From Natural Projection to Partial Model Checking and Back (Technical proofs and experiments)

Gabriele Costa^{1*}, David Basin², Chiara Bodei³, Pierpaolo Degano³, and Letterio Galletta^{3*}

- DIBRIS, Università degli Studi di Genova gabriele.costa@unige.it
- Department of Computer Science, ETH Zurich basin@inf.ethz.ch
- ³ Dipartimento di Informatica, Università di Pisa {chiara,degano,galletta}@di.unipi.it

Overview

This document contains the appendix of the paper:

Gabriele Costa, David Basin, Chiara Bodei, Pierpaolo Degano, and Letterio Galletta "From Natural Projection to Partial Model Checking and Back". TACAS 2018 (accepted).

Technical Proofs

Here we provide the proofs of the theoretical results of the paper.

Definition 1. A labeled transition system (LTS) is a tuple $A = (S_A, \Sigma_A, \rightarrow_A, \imath_A)$ where S_A is a finite set of states (with \imath_A the initial state), Σ_A is a finite set of action labels, and \rightarrow_A : $S_A \times \Sigma_A \rightarrow S_A$ is the transition function. We write $t = s \xrightarrow{a} s'$ to denote a transition, whenever $\rightarrow_A (a, s) = s'$, and we call the state s the source, the symbol a the action, and the state s' the destination.

A trace $\sigma \in \mathcal{T}$ of an LTS A is either a single state s or a sequence of transitions $t_1 \cdot t_2 \cdot \ldots$ such that for each t_i , its destination is the source of t_{i+1} (if any). When unnecessary, we omit the source of t_{i+1} , and write a trace as the sequence $\sigma = s_0 \mathbf{a_1} s_1 \mathbf{a_2} s_2 \ldots \mathbf{a_n} s_n$, alternating elements of S_A and S_A (in boldface for readability). Finally, we denote by [A, s] the set of traces of A starting from state s and we write [A] for $[A, \iota_A]$, i.e., for those traces starting from the initial state ι_A .

^{*} This author is now affiliated with IMT Institute for Advanced Studies Lucca.

Definition 2. Given two LTSs A and B such that $\Sigma_A \cap \Sigma_B = \Gamma$, the synchronous product of A and B is $A \parallel B = (S_A \times S_B, \Sigma_A \cup \Sigma_B, \rightarrow_{A \parallel B}, \langle \imath_A, \imath_B \rangle)$, where $\rightarrow_{A \parallel B}$ is as follows:

$$\langle s_{A}, s_{B} \rangle \xrightarrow{a}_{A \parallel B} \langle s'_{A}, s_{B} \rangle \text{ if } s_{A} \xrightarrow{a}_{A} s'_{A} \text{ and } a \in \Sigma_{A} \setminus \Gamma$$

$$\langle s_{A}, s_{B} \rangle \xrightarrow{b}_{A \parallel B} \langle s_{A}, s'_{B} \rangle \text{ if } s_{B} \xrightarrow{b}_{B} s'_{B} \text{ and } b \in \Sigma_{B} \setminus \Gamma$$

$$\langle s_{A}, s_{B} \rangle \xrightarrow{\gamma}_{A \parallel B} \langle s'_{A}, s'_{B} \rangle \text{ if } s_{A} \xrightarrow{\gamma}_{A} s'_{A}, s_{B} \xrightarrow{\gamma}_{A} s'_{B}, \text{ and } \gamma \in \Gamma.$$

Definition 3. For LTSs A and B with $\Gamma = \Sigma_A \cap \Sigma_B$, the natural projection on A of a trace σ , in symbols $P_A(\sigma)$, is defined as follows:

$$P_{A}(\langle s_{A}, s_{B} \rangle) = s_{A}$$

$$P_{A}(\langle s_{A}, s_{B} \rangle \xrightarrow{a}_{A \parallel B} \langle s'_{A}, s'_{B} \rangle \cdot \sigma) = s_{A} \xrightarrow{a}_{A} s'_{A} \cdot P_{A}(\sigma) \quad \text{if } a \in \Sigma_{A}$$

$$P_{A}(\langle s_{A}, s_{B} \rangle \xrightarrow{b}_{A \parallel B} \langle s_{A}, s'_{B} \rangle \cdot \sigma) = P_{A}(\sigma) \quad \text{if } b \in \Sigma_{B} \setminus \Gamma.$$

Natural projection on second component B is analogously defined. We extend the natural projection to sets of traces in the usual way: $P_A(T) = \{P_A(\sigma) \mid \sigma \in T\}$.

