

FinalProjectReport

4	т.	1	. •
	Intro	MIL	ction
1.	HILL	лu	CLIOI

Project overviews

Objectives

2. Project Initialization and Planning Phase

Define Problem Statement

Project Proposal(Proposed Solution)

Initial Project Planning

3. Data Collection and Preprocessing Phase

Data Collection Plan and Raw Data Sources Identified

Data Quality Report

Data Exploration and Preprocessing

4. Model Development Phase

Feature Selection Report

Model Selection Report

Initial Model Training Code, Model Validation and

Evaluation Report

5. Model Optimization and Tuning Phase

Hyperparameter Tuning Documentation

Performance Metrics Comparison Report

Final Model Selection Justification

6. Results

Output Screenshots

- 7. Advantages & Disadvantages
- 8. Conclusion
- 9. Future Scope
- 10. Appendix

SourceCod3

GitHub & Project Demo Link

Prediction and Analysis of Liver Patients Data Using Machine Learning

1. Introduction

Project overviews

Prediction and Analysis of Liver Patients Data Using Machine Learning

This project aims to use machine learning techniques to predict liver disease in patients based on clinical data. The dataset includes parameters such as age, gender, and various liver function tests. The goal is to develop predictive models that can identify patterns and risk factors associated with liver disease. By using algorithms like decision trees, support vector machines, the project seeks to provide accurate predictions to assist healthcare professionals in early diagnosis and treatment planning. The analysis will also offer insights into which features are most influential in liver disease prognosis.

Objectives

- 1. Develop robust machine learning models to predict liver disease based on clinical data.
- 2. Analyze patient data to identify key risk factors and patterns associated with liver disease.
- 3. Improve diagnostic accuracy by leveraging data-driven techniques over conventional methods.
- 4. Facilitate early detection of liver disorders, enabling timely and effective treatment.
- 5. Provide healthcare professionals with a decision-support tool for assessing liver disease risk.
- 6. Optimize patient management by prioritizing high-risk individuals for further medical evaluation.
- 7. Enhance understanding of liver disease progression through data insights and model interpretation.
- 8. Compare and evaluate the performance of different machine learning algorithms.
- 9. Implement features election techniques to identify the most influential predictors of liver disease.
- 10.Improve overall healthcare efficiency by reducing misdiagnoses and minimizing invasive diagnostic tests.

2. Project Initialization and Planning Phase

Define Problem Statements (Patients Problem Statement Template):

Liver diseases are a global health concern, and early detection is critical. The goal of this project is to build a machine learning model that predicts liver diseases based on demographic, clinical, and biochemical data, as well as imaging results. The project involves

Cleaning and exploring the data, developing predictive models(using various algorithms), and identifying key factors influencing liver disease. The outcomes aim to help doctors detect liver disease risks early and improve treatment strategies, while also addressing challenges related to data quality and privacy concerns

Problem Statemen t (PS)	I am (Custo mer)	I'm trying to	But	Because	Which makes me feel
PS-1	A Person	Diagnosis liver problem	Symptoms can be vague or mistaken for other conditions, leadingto late diagnosis.	No specific symptom,gr adualon set, overlap with other conditions, Misdiagnosi s	Progression of Disease, Delayed Treatment, Financial Burden, increased Anxiety and Stress.

lam	l'mtrying to	But	Because	Whichmakesmefeel
• Aperson	Diagnosis liver problem.	 Symptoms can be vague or mistaken for other conditions, Leading to late diagnosis. 	 No specific symptom,gradual onset,overlapwith other conditions, Misdiagnosis 	 Progression of Disease, Delayed Treatment, Finsncial Burden, increased Anxiety and Stress

Project Proposal(Proposed Solution)template

The proposal report aims to transform prediction and analysis of liver disease in patients using machine learning, boosting efficiency and accuracy. It tackles system inefficiencies, promising better operations, reduced risks, and happier customers. Keyfeatures include a machine learning-based credit model and real-time decision-making.

Project Overview	
Objective	It evaluate the overall quality of the dataset by addressing key aspects such as missing data, outliers, and anomalies ,and ensure the data meets the requirements for building a machine learning model for liver disease prediction
Scope	The scope of the liver disease prediction project includes collecting a diverse and comprehensive dataset, conducting thorough exploratory analysis, and developing machine learning models to predict liver disease outcomes. The project will provide valuable insights into the key factors influencing liver health, support early diagnosis, and help personalize treatment plans, ultimately improving patient care. Challenges related to data quality, privacy, and model accuracy will be managed throughout the process to ensure reliable outcomes.
Problem Statemen	t
Description	The prediction and analysis of liver patient data using machine learning involves utilizing clinical features and biochemical markers to develop predictive models that identify the presence of liver disease. By applying various algorithms, the approach aims to enhance early diagnosis and improve treatment strategies based on data-driven insights. This process includes data preprocessing, feature selection, model evaluation, and interpretation to inform healthcare professionals effectively
Impact	The ability to make accurate predictions, identify risk factors, and improve early detection can lead to better patient outcomes, lower healthcare costs, and more effective public health strategies. It also empowers healthcare providers with data-driven tools, enhancing decision-making and patient care.

Proposed Solution	
Approach	This approach involves predicting liver disease using machine learning through data collection, preprocessing, and exploratory analysis to handle missing data, outliers, and select key features. Various models like Logistic Regression, Random Forest, and SVM are trained and evaluated using accuracy, precision, recall, F1-score, and ROC-AUC. The best model is used for predictions, with post-prediction analysis to identify important features using SHAP or LIME. Visualizations and dashboards assist in interpretation, while the model is deployed and monitored for real-time predictions in healthcare. Continuous refinement ensures improved diagnostic accuracy and risk factor identification.
Key Features	Key features for predicting liver disease include biochemical markers such as bilirubin levels, alanine transaminase (ALT), aspartatetransaminase(AST), alkaline phosphatase(ALP), albumin, and total proteins, along with demographic information like age and gender. Additional features may include the ALT/AST ratio and other relevant clinical indicators that contribute to assessing liver health. Analyzing these features helps in identifying patterns and risk factors associated with liver disease.

