AMERICAN SOCIETY OF CIVIL ENGINEERS.

INSTITUTED 1852.

TRANSACTIONS.

Note.—This Society is not responsible, as a body, for the facts and opinions advanced in any of its publications.

CCLXXIX.

(Vol. XIII.—April, 1884.)

EXPERIMENTS ON THE STRENGTH OF WROUGHT-IRON STRUTS.

By James Christie, M. Am. Soc. C. E. Read October 3d, 1883.

The following experiments were made at the Pencoyd Iron Works, Pencoyd, Pa., for the purpose of determining the comparative resistance to compression of long and short struts of rolled angle, tee, beam and channel sections. The specimens were tested by four different methods:

First, with flat ends, between parallel plates, to which the specimen was in no way connected.

Second, with fixed ends, or ends rigidly clamped to parallel plates, the plates substantially forming flanges to the specimen under test.

Third, hinged-ended, or both ends fitted to hemispherical balls and sockets, or cylindrical pins.

Fourth, round-ended, or both ends fitted to balls resting on flat plates.

Note.—The discussion on this paper will be published subsequently.

The machine used was a Fairbanks testing machine of 50 000 pounds capacity. In this machine the power was applied by hand through a system of gearing to four vertical screws, which connected two rigidly parallel plates, between which the specimen was placed in a vertical position. The pressure applied was measured on an ordinary scale-beam, pivoted on knife edges and carrying a moving weight, which registered the pressure automatically. The specimens varied in length from 6 inches up to 16 feet, and were selected to obtain a uniform character of material. As far as possible, the long and short specimens of the same size were cut from the same bar.

These test bars were all accurately straightened, dressed square on the ends, and weighed; the area of cross section being determined by the weight and length of the bar. The hinged-ended and round-ended specimens were arranged so that the centres of balls or pins were, as near as practicable, coincident with the centre of gravity of the cross section of the bar. Every known precaution was observed in order to obtain accurate results, and the disparity in these results seems to be due to unavoidable inequalities in the condition of the bars, as hereafter noted. Very minute changes in the position of the centre of pressure produced greater differences in the resistance of the bars than was anticipated.

Judging from previous experience, the result of any few indiscriminate tests would yield no satisfactory conclusions; it was, therefore, determined to make such a number of tests that the range of maximum and minimum could be fairly established, and a proper average deduced therefrom. For reasons not always evident, occasional results were obtained either abnormally high or low, as will be found illustrated on the diagrams; but there is little doubt that the principal cause of low resistance was eccentricity of axes, or non-coincidence between the centre of pressure and the axis of greatest resistance of the specimen.

This was most evident on hinged-end struts of a symmetrical cross section, such as I beams and welded tubes, with which it was occasionally found that the highest resistance was not always obtained when the centres of balls or pins were placed in exact line with the centres of the section, as described on the ends of the bar. Sometimes, by moving the specimen apparently slightly out of centre, the resistance was vastly increased. This was, no doubt, due to minute bends or inequalities in the distribution of the metal, which caused the axis of greatest resist-

ance of the strut to disagree with the apparent axis of symmetry. A few examples of this character are described in the tables.

When the bar was straight and accurately centred on the ball or pin, the hinged-ended strut of any length was fully equal to that of the flatended.

In fact, the resistance of the best specimens of hinged-ended bars exceeded the best of the flat-ended. This behavior, as illustrated on the diagrams, occurred in so many instances that it could not be considered exceptional, but the slightest deviation from the requisite accuracy of centring rapidly reduced the resistance; and as no amount of care could always insure the precise conditions required, it is not believed that in practice, with the most careful workmanship, or the best form of strut or column, could these high resistances be uniformly obtained.

When the bars were very long, in proportion to radius of gyration, the ultimate load could be applied without any permanent injury to the bar. The strain could thus be released and applied at will without any change in resistance. Several bars were tested in this manner, and the effect of change in end conditions noted, a few examples of which will be found in the tables.

The high resistance on balls or pins could always be obtained by trial, that is, by observing the direction of deflection under strain, then releasing the strain and moving the bar in the proper direction; when the point of greatest resistance was passed, the deflection would be reversed in direction.

When the point of greatest strength was reached, the behavior of the specimen was peculiar. Under ordinary circumstances the bar, while bending under strain, rotated from the start on its hinged ends. When correctly centred, no such rotation occurred at the beginning of deflection, but the bar bent, like a flat-ended strut, until the point of failure was reached, when it rotated on its ends suddenly, and with so much force as sometimes to spring from the machine. In fact, the deflection under these conditions more resembled that of fixed-ended than of flat-ended specimens, for the latter frequently showed indications of rotation on their ends before ultimate resistance was attained.

In no instance could the effect described be produced on a roundended strut, and the smaller the pin or ball and socket the more rarely it occurred, or the more difficult to produce it by trial, just as an egg may be stood erect in a very minute cup, but never on a flat table. The diameter of the ball or pin exercised a marked influence on the resistance of the bar, as also did the fit of the pin. A few examples are given in the tables illustrating the effect of a change in pin diameter. The test, No. 125, of a hinged-end angle was made on new pins, which were an absolute fit to the semi-cylindrical seat which capped the specimen, the test being made with the pin hinges dry.

The caps were immediately eased with a file and the bearing on pins lubricated, when it was found impossible in the same bar to reproduce the high resistance first obtained. The hinged-ended tests varied all the way from the value of round-ended up to flat-ended. As can be seen on the diagrams, the lowest range of hinged-ended tests approximated very closely to the average of round-ended.

The ends of the shortest flat-ended struts remained solidly seated at the time of failure, whilst, on the contrary, the longest struts always rotated on their ends, and, as stated before, sometimes showed a tendency to turn before ultimate resistance was attained.

In all cases the bars bent in the direction of the least radius of gyration, excepting a few special tests of **T** sections, when the specimen was designedly placed eccentric on the hinge, causing failure in the direction of the stem instead of the flange; and also excepting the case of very short specimens, which failed by direct crushing.

During some tests, the particulars of which are given hereafter, the deflection of the bars apparently reversed as the load increased. This was due to the occasional deflection of the specimen in the form of a sinuous reverse curve, which always merged into a regular curve before failure.

But sometimes the greatest curve unexpectedly reversed, the least curve finally predominating. Bars, deflecting in this manner, usually exhibited unduly high resistance.

This action, it seems, occurred more frequently with flat-ended than with hinged-ended specimens. For the purpose of observing the effects of cold straightening, on bent bars, a number of bars were straightened in the rolling machine, after the first test, and then retested. When the bars were long as compared with section, and the permanent bend slight, no diminution of strength was noticeable, but in the case of shorter bars, in which the distortion was more serious, a weakening approximating 10 per cent. was found.

The shortest lengths of fixed-ended angles show lower resistance

than either the flat-ended or hinged-ended. As the length of the fixedended struts was measured between the clamps, whereas the point of absolute fixing probably occurred at some place within the clamps, the apparent difference may be accounted for, as then the values given for -would be too low. Also the shortest bars of channel section offered less resistance than tees or angles, as compared by equal radii of gyration. These channels were tested at Watertown, as recorded elsewhere, but the difference may be accounted for by reason of the greater extent of unbraced web surface in the channels, rather than by supposing that the machines at Watertown and at Pencoyd would yield such discordant results. The channels showed local failure, or crippling rather than bending, when $\frac{l}{r}$ was as high as 37, whereas, with angles and tees, no such local failure was observed when $\frac{l}{m}$ was higher than 30. The tests of welded tubes show fully as much diversity in results as the other shapes. The seeming contradictions in the tubes were partly due to their usual lack of uniformity in thickness, being thickest on the line of the weld, and liable to have thin spots anywhere. In one test a hinged-ended tube offered higher resistance when placed slightly eccentric, or apparently so, on the ball end. The 21 inch tube 8 feet long recorded in test No. 271 failed flat-ended with a pressure of 33 020 pounds. It was then straightened and retested in the same manner, failing with 31 000 pounds. As this seemed too feeble a resistance, another tube was taken, test No. 270, which did not fail, flat-ended, with 50 000 pounds, but placed on 2-inch balls and sockets, test No. 294, it failed with 43 990 pounds. For the behavior of some other tubes, see table of continuous tests.

LATERAL DEFLECTION OF STRUTS DURING COMPRESSION.

For obtaining the deflection, a straight-edge of the same length as the specimen was used.

The extent of deflection was measured by a wedge-shaped gauge, tapering one to ten. Each one-tenth of an inch advance in length, advanced one-hundredth of an inch in width.

The specimen was first subjected to a moderate pressure in the machine, varying from 100 to 500 pounds, according to the size of the bar, and the amount of its curvature, if any, then measured. Although the bars were considered straight in a practical sense, yet refined measurement generally showed some appreciable curvature.

Thus the first measurements, recorded in the left-hand columns of each table of deflections, indicate the initial curvature of the bar. In the second columns, on right-hand side of the tables, the total pressure that the bar sustained is given, and in the extreme right-hand columns is given the amount of permanent deflection remaining in the bars after the pressure was released. On many bars the pressure was released at intervals during the test, to ascertain if any permanent deflection remained, but none was observed until the bar had either attained ultimate resistance, or was on the verge of failure.

It will be noticed that in many instances failure occurred with some even multiple of 100 or 1000 pounds. This was generally due to failure occurring during an interval when the machine was stopped to measure the deflection. In many cases the operator ceased increasing the pressure when indications of failure were evident. These indications in bars of moderate length consisted of the dropping of scales from the specimen, or a rapid increase of the deflection.

In most instances the ultimate resistance might have been either slightly increased or diminished if the application of pressure had been correspondingly continued or retarded, but the variation from the recorded pressures would not have seriously affected the result. The hinged tee No. 147 sustained a pressure of 50 000 pounds about four minutes before failure occurred.

The fixed-ended angle No. 181 showed partial failure, but not entire, although the load remained on for several minutes. Similar action was developed in specimens Nos. 242, 87, 72.

In some cases the amount of deflection was reduced as the pressure increased, which was due to the direction of greatest deflection being reversed under strain. This occurred in thirteen tests with flat-ended bars, in four tests with hinged bars, and in no instance with round or fixed-ended.

There was a certain range of length of the specimens below which all bars took a permanent set after failure, and above which all recovered their original condition. In the flat-ended bars recovery occurred when the ratio of length to least radius of gyration $\left(\frac{l}{r}\right)$ was as low as 231, and one test showed permanent set with $\frac{l}{r}$ as high as 370. Between these limits some specimens recovered, others did not. All specimens below 231 were bent; all above 370 recovered. In hinged ended bars the range was from 162 to 254. In fixed-ended bars a similar range of $\frac{l}{r}$ extended from 174 to 312. In round-ended three tests occurred without permanent set after failure; in these $\frac{l}{r}$ ranged from 439 to 449.

It has been previously stated that when $\frac{l}{r}$ was about 30 the bars ceased to bend in a regular curve, but failed by irregular crippling. It is probable that this limit would be found to vary for the different classes of end connections, but as the limited capacity of the testing machines necessitated the use of very small sections, of such short lengths, to operate upon, the subject could not be satisfactorily determined.

METHODS OF SECURING ENDS OF STRUTS.

Plate XXV, Figure 1 represents the ball and socket, Figure 2 the pin, and Figure 3 the clamps for fixed-ended angles.

