

Pauta de corrección Control 1

P1. (a) **(3 pts)** Usando los axiomas de cuerpo de \mathbb{R} , los teoremas de unicidad de elementos neutros e inversos, y la propiedad $a \cdot 0 = 0$, demuestre que: $\forall a \neq 0$, $\left(-(a^{-1})+1\right) \cdot a = a+(-1)$. Si necesita alguna propiedad adicional, **debe demostrarla**.

Solución: Clarame	ente:		
$\left(-\left(a^{-1}\right)\right)$	$(a+1) \cdot a = (-(a^{-1})) \cdot a + 1 \cdot a$; Ax. Distrib. •	0.3
	$= -(a^{-1}\cdot a)+1\cdot a$; Prop *(abajo) •	0.3
	$=-(a\cdot a^{-1})+a\cdot 1$; Ax. Conmut. (2 veces) •———	0.4
	= -1 + a	; Axs. El· y EN· •	0.6
	= a + (-1).	; Ax. Conmut.	0.3
Falta demostrar la pr	opiedad *. PDQ: $(-a)b = -(ab)$	ı.	
O sea hay que probar que el opuesto de ab vale $(-a)b$.			0.2
Es decir, PDQ: $ab + (-a)b = 0$.			0.1
En efecto,			
	$ab+(-a)b=[a+(-a)]\cdot b$; Ax. Distrib.	0.2
	$= 0 \cdot b$; Ax. EI+.•	0.2
	$= b \cdot 0$; Ax. Conmut.	0.2
	= 0.	; Prop. $a \cdot 0 = 0$	0.2

(b) (3 pts) Dado a > 0, se definen los conjuntos solución de las siguientes inecuaciones:

$$A = \{ x \in \mathbb{R} : x^{200} + a^2 - x^2 > 0 \},$$

 $B = \{ x \in \mathbb{R} : a^2 - x^2 > 0 \}.$

Resuelva la inecuación que define al conjunto B, demuestre que $B \subseteq A$ y encuentre algún x > 0 que sea solución de la inecuación que define al conjunto A (sin resolverla!!).

Solución: Solución de B: $x \in B \iff a^2 - x^2 > 0 \\ \iff (x - a)(x + a) < 0 \\ \iff x \in (-a, a).$ 1.0

Además, si $x \in B$, sabiendo que $x^{200} \ge 0$ resulta que $x^{200} + a^2 - x^2 \ge a^2 - x^2 > 0$ y por lo tanto $x \in A$. O sea $B \subseteq A$. 1.0

Para encontrar algún x > 0 en A, basta tomar alguno de B = (-a, a) que sea x = a/5. 1.0

P2. (a) **(2.5 pts)** Demuestre que $\forall x, y \in \mathbb{R}_+^*$, si $x \neq y$ se cumple que $(x+y)(x^{-1}+y^{-1})-4>0$.

Solución: Claramente:

$$(x+y)(x^{-1}+y^{-1}) - 4 = \frac{x^2 + y^2 + 2xy}{xy} - 4 \text{ (desarrollar)}$$

$$= \frac{x^2 + y^2 - 2xy}{xy}$$

$$= \frac{(x-y)^2}{xy} > 0. \text{ (concluir)}$$

$$= \frac{1.0}{1.0}$$

0.5

1.0

1.0

1.0

(b) (3.5 pts) Resuelva la inecuación

$$|x|-1 \le \frac{|x-1|}{x}$$

Solución: Puntos de corte de los módulos: 0 y 1.

Caso 1 de 3: Consideremos el caso $x \in (-\infty, 0)$. La inecuación se transforma en:

$$|x| - 1 \le \frac{|x - 1|}{x} \iff -x - 1 \le \frac{-x + 1}{x}$$

$$\iff 0 \le \frac{-x + 1 + x^2 + x}{x}$$

$$\iff 0 \le \frac{1 + x^2}{x} \iff x > 0.$$

En este caso la solución es $S_1 = \emptyset$. •—

Caso 2 de 3: Consideremos el caso $x \in [0, 1)$. La inecuación se transforma en:

$$|x| - 1 \le \frac{|x - 1|}{x} \iff x - 1 \le \frac{-x + 1}{x}$$

$$\iff 0 \le \frac{-x + 1 - x^2 + x}{x}$$

$$\iff 0 \ge \frac{x^2 - 1}{x}$$

$$\iff \frac{(x - 1)(x + 1)}{x} \le 0.$$

En este caso la solución es $S_2 = (0, 1)$.

Caso 3 de 3: Consideremos el caso $x \in [1, \infty)$. La inecuación se transforma en:

$$|x| - 1 \le \frac{|x - 1|}{x} \iff x - 1 \le \frac{x - 1}{x}$$

$$\iff 0 \le \frac{x - 1 - x^2 + x}{x}$$

$$\iff 0 \ge \frac{x^2 - 2x + 1}{x}$$

$$\iff (x - 1)^2 \le 0.$$

En este caso la solución es $S_3=\{1\}$. •-

La solución total es (0, 1].