Machine Learning and its Applications

Dr. Priyank Thakkar
Associate Professor
Computer Science and Engineering Department
Institute of Technology
Nirma University

Syllabus

Introduction: Theory and practices in machine learning

Supervised Learning: Decision trees, Bayesian Decision theory, Parametric Methods, Multivariate methods, Dimensionality Reduction

Unsupervised Learning: Clustering, Non parametric Methods, Linear models for regression, Linear models for classification

Kernel Methods: Support Vector Machine, Sparse kernel machines, Graphical Models, Mixture models and EM, Approximate Inference, Sampling Methods.

Reinforcement learning: Q Learning, Non deterministic rewards and Actions.

Evolutionary computing: Genetic Algorithms, Genetic Programming

Evaluation Techniques: The PAC and mistake bound learning frame work VC dimension, Minimum description length principle.

Books

- 1. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 2. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 3. Kishan Mehrotra, Chilukuri Mohan and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 4. Tom Mitchell, Machine Learning, TMH
- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Athem Ealpaydin, Introduction to Machine Learning, PHI

Books

- 7. Computational Intelligence-An Introduction, by Andries P. Engelbrecht, Wiley Publication.
- 8. Computational Intelligence Principles, Techniques and Applications, Amit Konar, Springer.

Course Site

https://sites.google.com/a/nirmauni.ac.in/ce623--machine-learning/eventerm

Teaching & Evaluation Scheme

Teaching Scheme:

Theory	Tutorial	Practical	Credits
3	1	0	4

Evaluation Methodology:

	SEE	CE
Exam Duration	3.0 Hrs.	Continuous Evaluation
Component Weightage	0.4	0.6

Teaching & Evaluation Scheme

Breakup of CE

	Unit 1	Unit 2	Unit 3
Exam	Class Test	Sessional Exam	Project
Inter Component Weightage	0.3	0.4	0.3
Numbers	1	1	1
Marks of Each	30	40	30

> AI, ML and DL

> What is Machine Learning (ML)?

> Flavors of Machine Learning

- > Flavors of Machine Learning
 - > Supervised Learning
 - > Unsupervised Learning
 - > Semi Supervised Learning
 - > Reinforcement Learning

- > Have you already been benefitted by ML?
 - Google search and ranked pages
 - > Spam E-mail
 - > Recommendations on Amazon, Flipkart, Movielens
 - > Related advertisements on websites

- > Natural Language Processing
 - > Autonomous Tagging of Stackoverflow Questions
 - > Make a multi-label classification system that automatically assigns tags for questions posted on a forum such as StackOverflow or Quora.
 - Dataset: StackLite or 10% sample

- > Natural Language Processing
 - > Autonomous Tagging of Stackoverflow Questions
 - > Make a multi-label classification system that automatically assigns tags for questions posted on a forum such as StackOverflow or Quora.
 - Dataset: StackLite or 10% sample
 - > Automated essay grading
 - > The purpose of this project is to implement and train machine learning algorithms to automatically assess and grade essay responses.
 - > Dataset: Essays with human graded scores

- > Natural Language Processing
 - > Autonomous Tagging of Stackoverflow Questions
 - Make a multi-label classification system that automatically assigns tags for questions posted on a forum such as StackOverflow or Quora.
 - Dataset: StackLite or 10% sample
 - > Automated essay grading
 - > The purpose of this project is to implement and train machine learning algorithms to automatically assess and grade essay responses.
 - > Dataset: Essays with human graded scores
 - > Sentence to Sentence semantic similarity
 - > Can you identify question pairs that have the same intent or meaning?
 - Dataset: Quora question pairs with similar questions marked

- > Natural Language Processing
 - > Fight online abuse
 - > Can you confidently and accurately tell whether a particular comment is abusive?
 - Dataset: Toxic comments on Kaggle

- > Natural Language Processing
 - > Fight online abuse
 - > Can you confidently and accurately tell whether a particular comment is abusive?
 - Dataset: Toxic comments on Kaggle
 - Open Domain question answering
 - Can you build a bot which answers questions according to the student's age or her curriculum?
 - > Facebook's FAIR is built in a similar way for Wikipedia.
 - Dataset: NCERT books for K-12/school students in India, NarrativeQA by Google DeepMind and SQuAD by Stanford

