$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 &= b_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 &= b_4 \end{aligned}$$

Linger Penklem Sistemlerinin Çözüm Yöntemleri

ı

Ders İçeriği

- Tanım
- Gauss Eliminasyon Yöntemi
- Örnek Uygulamalar
- Matlab uygulama

Tanım

 $a_1, a_2, \ldots, a_n \in \mathbf{R}$ ve x_1, x_2, \ldots, x_n bilinmeyenler olmak üzere,

$$a_1x + a_2x_2 + ... + a_nx_n = b$$

denklemine n- bilinmeyenli bir lineer denklem denir.

Bir lineer denklemde $a_1, a_2, ..., a_n$ sayılarına **denklemin katsayıları**, b sayısına da **denklemin sabiti** denir.

Örnek:

2x - y + z = 1 lineer denkleminde,

2, -I ve I denklemin katsayıları, I de denklemin sabitidir.

Tanım

şeklin deki **n tane bilinmeyen** ve **m- tane lineer denklemden** oluşan sisteme bir **lineer denklem sistemi** denir.

lineer denklem sisteminde

 $a_{11}, a_{12}, \ldots, a_{mn} \in \mathbf{R}$ sayılarına sistemin katsayıları, $b_1, b_2, \ldots, b_m \in \mathbf{R}$ sayılarına da **sistemin sabitleri** denir.

denklem sistemini farklı bir şekilde ifadesiyle

$$\sum_{i=1}^{n} a_{ij} x_{j} = c_{i}, \qquad (i = 1, 2, ..., m) \qquad , \qquad \text{yada} \quad A \times = b \quad \text{gibi en genel ifadesi ile}$$

gösterilebilir.

Bu lineer denklem sistemleri;

b=0 => "homojen denklem sistemi"

b≠0 => "homojen olmayan denklem sistemi" adını alır.

Homojen olmayan denklem sisteminin çözümü için geliştirilen yöntemler iki grupta incelenebilir.

I. Dolaylı yöntemler

Gauss-Seidel yöntemi Basit iterasyon yöntemi

• • •

2. Dolaysız yöntemler

Gauss eliminasyon yöntemi Gauss-Jordan yöntemi Cramer yöntemi

...

Bu iki gruba ait yöntemleri ve örnekleri önümüzdeki derslerde çözümleyeceğiz.

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Gauss Eliminasyon Yöntemi

$$a_{11}x_1 + a_{12}x_2 + a_{1n} x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{2n} x_n = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{3n} x_n = b_3$

lineer denklem sistemini AX=B formunda matris yardımı gösterebiliriz.

$$\begin{array}{ll} \text{AX=B} \implies \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ A ve B matrisleri üzerinde işlem yapılacağından ,} \\ \text{düzenlenerek;} \end{array}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ sistemimizi üst üçgensel matris formuna getirerek çözüme gidelim,}$$

Buna göre başlangıç adım için katsayı matrisinin ilk satırını a₁₁ bölelim.

$$a_{11}' = \frac{a_{11}}{a_{11}} = 1 \quad , a_{12}' = \frac{a_{12}}{a_{11}} \quad , a_{13}' = \frac{a_{13}}{a_{11}} \quad , b_{1}' = \frac{b_{1}}{a_{11}} \quad \right\} \begin{bmatrix} 1 & a_{12}' & a_{13}' \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{1}' \\ b_{2} \\ b_{3} \end{bmatrix} \text{ elde edilir.}$$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Gauss Eliminasyon Yöntemi

İkinci adımda ilk satırı α₂₁ ile çarpıp ikinci satırdan çıkarırsak.

$$\mathbf{a}_{21} = \mathbf{0} \quad \text{, } \mathbf{a}_{22}' = a_{22} - a_{21}. \, a_{12} \, ' \, \, \text{, } \, \mathbf{a}_{23}' = a_{23} - a_{21}. \, a_{13}' \quad \text{, } \mathbf{b}_{2}' = \mathbf{b}_{2} \, - a_{21}. \, \mathbf{b}_{1}'$$

$$\begin{bmatrix} 1 & a_{12}' & a_{13}' \\ 0_{\square} & a_{22}' & a_{23}' \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_1' \\ b_2' \\ b_3 \end{bmatrix} \text{ elde edilir.}$$

