Idéaux et anneaux noethériens

1 Exercice 1.

- 1. Se répéter dix fois : « Un idéal n'est pas un sous-anneau et l'image d'un idéal par un morphisme d'anneau n'est pas nécessairement un idéal » (et trouver des exemples).
- 2. Montrer que l'image d'un idéal par un morphisme d'anneaux surjectif est un idéal.
- 1. L'idéal $I=2\mathbb{Z}$ n'est pas un sous-anneau car $1\not\in I$. On considère le morphisme d'anneau

$$f: \mathbb{Z} \longrightarrow \mathbb{Q}$$
$$x \longmapsto x,$$

et on a $f(n\mathbb{Z}) = n\mathbb{Z}$ qui n'est pas un idéal de \mathbb{Q} (car \mathbb{Q} est un corps, donc n'a pour idéaux que \mathbb{Q} et $\{0\}$).

- 2. Soit $f: A \to B$ un morphisme d'anneaux surjectif, et I un idéal de A.
 - ▷ Soient $x_1, x_2 \in f(I)$. Soient $y_1, y_2 \in I$ tels que $x_1 = f(y_1)$ et $x_2 = f(y_2)$. D'où, $x_1 + x_2 = f(y_1 + y_2) \in f(I)$ car $y_1 + y_2 \in I$.
 - \triangleright Soit $x \in f(I)$ et $b \in B$. Il existe $y \in I$ tel que f(y) = x. Par surjectivité, il existe $a \in A$ tel que b = f(a). Ainsi, $bx = f(ay) \in f(I)$, car $ay \in I$.

2 Exercice 2. Terminologie

Soit A un anneau et soient a, b deux éléments de A.

- 1. Montrer que a est inversible si et seulement si (a) = A.
- **2.** Montrer que a divise b si et seulement si $(b) \subseteq (a)$.
- 3. On suppose que A est intègre.
 - a) Montrer que $a \in A$ est premier si et seulement si (a) est un idéal premier.
 - b) Montrer que a est irréductible dans A si et seulement si (a) est maximal parmi les idéaux principaux de A. En déduire que, si tout idéal de A est principal, alors a est irréductible si et seulement si (a) est maximal.
 - c) Donner un exemple d'anneau A et d'élément irréductible $a \in A$ tel que (a) n'est pas maximal parmi les idéaux de A.
- 1. Montrons que $a \in A^{\times} \iff (a) = A$. On a la chaîne d'équivalences :

$$(a) = A \iff 1 \in (a) \iff \exists b \in A, ab = 1 \iff a \in A^{\times}.$$

2. Montrons que $a \mid b \iff (b) \subseteq (a)$. D'une part, on a

$$a \mid b \iff \exists c \in A, b = ac \implies (b) \subseteq (a).$$

Et d'autre part, on a bien l'implication réciproque de (\star) , car si $(b) \subseteq (a)$ alors $b \in (a)$ et donc il existe $c \in A$ tel que b = ac.

3. a) On a:

$$a$$
 premier $\iff [\forall b, c \in A, a \mid bc \implies a \mid b \text{ ou } a \mid c]$
 $\iff [\forall b, c \in A, (bc) \subseteq (a) \implies (b) \subseteq (a) \text{ ou } (c) \subseteq (a)]$
 $\iff (a) \text{ est un idéal premier.}$

- b) \triangleright Si (a) est maximal parmi les idéaux principaux, et si a = bc alors $b \mid a$, et donc $(a) \subseteq (b)$.
 - Soit (b) = A et donc $b \in A^{\times}$.
 - Soit (b) = (a) alors, il existe $d \in A$ tel que b = ad. D'où, b = bcd et, car A intègre, cd = 1 d'où on a que $c \in A^{\times}$.

▷ Réciproquement, on a

$$(a) \subseteq (b) \implies b \mid a$$

$$\implies \exists c \in A, a = bc$$

$$\implies \exists (b, c) \in A^{\times} \times A \cup A \times A^{\times}, a = bc$$

$$\implies (b) = A \text{ ou } (b) = (a).$$

c) On considère $A = \mathbb{Z}[X]$ et a = 2 irréductible. Alors, $(2) \subseteq (2, X) \neq \mathbb{Z}[X]$ et $(X) \subseteq (2, X) \neq \mathbb{Z}[X]$.

3 Exercice 3. Quotienteries

1. On a, pour $a, b \in A$:

$$\bar{a}\bar{b} = \bar{0} \in A/I \iff ab \in I.$$

D'où, si I premier, alors $\bar{a} = \bar{0}$ ou $\bar{b} = \bar{0}$. Réciproquement, si $ab \in I$ alors $\bar{a} = \bar{0}$ ou $\bar{b} = \bar{0}$, et donc $a \in I$ ou $b \in I$.

Ensuite, on a pour $a \in A$,

$$\bar{a} \in (A/I)^{\times} \iff (a) + I = A.$$

Ainsi, si I est maximal, et si $\bar{a} \in (A/I) \setminus \{0\}$, alors $a \notin I$ et (a) + I contient strictement I, d'où (a) + I = A et $\bar{a} \in (A/I)^{\times}$. Réciproquement, soit $I \subseteq J \subseteq A$, et s'il existe $x \in J \setminus I$, alors $xnar \in (A/I) \setminus \{0\}$ et donc il existe $y \in A$ tel que $\bar{x}\bar{y} = \bar{1}$ et donc $A = (x) + I \subseteq J$ et donc J = A.

