

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	op. 000	maro randamente den		_		2			
N	= 13700 N	M,	= -11100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6870 N	M_x	= 47400 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	-				
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 17300 N	M _t	= 9310 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7300 N	M_x	= 57200 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
$\mathbf{y}_{g}^{'}$	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i acontanto i la	p. 000	maro ramaamomo aom		2		0			
Ν	= 21300 N	M_{t}	= 11500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_{y}	= 5280 N	M_x	= 66800 Nmm		= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d ⁼	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 17400 N
Ν
                                                                 M,
                                                                            = 76100 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
          = 5810 N
                                                                            = 240 \text{ N/mm}^2
          = 13800 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 21200 N
Ν
                                                                 M,
                                                                           = 57900 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6350 N
          = 16400 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•			_	_	2			
N	= 15700 N	M_{t}	= -8630 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 8090 N	M_x	= 59900 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$	=	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

nm²

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 16200 N	M,	= -13200 Nmm		= 240 N/mm ²	G	= 75000 N/mm ²			
1 1		ivit		a	•	ч	= 73000 14/111111			
T_y	= 6340 N	M_x	= 83000 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$		σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente den		n tangoniziani		•
Ν	= 20000 N	$M_{t} = -15700 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6900 N	$M_{x} = 63800 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	i accitativo i iap	. O O O	maio i amaamonio aom	0 .00.	tangoniziani j		_		
N	= 24100 N	M_t	= 12500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_v	= 7460 N	M_x	= 73600 Nmm		$= 200000 \text{ N/mm}^2$				
y_g	=	$\sigma(N)$	=	τ_{s}	=	θ_{t}	=		
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d ⁼	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=				
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	•	maro randamente den		2	_	2			
N	= 17800 N	M,	= 10000 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6390 N	M_x	= 74600 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$	=	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

