Sabrina Wu sywu@ucsd.edu A16731683

BIMM 143: Find a Gene Project

1. Tell me the name of a protein you are interested in. Include the species and the accession number. This can be a human protein or a protein from any other species as long as it's function is known.

Name: Major Histocompatibility Complex, Class II, DR beta 5 precursor

Accession: NP_002116 **Species:** Homo Sapiens

Function: Present processed antigens from extracellular sources to CD4+ T lymphocytes

2. Perform a BLAST search against a DNA database, such as a database consisting of genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the BLAST method used, database searched and any limits applied (e.g. Organism).

Method: TBLASTN

Database: Expressed Sequence Tag (est) **Organism:** Nematodes (Taxid: 6231)

Chosen Match: Accession CD455829.1, a 1006 base pair clone in Wuchereria bancrofti

Alignment details:

Query: major histocompatibility complex, class II, DR beta 5 precursor [Homo sapiens] Query ID: NP 002116.2 Length: 266

>TNWbmfC16D8T3 Wuchereria bancrofti microfilaria cDNA (SAW95SjL-WbMf) Wuchereria bancrofti cDNA clone TNWbmfC16D8 5', mRNA sequence

Sequence ID: CD455829.1 Length: 1006

Range 1: 51 to 830

Score:373 bits(957), Expect:3e-129, Method: Compositional matrix adjust.,

Identities: 196/260(75%), Positives: 222/260(85%), Gaps: 0/260(0%)

Query 1

MVCLKLPGGSYMAKLTVTLMVLSSPLALAGDTRPRFLQQDKYECHFFNGTERVRFLHRDI 60 MV L LP G +A +TL + LS P +AL D RPRFL +Q K ECHF NGTERVRFL R Sbjct 51

MVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSECHFLNGTERVRFLQRYF 230

Ouerv 61

YNQEEDLRFDSDVGEYRAVTELGRPDAEYWNSQKDFLEDRRAAVDTYCRHNYGVGESFTV 120 YN +EE +RFDSDVGE +RAVTELGRPDA+YWNSQK+ LE +RAAVDTYCR+NYG ESFTV Sbjct 231

YNREEYVRFDSDVGEFRAVTELGRPDAKYWNSQKELLEQKRAAVDTYCRYNYGGVESFTV 410

Query 121

QRRVEPKVTVYPARTQTLQHHNLLVCSVNGFYPGSIEVRWFRNSQEEKAGVVSTGLIQNG 180 QRRVEPKV+V +PA+TQ L+HHNLL+CSVN FYPG +EVRWFRN QEEKAGV STGLI NG Sbjct 411

QRRVEPKVSVHPAKTQRLEHHNLLICSVNDFYPGDLEVRWFRNGQEEKAGVSSTGLIPNG 590

Query 181

DWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRAQSESAQSKMLSGVGGFVLGLL 240 DWT+QTLVMLETVP+SGEVY C+VEHPS++SP+TVEWRAQS SAQ+KMLSG GGFVLGLL Sbjet 591

DWTYQTLVMLETVPQSGEVYACRVEHPSLSSPVTVEWRAQSTSAQNKMLSGXGGFVLGLL 770

Query 241
FLGAGLGIYFKNQKGHSGLH 260
FLG GLFIY +N KG SGL
Sbjct 771
FLGGGLFIYLRNXKGQSGLQ 830

This is a near match and therefore "novel" since there's a high percentage coverage (97%) and low e-value(3e-129) meaning it is unlikely a false positive, but a low percent identity (69.23%).

3. [Q3] Gather information about this "novel" protein. At a minimum, show me the protein sequence of the "novel" protein as displayed in your BLAST results from [Q2] as FASTA format (you can copy and paste the aligned sequence subject lines from your BLAST result page if necessary) or translate your novel DNA sequence using a tool called EMBOSS Transeq at the EBI. Don't forget to translate all six reading frames; the ORF (open reading frame) is likely to be the longest sequence without a stop codon. It may not start with a methionine if you don't have the complete coding region. Make sure the sequence you provide includes a header/subject line and is in traditional FASTA format.

Using EMBOSS Transeq, the third ORF is the longest with no stop codon: >CD455829.1_3 TNWbmfC16D8T3 Wuchereria bancrofti microfilaria cDNA (SAW95SjL-WbMf) Wuchereria bancrofti cDNA clone TNWbmfC16D8 5', mRNA sequence XXXHECSSDWVLLSSSMVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSEC HFLNGTERVRFLQRYFYNREEYVRFDSDVGEFRAVTELGRPDAKYWNSQKELLEQKRA AVDTYCRYNYGGVESFTVQRRVEPKVSVHPAKTQRLEHHNLLICSVNDFYPGDLEVRWF RNGQEEKAGVSSTGLIPNGDWTYQTLVMLETVPQSGEVYACRVEHPSLSSPVTVEWRAQ STSAQNKMLSGXGGFVLGLLFLGGGLFIYLRNXKGQSGLQXHXNSLX*T*GXXGLKEX XFXPRLPXPMKKIVPRXEPTFPSRKKXLPPKNLAFXP*ILG

Here, tell me the name of the novel protein, and the species from which it derives. It is very unlikely (but still definitely possible) that you will find a novel gene from an organism such as S. cerevisiae, human or mouse, because those genomes have already been thoroughly annotated. It is more likely that you will discover a new gene in a genome that is currently being sequenced, such as bacteria or plants or protozoa.

Name: Wuchereria bancrofti Histocompatibility Complex

Species: Wuchereria bancrofti

Eukaryota; Metazoa; Ecdysozoa; Nematoda; Chromadorea; Rhabditida; Spirurina; Spiruromorpha; Filarioidea; Onchocercidae; Wuchereria.

- 4. Prove that this gene, and its corresponding protein, are novel. For the purposes of this project, "novel" is defined as follows. Take the protein sequence (your answer to [Q3]), and use it as a query in a blastp search of the nr database at NCBI.
 - a. If there is a match with 100% amino acid identity to a protein in the database, from the same species, then your protein is NOT novel (even if the match is to a protein with a name such as "unknown"). Someone has already found and annotated this sequence, and assigned it an accession number.
 - b. If the top match reported has less than 100% identity, then it is likely that your protein is novel, and you have succeeded.
 - c. If there is a match with 100% identity, but to a different species than the one you started with, then you have likely succeeded in finding a novel gene.
 - d. If there are no database matches to the original query from [Q1], this indicates that you have partially succeeded: yes, you may have found a new gene, but no, it is not actually homologous to the original query. You should probably start over.

A BLASTP (first screen-shot) using the protein sequence from Q3 resulted in a top hit against a protein in *Meriones unguiculatus* (Mongolian gerbil).

The top result is a protein from Meriones unguiculatus (Mongolian gerbil).

5. Generate a multiple sequence alignment with your novel protein, your original query protein, and a group of other members of this family from different species. A typical number of proteins to use in a multiple sequence alignment for this assignment purpose is a minimum of 5 and a maximum of 20 - although the exact number is up to you. Include the multiple sequence alignment in your report. Use Courier font with a size appropriate to t page width. Side-note: Indicate your sequence in the alignment by choosing an appropriate name for each sequence in the input unaligned sequence le (i.e. edit the sequence le so that the species, or short common, names (rather than accession numbers) display in the output alignment and in the subsequent answers below). The goal in this step is to create an interesting an alignment for building a phylogenetic tree that illustrates species divergence.

