Neuro-Fuzzy approach for the predictions of economic crisis

Eleftherios Giovanis

Abstract

In this paper we present the neuro-fuzzy technology for the prediction of economic crisis of USA economy. Our findings support ANFIS models to traditional discrete choice models of Probit and Logit, indicating that the last models are not very useful for forecasting purposes. We have developed a MATLAB routine to show how ANFIS procedure works and it is provided for replications, further research applications and experiments, for modifications, expansions and improvements. We propose the use of both models, because with discrete choice models we can examine and investigate the effects of the inputs or the independent variables, while we can simultaneously use ANFIS for forecasting purposes. The wise option and the most appropriate scientific action is to combine both models and not taking only one of them.

Keywords: Economic crisis; ANFIS; Neuro-Fuzzy, fuzzy rules; triangle function; Gaussian function; Generalized Bell function forecasting; discrete choice models; Logit; Probit; economy of USA; MATLAB

1.Introduction

The economic facts and the financial crisis in the last three years have led to doubts among the economic society and governments of which methodology must be followed and what regulations should be set up. The subprime mortgage crisis which took place in USA and became apparent in 2007 has led to great weakness in the financial system and the financial industry regulation. Many economists claim that mathematical models used are responsible for the failure prediction, but nothing is done about that. There are opinions that economics have to do with probabilities and not with possibilities or membership grades. Why not? The human behavior is not random but there are specific cause and consequences as in physics. The fact that we do not understand them or they are not clear this has nothing to do with probabilities, but has to do with the fact that the situations, our decisions or actions are fuzzy and imprecise. Even with artificial intelligence we can get biases, but we have to test them before we rush to judge it.

2.Literature review

Various approaches have been developed and applied in financial, banking and currency crisis. One of these approaches is the application of Logit and Probit models (Eichengreen and Rose, 1998; Demirguc-Kunt and Detragrache ,1998; Frankel and Rose, 1996) among many others. Another approach which has been used in the crisis prediction is the noise-to-ratio model (Kaminsky and Reinhart, 1996; Kaminsky *et al.*, 1998). This approach is used in order to identify variables as strong potential indicators of crisis. Since 1990 new approaches have been introduced in economics and finance, like neural networks, fuzzy logic and genetic algorithms. We propose the scientific findings and methods of artificial intelligence because most studies have found superior results, especially in stock prediction, economic data prediction, than the common Logit models, Multiple Discriminant Analysis, Autoregressive Conditional Heteroskedasticity (ARCH), Moving Average method among others (Coats and Fant, 1993; Zhang *et al.*, 1999; Nachev and Stoyanov, 2007) among many others.

A very few number of researches have been written employing neuro-fuzzy approaches for economic and financial crises prediction. Most of them found superior results supporting ANFIS approach and suggesting as an efficient alternative tool against the traditional econometric procedures as discrete choice models noise-to-ratio among others. For this reason we examine Neuro-Fuzzy system using two symmetric membership functions, the triangular and Gaussian, in order to test if this approach is superior or not to discrete choice Logit and Probit models.

3. Methodology

3.1 Binary Logit and Probit Regressions

In this section we provide a brief description of the binary Logit and Probit models estimation. The logistic distribution is defined as (Greene, 2008):

$$\Pr{ob(Y = 1 \mid x)} = \frac{e^{x'\beta}}{1 + e^{x'\beta}} = \Phi(x'\beta)$$
 (1)

The marginal partial effects of explanatory variables are given by:

$$\frac{\partial \mathbf{E}[y \mid x)}{\partial x} = \Phi(x'\beta)[1 - \Phi(x'\beta)]\beta \tag{2}$$

The logistic regression analyzes the binomial distributed data and it is:

$$Y_i \sim B(n_i, P_i), i = 1, 2, \dots, n$$
 (3)

, where n_i denotes the number of Bernoulli trials and are known, while p_i denotes the probabilities of success, which are unknown. The model proposes for each i a set of explanatory variables and the model can take the following form.

$$P_i = E(\frac{Y_i}{n_i} \mid x_i) \tag{4}$$

Next the unknown probabilities are modeled as linear function of variables x_i .

$$y_i = \ln(\frac{p_i}{1 - p_i}) = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_k x_{k,i}$$
 (5)

Logit model can be written a general form regression as:

$$y = \alpha + \sum_{i=1}^{n} \beta_i x_i + \varepsilon \tag{6}$$

, where variable y is a binary dummy variable taking value 1 if the economy is on crisis or economic recession period and value zero otherwise (no crisis period), x_i indicates the explanatory variables, α is the constant, β_i are the regression estimators.

Next we present the Probit regression (Greene, 2008; Wooldridge, 2006). More specifically is defined as:

$$\Phi^{-1}(\mathbf{p}_i) = Z = \alpha + \sum_{i=1}^n \beta_i x_i + \varepsilon$$
 (7)

, where $\Phi^{-1}(p_i)$ is the inverse cumulative distribution function (CDF) of the standard normal, a, β_i and x_i are defined as in (6). Also it can be written as:

$$Pr(y = 1 \mid x) = \Phi(x_i \beta_i)$$
(8)

The inverse cumulative distribution function (CDF) is

$$p = \Phi(Z) = \int_{-\infty}^{Z} \frac{1}{\sqrt{2\pi}} \exp(-u^2/2) du$$
 (9)

The Log-Likelihood function for Probit is:

$$\ln L = \sum w_i \ln \Phi(\mathbf{x}_i \boldsymbol{\beta}_i) + \sum w_i \ln(1 - \Phi(\mathbf{x}_i \boldsymbol{\beta}_i))$$
(10)

The prediction or the classification percentage is done based on the estimated coefficients from the in-sample period each time using as the cut-off point the value of 0.5. For the forecasting and the classification performance of the binary Logit and Probit models is:

If $y^* > 0.5$, then the economy is on crisis or economic recession period

If $y^* \le 0.5$, then the economy is on no crisis or economic recovery period.

Variable y^* denotes the predicted values.

3.2 Adaptive network-based fuzzy inference system (ANFIS)

Jang (1993) and Jang and Sun (1995) introduced the adaptive network-based fuzzy inference system (ANFIS). This system makes use of a hybrid learning rule to optimize the fuzzy system parameters of a first order Sugeno system.

An ANFIS architecture with two inputs for example is consisted of two trainable parameter sets, the antecedent membership function parameters and the polynomial parameters p,q,r, also called the consequent parameters. The ANFIS training paradigm uses a gradient descent algorithm to optimize the antecedent parameters and a least squares algorithm to solve for the consequent parameters. Because it uses two very different algorithms to reduce the error, the training rule is called a hybrid. The consequent parameters are updated first using a least squares algorithm and the antecedent parameters are then updated by backpropagating the errors that still exist. The ANFIS architecture consists of five layers with the output of the nodes in each respective layer represented by O_i^l , where i is the ith node of layer 1.

We examine two cases one with two inputs and the there with three inputs. More inputs are possible to be obtained but it is not necessary, because the forecasts are very efficient. The inputs we take in our fuzzy system are the gross domestic product growth rate, the unemployment rate and the industrial production percentage change or rate. For each input three linguistic terms are incorporated and are {low,medium,high}.

We describe the steps of ANFIS with three inputs as it is more complicate and in a similar procedure we can follow the process with two inputs. Basically, there are two types of fuzzy set operation that are usually used in the antecedent rule, which are AND and OR. Mathematically, the AND operator can be realized using Min or Product operation while OR can be realized using Max or Algebraic sum operator. There are 3 inputs with three linguistic terms in each one so there will be 3^3 =27 fuzzy rules. Also each rule has 3 parameters plus the constant hence there will be 4*27=108 parameters. The 27 rules are presented in table 1.

Table 1. Fuzzy rules

Number	If GDP	and if unemployment rate	and if industrial	then
of rules			production rate	
1	LOW	LOW	LOW	$p_1x_1+q_1x_2+s_1x_3+r_1$
2	LOW	LOW	MEDIUM	$p_2x_1+q_2x_2+s_2x_3+r_2$
3	LOW	LOW	HIGH	$p_3x_1+q_3x_2+s_3x_3+r_3$
4	LOW	MEDIUM	LOW	$p_4x_1+q_4x_2+s_4x_3+r_4$
5	LOW	MEDIUM	MEDIUM	$p_5x_1+q_5x_2+s_5x_3+r_5$
6	LOW	MEDIUM	HIGH	$p_6x_1+q_6x_2+s_6x_3+r_6$
7	LOW	HIGH	LOW	$p_7x_1+q_7x_2+s_7x_3+r_7$
8	LOW	HIGH	MEDIUM	$p_8x_1+q_8x_2+s_8x_3+r_8$
9	LOW	HIGH	HIGH	$p_9x_1+q_9x_2+s_9x_3+r_9$
10	MEDIUM	LOW	LOW	$p_{10}x_1+q_{10}x_2+s_{10}x_3+r_{10}$
11	MEDIUM	LOW	MEDIUM	$p_{11}x_1+q_{11}x_2+s_{11}x_3+r_{11}$
12	MEDIUM	LOW	HIGH	$p_{12}x_1+q_{12}x_2+s_{12}x_3+r_{12}$
13	MEDIUM	MEDIUM	LOW	$p_{13}x_1+q_{13}x_2+s_{13}x_3+r_{13}$
14	MEDIUM	MEDIUM	MEDIUM	p ₁₄ x ₁ +q ₁₄ x ₂ +s ₁₄ x ₃ +r ₁₄
15	MEDIUM	MEDIUM	HIGH	$p_{15}x_1+q_{15}x_2+s_{15}x_3+r_{15}$
16	MEDIUM	HIGH	LOW	$p_{16}x_1+q_{16}x_2+s_{16}x_3+r_{16}$
17	MEDIUM	HIGH	MEDIUM	$p_{17}x_1+q_{17}x_2+s_{17}x_3+r_{17}$
18	MEDIUM	HIGH	HIGH	$p_{18}x_1+q_{18}x_2+s_{18}x_3+r_{18}$
19	HIGH	LOW	LOW	$p_{19}x_1+q_{19}x_2+s_{19}x_3+r_{19}$
20	HIGH	LOW	MEDIUM	$p_{20}x_1+q_{20}x_2+s_{20}x_3+r_{20}$
21	HIGH	LOW	HIGH	$p_{21}x_1+q_{21}x_2+s_{21}x_3+r_{21}$
22	HIGH	MEDIUM	LOW	$p_{22}x_1+q_{22}x_2+s_{22}x_3+r_{22}$
23	HIGH	MEDIUM	MEDIUM	p ₂₃ x ₁ +q ₂₃ x ₂ +s ₂₃ x ₃ +r ₂₃
24	HIGH	MEDIUM	HIGH	p ₂₄ x ₁ +q ₂₄ x ₂ +s ₂₄ x ₃ +r ₂₄
25	HIGH	HIGH	LOW	p ₂₅ x ₁ +q ₂₅ x ₂ +s ₂₅ x ₃ +r ₂₅
26	HIGH	HIGH	MEDIUM	$p_{26}x_1+q_{26}x_2+s_{26}x_3+r_{26}$
27	HIGH	HIGH	HIGH	p ₂₇ x ₁ +q ₂₇ x ₂ +s ₂₇ x ₃ +r ₂₇

In the case of two inputs we have $3^2=9$ fuzzy rules and each rule has 3 parameters plus the constant hence there will be 4*9=36 parameters. In the case of both two and three inputs we use AND operator, while in the first case (two inputs) we take min operator and in the second case (three inputs) we take the product operator.

In the first layer we generate the membership grades

$$O_{i}^{1} = \mu_{A_{i}}(x_{1}), \mu_{B_{i}}(x_{2}), \mu_{C}(x_{3})$$
(11)

, where x_1 , x_2 and x_3 are the inputs. In layer 2 we generate the firing strengths or weights

$$O_{i}^{2} = w_{i} = \prod_{j=1}^{m} (\mu_{A_{i}}(x_{1}), \mu_{B_{i}}(x_{2}), \mu_{C_{i}}(x_{3})) =$$

$$and method (\mu_{A_{i}}(x_{1}), \mu_{B_{i}}(x_{2}), \mu_{C_{i}}(x_{3}))$$

$$= product (\mu_{A_{i}}(x_{1}) * \mu_{B_{i}}(x_{2}) * \mu_{C_{i}}(x_{3}))$$

$$(12)$$

In layer 2 we use the *AND* relation so we take the *product* operator. In layer 3 we normalize the firing strengths. Because we have twenty seven rules will be:

$$O_i^3 = \overline{w_i} = \frac{w_i}{w_1 + w_2 + \dots + w_{26} + w_{27}}$$
 (13)

In layer 4 we calculate rule outputs based on the consequent parameters.

$$O_i^4 = y_i = \overline{w_i} f = \overline{w_i} (p_i x_1 + q_i x_2 + s_i x_3 + r_i)$$
(14)

In layer 5 we take the sum all the inputs from layer 4

$$O_i^{5} = \sum_i \overline{w_i} f_i = \frac{\sum_i \overline{w_i} f}{\sum_i \overline{w_i}}$$
 (15)

In the last layer the consequent parameters can be solved for using a least square algorithm as:

$$Y = X \cdot \theta \tag{16}$$

, where X is the matrix of inputs and θ is a vector of unknown parameters as:

$$\theta = [p_1, q_1, s_1, r_1, p_2, q_2, s_2, r_2, ..., p_{27}, q_{27}, s_{27}, r_{27}]^T$$
(17)

, where T indicates the transpose. Because the normal least square method leads to singular inverted matrix we use the singular value decomposition (SVD) with Moore-Penrose pseudoinverse of matrix (Petrou and Bosdogianni, 2000; Moore, 1920; Penrose, 1955). For the first layer and relation (12) we use the triangular, Gaussian and Generalized Bell membership functions. The symmetrical triangular function is defined as:

$$\mu_{ij}(x_{j}; a_{ij}, b_{ij}) = \begin{cases} 1 - \frac{|x_{j} - a_{ij}|}{b_{ij}/2}, & \text{if } |x_{j} - a_{ij}| \le \frac{b_{ij}}{2} \\ 0, & \text{otherwise} \end{cases}$$
(18)

, where a_{ij} is the peak or center parameter and b_{ij} is the spread or support parameter. The symmetrical Gaussian membership function is defined as:

$$\mu_{ij}(x_{j};c_{ij},\sigma_{ij}) = \exp\left(-\frac{(x_{j}-c_{ij})^{2}}{2\sigma_{ij}^{2}}\right)$$
 (19)

, where c_{ij} is the center parameter and σ_{ij} is the spread parameter. The last function we examine is the Generalized Bell functions defined as:

$$\mu_{ij}(x_{ij}; a_{ij}, b_{ij}, c_{ij}) = \exp\left(-\left(\frac{x_{ij} - c_{ij}}{a_{ij}}\right)^{2b_{ij}}\right)$$
 (20)

, where c locates the center of the curve and parameters a and b vary the width of the curve. All the parameters of fuzzy membership functions are also called premise parameters. In order to find the optimized antecedent parameters we use backpropagation algorithm. The premise parameters update for the triangle membership function is:

$$a_{ij}(n+1) = a_{ij}(n) - \eta_{\alpha} \cdot \frac{\partial E}{\partial a_{ii}}$$
(21)

,where η_a is the learning rate for the parameter α_{ij} and E is the error function which is:

$$E = \frac{1}{2} (y - y')^2 \tag{22}$$

, where y^t is the target-actual and y is ANFIS output variable. The chain rule in order to calculate the derivatives used to update the membership function parameters are

$$\frac{\partial E}{\partial a_{ii}} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial w_{i}} \cdot \frac{\partial w_{i}}{\partial \mu_{ii}} \frac{\partial \mu_{ij}}{\partial a_{ii}}$$
(23)

The partial derivatives for two inputs are derived below:

$$\frac{\partial E}{\partial y_{ii}} = y - y^{t} = e \tag{24}$$

For the output is

$$y = \sum_{i=1}^{n} y_i$$
, hence it will be $\frac{\partial y}{\partial y_i} = 1$ (25)

$$y_{i} = \frac{w_{i}}{\sum_{i=1}^{n} w_{i}} (p_{i}x_{1} + q_{i}x_{2} + r_{i}), \text{ hence it will be } \frac{\partial y_{i}}{\partial w_{i}} = \frac{(p_{i}x_{1} + q_{i}x_{2} + r_{i}) - y}{\sum_{i=1}^{n} w_{i}}$$
(26)

$$w_i = \prod_{j=1}^m \mu_{A_{ji}}$$
, hence it will be $\frac{\partial w_i}{\partial \mu_{ij}} = \frac{w_i}{\mu_{ij}}$ (27)

The last partial derivative, $\frac{\partial \mu_{ij}}{\partial a_{ij}}$, depends on the membership function we examine. The update equations, (eg. for triangle function) for antecedent a_{ij} , b_{ij} parameters are:

$$\alpha_{ij}(n+1) = \alpha_{ij}(n) - \eta_{\alpha} \cdot e^{\frac{(p_i x_1 + q_i x_2 + r_i) - y}{\sum_{i=1}^{n} w_i}} \cdot \frac{w_i}{\mu_{ij}(x_j)} \cdot \frac{\partial \mu_{ij}}{\partial a_{ij}}$$

$$(28)$$

$$b_{ij}(n+1) = b_{ij}(n) - \eta_{\alpha} \cdot e^{\frac{(p_i x_1 + q_i x_2 + r_i) - y}{\sum_{i=1}^{n} w_i} \cdot \frac{w_i}{\mu_{ij}(x_j)} \cdot \frac{\partial \mu_{ij}}{\partial b_{ij}}}$$
(29)

The next step is to set up the initial values for center and bases parameters. The first option is to set up specific values. The second option is to set up the initial values based on mean and standard deviation of specific intervals. We follow the first and second option respectively for triangle and Gaussian functions, while it should be noticed that the forecasts are slightly better and not significant different to those obtained by setting up the opposite options. In the case of triangle membership function the initial values for center parameters for the fuzzy set {low, medium, high} are for GDP {-0.01, 0.01, 0.03}, for unemployment rate {5,7,9} and for industrial production {-0.01, 0.01, 0.04} respectively. The initial values for bases are 0.025, 2 and 0.035 for GDP, unemployment rate and industrial production respectively. In the case of Gaussian functions we set up low for negative values of GDP, medium for values of GDP between 0-0.02 and for high for values higher than 0.02. In the case of unemployment rate we define low for values lower than 5, medium for values ranging in the interval 5-7 and high for values higher than 7. Finally, in the case of industrial production we set up the same values of GDP. So for example if we want to set up the initial values of low GDP and high unemployment we take the sample where GDP is ranging in the interval 0-0.02 and where unemployment is higher than 7. Then we take their average and standard deviations and we get the initial values for center c, and base σ , parameters respectively. Generally, Gaussian function works better with this option. The same procedure is followed for the parameters c generalized bell function, for mean values. For parameter a we follow a different procedure where the initial values are based on the following.

$$\alpha = \frac{range}{mfs * 2} \tag{30}$$

, where the *range* is the well known statistical measure and we take the range of data, while *mfs* is the number of membership functions. For parameters *b* the initial values are 1.1. In the case of all membership functions the learning rates for the center and bases parameters are set up at 0.1, while for the RHS at 0.5.

