1(b)

$$\begin{aligned}
& \psi = C(t) \times e^{-\gamma x^2} & u = (x \quad \frac{du}{dx} = 0) \\
& \psi = (e^{-\gamma x^2} + (c_x)(-2\gamma x)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

$$\begin{aligned}
& \psi = (e^{-\gamma x^2} + (c_x)(-2\gamma x)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

$$\begin{aligned}
& \psi = (e^{-\gamma x^2} - 2(\gamma x^2)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

$$\begin{aligned}
& \psi = (e^{-\gamma x^2} + (c_x)(-2\gamma x)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

$$\begin{aligned}
& \psi = (e^{-\gamma x^2} + (c_x)(-2\gamma x)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

$$\begin{aligned}
& \psi = (e^{-\gamma x^2} + (c_x)(-2\gamma x)e^{-\gamma x^2} & v = e^{-\delta x^2} & \frac{dv}{dx} = 0
\end{aligned}$$

2.2 ADJR4102 BULLATION

" MCOMPRESSIBLE FLOW" APPROX.

LAMINAR FLOW

$$\frac{\nabla \cdot v < 0}{\nabla \cdot v < 0}$$

$$= \frac{\nabla \cdot v < 0}{\nabla \cdot v < 0}$$

$$= \frac{\nabla \cdot v < 0}{\nabla \cdot v < 0}$$

- PRUPLE

FOURIER LAW

$$\frac{2T}{2t} = D(T^{2}T)$$

$$= -K(DT) = 3D$$

WAVE BOUNTIN

$$\nabla^2 \Phi = \frac{1}{2} \frac{\partial^2 \phi}{\partial t^2} = 30$$

- SCEMIC

- STAINE -> DISPLACEMENT

LAPLACE/PULSSUN

$$\nabla^{2} \widehat{\Phi} = O \left(LAPLALE \right)$$

$$\neq O \left(POISSON \right)$$

SCHRÖNINGER

3. Classification of PDEs

Order

Linearity

Homogeneity

Hyperbolic, Elliptical, Parabolic

Kahoot PHY2006 – 5. Classification of 2nd order PDEs

Order, Linearity, Homogeneity

Same definitions as for ODEs

Dependent variable u(x, y)

• Linear –
$$u^n$$
, $\left(\frac{\partial u}{\partial x}\right)^n$... $n=1$

• Homogeneity – all terms contain u

•
$$(x^2 + y^2) \frac{\partial u}{\partial x} + 2y \frac{\partial^3 u}{\partial x^2 \partial y} - 3u = 0$$

•
$$u\left(\frac{\partial u}{\partial x}\right)^2 + x\frac{\partial u}{\partial y} = 0$$

$$\bullet \frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2 + \frac{\partial^2 u}{\partial y^2} - x^2 - y^2 = 0$$

Types of 2nd order PDEs

• Consider to $ax^2 + bxy + cy^2 + dx + ey + f = 0$. In x,y space this describes

b'-4ac
=0 • Parabola
$$c = 0, b = 0, c = 1$$
 $y = -x^2 - dx - 5$
 $< 0 • Ellipse b, d, e = 0$ $a = c = f = 1$ $x^2 + y^2 = 1$
> 0 • Hyperbola b, $d, e = 0$ $a = -c = f$ $x^2 - y^2 = 1$

• A 2nd order linear PDE with one dependent variable u(x,y) and two independent variables x,y be generally written in the form

•
$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 f v}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial y} + F = 0$$

