Curso de Verão UFPR 2020 - Álgebra Linear - Lista 1

- 1. Sejam \mathbb{K} um corpo e V um \mathbb{K} -espaço vetorial.
 - a) Prove que para todo $v \in V$ vale $0 \cdot v = 0$.
 - b) Prove que para todo $k \in \mathbb{K}$ vale $k \cdot 0 = 0$, em que 0 denota o vetor nulo de V.
 - c) Prove que se $v \in V$ e $k \in \mathbb{K}$ são tais que $k \cdot v = 0$, então k = 0 ou v = 0.
 - d) Prove que para todos $k \in \mathbb{K}$ e $v \in V$ vale $-(k \cdot v) = (-k) \cdot v = k \cdot (-v)$.
 - e) Prove que para todo $v \in V$ vale $(-1) \cdot v = -v$.
- 2. Determine se os seguintes conjuntos são espaços vetoriais (sobre algum corpo). Caso o conjunto com as operações correspondentes não seja um espaço vetorial, diga algum axioma que falha e prove o porquê ele falha
 - a) $V = \mathbb{R}^3$, $\mathbb{K} = \mathbb{R}$, com as operações

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) := (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

 \mathbf{e}

$$k \cdot (x_1, y_1, z_1) := (k \cdot x_1, y_1, z_1).$$

b) $V = \mathbb{R}_{>0} = \{x \in \mathbb{R}; x > 0\}, \mathbb{K} = \mathbb{R}, \text{ com as operações }$

$$x + y := x \cdot y$$

 \mathbf{e}

$$k \tilde{\cdot} x := x^k$$
.

c) $V = \{(x, y, z) \in \mathbb{R}^3; z = 1\}, \mathbb{K} = \mathbb{R}, \text{ com as operações}$

$$(x_1, y_1, 1) + (x_2, y_2, 1) := (x_1 + x_2, y_1 + y_2, 1)$$

 \mathbf{e}

$$k \cdot (x_1, y_1, 1) := (k \cdot x_1, k \cdot y_1, 1).$$

d) $V = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}, \mathbb{K} = \mathbb{Q}, \text{ com as operações}\}$

$$(a+b\sqrt{2}) + (c+d\sqrt{2}) := (a+c) + (b+d)\sqrt{2}$$

e

$$k \cdot (a + b\sqrt{2}) := ka + kb\sqrt{2}.$$

- e) $V = \mathbb{R}$ e $\mathbb{K} = \mathbb{Q}$ com as operações usuais.
- 3. Mostre que \mathbb{N} tem uma estrutura natural de espaço vetorial sobre $\mathbb{K} = \mathbb{Q}$. Generalize provando que qualquer conjunto com a cardinalidade de \mathbb{N} pode ser visto como um \mathbb{Q} -espaço vetorial.
- 4. Em cada item abaixo é dado um corpo \mathbb{K} , um \mathbb{K} -espaço vetorial V e um sub-conjunto $S \subset V$. Verifique quais desses S são sub-espaços vetoriais de cada V correspondente.
 - a) $\mathbb{K} = \mathbb{R}$, $V = \mathbb{R}^3$ com as operações usuais e $S = \{(x, y, z) \in \mathbb{R}^3; 2x + y = z.\}$.

- b) $\mathbb{K} = \mathbb{R}$, $V = \mathbb{R}^4$ com as operações usuais e $S = \{(x, y, z, w) \in \mathbb{R}^4; z + x^2 = 0\}$.
- c) $\mathbb{K} = \mathbb{R}$, $V = M_2(\mathbb{R})$ com as operações usuais e $S = \{A \in M_2(\mathbb{R}); A + 2A^t = 0\}$.
- d) $\mathbb{K} = \mathbb{R}$, $V = \mathbb{C}$ com as operações usuais e $S = \{z \in \mathbb{C}; \text{Re}(z) = \text{Im}(z)\}.$
- e) $\mathbb{K} = \mathbb{R}$, $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ com as operações usuais e $S = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f(x) = f(-x) \ \forall x \in \mathbb{R} \}.$
- f) $\mathbb{K} = \mathbb{R}$, $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ com as operações usuais e $S = C^0(\mathbb{R}) := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f \text{ \'e contínua} \}.$
- g) $\mathbb{K} = \mathbb{R}, V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ com as operações usuais e $S = C^1(\mathbb{R}) := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f \text{ \'e deriv\'avel e } f' \in C^0(\mathbb{R}) \}.$
- h) $\mathbb{K} = \mathbb{R}$, $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ com as operações usuais e $S = \mathcal{B}(\mathbb{R}) := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f \in \text{limitada} \}.$
- 5. Sejam V um \mathbb{K} -espaço vetorial, $v \in V$ e $S \subset V$ um sub-conjunto não vazio. Definimos

