## HW5

# Image Display Controller

## 一、 檔名說明:

- 1. VLSI 2010 HW5. pdf:本作業的說明文件,請務必詳讀。
- 2. testfixture.v 測試樣本檔。
- 3. lcd\_ctrl.v Verilog 檔案,已包含系統輸/出入埠之宣告
- 4. cmd1.dat 第一組測試樣本之指令
- 5. imagel.dat 第一組測試樣本使用之影像檔
- 6. out goldenl.dat 第一組測試樣本之正確結果
- 7. cmd2.dat 第二組測試樣本之指令
- 8. image2.dat 第二組測試樣本使用之影像檔
- 9. out\_golden2.dat 第二組測試樣本之正確結果

## 二、 作業說明:

#### 1. 問題描述

請完成一影像顯示控制(Image Display Control)電路設計。此控制電路,可依指定之操控指令,使顯示端的影像進行水平及垂直方向的平移(Shift)功能。

本控制電路有 5 個信號輸入(cmd,cmd\_valid,datain,clk,reset)及 3 個信號輸出(dataout,output\_valid,busy),關於各輸入輸出信號的功能說明,請參考表一。

#### 2. 設計規格

#### 2.1 系統方塊圖



圖一、系統方塊圖

#### 2.2 輸入/輸出介面

表一、輸入/輸出訊號

| 信號名稱         | 輸/出入   | 位元寬度 | 說明                                                                                       |
|--------------|--------|------|------------------------------------------------------------------------------------------|
| reset        | input  | 1    | 高位準非同步之系統重置信號。<br>說明:本信號應於系統啟動時送出。                                                       |
| clk          | input  |      | 時脈信號。<br>說明:此系統為同步於時脈正緣之同步設計。                                                            |
| cmd          | input  |      | 指令輸入信號。<br>說明:本控制器共有六種指令輸入,相關指令說明請參考<br>表二。指令輸入只有在cmd_valid 為high 及busy 為low<br>時,為有效指令。 |
| cmd_valid    | input  | 1    | 有效指令輸入信號。<br>說明:當本信號為high 時表示cmd 指令為有效指令輸入。                                              |
| datain       | input  | 8    | 八位元影像資料輸入埠。                                                                              |
| dataout      | output | 8    | 八位元影像資料輸出埠。                                                                              |
| output_valid | output | 1    | 有效資料輸出信號。<br>說明:當本信號為high 時表示dataout 為有效資料輸出。                                            |
| busy         | output | 1    | 系統忙碌信號。<br>說明:當本信號為high時,表示此控制器正在執行<br>現行(current)指令,而無法接收其他新的指令輸入。                      |

#### 2.3 系統功能描述

影像顯示控制器之輸入端,為一張6x6 大小的影像資料。而輸出端則為3x3 大小的顯示端 影像,如圖二所示。影像顯示控制器必須處理使用者輸入之指令,取得顯示相關之座標(origin) 參數,使顯示端達到平移功能。



圖二、輸入與輸出影像示意圖

#### 2.3.1 輸入與輸出端之影像及參數規範

#### [影像輸入]

將提供輸入端影像資料,此影像資料為 6x6 共 36 筆測試樣本,每筆樣本為 8 位元資料(如圖三所示)。並且依由左而右;由上而下,且以序列(Serial)的方式循序輸入至影像控制電路中。 (如圖三所示資料,輸入順序為 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f,10,…,21,22,23)。註:以下僅為圖例示範,詳細的輸入影像內容值未必如下圖三所示。



圖三、輸入端影像資料

#### 「影像輸出]

輸出端影像為 3x3 共 9 筆樣本輸出,每筆樣本為 8 位元資料(如圖四所示)。並且依由左而右;由上而下,且以序列(Serial)的方式循序輸出結果。(如圖四所示資料,輸出順序為e,f,10,14,15,16,1a,1b,1c)。註:以下僅為圖例示範,詳細的輸出影像內容值未必如下圖四所示。

| e  | f  | 10 |
|----|----|----|
| 14 | 15 | 16 |
| 1a | 1b | 1c |

圖四、輸出端影像資料

#### [參考座標]

已定義輸入端影像之參考座標。輸入端影像之水平方向為X軸,垂直方向為Y軸,而原點座標則座落於輸入影像之左上端。此外,X軸與Y軸座標範圍為0~3。(如圖五所示)。需根據此參考座標,進行顯示端的畫面平移(Shift)功能設計。



圖五、輸入端影像參考座標

#### 2.3.2 影像顯示控制器功能規範

#### [指令定義]

影像控制器電路有 6 項控制指令功能。控制指令(cmd)所對應之功能如表二所示。

| 控制指令 | 控制指令說明      |
|------|-------------|
| 0    | Reflash     |
| 1    | Load Data   |
| 2    | Shift Right |
| 3    | Shift Left  |
| 4    | Shift Up    |
| 5    | Shift Down  |

表二、控制指令定義

對於所有有效之控制指令,不論其是否會更變原點參數,皆必須在系統處理結束後輸出 9 筆顯示端影像資料。以下分別就各項指令進行說明。

- 顯示端影像更新(Reflash)
  - 更新顯示端的輸出畫面
  - Reflash 指令不作任何處理,僅將現行顯示之 3x3 影像資料重新輸出。
- 資料載入(Load Data)
  - 將 36 筆影像資料依序載入於 6x6 影像緩衝器中。
  - Load Data 時,系統將輸入一張全新的 6x6 影像,且原點座標自動指向(2,2),亦即輸

