Introduction to Abstract Algebra

UT Knoxville, Fall 2023, MATH 351

David White, Alex Zhang

September 25, 2023

Contents

1	Introduction						
	1.1	Relations	2				
	1.2	Functions	3				
2	The Integers and Modular Arithmetic						
	2.1	Divisibility	4				
	2.2	Prime Factorization	5				
	2.3	Properties of Integers	5				
	2.4	Modular Arithmetic	5				
3	Introduction to Groups						
	3.1	The Basics	10				
	3.2	Order	12				
	3.3	Cyclic Groups	14				
	3.4	Subgroups	15				
	3.5	Cyclic Groups	18				
	3.6	Cosets and Lagrange's Theorem	18				
4	Factor groups and Homomorphisms						
	4.1	Normal Subgroups	21				
	4.2	Factor Groups	22				
Index							

Introduction

TODO: Pentagon rotation and mirroring example

1.1 Relations

Definition 1.1.1 ▶ **Relation**

Let *A* and *B* be sets.

- A *relation* from A to B is a subset of the Cartesian product $A \times B$.
- A *relation* on A is a subset of the Cartesian product $A \times A$.

Given a relation ρ , we denote $(a, b) \in \rho$ as $a \rho b$. If $(a, b) \notin \rho$, we write $a \not b$.

Definition 1.1.2 ▶ Reflexive, symmetric, transitive, equivalence relation

Let ρ be a relation on a set A.

- ρ is *reflexive* if, for any $a \in A$, $a \rho a$.
- ρ is *symmetric* if $a \rho b$ implies $b \rho a$.
- ρ is *transitive* if, whenever $a \rho b$ and $b \rho c$, we have $a \rho c$.

If ρ satisfies all three properties, it is called an *equivalence relation*. We often use \sim to denote an equivalence relation.

Definition 1.1.3 ▶ Equivalence class

Let \sim be an equivalence relation on a set A, and let $a \in A$. The **equivalence class** of a is a set defined as:

$$[a]\coloneqq\{b\in A\,:\, a\sim b\}$$

1.2 Functions

Definition 1.2.1 ▶ Function

Let X and Y be sets. A *function* from X to Y is a relation f from X to Y such that, for each $x \in X$, there exists exactly one $y \in Y$ where x f y. We write $f : X \to Y$ to mean f is a function from X to Y, and we write f(x) = y to mean x f y.

Definition 1.2.2 ► Injective, surjective, bijective

Let $f: X \to Y$ be a function.

- f is *injective* if, for all x_1 and x_2 where $x_1 \neq x_2$, we have $f(x_1) \neq f(x_2)$.
- f is *surjective* if, for all $y \in Y$, there exists $x \in X$ such that f(x) = y.
- *f* is *bijective* if it is both injective and surjective.

Definition 1.2.3 ▶ **Permutation**

A *permutation* of a set *A* is a function from *A* to *A*.

Definition 1.2.4 ▶ **Binary operation**

A *binary operation* on a set *A* is a function from $A \times A$ to *A*.

Wowzers

The Integers and Modular Arithmetic

Theorem 2.0.1 ▶ Well Ordering Axiom

If *S* is a nonempty subset of \mathbb{N} , then *S* has a minimum value.

Theorem 2.0.2 ▶ Principle of Mathematical Induction

For each $n \in \mathbb{N}$, let P(n) denote a statement. Suppose that:

- 1. P(1) is true, and
- 2. for each $n \in \mathbb{N}$, if P(n) is true, then P(n + 1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

2.1 Divisibility

Theorem 2.1.1 ▶ Division Algorithm

TODO: division algorithm

Definition 2.1.2 ▶ **Divides**

Let $a, b \in \mathbb{Z}$. We say a *divides* b if there exists an integer k such that b = ka. We write $a \mid b$ to mean a divides b.

Definition 2.1.3 ➤ Greatest common divisor (GCD)

Let $a, b \in \mathbb{Z}$ where at least one is non-zero. The *greatest common divisor (GCD)* of a and b is the largest positive integer g such that $g \mid a$ and $g \mid b$. We write gcd(a, b) or simply (a, b) to denote the greatest common divisor of a and b.