The inverse projection of a trace σ over an LTS $A \parallel B$, in symbols $P_A^{-1}(\sigma)$, is defined as $P_A^{-1}(\sigma) = \{\sigma' \mid P_A(\sigma') = \sigma\}$. Its extension to sets is $P_A^{-1}(T) = \bigcup_{\sigma \in T} P_A^{-1}(\sigma)$.

Fact 1.
$$P_A([\![A \parallel B]\!]) \subseteq [\![A]\!]$$
 and $[\![A \parallel B]\!] = P_B^{-1}([\![A]\!]) \cap P_A^{-1}([\![B]\!]).$

Definition 4 (Syntax of the μ -calculus). Given a set of variables $x \in X$ and an alphabet of actions $a \in \Sigma$, assertions $\varphi, \varphi' \in A$ are given by the syntax:

$$\varphi ::= ff \mid tt \mid x \mid \varphi \wedge \varphi' \mid \varphi \vee \varphi' \mid [a]\varphi \mid \langle a \rangle \varphi.$$

An equation is $x =_{\pi} \varphi$, where $\pi \in \{\mu, \nu\}$, μ denotes a minimum fixed point equation, and ν a maximum one. An equation system Φ is a possibly empty sequence (ϵ) of equations, where each variable x occurs in the left-hand side of at most single equation. Thus Φ is given by

$$\Phi ::= x =_{\pi} \varphi; \Phi \mid \epsilon.$$

A top assertion $\Phi \downarrow x$ projects the simultaneous solution of an equation system Φ onto the top variable x.

Definition 5 (Semantics of the μ -calculus [?]). Let A be an LTS, and ρ : $X \to 2^{S_A}$ be an environment that maps variables to sets of A's states. Given an assertion φ , the state semantics of φ is the mapping $\|\cdot\|: \mathcal{A} \to (X \to 2^{S_A}) \to 2^{S_A}$ inductively defined as follows.

$$\begin{split} \|ff\|_{\rho} &= \emptyset & \|tt\|_{\rho} = S_{A} & \|x\|_{\rho} = \rho(x) \\ \|\varphi \wedge \varphi'\|_{\rho} &= \|\varphi\|_{\rho} \cap \|\varphi'\|_{\rho} & \|[a]\varphi\|_{\rho} = \{s \in S_{A} \mid \forall s'.s \xrightarrow{a}_{A} s' \Rightarrow s' \in \|\varphi\|_{\rho}\} \\ \|\varphi \vee \varphi'\|_{\rho} &= \|\varphi\|_{\rho} \cup \|\varphi'\|_{\rho} & \|\langle a\rangle\varphi\|_{\rho} = \{s \in S_{A} \mid \exists s'.s \xrightarrow{a}_{A} s' \wedge s' \in \|\varphi\|_{\rho}\} \end{split}$$

We extend the state semantics from assertions to equation systems. First we introduce some auxiliary notation. The empty mapping is represented by []. $[x \mapsto U]$ is the environment where U is assigned to x, and $\rho \circ \rho'$ is the mapping obtained by composing ρ and ρ' . Given a function f(U) on the powerset of S_A , let $\pi U.f(U)$ be the corresponding fixed-point. We now define the semantics of equation systems by:

$$\begin{split} \|\epsilon\|_{\rho} &= [\,] \\ \|x =_{\pi} \varphi; \varPhi\|_{\rho} &= R(U^*) \quad where \ U^* = \pi U. \|\varphi\|_{\rho \circ R(U)} \\ &\quad and \quad R(U) = [x \mapsto U] \circ \|\varPhi\|_{\rho \circ [x \mapsto U]}. \end{split}$$

Finally, for top assertions, let $\|\Phi\downarrow x\|$ be a shorthand for $\|\Phi\|_{\square}(x)$.