- 2. Soit B un anneau et $f:A\to B$ un morphisme d'anneau tel que $I\subseteq\ker f$. Montrons qu'il existe un unique morphisme $\bar f:A/I\to B$ tel que $f=\bar f\circ\pi$.
 - $Unicit\acute{e}$. Si $\bar{f}: A/I \to B$ est tel que $\bar{f} \circ \pi = f$. Alors, parce que π est surjectif, on a que $\forall x \in A/I, \exists a \in A, x = \pi(a)$, et donc $\bar{f}(x) = f(a)$.
 - \triangleright *Existence*. On pose

$$\bar{f}: A/I \longrightarrow B$$
 $\bar{x} \longmapsto f(x).$
 $-3/7$

- C'est bien défini car si $\pi(a) = \pi(b)$ alors $a b \in I \subseteq \ker f$ et donc f(a) = f(b).
- C'est bien un morphisme :
 - $\bar{f}(\bar{1}) = f(1) = 1$;
 - $\bar{f}(\bar{a}+\bar{b})=\bar{f}(\overline{a+b})=f(a+b)=f(a)+f(b)=\bar{f}(\bar{a})+\bar{f}(\bar{b});$
 - $\bar{f}(\bar{a} \times \bar{b}) = \bar{f}(\overline{a \times b}) = f(a \times b) = f(a) \times f(b) = \bar{f}(\bar{a}) \times \bar{f}(\bar{b}).$
- **3.** Soit $f:A\to B$, alors il existe un unique morphisme $\bar{f}:A/\ker f\to B$ tel que $f=\bar{f}\circ\pi$. Par construction im $\bar{f}=\operatorname{im} f$ et donc $\bar{f}:A/\ker f\to \operatorname{im} f$ est surjectif. Montrons que \bar{f} est injective. Si $\bar{f}(\bar{x})=0$ alors f(x)=0 et donc $x\in\ker f$ d'où on a $\bar{x}=\bar{0}\in A/\ker f$. On en conclut:

$$A/\ker f \cong \operatorname{im} f$$
.

4. Soient $I \subseteq J \subseteq A$ et on note $J/I = \pi_I(J)$. Alors, $(A/I)/(J/I) \cong A/J$. En effet, on pose

$$f: A/I \longrightarrow A/J$$

 $a+I \longmapsto a+J.$

qui est un morphisme d'anneaux bien défini.

Pour $a \in A$, f(a + I) = a + J donc f est surjective.

Et,

$$\ker f = \{ a + I \in A/I \mid a + J = \bar{0} \in A/J \}$$

$$= \{ a + I \in A/I \mid a \in J \}$$

$$= \pi_I(J) = J/I$$

On en conclut, par le premier théorème d'isomorphisme que

$$(A/I)/(J/I) \cong A/J$$
.

5. On considère la bijection croissante

$$\{I \subseteq J \triangleleft A\} \longleftrightarrow \{\bar{K} \triangleleft A/I\}$$
$$J \longmapsto \pi_I(J)$$
$$\pi^{-1}(\bar{K}) \longleftrightarrow \bar{K}.$$

On vérifie aisément que :

- \triangleright pour $J \supseteq I$, $\pi^{-1}(\pi(J)) = J$;
- \triangleright pour $\bar{K} \triangleleft A/I$, $\pi(\pi^{-1}(\bar{K})) = \bar{K}$;
- ▷ l'application est croissante.

Si $P \triangleleft A$ est premier et tel que $I \subseteq P$ alors, par le 3ème théorème d'isomorphisme, on a

$$(A/I)/\pi(P) = (A/I)/(P/I) \cong A/P,$$

et ce dernier est intègre et on conclut.

Réciproquement, si $\bar{P} \triangleleft A/I$ est premier, alors $\bar{P} = \pi(\pi^{-1}(\bar{P}))$ et donc $(A/I)/\bar{P} \cong A/\pi^{-1}(\bar{P})$ et le premier est intègre, donc on conclut.

6. On pose

$$f: A[X] \longrightarrow (A/I)[X]$$

 $\sum a_i X^i \longmapsto \sum \bar{a}_i X^i.$

On montre que im f = (A/I)[X] et que ker f = I A[X].

- 4 Exercice 4. Division euclidienne par un polynôme unitaire
- 5 Exercice 5. Application : étude d'une courbe algébrique
- 6 Exercice 6. Lemme d'évitements des premiers
- 7 Exercice 7. Anneaux noethériens
- 8 Exercice 8. Existence et finitude des idéaux premiers minimaux

Table des matières

Idéa	iux et anneaux noethériens	1
1	Exercice 1	1
2	Exercice 2. Terminologie	2
3	Exercice 3. Quotienteries	3
4	Exercice 4. Division euclidienne par un polynôme unitaire	6
5	Exercice 5. Application : étude d'une courbe algébrique	6
6	Exercice 6. Lemme d'évitements des premiers	6
7	Exercice 7. Anneaux noethériens	6
8	Exercice 8. Existence et finitude des idéaux premiers	
	minimaux	6