Part II - Graph Theory Lectured by Dr J. Sahasrabudhe

Artur Avameri

Michaelmas 2022

Contents

0	Intr	roduction	2	
1	Fundamentals			
	1.1	Trees		
	1.2	Bipartite graphs		
	1.3	Planar graphs	(
2	Connectivity & matching			
	2.1	Matching in bipartite graphs	8	

0 Introduction

07 Oct 2022.

Notation. We write [n] for $\{1, 2, ..., n\}$. For a set X and $k \in \mathbb{N}$, define Lecture 1 $X^{(k)} = \{S \subset X \mid |S| = k\}$, i.e. the set of all subsets of size k.

1 Fundamentals

Definition 1.1. A graph is an object G = (V, E) where V is a set and $E \subseteq V^{(2)}$.

V is the set of vertices, and E is the set of edges.

V(G) will denote V, E(G) will denote E, and we define |G| = |V(G)| (sometimes called the order) and e(G) = |E(G)| (sometimes called the size).

Example 1.1. The **complete graph** on n vertices is denoted K_n . This is the graph where $V(K_n) = [n]$ and $E(K_n) = [n]^{(2)}$.

Remark. We assume the following:

- We don't order edges;
- We don't allow loops (an edge joining a vertex to itself);
- We don't allow multiple edges;
- Most of the time, V(G) will be finite (we will explicitly say when it's not).

Example 1.2. The **empty graph** on n vertices, denoted $\overline{K_n}$, has $V(\overline{K_n}) = [n]$ and $E(\overline{K_n}) = \emptyset$.

Example 1.3. The path of length n, denoted P_n , is a path: it has $V(P_n) = [n+1]$ and $E(P_n) = \{\{i, i+1\} \mid 1 \le i \le n\}$.

Example 1.4. The cycle of length n, denoted C_n , has $V(C_n) = [n]$ and $E(C_n) = \{\{i, i+1\} \mid 1 \le i \le n-1\} \cup \{\{1, n\}\}.$

Let G be a graph and $x \in V(G)$. The **neighborhood** of x is $N(x) = \{y \mid xy \in E(G)\}$, i.e. all the vertices connected to x. If $y \in N(x)$, we write $x \sim y$ and say y is a **neighbor** of x or that y is **adjacent** to x.

The **degree** of x is deg(x) = |N(x)|.

Just as a formality, we define graph isomorphism: let G, H be graphs. A graph isomorphism is a bijection $\phi: V(G) \to V(H)$ such that it maps edges to edges, i.e. $uv \in E(G) \iff \phi(u)\phi(v) \in E(H)$.

Definition 1.2 (Subgraph). We say H is a **subgraph** of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Two subgraph types that are important enough to have their own notation:

- If G is a graph, and $xy \in E(G)$, define G-xy to be the graph $(V(G), E(G) \setminus \{xy\})$.
- For $x, y \in V(G)$, define G + xy to be the graph $(V(G), E(G) \cup \{xy\})$.

Definition 1.3 (Path). Let G be a graph, $x, y \in V(G)$. A x - y path in G is a sequence x_1, \ldots, x_k where $x_1 = x$, $x_k = y$ and $x_i x_{i+1} \in E(G) \ \forall 1 \le i \le k-1$ and all the x_i are distinct.

Definition 1.4. A graph is **connected** if $\forall x \neq y \in V(G)$, there exists an x - y path in G.

Remark. A little annoyingly, if P is a x - y path and P' is a y - z path, then the concatenation PP' may not be a path (since the vertices of the new path might not be unique).

So let an x-y walk in a graph G be a sequence x_1, \ldots, x_k where $x_1 = x$, $x_k = y$ and $x_i x_{i+1} \in E(G) \ \forall 1 \leq i \leq k-1$. Then a concatenation of walks is again a walk.

Proposition 1.1. If W is an xy walk, then W contains a xy path.

Proof. Let $W' \subseteq W$ be a minimal xy walk. We claim this is a path. If not, then some vertex x_i must be visited at least twice, say $W' = x_1x_2 \dots x_i \dots x_ix_l \dots x_k$. Then take $W'' = x_1x_2 \dots x_ix_l \dots x_k$. This contradicts the minimality of W', so we're done.

10 Oct 2022, Lecture 2

Remark. We may define a **distance** on V(G): for $x, y \in V(G)$, let d(x, y) be the length of the shortest xy path. If G is connected, then this distance defines a metric on V(G).

