Ryan Hota, Shubh Sharma, Arjun Maneesh Agarwal

© 2025 Ryan Hota, Shubh Sharma, Arjun Maneesh Agarwal

Text licensed under CC-by-SA-4.0

Code licensed under AGPL-3.0

This is (still!) an incomplete draft.

Please send any corrections, comments etc. to feedback_host@mailthing.com

Last updated June 28, 2025.

To someone

Table of Contents

	Table of Contents	iii
	Basic Theory	1
§1.1.	Precise Communication (better name suggestion always welcome)	. 1
§1.2.	The Building Blocks	
9	Values	
	mathematical value	
§1.4.	Variables	. 2
	≢ mathematical variable	
§1.5.	Well-Formed Expressions	. 2
	* well-formed mathematical expression 3	
§1.6.	Defining Functions	. 4
§1	.6.1. Using Expressions 4	
§1	.6.2. Some Conveniences	
	§1.6.2.1. Where, Let	
	§1.6.2.2. Anonymous Functions	
	§1.6.2.3. Piecewise Functions	
	§1.6.2.4. Pattern Matching	
§1	.6.3. Recursion	
	§1.6.3.1. Termination	
	‡ termination of recursive definition 7	
	§1.6.3.2. Induction	
	* principle of mathematical induction 8	
	§1.6.3.3. Proving Termination using Induction	
$\S 1.7.$	Trees	. 8
§1	.7.1. Examples of Trees	
§1	.7.2. Making Larger Trees from Smaller Trees	
§1	.7.3. Formal Definition of Trees	
	‡ tree	
§1	.7.4. Structural Induction	
	* structural induction for trees	
81	.7.5. Structural Recursion	

§1.7.0	Termination		11
§1.8. W	hy Trees?		
§1.8.	The Problem		12
§1.8.2	The Solution		12
	(‡) a	bstract syntax tree	13
Ir	stalling Haskell		14
§2.1. I n	stallation		
§2.1.	General Instruction	ons	14
§2.1.2	Choose your Ope	rating System	14
	2.1.2.1. Linux		14
	2.1.2.2. MacOS		
	2.1.2.3. Windows		
B	asic Syntax		18
§3.1. B o	ool, Int, Integer and r	nore (feel free to change it)	
	· ·	ypes	
§3.1.2	Logical Operation	- IS	21
	λ 1	7 Xors	23
	λ 1	17 Xors contd.	24
	λ	17 Xors, contd.	24
	λ 1	7 Xors, cotd	25
	λ 1	7 Xors, contd	26
§3.1.:	Numerical Function	ons	26
	λΙ	mplementation of abs function	27
	3.1.3.1. Division, A	Гrilogy	27
	λΑ	A division algorithm on positive int	tegers
		by repreated subtraction	29
	3.1.3.2. Exponentiat	ion	30
	λ A	A naive integer exponation algorith	m 31
	λ Α	A better exponentiation algorithm t divide and conquer	using 31
	3.1.3.3. gcd and lo	cm	32
	λ	Naive GCD and LCM	32

§3.1.3.4. Recursive Functions	33
\(\lambda\) Factorial, Binomial and Fibbonacci 33	
§3.1.4. Mathematical Functions	34
Square root by binary search	
\(\lambda\) Log defined using Taylor Approximation 36	
λ Sin and Cos using Taylor Approximation 36	
• Newton-Raphson method	
Types as Sets	40
§4.1. Sets	40
≑ set	
≑ empty set	
⇒ singleton set	
♦ belongs	
\(\phi\) union	
intersection	
cartesian product	
\$ set exponent	
§4.2. Types	41
§4.2.1. :: is analogous to \in or \Rightarrow belongs	41
λ declaration of x	
λ declaration of y	
§4.2.2. A \rightarrow B is analogous to B^A or \Rightarrow set exponent	42
λ function	12
λ another function	
§4.2.3. (A, B) is analogous to $A \times B$ or \Rightarrow cartesian product.	42
λ type of a pair	
λ elements of a product type	
λ first component of a pair	
λ second component of a pair	
λ function from a product type	
λ another function from a product type 43	
λ function to a product type	
1 71	

	λ elements of unit type	
§4.2.5.	No intersection of Types	4
§4.2.6.	No = union of Types	4
	Disjoint Union of Sets	
0	♦ disjoint union	
§4.2.8.	Either A B is analogous to $A \sqcup B$ or \Rightarrow disjoint union4	<u>1</u> 5
	λ elements of an either type	
	λ function to an either type	
	\(\) function from an either type \(\) 46	
	λ another function from an either type $\dots 47$	
§4.2.9.	The Maybe Type4	<u>1</u> 7
	λ naive reciprocal	
	λ reciprocal using either	
	A function to a maybe type	
	λ elements of a maybe type	
	λ function from a maybe type 49	
§4.2.10	O. Void is analogous to {} or • empty set	19
0		
.		
	roduction to Lists	50
	oe of List	
	ating Lists	
	Empty List 5	
	Arithmetic Progression 5	
	actions on Lists	
	Comprehension	
§5.4.1.	Cons or (:) 5	52
	λ pattern matching lists	
§5.5. Len	ıgth	. 52
	№ length of list	
§5.5.1.	Concatenate or (++)	3
	λ concatenation of lists	
§5.5.2.	Head and Tail	3
	λ head of list	
	λ tail of list	

	λ uncons of list	
§5.5.3. Take and	Drop	55
	λ take from list	
	λ drop from list	
§5.5.4. Elem		56
, ,		
•	ıction for Lists	
	structural induction for lists	
8. Optimization		59
	λ naive reverse60	
	λ optimized reverse	
	λ naive splitAt	
	λ optimized splitAt 61	
O Lista as Crystary		(1
	Trees	
Polymorphis	sm and Higher Order Functions	63
Polymorphis 1. Polymorphism	sm and Higher Order Functions tion has always been about shape and behvaiour ar	63
Polymorphis 1. Polymorphism		63
Polymorphis 1. Polymorphism	tion has always been about <i>shape</i> and <i>behvaiour</i> ar	63
Polymorphis 1. Polymorphism	tion has always been about <i>shape</i> and <i>behvaiour</i> ar *\times squaring all elements of a list	63
Polymorphis 1. Polymorphism	tion has always been about <i>shape</i> and <i>behvaiour</i> ar	63
Polymorphis 1. Polymorphism	tion has always been about <i>shape</i> and <i>behvaiour</i> ar *\lambda squaring all elements of a list	63
Polymorphism 9.1. Polymorphism §6.1.1. Classificat	tion has always been about <i>shape</i> and <i>behvaiour</i> ar	63 nyway . 63
Polymorphism 9.1. Polymorphism §6.1.1. Classificat	tion has always been about <i>shape</i> and <i>behvaiour</i> ar	63 nyway . 63
Polymorphism 9.1. Polymorphism §6.1.1. Classificat	tion has always been about <i>shape</i> and <i>behvaiour</i> are \$\lambda\$ squaring all elements of a list	63 nyway . 63
Polymorphism 9.1. Polymorphism §6.1.1. Classificat	tion has always been about <i>shape</i> and <i>behvaiour</i> are a squaring all elements of a list	63 nyway . 63
Polymorphism §6.1.1. Classificat	tion has always been about <i>shape</i> and <i>behvaiour</i> are squaring all elements of a list	63 nyway . 63
Polymorphism §6.1.1. Classificat	tion has always been about shape and behvaiour are squaring all elements of a list	63 nyway . 63
Polymorphism §6.1.1. Classificate §6.1.2. A Taste of 9.2. Higher Order F	tion has always been about shape and behvaiour are	
Polymorphism §6.1.1. Classificat §6.1.2. A Taste of	tion has always been about shape and behvaiour are squaring all elements of a list	
Polymorphism §6.1.1. Classificat §6.1.2. A Taste of 2.2. Higher Order F §6.2.1. Currying	tion has always been about <i>shape</i> and <i>behvaiour</i> are	
Polymorphism §6.1.1. Classificat §6.1.2. A Taste of 2.2. Higher Order F §6.2.1. Currying	tion has always been about shape and behvaiour are squaring all elements of a list	
Polymorphism §6.1.1. Classificat §6.1.2. A Taste of 2.2. Higher Order F §6.2.1. Currying	tion has always been about <i>shape</i> and <i>behvaiour</i> ar	

	λ operator precedence	1
§6.2.3.	A Short Note on Type Inference	71
§6.2.4.	Higher Order Functions on Maybe Type : A Case Stu	ıdy 72
	à maybeMap	73
Adv	anced List Operations	76
§7.1. adva	anced lists (feel free to change it)	76
§7.1.1.	List Comprehensions	76
	Defining map using pattern matching and list comprehension	1 76
	Defining filter using pattern matching an list comprehension	d 76
	Defining cartisian product using pattern matching and list comprehension	77
	A naive way to get pythogorean triplets 7	7
	A mid way to get pythogorean triplets 7	7
		78
	A The merge function of mergesort	78
	An implementation of mergesort	79
	An implementation of Quick Sort	30
§7.1.2.	Zip it up!	82
	1 Implementation of zip function	22
	A Implementation of zipWith function 8	22
	The zipWith fibonnaci	3
	Folding, Scaning and The Gate to True Powers 1.3.1. Orgami of Code!	
37.	Definition of foldr	
	λ Definition of foldr1	
	Definition of foldl and foldl1	
	à Implementation of unfoldr	
	à list of primes using unfoldr	
	λ Space to write the definition of sublists . 9	
87	1.3.2. Numerical Integration	
37.	Naive Integration	
	Naive Integration without repeated computation9	

	λ An optimalized function for numerica	1	
		. 97	
	§7.1.3.3. Time to Scan		
	÷ Scans		
C	Segmented Scan		_
37	.1.4. Excercises		1
	Introduction to Datatypes	1	102
§8.1.	Datatypes (Once Again)		102
	÷ Types 1	. 102	
	÷ Types 2	. 102	
§8.2.	Type Synonyms		103
	λ type aliases	. 103	
§8.3.	Finite Types		103
	λ finite types		
	Product Types		
	Parametric Types		
88.6.	Sum Types	• • • • • • • • • • • • • • • • • • • •	106
	Computation as Reduction	1	108
§9.1.	computation (feel free to change it)		108
	1		
	Complexity		100
	Complexity		109
§10.1.	complexity (feel free to change it)	• • • • • • • • • • • • • • • • • • • •	109
	Advanced Data Structures	1	110
§11.1.	post-complexity data types (feel free to change it)		110
	Typa Classes		111
0	Type Classes		111
312.1.	typeclasses (feel free to change it)	•••••	111
	Monads	1	112

	Haskell for C	MI
§13.1. Monad (feel free to change it)	1	12

Basic Theory

Ryan Hota, Shubh Sharma, Arjun Maneesh Agarwal

§1.1. Precise Communication (better name suggestion always welcome)

Haskell (along a lot of programming) and Mathematics, both involve communicating an idea in a language that is precise enough for them to be understood without ambiguity.

The main difference between mathematics and haskell is who reads what we write.

When writing any form of mathematical expression, it is the expectation that it is meant to be read by humans, and convince them of some mathematical proposition.

On the other hand, haskell code is not *primarily* meant to be read by humans, but rather by machines. The computer reads haskell code, and interprets it into steps for manipulating some expression, or doing some action.

When writing mathematics, we can choose to be a bit sloppy and hand-wavy with our words, as we can rely to some degree on the imagination and pattern-sensing abilities of the reader to fill in the gaps.

However, in context of Haskell, computers, being machines, are extremely stupid. Unless we spell out the details for them in excruciating detail, they are not going to understand what we want them to do.

Since in this course we are going to be writing for computers, we need to ensure that our writing is very precise, correct and generally **idiot-proof**. (Because, in short, computers are idiots)

In order to practice this more formal style of writing required for **haskell code**, the first step we can take is to know how to write our familiar **mathematics** more formally.

§1.2. The Building Blocks

The language of writing mathematics is fundamentally based on two things -

- **Symbols:** such as $0, 1, 2, 3, x, y, z, n, \alpha, \gamma, \delta, \mathbb{N}, \mathbb{Q}, \mathbb{R}, \in, <, >, f, g, h, \Rightarrow, \forall, \exists$ etc. Along with:
- Expressions: which are sentences or phrases made by chaining together these symbols, such as
 - $x^3 \cdot x^5 + x^2 + 1$
 - f(g(x,y), f(a,h(v),c), h(h(h(n))))
 - $\qquad \qquad \forall \alpha \in \mathbb{R} \,\, \exists L \in \mathbb{R} \,\, \forall \varepsilon > 0 \,\, \exists \delta > 0 \,\, \mid x \alpha \mid <\delta \Rightarrow \mid f(x) f(\alpha) \mid <\varepsilon \,\, \text{etc}$

§1.3. Values

mathematical value

A mathematical **value** is a single and specific well-defined mathematical object that is constant, i.e., does not change from scenario to scenario nor represents an arbitrary object.

The following examples should clarify further.

Examples include -

• The real number π

- The order < on \mathbb{N}
- The function of squaring a real number : $\mathbb{R} \to \mathbb{R}$
- The number of non-trivial zeroes of the Riemann Zeta function

Therefore we can see that relations and functions can also be **values**, as long as they are constant, specific, and not scenario-dependent.

In fact, as we see in the last example, even if we don't know what the exact value is, we can still know that it is **some value**,

as it is a constant, even though it is an unknown constant.

§1.4. Variables

mathematical variable

A mathematical variable is a symbol or chain of symbols meant to represent a

*** mathematical value** that is arbitrary in some way, usually as a way to show that whatever process follows can be carried out with any arbitrary value.

The following example should clarify further.

For example, consider the following theorem -

Theorem Adding 1 to a natural number makes it bigger.

Proof Take n to be an arbitrary natural number.

We know that 1 > 0.

Adding n to both sides of the preceding inequality yields

$$n+1 > n$$

Hence Proved!!

Here, n is a variable as it isn't any specific value, but rather an arbitrary instance of a certain type of value.

It has been used to show a certain fact that holds for any natural number.

§1.5. Well-Formed Expressions

Consider the expression -

$$xyx \Longleftrightarrow \forall \Rightarrow f(\Leftrightarrow > \vec{v})$$

It is an expression as it **is** a bunch of symbols arranged one after the other, but the expression is obviously meaningless.

So what distinguishes a meaningless expression from a meaningful one? Wouldn't it be nice to have a systematic way to check whether an expression is meaningful or not?

Indeed, that is what the following definition tries to achieve - a systematic method to detect whether an expression is well-structured enough to possibly convey any meaning.

* well-formed mathematical expression

Well-formed expressions, like love, is one of those things which is easier to identify than to describe.

The following is a procedure to check if a given expression e is **well-formed**:

- first check whether e is a:
 - = mathematical value, or;
 - * # mathematical variable

in which cases *e* passes the check and is an expression, otherwise;

- check whether e is of the form $f(e_1, e_2, e_3, ..., e_n)$, where
 - f is a function (which can be either a = mathematical value or = mathematical variable)
 - which takes n inputs,
 - $e_1, e_2, e_3...e_n$ are all well-formed expressions which are valid inputs to f.

Now we can define a Well-formed expressions as any expression that satisfies our procedure.

Remark: (the function f can be a \Rightarrow mathematical value or \Rightarrow mathematical variable)

Let us use this defining procedure to check if $x^3 \cdot x^5 + x^2 + 1$ is a well-formed expression. (We will skip the check of whether something is a valid input or not, as that notion is still not very well-defined for us.)

 $x^3 \cdot x^5 + x^2 + 1$ is + applied to the inputs $x^3 \cdot x^5$ and $x^2 + 1$.

Thus we need to check that $x^3 \cdot x^5$ and $x^2 + 1$ are well-formed expressions which are valid inputs to +.

 $x^3 \cdot x^5$ is · applied to the inputs x^3 and x^5 .

Thus we need to check that x^3 and x^5 are well-formed expressions.

 x^3 is ()³ applied to the input x.

Thus we need to check that x is a well-formed expression.

x is a well-formed expression, as it is a \Rightarrow mathematical variable.

 x^5 is ()⁵ applied to the input x.

Thus we need to check that x is a well-formed expression.

x is a well-formed expression, as it is a \Rightarrow mathematical variable.

 $x^2 + 1$ is + applied to the inputs x^2 and 1.

Thus we need to check that x^2 and 1 are well-formed expressions.

 x^2 is ()² applied to the input x.

Thus we need to check that x is a well-formed expression.

x is a well-formed expression, as it is a \Rightarrow mathematical variable.

1 is a well-formed expression, as it is a 🛊 mathematical value.

Done!

x checking well-formedness of mathematical expression

Check whether f(g(x,y), f(a,h(v),c), h(h(h(n)))) is a well-formed expression or not.

§1.6. Defining Functions

Functions are a very important tool in mathematics and they form the foundations of Haskell programming.

Thus, it is very helpful to have a deeper understanding of how they are defined.

§1.6.1. Using Expressions

In its simplest form, a definition of a function is made up of a left-hand side, ':=' in the middle¹, and a right-hand side.

On the left we write the name of the function followed by a number of variables which represent its inputs.

In the middle we write ':=', indicating that right-hand side is the definition of the left-hand side.

On the right, we write a ** well-formed mathematical expression using the variables of the left-hand side, describing to how to combine and manipulate the inputs to form the output of the function.

A few examples -

- $f(x) := x^3 \cdot x^5 + x^2 + 1$
- $\operatorname{snd}(a,b) := b$
- $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$

§1.6.2. Some Conveniences

Often in the complicated definitions of some functions, the right-hand side expression can get very convoluted, so there are some conveniences which we can use to reduce this mess.

§1.6.2.1. Where, Let

Consider the definition of the famous sine function -

$$sine : \mathbb{R} \to \mathbb{R}$$

Given an angle θ ,

let T be a right-angled triangle, one of whose angles is θ .

Let p be the length of the perpendicular of T.

Let h be the length of the hypotenuse of T.

Then

$$sine(\theta) := \frac{p}{h}$$

Here we use the variables p and h in the right-hand side of the definition, but to get their meanings one will have to look at how they are defined beforehand in the lines beginning with "let".

We can also do this using "where" instead of "let".

 $^{^{1}}$ In order to have a clear distinction between definition and equality, we use $A\coloneqq B$ to mean "A is defined to be B", and we use $A\equiv B$ to mean "A is equal to B".

Basic Theory

$$sine: \mathbb{R} \to \mathbb{R}$$
$$sine(\theta) \coloneqq \frac{p}{h}$$

,where

T := a right-angled triangle with one angle $== \theta$

p :=the length of the perpendicular of T

h :=the length of the hypotenuse of T

Here we use the variables p and h in the right-hand side of the definition, but to get their meanings one will have to look at how they are defined after "where".

§1.6.2.2. Anonymous Functions

A function definition such as

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) := x^3 \cdot x^5 + x^2 + 1$$

which, for convenience, can be rewritten as -

$$(x \mapsto x^3 \cdot x^5 + x^2 + 1) : \mathbb{R} \to \mathbb{R}$$

Notice that we did not use the symbol f, which is the name of the function, which is why this style of definition is called "anonymous".

Also, we used \mapsto in place of :=

This style is particularly useful when we (for some reason) do not want name the function.

This notation can also be used when there are multiple inputs.

Consider -

$$\begin{aligned} \text{harmonicSum}: \mathbb{R}_{>0} \times \mathbb{R}_{>0} &\to \mathbb{R}_{>0} \\ \text{harmonicSum}(x,y) &\coloneqq \frac{1}{x} + \frac{1}{y} \end{aligned}$$

which, for convenience, can be rewritten as -

$$\left(x, y \mapsto \frac{1}{x} + \frac{1}{y}\right) : \mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}_{>0}$$

§1.6.2.3. Piecewise Functions

Sometimes, the expression on the right-hand side of the definition needs to depend upon some condition, and we denote that in the following way -

$$< \operatorname{functionName} > (x) \coloneqq \begin{cases} < \operatorname{expression}_1 > \; ; \ \operatorname{if} < \operatorname{condition}_1 > \\ < \operatorname{expression}_2 > \; ; \ \operatorname{if} < \operatorname{condition}_2 > \\ < \operatorname{expression}_3 > \; ; \ \operatorname{if} < \operatorname{condition}_3 > \\ \cdot \\ \cdot \\ < \operatorname{expression}_n > \; ; \ \operatorname{if} < \operatorname{condition}_n > \end{cases}$$

For example, consider the following definition -

$$\operatorname{signum}(x) \coloneqq \begin{cases} +1 \; ; \; \text{if } x \; > \; 0 \\ \\ 0 \; ; \; \text{if } x == 0 \\ \\ -1 \; ; \; \text{if } x \; < \; 0 \end{cases}$$

The "signum" of a real number tells the "sign" of the real number; whether the number is positive, zero, or negative.

§1.6.2.4. Pattern Matching

Pattern Matching is another way to write piecewise definitions which can work in certain situations.

For example, consider the last definition -

signum(x) :=
$$\begin{cases} +1 \ ; \text{ if } x > 0 \\ 0 \ ; \text{ if } x == 0 \\ -1 \ ; \text{ if } x < 0 \end{cases}$$

which can be rewritten as -

$$\operatorname{signum}(0) \coloneqq 0$$
$$\operatorname{signum}(x) \coloneqq \frac{x}{|x|}$$

This definition relies on checking the form of the input.

If the input is of the form "0", then the output is defined to be 0.

For any other number x, the output is defined to be $\frac{x}{|x|}$

However, there might remain some confusion -

If the input is "0", then why can't we take x to be 0, and apply the second line $(\operatorname{signum}(x) := \frac{x}{|x|})$ of the definition?

To avoid this confusion, we adopt the following convention -

Given any input, we start reading from the topmost line to the bottom-most, and we apply the first applicable definition.

So here, the first line (signum(0) := 0) will be used as the definition when the input is 0.

§1.6.3. Recursion

A function definition is recursive when the name of the function being defined appears on the right-hand side as well.

For example, consider defining the famous fibonacci function -

$$\begin{split} F:\mathbb{N} &\to \mathbb{N} \\ F(0) &\coloneqq 1 \\ F(1) &\coloneqq 1 \\ F(n) &\coloneqq F(n-1) + F(n-2) \end{split}$$

§1.6.3.1. Termination

But it might happen that a recursive definition might not give a final output for a certain input.

For example, consider the following definition -

$$f(n) \coloneqq f(n+1)$$

It is obvious that this definition does not define an actual output for, say, f(4).

However, the previous definition of F obviously defines a specific output for F(4) as follows -

$$F(4) = F(3) + F(2)$$

$$= (F(2) + F(1)) + F(2)$$

$$= ((F(1) + F(0)) + F(1)) + F(2)$$

$$= ((1 + F(0)) + F(1)) + F(2)$$

$$= ((1 + 1) + F(1)) + F(2)$$

$$= (2 + F(1)) + F(2)$$

$$= (2 + 1) + F(2)$$

$$= 3 + F(2)$$

$$= 3 + (F(1) + F(0))$$

$$= 3 + (1 + F(0))$$

$$= 3 + 2$$

$$= 5$$

‡ termination of recursive definition

In general, a recursive definition is said to **terminate on an input** *if and only if*

it eventually gives an actual specific output for that input.

