Modul 86111 Schienenfahrzeugtechnik I Prof. Dr. Raphael Pfaff Sommersemester 2015

Schienenfahrzeugtechnik I – Übung 1

Einführung in die Zugdynamik

Aufgabe 1 (Zugkraftkennlinie). Tragen Sie qualitativ die Längskräfte der unten gezeigte Züge ein.

Aufgabe 2 (Zugkraftkennlinie). Eine Lokomotive der BR 143 der DB AG zieht einen Wagenzug. Die technischen Daten der Fahrzeuge sind:

- · Triebfahrzeug:
 - Masse $m_L=82\,\mathrm{t}$
 - Rotierende Masse $m_{DL}=16\,\mathrm{t}$
- · Wagenzug:
 - **–** Masse $m_W = 500 \, \mathrm{t}$
 - Rotierende Masse $m_{DW}=24\,\mathrm{t}$

- a) Zeichnen Sie die Widerstandskurven des Zugverbands (bestehend aus Lokomotive und Wagenzug) für Streckenneigungen $i_k=(1,2,4)\%$ in das F-v-Diagramm ein. Der Fahrwiderstand des Triebfahrzeugs ist zu vernachlässigen.
- b) Bestimmen Sie die Höchstgeschwindigkeiten $v_{max,k}$ in den jeweiligen Streckenneigungen.
- c) Bestimmen Sie das Beschleunigungsvermögen des Zugverbands in der Ebene und in 1% Streckenneigung für $v=90\,{\rm km/h}.$
- d) Bestimmen Sie die kinetische Energie des Zugverbands bei $v=120\,{\rm km/h}$ und bestimmen Sie für einen mittleren Fahrwiderstand von $F_{W,m}=20\,{\rm kN}$ in einer Steigung von 1% die Steighöhe bis v = 0 gilt.

Einführung in die Spurführung

Aufgabe 3 (Erarbeitung Klingel'sche Formel). Bearbeiten Sie folgende Aufgabe in Kleingruppen (2-3 Studierende).

Betrachten Sie einen Einzelradsatz mit konischem Radprofil, zunächst in Querrichtung verschoben:

- 1. Bestimmen Sie die Quergleitgeschwindigkeit abhängig von v und φ .
 - Vereinfachen Sie so, dass die Abhängigkeit von φ linear ist.
- 2. Differenzieren Sie, um die Querbeschleunigung zu erhalten. Annahme: v konstant.
- 3. Bestimmen Sie die Winkelgeschwindigkeit $\dot{\varphi}$ des Radsatzes um die Hochachse abhängig von
 - Rollradiendifferenz $\triangle r$,
 - halbem Radstand b sowie
 - Winkelgeschwindigkeit des Radsatzes ω .
- 4. Vereinfachen Sie für kegelförmige Radsätze $\triangle r$.
- 5. Leiten Sie die homogene lineare Differenzialgeichung der Bewegung in y-Richtung aus den oben gefundenen Beziehungen her.
 - · Welche Eigenschaften hat diese Differenzialgleichung?
 - Welche (wichtigen) Aspekte haben Sie vernachlässigt?
- 6. Bestimmen Sie Eigenkreisfrequenz und die Wellenlänge der Bewegung.
 - · Welche Beobachtungen können Sie machen?

Kraftschluss und Schlupf

Aufgabe 4 (Kraftschlussausnutzung). Ein dreiteiliger Triebzug wird beschleunigt und gebremst. Die Daten des Triebzugs sind:

- Achsformel Bo' Bo' + 2' 2' + Bo' Bo'
- $m_{W,i} = 40t$
- Zusätzliche rotierende Massen (anteilig von $m_{W,i}$):
 - Treibachsen $\rho_T = 0.15$
 - Laufachsen $\rho_L = 0.08$
- Beschleunigungsvermögen: $a_{max} = 1.5 \frac{\text{m}}{\text{c}^2}$
- Verzögerung der Schnellbremse: $b_{max} = 1.2 \frac{\text{m}}{\text{s}^2}$

Bestimmen Sie:

- a) Treibachsbremskräfte (Lauf- und Treibachsen) und Kraftschlussausnutzung während einer Schnellbremsung
- b) Treibachszugkraft und Kraftschlussausnutzung während der maximalen Beschleunigung
- c) Die Bremse muss an zwei Drehgestellen (1 Laufdrehgestell, 1 Triebdrehgestell) auf Grund eines Fehlers abgesperrt werden. Bestimmen Sie die verbleibende Verzögerung sowie die Kraftschlussausnutzung, für die die Bremsleistung konstant gehalten werden könnte.

Aufgabe 5. Ein Güterwagen (Masse leer $m_L=30\mathrm{t}$, Masse unter maximaler Beladung $m_B=80\mathrm{t}$, rotierende Masse $m_R=3.2\mathrm{t}$) erreicht eine maximale Verzögerung $b_{max}=0.7\frac{\mathrm{m}}{\mathrm{s}^2}$. Bestimmen Sie:

- a) Treibachsbremskraft und Kraftschlussausnutzung während einer Schnellbremsung des beladenen Wagens
- b) Kraftschlussausnutzung während einer Schnellbremsung des unbeladenen Wagens unter der Annahme einer konstanten Bremskraft am Radumfang
- c) Treibachsbremskraft des unbeladenen Wages für eine Kraftschlussausnutzung von 0,1.