4.Data

We estimate the period 1950-2005 and we examine the in-sample forecasting performance. Then we apply all the models to compare their predicting performance for the period 2006-2009. The data source is the *Federal Reserve Bank of St. Louis* and the *National Bureau of Economic Research*. The choice of variables is based on various research papers and studies (Demirguc-Kunt and Detragrache, 1998; Eichengreen and Rose,1998; Glick and Moreno, 1999), as also based on National Bureau of Economic Research (NBER), which defines real GDP, real income, unemployment rate, industrial production and retail sales as the most important factors defining the economic activity in US economy. Moreover we try all the candidate variables and we choose the most significant. Specifically we use the same variables in Logit and Probit regressions.

Table 2. Variables used in estimated regressions

industrial production	unemployment rate
inflation rate	total investments at all
	commercial banks
total borrowings of depository	oil prices
institutions	
from federal reserve system	
interest rates of 3-monthly treasury	bank prime loan rate
bills	
public debt	balance of accounts
total loans at all commercial banks	gdp growth

We used these ones which were found statistically significant and that improve the forecasting performance. These are the industrial production, bank prime loan rate, balance of accounts and the gross domestic product growth rate. We do not present the estimation results, which can be easily replicated, because we are interesting on the forecasting performance of the models we examine in the current study.

5. Empirical results

In table 3 we present the correctly percentage or the forecasts of Logit regression for the in-sample period 1950-2005, while in the table 4 the forecasts of the same model for the out-of sample period 2006-2009 are provided. We observe that the forecasting performance in the in-sample period is relatively significant, while in the out-of sample is too poor. More specifically, with Logit model we successfully predict at 62.50 per cent the crisis periods and 94.56 the no crisis periods, while the respective percentages in the out-of-sample period are 70.00 and 66.67. In tables 5 and 6 we present the forecasts of Probit regression in the insample and out-of sample period respectively. In the out-of sample period 2006-2009 Probit predicts 95.74 per cent correct the no crisis periods and 65.00 per cent the crisis periods, which is slightly higher to the predicted percentage of Logit models. In the out-of-sample period both Logit and Probit models predict at 70.00 percent correct the crisis periods.

Table 3 Prediction results of binary Logit regression for in-sample period 1950-2005

· <u></u>	- 0 2	,		
Crisis	25	15	62.50	
No Crisis	10	174	94.56	
Overall percentage			88.83	

Table 4 Prediction results of binary Logit regression for out-of-sample period 2006-2009

Crisis	7	3	70.00
No Crisis	2	4	66.67
Overall percentage			68.75

Table 5 Prediction results of binary Probit regression for in-sample period 1950-2005

Crisis	26	14	65.00
No Crisis	8	176	95.65
Overall percentage			90.17

Table 6 Prediction results of binary Probit regression for in-sample period 2006-2009

Crisis	7	3	70.00
No Crisis	1	5	83.33
Overall percentage			75.00

In tables 7 and 8 we present the ANFIS with triangle function in the in-sample and out-of-sample periods respectively. In the first period the overall forecasting performance is lower to than Logit and Probit, because of the lower forecasting performance of no crisis periods. In both periods, ANFIS outperforms significant the traditional discrete choice models concerning the crisis periods. Additionally, the overall performance of both ANFIS models is much more superior to Logit and Probit as we can predict crisis periods at 100.00 and 80.00 per cent success with triangle and Gaussian functions respectively, while the respective percentage in Logit and Probit is only 70.00.

Table 7 Prediction results of ANFIS with triangle membership function for in-sample period 1950-2005

Crisis	35	5	87.50
No Crisis	26	158	85.86
Overall percentage			86.16

Table 8 Prediction results of ANFIS with triangle membership function with three inputs for out-of-sample period 2006-2009

Crisis	10	0	100.00
No Crisis	1	5	83.33
Overall percentage			93.75

Table 9 Prediction results of ANFIS with Gaussian membership function with three inputs for in-sample period 1950-2005

Crisis	40	0	100.00
No Crisis	26	158	85.86
Overall percentage			88.39

Table 10 Prediction results of ANFIS with Gaussian membership function with three inputs for out-of-sample period 2006-2009

Crisis	8	2	80.00
No Crisis	2	4	66.67
Overall percentage			75.00

Finally in tables 11-14 we present the forecasts for ANFIS with generalized bell and Gaussian membership functions and with two inputs, the gross domestic product growth rate and the unemployment rate. The results support the ANFIS procedure. Additionally, we observe that the forecasting performance with Gaussian function is improved using two inputs concerning the out-of-sample period. For this reason ANFIS can work very well with fewer inputs.

Table 11 Prediction results of ANFIS with Generalized Bell membership function and two inputs (GDP and unemployment) for in-sample period 1950-2005

Crisis	35	5	87.50
No Crisis	25	159	86.41
Overall percentage			86.60

Table 12 Prediction results of ANFIS with Generalized Bell membership function and two inputs(GDP and unemployment) for out-of-sample period 2006-2009

Crisis	9	1	90.00
No Crisis	1	5	83.33
Overall percentage			87.50

Table 13 Prediction results of ANFIS with Gaussian membership function and two inputs(GDP and unemployment) for in-sample period 1950-2005

Crisis	38	2	95.00
No Crisis	38	146	79.34
Overall percentage			82.14

Table 14 Prediction results of ANFIS with Gaussian membership function and two inputs(GDP and unemployment) for out-of-sample period 2006-2009

Crisis	9	1	90.00
No Crisis	2	4	66.67
Overall percentage			81.25

Conclusions

The conclusion is that Neuro-fuzzy approach is a very promising tool for forecasting crisis periods and can be used also for bankruptcies forecasts, financial distress models, and almost in any modeling in economics and finance, because most of them can be fuzzified and we can set up rules. Additionally, more functions can be examined as the S-shape or the Z-shape functions, as also other training processes can be used, like genetic algorithms or Levenberg-Marqaurdt, instead to error backpropagation.

References

- Coats, P.K., and Fant, F. L. (1993). Recognizing financial distress patterns using a neural network tool, *Financial Management*, Vol. 22, pp. 142-155.
- Demirguc-kunt, A., and Detragiache, E. (1998). The Determinants of Banking Crises in Developing and Developed Countries. IMF Staff Papers, Vol. 45, No. 1, pp. 81-109
- Eichengreen, B., and Rose, A.K. (1998). Staying Afloat When the Wind Shifts: External Factors and Emerging-Market Banking Crises. NBER Working Papers 6370. National Bureau of Economic Research, Cambridge, MA
- Frankel, J., and Rose, A.K. (1996). Currency Crashes in emerging Markets: An Empirical Treatment, International Finance Discussion Papers 534. Board of Governors of the Federal Reserve System. Washington. D.C
- Greene, W.H. (2008). Econometric Analysis, Sixth Edition, Prentice Hall: New Jersey
- Jang, J.-S.R. (1993). ANFIS: Adaptive-Network-based Fuzzy Inference Systems. *IEEE Transactions on Systems*, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685
- Jang, J.-S. R. and Sun, C.-T. (1995). Neuro-fuzzy Modeling and Control. *Proceedings of the IEEE*, Vol. 83, No. 3, pp. 378-406, March
- Kaminsky, L.G., and Reinhart, C. M. (1996). The Twin Crises: The Causes of Banking and Balance of Payments Problems. Federal Reserve Board Discussion Papers 544. Board of Governors of the Federal Reserve System. Washington. D.C.
- Kaminsky, L.G., Lizondo, S., and Reinhart, C.M. (1998). Leading Indicators of Currency Crises, IMF Staff Papers, Vol. 45, No. 1, pp. 1-48.
- Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. *Bulletin of the American Mathematical Society*, Vol. 26, pp. 394–395
- Nachev. A, and Stoyanov, B. (2007). A Default ARTMAP Neural Networks for Financial Diagnosis. Proceedings of the 2007 International Conference on Data Mining, DMIN 2007, June 25-28, Las Vegas, Nevada, USA. CSREA.
- Petrou, M. and Bosdogianni, P. (2000). Image Processing: The Fundamentals, John Wiley
- Penrose, R. (1955). A generalized inverse for matrices. *Proceedings of the Cambridge Philosophical Society*, Vol. 51, pp. 406–413
- Zhang, G. Hu, Y., and Patuwo, E.B. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis, *European Journal of Operation Research*, Vol. 116, pp. 16-32.

Appendix

MATL AB routine for ANFIS with three inputs

```
function []=neuro fuzzy (x,y)
 %function []=neuro fuzzy (x,y)
clear all;
load file.mat
% data is consisted by 4 columns, the first three concern the input
% variables and the last column the output variable
y=data(1:end-16,end)
x = data(1:end-16, 1:3)
% y is the output dummy variable
% x is the matrix of inputs
         % Select the operator, 1 for min which is for AND operator, 2 for
product, which is for
         % AND operator and 3 for for max, which is for OR operator
        % option 1 is for specific center and bases values of your choice
opt=2
         % option 2 takes the center and bases values based on mean and
         % standard deviation respectively.
         % 1 for triangular membership function, 2 for Gaussian
memb=3
% Set up the learning rates of your choice for center, bases and parameters
lr_center_gdp=0.05
lr_center_une=0.05
lr center indpro=0.05
1r base gdp=0.05
1r base une=0.05
lr base indpro=0.05
lr beta_gdp=0.005
lr beta_une=0.005
lr_beta_indpro=0.005
lr r=0.\overline{5}
% Take the inputs
gdp=x(:,1)
une=x(:,2)
indpro=x(:,3)
% Take the dimensions of input-output data
[t nj]=size(y)
[nk ni] = size(x)
%First option take specific values of your choice
if opt==1
% Center values for GDP
c 1=-0.01
c 2=0.01
```

```
c 3=0.03
%Bases values for GDP
if memb==1
sigma_1=0.04
sigma_2=0.05
sigma_3=0.05
elseif memb==2
sigma 1=0.025
sigma 2=0.025
sigma_3 = 0.025
elseif memb==3
sigmal = (max(gdp) - min(gdp))/18
sigma 1=sigma1
sigma 2=sigma1
sigma 3=sigma1
end
% Center values for Unemployment rate
ce 1=5
ce 2=7
ce 3=9
%Bases values for Unemployment rate
if memb==1
sigmae_1=3
sigmae_2=3
sigmae_3=3
elseif memb==2
sigmae_1=2
sigmae_2=2
sigmae_3=2
elseif memb==3
sigma2=(max(une)-min(une))/18
sigmae_1=sigma2
sigmae_2=sigma2
sigmae 3=sigma2
end
% Center values for Industrial production
cindpro 1=-0.02
cindpro 2=0.01
cindpro 3=0.04
%Bases values for Industrial production
if memb==1
sigma indpro 1=0.07
sigma_indpro_2=0.07
sigma indpro 3=0.07
elseif memb==2
sigma indpro 1=0.035
sigma indpro 2=0.035
sigma indpro 3=0.035
elseif memb==3
sigma3=(max(indpro)-min(indpro))/18
sigma indpro 1=sigma3
```

```
sigma indpro 2=sigma3
sigma indpro 3=sigma3
b1_gdp=1.1
b2_gdp=1.1
b3_gdp=1.1
b1 une=1.1
b2 une=1.1
b3 une=1.1
b1 indpro=1.1
b2_indpro=1.1
b3_indpro=1.1
% Take center and bases values based on mean and standard deviation
respectively
elseif opt==2
% Values for GDP
y high=find(gdp>=0.02)
y_{medium}=find(gdp>=0 \& gdp<=0.02)
y_low=find(gdp <= 0)
% find the values correspond to linguistic terms
y high=gdp(y high)
y_medium=gdp (y_medium)
y low=gdp(y low)
% Find the mean and simga (standard deviation)
c_1=mean(y_low)
c_2=mean(y_medium)
c_3=mean(y_high)
if memb==1
sigma 1=std(y low)*2
sigma 2=std(y_medium)*2
sigma 3=std(y_high)*2
elseif memb==\overline{2}
sigma 1=std(y low)
sigma 2=std(y medium)
sigma_3=std(y_high)
elseif memb==3
sigma1=(max(gdp)-min(gdp))/18
sigma 1=sigma1
sigma 2=sigma1
sigma 3=sigma1
end
% In the case you get zero sigma you can write the following. The same is
% followed for the sigma in the ithe inputs
%if sigma 1==0 | sigma 2==0 |sigma 3==0
\frac{1}{2} sigma_1==0.025
%sigma 2 = = 0.025
%sigma 3==0.025
%end
```

```
% Values for Unemployment rate
e high=find(une>=6)
e medium=find(une>=4.5 & une<=6)</pre>
e low=find(une<=4.5)</pre>
% find the values correspond to linguistic terms
e high=une(e high)
e medium=une(e medium)
e low=une(e low)
% Find the mean and simga (standard deviation)
ce 1=mean(e high)
ce_2=mean(e_medium)
ce_3=mean(e_low)
if memb==1
sigmae 1=std(e high)*2
sigmae 2=std(e medium)*2
sigmae 3=std(e low)*2
elseif memb==2
sigmae 1=std(e high)
sigmae 2=std(e medium)
sigmae 3=std(e low)
elseif memb==3
sigma2 = (max(une) - min(une))/18
sigmae 1=sigma2
sigmae 2=sigma2
sigmae 3=sigma2
end
% Values for Industrial production
ind_high=find(indpro>=0.02)
ind medium=find(indpro>=0 & indpro<=0.02)</pre>
ind low=find(indpro<=0 )</pre>
% find the values correspond to linguistic terms
ind high=indpro(ind high)
ind medium=indpro(ind medium)
ind low=indpro(ind_low)
% Find the mean and simga (standard deviation)
cindpro 1=mean(ind low)
cindpro 2=mean(ind medium)
cindpro 3=mean(ind high)
if memb==1
sigma_indpro_1=std(ind_low)*2
sigma_indpro_2=std(ind_medium)*2
sigma_indpro_3=std(ind_high)*2
elseif memb==2
sigma indpro 1=std(ind low)
sigma indpro 2=std(ind medium)
sigma indpro 3=std(ind high)
elseif memb==3
sigma3=(max(indpro) -min(indpro))/18
sigma indpro 1=sigma3
sigma_indpro_2=sigma3
sigma indpro 3=sigma3
```

```
b1_gdp=1.1
b2_gdp=1.1
b3_gdp=1.1
b1 une=1.1
b2 une=1.1
b3 une=1.1
b1 indpro=1.1
b2_indpro=1.1
b3 indpro=1.1
end
if memb==1
% Take memebership degrees-grades
mf gdp low=trimf(gdp,[-sigma 1/2+c 1 c 1 sigma 1/2+c 1]);
                                                           % LOW
mf_gdp_medium=trimf(gdp,[-sigma_2/\overline{2}+c_2 c 2 sigma 2/\overline{2}+c 2]); % MEDIUM
mf gdp high=trimf(gdp,[-sigma 3/2+c 3 c 3 sigma 3/2+c 3]);
                                                            % HIGH
mf une low=trimf(une,[-sigmae 1/2+ce 1 ce 1 sigmae 1/2+ce 1]); % LOW
mf une medium=trimf(une,[-sigmae 2/2+ce 2 ce 2 sigmae 2/2+ce 2 ]); % MEDIUM
mf une high=trimf(une,[-sigmae 3/2+ce 3 ce 3 sigmae 3/2+ce 3]);
mf indpro low=trimf(indpro,[-sigma indpro 1/2+cindpro 1 cindpro 1 ...
    sigma indpro 1/2+cindpro 1 ]); % LOW
mf_indpro_medium=trimf(indpro,[-sigma_indpro_2/2+cindpro_2 cindpro_2...
    sigma_indpro_2/2+cindpro_2 ]); % MEDIUM
mf_indpro_high=trimf(indpro,[-sigma_indpro_3/2+cindpro_3 cindpro_3 ...
    sigma indpro 3/2+cindpro 3 ]); % HIGH
elseif memb==2
mf gdp low=gaussmf(gdp,[sigma 1 c 1 ]);
                                                % LOW
                                               % MEDIUM
% HIGH
mf_gdp_medium=gaussmf(gdp,[sigma_2 c_2 ]);
mf gdp high=gaussmf(gdp,[sigma 3 c 3]);
mf une low=gaussmf(une,[sigmae 1 ce 1 ]);
                                               % LOW
                                               % MEDIUM
mf une medium=gaussmf(une,[sigmae 2 ce 2 ]);
mf une high=gaussmf(une,[sigmae 3 ce 3 ]);
                                               % HIGH
mf indpro low=gaussmf(indpro,[sigma indpro 1 cindpro 1 ]);
                                                               % LOW
mf indpro medium=gaussmf(indpro,[sigma indpro 2 cindpro 2 ]); % MEDIUM
                                                              % HIGH
mf_indpro_high=gaussmf(indpro,[sigma_indpro_3 cindpro 3 ]);
elseif memb==3
mf_gdp_low=gbell_mf(gdp,[sigma_1 b1_gdp c_1 ]);
                                                         % LOW
mf gdp medium=gbell mf(gdp,[sigma 2 b2 gdp c 2 ]);
                                                        % MEDIUM
mf gdp high=gbell mf(gdp,[sigma 3 b3 gdp c 3 ]);
                                                         % HIGH
mf une low=gbell mf(une,[sigmae 1 b1 une ce 1 ]);
                                                      % LOW
```

