Object Creational

Intent

Separate the construction of a complex object from its representation so that the same construction process can create different representations.

Motivation

A reader for the RTF (Rich Text Format) document exchange format should be able to convert RTF to many text formats. The reader might convert RTF documents into plain ASCII text or into a text widget that can be edited interactively. The problem, however, is that the number of possible conversions is open-ended. So it should be easy to add a new conversion without modifying the reader.

A solution is to configure the RTFReader class with a TextConverter object that converts RTF to another textual representation. As the RTFReader parses the RTF document, it uses the TextConverter to perform the conversion. Whenever the RTFReader recognizes an RTF token (either plain text or an RTF control word), it issues a request to the TextConverter to convert the token. TextConverter objects are responsible both for performing the data conversion and for representing the token in a particular format.

Subclasses of TextConverter specialize in different conversions and formats. For example, an ASCIIConverter ignores requests to convert anything except plain text. A TeXConverter, on the other hand, will implement operations for all requests in order to produce a TeX representation that captures all the stylistic information in the text. A TextWidgetConverter will produce a complex user interface object that lets the user see and edit the text.

Each kind of converter class takes the mechanism for creating and assembling a complex object and puts it behind an abstract interface. The converter is separate from the reader, which is responsible for parsing an RTF document.

The Builder pattern captures all these relationships. Each converter class is called a **builder** in the pattern, and the reader is called the **director**. Applied to this example, the Builder pattern separates the algorithm for interpreting a textual format (that is, the parser for RTF documents) from how a converted format gets created and represented. This lets us reuse the RTFReader's parsing algorithm to create different text representations from RTF documents—just configure the RTFReader with different subclasses of TextConverter.

Applicability

Use the Builder pattern when

- the algorithm for creating a complex object should be independent of the parts that make up the object and how they're assembled.
- the construction process must allow different representations for the object that's constructed.

Structure

Participants

- Builder (TextConverter)
 - specifies an abstract interface for creating parts of a Product object.

- ConcreteBuilder (ASCIIConverter, TeXConverter, TextWidgetConverter)
 - constructs and assembles parts of the product by implementing the Builder interface.
 - defines and keeps track of the representation it creates.
 - provides an interface for retrieving the product (e.g., GetASCIIText, Get-TextWidget).
- Director (RTFReader)
 - constructs an object using the Builder interface.
- Product (ASCIIText, TeXText, TextWidget)
 - represents the complex object under construction. ConcreteBuilder builds the product's internal representation and defines the process by which it's assembled.
 - includes classes that define the constituent parts, including interfaces for assembling the parts into the final result.

Collaborations

- The client creates the Director object and configures it with the desired Builder object.
- Director notifies the builder whenever a part of the product should be built.
- Builder handles requests from the director and adds parts to the product.
- The client retrieves the product from the builder.

The following interaction diagram illustrates how Builder and Director cooperate with a client.

Consequences

Here are key consequences of the Builder pattern:

- 1. It lets you vary a product's internal representation. The Builder object provides the director with an abstract interface for constructing the product. The interface lets the builder hide the representation and internal structure of the product. It also hides how the product gets assembled. Because the product is constructed through an abstract interface, all you have to do to change the product's internal representation is define a new kind of builder.
- 2. It isolates code for construction and representation. The Builder pattern improves modularity by encapsulating the way a complex object is constructed and represented. Clients needn't know anything about the classes that define the product's internal structure; such classes don't appear in Builder's interface. Each ConcreteBuilder contains all the code to create and assemble a particular kind of product. The code is written once; then different Directors can reuse it to build Product variants from the same set of parts. In the earlier RTF example, we could define a reader for a format other than RTF, say, an SGMLReader, and use the same TextConverters to generate ASCIIText, TeXText, and TextWidget renditions of SGML documents.
- 3. It gives you finer control over the construction process. Unlike creational patterns that construct products in one shot, the Builder pattern constructs the product step by step under the director's control. Only when the product is finished does the director retrieve it from the builder. Hence the Builder interface reflects the process of constructing the product more than other creational patterns. This gives you finer control over the construction process and consequently the internal structure of the resulting product.