Definition 2.1.4 ▶ Relatively prime, coprime

Let $a, b \in \mathbb{Z}$, where at least one is non-zero. We say a and b are *relatively prime* (or *coprime*) if gcd(a, b) = 1.

Theorem 2.1.5

Let $a, b \in \mathbb{Z}$, where at least one is non-zero. Then there exist $u, v \in \mathbb{Z}$ where gcd(a, b) = au + bv. Moreover, gcd(a, b) is the smallest possible number of all values of u and v.

Theorem 2.1.6 ► Euclidean Algorithm

TODO

2.2 Prime Factorization

Definition 2.2.1 ▶ Prime, composite

A natural number p > 1 is *prime* if its only positive divisors are 1 and p itself. Otherwise, p is *composite*.

Theorem 2.2.2 ▶ Euclid's Lemma

Let $p \in \mathbb{N}$ where p > 1. p is prime if and only if, for any integers a and b where $p \mid ab$, then $p \mid a$ or $p \mid b$.

Theorem 2.2.3 ▶ Fundamental Theorem of Arithmetic

For every natural number a greater than 1, there exists a unique set of primes $\{p_1, \dots, p_n\}$ such that $a = p_1 \cdots p_n$.

2.3 Properties of Integers

2.4 Modular Arithmetic

Definition 2.4.1 ► **Modular congruency**

Let $n \in \mathbb{N}$ where n > 1, and let $a, b \in \mathbb{Z}$. We say a is *congruent* to b *modulo* n if $n \mid (a-b)$ (that is, if a and b have the same remainder when divided by n). We write $a \equiv b \pmod{n}$ to mean a is congruent to b modulo n.

Theorem 2.4.2

Let $n \in \mathbb{N}$ where n > 1. Then $a \equiv b \pmod{n}$ is an equivalence relation.

The equivalence classes of $a \equiv b \pmod{n}$ are conventionally written as:

$$[0], [1], \dots, [n-1]$$

These are called the *congruence classes modulo n*, where:

$$\mathbb{Z}_n := \{[0], [1], \dots, [n-1]\}$$

On \mathbb{Z}_n , we define addition modulo n and multiplication modulo n as:

$$[a] + [b] = [a+b]$$

$$[a] \cdot [b] = [ab]$$

For example, in \mathbb{Z}_7 , we have [5] + [6] = [4]. We will often shorten this as 5 + 6 = 4 when the context is clear.

Theorem 2.4.3

Addition modulo *n* and multiplication modulo *n* are well-defined.

Proof. Fix $n \in \mathbb{N}$ where n > 1. Suppose $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$. To prove addition modulo n is well-defined, we need to verify the following equality:

$$[a_1] + [b_1] = [a_2] + [b_2]$$

Note that:

$$(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2)$$

Since $n \mid (a_1 - a_2)$ and $n \mid (b_1 - b_2)$, we have $n \mid [(a_1 + b_1) - (a_2 + b_2)]$, so addition is well-defined.

To prove multiplication is well-defined, we need to verify the following equality:

$$[a_1][b_1] = [a_2][b_2]$$

Note that:

$$a_1b_1 - a_2b_2 = a_1b_1 - a_1b_2 + a_1b_2 - a_2b_2 = a_1(b_1 - b_2) + (a_1 - a_2)b_2$$

So multiplication modulo *n* is also well-defined

These operations follow similar properties as traditional integer addition and multiplication. Addition in \mathbb{Z}_n is closed, associative, commutative, and has additive identity [0] and additive inverse [-a] for any $a \in \mathbb{Z}_n$.

Multiplication in \mathbb{Z}_n is closed, associative, commutative, distributive, and has multiplicative identity [1]. However, not every \mathbb{Z}_n has a multiplicative inverse for all elements.

Example 2.4.4 \blacktriangleright Multiplicative inverse in \mathbb{Z}_n

In \mathbb{Z}_6 , does ab = 0 mean that a = 0 or b = 0? Not necessarily: a = 3 and b = 2 is a counterexample.

In \mathbb{Z}_7 , does ab = 0 mean a = 0 or b = 0? For any $a \in \mathbb{Z}_7$ where $a \neq 0$, note that $\gcd(a,7) = 1$. Thus, there exist $u,v \in \mathbb{Z}$ where au + 7v = 1. Rearranging, we get 7v = 1 - au, so $7 \mid (au - 1)$. That means [a][u] = [1], so u is the multiplicative inverse of a. Since our choice of a was arbitrary, then every element in \mathbb{Z}_7 has a multiplicative inverse.