•
$$B^2 - 4AC > 0$$
 HYPPABULIC

•
$$B^2 - 4AC < 0$$
 EULIPTIUM

•
$$B^2 - 4AC = 0$$
 Par ABOUC

• Type of PDE influences the method for solving

Types of 2nd order PDEs - Examples

	A	В	С	$B^2 - 4AC$	Туре
• Laplace $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} = 0$	l	D	(-4	ELLIPTICAL
• Heat $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$	D	Ó	0	0	para bolic
• Wave $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\sqrt{2}} \frac{\partial^2 u}{\partial t^2} = 0$	V²	0	-1	402	HYPERBOLIC (U=0 PANABOLIC)
$ \begin{array}{ccc} \bullet & \frac{\partial^2 u}{\partial x^2} & \xrightarrow{\sim} & \chi & \frac{\partial^2 u}{\partial y^2} & = \circlearrowleft \end{array} $	1	0	- X	42	MIXED THE PARASUC THE PRIME THE PRIME THE PRIME THE PRIME THE PRIME THE PRIME THE PRIME THE PRIME THE PRIME TH
$ \cdot \frac{\partial^2 u}{\partial x^2} + 3xy \frac{\partial^2 u}{\partial x \partial y} + 2u = 0 $	1	3 169	0	9x2y2	MIXED 1+1PENBOLIC 7=0, y=0 PANADRIC

4. Analytical Solutions to PDEs

- 4.1 Initial/Boundary Conditions
- 4.2 Method of Characteristics
- 4.3 Separation of Variables + Fourier Solutions

$$\frac{dN}{dt} = -\lambda N$$

$$t = 0 \quad N = N_0$$

$$H = N_0 e^{-\lambda t}$$

Initial / Boundary Conditions

- Unique solution to ODE requires: OR NER → NO. (SPSTANIAIS
- PDEs give infinite solutions. Unique solution requires well-posed problem
 - Too few constraints unique solution not possible
 - Too many constraints no solution or unphysical solution
- Constraints of a PDE representing physical problem are

BOURDARY CONDITIONS (BC): PHYSICAL DIMERSORS
$$x,y...$$
 $x = x_0 \quad y, \frac{\partial u}{\partial t} = const.$

 $\frac{d^{3}k}{dt^{2}} + k^{2}x = 0$ x = A cockt + B cockt $2 \quad (orstnarrs)$ t=0 $2 \quad dx = 0$ dx = 0

- Types of BCs
 - Dirichlet fixed values of dependent variable $u(x_0, y_0)$
 - Neumann fixed values of its derivative $u'(x_0, y_0) = \frac{\gamma_y}{2t} = cors\tau$.

Heat Equation Example

 Consider a straight, well insulated metal rod with its ends in good thermal contact with heat reservoirs of temperature T₁ and T₂.

• Example 1

BC
$$T(0,t) = 100$$
 $T(d,t) = 0$
LC $T(x,0) = 0$

• Example 2

BL
$$T(0,t) = 0$$
 $T(d,t) = 0$
LC $T(x,0) = 400 \frac{\pi}{d} (1 - \frac{\pi}{d})$

Parabolic PDEs

Type of equation determines solution method

• E.g. Heat Equation $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$

Material having

thermal conductivity k

Area A

Hyperbolic PDEs

- E.g. Wave Equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2}$
- Velocity of forward and backward waves determine boundaries of solutions in (x,t) space
- Forward travelling wave (x ct = const.)
- Backward travelling wave (x + ct = const.)
- Solutions obtained
 marching forward in time

Elliptical PDEs

- E.g. Laplace's Equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
- No time dependence static problem, no ICs
- BCs only, generally these enclose a space
- Change in BC, *instantaneously* influences all other points

4.2 Method of Characteristics

ORDER = |

2 VARIABLES -
$$x$$
, t

[PITIAL COMPITION $U(x,0) = f(x)$

Method of Characteristics

- Used to solve PDEs by marching forward in time
- *Characteristic* –trajectory in (x,t) space along which a solution is propagated
- We will use to solve 1st order, linear PDEs such as advection equation

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = f$$
(HARALTENISTIC)

where v, f may be a functions of x, t, u

Comparing to the total differential

$$\frac{du}{dt} = \frac{\partial y}{\partial t} \cdot \frac{\partial t}{\partial t} + \frac{\partial y}{\partial n} \cdot \frac{\partial x}{\partial t} = \frac{\partial u}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial y}{\partial x}$$

reduces the problem to solving 2 ODEs

$$\frac{dy}{dt} =$$

Method of Characteristics

- $\frac{dx}{dt} = v$ defines the trajectory or **characteristic** of a solution through (x, t) space
- $\frac{du}{dt} = f$ determines how the dependent variable evolves along the trajectory
- Example $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$ with initial condition $u(x,0) = \exp(-x^2)$

