FLA (Fall 2024) – Assignment 2

 Name:
 Dept:

 Grade:
 ID:

Due: Oct. 27, 2024

Problem 1

Prove that the following languages are not regular. You may use the pumping lemma and the closure properties of the class of regular languages.

- a. $\{\omega 1\omega \mid \omega \in \{0, 1\}^*\}$
- b. $\{0^n 1^{2n} 2^{3n} \mid n \ge 0 \}$
- c. $\{\omega \mid |0|_{\omega} \ge |1|_{\omega}, \ \omega \in \{0, \ 1\}^* \}$
- d. $\{0^a1^b\mid\gcd(a,\ b)=2\land a,\ b\geq 0\ \}$ (Hint: Consider using factorial during string construction)

Proof.

Problem 2

Consider L_1 and L_2 as languages that are formed over the same alphabet Σ . The weave together of L_1 and L_2 is defined to be $W(L_1,L_2)=\{a_1b_1a_2b_2\cdots a_nb_n|a_i,b_i\in\Sigma,a_1a_2\cdots a_n\in L_1,b_1b_2\cdots b_n\in L_2\}.$ Prove that if L_1 and L_2 are regular, then $W(L_1,L_2)$ is also regular.

Proof.

Problem 3

Prove or disprove the following statements (All languages mentioned below are over alphabet Σ):

- a. If A and B are not regular languages, then $A \cup B$ is not regular.
- b. If A is not a regular language and B is a language such that $B \subset A$, then B is not regular.
- c. If A is a language over alphabet Σ , h is a homomorphism on Σ and A is not regular, then h(A) is not regular.
- d. If A and B are not regular languages and C is a language such that $A\subseteq C\subseteq B$, then C is not regular.

Solution.

Problem 4

Let A and B be languages over $\Sigma = \{0, 1\}$. Define $N_0(w)$ is the number of 0s that string w contains and $N_1(w)$ is the number of 1s that string w contains. Define:

$$\begin{split} A \sim_0 B &= \{ a \in A \mid \text{for some } b \in B, N_0(a) = N_0(b) \} \\ A \sim_{01} B &= \{ a \in A \mid \text{for some } b \in B, N_0(a) = N_0(b) \text{ and } N_1(a) = N_1(b) \} \end{split}$$

- a. Show that the class of regular languages is closed under \sim_0 operation.
- b. Show that the class of regular languages is not closed under \sim_{01} operation.

Solution.