出畫面自動顯示原輸入影像的中央區塊。

- ◆ 設定原點座標為(2,2)
- Load Data 必須為系統的第一個指令輸入。



圖六、輸出畫面於資料載入(Load Data)之取樣相對位置

- 畫面右移(Shift Right) \*
  - 右移顯示區塊。執行此 Shift Right 指令,使原點的 X 座標增加 1,但 X 軸座標 最大不可超過 3。
  - 當 X 座標等於 3 時,倘若再收到右移指令,則 X 座標仍將為持 3,僅重覆輸出和現

行指令前相同之顯示結果。

- 書面左移(Shift Left) \*
  - 左移顯示區塊。執行此 Shift Left 指令,將使原點的 X 座標刪減 1,但 X 軸座標最小不可低於 0。
  - 當 X 座標等於 0 時,倘若再收到左移指令,則 X 座標將仍為持 0,僅重覆輸出和現行指令前相同之顯示結果。
- 畫面上移(Shift UP) \*
  - 上移顯示區塊。執行此 Shift UP 模式,將使原點的 Y 軸座標減少 1,但 Y 軸座標最小不可低於 0。
  - 當 Y 軸座標等於 0 時,倘若再收到上移指令,則 Y 軸座標將仍為 0,僅重覆輸 出和現行指令前相同之顯示結果。
- 畫面下移(Shift Down) \*
  - 下移顯示區塊。執行此 Shift Down 指令,將使原點的 Y 軸座標增加 1,但 Y 軸座標最大不可大於 3。
  - 當 Y 軸座標等於 3 時,倘若再次收到下移指令,則 Y 軸座標仍為持 3,僅重覆 輸出和現行指令前相同之顯示結果。
- \* 關於顯示畫面與輸入畫面之原點相對位置,請參考附錄 A。

#### 2.3.3 影像顯示控制器範例

以下為影像控制器電路方塊圖,僅供作為設計之參考,亦可自行發揮創意。



圖七、影像控制器電路設計之參考方塊圖

#### 2.4 時序規格圖

- 載入資料(Load Data)之時序規格圖,如下圖八所示。
  - 在有效的 Load Data 指令之後,會緊接著連續輸入 36 筆影像資料
  - 當影像顯示控制電路內部處理完成,連續輸出 9 筆顯示資料,輸出同時須將 output\_valid 設為 high。
  - 在整個處理過程中,busy 皆維持為 high。並在輸出完成後,將 busy 設回 low 以接受新指令輸入。



圖八、資料載入之時序規格圖

- 其它控制指令(reflash、shift right、shift left、shift up、shift down)之時序 規格圖,如下圖九所示。
  - 當影像顯示控制電路內部處理完成,連續輸出9筆顯示資料,輸出同時須將 output\_valid 設為 high。
  - 在整個處理過程中,busy 皆維持為 high。並在輸出完成後,將 busy 設回 low 以接受新指令輸入。



圖九、其它控制指令之時序規格圖

## 附錄 A 顯示畫面與輸入畫面之原點相對位置參考

本試題中的平移功能(畫面上移、下移、左移、右移),關於顯示畫面與輸入畫面之原點相對位 置如圖十~圖二十五所示。請注意,每一次控制指令的輸入,僅能單獨使X 軸座標值或單獨使Y 軸 座標值增加或減少一個單位。





圖二十五、原點座標為(3,3)

圖二十四、原點座標為(2,3)

## 附錄 B 測試樣本

比賽共提供兩組測試樣本,為方便設計者除錯之用,將測試樣本之影像資料及指令輸入詳如下:

## ◎ 測試樣本一

☑ 相關檔案: image1.dat, cmd1.dat, out\_golden1.dat 影像資料:

| 0  | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 6  | 7  | 8  | 9  | a  | ь  |
| С  | d  | e  | f  | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 18 | 19 | 1a | 1b | 1c | 1d |
| 1e | 1f | 20 | 21 | 22 | 23 |

## ◎ 測試樣本二

| 20 | 57 | 30 | eb | af | ec |
|----|----|----|----|----|----|
| 49 | 93 | 22 | 67 | a0 | 05 |
| 44 | 62 | 66 | cc | 76 | 97 |
| 28 | 09 | ff | 40 | 18 | 80 |
| f0 | e9 | ea | 87 | dd | ed |
| d4 | d3 | bb | f4 | 77 | 52 |

## 三、 作業繳交方式(使用FTP)

1. 請將作業上傳到HW5 資料夾,並且壓縮成以下格式:

#HW?\_學號\_名字\_版本. zip

附註:

第一版為HW5\_學號\_名字\_001. zip

若有更改則為HW5 學號 名字 002. zip,以此類推

2. 請將繳交檔案分成三個資料夾,如下表分別為說明文件、Pre\_Sim與Post\_Sim

| 目錄名稱     | 檔案名稱                                  |
|----------|---------------------------------------|
| Pre_sim  | lcd_ctrl.v testfixture.v              |
| Post_sim | lcd_ctrl.v,testfixture.v,lcd_ctrl.sdo |
|          | HW5_學號_名字_版本.doc                      |
| 說明文件     | 附註:                                   |
| <b>就</b> | 請於報告內說明設計概念、技巧、使用面積、電路                |
|          | 操作速度…                                 |

3. 為避免網路擁塞影響作業繳交,請盡早上傳作業

#### 四、 評分方式

- 1. 作業DEMO的時間公佈在網頁。
- 2. 評分比例: Pre-Sim (70%)、Post-Sim (30%)。
- 3. 遲交或上傳檔案有病毒者一律以 0 分計算。
- 4. 抄襲他人作業者一律以0分計算。
- 5. 工作時脈越高、面積越小者,分數越高。

#### 五、 Q&A

有任何問題請 mail 給助教(hweijet@gmail.com)