Sequences for alignment:

GLLFLGAGLFIYFKNQKGHSGLHPTGLVS

>Human|NP_002116.2 major histocompatibility complex, class II, DR beta 5 precursor [Homo sapiens]
MVCLKLPGGSYMAKLTVTLMVLSSPLALAGDTRPRFLQQDKYECHFFNGTERVRFLHRDIYNQEEDLRFDSDVGEYRAV
TELGRPDAEYWNSQKDFLEDRRAAVDTYCRHNYGVGESFTVQRRVEPKVTVYPARTQTLQHHNLLVCSVNGFYPGSIEV
RWFRNSQEEKAGVVSTGLIQNGDWTFQTLVMLETVPRSGEVYTCQVEHPSVTSPLTVEWRAQSESAQSKMLSGVGGFVL

>Wuchereria bancrofti(sequence from BLAST)

XXXHECSSDWVLLSSSMVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSECHFLNGTERVRFLQRYFYNR EEYVRFDSDVGEFRAVTELGRPDAKYWNSQKELLEQKRAAVDTYCRYNYGGVESFTVQRRVEPKVSVHPAKTQRLEHHN LLICSVNDFYPGDLEVRWFRNGQEEKAGVSSTGLIPNGDWTYQTLVMLETVPQSGEVYACRVEHPSLSSPVTVEWRAQS TSAQNKMLSGXGGFVLGLLFLGGGLFIYLRNXKGQSGLQXHXNSLXTGXXGLKEXXFXPRLPXPMKKIVPRXEPTFPSR KKXLPPKNLAFXPILG

>Mongolian_gerbil|XP_021485293.2 H-2 class II histocompatibility antigen, I-E beta chain-like [Meriones unguiculatus]

MVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSECHFLNGTERVRFLQRYFYNREEYVRFDSDVGEFRAV TELGRPDAKYWNSQKELLEQKRAAVDTYCRYNYGGVESFTVQRRVEPKVSVHPAKTQRLEHHNLLICSVNDFYPGDLEV RWFRNGQEEKAGVSSTGLIPNGDWTYQTLVMLETVPQSGEVYACRVEHPSLSSPVTVEWRAQSTSAQNKMLSGVGGFVL GLLFLGGGLFIYLRNOKGOSGLOPTGLLS

>Fat_sand_rat|XP_055447898.1 H-2 class II histocompatibility antigen, I-E beta chain-like [Psammomys obesus]

MMRLWLPRGPCVAAVVLTLMALSPPMALVQDLRPRFLEYVKSECHFLNGTERVRFLERYFYNRKEYVRFDSDVGEYRAV TELGRPDAEYWNSQKDFLEQKRAEVDTYCRHNYGVGESFTVRRRVEPKVSVHPAKTQRLEHHNLLICSVNDFYPGDLEV RWFRNGQEEKAGVSSTGLIPNGDWTYQALVMLETVPQSGEVYACQVAHPSLSSPVTVEWRAQSTSAQNKMLSGVGGFVL GLLFLGGGLFIYLRNQKGQSGLQPTGLLS

>Hispid_cotton_rat|AAN87895.1 major histocompatibility 2 class II antigen E beta [Sigmodon hispidus]

MMRLWLPRGPCVAAVILILMVLSPPVALVRDPRPRFLEQVKYECHFDNGTQRVRFVERFIYNREEFVRFDSDVGEFRAV SELGRGIAENFNSRKELLEDRRAQVDTVCRHNYGVGESFTVQRRVEPQVTVYPTKTQPLEHHNLLACSVSGFYPSHIEI RWFRNGQEEKDGVVSTGLIRNGDWTFQTLVMLEMVPRSGEVYTCQVEHPSLTSPVTVEWKAQSTSAQNKMLSGVGGFVL GLLFLSVGLFIYFRNQKGQSGLQPTGNPPPSSLRYRSAFPTVGLGCGGHQAETRDLTGSGQGRLL

>House_mouse|P18468.1 RecName: Full=H-2 class II histocompatibility antigen, I-A beta chain; Flags: Precursor [Mus musculus]

MVWLPRVPCVAAVILLLTVLSPPVALVRDSRPWFLEYCKSECHFYNGTQRVRFLKRYFYNLEENLRFDSDVGEFRAVTE LGRPDAENWNSQPEILDEKRAAVDTYCRHNYEIFDNFLVPRRVEPTVTVYPTKTQPLEHHNLLVCSVSDFYPGNIEVRW FRNGKEEKTGIVSTGLVRNGDWTFQTLVMLETVPQSGEVYTCQVEHPSLTDPVTVEWKAQSTSAQNKMLSGVGGFVLGL LFLRAGLFIYFRNQKGQSGLQPTGLLS

>Chinese_hamster|XP_035313922.1 LOW QUALITY PROTEIN: H-2 class II histocompatibility antigen, I-E beta chain-like [Cricetulus griseus] MVRLWLPRGSCVAAVVLTLMALSPPVTLVRDPRPRFLEQAKHECHFYNGTQRVRYLERRIHNREEYARFDSEVGEYRAV TELGRPDAEYWNGQKELLEQRRASVDTYCRHNYGVGESFTVQRRVEPQVTVYPTKSQPLEHHNLLVCSVSGFYPGHIEV RWFRNDQEETAGVVSTGLIQNGDWTFQTLVMLETVPQSGEVYTCQVEHPSLASPVTVEWRAQSTSAQNKMLSGIGGFVL GLLFLGLGLFIYFRNQKGQSGLQPTGNXPSVSLRDRSAFPTMWAGVGGHQKVQNPGPGQEDS

>European_water_vole|XP_038200026.1 H-2 class II histocompatibility antigen, I-E beta chain [Arvicola amphibius]

MMGLWIPRGPWVAAVVLTLMMLNPPVALVRDPRPRFLEQVKFECHFYNGTQRVRYLARVIYNREEYARFDSDVGEFRAV TELGRRSAEYWNSQKELLEQKRAAVDTYCRHNYGVGESFTVQRRVEPQVTVYPTKTQPLEHHNLLVCSVSGFYPGNIEV RWFRNGQEEKAGVVSTGLIQNGDWTFQTLVMLETVPQSGEVYTCHVEHPSLTSPATVEWRAQSTSAQNKMLSGVGGFVL GLLFLGLGLFIYFRNQKGQSGLQPTGLLS

Alignment:

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

 Human
 ------MVCLKLPGGSYMAKLTVTLMVLSSPLALAGDTRPRFLQQDKYEC

 House mouse
 ------MVWLPRVPCVAAVILLLTVLSPPVALVRDSRPWFLEYCKSEC

Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese_hamster
European water vole

-----MMRLWLPRGPCVAAVVLTLMALSPPMALVQDLRPRFLEYVKSEC
XXXHECSSDWVLLSSSMVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSEC
-----MVRLWLPRGPCVAAAVLTLVALSPPVALVRDPRPRFLEQAKSEC
-----MMRLWLPRGPCVAAVILILMVLSPPVALVRDPRPRFLEQVKYEC
-----MVRLWLPRGSCVAAVVLTLMALSPPVTLVRDPRPRFLEQAKHEC
-----MMGLWIPRGPWVAAVVLTLMMLNPPVALVRDPRPRFLEQVKFEC
:::* :* : * * ..*::* * **.**: * **

Human
House_mouse
Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese_hamster
European water vole

Human
House_mouse
Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese_hamster
European water vole

Human
House_mouse
Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese_hamster
European water vole

Human
House_mouse
Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese_hamster
European water vole

Human
House_mouse
Fat_sand_rat
Wuchereria_bancrofti
Mongolian_gerbil
Hispid_cotton_rat
Chinese hamster

-----LLS
-----LLS
PMKKIVPRXEPTFPSRKKXLPPKNLAFXPILG
-----LLS
RYRSAFPTVGLGCGGHQAETRDLTGSGQGRLL
RDRSAFPTMWAGVGGHQKVQNPGPGQEDS---

6. Create a phylogenetic tree, using either a parsimony or distance-based approach. Bootstrapping and tree rooting are optional. Use "simple phylogeny" online from the EBI or any respected phylogeny program (such as MEGA, PAUP, or Phylip). Paste an image of your Cladogram or tree output in your report.

