# **Table of Contents**

| Revision History 2                                 |
|----------------------------------------------------|
| Generator Info 3                                   |
| Global Parameters 3                                |
| Introduction 4                                     |
| Terminology Definitions 5                          |
| Layer Descriptions 6                               |
| Table 1: Device Layers 6                           |
| Table 2: Interconnect Layers 7                     |
| Table 3: DRC/LVS Marker/Label Layers 8             |
| Device Layer Table 9                               |
| Table 4: MOS Device Layers 9                       |
| Table 5: Diode Device Layers 9                     |
| Table 6: Resistor Device Layers 10                 |
| Table 7: Bipolar and Varactor Device Layers 11     |
| Device Layout Examples 12                          |
| CMOS Digital Core Design Rules 15                  |
| N BURIED LAYER RULES 15                            |
| NWELL AND NWELL RESISTOR (under STI) RULES 17      |
| NWELL RESISTOR WITHIN OXIDE RULES 19               |
| Figure 1: NWELL RESISTOR WITHIN OXIDE RULES 19     |
| ACTIVE RULES 21                                    |
| ACTIVE RESISTOR RULES (salicided/non-salicided) 23 |
| THICK ACTIVE (2.5V) RULES 25                       |
| N+ HIGH VT RULES 27                                |
| P+ HIGH VT RULES 28                                |
| NATIVE NMOS ACTIVE RULES 29                        |

DF2 Layer Tables 98

# ...contents...

| POLY RULES 30                                               |
|-------------------------------------------------------------|
| POLY RESISTOR RULES (salicided/non-salicided) 34            |
| N+ IMPLANT RULES 36                                         |
| P+ IMPLANT RULES 38                                         |
| CONTACT RULES 40                                            |
| SALICIDE BLOCKING RULES 43                                  |
| METAL 1 RULES 44                                            |
| METAL k (k = 2, 3, 4, 5, 6, 7) RULES 45                     |
| METAL k (k = 8, 9) RULES 46                                 |
| VIA k (k = 1, 2, 3, 4, 5, 6) RULES 54                       |
| VIA 7, 8 RULES 55                                           |
| LATCH-UP RULES 58                                           |
| METAL k (k = 1, 2, 3, 4, 5, 6, 7, 8, 9) SLOT RULES 59       |
| Metal1-9 Slot Spacing Check & Width Check - with context 59 |
| Metal1-9/Metal1-9 Slot Enclosure Check 60                   |
| ANTENNA RULES 61                                            |
| CMOS I/O Design Rules 83                                    |
| ESD Design Rules 83                                         |
| Bond Pad Design Rules 86                                    |
| CMOS Digital Electrical Parameters 93                       |
| Sheet Resistances 93                                        |
| Contact/Via Resistances 93                                  |
| Current Densities 94                                        |
| Contact/Via Current Densities 94                            |
| Layer and Dielectric Thickness 95                           |

## ...contents

DF2 Layer Purposes Tables 99

Connectivity Definition 100

Appendix A A1

Appendix B B1

## **Cadence Design Systems**

## **GPDK 90 nm Mixed Signal GPDK Spec**

#### DISCLAIMER

The information contained herein is provided by Cadence on an "AS IS" basis without any warranty, and Cadence has no obligation to support or otherwise maintain the information. Cadence disclaims any representation that the information does not infringe any intellectual property rights or proprietary rights of any third parties. There are no other warranties given by Cadence, whether express, implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose.

#### STATEMENT OF USE

This information contains confidential and proprietary information of Cadence. No part of this information may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Cadence. This information was prepared for informational purpose and is for use by Cadence customers only. Cadence reserves the right to make changes in the information at any time and without notice.

**GPDK 90nm Mixed Signal Process Spec** Feb 14, 2011 page 2 **Revision History** DRC Revision History RELEASE NOTES FOR THE 90nm GPDK VERSION v4.6 gpdk090 OA22 library built natively with IC6.1.5 release code gpdk090 CDB library built natively with IC5.10.41 USR6.127.29 release code Modified assura deck to stop multiple errors in metal spacing (704367) - min width rule for VIA1 has been added to techfile (721963) substrate key added to M1 PSUB in techfile (744957) Updated cph.lam file to ignore 4 term device attributes (744967) - prBoundary is no more valid layer (744956) mos callback modified to handle the string values properly (789994) modified soce gds.map file based on peider's input (811750) VERSION v4.5 - gpdk090 OA22 library built natively with IC6.1.3.500.13 release code gpdk090 CDB library built natively with IC5.10.41\_USR6.127.29 release code - Modified assura/diva ruledeck not to show error in NWELL RES for NW.SP.2 Fixed DRC issue in Metal resistors for Metalk.SP.4,5,6 rules MOSCAP faced following DRC errors OXIDE.L.1 and POLY.SE.3. Modified max value of length and width from 30u to 20u MOS also faced issue in OXIDE.L.1. Modified the callback of MOS to handle the issue and reset value of length to 21.68, if width is less than 0.18u - Fixed stretch handles issues, now src/drn metal stretch for nf>10 Fixed callback issue in MOS, which was issue in fingers (646535) Modified SIPROT.SE.1 (0.25 to 0.24) to have same value as POLYR.SE.1 Also modified the assura/diva DRC ruledeck (704362) · Modified CDL netlist of nmos1v\_iso to have empty subcircuit (680369) - Changed PRboundary stream layer mapping (62 to 99) (671980) - PWdummy is added as pwell function in techfile (669825) - Added siteDef samples to techfile (626779) - Added bulk terminals to be ignored and added more sim parameters to ignore in LAM file to avoid mismatch messages (693841) Added model management file in library to avoid clobber in modelfile set-up (637962)Removed cdsenv and added it in libInitCustomExit.il Custom Filter file is also added in library for ADEXL usage VERSION v4.4 - gpdk090 OA22 library built natively with IC6.1.3.500.1 release code gpdk090 CDB library built natively with IC5.10.41\_USR5.90.69 release code

- Removed extraneous subckt parameters from mimcap spectre model
- Removed extraneous subckt parameters from diode spectre model
- Updated Circuit prospector entries in libInitCustomExit.il (CCR 605869)
- Updated ijth settings in MOS models to remove extraneous warnings
- Updated Assura compare rules for CDL netlister (CCR 607542)
- Added must connect group for pcell body tie pins (CCR 609600)
- Resistor contact resistance set to zero to avoid double counting in RCX

## **Generator Info**

Generator Information

Sample runset for 90 nm technology

Default Grid: 0.005 Valid Angle: 45 Flag Acute: true

Flag Self-intersecting: true

# **Global Parameters**

**Global Parameters** 

| libName gpdk090 | Primitive Library Name |  |
|-----------------|------------------------|--|
|-----------------|------------------------|--|

# Introduction

This document defines the Design Rules and Electrical Parameters for a generic, foundary independent 90nm CMOS Mixed-Signal process.

This document is divided into three sections:

\* CMOS Digital Core Design Rules

describes the widths, spacings, enclosures, overlaps, etc. needed to create the physical layout of the core section of a digital CMOS design.

\* CMOS I/O Design Rules

describes the widths, spacings, enclosures, overlaps, etc. needed to create the physical layout of the I/O section of a CMOS design.

\* CMOS Digital Electrical Parameters

describes the electrical parameters of a digital CMOS design.

# **Terminology Definitions**

Spacing - distance from the outside of the edge of a shape to the outside of the edge of another shape.





Enclosure - distance from the inside of the edge of a shape to the outside of the edge of another shape.





Overlap - distance from the inside of the edge of a shape to the inside of the edge of another shape.



Butting - outside of the edge of a shape touching the outside of the edge of another shape.



# **Layer Descriptions**

This table describes the layers used to create devices.

Comment Table

| Layer     | GDSII  | GDSII | DFII      | DFII      | DFII    | DFII   | DFII    | Description         |
|-----------|--------|-------|-----------|-----------|---------|--------|---------|---------------------|
| Name      | Stream | Data  | LSW       | Layer     | Layer   | Layer  | Purpose |                     |
|           | Number | Туре  | Name      | Name      | Purpose | Number | Number  |                     |
| Bondpad   | 36     | 0     | Bondpad   | Bondpad   | drawing | 95     | 252     | Bonding Pad         |
| CapMetal  | 14     | 0     | CapMetal  | CapMetal  | drawing | 97     | 252     | MiM capacitor metal |
| Nburied   | 19     | 0     | Nburied   | Nburied   | drawing | 18     | 252     | N+ Buried Layer     |
| Nhvt      | 18     | 0     | Nhvt      | Nhvt      | drawing | 11     | 252     | NMOS High Vt        |
| Nimp      | 4      | 0     | Nimp      | Nimp      | drawing | 12     | 252     | N+ Implant          |
| Nwell     | 2      | 0     | Nwell     | Nwell     | drawing | 6      | 252     | Nwell               |
| Nzvt      | 52     | 0     | Nzvt      | Nzvt      | drawing | 15     | 252     | NMOS Zero Vt        |
| Oxide     | 1      | 0     | Oxide     | Oxide     | drawing | 2      | 252     | Active Area         |
| Oxide_thk | 24     | 0     | Oxide_thk | Oxide_thk | drawing | 4      | 252     | 2.5V Active Area    |
| Phvt      | 23     | 0     | Phvt      | Phvt      | drawing | 13     | 252     | PMOS High Vt        |
| Pimp      | 5      | 0     | Pimp      | Pimp      | drawing | 14     | 252     | P+ Implant          |
| Poly      | 3      | 0     | Poly      | Poly      | drawing | 10     | 252     | Poly                |
| SiProt    | 72     | 0     | SiProt    | SiProt    | drawing | 16     | 252     | Salicide Block      |

**Table 1: Device Layers** 

Comment Table

Via2

Via3

Via4

Via5

Via6

Via7

Via8

10

30

32

34

37

39

41

Via2

Via3

Via4

Via5

Via6

Via7

Via8

0

0

0

0

0

0

0

Via2

Via3

Via4

Via5

Via6

Via7

Via8

This table describes the layers used to interconnect devices.

| Layer       | GDSII  | GDSII | DFII    | DFII   | DFII    | DFII   | DFII    | Description                   |
|-------------|--------|-------|---------|--------|---------|--------|---------|-------------------------------|
| Name        | Stream | Data  | LSW     | Layer  | Layer   | Layer  | Purpose |                               |
|             | Number | Туре  | Name    | Name   | Purpose | Number | Number  |                               |
| Cont        | 6      | 0     | Cont    | Cont   | drawing | 20     | 252     | Metal Contact to Oxide/Poly   |
| Metal1      | 7      | 0     | Metal1  | Metal1 | drawing | 30     | 252     | 1st Metal for interconnect    |
| Metal1_slot | 7      | 2     | M1_slot | Metal1 | slot    | 30     | 1       | 1st Metal stress relief       |
| Metal2      | 9      | 0     | Metal2  | Metal2 | drawing | 34     | 252     | 2nd Metal for interconnect    |
| Metal2_slot | 9      | 2     | M2_slot | Metal2 | slot    | 34     | 1       | 2nd Metal stress relief       |
| Metal3      | 11     | 0     | Metal3  | Metal3 | drawing | 38     | 252     | 3rd Metal for interconnect    |
| Metal3_slot | 11     | 2     | M3_slot | Metal3 | slot    | 38     | 1       | 3rd Metal stress relief       |
| Metal4      | 31     | 0     | Metal4  | Metal4 | drawing | 42     | 252     | 4th Metal for interconnect    |
| Metal4_slot | 31     | 2     | M4_slot | Metal4 | slot    | 42     | 1       | 4th Metal stress relief       |
| Metal5      | 33     | 0     | Metal5  | Metal5 | drawing | 46     | 252     | 5th Metal for interconnect    |
| Metal5_slot | 33     | 2     | M5_slot | Metal5 | slot    | 46     | 1       | 5th Metal stress relief       |
| Metal6      | 35     | 0     | Metal6  | Metal6 | drawing | 50     | 252     | 6th Metal for interconnect    |
| Metal6_slot | 35     | 2     | M6_slot | Metal6 | slot    | 50     | 1       | 6th Metal stress relief       |
| Metal7      | 38     | 0     | Metal7  | Metal7 | drawing | 54     | 252     | 7th Metal for interconnect    |
| Metal7_slot | 38     | 2     | M7_slot | Metal7 | slot    | 54     | 1       | 7th Metal stress relief       |
| Metal8      | 40     | 0     | Metal8  | Metal8 | drawing | 58     | 252     | 8th Metal for interconnect    |
| Metal8_slot | 40     | 2     | M8_slot | Metal8 | slot    | 58     | 1       | 8th Metal stress relief       |
| Metal9      | 42     | 0     | Metal9  | Metal9 | drawing | 62     | 252     | 9th Metal for interconnect    |
| Metal9_slot | 42     | 2     | M9_slot | Metal9 | slot    | 62     | 1       | 9th Metal stress relief       |
| Via1        | 8      | 0     | Via1    | Via1   | drawing | 32     | 252     | Via between 1st and 2nd Metal |
|             | i .    |       |         | 1      |         |        | 1       | i                             |

