

Entrance Exam 2008-2009

Physics

Duration: 2 h

I- [16 pts] The mercury atom

Planck's constant = $6.626 \times 10^{-34} \text{ Js}$, $c = 2.998 \times 10^8 \text{ m/s}$, $e = 1.602 \times 10^{-19} \text{ C}$

A- Transitions

The adjacent figure shows a part of the emission spectrum of a mercury vapor lamp (M) and the energetic diagram of some energy levels of the mercury atom.

- 1. The energy levels of the mercury atom are quantized. Justify.
- 2. Calculate the ionization energy of the atom when it is in each of the energy levels: $"E_1"$ and $"E_5"$.
- 3. A mercury atom is in the energy level " E_9 ". It undergoes a downward transition to the ground state thus passing successively by the levels " E_5 " and " E_2 ".
 - a) Determine the transition to which a radiation of wavelength 577 nm is associated.
 - b) Justify then the presence of the yellow doublet (577, 579).
- 4. Explain what is likely to happen if a:
 - a) moving electron of energy 6.00 eV collides with a mercury atom that is in the ground state;
 - b) photon, of energy 6.00 eV, were to be incident on the atom that is in the ground state.

$E_{\infty} = 0.00$ $E_{9} = -1.56$ $E_{8} = -1.57$ $E_{7} = -2.48$ $E_{6} = -2.68$ $E_{5} = -3.71$ $E_{4} = -4.95$ $E_{3} = -5.52$ $E_{2} = -5.74$ $E_{1} = -10.38$

λ (nm) in vacuum

436 405

B- Planck's Constant

The yellow doublet will be considered as one radiation of wavelength 578 nm.

The lamp (M), equipped with several filters, illuminates the cesium cathode of a photoelectric cell of work function $W_S = 2.15$ eV. For each of the wavelengths, we measure the maximum kinetic energy KE of the emitted electrons (adjacent table).

 λ (nm)

KE (eV)

0

0

- 1. Determine the expression of KE in terms of $1/\lambda$.
- 2. Determine the value of the Planck's constant.
- 3. a) Determine the wavelength threshold λ_s associated to the cesium.
 - b) Interpret the presence of the zeros in the table.
- 4. a) The photoelectric effect shows evidence of an aspect of light. Which one?
 - b) Another phenomenon shows evidence of the other aspect of light. Which one?

II-[21 pts] The RLC series circuit

Consider the electric circuit diagram of the adjacent figure that includes an ideal generator of e.m.f E, a capacitor of capacitance $C=20~\mu\text{F}$, a coil of inductance L and of negligible resistance, two resistors, ($R_1=5~\Omega$ and $R_2=35~\Omega$), and two switches K and K'. A suitable device is used to display the voltage $u_C=u_{AM}$ and the voltage $u_R=u_{BM}$.

436

0.18 0.75

405

0.97

A- Charging the capacitor

Initially, the two switches are opened and the capacitor is uncharged. At an instant $t_0 = 0$, we close K. At an instant t, the circuit carries a current i.

- 1. Redraw the circuit diagram and indicate the real direction of i.
- 2. Derive the differential equation that governs the variations of $u_{\rm C}$ as a function of time.
- 3. The solution of this differential equation is of the form: $u_C = A (1 e^{-\frac{\tau}{\tau}})$. Determine the expressions of A and τ .
- 4. a) Using the waveform of figure 2, determine the values of E and τ .
 - b) Using calculations, justify the value of τ .

B-Discharging the capacitor

When the capacitor is charged, we open K, then, at an instant $t_0 = 0$, K' is closed. The circuit is then the seat of electric oscillations, the duration of one oscillation being T. Starting from the instant $t_0 = 0$, we display the variations of the voltages u_C and u_R using respectively the scales 1 V/div and 0.2 V/div.

1. Knowing that the differential equation that governs the variations of u_C is of the form:

$$\frac{d^2 u_C}{dt^2} \, + 2b \frac{d u_C}{dt} \, + \, \omega_0^2 u_C = 0. \label{eq:delta_c}$$

Find, in terms of R_1 , R_2 , L and C, the expressions of b and ω_0 .

2. The solution of this differential equation is of the form:

 $u_C = Ae^{-25t}\cos(249 t - 0.1)$. Determine the value of A.

- 3. a) Calculate the electric energy of the oscillator respectively at the instant $t_0 = 0$ and at the instant $t_1 = T$.
 - b) Determine the value of the energy dissipated between the instants $t_0 = 0$ and $t_1 = T$.
 - c) Calculate the average value of the energy dissipated between the instants $t_0 = 0$ and t' = T/4.
 - d) Deduce the magnetic energy stored in the coil at the instant t' = T/4.
 - e) Determine the value of the current at the instant t' = T/4.
 - f) Determine the value of L.
- 4. The value of L may be obtained using another method. Determine its value.

