Reinforcement Learning II

Lecture 21

Reminer: Resources

Sutton and Barto, 1998

Reinforcement Learning: An Introduction

Draft of 2018 edition available free online:

http://www.incompleteideas.net/book/the-book-2nd.html

This reinforcement learning series draws heavily on these resources

David Silver, 2015

University College London Advanced Topics 2015 (COMPM050/COMPGI13)

Course website:

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

Video series:

https://www.youtube.com/watch?v=2pWv7GOvuf0&list= PL7-jPKtc4r78-wCZcQn5lqyuWhBZ8fOxT

Image from Amazon.com (where the book may be purchased)

Image from Youtube.com

RL Components

Policy (agent behavior), $\pi(s_t)$

- Determines action given current state
- Agent's way of behaving at a given time

Reward function (the goal to max), r_t

- Maps state of the environment to a reward that describes the state desirability
- Objective is to maximize total rewards

Value function (state reward), $v_{\pi}(s_t)$

- Total expected reward from a state if we follow the policy
- How good is each state

Maze Example: Policy, Value, and Reward

Each location in the maze represents a **state**

The **reward** is -1 for each step the agent is in the maze

Lecture 21

Available **actions**: move $\uparrow,\downarrow,\leftarrow,\rightarrow$ (as long as that path is not blocked)

Adapted from David Silver, 2015

Policy $\pi(s_t)$

(which actions to take in each state)

Start

	\rightarrow		
\rightarrow	\rightarrow	\rightarrow	←
↑		→	
	\rightarrow	\rightarrow	1
	↑		+
\rightarrow	↑		1

Exit

Reward r_t

(amount received at each state)

Start

	۲-		
-1	1	1	-1
-1		-1	
	-1	-1	-1
	-1		-1
-1	-1		-1

Exit

Value $v_{\pi}(s_t)$

(expected cumulative rewards starting from current state **if** we follow the policy)

Start

	-8		
-8	-7	-6	-7
-9		-5	
	-5	-4	-3
	-6		-2
-8	-7		-1

Exit

Adapted from David Silver, 2015

Environment

Markov Decision Process

(assumed form for most RL problems)

Goal

Find the best policy to guide our actions in an environment

Here, environment = Markov Decision Process

Learning strategy

Model-based

Model-free

Reinforcement Learning

(planning)

Simulation-based search Must learn from experience

value/policy take actions plan No knowledge (using the model) model experience learn a model (involves supervised learning techniques)

Monte Carlo Learning Temporal Difference Policy evaluation Learning (prediction) π Policy improvement

Perfect knowledge **Known MDP**

Environme

Knowledge

Dynamic Policy evaluation **Programming** (prediction) Policy iteration Value iteration π Policy improvement (optimization)

(optimization)

History

The record of all that has happened in this system

Step 0: s_0, a_0

Step 1: r_1, s_1, a_1

Step 2: r_2, s_2, a_2

•

Step T: r_t, s_t, a_t

History at time $t: H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$

Markov property

Instead of needing the full history:

$$H_t = \{s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, \dots r_1, s_1, a_1, s_0, a_0\}$$

We can summarize everything in the current state

$$H_t = \{s_t, a_t\}$$

The future is independent of the past given the present

Another way of saying this is:

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Example: student life

State-space representation

Example: student life

State-space representation

Example: student life

Example: student life

State transition probabilities

Example: student life

State transition probabilities

			To state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
om st	2	p_{21}	p_{22}	p_{23}
Fro	3	$\lfloor P_{31} \rfloor$	p_{32}	p_{33}

Transitions out of each state sum to 1

Example: student life

State transition probabilities

			To state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
m st	2	p_{21}	p_{22}	p_{23}
Fro	3	$\lfloor P_{31} \rfloor$	p_{32}	p_{33}

Transitions out of each state sum to 1

			To state	
		Netflix	Eat	Study
ate	Netflix	8.0	0.2	0]
m sta	Eat	0.3	0.1	0.6
Froi	Study	0.8 0.3 0.4	0.1	0.5

Example: student life

Two components: $\{S, P\}$

State space, S

Transition matrix, P

State-space representation

State transition probabilities

			To state	
		1	2	3
state	1	p_{11}	p_{12}	p_{13}
rom st	2	p_{21}	p_{22}	p_{23}
E O	3	P_{31}	p_{32}	p_{33}

