Машина Тьюринга

Машина Тьюринга – это строгое математическое построение, математический аппарат, созданный для решения определённых задач.

Машина Тьюринга – абстрактный исполнитель, осуществляющий алгоритмический процесс, созданный для уточнения понятия алгоритма.

Это математический объект, а не физическая машина.

Предложена Аланом Тьюрингом в 1936 году

Структура и описание машины Тьюринга

Машина Тьюринга состоит из:

- > бесконечной ленты, разделенной на ячейки;
- > каретки (читающей и записывающей головки);
- программируемого автомата (программа в виде таблицы).

Автомат каждый раз "видит" только одну ячейку. В зависимости от того, какую букву он видит, а также в зависимости от своего состояния q автомат может выполнять следующие действия:

- ✓ записать новую букву в обозреваемую ячейку;
- ✓ выполнить сдвиг по ленте на одну ячейку вправо/влево или остаться неподвижным;
- ✓ перейти в новое состояние.

1) Внешний алфавит

$$A = \{a_0, a_1, ..., a_n\}$$

Элемент a_0 называется **пустой символ** или **пустая буква** (признак того, что ячейка пуста).

В этом алфавите в виде слова кодируется исходный набор данных и результат работы алгоритма.

2) Внутренний алфавит

$$Q = \{q_0, q_1, ..., q_m\}, \{\Pi, \Pi, H!\}$$

В любой момент времени машина Тьюринга находится в одном из состояний $q_0, q_1, ..., q_m$

При этом: q_1 - начальное состояние (машина начинает работу)

 q_0 - заключительное состояние

(машина закончила работу)

Символы $\{\Pi, \Pi, H!\}$ – символы сдвига (вправо, влево, на месте)

Виды команд машины Тьюринга

- 1. Написать новую букву в обозреваемую ячейку
- 2. Выполнить сдвиг по ленте на одну ячейку вправо/влево или остаться на месте (П, Л, Н)

3. Перейти в новое состояние.

3) Внешняя память (лента)

Машина имеет ленту, разбитую на ячейки, в каждую из которых может быть записана только одна буква

3) Внешняя память (лента)

Пустая клетка содержит a_0 . В каждый момент времени на ленте записано конечное число непустых букв

Лента является конечной, но дополняется в любой момент ячейками слева и справа для записи новых непустых символов.

Это соответствует принципу абстракции потенциальной осуществимости

4) Каретка (управляющая головка)

Каретка машины располагается над некоторой ячейкой ленты – воспринимает символ, записанный в ячейке

В одном такте работы каретка сдвигается на одну ячейку (вправо, влево) или остается на месте

5) Функциональная схема (программа)

Программа машины состоит из команд:

$$egin{aligned} q_i a_j &
ightarrow q_k a_l X, & X \in \{\Pi, \Pi, C\} \ i &= \overline{1, m}, & j &= \overline{1, n} \ k &= \overline{1, m}, & l &= \overline{1, n} \end{aligned}$$

Для каждой пары (q_i, a_j) программа машины должна содержать одну команду (детерминированная машина Тьюринга)

К началу работы машины на ленту подается исходный набор данных в виде слова α

- 0
- Будем говорить, что непустое слово α в алфавите $A\setminus\{a_0\}$ воспринимается машиной в **стандартном положении**, если:
- оно задано в последовательных ячейках ленты,
- все другие ячейки пусты,
- машина обозревает крайнюю правую ячейку из тех, в которых записано слово α

Стандартное положение называется начальным (заключительным), если машина, воспринимающая слово в стандартном положении, находится в начальном состоянии q_1 (стоп-состоянии q_0)

Находясь в <u>не заключительном</u> состоянии, машина совершает шаг, который определяется текущим состоянием q_i и обозреваемым символом a_j

В соответствии с командой $q_i a_j \to q_k a_l X$ выполняются следующие действия:

- 1) Содержимое обозреваемой ячейки a_j стирается и в нее записывается символ a_l (который может совпадать с a_i)
- 2) Машина переходит в новое состояние q_k (оно может совпадать с состоянием q_i)
- 3) Каретка перемещается в соответствии с управляемым символом $X \in \{\Pi, \Pi, H!\}$

При переходе машины в заключительное состояние q_0 ее работа прекращается

На ленте записан результат работы алгоритма – слово β в алфавите A\{a₀}

Машинным словом (конфигурацией) машины Тьюринга называется слово вида $\alpha_1 q_k a_l \alpha_2$, где α_1 и α_2 - слова в алфавите А.

Конфигурация $\alpha_1 q_k a_l \alpha_2$ интерпретируется следующим образом:

- машина находится в состоянии q_k
- каретка обозревает на ленте символ a_l
- α_1 и α_2 это содержимое ленты до и после

символа a_l

Ситуации неприменимости машины Тьюринга

Считается, что машина Тьюринга неприменима к данному входному слову, если в программе нет клеток останова или машина в процессе работы на них не попадает.

	a_0	0	1
q_1	$1\Pi q_1$	$0\Pi q_1$	$1\Pi q_1$

Машина Тьюринга применима к данному входному слову, если, начав работу над этим входным словом, она рано или поздно дойдёт до одной из клеток останова.

	a_0	0	1
q_1	1 H q_0	$0\Pi q_1$	$1\Pi q_1$

Пример машин Тьюринга

Требуется построить машину Тьюринга для решения следующей задачи: во входном слове все буквы «а» заменить на буквы «б» и наоборот.