$$\frac{dx}{dt} = C$$

$$x = ct + x_0$$

Characteristic is a straight line

Example 1

- $x = ct + x_0$ Characteristic
- $\frac{du}{dt} = 0$ (remember u is a function of x and t) $U(x_0, t) = C(x_0)$
- For each initial position x_0 along the x axis we have a distribution

$$u(x_0,0) = \exp(-x_0^2) = ((x_0)$$

- As u is unchanged along a characteristic $u(x_0, t) = \exp(-(x_0^2))$
- $u(x_0,t)$ is a solution along a characteristic defined by x_0 . To obtain the solution for all characteristics u(x,t), then $x_0=x-ct$ is substituted in

$$u(x,t) = \exp(-x^2) = \exp(-(x - ct)^2)$$

Example 2 - u is not constant along a characteristic

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = -u$$

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = -u$$

$$\frac{\partial u}{\partial t} = c$$

$$\frac{\partial u}{\partial$$

- From the initial conditions
- $u(x_0, 0) = C(x_0) \exp(0) = C(x_0) = \exp(-x_0^2)$ $u(x, t) = \exp(-x_0^2) e^{-t} = \exp(-(x - ct)^2) e^{-t}$

Example 3 – Wave with amplitude dependent velocity

- Parts of the wave travel at different speeds depending on amplitude v=u.
- Amplitude remains constant $\frac{du}{dt} = 0$

•
$$\frac{dx}{dt} = u$$

- $x = ut + x_0$
- Giving characteristics $x_0 = x ut$
- From $\frac{du}{dt} = 0$, $u(x_0, 0) = C(x_0)$ Initial "wave" = $\exp(-x_0^2)$
- $u(x,t) = \exp(-(x-ut)^2)$

Additional Question 1

1. Using the method of characteristics, find the solution to the following first order partial differential equation:

$$\frac{\partial u}{\partial t} + xt^2 \frac{\partial u}{\partial x} = 0 ,$$

subject to the initial condition $u(x,0) = x^2 \sin(2x)$.

- $\frac{du}{dt} = 0$
- $u(x_0,t) = C(x_0)$
- $u(x_0, 0) = x_0^2 \sin(2x_0) = C(x_0)$
- $\bullet \ u(x,t) = x_0^2 \sin(2x_0)$

•
$$u(x,t) = x^2 \exp\left(-\frac{2}{3}t^3\right) \sin\left(2x \exp\left(-\frac{1}{3}t^3\right)\right)$$

•
$$\frac{dx}{dt} = xt^2$$

•
$$\int \frac{dx}{x} = \int t^2 dt$$

$$\bullet \ln x = \frac{1}{3}t^3 + A$$

•
$$t = 0$$
, $x = x_0$

•
$$A = \ln x_0$$

•
$$\ln x_0 = \ln x - \frac{1}{3}t^3$$

•
$$x_0 = x \exp\left(-\frac{1}{3}t^3\right)$$

Additional Question 2

1.

$$\frac{\partial u}{\partial t} + (x+t)\frac{\partial u}{\partial x} = t^2$$

with initial condition $u(x,0) = x^8$.