For round ends the socket was omitted, the ball resting against a flat plate. The studs A A, shown on Figures 1 and 2, were fitted into holes in the hinge plates, which were drilled directly in line with centres of ball or pin. These studs were used only with angle and tube sections, their diameter being regulated so as to bring the centre of gravity of the angle section in line with the centre of ball or pin. A number of these studs was provided having slightly varying diameters, by means of which the angle could be moved as desired on its hinged ends.

For the other sections, the studs A A were omitted. The struts had lines described on their ends at right angles to each other, and passing through the centre of gravity of the section.

The ball and pin plates had also diametral lines, at right angles to each other, as shown on drawing.

The lines on the struts and on the plates were made to coincide, which was readily done by means of a light mallet, as soon as the bar was pinched in the machine. Concentric lines, as shown, were described on the hinge-plates, which were convenient to measure from when adjusting.

The length of the strut was taken as indicated by letter l, which will account for the different tabulated lengths of the same bar, when tested with different end fixtures. Some tests made on very short bars $\left(\frac{l}{r} \ 30 \ \text{or under}\right)$ showed an irregularity, owing to the length of the hinge-caps being added to the actual length of the specimen, when determining the values of $\frac{l}{r}$, as the specimens then failed partially by crushing, and the method of securing the ends made little, if any, difference in the results.

A few tests thus made were rejected as untrustworthy, and the tests Nos. 112, 113, 114 of angles, and 162, 163, 164 of tees, were made on bars whose ends were milled to fit directly on the pins, and the lengths of the specimens taken between the inside faces of the pins.

During the round-ended tests the abutting ends of the balls became slightly flattened by the repeated pressures. This flattening became more marked towards the close of the experiments, giving the balls a certain area of flat bearing and probably causing some increase of the proportionate resistance. As this action could have been prevented only by the use of balls and plates of hardened steel, and would be expected if round-ended struts were used in practice, it was considered best to retain the iron balls.

The balls and pins were moistened with oil to reduce the friction during hinged-end tests.

TABLES OF RESULTS.

For convenience of reference, the tests are numbered on the tables, and correspondingly numbered on the diagrams. The unnumbered tests on Diagram No. 7 were made on the Government machine at Watertown; the particulars of these are given in Table No. 7. The expression $\frac{l}{r}$ means the length of strut divided by least radius of gyration, the latter being derived from the moment of inertia of the respective cross-sections, taken around an axis passing through the centre of gravity of the section, in the position described below:

PLATE XXV
TRANS. AM. SOC.GIV. ENGRS
VOL.XIII NO. CCLXXIX
CHRISTIE
ON IRON STRUTS.

FIG. 1. BALL AND SOCKET.

FIG 2 PIN.

FIG.3 CLAMP FOR FIXED ENDED ANGLES.

The value of the least radius of gyration for the sections experimented upon is as follows:

r = value of least radius of gyration in inches.

Angles.	r.	Tees.	r.	Beams.	r.	Channels.	r.	Tubes.	r.
1 x 1 x	.20	1 x 1	.26	4"	.51	2"	.31	1"	.43
1 x 1	.26	1½ x 1½	.27	5"	.60	3"	.46	11/2"	.61
1½ x 1½ x	.31	1½ x 1½	.32	6"	.66	4"	.48	2"	.77
13 x 13 x	.36	2 x 2	.43			5" {	.45 to .56	21"	.94
2 x 2 x 15	.40	2½ x 2½	.55					3"	1.17
2½ x 2½ x	.50	3 x 3	.62			6" {	.51 to .67		
23 x 23 x	.55	3½ x 3½	.74						
3 x 3 x	.60	4 x 4	.84			8" {	.60 to .71		
3½ x 3½ x	.70								
4 x 4 x	.81					10"	. 69		
4 x 3 x	.66					12"	.87		

The tables of deflections have been previously explained.

Table No. 9 is an average for the ultimate resistance per square inch of section for each shape of struts. The figures agree with the dotted lines on the diagrams, which were obtained by describing curves corresponding to the maximum and minimum range of tests, and locating midway the curves of average resistance.

Table No. 10 is a general combined average of all the tests, without reference to any particular sections.

These latter tables are given only as tentative, and probably approximating to a correct result, which may be determined by more careful analysis, aided by further experiments.

FLAT-ENDED ANGLES.—No. 1.

No.	SHAPE.	Size.	LEN	GTH.	AREA.	ULTIMATE LBS. PER SQ. INCH.	$\frac{l}{r}$	REMARKS.
		In Inches.	Ft.	In.	Sq. In.			
1	Angles.	3 x 3 x 3	8	03	2.09	19 569	158	
2	66	21 x 21 x 3	8	012	1.76	18 466	188	
3	66	2 x 2 x 8 16	8	01	1.07	13 738	235	
4	66 -	11 x 11 x 16	8	01	.57	5 185	356	
5	66	4 - 4 - 6	8	01	.24	1 955	481	
6	66	3 x3 x 11 3 x3 x 11	6	61	2.10	22 476	128	
7	46	21 x 21 x 32	6	61	1.76	20 909	153	,
8	64		6	61	1.15	20 013	191	
9	66	2 x 2 x 5 16 1 x 1 x 1 8	6	01	.23	2 564	392	
10	66	21 x 21 x 3		68	1.74	26 437	118	
11	66	2 x 2 x 3 2 x 2 x 5	5	$0\frac{1}{3}$	1.15	21 478	147	
12	66	16		04	.23	6 838	300	
13	46	1 x1 x1 2 x2 x 5	5	0	1.14	24 123	103	
	66	2 x 2 x 6 1 1 x 1 x 1 6	3	61	.23	16 883		
14	44		3	61	1 70		211	
15	66	2½ x 2½ x 3 2 x 2 x 5	3	68	1.76	27 841	83	
16	66	- 16	3	61	1.14	28 500	103	
17	46		2	0	1.15	29 217	59	
18	66		2	01	.24	31 799	121	
19	44	14 x 14 x 1	1	6	.67	37 910	58	
20		1½ x 1½ x ¾	1	6	.67	32 089	58	
21	66	1 x 1 x 1	1	6	. 24	33 330	90	
22	66	1½ x 1½ x 1	1	016	.70	38 944	39	
23		1 x 1 x 1	1	OF	.24	38 818	61	
24	66	12 x 12 x 1	0	6	.66	53 030	19	
25	1	1 x1 x 1	**	515	.27	43 773	30	
26	46	1 x1 x 1		61	.23	39 780	30	
27	44	11 x 11 x 1		$6\frac{\circ}{8}$.56	51 400	23	
28	46	11 x 11 x 1		65	.66	46 440	20	
29	44	31 x 31 x 3	10	61	2.42	16 290	183	
30	44	23 x 23 x 3	10	61	1.93	11 530	225	2
31	44	23 x 23 x 3 4 x 3 x 15 4 x 4 x 3	15	5	3.06	7 380	285	
32	64	4 x4 x 3"	15	07	2.83	8 240	229	1
33	66	3 X 3 X 7	15	01	2.47	6 210	322	
34	64	4 X4 X8	15	016	2.96	12 400	228	
35	44	2½ x 2½ x ¾	15	03	1.72	4 490	353	Same bar as No. 192.
36	66	2 x 2 x 5	15	01	1.12	2 590	439	Same bar as No. 194.
37	66	2 x 2 x 5	6	61	1.15	20 000	191	
310	44	2 x 2 x 1°	2	0	.92	36 560	60	
311	44	13 x 13 x 4	2	Õ	1.03	32 810	68	* 0
312	66	2 x 2 x 1	ī	6	.92	33 140	45	
313	66	2 x 2 x 1	î	0	.92	35 900	30	
314	44	2 x2 x1		61	.92	44 000	15	

LATERAL DEFLECTIONS OF FLAT-ENDED ANGLES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Deflection.
1 {	1 000	3 000	6 000	9 000						40 900	1.40
2	1 000	4 000	8 000	12 000 . 18	16 000	20 000	24 000	28 000		32 500	1.00
3 1	1 000	2 000	4 000	6 000	8 000	10 000	12 000	14 000		14 700	.34
4	100	200	600	1 000	1 400	1 800	2 200	2 600	2 800	2 950	.06
5 1	.00 100	.05 200	300	.08 400		.10	.15	.17	.22	475	.00
6 {	.10 500	5 000	.18 10 000	.28 15 000	20 000					47 200	.77
. !	1 000	4 000	8 000	.12 12 000	.11 16 000	20 000	24 000		35 000		
7 }	.09 500	.13 3 000	.16 6 000	9 000	.19 12 000	.19	.21 18 000	.24		36 800	.37
8 {	.05 100	.12 200	300	.14 400	.14 500	.16	.33		******	18 500	
9	.04	.04	.05	.05	08			*******	45.000	600	.00
10 {	500	3 000	5 000	10 000	.10	.11	35 000 .12	.14	.25	46 050	.70
11 {	500	3 000	6 000	9 000	12 000 .10	15 000 .12	18 000 .14	21 000	24 000 .32	24 700	.81
12 }	100	300	500	700	900	1 100	1 300	1 500		1 600	.00
13	500	5 000	10 000	15 000	20 000	25 000 .15				27 500	45
14 {	100	400	800	1 200	1 600	2 000	2 600	3 200		3 900	.15
15 {	5 000	10 000		20 000	.03 25 000		.05 35 000	.08 40 000	45 000	49 000	.23
16	.00 500	5 000	10 000	.03 15 000	.03 20 000	.03 25 000	30 000			32 500	
17	.04 500	5 000	10 000	.10 15 000	20 000	25 000	30 000			33 600	.28
	.01	1 000	2 000	3 000	4 000	5 000	6 000)	-
18	.03	3 000	.05 6 000	9 000	.08	.09	.10	.11		7 600	1
19	.00	3 000	.00	9 000	.01	.01	.01	.01	.01	25 400	.23
20	.06	.06	.06	.07	.07	.07	.08	.10		21 500	.23
21	200	1 000	2 000	3 000	4 000	.04	6 000	.05		8 000	.50
22 {	.00	4 000	8 000	12 000	16 000	.00	24 000			27 300	.11
23 }	300	2 000	4 000	6 000	8 000		*** ***			9 200	.14
24	500	5 000		20 000	25 000	30 000				35 000	Crushed.
25 (300	3 000	6 000	9 000					******	11 950	.25
26	.01	.01	.01	.02	*****					9 150	Crushed.
27 {	******		******	******				******		,	Crushed.
,	*****				******					1	
28					******					1	Crushed
29 }	Defi	ection		orded.	******	******	******	******	******	39 425	
3,0		44	4	**	******	******	*****			22 250	-
31	*****	10 000	.80				******	******	******	22 600	
32 {	******	10 000	20 000		******		******			23 325	
33 }		5 000	10 000	15 000			******	******	*****	15 400	
34 {	*****	5 000	10 000	15 000 .40	20 000	25 000 .56	30 000 .68	35 000 1.12		36 550	
35		5 000								7 725	
36		.50			******	******	******	******		2 910	

FLAT-ENDED TEES.—No. 2.