But what we cannot do this for every F(n) one by one.

What we can do instead, is use a powerful tool known as the principle of mathematical induction.

§1.6.3.2. Induction

principle of mathematical induction

If we have an infinite sequence of statements $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \dots$ and we can prove the following 2 statements -

- φ_0
- For each n, if φ_n is true, then φ_{n+1} is also true.

then all the statements $\varphi_0, \varphi_1, \varphi_2, \varphi_3, \dots$ in the sequence are true.

The above definition should be read as follows, given a sequence of formulas:

- The first one is true.
- Any formula being true, implies that the next one in the sequence is true.

Then all of the formulas in the sequence are true. Something like a chain of dominoes falling.

X Exercise

Show that n^2 is the same as the sum of first n odd numbers using induction.

§1.6.3.3. Proving Termination using Induction

So let's see the principle of mathematical induction in action, and use it to prove that

Theorem The definition of the fibonacci function F terminates for any natural number n.

Proof For each natural number n, let φ_n be the statement

" The definition of F terminates for every natural number which is $\leq n$ "

To apply the principle of mathematical induction, we need only prove the 2 requirements and we'll be done. So let's do that -

• $\langle\langle\ \varphi_0\ \rangle\rangle$

The only natural number which is ≤ 0 is 0, and F(0) := 1, so the definition terminates immediately.

• $\langle\langle$ For each n, if φ_n is true, then φ_{n+1} is also true. $\rangle\rangle$

Assume that φ_n is true.

Let m be an arbitrary natural number which is $\leq n+1$.

• $\langle \langle \text{ Case 1 } (m \leq 1) \rangle \rangle$

F(m) := 1, so the definition terminates immediately.

• $\langle \langle \text{ Case 2 } (m > 1) \rangle \rangle$

$$F(m) := F(m-1) + F(m-2),$$

and since m-1 and m-2 are both $\leq n$,

 φ_n tells us that both F(m-1) and F(m-2) must terminate.

Thus F(m) := F(m-1) + F(m-2) must also terminate.

Hence φ_{n+1} is proved!

Hence the theorem is proved!!

§1.7. Trees

Trees are a way to structure a collection of objects.

Trees are a fundamental way to understand expressions and how haskell deals with them.

Basic Theory

In fact, any object in Haskell is internally modelled as a tree-like structure.

§1.7.1. Examples of Trees

Here we have a tree which defines a structure on a collection of natural numbers -

The line segments are what defines the structure.

The following tree defines a structure on a collection of words from the English language -

§1.7.2. Making Larger Trees from Smaller Trees

If we have an object -

89

and a few trees -

we can put them together into one large tree by connecting them with line segments, like so -

§1.7.3. Formal Definition of Trees

We will adopt a similar approach to defining trees as we did with expressions, i.e., we will provide a formal procedure to check whether a mathematical object is a tree, rather than directly defining what a tree is.

‡ tree

A tree over a set S defines a meaningful structure on a collection of elements from S.

The procedure to determine whether an object is a **tree over a set** S is as follows - Given a mathematical object t,

- first check whether $t \in S$, in which case t passes the check, and is a tree over S Failing that,
- check whether t is of the form t_1 t_2 t_3 \dots t_{n-1} t_n , where
 - $p \in S$
 - and each of $t_1, t_2, t_3, ..., t_{n-1}$, and t_n is a tree over S.

Let us use this definition to check whether

is a tree over the natural numbers.

Let's start -

$$\begin{array}{c|c} 12\\ \hline \\ 23 & 10 \\ \hline \\ 14 & 78 \end{array} \text{ is of the form } \begin{array}{c} p\\ \\ \\ \\ \\ \end{array}, \text{ where } p \text{ is } 12 \text{ , } t_1 \text{ is } 23 \text{ , and } t_2 \text{ is } \begin{array}{c} 10\\ \\ \\ \\ \end{array}.$$

Of course, $12 \in \mathbb{N}$ and therefore $p \in S$.

So we are only left to check that 23 and $\begin{array}{c} 10 \\ \\ 14 \end{array}$ are trees over the natural numbers.

 $23 \in \mathbb{N}$, so 23 is a tree over \mathbb{N} by the first check.

$$10$$
 / $$\backslash$$ is of the form / $$\backslash$$, where p is 10 , $~t_1$ is $14,$ and t_2 is 78 14 $\,\,78$

Now, obviously $10 \in \mathbb{N}$, so $p \in S$.

Also, $14 \in \mathbb{N}$ and $78 \in \mathbb{N}$, so both pass by the first check.

§1.7.4. Structural Induction

In order to prove things about trees, we have a version of the principle of mathematical induction for trees -

structural induction for trees

If for each tree t over a set S, we have a statement φ_t , and we can prove the following two statements -

- For each $s \in S, \varphi_s$ is true

if $\varphi_{t_1} \;\;,\, \varphi_{t_2} \;\;,\, \varphi_{t_3} \;\;,\, \dots \;\;,\, \varphi_{t_{n-1}} \; \text{and} \; \varphi_{t_n}$ are all true, then φ_T is also true.

then φ_t is true for each tree t over S.

§1.7.5. Structural Recursion

We can also define functions on trees using a certain style of recursion.

From the definition of • tree, we know that trees are

- either of the form $s \in S$
- or of the form t_1 t_2 t_3 \dots t_{n-1} t_n

So, to define any function $(f: \text{Trees over } S \to X)$, we can divide taking the input into two cases, and define the outputs respectively.

Let's use this principle to define the function

size: Trees over
$$S \to \mathbb{N}$$

which is meant to give the number of times the elements of S appear in a tree over S.

$$size(s) := 1$$

$$\operatorname{size} \left(\underbrace{t_1 \quad t_2 \quad t_3 \quad \dots \quad t_{n-1} \quad t_n}^p \right) \coloneqq 1 + \operatorname{size}(t_1) + \operatorname{size}(t_2) + \operatorname{size}(t_3) + \dots + \operatorname{size}(t_{n-1}) + \operatorname{size}(t_n)$$

§1.7.6. Termination

Using \(\Display \) structural induction for trees, let us prove that

Theorem The definition of the function size terminates on any finite tree.

Proof For each tree t, let φ_t be the statement

" The definition of size terminates on t"

To apply 🕏 structural induction for trees, we need only prove the 2 requirements and we'll be done. So let's do that -

• $\langle \langle \ \forall s \in S, \varphi_s \text{ is true } \rangle \rangle$ size(s) := 1, so the definition terminates immediately.

Basic Theory

• $\langle \langle \text{ For each tree T of the form } \dots \text{ then } \varphi_T \text{ is also true} \rangle \rangle$

Assume that each of $\varphi_{t_1}, \ \varphi_{t_2}, \ \varphi_{t_3}, ..., \ \varphi_{t_{n-1}}, \ \varphi_{t_n}$ is true. That means that each of $\operatorname{size}(t_1), \ \operatorname{size}(t_2), \ \operatorname{size}(t_3), ..., \ \operatorname{size}(t_{n-1}), \ \operatorname{size}(t_n)$ will terminate.

Now,
$$\operatorname{size}(T) \coloneqq 1 + \operatorname{size}(t_1) + \operatorname{size}(t_2) + \operatorname{size}(t_3) + \ldots + \operatorname{size}(t_{n-1}) + \operatorname{size}(t_n)$$

Thus, we can see that each term in the right-hand side terminates.

Therefore, the left-hand side "size(τ)",

being defined as a well-defined combination of these terms,

must also terminate.

Hence φ_T is proved!

Hence the theorem is proved!!

§1.8. Why Trees?

But why care so much about trees anyway? Well, that is mainly due to the previously mentioned fact - "In fact, any object in Haskell is internally modelled as a tree-like structure."

But why would Haskell choose to do that? There is a good reason, as we are going to see.

§1.8.1. The Problem

Suppose we are given that x=5 and then asked to find out the value of the expression $x^3 \cdot x^5 +$ $x^2 + 1$.

How can we do this?

Well, since we know that $x^3 \cdot x^5 + x^2 + 1$ is the function + applied to the inputs $x^3 \cdot x^5$ and $x^2 + 1$, we can first find out the values of these inputs and then apply + on them!

Similarly, as long as we can put an expression in the form $f(x_1, x_2, x_3, ..., x_{n-1}, x_n)$, we can find out its value by finding out the values of its inputs and then applying f on these values.

So, for dumb Haskell to do this (figure out the values of expressions, which is quite an important ability), a vital requirement is to be able to easily put expressions in the form $f(x_1, x_2, x_3, ..., x_{n-1}, x_n)$.

But this can be quite difficult - In $x^3 \cdot x^5 + x^2 + 1$, it takes our human eyes and reasoning to figure it out fully, and for long, complicated expressions it will be even harder.

§1.8.2. The Solution

One way to make this easier to represent the expression in the form of a tree -

For example, if we represent $x^3 \cdot x^5 + x^2 + 1$ as

$$x^3 \cdot x^5 \quad x^2 + 1$$

, it becomes obvious what the function is and what the inputs are to which it is applied.

In general, we can represent the expression $f(x_1, x_2, x_3, ..., x_{n-1}, x_n)$ as

Basic Theory

But why stop there, we can represent the sub-expressions (such as $x^3 \cdot x^5$ and $x^2 + 1$) as trees too -

and their sub-expressions can be represented as trees as well -

This is known as the as an Abstract Syntax Tree, and this is (approximately) how Haskell stores expressions, i.e., how it stores everything.

• abstract syntax tree

The **abstract syntax tree of a well-formed expression** is defined by applying the "function" **AST** to the expression.

The "function" **AST** is defined as follows -

 $\mathsf{AST} : \mathsf{Expressions} \to \mathsf{Trees}$ over values and variables

AST(v) := v, if v is a value or variable

$$AST(f(x_1, x_2, x_3, ..., x_{n-1}, x_n)) :=$$

Installing Haskell

Ryan Hota, Shubh Sharma, Arjun Maneesh Agarwal

§2.1. Installation

§2.1.1. General Instructions

- 1. This may take a while, so make sure that you have enough time on your hands.
- 2. Make sure that your device has enough charge to last you the entire installation process.
- 3. Make sure that you have a strong and stable internet connection.
- 4. Make sure that any antivirus(es) that you have on your device is fully turned off during the installation process. You can turn it back on immediately afterwards.
- Make sure to follow the following instructions IN ORDER.
 Make sure to COMPLETE EACH STEP fully BEFORE moving on to the NEXT STEP.

§2.1.2. Choose your Operating System

§2.1.2.1. Linux

1. Install Haskell

- 1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.
- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the directory haskellSupport/haskell/installation/Linux in your text editor.
 - (We have more support for Visual Studio Code, but any text editor should do)
- 4. Open the terminal of your text editor and ensure that current directory is Linux.
- 5. Type in installHaskell in the terminal.
- 6. This may take a while.
- 7. You will know installation is complete at the point when it says Press any key to exit.
- 8. Restart (shut down and open again) your device.

2. Install HaskellSupport

1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.

- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the directory haskellSupport/haskell/installation/Linux in your text editor.

(We have more support for Visual Studio Code, but any text editor should do)

- 4. Open the terminal of your text editor and ensure that current directory is Linux.
- 5. Type in installHaskellSupport in the terminal.
- 6. This may take a while.
- 7. You will know installation is complete at the point when it says haskellSupport installation complete.
- 8. Restart (shut down and open again) your device.

§2.1.2.2. MacOS

1. Install Haskell

- 1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.
- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the folder haskellSupport in Finder.
- 4. Open the folder haskell in Finder.
- 5. Open the folder installation in Finder.
- 6. Right click on the folder MacOS in Finder, and select Open in Terminal.
- 7. Type in chmod +x installHaskell.command in the terminal.
- 8. Close the terminal window.
- 9. Open the folder MacOS in Finder.
- 10. Double-click on installHaskell.command.
- 11. This may take a while.
- 12. You will know installation is complete at the point when it says Press any key to exit.
- 13. Restart (shut down and open again) your device.

2. Install Visual Studio Code

Get it here.

3. Install HaskellSupport.

- 1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.
- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the folder haskellSupport in Finder.
- 4. Open the folder haskell in Finder.
- 5. Open the folder installation in Finder.

- 6. Right click on the folder MacOS in Finder, and select Open in Terminal.
- 7. Type in chmod +x installHaskellSupport.command in the terminal.
- 8. Close the terminal window.
- 9. Open the folder MacOS in Finder.
- 10. Double-click on installHaskellSupport.command.
- 11. This may take a while.
- 12. You will know installation is complete if a new window pops up with helloWorld written in it.
- 13. Restart (shut down and open again) your device.

§2.1.2.3. Windows

1. Install Haskell.

- 1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.
- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the folder haskellSupport in File Explorer.
- 4. Open the folder haskell in File Explorer.
- 5. Open the folder installation in File Explorer.
- 6. Open the folder Windows in File Explorer.
- 7. Double-click on installHaskell.
- 8. This may take a while.
- 9. You will know installation is complete at the point when it says Press any key to exit.
- 10. Restart (shut down and open again) your device.

2. Install Visual Studio Code

Get it here.

3. Install HaskellSupport.

- 1. Read the general instructions very carefully, and ensure that you have complied with all the requirements properly.
- 2. Close all open windows and running processes other than wherever you are reading this.
- 3. Open the folder haskellSupport in File Explorer.
- 4. Open the folder haskell in File Explorer.
- 5. Open the folder installation in File Explorer.
- 6. Open the folder Windows in File Explorer.
- 7. Double-click on installHaskellSupport.
- 8. This may take a while.

Installing Haskell

- 9. You will know installation is complete if a new window pops up with helloWorld written in it.
- 10. Restart (shut down and open again) your device.

Basic Syntax

Arjun Maneesh Agarwal

§3.1. Bool, Int, Integer and more (feel free to change it)

§3.1.1. Introduction to Types

Haskell is a strictly typed language. This means, Haskell needs to strictly know what the type of **anything** and everything is.

But one would ask here, what is type? According to Cambridge dictionary,

Type refers to a particular group of things that share similar characteristics and form a smaller division of a larger set

Haskell being strict implies that it needs to know the type of everything it deals with. For example,

- The type of e is Real.
- The type of 2 is **Int**, for integer.
- The type of 2 can also be Real. But the 2 :: Int and 2 :: Real are different, because they have different types.
- The type of $x \mapsto |x|$ is Real \to Int, because it takes a real number to an integer.
- We write $(x \mapsto \lfloor x \rfloor)e = 2$ By applying a function of type Real \rightarrow Int to something of type Real we get something of type Int
- The type of $x \mapsto x + 2$, when it takes integers, is Int \rightarrow Int.
- We cannot write $(x \mapsto x + 2)(e)$, because the types don't match. The function wants an input of type Int but e is of type Real. We could define a new function $x \mapsto x + 2$ of type Real \to Real, but it is a different function.
- Functions can return functions. Think of (+) as a function that takes an Int, like 3, and returns a function like $x \mapsto x+3$, which has type Int \to Int Concretely, (+) is $x \mapsto (y \mapsto y+x)$. This has type Int \to (Int \to Int).
- We write (+)(3)(4) = 7. First, (+) has type Int \rightarrow (Int \rightarrow Int), so (+)(3) has type Int \rightarrow Int. So, (+)(3)(4) should have type Int.
- The type of $x\mapsto 2*x$ is Int \to Int when it takes integers to integers. It can also be Real \to Real when it takes reals to reals. These are two different functions, because they have different types. But if we make a 'super type' or **typeclass** called Num is which is a property which both Int and Real have, then we can define $x\mapsto 2*x$ more generally as of type Num $a \Rightarrow a \to a$ which reads, for a type a with property(belonging to) Num, the function $x\mapsto 2*x$ has type $a\to a$
- Similarly, one could define a generalized version of the other functions we described.

A study of types and what we can infer from them(and how we can infer them) is called, rightfully so, **Type Theory**. It is deeply related to computational proof checking and formal verification. While we will not study about it in too much detail in this course, it is its own subject and is covered in detail in other courses.

While we recommend, at least for the early chapters, to declare the types of your functions explicitly ex. (+) :: Int \rightarrow Int; Haskell has a type inference system² which is quite accurate and tries to go for the most general type. This can be both a blessing and curse, as we will see in a few moments.

This chapter will deal (in varying amounts of details) with the types Bool, Int, Integer, Float, Char and String.

Bool is a type which has only two valid values, True and False. It most commonly used as output for indicator functions(indicate if something is true or not).

```
Int and Integer are the types used to represent integers.
```

Integer can hold any number no matter how big, up to the limit of your machine's memory, while Int corresponds to the set of positive and negative integers that can be expressed in 32 or 64 bits(based on system) with the bounds changing depending on implementation (guaranteed at least -2^29 to 2^29). Going outside this range may give weird results. Ex. product [1..52] :: Int gives a negative number which cannot realistically be 52!. On the other hand, product [1..52] :: Integer gives indeed the correct answer.

The reason for Int existing despite its bounds and us not using Integer for everything is related to speed and memory. Using the former is faster and uses lesser memory.

```
>>> product [1..52] :: Int
-8452693550620999680
(0.02 secs, 87,896 bytes)
>>> product [1..52] :: Integer
8065817517094387857166063685640376697528950544088327782400000000000
(0.02 secs, 123,256 bytes)
```

Almost 1.5 times more memory is used in this case.

An irrefutable fact is that computers are fundamentally limited by the amount of data they can keep and humans are fundamentality limited by the amount of time they have. This implies that if, we can optimize for speed and space, we should do so. We will talk some more about this in [chapter 9], but the rule of thumb is that more we know about the input, the more we can optimize. Knowing that it will be between, say -2^{29} to 2^{29} , allows for some optimizations which can't be done with arbitrary length. We (may) see some of these optimizations later.

²Damas-Hindley-Milner Type Inference is the one used in Haskell at time of writing.

Rational, Float and Double are the types used to deal with non-integral numbers. The former is used for fractions or rationals while the latter for reals with varying amount of precision. Rationals are declared using % as the viniculum(the dash between numerator and denominator). For example 1%3, 2%5, 97%31.

Float or Floating point contains numbers with a decimal point with a fixed amount of memory being used for their storage. The term floating-point comes from the fact that the number of digits permitted after the decimal point depends upon the magnitude of the number. The same can be said for <code>Double</code> or <code>Double</code> Precision Floating Point which offers double the space beyond the point, at cost of more memory. For example

```
>>> sqrt 2 :: Float
1.4142135
>>> sqrt 99999 :: Float
316.2262
>>> sqrt 2 :: Double
1.4142135623730951
>>> sqrt 99999 :: Double
316.226184874055
>>> sqrt 999999999 :: Double
31622.776585872405
```

We can see that the prescission of $\sqrt{99999}$ is much lower than that of $\sqrt{2}$. We will use Float for most of this book.

Char are the types used to represent arbitrary Unicode characters. This includes all numbers, letters, white spaces(space, tab, newline etc) and other special characters.

String is the type used to represent a bunch of characters chained together. Every word, sentence, paragraph is either a string or a collection of them.

In haskell, Strings and Chars are differentiated using the type of quotation used. "hello" :: String as well as "H" :: String but 'H' :: Char . Unlike some other languages, like say Python, we can't do so interchangeably. Double Quotes for Strings and Single Quotes for Chars.

Similer to many modern languages, In Haskell, String is just a synonym for a list of characters that is String is same as [Char]. This allows string manipulation to be extremely easy in Haskell and is one of the reason why Pandoc, a universal document converter and one of the most used software in the world, is written in Haskell. We will try to make a mini version of this at the end of the chapter.

```
To recall, a tuple is a length immutable, ordered multi-typed data structure. This means we can store a fixed number of multiple types of data in an order using tuples. Ex. (False, True) :: (Bool, Bool) (False, 'a', True) :: (Bool, Char, Bool) ("Yes", 5.21, 'a') :: (String, Float, Char)

A list is a length mutable, ordered, single typed data structure. This means we can store an arbitrary number things of the same type in a certain order using lists. Ex. [False, True, False] :: [Bool] ['a','b','c','d'] :: [Char] ["One", "Two", "Three"] :: [String]
```

§3.1.2. Logical Operations

For example -

Write Haskell code to simulate the following logical operators

- 1. NOT
- 2. OR
- 3. AND
- 4. NAND
- 5. XOR

Implementing a not operator seems the most straightforward and it indeed is. We can simply specify the output for all the cases, as there are only 2.

```
not :: Bool → Bool
not True = False
not False = True
```

The inbuilt function is also called not. We could employ a smiler strategy for or to get the following code

```
or :: Bool → Bool → Bool
or True True = True
or True False = True
or False True = True
or False False = False
```

but this is too verbose. One could write a better code using wildcards as follows

```
or :: Bool → Bool → Bool
or False False = False
or _ _ = True
```

As the first statement is checked against first, the only false case is evaluated and if it is not satisfied, we just return true. We can write this as a one liner using the if statement.

```
or :: Bool \rightarrow Bool \rightarrow Bool or a b = if (a,b) = (False, False) then False else True
```

The inbuilt operator for this is || used as False || True which evaluates to True.

How would one write such a code for and? This is left as exercise for the reader. The inbuilt operator for this is && used as True && False which evaluates to False.

Now that we already have and and not, could we make nand by just composing them? Sure.

```
nand :: Bool \rightarrow Bool \rightarrow Bool nand a b = not (a && b)
```

This also seems like as good of a time as any to introduce operation conversion and function composition. In Haskell, functions are first class citizens. It is a functional programming language after all. Given two functions, we naturally want to compose them. Say we want to make the function h(x): $x \mapsto -x^2$ and we have $g(x): x \mapsto x^2$ and $f(x): x \mapsto -x$. So we can define $h(x) := (f \circ g)(x) = f(g(x))$. In haskell, this would look like

```
negate :: Int → Int
negate x = - x

square :: Int → Int
square x = x^2

negateSquare :: Int → Int
negateSquare x = negate . square
```

We could also define negateSquare in a more cumbersome negateSquare x = negate(square x) but with complicated expressions these brackets will add up and we want to avoid them as far as possible. We will also now talk about the fact that the infix operators, like +, -, *, /, ^, &&, || etc are also deep inside functions. This means we can should be able to access them as functions(to maybe compose them) as well as make our own. And we indeed can, the method is brackets and backticks.

An operator inside a bracket is a function and a function in backticks is an operator. For example

```
>>> True && False
False
>>> (&&) True False
False
>>> f x y = x*y + x + y
>>> f 3 4
19
>>> 3 `f` 4
19
```

All this means, we could define nand simply as

```
nand :: Bool \rightarrow Bool \rightarrow Bool nand = not . (&&)
```

Furthermore, as Haskell doesn't have an inbuilt nand operator, say I want to have @@ to represent it. Then, I could write

```
(@@) :: Bool → Bool → Bool (@@) = not.(&&)
```

Finally, we need to make xor. We will now replicate a classic example of 17 ways to define it and a quick reference for a lot of the syntax.

```
λ 17 Xors
-- Notice, we can declare the type of a bunch of functions by comma
seperating them.
xor1, xor2, xor3, xor4, xor5 :: Bool \rightarrow Bool \rightarrow Bool
-- Explaining the output for each and every case.
xor1 False False = False
xor1 False True = True
xor1 True False = True
xor1 True True = False
-- We could be smarter and save some keystrokes
xor2 False b = b
xor2 b False = b
xor2 b1 b2 = False
-- This seems to to be the same length but notice, b1 and b2 are just
names never used again. This means..
xor3 False True = True
xor3 True False = True
xor3 b1 b2 = False
-- .. we can replace them with wildcards.
xor4 False True = True
xor4 True False = True
xor4 _ _ = False
-- Although, a simple observation recduces work further. Notice, we can't
replace b with a wild card here as it is used in the defination later and
we wish to refer to it.
xor5 False b = b
xor5 True b = not b
```

All the above methods basically enumerate all possibilities using increasingly more concise manners. However, can we do better using logical operators?

