CS2109S: Introduction to AI and Machine Learning

Lecture 5: Linear Regression

15 September 2023

Admin

Midterm (Confirmed)

• Date & Time: 6 October, 10:00 – 12:00

• Venue: MPSH 1A

• Notes:

• Please come at 9:30. You are allowed into hall at 9:45

Materials: all topics covered before recess week until Lecture 4

• Cheatsheet: 1 x A4 paper, both sides

Recap

Machine Learning

- What is ML? machine that learns through data
- Types of Feedback: supervised, unsupervised, semi-supervised, reinforcement
- Supervised Learning

Performance Measure

- Regression: mean squared error, mean absolute error
- Classification: correctness, accuracy, confusion matrix, precision, recall, F1

Decision Trees

- Decision Tree Learning (DTL): greedy, top-down, recursive algorithm
- Entropy and Information Gain
- Different types of attributes: many values, differing costs, missing values
- Pruning: min-sample, max-depth
- Ensemble Methods: bagging, boosting

Decision Tree Learning

with Information Gain

```
def DTL(examples, attributes, default):
  if examples is empty: return default
  if examples have the same classification:
    return classification
  if attributes is empty:
    return mode(examples)
  best = choose_attribute(attributes, examples)
  tree = a new decision tree with root best
  for each value v_i of best:
    examples_i = \{\text{rows in examples with best} = v_i\}
    subtree = DTL(examples<sub>i</sub>, attributes - best, mode(examples))
    add a branch to tree with label v_i and subtree subtree
```

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Patrons:
$$(2,4,6)$$

$$2 \times F \qquad 4 \times T \qquad 2 \times T, 4 \times F$$

$$G(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I\left(\frac{2}{6},\frac{4}{6}\right)\right] = 0.541 \text{ bits}$$

$$Type: (2,2,4,4)$$

$$T+F \qquad T+F \qquad 2T, 2F \qquad 2T, 2F$$

$$IG(Type) = 1 - \left[\frac{2}{12}I\left(\frac{1}{1},\frac{1}{1}\right) + \frac{2}{12}I\left(\frac{1}{1},\frac{1}{1}\right) + \frac{4}{12}I\left(\frac{2}{1},\frac{2}{1}\right) + \frac{4}{12}I\left(\frac{2}{1},\frac{2}{1}\right)$$

Prevent nodes from being split even when if fails to cleanly separate examples.

Prevent nodes from being split even when if fails to cleanly separate examples.

But can be simplified...

Prevent nodes from being split even when if fails to cleanly separate examples.

Prevent nodes from being split even when if fails to cleanly separate examples.

Outline

- Linear Regression
- Gradient Descent
 - Gradient Descent Algorithm
 - Linear Regression with Gradient Descent
 - Variants of Gradient Descent
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes
 - Dealing with Features of Different Scales
 - Dealing with Non-Linear Relationship
- Normal Equation

Outline

- Linear Regression
- Gradient Descent
 - Gradient Descent Algorithm
 - Linear Regression with Gradient Descent
 - Variants of Gradient Descent
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes
 - Dealing with Features of Different Scales
 - Dealing with Non-Linear Relationship
- Normal Equation

Regression

Housing price prediction

Linear Regression

$$h_w(x) = 100 + \frac{1}{2}x$$

$$h_w(x) = 0 + \frac{1}{5} x$$

Find w that "fits the data well"!

What does this mean?

Linear Regression: Measuring Fit

For a set of m examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$

we can compute the average (mean) squared error as follows.

$$J_{MSE}(w) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{w}(x^{(i)}) - y^{(i)} \right)^{2}$$
Loss function

Want to minimize the loss/error!

Simplify: fix to 0!

Hypothesis:

$$h_{\mathbf{w}}(x) = \mathbf{0} + \mathbf{w_1} x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

Simplify: fix to 0!

Hypothesis:

$$h_{w}(x) = \mathbf{0} + w_{1}x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

=
$$(1-0.5)^2 + (2-1)^2 + (3-1.5)^2$$

= $0.5^2 + 1 + (1.5)^2$
= 3.5

Simplify: fix to 0!

Hypothesis:

$$h_{\mathbf{w}}(x) = \mathbf{0} + \mathbf{w_1} x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

$$= 1^2 + 2^2 + 3^2$$
$$= 14$$

Hypothesis:

$$h_{\mathbf{w}}(x) = \mathbf{0} + w_1 x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

Hypothesis:

$$h_{\mathbf{w}}(x) = \mathbf{0} + \mathbf{w_1} x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

Simplify: fix to 0!

Hypothesis:

$$h_w(x) = 0 + w_1 x$$

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

Simplify: fix to 0!

