Context-Free and Noncontext-Free Languages

Chapter 13

Languages That Are and Are Not Context-Free

a*b* is regular.

 $A^nB^n = \{a^nb^n : n \ge 0\}$ is context-free but not regular.

 $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$ is not context-free.

Languages and Machines

The Regular and the CF Languages

Theorem: The regular languages are a proper subset of the context-free languages.

Proof: In two parts:

- Every regular language is CF.
 - Every regular grammar is context-free.

or

- Every FSM is a PDA (that is, ignoring its stack).
- There exists at least one language that is CF but not regular.
 - AⁿBⁿ

How Many Context-Free Languages Are There?

Theorem: There is a countably infinite number of CFLs.

Proof:

- Upper bound: we can lexicographically enumerate all the CFGs.
- Lower bound: {a}, {aa}, {aaa}, ... are all CFLs.

So there must exist some languages that are not contextfree:

$$\{a^nb^nc^n:n\geq 0\}$$

Showing that L is Context-Free

Techniques for showing that a language *L* is context-free:

- 1. Exhibit a context-free grammar for *L*.
- 2. Exhibit a PDA for *L*.
- 3. Use the closure properties of context-free languages.

Unfortunately, these are weaker than they are for regular languages.

Showing that *L* is Not Context-Free

Remember the pumping argument for regular languages:

A Review of Parse Trees

A parse tree, derived by a grammar $G = (V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$,
- The root node is labeled S,
- Every other node is labeled with some element of V Σ ,
- If m is a nonleaf node labeled X and the children of m are labeled $x_1, x_2, ..., x_n$, then the rule $X \rightarrow x_1, x_2, ..., x_n$ is in R.

Example

$$E \rightarrow E + T$$

 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow (E)$
 $F \rightarrow id$

Some Tree Basics

The *height* of a tree is the length of the longest path from the root to any leaf.

The **branching factor** of a tree is the largest number of children associated with any node in the tree.

Theorem: The length of the yield of any tree T with height h and branching factor b is $\leq b^h$.

From Grammars to Trees

Given a context-free grammar G:

- Let *n* be the number of nonterminal symbols in *G*.
- Let b be the branching factor of G, i.e., $\max\{|\alpha| : A \to \alpha \text{ in } G\}$

Suppose that *T* is generated by *G* and no nonterminal appears more than once on any path:

The maximum height of *T* is: *n*

The maximum length of T's yield is: b^n

This time we use parse trees, not automata as the basis for our argument.

If w is "long" ($|w| > b^n$), then its parse trees must look like:

Choose one such tree such that there's no other with fewer nodes. Choose the X's the bottommost instances of a repeating nonterminal.

We have the derivations:

$$S \Rightarrow^* uXz \Rightarrow^* uxz \in L(G)$$

 $S \Rightarrow^* uXz \Rightarrow^* uvXyz \Rightarrow^* uvvXyyz \Rightarrow^* uvvxyyz \in L(G)$

We can similarly derive all the strings: uv^2xy^2z , uv^3xy^3z , ... $\in L(G)$

Thus: $\forall q \geq 0$, $uv^qxy^qz \in L(G)$

vy ≠ ε

Proof: If $vy = \varepsilon$, then the derivation $S \Rightarrow^* uXz \Rightarrow^* uxz$ would also yield w and it would create a parse tree with fewer nodes. But that contradicts the assumption that we started with a tree with the smallest possible number of nodes.

The height of the subtree rooted at X[1] is at most: n + 1 (because the X's are the bottommost repeated nonterminals)

So $|vxy| \leq b^{n+1}$.

If *L* is a context-free language, then $\exists k \geq 1$ such that any $w \in L$ with $|w| \geq k$ can be written as w = uvxyz, for some $u, v, x, y, z \in \Sigma^*$, such that

- $vy \neq \varepsilon$,
- $|vxy| \le k$ and
- $\forall q \geq 0$, $uv^q x y^q z \in L$

What Is k?

k serves two roles:

- How long must w be to guarantee it is pumpable?
- What's the bound on |vxy|?

