Roots of polynomials

Ko Sanders

DCU

1. Generel Notes

* see lecture notes 4 for definition of degree

For a general polynomial f(x) it can be hard to solve f(x) = 0, i.e. to find its roots. This gets harder if the degree of f increases:

If f(x) has degree ≤ 2 we can find all real roots. There are formulae for these roots in terms of the coefficients of the polynomial.

If f(x) has degree 3 or 4 there are also formulae for the roots, but they are rather complicated and we won't use them.

If f(x) has degree ≥ 5 there is no general formula for its roots. In fact, there is a proof that such a formula cannot exist.

Example Find the roots of $f(x) = x^7 - 9x^3$

Solution: We notice that $f(x) = x^3 \cdot (x^4 - 9) = x^3 \cdot (x^2 - 3) \cdot (x^2 + 3)$

For any $x \in R$ we have

$$f(x) = 0$$
 if and only if $(x^3 = 0 \text{ or } x^2 - 3 = 0 \text{ or } x^2 + 3 = 0)$

 $x^3 = 0$ has only one solution: x = 0, (if x > 0, then $x^3 > 0$ and if x < 0, then $x^3 < 0$) $x^2 - 3 = 0$ has two solutions: $x = -\sqrt{3}$ or $x = +\sqrt{3}$, $x^2 + 3 = 0$ has no solutions in R.

Therefore, the roots of f(x) are $0, -\sqrt{3}$ and $\sqrt{3}$.

To find the roots of general polynomials we can try some of these strategies:

- 1) Have a lucky guess to find a root.
- 2) Use information about one are several roots to help find more roots.
- 3) Approximate a root by using a clever algorithm (e.g. the Newton-Raphson method), which can be programmed into a computer.