EXERCICE 1 (Cours)

Donner et prouver la caractérisation séquentielle des limites.

Exercice 2 (Cours)

Donner et prouver le théorème des valeurs intermédiaires.

EXERCICE 3 (Cours)

Donner et prouver le résultat concernant les fonctions continues qui coïcident sur l'ensemble \mathbb{Q} .

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}.$$

Prouver que la fonction f est discontinue en tout point de \mathbb{R} .

Exercice 5

Soit $f:[0,1] \to [0,1]$ une fonction continue. Démontrer que f admet toujours au moins un point fixe, *i.e.* il existe $y \in [0,1]$ tel que f(y) = y.

Exercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux fonctions continues.

- 1. On suppose que, pour tout $x \in \mathbb{Q}$, on a f(x) < g(x).
 - (a) Prouver que $f(x) \leq g(x)$ pour tout $x \in \mathbb{R}$.
 - (b) Prouver qu'on a pas l'inégalité stricte dans la question précédente.
- 2. On suppose maintenant que, pour tout $x, y \in \mathbb{Q}$ avec x < y, on a f(x) < f(y). Montrer que f est strictement croissante.

Exercice 7

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue, telle que, pour tout $x \in \mathbb{R}$, on a

$$f(x)^2 = 1.$$

1. Démontrer que f = 1 ou f = -1.

EXERCICE 8

Que peut-on dire d'une fonction $f: I \to \mathbb{R}$ définie sur un intervalle non réduit à un point, continue, et ne prenant qu'un nombre fini de valeurs ?

Exercice 9

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty.$$

Démontrer que f admet un minimum.

Exercice 10

Soit $f:[a,b]\to\mathbb{R}$ et $g:[a,b]\to\mathbb{R}$ deux fonctions continues telles que, pour tout $x\in[a,b]$, on a

$$f(x) > g(x)$$
.

- 1. Montrer qu'il existe $\delta > 0$ tel que $f(x) \geq g(x) + \delta$ pour tout $x \in [a, b]$.
- 2. On suppose de plus que g(x) > 0 pour tout $x \in [a, b]$. Montrer qu'il existe k > 1 tel que $f(x) \ge kg(x)$ pour tout $x \in [a, b]$.
- 3. Les résultats restent-ils vrais si on remplace le segment [a,b] par $\mathbb R$?

Exercice 11

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction périodique qui admet une limite finie ℓ en $+\infty$. Montrer que f est constante.

Exercice 12

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction et $x_0 \in \mathbb{R}$ un réel.

- 1. Démontrer que si la fonction f est continue en x_0 , alors la fonction |f| est continue en x_0 .
- 2. La réciproque est-elle vraie ?

Exercice 13

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}.$$

- 1. Étudier la continuité de f en 0.
- 2. Prouver que, pour tout $x \in \mathbb{R}$, on a f(x+1) = f(x) + 1.
- 3. En déduire que f est continue en tout $x \in \mathbb{Z}$, puis sur \mathbb{R} .