U.H.B.C. Chlef

A.U. 2016/2017

Faculté des Sciences Exactes

Niveau: 2^{ème} Master/ Option: M.A.S.

Département des maths

Module: Processus Stochastiques 3

Examen de Moyenne Duree

Exercice 1

- 1. Montrer que l'intégrale stochastique d'Itô $\int_a^b f(t)dB(t)$ est bien définie, c.à.d. elle ne dépend pas du choix de la suite (f_n) approximant f. (Utiliser l'inégalité $(x-y)^2 \le 2(x^2+y^2)$).
 - 2. Calculer la variance de $\int_0^T [B(t) t] dB(t)$.
 - 3. En 2 lignes, explique comment est définie (construite) l'intégrale d'Itô.
 - 4. Calculer $K(s,t) = Cov[(B_t tB_1), (B_s sB_1)]; s,t \in [0,1]$

Exercice 2

Soit (B) un mouvement Brownien standard. On définit, pour tout $t \in [0,1]$:

$$M_t = \frac{1}{\sqrt{1-t}} \exp[-\frac{B_t^2}{2(1-t)}].$$

- 1. Montrer que $dM_t = \frac{-B_t}{1-t}M_t dB_t$.
- 2. Montrer que $(M_t)_{t \in [0,1]}$ est une martingale (par rapport à la filtration Browniènne).
- 3. Par la croissance comparée, calculer la limite p.s. de M_t quand t tend vers 1^- .
- 4. Calculer $E(M_t)$.

Exercice 3

I. Modèle de Vasicek

$$dR_t = (\alpha - \beta R_t)dt + \sigma dB_t \dots (1)$$

 α , β et σ sont des constantes positives.

- En résolvant l'E.D.S. (1), déterminer la loi de R_t . (en précisant la moyenne et la variance).
- II. $Modèle\ de\ Cox-Ingesoll-Ross\ (C.I.R.)$

$$dR_t = (\alpha - \beta R_t)dt + \sigma \sqrt{R_t}dB_t \dots (2)$$

 α , β et σ sont des constantes positives.

Le but est l'étude de $\mathbf{E}(\mathbf{R}_{t})$ et $\mathbf{Var}(\mathbf{R}_{t})$ à long terme.

Posons $R_t = e^{-\beta t} V_t$, avec V(0) = R(0).

- 1. Calculer dR_t en fonction de dV_t . 2. En déduire que $V_t = R(0) + \frac{\alpha}{\beta}(e^{\beta t} 1) + \sigma \int_0^t e^{\beta s} \sqrt{R_s} dB_s$.
- 3. Calculer $E(R_t)$ et $Var(R_t)$
- 4. En déduire $\lim_{t\to\infty} E(R_t)$ et $\lim_{t\to\infty} Var(R_t)$.

Bonus : a) Calculer l'exponentielle stochastique de X_t avec $dX_t = \mu dt + \sigma dB_t$.

b) Donner l'E.D.S. satisfaite par un mouvement Brownien géométrique (M.B.G.).