

Bioquímica dos Alimentos

ATIVIPARE RE ÁGUA EM ALIMENTOS

Prof. M.Sc. Yuri Albuquerque

ÁGUA NOS ALIMENTOS

Água livre

Fracamente ligada ao substrato, permitindo o crescimento dos microorganismos e a realização de reações químicas. É perdida facilmente (evaporação)

Água ligada

Fortemente ligada ao substrato, mais difícil de ser eliminada e não pode ser utilizada para o desenvolvimento de microorganismos e realização de reações químicas

PROPRIEDADES DAS MOLÉCULAS DE ÁGUA

- Moléculas tem energia
- * Moléculas se movem
- Quanto maior a mobilidade,
 maior o teor de água livre

INTERFERENTES DA MOBILIDADE DAS MOLÉCULAS DE ÁGUA

× Físicos

- + Temperatura
- + Pressão

» Químicos

- + Solutos
- + Sólidos hidrofílicos
- x Combinação de fatores para gerar energia suficiente para o trabalho das moléculas de água

ZERO ABSOLUTO

Sem movimento molecular

BAIXAS TEMPERATURAS

Movimentos moleculares lentos

TEMPERATURA MÉDIA

Movimentos moleculares de média velocidade

ALTAS TEMPERATURAS

Movimentos moleculares rápidos

PRESSÃO DE VAPOR DA ÁGUA

BAIXA PRESSÃO

Movimentos moleculares lentos

PRESSÕES MÉDIAS

Movimentos moleculares de média velocidade

ALTA PRESSÃO

Movimentos moleculares rápidos

SEM SOLUTOS

Molécula de água não ligada a solutos

ADIÇÃO DE SOLUTOS

Movimentos mais lentos

Moléculas de água parcialmente ligadas a solutos

SOLUÇÕES SATURADAS

SOLUÇÕES SATURADAS

- * Ao adicionar um soluto ao líquido a evaporação para a fase gasosa diminui = diminui a pressão de vapor.
- * A pressão de vapor será menor do que a pressão da água pura
- Diferentes soluções saturadas terão diferentes pressões parciais de água

PRESSÃO DE VAPOR SOBRE A SOLUÇÃO

Fração molar de água

- * A pressão parcial de água sobre a solução é reduzida pela presença de soluto
- Pressão de vapor depende da concentração de soluto bem como da temperatura

ATIVIDADE DE ÁGUA (Aw)

- + Indica a intensidade das forças que unem a água com outros componentes não-aquosos
- + Água disponível para o crescimento de microorganismos e para que se possam realizar diferentes reações químicas e bioquímicas.
- + Água sem solutos (pura) → Aw padrão = 1
- + Água com solutos → Aw<1

MUDANÇAS NA Aw

× Aumento

- + ↑ temperatura
- + ↑ pressão

» Diminuição

- + \ temperatura
- + ↓ pressão
- + Adição de solutos

Aw E TEMPERATURA

À medida que aumenta a temperatura o mesmo ocorre com a_w, porque cresce a pressão de vapor.

Grande concentração de solutos não dissolvidos → menor Aw

Aw DE ALIMENTOS

- * Aw da solução comparada à A_w de uma solução padrão (água pura)
- * Aw de alimentos não pode ser maior que a Aw padrão, pois a adição de solutos diminui a Aw
 - + A_w de alimentos < 1

Aw DE ALIMENTOS

- * Alimentos com o mesmo conteúdo de água apresentam diferentes graus de perecibilidade
 - + Perecibilidade depende da intensidade com que a água se associa com compostos não aquosos → água fortemente ligada é menos propensa para reações químicas

ATIVIDADE DE ÁGUA

$$A_{\rm w} \approx p/p_{\rm o}$$

Onde:

p = pressão parcial de água sobre a solução

p_o = pressão parcial sobre a água pura

De acordo com a Lei de Raoult

$$p/p_0 = n_2/(n1+n_2)$$

Onde:

 n_1 = mols de soluto

 n_2 = mols de solvente

ISOTERMAS DE SORÇÃO DE UMIDADE

- fine S Gráficos que relacionam a A_w de um alimento com a umidade relativa da atmosfera que circunda o alimento ou com a quantidade de água do alimento
- ★ A maioria das isotermas apresenta forma sigmóide, com pequenas variações conforme a estrutura física, a composição química, a temperatura e a capacidade de retenção de água do alimento.

ISOTERMAS DE SORÇÃO DE UMIDADE

- ★ À medida que a umidade aumenta, o alimento absorve a água do ambiente e aumenta progressivamente sua a_w
- ➤ Inicialmente, a água absorvida vai se ligando às moléculas do soluto, até que, em condições de muito alta umidade, forma-se uma camada de água livre
- ★ Chega a um ponto em que a umidade é tão alta, que o alimento está saturado de água e não aumenta mais sua a_w
- **★** A_w e a umidade relativa do ar tendem a se equilibrar

ISOTERMA DE SORÇÃO DE UMIDADE

PEPENDÊNCIA DA TEMPERATURA

SORÇÃO E DESSORÇÃO

- Quanto maior a umidade ambiente, maior a absorção de água pelo alimento → maior A_w
- Quanto menor a umidade ambiente, maior a dessorção de água pelo alimento → menor A_w

SORÇÃO E DESSORÇÃO

- As curvas de sorção e dessorção não são iguais (histerese)
- •A uma mesma a_w, os alimentos apresentam maior conteúdo de água durante a dessorção do que na adsorção → mais fácil que o alimento desidrate do que se hidrate

REAÇÕES QUÍMICAS X ATIVIDADE DE ÁGUA

ATIVIDADE DE ÁGUA X TEXTURAS

ATIVIDADE DE ÁGUA X TEXTURAS

ATIVIDADE DE ÁGUA X UMIDADE

Armazenamento em ambiente onde a umidade é menor que a A_w do alimento

Armazenamento em ambiente onde a umidade é maior que a A_w do alimento

Ressecamento (ex.: queijo aberto na geladeira)

Absorção de umidade (ex.: leite em pó exposto no ambiente)

ATIVIDADE DE ÁGUA X CONTEÚDO DE ÁGUA

Por que a salmoura não sofre deterioração?

Moléculas de água estão ligadas ao NaCl (baixa A_w)

CONTATOS

E-mail: yuri.albuquerque@outlook.com

DOWNLOAD DO CONTEÚDO DA AULA

https://yurialb.github.io

