TIL197, TIL197X, TIL198, TIL198X, TIL199, TIL199X,TIL197A, TIL197AX, TIL198A, TIL198AX, TIL199A, TIL199AX, TIL197B, TIL197BX, TIL198B, TIL198BX, TIL199B, TIL199BX

HIGH DENSITY MOUNTING PHOTODARLINGTON OPTICALLY **COUPLED ISOLATORS**

APPROVALS

UL recognised, File No. E91231 Package Code "FF"

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form: -
 - -STD
 - -Gform
 - SMD approved to CECC 00802
- Certified to EN60950 by Nemko-Certificate No. P01102465

DESCRIPTION

The TIL197, TIL198, TIL199 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo darlingtons in space efficient dual in line plastic packages. The standard parts are tested for a CTR of 500% minimum. Parts with the suffix A or B are tested for a CTR of 1000 and 1500% minimum respectively.

FEATURES

- Options:-
 - 10mm lead spread add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Current Transfer Ratio (500% min)
- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK}) All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD Tel: (01429) 863609 Fax :(01429) 863581

28/11/08 DB92416

ABSOLUTEMAXIMUMRATINGS (25°C unless otherwise specified)

Storage Temperature	$_{-}$ -55°C to + 125°C			
Operating Temperature	-30° C to $+100^{\circ}$ C			
Lead Soldering Temperature				
$(1/16 \operatorname{inch} (1.6 \operatorname{mm}) \operatorname{from case for} 10 \operatorname{secs}) 260^{\circ} \mathrm{C}$				

INPUTDIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	70mW

OUTPUTTRANSISTOR

Collector-emitter Voltage BV _{CEO}	35V
Emitter-collector Voltage BV _{ECO}	6V
Collector Current	80mA
Power Dissipation	150mW

POWERDISSIPATION

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°C)	1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)		1.2	1.4	V	$I_F = 20 \text{mA}$
	Reverse Current (I_R)			10	μΑ	$V_R = 4V$
Output	Collector-emitter Breakdown (BV _{CEO}) (Note 2)	35			V	$I_C = 0.5 \text{mA}$
	$\begin{array}{c} \text{Emitter-collector Breakdown (BV}_{\text{ECO}}) \\ \text{Collector-emitter Dark Current (I}_{\text{CEO}}) \end{array}$	6		100	V nA	$\begin{array}{l} I_{_E}=100\mu A \\ V_{_{CE}}=10V \end{array}$
Coupled	Current Transfer Ratio (CTR) (Note 2) TIL197, TIL198, TIL199 TIL197A, TIL198A, TIL199A TIL197B, TIL198B, TIL199B	500 1000 1500		7500 7500 7500		$\begin{array}{c} 2\text{mA I}_{\text{F}},1\text{V V}_{\text{CE}} \\ 2\text{mA I}_{\text{F}},1\text{V V}_{\text{CE}} \\ 2\text{mA I}_{\text{F}},1\text{V V}_{\text{CE}} \end{array}$
	Collector-emitter Saturation Voltage $V_{\text{CE (SAT)}}$		0.8	1.0	V	2mA I_{F} , 10mA I_{C}
	Input to Output Isolation Voltage V_{ISO}	5300 7500			$egin{array}{c} V_{RMS} \ V_{PK} \end{array}$	See note 1 See note 1
	Input-output Isolation Resistance R_{ISO}	5x10 ¹⁰			Ω	$V_{IO} = 500V \text{ (note 1)}$
	Output Rise Time tr Output Fall Time tf		60 53		μs μs	$V_{CE} = 2V,$ $I_{C} = 10 \text{mA}, R_{L} = 100 \Omega$

Note 1 Measured with input leads shorted together and output leads shorted together.

DB92416

Note 2 Special Selections are available on request. Please consult the factory.

Collector Power Dissipation vs. Ambient Temperature

Collector-emitter Saturation Voltage vs. Forward Current

Forward Current vs. Ambient Temperature

Collector Current vs. Collector-emitter Voltage

Collector-emitter Saturation

Relative Current Transfer Ratio vs. Ambient Temperature

Relative current transfer ratio