << "\n"; // index 0 (rank 1)
cout << tree.order_of_key(71) << "\n"; // index 8 (rank 9)</pre>
    cout << tree.order_of_key(15) << "\n"; // index 4 (rank 5)</pre>
```

3.12 Binary search tree

```
// Implementacion de un BST con recorridos pre, in y post orden
class BST{
    int data;
    BST *left, *right;
   public:
        BST():
        BST (int);
        BST* insert(BST*,int);
        BST* deleteNode(BST*,int);
        void preorder(BST*);
        void inorder(BST*);
        void postorder(BST*);
        void printLeafNodes(BST*);
};
BST::BST(){
    data=0;
    left=right=NULL;
BST::BST(int value) {
    data=value:
    left=right=NULL;
BST* BST::insert(BST* root, int value) {
        return new BST(value);
    if(value>=root->data){
        root->right=insert(root->right, value);
    else if (value<root->data) {
        root->left=insert(root->left,value);
    return root:
BST* BST::deleteNode(BST* root, int k)
```

```
if (root == NULL)
        return root;
    if (root->data > k) {
        root->left = deleteNode(root->left, k);
        return root;
    else if (root->data < k) {</pre>
        root->right = deleteNode(root->right, k);
        return root;
    if (root->left == NULL) {
        BST* temp = root->right;
        delete root:
        return temp;
    else if (root->right == NULL) {
        BST* temp = root->left;
        delete root;
        return temp;
    else {
        BST* succParent = root:
        BST* succ = root->right:
        while (succ->left != NULL) {
            succParent = succ:
            succ = succ->left;
        if (succParent != root)
            succParent->left = succ->right;
            succParent->right = succ->right;
        root->data = succ->data;
        delete succ:
        return root;
void BST::preorder(BST* root) {
    if(!root){
        return;
    cout<<root->data<<" ";
    preorder(root->left);
    preorder(root->right);
void BST::inorder(BST* root) {
    if(!root){
        return:
    inorder(root->left);
    cout << root -> data << " ";
    inorder(root->right);
void BST::postorder(BST* root) {
    if(!root){
        return;
    postorder(root->left);
    postorder(root->right):
    cout<<root->data<<" ";
void BST::printLeafNodes(BST* root) {
    if (!root)
        return;
    if (!root->left && !root->right){
        cout << root->data << " ";
        return;
    if (root->left)
       printLeafNodes(root->left);
    if (root->right)
       printLeafNodes(root->right);
int main(){
    int n.num:
    cin>>n;
    BST b, *root=NULL;
    for (int i=0; i < n; i++) {</pre>
        if(i==0){
```

```
root=b.insert(root,num);
continue;
}
b.insert(root,num);
}
b.preorder(root);
cout<<endl;
b.inorder(root);
cout<<endl;
b.postorder(root);
cout<<endl;
return 0;</pre>
```

4 Graphs

4.1 Graph traversal

```
// Time complexity O(V + E)
// Source: Own work
typedef vector<int> vi;
// DFS
vector<vi> adj;
vector<bool> visited;
void dfs(int u) {
    if(visited[u]) return;
    visited[u]=true;
     //process node
    for(auto &v : adj[u])
        dfs(v);
// BFS
const int MAXN = 1e6;
void bfs(int src){
    queue<int> q; q.push(src);
    vector<bool> visited(MAXN, false); visited[src] = true;
    while(!q.empty()){
        int u = q.front(); q.pop();
          // Process node
         for(auto &v : adj[u]){
             if(visited[v]) continue;
             visited[v] = true;
             q.push(v);
// Bipartite graph check
bool bfs(int src) {
    queue<int> q; q.push(src);
    vi color(MAXN, -1); color[src] = 0;
    while(!q.empty()){
        int u = q.front(); q.pop();
         \quad \text{for} \, (\text{auto } \, \&v \, : \, \, \text{adj} \, [\, u \, ] \, ) \, \{
             if(color[v] == -1) {
    color[v] = color[u] ^ 1;
                 q.push(v);
             else if(color[v] == color[u])
                 return false;
    return true;
```

4.2 Dijkstra

```
// Time complexity O(E log V)
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const int INF=le9;
```

```
vector<vii> adj;
vi dijkstra(int start, int V){
    priority_queue<ii, vii, greater<ii>> pq; pq.push({0,start});
    vi dist(V, INF); dist[start]=0;

while(!pq.empty()) {
        auto [d, u] = pq.top(); pq.pop();
        if(d > dist[u]) continue;
        for(auto &[v, w] : adj[u]) {
            if(dist[u]+w >= dist[v]) continue;
            dist[v] = dist[u] + w;
            pq.push({dist[v], v});
        }
    }
    return dist;
```

4.3 Bellman-Ford

```
// Time complexity O(V*E)
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const int INF = 1e9;
int main() {
    // Numero de nodos(V), numero de aristas(E), nodo inicio(s)
    vector<vii> AL(V, vii());
    // Ruta del Bellman Ford, basicamente relaja las {\it E} aristas {\it V-1} veces
    vi dist(V, INF); dist[s] = 0;
                                                   // Inicializacion en distancias infinitas
    for (int i = 0; i < V-1; ++i) {
                                                    // total O(V*E)
        bool modified = false;
                                                    // Optimizacion
       for (int u = 0; u < V; ++u)
if (dist[u] != INF)</pre>
                                                    // Estos 2 ciclos = O(E)
                                                    // Verificacion importante
            for (auto &[v, w] : AL[u]) {
   if (dist[u]+w >= dist[v]) continue; // No hay mejora, saltar
                dist[v] = dist[u]+w;
                                                    // Operacion de relajacion
                modified = true;
                                                    // Optimizacion
        if (!modified) break;
                                                    // Optimizacion
    bool hasNegativeCycle = false;
    for (int u = 0; u < V; ++u)
   if (dist[u] != INF)</pre>
                                                    // Una pasada mas para verificar
            for (auto &[v, w] : AL[u])
               if (dist[v] > dist[u]+w)
                                                    // Debe ser falso
   if (!hasNegativeCycle)
        for (int u = 0; u < V; ++u)
            printf("SSSP(%d, %d) = %d\n", s, u, dist[u]);
    return 0:
```

4.4 Floyd-Warshal

