DEPARTMENT OF MATHEMATICS Transforms and Boundary Value Problems

1. The order and degree of the PDE $\frac{\partial^2 z}{\partial x^2} + 2xy(\frac{\partial z}{\partial x})^2 + \frac{\partial z}{\partial y} = 5$, respectively

(A) 2, 1

(B) 1, 2

(C) 1, 1

(D) 2, 2

ANSWER: A

2. The Partial Differential Equation corresponding to Z = (x+a)(y+b) is

(A) $p^2 + q^2 = z$

(B) pq = z (C) $p^2 - q^2 = z$ (D) $z = p^2q^2$

ANSWER: B

3. The complete solution of $\sqrt{p} + \sqrt{q} = 1$ is

(A) $z = ax + (1 + \sqrt{a})^2 y + c$

(B) $z = ax + (1 - \sqrt{a})^2 y$

(C) $z = ax + (1 - \sqrt{a})^2 y + c$ (D) $z = ax - (1 - \sqrt{a})^2 y + c$

ANSWER: C

4. The general solution of px + qy = z is

(A) f(x,y) = 0

(B) $f(\frac{x}{y}, \frac{y}{z}) = 0$ (C) f(xy, yz) = 0 (D) $f(x^2 + y^2) = 0$

ANSWER: B

5. The general solution of (y-z)p+(z-x)q=x-y is

(A) $f(x+y+z) = x^2 + y^2 + z^2$ (B) $f(xyz) = x^2 + y^2 + z^2$

(C) f(x+y+z) = xyz

(D) $f(x^2 + y^2 + z^2) = x^2y^2z^2$

ANSWER: A

6. The complete solution of $z = px + qy + p^2 + q^2$ is

(A) z = (x + a)(y + b)

(B) z = ax + by + c

(C) $z = ax + by + c^2 + d^2$

(D) $z = ax + by + a^2 + b^2$

ANSWER: D

7. The solution of the linear PDE $(D^2 + 4DD' - 5D'^2)z = 0$ is

(A) $z = f_1(y+x) + f_2(y+5x)$ (B) $z = f_1(y-x) + f_2(y-5x)$

(C) $z = f_1(y+x) + f_2(y-5x)$ (D) $z = f_1(y-x) + f_2(y+5x)$

ANSWER: C

8. The solution of $\frac{\partial^3 z}{\partial x^3} = 0$ is

(A) $z = (1 + x + x^2) f(y)$

(B) $z = (1 + u + u^2) f(x)$

(C) $z = f_1(y) + xf_2(y) + x^2f_3(y)$

(D) $z = f_1(x) + y f_2(x) + y^2 f_3(x)$

ANSWER: C

9.	The solution of $p + q = z$ is						
(A) $f(x+y,y+logz)$			(B) $f(xy, ylogz)$				
	(C) $f(x-y,y-la)$	(gz)	(D) $f(xy, y - log z)$				
	ANSWER: C						
10.	The particular solu	ution of $(D^2 - 2DI)$	$DD' + D'^2)z = \sin x$				
	(A) - sinx	(B) $sinx$	(C) cosx	(D) $-\cos x$			
	ANSWER: A						
11.	The period of sine	5x is					
	(A) $\frac{8\pi}{5}$	(B) $\frac{6\pi}{5}$	(C) $\frac{4\pi}{5}$	(D) $\frac{2\pi}{5}$			
	ANSWER: D	0	· · · · · · · · · · · · · · · · · · ·	.			
12.	If $f(x) = x \sin x$ in	$(-\pi,\pi)$ then the	value of b_n in Four	ier series expansion is			
	(A) 0	(B) 1	(C) 2	(D) 3			
	ANSWER: A						
13.	Fourier coefficient a_0 in the Fourier series expansion of a function represents the						
	(A) maximum valu	ue of the function	(B) 2 mean value of the function				
	(C) minimum valu	e of the function	(D) mean value of	the function			
	ANSWER: B						
14.	If the Fourier series of the function $f(x)$ in $(-\ell, \ell)$ has only cosine terms then $f(x)$ must be						
	(A) odd function		(B) even function				
	(C) neither even n ANSWER: B	or odd function	(D) multi-valued f	unction			
15.	If $f(x) = x^2 + x$ i	n $(0,\ell)$ then the ev	ven extension in (-	$(\ell,0)$ is			
		(B) $-x^2 + x$					
	ANSWER: D	` ,	· /	· /			
16.	Compute the constant term $\frac{a_0}{2}$ of the Fourier series of $f(x)$ given by the following data:						
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
	(A) 8.7	(B) 9.7	(C) 2.9	(D) 1.45			

ANSWER: A

\overline{x}	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

	~	0 1			0 0	/ \				
17.	Compute a_1	of the	Fourier	series	of f	(x)	given	by t	he	table:

