SPECTRAL INEQUALITIES OF THE GENERALIZED GRUSHIN OPERATOR

YUNLEI WANG

Contents

1.	Introduction	1
2.	Uniform lower bound of lowest eigenvalue	2
3.	Generalized Grushin operator	3
4.	Spectral inequality for the Schrödinger operator	4
5.	Observability inequality for the Generalized Grushin operator	5
References		6

1. Introduction

We define the generalized Grushin operator as

(1.1)
$$H_G := -\Delta_x - V(x)\Delta_y, \quad x \in \mathbb{R}^n, y \in \mathbb{R}^n,$$

where the potential V satisfy the following assumption:

assump

Assumption 1. Assume $V \in L^{\infty}_{loc}(\mathbb{R}^n)$ satisfies the following two conditions:

- (i) There exist positive constants c_1 and β_1 such that for all $x \in \mathbb{R}^n$,
- $(1.2) c_1|x|^{\beta_1} \le V(x).$
 - (ii) We can write $V=V_1+V_2$ such that there exists positive constants c_2 and β_2 such that

$$(1.3) |V_1(x)| + |DV_1(x)| + |V_2(x)|^{\frac{4}{3}} \le c_2(|x|+1)^{\beta_2}.$$

Consider the Schrödinger operator

$$(1.4) H := -\Delta + V(x).$$

Let $\phi_k, k \in \mathbb{N}$ be the eigenfunctions of H, i.e.,

$$(1.5) H\phi_k = \lambda_k \phi_k.$$

E-mail address: yunlei.wang@math.u-bordeaux.fr. Date: April 2, 2023.

Y. WANG

Denote by $\Lambda_L = \left(-\frac{L}{2}, \frac{L}{2}\right)^n$ the cube with side length L > 0. Let $d > 0, \gamma \in (0, 1)$ and $\sigma \in [0, 1)$. We consider the measurable sensor sets $\omega \subset \mathbb{R}^n$ satisfying the following property: there exists an equidistributed sequence $\{z_k : k \in \mathbb{Z}^n\}$ such that

$$\{eqn:1.6\} \quad (1.6) \qquad \qquad \omega \cap (dk + \Lambda_d) \supset \mathcal{B}_{\gamma^{1+|kd|^{\sigma}}d}(z_k)$$

for all $k \in \mathbb{Z}^n$. We call it (d, γ, σ) -distributed.

Theorem 1.1 ([3, Theorem 1]). Let $H = -\Delta + V(x)$. Assume that V satisfies Assumption 1 and Ω satisfies (1.6) with $d = 1, \sigma \in [0, \infty)$ and $\gamma \in (0, \frac{1}{2})$. Then there exists a constant C depending only on $\beta_1, \beta_2, c_1, c_2, \sigma$ and n such that

(1.7)
$$\|\phi\|_{L^2(\mathbb{R}^n)} \le \left(\frac{1}{\gamma}\right)^{C\lambda^{\frac{\sigma}{\beta_1} + \frac{\beta_2}{2\beta_1}}} \|\phi\|_{L^2(\Omega)}, \quad \forall \phi \in Ran(P_{\lambda}(H)).$$

2. Uniform lower bound of lowest eigenvalue

We denote $\lambda_0(V)$ the lowest eigenvalue of the operator H. For all a > 0, we define

(2.1)
$$I_V(a) = \int_{\mathbb{R}^n} e^{-aV(x)} dx.$$

Theorem 2.1 ([1]). Under the condition for every a > 0 such that $I_V(a) < +\infty$. Then we have

(2.2)
$$\lambda_0(V) \ge \sup_{t>0} t \left[n + \frac{n}{2} \ln \frac{\pi}{t} - \ln I_V\left(\frac{1}{t}\right) \right].$$

In the particular case of $V(x) = c|x|^{\beta}$, a change into polar coordinates and then a chenge of variable $s = ar^{\beta_1}$ shows that

$$I_{c|x|^{\beta}}(a) = \int_{\mathbb{R}^n} e^{-ac|x|^{\beta}} dx = \frac{\sigma_n}{\beta (ac)^{n/\beta}} \Gamma\left(\frac{n}{\beta}\right)$$

where $\sigma_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$ is the surface measure of the unit ball in \mathbb{R}^n . It follows that

$$\lambda_0\left(c|x|^{\beta}\right) \ge \sup_{t>0} t \left[n - \ln \frac{2}{\beta} \frac{\Gamma\left(\frac{n}{\beta}\right)}{\Gamma\left(\frac{n}{2}\right)} - n\left(\frac{1}{\beta} + \frac{1}{2}\right) \ln t + \frac{n}{\beta} \ln c \right].$$