Resource Requirements

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU	
Memory	RAM specifications	8 GB	
Storage	Disk space for data, models, and logs	1TBSSD	
Software			

Frameworks	Python frameworks	Flask
Libraries	Additional libraries	scikit-learn,pandas,numpy, matplotlib, seaborn
Development Environment	IDE, version control	GooglecolabNotebook, vscode, Git
Data		
Data	Source, size, format	Kaggle dataset, 614, csvUCI dataset, 690csv,Meteorologicaldepar tments,openweatherdataset s

Initial Project Planning Template

Sprint	Functional Requiremen t (Epic)	User Story Numbe r	UserStory/ Task	Story Point s	Priority	Team Member s	Sprint StartDate	Sprint EndDate (Planned)
Sprint- 1	Data Collection and Preprocessin g	USN-1	Understanding and loading data	2	High	prasanthi	2024/09/23	2024/09/26
Sprint- 1	Data Collection and Preprocessin g	USN-2	Data cleaning	1	High	prasanthi	2024/09/23	2024/09/26

Sprint	Functional Requiremen t (Epic)	User Story Numbe r	UserStory/ Task	Story Point s	Priority	Team Member s	Sprint StartDate	Sprint EndDate (Planned)
Sprint- 1	Data Collection and Preprocessin g	USN-3	EDA	2	Low	mahathi	2024/09/23	2024/09/26
Sprint- 2	Model Development	USN-4	Training the model	2	Medium	mahathi	2024/09/27	2024/09/30
Sprint- 2	Model tuning and testing	USN-5	Evaluating the model	1	High	mahathi	2024/09/27	2024/09/30
Sprint- 2	Model tuning and testing	USN-6	Model tuning	2	High	arif	2024/09/27	2024/09/30
Sprint- 2	Model tuning and testing	USN-7	Model testing	1	Medium	arif	2024/09/27	2024/09/30
Sprint-	Web integration and Deployment	USN-8	Building HTML templates	2	Medium	muzaffer	2024/10/01	2024/10/05
Sprint-	Web integration and Deployment	USN-9	Local deployment	2	High	prasanthi	2024/10/01	2024/10/05
Sprint-	Project Report	USN-10	Report	2	Medium	muzaffer	2024/10/06	2024/10/10

3. Data Collection and Preprocessing Phase

Data Collection Plan & Raw Data Sources Identification Template

Elevate your data strategy with the Data Collection plan and the Raw DataSources report, ensuring meticulous data curation and integrity for informed decision-making in every analysis and decision-making endeavor.

Data Collection Plan

Section	Description
Project Overview	The project focuses on leveraging machine learning techniques to predict liver disease in patients by analyzing clinical and biochemical data, aiming for early diagnosis and improved treatment strategies. Through data preprocessing, feature selection, and model evaluation, it seeks to identify significant predictors of liver health and enhance decision-making in healthcare.
Data Collection Plan	The data collection plan involves sourcing liver patient data from medical institutions, public repositories, or health databases, focusing on key features like age ,gender ,and biochemical markers (bilirubin, ALT, AST). Data will be ethically gathered, anonymized, and stored securely for analysis using machine learning model
Raw Data Sources Identified	Raw data sources for predicting and Analysing liver patients include public datasets like the UCI Liver Disorder Dataset and medical records from hospitals and clinics, which provide comprehensive clinical and biochemical information. Additionally, health databases and research studies offer valuable data for training machine learning models.

Source name	Description	Location/URL	Format	Size	Access Permission
Dataset1	Smart Internz Platform	https://www.kaggle.co m/datasets/uciml/india n-liver-patient-records	CSV	13.5 MB	Public

Raw Data Sources Template

Data Collection and Preprocessing Phase

Data Quality Report Template

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	ResolutionPlan
Smart Internz Dataset	Missing values in Albumin and Globulin Ratio	Moderate	Use mode imputation.
Smart Internz Dat aset	Categorical data in the dataset	Moderate	Encoding has to be done in the data

Data Exploration and Preprocessing Template

Dataset variables will be statistically analysed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and Modeling, and forming a strong foundation for insights and predictions.

Section	Description
Data Overview	Dimension: 400rows×11 columns df.head(5) Age Gender Total_Bilirubin Direct_Bilirubin Alkaline_Phosphotase Alamine_Aminotransferase Aspartate_Aminotransferase Total_Protiens Albumir 0 65 Female
Univariate Analysis	150 - 150 - 150 - 100 - 150 - 100 -

Handling Missing Data	<pre>mode_value = df['Albumin_and_Globulin_Ratio'].mode()[0] df['Albumin_and_Globulin_Ratio'] = df['Albumin_and_Globulin_Ratio'].fillna(mode_value) df.isnull().sum()</pre>			
Data Transformation	Encoding mode_value = df['Albumin_and_Globulin_Ratio'].mode()[0] df['Albumin_and_Globulin_Ratio'] = df['Albumin_and_Globulin_Ratio'].fillna(mode_value) df.isnull().sum() Scaling			
	df.corr()['Dataset'].sort_v	alues(ascending = Fai	lse)	
		Dataset		
	Dataset	1.000000		
	Albumin_and_Globulin_Ratio	0.171054		
	Albumin	0.166835		
	Total_Protiens	0.037794		
	Gender	-0.078501		
Feature Engineering	Age	-0.138093		
Teature Engineering	Aspartate_Aminotransferase	-0.151101		
	Alamine_Aminotransferase	-0.161917		
	Alkaline_Phosphotase	-0.187560		
	Total_Bilirubin	-0.224430		
	Direct_Bilirubin	-0.250666		
	dtype: float64			
	Selecting which are highly correlated related to the second relate	ated to the target column	and	

Save Processed Data	-

Model Development Phase Template

Feature Selection Report Template

In the forthcoming update, each feature will be accompanied by a brief description. Users will indicate whether it's selected or not, providing reasoning for their decision. This process will streamline decision-making and enhance transparency in feature selection.

Feature	Description	Select (Yes/No)	Reasoning
Age	Age of the patient in years	yes	Age is a significant predictor for liver conditions as certain liver diseases are more prevalent in older individuals.
Gender	Gender of the patient (Male/Female)	yes	Gender is often a factor in liver diseases certain conditions may be more prevalent in men or women
Total Bilirubin	Total bilirubin levels in the blood (mg/dL)	yes	Elevated bilirubin levels are directly linked to liver dysfunction, making this a key feature for liver disease prediction.

Direct Bilirubin	Direct bilirubin levels in the blood (mg/dL)	yes	Levels of Bilirubin in blood can indicate that the liver is unable to excrete Bilirubin
Alkaline Phosphatase	Alkaline Phosphatase enzymelevels (U/L)	yes	High levels of ALP in blood may indicate liver disease
Alamine Aminotransferase (ALT)	An enzyme that helps the liver convert food into energy	Yes	Increased levels of alanine aminotransferase (ALT) in the blood can indicate liver damage(hepatitis,live cancer etc)
Aspartate Aminotransferase (AST)	An enzyme that helps the liver convert food into energy	yes	Increased levels of aspartate aminotransferase in blood can cause liver disease, liver cancer or tumors
Total Proteins	Measures the total amount of proteins(albumin and globulin) found in your blood	yes	Low level in total proteins may indicate liver or kidney problem. A high total protein level could indicate dehydration or cancer such as multiple myeloma
Albumin	Albumin isa protein produced by liver	yes	A low albumin level in patients indicates liver diseases such as cirrhosis.