			10100 N		_	_	75000 N/ 2			
N	= 14900 N	M₊	= 12400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6950 N	M_x	= 88300 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 18600 N
                                                                 M,
                                                                           = 69000 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 7510 N
          = 14900 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I.		•	10000 Nisses		_	^	= 75000 N/mm ²				
N	= 22700 N	M_t	= 12000 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	= 75000 N/mm				
T_y	= 8090 N	M_x	= 80400 Nmm	Ε	$= 200000 \text{ N/mm}^2$						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=				
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=				
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=				
J_{u}	=	$\tau(T_{y})_{s}$	=	σ_{tresca}	=						
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	-	pp. 000	maro ramaamonto aon	0 10110			2
Ν	= 27100 N	M_t	= 14500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 5900 N	M_x	= 91800 Nmm	E	= 200000 N/mm ²		
y_g	=	~ ()	=	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$, =	$\sigma_{ ext{tresca}}$	=		
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 13700 N	M _t = -11600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7560 N	$M_{x}^{\cdot} = 91900 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17200 N	$M_{t} = -14100 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8210 N	$M_{x}^{\cdot} = 72900 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresca}	_a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 21200 N
Ν
                                                                 M,
                                                                           = 86200 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 8790 N
          = 11400 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 25500 N	M,	= -13900 Nmm		$= 240 \text{ N/mm}^2$	G	= 75000 N/mm ²				
1 1	= 23300 N	ivit		σ_{a}	•	ч	= 73000 14/111111				
T_y	= 6380 N	M_{x}	= 99500 Nmm	E	$= 200000 \text{ N/mm}^2$						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=				
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=				
J_u	=	$\tau(T_{y})_{s}$	=	σ_{tresca}	=						
J_v	=	$\tau(T_y)_c$		σ_{mises}							
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r abolitativo rapprobolitaro randamente delle tener tangoniziam										
N	= 20500 N	M_t	= 16500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 7030 N	M_x	= 112000 Nmm		$= 200000 \text{ N/mm}^2$					
y_g	=	$\sigma(N)$	=	τ_{s}	=	θ_{t}	=			
u_{o}	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	•				
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=					
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente den		, tangoniam		•
Ν	= 15900 N	$M_t = -13300 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8830 N	$M_x = 75900 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19600 N	$M_t = -10800 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 9590 N	$M_{x}^{(i)} = 90300 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	$\sigma_{ ext{tresca}}$	_a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mises}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ver}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 23800 N	$M_t = -13200 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 6920 N	$M_{x} = 105000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
$\mathbf{y}_{g}^{'}$	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N			15000 Nmm		_	G	= 75000 N/mm ²				
IN	= 19300 N	M_t	= 15800 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	= /5000 N/IIIII				
T_y	= 7590 N	M_x	= 121000 Nmm	Ε	$= 200000 \text{ N/mm}^2$						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=				
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=				
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=						
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}							
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		op. 000	maro randamente den		_		2			
N	= 23500 N	M₊	= -18600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 8270 N	M_x	= 92600 Nmm	E	= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=					
J_t	=	σ		$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	accent		_	_	75000 11/ 2				
N	= 15300 N	M,	= 8300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$				
T_y	= 7850 N	M_x	= 53900 Nmm	Ē	= 200000 N/mm ²						
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=				
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=				
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=				
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_{p}	=				
J_u	=	$\tau(T_{y})_{s}$	=	σ_{tresca}	=						
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pp. 000	intaro randamonto don	o torio	. tangonziani		
Ν	= 19200 N	M_{t}	= 10400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 5630 N	M_x	= 64700 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s}$; =	$\sigma_{ ext{tresca}}$	_a =	•	
J_{v}	=	$\tau(T_y)_c$		σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 15900 N
                                                                 M,
                                                                           = 75000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6150 N
          = 12700 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 19700 N
Ν
                                                                 M,
                                                                           = 57700 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6690 N
          = 15200 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 23800 N
Ν
                                                                 M,
                                                                           = 66600 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 7240 N
          = 12200 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 17400 N	M, = -9	9720 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$				
T_v	= 6160 N	$M_x = 6$	7100 Nmm		= 200000 N/mm ²						
y_g	=	$\sigma(N) =$		τ_{s}	=	θ_{t}	=				
uo	=	$\sigma(M_x) =$		$\sigma_{\sf ls}$	=	r_u	=				
V_{o}	=	$\tau(M_t) =$		σ_{IIs}	=	r_v	=				
A_n	=	$\tau(T_{vc}) =$		σ_{Id}	=	r_o	=				
C_{w}	=	$\tau(T_{yb})_{d} =$		σ_{IId}	=	J_p	=				
J_{u}	=	$\tau(T_y)_s =$		σ_{tresca}	=						
J_v	=	$\tau(T_y)_d =$		σ_{mises}							
J_t	=	σ =		$\sigma_{\text{st.ven}}$	=						
@ Ad	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06										

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 14700 N	$M_{t} = -12000 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 6690 N	$M_x = 79700 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
$\mathbf{y}_{g}^{'}$	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mises}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	1 =		
A _n C _w J _u	= = =	$\tau(T_{yc}) = \tau(T_{yb})_d = \tau(T_y)_s = \tau(T_y)_d = \tau(T_y$	$\sigma_{ ext{Id}}$ $\sigma_{ ext{Ild}}$ $\sigma_{ ext{tresc}}$ $\sigma_{ ext{mises}}$	= = a = s =	r _v r _o J _p	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	radoltativo: rapprodontaro randamente delle tene: tangonziani							
Ν	= 18400 N	$M_{t} = -14500 \text{ Nr}$	mm σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_{y}	= 7240 N	$M_{x} = 62400 \text{ Nm}$		$= 200000 \text{ N/mm}^2$				
y_g	=	$\sigma(N) =$	$ au_{\sf s}$	=	Θ_{t}	=		
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_{v}	=		
A_n	=	$\tau(T_{yc}) =$	$\sigma_{\sf ld}$	=	r_{o}	=		
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·			
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}	₃ =				
J_t	=	σ =	$\sigma_{\sf st.ver}$					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N	= 22400 N	M,	= -11700 Nmm		= 240 N/mm ²	G	= 75000 N/mm ²
1 1	= 22400 IN	ivit				u	= 73000 N/IIIII
T_y	= 7800 N	M_x	= 72700 Nmm	E	$= 200000 \text{ N/mm}^2$		
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}			
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06							

