1. INTRODUCCIÓN

Entre los estudios para el análisis del régimen de lluvias de un país, se encuentra el régimen de intensidades de lluvia. Entre las aplicaciones más sobresalientes de este tipo de análisis lo constituye el diseño hidráulico de diferentes obras hidráulicas para la evacuación segura de la escorrentía originada por eventos de lluvias, en áreas urbanas y rurales. Normalmente, este tipo de aplicaciones requiere de eventos de lluvias intensas asociados a una duración y a una frecuencia de ocurrencia. Las curvas de duración-intensidad-frecuencia (DIF), ofrecen dicha relación.

En Guatemala, este tipo de curvas se encuentran deducidas para un número reducido de estaciones, para diferentes épocas y en documentos dispersos. Por otro lado no se cuenta, a la fecha, con un panorama espacial de este tipo de curvas a nivel nacional.

En el presente informe se presenta un resumen de los resultados de los análisis realizados durante el desarrollo del ESTUDIO DE INTENSIDADES DE PRECIPITACIÓN EN GUATEMALA. En este estudio se deducen curvas DIF para 23 estaciones ubicadas en diferentes regiones del país. Se presenta, a la vez, un panorama espacial del régimen de lluvias intensas en el país, mediante mapas de isolíneas de lluvia intensa asociada a diferentes períodos de retorno.

La información básica utilizada para los análisis respectivos fue obtenida de las cartas pluviográficas respectivas proporcionadas por INSIVUMEH.

2. METODOLOGÍA DE ANÁLISIS

La metodología para la deducción de las curvas DIF consiste, básicamente, en el método estándar de cálculo recomendado por el INSIVUMEH, en el informe técnico No. 4-88¹. La metodología se resume en los siguientes pasos:

- 1. selección de la tormenta. El número de tormentas seleccionadas varían entre 40 y 98, dependiendo de la disponibilidad de información, a lo largo de períodos de registro entre 8 y 15 años. Solamente en dos estaciones se contó con información arriba de 35 años;
- 2. discretización del tiempo para cada lectura. En este caso se usan intervalos de 5 minutos;
- 3. definición de la duración de la tormenta. A diferencia del método estándar mencionado, en cuanto a la definición del inicio y final de la tormenta, en este estudio se hicieron lecturas para toda la tormenta, sin importar la magnitud de la intensidad.
- 4. organización de los hietogramas obtenidos para cada tormenta. Se obtienen magnitudes de intensidad máxima de lluvia para diferentes duraciones;
- 5. asociación de intensidades de lluvia máxima con frecuencias de ocurrencia. Las magnitudes de intensidad de lluvia máxima se asocia a los períodos de retorno de 2, 5, 10, 20, 25, 30, 50 y 100 años;
- 6. obtención de las curvas DIF. El tipo de modelo para representar matemáticamente las curvas tiene la forma de

$$i_{Tr} = \frac{A}{\left(B+t\right)^n} \tag{1}$$

- 7. donde i_{Tr} es la intensidad de lluvia [mm/hr], asociada a una frecuencia de ocurrencia, representada por el período de retorno (Tr), t es la duración [min] A, B y n son parámetros de ajuste. Estos parámetros se obtienen mediante regresión no lineal. Los períodos de retorno analizados son: 2, 5, 10, 20, 25, 30, 50 y 100 años;
- 8. Finalmente, la presentación de las curvas DIF se hace en forma gráfica y en forma tabular. Además, se presentan mapas de isolíneas para duraciones de 5, 20 y 60 min, asociadas a períodos de retorno de 2, 10 y 30 años.

2

Método estándar de cálculo de curvas de duración-intensidad-frecuencia. INSIVUMEH, Informe Técnico No. 4-88. Octubre de 1988. 77pp.

3. INFORMACIÓN BÁSICA

El análisis se ha realizado para 23 estaciones ubicadas en diferentes cuencas del país. En el Cuadro 1 se muestran las características principales de dichas estaciones de dichas estaciones; Entre ellas los años disponibles de información y el número de tormentas utilizadas en los análisis respectivos.