Albumin and	The albumin-to-	yes	A low The albumin-
GlobulinRatio	globulin ratio is		to-globulin ratio is
	a measure of		often found in
	amount of		patients with liver
	albumin		disease such as
	proteins in blood		cirrhosis or
	compared to		hepatits
	globulins		
Dataset	Disease outcome	yes	The target variable
			for predictive
			modeling-is essential
			for the project's goal.

Model Development Phase Template

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperpara meters	Performance Metric (e.g., Accuracy,F1 Score)
Random Forest	Ensemble of decision trees; classifies a new liver object, the input vector is passed through each tree in the forest, and the tree that votes for most likely class wins	-	Accuracy score= 85%

Decision Tree	Simple tree structure can be used to predict liver disease by analyzing data and generating if then rules can be used to determine if the patient has liver disease.		Accuracy score= 73%
KNN	Classifies based on nearest neighbors,adapts well to data patterns, effective	-	Accuracy score= 71%
Support Vector machine	SVMs are supervised models that can be used to predict liver disease. SVMs analyze the data and recognize patterns to classify liver disease.	-	Accuracy score= 70%
Logistic Regression	Logistic regression is a statistical method that estimates the probability of an event occurring based on the given dataset.	-	Accuracy score= 73%

Model Development Phase Template

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots

Initial Model Training Code:

```
def random_forest(xtrain, xtest, ytrain, ytest):
    rf = RandomForestClassifier()
    rf.fit(xtrain, ytrain)
    RFpred = rf.predict(xtest)
    RFaccuracy = accuracy_score(ytest, RFpred)
    print("Random Forest Accuracy Score: {}".format(RFaccuracy))
    print("Classification Report:\n", classification_report(ytest, RFpred))
    print("Confusion Matrix:\n", confusion_matrix(ytest, RFpred))
random_forest(xtrain, xtest, ytrain, ytest)
```

```
def logistic_regression(X_train, X_test, y_train, y_test):
    lr = LogisticRegression(max_iter=1000)
    lr.fit(X_train, y_train)
    LRpred = lr.predict(X_test)
    LRaccuracy = accuracy_score(y_test, LRpred)
    print("Logistic Regression Accuracy Score: {}".format(LRaccuracy))
    print("Classification Report:\n", classification_report(y_test, LRpred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, LRpred))
logistic_regression(xtrain, xtest, ytrain, ytest)
```

```
def knn(X_train, X_test, y_train, y_test):
    knn_model = KNeighborsClassifier()
    knn_model.fit(X_train, y_train)
    KNNpred = knn_model.predict(X_test)
    KNNaccuracy = accuracy_score(y_test, KNNpred)
    print("KNN Accuracy Score: {}".format(KNNaccuracy))
    print("Classification Report:\n", classification_report(y_test, KNNpred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, KNNpred))
knn(xtrain, xtest, ytrain, ytest)
```

```
def svm_model(X_train, X_test, y_train, y_test):
    svm = SVC()
    svm.fit(X_train, y_train)
    SVMpred = svm.predict(X_test)
    SVMaccuracy = accuracy_score(y_test, SVMpred)
    print("SVM Accuracy Score: {}".format(SVMaccuracy))
    print("Classification Report:\n", classification_report(y_test, SVMpred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, SVMpred))
svm_model(xtrain, xtest, ytrain, ytest)
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix
Random Forest	Random Forest Accuracy Score: 0.87037037037037037037037037037037037037037	87%	Confusion Matrix: [[40 6] [8 54]]
Decision Tree	2 0.83 0.77 0.80 accuracy 0.78 1 macro avg 0.77 0.78 0.78 1	78%	Confusion Matrix: [[36 10] [14 48]]
Logistic Regressi on	Logistic Regression Accuracy Score: 0.79629629629629629629629629629629629629629	80%	Confusion Matrix: [[36 10] [12 50]]
KNN	KNN Accuracy Score: 0.75 Classification Report:	75%	Confusion Matrix: [[33 13] [14 48]]
Support Vector machine	SVM Accuracy Score: 0.7037037037037037 Classification Report:	9 7 70%	Confusion Matrix: [[23 28] [4 53]]

Model Optimization and Tuning Phase Template

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation(6Marks):

Model	Tuned Hyperparameters	Optimal Values
Support Vector Machine	<pre># Hyperparameter tuning for SVM svm_params = { 'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf', 'poly'], 'gamma': ['scale', 'auto'] }</pre>	<pre>print(best_svm) SVC(C=1, gamma='auto'</pre>
Decision Tree	<pre># Hyperparameter tuning for Decision Tree dt_params = { 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10] }</pre>	<pre>print(best_dt) DecisionTreeClassifier(criterion='entropy',</pre>
KNN	<pre># Hyperparameter tuning for KNN knn_params = { 'n_neighbors': [3, 5, 7, 9], 'weights': ['uniform', 'distance'] }</pre>	<pre>print(best_knn) KNeighborsClassifier(weights='distance')</pre>

