

Why Entity – Relationship Model Flowchart • Algorithm • Code

What is an Entity?

My Definition: 'Anything' about which you would like to store information.

Should have either Physical or Conceptual Existence

A Set of distinguishable items/objects

Entity vs Entity Set Vs Entity Type

Each entity in this entity set is of type STUDENT

What is an Attribute?

These are Features/Properties which helps to characterize or distinguish an Entity

It is a piece of Information which distinguishes each row in a table.

In simple words, Attributes are the name of the Columns

Domain of an Attribute

The set of possible values an attribute of an Entity can take.

Phone_Num – Any 10 Digit number.

Name – String of max length 250

Email – String matching the format: <username>@<domain>.<extension>

Gender - Enum: {'Male', 'Female', 'Other'}

Date_of_Birth – Date in the format YYYY-MM-DD

Salary – Decimal value with up to 2 decimal places, greater than 0.

You can build several Superkeys (by adding attributes)

You find out the candidate keys

You choose one out of it to be the Primary Key

Superkeys (May have Redundant Attributes)

Candidate Key == Minimal Superkey == No redundant attributes

If you have a **COMPOSITE** Candidate Key

Any Subset of attributes of a composite candidate key, cannot be a key by itself.

Super key vs Candidate Key

Superkey: A set of one or more attributes that can uniquely identify a row in a table.

Candidate Key: A minimal superkey, (it has no redundant attributes)

Keys In DBMS

What is a Relationship?

It is an association / Mapping between the entities

Entities by themselves requires information to be stored on their behalf.

Additionally oftentimes, there is also a need to maintain information about the associations between them.

Borrowed by, is a relationship between the participating entities Book and Members

Relationships

A relationship is a subset of a cartesian product

Cartesian Product: Lists out <u>all possible</u> associations / combinations

But only a subset of them will be true in reality.

ISBN	Name	Auth
1234	Promised Neverland	Kaiu Shirai
5678	Ponniyin Selvan	Kalki

lo	i	Name	Dept
s1	L	Ram	CS
s2	2	Shyam	AI

Cross Product – Shows all possible associations / combinations

ISBN	Name	Auth	Id	Name	Dept
1234	Promised Neverland	Kaiu Shirai	s1	Ram	CS
1234	Promised Neverland	Kaiu Shirai	s2	Shyam	Al
5678	Ponniyin Selvan	Kalki	s1	Ram	CS
5678	Ponniyin Selvan	Kalki	s2	Shyam	Al

Ternary vs Three Binary Relationships

Ternary:

Supplier

Bajaj

TVS

Part

Spark Plug

Carburettor

Project

P1

P2

Supplier	Part	Project
Bajaj	Spark Plug	P1
TVS	Carburettor	P1
TVS	Spark Plug	P1 P2

→ Allowed?

Three Binary

Supplier

Bajaj

TVS

Part
Spark Plug
Carburettor

Project
P1
P2

Supplier	Project
Bajaj	P1
TVS	P1, P2

Supplier	Part
Bajaj	S_Plug
TVS	S_Plug

Part	Project
S_Plug	P1,P2
Carburettor	P1

Cardinality Ratio

Often used to describe "Constraints" on a Binary Relationship

Consider **borrowed_by** relationship:

A book can be borrowed only by one person at a time.

But one person can borrow multiple books at a time.

C.Ratio helps to capture such kind of constraints

Cardinality Ratio & Participation Constraint:

Many professors can belong to 1 department.

1 Department can have many professors

Min - Max Notation

Attributes Shifting - Guidelines

If it is a **1 to Many** Relationship

- Shift to the Many side.

If it is a **1 to 1** Relationship

- Shift to any side. (Total Participating side preferred)

If it is **Many to Many** Relationship

- Cant be shifted.

Special Cases

ENTITY → Attributes → Relationships → Cardinality → **Special Cases**

Recursive Relationships

Weak Entity

An entity set whose members "Owe" their existence to some other Entity.

Strong / Owner Entity

They cannot exist Independently. (Not enough attributes to distinguish them Uniquely)

No key, Only Partial Key

They are **Existential Dependent** – To exist they must depend on some other entity

Weak Entity - Examples

Weak Entity - Terminologies

Known as Partial Key or Discriminator

Double walled Rhombus

They are generally Many to One relationships

Weak Entity – As Composite Multi Valued Attribute

This can be done, when you are sure that the 'Dog' entity is not going to take part in a relationship with any other entity. In that case it is simple enough to be modelled as an attribute.

If a thing, even though not of independent existence, but participates on other relationships on its own

Best captured as a weak entity

Some Nuances

To be, or Not to be... in a Relationship

Example

Example

CRITERIA: For a given entity all of its attribute values should be defined

Example

Good Approach: If all staff has a phone, and all phone is associated with a staff.

Bad Approach: Say if an office phone is general & No staff is

associated to it → Go for Relationships

You should be able to build such ER diagrams

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Relational Model - Next