Import the sequences into MEGA, align with MUSCLE, and create a neighbor-joining tree:

7. Generate a sequence identity based heatmap of your aligned sequences using R. If necessary convert your sequence alignment to the ubiquitous FASTA format (Seaview can read in clustal format and "Save as" FASTA format for example). Read this FASTA format alignment into R with the help of functions in the Bio3D package. Calculate a sequence identity matrix (again using a function within the Bio3D package). Then generate a heatmap plot and add to your report. Do make sure your labels are visible and not cut at the gure margins.

8. Using R/Bio3D (or an online blast server if you prefer), search the main protein structure database for the most similar atomic resolution structures to your aligned sequences. List the top 3 unique hits (i.e. not hits representing different chains from the same structure) along with their Evalue and sequence identity to your query. Please also add annotation

details of these structures. For example include the annotation terms PDB identier (structureId), Method used to solve the structure (experimentalTechnique), resolution (resolution), and source organism (source). HINT: You can use a single sequence from your alignment or generate a consensus sequence from your alignment using the Bio3D function consensus(). The Bio3D functions blast.pdb(), plot.blast() and pdb.annotate() are likely to be of most relevance for completing this task. Note that the results of blast.pdb() contain the hits PDB identier (or pdb.id) as well as Evalue and identity. The results of pdb.annotate() contain the other annotation terms noted above. Note that if your consensus sequence has lots of gap positions then it will be better to use an original sequence from the alignment for your search of the PDB. In this case you could chose the sequence with the highest identity to all others in your alignment by calculating the row-wise maximum from your sequence identity matrix.

ID <chr></chr>	Technique <chr></chr>	Resolution <dbl></dbl>	Source <chr></chr>	Evalue <dbl></dbl>	Identity <dbl></dbl>
8VRW_B	EM	3.03	Homo sapiens	1.21e-77	68.846
4AH2_B	X-ray	2.36	Homo sapiens	3.31e-66	74.619
3PDO_B	X-ray	1.95	Homo sapiens	4.52e-66	74.619

9. Using AlphaFold notebook generate a structural model using the default parameters for your novel protein sequence. Note that this can take some time depending upon your sequence length. If your model is taking many hours to generate or your input sequence yields a "too many amino acids" (i.e. length) error you can focus on a single domain from your sequence - identify region by searching for PFAM domain matches. Once complete save the resulting PDB format le for your records. Finally, generate a molecular gure of your generated PDB structure using the Mol* viewer online (or VMD/PyMol/Chimera if you prefer). To complete your analysis you can optionally highlight conserved residues that are likely to be functional as spacell and the protein as cartoon colored by local alpha fold pLDDT quality score. This score is contained in the B-factor column of your PDB downloaded le. Please use a white or transparent background for your gure (i.e. not the default black in PyMol/VMD/Chimera etc.).

10. Perform a "Target" search of ChEMBEL (https://www.ebi.ac.uk/chembl/) with your novel sequence. Are there any Target Associated Assays and ligand efciency data reported that may be useful starting points for exploring potential inhibition of your novel protein? If there are no assays listed here simply list "non available as of [date]".

Non available as of 12/2/2024.

Find A Gene Project

Sabrina Wu (A16731683)

[Q7] Generate a sequence identity based heatmap of your aligned sequences using R

library(bio3d)

Warning: package 'bio3d' was built under R version 4.4.2

data <- read.fasta("bimm143projectseaview")</pre>

matrix <- seqidentity(data)</pre>

heatmap(matrix, margins = c(12, 12))

[Q8] Using R/Bio3D (or an online blast server if you prefer), search the main protein structure database for the most similar atomic resolution structures to your aligned sequences.

consensus<- consensus(data)</pre>

blast <- blast.pdb(consensus\$seq)</pre>

head(blast)

\$hit.tbl

	queryid	subjectids	identity	alignmentlength	mismatches	gapopens
1	Query_5967171	8VRW_B	68.846	260	37	25
2	Query_5967171	4AH2_B	74.619	197	15	21
3	Query_5967171	3PDO_B	74.619	197	15	21
4	Query_5967171	1AQD_B	74.619	197	15	21
5	Query_5967171	7YXB_B	73.232	198	18	21
6	Query_5967171	4X5X_B	74.112	197	16	21
7	Query_5967171	1ZGL_B	74.346	191	14	21
8	Query_5967171	7YX9_B	73.232	198	18	21
9	Query_5967171	2WBJ_B	72.222	198	20	21
10	Query_5967171	1YMM_B	72.589	197	19	21
11	Query_5967171	4I5B_B	74.869	191	13	21
12	Query_5967171	4FQX_B	74.479	192	14	21
13	Query_5967171	3L6F_B	74.869	191	13	21
14	Query_5967171	1FYT_B	74.869	191	13	21
15	Query_5967171	8CMB_B	73.958	192	15	21
16	Query_5967171	1FV1_B	74.074	189	14	21
17	Query_5967171	6QZC_BBB	75.132	189	12	21
18	Query_5967171	6CQJ_B	75.132	189	12	21
19	Query_5967171	1HXY_B	75.132	189	12	21
20	Query_5967171	6HBY_B	75.132	189	12	21
21	Query_5967171	8VSJ_B	75.132	189	12	21
22	Query_5967171	5V4N_C	75.132	189	12	21
23	Query_5967171	1D5X_B	73.822	191	15	21
24	Query_5967171	5JLZ_B	73.057	193	17	21
25	Query_5967171	4MCY_B	71.574	197	21	21

26	Query_5967171	6VOY_B	71.574	197	21	21
27	Query_5967171	8EUQ_B	74.074	189	14	21
28	Query_5967171	8TRQ_B	73.822	191	15	21
29	Query_5967171	1D5M_B	73.298	191	16	21
30	Query_5967171	1DLH_B	75.401	187	11	21
31	Query_5967171	7NZE_BBB	73.684	190	15	21
32	Query_5967171	6BIJ_B	74.074	189	14	21
33	Query_5967171	8TRL_B	74.074	189	14	21
34	Query_5967171	306F_B	73.822	191	15	21
35	Query_5967171	6CPO_B	73.545	189	15	21
36	Query_5967171	6ATF_B	71.574	197	21	22
37	Query_5967171	6BIR_B	71.066	197	22	21
38	Query_5967171	4MD5_B	71.066	197	22	21
39	Query_5967171	7Z0Q_D	71.212	198	22	21
40	Query_5967171	4MDI_B	71.066	197	22	21
41	Query_5967171	6ATZ_B	74.332	187	13	22
42	Query_5967171	6CPL_B	73.016	189	16	21
43	Query_5967171	1BX2_B	73.016	189	16	21
44	Query_5967171	2FSE_B	72.727	187	16	20
45	Query_5967171	5V4M_C	73.016	189	16	21
46	Query_5967171	7N19_B	71.277	188	17	21
47	Query_5967171	3QIU_B	68.205	195	27	20
48	Query_5967171	4P2Q_B	67.000	200	31	20
49	Query_5967171	2Q6W_B	70.526	190	19	21
50	Query_5967171	1FNG_B	68.205	195	27	20
51	Query_5967171	1FNE_B	68.205	195	27	20
52	Query_5967171	3QIB_B	68.205	195	27	20
53	Query_5967171	1I3R_B	68.205	195	27	20
54	Query_5967171	1A6A_B	70.745	188	18	21
55	Query_5967171	3C5J_B	71.429	189	19	22
56	Query_5967171	4H25_B	72.193	187	17	22
57	Query_5967171	6BGA_B	67.005	197	30	20
58	Query_5967171	4P20_B	67.005	197	30	20
59	Query_5967171	1IEB_B	68.229	192	26	20
60	Query_5967171	4H1L_B	71.658	187	18	22
61	Query_5967171	6PX6_B	59.227	233	53	22
62	Query_5967171	1KTD_B	67.027	185	26	20
63	Query_5967171	8VSP_B	56.223	233	60	21
64	Query_5967171	1R5V_B	66.848	184	26	20
65	Query_5967171	1KT2_B	67.033	182	25	20
66	Query_5967171	1S9V_B	64.130	184	33	19
67	Query_5967171	5KSU_B	63.784	185	34	19
68	Query_5967171	7ZAK_B	62.162	185	39	18