```
# Hyperparameter tuning for Logistic Regression
                                                                                         print(best_lr)
Logistic
                          lr_params = {
                              'C': [0.001, 0.01, 0.1, 1, 10],
                              'solver': ['liblinear', 'saga']
Regression
                                                                                         LogisticRegression(C=10, solver='saga')
                         # Hyperparameter tuning for Random Forest
                         rf_params = {
                                                                                         print(best_rf)
                              'n_estimators': [10, 50, 100],
Random Forest
                              'max_depth': [None, 10, 20],
                                                                                         RandomForestClassifier(max_depth=20, min_samples_split=5)
                              'min_samples_split': [2, 5, 10]
```

Performance Metrics Comparison Report(2 Marks):

Model	Optimized Metric					
	SVM Accuracy: 0.7037037037037 Classification Report: precision recall f1-score support					
	1 2	0.85 0.65		0.59 0.77		
	accuracy macro avg weighted avg			0.70 0.68 0.68	108	
Support Vector Machine	Confusion Matr [[23 28] [4 53]]	ix:				

Decision Tree Accuracy: 0.7685185185185 Classification Report:					
			recall	f1-score	support
	1	0.69	0.83	0.75	46
	2		0.73		62
Decision Tree	accupacy			0 77	108
	accuracy	0.77	0.70		
	macro avg				
	weighted avg	0.78	0.//	0.//	108
	Confusion Matri [[38 8] [17 45]]	ix:			
	Random Forest A Classification N		.870370370	3703703	
		precision	recall	f1-score	support
	1	0 02	0.89	0.85	46
	2	0.82			62
	2	0.51	0.83	0.00	02
Random Forest	accuracy			0.87	108
	macro avg	0.87	0.87		
	weighted avg				
	Confusion Matri	x:			
	[[41 5]				
	[9 53]]				
	KNN Accuracy:		5555556		
	Classification				
		precision	recall	f1-score	support
	1	0.82	0.70	0.75	46
	2	0.80	0.89	0.84	62
KNN	accuracy			0.81	108
	macro avg	0.81	0.79	0.80	108
	weighted avg	0.81	0.81	0.80	108
	Confusion Matri	x:			
	[[32 14]				
	[7 55]]				

	Logistic Regression Accuracy: 0.7962962962963 Classification Report:					
		precision	recall	f1-score	support	
	1	0.76	0.76	0.76	46	
Logistic	2	0.82	0.82	0.82	62	
Regression	accuracy			0.80	108	
	macro avg	0.79	0.79	0.79	108	
	weighted avg	0.80	0.80	0.80	108	
	Confusion Matr [[35 11] [11 51]]	rix:				

Final Model Selection Justification:

Final Model	Reasoning		
	We select the Random Forest classifier for liver disease prediction because it can handle complex, non-linear relationships in medical data and provides high accuracy. It offers inherent feature importance ranking, helping to identify key factors influencing liver disease. Random Forest is also robust to overfitting and effectively manages missing data and outliers, ensuring reliable predictions. Additionally, its ability to handle large datasets and a mix of feature types		
Random Forest	(continuous and categorical) makes it well-suited for liver patient data		
Classifier	analysis.		

6. Results

Outputs screenshots

Output for having a liver disease:

Output for not having a liver disease:

7. Advantages & Disadvantages

Advantages

- **1. Improved diagnostic accuracy**: Machine learning models can analyze complex patterns in patient data, leading to more accurate predictions of liver disease compared to traditional methods.
- **2. Early detection:** ML models can identify early signs and risk factors for liver disease, enabling timely intervention and treatment, which can improve patient outcomes.
- **3. Handling large and diverse data:** Machine learning efficiently Processes large datasets with a variety of clinical features (e.g., blood test results, demographics), making it suitable for analyzing complex liver patient data.
- **4. Automated analysis:** ML can automate the data analysis process, saving time for healthcare professionals by providing quick and reliable Predictions based on patient data.
- **5. Personalized treatment:** Machine learning can help tailor treatment plans by identifying patient-specific risk factors, allowing for more personalized and targeted healthcare.
- **6. Feature importance analysis:** ML techniques, such as Random Forest, can highlight the most significant predictors of liver disease, improving the understanding of which factors are most critical for diagnosis and prognosis.
- **7. Reduction of human error**: By relying on data-driven predictions, machine learning reduces the risk of human bias and error in Diagnosing **liver diseases**

Disadvantages

- 1. **Data quality dependency**: Machine learning models heavily rely on the quality and completeness of data. Missing or inaccurate clinical data can negatively affect the model's performance and lead to unreliable predictions.
- 2. **Complexity in interpretation**: Some advanced machine learning models, like neural networks, are often considered "black boxes," making it difficult for healthcare professionals to understand how specific predictions are made or which factors influenced the decision.

- 3. **Overfitting risk**: If not properly managed, machine learning models can overfit the training data, leading to poor generalization when applied to new patient data, reducing their reliability in real-world scenarios.
- 4. **Requires large datasets**: To achieve high accuracy, machine learning models often require large amounts of labeled data, which may not always be available in medical settings, especially for rare liver conditions.
- 5. **Computationally intensive**: Training complex models on large datasets can be computationally expensive and time-consuming, requiring specialized hardware and expertise that may not be readily available in healthcare facilities.
- 6. **Ethical and privacy concerns**: Using patient data in machine learning models raises concerns about data privacy and the ethical implications of automated decision-making in healthcare, especially if models are deployed without human oversight.

8. Conclusion

This project demonstrated the effectiveness of using machine learning algorithms to predict and analyze liver disease based on patient data. By leveraging various models, such as Random Forest and Support Vector Machines, we were able to achieve improved diagnostic accuracy and identify key factors influencing liver disease progression. The integration of feature selection methods helped streamline the models, enhancing both performance and interpretability. Although challenges such as the need for large datasets and careful handling of missing data were encountered, the project showcased how machine learning can transform liver disease detection. This not only aids early intervention but also assists healthcare professionals in making data-driven decisions for better patient management. Future work could involve refining models further with larger datasets and exploring more interpretable approaches to ensure broader adoption in clinical practice.patterns.

9. Future Scope

- 1. Integration of advanced models: Future work could explore the use of deep learning techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), for more sophisticated analysis of liver disease, especially for imaging data or time-series data like patient histories.
- **2. Incorporation of larger, diverse datasets**: Expanding the dataset with more diverse patient populations and multi-center data can improve model generalization and enhance it's applicability across different demographics, ensuring more robust and accurate predictions.
- **3.Development of explainable AI:** There is potential to integrate explainable AI techniques that provide clearer insights into the decision-making process of machine learning models, making them more interpretable for

healthcare professionals and facilitating their adoption in clinical settings.

- **4. Real-time prediction systems:** Future advancements could involve implementing machine learning models in real-time clinical environments, allowing doctors to use predictive tools during patient visits for immediate liver disease assessment and treatment recommendations.
- **5. Incorporation of genomic and lifestyle data**: Including additional data types, such as genetic information, lifestyle factors, and environmental exposure, can enhance the models' predictive power and lead to a more comprehensive understanding of liver disease risk factors.
- **6. Integration with healthcare systems**: Machine learning models can be integrated into electronic health record (EHR)systems to provide automated liver disease risk assessments, alerting healthcare providers about high-risk patients and improving workflow efficiency.
- **7. Personalized treatment plans:** The models could be further refined to offer personalized treatment suggestions based on individual risk profiles, enabling more tailored medical interventions and improving patient outcomes.
- **8. Collaboration with medical experts:** In the future, closer collaboration with hepatologists and data scientists can enhance model development and ensure that the algorithms align with real-world clinical needs and practices

10. Appendix

Source Code

Prediction and analysis of liver patients data using machine learning.ipynb

#IMPORTINGNECESSARYLIBRARIES

import pandas as pd

import numpy as np

import seaborn as sns

