Vorlesung Software Engineering

Foliensatz Nr. 11 (04.01.12)

Arbeitsgruppe Software Engineering Prof. Elke Pulvermüller

Universität Osnabrück Institut für Informatik, Fachbereich Mathematik / Informatik Raum 31/318, Albrechtstr. 28, D-49069 Osnabrück

elke.pulvermueller@informatik.uni-osnabrueck.de

http://www.inf.uos.de/se

Sprechstunde: mittwochs 14 – 15 und n.V.

Vorlesung Software Engineering

Inhalt

- 1 Software-Krise und Software Engineering
- 2 Grundlagen des Software Engineering
- 3 Projektmanagement
- 4 Konfigurationsmanagement
- 5 Software-Modelle
- 6 Software-Entwicklungsphasen, -prozesse, -vorgehensmodelle
- 7 Qualität
- 8 ... Fortgeschrittene Techniken

Inhalt

- 5.1 Grundlagen und Modelltypen
- 5.2 Programmablaufplan
- 5.3 Struktogramm
- 5.4 Funktionsbaum
- 5.5 Strukturierte Analyse (SA)
- 5.6 EBNF und Syntaxdiagramm
- 5.7 Entity-Relationship-Modell (ERM)
- 5.8 Objektorientierte Modellierung mit UML
- 5.9 Geschäftsprozessmodellierung mit ARIS
- 5.10 Formale Modellierung mit Petri-Netzen

5.9 Geschäftsprozessmodellierung mit ARIS

ARIS HOBE: Architektur integrierter Informationssysteme HOuse of Business Engineering

- Entwicklung von IDS Scheer und SAP (90iger Jahre), IDS Scheer AG
- Einsatz: Rahmenwerk zur Modellierung, Analyse und Optimierung von betriebswirtschaftlichen Geschäftsprozessen in Informationssystemen [Sch98b]
- Konzept und Softwarewerkzeug
- Modell mit Sichten und Verfeinerungsebenen; verschiedene Implementierungsmöglichkeiten

[Sch98a] A.-W. Scheer. ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, 3. Aufl., Berlin, Heidelberg: Springer Verlag 1998.

[Sch98b] A.-W. Scheer. ARIS - Vom Geschäftsprozess zum Anwendungssystem, 3. Aufl., Berlin, Heidelberg: Springer Verlag 1998.

[KNS92] G. Keller, M. Nüttgens und A.-W. Scheer. Semantische Prozessmodellierung. Technischer Bericht Nr. 89, Veröffentlichungen des Instituts für Wirtschaftsinformatik, Saarbrücken, 1992.

[Sei06] H. Seidelmeier. Prozessmodellierung mit ARIS, 2. Aufl., Vieweg+Teubner 2006

5.9 Geschäftsprozessmodellierung mit ARIS: HOBE

5.9 Geschäftsprozessmodellierung mit ARIS: Elemente

ARIS-Meta-Geschäftsprozessmodell:

Einheiten: Funktionen, Ereignisse, Organisationseinheiten, Leistungen, zusätzlich: Ziele des Prozesses, menschliche Arbeitsleistung, Maschinen, Hardware und Anwendungssoftware sowie Umfelddaten

- <u>Funktionen</u>: repräsentieren die einzelnen Arbeitsschritte
 z.B. Bearbeitung eines Auftrags, Erstellen eines Angebots oder die Suche nach Produkten in einem Katalog
- <u>Ereignisse</u>: entweder das Ergebnis einer Funktion des Geschäftsprozesses (z.B. Produkt nach einer Produktsuche gefunden) oder ausgelöst außerhalb des betrachteten Prozesses (z.B. Verhalten eines Kunden auf einer Web-Seite: "Kunde wählt Produktsuche") Eintreffen eines Ereignisses kann auch als explizite Nachricht modelliert werden (Briefsymbol in der Notation; selten)

5.9 Geschäftsprozessmodellierung mit ARIS: Elemente

ARIS-Meta-Geschäftsprozessmodell:

- Organisationseinheiten: Abteilungen oder Gruppen eines Unternehmens, die bestimmte Funktionen übernehmen
- <u>Leistungen</u>: sind Arbeitsergebnisse in einem anderen Geschäftsprozess als dem aktuellen Prozess genutzt oder erbracht
 - z.B. Fertigungspläne oder Tabellen zur Steuerberechnung

