Early Detection Of Chronic Kidney Disease Using Machine Learning

TEAM ID	PNT2022TMID42128
PROJECT NAME	EARLY DETECTION OF
	CHRONIC KIDNEY DISEASE
	USING MACHINE LEARNING
COLLEGE NAME	AVS COLLEGE OF TECHNOLOGY

LITERATURE SURVEY

SN O	TITLE	AUTHOR	DESCRIPTION	YEAR OF PUBLICA TION
1	Optimal Feature Selection for Chronic Kidney Disease Classification using Deep Learning Classifier	K.Shankar, P. Manickam, G. Devika,M. Ilayaraja	ALGORITHM USED: Deep Neural Network (DNN). ACCURACY: Greatest accuracy around 98% of DNN.	2018
2	Performance Evaluation of an Ensemble Method for Diagnosis of Chronic Kidney Disease with Feature Selection Technique	Olayinka Ayodele Jongbo, Toluwase Ayobami OlowooAde bayo Olusola Adetunmbi kere.	ALGORITHM USED: Radom forest algorithm ,Naïve Bayes, kNearest Neighbor, and Decision Tree. ACCURACY: We gain the highest accuracy from the Random Forest(RF) and it is 98.3%.	2020
3	XGBoost Model for Chronic Kidney Disease Diagnosis	Adeola Ogunleye and Qing- Guo Wang	ALGORITHM USED: Extreme Gradient Boosting (XGBoost). ACCURACY: Acucuracy gained 89%	2018

4	Performance Analysis of Chronic Kidney Disease through Machine Learning Approaches	Minhaz Uddin Emon, Al Mahmud Imran, Rakibul Islam.	Logistic Regression(LG), Naive Bayes(NB), Multilayer Perceptron(MLP), Stochastic Gradient Descent(SGD), Adaptive Boosting(Adaboost), Bagging, Decision Tree(DT), Random Forest(RF) classifier are used.	2021
5	Preemptive	Reem A.	ACCURACY: We gain the highest accuracy from the Random Forest(RF) and it is 99 ALGORITHM USED:	2018
,	Diagnosis of Chronic Kidney Disease Using Machine Learning Techniques	Alassaf , Khawla A. Alsulaim , Noura Y. Alroomi , Nouf S. Alsharif, Mishael F. Aljubeir, Sunday O. Olatunji, Alaa Y. Alahmadi, Mohammed Imran, Rahma A. Alzahrani, Nora S. Alturayeif.	ANN, SVM, Naïve Bayes ANN, SVM, Naïve Bayes achieved a testing accuracy of 98.0% while k-NN has achieved an accuracy of 93.9%.	
6	Featue selection effects on kidney disease analysis.	Zeinab Sedighi, Hossein Ebrahimpou r-Komleh, Seyed Jalaleddin Mousavirad	ALGORITHM USED: AdaBoost, Adaptive Boosting, Naïve Bayes classifier. ACCURACY: 92% of accuracy gain.	2015

7	Analysis of	Yedilkhan	ALGORITHM USED:	2019
	Chronic Kidney	Amirgaliye		
	Disease Dataset	,	support vector machines	
	by Applying	Shamiluulu,		
	Machine Learning	Azamat	ACCURACY:	
	Methods.	Serek.	Ever a simulated an avelta abayya d	
			Experimental results showed over 93% of success	
	D 11 41	A		2016
8	Predictive	Anusorn	ALGORITHM USED:	2016
	Analytics for	Charleonna	V naarast naishbara	
	Chronic Kidney Disease Using	n, Thipwan	K-nearest neighbors (KNN), support vector machine	
	Disease Using Machine Learning	Fufaung, Tippawan	(SVM), logistic regression (LR),	
	Techniques.	Niyomwong	and decision tree classifiers.	
	reciniques.	Niyomwong	and decision tree classifiers.	
		•	ACCURACY:	
			96% of accuracy.	
9	Chronic Kidney	V.Shanmug	ALGORITHM USED:	2021
	Disease for	a	5 1 6 6775 1	
	Collaborative	rajeshwari ,	Random forest, SVM and	
	Healthcare Data	M.	ANN algorithms.	
	Analytics using	Ilayaraja.	A COUR A CV	
	Random Forest Classification		ACCURACY:	
	Algorithms.		87% of accuracy.	
10	Diagnosis of	Nusrat	ALGORITHM USED:	2016
10	Chronic Kidney	Tazin,	ALGORITHM USED.	2010
	Disease using	Shahed	Support Vector Machine,	
	effective	Anzarus	Decision tree, Naïve Bayes and	
	classification and	Sabab,	K-Nearest Neighbor.	
	feature selection	,	6	
	technique	Muhammed	ACCURACY:	
	1	Tawfiq		
		Chowdhury.	93% of accuracy.	