$$v + S := \{v + s; s \in S\},\$$

chamado **translação de** S **por** v. Quando v + S é um sub-espaço vetorial de V? Se $v_1, v_2 \in V$, mostre que ou $v_1 + S = v_2 + S$ ou $(v_1 + S) \cap (v_2 + S) = \emptyset$.

6. Sejam $A \in M_n(\mathbb{K}), Y \in M_{n \times 1}(\mathbb{K})$ e $X_0 \in M_{n \times 1}(\mathbb{K})$ tais que $AX_0 = Y$. Mostre que

$${X \in M_{n \times 1}(\mathbb{K}); AX = Y} = X_0 + S,$$

em que $S = \{X \in M_n(\mathbb{K}); AX = 0\}.$

- 7. Sejam $\mathbb{K} = \mathbb{R}$, $V = \mathbb{R}^3$ e $S = \{(x, y, z) \in \mathbb{R}^3; x + 2y z = 0 \text{e} x y + 4z = 0\}$. Mostre que S é um sub-espaço vetorial e encontre uma base para S.
- 8. Sejam $\mathbb{K} = \mathbb{C}$, $V = P_4(\mathbb{C})$ e $S = \{p \in P_4(\mathbb{C}); p(0) = p(1) = 0\}$. Mostre que S é um sub-espaço e encontre uma base para S.
- 9. Seja \mathbb{K} um corpo, $n \in \mathbb{N}$, $V = M_n(\mathbb{K})$, $S_s = \{A \in M_n(\mathbb{K}); A = A^t\}$ e $S_{as} = \{A \in M_n(\mathbb{K}); A^t = -A\}$. Mostre que $V = S_s \oplus S_{as}$. Encontre também as dimensões dos espaços envolvidos. *Dica*: dada $A \in M_n(\mathbb{K})$, defina as matrizes $B = \frac{1}{2}(A + A^t)$ e $C = \frac{1}{2}(A A^t)$.
- 10. Sejam $\mathbb{K} = \mathbb{R}, V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ e os seguintes sub-conjuntos

$$S_{p} = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f(-x) = f(x) \ \forall x \in \mathbb{R} \}$$

e

$$S_i = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}); f(-x) = -f(x) \ \forall x \in \mathbb{R} \}.$$

Mostre que S_p e S_i são sub-espaços vetoriais e que $\mathfrak{F}(\mathbb{R},\mathbb{R})=S_p\oplus S_i$.

- 11. Seja $V = \mathcal{F}(\mathbb{R}, \mathbb{C})$ e considere o conjunto $S = \{f_0, f_1, f_{-1}\} \subset V$ dado pelas funções $f_0(t) = 1$, $f_1(t) = e^{it}$ e $f_{-1}(t) = e^{-it}$, $t \in \mathbb{R}$. Mostre que S é linearmente independente. Generalize para o conjunto $S = \{f_n; n \in \mathbb{Z}\}$, $f_n(t) = e^{int}$, $t \in \mathbb{R}$.
- 12. Sejam $V = \mathbb{R}^4$, $S_1 = \{(x, y, z, w) \in \mathbb{R}^4; x + 2y z + w = 0\}$ e $S_2 = \{(x, y, z, w) \in \mathbb{R}^4; x + 2y + z = 0 \in -y + 2z + w = 0\}$. Encontre $S_1 \cap S_2$ e $S_1 + S_2$ e calcule suas dimensões.
- 13. Sejam V um \mathbb{K} -espaço vetorial e $(S_{\lambda})_{{\lambda}\in\Lambda}$ uma família de sub-espaços vetoriais de V. Mostre que $S:=\bigcap_{{\lambda}\in\Lambda}S_{\lambda}$ ainda é um sub-espaço vetorial de V.
- 14. Sejam V um \mathbb{K} -espaço vetorial e $S \subset V$ um subconjunto qualquer não vazio. Mostre que **span** S é o menor sub-espaço vetorial (no sentido de continência) de V que contém S. Isto é,