REMARES.	$\frac{l}{r}$	ULTIMATE LBS. PER SQ. INCH.	AREA.	GTH.	Len	SIZE.	SHAPE.	No.
			Sq. In.	In.	Ft.	In Inches.		
	155	19 020	2.55	03	8	3 x 3	T	40
	175	15 896	1.73	016	8	2½ x 2½	44	41
	224	12 346	.97	010	8	2 x 2	44	42
	301	9 158	.54	016	8	14 x 14	46	43
	370	1 923	.30	010	8	1 x 1	46	44
No failure at 50 000 lbs			2.55	61	6	3 x 3	66	45
	142	17 816	1.74	61	6	2½ x 2½	66	46
	182	12 873	.97	61	6	2 x 2	46	47
	245	12 195	.53	6,5	6	14 x 14	44 -	48
	301	2 676	.30	61	6	1 x 1	66	49
	110	28 330	1.74	01	5	2½ x 2½	4.6	50
	140	24 398	.99	01	5	2 x 2	66	51
	188	12 596	.53	0,3	5	11 x 11	44	52
	231	6 333	.30	0,16	5	1 x 1	66	53
No failure at 50 000 lbs	77		1.74	616	3	21 x 21	66	54
	98	30 272	.99	61	3	2 x 2	66	55
	132	34 392	.56	6,3	3	11 x 11	66	56
	162	16 216	.29	6	3	1 x 1	86	57
	56	39 167	.96	0	2	2 x 2	64	58
	75	37 743	.56	01	2	13 x 13	6.6	59
	92	38 584	.29	01	2	1 x 1	44	60
	56	40 526	.57	6	1	11 x 11	66	61
	69	36 667	.30	6	1	1 x 1	66	62
	37	39 810	.52	0	1	11 x 11	66	63
	46	40 938	.29	016	1	1 x 1	66	64
X	19	49 298	.57	6		1½ x 1½	66	65
	19	45 800	.52	6		11 x 11	66	66
	19	55 000	.52	61		1½ x 1½	66	67
	23	44 500	.44	61		11 x 11	44	68
	23	47 700	.28	6		1 x 1	66	69
	300	6 360	.55	01	8	11 x 11	4.6	70
	370	2 660	.30	01	8	1 x 1	66	71
27 6 15 4 50 000 11	244	9 260	.54	68	6	1½ x 1½	66	72
No failure at 50 000 lb	215		3.65	08	15	4 x 4	44	73
	420	3 200	.90	01	15	2 x 2	66	74
	291	8 840	2.39	01	15	3 x 3	66	75
1	56	34 900	.98	0	2	2 x 2	66	315
1 '	42	34 980	.98	6	1	2 x 2	66	316
	28	38 800	.98	0	1	2 x 2	44	317
	14	50 900	.98	618		2 x 2	66	318

LATERAL DEFLECTIONS OF FLAT-ENDED TEES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

THE FIGURES BELOW ARE THE CORRESPONDING DEFLECTIONS IN INCHES,

Number.				-						Ultimate Pressure.	Permanent Deflection.
40 {	1 000	5 000	10 000	15 000 .15	20 000	25 000 .20	30 000	35 000 .25	45 000 .41	48 500	1.87
41 }	1 000	5 000	7 900	9 000	13 000	17 000	21 000	25 000 .40	27 000	27 500	.81
42	500	2 500	5 000	7 000	9.000	11 000				12 000	.56
43	300	1 000	2 000	3 000	4 000	5 000		******	******	5 020	.10
- 1	.02 50	100	.08 150	200	.10 250	300	350	400	500		
44	.05 500	5 000	10 000	.13 15 000	20 000	.17 25 000	30 000	40 000	.41 50 000	1 313	.08
45 {	.05	.08	.09	.10	.10	.11	.11	.13	.15	No fa	ilure.
46 }	500	2 000	6 000	10 000	14 000	18 000 .25	22 000 .27	26 000	30 000	31 000	1.12
47	No 1'd .08	500	1 000	2 000	4 000	6 500	8 500 .50	10 500	11 500	12 500	.60
48	100	.15 500	1 000	1 500	.36 2 000	3 000	4 000	5 000	6 000	6 500	.34
- }	.03	100	.03 150	200	300	400	.12 500	.17 600	700		
49	.02	.03	.04	.04	.05	.06	.08	.15	.35	800	.07
50	.08	5 000	10 000	15 000 .06	20 000	25 000 .07	30 000	.10	.14	49 300	1.31
51 }	500	2 000	6 000	10 000	14 000 .08	18 00c	22 000	24 000	26 000	28 000	1.12
52 1	100	500	1 000	2 000	3 000	4 000	5 000	6 000	6 500	6 700	.80
- 1	100	200	.07 300	600	900	1 200	.28 1 500			1	
53	.02	.03	.04	.05	.06	.07	.10		.18 50 000	1 910	.00
54				No de	flectio	ns		.02	.03	No fa	ilure.
55	500	6 000	9 000	12 000 .02	15 000	18 000	21 000	24 000	27 000 .06	30 000	.11
56	500	2 000	4 000	6 000	8 000	12 000	14 000	16 000	18 000	10 500	.95
57	200	1 000		3 000	3 600	4 000	4 200	4 400	4 600	4 800	
- 1	500	.02 5 000	10 000	.02 15 000	20 000	25 000	30 000	35 000		1	.14
58	.00	.00	.01	.01	.01	.01	.01	.01		37 610	.58
59	500	2 000	6 000	10 000	12 000	14 000	17 000	.02		21 400	.40
60	200	1 000	2 000	3 000	4 000	5 000	6 000			11 500	.54
61	500	3 000	6 000	9 000	12 000	15 000	18 000	21 000		23 100	.18
62	200	3 000		.01 5 000	6 000		8 000	9 000	10 000	1 ** ***	
-	.01 500	.01 3 000	.02	9 000	.02 12 000	.02	.03	.08	.03	11000	
63	.00	.00	.00	.00	.00	.00	.03			20 900	.14
64	500	2 000		6 000	8 000					12 200	.20
65	500	5 000	10 000	15 000	20 000			******		28 100	.06
66	500	5 000	10 000	15 000	20 000	******	*** **			23 800	.06
-	.00	.00		.00	1		******			1	
67				eflectio	ns	*******		******		28 600	Crushed.
68		******	40	**	*****					19 610	44
69		******	44	**						13 350	ea
70	300									3 500	.47
71	200	300	500	700	*****					800	
	.08			1 500	2 000	2 500	3 000	4 00	5 000)	
72	.13	.13	.17	.19	.22	.24	.25	7 .3		\$ 5 000	.62
73	.21	.28	.28				******	******		No fa	ilure.
74	250									2 900	.00
75	500	5 000	10 000							21 198	
		.03	.22	.47			******			1 24 120	

HINGED-ENDED ANGLES.-No. 3.

No.	SHAPE.	Size.	LENGTH.	AREA.	ULTIMATE LBS. PER SQ. INCH.	$\frac{l}{r}$	Remarks.
		In Inches.	Ft. Ins.	Sq. In.			
80	Angles.	3 x 3 x #	8 41	2.11	13 199	164	2" ball and socket.
81	66	24 x 21 x 4	8 4,3	1.77	13 898	196	46 66 66 66
82	4.6	2 x 2 x 16	8 31	1.13	3 982	242	1" " " "
83	66	2 x 2 x 5	8 31	1.13	7 080	242	Same bar as above,
							properly centred.
84	64	11 x 11 x 1	8 33	.56	4 956	367	1' ball and socket
85	44	1 x 1 x 1	8 31	.24	1 440	496	44 44 44
86	66	3 x 3 x 3	6 10 1	2.14		134	No failure at 50 000
			0.401				lbs.
87	44	$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{3}{8}$	6 101	1.74	22 989	161	2" ball and socket
88	64	2 x 2 x 5	6 98	1.12	6 964	198	1" " " "
89	66	2 x 2 x 16	6 91	1.15	8 087	198	1, " " "
90	66	1 x1 x 1	6 9 5 4 1	.24	1 569	407	1
91	66	$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{9}{32}$		1.31	27 863	128	4
92	46	21 x 21 x 9		1.31	18 321	128	1
93	66	如可 A 如常 A 含		1.78	22 191	126	4
94 95	66	2 x 2 x 5	5 31 5 3	1.13	10 619 5 769	154 315	1" " " "
96	66	1 x 1 x 1	5 3 3 3	.23	2 929	316	A
		1 x 1 x 1/8	10			310	Slightly out of centre.
97	6.6	$2\frac{1}{2} \times 2\frac{1}{2} \times \frac{3}{8}$	3 10 3	1.74	27 759	91	2" ball and socket
98	66	2 x 2 x 16	3 91	1.15	15 826	110	1" 44 44 44
99	46	1 x 1 x 1	3 916	.23	11 454	225	1" " " "
100	44	2½ x 2½ x 3	2 416	1.74		56	No failure at 50 000
101	66	2 x 2 x 5 1 x 1 x 1 8	2 316	1.14	27 632	66	1" ball and socket.
102	1.5	1 x1 x 1	2 3	.24	31 660	135	1" " " "
103	46	IXIX	1 1113	.24	38 600	119	1" ** ** **
104	66	1½ x 1½ x ¼	1 9	.67	35 821	68	1" " " "
105	66	1 x1 x i	1 9	.24	36 250	105	1" " " "
106	46	1 x 1 x 1/8	1 811	.23	38 600	103	1 4 44 44
107	66	12 x 12 x 1	1 3	.71	36 880	48	1" " " "
108	4.6	1 x 1 x 8	1 31	.24	42 194	76	1" " " "
109	66	1 x1 x 1	1 213	.23	42 500	74	1" " " "
110	44	1 x1 x 8	9	.27	41 482	45	1" " " "
111	44	1½ x 1½ x ½	9	.66	42 576	29	1" " " "
112	64	1 x 1 x 1 8	67	.23	41 200	34	1' pins
113	66	11 x 11 x 1	618	.56	44 330 43 520	25	1" "
115	66	1½ x 1½ x ¼ 4 x 4 x ¾	6.2	.66	4 980	21	
116	44	8	15 416	2.81	4 780	234	
117	66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 4½ 15 5¾	3.06	7 020	290	2" pins. 2" ball and socket
118	66	23 x 23 x 3	10 101	1.93	8 650	233	2º " " "
119	66		10 101	2.42	15 770	189	2" 11 11 11
120	44	3½ x 3½ x 3 3 x 3 x 1/6	15 34	2.52	5 970	329	2" " " "
21	66	Same Bar.	15 34	2.52	2 940	329	1" " " "
122	64		15 43	1.12	1 600	449	2" " "
23	66	$2 \times 2 \times \frac{5}{16}$ Same Bar.	15 416	1.12	1 380	449	1 " " " "
124	64		15 43 15 43 15 116 15 116	2.52	5 600	325	2" pins.
25	86	10	15 116 15 23	2.81	15 100	231	2" pins.
	66	$\frac{4}{4}$ $\times \frac{4}{8}$ $\times \frac{3}{8}$ $\times \frac{15}{88}$	15 23	B. U.	8 820	290	2" "