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 26700 N	$M_{t} = -14100 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 5690 N	$M_{x}^{'} = 83000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
uo	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	_S =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 13400 N	M _t	= -11200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7260 N	M_x	= 82800 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_{y})_{s}$; =	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	₁ =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16900 N	M _t = -13700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7870 N	M_x = 65900 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_w	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		op. 000	mare randamente den		9		2			
N	= 20900 N	M,	= -11100 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 8430 N	M_x	= 78100 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=.	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=					
J_t	=	σ		$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•			_	_	2			
N	= 25200 N	M₊	= -13500 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6130 N	M_x	= 90100 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	i additativo. ia	pp. 000	intaro randamonto don	o torio	. tangonzian.		
Ν	= 20200 N	M_{t}	= 16100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 6760 N	M_x	= 102000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s}$; =	$\sigma_{ ext{tresca}}$, =		
J_{v}	=	$\tau(T_{y})_{c}$		σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15600 N	M _t	= 12900 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 8460 N	M_x	= 68500 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	~ ()	=	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=	·	
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=		
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 19300 N
Ν
                                                                 M,
                                                                           = 82000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 9160 N
          = 10500 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 23500 N
Ν
                                                                 M,
                                                                           = 96200 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6620 N
          = 12800 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 19100 N
                                                                M,
                                                                           = 110000 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 7270 N
          = 15400 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t) =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 23200 N
Ν
                                                                 M,
                                                                           = 84100 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 7930 N
          = 18200 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	ppi ocomaio i anaamonio aon				•
Ν	= 17900 N	$M_t = -9980 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 9750 N	$M_x = 85300 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I.		•	10100 Ninere		_	^	75000 N/m = 2			
N	= 21700 N	M_t	= -12100 Nmm		$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 7190 N	M_x	= 100000 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=					
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17800 N	M _t	= -14700 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7850 N	M_x	= 116000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ		$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		op. 000	maro randamente den		_		2			
N	= 21900 N	M,	= -17400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 8520 N	M_x	= 90200 Nmm	E	= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N	= 26200 N	M,	= 13800 Nmm		$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
1 1	= 20200 IN	ivit		σ_{a}	•	u	= 73000 14/111111			
T_y	= 9210 N	M_x	= 104000 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 17100 N
                                                                 M,
                                                                           = 62000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6140 N
                                                                            = 200000 \text{ N/mm}^2
          = 9350 Nmm
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 14400 N
                                                                 M,
                                                                           = 73500 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6710 N
          = 11500 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 18000 N
                                                                 M,
                                                                           = 57600 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 7240 N
          = 14000 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

m^2									
$J_t = \sigma = \sigma_{st.ven} =$ @ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i dooitativo. ia	ppicoc	marc randamento aci	C (CIII)	. tangonzian.		_
Ν	= 26300 N	M_t	= 13700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 5680 N	M_x	= 76800 Nmm	E	= 200000 N/mm ²		
y_g	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_w	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	, =		
J_v	=	$\tau(T_y)_{c}$		σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 13200 N	M _t	= -10800 Nmm		= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7160 N	M_x	= 76000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
C _w	= = = =	$\tau(T_{yb})$ $\tau(T_{y})_{s}$ $\tau(T_{y})_{d}$	d ⁼ = =	$\sigma_{lld} \\ \sigma_{tresca} \\ \sigma_{mises}$	= =	J_p	=

