Sprawozdanie - nieustalony transfer ciepła w oparciu o standardowy algorytm MES

Struktury użyte w oprogramowaniu:

- **struct point** punkt w układzie kartezjańskim,
- **struct node** węzeł elementu skończonego,
- **struct element** czworokątny element skończony,
- struct grid siatka elementów skończonych.

Funkcje użyte w oprogramowaniu:

- grid mesh(int nheight, int nlength, double height, double length) funkcja generująca siatkę elementów skończonych,
- double*** f_matrix_H(int nheight, int nlength, double height, double length, grid a) funkcja obliczająca macierz pojemności cieplnej [H].
 Wykorzystuje całkowanie numeryczne metodą Gaussa. Oblicza m.in. funkcje kształtu, pochodne funkcji kształtu względem ksi i eta, macierz Jakobiego, Jakobian, pochodne funkcji kształtu względem x i y,
- double*** f_matrix_H_BC(int nheight, int nlength, double height, double length,grid a) - funkcja obliczająca część macierzy [H] odpowiadającą za warunek brzegowy,
- double*** f_matrix_C(int nheight, int nlength, double height, double length,grid a) funkcja obliczająca macierz magazynowania ciepła [C].
 Wykorzystuje całkowanie numeryczne metodą Gaussa,
- double** f_vector_P(int nheight, int nlength, double height, double length, grid a) funkcja obliczająca wektor obciążenia {P}. Znajduje i uwzględnia warunki brzegowe nałożone na krawędzie siatki elementów skończonych,
- Agregacja macierzy lokalnych do macierzy globalnych znajduje się w funkcji main().

Test case

Dane początkowe:

- 100 temperatura początkowa [C],
- 500 czas symulacji [s]
- 50 krok czasowy [s],
- 1200 temperatura otoczenia [C],
- 300 współczynnik przejmowania ciepła alfa [W/m2K],
- 0.100 wysokość siatki [m],
- 0.100 szerokość siatki [m],
- 4 ilość węzłów po wysokości,
- 4 ilość węzłów po szerokości,
- 700 ciepło właściwe [J/(kgC)],
- 25 współczynnik przewodności cieplnej [W/(mC)],
- 7800 gęstość [kg/m3].

Wygenerowana siatka:

```
Wezel nr.0.Wspolrzedne wezla (0,0). Temperatura w wezle 100. Status: 1
Wezel nr.1.Wspolrzedne wezla (0,0.0666667). Temperatura w wezle 100. Status: 1
Wezel nr.2.Wspolrzedne wezla (0,0.0666667). Temperatura w wezle 100. Status: 1
Wezel nr.3.Wspolrzedne wezla (0,0.1). Temperatura w wezle 100. Status: 1
Wezel nr.4.Wspolrzedne wezla (0.0333333.0). Temperatura w wezle 100. Status: 1
Wezel nr.5.Wspolrzedne wezla (0.0333333.0). Temperatura w wezle 100. Status: 0
Wezel nr.6.Wspolrzedne wezla (0.0333333.0.0666667). Temperatura w wezle 100. Status: 0
Wezel nr.7.Wspolrzedne wezla (0.0333333.0.1). Temperatura w wezle 100. Status: 1
Wezel nr.8.Wspolrzedne wezla (0.0666667.0.0.1). Temperatura w wezle 100. Status: 1
Wezel nr.9.Wspolrzedne wezla (0.0666667.0.033333). Temperatura w wezle 100. Status: 0
Wezel nr.10.Wspolrzedne wezla (0.0666667.0.1). Temperatura w wezle 100. Status: 0
Wezel nr.11.Wspolrzedne wezla (0.100666667.0.1). Temperatura w wezle 100. Status: 1
Wezel nr.12.Wspolrzedne wezla (0.1,0.033333). Temperatura w wezle 100. Status: 1
Wezel nr.13.Wspolrzedne wezla (0.1,0.0666667). Temperatura w wezle 100. Status: 1
Wezel nr.14.Wspolrzedne wezla (0.1,0.0666667). Temperatura w wezle 100. Status: 1
Wezel nr.15.Wspolrzedne wezla (0.1,0.0666667). Temperatura w wezle 100. Status: 1
Element 0 sklada sie z wezlow: 0 4 5 1
Element 1 sklada sie z wezlow: 0 4 5 1
Element 2 sklada sie z wezlow: 1 5 6 2
Element 4 sklada sie z wezlow: 5 9 10 6
Element 5 sklada sie z wezlow: 8 12 13 9
Element 7 sklada sie z wezlow: 8 12 13 9
Element 8 sklada sie z wezlow: 9 13 14 10
Flement 8 sklada sie z wezlow: 9 13 14 10
Flement 8 sklada sie z wezlow: 9 13 14 10
```