Hypothesis:

$$h_{w}(x) = \mathbf{0} + w_{1}x$$

How do we get the appropriate \mathbf{c} ? $\frac{\partial J_{MSE}(w_1)}{\partial w_1} > 0 \qquad -\frac{\partial J_{MSE}(w_1)}{\partial w_1} < 0$ $w_1 \leftarrow w_1 + c \qquad w_1 \leftarrow w_1 - c \qquad w_1$ $0.5 \qquad 1.5 \qquad 2$ Want to get here!

Loss Function:

$$J_{MSE}(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_1} x^{(i)} - y^{(i)})^2$$

$$\frac{\partial J_{MSE}(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w}_1 x^{(i)} - y^{(i)}) x^{(i)}$$

$$\frac{(0.5 * 1 - 1) * 1 = -0.5}{(1.5 * 1 - 1) * 1 = +0.5}$$

 $J_{MSE}(\mathbf{w})$

Outline

- Linear Regression
- Gradient Descent
 - Gradient Descent Algorithm
 - Linear Regression with Gradient Descent
 - Variants of Gradient Descent
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes
 - Dealing with Features of Different Scales
 - Dealing with Non-Linear Relationship
- Normal Equation

Gradient Descent

Remember Hill-climbing?

- Start at some w
- Pick a nearby point that reduces I(w)

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1, \dots)}{\partial w_j}$$
 • Repeat until minimum is reached

Gradient Descent: 1 Parameter

- Start at some w_0
- Pick a nearby point that reduces $J(w_0)$

$$w_0 \leftarrow w_0 - \gamma \frac{\partial J(w_0)}{\partial w_0}$$

Repeat until minimum is reached

Learning Rate

Can we use mean absolute error (MAE) for our J?

MAE is not fully differentiable (its derivative is undefined at 0)

As it gets closer to a minimum,

- The gradient becomes smaller
- The **steps** becomes smaller

Gradient Descent: 1 Parameter

- Start at some w_0
- Pick a nearby point that reduces $J(w_0)$

$$w_0 \leftarrow w_0 - \gamma \frac{\partial J(w_0)}{\partial w_0}$$

• Repeat until minimum is reached

Gradient Descent: 1 Parameter

- Start at some w_0
- Pick a nearby point that reduces $J(w_0)$

$$w_0 \leftarrow w_0 - \gamma \frac{\partial J(w_0)}{\partial w_0}$$

• Repeat until minimum is reached

Gradient Descent: 2 Parameters

- Start at some $w = (w_0, w_1)$
- Pick a nearby point that reduces I(w)

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1)}{\partial w_j}$$
 • Repeat until minimum is reached

Gradient Descent

- Start at some w
- Pick a nearby point that reduces I(w)

$$w_j \leftarrow w_j - \gamma \frac{\partial J(w_0, w_1, \dots)}{\partial w_j}$$
• Repeat until minimum is reached

Learning Rate

Common Mistakes

w_0 changed!

$$w_0 = w_0 + \gamma \frac{\partial J(w_0, w_1)}{\partial w_0}$$

$$w_1 = w_1 + \gamma \frac{\partial J(w_0, w_1)}{\partial w_1}$$

$$a = \frac{\partial J(w_0, w_1)}{\partial w_0}$$

$$b = \frac{\partial J(w_0, w_1)}{\partial w_1}$$

$$w_0 = w_0 + \gamma a$$

$$w_1 = w_1 + \gamma b$$

Hypothesis:

$$h_{\mathbf{w}}(x) = \mathbf{w_0} + \mathbf{w_1} x$$

Loss Function:

$$J_{MSE}(\mathbf{w_0}, \mathbf{w_1}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w_0} + \mathbf{w_1} x^{(i)} - y^{(i)})^2$$

$$\frac{\partial J_{MSE}(w_0, w_1)}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

$$\frac{\partial J_{MSE}(w_0, w_1)}{\partial w_0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)})$$

$$\frac{\partial J_{MSE}(w_0, w_1)}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y^{(i)}).x^{(i)}$$

Theorem: MSE loss function is convex for linear regression.

• One minimum, global minimum

Linear Regression with Gradient Descent

Credit: Andrew Ng

Variants of Gradient Descent

(Batch) Gradient Descent

• Consider <u>all</u> training examples

Mini-batch Gradient Descent

- Consider a <u>subset</u> of training examples at a time
- Cheaper (Faster) / iteration
- Randomness, may escape local minima

Stochastic Gradient Descent (SGD)

- Select <u>one</u> random data point at a time
- Cheapest (Fastest) / iteration
- More randomness, may escape local minima

Variants of Gradient Descent

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

Credit: analyticsvidhya.com

Outline

- Linear Regression
- Gradient Descent
 - Gradient Descent Algorithm
 - Linear Regression with Gradient Descent
 - Variants of Gradient Descent
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes
 - Dealing with Features of Different Scales
 - Dealing with Non-Linear Relationship
- Normal Equation