Aynı şekilde ilk satırı α₃₁ ile çarpıp üçüncü satırdan çıkardığımızda elde edilen matrisleri ;

Üçüncü adımda a'₂₂ satırı kendisine bölünerek;

$$a_{23}^{\prime\prime} = \frac{a_{23}{\prime}}{a_{22}{\prime}} \quad , \ b_{2}^{\prime\prime} = \frac{b_{2}^{\prime}}{a_{22}{\prime}} \quad \right\} \quad \begin{bmatrix} 1 & a_{12}{\prime} & a_{13}{\prime} \\ 0_{\square} & 1_{\square} & a_{23}{\prime}{\prime} \\ 0_{\square} & a_{32}{\prime} & a_{33}{\prime} \end{bmatrix} \quad \begin{bmatrix} b_{1}{\prime} \\ b_{2}{\prime}{\prime} \\ b_{3}{\prime} \end{bmatrix} \quad \text{elde edilir.}$$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Gauss Eliminasyon Yöntemi

Benzer şekilde 3. Satırdaki a₃₂ elemanını sıfıra indirgemek için ikinci satır a₃₂ ile çarpılıp. üçüncü satırdan çıkarılırsa;

$$a_{33}'' = a_{33}' - a_{32}' \cdot a_{23}'' \quad , b_{3}'' = b_{3}' - a_{32}' \cdot b_{2}''$$

$$\begin{cases} 1 & a_{12}' & a_{13}' & b_{1}' \\ 0 & 1 & a_{23}'' & b_{2}'' \\ 0 & 0 & a_{22}'' & b_{3}'' \end{cases}$$
 elde edilir.

$$\begin{bmatrix} 1 & a_{12} & a_{13} \\ 0 & 1 & a_{23} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
 elde edilir
$$\begin{bmatrix} 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} a_{33} & b_{33} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{22} & b_{33} \end{bmatrix}$$

Son adım olarak son satırı α₃₃" ile bölersek;

$$a_{33}''' = \frac{a_{33}''}{a_{33}''} = 1$$
 , $b_3''' = \frac{b_3''}{a_{33}''}$

Matrisler eliminasyonlardan sonra bilinmeyen matrisi ekleyerek düzenlersek;

$$\begin{bmatrix} 1 & a_{12}' & a_{13}' \\ 0 & 1 & a_{23}'' \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1' \\ b_2'' \\ b_3''' \end{bmatrix} \Rightarrow x_3 = b_3''' \\ x_2 = b_2'' - a_{23}'' \cdot x_3$$

$$x_1 = b_1' - a_{12}' \cdot x_2 - a_{13}' \cdot x_3$$

Denklemleri sıra ile çözümlenerek x₁, x₂, x₃ bilinmeyenleri elde edilir.

Gauss Eliminasyon Yöntemi

Not:

Pivotlama: Gauss eliminasyon yönteminde gerçekleştirilen hesaplamalarda paydaya karşılık gelen değer(pivot) sıfır olduğunda sorunlar ortaya çıkabilir, bu durumda satırların yeri en büyük eleman pivot elemanı olacak biçimde yer değiştirilebilir.

Çözüm kümesi?

Homojen L.D.S. n. dereceden A katsayılar matrisinin rankının bilinmeyen (N) sayısından küçükse mümkündür .(rank(A) < N veya |A| = 0 Birden fazla çözüme sahiptir.)

Homojen olmayan lineer denkl. sisteminin rank(A)=N ise tek çözüm eğer rank değeri N'den küçük ise birden fazla çözüm mevcuttur.