69	Query_5967171	7KEI_B	62.626	198	39	21
70	Query_5967171	6DIG_B	62.626	198	39	21
71	Query_5967171	1UVQ_B	64.324	185	33	20
72	Query_5967171	8JR4_B	60.847	189	39	18
73	Query_5967171	4D8P_B	64.286	182	32	19
74	Query_5967171	6XP6_B	62.842	183	35	19
75	Query_5967171	3WEX_B	59.474	190	46	18
76	Query_5967171	6U3M_B	62.842	183	35	19
77	Query_5967171	40ZF_B	62.842	183	35	19
78	Query_5967171	6MFF_C	62.842	183	35	19
79	Query_5967171	6MFG_E	62.500	184	36	19
80	Query_5967171	7QHP_B	59.091	198	47	20
81	Query_5967171	4P5M_B	61.878	181	38	18
82	Query_5967171	7SG1_B	64.045	178	31	19
83	Query_5967171	4P5K_B	61.878	181	38	18
84	Query_5967171	3LQZ_B	61.878	181	38	18
85	Query_5967171	7SG2_B	64.045	178	31	19
86	Query_5967171	7SGO_B	64.045	178	31	19
87	Query_5967171	4P4K_B	61.878	181	38	18
88	Query_5967171	3PL6_B	60.000	185	41	17
89	Query_5967171	4GRL_B	60.326	184	40	17
90	Query_5967171	4P57_B	61.326	181	39	18
91	Query_5967171	7T6I_B	61.582	177	37	18
92	Query_5967171	8W85_D	63.636	176	31	19
93	Query_5967171	7T2A_B	61.111	180	39	18
94	Query_5967171	7T2B_B	61.111	180	39	18
95	Query_5967171	8W86_D	63.636	176	31	19
96	Query_5967171	2P24_B	57.000	200	49	19
97	Query_5967171	8W83_D	63.636	176	31	19
98	Query_5967171	8W84_D	63.636	176	31	19
99	Query_5967171	4GG6_B	61.326	181	37	19
100	Query_5967171	4Z7U_B	59.783	184	41	19
101	Query_5967171	1JK8_B	61.236	178	36	19
102	Query_5967171	1F3J_B	61.582	177	36	19
103	Query_5967171	5KSA_B	59.783	184	41	19
104	Query_5967171	8VCX_B	61.236	178	36	19
105	Query_5967171	5KS9_B	59.783	184	41	19
106	Query_5967171	6XC9_C	59.783	184	41	19
107	Query_5967171	2NNA_B	61.236	178	36	19
108	Query_5967171	4P46_D	60.335	179	37	19
109	Query_5967171	6DFS_D	61.582	177	36	19
110	Query_5967171	6BLX_B	61.582	177	36	19
111	Query_5967171	4P23_D	59.218	179	39	18

119	Query_59671	71	5UJT_E	2 6	31.01	7		177		36	1	19
	Query_59671		6BLQ_E		31.51 31.58			177		36		19
	Query_59671		8VD0_0		31.23			178		36		19
	Query_59671		2PXY_I		59.21			179		41		18
	Query_59671		6DFX_E		31.01			177		36		19
	Query_59671		2IAD_E		30.67			178		36		20
	Query_59671		7RDV_E		30.07 31.36			176		34		20
	Query_59671		1IAO_E		30.11			178		37		20
	Query_59671		4IOP_I		56.35			181		46		19
	Query_59671		7PDY_E		17.56			185		64		16
	Query_59671		7APZ_E		16.48			185		66		16
	Query_59671		6T3Y_E		18.57			175		57		16
	Query_59671		6KVM_E		17.31			186		65		17
	Query_59671		6ZWA_E		17.01 19.71			175		55		17
120	q.start q.e		_				bitscore		11700			
1	-	17	4			.e-77	236.0	_	3.46	_		8VRW_B
2		83	33			.e-66	205.0		78.17			4AH2_B
3		83	3			2e-66	203.0		78.17			3PDO_B
4		83	2			3e-66	203.0		78.17			1AQD_B
5		84	1			le-65	201.0		77.27			7YXB B
6		83	33			8e-65	201.0		7.66			4X5X_B
7		77	2			e-64	198.0		7.49			1ZGL_B
8		84	20			'e-64	199.0		7.27			7YX9_B
9		84	2			.e-63	197.0		7.27			2WBJ_B
10		83	2			6-63	197.0		7.16			1YMM_B
11		77	1			8e-63	196.0		78.01			4I5B_B
12		78	8			e-63	196.0		78.12			4FQX_B
13		77	3			2e-63	195.0		78.01			3L6F_B
14		77	2			2e-63	195.0		78.01			1FYT_B
15		75	3			e-62	194.0		77.60			8CMB_B
16		75	2			'e-62	194.0		7.25			1FV1_B
17		75	3			e-62	194.0		77.78			6QZC_b
18		75	1		2.09		194.0		77.78			6CQJ_B
19		75	2			2e-62	194.0		77.78			1HXY_B
20		75	3			e-62	194.0		77.78			6HBY_B
21		75	2			le-62	193.0		77.78			8VSJ_B
22		75	28			8e-62	194.0		77.78			5V4N_C
23		77	2			8e-62	193.0		76.96			1D5X_B
24		79	2			Se-62	193.0		75.65			5JLZ_B
25		83	4			e-62	192.0		4.62			4MCY_B
26		83	2			.e-62	192.0		4.62			6VOY_B
27		75	29			e-61	193.0		6.72			8EUQ_B
28		77	2			2e-61	192.0		6.44			8TRQ_B
		•	_									