LATERAL DEFLECTIONS OF HINGED-ENDED ANGLES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.			-							Ultimate Pressure.	Permanent Deflection.
80 {	500	5 000				25 000			}	27 850	.20
81	500	5 000	10 000	15 000	20 000	.18				24 600	.33
82	500	2 000	4 000	.06	.11	******	******			4 500	.05
83	.04 500	1 000	2 000	3 000	4 000	5 000	6 000	7 000		8 100	.05
84	100	400	.04 800	.04 1 200	1 600	2 000	2 400		{	2 800	.00
85	100	.06 200	.07 300	.07	.07	.07	.07				.00
- 3	.03 500	.06 10 000	.13 15 000		25 000			40 000	50 000	350 No	
86	.02	.03	.03	.03	.04	.04	05	05	06 (failure	.00
87	.03	5 000	04	15 000 .04	20 000	25 000 .05	.05	.07	38 000	40 000	
88	500	3 000	6 000						}	7 800	.05
89	500	3 000	6 000	9 000	******	******		******	}	9 300	.05
90	100	200								375	.00
91	500	3 000	6 000	12 000					36 000	36 500	1.00
92	.03 500	3 000		.03 9 000	12 000	15 000	18 000	21 000	24 000 }	24 010	.64
93	.02 500	3 000		.03 15 000		27 000	33 000	36 000	39 000 (39 500	.75
94 (500	3 000		9 000					.24)		
- 1	.03 100	.03	.04	.05 500	.07					12 010	.48
95	.02	03	.03	.04	.04		.05	.05	1 300	1 350	.00
96	.02	300	.03	.45		******				700	.00
97 {	.02	10 000	.03	.04	.04		35 000	40 000	45 000	48 300	.64
98	500 .01	4 000	8 000	12 000	16 000		******			18 200	.50
99	200	.02	1 000	1 400	1 800	3 000	2 200	2 400		2 600	.03
100	500								1		
101	500	5 000	eflectio 10 000	15 000	20 000	25 000	30 000			31 500	30
02 {	.00 200	1 000		3 000	4 000	5 000	6 000			7 600	.31
103	.05 500	1 000	2 000		4 000	5 000		7 000	8 000		
- }	.02 500	3 000	.03	.03	.03	.03	.03	.03	.05)	9 000	.28
104	.01 200	.01	.01	.01	.01	.01	.01	.02	8 000	24 000	.28
105	.02	.02	.02	.02	4 000	.02	.02	.02	.03 5	8 700	.46
106	.02	1 000	.03		4 000	.03	.03		8 000	9 000	.28
107 {	.01	4 000		12 000	16 000	20 000	24 000			26 000	.21
08	300	2 000	4 000	6 000	8 000	10 000			}	10 010	.29
09 }	500	2 000	4 000	6 000	8 000					9 900	.27
10	.01 300 .01	.01 3 000 .01	6 000		.02		******			11 200	.17

LATERAL DEFLECTION—(Continued).

Number.		9							Ultimate Pressure.	Permanent Deflection.
111	 	No d	eflectio	n with	25 000	lbs.			28 1 00	.21
112	 	**	**	**	**	**			9 475	Crushed
113	 *****	**	44	45	44	44		******	24 825	44
114	 	**	44	**	41	**			28 725	**
115 {	 5 000	10 000						}	14 000	.00
116	 5 000	10 000		******	******	******			13 800	.00
117	 10 000	20 000		******	******		******		21 500	.00
118	 								16 700	.00
119	 								38 175	.00
120 {	 5 000						******	}	14 925	.00
121 {	 5 000						******	}	7 400	.00
122	 							******	1 900	.00
123	 						* - * * * * *	******	1 550	.00
194 {	 5 000							}	14 000	.00
125	 5 000	15 000	25 000	35 000					42 425	.00
126	 10 000	20 000							27 020	.00

HINGED-ENDED TEES .- No. 4.

No.	SHAPE.	SIZE.	LE	NGTH.	AREA.	ULTIMATE LBS. PEB SQ. INCH.	1 r	REMARKS.
		In Inches.	Ft.	Ins.	Sq. In.			
130	T	3 x 3	8	41	2.47	13 117	161	2" ball and socket.
131	66	2½ x 2½	8	48	1 74	11 207	182	2" 11 11 11
132	66	2 x 2	8	31	.97	10 597	231	1" " " "
133	66	1½ x 1½	8	31	.53	4 672	310	1" " "
134	66	1 x 1	8	33	.30	2 425	381	1" " " "
135	66	3 x 3	6	1076	2.54		133	No failure at 50 000 lbs.
136	6.6	2½ x 2½	6	101	1.74	16 379	150	2" ball and socket.
137	66	2 x 2	6	93	.98	11 495	189	1" " " "
138	66	14 x 14	6	93	.54	9 870	254	1" " " "
139	66	1 x 1"	6	918	.29	2 542	312	1" " " "
140	66	21 x 21	5	41	1.74	17 529	117.	2" " " "
141	4.6	2 x 2	5	31	.96	19 311	147	1" " "
142	6.6	11 x 11	5	3,3	.53	11 278	197	1" . " " "
143	44	1 x 1	5	3,8	.30	4 660	243	1" " "
144	16	24 x 24	3	101	1.74	27 874	84	2" " "
145	66	2 x 2	3	91	.96	21 532	105	1" 44 44 44
146	64	11 x 11	3	9"	.54	14 925	141	1" " "
147	2.6	24 x 21	3	101	1.74	28 736	84	2" 44 44
148	46	1 x 1	3	91	.30	10 067	174	1" " "
149	66	14 x 14	3	91	.55	19 100	141	1" " "
150	66	11 x 11	3	93	.46	19 100	167	1" " " "
151	66	2 x 2	3	916	.96	21 460	105	1" " "
152	46	24 x 24	2	416	1.74		51	No failure at 50 000 lbs.
153	66	2 x 2	2	316	.96	32 292	63	1" ball and socket.
154	46	11 x 11	2	3	.53	29 524	84	1" " " " "
155	66	11 x 11	1	11	.46	36 300	85	1" " "
156	66	1 x 1	1	111	.31	34 200	89	100 11 11
157	66	11 x 11	1	9	.57	36 667	66	1" " "
158	66	14 x 14	1		.52	22 690	72	1" ball and socket
200		19 7 13	1	111	.02	22 090	14	
159	44	11 - 11	1		P4	90 505	477	retested bar.
160	64	11 x 11	1	3	.51	36 765	47	1" ball and socket.
161	44	11 x 11		91	.56	47 846	29	1
162	46	1½ x 1½		815 65	.56	43 850	28	1 4
	44	1 x 1 2		68	.52	45 860	21	1" pin.
163		11 x 11		$6\frac{7}{8}$.44	37 600	25	1" ""
164	66	1 x 1	1	611	.28	43 750	26	1" "
165	66	11 x 11	8	Fi 3	.45	2 440	378	1" ball and socket.
166	66	4 x 4	15	236	3.65	******	217	No failure at 50 000 lbs
167	66	3 x 3	15	13	2.38	9 870	293	2" pin.
168	6.6	2 x 2	15	34	.90	1 780	427	1" ball and socket.

LATERAL DEFLECTIONS OF HINGED-ENDED TEES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
130 {	500	5 000 .03	10 000	15 000 .05	20 000	25 000 .10	30 000 .25			32 400	.48
131 {	500	3 000	6 000	9 000	12 000	15 000	18 000 .25			19 500	.43
132	509	1 000	3 000	5 000	6 000	7 000	8 000	9 000		10 300	.08
133 {	500	1 000	1 500	2 000	.05					2 500	.00
134	.03 100	.03 200	.04 300	.05 400	500	600	700			1	
1	.05 500	5 000	.07 15 000	.08 25 000	30 000	35 000	.20 40 000		50 000	725 No	.05
135	.02	.04	.05	.06	.06	.07	.07	.08	.10	failure	.07
136	500	5 000	10 000	15 000 03	20 000	23 500	25 000			28 500	1.03
137 {	500	2 000	4 000	6 000	7 000	*8 000 .07	9 000	10 000		11 300	.15
138	500	1 000	2 000	2 500	3 000	3 500	4 000	4 500	5 000	5 300	.07
139	.02 100	.02 200	300	.02 400	.03 500	.04 550	.05 600		.09 700	1	
1	.03 500	5 000	10 000	.06 15 000	20 000	07	.08 30 000	.13	.17	750	.00
140	.00	.01	.02	.02	.04	.07	.20			30 500	.88
141 {	500	4 000	*6 000 .03	8 000	10 009	12 000 03	14 000	16 000	18 000 .10	18 500	.62
142 {	100	1 000	2 000	3 000	4 000 eflectio	5 000				6 000	.00
143	100	200	400	600	800	1 000	1 200	1 300	1 400	1 410	.00
144	.05 500	.06 10 000	.08 15 000	.08 20 000	25 000	30 000	35 000	.12 40 000	.18 45 000	1	
-	.00 500	4 000	.00 8 000	.02 10 000	.02 12 000	03	.03 16 000	.03	.05	48 500	.90
145	.02	.03	.05	.06	.07	.08	.10	.12	20 000	20 800	.44
146	.01	1 000	2 000	3 000	4 000	5 000	6 000	7 000	8 000	8 010	.75
147	500	10 000	20 000	25 000	30 000	35 000	40 000	45 000	50 000	50 000	.78
148	.02 200	1 000	1 600	.04 1 800	.05 2 000	.05 2 200	.05 2 400	,06 2 600	.10 2 800	3 000	.00
1	.02 500	2 000	4 000	6 000	.03 8 000	.03 10 000	.03	.04	.04	1	
149	.03	.03	.04	.05	.06	.09				10 520	.34
150	500 .02	2 000	4 000	6 000	8 000					8 800	.35
151	.03	5 000	10 000	15 000	20 000				******	20 610	.72
152	500 01	10 000	20 000	30 000	40 000	50 000				No	.02
153	500	5 000	10 000	.02 20 000	.02 30 000			******		failure 30 990	.39
3	.02 500	3 000	6 000	9 000	12 000				******	1.	
154	.02	.02	.03	.04	05	.07		******		15 450	.50
155	.01	1 000	3 000	6 000	9 000	.01	14 000			16 710	.32
156	500 .01	5 000	7 000	8 000	9 000	10 000				10 550	.26
157	500		******			15 000	18 000			20 966	.38
158	.02 500	8 000		n up	to	.113	.03			1	.29
- 5	.02 500	.02				18 000		******		11 775	-
159	.00	No d	eflectio	n up	to	.02				18 750	.19
160	.00	No d	eflectio	n up	to	25 000				26 720	.10
161 {	.00				e failu		******	******		} 22 800	.20

LATERAL DEFLECTIONS—(Continued).

Number.									Ultimate Pressure.	Permanent Set.
162								 	23 850	
163								 	16 550	
164								 	12 260	
65 {	300	500 .15	700	900				 	1 100	.00
66		5 000	10 000		25 000	35 000	45 000		No failure	.00
67		5 000	15 000					 	23 490	.00
68								 	1 610	

COMPRESSION TESTS.

FIXED-ENDED ANGLES.—No. 5.