```
import matplotlib.pyplot as plt
 import pickle
 #LOADINGTHE DATASET
 df = pd.read_csv("/content/indian_liver_patient.csv")
 #EXPLORATORYDATAANALYSIS
df.head(5)
df.tail()
df = df.drop_duplicates()
df.shape
df.value_counts('Dataset')
df.describe()
df.info()
#CHECKINGNULLVALUES
df.isnull().any()
#HANDLINGNULLVALUES
mode_value= df['Albumin_and_Globulin_Ratio'].mode()[0]
df['Albumin_and_Globulin_Ratio'] =
df['Albumin_and_Globulin_Ratio'].fillna(mode_value)
df.isnull().sum()
#DATAVISUALIZATION
#UNIVARIATE
sns.countplot(data=df,x='Gender',label= 'Count')
```

```
m,f=df['Gender'].value_counts()
print("No of Males: ",m)
print("No of Females: ",f)
sns.countplot(data= df, x= 'Dataset')
LD,NLD = df['Dataset'].value_counts()
print("liver disease patients: ",LD)
print("Non-liverdiseasepatients:",NLD)
plt.pie(df['Dataset'].value_counts(),[0,0.1],labels=['LIVER_DISEASE','NON-
LIVER_DISEASE'],autopct ="%1.1f%%",shadow = True,colors =
['#73C5C5','#BDE2B9'])
plt.title("LIVERDISEASE")
plt.show()
#BIVARIATE
sns.scatterplot(x=df['Albumin_and_Globulin_Ratio'],y=df['Dataset'],palette=
Set2',data = df
#MULTI-VARIATE
sns.pairplot(df,hue='Gender',diag_kind='kde')
#CORRELATION
sns.heatmap(df.corr())
df.corr()['Dataset'].sort_values(ascending=False)
df['Gender']=df['Gender'].map({'Male':1,'Female':0})
df['Gender']=df['Gender'].astype('int64')
```

```
#SPLITTINGTHEDATASET
 x=df.iloc[0:400,0:-1]
 y=df.iloc[0:400,-1]
 x.head()
 y.head()
 y.value_counts()
 #BALANCINGTHE DATASET
 from imblearn.over_sampling import SMOTE
 from imblearn.combine import SMOTETomek
 smote=SMOTETomek(sampling_strategy='auto')
 x_bal, y_bal = smote.fit_resample(x,y)
 print(y.value_counts())print(y_bal.value_counts())
 #SCALINGTHEDATA
fromsklearn.preprocessingimportStandardScaler scaler
 = StandardScaler()
 xtrain_scaled = scaler.fit_transform(xtrain)
 xtest_scaled = scaler.transform(xtest)
 names=x.columns
 x_bal=pd.DataFrame(x_bal,columns=names)
 x_bal.head()
```

x_bal.tail()

```
y_bal.head()
```

#TRAININGANDTESTING

fromsklearn.model_selection importtrain_test_split
xtrain,xtest,ytrain, ytest =
train_test_split(x_bal,y_bal,test_size=0.2,random_state=49)

x_bal.tail()

y_bal.head()

xtrain.shape

xtest.shape

#MODELBUILDING

fromsklearn.svmimport SVC

from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score fromsklearn.treeimport DecisionTreeClassifier fromsklearn.ensembleimportRandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC

```
#SUPPORTVECTORMACHINEMODEL
svm = SVC()
RFmodel=RandomForestClassifier()
KNNmodel=KNeighborsClassifier()
scaler = StandardScaler()
xtrain=scaler.fit_transform(xtrain)
xtest = scaler.transform(xtest)
svm.fit(xtrain,ytrain)
SVMPred=svm.predict(xtest)
SVMaccuracy=accuracy_score(ytest, SVMPred)
SVMaccuracy
defsvm_model(X_train,X_test,y_train,y_test): svm
  = SVC()
  svm.fit(X_train, y_train)
  SVMpred=svm.predict(X_test)
  SVMaccuracy = accuracy_score(y_test, SVMpred)
  print("SVMAccuracyScore:{}".format(SVMaccuracy))
  print("ClassificationReport:\n",classification_report(y_test,SVMpred))
  print("Confusion Matrix:\n", confusion_matrix(y_test, SVMpred))
svm_model(xtrain,xtest,ytrain,ytest)
```

```
#KNNMODEL
KNNmodel.fit(xtrain,ytrain)KNNpred
=KNNmodel.predict(xtest)
KNNaccuracy=accuracy_score(KNNpred,ytest)
KNNaccuracy
def knn(X_train, X_test, y_train, y_test):
  knn_model = KNeighborsClassifier()
  knn_model.fit(X_train, y_train)
  KNNpred=knn_model.predict(X_test)
  KNNaccuracy = accuracy_score(y_test, KNNpred)
  print("KNNAccuracyScore:{}".format(KNNaccuracy))
  print("ClassificationReport:\n",classification_report(y_test,KNNpred))
  print("Confusion Matrix:\n", confusion_matrix(y_test, KNNpred))
knn(xtrain,xtest,ytrain,ytest)
#RANDOMFORESTMODEL
RFmodel.fit(xtrain,ytrain)
RFpred=RFmodel.predict(xtest)RFaccuracy
=accuracy_score(RFpred,ytest)
RFaccuracy
defrandom_forest(xtrain,xtest,ytrain,ytest): rf
  = RandomForestClassifier()
```

```
rf.fit(xtrain, ytrain)
  RFpred=rf.predict(xtest)
  RFaccuracy=accuracy_score(ytest, RFpred)
  print("Random Forest Accuracy Score: { }".format(RFaccuracy))
  print("ClassificationReport:\n",classification_report(ytest,RFpred))
  print("Confusion Matrix:\n", confusion_matrix(ytest, RFpred))
random_forest(xtrain,xtest,ytrain,ytest)
#DECISIONTREE CLASSIFIER
fromsklearn.treeimportDecisionTreeClassifier
dt_model = DecisionTreeClassifier()
dt_model.fit(xtrain, ytrain)
dt_pred = dt_model.predict(xtest)
DTaccuracy=accuracy_score(ytest,dt_pred)
DTaccuracy
defdecision_tree(X_train,X_test,y_train,y_test): dt
  = DecisionTreeClassifier()
  dt.fit(X train, y train)
  y_pred=dt.predict(X_test)
  print("DecisionTreeAccuracyScore:{}".format(accuracy_score(y_test, y_pred)))
  print("ClassificationReport:\n",classification_report(y_test,y_pred))
  print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
```

