Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
10 luglio 2019			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΕΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	

Parte I - Pre Test

1. (1 punto) Determinare il più grande numero x_{max} rappresentabile nell'insieme $\mathbb{F}(2,4,-7,6)$; riportare il risultato in base decimale.

$$x_{max} = 60$$

2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & 3 & 8 \\ 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare i valori degli elementi $\vec{l_{32}}=(L)_{32}$ e $u_{33}=(U)_{33}$ rispettivamente delle matrici triangolari inferiore L e superiore U.

$$l_{32} = 5$$
 $u_{33} = 9$

3. (1 punto) Si consideri un metodo diretto per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ con $A \in \mathbb{R}^{n \times n}$ invertibile e $n \geq 1$. Sapendo che il numero di condizionamento di A è $K_2(A)=10^8, \|\mathbf{b}\|=10^2$ e il residuo $\mathbf{r}\in\mathbb{R}^n$ calcolato usando la soluzione approssimata $\widehat{\mathbf{x}}$ ha norma $\|\mathbf{r}\| = 10^{-9}$, si stimi l'errore relativo $e_{rel} = \frac{\|\widehat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|}$. $e_{rel} \le 10^{-3} = 0,001$

$$e_{rel} \le 10^{-3} = 0.001$$

4. (1 punto) Quale tra gli autolavori della matrice $A = \begin{bmatrix} -1 & 11 & 3 \\ 0 & 23 & -41 \\ 0 & 0 & -10 \end{bmatrix}$ può essere determinate applicando il restricto della matrice $A = \begin{bmatrix} -1 & 11 & 3 \\ 0 & 23 & -41 \\ 0 & 0 & -10 \end{bmatrix}$ determinato applicando il metodo delle potenze inverse? Se ne riporti il valore

$$\lambda_1(A) = -1$$

5. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 2 & 0 \\ 3 & 9 \end{bmatrix}$ e il metodo delle potenze inverse. Posta l'iterata iniziale $\mathbf{x}^{(0)} = (1, 1)^T$, si riporti l'approssimazione dell'autovettore normalizzato $\mathbf{y}^{(1)} = \mathbf{x}^{(1)} / \|\mathbf{x}^{(1)}\|.$

$$\mathbf{y}^{(1)} = (9, -1)^T / \sqrt{82}$$

6. (2 punti) Si consideri la funzione $f(x) = 1 - e^{(x-10/9)}$ con un unico zero α e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si stimi l'errore commesso dopo k=6 iterazioni partendo dall'intervallo iniziale [-2,3].

$$|x^{(k)} - \alpha| \le 0.039\,062\,5$$

7. (1 punto) Si consideri la funzione di iterazione $\phi(x) = x^2 / (2x - 4)$ e il metodo delle iterazioni di punto fisso per l'approssimazione del punto fisso $\alpha = 4$. Si riporti il valore della prima iterata $x^{(1)}$ del metodo assumendo l'iterata iniziale $x^{(0)} = 16/3$.

$$x^{(1)} = \frac{64}{15} = 4,266667$$

Parte I - Esercizi

12 punti

a) (1 punto) Si	si consideri la soluzione	e di tale sistema line ecessaria e sufficient	eare mediante un me se per la convergenza	di un metodo iterativo
genza del m	$dimostri$ che la condizatetodo iterativo per ogrado all'iterata $\mathbf{x}^{(k)}$).			
	consideri il metodo di goritmo in forma matri		la soluzione del siste	ma lineare $A \mathbf{x} = \mathbf{b}$; si