III- [23 pts] Mechanics

A cannon is rigidly attached to a carriage, which can move without friction along horizontal rails. The carriage is connected to a post by a spring of stiffness $k = 2 \times 10^4$ N/m. A shell, considered as a particle of mass m = 200 kg, is launched from a point O (see figure) at the instant $t_0 = 0$ with a velocity \vec{V}_0 making an angle $\alpha = 45^\circ$ with the horizontal; it rises and reaches the maximum height h = 250 m.

The gravitational potential energy reference is the horizontal plane containing O. Neglect air resistance and take $g = 10 \text{ m/s}^2$.

A-Motion of the shell

- 1. Using Newton's second law, determine in terms of α and V_0 (value of \vec{V}_0), the expression giving the value V_1 of the velocity of the shell in its highest position.
- 2. Determine the value of V_0 .

B-Motion of the system (C) (canon, carriage)

- Theoretical study

Starting from the instant $t_0 = 0$, the system (C) of mass M = 5000 kg, launched with the horizontal velocity $\vec{V}_C = V_C \vec{i}$, performs a rectilinear sinusoidal motion of amplitude 1.42 m and of proper period T_0 .

- 1. Applying the conservation of mechanical energy, determine the value of V_C.
- 2. Derive the differential equation that governs the motion of the system [(C), spring].
- 3. Determine the time equation of motion of (C).
- 4. Draw the shape of the curve giving the variations of the abscissa x of (C) as a function of time.
- 5. By comparing the linear momentum just before launching and that just after launching:
 - a) show the non-conservation of the linear momentum of the system [(C), shell];
 - b) applying Newton's second law, verify the value of V_C.

- Practical study

In fact, (C) is fitted with a shock absorber that exerts on (C) a damping force \vec{F} , with $\vec{F} = -\lambda \ \vec{v} = -\lambda \ v \ \vec{i}$, where λ is a positive constant and \vec{v} the velocity of (C) at an instant t.

The adjacent figure presents three curves giving the variations of the abscissa x of (C) as a function of time, each for a given value of λ . The considered values of λ are : $\lambda_1 = 5 \times 10^3$ kg/s, $\lambda_2 = 1.5 \times 10^4$ kg/s and $\lambda_3 = 3 \times 10^4$ kg/s.

- 2. Specify, for each of the two other curves, the corresponding mode.
- 3. What is the duration T of one oscillation during damped oscillations?
- 4. Compare T and T₀ and justify the result.

Duration: 2 h

Entrance Exam 2008-2009

Solution of Physics

Part of the Q	Answer (First exercise Mercury atom)	Mark
A-1	The energy levels of the mercury atom are quantized because the energy of this atom been worth discrete has (this atom emits a discontinuous spectrum).	1
A-2	For E_1 : $E_i = E_{\infty}$ - $E_1 = 10.38 \text{ eV}$; For E_5 : $E_i = E_{\infty}$ - $E_5 = 3.71 \text{ eV}$.	0.5- 0.5-0.5
A-3.a	$\Delta E = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 2.998 \times 10^{8}}{577 \times 10^{-9} \times 1.602 \times 10^{-19}} = 2.15 \text{ eV}$	0.5-1
A-3.b	This corresponds for a transition from the level E ₉ to the level E ₅ . The yellow doublet (577): from E ₉ to E ₅	0.5
	and (579): from E ₈ to E ₅ . $\frac{6.626 \times 10^{-34} \times 2.998 \times 10^{8}}{(-1.57 + 3.71) \times 1.602 \times 10^{-19}} = 579 \text{ nm}$	0.5-1
A-4.a	In the case of one electron, we have : $E + E_1 = -4.38$ eV, therefore the atom can pass one of the levels E_2 , E_3 or E_4 , and the rest energy will be taken by the electron	0.5 1-0.5
A-4.b	In the case of one photon: the atom remains in the fundamental state because $E + E_1 = -4.38 \text{ eV}$, which does not correspond to any energy level of this atom	0.5
B-1	According to Einstein hypothesis: $KE = hv - W_0 \Rightarrow KE = \frac{hc}{\lambda} - W_0$	1
B-2	KE is a linear function of $\frac{1}{\lambda}$, this implies that the slope: $hc = \frac{\Delta KE}{\Delta \left(\frac{1}{\lambda}\right)}$ $hc = \frac{(0.97 - 0.18) \times 1.602 \times 10^{-19}}{\left(\frac{10^9}{405} - \frac{10^9}{546}\right)} = 1.985 \times 10^{-25}$	1
	$\Rightarrow \mathbf{h} = 6.62 \times 10^{-34} \text{ Js.}$	
B-3.a	$W_0 = \frac{hc}{\lambda_0} \Rightarrow \lambda_0 = \frac{hc}{W_0} = \frac{6.626 \times 10^{-34} \times 2.998 \times 10^8}{2.15 \times 1.602 \times 10^{-19}} = 576 \text{ nm}$	0.5- 1
B-3.b	615 and 578 nm are $> \lambda_0 \Rightarrow \mathbf{KE} = 0$.	1
B- 4.a	Particle aspect	0.5
B- 4.b	Interference – Diffraction	0.5