No.	SHAPE.	Size.	LE	NGTH.	AREA.	ULTIMATE LBS PER SQ. INCH.	- t	REMARKS.
		In Inches.	Ft.	In.	Sq. In.			
170	Angles.	3 x 3 x 3	7	54	2.04	19 461	147	
171	66	21 x 21 x 3	7	511	1.77	20 791	176	
172	66	2 x 2 x 5	7	510	1.13	14 159	218	
173	66	1 x 1 x 1 8	7	53	.24	4 115	449	-
174	46	3 x 3 x 8	5	1111	2.08		118	No failure at
175	64	2½ x 2½ x 3	5	11T3	1.78	21 461	141	00 000 1001
176	66	2 x 2 x 5	5	117	1.13	19 027	175	
177	66	1 x 1 x 1 x	5	117	.24	6 996	359	
178	44	2½ x 2½ x #	4	55	1.74	27 529	105	
179	46	2 x 2 x 5	4	513	1.12	24 107	131	
180	66	1 x 1 x 16	4	555555555555555555555555555555555555555	.23	10 684	268	
181	66	2½ x 2½ x 3	2	1111	1.77	28 249	70	
182	64	2 x 2 x 5	3	1111 016	1.16	33 362	88	
183	66	2 x 2 x 5 1 x 1 x 1 8	2		.23	23 377	178	i
184	64	2 x 2 x 5	ĩ	$\frac{11_{\frac{9}{16}}}{5\frac{1}{2}}$	1.14	29 386	43	
185	66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	î	55	.24	35 566	88	
186	44	1 x1 x 1		115	.24	38 333	58	1
187	66	1½ x 1½ x ½		115 51	.70	43 617	18	
188	44	1 x 1 x 1		51	.24	45 781	28	-
189	66	4 x 4 x 4	14	51	2.81	15 900	221	
190	46	4 x 4 x 8	14	51 51 61	2.83	13 600	221	
191	44	3 x 3 x 5	14	64	2.47	8 690	312	
192	6.6	2½ x 2½ x 8	14	68	1.72	6 260	341	Retested bar, see No. 35.
193	66	21 x 21 x a	14	61	1.64	7 900	341	800 140. 00.
194	44	2 x 2 x 5	14	61	1.12	4 460	439	Retested bar, see No. 36.
195	46	2 x 2 · x 5	14	64	1.12	4 600	439	

LATERAL DEFLECTIONS OF FIXED-ENDED ANGLES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
170 {	500	5 000 .07	10 000	.09	20 000	25 000 .10	.13	.17		39 700	.18
171 {	.01	5 000	10 000	15 000	20 000	25 000 .10	30 000	35 000		36 790	.64
172	500	3 000	6 000	9 000	12 000	15 000				16 020	.55
173	100	200	300	400	500	600	700	800	900	1 000	.14
174	500	5 000	10 000	No defi			tailure		[lbs. 50 000		.00
175	500	5 000	10 000	20 000	25 000	30 000	35 000		50 000	38 200	.20
176	.01 500	3 000	6 000	.03 9 000	.04 12 000	.06 15 000				21 480	.59
177	200	.13 400	.15 600	.17 800	.20 1 000	.23 1 200	.30 1 400	1 500		1 700	.12
178	.05 500	.08 5 000	.10 10 000	20 000	.16 30 000	.20 35 000	.25 40 000	.30 45 000		47 900	.48
. (500	3 000	6 000	9 000	.06 12 000	.07 15 000	.08 18 000	21 000)	
179	100	.05 400	.06 700	1 000	1 300	.08 1 600	1 900	.10	.13	27 00 0	.21
180 }	.05	.05 10 000	.08	.09	.13	.15	.22			2 500	.12
181	.03	.03	.04	.04	.05	.08	Parti	al failu		50 000	.15
182	.00	******			n up		.02			38 710	
183	.01	200	300	.05	.07	.07				5 400	1.25
184	500	15 000	20 000		******					33 520	.15
185	200	2 000	4 000	02	8 000					8 500	.28
186	200	1 000	No d	eflectio	n up	to	9 000			9 200	.17
187	500	4 000	No d	eflectio	n un	to	28 000			30 750	.17
188	300	******			n up	to	.04 8 000 .02	10 000		10 860	.15
189		10 000	20 000	30 000	40 000					44 650	
190	*****	10 000	20 000	30 000					******	38 400	.88
191		5 000	10 000	20 000				******		21 475	.25
192	*****	.06 5 000	10 000					******	******	10 775	.37
193		,37 5 000	10 000	******	******		******	******	******	12 950	.38
194		.56 4 500	.87	******		******				5 000	.00
195		.56 2 500	5 000				******	******	******	5 150	.00
Y90	*****	.06								0 150	.00

ROUND-ENDED TEES AND ANGLES.-No. 6.

No.	SHAPE.	SIZE.	LE	NGTH.	ABEA.	ULTIMATE LBS. PER SQ. INCH.	1		REMA	RKS.
		In Inches.	Ft.	Ins.	Sq. In.					
200	T	3 x 3	8	41	2.56	12 305	162	2"	ball ar	nd plate.
201	66	21 x 21	8	45	1.74	7 874	182	2"	6.6	- 66
202	6.6	2 x 2	8	31	.99	4 863	231	1"	6.6	6.6
203	8.6	11 x 11	8	3	.53	2 476	309	1"	66	6.6
204	46	1 x 1	8	31	.30	1 815	382	1"	66	66
205	44	3 x 3	6	1016	2.53	13 478	132	2"	6.6	66
206	86	24 x 24	6	103	1.73	12 428	150	2"	46	6.6
207	66	2 x 2	6	93	.97	7 239	189	1"	6.6	46
208	66	14 x 14	6	93	.53	4 120	254	1"	46	6.6
209	66	1 x 1	6	910	.30	2 016	313	1"	6.6	44
210	66	21 x 21	5	41	1.75	13 714	117	2"	66	4.6
211	46	2 x 2	5	3 3	.95	10 053	147	1"	6.6	6.6
212	66	14 x 14	5	316	.57	7 840	198	111	66	6.6
213	66	1 x 1	5	31	.30	3 340	243	111	66	66
214	46	21 x 21	3	10 3	1.74	24 138	84	2"	44	66
215	46	2 x 2	3	916	1.00	22 200	105	1"	66	66
216	6.6	14 x 14	3	9.3		13 112	141	1"	66	44
217	66	1 x 1	3	9.3 916	.30	5 872	174	111	6.6	6.6
218	66	24 x 24	2	41	1.74	28 300	51	2"	6.6	6.6
219	66	11 x 11	2	3	.54	25 370	84	1"	6.6	66
220	46	14 x 14	1	9	.57	32 900	66	111	66	46
221	44	11 x 11	î	3	.53	37 143	47	111	6 6	66
222	44	1½ x 1½	1	3	.53	32 000	47			as above
223	46	11 x 11	1	916	.56	41 135	28	1"	66	44
224	44	3 x 3	6	10 7		15 748	133	2"	4.6	6.6
225		3 x 3	15	41	2.43	3 340	298	2"	66	6.6
226	44	2 x 2	15	31	.88	1 140	426	1"	4.6	6.6
227	Angle	3 x 3 x 7	15	41	2.52	3 000	329	2"	4.6	66
228	66	Same bar.	15	41	2.52	2 740	329	1"	4.6	4.6
229	66	2 x 2 x 5	15	3 3		1 280	447	1"	66	44

LATERAL DEFLECTIONS OF ROUND-ENDED TEES AND ANGLES.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
200 {	500	10 000		20 000		30 000				31 490	.00
201	500	2 000	4 000	6 000	8 000	10 000	12 000			13 700	.20
202 {	500	1 000	2 000	3 000	4 000					4 780	.08
	200	.04 500	1 000		.25			******			
203	.06 100	200		400	500		*****			1 300	.00
204	.05	.05	.08	.15	.30		******	******		550	.00
205 }	500	5 000	10 000	15 000	20 000					34 110	.65
206	500	3 000		9 000	12 000		18 000	20 000		21 510	.70
207	500	1 000	2 000	3 000	4 000	5 000	6 000	6 500		7 000	.52
	200	600		1 000				.35 1 800	2 000		
208 {	.02	.05	.06	.07	.09	.12	.15	.20	.30	2 200	.18
209	100	200 .05	.10	400 .15	.25			******		600	.00
10 {	500	5 000	10 000	15 000				******	******	23 990	.80
211	500	2 000	3 000	4 000	5 000	6 000	7 000	8 000		9 510	.48
1	.03 500	2 000		.08 4 500			.20	.27	.40		
112	100	.03 300	.09	,60 700	******	******	*****			4 510	.29
213	.01	.02	.03	.10	.33					1 010	.09
214	500	5 000		15 000			******	******		42 000	.73
115	500	3 000	6 000	9 000		18 000		******		21 190	-22
216	500	2 000	4 000	6 000		.00	******			7 500	.42
- 1	100	400		.09 800		1 200	1 400	1.600	1 700		
117 {	.01	.02	.03	.04	.06	.10	.15	.29	.55	1 750	.20
218	500	.02	. 20 000	30 000	.03	.03	******			49 290	.50
219 {	.01	3 000		9 000						13 725	.45
220	500	6 000	12 000	15 000	18 000					18 820	.38
221 {	.02 500	.02			.05	18 000					.37
- 1	500	No d	eflectio	n up	to	.01	15,000	******		19 500	
122 {	.00	No d	enectio	n up	to	.01	.01	******	******	16 820	.21
223	.00	No d	eflectio	n, bar	crushe	d				23 200 .	*****
224 }	500	10 000	20 000					******		40 010	.47
25		5 000	******		******			*****		8 125	.00
- (*****	.06	******	******	******	******	******			0 220	
226	*****	******	******	*****	**** .	******	******	*****		1 000	.00
27 {	*****	5 000		******	******					7 575	.00
228	*****	5 000									
- 1		.18 1 200	******	******			******			6 920	.00
229	*****	.25			******	******		******		1 425	.00

FLAT-ENDED CHANNELS AND BEAMS.-No. 7.

No.	SHAPE.	Size.	LE	NGTH.	AREA.	ULTIMATE LBS. PER SQ. INCH.	$\frac{l}{r}$	REMARKS.
		In Inches.	Pt.	In.	Sq. In.			
230	Chan'l	E - 7	8	0 1	1.89	14 392	214	
231	14	O X 32	5	0.5	1.89	22 606	134	
232	16	44	6	616	1.89	20 321	174	
233	66	66	3	61	1.89	20 021	94	No failure at 50 000 lbs
234	66	6 x +	15	0Î	3.23	6 200	270	110 1411410 86 00 000 100
235	64	0 - 13	8	01	2.99	0 200	160	No failure at 50 000 lbs
236	44	4 x 1	8	04	1.92	13 177	192	210 21112 210 200 000 200
237	66	**	6	61	1.91	21 466	156	
238	66	4.6	5	01	1.91	26 316	120	
239	66	44	3	61	1.91		85	No failure at 50 000 lbs
240	64	3 x 37	8	01	1.51	10 855	209	
241	64	46 32	6	61	1.51	19 527	170	
242	66	44	5	01	1.51	26 670	131	
243	66	6.6	3	61	1.51	30 590	92	
244	66	2 x 3	8	01	.80	6 626	310	
245	66	44 16	6	61	.80	12 500	252	
246	66	66	5	0,5	.80	10 580	195	
247	44	. 44	3	610	.80	30 818	136	
248	Beam.	6 x 1	15	08	4.15	11 400	279	
249	66	5 x 5	15	0,76	3.35	8 960	300	
250	66	5 x 33	8	01	2.92		160	No failure at 50 000 lbs
251	44	4 x 5 3 8	8	0,5	1.94	20 360	189	(See Nos. 264 & 266.
252	6.0	44 33	6	61	1.94		153	No fail're at 50 000 1b
253	Chan'l	4 x 1	15	$0\frac{1}{2}$	2.17	5 740	361	(No latt re at 50 000 10
	Chan'l	6 inches.		6	2.33	42 290	10	Watertown test.
	66	4.6	1	$5\frac{6}{10}$ $11\frac{9}{10}$	2.33	36 835	30	44
	66	4.6	1	11 9	2.33	33 910	41	66
	6.6	44	4	0	2.33	28 140	83	66
	66	8 inches.		8	3.80	43 295	17	. 44
	*6	64	1	510	3.80	35 280	37	44
	64	4.6	1	113	3.80	35 975	50	
	64	6.6	2	$11\frac{9}{10} \\ 5\frac{9}{10}$	3.80	33 400	62	**
	6.6	6.6	4	0	3.80	30 620	100	66
	66	10 inches.		10	4.85	35 080	14	**
٠	44	44 -	1	5.9	4.85	33 820	26	**
	66	44	1	$11\frac{9}{10}$	4.85	34 355	35	64
	66	4.6	2	$5\frac{9}{10}$	4.85	34 050	43	66
	46	44	4	0	4.85	34 080	70	44
	64	12 inches.	1	0	6.00	37 240	14	66
	-46	4.6	1	510	6.00	36 590	.20	1 46
	6.6	6.6	1	11,9	6.00	36 695	27	66
	44	6.6	2	570	6.00	35 150	34	44
	6.6	6.6	4	0	6.00	36 040	55	4.6