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Örnek :

$$2x_1 - 3x_2 + 2 x_3 = -11$$

 $x_1 + x_2 - 2 x_3 = 8$
 $3x_1 - 2x_2 - x_3 = -1$

$$\begin{bmatrix} 2 & -3 & 2 \\ 1 & 1 & -2 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -11 \\ 8 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1.5 & 1 \\ 1 & 1 & -2 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} -5.5 \\ 8 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1.5 & 1 \\ 0 & 2.5 & -3 \\ 0 & 2.5 & -4 \end{bmatrix} \begin{bmatrix} -5.5 \\ 13.5 \\ 15.5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1.5 & 1 \\ 0 & 1 & -1.2 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -5.5 \\ -5.4 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1.5 & 1 \\ 0 & 1 & -1.2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -5.5 \\ -5.4 \\ -2 \end{bmatrix}$$

Buradan

$$X_3 = -2$$

$$X_2 = 5.4 + 1.2x_3 = 5.4 + 1.2(-2) = 3$$

$$X_1 = -5.5 + 1.5x_2 - x_3 = -5.5 + 1.5 - 1(-2) = 1$$

elde edilir.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

Örnek uygulama:

Aşağıda AX=B formunda verilen lineer denklem sisteminin çözümünü bulunuz ?

$$\begin{bmatrix} 4 & -2 & 1 \\ -3 & -1 & 4 \\ 1 & -1 & 3 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 8 \\ 13 \end{bmatrix}$$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Çözüm:

$$\begin{bmatrix} 4 & -2 & 1 \\ -3 & -1 & 4 \\ 1 & -1 & 3 \end{bmatrix} \cdot \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} 15 \\ 8 \\ 13 \end{Bmatrix}$$
 Denklem sistemi

Birinci sütun sıfırlanarak

$$R_{2} - (-3/4) \times R_{1} \rightarrow \begin{bmatrix} 4 & -2 & 1 & 15 \\ 0 & -2.5 & 4.75 & 19.25 \\ 0 & -0.5 & 2.75 & 9.25 \end{bmatrix}$$

İkinci sütun sıfırlanarak

İkinci sütun sıfırlanarak
$$x_2 = \frac{19.25 - 4.75 \times 3}{-2.5} = -2$$

$$R_3 - (-0.5/-2.5) \times R_2 \rightarrow \begin{bmatrix} 4 & -2 & 1 & 15 \\ 0 & -2.5 & 4.75 & 19.25 \\ 0 & 0 & 1.80 & 5.40 \end{bmatrix}$$
 Geri süpürme ile
$$x_1 = \frac{15 - \left[(-2) \times (-2) + 1 \times 3\right]}{4} = 2$$

$$x_{3} = \frac{5.40}{1.80} = 3$$

$$x_{2} = \frac{19.25 - 4.75 \times 3}{-2.5} = -2$$

$$x_{1} = \frac{15 - [(-2) \times (-2) + 1 \times 3]}{4} = 2$$

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Uygulama:

$$x_1 + x_2 - x_3 + x_4 = 2$$

 $2x_2 + x_3 - x_4 = 5$
 $x_1 - x_3 + x_4 = 0$
 $-x_1 - x_2 + x_3 = -4$

lineer denklem sisteminin çözümünü bulunuz?

Sistemde I. denklemin - I katını 3. denkleme ve yine I. denklemi 4. denkleme ekleyelim.

$$x_1 + x_2 - x_3 + x_4 = 2$$

 $2 x_2 + x_3 - x_4 = 5$
 $- x_2 = -2$
 $x_4 = 2$ bulunur.

Burada 2. denklem ile 3. denklemin yerlerini değiştirelim.

$$x_1 + x_2 - x_3 + x_4 = 3$$

 $-x_2 = -2$
 $2x_2 + x_3 - x_4 = 5$
 $x_4 = -2$ olur.

Son elde edilen denklem sisteminde 2. denklemin 2 katını 3. denkleme ekleyelim.

$$x_1 + x_2 - x_3 + x_4 = 2$$

 $-x_2 = -2$
 $x_3 - x_4 = 1$
 $x_4 = -2$ elde edilir.

