Matematyka dyskretna

Teoria mnogości

Adam Gregosiewicz

5 października 2022 r.

Logika

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką.
- → Kraków jest rzeką.
- → Czy Odra jest rzeką?

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką. TAK
- → Kraków jest rzeką.
- → Czy Odra jest rzeką?

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką. TAK
- → Kraków jest rzeką. TAK
- → Czy Odra jest rzeką?

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną **prawda** lub **fałsz**.

- → Wisła jest rzeką. TAK
- → Kraków jest rzeką. TAK

Wartości logiczne

prawda
$$\equiv 1 \equiv \mathsf{T}$$

 $\text{falsz} \equiv 0 \equiv \textbf{F}$

```
\rightarrow koniunkcja: \land p \land q czytamy: p i q
```

→ koniunkcja: ∧

 $p \wedge q$ czytamy: p i q

→ alternatywa: ∨

 $p \lor q$ czytamy: p lub q

```
\rightarrow koniunkcja: \land p \land q czytamy: p i q
```

→ alternatywa: ∨

 $p \lor q$ czytamy: p lub q

→ implikacja: ⇒

 $p \Rightarrow q$ czytamy: jeżeli p, to q (lub: z p wynika q)

```
    koniunkcja: ∧
        p ∧ q czytamy: p i q
    alternatywa: ∨
        p ∨ q czytamy: p lub q
    implikacja: ⇒
        p ⇒ q czytamy: jeżeli p, to q (lub: z p wynika q)
    równoważność: ⇔
        p ⇔ q czytamy: p jest równoważne q
```

```
p \wedge q czytamy: p i q

→ alternatywa: ∨

   p \lor q czytamy: p \text{ lub } q

→ implikacja: ⇒

   p \Rightarrow q czytamy: jeżeli p, to q (lub: z p wynika q)

→ równoważność: ⇔

   p \Leftrightarrow q czytamy: p jest równoważne q
\neg p czytamy: nie p
```

```
p \wedge q czytamy: p i q

→ alternatywa: ∨

   p \lor q czytamy: p \text{ lub } q

→ implikacja: ⇒

   p \Rightarrow q czytamy: jeżeli p, to q (lub: z p wynika q)

→ równoważność: ⇔

   p \Leftrightarrow q czytamy: p jest równoważne q
\neg p czytamy: nie p
```

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

 \rightarrow alternatywa wykluczająca lub XOR: $p \oplus q \equiv \neg(p \Leftrightarrow q)$

→ alternatywa wykluczająca lub XOR:

$$p \oplus q \equiv \neg(p \Leftrightarrow q)$$

→ kreska Sheffera lub NAND:

$$p \mid q \equiv \neg (p \wedge q)$$

$$p \oplus q \equiv \neg(p \Leftrightarrow q)$$

$$\rightarrow$$
 kreska Sheffera lub **NAND**: $p \mid q \equiv \neg(p \land q)$

$$\rightarrow$$
 strzałka Peirce'a lub NOR: ↓ $p \downarrow q \equiv \neg(p \lor q)$

$$\Rightarrow$$
 alternatywa wykluczająca lub XOR:
 $p \oplus q \equiv \neg(p \Leftrightarrow q)$

$$ightharpoonup$$
 kreska Sheffera lub NAND: $p \mid q \equiv \neg(p \land q)$

$$\rightarrow$$
 strzałka Peirce'a lub NOR: \downarrow $p \downarrow q \equiv \neg(p \lor q)$

 $p \Rightarrow q$

$$p \Rightarrow q$$

- → p jest warunkiem dostatecznym (wystarczającym) dla q.
- \rightarrow q jest warunkiem koniecznym dla p.

$$p \Rightarrow q$$

- → p jest warunkiem dostatecznym (wystarczającym) dla q.
- \rightarrow q jest warunkiem koniecznym dla p.

Przykład

Niech

$$p =$$
"liczba n jest podzielna przez 3"

$$q =$$
"liczba n jest podzielna przez 6"

$$p \Rightarrow q$$

- → p jest warunkiem **dostatecznym** (wystarczającym) dla q.
- \rightarrow q jest warunkiem koniecznym dla p.

