Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки
Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни
«Алгоритми та структури даних-1. Основи алгоритмізації»
«Дослідження ітераційних циклічних алгоритмів»

Варіант <u>27</u>

Виконав студент	<u>ІП-15, Пономаренко Маргарита Альбертівна</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 27

Постановка задачі

Обчислити значення квадратного кореня із числа a > 0 із заданою точністю е на основі рекурентного співвідношення

$$x_{n+1} = \frac{1}{2} \cdot \left[x_n + \frac{a}{x_n} \right], \ x_0 = \frac{a}{2},$$

де x — попередн ε , x +₁ - наступне наближення до кореня. Точність обчислення вважається досягнутою, коли |x| -₁ - x |< 10 ^-5. В циклі будемо повторювати певні розрахункові дії поки буде виконуватися задана умова досягнення точності обчислення, а коли умови не буде виконуватися цикл закінчиться і виведеться результат обчислень.

Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Значення а	Невід'ємне дійсне число	a	Вхідні дані

Значення хо	Дійсне	xn	Проміжний результат
Значення х	Дійсне	x_next	Проміжний результат, вихідні дані
Степінь	Арифметична дія	^	Результат дії піднесення до степеня
Цілочисельне ділення	Арифметична дія	/	Результат дії ділення без остачі

У роботі використовується операція взяття цілої частини числа. Для позначення у псевдокоді будемо використовувати позначення "[]".

Також у роботі використовується операція, що буде повертати модуль цілого числа. За цю операцію буде відповідати функція abs(). Операція буде позначатися в роботі "abs()".

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо крок обчислення значення xn за наданою формулою.
- Крок 3. Деталізуємо крок обчислення значення наступного числа після хn за поданою формулою.
- Крок 4. Деталізуємо крок перевірки виконання умови досягнення точності обчислення.

Псевдокод
Крок 1
початок
введення а
обчислення значення xn
обчислення значення x_next
перевірка виконання умови досягнення точності обчислення
кінець
Крок 2
початок
введення а
xn := a/2
обчислення значення x_next
перевірка виконання умови досягнення точності обчислення
кінець
Крок 3
початок
введення а
xn := a/2
$x_n = 0.5 * [xn + a/xn]$

перевірка виконання умови досягнення точності обчислення

кінець

Крок 4

початок

введення а

$$xn := a/2$$

$$x_next := 0.5 * [xn + a/xn]$$

повторити

поки
$$abs(x_next - xn) > 10^-5$$

$$xn = x_next$$

$$x_next = 0.5*[xn + a/xn]$$

все повторити

виведення x_next

кінець

Блок схема

Випробування

Блок	Дія
	Початок
1	Введення: а = 0,5
2	xn := a/2 = 0,5/2 = 0,25
3	$x_next := 0.5*[xn + a/xn] = 0.5*[0.25 + 0.5/0.25] = 1$
4 (Цикл) Перевірка 1	$abs(x_next - xn) > 10^{-5}$
	$abs(1 - 0.25) > 10^-5$
	0,75 > 10^-5 - вірно
	$xn = x_next;$
	xn = 1
	$x_next = 0.5*[xn + a/xn]$
	$x_next = 0.5*[1 + 0.5/1] = 0.5$
4 (Цикл) Перевірка 2	$abs(x_next - xn) > 10^{-5}$
	$abs(0,5-1) > 10^-5$
	0,5 > 10^-5- вірно
	$xn = x_next;$
	xn = 0.5
	$x_next = 0.5*[xn + a/xn]$

Основи програмування – 1. Алгоритми та структури даних

	Кінець
4	Виведення: x_next = 0,5
	$x_next = 0.5*[0.5+0.5/0.5] = 0.5$

Висновки

Ми дослідили подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи вдалося створити алгоритм, який обчислює значення квадратного кореня із числа a > 0 із заданою точністю е на основі поданого рекурентного співвідношення.