學號:B04902011 系級: 資工三 姓名:張立暐

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature的一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響

	全部污染源 feature 的一次項	全部 PM2.5 的一次項
RMSE	6.51025	6.60643

根據上表的結果看來,採用「全部污染源 feature 的一次項」這個模型比起採用「全部 PM2.5 的一次項」的模型有更低的 RMSE,也就是有更好的預測表現,其原因可能為僅採取 PM2.5 作為 feature 較不能更全面的了解環境因子對未來 PM2.5 走勢的影響,故採取全部污染源作為 feature 在此情形下對於預測來說才有更佳的表現。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

RMSE	全部污染源 feature 的一次項	全部 PM2.5 的一次項
抽前 9 小時	6.51025	6.60643
抽前5小時	6.61879	6.75858

由上表的結果來看,不論是以「全部污染源」或「僅 PM2.5」作為 feature,抽前 5 小時都較抽前 9 小時有稍差的表現,其原因可能為僅抽取前 5 小時的 feature 比起抽取前 9 小時較不能獲得更完整的連續走勢,進而影響預測的準確度。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

RMSE	全部污染源 feature 的一次項	全部 PM2.5 的一次項
λ=0.1	6.51064	6.60680
λ=0.01	6.51028	6.60646
λ=0.001	6.51025	6.60644
λ=0.0001	6.51025	6.60643

* 註:第 1, 2, 3 小題所用來測試的 code 皆有使用 adagrad,且資料有進行過標準化。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^{N} \left(y^n-x^n\cdot w\right)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^TX)^{-1}X^Ty \leftarrow answer$
- (d) $(X^{T}X)^{-2}X^{T}y$

算式:
$$w = [w^{1} w^{2} ... w^{M}]^{T}$$

$$Loss = (y - X \cdot w)^{T} (y - X \cdot w)$$

$$= (y^{T} - w^{T} X^{T}) (y - X \cdot w)$$

$$= y^{T} y - y^{T} X w - w^{T} X^{T} y + w^{T} X^{T} X w$$

$$= y^{T} y - 2w^{T} X^{T} y + w^{T} X^{T} X w$$

$$\frac{\partial Loss}{\partial w} = -2X^{T} y + 2X^{T} X w = 0$$

$$\Rightarrow X^{T} X w = X^{T} y$$

$$\Rightarrow w = (X^{T} X)^{-1} X^{T} y$$