Implementation

Typically there's an abstract Builder class that defines an operation for each component that a director may ask it to create. The operations do nothing by default. A ConcreteBuilder class overrides operations for components it's interested in creating.

Here are other implementation issues to consider:

- Assembly and construction interface. Builders construct their products in stepby-step fashion. Therefore the Builder class interface must be general enough to allow the construction of products for all kinds of concrete builders.
 - A key design issue concerns the model for the construction and assembly process. A model where the results of construction requests are simply appended to the product is usually sufficient. In the RTF example, the builder converts and appends the next token to the text it has converted so far.
 - But sometimes you might need access to parts of the product constructed earlier. In the Maze example we present in the Sample Code, the MazeBuilder

interface lets you add a door between existing rooms. Tree structures such as parse trees that are built bottom-up are another example. In that case, the builder would return child nodes to the director, which then would pass them back to the builder to build the parent nodes.

- 2. Why no abstract class for products? In the common case, the products produced by the concrete builders differ so greatly in their representation that there is little to gain from giving different products a common parent class. In the RTF example, the ASCIIText and the TextWidget objects are unlikely to have a common interface, nor do they need one. Because the client usually configures the director with the proper concrete builder, the client is in a position to know which concrete subclass of Builder is in use and can handle its products accordingly.
- 3. Empty methods as default in Builder. In C++, the build methods are intentionally not declared pure virtual member functions. They're defined as empty methods instead, letting clients override only the operations they're interested in.

Sample Code

We'll define a variant of the CreateMaze member function (page 84) that takes a builder of class MazeBuilder as an argument.

The MazeBuilder class defines the following interface for building mazes:

```
class MazeBuilder {
public:
    virtual void BuildMaze() { }
    virtual void BuildRoom(int room) { }
    virtual void BuildDoor(int roomFrom, int roomTo) { }

    virtual Maze* GetMaze() { return 0; }
protected:
    MazeBuilder();
};
```

This interface can create three things: (1) the maze, (2) rooms with a particular room number, and (3) doors between numbered rooms. The GetMaze operation returns the maze to the client. Subclasses of MazeBuilder will override this operation to return the maze that they build.

All the maze-building operations of MazeBuilder do nothing by default. They're not declared pure virtual to let derived classes override only those methods in which they're interested.

Given the MazeBuilder interface, we can change the CreateMaze member function to take this builder as a parameter.

```
Maze* MazeGame::CreateMaze (MazeBuilder& builder) {
    builder.BuildMaze();

    builder.BuildRoom(1);
    builder.BuildRoom(2);
    builder.BuildDoor(1, 2);

    return builder.GetMaze();
}
```

Compare this version of CreateMaze with the original. Notice how the builder hides the internal representation of the Maze—that is, the classes that define rooms, doors, and walls—and how these parts are assembled to complete the final maze. Someone might guess that there are classes for representing rooms and doors, but there is no hint of one for walls. This makes it easier to change the way a maze is represented, since none of the clients of MazeBuilder has to be changed.

Like the other creational patterns, the Builder pattern encapsulates how objects get created, in this case through the interface defined by MazeBuilder. That means we can reuse MazeBuilder to build different kinds of mazes. The CreateComplexMaze operation gives an example:

```
Maze* MazeGame::CreateComplexMaze (MazeBuilder& builder) {
   builder.BuildRoom(1);
   // ...
   builder.BuildRoom(1001);
   return builder.GetMaze();
}
```

Note that MazeBuilder does not create mazes itself; its main purpose is just to define an interface for creating mazes. It defines empty implementations primarily for convenience. Subclasses of MazeBuilder do the actual work.

