$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow U_{i} \times \mathbb{R} \qquad [(s,t)] \longmapsto (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

$$\underbrace{\mathbb{D}_{i}} : \pi^{r}(u_{i}) \longrightarrow (e^{\geq \pi i s}, t)$$

 \underline{J}_{λ} is well-defined by C $[(0,t)] \mapsto (1,t)$ and $[(1,-t)] \mapsto (1,t) \vee$.

- About transition maps.

About transition waps:

$$(x, t)$$
 (x, t)
 (x, t)

Ruk This & is called Mobius bundle

Prop Every real vector bundle overs! of rank 1 is either the trivial one sixia on the Mobilis bundle.

- Observe that info of a vector bundle lies in the transition maps.

- In fact, one can construct a vector bundle via following data

Jupit: Mⁿ open cover $\{U_{\alpha}\}_{\alpha}$ and $g_{\alpha\beta}$: $U_{\alpha} \cap U_{\beta} \rightarrow GL(n,k)$ St. $g_{\alpha\alpha} = 4L$ and $g_{\alpha\beta} = g_{\alpha\delta}$.

Output $E := \frac{\prod (U_x \times IR^n)}{x = y}$ where $(x, v) \sim (y, w)$ iff x = y and $w = g_{ap}(v)$.

e.g. More interesting, take $g_{ab}(x) \cdot v := d(\varphi_b \cdot \varphi_a^{-1})(x)(v)$ local chart

= directional demative of map 40. 4.1 at pt x along the direction V.

This construction contains info only from a mfd.

- Then $[x,v] \mapsto x$ is a real vector bundle over M of vank n.

Exphritly

 $\pi^{-1}(\mathcal{U}_{\alpha}) \left(= \left\{ \left[(x, v) \right] \in E \mid x \in \mathcal{U}_{\alpha} \right\} \right) \xrightarrow{\overline{\Phi}_{\alpha}} \mathcal{U}_{\alpha} \times \mathbb{R}^{n}$ $\left[(x, v) \right] \qquad (x, v) \qquad \text{fileentice } v$

 $\frac{1}{2} e^{-\frac{\pi}{2}} \cdot \frac{\pi}{2} \cdot \frac{(u_{\alpha} \cap u_{\beta}) \times IR^{n}}{(x,v) \longrightarrow [(x,v)]} \longrightarrow (x, g_{\alpha}(x),v)}$ $\frac{1}{2} e^{-\frac{\pi}{2}} \cdot \frac{(u_{\alpha} \cap u_{\beta}) \times IR^{n}}{(x, g_{\alpha}(x),v)}$ $\frac{1}{2} (x, g_{\alpha}(x),v) = \frac{1}{2} (x, g_{\alpha}(x),v)$

where gap(x) is a linear isomorphism

- This E is called the tangent bundle of M, denoted by TM.

Rmk Following the same construction as the e.g. above. replace $(R^*)^n = (f_i, \dots, f_n) \mid f: R \to R \mid f$ then the resulting bundle is called cotangent bundle of M. denoted by T*M. The transition maps are $(g_{np}(\kappa)^T)^{-1}$.

Def For a vector bundle \overline{U}^{T} , a section S: M > E is a smooth map St. (TT-S)(x) = x for any x. The set of all sections of \overline{U}^{T} is denoted by $\Gamma(M,E)$ (or simply $\Gamma(E)$).

e.g. E=MxIR, then a Section S: M→MxIR can be identified with Smorth fens on M. Moreover

 $\Gamma(M, M \times R) \simeq C^{\infty}(M, R)$

Ruk. Frany Ft, $\Gamma(M,E)$ is a $C^{\infty}(M;IR)$ -module. fise $\Gamma(M,E)$, then any fe $C^{\infty}(M;IR)$

e.g E=TM, then a section S: M -> TM is called a vector field (何爱场) 13 (M,TM) = { (smooth) vector field X on M} - One of the most interesting questions in diff top is asking for a given $X \in \Gamma(M, TM)$, how many o's aloes X possess γ (assume X only has "isolated" o's and dime X=2) Prock a formalization S = IR/Z unit circle in IR^2 disk around $X \in \partial D$ $X \in \partial D$ 0=(p)

Counting rotation number gives index (p) = cond be negative weu-defined on higherdini)

Fact (Poincaré-Hopf) For a closed mfd M, for XET7(TM) with isolated o's, we have

analysis $\sum_{p \in X} index(p) = top invariant of M$ (Euler char. of M) $\sum_{p \in X} topology$

e,9.

Genis wep index(pi)=1 Similarly, index (pz) = 1

So by Poincaré-Hopf:

index (pi) + index (pz)

= 1+1

= 2 (= Euler char. of s')

=> If M has Enter char non-zero, then any XEP(TM) has a zero pt.

(and then TM is not a trivial bundle)

eg. TS even is not trivial.

Fact TS" is trivial only for n=1, 3, 7.

eg $E=T^*M$, then a section $s: M \to T^*M$ is called a 1-form mM $\Gamma(M,T^*M) = : \Sigma^!(M)$

Note that we have a natural pairing for $\alpha \in \Omega^{1}(M)$ and $X \in \Gamma(TM)$ (α, X) or $\alpha(X) \in C^{\infty}(M; \mathbb{R})$.

Ruk Forms works better than vector fields

Ruk For any pt XEM", the fiber TT'(1x1) of TMT is deevoted by TxM (~(R*)").

3 Connection (This)

- Consider a vector field $X \in \Gamma(TM)$ and a smooth function $F: M \to IR$.

define directional derivative of F along X'', denoted by

pointuise by directional derivative of Fat X(p) for any PEM.

Well-definedness:

Similarly, one define directional plansative of F: M -> IRK along a vector field X+ [TM]

$$\begin{aligned}
&df_{\alpha}(\varphi_{\alpha}(p))(\nu(p)) \\
&= d(F \cdot \varphi_{\alpha}^{-1})(\varphi_{\alpha}(p))(\nu(p)) \\
&= (df_{\beta}(\varphi_{\beta}(p))(\varphi_{\alpha}(p))(\nu(p))) \\
&= (df_{\beta}(\varphi_{\beta}(p))(\varphi_{\alpha}(p))(\nu(p))) \\
&= df_{\beta}(\varphi_{\beta}(p))(\psi_{\beta}(p)) \\
&= df_{\beta}(\varphi_$$

Ruk For $F: M \to \mathbb{R}^k$ and $X \in \Gamma(TM)$, the directional derivative X(F) (or D_xF) is also a (smooth) function from M to \mathbb{R}^k

 $F: S^2 \longrightarrow IR$ by height function (= z-coordinate) $\iff f_{\alpha}(x,y) = \frac{1}{2}(x^2 + y^2)$ $\implies df_{\alpha}(x,y) = (x,y)$

So in case
$$0$$
 $D_x F = 0$

So in case 0 $D_xF=0$ in case 0 $D_yF=f(2)$ where $\frac{2}{1-1}$ $\frac{2}{1-1}$ $\frac{2}{1-1}$ $\frac{2}{1-1}$ $\frac{2}{1-1}$ $\frac{2}{1-1}$ $\frac{2}{1-1}$ Reflection: in case ① F is constant along each level set F-1(523).

= Z
in case ② F is increasing along each (atitude.

Exx

Exx

- Det A connection on vector bundle In is a map

$$\nabla$$
; $\Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

satisfying, for f, g ∈ Ca(M),