이과대학 수학과 교육과정 요약표(2024)

1. 교육목적

수학과는 본교의 교육이념 "문화세계의 창조"와 교훈 "학원의 민주화, 사상의 민주화, 생활의 민주화"에 따라 수학의 다양한 이론과 응용방법을 체계적으로 교육함으로써 창조적이고 능력 있는 논리적 사고력을 갖춘 인력을 배출하여 국가와 사회의 발전에 기여함은 물론, 성실하고 선구적인 민주시민으로서 문화복지사회를 건설하고 이끌어 갈 수 있는 인재를 양성함을 그 교육목적으로 한다.

2. 교육목표

이러한 교육목표를 실현하기 위한 세부목표는 다음과 같다. 수리 개념의 학습과 연구를 통해 논리적인 사고능력과 문제해결 능력을 함양한다. 실생활의 문제를 수학적으로 모형화시켜 해결할 수 있는 능력을 배양하고 또한 그 결과를 사회문제해결에 적용시킴으로써 사회발전에 이바지한다. 또한 이·공학의 기초인 수학의 충실한 교육을 통하여 학문 및 산업의 발전에 기여한다.

3. 교육과정 기본구조표

Ì	학부/학괴	학부/학과/전공/트랙명(프로그램명)			단일전공과정					다전공과정			부전공과정			
						전공	학점		타		, ,	, , 0			_ ,	O
	학부(과)명	전공명	트랙명	졸업 학점	전공 기초	전공 필수	전공 선택	계	전공 인정 학점	전 공 기 초	전 공 필 수	전 공 선 택	계	전공 필수	전공 선택	계
	수학과	수학	일반	130	18	21	40	79	6	18	21	15	54	21	0	21

4. 교육과정 편성 교과목 현황

학부(과)	/전공명		편성 교과목 현황										
학부(과)명	전공명	전공기	초 (A)	전공필	수 (B)	전공선	택 (C)	전공선택(교직) (D)	(B-	+C)		
약구(과)명	신증명	과목수	학점수	과목수	학점수	과목수	학점수	과목수	학점수	과목수	학점수		
수학과	수학	8	24	7	21	30	90	3	9	37	111		

5. 졸업능력인증제

졸업능력인증제는 2022학년도부터 폐지한다. 2022년 2월 이전 수료자에 대해서는 졸업능력인증제가 유효하지만, 희망자에 한하여 졸업능력인증을 이수면제 처리한다.

6. 기타 졸업에 필요한 사항

졸업을 하고자 하는 학생은 졸업논문 과목을 최종 학기에 신청 및 이수하여야 한다. 수학과에서는 졸업논문을 졸업시험으로 대체하고 있으므로 졸업 논문을 신청한 학생은 졸업시험에 통과하여야 한다. 교직이수자로 선발된 학생은 수학과에서 개설된 교직과목 3과목을 이수하여야 하며, 교직 이수를 중도에 포기하더라도 3과목 모두 이수해야만 한다.

이과대학 수학과 교육과정 시행세칙(2024)

제 1 장 총 칙

- 제1조(교육목적) 수학과는 본교의 교육이념인 "문화세계의 창조"와 교훈인"학원의 민주화, 사상의 민주화, 생활의 민주화"에 따라 수학의 다양한 이론과 응용방법을 체계적으로 교육함으로써 창조적이고 능력 있는 논리적 사고력을 갖춘 인력을 배출하여 국가와 사회의 발전에 기여함은 물론, 성실하고 선구적인 민주시민으로서 문화·복지사회를 건설하고 이끌어 갈 수 있는 인재를 양성함을 그 교육목표로 한다. 이러한 교육목적을 실현하기 위한 세부목표는 다음과 같다.
 - ① 수리 개념의 학습과 연구를 통해 논리적인 사고능력과 문제해결 능력을 함양한다.
 - ② 실생활의 문제를 수학적으로 모형화시켜 해결할 수 있는 능력을 배양하고 또한 그 결과를 사회문제해결에 적용시킴으로써 사회발전에 이바지한다.
 - ③ 이·공학의 기초인 수학의 충실한 교육을 통하여 학문 및 산업의 발전에 기여한다.
- 제2조(일반원칙) ① 수학을 단일전공, 다전공, 부전공하고자 하는 학생은 이 시행세칙에서 정하는 바에 따라 교과목을 이수해야 한다.
- ② 교과목의 선택은 학과장과 상의하여 결정한다.
- ③ 본 시행세칙 시행 이전 입학자에 관한 사항은 대학 전체 전공 및 교양교육과정 경과조치를 따른다.

제 2 장 교양과정

제3조(교양이수학점) 교양과목은 교양교육과정 기본구조표에서 정한 소정의 교양학점을 취득하여야 한다.

제 3 장 전공과정

제4조(졸업이수학점) 수학과의 최저 졸업이수학점은 130학점이다.

제5조(전공이수학점) ① 수학과에서 개설하는 전공과목은 '별표1 교육과정 편성표'와 같다.

- ② 수학을 단일전공과정 또는 다전공과정으로 이수하고자 하는 자는 본 시행세칙에서 지정한 소정의 전공학점을 이수하여야 한다.
 - 1) 단일전공과정: 수학과 학생으로서 단일전공자는 전공기초 18학점(미적분학및연습1·2와 물리학및실험1 포함), 전공필수 21학점을 포함하여 전공학점 79학점 이상을 이수하여야 한다.
 - 2) 다견공과정: 수학과 학생으로서 타전공을 다견공과정으로 이수하거나, 타전공 학생으로서 수학을 다전공과정으로 이수하는 학생은 전공기초 18학점(미적분학및연습1·2와 물리학및실험1 포함), 전공필수 21학점을 포함하여 전공학점 54학점 이상을 이수하여야 한다.
- ③ 전공선택(교직)은 교직이수자에 한하여 전공선택으로 인정되며, 교직이수자가 아닌 경우 기타과목으로 인정한다.

제6조(부전공이수학점) ① 수학을 부전공과정으로 이수하고자 하는 자는 전공필수 21학점 이상을 이수하여야 한다.

- ② 부전공과정은 전공이수과정으로 인정하지 않으며, 이수자에 대해서는 학위기에 부기한다.
- ③ 수학 부전공자의 졸업논문이수는 소속 단과대학 지침에 따른다.
- 제7조(타전공과목 인정) ① 단일전공자에 한하여 동일계열 또는 타계열의 전공과목도 전공심화를 위하여 학과장의 사전승인을 얻어 6학점까지 수강할 수 있으며, 수강한 과목은 전공선택학점으로 인정한다.
 - ② 수학과의 타전공 인정과목은 '별표2 타전공 인정 과목표'와 같다.

