Final Report on the Black Arcs Problem

July 6, 2018

Problem Summary

Natural graphs of city layouts don't "look nice"

Problem Summary

What does it mean to "look nice"?

- Heuristic idea: sharp angles
- Ideal to have small set of allowable angles
- We take these to be multiples of $\pi/8$
- Want to encourage multiples of $\pi/2$ even more

Problem: how to translate graph nodes/edges to make angles more like multiples of $\pi/8$?

The Data

Get map data in list format:

- List of n_v vertices as (x_i, y_i) coordinates
- List of n_e edges as vertex pairs

Look to translate nodes $(x_i, y_i) \rightarrow (\tilde{x}_i, \tilde{y}_i)$ so to "improve" angles formed by edges

The Data

Get map data in list format:

- List of n_v vertices as (x_i, y_i) coordinates
- List of n_e edges as vertex pairs

Look to translate nodes $(x_i, y_i) \rightarrow (\tilde{x}_i, \tilde{y}_i)$ so to "improve" angles formed by edges

Four principles:

- 1. Don't let nodes move a lot
- 2. Don't let angles change a lot
- **3.** Make angles equal to $k\pi/8$ for some $k \in \mathbb{Z}$
- **4.** "Encourage" angles of $\pi/2$

Continuous Optimization Approach

Central idea: relax constraint

Compose fitness function from three terms

- 1. Penalize node movement: $\sum_{i=1}^{n_v} ((\tilde{x}_i x_i)^2 + (\tilde{y}_i y_i)^2)$
- **2.** Penalize angle change: $\sum_{i=1}^{n_e} \left(\tilde{\theta}_j \theta_j \right)^2$
 - ► Given edge $e_j = \{(x_k, y_k), (x_\ell, y_\ell)\}$, define $\theta_i = \arctan 2(x_\ell x_k, y_\ell y_k)$
- **3.** Penalize difference from $k\pi/8$ and $\pi/2$ (again):

$$\sum_{i=1}^{n_e} \sin^2\left(8 ilde{ heta}_j
ight) + \sin^2\left(2 ilde{ heta}_j
ight)$$

Fitness Function

Take weighted sum of these:

$$f(\tilde{x}, \tilde{y}) = \alpha \sum_{i=1}^{n_v} \left((\tilde{x}_i - x_i)^2 + (\tilde{y}_i - y_i)^2 \right)$$

$$+ \beta \sum_{j=1}^{n_e} \left(\tilde{\theta}_j - \theta_j \right)^2 + \gamma \sum_{j=1}^{n_e} \left(\sin^2(8\tilde{\theta}_j) + \sin^2(2\tilde{\theta}_j) \right)$$

Problem: How to choose α , β , γ ?

Eveball it

Black-Box Optimization Results

Many black-box optimization tools available

- Derivative-free optimization
 - Powell seemed to provide better results than Nelder-Mead
- Basin-hopping
 - Very expensive
 - Did not improve results enough visually to be used often
- Differential Evolution
 - ► Slower than Powell
- CMA-FS
 - ▶ DEAP (an evolutionary comptation framework for Python)
 - CMA-ES initial results were vastly different

First results

Second results

Rotation

Idea: rotate first, then optimize relative to rotated map

- Eyeball 23° rotation, from histogram of initial angles
 - ▶ Did we automate this reliably? NO
- Optimize after rotation

CMA-ES - What Happened?

- Fitness of original map was 7.955456
- $\alpha = 1e 07$, $\beta = 1.0e 3$, $\gamma = 1.0e 1$
- Fitness value of Powell was 1.991282
- Fitness value of CMA-ES was 0.524248
 - $ightharpoonup \gamma$ term dominates (why we see so many 90 degree angles)

Gravity

Final Report on the Black Arcs Problem- p.12

Gravity

Final Report on the Black Arcs Problem- p.13