Basic Syntax

```
*Nors contd.

xor6, xor7, xor8, xor9 :: Bool \rightarrow Bool \rightarrow Bool \rightarrow Litrally just using the definition xor6 b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

-- Recall that the comparision operators return bools? xor7 b1 b2 = b1 \neq b2

-- And using the fact that operators are functions.. xor8 b1 b2 = (\neq) b1 b2

-- .. we can have a 4 character definition. xor9 = (\neq)
```

We could also use if .. then .. else syntax. To jog your memory, the if keyword is followed by some condition, aka a function that returns True or False, this is followed by the then keyword and a function to excute if the condition is satisfied and the else keyword and a function to execute as a if the condition is not satisfied. For example

```
*Nors, contd.

xor10, xor11 :: Bool \rightarrow Bool \rightarrow Bool

xor10 b1 b2 = if b1 = b2 then False else True

xor11 b1 b2 = if b1 \neq b2 then True else False
```

Or use the guard syntax. Similar to piecewise functions in math, we can define the function piecewise with the input changing the definition of the function, we can define guarded definition where the inputs control which definition we access. If the pattern(a condition) to a guard is met, that definition is accessed in order of declaration.

We do this as follows

Basic Syntax

```
λ 17 Xors, cotd
xor12, xor13, xor14, xor15 :: Bool \rightarrow Bool \rightarrow Bool
xor12 b1 b2
  | b1 = True = not b2 -- If b1 is True, the code acesses this definition
regardless of b2's value. The function enters the definition which matches
   | b2 = False = b1
-- Can you spot a problem in xor12? xor12 False True is not defined and
would raise the exception Non-exhaustive patterns in function xor12.
 -- This means that the pattern of inputs provided can't match with any of
the definitions. We can fix it by either being careful and matching all
the cases..
xor13 False b2 = b2 -- Notice, we can have part of the definition
unguarded before entering the guards.
xor13 True b2
   | b2 = False = True
   | b2 == True = False
xor14 b1 b2
   | b1 = b2 = False
   | b1 \neq b2 = True
 -- .. or by using the otherwise keyword, we can define a catch-all case.
If none of the patterns are matched, the function enters the otherwise
definition.
xor15 b1 b2
   | b1 = True = not b2
   | otherwise = b2
```

Finally, we can define use the case .. of .. syntax. While this syntax is rarer, and too verbose, for simple functions, we will see a lot of it later in [monads chapter]. In this syntax, the general form is

```
case <expression> of
  <pattern1> → <result1>
  <pattern2> → <result2>
...
```

The case expression evaluates the <expression>, and matches it against each pattern in order. The first matching pattern's corresponding result is returned. You can nest case expressions to match on multiple values, although it can become extreamly unreadable, rather quickly.

```
% 17 Xors, contd
xor16, xor17 :: Bool → Bool → Bool

-- We use a single case on the first input.
xor16 :: Bool → Bool → Bool
xor16 b1 b2 = case b1 of
False → b2
True → not b2

-- Or we can return to defining for every single case, just using more words.
xor17 b1 b2 = case b1 of
False → case b2 of
False → True
True → case b2 of
False → True
True → False
```

Now that we are done with this tiresome activity, and learned a lot of Haskell syntax, let's go for a ride.

X Exercise

It is a well know fact that one can define all logical operators using only nand. Well, let's do so. Redefine and, or, not, xor using only nand.

§3.1.3. Numerical Functions

A lot of numeric operators and functions come predefined in Haskell. Some natural ones are

```
>>> 7 + 3
>>> 3 + 8
>>> 97 + 32
129
>>> 3 - 7
-4
>>> 5 - (-6)
11
>>> 546 - 312
234
>>> 7 * 3
>>> 8*4
32
>>> 45 * 97
4365
>>> 45 * (-12)
-540
>>> (-12) * (-11)
132
>>> abs 10
10
>>> abs (-10)
10
```

The internal definition of addition and subtraction is discussed in the appendix while we talk about some multiplication algorithms in the time complexity chapter. For our purposes, we want it to be clear and predictable what one expects to see when any of these operators are used. Abs is also implemented in a very simple fashion.

```
Implementation of abs function
abs :: Num a \Rightarrow a \rightarrow a
abs a = if a \geqslant 0 then a else -a
```

§3.1.3.1. Division, A Trilogy

Now let's move to the more interesting operators and functions.

recip is a function which reciptocates a given numebr, but it has rather interesting type signature. It is only defined on types with the Fractional typeclass. This refers to a lot of things, but the most common ones are Rational, Float and Double. recip, as the name suggests, returns the reciprocal of the number taken as input. The type signature is recip:: Fractional $a \Rightarrow a \rightarrow a$

```
>>> recip 5
0.2
>>> k = 5 :: Int
>>> recip k
<interactive>:47:1: error: [GHC-39999] ...
```

It is clear that in the above case, 5 was treated as a Float or Double and the expected output provided. In the following case, we specified the type to be Int and it caused a horrible error. This is because

for something to be a fractional type, we literally need to define how to reciprocate it. We will talk about how exactly it is defined in < some later chapter probably 8 >. For now, once we have recip defined, division can be easily defined as

```
(/) :: Fractional a \Rightarrow a \rightarrow a \rightarrow a
x / y = x * (recip y)
```

Again, notice the type signature of (/) is Fractional $a \Rightarrow a \rightarrow a \rightarrow a$.

However, this is not the only division we have access to. Say we want only the quotient, then we have div and quot functions. These functions are often coupled with mod and rem are the respective remainder functions. We can get the quotient and remainder at the same time using divMod and quotRem functions. A simple example of usage is

```
>>> 100 `div` 7
14
>>> 100 `mod` 7
2
>>> 100 `divMod` 7
(14,2)
>>> 100 `quot` 7
14
>>> 100 `rem` 7
2
>>> 100 `quotRem` 7
(14,2)
```

One must wonder here that why would we have two functions doing the same thing? Well, they don't actually do the same thing.

X Exercise

```
From the given example, what is the difference between div and quot?

>>> 8 'div' 3
2
>>> (-8) 'div' 3
-3
>>> (-8) 'div' (-3)
2
>>> 8 'div' (-3)
-3
>>> 8 'quot' 3
2
>>> (-8) 'quot' 3
-2
>>> (-8) 'quot' (-3)
2
>>> 8 'quot' (-3)
-2
>>> 8 'quot' (-3)
```

³It is worth pointing out that one could define `recip` using `(/)` as well given 1 is defined. While this is not standard, if `(/)` is defined for a data type, Haskell does autmoatically infer the reciprocation. So technically, for a datatype to be a member of the type class `Fractional` it needs to have either reciprocation or division defined, the other is infered.

X Exercise

```
From the given example, what is the difference between mod and rem?

>>> 8 `mod` 3
2
>>> (-8) `mod` 3
1
>>> (-8) `mod` (-3)
-2
>>> 8 `mod` (-3)
-1
>>> 8 `rem` 3
2
>>> (-8) `rem` 3
-2
>>> (-8) `rem` (-3)
-2
>>> 8 `rem` (-3)
-2
>>> 8 `rem` (-3)
```

While the functions work similarly when the divisior and dividend are of the same sign, they seem to diverge when the signs don't match. The thing here is we ideally want our division algorithm to satisfy d*q+r=n, |r|<|d| where d is the divisior, n the dividend, q the quotient and r the remainder. The issue is for any $-d < r < 0 \Rightarrow 0 < r < d$. This means we need to choose the sign for the remainder.

In Haskell, mod takes the sign of the divisor(comes from floored division, same as Python's %), while rem takes the sign of the dividend (comes from truncated division, behaves the same way as Scheme's remainder or C's %.).

Basically, div returns the floor of the true divison value(recall $\lfloor -3.56 \rfloor = -4$) while quot returns the trunicated value of the true division(recall trunicate(-3.56) = -3 as we are just trunicating the decimal point off). The reason we keep both of them in Haskell is to be comfertable for people who come from either of these languages. Also, The div function is often the more natural one to use, whereas the quot function corresponds to the machine instruction on modern machines, so it's somewhat more efficient(although not much, I had to go upto 10^{100000} to even get millisecond difference in the two).

A simple excercise for us now would be implementing our very own integer division algorithm. We begin with a division algorithm for only positive integers.

```
A division algorithm on positive integers by repreated subtraction divide :: Integer \rightarrow Integer \rightarrow (Integer, Integer) divide n d = go 0 n where go q r = if r \geqslant d then go (q+1) (r-d) else (q,r)
```

Now, how do we extend it to negitives by a little bit of case handling.

An excercise left for the reader is to figure out which kind of division is this, floored or trunicated, and implement the one we haven't yourself. Let's now tal

§3.1.3.2. Exponentiation

Haskell defines for us three exponation operators, namely $(^{\land})$, $(^{\land})$, $(^{\star})$.

X Exercise

Unlike division, they have almost the same function. The difference here is in the type signature. While, infering the exact type signature was not expected, we can notice:

- • is raising genral numbers to positive integral powers. This means it makes no assumptions about if the base can be reciprocated and just produces an error if the power is negative.
- ^^ is raising fractional numbers to general integral powers. That is, it needs to be sure that the reciprocal of the base exists(negative powers) and doesn't throw an error if the power is negative.
- ** is raising numbers with floating point to powers with floating point. This makes it the most general exponation.

The operators clearly get more and more general as we go down the list but they also get slower. However, they are also reducing in accurecy and may even output Infinity in some cases. The ... means I am trunicating the output for readablity, ghci did give the compelete answer.

```
>>> 2^1000
10715086071862673209484250490600018105614048117055336074 ...
>>> 2 ^^ 1000
1.0715086071862673e301
>>> 2^10000
199506311688075838488374216268358508382 ...
>>> 2^^10000
Infinity
>>> 2 ** 10000
Infinity
```

The exact reasons for the inaccuracy comes from float conversions and approximation methods. We will talk very little about this specialist topic somewhat later.

However, something within our scope is implementing (^) ourselves.

```
A naive integer exponation algorithm

exponation :: (Num a, Integral b) ⇒ a → b → a

exponation a 0 = 1

exponation a b = if b < 0

then error "no negitive exponation"

else a * (exponation a (b-1))</pre>
```

This algorithm, while the most naive way to do so, computes 2^{100000} in mearly 0.56 seconds.

However, we could do a bit better here. Notice, to evaluate a^b , we are making b multiplications. A fact we mentioned before is that multiplication of big numbers is faster when it is balenced, that is the numbers being multiplied have similer number of digits.

So to do better, we could simply compute $a^{\frac{b}{2}}$ and then square it, given b is even, or compute $a^{\frac{b-1}{2}}$ and then square it and multiply by a otherwise. This can be done recursively till we have the solution.

The idea is simple: instead of doing b multiplications, we do far fewer by solving a smaller problem and reusing the result. While one might not notice it for smaller b's, once we get into the hundreds or thousands, this method is dramatically faster.

This algorithm brings the time to compute 2^{100000} down to 0.07 seconds.

The idea is that we are now making at most 3 multiplications at each step and there are at most $\log(b)$ steps. This brings us down from b multiplications to $3\log(b)$ multiplications. Furthermore, most of these multiplications are somewhat balenced and hence optimized.

This kind of a stratergy is called divide and conquer. You take a big problem, slice it in half, solve the smaller version, and then stitch the results together. It's a method/technique that appears a lot in Computer Science(in sorting to data search to even solving diffrential equations and training AI models) and we will see it again shortly.

Finally, there's one more minor optimization that's worth pointing out. It's a small thing, and doesn't even help that much in this case, but if the multiplication were particularly costly, say as in matrices; our exponation method could be made slightly better. Let's say we are dealing with say 2^{255} . Our current algorithm would evaluate it as:

$$2^{31} = (2^{15})^2 * 2$$

$$= ((2^7)^2 * 2)^2 * 2$$

$$= (((2^3)^2 * 2)^2 * 2)^2 * 2$$

$$= ((((2^1)^2 * 2)^2 * 2)^2 * 2)^2 * 2$$

This is a problem as the small * 2 in every bracket are unbalenced. The exact way we deal with all this is by something called 2^k arry method. Although, more often then not, most built in implementations use the divide and conquer exponentiation we studied.

```
§3.1.3.3. gcd and lcm
```

A very common function for number theoretic use cases is gcd and lcm. They are pre-defined as

```
>>> :t gcd
gcd :: Integral a ⇒ a → a → a
>>> :t lcm
lcm :: Integral a ⇒ a → a → a
>>> gcd 12 30
6
>>> lcm 12 30
60
```

We will now try to define these functions ourselves.

A naive way to do so would be:

```
λ Naive GCD and LCM
-- Uses a brute-force approach starting from the smaller number and
counting down
gcdNaive :: Integer \rightarrow Integer \rightarrow Integer
gcdNaive a ∅ = a
gcdNaive a b =
    if b > a
        then gcdNaive b a -- Ensure first argument is greater
        else go a b b
    -- Start checking from the smaller of the two numbers
    go x y current =
         if (x \mod \ current = 0) \& (y \mod \ current = 0)
             then current
             else go x y (current - 1)
 -- Uses a brute-force approach starting from the larger number and
counting up
lcmNaive :: Integer → Integer → Integer
lcmNaive a b =
    if b > a
         then lcmNaive b a -- Ensure first argument is greater
         else go a b a
  where
     -- Start checking from the larger of the two numbers
    go x y current =
        if current `mod` y = 0
            then current
             else go x y (current + x)
```

These both are quite slow for most practical uses. A lot of cryptography runs on computer's ability to find gcd and lcm fast enough. If this was the fastest, we would be cooked. So what do we do? Call some math.

A simple optimization could be using $p * q = \gcd(p, q) * \operatorname{lcm}(p, q)$. This makes the speed of both the operations same, as once we have one, we almost already have the other.

Let's say we want to find $g := \gcd(p,q)$ and p > q. That would imply p = dq + r for some r < q. This means $g \mid p,q \Rightarrow g \mid q,r$ and by the maximality of $g,\gcd(p,q)=\gcd(q,r)$. This helps us out a lot as we could eventually reduce our problem to a case where the larger term is a multiple of the smaller one and we could return the smaller term then and there. This can be implemented as:

```
    Fast GCD and LCM
    gcdFast :: Integer → Integer → Integer
    gcdFast p 0 = p -- Using the fact that the moment we get q | p, we will
    reduce to this case and output the answer.
    gcdFast p q = gcdFast q (p `mod` q)

lcmFast :: Integer → Integer
    lcmFast p q = (p * q) `div` (gcdFast p q)
```

We can see that this is much faster. The exact number of steps or time taken is a slightly involved and not very related to what we cover. Intrested readers may find it and related citrations here.

This algorithm predates computers by approximatly 2300 years. If was first decribed by Euclid and hence is called the Euclidean Algorithm. While, faster algorithms do exist, the ease of implementation and the fact that the optimizations are not very dramatic in speeding it up make Euclid the most commonly used algorithm.

While we will see these class of algorithms, including checking if a number is prime or finding the prime factorization, these require some more weapons of attack we are yet to devlop.

§3.1.3.4. Recursive Functions

A lot of mathematical functions are defined recursivly. We have already seen a lot of them in < chapter 1>. Factorial, binomials and fibbonacci are common examples. We will implement them here for the the sake of completness, although I don't think converting them from paper to code is hard, we will still do it.

```
Factorial, Binomial and Fibbonacci
factorial :: Integer → Integer
factorial 0 = 1
factorial n = n * factorial (n-1)
nCr :: Integer → Integer → Integer
nCr _ 0 = 1
nCr n r
  |r > n
  n = r
             = 0
  |otherwise = (nCr (n-1) (r-1)) + (ncr (n-1) r)
fibbonacci :: Integer → Integer
fibbonacci n = fst (go n) where
  go 0 = (1,0)
  go 1 = (1, 1)
  go n = (a + b, a) where (a,b) = go (n-1)
```

You might remember that we don't directly translate the defination of fibbonacci as doing so would be extreamly inafficent, as we would be recomputing values left and right. A much simpler way is to carry the data we need. And that is what we do here.

§3.1.4. Mathematical Functions

We will now talk about mathematical functions like log, sqrt, sin, asin etc. We will also take this oppurtunity to talk about real exponation. To begin, Haskell has a lot of pre-defined functions.

```
>>> sqrt 81
9.0
>>> log (2.71818)
0.9999625387017254
>>> log 4
1.3862943611198906
>>> log 100
4.605170185988092
>>> logBase 10 100
2.0
>>> exp 1
2.718281828459045
>>> exp 10
22026.465794806718
>>> pi
3.141592653589793
>>> sin pi
1.2246467991473532e-16
>>> cos pi
-1.0
>>> tan pi
-1.2246467991473532e-16
>>> asin 1
1.5707963267948966
>>> asin 1/2
0.7853981633974483
>>> acos 1
0.0
>>> atan 1
0.7853981633974483
```

pi is a predefined variable inside haskell. It carries the value of π upto some decimal places based on what type it is forced in.

```
>>> a = pi :: Float
>>> a
3.1415927
>>> b = pi :: Double
>>> b
3.141592653589793
```

All the functions above have the type signature Fractional $a \Rightarrow a \rightarrow a$ or for our purposes Float \rightarrow Float. Also, notice the functions are not giving exact answers in some cases and instead are giving approximations. These functions are quite unnatural for a computer, so we surely know that the computer isn't processing them. So what is happening under the hood?

Imagine you're playing a number guessing game with a friend.

They are thinking of a number between 1 and 100, and every time you guess, they'll say whether your guess is too high, too low, or correct.

You don't start at 1. You start at 50. Why? Because 50 cuts the range exactly in half. Depending on whether the answer is higher or lower, you can now ignore half the numbers.

Next guess? Halfway through the remaining half. Then half of that. And so on.

That's binary search: each step cuts the list in half, so you zoom in on the answer quickly.

Here's how it works:

- Start in the middle of a some ordered list.
- If the middle item is your target, you're done.
- If it's too big, repeat the search on the left half.
- If it's too small, repeat on the right half.

Keep halving until you find it - or realize it's not there.

While using a raw binery search for roots would be impossible as the exact answer is seldom rational and hence, the algorithm would never terminate. So instead of searching for the exact root, we look for an approximation by keeping some tolerence. Here is what it looks like:

```
Square root by binary search
bsSgrt :: Float → Float → Float
bsSqrt tolerance n
  \mid n > 1 = binarySearch 1 n
  | otherwise = binarySearch 0 1
  where
    binarySearch low high
       | abs (guess * guess - n) ≤ tolerance
                                                     = guess
       guess * guess > n
                                                     = binarySearch low
guess
       otherwise
                                                     = binarySearch guess
high
      where
        guess = (low + high) / 2
```

We leave it as an excercise to extend this to a cube root.

The internal implementation sets the tolerance to some constant, defining, for example as sqrt = bsSqrt 0.00001

Furthermore, there is a faster method to compute square roots and cube roots(in general roots of polynomials), which uses a bit of analysis. You will find it defined and walked-through in the back excercise.

However, this method won't work for log as we would need to do real exponation, which, as we will soon see, is defined using log. So what do we do? Taylor series and reduction.

We know that $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$ For small $x, \ln(1+x) \approx x$. So if we can create a scheme to make x small enough, we could get the logithrm by simply multiplying. Well, $\ln(x^2) = 2\ln(|x|)$. So, we could simply keep taking square roots of a number till it is within some error range of 1 and then simply use the fact $\ln(1+x) \approx x$ for small x.

```
logTay :: Float → Float → Float logTay tol n = error "Negative log not defined" | abs(n - 1) \leq tol = n - 1 -- using log(1 + x) \approx x | otherwise = 2 * logTay tol (sqrt n)
```

This is a very efficient algorithm for approximating log. Doing better requires the use of either pre-computed lookup tables(which would make the programme heavier) or use more sophesticated mathematical methods which while more accurate would slow the programme down. There is an excercise in the back, where you will implement a state of the art algorithm to compute log accurately upto 400-1000 decimal places.

Finally, now that we have log = logTay 0.0001, we can easily define some other functions.

```
logBase a b = log(b) / log(a)
exp n = if n = 1 then 2.71828 else (exp 1) ** n
(**) a b = exp (b * log(a))
```

We will use this same Taylor approximation scheme for \sin and \cos . The idea here is: $\sin(x) \approx x$ for small x and $\cos(x) = 1$ for small x. Furthermore, $\sin(x+2\pi) = \sin(x)$, $\cos(x+2\pi) = \cos(x)$ and $\sin(2x) = 2\sin(x)\cos(x)$ as well as $\cos(2x) = \cos^2(x) - \sin^2(x)$.

This can be encoded as

```
A Sin and Cos using Taylor Approximation
sinTay :: Float \rightarrow Float \rightarrow Float
 sinTay tol x
                       = x -- Base case: sin(x) ≈ x when x is small
   \mid abs(x) \leq tol
   \mid abs(x) \geqslant 2 * pi
                            = if x > 0
                                then sinTay tol (x - 2 * pi)
                                else sinTay tol (x + 2 * pi) -- Reduce x to
 [-2\pi, 2\pi]
                            = 2 * (\sin Tay tol (x/2)) * (\cos Tay tol (x/2)) --
   otherwise
 sin(x) = 2 sin(x/2) cos(x/2)
cosTay :: Float \rightarrow Float \rightarrow Float
 cosTay tol x
   \mid abs(x) \leq tol
                         = 1.0 -- Base case: cos(x) ≈ 1 when x is small
   \mid abs(x) \geqslant 2 * pi
                             = if x > 0
                                then cosTay tol (x - 2 * pi)
                                else cosTay tol (x + 2 * pi) -- Reduce x to
 [-2\pi, 2\pi]
                             = (\cos Tay \ tol \ (x/2))**2 - (\sin Tay \ tol \ (x/2))**2
   otherwise
 --\cos(x) = \cos^2(x/2) - \sin^2(x/2)
```

As one might notice, this approximation is somewhat poorer in accuracy than log. This is due to the fact that the taylor approximation is much less truer on sin and cos in the neighbourhood of 0 than for log.

We will see a better approximation once we start using lists, using the power of the full Taylor expansion.

Finally, similer to our above things, we could simply set the tolerance and get a function that takes an input and gives an output, name it \sin and \cos and define $\tan x = (\sin x) / (\cos x)$.

It is left as excercise to use taylor approximation to define inverse sin(asin), inverse cos(acos) and inverse tan(atan).