- ③ 전과생의 경우 학과장의 승인을 얻어 제7조 1항의 타전공인정 학점 외에 전공기초학점으로 12학점까지 인정받을 수 있다.
- 제8조(대학원과목 이수) ① 대학원 학과장의 승인을 받아 학부 학생의 이수가 허용된 대학원 교과목을 통산 6학점까지 수강할 수 있으며, 그 취득학점은 전공선택 학점으로 인정한다.
 - ② 이수 자격은 3학년 1학기까지(5학기) 이수한 자로서 다음 중 한 가지를 충족하면 된다.
 - 1) 직전 학기까지 평균 평점이 3.2 이상인 자
 - 2) 수학과 교수회의에서 이수를 승인받은 자
- **제9조(편입생 전공이수학점)** ① 편입생이 수학을 단일전공과정 또는 다전공과정으로 이수하고자 할 때에는, 전적대학에서 이수한 학점 중 본교 학점인정심사에서 인정받은 학점을 포함하여 본 시행세칙에서 지정한 소정의 전공학점을 이수하여야 한다.
 - 1) 단일전공과정: 전공기초 18학점(미적분학및연습1·2와 물리학및실험1 포함), 전공필수 21학점, 전공선택 40학점(전공선택 교직과목 제외) 이상을 이수하여야 한다.
 - 2) 다전공과정: 수학과 학생으로서 타전공을 다전공과정으로 이수하거나, 타전공 학생으로서 수학을 다전공과정으로 이수하는 학생은 전공기초 18학점(미적분학및연습1·2와 물리학및실험1 포함), 전공필수 21학점, 전공선택 15학점(전공선택 교직과목 제외) 이상을 이수하여야 한다.
 - ② 수학과로 편입한 학생은 학점인정 및 전공과목의 이수에 대하여 학과장의 지도를 받아야 한다.
 - ③ 편입생의 학점인정은 편입학자 학점인정 시행지침을 따른다.

제 4 장 기 타

- 제10조(졸업논문) ① 졸업논문은 반드시 최종 학기에 신청 및 이수하여야 한다.
 - ② 수학과에서는 본 대학 학칙에 의거하여 졸업예정자가 제출하여야 하는 졸업논문을 졸업시험으로 대체한다. 단, 학괴장의 승인이 있는 경우에는 졸업논문을 제출할 수 있다.
 - ③ 수학과의 졸업시험 시행과 졸업논문 제출에 관한 세부사항은 수학과 교수회의에서 결정하며, 매학기 학과장이 실시한다.
 - ④ 교직이수자로 선발된 학생은 수학과에서 개설된 교직 3과목(교과교육론, 교과교수법, 교과교재연구및지도법)을 이수하여야한다. 교직 이수를 중도에 포기한 학생의 경우에도 적용된다.
- 제11조(영어강의 의무 이수) ① 전공과목 3과목(단, 편입생은 1과목) 이상 이수를 해야 한다.
 - ② 전공과목은 전공기초, 전공필수, 전공선택 과목을 말한다.
- 제12조(SW 기초교육 이수) ① SW교양 또는 SW코딩 교과목에서 총 6학점을 이수하여야 한다(편입생, 순수외국인 및 재직자특별전형자 제외).
 - ② SW교양 및 SW코딩 교과목 개설 및 운영에 관한 세부사항은 소프트웨어 교육교과운영 시행세칙을 따른다.
- 제13조(교과과정 개편에 따른 중복 수강 금지) ① 교과과정 개편에 따른 교과목과 이전 교육과정의 교과목 중 동일한 교과목으로 인정되는 과목은 '별표5 동일교과목목록'과 같다.
- ② 교과목 B를 이수한 상태에서 교과목 A를 수강하고자 하는 학생은 해당 학기의 학점 포기 신청 기간에 교과목 B의 학점을 포기하고, 그 증빙 자료를 교과목 A의 담당교수에게 제출해야 한다. 교과목 B의 학점을 포기하지 않을 경우에는 교과목 A의 학점을 F로 부여한다. 단, 학과장과의 상담 후 수학과 교수회의에서 승인을 받은 학생은 예외로 한다.
- 제14조(외국인 학생의 한국어 능력 취득) 한국어트랙 외국인 학생은 졸업 전까지 한국어능력시험(TOPIK) 4급 이상을 취득하여 야 한다.

부 칙

[부칙1]

- 제1조(시행일) 본 시행세칙은 2008년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 이학 부 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙2]

- 제1조(시행일) 본 시행세칙은 2008년 9월 1일부터 시행한다.
- 제2조(경과조치) 본 교육과정 이전의 교육과정으로 입학하였던 학생들 중 철학입문이 전공교양이었던 학생들은 기존 전공교양이었던 철학입문의 유사과목인 과학철학을 전공교양으로 이수할 수 있다.

[부칙3]

- 제1조(시행일) 본 시행세칙은 2010년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 수학과 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙4]

- 제1조(시행일) 본 시행세칙은 2012년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 수학과 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙5]

- 제1조(시행일) 본 시행세칙은 2016년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 수학 과 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙6]

- 제1조(시행일) 본 시행세칙은 2018년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 수학과 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙7]

제1조(시행일) 본 시행세칙은 2019년 3월 1일부터 시행한다.

- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 이수규정과 이과대학 및 수학 과 교육과정 이수규정에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 교육과정 이수규정, 이과대학 교육과정 이수규정, 수학과 교수회의 결정사항에 따른다.

[부칙8]

- 제1조(시행일) 본 시행세칙은 2020년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 개편에 따른 경과조치와 이과 대학 교육과정시행세칙에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 관련 규정에 따른다.

[부칙9]

- 제1조(시행일) 본 시행세칙은 2021년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 개편에 따른 경과조치와 이과 대학 교육과정시행세칙에 따른다.
- 제3조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 관련 규정에 따른다.

[부칙10]

- 제1조(시행일) 본 시행세칙은 2022년 3월 1일부터 시행한다.
- 제2조(경과조치) 본 시행세칙 시행일 이전에 입학한 학생들에 대한 경과조치는 본 대학교 교육과정 개편에 따른 경과조치와 이과 대학 교육과정시행세칙에 따른다.
- 제3조(졸업능력인증제도 폐지에 따른 경과조치) ① 졸업능력인증제도 폐지는 2022학년도부터 모든 재적생에게 적용한다.
- ② 2022년 2월 이전 수료자는 희망자에 한하여 졸업능력인증을 이수면제 처리한다.
- 제4조 본 시행세칙에 규정되어 있지 않은 사항들은 본 대학교 학칙과 관련 규정에 따른다.