(d)	(5 punti) Si implementi il metodo di $Gauss-Seidel$ in forma matriciale in Matlab [®] nella funzione GaussSeidel.m (si usi il comando "back-slash" di Matlab [®] \ laddove necessario). Si utilizzi ur criterio d'arresto basato sul residuo normalizzato (detto anche residuo relativo). La struttura della funzione è:
	<pre>function [x,Nit] = GaussSeidel(A,b,x0,nmax,tol).</pre>
	Si considerino come $input$: A, la matrice assegnata; b, il termine noto assegnato; x0, l'iterata iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto Si considerino come $output$: x, la soluzione approssimata; Nit, il numero di iterazioni effettuate
	Si utilizzi la funzione GaussSeidel.m per approssimare la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ con $\mathbf{b} = (6, 6,, 6)^T \in \mathbb{R}^{100}$ e $A \in \mathbb{R}^{100 \times 100}$ definita come
	$A = \operatorname{tridiag}(-5, 11, -5);$
	si consideri l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza $\mathbf{tol} = 10^{-3}$ e $\mathbf{nmax} = 1000$. Si riportino: i numero N di iterazioni effettuate, la terza componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo normalizzato $r_{rel}^{(N)}$.
	$N = \underline{20}$ $x_3^{(N)} = \underline{4,4177}$ $r_{rel}^{(N)} = \underline{8,3899 \cdot 10^{-4}}$
	Infine, utilizzando opportunamente la funzione GaussSeidel.m, si riportino i valori della terza componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_3^{(1)}$ e $x_3^{(2)}$.
	$x_3^{(1)} = \underline{\qquad 5,436514 \qquad \qquad } x_3^{(2)} = \underline{\qquad 5,087246 \qquad }$
(e)	(2 punti) Si commenti la velocità di convergenza a x attesa per il metodo del gradiente coniugate applicato al sistema lineare di cui al punto (d). Si riporti e si discuta il teorema di convergenza corrispondente.

il criterio d'arresto bas	ato sulla <i>differenza</i>	tra iterate successii	<i>)e.</i>	
$(2 punti)$ Sia $f(x) = x^4$	$x^4 - 8x^2 + 16$. Assum	nendo il valore dell'i	terata iniziale x	$e^{(0)} = 4$, si applich
V = 10 iterazioni de	l metodo di <i>Newton</i>	n. Si riportino i v		
V = 10 iterazioni de	l metodo di <i>Newton</i> cifre decimali per ind	n. Si riportino i v dicare il risultato).	alori delle iter	ate $x^{(1)}, x^{(2)}$ e x
$N=10$ iterazioni de (utilizzando almeno 4 $x^{(1)}=3,25$ (4 punti) Dopo aver ris	I metodo di Newton cifre decimali per inc $x^{(2)} = 1$	n. Si riportino i v dicare il risultato). 2,745 192	valori delle iter $x^{(N)} = \underline{\ }$	ate $x^{(1)}$, $x^{(2)}$ e $x^{(2)}$
(4 punti) Dopo aver ris	I metodo di <i>Newtor</i> cifre decimali per inc $x^{(2)} = 1$ solto il punto (b) e s	n. Si riportino i v dicare il risultato). 2,745 192	valori delle iter $x^{(N)} = \underline{\ }$ si calcolino e si	ate $x^{(1)}$, $x^{(2)}$ e x
$V=10$ iterazioni de utilizzando almeno 4 $x^{(1)}=\frac{3,25}{x^{(N)}-\alpha}$ [4 punti) Dopo aver ristapporti: $\frac{x^{(N)}-\alpha}{x^{(N-1)}-\alpha}=-1$ Si utilizzino tali rapporti punto (b) per la ricalizzando almeno 4 $x^{(N)}=\frac{3,25}{x^{(N-1)}-\alpha}$	I metodo di Newton cifre decimali per incentrali per determinare l'estre di α . Infine, s	n. Si riportino i vidicare il risultato). $\frac{2,745192}{\text{apendo che }\alpha=2,s}$ $\frac{x^{(N)}}{x^{(N)}}$ ordine di convergenzi giustifichi il valor	$x^{(N)}=$ _si calcolino e si $\frac{-1)-lpha}{-2)-lpha}=$ _si p del metodo	ate $x^{(1)}$, $x^{(2)}$ e $x^{(2)}$ $\frac{2,004001}{2}$ riportino i valori $\frac{1}{2}$ di Newton applic
$N=10$ iterazioni de (utilizzando almeno 4 extensione) $x^{(1)}=\frac{3,25}{2}$ (4 punti) Dopo aver ristrapporti: $\frac{x^{(N)}-\alpha}{x^{(N-1)}-\alpha}=-1$ Si utilizzino tali rapportal punto (b) per la riccal punto (b) per la riccal punto (control punto (control punto per la riccal punto (control punto per la riccal punto (control punto per la riccal punto per la riccal punto (control punto per la riccal punto per la riccal punto per la riccal punto (control per la riccal punto per la riccal pun	I metodo di Newtori cifre decimali per inceptation in the cifre decimality in the c	n. Si riportino i vidicare il risultato). $\frac{2,745192}{\text{apendo che }\alpha=2,s}$ $\frac{x^{(N)}}{x^{(N)}}$ ordine di convergenzi giustifichi il valor	$x^{(N)}=$ _si calcolino e si $\frac{-1)-lpha}{-2)-lpha}=$ _si p del metodo	ate $x^{(1)}$, $x^{(2)}$ e $x^{(2)}$ $\frac{2,004001}{2}$ riportino i valori $\frac{1}{2}$ di Newton applic
$N=10$ iterazioni de (utilizzando almeno 4 $x^{(1)}=3,25$ (4 punti) Dopo aver riscapporti:	I metodo di Newtori cifre decimali per inceptation in the cifre decimality in the c	n. Si riportino i vidicare il risultato). $\frac{2,745192}{\text{apendo che }\alpha=2,s}$ apendo che $\alpha=2,s$ ordine di convergenzi giustifichi il valorido di Newton.	$x^{(N)}=$ _si calcolino e si $\frac{-1)-lpha}{-2)-lpha}=$ _si p del metodo	ate $x^{(1)}$, $x^{(2)}$ e $x^{(2)}$ $\frac{2,004001}{2}$ riportino i valori $\frac{1}{2}$ di Newton applica
$N=10$ iterazioni de (utilizzando almeno 4 extensione) $x^{(1)}=\frac{3,25}{x^{(N)}-\alpha}$ (4 punti) Dopo aver ristrapporti: $\frac{x^{(N)}-\alpha}{x^{(N-1)}-\alpha}= -1$ Si utilizzino tali rapportal punto (b) per la rico	I metodo di Newtori cifre decimali per inceptation in the cifre decimality in the c	n. Si riportino i vidicare il risultato). $\frac{2,745192}{\text{apendo che }\alpha=2,s}$ apendo che $\alpha=2,s$ ordine di convergenzi giustifichi il valorido di Newton.	$x^{(N)}=$ _si calcolino e si $\frac{-1)-lpha}{-2)-lpha}=$ _si p del metodo	ate $x^{(1)}$, $x^{(2)}$ e $x^{(2)}$ $\frac{2,004001}{2}$ riportino i valori $\frac{1}{2}$ di Newton applica

