Project in **Data Intensive Systems**

Lab Lecture 7

Agenda

- Principle component analysis
- Clustering
- Lab 7 task descriptions

Principle component analysis (PCA)

- Dimensionality reduction:

 - Unsupervised learning
 Finds a low-dimensional representation of the observations that explain a good fraction of the variance and/or preserves distance of the observations
- PCA is a method of dimensionality reduction
- Each of the components/dimensions found by PCA is a linear combination of the p features.
- Once we have computed the principal components, we can plot them Geometrically, this amounts to projecting the original data down onto the subspace spanned by ϕ_1, ϕ_2 , and ϕ_3 , and plotting the projected points

Simple example, p=2: population size (pop) and ad spending for a particular company (ad)

Simple example, p=2: population size (pop) and ad spending for a particular company (ad)

Agenda

- Principle component analysis
- Clustering
- Lab 7 task descriptions

Clustering

- Find homogeneous or self-similar subgroups among the observations
- Approaches
 - K-means clustering,
 - number of clusters K is input

 - Hierarchical clustering,
 Does not require that we commit to a particular choice of K
 - Suggests many possible clusterings visualized in a tree representation called dendrogram
 Visual analytics (human insight) to decide on a clustering that "makes sense"

Clustering

A sets of clusters C_1 , ..., C_K each a set of observations such that ullet each observation belongs to at least one of the K clusters.

$$C_1 \cup C_2 \cup \ldots \cup C_K = \{1,\ldots,n\}$$

• the clusters are non-overlapping: no observation belongs to more than one cluster.

$$C_k \cap C_{k'} = \emptyset$$
 for all $k \neq k'$.

K-means clustering algorithm (heuristic)

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - For each of the K clusters, compute the cluster centroid. The k-th cluster centroid is the vector of the p feature means for the observations in the k-th cluster.
 Assign each observation to the cluster whose centroid is closest (where closest is defined using Euclidean distance).

Example iterations

K=3

Hierarchical Clustering Algorithm (bottom-up)

- 1. Begin with i=n observations and treat each as its own cluster.
- 2. Until *i*=2:
 - a. Compute all i(i-1)/2 pairwise inter-cluster (Euclidian) dissimilarities among the i clusters as maximal, minimal, or mean observation dissimilarities, or centroid dissimilarities (linkage)
 - b. Identify the pair of clusters that are least dissimilar, i.e., most similar.
 - c. Fuse these two clusters.
 - The dissimilarity between these two clusters indicates the height in the dendrogram at which the fusion should be placed.
 - d. There are i-1 remaining clusters.

2

Dendrograms as cluster representation (Example on random data)

Lab assignment 8: PCA and Clustering

- ML
 Perform a clustering of the AIMO observations (exclude the scores)
 Interpret the clusters
 Perform a PCA of the AIMO observations
 Praw the first two principle component scores of the data points and their clusters (colored 2D scatterplot)
 Interpret the plot
- Software development
 Maintenance sprint
- Reporting:
 In a eights notebook, document the ML steps
 Deadline: 2021-03-31