29	22	177	2	192 1.34e-61	192.0	76.96	140.16502 1D5M_B
30	24	175	2	188 1.57e-61	191.0	78.07	140.00662 1DLH_B
31	22	176	2	191 1.73e-61	191.0	76.84	139.90957 7NZE_b
32	22	175	1	189 1.79e-61	191.0	76.72	139.87548 6BIJ_B
33	22	175	2	190 2.03e-61	191.0	76.72	139.74965 8TRL_B
34	22	177	31	221 2.46e-61	192.0	76.96	139.55753 306F_B
35	22	175	2	190 4.22e-61	190.0	77.25	139.01786 6CPO_B
36	22	183	4	200 4.27e-61	191.0	74.62	139.00608 6ATF_B
37	22	183	4	200 1.18e-60	189.0	74.11	137.98959 6BIR_B
38	22	183	4	200 2.03e-60	189.0	74.11	137.44707 4MD5_B
39	22	184	1	198 2.39e-60	189.0	75.25	137.28381 7Z0Q_D
40	22	183	4	200 2.84e-60	189.0	73.60	137.11130 4MDI_B
41	24	175	2	188 4.13e-60	188.0	77.01	136.73683 6ATZ_B
42	22	175	2	190 4.85e-60	187.0	75.13	136.57613 6CPL_B
43	24	177	2	190 7.92e-60	187.0	77.25	136.08571 1BX2_B
44	24	175	1	187 8.87e-60	187.0	76.47	135.97243 2FSE_B
45	22	175	28	216 1.20e-59	187.0	76.72	135.67020 5V4M_C
46	24	175	1	187 6.88e-57	179.0	74.47	129.31873 7N19_B
47	24	183	2	196 8.02e-57	180.0	73.85	129.16541 3QIU_B
48	24	188	8	207 9.91e-57	180.0	73.00	128.95381 4P2Q_B
49	22	175	2	190 1.22e-56	179.0	74.21	128.74591 2Q6W_B
50	24	183	30	224 1.32e-56	180.0	73.85	128.66713 1FNG_B
51	24	183	30	224 1.37e-56	180.0	73.85	128.62995 1FNE_B
52	24	183	8	202 1.82e-56	179.0	73.85	128.34593 3QIB_B
53	24	183	34	228 1.96e-56	180.0	73.85	128.27182 1I3R_B
54	25	176	1	187 2.26e-56	178.0	74.47	128.12940 1A6A_B
55	22	175	2	190 6.33e-56	177.0	74.60	127.09946 3C5J_B
56	24	175	2	188 7.31e-56	177.0	75.40	126.95552 4H25_B
57	27	188	32	228 8.77e-56	178.0	73.10	126.77343 6BGA_B
58	27	188	35	231 1.24e-55	178.0	73.10	126.42707 4P20_B
59	27	183	36	227 2.97e-55	177.0	73.96	125.55362 1IEB_B
60	24	175	1	187 5.86e-55	174.0	74.87	124.87403 4H1L_B
61	2	192	7	239 3.91e-53	172.0	65.24	120.67347 6PX6_B
62	24	173	31	215 5.79e-50	163.0	72.43	113.37312 1KTD_B
63	2	192	7	239 8.81e-50	165.0	63.09	112.95337 8VSP_B
64	25	173	2	185 3.71e-49	160.0	72.28	111.51564 1R5V_B
65	27	173	32	213 2.71e-48	159.0	72.53	109.52714 1KT2_B
66	33	183	15	198 4.24e-46	152.0	68.48	104.47435 1S9V_B
67	33	184	15	199 4.44e-46	152.0	68.65	104.42826 5KSU_B
68	30	183	14	198 8.42e-46	154.0	69.73	103.78830 7ZAK_B
69	33	197	14	209 8.90e-46	152.0	67.17	103.73286 7KEI_B
70	33	197	19	214 1.54e-45	151.0	67.17	103.18455 6DIG_B
71	33	184	13	197 1.83e-45	150.0	69.19	103.01201 1UVQ_B

72	22	175	2	190 6.53e-45	149.0	66.67	101.73992 8JR4_B
73	33	181	48	229 1.70e-44	150.0	68.13	100.78312 4D8P_B
74	33	182	16	198 7.87e-44	147.0	67.21	99.25069 6XP6_B
75	27	185	29	218 7.94e-44	147.0	67.89	99.24183 3WEX_B
76	33	182	21	203 1.36e-43	146.0	67.21	98.70367 6U3M_B
77	33	182	28	210 1.55e-43	146.0	67.21	98.57290 40ZF_B
78	33	182	41	223 2.42e-43	146.0	67.21	98.12739 6MFF_C
79	33	183	41	224 4.72e-43	145.0	66.85	97.45935 6MFG_E
80	22	185	28	225 4.94e-43	145.0	65.15	97.41379 7QHP_B
81	27	176	32	212 5.23e-43	145.0	67.96	97.35675 4P5M_B
82	33	177	25	202 6.54e-43	144.0	67.98	97.13322 7SG1_B
83	27	176	32	212 7.24e-43	144.0	67.96	97.03154 4P5K_B
84	27	176	32	212 8.89e-43	144.0	67.96	96.82623 3LQZ_B
85	33	177	28	205 9.24e-43	144.0	67.98	96.78762 7SG2_B
86	33	177	30	207 1.10e-42	144.0	67.98	96.61326 7SGO_B
87	27	176	32	212 1.20e-42	144.0	67.96	96.52625 4P4K_B
88	33	184	17	201 1.62e-42	143.0	64.86	96.22615 3PL6_B
89	33	183	17	200 2.21e-42	143.0	64.67	95.91558 4GRL_B
90	27	176	32	212 4.04e-42	142.0	67.96	95.31233 4P57_B
91	30	175	12	188 6.82e-42	141.0	68.93	94.78871 7T6I_B
92	33	175	41	216 9.78e-42	142.0	67.61	94.42823 8W85_D
93	27	175	9	188 1.04e-41	141.0	67.78	94.36677 7T2A_B
94	27	175	11	190 1.08e-41	141.0	67.78	94.32903 7T2B_B
95	33	175	49	224 1.70e-41	142.0	67.61	93.87536 8W86_D
96	30	197	64	258 1.91e-41	142.0	64.50	93.75889 2P24_B
97	33	175	45	220 2.09e-41	141.0	67.61	93.66882 8W83_D
98	33	175	45	220 2.37e-41	141.0	67.61	93.54310 8W84_D
99	33	180	30	210 2.72e-41	140.0	66.85	93.40536 4GG6_B
100	33	183	28	211 4.60e-40	137.0	65.22	90.57735 4Z7U_B
101	33	177	13	190 5.29e-40	137.0	66.29	90.43759 1JK8_B
102	32	176	11	187 5.35e-40	136.0	66.67	90.42631 1F3J_B
103	33	183	40	223 6.19e-40	137.0	65.22	90.28047 5KSA_B
104	33	177	15	192 7.11e-40	136.0	66.29	90.14190 8VCX_B
105	33	183	45	228 8.42e-40	137.0	65.22	89.97279 5KS9_B
106	33	183	45	228 8.88e-40	137.0	65.22	89.91960 6XC9_C
107	33	177	30	207 1.09e-39	136.0	66.29	89.71464 2NNA_B
108	32	176	40	218 1.20e-39	136.0	67.04	89.61850 4P46_D
109	32	176	39	215 1.46e-39	136.0	66.67	89.42238 6DFS_D
110	32	176	39	215 1.96e-39	136.0	66.67	89.12787 6BLX_B
111	32	176	40	218 2.03e-39	136.0	65.92	89.09278 4P23_D
112	33	176	13	189 2.75e-39	135.0	66.10	88.78922 5UJT_B
113	32	176	39	215 2.76e-39	135.0	66.67	88.78559 6BLQ_B
114	33	177	36	213 3.57e-39	135.0	66.29	88.52825 8VDO_C

```
115
         30
              176
                        11
                             189 6.59e-39
                                              134.0
                                                         65.92
                                                                  87.91527 2PXY_D
116
         33
              176
                             215 7.37e-39
                                              134.0
                                                                  87.80340 6DFX_B
                        39
                                                         66.10
117
         32
              175
                        28
                             205 2.45e-38
                                              133.0
                                                         66.85
                                                                  86.60215 2IAD_B
118
         32
              173
                        11
                             186 3.96e-38
                                              132.0
                                                         67.05
                                                                  86.12199 7RDV_B
119
                             216 9.20e-38
                                                                  85.27903 1IAO B
         32
              175
                        39
                                              132.0
                                                         66.85
120
         30
              177
                         9
                             189 1.20e-35
                                              125.0
                                                         66.85
                                                                  80.40816 4IOP_D
121
         32
              183
                        41
                             225 4.37e-27
                                              104.0
                                                         58.38
                                                                  60.69503 7PDY_B
122
         32
              183
                        41
                             225 2.95e-26
                                              102.0
                                                         57.84
                                                                  58.78541 7APZ_B
123
         32
              173
                        49
                             223 2.99e-25
                                               99.8
                                                         58.29
                                                                  56.46935 6T3Y_B
124
              183
                             214 5.57e-25
                                               98.6
         31
                        29
                                                         58.06
                                                                  55.84723 6KVM_B
125
         32
              173
                        44
                             218 8.84e-25
                                               98.2
                                                                  55.38534 6ZWA_B
                                                         58.86
         acc
1
      8VRW_B
2
      4AH2_B
3
      3PDO_B
4
      1AQD_B
5
      7YXB_B
6
      4X5X_B
7
      1ZGL_B
8
      7YX9 B
9
      2WBJ_B
10
      1YMM_B
11
      4I5B_B
12
      4FQX_B
13
      3L6F_B
14
      1FYT_B
15
      8CMB_B
16
      1FV1_B
17
    6QZC_BBB
18
      6CQJ_B
19
      1HXY_B
20
      6HBY_B
21
      8VSJ_B
22
      5V4N_C
23
      1D5X B
24
      5JLZ_B
      4MCY_B
25
26
      6V0Y_B
27
      8EUQ_B
28
      8TRQ_B
29
      1D5M_B
30
      1DLH_B
31
    7NZE_BBB
```