[부칙11]

제1조(시행일) 본 교육과정 시행세칙은 2023년 3월 1일부터 시행한다.

[부칙12]

제1조(시행일) 본 교육과정 시행세칙은 2024년 3월 1일부터 시행한다.

[별표]

- 1. 수학과 교육과정 편성표 1부.
- 2. 수학과 타전공 인정 과목표 1부.
- 3. 수학과 교과목 해설 1부.
- 4. 수학과 전공능력 1부.
- 5. 수학과 동일 교과목 목록 1부.
- 6. 수학과 교육과정 이수체계도 1부.

[별표1]

수학과 교육과정 편성표

전공명: 수학 [Mathematics]

							시간				개석	학기		ī	고과구분	1_		
순번	이수 구분	교과목명	학수번호	학점	이론	설계		실기	임상	이수 학년	1	2 학기	부 전공	영어 전용 트랙	문제 해결 형 교과	교직 기본	PN 평가	비고
1	전공기초	미적분학및연습1	MATH1101	3	5					1	0							
2	전공기초	미적분학및연습2	MATH1102	3	5					1		0						
3	전공기초	물리학및실험1	PHYS1101	3	3		2			1	0							
4	전공기초	물리학및실험2	PHYS1102	3	3		2			1		0						
5	전공기초	화학및실험1	CHEM1001	3	3		2			1	0							
6	전공기초	화학및실험2	CHEM1002	3	3		2			1		0						
_ 7	전공기초	생 물 학및실험1	BIOL1101	3	3		2			1	0							
8	전공기초	생 물 학및실험2	BIOL1102	3	3		2			1		0						
9	전공선택	조합및그래프이론	MATH1111	3	3					1		0				0		
10	전공선택	벡터해석	MAth2101	3	3					2	0							
11	전공필수	선형대수학1	MATH2111	3	3					2	0					0		
12	전공필수	선형대수학2	MATH2112	3	3					2		0				0		
13	전공필수	해석학1	MATH2211	3	3					2	0					0		
14	전공필수	해석학2	MATH2212	3	3					2		0				0		
15	전공선택	기하학개론	MATH2401	3	3					2		0						
16	전공선택	미분방정식1	MATH2411	3	3					2	0							
17	전공선택	미분방정식2	MATH2412	3	3					2		0						
18	전공필수	확률및통계	MATH2501	3	3					2	0					0		
19	전공선택	정수론	MATH2511	3	3					2		0				0		
20	전공필수	현대대수학1	MATH3201	3	3					3	0					0		
21	전공선택	현대대수학2	MATH3202	3	3					3		0				0		
22	전공필수	위상수학1	MATH3451	3	3					3	0					0		
23	전공선택	위상수학2	MATH3452	3	3					3		0				0		
24	전공선택	복소해석학1	MATH3111	3	3					3	0					0		
25	전공선택	복소해석학2	MATH3112	3	3					3		0				0		
26	전공선택	응용수학	MATH3602	3	3					3		0						
27	전공선택	수리통계학	MATH3501	3	3					3	0							
28	전공선택	수치해석1	MATH3411	3	3					3	0							
29	전공선택	수치해석2	MATH3412	3	3					3		0						
30	전공선택	확률론	MATH3502	3	3					3		0						
31	전공선택	산업수학	MATH4612	3	3					3	0							
32	전공선택	미분기하학1	MATH3211	3	3					3	0					0		
33	전공선택	미분기하학2	MATH3212	3	3					3		0				0		
34	전공선택	금융수학	MATH3632	3	3					3		0						
35	전공선택	그래프이론	MATH3704	3	3					3	0							
36	전공선택	실해석학	MATH4301	3	3					4	0							

							시간				개설	학기		į.	고과구분	<u>1</u>		
순번	이수 구분	교과목명	학수번호	학점	이론	설계	실습	실기	임상	이수 학년	1 학기	2 학기	부 전공	영어 전용 트랙	문제 해결 형 교과	교직 기본 이수 교과	PN 평가	비고
37	전공선택	위상수학 특 강	MATH4451	3	3					4		0						
38	전공선택	통계학특강	MATH4501	3	3					4	0							
39	전공선택	대수학 특 강	MATH4202	3	3					4	0							
40	전공선택	해석학 특 강	MATH4302	3	3					4		0						
41	전공선택	응용 수학 특 강	MATH4601	3	3					4		0						
42	전선(교직)	교과교육론(수학)	EDU3137	3	3					3	0							
43	전선(교직)	교과교재연구및지도법 (수학)	EDU3138	3	3					3		0						
44	전선(교직)	교과교수법(수학)	EDU3336	3	3					3		0						
45	전공선택	캡스톤디자인1(수학)	MATH3702	3		3				3	0							
46	전공선택	캡스톤디자인2(수학)	MATH3703	3		3				3		0						
47	전공선택	독립심화학습1(수학)	MATH4704	3	3					4	0							
48	전공선택	독립심화학습2(수학)	MATH4705	3	3					4		0						
49	전공필수	<u>졸업논문</u> (수학)	MATH4999	-	-					4	0	0						

[별표2]

수학과 타전공 인정 과목표

전공명 : 수학 [Mathematics]

순번	단과대학	학과(전공)	학수번호	교과목명	학점	인정이수구분	적용 개시연도	비고
1	이과대학	물리학과	PHYS2201	역학1	3	전공선택	2012	
2	이과대학	물리학과	PHYS2304	역학2	3	전공선택	2012	
3	이과대학	물리학과	PHYS3305	양자역학1	3	전공선택	2012	
4	이과대학	물리학과	PHYS3201	양자역학2	3	전공선택	2012	
5	이과대학	물리학과	PHYS2307	전자기학1	3	전공선택	2012	
6	이과대학	물리학과	PHYS3203	전자기학2	3	전공선택	2012	
7	정경대학	경제학과	ECON3041	SAS를이용한고급계량경제학	3	전공선택	2012	
8	정경대학	경제학과	ECON2041	계량경제학	3	전공선택	2016	
9	경영대학	경영학부	MGMT3006	금융파생상품론	3	전공선택	2016	
10	경영대학	경영학부	MGMT3009	보험학원론	3	전공선택	2016	
11	(국제C) 자연계열	(국제C) 자연계열	APHY1002	물리학및실험1	3	전공기초	2022	전과생에만 적용
12	(국제C) 자연계열	(국제C) 자연계열	APHY1003	물리학및실험2	3	전공기초	2022	전과생에만 적용
13	(국제C) 자연계열	(국제C) 자연계열	APCH1101	화학및실험1	3	전공기초	2022	전과생에만 적용
14	(국제C) 자연계열	(국제C) 자연계열	APCH1102	화학및실험2	3	전공기초	2022	전과생에만 적용
15	(국제C) 자연계열	(국제C) 자연계열	ENV171	생물학및실험1	3	전공기초	2022	전과생에만 적용
16	(국제C) 자연계열	(국제C) 자연계열	ENV171	생물학및실험2	3	전공기초	2022	전과생에만 적용