```
// Time complexity O(V^3)
const int INF = le9;
const int MAX_V = 450; // Si |V| > 450, no se puede usar el Floyd-Warshall
int AM[MAX_V]; // Es mejor guardar un arreglo grande en el heap
int P[MAX_V][MAX_V]; // Arreglo para guardar el camino (Solo si es necesario)

void printPath(int i, int j) {
    if (i != j) printPath(i, P[i][j]);
    printf(" %d", v);
}

int main() {
    // Numero de nodos(V), numero de aristas(E)
    // Inicializar con AM[u][v] = INF, AM[u][u] = 0

    // Rutina del Floyd-Warshall

for (int i = 0; i < V; ++i)
    for (int i = 0; j < V; ++j)</pre>
```

4.5 Topological sort

```
// Time complexity O(V+E)
typedef pair<int, int> ii;
typedef vector<int> vi;
enum { UNVISITED = -1, VISITED = -2 };
vector<vi> AL;
vi dfs_num, ts;
void toposort(int u) {
   dfs_num[u] = VISITED;
   for (auto &v : AL[u])
       if (dfs_num[v] == UNVISITED)
           toposort(v);
       ts.push_back(u); // Este es el unico cambio con respecto a un DFS
    // El grafo tiene que ser DAG
    // Numero de nodos(V), numero de aristas(E)
    AL.assign(V, vi());
   dfs_num.assign(V, UNVISITED);
    ts.clear();
    for (int u = 0; u < V; ++u)
                                                  // Iqual que para encontrar los CCs
       if (dfs_num[u] == UNVISITED)
       toposort(u):
    printf("Topological sort: \n");
    reverse(ts.begin(), ts.end());
                                                  // Invertir ts o imprimir al reves
    for (auto &u : ts)
       printf(" %d", u);
    printf("\n");
    return 0;
```

4.6 Lexicographic graphs/topological sort

```
// Time complexity O(V+E)
typedef vector<int> vi;
                     // Numero de nodos y aristas
vector<vi> AL;
                    // Lista de adyacencia
                    // Grado de entrada de cada nodo
vi in degree:
                    // Nodos ordenados
vi sorted nodes:
void topo sort() {
    priority_queue<int, vector<int>, greater<int>> q;
    for (int i=0; i<V; i++)</pre>
        if (in_degree[i] == 0)
            q.push(i);
    while (!q.empty()) {
        int u = q.top();
        q.pop();
        sorted_nodes.push_back(u);
        for (int v : AL[u]) {
            in_degree[v]--;
if (in_degree[v] == 0)
                q.push(v);
```

4.7 Prim

```
// Time complexity O(E log E)
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
vector<vii>> AL:
vi taken:
priority_queue<ii, vector<ii>, greater<ii>> pq;
int mst_cost = 0, num_taken = 0;
void process(int u) {
    taken[u] = 1;
    for (auto &[v, w] : AL[u])
        if (!taken[v])
            pq.push({w, v});
void prim(vector<vii> AL, int src, int V) {
    taken.assign(V+1, 0);
    process(src);
    while (!pq.empty()){
        auto [w, u] = pq.top();
        pq.pop();
if (taken[u])
            continue;
        mst cost += w;
        process(u);
        ++num_taken;
        if (num_taken == V - 1)
            break;
int main(){
    int V. E:
    cin>>V>>E;
    AL.assign(V+1, vii());
    for (int i = 0; i < E; ++i) {
        int u. v. w:
        cin>>u>>v>>w;
        AL[u].push_back({v,w});
        AL[v].push_back({u,w});
    prim(AL, 1, V);
    cout << "MST cost= " << mst_cost;
    return 0;
```

4.8 Kruskal

```
// Time complexity O(E log E)
typedef long long l1;
typedef vector(int> vi;
typedef tuple<int, int, int> iii;
// Union find utilizado para formar el MST
class UnionFind {
private:
    vi p, rank, setSize;
    int numSets;
```

```
public:
    UnionFind(int N) {
       p.assign(N, 0); for (int i = 0; i < N; ++i) p[i] = i;
        rank.assign(N, 0);
       setSize.assign(N, 1);
       numSets = N;
    bool isSameSet(int i, int j) { return findSet(i) == findSet(j); }
    void unionSet(int i, int j) {
       if (isSameSet(i, j)) return;
int x = findSet(i), y = findSet(j);
       if (rank[x] > rank[y]) swap(x, y);
        p[x] = y;
       if (rank[x] == rank[y]) ++rank[y];
setSize[y] += setSize[x];
        --numSets;
    int numDisjointSets() { return numSets; }
    int sizeOfSet(int i) { return setSize[findSet(i)]; }
int main() {
    int V. E:
    cin>>V>>E;
    vector<iii> EL(E);
    for (int i = 0; i < E; ++i) {
       int u. v. w:
       cin>>u>>v>>w:
       EL[i] = \{w, u, v\},\
    sort(EL.begin(), EL.end());
    11 mst_cost = 0, num_taken = 0;
    UnionFind UF(V+1);
    for (int i = 0; i < E; ++i) {
       auto [w, u, v] = EL[i];
       if (UF.isSameSet(u, v)) continue;
       mst_cost += w;
       UF.unionSet(u, v);
        ++num taken;
       if (num_taken == V-1) break;
    cout << mst cost << " " << num taken;
  return 0;
```

4.9 Tarjan

```
// Time complexity O(V + E)
typedef vector<int> vi;
int dfsNumberCounter, numSCC;
                                                         // Variables globales
vector<vi> AL;
vi dfs_num, dfs_low, visited;
stack<int> St;
void tarjanSCC(int u) {
   dfs_low[u] = dfs_num[u] = dfsNumberCounter;
                                                         // dfs_low[u]<=dfs_num[u]
    dfsNumberCounter++;
                                                         // Incrementa el contador
    St.push(u);
                                                         // Para recordar el orden
    visited[u] = 1;
    for (auto v : AL[u]) {
        if (dfs_num[v] == -1)
                                                         // No visitado
            tarjanSCC(v);
        if (visited[v])
                                                         // Condicion de actualizacion
            dfs_low[u] = min(dfs_low[u], dfs_low[v]);
    if (dfs_low[u] == dfs_num[u]) {
                                                         // Raiz o inicio de un SCC
                                                         // Se aumenta el numero de SCC
        while (1) {
            int v = St.top(); St.pop(); visited[v] = 0;
            if (u == v) break;
int main() {
    // Num_Nodos (V), Num_Aristas (E)
   AL.assign(V,vi());
// Lectura del grafo (Dirigido)
    // Ejecucion del algoritmo de Tarjan
    dfs_num.assign(V, -1); dfs_low.assign(V, 0); visited.assign(V, 0);
    while (!St.empty()) St.pop();
```

