

Refereed
by, N. W. Bldg.
103 1951

Reference
taken from the Library.

IONOSPHERIC DATA

ISSUED
NOVEMBER 1951

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	<u>Page</u>
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C. . . .	7, 12, 24, 51
Ionospheric Storminess at Washington, D. C. . . .	7, 36
Radio Propagation Quality Figures	7, 37
Observations of the Solar Corona	9, 38
Relative Sunspot Numbers	9, 44
Observations of Solar Flares	10, 46
Indices of Geomagnetic Activity	10, 47
Sudden Ionosphere Disturbances	11, 48
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	51
Index of Tables and Graphs of Ionospheric Data in CRPL-F87	87

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendices 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of f_{oF2} (and f_{oE} near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of $h'F2$ (and $h'E$ near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For foF2, as equal to or less than foF1.
2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

1. If only four values or less are available, the data are considered insufficient and no median value is computed.

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when f_{cF2} is less than or equal to f_{oF1} , leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the f_{cE} column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of f_{oE} . Blank spaces at the beginning and end of columns of $h'F1$, f_{oF1} , $h'E$, and f_{oE} are usually the result of diurnal variation in these characteristics. Complete absence of medians of $h'F1$ and f_{oF1} is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot Number						
	1951	1950	1949	1948	1947	1946	1945
December	86	108	114	126	85	38	
November	87	112	115	124	83	36	
October	52	90	114	116	119	81	23
September	54	91	115	117	121	79	22
August	57	96	111	123	122	77	20
July	60	101	108	125	116	73	
June	63	103	108	129	112	67	
May	68	102	108	130	109	67	
April	74	101	109	133	107	62	
March	78	103	111	133	105	51	
February	82	103	113	133	90	46	
January	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia

Canberra, Australia

Hobart, Tasmania

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, Western Australia

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.

Fraserburgh, Scotland

Singapore, British Malaya

Slough, England

Defence Research Board, Canada:

Baker Lake, Canada
Port Chimo, Canada
Resolute Bay, Canada
St. John's, Newfoundland

Radio Wave Research Laboratories, National Taiman University, Taipeh, Formosa
China:
Formosa, China

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Dumont, France
Poitiers, France
Terre Adelie

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:
Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute:
De Bilt, Holland

Icelandic Post and Telegraph Administration:
Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchi, India

Indian Council of Scientific and Industrial Research, Radio Research Committee
Calcutta, India

National Institute of Geophysics, City University, Rome, Italy:
Rome, Italy

Radio Regulatory Commission, Tokyo, Japan:
Akita, Japan
Tokyo (Kokubunji), Japan
Wakkanai, Japan
Yamagawa, Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific
and Industrial Research:
Christchurch, New Zealand
Barotonga, Cook Is.

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway:
Oslo, Norway
Tronso, Norway

South African Council for Scientific and Industrial Research:
Capetown, Union of South Africa
Johannesburg, Union of South Africa

Research Laboratory of Electronics, Chalmers University of Technology,
Gothenburg, Sweden:
Kiruna, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland:
Berne, Switzerland
Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Okinawa I.

National Bureau of Standards (Central Radio Propagation Laboratory):
Anchorage, Alaska
Fairbanks, Alaska
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narsarsuak, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, West Indies
San Francisco, California (Stanford University)
Washington, D. C.
White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 to 84 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D. C., during October 1951, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

RADIO PROPAGATION QUALITY FIGURES

Table 86 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, September 1951, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

Note. The North Pacific quality figures have been marked "low weight" beginning with August 1951. This is not because of any discontinuity in the accuracy of the individual reports on which the figures are based nor in the method of derivation of the indexes. However, since the number of suitable reports available for this work has decreased appreciably during 1950 and 1951, it seems appropriate to emphasize now that the North Pacific quality figures do not have as firm a basis as the North Atlantic quality figures.

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during October 1951 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at Sacramento Peak, New Mexico, during October 1951, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in October 1951.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in October 1951.

The following symbols are used in tables 87 through 92: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

RELATIVE SUNSPOT NUMBERS

Table 93 lists the daily provisional Zürich relative sunspot number, R_Z , as communicated by the Swiss Federal Observatory. Table 94 gives the new series of American relative sunspot numbers, R_A' , for January through September 1951. Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_A' . Observatory coefficients for each of the 22 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 will differ from that of the reports for earlier years because of these changes, and the new series is designated R_A' rather than R_A . The American relative sunspot number will appear monthly in these pages, as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 95 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris), and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 96 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, K_w ; (2) preliminary international character-figures, C ; (3) geomagnetic planetary three-hour-range indices, K_p ; (4) magnetically selected quiet and disturbed days.

K_w is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C -figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

K_p is the mean standardized K -index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is $4\frac{2}{3}$, 50 is $5\frac{0}{3}$, and 5+ is $5\frac{1}{3}$. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of K_p has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of K_p for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CRPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles K_w , C and selected days. The Chairman of the Committee computes the planetary index.

SUDDEN IONOSPHERE DISTURBANCES

Tables 97 through 101 list respectively the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, October 1951; in England, September 1951; at Lindau/Harz, Germany, September 1951; at Riverhead, New York, October 1951; and at Platanos, Argentina, September 1951.

TABLES OF IONOSPHERIC DATA

Table 1

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	October 1951
00	300	3.9							2.9
01	(280)	3.6							2.9
02	280	3.4							2.9
03	280	3.3							2.9
04	270	3.0							3.0
05	270	2.8							3.0
06	260	3.2							3.0
07	240	5.6							3.0
08	240	6.6	220	—	120	2.1			3.0
09	260	7.6	210	4.1	110	2.9			3.2
10	260	8.2	200	4.2	110	3.1			3.2
11	270	8.6	200	4.4	110	3.2			3.1
12	270	8.6	210	(4.6)	110	3.3			3.1
13	270	9.0	210	4.4	110	3.2			3.1
14	270	8.8	220	4.2	110	3.1			3.1
15	260	9.0	230	—	110	2.9			3.1
16	250	8.8	240	—	110	2.5			3.2
17	230	8.4			120	2.1			3.2
18	220	7.6							3.2
19	230	6.2							3.1
20	250	5.2							3.0
21	260	4.5							3.0
22	270	4.3							2.9
23	280	4.1							2.9

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	September 1951
00	(360)	(4.7)							5.6
01	(370)	(4.9)							5.1
02	(355)	(4.0)							5.6
03	(330)	(4.4)							(2.8)
04	(290)	3.9							3.0
05	280	3.8							3.0
06	(280)	4.3	210	—	110	(2.1)			3.0
07	(320)	4.7	215	3.6	110	2.1			3.0
08	395	5.0	215	3.8	110	(2.6)			2.9
09	320	5.2	230	4.0	110	2.7			3.0
10	320	5.4	230	4.1	110	2.8			2.9
11	315	5.6	230	4.2	110	2.8			3.0
12	320	5.3	230	4.2	110	2.8			3.0
13	305	5.4	230	4.0	115	2.7			3.0
14	270	5.2	230	3.9	110	2.6			3.1
15	(285)	5.0	230	(3.8)	110	2.5			3.1
16	260	4.7	210	—	115	2.4			3.1
17	280	4.7	—	—	115	2.2			3.2
18	285	4.6	—	—	—	—			3.1
19	320	4.4	—	—	—	—			3.0
20	325	(4.5)	—	—	—	—			2.8
21	345	(4.4)	—	—	—	—			2.8
22	345	(4.3)	—	—	—	—			2.8
23	(345)	(4.6)	—	—	—	—			2.8

Time: 15.0°E.

Sweep: 0.6 Mc to 25.0 Mc in 5 minutes, automatic operation.

Table 5

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	September 1951
00	(360)	(3.2)							4.4 (2.5)
01	(420)	(3.2)							4.0 (2.5)
02	—	—							4.2 (2.7)
03	—	—							4.6 (2.7)
04	—	—							4.1 (2.7)
05	(340)	(3.6)							3.6 (2.8)
06	(330)	(4.4)	—	—	(150)	—	3.6	(2.8)	
07	(330)	4.8	—	—	—	—			2.9
08	350	5.2	280	4.0	—	—			2.8
09	370	5.4	280	4.0	(140)	—			2.8
10	420	5.4	260	(4.1)	(140)	(3.0)			2.7
11	400	5.4	260	4.0	(140)	3.1			2.7
12	410	5.6	(270)	4.1	(140)	(3.1)			2.6
13	380	5.6	270	4.2	(140)	(3.1)			2.6
14	420	5.4	280	(4.0)	(140)	(3.0)			2.6
15	400	5.3	(290)	(4.0)	(140)	3.0			2.6
16	380	(5.0)	(320)	4.0	(140)	(2.8)			2.6
17	340	(5.0)	290	—	(140)	2.5	4.0	2.8	
18	350	(4.8)	—	—	—	—	4.4	(2.7)	
19	370	(4.1)	—	—	—	—	5.2	2.8	
20	320	(4.1)	—	—	—	—	6.7	(2.7)	
21	(340)	(3.9)	—	—	—	—	5.0	(2.7)	
22	(360)	(4.0)	—	—	—	—	4.4	(2.6)	
23	(340)	(4.0)	—	—	—	—	4.8	(2.7)	

Time: 45.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 2

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	September 1951
00	310	(3.9)							4.4 (2.9)
01	300	(3.5)							5.0 (2.7)
02	300	(3.4)							4.7 (2.8)
03	300	(3.4)							3.9 (2.8)
04	320	(3.5)							4.4 (2.8)
05	290	(4.0)							4.2 (3.0)
06	320	(4.0)	—	—	—	—	—		3.2 (2.8)
07	340	4.4	—	—	—	—	—		3.0
08	350	4.5	260	—	—	—	—		4.3 (3.0)
09	350	4.4	230	3.7	110	2.4	4.5	2.9	
10	(500)	4.3	250	3.8	110	2.6	4.0	2.6	
11	380	4.8	250	4.0	110	2.8	4.2	2.9	
12	420	4.8	240	4.0	120	2.6	3.4	2.8	
13	400	4.8	240	4.0	110	2.6	3.4	2.8	
14	360	5.0	250	3.9	110	2.6	3.4	2.8	
15	360	5.2	260	3.8	120	2.5	3.4	2.8	
16	320	5.2	260	3.7	120	2.3	3.4	2.9	
17	300	4.9	260	—	120	2.0	3.0		
18	290	4.2	—	—	—	—	—	2.9	
19	300	3.9	—	—	—	—	—	3.0	
20	300	(3.7)	—	—	—	—	—	4.1	
21	300	(3.4)	—	—	—	—	—	5.4	
22	300	(3.6)	—	—	—	—	—	4.6	
23	290	(3.8)	—	—	—	—	—	6.1	

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 4

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	September 1951
00	300	2.9							2.8
01	310	3.2							2.6
02	<380	2.7							2.5
03	370	2.7							2.6
04	380	2.8							2.6
05	300	3.2							2.8
06	280	3.9	—	—	—	—	—		(2.8)
07	300	4.4	230	—	—	—	—		(3.0)
08	390	4.8	230	4.0	—	—	—		2.8
09	380	5.4	240	4.2	—	—	—		2.8
10	360	5.6	220	4.3	—	—	—		2.9
11	380	5.5	250	4.2	—	—	—		2.8
12	370	5.8	240	4.2	100	3.0	—		2.8
13	360	5.9	230	4.4	—	—	—		2.8
14	340	6.0	240	4.2	—	—	—		2.8
15	320	6.0	250	4.0	—	—	—		2.9
16	300	6.0	260	3.7	—	—	—		3.0
17	300	5.7	250	—	—	—	—		3.0
18	280	5.1	—	—	—	—	—		3.0
19	260	5.0	—	—	—	—	—		3.0
20	270	4.7	—	—	—	—	—		2.9
21	270	4.4	—	—	—	—	—		2.8
22	300	3.5	—	—	—	—	—		2.8
23	300	3.0	—	—	—	—	—		2.7

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 6

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2	September 1951
00	325	(3.0)							(2.8)
01	325	2.9							2.7
02	325	(2.8)							(2.7)
03	325	(2.3)							(2.7)
04	315	2.1							2.7
05	300	2.4							2.9
06	270	3.2	—	—	125	1.6	3.1		
07	250	4.0	235	—	125	1.9	2.1		
08	(315)	4.4	230	3.5	120	2.3	2.5		
09	330	5.0	220	3.8	120	2.6	2.8		
10	315	5.1	215	4.0	115	2.7	3.0		
11	315	5.1	210	4.1	115	2.8	3.3		
12	340	5.3	215	4.1	110	2.9	2.9		
13	320	5.8	210	4.1	110	2.8	3.0		
14	300	5.6</							

Table 7								September 1951	
San Francisco, California (37.4°N, 122.2°W)				September 1951					
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2	
00	(290)	(3.8)						(2.8)	
01	300	(3.8)						2.8	
02	290	(3.7)						2.8	
03	280	(3.7)						2.8	
04	(280)	(3.5)						2.8	
05	(280)	(3.3)						2.8	
06	270	(3.9)	---	---	---	---		(3.1)	
07	310	5.0	240	3.7	110	(2.4)	2.4	3.1	
08	350	5.7	230	4.1	120	(2.9)	2.8	3.0	
09	350	5.6	210	4.3	110	(3.1)	2.8	3.0	
10	310	6.6	210	4.6	110	(3.3)	2.9		
11	350	6.9	210	4.7	110	3.4	2.9		
12	310	7.2	210	4.8	110	3.5	2.9		
13	330	7.5	220	4.8	110	3.5	3.0		
14	310	7.2	230	4.8	110	3.3	3.0		
15	300	6.9	230	4.6	110	3.2	3.0		
16	280	6.8	230	4.3	110	2.9	3.1		
17	260	6.7	240	3.7	120	(2.5)	2.4	3.2	
18	210	6.6		---	---	---		3.2	
19	230	6.1						3.2	
20	210	5.4						3.0	
21	(260)	4.5						2.5	
22	(270)	4.0						2.8	
23	(280)	(3.9)						(2.8)	

Time: 120.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 9								September 1951	
Honolulu, Hawaii (20.8°N, 156.5°W)				September 1951					
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2	
00	270	5.2					1.7	2.8	
01	270	4.8					1.9	2.8	
02	240	4.6						3.2	
03	230	3.6						3.2	
04	240	3.3					1.3	3.0	
05	270	2.6					1.4	2.9	
06	290	3.4						2.8	
07	240	6.1	240	---	110	2.2	3.7	3.2	
08	260	6.9	220	---	100	2.8	4.6	3.2	
09	280	7.6	200	4.4	100	3.2	5.5	2.8	
10	320	8.5	200	4.9	100	3.4	5.7	2.7	
11	340	9.5	210	5.1	110	3.6	4.5	2.6	
12	340	10.2	200	5.1	110	3.6	4.6	2.8	
13	320	11.4	210	5.1	110	3.7	4.6	2.9	
14	310	11.4	220	5.0	100	3.6	4.3	3.0	
15	300	12.0	220	4.9	110	3.4	4.4	3.0	
16	270	12.4	230	4.5	100	3.1	4.4	3.2	
17	250	12.0	230	---	110	2.5	4.4	3.3	
18	230	10.8		---	120	1.8	4.0	3.4	
19	220	8.0					3.8	3.2	
20	230	6.8					3.7	2.9	
21	260	6.2					3.9	2.7	
22	290	6.3					3.6	2.7	
23	260	6.2					2.9	2.8	

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 11								September 1951	
Ouan I. (13.6°N, 141.9°E)				September 1951					
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2	
00	250	10.0					2.0	3.1	
01	210	8.5						3.2	
02	210	7.2						3.2	
03	210	6.0						3.1	
04	255	5.1						3.1	
05	210	4.5						3.3	
06	260	4.4						3.1	
07	210	7.4		---	120	2.3	3.2		
08	260	9.6	220	---	110	2.8	3.1		
09	(280)	10.2	210	---	100	---	2.9		
10	(300)	10.6	200	5.2	---	4.1	2.7		
11	310	10.4	200	(5.0)	---		2.5		
12	320	10.7	200	5.0	---	4.4	2.5		
13	330	11.2	200	5.1	(110)	---	4.0	2.6	
14	330	12.2	210	5.0	120	(3.6)	2.6	2.7	
15	310	12.8	220	4.9	(120)	3.4	2.9		
16	300	13.0	220	---	110	3.1	5.4	(3.0)	
17	290	(13.2)	210	---	120	2.6	4.8	(3.0)	
18	260	(12.6)		---	---	4.5	(2.9)		
19	280	12.1		---	---	4.4	2.7		
20	280	11.6		---	2.3	(2.7)			
21	250	11.2					2.9		
22	210	10.6					3.1		
23	250	10.4					3.0		

Time: 150.0°E.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 8								September 1951	
White Sands, New Mexico (32.3°N, 106.5°W)				September 1951					
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2	
00	290	4.0							2.8
01	290	4.0							2.8
02	270	3.8							2.8
03	280	4.0							2.9
04	270	3.6							3.0
05	280	3.3							2.8
06	260	4.1	270	---	110	(1.7)	2.6	3.2	
07	260	5.9	230	3.7	110	(2.3)	3.2	3.2	
08	280	6.6	220	4.3	100	2.8	3.5	3.2	
09	290	6.8	210	4.6	100	3.1	3.5	3.0	
10	320	7.2	200	4.8	100	3.3	3.4	3.1	
11	320	8.1	200	4.9	100	3.5	3.0	3.0	
12	310	8.3	200	4.9	100	3.6	3.0	3.0	
13	300	8.7	200	4.9	100	3.5	3.0	3.0	
14	290	8.7	210	4.8	100	3.4	3.0	3.0	
15	280	8.1	220	4.6	100	3.2	3.1	3.1	
16	280	7.8	230	4.4	100	2.8	3.2	3.0	
17	250	7.5	230	---	110	2.4	3.0	3.3	
18	230	7.0						2.8	
19	220	6.0						2.2	
20	230	5.2						3.1	
21	260	4.6						3.0	
22	270	4.2						2.9	
23	300	4.2						2.8	

Time: 105.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 10								September 1951	
Puerto Rico, W. I. (18.5°N, 67.2°W)				September 1951					
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEe	(M3000)F2	
00	280	5.4							2.8
01	270	5.4							2.9
02	260	5.4							3.0
03	240	5.0							3.0
04	240	4.6							3.0
05	250	4.1							3.0
06	250	4.2							3.0
07	220	5.2	230	---	110	(2.1)	3.5		
08	230	6.6	210	---	100	(2.7)	4.0	3.3	
09	280	7.1	200	4.6	100	(3.1)	3.2		
10	290	8.0	200	4.7	100	3.4	2.6		
11	320	9.0	200	5.1	100	3.6	2.9		
12	320	9.8	210	5.1	100	3.7	2.8		
13	320	10.8	220	5.1	110	3.7	2.9		
14	310	11.0	220	5.1	110	3.6	2.9		
15	290	11.4	220	4.8	100	3.4	2.6		
16	280	11.4	220	4.6	110	3.5	4.7	2.6	
17	250	10.5	210	5.3	110	3.7	4.6	2.6	
18	260	11.6	210	5.2	110	3.8	4.6	2.7	
19	350	12.6	230	5.2	110	3.8	4.2	2.8	
20	320	(13.6)	230	5.1	100	3.7	4.8	(2.9)	
21	300	(13.5)	230	5.0	100	3.4	4.6	(3.0)	
22	280	(13.6)	220	4.6	110	3.2	4.3	(3.0)	
23	250	(12.6)	230	4.5	---	110	2.6	4.5	(3.1)

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 13

Time	September 1951						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	220	7.4					3.2
01	240	6.9					3.2
02	250	6.2					3.1
03	260	5.3					3.1
04	280	5.0					3.0
05	300	4.5					3.1
06	280	5.0			100	1.9	3.1
07	240	8.0	---	---	100	2.6	3.2
08	240	9.4	220	---	100	3.0	2.9
09	300	10.2	210	4.7	100	---	5.4
10	310	9.9	210	4.9	100	---	8.0
11	320	9.4	200	5.0	100	---	8.0
12	320	9.3	200	5.0	100	---	8.0
13	320	9.4	200	4.9	100	---	8.0
14	300	9.2	200	4.8	100	---	8.0
15	260	9.0	210	4.4	100	3.1	5.5
16	210	9.5	---	---	110	2.8	4.8
17	270	9.1			100	2.3	4.0
18	300	8.6			110	---	2.5
19	320	8.5					2.5
20	310	8.6					2.6
21	260	8.9					2.8
22	220	8.6					3.0
23	220	8.2					3.2

Time: 75.0°W.