end

```
mf une medium=gbell mf(une,[sigmae 2 b2 une ce 2 ]); % MEDIUM
mf une high=gbell mf(une,[sigmae 3 b3 une ce 3 ]);
                                                                                             % HIGH
mf indpro low=gbell mf(indpro,[sigma indpro 1 b1 indpro cindpro 1
                                                                                                                 ]);
mf indpro medium=gbell mf(indpro,[sigma indpro 2 b2 indpro cindpro 2 ]);
% MEDIUM
mf indpro high=gbell mf(indpro,[sigma indpro 3 b3 indpro cindpro 3 ]);
end
% Take the fuzzy rules
if em == 1
                                  % Min operator for AND rule
w1=min([mf_gdp_low mf_une_low mf_indpro_low]')
                                                                                             % LOW-LOW-LOW
w2=min([mf_gdp_low mf_une_low mf_indpro_medium]')
                                                                                             % LOW-LOW-MEDIUM
w3=min([mf_gdp_low mf_une_low mf_indpro_high]')
                                                                                             % LOW-LOW-HIGH
w4=min([mf_gdp_low mf_une_medium mf_indpro_low]')
                                                                                            % LOW-MEDIUM-LOW
                                                                                            % LOW-MEDIUM-MEDIUM
w5=min([mf_gdp_low mf_une_medium mf_indpro_medium]')
w6=min([mf_gdp_low mf_une_medium mf_indpro_high]')
                                                                                            % LOW-MEDIUM-HIGH
w7=min([mf_gdp_low mf_une_high mf_indpro low]')
                                                                                             % LOW-HIGH-LOW
w8=min([mf_gdp_low mf_une_high mf_indpro_medium]')
                                                                                            % LOW-HIGH-MEDIUM
w9=min([mf_gdp_low mf_une_high mf_indpro_high]')
                                                                                            % LOW-HIGH-HIGH
w10=min([mf_gdp_medium mf_une_low mf_indpro_low]')
                                                                                            % MEDIUM-LOW-LOW
w11=min([mf_gdp_medium mf_une_low mf_indpro_medium]') % MEDIUM-LOW-MEDIUM
w12=min([mf gdp medium mf une low mf indpro high]') % MEDIUM-LOW-HIGH
\verb|w13=min([mf\_gdp\_medium mf\_une\_medium mf indpro low]')| % | MEDIUM-MEDIUM-LOW| | % | MEDIUM-LOW| | 
w14=min([mf_gdp_medium mf_une_medium mf_indpro_medium]') % MEDIUM-MEDIUM-
w15=min([mf gdp medium mf une medium mf indpro high]') % MEDIUM-MEDIUM-
w16=min([mf qdp medium mf une high mf indpro low]')
                                                                                            % MEDIUM-HIGH-LOW
w17=min([mf qdp medium mf une high mf indpro medium]') % MEDIUM-HIGH-
w18=min([mf qdp medium mf une high mf indpro high]')
                                                                                            % MEDIUM-HIGH-HIGH
w19=min([mf qdp high mf une low mf indpro low]')
                                                                                             % HIGH-LOW-LOW
w20=min([mf gdp high mf une low mf indpro medium]')
                                                                                            % HIGH-LOW-MEDIUM
w21=min([mf gdp high mf une low mf indpro high]')
                                                                                            % HIGH-LOW-HIGH
w21=min([mt_gap_nigh mt_une_tow mt_inapro_nigh]') % HIGH-LOW-HIGH w22=min([mf_gdp_high mf_une_medium mf_inapro_low]') % HIGH-MEDIUM-LOW
w23=min([mf gdp high mf une medium mf indpro medium]') % HIGH-MEDIUM-
w24=min([mf gdp high mf une medium mf indpro high]')
                                                                                            % HIGH-MEDIUM-HIGH
w25=min([mf_gdp_high mf_une_high mf_indpro_low]')
                                                                                            % HIGH-HIGH-LOW
w26=min([mf_gdp_high mf_une_high mf_indpro_medium]')
                                                                                           % HIGH-HIGH-MEDIUM
w27=min([mf_gdp_high mf_une_high mf_indpro_high]')
                                                                                           % HIGH-HIGH-HIGH
elseif em==2
                        % product operator for AND rule
w1=(mf gdp low.*mf une low.*mf indpro low)'
                                                                                            % LOW-LOW-LOW
w2=(mf gdp low.*mf une low.*mf indpro medium)'
                                                                                            % LOW-LOW-MEDIUM
w3=(mf gdp low.*mf une low.*mf indpro high)'
                                                                                            % LOW-LOW-HIGH
w4=(mf gdp low.*mf une medium.*mf indpro low)'
                                                                                             % LOW-MEDIUM-LOW
w5=(mf_gdp_low.*mf_une_medium.*mf_indpro_medium)'
                                                                                            % LOW-MEDIUM-MEDIUM
w6=(mf_gdp_low.*mf_une_medium.*mf_indpro high)'
                                                                                            % LOW-MEDIUM-HIGH
w7=(mf gdp low.*mf une high.*mf indpro low)'
                                                                                            % LOW-HIGH-LOW
w8=(mf_gdp_low.*mf_une_high.*mf_indpro_medium)'
                                                                                           % LOW-HIGH-MEDIUM
```

```
w9=(mf qdp low.*mf une high.*mf indpro high)'
                                                           % LOW-HIGH-HIGH
w10=(mf_gdp_medium.*mf_une_low.*mf_indpro_low)'
w11=(mf_cdp_medium.*mf_une_low.*mf_indpro_low)'
                                                           % MEDIUM-LOW-LOW
w11=(mf gdp medium.*mf une low.*mf indpro medium)'
                                                           % MEDIUM-LOW-MEDIUM
w12=(mf_gdp_medium.*mf_une_low.*mf_indpro_high)' % MEDIUM-LOW-HIGH
w13=(mf_gdp_medium.*mf_une_medium.*mf_indpro_low)' % MEDIUM-MEDIUM-LOW
w14=(mf gdp medium.*mf une medium.*mf indpro medium)' % MEDIUM-MEDIUM-
MEDIUM
w15=(mf gdp medium.*mf une medium.*mf indpro high)'
                                                            % MEDIUM-MEDIUM-
HIGH
w16=(mf gdp medium.*mf une high.*mf indpro low)'
                                                            % MEDIUM-HIGH-LOW
w17=(mf_gdp_medium.*mf_une_high.*mf_indpro medium)'
                                                           % MEDIUM-HIGH-
w18=(mf gdp medium.*mf une high.*mf indpro high)'
                                                            % MEDIUM-HIGH-HIGH
w19=(mf gdp high.*mf une low.*mf indpro low)'
                                                            % HIGH-LOW-LOW
w20=(mf_gdp_high.*mf_une_low.*mf_indpro_medium)'
w21=(mf_gdp_high.*mf_une_low.*mf_indpro_high)'
w22=(mf_gdp_high.*mf_une_medium.*mf_indpro_low)'
                                                            % HIGH-LOW-MEDIUM
                                                            % HIGH-LOW-HIGH
                                                            % HIGH-MEDIUM-LOW
w23=(mf qdp high.*mf une medium.*mf indpro medium)'
                                                            % HIGH-MEDIUM-
MEDIUM
w24=(mf gdp high.*mf une medium.*mf indpro high)'
                                                            % HIGH-MEDIUM-HIGH
w25=(mf_gdp_high.*mf_une_high.*mf_indpro_low)'
w26=(mf_gdp_high.*mf_une_high.*mf_indpro_medium)'
                                                            % HIGH-HIGH-LOW
                                                            % HIGH-HIGH-MEDIUM
w27=(mf gdp high.*mf une high.*mf indpro high)'
                                                            % HIGH-HIGH-HIGH
elseif em==3 % max operator for OR rule
w1=max([mf_gdp_low mf_une_low mf_indpro_low]')
                                                                % LOW-LOW-LOW
w2=max([mf_gdp_low mf_une_low mf_indpro_medium]')
                                                                % LOW-LOW-
MEDIUM
w3=max([mf_gdp_low mf une low mf indpro high]')
                                                                 % LOW-LOW-HIGH
w4=max([mf_gdp_low mf_une_medium mf_indpro_low]')
                                                                % LOW-MEDIUM-
w5=max([mf gdp low mf une medium mf indpro medium]')
                                                                 % LOW-MEDIUM-
w6=max([mf gdp low mf une medium mf indpro high]')
                                                                % LOW-MEDIUM-
w7=max([mf qdp low mf une high mf indpro low]')
                                                                 % LOW-HIGH-LOW
w8=max([mf_gdp_low mf_une_high mf_indpro_medium]')
                                                                % LOW-HIGH-
w9=max([mf_gdp_low mf_une_high mf_indpro_high]')
w10=max([mf_gdp_medium mf_une_low mf_indpro_low]')
                                                                % LOW-HIGH-HIGH
                                                                % MEDIUM-LOW-
w11=max([mf gdp medium mf une low mf indpro medium]')
                                                                % MEDIUM-LOW-
w12=max([mf gdp medium mf une low mf indpro high]')
                                                                % MEDIUM-LOW-
w13=max([mf gdp medium mf une medium mf indpro low]')
                                                                % MEDIUM-
MEDIUM-LOW
w14=max([mf gdp medium mf une medium mf indpro medium]')
                                                                % MEDIUM-
MEDIUM-MEDIUM
w15=max([mf gdp medium mf une medium mf indpro high]')
                                                                % MEDIUM-
MEDIUM-HIGH
w16=max([mf gdp medium mf une high mf indpro low]')
                                                                 % MEDIUM-HIGH-
w17=max([mf gdp medium mf une high mf indpro medium]')
                                                                % MEDIUM-HIGH-
w18=max([mf gdp medium mf une high mf indpro high]')
                                                                % MEDIUM-HIGH-
w19=max([mf gdp high mf une low mf indpro low]')
                                                                 % HIGH-LOW-LOW
```

```
w20=max([mf gdp high mf une low mf indpro medium]')
                                                                                                                                                                                                                                                                                                                                                                                     % HIGH-LOW-
w21=max([mf gdp high mf une low mf indpro high]')
                                                                                                                                                                                                                                                                                                                                                                                      % HIGH-LOW-HIGH
w22=max([mf gdp high mf une medium mf indpro low]')
                                                                                                                                                                                                                                                                                                                                                                                      % HIGH-MEDIUM-
w23=max([mf_gdp_high mf_une_medium mf_indpro_medium]')
                                                                                                                                                                                                                                                                                                                                                                                      % HIGH-MEDIUM-
MEDIUM
w24=max([mf_gdp_high mf_une_medium mf_indpro_high]')
                                                                                                                                                                                                                                                                                                                                                                                      % HIGH-MEDIUM-
HIGH
w25=max([mf gdp high mf une high mf indpro low]')
                                                                                                                                                                                                                                                                                                                                                                                       % HIGH-HIGH-LOW
w26=max([mf_gdp_high mf_une_high mf_indpro medium]')
                                                                                                                                                                                                                                                                                                                                                                                        % HIGH-HIGH-
w27=max([mf gdp high mf une high mf indpro high]')
                                                                                                                                                                                                                                                                                                                                                                                     % HIGH-HIGH-
HIGH
end
%Layer 3
for j=1:t
if (w1(:,j)==0 \& w2(:,j)==0 \& w3(:,j)==0 \& w4(:,j)==0 \& w5(:,j)==0 \&
w6(:,j) == 0 \& w7(:,j) == 0 \& ...
w8(:,j) == 0 \& w9(:,j) == 0 \& w10(:,j) == 0 \& w11(:,j) == 0 \& w12(:,j) == 0 
w13(:,j) == 0 \& w14(:,j) == 0 \& ...
w16(:,j) == 0 \& w17(:,j) == 0 \& w18(:,j) == 0 \& w19(:,j) == 0 \& w20(:,j) == 
w21(:,j) == 0 \& w22(:,j) == 0 \& ...
w23(:,j) == 0 \& w24(:,j) == 0 \& w25(:,j) == 0 \& w26(:,j) == 0 \& w27(:,j) == 0
nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0;nw6(:,j)=0;nw7(:,j)=0;nw8(:,j)=0;...
nw9(:,j)=0; nw10(:,j)=0; nw11(:,j)=0; nw12(:,j)=0; nw13(:,j)=0;\\
nw14(:,j)=0; nw15(:,j)=0; nw16(:,j)=0;...
nw17(:,j)=0;nw18(:,j)=0;nw19(:,j)=0;nw20(:,j)=0;
nw21(:,j)=0; nw22(:,j)=0; nw23(:,j)=0; nw24(:,j)=0;...
nw25(:,j)=0; nw26(:,j)=0; nw27(:,j)=0;
else
nw1(:,j) = w1(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw2(:,j)=w2(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
 8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
  (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw3(:,j)=w3(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
 8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw4(:,j)=w4(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
 8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
```

```
nw5(:,j) = w5(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw6(:,j)=w6(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)+w7(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6
w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw7(:,j)=w7(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
\texttt{nw8}(:,j) = \texttt{w8}(:,j) / (\texttt{w1}(:,j) + \texttt{w2}(:,j) + \texttt{w3}(:,j) + \texttt{w4}(:,j) + \texttt{w5}(:,j) + \texttt{w6}(:,j) + \texttt{w7}(:,j) + \texttt
8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw9(:,j) = w9(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 \text{nw10}(:,j) = \text{w10}(:,j) / (\text{w1}(:,j) + \text{w2}(:,j) + \text{w3}(:,j) + \text{w4}(:,j) + \text{w5}(:,j) + \text{w6}(:,j) + \text{w7}(:,j) 
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw11(:,j) = w11(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw12(:,j) = w12(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw13(:,j) = w13(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw14(:,j) = w14(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
```

```
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw15(:,j) = w15(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
 w20(:,j) + w21(:,j) + w22(:,j) + w23(:,j) + w24(:,j) + w25(:,j) + w26(:,j) + w27(:,j)); 
 \text{nw16}(:,j) = \text{w16}(:,j) / (\text{w1}(:,j) + \text{w2}(:,j) + \text{w3}(:,j) + \text{w4}(:,j) + \text{w5}(:,j) + \text{w6}(:,j) + \text{w7}(:,j) 
)+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw17(:,j) = w17(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw18(:,j)=w18(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw19(:,j) = w19(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw21(:,j) = w21(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw22(:,j) = w22(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw23(:,j) = w23(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw24(:,j) = w24(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
```

```
 \\ \text{w10}\,(:,\text{j}) + \\ \text{w11}\,(:,\text{j}) + \\ \text{w12}\,(:,\text{j}) + \\ \text{w13}\,(:,\text{j}) + \\ \text{w14}\,(:,\text{j}) + \\ \text{w15}\,(:,\text{j}) + \\ \text{w16}\,(:,\text{j}) + \\ \text{w17}\,(:,\text{j}) + \\ \text{w18}\,(:,\text{j}) + \\ \text{w18}\,(:,\text{j}) + \\ \text{w19}\,(:,\text{j}) + \\ \text
(:,j)+w19(:,j)+...
 w20(:,j) + w21(:,j) + w22(:,j) + w23(:,j) + w24(:,j) + w25(:,j) + w26(:,j) + w27(:,j)); \\
nw25(:,j) = w25(:,j) / (w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 \\ \text{nw26}(:,j) = \\ \text{w26}(:,j) / \\ (\text{w1}(:,j) + \\ \text{w2}(:,j) + \\ \text{w3}(:,j) + \\ \text{w4}(:,j) + \\ \text{w5}(:,j) + \\ \text{w6}(:,j) + \\ \text{w7}(:,j) + \\ \text{w7}(:,j) + \\ \text{w7}(:,j) + \\ \text{w8}(:,j) +
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw27(:,j) = w27(:,j) / (w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
end
end
% Layer 4-5
X train=[nw1.*gdp';nw2.*gdp';nw3.*gdp';nw4.*gdp';nw5.*gdp';nw6.*gdp';nw7.*g
dp';nw8.*gdp';nw9.*gdp';...
nw10.*gdp';nw11.*gdp';nw12.*gdp';nw13.*gdp';nw14.*gdp';
nw15.*gdp';nw16.*gdp';nw17.*gdp';nw18.*gdp';...
nw19.*gdp';nw20.*gdp';nw21.*gdp';nw22.*gdp';nw23.*gdp';
nw24.*qdp';nw25.*qdp';nw26.*qdp';nw27.*qdp';...
nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';nw6.*une';nw7.*une';nw8.*
une';nw9.*une';...
nw10.*une';nw11.*une';nw12.*une';nw13.*une';nw14.*une';
nw15.*une';nw16.*une';nw17.*une';nw18.*une';...
