Experiments

Graph Kernels and Support Vector Machines for Pattern Recognition

Léo Andéol¹

Supervised by: Prof. Hichem Sahbi

Master DAC - Sorbonne Université

May 2019

Summary

- Motivation and Objectives
- 2 Methodology
- 3 Experiments
- 4 Conclusion
 - References

Motivation and Objectives I

- Data as graphs: proteins, social networks, ..
- Big Data : many, large graphs
- We want to tackle the problem of classifying them

Moreno's sociogram (Source : Wikipedia)

Fragment of a protein transformed into a graph (Vishwanathan et al., 2010)

Motivation and Objectives II: Current methods

Support Vector Machine (Cortes and Vapnik, 1995)

- Operates on vectorial data
- Great accuracy
- Great capacity of generalization
- Allows the use of kernels in its dual form

Kernels

- Maps data to higher dimensions
- Allows functions to replace the dot product
- Improves the accuracy of SVMs

Motivation and Objectives III

- These methods are adapted to vectorial data
- Graphs are not
- Vectorizing adjacency matrices does not solve the problem (automorphism, size)
- New types of kernels were discovered
- They are very **complex** to compute

0	1	0	0	1	0	0	0\
0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0	1	0/
	0 0 0 1	0 0 0 0 0 0 1 1 0 0	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Summary

- Motivation and Objectives
- 2 Methodology
- 3 Experiments
- 4 Conclusion
 - References

Support Vector Machines

- We have a set of pairs $\{(\mathbf{x_i}, y_i)\}$ of size N where $y_i \in \{-1, +1\}$
- We want to maximize the margin, and to minimize the generalization error
- We thus minimize

$$\min_{\mathbf{w}} \qquad \frac{1}{2} \|\mathbf{w}\|^2$$
s.t. $y_i(\mathbf{x_i} \cdot \mathbf{w} + w_0) \ge 1$
 $1 \le i \le N$

Soft-margin SVM (Ma et al., 2017)

Support Vector Machines

- We have a set of pairs $\{(\mathbf{x_i}, y_i)\}$ of size N where $y_i \in \{-1, +1\}$
- We want to maximize the margin, and to minimize the generalization error
- We thus minimize

$$\min_{\mathbf{w}} \qquad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t.
$$y_i(\mathbf{x_i} \cdot \mathbf{w} + w_0) \ge 1 - \xi_i$$

$$1 \le i \le N \qquad \xi_i \ge 0$$

Soft-margin SVM (Ma et al., 2017)

Kernels

Dual version of the SVM

$$\max_{\mathbf{w}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x_{i}}^{\top} \mathbf{x_{j}}$$

Kernel Trick (Source : Wikipedia)

- ullet A map ϕ can be used
- ullet The dot product can be replaced by a p.s.d function $\kappa(\mathbf{x_1},\mathbf{x_2})$

$$\bullet \ \mathsf{RBF} = e^{-\frac{\|\mathbf{x_1} - \mathbf{x_2}\|^2}{2\sigma^2}}$$

• Polynomial =
$$(\mathbf{x_1} \cdot \mathbf{x_2} + c)^d$$

We want to classify non **vectorial data**. There are two types of methods available :

- Kernels on graphs
- Kernels on graph nodes

We want to classify non **vectorial data**. There are two types of methods available :

- Kernels on graphs
- Kernels on graph nodes

Some graph kernel families :

 Graphlets (Shervashidze et al., 2009)

We want to classify non **vectorial data**. There are two types of methods available :

- Kernels on graphs
- Kernels on graph nodes

Some graph kernel families:

- Graphlets (Shervashidze et al., 2009)
- Shortest paths (Borgwardt and Kriegel, 2005)

We want to classify non **vectorial data**. There are two types of methods available :

- Kernels on graphs
- Kernels on graph nodes

Some graph kernel families :

- Graphlets (Shervashidze et al., 2009)
- Shortest paths (Borgwardt and Kriegel, 2005)
- Random walks (Vishwanathan et al., 2010)
- \implies The complexity is too large.