Przykład

Niech

$$p =$$
"liczba n jest podzielna przez 3"

$$q =$$
 "liczba n jest podzielna przez 6"

- → p jest warunkiem koniecznym dla q.
- \rightarrow q jest warunkiem wystarczającym dla p.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną *p*, *q*, *r*, ..., która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną *p*, *q*, *r*, ..., która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną *p*, *q*, *r*, ..., która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

$$\big\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\big\} \Rightarrow \neg (p \Rightarrow s)$$

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną *p*, *q*, *r*, ..., która może przyjąć tylko dwie wartości: prawda lub fałsz.

Definicja (Funkcja zdaniowa)

Funkcją zdaniową nazywamy wyrażenie złożone ze zmiennych logicznych połączonych w poprawny sposób funktorami i nawiasami.

$$\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\} \Rightarrow \neg (p \Rightarrow s)$$

Definicja (Tautologia, prawo rachunku zdań)

Tautologią nazywamy funkcję zdaniową, która dla dowolnego wartościowania zmiennych w niej występujących przyjmuje wartość **prawda**.

Zupełność

Definicja (Zupełny zbiór funktorów)

Powiemy, że zbiór funktorów *A* jest **zupełny**, jeżeli każda funkcja zdaniowa może być w sposób równoważny zapisana przy wykorzystaniu wyłącznie funktorów ze zbioru *A*.

Zupełność

Definicja (Zupełny zbiór funktorów)

Powiemy, że zbiór funktorów *A* jest **zupełny**, jeżeli każda funkcja zdaniowa może być w sposób równoważny zapisana przy wykorzystaniu wyłącznie funktorów ze zbioru *A*.

Twierdzenie

Zbiory

$$\{\land, \lnot\}, \{\lor, \lnot\}, \{|\}, \{\downarrow\}$$

są zupełne.

 \leadsto Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

view Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$

$$[(p \wedge q) \wedge r] \equiv [p \wedge (q \wedge r)]$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

view Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

$$eg(p \lor q) \equiv (\neg p \land \neg q)$$
 $eg(p \land q) \equiv (\neg p \lor \neg q)$

$$\neg(\neg p) \equiv p$$

$$ightharpoonup$$
 Prawa przemienności $(p \lor q) \equiv (q \lor p)$

$$(p \land q) \equiv (q \land p)$$

 $(p \land q) \equiv (q \land p)$

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawa de Morgana

$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$
$$\neg(p \land q) \equiv (\neg p \lor \neg q)$$

$$\rightarrow$$
 Prawo kontrapozycji $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$

$$(p \Rightarrow q) \equiv (\neg p \lor q)$$

$$(p \land F) \equiv F$$

$$(p \Rightarrow q) \equiv \neg (p \land \neg q)$$

$$(p \land T) \equiv p$$

$$(p \lor p) \equiv p$$

$$(p \lor p) \equiv p$$

$$(p \lor p) \equiv T$$

$$(p \Rightarrow p) \equiv$$

Wykazać, że poniższe funkcje zdaniowe są tautologiami:

$$\rightsquigarrow (\neg p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow \neg q) \Rightarrow p],$$

$$\longrightarrow$$
 $[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q],$

$$\rightarrow$$
 $\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\} \Rightarrow \neg (p \Rightarrow s).$

Wykazać, że poniższe funkcje zdaniowe są tautologiami:

$$\longrightarrow$$
 $[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q],$

$$\longrightarrow \{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\} \Rightarrow \neg (p \Rightarrow s).$$

Metody

- → Tabela prawdy (próby zero-jedynkowe, "brute-force").
- → Prawa rachunku zdań.
- → "Drzewko".

$$(\neg p \Rightarrow q) \Rightarrow [(\neg p \Rightarrow \neg q) \Rightarrow p]$$

$$[(p \land q) \Rightarrow r] \Leftrightarrow [(p \land \neg r) \Rightarrow \neg q]$$

$$\{[(p \Rightarrow s) \Rightarrow (q \land s)] \land \neg (q \land s)\} \Rightarrow \neg (p \Rightarrow s)$$

→ Im więcej zmiennych, tym (dużo) większa tabela prawdy.

→ Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2ⁿ wierszy!

- → Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2ⁿ wierszy!
- → Podane metody można łączyć.

- → Im więcej zmiennych, tym (dużo) większa tabela prawdy. Dla n zmiennych tabela ma 2ⁿ wierszy!
- Podane metody można łączyć.
- Aby sprawdzić, że funkcja zdaniowa nie jest tautologią, wystarczy podać jedno wartościowanie zmiennych, przy którym funkcja ta przyjmuje wartość F.

Postacie normalne

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \vee \ldots \vee p_{n_p}) \wedge (q_1 \vee \ldots \vee q_{n_q}) \wedge \ldots \wedge (r_1 \vee \ldots \vee r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są **literałami** (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Postacie normalne

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \vee \ldots \vee p_{n_p}) \wedge (q_1 \vee \ldots \vee q_{n_q}) \wedge \ldots \wedge (r_1 \vee \ldots \vee r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są **literałami** (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Definicja (Dysjunkcyjna postać normalna, DNF)

$$(p_1 \wedge \ldots \wedge p_{n_p}) \vee (q_1 \wedge \ldots \wedge q_{n_q}) \vee \ldots \vee (r_1 \wedge \ldots \wedge r_{n_r}).$$

Postacie normalne

Definicja (Koniunkcyjna postać normalna, CNF)

Powiemy, że funkcja zdaniowa jest zapisana w koniunkcyjnej postaci normalnej, jeżeli jest postaci

$$(p_1 \vee \ldots \vee p_{n_p}) \wedge (q_1 \vee \ldots \vee q_{n_q}) \wedge \ldots \wedge (r_1 \vee \ldots \vee r_{n_r}),$$

przy czym wszystkie wyrażenia występujące w nawiasach są **literałami** (zmienną logiczną bądź negacją zmiennej logicznej — p lub $\neg p$).

Definicja (Dysjunkcyjna postać normalna, DNF)

$$(p_1 \wedge \ldots \wedge p_{n_p}) \vee (q_1 \wedge \ldots \wedge q_{n_q}) \vee \ldots \vee (r_1 \wedge \ldots \wedge r_{n_r}).$$

Twierdzenie

Każdą funkcję zdaniową można zapisać w równoważnej jej postaci normalnej (CNF i DNF).

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\{[(p \Rightarrow r) \Rightarrow (q \land s)] \land \neg (q \land s)\} \land (\neg p \Rightarrow s)$$

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\big\{[(p\Rightarrow r)\Rightarrow (q\land s)]\land \neg(q\land s)\big\}\land (\neg p\Rightarrow s)$$

$$p = T$$
, $q = F$, $r = F$, $s = F$

Definicja (Funkcja spełnialna)

Powiemy, że funkcja zdaniowa jest **spełnialna**, jeżeli **istnieje** takie wartościowanie zmiennych w niej występujących, przy którym funkcja przyjmie wartość T.

$$\{[(p \Rightarrow r) \Rightarrow (q \land s)] \land \neg (q \land s)\} \land (\neg p \Rightarrow s)$$

$$p = T$$
, $q = F$, $r = F$, $s = F$

Twierdzenie

Jeżeli Φ jest funkcją zdaniową, to

 Φ jest spełnialna wtedy i tylko wtedy, gdy $\neg \Phi$ nie jest tautologią.

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Nagroda za rozwiązanie: \$1,000,000.

Pytanie

Jak sprawdzić, czy funkcja zdaniowa jest spełnialna?

Czy istnieje coś lepszego niż brute-force (czyli tabela prawdy)?

Nie wiadomo!

Nagroda za rozwiązanie: \$1,000,000.

Jeżeli da się to zrobić szybko, to da się również (szybko) złamać RSA.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi m + n \geqslant 33, to m \geqslant 17 lub n \geqslant 17.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi m + n \geqslant 33, to m \geqslant 17 lub n \geqslant 17.

Dowód

 \rightarrow Załóżmy, że $m \le 16$ i $n \le 16$.

