

MATHEMATICS SPECIALIST 3CD

SEMESTER 1 2010

TEST 2

	Questions	Reading Time	Working Time	Marks
Calculator Free	1 – 4	5 minutes	15 minutes	12
Calculator Assumed	5 - 8	5 minutes	30 minutes	24
Total				36

1. [1, 2 marks]

Express in exact rectangular form:

(a) $e^{i\frac{\pi}{6}}$

(b) $3e^{2+i\frac{2\pi}{3}}$

2. [2 marks]

Given that z = $3e^{\mathrm{i}\theta},$ determine an expression in exponential form for iz.

3. [2, 1, 1 marks]

Given that $w = \sqrt{3} + i$, express in exact exponential form:

(a) w

(b) \overline{w}

(c) w³

4. [1, 2 marks]

The sketch of y = f(x) is given below.

Sketch on the same axes the graphs of:

(a)
$$y = f(|x|)$$

MATHEMATICS SPECIALIST 3CD

SEMESTER 1 2010

TEST 2

	Questions	Reading Time	Working Time	Marks
Calculator Free	1 – 4	5 minutes	15 minutes	12
Calculator Assumed	5 - 8	5 minutes	30 minutes	24
Total				36

5. [2 marks]

Solve for x: $\sqrt[3]{3+|x|} \le 2$

6. [1, 1, 2 marks]

(a) Sketch the graph of $f(x) = |x^2 - 2x - 2|$.

Hence state the value(s) of b such that f(x) = b has exactly

- (a) three solutions
- (b) two solutions

Consider the plane Π_1 : $\mathbf{r} = (3 + 2\mu - \lambda)\mathbf{i} + (5 - 4\mu + 2\lambda)\mathbf{j} + (7 + 3\mu + 3\lambda)\mathbf{k}$.

- (a) Find the equation of the plane containing the point (2, 1, 5) and parallel to Π_1 .
- (b) Determine if the point (13, -9, 4) lies on the plane Π_1 .

(c) Write Π_1 in normal form (ie $\mathbf{r} \cdot \mathbf{n} = \mathbf{c}$).

8. [8 marks]

A sphere centred at (3, 4, -2) and with radius 2 can be defined by the vector equation $|\mathbf{r} - (3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})| = 2$. Determine the minimum distance the sphere is from the plane defined by x - y + 2z = 13.