Random Walks I

Random walks on undirected. connected graphs

- Starts at a vertex
- Randomly picks an edge and moves to the next vertex
- Repeats it for a finite (or not) number of steps

A graph G_1

A graph G_2

Experiments

2D Random walk (Source : Wikipedia)

 $G_{\times} = G_1 \otimes G_2$

- Computing a random walk on a product graph is equivalent to computing a common walk on both graph (Imrich and Klavzar, 2000) • The product graph is computed using the Kronecker product \otimes
- Léo Andéol (Sorbonne Uni.)

Random Walks II

- Unlabeled product graph : $W_{\times} = A_1 \otimes A_2$
- \bullet Labeled product graph : $W_{ imes} = \sum\limits_{l=1}^d A_1^{(l)} \otimes A_2^{(l)}$

$$\kappa(G_1, G_2) = \sum_{k=0}^{\infty} \mu(k) q_{\times}^{\top} W_{\times}^k p_{\times}$$

- ullet $p_{ imes}$ and $q_{ imes}$ resp. start and end probabilities : priors \Longrightarrow uniform probabilities
- ullet $\mu(k)$ weighting function of walks length

Acceleration methods

Inverse Kernel

A special case where $\mu(k) = \lambda^k$ leads to the following kernel

$$\kappa(G_1, G_2) = q_{\times}^{\top} (I - \lambda W_{\times})^{-1} p_{\times}$$

- $O(n^6)$ complexity
- Some methods will try to accelerate it

Sylvester Equation

- Currently applicable only to unlabeled graphs
- Restricted to $\mu(k) = \lambda^k \implies$ inverse kernel

Method

The Sylvester equation we solve is the following

$$\sum_{l=1}^{d} A_1^{(l)} X A_2^{(l)}] + C = X$$

by multiplying X to q_{\times} we get

$$q_{\times}^{\top} \text{vec}(X) = q_{\times}^{\top} (I - \lambda W_{\times})^{-1} p_{\times}$$

- The complexity is $O(n^3)$ for unlabeled graph
- It is yet unknown for labeled graphs (Vishwanathan et al., 2010)

Conjugate Gradient

- Applicable to unlabeled and labeled graphs
- Restricted to $\mu(k) = \lambda^k \implies$ inverse kernel
- The matrix should be symmetrized.

- Optimizes $(I \lambda W_{\times})x = p_{\times}$
- The complexity is $O(rdn^3)$ for r iterations and d labels
- ullet Efficient if the matrix has a small effective rank r

Fixed Point Iterations

- Applicable to labeled and unlabeled graphs
- Restricted to $\mu(k) = \lambda^k \implies$ inverse kernel

Method

The algorithm iterates on the following function

$$x_{t+1} = p_{\times} + \lambda W_{\times} x_t$$

Either until $\|x_{t+1} - x_t\| < \epsilon$ or a maximum number of iterations is reached.

- ullet The complexity is $O(kdn^3)$ for k iterations and d labels
- Convergence requires $\lambda \leq \frac{1}{\xi_1}$

Spectral Decomposition I

- Currently applicable only to unlabeled graphs
- No restrictions on $\mu(k)$

- Eigendecomposition of the adjacency matrix
- Inverse becomes trivial to compute on diagonal matrix

$$\kappa(G_1, G_2) = \sum_{k=0}^{\infty} \mu(k) q_{\times}^{\top} (V_{\times} D_{\times} V_{\times}^{-1})^k p_{\times}$$

Spectral Decomposition I

- Currently applicable only to unlabeled graphs
- No restrictions on $\mu(k)$

- Eigendecomposition of the adjacency matrix
- Inverse becomes trivial to compute on diagonal matrix

$$\kappa(G_1, G_2) = \sum_{k=0}^{\infty} \mu(k) q_{\times}^{\top} (V_{\times} D_{\times} V_{\times}^{-1})^k p_{\times}$$
$$= q_{\times}^{\top} V_{\times} \left(\sum_{k=0}^{\infty} \mu(k) D_{\times}^k \right) V_{\times}^{-1} p_{\times}$$

