Final Project Results

Diego Ferrer | Owen Farthing

Overview

Recap

- Finding correlations between Robinhood user data and stock prices
- Using correlated stocks to model and make predictions
- Analyzing results to determine the usefulness of Robinhood data

Changes

 Added K-Nearest Neighbor for modeling and prediction

Data Pipeline

Preprocessing

- Loaded files into memory
- Concatenated and formatted them
- Calculated averages and correlation
- Applied correlation threshold to filter stocks

Analysis

- Trained and tested various models on combined data
- Chose features useful for specific models
- Plotted results against baselines

Univariate Long Short-Term Memory

RMSE = 3.7566068880840042

Multivariate Long Short-Term Memory

K-Nearest Neighbor Using Price

RMSE = 6.471844199668853

K-Nearest Neighbor Using Robinhood Data

RMSE = 6.4469574741427

Conclusion

Tools

- SageMaker Jupyter Notebook
- EMR
- Pandas
- Sklearn
- Matplotlib

Impact

Discovered that Robinhood user popularity was not a good predictor of future price for stocks with high historical correlation with Robinhood popularity