4. CURVAS DURACIÓN-INTENSIDAD-FRECUENCIA (DIF)

En el presente trabajo se determinan curvas DIF asociadas a 8 períodos de retorno: 2, 5, 10, 20, 25, 30, 50 y 100 años. La forma matemática de todas es la Ec. 1. Los parámetros de ajuste (A, B y n) de las ecuaciones se obtienen mediante optimización no lineal.

El Cuadro 2 muestra los parámetros de ajuste obtenidos para las familias de curvas DIF para cada estación. Así mismo, la Fig. 1 muestra una ilustración de la forma de dichas curvas en escala aritmética.

5. MAPAS DE ISOLINEAS DE INTENSIDADES DE LLUVIA

Para visualizar la variabilidad espacial de las curvas DIF, así como para facilitar la interpolar espacial de dichas curvas, se obtuvieron isolíneas de los valores de intensidad de lluvia para las duraciones de 5, 20 y 60 min y períodos de retorno 2, 10 y 30 años (ver Mapas del 1 al 9).

Cuadro 1 Características de las estaciones meteorológicas usadas en el análisis. A = años de registro y T = No. de tormentas.

- Juan	dadio 1 Caracteristicas de las estaciones meteorológicas asadas en eranalistis. A – años de registro y 1 – 110. de tormentas.										
No.	CODIGO	NOMBRE	CUENCA	DEPTO.	MUNICIPIO	ELEV	LATITUD	LONGITUD	REGISTRO	Α	Τ
1	01.01.08	COBAN	CAHABON	Alta Verapaz	Cobán	1329	152803	902423	1989-2002	9	67
2	02.06.04	SAN JERONIMO	SALINAS	Baja Verapaz	S.Jeronimo	1020	150340	901405	1989-2001	8	40
3	03.01.01	ALAMEDA ICTA	MOTAGUA	Chimaltenango	Chimaltenango	1793	143936	904910	1995-2002	8	61
4	04.04.02	ESQUIPULAS	OLOPA	Chiquimula	Esquipulas	1000	143332	892031	1990-2001	10	63
5	05.01.14	SABANA GRANDE	ACHIGUATE	Escuintla	Escuintla	740	142203	904802	1990-2002	8	72
6	05.08.01	PUERTO SAN JOSE	MARIA LINDA	Escuintla	S.Jose	2	135504	904910	1973-2002	10	39
7	05.10.08	CAMANTULUL	COYOLATE	Escuintla	Sta.Lucia Cotz.	280	141928	910327	1973-2002	11	65
8	06.01.00	INSIVUMEH	MARIA LINDA	Guatemala	Guatemala	1502	143511	903158	1940-2002	44	98
9	07.01.03	HUEHUETENANGO	SELEGUA	Huehuetenango	Huehuetenango	1902	151928	912805	1986-2002	13	58
10	08.01.04	PUERTO BARRIOS	MOTAGUA	Izabal	Puerto Barrios	15	154416	883530	1994-2002	8	68
11	09.01.02	POTRERO CARRILLO	MOTAGUA	Jalapa	Jalapa	1800	144550	895600	1990-2002	13	75
12	09.03.03	LA CEIBITA PHC	OSTUA-GUIJA	Jalapa	Monjas	961	142907	895310	1990-2001	12	77
13	10.03.01	ASUNCION MITA	OSTUA-GUIJA	Jutiapa	Asuncion Mita	478	142000	894200	1990-2001	12	67
14	10.11.02	MONTUFAR	PAZ	Jutiapa	Moyuta	10	134819	900811	1989-2002	11	86
15	11.01.05	FLORES	S.PEDRO	Petén	Flores	115	165544	895329	1999-2002	4	45
16	11.11.02	EL PORVENIR	PASION	Petén	Sayaxche	125	163129	902822	1981-1989	8	98
17	12.03.01	MORAZAN	MOTAGUA	Progreso	Morazán	360	145574	900907	1990-2001	12	67
18	13.14.03	LABOR OVALLE	SAMALA	Quezaltenango	Olintepeque	2400	145212	913109	1955-2002	35	98
19	15.01.01	RETALHULEU	OCOSITO	Retalhuleu	Retalhuleu	239	143207	914040	1984-2002	15	84
20	18.01.04	LOS ESCLAVOS	LOS ESCLAVOS	Santa Rosa	Cuilapa	737	141510	901642	1990-2002	13	90
21	19.19.04	SANTIAGO ATITLAN	ATITLAN	Sololá	Santiago Atitlán	1592	143756	911353	1993-2002	9	64
22	22.03.02	LA FRAGUA	GRANDE DE ZACAPA	Zacapa	Estanzuela	210	145751	893504	1990-2002	10	62
23	22.06.02	LA UNION	MOTAGUA	Zacapa	La Unión	1100	145800	891739	1991-2001	11	94