LATERAL DEFLECTIONS OF FLAT-ENDED BEAMS AND CHANNELS.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
230 {	500	2 000	4 000	8 000	12 000 .21	16 000	20 000	24 000 .47	27 000	27 200	.18
231 {	.05	2 000	6 000	10 000	14 000		30 000	37 500 .15	42 500	42 510	1.25
232 {	.02	3 000	No fu	rther d	eflectio	n up to	30 000	33 000	36 000	38 600	1.20
233 {	.04	5 000	10 000	15 000		eflectio	******	no fail	ure.		.00
234		5 000	10 000	15 000 34						20 000	.18
235 {	500 .02	10 000	15 000 .06	20 000	.22	.28	40 000	45 000 .39	50 000	No failure	.00
236 {	.06	2 000	6 000	10 000	14 000 .57	.67	20 000	22 000 .81	24 000 1.06	25 300	.83
237 {	.05	4 000	8 000	15 000	.09	.10	30 000 12	35 000 .15	40 000	41 000	.27
238 {	.03	10 000	20 000	25 000	.07	.08	40 000	45 000 .12		50 000	1.38
239 {	.02	10 000	25 000 03	.04	.05	.08				No failure	.00
240	.07	2 000	4 000	6 000	.26	10 000	12 000 .46	14 000	16 000	16 500	.18
241 {	.02	2 000	6 000	10 000	.14	.16	22 000 .20	26 000	.38	28 910	1.62
242 {	.00	5 000	10 000	15 000		.03	.04	35 000 .06		40 000	1.37
243 {	.04	No		ion up		42 000	.09		******	46 475	.60
244 {	500	1 000	1 500 .18	2 000	.31	.41	.50	.60	.82	5 420	.26
245	.04	2 000	4 000	5 000	.22		8 000	9 000		10 010	.21
246	.03	2 000	3 000	4 000	.28	.31	.34	.45		8 420	.29
247	.03	7 000	10 000	14 000	.07			22 000		24 500	
248	******	10 000	20 000	30 000						47 220	.62
249		5 000	10 000	15 000						30 025	.25
250	500 .03	5 000	15 000	.21	.23	.25	.27	45 000		No failure	.00
251	500 .05	5 000	10 000	.08	.10	25 000	30 000		39 000	39 490	.98
252	500 .04	5 000	20 000	40 000	45 000	50 000				No failure	.00
253	*****	5 000					******			12 450	.00

OF WELDED TUBES, FLAT-ENDED.—No. 8.

No.	OUTER DIAM'TR.	Length.	AREA.	ULTIMATE LBS. PER SQ. INCH.	- r	REMARES.
		Ft. In.	Sq. In.		-	
270	2.87 inches.	8 0	1.72		101	No failure at 50 000 lbs.
271	66 66	8 0	1.64	20 122	101	Not same Tube as last.
272	66 66	8 0	1.64	17 614	101	Same Tube as last.
273	66 66	15 0	1.64	13 810	190	
274	2.37 "	15 0	1.04	16 680	221	
175	66 66	7 113	1.08	27 780	123	
276	66 66	6 6	1.08	31 018	100	
277	66 66	4 10	1.08	37 103	75	
178	66 66	3 41	1.08	36 239	52	
	Welded	Tubes,	with	flanged	ends.	
		Ft. In.	Sq. In.			
279	2.87 inches.	15 0	1.64	19 000	189	
80	2.37 "	15 0	1.04	15 400	221	
181	44 44	8 0	1.08	24 780	121	
182	66 66	6 6	1.08	30 700	98	
283	66 66	5 0	1.08	32 710	75	
284	44 44	3 5	1.08	38 200	52 -	
	Welded	Tubes,	with	hinged	ends.	
285	3.5 inches.	Ft. In. 15 0	Sq. In. 2.12		153	On a 2" pin. No failure at 50 000 lbs.
286	Same Tube.	15 0	2.12	13 940	153	On 2" balls and sockets.
187	66 46	15 0	2.12	11 410	153	" " plates.
188	2.87 inches.	15 0	1.64	10 840	194	2" pins.
189	Same Tube.	15 0	1.64	8 840	194	2" balls and sockets.
390	44 66	15 0	1.64	7 650	194	2" " plates.
291	2.37 inches.	15 θ	1.04	14 420	224	2" pins.
292	Same Tube.	15 0	1.04	11 300	224	2" balls and sockets.
293	46 66	15 0	1.04	5 000	224	Round ends.
294	2.87 inches.	8 4	1.72	25 580	105	2" balls and sockets.
295	2.37 "	8 4	1.07	23 364	128	2" " " "
296	46 , 44	6 8	1.15	28 260	103	2" " "
297	66 66	5 2	1 07	34 112	80	2" " " "
298	66 66	3 8	1.07	38 785	57	2" " " "
299	1.31 "	8 3	.46	5 857	247	1" " " "
300	3.5 "	15 0	2.12	18 880	153	2" pin .10 in. out of centr

LATERAL DEFLECTIONS OF WELDED TUBES, FLAT-ENDED.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
270 {	700	5 000	10 000	15 000 .12	20 000	30 000	40 000	45 000 ,18	50 000 .22	No failure	
271	1 000	10 000	15 000	20 000	25 000	30 000	33 000			33 020	
272	1 000	5 000	10 000	15 000 .21			30 000			31 000	.77
273	500		10 000	20 000 1.56			*****	******		22 725	
274		******	10 000	******		******		******	*******	17 350	
275	*****	1 000	5 000	10 000	15 000 .14	20 000	25 000	30 000 .53	******	30 025	.28
276	500	5 000	10 000	15 000	20 000	25 000	30 000		******	33 520	.28
277	.03 500	5 000	.05 10 000	.06 15 000		.10 25 000	30 000	35 000	******	39 700	
278	.02 500 .01	5 000 .02	.03 10 000 .03	.03 15 000 .03	.03 20 000 .03	25 000 .04	30 000 .04	35 000		39 525	
				FLAN	GED E	NDS.					
279 {			20 000	30 000 .75				******		31 175	
280	******	10 000	.28			******	******			15 990	
281	500	5 000	10 000	15 000	20 000	25 000				28 030	
282	.06 500	.10 5 000	.12 10 000	15 000	20 000	25 000	30 000	35 000		35 025	
283	.05 500	5 000	.05 10 000	.06 15 000	20 000	25 000	.08 30 000		******	34 995	
284	.03 500 .02	.06 5 000 .03	.07 10 000 .03		25 000	.09 30 000 04	35 000	40 000		40 485	
			*	Hing	ED EN	DS.					
285 {		10 000	20 000	30 000	40 000	50 000			******	No failure	
286		10 000	20 000			******		******		29 550	
287		10 000	20 000			*****	******	******		24 210	.00
288		10 000			******	******	******	******	******	17 775	.00
289		,70 10 000			******	******			******	14 510	.00
290		.22 10 000	******		*******	,		******	******	12 550	
291		5 000	10 000	15 000		******				15 000	-
200		.06 5 000	10 000		Held	15 000	for a	few se	conds.	1	
909		4 000			******					11 750	
292		.25	******	******	25 000	30 000	35 000	40 000		5 190	
293	500		15 000				10	.14		43 990	
293	500	10 000	.03	.01	.05	25 000			1		
293 294 295	500 500 .04	10 000 .02 5 000 .05	.03 10 000 .07	15 000 11 15 000	20 000	25 000	******			25 000	1
293 294 295 296	500 500 04 500 500	10 000 .02 5 000 .05 5 000 .02	.03 10 000 .07 10 000	15 000 .11 15 000	20 000 .14 20 000 .08	25 000 25 000 .09	30 000			32 495	1
293 294 295	500 6 .04 6 500 6 .01 6 500 7 .01	10 000 .02 5 000 .05 5 000 .02 5 000	.03 10 000 .07 10 000 .04 10 000	15 000 .11 15 000 .06 15 000	20 000 .14 20 000 .08 20 000 .08	25 000 25 000 .09 25 000 .09	30 000 .15 30 000	35 000		1	.6
293 294 295 296	.02 500 .04 500 .01 500 .05 500 .05	10 000 .02 5 000 .05 5 000 .02 5 000 .06 25 000	.03 10 000 .07 10 000 .04 10 000 .07 35 000	15 000 15 000 15 000 .00 15 000 .07 40 000	20 000 .14 20 000 .08 20 000 .09	25 000 25 000 .09 25 000 .09	30 000 .15 30 000	35 000		32 495	.6.
293 294 295 296 297	\$.02 \$ 500 \$.04 \$ 500 \$.01 \$ 500 \$.05 \$ 500	10 000 .02 5 000 .05 5 000 .02 5 000 .06 25 000 .02 1 000	.03 10 000 .07 10 000 .04 10 000 .07 35 000 .03 2 000	15 000 .11 15 000 .06 15 000 .07 40 000	20 000 .14 20 000 .08 20 000	25 000 25 000 .09 25 000 .09	30 000 .15 30 000	35 000		32 495 36 500	.6.

HINGED-ENDED CHANNELS AND BEAMS.

(See Diagram No. 4.) Plate

No.	SHAPE.	SIZE.	LENGTH.	AREA.	ULTIMATE LBS. PER SQ INCH.	$\frac{l}{r}$	REMARKS.
261	Chan'l Beam Chan'l	In Inches. 8 x \frac{3}{16} 5 x \frac{3}{32} 5 x \frac{3}{32} 4 x \frac{1}{4}	Ft. Ins. 8 41 8 41 4 02 4 01	Sq. In. 3.05 2.98 1.87 1.90	11 738 11 200 11 550 18 421	167 167 108 97	2" balls and sockets. 2" " " " " " " " " " " " " " " " " " "
264	Beam	4 x 5	6 101	1.94		161 }	2" "[lbs. No failure at 50 000
	Chan'l Beam	$\begin{array}{c} 6 \times \frac{1}{4} \\ 4 \times \frac{5}{32} \end{array}$	15 3½ 6 10¼	4.15 1.94	3 700 12 113	273 161	1" balls and sockets. Round-ended 2" balls.
267 268, 269		$\begin{array}{c} 6 \times \frac{1}{4} \\ \text{Same bar.} \\ 4 \times \frac{1}{4} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.15 4.15 2.17	6 020 9 050 5 880	273 273 364	2" pins.

Numbers 264, 266, are hinged and round-ended retests of No. 252, which did not fail flat-ended with 50 000 lbs.

LATERAL DEFLECTIONS OF HINGED-ENDED CHANNELS AND BEAMS.

THE UPPER FIGURES REPRESENT PRESSURES IN POUNDS.

Number.										Ultimate Pressure.	Permanent Set.
160 {	500	5 000	10 000	15 000	20 000	25 000 .08	30 000			35 820	.95
61	500	5 000	10 000	15 000	20 000	25 000 .20	30 000			33 400 -	.82
262 {	500 .05	5 000	10 000	15 000 .16	20 000					21 610	.52
63 {	500	5 000	10 000	15 000	20 000		30 000			35 000	.48
64	500 .02	No d	eflectio	n up to	15 000		45 000 .05			No failure	.00
65 {	****	5 000								15 350	.00
66 {	500	No d	eflectio	n up	to 20	000	20 000			23 500	.60
67 {	*****	10 000	20 000				*******		******	25 000	.00
68 {	*****	10 000	20 000					******	******	37,550	.0
69 {		5 000	10 000						******	12 750	.0

The following examples illustrate the wide range of resistance produced in the bars by a change in their end conditions, and the rapid fall of resistance that occurred when but a trifling deviation from the true centre existed.