(A) -8.33

(B) -25

(C) -1.155

(D) 0.519

ANSWER: A

18. The root mean square value of the function f(x) over the interval (a,b) then $\bar{y} =$

(A) $\sqrt{\int_a^b |f(x)|^2 dx}$

(B) $\sqrt{\frac{1}{b-a}} \int_a^b |f(x)|^2 dx$

(C) $\sqrt{\frac{1}{a-b} \int_a^b |f(x)|^2 dx}$

(D) $\sqrt{\frac{1}{b-a} \int_{a}^{b} |f(x)| dx}$

ANSWER: B

19. The period of tan2x is

 $(A) \frac{2\pi}{n}$

(B) $\frac{\pi}{n}$

(C) $\frac{\pi}{2}$

(D) $\frac{2}{\pi}$

ANSWER: C

20. The Fourier cosine series of the function $f(t) = sin(\frac{\pi t}{\ell}), \ 0 < t < \ell$ then the value of a_0 is

 $(A) \frac{1}{\pi}$

(B) $\frac{2}{\pi}$ (C) $\frac{3}{\pi}$

(D) $\frac{4}{\pi}$

ANSWER: D

21. In one dimensional wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for

(A) $\frac{T}{m}$

(B) $\frac{k}{a}$

(C) $\frac{m}{T}$

ANSWER: A

22. One dimensional wave equation is used to find the

(A) time

(B) displacement (C) heat flow

(D) mass

ANSWER: B

23. Heat flows from

(A) higher to lower temperature

(B) lower to higher temperature

(C) constant temperature

(D) uniform temperature

ANSWER: A

24. The steady state temperature of the rod of length 20cm whose ends are kept at 30C and 80C is

(A) $30 - \frac{5}{2}x$

(B) $30 + \frac{2}{5}x$ (C) $10 + \frac{5}{2}x$ (D) $30 + \frac{5}{2}x$

ANSWER: D

33. If $F[f(x)] = F(s + 1)$ (A) $F(s - a)$	-	$(C) e^{isa}F(s)$	(D) $e^{-isa}F(s)$
ANSWER: B			
34. If $f(x) = e^{-ax}$, t	hen Fourier sine t	transform of $f(x)$ is	
$(A) \sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}$	(B) $\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$	(C) $\sqrt{\frac{\pi}{2}} \frac{a}{s^2 + a^2}$	(D) $\sqrt{\frac{\pi}{2}} \frac{s}{s^2 + a^2}$

ANSWER: B

35. If $f(x) = e^{-ax}$, then Fourier cosine transform of f(x) is

(A)
$$\sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}$$
 (B) $\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$ (C) $\sqrt{\frac{\pi}{2}} \frac{a}{s^2 + a^2}$ (D) $\sqrt{\frac{\pi}{2}} \frac{s}{s^2 + a^2}$

(B)
$$\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$$

(C)
$$\sqrt{\frac{\pi}{2}} \frac{a}{s^2 + a^2}$$

(D)
$$\sqrt{\frac{\pi}{2}} \frac{s}{s^2 + a^2}$$

ANSWER: A

36. If $f(x) = \frac{1}{x}$, then Fourier sine transform of f(x) is

(A)
$$\sqrt{\frac{\pi}{2}}$$

(B)
$$\sqrt{\frac{2}{\pi}}$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\frac{2}{\pi}$$

ANSWER: A

37. Under Fourier cosine transform $f(x) = \frac{1}{\sqrt{x}}$ is

(A) cosine function

- (B) sine function
- (C) self reciprocal function
- (D) complex function

ANSWER: C

38. If F[f(x)] = F(s), then $\int_{-\infty}^{\infty} |f(x)|^2 dx =$

(A)
$$\int_{-\infty}^{\infty} |F_s(s)|^2 ds$$

(B)
$$\int_{-\infty}^{\infty} |F_c(s)|^2 ds$$

(C)
$$\int_0^\infty |F(s)|^2 ds$$

(D)
$$\int_{-\infty}^{\infty} |F(s)|^2 ds$$

ANSWER: D

39. The Fourier transform of a function f(x) is

(A)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx}dx$$

(B)
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{-isx} ds$$

(C)
$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx$$

(D)
$$\frac{1}{\sqrt{2\pi}} \int_0^\infty f(x) e^{isx} dx$$

ANSWER: A

40. The Fourier cosine transform of $5e^{-2x}$ is

(A)
$$\sqrt{\frac{2}{\pi}} \frac{10}{s^2+4}$$

(B)
$$\sqrt{\frac{2}{\pi}} \frac{2}{s^2+4}$$

(A)
$$\sqrt{\frac{2}{\pi}} \frac{10}{s^2+4}$$
 (B) $\sqrt{\frac{2}{\pi}} \frac{2}{s^2+4}$ (C) $\sqrt{\frac{2}{\pi}} \frac{s}{s^2+4}$ (D) $\sqrt{\frac{2}{\pi}} \frac{5s}{s^2+4}$

