1 Granularity consistency checks

(GRIM, GRIMMER)

Granularity consistency test for Means

I have 2 participants.

I calculate their mean age.

I round their mean age to 1 decimal place to report in a manuscript.

Without knowing either of their ages, we know the rounded mean age of 2 participants must end in .0 or .5

Possible: Mean age = 23.5

Impossible: Mean age = 23.1

Granularity consistency test for Means

What if I have 3 participants?

What if I have 7 participants?

Granularity consistency test for Means

Technically, GRIM test is consistent when:

```
reported_mean * n_participants * n_items = total_sum
round(total_sum, 0) / (N_participants * N_items) = recalculated_mean
round(recalculated_mean, n_digits) == reported_mean
```

But there are simple calculators

- http://nickbrown.fr/GRIM

Fifty-two university students were asked "How likely are to use ChatGPT in your coursework?", with responses given via a 1-7 Likert-type scale (1=very unlikely; 7=very likely). Results showed a high likelihood (M=5.22, SD=1.33).

- Is the mean GRIM Consistent?

Fifty-two university students were asked "How likely are to use ChatGPT in your coursework?", with responses given via a 1-7 Likert-type scale (1=very unlikely; 7=very likely). Results showed a high likelihood (M=5.22, SD=1.33).

- Is the mean GRIM Consistent?
- Without using the calculator:
 - What would happen if the scale was 1 to 10?

Festinger & Carlsmith (1959) Cognitive Dissonance Theory *Cited roughly 6000 times*

- Are the means GRIM Consistent?

	Experimental Condition		
Question on Interview	Control (N =	One Dollar (N = 20)	Twenty Dollars (N == 20)
How enjoyable tasks were (rated from -5 to +5)	45	+1.35	05
How much they learned (rated from 0 to 10)	3.08	2.80	3.15
Scientific importance (rated from 0 to 10)	5.60	6.45	5.18
Participate in similar exp. (rated from -5 to +5)	62	+1.20	25

AVERAGE RATINGS ON INTERVIEW QUESTIONS FOR

Festinger & Carlsmith (1959) Cognitive Dissonance Theory Cited roughly 6000 times

- Are the means GRIM Consistent?

	Experimental Condition		
Question on Interview	Control (N =	One Dollar (N = 20)	Twenty Dollars (N == 20)
How enjoyable tasks were (rated from -5 to +5) How much they learned (rated from 0 to 10) Scientific importance (rated from 0 to 10) Participate in similar exp. (rated from -5 to +5)	3.08 5.60	+1.35 +2.80 +1.20	05 3.15 25

Granularity consistency test for SDs

Just like GRIM, but for Standard Deviations (SDs)

Math is more complex but principle is the same: only some values are possible

Interpretation of GRIM inconsistency

- Maybe you made an error
 - Extracted the wrong number, made a typo etc
 - Double check
- Maybe the authors made an error
 - Reported the wrong number, made a typo, rounded it inappropriately
- Maybe the authors changed some of the real values inappropriately
 - Started with the real results, changed some values to make them more favourable (fabrication type 1)
- Maybe there was no real data at all
 - Maybe the numbers are completely invented (fabrication type 2)

Of psychology articles contain inconsistencies

Brown & Heathers (2017)

Remember

- Understand how to use "N items"

- Understand when the GRIM test will always consistent, even when the reported values are errors or fabrications:
 - When the mean is reported to 1 decimal places (eg M = 4.4), GRIM stops working at N_participants * N_items = 10
 - When the mean is reported to two decimal places (eg M = 4.37), GRIM stops working at N_participants * N_items = 100
 - Etc.
 - This makes GRIM useless above this these values!

