- 1. 已知 5 阶方阵 A 的不变因子组如下, 求 A 的有理标准型:
- (1) $1, \lambda 2, \lambda 2, \lambda 2, (\lambda 2)^2$.
- (2) $1, \lambda, \lambda, \lambda, \lambda(\lambda 1)$.
- $(3)1, 1, 1, (\lambda 2)(\lambda 3), (\lambda 1)(\lambda 2)(\lambda 3).$
- $(4)1, 1, 1, \lambda + 1, \lambda(\lambda + 1)(\lambda + 2)^2$.
- 2. 已知 5 阶方阵 A 的初等因子组如下, 求 A 的不变因子组和极小多项式:
- (1) $\lambda + 5, \lambda + 5, \lambda + 5, \lambda + 5, \lambda + 5$.
- (2) $\lambda, \lambda 1, \lambda 2, \lambda 3, \lambda 4$.
- (3) $(\lambda + 1)^2$, $(\lambda + 1)^2$, $\lambda 1$.
- (4) $\lambda 2, \lambda 2, \lambda + 1, \lambda + 1, \lambda + 1$.
- 3. 设方阵 \boldsymbol{A} 的极小多项式是 $m_A(\lambda)$, 数 $a \neq 0$. 求方阵 $\boldsymbol{B} = a\boldsymbol{A} + b\boldsymbol{I}$ 的极小多项式 $m_B(\lambda)$.
- 4. 设 φ 是数域 \mathbb{K} 上 n 维线性空间 V 上的线性变换, 其中 $V = C(\varphi, \alpha)$ 为循环空间, α 为循环向量. 设 ψ, ξ 是与 φ 乘法可交换的两个线性变换, 求证: $\psi = \xi$ 的充要条件是 $\psi(\alpha) = \xi(\alpha)$.
 - 5. 设 \mathbf{A} 为 3 阶实方阵,试求 $C(\mathbf{A}) = \{ \mathbf{B} \in M_3(\mathbb{R}) | \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \}.$
- 6. 设 V 是数域 \mathbb{K} 上的 n 维线性空间, φ 是 V 上的线性变换, $f(\lambda)$, $m(\lambda)$ 分别是 φ 的特征多项式和极小多项式. 如果存在 V 的 φ -不变子空间 V_1, V_2 , 使得

$$V = V_1 \oplus V_2$$
, $\dim V_1 < \dim V$, $\dim V_2 < \dim V$

则称 $V \in \varphi$ -可分解的, 否则称 $V \in \varphi$ -不可分解的. 证明: $V \in \varphi$ -不可分解的充分必要条件 是 $f(\lambda) = m(\lambda) = p(\lambda)^k$, 其中 $p(\lambda)$ 是 \mathbb{K} 上的首一不可约多项式, $k \geq 1$.

- 7. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 其特征多项式等于极小多项式, 证明: 矩阵方程 XA = A'X 的解是 \mathbb{K} 上的对称阵.
- 8. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 证明存在如下分解: $A = A_0 + A_1 + A_2$, 其中 A_0 为 \mathbb{K} 上的纯量矩阵, A_1, A_2 均为 \mathbb{K} 上的幂零矩阵.
- 9. 设 $A \in M_n(\mathbb{K})$ 在数域 \mathbb{K} 上的初等因子组为 $P_1(\lambda)^{e_1}, P_2(\lambda)^{e_2}, \cdots, P_k(\lambda)^{e_k}$, 其中 $P_i(\lambda)$ 是 \mathbb{K} 上互异的首一不可约多项式, $e_i \geq 1 (1 \leq i \leq k)$. 设 $C(P_i(\lambda)^{e_i})$ 为相伴于多项式 $P_i(\lambda)^{e_i}$ 的友阵, 证明: A 在 \mathbb{K} 上相似于分块对角阵

diag {
$$\boldsymbol{C}(P_1(\lambda)^{e_1}), \boldsymbol{C}(P_2(\lambda)^{e_2}), \cdots, \boldsymbol{C}(P_k(\lambda)^{e_k})$$
}

试用上述结论证明第三届全国大学生数学竞赛预赛一道试题: 设 A 是数域 \mathbb{K} 上的 n 阶方阵,证明: A 相似于 diag $\{B,C\}$,其中 B 是 \mathbb{K} 上的可逆阵, C 是 \mathbb{K} 上的幂零阵,即存在 $m \in \mathbb{Z}^+$,使得 $C^m = O$.

10. 设 A, B 为 $n(n \ge 2)$ 阶方阵, 满足: $\mathbf{r}(A) = n - 1$, AB = BA = O. 证明: A + B 为 非异阵的充分必要条件是 A 的特征值 0 的代数重数等于 1 且 B 的秩等于 1.