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 16600 N	M,	= -13200 Nmm	σ_a	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7780 N	M_x	= 60500 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_{v})_{s}$, =	$\sigma_{ ext{tresca}}$	=		
J_{v}	=	$\tau(T_y)_{c}$	=	σ_{mises}	=		
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N	= 20500 N	M,	= -10700 Nmm		$= 240 \text{ N/mm}^2$	G	= 75000 N/mm ²			
1 1	= 20300 N	ivit		a	0	u	= 73000 14/111111			
T_y	= 8330 N	M_{x}	= 71800 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 24800 N
Ν
                                                                 M,
                                                                           = 83000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 6050 N
          = 13100 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		pp. 000	mare randamente den		9		2			
Ν	= 19900 N	M_{t}	= 15600 Nmm	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6670 N	M_x	= 94000 Nmm	Ē	= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=.	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_{d}$		σ_{mises}						
J_t	=	σ		$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15300 N	M _t	= 12400 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8270 N	M_x	= 62700 Nmm	E	$= 200000 \text{ N/mm}^2$		
$\mathbf{y}_{g}^{'}$	=	$\sigma(N)$		$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
J _u		$\tau(T_y)_s$ $\tau(T_y)_d$	= =	$\sigma_{ ext{tresca}} \ \sigma_{ ext{mises}}$	=	o p	_

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 18900 N
                                                                M,
                                                                           = 75100 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 8970 N
          = 10100 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                E
                                                                \tau(M_t) =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                 \sigma_{tresca} =
                                                                \tau(T_{yb})_{d} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                \tau(T_v)_s =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν			10500 Nmm		$= 240 \text{ N/mm}^2$	G	= 75000 N/mm ²			
IN	= 23100 N	M_t	= -12500 Nmm	σ_{a}	0	G	= /5000 N/IIIII			
T_y	= 6480 N	M_{x}	= 88300 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•			_	_	2			
Ν	= 18800 N	M_{t}	= 15000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 7120 N	M_x	= 101000 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$, =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 22900 N	$M_t = 17700 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7760 N	$M_{x}^{\cdot} = 77300 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =		
J_v	=	$\tau(T_{y})_{d} =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 17600 N
                                                                 M,
                                                                            = 78000 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                            = 240 \text{ N/mm}^2
          = 9480 N
                                                                            = 200000 \text{ N/mm}^2
          = 9650 Nmm
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                   \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                   \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                   \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N		•	11700 Nmm		_	G	= 75000 N/mm ²			
IN	= 21400 N	M_t	= -11700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	= /5000 N/IIIII			
T_y	= 6990 N	M_x	= 91900 Nmm	Ε	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$; =	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 17600 N
                                                                 M,
                                                                           = 107000 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
          = 7630 N
                                                                           = 240 \text{ N/mm}^2
          = 14300 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                 \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 21600 N
Ν
                                                                 M,
                                                                           = 82800 Nmm
                                                                                                                                 G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 8290 N
          = 17000 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
          = 25900 N
Ν
                                                                 M,
                                                                           = 95900 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
                                                                           = 240 \text{ N/mm}^2
          = 8960 N
          = 13500 Nmm
                                                                           = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 20000 N	$M_t = -11200 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7330 N	$M_{x} = 95600 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	=		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16200 N	M _t = -13400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 8240 N	$M_{x} = 111000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$	₁ =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	Jp. 000	maro randamente den		_		2			
Ν	= 20200 N	M,	= -16200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_{y}	= 8900 N	M_x	= 87300 Nmm	Ε̈́	= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$		σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ		$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	•	maro randamento den		_		2			
N	= 24400 N	M,	= -12900 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 9570 N	$\dot{M_x}$	= 102000 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=	·				
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativo. ia	pprocentare randamente den		n tangonziani		
Ν	= 29000 N	$M_{t} = -15500 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 6980 N	$M_{x} = 117000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mises}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 12900 N	$M_t = -10400 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 7400 N	$M_{x} = 72500 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 16200 N	M _t	= -12600 Nmm	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8110 N	M_x	= 57300 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
$\mathbf{y}_{g}^{'}$	=	$\sigma(N)$		τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	maro randamento den		_	_	2			
N	= 20100 N	M_{t}	= 10400 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 8640 N	M_x	= 68200 Nmm	Ε̈́	= 200000 N/mm ²					
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_c$	₁ =	σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Ν	= 24300 N	, М,	= -12700 Nmm		$= 240 \text{ N/mm}^2$	G	= 75000 N/mm ²			
1 4		ivit		a	0	ч	= 75000 14/11111			
T_{v}	= 6260 N	M_x	= 78800 Nmm	E	$= 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}^{r}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$		σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_{v})_{s}$	=	σ_{tresca}	=	•				
J_{v}	=	$\tau(T_{v})_{c}$	₁ =	σ_{mises}						
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19600 N	$M_t = 15200 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 6890 N	$M_{x} = 89300 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15000 N	M _t	= -12000 Nmm	σ_a	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8380 N	M_x	= 59100 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	~ ()	=	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$; =	$\sigma_{ ext{tresca}}$	=	•	
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	1 additative rapprocentare randamente delle tener tangenziam									
N	= 18500 N	M_t	= 9780 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_v	= 9150 N	M_x	= 70500 Nmm		$= 200000 \text{ N/mm}^2$					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
u _o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_0	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=			
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_{v}	=	$\tau(T_y)_d$	=	σ_{mises}	=					
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=					
@ Ad	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	•	maro randamonto don		_		2			
Ν	= 22700 N	M_t	= -12000 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$			
T_y	= 6590 N	M_x	= 82900 Nmm	E	= 200000 N/mm ²					
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=			
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=			
V_{o}	=	$\tau(M_t)$		σ_{lls}	=	r_v	=			
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=			
C_{w}	=	$\tau(T_{yb})$	d ⁼	σ_{IId}	=	J_p	=			
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=					
J_v	=	$\tau(T_y)_d$		σ_{mises}						
J_t	=	σ	=	$\sigma_{\text{st.ven}}$						
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06									