- > Natural Language Processing
 - > Fight online abuse
 - > Can you confidently and accurately tell whether a particular comment is abusive?
 - Dataset: Toxic comments on Kaggle
 - > Open Domain question answering
 - Can you build a bot which answers questions according to the student's age or her curriculum?
 - > Facebook's FAIR is built in a similar way for Wikipedia.
 - Dataset: NCERT books for K-12/school students in India, NarrativeQA by Google DeepMind and SQuAD by Stanford
 - > Social Chat/Conversational Bots
 - Can you build a bot which talks to you just like people talk on social networking sites?
 - > Reference: Chat-bot architecture
 - Dataset: Reddit Dataset

- > Natural Language Processing
 - > Copy-cat Bot
 - > Generate plausible new text which looks like some other text
 - > Obama Speeches? For instance, you can create a bot which writes some new speeches in Obama's style
 - Trump Bot? Or a Twitter bot which mimics@realDonaldTrump
 - Narendra Modi bot saying "doston"? Start by scrapping off his Hindi speeches from his personal website
 - > Example Dataset: English Transcript of Modi speeches

- > Applications that can't be programmed by hand
 - > Handwriting Recognition

- > Applications that can't be programmed by hand
 - > Natural Language Processing
 - > Machine Translation

- > Applications that can't be programmed by hand
 - > Handwriting Recognition
 - Natural Language Processing
 - Machine Translation
 - Word Sense Disambiguation
 - > "I am taking aspirin for my cold" the disease sense is intended
 - > "Let's go inside, I'm cold" the temperature sensation sense is meant
 - > "It's cold today, only 2 degrees", implies the environmental condition sense.

- > Applications that can't be programmed by hand
 - > Handwriting Recognition
 - Natural Language Processing
 - Machine Translation
 - Word Sense Disambiguation
 - > "I am taking aspirin for my cold" the disease sense is intended
 - > "Let's go inside, I'm cold" the temperature sensation sense is meant
 - > "It's cold today, only 2 degrees", implies the environmental condition sense.
 - > Part-of-Speech Tagging
 - > "And now for something completely different"
 - > [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
 - Here we see that and is CC, a coordinating conjunction; now and completely are RB, or adverbs; for is IN, a preposition; something is NN, a noun; and different is JJ, an adjective.

- > Applications that can't be programmed by hand
 - > Handwriting Recognition
 - Natural Language Processing
 - Machine Translation
 - Word Sense Disambiguation
 - > "I am taking aspirin for my cold" the disease sense is intended
 - > "Let's go inside, I'm cold" the temperature sensation sense is meant
 - > "It's cold today, only 2 degrees", implies the environmental condition sense.
 - > Part-of-Speech Tagging
 - > "And now for something completely different"
 - [('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]
 - Here we see that and is CC, a coordinating conjunction; now and completely are RB, or adverbs; for is IN, a preposition; something is NN, a noun; and different is JJ, an adjective.
 - > Sentiment Analysis

- > Applications that can't be programmed by hand
 - > Natural Language Processing
 - Named-Entity Recognition
 - > Teddy Roosevelt was a great president
 - > Teddy bears are on sale

- > Applications that can't be programmed by hand
 - Natural Language Processing
 - > Named-Entity Recognition
 - > Teddy Roosevelt was a great president
 - > Teddy bears are on sale
 - > Chatbot

- > Applications that can't be programmed by hand
 - Natural Language Processing
 - Named-Entity Recognition
 - > Teddy Roosevelt was a great president
 - > Teddy bears are on sale
 - > Chatbot
 - > Speech Recognition, etc.
 - Speech recognition is the ability of a machine or program to identify words and phrases in spoken language and convert them to a machine-readable format.
 - > The most frequent applications of speech recognition include voice dialling and voice search.

- > Applications that can't be programmed by hand
 - Natural Language Processing
 - Named-Entity Recognition
 - > Teddy Roosevelt was a great president
 - > Teddy bears are on sale
 - > Chatbot
 - > Speech Recognition, etc.
 - > Speech recognition is the ability of a machine or program to identify words and phrases in spoken language and convert them to a machine-readable format.
 - The most frequent applications of speech recognition include voice dialling and voice search.
 - > Text Summarization
 - > Extractive Summarization
 - > Abstractive Summarization

Celebrities [2]

Celebrities [2]

Pose Guided Person Image Generation [3]

Pose Guided Person Image Generation [3]

(c) Generating from a sequence of poses

CycleGAN [4]

Zebras C Horses

zebra → horse

horse → zebra

Text to Image [5]

Image Inpainting [6]

DiscoGAN [7]

(b) Handbag images (input) & Generated shoe images (output)

Pix2Pix [8]

Face aging (Age-cGAN) [9]

Unsupervised Domain Adaptation by Backpropagation [10, 11]

> Learning a discriminative classifier or other predictor in the presence of a shift between training and test distributions is known as domain adaptation (DA).

