Алгоритмы и модели вычислений. Поиск подматрицы

Сергей Володин, 272 гр. 16 мая 2014 г.

1 Определения

- 1. Даны матрицы $P: m \times n, T: M \times N$, состоящие из 1 и 2. M > m, N > n.
- 2. Нумеруем строки и столбцы с нуля.
- 3. Определение: P входит в T с позиции $(i,j) \Leftrightarrow \forall (a,b) \in \overline{0,m-1} \times \overline{0,n-1} \hookrightarrow p^a_b = t^{i+a}_{j+b}$
- 4. Задача: найти пары (i, j), такие что P входит в T с (i, j).

2 Сведение к поиску подстроки

- 1. Определим $r(i) = \lfloor \frac{i}{N} \rfloor$ номер строки, $c(i) = i \mod N$ номер столбца (см. далее).
- 2. Запишем матрицу T в видем массива (строки $A)\ t_i = t_{c(i)}^{r(i)}.\ |t| = MN.$
- 3. Пусть $p^0,...,p^{m-1}$ строки матрицы P, записанные как массив чисел (строки). Обозначим $p=p^00^{N-n}p^10^{N-n}...p^{m-1}$. |p|=Nm+n. Тогда $p_i=p_{c(i)}^{r(i)}$
- 4. Пусть p входит в t с позиции i, причем $c(i) \leqslant N-n, \ r(i) \leqslant M-m$. Докажем, что это равносильно P входит в T с позиции (r(i), c(i)):
 - (а) p входит в t с позиции i \Leftrightarrow $\forall k \in \overline{0,Nm+n-1} \hookrightarrow \begin{bmatrix} p_k &= t_{k+i} \\ p_k &= 0 \\ t_{k+i} &= 0 \end{bmatrix}$. В t нет символов 0, поэтому \Leftrightarrow $\forall k \in \overline{0,Nm+n-1} \hookrightarrow \begin{bmatrix} p_k &= t_{k+i} & (1) \\ p_k &= 0 & (2) \end{bmatrix}$. При $c(k) \in \overline{0,n-1}$ $p_k \neq 0$, поэтому должно выполняться (1), для остальных должно выполняться (2), так как t не содержит 0. Поэтому \Leftrightarrow $\forall k \in \overline{0,Nm+n-1} : c(k) \in \overline{0,n-1} \hookrightarrow p_k = t_{k+i} \Leftrightarrow \forall k \in \overline{0,Nm+n-1} : c(k) \in \overline{0,n-1} \hookrightarrow p_{c(k)}^{r(k)} = t_{c(k+i)}^{r(k+i)}$

3 Время работы

- 1. |t| = MN, |p| = Nm + n, поэтому алгоритм поиска подстроки работает за $O(MN \log MN)$ (доказано в решении задания).
- 2. Заметим, что «очевидная» версия (перебор) работает за O(MNmn) O(MN) позиций и O(mn) на проверку вхождения.