a place of mind

ELEC 341: Systems and Control

Lecture 7

Routh-Hurwitz stability criterion: Examples

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Definitions of stability (review)

BIBO (Bounded-Input-Bounded-Output) stability
 Any bounded input generates a bounded output.

Asymptotic stability

Any ICs generates y(t) converging to zero.

Stability summary (review)

Let s_i be poles of G(s). Then, G(s) is ...

- (BIBO, asymptotically) stable if $Re(s_i) < 0$ for all i.
- marginally stable if
 - $Re(s_i) \leq 0$ for all i, and
 - simple pole for $Re(s_i) = 0$
- unstable if it is neither stable nor marginally stable.

Routh-Hurwitz criterion (review)

- This is for LTI systems with a polynomial denominator (without sine, cosine, exponential, etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots numerical values.

Routh array (review)

s^n	$\begin{vmatrix} a_n \\ a_{n-1} \\ b_1 \end{vmatrix}$	a_{n-2}	a_{n-4}	a_{n-6}		From the given polynomial
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	• • •	p = .y =
s^{n-2}	b_1	b_2	<i>b</i> 3	b ₄		
s^{n-3}	c_1	c_2	c_3	<i>c</i> ₄		
:	:	:				
s^2	k_1	k_2				
s^1	l_1		Q(s) =	$= a_n s^n +$	a_{n-1}	$s^{n-1} + \dots + a_1 s + a_0$
s^0	m_1					

Routh array (How to compute the third row)

Routh array (How to compute the fourth row)

Routh-Hurwitz criterion

$ a_n $
a_{n-1}
b_1
c_1
ŧ
k_1
$ l_1 $
$\mid m_1 \mid$

$$a_{n-2}$$
 a_{n-4} a_{n-6} ...
 a_{n-3} a_{n-5} a_{n-7} ...
 b_2 b_3 b_4 ...
 c_2 c_3 c_4 ...

The number of roots in the open right half-plane is equal to

the number of sign changes in the first column of Routh array.

$$Q(s) = s5 + 2s4 + 2s3 + 4s2 + 11s + 10$$

Routh array

If 0 appears in the first column of a nonzero row in Routh array, replace it with a small positive number (ε).

Two sign changes in the first column

$$\varepsilon \to \frac{4\varepsilon - 12}{\varepsilon} \to 6$$

Two roots in RHP

In this case, Q has some roots in RHP.

We can replace ε with O⁺ and $(4\varepsilon - 12)/\varepsilon$ with $-\infty$.

11

10

$$Q(s) = s^4 + s^3 + 3s^2 + 2s + 2$$

Routh array

$$s^4 | 1 3 2$$

$$s^3 \mid 1 \mid 2$$

$$s^2 | 1 | 2$$

$$\begin{vmatrix} s^1 \\ s^0 \end{vmatrix} = 2$$

If a zero row appears in Routh array (here, s^1 row), Q has roots either on the imaginary axis or in RHP.

No sign changes in the first column.

No roots in RHP.

 S^1 is a ROZ = row of zero

But some roots are on imag. axis.

How to write *P*(*s*): Go one row above the zero row and begin with the power of **s** that starts the row and then skip every other power until you reach the end of the row.

$$P(s) = (1)s^2 + (2)s^0 \longrightarrow P(s) = s^2 + 2$$
 (auxiliary polynomial)

Take the derivative of the auxiliary polynomial (which is a factor of Q(s)):

$$\rightarrow P' = \frac{dP}{ds} = 2s \rightarrow$$

Replace the zero row with the coefficients of the polynomial in the dP/ds equation.

$$Q(s) = s^3 + s^2 + s + 1 = (s+1)(s^2+1)$$

Routh array

$$P(s) = s^2 + 1$$
 (auxiliary polynomial)

Derivative of auxiliary poly.

$$(s^2+1)'=2s$$

(Auxiliary poly. is a factor of Q(s).)

No sign changes in the first column

No roots in OPEN RHP.

$$Q(s) = s^5 + s^4 + 2s^3 + 2s^2 + s + 1 = (s+1)(s^2+1)^2$$

$$Q(s) = s^4 - 1 = (s+1)(s-1)(s^2+1)$$

Routh array

PROZ $\rightarrow s^3$ $s^4 \mid 1 \quad 0 \quad -1 \quad (s^4 - 1)' = 4s^3$ $s^2 \mid \mathcal{E} \quad -1 \quad s^1 \mid 4/\varepsilon$

One sign changes in the first column

One root in OPEN RHP.