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 15

Time	August 1951						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	---	---					5.0
01	---	(3.4)					5.2 (2.3)
02	(4.20)	(3.7)					5.2 (2.4)
03	(4.20)	(3.9)					4.8 (2.4)
04	(4.30)	(4.0)					4.4
05	(4.80)	(4.2)					3.6
06	520	(4.1)	300	(3.6)			(2.5)
07	560	(4.7)	280	(3.8)			(2.3)
08	(5.80)	(5.1)	280	(4.0)			(2.3)
09	550	(5.0)	270	4.1			(2.3)
10	560	(5.1)	(270)	4.2			2.3
11	560	(5.2)	(280)	(4.3)			(2.4)
12	570	(5.2)	270	(4.3)			2.3
13	540	(5.2)	(280)	4.3			(2.3)
14	520	5.4	(280)	(4.2)			2.4
15	500	(5.1)	300	(4.1)			(2.4)
16	480	(5.1)	310	4.0			(2.5)
17	440	(5.0)	320	4.0			(2.6)
18	390	(5.0)	---	---			(2.6)
19	360	4.8					(2.7)
20	350	(4.7)					(2.6)
21	(340)	(4.5)					(2.6)
22	(340)	(4.3)					4.2 (2.6)
23	(360)	---					4.5

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 17

Time	August 1951						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	295	4.2					2.4
01	295	4.0					2.8
02	300	3.4					2.7
03	300	3.2					2.7
04	290	3.2					2.7
05	280	4.2	260	---	1.8	3.9	3.0
06	340	4.7	220	3.8	100	2.3	4.0
07	310	5.0	215	4.1	100	2.7	4.2
08	330	5.6	210	4.3	100	3.0	4.6
09	320	5.9	205	4.5	100	3.2	4.5
10	350	6.2	205	4.5	100	3.3	4.8
11	320	5.9	200	4.6	100	3.4	4.8
12	350	5.9	200	4.6	100	3.4	3.0
13	330	5.9	205	4.6	100	3.5	3.0
14	340	5.9	205	4.5	100	3.3	3.0
15	310	5.9	210	4.5	100	3.2	3.0
16	305	6.0	220	4.2	100	2.9	4.0
17	300	6.1	225	3.8	100	2.5	3.0
18	(290)	6.2	260	---	105	2.1	3.6
19	275	6.6					3.8
20	260	6.0					3.0
21	240	5.6					2.9
22	275	5.2					2.1
23	295	4.4					2.7

Time: 0.0°W.

Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

Table 13

Table 14

Time	Point Barrow, Alaska (71.3°N, 156.8°W)						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	310	(4.3)					5.4 (3.0)
01	270	(4.4)					6.4 (3.1)
02	280	(4.5)					7.8 (3.0)
03	300	(4.0)					5.4 (3.0)
04	310	(4.4)					4.3 (2.9)
05	320	(4.4)					4.1 (2.9)
06	360	(4.4)					3.5 (2.8)
07	430	(4.7)					4.5 (2.6)
08	160	4.8					4.2
09	470	4.6					2.6
10	510	4.7					4.0
11	500	4.7					2.6
12	550	4.7					2.1
13	480	4.8					2.6
14	430	5.0					2.7
15	400	5.2					2.8
16	360	5.1					2.8
17	350	5.0					2.8
18	320	5.0					2.8
19	300	4.7					2.6
20	300	4.4					2.0
21	310	4.4					6.2
22	300	(4.6)					7.0
23	310	(4.5)					6.2

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 15

Time	Narsarssuak, Greenland (61.2°N, 45.4°W)						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	(380)	(4.0)					4.8 (2.6)
01	(420)	(3.4)					4.1 (2.6)
02	(450)	(3.6)					4.6 (2.4)
03	(410)	(3.7)					4.2 (2.4)
04	(360)	(3.6)					4.1
05	360	4.2					4.1
06	320	4.3					2.8
07	380	4.8					2.7
08	400	5.2					2.8
09	400	5.0					2.7
10	400	5.2					2.7
11	130	5.2					2.6
12	160	4.3					2.6
13	130	5.2					2.6
14	160	5.1					2.6
15	180	5.4					2.5
16	190	5.4					2.5
17	180	5.2					2.5
18	370	5.0					2.4
19	340	(4.7)					3.4
20	360	(4.3)					4.1
21	380	(3.9)					4.5
22	(380)	(4.0)					5.5
23	(380)	(3.9)					4.9

Time: 45.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 17

Time	Adek, Alaska (51.9°N, 176.6°W)						
	h'F2	foF2	h'F1	foF1	h'E	foE	
						fEs (M3000)F2	
00	280	(3.8)					2.3 (2.8)
01	300	(3.6)					1.9 (2.7)
02	300	(3.3)					2.1 (2.7)
03	310	(2.8)					2.2 (2.7)
04	310	3.0					2.7
05	290	3.6					2.8
06	420	4.4					2.6
07	410	5.0					3.8
08	420	5.2					2.6
09	400	5.4					4.4
10	400	5.5					3.4
11	420	5.4					4.5
12	400	5.2					4.0
13	430	5.0					4.0
14	440	5.2					3.7
15	420	5.1					3.6
16	360	5.2					2.9
17	320	5.4					3.0
18	280	5.4					3.6
19	270	5.4					3.6
20	260	6.0					3.2
21	260	6.0					3.6
22	250	5.0					2.9
23	260	(4.5)					2.3 (2.8)

Time: 180.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Table 19

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	4.8						
01	300	4.6						
02	300	4.2						
03	300	4.0						
04	300	3.8						
05	300	3.5						
06	250	4.6			116	2.0		
07	250	5.1			100	2.4	4.0	
08	300	5.5	220	4.0	100	2.7	4.5	
09	300	5.8	220	4.4	100	3.0	4.8	
10	300	6.0	210	4.4	100	3.2	4.4	
11	310	6.2	200	4.6	100	3.4	4.1	
12	330	6.0	200	4.6	100	3.4	4.9	
13	330	6.1	210	4.8	100	3.4	S.1	
14	330	6.4	210	4.8	100	3.3	4.6	
15	310	6.2	210	4.6	100	3.3		
16	310	6.2	215	4.5	100	3.0		
17	300	6.2	210	4.3	100	2.8	4.2	
18	270	6.1			100	2.5	4.0	
19	260	6.4			105	2.2	4.0	
20	260	7.0					4.2	
21	350	6.8					4.2	
22	245	6.0					3.8	
23	290	5.0					2.9	

Time: 15.0°E.

Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Table 21

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	280	6.5						2.8
01	250	6.6						3.0
02	250	5.8						3.0
03	250	5.3				2.1	3.0	
04	250	(4.9)				2.0	(3.1)	
05	250	(4.0)					(3.0)	
06	270	3.6				3.2	3.0	
07	240	5.5	240	---	120	2.3	3.0	3.2
08	(280)	6.4	220	(4.6)	110	2.9	3.3	3.0
09	370	6.6	210	5.2	110	3.3	3.8	2.8
10	420	7.3	220	5.0	110	3.6	2.5	
11	430	8.7	220	5.1	110	3.7	4.3	2.5
12	410	9.6	220	5.0	110	3.8	4.5	2.5
13	390	10.3	220	5.0	110	3.8	4.6	2.6
14	380	11.0	220	4.9	110	3.7	4.5	2.6
15	350	11.7	220	4.8	110	3.5	4.8	2.8
16	320	11.8	230	4.6	110	3.2	4.2	2.9
17	290	(11.4)	230	4.3	110	2.7	3.9	(3.0)
18	(250)	(10.4)	240	---	---	---	3.3	(3.0)
19	230	(8.8)					2.8	(3.0)
20	250	(7.4)					2.4	(2.8)
21	280	(7.1)					2.0	(2.8)
22	280	7.0					2.8	
23	280	6.9					2.8	

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 23

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	3.2					5.5	---
01	280	3.2					5.0	---
02	270	3.2					5.0	---
03	300	3.3			100	2.8	5.0	(2.9)
04	280	3.8	---	---	100	2.8	5.0	(3.0)
05	270	4.0	---	---	100	3.2	5.0	(2.9)
06	370	4.3	240	4.0	100	3.5	4.4	(2.6)
07	370	5.0	220	4.2	100	3.6	3.6	2.8
08	400	5.0	210	4.5	90	3.6	3.0	2.8
09	380	5.0	200	4.3	90	3.5	2.9	
10	410	5.0	200	4.5	90	3.5	2.8	
11	410	5.2	200	4.5	90	3.4	2.8	
12	410	5.4	200	4.5	90	3.5	2.7	
13	400	5.5	200	4.5	90	3.5	2.7	
14	390	5.7	200	4.5	90	3.5	2.7	
15	400	5.4	210	4.3	100	3.3	2.7	
16	400	5.3	210	4.2	90	3.2	2.7	
17	310	5.2	200	4.0	100	3.0	2.8	
18	300	5.0	220	3.9	100	2.6	5.0	(2.8)
19	290	4.9	---	---	100	2.1	6.7	(2.8)
20	280	4.3	---	---	100	2.2	5.3	---
21	300	3.8	---	---	---	6.4	---	
22	270	3.2	---	---	---	7.0	---	
23	280	3.4	---	---	---	5.2	---	

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 19

Okinawa I. (26.3°N, 127.8°E)

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	6.8						2.5
01	290	6.8						2.8
02	280	6.0						3.2
03	260	5.7						3.0
04	270	4.9						2.4
05	260	4.5						2.9
06	250	5.8	---	---	130	---	3.0	3.2
07	250	6.8	220	---	110	(2.5)	3.8	3.4
08	(270)	6.4	210	---	110	3.1	4.4	3.2
09	310	7.0	(230)	---	110	3.2	6.0	3.0
10	310	7.6	210	---	110	3.3	5.6	2.9
11	350	8.5	220	---	(5.1)	(110)	(4.8)	2.8
12	310	9.4	230	---	110	(3.6)	5.0	2.8
13	330	10.0	230	---	(120)	(3.5)	4.5	2.8
14	330	10.4	(230)	(4.9)	110	3.4	5.0	2.8
15	310	10.7	230	(4.7)	110	(3.4)	4.8	3.0
16	300	10.4	230	---	110	3.2	5.1	3.0
17	280	10.4	230	---	110	2.6	4.3	3.0
18	260	10.5	260	---	(120)	---	3.8	3.1
19	240	9.7					3.6	3.1
20	210	7.4					3.5	2.8
21	270	>6.3					3.0	2.7
22	310	5.9					3.2	2.6
23	310	6.3					3.2	2.7

Time: 127.5°E.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 21

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	5.0						3.7
01	320	5.0						4.0
02	310	4.8	---	---				2.0
03	320	4.6	310	---				2.8
04	330	4.5	300	---	160	2.0		2.8
05	380	4.8	290	3.4	130	2.4		2.8
06	460	4.7	280	3.8	120	2.8		2.8
07	510	4.8	280	3.8	120	2.8		2.7
08	600	5.2	250	4.0	110	3.3		2.4
09	550	5.5	280	4.2	110	3.3		2.5
10	520	5.2	280	4.3	110	3.5		2.6
11	540	5.2	280	4.4	110	3.4		2.6
12	550	5.3	260	4.2	110	3.3		2.6
13	500	5.3	260	4.2	110	3.3		2.6
14	500	5.5	260	4.3	110	3.3		2.6
15	500	5.5	270	4.3	110	3.3		2.6
16	480	5.9	260	4.2	110	3.2		2.8
17	450	5.3	260	4.1	120	3.0	8.0	2.7
18	430	5.6	260	4.0	120	2.9	7.0	2.8
19	380	5.6	280	3.8	110	2.8	6.0	2.8
20	310	5.1	300	---	160	2.6	7.0	2.8
21	320	5.0	---	---	---	2.1	6.2	2.8
22	340	5.0	---	---	---	---	7.0	2.8
23	320	4.9					3.2	2.8

Time: 90.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 23

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	4.4						3.0
01	300	4.0						2.8
02	280	3.5						3.1
03	290	3.4						3.2
04	270	3.2	---	---	110	1.7	2.0	3.0
05	250	3.9	240	3.6	110	2.2	2.9	3.0
06	360	4.4	230	3.9	100	2.6		3.0
07	360	4.6	220	4.2	100	3.0	3.2	2.9
08	390	5.2	200	4.3	100	3.2	3.4	2.9
09	400	5.4	200	4.5	100	3.4	4.0	2.9
10	400	5.4	200	4.5	100	3.4	4.0	2.8
11	400	5.4	200	4.6	100	3.5	3.6	2.8
12	400	5.7	200	4.6	100	3.5	3.8	2.8
13	400	5.6	200	4.6	100	3.5	4.0	2.8
14	400	5.6	210	4.6	100	3.4	2.8	2.8
15	370	6.1	210	4.4	100	3.2		2.8
16	360	6.0	220	4.3	100	3.0		2.8
17	330	6.0	230	4.0	100	2.7		2.8
18	290	6.6	240	3.4	110	2.3	2.5	

Table 25

Wakkanai, Japan (45.4°N, 141.7°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	6.1					3.2	2.7
01	300	5.6					3.0	2.7
02	300	5.6					2.8	2.7
03	300	5.4					2.8	2.8
04	300	4.8					2.8	2.8
05	310	5.4	260	3.7	110	2.2	2.6	2.8
06	330	6.4	280	4.2	110	2.6	4.7	2.8
07	320	6.5	---	4.1	110	3.0	5.8	2.9
08	380	6.1	240	4.4	110	3.1	6.4	2.8
09	360	6.5	220	4.8	110	3.2	6.7	2.9
10	370	6.3	220	4.7	100	3.3	7.2	2.9
11	420	5.9	250	4.7	120	3.2	6.2	2.8
12	410	6.0	250	4.8	110	---	5.9	2.7
13	400	5.7	250	4.8	110	3.1	4.8	2.8
14	420	5.9	260	4.7	110	3.2	5.1	2.7
15	410	5.9	260	4.5	110	3.4	4.4	2.7
16	360	6.2	260	4.1	110	3.0	4.7	2.8
17	350	6.3	280	4.2	110	2.8	5.0	2.8
18	300	6.2	240	3.6	110	2.4	5.0	2.9
19	300	6.4					4.9	2.9
20	290	7.1					4.5	2.8
21	300	6.6					4.0	2.7
22	300	6.8					4.1	2.8
23	300	6.3					4.0	2.8

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 27

Tokyo, Japan (35.7°N, 135.5°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	6.5					4.2	2.8
01	280	6.6					4.1	2.9
02	260	6.2					4.2	3.0
03	260	5.2					3.8	2.9
04	270	5.4					3.5	2.9
05	270	5.6	250	---	120	1.7	2.8	3.0
06	280	6.7	240	---	100	2.3	4.0	3.0
07	280	7.2	230	---	100	2.8	5.4	3.1
08	300	7.0	220	---	100	3.1	6.4	3.1
09	310	6.6	---		100	3.4	7.0	3.0
10	(350)	(7.0)	---		100	3.5	7.2	(2.9)
11	360	6.4	---		100	3.5	7.2	(2.8)
12	360	6.9	---		100	---	7.2	2.8
13	350	7.3	---		100	3.6	6.9	2.9
14	340	7.6	---		100	3.6	5.9	2.9
15	330	7.6	---		100	3.3	6.4	3.0
16	320	7.4	220	---	100	3.0	5.9	3.0
17	300	7.4	240	---	100	2.7	5.8	3.0
18	290	7.2	250	---	100	2.2	5.7	3.0
19	260	6.8					4.6	3.0
20	270	6.9					4.1	2.9
21	300	6.7					4.2	2.8
22	290	6.9					3.8	2.9
23	280	6.8					5.4	2.9

Time: 135.0°E.

Sweep: 1.0 Mc to 17.2 Mc in 2 minutes.

Table 29

Formosa, China (25.0°N, 121.0°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	320	7.1					4.4	2.8
01	300	7.6					4.1	3.0
02	280	7.0					4.6	3.0
03	300	6.6					4.4	3.0
04	300	6.0					3.6	3.0
05	300	5.6					3.4	2.9
06	300	6.4	260	4.3	130	2.8	4.0	3.4
07	290	7.2	250	4.3	130	3.0	5.6	3.4
08	290	7.0	240	4.5	120	3.2	6.2	3.2
09	350	7.2	260	5.0	120	3.5	6.6	3.1
10	390	7.8	220	5.1	120	3.8	6.8	3.0
11	370	8.1	220	5.2	120	1.1	8.1	2.9
12	430	9.3	---	5.2	120	3.7	6.8	2.6
13	370	10.4	---	5.2	120	3.9	6.2	2.8
14	360	11.3	---	5.2	120	4.3	7.3	3.0
15	340	11.5	220	5.0	120	4.0	5.8	3.0
16	340	11.7	240	4.7	120	3.8	5.6	3.0
17	320	11.7	240	4.6	110	3.4	6.3	3.1
18	280	10.4	240	4.6	110	3.0	5.2	3.2
19	270	9.4	---	---	110	---	5.2	3.2
20	280	8.4	---	---			5.4	3.1
21	320	7.6					4.4	3.0
22	320	7.3					4.9	2.8
23	320	7.4					5.4	2.8

Time: 120.0°E.

Sweep: 2.3 Mc to 14.5 Mc in 15 minutes, manual operation.

Table 26

Akita, Japan (39.7°N, 140.1°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	300	6.1						5.2
01	290	6.1						4.4
02	280	5.8						4.4
03	280	5.7						3.6
04	280	4.9						3.4
05	280	5.4	260	3.1	120	1.9	3.6	3.0
06	300	6.1	230	3.9	110	2.8	4.4	3.0
07	300	6.8	240	4.2	110	2.8	5.6	3.0
08	320	6.8	---	---	110	3.4	8.0	3.0
09	320	7.2	(330)	(7.2)	---	---	3.3	7.7
10	(320)	(6.3)	220	5.0	110	3.0	7.0	(3.0)
11	410	6.2	---	---	110	3.8	6.2	2.8
12	410	6.2	---	---	110	3.8	6.2	2.8
13	360	6.7	230	4.7	110	3.8	6.8	2.9
14	330	6.9	230	4.6	110	3.8	6.4	3.0
15	340	6.8	230	4.6	110	3.8	6.4	3.0
16	320	6.7	220	4.7	110	3.8	6.4	3.0
17	310	6.7	260	4.2	110	2.7	6.4	3.0
18	300	6.2	240	3.6	110	2.2	5.4	3.0
19	260	6.5					4.9	3.0
20	270	6.6					4.6	3.0
21	290	6.5					5.0	2.9
22	300	6.5					4.8	2.8
23	300	6.4					5.0	2.8

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 27

Yamagawa, Japan (31.2°N, 130.6°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	250	2.7						2.8
01	270	2.6						2.9
02	270	2.7						2.9
03	250	2.8						3.1
04	250	2.6						3.1
05	260	2.5						2.6
06	260	2.4						3.0
07	230	4.7	---	---	---	---	1.7	3.4
08	230	6.4	230	3.0	110	2.4	3.5	3.4
09	240	7.1	220	4.0	110	2.9	3.4	3.4
10	260	7.5	220	4.4	110	3.2	3.4	3.3
11	260	7.6	210	4.6	110	3.4	3.3	3.3
12	270	7.8	210	4.6	110	3.4	3.2	3.2
13	270	8.1	210	4.5	110	3.4	3.8	3.2
14	260	7.9	210	4.5	110	3.2	3.8	3.2
15	260	7.8	210	4.3	110	3.0	3.7	3.2
16	240	7.8	230	---	110	2.7	3.3	3.2
17	230	7.3	---	---	110	2.1	2.4	3.4
18	210	6.0	---	---	---	---	1.8	3.4
19	220	3.5					2.2	3.3
20	240	2.9					1.8	3.1
21	240	2.9					1.9	3.2
22	250	3.1					3.2	3.2
23	250	2.9					3.2	3.2

Time: 135.0°E.

Sweep: 1.0 Mc to 18.0 Mc in 7 seconds.