The subclass StandardMazeBuilder is an implementation that builds simple mazes. It keeps track of the maze it's building in the variable _currentMaze.

```
class StandardMazeBuilder : public MazeBuilder {
public:
    StandardMazeBuilder();

    virtual void BuildMaze();
    virtual void BuildRoom(int);
    virtual void BuildDoor(int, int);

    virtual Maze* GetMaze();
private:
    Direction CommonWall(Room*, Room*);
    Maze* _currentMaze;
};
```

CommonWall is a utility operation that determines the direction of the common wall between two rooms.

 $The \ {\tt Standard Maze Builder}\ constructor \ simply \ initializes\ {\tt _current Maze}.$

```
StandardMazeBuilder::StandardMazeBuilder () {
    _currentMaze = 0;
}
```

BuildMaze instantiates a Maze that other operations will assemble and eventually return to the client (with GetMaze).

```
void StandardMazeBuilder::BuildMaze () {
    _currentMaze = new Maze;
}

Maze* StandardMazeBuilder::GetMaze () {
    return _currentMaze;
}
```

The BuildRoom operation creates a room and builds the walls around it:

```
void StandardMazeBuilder::BuildRoom (int n) {
   if (!_currentMaze->RoomNo(n)) {
      Room* room = new Room(n);
      _currentMaze->AddRoom(room);

      room->SetSide(North, new Wall);
      room->SetSide(South, new Wall);
      room->SetSide(East, new Wall);
      room->SetSide(West, new Wall);
    }
}
```

To build a door between two rooms, StandardMazeBuilder looks up both rooms in the maze and finds their adjoining wall:

```
void StandardMazeBuilder::BuildDoor (int n1, int n2) {
   Room* r1 = _currentMaze->RoomNo(n1);
   Room* r2 = _currentMaze->RoomNo(n2);
   Door* d = new Door(r1, r2);

   r1->SetSide(CommonWall(r1,r2), d);
   r2->SetSide(CommonWall(r2,r1), d);
}
```

Clients can now use CreateMaze in conjunction with StandardMazeBuilder to create a maze:

```
Maze* maze;
MazeGame game;
StandardMazeBuilder builder;
game.CreateMaze(builder);
maze = builder.GetMaze();
```

We could have put all the StandardMazeBuilder operations in Maze and let each Maze build itself. But making Maze smaller makes it easier to understand and modify, and StandardMazeBuilder is easy to separate from Maze. Most importantly, separating the two lets you have a variety of MazeBuilders, each using different classes for rooms, walls, and doors.

A more exotic MazeBuilder is CountingMazeBuilder. This builder doesn't create a maze at all; it just counts the different kinds of components that would have been created.

```
class CountingMazeBuilder : public MazeBuilder {
public:
    CountingMazeBuilder();

    virtual void BuildMaze();
    virtual void BuildRoom(int);
    virtual void BuildDoor(int, int);
    virtual void AddWall(int, Direction);

    void GetCounts(int&, int&) const;
private:
    int _doors;
    int _rooms;
};
```

The constructor initializes the counters, and the overridden MazeBuilder operations increment them accordingly.

```
CountingMazeBuilder::CountingMazeBuilder () {
    _rooms = _doors = 0;
}

void CountingMazeBuilder::BuildRoom (int) {
    _rooms++;
}

void CountingMazeBuilder::BuildDoor (int, int) {
    _doors++;
}

void CountingMazeBuilder::GetCounts (
    int& rooms, int& doors
) const {
    rooms = _rooms;
    doors = _doors;
}
```

Here's how a client might use a CountingMazeBuilder:

Known Uses

The RTF converter application is from ET++ [WGM88]. Its text building block uses a builder to process text stored in the RTF format.