```
dfsNumberCounter = numSCC = 0;
for (int u = 0; u < V; ++u)
   if (dfs_num[u] == -1)  // No visitado
        tarjanSCC(u);

// Imprime cuantos SCC tiene el grafo
printf("Number of SCC: %d\n", numSCC);
return 0;</pre>
```

4.10 Kosaraju

```
{\it Descripcion: Busqueda\ de\ componentes\ fuertemente\ conexos\ (Grafo\ dirigido)\ -\ Kosaraju\ O(V\ +\ E)}
Un SCC se define de la siguiente manera: si elegimos cualquier par de vertices u y v
en el SCC, podemos encontrar un camino de u a v y viceversa
El algoritmo de Kosaraju realiza dos pasadas DFS, la primera para almacenar el orden
de finalizacion decreciente (orden topologico) y la segunda se realiza en un grafo transpuesto a partir del orden topologico para hallar los SCC
Source: CPH4 Steven Halim
vi graph[MAXN], graph_T[MAXN], dfs_num, S;
int n, numSCC;
void Kosaraju(int u, int pass) { //pass = 1 (original), 2 (transpose)
    dfs_num[u] = 1;
     vi &neighbor = (pass == 1) ? graph[u] : graph_T[u];
    for (auto v : neighbor) {
         if (dfs_num[v] == -1)
             Kosaraju(v, pass);
    S.push_back(u);
int main() {
     S.clear();
     dfs_num.assign(n, -1); // First pass - visited(-1)
    FOR(u, n) { //Record post order of original Graph
  if (dfs_num[u] == -1)
             Kosaraju(u, 1);
    dfs num.assign(n, -1);
    numSCC = 0;
    FORR(i, n, 1) { // Finding SCC from transpose Graph
         if (dfs_num[S[i]] == -1) {
             Kosaraju(S[i], 2);
    cout << numSCC << ENDL:
```

4.11 Bridges and articulation points

```
// Time complexity O(V+E)
// Source: CPH4 Steven Halim
typedef vector<int> vi;
vector<vi> AL;
vi dfs_num, dfs_low, dfs_parent;
vector<bool> articulation_vertex;
int dfsNumberCounter, dfsRoot, rootChildren;
void articulationPointAndBridge(int u) {
    dfs_low[u] = dfs_num[u] = dfsNumberCounter++;
                                                                    // dfs_low[u]<=dfs_num[u]
    for (auto v : AL[u]) {
        if (dfs_num[v] == -1) {
                                                                    // a tree edge, no visitado
            dfs_parent[v] = u;
            if (u == dfsRoot)
                ++rootChildren;
                                                                    // Caso especial, raiz
             articulationPointAndBridge(v);
            if (dfs_low[v] >= dfs_num[u])
    articulation_vertex[u] = 1;
                                                                    // Es un punto de articulacion
            if (dfs_low[v] > dfs_num[u])
                                                                    // Es un puente
```

```
printf(" Edge (%d, %d) is a bridge\n", u, v);
            dfs_low[u] = min(dfs_low[u], dfs_low[v]);
                                                                   // Actualizacion
                                                                   // Evitar ciclo trivial
        else if (v != dfs_parent[u])
            dfs_low[u] = min(dfs_low[u], dfs_num[v]);
                                                                   // Actualizacion
int main(){
    // Num_Nodos (V), Num_Aristas (E)
    AL.assign(V, vi());
    // Lectura del grafo (NO dirigido)
    dfs_num.assign(V, -1), dfs_low.assign(V, 0), dfs_parent.assign(V, -1), articulation_vertex.assign(
    V, 0);
dfsNumberCounter = 0;
    printf("Bridges:\n");
    for (int u = 0; u < V; ++u)
        if (dfs_num[u] == -1) { // No visitado
            dfsRoot = u;
            rootChildren = 0;
             articulationPointAndBridge(u);
            articulation_vertex[dfsRoot] = (rootChildren > 1); // Caso especial
    printf("Articulation Points:\n");
    for (int u = 0; u < V; ++u)
   if (articulation_vertex[u])</pre>
            printf(" Vertex %d\n", u);
    return 0:
```

4.12 2 SAT

```
Time complexity O(N+E), donde N es el numero de variables booleanas y E es el numero de
          clausulas
    Las variables negadas son representadas por inversiones de bits (~x)
        TwoSat ts(numero de variables booleanas):
                                     La variable 0 es verdadera o la variable 3 es falsa
        ts.either(0, ~3);
        ts.setValue(2);
                                     La variable 2 es verdadera
        ts.atMostOne({0, ~1, 2}); <= 1 de vars 0, ~1 y 2 son verdedero
        ts.solve();
                                     Retorna verdadero si existe solucion
        ts.values[0..N-1]
                                      Tiene los valores asignados a las variables
    Source: KACTL
typedef vector<int> vi;
struct TwoSat {
    int N; vector<vi> adj;
    vi values; // 0 = false, 1 = true
    TwoSat(int n = 0) : N(n), adj(2*n) {}
    int addVar() { adj.emplace_back(); adj.emplace_back(); return N++; } // Opcional
    // Agrega una disyuncion
    void either(int x, int y) { // Nota: (a v b), es equivalente a la expresion (~a -> b) n (~b -> a)
        x = max(2*x, -1-2*x), y = max(2*y, -1-2*y);
        adj[x].push_back(y^1), adj[y].push_back(x^1);
    void setValue(int x) { either(x, x); }
                                                                        // La variable x debe tener el
           valor indicado
    void implies(int x, int y) { either(~x, y); }
                                                                        // La variable x implica a y
    void make_diff(int x, int y) { either(x, y); either(~x, ~y); } // Los valores tienen que ser
          diferentes
    void make_eq(int x, int y) {either(~x, y); either(x, ~y); }
                                                                     // Los valores tienen que ser
          iquales
    void atMostOne(const vi& li) { // Opcional
        if (li.size() <= 1) return;</pre>
        int cur = "li[0];
        for(int i = 2; i < li.size(); i++){</pre>
            int next = addVar();
             either(cur, ~li[i]); either(cur, next);
             either(~li[i], next); cur = ~next;
        either(cur, ~li[1]);
    vi dfs_num, comp; stack<int> st; int time = 0;
int tarjan(int u) {    // Tarjan para encontrar los SCCs
    int x, low = dfs_num[u] = ++time; st.push(u);
        for(int v : adj[u]) if (!comp[v])
            low = min(low, dfs_num[v] ?: tarjan(v));
```