Table 29

Johannesburg, Union of S. Africa (26.2°S, 28.1°E)								July 1951
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	250	2.7						3.0
01	270	2.6						2.9
02	270	2.7						3.0
03	250	2.8						3.1
04	250	2.6						3.2
05	260	2.5						3.0
06	260	2.4						3.1
07	230	4.7	---	---	---	---	1.7	3.4
08	230	6.4	230	3.0	110	2.4	3.5	3.4
09	240	7.1						

Table 31

Watheroo, W. Australia (30.3°S, 115.9°E)

July 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	3.4					2.9	2.9
01	260	3.2					2.9	2.9
02	260	3.5					2.9	2.9
03	260	3.6					2.9	3.0
04	250	3.7					3.0	2.9
05	240	3.6					3.2	3.1
06	230	3.0					3.1	3.0
07	230	4.3	---	---	1.7	2.5	3.3	3.1
08	230	6.4	220	2.8	2.4	3.1	3.5	3.3
09	240	7.0	230	3.9	2.9	3.3	3.4	3.4
10	255	7.6	220	4.3	3.0	3.2	3.3	3.3
11	260	7.6	230	4.1	3.1	3.3	3.4	3.2
12	280	8.0	220	4.6	3.2	3.3	3.3	3.2
13	270	7.8	220	4.5	3.2	3.8	3.2	3.2
14	280	8.0	220	4.5	3.1	3.8	3.2	3.1
15	260	8.4	230	4.1	2.9	4.1	3.3	3.2
16	240	8.2	230	3.4	2.5	3.7	3.3	3.2
17	230	6.9			2.0	3.2	3.1	3.1
18	220	5.5				3.2	3.3	3.3
19	230	4.3				3.0	3.2	3.3
20	240	3.4				3.0	3.2	3.2
21	260	3.2				2.7	3.0	3.2
22	260	3.3				2.8	3.0	3.2
23	260	3.2				2.8	2.9	3.0

Time: 120.0°E.

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 33

Resolute Bay, Canada (74.7°N, 94.9°W)

June 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	5.0	240	---			3.1	
01	290	5.1	230	(3.1)			3.0	
02	280	5.0	240	(3.1)			3.0	
03	300	4.8	240	(3.1)			3.1	
04	320	4.8	220	3.5			3.0	
05	330	4.9	220	3.6			3.1	
06	350	5.0	220	3.8			3.0	
07	390	5.0	200	3.8			3.0	
08	(360)	5.0	200	3.9			3.0	
09	400	5.1	220	3.9			3.0	
10	380	5.2	200	4.0			2.8	
11	390	5.3	200	4.0			(2.8)	
12	(100)	5.1	200	4.0	---	---	(2.8)	
13	(420)	200	4.0	---	---	---		
14	370	5.8	210	4.0	---	---	(3.0)	
15	380	5.3	220	4.0	---	---	(3.0)	
16	390	5.3	210	3.9			2.9	
17	360	5.1	220	4.0			3.0	
18	360	5.0	210	3.9			3.0	
19	350	5.2	220	3.8			2.9	
20	320	5.2	220	3.6			3.0	
21	320	5.0	230	3.4			3.0	
22	300	5.2	230	---			3.1	
23	280	5.0	240	---			3.1	

Time: 90.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 35

Fraserburgh, Scotland (57.6°N, 2.1°W)

June 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	275	6.6				2.4	2.7	
01	280	6.0			(160)‡ (0.6)‡	2.6	2.7	
02	295	4.6			160	1.2	2.7	
03	300	4.6			140	1.4	2.7	
04	320	4.6	260	(2.9)	140	1.8	3.0	2.7
05	335	4.9	245	3.5	120	2.2	3.1	2.7
06	385	5.0	235	3.8	115	2.6	3.1	2.6
07	380	6.4	235	4.1	110	2.9	3.2	2.8
08	370	6.7	230	4.4	110	3.1	3.2	2.8
09	360	6.0	225	4.4	110	3.2	3.4	2.9
10	375	6.1	220	4.6	105	3.3	3.8	2.9
11	390	6.0	220	4.7	105	3.4	3.8	2.8
12	385	6.1	220	4.7	105	3.5	2.7	2.9
13	400	6.0	225	4.7	105	3.4	3.3	2.8
14	400	6.0	220	4.7	105	3.4	2.8	2.8
15	390	6.0	226	4.6	110	3.3	2.9	2.8
16	360	6.2	230	4.5	110	3.1	3.0	2.8
17	340	6.2	236	4.3	110	3.0	3.1	2.9
18	320	6.3	240	4.1	115	2.7	3.2	2.9
19	290	6.3	246	3.6	120	2.4	3.2	3.0
20	270	6.3	280‡	140	2.0	3.0	2.9	
21	266	6.2			(170)	1.7	2.9	
22	270	6.2				2.0	2.8	
23	275	6.0				2.2	2.7	

Time: 0.0°.

Sweep: 0.67 Mc to 15.0 Mc in 4 minutes.

*Average values except foF2 and fEs, which are median values.

Table 32

Capetown, Union of S. Africa (34.2°S, 18.3°E)

July 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	280	2.5						2.9
01	280	2.6						2.9
02	280	2.7						2.9
03	270	2.7						3.0
04	260	2.7						2.9
05	250	2.6						3.1
06	250	2.4						3.0
07	240	2.4	---	---	---	---	---	3.1
08	230	4.6	---	---	---	---	---	3.1
09	230	6.2	230	3.6	230	3.6	120	2.4
10	250	6.8	230	3.6	230	3.6	120	2.8
11	260	7.0	230	4.1	230	4.1	110	3.1
12	270	7.5	220	4.4	220	4.4	110	3.2
13	270	8.0	220	4.5	220	4.5	110	3.2
14	270	7.8	220	4.4	220	4.4	110	3.1
15	270	8.2	210	4.2	210	4.2	110	3.0
16	250	7.9	230	3.8	230	3.8	120	2.7
17	240	7.3	---	---	---	---	---	2.7
18	220	6.3	---	---	---	---	---	3.3
19	230	3.9	---	---	---	---	---	3.3
20	240	2.7	---	---	---	---	---	3.2
21	240	2.5	---	---	---	---	---	3.2
22	250	2.4	---	---	---	---	---	3.2
23	250	2.4	---	---	---	---	---	3.0

Time: 30.0°E.

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 34

Baker Lake, Canada (64.3°N, 96.0°W)

June 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	310	5.0						2.9
01	320	5.0						2.8
02	320	4.8	---	---	---	---	---	2.8
03	320	4.9	---	---	---	160	---	2.8
04	320	4.8	300	3.2	160	2.0	---	2.8
05	400	4.8	280	3.6	130	2.2	3.0	2.8
06	440	4.8	270	3.8	120	2.4	3.0	2.8
07	530	4.9	250	4.0	120	2.9	2.7	2.7
08	510	4.9	240	4.0	120	3.0	3.0	(2.6)
09	500	5.2	260	4.2	110	3.2	3.1	(2.6)
10	510	5.2	260	4.2	110	3.3	3.4	2.7
11	500	5.2	280	4.2	110	3.4	3.4	2.7
12	530	5.2	280	4.3	110	3.5	2.7	2.7
13	500	5.2	260	4.3	110	3.3	2.6	2.6
14	490	5.5	260	4.2	110	3.4	2.7	2.7
15	490	5.6	260	4.2	110	3.3	1.9	2.7
16	490	5.7	260	4.2	110	3.0	1.9	2.7
17	470	5.8	260	4.2	120	3.0	4.0	2.7
18	430	5.8	280	3.9	120	2.7	6.0	2.7
19	350	5.1	280	3.8	130	2.4	4.5	2.8
20	360	5.4	300	3.8	110	2.2	6.8	2.8
21	310	5.2	---	---	160	---	7.5	2.8
22	320	5.2	---	---	160	---	6.0	2.8
23	310	5.0	---	---	160	---	3.3	2.8

Time: 90.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 36

Lindau/Harz, Germany (51.6°N, 10.1°E)

June 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	270	5.8						2.3
01	270	5.4						2.4
02	280	5.0						2.6
03	270	4.7						2.6
04	280	4.8	270	---	100	1.2	2.8	2.8
05	300	5.2	250	3.2	100	2.0	3.2	2.8
06	310	5.8	240	3.8	100	2.5	4.5	2.8
07	320	6.0	230	4.2	100	2.9	5.6	2.9
08	340	6.1	230	4.4	100	3.2	5.6	2.8
09	320	6.6	220	4.5	100	3.4	5.5	2.9
10	320	6.6	220	4.6	100	3.5	5.6	2.9
11	335	6.6	220	4.6	100	3.5	5.5	2.9
12	360	6.6	210	4.8				

Table 37*

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	275	5.8					2.6	2.6
01	290	5.5					2.9	2.6
02	290	5.0					3.0	2.6
03	285	4.7					3.3	2.7
04	305	4.6	280	3.1	120	1.4	3.9	2.7
05	330	5.3	255	3.5	120	2.0	4.7	2.8
06	380	5.7	255	4.0	115	2.6	4.8	2.8
07	370	6.2	240	4.3	115	2.9	4.9	2.8
08	355	6.5	210	4.5	115	3.2	4.9	2.9
09	370	6.4	235	4.7	115	3.4	5.0	2.9
10	350	6.6	225	4.8	110	3.5	5.1	3.0
11	370	6.4	230	4.9	110	3.5	5.3	2.8
12	380	6.4	230	4.9	115	3.6	5.8	2.8
13	410	6.6	235	4.9	115	3.6	5.8	2.8
14	380	6.4	225	4.8	115	3.5	4.9	2.8
15	365	6.7	235	4.8	115	3.4	4.6	2.8
16	350	6.7	235	4.6	115	3.3	4.9	2.8
17	325	6.7	210	4.3	115	3.0	4.6	2.8
18	300	6.7	255	4.0	120	2.7	4.7	3.0
19	290	6.6	255	3.5	125	2.2	5.0	2.9
20	275	7.0			145	1.7	3.8	2.9
21	270	7.1					3.3	2.8
22	270	6.8					2.6	2.8
23	270	6.5					2.2	2.7

Time: 0.0°E.

Sweep: 0.5 Mc to 16.5 Mc in 5 minutes, automatic operation.

*Average values except foF2 and fEs, which are median values.

Table 39

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	280	3.8					2.8	
01	300	3.8					2.7	
02	300	4.1					2.7	
03	300	4.0					2.7	
04	300	3.8					2.8	
05	280	3.7					2.8	
06	280	3.6					2.9	
07	260	6.1					3.1	
08	250	8.1	230	3.2	120	2.4	3.3	3.2
09	250	8.8	240	4.1	110	2.9	3.8	3.2
10	260	9.7	230	4.5	110	3.2	3.8	3.2
11	260	8.9	220	4.6	110	3.4	3.2	
12	270	8.4	220	4.7	110	3.4	4.2	3.1
13	270	8.7	230	4.8	110	3.4	4.1	3.1
14	280	8.6	230	4.8	110	3.3	4.2	3.1
15	270	8.4	230	4.6	110	3.1	4.0	3.1
16	260	8.0	250	4.4	120	2.8	3.8	3.0
17	250	8.6	250	---	---	2.2	3.8	3.1
18	240	8.6					3.9	3.1
19	230	6.7					3.4	3.2
20	240	5.0					3.1	2.8
21	260	4.5					3.0	2.6
22	280	4.0					2.6	2.9
23	300	3.7					2.2	2.9

Time: 157.5°W.

Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Table 41

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	2.9					3.4	2.9
01	300	2.7					3.2	2.9
02	300	2.7					3.2	2.9
03	280	3.2					3.0	2.9
04	270	2.8					3.4	3.0
05	250	2.7					3.4	3.1
06	250	2.2					3.5	3.0
07	260	2.8					3.8	3.1
08	240	5.2					1.6	3.5
09	240	6.3	210	3.3	120	2.3	4.4	3.4
10	250	6.8	210	3.7	120	2.7	4.4	3.4
11	250	7.0	210	3.9	120	2.8	4.6	3.4
12	250	7.4	230	4.1	110	2.9	4.5	3.3
13	250	7.6	210	4.0	120	2.8	4.5	3.3
14	250	7.6	210	3.8	120	2.6	4.4	3.4
15	240	7.2	210	3.3	120	2.3	4.4	3.4
16	240	6.8	---	---		1.6	3.5	3.4
17	230	5.7	---	---		3.4	3.1	
18	240	5.0				3.0	3.0	
19	250	4.1				2.9	3.2	
20	250	3.7				3.0	3.1	
21	250	3.4				2.8	3.0	
22	270	3.2				3.0	3.0	
23	280	3.0				3.0	2.9	

Time: 172.5°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 38*

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	210	5.6					125	2.6
01	245	5.3					120#	3.1
02	250	3.9					115#	2.8
03	255	3.5					115#	2.6
04	245	3.1					110#	3.0
05	270	2.8					105#	2.5
06	275	4.3					105#	2.9
07	245	7.3					105#	3.0
08	210	9.6	235#				105#	2.8
09	305	10.7	225	(4.8)#			105#	2.7
10	315	11.0	210	(4.9)#			105#	2.6
11	335	10.6	210	(4.9)	110#	3.0#	105#	2.5
12	310	10.3	210	(4.9)			105#	2.5
13	330	10.1	210	(4.9)			105#	2.4
14	325	9.0	205	(4.8)#			105#	2.7
15	305	10.8	205				105#	2.7
16	280	11.1	225				105#	2.7
17	250	10.8					105#	2.8
18	250	10.7					105#	2.9
19	215	10.2					105#	2.9
20	230	9.4					105#	3.2
21	220	9.0					105#	3.1
22	225	6.5					105#	3.1
23	210	6.1					105#	3.0

Time: 105.0°E.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 40

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	250	3.6					2.8	3.0
01	260	3.6					2.9	3.0
02	250	3.7					2.9	3.0
03	250	3.6					2.9	3.0
04	230	3.6					2.9	3.1
05	240	3.1					2.9	3.0
06	240	2.8					3.0	3.1
07	230	4.4					2.8	3.4
08	240	6.4					2.2	3.1
09	240	7.2	230	3.7	230	4.2	2.8	3.5
10	250	8.1	230	4.2	230	4.3	3.1	3.4
11	250	8.2	230	4.3	230	4.3	3.2	3.4
12	260	8.2	230	4.5	230	4.5	3.3	3.4
13	260	8.3	230	4.4	230	4.4	3.2	3.3
14	260	8.4	230	4.3	230	4.3	3.0	3.3
15	250	8.4	240	4.0	240	4.0	2.8	3.3
16	210	8.1	240	3.4	240	3.4	2.3	3.5
17	220	7.2					3.2	3.4
18	200	5.2					3.1	3.4
19	220	3.7					2.9	3.2
20	210	3.0					2.8	3.1
21	260	3.0					2.4	3.0
22	260	3.2					2.5	2.8
23	260	3.5					2.4	2.9

Time: 120.0°E.

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 42

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	360	4.8					4.1	(2.5)
01	(360)	(4.1)					4.7	(2.4)
02	(375)	(4.1)					4.3	(2.6)
03	(390)	(3.6)					4.6	(2.6)
04	(310)	(4.1)					4.4	(2.7)
05	(320)	4.4					4.4	2.8
06	325	4.6	240	3.6	100		---	2.8
07	380	4.6	250	3.8	100		---	2.8
08	410	4.9	230	4.2	100		---	2.6
09	370	5.3	230	4.3	100		---	2.8
10	400	5.3	220	4.4	100		---	2.7
11	400	5.4	220	4.4	100		3.1	2.7
12	390	5.6	220	4.5	100		---	2.8
13	410	5.5	220	4.4	100		---	2.6
14	390	5.4	230	4.4	100		3.2	2.7
15	400	5.5	230	4.3	100		---	2.7
16	385	5.4	240	4.3	100		3.1	2.7
17	360	5.4	240	4.1	100		2.8	2.8
18	350	5.4	260	3.9	100		---	3.8
19	310	5.3	270	---	100		3.1	2.8
20	330	5.2	---	---	100		3.8	2.8
21	320	4.6	---	---	100		4.4	2.7
22	330	5.0	---	---	100		5.0	

Table 43

Narsarsuak, Greenland (61.2°N, 45.1°W)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	<360	(3.8)			3.9	(2.6)		
01	<360	4.1			3.6	(2.6)		
02	360	3.8			4.0	(2.6)		
03	(380)	(3.6)			3.7	(2.6)		
04	---	(1.2)			4.2	---		
05	(350)	(4.7)	---	---	4.0	(2.8)		
06	(350)	4.8	290	3.9	---	4.3	(2.9)	
07	380	4.6	270	(4.1)	120	---	3.5	2.8
08	360	5.1	240	4.2	110	3.1		2.7
09	380	(5.1)	240	4.2	120	---		(2.7)
10	420	5.4	230	4.3	(120)	3.2		2.7
11	410	5.7	<240	4.4	120	---		2.6
12	430	5.5	240	4.4	120	---		2.6
13	430	5.8	240	(4.4)	110	---		2.6
14	420	5.5	240	(4.4)	110	(3.2)		2.6
15	420	(5.5)	<250	4.2	110	3.1		2.6
16	440	5.5	250	4.1	110	(2.9)		2.7
17	380	(5.3)	250	(4.1)	110	(2.9)		2.7
18	360	(5.2)	260	3.7	120	(2.5)	3.9	(2.7)
19	310	(5.1)	270	---	120	1.9	3.4	(2.8)
20	320	(1.9)	---	---	---	4.0	(2.8)	
21	310	(5.0)	---	---	---	5.8	(2.7)	
22	320	(1.5)	---	---	---	5.8	(2.7)	
23	(310)	(1.6)	---	---	---	4.0	(2.7)	

Time: 15.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 45

Slough, England (51.5°N, 0.6°W)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	5.3			2.4	2.6		
01	295	5.0			2.6	2.6		
02	300	4.8			2.8	2.6		
03	290	4.5			2.9	2.6		
04	300	4.2	300#	2.5#	135	1.4	3.8	2.8
05	310	4.6	260	3.4	125	2.0	4.0	2.9
06	320	4.9	250	3.9	120	2.4	4.3	3.0
07	345	5.5	240	4.3	115	2.8	4.6	2.9
08	365	5.8	240	4.5	115	3.1	4.6	2.9
09	370	6.2	235	4.7	115	3.3	4.6	2.8
10	380	6.5	225	4.8	115	3.4	4.6	2.8
11	390	6.5	230	4.9	115	3.5	4.8	2.8
12	370	6.6	230	4.9	115	3.5	4.8	2.8
13	375	6.5	235	4.9	115	3.6	4.7	2.8
14	355	6.3	230	4.8	115	3.5	4.6	2.8
15	355	6.8	240	4.8	115	3.4	4.5	2.8
16	330	6.8	240	4.6	115	3.1	4.5	2.9
17	305	7.0	245	4.3	120	2.9	3.9	3.0
18	285	7.1	255	3.9	120	2.4	3.5	3.0
19	270	7.1	265	3.4	135	1.9	2.6	2.9
20	260	7.1	---	---	1.6#	2.6	2.9	
21	260	6.7	---	---	---	2.8		
22	280	6.3	---	---	---	2.4	2.7	
23	285	5.6	---	---	---	2.2	2.6	

Time: 0.0°.

Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 47

Delhi, India (28.6°N, 77.1°E)							May 1951	
Time	*	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	320	4.8						
01	---	---						
02	---	---						
03	---	---						
04	290	5.1						
05	290	5.7						
06	280	6.6						
07	280	7.8						
08	290	8.4						
09	300	9.2						
10	320	9.9						
11	320	10.7						
12	320	11.7						
13	320	12.4						
14	320	12.7						
15	320	12.2						
16	320	11.8						
17	310	10.8						
18	300	10.2						
19	310	9.5						
20	300	8.4						
21	320	7.2						
22	320	6.0						
23	320	5.5						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

*Average values; other columns, median values.

Table 44

Fraserburgh, Scotland (57.6°N, 2.1°W)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	295	5.1						2.6
01	300	5.0						2.6
02	305	4.8						2.6
03	305	4.1						2.6
04	305	4.0	295	2.7	135	1.6	2.3	2.7
05	285	4.4	250	3.2	120	2.1	2.6	2.5
06	335	4.8	245	3.7	110	2.4		2.8
07	400	5.1	235	4.0	110	2.8		2.8
08	410	5.4	230	4.3	110	3.0		2.8
09	400	5.7	230	4.5	105	3.2		2.6
10	410	5.9	230	4.6	105	3.3		2.7
11	400	6.1	225	4.6	105	3.3		2.9
12	400	6.1	225	4.8	105	3.4		2.9
13	390	6.0	225	4.7	110	3.4		2.9
14	380	6.0	230	4.7	110	3.3		2.8
15	360	6.0	230	4.7	110	3.3		2.8
16	360	6.1	235	4.6	110	3.2		2.8
17	315	6.4	240	4.2	110	3.0		2.9
18	300	6.3	250	3.7	120	2.5		2.5
19	270	6.2	260	3.0#	135	2.1		2.9
20	265	6.3	140	1.8				2.9
21	275	6.1						2.8
22	285	5.9						2.7
23	295	5.4						2.6

Time: 0.0°.

Sweep: 0.67 Mc to 15.0 Mc in 4 minutes.

*Average values except foF2 and foE, which are median values.

#One or two observations only.