- 32 6BIJ_B
- 33 $8TRL_B$
- 34 306F_B
- 35 6CPO_B
- 36 6ATF_B
- 37 6BIR_B
- 4MD5_B 38
- 39 $7Z0Q_D$
- 40 4MDI_B
- 41 6ATZ_B
- 42 6CPL_B
- 43 1BX2_B 2FSE_B 44
- 45 $5V4M_C$
- 46 7N19_B
- 47 3QIU_B
- 48 4P2Q_B
- 49 2Q6W_B
- 50 1FNG_B
- 1FNE_B 51
- $3QIB_B$ 52
- 53 1I3R_B
- 54 $1A6A_B$
- 3C5J_B 55
- 56 4H25_B
- 6BGA_B 57
- 58 4P20_B
- 59 1IEB_B
- 4H1L_B 60
- 61 6PX6_B
- 62 1KTD_B
- 63 8VSP_B
- 64 1R5V_B
- 65 1KT2_B
- 66 1S9V_B 5KSU_B 67
- $7ZAK_B$ 68
- 69 7KEI_B
- 70 6DIG_B
- 71 1UVQ_B
- 72 8JR4_B
- 73 4D8P_B
- 74 6XP6_B

75 3WEX_B 76 6U3M_B 77 40ZF_B 78 6MFF_C 79 6MFG_E 7QHP_B 80 4P5M_B 81 82 $7SG1_B$ 83 4P5K_B 84 $3LQZ_B$ 7SG2_B 85 86 7SG0_B 4P4K_B 87 3PL6_B 88 89 4GRL_B 4P57_B 90 91 7T6I_B 92 8W85_D 7T2A_B 93 7T2B_B 94 8W86_D 95 96 2P24_B 97 8W83_D 8W84_D 98 99 4GG6_B 100 4Z7U_B 101 1JK8_B 102 1F3J_B 103 5KSA_B 104 8VCX_B 105 5KS9_B 106 6XC9_C 107 2NNA_B 108 4P46_D 109 6DFS_D 110 6BLX_B 4P23_D 111 112 5UJT_B 113 6BLQ_B 114 8VD0_C 115 2PXY_D

116

117

6DFX_B

2IAD_B

7RDV_B 118 119 1IAO_B 4IOP_D 120 7PDY_B 121 7APZ_B 122 123 6T3Y_B 124 6KVM_B 125 6ZWA_B

\$raw

	queryid	subjectids	${\tt identity}$	$\verb alignmentlength $	${\tt mismatches}$	gapopens
1	Query_5967171	8VRW_B	68.846	260	37	25
2	Query_5967171	4AH2_B	74.619	197	15	21
3	Query_5967171	3PDO_B	74.619	197	15	21
4	Query_5967171	1AQD_B	74.619	197	15	21
5	Query_5967171	7YXB_B	73.232	198	18	21
6	Query_5967171	4X5X_B	74.112	197	16	21
7	Query_5967171	1ZGL_B	74.346	191	14	21
8	Query_5967171	7YX9_B	73.232	198	18	21
9	Query_5967171	2WBJ_B	72.222	198	20	21
10	Query_5967171	1YMM_B	72.589	197	19	21
11	Query_5967171	4I5B_B	74.869	191	13	21
12	Query_5967171	4FQX_B	74.479	192	14	21
13	Query_5967171	3L6F_B	74.869	191	13	21
14	Query_5967171	1FYT_B	74.869	191	13	21
15	Query_5967171	8CMB_B	73.958	192	15	21
16	Query_5967171	1FV1_B	74.074	189	14	21
17	Query_5967171	6QZC_BBB	75.132	189	12	21
18	Query_5967171	6CQJ_B	75.132	189	12	21
19	Query_5967171	1HXY_B	75.132	189	12	21
20	Query_5967171	6HBY_B	75.132	189	12	21
21	Query_5967171	8VSJ_B	75.132	189	12	21
22	Query_5967171	5V4N_C	75.132	189	12	21
23	Query_5967171	1D5X_B	73.822	191	15	21
24	Query_5967171	5JLZ_B	73.057	193	17	21
25	Query_5967171	4MCY_B	71.574	197	21	21
26	Query_5967171	6V0Y_B	71.574	197	21	21
27	Query_5967171	8EUQ_B	74.074	189	14	21
28	Query_5967171	8TRQ_B	73.822	191	15	21
29	Query_5967171	1D5M_B	73.298	191	16	21
30	Query_5967171	1DLH_B	75.401	187	11	21
31	Query_5967171	7NZE_BBB	73.684	190	15	21
32	Query_5967171	6BIJ_B	74.074	189	14	21

33	Query_5967171	8TRL_B	74.074	189	14	21
34	Query_5967171	306F_B	73.822	191	15	21
35	Query_5967171	6CPO_B	73.545	189	15	21
36	Query_5967171	6ATF_B	71.574	197	21	22
37	Query_5967171	6BIR_B	71.066	197	22	21
38	Query_5967171	4MD5_B	71.066	197	22	21
39	Query_5967171	7Z0Q_D	71.212	198	22	21
40	Query_5967171	4MDI_B	71.066	197	22	21
41	Query_5967171	6ATZ_B	74.332	187	13	22
42	Query_5967171	6CPL_B	73.016	189	16	21
43	Query_5967171	1BX2_B	73.016	189	16	21
44	Query_5967171	2FSE_B	72.727	187	16	20
45	Query_5967171	5V4M_C	73.016	189	16	21
46	Query_5967171	7N19_B	71.277	188	17	21
47	Query_5967171	3QIU_B	68.205	195	27	20
48	Query_5967171	4P2Q_B	67.000	200	31	20
49	Query_5967171	2Q6W_B	70.526	190	19	21
50	Query_5967171	1FNG_B	68.205	195	27	20
51	Query_5967171	1FNE_B	68.205	195	27	20
52	Query_5967171	3QIB_B	68.205	195	27	20
53	Query_5967171	1I3R_B	68.205	195	27	20
54	Query_5967171	1A6A_B	70.745	188	18	21
55	Query_5967171	3C5J_B	71.429	189	19	22
56	Query_5967171	4H25_B	72.193	187	17	22
57	Query_5967171	6BGA_B	67.005	197	30	20
58	Query_5967171	4P20_B	67.005	197	30	20
59	Query_5967171	1IEB_B	68.229	192	26	20
60	Query_5967171	4H1L_B	71.658	187	18	22
61	Query_5967171	6PX6_B	59.227	233	53	22
62	Query_5967171	1KTD_B	67.027	185	26	20
63	Query_5967171	8VSP_B	56.223	233	60	21
64	Query_5967171	1R5V_B	66.848	184	26	20
65	Query_5967171	1KT2_B	67.033	182	25	20
66	Query_5967171	1S9V_B	64.130	184	33	19
67	Query_5967171	5KSU_B	63.784	185	34	19
68	Query_5967171	7ZAK_B	62.162	185	39	18
69	Query_5967171	7KEI_B	62.626	198	39	21
70	Query_5967171	6DIG_B	62.626	198	39	21
71	Query_5967171	1UVQ_B	64.324	185	33	20
72	Query_5967171	8JR4_B	60.847	189	39	18
73	Query_5967171	4D8P_B	64.286	182	32	19
74	Query_5967171	6XP6_B	62.842	183	35	19
75	Query_5967171	3WEX_B	59.474	190	46	18