```
decision_tree(xtrain,xtest,ytrain,ytest)
#LOGISTICREGRESSIONMODEL
fromsklearn.linear_modelimportLogisticRegression
log_reg_model = LogisticRegression()
log_reg_model.fit(xtrain, ytrain)
y_pred = log_reg_model.predict(xtest)
log_reg_accuracy=accuracy_score(ytest,y_pred)
log_reg_accuracy
deflogistic_regression(X_train,X_test,y_train,y_test): lr
  = LogisticRegression(max_iter=1000) lr.fit(X_train,
  y_train)
  LRpred=lr.predict(X_test)
  LRaccuracy=accuracy_score(y_test,LRpred)
  print("Logistic RegressionAccuracy Score: {}".format(LRaccuracy))
  print("ClassificationReport:\n",classification_report(y_test,LRpred))
  print("Confusion Matrix:\n", confusion_matrix(y_test, LRpred))
logistic regression(xtrain, xtest, ytrain, ytest)
#COMPARINGTHEMODELS
svm = SVC()
dt_model = DecisionTreeClassifier()
```

RFmodel=RandomForestClassifier()

```
KNNmodel = KNeighborsClassifier()
log_reg_model=LogisticRegression()
svm.fit(xtrain,ytrain)
dt_model.fit(xtrain,ytrain)
RFmodel.fit(xtrain,ytrain)
KNNmodel.fit(xtrain,ytrain)
log_reg_model.fit(xtrain,ytrain)
pred0=svm.predict(xtrain)
pred1=dt_model.predict(xtrain)
pred2=RFmodel.predict(xtrain)
pred3=KNNmodel.predict(xtrain)
pred4=log_reg_model.predict(xtrain)
print('SVM:',accuracy_score(ytrain,pred0))
print('Decision Tree:',accuracy_score(ytrain,pred1))
print('RandomForest:',accuracy_score(ytrain,pred2))
print('KNN:',accuracy_score(ytrain,pred3))
print('Logistic:',accuracy_score(ytrain,pred4))
y_pred1=svm.predict(xtest)
y_pred2=dt_model.predict(xtest)
y_pred3=RFmodel.predict(xtest)
y_pred4=KNNmodel.predict(xtest)
y_pred5=log_reg_model.predict(xtest)
```

```
print('SupportVector:',accuracy_score(ytest,y_pred1))
print('Decision Tree:',accuracy_score(ytest,y_pred2))
print('RandomForest:',accuracy_score(ytest,y_pred3))
print('KNN:',accuracy_score(ytest,y_pred4))
print('Logistic:',accuracy_score(ytest,y_pred5))
#HYPERPARAMETERTUNNING
defrandomForest(xtrain,xtest,ytrain,ytest):
 model =
RandomForestClassifier(verbose=2,n_estimators=120,max_features='log2',max_d
epth=10,criterion='entropy')
 model.fit(xtrain,ytrain)
 y_tr=model.predict(xtrain)
 print("AccuracyScore{}".format(accuracy_score(ytrain,y_tr)))
 y_pr=model.predict(xtest)
 print("AccuracyScore{}".format(accuracy_score(ytest,y_pr)))
randomForest(xtrain,xtest,ytrain,ytest)
fromsklearn.metricsimportf1_score
RFmodel.fit(xtrain,ytrain)
y_pred3= RFmodel.predict(xtest)
print("Accuracy Score { }".format(accuracy_score(ytest,y_pred3)))
print("f1_Score{}".format(f1_score(y_pred3,ytest,average='weighted')))
```

```
fromsklearn.model_selectionimportGridSearchCV #
Hyperparameter tuning for SVM
svm_params = {
  'C':[0.1,1,10],
  'kernel':['linear','rbf','poly'],
  'gamma':['scale','auto']
}
svm_grid=GridSearchCV(SVC(),svm_params,cv=5)
svm_grid.fit(xtrain, ytrain)
#Bestmodel
best_svm = svm_grid.best_estimator_
y_pred_svm=best_svm.predict(xtest)
# Evaluation
print("SVM Accuracy: ", accuracy_score(ytest, y_pred_svm))
print("ClassificationReport:\n",classification_report(ytest,y_pred_svm))
print("Confusion Matrix:\n", confusion_matrix(ytest, y_pred_svm))
print(best_svm)
#HyperparametertuningforDecisionTree
```

```
dt_params={
  'criterion':['gini','entropy'],
  'max_depth':[None,10,20,30],
  'min_samples_split':[2,5,10]
}
dt_grid=GridSearchCV(DecisionTreeClassifier(),dt_params,cv=5)
dt_grid.fit(xtrain, ytrain)
#Bestmodel
best_dt = dt_grid.best_estimator_
y_pred_dt=best_dt.predict(xtest)
# Evaluation
print("Decision Tree Accuracy: ", accuracy_score(ytest, y_pred_dt))
print("ClassificationReport:\n",classification_report(ytest,y_pred_dt))
print("Confusion Matrix:\n", confusion_matrix(ytest, y_pred_dt))
print(best_dt)
#HyperparametertuningforRandomForest
rf_params = {
  'n_estimators':[10,50,100],
  'max_depth':[None,10,20],
```

```
'min_samples_split':[2,5,10]
}
rf_grid=GridSearchCV(RandomForestClassifier(),rf_params,cv=5)
rf_grid.fit(xtrain, ytrain)
#Bestmodel
best_rf = rf_grid.best_estimator_
y_pred_rf=best_rf.predict(xtest)
# Evaluation
print("Random Forest Accuracy: ", accuracy_score(ytest, y_pred_rf))
print("ClassificationReport:\n",classification_report(ytest,y_pred_rf))
print("Confusion Matrix:\n", confusion_matrix(ytest, y_pred_rf))
print(best_rf)
#HyperparametertuningforKNN
knn_params = {
  'n_neighbors':[3,5,7,9],
  'weights':['uniform','distance']
}
knn_grid=GridSearchCV(KNeighborsClassifier(),knn_params,cv=5)
```