10 punti

(4)	$(2\ punti)$ Si consideri ora il seguente metodo iterativo per la ricerca dello zero $\alpha=2$ della funzioni
(u)	$f(x) = e^{(x/2-1)} - 1$: $x^{(k+1)} = x^{(k)} - \frac{1}{\theta} f(x^{(k)}) \text{per } k = 0, 1, 2, \dots,$
	dove l'iterata iniziale $x^{(0)}$ è "sufficientemente" vicino a $\alpha=2$ e $\theta\in\mathbb{R}$ è un opportuno parametro. Per quale valore di θ il metodo iterativo precedente converge ad $\alpha=2$ con ordine $p=2$? Si motiva la risposta data. $\theta=\underline{\qquad \qquad 1/2}$

Parte II - Pre Test

1. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_4 nell'intervallo [0,4] e i corrispondenti valori $y_0 = -5, y_1 = -5, y_2 = 0, y_3 = 0$ e $y_4 = 5$. Si consideri il polinomio di Lagrange $\Pi_4(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_4(-0.1)$.

$$\Pi_4(-0.1) = -3,74325$$

2. (2 punti) Si consideri l'interpolante polinomiale lineare a tratti $\Pi_1^H f(x)$ della funzione $f(x) = 1 + \sin(10 x)$ nell'intervallo I = [0,1]. Senza costruire esplicitamente $\Pi_1^H f(x)$, si stimi il numero n di sottointervalli equispaziati di [0,1] tali per cui l'errore di interpolazione è inferiore alla tolleranza $tol = 10^{-6}$.

$$n \ge 3536$$

3. (1 punto) Sia $f(x) = 1 + \sin(\pi x/3)$. Si approssimi $\int_{-3}^{3} f(x)dx$ con la formula semplice dei trapezi e si riporti l'approssimazione $I_T(f)$ ottenuta.

$$I_T(f) = 6$$

4. (1 punto) Si consideri la funzione $f(x) = 1 - 3x^2$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico punto $\overline{x} \in \mathbb{R}$ mediate le differenze finite in avanti, ovvero $E_+f(\overline{x}) = f'(\overline{x}) - \delta_+f(\overline{x})$, usando il passo h = 1/4.

$$E_+f(\overline{x}) = \frac{3}{4} = 0.75$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -4y(t) - 21t & t \in (0, +\infty), \\ y(0) = 2. \end{cases}$$

Utilizzando il metodo di Eulero in avanti (Eulero Esplicito) con passo h = 1/10 e $u_0 = y_0 = 2$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{6}{5} = 1.2$$

