Asymptotic Notations

RM.Periakaruppan

Associate Professor

Dept. of Applied Mathematics and Computational Sciences
PSG College of Technology

Asymptotic notations

- The following notations are used to express the time complexity of an algorithm
- Big Oh (O) gives an upper bound of an algorithm

• Big Omega (Ω) – gives a lower bound of an algorithm

• Big Theta (Θ) – gives tight bound, where the upper bound and lower bound are same for an algorithm

Big Oh notation

Definition

f(n) = O(g(n)) means there are positive constants c and no, such that $0 \le f(n) \le cg(n)$ for all $n \ge no$

• (ie) as n increases f(n) doesn't grows faster than g(n)

•

Big Oh Example

- Consider the function f(n) = 2n + 3
- 2 n + 3 < = 4 n for every n > = 2
- Here f(n) = 2 n + 3, g(n) = n, c = 4, n0=2

Here g(n)=n is an upper bound of f(n) and hence f(n)=O(g(n))=O(n)

Since $O(n) < O(n \log n) < O(n^2) ... < O(n^k) < O(2^n) < (3^n) ... < O(k^n)$

It is correct to say $f(n) = O(n^2),...O(2^n)$.

However the closest upper bound is used. Hence f(n)=O(n) is more meaningful.

Since $\log n < n$ it is incorrect to say $f(n)=O(\log n)$

Big Oh Example-How to find Upper bound?

- Consider the function f(n) = 2n + 3
- 2 n + 3 < = 2n + 3n
- $2 n + 3 \le 5n$ for every $n \ge 1$

Big Oh Example (Contd)

Input n	Frequency f(n)=2n+3	• g(n)=4n
1	5	• 4
2	7	8
3	9	12
4	11	16
5	13	20

Big Oh Example (Contd)

Big Omega notation

Definition

 $f(n) = \Omega(g(n))$ means there are positive constants c and no, such that $0 \le f(n) >= cg(n)$ for all $n \ge no$

• (ie) as n increases, f(n) doesn't grows slower than g(n)

•

Big Omega Example

- Consider the function f(n) = 2n + 3
- 2 n + 3 >= n for every n >= 1
- Here f(n) = 2 n + 3, g(n) = n, c = 1, n0=1

Here g(n)=n is an lower bound of f(n) and hence $f(n)=\Omega(g(n))=\Omega(n)$

Since 1<log n < n

It is correct to say $f(n) = \Omega(\log n), \Omega(1)$

Since $n^2 > n$ it is incorrect to say $f(n) = \Omega(n^2)$

Big Omega Example-How to find Lower bound?

- Consider the function f(n) = 2n + 3
- 2 n + 3 >= 1 . n for all n >= 1
- (Drop all lower terms and leading coefficients)

•

Theta notation

Definition

 $f(n) = \Theta(g(n))$ means there are positive constants c1, c2 and no, such that c1g(n) \leq f(n) \leq c2g(n) for all n \geq no

• (ie) as n increases f(n) grows at the same rate as g(n)

Theta Example

- Consider the function f(n) = 2n + 3
- n < 2 n + 3 < 5 n for every n > 1
- Here f(n) = 2 n + 3, g(n) = n, c1 = 1, c2=5,n0=1

Here g(n)=n is an tight bound of f(n) and hence $f(n)=\Theta(g(n))=\Theta(n)$

Since log n # n or n^2 # n

It is incorrect to say $f(n) = \Theta(\log n)$ or $f(n) = \Theta(n^2)$

Example 2

- Consider the function $f(n) = n^2 \log n + n$
- Upper Bound
- $n^2 \log n + n <= n^2 \log n + n^2 \log n$
- $n^2 \log n + n < = 2 n^2 \log n$ for all n > = 1
- Hence upper bound is O(n^2 log n).
- Lower Bound
- $n^2 \log n + n >= n^2 \log n$ for all n>=1Hence lower bound is $\Omega(n^2 \log n)$.

Tight Bound

Since $n^2 \log n \le n^2 \log n + n \le 2 n^2 \log n$ for all n > 1We have $\Theta(n^2 \log n)$