Table 47

Calcutta, India (23.6°N, 88.4°E)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	240	7.8						3.1
01	240	7.4						
02	(240)	(5.8)						3.2
03	(210)	(5.2)						
04	(210)	(5.3)						
05	---	---						
06	---	7.4						
07	(210)	8.7						
08	(210)	(9.5)						
09	(240)	(9.5)						
10	(240)	(9.5)						
11	(240)	(9.5)						
12	---	---						
13	---	---						
14	---	---						
15	---	---						
16	---	---						
17	(270)	(8.8)						
18	240	(9.5)						
19	240	(9.2)						
20	240	(9.4)						
21	(240)	(9.4)						
22	240	9.0						
23	240	8.4						

Time: Local.

Bombay, India (19°5'N, 73°0'E)

Table 42

May 1951

Time	*	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07		3.0	7.5					
08		360	9.0					
09		390	9.5					
10		390	10.5					
11		420	11.5					
12		450	12.5					
13		480	13.2					
14		480	14.0					
15		(450)	(14.0)					
16		390	(14.0)					
17		390	(13.9)					
18		390	13.3					
19		390	12.3					
20		360	10.4					
21		360	8.9					
22		360	8.0					
23		340	7.4					

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 51

May 1951

Time	*	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06		360	6.4					
07		390	8.5					
08		450	9.7					
09		510	10.1					
10		520	10.5					
11		540	10.2					
12		540	9.9					
13		540	10.1					
14		540	10.2					
15		(510)	(11.0)					
16		540	11.4					
17		480	11.4					
18		480	11.3					
19		480	11.2					
20		480	11.0					
21		480	10.6					
22		480	9.2					
23								

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 53

May 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	280	4.7						2.8
01	280	4.2						2.8
02	300	4.2						2.9
03	270	4.3						3.0
04	280	3.8						2.9
05	300	3.6						2.9
06	300	3.8						2.7
07	250	7.1	---	---	2.0	2.9	3.0	
08	250	9.5	230	115	2.6	3.5	3.2	
09	250	10.1	240	4.3	110	3.0	3.2	
10	250	10.3	230	4.6	110	3.3	3.2	
11	260	9.9	240	4.8	110	3.4	3.2	
12	290	10.5	220	5.0	110	3.5	3.1	
13	270	10.7	210	4.8	110	3.5	3.1	
14	260	10.2	210	4.9	110	3.4	3.1	
15	290	9.9	240	4.8	110	3.4	3.1	
16	260	10.8	250	4.4	110	3.4	3.1	
17	250	10.9	---	---	2.3	4.1	3.0	
18	250	10.3	---	---	4.2	3.2	3.1	
19	230	8.5			3.8	3.0	3.0	
20	240	7.0			3.5	2.9	3.0	
21	250	6.2			3.1	2.8	3.0	
22	260	5.2			3.0	2.9	3.0	
23	260	4.9			2.4	2.9	3.0	

Time: 157°50'W.

Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Table 43

May 1951

Madras, India (13°0'N, 80°2'E)

Table 50

May 1951

Time	*	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07		360	7.8					
08		390	9.0					
09		420	9.6					
10		420	10.0					
11		450	10.0					
12		470	10.1					
13		480	10.6					
14		480	11.2					
15		480	11.5					
16		480	11.9					
17		480	12.2					
18		450	12.0					
19		450	11.7					
20		420	(10.1)					
21		---	(9.8)					
22		---	(9.5)					
23		230						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 52

Singapore, British Malaya (1.3°N, 103.8°E)

May 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	230	9.2						3.4
01	225	7.6						3.1
02	230	5.6						2.5
03	245	4.8						2.6
04	240	5.8						3.0
05	240	3.2						3.1
06	270	4.8						2.8
07	240	8.5						3.0
08	230	10.4	230	215	115	2.5	3.7	2.9
09	245	10.9	205	(4.7)†	115	3.5	4.4	2.6
10	270	(11.1)	205	(4.7)†	115	3.5	4.4	2.6
11	295	(10.9)	200	4.8	110	3.5	4.4	2.5†
12	310	(10.5)	200	4.9	110	(3.6)†	4.4	(2.5)
13	300	(10.6)	200	4.8	125	3.1†	4.7	2.7
14	285	11.2	200	(4.6)†	105	3.3†	4.4	2.4
15	250	(11.1)	205	105	105	(3.3)	4.2	2.5
16	220	(11.1)	210	110	110	3.0	3.7	2.6
17	240	(11.4)	210	115	115	2.6	3.3	2.6
18	250	(11.4)	210	115	115			3.1†
19	250	11.1	210	111	111			3.1†
20	240	11.1	210	110	110			(3.0)†
21	225	(10.9)	210	105	105			2.8
22	225	(10.2)	210	105	105			3.3
23	230	(9.5)	210	105	105			4.0

Time: 105.0°E.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

* Average values except to F₂ and fEs, which are median values.

† One or two observations only.

Table 54

Brisbane, Australia (27.5°S, 153.0°E)

May 1951

Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	3.0						2.9
01	270	4.0						2.9
02	270	4.2						2.9
03	270	4.2						3.0
04	240	4.0						3.0
05	250	3.5						3.0
06	250	3.1						3.1
07	220	6.6						3.4
08	230	8.0	230	4.2	110	2.7	3.4	
09	250	8.6	230	4.5	110	3.0	3.3	
10	250	9.5	220	4.7	105	3.3	3.3	
11	250	9.2	220	4.7	105	3.5	3.3	
12	250	9.0	220	4.7	105	3.5	3.3	
13	260	8.7	220	4.7	105	3.5	3.3	
14	260	8.8	210	4.5	110	3.3	3.2	
15	240	9.1	230	4.3	110	3.1	3.2	
16	230	9.1	230	4.3	110	3.0	3.3	
17	220	7.7	210	4.1	110	2.6	3.0	
18	220	6.0	210	4.1	110	2.6	3.0	
19	230	5.3	210	4.1	110	2.6	3.0	
20	240	4.9	210	4.1	110	2.6	3.0	
21	250	4.5	210	4.1	110	2.6	3.0	
22	250	4.3	210	4.1	110	2.6	3.0	
23	250	4.1	210	4.1	110	2.6	3.0	

Time: 155.0°E.

Sweep: 1.8 Mc to 16.0 Mc in 55 seconds.

Table 55

Cunberra, Australia (35.3°S, 149.0°E)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	3.8					2.5	2.9
01	260	4.0					2.5	2.9
02	260	4.0					2.5	2.9
03	260	4.0					2.2	3.0
04	250	4.0					2.4	3.1
05	220	3.6					2.0	3.2
06	(210)	3.1						3.0
07	230	4.9	(130)	1.8			3.4	
08	220	6.9	---	---	110	2.3	3.5	
09	220	7.6	220	(4.0)	100	2.9	3.5	
10	240	8.0	220	(4.5)	100	3.2	3.5	
11	240	8.0	210	(4.5)	100	3.3	3.5	
12	240	8.0	200	(4.4)	100	3.3	3.5	
13	250	8.0	210	(4.2)	100	3.3	3.4	
14	240	8.5	220	(4.2)	100	3.1	3.4	
15	230	8.3	220	(3.8)	100	2.9	3.4	
16	220	8.0	---	---	110	2.4	3.5	
17	210	7.3	---	---	<1.6	3.0	3.4	
18	210	6.0				2.6	3.2	
19	220	5.2				2.4	3.2	
20	230	4.5				2.5	3.2	
21	210	4.3				2.4	3.0	
22	215	4.0				2.4	2.9	
23	250	4.0				2.4	3.0	

Time: 150.0°E.

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Table 57

Christchurch, New Zealand (43.6°S, 172.7°E)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	290	3.3					3.0	2.9
01	290	3.4					2.8	2.9
02	300	3.3					3.0	2.8
03	280	3.3					3.2	2.9
04	280	3.3					3.2	3.0
05	260	2.8					3.0	3.1
06	250	2.4					3.3	3.0
07	250	3.8			1.3	2.7	3.2	
08	240	6.0	260	3.1		1.8	3.6	3.4
09	240	7.0	240	3.6		2.5	4.1	3.4
10	250	7.3	240	4.0		2.7	3.5	3.3
11	250	7.6	230	4.2		2.9	4.2	3.3
12	260	8.1	240	4.3		3.0	4.4	3.3
13	260	8.2	240	4.2		3.0	4.1	3.2
14	260	8.0	250	4.0		2.8	4.1	3.3
15	250	8.3	250	3.6		2.4	3.8	3.3
16	240	7.8	250	3.0		2.0	3.2	3.3
17	240	6.6			1.4	3.2	3.2	
18	250	5.7				2.5	3.0	
19	250	5.3				2.9	3.0	
20	250	4.6				2.7	3.0	
21	260	4.2				2.7	2.9	
22	270	4.0				3.0	2.8	
23	280	3.5				2.8	2.9	

Time: 172.5°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 59

Kiruna, Sweden (67.8°N, 20.5°E)							April 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	(310)	(1.3)					3.4	
01	(330)	---					3.9	
02	360	(3.5)					3.9	
03	(335)	(3.7)					3.0	
04	(330)	3.9	---	---	110	1.8	2.0	
05	(330)	4.0	240	---	110	1.8	2.0	
06	(310)	4.5	255	---	110	2.2		
07	345	4.9	240	3.8	105	2.4		
08	345	5.1	230	4.0	105	2.6		
09	365	5.2	230	4.0	105	2.8		
10	350	5.4	220	4.2	105	2.8		
11	350	5.4	215	4.1	100	2.9		
12	310	5.6	220	4.2	100	2.9		
13	310	5.6	225	4.1	105	2.8		
14	320	5.4	230	4.0	105	2.8		
15	335	5.6	235	3.7	105	2.5		
16	300	5.3	245	3.7	110	2.4	2.2	
17	(305)	5.1	250	---	110	2.1	2.4	
18	(320)	5.1	255	---	110	1.2	3.2	
19	(260)	5.0	250	---	110	1.2	2.2	
20	300	4.6	---	---	105	---	2.9	
21	300	4.5					3.2	
22	305	4.1					3.6	
23	(310)	(4.0)					4.0	

Time: 15.0°E.

Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

Table 56

Hobart, Tasmania (42.8°S, 147.4°E)							May 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	260	3.0					2.1	2.9
01	280	2.8					2.5	2.9
02	275	2.6					2.3	2.8
03	265	2.5					2.7	2.8
04	260	2.5					2.6	2.9
05	210	2.5					2.6	3.0
06	215	2.2					2.7	3.0
07	250	3.5					2.5	3.0
08	250	5.6			110	2.1	2.7	3.3
09	220	7.0			100	2.6	2.6	3.3
10	230	7.5	200	4.2	100	3.0	2.7	3.2
11	210	8.0	200	4.4	100	3.1	2.6	3.2
12	250	8.3	200	4.4	100	3.3	2.7	3.2
13	240	8.5	200	4.4	100	3.3	2.9	3.1
14	210	8.5	210	4.4	100	3.0	2.5	3.1
15	230	8.0	210	3.5	100	2.8	2.8	3.2
16	220	8.5	210	3.5	110	2.2	2.7	3.2
17	200	7.5				1.5	2.7	3.2
18	210	6.4					2.8	3.0
19	220	5.3					2.5	3.1
20	220	4.3					2.9	2.9
21	215	3.7					2.9	2.9
22	250	3.5					2.9	2.8
23	250	3.2					2.5	2.8

Time: 150.0°E.

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Table 60

Reykjavik, Iceland (64.1°N, 21.8°W)							April 1951	
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	(100)	(3.4)					1.6	---
01	380	3.4					4.0	(2.6)
02	(370)	(3.2)					4.8	(2.6)
03	(370)	(3.1)					4.3	(2.5)
04	(330)	(3.2)					4.6	(2.7)
05	(265)	(3.5)	---	---	---	---	4.2	(2.8)
06	320	4.1	---	---	100	---		2.8
07	360	4.5	260	---	100	(2.4)		2.9
08	400	4.8	250	3.8	100	(2.6)		2.7
09	380	5.0	250	4.0	100	2.8		2.8
10	420	5.0	230	4.1	100	---		2.7
11	410	5.1	230	4.2	100	---		2.8
12	430	5.2	230	4.2	100	(3.0)		2.7
13	400	5.4	230	4.2	100	(3.2)		2.7
14	390	5.5	230	4.3	100	(3.1)		2.8
15	370	5.2	220	4.1	100	(3.0)		2.8
16	350	5.4	240	4.1	100	2.8		2.8
17	350	5.2	250	3.9	100	2.6	3.2	2.8
18	300	5.0	260	---	100	2.4	3.8	2.9
19	300	5.0	270	---	100	2.0	3.8	2.9
20	300	4.6	---	---	100	---	4.0	2.9
21	340	4.0					4.4	2.8
22	350	3.6					4.6	2.6
23	350	3.8					4.3	2.5

Time: 154.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Table 61

Fraeirburgh, Scotland (57.6°N, 2.1°W)

April 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	335	3.9				2.5		
01	335	(3.6)				2.5		
02	330	(3.4)				2.4		
03	325	(3.0)				2.5		
04	310	(3.1)	350#		150#	(1.2)#		(2.5)
05	305	3.5	275#	2.8#	135	1.6		2.8
06	280	4.1	255	(3.4)	130	2.1		2.9
07	300	4.5	245	3.6	120	2.4		3.0
08	385	4.8	235	4.0	120	2.7		2.9
09	380	5.2	235	4.2	115	3.0		2.9
10	375	5.6	230	4.4	115	3.2		2.8
11	350	5.7	235	4.5	115	3.3		2.8
12	365	6.0	230	4.6	115	3.3		2.8
13	360	6.1	230	4.6	115	3.2		2.8
14	340	6.4	235	4.5	115	3.2		2.9
15	320	6.4	235	4.4	120	3.0		2.9
16	310	6.6	240	4.2	120	2.8		2.9
17	305	6.4	250	3.9	120	2.5		2.9
18	275	6.1	260	(3.5)	130	2.2		2.9
19	260	5.9			150	2.0		3.0
20	280	6.4			150#	1.7#		2.9
21	285	6.0						2.9
22	300	5.1						2.8
23	325	4.5						2.6

Time: 0.0°.

Sweep: 0.67 Mc to 15.0 Mc in 4 minutes.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 62

Slough, England (51.5°N, 0.6°W)

April 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	4.0						2.2
01	315	3.8						2.6
02	315	3.6						2.6
03	310	3.4						2.6
04	300	3.1						3.0
05	290	3.3	300#		2.7#	150	1.6	3.8
06	275	4.3	255		3.5	125	2.1	4.0
07	315	5.0	245		3.8	120	2.5	4.0
08	340	5.3	230		4.3	120	2.9	4.1
09	365	5.6	225		4.5	115	3.1	4.3
10	350	6.2	225		4.6	115	3.3	4.0
11	345	6.6	225		4.7	115	3.4	4.1
12	345	6.7	220		4.8	115	3.4	4.2
13	335	6.8	230		4.8	115	3.4	4.6
14	320	6.9	230		4.7	120	3.3	4.0
15	310	7.2	235		4.5	120	3.2	4.2
16	280	7.1	235		4.4	120	2.9	3.8
17	265	7.3	245		4.0	120	2.6	3.5
18	265	7.4	255		3.6	130	2.1	2.6
19	250	7.2					145	1.8
20	255	6.6						2.3
21	260	5.8						2.8
22	275	4.8						2.6
23	300	4.4						2.6

Time: 0.0°.

Sweep: 0.55 Mc to 16.5 Mc in 5 minutes, automatic operation.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 63

Rome, Italy (41.9°N, 12.5°E)

April 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	>5.0				---		
01	300	4.8				---		
02	300	>4.6				---		
03	280	4.2				---		
04	300	4.2				(3.2)		
05	(230)	4.4	---	---		(3.1)		
06	250	5.0	---	---		---		
07	235	5.8	---	3.0	---	---		
08	(255)	6.1	---	4.1	---	---		
09	(270)	(7.2)	---	4.1	---	---		
10	(255)	(7.4)	---	4.0	---	---		
11	(270)	8.4	---	4.0	---	---		
12	280	8.2	---	4.1	---	(3.6)		
13	270	8.5	---	4.0	---	(3.6)		
14	270	>8.4	---	4.6	---	(3.6)		
15	260	8.4	---	4.5	---	(3.6)		
16	260	8.3	---	3.5	---	(3.6)		
17	250	8.5	230	3.3	---	(3.7)		
18	240	8.5	---	---		(3.8)		
19	220	8.4	---	---		(3.8)		
20	220	6.8	---	---		---		
21	245	5.3	---	---		---		
22	280	5.2	---	---		(3.1)		
23	310	5.2	---	---		---		

Time: 15.0°E.

Sweep: 0.9 Mc to 14.0 Mc in 40 seconds.

Table 64

Singapore, British Malaya (1.3°N, 103.8°E)

April 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	225	10.7						3.2
01	210	9.5						3.2
02	230	6.4						3.0
03	245	6.0						3.0
04	245	6.5						3.2
05	260	4.1						3.1
06	265	5.0						2.5
07	240	8.8			130#	2.6		3.0
08	225	10.9			130#	3.1		3.0
09	230	(11.5)	200#		110#	3.5#		4.4
10	240	(11.0)	210					3.0#
11	315	(10.4)	205					2.4
12	275	10.8	205		4.8			(4.2)
13	290	(10.9)	200		4.8			(3.9)
14	275	(11.0)	200	(4.9)#				4.4
15	245	(11.4)	(200)#					(2.5)
16	245	(11.4)	200#		120	3.1		3.8
17	250	(11.6)			120#	2.6		3.8
18	256	(11.4)						3.5
19	265	---						
20	266	(11.5)						
21	225	(11.6)						
22	200	(11.2)						
23	205	(10.8)						

Time: 105.0°E.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 65

Falkland Is. (51.7°S, 57.8°W)

April 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	360	3.8				2.5		
01	360	3.6				2.5		
02	350	3.7				2.5		
03	340	3.7				2.6		
04	310	3.8				2.7		
05	290	3.6				2.7		
06	290	3.4				2.8		
07	240	5.9	160#	2.2		3.1		
08	230	7.6	140	2.4		3.3		
09	240	8.5	140	2.6	3.8	3.3		
10	240	9.8	---	4.5#	130	2.8	3.3	
11	240	10.6	220	4.4	130	2.8	4.3	
12	240	10.2	230	4.1	120	2.9	4.6	
13	230	9.2	220	4.0	120	3.0	4.0	
14	240	8.4	230#	3.9#	120	2.9	3.2	
15	240	8.0	220#	3.2#	130	2.6	2.8	
16	240	7.6	160	2.4	2.8	3.3		
17	240	7.0			2.8	3.3		
18	240	6.6			2.8	3.3		
19	250	5.4			3.1			
20	270	4.6			3.0			
21	300	4.1			2.7			
22	340	3.8			2.6			
23	360	3.8			2.5			

Time: 60.0°W.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except foF2 and fEs, which are median values.

#One or two observations only.

Table 66

Rome, Italy (41.9°N, 12.5°E)

March 1951

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(280)	4.2						(3.1)
01	290	4.2						(3.2)
02	280	4.0						(3.2)
03	280	4.0						(3.2)
04	270	3.8						(3.3)
05	265	3.8						(3.3)
06	240	4.2						(3.5)
07	230	5.8						3.7
08	230	6.0						(3.8)
09	(215)	(8.0)						(3.7)
10	250	>8.0						(3.6)
11	260	(8.4)						(3.5)
12	260	>8.4						(3.5)
13	260	>8.4						(3.6)
14	250	>8.3						(3.6)
15	210	8.4						(3.6)
16	210	>8.4						(3.7)
17	230	>8.0						(3.8)
18	220	>7.4						(3.7)
19	220	>6.4						(3.6)
20	235	>5.6						(3.4)
21	260	5.3						(3.4)
22	(210)	5.0						(3.4)
23	275	4.4						

Table 67

Time	March 1951						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs
	(M3000)F2						
00	340	5.0					2.6
01	340	4.8					2.6
02	330	4.8					2.6
03	330	4.7					2.6
04	320	4.6					2.6
05	330	4.2					2.6
06	270	4.9	300#	3.4#	150#	2.3	2.9
07	250	6.2	270#	3.6#	160	2.4	3.1
08	260	6.5	250#	4.1	140	2.6	4.0
09	270	7.2	230	4.5	120	2.9	4.4
10	280	8.0	240	4.8	120	3.0	4.8
11	270	8.8	230	4.5	120	3.1	4.8
12	270	9.8	230	4.5	120	3.1	4.8
13	270	9.2	220	4.6	120	3.1	4.0
14	260	8.0	230	4.4	120	3.1	4.0
15	250	7.4	230	4.2	120	2.9	3.5
16	250	7.0	230	3.8	130	2.6	3.0
17	250	6.8			130#	2.3#	2.9
18	250	6.4					3.3
19	260	6.6					3.2
20	270	6.4					2.6
21	280	5.8					2.8
22	300	5.4					2.6
23	320	5.2					2.6

Time: 60.0%.