Let *n* be the number of nonterminals in *G*. Let *b* be the branching factor of *G*.

How Long Must w be?

If height(T) > n, then some nonterminal occurs more than once on some path. So T is pumpable.

If $height(T) \leq n$, then $|uvxyz| \leq b^n$.

So if $|w| = |uvxyz| > b^n$, w = uvxyz must be pumpable.

What's the Bound on |vxy|?

Recall that we are considering the bottom-most two instances of a repeated nonterminal. Then the yield of the upper one has length at most b^{n+1} . That is, $|vxy| \le b^{n+1}$.

So, we need $k = \max(b^n + 1, b^{n+1})$; let $k = b^{n+1}$.

Example

grammar:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

$$n = 3$$

$$b = 3$$

$$k = 3^4 = 81$$

string

$$w = id + id * id$$

$$w = uvxyz$$

$$u = id +$$

$$v = \varepsilon$$

$$x = id$$

$$y = *id$$

$$z = \varepsilon$$

$$Vy \neq \varepsilon$$
,

$$|vxy| \leq k$$

$$\forall q \geq 0$$
:

$$uv^qxy^qz = id+id(*id)^q$$
 is

in the language
$$L(G)$$

An Example of Pumping: AnBnCn

$$\mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}}=\left\{\mathtt{a}^{n}\mathtt{b}^{n}\mathtt{c}^{n},\,n\geq0\right\}$$

Choose
$$w = a^k b^k c^k = uvxyz$$

1 | 2 | 3

If v or y spans regions, then for q = 2 the order of the letters changes.

If v and y each contain only one letter, then for q = 2 the numbers of letters are not the same.

An Example of Pumping: $\{a^{n^2}: n \ge 0\}$

$$L = \{a^{n^2}, n \geq 0\}.$$

For $n = k^2$ we have $w = a^{k^4} = uvxyz$

 $vy = a^p$, for some nonzero p.

For q=2, a^{k^4+p} must be in L but it is too short.

The next longer string in *L*, for $n = k^2 + 1$, is $a^{(k^2+1)^2} = a^{k^4+2k^2+1}$

That means, $p = 2k^2+1$ but $p = |vy| \le k$.

Nested and Cross-Serial Dependencies

PalEven = $\{ww^R : w \in \{a, b\}^*\}$

The dependencies are nested – is context-free

WW =
$$\{ww : w \in \{a, b\}^*\}$$

Cross-serial dependencies – is not context-free

WW = $\{ww : w \in \{a, b\}^*\}$

Let $a^{k+1}b^{k+1}a^{k+1}b^{k+1} = uvxyz$

For q=0, we have that $uxz \in WW$, that is, uxz = ww for some w.

Observe that uxz still has the shape $a^+b^+a^+b^+$ (because $|vxy| \le k$ so deleting v and y cannot remove more than k symbols). Moreover, only one or two (adjacent) same-letter regions are affected. Also, uxz = ww means that w must have the shape a^+b^+ .

If one region only is decreased, then ww is not in WW.

If two (adjacent) regions are decreased, then ww is not in WW.

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

- Union
- Concatenation
- Kleene star
- Reverse

Closure Under Union

Let
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$
, and $G_2 = (V_2, \Sigma_2, R_2, S_2)$.

Assume that G_1 and G_2 have disjoint sets of nonterminals, not including S.

Let
$$L = L(G_1) \cup L(G_2)$$
.

We can show that *L* is CF by exhibiting a CFG for it:

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}, S)$$

Closure Under Concatenation

Let
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$
, and $G_2 = (V_2, \Sigma_2, R_2, S_2)$.

Assume that G_1 and G_2 have disjoint sets of nonterminals, not including S.

Let
$$L = L(G_1)L(G_2)$$
.

We can show that *L* is CF by exhibiting a CFG for it:

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}, S)$$

Closure Under Kleene Star

Let $G = (V, \Sigma, R, S_1)$.