Part of the Q	Answer (Second Exercise The RLC circuit)	Mark
A-1	1. See the figure	1
A-2	$E = R_I i + u_C$; But $i = \frac{dq}{dt} = C \frac{du_C}{dt} \Rightarrow E = R_I C \frac{du_C}{dt} + u_C$.	0.5- 1- 0.5
A-3	$\frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}} = \frac{\mathrm{A}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \Rightarrow E = R_{1}C \frac{\mathrm{A}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} + A - A \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}; \qquad \Rightarrow A = E \operatorname{et}(R_{1}C \frac{\mathrm{A}}{\tau} - A) \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} = 0$ $\Rightarrow \tau = R_{1}C.$	0.5-0.5 0.5-0.5
A-4.a	From the waveform : $E = 6 V$	0.5-0.5
	And for $t = \tau$, $u_C = 0.63 \times 6 = 3.78 \text{ V} = 0.1 \text{ ms} \Rightarrow \tau = 0.1 \text{ ms}$	0.5-0.5
A-4.b	The value of $\tau = R_1 C = 5 \times 20 \times 10^{-6} = 10^{-4} \text{ s} = 0.1 \text{ ms}$	1
B-1	We have: $u_C = (R_1 + R_2) i + L \frac{di}{dt}$; with $i = -C \frac{du_C}{dt}$ $U_C = -(R_1 + R_2) C \frac{du_C}{dt} - LC \frac{d^2u_C}{dt^2}$ $\Rightarrow LC \frac{d^2u_C}{dt^2} + (R_1 + R_2)C \frac{du_C}{dt} + u_C = 0;$ $\Rightarrow \frac{d^2u_C}{dt^2} + \frac{R_1 + R_2}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C = 0.$ By comparison: $\frac{d^2u_C}{dt^2} + 2b \frac{du_C}{dt} + \omega_0^2 u_C = 0 \Rightarrow b = \frac{R_1 + R_2}{2L}$ and $\omega_0 = \sqrt{\frac{1}{LC}}$.	1-0.5 YA 1.5 0.5-0.5
B-2	For $t_0 = 0$, $u_C(0) = A\cos(-0.1) = 6 \Rightarrow A = 6.03 \text{ V}$.	1
B-3.a	At the instant $t_0 = 0$: $u_C(0) = 6 V$ and $W_E(0) = \frac{1}{2} C u_C^2(0) = 3.6 \times 10^{-4} J$	0.5-0.5
	At the instant $t_1 = T$: $u_C(T) = 3.2 \text{ V}$ and $W_E(T) = \frac{1}{2} C u_1^2(T) = 1.024 \times 10^{-4} \text{ J}$.	0.5-0.5
B-3.b	The value of the energy between t_0 and t_1 : $\Delta W_E = 2.576 \times 10^{-4} J$.	0.5
B-3.c	The average energy between t_0 and t' :. $\frac{\Delta W_E}{4} = \frac{2.956 \times 10^{-4}}{4} = 0.644 \times 10^{-4} J$.	0.5
B-3.d	At the instant $t' = \frac{T}{4}$: $u_C = 0$ $W_E(t') = 0$, then $W_m = W_E(0) - \frac{\Delta W_E}{4} = 2.956 \times 10^{-4} J$.	0.5-0.5 0.5