Sweep: 2.2 Mc to 16.0 Mc in 1 minute.

*Average values except to F2 and fEs, which are median values.

#One or two observations only.

Table 69

Time	February 1951						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs
	(M3000)F2						
00	<330	3.6					---
01	<350	3.4					---
02	<380	3.4					---
03	—	3.2					---
04	—	2.9					---
05	—	—					---
06	—	—					---
07	245	4.0					(3.1)
08	230	5.8	225	---			(3.5)
09	240	6.6	225	---			3.4
10	240	7.2	230	3.8			3.5
11	245	7.4	220	4.0			3.4
12	250	7.4	220	3.9			3.4
13	250	7.5	225	4.0			3.5
14	250	7.6	225	4.0			3.4
15	240	7.8	230	---			3.5
16	240	7.2	225	---			3.5
17	230	6.9	220	---			(3.4)
18	230	5.8					(3.2)
19	250	5.1					(3.2)
20	275	4.4					---
21	280	3.8					---
22	<310	3.6					---
23	(320)	3.6					---

Time: 0.0%.

Sweep: 3.1 Mc to 11.8 Mc in 1 minute 15 seconds.

Table 70

Time	February 1951						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs
	(M3000)F2						
00	—	(5.4)	200	4.0	110	2.9	1.5
01	(350)	—	245		110	2.8	1.5
02	(320)	—	215	4.0	110	2.7	1.5
03	(350)	(5.8)	220		110	3.0	1.5
04	(350)	(5.8)	220	4.0	110	3.0	1.5
05	(350)	(5.2)	220	3.6	110	2.7	1.5
06	340	(5.3)	230	3.7	110	1.9	1.5
07	350	5.5	220	3.5	120	1.8	1.5
08	300	5.5	230	3.4	140	1.5	2.5
09	300	5.8	250				2.4
10	300	5.4	250				1.5
11	325	5.2	250				1.5
12	270	(5.3)					1.5
13	270	(4.8)					1.5
14	275	(4.8)					1.5
15	270	(3.6)					1.5
16	300	(3.2)					1.5
17	300	(2.6)					1.5
18	300	(3.5)					1.5
19	330	(3.6)	250				1.5
20	310	(4.2)	250				1.5
21	300	4.6	250	3.4			1.5
22	350	(4.8)	250	3.7	125	2.5	1.5
23	(325)	(5.7)	230	3.9	120	2.6	1.5

Time: 0.0%.

Sweep: 1.5 Mc to 16.3 Mc in 1 minute.

* Data observed from 14th through 28th, only.

Table 68

Time	February 1951						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs
	(M3000)F2						
00	265	3.0					2.9
01	250	3.0					2.9
02	260	3.0					2.9
03	250	2.7					2.9
04	260	2.3					3.0
05	240	2.1					2.1
06	245	2.2					3.1
07	220	3.8	200	---	100	1.7	2.2
08	220	5.8	200	---	100	2.0	3.4
09	220	6.3	200	---	100	2.4	3.5
10	220	7.2	200	3.8	100	2.6	3.5
11	220	7.4	190	3.8	100	2.7	3.5
12	220	7.2	190	3.8	100	2.8	3.8
13	230	7.4	200	---	100	2.8	3.6
14	230	7.4	200	---	100	2.6	3.5
15	220	7.4	200	---	100	2.8	3.6
16	220	7.1	200	---	100	2.1	3.6
17	210	8.0	190	---	100	1.7	3.6
18	215	5.5	200	---			3.5
19	220	4.7					3.4
20	230	3.8					3.1
21	240	3.2					3.0
22	255	3.1					3.0
23	270	3.0					3.0

Time: 0.0%.

Sweep: 1.5 Mc to 16.0 Mc in 1 minute 30 seconds.

Table 71

Time	January 1951						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs
	(M3000)F2						
00	(285)	3.4					---
01	(250)	3.8					(3.4)
02	(270)	3.6					(3.4)
03	270	3.8					3.3
04	255	3.8					3.4
05	250	3.4					3.4
06	---	(3.2)					---
07	(230)	3.4					(3.7)
08	210	5.8					---
09	210	6.6					4.0
10	200	7.6					(4.0)
11	220	8.0					(4.0)
12	220	7.6					3.9
13	220	7.2					3.8
14	220	7.0					3.8
15	220	6.5					3.8
16	210	6.2					3.9
17	200	6.0					3.8
18	220	4.9					3.8
19	---	4.6					---
20	---	---					---
21	---	---					---
22	---	4.2					---
23	---	---					---

Time: 15.0%.

Sweep: 0.9 Mc to 14.0 Mc in 40 seconds.

TABLE 73
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

N4
Form adopted June 1946
National Bureau of Standards
(Institution) E. J. W.

H^*F2 , Km
(Characteristic)
Observed at Washington, D. C.

October, 1951
(Month)

Lat 38°20'N, Long 77°10'W

Day	75°W Mean Time																	
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
1	260 (280) ^S	250, 5	250	250 (260) ^S	250	250 (260) ^S	250	250 (260) ^S	250	250	250	250	250	250	250	250	250	250
2	240 (280) ^S	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
3	270	290	280	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
4	280	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270
5	270	270	260	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
6	260 (280) ^S	250	240	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
7	280	290	280	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
8	280 (280) ^S	230	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
9	260	270	300	(330) ^F	5	5	5	5	5	5	5	5	5	5	5	5	5	5
10	270	280	300	280	280	280	280	280	280	280	280	280	280	280	280	280	280	280
11	260	220	250	280	280	280	280	280	280	280	280	280	280	280	280	280	280	280
12	280 (280) ^A																	
13	290 (290) ^S	280	280	280	280	280	280	280	280	280	280	280	280	280	280	280	280	280
14	250	250	(220) ^S	(220) ^F														
15	300	290	270	250	250	250	250	250	250	250	250	250	250	250	250	250	250	250
16	280	270	290	290	290	290	290	290	290	290	290	290	290	290	290	290	290	290
17	310 (310) ^S	320 (310) ^F	(320) ^F	(320) ^S														
18	(390) ^S	(390) ^F	(390) ^F	(390) ^S														
19	(390) ^S	(390) ^F	(390) ^F	(390) ^S														
20	(310) ^S	(310) ^F	(310) ^F	(310) ^S														
21	330 (310) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	(320) ^S	
22	300	280	270	260	260	260	260	260	260	260	260	260	260	260	260	260	260	260
23	(320) ^A	(280) ^A																
24	(310) ^A	(280) ^S																
25	(310) ^A	(280) ^A																
26	(320) ^S	(320) ^A	(320) ^A	(320) ^S														
27	(320) ^S	(280) ^S																
28	300	(320) ^S																
29	E	K	A	K	E	K	A	K	E	K	A	K	A	K	A	K	A	K
30	(320) ^S	(290) ^S	(290) ^A	(290) ^S														
31	270	(280) ^S	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270
Median	300 (280)	280	280	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270
Count	21	30	30	31	30	30	30	31	30	30	30	30	30	30	30	30	30	30

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual Automatic

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Form adopted June 1946
National Bureau of Standards
 (Institution) **E. J. W.**
 Scaled by: **Mc C.**
 Calculated by: **Mc C.**

TABLE 74
IONOSPHERIC DATA

foF₂ **Mc** **October**, 1951
 (Characteristic) (Unit) (Month)

Observed at **Washington, D. C.**

Lat **38°7'N**, Long **77°10'W**

Day	75°W Mean Time																								
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
1	39.5	(36) ²	(34) ²	31 ²	30 ²	28 ²	25 ²	24	25.4 ^H	26	26.6	27.2	27.4	27.6	27.6	28.2	28.6	28.8	29.0	28.8	28.6	28.5	28.4	28.3	
2	46.5	(44) ²	38.5	33.5	(28) ²	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	
3	40	37	34	29	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27	
4	(38) ²	(37) ²	35 ²	35 ²	(32) ²	(30) ²	38 ²	6.2 ^H	7.4 ^H	8.8	8.7	8.2	8.0	8.4	8.8	8.6	8.5	8.5	8.5	8.5	8.5	8.5	8.5		
5	(42) ²	38 ²	(37) ²	(37) ²	(30) ²	(29) ²	(28) ²	7.0	8.2	8.1	8.1	8.4 ^H	8.8	8.6	9.0	9.2 ^H	9.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
6	39.5	36	33	31	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	
7	40	38	39	38	35	33	35 ²	5.4	6.1	6.4 ^F	7.4	7.8	8.4	9.0	8.4	9.0	9.2	10.4	10.2	(9.8) ^S	8.2	7.6 ^H	5.7	5.7	
8	56	5.3 ^P	4.2	[3.6] ²	3.0 ²	3.0 ²	(2.5) ²	(3.1) ^F	6.0 ^S	8.0	11.0	8.5	9.8	10.6	10.0	10.0	10.2	9.7	9.1 ^P	8.2 ^S	(7.2) ^S	5.9	4.6 ^F		
9	38 ^F	(3.5) ^P	2.7 ^F	F	S	2.8 ^F	F	5.7	6.3 ^F	6.8	6.6 ^F	7.4	8.0	8.4	7.8	7.6	7.8	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
10	42	(38) ²	(37) ²	3.5 ^E	(34) ^F	(29) ^F	2.9	5.2 ^S	6.4	8.0	8.5	8.5	8.6	8.7	9.0	8.8	8.6	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
11	40 ^J	3.8	3.0 ^J	2.8 ^S	3.5 ^S	3.0 ^S	2.9 ^S	5.9 ^S	7.3	8.4	9.0	9.3	9.6	10.0	9.3	9.4	8.8	8.2 ^S	7.6 ^H	6.5 ^F	4.2 ^P	4.2 ^F	4.2 ^J		
12	37	3.5	3.5	3.3	2.9 ^J	2.7 ^J	3.2 ^J	6.0 ^J	6.7 ^F	8.4	8.4	9.0	8.6	9.2 ^P	8.7	8.6	8.5	8.6 ^S	8.6 ^P	(7.0) ^S	5.3 ^S	4.6 ^F	4.1 ^P		
13	(42) ²	(44) ²	4.4 ^F	(44) ²	(36) ²	(36) ²	2.6 ²	3.0 ²	4.7	5.7 ^V	6.6 ^H	7.2	7.8	7.5	7.6	7.7	7.8	7.2	7.0	6.8	6.0	5.3 ^S	4.7	4.2	
14	43.5	4.4 ^J	2.9 ^P	2.5 ^J	(2.3) ^J	(2.1) ^P	3.2	6.3	6.6	7.8	7.9	8.2	8.7	8.6	8.8	8.6	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
15	(3.2) ^F	(3.5) ²	3.0 ^J	3.0 ^J	(3.3) ²	3.0 ²	3.2 ²	6.0 ²	6.7 ^F	8.4	8.4	9.0	8.6	9.2 ^P	8.7	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	
16	47.5	4.2 ^J	4.2 ^J	3.8 ^F	3.7 ^J	3.8 ^J	3.0 ^J	5.2 ^S	6.8 ^S	7.6	8.5	9.8	10.0	9.8	10.0	9.8	10.0	9.4	9.3	9.7	7.6 ^J	7.2	6.6 ^J	5.8 ^J	
17	46 ^F	(3.2) ^J	(3.0) ^F	(2.5) ^J	(2.5) ^F	(2.5) ^J	(2.8) ^F	3.8 ^K	4.2 ^K	5.2 ^K	5.4 ^K	5.6 ^K	6.0 ^K	6.0 ^K	6.0 ^K	6.3 ^K	6.6 ^K	7.2 ^K	7.4 ^K	6.0 ^S	4.5 ^K	3.2 ^F	3.0 ^K		
18	F ^K	F ^K	1.6 ^F	[1.6] ^K	*[1.6] ^K	*[1.6] ^J	F ^J	2.6 ^J	5.4	6.6	7.8	8.2	8.7	8.6	8.6	8.7	8.8	9.0	7.9 ^J	7.2 ^J	5.6 ^J	3.7 ^J	3.6 ^F		
19	27 ^J	[28] ^F	(28) ^J	F	(2.0) ^F	(2.5) ^F	(5.2) ²	6.2 ²	7.4 ^F	[8.6] ^C	9.7	9.8	[9.5] ^C	11.0	11.6	10.4	9.9 ^J	8.3 ^S	(5.1) ^S	(3.6) ^F	(3.0) ^F	(2.8) ^F	(3.5) ^J		
20	33 ^P	(33) ²	(2.8) ^J	(2.6) ^S	(2.6) ^S	(2.6) ^S	3.3 ^F	5.8	7.4	8.4	(7.2) ^H	8.8	9.0	10.0	9.3	9.0	8.4	(6.6) ^S	(6.6) ^S	(3.6) ^S	3.6 ^F	3.5 ^S	3.5 ^S		
21	29 ^F	3.0	3.1	2.4 ^J	2.1	(2.6) ^J	5.8	6.6	C	C	C	C	9.2	9.8	9.3	9.2	8.8	7.2 ^J	6.2	4.8	3.9 ^J	4.1	4.2 ^F		
22	42 ^J	3.9 ^F	3.8 ^F	4.0 ^F	4.0 ^S	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J			
23	(40) ^J	3.5	3.4	3.5	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J	3.0 ^J			
24	3.5	3.4 ^V	3.1	3.2	3.1	3.1 ^F	3.1 ^F	3.4 ^F	5.7	6.9	(8.4) ^H	7.6	8.2	8.4	8.4	8.8	9.2	7.3	6.8	6.0	4.6	4.5 ^S	(3.8) ^S		
25	3.5	3.4	3.2	3.1	3.0 ^F	3.0 ^F	3.0 ^F	3.2	5.7	6.9 ^H	8.0	9.0	9.5	9.2	8.7	8.6	8.4	7.4	5.6 ^F	5.3	A	A	4.0 ^S		
26	40 ^J	(34) ²	(34) ²	3.3 ^P	3.3 ^P	3.2 ^F	3.1 ^F	(3.1) ^P	(3.2) ^P	(3.2) ^P	6.6	7.9	9.1	9.2	9.4	10.3	10.4	10.4	10.3	9.0	7.2 ^J	6.2	5.3	4.4 ^J	
27	39.5	4.2	4.3	4.4	3.5	2.9 ^F	2.8	5.6	6.8	8.0	9.2	9.4	10.0	9.2	9.3	9.0	9.2	8.5 ^S	(8.5) ^S	(7.0) ^J	6.5	5.2 ^F	4.0 ^J	A	
28	33	3.3	3.5	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	
29	E ^K	A ^K	A ^K	E ^K	E ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	10.4 ^K	(11.6) ^K	12.2 ^K	12.4 ^K	E ^K	A ^K	(4.9) ^J		
30	30	28	2.6	2.6 ^F	2.6 ^F	2.3 ^F	2.3 ^F	5.2	6.2 ^S	7.2 ^F	7.4	7.8	8.6	8.3	8.4	8.4	8.4	8.4	8.2	8.1	7.2	6.5	5.2 ^F	4.5 ^F	4.1 ^J
31	3.2 ^F	3.0 ^F	2.8 ^F	2.5 ^F	2.4 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F	2.3 ^F		
Median	3.9	3.4	3.3	3.0	2.8	3.2	3.2	5.6	6.6	7.6	8.2	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	
Count	30	24	30	29	29	30	31	31	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	

Sweep 10 Mc to 25.0 Mc in 0.25 min
 Manual Automatic

foF1 Mc October, 1951
 (Characteristics) (Unit) (Month)

Observed at Washington, D.C.

Lat 38.7°N, Long 77.1°W

TABLE 77
 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
 IONOSPHERIC DATA

Doy	75° N												Mean Time		75° S												
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
1																											
2																											
3																											
4																											
5																											
6																											
7																											
8																											
9																											
10																											
11																											
12																											
13																											
14																											
15																											
16																											
17																											
18																											
19																											
20																											
21																											
22																											
23																											
24																											
25																											
26																											
27																											
28																											
29																											
30																											
31																											
Median																											
Count																											

Sweep 10—Mc to 25.0 Mc in 0.25 min
 Manual Automatic

h' E, Km October, 1951(Units) MonthObserved at Washington, D.C.Lat. 38.7°N, Long. 77.1°W

TABLE 78
IONOSPHERIC DATA

National Bureau of Standards
(Institution), E.J.W.

Scaled by: McC.

Calculated by: McC.

Day	75°W												Mean Time
	00	01	02	03	04	05	06	07	08	09	10	11	
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													
25													
26													
27													
28													
29													
30													
31													
Median													
Count													

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual Automatic

19 27 25 26 28 30 29 25 12

National Bureau of Standards

(Institution)

Scaled by: McC. E.J.W.

fo E, Mc. October, 1951
(Unit) (Month)Observed at Washington, D.C.
Lat. 38.7°N, Long. 77.0°WTABLE 79
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

Day	75°W											Moon Time																
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23				
1									2.2	2.7	A	A	A	A	3.1	3.0	2.6	2.1										
2									2.0	2.5	3.0	3.1	3.2	3.3	3.4	3.1	3.0	2.5	2.0									
3									A	2.6	3.0	B	B	(3.3)P	3.2P	3.9	2.7	2.1										
4									2.1	2.8	A	B	A	A	A	A	A	A										
5										2.7	3.0	3.1		3.3P	[3.3]B	3.2	3.0	2.7	A									
6									2.2	2.6	3.0	3.2P	3.3P	[3.3]B	3.3	3.2	3.0	2.6	(2.1)H									
7									2.1	2.5	3.0	3.1	3.2	[3.2]B	3.2P	3.1	2.9	2.5	2.1									
8									2.1	2.6	2.7	3.0	3.2P	3.3	[3.2]A	3.1	2.8	B	A									
9									2.1	H	(2.7)P	2.9	3.0	3.2P	(3.2)B	3.2	3.0	2.9	2.5	2.0H								
10									A	2.5	2.6P	A	A	B	3.0P	2.9	2.5	2.1										
11									A	2.5	A	A	(3.2)H	3.4P	3.3H	3.2	3.0P	2.6	2.1H									
12									A	A	3.0	3.2	[3.3]A	3.3	3.4H	3.2	3.0	2.6P	1.8H									
13									A	H	(2.3)A	2.5	3.1H	3.2H	3.4H	3.3	3.2P	3.0	2.4P	A								
14									A	P	2.6P	2.9H	(3.2)P	3.2H	(3.3)P	3.1	2.8	2.6H	1.8									
15									2.0P	2.6P	3.0	3.2P	3.2	3.3	3.2	3.2	3.0	A	A									
16									2.4	(2.5)A	2.9P	3.1	3.3	3.3	3.3	3.3	3.2	3.0	2.6P	1.8H								
17									2.0	X	(2.5)A	(2.9)P	3.0X	3.1X	3.2X	3.1X	3.1X	2.9P	2.3X	B	X							
18									2.1	H	(2.3)P	(2.9)A	3.1P	3.3	(3.2)P	(3.2)P	3.0	2.9P	3.0P	2.4	5							
19									2.1P	2.6H	3.0H	[3.2]C	3.3	3.3	3.3	3.3	3.3P	3.0	2.4	A								
20									(1.9)H	2.6H	2.9P	3.1	3.1P	3.2P	3.2	3.1	2.8	2.5	B									
21									A	A	C	C	C	C	3.1	3.1P	2.8	2.4P										
22									A	2.5H	2.9H	(3.0)H	A	A	A	3.1H	2.8	2.4P										
23									2.4H	[2.7]A	3.0H	B	A	A	A	A	A	A	A									
24									A	A	A	A	A	A	A	3.0H	A	A	A									
25									(2.0)H	A	A	A	A	A	A	A	A	A	(2.6)H									
26									B	A	3.1	3.2	3.3P	3.1	2.9H	2.7	2.3											
27									1.9P	2.4P	2.9P	[3.0]A	3.1I	3.2	3.2	3.1	3.0	2.7H	A									
28									5	2.6H	2.9	3.1X	3.2X	3.2X	3.2X	3.1X	3.1X	2.8X	B	X								
29									(2.2)A	A	A	A	A	A	A	A	3.1	2.9P	2.4P									
30									A	2.4P	2.7	3.0	3.2	3.2	3.2	3.2	A	A	A	A								
31									A	2.4H	2.9H	3.1	3.2	(3.3)A	[3.2]A	3.1	2.8	2.5H	2.1	2.3	2.1	2.0	2.3	2.1	1.0			
Median	21	2.5	2.9	3.1	3.0	3.2	3.3	3.4	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	2.5	2.3	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	
Count	17	26	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	0	0

