디지털논리회로

이론, 실습, 시뮬레이션

(Problem Solutions of Chapter 2)

1. 10진수를 2진수, 8진수, 16진 변환

- ① $892_{(10)}=11011111100_{(2)}=1574_{(8)}=37C_{(16)}$
- (2) 783.8125₍₁₀₎=1100001111.1101₍₂₎=1417.64₍₈₎=30F.D₍₁₆₎
- $3 48.3515625_{(10)} = 110000.0101101_{(2)} = 60.264_{(8)} = 30.5A_{(16)}$
- (4) 0.0078125(₍₁₀₎=0.0000001₍₂₎=0.004₍₈₎=0.02₍₁₆₎
- (5) 52.7578125₍₁₀₎=110100.1100001₍₂₎=64.604₍₈₎=34.C2₍₁₆₎
- (6) $47.9_{(10)} = 101111.111001100..._{(2)} = 57.714..._{(8)} = 2F.E6..._{(16)}$

2. 진수 변환

- ① 398.3₍₁₀₎=112202.02200220···₍₃₎
- ② 89.328125₍₁₀₎=1121.111₍₄₎
- $32.2416_{(10)}=112.1101_{(5)}$
- 4 98.22₍₁₀₎=118.18733701···₍₉₎
- (5) $12.33_{(10)}=10.3B62A\cdots_{(12)}$
- 6 74.234₍₁₀₎=4E.379B3···₍₁₅₎

3. 2의 보수

- ① 00101011, 1의 보수=11010100, 2의 보수=11010101
- ② 11010101, 1의 보수=00101010, 2의 보수=00101011
- ③ 00011110, 1의 보수=11100001, 2의 보수=11100010
- ④ 11011110, 1의 보수=00100001, 2의 보수=00100010
- ⑤ 10000001, 1의 보수=01111110, 2의 보수=01111111
- ⑥ 00101010, 1의 보수=11010101, 2의 보수=11010110

4. 2의 보수를 이용한 연산 방법

- ① 78-34=01001110-00100010 → 01001110+11011110=<u>1</u>00101100 자리올림을 무시하면 00101100=44₍₁₀₎
- ② 98-100=01100010-01100100 → 01100010+10011100=111111110, 음수이므로 111111110에 2의 보수를 취하면, 00000010, ∴-2(10)
- ③ -56-34=-00111000-00100010 → 11001000+11011110=<u>1</u>10100110 자리올림을 무시하면 10100110=-90₍₁₀₎
- ④ 59-11=00111011-00001011 → 00111011+11110101=<u>1</u>00110000 자리올림을 무시하면 00110000=48₍₁₀₎
- ⑤ 98+59=01100010+00111011=10011101=-99₍₁₀₎: 8비트 연산에서 overflow 부호 확장을 고려하면, 0000000010011101=+157₍₁₀₎
- ⑥ -88-105=-01011000-01101001 → 10101000+10010111=1001111111 자리올림을 무시하면 001111111=63₍₁₀₎ : 8비트 연산에서 overflow 부호 확장을 고려하면, 111111111001111111의 2의 보수를 취하면, 0000000011000001=-193₍₁₀₎

5. 정수의 표현범위

n 비트인 경우
$$(-2^{n-1}) \sim (+2^{n-1}-1)$$
이므로 $(-2^{15-1}) \sim (+2^{15-1}-1)$ = $(-16384) \sim (+16383)$

6. 진수 변환

- ① 10101010₍₂₎=-86₍₁₀₎
- (2) 11110001₍₂₎=-15₍₁₀₎
- (3) 01010101(2)=+85(10)
- (4) 00101011₍₂₎=+43₍₁₀₎
- (5) 0.10101₍₂₎=0.65625₍₁₀₎
- ⑥ 3526₍₈₎=1878₍₁₀₎
- 7736(8)=4062(10)
- (8) 34.531₍₈₎=28.673828125₍₁₀₎
- $9 3203_{(4)} = 227_{(10)}$
- 10 6432₍₇₎=2277₍₁₀₎
- ① $A289B_{(12)}=212087_{(10)}$
- (2) A501₍₁₆₎=42241₍₁₀₎
- (3) 839C₍₁₆₎=33692₍₁₀₎
- (4) ABCD(16)=43981(10)