```
knn_grid.fit(xtrain, ytrain)
#Bestmodel
best_knn =knn_grid.best_estimator_
y_pred_knn=best_knn.predict(xtest)
# Evaluation
print("KNN Accuracy: ", accuracy_score(ytest, y_pred_knn))
print("ClassificationReport:\n",classification_report(ytest,y_pred_knn))
print("Confusion Matrix:\n", confusion_matrix(ytest, y_pred_knn))
print(best_knn)
#HyperparametertuningforLogisticRegression
lr_params = {
  'C':[0.001,0.01, 0.1,1, 10],
  'solver':['liblinear','saga']
}
lr_grid=GridSearchCV(LogisticRegression(),lr_params,cv=5)
lr_grid.fit(xtrain, ytrain)
#Bestmodel
best_lr= lr_grid.best_estimator_
```

```
y_pred_lr=best_lr.predict(xtest)
# Evaluation
print("LogisticRegressionAccuracy:",accuracy_score(ytest,y_pred_lr))
print("Classification Report:\n", classification_report(ytest, y_pred_lr))
print("Confusion Matrix:\n", confusion_matrix(ytest, y_pred_lr))
print(best_lr)
#EVALUATINGPERFORMANCEOFTHE MODEL&SAVINGTHEMODEL
fromsklearn.metricsimportf1_score
RFmodel.fit(xtrain,ytrain)
y_pred3= RFmodel.predict(xtest)
print("Accuracy Score { }".format(accuracy_score(ytest,y_pred3)))
print("f1_Score{}".format(f1_score(y_pred3,ytest,average='weighted')))
model =
RandomForestClassifier(verbose=2,n estimators=200,max features='log2',max d
epth=None,criterion='entropy')
model.fit(xtrain,ytrain)
import pickle
pickle.dump(model,open('liver_analysis.pk1','wb'))
pickle.dump(scaler,open('scaling.pkl','wb'))
```

#TESTINGWITHVALUES

```
input=[[65,1,0.7,0.1,187,16,18,6.8,3.3,0.90]]
input=scaler.transform(input)
prediction=model.predict(input)
prediction

input=[[17,0,0.9,0.3,202,22,19,7.4,4.1,1.2]]
input=scaler.transform(input)
prediction=model.predict(input)
prediction
```

APP.PY

```
# app.py
der_template('home.html')

@app.route('/predict',methods=['POST','GET'])
def index():
    return render_template("index.html")
```

```
@app.route('/submit',methods=['POST','GET']) def
submit():
  age = request.form['age']
  gender=request.form['gender']
  tb = request.form['tb']
db = request.form['db']
  ap=request.form['ap']
  aa1=request.form['aa1']
  aa2= request.form['aa2']
tp = request.form['tp']
  a=request.form['a']
agr= request.form['agr']
  data=[[float(age),float(gender),float(tb),float(db),float(ap),float(aa1), float(aa2),
float(tp), float(a), float(agr)]]
  model =
pickle.load(open(r'C:\Users\hp\Downloads\Smartinternz_project\liver_analysis
(1).pk1', 'rb'))
  scale=pickle.load(open(r'C:\Users\hp\Downloads\Smartinternz_project\scaling
(1).pkl', 'rb'))
scaled_data = scale.transform(data)
  prediction=model.predict(scaled_data)[0]
```

```
ifprediction==1:
    returnrender_template('chance.html',prediction='Youhavealiverdisease
problem, consult a doctor !!!.')
elifprediction==2:
    returnrender_template('chance1.html',prediction='Youdonothavealiver
disease problem \U0001f600 !')

if _name=='main_':
    port=int(os.environ.get('PORT',5000))
app.run(debug=False)
```

Home.html

```
<!DOCTYPEhtml>
<htmllang="en">
<head>
<metacharset="UTF-8">
<metaname="viewport"content="width=device-width,initial-scale=1.0">
<title>LiverPatientAnalysis</title>
<style>

body{

font-family:'Arial',sans-serif;

background-image:
url('https://media.istockphoto.com/id/1272365959/photo/hepatitis-virus-with-human-
```

```
liver.jpg?s=612x612&w=0&k=20&c=0Y8eNGsdsl3uqCmT55eqYD4keGSByw_z VKtm8VJowqg='); /* Replace with your background image URL */
```

```
background-size: 100%;
  background-position:center;
  margin: 0;
  padding:center;
  display: flex;
  justify-content:center;
  align-items: center;
  height: 100vh;
  color:#fff;
}
.box{
  max-width:550px;
  width: 100%;
  background:rgba(255,255,255,0.8);/*Semi-transparentwhite*/
  border-radius: 12px;
  box-shadow:04px20pxrgba(0,0,0,0.3);
  text-align: center;
  padding:30px;
  transition:transform0.2s;
}
.box:hover {
  transform:translateY(-5px);
}
h1 {
  font-size: 2.5em;
  color: #007bff;
  margin-bottom:15px;
```

```
}
p {
  font-size:1.1em;
  line-height: 1.6;
  color:#333;
  margin-bottom:20px;
}
a{
  display:inline-block;
  margin-top: 20px;
  padding: 12px 24px;
  background-color:#007bff;
  color: white;
  text-decoration:none;
  border-radius: 5px;
  font-weight: bold;
  transition:background-color0.3s,transform0.2s;
}
a:hover{
  background-color:#0056b3;
  transform:translateY(-2px);
}
@media(max-width:600px){
  h1 {
    font-size:2em;
  }
  p {
    font-size:1em;
```

```
}
       a{
         padding:10px20px;
       }
     }
</style>
</head>
<body>
<divclass="box">
<h1>LiverDiseasePrediction</h1>
>
       SimplyEnteryourhealthmetrics,andourmachinelearningmodelwill analyze
the data to provide you with a prediction regarding liver disease.
<a href="/predict">Predict</a>
</div>
</body>
</html>
```

Index.html

```
<!DOCTYPEhtml>
<htmllang="en">
<head>
<metacharset="UTF-8">
<metaname="viewport"content="width=device-width,initial-scale=1.0">
<title>LiverDiseasePrediction</title>
```

```
link
href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=s
wap" rel="stylesheet">
<style>
    body{
       font-family: 'Roboto', sans-serif;
       background-color:rgba(15,15,15,0.7);
       color:#b18f8f; /* Skyblue backgroundcolor */
       background-image:url('https://wallpapercave.com/wp/wp5935595.jpg');/*
Replace with your image URL */
       background-size: cover; /* Cover the whole viewport */
       background-position: cover; /* Center the background image */
       background-blend-mode:overlay;/*Blendthecolorandimage*/
       margin: 0;
       padding: 0;
       display:flex;
       justify-content:center;
       align-items: center;
       height: 0vh;
       color:#050505;
     }
    .container{
       background:#92c2d1(236,230,230,0.9);
       border-radius: 12px;
       box-shadow:04px20pxrgba(0,0,0,0.2);
       width: 90%; /* Set to full width */
       max-width:100vw;/*Allowfullwidthofviewport*/height:
       100%; /* Alow full height */
       box-sizing:border-box;/*Ensurepaddingisincludedinwidth*/
```

