Extension Fields

Def: An extension field E of a field F

is a field E which contains F.

 $\begin{array}{c}
C \\
1 \\
1R \\
1
\end{array}$ $\begin{array}{c}
C(x) \\
C(y) \\
Q
\end{array}$

We all know the Fundamental Theorem of Algebra
that a nonconstant fix e IREX? has at
least one (and hence n=degree(f) many)
root in C.

Quest: What about other fields?

Ex: F=7/2, f(x) = x2+x+1

f(0) = 1 and f(1) = 1 so no rods

Maybe it has roots over some larger field (extension field)

Theorem: Let F be a field and f(x)EF[x] be a polynomial which is not constant. Then there exists an extension field FEE and xEE with f(x) = 0.

Ex: x2+x+1 & 762[x] has a took on F4,

Ex: x2+x+1 e Q[x] has a root on C.

Basic idea: Choose p(x) irreducible in F[x]with $p(x) \mid f(x)$. Then $\langle p(x) \rangle = I$ is a maximal ideal so (n = deg p)

E = F[x]/I $= \{a_0 + a_1x + ... + a_{n-1}x^{n-1} + I \mid a_0, ..., a_{n-1} \in F\}$ $= Span_{F} \{1, x, x^2, ..., x^{n-1}\} \quad \text{is a field!}$ Obviously $x + I \in F$ satisfies f(x + I) = 0 + I.

Algebraic and transcendental Elements

Def: An element $a \in E^2F$ is algebraic over F if J nonzero polynomial $f(x) \in F[x]$ with f(a) = 0. An element which is not algebraic is called transcendental.

Special case: QE a which is algebraic / De is called an algebraic number Ex: VZ, VZ+V3, i are algebraic #5 Ex: T, e are not algoriac numbers Open produn: are THE, TC-E, or The algebraic? $I = \{f(x) \in F[x] \mid f(x) = 0\}$ & maximal by Euclidean algorithm, $I = \langle p(x) \rangle$ ideal! Def: If α 73 algebraic, we define the minimal polynomial of α to be the unique polynomial $\rho(x) \in F[x]$ Satisfying $\rho(x) = 0$ · if q(x) ∈ F(x) satisfies q(x)=0, hum p(x) | q(x) Notation: in-(x,F) E_X : $irr(2, \mathbb{Q}) = x-2$ $irr(i,Q) = x^2 + 1$

in $(\sqrt{2}+\sqrt{3}, Q) = (x^2-5)^2-24$

Thorem: If XEE 3 algebraic, Hun
•
F[x] = mg(x) = { f(x) f(x) E F[x]}
•
is a field.
Proof: I=ker $(\phi_x) = \langle irr(x, F) \rangle$ so the evaluation
• • • • • • • • • • • • • • • • • • • •
Morphism discends to the quotient to an
Ramordian
F[x] -> F[x]
7 1
FCX/I =.
Thus F[x] ? F[x] and since I is maximal, F[x] is a field.
maximal Flat is a field.
Def: The soubertension field Flx) by XEE 13
the smallest subfield of E containing F and a

Theoren:

