ON THE CLASSIFICATION OF PRINCIPAL PU₂-BUNDLES OVER A 6-COMPLEX

BENJAMIN ANTIEAU AND BEN WILLIAMS

ABSTRACT. We point out and correct an error in L. M. Woodward's 1982 paper "The classification of principal PU_n-bundles over a 4-complex."

In recent investigations [1] into topological Azumaya algebras, we have been very fortunate to have the insights provided by Woodward's paper [5]. However, it turns out that one part of the main theorem is slightly incorrect, because of the mistaken assumption that $\pi_5 B PU_2 = 0$, which appears on p.521. Here, $PU_2 \simeq SU_2/\mu_2$, the quotient of SU_2 by its center μ_2 , and $B PU_2$ is the classifying space of PU_2 . Thus, if X is a CW complex, the set $[X, B PU_2]$ of homotopy classes of maps $X \to B PU_2$ classifies principal PU_2 -bundles on X. In fact, as shown by Bott [3, Theorem 5], $\pi_5 B PU_2 = \mathbb{Z}/2$. We explain how this affects the main theorem of [5], and how to correct the theorem.

Given a PU_n-bundle $\xi: X \to B$ PU_n, [5] constructs two characteristic classes: a class $t(\xi) \in H^2(X,\mathbb{Z}/2)$ and a class $q(\xi) \in H^4(X,\mathbb{Z})$. Write ρ_{2n*} for the operation $H^4(\cdot,\mathbb{Z}) \to H^4(\cdot,\mathbb{Z}/2n)$ induced by the quotient map $\mathbb{Z} \to \mathbb{Z}/2n$, and let $C: H^2(\cdot,\mathbb{Z}/n) \to H^4(\cdot,\mathbb{Z}/2n)$ be the Pontrjagin square. The characteristic classes $t(\xi)$ and $q(\xi)$ are related by the requirement that

(1)
$$\rho_{2n*}(q(\xi)) = \begin{cases} (n+1)C(t(\xi)) & \text{if } n \text{ is even,} \\ \frac{n+1}{2}C(t(\xi)) & \text{if } n \text{ is odd.} \end{cases}$$

The main theorem of [5] consists of three parts. The first describes the image of

$$[X, BPU_n] \rightarrow H^2(X, \mathbb{Z}/n) \times H^4(X, \mathbb{Z})$$

when dim $X \le 6$: it is precisely the pairs of classes satisfying (1). The second part says that when dim $X \le 4$, for each $x \in H^2(X, \mathbb{Z}/n)$, there is a PU_n -bundle ξ with $t(\xi) = x$. The third part says that when dim $X \le 4$, the map of sets $[X, BPU_n] \to H^2(X, \mathbb{Z}/n) \times H^4(X, \mathbb{Z})$ is injective when $H^4(X, \mathbb{Z})$ has no p-torsion for p dividing 2n.

Only a small portion of the theorem is false: when dim X = 6 and n = 2, there are some classes $(x,y) \in H^2(X,\mathbb{Z}/2) \times H^4(X,\mathbb{Z})$ satisfying $\rho_{4*}(y) = 3C(x)$, but which are not the characteristic classes of any PU₂-bundle over X.

For 6-complexes X, there is a surjection $[X, \operatorname{BPU}_n] \to [X, \operatorname{BPU}_n[5]]$, where $\operatorname{BPU}_n[5]$ denotes the 5th stage in the Postnikov tower for BPU_n . If n>2, then $\operatorname{BPU}_n[5]\simeq\operatorname{BPU}_n[4]$, since $\pi_5\operatorname{BPU}_n=0$ in this case. However, for n=2, this is not the case, and we are left with the problem of computing the image of $[X,\operatorname{BPU}_2[5]] \to [X,\operatorname{BPU}_2[4]]$. The characteristic classes above are obtained by showing that $\operatorname{BPU}_2[4]$ is equivalent to the homotopy fiber of the map $-3C+\rho_{4*}$

(2)
$$K(\mathbb{Z}/2,2) \times K(\mathbb{Z},4) \to K(\mathbb{Z}/4,4).$$

Thus, given a PU_n -bundle ξ over X, the characteristic classes are given by the composition

$$X \xrightarrow{\xi} BPU_2 \to BPU_2[4] \to K(\mathbb{Z}/2,2) \times K(\mathbb{Z},4).$$

The relation (1) is expressed in the fact that this map lands in the fiber of (2). For any n, and any CW complex X, the map

$$[X, BPU_n[4]] \rightarrow H^2(X, \mathbb{Z}/n) \times H^4(X, \mathbb{Z})$$

is an injection with image precisely the classes (x, y) satisfying (1).

1

The 5th stage of the Postnikov tower for BPU2 gives an extension,

$$K(\mathbb{Z}/2,5) \to BPU_2[5] \to BPU_2[4],$$

which is classified by a class $u \in H^6(BPU_2[4], \mathbb{Z}/2)$. Given a space X and classes $(x,y) \in H^2(X,\mathbb{Z}/2) \times H^4(X,\mathbb{Z})$ satisfying (1), one has a uniquely determined map $f: X \to BPU_2[4]$, and hence a cohomology class $f^*(u)$. In order for f to lift to a map $X \to BPU_2[5]$, it is necessary for $f^*(u) = 0$. If dim $X \le 6$, this is also a sufficient condition. If f is determined by classes (x,y), write u(x,y) for $f^*(u)$ in $H^6(X,\mathbb{Z}/2)$.

