Kellerautomaten

Definition Nichtdeterministischer Kellerautomat

Ein nichtdeterministischer Kellerautomat $KA = (X, K, k_0, S, s_0, \delta, F)$ besteht aus:

X: Eingabealphabet

K: Kelleralphabet

 $k_0: Kellerstartsymbol \in K$

S: Zust and smenge

 $s_0: Startzustand \in S$

 $\delta: Zustands\"{u}bergangsfunktion: \delta: S \times (X \cup \{\epsilon\}) \times K \rightarrow P_{endl}(S \times K^*)$

 $F: Menge \ der \ Endzust \ddot{a}nde \subseteq S$

Definition Konfiguration eines Kellerautomaten

Die Konfiguration eines Kellerautomaten KA ist ein Triple (s, w, l):

 $s \in S : Aktueller Zustand$

 $w \in X^* : Resteingabe$

 $l \in K^*$: Wort auf dem Keller

Aufgabe 1

Konstruieren sie einen Kellerautomat der die Sprache Lakzeptiert. Für L

a)
$$\{a^n b^n c^m d^m \mid n, m \in \mathbb{N}\}$$

b)
$$\{a^n b^m c^m d^n \mid n, m \in \mathbb{N}\}$$

c)
$$\{a^n b^m a^n \mid n, m \in \mathbb{N}\}$$

d)
$$\{a^{2n}b^n \mid n \in \mathbb{N}\}$$

e)
$$\{a^m b^n \mid m \in \mathbb{N}, n \in \mathbb{N}_0, m > n\}$$

f)
$$\{a^m b^n c^i \mid m \in \mathbb{N}_0, n, i \in \mathbb{N}, m+n=i\}$$

g)
$$\{a^m c^i b^n \mid m \in \mathbb{N}_0, n, i \in \mathbb{N}, m+n=i\}$$

h)
$$\{a^{m}b^{n}c^{i}d^{m+n+k+i+j}e^{k} \mid m, n, i, j, k \in \mathbb{N}\}$$

Aufgabe 2

Sei L = $\{a^mb^nc^lb^{n+2}a^{m+k} \mid m,n,l\in\mathbb{N},k\in\mathbb{N}_0\}$. Geben sie einen deterministischen Kellerautomaten KA an, mit L(KA) = L. (Wi-Se19/20)

Aufgabe 3

Konstruieren sie einen deterministischen Kellerautomaten, der die Sprache $L = \{b^n a \mid n \in \mathbb{N}\}$ akzeptiert. (SoSe 17 Probe).

Aufgabe 4

Konstruieren sie einen deterministischen Kellerautomaten, der die Sprache $L = \{a^n b^{2n} c^m \mid n \in \mathbb{N}, m \in \mathbb{N}_0\}$ im Endzustand akzeptiert. (SoSe 20).

Aufgabe 5

Konstruieren sie einen deterministischen Kellerautomaten, der die Sprache L = $\{a^{2m}b^nd^ne^mf^l\mid m,n\in\mathbb{N},l\in\mathbb{N}_0\}$ akzeptiert. (SoSeProbe 20).

Aufgabe 6

Konstruieren sie einen deterministischen Kellerautomaten, der die Sprache $L = \{a^n b a^m \mid m, n \in \mathbb{N}; m \geq n\}$ akzeptiert. (SoSe 17).