An EM Fault Injection Susceptibility Criterion and its application to the localisation of hotstpots

M. MADAU, M. AGOYAN, P. MAURINE

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), STMicroelectronics

2017

Linking injection/observation channel

"Attack"	Channel	information from observation channel.
Power	V_{dd} network	temporal information.
Glitch		
Body Bias	bulk	none.
Injection		
EMFI	EM	temporal and spatial information
Laser	photon	spatial information.
		Light observation is expensive.

EMFISC 2017 2 / 19

Why binding EM analysis to injection ?

EMFI combinatory complexity:

Time efficiency^a:

Analysis map \rightarrow one day for three executables.

Injection map (fixed parameters) \rightarrow three days for one executable.

Ease and fasten EMFI security characterisation \rightarrow (X,Y) position.

MFISC 2017 3 / 19

^atiming are relative to our setup

Table of Contents

Criterion principles

EMFI hotspots definition

Designing the criterion

Results

Conclusion

EMFISC

EM coupling

Coupling: (injection case)

EM coupling

Coupling: (analysis case)

Antenna reciprocity

Antenna reciprocity:

The efficiency of a receiving antenna is as important as its transmitting efficiency.

Conclusion 1:

Finding high emission antenna

 \rightarrow best coupling positions on circuits.

Conclusion 2:

High emission antenna \neq best entry point

 \rightarrow not necessarily linked to data.

EMFISC 2017 6 / 19

Sampling fault model¹

System target:

→DFF are more likely to be faulted by EM injection.

¹EM injection: fault model and locality S. Ordas, L.Guillaume-Sage, P. Maurinne FDTC 2015.

EMFISC 2017 7 / 19

EMFI Criterion definition

Area to target are positions:

- ▶ (guideline 1) emitting the strongest signal (in terms of power) associated to the clock signal or clock tree.
 - \rightarrow tool: Power Spectral Density $PSD(f_{CK})$
- (guideline 2) emitting signal tightly bind to both targeted algorithm and clock frequency (f_{CK}) .
 - \rightarrow tool: **inc**oherence(f_{CK})

EMFISC

Guideline 2 tools:

$$inc_{s_1,s_2}(f) = 1 - \frac{psd_{s_1,s_2}(f)^2}{psd_{s_1,s_1}(f) \cdot psd_{s_2,s_2}(f)}$$

Notation:

 $s_1 = EM$ emission for input 1.

 $s_2 = EM$ emission for input 2.

Aim

 \hookrightarrow Look for differences in spectrum occurring at f_{CK} ie DFF used by algorithm.

How to combine and weight those two measures?

Raw data: PSD, Incoherence view

$$\mathit{incs}_{1}, \mathit{s}_{2}(f) = 1 - \frac{\mathit{psd}_{s_{1}}, \mathit{s}_{2}(f)^{2}}{\mathit{psd}_{s_{1}}, \mathit{s}_{1}(f) \cdot \mathit{psd}_{s_{2}}, \mathit{s}_{2}(f)}$$

EMFISC 2017 11 / 19

EMFISC Procedure

Algorithm 1 EMFISC

```
Input: f_{CK}, matrix of s_1 and s_2,
```

- α (% chip to keep),
- a (weight *psd* compared to *incoherence*)

Output: $emfisc_{x,y}$

- 1: for X,Y positions do
- 2: compute $psd_{s_1}(f)$
- 3: compute $inc_{s_1,s_2}(f)$
- 4: end for
- 5: $psdn_{x,y}$ and $incn_{x,y}$ = center reduce $psd_{x,y}$ and $inc_{x,y}$ population
- 6: remap $psdn_{x,y}$ and $incn_{x,y}$ population

8: quantile($emfisc_{x,y}, \alpha$)

Table of Contents

Criterion principles

EMFI hotspots definition

Results

Conclusion

EMFISC 2017 13 / 19

Experimental protocol

Target algorithm:

Algorithm 2 Pattern (AddrSRAM32, AddrSRAM96)

```
1: PUSH { lr }
```

- 2: ADD R0,R0,#0; 11 times
- 3: LDR R2,[R0]; read SRAM32
- 4: STR R2,[R1]; write SRAM96
- 5: LDR R3,[R1]; read back
- 6: ADD R0,R0,#0; 11 times
- 7: POP { pc }

EMFISC 2017 14 / 19

EMFISC figures of merit (target 1 130V)

MFISC 2017 15 / 19

EMFISC figures of merit (target 2 198V)

MFISC 2017 16 / 19

Quantile fixed at 60% target 1

MFISC 2017 17 / 19

Results:

- ▶ There is a link between EM emissions and EMFI.
- ▶ This link can be use to ease EMFI characterisation.

Refining the criterion:

- Other combination of PSD and Incoherence curves.
- Finding a way to weight PSD and Incoherence.
- Adding a criterion more target specific, such as a better measurement of M parameter.

EMFISC 2017 18 / 19

Thanks Any questions ?