Assume that G does not have the nonterminal S.

Let $L = L(G)^*$.

We can show that *L* is CF by exhibiting a CFG for it:

$$G = (V_1 \cup \{S\}, \Sigma_1, R_1 \cup \{S \rightarrow \epsilon, S \rightarrow SS_1\}, S)$$

Closure Under Reverse

 $L^{R} = \{ w \in \Sigma^{*} : w = x^{R} \text{ for some } x \in L \}.$

Let $G = (V, \Sigma, R, S)$ be a context-free grammar.

Every rule in G is of the form $X \to \alpha$, for $\alpha \in V^*$.

Construct, from G, a new grammar G', such that $L(G') = L^{R}$: $G' = (V_G, \Sigma_G, R', S_G)$, where R' is constructed as follows:

• For every rule $X \to \alpha$ in G, add $X \to \alpha^R$.

Closure Under Intersection

The context-free languages are not closed under intersection:

The proof is by counterexample. Let:

$$L_1 = \{a^nb^nc^m: n, m \ge 0\}$$
 /* equal a's and b's.
 $L_2 = \{a^mb^nc^n: n, m \ge 0\}$ /* equal b's and c's.

Both L_1 and L_2 are context-free, since there exist straightforward context-free grammars for them.

But now consider:

$$L = L_1 \cap L_2$$
$$= \{a^n b^n c^n : n \ge 0\}$$

Closure Under Complement

The context-free languages are not closed under complement:

$$L_1 \cap L_2 = \neg(\neg L_1 \cup \neg L_2)$$

The context-free languages are closed under union, so if they were closed under complement, they would be closed under intersection (which they are not).

Closure Under Complement An Example

¬AⁿBⁿCⁿ is context-free:

But $\neg(\neg A^nB^nC^n) = A^nB^nC^n$ is not context-free.

Closure Under Difference

The context-free languages are not closed under difference:

$$\neg L = \Sigma^* - L$$
.

 Σ^* is context-free. So, if the context-free languages were closed under difference, the complement of any context-free language would necessarily be context-free. But we just showed that that is not so.

The Intersection of a Context-Free Language and a Regular Language is Context-Free

$$L = L(M_1)$$
, a PDA = $(K_1, \Sigma, \Gamma_1, \Delta_1, s_1, A_1)$.
 $R = L(M_2)$, a deterministic FSM = $(K_2, \Sigma, \delta, s_2, A_2)$.

We construct a new PDA, M_3 , that accepts $L \cap R$ by simulating the parallel execution of M_1 and M_2 .

$$M = (K_1 \times K_2, \Sigma, \Gamma_1, \Delta, (s_1, s_2), A_1 \times A_2).$$

Insert into Δ :

For each rule
$$((q_1, a, \beta), (p_1, \gamma))$$
 in Δ_1 , and each rule (q_2, a, p_2) in δ , $(((q_1, q_2), a, \beta), ((p_1, p_2), \gamma))$.

For each rule $((q_1, \quad \epsilon, \beta), \ (p_1, \quad \gamma) \text{ in } \Delta_1,$ and each state $q_2 \quad \text{in } K_2,$ $(((q_1, q_2), \epsilon, \beta), ((p_1, q_2), \gamma)).$

This works because: we can get away with only one stack.

The Difference between a Context-Free Language and a Regular Language is Context-Free

Theorem: The difference $(L_1 - L_2)$ between a context-free language L_1 and a regular language L_2 is context-free.

Proof: $L_1 - L_2 = L_1 \cap \neg L_2$.

If L_2 is regular then so is $\neg L_2$.

If L_1 is context-free, so is $L_1 \cap \neg L_2$.

Using intersection with a regular language

$$L = \{w \in \{a, b, c\}^* : \#_a(w) = \#_b(w) = \#_c(w)\}$$

If L were context-free, then $L' = L \cap a^*b^*c^*$ would also be context-free.

But
$$L' = A^n B^n C^n$$

So neither is *L*.