Example 2.4.5

In \mathbb{Z}_5 , what is 4^{91} ?

$$4^1 = 4$$

$$4^2 = 1$$

$$4^3 = 4$$

$$4^4 = 1$$

:

$$4^{91} = 4$$

$$3^1 = 3$$
, $3^2 = 4$, $3^2 = 2$, $3^4 = 1$, so $3^{91} = (3^4)^{22} \cdot 3^3 = 2$.

Example 2.4.6

Find *b* satisfying:

$$b \equiv 3 \pmod{5}$$

$$b \equiv 4 \pmod{11}$$

$$b \equiv 6 \pmod{14}$$

Note that 5 and 11 are relatively prime, so there exist $u, v \in \mathbb{Z}$ where 5u + 11v = 1. In this case, we can take u = -2 and v = 1. Note that:

$$5(-2)4 + 11(1)3 \equiv 3 \pmod{5}$$

$$5(-2)4 + 11(1)3 \equiv 4 \pmod{11}$$

More generally, we can take b = -7 + 55k for any $k \in \mathbb{Z}$.

Alternatively, we can let:

$$d_1 := 11 \cdot 14 = 154$$

$$d_2 \coloneqq 5 \cdot 14 = 70$$

$$d_3 := 5 \cdot 11 = 55$$

Note that gcd(5, 154) = 1, so:

$$5(31) + 154(-1) = 1 \implies 5 \cdot 31 \equiv 1 \pmod{5}$$

$$11(-19) + 70(3) = 1 \implies 70 \cdot 3 \equiv 1 \pmod{11}$$

$$14(4) + 55(-1) = 1 \implies 55(-1) \equiv 1 \pmod{14}$$

Let b := 154(-1)(3) + 70(3)4 + 55(-1)6. Then:

$$b \pmod{5} = 154(-1)(3) = 3$$

$$b \pmod{11} = 4$$

$$b \pmod{14} = 6$$

Theorem 2.4.7 ▶ Chinese Remainder Theorem

Let n_1, \ldots, n_k be positive integers, all greater than 1, where any two different n_i and n_j are relatively prime. If $a_1, \ldots, a_n \in \mathbb{Z}$, we can find $b \in \mathbb{Z}$ satisfying $b \equiv a_i \pmod{n_i}$ for all $1 \le i \le k$. Moreover, if $c \equiv a_i \pmod{n_i}$, then $b \equiv c \pmod{n_1 n_2 \cdots n_k}$.

 \Box

Introduction to Groups

3.1 The Basics

Definition 3.1.1 ▶ **Group**

A *group* is a set *G* together with a binary operation * satisfying for any $a, b, c \in G$:

- *closure* under *, meaning $a * b \in G$;
- associativity under *, meaning (a * b) * c = a * (b * c);
- existence of an *identity element* $e \in G$ satisfying e * a = a * e; and
- existence of an *inverse* for a, say $a^{-1} \in G$ where $a * a^{-1} = a^{-1} * a = e$.

A group is *abelian* if it is commutative under *, meaning a * b = b * a for any $a, b \in G$.

Some examples of groups include \mathbb{Z} under addition, \mathbb{Z}_n where $n \geq 2$ under addition, and D_{10} under \circ , the dihedral group of the regular pentagon, often called D_5 . (TODO: pentagon example)

Theorem 3.1.2 ▶ Uniqueness of identities and inverses

Let *G* be a group.

- 1. The identity of G is unique (that is, there is only one identity element in G).
- 2. For any $a \in G$, its inverse a^{-1} is unique.

Proof of 1. Let e and f be identity elements in G Then ef = e because f is an identity, and ef = f because e is an identity. Thus, e = f.

Proof of 2. Let b and c be inverses of a. Then bac = (ba)c = ec = c, and bac = b(ac) = be = b. Thus, b = c.

Theorem 3.1.3 ▶ Cancellation

Let G be a group, and let $a, b, c \in G$. If ab = ac or ba = ca, then b = c.