1.1 Trees

Definition 1.5. A graph G is **acyclic** if it does not contain a cycle as a subgraph.

Definition 1.6. A graph G is a tree if it is acyclic and connected.

Proposition 1.2. The following are equivalent:

- 1. G is a tree;
- 2. G is minimally connected ($\forall xy \in E(G), G xy$ is not connected);
- 3. G is maximally acyclic ($\forall xy \notin E(G), G + xy$ contains a cycle).

Proof. (a) \Longrightarrow (b): A tree is connected. Assume for contradiction that $\exists xy \in E(G)$ such that G - xy is connected. Let P be a xy path in G - xy. But then P defines a cycle in G, contradiction.

- (b) \Longrightarrow (a): Minimally connected implies connected. For acyclicness, assume for contradiction that G contains a cycle C. Let $xy \in E(C)$. We claim that G xy is connected. Choose $u \neq v \in V(G xy)$. Let P be a uv path in G. If P does not contain xy, we're done. If P does contain xy, then take paths $u \to x$; $x \to y$ along our cycle without using xy; $y \to v$. The concatenation of these gives a uv walk, which contains a uv path. Hence G xy is connected, contradiction.
- (a) \Longrightarrow (c): A tree is acyclic. Let $xy \notin E(G), x \neq y$. Let P be a xy path. Then P defines a cycle in G + xy.
- (c) \Longrightarrow (a): We have acyclicity. If G is not connected, $\exists x \neq y \in V(G)$ with no xy path. Then G + xy is acyclic.

Definition 1.7. If T is a tree and $v \in V(T)$ with deg(v) = 1, we call v a leaf.

Definition 1.8. Let G be a graph and $X \subseteq V(G)$. Then

$$G[X] = (X, E(G) \cap \{(u, v) \mid u, v \in X\}).$$

We call this **the graph induced on** X.

Definition 1.9. If $x \in V(G)$, define $G - x = G[V(G) \setminus \{x\}]$.

Proposition 1.3. Let T be a tree, $|T| \ge 2$. Then T has a leaf.

Proof. Let $P = x_1 \dots x_k$ be the a longest possible path in T. Note $N(x_k) \subseteq \{x_1, \dots, x_{k-1}\}$. If $x_i \sim x_k$ for some $1 \leq i \leq k-2$, there is a cycle in T, contradiction. Thus $N(x_k) = \{x_{k-1}\} \implies X_k$ is a leaf.

Remark. We can show that any T has two leaves, but we can't do any better (consider a path).

Remark. We could have also proved this by taking a non-backtracking walk in G (i.e. go out of a different edge then you came in on). Either we return (hence have a cycle) or get stuck (hence have a leaf).

Proposition 1.4. Let T be a tree on $n \ge 1$ vertices. Then e(G) = n - 1.

Proof. By induction. n = 1 is trivial. Assume the claim holds for n. Take a tree T with n + 1 vertices. Let $x \in V(T)$ be a leaf. Then T - x is connected and acyclic, therefore a tree, thus e(T - x) = n - 1. But e(G) = e(G - x) + 1 and |V(G)| = |V(G - x)| + 1, hence we're done.

Definition 1.10. Let G be a connected graph. Then a subgraph T of G is a spanning tree if T is a tree on V(G).

Proposition 1.5. Every connected graph contains a spanning tree.

Proof. Start with the graph G, then throw away edges of E(G) one by one subject to keeping the graph connected. At some point, the removal of any further edge will disconnect the graph, at which point we have a minimal connected subgraph of G, which by Prop. 1.2 is a tree.

1.2 Bipartite graphs

Definition 1.11. Let G = (V, E) be a graph. G is **bipartite** if there exists a partition $V = A \cup B$ such that $E(G) \subseteq \{uv \mid u \in A, v \in B\}$.

Definition 1.12. The **complete bipartite graph** $K_{n,m}$ is the graph with vertex set $A \cup B$, $A = \{x_1, \ldots, x_n\}$, $B = \{y_1, \ldots, y_m\}$ and edge set $E(K_{n,m}) = \{x_iy_i \mid x_i \in A, y_i \in B\}$.

Remark. There obviously exist non-bipartite graphs: odd cycles are not bipartite.

Definition 1.13. A **circuit** is a sequence $x_1, x_2, \dots x_l x_{l+1}$, where $x_i x_{i+1} \in E(G)$ and $x_{l+1} = x_1$. The length of this circuit is l. We say a circuit is **odd** if its length is odd.

