DEVOIR MAISON Nº 6

Corrigé donné le 3 janvier

Vous attacherez la plus grande importance à la clarté, à la précision et à la concision de la rédaction. L'usage d'une calculatrice est interdit.

Équation du pendule pesant

Dans tout le problème on donne un nombre réel α tel que $0 < \alpha < \pi$.

Partie I

Soit φ la fonction $]-\alpha, \alpha[\to \mathbb{R}$ définie par :

$$\varphi(x) = \frac{1}{\sqrt{2(\cos x - \cos \alpha)}}$$

On note Φ l'unique fonction dérivable $]-\alpha,\alpha[\to\mathbb{R}$ telle que $\Phi(0)=0$ et

$$\forall x \in]-\alpha, \alpha[\quad \Phi'(x) = \varphi(x)$$

1. (a) Montrer que pour tout $x \in [0, \alpha]$ on a

$$x \cdot \frac{\sin \alpha}{\alpha} \leqslant \sin x \leqslant x$$

(b) En déduire successivement les inégalités suivantes :

$$\forall x \in]-\alpha, \alpha[\qquad \frac{1}{\sqrt{\alpha^2 - x^2}} \leqslant \varphi(x) \leqslant \frac{\alpha}{\sin \alpha} \frac{1}{\sqrt{\alpha^2 - x^2}}$$

$$\forall x \in [0, \alpha] \qquad \frac{x}{\alpha} \leqslant \Phi(x) \leqslant \frac{\alpha}{\sin \alpha} \frac{x}{\alpha}$$

- 2. (a) Donner la parité et le sens de variation de Φ sur $]-\alpha,\alpha[$.
 - (b) Montrer que lorsque $x \to \alpha$ $x < \alpha$, $\Phi(x)$ a une limite que l'on note T/4. Donner un encadrement de T. Calculer la limite stricte à gauche de α de :

$$\frac{x-\alpha}{\Phi(x)-\frac{T}{4}}$$

Partie II

On considère ici une fonction $f:\mathbb{R}\to\mathbb{R}$ deux fois dérivable, telle que

$$f(0) = \alpha \quad f'(0) = 0 \text{ et } \forall t \in \mathbb{R} \quad f''(t) + \sin[f(t)] = 0 \tag{*}$$

On note $I = \{a > 0 : \forall t \in]0, a]$ $f'(t) \neq 0\}.$

- 1. Montrer que I est un intervalle.
- 2. (a) Vérifier que f est de classe C^2 sur \mathbb{R} . Montrer qu'il existe a>0 tel que $\forall t\in [0,a] \quad f''(t)<0$.
 - (b) Montrer que I est non vide et que $\forall t \in I$ f'(t) < 0.

3. Montrer que $\forall t \in I \quad f(t) \in]-\alpha, \alpha[$ et que :

$$\forall t \in I \quad f'(t) = -\sqrt{2(\cos f(t) - \cos \alpha)}$$

(On commencera par calculer $f'(t)^2$ pour $t \in \mathbb{R}$).

- 4. Soit g la composée de Φ et de la restriction de f à I (On a donc $g = \Phi \circ f$ sur I).
 - (a) Montrer que g est dérivable et calculer g'(t) pour $t \in I$.
 - (b) En déduire une expression simplifiée de g(t) pour $t \in I$.
 - (c) Montrer que I est borné. On pose $M = \sup I$.
 - (d) Montrer que f'(M) = 0 puis calculer f(M). Calculer M en fonction de T.
- 5. (a) On considère une fonction $h: \mathbb{R} \to \mathbb{R}$ deux fois dérivable satisfaisant les mêmes conditions (*) que f. Montrer que f et h coïncident sur $\left[0, \frac{T}{2}\right]$.
 - (b) Montrer:

$$\forall t \in \left[0, \frac{T}{2}\right] \quad f\left(t + \frac{T}{2}\right) = -f\left(t\right)$$

- (c) Montrer que f est périodique et que T est la plus petite période de f.
- 6. Montrer que f est caractérisée par les conditions suivantes :

$$\begin{cases} f(0) = \alpha \\ \forall t \in \mathbb{R} \quad f\left(t + \frac{T}{2}\right) = -f(t) \\ \forall t \in \left]0, \frac{T}{2}\left[\quad \forall u \in \left]-\alpha, \alpha\right[\quad f\left(t\right) = u \Leftrightarrow \Phi\left(u\right) = \frac{T}{4} - t \right] \end{cases}$$

L'équation différentielle étudiée dans ce problème est reliée à l'étude du mouvement d'un pendule initialement écarté d'un angle α de sa position d'équilibre stable. L'écart angulaire à l'instant t par rapport à l'équilibre, noté $\theta(t)$, vérifie l'équation

$$\theta''(t) + \omega^2 \sin \theta(t) = 0$$

où ω est une constante liée à la longueur du pendule. L'étude de cette équation se ramène essentiellement au cas particulier $\omega=1$ étudié dans le problème. On établit ainsi que le mouvement est périodique, et en exprimant la fonction Φ de la partie I sous forme d'intégrale, on parvient à l'expression suivante de la période T:

$$T = T_0 \cdot \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{\mathrm{d}\varphi}{\sqrt{1 - \rho^2 \sin^2 \varphi}} \qquad \text{(intégrale elliptique)}$$

où $\rho = \sin^2(\frac{\alpha}{2})$ et $T_0 = 2\pi/\omega$ (dite période fondamentale). L'encadrement de T établi dans le problème prouve que $T > T_0$ et que l'écart relatif entre T et T_0 devient négligeable lorsque α est très petit (de l'ordre de α^2 , ce qui donne par exemple un écart relatif de 10^{-4} pour $\alpha \approx 2^{\circ}30'$). Dans le cas de petites oscillations, il est donc légitime de faire l'approximation $\sin \theta \approx \theta$, qui conduit à l'équation $\theta'' + \omega^2 \theta = 0$: on obtient ainsi un mouvement sinusoïdal de période T_0 .