Proof sketch. If ab = ac, then $a^{-1}(ab) = a^{-1}(ac)$... so b = c.

Theorem 3.1.4

Let G be a group, and let $a, b \in G$. Then there is a unique $c \in G$ satisfying ac = b, and there is a unique $d \in G$ satisfying da = b.

Intuition: $c = a^{-1}b$ and $d = ba^{1}$.

Definition 3.1.5 ▶ **Permutation**

A *permutation* on a set A is an injective function $\sigma: A \to A$, written as:

$$\sigma \coloneqq \begin{pmatrix} 1 & 2 & 3 \\ a & b & c \end{pmatrix}$$

to mean $\sigma(1) = a$, $\sigma(2) = b$, $\sigma(3) = c$.

Since these are functions, we can compose two or more permutations.

Permutation example, composition example

The set of permutations, under function composition, is a *group*.

- · Closed
- Associativity
- Existence of an identity element e where $e \circ \sigma = \sigma \circ e$ for all σ . In this case, e is simply the identity function.
- Existence of an inverse for each σ . That is, for any σ , there exists τ where $\sigma \circ \tau = \tau \circ \sigma = e$.

Definition 3.1.6 \triangleright Symmetric group (S_n)

The set of permutations on 3 elements under function composition is called S_3 , the *symmetric group* on 3 elements.

Let $n \ge 2$. Let U(n) denote the set of all $a \in \mathbb{Z}_n$ where gcd(a, n) = 1, under the multiplication modulo n.

Definition 3.1.7 ▶ **Direct product**

Let G be a group with operation *, and let H be a group with operation \cdot . On the Cartesian

product $G \times H$, define the operation \diamond by:

$$(g_1,h_1)\diamond(g_2,h_2)\coloneqq(g_1*g_2,h_1\cdot h_2)$$

for all $g_i \in G$, $h_i \in H$. We call this the *direct product* of G and H.

Theorem 3.1.8 ▶ Direct product is always a group

The direct product of any two groups is itself a group.

Example 3.1.9 ▶ Simple direct product

Consider the direct product $\mathbb{Z}_3 \times S_3$.

- How many elements are in the direct product?
- What is the identity element?
- What is the inverse of $(2, (\frac{1}{3}, \frac{2}{1}, \frac{3}{2}))$?
- There are 3 elements in \mathbb{Z}_3 and 6 elements in S_3 , so there are a total of 18 elements in the direct product.
- The identity element is $\left(0, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}\right)$
- The inverse of $\left(2, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}\right)$ is $\left(1, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}\right)$

matrix size

3.2 Order

Integer powers

In groups under an addition operation such as \mathbb{Z}_{15} , we write $7 \cdot 2$ instead of 2^7 to avoid ambiguity with the notation for integer powers.

Theorem 3.2.1 ▶ Properties of power

- 1. $a^m a^n = a^{m+n}$
- 2. $(a^m)^n = a^{mn}$
- 3. $a^{-n} = (a^{-1})^n = (a^n)^{-1}$

Definition 3.2.2 ▶ Order

Let G be a group under operation \cdot .

- The *order* of G (denoted |G|) is the number of elements in G. G is *finite* if its order is finite; otherwise, it's an *infinite* group.
- The *order* of an element $a \in G$ (denoted |a|) is the smallest positive integer where:

$$\underbrace{a \cdot a \cdot a \cdots a}_{n \text{ times}} = e \quad \text{(the identity element of } G\text{)}$$

If such an *n* exists, *a* has *finite order*; otherwise, *a* has *infinite order*.

In any group, the identity element is the only element that has order 1.

Example 3.2.3 ► **Order of common groups**

- $|Z| = \infty$
- $|Z_{15}| = 15$
- $|D_{10}| = 10$
- $|S_5| = 5!$
- $|D_6 \times S_4| = 6 \cdot 4!$

Example 3.2.4 ▶ Order of elements in common groups

- Order of $2 \in \mathbb{Z}_4$ is 2 because 2 + 2 = 0 = e
- Order of $3 \in U(8)$ is 3 because $3^2 = 1 = e$
- Order of $\sigma := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$ is 3 because $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$

Theorem 3.2.5 ▶ Properties of order

Let G be a group, and let $a \in G$.

