

Design and Evaluation of Accelerator Organizations for Binarized Neural Networks

Somar Iskif

September 19, 2022

Department of Computer Science TU Dortmund, Germany

Contents

- 1. Introduction
- 2. CBNNA
 - Design Modell
 - Processing Element
- 3. Basics
 - Workload Notation
 - Challenges and Solutions
- 4. Methods
 - Vertical Move
 - Strided Move
- 5. Evaluation and Results
- 6. Conclusion
 - Summary
 - Further Optimization

Iskif — September 19, 2022 2 / 39

Introduction

- The neural network (NN)
 - Computer Model ⇔ Human Brain
 - Consist of:
 - Neurons
 - Layers of Nodes
 - Weights
 - Face Recognition
 - Pattern Recognition
 - Speech Recognition

Motivation

- Training a neural network
 - Feeding it some data and the correct answer
 - NN predict the correct answer for future data
- Example:
 - Train a NN to recognize objects in images (Dogs)
 - The NN sees thousands of dogs and finds a way to generalize a dog's image.

Iskif — September 19, 2022 Introduction 4 / 39

Motivation

- How to conclude all types of dogs?
 - Train the NN with all Dog's types
 - New Data
 - Retrain the neural network again
 - Time
 - Resources (Energy, Register area)
 - BNN architecture addresses these issues
 - Design and train neural networks at a larger scale

BNN

- Instead of using floating-point or integer numbers, BNN uses just one Bit('0' or '1')
- Fantastic opportunity for the realization of compact and energy efficient inference hardware
- The binary representation can be multiplied quickly and easily.
- Disadvantage of BNN, it is less accurate

BNN

- Internally, the BNN works with 0s and 1s.
- 0 represents a -1 in the NN and 1 represents 1.

internal value	real value
0	-1
1	1

Iskif — September 19, 2022 Introduction 7 / 39

CBNNA Design

Design of Crossbar-based BNNA

- One Column processes the workload of one neuron
- *m* Columns
- n XNOR Gates
- $(m \times n) = (column \times XNOR)$
- Interface Circuit

Column and Interface Circuits (Processing Element)

- Column
 - Xnor gates
- Interface Circuits (IC)
 - Popcount
 - Accumulator
 - Comparator

Processing Element

- Processing Element (PE) includes 4 modules:
 - Xnor gates
 - Popcount
 - Accumulator
 - Comparator

XNOR

- The XNOR gate is one of the two components responsible for vector multiplication.
- One XNOR gate multiplies one row of the two given vectors.
- \blacksquare x XNORS gates can multiply two vectors of size x.

$$XNOR(\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}) = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1\\-1\\1\\1 \end{pmatrix} \times \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}$$

Processing Element

- Processing Element (PE) includes 4 modules:
 - Xnor gates
 - Popcount
 - Accumulator
 - Comparator

Popcount

- Counting 1's in a bit stream
- Result vector of the XNOR's gates
- Result can not be negative
- Outputs the result to the Accumulator

Processing Element

- Processing Element (PE) includes 4 modules:
 - Xnor gates
 - Popcount
 - Accumulator
 - Comparator

Accumulator

- The intermediate Accumulator sums up the results of the Popcount module and therefore the scalar product of the two vectors.
- If the Accumulator receives a reset signal from the controller, it outputs the value it's currently holding and resets its value to 0.

Processing Element

- Processing Element (PE) includes 4 modules:
 - Xnor gates
 - Popcount
 - Accumulator
 - Comparator

Comparator

- Compares output of register with threshold
 - '1' if output of register ≥ threshold
 - Else '0'

CBNNA

CBNNA: Processing Element

NN Workload

$$W_{(lpha,eta)} = egin{pmatrix} \overline{w_{1,1}} & w_{1,2} & \cdots & w_{1,eta} \ w_{2,1} & w_{2,2} & \cdots & w_{2,eta} \ dots & dots & \ddots & dots \ w_{lpha,1} & w_{lpha,2} & \cdots & w_{lpha,eta} \end{pmatrix} egin{pmatrix} lpha \ \$$

- NN workload can be converted to this Notation ($\beta = \gamma$)
- Big numbers for alpha, beta and delta => big Matrices

- One Processing Element is often not enough or too slow
- Using Crossbars to process the Computation

Challenge and Solutions

■ P: $\beta >> n =>$ "Crossbar array is not large enough to hold the weights of one convolution layer" [1]

How to partition the workload and map Computations to the crossbar array?