Cuadro 2 Parámetros **A**, **B** y **n** de las ecuaciones de la forma de la Ec. 1 obtenidas en los análisis. Tr=período de retorno (años). R2=coeficiente de determinación (-).

			0 (a1105). K2							
Tr	2	5	10	20	25	30	50	100		
COBÁN										
Α	1,302	2,770	46,840	39,560	39,060	38,020	36,470	35,420		
В	12	16	45	45	45	45	45	45		
n	0.868	0.968	1.43	1.385	1.381	1.374	1.362	1.353		
R2	0.997	0.989	0.996	0.995	0.995	0.995	0.995	0.995		
	SAN JERÓNIMO									
Α	2,040	930	1,510	1,285	1,273	1,265	1,250	1,243		
В	20	6	8	7	7	7	7	7		
n	0.9	0.717	0.79	0.747	0.742	0.739	0.733	0.729		
R2	0.992	0.996	0.991	0.991	0.991	0.99	0.99	0.99		
				ALAMEDA	ICTA		<u> </u>			
Α	21,810	105,300	639,800	319,800	311,660	302,850	290,500	283,480		
В	35	45	70	65	65	65	65	65		
n	1.451	1.701	1.954	1.819	1.812	1.805	1.794	1.787		
R2	0.995	0.983	0.987	0.985	0.985	0.985	0.984	0.984		
	•			ESQUIPUI	_AS					
Α	3,300	2,060	1,280	1,230	1,225	1,222	1,213	1,205		
В	20	11	6	6	6	6	6	6		
n	0.962	0.836	0.721	0.7	0.696	0.694	0.69	0.686		
R2	0.999	0.998	0.996	0.996	0.996	0.996	0.996	0.996		
	•			SABANA GR	ANDE					
Α	4,485	6,145	33,770	31,550	31,330	31,110	30,760	30,070		
В	25	30	40	40	40	40	40	40		
n	0.973	0.986	1.292	1.273	1.271	1.268	1.264	1.257		
R2	0.992	0.993	0.989	0.989	0.989	0.989	0.989	0.989		
			P	UERTO SAN	JOSÉ		<u> </u>			
Α	3,033	10,863	403,800	145,300	139,600	136,555	127,530	125,200		
В	35	60	140	140	140	140	140	140		
n	0.87	1.05	1.595	1.383	1.374	1.369	1.354	1.349		
R2	0.994	0.976	0.964	0.93	0.929	0.928	0.927	0.927		
			•	CAMANTU	LUL		•			
Α	226,260	42,560	27,420	15,540	10,590	10,580	10,300	10,110		
В	80	70	65	40	35	35	35	35		
n	1.654	1.284	1.187	1.1	1.029	1.028	1.02	1.014		
R2	0.96	0.984	0.966	0.987	0.987	0.987	0.987	0.987		
				INSIVUM	EH					
Α	1,970	7,997	1,345	720	820	815	900	890		
В	15	30	9	2	2	2	2	2		
n	0.958	1.161	0.791	0.637	0.656	0.65	0.66	0.649		
R2	0.989	0.991	0.982	0.981	0.973	0.973	0.981	0.981		

Continuación Cuadro 2.