76	Query_5967171	6U3M_B	62.842	183	35	19
77	Query_5967171	40ZF_B	62.842	183	35	19
78	Query_5967171	6MFF_C	62.842	183	35	19
79	Query_5967171	6MFG_E	62.500	184	36	19
80	Query_5967171	7QHP_B	59.091	198	47	20
81	Query_5967171	4P5M_B	61.878	181	38	18
82	Query_5967171	7SG1_B	64.045	178	31	19
83	Query_5967171	4P5K_B	61.878	181	38	18
84	Query_5967171	-	61.878	181	38	18
85		3LQZ_B 7SG2_B	64.045	178	31	19
	Query_5967171	75G2_Б 7SG0_В		178	31	
86	Query_5967171	_	64.045			19
87	Query_5967171	4P4K_B	61.878	181	38	18
88	Query_5967171	3PL6_B	60.000	185	41	17
89	Query_5967171	4GRL_B	60.326	184	40	17
90	Query_5967171	4P57_B	61.326	181	39	18
91	Query_5967171	7T6I_B	61.582	177	37	18
92	Query_5967171	8W85_D	63.636	176	31	19
93	Query_5967171	7T2A_B	61.111	180	39	18
94	Query_5967171	7T2B_B	61.111	180	39	18
95	Query_5967171	8W86_D	63.636	176	31	19
96	Query_5967171	2P24_B	57.000	200	49	19
97	Query_5967171	8W83_D	63.636	176	31	19
98	Query_5967171	8W84_D	63.636	176	31	19
99	Query_5967171	4GG6_B	61.326	181	37	19
100	· v =	4Z7U_B	59.783	184	41	19
	Query_5967171	1JK8_B	61.236	178	36	19
	Query_5967171	1F3J_B	61.582	177	36	19
	Query_5967171	5KSA_B	59.783	184	41	19
	Query_5967171	8VCX_B	61.236	178	36	19
	Query_5967171	5KS9_B	59.783	184	41	19
106	Query_5967171	6XC9_C	59.783	184	41	19
107	Query_5967171	2NNA_B	61.236	178	36	19
108	Query_5967171	4P46_D	60.335	179	37	19
109	Query_5967171	6DFS_D	61.582	177	36	19
110	Query_5967171	6BLX_B	61.582	177	36	19
111	Query_5967171	4P23_D	59.218	179	39	18
112	Query_5967171	5UJT_B	61.017	177	36	19
113	Query_5967171	6BLQ_B	61.582	177	36	19
114	Query_5967171	8VD0_C	61.236	178	36	19
115	Query_5967171	2PXY_D	59.218	179	41	18
116	Query_5967171	6DFX_B	61.017	177	36	19
117	Query_5967171	2IAD_B	60.674	178	36	20
118	Query_5967171	7RDV_B	61.364	176	34	20

119 Query_5967171 1IAO_B 60.112 178 37 120 Query_5967171 4IOP_D 56.354 181 46 121 Query_5967171 7PDY_B 47.568 185 64	
•	
- 12 I BULLETY DAD 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
122 Query_5967171 7APZ_B 46.486 185 66	
123 Query_5967171 6T3Y_B 48.571 175 57	
124 Query_5967171 6KVM_B 47.312 186 65	
125 Query_5967171 6ZWA_B 49.714 175 55	
q.start q.end s.start s.end evalue bitscore positives	
1 2 217 4 263 1.21e-77 236.0 73.46	
2 22 183 33 229 3.31e-66 205.0 78.17	
3 22 183 3 199 4.52e-66 203.0 78.17	
4 22 183 2 198 5.38e-66 203.0 78.17	
5 22 184 1 198 2.04e-65 201.0 77.27	
6 22 183 33 229 4.93e-65 202.0 77.66	
7 22 177 2 192 4.29e-64 198.0 77.49	
8 22 184 20 217 5.87e-64 199.0 77.27	
9 22 184 2 199 1.21e-63 197.0 77.27	
10 22 183 2 198 1.65e-63 197.0 77.16	
11 22 177 1 191 3.33e-63 196.0 78.01	
12 22 178 8 199 3.99e-63 196.0 78.12	
13 22 177 3 193 4.72e-63 195.0 78.01	
14 22 177 2 192 5.62e-63 195.0 78.01	
15	
16 22 175 2 190 1.77e-62 194.0 77.25	
17 22 175 3 191 1.99e-62 194.0 77.78	
18 22 175 1 189 2.09e-62 194.0 77.78	
19 22 175 2 190 2.32e-62 194.0 77.78	
20 22 175 3 191 2.35e-62 194.0 77.78	
21 22 175 2 190 2.64e-62 193.0 77.78	
22 22 175 28 216 3.98e-62 194.0 77.78	
23 22 177 2 192 4.23e-62 193.0 76.96	
24 22 179 2 194 5.96e-62 193.0 75.65	
25 22 183 4 200 8.90e-62 192.0 74.62	
26 22 183 2 198 9.01e-62 192.0 74.62	
27 22 175 29 217 1.19e-61 193.0 76.72	
28 22 177 2 192 1.22e-61 192.0 76.44	
29 22 177 2 192 1.34e-61 192.0 76.96	
30 24 175 2 188 1.57e-61 191.0 78.07	
31 22 176 2 191 1.73e-61 191.0 76.84	
32 22 175 1 189 1.79e-61 191.0 76.72	
33 22 175 2 190 2.03e-61 191.0 76.72	
34 22 177 31 221 2.46e-61 192.0 76.96	
35 22 175 2 190 4.22e-61 190.0 77.25	