Sweep 10 Mc to 25.0 Mc in 0.25 min
Manual Automatic

TABLE 80
 Central Radio Propagation Laboratory, National Bureau of Standards
 IONOSPHERIC DATA

E.S. Km		Mc Km		October		1951	
(Characteristic)	(Unit)	(Month)	(Month)	Washington, D.C.	Washington, D.C.	Washington, D.C.	Washington, D.C.
Observed at <u>Lot 38.72N, Long 77.10W</u>							
Day	00	01	02	03	04	05	06
1	E	E	E	E	E	E	E
2	E	E	E	E	E	$3.3Y_{11.0}$	2^2
3	E	E	E	E	E	$E_{11.0}$	11.0
4	E	E	E	E	E	$E_{11.0}$	E
5	E	E	E	E	$4.5_{11.0}$	$3^1_{11.0}$	$3^3_{11.0}$
6	$2.4Y_{1.80}$	$3.0Y_{1.00}$	E	E	$2.5_{1.00}$	$E_{1.00}$	E
7	E	E	$2.7_{1.00}$	$3_{1.00}$	$1.7_{1.00}$	$1.5_{1.00}$	E
8	E	E	E	B	E	$4^2_{1.20}$	E
9	E	E	E	E	E	E	E
10	E	E	$3^0_{1.00}$	$2.8Y_{1.00}$	E	$16.6Y_{1.20}$	E
11	E	E	E	E	$4.3Y_{1.30}$	$E_{1.30}$	E
12	$4.0_{1.10}$	$3.2_{1.10}$	$4.5_{1.10}$	$4.3_{1.00}$	$3_{1.00}$	1.00	$E_{1.3}$
13	E	E	E	E	E	E	E
14	E	E	E	E	E	E	E
15	$2.6Y_{1.10}$	E	E	E	$5.4Y_{1.10}$	$3.9Y_{1.10}$	E
16	E	$2.6_{1.10}$	E	E	E	$6.6_{1.30}$	$3.8Y_{1.30}$
17	E	E	E	E	E	$7.5^1_{1.40}$	E
18	E	E	E	E	E	$3.3_{1.40}$	E
19	$3.3Y_{1.10}$	E	E	E	E	E	E
20	E	E	E	E	$3.8Y_{1.00}$	E	E
21	$2.4Y_{1.10}$	E	$3^1_{1.10}$	E	E	E	E
22	E	$2.4Y_{1.10}$	$3.3Y_{1.10}$	E	$6.4Y_{1.40}$	E	E
23	$3^0_{1.10}$	$2.9Y_{1.20}$	E	$3^1_{1.10}$	$2.4Y_{1.20}$	$6.4Y_{1.40}$	E
24	$3.5^1_{1.20}$	E	E	$3.0Y_{1.10}$	$4.9_{1.10}$	$3.0Y_{1.40}$	$3.3N_{1.3}$
25	$3^0_{1.10}$	$2.5^1_{1.20}$	$3.4^1_{1.20}$	$3.6^1_{1.10}$	$4.2^2_{1.10}$	$4.0_{1.10}$	$4.6^1_{1.10}$
26	$3^1_{1.20}$	$3.4^1_{1.20}$	$3.1Y_{1.20}$	$3^1_{1.10}$	$11.0N$	$11.0H$	11.0
27	$2.7Y_{1.20}$	E	E	E	E	E	E
28	$3^1_{1.10}$	$2.7Y_{1.10}$	$2^1Y_{1.10}$	$2^1Y_{1.10}$	$3.0Y_{1.10}$	$2.4Y_{1.10}$	$2.4Y_{1.10}$
29	$2.5^1_{1.10}$	$4^1_{1.10}$	$2^2_{1.10}$	$1.6Y_{1.10}$	$9.8Y_{1.10}$	$4.7_{1.10}$	$9.0Y_{1.10}$
30	E	$2.6Y_{1.10}$	$2.7Y_{1.00}$	E	E	E	E
31	E	E	E	E	E	E	E
Median	**	**	**	**	**	**	**
Count	31	31	31	30	31	31	31

TABLE 81
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

(M1600) E2 (Unit) October, 1951
(Characteristic) (Month) Observed at Washington, D.C.

Lat. 38.7°N, Long. 77.1°W

75° W. Mean Time

National Bureau of Standards
(Institution) E.J.W.

Scaled by: McC. Calculated by: McC.

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
1	(2.0) ^J	(1.9) ^E	(1.9) ^F	(1.9) ^J	(1.9) ^E	2.0 ^F	2.2	2.4 ^H	2.3	2.2	2.3	2.1	2.0	2.0	2.1	2.2	2.2	2.1	2.1	2.0	2.1	2.0	(1.9) ^S		
2	1.9 ^S	(2.0) ^S	2.0 ^J	2.0	(1.9) ^E	1.9 ^S	2.1	2.3	2.3	2.3	2.0	1.9	2.0	2.1	2.1	2.2	2.2	2.2	2.1	1.9	1.9	1.9	1.9 ^E		
3	1.9	1.9	2.1	2.0 ^F	2.1	2.1	2.3	2.3	2.3	2.2	2.1	2.1	2.0	2.1	2.1	2.2	2.2	2.2	2.1	1.9	1.9	1.9	1.9 ^E		
4	(1.9) ^E	(1.9) ^S	2.0 ^F	2.1 ^E	2.1 ^F	2.4 ^H	(2.4) ^J	2.2	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.3 ^S	2.1	2.1	2.1	2.1	2.0	2.0	1.9 ^E		
5	(1.9) ^E	2.1 ^F	(1.9) ^J	(1.9) ^F	(1.9) ^E	(1.9) ^J	(1.9) ^E	2.0 ^F	2.0 ^F	2.4	2.3	2.1	2.0 ^H	2.1	2.1	2.2	2.3	2.3	2.3	2.3	2.1	1.9	2.0 ^E		
6	(2.0) ^J	2.0	2.1	2.0	2.0	2.0	2.0	2.3	2.4	2.4	2.3	2.0	2.0	2.2	2.1	2.2	2.4	2.2	2.2	2.2	2.2	2.0	1.9	1.9 ^E	
7	1.9	1.9	2.0	2.0	1.9	2.1	2.0	2.1 ^F	2.0 ^J	2.1 ^S	2.0	2.1 ^F	2.2	1.9	1.9	2.0	1.9	1.9	2.0	1.9 ^H	2.0	1.9 ^J	1.7	1.7 ^E	
8	1.7	2.2 ^P	1.9	1.8 ^F	2.1 ^S	(2.1) ^F	(2.1) ^E	2.1	2.4	2.1	2.1	2.0	2.1	2.0	2.1	2.2	2.2	2.2	2.0	2.0	2.0	2.0	(1.9) ^J		
9	1.9 ^F	(1.9) ^P	1.9 ^F	F	F	S	2.0 ^F	2.3	(2.0) ^J	2.3	2.1 ^F	2.1	2.0	2.2	2.1	2.2	2.3	2.1	2.1	2.0	2.1	2.0	2.0	1.9 ^E	
10	1.9	(1.9) ^E	(1.9) ^F	1.9 ^F	(1.9) ^J	(1.9) ^F	(1.9) ^J	2.0 ^E	(2.0) ^J	2.0 ^S	(2.3) ^J	2.3	2.2	2.2	2.1	2.0	2.1	2.1	2.1	2.1	2.0 ^F	2.0	1.9 ^E		
11	(2.0) ^J	2.0	2.0	(1.9) ^J	(1.9) ^S	2.0 ^F	(2.0) ^J	2.2 ^S	(2.3) ^J	2.3	(2.3) ^J	2.3	2.2	2.1	2.0	2.1	2.2	2.2	2.1	2.1	2.1	2.0 ^F	2.0	1.9 ^E	
12	1.9	2.0	1.9	2.0	1.9	(1.9) ^J	(1.9) ^S	(2.0) ^J	(2.3) ^J	2.3	(2.3) ^J	2.3	2.2	2.2	2.1	2.1	2.2	2.2	2.1	2.1	2.1	2.1	2.1	(1.9) ^J	
13	(1.9) ^E	(1.9) ^S	(1.9) ^J	(1.9) ^F	(1.9) ^J	(1.9) ^E	(1.9) ^J	(2.0) ^J	(2.1) ^J	2.0 ^F	2.0 ^J	2.1	2.1	2.1	2.1	2.1	(2.1) ^J	(2.1) ^J	2.0	1.9 ^S	2.1 ^S	2.1 ^E			
14	(2.0) ^J	(2.1) ^J	1.9	(1.9) ^J	(1.9) ^F	(1.9) ^J	(1.9) ^F	1.9	2.3	2.3	2.3	2.2	2.3	2.1	2.1	2.0	2.0	2.0	2.1	2.1	2.1	2.0 ^F	(1.9) ^J	1.9 ^E	
15	(2.0) ^J	(2.0) ^F	2.0 ^F	(2.0) ^J	2.0 ^E	2.0 ^J	2.0 ^S	2.1	2.1	2.1	2.0	2.0	2.0	2.1	2.1	2.1	2.2	2.1	2.1	2.1	2.1	2.0 ^F	2.0	1.9 ^E	
16	1.9 ^S	(1.8) ^J	(1.8) ^F	(1.8) ^J	(1.8) ^E	(1.8) ^J	(1.8) ^E	1.9 ^F	2.3 ^J	2.3	2.2	2.2	2.1	2.1	2.2	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.0	1.9 ^E	
17	1.7 ^F	(1.8) ^J	(1.6) ^J	(1.8) ^F	(1.6) ^J	(1.6) ^E	(1.6) ^J	2.0 ^F	2.0 ^J	2.0 ^S	1.9 ^K	1.9 ^K	1.9 ^K	2.0 ^K	2.0 ^K	2.0 ^K	2.0 ^K	2.0 ^K	2.0 ^K	2.0 ^K	2.0 ^K	1.9 ^E			
18	E ^X	F ^X	F ^X	(1.8) ^J	(1.8) ^K	F ^X	(2.0) ^J	F ^X	(2.1) ^J	F ^X	2.1 ^F	2.2	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.1 ^E		
19	(1.9) ^J	F	F	(1.8) ^J	(1.8) ^F	F	(2.0) ^J	(2.0) ^F	(2.4) ^J	2.4 ^F	2.3 ^F	C	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	(1.9) ^E	
20	1.8 ^E	(1.9) ^J	(2.0) ^J	(1.7) ^J	(1.7) ^E	(1.7) ^J	(1.7) ^E	2.0 ^F	2.0 ^J	2.0 ^S	2.4	2.0 ^H	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	1.9 ^E	
21	1.8 ^F	1.8	1.9	2.1	2.2 ^E	2.2 ^J	(1.9) ^J	2.3	2.3	C	C	C	C	C	C	C	C	C	C	C	C	C	C	1.9 ^E	
22	1.9 ^F	1.9	1.9	1.9	1.9 ^J	1.9 ^E	1.9 ^J	2.0 ^F	2.0 ^J	2.0 ^S	2.1 ^H	2.1 ^H	2.1 ^H	2.0	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	1.9 ^E
23	(1.9) ^J	2.0	2.0	1.9	2.0 ^F	2.0 ^J	2.1 ^F	2.1 ^J	2.1 ^E	2.1 ^S	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0	
24	2.0	1.9	1.9	1.9	2.0 ^F	2.0 ^J	2.0 ^S	2.3	2.4	2.4	2.3	2.2	2.2	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0 ^E	
25	2.0	2.0	2.0	2.0	2.0 ^F	2.0 ^J	2.0 ^S	2.0 ^F	2.0 ^J	2.0 ^S	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0 ^E	
26	(2.0) ^J	(2.0) ^E	(1.9) ^J	(2.0) ^E	(2.0) ^F	(2.0) ^J	(2.0) ^E	(2.0) ^F	(2.0) ^J	(2.3) ^J	2.3	2.1	2.1	2.0	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.0 ^E	
27	(1.8) ^J	1.8	1.8	2.0	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.0 ^E	
28	1.9	1.8	1.9	1.9	2.0	2.2	2.0	2.3	2.3	2.3	2.0 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^K	1.9 ^E		
29	E ^K	A ^K	E ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	A ^K	1.9 ^E										
30	1.9	1.9	1.9	2.0	2.0	2.0	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^F	1.9 ^E						
31	2.1 ^F	1.9 ^F	2.0 ^F	2.4 ^F	2.4 ^F	2.4 ^F	2.3	2.3	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2 ^E					
Median	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.3	2.3	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	1.9 ^E	
Count	29	30	26	28	28	30	31	31	30	29	30	31	31	31	31	31	31	31	31	31	31	31	31	30	Sweep 10 Mc to 25.0 Mc in 0.25-min

Manual Automatic

TABLE 82
IONOSPHERIC DATA
Lat. 38.7° N., Long. 77.1° W.

(M.3000)E2. October, 1951
(Characteristic) (Month)

Observed at Washington, D.C.

Lat. 38.7° N., Long. 77.1° W.

Day	75° W														Mean Time										
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
1	(2.0)F	(2.0)F	(2.0)F	(2.0)F	2.9F	2.9F	3.0F	3.2	3.3	3.2	3.3	3.1	3.0	3.0	3.1	3.2	3.1	3.1	3.0	(2.9)F	(2.9)F	(2.9)F	(2.9)F		
2	2.8S	(3.0)S	3.0S	2.9	(2.7)F	2.8S	3.1	3.3	3.2	3.3	3.0	2.9	3.0	3.1	3.1	3.2	3.2	3.1	2.9	2.8	2.8	2.8	2.9		
3	2.9	2.9	3.1	3.0	3.0F	3.1	3.3	3.4	3.3	3.2	3.1	3.1	3.0	3.1	3.1	3.2	3.3	3.1	3.1	3.0	(3.0)F	2.8S	2.8S		
4	(2.9)F	(2.9)F	3.0F	2.9F	2.9F	(3.1)F	(2.9)F	3.1F	3.5F	(3.5)F	3.2	3.2	3.1	3.3	3.1	3.0	3.1	3.3	3.5	(3.0)F	3.0F	3.0	2.9		
5	(2.9)F	3.1F	(2.9)F	(2.9)F	(2.9)F	(2.9)F	2.9F	3.4	3.5	3.4	3.3	3.1	3.0H	3.1	3.0	3.1	3.2	3.3	3.3	3.1	2.9	2.9	2.9	3.0	
6	(3.0)F	3.0	3.1	3.0	3.1	3.3	3.5	3.2	3.4	3.5	3.2	3.0	3.0	3.2	3.1	3.2	3.4	3.4	3.2	3.5	3.2	3.0	2.9	2.9	
7	2.9	2.9	3.0	2.9	2.9	3.1S	2.9	3.2	3.0	3.1F	3.2	2.7	2.9	3.0	2.8	2.7	3.0	3.0	(2.9)F	3.0	2.7	2.7	2.6	2.7	
8	2.6	3.2P	2.9	B.F.	3.1F	(3.1)F	(3.2)F	3.1S	3.1	3.4	3.1	3.0	3.0	3.1	3.0	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
9	2.9F	(2.8)P	2.8F	F	F	S	3.0F	3.4	(3.0)F	3.3	3.0F	3.0	3.0	3.2	3.1	3.2	3.4	3.1	3.2	3.1	3.0	3.0	2.9	2.9	
10	2.8	(2.8)F	(2.8)F	2.8F	(3.1)F	(3.0)F	3.0	(3.3)S	3.2	3.3	3.3	3.1	3.0	3.0	3.1	3.2	3.2	3.1	3.1	3.1	3.0F	3.0	2.8	2.9	
11	(4.9)F	3.0	(2.8)F	(2.8)F	(2.8)S	(2.8)S	3.0S	3.2S	(3.4)F	3.4	3.2	3.3	3.1	3.0	3.0	3.1	3.2	3.2	3.3S	3.3	3.4F	3.2F	2.9P	2.9	
12	2.8	2.9	2.9	2.8	(2.8)F	(2.8)F	2.9P	(3.1)F	(3.3)F	3.3F	3.4	3.2	3.2	3.1	3.2P	3.2	3.2	3.2	3.1	3.2	(3.3)P	(3.1)F	3.2F	(3.0)F	
13	(2.8)F	(2.9)F	(2.8)F	(2.8)F	(3.0)F	(3.1)F	3.0F	3.1	2.8V	2.9H	3.1F	3.2	3.2	3.1	3.2	3.1	3.1	3.1	3.1	(3.1)F	(3.1)F	3.0	2.7	3.0	
14	(2.9)F	(3.1)F	(2.9)F	(2.9)F	(2.9)F	(2.8)F	2.9	3.3	3.2	3.3	3.1	3.1	3.0	3.0	3.0	3.1	3.1	3.2	3.1	3.1	2.9F	(2.9)F	(2.9)F	2.9F	
15	(3.2)F	(3.0)F	3.0F	(2.9)F	2.9	(3.0)F	3.0S	3.4	3.5	3.3	3.1	3.1	2.9	3.0	3.0	3.1	3.3	3.2	(3.2)F	3.1S	2.8	(2.9)S	2.7	2.9F	
16	2.9S	(2.9)S	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(3.0)F	2.8F	3.2S	3.4S	3.3	3.2	3.0	3.1	3.0	3.1	3.1	3.1	(2.9)S	2.9	2.9	2.8	2.8	2.6	
17	2.6F	(2.7)F	(2.5)F	(2.7)F	(2.7)F	(2.7)F	(2.4)F	(2.4)F	(2.7)F	3.0K	2.8K	2.7K	2.5K	2.8K	3.1K	3.0K	2.9K	2.9K	(3.1)S	(3.0)F	3.0	2.8K	2.8K	2.9K	
18	F	F	K	K	(2.9)F	(2.9)F	F	K	K	(3.0)F	3.1F	3.3S	3.1H	3.0	(3.0)S	3.1	3.2	3.2	(3.0)F	(3.2)S	(3.1)F	2.8	(2.7)F	(2.8)F	
19	(2.9)F	F	(2.7)F	(2.7)F	F	(3.0)F	(3.0)F	(3.2)F	(3.2)F	(3.2)F	3.2H	3.3F	C	3.1	3.1	3.0	3.1	3.2	(3.2)F	3.2S	(2.8)F	(2.6)F	(2.8)F	(2.6)F	
20	2.7P	(2.8)F	(3.0)F	(2.6)F	(2.6)F	(2.6)F	(2.5)F	(2.9)F	3.0F	3.3	3.4	(3.0)Y	3.1	3.0	3.1	3.1	3.1	3.2	3.2	(3.2)S	(3.1)S	2.9S	2.9F	2.8F	2.7
21	2.7F	2.7	2.8	3.1	3.2S	3.2	(2.8)F	3.3	3.3	C	C	C	C	C	3.1	3.2	3.2	3.3	3.4	(3.2)F	3.1	3.0	(2.8)F	2.8	
22	2.8F	2.9F	2.8F	2.9F	2.9F	2.9F	(3.1)F	(3.2)F	(2.8)S	3.2	3.4	3.1	3.2	3.1	3.2	3.2	3.2	3.1	3.0F	3.0	3.0	2.8	2.8	2.8	
23	(2.9)F	3.0	3.0	2.9	3.0F	3.0F	3.1F	3.4	3.2	3.2	3.2	3.0	3.0	3.0	3.1	3.1	3.1	3.1	3.1	(3.0)F	A	A	A	A	A
24	3.0	2.9V	2.9	2.8	2.9F	3.0F	3.2F	3.2	3.5	(3.2)H	3.2	3.2	3.1	3.2	3.2	3.4	3.4	3.4	3.1	3.2	3.0	3.1	(3.0)S	3.0	
25	3.0	3.0	3.0	3.0	3.0F	3.0F	2.9	3.2	3.2H	3.3	3.1	3.2	3.2	3.2	3.2	3.2	3.3	3.4	3.1F	3.2	A	A	2.95	3.0P	
26	(3.0)F	(3.0)F	(2.9)F	(3.0)F	3.0F	3.0F	(3.1)F	(3.0)F	(3.3)F	3.3	3.1	3.1	3.1H	3.0	3.1	3.2	3.3	3.4	3.0	3.0	3.0	3.0	2.8	2.8	
27	(2.7)F	2.7	2.7	3.0	3.1	3.1F	3.1	3.1	3.2	3.2	3.0	3.2	3.1	3.1	3.2	3.3	3.3	3.4	3.1	3.1	(3.1)J	3.0S	3.0S	3.0S	3.0S
28	2.9	2.7	2.7	2.8	3.0	3.0	3.2	3.0	3.2	3.2	3.0K	(2.1)F	2.4K	(2.5)F	2.8K	2.9K	2.9K	2.9K	2.9K	3.0F	E	K	A	K	A
29	E	K	A	K	E	K	A	K	A	K	A	K	A	K	A	K	A	K	A	K	A	K	A	K	
30	2.8	2.9	2.8	2.9	2.8F	2.9F	3.0F	2.8F	2.9F	3.3	3.1	3.0	3.3	3.1	3.2	3.2	3.3	3.2	3.3	3.0F	2.9F	3.0S	3.0S	3.0S	
31	3.1F	2.9F	3.0F	3.0F	3.0F	3.0F	3.0F	3.5S	3.5S	3.4	3.3	3.3	3.2	3.2	3.3	3.1	3.3	3.3	(3.3)F	(3.2)F	3.0S	3.0S	3.0S	3.0S	
Median	2.9	2.9	2.9	2.9	3.0	3.0	3.0	3.3	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.1	3.0	3.0	2.9	2.9	2.9	
Count	29	28	30	26	28	30	31	31	30	29	30	30	31	31	31	31	31	31	31	31	29	29	30	30	30

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual Automatic

(Characteristic) (Unit) October, 1951
Lat. 38.7° N., Long. 77.0° W.

