Computabilidad y Complejidad

Práctica 7

- 1) Construya una MTN que genere de manera no determinística todos los números de 8 bits. Es decir, que dado cualquier número, alguna computación de la máquina lo generará. ¿Cuántos movimientos hace la máquina?
- 2) Sean L_1 y L_2 , dos lenguajes definidos sobre $\{0,1\}^*$

$$L_1 = \{0^n 1 | n \ge 0\}$$

$$L_2 = \{1^n 0 | n \ge 0\}$$

- a) Construya una MTN M tal que $L(M)=L_1 \cup L_2$
- b) describa la traza de ejecución para las entradas w₁=001 y w₂= 1101
- 3) La reducción polinomial posee las siguientes propiedades? Justifique
 - a) Reflexiva
 - b) Simétrica
 - c) Antisimétrica
 - d) Transitiva
- 4) Es cierto que si dos lenguajes L_1 y L_2 son NPC entonces L_1 α_p L_2 , y también L_2 α_p L_1 ? Justifique su respuesta.
- 5) Sean L_1 y L_2 tales que L_1 α_p L_2 , ¿Qué se puede inferir?
 - a) Si L₁ está en P entonces L₂ está en P
 - b) Si L₂ está en P entonces L₁ está en P
 - c) Si L₂ está en NPC entonces L₁ está en NPC
 - d) Si L₂ está en NPC entonces L₁ está en NP
 - e) Si L₁ está en NPC entonces L₂ está en NPC
 - f) Si L₁ está en NPC y L₂ está en NP entonces L₂ está en NPC
- 6) Decir si las siguientes afirmaciones son verdaderas o falsas
 - a) Si P=NP entonces todo lenguaje de NPC pertenece a P
 - b) Si P=NP entonces todo lenguaje de NPH pertenece a P
- 7) ¿Qué se puede decir respecto del problema del viajante de comercio (TSP) si se sabe que es NPC, suponiendo que $P \neq NP$?
- a) no existe un algoritmo que resuelva instancias arbitrarias de TSP
- b) No existe un algoritmo que eficientemente resuelva instancias arbitrarias de TSP

- c) Existe un algoritmo que eficientemente resuelve instancias arbitrarias de TSP, pero nadie lo ha encontrado
- d) TSP no está en P