252

252

252

252

252

252

252

Via between 2nd and 3rd Metal

Via between 3rd and 4th Metal

Via between 4th and 5th Metal

Via between 5th and 6th Metal

Via between 6th and 7th Metal

Via between 7th and 8th Metal

Via between 8th and 9th Metal

**Table 2: Interconnect Layers** 

drawing 36

drawing 38

drawing 44

drawing 48

drawing 52

drawing 54

drawing 60

This table describes the layers used to mark/label shapes for DRC and/or LVS..

| Comment Tab | ole    |      | -         |           | •                |        |         |                                |
|-------------|--------|------|-----------|-----------|------------------|--------|---------|--------------------------------|
| Layer       | GDSII  | GDSI | DFII      | DFII      | DFII             | DFII   | DFII    | Description                    |
| Name        | Stream | Data | LSW       | Layer     |                  | Layer  | Purpose |                                |
|             | Number | Туре | Name      | Name      | Layer<br>Purpose | Number | Number  |                                |
| BJTdum      | 15     | 0    | BJTdum    | BJTdum    | drawing          | 92     | 252     | Marks BJT emitters             |
| VPNP2dum    | 60     | 0    | VPNP2dum  | VPNP2dum  | drawing          | 108    | 252     | Marks BJT vpnp2                |
| VPNP5dum    | 61     | 0    | VPNP5dum  | VPNP5dum  | drawing          | 109    | 252     | Marks BJT vpnp5                |
| VPNP10dum   | 62     | 0    | VPNP10dum | VPNP10dum | drawing          | 110    | 252     | Marks BJT vpnp10               |
| Capdum      | 12     | 0    | Capdum    | Capdum    | drawing          | 96     | 252     | Marks capacitors               |
| Cap3dum     | 84     | 0    | Cap3dum   | Cap3dum   | drawing          | 93     | 252     | Marks capacitors 3 term        |
| DIOdummy    | 22     | 0    | DIOdum    | DIOdummy  | drawing          | 82     | 252     | Marks diodes                   |
| INDdummy    | 16     | 0    | INDdum    | INDdummy  | drawing          | 90     | 252     | Marks inductor terminal        |
| IND2dummy   | 17     | 0    | IND2dum   | IND2dummy | drawing          | 88     | 252     | Marks inductor terminal        |
| IND3dummy   | 70     | 0    | IND3dum   | IND3dummy | drawing          | 114    | 252     | Marks inductor terminal        |
| ESDdummy    | 74     | 0    | ESDdum    | ESDdummy  | drawing          | 115    | 252     | Marks ESD and I/O devices      |
| Metal1_text | 7      | 3    | Metal1    | Metal1    | drawing          | 30     | 252     | Labels Metal1 nodes            |
| Metal2_text | 9      | 3    | Metal2    | Metal2    | drawing          | 34     | 252     | Labels Metal2 nodes            |
| Metal3_text | 11     | 3    | Metal3    | Metal3    | drawing          | 38     | 252     | Labels Metal3 nodes            |
| Metal4_text | 31     | 3    | Metal4    | Metal4    | drawing          | 42     | 252     | Labels Metal4 nodes            |
| Metal5_text | 33     | 3    | Metal5    | Metal5    | drawing          | 46     | 252     | Labels Metal5 nodes            |
| Metal6_text | 35     | 3    | Metal6    | Metal6    | drawing          | 50     | 252     | Labels Metal6 nodes            |
| Metal7_text | 38     | 3    | Metal7    | Metal7    | drawing          | 54     | 252     | Labels Metal7 nodes            |
| Metal8_text | 40     | 3    | Metal8    | Metal8    | drawing          | 58     | 252     | Labels Metal8 nodes            |
| Metal9_text | 42     | 3    | Metal9    | Metal9    | drawing          | 62     | 252     | Labels Metal9 nodes            |
| NPNdummy    | 20     | 0    | NPNdum    | NPNdummy  | drawing          | 86     | 252     | Marks NPN devices              |
|             | 21     | 0    | PNPdum    | PNPdummy  | drawing          | 84     | 252     | Marks PNP devices              |
| Psub        | 25     | 0    | Psub      | Psub      | drawing          | 80     | 252     | Marks seperate substrate areas |
| Resdum      | 13     | 0    | Resdum    | Resdum    | drawing          | 94     | 252     | Marks Poly/Oxide resistor area |
| ResWdum     | 71     | 0    | ResWdum   | ResWdum   | drawing          | 98     | 252     | Marks Nwell resistor area      |
| text        | 63     | 0    | text      | text      | drawing          | 230    | 252     | Text for information           |

**Table 3: DRC/LVS Marker/Label Layers** 

# **Device Layer Table**

SiProt

0

0

0

This table describes the layers used in each device.

- 0: the layer must not touch the device structure
- 1: the layer must enclose or straddle the device structure
- -: the layer may either enclose or avoid the device structure

| Comment Ta | Comment Table |        |         |         |        |        |        |        |
|------------|---------------|--------|---------|---------|--------|--------|--------|--------|
|            | NMOS          | PMOS   | LP NMOS | LP PMOS | NMOS   | PMOS   | Native | Native |
|            | (1.2V)        | (1.2V) | (1.2V)  | (1.2V)  | (2.5V) | (2.5V) | NMOS   | NMOS   |
|            |               |        |         |         |        |        | (1.2V) | (2.5V) |
| Nburied    | 0             | 0      | 0       | 0       | 0      | 0      | 0      | 0      |
| Nwell      | 0             | 1      | 0       | 1       | 0      | 1      | 0      | 0      |
| Oxide      | 1             | 1      | 1       | 1       | 1      | 1      | 1      | 1      |
| Oxide_thk  | 0             | 0      | 0       | 0       | 1      | 1      | 0      | 1      |
| Poly       | 1             | 1      | 1       | 1       | 1      | 1      | 1      | 1      |
| Nimp       | 1             | 0      | 1       | 0       | 1      | 0      | 1      | 1      |
| Pimp       | 0             | 1      | 0       | 1       | 0      | 1      | 0      | 0      |
| Nzvt       | 0             | 0      | 0       | 0       | 0      | 0      | 1      | 1      |
| Nhvt       | 0             | 0      | 1       | 0       | 0      | 0      | 0      | 0      |
| Phvt       | 0             | 0      | 0       | 1       | 0      | 0      | 0      | 0      |

**Table 4: MOS Device Layers** 

0

0

0

0

0

# **Comment Table**

|           | N+/PW | P+/NW |
|-----------|-------|-------|
|           | Diode | Diode |
| Nburied   | 0     | 0     |
| Nwell     | 0     | 1     |
| Oxide     | 1     | 1     |
| Oxide_thk | 0     | 0     |
| Poly      | 0     | 0     |
| Nimp      | 1     | 0     |
| Pimp      | 0     | 1     |
| Nzvt      | 0     | 0     |
| Nhvt      | 0     | 0     |
| Phvt      | 0     | 0     |
| SiProt    | 0     | 0     |

**Table 5: Diode Device Layers** 

#### Comment Table

|           | Salicided<br>N+ Poly | Salicided<br>P+ Poly | Salicided<br>N+ Oxide | Salicided<br>P+ Oxide | Non-<br>Salicided | Non-<br>Salicided | Non-<br>Salicided | Non-<br>Salicided |
|-----------|----------------------|----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|
|           | Resistor             | Resistor             | Resistor              | Resistor              | N+ Poly           | P+ Poly           | N+ Oxide          | P+ Oxide          |
|           |                      |                      |                       |                       | Resistor          | Resistor          | Resistor          | Resistor          |
| Nburied   | 0                    | 0                    | 0                     | 0                     | 0                 | 0                 | 0                 | 0                 |
| Nwell     | -                    | -                    | 0                     | 1                     | -                 | -                 | 0                 | 1                 |
| Oxide     | 0                    | 0                    | 1                     | 1                     | 0                 | 0                 | 1                 | 1                 |
| Oxide_thk | 0                    | 0                    | 0                     | 0                     | 0                 | 0                 | 0                 | 0                 |
| Poly      | 1                    | 1                    | 0                     | 0                     | 1                 | 1                 | 0                 | 0                 |
| Nimp      | 1                    | 0                    | 1                     | 0                     | 1                 | 0                 | 1                 | 0                 |
| Pimp      | 0                    | 1                    | 0                     | 1                     | 0                 | 1                 | 0                 | 1                 |
| Nzvt      | 0                    | 0                    | 0                     | 0                     | 0                 | 0                 | 0                 | 0                 |
| Nhvt      | 0                    | 0                    | 0                     | 0                     | 0                 | 0                 | 0                 | 0                 |
| Phvt      | 0                    | 0                    | 0                     | 0                     | 0                 | 0                 | 0                 | 0                 |
| SiProt    | 0                    | 0                    | 0                     | 0                     | 1                 | 1                 | 1                 | 1                 |

#### **Comment Table**

|           | Nwell    | Nwell    |
|-----------|----------|----------|
|           | in Oxide | in STI   |
|           | Resistor | Resistor |
| Nburied   | 0        | 0        |
| Nwell     | 1        | 1        |
| Oxide     | 1        | 1        |
| Oxide_thk | 0        | 0        |
| Poly      | 0        | 0        |
| Nimp      | 1        | 1        |
| Pimp      | 0        | 0        |
| Nzvt      | 0        | 0        |
| Nhvt      | 0        | 0        |
| Phvt      | 0        | 0        |
| SiProt    | 1        | 0        |

**Table 6: Resistor Device Layers** 

Comment Table

|           | SPNF | VNPN | Varactor<br>(NMOSCAP) |
|-----------|------|------|-----------------------|
| Nburied   | 0    | 1    | 0                     |
| Nwell     | 1    | 1    | 1                     |
| Oxide     | 1    | 1    | 1                     |
| Oxide_thk | 0    | 0    | 0                     |
| Poly      | 0    | 0    | 1                     |
| Nimp      | 1    | 1    | 1                     |
| Pimp      | 1    | 1    | 0                     |
| Nzvt      | 0    | 0    | 0                     |
| Nhvt      | 0    | 0    | 0                     |
| Phvt      | 0    | 0    | 0                     |
| SiProt    | 0    | 0    | 0                     |

**Table 7: Bipolar and Varactor Device Layers** 

# **Device Layout Examples**



















Vertical NPN

Nburied

Nwell

Oxide

Poly

Nimp

Pimp

Nzvt

Nhvt 

Phvt

Cont

SiProt



Salicided N+ Poly Resistor



Non-Salicided N+ Poly Resistor



Salicided P+ Poly Resistor



Non-Salicided P+ Poly Resistor



Salicided N+ Oxide Resistor



Non-Salicided N+ Oxide Resistor





Non-Salicided P+ Oxide Resistor



Nwell in OD Resistor

revision 4.6





N+/PW Diode



P+/NW Diode

| Nburied |
|---------|
|         |
| Nwell   |
|         |
| Oxide   |
|         |
| Poly    |
|         |
| Nimp    |
| 1 1     |
| Pimp    |
|         |
| Nzvt    |
|         |
| Nhvt    |
|         |
| Phvt    |
| (44444) |
| Cont    |
|         |
|         |
| SiProt  |

# **CMOS Digital Core Design Rules**

## **N BURIED LAYER RULES**

#### (SIDENTIFICATION NOTION OF THE PROPERTY OF THE

| Rule<br>Name | Value<br>(um) | Description                                                |
|--------------|---------------|------------------------------------------------------------|
| NBL.W.1      | 3.2           | Minimum Nburied width.                                     |
| NBL.E.1      | 0.4           | Minimum Nburied to Nwell enclosure.                        |
| NBL.SP.1     | 5.0           | Minimum Nburied to Nburied spacing (different potential).  |
| NBL.SE.1     | 4.4           | Minimum Nburied to non-related Nwell spacing.              |
| NBL.SE.2     | 2.2           | Minimum Nburied to Oxide spacing.                          |
| NBL.SE.3     | 0.5           | Minimum Nwell ring (on Nburied) to P+ Active Area spacing. |
| NBL.SE.4     | 0.4           | Minimum Nwell ring (on Nburied) to N+ Active Area spacing. |
| NBL.X.1      |               | Nwell must form isolation rings on Nburied                 |







# N BURIED LAYER RULES (continued)



## **NWELL AND NWELL RESISTOR (under STI) RULES**

Now The Control of th

| очности      | HODIO         | VELET REGIOTOR (under OTI) ROLLO                      |
|--------------|---------------|-------------------------------------------------------|
| Rule<br>Name | Value<br>(um) | Description                                           |
| NW.W.1       | 0.6           | Minimum Nwell width.                                  |
| NW.SP.1      | 0.6           | Minimum Nwell spacing to Nwell (same potential).      |
| NW.SP.2      | 1.2           | Minimum Nwell spacing to Nwell (different potential). |
| NW.SE.1      | 0.3           | Minimum Nwell spacing to N+ Active Area.              |
| NW.SE.2      | 0.3           | Minimum Nwell spacing to P+ Active Area.              |
| NW.SE.3      | 0.5           | Minimum Nwell spacing to N+ 2.5V Active Area.         |
| NW.SE.4      | 0.5           | Minimum Nwell spacing to P+ 2.5V Active Area.         |
| NW.E.1       | 0.12          | Minimum Nwell enclosure of N+ Active Area.            |
| NW.E.2       | 0.12          | Minimum Nwell enclosure of P+ Active Area.            |
| NW.E.3       | 0.7           | Minimum Nwell enclosure of N+ 2.5V Active Area.       |
| NW.E.4       | 0.7           | Minimum Nwell enclosure of P+ 2.5V Active Area.       |

Nwell resistor is defined by the intersection of Nwell and ResWdum for DRC and LVS.