```
if (low == dfs_num[u]) do {
    x = st.top(); st.pop();
    comp[x] = low;
    if (values[x>>1] == -1)
        values[x>>1] = x61;
} while (x != u);
    return dfs_num[u] = low;
}

bool solve() {
    values.assign(N, -1), dfs_num.assign(2*N, 0), comp.assign(2*N, 0);
    for(int i = 0; i < 2*N, i++)
        if (!comp[i])
        tarjan(i);
    for(int i = 0; i < N; i++)
        if (comp[2*i] == comp[2*i+1])
        return 0;
    return 1;
};</pre>
```

4.13 Lowest common ancestor

```
// Time complexity Preprocessing = O(n log n), Query = (log n)
typedef vector<int> vi;
int 1;
               // Logaritmo base 2 del numero de nodos del arbol, redondeado hacia arriba
vector<vi> adj; // Lista de adyacencia para representar el arbol
             // Tiempo en el que se visita cada nodo
int timer:
vi tin, tout; // Arreglos de tiempos de entrada y salida de cada nodo
vector<vi> up; // Vector de los ancestros de cada nodo, donde up[i][j] es el ancestro 2^j del nodo i
void dfs(int v, int p) {
    tin[v] = ++timer;
    up[v][0] = p;
    for (int i = 1; i <= 1; ++i)
       up[v][i] = up[up[v][i-1]][i-1];
    for (int u : adj[v]) {
       if (u != p)
            dfs(u, v);
    tout[v] = ++timer:
bool is_ancestor(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; }
    if (is_ancestor(u, v)) return u; // Si u es ancestro de v LCA(u, v) = u
    if (is_ancestor(v, u)) return v; // Si v es ancestro de u LCA(u, v) = v
    for (int i = 1; i >= 0; --i) {
                                        // Se recorren los ancestros con saltos binarios
       if (!is_ancestor(up[u][i], v))
            u = up[u][i];
    return up[u][0];
                                       // Se retorna el LCA
void preprocess(int root, int sz) {
    tin.resize(sz);
    tout.resize(sz);
    timer = 0;
    1 = ceil(log2(sz));
    up.assign(sz, vector<int>(1 + 1));
    dfs(root, root);
```

4.14 Max-flow (Dinic)

```
// Time complexity O(V'2 * E)

typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> ii;
typedef tuple<int, ll, ll> edge;
const ll INF = lel8;  // Suficientemente grande

class max_flow {
  private:
    int V;  // Numero de vertices
```

```
vector<edge> EL;
                         // Lista de aristas
    vector<vi> AL;
                         // Lista de adyacencia con los indices de las aristas
    vi d, last;
                         // Vector de distancias y ultimas aristas
                         // Vector para el camino. first = id del nodo, second = indice en la lista de
    vector<ii>> p;
          aristas
    bool BFS(int s, int t)
                                                               // Encontrar un augmenting path
        d.assign(V, -1); d[s] = 0;
        queue<int> q({s});
        p.assign(V, {-1, -1});
    while (!q.empty()) {
                                                               // Guardar el sp tree del BFS
        int u = q.front(); q.pop();
            if (u == t) break;
                                                               // Parar si se llega al sink t
            for (auto &idx : AL[u]) {
                                                               // Explora los vecinos de u
                auto &[v, cap, flow] = EL[idx];
if ((cap-flow > 0) && (d[v] == -1))
                                                               // Arista quardada en EL[idx]
                                                               // Arista residual positiva
                d[v] = d[u]+1, q.push(v), p[v] = \{u, idx\}; // 3 lineas en una B)
        return d[t] != -1;
                                                               // Tiene un augmenting path
    11 DFS(int u, int t, 11 f = INF) {
                                                               // Ir de s->t
        if ((u == t) || (f == 0)) return f;
        for (int &i = last[u]; i < (int)AL[u].size(); ++i){ // Desde la ultima arista
   auto &[v, cap, flow] = EL[AL[u][i]];</pre>
            if (d[v] != d[u]+1) continue;
                                                               // No es parte del grafo de niveles
            if (11 pushed = DFS(v, t, min(f, cap-flow))) {
                flow += pushed;
                auto &rflow = get<2>(EL[AL[u][i]^1]);
                                                               // Arista de regreso
                rflow -= pushed;
                return pushed;
        return 0;
 public:
    max_flow(int initialV) : V(initialV) {
        EL.clear();
        AL.assign(V, vi());
    // Si se agrega una arista bidireccional u<->v con peso w en el grafo de flujo,
    // asigna directed = false. El valor por defecto es true (Arista dirigida)
    void add_edge(int u, int v, 11 w, bool directed = true) {
        if (u == v) return;
                                                       // Por seguridad: Evita ciclos en el mismo nodo
        EL.emplace_back(v, w, 0);
                                                        // u->v, cap w, flow 0
        AL[u].push_back(EL.size()-1);
                                                        // Para recordar el indice
        EL.emplace_back(u, directed ? 0 : w, 0);
                                                       // Arista de regreso
        AL[v].push_back(EL.size()-1);
                                                       // Para recordar el indice
    11 dinic(int s, int t) {
                                          // mf = Max flow
        11 \text{ mf} = 0:
        while (BFS(s, t)) {
                                          // Time complexity O(V^2*E)
                                          // Aceleracion importante
            last.assign(V, 0);
            while (11 f = DFS(s, t))
                                         // exhaust blocking flow
                mf += f;
        return mf;
1:
    // Leer numero de nodos(V), source(s), sink(t)
    // De preferencia asignar s = 0, t = V-1
    // max flow mf(V);
    // Crear aristas usando el metodo add edge(u, v, w);
  return 0:
```

4.15 Min-cost max-flow