- Examine the articles you've been assigned for GRIM/MER inconsistencies

- Simplest
 - http://nickbrown.fr/GRIM
- Fancier
 - https://errors.shinyapps.io/scrutiny/

Range consistency checks (TIDES)

Range consistency checks

- Example 1: intervals (Haller et al., 2022)
 - "Divorced: Beta = -0.05, 95% CI [-0.50, -0.11]"
- Example 2: means
 - "Sum scores on the five-item scale (response options 1-7) ... Mean = 38.1"
- Example 3: SDs
 - "1-7 Likert scale ... Mean = 2.81, SD = 3.10"

Range consistency checks

Expertise problem

Beck Depression Inventory (BDI-II) N = 23, M = 20.70, SD = 3.40

Range consistency checks for SDs

Max SD of 5-point scale: M = 3.00, SD = 2.00, n = 1000

Max SD of 7-point scale: M = 4.00, SD = 3.00, n = 1000

Max SD of 10-point scale: M = 5.50, SD = 4.50, n = 1000

Response options	Max SD (in large N)
5	2
7	3
10	4.5
General Rule	(response_options - 1) / 2

Example	Scale	[min, max]	SD
1	BDI	[0, 63]	13.49
2	BDI	[0, 63]	31.51
3	CES-D	[0, 60]	44.63
4	PHQ-9	[0, 27]	95.00
5	4-item Likert scale 1-7 response options mean scored	[1, 7]	3.11

Example	Scale	[min, max]	SD
1	BDI	[0, 63]	13.49
2	BDI	[0, 63]	31.51
3	CES-D	[0, 60]	44.63
4	PHQ-9	[0, 27]	95.00
5	4-item Likert scale 1-7 response options mean scored	[1, 7]	3.11

Zemestani et al. 2020
Ede et al. 2020
Wright et al. 2022

Max SD of 7-point scale: M = 4.00, SD = 3.05, n = 30

Max SD for a specific mean

Upper bound of min SD of 7-point scale: M = 1.50, SD = 0.50, n = 1000

Lower bound of min SD of 7-point scale: M = 1.00, SD = 0.00, n = 1000

Dr. Ian Hussey

on of Psychology

Min SD for a specific mean

Lower bound of min SD of 7-point scale: M = 1.01, SD = 0.10, n = 1000

Granularity + range consistency checks

(GRIM/MER + TIDES)

GRIMOnly some means are possible

when N = 14 + 1-7 Likert scale

Dr. Ian Hussey

Possible Means

sation of Psychology

GRIM + GRIMMER

Only some means, some SDs are possible

when N = 14 + 1-7 Likert scale

Possible Means

GRIM + GRIMMER + TIDES

Only some means + SDs are possible

"Umbrella plot" Heathers (2018)

when N = 14 + 1-7 Likert scale

Possible Means

Alisation of Psychology

TIDES

Only some means + SDs are possible Even when N > 100 and GRIM/MER stop working

Possible SDs

Liberal boundary of min and max SD for N=11 Ignoring granular consistency of mean and SD

Even when N is too high for GRIM/MER

For any N + 1-7 Likert scale

TIDES

Only some means + SDs are possible **Even when N > 100 and GRIM/MER stop working**

Possible

Liberal boundary of min and max SD for N=11 Ignoring granular consistency of mean and SD

Even when N is too high for **GRIM/MER**

> For any N + 1-7 Likert scale

TIDES

errors.shinyapps.io/TIDES

- What happens when:
 - N is very small?
 - N is very large?
 - Scale range is very small?
 - Scale range is very large?

Summary of interpretation of GRIM/MER & TIDES

Result fails GRIM/ER/TIDES

Meaning

Reported result is not possible

Causes

Typos

Errors

... *There was no dataset*

Result passes GRIM/ER/TIDES

Meaning

Reported result is possible

Causes

There was a dataset and summary stats were reported accurately

Summary of interpretation of GRIM/MER & TIDES

Could this be bad?
How?

Result passes GRIM/ER/TIDES

Meaning

Reported result is possible

Causes

There was a dataset and summary stats were reported accurately

Summary of interpretation of GRIM/MER & TIDES

The underlying data could be fake, erroneous, or implausible

Result passes GRIM/ER/TIDES

Meaning

Reported result is possible

Causes

There was a dataset and summary stats were reported accurately

Break