For STI Nwell resistors, the ResWdum shape must butt the N+ Oxide on both ends of Nwell the resistor and the ResWdum shape must be coincident or extend beyond the Nwell edges along the length of the Nwell resistor.





# NWELL AND NWELL RESISTOR (under STI) RULES (continued)









#### **NWELL RESISTOR WITHIN OXIDE RULES**

WWW DENRESUS OR WITHIN OXIDE RULES

| Rule<br>Name | Value<br>(um) | Description                                           |
|--------------|---------------|-------------------------------------------------------|
|              | <u> </u>      |                                                       |
| NWR.E.1      | 1.2           | Minimum Active Area to Nwell (in resistor) enclosure. |
| NWR.E.2      | 0.32          | Minimum salicided Nwell to Contact enclosure.         |
| NWR.SE.1     | 0.32          | Minimum Resist Protect Oxide to Nwell spacing.        |
| NWR.E.3      | 0.25          | Minimum Resist Protect Oxide to Oxide enclosure.      |
| NWR.O.1      | 0.45          | Minimum N+ Implant to Resist Protect Oxide overlap.   |
| NWR.X.1      |               | Thick Oxide is NOT allowed over Nwell resistor.       |
| NWR.SP.1     | 1.2           | Minimum Nwell resistor to other Nwell spacing.        |



Figure 1: NWELL RESISTOR WITHIN OXIDE RULES

Nwell resistor in Oxide is defined by the intersection of Nwell and Resdum for DRC and LVS.

For Nwell resistor within Oxide, the ResWdum shape must butt the Nimp on both ends of the Nwell resistor and the ResWdum shape must be coincident or extend beyond the Nwell edges along the length of the Nwell resistor.



## NWELL RESISTOR WITHIN OXIDE RULES (continued)

NWR.E.3 - Covered by SIPROT.E.1.



NWR.SP.1 - Covered by NW.SP.2.

## SiProt/Nimp Overlap Check - with context

#### macro



#### Macro Table

| \$layer1            | \$dt_Nimp | \$id1   | \$value1 |
|---------------------|-----------|---------|----------|
| siprot_in_nwell_res | Nimp      | NWR.O.1 | 0.45     |

#### \$message1

SiProt to Nimp overlap must be >= 0.45 um

## **ACTIVE RULES**

#### ASCITATION ENRICATES

| Rule<br>Name  | Value<br>(um) | Description                                                                                               |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------|
|               | · /           |                                                                                                           |
| OXIDE.W.1     | 0.1           | Minimum Active Area width.                                                                                |
| OXIDE.W.2.1.1 | 0.12          | Minimum 1.2V N-channel gate width.                                                                        |
| OXIDE.W.2.1.2 | 0.15          | Minimum 2.5V N-channel gate width.                                                                        |
| OXIDE.W.2.2.1 | 0.12          | Minimum 1.2V P-channel gate width.                                                                        |
| OXIDE.W.2.2.2 | 0.15          | Minimum 2.5V P-channel gate width.                                                                        |
| OXIDE.W.3     | 0.13          | Minimum Active Area bent 45 degrees width.                                                                |
| OXIDE.SP.1    | 0.15          | Minimum N+ Active Area to N+ Active Area spacing.                                                         |
| OXIDE.SP.2    | 0.15          | Minimum P+ Active Area to P+ Active Area spacing.                                                         |
| OXIDE.SP.3    | 0.15          | Minimum N+ Active Area to P+ Active Area spacing.                                                         |
| OXIDE.SP.4    | 0.18          | Minimum Active Area bent 45 degrees to Active Area spacing.                                               |
| OXIDE.SE.1    | 0.28          | Minimum Active Area to Thick Active Area spacing.                                                         |
| OXIDE.A.1     | 0.06          | Minimum area fpr Active Area.                                                                             |
| OXIDE.EA.1    | 0.1           | Minimum Active Area enclosed area ("donut" hole surrounded by Active Area).                               |
| OXIDE.L.1     | 22.0          | Maximum Oxide length between two contacts when the Oxide width is <= 0.18um.                              |
| OXIDE.L.2     | 11.0          |                                                                                                           |
| ONIDE.L.2     | 11.0          | Maximum Oxide length between one contact and the end of the Oxide line when the Oxide width is <= 0.18um. |
| OXIDE.X.1     |               | Oxide must be covered by N+ Implant or P+ Implant or Nzvt or Salicide Block.                              |



# ACTIVE RULES (continued) Oxide





0.13

OXIDE.W.3















## **ACTIVE RESISTOR RULES (salicided/non-salicided)**

**COTIMENRESUSETOR RULES** (salicided/non-salicided)

| Dula         | Value | Description                                          |
|--------------|-------|------------------------------------------------------|
| Rule         |       | Description                                          |
| Name         | (um)  |                                                      |
| OXIDER.W.1.1 | 0.2   | Minimum Active resistor width.                       |
| OXIDER.W.1.2 | 1.5   | Minimum suggested Active resistor width.             |
| OXIDER.L.1   | 8.0   | Minimum suggested Active resistor length.            |
| OXIDER.SE.1  | 0.24  | Minimum Salicide Block to Contact spacing.           |
| OXIDER.E.1   | 0.25  | Minimum Salicide Block to Active resistor enclosure. |
| OXIDER.SE.2  | 0.3   | Minimum Active resistor to N+ or P+ Implant spacing. |
| OXIDER.X.1   |       | Active resistors must have N+ or P+ Implant.         |

Active resistor is defined by the intersection of Oxide and Resdum for DRC and LVS.

For salicided Oxide resistors, the Resdum shape must butt the contacts on both ends of Oxide the resistor and the Resdum shape must be coincident or extend beyond the Oxide edges along the length of the Oxide resistor.

For non-salicided Oxide resistors, the Resdum shape must be coincident with the edges of the Siprot that crosses the width of the Oxide resistor and the Resdum shape must be coincident or extend beyond the Oxide edges along the length of the Oxide resistor.

#### switch !SUGGESTED\_CHECK



#### switch SUGGESTED\_CHECK



#### switch SUGGESTED\_CHECK









# ACTIVE RESISTOR RULES (continued)





## THICK ACTIVE (2.5V) RULES

CldtrateAcTabble (2.5V) RULES

| Rule          | l    | Description                                                             |
|---------------|------|-------------------------------------------------------------------------|
| Name          | (um) |                                                                         |
| OXIDETHK.W.1  | 0.7  | Minimum Thick Active Area width.                                        |
| OXIDETHK.SP.1 | 0.35 | Minimum Thick Active Area to Thick Active Area spacing.                 |
| OXIDETHK.SP.2 | 0.75 | Minimum Thick Active Area bent 45 degrees to Thick Active Area spacing. |
| OXIDETHK.SE.1 | 0.20 | Minimum N+ 2.5V Active Area to 2.5V N+ Active Area spacing.             |
| OXIDETHK.SE.2 | 0.20 | Minimum P+ 2.5V Active Area to 2.5V P+ Active Area spacing.             |
| OXIDETHK.SE.3 | 0.25 | Minimum N+ 2.5V Active Area to 2.5V P+ Active Area spacing.             |
| OXIDETHK.SE.4 | 0.28 | Minimum Thick Active Area to Active Area spacing.                       |
| OXIDETHK.E.1  | 0.3  | Minimum Thick Active Area to Active Area enclosure.                     |
| OXIDETHK.SE.5 | 0.34 | Minimum Thick Active Area to 1.2V Poly gate spacing.                    |
| OXIDETHK.E.2  | 0.36 | Minimum Thick Active Area to Thick Poly gate enclosure.                 |

Note 1: 2.5V MOS must be defined by Active which is fully enclosed by Thick Active (with 0.0 overlap).

Note 2: 1.2V MOS is only defined by Active without any Thick Active.









OXIDETHK.SE.4 - Covered by OXIDE.SE.1.

# Thick ACTIVE RULES (continued)







## **N+ HIGH VT RULES**

#### 13 enhhadhrit√TabReJLES RULES

| Rule<br>Name | Value<br>(um) | Description                                                           |
|--------------|---------------|-----------------------------------------------------------------------|
| NHVT.X.1     |               | Nhvt exactly matches the Oxide it is on (0.0 enclosure on all sides). |
| NHVT.X.2     |               | Nhvt is NOT allowed on Nwell.                                         |
| NHVT.X.3     |               | Nhvt is NOT allowed on P+ Active.                                     |
| NHVT.X.4     |               | Nhvt is NOT allowed on Nzvt.                                          |

#### Note 1: Nhvt defines the 1.2V LP NMOS device.



## **P+ HIGH VT RULES**

#### Penhinodinit√TableJLES RULES

| Rule<br>Name | Value<br>(um) | Description                                                           |
|--------------|---------------|-----------------------------------------------------------------------|
| PHVT.X.1     |               | Phyt exactly matches the Oxide it is on (0.0 enclosure on all sides). |
| PHVT.X.2     |               | Phvt is NOT allowed outside Nwell.                                    |
| PHVT.X.3     |               | Phvt is NOT allowed on N+ Active.                                     |
| PHVT.X.4     |               | Phvt is NOT allowed on Nzvt.                                          |

#### Note 1: Phyt defines the 1.2V LP PMOS device.



## **NATIVE NMOS ACTIVE RULES**

| MATHY ENVIVEDSE | ACTIVE                     | RIIIES |
|-----------------|----------------------------|--------|
|                 | $\neg \cup \cup \cup \cup$ | NULLS  |

| Rule<br>Name | Value<br>(um) | Description                                                           |
|--------------|---------------|-----------------------------------------------------------------------|
| NZVT.W.1     | 0.7           | Minimum Nzvt width.                                                   |
| NZVT.SP.1    | 0.6           | Minimum Nzvt to Nzvt spacing.                                         |
| NZVT.O.1     | 0.3           | Minimum and maximum Nzvt to Active Area overlap.                      |
| NZVT.SE.1    | 0.28          | Minimum Nzvt to Active spacing.                                       |
| NZVT.SE.2    | 1.2           | Minimum Nzvt to Nwell spacing.                                        |
| NZVT.E.1     | 0.2           | Minimum N+ Poly gate end cap to Native Active Area enclosure.         |
| NZVT.E.1.DFM | 0.22          | Minimum N+ Poly gate end cap to Native Active Area enclosure for DFM. |
| NZVT.L.1     | 0.9           | Minimum Native device Poly gate length.                               |
| NZVT.W.2     | 0.65          | Minimum Native device Poly gate width.                                |
| NZVT.X.1     | -             | Nzvt is NOT allowed on Nwell.                                         |
| NZVT.X.2     |               | Bent Poly gates are NOT allowed on Nzvt.                              |
| NZVT.X.3     |               | P+ Active Area is NOT allowed on Nzvt.                                |
| NZVT.X.4     |               | Only one Active Area is allowed in an Nzvt region.                    |

Note 1: Native NMOS is defined by Active which is full enclosed by Nzvt with 0.3um enclosure.



