LDPC DECODER FOR BEC CHANNEL

Dhruvi Gohel – 202101188 Varun Vyas – 202101468

Implementation of the decoding algorithm(for BEC channel) to decode the rate 1/4 (n = 12, k = 3, u = 9) LDPC code whose parity check matrix H is given below.

Implementation of algorithm for hard decoding

```
m = 9;
n = 12;
H = [1 0 0 0 0 1 0 1 0 1 0 0;
100110000010;
010010101000;
001001000011;
001000110001;
010010001010;
100100100100;
010001010100;
001100001001];
vn= [-1 -1 -1 -1 -1 0 -1 0 -1 0 -1 -1]; %random received signal where -1
represents error
dc=0;
for i=1:n
if(H(1,i)==1)
dc=dc+1;
end
end %found dc
dv=0;
for i=1:m
if(H(i,1)==1)
dv=dv+1;
end
end %found dv
V_dv=zeros(n, dv); % ith index stores CNs connected to VN i
C_dc=zeros(m,dc); %ith index tores VNs connected to CN i
for i=1:m %preparing tanner graph(dc)
k=1;
for j=1:n
if(H(i,j)==1)
C_dc(i,k)=j;
k=k+1;
end
end
```

```
end
 for i=1:n %preparing tanner graph(dv)
 k=1;
 for j=1:m
 if(H(j,i)==1)
V_dv(i,k)=j;
k=k+1;
 end
 end
 end
tmax = 50;
for t=1:tmax %tmax iteration
flagi=0;
for i=1:m
 for j=1:dc
 if(vn(C_dc(i,j))==-1)
flag=0;
                   for k=1:dc
 if(k~=j)
 if(vn(C_dc(i,k))==-1)
 vn(C_dc(i,j))=-1;
                               flag=1;
                               break;
 end
 end
 end
 if(flag==0)
 vn(C_dc(i,j))=0;
                       flagi=1;
 end
 end
 end
 end
 if(~any(vn))
 countAllZero(idxCountAllZero)=countAllZero(idxCountAllZero)+1; end
%disp(vn);
%fprintf("\n");
 if(flagi==0 || (~any(vn)))
 break;
 end
 end
                         Monte Carlo Simulations
m = 9;
n = 12;
H = [1 0 0 0 0 1 0 1 0 1 0 0;
100110000010;
010010101000;
001001000011;
001000110001;
```

```
010010001010;
100100100100;
010001010100;
001100001001];
%H1=load("Hmatridc2.mat");
%H=H1.H;
dc=0;
for i=1:n
 if(H(1,i)==1)
 dc=dc+1;
 end
end %found dc
dv=0;
for i=1:m
 if(H(i,1)==1)
 dv=dv+1;
 end
 end %found dv
V_dv=zeros(n, dv); % ith index stores CNs connected to VN i
C_dc=zeros(m,dc); %ith index tores VNs connected to CN i
 for i=1:m %preparing tanner graph(dc)
 k=1;
 for j=1:n
 if(H(i,j)==1)
 C_dc(i,k)=j;
 k=k+1;
 end
 end
 end
for i=1:n %preparing tanner graph(dv)
 k=1;
 for j=1:m
 if(H(j,i)==1)
 V_dv(i,k)=j;
 k=k+1;
 end
 end
end
Nsim=1000;
deltaP = 0.02;
numOfSteps = 1/deltaP+1;
countAllZero = zeros(numOfSteps,1);
idxCountAllZero = 0;
remainingErasure = zeros(numOfSteps,1);
for p = 0:deltaP:1
idxCountAllZero=idxCountAllZero+1;
for simIdx=1: Nsim
cn = zeros(m,1);
vn = -1*(rand(n,1)>p);
for i= 1: m
 cn(i)=-1;
 end %all erased at first
```

```
flag=0;
 for t=1:(m-1)*(n-1)
 flagi=0;
 for i=1:m
 for j=1:dc
 if(vn(C_dc(i,j))==-1)
 flag=0;
                    for k=1:dc
 if(k~=j)
 if(vn(C_dc(i,k))==-1)
 vn(C_dc(i,j))=-1;
                                 flag=1;
 break;
 end
 end
 end
                     if(flag==0)
vn(C_dc(i,j))=0;
                        flagi=1;
 end
 end
 end
 end
 if(~any(vn))
 countAllZero(idxCountAllZero)=countAllZero(idxCountAllZero)+1; end
 %disp(vn);
%fprintf("\n");
 if(flagi==0 || (~any(vn)))
 break;
 end
 end
 for j=1:n
 if(vn(j)==-1)
 remainingErasure(idxCountAllZero) = remainingErasure(idxCountAllZero) +
(1/Nsim);
 end
end
end
successRatio = zeros(numOfSteps,1);
pSteps = zeros(numOfSteps,0);
for i=1:numOfSteps
successRatio(i) = countAllZero(i)/Nsim;
pSteps(i) = deltaP*i;
end
figure(1);
plot(pSteps, successRatio);
```

```
grid on;
xlabel('probability of bec passing 0');
ylabel('sucessRatio');

figure(2);
plot(pSteps,countAllZero);
grid on;
xlabel('probability of bec passing 0');
ylabel('count of message signals decoded to all zero');

figure(3);
plot(pSteps,remainingErasure);
grid on;
xlabel('probability of bec passing 0');
ylabel('count of erasures remaining in decoded message');
```

