65. Metody analýzy C/E a P/T Petriho sítí.

Případový graf

- metoda pro analýzu případů CE systému
 - Základní sémantika:
 - uzly reprezentují případy
 - hrany reprezentují kroky

❖ **Definice 6.1**: Nechť Σ je C/E systém, γ nechť je množina všech kroků systému Σ a nechť H je množina

$$H = \{(c_1, G, c_2) \in C_\Sigma \times \gamma \times C_\Sigma | c_1[G \rangle c_2\}$$

Pak graf $\Phi_{\Sigma}=(C_{\Sigma},H)$ se nazývá *případový graf* (case graph) C/E systému Σ .

- C/E systém je cyklický, právě když je jeho případový graf silně souvislý
- C/E systém je živý, právě když pro každé c0 a každé e existuje cesta v případovém grafu c₀h₁c₁ ... h_nc_n, kde h_n = {e}

Analýza P/T sítí

- základní pojmy
 - bezpečnost
 - omezenost
 - konzervativnost
 - živost
- bezpečnost místo p je bezpečné, pokud pro každé dosažitelné značení M platí M(p)<=1
- k-bezpečnost pro každé značení M platí M(p) <= k
- omezenost místo je omezené, pokud je k-bezpečné pro nějaké k
- konzervativnost

$$\forall M \in [M_0\rangle : \sum_{p \in P} M(p) = \sum_{p \in P} M_0(p)$$

konzervativnost vzhledem k váhovému vektoru

$$orall M \in [M_0
angle \colon \sum_{i=1}^n w_i.M(p_i) = \sum_{i=1}^n w_i.M_0(p_i)$$

- živost značení M je živé, pokud pro všechny přechody t existuje značení M' dosažitelné z M takové, že t je M'-proveditelný
- problém dosažitelnosti je značení M dosažitelné z M₀
- problém pokrytí existuje značení M' dosažitelné z M takové, že M' >= M

Strom dosažitelných značení

- konečná reprezentace množiny dosažitelných značení
- je to kořenový orientovaný strom, jehož kořenem je počáteční značení M0 a vrcholy tvoří
 n-tice popisující značky v jednotlivých místech, kde n = |P|

Algoritmus konstrukce stromu dosažitelných značení:

Nechť x je vrchol (uzel) stromu. $M_x\colon P\to\mathbb{N}\cup\{\omega\}$ bude ohodnocení vrcholu x; $M_{\text{kořen}}=M_0$

Rozlišíme 4 typy vrcholů: čelní, koncový, duplikovaný, vnitřní

Nechť x je právě zpracovávaný čelní vrchol.

- 1. Jestliže $\exists y, y \neq x, y$ není čelní a $M_x = M_y$, pak x se stává duplikovaným vrcholem
- 2. Jestliže $\delta(M_x,t)$ není definováno pro žádné $t\in T$, pak x se stává koncovým vrcholem
- 3. Je-li jistý přechod $t \in T$ M_x -proveditelný, vytvoříme nový vrchol z s ohodnocením M_z :

 $\forall p \in P$:

- (a) Je-li $M_x(p) = \omega$, pak $M_z(p) = \omega$
- (b) Existuje-li na cestě z kořene do vrcholu x vrchol y takový, že $M_y \leq \delta(M_x,t)$ a jestliže $M_y(p) < \delta(M_x,t)(p)$, pak $M_z(p) = \omega$
- (c) Jinak $M_z(p) = \delta(M_x, t)(p)$

Hrana $\langle x, z \rangle$ je označena přechodem t a vrchol z se stává čelním vrcholem.

- •
- strom můžeme využít pro ověřování
 - bezpečnost
 - omezenost
 - konzervativnost
 - pokrytí
 - živost
 - dosažitelnost

Je to mnozina mist

P invarianty

jejichz pocet znacek

- vyznačují místa, jejichž značky se během provádění přechodů nemění
- je to řešení soustavy rovnic N^T * x = 0
- i je P invariant a M je dosažitelné značení, pak platí M₀ * i = M * i
- N je síť s konečným počátečním značením M₀, pokud je pokryta P invarianty, pak
 je omezená
- pokud i₁ a i₂ jsou P invarianty, pak také i₁ + i₂ a z*i₁ jsou P invarianty

T invarianty ktere prechody a kolikrat

- značí, které přechody by se musely počínaje určitým značením provést, aby se toto značení reprodukovalo
- je to řešení soustavy rovnic N * x = 0
- značení M je reprodukovatelné, pokud existuje M', takové, že M ≠ M', M ∈ [M'> a
 M'∈[M>

- pokud i₁ a i₂ jsou T invarianty, pak také i₁ + i₂ a z*i₁ jsou T invarianty
 T invariant je realizovatelný, pokud existuje nějaké značení M ∈ [M₀> a výpočetní posloupnost M ... Mk, taková, že počty přechodů v posloupnosti odpovídají T invariantu
- každá živá a omezená petriho síť je pokryta T invarianty