X Collatz

Collatz conjucture states that for any $n \in \mathbb{N}$ exists a k such that $c^{k(n)} = 1$ where c is the Collatz function which is $\frac{n}{2}$ for even n and 3n + 1 for odd n.

Write a function col :: Integer \rightarrow Integer which, given a n, finds the smalltest k such that $c^{k(n)} = 1$, called the Collatz chain length of n.

X Newton-Raphson method

♦ Newton-Raphson method

Newton–Raphson method is a method to find the roots of a function via subsequent approximations.

Given f(x), we let x_0 be an inital guess. Then we get subsequent guesses using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

As
$$n \to \infty$$
, $f(x_n) \to 0$.

The intution for why this works is: imagine standing on a curve and wanting to know where it hits the x-axis. You draw the tangent line at your current location and walk down it to where it intersects the x-axis. That's your next guess. Repeat. If the curve behaves nicely, you converge quickly to the root.

Limitations of Newton-Raphson method are

- Requires derivative: The method needs the function to be differentiable and requires evaluation of the derivative at each step.
- Initial guess matters: A poor starting point can lead to divergence or convergence to the wrong root.
- Fails near inflection points or flat slopes: If f'(x) is zero or near zero, the method can behave erratically.
- Not guaranteed to converge: Particularly for functions with multiple roots or discontinuities.

Considering, $f(x) = x^2 - a$ and $f(x) = x^3 - a$ are well behaved for all a, implement sqrtNR:: Float \rightarrow Float \rightarrow Float and cbrtNR:: Float \rightarrow Float \rightarrow Float which finds the square root and cube root of a number upto a tolerance using the Newton-Raphson method.

Hint: The number we are trying to get the root of is a sufficiently good guess for numbers absolutly greater than 1. Otherwise, 1 or -1 is a good guess. We leave it to your mathematical intution to figure out when to use what.

X Digital Root

digital digit The root of number is the obtained by digits until you single digit. summing get a For example digitalRoot 9875 = digitalRoot (9+8+7+5) = digitalRoot 29 = digitalRoot. (2+9) = digitalRoot 11 = digitalRoot (1+1) = 2 Implement the function digital Root :: Int \rightarrow Int.

X AGM Log

A rather uncommon mathematical function is AGM or arthmatic-geometric mean. For given two numbers.

$$\mathrm{AGM}(x,y) = \begin{cases} x & \text{if } x = y \\ \mathrm{AGM}\left(\frac{x+y}{2}, \sqrt{xy}\right) & \text{otherwise} \end{cases}$$

Write a function $agm :: (Float, Float) \rightarrow Float \rightarrow Float$ which takes two floats and returns the AGM within some tolerance(as getting to the exact one recusrsively takes, about infinite steps).

Using AGM, we can define

$$\ln(x) \approx \frac{\pi}{2 \operatorname{AGM}\left(1, \frac{2^{2-m}}{x}\right)} - m \ln(2)$$

which is precise upto p bits where $x2^m > 2^{\frac{p}{2}}$.

Using the above defined agm function, define $logAGM :: Int \rightarrow Float \rightarrow Float \rightarrow Float$ which takes the number of bits of precision, the tolerance for agm and a number greater than 1 and gives the natural logithrm of that number.

Hint: To simplify the question, we added the fact that the input will be greater than 1. This means a simplification is taking m = p/2 directly. While geting a better m is not hard, this is just simpler.

X Multiplexer

A multiplexer is a hardware element which chooses the input stream from a variety of streams. It is made up of $2^n + n$ components where the 2^n are the input streams and the n are the selectors.

- (i) Implement a 2 stream multiplex $mux2 :: Bool \rightarrow Bool \rightarrow Bool \rightarrow Bool$ where the first two booleans are the inputs of the streams and the third boolean is the selector. When the selector is True, take input from stream 1, otherwise from stream 2.
- (ii) Implement a 2 stream multiplex using only boolean operations.
- (iii) Implement a 4 stream multiplex. The type should be $mux4 :: Bool \rightarrow Bool$. (There are 6 arguments to the function, 4 input streams and 2 selectors). We encourage you to do this in atleast 2 ways (a) Using boolean operations (b) Using only mux2.

Could you describe the general scheme to define $mux2^n$ (a) using only boolean operations (b) using only $mux2^n$ (c) using only $mux2^n$?

X Moduler Exponation

Implement modular exponentiation ($a^b \mod m$) efficiently using the fast exponentiation method. The type signature should be modExp :: Int \rightarrow Int \rightarrow Int

Types as Sets

Ryan Hota

§4.1. Sets

A set is a well-defined collection of "things".

These "things" can be values, objects, or other sets.

For any given set, the "things" it contains are called its **elements**.

Some basic kinds of sets are -

The **empty set** is the **set** that contains no **elements** or equivalently, {}.

• singleton set

A singleton set is a set that contains exactly one element, such as $\{34\}$, $\{\triangle\}$, the set of natural numbers strictly between 1 and 3, etc.

We might have encountered some mathematical sets before, such as the set of real numbers \mathbb{R} or the set of natural numbers \mathbb{N} , or even a set following the rules of vectors (a vector space).

We might have encountered sets as data structures acting as an unordered collection of objects or values, such as Python sets - $set([]),\{1,2,3\}$, etc.

Note that sets can be finite ($\{12, 1, \circ, \vec{x}\}$), as well as infinite (\mathbb{N}).

A fundamental keyword on sets is "€", or "belongs".

belongs

Given a value x and a set S,

 $x \in S$ is a claim that x is an element of S,

Other common operations include -

union

 $A \cup B$ is the set containing all those x such that either $x \in A$ or $x \in B$.

intersection

 $A \cap B$ is the set containing all those x such that $x \in A$ and $x \in B$.

= cartesian product

 $A \times B$ is the set containing all ordered pairs (a,b) such that $a \in A$ and $b \in B$.

So,

$$\begin{split} X == \{x_1, x_2, x_3\} \text{ and } Y == \{y_1, y_2\} \\ \Rightarrow \\ X \times Y == \{(x_1, y_1), (x_1, y_2), (x_2, y_1), (x_2, y_2), (x_3, y_1), (x_3, y_2)\} \end{split}$$

• set exponent

```
B^A is the set of all functions with domain A and co-domain B, or equivalently, the set of all functions f such that f:A\to B, or equivalently, the set of all functions from A to B.
```

x size of exponent set

If A has |A| elements, and B has |B| elements, then how many elements does B^A have?

$\S 4.2.$ Types

We have encountered a few types in the previous chapter, such as **Bool**, **Integer** and **Char**. For our limited purposes, we can think about each such **type** as the **set of all values of that type**.

For example,

- Bool can be thought of as the **set of all boolean values**, which is {False, True}.
- Integer can be thought of as the set of all integers, which is $\{0, 1, -1, 2, -2, \ldots\}$.
- Char can be thought of as the **set of all characters**, which is { '\NUL', '\SOH', '\STX', ..., 'a', 'b', 'c', ..., 'A', 'B', 'C', ...}

If this analogy were to extend further, we might expect to see analogues of the basic kinds of sets and the common set operations for types, which we can see in the following -

§4.2.1. :: is analogous to \in or \doteqdot belongs

Whenever we want to claim a value x is of type T, we can use the x: keyword, in a similar fashion to x, i.e., we can say x: T in place of x x x: T in place of x x: T:

In programming terms, this is known as declaring the variable \mathbf{x} .

For example,

```
• declaration of x

x :: Integer
x = 42
```

This reads - "Let $x \in \mathbb{Z}$. Take the value of x to be 42."

```
    declaration of y

y :: Bool
y = xor True False
```

This reads - "Let $y \in \{\text{False, True}\}$. Take the value of y to be the \oplus of True and False."

X declaring a variable

Declare a variable of type Char.

§4.2.2. $A \rightarrow B$ is analogous to B^A or \Rightarrow set exponent

As B^A contains all functions from A to B, so is each function f defined to take an input of type A and output of type B satisfy $f :: A \rightarrow B$.

For example -

```
• function

succ :: Integer → Integer

succ x = x + 1
```

• another function
even :: Integer → Bool
even n = if n `mod` 2 = 0 then True else False

x basic function definition

Define a non-constant function of type $Bool \rightarrow Integer$.

X difference between declaration and function definition

What are the differences between declaring a variable and defining a function?

```
§4.2.3. ( A , B ) is analogous to A \times B or = cartesian product
```

As $A \times B$ contains all pairs (a, b) such that $a \in A$ and $b \in B$, so is every pair (a, b) of type (A, B) if x is of type A and B is of type B.

For example, if I ask GHCi to tell me the type of (True, 'c') (which I can do using the command :t), then it would tell me that the value's type is (Bool, Char) -

```
% type of a pair
>>> :t (True, 'c')
(True, 'c') :: (Bool, Char)
```

This reads - "GHCi, what is the type of (True, 'c')?

Answer: the type of (True, 'c') is (Bool, Char)."

If we have a type X with elements X1, X2, and X3, and another type Y with elements Y1 and Y2, we can use the author-defined function <code>listOfAllElements</code> to obtain a list of all elements of certain types -

```
>>> listOfAllElements :: [X]
[X1,X2,X3]
>>> listOfAllElements :: [Y]
[Y1,Y2]
>>> listOfAllElements :: [(X,Y)]
[(X1,Y1),(X1,Y2),(X2,Y1),(X2,Y2),(X3,Y1),(X3,Y2)]
>>> listOfAllElements :: [(Char,Bool)]
[('\NUL',False),('\NUL',True),('\SOH',False),('\SOH',True), . . . ]
```

There are two fundamental inbuilt operations from a product type -

A function to get the first component of a pair -

```
first component of a pair
fst (a,b) = a
```

and a similar function to get the second component -

```
second component of a pair
snd (a,b) = b
```

We can define our own functions from a product type using these -

```
    function from a product type
    xorOnPair :: ( Bool , Bool ) → Bool
    xorOnPair pair = ( fst pair ) ≠ ( snd pair )
```

or even by pattern matching the pair -

```
A another function from a product type
xorOnPair' :: ( Bool , Bool ) → Bool
xorOnPair' ( a , b ) = a ≠ b
```

Also, we can define our functions to a product type -

For example, consider the useful inbuilt function divMod, which divides a number by another, and returns both the quotient and the remainder as a pair. Its definition is equivalent to the following -

```
    function to a product type
    divMod :: Integer → Integer → ( Integer , Integer )
    divMod n m = ( n `div` m , n `mod` m )
```

x size of a product type

If a type T has n elements, and type $\mathsf{T'}$ has m elements, then how many elements does $(\mathsf{T.T'})$ have?

```
§4.2.4. () is analogous to \(\ddot\) singleton set
```

(), pronounced Unit, is a type that contains exactly one element.

That unique element is ().

So, it means that ()::(), which might appear a bit confusing.

The () on the left of :: is just a simple value, like 1 or 'a'.

The () on the right of :: is a type, like Integer or Char.

This value () is the only value whose type is ().

On the other hand, other types might have multiple values of that type. (such as Integer, where both 1 and 2 have type Integer.)

We can even check this using listOfAllElements -

```
% elements of unit type
>>> listOfAllElements :: [()]
[()]
```

This reads - "The list of all elements of the type () is a list containing exactly one value, which is the value ()."

x function to unit

Define a function of type $Bool \rightarrow ()$.

x function from unit

Define a function of type $() \rightarrow Bool$.

§4.2.5. No intersection of Types

We now need to discuss an important distinction between sets and types. While two different sets can have elements in common, like how both \mathbb{R} and \mathbb{N} have the element 10 in common, on the other hand, two different types $\mathsf{T1}$ and $\mathsf{T2}$ cannot have any common elements.

For example, the types Int and Integer have no elements in common. We might think that they have the element 10 in common, however, the internal structures of 10::Int and 10::Integer are very different, and thus the two 10 s are quite different.

Thus, the intersection of two different types will always be empty and doesn't make much sense anyway.

Therefore, no intersection operation is defined for types.

§4.2.6. No = union of Types

Suppose the type $T1 \cup T2$ were an actual type. It would have elements in common with the type T1. As discussed just previously, this is undesirable and thus disallowed.

But there is a promising alternative, for which we need to define the set-theoretic notion of **disjoint union**.

x subtype

Do you think that there can be an analogue of the *subset* relation \subseteq for types?

§4.2.7. Disjoint Union of Sets

† disjoint union

 $A \sqcup B$ is defined to be $(\{0\} \times A) \cup (\{1\} \times B)$, or equivalently, the set of all pairs either of the form (0,a) such that $a \in A$, or of the form (1,b) such that $b \in B$.

So,

$$\begin{split} X == \{x_1, x_2, x_3\} \text{ and } Y == \{y_1, y_2\} \\ \Rightarrow \\ X \sqcup Y == \{(0, x_1), (0, x_2), (0, x_3), (1, y_1), (1, y_2)\} \end{split}$$

For example, consider the statement - $(0, 10) \in \mathbb{R} \sqcup \mathbb{N}$.

It is obvious that this 10 comes from \mathbb{R} and does not come from \mathbb{N} .

 $(1,10) \in \mathbb{R} \sqcup \mathbb{N}$ would indicate exactly the opposite, i.e, the 10 here comes from \mathbb{N} , not \mathbb{R} .

§4.2.8. Either A B is analogous to $A \sqcup B$ or \Leftrightarrow disjoint union

The term "either" is motivated by its appearance in the definition of 🛊 disjoint union.

Recall that in a • disjoint union, each element has to be

- of the form (0, a), where $a \in A$, and A is the set to the left of the \sqcup symbol,
- or they can be of the form (1, b), where $b \in B$, and B is the set to the right of the \sqcup symbol.

Similarly, in **Either** A B, each element has to be

- of the form Left a, where a:: A
- or of the form Right b, where b::B

If we have a type X with elements X1, X2, and X3, and another type Y with elements Y1 and Y2, we can use the author-defined function <code>listOfAllElements</code> to obtain a list of all elements of certain types -

```
* elements of an either type

>>> listOfAllElements :: [X]

[X1,X2,X3]

>>> listOfAllElements :: [Y]

[Y1,Y2]

>>> listOfAllElements :: [Either X Y]

[Left X1,Left X2,Left X3,Right Y1,Right Y2]

>>> listOfAllElements :: [Either Bool Char]

[Left False,Left True,Right '\NUL',Right '\SOH',Right '\STX', . . . ]
```

We can define functions to an **Either** type.

Consider the following problem: We have to make a function that provides feedback on a quiz. We are given the marks obtained by a student in the quiz marked out of 10 total marks. If the marks obtained are less than 3, return 'F', otherwise return the marks as a percentage -

This reads - "

Let feedback be a function that takes an Integer as input and returns Either a Char or an Integer.

As Char and Integer occurs on the left and right of each other in the expression Either Char Integer, thus Char and Integer will henceforth be referred to as Left and Right respectively.

Let the input to the function feedback be n.

```
If n<3, then we return 'F'. To denote that 'F' is a Char, we will tag 'F' as Left. (remember that Left refers to Char!)
```

otherwise, we will multiply n by 10 to get the percentage out of 100 (as the actual quiz is marked out of 10). To denote that the output 10*n is an Integer, we will tag it with the word Right. (remember that Right refers to Integer!)

"

We can also define a function from an **Either** type.

Consider the following problem : We are given a value that is either a boolean or a character. We then have to represent this value as a number.

```
top
import Data.Char(ord)

A function from an either type

representAsNumber :: Either Bool Char → Int
-- Left ~ Bool,Char ~ Right

representAsNumber ( Left bool ) = if bool then 1 else 0
representAsNumber ( Right char ) = ord char
```

This reads - "

Let representAsNumber be a function that takes either a Bool or a Char as input and returns an Int.

As Bool and Char occurs on the left and right of each other in the expression Either Bool Char, thus Bool and Char will henceforth be referred to as Left and Right respectively.

If the input to representAsNumber is of the form Left bool, we know that bool must have type Bool (as Left refers to Bool). So if the bool is True, we will represent it as 1, else if it is False, we will represent it as 0.

If the input to representAsNumber is of the form Right char, we know that char must have type Bool (as Right refers to Char). So we will represent char as ord char.

"

We might make things clearer if we use a deeper level of pattern matching, like in the following function (which is equivalent to the last one).

```
nanother function from an either type
representAsNumber' :: Either Bool Char → Int
representAsNumber' ( Left False ) = 0
representAsNumber' ( Left True ) = 1
representAsNumber' ( Right char ) = ord char
```

x size of an either type

If a type T has n elements, and type $\mathsf{T'}$ has m elements, then how many elements does Either T $\mathsf{T'}$ have?

§4.2.9. The Maybe Type

Consider the following problem : We are asked make a function reciprocal that reciprocates a rational number, i.e., $\left(x\mapsto \frac{1}{x}\right):\mathbb{Q}\to\mathbb{Q}$.

Sounds simple enough! Let's see -

```
naive reciprocal
reciprocal :: Rational → Rational
reciprocal x = 1/x
```

But there is a small issue! What about $\frac{1}{0}$?

What should be the output of reciprocal 0?

Unfortunately, it results in an error -

```
>>> reciprocal 0
*** Exception: Ratio has zero denominator
```

To fix this, we can do something like this - Let's add one *extra element* to the output type Rational, and then reciprocal 0 can have this *extra element* as its output!

So the new output type would look something like this - $(\{extra\ element\} \sqcup Rational)$

Notice that this { extra element} is a \(\displays \) singleton set.

Which means that if we take this *extra element* to be the value (),

and take { extra element} to be the type (),

then we can obtain ($\{extra\ element\} \sqcup Rational$) as the type Either () Rational.

Then we can finally rewrite λ naive reciprocal to handle the case of reciprocal 0 -

```
% reciprocal using either
reciprocal :: Rational → Either () Rational
reciprocal 0 = Left ()
reciprocal x = Right (1/x)
```

There is already an inbuilt way to express this notion of <a>Either () <a>Rational in Haskell, which is the type <a>Maybe <a>Rational.

Maybe Rational just names it elements a bit differently compared to Either () Rational -

where

```
Either () Rational has Left (),

Maybe Rational instead has the value Nothing.

• where
```

```
Either () Rational has Right r (where r is any Rational),
Maybe Rational instead has the value Just r.
```

Which means that we can rewrite \(\lambda\) reciprocal using either using Maybe instead -

```
    function to a maybe type
    reciprocal :: Rational → Maybe Rational
    reciprocal 0 = Nothing
    reciprocal x = Just (1/x)
```

But we can also do this for any arbitrary type T in place of Rational. In that case -

There is already an inbuilt way to express the notion of Either () T in Haskell, which is the type Maybe T.

Maybe T just names it elements a bit differently compared to Either () T -

where

```
Either () T has Left (),
Maybe T instead has the value Nothing.
```

where

```
Either () T has Right t (where t is any value of type T),

Maybe T instead has the value Just t.
```

If we have a type X with elements X1, X2, and X3, and another type Y with elements Y1 and Y2, we can use the author-defined function <code>listOfAllElements</code> to obtain a list of all elements of certain types -

```
>>> listOfAllElements :: [X]
[X1,X2,X3]
>>> listOfAllElements :: [Maybe X]
[Nothing,Just X1,Just X2,Just X3]
>>> listOfAllElements :: [Y]
[Y1,Y2]
>>> listOfAllElements :: [Maybe Y]
[Nothing,Just Y1,Just Y2]
>>> listOfAllElements :: [Maybe Bool]
[Nothing,Just False,Just True]
>>> listOfAllElements :: [Maybe Char]
[Nothing,Just '\NUL',Just '\SOH',Just '\STX',Just '\ETX', . . . ]
```

x size of a maybe type

```
If a type \mathsf{T} has n elements, then how many elements does \mathsf{Maybe}\ \mathsf{T} have?
```

We can define functions to a Maybe type. For example consider the problem of making an inverse function of reciprocal, i.e., a function inverseOfReciprocal s.t.

```
\forall x::Rational, inverseOfReciprocal (reciprocal x) = x
```

as follows -

```
    function from a maybe type
    inverseOfReciprocal :: Maybe Rational → Rational
    inverseOfReciprocal Nothing = 0
    inverseOfReciprocal (Just x) = (1/x)
```

§4.2.10. Void is analogous to {} or \(\display \) empty set

The type Void has no elements at all.

This also means that no actual value has type Void.

Even though it is out-of-syllabus, an interesting exercise is to

X Exercise

```
try to define a function of type ( Bool \rightarrow Void ) \rightarrow Void.
```

Introduction to Lists

Ryan Hota

A list is an ordered collection of objects, possibly with repetitions, denoted by

```
[\text{ object}_0, \text{ object}_1, \text{ object}_2, \dots, \text{ object}_{n-1}, \text{ object}_n]
```

These objects are called the **elements of the list**.

In Haskell, the elements of a particular list all have to have the same type.

Thus, a list such as [1,2,True,4] is not allowed.

§5.1. Type of List

If the elements of a list each have type T, then the list is given the type [T].

```
>>> :t +d [1,2,3]
[1,2,3] :: [Integer]

>>> :t +d ['a','Z','\STX']
['a','Z','\STX'] :: [Char]

>>> :t +d [True,False]
[True,False] :: [Bool]
```

§5.2. Creating Lists

There are several nice ways to create a list in Haskell.

§5.2.1. Empty List

The most basic approach is to create the empty list by writing [].

§5.2.2. Arithmetic Progression

Haskell has some luxurious syntax for declaring lists containing arithmetic progressions -

```
>>> [1..6]

[1,2,3,4,5,6]

>>> [1,3..6]

[1,3,5]

>>> [1,-3..-10]

[1,-3,-7]

>>> [0.5..4.9]

[0.5,1.5,2.5,3.5,4.5]
```

But, very usefully, it just doesn't work for numbers, but other types as well.

```
>>> [False ..True]
[False,True]
>>> ['a'..'z']
"abcdefghijklmnopqrstuvwxyz"
```

§5.3. Functions on Lists

Now that we know how to create a list, how do we manipulate them into the data that we would want?

§5.4. List Comprehension

Well, the way we achieve this in sets is through **set comprehension**.

When we want the set of squares of the even natural numbers $\leq n$, we write -

$$\{m^2 \mid m \in \{0, 1, 2, 3, ..., n-1, n\}, 2 \text{ divides } m\}$$

Haskell lets us do the same with lists -

```
>>> n = 10
>>> [ m*m | m \leftarrow [0..n] , m `mod` 2 = 0 ]
[0,4,16,36,64,100]
```

When we want the set of pairs of numbers $\leq n$ whose highest common factor is 1, we write -

$$\{(x,y) \mid x,y \in \{0,1,2,3,...,n-1,n\}, HCF(x,y) == 1\}$$

,which can be expressed in haskell as

```
>>> n = 10

>>> [(x,y) | x \leftarrow [1..n], y \leftarrow [1..n], gcd x y = 1]

[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,1),(2,3),(2,5),(2,7),(2,9),(3,1),(3,2),(3,4),(3,5),(3,7),(3,8),(3,10),(4,1),(4,3),(4,5),(4,7),(4,9),(5,1),(5,2),(5,3),(5,4),(5,6),(5,7),(5,8),(5,9),(6,1),(6,5),(6,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6),(7,8),(7,9),(7,10),(8,1),(8,3),(8,5),(8,7),(8,9),(9,1),(9,2),(9,4),(9,5),(9,7),(9,8),(9,10),(10,1),(10,3),(10,7),(10,9)]
```

§5.4.1. Cons or (:)

The operator: (read as "cons") can be used to add a single element to the the beginning of a list.

```
>>> 5 : [8,2,3,0]
[5,8,2,3,0]
>>> 1 : [2,3,4]
[1,2,3,4]
>>> 7 : [10,2,35,92]
[7,10,2,35,92]
>>> True : [False,True,True,False]
[True,False,True,True,False]
```

However, the : operator is much more special than it appears, since -

- It can be used to pattern match lists
- It is how lists are defined in the first place

So, how can we use it for pattern matching?

```
pattern matching lists

>>> (x:xs) = [5,8,3,2,0]

>>> x
5

>>> xs
[8,3,2,0]
```

When we use the pattern (x:xs) to refer to a list, x refers to the first element of the list, and xs refers to the list containing the rest of the elements.