Plot of probability of successful decoding

Plot of number of erasers remaining after decoding

GRAPHICAL REPRESENTATION OF SUCCESS RATIO

Plot of probability of successful decoding for Hmatrix

Plot of number of erasers remaining after decoding for Hmatrix

Plot of probability of successful decoding for Hmatrix2

Plot of number of erasers remaining after decoding for Hmatrix2

soft decision decoding using bernard's paper for BEC

Monte Carlo Simulations

(Hmatrix is a matrix of size 3792 x 5056 and Hmatrix2 is a matrix of size 3000 x 5000.)

```
clear all;
%prompt='INPUT m and then n: ';
m = 3000;
n = 5000;
H1=load("Hmatrix2.mat");
H=H1.H;
dc=0;
for i=1:n
if(H(1,i)==1)
dc=dc+1;
end
end %found dc
dv=0;
for i=1:m
 if(H(i,1)==1)
dv=dv+1;
 end
 end %found dv
V_dv=zeros(n, dv); % ith index stores CNs connected to VN i
C_dc=zeros(m,dc); %ith index tores VNs connected to CN i
for i=1:m %preparing tanner graph(dc)
k=1;
 for j=1:n
 if(H(i,j)==1)
 C_dc(i,k)=j;
 k=k+1;
 end
 end
 end
 for i=1:n %preparing tanner graph(dv)
 k=1;
 for j=1:m
 if(H(j,i)==1)
V_dv(i,k)=j;
 k=k+1;
 end
 end
end
prompt="input probability of error";
po = input(prompt);
success=0;
errorProbab = zeros(51,1);
```

```
errorProbab(1) = po;
for simIdx = 1:100
vn = -1*(rand(n,1)>(1-po));
vnprob = ones(n,1);
for i=1:n
if(vn(i)==0)
vnprob(i)=0;
 elseif(vn(i)==1)
vnprob(i)=1;
 elseif(vn(i)==-1)
vnprob(i)=0.5;
end
end
H_prob = H;
for i=1:n
for j=1:dv
if(V_dv(i,j)>0)
H_{prob}(V_{dv}(i,j),i) = vnprob(i); end
end
end
eraser = ones(50,1);
for t=1:50
num=0;
 for i=1:n
 if(vn(i)==-1)
num=num+1;
 end
errorProbab(t+1) = errorProbab(t+1) + num/(n*100);
vncopy=vn;
 for i=1:m
 vntemp = zeros(dc,1);
 for j=1:dc
 temp=1;
 for k=1:dc
 if(k~=j)
 temp=temp*(1-2*(H_prob(i,C_dc(i,k)))); end
 vntemp(j)=0.5 + 0.5*temp;
end
 for it = 1:dc
H_prob(i,C_dc(i,it))=vntemp(it); end
 end
 for i=1:n
 vntemp=zeros(dv,1);
 for j=1:dv
 p1=1;
```

```
p0=1;
 for k=1:dv
 if(k\sim=j)
 p1=p1*(1-H_prob(V_dv(i,k),i));
                     p0=p0*(H_prob(V_dv(i,k),i));
 end
 end
 p1 = p1*vnprob(i);
 p0 = p0*(1-vnprob(i));
 vntemp(j) = p1/(p1+p0);
 end
 for k=1:dv
 H_{prob}(V_{dv}(i,k), i) = vntemp(k);
 end
 for i=1:n
 transmitted1=1;
 transmitted0=1;
 for j=1:dv
 transmitted1 = transmitted1*(H_prob(V_dv(i,j),i));
transmitted0 = transmitted0*(1-H_prob(V_dv(i,j),i)); end
 transmitted1 = transmitted1*vnprob(i);
 transmitted0 = transmitted0*(1-vnprob(i));
if(transmitted0>transmitted1)
 vnprob(i)=0;
 vn(i)=0;
 elseif(transmitted1>transmitted0)
 vnprob(i)=1;
 vn(i) = 1;
 end
 end
 %if(vncopy==vn)
% break;
 %end
 %if(~(any(vn)))
% break;
%end
end
if(~any(vn))
success=success+1;
end
end
idx=zeros(51,1);
for i=1:51
idx(i)=i;
end
hold on;
plot(idx, errorProbab);
analytical = zeros(51,1);
analytical(1) = po;
for i=1:50
analytical(i+1) = po*(1-((1-analytical(i))^(dc-1)))^(dv-1);
end
```

```
sucessRatio = success/100;
plot(idx,analytical)
grid on;
legend('decoding algorithm convergence','analytical convergence');
hold off;
```

Algorithm convergence graphs for Hmatrix2