6. (1 punto) Si consideri il seguente problema differenziale di diffusione:

$$\begin{cases} -u''(x) = 6x & x \in (0,1), \\ u(0) = u(1) = 0, \end{cases}$$

Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione h=1/2 ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per N=1. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.

$$u_1 = \frac{3}{8} = 0.375$$

$\begin{cases} -u''(x) + 5 u(x) = 8 & x \in (0,1), \\ u(0) = 1, & u(1) = 0. \end{cases}$	
Si approssimi il problema utilizzando il metodo delle differenze finite centrate con passo di discretizzazione $h=1/2$ ottenendo la soluzione numerica $\{u_j\}_{j=0}^{N+1}$ nei corrispondenti nodi $\{x_j\}_{j=0}^{N+1}$ per $N=1$. Si risolva il problema e si riporti il valore della soluzione numerica u_1 , ovvero l'approssimazione di $u(x_1)$.	
$u_1 = \frac{12}{13} = 0,923077$	
Parte II - Esercizi	
ESERCIZIO 1. (a) (2 punti) Si descriva la formula di quadratura di Simpson composita per l'approssimazione del-	
l'integrale $I(f) = \int_a^b f(x)dx$; si definisca tutta la notazione utilizzata e si fornisca l'interpretazione grafica della formula.	10 punti
(b) (3 punti) Si definiscano l'ordine di accuratezza p e il grado di esattezza r di una generica formula di quadratura (composita)	
di quadratura (composita).	

 ${\bf 7.}~(2~punti)$ Si consideri il seguente problema differenziale di diffusione–reazione:

Inoltre, per la formula di quadratura di $Simpson\ composita$, si riportino i valori di p e r ; si giustifichino con precisione le risposte date. $I(f) = \int_0^1 5\left[x^3 + \sin\left(10\pix + \sqrt{3}\right)\right] dx$ mediante la formula di quadratura di $Simpson\ composita$ con $M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad -0.395044\qquad \qquad }_{====================================$
fichino con precisione le risposte date. $I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad \qquad \qquad \qquad }_{-0,395044} \qquad \qquad I_{10}(f) = \underbrace{\qquad \qquad }_{1,25}$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
fichino con precisione le risposte date. $I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad \qquad \qquad \qquad }_{-0.395\ 044} \qquad \qquad I_{10}(f) = \underbrace{\qquad \qquad }_{1.25}$ Per il caso $M=10$ si riporti il valore dell'errore $Simato$, ovvero $\widetilde{E}_{10}(f)$.
fichino con precisione le risposte date. $I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad \qquad \qquad \qquad }_{-0,395044} \qquad \qquad I_{10}(f) = \underbrace{\qquad \qquad }_{1,25}$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
fichino con precisione le risposte date. $I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad \qquad \qquad \qquad }_{-0,395044} \qquad \qquad I_{10}(f) = \underbrace{\qquad \qquad }_{1,25}$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
fichino con precisione le risposte date. $I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underbrace{\qquad \qquad \qquad }_{-0,395044} \qquad \qquad I_{10}(f) = \underbrace{\qquad \qquad }_{1,25}$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
mediante la formula di quadratura di $Simpson\ composita\ con\ M\geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f)= \underline{\qquad \qquad } -0.395044 \qquad \qquad I_{10}(f)= \underline{\qquad \qquad } 1.25$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$I(f) = \int_0^1 5 \left[x^3 + \sin\left(10\pix + \sqrt{3}\right) \right] dx$ mediante la formula di quadratura di $Simpson\ composita\ con\ M \geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad -0,395044} \qquad \qquad I_{10}(f) = \underline{\qquad \qquad 1,25} $ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
mediante la formula di quadratura di $Simpson\ composita\ con\ M\geq 1$ sottointervalli equispaziati di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f)= \underline{\qquad \qquad } -0.395044 \qquad \qquad I_{10}(f)= \underline{\qquad \qquad } 1.25$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
di $[0,1]$. Si calcolino e si riportino i valori approssimati $I_M(f)$ dell'integrale utilizzando i valori $M=1$ (formula semplice) e $M=10$ (formula composita). $I_1(f) = \underline{\qquad \qquad } I_{10}(f) = \underline{\qquad \qquad } I_{10}(f) = \underline{\qquad \qquad } I_{10}(f).$ Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
Per il caso $M=10$ si riporti il valore dell'errore $stimato$, ovvero $\widetilde{E}_{10}(f)$.
$L_{10}(J) \leq \frac{0.103113}{0.103113}$
(d) (2 punti) Si consideri ora la formula di quadratura di Gauss-Legendre (semplice) con $n+1$ nodi per approssimare l'integrale $I(f)$ di cui al punto (c); si indichi con $I_n^G(f)$ il valore approssimato dell'integrale corrispondente. Si usi tale formula nel caso $n=1$ sapendo che nell'intervallo di riferimento $\widehat{I}=[-1,1]$ i nodi di quadratura sono $\widehat{y}_0=-\frac{1}{\sqrt{3}}$ e $\widehat{y}_1=+\frac{1}{\sqrt{3}}$, mentre i pesi di quadratura sono $\widehat{\alpha}_0=\widehat{\alpha}_1=1$. Si riporti il valore dell'integrale così approssimato, ovvero $I_1^G(f)$.
$I_1^G(f) = \underline{\qquad 5,876069}$
Qual è il grado di esattezza r di tale formula?