§5.5. Length

One of the most basic questions we could ask about lists is the number of elements they contain. The length function gives us that answers, counting repetitions as separate.

```
>>> length [5,5,5,5,5]
6

>>> length [5,8,3,2,0]
5

>>> length [7,10,2,35,92]
5

>>> length [False,True,False]
4
```

Ans we can use pattern matching to define it -

```
length of list
length [] = 0
length (x:xs) = 1 + length xs
```

This reads - "If the list is empty, then length is 0.

```
If the list has a first element x, then the length is 1 + length of the list of the rest of the elements."
```

§5.5.1. Concatenate or (++)

The ++ (read as "concatenate") operator can be used to join two lists together.

```
>>> [5,8,2,3,0] ++ [122,32,44]
[5,8,2,3,0,122,32,44]

>>> [False,True,True,False] ++ [True,False,True]
[False,True,True,False,True]
```

Again, we can define it by using pattern matching

This reads - "Suppose we are concatenating a list to the front of the list ys.

If the list is empty, then of course the answer is just ys.

If the list has a first element x, and the rest of the elements form a list xs, then we can first concatenate xs and ys, and then add x at the beginning of the resulting list. "

§5.5.2. Head and Tail

The head function gives the first element of a list.

```
>>> head [5,8,3,2,0]
5
>>> head [7,10,2,35,92]
7
>>> head [False,True,True,False]
False
```

And it can be defined using pattern-matching -

```
head of list
head (x:xs) = x
```

The tail function provides the rest of the list after the first element.

```
>>> tail [5,8,3,2,0]
[8,3,2,0]
>>> tail [7,10,2,35,92]
[10,2,35,92]
>>> tail [False,True,True,False]
[True,True,False]
```

And it can be defined using pattern-matching -

```
tail of list
tail (x:xs) = xs
```

But how are these functions supposed to work if there is no first element at all, such as in the case of []? They produce errors when applied to the empty list! -

```
>>> head []
*** Exception: Prelude.head: empty list
CallStack (from HasCallStack):
    error, called at libraries\base\GHC\List.hs:1644:3 in base:GHC.List
    errorEmptyList, called at libraries\base\GHC\List.hs:87:11 in
base:GHC.List
    badHead, called at libraries\base\GHC\List.hs:83:28 in base:GHC.List
    head, called at <interactive>:6:1 in interactive:Ghci6

>>> tail []
*** Exception: Prelude.tail: empty list
CallStack (from HasCallStack):
    error, called at libraries\base\GHC\List.hs:1644:3 in base:GHC.List
    errorEmptyList, called at libraries\base\GHC\List.hs:130:28 in
base:GHC.List
    tail, called at <interactive>:7:1 in interactive:Ghci6
```

Note that, in our definitions, we have not handled the case of the input being []!

So, it is advised to use the function uncons from Data.List, which adopts the philosophy we saw in A function to a maybe type, which is

if the function gives an error, output Nothing instead of the error

Thus, for non-empty 1, uncons 1 returns Just (head 1, tail 1), and when 1 is empty, uncons 1 returns Nothing.

Let's test this in GHCi -

```
>>> import Data.List
>>> uncons [5,8,3,2,0]
Just (5,[8,3,2,0])
>>> uncons []
Nothing
```

And the definition -

```
wuncons of list
uncons [] = Nothing
uncons (x:xs) = Just ( x , xs )
```

Also consider the functions safeHead and safeTail from Distribution.Simple.Utils.

§5.5.3. Take and Drop

There are some "generalized" functions corresponding to head and tail, namely take and drop,

take n l gives the first n elements of l.

```
>>> take 3 [5,8,3,2,0]
[5,8,3]
>>> take 4 [7,10,2,35,92]
[7,10,2,35]
>>> take 2 [False,True,True,False]
[False,True]
```

And the definition -

This reads - "If we take only o elements, the result will of course be the empty list [].

If we want to take n elements, then we can take the first element and then the first n-1 elements from the rest.

But why the last line of the definition? "The last line of the function may look strange, but -

X Exercise

Explain why, without the last line of the definition, the function might give an unexpected error.

drop n l gives l, excluding the first n elements.

```
>>> drop 3 [5,8,3,2,0]
[2,0]
>>> drop 4 [7,10,2,35,92]
[92]
>>> drop 2 [False,True,True,False]
[True,False]
```

And the definition -

X Exercise

Prove that the above definition works as told in the description of the functionality of the drop function.

The splitAt function combines these two functionalities by returning both answers in a pair.

```
That is; splitAt n l = (take n l, drop n l)
```

```
>>> splitAt 3 [5,8,3,2,0] ([5,8,3],[2,0])
```

§5.5.4. Elem

The elem function takes a value and a list, and answers whether the value appears in the list or not, answering in either True or False.

```
>>> elem 5 [5,8,3,2,0]
True
>>> elem 8 [5,8,3,2,0]
True
>>> elem 3 [5,8,3,2,0]
True
>>> elem 2 [5,8,3,2,0]
True
>>> elem 0 [5,8,3,2,0]
True
>>> elem 7 [5,8,3,2,0]
False
>>> elem 6 [5,8,3,2,0]
False
>>> elem 4 [5,8,3,2,0]
False
```

And the definition -

```
elem x [] = False
elem x (y:ys) = x = y \mid\mid elem x ys
```

This reads - " x does not appear in the empty list.

x appears in a list if and only if it is equal to the first element or it appears somewhere in the rest of the list. "

```
§5.5.5. (!!)
```

The !! (read as bang-bang) operator takes a list and a number n::Int, and returns the n^{th} element of the list, counting from 0 onwards.

```
>>> [5,8,3,2,0] !! 0
5
>>> [5,8,3,2,0] !! 1
8
>>> [5,8,3,2,0] !! 2
3
>>> [5,8,3,2,0] !! 3
2
>>> [5,8,3,2,0] !! 4
0
```

But what happens if n is not between 0 and length 1?

Error!

```
>>> [5,8,3,2,0] !! (-1)
*** Exception: Prelude.!!: negative index
CallStack (from HasCallStack):
    error, called at libraries\base\GHC\List.hs:1369:12 in base:GHC.List
    negIndex, called at libraries\base\GHC\List.hs:1373:17 in base:GHC.List
    !!, called at <interactive>:8:13 in interactive:Ghci6

>>> [5,8,3,2,0] !! 5

*** Exception: Prelude.!!: index too large
CallStack (from HasCallStack):
    error, called at libraries\base\GHC\List.hs:1366:14 in base:GHC.List
    tooLarge, called at libraries\base\GHC\List.hs:1376:50 in base:GHC.List
    !!, called at <interactive>:9:13 in interactive:Ghci6
```

So, again, it is advised to avoid using the !! operator.

```
Exercise

Provide a definition for the !! operator.
```

§5.6. Strings

A string is how we represent text (like English sentences and words) in programming.

Like many modern programming languages, Haskell defines a string to be just a list of characters.

In fact, the type String is just a way to refer to the actual type [Char].

So, if we want write the text "hello there!", we can write it in GHCi as ['h','e','l','l','o','','t','h','e','r','e','!'].

Let's test it out -

```
>>> ['h','e','l','l','o',' ','t','h','e','r','e','!']
"hello there!"
```

But we see GHCi replies with something much simpler - "hello there!"

This simplified form is called syntactic sugar. It allows us to read and write strings in a simple form without having to write their actual verbose syntax each time.

So, we can write -

```
>>> "hello there!"
"hello there!"
>>> :t +d "hello there!"
"hello there!" :: String
```

The type String is just a way to refer to the actual type [Char].

And since strings are just lists, all the list functions apply to strings as well.

```
>>> 'h' : "ello there!"
"hello there!"
>>> "hello " ++ "there!"
"hello there!"
>>> head "hello there!"
'h'
>>> tail "hello there!"
"ello there!"
>>> take 5 "hello there!"
"hello"
>>> drop 5 "hello there!"
" there!"
>>> elem 'e' "hello there!"
>>> elem 'w' "hello there!"
False
>>> "hello there!" !! 7
'h'
>>> "hello there!" !! 6
```

But there are some special functions just for strings -

words breaks up a string into a list of the words in it.

```
>>> words "hello there!"
["hello","there!"]
```

And unwords combines the words back into a single string.

```
>>> unwords ["hello","there!"]
"hello there!"
```

lines breaks up a string into a list of the lines in it.

```
>>> lines "hello there!\nI am coding..."
["hello there!","I am coding..."]
```

Ans unlines combines the lines back into a single string.

```
>>> unlines ["hello there!","I am coding..."]
"hello there!\nI am coding...\n"
```

§5.7. Structural Induction for Lists

Suppose we wan prove some fact about lists.

We can use the following version of the principle of mathematical induction -

structural induction for lists

Suppose for each list 1 of type $[\top]$, we have a statement φ_1 . If we can pore the following two statements -

- φ_[]
- For each list of the form (x:xs), if φ_{xs} is true, then $\varphi_{(x:xs)}$ is also true.

then φ_1 for all finite lists 1.

Let use this principle to prove that

Theorem The definition of length terminates on all finite lists.

Proof Let φ_1 be the statement

The definition of length 1 terminates.

To use structural induction for lists, we need to prove -

• $\langle\langle\varphi_{[]}\rangle\rangle$

The definition of length [] directly gives 0.

• $\langle \langle \text{ For each list } (x:xs), \text{ if } \varphi_{xs}, \text{ then } \varphi_{(x:xs)} \text{ also. } \rangle \rangle$

Assume φ_{xs} is true.

The definition for length (x:xs) is 1 + length xs.

By φ_{xs} , we know that length xs will finally give return some number n.

Therefore 1 + length xs reduces to <math>1 + n.

And 1 + n obviously terminates.

§5.8. Optimization

Suppose we want to reverse the the order of elements in a list.

For example, transforming the list [5,8,3,2,0] into [0,2,3,8,5].

So how do we define the function reverse?

An obvious definition is -

```
reverse
reverse [] = []
reverse (x:xs) = ( reverse xs ) ++ [x]
```

But this is not "optimal"?

What does this mean? Let's see -

Let's apply the definitions of reverse and (++) to see how reverse [5,8,3] is computed -

```
reverse [5,8,3,2] = (\text{reverse } [8,3]) + [5]
            = ( (reverse [3]) + [8]) + [5]
            = ( ( (reverse []) + [3]) + [8]) + [5]
            = ( ( [] ++ [3] ) ++
                                [8] ++
                                               [5]
            = (
                     [3] ++
                                 [8]
                                               [5]
            = (
                     3 : ([] ++ [8] ) ) ++
                                               [5]
            = (
                     3
                         :
                                 [8] ++
                                               [5]
            = (
                     3 : ( [8] ++
                                               [5])
                      3 : ( 8 : ([] ++ [5] ))
                        : ( 8 :
                      3
                                               [5]
            -- which finally is
                 [3,8,5]
```

So we see that this takes 10 steps of computation.

Let us take an alternative definition of reverse -

```
help xs (y:ys) = help (y:xs) ys
help xs [] = xs
```

Let us how this one is computed step by step -

```
reverse [5,8,3] = help [] [5,8,3]

= help [5] [8,3]

= help [8,5] [3]

= help [3,8,5] []

= [3,8,5]
```

So we see this computation takes only 5 steps, as compared to 10 from last time.

So, in some way, the second definition is better as it requires much less steps.

We can comment on something similar for splitAt

X Exercise

- (1) Prove that the two definitions are equivalent using *** structural induction for lists**.
- (2) See which definition takes more steps to compute splitAt 2 [5,8,3]

§5.9. Lists as Syntax Trees

Recall = abstract syntax tree.

Remember that we represent f(x,y) as x

Using this rule, see whether the following steps make sense -

In fact any list [x1, x2, x3, ..., xn] can be represented as

This is the representation that Haskell actually uses to store lists.

§5.10. Dark Magic

We can use our arithmetic progression notation to generate infinite arithmetic progressions.

```
>>> [0..]

[0,1,2,3,4,5,6,7,8,9,...]

>>> [2,5..]

[2,5,8,11,14,17,20,23,26,29,...]
```

We can define infinite lists like -

a list of infinitely many 0 s -

```
zeroes = 0 : zeroes

>>> zeroes
[0,0,0,0,0,0,0,0,0,0,...]
```

the list of all natural numbers -

```
naturals = l 0 where l n = n : l (n+1)

>>> naturals
[0,1,2,3,4,5,6,7,8,9, ...]
```

and the list of all fibonacci numbers -

```
fibs = 1 0 1 where 1 a b = a : 1 b (a+b)

>>> fibs
[0,1,1,2,3,5,8,13,21,34, ...]
```

Since we obviously cannot view the entirety of an infinite list, it is advisable to use take to view an initial section of the list, rather than the whole thing.

Shubh Sharma

§6.1. Polymorphism

§6.1.1. Classification has always been about shape and behvaiour anyway

Functions are our way, to interact with the elements of a type, and one can define functions in one of the two following ways:

- 1. Define an output for every single element.
- 2. Consider the general behaviour of elements, that is, the functions are defined on them and how one combine simpler functions defined on an element to define more complicated ones.

And we have seen how to define functions from a given type to another given type using the above ideas, for example:

nand is a function that accepts 2 Bool values, and checks if it at least one of them is False. We will show two ways to write this function.

The first is too look at the possible inputs and define the outputs directly:

```
nand :: Bool → Bool → Bool
nand False _ = True
nand True True = False
nand True False = True
```

The other way is to define the function in terms of other functions and how the elements of the type Bool behave

```
nand :: Bool \rightarrow Bool \rightarrow Bool nand a b = not (a && b)
```

The situation is something similar, for a lot of other types, like <a>Int, <a>Char and so on.

But with the addition of the List type from the previous chapter, we were able to add *shape* to the elements of a type, in the following sense:

Consider the type [Integer], the elements of these types are lists of integers, the way one would interact with these would be to treat it as a collection of objects, in which each element is an integer.

- A function for lists would thus have 2 components, at least conceptually if not explicit in the code itself:
 - The first being that of a list, which can be interacted with using functions like head.
 - ► The second being that of Integer, So that functions on Integer can be applied to the elements of the list.

consider the following example:

```
$\int \text{squaring all elements of a list}

squareAll :: [Integer] → [Integer]

squareAll [] = []

squareAll (x : xs) = x * x : squareAll xs
```

Here, in the definition when we match patterns, we figure out the shape of the list element, and if we can extract an integer from it, then we square it and put it back in the list.

Something similar can be done with the type [Bool]:

- Once again, to write a function, one needs to first look at the *shape* an element as a list, Then pick elements out of them and treat them as **Bool** elements.
- An example of this will be the and function, that takes in a collection of Bool and returns True if and only if all of them are True.

```
and :: [Bool] \rightarrow Bool and [] = True -- We call scenarios like this 'vacuously true' and (x : xs) = x && and xs
```

Once again, the pattern matching handles the shape of an element as a list, and the definition handles each item of a list as a Bool.

Then we see functions like the following:

- elem, which checks in an element belong to a list.
- (=), which checks if 2 elements are equal.
- drop, which takes a list and discards a specified about of items in the list from the beginning.

These functions seem to note care about all of the properties (shape and behaviour together) of their inputs.

- The elem function wants its inputs to be list does not care about the internal type of list items as long as some notion of equality if defined.
- The (=) works on all types where some notion of equality is defined, this is the only behaviour it is interested in. (A counter example would be the type of functions: Integer → Integer, and we will discuss why this is the case soon.)
- The drop function just cares about the list structre of an element, and does not look at the behaviour of the list items at all.

To define any function in haskell, one needs to give them a type, haskell demands so, so lets look at the case of the drop function. One possible way to have it would be to define one for every single type, as shown below:

```
dropIntegers :: Integer → [Integer] → [Integer]
dropIntegers = ...
dropChars :: Integer → [Char] → [Char]
dropChars = ...
dropBools :: Integer → [Bool] → [Bool]
dropBools = ...
.
```

but that has 2 problems:

- The first is that the defintion of all of these functions is the exact same, so doing this would be a lot of manual work, and one would also need to have different name for different types, which is very inconvenient.
- The second, and arguably a more serious issue, is that it stops us from abstracting, abstraction is the process of looking at a scenario and removing information that is not relevant to the problem.
 - An example would be that the drop simply lets us treat elements as lists, while we can ignore the type of items in the list.
 - All of Mathematics and Computer Science is done like this, in some sense it is just that.
 - Linear Algebra lets us treat any set where addition and scaling is defined as one *kind* of thing, without worrying about any other structure on the elements.
 - Metric Spaces let us talk about all sets where there is a notion of distance.
 - Differential Equations let us talk about "change" in many different scenarios.

in all of these fields of study, say linear algebra, a theorem generally involes working with an object, whose exact details we don't assume, just that it satisfies the conditions required for it to be a vector space and seeing what can be done with just that much information.

• And this is a powerful tool because solving a problem in the *abstract* version solves the problem in all *concretized* scenarios.

John Locke, An Essay Concerning Human Understanding (1690)

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three:

- 1. Combining several simple ideas into one compound one, and thus all complex ideas are made.
- 2. The second is bringing two ideas, whether simple or complex, together, and setting them by one another so as to take a view of them at once, without uniting them into one, by which it gets all its ideas of relations.
- 3. The third is separating them from all other ideas that accompany them in their real existence: this is called **abstraction**, and thus all its general ideas are made.

One of the ways abstraction is handled in Haskell, and a lot of other programming languages is **Polymorphism**.

† Polymorphism

A **polymorphic** function is one whose output type depends on the input type. Such a property of a function is called **polymorphism**, and the word itself is ancient greek for *many forms*.

A polymorphic function differs from functions we have seen in the following ways:

- It can take input from multiple differnt input types (not necessarily all types, restrictions are allowed).
- Its output type can be different for different inputs types.

An example for such a function that we have seen in the previous section would be:

```
drop
drop :: Integer → [a] → [a]
drop _ [] = []
drop 0 ls = ls
drop n (x:xs) = drop (n-1) xs
```

The polymorphism of this function is shown in the type $drop :: Integer \rightarrow [a] \rightarrow [a]$ where we have used the variable a (usually called a type variable) instead of explicitly mentioning a type.

The goal of polymorphic functions is to let us **abstract** over a collection of types. That take a collection of types, based on some common property (either shape, or behavior, maybe both) and treat that as a collection of elements. This lets us build functions that work on "all lists" or "all maybe types" and so on.

The example **A** drop brings together all types of lists and only looks at the *shape* of the element, that of a list, and does not look at the bhevaiour at all. This is shown by using the type variable a in the definition, indicating that we don't care about the properties of the list items.

X Datatypes of some list functions

```
A nice exercise would be to write the types of the following functions defined in the previous section: head, tail, (!!), take and splitAt.
```

We have now given a type to one of the 3 functions discussed above, by giving a way to group together types by their common *shape*. This is not enough to give types of the other two functions ((=) and elem), for that we will need a way to group together types by shared *bhehaviour*, which we will see in the next section.

‡ 2 Types of Polymorphism

- Polymorphism done by grouping types that with common *shape* is called **Parametric Polymorphism**.
- Polymorphism done by grouping types that with common *behaviour* is called **Ad-Hoc Polymorphism**.

We will come back to **parametric polymorphism** in the second half of the chapter, but for now we discuss **Ad-Hoc polymorphism**.

§6.1.2. A Taste of Type Classes

Consider the case of the Integer functions

```
f :: Integer \rightarrow Integer
f x = x^2 + 2*x + 1
g :: Integer \rightarrow Integer
g x = (x + 1)^2
```

We know that both functions, do the same thing in the mathematical sense, given any input, both of then have the same output, so mathematicans call them the same, and write f = g this is called **function extensionality**. But the does the following expression make sense in haskell?

```
% Function Extensionality
f = g
```

This definitely seems like a fair thing to ask, as we already have a definition for equality of mathematical functions, but we run into 2 issues:

- Is it really fair to say that? In computer science, we care about the way things are computed, that is where the subject gets its name from. A lot of times, one will be able to distinguish distinguish between functions, by simply looking at which one works faster or slower on big inputs, and that might be something people might want to factor into what they mean by "sameness". So maybe the assumption that 2 functions being equal pointwise imply the functions are equal is not wise.
- The second is that in general it is not possible, in this case we have a mathematical identity that lets us prove so, but given any 2 function, it might be that the only way to prove that they are equal would be to actually check on every single value, and since domains of functions can be infinite, this would simply not be possible to compute.

So we can't have the type of (=) to be $a \rightarrow a \rightarrow Bool$. In fact, if I try to write it, the haskell compiler will complain to me by saying

To tackle the problem of giving a type for (=), we define the following:

```
    Typeclasses

Typeclasses are a collection of types, characterized by the common behaviour.
```

The previous section talked about grouping types together by the common *shape* of the elements but **\(\) Function Extensionality** tells us that there are other properties shared by elements of different types, which we call their *behaviour*. By that we mean the functions that are defined for them.

Typeclasses are how one expresses in haskell, what a collection of types looks like, and the way to do so is by defining the common functions that work for all of them. Some examples are:

- Eq, which is the collection of all types for which the function (=) is defined.
- Ord, which is the collection of all types for which the function (<) is defined.
- Show, which is the collection of all types for which there is a function that converts them to String using the function show.

Note that in the above cases, defining one function lets you define some other functions, like (\neq) for Eq and (\leq) , (\geq) and others for the Ord typeclass.

Now we come back to the elem function, the goal of this function is to check if a given element belongs to a list. And the following is a way to write it:

```
elem _{[]} = False
elem e (x : xs) = e = x || elem e xs
```

Now lets try to give this a type.

First we see that the e must have the same types as the items in the list, but if we try to give it the type

```
elem :: a \rightarrow [a] \rightarrow Bool
```

we will encounter the same issue as we did in λ Function Extensionality, because of (=). We need to find a way to say that a belongs to the collection Eq, and this leads to the correct type:

X Checking if a list is sorted

Write the function isSorted which takes in a list as an argument, such that the elements of the list have a notion of ordering between them, and the output should be true if the list in an ascending order (equal elements are allowed to be next to each other), and false otherwise.

X Shape is behaviour?

The two types of polymorphism, that is parametric and ad-hoc, are not exlusive, there are plenty of function where both are seen together, an example would be elem.