$$\mathbf{span}\ S = \bigcap_{\lambda \in \Lambda} S_{\lambda},$$

em que $(S_{\lambda})_{{\lambda}\in\Lambda}$ é a família de todos os sub-espaços vetoriais de V que contém o conjunto S.

- 15. Seja V um \mathbb{K} -espaço vetorial e $S = \{v_1, ..., v_n\} \subset V$. Prove que S é linearmente independente se, e somente se, para todo $j \in \{1, ..., n\}$, v_j não é combinação linear dos demais vetores de S. Generalize para famílias de vetores indexadas em um conjunto qualquer Λ .
- 16. Seja V um \mathbb{K} -espaço vetorial e $S \subset V$.
 - a) Mostre que se $0 \in S$, então S é linearmente dependente.
 - b) Mostre que se $\tilde{S} \subset S$ e S é linearmente independente, então \tilde{S} é linearmente independente.
 - c) Mostre que se $S\subset \tilde{S}$ e S é linearmente dependente, então \tilde{S} é linearmente dependente.
- 17. Seja V um \mathbb{K} -espaço vetorial e $S \subset V$. Mostre que existe um subconjunto $\tilde{S} \subset S$ linearmente independente tal que span $\tilde{S} = \operatorname{span} \tilde{S}$.
- 18. Seja V um \mathbb{K} -espaço vetorial $\{v_1, ..., v_n\} \subset V$ um conjunto linearmente independente. Mostre que $\{v_1, v_1 + v_2, ..., v_1 + v_2 + ... + v_n\}$ também é linearmente independente.
- 19. Sejam V um \mathbb{K} -espaço vetorial e $S_1, S_2 \subset V$ sub-espaços vetoriais. Se $S_1 = \operatorname{span} \{v_{\lambda}\}_{{\lambda} \in \Lambda}$ e $S_2 = \operatorname{span} \{\tilde{v}_{\mu}\}_{{\mu} \in M}$, mostre que

$$S_1 + S_2 = \mathbf{span} \left(\{ v_{\lambda}; \}_{\lambda \in \Lambda} \cup \{ \tilde{v}_{\mu} \}_{\mu \in M} \right).$$

Mais ainda, se $S_1 \cap S_2 = \{0\}$ e $\{v_\lambda\}_{\lambda \in \Lambda}$, $\{\tilde{v}_\mu\}_{\mu \in M}$ são linearmente independentes, então $(\{v_\lambda;\}_{\lambda \in \Lambda} \cup \{\tilde{v}_\mu\}_{\mu \in M})$ também é linearmente independente, e portanto uma base de $S_1 + S_2$.

20. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita, S_1 e S_2 dois sub-espaços vetoriais de V. Mostre que

$$\dim(S_1 + S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2).$$

- 21. Sejam $V = P_3(\mathbb{K})$, $\mathcal{B} = \{1, x+1, x^2+2\}$ e $\mathcal{C} = \{x-1, x+1, x^2+1\}$. Mostre que S_1 e S_2 são bases de $P_3(\mathbb{K})$ e encontre $M_{\mathcal{B}}^{\mathfrak{C}}$. Encontre as coordenadas dos vetores $\{1, x, x^2\}$ nas bases \mathcal{B} e \mathcal{C} respectivamente.
- 22. Mostre que dim $\mathcal{F}(\mathbb{R}, \mathbb{R}) = \infty$.
- 23. Sejam $V = \mathbb{R}$ e $\mathbb{K} = \mathbb{Q}$. Mostre que $\dim_{\mathbb{Q}} \mathbb{R} = \infty$.

item Seja V um \mathbb{K} -espaço vetorial de dimensão finita e $S \subset V$ um sub-espaço vetorial. Mostre que se dim $S = \dim V$, então S = V. (Isso ensina uma técnica para mostrar quando dois sub-espaços vetoriais coincidem quando é fácil mostrar apenas uma inclusão entre eles)