Observed at Washington, D.C.

TABLE 83
IONOSPHERIC DATANational Bureau of Standards
(Institution) E. J. W.

Scaled by: MCC.

Calculated by: MCC.

75°W

Mean Time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

-

3

9

14

17

14

11

7

3

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Median

Count

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual Automatic

TABLE 84
IONOSPHERIC DATANational Bureau of Standards
(Institution) E.J.W.

Scaled by: McC.

Calculated by: McC.

(M.1500)E, (Unit)
(Characteristic) Octobar, 1951

Observed at Washington, D.C.

Lat. 38.7°N, Long. 77.1°W

75°W Mean Time

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
1					4.2	4.3	A	A	A	A	A	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2			
2					4.0	4.2	4.0	4.3	4.2	4.2	4.2	4.0	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1		
3					A	4.2	4.1	B	B	B	B	(4.2)P	4.1P	4.1	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2			
4					4.0	4.0	A	B	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
5						4.1	4.2	4.2	4.2	4.3	4.3	4.1P	B	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1		
6						4.1	4.0	4.2	4.3P	4.2P	4.2P	B	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	(4.1)H	
7						4.1	4.3	4.3	4.1	4.3	4.3	B	4.3P	4.2	4.1	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
8						4.2	4.1	4.3	4.3	4.3	4.3	A	4.2	4.2	4.2	4.2	4.3	B	4.3	B	A					
9						4.1H	(4.1)P	4.2	4.3	4.2P	(4.2)B	4.3	4.2P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2H	
10						A	4.2	4.4P	A	A	A	B	4.2P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
11						A	4.4	A	A	(4.2)H	4.1P	4.2H	4.2	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.1P	4.2H	
12						A	A	4.3	4.2	A	4.1	4.1H	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
13						4.1H	(4.1)A	4.6	4.1H	4.1H	4.1H	4.1H	4.2	4.2P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
14						4.2P	4.1P	(4.1)H	(4.1)P	4.1H	4.1H	4.1H	4.0H	(4.1)P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
15						4.1P	4.1P	4.1	4.2P	4.0	4.0	4.0	4.2	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1		
16						4.0	(4.1)A	4.1P	4.3	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.1H	
17						4.0K	(4.1)A	(4.0)P	4.0K	4.0K	4.0K	4.0K	3.8K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	4.1K	
18						4.0H	(4.0)P	(4.1)A	4.2P	4.1	4.1P	(4.1)P	(4.1)P	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	4.4H	
19						4.0P	4.0H	3.8H	C	3.9	4.1	4.1	4.1	4.2P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
20						(4.1)H	3.9H	4.4P	3.9	3.9	3.9P	4.1P	4.1	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
21						A	A	C	C	C	C	4.1	4.2P	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
22						A	3.7H	3.7H	(4.2)H	A	A	A	A	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	4.0H	
23						4.1H	A	3.9H	B	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
24						A	A	A	A	A	A	A	A	4.0H	A	A	A	A	A	A	A	A	A			
25						(3.5)H	A	A	4	A	A	A	A	4.0P	4.1	4.1H										
26						4.0P	4.0P	4.1P	A	4.0	4.0	4.0	4.0	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2			
27						5	3.7H	4.0	4.1H	4.0K	4.1K	4.0K	4.1K	4.2K	4.2K	4.2K	4.2K	4.2K	4.2K	4.2K	4.2K	4.2K	4.2K			
28						(4.4)A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A			
29						4.3P	4.2	4.2	4.2	3.9	3.9	3.8	4.0	A	A	A	A	A	A	A	A	A	A			
30						4.1H	3.8H	3.9	3.9	3.9	3.9P	(3.9)A	A	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
31																										
Median						4.1	4.1	4.1	4.1	4.2	4.2	4.0	4.0	4.1	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2		
Count						17	26	22	20	20	20	19	20	27	27	25	25	23	23	23	23	23	23	23	10	

Sweep 1.0—Mc to 25.0 Mc in 0.25 min
Manual Automatic

Table 85

Ionospheric Storminess at Washington, D. C.October 1951

Day	Ionospheric character*		Principal storms		Geomagnetic character**	
	00-12 GCT	12-24 GCT	Beginning GCT	End GCT	00-12 GCT	12-24 GCT
1	1	2			2	2
2	0	1			3	2
3	1	2			1	2
4	1	1			0	1
5	1	1			1	1
6	0	2			0	0
7	1	2			2	4
8	3	3			5	4
9	2	2			4	3
10	1	1			5	4
11	1	0			4	2
12	2	2			3	2
13	2	3			4	3
14	1	1			3	3
15	2	1			3	2
16	2	0			3	3
17	3	6	1100	----	5	5
18	5	2	----	1100	5	4
19	3	2			4	4
20	2	1			4	2
21	3	2			4	2
22	1	1			3	3
23	2	1			3	2
24	2	2			2	1
25	2	2			1	1
26	2	2			2	3
27	1	2			2	1
28	3	6	1500	----	3	6
29	#	2	----	1200	2	2
30	3	2			3	1
31	2	2			0	1

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

----Dashes indicate continuing storm.

#No I-figure owing to insufficient data; conditions probably severely disturbed.

Table 86

Provisional Radio Propagation Quality Figures
 (Including Comparisons with CRPL Warnings and Forecasts)
September 1951

Day	North	CRPL*	CRPL	North**	Geo-	Scales:
	Atlantic	Warning	Forecasts	Pacific	magnet-	
	quality		(J-reports)	quality	net-	mag-
	figure			figure	net-	netic
	Half day	Half day		Half day	Half day	Quality Figures
	GCT	GCT		GCT	GCT	(1)- Useless
	(1) (2)	(1) (2)		(1) (2)	(1) (2)	(2)- Very poor
						(3)- Poor
						(4)- Poor to fair
						5 - Fair
						6 - Fair to good
						7 - Good
						8 - Very good
						9 - Excellent
1	6 6			6 6	2 2	
2	7 6			6 6	2 2	
3	7 6			6 7	3 2	
4	7 7			5 7	2 2	
5	7 7			6 5	3 3	
6	7 7	W		7 6	3 3	Geomagnetic K_{Ch} - 0 to 9, 9 representing the greatest disturbance; $K_{Ch} > 4$ indicates significant disturbance, enclosed in () for emphasis.
7	6 5		X	7 6	2 2	
8	6 7		X	7 7	2 2	
9	6 6		X	6 5	2 3	
10	(4) 5	U		5 6	(5) 2	
11	(4) 5	U U		6 (4)	3 (4)	
12	(3) (4)	W W		5 (4)	(4) (4)	
13	(3) (4)	W W		5 (4)	(4) (5)	
14	(3) 5	W W		(2) (4)	(4) 3	
15	(3) 5	W W	X	(3) (3)	(5) (4)	
16	(3) (2)	W W	X	(4) (2)	(5) (5)	
17	(2) (3)	W W	X	(3) (3)	(5) (4)	
18	5 (4)	W W	X	(4) 5	(4) 3	
19	6 (4)	W U	X	7 (4)	3 (5)	
20	(2) (3)	W W	X	(4) (2)	(6) (5)	
21	(2) (3)	W W	X	(2) (3)	(5) (4)	
22	(2) (3)	W W	X	(2) (3)	(6) (5)	
23	(2) (3)	W W	X	(2) (4)	(5) (4)	
24	(2) (3)	W W	X	(4) (4)	(5) (4)	
25	(3) (2)	W W	X	(4) (1)	(4) (6)	
26	(2) (4)	W W	X	(2) (4)	(5) 2	
27	(3) (4)	W W	X	6 5	(5) 3	
28	(4) 5	W W		(4) (4)	3 2	
29	6 (4)	W		5 8	3 3	
30	6 6			6 7	3 1	
Score:		Warning		Forecast		
		N.A. N.P.		N.A. N.P.		
H		32 30		23 22		
(M)		0 0		0 0		
M		1 0		9 7		
G		20 21		19 21		
O		7 9		9 10		

Scales:
 Quality Figures
 (1)- Useless
 (2)- Very poor
 (3)- Poor
 (4)- Poor to fair
 5 - Fair
 6 - Fair to good
 7 - Good
 8 - Very good
 9 - Excellent

Geomagnetic K_{Ch} - 0 to 9,
9 representing the greatest
disturbance; $K_{Ch} > 4$ indicates
significant disturbance,
enclosed in () for emphasis.

Symbols:
 W Disturbed conditions
expected
 U Unstable conditions
expected
 N No disturbance expected
 X Probable disturbed date

Scoring:
 H Storm ($Q \leq 4$) hit
 (M) Storm severer than
predicted
 M Storm missed
 G Good day forecast
 O Overwarning
 Scoring by half day according
to following table:

		Quality Figure			
		≤ 3	4	5	≥ 6
W	H	H	O	O	O
U	(M)	H	H	O	O
N	M	M	G	G	G
X	H	H	O	O	O

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.
 () broadcast for one-quarter day. Blanks signify N.

**Low Weight.

Table 87a

Coronal observations at Climax, Colorado (5303A), east limb

Date GCT	Degrees north of the solar equator															0°	Degrees south of the solar equator																			
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1951																																				
Oct. 7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	15	20	20	25	12	10	8	5	3	3	-	-	-	-	-	-	
8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	15	15	17	15	15	12	5	3	2	3	3	3	-	-	-	-	-
9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	15	18	15	14	14	12	8	5	3	2	2	3	3	3	-	-	-
10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	2	3	3	3	3	3	3	3	-	-	-	-
11.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	3	-	-	-	-	-	-	-	-	-	-	-
12.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	3	-	-	-	-	-	-	-	-	-	-	-
14.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	3	-	-	-	-	-	-	-	-	-	-	-
15.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	3	-	-	-	-	-	-	-	-	-	-	-
20.8	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	10	8	5	3	3	3	-	-	-	-	-	-	-	-	X	X	X
23.6	-	-	2	3	3	3	3	3	2	2	2	4	5	8	10	10	10	0	5	5	8	5	4	3	3	3	3	3	3	3	3	3	3			
24.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	8	5	3	2	2	2	3	3	-	-	-	-	-	
25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	8	5	3	2	2	2	3	3	-	-	-	-	-	
28.8a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	8	5	3	2	2	2	3	3	-	-	-	-	-	
29.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	8	5	3	2	2	2	3	3	-	-	-	-	-	
30.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	12	13	8	5	4	3	3	3	3	3	2	2	2	
31.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	2	3	10	15	2	15	12	12	8	5	3	3	3	3	3	3	

Table 88a

Coronal observations at Climax, Colorado (6374A), east limb

Table 87b

Coronal observations at Climax, Colorado (5303A), west limb

Date GCT	Degrees south of the solar equator															0°	Degrees north of the solar equator																						
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20		5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90				
1951																																							
Oct. 7.7	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	8	8	10	12	20	25	15	15	12	12	10	8	3	3	5	8	8	5	3	3
8.6	-	3	3	3	3	3	3	3	5	5	5	5	5	5	5	8	5	13	12	13	13	15	25	15	20	15	15	8	10	5	3	5	5	5	3	3			
9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3					
10.6	-	2	2	2	3	3	3	3	3	3	5	8	10	10	12	14	12	12	12	14	15	12	10	10	12	10	8	5	5	3	3	3	3	2					
11.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	5	5	5	3	3	3	3	3	3	3	3	3	3	3	3	-					
12.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	8	8	8	8	5	3	5	2	3	3	3	3	3	3	3	3	-						
14.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-						
14.9a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	8	8	8	8	5	8	5	5	3	3	-	-	-	-	-	-	-						
15.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	12	12	10	12	5	3	3	5	5	3	2	-	-	-	-	-	-						
20.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X							
23.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	15	15	12	10	8	5	4	4	3	3	3	3	3	3	3	3	-						
24.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15	12	14	12	8	5	3	3	3	3	2	2	-	-	-	-	-	-						
25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	12	17	12	10	10	5	3	3	3	3	3	-	-	-	-	-	-						
26.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	8	8	10	10	10	8	5	5	3	3	3	3	3	3	3	3	-						
29.8a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	5	5	5	3	3	3	3	3	3	3	3	3	3	3	3	-					
30.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	5	8	8	5	5	3	3	3	3	5	5	8	8	5	3	-					
31.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	8	8	10	5	8	8	5	3	3	5	5	5	3	-					

Table 88b

Coronal observations at Climax, Colorado (6374A), west limb

Date GCT	Degrees south of the solar equator															0°	Degrees north of the solar equator																
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
1951																																	
Oct 7.7	3	2	2	2	2	2	2	2	2	5	3	5	3	3	3	3	3	8	5	3	3	15	8	-	-	2	3	2	-	-	-	-	-
8.6	3	3	2	2	2	2	2	2	2	3	3	3	3	3	3	5	8	2	-	-	18	8	2	3	-	-	-	-	-	-	2	2	2
9.6	2	2	2	2	-	-	-	-	-	2	3	3	3	2	3	2	12	3	2	2	3	3	2	-	-	-	-	-	-	-	2	2	2
10.6	2	2	-	-	-	-	-	-	-	2	3	3	2	2	2	2	2	8	2	2	2	3	2	2	2	2	-	-	-	2	2	2	
11.9	3	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
12.6	2	2	2	3	3	3	3	2	2	-	-	-	-	-	-	-	-	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
14.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	-	-	-			
14.9a	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	3	3	3	2	-	2	2	2	-	-	-	-	-	-	-	
15.7	2	3	2	3	2	3	2	2	2	2	2	2	3	3	3	3	3	5	3	3	2	2	2	2	2	2	3	3	3	3	3		
20.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
23.6	2	2	2	2	2	2	2	2	3	3	2	5	5	3	4	3	3	3	3	2	2	5	3	3	3	3	3	3	3	2	-		
24.6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	5	3	8	10	3	2	-	-	-	-	-	-		
25.7	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	3	3	-	12	10	5	2	2	2	2	2	2	2	2	-		
28.8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	2	2	2	2	2	2	2	2	2	2		
29.8a	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	3	3	2	3	5	3	-	-	-	-	-	-	-	2	2	2	
30.7	2	2	2	2	2	2	2	2	5	5	5	5	5	3	3	3	8	5	8	12	8	5	3	-	-	-	-	-	3	2	2	3	
31.7	-	-	-	-	-	-	-	-	3	3	5	5	3	3	5	5	3	8	8	12	8	3	3	2	2	2	-	-	2	2	2	2	

Table 89a

Coronal observations at Climax, Colorado (6702A), east limb

Table 89b

Coronal observations at Climax, Colorado (6702A), west limb

Tables 90a, 91a, and 92aObservations at Sacramento Peak, New Mexico, for October 1951, east limb

•
Data not received in time for publication in this issue.

Tables 90b, 91b, and 92b

Coronal Observations at Sacramento Peak, New Mexico, for October 1951, west limb

Data not received in time for publication in this issue.

Table 93
Zürich Provisional Relative Sunspot Numbers
October 1951

Date	R _Z *	Date	R _Z *
1	41	17	56
2	44	18	58
3	43	19	81
4	38	20	78
5	31	21	43
6	19	22	32
7	16	23	20
8	25	24	10
9	54	25	21
10	71	26	41
11	81	27	55
12	95	28	71
13	72	29	73
14	52	30	72
15	63	31	70
16	67	Mean:	51.4

* Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 94

American Relative Sunspot Numbers - R_A '*

(New Series)

January - September 1951

1951	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	23	94	62	36	63	38	17	55	43
2	18	70	48	33	55	38	27	51	45
3	38	52	47	14	42	30	38	49	53
4	26	63	43	28	37	28	44	64	57
5	43	48	33	58	24	67	42	74	64
6	44	31	56	65	19	92	70	87	78
7	43	34	43	79	27	107	85	95	65
8	39	41	21	81	16	118	89	99	98
9	53	62	22	77	29	135	90	113	114
10	39	84	27	92	67	111	95	112	113
11	53	80	35	91	87	114	87	101	117
12	29	78	41	85	121	123	69	98	109
13	16	52	38	82	131	120	77	74	121
14	18	63	33	92	137	117	71	70	115
15	11	69	34	98	153	108	71	67	111
16	19	52	33	101	161	125	47	61	102
17	30	40	35	114	179	129	43	45	97
18	42	33	31	120	185	125	34	54	115
19	54	32	37	111	178	124	32	61	116
20	50	35	39	114	157	99	31	49	90
21	43	45	43	145	156	109	19	45	107
22	52	41	57	140	139	108	36	47	125
23	72	48	71	130	113	80	72	40	112
24	68	53	105	119	101	68	74	28	95
25	73	56	96	98	95	60	67	8	77
26	104	53	83	103	95	54	66	12	62
27	129	48	93	117	85	45	67	0	62
28	101	54	71	104	74	44	81	9	42
29	95		59	80	36	29	47	11	20
30	119		49	80	40	18	56	16	30
31	121		34		37		62	30	
Mean	53.8	54.0	49.0	89.6	91.7	85.4	58.3	55.6	85.2

*Combination of reports from 23 observers; see page 9.