nw19.*une';nw20.*une';nw21.*une';nw22.*une';nw23.*une';
nw24.*une';nw25.*une';nw26.*une';nw27.*une';...
nw1.*indpro';nw2.*indpro';nw3.*indpro';nw4.*indpro';nw5.*indpro';nw6.*indpr
o';nw7.*indpro';...
nw8.*indpro';nw9.*indpro';nw10.*indpro';nw11.*indpro';nw12.*indpro';nw13.*i
ndpro';nw14.*indpro';...
nw15.*indpro';nw16.*indpro';nw17.*indpro';nw18.*indpro';nw19.*indpro';nw20.
*indpro';nw21.*indpro';...
nw22.*indpro';nw23.*indpro';
nw24.*indpro';nw25.*indpro';nw26.*indpro';nw27.*indpro';...
nw1; nw2; nw3; nw4; nw5; nw6; nw7; nw8; nw9; nw10; nw11; nw12; nw13; nw14; nw15; nw16; nw17
;nw18;nw19;nw20;nw21;...
nw22;nw23;nw24;nw25;nw26;nw27]
% Least square algorithm with SVD
params train=pinv(X train')*y
y1=X train'*params train;
e=y1-y;
error=sum(sum(e.^2))
```

```
bases_1=[sigma_1;sigma_2;sigma_3]
bases_2=[sigmae_1;sigmae_2;sigmae_3]
bases_3=[sigma_indpro_1;sigma_indpro_2;sigma_indpro_3]
bases=[bases 1;bases 2 ]
centers 1=[c 1;c 2;c 3]
centers 2=[ce 1;ce 2;ce 3]
centers=[centers 1;centers 2 ]
beta_1=[b1_gdp;b2_gdp;b3_gdp]
beta 2=[b1 une;b2 une;b3 une]
be=[beta 1;beta 2 ]
W=[mf_gdp_low';mf_gdp_medium';mf_gdp_high';mf_une_low';mf_une_medium';mf_un
e high';mf indpro low';...
    mf_indpro_medium';mf_indpro_high']
[nkk nii]=size(W)
[nk,ni]=size(x);
[n rules, ni1] = size (centers);
maxepochs=5
SSE goal=5;
epochs=0
e.field=e
W.field=W
% Start the error backpropagation algorithm
while (epochs<maxepochs) & (error>SSE goal)
for i=1:n_rules/2
if memb==3
eta basel{i,:}=lr base qdp
eta base2{i,:}=lr base une
eta base3{i,:}=lr base indpro
eta center1{i,:}=lr center gdp
eta center2{i,:}=lr center une
eta center3{i,:}=lr center indpro
eta_beta1{i,:}=lr beta gdp
eta beta2{i,:}=lr beta une
eta_beta3{i,:}=lr_beta_indpro
    else
eta_base1{i,:}=lr_base_gdp
eta_base2{i,:}=lr_base_une
eta_base3{i,:}=lr_base_indpo
eta_center1{i,:}=lr_center_gdp
eta_center2{i,:}=lr_center_une
```

```
eta center3{i,:}=lr center indpro
end
eta_r{:,:}=lr_r
end
if memb==3
eta_base=[eta_base1;eta_base2;eta_base3 ]
eta center=[eta center1;eta center2;eta center3 ]
eta beta=[eta beta1;eta beta2;eta beta3 ]
eta_base=[eta_base1;eta_base2;eta_base3 ]
eta center=[eta center1;eta center2;eta center3 ]
end
if memb==1
    for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find((x(:,j)-centers(i,:))<=(bases(i,:)/2));
    end
end
x.field=x
y1.field=y1
params train.field=params train
X train.field=X train
for kk=1:n rules
delta center{:,kk}=(y1.field(ind rule{1,kk}) *e.field(ind rule{1,kk}) '*...
    (((2*sign(x.field(ind rule\{:,kk\}))-centers(kk,:)))/bases(kk,:)))
delta base{:,kk}=(y1.field(ind rule{1,kk}) *e.field(ind rule{1,kk}) '*...
    (((1-W.field(ind rule{:,kk}))))/centers(kk,:))';
delta r{:,:}=(e.field(ind rule{1,kk}))'*(W.field(ind rule{:,kk}));
del center{:,kk}=-((eta center{kk,:}/(2*nk))*sum(delta center{:,kk}));
del_base{:,kk}=-((eta_base{kk,:}/(2*nk))*sum(delta base{:,kk}));
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del center num(kk,:) = (del center{:,kk}) '
del base num(kk,:)=(del base{:,kk})'
```

```
del r num(:,:)=(del r{:,:})'
        end
elseif memb==2
for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find((x(:,j)-centers(i,:))<=(bases(i,:)^2/2));
    end
end
x.field=x
y1.field=y1
for kk=1:n rules
delta center{:,kk}=(y1.field(ind rule{1,kk})*e.field(ind rule{1,kk})')'*...
    ((((x.field(ind rule{1,kk})-centers(kk,:)))/bases(kk,:)^2))
delta base{:,kk}=(y1.field(ind rule{1,kk})*e.field(ind rule{1,kk})')'*...
    ((((x.field(ind rule{1,kk})-centers(kk,:))).^2/bases(kk,:)^3))
delta_r{:,:}=(e.field(ind_rule{1,kk}))'*(W.field(ind_rule{:,kk}));
del center\{:,kk\}=(-((\text{eta center}\{kk,:\})/(2*nk))*sum((\text{delta center}\{:,kk\}));
del base\{:,kk\}=(-((2*eta base\{kk,:\})/(2*nk))*sum(delta base\{:,kk\}));
del center num(kk,:) = (del center{:,kk})'
del base num(kk,:)=(del base{:,kk})'
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del r num(:,:)=(del r{:,:})'
end
elseif memb==3
for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find(\exp(-(x(:,j)-centers(i,:)))<=(\exp(bases(i,:))));
```

```
end
end
x.field=x
y1.field=y1
for kk=1:n rules
delta_center{:,kk}=(y1.field(ind_rule{1,kk}))*e.field(ind_rule{1,kk}))')'*...
    ((2*((x.field(ind rule{1,kk})-centers(kk,:))/...
    bases(kk,:))'*be(\overline{kk},:)))'
delta base{:,kk}=(y1.field(ind rule{1,kk}) *e.field(ind rule{1,kk})')'*...
    (2*((x.field(ind rule{1,kk})-centers(kk,:))/...
    bases(kk,:))'*be(kk,:))'
delta be{:,kk}=(y1.field(ind rule{1,kk}))'*e.field(ind rule{1,kk}))*...
    (-2*((x.field(ind_rule{1,kk}))-centers(kk,:))/...
    bases (kk,:)) '.^2*\overline{be}(kk,:))
delta r{:,:}=(e.field(ind rule{1,kk}))'*(W.field(ind rule{:,kk}));
del center\{:,kk\}=(-((\text{eta center}\{kk,:\})/(2*nk))*sum((\text{delta center}\{:,kk\}));
del base\{:,kk\}=(-((eta base\{kk,:\})/(2*nk))*sum(delta base\{:,kk\}));
del be\{:,kk\}=(-((eta beta\{kk,:\})/(2*nk))*sum(delta be<math>\{:,kk\}));
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del center num=(del center{:,kk})'
del base num=(del base{:,kk})'
del be num=(del be{:,kk})'
del r num(:,:)=(del r{:,:})'
    end
end
if memb==3
centers=centers+del center num
bases=bases+del base num
be=be+del be num
y1.field=y1.field+del r num
else
    centers=centers+del center num
bases=bases+del_base_num
y1.field=y1.field+del r num
end
    if memb==3
```

```
center gdp=centers(1:3,1)
center une=centers(4:6,1)
center indpro=centers(7:9,1)
bases_gdp=bases(1:3,1)
bases_une=bases(4:6,1)
bases_indpro=bases(7:9,1)
beta gdp=bases(1:3,1)
beta une=bases(4:6,1)
beta indpro=bases(7:9,1)
centers=[center gdp;center une;center indpro ]
bases=[bases gdp;bases une;bases indpro ]
be=[beta gdp;beta une;beta indpro]
else
center gdp=centers(1:3,1)
center une=centers (4:6,1)
center indpro=centers(7:9,1)
bases gdp=bases(1:3,1)
bases une=bases(4:6,1)
bases indpro=bases(7:9,1)
centers=[center gdp;center une;center indpro ]
bases=[bases gdp;bases une;bases indpro ]
end
if memb==1
mf gdp low=trimf(gdp,[-bases gdp(1,1)/2+center gdp(1,1) center gdp(1,1)...
    bases_gdp(1,1)/2+center_gdp(1,1) ]); % LOW
mf gdp medium=trimf(gdp,[-bases gdp(2,1)/2+center gdp(2,1)
center gdp(2,1)...
    bases gdp(2,1)/2+center gdp(2,1)]); % LOW
mf_gdp_high=trimf(gdp,[-bases_gdp(3,1)/2+center_gdp(3,1) center_gdp(3,1)...
    bases gdp(3,1)/2+center gdp(3,1)); % LOW
mf une low=trimf(une, [-bases une(1,1)/2+center une(1,1) center une(1,1)...
    bases une(1,1)/2+center une(1,1)]); % LOW
mf une medium=trimf(une, [-bases une (2,1)/2+center une (2,1)
center une (2,1)...
    bases une(2,1)/2+center une(2,1)); % MEDIUM
mf une high=trimf(une, [-bases une(3,1)/2+center une(3,1) center une(3,1)...
    bases une(3,1)/2+center une(3,1)]); % HIGH
mf indpro low=trimf(indpro, [-bases indpro(1,1)/2+center indpro(1,1)
center indpro(1,1)...
 bases indpro(1,1)/2+center indpro(1,1) ]); % LOW
mf indpro medium=trimf(indpro,[-bases indpro(2,1)/2+center indpro(2,1)
center indpro(2,1)...
 bases indpro(2,1)/2+center indpro(2,1) ]); % MEDIUM
mf indpro high=trimf(indpro,[-bases indpro(3,1)/2+center indpro(3,1)
center indpro(3,1)...
  bases indpro(3,1)/2+center indpro(3,1) ]); % HIGH
```

```
elseif memb==2
mf gdp low=gaussmf(gdp,[bases gdp(1,1) center gdp(1,1)]);
                                                                % LOW
mf gdp medium=gaussmf(gdp,[bases gdp(2,1) center gdp(2,1) ]); % MEDIUM
mf gdp high=gaussmf(gdp,[bases gdp(3,1) center gdp(3,1) ]);
                                                                % HIGH
mf une low=gaussmf(une, [bases une(1,1) center une(1,1)]);
                                                                % LOW
mf une medium=gaussmf(une,[bases une(2,1) center une(2,1) ]);
                                                                % MEDIUM
mf une high=gaussmf(une,[bases une(3,1) center une(3,1) ]);
                                                                % HIGH
mf indpro low=gaussmf(indpro,[bases indpro(1,1) center indpro(1,1)
                                                                    ]);
% LOW
mf indpro medium=gaussmf(indpro,[bases_indpro(2,1) center_indpro(2,1)
                                                                     ]);
% MEDIUM
mf indpro high=gaussmf(indpro,[bases indpro(3,1) center indpro(3,1) ]);
% HIGH
elseif memb==3
mf gdp low=gbell mf(gdp,[bases gdp(1,1) beta gdp(1,1) center gdp(1,1) ]);
% LOW
mf gdp medium=gbell mf(gdp,[bases gdp(2,1) beta gdp(2,1) center gdp(2,1)
]); % MEDIUM
mf gdp high=gbell mf(gdp,[bases gdp(3,1) beta gdp(3,1) center gdp(3,1)]);
% HIGH
mf\_une\_low=gbell\_mf(une,[bases\_une(1,1) beta\_une(1,1) center une(1,1)]);
mf une medium=gbell mf(une, [bases une(2,1) beta une(2,1) center une(2,1)
]); % MEDIUM
mf une high=gbell mf(une,[bases une(3,1) beta une(3,1) center une(3,1) ]);
% HIGH
mf indpro low=gbell mf(indpro,[bases indpro(1,1) beta indpro(1,1)
center indpro(1,1) ]);
                            % LOW
mf indpro medium=gbell mf(indpro,[bases indpro(2,1) beta indpro(2,1)
center_indpro(2,1) ]); % MEDIUM
mf indpro high=gbell mf(indpro,[bases indpro(3,1) beta indpro(3,1)
center indpro(3,1) ]);
end
% Take the fuzzy rules
if em == 1
                    % Min operator for AND rule
w1=min([mf gdp low mf une low mf indpro low]')
                                                       % LOW-LOW-LOW
w2=min([mf_gdp_low mf_une_low mf_indpro_medium]')
                                                       % LOW-LOW-MEDIUM
w3=min([mf gdp low mf une low mf indpro high]')
                                                       % LOW-LOW-HIGH
w4=min([mf gdp low mf une medium mf indpro low]')
                                                       % LOW-MEDIUM-LOW
w5=min([mf gdp low mf une medium mf indpro medium]')
                                                      % LOW-MEDIUM-MEDIUM
w6=min([mf_gdp_low mf_une_medium mf_indpro_high]')
                                                       % LOW-MEDIUM-HIGH
w7=min([mf gdp low mf une high mf indpro low]')
                                                       % LOW-HIGH-LOW
w8=min([mf_gdp_low mf_une_high mf_indpro_medium]')
                                                      % LOW-HIGH-MEDIUM
w9=min([mf gdp low mf une high mf indpro high]')
                                                      % LOW-HIGH-HIGH
                                                  % MEDIUM-LOW-LOW
w10=min([mf_gdp_medium mf_une_low mf_indpro low]')
```

```
w11=min([mf gdp medium mf une_low mf_indpro_medium]') % MEDIUM-LOW-MEDIUM
w14=min([mf gdp medium mf une medium mf indpro medium]') % MEDIUM-MEDIUM-
w15=min([mf gdp medium mf une medium mf indpro high]') % MEDIUM-MEDIUM-
w16=min([mf gdp medium mf une high mf indpro low]')
                                                                  % MEDIUM-HIGH-LOW
w17=min([mf gdp medium mf une high mf indpro medium]') % MEDIUM-HIGH-
w18=min([mf gdp medium mf une high mf indpro high]')
                                                                    % MEDIUM-HIGH-HIGH
w19=min([mf gdp high mf une low mf indpro low]')
                                                                   % HIGH-LOW-LOW
w20=min([mf gdp high mf une low mf_indpro_medium]')
                                                                    % HIGH-LOW-MEDIUM
w21=min([mf_gdp_high mf_une_low mf_indpro_high]') % HIGH-LOW-HIGH w22=min([mf_gdp_high mf_une_medium mf_indpro_low]') % HIGH-MEDIUM-1 w23=min([mf_gdp_high mf_une_medium mf_indpro_medium]') % HIGH-MEDIUM-
                                                                   % HIGH-LOW-HIGH
                                                                   % HIGH-MEDIUM-LOW
MEDIUM
w24=min([mf_gdp_high mf_une_medium mf_indpro_high]') % HIGH-MEDIUM-HIG
w25=min([mf_gdp_high mf_une_high mf_indpro_low]') % HIGH-HIGH-LOW
w26=min([mf_gdp_high mf_une_high mf_indpro_medium]') % HIGH-HIGH-MEDIU
w27=min([mf_gdp_high mf_une_high mf_indpro_high]') % HIGH-HIGH-HIGH
                                                                   % HIGH-MEDIUM-HIGH
                                                                    % HIGH-HIGH-MEDIUM
elseif em==2 % product operator for AND rule
w1=(mf_gdp_low.*mf_une_low.*mf_indpro_low)'
w2=(mf_gdp_low.*mf_une_low.*mf_indpro_medium)'
w3=(mf_gdp_low.*mf_une_low.*mf_indpro_high)'
                                                                   % LOW-LOW-LOW
                                                                  % LOW-LOW-MEDIUM
                                                                   % LOW-LOW-HIGH
w4= (mf_gdp_low.*mf_une_medium.*mf_indpro_low)'
w5= (mf_gdp_low.*mf_une_medium.*mf_indpro_medium)'
w6= (mf_gdp_low.*mf_une_medium.*mf_indpro_high)'
                                                                   % LOW-MEDIUM-LOW
                                                                  % LOW-MEDIUM-MEDIUM
                                                                   % LOW-MEDIUM-HIGH
w7= (mf_gdp_low.*mf_une_high.*mf_indpro_low)'
w8= (mf_gdp_low.*mf_une_high.*mf_indpro_medium)'
w9= (mf_gdp_low.*mf_une_high.*mf_indpro_high)'
                                                                   % LOW-HIGH-LOW
                                                                  % LOW-HIGH-MEDIUM
                                                                   % LOW-HIGH-HIGH
w10=(mf_gdp_medium.*mf_une_low.*mf_indpro_low)'
                                                                   % MEDIUM-LOW-LOW
w11=(mf_gdp_medium.*mf_une_low.*mf_indpro_medium)'
                                                                   % MEDIUM-LOW-MEDIUM
w12=(mf_gdp_medium.*mf_une_low.*mf_indpro_high)'
w13=(mf_gdp_medium.*mf_une_medium.*mf_indpro_low)'
                                                                   % MEDIUM-LOW-HIGH
                                                                   % MEDIUM-MEDIUM-LOW
w14=(mf_gdp_medium.*mf_une_medium.*mf_indpro_medium)' % MEDIUM-MEDIUM-
MEDIUM
w15=(mf gdp medium.*mf une medium.*mf indpro high)'
                                                                   % MEDIUM-MEDIUM-
w16=(mf gdp medium.*mf une high.*mf indpro low)'
                                                                   % MEDIUM-HIGH-LOW
w17=(mf gdp medium.*mf une high.*mf indpro medium)'
                                                                   % MEDIUM-HIGH-
MEDIUM
w18=(mf gdp medium.*mf une high.*mf indpro high)'
                                                                   % MEDIUM-HIGH-HIGH
w19=(mf gdp high.*mf une low.*mf indpro low)'
                                                                   % HIGH-LOW-LOW
w20=(mf gdp high.*mf une low.*mf indpro medium)'
                                                                   % HIGH-LOW-MEDIUM
w21=(mf gdp high.*mf une low.*mf indpro high)'
                                                                   % HIGH-LOW-HIGH
w22=(mf_gdp_high.*mf_une_medium.*mf indpro low)'
                                                                  % HIGH-MEDIUM-LOW
w23=(mf_gdp_high.*mf_une_medium.*mf_indpro_medium)'
                                                                  % HIGH-MEDIUM-
w24=(mf gdp high.*mf une medium.*mf indpro high)'
                                                                   % HIGH-MEDIUM-HIGH
w25=(mf gdp high.*mf une high.*mf indpro low)'
                                                                   % HIGH-HIGH-LOW
                                                                % HIGH-HIGH-MEDIUM
w26=(mf_gdp_high.*mf une high.*mf indpro medium)'
w27=(mf gdp high.*mf une high.*mf indpro high)'
                                                                   % HIGH-HIGH-HIGH
```

```
w2=max([mf gdp low mf une low mf indpro medium]')
                                                                                                                                                                                                                                 % LOW-LOW-
w3=max([mf gdp low mf une low mf indpro high]')
                                                                                                                                                                                                                                  % LOW-LOW-HIGH
w4=max([mf gdp low mf une medium mf indpro low]')
                                                                                                                                                                                                                                  % LOW-MEDIUM-
w5=max([mf gdp low mf une medium mf indpro medium]')
                                                                                                                                                                                                                                  % LOW-MEDIUM-
MEDIUM
w6=max([mf gdp low mf une medium mf indpro high]')
                                                                                                                                                                                                                                  % LOW-MEDIUM-
w7=max([mf gdp low mf une high mf indpro low]')
                                                                                                                                                                                                                                  % LOW-HIGH-LOW
w8=max([mf gdp low mf une high mf indpro medium]')
                                                                                                                                                                                                                                  % LOW-HIGH-
w9=max([mf gdp low mf une high mf indpro high]')
                                                                                                                                                                                                                                   % LOW-HIGH-HIGH
w10=max([mf_gdp_medium mf_une_low mf indpro low]')
                                                                                                                                                                                                                                   % MEDIUM-LOW-
w11=max([mf gdp medium mf une low mf indpro medium]')
                                                                                                                                                                                                                                 % MEDIUM-LOW-
MEDIUM
w12=max([mf qdp medium mf une low mf indpro high]')
                                                                                                                                                                                                                                  % MEDIUM-LOW-
