

مقدار التغير في موقع الجسم في اتجاه معين خلال فترة زمنية محددة	الإزاحة
مربع مقدار المتجه المحصل يساوي مجموع مربعي مقداري المتجهين	نظرية فيثاغورث
مربع مقدار المتجه المحصل يساوي مجموع مربعي مقداري المتجهين مطروحاً منه ضعفا حاصل ضرب مقداري المتجهين مضروباً في جيب تمام الزاوية بينهما	قانون جيب التمام
مقدار المحصلة مقسوماً على جيب الزاوية التي بين المتجهين يساوي مقدار أي من المتجهين المتجهين مقسوماً على جيب الزاوية التي تقابله	قانون الجيب
عملية تجزئة المتجه إلى مركبتيه الأفقية والرأسية	تحليل المتجه
الزاوية التي يصنعها المتجه مع محور 🗴 الموجب مقيسة في عكس اتجاه عقارب الساعة	اتجاه المتجه
القوة التي لها نفس تأثير قوتين مجتمعتين ، أو أكثر	القوة المحصلة
حالة الجسم عندما تكون محصلة القوى المؤثرة عليه تساوي صفر	حالة الاتزان
القوة التي تجعل الجسم متزناً ، وهي تساوي القوة المحصلة في المقدار ، وتعاكسها في الاتجاه	القوة الموازنة
القوة التي تمانع حركة الأجسام ، وتسبب تسارع الجسم في عكس اتجاه حركته	قوة الاحتكاك
القوة التي تؤثر في السطح عندما يتحرك ملامساً سطح آخر	قوة الاحتكاك الحركي
قوة تؤثر في سطح بوساطة سطح آخر عندما لا توجد حركة بينهما	قوة الاحتكاك السكوني
" ميل الخط البياني الذي يُمثل العلاقة بين (قوة الاحتكاك – القوة العمودية) " " النسبة بين قوة الاحتكاك والقوة العمودية "	معامل الاحتكاك
الجسم الذي يُطلق في الهواء وتكون له حركتان إحداهما أفقية والأخرى رأسية	المقذوف
المسار الذي يتخذه المقذوف في الهواء ، والذي يُعتبر محصلة لحركتيه الأفقية والرأسية	القطع المكافيء
منحنى أو قطع مكافيء يتحرك فيه الجسم في الهواء	مسار المقذوف
القوة الوحيدة المؤثرة في المقذوف بعد انطلاقه عند إهمال مقاومة الهواء	قوة الجاذبية الأرضية
المسافة الأفقية التي يقطعها المقذوف	المدى الأفقي
الزمن الذي يقضيه المقذوف في الهواء	زمن التحليق

إيجاد محصلة متجهين حسابياً	
عندما تكون $\theta = 90$ نستخدم نظرية فيثاغورث	
$R^2 = A^2 + B^2$ $b = tan^{-1} (B/A)$	

$$A_x = A\cos\theta$$
 $A_y = A\sin\theta$ $R_x = A_x + B_x + C_x$ $R_y = A_y + B_y + C_y$

$$R^2 = R_x^2 + R_y^2$$
 $\theta = \tan^{-1}\left(\frac{R_y}{R_x}\right)$

إيجاد محصلة متجهين بطريقة التحليل (الطريقة الجبرية)

الاحتكاك السكوني والاحتكاك الحركي
$$F_s \, \leq \, \mu_s \; F_N \qquad F_K = \mu_K \; F_N$$

$$F_{net} = m \; a \qquad , \qquad F_g = m \; g$$

$$v_f = v_i + at \qquad , \qquad d = v_i \; t + 1/2 \; a \; t^2 \qquad , \qquad v_f^2 = v_i^2 + 2ad$$

إرشاحات لعل تمارين الاحتكاك

العلاقة الرياضية	مخطط الجسم الحر	الحالة	م
$F_{net} = 0 , a = 0$ $F_{N} = F_{g} = mg$ $F_{p} = F_{s} = \mu_{s} F_{N}$ $= \mu_{s} m g$	F_{s} F_{p} F_{g}	عندما يكون الجسم ساكن وتؤثر فيه قوة تجعله على وشك الحركة	١