•
$$\frac{du}{dt} = t^2$$

•
$$u(x_0, t) = \frac{1}{3}t^3 + C(x_0)$$

•
$$u(x_0, 0) = x_0^8 = C(x_0)$$

•
$$u(x,t) = \frac{1}{3}t^3 + x_0^8$$

•
$$u(x,t) = \frac{1}{3}t^3 + [(x+t+1)e^{-t} - 1]^8$$

•
$$\frac{dx}{dt} = x + t$$
 $\frac{dx}{dt} - x = t$

• Multiply by I.F. = e^{-t} and integrate

•
$$\int \frac{d}{dt} [xe^{-t}] dx = \int te^{-t} dt$$

Integrate RHS by parts

•
$$u = t$$
 $\frac{dv}{dt} = e^{-t}$

•
$$\frac{du}{dt} = 1$$
 $v = -e^{-t}$

•
$$xe^{-t} = uv - \int v \frac{du}{dt} dt + A$$

•
$$xe^{-t} = -te^{-t} - e^{-t} + A$$

•
$$t = 0$$
, $x = x_0$, $x_0 = A - 1$

•
$$xe^{-t} = -(t+1)e^{-t} + 1 + x_0$$

•
$$x_0 = (x + t + 1)e^{-t} - 1$$

4.3 Separation of Variables

PDEs in which variables are separable

- Some linear PDEs can be solved by this process:
 - 1. Write solution as a product of single variable functions, e.g., y(x, t) = f(x)g(t)
 - 2. Substitute into PDE and separate variables on either side of the equation
 - 3. For equality to hold for all values, each side must equal a separation constant
 - 4. Solve the resulting ODEs
 - 5. Apply initial conditions and boundary condition find coefficients

PDEs in which variables are separable

1.
$$y(x,t) = f(x)g(t)$$

2. $\frac{1}{c^2} \frac{\partial^2}{\partial t^2} [f(x)g(t)] = \frac{\partial^2}{\partial x^2} [f(x)g(t)]$

$$\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

$$\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$

$$\frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$
3. $\frac{1}{c^2} \frac{d^2 g}{dt^2} \frac{1}{g(t)} = \frac{d^2 f}{dx^2} \frac{1}{f(x)} = -k^2$ (separation constant)
$$c = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$$
4. Objectively, $\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial x^2}$

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial x^2}$$

$$\frac{\partial^2 y}{\partial x^$$

PDEs in which variables are separable

Apply Boundary Conditions y(0, t) = y(L, t) = 0f(200) = 0 = C, sa(0) + C2005 (0) $f(L) = 0 = C_1 \sin(kL) + 0$ $k = \frac{n\pi}{L}$ $f(L) = 0 = C_1 \sin(kL) + 0$ $f(L) = 0 = C_1 \sin(kL) + 0$ (= D (TRIVIAL) $g(t) = C_3 sin(c^{n} + t) + C_4 cos(c^{n} + t)$ $y(x,t) = f(x)g(t) = \sin\left(\frac{n\pi}{L}x\right) \left[a_n \sin\left(\frac{n\pi}{L}ct\right) + b_n \cos\left(\frac{n\pi}{L}ct\right)\right]$ $b_n = C_1 C_4$

Most general solution – Fourier coefficients

6. Initial Conditions $y(x,0) = b_n \sin\left(\frac{n\pi}{L}x\right)$,
But What if y(x,0) is not sinusoidal? For example

$$y(x,0) = \frac{2Ax}{L} \text{ for } 0 < x < \frac{L}{2}$$

$$y(x,0) = 2A\left(1 - \frac{x}{L}\right) \text{ for } \frac{L}{2} < x < L$$

A superposition of sine/cosine wave solutions gives the most general solution.

$$y(x,t) = \sum_{n=1}^{\infty} sin\left(\frac{n\pi x}{L}\right) \left(a_n sin\left(\frac{n\pi}{L}ct\right) + b_n cos\left(\frac{n\pi}{L}ct\right)\right)$$

This is a Fourier Series!

Coefficients found by Fourier methods(see Tom's notes)

Variable Separation — Heat Equation

$$\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$$

1.
$$T(x,t) = f(x)g(\mathbf{r})$$

2.
$$\int (x) \frac{dy}{dt} = D \frac{dy}{dx} + By \int (x) y(t)$$

$$\frac{1}{9} \frac{dg}{dt} = \frac{D}{5} \frac{d^2f}{dx} = -k^2$$

$$\frac{dg}{dt} = -k^2g \qquad \left(\frac{dg}{g} = \int -k^2dt\right)$$

$$g(t) = A \exp(-k^2t)$$

$$\frac{dg}{dt} = -k^2g \qquad \left(\frac{dg}{g} - \left(-k^2dt\right) - \frac{d^2f}{dn^2} + \frac{k^2f}{D} = 0\right)$$

$$g(t) = A \exp\left(-k^2t\right) \qquad g(t) = B \sin\left(\frac{k}{10}\right) + C\cos\left(\frac{k}{10}\right)$$

$$T(x,t) = \exp(-k^2t) \left(B'\sin(kx) + C'\cos(kx)\right)$$