ADVANCED CONTROL SYSTEMS

Force Control

Riccardo Muradore

Outline

Force control

PROJECT

Parallel Force/Position Control

PROJECT

Force control

Direct Force Control

Indirect force control: the interaction force h_e can be indirectly controlled by acting on the desired pose of the end-effector assigned to the motion control system. E.g. compliance, impedance, admittance control.

Direct force control: the interaction force h_e can be directly controlled by specifying the desired force in a force feedback loop.

E.g. stabilizing PD control action on the force error + the nonlinear compensation actions.

A force control system typically consists of a control law based on both force measurements and position/velocity measurements (\rightarrow nested loops).

Direct Force Control

Assumptions:

- we will develop control schemes on the operational space
- we assume to know only the position $x_e \in \mathbb{R}^3$, where $\Sigma_e = \{o_e; x_e y_e z_e\}$ is the end-effector frame, $x_e = o_e$
- the control schemes are based on an inverse dynamic control position
- the environment is modeled as an elastic system

$$f_e = K(x_e - x_r)$$

where $\Sigma_r = \{o_r; x_r y_r z_r\}$ is the *environment rest frame*, $x_r = o_r$. (no torques!)

▶ the axes of the frame attached to the environment rest position Σ_t are parallel to the axes of the base frame Σ_b

Inverse dynamic control:

$$y = J^{-1}(q)M_d^{-1}(-K_D\dot{x}_e + \frac{K_P(x_F - x_e)}{M_d\dot{J}(q, \dot{q})\dot{q}}), \tag{1}$$

where x_F is a suitable *reference position* to be related to a *force error*.

There are no control action using \dot{x}_F (*D*-action) or \ddot{x}_F (feedforward)

Since we are *not* considering the orientation in the operational space, then $J(q) = J_A(q)$.

The system

$$\begin{cases} B(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau - J^{T}(q)h_{e} \\ \\ \tau = B(q)y + n(q, \dot{q}) + J^{T}(q)h_{e} \\ \\ y = J^{-1}(q)M_{d}^{-1}(-K_{D}\dot{x}_{e} + K_{P}(x_{F} - x_{e}) - M_{d}\dot{J}(q, \dot{q})\dot{q}) \end{cases}$$

ends up with

$$M_d\ddot{x}_e + K_D\dot{x}_e + K_Px_e = K_Px_F, \tag{2}$$

This is a position-position system mapping x_E (reference) into x_e (actual).

Figure: Equivalent system

Let f_d be the *desired constant force* reference; we can define a diagonal matrix C_F playing the role of a *compliance matrix* (mapping force into position) such that

$$x_F = C_F(f_d - f_e), \tag{3}$$

where f_e is the measured interaction force.

Using the expression for the spring-like interaction model

$$f_e = K(x_e - x_r)$$

we get

$$M_d\ddot{x}_e + K_D\dot{x}_e + K_P(I + C_FK)x_e = K_PC_F(Kx_r + f_d)$$
(4)

Figure: Block scheme of force control with inner position loop.

If C_F has a purely proportional control action (i.e. the 'controller' C_F is just the matrix C_F), then f_e cannot reach f_d (no zero steady-state error).

The position of the environment x_r affects the interaction force also at steady state (i.e. the amount of the steady-state error).

If C_F is a PI controller

$$C_F(s) = K_F + K_I \frac{1}{s}$$

then we can reach zero stady-state error

$$f_e = f_d$$

at the position

$$Kx_e = Kx_r + f_d$$
.

Force Control with Inner Velocity Loop

Suppose that we have only velocity measurements available, \dot{x}_e .

The modified inverse dynamic control will be

$$y = J^{-1}(q)M_d^{-1}(-K_D\dot{x}_e + \frac{K_PX_F}{K_PX_F} - M_d\dot{J}(q,\dot{q})\dot{q}), \tag{5}$$

where x_F is again a suitable *reference position* to be related to a *force error*.

The inner controller+robot system is equivalent to

$$M_d\ddot{x}_e + K_D\dot{x}_e = K_P x_F, \tag{6}$$

where we considered that $J_A(q) = J(q)$ because the operational space is defined only by position variables.

If $C_F(s) = K_F$ (P-action) the outer force loop computes

$$x_F = K_F(f_d - f_e), \tag{7}$$

As before K_F is a diagonal matrix and has a meaning of *compliance*.

Force control Riccardo Muradore 11

Figure: Block scheme of force control with inner velocity loop.

Force Control with Inner Velocity Loop

Under the assumption of elastically compliant environment, $f_e = K(x_e - x_r)$, the overall system dynamics is described by

$$M_d \ddot{x}_e + K_D \dot{x}_e + K_P K_F K x_e = K_P K_F (K x_r + f_d)$$
(8)

The relationship between position and contact force at the equilibrium is

$$Kx_e = Kx_r + f_d (9)$$

(since K_P and K_F are non singular.)

Remarks:

- Since K_P and K_F are multiplies, then we can design only a single matrix $K_F' = K_P K_F$
- The absence of an integral operator does not ensure $f_e = f_d$ in steady-state.

Force Control with Inner Position/Velocity Loop

Both Force Control with Inner Position/Velocity Loops have a *drawback*: if f_d has components outside Image(K), they cause a drift of the end-effector position.

PROJECT – Assignment # 14

To do

Implement the Force Control with Inner Position Loop.

Parallel Force/Position Control

Parallel Force/Position Control

The *Parallel Force/Position Control* is a control scheme where both the *desired reference* force f_d and the *desired reference position* x_d are provided.

The control y is changed as

$$y = J^{-1}(q)M_d^{-1}(-K_D\dot{x}_e + K_P(x_F - x_e + x_d) - M_d\dot{J}_A(q, \dot{q})\dot{q})$$

= $J^{-1}(q)M_d^{-1}(-K_D\dot{x}_e + K_P(x_F + \tilde{x}) - M_d\dot{J}_A(q, \dot{q})\dot{q}),$

where $\tilde{x} = x_d - x_e$.

- ightharpoonup position control action $K_P \tilde{x}$ (inner loop)
- ▶ force control action $K_P C_F (f_d f_e)$ where C_F is a constant K_F or a PI controller $C_F = K_F + K_I \frac{1}{s}$ (outer loop)

Figure: Block scheme of parallel force/position control.

Parallel Force/Position Control

The equilibrium position satisfies

$$x_e = x_d + C_F(K(x_r - x_e) + f_d).$$
 (10)

- ▶ Along directions outside Image(K) (i.e. $unconstrained\ motion$): x_d is reached by x_e ;
- ► Along directions belonging to Image(K) (i.e. constrained motion): x_d acts like an additional disturbance.

With an integral action in C_F , the desired force f_d is reached by f_e at steady state $x_e \neq x_d$: the displacement is related to the environment compliance (i.e. K)

PROJECT – Assignment # 15

To do

Implement the Parallel Force/Position Control.