Jak można dowieść twierdzenia postaci

$$p \Rightarrow q$$
?

Prawo kontrapozycji:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p).$$

Twierdzenie

Jeżeli dla liczb naturalnych m i n zachodzi m + n \geqslant 33, to m \geqslant 17 lub n \geqslant 17.

Dowód

- \rightarrow Załóżmy, że $m \le 16$ i $n \le 16$.
- \rightarrow Wtedy m + n ≤ 16 + 16 ≤ 32 < 33.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \geqslant 2$, że n = ab.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \ge 2$, że n = ab.

Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \ge 2$, że n = ab.

- \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \geqslant 2$, że n = ab.

- \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.
- \rightarrow Stąd $n = ab > \sqrt{n}\sqrt{n} = n$.

$$(p \Rightarrow q) \equiv [(p \land \neg q) \Rightarrow \mathsf{F}]$$

Twierdzenie

Jeżeli liczba naturalna n jest złożona, to ma dzielnik większy od 1, który jest mniejszy lub równy \sqrt{n} .

Dowód

Istnieją takie liczby naturalne $a, b \geqslant 2$, że n = ab.

- \sim Załóżmy, że liczba n nie ma dzielnika, który jest mniejszy lub równy \sqrt{n} .
- \rightarrow Oznacza to, że $a > \sqrt{n}$ i $b > \sqrt{n}$.
- \rightarrow Stąd $n = ab > \sqrt{n}\sqrt{n} = n$.
- → Otrzymana sprzeczność kończy dowód.

$$(\neg p \Rightarrow \mathsf{F}) \Rightarrow p$$

$$(\neg p \Rightarrow \mathsf{F}) \Rightarrow p$$

Ćwiczenie

ightharpoonup Dowieść, że liczba $\sqrt{2}$ jest niewymierna.

Funkcje zdaniowe

Definicja (Funkcja zdaniowa jednej zmiennej)

Funkcją zdaniową jednej zmiennej nazywamy wyrażenie postaci $\Phi(x)$, zależne od zmiennej $x \in X$, które dla dowolnej wartości x staje się zdaniem logicznym.

Zbiór X nazywamy **zakresem zmienności** lub **dziedziną** funkcji zdaniowej Φ .

Definicja (Funkcja zdaniowa jednej zmiennej)

Funkcją zdaniową jednej zmiennej nazywamy wyrażenie postaci $\Phi(x)$, zależne od zmiennej $x \in X$, które dla dowolnej wartości x staje się zdaniem logicznym.

Zbiór X nazywamy **zakresem zmienności** lub **dziedziną** funkcji zdaniowej Φ .

Przykłady

$$\rightarrow$$
 $\Phi(x) \equiv (x = x), X = \mathbb{R}$

$$ightharpoonup \Phi(x) \equiv (x \neq x), \ X = \mathbb{R}$$

$$\Phi(x) \equiv (x^2 \geqslant 2x), X = (0, +\infty)$$

$$\Phi(x) \equiv (x^2 < 2), X = \mathbb{N}$$

Definicja (Wykres funkcji zdaniowej)

Wykresem funkcji zdaniowej Φ nazywamy zbiór

$$S(\Phi) := \{x \in X : \Phi(x)\},\$$

to znaczy zbiór wszystkich elementów $x \in X$, dla których zdanie $\Phi(x)$ ma wartość logiczną T.

Definicja (Wykres funkcji zdaniowej)

Wykresem funkcji zdaniowej Φ nazywamy zbiór

$$S(\Phi) := \{x \in X : \Phi(x)\},\$$

to znaczy zbiór wszystkich elementów $x \in X$, dla których zdanie $\Phi(x)$ ma wartość logiczną T.