Definition 6. Given an LTS A, an environment ρ , and a state $s \in S_A$, the trace semantics of an assertion φ is a function $\langle\langle\cdot\rangle\rangle:\mathcal{A}\to S_A\to (X\to 2^{S_A})\to \mathcal{T}$, that we also extend to equation systems, defined as follows.

$$\langle\!\langle \varphi \rangle\!\rangle_{\rho}^{s} = \begin{cases} \llbracket A, s \rrbracket \text{ if } s \in \|\varphi\|_{\rho} \\ \emptyset \text{ otherwise} \end{cases} \qquad \langle\!\langle \varPhi \rangle\!\rangle_{\rho} = \lambda x. \bigcup_{s \in \|\varPhi\|_{\rho}(x)} \llbracket A, s \rrbracket.$$

We write $\langle\!\langle \Phi \downarrow x \rangle\!\rangle$ in place of $\langle\!\langle \Phi \rangle\!\rangle_{[]}(x)$.

Definition 7. An LTS A satisfies a top assertion $\Phi \downarrow x$, in symbols $A \models_s \Phi \downarrow x$, if and only if $i_A \in \|\Phi \downarrow x\|$. Moreover, let $A \models_{\sigma} \Phi \downarrow x$ if and only if $[A] \subseteq$ $\langle\!\langle \Phi \downarrow x \rangle\!\rangle$.

Fact 2. $A \models_{\mathfrak{S}} \Phi \downarrow x$ if and only if $A \models_{\sigma} \Phi \downarrow x$.

Definition 8. Given a top assertion $\Phi \downarrow x$, we define the quotienting of the assertion on an LTS A with respect to an alphabet Σ_B as follows.

$$\Phi \downarrow x /\!\!/_{\Sigma_B} A = (\Phi /\!\!/_{\Sigma_B} A) \downarrow x_{i_A}, \text{ where }$$

$$\begin{split} \epsilon /\!\!/_{\varSigma_B} A &= \epsilon \qquad (x =_\pi \varphi; \varPhi) /\!\!/_{\varSigma_B} A = \begin{cases} x_{s_1} =_\pi \varphi /\!\!/_{\varSigma_B} s_1 \\ \vdots & ; \; \varPhi /\!\!/_{\varSigma_B} A \quad (\forall \; s_i \in S_A) \\ x_{s_n} =_\pi \varphi /\!\!/_{\varSigma_B} s_n \end{cases} \\ x /\!\!/_{\varSigma_B} s &= x_s \qquad tt /\!\!/_{\varSigma_B} s = tt \qquad f\!\!f /\!\!/_{\varSigma_B} s = f\!\!f \end{split}$$

$$x_{\parallel} z_{B} = x_{S}$$
 $w_{\parallel} z_{B} = w$ $y_{\parallel} y_{S} = y_{S}$

$$\varphi \vee \varphi' /\!\!/_{\Sigma_B} s = \varphi /\!\!/_{\Sigma_B} s \vee \varphi' /\!\!/_{\Sigma_B} s \qquad \varphi \wedge \varphi' /\!\!/_{\Sigma_B} s = \varphi /\!\!/_{\Sigma_B} s \wedge \varphi' /\!\!/_{\Sigma_B} s$$

$$(\langle a \rangle \varphi) /\!\!/_{\Sigma_B} s = \bigvee \varphi /\!\!/_{\Sigma_B} s' \qquad ([a] \varphi) /\!\!/_{\Sigma_B} s = \bigwedge \varphi /\!\!/_{\Sigma_B} s' \qquad if \ a \in \Sigma_A \setminus \Gamma$$

$$(\langle a \rangle \varphi) /\!\!/_{\Sigma_B} s = \bigvee_{\substack{s \xrightarrow{a} s' \\ (\langle b \rangle \varphi) /\!\!/_{\Sigma_B} s}} \varphi /\!\!/_{\Sigma_B} s' \qquad ([a] \varphi) /\!\!/_{\Sigma_B} s = \bigwedge_{\substack{s \xrightarrow{a} s' \\ s \xrightarrow{a} s'}} \varphi /\!\!/_{\Sigma_B} s' \qquad if \ a \in \Sigma_A \setminus \Gamma$$

