Multiplication & Division Algorithms

Multiplication

Some general observations

- 1. Multiplication involves the generation of partial products one for each digit in the multiplier.
- 2. Partial products are summed to produce the final product.
- 3. Partial products are very simple to define for binary multiplication. If the digit is a 'one' the partial product is the multiplicand, otherwise the partial product is zero.
- 4. The total product is the sum of the partial products. Each successive partial product is shifted one position to the left.
- 5. The multiplication of two n-bit binary numbers results in a product of up to 2n bits in length.

Simplifying Multiplication

- 1. The processor can keep a running product rather than summing at the end.
- 2. For each '1' in the multiplier we can apply an add and a shift.
- 3. For each '0' only a shift is needed.

- 1. Multiplier and multiplicand are loaded into registers Q and M.
- 2. A third register (A) is initially set to zero.
- 3. A one-bit C register (initialised to zero) holds carry bits.

С	A	Q 1101	M	Tod+dol	770] 110 0
0	0000	1101	1011	Initiai	Values
0	1011	1101	1011	Add Shift	First Cycle
0	0101	1110	1011	Shift	. Cycle
0	0010	1111	1011	Shift	Second Cycle
^	1101	1111	1011	ر -	
0	1101	1111	1011	Ada	Third Cycle
0	0110	1111	1011	Add Shift	Cycle
1	0001	1111	1011	Add Shift	Fourth
0	1000	1111	1011	Shift	Cycle

This Approach will not work if both or any one of the Multiplicand or Multiplier are negative.

ALTERNATIVE:

--- BOOTH ALGORITHM

→ Multiplicand M unchanged

→ Based upon recoding the multiplier Q to a recoded value R

→ Each digit can assume a negative as well as positive and zero values

→ Known as Signed Digit (SD) encoding

• Booths algorithm called skipping over one's

• String of 1's replaced by 0's

• For ex: 30 = 0011110

$$=32-2=0100000-0000010$$

• In the coded form = 0100010

Booth recoding Procedure
 Working from LSB to MSB retain each 0 until a 1 is reached

When a 1 is encountered insert $\overline{1}$ at that position and complement all the succeeding 1's until a 0 is encountered

Replace that 0 with 1 and continue
While multiplying with 1 2's compliment is taken

Booth's Algorithm

- 1. Multiplier and multiplicand are placed in Q and M registers.
- 2. A 1-bit register is placed to the right of the least significant bit (Q_0) and designated Q_{-1} .
- 3. Control logic scans the bits of the multiplier one at a time – but a bit AND its bit to the right are examined. If the bits are the same (1-1 or 0-0) then all bits of the A,Q, and Q-1 registers are shifted to the right 1 bit. If the two bits differ, then the multiplicand is added/subtracted depending on whether the bits are 0-1 or 1-0. Addition is followed by a **right** arithmetic shift.

Performing 7x3

A 0000	Q 0011	Q ₋₁ 0	M 0111	Initial Valu	ıes
1001 1100	0011 1001	0 1	0111 0111	$A \leftarrow A - M$ Shift	First Cycle
1110	0100	1	0111	Shift }	Second Cycle
0101 0010	0100 1010	1 0	0111 0111	$A \leftarrow A + M$ Shift	Third Cycle
0001	0101	0	0111	Shift }	Fourth Cycle

• Booth's algorithm generally performs fewer additions and subtractions than repeated addition.

Verify the operation of (+7) x (-3)Multiplicand M = 0111Multiplier Q = 1101

A	Q	Q_{-1}	$\mathbf{M} = 0111$
0000	1101	0	initial values
1001	1101	0	A ← A-M
1100	1110	1	shift
0011	1110	1	A ← A + M
0001	1111	0	shift
1010	1111	0	A ← A-M
1101	0111	1	shift
1110	1011	1	shift

Verify the operation of $(-7) \times (+3)$ Multiplicand M = 1001 Multiplier Q = 0011

A	Q	Q ₋₁	$\mathbf{M} = 1001$
0000	0011	0	initial
0111	0011	0	A ← A-M
0011	1001	1	shift
0001	1100	1	shift
1010	1100	1	A← A + M
1101	0110	0	shift
1110	1011	0	shift

DIVISION Dividend/Divisor

- Bits of dividend are examined from left to right until set of bits examined represents a number greater than or equal to the divisor
- Until this 0's are placed in quotient from left to right
- When the event occurs a 1 is placed in the quotient and divisor subtracted from dividend
- -The result is referred to as partial remainder
- -Cyclic pattern followed

Example:

	00001101
1011	10010011
	1011
	001110
	1011
	001111
	1011
	0111

Block diagram of the implementation

Restoration Method

- 1.Divisor loaded into Register M
- 2.Dividend loaded into register Q
- 3.Initialise register A to Zero
- 4.Shift A and Q left by one position

5.Subtract M from A, placing the result back in A

6. If MSB of A is 1, set Q0 to Zero, add M to A (restore A)

If MSB of A is Zero, set Q0 to 1

Repeat steps 4,5,6 n times where n is No of bits of divisor

N bit quotient obtained from Q and remainder from A

Example: Divide 7 by 3

Dividend: 0111

Divisor : 0011 M : 0011

 \mathbf{A} Q

0000 0111 Initial Value

0000 1110 shift left

1101 Sub M

1101	1110	As MSB is 1 set $Q0 = 0$
0011		Add M
0000	1110	Restore A
0001	1100	Shift left
1101		Sub M
1110	1100	As MSB is 1 set $Q0=0$
0011		Add M
0001	1100	Restore A

Remainder = 0001

Result Q = 0010

Divide 9 by 3

Dividend = 1001

Divisor = 0011

 $\mathbf{M} = \mathbf{0011}$

Non-restoration Method

Eliminates the need for restoring A after the result of subtraction is negative

- 1.Divisor is loaded into M
- 2.Dividend loaded into Q
- 3.Initialise A to Zero

4.If sign of A is positive shift A & Q left by One bit and subtract M from A OR

If sign of A is negative, shift A &Q by one bit and add M to A

5. If MSB of result is 1, then Q0 is set to Zero otherwise set to one

Repeat steps 4 &5 n times

→At the end if sign of A is negative add M to A to get the correct remainder

7 divided by 3

M 0011

\mathbf{A}	\mathbf{Q}	
0000	0111	initialise
0000	1110	shift left, as MSB is 0
1101		Sub M
1101	1110	as MSB 1, $Q0 = 0$
1011	1100	shift left, as MSB 1
0011		Add M
1110	1100	as MSB $1 O0 = 0$

1101	1000	shift left , as MSB 1
0011		Add M
0000	1000	as MSB 0
0000	1001	$\mathbf{set} \ \mathbf{Q0} = 1$
0001	0010	shift left as MSB 0
1101		Sub M
1110	0010	as MSB 1
0011		Add to adjust remainder

$$Q = 0010$$
 $R = 0001$