Globalna macierz H:

Globalna macierz C:

674.07	337.037	Ø	Ø	337.037	168.519	0	0	0	0	0	0	0	0	0	0
337.03	1348.15	337.037	Ø	168.519	674.074	168.519	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø
	337.037	1348.15	337.037	Ø	168.519	674.074	168.519	0	Ø	Ø	Ø	Ø	0	0	Ø
	9 0	337.037	674.074	Ø		168.519	337.037	Ø	Ø	Ø	Ø	Ø	0	Ø	Ø
337.03	168.519	Ø			674.074	Ø	Ø	337.037	168.519	Ø	Ø	Ø	0	0	Ø
168.51	674.074	168.519		674.074		674.074		168.519	674.074	168.519	Ø	Ø	0	Ø	Ø
	168.519	674.074	168.519	Ø			674.074	0	168.519	674.074	168.519	0	0	0	Ø
	9	168.519	337.037	Ø	Ø	674.074	1348.15	0		168.519	337.037	Ø	0	Ø	Ø
	9	Ø	0		168.519	0		1348.15	674.074	Ø	0		168.519	0	Ø
	9	0	Ø	168.519	674.074	168.519		674.074		674.074		168.519	674.074	168.519	Ø
	9	Ø	0	Ø	168.519	674.074	168.519	0	674.074		674.074	0	168.519	674.074	168.519
	9	0	Ø	Ø	Ø	168.519		0		674.074	1348.15			168.519	337.037
	9	Ø	0	Ø	0	0	0	337.037			0		337.037	0	Ø
	9	Ø	Ø	Ø	Ø	Ø	Ø	168.519	674.074	168.519	Ø	337.037	1348.15	337.037	Ø
	9	Ø	0	0	0	0	0	0	168.519		168.519	0	337.037	1348.15	337.037
	9 0	0	Ø	9	0	Ø	0	0	Ø	168.519	337.037	Ø	Ø	337.037	674.074

Matrix [H] = [H]+[C]/dT (taka sama w każdej iteracji):

36.8148	4.24074	0	Ø	4.24074	-4.96296	Ø	Ø	0	Ø	0	0	Ø	Ø	9	Ø
4.24074	66.963	4.24074			5.14815				Ø	Ø	Ø	Ø	Ø	Ø	0
Ø	4.24074				-4.96296				Ø	Ø	Ø	Ø	Ø	Ø	Ø
	Ø				Ø				Ø	Ø	Ø	Ø	Ø	0	0
									-4.96296		Ø	Ø	Ø	Ø	Ø
									5.14815			Ø	0	0	0
0		5.14815							-4.96296			Ø	Ø	0	Ø
Ø	0	-4.96296							Ø			Ø	Ø	0	Ø
Ø	Ø	Ø							5.14815			4.24074		0	0
Ø	Ø	Ø	Ø						120.593						
Ø	0	Ø	Ø	Ø					5.14815						
Ø	Ø	Ø	Ø	Ø	Ø	-4.96296			Ø						4.24074
Ø	Ø	0	Ø	Ø	Ø	Ø	Ø	4.24074	-4.96296	Ø	Ø	36.8148	4.24074	9	Ø
Ø	Ø	Ø	Ø	Ø	Ø	Ø			5.14815					4.24074	
Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	9	-4.96296	5.14815	-4.96296	Ø	4.24074	66.963	4.24074
Ø	0	Ø	Ø	Ø	Ø	Ø	0	0	Ø	-4.96296	4.24074	Ø	Ø	4.24074	36.8148

Symulacja:

| Terestion 1 | T-58 |

Najwyższa i najniższa temperatura w kolejnym kroku czasowym:

Time[s]	MinTemp [C]	MaxTemp [C]
50	110.038	365.815
100	168.837	502.592
150	242.801	587.373
200	318.615	649.387
250	391.256	700.068
300	459.037	744.063
350	521.586	783.383
400	579.034	818.992
450	631.689	851.431
500	679.908	881.058