w13=max([mf qdp medium mf une medium mf indpro low]')
                                                                                                                                                                                                                                  % MEDIUM-
MEDIUM-LOW
w14=max([mf qdp medium mf une medium mf indpro medium]')
                                                                                                                                                                                                                                  % MEDIUM-
MEDIUM-MEDIUM
w15=max([mf gdp medium mf une medium mf indpro high]')
                                                                                                                                                                                                                                  % MEDIUM-
MEDIUM-HIGH
w16=max([mf gdp medium mf une high mf indpro low]')
                                                                                                                                                                                                                                  % MEDIUM-HIGH-
w17=max([mf gdp medium mf une high mf indpro medium]')
                                                                                                                                                                                                                                  % MEDIUM-HIGH-
MEDIUM
w18=max([mf gdp medium mf une high mf indpro high]')
                                                                                                                                                                                                                                 % MEDIUM-HIGH-
HTGH
w19=max([mf gdp high mf une low mf indpro low]')
                                                                                                                                                                                                                                   % HIGH-LOW-LOW
                                                                                                                                                                                                                                  % HIGH-LOW-
w20=max([mf gdp high mf une low mf indpro medium]')
w21=max([mf_gdp_high mf_une_low mf_indpro_high]')
                                                                                                                                                                                                                                   % HIGH-LOW-HIGH
w22=max([mf_gdp_high mf_une_medium mf_indpro_low]')
                                                                                                                                                                                                                                  % HIGH-MEDIUM-
w23=max([mf gdp high mf une medium mf indpro medium]')
                                                                                                                                                                                                                                  % HIGH-MEDIUM-
MEDIUM
w24=max([mf gdp high mf une medium mf indpro high]')
                                                                                                                                                                                                                                 % HIGH-MEDIUM-
w25=max([mf gdp high mf une high mf indpro low]')
                                                                                                                                                                                                                                  % HIGH-HIGH-LOW
w26=max([mf gdp high mf une high mf indpro medium]')
                                                                                                                                                                                                                                 % HIGH-HIGH-
w27=max([mf qdp high mf une high mf indpro high]')
                                                                                                                                                                                                                                 % HIGH-HIGH-
HIGH
end
for j=1:t
if (w1(:,j)==0 \& w2(:,j)==0 \& w3(:,j)==0 \& w4(:,j)==0 \& w5(:,j)==0 \&
w6(:,j) == 0 \& w7(:,j) == 0 \& ...
w8(:,j) == 0 \& w9(:,j) == 0 \& w10(:,j) == 0 \& w11(:,j) == 0 \& w12(:,j) == 0 
w13(:,j) == 0 \& w14(:,j) == 0 \& ...
w16(:,j) == 0 \& w17(:,j) == 0 \& w18(:,j) == 0 \& w19(:,j) == 0 \& w20(:,j) == 
w21(:,j) == 0 \& w22(:,j) == 0 \& ...
w23(:,j) == 0 \& w24(:,j) == 0 \& w25(:,j) == 0 \& w26(:,j) == 0 \& w27(:,j) == 0
nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0; nw6(:,j)=0; nw7(:,j)=0; nw8(:,j)=0;...
```

```
nw9(:,j)=0; nw10(:,j)=0; nw11(:,j)=0; nw12(:,j)=0; nw13(:,j)=0;
 nw14(:,j)=0; nw15(:,j)=0; nw16(:,j)=0;...
 nw17(:,j)=0; nw18(:,j)=0; nw19(:,j)=0; nw20(:,j)=0;
 nw21(:,j)=0; nw22(:,j)=0; nw23(:,j)=0; nw24(:,j)=0;...
 nw25(:,j)=0; nw26(:,j)=0; nw27(:,j)=0;
else
 \texttt{nw1}(:,j) = \texttt{w1}(:,j) / (\texttt{w1}(:,j) + \texttt{w2}(:,j) + \texttt{w3}(:,j) + \texttt{w4}(:,j) + \texttt{w5}(:,j) + \texttt{w6}(:,j) + \texttt{w7}(:,j) + \texttt
  8(:,j)+w9(:,j)+...
 w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
  (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw2(:,j) + w2(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7(
  8(:,j)+w9(:,j)+...
  w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
   (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw3(:,j) = w3(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
  8(:,j)+w9(:,j)+...
  w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
   (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw4(:,j)=w4(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
  8(:,j)+w9(:,j)+...
   w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
    (:,j)+w19(:,j)+...
  w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw5(:,j) = w5(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
  8(:,j)+w9(:,j)+...
   w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
   (:,j)+w19(:,j)+...
  w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw6(:,j) = w6(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
 w8(:,j)+w9(:,j)+...
 w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
   (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw7(:,j)=w7(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
  8(:,j)+w9(:,j)+...
   w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
   (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
  nw8(:,j) = w8(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
  8(:,j)+w9(:,j)+...
   w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
   (:,j)+w19(:,j)+...
 w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 nw9(:,j) = w9(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
  8(:,j)+w9(:,j)+...
 w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
   (:,j)+w19(:,j)+...
  w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
```

```
nw10(:,j) = w10(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw11(:,j) = w11(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw12(:,j) = w12(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
\texttt{nw}13(:,j) = \texttt{w}13(:,j) / (\texttt{w}1(:,j) + \texttt{w}2(:,j) + \texttt{w}3(:,j) + \texttt{w}4(:,j) + \texttt{w}5(:,j) + \texttt{w}6(:,j) + \texttt{w}7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw14(:,j)=w14(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw15(:,j) = w15(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw16(:,j) = w16(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) +
) +w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw17(:,j) = w17(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw18(:,j) = w18(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw19(:,j) = w19(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
```

```
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw20(:,j) = w20(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 \\
(:,j)+w19(:,j)+...
 w20(:,j) + w21(:,j) + w22(:,j) + w23(:,j) + w24(:,j) + w25(:,j) + w26(:,j) + w27(:,j)); 
nw21(:,j) = w21(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw22(:,j) = w22(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw24(:,j) = w24(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw26(:,j) = w26(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw27(:,j) = w27(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
end
end
X train=[nw1.*gdp';nw2.*gdp';nw3.*gdp';nw4.*gdp';nw5.*gdp';nw6.*gdp';nw7.*g
dp';nw8.*gdp';nw9.*gdp';...
nw10.*gdp';nw11.*gdp';nw12.*gdp';nw13.*gdp';nw14.*gdp';
nw15.*gdp';nw16.*gdp';nw17.*gdp';nw18.*gdp';...
```

```
nw19.*qdp';nw20.*qdp';nw21.*qdp';nw22.*qdp';nw23.*qdp';
nw24.*gdp';nw25.*gdp';nw26.*gdp';nw27.*gdp';...
nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';nw6.*une';nw7.*une';nw8.*
une';nw9.*une';...
nw10.*une';nw11.*une';nw12.*une';nw13.*une';nw14.*une';
nw15.*une';nw16.*une';nw17.*une';nw18.*une';...
nw19.*une';nw20.*une';nw21.*une';nw22.*une';nw23.*une';
nw24.*une';nw25.*une';nw26.*une';nw27.*une';...
nw1.*indpro';nw2.*indpro';nw3.*indpro';nw4.*indpro';nw5.*indpro';nw6.*indpr
o';nw7.*indpro';...
nw8.*indpro';nw9.*indpro';nw10.*indpro';nw11.*indpro';nw12.*indpro';nw13.*i
ndpro';nw14.*indpro';...
nw15.*indpro';nw16.*indpro';nw17.*indpro';nw18.*indpro';nw19.*indpro';nw20.
*indpro';nw21.*indpro';...
nw22.*indpro';nw23.*indpro';
nw24.*indpro';nw25.*indpro';nw26.*indpro';nw27.*indpro';...
nw1; nw2; nw3; nw4; nw5; nw6; nw7; nw8; nw9; nw10; nw11; nw12; nw13; nw14; nw15; nw16; nw17
;nw18;nw19;nw20;nw21;...
nw22; nw23; nw24; nw25; nw26; nw27]
x=x.field
params train=pinv(X train')*y % [p1 p2 q1 q2 s1 s2 r1 r2....pn qn sn rn]
y1=X train'*params train;
e=y1-y;
error=sum(sum(e.^2))
e.field=e
epochs=epochs+1
array y ( epochs ) = error;
index epochs (epochs) = epochs;
end
antecedent par=[nw1',nw2',nw3',nw4',nw5',nw6',nw7',nw8',nw9',nw10',nw11',nw
nw13',nw14',nw15',nw16',nw17',nw18',nw19',nw20',nw21',nw22',nw23',nw24',nw2
5',...
nw26',nw27']
consequent par=y1
output 2=sum(antecedent par'*consequent par)/sum(sum(antecedent par))
out=output 2
for kkk=1:nk
    if y1(kkk,:)>out
        S in sample(kkk,:)=1
    elseif y1(kkk,:)<out</pre>
        S in sample(kkk,:)=0
    end
end
% Compuation for clasiffication table preparation
Actual positive in sample=find(y==1)
Actual negative in sample=find(y==0)
Predicted positive in sample=find(S in sample==1)
Predicted negative in sample=find(S in sample==0)
```

```
Sum actual positive in sample=length(Actual positive in sample)
Sum actual negative in sample=length(Actual negative in sample)
Sum_predicted_positive_in_sample=length(Predicted_positive_in_sample)
Sum_predicted_negative_in_sample=length(Predicted_negative_in_sample)
Total predicted in sample=find(y==S in sample)
Perc=(length(Total predicted in sample)/nk)*100
W in sample=y(Total predicted in sample)
Positive in sample=find(W in sample==1)
Negative in sample=find(W in sample==0)
Final predicted Positive in sample=length(Positive in sample)/Sum actual po
sitive in sample
Final predicted Negative in sample=length(Negative in sample)/Sum actual ne
gative in sample
Final predicted Positive in sample=Final predicted Positive in sample*100
Final predicted Negative in sample=Final predicted Negative in sample*100
Total performance in sample=((length(Positive in sample) +
length(Negative in sample))/nk)*100
clear nw1
clear nw2
clear nw3
clear nw4
clear nw5
clear nw6
clear nw7
clear nw8
clear nw9
clear nw10
clear nw11
clear nw12
clear nw13
clear nw14
clear nw15
clear nw16
clear nw17
clear nw18
clear nw19
clear nw20
clear nw21
clear nw22
clear nw23
clear nw24
clear nw25
clear nw26
clear nw27
```

```
load file.mat
y tes=data(end-15:end,end)
x_tes=data(end-15:end,1:3)
gdp=x_tes(:,1)
une=x_tes(:,2)
indpro=x_tes(:,3)
t1=length(y tes)
if memb==1
mf gdp low=trimf(gdp, [-bases gdp(1,1)/2+center gdp(1,1) center gdp(1,1)...
    bases gdp(1,1)/2+center gdp(1,1) ]); % LOW
mf gdp medium=trimf(gdp,[-bases gdp(2,1)/2+center gdp(2,1)
center gdp(2,1)...
    bases gdp(2,1)/2+center gdp(2,1)]); % LOW
mf gdp high=trimf(gdp,[-bases gdp(3,1)/2+center gdp(3,1) center gdp(3,1)...
    bases gdp(3,1)/2+center gdp(3,1)); % LOW
mf une low=trimf(une, [-bases une(1,1)/2+center une(1,1) center une(1,1)...
    bases une(1,1)/2+center une(1,1)]); % LOW
mf une medium=trimf(une, [-bases une(2,1)/2+center une(2,1)
center une (2,1)...
    bases une(2,1)/2+center une(2,1)]); % MEDIUM
mf une high=trimf(une, [-bases une(3,1)/2+center une(3,1) center une(3,1)...
    bases une (3,1)/2+center une (3,1)]); % HIGH
mf indpro low=trimf(indpro,[-bases indpro(1,1)/2+center indpro(1,1)
center indpro(1,1)...
  bases_indpro(1,1)/2+center_indpro(1,1) ]); % LOW
mf indpro medium=trimf(indpro,[-bases indpro(2,1)/2+center indpro(2,1)
center_indpro(2,1)...
  bases_indpro(2,1)/2+center indpro(2,1) ]); % MEDIUM
mf indpro high=trimf(indpro,[-bases indpro(3,1)/2+center indpro(3,1)
center indpro(3,1)...
  bases indpro(3,1)/2+center indpro(3,1)]); % HIGH
elseif memb==2
mf_gdp_low=gaussmf(gdp,[bases_gdp(1,1) center_gdp(1,1) ]);
                                                                % LOW
mf_gdp_medium=gaussmf(gdp,[bases gdp(2,1) center gdp(2,1) ]); % MEDIUM
mf_gdp_high=gaussmf(gdp,[bases_gdp(3,1) center_gdp(3,1)]);
                                                                 % HIGH
mf une low=gaussmf(une,[bases une(1,1) center une(1,1) ]);
                                                                % LOW
mf une medium=gaussmf(une,[bases une(2,1) center une(2,1) ]);
                                                               % MEDIUM
mf une high=gaussmf(une,[bases une(3,1) center une(3,1) ]);
                                                               % HTGH
mf indpro low=gaussmf(indpro,[bases indpro(1,1) center indpro(1,1)
% LOW
mf indpro medium=gaussmf(indpro,[bases indpro(2,1) center indpro(2,1) ]);
mf indpro high=gaussmf(indpro,[bases indpro(3,1) center indpro(3,1) ]);
% HIGH
elseif memb==3
```

```
mf gdp low=gbell mf (gdp,[bases gdp(1,1) be(1,1) center gdp(1,1) ]);
mf gdp low=gbell mf (gdp,[bases gdp(1,1) beta gdp(1,1) center gdp(1,1) ]);
mf gdp medium=gbell mf(gdp,[bases gdp(2,1) beta gdp(2,1) center gdp(2,1)
]); % MEDIUM
mf gdp high=gbell mf(gdp,[bases gdp(3,1) beta gdp(3,1) center gdp(3,1)]);
% HIGH
mf une low=gbell mf(une, [bases une(1,1) beta une(1,1) center une(1,1) ]);
mf une medium=gbell mf (une, [bases une (2,1) beta une (2,1) center une (2,1)
    % MEDIUM
mf une high=gbell mf(une, [bases une(3,1) beta une(3,1) center une(3,1) ]);
% HIGH
mf indpro low=gbell mf(indpro,[bases indpro(1,1) beta indpro(1,1)
center indpro(1,1) ]);
                         % LOW
mf indpro medium=gbell mf(indpro,[bases indpro(2,1) beta indpro(2,1)
center indpro(2,1) ]); % MEDIUM
mf indpro high=gbell mf(indpro,[bases indpro(3,1) beta indpro(3,1)
center indpro(3,1) ]);
end
% Take the fuzzy rules
if em == 1
                     % Min operator for AND rule
w1=min([mf_gdp_low mf_une_low mf_indpro_low]')
                                                       % LOW-LOW-LOW
w2=min([mf_gdp_low mf_une_low mf_indpro_medium]')
                                                       % LOW-LOW-MEDIUM
w3=min([mf_gdp_low mf_une_low mf_indpro_high]')
                                                       % LOW-LOW-HIGH
w4=min([mf_gdp_low mf_une_medium mf_indpro_low]')
                                                       % LOW-MEDIUM-LOW
w5=min([mf_gdp_low mf_une_medium mf_indpro_medium]')
                                                       % LOW-MEDIUM-MEDIUM
w6=min([mf_gdp_low mf_une_medium mf_indpro_high]')
                                                       % LOW-MEDIUM-HIGH
w7=min([mf_gdp_low mf_une_high mf_indpro_low]')
                                                       % LOW-HIGH-LOW
w8=min([mf_gdp_low mf_une_high mf_indpro_medium]')
                                                       % LOW-HIGH-MEDIUM
w9=min([mf_gdp_low mf_une_high mf_indpro_high]')
                                                       % LOW-HIGH-HIGH
w10=min([mf_gdp_medium mf_une_low mf_indpro_low]')
                                                       % MEDIUM-LOW-LOW
w11=min([mf_gdp_medium mf_une_low mf_indpro_medium]')
                                                       % MEDIUM-LOW-MEDIUM
w12=min([mf_gdp_medium mf_une_low mf_indpro_high]')
                                                       % MEDIUM-LOW-HIGH
w13=min([mf_gdp_medium mf_une_medium mf_indpro_low]')
                                                      % MEDIUM-MEDIUM-LOW
w14=min([mf gdp medium mf une medium mf indpro medium]') % MEDIUM-MEDIUM-
MEDIUM
w15=min([mf gdp medium mf une medium mf indpro high]') % MEDIUM-MEDIUM-
w16=min([mf gdp medium mf une high mf indpro low]')
                                                       % MEDIUM-HIGH-LOW
w17=min([mf gdp medium mf une high mf indpro medium]') % MEDIUM-HIGH-
MEDIUM
w18=min([mf gdp medium mf une high mf indpro high]')
                                                       % MEDIUM-HIGH-HIGH
w19=min([mf gdp high mf une low mf indpro low]')
                                                       % HIGH-LOW-LOW
w20=min([mf_gdp_high mf une low mf indpro medium]')
                                                       % HIGH-LOW-MEDIUM
w21=min([mf gdp high mf une low mf indpro high]')
                                                       % HIGH-LOW-HIGH
w22=min([mf gdp high mf une medium mf indpro low]')
                                                      % HIGH-MEDIUM-LOW
w23=min([mf gdp high mf une medium mf indpro medium]') % HIGH-MEDIUM-
w24=min([mf gdp high mf une medium mf indpro high]')
                                                       % HIGH-MEDIUM-HIGH
w25=min([mf gdp high mf une high mf indpro low]')
                                                       % HIGH-HIGH-LOW
w26=min([mf gdp high mf une high mf indpro medium]')
                                                      % HIGH-HIGH-MEDIUM
w27=min([mf gdp high mf une high mf indpro high]')
                                                       % HIGH-HIGH-HIGH
```

```
elseif em==2 % product operator for AND rule
w1=(mf gdp low.*mf une low.*mf indpro low)'
                                                               % LOW-LOW-LOW
w2=(mf gdp low.*mf une low.*mf indpro medium)'
                                                               % LOW-LOW-MEDIUM
w3=(mf gdp low.*mf une low.*mf indpro high)'
                                                               % LOW-LOW-HIGH
