

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 February 2001 (08.02.2001)

(10) International Publication Number WO 01/08602 A1

(51) International Patent Classification7: A61M 25/00

A61F 2/06.

A. [US/US]; 382 Dunstable Road, Tyngsboro, MA 01879

- (21) International Application Number: PCT/US00/20574
- (22) International Filing Date: 28 July 2000 (28.07.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 60/146,470
- 30 July 1999 (30.07.1999)
- (71) Applicant (for all designated States except US): C. R. BARD, INC. [US/US]; 730 Central Avenue, Murray Hill, NJ 07974 (US).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): GAMBALE, Richard,

(74) Agent: PERULLO, John, F.; Kirkpatrick & Lockhart LLP, 75 State Street, Boston, MA 02109-1808 (US).

- (81) Designated States (national): CA, JP, MX, US.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: IMPROVED IMPLANT ANCHOR SYSTEMS

(57) Abstract: The present invention provides implant devices configured to become anchored within tissue so that they do not migrate despite experiencing aggressive migration forces applied by the highly dynamic movement of muscle tissue that surrounds them. Additionally, methods for placing the devices so that they remain securely anchored within the tissue are provided. The devices are comprised of a flexible body, preferably formed from a helical wound spring. In a preferred embodiment the spring is wound from a ribbon-like filament having series of barbs or ridges formed along the proximal facing edge of the wound ribbon. The ribbon-like filament may be etched from a flat sheet of material, having barbs formed along one edge. The filament may then be wrapped into a helical coil shape to take the form of an implant having barbs formed along the proximally facing edge of each coil to resist migration.