Builder is a common pattern in Smalltalk-80 [Par90]:

- The Parser class in the compiler subsystem is a Director that takes a ProgramNodeBuilder object as an argument. A Parser object notifies its ProgramNodeBuilder object each time it recognizes a syntactic construct. When the parser is done, it asks the builder for the parse tree it built and returns it to the client.
- ClassBuilder is a builder that Classes use to create subclasses for themselves. In this case a Class is both the Director and the Product.
- ByteCodeStream is a builder that creates a compiled method as a byte array. ByteCodeStream is a nonstandard use of the Builder pattern, because the complex object it builds is encoded as a byte array, not as a normal Smalltalk object. But the interface to ByteCodeStream is typical of a builder, and it would be easy to replace ByteCodeStream with a different class that represented programs as a composite object.

The Service Configurator framework from the Adaptive Communications Environment uses a builder to construct network service components that are linked into a server at run-time [SS94]. The components are described with a configuration language that's parsed by an LALR(1) parser. The semantic actions of the parser perform operations on the builder that add information to the service component. In this case, the parser is the Director.

Related Patterns

Abstract Factory (87) is similar to Builder in that it too may construct complex objects. The primary difference is that the Builder pattern focuses on constructing a complex object step by step. Abstract Factory's emphasis is on families of product objects (either simple or complex). Builder returns the product as a final step,

but as far as the Abstract Factory pattern is concerned, the product gets returned immediately.

A Composite (163) is what the builder often builds.

FACTORY METHOD

Class Creational

Intent

Define an interface for creating an object, but let subclasses decide which class to instantiate. Factory Method lets a class defer instantiation to subclasses.

Also Known As

Virtual Constructor

Motivation

Frameworks use abstract classes to define and maintain relationships between objects. A framework is often responsible for creating these objects as well.

Consider a framework for applications that can present multiple documents to the user. Two key abstractions in this framework are the classes Application and Document. Both classes are abstract, and clients have to subclass them to realize their application-specific implementations. To create a drawing application, for example, we define the classes DrawingApplication and DrawingDocument. The Application class is responsible for managing Documents and will create them as required—when the user selects Open or New from a menu, for example.

Because the particular Document subclass to instantiate is application-specific, the Application class can't predict the subclass of Document to instantiate—the Application class only knows *when* a new document should be created, not *what kind* of Document to create. This creates a dilemma: The framework must instantiate classes, but it only knows about abstract classes, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsulates the knowledge of which Document subclass to create and moves this knowledge out of the framework.

Application subclasses redefine an abstract CreateDocument operation on Application to return the appropriate Document subclass. Once an Application subclass is instantiated, it can then instantiate application-specific Documents without knowing their class. We call CreateDocument a factory method because it's responsible for "manufacturing" an object.

Applicability

Use the Factory Method pattern when

- a class can't anticipate the class of objects it must create.
- a class wants its subclasses to specify the objects it creates.
- classes delegate responsibility to one of several helper subclasses, and you want to localize the knowledge of which helper subclass is the delegate.

Structure

Participants

- Product (Document)
 - defines the interface of objects the factory method creates.
- ConcreteProduct (MyDocument)
 - implements the Product interface.
- Creator (Application)
 - declares the factory method, which returns an object of type Product. Creator may also define a default implementation of the factory method that returns a default ConcreteProduct object.
 - may call the factory method to create a Product object.

- ConcreteCreator (MyApplication)
 - overrides the factory method to return an instance of a ConcreteProduct.

Collaborations

• Creator relies on its subclasses to define the factory method so that it returns an instance of the appropriate ConcreteProduct.

Consequences

Factory methods eliminate the need to bind application-specific classes into your code. The code only deals with the Product interface; therefore it can work with any user-defined ConcreteProduct classes.

A potential disadvantage of factory methods is that clients might have to subclass the Creator class just to create a particular ConcreteProduct object. Subclassing is fine when the client has to subclass the Creator class anyway, but otherwise the client now must deal with another point of evolution.