العلاقة الرياضية	مخطط الجسم الحر	الحالة	م
$F_{net} = 0 , a = 0$ $F_N = F_g = mg$ $F_p = F_k = \mu_k F_N$ $= \mu_k m g$	F_{k} F_{p} F_{g}	عندما يتحرك الجسم بسر عة منتظمة	7
$F_{\text{N}} = F_{\text{g}} = mg$ $F_{\text{net}} = F_{\text{p}} - F_{\text{K}}$ $m a = F_{\text{p}} - \mu_{\text{k}} m g$	F_{k} F_{p} F_{p}	عندما يتحرك الجسم بتسار ع منتظم	٣
$F_{N} = F_{g} = mg$ $F_{net} = F_{K} - F_{P}$ $m a = \mu_{k} m g - F_{p}$	F_k F_p F_g	عندما يتباطأ الجسم في وجود قوة مؤثرة	٤
$F_{N} = F_{g} = mg$ $F_{net} = -F_{K}$ $m a = -\mu_{k} m g$ $a = -\mu_{k} g$	F_{k} F_{g}	عندما يتباطأ الجسم تحت تأثير قوة الاحتكاك فقط	o
$F_{N} = F_{g} - F_{y}$ $= m g - F_{T} \sin \Theta$ $F_{net} = F_{x} - F_{K}$ $m a = F_{T} \cos \Theta - \mu_{k} F_{N}$	F_{k} F_{y} F_{x} F_{y} F_{x}	عندما يتسارع الجسم نتيجة التأثير بقوة تميل بزاوية على مستوى الحركة	٦

في حالة الحركة على مستوى مائل يكون

 $F_{gx} = F_g \; sin \; \theta = m \; g \; \; sin \; \theta \qquad , \qquad F_N \; = \; \; F_{gy} \; = \; F_g \; cos \; \theta = m \; g \; \; cos \; \theta$

إرشاحات لدل تمارين الاحتكاك على مستوى ماذل

العلاقة الرياضية	مخطط الجسم الحر	الحالة	م
$F_{net} = 0 , a = 0$ $F_{N} = F_{gy} = mg \cos \Theta$ $F_{s} = F_{gx}$ $\mu_{s} m g \cos \Theta = m g \sin \Theta$ $\mu_{s} = \sin \Theta / \cos \Theta$ $\mu_{s} = \tan \Theta$	F_{s} F_{gy} F_{gx} F_{gx} F_{gx}	عندما يكون الجسم ساكن و على وشك الحركة	١
$F_{net} = 0 , a = 0$ $F_{N} = F_{gy} = mg \cos \Theta$ $F_{k} = F_{gx}$ $\mu_{k} m g \cos \Theta = m g \sin \Theta$ $\mu_{k} = \sin \Theta / \cos \Theta$ $\mu_{k} = \tan \Theta$	F_{k} F_{gy} F_{gx} F_{gx} F_{gx}	عندما ينزلق الجسم لأسفل بسرعة منتظمة	۲
$F_{N} = F_{gy} = mg \cos \Theta$ $F_{net} = F_{gx} - F_{k}$ $ma = F_{g} \sin \Theta - \mu_{k} F_{g} \cos \Theta$ $a = g (\sin \Theta - \mu_{k} \cos \Theta)$	F_{gy} F_{gy} $+ x$	عندما ينزلق الجسم بتسار ع	٣

$F_{net} = 0 , a = 0$ $F_N = F_{gy} = mg \cos \Theta$ $F_T = F_{gx} + F_k$ $F_T = mg (\sin\theta + \mu_k \cos\theta)$	F_{gy} F_{gx} F_{gx} F_{gx} F_{gx}	عندما يُسحب أو يُدفع الجسم لأعلى بسرعة منتظمة	٤
$F_{N} = F_{gy} = mg \cos \Theta$ $F_{net} = F_{T} - (F_{gx} + F_{k})$ $ma = F_{T} - (F_{g} \sin \theta - \mu_{k} F_{g} \cos \theta)$ $ma = F_{T} - mg (\sin \theta + \mu_{k} \cos \theta)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	عندما يُسحب أو يُدفع الجسم لأعلى بتسار ع	0

حركة المقذوفات	
الحركة الرأسية للمقذف	الحركة الأفقية للمقذوف
$V_{fy} = V_{iy} + g t$	$R(d_x) = V_x t$
$V_{fy} = V_{iy} + g t$ $Y_{max} = V_{iy} t + \frac{1}{2} g t^{2}$ $V_{fy}^{2} = V_{iy}^{2} + 2g Y_{max}$	المقذوف بزاوية
$V_{fy}^2 = V_{iy}^2 + 2g Y_{max}$	$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{i}} \cos \mathbf{\Theta}$, $\mathbf{v}_{\mathbf{i}\mathbf{y}} = \mathbf{v}_{\mathbf{i}} \sin \mathbf{\Theta}$