$$(\langle b \rangle \varphi) /\!\!/_{\Sigma_B} s = \langle b \rangle (\varphi /\!\!/_{\Sigma_B} s) \qquad ([b] \varphi) /\!\!/_{\Sigma_B} s = [b] (\varphi /\!\!/_{\Sigma_B} s) \qquad if \ b \in \Sigma_B \setminus \Gamma$$

$$(\langle \gamma \rangle \varphi) /\!\!/_{\Sigma_B} s = \bigvee_{s \xrightarrow{\gamma} s'} \langle \gamma \rangle (\varphi /\!\!/_{\Sigma_B} s') \qquad ([\gamma] \varphi) /\!\!/_{\Sigma_B} s = \bigwedge_{s \xrightarrow{\gamma} s'} [\gamma] (\varphi /\!\!/_{\Sigma_B} s') \qquad \text{if } \gamma \in \varGamma. \qquad \square$$

Definition 9. Given a synchronous product $A \parallel B$, we define $\Delta_B(\cdot): (X \to 2^{S_A \times S_B}) \to (X_{S_A} \to 2^{S_B})$ as

$$\Delta_B(\rho) = \bigoplus_{x \in Dom(\rho)} \bigoplus_{s_A \in S_A} [x_{s_A} \mapsto U_B^x(s_A)], \text{ where } U_B^x(s_A) = \{s_B \mid \langle s_A, s_B \rangle \in \rho(x)\} \quad \Box$$

Lemma 1. For all A, B, ρ and φ on $A \parallel B$, $\langle s_A, s_B \rangle \in \|\varphi\|_{\rho} \iff s_B \in \|\varphi\|_{\Sigma_B} s_A\|_{\Delta_B(\rho)}$.

Proof. By induction over the structure of φ .

- Cases tt and ff. Trivial.
- Case x. By definition of $\Delta_B(\rho)$.
- Cases $\varphi \wedge \varphi'$, $\varphi \vee \varphi'$. By the induction hypothesis.
- Case $\langle a \rangle \varphi$. By the Definition 5, $\langle s_A, s_B \rangle \in \|\langle a \rangle \varphi\|_{\rho}$ if and only if $\exists s_A', s_B'$ such that $\langle s_A, s_B \rangle \xrightarrow{a}_{A \parallel B} \langle s_A', s_B' \rangle \wedge \langle s_A', s_B' \rangle \in \|\varphi\|_{\rho}$. By the induction hypothesis, this is equivalent to

$$\exists s_A', s_B' \text{ such that } \langle s_A, s_B \rangle \xrightarrow{a}_{A \parallel B} \langle s_A', s_B' \rangle \wedge s_B' \in \|\varphi /\!\!/_{\Sigma_B} s_A' \|_{\Delta_B(\rho)}$$
 (1)

Then we consider three exhaustive cases.

- $a \in \Sigma_A \setminus \Gamma$. Here $s'_B = s_B$ and (1) is satisfied if and only if $s_B \in \| \bigvee_{s_A \xrightarrow{\alpha} A s'} \varphi /\!\!/_{\Sigma_B} s' \|_{\Delta_B(\rho)}$. We conclude by applying Definition 8.
- $a \in \Sigma_B \setminus \Gamma$. In this case $s'_A = s_A$ and, by Definition 5, (1) is equivalent to claiming $s_B \in \|\langle a \rangle (\varphi /\!\!/ \Sigma_B s_A)\|_{\Delta_B(\rho)}$. Again, we close the case by applying Definition 8.
- $a \in \Gamma$. We combine the reasoning of the two previous cases to conclude that $s_B \in \|\bigvee_{s_A \xrightarrow{a}_A s'} \langle a \rangle (\varphi /\!\!/_B s')\|_{\Delta_{\Sigma_B}(\rho)}$.
- Case $[a]\varphi$. Symmetric to the previous one.

Lemma 2. For all A, B, ρ and Φ on $A \parallel B$, $\Delta_B(\lVert \Phi \rVert_{\rho}) = \lVert \Phi / \!\! /_{\Sigma_B} A \rVert_{\Delta_B(\rho)}$.

Proof. We proceed by induction on the structure of Φ .