```
}
h3 {
  text-align: center;
  color: #f1f1f1;
  margin-bottom:20px;
  font-weight: 700;
  text-shadow:1px1px 2pxrgba(122,7,7, 0.2);
}
label{
  display: block;
  margin:10px05px;
  font-weight: 600;
  color: #ffffff;
input[type="number"],
select {
  width: 75%;
  padding:12px;
  margin-bottom: 15px;
  border: 2px solid #4277af;
  border-radius: 5px;
  transition:border-color0.3s;
}
input[type="number"]:focus,
select:focus {
  border-color:#4f8dcf;
  outline: none;
}
```

```
input[type="submit"]{
       width: 10%;
       padding: 12px;
       background-color:#086dd8;
       color: white;
       border: none;
       border-radius:5px;
       font-weight: bold;
       cursor: pointer;
       transition:background-color0.3s;
       font-size: 16px;
     }
    input[type="submit"]:hover {
       background-color:#4b6177;
     }
     @media (max-width: 600px) {
       .container {
         padding:30px;
     }
</style>
</head>
<body>
<divclass="container">
<h3>EnterYourDetailsforLiverDiseasePrediction</h3>
<formaction='/submit'method='POST'>
<labelfor="age">Age</label>
<inputtype="number"id="age"min="0"max="120"name="age" placeholder="Enter</pre>
your age..." required>
```

```
<labelfor="gender">Gender</label>
<selectid="gender"name="gender" required>
<optionvalue="0">Male</option>
<optionvalue="1">Female</option>
</select>
<labelfor="tb">TotalBilirubin</label>
<inputtype="number"id="tb"min="0"name="tb"step="0.1"placeholder="Total</pre>
Bilirubin value" required>
<labelfor="db">Direct Bilirubin</label>
<inputtype="number"id="db"min="0"name="db"step="0.1"</pre>
placeholder="Direct Bilirubin value" required>
<labelfor="ap">Alkaline Phosphotase</label>
<inputtype="number"id="ap"min="0"name="ap"placeholder="Alkaline
Phosphotase" required>
<labelfor="aa1">AlamineAminotransferase</label>
<inputtype="number"id="aa1"min="0"name="aa1"placeholder="Alamine</pre>
Aminotransferase" required>
<labelfor="aa2">AspartateAminotransferase</label>
<inputtype="number"id="aa2"min="0"name="aa2"placeholder="Aspartate</pre>
Aminotransferase" required>
<labelfor="tp">TotalProteins</label>
<inputtype="number"id="tp"min="0"step="0.1"name="tp"placeholder="Total</pre>
Proteins" required>
```

```
<labelfor="a">Albumin</label>
<inputtype="number"id="a"min="0"step="0.1"name="a"
placeholder="Albumin" required>
<labelfor="agr">AlbuminandGlobulinRatio</label>
<inputtype="number"id="agr"step="0.01"name="agr"placeholder="Albumin and Globulin Ratio" required><br>
<inputtype='submit'value='Submit'>
</form>
</div>
</body>
</html>
```

Chance.html

```
font-family: 'Roboto', sans-serif;
       background:url('https://thumbs.dreamstime.com/b/cartoon-doctor-holding-
large-liver-front-world-to-raise-awareness-hepatitis-day-customizable-illustration-
322191059.jpg') no-repeat center center fixed; /*Add your background image
URL here */
       background-size:100%;
       margin: 0;
       padding:center;
       display: flex;
       justify-content:center;
       align-items: center;
       height: 90vh;
       color:#ecf0f1;/*Lighttextcolor*/
     }
    .content{
       background:rgba(245,195,188,0.90);/*Semi-transparentbackgroundfor the
content */
       border-radius:12px;
       padding: 50px;
       text-align:center;
       box-shadow:04px 20px rgba(0,0,0,0.4);
     }
    .title{
       font-size: 2.5em;
       font-style:normal;
       margin-bottom:20px;
       color:#b91144;/*Marooncolorforthetitle*/
     }
    .result{
       font-size: 1.5em;
```

font-family: Verdana, Geneva, Tahoma, sans-serif;

margin-top: 20px;

```
color:#000000;/* Greencolorfor theresult */
}
</style>
</head>
<body>
<divclass="content">
<divclass="title-box">
<divclass="title">LIVERDISEASEPREDICTION</div>
<divclass="result">{{prediction }}</div>
</div>
</div>
</div>
</html>
```

Chance1.html

```
<!DOCTYPEhtml>
<htmllang="en">
<head>
<metacharset="UTF-8">
<metaname="viewport"content="width=device-width,initial-scale=1.0">
<title>LiverDiseasePrediction</title>
link
href="https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=s wap" rel="stylesheet">
<style>
    body{
```

```
font-family: 'Roboto', sans-serif;
       background: url('https://cdn.vectorstock.com/i/500p/78/18/an-abstract-
human-liver-cute-vector-36327818.jpg')no-repeatcentercenterfixed;/*Addyour
background image URL here */
       background-size:cover;
       margin: 0;
       padding:center;
       display: flex;
       justify-content:center;
       align-items: center;
       height: 100vh;
       color:#ecf0f1;/*Lighttextcolor*/
     }
    .content{
       background:rgba(245,195,188,0.90);/*Semi-transparentbackgroundfor the
content */
       border-radius:12px;
       padding: 50px;
       text-align:center;
       box-shadow:04px 20px rgba(0,0,0,0.4);
     }
    .title{
       font-size: 2em;
       margin-bottom:20px;
       color:#c0392b; /*Marooncolor forthetitle*/
     }
    .result{
       font-size: 1.5em;
       margin-top:20px;
       color:#27ae60;/* Greencolorfor theresult */
     }
```

```
</style>
</head>
<body>
<divclass="content">
<divclass="title-box">
<divclass="title">LiverDiseasePrediction</div>
<divclass="result">{{prediction }}</div>
</div>
</div>
</div>
</html>
```

GitHub & Project Demo Link

https://github.com/B-Prasanthi-4561/Prediction-and-Analysis-of-Liver-Patient-Data-Using-Machine-Learning

Video Demonstration Link

https://drive.google.com/file/d/1s06aUbccyBqmZNZG8ibD3YB2W WWNFKTj/view?usp=sharing