Transitions out of each state sum to 1

			To state	
		Netflix	Eat	Study
ate	Netflix	8.0	0.2	0]
m state	Eat	0.3	0.1	0.6
Fro	Study	L0.4	0.1	0.5

Example: student life

If we start in state 1, what's the probability we'll be in each state after one step?

$$P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

This is the first row of the state transition probability matrix

Example: student life

If we started in state 1, we can calculate the probabilities of being in each state at step 1 as:

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \quad P_1 = P_0 P_{SS'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$0.1 \qquad P_1 = \begin{bmatrix} 0.8 & 0.2 & 0 \end{bmatrix}$$

To state

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \qquad P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad _{0.4} \begin{pmatrix} 1 & 0.3 \\ 0.4 & 0.1 \end{pmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \qquad \text{0.4} \qquad \begin{array}{c} 0.2 \\ \text{Netflix} \\ \text{0.1} \end{array} \qquad \begin{array}{c} 0.2 \\ \text{Eat} \\ \text{2} \end{array} \qquad \begin{array}{c} 0.1 \\ \text{Study} \\ \text{3} \end{array} \qquad \begin{array}{c} 0.6 \\ \text{0.5} \end{array}$$

$$P_2 = P_1 P_{ss'} = P_0 P_{ss'} P_{ss'} = P_0 P_{ss'}^2$$

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \qquad P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad _{0.4}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \qquad \text{0.4} \qquad \begin{array}{c} 0.2 \\ \text{Netflix} \\ \text{0.1} \end{array} \qquad \begin{array}{c} 0.2 \\ \text{Eat} \\ \text{2} \end{array} \qquad \begin{array}{c} 0.1 \\ \text{Study} \\ \text{3} \end{array} \qquad \begin{array}{c} 0.6 \\ \text{0.5} \end{array}$$

$$P_2 = P_1 P_{ss'} = P_0 P_{ss'} P_{ss'} = P_0 P_{ss'}^2$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \qquad P_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^{T} \quad _{0.4}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \qquad \text{0.4} \qquad \begin{array}{c} 0.2 \\ \text{Netflix} \\ 0.1 \\ \text{0.1} \end{array} \qquad \begin{array}{c} 0.2 \\ \text{Eat} \\ 2 \\ \text{0.1} \end{array}$$

$$P_2 = P_1 P_{ss'} = P_0 P_{ss'} P_{ss'} = P_0 P_{ss'}^2$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_2 = [0.7 \quad 0.18 \quad 0.12]$$

$$\mathbf{1} P_1 = P_0 P_{ss'}$$

$$P_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P_1 = [0.8 \quad 0.2 \quad 0]$$

$$P_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \qquad \text{0.4} \qquad \begin{array}{c} 0.2 \\ \text{Netflix} \\ 0.3 \\ \text{0.1} \end{array} \qquad \begin{array}{c} \text{Eat} \\ 2 \\ \text{0.6} \end{array}$$

$$P_2 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 & 0 \\ 0.3 & 0.1 & 0.6 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$
 As $n \to \infty$, we identify our steady state probabilities

$$P_2 = [0.7 \quad 0.18 \quad 0.12]$$

$$P_n = P_0 P_{ss'}^n$$

$$P_{\infty} = [0.64 \quad 0.16 \quad 0.20]$$

Markov Chains with absorbing state

Example: student life

Example: student life

Markov chains can be used to represent sequential discrete-time data

Can estimate long-term state probabilities

Can simulate state sequences based on the model

Markov property applies (current state gives you all the information you need about future states)

$$P(s_{t+1}|s_t) = P(s_{t+1}|s_t, s_{t-1}, \dots, s_1, s_0)$$

Valid if the system is **autonomous** and the states are **fully observable**

Hidden Markov Models

Example: student life

What if we don't directly observe what state the system is in, but instead observe a quantity that depends on the state?

Example: the student wears an EEG monitor, and we see readings of brain **0.1** activity.

Eat

Study

Brain activity

States are hidden or latent variables

Netflix

Markov Models

States are Fully Observable

States are **Partially Observable**

Autonomous

(no actions; make predictions)

Controlled

(can take actions)

Markov Chain

Markov Decision Process (MDP)

Hidden Markov Model (HMM)

Partially Observable
Markov Decision
Process (POMDP)

Applications

HMMs: time series ML, e.g. speech + handwriting recognition, bioinformatics

MDPs: used extensively for reinforcement learning