量子力学における散乱では、散乱の前後で位相が変化する.これを**位相シフト** (Phase shift) とよぶ.以下の 1 次元の例で位相シフトを確認する.ポテンシャル V(x) の壁が、

$$V(x) = \begin{cases} 0 & (x < 0) \\ V_0 & (x \ge 0) \end{cases}$$
 (0.0.1)

のように書かれて、その壁に左から入射する粒子を考える.入射粒子のエネルギーは $E < V_0$ とする.Schrödinger 方程式を解くことにより波動関数は、

$$\psi(x) = \begin{cases} e^{ikx} + \frac{k - i\alpha}{k + i\alpha} e^{-ikx} & x < 0\\ \frac{2k}{k + i\alpha} e^{-\alpha x} & x \ge 0 \end{cases}$$

$$(0.0.2)$$

となる。ただし, $k\coloneqq\frac{\sqrt{2mE}}{\hbar}$, $\alpha\coloneqq\frac{\sqrt{2m(V-E)}}{\hbar}$ とおいた。式 (0.0.2) の第 1 式において,第 1 項は入射波を,第 2 項は反射波を表している。反射波は, $\delta_k\coloneqq\arg(k+\mathrm{i}\alpha)$ とすると,波動関数は,

$$\psi(x) = e^{ikx} + e^{-2i\delta_k}e^{-ikx}$$

$$(0.0.3)$$

$$= e^{2i\delta_k} \left(e^{ijx} e^{2i\delta_k} + e^{-ikx} \right) \tag{0.0.4}$$

となる. この δ_k は位相シフトと呼ばれ、量子力学的散乱を特徴づけるパラメータである.

位相シフトの現象を 3 次元に拡張する. 今回は全反射が起こるとする. 式 (??) において $r \to \infty$ とすると,

$$j_l(kr) \to \frac{\exp\left\{i\left(kr - \frac{l\pi}{2}\right)\right\} - \exp\left\{-i\left(kr - \frac{l\pi}{2}\right)\right\}}{2ikr}$$
(0.0.5)

であるため,

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} \frac{2l+1}{2ikr} \left[i^l \left(\exp\left\{ i \left(kr - \frac{l\pi}{2} \right) \right\} - \exp\left\{ -i \left(kr - \frac{l\pi}{2} \right) \right\} \right) + (2ik)a_l e^{ikr} \right] P_l(\cos\theta)$$
 (0.0.6)

を得る. さらに,

$$i^{l}\left[\exp\left\{i\left(kr-\frac{l\pi}{2}\right)\right\}-\exp\left\{-i\left(kr-\frac{l\pi}{2}\right)\right\}\right]=i^{l}\exp\left(-i\frac{l\pi}{2}\right)\left(e^{ikr}-e^{-ikr}e^{il\pi}\right) \tag{0.0.7}$$

$$= 1 \cdot (e^{ikr} - (-1)^l)e^{-ikr}$$
 (0.0.8)

なる関係を用いると波動関数は.

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} \left[(1 + 2ika_l)e^{ikr} - (-1)^l e^{-ikr} \right] P_l(\cos \theta)$$
 (0.0.9)

と書ける. 第1項は外向き球面波, 第2項は内向き球面波を表す. この散乱は全反射であるため入射波と反射波の振幅は等しい. つまり,

$$|1 + 2ika_l| = 1 (0.0.10)$$

が成り立つ. よって、散乱による位相のずれを δ_l とおくと a_l は、

$$1 + 2ika_l = e^{2i\delta_l} \tag{0.0.11}$$

$$\Leftrightarrow a_l = \frac{1}{2ik} (e^{2i\delta_l} - 1) \tag{0.0.12}$$

$$\Leftrightarrow a_l = \frac{1}{2ik} (\cos^2 \delta_l + 2i\sin \delta_l \cos \delta_l - \sin^2 \delta_l - 1) \tag{0.0.13}$$

$$\Leftrightarrow a_l = \frac{1}{2ik} (1 - \sin^2 \delta_l + 2i\sin \delta_l \cos \delta_l - \sin^2 \delta_l - 1)$$

$$\Leftrightarrow a_l = \frac{1}{2ik} (2i\sin\delta_l\cos\delta_l - 2\sin^2\delta_l)$$

$$\Leftrightarrow a_l = \frac{1}{k} (\cos \delta_l + i \sin \delta_l) \sin \delta_l \tag{0.0.16}$$

$$\Leftrightarrow a_l = \frac{1}{k} e^{i\delta_l} \sin \delta_l \tag{0.0.17}$$

である. 全断面積 σ^{tot} は,

$$\sigma^{\text{tot}} = 4\pi \sum_{l=0}^{\infty} (2l+1)|a_l|^2$$
 (0.0.18)

$$= \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l \tag{0.0.19}$$

である. 散乱振幅 $f(\theta)$ は,

$$f(\theta) = \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos \theta)$$
 (0.0.20)

$$= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l} \sin \delta_l P_l(\cos \theta)$$
 (0.0.21)

である. 特に $\theta = 0$ のとき,

$$f(0) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1)(\cos \delta_l + i \sin \delta_l) \sin \delta_l P_l(1)$$
 (0.0.22)

$$= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1)(\cos \delta_l + i \sin \delta_l) \sin \delta_l$$
 (0.0.23)

が成り立つ. したがって以下の光学定理が成り立つ.

光学定理

$$\sigma^{\text{tot}} = \frac{4\pi}{k} \operatorname{Im} f(0) \tag{0.0.24}$$

これは全断面積が前方散乱の散乱振幅からわかることを示している 1 .

