CS204: Discrete Mathematics

Ch 1. The Foundations: Logic and Proofs Propositional Logic-1 Language

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Modern Logic

- Modern Logic = Symbolic Logic = Mathematical Logic
- Modern symbolic logic consists of propositional logic and predicate logic and has made logic mathematical and formal.

Propositional logic:

Logic that treats the whole sentences without considering the internal structure of sentences.

Predicate logic: considers
the internal structure of
propositions and arguments.

(1848 –1925)

Concept-Script: A Formal
Language for Pure Thought
Modeled on that of Arithmetic
Note) Frege's work was
discovered by B. Russell

(Published in 1879)

2

around 1900.

Propositional Logic: Syntax

• **Propositional letters:** represent statements

Example

p: The moon is made of green cheese.

q: The Earth is flat.

r: I will move to Mars.

The five logical connectives

Compound statement: a statement that is made up of component statements, using logical connectives.

		Compound
Name	Symbol _	statement
and	\wedge	p ∧ q
or	V	p∨q
not	一	¬р
implies (if then)	\rightarrow	$p \rightarrow q$
if and only if	\leftrightarrow	$p \leftrightarrow q$

Compound Statements: Terms

Compound Statement	Names	Component Statement	Names
p ∧ q	conjunction	p, q	conjunct
p v q	disjunction	p, q	disjunct
¬р	negation		
$p \rightarrow q$	conditional implication	р	antecedent hypothesis premise
		q	consequent consequence conclusion
$p \leftrightarrow q$	bi-conditional bi-implication		

Conventions (1/3)

- We usually drop the parentheses when the resulting sentence is unambiguous
- Precedence rules are (from highest to lowest), and

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow

Conventions (2/3)

- We usually drop the parentheses when the resulting sentence is unambiguous
 - A left parenthesis extends to the first unmatched right parenthesis or the end of the expression, skipping over "holes"
- Precedence rules are (from highest to lowest), and

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow

Conventions (3/3)

Examples

 $P \wedge Q \rightarrow R$ is the same as $((P \wedge Q) \rightarrow R)$

 $P \lor Q \land \neg R \rightarrow \neg Q$ is the same as $((P \lor (Q \land (\neg R))) \rightarrow (\neg Q))$

Can we omit parentheses in "P \rightarrow (Q \rightarrow R)"?

Translation to natural language sentences

Example

p: the statement "you are wearing shoes"

q: the statement "you can't cut your toenails"

Natural language translation:

¬q :?

 $p \wedge q$:?

 $p \rightarrow q$: ?

Translation from natural language sentences

Example 1

- p: The moon is made of green cheese.
- q: The Earth is flat.
- r: I will move to Mars.

The moon is made of green cheese and the Earth is flat.

•

If the moon is made of green cheese, then the Earth is flat.

•

If the Earth is not flat, then the moon is not made of green cheese.

Translation from natural language sentences

Example 1

- p: The moon is made of green cheese.
- q: The Earth is flat.
- r: I will move to Mars.

The moon is made of green cheese and the Earth is flat.

ず p ∧ q

If the moon is made of green cheese, then the Earth is flat.

 $p \rightarrow q$

If the Earth is not flat, then the moon is not made of green cheese.

 $-q \rightarrow -p$

Example 2

$$p \vee q \rightarrow r$$

Quiz 02-1

[1] Given the following propositions:

- p: the statement "you are wearing shoes"
- q: the statement "you can't cut your toenails"
- r: the statement "you should take off shoes"

how would you translate

$$p \land q \rightarrow r$$

to a natural language expression?