MTH 101 - Symmetry

Assignment 4

- 1. Which of the following collections of 2×2 matrices with real entries forms a group under matrix multiplication?
 - (a) Those of the form $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ for which $ac \neq b^2$.
 - (b) Those of the form $\begin{bmatrix} a & b \\ c & a \end{bmatrix}$ for which $a^2 \neq bc$.
 - (c) Those of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ for which $ac \neq 0$.
 - (d) Those of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ for which $ac \neq 0$ and $a,b,c \in \mathbb{Z}$.
 - (e) Those of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ for which $ad \neq bc$ and $a, b, c, d \in \mathbb{Z}$.
- 2. Let G be the set of 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ for which $a,b,c,d \in \mathbb{Z}$ and ad-bc=1. Check that G forms a group under matrix multiplication. (Use row-reduction to find the inverse of an element in G.) Let

$$A = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right] \qquad B = \left[\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right].$$

What is the order of the elements A, B, AB and BA.

- 3. Let x and y be the elements of a group G. Prove that G contains elements w, z which satisfy wx = y and xz = y and show that these elemens are unique. (Hint: Use the closure property and existence of inverse of elements in G.)
- 4. Let D_4 be the set of all bijections that map a square to itself. Show that D_4 is a group and write the Cayley table for D_4 .
 - (a) List the cyclic subgroups of D_4 .
 - (b) Let r be an element of D_4 of order 4 and s be an D_4 of order 2 such that $s \notin < r >$. Determine the group < r, s >.
- 5. Let H be a subgroup generated by two elements a, b of a group G.
 - (a) Prove that if ab = ba, then H is abelian.
 - (b) Prove that if all three of a, b and ab are of order of 2, then H is abelian. In this case what is the order of H.
- 6. For a positive integer n, let \mathbb{Z}_n be a cyclic group of order n.
 - (a) Determine the orders of the elements in \mathbb{Z}_5 and \mathbb{Z}_4 .
 - (b) Determine the cyclic subgroups of \mathbb{Z}_5 and \mathbb{Z}_4 .
- 7. (*) Let G be the collection of all rational numbers x such that $0 \le x < 1$. Show that the operation

$$x + y = \begin{cases} x + y & \text{if } 0 \le x + y < 1\\ x + y - 1 & \text{if } x + y \ge 1 \end{cases}$$

makes G into an infinite abelian group all of whose elements have finite order.