Diogo Pernes, Eduardo Meca, Jaime Cardoso, Ricardo Cruz, Wilson Silva

INESC TEC and Faculdade de Engenharia, Universidade do Porto, Portugal

VISUM 2018 Challenge

Management of Breast Cancer

image processing

machine learning

Screening and diagnosis

Surgery planning

Rehabilitation

Quality of Life Monitoring

DA PRODUÇÃO DE CONHECIMENTO À INOVAÇÃO DE BASE CIENTÍFICA

Quality of life monitoring

Aesthetic Evaluation

The Clinical Need

In breast-conserving surgery, there is evidence that approximately 30% of women receive a suboptimal or poor aesthetic outcome; however there is currently no standardised method of identifying these women.

Aesthetic Evaluation

Asymmetry Features

Objective Criteria in 2D and 3D Images

- Define quantities ('features' or 'attributes') in the image 'correlated' with the factors identified by the panel of experts
 - 2D and 3D features
- Automate the measurement
 - Automatic detection of fiducial points

The task

 automatically detect anatomical points / structures (to facilitate the automatic evaluation)

• Input: frontal image of a patient after breast

cancer surgery

• Output: position of

- breast contours
- nipples
- sternal notch

The task

 automatically detect anatomical points / structures

- To help you design your algorithms, we make available
 - A dataset of 154 images with ground truth annotation by experts
 - Two baseline solutions (one based on deep learning, another in conventional pipelines)
 - A working environment in the google cloud platform

VISUM 2018 Challenge

Baseline 1 - A Conventional Computer Vision Pipeline

Pipeline

Initial Keypoint Detection

- Find left and right points
 p₁ and p_r
- 2. Find middle point:

$$p_m = (p_l + p_r)/2$$

3. Find suprasternal notch:

$$p_t = (p_m[0]/2, p_m[1])$$

Initial Keypoint Detection

Shortest Path

Find path P={
$$v_1$$
, v_2 , ..., v_n } so that
$$\sum_{i=0:N-1} f(e_{i,i+1})$$

is minimized.

Shortest Path

Shortest Path

Shortest paths from mid to bottom

Shortest paths from bottom to mid

Strong paths between mid and bottom.

Selection of body edges.

Refinement

```
M - Gradient image
Th1 - Threshold (parameter)
maxLEN - Maximum length (parameter)

len = 0
p = p<sub>r</sub>
while len<maxLEN:
    p = argmax(north_neighboors(M, p))
    if M[p]<Th1:
        len+=1
    else:
        len=0</pre>
```


Breast Contour

Nipple Detection

We followed a probabilistic approach:

$$argmax_{x \in X} \{P(x)\}$$
 $x = [\alpha; d, c]$

Assumptions:

- The angle, distance and color features are independent.
- The angle, distance and color can be modelled by a Gaussian distribution.

$$P(x) = \mathcal{N}(\alpha | \mu_{\alpha}, \sigma_{\alpha}) \times \mathcal{N}(d | \mu_{d}, \sigma_{d}) \times \mathcal{N}(c | \mu_{c}, \sigma_{c})$$

Nipple Detection

VISUM 2018 Challenge

Baseline 2 - A Deep Learning Approach

- How to deal with overfitting?
 - Learn anIntermediateRepresentation
 - Transfer Learning

Heatmap Regression

$$\mathcal{L}_{heatmap} = \frac{1}{N_p} \sum_{\forall p} (x_p^{target} - \hat{x}_p)^2$$

Keypoints Regression

$$\mathcal{L}_{keypoints} = \frac{1}{N_k} \sum_{\forall k} (x_k^{target} - \hat{x}_k)^2$$

Learning Process

$$\mathcal{L} = \lambda_h \mathcal{L}_{heatmap} + \lambda_k \mathcal{L}_{keypoints}$$

KERAS IMPLEMENTATION

Predictions:

Evaluation:

- Breast Contour Score (BC)
- Nipples Score (N)
- Suprasternal Notch Score (SN)

Score = 0.45 BC + 0.35 N + 0.20 SN

VISUM 2018 Challenge

The Platform

Final Remarks

- -You are **forbidden** from downloading the challenge dataset.
 - -It can only be used within the google platform provided for the challenge.
- -You are allowed to use additional data, collected from other sources.
- -You are allowed to integrate 'third party' code.

Final Remarks

- -Objective Evaluation: an weighted combination of the errors in the breast contour, nipples and sternal notch
- -Subjective Evaluation
- -Statistical mismatch between training and testing data
- -Daily leaderboard
- -Top runners will be invited to present their solutions in 5 min pitch

Enjoy the Challenge!

Good Luck!!