- 1. If a has infinite order, then $a^i = a^j$ if and only if i = j.
- 2. If a has order $n \in \mathbb{Z}^+$, then $a^i = a^j$ if and only if $n \mid (i j)$.

Proof sketch. Consider *i* and *j* where $a^{i-j} = e$.

- 1. If a has infinite order, then i j = 0.
- 2. If *a* has finite order, write i j = nq + r for $0 \le r < n$ (by the division algorithm TODO: REF). Then:

$$a^{i-j} = (a^n)^q a^r = e$$

So $a^r = e$. But r < n, and n is the smallest positive integer satisfying $a^n = e$. Thus, r = 0.

Corollary 3.2.6

Let *G* be a group, and let $a \in G$ where $|a| = n \in \mathbb{Z}^+$. Then $a^i = e$ if and only if $n \mid i$.

Example 3.2.7

Show that *ab* and *ba* have the same order.

Suppose $(ab)^n = e$. Then:

$$(ba)^n = \underbrace{baba \cdots ba}_{n \text{ times}}$$
$$= b(ab)^{n-1}a$$

So $(ba)^n b = b(ab)^{n-1} ab = b(ab)^n = b$. Thus, $(ba)^n = e$. Thus, $n \mid |ba|$, or $|ab| \mid |ba|$.

3.3 Cyclic Groups

Definition 3.3.1 ► Cyclic

A group *G* is *cyclic* if there exists $a \in G$ where, for any $b \in G$:

$$b = a^n$$
 for some $n \in \mathbb{Z}$

In other words, G is cyclic if there exists $a \in G$ where any element of G is a power of a. In this context, we say a is a *generator* of G and write $G = \langle a \rangle$, where:

$$\langle a \rangle \coloneqq \{a^k \, : \, k \in \mathbb{Z}\}$$

For example, \mathbb{Z} under addition is a cyclic group. For any $n \in \mathbb{Z}$, we have:

$$1 \cdot n = n$$

Note here that $1 \cdot n$ reflects the idea of integer powers under addition. We apply the group

operation of addition *n*-times. For example:

$$5 = 1^5 = 1 \cdot 51 + 1 + 1 + 1 + 1$$
$$-2 = 1^{-2} = 1 \cdot (-2) = -(1+1)$$

When dealing with additive operations, we usually omit the exponent notation and simply write the multiplicative expression. Note also that \mathbb{Z} can be generated by -1. Thus, the generator of a cyclic group is not guaranteed to be unique.

Another example, in \mathbb{Z}_{12} , we have:

$$\langle 1 \rangle = \{0, 1, 2, \dots, 10, 11\}$$

 $\langle 4 \rangle = \{0, 4, 8\}$

In fact, this $\langle 4 \rangle$ is itself a group under addition modulo 12.

Theorem 3.3.2 ▶ Every cyclic group is abelian

Let *G* be a group. If *G* is cyclic, then it is abelian.

3.4 Subgroups

Definition 3.4.1 ► **Subgroup**

Let *G* be a group under an operation *. Then a subset $H \subseteq G$ is considered a *subgroup* of *G* if *H* itself also a group under *. *H* is called a *proper subgroup* of *G* if $H \subseteq G$.

Trivially, every group is a subgroup of itself. Also, $\{e\}$ is a subgroup of every group. More substantially, \mathbb{Z} is a subgroup of \mathbb{Q} , and \mathbb{Q} is a subgroup of \mathbb{R} . This is sometimes written as $\mathbb{Z} \leq \mathbb{Q}$, and $\mathbb{Q} \leq \mathbb{R}$.

Theorem 3.4.2 ▶ Conditions for subgroup

Let G be a group under operation *, and let $H \subseteq G$. Then H is a subgroup of G if and only if:

- 1. $e \in H$ (the subset contains the identity);
- 2. for any $a, b \in H$, $a * b \in H$ (the subset is closed under *); and
- 3. for any $a \in H$, $a^{-1} \in H$ (the subset contains all inverses).