[별표3]

수학과 교과목 해설

• MATH1101 미적분학및연습1 (Calculus and Recitation 1) 3-5-0

함수의 개념, 극한, 연속, 미분, 적분, 급수의 수렴과 발산 등의 수학적 기초이론과 응용을 학습할 뿐만 아니라 논리적 사고능력을 배양하여, 각 전공 분야에 필요한 수학적 기초를 연마하는데 그 목적이 있다.

Calculus is applied to a variety of fields including economics and business administration, as well as natural and engineering sciences. The purpose of this course is to help students understand basic concepts such as limit, continuity and derivatives, Riemann integral, and infinite series and to enhance their ability to apply these concepts through problem-solving exercises.

• MATH1102 미적분학및연습2 (Calculus and Recitation 2) 3-5-0

미적분학및연습1의 연속으로 테일러 급수, 매클로린 급수, 극좌표, 편도함수, 이변수 함수의 극값, 이중적분, 삼중적분 등을 다룬다. Calculus and Recitation 2 is a continuation of Calculus and Recitation 1, which includes Taylor series, Maclaurin series, polar coordinate system, partial derivatives, local maxima and minima, double integrals, triple integrals.

• PHYS1101 물리학및실험1 (Physics and Laboratory 1) 3-3-2

이학계열 학생으로서 갖추어야 할 물리학의 기본 소양 중 역학, 전자기학 등을 중심으로 기본적인 내용에 대해 실습과 더불어 교육한다. Introductory course of physics covering fundamental principles and experiments, which will discuss topics including classical mechanics, electromagnetism and so on.

• PHYS1102 물리학및실험2 (Physics and Laboratory 2) 3-3-2

일반물리학및실험 I 의 내용에 이어서 광학, 양자역학, 현대 물리학에 이르기까지의 내용을 주제로 실습과 더불어 교육한다. Continuation of 26374, covering topics including optics, quantum mechanics, modern physics and so on.

• CHEM1001 화학및실험1 (Chemistry and Laboratory 1) 3-3-2

화학전반에 걸친 기초적인 사항 즉 화학 양론, 열화학, 원자의 구조, 원소의 주기성, 화학결합 및 물질의 구조와 성질과의 관계, 기체, 액체, 고체 등 물질의 상태 및 분자간 힘 등 이론 및 실험에 관하여 학습한다.

Introductory course of chemistry covering fundamental principles and experiments, which will discuss topics including stoichiometry, thermochemistry, atomic structure, periodicity of elements, chemical bonds, etc.

• CHEM1002 화학및실험2 (Chemistry and Laboratory 2) 3-3-2

화학 전반에 걸친 기초적인 사항 즉 용액의 성질, 반응 속도론, 화학평형, 화학 열역학, 전기화학, 핵화학 및 실험에 관하여 학습한다. Continuation of 26477, covering topics including solution properties, kinetics, chemical equilibrium, thermodynamics, electrochemistry, etc.

• BIOL1101 생물학및실험1 (Biology and Laboratory 1) 3-3-2

생명체의 기본적인 생명현상을 이해시키기 위하여 세포의 구조와 소기관들의 기능, 개체와 개체간의 상호관계, 유기적 관계를 특히 식물학 전반에 걸쳐 개괄적인 문제를 다루어 식물학에 대한 기초지식을 습득하도록 한다.

An introduction to general biology, including cytology, genetics, anatomy, taxonomy, physiology, and ecology of living organisms.

• BIOL1102 생물학및실험2 (Biology and Laboratory 2) 3-3-2

생명체의 기본적인 생명현상을 이해시키기 위하여 세포의 구조와 소기관들의 기능, 개체와 개체간의 상호관계, 유기적 관계를 특히 동물체의 기본적인 구조, 대사, 문화, 성장, 진화 등을 중심으로 논한다. 동물의 해부, 생리, 발생, 생태, 진화 및 유전에 관한 일반 동물학에 대한소개, 이를 통해 관련 학문의 공부하는데 도움이 되게 한다.

An introduction to general biology, including cytology, genetics, anatomy, taxonomy, physiology, and ecology of living organisms.

• MATH1111 조합및그래프이론 (Combinatorics and Graph Theory) 3-3-0

계산에 사용되는 알고리즘 및 자료구조의 이해를 위한 이산 수학의 기본 요소를 소개하며, 수 체계, 논리, 관계, 함수, 수학적 귀납법, 부울 대수 등을 학습한다. 조합론의 기초인 다양한 상황 하에서의 counting 기법과 그래프이론의 기초를 다룬다.

This course introduces the basic elements of discrete mathematics which provide a foundation for an understanding of algorithms and data structures used in computing. Topics covered include number systems, logic, relations, functions, induction, recursion, Boolean algebra, counting and graph theory.

• MATH2211 해석학1 (Mathematical Analysis 1) 3-3-0

실수 체계, 수열의 수렴과 발산, 코시 수열, 함수의 극한, 함수의 연속과 평등연속, 함수의 미분 등을 배운다.

Real number, Convergent sequence, Cauchy sequence, Limit of a function, continuity and uniform continuity of functions, differentiability of functions.

• MATH2411 미분방정식1 (Differential Equations 1) 3-3-0

1계 미분방정식의 해의 존재성과 유일성을 공부하고 1계 미분방정식의 여러 해법, 상수계수를 갖는 고계 선형미분방정식, 변분법, 급수해, 라플라스변환 및 응용 등과 같이 주어진 미분방정식의 해를 구하는 방법을 다룬다.

This course introduces the existence and uniqueness theorem of 1st order ordinary equations, and covers several methods for 1st order ordinary differential equations, higher order linear differential equations with constant coefficients, variation of parameters, series solutions, and Laplace transform with its applications.

• MATH2101 벡터해석 (Vector Calculus) 3-3-0

다변수 함수의 미분과 적분에 대해서 공부한다. 공부하게 될 주제로는 방향도함수, 그래디언트, 벡터장, 다변수 함수의 테일러 정리, 그린 정리, 스토크스 정리, 가우스 정리 등이 있다.

