5. ledna 2016	MA007	Matematická logika	1. termín
	6 66 6 66 list e 5 e	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
Oblast strojově sníme dle přiloženého vzoru		Své UČO vyplňte zleva o oblasti nezasahujte.	——— 456789

Příklad 1 Uvažme systém $\mathcal{L}(\neg, \lor)$ výrokové logiky, obsahující jen negaci a disjunkci. 10 bodů Definujte, co je formule systému \mathcal{L} .

Definujte, co je valuace (výrokových proměnných).

Definujte rozšíření valuace z výrokových proměnných na všechny formule systému \mathcal{L} .

 Víme, že P je predikátový symbol a $f,\,g$ jsou funkční symboly. O každém z následujících výrazů rozhodněte, zda se může jednat o term, a pokud ano, napište pro něj nějakou vytvořující posloupnost:

Příklad 2 5 bodů

- a) x;
- **b)** P(x, f(x));
- **c)** f(x, f(x));
- **d)** g(x, f(x), f(f(x))).

5. ledna 2016	MA007	Matematická logika	1. termín
	с а ———		
	list	<i>učo</i> – c – c – c – c – c – c – c – c – c –	body reces

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

20123456789

Najděte co nejkratší formuli φ systému $\mathcal{L}(\neg, \wedge, \vee, \rightarrow)$ výrokové logiky, která je ekvivalentní formuli $(((\neg B \rightarrow \neg A) \wedge C) \vee \neg ((A \wedge \neg B) \vee C))$.

Příklad 3 5 bodů

Nechť $\mathbb{N}=\{0,1,2,\dots\}$ označuje množinu všech přirozených čísel. Je dán jazyk $\mathcal{L}=\{\oplus,t\}$ s rovností, kde \oplus je binární funkční a t unární funkční symbol. Uvažme jeho realizaci \mathcal{M} , kde nosičem je množina $\mathbb{N}^{\mathbb{N}}$ všech (nekonečných) posloupností přirozených čísel, \oplus se realizuje jako sčítání po složkách (tj. $(a_0,a_1,a_2,\dots)\oplus_{\mathcal{M}}(b_0,b_1,b_2,\dots)=(a_0+b_0,a_1+b_1,a_2+b_2,\dots)$) a t se realizuje jako tail (tj. $t_{\mathcal{M}}((a_0,a_1,a_2,\dots))=(a_1,a_2,a_3,\dots)$).

Zadejte formuli $\varphi(x)$ jazyka $\mathcal L$ takovou, že pro každé ohodnocení e platí

 $\mathcal{M} \models \varphi[e]$, právě když:

- a) [5 bodů] e(x) je neklesající;
- **b)** [5 **bodů**] e(x) = (1, 0, 0, 0, ...);
- c) [5 bodů] e(x) je rostoucí.

5. ledna 2016	MA007	Matematická logika	1. termín
	list	6 36 36 36 36 36 6 00 00 00 00 00 učo e se se se se	0.0.0
	matelných informací. S ru číslic. Jinak do této	Své UČO vyplňte zleva oblasti nezasahujte.	0823456889

Je dán jazyk $\mathcal{L} = \{P\}$ s rovností, kde P je unární predikátový symbol. Rozhodněte a dokažte, zda existuje teorie T jazyka \mathcal{L} , jejíž modely jsou právě realizace \mathcal{M} jazyka \mathcal{L} , kde množina $P_{\mathcal{M}}$:

Příklad 5 20 bodů

- a) má méně než 10 prvků;
- b) má méně než 10 prvků nebo je nekonečná;
- c) má více než 10 prvků, ale konečně mnoho;
- $\mathbf{d})$ má více než 10 prvků.

list

— — —

Oblast strojově snímatelných informací. Své UČO vyplňte zleva dle přiloženého vzoru číslic. Jinak do této oblasti nezasahujte.

80823456389

Je dán jazyk $\mathcal{L} = \{P, f, c\}$ s rovností; mimologické symboly popisuje tabulka:

Příklad 6 15 bodů

symbol	typ	arita
\overline{P}	predikátový	1
f	funkční	1
c	funkční	0

Uvažme teorii

$$T = \{f^4(c) = c, \ \neg P(c), \bigvee_{i=1}^3 P(f^i(c)), \ \forall x \big(P(f(x)) \rightarrow \big(P(x) \lor P(f(f(x)))\big)\big)\}$$

nad jazykem \mathcal{L} . Popište kanonickou strukturu \mathcal{M} teorie T. Dokažte, že do $P_{\mathcal{M}}$ nepatří nic víc, než tvrdíte.

5. ledna 2016	MA007	Matematická logika	1. termín
	list e s	6 36 36 36 36 36 36 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 body	
	natelných informací. S u číslic. Jinak do této	Své UČO vyplňte zleva oblasti nezasahujte.	——— 156789

Je dán jazyk $\mathcal{L} = \{f\}$ s rovností, kde f je unární funkční symbol. Uvažme jeho **Příklad 7** realizaci \mathcal{M} , kde nosičem je množina \mathbb{Z} všech celých čísel, $f_{\mathcal{M}}(n) = n+1$ pro 10 bodů každé nezáporné $n \in \mathbb{Z}$ a $f_{\mathcal{M}}(n) = n+2$ pro každé záporné $n \in \mathbb{Z}$. Rozhodněte a dokažte, pro která $n \in \mathbb{Z}$ existuje formule $\varphi(x)$ jazyka \mathcal{L} taková, že pro každé ohodnocení e platí $\mathcal{M} \models \varphi[e]$, právě když e(x) = n.