		б	а	p	а	б	У		
		а	б	p	б	а	У		
	a_0		a		б	В		• • •	R
q_1	a ₀ H!	6	5Л q ₁	a.	Л q ₁	вЛ	q_1	• • •	я Л q ₁

$$y \rightarrow y \quad p \rightarrow p$$
 $\delta \rightarrow a \quad a \rightarrow \delta$
 $a \rightarrow \delta \quad \delta \rightarrow a$

Пример

Дана машина Тьюринга с внешним алфавитом $A = \{a_0, 1, *\}$, алфавитом внутренних состояний $Q = \{q_0, q_1, q_2, q_3\}$, и следующей функциональной схемой:

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	$q_2a_0\Pi$	$q_21Л$	$q_31\Pi$
*	q_0a_0C	$q_2*\Pi$	$q_3*\Pi$

Применить машину Тьюринга к слову α =11*1, начиная со стандартного начального положения

	q_1	92	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	$q_2a_0\Pi$	$q_21Л$	$q_31\Pi$
*	q_0a_0C	q ₂ *Л	$q_3*\Pi$

$$q_1 1 \rightarrow q_2 a_0 Л$$

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	$q_2a_0\Pi$	$q_21Л$	$q_31\Pi$
*	q_0a_0C	<i>q</i> ₂ *Л	$q_3*\Pi$

1) Заменяем содержимое обозреваемой ячейки 1 на а₀

2)

$$q_1 1 \rightarrow q_2 a_0 Л$$

a_0	1	1	*	a_0	a_0
_		ı	I	_	

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	q_2a_0 Л	$q_21Л$	$q_31\Pi$
*	q_0a_0C	<i>q</i> ₂ *Π	$q_3*\Pi$

$$q_1 1 \rightarrow q_2 a_0 \Pi$$

2) Машина переходит в новое состояние q₂

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	q_2a_0 Л	$q_21Л$	$q_31\Pi$
*	q_0a_0C	q ₂ *Л	<i>q</i> ₃*∏

$$q_1 1 \rightarrow q_2 a_0 \sqrt{1}$$

3) Каретка перемещается влево

Полное подробное решение

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1a_0\Pi$
1	q_2a_0 Л	$q_21Л$	$q_31\Pi$
*	q_0a_0C	<i>q</i> ₂*Л	$q_3*\Pi$

$$q_1 1 \rightarrow q_2 a_0 \Pi$$

$$q_2 * \rightarrow q_2 * \Pi$$

$$q_2 1 \rightarrow q_2 1 Л$$

$$q_2 1 \rightarrow q_2 1 Л$$

Полное подробное решение

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1a_0\Pi$
1	q_2a_0 Л	$q_21Л$	$q_31\Pi$
*	q_0a_0C	<i>q</i> ₂*Л	$q_3*\Pi$

Полное подробное решение

	q_1	92	q_3
a_0		$q_31\Pi$	$q_1a_0\Pi$
1	q_2a_0 Л	<i>q</i> ₂ 1Л	$q_31\Pi$
*	q_0a_0C	<i>q</i> ₂*Л	$q_3*\Pi$

 $q_3 a_0 \rightarrow q_1 a_0 \Pi$

10)

$$q_1 * \rightarrow q_0 a_0 C$$

$$\beta = 111$$

	q_1	92	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	q_2a_0 Л	<i>q</i> ₂ 1Л	$q_31\Pi$
*	q_0a_0C	q ₂ *Л	$q_3*\Pi$

Решение, записанное с помощью конфигураций (в строчку)

$$\begin{array}{l} a_0 11 * q_1 1a_0 \Rightarrow a_0 11q_2 * a_0 \Rightarrow a_0 1q_2 1 * a_0 \Rightarrow a_0 q_2 11 * a_0 \Rightarrow \\ \Rightarrow a_0 q_2 a_0 11 * a_0 \Rightarrow a_0 1q_3 11 * a_0 \Rightarrow a_0 11q_3 1 * a_0 \Rightarrow \\ \Rightarrow a_0 111q_3 * a_0 \Rightarrow a_0 111 * q_3 a_0 \Rightarrow a_0 111q_1 * a_0 \Rightarrow a_0 111q_0 a_0 \end{array}$$

$$\alpha = 1*11$$

	q_1	q_2	q_3
a_0		$q_31\Pi$	$q_1 a_0 \Pi$
1	$q_2a_0\Pi$	<i>q</i> ₂ 1Л	$q_31\Pi$
*	q_0a_0C	$q_2*\Pi$	$q_3*\Pi$

Ответ: $\beta = 111$