It will be understood that in all pin-ended tests the pins were placed at right angles to the least radius of gyration of the strut. Also, when bars were moved on their hinged ends, the movement was made in the direction of the least radius, unless otherwise stated, and in that direction which tended to reverse the deflection of the previous experiment. The number of the experiment given on the left corresponds with the numbers on tables and diagrams, where the particulars of the test can be found.

Two bars of angle iron, $2\frac{1}{2} \times 2\frac{1}{2} \times 3\frac{3}{2}$ inches, 5 feet $4\frac{1}{10}$ inches long, were cut from the same original bar, and adjusted in the testing machine, as near as possible, with the centres of gravity of section in line with centres of the balls which capped both ends.

Numb		Pounds.
91	With 2-inch balls and sockets, failed with	36 500
92	" 1 " " "	24 010
	These bars were then straightened cold and changed on the balls, centres precisely as before.	
91	With 1-inch balls and sockets, failed with	17 500
92	2	36 500
82	Angle $2 \times 2 \times {}_{1}^{5}$ inches, 8 feet $3\frac{1}{4}$ inches long. First test with 1-inch balls and sockets, failed with	4 500
83	Second test, same balls, moved .08 inch, "	8 100
	Tee, $2\frac{1}{2} \times 2\frac{1}{2} \times 3$ feet, $6\frac{1}{6}$ inches long.	
54	First test, flat-ended, no failure with	50 000
144	Second test with 2-inch balls and sockets, failed with	48 500
-	Third test, straightened hot, and placed 1 inch out of centre, in the direction of the stem, failed with	30 620
147	Another bar, same dimensions, tested with 2-inch balls	
	and sockets, failed in a few seconds	50 000

Numb		ounds.
and bone	Angle 3 x 3 x 3 inches, 8 feet 1 inch long, tested, straight-	
	ened and retested in the succession given.	
147	First test with 2-inch balls and sockets, apparently central	19 400
80	Second test with 2-inch balls and sockets, moved .06 inch	27 850
170	Third test with fixed ends	39 700
	Angle 2½ x 2½ x ½ inches, 8 feet long, tested, straightened and retested successively.	,
_	First test with 2-inch balls and sockets, .08 inch out of	
	centre	12 100
81	Second test with 2-inch balls and sockets and moved .08 in.	24 600
171	Third test with fixed ends	36 790
	Angle 12 x 12 x 2 inches, 8 feet long. No straightening	
	done.	
84	First test with 1-inch balls and sockets	2 800
_	Second test, same balls, moved .10 inch	1 850
	the following experiments, as the bars fully recovered their lition, after the application of each ultimate load (excepting t	0
cond	•	ne fixed-
ende with Num Exper	tition, after the application of each ultimate load (excepting the distance of the bars from the machine.	ne fixed-
ende with	dition, after the application of each ultimate load (excepting the datests, which were made last), the loads were applied continuout taking the bars from the machine. The date of the d	ne fixed- nuously, mate Load Pounds.
ende with Num Exper	dition, after the application of each ultimate load (excepting the dests, which were made last), the loads were applied continuout taking the bars from the machine. The continuous distribution of the destruction of the de	ne fixed- nuously,
ende with Num Exper	dition, after the application of each ultimate load (excepting the dests, which were made last), the loads were applied continuout taking the bars from the machine. The continuous area of the state of the continuous and the continuous area of the cont	mate Load Pounds.
ende with Num Exper	dition, after the application of each ultimate load (excepting the dests, which were made last), the loads were applied continuout taking the bars from the machine. The continuous distribution of the destruction of the de	mate Load Pounds.
ende with Num Exper 167	dition, after the application of each ultimate load (excepting the ditests, which were made last), the loads were applied continuout taking the bars from the machine. The dite of the dite of the dite of the dite. Tee, 3 x 3 inches, 15 feet 12 inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet 2 inches long, on 2-inch pins,	mate Load Pounds. 23 500 21 400
conde ende with Num Exper 167	dition, after the application of each ultimate load (excepting the dests, which were made last), the loads were applied continuous taking the bars from the machine. The of the continuous are supplied to the continuous distribution. Tee, 3 x 3 inches, 15 feet 12 inches long, tested with 2-inches pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet 2 inches long, on 2-inch pins, no failure.	mate Load Pounds. 23 500 21 400
eonde ende with Num Exper 167	dition, after the application of each ultimate load (excepting the dests, which were made last), the loads were applied continuous taking the bars from the machine. The state of the stat	mate Load Pounds. 23 500 21 400 50 000 27 750
cond ende with Num Experiment 167	dition, after the application of each ultimate load (excepting the detects, which were made last), the loads were applied continuous taking the bars from the machine. Aber of Ultiment. Tee, 3 x 3 inches, 15 feet 1½ inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet ½ inches long, on 2-inch pins, no failure. Second test, the pins moved .10 inch, failed.	mate Load Pounds. 23 500 21 400 50 000 27 750 18 150
eonde ende with Num Exper 167	dition, after the application of each ultimate load (excepting the detects, which were made last), the loads were applied continuous taking the bars from the machine. Aber of Ultiment. Tee, 3 x 3 inches, 15 feet 1½ inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet ½ inches long, on 2-inch pins, no failure. Second test, the pins moved .10 inch, failed	mate Load Pounds. 23 500 21 400 50 000 27 750 18 150
cond ende with Num Experiment 167	dition, after the application of each ultimate load (excepting the detects, which were made last), the loads were applied continuous taking the bars from the machine. Aber of Ultiment. Tee, 3 x 3 inches, 15 feet 1½ inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet ½ inches long, on 2-inch pins, no failure. Second test, the pins moved .10 inch, failed.	mate Load Pounds. 23 500 21 400 50 000 27 750 18 150
cond ende with Num Experiment 167	dition, after the application of each ultimate load (excepting the ditests, which were made last), the loads were applied continuous taking the bars from the machine. Tee, 3 x 3 inches, 15 feet 12 inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet 2 inches long, on 2-inch pins, no failure. Second test, the pins moved .10 inch, failed	mate Load Pounds. 23 500 21 400 50 000 27 750 18 150
cond ende with Num Expert 167	dition, after the application of each ultimate load (excepting the ditests, which were made last), the loads were applied continuous taking the bars from the machine. Tee, 3 x 3 inches, 15 feet 12 inches long, tested with 2-inch pins. Pin then turned at right angles to stem, with same pins. In both experiments the bar failed in the direction of the flange. No rotation on the pin at second test. Tee, 4 x 4 inches, 15 feet 2 inches long, on 2-inch pins, no failure. Second test, the pins moved .10 inch, failed. Third "".20"" Fourth "pins removed, tested flat-ended, no failure Uneven angle, 4 x 3 x ½ inches, 15 feet 52 inches long.	mate Load Pounds. 23 500 21 400 50 000 27 750 18 150 50 000

Numb		nate Load Pounds.
126	Fourth test with 2-inch pins, moved .06 inch	27 020
31	Fifth test, pins removed, flat-ended	22 600
_	Sixth " had now some permanent curvature, fixed-	
	ended	17 620
*	Angle, 22 x 22 x 2 inches, 10 feet 61 inches long.	
118	First test with 2-inch balls and sockets, apparently	
	central	16 700
_	Second test with same ends, moved .06 inch	26 450
30	Third test, balls removed, flat ends	22 250
	Angle, 3½ x 3½ x 3 inches, 10 feet 6½ inches long.	
_	First test with 2-inch balls and sockets	20 150
119	Second test with same ends, moved .07 inch	38 178
29	Third test, balls removed, flat ends	39 425
	Angle, $2 \times 2 \times \frac{5}{16}$ inches, 15 feet $\frac{3}{16}$ inch long.	
229	First test with 1-inch balls and plates, round ends	1 42
123	Second " 1 " " sockets, hinged ends	1 550
122	Third " 2 " " " " " "	1 900
36	Fourth " balls removed, flat ends	2 910
195	Fifth " clamps applied, fixed ends	5 150
	Angle, $3 \times 3 \times \frac{7}{16}$ inch, 15 feet $\frac{1}{4}$ inch long.	
228	First test with 1-inch balls and plates, round ends	6 920
227	Second " 2 " " " " " "	7 578
121	Third " 1 " " sockets, hinged ends	7 400
_	Fourth " 2 " " " " " "	14 000
120	Fifth " 2 " pins, hinged ends	14 92
33	Sixth " ends removed, flat ends	15 40
191	Seventh " clamps applied, fixed ends	21 47
	I Beam, 6 x 1 inches, 15 feet 1 inch long,	
265	First test with 1-inch balls and sockets, hinged ends	15 350
267	Second " 2 " " apparently cen-	
	tral, hinged ends	25 000
_	Third test with same balls, moved .10 inch apparently out	
	of centre	37 55

Numb		nate Load Pounds.
267	Fourth test with same balls, moved .20 inch in same	
	direction	13 650
	Fifth test with same balls, moved .30 inch in same	
	direction	12 025
_	Sixth test with same balls, moved .40 inch in same	
	direction	11 275
_	Seventh test with same balls, moved .50 or ½ inch out of	
	centre	11 200
248	Eighth test, balls removed, flat ends	47 220

The following tests of tubes were also made continuously, without being taken from the machine, and in the succession given. The sizes are inside diameters.

Tube, 2-inch diameter, 15 feet long.

Numbe		mate Load Pounds.
293	First test with 2-inch balls and plates, round ends	5 190
292	Second " 2 " " sockets, hinged ends	11 750
291	Third " 2 " pins, hinged ends	15 000
274	Fourth test, hinged ends removed, flat ends	17 350
280	Fifth test, flanges put on, flanged ends	15 990
	The above tube was slightly injured with the fourth test.	
	Tube, 2½ inches in diameter, 15 feet long.	
290	First test with 2-inch balls and plates, round ends	12 550
289	Second " 2 " sockets, hinged ends	14 510
288	Third " 2 " pins, hinged ends	17 775
273	Fourth test, balls removed, flat ends	.22 725
279	Fifth " flanges put on, flanged ends	31 175
	Tube, 3 inches diameter, 15 feet long.	
287	First test, 2-inch balls and plates, round ends	24 210
286	Second " 2 " " sockets, hinged ends	29 550
285	Third " 2 " pins. No failure with	50 000
300	Fourth " same pins, moved .10 inch	40 020
Th	ne records of the second test are not complete; the tube m	ay have
been	placed out of centre designedly.	

No. 9. AVERAGE RESULTS OF TESTS OF STRUTS. ULTIMATE IN POUNDS PER SQUARE INCH.