The maximum is attained when

$$n - \ln \frac{2}{\beta} \frac{\Gamma\left(\frac{n}{\beta}\right)}{\Gamma\left(\frac{n}{2}\right)} - n\left(\frac{1}{\beta} + \frac{1}{2}\right) \ln t + \frac{n}{\beta} \ln c = n\left(\frac{1}{\beta} + \frac{1}{2}\right)$$

so that

$$\lambda_0(c|x|^{\beta}) \ge n \frac{\beta+2}{2\beta} \exp\left(\frac{\beta-2}{\beta+2}\right) \left(\frac{\beta}{2} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{\beta}\right)}\right)^{\frac{2\beta}{n(\beta+2)}} c^{\frac{\beta+2}{\beta}} := \widetilde{\lambda}_0 > 0.$$

Geiven $V(x) \geq c|x|^{\beta}$, it is obvious that $I_V(a) \leq I_{c_1|x|^{\beta}}(a)$. Hence we obtain

$$\lambda_0(V) \ge \lambda_0(c|x|^{\beta}) = \widetilde{\lambda}_0 > 0.$$

This implies that given any $V(x) \ge c|x|^{\beta}$, their first eigenvalues have a uniform lower bound $\widetilde{\lambda}_0 > 0$.

3. Generalized Grushin operator

In this section, due to some technical reasons we need more restrictive assumptions:

assump2

Assumption 2. Assume $V \in W_{\text{loc}}^{1,\infty}(\mathbb{R}^n)$ satisfies the following two conditions

(i) There exist positive constants c_3, c_4 and $\beta > 1$ such that for all $x \in \mathbb{R}^n$

(3.1)
$$c_3|x|^{\beta} \le V(x) \le c_4|x|^{\beta}$$
.

(ii) There exist a positive constant c_5 such that for all $x \in \mathbb{R}^n$

$$(3.2) |DV(x)| \le c_5 |x|^{\beta - 1}.$$

It can be verified that Assumption 2 satisfies Assumption 1 by setting $\beta_1 = \beta_2 = \beta$, $c_1 = c_3$, $c_2 = c_4 + c_5$ and $V_2 = 0$.

Applying the partial Fourier transform with respect to the $y \in \mathbb{R}^n$ variable, the Grushin operator H_G is transformed to

(3.3)
$$H_n := -\Delta_x + |\eta|^2 V(x),$$

where $\eta \in \mathbb{R}^d$ denotes the dual variable of $y \in \mathbb{R}^n$. Then we have

$$(3.4) \qquad \left(e^{-tH_G}g\right)(x,y) = \int_{\mathbb{R}^n} e^{iy\cdot\eta} \left(e^{-tH_\eta}g_\eta\right)(x) \,\mathrm{d}\eta, \quad g \in L^2(\mathbb{R}^{2n}), (x,y) \in \mathbb{R}^{2n},$$

where

$$g_{\eta} := \int_{\mathbb{R}^d} e^{-iy\cdot\eta} g\left(\cdot,y\right) \,\mathrm{d}y.$$

Indeed, we can consider more general operator

(3.5)
$$H_{\beta} := -\Delta_x + V(x) \left(-\Delta_y\right)^{\frac{\beta}{\beta}+1}$$

and its partial Fourier transform

(3.6)
$$H_{\beta,\eta} := -\Delta_x + |\eta|^{\frac{2}{\beta}+1} V(x).$$

Y. WANG

Let us introduce for $\eta \in \mathbb{R}^n \setminus \{0\}$ the isometry M_{η} on $L^2(\mathbb{R}^n)$ by

$$M_{\eta}g = |\eta|^{\frac{n}{2\beta}} f\left(|\eta|^{\frac{1}{\beta}}\cdot\right), \quad \forall f \in L^2(\mathbb{R}^n).$$