Bremskurven

Aufgabe 6 (Bremsarten). Ein zweistufiges Bremsmodell nutzt folgende Stufen, um einen Bremsprozess mit Füllzeit t_f und Verzögerung \bar{a} zu modellieren:

- Konstantfahrt für eine Dauer von $\frac{1}{2}t_f$
- Konstante Verzögerung \bar{a} von $\frac{1}{2}t_f$ bis zum Stillstand des Fahrzeugs
- a) Skizzieren Sie die Bremskurven im v-s-Diagramm, wobei der Unterschied zwischen den Bremsarten herausgestellt werden soll.
- b) Welchen Einfluss hat eine längere Füllzeit auf
 - die zulässige Höchstgeschwindigkeit im Vorsignal-Hauptsignal-System?
 - die Längsdruckkräfte während einer Bremsung?

Aufgabe 7 (Längsdruckkräfte). In einem Zugverband, der ansonsten frei von Längszug- und -druckkräften ist, befinden sich zwei Gelenktragwagen der Bauart Sggrss (LüP = 27 m). Die verbauten Steuerventile der Wagen liegen ungünstig verteilt im Rahmen der Toleranzen gemäß UIC 540 in Bremsstellungen G bzw. P, sodass im vorderen Wagen die kürzeste und im hinteren Wagen die längste Füllzeit erreicht wird. Bestimmen Sie die auftretenden Längsdruckkräfte unter folgenden Annahmen:

- Durchschlagsgeschwindigkeit $v_{SB}=250 \frac{\mathrm{m}}{\mathrm{m}}$
- Linearer Aufbau der Bremskraft von 0 auf $F_{B,max}$ innerhalb der Füllzeit t_f
- Masse der Wagen $m_W=60\mathrm{t}$, rotierende Masse $m_D=2.5\mathrm{t}$
- Bremskraft am Radumfang $F_B=60\mathrm{kN}$

Fahrwiderstand

Aufgabe 8 (Fahrwiderstand nach Strahl und Sauthoff). a) Berechnen Sie die benötigte Energie für je $s=100{\rm km}$ Streckenfahrt mit v_{max} :

- Gemischter Güterzug, $v_{max} = 80 \frac{\mathrm{km}}{\mathrm{h}}$, $m_W = 4000 \mathrm{t}$
 - Widerstandsgleichung nach Strahl:

$$f_{WW} = 1.6\% + 5.7\% \left(\frac{v}{100\frac{\text{km}}{\text{h}}}\right)^2 \tag{1}$$

- Reisezug, $v_{max} = 160 \frac{\text{km}}{\text{b}}, m_W = 350 \text{t}, n_W = 7$
 - Widerstandsgleichung nach Sauthoff:

$$f_{WW} = 1.6\% + 0.25\% \left(\frac{v}{100\frac{\text{km}}{\text{h}}}\right) + \frac{683\text{N}(2.7 + n_W)}{m_W g} \left(\frac{v + 12\frac{\text{km}}{\text{h}}}{100\frac{\text{km}}{\text{h}}}\right)^2$$
(2)

- b) Berechnen Sie die benötigte Energie für das Beschleunigen der Züge auf v_{max} unter Berücksichtigung des Fahrwiderstands gemäß der Gleichungen (1) bzw. (2) sowie einer konstanten Beschleunigung von
 - $a=0.1\frac{\mathrm{m}}{\mathrm{s}^2}$ für den Güterzug
 - $a = 0.3 \frac{\text{m}}{\text{c}^2}$ für den Personenzug

Der Widerstand des Triebfahrzeugs ist zu vernachlässigen.

Längsdynamik

Aufgabe 9 (Massenband/Massenpunktmodell). Ein siebenteiliger Triebzug ($m_w=50\,\mathrm{t},\,l_w=25\,\mathrm{m}$) fährt auf einer Strecke, die der Vorschrift

$$h(x) = \begin{cases} 0, & x < 5000 \\ -100\cos\frac{x - 5000}{5000} + 100, & x \ge 5000 \end{cases}$$

entspricht. Hierbei wird die Position der Zugspitze x in m gemessen.

- a) Bestimmen Sie die maximale Streckenneigung i_{max} der Strecke.
- b) Bestimmen Sie den Punkt, an dem $E_{pot}>0$ gilt im Massenband- bzw. Massenpunktmodell.
- c) Bestimmen Sie für x=7000 die Neigungswiderstandskraft des Zugverbands, jeweils im Massenbandbzw. Massenpunktmodell.

Aufgabe 10 (Kuppelstoß/Crash). Ein dreiteiliger Metro-Triebzug ($m_w=50\,\mathrm{t}$) soll mit einer automatischen Mittelpufferkupplung ausgestattet werden, die Kuppeln mit $v=4\,\mathrm{\frac{km}{h}}$ zulässt. Der maximale Hub der Frontkupplung sei auf $s_{max}=50\mathrm{mm}$ begrenzt, die Zwischenkupplungen seien starr. Das stehende Fahrzeug ist während des Kuppelns mit der selbsttätigen Bremse gebremst.

- a) Welche Kraft muss über den Verzögerungsweg durchschnittlich herrschen, um die dieses Kuppeln zuzulassen? Hierbei sei die Energie ausschließlich über die Kupplung verzehrt.
- b) Was geschieht mit dem stehenden Fahrzeug?
- c) Welche Verzögerung herrscht unter dem Annahmen von Aufgabe a) im fahrenden Fahrzeug?
- d) Bei einem Crash mit einem baugeichen Fahrzeug mit $v=18\frac{\mathrm{km}}{\hbar}$ stehen Energieverzehrelemente mit einem Hub von $s=200\mathrm{mm}$ zur Verfügung. Welche Verzögerung und welche Kraft stellt sich ein?