Example 3.4.3 \triangleright Determining $3\mathbb{Z}$ is a subgroup of \mathbb{Z}

Consider the following set:

$$3\mathbb{Z} \coloneqq \{3x : x \in \mathbb{Z}\}$$

We have:

- 1. $0 \in 3\mathbb{Z}$
- 2. For any $a, b \in 3\mathbb{Z}$, a = 3m and b = 3n for some $m, n \in \mathbb{Z}$. Thus, $a + b = 3m + 3n = 3(m + n) \in 3\mathbb{Z}$.
- 3. For any $a \in 3\mathbb{Z}$, $a^{-1} = -a = 3(-m)$.

Thus, we can confirm that $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Note that in the above example, we can also write:

$$3\mathbb{Z} := \langle 3 \rangle = \{3x : x \in \mathbb{Z}\}$$

Definition 3.4.4 ▶ Cyclic subgroup

Let G be a group, and let $a \in G$. The *cyclic subgroup* generated by a is defined as:

$$\langle a \rangle := \{ a^n : n \in \mathbb{Z} \}$$

For example, in \mathbb{Z}_{12} , we have:

$$\langle 0 \rangle = \{0\}$$

$$\langle 1 \rangle = \mathbb{Z}_{12}$$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$$

$$\langle 3 \rangle = \{0, 3, 6, 9\}$$

$$\langle 4 \rangle = \{0,4,8\}$$

$$\langle 5 \rangle = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\} = \mathbb{Z}_{12}$$

$$\langle 6 \rangle = \{0,6\}$$

$$\langle 7 \rangle = \dots = \mathbb{Z}_{12}$$

$$\langle 8 \rangle = \{0, 8, 4\}$$

$$\langle 9 \rangle = \{0, 9, 6, 3\}$$

$$\langle 10 \rangle = \{0,10,8,6,4,2\} = \langle 2 \rangle$$

$$\langle 11 \rangle = \dots = \mathbb{Z}_{12}$$

 \bigcirc

From this, it seems that numbers relatively prime with 12 can generate the entirety of \mathbb{Z}_{12} . In fact, if |a| = n, then $|a^i| = \frac{n}{\gcd(n,i)}$.

this fact!!!

Theorem 3.4.5 ▶ Cyclic subgroups are groups

Let *G* be a group, and let $a \in G$. $\langle a \rangle$ is a subgroup.

Proof sketch. We simply check the three conditions.

- 1. $e = a^0$.
- 2. $a^{m}a^{n} = a^{m+n}$
- 3. if $a^m \in \langle a \rangle$, then $a^{-m} \in \langle a \rangle$.

Thus, $\langle G \rangle$ is a subgroup of G.

Theorem 3.4.6 ▶ Conditions for subgroup relaxed

Let *G* be a group, and let $H \subseteq G$. Then *H* is a subgroup *G* if and only if:

- 1. $e \in H$, and
- 2. $ab^{-1} \in H$ for any $a, b \in H$.

Proof sketch. Let $a \in H$. $e \in H$ by (1), so $1 \cdot a^{-1} \in H$.

Let $a, b \in H$. $b^{-1} \in H$ by the first statement, so then $a(b^{-1})^{-1} \in H$, so $ab \in H$.

Theorem 3.4.7 ▶ Conditions for finite subgroup

Let *G* be a group, and let *H* be a **finite** subset of *G*. Then *H* is a subgroup of *G* if and only if:

- 1. $e \in H$, and
- 2. $ab \in H$ for any $a, b \in H$.

Intuition: This theorem is saying that if we take a finite subset of G, then these two conditions alone imply the existence of inverses, and vice versa. For any $a \in H$, we have:

$$\langle a \rangle = \{e, a, a^2, a^3, ...\} \subseteq H$$

Since H is finite, then these a's must "wrap around" back to e. For example, we might have $a^5 = a^{17}$, which implies that $e = a^{12} = a(a^{11})$. Thus, the inverse of a is a^{11} .

Crucially, this theorem does not apply for infinite subsets/subgroups.

Definition 3.4.8 ▶ Center

Let *G* be a group. The *center* of *G* is defined as:

$$Z(G) := \{ z \in G : az = za \text{ for all } a \in G \}$$

If G is abelian, then Z(G) = G.

TODO: dihedral groups, diagram thing

3.5 Cyclic Groups

Definition 3.5.1 ► Euler phi-function

The *Euler phi-function* is a function $\phi : \mathbb{N} \to \mathbb{N}$ where $\phi(n)$ is the number of integers $1 \le i \le n$ where $\gcd(i, n) = 1$.