7. 진수 변환

- ① $2136_{(8)}$ = $100010111110_{(2)}$ = $45E_{(16)}$
- ② 1556.034₍₈₎=1101101110.000011100₍₂₎=36E.0E₍₁₆₎
- $3 6743_{(8)} = 1101111100011_{(2)} = DE3_{(16)}$
- (4) 0.02136₍₈₎=0.0000100010111110₍₂₎=0.08BC₍₁₆₎
- (5) 1023₍₈₎=1000010011₍₂₎=213₍₁₆₎
- $(6) 761302_{(8)} = 1111110001011000010_{(2)} = 3E2C2_{(16)}$
- ① 163417₍₈₎=1110011100001111₍₂₎=E70F₍₁₆₎
- (8) 552273₍₈₎=101101010010111011₍₂₎=2D4BB₍₁₆₎
- 9 $5436.15_{(8)}=101100011110.001101_{(2)}=B1E.34_{(16)}$
- (1) (A201.CD₍₁₆₎=101000100000001.11001101₍₂₎=121001.632₍₈₎
- ① $330F.FC_{(16)} = 0011001100001111.111111100_{(2)} = 31417.770_{(8)}$
- 2 F420₍₁₆₎=1111010000100000₍₂₎=172040₍₈₎
- (3) 0.0E34₍₁₆₎=0.0000111000110100₍₂₎=0.03432₍₈₎
- 4 13705.207₍₈₎=10111111000101.010000111₍₂₎=17C5.438₍₁₆₎
- (5) $1023_{(16)} = 0001000000100011_{(2)} = 10043_{(8)}$
- 1 6BCF₍₁₆₎=01101011111001111₍₂₎=65717₍₈₎
- (8) $C350_{(16)} = 1100001101010000_{(2)} = 141520_{(8)}$

8. 8진수 연산

- ① $1372_{(8)} + 4631_{(8)} = 6223_{(8)}$
- (2) 47135₍₈₎ + 5125₍₈₎ = 54262₍₈₎
- $(3) 175214_{(8)} + 152405_{(8)} = 347621_{(8)}$

9. 1의 보수와 2의 보수 변환

① +18, 1의 보수=00010010, 2의 보수=00010010

- ② +115. 1의 보수=01110011. 2의 보수=01110011
- ③ +79, 1의 보수=01001111, 2의 보수=01001111
- ④ -49, 1의 보수=11001110, 2의 보수=11001111
- ⑤ -3, 1의 보수=11111100, 2의 보수=11111101
- ⑥ -100, 1의 보수=10011011, 2의 보수=10011100

10. 진수 변환

10진수	2진수	8진수	16진수	
225.225	11100001.001110	341.1631463	E1.39···	
215.75	11010111.11	327.6	D7.C	
403.984375	110010011.111111	623.77	193.FC	
10949.8125	10101011000101.1101	25305.64	2AC5.D	

11. 10의 보수를 이용한 뺄셈

- ① 5255-2363=5255+(-2363)=5255+7637=12892, 자리올림을 무시하면, 2892
- ② 1756-5632=1756+(-5632)=1756+4368=6124, 6124에 10의 보수를 취하면, -3876
- ③ 200-600=200+(-600)=200+400=600, 600에 10의 보수를 취하면, -400
- ④ 1300-260=1300+(-260)=1300+9740=11040, 자리올림을 무시하면, 1040
- ⑤ 632-563=632+(-563)=632+437=1069, 자리올림을 무시하면, 69
- ⑥ 856-965=856+(-965)=856+35=891, 891에 10의 보수를 취하면, -109