- Base case: $\Phi = \epsilon$. Trivial.
- Inductive step: $\Phi = x =_{\pi} \varphi$; Φ' . By definition $\|\Phi\|_{\rho} = [x \mapsto U^*] \circ \|\Phi'\|_{\rho \circ [x \mapsto U^*]}$ where U^* is the fixed point computed according to Definition 5. Thus, we have that $\Delta_B(\|\Phi\|_{\rho}) = \Delta_B([x \mapsto U^*] \circ \|\Phi'\|_{\rho \circ [x \mapsto U^*]}) = \Delta_B([x \mapsto U^*]) \circ \Delta_B(\|\Phi'\|_{\rho \circ [x \mapsto U^*]})$. By the induction hypothesis this reduces to

$$\Delta_B([x \mapsto U^*]) \circ \|\Phi'/\!\!/_B A\|_{\Delta_B(\rho) \circ \Delta_B([x \mapsto U^*])}. \tag{2}$$

By Definition 9, $\Delta_B([x\mapsto U^*])=\bigoplus_{s\in S_A}[x_s\mapsto U^*_{B,s}]$ where $U^*_{B,s}=\{s'\mid \langle s,s'\rangle\in U^*\}$. By replacing U^* with its definition we obtain that

$$U_{B,s}^* = \{ s' \mid \langle s, s' \rangle \in \pi U. \|\varphi\|_{\rho \circ R(U)} \},$$

which we rewrite it to

$$U_{B,s}^* = \pi U.\{s' \mid \langle s, s' \rangle \in \|\varphi\|_{\rho \circ R(U)}\}.$$

By Lemma 1, this is equivalent to

$$U_{B,s}^* = \pi U_{B,s} \cdot \|\varphi\|_{\Sigma_B} s\|_{\Delta_B(\rho) \circ \Delta_B(R(U))},$$

where $\Delta_B(R(U)) = \Delta_B([x \mapsto U] \circ \|\Phi'\|_{\rho \circ [x \mapsto U]})$. By Definition 9, we have $\bigoplus_{s \in S_A} [x_s \mapsto U_{B,s}] \circ \Delta_B(\|\Phi'\|_{\rho \circ [x \mapsto U]}) = \bigoplus_{s \in S_A} [x_s \mapsto U_{B,s}] \circ \|\Phi'\|_{\Sigma_B} A\|_{\Delta_B(\rho)} \circ \bigoplus_{s \in S_A} [x_s \mapsto U_{B,s}]$

(by the induction hypothesis) As a consequence, we rewrite (2) to⁴

$$\bigoplus_{s \in S_A} [x_s \mapsto U_{B,s}^*] \circ \|\Phi'\|_{\Sigma_B} A\|_{\Delta_B(\rho)} \circ \bigoplus_{s \in S_A} [x_s \mapsto U_{B,s}^*],$$

which, after repeatedly applying Definition 5 to each element $s \in S_A$ turns out to be $\|\Phi/\!\!/_{\Sigma_B}A\|_{\Delta_B(\rho)}$.

Corollary 1. For all A, B, ρ, x and Φ on $A \parallel B$,

$$\langle s_A, s_B \rangle \in \|\Phi\|_{\rho}(x) \Longleftrightarrow s_B \in \|\Phi\|_{\Sigma_B} A\|_{\Delta_B(\rho)}(x_{s_A}).$$

Theorem 3. For all A, B, x and Φ on $A \parallel B, \langle \langle \Phi \downarrow x / \rangle_{\Sigma_B} A \rangle = P_B(\langle \langle \Phi \downarrow x \rangle \rangle)$.

Proof. By Definition 6, the thesis becomes

$$\langle\!\langle \Phi /\!/ \rangle_{\Sigma_B} A \rangle\!\rangle_{[]}(x_{i_A}) = P_B(\langle\!\langle \Phi \rangle\!\rangle_{[]}(x)),$$

which holds if and only if

$$\langle i_A, i_B \rangle \in \|\Phi\|_{[1]}(x) \Longleftrightarrow i_B \in \|\Phi\|_{\Sigma_B} A\|_{[1]}(x_{i_A}).$$

The thesis follows by Corollary 1.