Length divided by Least Rad. of Gyr'n.	Flat-ended Angles.	Hinged- ended Angles.	Fixed- ended Angles.	Flat-ended Tees.	Hinged- ended Tees.	Round- ended Tees.	Flat-ended Channels and Beams
20	49 000	45 000	45 000	49 000	47 000	44 000	38 000
40	40 000	40 000	38 000	42 000	41 000	36 500	35 000
60	35 000	36 000	34 000	38 000	36 000	30 500	34 000
80	32 000	32 000	32 000	35 000	31 000	25 000	31 500
100	29 000	29 000	30 000	31 500	27 000	20 500	29 000
120	26 000	26 000	28 000	27 000	22 500	16 500	26 000
140	23 500	22 000	25 500	23 000	18 500	12 800	24 000
160	21 000	17 000	23 000	20 000	15 500	9 500	21 000
180	19 000	13 000	20 000	17 000	12 500	7 500	18 000
200	16 500	11 000	17 500	14 000	10 500	6 000	15 000
220	14 000	9 000	15 000	12 000	8 500	5 000	12 500
240	12 000	8 000	13 000	11 000	7 000	4 300	11 000
260	10 500	7 000	11 000	10 000	6 000	3 800	10 000
280	9 000	6 000	10 000	8 500	5 500	3 200	9 000
300	7 500	5 000	9 000	7 000	5 000	2 800	7 500
320	6 000	4 500	8 000	5 500	4 500	2 500	6 000
340	4 800	4 000	7 000	4 500	4 000	2 100	5 000
360	. 3 800	3 500	6 500	4 000	3 500	1 900	4 000
380	3 200	3 000	5 800	3 500	3 000	1 700	
400	2 900	2 500	5 200	3 000	2 500	1 500	
420	2 500	2 300	4 800	2 500	2 200	1 300	
440	2 200	2 100	4 300				
460	2 000	1 900	3 800				
480	1 900	1 700					

No. 10.

COMBINED AVERAGE RESULTS OF TESTS OF STRUTS.

ULTIMATE IN POUNDS PER SQUARE INCH.

Length divided by Least Rad. of Gyration.	Flat Ends.	Fixed Ends.	Hinged Ends.	Round Ends
20	46 000	46 000	46 000	44 000
40	40 000	40 000	40 000	36 500
60	36 000	36 000	36 000	30 500
80	32 000	32 000	31 500	25 000
100	29 800	30 000	28 000	20 500
120	26 300	28 000	24 300	16 500
140	23 500	25 500	21 000	12 800
160	20 060	23 000	16 500	9 500
180	16 800	20 000	12 800	7 500
200	14 500	17 500	10 800	6 000
220	12 700	15 000	8 800	5 000
240	11 200	13 000	7 500	4 300
260	9 800	11 000	6 500	3 800
280	8 500	10 000	5 700	3 200
300	7 200	9 000	5 000	2 800
320	6 000	8 000	4 500	2 500
340	5 100	7 000	4 000	2 100
360	4 300	6 500	3 500	1 900
380	3 500	5 800	3 000	1 700
400	3 000	5 200	2 500	1 500
420	2 500	4 800	2 390	1 300
440	2 200	4 300	2 100	-
460	2 000	3 800	1 900	
480	1 900		1 800	1

The experiments do not justify the statement that the short fixed-ended struts are as strong as similar lengths of flat or hinged-ended.

This equality is hypothetical, and based on the assumption, previously stated, that the effective lengths of the fixed-ended struts were greater than the lengths recorded.

CONCLUSIONS.

The following general conclusions may be derived from the experiments:

When struts are short, say $\frac{l}{r}$ below 20, there will be no practical difference in the strength of the four classes, so long as reasonable care is taken to keep the centre of pressure in the centre of the strut.

Hinged-ended struts vary all the way from round-ended up to flatended in strength. If the hinge pins are of insignificant diameter, and imperfectly centred, the strut ought then to be classified as round-ended.

On the contrary, if the pins are of substantial diameter, well fitted, and exactly centred with the axis of greatest resistance of the strut, the hinged-ended will be fully as strong as the flat-ended strut; but considering the impracticability of maintaining this rigid accuracy, the average hinged struts, as compared with flat-ended, will fall in strength as the length is increased, until $\frac{l}{r}$ becomes about 250, when they will average one-third less resistance than flat-ended. From this point they will gain in comparative resistance until $\frac{l}{r}$ becomes about 500, when both classes will be practically equal.

Fixed-ended struts gradually gain in comparative strength, from the least lengths upward, until $\frac{l}{r}$ becomes about 500, when they will be twice as strong as either the flat-ended or hinged-ended.

Round-ended struts continually lose in comparative strength. When $\frac{l}{r}$ is about 160 they will be about half as strong as flat-ended, and when $\frac{l}{r}$ becomes about 450 they will have about half the strength of hinged-ended struts.

QUALITY OF THE IRON.

The quality of iron experimented upon was such as would be used to conform to the bridge specifications of the Pennsylvania, or New York, Lake Erie & Western R. R. Companies, and would in tension average as follows per square inch:

Breaking	Strain.	Elastic Limit.
49 000	lbs	32 000 lbs.
	18 per cent. elongation in 8 inche	8.

The same iron exhibited the following resistance to direct compression, being the average of several tests of small sections, 12 inches long, secured in such a manner as to prevent lateral flexure. With pressures varying from 26 000 to 32 000 lbs. per square inch, the elastic limit was reached; that is, the point where the reduction of length increased

in a greater ratio than the pressure increased. The higher values were obtained from specimens whose rolled sections were less than one square inch; the lower values, from strips cut from angles whose rolled section was about 4 square inches.

With 50 000 lbs. pressure per square inch, a permanent reduction of length of 2½ per cent. was produced.

With 75 000 lbs. a reduction of 6 per cent., and with 100 000 lbs. per square inch the permanent reduction of length averaged 8 per cent.

The diagrams referred to in this paper are shown on Plates XXVI, XXVIII and XXIX.

APPENDIX.

COMPARATIVE ELASTICITY OF WROUGHT-IRON IN TENSION AND IN COMPRESSION.

It is difficult to ascertain the elasticity of the metals under compression, owing to the specimen operated upon bending under the crushing strain when the ratio of length to diameter exceeds certain limits.

It is necessary to secure the specimen laterally, so that it cannot bend, but not use such constraint as will offer any resistance to its free longitudinal movement, or the enlargement of its sectional area. Of several methods tried by the writer, the one hereafter described gave the best results.

The specimen to be operated on is inserted in a tube, in which it has abundant lateral freedom. The tube is made a little longer than the specimen, say one or two inches, and has a plug neatly fitted in each end, the plugs projecting past the ends of the tube, so that as the specimen is shortened by the crushing force the plates of the testing machine will not touch the tube.

A few set screws are passed through the cylindrical shell of the tube, at any convenient points, by means of which the specimen can be held in position while being adjusted in the machine. The space inside the tube and around the specimen is filled with fine dry sand, and the testing machine brought to act on the specimen through the plugs, which close the ends of the tube. As the pressure increases the set screws are gradually relaxed, so that the sand sustains no pressure, except that exerted by the specimen in the effort to bend laterally under the crushing strain. After a few trials the operator will learn how to best obtain the desired result. The following tests under compression were obtained by the foregoing method.

Measurements were taken with a callipers by the sense of touch, and read on a measuring machine to the nearest $\frac{1}{1000}$ th of an inch.

TWO PIECES OF 3/-INCH SQUARE IRON.

CUT FROM SAME BAR.

Area of Section 0.556 Square Inches.

PRESSURES IN POUNDS.

CHANGE OF LENGTH IN INCHES.

TENSILE TEST, Measured on a Length of 12 inches.				COMPRESSIVE TEST, Measured on a Length of 11.96 inches.				
Total Pressure.	Pressure per Square Inch.	ELONGATIONS.		Total	Pressure per	REDUCTION OF LENGTH.		
		Load on.	Load off.	Pressure.	Square Inch.	Load on.	Load off.	
2 780	5 000	.002	.000	2 780	5 000	.002	.000	
5 560	10 000	.0045	.000	5 560	10 000	.0035	.000	
8 340	15 000	.007	.000	8 340	15 000	.005	.000	
11 120	20 000	.0085	.000	11 120	20 000	.006	.000	
12 232	22 000	.010	.000	12 232	22 000	.007	.000	
13 344	24 000	.0105	.000	13 344	24 000	.008	.000	
14 456	26 000	.0115	.000	14 456	26 000	.009	.000	
15 568	28 000	.012	.000	15 568	28 000	.0095	.000	
16 680	30 000	.013	.000	16 680	30 000	.010	.000	
17 792	32 000	.0135	.000	17 792	32 000	.011	.000	
18 904	34 000	.0145	.000	18 904	34 000	.020	.0035	
20 016	36 000	.0155	.001	20 016	36 000	.023	.0045	
21 128	38 000	.1715	.1495	21 128	38 000	.027	.010	
$22\ 240$	40 000	.3835	.3605	22 240	40 000	.107	.089	
27 800	50 000	1.326	1.2945	27 800	50 000	.272	.246	
29 925	53 821	3.093	*****	33 360	60 000	.4645	.4355	
				38 920	70 000	.671	.639	
Specimen broke with 53 821 lbs. per				44 480	80 000	.845	.8145	
square				50 040	90 000	1.074	1.042	
		in 12 inch	es.			1	1	
	2.187 "	8 "						
		nt. in 8 in				1		
rracture	d area 0.3	364 square	inches.					
							1	

TWO PIECES OF 3/-INCH ROUND IRON.

CUT FROM SAME BAR.

Area of Section 0.449 Square Inches.

PRESSURES IN POUNDS.

CHANGE OF LENGTH IN INCHES.

TENSILE TEST, Measured on a Length of 12 inches.				COMPRESSIVE TEST, Measured on a Length of 12.048 inches.				
Total	Pressure	ELONGATIONS.		Total	Pressure	REDUCTION OF LENGTH.		
Pressure.	Square Inch.	Load on.	Load off.	Pressure.	Square Inch.	Load on.	Load off.	
2 245	5 000	.001	.000	2 245	5 000	.002	.000	
4 490 6 735	10 000 15 000	.004	.000	4 490 6 735	10 000 15 000	.005	.000	
8 980	20 000	.005	.000	8 980	20 000	.010	.000	
9 878	22 000	.009	.000	9 878	22 000	.011	.001	
10 776	24 000	.010	.000	10 776	24 000	.012	.002	
11 674	26 000	.0105	.000	11 674	26 000	.013	.003	
12 572	28 000	.011	.000	12 572	28 000	.015	.0045	
13 470	30 000	.013	.000	13 470	30 000	.0215	.0065	
14 368	32 000	.014	.000	14 368	32 000	.0225	.007	
15 266	34 000	.015	.002	15 266	34 000	.0275	.009	
16 164	36 000	.022	007	16 164	36 000	.040	.019	
17 062	38 000	.416	.3995	17 062	38 000	.052	.036	
17 960	40 000	.5445	.523	17 960	40 000	.133	.1145	
22 450	50 000	1.740	1.707	22 450	50 000	.3045	.283	
23 175	51 600	2.468		26 940	60 000	.4275	.402	
				31 430	70 000	.5465	.521	
	n broke w	rith 51 600	lbs. per	35 920	80 000	.663	.635	
	inch.			40 410	90 000	.773	.742	
	in 12 inche			44 900	100 000	.896	.862	
44	8 "	1.012	4	11		1		
46	8 "	22.65 per				1		
Fracture	ed area 0.2	97 square	inches.		1	1-		

ROUND ENDED TEES 8

120 200 220 240 260 280 300 520 340 360 LENGIH DIVIDED BY LEAST RADIUS OF GYRATION

FIXED ENDED ANGLES

110 200 220 240 260 290 300 320 340 360 ENGTH DIVIDED BY LEAST RADIUS OF GYRATION

TRANS. AM. SOC.CIV. ENGRS VOL.XIII NO. CCLXXIX CHRISTIE ON IRON STRUTS. ENDED SED ENDED **N** 9 8 40 360 380 400 420 440 460 480 500 BEAMS. MNELB 380 440 460 40 400 420 480 500