## **POLY RULES**

#### **COMMENDITES**IC

| Value | Description                                                                                  |
|-------|----------------------------------------------------------------------------------------------|
| (um)  |                                                                                              |
| 0.1   | Minimum 1.2V N-channel gate length.                                                          |
| 0.1   | Minimum 1.2V P-channel gate length.                                                          |
| 0.28  | Minimum 2.5V N-channel gate length.                                                          |
| 0.28  | Minimum 2.5V P-channel gate length.                                                          |
| 0.1   | Minimum Poly interconnect width.                                                             |
| 0.6   | Minimum Poly resistor space.                                                                 |
| 0.12  | Minimum gate space.                                                                          |
| 0.14  | Minimum gate space for DFM.                                                                  |
| 0.12  | Minimum Poly interconnect space.                                                             |
| 0.18  | Minimum N-channel gate extension beyond Active Area.                                         |
| 0.18  | Minimum P-channel gate extension beyond Active Area.                                         |
| 0.20  | Minimum N-channel gate extension beyond Active Area for DFM.                                 |
| 0.20  | Minimum P-channel gate extension beyond Active Area for DFM.                                 |
| 0.1   | Minimum Poly interconnect to unrelated Active Area space.                                    |
| 0.1   | Minimum Poly interconnect to related Active Area space.                                      |
| 0.2   | Minimum Active Area (source/drain) to gate enclosure.                                        |
| 0.18  | Minimum bent Poly width.                                                                     |
| 0.22  | Minimum bent Poly space.                                                                     |
| ***   | Bent gate is not allowed.                                                                    |
| ***   | Bent Poly resistor is not allowed.                                                           |
| 50%   | Maximum Poly density across full chip.                                                       |
| 25    | Maximum Poly segment length (width < 0.14) between two contacts.                             |
| 0.1   | Minimum area for Poly interconnect.                                                          |
|       | (um) 0.1 0.1 0.28 0.28 0.1 0.6 0.12 0.14 0.12 0.18 0.20 0.1 0.1 0.2 0.18 0.22 *** *** 50% 25 |

# POLY RULES (continued)



# **POLY RULES (continued)**









# POLY RULES (continued)













# POLY RESISTOR RULES (salicided/non-salicided)

POMMENTES (salicided/non-salicided)

| Rule<br>Name | Value<br>(um) | Description                                            |
|--------------|---------------|--------------------------------------------------------|
| POLYR.W.1.1  | 0.2           | Minimum Poly resistor width.                           |
| POLYR.W.1.2  | 1.5           | Minimum suggested Poly resistor width.                 |
| POLYR.L.1    | 8.0           | Minimum suggested Poly resistor length.                |
| POLYR.SE.1   | 0.24          | Minimum Salicide Block to Contact spacing.             |
| POLYR.E.1    | 0.28          | Minimum Salicide Block to Poly resistor enclosure.     |
| POLYR.E.2    | 0.15          | Minimum N+ Implant to Poly used in resistor enclosure. |
| POLYR.E.3    | 0.15          | Minimum P+ Implant to Poly used in resistor enclosure. |
| POLYR.SE.2   | 0.3           | Minimum Poly resistor to other Implant spacing.        |
| POLYR.X.1    |               | Poly resistors must have N+ or P+ Implant.             |

Poly resistor is defined by the intersection of Poly and Resdum for DRC and LVS.

For salicided Poly resistors, the Resdum shape must butt the contacts on both ends of Poly the resistor and the Resdum shape must be coincident or extend beyond the Poly edges along the length of the Poly resistor.

For non-salicided Poly resistors, the Resdum shape must be coincident with the edges of the Siprot that crosses the width of the Poly resistor and the Resdum shape must be coincident or extend beyond the Poly edges along the length of the Poly resistor.

### switch !SUGGESTED\_CHECK



# switch SUGGESTED\_CHECK



### switch SUGGESTED\_CHECK





# POLY RESISTOR RULES (continued)















# **N+ IMPLANT RULES**

### Mentivite Land Matheules

| Rule<br>Name | Value<br>(um) | Description                                                                    |
|--------------|---------------|--------------------------------------------------------------------------------|
|              | 0.24          | Minimum N+ Implant width.                                                      |
| NIMP.SP.1    | 0.24          | Minimum N+ Implant space.                                                      |
| NIMP.E.1     | 0.14          | Minimum N+ Implant to Active Area enclosure.                                   |
| NIMP.O.1     | 0.16          | Minimum N+ Implant to Active Area overlap.                                     |
| NIMP.SE.1    | 0.16          | Minimum N+ Implant to P+ Active (inside Nwell) Area spacing.                   |
| NIMP.E.2     | 0.02          | Minimum N+ Implant to Active Area (Nwell tie) enclosure.                       |
| NIMP.E.3     | 0.18          | Minimum N+ Implant to gate side enclosure.                                     |
| NIMP.SE.2    | 0.02          | Minimum N+ Implant to P+ Active Area (substrate tie) spacing.                  |
| NIMP.E.4     | 0.18          | Minimum N+ to gate (endcap) enclosure.                                         |
| NIMP.SE.3    | 0.18          | Minimum N+ Implant to P+ gate side (butted Implant) spacing.                   |
| NIMP.A.1     | 0.15          | Minimum area for N+ Implant.                                                   |
| NIMP.EA.1    | 0.16          | Minimum N+ Implant ring enclosed area ("donut" hole surrounded by N+ Implant). |
| NIMP.X.1     |               | N+ Implant is NOT allowed over P+ Implant.                                     |



# N+ IMPLANT RULES (continued)













# **P+ IMPLANT RULES**

### **Certivite Loa National**

| Rule<br>Name | Value<br>(um) | Description                                                                    |
|--------------|---------------|--------------------------------------------------------------------------------|
| PIMP.W.1     | 0.24          | Minimum P+ Implant width.                                                      |
| PIMP.SP.1    | 0.24          | Minimum P+ Implant space.                                                      |
| PIMP.E.1     | 0.14          | Minimum P+ Implant to Active Area enclosure.                                   |
| PIMP.O.1     | 0.16          | Minimum P+ Implant to Active Area overlap.                                     |
| PIMP.SE.1    | 0.16          | Minimum P+ Implant to N+ Active (outside Nwell) Area spacing.                  |
| PIMP.E.2     | 0.02          | Minimum P+ Implant to Active Area (substrate tie) enclosure.                   |
| PIMP.E.3     | 0.18          | Minimum P+ Implant to gate side enclosure.                                     |
| PIMP.SE.2    | 0.02          | Minimum P+ Implant to N+ Active Area (Nwell tie) spacing.                      |
| PIMP.E.4     | 0.18          | Minimum P+ to gate (endcap) enclosure.                                         |
| PIMP.SE.3    | 0.18          | Minimum P+ Implant to N+ gate side (butted Implant) spacing.                   |
| PIMP.A.1     | 0.15          | Minimum area for P+ Implant.                                                   |
| PIMP.EA.1    | 0.16          | Minimum P+ Implant ring enclosed area ("donut" hole surrounded by P+ Implant). |
| PIMP.X.1     |               | P+ Implant is NOT allowed over N+ Implant.                                     |



# P+ IMPLANT RULES (continued)











PIMP.X.1 - Covered by NIMP.X.1.

# **CONTACT RULES**

# CONTACTTRILLES

| COMMITTAGETTAGE                                                                                                         |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rule                                                                                                                    | Value                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Name                                                                                                                    | (um)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.W.1                                                                                                                | 0.12                                                         | Maximum and minimum Contact width/length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CONT.SP.1                                                                                                               | 0.14                                                         | Minimum Contact to Contact spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| CONT.SP.2                                                                                                               | 0.16                                                         | Minimum Contact to Contact spacing when the Contacts are in a 3x3 or larger array (minimum dimension on one side of array is 3). Contacts spaced less than 0.18um should be considered for array spacing check.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.SE.1                                                                                                               | 0.10                                                         | Minimum Contact on Active Area to gate spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.SE.2                                                                                                               | 0.12                                                         | Minimum Contact on 2.5V Active Area to gate spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CONT.SE.3                                                                                                               | 0.12                                                         | Minimum gate Contact to Active Area spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CONT.SE.4                                                                                                               | 0.14                                                         | Minimum 2.5V gate Contact to Active Area spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| CONT.SE.1.DFM                                                                                                           | 0.12                                                         | Minimum Contact on Active Area to gate spacing for DFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| CONT.SE.2.DFM                                                                                                           | 0.14                                                         | Minimum Contact on 2.5V Active Area to gate spacing for DFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CONT.SE.3.DFM                                                                                                           | 0.14                                                         | Minimum gate Contact to Active Area spacing for DFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| CONT.SE.4.DFM                                                                                                           | 0.16                                                         | Minimum 2.5V gate Contact to Active Area spacing for DFM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CONT.E.1                                                                                                                | 0.06                                                         | Minimum Active Area to Contact enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CONT.E.2                                                                                                                | 0.04                                                         | Minimum Poly to Contact enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| CONT.E.3                                                                                                                | 0.06                                                         | Minimum Poly to Contact enclosure on at least two opposite sides (end of line).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.E.4                                                                                                                | 0.06                                                         | Minimum N+/P+ Implant on Active Area to Contact enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| CONT.SE.5                                                                                                               | 0.24                                                         | Minimum Poly Contact to non-salacided Poly resistor or Active Contact to non-salacided Active resistor spacing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.X.1                                                                                                                |                                                              | Contact on gate is NOT allowed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| CONT.X.2                                                                                                                |                                                              | Active Area Contact on N+/P+ Implant edge is NOT allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CONT.X.3                                                                                                                | -                                                            | Contact must be covered by Metal1 and Active Area or Poly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| CONT.SE.1.DFM CONT.SE.2.DFM CONT.SE.3.DFM CONT.SE.4.DFM CONT.E.1 CONT.E.2 CONT.E.3 CONT.E.4 CONT.SE.5 CONT.X.1 CONT.X.1 | 0.12<br>0.14<br>0.16<br>0.06<br>0.04<br>0.06<br>0.06<br>0.24 | Minimum Contact on Active Area to gate spacing for DFM.  Minimum Contact on 2.5V Active Area to gate spacing for DFM.  Minimum gate Contact to Active Area spacing for DFM.  Minimum 2.5V gate Contact to Active Area spacing for DFM.  Minimum Active Area to Contact enclosure.  Minimum Poly to Contact enclosure on at least two opposite sides (end of line).  Minimum Poly to Contact enclosure on at least two opposite sides (end of line).  Minimum N+/P+ Implant on Active Area to Contact enclosure.  Minimum Poly Contact to non-salacided Poly resistor or Active Contact to non-salacided Active resistor spacing.  Contact on gate is NOT allowed,  Active Area Contact on N+/P+ Implant edge is NOT allowed. |  |



# **CONTACT RULES (continued)**









### switch CHECK\_DFM



Poly





# **CONTACT RULES (continued)**





# CONT.SE.5 - Covered by SIPROT.SE.1.









# **SALICIDE BLOCKING RULES**

### SAMONDETBLOOCKING RULES

| Rule        | Value | Description                                                                       |
|-------------|-------|-----------------------------------------------------------------------------------|
| Name        | (um)  |                                                                                   |
| SIPROT.W.1  | 0.44  | Minimum Salicide Block width.                                                     |
| SIPROT.SP.1 | 0.44  | Minimum Salicide Block space.                                                     |
| SIPROT.SE.1 | 0.24  | Minimum Salicide Block to Contact spacing.                                        |
| SIPROT.SE.2 | 0.24  | Minimum Salicide Block to unrelated Active Area spacing.                          |
| SIPROT.SE.3 | 0.44  | Minimum Salicide Block to gate spacing.                                           |
| SIPROT.E.1  | 0.25  | Minimum Salicide Block to Active Area enclosure.                                  |
| SIPROT.E.2  | 0.24  | Minimum Active Area to Salicide Block enclosure.                                  |
| SIPROT.E.3  | 0.28  | Minimum Salicide Block to Poly (on field) enclosure.                              |
| SIPROT.A.1  | 1.2   | Minimum Salicide Block area.                                                      |
| SIPROT.EA.1 | 1.2   | Minimum Salicide Block enclosed area ("donut" hole surrounded by Salicide Block). |
| SIPROT.SE.4 | 0.35  | Minimum Salicide Block to Poly (on field) spacing.                                |



# **METAL 1 RULES**

# Month Anlert Relibles

| Rule          | Value | Description                                                            |
|---------------|-------|------------------------------------------------------------------------|
| Name          | (um)  | ·                                                                      |
| METAL1.W.1    | 0.12  | Minimum Metal 1 width.                                                 |
| METAL1.W.2    | 12.0  | Maximum Metal 1 width.                                                 |
| METAL1.SP.1.1 | 0.12  | Minimum Metal 1 to Metal 1 spacing.                                    |
|               |       | Minimum Metal 1 to Metal 1 spacing if:                                 |
| METAL1.SP.1.2 | 0.18  | one metal width > 0.18 and parallel length > 0.56.                     |
| METAL1.SP.1.3 | 0.50  | one metal width > 1.5 and parallel length > 1.5.                       |
| METAL1.SP.1.4 | 0.90  | one metal width > 3.0 and parallel length > 3.0.                       |
| METAL1.SP.1.5 | 1.50  | one metal width > 4.5 and parallel length > 4.5.                       |
| METAL1.SP.1.6 | 2.50  | one metal width > 7.5 and parallel length > 7.5.                       |
| METAL1.E.1    | 0.00  | Minimum Metal 1 to Contact enclosure.                                  |
| METAL1.E.2    | 0.06  | Minimum Metal 1 to Contact enclsoure on two opposite sides of the      |
|               |       | Contact.                                                               |
| METAL1.L.1    | 0.18  | Minimum bent Metal 1 (45 degree angle) length.                         |
| METAL1.SP.2   | 0.16  | Minimum bent Metal 1 (45 degree angle) space.                          |
| METAL1.W.3    | 0.14  | Minimum bent Metal 1 (45 degree angle) width.                          |
| METAL1.A.1    | 0.07  | Minimum Metal1 area.                                                   |
| METAL1.D.1    | > 20% | Metal 1 Density range over any 120um x 120um area (checked by stepping |
|               | < 65% | in 60um increments).                                                   |
| METAL1.D.2    | < 60% | Maximum Metal 1 density over any 600um x 600um area (checked by        |
|               |       | stepping in 300um increments).                                         |