In this course we study differentiation and integration of functions of several variables. Main topics are directional derivatives, gradients, vector fields, Taylor's theorem in several variables, Green's theorem, Stokes's and Gauss's theorems, etc.

• MATH2111 선형대수학1 (Linear Algebra 1) 3-3-0

벡터공간, 기저, 차원, 선형변환, 행렬 및 행렬식, 일차연립방정식, 내적공간, 고유치와 고유벡터 등을 다룬다.

Vector spaces, bases, dimensions, linear transformations, matrix and determinant, systems of linear equations, inner product spaces, eigen values and eigen vectors.

• MATH2501 확률및통계 (Introduction to Probability and Statistics) 3-3-0

기초적인 확률의 개념으로부터 출발하여 통계적 추론의 근간이 되는 추정 및 가설검정에 대하여 배우고 간단한 응용문제들을 다룬다. Starting from the basic concepts of probability, statistical inferences such as estimation and hypothesis testing are taught. Some simple applications are also taught.

• MATH2212 해석학2 (Mathematical Analysis 2) 3-3-0

해석학1에서 다룬 내용을 바탕으로 리만 적분, 특이 적분, 급수, 함수열, 함수 급수 등을 공부한다.

Riemann integrable functions and integrals, improper integral, sequence of functions, series of functions.

• MATH2401 기하학개론 (Introduction to Geometry) 3-3-0

2차원 및 3차원 유클리드 기하, 복소수의 평면 기하, 뫼비우스 변환, 리만 구면 및 극사영, 비유클리드 기하학, 아핀 변환, 사영 기하, 쌍대

Euclidean geometry in two and three dimensions, plane geometry of the complex numbers, Möbius transformations,

Riemann sphere and stereographic projection, non-Euclidean geometries, affine transformation, projective geometry, hyperbolic geometry.

• MATH2511 정수론 (Number Theory) 3-3-0

정수의 기본 성질을 바탕으로 소수, 디오판토스 방정식, 합동식, 원시근, 제곱잉여, 연분수, Pell의 방정식, 이차체의 대수적 정수의 특성 및 응용, 초월수 등을 다룬다.

Prime numbers, Diophantine equations, congruences, primitive roots, quadratic residues, rings of integers of quadratic fields, continued fractions, Pell's equations, transcendental numbers.

• MATH2412 미분방정식2 (Differential Equations 2) 3-3-0

선형 연립미분방정식, 자율계와 안정성, 연립미분 방정식의 응용을 학습한다. 또한, 열 방정식, 파동방정식 등의 기본 선형편미분방정식의 해법을 다룬다.

This course introduces system of linear differential equations, autonomous system and stability with applications to the predator-prey system. Furthermore, it covers linear partial differential equations including heat equations, wave equations, and Laplace equations

• MATH2112 선형대수학2 (Linear Algebra 2) 3-3-0

선형대수학1에서 다룬 내용을 바탕으로 하여 특성다항식, 최소 다항식, 이차형식과 이차 곡선 및 이차곡면의 표준형, 군의 정의와 기본성질, 부분군, 순환군, Lagrange의 정리, 군 준동형사상과 동형정리 등을 다룬다.

Vector spaces, linear transformation and matrix, eigen vector, characteristic polynomial, minimum polynomial, quadratic form, quadratic curve and rational standard form, definition and properties of groups, cyclic groups, symmetric groups, Lagrange theorem, homomorphism and isomorphism theorem of groups.

• MATH3201 현대대수학1 (Modern Algebra 1) 3-3-0

군의 정의와 기본성질, 부분군, 순환군, Lagrange의 정리, 준동형사상과 동형정리, 군의 직적과 직합, 유한군, 환의 정의와 기본성질, 이데알, 정역의 분수체, 다항식환, 극대이데알과 소이데알 등의 내용을 다룬다.

Definition and properties of groups, cyclic groups, symmetric groups, Lagrange theorem, homomorphism and isomorphism theorem of groups, direct product and sum of groups, finite groups, definition and basic properties of rings, ideals, fields of quotients of an integral domain, polynomial rings, maximal ideals and prime ideals.

• MATH3111 복소해석학1 (Complex Analysis 1) 3-3-0

복소함수의 기초적인 이론에 대해서 공부한다. 공부하게 될 주제로는 복소수, 코시-리만 방정식, 함수의 해석적임, 복소 지수함수와 로그함수, 코시-구르사 정리, 코시 적분 공식, 리우빌 정리, 테일러 급수와 로랑 급수 등이 있다.

We study basic theory of complex functions. Main topics are complex numbers, Cauchy-Riemann equations, analyticity of functions, complex exponential and logarithmic functions, Cauchy-Goursat theorem, Cauchy integral formula, Liouville's theorem, Taylor's and Laurent's series, etc.

• MATH3211 미분기하학1 (Differential Geometry 1) 3-3-0

유클리드 공간, 벡터 장, 1형식, 삼차원 공간의 곡선, 프레네 틀, 곡면, 조각 사상, 접벡터, 접평면 등을 학습한다. Euclidean spaces, vector fields, one form, curves in 3-spaces, Frenet frame, surfaces, coordinate patches, tangent vectors, tangent planes.

• MATH3451 위상수학1 (Topology 1) 3-3-0

위상공간, 기저, 연속성, 거리공간, 제 1 및 제 2 가산공간, 가분공간, 콤팩트공간, 적공간, 연결성 등을 다룬다.

Topological spaces, bases, continuity, metric spaces, first and second countable spaces, separable spaces, compact spaces, product spaces, connectivity.

• MATH3501 수리통계학 (Mathematical Statistics) 3-3-0

추론통계학의 두 핵심 분야인 추정 및 가설검정에 관련된 개념들과 그의 주요성질들을 이론적으로 체계화하고, 그 기법들을 수학적으로 자세히 다룬다.

Theoretically builds up the concepts and issues involved in two main areas of inferential statistics(estimation and hypothesis testing). Detailed mathematical description of the statistical techniques thereof.

• MATH3411 수치해석1 (Numerical Analysis 1) 3-3-0

방정식의 수치해법 및 오차분석, 함수의 다항식 근사법, 수치 미분과 적분, 초기치 문제의 수치적 해법 등을 다룬다.

This course includes numerical methods for solving non-linear equations of one variable and error analysis, polynomial interpolations, numerical differentiations and integrations, numerical solutions and theories for initial value problems.