Theorem 4. For all A, B, x and Φ on $A \parallel B$,

$$A \parallel B \models_{\varsigma} \Phi \downarrow x \qquad (\varsigma \in \{s, \sigma\})$$

if and only if any of the following equivalent statements holds

$$\begin{array}{ll} 1. \ A \models_{\varsigma} \varPhi \downarrow x/\!\!/_{\Sigma_{A}} B & 2. \ B \models_{\varsigma} \varPhi \downarrow x/\!\!/_{\Sigma_{B}} A \\ 3. \ A \models_{\sigma} P_{A}(\langle\!\langle \varPhi \downarrow x \rangle\!\rangle) & 4. \ B \models_{\sigma} P_{B}(\langle\!\langle \varPhi \downarrow x \rangle\!\rangle) \end{array}$$

3.
$$A \models_{\sigma} P_A(\langle\!\langle \Phi \downarrow x \rangle\!\rangle)$$
 4. $B \models_{\sigma} P_B(\langle\!\langle \Phi \downarrow x \rangle\!\rangle)$

Proof. The equivalence of items 1 and 2 and $A \parallel B \models_{\varsigma} \Phi \downarrow x$ is in [?] (with the additional use of Theorem 3). The other equivalences follow immediately by Theorem 3 (and by the commutativity of ||).

⁴ Notice that the order of the x_s equations is immaterial as they form a π -block.

$$\begin{array}{lll} \textbf{Begin} & \text{proc quotient} \\ & \text{input } P = \langle S_P \; , \; \varSigma_P \; , \; \to_P \; , \; i_P \rangle \\ & \text{input } A = \langle S_A \; , \; \varSigma_A \; , \; \to_A \; , \; i_A \rangle \\ & \text{input } \varSigma_B \end{array}$$

$$1: \quad S := \left(S_P \times S_A\right) \setminus \bigcup_{a \in \varSigma_A} \left\{ (s_P, r_A) \mid s_P \xrightarrow{a}_P \wedge r_A \xrightarrow{a}_A \right\}$$

$$2: \quad i := (i_P, i_A)$$

$$3: \quad \to := \bigcup_{s_P} \left\{ \bigcup_{a \in \varSigma_A \setminus \Gamma} \left\{ ((s_P, r_A), \lambda, (s_P', r_A')) \mid s_P \xrightarrow{a}_P s_P' \wedge r_A \xrightarrow{a}_A r_A' \right\} \right.$$

$$4: \quad B := \langle S, \; \varSigma_B, \; \to_S \; , \; i \rangle$$

$$5: \quad \text{output unify } (B)$$

$$\textbf{End proc}$$

Table 1. The quotienting algorithm.

Correctness and complexity

Below we discuss the correctness and computational complexity of the algorithms presented in the paper.

Correctness

To prove the correctness of the algorithm, we show that it is equivalent to the standard quotienting operator applied to a suitable encoding of an LTS as a specification of the equational μ -calculus.

Encoding. Given an LTS $A = \langle S, \Sigma, \rightarrow, s_i \rangle$ we build a system of equations as follows:

$$\Phi_A = \{x^{s_1} =_{\mu} \mathcal{A}(s_1); \dots; x^{s_n} =_{\mu} \mathcal{A}(s_n)\}$$
 where $S = \{s_1, \dots, s_n\}$ and $\mathcal{A}(s) = \bigwedge_{s \xrightarrow{b}} [b] ff \land \bigwedge_{s \xrightarrow{a} s'} [a] x^{s'}$

Thus we define the top assertion of the formula derived from A as $\Phi_A \downarrow x^{s_i}$. Quotienting. Starting from the inputs of quotient, we now evaluate $\Phi_P \downarrow x^{i_P} /\!\!/_{\Sigma_B} A$. The resulting equations system is