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente den		. tangoniziani		•
Ν	= 18500 N	$M_{t} = -14500 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7230 N	$M_{x} = 95100 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	_a =	·	
J_{v}	=		σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	47000 N		_	_	75000 11/ 2		
Ν	= 22500 N	M_{t}	= -17200 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 7880 N	M_x	= 72800 Nmm	Ε̈́	= 200000 N/mm ²				
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=		
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_{y})_{s}$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_c$	=	σ_{mises}					
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I.		•	0000 N		_	^	75000 NI/2
N	= 17300 N	M_t	= -9320 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 9480 N	M_x	= 72900 Nmm	Ē	= 200000 N/mm ²		
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$		σ_{mises}			
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
@ Ac	dolfo Zavelani Rossi, P	olitecn	ico di Milano, vers.12.0	06.06			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	44000 N		_	_	75000 N// 2
N	= 20900 N	M_t	= 11300 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7020 N	M_x	= 85700 Nmm	Ē	= 200000 N/mm ²		
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		
@ Ac	dolfo Zavelani Rossi, P	olitecn	ico di Milano, vers.12.0	06.06			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 17300 N	$M_t = 13800 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7660 N	$M_{x} = 100000 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{y})_{s} =$	$\sigma_{ ext{tresc}}$	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	1 =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 21200 N	$M_t = 16500 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8310 N	$M_x = 77400 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	•	maro randamento den		_		2		
N	= 25500 N	M_t	= -13100 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 8970 N	M_x	= 89700 Nmm	Ε̈́	= 200000 N/mm ²				
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
v_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d ⁼	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_d$		σ_{mises}					
J_t	=	σ		$\sigma_{\text{st.ven}}$					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 19600 N	$M_t = -10900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7260 N	$M_{x} = 88900 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}	₃ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 15900 N	$M_t = -13000 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 8180 N	$M_{x} = 103000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	σ_{tresc}	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	-	-				_	2
N	= 19800 N	M_{t}	= -15700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8830 N	M_x	= 81200 Nmm	Ē	= 200000 N/mm ²		
\mathbf{y}_{g}	=	~ ()	=	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=	•	
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=		
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