• MATH3602 응용수학 (Applied Mathematics) 3-3-0

물리, 전산학, 화학, 생물학, 경제학, 공학, 기상학과 같은 다양한 분야에 응용될 수 있는 기본적인 수학적 기법을 배우고, 앞서 서술한 응용 분야에 필수적인 수학적 기법을 다룬다.

The main goal of this course is to learn some basic mathematical techniques that can be applied in various fields such as physics, computer sciences, biology, economics, engineering, meteorology, etc. This course covers basic mathematical techniques that are essential to the aforementioned application areas.

• MATH3202 현대대수학2 (Modern Algebra 2) 3-3-0

현대대수학1을 기초로 하여 환, 체에 대한 기본성질을 학습한다. 체위의 다항식환, 단항이데알정역, 유일인수분해정역, Euclid 정역 등과 확대체, 기하학적 도형의 작도가능성, 유한체, Galois군 등을 다룬다.

Basic properties of rings and fields, polynomial rings over a field, principle ideal domain, unique factorization domains and Euclid domains, extension fields and Galois groups, finite fields, algebraic extensions, geometric figure's constructive possibility.

• MATH3112 복소해석학2 (Complex Analysis 2) 3-3-0

이 과목은 복소해석학의 두 번째 과목이다. 공부하게 될 내용은 코시 유수 정리, 조르당 보조 정리, 편각 원리, 루셰 정리, 선형 분수 변환, 등각 사상, 푸아송 적분 공식 등이 있다.

This is the second course of Complex Analysis. Main topics are Cauchy's residue theorem, Jordan's lemma, argument principle, Rouche's theorem, linear fractional transformation, conformal mapping, Poisson integral formula, etc.

• MATH3212 미분기하학2 (Differential Geometry 2) 3-3-0

모양 연산자, 법 곡률, 가우스 곡률, 전 곡률, 공변 미분, 가우스-보네 정리 등을 학습한다.

Shape operator, normal curvature, Gaussian curvature, total curvature, covariant derivatives, Gauss-Bonnet theorem.

• MATH3452 위상수학2 (Topology 2) 3-3-0

완비거리공간, 함수공간, 분리공리, 거리공간화정리, 콤팩트화, 호모토피, 기본군 등을 다룬다.

Complete metric spaces, function spaces, separation axiom, metrization theorem, Tychonoff theorem, compactification, homotopy, fundamental group.

• MATH3412 수치해석2 (Numerical Analysis 2) 3-3-0

이 과정에서는 선형대수학의 기본적인 개념을 바탕으로 선형연립방정식을 풀 수 있는 여러 가지 수학적 기술들, 가우스 소거법, LU 분해, QR 분해와 같은 직접법, 그리고 Jacobi 방법, Gauss-Seidel 방법 등과 같은 반복법에 대해서 공부를 한다. 또한 최소자승법과 근사문제를 해결할 수 있는 여러 가지 기술들에 대해서 공부한다.

This course includes numerical linear solvers such as direct methods e.g., Gaussian elimination, LU decomposition, QR decomposition and many iterative techniques like Jacobi method and Gauss-Seidel method. It also provides numerical

methods such as least square methods and approximation techniques for solving problems arising from many applications.

• MATH3502 확률론 (Theory of Probability) 3-3-0

수리통계학에서 다룬 내용 중에서 확률론과 관련된 개념들을 구체화하고 발전시켜 대수의 법칙, 중심극한정리 및 기초적인 확률과정론 등을 다루고 또한 확률론의 몇 가지 분야에의 응용을 소개한다.

Develops probability theory rigorously. Covers laws of large numbers, central limit theorems, simple stochastic processes and some applications.

• MATH3632 금융수학 (Financial Mathematics) 3-3-0

미분방정식, 선형대수학, 수치해석, 확률론, 통계학 등 수학적 도구를 활용하여 금융거래에서 사용되는 선물, 옵션 등 금융파생상품들의 개념과 그 상품들의 가격결정에 사용되는 모형을 수학적으로 분석하는 방법을 다룬다.

This courses introduces basic concepts in financial mathematics and provides methodology of market prices modelings of financial derivatives such as futures and options by using elementary mathematical tools like Differential Equations, Linear Algebra, Numerical Analysis, Probability, and Statistics.

• MATH3704 그래프이론 (Graph Theory) 3-3-0

그래프는 주어진 여러 대상을 점으로, 이 들의 연결 관계를 모서리로 나타낸 수학적 대상으로서, 다른 용어로는 네트워크라고 부른다. 그래 프 이론은 조합론의 중요한 분야일 뿐만 아니라 다른 수학 분야나 데이터 분석, 공학에도 많이 활용된다. 이 강의에서는 그래프의 기본 정의, 연결성, 평면 그래프, 그래프 색칠, 그래프 포함 문제, 확률론적 그래프 등을 다룬다.

A graph is a mathematical object consisting of vertices and edges between two vertices. In other words, it is called a network. Graph theory is an important area in combinatorics, and it is also applied to other mathematical areas, data analysis, and engineering. In this course, we deal with definitions of graphs, graph connectivity, planar graphs, graph colorings, containment problems, probabilistic combinatorics, etc.

• MATH3702 캡스톤디자인1(수학) (Capstone Design 1(Mathematics)) 3-3-0

수학적 이론을 바탕으로 자연과학, 공학, 사회과학 등의 문제에 대한 수학적 모델링 기법과 이를 해결하는 방법을 학습한다.

There are lots of mathematical problems arising from natural science, engineering and social science. Based on mathematical theory, students learn how to make a mathematical model and solve it.

• MATH3703 캡스톤디자인2(수학) (Capstone Design 2(Mathematics)) 3-3-0

수학적 이론을 바탕으로 자연과학, 공학, 사회과학 등의 문제에 대한 수학적 모델링 기법과 이를 해결하는 방법을 학습한다.

There are lots of mathematical problems arising from natural science, engineering and social science. Based on mathematical theory, students learn how to make a mathematical model and solve it.

• MATH4202 대수학특강 (Topics in Algebra) 3-3-0

Galois 이론, 유한가환군, Sylow 이론, 가군, 선형변환, 대수적 부호이론, 부울대수 등을 다룬다.

Galois Theory, Finitely generated abelian groups, Sylow theorems, Modules, Linear transformations, Algebraic coding theory, Boolean Algebra.

• MATH4501 통계학특강 (Topics in Statistics) 3-3-0

수리통계학과 확률론을 기본으로 하여 통계학의 여러 분야 중 특정 세부분야를 정하여 학습한다.