$$\Phi' = \begin{cases}
 x_{r_1}^{s_1} =_{\mu} \mathcal{A}(s_1) /\!\!/_{\Sigma_B} r_1 \\
 \vdots \\
 x_{r_j}^{s_i} =_{\mu} \mathcal{A}(s_i) /\!\!/_{\Sigma_B} r_j \\
 \vdots \\
 x_{r_m}^{s_n} =_{\mu} \mathcal{A}(s_n) /\!\!/_{\Sigma_B} r_m
\end{cases}$$

```
Begin proc unify
                                                         Begin proc ∧-move
   input B = \langle S_B, \Sigma_B, \rightarrow_B, i_B \rangle
                                                             input Q
                                                             input a
  1: I := \lambda - \operatorname{close}(\{i_B\})
                                                         1: M := \lambda - \operatorname{close} \left( \bigcap^{q \in Q} \{ q' | q \xrightarrow{a}_B q' \} \right)
  2: R, S := \{I\}
                                                         2: output M
  3\colon \ \to \ := \ \emptyset
                                                         end proc
  4: while S \neq \emptyset do
          Q := \operatorname{pick\&remove}(S)
           for each a \in \Sigma_B \setminus \{\lambda\}
  7:
              M := \land -move(Q, a)
               if M \neq \emptyset then
  9:
                  \rightarrow := \rightarrow \cup \{(Q, a, M)\}
                  if M \notin R then S := S \cup \{M\}; R := R \cup \{M\} end if
10:
11:
12:
           end for
13: end while
14: output \langle R, \Sigma_B \setminus \{\lambda\}, \rightarrow, I \rangle
end proc
```

Table 2. The unification algorithm.

with all the equations of the following form, where $\alpha \in \Sigma_A \setminus \Gamma$, $\beta \in \Sigma_B \setminus \Gamma$ and $\gamma \in \Gamma$.

$$x_{r_{j}}^{s_{i}} =_{\mu} \overbrace{\bigwedge_{\substack{s_{i} \stackrel{q}{\rightarrow} \\ r_{j} \stackrel{\alpha}{\rightarrow} r'}}^{(1)} ff} \wedge \overbrace{\bigwedge_{\substack{s_{i} \stackrel{\alpha}{\rightarrow} \\ r_{j} \stackrel{\varphi}{\rightarrow}}}^{(2)} (2)}^{(2)} \wedge \overbrace{\bigwedge_{\substack{s_{i} \stackrel{\alpha}{\rightarrow} s' \\ r_{j} \stackrel{\alpha}{\rightarrow} r'}}^{(3)} \wedge \overbrace{\bigwedge_{\substack{s_{i} \stackrel{\beta}{\rightarrow} s' \\ r_{j} \stackrel{\alpha}{\rightarrow} r'}}^{(4)} \wedge \overbrace{\bigwedge_{\substack{s_{i} \stackrel{\gamma}{\rightarrow} s' \\ r_{j} \stackrel{\gamma}{\rightarrow} r'}}^{(5)}}^{(5)} (2)$$

Trivially, the equation system described above corresponds to the non-deterministic transition system obtained by the quotient algorithm. A state (s, r) results in a variable associated to an assertion that characterizes the outgoing transitions distinguishing among (1) a is required but not done, (2) a is not allowed, (3) λ moves, (4) Σ_B , and (5) Γ actions.

Correctness. To conclude we show that all the steps of the algorithms described above correspond to valid transformations, i.e., they preserve equivalence. A detailed description of the first two transformations can be found in [?].

- Constant propagation is applied to remove equations of the form $x =_{\mu} ff$. This step is carried out by the quotient algorithm when removing the corresponding states from the transition system.
- Unguardedness removal carries out the following transformation.

$$\begin{cases} x =_{\mu} \varphi \\ \vdots \\ y =_{\mu} \varphi' \end{cases} \text{ becomes } \begin{cases} x =_{\mu} \varphi \{\varphi'/x\} \\ \vdots \\ y =_{\mu} \varphi' \end{cases}$$

All the occurrences of y in the first equation are replaced with the assertion associated to y. Notice that this transformation only applies if all the occurrences of y are unguarded, i.e., not under the scope of any modal operator, in the first equation. Also, we extend it to remove redundant recurrences, namely we transform $x =_{\mu} \varphi \wedge x$ in $x =_{\mu} \varphi$. In our algorithm, this operation corresponds to a λ -closure.