B-3.e	The intensity of the current at the instant $t' = \frac{T}{4}$: $\frac{u_{R(t')}}{R} = \frac{(4.8 \times 0.2)}{35} = \textbf{0.0274} A$	0.5-0.5 0.5
B-3.f	But $W_m = \frac{1}{2} Li^2 \Rightarrow L = \frac{2W_m}{i^2} = 0.79 H.$	0.5-0.5
4	$25 = \frac{R_1 + R_2}{2L} = \frac{5 + 35}{2L} \implies L = \frac{40}{50} \implies L = 0.8 H;$ $OR \ T \approx T_0 = 2\pi\sqrt{LC} \implies L = \frac{T^2}{4\pi^2C} = \frac{(0.025)^2}{4\pi^2 \times 2 \times 10^{-5}} \implies L = 0.79 H$	0.5 – 0.5

Part of the Q	Answer (third Exercise Mechanics)	Mark
A-1	Newton's second law: $m\vec{g} = \frac{d\vec{P}}{dt} \Rightarrow \frac{dP_x}{dt} = 0 \Rightarrow mV_{0x} = mV_1$ (because $V_{1y} = 0$), $\Rightarrow V_1 = V_{0x} = V_0 \cos \alpha$	0.5- 0.5 - 0.5- 0.5-0.5
A-2	Conservation of the mechanical energy: ME(O) = ME(1) $\Rightarrow 1/2 \text{ m V}_0^2 + 0 = 1/2 \text{ m V}_1^2 + \text{mgh.}$ $\Rightarrow 1/2 \text{ m V}_0^2 + 0 = 1/2 \text{ m V}_0^2 \cos^2\alpha + \text{mgh} \Rightarrow V_0^2 \sin^2\alpha + 0 = 2\text{gh} \Rightarrow V_0^2 = 4\text{gh} = 10^4$	1 1 0.5
B-ET-1	$\Rightarrow V_0 = 100 \text{ m/s}.$ Conservation of the mechanical energy of the system [(C), spring]: $1/2M \ V_C^2 + 0 = 0 + 1/2k \ X_m^2$	0.5 0.5
B-ET -2	$\Rightarrow V_C^2 = (k/M) \ X_m^2 = (2 \times 10^4 / 5000) \times 1.42^2 = 8.06 \Rightarrow V_C = 2.84 \text{ m/s}.$ Conservation of the mechanical energy of the system [(C), spring]: $1/2Mv^2 + 1/2kx^2 = \text{constant}.$	0.5-0.5
B-ET -3	Derive with respect to time t: $Mv \dot{v} + kx \dot{x} = 0 \Rightarrow \ddot{x} + (k/M) x = 0$ $x = a\sin(\omega_0 t + \phi)$. at $t_0 = 0$, $x = 0 = a\sin\phi \Rightarrow \phi = 0$ or π .	1.5
	The velocity $v = \dot{x} = \omega_0 a cos(\omega_0 t + \phi)$. But at $t_0 = 0$, $\Rightarrow \dot{x}_0 = V_C = \omega_0 a cos \phi$, (a et $V_C > 0$) $\Rightarrow \phi = 0$ $\omega_0^2 = k/m = 4 \Rightarrow \omega_0 = 2 \text{ rd/s}$ $\Rightarrow T_0 = 3,14 \text{ s.}$ $x = 1.42 \sin(2t)$ (x in m and t in s)	0.5-0.5
B-ET -4	4. (See figure). 1,5 x(m) 1,0,5 2, 4\ 6 \ 8	1
B-ET - 5.a	$\vec{P}_{\text{before}} = \vec{0}$ and $\vec{P}_{\text{after}} = M \vec{V}_{\text{C}} + m \vec{V}_{0} \neq 0$.	0.5- 0.5-0.5
B-ET - 5.b	The system [(C), shell] is submitted to the normal reaction \vec{N} (no friction) vertically	0.5
	upward, and the weight (m+M)g which is vertically downward,	
	therefore: $\vec{N} + (m+M)\vec{g} = \frac{d\vec{P}}{dt} \Rightarrow \frac{dP_x}{dt} = 0 \Rightarrow \Delta P_x = 0 \Rightarrow mV_{0x} + MV_C = 0$	0.5-0.5 0.5 0.5
	$\Rightarrow V_{C} = -\frac{m}{M} V_{0x} = -\frac{(200) \times (-100 \cos 45^{0})}{5000} \Rightarrow V_{C} = 2.83 \text{ m/s}$	

B-EP-1	The corresponding value: (graph b) $\lambda_2 = 1.5 \times 10^4 \text{ kg/s}$.	1
B-EP-2	For $\lambda_1 = 5 \times 10^3$ kg/s, Damped oscillations (graph a);	1 1
	For $\lambda_3 = 3 \times 10^4$ kg/s large damping (graph c).	
B-EP-3	The duration T for one oscillation = 3.25 s .	1
B-EP-4	$T > T_0$ this is because of the damping	0.5