36	22	183	4	200 4.27e-61	191.0	74.62
37	22	183	4	200 1.18e-60	189.0	74.11
38	22	183	4	200 2.03e-60	189.0	74.11
39	22	184	1	198 2.39e-60	189.0	75.25
40	22	183	4	200 2.84e-60	189.0	73.60
41	24	175	2	188 4.13e-60	188.0	77.01
42	22	175	2	190 4.85e-60	187.0	75.13
43	24	177	2	190 7.92e-60	187.0	77.25
44	24	175	1	187 8.87e-60	187.0	76.47
45	22	175	28	216 1.20e-59	187.0	76.72
46	24	175	1	187 6.88e-57	179.0	74.47
47	24	183	2	196 8.02e-57	180.0	73.85
48	24	188	8	207 9.91e-57	180.0	73.00
49	22	175	2	190 1.22e-56	179.0	74.21
50	24	183	30	224 1.32e-56	180.0	73.85
51	24	183	30	224 1.37e-56	180.0	73.85
52	24	183	8	202 1.82e-56	179.0	73.85
53	24	183	34	228 1.96e-56	180.0	73.85
54	25	176	1	187 2.26e-56	178.0	74.47
55	22	175	2	190 6.33e-56	177.0	74.60
56	24	175	2	188 7.31e-56	177.0	75.40
57	27	188	32	228 8.77e-56	178.0	73.10
58	27	188	35	231 1.24e-55	178.0	73.10
59	27	183	36	227 2.97e-55	177.0	73.96
60	24	175	1	187 5.86e-55	174.0	74.87
61	2	192	7	239 3.91e-53	172.0	65.24
62	24	173	31	215 5.79e-50	163.0	72.43
63	2	192	7	239 8.81e-50	165.0	63.09
64	25	173	2	185 3.71e-49	160.0	72.28
65	27	173	32	213 2.71e-48	159.0	72.53
66	33	183	15	198 4.24e-46	152.0	68.48
67	33	184	15	199 4.44e-46	152.0	68.65
68	30	183	14	198 8.42e-46	154.0	69.73
69	33	197	14	209 8.90e-46	152.0	67.17
70	33	197	19	214 1.54e-45	151.0	67.17
71	33	184	13	197 1.83e-45	150.0	69.19
72	22	175	2	190 6.53e-45	149.0	66.67
73	33	181	48	229 1.70e-44	150.0	68.13
74	33	182	16	198 7.87e-44	147.0	67.21
75	27	185	29	218 7.94e-44	147.0	67.89
76	33	182	21	203 1.36e-43	146.0	67.21
77	33	182	28	210 1.55e-43	146.0	67.21
78	33	182	41	223 2.42e-43	146.0	67.21

79	33	183	41	224	4.72e-43	145.0	66.85
80	22	185	28	225	4.94e-43	145.0	65.15
81	27	176	32	212	5.23e-43	145.0	67.96
82	33	177	25	202	6.54e-43	144.0	67.98
83	27	176	32	212	7.24e-43	144.0	67.96
84	27	176	32	212	8.89e-43	144.0	67.96
85	33	177	28	205	9.24e-43	144.0	67.98
86	33	177	30	207	1.10e-42	144.0	67.98
87	27	176	32	212	1.20e-42	144.0	67.96
88	33	184	17	201	1.62e-42	143.0	64.86
89	33	183	17	200	2.21e-42	143.0	64.67
90	27	176	32	212	4.04e-42	142.0	67.96
91	30	175	12	188	6.82e-42	141.0	68.93
92	33	175	41	216	9.78e-42	142.0	67.61
93	27	175	9	188	1.04e-41	141.0	67.78
94	27	175	11	190	1.08e-41	141.0	67.78
95	33	175	49	224	1.70e-41	142.0	67.61
96	30	197	64	258	1.91e-41	142.0	64.50
97	33	175	45	220	2.09e-41	141.0	67.61
98	33	175	45	220	2.37e-41	141.0	67.61
99	33	180	30	210	2.72e-41	140.0	66.85
100	33	183	28	211	4.60e-40	137.0	65.22
101	33	177	13	190	5.29e-40	137.0	66.29
102	32	176	11	187	5.35e-40	136.0	66.67
103	33	183	40	223	6.19e-40	137.0	65.22
104	33	177	15	192	7.11e-40	136.0	66.29
105	33	183	45	228	8.42e-40	137.0	65.22
106	33	183	45	228	8.88e-40	137.0	65.22
107	33	177	30	207	1.09e-39	136.0	66.29
108	32	176	40	218	1.20e-39	136.0	67.04
109	32	176	39	215	1.46e-39	136.0	66.67
110	32	176	39	215	1.96e-39	136.0	66.67
111	32	176	40	218	2.03e-39	136.0	65.92
112	33	176	13	189	2.75e-39	135.0	66.10
113	32	176	39	215	2.76e-39	135.0	66.67
114	33	177	36	213	3.57e-39	135.0	66.29
115	30	176	11	189	6.59e-39	134.0	65.92
116	33	176	39	215	7.37e-39	134.0	66.10
117	32	175	28	205	2.45e-38	133.0	66.85
118	32	173	11	186	3.96e-38	132.0	67.05
119	32	175	39	216	9.20e-38	132.0	66.85
120	30	177	9	189	1.20e-35	125.0	66.85
121	32	183	41	225	4.37e-27	104.0	58.38

```
122
        32
            183
                     41
                         225 2.95e-26
                                        102.0
                                                 57.84
123
        32
            173
                         223 2.99e-25
                                         99.8
                                                 58.29
                     49
                         214 5.57e-25
124
        31
            183
                     29
                                         98.6
                                                 58.06
125
        32
            173
                     44
                         218 8.84e-25
                                         98.2
                                                 58.86
```

\$url

"https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&FORMAT_OBJECT=Alignment&ALIGNMENT_VIEW=Tab

```
top_hits <- head(blast$hit.tbl,n=3)
top_hits</pre>
```

```
queryid subjectids identity alignmentlength mismatches gapopens q.start
1 Query_5967171
                    8VRW_B
                             68.846
                                                260
                                                            37
                                                                     25
2 Query_5967171
                    4AH2 B
                             74.619
                                                197
                                                            15
                                                                     21
                                                                             22
3 Query_5967171
                    3PDO_B
                             74.619
                                                197
                                                            15
                                                                     21
                                                                             22
                        evalue bitscore positives mlog.evalue pdb.id
 q.end s.start s.end
   217
             4
                 263 1.21e-77
                                    236
                                            73.46
                                                     177.1084 8VRW_B 8VRW_B
1
                  229 3.31e-66
2
   183
            33
                                    205
                                            78.17
                                                     150.7737 4AH2 B 4AH2 B
             3 199 4.52e-66
                                                     150.4621 3PDO_B 3PDO_B
3
   183
                                    203
                                            78.17
```

```
annotations <- pdb.annotate(top_hits$pdb.id)</pre>
```

```
results <- data.frame(
   ID = top_hits$pdb.id,
   Technique = annotations$experimentalTechnique,
   Resolution = annotations$resolution,
   Source = annotations$source,
   Evalue = top_hits$evalue,
   Identity = top_hits$identity
)
results</pre>
```

```
ID Technique Resolution Source Evalue Identity
1 8VRW_B EM 3.03 Homo sapiens 1.21e-77 68.846
2 4AH2_B X-ray 2.36 Homo sapiens 3.31e-66 74.619
3 3PDO_B X-ray 1.95 Homo sapiens 4.52e-66 74.619
```

[1] "project_10863_0/project_10863_0.a3m"

```
aln <- read.fasta(aln_file[1], to.upper = TRUE)</pre>
```

[1] " ** Duplicated sequence id's: 101 **"

```
sim <- conserv(aln)</pre>
```

```
con <- consensus(aln, cutoff = 0.5)
con$seq</pre>
```

```
[55] "-" "-" "-" "-"
    [91] "-" "-" "-" "-"
    [109] "-"
    [127] "-" "-" "-"
    [145] "-" "-" "-"
    [181] "-" "-" "-" "-" "-"
[199] "-" "-" "-" "-"
    [217] "-" "-" "-" "-"
    [235] "-" "-" "-"
[253] "-" "-" "-"
    [271] "-" "-" "-" "-"
[361] "-" "-" "-" "-"
    [379] "-" "-" "-" "-"
```