5.9 Geschäftsprozessmodellierung mit ARIS: Elemente

5.9 Geschäftsprozessmodellierung mit ARIS: Sichten

Spezifische Sichten

- Organisationssicht: Organisationseinheiten, menschliche Arbeitsleistung, Maschinenressourcen und benötigte Hardware mit ihren Strukturen und Beziehungen Beispiel für ein Modell zur Organisationssicht: Interaktionsdiagramm
- Funktionssicht: beinhaltet die Funktionen, die Ziele und die verwendete Anwendungssoftware
- Leistungssicht: es werden nur Leistungen betrachtet (Input, Output Delivery)
- Datensicht: besteht aus den Ereignissen, Nachrichten und Umfelddaten Verwendetes Modell: ERM
- Steuerungssicht: beschreibt den Ablauf eines Geschäftsprozesses, verknüpft die verschiedenen Sichten

... weitere Sichten bzw. Modelle dafür sind möglich (z.B. Ressourcensicht)

Folie 9

5.9 Geschäftsprozessmodellierung mit ARIS: Organisationssicht

- ships Article
- Zwischen den organisatorischen Einheiten (Aufgabenträger) bestehen Leistungs- und Kommunikationsbeziehungen.
- Darstellung ist sehr leicht verständlich
- Allerdings: die genaue Reihenfolge der Abarbeitung der Anforderungen wird nicht genau ersichtlich ⇒ Darstellungsart bei komplexeren Zusammenhängen sehr schnell unübersichtlich

5.9 Geschäftsprozessmodellierung mit ARIS: Funktionssicht

5.9 Geschäftsprozessmodellierung mit ARIS: Funktionssicht

Spezifische Sicht:

Funktionsbaum

als Funktionssicht (2)

Funktionshierarchie

5.9 Geschäftsprozessmodellierung mit ARIS: Leistungssicht

Spezifische Sicht:

Gliederung von Leistungsarten

in der Leistungssicht

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Spezifische Sicht: Steuerungssicht

1) EPK
(Ereignisgesteuerte Prozessketten
Event-driven Process Chains, EPC)

Modell des logischen Prozessablaufs (für die Steuerung eines betrieblichen Vorgangs)

2) Wertschöpfungskettendiagramm

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Beispiel: Geschäftsprozessmodellierung mit EPKs

Produktsuche-Prozess

Abweichende Darstellung des Pfeils zwischen den Bausteinen (Grund: verwendetes Werkzeug)

Wir nutzen in EPKs diese Pfeilform zur Darstellung des Kontrollflusses:

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Beispiel:

Hierarchische EPKs

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Steuerungssicht:

eEPK = EPK

- Input / Output Daten
- + Organisationseinheiten
- + Anwendungssysteme

Achtung: Teils abweichende Kantendarstellung

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Beispiel: Wertschöpfungskette eProcurement in der Steuerungssicht

5.9 Geschäftsprozessmodellierung mit ARIS: Steuerungssicht

Steuerungssicht:

Beispiel: Wertschöpfungskette eProcurement

5.9 Geschäftsprozessmodellierung mit ARIS: Werkzeug

ARIS Werkzeug

5.9 Geschäftsprozessmodellierung mit ARIS: Sichtenverknüpfung

5.10 Formale Modellierung mit Petri-Netzen

- Eingeführt durch Carl Adam Petri (Dissertation, Bonn 1962)
- Technik zur Modellierung von nebenläufigen (parallelen)
 Prozessen; Beschreibung der Synchronisation und des Verhaltens von verteilten Systemen
- Starke Übereinstimmungen zu Zustands-(übergangs)diagrammen (State Transition Diagrams), Verwendung in Activity Diagrammen in UML 2.x
- grafische Darstellungsform
- mathematische Grundlagen

5.10 Formale Modellierung mit Petri-Netzen: Elemente

Beispiel: einfaches Petri-Netz

Eine Transition kann bei ausreichender Markenanzahl an den Stellen des Vorbereichs schalten.

Der Nachbereich erhält – ausreichende Kapazität vorausgesetzt – danach Marken entsprechend Kantengewichtung.