Spectral Decomposition I

- Currently applicable only to unlabeled graphs
- No restrictions on $\mu(k)$

- Eigendecomposition of the adjacency matrix
- Inverse becomes trivial to compute on diagonal matrix

$$\kappa(G_1, G_2) = \sum_{k=0}^{\infty} \mu(k) q_{\times}^{\top} (V_{\times} D_{\times} V_{\times}^{-1})^k p_{\times}$$

$$= q_{\times}^{\top} V_{\times} \left(\sum_{k=0}^{\infty} \mu(k) D_{\times}^k \right) V_{\times}^{-1} p_{\times}$$

$$= (q_1^{\top} V_1 \otimes q_2^{\top} V_2) (\sum_{k=0}^{\infty} \mu(k) (D_1 \otimes D_2)^k) (V_1^{-1} p_1^{\top} \otimes V_2^{-1} p_2^{\top})$$

Spectral Decomposition II

- \bullet The complexity is $O(pn^3)$ with p which depends on the complexity of $\mu(k)$
- It is even lower since the eigendecomposition of each graph is computed only once
- Currently our most efficient method on unlabeled graphs

Nearest Kronecker Product Approximation

- Labeled-graph kernel computation can be turned into an unlabeled one with some loss in accuracy, but gain in computation time
- The idea is to approximate two matrices S and T such that $\|W_\times A \otimes B\|_F$ is minimized
- Computed in $O(dn^2)$ time (Van Loan and Pitsianis, 1993)
- All methods such as Spectral Decomposition can then be applied
- The overall complexity remains unchanged

Summary

- Motivation and Objectives
- 2 Methodology
- 3 Experiments
- 4 Conclusion
 - References

Synthetic Database

A database of toy data was required to verify claims made in the studied article. A generator was written that can make graphs of "star", "tree" and "ring" types, of different sizes with different labels.

Synthetic Database

A database of toy data was required to verify claims made in the studied article. A generator was written that can make graphs of "star", "tree" and "ring" types, of different sizes with different labels.

Real Databases

- Proteins: 1113 proteins, 2 classes
- Enzymes: 600 enzymes, 6 classes

Experiments 0000000

Databases and metrics

Synthetic Database

A database of toy data was required to verify claims made in the studied article. A generator was written that can make graphs of "star", "tree" and "ring" types, of different sizes with different labels.

Real Databases

Proteins: 1113 proteins, 2 classes

• Enzymes: 600 enzymes, 6 classes

Metrics

$$L(X, \mathbf{y}) = \frac{1}{|X|} \sum_{i=1}^{|X|} \begin{cases} 1 & \text{if } f(\mathbf{x}_i) \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

Implementation

• Sylvester Equation $A_1XA_2 + C = X$

Experiments

Implementation

• Sylvester Equation $A_1XA_2 + C = X$

• Conjugate Gradient $(I - \lambda W_{\times})x = p_{\times}$

Implementation

 Sylvester Equation $A_1XA_2 + C = X$

 Fixed point $x_{t+1} = \lambda W_{\times} x_t + p_{\times}$

Experiments 0000000

 Conjugate Gradient $(I - \lambda W_{\times})x = p_{\times}$

Implementation

 Sylvester Equation $A_1XA_2+C=X$

 Conjugate Gradient $(I - \lambda W_{\times})x = p_{\times}$

• Fixed point
$$x_{t+1} = \lambda W_{\times} x_t + p_{\times}$$

 Spectral Decomposition $q_{\times}^{\top}P_{\times}(I-\lambda D_{\times})^{-1}P_{\times}^{-1}p_{\times}$