```
// Time complexity O(V^2 + E^2)
typedef long long l1;
typedef tuplexint, l1, l1, l1> edge;
typedef vectorxint> vi;
typedef vectorxil1> vil;
const l1 INF = lel8;

class min_cost_max_flow {
   private:
    int v;
    l1 total_cost;
    vector<edge> EL;
    vector<vi> AL;
```

```
vll d;
    vi last, vis;
    bool SPFA(int s, int t) { // SPFA para encontrar un augmenting path en el grafo residual
        d.assign(V, INF); d[s] = 0; vis[s] = 1;
        queue<int> q({s});
        while (!q.empty()) {
            int u = q.front(); q.pop(); vis[u] = 0;
            for (auto &idx : AL[u]) {
                                                                  // Explorar los vecinos de u
                auto &[v, cap, flow, cost] = EL[idx];
if ((cap-flow > 0) && (d[v] > d[u] + cost)) {
                                                                  // Guardado en EL[idx]
                                                                 // Arista residual positiva
                    d[v] = d[u] + cost;
                    if(!vis[v]) q.push(v), vis[v] = 1;
        return d[t] != INF;
                                         // Tiene un augmenting path
    11 DFS(int u, int t, 11 f = INF) {
                                                                          // Ir de s->t
        if ((u == t) || (f == 0)) return f;
        vis[u] = 1;
        for (int &i = last[u]; i < (int)AL[u].size(); ++i) {</pre>
                                                                          // Desde la ultima arista
            auto &[v, cap, flow, cost] = EL[AL[u][i]];
            if (!vis[v] && d[v] == d[u] + cost) {
                                                                          // En el grafo del nivel
                  actual
                if (11 pushed = DFS(v, t, min(f, cap-flow))) {
                    total cost += pushed * cost;
                    flow += pushed:
                    auto &[rv, rcap, rflow, rcost] = EL[AL[u][i]^1];
                                                                       // Arista de regreso
                    rflow -= pushed:
                    vis[u] = 0;
                    return pushed;
        vis[u] = 0;
        return 0;
 public:
    min_cost_max_flow(int initialV) : V(initialV), total_cost(0) {
        EL.clear():
        AL.assign(V, vi());
        vis.assign(V, 0);
    // Si se agrega una arista bidireccional u<->v con peso w en el grafo de flujo,
        // asigna directed = false. El valor por defecto es true (Arista dirigida)
    void add_edge(int u, int v, ll w, ll c, bool directed = true) {
        if (u == v) return;
                                                     // Por seguridad: Evita ciclos en el mismo nodo
        EL.emplace_back(v, w, 0, c);
                                                     // u->v, cap w, flow 0, cost c
                                                     // Para recordar el indice
        AL[u].push_back(EL.size()-1);
        EL.emplace_back(u, 0, 0, -c);
                                                     // Arista de regreso
        AL[v].push_back(EL.size()-1);
                                                     // Para recordar el indice
        if (!directed) add_edge(v, u, w, c, true); // Agregar de nuevo en reversa
    pair<11, 11> mcmf(int s, int t) {
        11 \text{ mf} = 0;
                                                      // mf = Max flow
        while (SPFA(s, t)) {
                                                      // Time complexity O(V^2*E)
            last.assign(V, 0);
                                                      // Aceleracion importante
            while (11 f = DFS(s, t))
                                                      // exhaust blocking flow
                mf += f;
        return {mf, total_cost};
};
int main() {
    // Leer numero de nodos(V), source(s), sink(t)
    // De preferencia asignar s = 0, t = V-1
    // min cost max flow mf(V);
    // Crear aristas usando el metodo add_edge(u, v, w, c);
    return 0;
```

4.16 Kuhn BPM

```
// Conexiones del bm, donde mt[i] es el nodo de la primera parte conectado al nodo
vi mt;
       i de la segunda parte
vector <bool> used; // Vector de visitados para el dfs
int maxMatch = 0; // tamanio del max matching
bool try_kuhn(int v) {
   if (used[v])
       return false;
    used[v] = true;
    for (int to : adj[v]) {
       if (mt[to] == -1 || try_kuhn(mt[to])) {
           mt[to] = v;
            return true;
                            // Retorna true si encuentra un augmenting path
    return false;
                            // Retorna false en caso contrario
int main() {
    // Lectura del grafo
    // Heuristica que consiste en tomar inicialmente cualquier matching valido y ejecutar el algoritmo
          a partir de ahi
    mt.assign(k, -1);
    vector<bool> used1(n, false);
    for (int v = 0; v < n; ++v)
       for (int to : adj[v])
           if (mt[to] == -1)
               mt[to] = v;
               used1[v] = true;
               break;
    // Ejecucion del algoritmo
    for (int v = 0; v < n; ++v) {
       if (used1[v])
           continue;
        used.assign(n, false);
       try_kuhn(v);
    for (int i = 0; i < k; ++i)
       if (mt[i] != -1) {
            printf("%d %d\n", mt[i] + 1, i + 1);
            maxMatch++;
    printf("Max match = %d\n", maxMatch);
```

5 Strings

5.1 Knuth Morris Pratt (KMP)

```
// Time complexity O(n + m)
typedef vector<int> vi;
vi kmpPreprocess(string &P) {
                                // Preprocesamiento
    int m = P.size();
    vi b(m + 1);
int i = 0, j = -1; b[0] = -1;
                                // b = Back table
                                                         // Valores iniciales
    while (i < m) {
                                                         // Preprocesamiento de P
        while ((j >= 0) && (P[i] != P[j])) j = b[j];
                                                        // Diferente, reset i
        ++i; ++j;
                                                         // Iqual, avanzan ambos
       b[i] = j;
    return b;
// T = Cadena donde se busca, P = Patron a buscar
int kmpSearch(string &T, string &P) {
                                                         // Busqueda del patron en la cadena
    vi b = kmpPreprocess(P);
    int freq = 0;
    int i = 0, j = 0;
                                                         // Valores iniciales
    int n = T.size(), m = P.size();
                                                         // n = |T|, m = |P|
    while (i < n) {
                                                         // Buscar a traves de T
        while ((j \ge 0) \&\& (T[i] != P[j])) j = b[j];
                                                        // Diferente, reset j
        ++1; ++1;
                                                         // Tqual, avanzan ambos
        if ( == m) {
                                                         // Una coincidencia es encontrada
            ++freq;
            // printf("P se encuentra en el indice %d de T\n", i-j);
                                                        // Prepara j para la siguiente
            i = b[i];
```