- 24. Para um \mathbb{C} -espaço vetorial V, denotaremos por $V_{\mathbb{R}}$ o conjunto V visto como \mathbb{R} -espaço vetorial. Mostre que se $\{v_1, v_2, ..., v_n\}$ for um subconjunto linearmente independente em V, então $\{v_1, v_2, ..., v_n, iv_1, ..., iv_n\}$ é linearmente independente em $V_{\mathbb{R}}$. Conclua que se $\dim_{\mathbb{C}} V = n$, então $\dim_{\mathbb{R}} V_{\mathbb{R}} = 2n$.
- 25. Seja V um \mathbb{R} -espaço vetorial. Definimos $V_{\mathbb{C}} := V \times V$ com as seguintes operações:

$$(u_1, u_2) + (v_1, v_2) := (u_1 + v_1, u_2 + v_2),$$

е

$$(a+ib)\cdot(u_1,u_2):=(au_1-bu_2,bu_1+au_2).$$

- a) Mostre que $V_{\mathbb{C}}$ é um \mathbb{C} -espaço vetorial.
- b) Se $\{v_1, ..., v_n\} \subset V$ é linearmente independente, mostre que os conjuntos $\{(v_1, 0), ..., (v_n, 0)\}$ e $\{(0, v_1), ..., (0, v_n)\}$ são linearmente independentes em $V_{\mathbb{C}}$. Conclua que se dim $V_{\mathbb{R}} = n$, então dim $_{\mathbb{C}} V_{\mathbb{C}} = n$. O espaço vetorial $V_{\mathbb{C}}$ é chamado de **complexificação** de V. Os elementos em $V_{\mathbb{C}}$ podem ser escritos, informalmente, na forma (u, v) " = "u + iv com $u, v \in V$ e $i^2 = -1$ (o que justifica a maneira como foi definido o produto por escalares complexos). Note que $(V_{\mathbb{C}})_{\mathbb{R}} \neq V$ (compare com o exercício anterior).

26. Seja $(V_{\lambda})_{\lambda \in \Lambda}$ uma família de K-espaços vetoriais. Definimos o **produto direto** da família, denotado por $\Pi_{\lambda \in \Lambda} V_{\lambda}$, como o produto cartesiano da família $(V_{\lambda})_{\lambda \in \Lambda}$, isto é, o conjunto de todas as famílias $(v_{\lambda})_{\lambda \in \Lambda}$ com $v_{\lambda} \in V_{\lambda}$ para todo $\lambda \in \Lambda$. O produto direto possui estrutura de K-espaço vetorial fazendo as operações componente a componente, isto é, se $(v_{\lambda})_{\lambda \in \Lambda}$, $(\tilde{v}_{\lambda})_{\lambda \in \Lambda}$ e $k \in \mathbb{K}$, definimos

$$(v_{\lambda})_{\lambda \in \Lambda} + (\tilde{v}_{\lambda})_{\lambda \in \Lambda} := (v_{\lambda} + \tilde{v}_{\lambda})_{\lambda \in \Lambda},$$

 \mathbf{e}

$$k \cdot (v_{\lambda})_{\lambda \in \Lambda} := (k \cdot v_{\lambda})_{\lambda \in \Lambda},$$

Verifica-se facilmente que $\Pi_{\lambda \in \Lambda} V_{\lambda}$ satisfaz os axiomas de espaço vetorial. Definimos também $\bigoplus_{\lambda \in \Lambda} V_{\lambda} \subset \Pi_{\lambda \in \Lambda} V_{\lambda}$, chamada **soma direta** da família $(V_{\lambda})_{\lambda \in \Lambda}$, como o conjunto das famílias $(v_{\lambda})_{\lambda \in \Lambda}$ tais que $v_{\lambda} \neq 0$ para no máximo um número finito de índices $\lambda \in \Lambda$. Mostre que $\bigoplus_{\lambda \in \Lambda} V_{\lambda}$ é um sub-espaço vetorial do produto direto. Se $\Lambda = \mathbb{N}$ e $V_n = V$ para todo $n \in \mathbb{N}$, dizemos que $V^{\infty} := \Pi_{n \in \mathbb{N}} V$ é o espaço das sequências em V e que $\bigoplus_{n \in \mathbb{N}} V$ é o espaço das sequências quase-nulas em V. No caso $V = \mathbb{K}$, encontre uma base para $\bigoplus_{n \in \mathbb{N}} \mathbb{K}$. Você é capaz de explicitar uma base para \mathbb{K}^{∞} ?