Performance: Gram matrices

	Raw	Inverse	Sylvester	Conjugate	Fixed	Spectral
	kernel	Kernel	Equation	Gradients	points	Decomp.
Raw.	0	1.1e-4	9.8e-5	8.9e-5	1.0e-4	1.0e-04
Inv.	-	0	2.1e-5	7.9e-5	4.0e-6	6.8e-6
Syl.	-	-	0	8.0e-5	1.7e-5	1.4e-5
Con.	-	-	-	0	7.9e-5	7.9e-5
Fix.	-	-	-	-	0	2.8e-6
Spe.	-	-	-	-	-	0

MSE of matrix entries

6 8 10 12 14 16 18 20 22 24 26 28 30 32

22

Raw Gram matrix

Fixed Point matrix

Difference

Parameter tuning

Accuracy and computation time for the fixed point method depending on λ

Accuracy and computation time for the conjugate gradient method depending on the maximum number of iterations

Performance: Complexity I

Accuracy and Computation time of different methods depending on the number of graphs

Performance: Complexity II

Accuracy and Computation time of different methods depending on the size of graphs

Conclusion

Conclusion

- Random walks : decent accuracy
- Several acceleration methods were introduced
- Performances are greatly improved
- conclusion on real data: todo

Future work

• Generalizing the Spectral Decomposition to labeled graphs

References

- S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, "Graph Kernels," *Journal of Machine Learning Research*, vol. 11, no. Apr, pp. 1201–1242, 2010. [Online]. Available: http://www.jmlr.org/papers/v11/vishwanathan10a.html
- C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995. [Online]. Available: https://doi.org/10.1007/BF00994018
- Y. Ma, W. Chen, X. Ma, J. Xu, X. Huang, R. Maciejewski, and A. Tung, "Easysvm: A visual analysis approach for open-box support vector machines," *Computational Visual Media*, vol. 3, 03 2017.
- N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt, "Efficient graphlet kernels for large graph comparison," in *Artificial Intelligence and Statistics*, Apr. 2009, pp. 488–495. [Online]. Available: http://proceedings.mlr.press/v5/shervashidze09a.html
- K. M. Borgwardt and H.-P. Kriegel, "Shortest-path kernels on graphs," in *Fifth IEEE international conference on data mining (ICDM'05)*. IEEE, 2005, pp. 8–pp.
- W. Imrich and S. Klavzar, *Product graphs: structure and recognition*. Wiley, 2000.
- C. F. Van Loan and N. Pitsianis, "Approximation with kronecker products," in *Linear algebra for large scale and real-time applications*. Springer, 1993, pp. 293–314.
- J. A. Bondy, U. S. R. Murty et al., Graph theory with applications. Citeseer, 1976, vol. 290.

Appendix : Graphs

Definition

A graphBondy et al. (1976) is a type of mathematical structure that represents connections between objects. It is more precisely an ordered pair G=(V,E) of two sets: vertices V (or nodes) and edges E that connect two vertices together.

$$E \subseteq \{(u,v) : (u,v) \in V^2\}$$

Properties

- Undirected
- Labeled or not
- Degree
- Path and Cycle

- Connected
- Tree
- Subgraph
- Line Graph

Appendix : Graphlets

Some graphlets of size 4 and 5 (Shervashidze et al., 2009)

Definition

Let G and G_2 be two graphs, \mathbf{f}_G and \mathbf{f}_{G_2} the frequency vectors of respectively G and G_2 , then the kernel κ is defined as

$$\kappa(G, G_2) = \mathbf{f}_G^{\top} \mathbf{f}_{G_2}$$

Appendix: P.S.D

Definition

A kernel K is positive semi definite if and only if

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \kappa(\mathbf{x_i}, \mathbf{x_j}) c_i c_j \ge 0 \qquad \forall i \in \{1..n\} \quad c_i \in \mathbb{R}$$
 (1)

It is also p.s.d if its gram matrix have non-negative eigenvalues.

Appendix : Conjugate Gradient

 The idea is to make the new gradient orthogonal to the former

• Convergence guaranteed in n steps to solve Ax = b where $A \in \mathbb{R}^{n \times n}$

Conjugate gradient (red) compared to Gradient Descent (green)