Tr	2	5	10	20	25	30	50	100	
	HUEHUETENANGO								
Α	1,215	4,935	15,870	5,464	5,410	5,395	5,320	5,270	
В	11	25	35	17	17	17	17	17	
n	0.874	1.09	1.292	1.102	1.097	1.095	1.089	1.084	
R2	0.997	0.993	0.981	0.989	0.989	0.989	0.989	0.989	
				PUERTO B	ARRIOS				
Α	2,405	4,850	13,630	11,910	11,680	11,580	11,380	11,240	
В	10	18	31	30	30	30	30	30	
n	0.855	0.933	1.1	1.069	1.063	1.06	1.055	1.05	
R2	0.994	0.992	0.989	0.989	0.989	0.989	0.989	0.989	
				POTRERO C	ARRILLO				
Α	58,600	63,000	12,760	1,166	1,010	1,005	995	985	
В	40	40	25	5	4	4	4	4	
n	1.609	1.586	1.27	0.759	0.723	0.72	0.715	0.707	
R2	0.993	0.996	0.995	0.981	0.981	0.981	0.981	0.981	
				LA CEII				1	
Α	1,360	2,080	1,509	1,835	1,825	1,815	1,805	1,795	
В	15	19	11	11	11	11	11	11	
n	0.845	0.879	0.813	0.836	0.833	0.83	0.827	0.822	
R2	0.998	0.996	0.992	0.976	0.975	0.975	0.974	0.974	
				ASUNCIÓ				1	
Α	14,400	11,600	10,000	15,100	14,900	14,500	14,100	13,800	
В	40	40	40	50	50	50	50	50	
n	1.252	1.161	1.115	1.158	1.154	1.147	1.139	1.132	
R2	0.999	0.998	0.997	0.996	0.995	0.995	0.995	0.995	
				MONTU				T	
Α	41,490	10,490	12,660	8,700	7,744	7,640	7,460	7,360	
В	45	28	32	23	22	22	22	22	
n	1.454	1.159	1.165	1.069	1.044	1.04	1.032	1.026	
R2	0.995	0.994	0.99	0.969	0.969	0.969	0.969	0.969	
	4.070	0.570.000	0.000.000	FLOR		0.4/0.000	0.400.000	0.400.000	
Α	4,073	2,570,000	2,320,000	2,170,000	2,160,000	2,160,000	2,130,000	2,130,000	
В	15	70	70	70	70	70	70	70	
n	1.053	2.156	2.124	2.107	2.105	2.104	2.101	2.1	
R2	0.997	0.992	0.993	0.993	0.993	0.993	0.993	0.993	
_	0.045	4.000	1 500	EL POR\		4 075	10/5	1 0/0	
A	8,045	4,890	1,500	1,093	1,083	1,075	1,065	1,060	
В	25	20	0.742	5	5	5	5	0.455	
n	1.132	0.997	0.742	0.673	0.668	0.664	0.659	0.655	
R2	0.994	0.996	0.991	0.99	0.99	0.99	0.989	0.989	

Continuación Cuadro 2.