These two happen to not be that different conceptually either, we give elements their *shape* using functions, try figuring out what the functions are for list types, maybe type, tuples and either type.

That being said, the syntax used to define parametric polymorphism sets us to set operations while defining the type of the function which is very powerful.

§6.2. Higher Order Functions

One of the most powerful feature of functional programming languages is that it lets one pass in functions as argument to another function, and have funtions return other functions as outputs, these kinds of functions are known as:

† Higher Order Functions

A higher order function is a function that does at least one of the following things:

- It takes one or more functions as its arguments.
- It returns a function as an argument.

This is again a way of generalization and is very handy, as we will see in the rest of the chapter.

§6.2.1. Currying

Perhaps the first place where we have encountered higher order functions is when we defined (+) :: Int \rightarrow Int \rightarrow Int way back in Chapter 3. We have been suggesting to think of the type as

(+) :: (Int, Int) \rightarrow Int, because that is really what we want the function to do, but in haskell it would actually mean (+) :: Int \rightarrow (Int \rightarrow Int), which says the function has 1 interger argument, and it returns a function of type Int \rightarrow Int.

An example from mathematics would be finding the derivative of a differentiable function f at a point x. This is generally represented as f'(x) and the process of computing the derivative can be given to have the type

$$(f,x) \mapsto f'(x) : ((\mathbb{R} \to \mathbb{R})^d \times \mathbb{R}) \to \mathbb{R}$$

Here $(\mathbb{R} \to \mathbb{R})^d$ is the type of real differentiable functions.

But one can also think of the derivative operator, that takes a differentiable function f and produces the function f', which can be given the following type:

$$\frac{d}{dx}: (\mathbb{R} \to \mathbb{R})^d \to (\mathbb{R} \to \mathbb{R})$$

In general, we have the following theorem:

Theorem Currying: Given any sets A, B, C, there is a bijection called curry between the sets $C^{A \times B}$ and the set $(C^B)^A$ such that given any function $f: C^{A \times B}$ we have

$$(\text{curry } f)(a)(b) = f(a, b)$$

Category theorists call the above condition naturality (or say that the bijection is natural). The notation Y^X is the set of functions from X to Y.

Proof We prove the above by defining curry : $C^{A \times B} \to (C^B)^A$, and then defining its inverse.

$$\mathrm{curry}(f) :\equiv x \mapsto (y \mapsto f(x,y))$$

The inverse of curry is called uncurry : $(C^B)^A \to C^{A \times B}$

$$\operatorname{uncurry}(q) :\equiv (x, y) \mapsto q(x)(y)$$

To complete the proof we need to show that the above functions are inverses.

X Exercise

Show that the uncurry is the inverse of curry, and that the *naturality* condition holds.

(Note that one needs to show that uncurry is the 2-way inverse of curry, i.e, uncurry \circ curry = id and curry \circ uncurry = id, one direction is not enough.)

The above theorem, is a concretization of the very intuitive idea:

This may seem odd at first, but the relation between the two kinds of functions is not that hard to see, at least intuitively:

- Given a function f that takes in a pair of type (A, B) → C, if one fixes the first argument, then we get a function f(A, -) which would take an element of type B and then give an element of types C.
- But every different value of type A that we fix, we get a differnt function.
- Thus we can think of f as a function that takes in an element of type A and returns a function of type $B \to C$

And the above theorem is also "implemented" in haskell using the following functions:

```
A curry and uncurry

curry :: ((a, b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c

curry f a b = f (a, b)

uncurry :: (a \rightarrow b \rightarrow c) \rightarrow (a, b) \rightarrow c

uncurry g (a, b) = g a b
```

Currying lets us take a function with with argument, and lets us apply the function to each of them one at a time, rather than applying it on the entire tuple at once. One very interesting result of that is called **partial application**.

Partial applicaion is precisely the process of fixing some arugments to get a function over the remaining, let us look at some examples

```
suc :: Integer → Integer
suc = (+ 1) -- suc 5 = 6

-- | curry examples
neg :: Integer → Integer
neg = (-1 *) -- neg 5 = -5
```

We will find many more examples in the next section.

§6.2.2. Functions on Functions

We have already seen examples of a couple of functions whose arguments themselves are functions. The most recent ones being λ curry and uncurry, both of them take functions as inputs and return functions as outputs (note that our definition takes in functions and values, but we can always use partial application), these functions can be thought of as useful operations on functions.

Another very useful example, that a lot of us have seen is composition of functions, when we allow functions as inputs, composition can be treated like a function:

```
composition
(.) :: (b → c) → (a → b) → (a → c)
g . f = \a → g (f a)

-- example
square :: Integer → Integer
square x = x * x

-- checks if a number is the same if written in reverse
is_palindrome :: Integer → Bool
is_palindrome x = (s = reverse s)
where
    s = show x -- convert x to string

is_square_palindrome :: Integer → Bool
is_square_palindrome = is_palindrome . square
```

Breaking a complicated function into simpler parts, and being able to combime them is fair standard problem solving strategy, in both Mathematics and Computer Science, and in fact in a lot more general scenarios too! Having a clean notation for a tool that used fairly frequently is always a good idea!

Higher order functions are where polymorphism shines it brightest, see how the composition function works on all pairs of functions that can be composed in the mathematical sense, this

would have been significantly less impressive if say it was only composition between functions from $Integer \rightarrow Integer$ and $Integer \rightarrow Bool$.

Another similar function that makes writing code in haskell much cleaner is the following:

```
$\text{function application function}$
($\$) :: (a \to b) \to a \to b$
f $\$ a = f a
```

This may seem like a fairly trivial function that really doesn't offer anything apart from an extra \$\\$, but the following 2 lines make it useful

```
perator precedence
-- The 'r' in infixr says a.b.c = a.(b.c)
infixr 9 .
infixr 0 $
```

These 2 lines are saying that, whenever there is an expression, which contains both (\$) and (.), haskell will first evaluate (.), using these 2 one can write a chain of function applications as follows:

```
-- old way
f (g (h (i x)))
-- new way
f . g . h . i $ x
```

which in my opinion is much simpler to read!

X Exercise

Write a function apply_n_times that takes a function f and an argument a along with a natural number n and applies the function n times on a, for example: apply_n_times (+1) 5 3 would return 8. Also figure out the type of the function.

§6.2.3. A Short Note on Type Inference

Haskell is a statically typed language. What that means is that it requires the types for the data that is being processed by the program, and it needs to for an analysis that happens before running the program, this is called **type checking**.

It is not however required to give types to all functions (we do strongly recommend it though!), in fact one can simply not give any types at all. This is possible because the haskell compiler is smart enough to figure all of it out on its own! It's so good that when you do write type annotations for functions, haskell ignores it, figures the types out on its own and can then check if you have given the types correctly. This is called **type inference**.

Haskell's type inference also gives the most general possible type for a function. To see that, one can open ghci, and use the :t command to ask haskell for types of any given expression.

```
>>> :t flip

flip :: (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c

>>> :t (\ x \ y \rightarrow x = y)

(\ x \ y \rightarrow x = y) :: Eq a \Rightarrow a \rightarrow a \rightarrow Bool
```

The reader should now be equipped with everything they need to understand how types can be read and can now use type inference like this to understand haskell programs better.

§6.2.4. Higher Order Functions on Maybe Type : A Case Study

The **Maybe Type**, as defined in Chapter 3 is another playground for higher order functions.

As a refresher on **Maybe Types**, given a type a, one can add an *extra element* to it by making it the type Maybe a. For example, given the type Integer, whose elements are all the integers, the type Maybe Integer will be the collection of integers along with an extra element, which we call Nothing.

Maybe Types are meant to capture failure, for example, the function to a maybe type defines the reciprocal function, which takes a rational number, and returns its reciprocal, except when the input is 0, in which case it returns the *extra value* which is Nothing.

To state that elements belong to a **Maybe Type** they are decorated with Just. For example:

- The type of 5 is Integer
- The type of Just 5 is Maybe Integer.

To see an example of some functions that use Maybe in their type definitions are:

• A safe version of head and tail:

```
safeHead :: [a] → Maybe a
safeTail :: [a] → Maybe a
```

• A safe way to index a list, that is a safe version of (!!):

```
▶ safeIndex :: [a] \rightarrow Int \rightarrow Maybe a
```

```
X Safety First
```

```
Define the functions safeHead, safeTail and safeIndex.
```

Something that should be noted is that so far in the book, head, tail and (!!) are the only functions for which we need safe versions. This is because these are the only functions that are not defined for all possible inputs and can hence give an error while the program executes (that would be like passing empty list to head, or idexing an element at a negative position). Every other function we have seen will always have a valid output, that is, it is literally impossible for functions to fail for not having a valid input if one only uses safe functions!

This may seem like a fairly trivial fact for those who are learning haskell as thier first programming language, but for those who has programmed in languages like Java, Python, C or so on, it is impossible to write a program that would lead to an error which is equivalent to the following:

- Nonetype does not have this attribute: Python
- Null Pointer Exception: Java
- Memory Access Violation or Segfault for derefencing a null pointer: C

If these erros have haunted you, you have our condolences, all of these would have been completely avoided if the language had some version of Maybe, or even some bare bones type system in case of python.

All of the safety provided by Maybe types has 1 potential drawback: When using Maybe types, one eventually runs into a problem that looks something like this:

- While solving a complicated problem, one would break it down into simpler parts, that would correspond to many tiny funtions, that will come to gether to form the functions which solves the problem.
- Turns out that one the functions, maybe something in the very beginning returns a Maybe Integer instead of an Integer.
- This means that the next function along the chain, would have had to have its input type as Maybe Integer to account for the potentially case of Nothing.
- This also forces the output type to be a Maybe type, this makes sense, if the process fails in the beginning, one might not want to continue.
- The Maybe now propogates in this manner through a large section of your code, this means that a huge chunk of code needs to be rewritten to looks something like:

```
f :: a → b
f inp = <some expression to produce output>

f' :: Maybe a → Maybe b
f' (Just inp) = Just $ <some epression to produce output>
f' Nothing = Nothing
```

Note that \$\\$ here is making our code a little bit cleaner, otherwise we would have to put the enter expression in paranthesis.

This is still not a very elegant way to write things though, and its just a lot of repetitive work (all of it is just book keeping really, one isn't really adding much to the program by making these changes, except for safety, programmers usually like to call it boilerplate.)

Instead of going and modifying each function manually, we make a function modifier, which is precisely what a higher order function: Our goal, which is obvious from the problem:

($a \rightarrow b$) \rightarrow (Maybe $a \rightarrow$ Maybe b) and we define it as follows:

```
maybeMap
maybeMap :: (a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b
maybeMap f (Just a) = Just . f $ a
maybeMap _ Nothing = Nothing

(\Leftrightarrow) :: (a \rightarrow b) \rightarrow Maybe a \rightarrow Maybe b
f \Leftrightarrow a = maybeMap f a

(<.>) :: (b \rightarrow c) \rightarrow (a \rightarrow Maybe b) \rightarrow a \rightarrow Maybe c
g <.> f = \setminus x \rightarrow g \Leftrightarrow f x

infixr 1 \Leftrightarrow
infixr 8 <.>
```

Note: The symbol \Leftrightarrow is written as <\$>.

So consider the following chain of functions:

```
f.g.h.i.j$x
```

where say i was the function that turned out to be the one with Maybe output, the only change we need to the code would be the following!

```
f . g . h <.> i . j $ x
```

X Beyond map

The above shows how haskell can elegantly handle cases when we want to convert a function from type $a \rightarrow b$ to a function from type Maybe $a \rightarrow Maybe b$. This can be thought of as some sort of a *change in context*, where our function is now aware that its inputs can contain a possible fail value, which is Nothing. The reason for needing such a *change in context* were function of type $f :: a \rightarrow Maybe b$, that is ones which can fail. They add the possibility of failure to the *context*.

But since we have the power to be able to change *contexts* whenever wanted easily, we have a responsibility to keep it consistent when it makes sense. That is, what if there are multiple function with type $f :: a \rightarrow Maybe b$ we then would just want to use $\langle . \rangle$ or maybeMap to get something like:

```
v :: Maybe a
f :: a \rightarrow Maybe b
g = f \Leftrightarrow v :: Maybe (Maybe b)
```

This is most likely undesirable, the point of Maybe was to say that there is a possibility of error, the point of MaybeMap was to propogate that possible error then the type Maybe (Maybe b) seems to not have a place here, in such cases one can define maybeJoin :: Maybe (Maybe a) \rightarrow Maybe a, with that we can have

```
g = maybeJoin $ f <$> a :: Maybe b
```

This particular combination of doing \Leftrightarrow then maybeJoin will be very common, so people that use haskell put the 2 together in the function ($\gt=$) :: Maybe a \to (a \to Maybe b) \to Maybe b (the order of operands is reversed), this makes writing code so much cleaner, for instance:

Define maybeJoin and (>=) and see how both of then are used in programs, and maybe compare then by how one would define final without these.

Note The symbol (>=) is written as (>>=).

Higher order functions, along with polymorphism help our code be really expressive, so we can write very small amounds of code that looks easy to read, which also does a lot. In the next chapter we will see a lot more examples of such functions.

Arjun Maneesh Agarwal

§7.1. advanced lists (feel free to change it)

§7.1.1. List Comprehensions

As we have talked about before, Haskell tries to make it's syntax look as similer as possible to math notation. This is reprasented in one of the most powerful syntactic sugers in Haskell, list comprehension.

If we want to talk about all pythogorean triplets using integers from 1-n, we could express it mathematically as

$$\big\{(x,y,z)\ |\ x,y,z\in\{1,2,...,n\}, x^2+y^2=z^2\big\}$$

which can be written in Haskell as

```
[(x,y,z) \mid x \leftarrow [1..n], y \leftarrow [1..n], z \leftarrow [1..n], x^2 + y^2 = z^2]
```

This allows us to define a lof of operations we have seen before, in ch 1, in rather concise manner.

For example, $map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]$ which used to apply a function to a list of elements of a suitable input type and gave a list of the suitable output type. Basically, map f [a1,a2,a3] = [f a1, f a2, f a3]. We can define this in two ways:

```
Defining map using pattern matching and list comprehension
map _ [] = []
map f (x:xs) = (f x) : (map f xs)

-- and much more clearly and concisely as
map f ls = [f l | l ← ls]
```

Similarly, we had seen filter :: $(a \to Bool) \to [a] \to [a]$ which used to take a boolean function, some predicate to satisfy, and return the list of elements satisfying this predicate. We can define this as:

```
Defining filter using pattern matching and list comprehension
filter _ [] = []
filter p (x:xs) = let rest = p xs in
   if p x then x : rest else rest
-- and much more cleanly as
filter p ls = [l | l ← ls, p l]
```

Another operation we can consider, though not explictly defined in Haskell, is cartisian product. Hopefully, you can see where we are going with this right?

Defining cartisian product using pattern matching and list comprehension
 cart :: [a] → [b] → [(a,b)]
 cart xs ys = [(x,y) | x ← xs, y ← ys]

-- Trying to define this reccursivly is much more cumbersome.

cart [] _ = []
 cart (x:xs) ys = (go x ys) ++ (cart xs ys) where
 go _ [] = []
 go l (m:ms) = (l,m) : (go l ms)

Finally, let's talk a bit more about our pythogorean triplets example at the start of this section.

```
A naive way to get pythogorean triplets

pythNaive :: Int \rightarrow [(Int, Int, Int)]
pythNaive n = [(x,y,z) \mid x \leftarrow [1..n], y \leftarrow [1..n], z \leftarrow [1..n], z \leftarrow [1..n], z \leftarrow [1..n], z^2 + y^2 = z^2]
```

For n = 1000, we get the answer is some 13 minutes, which makes sense as our code is basically considering the 1000^3 triplets and then culling the ones which are not pythogorean. But could we do better?

A simple idea would be to not check for z as it is implied by the choice of x and y and instead set the condition as

```
pythMid n = [(x, y, z) |
    x ← [1..n],
    y ← [1..n],
    let z2 = x^2 + y^2,
    let z = floor (sqrt (fromIntegral z2)),
    z * z = z2]
```

This is clearly better as we will be only considering some 1000^2 triplets. Continuing with our example, for n = 1000, we finish in 1.32 seconds. As we expected, that is already much, much better than the previous case.

Also notice that we can define variables inside the comprehension by using the let syntax.

However, there is one final optimization we can do. The idea is that x>y or x< y for pythogorean triplets as SQrt 2 is irrational. So if we can somehow, only evaluate only the cases where x< y and then just genrate (x,y,z) and (y,x,z); we almost half the number of cases we check. This means, our final optimized code would look like:

```
Note that the image is a second content of the image is a s
```

This should only make some $\frac{1000*999}{2}$ triplets and cull the list from there. This makes it about twice as fast, which we can see as for n=1000, we finish in 0.68 seconds.

```
Notice, we can't return two things in a list comprehension. That is, pythOpt n = [(x,y,z), (y,x,z) | \text{ oblah blah}] will given an error. Intead, we have to use pythOpt n = [t | \text{oblah blah}, t \leftarrow [(x,y,z), (y,x,z)]].
```

Another intresting thing we can do using list comprehension is sorting. While further sorting methods and their speed is discussed in chapter 10, we will focus on a two methods of sorting: Merge Sort and Quick Sort.

We have seen the idea of divide and conquor before. If we can divide the problem in smaller parts and combine them, without wasting too much time in the spliting or combining, we can solve the problem. Both these methods work on this idea.

Merge Sort divides the list in two parts, sorts them and then merges these sorted lists by comparing element to element. We can do this recursion with peace of mind as once we reach 1 element lists, we just say they are sorted. That is mergeSort[x] = [x].

Just to illustrate, the merging would work as follows: merge [1,2,6] [3,4,5] would take the smaller of the two heads till both lists are empty. This works as as both the lists are sorted. The complete evaluation is something like:

```
merge [1,2,6] [3,4,5]
= 1 : merge [2,6] [3,4,5]
= 1 : 2 : merge [6] [3,4,5]
= 1 : 2 : 3 : merge [6] [4,5]
= 1 : 2 : 3 : 4 : merge [6] [5]
= 1 : 2 : 3 : 4 : 5 : 6 : merge [6] []
= 1 : 2 : 3 : 4 : 5 : 6 : merge [] []
= 1 : 2 : 3 : 4 : 5 : 6 : []
= [1,2,3,4,5,6]
```

So we can implement merge, rather simply as

Note, we can only sort a list which has some definition of order on the elements. That is the elements must be of the typeclass Ord.

To implement merge sort, we now only need a way to split the list in half. This is rather easy, we have already seen drop and take. An inbuilt function in Haskell is $splitAt :: Int \rightarrow [a] \rightarrow ([a], [a])$ which is basically equivalent to splitAt n xs = (take n xs, drop n xs).

That means, we can now merge sort using the function

```
An implementation of mergesort
mergeSort :: Ord a ⇒ [a] → [a]
mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = merge (mergeSort left) (mergeSort right) where
  (left,right) = splitAt (length xs `div` 2) xs
```

X MergeSort Works?

Prove that merge sort indeed works. A road map is given

- (i) Prove that merge defined by taking the smaller of the heads of the lists reccursivly, produces a sorted list given the two input lists were sorted. The idea is that the first element choosen has to be the smallest. Use induction of the sum of lengths of the lists.
- (ii) Prove that mergeSort works using induction on the size of list to be sorted.

This is also a very efficient way to sort a list. If we define a function C that count the number of comparisions we make, $C(n) < 2 * C(\lceil \frac{n}{2} \rceil) + n$ where the n comes from the merge.

This implies

$$\begin{split} C(n) &< n \lceil \log(n) \rceil C(1) + n + \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{\lceil \frac{n}{2} \rceil}{2} \right\rceil + \ldots + 1 \\ &< n \lceil \log(n) \rceil + n + \frac{n+1}{2} + \left\lceil \frac{n+1}{4} \right\rceil + \ldots + 1 \\ &= n \lceil \log(n) \rceil + n + \frac{n}{2} + \frac{1}{2} + \frac{n}{4} + \frac{1}{2} + \ldots + 1 \\ &< n \lceil \log(n) \rceil + 2n + \frac{1}{2} \lceil \log(n) \rceil \\ &< n (\log(n) + 1) + 2n + \frac{1}{2} (\log(n) + 1) \\ &= n \log(n) + 3n + \frac{1}{2} \log(n) + \frac{1}{2} \end{split}$$

Two things to note are that the above computation was a bit cumbersome. We will later see a way to make it a bit less cumbersome, albeit at the cost of some information.

The second, for sufficiently large n, $n \log(n)$ dominates the equation. That is

$$\exists m \, s.t. \, \forall n > m: n \log(n) > 3n > \frac{1}{2} \log(n) > \frac{1}{2}$$

This means that as n becomes large, we can sort of ignore the other terms. We will later prove, that given no more information other than the fact that the shape of the elements in the list is such that they can be compared, we can't do much better. The dominating term, in the number of comparisins, will be $n \log(n)$ times some constant. This later refers to chapter 10.

In practice, we waste some ammount of operations dividing the list in 2. What if we take our chances and approximatly divide the list into two parts?

This is the idea of quick sort. If we take a random element in the list, we expect half the elements to be lesser than it and half to be greater. We can use this fact to define quickSort by splitting the list on the basis of the first element and keep going. This can be implemented as:

```
An implementation of Quick Sort

quickSort :: Ord a ⇒ [a] → [a]
quickSort [] = []
quickSort [x] = [x]
quickSort (x:xs) = quickSort [l | l ← xs, l > x] ++ [x] ++ quickSort [r |
r ← xs, r ≤ x]
```

X Quick Sort works?

Prove that Quick Sort does indeed works. The simplest way to do this is by induction on length.

Clearly, With n being the length of list, C(n) is a random variable dependent on the permutation of the list.

Let l be the number of elements less than the first elements and r = n - l - 1. This means C(n) = C(l) + C(r) + 2(n-1) where the n-1 comes from the list comprehension.

In the worst case scenario, our algoritm could keep spliting the list into a length 0 and a length n-1 list. This would screw us very badly.

As C(n)=C(0)+C(n-1)+2(n-1) where the n-1 comes from the list comprehension and the (n-1)+1 from the concatination. Using C(0)=0 as we don't make any comparisions, This evaluates to

$$\begin{split} C(n) &= C(n-1) + 2(n-1) \\ &= 2(n-1) + 2(n-2) + \ldots + 2 \\ &= 2 * \frac{n(n-1)}{2} \\ &= n^2 - n \end{split}$$

Which is quite bad as it grows quadratically. Furthermore, the above case is also common enough. How common?

X A Strange Proof

Prove $2^{n-1} \le n!$

Then why are we intrested in Quick Sort? and why is named quick?

Let's look at the average or expected number of comparision we would need to make!

Consider the list we are sorting a permutation of $[x_1, x_2, ..., x_n]$. Let $X_{i,j}$ be a random variable which is 1 if the x_i and x_j are compared and 0 otherwise. Let $p_{i,j}$ be the probability that x_i and x_j are compared. Then, $\mathbb{E}(X_{i,j}) = 1 * p + 0 * (1-p) = p$.