Introduces some special topics in statistics. Assumes familiarity with the concepts and basic techniques of mathematical statistics and the elements of the theory of probability.

• MATH4301 실해석학 (Real Analysis) 3-3-0

르벡 측도, 가측 집합, 가측 함수를 정의하고 그 성질을 연구하며 이를 바탕으로 르벡 적분, 르벡 적분 수렴 정리, L^p 공간, 바나흐공간

등을 다룬다

This course introduces Lebesgue measures, measurable sets, measurable functions. Furthermore, Upon these concepts, this course covers Lebesgue integration, Lebesgue convergence theorem, L^p spaces, and Banach spaces.

• MATH4451 위상수학특강 (Topics in Topology) 3-3-0

대수적 위상수학의 소개, 기본 군, 피복 공간, Van Kampen 정리, 피복 공간의 분류, 곡면 분류, 미분위상수학 등을 다룬다. Introduction of algebraic topology, fundamental groups, covering spaces, classification of covering spaces, classification of surfaces, differential topology.

• MATH4302 해석학특강 (Topics in Analysis) 3-3-0

해석학의 흥미로운 주제 하나를 소개하고 학부 수준에서 공부한다. 다루게 될 주제는 푸리에 해석, 편미분방정식, 실해석, 측도론 등이 있을 수 있다.

In this course we introduce and study an interesting topic in analysis at undergraduate level. The topics may cover Fourier analysis, partial differential equations, real analysis, measure theory, etc.

• MATH4601 응용수학특강 (Topics in Applied Mathematics) 3-3-0

그래프이론, 알고리즘 및 정보이론, 코드이론, 암호학, 양자계산을 포함하는 응용수학에서의 실제적인 예가 되는 주제들을 다룬다. 또한, 실생활에서 직접적인 응용을 가지는 주제에 중점을 둔다.

This course covers illustrative topics in applied mathematics including graph theory, algorithms, information theory, coding theory, cryptography, and quantum computation. It focuses on topics that have realistic applications.

• MATH4612 산업수학 (Industrial Mathematics) 3-3-0

암호론, 금융수학, 보험수학, 과학계산, 머신러닝 등 산업 현장에 응용 가능한 수학 분야의 주제를 정하여 학습한다. By selecting topics in Cryptography, Financial Mathematics, Actuarial Sciences, Scientific Computation, Machine Learning etc, we study mathematics which is applicable to industry.

• MATH4704 독립심화학습1(수학) (Independence Learning & Research 1(Mathematics)) 3-3-0

학생 1인 혹은 팀이 심화학습 및 연구 주제를 정하고 수학과 소속 전임교수로부터 한 학기 동안 지도를 받아서 독립적으로 학습한다. 제안 한 주제에 관한 심화학습 및 연구 내용에 관한 보고서를 작성하고 그 결과물을 학기 말에 지도교수에게 제출한다. 지도교수는 학습과정과 결과를 평가하여 P/N 중 적합한 학점을 부여한다.

An individual or a team finds an independent learning or research topic and study it under the advice of a mathematics faculty. It is required to hand in a report on the learning topic or a paper on the research at the end of the semester. Pass or Nonpass grade is endowed as an evaluation on the academic activity during the course and the final output at the end of the semester.

• MATH4705 독립심화학습2(수학) (Independence Learning & Research 2(Mathematics)) 3-3-0

학생 1인 혹은 팀이 심화학습 및 연구 주제를 정하고 수학과 소속 전임교수로부터 한 학기 동안 지도를 받아서 독립적으로 학습한다. 제안 한 주제에 관한 심화학습 및 연구 내용에 관한 보고서를 작성하고 그 결과물을 학기 말에 지도교수에게 제출한다. 지도교수는 학습과정과 결과를 평가하여 P/N 중 적합한 학점을 부여한다.

An individual or a team finds an independent learning or research topic and study it under the advice of a mathematics faculty. It is required to hand in a report on the learning topic or a paper on the research at the end of the semester. Pass or Nonpass grade is endowed as an evaluation on the academic activity during the course and the final output at the end of the semester.

• EDU3137 교과교육론(수학) (Teaching Unit Analysis) 3-3-0

교과교육의 이론적, 역사적 배경, 교과교육의 목표 및 중·고등학교 새 교육과정의 분석 등 교과교육 전반에 관하여 연구한다.

The course aims to understand the characteristics of various subject matters and basic models of curriculum for each discipline and foster the ability to select and organize desirable curriculum contents.

• EDU3138 교과교재연구및지도법(수학) (Lesson Plan for Teaching Materials) 3-3-0

교과의 성격, 중고등학교 교재의 분석, 수업안의 작성, 교수방법 등 교과지도의 실제경험을 쌓게 한다.

Learners in the course are able to promote the basic competency as curriculum expect to guide their students in each subject matter and utilize appropriate teaching method in relation to the age and developmental level of th students, the subject-matter content, the objective of the lesson, and evaluation method.

• EDU3336 교과교수법(수학) (Subject Didactics(Mathematics)) 3-3-0

예비교사가 장래 교수하게 될 교과목의 교수법적 특성을 이해하고, 해당 교과의 교육적 본질에 부합하는 교수법을 이해하고 연마한다. In this course the student of teachers-to-be will reach at an understanding of the didactical characteristics of the subject they are going to teach in the school classroom, will learn the multilateral dimensions of didactics of the subject, and will practice the contemporary method which is consistent with the essence of the subject.

• MATH4999 졸업논문(수학) (Thesis(Mathematics))

연구주제를 선정하고 그 주제에 대한 학문적 주장을 이론적으로 입증하는 글을 작성한다.

Students determine a thesis subject and write a thesis establishing theoretical propositions on the subject.