Table 95

Solar Flares, September 1951

Observatory	Date	Time Observed		Duration (Min)	Area (Mill) (of) (Visible) (Hemisph)	Position		Time of Maximum (GCT)	Int. of Maximum	Relative Area of Maximum (Tenths)	Importance	SID Observed
		Beginning (GCT)	Ending (GCT)			Latitude (Deg)	Longitude (Deg)					
Sac. Peak	Sep. 1	1410	1500	50	200	N12	E71	1417	14	2	1	
McMath	" 3	1320				N09	E37	--	2		2	
Sac. Peak	" 3	1330B	1600	App. 150	349	N11	E32	1339	18	1	2	"
"	" 3	2330	2408A	" 40	174	N11	E32	2408Q	15	7	2	
Schauins.	" 4	0650Q	0710	20	--	N10	E10	0700			1	
McMath	" 5	1255				N09	E09	--			1	
Sac. Peak	" 5	1710	1740	30	175	N01	E05	1720	15	5	1	
McMath	" 5	1715				N09	E09	--			1	"
Sac. Peak	" 5	2255	2310	15	93	N05	W02	2300	11	4	1	-
Wendelst.	" 6	1043B	1051A	App. 20	242	N11	W02	1045			1	
McMath	" 6	2009				N10	W15	--			1	-
"	" 6	2040				N11	W05	--			2	
Sac. Peak	" 9	1630B	1653	App. 25	70	N16	E71	1635	9	4	1	-
"	" 9	1634	1654	20	35	N16	E71	1646	10	3	1	-
"	" 9	2002B	2053	App. 55	174	N12	E71	2005	15	5	1	Yes
Sac. Peak	" 12	1840	1940	60	20	S02	E31	1850	8	2	1	-
Kanzel.	" 13	0550	0610	20	--	S13	E43	--			1	
Sac. Peak	" 14	1330	1510	100	197	S14	E25	1356	20	7	1	
McMath	" 14	1345				S18	E13	--			1	+
"	" 14	1400				S15	E25	--			2	"
Sac. Peak	" 14	1625B	1634A	--	23	N03	E14	1634A	8	1	1	-
Schauins.	" 15	0650				N10	E70	--			1	
Sac. Peak	" 15	1500	1535	35	219	N06	W03	1510	14	1	1	
McMath	" 15	1510				N06	W10	--			2	"
Sac. Peak	" 15	1720	1810A	App. 55	163	N07	W15	1738	10	3	1	
Sac. Peak	" 16	2035	2103	28	46	N09	W32	2045	9	6	1	-
"	" 16	2135	2230	55	116	N05	W22	2155	8	3	1	
"	" 16	2315	2400	45	151	N06	W22	2326	13	4	1	
"	" 17	1545	1605	20	58	N06	W32	1550	8	3	1	-
"	" 17	2015	2050	35	52	N06	W32	2029	8	4	1	-
Sac. Peak	" 17	2050	2150	60	219	N06	W32	2103	15	3	1	
McMath	" 17	2100				N08	W35	--			2	"
Sac. Peak	" 18	1635	1805	90	23	N07	E76	1733	11	8	1	-
"	" 18	1810	1849	39	58	N05	W49	1833	10	6	1	-
McMath	" 18	1815				N07	W51	--			1	
Sac. Peak	" 18	2045	2112	27	20	N05	W49	2055	9	4	1	-
"	" 18	2305	2330A	App. 30	140	N12	E71	2317	12	5	1	
"	" 19	1505	1540	35	40	N08	W58	1513	11	2	1	-
"	" 19	1625	1650	25	57	N08	E03	1637	8	3	1	-
"	" 19	2155	2250	55	69	N08	E58	2205	9	3	1	-
Sac. Peak	" 20	1425	1515	50	52	N11	E32	1437	7	8	1	-
"	" 20	1525	1605	40	69	N09	W03	1542	9	2	1	-
McMath	" 20	1540				N11	W04	--			1	"
Schauins.	" 21	0630				N10	E20	--			-	
"	" 21	0640				N10	W80	--			-	
Sac. Peak	" 21	1455	1514	19	15	N16	W21	1500	8	6	1	-
"	" 22	1340	1405	25	52	N10	E01	1349	8	2	1	-
"	" 22	1425	1505	40	57	N11	W32	1435	9	2	1	-
"	" 22	1630	1710	40	34	S05	W56	1646	8	6	1	-
"	" 22	1955	2005	10	46	N11	W32	2001	7	1	1	-
McMath	" 23	1635				N08	E02	--			1	
Sac. Peak	" 23	1850	1910	20	140	N08	W03	1901	9	2	1	
McMath	" 23	1852				N08	E02	--			1	
Sac. Peak	" 23	1930	2140	130	29	S08	W74	2104	8	3	1	-
"	" 23	2045	2155	70	128	N12	W49	2125	17	8	1	
McMath	" 23	2045				N12	W45	--			2	
Sac. Peak	" 25	1735	1759	24	46	N06	W22	1746	8	4	1	-
"	" 27	1805	1830	25	35	N02	W70	1817	9	9	1	-
"	" 28	1655	1735	40	46	N07	W70	1704	9	6	1	-

Sac. Peak = Sacramento Peak
 Schauins. = Schauinsland
 Wendelst. = Wendelstein
 Kanzel. = Kanzelhöhe

B Flare started before given time
 A " ended after " "
 Q Time reported as questionable

Indices of Geomagnetic Activity for September 1951

Preliminary values of mean K-indices, K_w , from 38 observatories;

Preliminary values of international character-figures, C;

Geomagnetic planetary three-hour-range indices, K_p ;

Magnetically selected quiet and disturbed days

Gr. Day 1951	Values Kw								Sum	C	Values Kp				Sum	Final Sel. Days
1	2.1	1.6	1.3	1.2	1.9	1.4	0.9	2.6	13.0	0.3	3-2-1+1+	2o1+1-3-	14-	Five		
2	2.2	1.4	1.1	1.1	1.2	1.4	1.0	1.6	11.0	0.1	2+2-1o1+	1+1+1o1+	11+	Quiet		
3	2.2	1.6	1.9	2.4	2.5	1.2	1.2	2.8	15.8	0.3	5-2o3-3-	3-1o1+3o	18o			
4	2.1	2.7	1.4	1.1	2.1	1.9	2.0	2.2	15.5	0.3	2o3o2o1+	2+2-2-2+	16+	1		
5	2.4	1.3	1.7	2.3	1.8	1.7	3.7	3.9	18.8	0.8	3-1+2o3-	2-1+5-4+	21-	2		
														3		
6	3.8	1.9	3.7	3.4	2.4	2.0	3.7	3.1	24.0	1.0	4+2o4o4-	3-2o4+3o	26o	4		
7	2.7	1.0	1.1	2.4	2.0	2.3	3.3	2.1	16.9	0.8	3-1o1o3-	2o2+3+2o	17o	30		
8	1.4	1.9	2.1	1.5	2.6	3.0	2.6	2.2	17.3	0.6	1+3-3-2-	3-3o2+2o	18+			
9	2.7	2.6	1.6	3.0	3.8	3.2	2.9	3.0	22.8	0.9	3+3o2o3+	4+4-3o4-	26+			
10	4.1	3.8	4.4	4.2	4.3	3.2	2.9	1.6	28.5	1.2	5-4+5+5o	5o4-3o1+	32+			
														21		
11	3.4	2.1	3.0	2.6	3.5	3.5	4.7	5.4	28.2	1.4	4-3-4+3-	4o4+5o7o	34-	Five		
12	3.8	3.5	3.5	3.5	4.1	3.8	3.3	4.8	30.3	1.3	5-4o4+4o	5-4+3+5+	35-	Dist.		
13	4.8	4.2	3.6	2.6	4.1	4.2	4.2	4.9	32.6	1.4	6o5o4+3-	4+5-5-6+	38o			
14	4.3	4.0	3.7	2.9	3.5	2.3	2.8	2.7	26.2	1.1	5o5o5-4-	4o2+3o3-	30+	16		
15	3.7	3.4	4.5	3.5	4.6	4.2	3.3	3.3	30.5	1.3	4+4+6o4+	5+5o4-4-	37-	20		
														21		
16	3.9	5.2	4.5	5.3	5.2	5.2	5.0	5.8	40.1	1.7	5-6+6-6+	6+6+6-7-	48o	22		
17	4.8	3.8	3.8	4.1	4.4	4.3	2.8	5.1	33.1	1.5	6-5o5o5o	5o5o3+6-	40-	25		
18	4.1	3.8	2.6	3.3	2.3	4.3	4.0	2.8	27.2	1.1	5-5-5o4-	2+5o5-3o	31o			
19	2.2	1.5	3.2	3.1	4.6	6.6	5.6	4.3	31.1	1.7	3o2+4-4-	5+8-7o5-	37+			
20	4.0	4.8	5.4	5.6	5.3	5.2	5.6	5.2	41.1	1.7	5o6o7+7+	6+6+7o6+	52-	Ten		
														Quiet		
21	5.2	5.0	4.9	5.5	4.7	4.5	4.6	4.9	39.3	1.7	6+6+6+7o	6o6-6-6o	49+			
22	4.8	5.2	4.7	4.9	4.7	4.2	5.6	5.1	39.2	1.6	6-7o6o6+	6-5o7-6o	48+	1		
23	4.7	5.0	4.2	3.5	4.0	3.8	4.6	4.2	34.0	1.5	6o6o5+4+	4+4+5+5-	40+	2		
24	4.4	4.3	3.8	4.2	4.5	3.1	3.6	3.1	31.0	1.3	5o6-5o5o	5+4-4o3+	37o	3		
25	3.1	3.5	3.6	4.5	5.8	6.5	6.9	7.1	41.0	1.8	4-5-5-5+	7+8-8o8+	50-	4		
														5		
26	6.8	6.2	3.4	3.1	2.3	2.9	2.1	2.5	29.3	1.6	9-8-4+4-	3-3+2+3-	35+	7		
27	5.0	5.1	5.3	4.9	4.1	2.8	2.9	3.3	33.4	1.6	6-6+6o5+	4+3+3+3+	38-	8		
28	4.6	1.7	1.4	1.0	1.4	1.1	0.7	2.4	14.3	0.6	6-2+2-1+	1+1o1-3-	17-	9		
29	3.0	1.6	2.1	1.6	3.9	5.2	4.0	3.2	24.6	1.1	4-2+3-1+	4o5+4o3+	27-	28		
30	3.1	2.7	2.6	2.0	2.0	1.0	1.0	1.0	15.4	0.4	4-3+3o2+	2o1o1o1-	17o	30		
Mean	3.65	3.14	3.45	3.38	3.21	3.14	3.33	3.54	3.36	1.12						

Table 97

Sudden Ionosphere Disturbances Observed at Washington, D. C.

October 1951

1951 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*
October 19	1732 1820	Ohio, D. C., Colombia, Mexico	0.0

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

Table 98

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,Cable and Wireless, Ltd., as Observed in England

1951 Day	GCT		Receiving station	Location of transmitters
	Beginning	End		
September 29	1710	1750	Somerton	Canada, New York

Table 99

Sudden Ionosphere Disturbances Reported by Institut für Ionosphärenforschung,as Observed at Lindau, Harz, Germany

1951 Day	GCT		Location of transmitters	Relative intensity at minimum*	Other phenomena
	Beginning	End			
September 3	1224	1400	München**, Lindau***, Wiesbaden#	0.1	
7	1052	1200	München**, Lindau***, Wiesbaden#	0.0	
9	0645	0655	München**, Wiesbaden#	0.1	
15	1505	1525	München**, Lindau***, Wiesbaden#	0.1	Terr. mag. pulse 1505-1545

*Ratio of received field intensity during SID to average field intensity before and after, for station München, 6160 kilocycles, 400 kilometers distant.

**Station München, 6160 kilocycles.

***Station Lindau, 1850 kilocycles, pulse, transmitter and receiver at Lindau.

#Station Wiesbaden, 2985 kilocycles.

Table 100

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Riverhead, New York

1951 Day	GCT		Location of transmitters
	Beginning	End	
October 28	1720	1815	Argentina, England, Italy, Panama, Tangier

Table 101

Sudden Ionosphere Disturbances Reported by International Telephone
and Telegraph Corporation, as Observed at Platanos, Argentina

1951 Day	GCT		Location of transmitters	Other phenomena
	Beginning	End		
September 15	1510	1545	Bolivia, Brazil, Chile, Cuba, Denmark, France, Germany, New York, Peru, Portugal, Switzerland, Venezuela	Terr. mag. pulse 1510-1530 Solar flare** 1500 Solar flare** 1510

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

**Time of observation at Sacramento Peak, New Mexico.

***Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

GRAPHS OFIONOSPHERIC DATA

Fig. 1. WASHINGTON, D.C.
 38.7°N, 77.1°W OCTOBER 1951

Fig. 2. WASHINGTON, D.C. OCTOBER 1951

Fig. 3. POINT BARROW, ALASKA
 71.3°N, 156.8°W SEPTEMBER 1951

Fig. 4. POINT BARROW, ALASKA SEPTEMBER 1951

Fig. 5 TROMSO, NORWAY
69.7° N, 19.0° E

SEPTEMBER 1951

Fig. 6 TROMSO, NORWAY

SEPTEMBER 1951

Fig. 7 ANCHORAGE, ALASKA
61.2° N, 149.9° W

SEPTEMBER 1951

Fig. 8 ANCHORAGE, ALASKA

SEPTEMBER 1951

Fig. 25. HUANCAYO, PERU
12.0° S, 75.3° W SEPTEMBER 1951

Fig. 26. HUANCAYO, PERU SEPTEMBER 1951

Fig. 27. POINT BARROW, ALASKA
71.3° N, 156.8° W AUGUST 1951

Fig. 28. POINT BARROW, ALASKA AUGUST 1951

Fig. 33. De BILT, HOLLAND
52.1°N, 5.2°E

AUGUST 1951

Fig. 34. De BILT, HOLLAND

AUGUST 1951

Fig. 35. ADAK, ALASKA

51.9°N, 176.6°W

AUGUST 1951

Fig. 36. ADAK, ALASKA

AUGUST 1951

MM 100

Fig. 37. SCHWARZENBURG, SWITZERLAND
46.8°N, 7.3°E AUGUST 1951

Fig. 38. SCHWARZENBURG, SWITZERLAND AUGUST 1951

Fig. 39. OKINAWA I.
26.3°N, 127.8°E AUGUST 1951

Fig. 40. OKINAWA I. AUGUST 1951

Fig. 45. FORT CHIMO, CANADA

58.1°N, 68.3°W

JULY 1951

Fig. 46. FORT CHIMO, CANADA

JULY 1951

Fig. 47. ST. JOHN'S, NEWFOUNDLAND

47.6°N, 52.7°W

JULY 1951

Fig. 48. ST. JOHN'S, NEWFOUNDLAND

JULY 1951

NBS 410

Fig. 57. FORMOSA, CHINA
25.0° N, 121.0° E JULY 1951

Fig. 58. FORMOSA, CHINA JULY 1951

Fig. 59. JOHANNESBURG, U. OF S. AFRICA
26.2° S, 28.1° E JULY 1951

Fig. 60. JOHANNESBURG, U. OF S. AFRICA JULY 1951

Fig. 61. WATHEROO, W. AUSTRALIA
30.3°S, 115.9°E JULY 1951

Fig. 62. WATHEROO, W. AUSTRALIA JULY 1951

Fig. 63. CAPETOWN, U. OF S. AFRICA
34.2°S, 18.3°E JULY 1951

Fig. 64. CAPETOWN, U. OF S. AFRICA JULY 1951

Fig. 65 RESOLUTE BAY, CANADA
74.7°N, 94.9°W

JUNE 1951

Fig. 66. RESOLUTE BAY, CANADA

JUNE 1951

Fig. 67. BAKER LAKE, CANADA
64.3°N, 96.0°W

JUNE 1951

Fig. 68. BAKER LAKE, CANADA

JUNE 1951

Fig. 69. FRASERBURGH, SCOTLAND
57.6°N, 2.1°W

JUNE 1951

Fig. 70. FRASERBURGH, SCOTLAND JUNE 1951

Fig. 71. LINDAU/HARZ, GERMANY
51.6°N, 10.1°E

JUNE 1951

Fig. 72. LINDAU/HARZ, GERMANY JUNE 1951

Fig. 81. CHRISTCHURCH, N.Z.
43.6°S, 172.7°E JUNE 1951

Fig. 82. CHRISTCHURCH, N.Z. JUNE 1951

Fig. 83. REYKJAVIK, ICELAND
64.1°N, 21.8°W MAY 1951

Fig. 84. REYKJAVIK, ICELAND MAY 1951

Fig. 101. TIRUCHY, INDIA
10.8°N, 78.8°E MAY 1951

Fig. 102. TIRUCHY, INDIA MAY 1951

Fig. 103. SINGAPORE, BRIT. MALAYA
1.3°N, 103.8°E MAY 1951

Fig. 104. SINGAPORE, BRIT. MALAYA MAY 1951

Fig. 109. CANBERRA, AUSTRALIA

35.3° S, 149.0° E

MAY 1951

Fig. 110. CANBERRA, AUSTRALIA

MAY 1951

Fig. 111. HOBART, TASMANIA

42.8° S, 147.4° E

MAY 1951

Fig. 112. HOBART, TASMANIA

MAY 1951

Fig. 113. CHRISTCHURCH, N. Z.
43.6°S, 172.7°E MAY 1951

Fig. 114. CHRISTCHURCH, N. Z. MAY 1951

Fig. 115. FALKLAND IS.
51.7°S, 57.8°W MAY 1951

Fig. 116. FALKLAND IS. MAY 1951

Fig. 117. KIRUNA, SWEDEN
67.8°N, 20.5°E

APRIL 1951

Fig. 118. KIRUNA, SWEDEN
APRIL 1951

Fig. 119. REYKJAVIK, ICELAND
64.1°N, 21.8°W

APRIL 1951

Fig. 120. REYKJAVIK, ICELAND
APRIL 1951

Fig. 121. FRASERBURGH, SCOTLAND
57.6° N, 2.1° W APRIL 1951

Fig. 122. FRASERBURGH, SCOTLAND APRIL 1951

Fig. 123. SLOUGH, ENGLAND
51.5° N, 0.6° W APRIL 1951

Fig. 124. SLOUGH, ENGLAND APRIL 1951

Fig. 125. ROME, ITALY
41.9°N, 12.5°E

APRIL 1951

Fig. 126 ROME, ITALY

APRIL 1951

Fig. 127. SINGAPORE, BRIT. MALAYA
1.3°N, 103.8°E

APRIL 1951

Fig. 128. SINGAPORE, BRIT. MALAYA

APRIL 1951

Fig. I29. FALKLAND IS.

51.7°S, 57.8°W

APRIL 1951

Fig. I30. FALKLAND IS.

APRIL 1951

Fig. I31. ROME, ITALY

41.9°N, 12.5°E

MARCH 1951

Fig. I32. ROME, ITALY

MARCH 1951

Fig. 133 FALKLAND IS.
51.7°S, 57.8°W

MARCH 1951

Fig. 134 FALKLAND IS.

MARCH 1951

Fig. 135. DOMONT, FRANCE
49.0°N, 2.3°E

FEBRUARY 1951

Fig. 136. DOMONT, FRANCE

FEBRUARY 1951

Fig. 137. POITIERS, FRANCE
46.6° N, 0.3° E FEBRUARY 1951

Fig. 138. POITIERS, FRANCE FEBRUARY 1951

Fig. 139. ROME, ITALY
41.9° N, 12.5° E FEBRUARY 1951

Fig. 140. ROME, ITALY FEBRUARY 1951

Fig. 141. TERRE ADELIE
66. 8°S, 141. 4°E FEBRUARY 1951

Fig. 142. TERRE ADELIE FEBRUARY 1951

Fig. 143. ROME, ITALY
41. 9°N, 12. 5°E JANUARY 1951

Fig. 144. ROME, ITALY JANUARY 1951

Index of Tables and Graphs of Ionospheric Datain CPPL-F87

	<u>Table page</u>	<u>Figure page</u>
Adak, Alaska		
August 1951	14	59
Akita, Japan		
July 1951	16	63
Anchorage, Alaska		
September 1951	12	52
Baker Lake, Canada		
July 1951	15	61
June 1951	17	67
Bombay, India		
May 1951	20	75
Brisbane, Australia		
May 1951	20	77
Calcutta, India		
May 1951	19	74
Canberra, Australia		
May 1951	21	78
Capetown, Union of South Africa		
July 1951	17	66
Christchurch, New Zealand		
June 1951	18	71
May 1951	21	79
De Bilt, Holland		
August 1951	14	59
Delhi, India		
May 1951	19	74
Domont, France		
February 1951	23	84
Fairbanks, Alaska		
August 1951	14	58
Falkland Is.		
May 1951	21	79
April 1951	22	83
March 1951	23	84
Formosa, China		
July 1951	16	65
Fort Chimo, Canada		
July 1951	15	62
Fraserburgh, Scotland		
June 1951	17	68
May 1951	19	72
April 1951	22	81
Guam I.		
September 1951	13	56
Hobart, Tasmania		
May 1951	21	78

Index (CRPL-F87, continued)

	<u>Table page</u>	<u>Figure page</u>
Huancayo, Peru		
September 1951	14	57
Johannesburg, Union of South Africa		
July 1951	16	65
Kiruna, Sweden		
April 1951	21	80
Lindau/Harz, Germany		
June 1951	17	68
Madras, India		
May 1951	20	75
Maui, Hawaii		
September 1951	13	55
Narsarssuak, Greenland		
September 1951	12	53
August 1951	14	58
May 1951	19	72
Okinawa I.		
August 1951	15	60
Oslo, Norway		
September 1951	12	53
Panama Canal Zone		
September 1951	13	56
August 1951	15	61
Point Barrow, Alaska		
September 1951	12	51
August 1951	14	57
Poitiers, France		
February 1951	23	85
Puerto Rico, West Indies		
September 1951	13	55
Barotonga I.		
June 1951	18	70
May 1951	20	77
Resolute Bay, Canada		
June 1951	17	67
Reykjavik, Iceland		
May 1951	18	71
April 1951	21	80
Rome, Italy		
May 1951	19	73
April 1951	22	82
March 1951	22	83
February 1951	23	85
January 1951	23	86
St. John's, Newfoundland		
July 1951	15	62
San Francisco, California		
September 1951	13	54

Index (CRPL-F87, concluded)

	<u>Table page</u>	<u>Figure page</u>
Schwarzenburg, Switzerland		
August 1951	15	60
Singapore, British Malaya		
June 1951	18	69
May 1951	20	76
April 1951	22	82
Slough, England		
June 1951	18	69
May 1951	19	73
April 1951	22	81
Terre Adelie		
February 1951	23	86
Tiruchi, India		
May 1951	20	76
Tokyo, Japan		
July 1951	16	64
Tromso, Norway		
September 1951	12	52
Wakkanai, Japan		
July 1951	16	63
Washington, D. C.		
October 1951	12	51
Watheroo, Western Australia		
July 1951	17	66
June 1951	18	70
White Sands, New Mexico		
September 1951	13	54
Yamagawa, Japan		
July 1951	16	64

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly:

CRPL—J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)

CRPL—F. Ionospheric Data.

*IRPL—A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL—H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL—C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL—G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL—R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

**R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

**R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

**R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

**R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

**R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

**R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

**R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL—T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL—T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG—5.)

*Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14() Series.

**Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