```
}
return freq;  // Retorna el numero de coincidencias del patron en la cadena
}
int main() {
    string T="I DO NOT LIKE SEVENTY SEV BUT SEVENTY SEVENTY SEVEN";
    string P="SEVENTY SEVEN";

    printf("Knuth-Morris-Pratt, #match = %d\n", kmpSearch(T, P));
    return 0;
}
```

5.2 Trie

```
// Implementacion del arbol de prefijos usando mapa
struct TrieNode {
    map<char, TrieNode *> children;
    bool isEndOfWord;
    int numPrefix;
    TrieNode() : isEndOfWord(false), numPrefix(0) {}
1:
class Trie {
  private:
    TrieNode *root:
  public:
    Trie() : root(new TrieNode()) {}
    void insert(string word) { // Inserta una palabra en el trie
        TrieNode *curr = root;
        for (char c : word) {
            if (curr->children.find(c) == curr->children.end())
                curr->children[c] = new TrieNode();
            curr = curr->children[c];
           curr->numPrefix++;
        curr->isEndOfWord = true:
    bool search(string word) { // Busca si una palabra esta en el trie
        TrieNode *curr = root;
        for (char c : word) {
           if (curr->children.find(c) == curr->children.end())
               return false;
            curr = curr->children[c];
        return curr->isEndOfWord;
    bool startsWith(string prefix) { // Busca si alguna palabra del trie inicia con un prefijo
        TrieNode *curr = root:
        for (char c : prefix) {
           if (curr->children.find(c) == curr->children.end())
               return false;
            curr = curr->children[c];
    int countPrefix(string prefix) {      // Cuenta la cantidad de palabras que inician con un prefijo
        TrieNode *curr = root;
        for (char c : prefix) {
           if (curr->children.find(c) == curr->children.end())
               return 0;
            curr = curr->children[c];
        return curr->numPrefix:
};
```

5.3 Hashing

```
// Time complexity Hashing O(n), hashInterval O(1)
typedef long long l1;

// Operaciones con modulo
inline int add(int a, int b, int mod) { a += b; return a >= mod ? a - mod : a; }
inline int sub(int a, int b, int mod) { a -= b; return a < 0 ? a + mod : a; }
inline int mul(int a, int b, int mod) { return ((11)a*b) % mod; }</pre>
```

```
const int MOD[] = \{ (int) 1e9+7, (int) 1e9+9 \};
struct H{
    int x, y;
    H(int _x = 0) : x(_x), y(_x) {}
    H(int _x, int _y) : x(_x), y(_y) \{ \}
     \textbf{inline} \ \ \textbf{H} \ \ \textbf{operator-(const} \ \ \textbf{H\& o)} \ \ \textbf{(return} \ \ \{ \textbf{sub}(\textbf{x}, \ \textbf{o.x}, \ \texttt{MOD[0]}), \ \ \textbf{sub}(\textbf{y}, \ \textbf{o.y}, \ \texttt{MOD[1]}) \}; 
    inline H operator*(const H@ o) { return {mul(x, o.x, MOD[0]), mul(y, o.y, MOD[1])}; }
    inline bool operator==(const H& o) { return x == o.x && y == o.y; }
const int MAXN = 2e5+5:
                             // Valor maximo de la longitud de un string
const H P = {257, 577};
                             // Bases primas
                             // Vector con las potencias de las bases
vector<H> pw;
void computePowers() { pw.resize(MAXN + 1); pw[0] = {1, 1}; for(int i = 0; i < MAXN; i++) pw[i + 1] =</pre>
      pw[i] * P; }
struct Hash {
    vector<H> ha:
    Hash(string& s){
                         // O(n)
        if(pw.empty()) computePowers();
        int l = (int) s.size(); ha.resize(l + 1);
        for (int i = 0; i < 1; i++) ha[i + 1] = ha[i] * P + s[i];
    H hashInterval(int 1, int r) { return ha[r] - ha[1] * pw[r - 1]; } // O(1), regresa el hash del
H hashString(string& s) { H ret; for(char c : s) ret = ret * P + c; return ret; } // O(n)
// Para "concatenar" hashes, de tal manera que se pueda obtener el hash de la concatenacion de 2
// se puede hacer de la siguiente manera: hashIzq * pw[len] + hashDer, en donde len = longitud de
      hashDer
H combineHash(H hI, H hD, int len) { return hI * pw[len] + hD; } // O(1)
```

5.4 Aho-Corasick

```
// Implementacion de Aho-Corasick y Aho-Corasick dinamico
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef long long 11;
class AhoCorasick {
public:
    struct Node {
        map<char, int> ch;
        vi accept;
        int link = -1:
       int cnt = 0;
        Node() = default:
    };
    vector<Node> states;
    map<int, int> accept_state;
    explicit AhoCorasick() : states(1) {}
    void insert (const string& s, int id = -1) { // O(|s|)
        int i = 0;
        for (char c : s)
            if (!states[i].ch.count(c)) {
                states[i].ch[c] = states.size();
                states.emplace back():
            i = states[i].ch[c];
        ++states[i].cnt;
        states[i].accept.push_back(id);
        accept_state[id] = i;
    void clear() {
        states.clear();
        states.emplace_back();
    int get_next(int i, char c) const {
        while (i != -1 && !states[i].ch.count(c)) i = states[i].link;
        return i != -1 ? states[i].ch.at(c) : 0;
    void build() { // O(sum(|s|))
```