Then

4

$$M_{\eta}^{*}H_{\beta,\eta}M_{\eta}f(x) = M_{\eta}^{*}H_{\eta}\left(|\eta|^{\frac{n}{2\beta_{1}}}f\left(|\eta|^{\frac{1}{\beta_{1}}}x\right)\right)$$

$$= M_{\eta}^{*}\left(-\Delta_{x} + |\eta|^{\frac{2}{\beta}+1}V(x)\right)\left(|\eta|^{\frac{n}{2\beta_{1}}}f\left(|\eta|^{\frac{1}{\beta_{1}}}x\right)\right)$$

$$= |\eta|^{\frac{n}{2\beta}}M_{\eta}^{*}\left(-|\eta|^{\frac{2}{\beta}}f''\left(|\eta|^{\frac{1}{\beta}}x\right) + |\eta|^{\frac{2}{\beta}+1}V(x)f\left(|\eta|^{\frac{1}{\beta}}x\right)\right)$$

$$= -|\eta|^{\frac{2}{\beta}}\Delta_{x}f(x) + |\eta|^{\frac{2}{\beta}+1}V\left(|\eta|^{-\frac{1}{\beta}}x\right)f(x)$$

$$= |\eta|^{\frac{2}{\beta}}\left(-\Delta_{x} + |\eta|V\left(|\eta|^{-\frac{1}{\beta}}x\right)\right)f(x)$$

$$= |\eta|^{\frac{2}{\beta}}\widetilde{H}_{\beta,\eta}f(x).$$

Here we define the new operator

$$\widetilde{H}_{\beta,\eta} := -\Delta_x + V_{\eta}(x)$$

with

$$V_{\eta}(x) = |\eta| V\left(|\eta|^{-\frac{1}{\beta}}x\right).$$

Note that the new potential $V_{\eta}(x)$ still satisfies $V_{\eta}(x) \geq c|x|^{\beta}$ if V(x) does. This ensures that for any $\eta \in \mathbb{R}^n$, the new potentials have a uniform lower bound of first eigenvalues.

In general, we can assume

$$(3.7) H_{\beta} := -\Delta_x + V(x) \left(-\Delta_y\right)^{\frac{\alpha}{2}}$$

with $\alpha > \frac{2}{\beta}$, then

$$\widetilde{H}_{\beta,\eta} := -\Delta_x + V_\eta(x)$$

with

$$V_{\eta} = |\eta|^{\alpha - \frac{2}{\beta}} V\left(|\eta|^{-\frac{1}{\beta}} x\right)$$

, this generalization would be useful in $y \in \mathbb{T}^n$, since in this case $|\eta| > 1$.

4. Spectral inequality for the Schrödinger operator

In this section, we consider

$$\boxed{\textbf{\{A.1\}}} \quad (4.1) \qquad \qquad -\Delta v + Vv = 0 \quad \text{in } \mathbb{R}^{n+1}.$$

Define the sets

$$W_{1} = \left\{ y \in \mathbb{R}_{+}^{n+1} | |y - b| \le \frac{1}{4} \delta \right\},$$

$$W_{2} = \left\{ y \in \mathbb{R}_{+}^{n+1} | |y - b| \le \frac{1}{2} \delta \right\},$$

$$W_{3} = \left\{ y \in \mathbb{R}_{+}^{n+1} | |y - b| \le \frac{2}{3} \delta \right\},$$

where $0 < \delta < \frac{1}{2}$. Note that $W_1 \subset W_2 \subset \mathbb{B}_{\delta} \subset \mathbb{R}^{n+1}$.

- Ima4.1 Lemma 4.1 ([3, Lemma 1]). Let $\delta \in (0, \frac{1}{2})$. Let v be the solution of (4.1) with v(y) = 0 on the hyperplane $\{y|y_{n+1} = 0\}$. There exist $0 < \alpha < 1$ and C > 0, depending only on n such that
- [4.2] $||v||_{H^{1}(P_{1}(L))} \leq \delta^{-\alpha} \exp\left(C\left(1 + \mathcal{G}\left(V_{1}, V_{2}, 9\sqrt{nL}\right)\right)\right) ||v||_{H^{1}(P_{3}(L))}^{\alpha} ||\frac{\partial v}{\partial y_{n+1}}||_{L^{2}(D_{\delta}(L))}^{1-\alpha},$

