Ch2. CoAtNet

CoAtNet: Marrying Convolution and Attention for All Data Sizes

MB Convolution Block

• Depthwise convolution을 사용하는 개선된 inverted residual bottleneck

일반 block

• wide - narrow - wide 한 형태

MB block

• narrow - wide - narrow한 형태

SENet

- Sequeeze-and-excitation network
- 모델 성능 향상을 위해 기존의 네트워크에 붙여 사용
 - ResNet에서 테스트 시, 0.6% 정확도 향상

GeLU(Gaussian Error Linear units)

2D Relative Attention

Relative coordinates

Ex) Feature map size = 3

 Δx

8 9

x axis

1	2	3
4	5	6
7	8	9

 1
 0
 0
 0
 -1
 -1
 -1
 -2
 -2
 -2

 2
 0
 0
 0
 -1
 -1
 -1
 -2
 -2
 -2

 3
 0
 0
 0
 -1
 -1
 -1
 -2
 -2
 -2

 4
 1
 1
 1
 0
 0
 0
 -1
 -1
 -1

4	1	1	1	0	0	0	-1	-1	-1
5	1	1	1	0	0	0	-1	-1	-1
6	1	1	1	0	0	0	-1	-1	-1
7	2	2	2	1	1	1	0	0	0
8	2	2	2	1	1	1	0	0	0
9	2	2	2	1	1	1	0	0	0

y axis							
1	2	3					
4	5	6					
7	8	9					

	1	2	3		5	6	7	8	9
1	0	-1	-2	0	-1	-2	0	-1	-2
2	1	0	-1	1	0	-1	1	0	-1
3	2	1	0	2	1	0	2	1	0
4	0	-1	-2	0	-1	-2	0	-1	-2
5	1	0	-1	1	0	-1	1	0	-1
6	2	1	0	2	1	0	2	1	0
7	0	-1	-2	0	-1	-2	0	-1	-2
8	1	0	-1	1	0	-1	1	0	-1
9	2	1	0	2	1	0	2	1	0

Δν

Relative Position index

$\Delta \lambda$											
	1	2	3	4	5	6	7	8	9		
1	2	2	2	1	1	1	0	0	0		
2	2	2	2	1	1	1	0	0	0		
3	2	2	2	1	1	1	0	0	0		
4	3	3	3	2	2	2	1	1	1		
5	3	3	3	2	2	2	1	1	1		
6	3	3	3	2	2	2	1	1	1		
7	4	4	4	3	3	3	2	2	2		
8	4	4	4	3	3	3	2	2	2		
9	4	4	4	3	3	3	2	2	2		

Λγ

					Δy				
	1	2	3	4	5	6	7	8	9
1	2	1	0	2	1	0	2	1	0
2	3	2	1	3	2	1	3	2	1
3	4	3	2	4	3	2	4	3	2
4	2	1	0	2	1	0	2	1	0
5	3	2	1	3	2	1	3	2	1
6	4	3	2	4	3	2	4	3	2
7	2	1	0	2	1	0	2	1	0
8	3	2	1	3	2	1	3	2	1
9	4	3	2	4	3	2	4	3	2

Relative Position index

$$\Delta x = \Delta x * (2 * input_{width} - 1)$$

1 2 3 4 5 6 7 8 9

		_		•					
1	10	10	10	5	5	5	0	0	0
2	10	10	10	5	5	5	0	0	0
3	10	10	10	5	5	5	0	0	0
4	15	15	15	10	10	10	5	5	5
5	15	15	15	10	10	10	5	5	5
6	15	15	15	10	10	10	5	5	5
7	20	20	20	15	15	15	10	10	10
8	20	20	20	15	15	15	10	10	10
9	20	20	20	15	15	15	10	10	10

Relative Position matrix = $\Delta x + \Delta y$

			3	4	5	6	/	8	9
1	12	11	10	7	6	5	2	1	0
2	13	12	11	8	7	6	3	2	1
3	14	13	12	9	8	7	4	3	2
4	17	16	15	12	11	10	7	6	5
5	18	17	16	13	12	11	8	7	6
6	19	18	17	14	13	12	9	8	7
7	22	21	20	17	16	13	12	11	10
8	23	22	21	18	17	16	13	12	11
9	24	23	22	19	18	17	14	13	12

CoAtNet Architecture

CoAtNet Architecture

Stage 0

• 2 Layer Convolution stem

Stage1,2

Stage 3,4

Summary