Bu son elde edilen lineer denklem sisteminin çözümü ile başlangıçtaki sistemimizin çözümü aynıdır.

O halde, son elde edilen denklem sisteminde,

$$x_4 = -2$$

 $x_3 = 1 + x_4 = 1 - 2 = -1$,
 $x_2 = 2$ ve
 $x_1 = 2 - x_2 + x_3 - x_4 = 2 - 2 - 1 + 2 = 1$ dir.

Dolayısıyla verilen denklem sisteminin çözümü

$$x_1 = 1$$

 $x_2 = 2$
 $x_3 = -1$
 $x_4 = -2$ dir

Lineer Denklem Sistemlerinin Çözüm Yöntemleri

Uygulama:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 3$$

 $x_2 - x_3 - 2x_4 + 2x_5 = -8$
 $2x_1 + 3x_2 - 3x_3 + x_4 + x_5 = 11$
 $x_1 + 2x_3 - x_5 = 2$
 $-x_1 + 2x_2 + 3x_4 + 4x_5 = 1$

lineer denklem sistemini çözünüz.

Çözüm:
$$AX=B \Rightarrow (A|B)$$

. . .

$$xI = 2$$

$$x2=1$$

$$x3 = -1$$

$$x4=3$$

$$x5 = -2$$
 bulunur.

Uygulamalar:

$$x_1 + x_2 - x_3 = I$$

 $x_1 + 2x_2 - 2x_3 = 0$
 $-2x_1 + x_2 + x_3 = I$

lineer denklem sistemini gauss eliminasyon yöntemi ile çözünüz.

2)

$$4x_{1} + 3x_{2} + 2x_{3} + 1x_{4} = 1$$

$$3x_{1} + 4x_{2} + 3x_{3} + 2x_{4} = 1$$

$$2x_{1} + 3x_{2} + 4x_{3} + 1x_{4} = -1$$

$$1x_{1} + 2x_{2} + 3x_{3} + 4x_{4} = -1$$

lineer denklem sistemini gauss eliminasyon yöntemi ile çözünüz.

3)

$$6x_1 + 2x_2 - 2x_3 = -2$$

 $2x_1 + x_2 + x_3 = 1$
 $x_1 + 2x_2 - x_3 = 0$

lineer denklem sistemini gauss eliminasyon yöntemi ile çözünüz.

4) Gauss Eliminasyon yönteminin işaret akış diyagramını çiziniz.

Gauss Eliminasyon yönteminin akış diyagramını çizerek ve matlab kodunu yazınız.

Ctrl+O

Figure

Variable Model

end

GUI

MATLAR

Close Command Window

File Edit Debug Desktop Window Help

MATLAB

Open...

```
%*** Gauss Eliminasyon ile denklem çözümleme ***
function I=gauss_eleme(N,Y)
X=[N Y]
[satir,sutun]=size(N)
for n=1:(sutun-1),
  s=1;
  while X(n,n)==0
     if not(X(n+s,n)==0)
        Y=X:
        X(n,:)=Y(n+s,:);
        X(n+s,:)=Y(n,:);
     end
     if s==n
        disp('Çözüm Bulunamadı!');return
     end;
     s=s+1;
  end
  for m=(n+1):(satir)
     X(m,:)=X(m,:)-X(n,:)*X(m,n)/X(n,n);
  end
end
% bilinmeyenlerin bulunması
I=zeros(satir,1);
for n=satir:-1:1
```

I(n)=(X(n,sutun+1)-tp)/X(n,n);

```
>> N=[2 -3 2;1 1 -2;3 -2 -1]
                                             N =
                                             >>Y=[-118-1]';
                                             >> I=gauss eleme(N,Y)
                                             X =
                                                    -3 2 -11
                                             satir =
                                             sutun =
                                             I =
tp=X(n,[sutun:-1:(n+1)])*I([sutun:-1:(n+1)]);
```


Ulpgulama ...