

Outline

- Real Flocks
- Our Foreflocks
- Particle Systems to Modified Models
- Flocking Behaviors
 - Separation
 - Cohesion
 - Alignment
- Additional Steering Behaviors
 - Obstacle Avoidance
 - Goal Seeking
- Forces
- Orientation
- Project 5 Demo

Real Flocks and Schools

- No upper bound on size
 - ▶ 17 mile schools of herring with millions of fish
 - Localized reasoning
- Collision avoidance
- Centering
 - Protection from predators
 - Social advantages
 - Better search

Our Foreflocks

- Algorithmically-simulated flocking using a "force field" implementation (SIGGRAPH Electronic Theater 1985)
- "Flocks, Herds, and Schools: A Distributed Behavioral Model" by Craig Reynolds (SIGGRAPH 1987)
 - Defined the popular "Boids" model for flocking.
- "Steering Behaviors for Autonomous Characters"
 Reynolds (GDC 1999)
 - Summarized navigational and steering behaviors (including flocking).

Basic Boids

- The term "boid" is used to describe a flock member.
- Can boids be particles?
 - ▶ To some extent, yes:
 - A boid has an internal state (position, velocity, mass).
 - ▶ Can be represented as a Newtonian particle in the particle system implementation previously described in lecture.

$$\frac{d}{dt} \begin{bmatrix} x \\ \dot{x} \end{bmatrix} = \begin{bmatrix} \dot{x} \\ f/m \end{bmatrix}$$

Is this sufficient?

A Better Model

- Several differences between particles and boids:
 - A boid is not a uniform point. Specifically, it has a complex geometric state and orientation.
 - More complex behaviors
 - Boid behavior is dependant on internal and external state.
 - Internal state: particle parameters
 - External state: knowledge about other flock members.
- Key idea: Local rules lead to compelling flock behavior.
 - Boids only have a local (limited) knowledge of the flock. All rules take advantage of this local knowledge.

External State

- A boid also has some notion of "external" state.
- A neighborhood, or field of view, is generally used to describe the range of a boid's perception. Most behavioral rules apply based on conditions in the neighborhood.

Note: for Project 5, you can approximate the neighborhood as a sphere to avoid complex geometry intersections.

Steering Rules

- Steering behaviors formulated as rules:
- Concerned primarily with five (for Project 5 at least)
 - → 3 original flocking rules
 - Separation
 - Cohesion
 - Alignment
 - ▶ 2 additional steering rules
 - Obstacle Avoidance
 - Goal-Seeking ("seek")
- Represent these as dynamic forces in a modified particle system.

Separation

- Pushes boids apart to keep them from crashing into each other by maintaining distance from nearby flock mates.
- Each boid considers its distance to other flock mates in its neighborhood and applies a repulsive force in the opposite direction, scaled by the inverse of the distance.

(blackboard math)

Cohesion

- Keeps boids together as a group.
- Each boid moves in the direction of the average position of its neighbors.
- Compute the direction to the average position of local flock mates and steer in that direction.

(blackboard math)

Alignment

- Drives boids to head in the same direction with similar velocities (velocity matching).
- Calculate average velocity of flock mates in neighborhood and steer towards that velocity.

Obstacle Avoidance

- Allows the flock to avoid obstacles by steering away from approaching objects.
- Reynolds uses the method shown below:
 - Assume a cylindrical line of sight

Compute cylinder-sphere intersection and veer away from any objects in

path.

Note: for Project 5, this is extra credit.

Goal Seeking

- Drives the flock in the direction of a target/goal.
- Each boid determines the direction to the goal and then steers in that direction
- Note: this is basically the same as cohesion).

Force Ordering Scheme

- Behaviors can be assigned priorities (in order of increasing priority):
 - Alignment
 - Cohesion
 - Goal-seeking
 - Separation
 - Obstacle Avoidance
- Forces can be given priority (higher priority forces can cancel out lower priority ones).
- Note: for Project 5 combine these into a force accumulator and integrate!
 - Simple (potentially cleverer ways of combining forces)

Orientation

- One last thing to consider is orientation.
- Since a boid has a (generally) non-uniform geometry, we want it to change orientation and smoothly display behaviors, such as banking.
 - For banking, we want to adjust the object's roll (modify local x, y axes).
 - To solve for the new up-vector (y-axis), we take a weighted sum of the resultant acceleration (due to centrifugal force and gravity) and the previous up-vector.

(blackboard math)

Note: for project 5, you will be required to handle banking.

Project 5

- In summary, Project 5 is an interactive simulation of the boids flocking model.
- Requirements:
 - Implement a modified particle system.
 - Implement steering behaviors as dynamic forces.
 - Implement banking.
 - Make it interactive!
- Will be out later today!

Project 5 Demo

Any questions?

Sources

Flock Pictures:

- http://en.wikipedia.org/wiki/File:Sort_sol_pdfnet.jpg
- http://farm I.static.flickr.com/216/492878471_52af7db598_o.jpg
- http://farm1.static.flickr.com/184/373513163_420bc6fe69_b.jpg

Paper Resources:

- http://www.red3d.com/cwr/steer/gdc99/
- http://www.red3d.com/cwr/boids/