Esercizio	2.	Si	consideri il	l pi	roblema	di	Cauchy:

$$\begin{cases} y'(t) = f(t,y) & t \in (0,t_f], \\ y(0) = y_0, \end{cases}$$
 (1)

12 punti

con $t_f > 0$ e il dato iniziale y_0 assegnati.

(a) (2 punti) Si considerino il problema di Cauchy (1) e la sua approssimazione mediante il metodo di Heun. Si riporti l'algoritmo del metodo (non in stretto linguaggio Matlab[®]) definendo con precisione tutta la notazione utilizzata.

(b) (2 punti) Posti per il problema di Cauchy (1) $f(t,y) = \lambda y$, con $\lambda \in \mathbb{R}$ e $\lambda < 0$, e $t_f = +\infty$, si definisca l'assoluta stabilità per il metodo di Heun. Se ne discutano inoltre, motivandole, le proprietà di assoluta stabilità.

(c) (3 punti) Si consideri il problema di Cauchy (1) con $f(t,y) = [4 - y - 2\cos(t)]/(t+1)$, $t_f = 10$ e $y_0 = 4$. Si utilizzino opportuni comandi Matlab® per approssimare tale problema mediante il metodo di Heun con diversi passi temporali $h_1 = 1$, $h_2 = 0.5$, $h_3 = 0.25$ e $h_4 = 0.125$. Si riportino i valori della soluzione approssimata $u_{N_{h,i}}$ corrispondente all'istante finale t_f per ciascuno dei

	$u_{N_{h,1}} = \underline{\hspace{1cm}}$	4,090529	$u_{N_{h,2}} = \underline{\hspace{1cm}}$	4,096 844	
	$u_{N_{h,3}} = $	4,098 397	$u_{N_{h,4}} = \underline{\hspace{1cm}}$	4,098 784	
ϵ	si riportino gli errori <i>E</i>	\mathbb{Z}_{h_i} associati alle solu	zioni $u_{N_{h,i}}$ al tempo	$2 [2 - \sin(t)/(t+1)]$, si o t_f ottenuti per ciascun n formato esponenziale).	valore di
	$E_{h_1} = \underline{\hspace{1cm}}$	$8,3835 \cdot 10^{-3}$	$E_{h_2} = $	$2,0693 \cdot 10^{-3}$	
	$E_{h_3} = $	$5{,}1571\cdot10^{-4}$	$E_{h_4} = \underline{\hspace{1cm}}$	$12,8826 \cdot 10^{-5}$	
		- "		nvergenza del metodo di nita e il grafico ottenuto.	Heun. Si
L					
	(3 punti) Si consideri or Cauchy (1). Se ne riport			rossimare il generico pro nte tabella di Butcher:	blema di
		3/4	$\begin{array}{c cc} & 0 & 0 \\ 3/4 & 0 \\ \hline 1/3 & 2/3 \\ \end{array}$		
			<u>, , , , , , , , , , , , , , , , , , , </u>		
S	Si indichi, motivandolo,	se tale metodo di Rı	ınge–Kutta è esplic	ito o implicito.	
Γ					

precedenti valori di h_i (si riportino almeno 4 cifre decimali).

Con riferimento al problema di Cauchy (1) con i dati di cui al punto (c), si riporti il valore calcolato di u_1^{RK} , ovvero l'approssimazione di $y(t_1)$ ottenuta utilizzando il metodo di Runge–Kutta di cui sopra con h=1.

 $u_1^{RK} =$ ______3,3473