Here are two additional consequences of the Factory Method pattern:

- Provides hooks for subclasses. Creating objects inside a class with a factory method is always more flexible than creating an object directly. Factory Method gives subclasses a hook for providing an extended version of an object.
 - In the Document example, the Document class could define a factory method called CreateFileDialog that creates a default file dialog object for opening an existing document. A Document subclass can define an application-specific file dialog by overriding this factory method. In this case the factory method is not abstract but provides a reasonable default implementation.
- 2. Connects parallel class hierarchies. In the examples we've considered so far, the factory method is only called by Creators. But this doesn't have to be the case; clients can find factory methods useful, especially in the case of parallel class hierarchies.
 - Parallel class hierarchies result when a class delegates some of its responsibilities to a separate class. Consider graphical figures that can be manipulated interactively; that is, they can be stretched, moved, or rotated using the mouse. Implementing such interactions isn't always easy. It often requires storing and updating information that records the state of the manipulation at a given time. This state is needed only during manipulation; therefore it needn't be kept in the figure object. Moreover, different figures behave differently when the user manipulates them. For example, stretching a line figure might have the effect of moving an endpoint, whereas stretching a text figure may change its line spacing.

With these constraints, it's better to use a separate Manipulator object that implements the interaction and keeps track of any manipulation-specific state

that's needed. Different figures will use different Manipulator subclasses to handle particular interactions. The resulting Manipulator class hierarchy parallels (at least partially) the Figure class hierarchy:

The Figure class provides a CreateManipulator factory method that lets clients create a Figure's corresponding Manipulator. Figure subclasses override this method to return an instance of the Manipulator subclass that's right for them. Alternatively, the Figure class may implement CreateManipulator to return a default Manipulator instance, and Figure subclasses may simply inherit that default. The Figure classes that do so need no corresponding Manipulator subclass—hence the hierarchies are only partially parallel.

Notice how the factory method defines the connection between the two class hierarchies. It localizes knowledge of which classes belong together.

Implementation

Consider the following issues when applying the Factory Method pattern:

- 1. Two major varieties. The two main variations of the Factory Method pattern are (1) the case when the Creator class is an abstract class and does not provide an implementation for the factory method it declares, and (2) the case when the Creator is a concrete class and provides a default implementation for the factory method. It's also possible to have an abstract class that defines a default implementation, but this is less common.
 - The first case *requires* subclasses to define an implementation, because there's no reasonable default. It gets around the dilemma of having to instantiate unforeseeable classes. In the second case, the concrete Creator uses the factory method primarily for flexibility. It's following a rule that says, "Create objects in a separate operation so that subclasses can override the way they're created." This rule ensures that designers of subclasses can change the class of objects their parent class instantiates if necessary.
- 2. Parameterized factory methods. Another variation on the pattern lets the factory method create multiple kinds of products. The factory method takes a

parameter that identifies the kind of object to create. All objects the factory method creates will share the Product interface. In the Document example, Application might support different kinds of Documents. You pass Create-Document an extra parameter to specify the kind of document to create.

The Unidraw graphical editing framework [VL90] uses this approach for reconstructing objects saved on disk. Unidraw defines a Creator class with a factory method Create that takes a class identifier as an argument. The class identifier specifies the class to instantiate. When Unidraw saves an object to disk, it writes out the class identifier first and then its instance variables. When it reconstructs the object from disk, it reads the class identifier first.

Once the class identifier is read, the framework calls <code>Create</code>, passing the identifier as the parameter. <code>Create</code> looks up the constructor for the corresponding class and uses it to instantiate the object. Last, <code>Create</code> calls the object's <code>Read</code> operation, which reads the remaining information on the disk and initializes the object's instance variables.

A parameterized factory method has the following general form, where MyProduct and YourProduct are subclasses of Product:

```
class Creator {
public:
    virtual Product* Create(ProductId);
};

Product* Creator::Create (ProductId id) {
    if (id == MINE) return new MyProduct;
    if (id == YOURS) return new YourProduct;
    // repeat for remaining products...
    return 0;
}
```

Overriding a parameterized factory method lets you easily and selectively extend or change the products that a Creator produces. You can introduce new identifiers for new kinds of products, or you can associate existing identifiers with different products.