		•	maro randamento den		2		2		
N	= 24100 N	M,	= -12600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 9500 N	M_x	= 95100 Nmm	E	= 200000 N/mm ²				
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
V_{o}	=	$\tau(M_t)$	=	σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_{o}	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_u	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}					
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$	=				
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 28600 N	$M_{t} = -15100 \text{ Nmm}$	σ_{a}	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$
T_v	= 6920 N	$M_{x} = 109000 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_{o}	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(\underline{T}_{y})_{s} =$	$\sigma_{ ext{tresc}}$	a =		
J_v	=	$\tau(T_y)_d =$	σ_{mise}	₅ =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

000 N/mm ²

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 18300 N	M,	= -14800 Nmm	σ_a	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_{v}	= 9460 N	M_x^{ι}	= 83400 Nmm	E	= 200000 N/mm ²		
y_g	=	~ (· ·)	=	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{vc})$	=	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{v})_{s}$, =	σ_{tresca}	=	•	
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	PP. 000		0 100	_		0		
= 22500 N	M,	= -12000 Nmm	σ_a	= 240 N/mm ²	G	$= 75000 \text{ N/mm}^2$		
= 10100 N	M_x	= 99500 Nmm	Ē	= 200000 N/mm ²				
=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
=	$\sigma(M_x)$) =	σ_{ls}	=	r_u	=		
=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=		
=	$\tau(T_{yc})$	=	σ_{Id}	=	r_{o}	=		
=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
=	$\tau(T_{y})_{s}$; =	σ_{tresca}	=				
=	$\tau(T_y)_c$	_j =	σ_{mises}	=				
=	σ	=						
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								
	= 22500 N = 10100 N = = = = = = = = =	$ = 22500 \text{ N} \qquad \qquad M_t \\ = 10100 \text{ N} \qquad \qquad M_x \\ = \qquad \qquad \sigma(N) \\ = \qquad \qquad \sigma(M_x) \\ = \qquad \qquad \tau(M_t) \\ = \qquad \qquad \tau(T_{yc}) \\ = \qquad \qquad \tau(T_y) \\ = \qquad \qquad \tau(T_y) \\ = \qquad \qquad \sigma(T_y) \\ = \qquad \qquad \sigma $		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

N.I.		•	1.4500 Ninere		_	^	75000 N/m = 2		
N	= 27000 N	M_t	= -14500 Nmm	a	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 7340 N	M_x	= 115000 Nmm	E	= 200000 N/mm ²				
\mathbf{y}_{g}	=	$\sigma(N)$	=	$ au_{s}$	=	Θ_{t}	=		
u_o	=	$\sigma(M_x)$		σ_{ls}	=	r_u	=		
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_{c}$	=	σ_{mises}	=				
J_t	=	σ	=	$\sigma_{\text{st.ven}}$	=				
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente den				•
Ν	= 21700 N	$M_t = -17200 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8080 N	$M_x = 131000 \text{ Nmm}$	Ε̈́	= 200000 N/mm ²		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 14700 N	M _t = 11600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 9030 N	$M_x = 58500 \text{ Nmm}$	E	= 200000 N/mm ²		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_{o}	=	$\sigma(M_x) =$	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t) =$	σ_{lls}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d}=$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =		
J_{v}	=	$\tau(T_{y})_{d} =$	σ_{mise}	s =		
J_t	=	σ =	$\sigma_{\text{st.ve}}$	n =		

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

	•	Jp. 000	mare randamente den		_		2		
Ν	= 18000 N	M_{t}	= -9340 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$		
T_y	= 9970 N	M_x	= 68800 Nmm	E	= 200000 N/mm ²				
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=		
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=		
v_{o}	=	$\tau(M_t)$		σ_{lls}	=	r_v	=		
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=		
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=		
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=				
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=				
J_t	=	σ	=	$\sigma_{\text{st.ven}}$					
@ Ac	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06								