Proposition 1.6. Let C be an odd circuit in a graph G. Then C contains an odd cycle.

Proof. Let $x_1x_2 ldots x_ix_{i+1} ldots x_ix_k ldots x_lx_1$ be an odd circuit. Consider the circuits $C_1 = x_1 ldots x_ix_k ldots x_lx_1$ and $C_2 = x_ix_{i+1} ldots x_{k-2}x_i$. Then one of C_1, C_2 has odd length and is strictly shorter, so we're done by induction.

Theorem 1.7. Let G be a graph. Then

G is bipartite \iff G does not contain an odd cycle.

Proof. (\Longrightarrow): If G contains an odd cycle, then as odd cycles are not bipartite, G cannot be bipartite.

 (\Leftarrow) : We may assume that G is connected. Let us fix $x_0 \in V(G)$. Let

$$V_0 = \{ x \in V(G) \mid d(x, x_0) \equiv 0 \pmod{2} \}$$

$$V_1 = \{ x \in V(G) \mid d(x, x_0) \equiv 1 \pmod{2} \}.$$

We claim this is a bipartition of G. Assume for contradiction that $\exists u, v \in V_0$ s.t. $uv \in E(G)$. But there is an even ux_0 path and and an even vx_0 path, thus putting these three paths together gives an odd circuit in G. By Prop 1.6, G contains an odd cycle, contradiction. (Analogous proof for V_1).

12 Oct 2022, Lecture 3

1.3 Planar graphs

Definition 1.14. A planar graph is a graph that can be drawn in the plane with no edge crossings.

Example 1.5. K_4 is planar. A path P_n is planar.

Definition 1.15. A plane graph is one such drawing of a graph in the plane without edge crossings.

Note that this is important, since we can draw K_4 in a way that it does have edges crossing.

Example 1.6. $K_{2,3}$ is planar. $K_{3,3}$ is not planar. K_5 is not planar (we don't prove this right now).

Question. What graphs are planar? Is there a (simple) method to decide if a graph is planar?

Definition 1.16. Let G be a plane graph. Consider $\mathbb{R}^2 \setminus G$. This is broken into finitely many regions. These are called the **faces** of the plane graph.

Definition 1.17. The **boundary** of a face F is the collection of vertices and edges on the topological boundary.

Remark. The boundary of a face need not be a cycle. It need also not be connected. In fact, the boundary need not contain a cycle at all (consider a tree).

Remark. We also note that two different drawings of a graph in the plane can be fundamentally different.

Theorem 1.8 (Euler). Let G be a connected plane graph with n vertices, m edges and f faces. Then n - m + f = 2.

Proof. We induct on m. m = 1 is clear. If G is acyclic, then G is a tree, so m = n - 1, f = 1 and we're done.

So assume G contains a cycle and let e be an edge on this cycle. Delete e. Then n stays fixed, m decreases by 1, and f decreases by 1, so by induction, n - (m-1) + (f-1) = 2 and we're done.

Remark. We really do need the graph to be connected, consider t triangles in the plane as a counterexample.

Corollary 1.9. Let G be a planar graph, $|G| \ge 3$. Then $e(G) \le 3|G| - 6$.

Proof. Draw G in the plane. We may assume that G is connected. Let F be a face, let $\deg(F)$ = the number of edges in G that touch F. Note $\deg(F) \geq 3$. Now note that since every edge touches at most two faces, we get

$$3f \le \sum_{F \text{ a face}} \deg(F) \le 2e(G) \implies f \le \frac{2}{3}e(G).$$

Put this into Euler's formula to get

$$n - \frac{1}{3}e(G) \ge n - e(G) + f = 2 \implies 3(n-2) \ge e(G).$$

Remarks. (i): This is a statement about planar graphs only.

(ii): This is quite restrictive. K_n has $\binom{n}{2} \approx n^2/2$ edges, while our above corollary says the number of edges of a planar graph is linear in n.

Corollary 1.10. K_5 is not planar.

Proof. We have $e(K_5) = 10, n = 5$, so $10e(G) \le 3|G| - 6 = 9$, so we're done by the above corollary.

But $K_{3,3}$ does not fail this test. So we need to improve our argument:

Corollary 1.11. Let G be a planar graph, $|G| \ge 4$ and G has no cycles of length 3. Then $e(G) \le 2|G| - 4$.