# **METAL** k (k = 2, 3, 4, 5, 6, 7) **RULES**

(Mainth Anle Int (Table, 3, 4, 5, 6, 7) RULES

| Rule          |       | Description                                                            |  |
|---------------|-------|------------------------------------------------------------------------|--|
| Name          | (um)  |                                                                        |  |
| METALk.W.1    | 0.14  | Minimum Metal k width.                                                 |  |
| METALk.W.2    | 12.0  | Maximum Metal k width.                                                 |  |
| METALk.SP.1.1 | 0.14  | Minimum Metal k to Metal k spacing.                                    |  |
|               |       | Minimum Metal k to Metal k spacing if:                                 |  |
| METALk.SP.1.2 | 0.20  | one Metal k width > 0.20 and parallel length > 0.56.                   |  |
| METALk.SP.1.3 | 0.50  | one Metal k width > 1.5 and parallel length > 1.5.                     |  |
| METALk.SP.1.4 | 0.90  | one Metal k width > 3.0 and parallel length > 3.0.                     |  |
| METALk.SP.1.5 | 1.50  | one Metal k width > 4.5 and parallel length > 4.5.                     |  |
| METALk.SP.1.6 | 2.50  | one Metal k width > 7.5 and parallel length > 7.5.                     |  |
| METALk.E.1    | 0.005 | Minimum Metal k enclosure of Via k-1.                                  |  |
| METALk.E.2    | 0.06  | Minimum Metal k enclosure of Via k-1on at least two opposite sides.    |  |
| METALk.L.1    | 0.20  | Minimum bent Metal k (45 degree angle) length.                         |  |
| METALk.SP.2   | 0.18  | Minimum bent Metal k (45 degree angle) space.                          |  |
| METALk.W.3    | 0.16  | Minimum bent Metal k (45 degree angle) width.                          |  |
| METALk.A.1    | 0.08  | Minimum Metal k area.                                                  |  |
| METALk.D.1    | > 20% | Metal k Density range over any 120um x 120um area (checked by stepping |  |
|               | < 65% | in 60um increments).                                                   |  |
| METALk.D.2    | < 60% | Maximum Metal k density over any 600um x 600um area (checked by        |  |
|               |       | stepping in 300um increments).                                         |  |

# METAL k (k = 8, 9) RULES

Month Anderkt (Trans Be, 9) RULES

| NORMAL III KILC II K (IK CHO LE) | 0,1100        |                                                                        |
|----------------------------------|---------------|------------------------------------------------------------------------|
| Rule<br>Name                     | Value<br>(um) | Description                                                            |
| METALk.W.1                       | 0.44          | Minimum Metal k width.                                                 |
| METALk.W.2                       | 12.0          | Maximum Metal k width.                                                 |
| METALk.SP.1.1                    | 0.40          | Minimum Metal k to Metal k spacing.                                    |
|                                  |               | Minimum Metal k to Metal k spacing if:                                 |
| METALk.SP.1.2                    | 0.50          | one Metal k width > 1.50 and parallel length > 1.50.                   |
| METALk.SP.1.3                    | 0.90          | one Metal k width > 3.00 and parallel length > 3.00.                   |
| METALk.SP.1.4                    | 1.50          | one Metal k width > 4.50 and parallel length > 4.50.                   |
| METALk.SP.1.5                    | 2.50          | one Metal k width > 7.5 and parallel length > 7.5.                     |
| METALk.E.1                       | 0.05          | Minimum Metal k overlap of Via k-1.                                    |
| METALk.E.2                       | 0.1           | Minimum Metal k overlap of Via k-1 on at least two opposite sides.     |
| METALk.A.1                       | 0.20          | Minimum Metal k area.                                                  |
| METALk.D.1                       | > 20%         | Metal k Density range over any 120um x 120um area (checked by stepping |
|                                  | < 65%         | in 60um increments).                                                   |
| METALk.D.2                       | < 60%         | Maximum Metal k density over any 600um x 600um area (checked by        |
|                                  |               | stepping in 300um increments).                                         |



#### macro

| Macro Table |             |          |            |            |  |
|-------------|-------------|----------|------------|------------|--|
| \$name1     | \$layer1    | \$layer2 | \$id1      | \$id2      |  |
| Metal2      | metal2_conn | Via1     | METAL2.E.1 | METAL2.E.2 |  |
| Metal3      | metal3_conn | Via2     | METAL3.E.1 | METAL3.E.2 |  |
| Metal4      | metal4_conn | Via3     | METAL4.E.1 | METAL4.E.2 |  |
| Metal5      | metal5_conn | Via4     | METAL5.E.1 | METAL5.E.2 |  |
| Metal6      | metal6_conn | Via5     | METAL6.E.1 | METAL6.E.2 |  |
| Metal7      | metal7_conn | Via6     | METAL7.E.1 | METAL7.E.2 |  |





### macro

| Macro Table |                |            |          |  |  |
|-------------|----------------|------------|----------|--|--|
| \$layer1    | \$name1  \$id1 |            | \$value1 |  |  |
| metal1_conn | Metal1         | METAL1.W.1 | 0.12     |  |  |
| metal2_conn | Metal2         | METAL2.W.1 | 0.14     |  |  |
| metal3_conn | Metal3         | METAL3.W.1 | 0.14     |  |  |
| metal4_conn | Metal4         | METAL4.W.1 | 0.14     |  |  |
| metal5_conn | Metal5         | METAL5.W.1 | 0.14     |  |  |
| metal6_conn | Metal6         | METAL6.W.1 | 0.14     |  |  |
| metal7_conn | Metal7         | METAL7.W.1 | 0.14     |  |  |
| metal8_conn | Metal8         | METAL8.W.1 | 0.44     |  |  |
| metal9_conn | Metal9         | METAL9.W.1 | 0.44     |  |  |



### macro



### Macro Table

| \$layer1    | \$layer2        | \$layer3        | \$name1 | \$id1      | \$value1 |
|-------------|-----------------|-----------------|---------|------------|----------|
| metal1_conn | cont_array_zone | via1_array_zone | Metal1  | METAL1.W.2 | 12.0     |
| metal2_conn | via1_array_zone | via2_array_zone | Metal2  | METAL2.W.2 | 12.0     |
| metal3_conn | via2_array_zone | via3_array_zone | Metal3  | METAL3.W.2 | 12.0     |
| metal4_conn | via3_array_zone | via4_array_zone | Metal4  | METAL4.W.2 | 12.0     |
| metal5_conn | via4_array_zone | via5_array_zone | Metal5  | METAL5.W.2 | 12.0     |
| metal6_conn | via5_array_zone | via6_array_zone | Metal6  | METAL6.W.2 | 12.0     |



### macro

| Macro Table |         |            |          |  |  |  |
|-------------|---------|------------|----------|--|--|--|
| \$layer1    | \$name1 | \$id1      | \$value1 |  |  |  |
| metal8_conn | Metal8  | METAL8.W.2 | 12.0     |  |  |  |
| metal9_conn | Metal9  | METAL9.W.2 | 12.0     |  |  |  |



### macro

| \$layer1 | \$id1         | \$value1 |
|----------|---------------|----------|
| Metal1   | METAL1.SP.1.1 | 0.12     |
| Metal2   | METAL2.SP.1.1 | 0.14     |
| Metal3   | METAL3.SP.1.1 | 0.14     |
| Metal4   | METAL4.SP.1.1 | 0.14     |
| Metal5   | METAL5.SP.1.1 | 0.14     |
| Metal6   | METAL6.SP.1.1 | 0.14     |
| Metal7   | METAL7.SP.1.1 | 0.14     |
| Metal8   | METAL8.SP.1.1 | 0.40     |
| Metal9   | METAL9.SP.1.1 | 0.40     |



### macro



# Macro Table

| \$layer1 | \$id1         | \$value1 | \$value2 | \$value3 | \$value4 |
|----------|---------------|----------|----------|----------|----------|
| Metal1   | METAL1.SP.1.2 | 0.18     | 0.18     | 0.56     | 1.5      |
| Metal2   | METAL2.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |
| Metal3   | METAL3.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |
| Metal4   | METAL4.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |
| Metal5   | METAL5.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |
| Metal6   | METAL6.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |
| Metal7   | METAL7.SP.1.2 | 0.20     | 0.20     | 0.56     | 1.5      |

### macro

| Macro Table |               |  |
|-------------|---------------|--|
| \$layer1    | \$id1         |  |
| Metal1      | METAL1.SP.1.3 |  |
| Metal2      | METAL2.SP.1.3 |  |
| Metal3      | METAL3.SP.1.3 |  |
| Metal4      | METAL4.SP.1.3 |  |
| Metal5      | METAL5.SP.1.3 |  |
| Metal6      | METAL6.SP.1.3 |  |
| Metal7      | METAL7.SP.1.3 |  |
| Metal8      | METAL8.SP.1.2 |  |
| Metal9      | METAL9.SP.1.2 |  |



#### macro

| Macro Table |               |  |
|-------------|---------------|--|
| \$layer1    | \$id1         |  |
| Metal1      | METAL1.SP.1.4 |  |
| Metal2      | METAL2.SP.1.4 |  |
| Metal3      | METAL3.SP.1.4 |  |
| Metal4      | METAL4.SP.1.4 |  |
| Metal5      | METAL5.SP.1.4 |  |
| Metal6      | METAL6.SP.1.4 |  |
| Metal7      | METAL7.SP.1.4 |  |
| Metal8      | METAL8.SP.1.3 |  |
| Metal9      | METAL9.SP.1.3 |  |



| Macro Table |               |  |
|-------------|---------------|--|
| \$layer1    | \$id1         |  |
| Metal1      | METAL1.SP.1.5 |  |
| Metal2      | METAL2.SP.1.5 |  |
| Metal3      | METAL3.SP.1.5 |  |
| Metal4      | METAL4.SP.1.5 |  |
| Metal5      | METAL5.SP.1.5 |  |
| Metal6      | METAL6.SP.1.5 |  |
| Metal7      | METAL7.SP.1.5 |  |
| Metal8      | METAL8.SP.1.4 |  |
| Metal9      | METAL9.SP.1.4 |  |



### macro

| Macro Table |               |  |
|-------------|---------------|--|
| \$layer1    | \$id1         |  |
| Metal1      | METAL1.SP.1.6 |  |
| Metal2      | METAL2.SP.1.6 |  |
| Metal3      | METAL3.SP.1.6 |  |
| Metal4      | METAL4.SP.1.6 |  |
| Metal5      | METAL5.SP.1.6 |  |
| Metal6      | METAL6.SP.1.6 |  |
| Metal7      | METAL7.SP.1.6 |  |
| Metal8      | METAL8.SP.1.5 |  |
| Metal9      | METAL9.SP.1.5 |  |



#### macro

| Macro Table |            |          |
|-------------|------------|----------|
| \$layer1    | \$id1      | \$value1 |
| Metal1      | METAL1.L.1 | 0.18     |
| Metal2      | METAL2.L.1 | 0.20     |
| Metal3      | METAL3.L.1 | 0.20     |
| Metal4      | METAL4.L.1 | 0.20     |
| Metal5      | METAL5.L.1 | 0.20     |
| Metal6      | METAL6.L.1 | 0.20     |
| Metal7      | METAL7.L.1 | 0.20     |



| \$layer1 | \$id1       | \$value1 | \$id2      | \$value2 |
|----------|-------------|----------|------------|----------|
| Metal1   | METAL1.SP.2 | 0.16     | METAL1.W.3 | 0.14     |
| Metal2   | METAL2.SP.2 | 0.18     | METAL2.W.3 | 0.16     |
| Metal3   | METAL3.SP.2 | 0.18     | METAL3.W.3 | 0.16     |
| Metal4   | METAL4.SP.2 | 0.18     | METAL4.W.3 | 0.16     |
| Metal5   | METAL5.SP.2 | 0.18     | METAL5.W.3 | 0.16     |
| Metal6   | METAL6.SP.2 | 0.18     | METAL6.W.3 | 0.16     |
| Metal7   | METAL7.SP.2 | 0.18     | METAL7.W.3 | 0.16     |



| Macro Table |            |          |
|-------------|------------|----------|
| \$layer1    | \$id1      | \$value1 |
| Metal1      | METAL1.A.1 | 0.07     |
| Metal2      | METAL2.A.1 | 0.08     |
| Metal3      | METAL3.A.1 | 0.08     |
| Metal4      | METAL4.A.1 | 0.08     |
| Metal5      | METAL5.A.1 | 0.08     |
| Metal6      | METAL6.A.1 | 0.08     |
| Metal7      | METAL7.A.1 | 0.08     |
| Metal8      | METAL8.A.1 | 0.2      |
| Metal9      | METAL9.A.1 | 0.2      |