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i acontativo. rap	JPI COC	marc randamento acin	C (CIIO	. tangonzian.		_
N	= 22200 N	M_{t}	= -11600 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 7130 N	M_x	= 81200 Nmm	Ē	= 200000 N/mm ²		
\mathbf{y}_{g}	=	~ ()	=	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
v_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=		
J_v	=	$\tau(T_y)_d$	=	σ_{mises}			
J_t	=	σ΄	=	$\sigma_{\text{st.ven}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 75000 \text{ N/mm}^2
Ν
          = 18100 N
                                                                 M,
                                                                           = 93100 Nmm
                                                                                                                                  G
T<sub>y</sub>
M₁
          = 7780 N
                                                                            = 240 \text{ N/mm}^2
          = 14000 Nmm
                                                                            = 200000 \text{ N/mm}^2
                                                                 E
                                                                 \tau(M_t) =
                                                                                                                                  \sigma_{\text{IId}}
                                                                 \tau(T_{yc}) =
                                                                                                                                  \sigma_{tresca} =
                                                                 \tau(T_{yb})_{d} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                 \tau(T_v)_s =
                                                                                                                                  \sigma_{\text{st.ven}}
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens, tangenziali,

	i additativo. ia	pprocentare randamente den		n tangonziani		
Ν	= 22100 N	$M_t = 16600 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 8440 N	$M_{x} = 71300 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresca}}$	a =	•	
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ver}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 16900 N	$M_t = -9000 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_v	= 9940 N	$M_{x} = 70800 \text{ Nmm}$	Ε̈́	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	\mathbf{r}_{u}	=
V_{o}	=	$\tau(M_t) =$	$\sigma_{\sf IIs}$	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{vb})_d =$	σ_{IId}	=	J_{p}	=
J_{u}	=	$\tau(T_{y})_{s} =$	σ_{tresc}	a =	•	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i accitativo: ia	pprocentare randamente dei				•
Ν	= 20400 N	$M_{t} = -10900 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 7440 N	$M_{x} = 82400 \text{ Nmm}$	Ē	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	$ au_{s}$	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_{v})_{s} =$	σ_{tresc}	a =	•	
J_{v}	=	$\tau(T_{v})_{d} =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	i additativoi ia	ppi occintare i andamento den				•
Ν	= 16900 N	$M_{t} = -13300 \text{ Nmm}$	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8070 N	$M_x = 96300 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	Θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_o	=
C_{w}	=	$\tau(T_{yb})_d =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	-	
J_{v}	=	$\tau(T_y)_d =$	σ_{mises}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

	1 additativoi la	pprocontaro randamento del		_		0
Ν	= 20800 N	$M_{t} = -15900 \text{ Nmm}$	$\sigma_{\rm a}$	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 8720 N	$M_x = 74700 \text{ Nmm}$	E	$= 200000 \text{ N/mm}^2$		
y_g	=	σ(N) =	τ_{s}	=	θ_{t}	=
u_o	=	$\sigma(M_x) =$	$\sigma_{\sf ls}$	=	r_u	=
V_{o}	=	$\tau(M_t) =$	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc}) =$	σ_{Id}	=	r_{o}	=
C_{w}	=	$\tau(T_{yb})_{d} =$	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s =$	$\sigma_{ ext{tresc}}$	a =	·	
J_{v}	=	$\tau(T_y)_d =$	σ_{mise}			
J_t	=	σ =	$\sigma_{\text{st.ve}}$			

Rappresentare il cerchio di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

r donairo rapprocentaro randamente delle tener tangenziam							
Ν	= 25100 N	M,	= 12700 Nmm	σ_{a}	$= 240 \text{ N/mm}^2$	G	$= 75000 \text{ N/mm}^2$
T_y	= 9390 N	M_x	= 86500 Nmm	Ε̈́	= 200000 N/mm ²		
y_g	=	$\sigma(N)$	=	$ au_{s}$	=	θ_{t}	=
uo	=	$\sigma(M_x)$	=	σ_{ls}	=	r_u	=
V_{o}	=	$\tau(M_t)$	=	σ_{IIs}	=	r_v	=
A_n	=	$\tau(T_{yc})$	=	σ_{ld}	=	r_o	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{IId}	=	J_p	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{tresca}	=	-	
J_v	=	$\tau(T_y)_d$	=	σ_{mises}	=		
J_t	=	σ		$\sigma_{\text{st.ven}}$			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06							