Przykłady

$$\rightarrow$$
 $X = \mathbb{R}, \ \Phi(x) \equiv (x = x), \ S(\Phi) = \mathbb{R}$

$$\longrightarrow$$
 $X = \mathbb{R}$, $\Phi(x) \equiv (x \neq x)$, $S(\Phi) = \emptyset$

$$\rightarrow$$
 $X=(0,+\infty), \ \Phi(x)\equiv(x^2\geqslant 2x), \ S(\Phi)=\langle 2,+\infty\rangle$

$$\rightarrow$$
 X = N, Φ(x) ≡ (x² < 2), S(Φ) = {1}

Definicja (Funkcja zdaniowa wielu zmiennych)

Funkcją zdaniową n zmiennych nazywamy wyrażenie postaci $\Phi(x_1,\ldots,x_n)$, które dla dowolnych wartości $x_1\in X_1,\ldots,x_n\in X_n$ staje się zdaniem logicznym.

Definicja (Funkcja zdaniowa wielu zmiennych)

Funkcją zdaniową n zmiennych nazywamy wyrażenie postaci $\Phi(x_1,\ldots,x_n)$, które dla dowolnych wartości $x_1\in X_1,\ldots,x_n\in X_n$ staje się zdaniem logicznym.

Definicja (Wykres funkcji zdaniowej wielu zmiennych)

Wykresem funkcji zdaniowej $\Phi(x_1, \ldots, x_n)$ nazywamy zbiór

$$S(\Phi) := \{x_1 \in X_1, \dots, x_n \in X_n \colon \Phi(x_1, \dots, x_n)\}.$$

Definicja (Kwantyfikator ogólny)

Zdanie

dla każdego
$$x$$
 zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigwedge_{X} \Phi(X),$$

a symbol \bigwedge nazywamy **kwantyfikatorem ogólnym**.

Definicja (Kwantyfikator ogólny)

Zdanie

dla każdego
$$x$$
 zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigwedge_X \Phi(x),$$

a symbol ∧ nazywamy **kwantyfikatorem ogólnym**.

Jeżeli X jest zakresem zmienności funkcji Φ, to możemy również pisać

$$\bigwedge_{x \in X} \Phi(x).$$

Definicja (Kwantyfikator ogólny)

Zdanie

dla każdego
$$x$$
 zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigwedge_{x} \Phi(x),$$

a symbol ∧ nazywamy **kwantyfikatorem ogólnym**.

Jeżeli X jest zakresem zmienności funkcji Φ, to możemy również pisać

$$\bigwedge_{x \in X} \Phi(x)$$

Czasami zamiast \bigwedge piszemy również \forall .

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{x} \Phi(x),$$

a symbol ∨ nazywamy kwantyfikatorem szczegółowym.

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{x} \Phi(x),$$

a symbol ∨ nazywamy **kwantyfikatorem szczegółowym**.

Jeżeli X jest zakresem zmienności funkcji Φ, to możemy również pisać

$$\bigvee_{x \in X} \Phi(x)$$

Definicja (Kwantyfikator szczegółowy)

Zdanie

istnieje taki
$$x$$
, że zachodzi $\Phi(x)$

zapisujemy w postaci

$$\bigvee_{x} \Phi(x),$$

a symbol ∨ nazywamy **kwantyfikatorem szczegółowym**.

Jeżeli X jest zakresem zmienności funkcji Φ, to możemy również pisać

$$\bigvee_{x \in X} \Phi(x).$$

Czasami zamiast \bigvee piszemy \exists .

Kwantyfikatory ograniczone

Jeżeli A jest podzbiorem zakresu zmienności funkcji zdaniowej $\Phi(x)$, to

$$\bigwedge_{x} [x \in A \Rightarrow \Phi(x)] \qquad \text{zapisujemy w postaci} \qquad \bigwedge_{x \in A} \Phi(x),$$

2

$$\bigvee_x [x \in A \Rightarrow \Phi(x)] \qquad \text{zapisujemy w postaci} \qquad \bigvee_{x \in A} \Phi(x).$$

$$\bigvee_{x \in \mathbb{R}} x^3 = 1$$

$$\bigvee_{x \in \mathbb{R}} x^2 = -1$$

$$\underset{x \in \mathbb{N}}{\leadsto} \bigvee_{x \in \mathbb{N}} x^2 = 2$$

$$\longrightarrow \bigwedge_{x \in \mathbb{R}} x + 1 > \sqrt[3]{x}$$

$$\longrightarrow \bigwedge_{x \in \mathbb{Z}} x^2 - x \geqslant 0$$

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

Wyrażenie

$$\bigwedge_{x} \Phi(x,y) \qquad \text{lub} \qquad \bigvee_{x} \Phi(x,y)$$

jest funkcją zdaniową jednej zmiennej y.