Summary for stability when ROZ appears

Summary of procedure for determining if ROZ will lead to unstable or marginally stable systems:

- If there is a sign change in the first column, then we have poles in the RHP and the system is unstable.
- If there is no sign change in the first column, there is no poles in the RHP, but we
 will have poles on Im-axis and we should see whether the system is marginally
 stable or unstable.
 - ☐ If all the poles on the Im-axis are simple poles (i.e., with the multiplicity of 1), then the system is marginally stable.
 - ☐ If the poles on the Im-axis have multiplicity of more than 1, then the system is unstable.
 - Remember that sometimes we may have more than one ROZ, which means we need to look at the total multiplicity of the roots in the various obtained auxiliary polynomials.
 - For instance, we may have two similar roots in the two separately obtained auxiliary polynomials. In this case, the multiplicity is 2 and the system is **unstable**.

Notes on Routh-Hurwitz criterion

- Advantages
 - No need to explicitly compute roots of the polynomial.
 - High order Q(s) can be handled by hand calculations.
 - Polynomials including undetermined parameters (plant and/or controller parameters in feedback systems) can be dealt with.
 - Root computation does not work in such cases!
- Disadvantage
 - Exponential functions (delay) cannot be dealt with.
 - Example:

$$Q(s) = e^{-s} + s^2 + s + 1$$

We will study Nyquist stability criterion later to deal with these cases!

$$Q(s) = s^3 + 3Ks^2 + (K+2)s + 4$$

Find the range of K so that Q(s) has all roots in the left half plane. Here, K is a design parameter.

Routh array

$$\begin{vmatrix} s^3 & 1 & K+2 \\ s^2 & 3K & 4 \\ s^1 & \frac{3K(K+2)-4}{3K} \\ s^0 & 4 \end{vmatrix}$$

In order to have no sign changes in the first column:

$$\begin{cases} 3K > 0 \\ 3K(K+2) - 4 > 0 \end{cases}$$

$$K > -1 + \frac{\sqrt{21}}{3}$$

$$K > 0.527$$

Characteristic Equation

• The following figure shows a negative feedback control system. Here, two blocks having transfer functions G(s) and H(s) form a closed loop.

1 + G(s)H(s) = 0 is called the **Characteristic Equation**.

- Design K(s) that stabilizes the closed-loop system for the following cases.
 - K(s) = K (constant, P or Proportional controller)
 - $K(s) = K_P + K_I/s$ (PI or Proportional-Integral controller)

Example 7 (cont'd): K(s) = K

Characteristic equation

$$1 + K \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

$$\Rightarrow s^3 + 4s^2 + 5s + 2 + 2K = 0$$

Routh array

Example 7 (cont'd): $K(s) = K_P + K_I/s$

Characteristic equation

$$1 + \left(K_P + \frac{K_I}{s}\right) \frac{2}{s^3 + 4s^2 + 5s + 2} = 0$$

S

S

$$s^4 + 4s^3 + 5s^2 + (2 + 2K_P)s + 2K_I = 0$$

Routh array

$$(*) = \frac{(2 + 2K_P)\left(\frac{18 - 2K_P}{4}\right) - 8K_I}{\left(\frac{18 - 2K_P}{4}\right)}$$

4	1	5	$2K_I$
3	4	$2 + 2K_P$	
2	$\frac{18-2K_{P}}{4}$	$-2K_I$	
1	(*)		$\rightarrow K_P < 9$
0	$2K_I$		$\rightarrow K_I > 0$

Example 7 (cont'd): Range of (K_P, K_I)

From Routh array,

$$K_{P} < 9$$

$$K_I > 0$$

$$(*) \Leftrightarrow (1 + K_P)(9 - K_P) - 8K_I > 0$$

• Determine the range of *K* that stabilizes the closed-loop system.

Example 8 (cont'd)

Example 8 (cont'd)

Characteristic equation

$$1 + K \frac{\frac{1}{(s+2)(s+3)}}{1 + \frac{1}{(s+2)(s+3)}} \cdot \frac{1}{s} = 0$$

$$1 + K \cdot \frac{1}{s(s+2)(s+3)+s} = 0$$

$$s(s+2)(s+3) + s + K = 0$$

$$\Rightarrow s^3 + 5s^2 + 7s + K = 0$$

Example 8 (cont'd)

• Routh array for $s^3 + 5s^2 + 7s + K = 0$:

• If K = 35, the closed-loop system is marginally stable.

Summary

- Examples for Routh-Hurwitz criterion
 - Cases when zeros appear in Routh array
 - P controller gain range for stability
 - PI controller gain range for stability
- Next
 - Time responses and steady-state errors