12. 8진수 구구단표

	2단	3단	4단	5단	6단	7단
1	2	3	4	5	6	7
2	4	6	10	12	14	16
3	6	11	14	17	22	25
4	10	14	20	24	30	34
5	12	17	24	31	36	43
6	14	22	30	36	44	52
7	16	25	34	43	52	61

13. 8진수 곱셈연산

- ① $263_{(8)} \times 312_{(8)} = 106476_{(8)}$
- ② 532_{(8) X} 435₍₈₎=300462₍₈₎
- ③ 366_{(8) ×} 426₍₈₎=205444₍₈₎

14. 기수 산출방법

①
$$B1_{(r)} = 144_{(10)} \leftrightarrow 11r + 1 = 144 \leftrightarrow 11r = 143$$
 $\therefore r = \frac{143}{11} = 13$

(2)
$$211_{(r)} = 152_{(8)} \leftrightarrow 2r^2 + r - 105 = 0 \leftrightarrow (2r + 15)(r - 7) = 0 : r = 7$$

③
$$436_{(r)} = 357_{(10)} \leftrightarrow 4r^2 + 3r - 351 = 0 \leftrightarrow (4r + 39)(r - 9) = 0$$
 $\therefore r = 9$

15. 2의 보수의 장점

- 부호와 절대치, 1의 보수에 의한 표현에는 2가지의 0이 존재(+0, -0)하지만 2의 보수에 의한 표현에는 하나의 0이 존재.
- 2진 보수에 의한 연산을 통해서 뺄셈을 용이하게 연산 가능
- 이러한 이유로 IEEE 표준으로 채택.

16. 수의 이해

- (a) 최소값: 000₁₆, 최대값: : FFF₁₆
- (b) 40967H(0~4095)

17. IEEE 754 표준 부동 소수점 표현

```
① 236.6
```

 $236.6 = 11101100.1001100110011001..._{(2)}$ $= 1.11011001001100110011001_{(2)} \times 2^{7}$

여기서 , 부호(1 bit) : 0

지수(8 bit) : 7+127(바이어스) = 10000110 가수(23 bit) : 11011001001100110011001

2 0.035

 $\begin{aligned} 0.035 &= 0.0000100011110101110000101000..._{(2)} \\ &= 1.00011110101110000101000..._{(2)} \times 2^{-5} \end{aligned}$

 \therefore 236.6 \rightarrow 0 10000110 11011001001100110

여기서, 부호(1 bit): 0

지수(8 bit): -5+127(바이어스) = 01111010 가수(23 bit): 00011110101110000101000

 $\therefore 0.035 \rightarrow 0 01111010 00011110101110000101000$

(3) -0.05

 $\begin{aligned} -0.05 = &-0.0000110011001100110011001..._{(2)} \\ &= -1.100110011001100110011001_{(2)} \times 2^{-5} \end{aligned}$

여기서, 부호(1 bit): 1

지수(8 bit): -5+127(바이어스) = 01111010 가수(23 bit): 1001100110011001100

 $\therefore \ -0.05 \to 1 \ 01111010 \ 10011001100110011001100$

(4) -10245.0

 $\begin{aligned} -10245.0 = & -1010000000101_{(2)} \\ & = -1.0100000000101_{(2)} \times 2^{-13} \end{aligned}$

여기서, 부호(1 bit): 1

지수(8 bit): 13+127(바이어스) = 10001100 가수(23 bit): 01000000001010000000000

 \therefore -10245.0 \rightarrow 1 10001100 0100000001010000000000

여기서, 부호: 0(양수)

여기서, 부호: 1(음수)

① 0 00011111 100011111100000101100000

여기서, 부호: 0(양수)

지수: 00011111 → 31 - 127 = -96 가수: 1.100011111100000101100000

 $\therefore 1.10001111100000101100000 \times 2^{-96}$