Standardkapazität- und –gewicht von Kanten: 1, von Stellen: unendlich

5.10 Formale Modellierung mit Petri-Netzen: Elemente

Elemente/Komponenten der Petri-Netz Modellierung (3 Komponententypen)

Stellen oder Plätze (*Places*, Kreise)

repräsentieren mögliche Zustände eines Systems

 Übergänge/Transitionen oder Hürden (Transitions, Rechtecke), z.T. auch als ausgefüllte Balken dargestellt

> sind Ereignisse oder Aktionen welche eine Veränderung des Systemzustands hervorrufen

Kanten bzw. Pfeile (Arcs)

Kanten verbinden immer einen Platz mit einer Transition und eine Transition mit einem Platz

5.10 Formale Modellierung mit Petri-Netzen: Aufbau

Schemata für Ablaufsituationen

A sequence of events/actions (sequentielle Abfolge):

Concurrent executions (nebenläufige Ausführung):

5.10 Formale Modellierung mit Petri-Netzen: Aufbau

Non-deterministic events - conflict, choice or decision: A choice of either e1, e2 ... or e3, e4 ...

5.10 Formale Modellierung mit Petri-Netzen: Aufbau

Synchronization

5.10 Formale Modellierung mit Petri-Netzen: Aufbau

Synchronization and Concurrency

5.10 Formale Modellierung mit Petri-Netzen: Aufbau

Alternative Choice (alternative Auswahl):

Repetition (Wiederholung):

5.10 Formale Modellierung mit Petri-Netzen: Beispiel

Beispiel:

Modell der Eingabe einer vierstelligen PIN (Eingabe von 4 Ziffern):

5.10 Formale Modellierung mit Petri-Netzen: Bewertung

• Eignung:

Petri-Netze dienen der ablauforientierten Beschreibung von nebenläufigen und verteilten Systemen

 Anwendungsbereiche: Prozessmodellierung in Betriebs- und Kommunikationssystemen, Ablaufbeschreibung in ingenieurswissenschaftlichen Anwendungen,

Modellierung von Arbeitsabläufen (Workflow), Modellierung von Produktions- und Organisationsprozessen

- Analyse von Petri-Netzen, z.B.:
 - (Nicht-) Erreichbarkeit (safety)
 - Lebendigkeit (liveness)
 - Verklemmung (deadlock)

5.10 Formale Modellierung mit Petri-Netzen: Bewertung

Vorteile:

- sehr gute theoretische Fundierung (Netze, Graphen)
- Werkzeugunterstützung: Analyse, Simulation, Grafik

Nachteile:

- keine Datenstrukturierung
- unzureichende Ausdruckskraft
- eingeschränkte Modularisierung großer Systeme Bemerkungen: Erweiterungen beheben die Nachteile teilweise

Varianten:

Es gibt zahlreiche Varianten von Petri-Netzen, die sich in der Art der Marken, der Art von Stellen und Kanten und dem Schaltbegriff unterscheiden. Erweiterungen wie gezeitete Petri-Netze ("timed Petrinets") modellieren z.B. zeitabhängige Systeme.

5.10 Formale Modellierung mit Petri-Netzen

Bekannte formale Modellierungssprachen:

- 1 Petri-Netze
- 2 Algebraische Spezifikation
- 3 Z
- 4 Temporale Logik
- 5 Prozessalgebra
- 6 Allgemein: Automaten oder Logik

Zusammenfassung und Ausblick

- Software-Krise und Software Engineering
- 2 Grundlagen des Software Engineering
- 3 Projektmanagement
- 4 Konfigurationsmanagement
- 5 Software-Modelle
- 6 Software-Entwicklungsphasen, -prozesse, -vorgehensmodelle
- 7 Qualität
- 8 ... Fortgeschrittene Techniken

- 5.1 Grundlagen und Modelltypen (Modellbegriff, Modellarten/Sichten, Einsatz, Modellvielfalt, Abstraktionsebenen)
- 5.2 Programmablaufplan
- 5.3 Struktogramm
- 5.4 Funktionsbaum
- 5.5 Structured Analysis
- 5.6 EBNF, Syntaxdiagramm
- 5.7 ERM
- 5.8 OO-Modelle mit UML
- 5.9 Geschäftspr.modellierung mit ARIS
- 5.10 Petri-Netze

bekannte Modelle bzw. Modellierungssprachen

→ Wege im Umgang mit der Software-Krise und Umsetzung der Grundlagen und Prinzipien:

Entwicklung nach einem systematischen Vorgehensmodell