# switch CHECK\_DENSITY

### macro

| Macro Table |             |            |
|-------------|-------------|------------|
| \$name1     | \$layer1    | \$id1      |
| Metal1      | metal1_conn | METAL1.D.1 |
| Metal2      | metal2_conn | METAL2.D.1 |
| Metal3      | metal3_conn | METAL3.D.1 |
| Metal4      | metal4_conn | METAL4.D.1 |
| Metal5      | metal5_conn | METAL5.D.1 |
| Metal6      | metal6_conn | METAL6.D.1 |
| Metal7      | metal7_conn | METAL7.D.1 |
| Metal8      | metal8_conn | METAL8.D.1 |
| Metal9      | metal9_conn | METAL9.D.1 |

### Density

ratio >= 0.20 <= 0.65 windowSize: 120.0 stepSize: 60.0 \$layer1

id: \$id1

message: \$name1 density must be >= 20% <= 65%

#### macro

### Macro Table

| \$name1 | \$layer1    | \$id1      |
|---------|-------------|------------|
| Metal1  | metal1_conn | METAL1.D.2 |
| Metal2  | metal2_conn | METAL2.D.2 |
| Metal3  | metal3_conn | METAL3.D.2 |
| Metal4  | metal4_conn | METAL4.D.2 |
| Metal5  | metal5_conn | METAL5.D.2 |
| Metal6  | metal6_conn | METAL6.D.2 |
| Metal7  | metal7_conn | METAL7.D.2 |
| Metal8  | metal8_conn | METAL8.D.2 |
| Metal9  | metal9_conn | METAL9.D.2 |

### Density

ratio <= 0.60 windowSize: 600.0 stepSize: 300.0

id: \$id1

message: \$name1 density must be <= 60%

# VIA k (k = 1, 2, 3, 4, 5, 6) RULES

**(CbAmhm(**(ten ± **T**ables, 4, 5, 6) RULES

| Rule<br>Name | Value<br>(um) | Description                                                                                                                                                                                              |
|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VIAk.W.1     | 0.14          | Minimum and maximum Via k width.                                                                                                                                                                         |
| VIAk.SP.1    | 0.15          | Minimum Via k to Via k spacing.                                                                                                                                                                          |
| VIAk.SP.2    | 0.20          | Minimum Via k to Via k spacing when the Via ks are in a 3x3 or larger array (minimum dimension on one side of array is 3). Via ks spaced less than 0.21um should be considered for array spacing check.  |
| VIAk.E.1     | 0.005         | Minimum Metal k to Via k enclosure.                                                                                                                                                                      |
| VIAk.E.2     | 0.06          | Minimum Metal k to Via k enclosure on at least two opposite sides of Via k.                                                                                                                              |
| VIAk.X.1     |               | Minimum of two Via k with spacing <= 0.30um or four Via k with spacing <= 0.60um are required when connecting Metal k and Metal k+1 when one of the Metals has a width > 0.40um at the connection point. |
| VIAk.X.2     |               | Minimum of four Via k with spacing <= 0.30um or nine Via k with spacing <= 0.60um are required when connecting Metal k and Metal k+1 when one of the Metals has a width > 1.0um at the connection point. |
| VIAk.X.3     |               | Vias 1 through 6 may be consecutively stacked up to four high when only one Via is connecting two Metal layers for any level of the stack.                                                               |
| VIAk.X.4     |               | Vias 1 through 6 may be consecutively stacked up more than four high when at least two Vias are connecting two Metal layers for all levels of the stack.                                                 |

# VIA 7, 8 RULES

# 10 bArrhor(Nern# 7a/B))eRULES

| Rule      | Value | Description                                                                 |
|-----------|-------|-----------------------------------------------------------------------------|
| Name      | (um)  |                                                                             |
| VIAk.W.1  | 0.36  | Minimum and maximum Via k width.                                            |
| VIAk.SP.1 | 0.36  | Minimum Via k space.                                                        |
| VIAk.E.1  | 0.03  | Minimum Metal k to of Via k enclosure.                                      |
| VIAk.E.2  | 0.08  | Minimum Metal k to Via k enclosure on at least two opposite sides of Via k. |

# VIA RULES (continued)





### Macro Table

| \$layer1 | \$id1    | \$value1  | \$id2     | \$value2 | \$id3     | \$value3 | \$halo3 |
|----------|----------|-----------|-----------|----------|-----------|----------|---------|
| Via1     | VIA1.W.1 | 0.14x0.14 | VIA1.SP.1 | 0.15     | VIA1.SP.2 | 0.20     | 0.10    |
| Via2     | VIA2.W.1 | 0.14x0.14 | VIA2.SP.1 | 0.15     | VIA2.SP.2 | 0.20     | 0.10    |
| Via3     | VIA3.W.1 | 0.14x0.14 | VIA3.SP.1 | 0.15     | VIA3.SP.2 | 0.20     | 0.10    |
| Via4     | VIA4.W.1 | 0.14x0.14 | VIA4.SP.1 | 0.15     | VIA4.SP.2 | 0.20     | 0.10    |
| Via5     | VIA5.W.1 | 0.14x0.14 | VIA5.SP.1 | 0.15     | VIA5.SP.2 | 0.20     | 0.10    |
| Via6     | VIA6.W.1 | 0.14x0.14 | VIA6.SP.1 | 0.15     | VIA6.SP.2 | 0.20     | 0.10    |
| Via7     | VIA7.W.1 | 0.36x0.36 | VIA7.SP.1 | 0.36     | ignore    | ignore   | ignore  |
| Via8     | VIA8.W.1 | 0.36x0.36 | VIA8.SP.1 | 0.36     | ignore    | ignore   | ignore  |



# VIA RULES (continued)

#### macro

| Macro Table |                                                           |                                                                            |                                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------------|-----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| \$name2     | \$name3                                                   | \$layer1                                                                   | \$id1                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Metal1      | Metal2                                                    | rule_VIA1_X_1                                                              | VIA1.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
| Metal2      | Metal3                                                    | rule_VIA2_X_1                                                              | VIA2.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
| Metal3      | Metal4                                                    | rule_VIA3_X_1                                                              | VIA3.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
| Metal4      | Metal5                                                    | rule_VIA4_X_1                                                              | VIA4.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
| Metal5      | Metal6                                                    | rule_VIA5_X_1                                                              | VIA5.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
| Metal6      | Metal7                                                    | rule_VIA6_X_1                                                              | VIA6.X.1                                                                                                                                                                                                                                                                                                               |  |  |  |
|             | \$name2<br>Metal1<br>Metal2<br>Metal3<br>Metal4<br>Metal5 | \$name2\$name3Metal1Metal2Metal2Metal3Metal3Metal4Metal4Metal5Metal5Metal6 | \$name2         \$name3         \$layer1           Metal1         Metal2         rule_VIA1_X_1           Metal2         Metal3         rule_VIA2_X_1           Metal3         Metal4         rule_VIA3_X_1           Metal4         Metal5         rule_VIA4_X_1           Metal5         Metal6         rule_VIA5_X_1 |  |  |  |



### macro

| Macro Table |         |         |               |          |  |  |
|-------------|---------|---------|---------------|----------|--|--|
| \$name1     | \$name2 | \$name3 | \$layer1      | \$id1    |  |  |
| Via1        | Metal1  | Metal2  | rule_VIA1_X_2 | VIA1.X.2 |  |  |
| Via2        | Metal2  | Metal3  | rule_VIA2_X_2 | VIA2.X.2 |  |  |
| Via3        | Metal3  | Metal4  | rule_VIA3_X_2 | VIA3.X.2 |  |  |
| Via4        | Metal4  | Metal5  | rule_VIA4_X_2 | VIA4.X.2 |  |  |
| Via5        | Metal5  | Metal6  | rule_VIA5_X_2 | VIA5.X.2 |  |  |
| Via6        | Metal6  | Metal7  | rule_VIA6_X_2 | VIA6.X.2 |  |  |



# switch SUGGESTED\_CHECK



# **LATCH-UP RULES**

# CATROHENTER WEES

| Rule      | Value | Description                                                           |
|-----------|-------|-----------------------------------------------------------------------|
| Name      | (um)  |                                                                       |
| LATCHUP.1 | 25.0  | The maximum distance from any point in a P+ source/drain Active Area  |
|           |       | to the nearest Nwell pick-up in the same Nwell.                       |
| LATCHUP.2 | 25.0  | The maximum distance from any point in an N+ source/drain Active Area |
|           |       | to the nearest Psub pick-up in the same Psub.                         |
| LATCHUP.3 | 18.0  | Minimum I/O or ESD NMOS to PMOS spacing.                              |
| LATCHUP.4 | 50.0  | Minimum I/O or ESD NMOS to PMOS spacing when not blocked by a         |
|           |       | double guardring.                                                     |

#### Nwell



### ! Nwell







# METAL k (k = 1, 2, 3, 4, 5, 6, 7, 8, 9) SLOT RULES

Month Alle Int (Trable, 2, 3, 4, 5, 6, 7, 8, 9) SLOT RULES

| Rule<br>Name | Value<br>(um)                   | Description                                                                            |
|--------------|---------------------------------|----------------------------------------------------------------------------------------|
| MSLOTk.W.1   | 2.0                             | Minimum Metal k Slot width.                                                            |
| MSLOTk.L.1   | 2.0                             | Minimum Metal k Slot length.                                                           |
| MSLOTk.SP.1  | M1/M2-7/M8,M9<br>0.12/0.14/0.44 | Minimum Metal k Slot to Metal k Slot spacing (equal to the minimum Metal k width).     |
| MSLOTk.E.1   | M1/M2-7/M8,M9<br>0.12/0.14/0.44 | Minimum Metal k to Metal k Slot enclosure (equal to the minimum Metal k width).        |
| MSLOTk.X.1   |                                 | Metal k Slots must be added to Metal k with both width and length greater than 12.0um. |
| MSLOTk.X.2   |                                 | The length of Metal k Slots should be parallel to the direction of the current flow.   |
| MSLOTk.X.3   |                                 | Metal k Slot rules do not apply to Contact and Via array areas.                        |
| MSLOTk.X.4   |                                 | Metal k Slot rules do not apply to bond pad areas.                                     |
| MSLOTk.X.5   |                                 | Metal k Slots must be rectangular or square.                                           |
| MSLOTk.X.6   |                                 | After Metal k Slots are added, Metal k must still meet density requirements.           |

# Metal1-9 Slot Spacing Check & Width Check - with context

macro



### Macro Table

| \$layer1    | \$layer2 | \$name1     | \$id1                 | \$value1 | \$id2       | \$value2 |
|-------------|----------|-------------|-----------------------|----------|-------------|----------|
| Metal1_slot | Bondpad  | Metal1 Slot | MSLOT1.W.1_MSLOT1.L.1 | 2.0      | MSLOT1.SP.1 | 0.12     |
| Metal2_slot | Bondpad  | Metal2 Slot | MSLOT2.W.1_MSLOT2.L.1 | 2.0      | MSLOT2.SP.1 | 0.14     |
| Metal3_slot | Bondpad  | Metal3 Slot | MSLOT3.W.1_MSLOT3.L.1 | 2.0      | MSLOT3.SP.1 | 0.14     |
| Metal4_slot | Bondpad  | Metal4 Slot | MSLOT4.W.1_MSLOT4.L.1 | 2.0      | MSLOT4.SP.1 | 0.14     |
| Metal5_slot | Bondpad  | Metal5 Slot | MSLOT5.W.1_MSLOT5.L.1 | 2.0      | MSLOT5.SP.1 | 0.14     |
| Metal6_slot | Bondpad  | Metal6 Slot | MSLOT6.W.1_MSLOT6.L.1 | 2.0      | MSLOT6.SP.1 | 0.14     |
| Metal7_slot | Bondpad  | Metal7 Slot | MSLOT7.W.1_MSLOT7.L.1 | 2.0      | MSLOT7.SP.1 | 0.14     |
| Metal8_slot | Bondpad  | Metal8 Slot | MSLOT8.W.1_MSLOT8.L.1 | 2.0      | MSLOT8.SP.1 | 0.44     |
| Metal9_slot | Bondpad  | Metal9 Slot | MSLOT9.W.1_MSLOT9.L.1 | 2.0      | MSLOT9.SP.1 | 0.44     |