(4.3)
$$\mathcal{G}(V_1, V_2, L) = \|V_1\|_{W^{1,\infty}(\Lambda_L)}^{\frac{1}{2}} + \|V_2\|_{L^{\infty}(\Lambda_L)}^{\frac{2}{3}}.$$

Now we want to rescale it to the case of $d\delta$, with d > 0 a scaling constant. To do it, assume \tilde{v} satisfies Lemma 4.1 and define

$$v(x) = \widetilde{v}(dx),$$

then we have

where

$$\widetilde{v}(x) = v\left(\frac{x}{d}\right).$$

Substituting $\widetilde{v} = v\left(\frac{x}{d}\right)$ into (4.2) and we get

5. Observability inequality for the Generalized Grushin operator

Definition 1 (Exact observability). Let $\tau > 0$, and let $\Omega \subset \mathbb{R}^n$ and $\omega \subset \Omega$ be measurable. A strongly continuous semigroup $(T(t))_{t\geq 0}$ on $L^2(\Omega)$ is said to be exactly observable from the set ω in time τ if there exists a positive constant $C_{\omega,\tau} > 0$ such that for all $g \in L^2(\Omega)$, we have

$$||T(\tau)g||_{L^2(\Omega)}^2 \le C_{\omega,\tau} \int_0^{\tau} ||T(t)g||_{L^2(\omega)}^2 dt.$$

Theorem 5.1 ([2, Theorem 2.8]). Let A be a non-negative selfadjoint operator on $L^2(\mathbb{R}^b)$, and $\omega \subset \mathbb{R}^n$ be measurable. Suppose that there are $d_0 > 0$ and $d_1 \geq 0$, and $\zeta \in (0,1)$ such that for all $\lambda \geq 0$ and $f \in Ran(P_{\lambda}(A))$,

$$||f||_{L^2(\mathbb{R}^n)}^2 \le d_0 e^{d_1 \lambda^{\zeta}} ||f||_{L^2(\omega)}^2$$

6 Y. WANG

Then, there exist positive constants $c_1, c_2, c_3 > 0$, only depending on ζ , such that for all T > 0 and $g \in L^2(\mathbb{R}^n)$ we have the observability estimate

$$||e^{-tA}g||_{L^2(\mathbb{R}^n)}^2 \le \frac{C_{\text{obs}}}{T} \int_0^T ||e^{-tA}g||_{L^2(\omega)}^2 dt,$$

where the positive constant $C_{\rm obs} > 0$ is given by

(5.1)
$$C_{\text{obs}} = c_1 d_0 (2d_0 + 1)^{c_2} \exp\left(c_3 \left(\frac{d_1}{T^{\zeta}}\right)^{\frac{1}{1-\zeta}}\right).$$

Proposition 5.2. There exists a constant K > 0, depending only on $\beta_1, \beta_2, c_1, c_2, \sigma$ and n such that for all $(1, \gamma, \sigma)$ -distributed sets $\omega \subset \mathbb{R}^n$, r > 0, T > 0, and $g \in L^2(\mathbb{R}^n)$ we have

(5.2)
$$||e^{-TH_r}g||_{L^2(\mathbb{R}^n)}^2 \le \frac{C_{\text{obs}}}{T} \int_0^T ||e^{-tH_r}g||_{L^2(\omega)}^2 \, \mathrm{d}t,$$

where the positive constant $C_{\text{obs}} > 0$ is given by

$$(5.3) C_{\rm obs} =$$

Proof. Recall \Box

REFERENCES

arnes1976lower

nakic2020sharp

hu2023spectral

- [1] John F Barnes, Herm Jan Brascamp, and Elliott H Lieb. Lower bound for the ground state energy of the schroedinger equation using the sharp form of young's inequality. In *Studies in mathematical physics*. 1976.
- [2] Ivica Nakić, Matthias Täufer, Martin Tautenhahn, and Ivan Veselić. Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM: Control, Optimisation and Calculus of Variations, 26:54, 2020.
- [3] Jiuyi Zhu and Jinping Zhuge. Spectral inequality for schr\" odinger equations with power growth potentials. arXiv preprint arXiv:2301.12338, 2023.