For example, a subclass MyCreator could swap MyProduct and YourProduct and support a new TheirProduct subclass:

```
Product* MyCreator::Create (ProductId id) {
   if (id == YOURS)     return new MyProduct;
   if (id == MINE)     return new YourProduct;
        // N.B.: switched YOURS and MINE

if (id == THEIRS) return new TheirProduct;
   return Creator::Create(id); // called if all others fail
}
```

Notice that the last thing this operation does is call Create on the parent class. That's because MyCreator::Create handles only YOURS, MINE, and

THEIRS differently than the parent class. It isn't interested in other classes. Hence MyCreator *extends* the kinds of products created, and it defers responsibility for creating all but a few products to its parent.

3. Language-specific variants and issues. Different languages lend themselves to other interesting variations and caveats.

Smalltalk programs often use a method that returns the class of the object to be instantiated. A Creator factory method can use this value to create a product, and a ConcreteCreator may store or even compute this value. The result is an even later binding for the type of ConcreteProduct to be instantiated.

A Smalltalk version of the Document example can define a documentClass method on Application. The documentClass method returns the proper Document class for instantiating documents. The implementation of documentClass in MyApplication returns the MyDocument class. Thus in class Application we have

```
clientMethod
    document := self documentClass new.
documentClass
    self subclassResponsibility
```

In class MyApplication we have

which returns the class MyDocument to be instantiated to Application.

An even more flexible approach akin to parameterized factory methods is to store the class to be created as a class variable of Application. That way you don't have to subclass Application to vary the product.

Factory methods in C++ are always virtual functions and are often pure virtual. Just be careful not to call factory methods in the Creator's constructor—the factory method in the ConcreteCreator won't be available yet.

You can avoid this by being careful to access products solely through accessor operations that create the product on demand. Instead of creating the concrete product in the constructor, the constructor merely initializes it to 0. The accessor returns the product. But first it checks to make sure the product exists, and if it doesn't, the accessor creates it. This technique is sometimes called **lazy initialization**. The following code shows a typical implementation:

```
class Creator {
  public:
        Product* GetProduct();
  protected:
        virtual Product* CreateProduct();
  private:
        Product* _product;
);

Product* Creator::GetProduct () {
        if (_product == 0) {
            _product = CreateProduct();
        }
        return _product;
}
```

4. Using templates to avoid subclassing. As we've mentioned, another potential problem with factory methods is that they might force you to subclass just to create the appropriate Product objects. Another way to get around this in C++ is to provide a template subclass of Creator that's parameterized by the Product class:

```
class Creator {
public:
    virtual Product* CreateProduct() = 0;
};

template <class TheProduct>
class StandardCreator: public Creator {
public:
    virtual Product* CreateProduct();
};

template <class TheProduct>
Product* StandardCreator<TheProduct>::CreateProduct () {
    return new TheProduct;
}
```

With this template, the client supplies just the product class—no subclassing of Creator is required.

```
class MyProduct : public Product {
public:
    MyProduct();
    // ...
};
StandardCreator<MyProduct> myCreator;
```

5. Naming conventions. It's good practice to use naming conventions that make it clear you're using factory methods. For example, the MacApp Macintosh application framework [App89] always declares the abstract operation that defines the factory method as Class* DoMakeClass(), where Class is the Product class.

Sample Code

The function CreateMaze (page 84) builds and returns a maze. One problem with this function is that it hard-codes the classes of maze, rooms, doors, and walls. We'll introduce factory methods to let subclasses choose these components.