Figure 2. Examples of domain pairs used in the experiments. See Section 4.1 for details.

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - Gender Recognition

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - Gender Recognition
 - > Emotion Recognition

- > Applications that can't be programmed by hand
 - Computer Vision
 - > Security and Surveillance
 - > Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))

Semantic Segmentation

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Instance Segmentation

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation
 - Instance Segmentation

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation
 - Instance Segmentation
 - > Image and Video Captioning

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation
 - Instance Segmentation
 - > Image and Video Captioning
 - Video Summarization

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation
 - > Instance Segmentation
 - > Image and Video Captioning
 - > Video Summarization
 - CBIR (three variants)

- > Applications that can't be programmed by hand
 - > Computer Vision
 - > Security and Surveillance
 - Age Invariant Face Recognition
 - > Gesture Analysis
 - > Autonomous Vehicle
 - > Gender Recognition
 - > Emotion Recognition
 - > Age Prediction
 - Image Classification (ImageNet Large Scale Visual Recognition Competition (ILSVRC))
 - Object Detection
 - > Semantic Segmentation
 - Instance Segmentation
 - > Image and Video Captioning
 - Video Summarization
 - > CBIR (three variants)
 - > Driver's Drowsiness Detection

- > Applications that can't be programmed by hand
 - > Computer Vision
 - Emojinator (Emoji Classifier)

> Personalized Websites

- > Personalized Websites
- > Medical Domain
 - > Lung Cancer Detection (Nodules form CT Scan Images)
 - Bone X-ray

- > Personalized Websites
- > Medical Domain
- > Finance

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- > Tag Recommendation

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- > Tag Recommendation
- > Solar Intensity Prediction

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction
- > Soil Moisture Estimation

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction
- > Soil Moisture Estimation
- Oil Spill Detection

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction
- > Soil Moisture Estimation
- > Oil Spill Detection
- > Land Classification

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- > Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction
- > Soil Moisture Estimation
- > Oil Spill Detection
- > Land use Land Cover Classification
- Cyclone Path Prediction

- > Personalized Websites
- > Medical Domain
- > Finance
- > Intrusion Detection System
- > Optimized Routing in IP Networks
- > Wireless Sensor Network
- > Friend Recommendation
- > Tag Recommendation
- > Solar Intensity Prediction
- > Weather Prediction
- > Soil Moisture Estimation
- > Oil Spill Detection
- > Land use Land Cover Classification
- > Cyclone Path Prediction
- > Robotics

> Music Recommender System

- > Music Recommender System
- > LipNet

- > Music Recommender System
- > LipNet
- > Image Enlarging

- > Music Recommender System
- > LipNet
- > Image Enlarging
- > Image Outpainting
 - > Imagine you have a half image of a scene and you wanted the full scenery, well that's what image outpainting can do

- > Music Recommender System
- > LipNet
- > Image Enlarging
- > Image Outpainting
- > Audio Visual Scene Aware Dialog (DSTC)
 - > The goal is to generate a complete and natural response to a question about a scene, given video and audio of the scene and the history of previous turns in the dialog.
 - > To answer successfully, agents must ground concepts from the question in the video while leveraging contextual cues from the dialog history.

References

- 1. https://towardsdatascience.com/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1
- 2. Progressive Growing of GANs for Improved Quality, Stability, and Variation
- 3. Ma, Liqian, et al. "Pose guided person image generation." Advances in Neural Information Processing Systems. 2017.
- 4. https://github.com/junyanz/CycleGAN
- 5. https://github.com/hanzhanggit/StackGAN
- 6. https://github.com/pathak22/context-encoder
- 7. https://github.com/carpedm20/DiscoGAN-pytorch
- 8. https://github.com/phillipi/pix2pix
- 9. Antipov, Grigory, Moez Baccouche, and Jean-Luc Dugelay. "Face aging with conditional generative adversarial networks." Image Processing (ICIP), 2017 IEEE International Conference on IEEE, 2017.
- 10. https://pdfs.semanticscholar.org/presentation/f4af/de757b9dfc697d149 e 95cb193aa4749530e2.pdf
- 11. Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain adaptation by backpropagation." arXiv preprint arXiv:1409.7495 (2014).

Disclaimer

Content of this presentation is not original and it has been prepared from various sources for teaching purpose.