# METAL k (k = 1, 2, 3, 4, 5, 6, 7, 8, 9) SLOT RULES (continued)

# **Metal1-9/Metal1-9 Slot Enclosure Check**

| Macro Table        |          |             |            |          |  |  |  |
|--------------------|----------|-------------|------------|----------|--|--|--|
| \$layer1           | \$layer2 | \$name1     | \$id1      | \$value1 |  |  |  |
| Metal1_slot_not_BP | Metal1   | Metal1 Slot | MSLOT1.E.1 | 0.12     |  |  |  |
| Metal2_slot_not_BP | Metal2   | Metal2 Slot | MSLOT2.E.1 | 0.14     |  |  |  |
| Metal3_slot_not_BP | Metal3   | Metal3 Slot | MSLOT3.E.1 | 0.14     |  |  |  |
| Metal4_slot_not_BP | Metal4   | Metal4 Slot | MSLOT4.E.1 | 0.14     |  |  |  |
| Metal5_slot_not_BP | Metal5   | Metal5 Slot | MSLOT5.E.1 | 0.14     |  |  |  |
| Metal6_slot_not_BP | Metal6   | Metal6 Slot | MSLOT6.E.1 | 0.14     |  |  |  |
| Metal7_slot_not_BP | Metal7   | Metal7 Slot | MSLOT7.E.1 | 0.14     |  |  |  |
| Metal8_slot_not_BP | Metal8   | Metal8 Slot | MSLOT8.E.1 | 0.44     |  |  |  |
| Metal9_slot_not_BP | Metal9   | Metal9 Slot | MSLOT9.E.1 | 0.44     |  |  |  |



# **ANTENNA RULES**

### **COMPENSION**

| Rule<br>Name                                | Value<br>(um) | Description                                                                                                 |
|---------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------|
| ANT.1                                       | 275.0         | Maximum ratio of Poly area to the gate area the Poly is connected to.                                       |
| ANT.2                                       | 550.0         | Maximum ratio of Poly sidewall area to the gate area the Poly is connected to.                              |
| ANT.3                                       | 15.0          | Maximum ratio of Poly Contact area to the gate area the Contact is connected with.                          |
| ANT.4.Mx                                    | 475.0         | Maximum ratio of single level Metal x (x = 1, 2, 3, 4, 5, 6, 7, 8, 9) area to the (gate area + 2*Diff area) |
| ANT.5.Vx                                    | 25.0          | Maximum ratio of single level Via x (x = 1, 2, 3, 4, 5, 6, 7, 8) area to the (gate area + 2*Diff area)      |
| ANT.6.Mx<br>(x = 2, 3, 4, 5,<br>6, 7, 8, 9) | 1200.0        | Maximum ratio of cummulative multi level Metal areas to the (gate area + 2*Diff area)                       |

Note 1: Source/drain diffusion areas of MOS devices are counted as part of the diode area.

Note 2: It is recommended to use one large diode with multiple Contacts rather than several smaller diodes.

# ANTENNA RULES (continued)

switch !SKIP\_CHECK\_POLY\_ANT\_1



switch !SKIP\_CHECK\_POLY\_ANT\_2



switch !SKIP\_CHECK\_CONT\_ANT\_3



switch !SKIP\_CHECK\_METAL1\_ANT\_4



# ANTENNA RULES (continued)

### switch !SKIP\_CHECK\_METAL2\_ANT\_4



### switch !SKIP\_CHECK\_METAL3\_ANT\_4



### switch !SKIP\_CHECK\_METAL4\_ANT\_4



### switch !SKIP\_CHECK\_METAL5\_ANT\_4



# **ANTENNA RULES (continued)**

switch !SKIP\_CHECK\_METAL6\_ANT\_4



Antenna

# ANTENNA RULES (continued)

switch !SKIP\_CHECK\_METAL7\_ANT\_4



ratio (metal7\_conn.area / (gate.area + 2\*diff\_diode.area)) <= 475.0

id: ANT.4.M7

message: Metal7 area to (gate area + 2\*diff\_diode.area) ratio must be <= 475.0

Antenna

# ANTENNA RULES (continued)

switch !SKIP\_CHECK\_METAL8\_ANT\_4



ratio (metal8\_conn.area / (gate.area + 2\*diff\_diode.area)) <= 475.0

id: ANT.4.M8

message: Metal8 area to (gate area + 2\*diff\_diode.area) ratio must be <= 475.0

# ANTENNA RULES (continued)

switch !SKIP\_CHECK\_METAL9\_ANT\_4



# ANTENNA RULES (continued)

switch !SKIP\_CHECK\_VIA1\_ANT\_5



### switch !SKIP\_CHECK\_VIA2\_ANT\_5



switch !SKIP\_CHECK\_VIA3\_ANT\_5



#### switch !SKIP\_CHECK\_VIA4\_ANT\_5



switch !SKIP\_CHECK\_VIA5\_ANT\_5



ratio (Via5.area / (gate.area + 2\*diff\_diode.area)) <= 25.0

id: ANT.5.V5

message: Via5 area to (gate area + 2\*diff\_diode.area) ratio must be <= 25.0

switch !SKIP\_CHECK\_VIA6\_ANT\_5



ratio (Via6.area / (gate.area + 2\*diff\_diode.area)) <= 25.0

id: ANT.5.V6

message: Via6 area to (gate area + 2\*diff\_diode.area) ratio must be <= 25.0

switch !SKIP\_CHECK\_VIA7\_ANT\_5



ratio (Via7.area / (gate.area + 2\*diff\_diode.area)) <= 25.0

id: ANT.5.V7

message: Via7 area to (gate area + 2\*diff\_diode.area) ratio must be <= 25.0

switch !SKIP\_CHECK\_VIA8\_ANT\_5



ratio (Via8.area / (gate.area + 2\*diff\_diode.area)) <= 25.0

id: ANT.5.V8

message: Via8 area to (gate area + 2\*diff\_diode.area) ratio must be <= 25.0

switch !SKIP\_CHECK\_METAL2\_ANT\_6



switch !SKIP\_CHECK\_METAL3\_ANT\_6



switch !SKIP\_CHECK\_METAL4\_ANT\_6



switch !SKIP\_CHECK\_METAL5\_ANT\_6



switch !SKIP\_CHECK\_METAL6\_ANT\_6



switch !SKIP\_CHECK\_METAL7\_ANT\_6



switch !SKIP\_CHECK\_METAL8\_ANT\_6



switch !SKIP\_CHECK\_METAL9\_ANT\_6



# **CMOS I/O Design Rules**

## **ESD Design Rules**

The "ESDdummy" marker layer must be used to mark I/O ESD circuitry. If the "ESDdummy" layer is not used, the correct DRC checks of I/O ESD circuitry will not take place.

NMOS and PMOS devices used for ESD protection follow a strict finger structure using specific finger dimaensions and layout.

#### E6DinDestgTrableles

| Rule   | Value   | Description                                                                                                                                                                                          |
|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name   | (um)    |                                                                                                                                                                                                      |
| ESD.1  | 15 - 65 | Width of each finger of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.                                                                                                               |
| ESD.2  | 390     | Minimum NMOS combined finger width for I/O buffers and for Vdd to Vss ESD protection.                                                                                                                |
| ESD.3  | 390     | Minimum PMOS combined finger width for I/O buffers.                                                                                                                                                  |
| ESD.4  |         | Outer Oxide area of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection must be Source or connected to Bulk to prevent parasitic bipolars and unwanted discharge paths during ESD zapping. |
| ESD.5  |         | NMOS ESD protection devices must be surrounded by a P+ Guard Ring.                                                                                                                                   |
| ESD.6  |         | PMOS ESD protection devices must be surrounded by an N+ Guard Ring.                                                                                                                                  |
| ESD.7  |         | NMOS and PMOS in ESD protection can NOT have butted taps.                                                                                                                                            |
| ESD.8  |         | NMOS and PMOS in an I/O buffer must have non-salicided Drains. The Contacts still must be salicided.                                                                                                 |
| ESD.9  |         | A P+ Oxide strap should be placed between N+ Oxides of different I/O and ESD devices when both connect to different pads.                                                                            |
| ESD.10 |         | An N+ Oxide strap should be placed between P+ Oxides of different I/O and ESD devices when both connect to different pads.                                                                           |
| ESD.11 | 0.05    | Minimum SiProt to Poly gate overlap in NMOS and PMOS drains.                                                                                                                                         |
| ESD.12 | 1.8     | Minimum enclosure of SiProt edge to Poly gate edge in NMOS and PMOS I/O drains.                                                                                                                      |
| ESD.13 | 1.8     | Minimum SiProt to Oxide overlap in NMOS and PMOS I/O drains.                                                                                                                                         |
| ESD.14 | 0.3     | Exact gate length of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.                                                                                                                  |
| ESD.15 | 0.25    | Minimum Poly gate to Contact spacing in NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.                                                                                               |

## ESD Design Rules (continued)

### **ESDdummy**



ESD.2 - Checked during LVS.

ESD.3 - Checked during LVS.





ESD.7







ESD.7

## ESD Design Rules (continued)

### **ESDdummy**





## **Bond Pad Design Rules**

- 1) The bond pad structure must contain all Metal levels and all Via levels.
- 2) Metals over the Bonpad area are slotted with 1um slots spaced 1.5um.
- 3) The top metal is solid and does not contain stress slots.

| Doublinead Design |         | Tales                                                                                                  |
|-------------------|---------|--------------------------------------------------------------------------------------------------------|
| Rule              | Value   | Description                                                                                            |
| Name              | (um)    |                                                                                                        |
| BONDPAD.W.1       | 52.0    | Minimum Bondpad width of edges parallel to the die edge.                                               |
| BONDPAD.L.1       | 68.0    | Minimum Bondpad length of edges perpendicular to the die edge.                                         |
| BONDPAD.SP.1      | 8.0     | Minimum Bondpad to Bondpad metal spacing.                                                              |
| BONDPAD.E.1       | 2.0     | Minimum Metal (all levels) enclosure of Bondpad.                                                       |
| BONDPAD.SP.2      | 3.0     | Minimum Bondpad Metal to Metal (including Bondpad Metal) spacing.                                      |
| BONDPAD.B.1       | 1.8~3.2 | Minimum length of Bonpad Metal beveled corner. All Bonpad Metal corners must be beveled at 45 degrees. |
| BONDPAD.W.2       | 0.14    | Minimum and maximum Bondpad Via k width (k = 1, 2, 3, 4, 5, 6).                                        |
| BONDPAD.W.3       | 0.36    | Minimum and maximum Bondpad Via k width (k = 7, 8).                                                    |
| BONDPAD.SP.3      | 0.22    | Minimum Bondpad Viak to Bondpad Viak spacing (k = 1, 2, 3, 4, 5, 6).                                   |
| BONDPAD.SP.4      | 0.54    | Minimum Bondpad Viak to Bondpad Viak spacing (k = 7, 8).                                               |
| BONDPAD.E.2       | 0.05    | Minimum Bondpad Metalk to Bondpad Viak enclosure                                                       |
|                   |         | (k = 1, 2, 3, 4, 5, 6).                                                                                |
|                   |         | Minimum Bondpad Metalk+1 to Bondpad Viak enclosure                                                     |
|                   |         | (k = 1, 2, 3, 4, 5, 6).                                                                                |
| BONDPAD.E.3       | 0.09    | Minimum Bondpad Metalk to Bondpad Viak enclosure                                                       |
|                   |         | (k = 7, 8).                                                                                            |
|                   |         | Minimum Bondpad Metalk+1 to Bondpad Viak enclosure (k = 7, 8).                                         |
| BONDPAD.R.1       | 16.0    | Minimum Bondpad Viak inside Metalk to Metalk+1 crossing                                                |
| BONDPAD.R.1       | 16.0    | (k = 1, 2, 3, 4, 5, 6).                                                                                |
| BONDPAD.R.2       | 4.0     | Minimum Bondpad Viak inside Metalk to Metalk+1 crossing                                                |
| 501151715.111.2   |         | (k = 7, 8).                                                                                            |
| BONDPAD.SP.5      | 1.5     | Minimum and Maximum Pad Metal slot to Pad Metal slot spacing.                                          |
| BONDPAD.W.4       | 1.0     | Minimum and Maximum Pad Metal slot width (expect first slot on each                                    |
|                   |         | edge of Pad).                                                                                          |
| BONDPAD.W.5       | 5.0     | Minimum and Maximum Pad Metalk width in outer ring of Pad Metalk                                       |
|                   |         | (expect for the bevelled corners) (k = 1, 2, 3, 4, 5, 6, 7, 8).                                        |
| BONDPAD.SP.6      | 1.0~3.5 | Minimum and Maximum Pad Metalk ring to nearest Pad Metalk across                                       |
|                   |         | first slot (k = 1, 2, 3, 4, 5, 6, 7, 8).                                                               |
| BONDPAD.SP.7      | 1.1     | Minimum Pad Viak array to Pad Viak array spacing (k = 1, 2, 3, 4, 5, 6, 7, 8).                         |







#### macro





#### macro

| Macro Table         |         |  |  |  |
|---------------------|---------|--|--|--|
| \$layer1            | \$name1 |  |  |  |
| rule_BONDPAD_B_1_m1 | Metal1  |  |  |  |
| rule_BONDPAD_B_1_m2 | Metal2  |  |  |  |
| rule_BONDPAD_B_1_m3 | Metal3  |  |  |  |
| rule_BONDPAD_B_1_m4 | Metal4  |  |  |  |
| rule_BONDPAD_B_1_m5 | Metal5  |  |  |  |
| rule_BONDPAD_B_1_m6 | Metal6  |  |  |  |
| rule_BONDPAD_B_1_m7 | Metal7  |  |  |  |
| rule_BONDPAD_B_1_m8 | Metal8  |  |  |  |
| rule_BONDPAD_B_1_m9 | Metal9  |  |  |  |
|                     |         |  |  |  |



#### macro

#### Macro Table

| \$layer1              | \$name1 |
|-----------------------|---------|
| bondpad_metal1_filled | Metal1  |
| bondpad_metal2_filled | Metal2  |
| bondpad_metal3_filled | Metal3  |
| bondpad_metal4_filled | Metal4  |
| bondpad_metal5_filled | Metal5  |
| bondpad_metal6_filled | Metal6  |
| bondpad_metal7_filled | Metal7  |
| bondpad_metal8_filled | Metal8  |
| bondpad_metal9_filled | Metal9  |



BONDPAD.W.2 and BONDPAD.W.3 - covered by VIAk.W.1.