- 27. Seja $W = \{(z, z) \in \mathbb{C}^2; z \in \mathbb{C}\}$. Mostre que W é um sub-espaço vetorial de \mathbb{C}^2 e encontre sub-espaços W' e W'' de \mathbb{C}^2 tais que $\mathbb{C}^2 = W \oplus W' = W \oplus W''$ mas $W' \cap W'' = \{0\}$.
- 28. Uma bandeira (em inglês "flag") em um \mathbb{K} -espaço vetorial V é uma sequência crescente de sub-espaços encaixantes $L_0 \subset L_1 \subset ... \subset L_n \subset ...$. Uma bandeira é dita maximal em V se $L_0 = \{0\}$, $\cup L_i = V$ e nenhum sub-espaço M pode ser inserido entre L_i e L_{i+1} , ou seja, se $L_i \subset M \subset L_{i+1}$, então $M = L_i$ ou $M = L_{i+1}$.
 - a) Seja $0 = V_0 \subsetneq V_1 \subsetneq ...V_n = W_1$ uma bandeira maximal para W_1 e $0 = L_0 \subsetneq L_1 \subsetneq ... \subsetneq L_m = W_2$ uma bandeira maximal para W_2 . Mostre que

$$0 \subsetneq V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_n \subsetneq V_n \oplus L_1 \subsetneq V_n \oplus L_2 \subsetneq \ldots \subsetneq V_n \oplus L_m = W_1 \oplus W_2 = V_1 \oplus V_2 \oplus V_2 \oplus V_3 \oplus V_4 \oplus V_4 \oplus V_5 \oplus V_6 \oplus V_6$$

é bandeira maximal para V. Conclua que a dimensão da soma direta (finita) de espaços vetoriais de dimensão finita tem dimensão finita igual a soma das dimensões.

- b) Seja $0 \subsetneq F_0 \subsetneq F_1 \subsetneq ... \subsetneq F_n \subsetneq ... \subsetneq V$ uma bandeira (não necessariamente finita) maximal para V. Prove (sem usar o lema de Zorn diretamente) que V possui base.
- 29. Um **espaço afim** é um conjunto A junto com um espaço vetorial \vec{A} e uma aplicação $\varphi: A \times \vec{A} \to A$ que tem as seguintes propriedades:
 - Para todo $a \in A$, $\varphi(a,0) = a$;
 - Para todos $v, w \in \vec{A}$ e $a \in A$, vale $\varphi(\varphi(a, v), w) = \varphi(a, v + w)$;
 - Para cada $a \in A$, a aplicação $\varphi_a : \vec{A} \to A$ dada por $\varphi_a(v) = \varphi(a, v)$ é uma bijeção.

Por um abuso de notação escrevemos $a+v:=\varphi(a,v)$ (reescreva os axiomas acima usando essa notação). Em outras palavras, um espaço afim é um conjunto A junto com uma ação livre e transitiva do grupo aditivo inerente a um espaço vetorial \vec{A} . O espaço A é chamado o espaço de **pontos** e \vec{A} é chamado o espaço de **vetores**. Para cada $a \in A$ e $v \in \vec{A}$, pensamos $\varphi(a,v)$ como a adição do ponto a com o vetor v, ou translação de v pelo ponto a, e o resultado é um novo ponto, denotado por a+v, como indicado acima. Verifique com esses axiomas fica bem definida uma operação de diferença de pontos resultando em um vetor: dados $a,b \in A$, verifique que existe um único $v \in \vec{A}$ tal que a+v=b. Denotamos v:=b-a.

- a) Prove que para todos $a \in A$ e $v \in \vec{A}$ existe um único ponto $b \in A$ tal que b a = v;
- b) Prove que para todos $a, b, c \in A$, vale (c b) + (b a) = c a.