```
queue<int> que;
         que.push(0);
         while (!que.empty()) {
             int i = que.front();
             que.pop();
             for (auto [c, j] : states[i].ch) {
                 states[j].link = get_next(states[i].link, c);
                 states[j].cnt += states[states[j].link].cnt;
                 auto& a = states[j].accept;
                 auto& b = states[states[j].link].accept;
                 vi accept;
                 set_union(a.begin(), a.end(), b.begin(), b.end(), back_inserter(accept));
                 a = accept;
                 que.push(j);
    11 count(const string& str) const { // O(|str| + sum(|s|))
        11 ret = 0;
        int i = 0:
        for (auto c : str) {
             i = get_next(i, c);
             ret += states[i].cnt;
        return ret:
    // Lista de (id, index)
    vector<ii> match(const string& str) const { // O(|str| + sum(|s|))
         vector<ii> ret;
        int i = 0;
        for (int k = 0; k < (int) str.size(); ++k) {</pre>
             char c = str[k];
             i = get_next(i, c);
             for (auto id : states[i].accept) {
                 ret.emplace_back(id, k);
        return ret:
};
class DynamicAhoCorasick {
    vector<vector<string>> dict;
     vector<AhoCorasick> ac;
public:
    void insert(const string& s) { // O(|s| log n)
        int k = 0:
        while (k < (int) dict.size() && !dict[k].empty()) ++k;</pre>
        if (k == (int) dict.size()) {
            dict.emplace_back();
             ac.emplace_back();
        dict[k].push_back(s);
        ac[k].insert(s);
        for (int i = 0; i < k; ++i)
             for (auto& t : dict[i]) {
             \operatorname{dict}[k].\operatorname{insert}(\operatorname{dict}[k].\operatorname{end}(),\ \operatorname{dict}[i].\operatorname{begin}(),\ \operatorname{dict}[i].\operatorname{end}());
             ac[i].clear();
             dict[i].clear();
        ac[k].build();
    11 count(const string& str) const { // O(|str| + sum(|s| log n))
        for (int i = 0; i < (int) ac.size(); ++i) ret += ac[i].count(str);</pre>
        return ret;
};
```

6 Dynamic programming

6.1 Knapsack

```
// Time complexity (N * W)
#define MAXN 1010
int N, capacidad;
int peso[MAXN], valor[MAXN];
int dp[MAXN][MAXN];
int mochila (int i , int libre ) {
    if ( libre < 0) return -100000000; //Metimos un objeto demasiado pesado</pre>
    if ( i == 0) return 0;
                                            //Si ya no hay objetos, ya no ganamos nada
    if ( dp [ i ][ libre ] != -1) return dp [ i ][ libre ]; //E1 DP
    //Si tomamos el item
    int tomar = valor [ i ] + mochila ( i - 1 , libre - peso [ i ]) ;
    //Si no tomamos el item
int noTomar = mochila ( i - 1 , libre ) ;
    //Devolvemos el maximo (y lo guardamos en la matriz dp)
return ( dp [ i ][ libre ] = max ( tomar , noTomar ) );
    memset (dp, -1, sizeof (dp));
    cin>>N;
    cin>>capacidad;
    for (int i=0; i < N; i++) {</pre>
        int p, v;
         cin>>p>>v;
         peso[i+1]=p;
         valor[i+1]=v;
    int solucion = mochila(N, capacidad);
    cout << solucion:
    return 0:
```

6.2 Knapsack 2

```
#include <bits/stdc++.h>
using namespace std;
#define ENDL '\n'
#define FOR(x, b) for(int x = 0; x < b; x++)
#define FORR(x, a, b) for(int x = a; x >= b; x--)
#define _ ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long 11;
typedef vector<int> vi;
//Knapsack 2 - Problem from at coder dp educational contest
//Classical knapsack with W up to 1e9
//Change the the definition of dp
const 11 INF = 1e18L + 5;
int main(){
    int n, w;
    cin >> n >> w;
    vi value(n);
    vi weight(n);
    int sum values = 0:
        cin >> weight[i] >> value[i];
        sum_values += value[i];
    vector<11> dp(sum_values + 1, INF);
    //dp[i] - minimum total weight of items with value i
    dp[0] = 0; //if there no value there's no weight
FOR(i, n) { //iterate over all items n
        FORR(curr_value, sum_values - value[i], 0) {//iterate from total values - value[i] to 0
        dp[curr_value + value[i]] = min(dp[curr_value + value[i]], dp[curr_value] + weight[i]);
    //search the answer on dp table
    FOR(i, sum_values + 1){
        if(dp[i] <= w){
        ans = max(ans, ll(i));
    cout << ans << ENDL;
    return 0;
```

6.3 Longest increasing subsequence

```
// Time complexity O(n log k)
typedef vector<int> vi;
int n; // tamanio del vector
vi A; // Vector original
vi p; // Vector de predecesor
void print_LIS(int i) {
                                                         // Rutina de backtracking
    if (p[i] == -1) { printf("%d", A[i]); return; }
                                                         // Caso base
    print LIS(p[i]);
                                                         // backtrack
    printf(" %d", A[i]);
int main() {
    // Solucion O(n log k), n <= 200K
    int k = 0, lis\_end = 0;
    vi L(n, 0), L_id(n, 0);
    p.assign(n, -1);
    for (int i = 0; i < n; ++i) {</pre>
        int pos = lower_bound(L.begin(), L.begin()+k, A[i]) - L.begin();
                                                                                 // Busqueda binaria
        L[pos] = A[i];
                                                         // greedily overwrite this
                                                     // remember the index too
        L_id[pos] = i;
p[i] = pos ? L_id[pos-1] : -1;
                                                     // predecessor info
        if (pos == k) {
                                                     // can extend LTS?
                                                        // k = longer LIS by +1
        k = pos+1;
        lis_end = i;
                                                         // keep best ending i
    printf("Final LIS is of length %d: ", k);
    print_LIS(lis_end); printf("\n");
    return 0;
```

6.4 Sum of digits in a range