Variable introduction requires more attention. It is simple to verify that the previous transformations do not preserve the structure of our equations. Indeed, unguardedness removal can introduce in the assertions more instances of the same action modality, while we require exactly one. Concretely, the assertions have the form

$$x =_{\mu} [a]v_1^a \wedge \ldots \wedge [a]v_k^a \wedge [b]v_1^b \cdots,$$

where v stands for either a variable or ff. If some of the v_i^a are equal to ff, $[a](v_1^a \wedge \ldots \wedge v_k^a)$ reduces to [a]ff. Otherwise, we rewrite it as $x =_{\mu} [a](y_1 \wedge \ldots \wedge y_k) \wedge [b](\ldots)$. Thus, we replace the conjunctions of variables with $[a](y_{\{1,\ldots,k\}})$ and we introduce a new equation $y_{\{1,\ldots,k\}} =_{\mu} y_1 \wedge \ldots \wedge y_k$. Clearly, the number of these new variables is bounded by $2^{|S|}$. This transformation, plus unguardedness removal, corresponds to the \wedge -move operation. It is simple to notice that these transformations restore the format of our encoding, thus denoting an LTS that is the output of our algorithm.

Complexity

We estimate the worst case complexity of the quotient algorithm. For simplicity, we assume that $|\Gamma| = |\Sigma_A \setminus \Gamma| = |\Sigma_B \setminus \Gamma| = m$ and $|S_A| = |S_P| = n$. The first part, i.e., the generation of the non-deterministic transition system, requires at most $|\to_P| \cdot |\to_A| \le m^2 n^4$ steps. The transition system has at most n^2 states.

Concerning unify, we first observe the following facts. The algorithm works on the λ -closures of the states of the transition system. Similarly to the ε -closures of an NFA, they can be computed in advance (see [?]). The cost is cubic with respect to the number of states, i.e., $O(n^6)$ in our case. The total number of closures is bounded by n^2 .

At each step, \land -move computes the sets of the a-reachable states, starting from one of the closures (which has size at most n^2). Since there are no more than nm Γ -transitions (and at most m Σ_B -transitions), in n^3m steps we obtain the set on which we compute the λ -closure. Since we already computed them, we just need to combine the existing ones.

To conclude we observe that \land -move iterates at most n^2m times. In particular, new elements are added to S whenever a new \land -closure is generated. However, these closures are computed from a set of states that are a-reachable from all the states of another closure. Clearly, there can be at most n^2m distinct closures of this type, otherwise there would be more than n^4m^2 edges in the transition system. The overall complexity is then $O(2n^5m^3+n^6+n^4m^2)$.

n	States	Transitions	Time (ms)	n	States	Transitions	Time (ms)
5	24	36	1	5	54	54	30
10	74	121	6	10	209	209	88
15	149	256	50	15	464	464	398
20	249	441	347	20	819	819	1979
25	374	676	1205	25	1274	1274	8013
30	524	961	3729	30	1829	1829	23953
35	699	1296	9144	35	2484	2484	84634
40	899	1681	21768	40	3239	3239	153595
45	1124	2116	43750	45	4094	4094	342434
50	1374	2601	58869	50	5049	5049	194525
55	1649	3136	97184	55	6104	6104	325718
60	1949	3721	197555	60	7259	7259	624646
65	2274	4356	307549	65	8514	8514	959671
70	2624	5041	462417	70	9869	9869	1487936
75	2999	5776	674102	75	11324	11324	2429919
80	3399	6561	1094193	80	12879	12879	3888799
85	3824	7396	1507860	85	14534	14534	5546023
90	4274	8281	2070366	90	16289	16289	7353658
95	4749	9216	2796649	95	18144	18144	9589415
100	5249	10201	5685985	100	20099	20099	12922962

Table 3. The dimension of some instances of the SCP problem (on the left) and CSP problem (on the right) and the time required by our PESTS to solve them.

Experiments

We tested our tool on the case studies presented in the running example of the paper and we used our tool PESTS to solve the Submodule Construction Problem (SCP) and the Controller Synthesis Problem (CSP).

In Table 3, we report the results of these experiments, carried on an Intel Core i7-6700HQ, CPU 2.60GHz, with 16 GB RAM. The first column represents the buffer size n (and the UAV capacity is n-1); the second and third column represent the number of states and transitions of the automata manipulated by the algorithm (recall from the example in sub-section 4.2 that the automata of CSP have the same number of states and transitions); and the last column represents the time necessary to compute the solution.

Although PESTS is at the early stages of development the results we obtained are quite promising. We believe that a suitable engineering of the tool can improve its performance and we plan to carry out a comparison with other existing tools as part of the future work.