

$f_{1}^{#2}$	0	0	0	ikt_1	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_1^{\#2} \alpha f_1^{\#1} \alpha$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath} k t_1$
$f_{1}^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}\tilde{l}k\left(t_{1}+t_{2}\right)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}_{+}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
,	$\omega_{1}^{\#1} + \alpha \beta \frac{1}{6}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t1</u> 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

 \vdash

Source constraints

 \sim

 $\tau_{1}^{\#2}{}^{\alpha} + 2\,i\,k\,\,\sigma_{1}^{\#2}{}^{\alpha} == 0$

 $\tau_{0+}^{\#1} - 2\, \bar{i}\, k\, \sigma_{0+}^{\#1} == 0$

 $^{\circ}$

 \sim

 $\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$

Source constr SO(3) irreps	$\frac{\tau_{0+}^{\#2} == 0}{\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} =:}$	$\frac{t_1^{\#1}\alpha}{t_1^{\#1}\alpha\beta} == 0$ $\frac{t_1^{\#1}\alpha\beta}{t_1^{\#1}\beta} + ik \sigma_1^{\#i}$	$\tau_{2}^{\#1}^{\alpha\beta}$ -2 ik σ_{2}^{\sharp}	Total #:
	$\sigma_0^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$ au_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\tau_{0^{+}}^{#2}$ † $\sigma_{0^{-}}^{#1}$ †	0	0	0	$\frac{1}{t_2}$

•	$\sigma_{2}^{\#1} + \alpha \beta$	$t_{\perp}^{*1} + \alpha\beta$. 2	$\sigma_{2}^{*1} + \sigma_{\nu}^{\lambda}$
$\omega_{0}^{\#1}$	0	0	0	t_2
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$\bar{I}\sqrt{2}~kt_1$	$-2 k^2 t_1$	0	0
$\omega_0^{\#1}$	-t ₁	$-i \sqrt{2} kt_1$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{#1}$ †	$f_0^{#2} +$	$\omega_{0}^{\#1}$ †

 $\sigma_{2^{-}}^{\#1} \alpha eta \chi$

 $\sigma_{2}^{\#1}{}_{\alpha\beta}$

16

2

 $t_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$

0

 $\frac{2\,i\,\sqrt{2}\,k}{(1+2\,k^2)^2}$

 $\frac{2}{(1+2k^2)^2t_1}$

0

 $\frac{4k^2}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2}t$

 $\frac{2}{2k^2r_1+t_1}$

0

0

	Massive partic	le
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$
?	Polarisations:	5
	Square mass:	$-\frac{t_1}{2r_1} > 0$
?	Spin:	2
·	Parity:	Odd

$r_1 < 0 && t_1 > 0$	Unitarity conditions	(No massless particle
		10

₹	Z
bitarity conditions	O
<u> </u>	
} .	a
<	massiess particies)
3	<u> </u>
Ś	Š
<u> </u>	
<u> </u>	a
2	ה
ก์	\overline{C}
	- P
	S

0
3
۵
35
<u>÷</u>
าassless
Ĭń
J,
par
partic
partic
parti