Tr	2	5	10	20	25	30	50	100
		Į.		MORAZ	ZÁN			
Α	12,935	15,075	19,570	59,430	57,400	55,670	54,070	53,020
В	27	30	36	50	50	50	50	50
n	1.326	1.287	1.296	1.462	1.452	1.444	1.436	1.429
R2	0.998	0.994	0.989	0.986	0.985	0.985	0.985	0.985
	LABOR OVALLE							
Α	550	6,810	12,930	26,890	24,690	23,370	15,860	13,320
В	5	20	25	30	30	30	30	30
n	0.813	1.262	1.357	1.458	1.43	1.412	1.294	1.244
R2	0.958	0.993	0.994	0.994	0.992	0.99	0.98	0.978
	,			RETALH				
Α	5,843	1,991	1,150	1,321	1,315	1,221	1,215	1,217
В	25	14	11	13	13	12	12	12
n	1.037	0.769	0.616	0.633	0.63	0.613	0.61	0.609
R2	0.998	0.988	0.976	0.975	0.975	0.974	0.974	0.974
				LOS ESCL		,		
Α	6,986	2,855	1,620	1,532	1,365	1,350	1,327	1,311
В	30	20	12	12	11	11	11	11
n	1.168	0.94	0.812	0.786	0.76	0.755	0.747	0.741
R2	0.992	0.993	0.998	0.998	0.998	0.998	0.998	0.998
	T			SANTIAGO A		T		
Α	1,280	1,001	1,190	1,160	1,020	1,015	1,010	1,008
В	13	12	5	5	4	4	4	4
n	0.812	0.705	0.72	0.705	0.677	0.674	0.671	0.668
R2	0.993	0.986	0.991	0.988	0.987	0.987	0.986	0.986
_	0.070	0.000	0.400	LA FRA		201	004	007
A	2,360	3,980	3,480	844	840	836	831	827
В	19	22	18	7	7	7	7	7
n	0.99	1.025	0.983	0.642	0.639	0.637	0.632	0.628
R2	0.994	0.994	0.994	0.927	0.926	0.925	0.923	0.922
_	140 510	07 170	F 4/0	LA UNI		200 000	200 140	270 500
A	142,510 50	87,170 50	5,460 20	329,840	311,260 70	309,080	290,140	279,590
В				70		70	70	70
n	1.679	1.523	0.986	1.682	1.668	1.666	1.651	1.642
R2	0.995	0.988	0.993	0.993	0.992	0.992	0.992	0.992

Fig. 1 Familia de curvas duración-intensidad-frecuencia para la estación Labor Ovalle.

6. COMENTARIOS FINALES

En el presente informe se presentan curvas de duración-intensidad-frecuencia para 23 estaciones en la República de Guatemala. Estas curvas están definidas por tres parámetros de ajuste obtenidos mediante optimización no lineal. Los datos de base se han obtenido estadísticamente en base a la discretización de diferente número de tormentas y con diferente período de registro.

Los períodos de registro son, relativamente cortos, entre 8 y 15 años, con excepción de las estaciones de INSIVUMEH Y LABOR OVALLE, cuyos registros son de 44 y 35 años, respectivamente. Para las estaciones con registros menores a 15 años, es conveniente usar con precaución las curvas DIF para períodos de retorno altos, como 50 y 100 años.

Los mapas de isolíneas de igual intensidad de lluvia se basan en datos calculados con la Ec. 1, usando los respectivos parámetros del Cuadro 2, para cada una de las 23 estaciones. Como puede observarse, dichas estaciones no están distribuidas uniformemente en el país. En regiones donde existe poca información para la definición de las isolíneas, se ha usado el criterio de seguir el comportamiento de las isoyetas medias anuales, publicadas por el Ministerio de Agricultura en el año 2000. Se hace notar que para la región Norte de Huehuetenango y El Quiché, así como para la planicie del El Petén, la información de los mapas debe tomarse con precaución, debido a la evidente falta de resolución de las estaciones base.

Los mapas de isolíneas pueden usarse para la interpolación espacial, la cual puede ser lineal o basarse en la experiencia del usuario. En cuanto a la interpolación de magnitudes de intensidad de lluvia con períodos de retorno diferentes a los representados en los mapas, se recomienda hacer una interpolación logarítmica.

7. EJEMPLO DE APLICACIÓN

A continuación se ilustra el uso de los mapas de isolíneas mediante un ejemplo de aplicación.

Una aplicación clásica de los valores de intensidad de lluvia es la estimación de caudales (Q) de diseño, asociados de determinados períodos de retorno, para cuencas tributarias pequeñas, usando el método racional (Ec. 2)

$$Q = \frac{CiA}{3.6} \tag{2}$$

Donde,

Q = Caudal pico [m³/s]

C = Coeficiente de escorrentía [-]

i = intensidad de precipitación [mm/hr], con una duración igual a t_c

A = Area de la cuenca tributaria [km²]

t_c = Tiempo de concentración de la cuenca [min]

El tiempo de concentración del área tributaria puede estimarse mediante fórmulas que se basan en parámetros morfométricos de las cuencas o en base a aspectos hidráulicos de las corrientes. Uno de las fórmulas utilizadas en nuestro medio es la de Kirpich (Ec. 3), que usa el desnivel y longitud del cauce

$$t_{c} = \frac{3L^{1.15}}{154H^{0.38}} \tag{3}$$

donde L [m] es la longitud del cauce desde la cabecera de la cuenca tributaria y H [m] es el desnivel de dicho cauce.