w4=(mf_gdp_low.*mf_une_medium.*mf_indpro_low)'
                                                               % LOW-MEDIUM-LOW
w5=(mf_gdp_low.*mf_une_medium.*mf_indpro_medium)'
w6=(mf_gdp_low.*mf_une_medium.*mf_indpro_high)'
                                                              % LOW-MEDIUM-MEDIUM
                                                               % LOW-MEDIUM-HIGH
w7=(mf gdp low.*mf une high.*mf indpro low)'
                                                               % LOW-HIGH-LOW
                                                            % LOW-HIGH-MEDIUM
w8=(mf gdp low.*mf une high.*mf indpro medium)'
w9=(mf_gdp_low.*mf_une_high.*mf_indpro high)'
                                                               % LOW-HIGH-HIGH
w10=(mf_gdp_medium.*mf_une_low.*mf_indpro_low)'
w10=(mf_gdp_medium.*mf_une_low.*mf_indpro_low)' % MEDIUM-LOW-LOW
w11=(mf_gdp_medium.*mf_une_low.*mf_indpro_medium)' % MEDIUM-LOW-MEDIUM
w12=(mf_gdp_medium.*mf_une_low.*mf_indpro_high)' % MEDIUM-LOW-HIGH
w13=(mf_gdp_medium.*mf_une_medium.*mf_indpro_low)' % MEDIUM-MEDIUM-LOW
w14=(mf_gdp_medium.*mf_une_medium.*mf_indpro_medium)' % MEDIUM-MEDIUM-
w15=(mf gdp medium.*mf une medium.*mf indpro high)'
                                                              % MEDIUM-MEDIUM-
                                                               % MEDIUM-HIGH-LOW
w16=(mf gdp medium.*mf une high.*mf indpro low)'
w17=(mf_gdp_medium.*mf_une_high.*mf_indpro_medium)'
                                                              % MEDIUM-HIGH-
w18=(mf gdp medium.*mf une high.*mf indpro high)'
                                                              % MEDIUM-HIGH-HIGH
w19=(mf gdp high.*mf une low.*mf indpro low)'
                                                              % HIGH-LOW-LOW
w20=(mf gdp high.*mf une low.*mf indpro medium)'
                                                              % HIGH-LOW-MEDIUM
w21=(mf_gdp_high.*mf_une_low.*mf_indpro_high)'
                                                              % HIGH-LOW-HIGH
w22=(mf_gdp_high.*mf_une_medium.*mf_indpro_low)'
                                                              % HIGH-MEDIUM-LOW
w23=(mf_gdp_high.*mf_une_medium.*mf_indpro_medium)'
                                                              % HIGH-MEDIUM-
w24=(mf_gdp_high.*mf_une_medium.*mf_indpro_high)' % HIGH-MEDIUM-HIGH
w25=(mf gdp high.*mf une high.*mf indpro low)'
                                                              % HIGH-HIGH-LOW
w26=(mf_gdp_high.*mf_une_high.*mf_indpro_medium)'
w27=(mf_gdp_high.*mf_une_high.*mf_indpro_high)'
                                                              % HIGH-HIGH-MEDIUM
                                                              % HIGH-HIGH-HIGH
elseif em==3 % product operator for OR rule
w1=max([mf_gdp_low mf_une_low mf_indpro_low]')
                                                                    % LOW-LOW-LOW
                                                                    % LOW-LOW-
w2=max([mf gdp low mf une low mf indpro medium]')
MEDIUM
w3=max([mf_gdp_low mf_une_low mf_indpro_high]')
w4=max([mf_gdp_low mf_une_medium mf_indpro_low]')
                                                                    % LOW-LOW-HIGH
                                                                    % LOW-MEDIUM-
LOW
w5=max([mf_gdp_low mf_une_medium mf_indpro medium]')
                                                                    % LOW-MEDIUM-
MEDIUM
w6=max([mf gdp low mf une medium mf indpro high]')
                                                                    % LOW-MEDIUM-
w7=max([mf gdp low mf une high mf indpro low]')
                                                                    % LOW-HIGH-LOW
w8=max([mf gdp low mf une high mf indpro medium]')
                                                                    % LOW-HIGH-
w9=max([mf_gdp_low mf_une_high mf_indpro_high]')
w10=max([mf_gdp_medium mf_une_low mf_indpro_low]')
                                                                    % LOW-HIGH-HIGH
                                                                    % MEDIUM-LOW-
w11=max([mf gdp medium mf une low mf indpro medium]') % MEDIUM-LOW-
MEDIUM
```

```
w12=max([mf gdp medium mf une low mf indpro high]')
                                                                                                                                                                                                                                                                                          % MEDIUM-LOW-
w13=max([mf gdp medium mf une medium mf indpro low]')
                                                                                                                                                                                                                                                                                          % MEDIUM-
MEDIUM-LOW
w14=max([mf gdp medium mf une medium mf indpro medium]')
                                                                                                                                                                                                                                                                                          % MEDIUM-
MEDIUM-MEDIUM
w15=max([mf gdp medium mf une medium mf indpro high]')
                                                                                                                                                                                                                                                                                           % MEDIUM-
MEDIUM-HIGH
w16=max([mf gdp medium mf une high mf indpro low]')
                                                                                                                                                                                                                                                                                           % MEDIUM-HIGH-
w17=max([mf gdp medium mf une high mf indpro medium]')
                                                                                                                                                                                                                                                                                          % MEDIUM-HIGH-
w18=max([mf gdp medium mf une high mf indpro high]')
                                                                                                                                                                                                                                                                                           % MEDIUM-HIGH-
w19=max([mf gdp high mf une low mf indpro low]')
                                                                                                                                                                                                                                                                                            % HIGH-LOW-LOW
w20=max([mf gdp high mf une low mf indpro medium]')
                                                                                                                                                                                                                                                                                            % HIGH-LOW-
MEDIUM
w21=max([mf qdp high mf une low mf indpro high]')
                                                                                                                                                                                                                                                                                            % HIGH-LOW-HIGH
w22=max([mf gdp high mf une medium mf indpro low]')
                                                                                                                                                                                                                                                                                            % HIGH-MEDIUM-
w23=max([mf qdp high mf une medium mf indpro medium]')
                                                                                                                                                                                                                                                                                            % HIGH-MEDIUM-
MEDIUM
w24=max([mf qdp high mf une medium mf indpro high]')
                                                                                                                                                                                                                                                                                            % HIGH-MEDIUM-
w25=max([mf_gdp_high mf_une_high mf_indpro_low]')
                                                                                                                                                                                                                                                                                            % HIGH-HIGH-LOW
w26=max([mf gdp high mf une high mf indpro medium]')
                                                                                                                                                                                                                                                                                           % HIGH-HIGH-
MEDIUM
w27=max([mf gdp high mf une high mf indpro high]')
                                                                                                                                                                                                                                                                                          % HIGH-HIGH-
HTGH
end
for j=1:t1
if (w1(:,j)==0 \& w2(:,j)==0 \& w3(:,j)==0 \& w4(:,j)==0 \& w5(:,j)==0 \&
w6(:,j) == 0 \& w7(:,j) == 0 \& ...
w8(:,j) == 0 \& w9(:,j) == 0 \& w10(:,j) == 0 \& w11(:,j) == 0 \& w12(:,j) == 0 
w13(:,j) == 0 \& w14(:,j) == 0 \& ...
w16(:,j) == 0 \& w17(:,j) == 0 \& w18(:,j) == 0 \& w19(:,j) == 0 \& w20(:,j) == 
w21(:,j) == 0 \& w22(:,j) == 0 \& ...
w23(:,j)==0 & w24(:,j)==0 & w25(:,j)==0 & w26(:,j)==0 & w27(:,j)==0
nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0;nw6(:,j)=0;nw7(:,j)=0;nw8(:,j)=0;...
nw9(:,j)=0;nw10(:,j)=0;nw11(:,j)=0;nw12(:,j)=0;nw13(:,j)=0;
nw14(:,j)=0; nw15(:,j)=0; nw16(:,j)=0;...
nw17(:,j)=0; nw18(:,j)=0; nw19(:,j)=0; nw20(:,j)=0;
nw21(:,j)=0; nw22(:,j)=0; nw23(:,j)=0; nw24(:,j)=0;...
nw25(:,j)=0; nw26(:,j)=0; nw27(:,j)=0;
else
nw1(:,j)=w1(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 \\ \text{nw2} \, (:,j) = \\ \text{w2} \, (:,j) \, / \, \\ \text{(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,
8(:,j)+w9(:,j)+...
```

```
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
\texttt{nw3}(:,j) = \texttt{w3}(:,j) / (\texttt{w1}(:,j) + \texttt{w2}(:,j) + \texttt{w3}(:,j) + \texttt{w4}(:,j) + \texttt{w5}(:,j) + \texttt{w6}(:,j) + \texttt{w7}(:,j) + \texttt
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw4(:,j) = w4(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
\texttt{nw5}(:,j) = \texttt{w5}(:,j) / (\texttt{w1}(:,j) + \texttt{w2}(:,j) + \texttt{w3}(:,j) + \texttt{w4}(:,j) + \texttt{w5}(:,j) + \texttt{w6}(:,j) + \texttt{w7}(:,j) + \texttt
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw6(:,j)=w6(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)+w7(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6(:,j)+w6
w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw7(:,j) = w7(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
\texttt{nw8}(:,j) = \texttt{w8}(:,j) / (\texttt{w1}(:,j) + \texttt{w2}(:,j) + \texttt{w3}(:,j) + \texttt{w4}(:,j) + \texttt{w5}(:,j) + \texttt{w6}(:,j) + \texttt{w7}(:,j) + \texttt
8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw9(:,j) = w9(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw10(:,j) = w10(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
  (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw11(:,j)=w11(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
 (:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
```

```
nw12(:,j) = w12(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw13(:,j) = w13(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw14(:,j) = w14(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw15(:,j) = w15(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
 w20(:,j) + w21(:,j) + w22(:,j) + w23(:,j) + w24(:,j) + w25(:,j) + w26(:,j) + w27(:,j)); 
nw16(:,j) = w16(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j)
) +w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw17(:,j) = w17(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18(:,j) + w18(:,j)
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw18(:,j)=w18(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:, j) + w19(:, j) + ...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw19(:,j)=w19(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
 \text{nw20}(:,j) = \text{w20}(:,j) / (\text{w1}(:,j) + \text{w2}(:,j) + \text{w3}(:,j) + \text{w4}(:,j) + \text{w5}(:,j) + \text{w6}(:,j) + \text{w6}(:,j) + \text{w7}(:,j) 
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw21(:,j) = w21(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
```

```
nw22(:,j) = w22(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw23(:,j) = w23(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw24(:,j)=w24(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w6(:,j)
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
+w8(:,j)+w9(:,j)+...
w10(:,j)+w11(:,j)+w12(:,j)+w13(:,j)+w14(:,j)+w15(:,j)+w16(:,j)+w17(:,j)+w18
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw26(:,j) = w26(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
nw27(:,j) = w27(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w6(:,j) + w7(:,j)
+w8(:,j)+w9(:,j)+...
 w10(:,j) + w11(:,j) + w12(:,j) + w13(:,j) + w14(:,j) + w15(:,j) + w16(:,j) + w17(:,j) + w18 
(:,j)+w19(:,j)+...
w20(:,j)+w21(:,j)+w22(:,j)+w23(:,j)+w24(:,j)+w25(:,j)+w26(:,j)+w27(:,j));
end
end
X test=[nw1.*qdp';nw2.*qdp';nw3.*qdp';nw4.*qdp';nw5.*qdp';nw6.*qdp';nw7.*qd
p';nw8.*qdp';nw9.*qdp';...
nw10.*qdp';nw11.*qdp';nw12.*qdp';nw13.*qdp';nw14.*qdp';
nw15.*gdp';nw16.*gdp';nw17.*gdp';nw18.*gdp';...
nw19.*gdp';nw20.*gdp';nw21.*gdp';nw22.*gdp';nw23.*gdp';
nw24.*gdp';nw25.*gdp';nw26.*gdp';nw27.*gdp';...
nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';nw6.*une';nw7.*une';nw8.*
une';nw9.*une';...
nw10.*une';nw11.*une';nw12.*une';nw13.*une';nw14.*une';
nw15.*une';nw16.*une';nw17.*une';nw18.*une';...
nw19.*une';nw20.*une';nw21.*une';nw22.*une';nw23.*une';
nw24.*une';nw25.*une';nw26.*une';nw27.*une';...
nw1.*indpro';nw2.*indpro';nw3.*indpro';nw4.*indpro';nw5.*indpro';nw6.*indpr
o';nw7.*indpro';...
nw8.*indpro';nw9.*indpro';nw10.*indpro';nw11.*indpro';nw12.*indpro';nw13.*i
ndpro';nw14.*indpro';...
```

```
nw15.*indpro';nw16.*indpro';nw17.*indpro';nw18.*indpro';nw19.*indpro';nw20.
*indpro';nw21.*indpro';...
nw22.*indpro';nw23.*indpro';
nw24.*indpro';nw25.*indpro';nw26.*indpro';nw27.*indpro';...
nw1; nw2; nw3; nw4; nw5; nw6; nw7; nw8; nw9; nw10; nw11; nw12; nw13; nw14; nw15; nw16; nw17
;nw18;nw19;nw20;nw21;...
nw22;nw23;nw24;nw25;nw26;nw27]
yf1=X test'*params train;
for kkk=1:t1
   if yf1(kkk,:)>out
       S out sample(kkk,:)=1
    elseif yf1(kkk,:)<out</pre>
        S out sample(kkk,:)=0
    end
end
Actual positive=find(y tes==1)
Actual negative=find(y tes==0)
Predicted positive=find(S out sample==1)
Predicted negative=find(S out sample==0)
Sum actual positive=length(Actual positive)
Sum actual negative=length(Actual negative)
Sum predicted positive=length(Predicted positive)
Sum predicted negative=length(Predicted negative)
Total predicted=find(y tes==S out sample)
WWW=y tes(Total predicted)
Positive=find(WWW==1)
Negative=find(WWW==0)
Final predicted Positive=length(Positive)/Sum actual positive
Final predicted Negative=length(Negative)/Sum actual negative
Final predicted Positive=Final predicted Positive*100
Final predicted Negative=Final predicted Negative*100
Total performance=((length(Positive) + length(Negative))/t1)*100
% Classification Table
re = '======;;
li= '----';
sp = ' ';
disp([re ' Classification Table ' re])
disp([li ' True ' li])
disp([ '
                                                           0
Total '])
disp([li ' -----' li])
disp(sprintf('
                                                       %f %f',
length(Positive in sample),...
   Sum_actual_positive_in_sample-length(Positive_in_sample) ))
disp(sprintf('
Sum actual negative in sample-...
    length(Negative in sample) , length(Negative in sample)))
```

```
disp([li ' -----' li])
disp(sprintf('Sum %f:
                                               %f %f',
Sum actual positive in sample, ...
   Sum_actual_negative_in_sample, nk))
disp([li ' -----' li])
disp(sprintf('Correct Predict Financial Stage 1 (Crisis)
                                                            %f',...
   Final predicted Positive in sample))
disp(sprintf('Correct Predict Financial Stage 2 (No Crisis) %f',...
   Final predicted Negative in sample))
disp(sprintf('Overall Prediction Performance
                                                            %f',...
   Total performance in sample))
disp(blanks(1)')
disp([re ' Classification Table ' re])
disp([li ' True ' li])
disp([ ' 1
Total '])
disn([]; '
                                                      0
disp([li ' -----' li])
length (Positive),...

Sum actual
                                                  %f %f',
   Sum actual positive-length(Positive)))
                                                 %f %f', ...
disp(sprintf('
              %f:
   Sum_actual_negative-length(Negative), length(Negative)))
disp([li ' -----' li])
disp(sprintf('Sum %f:
                                                 %f %f',
Sum actual_positive ,...
   Sum actual negative, t1))
disp([li ' -----' li])
disp(sprintf('Correct Predict Financial Stage 1 (Crisis) %f',
Final predicted Positive))
disp(sprintf('Correct Predict Financial Stage 2 (No Crisis) %f',
Final predicted Negative))
disp(sprintf('Overall Prediction Performance
                                                            %f',
Total performance))
figure, plot(y,'-r'); hold on; plot(y1,'-b');
xlabel('Periods')
ylabel('Values')
%title('In sample forecasts')
h1 = legend('Actual','forecasts',1);
figure, plot(y_tes,'-r'); hold on; plot(yf1,'-b');
xlabel('Periods')
ylabel('Values')
%title('Out of_sample forecasts')
h = legend('Actual', 'forecasts',1);
figure, plot (index_epochs , array_y );
xlabel('epochs')
ylabel('Error')
title('Number of Epochs')
```