```
#include <bits/stdc++.h>
//Pura gente del coach mov
using namespace std;
#define ENDL '\n'
#define all(s) begin(s), end(s)
#define rall(n) n.rbegin(), n.rend()
#define FOR(x, b) for(int x = 0; x < b; x++)
#define FORE(x, a, b) for(int x = a; x \le b; x++)
#define _ ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long 11;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const 11 MOD = 1e9+7, INF=1e18;
//Dado un rango de l...r, contar la suma de los digitos de todos los numeros en ese rango
11 dp[20][180][2];
11 solve(string& num, int pos, int sum, bool tight){
    if(pos==0) return sum;
    if(dp[pos][sum][tight]!=-1) return dp[pos][sum][tight];
    int ub=tight ? (num[num.length()-pos]-'0') : 9;
    11 ans=0;
    for (int dig=0; dig<=ub; dig++) {</pre>
       ans+=solve(num, pos-1, sum+dig, (tight & (dig==ub)));
    return dp[pos][sum][tight]=ans;
int main(){_
    11 ln, rn;
    cin>>ln>>rn;
    string l=to_string(ln), r=to_string(rn);
   memset (dp,-1,sizeof dp);
11 lans=solve(l,1.length(),0,1);
    memset (dp, -1, sizeof dp);
    11 rans=solve(r, r.length(), 0, 1);
```

```
cout<<rans-lans<<ENDL;
return 0;</pre>
```

6.5 Enigma regional 2017

```
#include <bits/stdc++.h>
 //Pura gente del coach moy
using namespace std;
#define ENDL '\n'
#define all(s) begin(s), end(s)
#define rall(n) n.rbegin(), n.rend()
#define FOR(x, b) for(int x = 0; x < b; x++)
#define FORE(x, a, b) for(int x = a; x \le b; x++)
#define _ ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long 11;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const 11 MOD = 1e9+7, INF=1e18;
string num;
int n:
int dp[1001][1001];
bool solve(int pos, int res){
    if(pos==0)
                           return res==0;
   if (dp[pos][res]!=-1)
                          return dp[pos][res];
    bool ans=false:
    if(num[num.length()-pos]!='?'){
        int dig=num[num.length()-pos]-'0';
        ans |=solve (pos-1, (res*10+dig) %n);
        for(int dig=0;dig<=9;dig++){</pre>
           if (pos==0&&dig==0) continue;
           ans|=solve(pos-1,(res*10+dig)%n);
    return dp[pos][res]=ans;
int main(){
    memset (dp,-1, sizeof dp);
    cin>>num>>n;
    bool posible=solve(num.length(),0);
    if(!posible){
        cout<<' *' <<ENDL;
        return 0;
    int mod=0;
    FOR(i,num,length()){
       if(num[i]!='?'){
           cout<<num[i]:
           mod=(mod*10+(num[i]-'0'))%n;
           continue:
       FORE (j, i==0, 9) {
           if (solve(num.length()-i-1, (mod*10+j)%n)){
               mod= (mod * 10+j) %n;
               cout<<j;
               break;
    cout << ENDL:
    return 0;
```

6.6 Little elephant and T shirts - CodeChef

```
#include <bits/stdc++.h>
//Fura gente del coach moy
using namespace std;
#define ENDL '\n'
#define all(s) begin(s), end(s)
#define rall(n) n.rbegin(), n.rend()
#define FOR(x, b) for(int x = 0; x <b; x++)</pre>
```

```
#define FORE(x, a, b) for(int x = a; x \le b; x++)
#define _ ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long 11;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const 11 MOD = 1e9+7, INF=1e18;
//Problema: Little Elephant and T-Shirts -- CodeChef
//Descripcion: Hay n personas que tienen ciertas playeras las cuales cuentan con un cierto ID desde 1
//En la entrada se dan cuantas personas hay y las playeras que tiene cada una de estas personas
//Se pide encontrar el numero de maneras en las que se pueden distribuir las personas y las playeras,
      de tal manera que, no haya 2 personas
//vistiendo la misma playera en ese conjunto. Al final imprimir modulo 1e9+7
//n, matriz para saber si una persona tiene una playera y matriz dp
int n;
bool tshirts[11][101];
11 dp[101][1<<11];</pre>
//Funcion para resolver el problema
11 solve(int shirt, int mask) {
    //Si ya se le asigno a cada persona una playera, se retorna 1
    if(mask==((1<< n)-1))
                               return 1:
    //Si ya se recorrieron todas las playeras, se retorna 0
    if(shirt==100)
                               return 0;
    //Si ya se calculo anteriormente, se retorna lo almacenado en la dp
    if(dp[shirt][mask]!=-1)
                             return dp[shirt][mask];
    11 ans=0;
    //Para cada persona
    FOR (p, n) {
        //Se verifica si esa persona aun no tiene una playera y si esta persona cuenta con la playera
             del parametro de la funcion
       if(!(mask&(1<<p))&&tshirts[p][shirt]){</pre>
            //Si cuenta con ella, se continua con la siguiente playera y se le asigna playera a la
                 persona p
           ans=(ans+solve(shirt+1, mask|(1<<p)))%MOD;
    //Tambien se calcula para en caso de no asignar esta playera a la persona y asignarle
         posteriormente otra de con las que cuenta
    ans=(ans+solve(shirt+1, mask))%MOD;
    return dp[shirt][mask]=ans;
int main(){_
    int t:
    cin>>t;
    while (t--) {
       memset (dp,-1,sizeof dp);
       memset (tshirts, 0, sizeof tshirts);
       string s;
        cin.ignore();
       FOR (i, n) {
            getline(cin,s);
           stringstream in(s);
           int ts:
           while (in>>ts) {
               tshirts[i][--ts]=1;
       cout << solve (0,0) << ENDL;
    return 0;
```

6.7 O-Matching AtCoder

```
#include <bits/stdc++.h>
//Pura gente del coach moy
using namespace std;
#define ENDL '\n'
#define all(s) begin(s), end(s)
#define rall(n) n.rbegin(), n.rend()
#define FOR(x, b) for(int x = 0; x <b; x++)
#define FORE(x, a, b) for(int x = a; x <= b; x++)</pre>
```

```
#define _ ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
typedef long long 11;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef vector<int> vi;
typedef vector<ii> vii;
const 11 MOD = 1e9+7, INF=1e18;
\label{lem:compact} \begin{tabular}{ll} \beg
                     las mujeres,
//por lo tanto, a ij indica si son compatibles con un 1, o si no lo son con un 0
//El problema pide el numero de parejas distintas que se pueden formar. Se aplica modulo 1e9+7 al
int n;
vi adj[21];
11 dp[21][(1<<21)-1];
11 solve(int idx, int mask) {
              //Si se llega a n, significa que todas las parejas han sido asignadas if(idx==n) return 1;
```