Zmienne wolne i związane

Niech $\Phi(x, y)$ będzie funkcją zdaniową dwóch zmiennych x i y.

Wyrażenie

$$\bigwedge_{x} \Phi(x,y) \qquad \text{lub} \qquad \bigvee_{x} \Phi(x,y)$$

jest funkcją zdaniową jednej zmiennej y.

Zmienną x nazywamy zmienną **związaną**, a y zmienną **wolną**.

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{\mathbf{x} \in \mathbb{R}} \mathbf{x} \mathbf{y} = 1\right), \ \mathbf{y} \in \mathbb{R}$$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right), x \in \mathbb{R}$$

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1\right), \ y \in \mathbb{R}$$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right), x \in \mathbb{R}$$

Jakie są wykresy funkcji Φ i Ψ?

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1\right), \ y \in \mathbb{R}$$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right), x \in \mathbb{R}$$

Jakie są wykresy funkcji Φ i Ψ ?

$$\hookrightarrow$$
 $S(\Phi) = \mathbb{R} \setminus \{0\}$

$$ightharpoonup \Phi(y) \equiv \left(\bigvee_{x \in \mathbb{R}} xy = 1\right), \ y \in \mathbb{R}$$

$$\Psi(x) \equiv \left(\bigwedge_{y \in \mathbb{R}} y^2 > x\right), x \in \mathbb{R}$$

Jakie są wykresy funkcji Φ i Ψ ?

$$\hookrightarrow$$
 $S(\Phi) = \mathbb{R} \setminus \{0\}$

$$\hookrightarrow$$
 $S(\Psi) = (-\infty, 0)$

Prawa rachunku kwantyfikatorów

Prawa de Morgana

$$\neg \left[\bigwedge_{x} \Phi(x) \right] \equiv \bigvee_{x} \neg \Phi(x),$$
$$\neg \left[\bigvee_{x} \Phi(x) \right] \equiv \bigwedge_{x} \neg \Phi(x).$$

Prawa rachunku kwantyfikatorów

→ Prawa de Morgana

$$\neg \left[\bigwedge_{x} \Phi(x) \right] \equiv \bigvee_{x} \neg \Phi(x),$$
$$\neg \left[\bigvee_{x} \Phi(x) \right] \equiv \bigwedge_{x} \neg \Phi(x).$$

→ Prawa przemienności

$$\bigwedge_{x} \bigwedge_{y} \Phi(x, y) \equiv \bigwedge_{y} \bigwedge_{x} \Phi(x, y) \equiv \bigwedge_{x, y} \Phi(x, y),$$

$$\bigvee_{x} \bigvee_{y} \Phi(x, y) \equiv \bigvee_{y} \bigvee_{x} \Phi(x, y) \equiv \bigvee_{x, y} \Phi(x, y).$$

Prawa rachunku kwantyfikatorów

→ Prawa de Morgana

$$\neg \left[\bigwedge_{x} \Phi(x) \right] \equiv \bigvee_{x} \neg \Phi(x),$$
$$\neg \left[\bigvee_{x} \Phi(x) \right] \equiv \bigwedge_{x} \neg \Phi(x).$$

→ Prawa przemienności

$$\bigwedge_{x} \bigwedge_{y} \Phi(x,y) \equiv \bigwedge_{y} \bigwedge_{x} \Phi(x,y) \equiv \bigwedge_{x,y} \Phi(x,y),$$

$$\bigvee_{x} \bigvee_{y} \Phi(x,y) \equiv \bigvee_{y} \bigvee_{x} \Phi(x,y) \equiv \bigvee_{x,y} \Phi(x,y).$$

$$\rightsquigarrow$$

$$\bigvee_{x} \bigwedge_{y} \Phi(x,y) \Rightarrow \bigwedge_{y} \bigvee_{x} \Phi(x,y).$$