MATLAB routine for ANFIS with two inputs

```
function []=neuro fuzzy (x,y)
%function []=neuro fuzzy (x,y) for script
clear all;
load file.mat
% data is consisted by 3 columns, the first two concern the input
% variables and the last column the output variable
y=data(1:end-16,end)
x = data(1:end-16, 1:2)
% y is the output dummy variable
% x is the matrix of inputs
         % Select the operator, 1 for min which is for AND operator, 2 for
em=1
product, which is for
         % AND operator and 3 for for max, which is for OR operator
        % option 1 is for specific center and bases values of your choice
opt=2
         % option 2 takes the center and bases values based on mean and
         % standard deviation respectively.
        % 1 for triangular membership function, 2 for Gaussian
% Set up the learning rates of your choice for center, bases and parameters
1r center gdp=0.5
lr center une=0.5
lr base gdp=0.5
1r base une=0.5
lr beta gdp=1
lr beta une=1
lr r=0.5
% Take the inputs
gdp=x(:,1)
une=x(:,2)
% Take the dimensions of input-output data
[t nj]=size(y)
[nk ni]=size(x)
%First option take specific values of your choice
if opt==1
% Center values for GDP
c_1=-0.01
c_2=0.01
c 3=0.03
%Bases values for GDP
if memb==1
sigma 1=0.04
sigma 2=0.05
sigma 3=0.05
```

```
elseif memb==2
sigma_1=0.025
sigma_2=0.025
sigma_3 = 0.025
elseif memb==3
sigma1 = (max(gdp) - min(gdp))/18
sigma_1=sigma1
sigma_2=sigma1
sigma_3=sigma1
end
% Center values for Unemployment rate
ce 1=5
ce_2=7
ce_3=9
%Bases values for Unemployment rate
if memb==1
sigmae 1=3
sigmae 2=3
sigmae 3=3
elseif memb==2
sigmae 1=2
sigmae 2=2
sigmae 3=2
elseif memb==3
sigma2 = (max(une) - min(une))/18
sigmae_1=sigma2
sigmae_2=sigma2
sigmae_3=sigma2
end
% Center values for Industrial production
cindpro_1=-0.02
cindpro_2=0.01
cindpro_3=0.04
b1 gdp=1.1
b2 gdp=1.1
b3 gdp=1.1
b1 une=1.1
b2_une=1.1
b3_une=1.1
% Take center and bases values based on mean and standard deviation
respectively
elseif opt==2
% Values for GDP
y high=find(gdp>=0.02)
y_{medium}=find(gdp>=0 \& gdp<=0.02)
y low=find(gdp<=0 )</pre>
```

```
% find the values correspond to linguistic terms
y_high=gdp(y_high)
y_medium=gdp(y_medium)
y_low=gdp(y_low)
% Find the mean and simga (standard deviation)
c 1=mean(y low)
c 2=mean(y medium)
c_3=mean(y_high)
if memb==1
sigma_1=std(y_low)*2
sigma_2=std(y_medium)*2
sigma_3=std(y_high)*2
elseif memb==\overline{2}
sigma_1=std(y_low)
sigma_2=std(y_medium)
sigma_3=std(y_high)
elseif memb==3
sigmal = (max(gdp) - min(gdp))/18
sigma 1=sigma1
sigma 2=sigma1
sigma 3=sigma1
end
% In the case you get zero sigma you can write the following. The same is
% followed for the sigma in the ithe inputs
if sigma 1==0 | sigma 2==0 | sigma 3==0
% sigma 1==0.025
%sigma 2 = = 0.025
%sigma 3==0.025
%end
% Values for Unemployment rate
e high=find(une>=6)
e medium=find(une>=4.5 & une<=6)</pre>
e low=find(une<=4.5)</pre>
% find the values correspond to linguistic terms
e high=une(e high)
e medium=une(e medium)
e low=une(e low)
% Find the mean and simga (standard deviation)
ce_1=mean(e_high)
ce_2=mean(e_medium)
ce_3=mean(e_low)
if memb==1
sigmae 1=std(e high)*2
sigmae 2=std(e medium)*2
sigmae 3=std(e low)*2
elseif memb==2
sigmae 1=std(e high)
```

```
sigmae 2=std(e medium)
sigmae 3=std(e low)
elseif memb==3
sigma2 = (max(une) - min(une))/18
sigmae 1=sigma2
sigmae 2=sigma2
sigmae_3=sigma2
end
b1 qdp=1.1
b2 gdp=1.1
b3 gdp=1.1
b1_une=1.1
b2_une=1.1
b3_une=1.1
end
if memb==1
% Take memebership degrees-grades
mf1=trimf(gdp,[-sigma_1/2+c_1 c_1 sigma_1/2+c_1 ]); % LOW mf2=trimf(gdp,[-sigma_2/2+c_2 c_2 sigma_2/2+c_2 ]); % MEDIUM mf3=trimf(gdp,[-sigma_3/2+c_3 c_3 sigma_3/2+c_3 ]); % HIGH
                                                           % LOW
                                                          % HIGH
mf4=trimf(une,[-sigmae 1/2+ce 1 ce 1 sigmae 1/2+ce 1]);
                                                            % LOW
elseif memb==2
mf1=gaussmf(gdp,[sigma_1 c_1 ]);
mf2=gaussmf(gdp,[sigma_2 c_2 ]);
mf3=gaussmf(gdp,[sigma_3 c_3 ]);
                                        % LOW
                                     % MEDIUM
                                    % HIGH
elseif memb==3
mf1=gbell mf(gdp,[sigma_1 b1_gdp c_1 ]);
                                                % LOW
mf2=gbell_mf(gdp,[sigma_2 b2_gdp c_2 ]);
                                             % MEDIUM
mf3=gbell mf(gdp,[sigma 3 b3 gdp c 3 ]);
                                                % HIGH
```

```
if em == 1
                                                                                                                                                % Min operator for AND rule
w1=min([mf1 mf4]') % LOW-LOW
w2=min([mf1 mf5]')
                                                                                                                                           % LOW-MEDIUM
w3=min([mf1 mf6]')
                                                                                                                                           % LOW-HIGH
w4=min([mf2 mf4]')
                                                                                                                                           % MEDIUM-LOW
w5=min([mf2 mf5]')
                                                                                                                                           % MEDIUM-MEDIUM
w6=min([mf2 mf6]')
                                                                                                                                           % MEDIUM-HIGH
w7=min([mf3 mf4]')
                                                                                                                                          % HIGH-LOW
w8=min([mf3 mf5]')
                                                                                                                                       % HIGH-MEDIUM
w9=min([mf3 mf6]') % HIGH-HIGH
elseif em==2
                                                                                                                          % product operator for AND rule
w1=(mf1.*mf4)' % LOW-LOW
                                                                                                         % LOW-MEDIUM
w2 = (mf1.*mf5)'
                                                                                                         % LOW-HIGH
w3 = (mf1.*mf6)'
                                                                                                         % MEDIUM-LOW
w4 = (mf2.*mf4)'
w5 = (mf2.*mf5)'
                                                                                                           % MEDIUM-MEDIUM
w6 = (mf2.*mf6)'
                                                                                                           % MEDIUM-HIGH
                                                                                                          % HIGH-LOW
w7 = (mf3.*mf4)'
                                                                                                         % HIGH-MEDIUM
w8 = (mf3.*mf5)'
w9=(mf3.*mf6)' % HIGH-HIGH
elseif em==3
                                                                                                                % max operator for OR rule
w1=max([mf1 mf4]') % LOW-LOW
w2=max([mf1 mf5]')
                                                                                                                                         % LOW-MEDIUM
w3=max([mf1 mf6]')
                                                                                                                                           % LOW-HIGH
w4=max([mf2 mf4]')
                                                                                                                                           % MEDIUM-LOW
w5=max([mf2 mf5]')
                                                                                                                                           % MEDIUM-MEDIUM
w6=max([mf2 mf6]')
                                                                                                                                       % MEDIUM-HIGH
                                                                                                                                     % HIGH-LOW
w7=max([mf3 mf4]')
w8=max([mf3 mf5]') % HIGH-MEDIUM
w9=max([mf3 mf6]') % HIGH-HIGH
end
for j=1:t
if (w1(:,j)==0 \& w2(:,j)==0 \& w3(:,j)==0 \& w4(:,j)==0 \& w5(:,j)==0 \&
w6(:,j) == 0 \& w7(:,j) == 0 \& w8(:,j) == 0 \& w9(:,j) == 0
nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0;nw6(:,j)=0;nw7(:,j)=0;nw8(:,j)=0;nw9(:,j)=0;
nw1(:,j)=w1(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
nw2(:,j)=w2(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
nw3(:,j)=w3(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
nw4(:,j) = w4(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw5(:,j) = w5(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
```

```
nw6(:,j) = w6(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw7(:,j) = w7(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw8(:,j)=w8(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w8(:,j)+w
w8(:,j)+w9(:,j));
nw9(:,j)=w9(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
end
end
X train=[nw1.*gdp';nw2.*gdp';nw3.*gdp';nw4.*gdp';nw5.*gdp';nw6.*gdp';nw7.*g
dp';nw8.*gdp';nw9.*gdp';...
nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';
nw6.*une';nw7.*une';nw8.*une';nw9.*une';...
nw1;nw2;nw3;nw4;nw5;nw6;nw7;nw8;nw9];
% Least square algorithm with SVD
params train=pinv(X train')*y
y1=X_train'*params_train;
e=y1-y;
error=sum(sum(e.^2))
bases 1=[sigma 1;sigma 2;sigma 3]
bases 2=[sigmae 1;sigmae 2;sigmae 3]
bases=[bases 1 bases 2 ]
centers 1=[c 1;c 2;c 3]
centers 2=[ce 1;ce 2;ce 3]
centers=[centers 1 centers 2 ]
beta 1=[b1 gdp;b2 gdp;b3 gdp]
beta 2=[b1 une;b2 une;b3 une]
be=[beta 1 beta 2 ]
W=[mf1';mf2';mf3';mf4';mf5';mf6']
W=W'
 [nkk nii]=size(X train)
 [nk,ni]=size(x);
  [n rules, ni1] = size (centers);
center gdp=centers(1:3,1)
center une=centers(4:6,1)
bases_gdp=bases(1:3,1)
bases une=bases(4:6,1)
maxepochs=20
SSE goal=5;
epochs=0
```

```
e.field=e
W.field=W
% Start the error backpropagation algorithm
while (epochs<maxepochs) & (error>SSE goal)
  for i=1:n rules/2
if memb==3
eta base1{i,:}=lr_base_gdp
eta_base2{i,:}=lr_base_une
eta center1{i,:}=lr center gdp
eta center2{i,:}=lr center une
eta beta1{i,:}=lr beta gdp
eta beta2{i,:}=lr beta une
    else
eta_base1{i,:}=lr_base_gdp
eta_base2{i,:}=lr_base_une
eta center1{i,:}=lr center gdp
eta center2{i,:}=lr center une
end
eta_r{:,:}=lr_r
end
if memb==3
eta_base=[eta_base1;eta_base2 ]
eta center=[eta center1;eta center2 ]
eta beta=[eta beta1;eta beta2 ]
eta_base=[eta_base1;eta_base2 ]
eta center=[eta center1;eta center2 ]
end
if memb==1
    for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find((x(:,j)-centers(i,:))<=(bases(i,:)/2));
    end
end
x.field=x
```

```
y1.field=y1
params train.field=params train
X train.field=X train
for kk=1:n rules
delta_center{:,kk}=(y1.field(ind_rule{1,kk}))*e.field(ind_rule{1,kk}))'*...
    (((2*sign(x.field(ind_rule{:,kk}))-centers(kk,:)))/bases(kk,:)))
delta base{:,kk}=(y1.field(ind rule{1,kk}) *e.field(ind rule{1,kk}) '*...
    (((1-W.field(ind rule{:, kk}))))/centers(kk,:))';
delta r{:,:}=(e.field(ind rule{1,kk}))'*(W.field(ind rule{:,kk}));
del center{:,kk}=-((eta center{kk,:}/(2*nk))*sum(delta center{:,kk}));
del base\{:,kk\}=-((eta base\{kk,:\}/(2*nk))*sum(delta base\{:,kk\}));
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del center num(kk,:)=(del center{:,kk})'
del base num(kk,:)=(del base{:,kk})'
del r num(:,:)=(del r{:,:})'
        end
elseif memb==2
for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find((x(:,j)-centers(i,:)) \le (bases(i,:)^2/2));
    end
end
x.field=x
v1.field=v1
for kk=1:n rules
delta center{:,kk}=(y1.field(ind rule{1,kk})*e.field(ind rule{1,kk})')'*...
    ((((x.field(ind rule{1,kk})-centers(kk,:)))/bases(kk,:)^2))
delta base{:,kk}=(y1.field(ind rule{1,kk})*e.field(ind rule{1,kk})')'*...
    ((((x.field(ind rule{1,kk})-centers(kk,:))).^2/bases(kk,:)^3))
```

```
delta r{:,:}=(e.field(ind rule{1,kk}))'*(W.field(ind rule{:,kk}));
del center\{:,kk\}=(-((\text{eta center}\{kk,:\})/(2*nk))*sum((\text{delta center}\{:,kk\}));
del base\{:,kk\}=(-((2*eta base\{kk,:\})/(2*nk))*sum(delta base\{:,kk\}));
del center num(kk,:) = (del center{:,kk})'
del base num(kk,:)=(del base{:,kk})'
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del r num(:,:) = (del r{:,:})'
  end
elseif memb==3
for i=1:n rules
    for j=1:ni
    ind rule\{:,i\}=find(\exp(-(x(:,j)-centers(i,:)))<=(\exp(bases(i,:))));
    end
end
x.field=x
y1.field=y1
for kk=1:n rules
delta center{:,kk}=(y1.field(ind rule{1,kk})*e.field(ind rule{1,kk})')'*...
    ((2*((x.field(ind rule{1,kk})-centers(kk,:))/...
    bases(kk,:))'*be(kk,:)))'
delta base{:,kk}=(y1.field(ind rule{1,kk}) *e.field(ind rule{1,kk})')'*...
    (2*((x.field(ind rule{1,kk})-centers(kk,:))/...
    bases(kk,:)) '*be(kk,:)) '
delta be{:,kk}=(y1.field(ind rule{1,kk}))'*e.field(ind rule{1,kk}))*...
    (-2*((x.field(ind rule{1,kk})-centers(kk,:))/...
    bases(kk,:))'.^2*be(kk,:))
delta r{:,:}=(e.field(ind rule{1,kk}))'*(W.field(ind rule{:,kk}));
del center{:,kk}=(-((eta center{kk,:})/(2*nk))*sum(delta center{:,kk}));
del_base\{:,kk\}=(-((eta_base\{kk,:\})/(2*nk))*sum(delta_base\{:,kk\}));
```

```
del be\{:,kk\}=(-((eta beta\{kk,:\})/(2*nk))*sum(delta be<math>\{:,kk\}));
del r\{:,:\}=-((eta \ r\{:,:\}/(2*nk))*sum(delta \ r\{:,:\}))
del center num=(del center{:,kk})'
del base num=(del base{:,kk})'
del be num=(del be{:,kk})'
del r num(:,:)=(del r{:,:})'
    end
  end
if memb==3
centers=centers+del center num
bases=bases+del base num
be=be+del be num
y1.field=y1.field+del r num
else
    centers=centers+del center num
bases=bases+del base num
y1.field=y1.field+del r num
end
if memb==3
center_gdp=centers(1:3,1)
center une=centers(4:6,1)
bases_gdp=bases(1:3,1)
bases une=bases(4:6,1)
beta gdp=bases(1:3,1)
beta une=bases(4:6,1)
centers=[center gdp;center une ]
bases=[bases gdp;bases une ]
be=[beta gdp;beta une]
else
center_gdp=centers(1:3,1)
center une=centers (4:6,1)
bases gdp=bases(1:3,1)
bases_une=bases(4:6,1)
centers=[center_gdp;center_une ]
bases=[bases gdp;bases une ]
end
if memb==1
mf1=trimf(gdp,[-bases gdp(1,1)/2+center gdp(1,1) center gdp(1,1)...
    bases gdp(1,1)/2+center gdp(1,1) ]); % LOW
mf2=trimf(gdp, [-bases_gdp(2,1)/2+center_gdp(2,1) center_gdp(2,1)...
    bases gdp(2,1)/2+center gdp(2,1)]); % LOW
mf3=trimf(gdp, [-bases_gdp(3,1)/2+center_gdp(3,1) center_gdp(3,1)...
    bases gdp(3,1)/2+center gdp(3,1)); % LOW
```

```
mf4=trimf(une, [-bases une(1,1)/2+center une(1,1) center une(1,1)...
    bases une(1,1)/2+center une(1,1)]); % LOW
mf5=trimf(une, [-bases une(2,1)/2+center une(2,1) center une(2,1)...
   bases une(2,1)/2+center une(2,1)]); % MEDIUM
mf6=trimf(une,[-bases_une(3,1)/2+center_une(3,1) center_une(3,1)...
   bases une(3,1)/2+center une(3,1)]); % HIGH
elseif memb==2
mf1=gaussmf(gdp, [bases gdp(1,1) center gdp(1,1)]);
                                                        % LOW
mf2=gaussmf(gdp,[bases gdp(2,1) center gdp(2,1) ]); % MEDIUM
                                                      % HIGH
mf3=gaussmf(gdp,[bases gdp(3,1) center gdp(3,1)]);
mf4=gaussmf(une, [bases une(1,1) center une(1,1)
                                                ]);
                                                         % LOW
mf5=gaussmf(une,[bases une(2,1) center une(2,1) ]);
                                                     % MEDIUM
mf6=gaussmf(une,[bases une(3,1) center une(3,1) ]);
                                                       % HIGH
elseif memb==3
mf1=gbell_mf(gdp,[bases_gdp(1,1) beta_gdp(1,1) center gdp(1,1)]);
LOW
mf2=gbell mf(gdp, [bases gdp(2,1) beta gdp(2,1) center gdp(2,1)
                                                               1);
mf3=gbell mf(gdp, [bases gdp(3,1) beta gdp(3,1) center gdp(3,1)]);
                                                                       응
HIGH
mf4=gbell mf(une, [bases une(1,1) beta une(1,1) center une(1,1)
                                                                        응
                                                               ]);
LOW
mf5=gbell mf(une, [bases une(2,1) beta une(2,1) center une(2,1)
                                                                     응
                                                               1);
mf6=gbell mf(une, [bases une(3,1) beta une(3,1) center une(3,1)
                                                               ]);
                                                                       응
HIGH
end
if em == 1
                    % Min operator for AND rule
w1=min([mf1 mf4]') % LOW-LOW
w2=min([mf1 mf5]') % LOW-MEDIUM
w3=min([mf1 mf6]') % LOW-HIGH
w4=min([mf2 mf4]') % MEDIUM-LOW
w5=min([mf2 mf5]') % MEDIUM-MEDIUM
w6=min([mf2 mf6]') % MEDIUM-HIGH
w7=min([mf3 mf4]') % HIGH-LOW
w8=min([mf3 mf5]') % HIGH-MEDIUM
w9=min([mf3 mf6]') % HIGH-HIGH
elseif em==2
                % product operator for AND rule
w1=(mf1.*mf4)' % LOW-LOW
w2=(mf1.*mf5)' % LOW-MEDIUM
w3=(mf1.*mf6)' % LOW-HIGH
w4=(mf2.*mf4) % MEDIUM-LOW
w5=(mf2.*mf5)' % MEDIUM-MEDIUM
w6=(mf2.*mf6)  % MEDIUM-HIGH
w7 = (mf3.*mf4) % HIGH-LOW
```

```
w8=(mf3.*mf5)' % HIGH-MEDIUM
w9=(mf3.*mf6)' % HIGH-HIGH
elseif em==3
                                                                                                                                                        % max operator for OR rule
w1=max([mf1 mf4]') % LOW-LOW
w2=max([mf1 mf5]') % LOW-MEDIUM
w3=max([mf1 mf6]') % LOW-HIGH
w4=max([mf2 mf4]') % MEDIUM-LOW
w5=max([mf2 mf5]') % MEDIUM-MEDIUM
w6=max([mf2 mf6]') % MEDIUM-HIGH
w7=max([mf3 mf4]') % HIGH-LOW
w8=max([mf3 mf5]') % HIGH-MEDIUM
w9=max([mf3 mf6]') % HIGH-HIGH
end
  for j=1:t
  if (w1(:,j)==0 \& w2(:,j)==0 \& w3(:,j)==0 \& w4(:,j)==0 \& w5(:,j)==0 \&
 w6(:,j) == 0 \& w7(:,j) == 0 \& w8(:,j) == 0 \& w9(:,j) == 0
 nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0;nw6(:,j)=0;nw7(:,j)=0;nw8(:,j)=0;nw9(:,j)=0;
else
nw1(:,j)=w1(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
nw2(:,j) = w2(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw3(:,j) = w3(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw4(:,j) = w4(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw5(:,j)=w5(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+
w8(:,j)+w9(:,j));
nw6(:,j)=w6(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+
w8(:,j)+w9(:,j));
nw7(:,j)=w7(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
nw8(:,j) = w8(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
w8(:,j)+w9(:,j));
nw9(:,j)=w9(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
w8(:,j)+w9(:,j));
 end
 end
 X train=[nw1.*gdp';nw2.*gdp';nw3.*gdp';nw4.*gdp';nw5.*gdp';nw6.*gdp';nw7.*g
 dp';nw8.*gdp';nw9.*gdp';...
 nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';
 nw6.*une';nw7.*une';nw8.*une';nw9.*une';...
nw1;nw2;nw3;nw4;nw5;nw6;nw7;nw8;nw9];
x=x.field
params train=pinv(X train')*y % [p1 p2 q1 q2 s1 s2 r1 r2....pn qn sn rn]
y1=X train'*params train;
e=y1-y;
error=sum(sum(e.^2))
e.field=e
epochs=epochs+1
```

```
array y ( epochs ) = error;
index epochs ( epochs ) = epochs;
antecedent par=[nw1',nw2',nw3',nw4',nw5',nw6',nw7',nw8',nw9']
consequent par=y1
output 2=sum(antecedent par'*consequent par)/sum(sum(antecedent par))
out=output 2
for kkk=1:nk
    if y1(kkk,:)>out
        S in sample(kkk,:)=1
    elseif y1(kkk,:)<out</pre>
        S in sample(kkk,:)=0
    end
end
% Computation for clasiffication table preparation
Actual_positive_in_sample=find(y==1)
Actual negative in sample=find(y==0)
Predicted positive in sample=find(S in sample==1)
Predicted_negative_in_sample=find(S_in_sample==0)
Sum actual positive in sample=length(Actual positive in sample)
Sum actual negative in sample=length (Actual negative in sample)
Sum predicted positive in sample=length (Predicted positive in sample)
Sum predicted negative in sample=length(Predicted negative in sample)
Total predicted in sample=find(y==S in sample)
Perc=(length(Total predicted in sample)/nk)*100
W in sample=y(Total predicted in sample)
Positive in sample=find(W in sample==1)
Negative in sample=find(W in sample==0)
Final predicted Positive in sample=length(Positive in sample)/Sum actual po
sitive in sample
Final predicted Negative in sample=length(Negative in sample)/Sum actual ne
gative in sample
Final predicted Positive in sample=Final predicted Positive in sample*100
Final predicted Negative in sample=Final predicted Negative in sample*100
```

```
Total performance in sample=((length(Positive in sample) +
length(Negative in sample))/nk)*100
clear nw1
clear nw2
clear nw3
clear nw4
clear nw5
clear nw6
clear nw7
clear nw8
clear nw9
load file.mat
y tes=data(end-15:end,end)
x tes=data(end-15:end,1:2)
gdp=x tes(:,1)
une=x tes(:,2)
t1=length(y tes)
if memb==1
mf1=trimf(gdp, [-bases_gdp(1,1)/2+center_gdp(1,1) center_gdp(1,1)...
   bases_gdp(1,1)/2+center_gdp(1,1)]); % LOW
mf2=trimf(gdp, [-bases_gdp(2,1)/2+center_gdp(2,1) center_gdp(2,1)...
   bases_gdp(2,1)/2+center_gdp(2,1)]); % LOW
mf3=trimf(gdp, [-bases_gdp(3,1)/2+center_gdp(3,1) center_gdp(3,1)...
   bases gdp(3,1)/2+center gdp(3,1)]); % LOW
mf4=trimf(une, [-bases une(1,1)/2+center une(1,1) center une(1,1)...
   bases une(1,1)/2+center une(1,1)]); % LOW
mf5=trimf(une, [-bases une(2,1)/2+center une(2,1) center une(2,1)...
   bases une(2,1)/2+center une(2,1)]); % MEDIUM
mf6=trimf(une, [-bases une(3,1)/2+center une(3,1) center une(3,1)...
   bases une(3,1)/2+center une(3,1)]); % HIGH
elseif memb==2
mf1=gaussmf(gdp,[bases gdp(1,1) center gdp(1,1) ]);
                                                      % LOW
mf2=gaussmf(gdp,[bases gdp(2,1) center gdp(2,1) ]);
                                                  % MEDIUM
mf3=gaussmf(gdp,[bases gdp(3,1) center gdp(3,1)]);
                                                     % HIGH
mf4=gaussmf(une,[bases une(1,1) center une(1,1) ]);
                                                     % LOW
mf5=gaussmf(une,[bases_une(2,1) center une(2,1) ]); % MEDIUM
```

```
mf1=gbell mf(gdp,[bases gdp(1,1) beta gdp(1,1) center gdp(1,1)]);
mf2=gbell mf(gdp, [bases gdp(2,1) beta gdp(2,1) center gdp(2,1)
                                                             1);
mf3=gbell mf(gdp, [bases gdp(3,1) beta gdp(3,1) center gdp(3,1)]);
                                                                     용
HIGH
mf4=gbell mf(une, [bases une(1,1) beta une(1,1) center une(1,1)
                                                             1);
mf5=gbell mf(une, [bases une(2,1) beta une(2,1) center une(2,1)
                                                              1);
mf6=gbell mf(une, [bases une(3,1) beta une(3,1) center une(3,1)]);
HTGH
end
if em == 1
                   % Min operator for AND rule
w1=min([mf1 mf4]') % LOW-LOW
w2=min([mf1 mf5]')
                  % LOW-MEDIUM
                  % LOW-HIGH
w3=min([mf1 mf6]')
                  % MEDIUM-LOW
w4=min([mf2 mf4]')
                  % MEDIUM-MEDIUM
w5=min([mf2 mf5]')
w6=min([mf2 mf6]') % MEDIUM-HIGH
w7=min([mf3 mf4]') % HIGH-LOW
w8=min([mf3 mf5]') % HIGH-MEDIUM
w9=min([mf3 mf6]') % HIGH-HIGH
elseif em==2
               % product operator for AND rule
w1= (mf1.*mf4) ' % LOW-LOW
w2=(mf1.*mf5)' % LOW-MEDIUM
              % LOW-HIGH
w3 = (mf1.*mf6)'
w4 = (mf2.*mf4)'
               % MEDIUM-LOW
w5 = (mf2.*mf5)'
               % MEDIUM-MEDIUM
w6 = (mf2.*mf6)'
               % MEDIUM-HIGH
w7 = (mf3.*mf4)'
               % HIGH-LOW
              % HIGH-MEDIUM
w8 = (mf3.*mf5)'
w9 = (mf3.*mf6)' % HIGH-HIGH
              % max operator for OR rule
elseif em==3
w1=max([mf1 mf4]') % LOW-LOW
w2=max([mf1 mf5]') % LOW-MEDIUM
w3=max([mf1 mf6]') % LOW-HIGH
w4=max([mf2 mf4]') % MEDIUM-LOW
w5=max([mf2 mf5]') % MEDIUM-MEDIUM
w6=max([mf2 mf6]') % MEDIUM-HIGH
w7=max([mf3 mf4]') % HIGH-LOW
w8=max([mf3 mf5]') % HIGH-MEDIUM
w9=max([mf3 mf6]') % HIGH-HIGH
end
for j=1:t1
w6(:,j) == 0 \& w7(:,j) == 0 \& w8(:,j) == 0 \& w9(:,j) == 0)
nw1(:,j)=0; nw2(:,j)=0; nw3(:,j)=0; nw4(:,j)=0;
nw5(:,j)=0;nw6(:,j)=0;nw7(:,j)=0;nw8(:,j)=0;nw9(:,j)=0;
```

```
nw1(:,j) = w1(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
 w8(:,j)+w9(:,j));
 nw2(:,j) = w2(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + +w6(:,j) + w7(:,j) + w
 w8(:,j)+w9(:,j));
 nw3(:,j)=w3(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w3(:,j)+w
 w8(:,j)+w9(:,j));
 nw4(:,j)=w4(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
 w8(:,j)+w9(:,j));
 nw5(:,j) = w5(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
 w8(:,j)+w9(:,j));
 nw6(:,j) = w6(:,j) / (w1(:,j) + w2(:,j) + w3(:,j) + w4(:,j) + w5(:,j) + w6(:,j) + w7(:,j) + w7
 w8(:,j)+w9(:,j));
 nw7(:,j)=w7(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)++w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w
 w8(:,j)+w9(:,j));
 nw8(:,j)=w8(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
w8(:,j)+w9(:,j));
 nw9(:,j)=w9(:,j)/(w1(:,j)+w2(:,j)+w3(:,j)+w4(:,j)+w5(:,j)+w6(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7(:,j)+w7
 w8(:, \dot{\uparrow}) + w9(:, \dot{\uparrow}));
 end
   end
 X test=[nw1.*qdp';nw2.*qdp';nw3.*qdp';nw4.*qdp';nw5.*qdp';nw6.*qdp';nw7.*qd
p';nw8.*gdp';nw9.*gdp';...
nw1.*une';nw2.*une';nw3.*une';nw4.*une';nw5.*une';
 nw6.*une';nw7.*une';nw8.*une';nw9.*une';...
nw1; nw2; nw3; nw4; nw5; nw6; nw7; nw8; nw9];
yf1=X test'*params train;
   for kkk=1:t1
                                                     if yf1(kkk,:)>out
                                                                                                    S out sample(kkk,:)=1
                                                    elseif yf1(kkk,:)<out</pre>
                                                                                                       S out sample(kkk,:)=0
                                                    end
   end
 Actual positive=find(y tes==1)
 Actual negative=find(y tes==0)
   Predicted positive=find(S out sample==1)
   Predicted negative=find(S out sample==0)
   Sum actual positive=length(Actual positive)
   Sum actual negative=length(Actual negative)
   Sum predicted positive=length(Predicted positive)
   Sum predicted negative=length(Predicted negative)
   Total_predicted=find(y_tes==S_out_sample)
```