First we'll define factory methods in MazeGame for creating the maze, room, wall, and door objects:

```
class MazeGame {
public:
    Maze* CreateMaze();

// factory methods:

    virtual Maze* MakeMaze() const
        { return new Maze; }
    virtual Room* MakeRoom(int n) const
        { return new Room(n); }
    virtual Wall* MakeWall() const
        { return new Wall; }
    virtual Door* MakeDoor(Room* r1, Room* r2) const
        { return new Door(r1, r2); }
};
```

Each factory method returns a maze component of a given type. MazeGame provides default implementations that return the simplest kinds of maze, rooms, walls, and doors.

Now we can rewrite CreateMaze to use these factory methods:

```
Maze* MazeGame::CreateMaze () {
    Maze* aMaze = MakeMaze();

    Room* r1 = MakeRoom(1);
    Room* r2 = MakeRoom(2);
    Door* theDoor = MakeDoor(r1, r2);

    aMaze->AddRoom(r1);
    aMaze->AddRoom(r2);

    r1->SetSide(North, MakeWall());
    r1->SetSide(East, theDoor);
    r1->SetSide(South, MakeWall());
    r1->SetSide(West, MakeWall());
    r2->SetSide(East, MakeWall());
    r2->SetSide(South, MakeWall());
    r2->SetSide(South, MakeWall());
    r2->SetSide(South, MakeWall());
    r2->SetSide(South, MakeWall());
    r2->SetSide(South, MakeWall());
    r2->SetSide(West, theDoor);
```

```
return aMaze;
}
```

Different games can subclass MazeGame to specialize parts of the maze. MazeGame subclasses can redefine some or all of the factory methods to specify variations in products. For example, a BombedMazeGame can redefine the Room and Wall products to return the bombed varieties:

```
class BombedMazeGame : public MazeGame {
public:
    BombedMazeGame();

    virtual Wall* MakeWall() const
        { return new BombedWall; }

    virtual Room* MakeRoom(int n) const
        { return new RoomWithABomb(n); }
};
```

An EnchantedMazeGame variant might be defined like this:

```
class EnchantedMazeGame : public MazeGame {
public:
    EnchantedMazeGame();

    virtual Room* MakeRoom(int n) const
        { return new EnchantedRoom(n, CastSpell()); }

    virtual Door* MakeDoor(Room* r1, Room* r2) const
        { return new DoorNeedingSpell(r1, r2); }

protected:
    Spell* CastSpell() const;
};
```

Known Uses

Factory methods pervade toolkits and frameworks. The preceding document example is a typical use in MacApp and ET++ [WGM88]. The manipulator example is from Unidraw.

Class View in the Smalltalk-80 Model/View/Controller framework has a method defaultController that creates a controller, and this might appear to be a factory method [Par90]. But subclasses of View specify the class of their default controller by defining defaultControllerClass, which returns the class from which default-Controller creates instances. So defaultControllerClass is the real factory method, that is, the method that subclasses should override.

A more esoteric example in Smalltalk-80 is the factory method parserClass defined by Behavior (a superclass of all objects representing classes). This enables a class

to use a customized parser for its source code. For example, a client can define a class SQLParser to analyze the source code of a class with embedded SQL statements. The Behavior class implements parserClass to return the standard Smalltalk Parser class. A class that includes embedded SQL statements overrides this method (as a class method) and returns the SQLParser class.

The Orbix ORB system from IONA Technologies [ION94] uses Factory Method to generate an appropriate type of proxy (see Proxy (207)) when an object requests a reference to a remote object. Factory Method makes it easy to replace the default proxy with one that uses client-side caching, for example.

Related Patterns

Abstract Factory (87) is often implemented with factory methods. The Motivation example in the Abstract Factory pattern illustrates Factory Method as well.

Factory methods are usually called within Template Methods (325). In the document example above, NewDocument is a template method.

Prototypes (117) don't require subclassing Creator. However, they often require an Initialize operation on the Product class. Creator uses Initialize to initialize the object. Factory Method doesn't require such an operation.