For example, to calculate $\phi(10)$, we can look at all the integers 1 through 10 and see if they are relatively prime to 10. From doing this, we see that only 1, 3, 7, and 9 are relatively prime to 10. Thus, $\phi(10) = 4$.

Much much more stuff

3.6 Cosets and Lagrange's Theorem

Definition 3.6.1 ► **Modular congruency (groups)**

Let *G* be a group, and let *H* be a subgroup of *G*. For any $a, b \in G$, we say *a* is **congruent** to *b* **modulo** if $a^{-1}b \in H$. That is:

$$a \equiv b \pmod{H} \iff a^{-1}b \in H$$

Theorem 3.6.2

For any group H, congruence modulo H is an equivalence relation.

Proof. If $a \equiv b \pmod{H}$, then $a^{-1}b \in H$. Thus, $a^{-1}b = h$ for some $h \in H$. Also, $b = ah \in aH$, and clearly $a \in aH$. If b = ah for some $h, \in H$, then $a^{-1}b = h \in H$. Thus, $a \equiv b \pmod{H}$.

As with any equivalence relation, we have equivalence classes defined below:

Definition 3.6.3 ► Left coset, right coset

Let *H* be a subgroup of *G*. For any $g \in G$, the *left cosets* of *H* in *G* are sets defined as:

$$gH := \{gh : h \in H\}$$

Similarly, we define *right cosets* of *H* in *G* as:

$$Hg := \{hg : h \in H\}$$

Note: If the group operation is addition, we write g + H instead of gH.

Theorem 3.6.4 ▶ Cosets partition a group

Let H be a group, and let H be a subgroup of G. Then the left cosets of H in G partition G.

- 1. Each $a \in G$ is in exactly one left coset, aH; and
- 2. if $a, b \in G$, either aH = bH or $aH \cap bH = \emptyset$.

Example 3.6.5 ▶ Left cosets and partitioning

Consider the group $U(16) = \{1, 3, 5, 7, 9, 11, 13, 15\}$ with $H = \langle 3 \rangle$. Then we have the following left cosets of H in U(16):

- 1. 1H = H
- 2. $3H = \{3, 9, 11, 1\} = H$
- 3. $5H = \{5 \cdot 1, 5 \cdot 3, 5 \cdot 9, 5 \cdot 11\} = \{5, 15, 13, 7\}$
- 4. $7H = \{7, 5, 15, 13\}$
- 5. $9H = \{9, 11, 1, 3\} = H$
- 6. $11H = \{11, 1, 3, 9\} = H$
- 7. $13H = \{13, 7, 5, 15\}$
- 8. $15H = \{15, 13, 7, 5\}$

From this, there are only two distinct equivalence classes (and thus, only two left cosets): $\{1, 3, 9, 11\}$ and $\{5, 7, 13, 15\}$. These two left cosets partition U(16).

Theorem 3.6.6 ▶ Lagrange's Theorem

Let G be a group, and let H be a subgroup of G. Then |H| divides |G|.

 \bigcirc

Definition 3.6.7 ► **Index**

Let H be a subgroup of G. The index of H in G, written [G : H], is the number of left cosets of H in G.

Corollary 3.6.8

If G is a group and $a \in G$, then |a| divides |G|.

Corollary 3.6.9

Every group of prime order is cyclic.

Proof.

Example 3.6.10

Let *G* be a group having subgroups *H* and *K*, where |H| = 20 and |K| = 63. Show that $H \cap K = \{c\}$.

Factor groups and Homomorphisms

4.1 Normal Subgroups

Definition 4.1.1 ▶ **Normal subgroup**

Let *N* be a subgroup of *G*. We say *N* is a *normal subgroup* of *G* if aN = Na for all $a \in G$. That is:

$$N \le G \iff \forall (a \in G)(aN = Na)$$

Intuitively, to be a normal subgroup means some symmetry between left and right cosets. For example, $\{e\}$ and G are normal subgroups of G. Also, any subgroup of an abelian group G is normal.