[별표4]

수학과 전공능력

■ 수학과 교육목표 및 인재상

구분		세부내용								
학과(전공) 교 육목 표	기반수학과 응용수학의 조화를 바탕으로 수학적 진리를 탐구하며 4차 산업혁명을 선도할 수 있는 전문 인력 양성									
	학과 인재상	세부내용	본교 인재상과의 연계성							
	수학적 통찰력을 통한 문제 해결력을 갖춘 인재	수학적 진리를 탐구함에 있어 문제의 근본을 이해하고 분석하여 합리적인 판단으로 문제를 해결할 수 있는 인재 필요	비판적 지식탐구 인재							
학과(전공) 인재상	수학을 활용하여 과학기술의 발전과 사회문제 해결에 이바지할 수 있는 인재	산업 및 사회에서 발생하는 현안 문제들을 수리적인 접근법을 활용하여 해결할 수 있는 인재 필요	사회적 가치추구 인재							
	용복합적 사고를 갖춘 창의적이고 주체적인 인재	다양한 분야에서 발생하는 기술적 문제를 이해하고 창의적이고 융복합적 사고로 방향성을 제시할 수 있는 인재 필요	주도적 혁신융합 인재							

■ 수학과 전공능력

인재상	전공능력	전공능력의 정의
수학적 통찰력을 통한	수학적 통찰력	수학적 진리를 탐구하며 현상의 원리를 이해할 수 있는 통찰 능력
문제 해결력을 갖춘 인재	문제 해결능력	현상의 원리를 파악하고 합리적인 사고를 바탕으로 다양한 문제를 해결하는 능력
수학을 활용하여 과학기술의	비판적 사고능력	지식의 가치를 성찰하고 탐구하는 능력
발전과 사회문제 해결에 이바지 할 수 있는 인재	의사전달 능력	비판적 사고를 통해 얻은 정보와 가치를 표현할 수 있는 능력
용복합적 사고를 갖춘	융복합 사고능력	다양한 학문적 지식을 활용하여 현상을 이해하고 새로운 방향을 제시할 수 있는 능력
창의적이고 주체적인 인재	데이터 활용능력	다양한 형태의 거대 데이터를 정제하여 의미 있는 자료를 추출하고 활용할 수 있는 능력

■ 전공능력 제고를 위한 전공 교육과정 구성 및 체계도 정립 가. 전공 교육과정 구성표

전공능력	학년	이수학기	교과목명
	1	1,2	미적분학및연습1,2
	2	1,2	미분방정식1,2
문제해결 능력	2	1	벡터해석
	4	1	대수학특강
	4	2	위상수학특강
	1	2	조합및그래프이론
의사전달 능력	2	1,2	선형대수학1,2
	2	1,2	해석학1,2

전공능력	학년	이수학기	교과목명
	2	2	정수론
	2	2	기하학개론
	3	1,2	현대대수학1,2
수학적 통찰력	3	1,2	위상수학1,2
구익역 충결복	3	1,2	미분기하학1,2
	3	1,2	복소해석학1,2
	3	1	그래프이론
	4	1	실해석학
	2	1	확률및통계
데이터활용 능력	3	2	확률론
네이니콜라 공국	3	1	수리통계학
	4	1	통계학특강
	3	1,2	수치해석1,2
비판적 사고 능력	3	2	응용수학
이런국 시포 중국	4	2	응용수학특강
	4	2	해석학특강
	3	1	산업수학
융복합사고 능력	3	2	금융수학
용속합시고 중력	3	1,2	캡스톤디자인1,2
	4	1,2	독립심화학습1,2

나. 전공 교육과정 체계도

		<u>.n.</u>	수과 정		
전공역량	1학년	2학년	3학년	4학년	인재상
	기출	· 단계	심화단계	통섭단계	
문제해결 능력	미적분학및연습	미분방정식 벡터해석		대수학특강 위상수학특강	비판적 지식탐구
의사전달 능력	조합및그래프이론	해석학 선형대수학			사회적 가치추구
수학적 통찰력		정수론 기하학개론	현대대수학 위상수학 미분기하학 복소해석학 그래프이론	실해석학	비판적 지식탐구
데이터 활용 능력		확률및통계	확률론 수리통계학	통계학특강	주도적 혁신융합
비판적 사고 능력			수치해석 응용수학	해석학특강 응용수학특강	사회적 가치 추 구
용복합사고 능력			산업수학 금융수학 캡스톤디자인	독립심화학습	주도적 혁신융합

[별표5]

수학과 동일 교과목 목록

아래 표는 2016.03.01. 시행 교육과정의 교과목과 그 이전 교육과정의 교과목 중에서 명칭은 다르지만 동일 교과목으로 인정되는 과목의 목록임

2016.03.01. 교육과정 교과목(A)	이전 교육과정 교과목(B)
조합및그래프이론	이산수학
해석학1	해석학개론
해석학2	해석학
 선형대수학1	선형대수학
 선형대수학2	대수학개론
미분방정식1	미분방정식개론
미분방정식2	미분방정식
- 집합론	집합및거리공간론
 복소해석학1	복소함수론1
복소해석학2	복소함수론2
수치해석1	수치해석

[별표6] 교육과정 이수체계도

수학과 교육과정 이수체계도

전공명: 수학 [Mathematics]

과정명: 일반 과정

■ 교육과정의 특징

• 저학년에서는 해석학 및 선형대수학을 기반으로 하는 기초 교육 과정 강화

• 고학년에서는 세부 전공에 대한 심화된 교육 과정 개설

• 순수 및 응용 수학에 대한 깊이 있는 교육으로 학문 연구 및 사회 진출 도모

■ 교육과정 이수체계도

학년	이수학기	교과목명(또는 이수내용)
	1학기	미적분학및연습1 및 전공기초 과목(물리학및실험1, 화학및실험1, 생물학및실험1)
1학년	2학기	미적분학및연습2, 조합및그래프이론, 전공기초 과목(물리학및실험2, 화학및실험2, 생물학및실험2)
그러니	1학기	선형대수학1, 벡터해석, 해석학1, 미분방정식1, 확률및통계
2학년	2학기	선형대수학2, 정수론, 해석학2, 미분방정식2, 기하학개론
วรับส	1학기	현대대수학1, 위상수학1, 복소해석학1, 수리통계학, 수치해석1, 미분기하학1, 산업수학, 그래프이론, 교과교육론(수학)-교직이수자, 캡스톤디자인1(수학)
3학년	2학기	현대대수학2, 위상수학2, 복소해석학2, 확률론, 수치해석2, 미분기하학2, 금융수학, 응용수학, 교재연구및지도법(수학)-교직이수자, 교과교수법(수학)-교직이수자, 캡스톤디자인2(수학)
4호H =	1학기	대수학특강, 실해석학, 통계학특강, 독립심화학습1(수학), 졸업논문(수학)
4학년 	2학기	위상수학특강, 해석학특강, 응용수학특강, 독립심화학습2(수학), 졸업논문(수학)

2024학년도 수학과 교육과정 이수 체계도

- * 상기 과목의 개설은 매 학기 학과의 상황에 따라 변동될 수 있음
- 마크는 연결선 유효

- * 위 사항은 추천 사항임. 수강하지 못한 과목은 다음 학기나 학년에 수강하도록 함
- * 3~4학년 과목들은 3학년 및 4학년 학생들이 모두 수강할 수 있도록 설계되어 있음