Matemática

Lógica Proposicional Booleana

Prof. Edson Alves

Faculdade UnB Gama

Lógica Proposicional Booleana

Termos primitivos e axiomas

A Lógica Proposicional Booleana é construída a partir de dois axiomas fundamentais, que relaciona os termos primitivos **proposição**, **verdadeiro** e **falso**:

- 1. Princípio do Terceiro Excluído: toda proposição ou é verdadeira ou é falsa;
- 2. **Princípio da Não Contradição**: uma proposição não poder ser, simultaneamente, verdadeira e falsa.

Proposições simples e compostas

- As proposições são representadas por letras minúsculas (por exemplo, p,q,r,\ldots)
- Duas ou mais proposições simples podem ser combinadas por meio de conectivos lógicos para formar proposições compostas
- ullet Proposições compostas são representadas por letras maiúsculas (por exemplo, P,Q,R,\ldots)
- Proposições compostas também podem ser combinadas por meio de conectivos lógicos, formando novas proposições compostas

Conectivos lógicos

Conectivo	Notação	Valor lógico
Conjunção (e)	$p \wedge q$	verdadeira apenas quando ambas p e q são verdadeiras
Disjunção (ou)	$p \lor q$	falsa apenas quando ambas p e q são falsas
Disjunção exclusiva (xor)	$p \veebar q$	verdadeira apenas quando p e q tem valores lógicos opostos
Condicional (se, então)	$p \to q$	falsa apenas quando p é verdadeira e q é falsa
Bicondicional (se, e somente se)	$p \leftrightarrow q$	verdadeira apenas quando p e q tem mesmo valor lógico
Negação (não)	$\neg p$	inverte o valor lógico de \boldsymbol{p}

Leis de Morgan

Teorema

Sejam p e q duas proposições. Vale que

$$\neg(p \land q) = \neg p \lor \neg q$$

e que

$$\neg(p \lor q) = \neg p \ \land \neg q$$

Lógica Booleana em C e C++

- As linguagens C e C++ tem, em sua sintaxe, operadores lógicos relacionais, que representam os conectivos lógicos
- Também há suporte para operadores lógicos *bit-a-bit*, que aplicam cada operação lógica aos pares de *bits* correspondentes
- Importante notar que, embora a linguagem C++ tenha um tipo de dado booleano, ambas linguagens interpretam como verdadeiro qualquer valor inteiro diferente de zero, e o zero como falso

Operadores lógicos em C/C++

Operador	Aridade	Símbolo em C	Palavra reservada em C++
е	binário	&.&.	and
ou	binário	П	or
não	unário	!	not

Operadores lógicos em C/C++

- Observe que apenas 3 dos conectivos lógicos tem símbolos ou palavras reservadas equivalentes em C e C++
- Isto se dá porque é possível, a partir destes três, definir quaisquer um dos demais conectivos
- Por exemplo, $p \to q$ é logicamente equivalente a $\neg p \lor q$
- Os operadores binários são curto-circuito: se o valor lógico da primeira proposição é suficiente para definir o valor da expressão, a segunda proposição não é avaliada

Operadores bit-a-bit em C/C++

Operador	Aridade	Símbolo
е	binário	&
ou	binário	1
ou exclusivo	binário	٨
não	unário	~

Exemplo de operadores bit-a-bit em C/C++

```
#include <bits/stdc++.h>
3 int main()
4 {
  5
   unsigned char c = a & b;  // 6 = 00000110
   unsigned char d = a | b;  // 191 = 10111111
9
   unsigned char e = a ^ b:  // 185 = 10111001
10
   return 0:
14
15 }
```

Referências

- 1. ALENCAR FILHO, Edgard de. Iniciação à Lógica Matemática. São Paulo, Nobel, 2002.
- 2. **HALE**, Margie. *Essentials of Mathematics: Introduction to Theory, Proof, and the Professional Culture*. Mathematical Association of America, 2003.
- 3. MORTARI, Cezar A. *Introdução à Lógica*. Editora Unesp, 2ª edição, 2017.