- L1: "Partition computations and accumulate intermediate results (i.e., partial sums)" [1]
- L2: Map the workload with clever methods

Methods

- Different ways of partitioning and mapping computations:
 - Vertical Move
 - Strided Move

They can have a significant impact on:

- Performance
- Energy

Iskif — September 19, 2022 Methods 22 / 39

Vertical Move

Iskif — September 19, 2022 Methods: Vertical Move 23 / 39

VM Example

First crossbar's column process first row

$$\oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$$
 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} \oplus \begin{pmatrix}$

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 0 & 0 \end{pmatrix} = 0$$

$$\begin{pmatrix} (0 & 0) \oplus \begin{pmatrix} 0 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 1 & 1 \end{pmatrix} = 2 \end{pmatrix}$$

accumulator(1, 0, 2) = 3comparator(3)(5) = 0

$$(0 \ 0) \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 1 \ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 0 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 1 & 1 \end{pmatrix} = 2$$

$$\underbrace{\begin{pmatrix} 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 1 & 0 \end{pmatrix} = 1}_{accumulator \begin{pmatrix} 1, & 2, & 1 \end{pmatrix} = 4}_{comparator \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} = 1}$$

Second crossbar's column process second row

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 1 & 1 \end{pmatrix} = 2$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 1 & 0 \end{pmatrix} = 1$$

$$\left[\begin{pmatrix} 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 0 \end{pmatrix} = popcount \begin{pmatrix} 1 & 1 \end{pmatrix} = 2 \right]$$

accumulator(2, 1, 2) = 5comparator(5)(5) = 1

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 0 & 0 \end{pmatrix} = 0$$

$$\underbrace{\begin{pmatrix} 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 0 & 1 \end{pmatrix} = 1}$$

$$(0 \quad 0) \oplus \begin{pmatrix} 0 \\ 1 \end{pmatrix} = popcount \begin{pmatrix} 1 & 0 \end{pmatrix} = 1$$

$$accumulator(0, 1, 1) = 2$$

 $comparator(2)(3) = 0$

Iskif — September 19, 2022 Methods: Vertical Move 24 / 39

Vertical Move

- The crossbar array needs to be re-programmed for every move
 - Increasing Time.
 - Increasing Energy.
- No Need to store Intermediate results from the previous Tile
 - Reducing the register area.

Strided Move

Iskif — September 19, 2022 Methods: Strided Move 26 / 39

SM Example

Strided Move

- Re-programming the crossbar array is not required
 - Reducing Energy.
- The weights stored in the crossbar array can be reused
 - Reducing Time.
- Intermediate results from the previous tile need to be stored in its exclusive registers
 - Increasing the register area.

Iskif — September 19, 2022 Methods: Strided Move 28 / 39

Evaluation Plan

- Measure and Compare execution times of different Configurations and Input's length
- Compare Latency, Energy and Resource Usage ("LUTs" and "FFs") of the following Methods:
 - Strided Move
 - Vertical Move
- What is better for **FPGA**, Vertical or Strided Move?

Energy Results

LUTs and FFs Results

Time Results

Evaluation Results

Figure: Energy vs. Time

Figure: Energy vs. LUT

Iskif — September 19, 2022 Evaluation and Results 33 / 39

Evaluation Results

Figure: Time vs. LUT

Figure: FF vs. LUT

Summary

- Define the Demands, Hardware Requirements
 - Time-Critical
 - Resource Efficiency
 - Energy
 - Register Area
- Available Resources?

Summary

- Vertical Move
 - Low Energy
 - Low Register Area
 - Slow Execution Time

Reason: Only m Registers, wait until the new weights are loaded

- Strided Move
 - High Energy
 - High Register Area
 - Fast Execution Time

Reason: High write energy, more LUTs and flip-flops for the δ registers, reuse the weights

Summary

- (Execution Time >>> Resource Usage) ⇒ Strided Move
- (Execution Time \ll Resource Usage) \Rightarrow Vertical Move.
- Many FPGA types and different capacity
 - Not be able to run the strided move
 - lack of resources
 - Exceed the maximum energy
 - ⇒ VM better than SM for the FPGA's in general

Further Optimization

- Full Binary Neural Network
- Horizontal Move
- Systolic Array
- Approximate Computing (Stochastic Computing)
- Several Crossbars in Parallel

Github Repo

■ The CBNNA Design is here available:

https://github.com/somar0/Crossbar-Design

■ Thank you all for listening.

- [1] Chen X, Yin X, Niemier M, Hu XS. Design and optimization of FeFET-based crossbars for binary convolution neural networks. In 2018 Design, Automation and Test in Europe Conference and Exhibition (DATE) 2018 Mar 19 (pp. 1205-1210). IFFF
- [2] Liang S, Yin S, Liu L, Luk W, Wei S. FP-BNN: Binarized neural network on FPGA. Neurocomputing. 2018 Jan 31;275:1072-86.
- [3] Hirtzlin T, Penkovsky B, Bocquet M, Klein JO, Portal JM, Querlioz D. Stochastic computing for hardware implementation of binarized neural networks. IEEE Access. 2019 Jun 5;7:76394-403.
- [4] Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, Vissers K. Finn: A framework for fast, scalable binarized neural network inference. InProceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays 2017 Feb 22 (pp. 65-74).

Iskif — September 19, 2022 Bibliography 39 / 39