Using the linearity of expectation (remember $\mathbb{E}(\sum X) = \sum \mathbb{E}(x)$?), we can say $\mathbb{E}(C(n)) = \sum_{i,j} \mathbb{E}(X_{i,j}) = \sum_{i,j} p_{i,j}$.

Using the same idea we used to reduce the number of pythogoream triplets we need to check, we rewrite this summation as

$$\begin{split} \mathbb{E}(C(n)) &= \sum_{i,j} p_{i,j} \\ &= \sum_{i=1}^n \sum_{j=i+1}^n p_{i,j} \end{split}$$

Despite a toothy appearence, this is rather easy and elegent way to actually compute $p_{i,j}$.

Notice that each element in the array (except the pivot) is compared only to the pivot at each level of the recurrence. To compute $p_{i,j}$, we shift our focus to the elemenents $\left[x_i, x_{i+1}, ..., x_j\right]$. If this is split into two parts, x_i and x_j can no longer be compared. Hence, x_i and x_j are compared only when from the first pivot from the range $\left[x_i, x_{i+1}, ..., x_j\right]$ is either x_i or x_j .

This clearly has probability $p_{i,j} = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$. Thus,

$$\begin{split} \mathbb{E}(C(n)) &= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\ &= \sum_{i=1}^{n} 2 \left(\frac{1}{2} + \ldots + \frac{1}{n-i+1} \right) \\ &= 2 \sum_{i=1}^{n} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n-i+1} - 1 \right) \\ &\leq 2 \sum_{i=1}^{n} \log(i) \\ &\leq 2 \sum_{i=1}^{n} \log(n) \\ &\leq 2 n \log(n) \end{split}$$

Considering the number of cases where the comparisons with n^2-n operations is 2^{n-1} , Quick Sort's expected number of operations is still less than $2n\log(n)$ which, as we discussed, is optimal.

This implies that there are some lists where Quick Sort is extreamly efficient and as one might expect there are many such lists. This is why languages which can keep states (C++, C, Rust etc) etc use something called Introsort which uses Quick Sort till the depth of recusion reaches $\log(n)$ (at which point it is safe to say we are in one of the not nice cases); then we fallback to Merge Sort or a Heap/ Tree Sort(which we will see in chapter 11).

Haskell has an inbuilt sort function you can use by putting import Data. List at the top of your code. This used to use quickSort as the default but in 2002, Ian Lynagh changed it to Merge Sort. This was motivated by the fact that Merge Sort gurentees sorting in $n \log(n) + \dots$ comparisons while Quick Sort will sometimes finish much quicker (pun not intended) and other times, just suffer.

As a dinal remark, our implementation of the Quick Sort is not the most optimal as we go through the list twice, but it is the most aesthetically pleasing and concise.

X Faster Quick Sort

A slight improvment can be made to the implementation by not using list comprehension and instead using a helper function, to traverse the list only once.

Try to figure out this implementation.

§7.1.2. Zip it up!

Have you ever suffered through a conversation with a very dry person with the goal of getting the contact information of a person you are actually intrested in? If you haven't well, that is what you will have to do now.

X The boring zip

Haskell has an inbuilt function called zip. It's behaviour is as follows

```
>>> zip [1,2,3] [4,5,6]
[(1,4),(2,5),(3,6)]
>>> zip [1,2,3] [4,5,6,7]
[(1,4),(2,5),(3,6)]
>>> zip [0,1,2,3] [4,5,6]
[(0,4),(1,5),(2,6)]
>>> zip [0,1,2,3] [True, False, True, False]
[(0,True),(1,False),(2,True),(3,False)]
>>> zip [True, False, True, False] "abcd"
[(True,'a'),(False,'b'),(True,'c'),(False,'d')]
>>> zip [1,3...] [2,4...]
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),
(19,20)....]

What is the type signature of zip? How would one implement zip?
```

The solution to the above exercise is, rather simply:

```
    Implementation of zip function

    zip :: [a] → [b] → [(a,b)]

    zip [] _ = []

    zip _ [] = []

    zip (x:xs) (y:ys) = (x,y) : zip xs ys
```

While one could think of some places where this is useful, all of the uses seem rather dry. But now that zip has opened up to us, we will ask them about zipWith. The function zipWith takes two lists, a binary function, and joins the lists using the function. The possible implementations are:

X Alternate definitions

While we have defined zip and zipWith independently here, can you: (i) Define zip using zipWith? (ii) Define zipWith using zip?

Now one might feel there is nothing special about zipWith as well, but they would be wrong. First, it saves us form defining a lot of things: zipWith (+) [0,2,5] [1,3,3] = [1,5,8] is a common enough use. And then, it leads to a lot of absolutly mindblowing pieces of code.

```
The zipWith fibonnaci
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
```

Belive it or not, this should output the fibonnaci sequence. The idea is that Haskell is lazy! This means lists are computed one element at a time, starting from the first. Tracing the computation of the elements of fibs:

- 1. Since by definition fibs = 0: 1: (something), the first element is 0.
- 2. This is again easy, since fibs = 0 : 1 : (something), so the second element is 1.
- 3. This is going to be the first element of something, i.e. the part that comes after the 0 : 1 :. So, we need to compute the first element of zipWith (+) fibs (tail fibs). How do we do this? We compute the first element of fibs and the first element of tail fibs and add them. We know already, that the first element of fibs is 0. And we also know that the first element of tail fibs is the second element of fibs, which is 1 So, the first element of zipWith (+) fibs (tail fibs) is 0 + 1 = 1.

4.It be the fourth element of fibs the is and going to second of zipWith (+) fibs (tail fibs). Again, we do this by taking the second elements of fibs and tail fibs and adding them together. We know that the second element of fibs is 1. The second element of tail fibs is the third element of fibs. But we just computed the third element of fibs, so we know it is 1. Adding them together we get that the fourth element of fibs is 1 + 1 = 2.

This goes on and one to generate the fibonnaci sequence. To recall, the naive

```
fibNaive 0 = 0
fibNaive 1 = 1
fibNaive n = \text{fibNaive }(n-1) + \text{fibNaive }(n-2)
```

is much slower. This is because the computation tree for say fib 5 looks something like:

And one can easily see that we make a bunch of unneccesary recomputations, and thus a lot of unneccesary additions. On the other hand, using our zipWith method, only computes things once, and hence makes only as many additions as required.

X Exercise

```
Try to trace the computation of fib !! 5 and make a tree.
```

Let's now try using this trick to solve some harder problems.

X Tromino's Pizza I

Tromino's sells slices of pizza in only boxes of 3 pieces or boxes of 5 pieces. You can only buy a whole number of such boxes. Therefore it is impossible to buy exactly 2 pieces, or exactly 4 pieces, etc. Create list possiblePizza such that if we can buy exactly n slices, possiblePizza!! n is True and False otherwise.

The solution revolves around the fact $f(x) = f(x-3) \lor f(x-5)$. A naive implementation could be

This is slow for the same reason as fibNaive. So what can we do? Well, use zipWith.

```
possiblePizza = True : False : False : True : False : zipWith (||)
(possiblePizza) (drop 3 possiblePizza)
```

Note, we need to define till the 5th place as otherwise the code has no way to know we can do 5 slices.

X Tromino's Pizza II

Tromino's has started to charge a box fees. So now given a number of slices, we want to know the minimum number of boxes we can achive the order in. Create a list minBoxPizza such that if we can buy exactly n slices, the list displays Just the minimum number of boxes the order can be achived in, and Nothing otherwise. The list is hence of type [Maybe Int].

Hint: Create a helper function to use with the zipWith expression.

One more intresting thing we can talk about is higher dimensional zip and zipWith. One way to talk about them is $zip3 :: [a] \rightarrow [b] \rightarrow [c] \rightarrow [(a,b,c)]$ and $zipWith3 :: (a \rightarrow b \rightarrow c \rightarrow d) \rightarrow [a] \rightarrow [b] \rightarrow [c] \rightarrow [d]$. These are defined exactly how might expect them to be.

```
\begin{array}{l} \text{zip3} :: [a] \rightarrow [b] \rightarrow [c] \rightarrow [(a,b,c)] \\ \text{zip3} [] \_ = [] \\ \text{zip3} \_ [] = [] \\ \text{zip3} (x:xs) (y:ys) (z:zs) = (x,y,z) : zip3 xs ys zs \\ \\ \\ \text{zipWith3} :: (a \rightarrow b \rightarrow c \rightarrow d) \rightarrow [a] \rightarrow [b] \rightarrow [c] \rightarrow [d] \\ \text{zipWith3} \_ [] \_ = [] \\ \text{zipWith3} \_ [] = [] \\ \text{zipWith4} \\ \text{zipWith4} \_ [] = [] \\ \text{zipWith4} \\ \text{zipWith4} \_ [] = [] \\ \text{zipWith4} \\ \text{
```

X Exercise

A slightly tiresome exercise, try to define zip4 and zipWith4 blind.

Haskell predefines till zip7 and zipWith7. We are yet to see anything beyond zipWith3 used in code, so this is more than enough. Also, if you truly need it, zip8 and zipWith8 are not that hard to define.

X Tromino's Pizza III

Tromino's has introduced a new box of size 7 slices. Now they sell 3, 5, 7 slice boxes. They still charge the box fees. So now given a number of slices, we still want to know the minimum number of boxes we can achive the order in. Create a list minBoxPizza such that if we can buy exactly n slices, the list displays Just the minimum number of boxes the order can be achived in, and Nothing otherwise. The list is hence of type [Maybe Int].

Another idea of dimension would be something that could join together two grids, something with type signature $zip2d :: [[a]] \rightarrow [[b]] \rightarrow [[(a,b)]]$ and $zipWith2d :: (a \rightarrow b \rightarrow c) \rightarrow [[a]] \rightarrow [[b]] \rightarrow [[c]]$.

```
\begin{array}{l} \text{zip2d} :: \ [[a]] \rightarrow [[b]] \rightarrow [[(a,b)]] \\ \text{zip2d} = \text{map zip} \\ \\ \text{zipWith2d} :: \ (a \rightarrow b \rightarrow c) \rightarrow [[a]] \rightarrow [[b]] \rightarrow [[c]] \\ \text{zipWith2d} = \text{zipWith} \cdot \text{zipWith} \end{array}
```

The second definition should raise immidiete alarms. It seems too good to be true. Let's formally check

```
zipWith . zipWith $(a \rightarrow b \rightarrow c)[[a]][[b]] = zipWith (zipWith (a \rightarrow b \rightarrow c))[[a]][[b]] -- Using the fact that composition only allows one of the inputs to be pulled inside = [ zipWith <math>(a \rightarrow b \rightarrow c)[a1][b1], zipWith (a \rightarrow b \rightarrow c)[a2][b2], ... ] = [[c1], [c2], ...] = [[c1]]
```

This also implies $zip2d = zipWith.zipWith $ (\x y \rightarrow (x,y))$ is also a correct definition. Also surprisingly, zipWith.zipWith has the type signature $(a \rightarrow b \rightarrow c) \rightarrow [[[a]]] \rightarrow [[[b]]] \rightarrow [[[c]]]$. You can see where we are going with this...

X Composing zipWith's

```
What should the type signature and behaviour of zipWith . <n times> . zipWith be? Prove it.
```

X Unzip

Haskell has an inbuilt function called unzip $:: [(a,b)] \to ([a],[b])$ which takes a list of pairs and provides a pair of list in the manner inverse of zip.

Try to figure out the implementation of unzip.

§7.1.3. Folding, Scaning and The Gate to True Powers

§7.1.3.1. Orgami of Code!

A lot of reccursion on lists has the following structure

```
g[] = v -- The vacous case

g(x:xs) = x \hat{f} (gxs)
```

That is, the function $g := [a] \to b$ maps the empty list to a value v, of say type b, and for non-empty lists, the head of the list and the result of recursively processing the tail are combined using a function or operator $f := a \to b \to b$.

Some commone examples from the inbuilt functions are:

```
sum :: [Int] → Int
sum [] = 0
sum (x:xs) = x + (sum xs)

product :: [Int] → Int
product [] = 1 -- The sturcuture forces this choice as other wise, the
product of full lists may become incorrect.
product (x:xs) = x * (product xs)

or :: [Bool] → Bool
or [] = False -- As the structure of our implementation forces this to be
false, or otherwise, everything is true.
or (x:xs) = x || (or xs)

and :: [Bool] → Bool
and [] = True
and (x:xs) = x && (and xs)
```

We will also see a few more examples in a while, but one can notice that this is a common enough pattern. So what do we do? We abstract it.

```
*Definition of foldr

foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b

foldr _ v [] = v

foldr f v (x:xs) = x `f` (foldr f v xs)
```

This shortens our definitons to

```
sum = foldr (+) 0
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True
```

Sometimes, we don't wish to define a base case or maybe the logic makes it so that doing so is not possible, then you use foldr1 :: $(a \rightarrow b \rightarrow b) \rightarrow [a] \rightarrow a$ defined as

```
**Definition of foldr1

foldr1 :: (a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow a

foldr1 _ [x] = x

foldr1 f (x:xs) = x `f` (foldr f xs)
```

Like we could now define product = foldr1 (*) which is much more clean as we don't have to define a weird vacous case.

Let's now discuss the naming of the pattern. Recall, [1,2,3,4] is syntactic suger for 1:2:3:4:[]. We are just allowed to write the former as it is more aesthetic and convinient. One could immidietly see that

```
foldr v f [1,2,3,4] = 1 `f` (2 `f` (3 `f` (4 `f` v)))
-- and if f is right associative
= 1 `f` 2 `f` 3 `f` 4 `f` v
```

We have basically changed the cons (:) into the function and the empty list ([]) into \lor . But notice the brackets, the evaluation is going from right to left.

Using trees, A list can be reprasented in the form

which is converted to:

However, what if our function is left associative? After all, if this was the only option, we would have called it fold, not foldr right?

The recursive pattern

```
g :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b

g v [] = v

g f v (x:xs) = g (f v x) xs
```

is abstracted to foldl and foldl1 respectively.

```
**Definition of foldl and foldl1 foldl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b foldl _ v [] = v foldl f v (x:xs) = foldl (f v x) xs

foldl1 :: (a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow a foldl1 f (x:xs) = foldl f x xs
```

And as the functions we saw were commutative, we could define them as

```
sum = foldl (+) 0
product = foldl (*) 1
or = foldl (||) False
and = foldl (&&) True
```

There is one another pair of function defined in the fold family called foldl' and foldl' which are faster than foldl and foldl1 and don't require a lot of working memory. This makes them the defualts used in most production code, but to understand them well, we need to discuss how haskell's lazy computation actually works and is there a way to bypass it. This is done in chapter 9. We will use foldl and foldl1 till then.

The computation of foldl proceeds like

```
foldl v f [1,2,3,4] = ((((v `f` 1) `f` 2) `f` 3) `f` 4)
-- and if f is left associative
= v `f` 1 `f` 2 `f` 3 `f` 4
```

Or in tree form as

which is converted to:

Another very cute picture to summerize the diffrences is:

Similer to how unzip was for zip, could we define unfoldr, something that takes a generator function and a seed value and genrates a list out of it.

What could the type of such a function be? Well, like with every design problem; let's see what our requirements are:

- The list should not just be one element over and over. Thus, we need to be able to update the seed after every unfolding.
- There should be a way for the list to terminate.

So what could the type be? We can say that our function must spit out pairs: of the new seed value and the element to add to the list. But what about the second condition?

Well, what if we can spit out some seed which can never come otherwise and use that to signal it? The issue is, that would mean the definition of the function has to change from type to type.

Instead, can we use something we studied in ch-6? Maybe.4

```
**Implementation of unfoldr
unfoldr :: (a → Maybe (a,b)) → a → [b]
unfoldr gen seed = go seed

where

go seed = case gen seed of

Just (x, newSeed) → x : go newSeed

Nothing → []
```

For example, we could now define some library functions as:

```
replicate :: Int → a → [a]
-- replicate's an value n times
replicate n x = unfoldr gen n x where
    rep 0 = Nothing
    rep m = Just (x, m - 1)

itterate :: (a → a) → a → [a]
-- given a function f and some starting value x
-- outputs the infinite list [x, f x, f f x, ...]
itterate f seed = unfold (\x → Just (x, f x)) seed
```

While foldr and foldl are some of the most common favorite function of haskell proggramers; unfoldr remains mostly ignored. It is so ignored that to get the inbuilt version, one has to import Data.List. We will soon see an eggregious case where Haskell's own website ignored it. One of the paper we reffered was litrally titled "The Under-Appreciated Unfold".

X Some more inbuilt functions

Implement the following functions using fold and unfold.

- (i) concat :: [[a]] \rightarrow [a] concats a list of lists into a single list. For example: concat [[1,2,3],[4,5,6],[7,8],[],[10]] = [1,2,3,4,5,6,7,8,9, 10]
- (ii) cycle :: [a] \rightarrow [a] cycles through the list endlessly. For example: cycle [2, 3, 6, 18] = [2, 3, 6, 18, 2, 3, ...]
- (iii) filter :: $(a \rightarrow Bool) \rightarrow [a] \rightarrow [a]$ takes a predicate and a list and filters out the elements satisfying that predicate.
- (iv) concatMap :: $(a \rightarrow [b]) \rightarrow [a] \rightarrow [b]$ maps a function over all the elements of a list and concatenate the resulting lists. Do not use map in your definition.
- (v) length :: [a] \rightarrow Int gives the number of elements in the provided list. Use foldr or foldl.

⁴Pun intended.

X Base Conversion

```
(i) Comvert list of digits in base k to a number. That is lis2num :: Int \rightarrow [Int] \rightarrow Int with the usage lis2num base [digits].
```

```
(ii) Given a number in base 10, convert to a list of digits in base k num2lis :: Int \rightarrow Int \rightarrow [Int] with the usage num2list base numberInBase10
```

Let's go part by part. The idea of the first question is simply to understand that [4,2,3] in base k reprasents $4 * k^2 + 2 * k + 3 * k^0 = ((0 * k + 4) * k + 2) * k + 3$; doesn't this smell like fold!?

```
lis2num :: [Int] \rightarrow Int \rightarrow Int lis2num k = foldl (x y \rightarrow k * x + y) 0
```

For part two, the idea is that we can base convert using repeated division. That is,

```
423 `divMod` 10 = (42, 3)

42 `divMod` 10 = (4, 2)

4 `divMod` 10 = (0, 4)
```

It is clear that we terminate when the quotient reaces 0 and then just take the remainders. Does this sound like unfoldr?

```
num2lis :: Int → Int → [Int]
num2lis k = reverse . unfoldr gen where
  gen 0 = Nothing
  gen x = Just $ (x `mod` k, x `div` k)
```

X A list of Primes

This is the time when Haskell itself forgot that the unfoldr function exists. The website offers the following method to make a list of primes in Haskell as an advertisement for the language.

```
primes = filterPrime [2..] where
filterPrime (p:xs) =
  p : filterPrime [x | x ← xs, x `mod` p ≠ 0]
```

Understand this code (write a para explaining exactly what is happening!) and try to define a shorter (and more aesthetic) version using unfoldr.

The answer is litrally doing what one would do on paper. Like describing it would be a disservice to the code.

```
*list of primes using unfoldr sieve (x:xs) = Just (x, filter (\y \rightarrow y `mod` x \neq 0) xs) primes = unfoldr sieve [2..]
```

X Subsequences

```
subslists :: [a] → [[a]]
Write
          a
                function
                                                                which
                                                                            takes
                                                                                     a
list
       and
                returns
                                 list
                                         of
                                               sublists
                                                                  the
                                                                          given
                                                                                   list.
                  sublists "abc" = "","a","b","ab","c","ac","bc","abc"
For
      example:
                                                                                   and
sublists [24, 24] = [[],[24],[24],[24,24]].
Try to use the fact that a sublist either contains an element or not. Second, the fact that sublists
correspond nicely to binery numerals may also help.
       function
                                  compatable
                                                          infinite
You
                   must
                            be
                                                 with
                                                                     lists.
                                                                             that
                                                                                     is
take 10 $ sublists [1..] = [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3],
should work.
```

Please fill in the blanks below

A naive, non-infinite compatable definiton is:

```
sublists [] = _____ subslists (x:xs) = concatMap (\ys \rightarrow _____) (sublists xs)
```

On an infinite list, this definition gets stuck in an non-productive loop because we must traverse the entire list before it returns anything.

```
Note that on finite cases, the first sublist returned is always ______. This means we can state this as sublists xs = ____ : ___ (sublists xs). It is sensible to extend this equality to the infinite case, due to the analogy of ______.
```

By making this substitution, we produce the definition that can handle infinite lists, from which we can calculate a definition that's more aesthetically pleasing and slightly more efficient:

```
_____ -- Base case sublists (x:xs) = ____ : concatMap (\ys \rightarrow ____) (tail . sublists xs)
```

We can clean this definition up by calculating definitions for tail.sublists x something like nonEmpties. We start and renaming it by applying tail to both sides of the two cases. nonEmpties [] = tail.sublists [] = and nonEmpties (x:xs) = tail.sublists (x:xs) =

Substituting all thins through the definition.

```
Space to write the definition of sublists
```

This function can be called in Haskell through the subsequences function one gets on importing Data.Lists. Our definition is the most efficient and is what is used internally.

Finally, a question which would require you to use a lot of functions we just defined:

X The Recap Problem (Euler's Project 268)

It can be verified that there are 23 positive integers less than 1000 that are divisible by at least four distinct primes less than 100.

Find how many positive integers less than 10^{16} are divisible by at least four distinct primes less than 100.

Hint : Thik about PIE but not π .

Something we mentioned was that foldr and unfoldr are inverse (or more accutately duel) of each other. But their types seem so different. How do we reconcile this?

$$\begin{split} \text{foldr} :: (a \to b \to b) \to b & \to [a] \to b \\ & \cong (a \times b \to b) \to b & \to [a] \to b \\ & \cong (a \times b \to b) \to (1 \to b) \to [a] \to b \\ & \cong (a \times b \cup 1 \to b) & \to [a] \to b \\ & \cong (\text{Maybe}(a,b) \to b) & \to [a] \to b \end{split}$$
 Notice, unfoldr :: $(b \to \text{Maybe}(a,b)) & \to b \to [a]$

And now the duality emerges. (foldr f)⁻¹ = unfoldr f⁻¹.

Some more ideas on the nature of fold can be found in the upcoming chapters on datatypes as well as in the appendix.

Another type of function we sometimes want to define are:

```
sumlength :: [Int] → (Int,Int)
sumlength xs = (sum xs, length xs)
```

This is bad as we traverse the list twice. We could do this twice as fast using

```
sumlength :: [Int] \rightarrow (Int, Int)
sumlength = foldr (\x (a,b) \rightarrow (a+x, b + 1)) (0,0)
```

This might seem simple enough, but this idea can be taken to a diffrent level rather immidietly.

X Ackerman Function

The Ackerman function is defined as follows:

```
ack :: [Int] → [Int] → [Int]
ack [] ys = 1 : ys
ack (x : xs) [] = ack xs [1]
ack (x : xs) (y : ys) = ack xs (ack (x : xs) ys)
Define this in one single line using foldr.
```

Let's say foldr $f v \cong ack$.

```
\Rightarrow ack [] = v
\Rightarrow ack (x:xs) = f x (ack xs)
```

This means v = (1:) unfortunatly, figuring out f seems out of reach. Luckily, we are yet to use all the information the function provides.