Theorem 1. Let X be a 6-dimensional CW complex. The image of $[X, BPU_2] \to H^2(X, \mathbb{Z}/2) \times H^4(X, \mathbb{Z})$ is the set of classes (x, y) such that u(x, y) = 0. Moreover, there is a 6-dimensional CW complex X and classes (x, y) such that $u(x, y) \neq 0$.

Proof. The discussion above proves the first statement. To prove the second statement is equivalent to showing that the extension $K(\mathbb{Z}/2,5) \to BPU_2[5] \to BPU_2[4]$ is non-split. Indeed, if it is non-split, then the 6-skeleton of $BPU_2[4]$ together with the composition

$$\operatorname{sk}_6\left(\operatorname{BPU}_2[4]\right) \to \operatorname{BPU}_2[4] \to K(\mathbb{Z}/2,2) \times K(\mathbb{Z},4)$$

gives an example.

The quotient map $SU_2 \to PU_2$ induces a map on classifying spaces $BSU_2 \to BPU_2$, which induces an isomorphism on homotopy groups π_i for i > 2. By the naturality of Postnikov towers, there is thus a map of extensions

If the class of the extension in $H^6(K(\mathbb{Z},4),\mathbb{Z}/2)$ is non-zero, then by the commutativity of the diagram, the class in $H^6(BPU_2[4],\mathbb{Z})$ is non-zero. It is not hard to show, using the Serre spectral sequence, that $H^6(K(\mathbb{Z},4),\mathbb{Z}/2)=\mathbb{Z}/2$, generated by a class γ . On the other hand, $H^*(BSU_2,\mathbb{Z})=\mathbb{Z}[c_2]$, where the class c_2 has degree 4. Therefore, $H^6(BSU_2,\mathbb{Z}/2)=0$. Since $BSU_2\to BSU_2[5]$ is a 6-equivalence, it follows that $H^6(BSU_2[5],\mathbb{Z}/2)=0$ as well. If the extension were split, then the pullback of γ to $BSU_2[5]$ would be non-zero. Thus the extension is not split.

In [2], we show that for a 6-dimensional CW complex X and a fixed non-zero class $x \in H^2(X, \mathbb{Z}/2)$, it is possible for the set of $y \in H^4(X, \mathbb{Z})$ such that (x, y) satisfies (1) to be non-empty, while the set of maps $\xi : X \to B$ PU₂ such that $t(\xi) = x$ is empty. Moreover, we can take X to be the complex points of a smooth affine 6-fold over \mathbb{C} . Thus, in some sense, Woodward's statement can fail as badly as possible in some situations.

Now, we prove a corollary, which amounts to determining the class u in $H^6(BPU_2[4], \mathbb{Z}/2)$. By Serre [4, Section 9], the $\mathbb{Z}/2$ -cohomology of $K(\mathbb{Z}/2,2)$ is a polynomial ring

$$H^*(K(\mathbb{Z}/2,2),\mathbb{Z}/2) = \mathbb{Z}/2[u_2, Sq^1 u_2, Sq^2 Sq^1 u_2, \dots, Sq^{2^k} Sq^{2^{k-1}} \cdots Sq^2 Sq^1 u_2, \dots],$$

where u_2 is the fundamental class in degree 2, and Sq^i denotes the ith Steenrod operation. Let $\operatorname{BPU}_2[4] \to K(\mathbb{Z}/2,2)$ be denoted by p.

Corollary 2. The set $\{u, p^*u_2^3, p^*(Sq^1u_2)^2\}$ forms a basis of the 3-dimensional $\mathbb{Z}/2$ -vector space $H^6(BPU_2[4], \mathbb{Z}/2)$, and this characterizes u up to homotopy.

Proof. First, recall the exceptional isomorphism $PU_2 \cong SO_3$. Thus, $H^*(BPU_2, \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, w_3]$, where w_i has degree i. The map $BPU_2 \to BPU_2[2] \simeq K(\mathbb{Z}/2, 2)$ is a 4-equivalence, so that w_2 is the pullback of u_2 , and w_3 is the pullback of $Sq^1 u_2$. It follows, in fact, that $H^*(BPU_2[k], \mathbb{Z}/2)$ contains the algebra $\mathbb{Z}/2[w_2, w_3]$ for $n \geq 2$. A brief examination of the Serre spectral sequence for the fibration $K(\mathbb{Z}, 4) \to BPU_2[4] \to K(\mathbb{Z}/2, 2)$ shows that the dimension of $H^6(BPU_2[4], \mathbb{Z}/2)$ is at most 3. The classes w_2^3 and w_3^2 must

survive and be distinct, since they do in the cohomology of B PU₂. Finally, since we showed in the proof of the theorem that the extension class u restricts to the non-zero class in $H^6(K(\mathbb{Z},4),\mathbb{Z}/2)$, it follows that the asserted classes form a basis for $H^6(B PU_2[4],\mathbb{Z}/2)$, as desired.

REFERENCES

- [1] B. Antieau and B. Williams, The topological period-index problem for 6-complexes (2012). Submitted.
- [2] _____, On the non-existence of Azumaya maximal orders (2012).
- [3] R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
- [4] J.-P. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv. 27 (1953), 198–232 (French).
- [5] L. M. Woodward, *The classification of principal PU_n-bundles over a 4-complex*, J. London Math. Soc. (2) **25** (1982), no. 3, 513–524.