Proof. Repeat the proof of Corollary 1.9, but use $deg(F) \ge 4$ for every face. \square

Now we can see that $K_{3,3}$ is not planar. $K_{3,3}$ has no cycle of length 3 by definition, n = 6, e(G) = 9, so $9 = e(G) \le 2 \cdot (6 - 2) = 8$.

14 Oct 2022, Lecture 4

Definition 1.18. A subdivision of a graph G is a subgraph where we replace some of the edges of G with disjoint paths.

Observation. A subdivision of a non-planar graph is non-planar.

Observation. If G contains a $K_{3,3}$ or K_5 subdivision as a subgraph, then G is non-planar.

Theorem 1.12 (Kuratowski's theorem). G is planar \iff G does not contain a subdivided $K_{3,3}$ or K_5 .

We do not prove this, but the proof is actually not too hard.

2 Connectivity & matching

2.1 Matching in bipartite graphs

Let $G = (X \sqcup Y, E)$ be bipartite with bipartition X, Y.

Definition 2.1. A matching from X to Y is a set of edges $\{xy_x \mid x \in X, y_x \in Y\}$ and $x \to y_x$ is an injection.

Question. When does a bipartite graph have a X to Y matching?

We can first think about examples where we do not have a matching. For example, we clearly have no matching if |X| > |Y|.

Definition 2.2. Let G be a graph, $A \subseteq V(G)$. Define $N_G(A) = \bigcup_{x \in A} N(x)$.

Then we clearly also don't have a matching if we have $A \subset X$ such that |N(A)| < |A|. But this is actually the only obstruction:

Theorem 2.1 (Hall's Marriage Theorem). Let G be a bipartite graph $G = (X \sqcup Y, E)$. Then

G has a matching from X to $Y \iff \forall A \subseteq X, |N(A)| \ge A$.

The right-hand side is called Hall's criterion.

Proof. (\Longrightarrow) is the easy direction.

Now let M be a matching and let $A \subseteq X$. Then if $\{y_1, \ldots, y_{|A|}\}$ are matched to A, we show $|N(A)| \ge |\{y_1, \ldots, y_{|A|}\}| \ge |A|$.

(\iff): Apply induction on |X|. If |X|=1, we're done. For the induction step, consider the following question: is there $\emptyset \neq A \subsetneq X$ such that |N(A)| = |A|?

If the answer is no, then $\forall A \subseteq X$ we have $|N(A)| \ge |A| + 1$. Let $xy \in E(G)$ and let $G' = G[X \setminus \{x\} \cup Y \setminus \{y\}]$. We now check Hall's criterion for G'. If $B \subseteq X \setminus \{x\}$, then $|N_{G'}(B)| \ge |N_G(B)| - 1 \ge |B|$, so done by induction.

If the answer is yes, then let $G_1 = G[A \cup N(A)]$ and $G_2 = G[X \setminus A \cup Y \setminus N(A)]$. Claim 1: G_1 satisfies Hall's criterion. Let $B \subseteq A$, then

$$|N_{G_1}(B)| = |N_G(B)| \ge B.$$

Claim 2: G_2 satisfies Hall's criterion. Let $B \subset X \setminus A$. Consider $N_G(A \cup B)$. One the one hand, $|N_G(A \cup B)| \ge |A| + |B|$. On the other hand, $|N_G(A)| + |N_{G_2}(B)| = |N_G(A \cup B)|$. As |N(A)| = |A|, we get $|N_{G_2}(B)| \ge |B|$.

From claims 1 and 2 we can apply induction in G_1, G_2 to get a matching in these graphs, and then put them together to get a matching in G.

Definition 2.3. A matching of deficiency of d from X to Y is a matching from X' to Y where $X' \subseteq X$, |X| - d = |X'|.

Theorem 2.2 (Defect Hall's Theorem).

 $G \text{ contains a matching of deficiency } d \iff \forall A \subseteq X, \ |N(A)| \geq |A| - d.$

Proof. (\Longrightarrow) : easy.

(\iff): Add d phantom vertices to Y, which we join to all vertices in X, so we now satisfy Hall's condition. Apply Hall to get a matching, and then remove the d vertices we added, which removes at most d elements of X.

Definition 2.4. Let G be a graph. The **minimum degree** in G is $\delta(G) = \min_{x \in V(G)} d(x)$, and the **maximal degree** in G is $\Delta(G) = \max_{x \in V(G)} d(x)$.

Definition 2.5. A graph is **regular** if $\delta(G) = \Delta(G)$.