else

```
WWW=y tes(Total predicted)
Positive=find(WWW==1)
Negative=find(WWW==0)
Final predicted Positive=length(Positive)/Sum actual positive
Final predicted Negative=length (Negative) / Sum actual negative
Final predicted Positive=Final predicted Positive*100
Final predicted Negative=Final predicted Negative*100
Total performance=((length(Positive) + length(Negative))/t1)*100
% Classification Table
re = '======:;
li= '----';
sp = ' ';
disp([re ' Classification Table ' re])
disp([li ' True ' li])
disp([ '
                                                     \cap
Total ' ])
disp([li ' -----' li])
disp(sprintf(' %f:
                                                %f %f',
length(Positive in sample),...
   Sum_actual_positive_in_sample-length(Positive_in_sample) ))
disp(sprintf('
Sum_actual_negative_in_sample-...
   length(Negative_in_sample) , length(Negative_in_sample)))
disp([li ' -----' li])
disp(sprintf('Sum %f:
                                               %f %f',
Sum_actual_positive_in_sample,...
   Sum_actual_negative_in_sample, nk))
disp([li ' -----' li])
disp(sprintf('Correct Predict Financial Stage 1 (Crisis) %f',...
   Final_predicted_Positive_in_sample))
disp(sprintf('Correct Predict Financial Stage 2 (No Crisis)
   Final predicted Negative in sample))
disp(sprintf('Overall Prediction Performance
                                                          %f',...
   Total performance in sample))
disp(blanks(1)')
disp([re ' Classification Table ' re])
disp([li ' True ' li])
disp([ ' 1
                                                    0
Total '])
disp([li ' -----' li])
alsp(sprintf(' %f:
length(Positive),...
disp(sprintf('
                                                %f %f',
   Sum_actual_positive-length(Positive)))
                                                      %f', ...
disp(sprintf(' %f:
                                                %f
   Sum_actual_negative-length(Negative), length(Negative)))
disp([li ' -----' li])
disp(sprintf('Sum %f:
                                                %f %f',
Sum_actual_positive ,...
```

```
Sum actual negative, t1))
disp([li ' -----' li])
disp(sprintf('Correct Predict Financial Stage 1 (Crisis)
                                                                %f',
Final_predicted_Positive))
disp(sprintf('Correct Predict Financial Stage 2 (No Crisis)
                                                                %f',
Final predicted Negative))
disp(sprintf('Overall Prediction Performance
                                                                 %f',
Total performance))
figure, plot(y,'-r'); hold on; plot(y1,'-b');
xlabel('Periods')
ylabel('Values')
%title('In sample forecasts')
h1 = legend('Actual','forecasts',1);
figure, plot(y_tes,'-r'); hold on; plot(yf1,'-b');
xlabel('Periods')
ylabel('Values')
%title('Out of sample forecasts')
h = legend('Actual', 'forecasts', 1);
figure, plot (index epochs, array y);
xlabel('epochs')
ylabel('Error')
title('Number of Epochs')
function y = gbell mf(x, params)
a = params(1); b = params(2); c = params(3);
y = \exp(-((x - c)/a).^2*b);
```