In D_8 , $\langle R_{90} \rangle$ is normal, even though $F_1 R_{90} \neq R_{90} F_1$. Also, $\langle R_{180} \rangle$ is normal, and $\langle R_{180} \rangle = Z(D_8)$ (the center of D_8).

Theorem 4.1.2

Let *G* be a group. Any subgroup of index 2 is normal.

Theorem 4.1.3

Let *H* be a subgroup of *G*, and let $a \in G$. Then:

$$a^{-1}Ha = \{a^{-1}ha \, : \, h \in H\}$$

 $a^{-1}Ha$ is a subgroup and $|a^{-1}Ha| = |H|$.

Proof.

Theorem 4.1.4

Let *H* be a subgroup of *G*. The following are equivalent:

1. *H* is normal in *G*.

- 2. $a^{-1}ha \in H$ for all $h \in H$ and $a \in G$.
- 3. $a^{-1}Ha \subseteq H$ for all $a \in G$.
- 4. $a^{-1}Ha = H$ for all $a \in G$.

Definition 4.1.5 ▶ **Product of subgroups**

Let *H* and *K* be subgroups of *G*. We define the *product of subgroups H* and *K* as:

$$HK := \{hk : h \in H, k \in K\}$$

4.2 Factor Groups

Definition 4.2.1 ▶ **Factor groups**

Let N be a normal subgroup of G. Then the *factor group* G/N is the set of all left cosets gN for all $g \in G$. For any aN, $bN \in G/N$, we define the group operation to be (aN)(bN) = (ab)N.

Index

Def	initions		4.2.1	Factor groups	22
1.1.1 1.1.2	Relation	2	Exa	mples	
	tive, equivalence relation	2	2.4.4	Multiplicative inverse in \mathbb{Z}_n	7
1.1.3	Equivalence class	2	2.4.5		7
1.2.1	Function	3	2.4.6		8
1.2.2	Injective, surjective, bijective .	3	3.1.9	Simple direct product	12
1.2.3	Permutation	3	3.2.3	Order of common groups	13
1.2.4	Binary operation	3	3.2.4	Order of elements in common	
2.1.2	Divides	4		groups	13
2.1.3	Greatest common divisor (GCD)	4	3.2.7		14
2.1.4	Relatively prime, coprime	4	3.4.3	Determining $3\mathbb{Z}$ is a subgroup	
2.2.1	Prime, composite	5		of \mathbb{Z}	16
2.4.1	Modular congruency	5	3.6.5	Left cosets and partitioning	19
3.1.1	Group	10	3.6.10		20
3.1.5	Permutation	11			
3.1.6	Symmetric group (S_n)	11	m1		
3.1.7	Direct product	11	The	orems	
3.2.2	Order	13	2.0.1	Well Ordering Axiom	4
3.3.1	Cyclic	14	2.0.2	Principle of Mathematical In-	·
3.4.1	Subgroup	15	2.0.2	duction	4
3.4.4	Cyclic subgroup	16	2.1.1	Division Algorithm	4
3.4.8	Center	18	2.1.5		5
3.5.1	Euler phi-function	18	2.1.6	Euclidean Algorithm	5
3.6.1	Modular congruency (groups).	18	2.2.2	Euclid's Lemma	5
3.6.3	Left coset, right coset	19	2.2.3	Fundamental Theorem of	
3.6.7	Index	20		Arithmetic	5
4.1.1	Normal subgroup	21	2.4.2		6
4.1.5	Product of subgroups	22	2.4.3		6

2.4.7	Chinese Remainder Theorem .	9	3.6.2		18
3.1.2	Uniqueness of identities and		3.6.4	Cosets partition a group	19
	inverses	10	3.6.6	Lagrange's Theorem	19
3.1.3	Cancellation	10	4.1.2		21
3.1.4		11	4.1.3		21
3.1.8	Direct product is always a group	12	4.1.4		21
3.2.1	Properties of power	12			
3.2.5	Properties of order	13			
3.3.2	Every cyclic group is abelian .	15	Coro	ollarys	
3.4.2	Conditions for subgroup	15		•	
3.4.5	Cyclic subgroups are groups	17	3.2.6		14
3.4.6	Conditions for subgroup relaxed	17	3.6.8		20
3.4.7	Conditions for finite subgroup	17	3.6.9		20