例題 0.1: 半径 a の剛体球による散乱 (再考)

散乱体のポテンシャルを,

$$V(r) = \begin{cases} \infty & r \le a \\ 0 & r \ge a \end{cases} \tag{0.0.25}$$

とする. 低エネルギー散乱 $(ka \ll 1)$ とする. このとき,散乱の影響を受けるのはほぼ l=0 のみである. 式 (0.0.9) において l=0 とすることで,

$$\psi(\mathbf{r}) = \frac{1}{2ikr} \left[(1 + 2ika_0)e^{ikr} - e^{-ikr} \right] P_0(\cos \theta)$$
 (0.0.26)

を得る.位相シフトを考慮し $\mathrm{e}^{2\mathrm{i}\delta_0}=1+2\mathrm{i}ka_0$ とおく.境界条件より

$$\psi(a) = 0 \tag{0.0.27}$$

であるから

$$e^{2i\delta_0}e^{ika} - e^{-ika} = 0 (0.0.28)$$

 $^{^1}$ 砂川,散乱の量子論,「光学定理は,前方散乱によって,入射波の強度が減少した分だけ,四方に散乱されるという,まことに<mark>当然なこと</mark>を述べているのである.」

が成り立つ. よって位相シフトは,

$$\delta_0 = -ka \tag{0.0.29}$$

である.全断面積は、

$$\sigma^{\text{tot}} = \frac{4\pi}{k^2} \sin^2 \delta_0 \tag{0.0.30}$$

$$\simeq \frac{4\pi}{k^2} \delta_0 \tag{0.0.31}$$

$$= 4\pi a^2 (0.0.32)$$

である.これは古典力学における剛体級の散乱 $\sigma^{\rm tot}=\pi a^2$ の 4 倍の値である.波長 $\lambda=\frac{2\pi}{k}$ が散乱体の半径 a より十分に大きいため,回折によって剛体球を取り囲み,球の表面積を疑似的に増加させたためと説明できる.

例題 0.2: 位相シフトの問題

散乱体から十分遠方での境界条件を満たし、ポテンシャル外における部分波展開した波動関数として、

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} i^{l} \frac{2l+1}{2} \left[e^{2i\delta_{l}} h_{l}^{(1)}(kr) + h_{l}^{(2)}(kr) \right] P_{l}(\cos\theta)$$
(0.0.33)

を用いて、半径 aの剛体球、

$$V(r) = \begin{cases} \infty & r \le a \\ 0 & r > a \end{cases} \tag{0.0.34}$$

による散乱を考える。特に,ka が小さい低エネルギー散乱において,l の増大に伴ってその寄与が散乱に対してどの程度小さくなるか調べる。ここで,

$$h_l^{(1)}(kr) = j_l(kr) + iy_l(kr), \ h_l^{(2)}(kr) = j_l(kr) - iy_l(kr)$$
 (0.0.35)

は球 Hankel 関数であり、 $j_l(kr)$ は球 Bessel 関数、 $y_l(kr)$ は球 Neumann 関数である.

- 1. 波動関数の境界条件を考えることで、散乱による位相シフト $\tan \delta_l$ を $j_l(ka)$ と $y_l(ka)$ を用いて表せ.
- 2. 低エネルギー散乱 $(ka \ll 1)$ を考える. このとき,

$$j_l(ka) \to \frac{(ka)^l}{(2l+1)!!}, \ y_l(ka) \to -\frac{(2l-1)!!}{(ka)^{l+1}}$$
 (0.0.36)

$$(2l+1)!! = (2l+1)(2l-1)\cdots 5\cdot 3\cdot 1 \tag{0.0.37}$$

$$(2l-1)!! = (2l-1)(2l-3)\cdots 3\cdot 1\cdot 1 \tag{0.0.38}$$

であることを用いて、l=0,1,2 についての位相シフト $\tan\delta_l$ を求めよ、得られる $\tan\delta_0$, $\tan\delta_1$, $\tan\delta_2$ は l の増加と共に位相シフトが急激に小さくなり,ka が小さい時,l=0 だけ考えれば十分であることを示すものである.

1. 波動関数は剛体球の中に侵入できないため r=a で $\psi=0$ である. よって.

$$e^{2i\delta_l}h_l^{(1)}(ka) + h_l^{(2)}(ka) = 0 (0.0.39)$$

$$e^{2i\delta_l}(j_l(ka) + iy_l(ka)) + (j_l(ka) - iy_l(ka)) = 0$$
(0.0.40)

$$(e^{2i\delta_l} + 1)j_l(ka) + i(e^{2i\delta_l} - 1)y_l(ka) = 0$$
(0.0.41)

$$2\cos\delta_l j_l(ka) - 2\sin\delta_l y_l(ka) = 0 \tag{0.0.42}$$

となり、位相シフトとして、

$$\tan \delta_l = \frac{j_l(ka)}{y_l(ka)} \tag{0.0.43}$$

が得られる.

2. 式 (0.0.36) を式 (0.0.43) に代入すると,

$$\tan \delta_l \to \frac{(ka)^l}{(2l+1)!!} \left(-\frac{(ka)^{l+1}}{(2l-1)!!} \right)$$

$$= -\frac{(ka)^{2l+1}}{(2l+1)!!(2l-1)!!}$$

$$(0.0.44)$$

$$= -\frac{(ka)^{2l+1}}{(2l+1)!!(2l-1)!!} \tag{0.0.45}$$

(0.0.46)

となる. l=0,1,2 を代入する. ここで, $(n-2)!!=\frac{n!}{n}$ であることに注意すると,

$$\tan \delta_0 = -ka \tag{0.0.47}$$

$$\tan \delta_1 = -\frac{1}{3}(ka)^3 \tag{0.0.48}$$

$$\tan \delta_2 = -\frac{1}{45} (ka)^5 \tag{0.0.49}$$

となる.