El coeficiente de escorrentía, C, se estima en base a las características hidrogeológicas de las cuencas. En la literatura especializada de hidrología se publican tablas con valores de C en función, generalmente, de tres aspectos que se consideran determinantes en la generación de escorrentía como consecuencia de tormentas de lluvias: La cobertura, el tipo de suelo y las pendientes del terreno. El Cuadro 3 muestra, a manera de ilustración uno de dichas tablas.

Cuadro 3 Valores indicativos del coeficiente de escorrentía. Fuente: National Engineering Handbook, Sec. 4: Hydrology, USDA, 1972.

	Pendiente	Capacidad de infiltración del suelo					
Uso del suelo	del terreno	Alto	Medio	Bajo			
		(suelos arenosos)	(suelos francos)	(suelos arcillosos)			
	< 5 %	0.30	0.50	0.60			
Tierra agrícola	5 – 10 %	0.40	0.60	0.70			
	10 – 30 %	0.50	0.70	0.80			
	< 5 %	0.10	0.30	0.40			
Potreros	5 – 10 %	0.15	0.35	0.55			
	10 – 30 %	0.20	0.40	0.60			
	< 5 %	0.10	0.30	0.40			
Bosques	5 – 10 %	0.25	0.35	0.50			
	10 – 30 %	0.30	0.50	0.60			

Una vez conocido el tiempo de concentración, este valor se usa para estimar la intensidad de lluvia para el período de retorno deseado. Conociendo los parámetros de las ecuaciones respectivas, para el sitio de interés, simplemente se ingresa en la ecuación el valor de t_c como t (en la Ec. 1), Sin embargo, para sitios donde no se cuenta con dchos parámetros, los valores de intensidad de lluvia pueden estimarse a partir de los mapas de isolíneas.

A manera de ejemplo, considerar que se desea estimar la magnitud de la intensidad de lluvia para un período de retorno de 20 años. Asumir además que, la longitud del cauce más largo, L, de la cuenca de Interés es de 495 m y su desnivel es de 10.5 m. El sitio de interés se ubica en las coordenadas geográficas 90°00' N y 14°30' O (ver mapas). Aplicando la Ec. 3 se estima que t_c de la cuenca es 10 min.

En primer lugar se estiman, a partir de los mapas mencionados un cuadro de valores de intensidades, para el sitio de Interés (tres primeras filas del Cuadro 4). En seguida puede graficarse en escala semilogarítmica dichos valores, donde el eje de las abscisas es la duración y las ordenadas las intensidades (ver Fig. 2). De dicha gráfica se pueden obtener, por interpolación, los valores correspondientes a una duración de 10 min (t_c del ejemplo) (ver fila cuatro del Cuadro 4). Dichos valores pueden ahora graficarse en escala semilogarítmica, donde el eje de las abscisas es el período de retorno y las ordenadas la intensidad (ver Fig. 3). Luego,

por interpolación se obtiene el valor correspondiente (de t = 10 min) para un período de retorno de 20 años. En este caso, el valor resulta ser 132 mm.

Cuadro 4 Valores de intensidades de lluvia para el sitio del ejemplo.

ı J								
		Tr = 10 años						
Valores es	timados a part	ir de los mapas	de isolíneas					
t = 5 min	108	162	170					
t = 20 min	68	89	98					
t = 60 min	34	45	54					
Valores interpolados para el t _c requerido								
t = 10 min	84	122	137					
Valor interpolado para Tr = 20 años es 132 mm								

Fig. 2 Variación de la intensidad de lluvia con la duración en el sitio de interés.

Fig. 3 Variación de la intensidad de lluvia con duración de 10 min, con el período de retorno en el sitio de interés.