Экстремальные задачи (теорема Турана)

- **1.** (а) Докажите, что если граф не содержит треугольников, то $e \leqslant n^2/4$.
 - (b) Докажите, что если $e > n^2/4$, то в графе есть по крайней мере $\lfloor n/2 \rfloor$ треугольников.
- 2. Докажите, что если граф не содержит
 - (a) несамопересекающегося цикла длины 4, то $e < n^{3/2}$.
 - (b) подграфа $K_{3,2}$, то $e < 2n^{3/2}$.
- **3.** Имея n точек в пространстве \mathbb{R}^d , соединим рёбрами пары точек, расстояние между которыми равно 1. Это называется дистанционным графом. Обозначим через $E_n(d)$ максимальное число рёбер среди всевозможных дистанционных графов в \mathbb{R}^d с n вершинами. Докажите следующие утверждения:
 - (a) $E_n(2) > n[\log_2 n]/4$;
 - (b) $E_n(2) \leqslant 2n^{3/2}$.

Домашнее задание

- **4.** Докажите, что для любых n точек на плоскости существует не более n диаметров, т.е. (неупорядоченных) пар точек, расстояние между которыми равно максимуму из всех возможных расстояний между парами из этих n точек.
- **5.** (а) Докажите, что если граф не содержит подграфа $K_{3,3}$, то $e < 2n^{5/3}$.
 - (b) Докажите, что $E_n(3) \leqslant 2n^{5/3}$.
- **6.** Докажите, что $\frac{(n-1)^2}{4} \leqslant E_n(4) \leqslant \frac{2(n+4)^2}{5}$.