

Grupo 08 - PC2 Física 2

Física 2 (Universidad Peruana de Ciencias Aplicadas)

FÍSICA II (MA462) Práctica calificada N°2

Pregunta 1

En la figura se observa una región rectangular de campo magnético saliente de magnitud B = 0,204 T con L = 10,8 mm. Una carga negativa (m_1, q_1) y otra positiva $(m_2 = 3,39 \times 10^{-14}, q_2)$ son lanzadas desde los puntos a y b con unas rapideces v_1 y $v_2 = 4,62 \times 10^4$ m/s. Si se desea que ambas partículas colisionen en el punto c, determine lo siguiente:

b) el valor de la carga negativa q_2 .

Pregunta 2

En la siguiente figura se muestra la sección transversal de un cable coaxial muy largo, que transporta una corriente I (entrante) en el cilindro macizo central de radio a=1,02 mm y una corriente 3I (saliente) en el cascarón cilíndrico de radio externo c=2,72 mm. La densidad de corriente en el cilindro macizo central no es uniforme y cambia con la distancia al eje del cilindro (r) según la expresión:

$$J(r) = m \cdot r^2 + n \cdot r$$

donde: $m = 5,24 \times 10^{12} \text{ A/m}^4 \text{ y } n = 7,52 \times 10^9 \text{ A/m}^3$. Determine lo siguiente:

- a) la corriente encerrada sobre una curva de radio r > c en términos de m, n y a; y
- b) el módulo del campo magnético a una distancia del eje del cilindro igual a r = 3,75 mm. (Sugerencia primero calcule la intensidad de corriente en el cilindro macizo central)