(D)
$$\sqrt{\frac{2}{\pi}} \frac{5s}{s^2+4}$$

ANSWER: A

41. If Z[f(n)] = F(z), then $Z(\frac{1}{3^n}) =$

(A)
$$\frac{z}{z-1}$$

(A)
$$\frac{z}{z-1}$$
 (B) $\frac{3z}{3z-1}$

(C)
$$\frac{z}{z-3}$$

(C)
$$\frac{z}{z-3}$$
 (D) $\frac{z}{z-3^n}$

ANSWER: B

42. If
$$Z[f(n)] = F(z)$$
, then $Z(3^n \sin \frac{n\pi}{2}) =$

(A)
$$\frac{z^2}{z^2+9}$$

(B)
$$\frac{z}{z^2+9}$$

(A)
$$\frac{z^2}{z^2+9}$$
 (B) $\frac{z}{z^2+9}$ (C) $\frac{\frac{z}{3}}{(\frac{z}{3})^2+1}$

(D)
$$\frac{z}{z-3^n}$$

ANSWER: C

43. If
$$Z[f(n)] = F(z)$$
, then $Z[a^n n] =$

(A)
$$\frac{z}{(z-a)^2}$$

(A)
$$\frac{z}{(z-a)^2}$$
 (B) $\frac{az^2 + a^2z}{(z-a)^3}$ (C) $\frac{az}{(z-a)^2}$

(C)
$$\frac{az}{(z-a)^2}$$

(D)
$$\frac{z^2+z}{(z-1)^3}$$

ANSWER: C

44. If
$$Z[f(n)] = F(z)$$
, then $Z^{-1}\left[\frac{z}{(z-1)(z-2)}\right] =$

(A)
$$1 - 2^n$$

(B)
$$2^n + 1$$

(A)
$$1 - 2^n$$
 (B) $2^n + 1$ (C) $-2^n - 1$

(D)
$$2^n - 1$$

ANSWER: D

45. If
$$Z[f(n)] = F(z)$$
, then $Z^{-1}[\frac{z}{z-a}] =$

(A)
$$a^n$$

(B)
$$na^n$$

(C)
$$n^2a^n$$

(D)
$$(-a)^n$$

ANSWER: A

46. If
$$Z[f(n)] = F(z)$$
, then the poles of $F(z) = \frac{z}{(z-1)(z-2)}$ are

(A)
$$z = -1, z = 2$$

(B)
$$z = 1, z = 2$$

(C)
$$z = 1, z = -2$$

(D)
$$z = -1$$
, $z = -2$

ANSWER: B

47. If
$$F(z)z^{n-1} = \frac{z^n}{(z-1)(z-2)}$$
, then the residue of $F(z)z^{n-1}$ at each pole, respectively

(A)
$$1, 2^n$$

(B)
$$-1, 2^n$$

(C) 1,
$$(-2)^n$$
 (D) -1 , -2

(D)
$$-1$$
, -2

ANSWER: B

48. If
$$Z[f(n)] = F(z)$$
, then $Z[(-3)^n] =$

$$(A) \frac{z}{(z-3)^2}$$

(B)
$$\frac{z}{z+3}$$

(B)
$$\frac{z}{z+3}$$
 (C) $\frac{z}{(z+3)^2}$

(D)
$$\frac{z}{z-3}$$

ANSWER: B

49. If
$$Z[f(n)] = F(z)$$
, then $Z[K] =$

(A)
$$\frac{Kz}{z-1}$$

(B)
$$\frac{Kz}{z+1}$$

(B)
$$\frac{Kz}{z+1}$$
 (C) $\frac{z}{z+1}$

(D)
$$\frac{z}{z-1}$$

ANSWER:A

50. If
$$Z[f(n)] = F(z)$$
, then $Z[e^{-5n}] =$

(A)
$$\frac{z}{z+e^{-5}}$$
 (B) $\frac{z}{z-e^{5}}$

(B)
$$\frac{z}{z-e^5}$$

(C)
$$\frac{z}{z-e^{-5}}$$

(D)
$$\frac{z}{z+e^5}$$

ANSWER:C

51. If
$$Z[f(n)] = F(z)$$
, then $Z[\frac{1}{n!}] =$

(A)
$$e^{-\frac{1}{z}}$$

(B)
$$e^z$$

(C)
$$e^{\frac{1}{z}}$$

(D)
$$e^{-z}$$

ANSWER: C

52. If Z[f(n)] = F(z), then $Z^{-1}[\frac{z^2}{(z-a)^2}] =$ (A) $(n+1)(-a)^n$ (B) $(n-1)(-a)^n$ (C) $(n+1)(a)^n$ (D) $(n-1)(a)^n$

ANSWER: C

53. If Z[f(n)] = F(z), then $Z[a^n \cos \frac{n\pi}{2}] =$

(A)
$$\frac{az^2}{z^2+a^2}$$
 (B) $\frac{z^2}{z^2+a^2}$ (C) $\frac{az^2}{z^2-a^2}$

(B)
$$\frac{z^2}{z^2+a^2}$$

(C)
$$\frac{az^2}{z^2-a^2}$$

(D)
$$\frac{az}{z^2 + a^2}$$

ANSWER: B