Linear Regression with Many Attributes

x_0	x_1	x_2	x_3	x_4	y

Bias	Year	# bedrooms	# bathrooms	Size (m²)	Price (\$)
1	2016	4	2	113	560,000
1	1998	3	2	102	739,000
1	1997	3	0	100	430,000
1	2014	3	2	84	698,000
1	2016	3	0	112	688,888
1	1979	2	2	68	390,000
1	1969	2	1	53	250,000
1	1986	3	2	122	788,000
1	1985	3	3	150	680,000
1	2009	3	2	90	828,000

HDB prices from SRX

Notation:

- n = number of features
- $x^{(i)}$ = input features of the *i*-th training example
- $x_i^{(i)}$ = value of feature j in i-th training example

Hypothesis:

$$h_{\mathbf{w}}(x) = w_0 x_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

Hypothesis (for n features):

$$h_{\mathbf{w}}(x) = \sum_{j=0}^{n} \mathbf{w}_{j} x_{j} = \mathbf{w}^{T} x$$
vector

Weight Update (for *n* features):

$$w_j \leftarrow w_j - \gamma \frac{\partial J_{MSE}(w_0, w_1, \dots, w_n)}{\partial w_j}$$

$$w_j \leftarrow w_j - \gamma \frac{1}{m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)}).x_j^{(i)}$$

Dealing with Features of Different Scales

17

λ_0	λ_1	λ_2	λ3	λ_4	У
Bias	Year	# bedrooms	# bathrooms	Size (m²)	Price (\$)
1	2016	4	2	113	560,000
1	1998	3	2	102	739,000
1	1997	3	0	100	430,000
1	2014	3	2	84	698,000
1	2016	3	0	112	688,888
1	1979	2	2	68	390,000
1	1969	2	1	53	250,000
1	1986	3	2	122	788,000
1	1985	3	3	150	680,000
1	2009	3	2	90	828,000

Ya

γ.

HDB prices from SRX

Each attribute has different scale:

$$1969 \le x_1 \le 2016$$

Ya

$$2 \le x_2 \le 5$$

$$0 \le x_3 \le 2$$

$$84 \le x_4 \le 150$$

Other methods of standardization also exists:

Min-max scaling, robust scaling, etc

Mean normalization:

$$x_i \leftarrow \frac{x_i - \mu_i}{\sigma_i}$$

Dealing with Non-Linear Relationship

Generally:

$$h_{w}(x) = w_{0} + w_{1}f_{1} + w_{2}f_{2} + w_{3}f_{3} + \dots + w_{n}f_{n}$$

Transformed features:
 $e. g., f_{1} = x_{1}, f_{2} = x_{1}^{2}$

Which function?

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_1^2$$

Polynomial Regression

Need to scale this!

Outline

- Linear Regression
- Gradient Descent
 - Gradient Descent Algorithm
 - Linear Regression with Gradient Descent
 - Variants of Gradient Descent
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes
 - Dealing with Features of Different Scales
 - Dealing with Non-Linear Relationship
- Normal Equation

Normal Equation

Goal: find w that minimizes J_{MSE} :

Set
$$\frac{\partial J_{MSE}(w)}{\partial w} = 0$$

$$2X^T X w - 2X^T Y = 0$$

$$2X^T X w = 2X^T Y$$

$$X^T X w = X^T Y$$
Assume invertible $w = (X^T X)^{-1} X^T Y$

Gradient Descent vs Normal Equation

	Gradient Descent	Normal Equation
Need to choose γ	Yes	No
Iteration(s)	Many	None
Large number of samples n?	No problem	Slow, $(X^T X)^{-1} \to O(n^3)$
Feature scaling?	May be necessary	Not necessary
Constraints	-	X^TX needs to be invertible

Summary

- Linear Regression: fitting a line to data
- Gradient Descent
 - Gradient Descent Algorithm: follow -gradient to reduce error
 - Linear Regression with Gradient Descent: convex optimization, one minimum
 - Variants of Gradient Descent: batch, mini-batch, stochastic
- Linear Regression: Challenges and Solutions
 - Linear Regression with Many Attributes: $h_{\mathbf{w}}(x) = \sum_{j=0}^{n} w_{j} x_{j} = \mathbf{w}^{T} x$
 - Dealing with Features of Different Scales: normalize!
 - Dealing with Non-Linear Relationship: transform features
- Normal Equation: analytically find the best parameters

Coming Up Next Week

- Logistic Regression
 - Gradient Descent
 - Multi-class classification
 - Non-linear decision boundary
- (More) Performance Measure
- (More) Model Evaluation

To Do

- Lecture Training 5
 - +100 Free EXP
 - +50 Early bird bonus
- Problem Set 4
 - Out today!