Let's say foldr g w \cong ack (x:xs).

```
\Rightarrow ack (x:xs) [] = w
\Rightarrow ack (x:xs) (y:ys) = g y (ack (x:xs) ys)
```

This means $w = ack \times s$ [1] and

```
ack (x:xs) (y:ys)

= g y (ack (x:xs) ys) \iff ack xs (ack (x : xs) ys)

(canceling on both sides)

\implies g y = ack xs

\implies g = (\y z \implies ack xs z)
```

Thus, $g = (\y z \rightarrow ack xs z)$.

And finally, now working towards f, we get

```
ack (x:xs)

= f x (ack xs) \iff foldr (\y z \rightarrow ack xs z) (ack xs [1])

(substitution of a = ack xs)

\implies f x a \iff foldr (\y z \rightarrow a z) (a [1])

\implies f = (\x a \rightarrow foldr (\y z \rightarrow a z) (a [1]))
```

This gives us the definiton

```
ack :: [Int] \rightarrow [Int] \rightarrow [Int] ack = foldr (\x a \rightarrow foldr (\y z \rightarrow a z) (a [1])) (1:)
```

This might seem like a rather messy definition, but from a theoretical point of view, even this has it's importence. The main thing is that folding is faster than recursion at runtime so if no additional overhead is there, folds will run faster.

It is possible, but out of the scope of our current undertaking, to prove that all primitive recursive functions can be written as folds. What does primitive recursive functions mean? Well, that is left for your curiosity.

X Removing duplicates

Haskell has inbuilt function $nub :: Eq a \Rightarrow [a] \rightarrow [a]$ which is used to remove duplicates in a list. Write a recursive definition of nub and then write a definition using folds.

```
Haskell also has an inbuilt function nubBy :: (a \rightarrow a \rightarrow Bool) \rightarrow [a] \rightarrow [a] which is used to remove elements who report true to some property. That is nubBy (\xy \rightarrow x + y = 4) [1,2,3,4,2,0] = [1,2,4] as 1+3=4, 2+2=4, 4+0=4. Write a recursive definition of nubBy and then write a definition using folds.
```

X More droping and more taking

```
dropWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a] and takeWhile :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a] take a predicate and a list and drop all elements while the predicate is satisfied and take all objects while the predicate is satisfied respectively.
```

Implement them using recusion and then using folds.

§7.1.3.2. Numerical Integration

To quickly revise all the things we just learnt, we will try to write our first big-boy code.

Let's talk about numerical Integration. Numerical Integration refers to finding the value of integral of a function, given the limits. This is also a part of the mathematical computing we first studied in chapter 3. To get going, a very naive idea would be:

```
easyIntegrate :: (Float \rightarrow Float) \rightarrow Float \rightarrow Float easyIntegrate f a b = (f b + f a) * (b-a) / 2
```

This is quite inaccurate unless a and b are close. We can be better by simply dividing the integral in two parts, ie $\int_a^b f(x) \partial x = \int_a^m f(x) \partial x + \int_m^b f(x) \partial x$ where a < m < b and approximate these parts. Given the error term is smaller in these parts than that of the full integral, we would be done. We can make a sequence converging to the integral we are intrested in as:

```
Naive Integration
integrate :: (Float → Float) → Float → Float → [Float]
integrate f a b = (easyIntegrate f a b) : zipWith (+) (integrate f a m)
(integrate f m b) where m = (a+b)/2
```

If you are of the kind of person who likes to optimize, you can see a very simple inoptimality here. We are computing f m far too many times. Considering, f might be slow in itself, this seems like a bad idea. What do we do then? Well, ditch the aesthetic for speed and make the naive integrate as:

```
Naive Integration without repeated computation
integrate f a b = go f a b (f a) (f b)

integ f a b fa fb = ((fa + fb) * (b-a)/2) : zipWith (+) (integ f a m fa
fm) (integ f m b fm fb) where
    m = (a + b)/2
    fm = f m
```

This process is unfortunatly rather slow to converge for a lot of fucntions. Let's call in some backup from math then.

The elements of the sequence can be expressed as the correct answer plus some error term, ie $a_i=A+\mathrm{E}$. This error term is roughly proportional to some power of the seperation between the limits evaluated (ie $(b-a),\frac{b-a}{2}...$) (the proof follows from Taylor exmapnsion of f. You are recomended to prove the same). Thus,

$$\begin{split} a_i &= A + B \times \left(\frac{b-a}{2^i}\right)^n \\ a_{i+1} &= A + B \times \left(\frac{b-a}{2^{i+1}}\right)^n \\ \Rightarrow a_{i+1} - \frac{1}{2^n} a_i &= A \left(1 - \frac{1}{2^n}\right) \\ \Rightarrow A &= \frac{2^n \times a_{i+1} - a_i}{2^n - 1} \end{split}$$

This means we can improve our sequence by eliminating the error

```
elimerror :: Int \rightarrow [Float] \rightarrow [Float]
elimerror n (x:y:xs) = (2^n * y - x) / (2^n - 1) : elimerror n (y:xs)
```

However, we have now found a new problem. How in the world do we get n?

$$\begin{split} a_i &= A + B \times \left(\frac{b-a}{2^i}\right)^n \\ a_{i+1} &= A + B \times \left(\frac{b-a}{2^{i+1}}\right)^n \\ a_{i+2} &= A + B \times \left(\frac{b-a}{2^{i+2}}\right)^n \\ \Rightarrow a_i - a_{i+1} &= B \times \left(\frac{b-a}{2^i}\right)^n \times \left(1 - \frac{1}{2^n}\right) \\ \Rightarrow a_{i+1} - a_{i+2} &= B \times \left(\frac{b-a}{2^i}\right)^n \times \left(\frac{1}{2^n} - \frac{1}{4^n}\right) \\ \Rightarrow \frac{a_i - a_{i+1}}{a_{i+1} - a_{i+2}} &= \frac{4^n - 2^n}{2^n - 1} = \frac{2^n(2^n - 1)}{2^n - 1} = 2^n \\ \Rightarrow n &= \log_2\left(\frac{a_i - a_{i+1}}{a_{i+1} - a_{i+2}}\right) \end{split}$$

Thus, we can estimate n using the function order. We will be using the inbuilt function round :: (RealFrac a, Integral b) \rightarrow a \rightarrow b in doing so. In our case, round :: Float \rightarrow Int.

```
order :: [Float] \rightarrow Int
order (x:y:z:xs) = round $ logBase 2 $ (x-y)/(y-z)
```

This allows us to improve our sequence

```
improve :: [Float] → [Float]
improve xs = elimerror (order xs) xs
```

One could make a very fast converging sequence as say improve \$ improve \$ improve \$ integrate f a b.

But based on the underlying function, the number of improve may differ.

So what do we do? We make an extreamly clever move to define a super sequence super as

```
super :: [Float] \rightarrow [Float]
super xs = map (!! 2) (iterate improve xs) -- remeber iterate from the excercises above?
```

I will re-instate, the implementation of super is extreamly clever. We are recursivly getting a sequence of more and more improved sequences of approximations and constructs a new sequence of approximations by taking the second term from each of the improved sequences. It turns out that the second one is the best one to take. It is more accurate than the first and doesn't require any extra work to compute. Anything further, requires more computations to compute.

Finally, to complete our job, we define a function to choose the term upto some error.

```
within :: Float → [Float] → Float
within error (x:y:xs)
  | abs(x-y) < error = y
  | otherwise = within error (y:xs)

An optimalized function for numerical integration
ans :: (Float → Float) → Float → Float → Float
ans f a b error = within error $ super $ integrate f a b</pre>
```

With this we are done!

X Simpson's Rule

Here we have used the approximation $\int_a^b f(x) dx = (f(a) + f(b)) \frac{b-a}{2}$ and used divide and conquor. This is called the Trapazoidal Rule in Numerical Analysis.

A better approximation is called the Simpson's (First) Rule.

$$\int_{a}^{b} f(x) dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Modify the code to now use Simpson's Rule. Furthermore, show that this approximation makes sense (the idea is to find a quadratic polynomial which takes the same value as our function at a, $\frac{a+b}{2}$ and b and using its area).

§7.1.3.3. Time to Scan

We will now talk about folds lesser known cousing scans.

\$ Scans

While fold takes a list and compresses it to a single value, scan takes a list and makes a list of the partial compressions. Basically,

```
scanr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]
   scanr f v [x1, x2, x3, x4]
           foldr f v [x1, x2, x3, x4],
           foldr f v [x2, x3, x4],
           foldr f v [x3, x4],
           foldr f v [x4],
           foldr f v []
           x1 `f` x2 `f` x3 `f` x4 `f` v,
x2 `f` x3 `f` x4 `f` v,
           x3 `f` x4 `f` v,
           x4 `f` v,
         ]
and very much similerly as
   scanl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]
   scanl f v [x1, x2, x3, x4]
           foldl f v [],
           foldr f v [x1],
           foldr f v [x1, x2],
           foldr f v [x1, x2, x3],
           foldr f v [x1, x2, x3, x4]
      = [
           v `f` x1,
```

There are also very much similer scanr1 and scanl1.5

v `f` x1 `f` x2 `f` x3,

v `f` x1 `f` x2 `f` x3 `f` x4,

v `f` x1 `f` x2,

1

The reason the naming is as the internal implementation of these funtions look like similer to the definition of the fold they borrow their name from.

⁵Similer to our note in fold, there is a function pair scanl' and scanl1', which similer to foldl' and foldl1', and have the same set of benefits. This makes them the defualts, but similerly, to understand them well, we need to discuss how haskell's lazy computation actually works and the way to bypass it. This is done in chapter 9.

Advanced List Operations

```
scanr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]
scanr _ v [] = [v]
scanr f v (x:xs) = x `f` (head part) : part where part = scanr f v xs

scanl :: (b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow [b]
scanl _ v [] = [v]
scanl f v (x:xs) = v : scanl f (v `f` x) xs
```

X Scan as a fold

We can define scanr using foldr, try to figure out a way to do so.

X Defining scanl1 and scanr1

Modify these definitions and define scanl1 and scanr1.

This seems like a much more convaluted reccursion pattern. So why have we decided to study it? Let's see by example

X Not Quite Lisp (AOC 2015, 1)

Santa is trying to deliver presents in a large apartment building, but he can't find the right floor - the directions he got are a little confusing. He starts on the ground floor (floor 0) and then follows the instructions one character at a time.

An opening parenthesis, (, means he should go up one floor, and a closing parenthesis,), means he should go down one floor.

The apartment building is very tall, and the basement is very deep; he will never find the top or bottom floors.

For example:

- (()) and ()() both result in floor 0.
- (((and (()(() both result in floor 3.
-))(((((also results in floor 3.
- ()) and))(both result in floor –1 (the first basement level).
-))) and)())()) both result in floor -3.

Write a function parse :: String \rightarrow Int which takes the list of parenthesis as a sting in input and gives the correct integer as output.

This is quite simple using folds.

```
parse :: String \rightarrow Int
parse = foldl (\x y \rightarrow if y = '(' then x+1 else x - 1) 0
```

But every AOC question always has a part 2!

X Not Quite Lisp, 2

Now, given the same instructions, find the position of the first character that causes him to enter the basement (floor -1). The first character in the instructions has position 1, the second character has position 2, and so on.

For example:

-) causes him to enter the basement at character position 1.
- ()()) causes him to enter the basement at character position 5.

Make a function ans which takes the list of parenthesis as a sting in input and output the position(1 indexed) of the first character that causes Santa to enter the basement

If we had no idea of scans, this would be harder. In this case, it is just a simple replacement.

```
ans :: String \rightarrow Int ans = length.takeWhile (\neq -1).scanl (\x y \rightarrow if y = '(' then x+1 else x - 1) 0
```

The takewhile chooses all the floors we reach before -1. As 0th floor is counted (as it is the scan on empty list), we will have a list of length as much as the position of the character that caused us to enter -1.

Now, here is a conincidence we didn't expect. We were told that AOC 2015's first question was a good foldl to scanl example. What I was not prepared to see was scanning showing up in AOC 2015's third question as well.

X Perfectly Spherical Houses in a Vacuum (AOC 2015)

Santa is delivering presents to an infinite two-dimensional grid of houses.

He begins by delivering a present to the house at his starting location, and then an elf at the North Pole calls him via radio and tells him where to move next. Moves are always exactly one house to the north (^), south (v), east (>), or west (<). After each move, he delivers another present to the house at his new location.

However, the elf back at the north pole has had a little too much eggnog, and so his directions are a little off, and Santa ends up visiting some houses more than once. How many houses receive at least one present?

For example:

- > delivers presents to 2 houses: one at the starting location, and one to the east.
- ^>v< delivers presents to 4 houses in a square, including twice to the house at his starting/ending location.
- ^v^v^v^v^ delivers a bunch of presents to some very lucky children at only 2 houses.

Create function solve1 :: String \rightarrow Int which takes the list of instructions as string in input and outputs the number of hourses visited.

X Perfectly Spherical Houses in a Vacuum II

The next year, to speed up the process, Santa creates a robot version of himself, Robo-Santa, to deliver presents with him.

Santa and Robo-Santa start at the same location (delivering two presents to the same starting house), then take turns moving based on instructions from the elf, who is eggnoggedly reading from the same script as the previous year.

This year, how many houses receive at least one present?

For example:

- ^v delivers presents to 3 houses, because Santa goes north, and then Robo-Santa goes south.
- ^>v< now delivers presents to 3 houses, and Santa and Robo-Santa end up back where they started.
- ^v^v^v^v^ now delivers presents to 11 houses, with Santa going one direction and Robo-Santa going the other.

Create function $solve2 :: String \rightarrow Int$ which takes the list of instructions as string in input and outputs the number of hourses visited.

We will also breifly talk about something called Segmented Scan.

\$ Segmented Scan

A scan can be broken into segments with flags so that the scan starts again at each segment boundary. Each of these scans takes two vectors of values: a data list and a flag list. The segmented scan operations present a convenient way to execute a scan independently over many sets of values.

For example, a segmented looks like is:

```
1 2 3 4 5 6 -- Input T F F T F T -- Flag 1 3 6 4 9 6 -- Result We will name this function segScan :: (a \rightarrow a \rightarrow b) \rightarrow [Bool] \rightarrow [a] \rightarrow [b].
```

The implementation of function is as follows

```
segScan :: (a → a → b) → [Bool] → [a] → [b]
segScan f flag str = scanl (\r (x,y) → if x then y else r `f` y) (head
str) (tail (zip flag str))
```

This might seem complex but we are merely zip-ing the flags and input values, and defining a new function, say g which applies the function f, but resets to y (the new value) whenever x (the flag) is True. The head and tail are to ensure that the first element is the beginning of the first segment.

This will be the end of my discussion of this. The major use of segmented scan is in parallel computation algorithms. A rather complex quick sort parallel algorithm can be created using this as the base.

```
§7.1.4. Excercises
```

Introduction to Datatypes

Shubh Sharma

§8.1. Datatypes (Once Again)

In Chapter 4 we saw how Haskell datatypes correspond to sets of values. Like Integer is the set of all integers and String \rightarrow Bool is the set of all functions that take in a String as an argument and return a Boolean as their output. This was the first time we gave explicit attention to datatypes and learned the following:

```
    Types 1

A Datatype, in its simplest form, is the name of a set.
```

In Chapter 6, where we defined polymorphic functions, the *shape* and *behaviour* of an element were 2 properties that we built off of.

As a small recap, consider function elem, this is a function which checks if a given element belongs to a given list. The input requires to be a list of elements of a type, such that there is a notion of equality between types.

```
elem :: Eq a \Rightarrow a \rightarrow [a] \rightarrow Bool
elem _ [] = False
elem e (x : xs) = e = x || elem e xs
```

Our requirements for the function are very clearly mentioned in the type. We are starting with a type a which has a notion of equality defined on it, as depicted by Eq a, and our arguments are an element of the type a and a list of elements of the type, that is, [a]. Here we used datatypes to specify the properties of the elements that we use. So we extend the previous definition

‡ Types 2

A **Datatype** is the name of a *homogenous* collection of object, where the common properties, like the shape of elements, is depicted in the name.

Some examples of datatypes we have already seen are:

- [Integer], which is the collection of lists of integers.
- Maybe Char, which is the collection of characters along with the extra element Nothing.
- Integer → String, which is the collection of functions with their domain as the set of integers and range as the set of strings.

Introduction to Datatypes

This definition suggests that datatypes can be used to *structure* the data we want to work with. And this is actually something we have seen before!

In Chapter 4, we saw operations on sets such as

- (A, B) being analogous to \(\ddot\) cartesian product.
- Either A B being analogous to \(\ddot\) disjoint union.

Here we will spend some time to see how we can define dataypes like these on our own.

Before getting to defining our own datatypes, its good to remember what the purpose of datatypes is: The point of datatype is to make thinking about programs simpler, for both the programmer and Haskell. This is done in the following ways:

- Types indicate the *shape* of elements and can add information about the functions, for example:
 - Either [Integer] Bool tells us that every element of the type is either a list of integers, or a boolean value.
 - ► Eq a \Rightarrow a \rightarrow [a] \rightarrow Maybe Integer tells us that a has a notion of equality defined on it, and the output should be an integer, but the function can potentially fail (that is return Nothing).
- Types tell the compiler information about domain and codomain of functions, which makes it possible for Haskell to prove that a huge class of functions is complete, that is, it returns a well defined answer on all inputs.

We will now see how to define our own types.

§8.2. Type Synonyms

The simpest way in which we can define our own types is by giving another name to an already existing type. This is done using the keyword type as follows:

```
type aliases
type Point = (Integer, Integer)
type String = [Char] -- This is how Haskell defines String!

type Name = String
type Age = Integer

type Person = (Name, Age)
```

note that any type defined using the keyword type is simply an alias for another type and Haskell does not treat it any differently.

Nonetheless, this can be very helpful for interpreting the type for a human. For example the type Person which is an alias for (String, Integer), when written as (Name, Age), is very clearly meant to be a pair containg the name of a person, and their age.

§8.3. Finite Types

The step, which is really a big one, is that we will now define our own types, which contain the values that we create, this is done using the data keyword.

The last example is there to emphasize that the data keyword really creates new types. The Coin type is a 2-element type, but is not the same as Bool and Haskell will give a type error if its used in its place. Each element of a type defined like this is called a **constructor**, which is name that will get its justification by the end of the chapter.

To define a function out of a finite type, one needs to define the output all all constructors, for example:

```
isRed :: Colour → Bool
isRed Red = True
isRed Blue = False
isRed Green = False
```

Defining finite types is really helpful when one wants to have a finite number of variants in a type, for example, there are a finite number of chess pieces, in languages that do not have a syntax that lets us do something like this, one would make do with strings. The benifit of these finite types is that now Haskell will make sure that the functions are only defined on intended values (unlike all possible strings), and will also give warnings if any function is not defined on all variants.

```
Einite Types
Define the types Month, Day of the week and DiceHead as finite types.
```

§8.4. Product Types

These are what we get when take **are cartesian product** of other, simpler types. The purpose of product types is to define data, that has multiple smaller components. For example:

- A Point on a 2D grid which has 2 integer components.
- A Profile representing a profile on a dating app, which would contain the person's name, their age, some images and more information about them. We will be using the first example to keep things simple.
- Complex Numbers can be thought of as having 2 components, real and imaginary.

The first way to create a product, which is something we have already seen before is a tuple.

And we can extract components using fst and snd functions. (Note Point is just a synonym for (Int, Int)).

Another way to do so is to use the data keyword again in a much more powerful way!

Here we need to define our own functions to extract components as Point is different from (Int, Int).

The second important thing to highlight here is that constructors are functions! They are called so because they "construct" and element of the type associated with them, like Coord constructs elements of type Point, infact Haskell will even give us a type for it. Constructors for finite types can be thought of as functions that take 0 arguments (so, they just behave as values).

Since defining a product type, and then defining functions to extract the components is a fairly common practice, haskell has another way to define product types.

```
data Point = Coord {
   x_coord :: Int,
   y_coord :: Int
}
-- This is how one can create an element!
origin :: Point
origin = Coord { x_coord = 0, y_coord = 0 }
```

These are called **Records** its a syntactic sugar, which means internally haskell treats it just like the previous way of defining product types, so Coord 0 0 also works. But now we have the 2 functions x_coord and y_coord defined!

X Dating Profile

As described above, the profile of a dating app can be also thought of as a product type, one which is more complicated than a simple point in the 2d grid. Define the type Profile and try to see how elaborate you can make it. A fun rabbit hole do dive into would be to see how dating apps work.

X Complex Numbers

Define the dataype Complex, we will be looking at this again in later sections of the chapter.

§8.5. Parametric Types

We will once again extend the use of data keyword using ideas form Chapter 6.

We compared product types with tuples, we even treated Point as a special case (Int, Int) for a while. Turns out we can define our tuples, in its full generality as follows:

```
Tuple A B = Pair A B

ex :: Tuple Int String
ex = Pair 5 "Heyy!"
```

Here Tuple is called a **parametric type**, and this is similar to how haskell defines its tuples, it just adds an extra syntactic sugar so we can write it as (a,b).

Some other **parametric types** that we have seen before, and we will be discussing in depth in the next section are:

- Maybe a
- Either a b
- [a], The list type
- The function type $a \rightarrow b$

§8.6. Sum Types

Sum types are what type theory people like to call (*) **disjoint union**. And already have seen everything we need to construct sum types:

- Finite Types
- Viewing constructors as functions
- Parmetric Types

The purpose of having sum types is to have a collection of many possible *variants* in a type. This is similar to what we did with Finite types but we can have an entire collection as a variant with the help of Parametric types.

Here are some examples:

Just like finite types, to define a function on a sum type, one needs to define it on all variants. This is also called Pattern Matching!

X Better Dating Profile

Think of some interesting questions and possible answers for those questions / information bits for a dating profile and incorporate it into you Profile type.

- Define recurssion in recursive data types and define (4)
- · define Nat, List, Tree

In Chapter 4, we saw that types can be thought of as sets, and given simple types one can put them together in multiple ways to form more sophisticated types, some of the options we have dicussed so far:

Introduction to Datatypes

- We can take = cartesian product of types A and B as (A, B).
- We can take 🕏 disjoint union of types A and B as Either A B.
- We can create the list of elements of type A as [A].

And so on...

Computation as Reduction

Shubh Sharma

§9.1. computation (feel free to change it)

Complexity

Complexity

Arjun Maneesh Agarwal

§10.1. complexity (feel free to change it)

Advanced Data Structures

Arjun Maneesh Agarwal

§11.1. post-complexity data types (feel free to change it)

- Queue
- Segment Tree
- BST
- Set
- Map
- Define recurssion in recursive data types and define (4)
- define Nat, List, Tree

Type Classes

Ryan Hota

§12.1. typeclasses (feel free to change it)

Monads

Monads

Ryan Hota

§13.1. Monad (feel free to change it)