#### macro

#### Macro Table \$layer1 \$layer2 | \$value1 \$id1 bondpad\_metal1 Via1 0.22 BONDPAD.SP.3 0.22 bondpad\_metal2 Via2 BONDPAD.SP. bondpad\_metal3 Via3 0.22 BONDPAD.SP.3 bondpad\_metal4 Via4 0.22 BONDPAD.SP.3 bondpad\_metal5 BONDPAD.SP.3 Via5 0.22 0.22 bondpad\_metal6 Via6 BONDPAD.SP.3 bondpad\_metal7 0.54 BONDPAD.SP.4 Via7 bondpad\_metal8 Via8 0.54 BONDPAD.SP.4



#### macro

#### Macro Table

| \$layer1       | \$layer2 | \$name1 | \$value1 | \$id1       |
|----------------|----------|---------|----------|-------------|
| bondpad_metal1 | Via1     | Metal1  | 0.05     | BONDPAD.E.2 |
| bondpad_metal2 | Via2     | Metal2  | 0.05     | BONDPAD.E.2 |
| bondpad_metal3 | Via3     | Metal3  | 0.05     | BONDPAD.E.2 |
| bondpad_metal4 | Via4     | Metal4  | 0.05     | BONDPAD.E.2 |
| bondpad_metal5 | Via5     | Metal5  | 0.05     | BONDPAD.E.2 |
| bondpad_metal6 | Via6     | Metal6  | 0.05     | BONDPAD.E.2 |
| bondpad_metal7 | Via7     | Metal7  | 0.09     | BONDPAD.E.3 |
| bondpad_metal8 | Via8     | Metal8  | 0.09     | BONDPAD.E.3 |



#### macro

#### Macro Table

| \$layer1       | \$layer2 | \$name1 | \$value1 | \$id1       |
|----------------|----------|---------|----------|-------------|
| bondpad_metal2 | Via1     | Metal2  | 0.05     | BONDPAD.E.2 |
| bondpad_metal3 | Via2     | Metal3  | 0.05     | BONDPAD.E.2 |
| bondpad_metal4 | Via3     | Metal4  | 0.05     | BONDPAD.E.2 |
| bondpad_metal5 | Via4     | Metal5  | 0.05     | BONDPAD.E.2 |
| bondpad_metal6 | Via5     | Metal6  | 0.05     | BONDPAD.E.2 |
| bondpad_metal7 | Via6     | Metal7  | 0.05     | BONDPAD.E.2 |
| bondpad_metal8 | Via7     | Metal8  | 0.09     | BONDPAD.E.3 |
| bondpad_metal9 | Via8     | Metal9  | 0.09     | BONDPAD.E.3 |



#### macro



#### Macro Table

| \$layer1              | \$name1 | \$name2 | \$name3 | \$value | \$id1       |
|-----------------------|---------|---------|---------|---------|-------------|
| rule_BONDPAD_R_1_via1 | Via1    | Metal1  | Metal2  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_1_via2 | Via2    | Metal2  | Metal3  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_1_via3 | Via3    | Metal3  | Metal4  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_1_via4 | Via4    | Metal4  | Metal5  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_1_via5 | Via5    | Metal5  | Metal6  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_1_via6 | Via6    | Metal6  | Metal7  | 16.0    | BONDPAD.R.1 |
| rule_BONDPAD_R_2_via7 | Via7    | Metal7  | Metal8  | 4.0     | BONDPAD.R.2 |
| rule_BONDPAD_R_2_via8 | Via8    | Metal8  | Metal9  | 4.0     | BONDPAD.R.2 |

#### macro

| Macro Table              |         |  |  |  |  |
|--------------------------|---------|--|--|--|--|
| \$layer1                 | \$name1 |  |  |  |  |
| rule_BONDPAD_SP_5_metal1 | Metal1  |  |  |  |  |
| rule_BONDPAD_SP_5_metal2 | Metal2  |  |  |  |  |
| rule_BONDPAD_SP_5_metal3 | Metal3  |  |  |  |  |
| rule_BONDPAD_SP_5_metal4 | Metal4  |  |  |  |  |
| rule_BONDPAD_SP_5_metal5 | Metal5  |  |  |  |  |
| rule_BONDPAD_SP_5_metal6 | Metal6  |  |  |  |  |
| rule_BONDPAD_SP_5_metal7 | Metal7  |  |  |  |  |
| rule_BONDPAD_SP_5_metal8 | Metal8  |  |  |  |  |
|                          |         |  |  |  |  |



#### macro





#### macro

| Macro Table             |         |  |  |  |  |
|-------------------------|---------|--|--|--|--|
| \$layer1                | \$name1 |  |  |  |  |
| rule_BONDPAD_W_5_metal1 | Metal1  |  |  |  |  |
| rule_BONDPAD_W_5_metal2 | Metal2  |  |  |  |  |
| rule_BONDPAD_W_5_metal3 | Metal3  |  |  |  |  |
| rule_BONDPAD_W_5_metal4 | Metal4  |  |  |  |  |
| rule_BONDPAD_W_5_metal5 | Metal5  |  |  |  |  |
| rule_BONDPAD_W_5_metal6 | Metal6  |  |  |  |  |
| rule_BONDPAD_W_5_metal7 | Metal7  |  |  |  |  |
| rule_BONDPAD_W_5_metal8 | Metal8  |  |  |  |  |



#### macro

| Macro Table                 |         |  |  |  |  |
|-----------------------------|---------|--|--|--|--|
| \$layer1                    | \$name1 |  |  |  |  |
| bondpad_metal1_slot_on_edge | Metal1  |  |  |  |  |
| bondpad_metal2_slot_on_edge | Metal2  |  |  |  |  |
| bondpad_metal3_slot_on_edge | Metal3  |  |  |  |  |
| bondpad_metal4_slot_on_edge | Metal4  |  |  |  |  |
| bondpad_metal5_slot_on_edge | Metal5  |  |  |  |  |
| bondpad_metal6_slot_on_edge | Metal6  |  |  |  |  |
| bondpad_metal7_slot_on_edge | Metal7  |  |  |  |  |
| bondpad_metal8_slot_on_edge | Metal8  |  |  |  |  |



#### macro

| Macro Table        |         |  |  |  |
|--------------------|---------|--|--|--|
| \$layer1           | \$name1 |  |  |  |
| bondpad_via1_array | Via1    |  |  |  |
| bondpad_via2_array | Via2    |  |  |  |
| bondpad_via3_array | Via3    |  |  |  |
| bondpad_via4_array | Via4    |  |  |  |
| bondpad_via5_array | Via5    |  |  |  |
| bondpad_via6_array | Via6    |  |  |  |
| bondpad_via7_array | Via7    |  |  |  |
| bondpad_via8_array | Via8    |  |  |  |



# **CMOS Digital Electrical Parameters**

## **Sheet Resistances**

The units for sheet resistance are ohms/square

**Global Parameters** 

| R_metal8_9  | 0.02 | Metal 8,9 sheet resistance             |  |
|-------------|------|----------------------------------------|--|
| R_metal2_7  | 0.06 | Metal 2,3,4,5,6,7 sheet resistance     |  |
| R_metal1    | 0.08 | Metal 1sheet resistance                |  |
| R_snpoly    | 10   | Salicide N+ Poly sheet resistance      |  |
| R_sppoly    | 10   | Salicide P+ Poly sheet resistance      |  |
| R_nsnpoly   | 100  | Non-salicide N+ Poly sheet resistance  |  |
| R_nsppoly   | 400  | Non-salicide P+ Poly sheet resistance  |  |
| R_snactive  | 10   | Salicide N+ Oxide sheet resistance     |  |
| R_spactive  | 10   | Salicide P+ Oxide sheet resistance     |  |
| R_nsnactive | 100  | Non-salicide N+ Oxide sheet resistance |  |
| R_nspactive | 150  | Non-salicide P+ Oxide sheet resistance |  |
| R_nwell     | 400  | Nwell sheet resistance                 |  |
| R_pwell     | 1600 | Pwell sheet resistance                 |  |

### **Contact/Via Resistances**

The units for sheet resistance are ohms/contact or ohms/via

**Global Parameters** 

| R_via7_8           | 0.35 | Via 7,8 resistance             |  |
|--------------------|------|--------------------------------|--|
| R_via2_6           | 1.4  | Via 2,3,4,5,6 resistance       |  |
| R_via1             | 1.4  | Via 1 resistance               |  |
| R_metal1-contact 1 |      | Metal 1 to Contact resistance  |  |
| R_poly-contact     | 10   | Poly to Contact resistance     |  |
| R_nplus-contact    | 15   | N+ Oxide to Contact resistance |  |
| R_pplus-contact    | 15   | P+ Oxide to Contact resistance |  |

## **Current Densities**

The units for current density are ma/um

**Global Parameters** 

| L_metal8_9 | 8 | Metal 8,9 current density           |  |
|------------|---|-------------------------------------|--|
| L_metal1_7 | 2 | Metal 1,2,3,4,5,6,7 current density |  |

### **Contact/Via Current Densities**

The units for current density are ma/contact or ma/via

**Global Parameters** 

| I_via1_6 0.1                         |     | Via 1,2,3,4,5,6 current density          |  |
|--------------------------------------|-----|------------------------------------------|--|
| I_Via7_8 0.8 Via 7,8 current density |     |                                          |  |
| I_metal-contact-poly                 | 0.1 | Metal 1 Contact to Poly current density  |  |
| I_metal-contact-oxide 0              |     | Metal 1 Contact to Oxide current density |  |

# **Layer and Dielectric Thickness**

Choenum etast for a balger and dielectric thickness are angstroms

| Layer     | Thickness (A) | Description             |
|-----------|---------------|-------------------------|
| Pass2     | 7000          | 7.9                     |
| Pass1     | 10000         | 4.2                     |
| Metal 9   | 10000         | Cu                      |
| IMD 8     | 6000          | K = 4.2                 |
| Metal 8   | 10000         | Cu                      |
| IMD 7     | 6000          | K = 4.2                 |
| Metal 7   | 3600          | Cu                      |
| IMD 6     | 3000          | K = 2.9                 |
| Metal 6   | 3600          | Cu                      |
| IMD 5     | 3000          | K = 2.9                 |
| Metal 5   | 3600          | Cu                      |
| IMD 4     | 3000          | K = 2.9                 |
| Metal 4   | 3600          | Cu                      |
| IMD 3     | 3000          | K = 2.9                 |
| Metal 3   | 3600          | Cu                      |
| IMD 2     | 3000          | K = 2.9                 |
| Metal 2   | 3600          | Cu                      |
| IMD 1     | 3000          | K = 2.9                 |
| Metal 1   | 3000          | Cu                      |
| ILD       | 3000          | silicon dioxide K = 3.9 |
| Poly      | 1500          |                         |
| STI (FOX) | 3500          | silicon dioxide K = 3.9 |

#### Cornamos Table

| Tox                       | 2.48nm     |                        |
|---------------------------|------------|------------------------|
| Channel Concentration     | 1.20E+20   | for MOS Vt fine tuning |
| D/S Surface Concentration | 6.00E+20   |                        |
| D/S Xj                    | 60nm       |                        |
| D/S Rsh                   | 20 ohm/sq  |                        |
| LDD Surface Concentration | 6.00E+19   |                        |
| LDD Xj                    | 25nm       |                        |
| LDD Rsh                   | 500 ohm/sq |                        |
| Vto                       | -140mV     |                        |

#### Continuents Table

| Tox                       | 2.33nm     |                        |
|---------------------------|------------|------------------------|
| Channel Concentration     | 6.0E+19    | for MOS Vt fine tuning |
| D/S Surface Concentration | 3.00E+20   |                        |
| D/S Xj                    | 60nm       |                        |
| D/S Rsh                   | 10 ohm/sq  |                        |
| LDD Surface Concentration | 3.00E+19   |                        |
| LDD Xj                    | 25nm       |                        |
| LDD Rsh                   | 250 ohm/sq |                        |
| Vto                       | 170mV      |                        |

#### Dranth And Onesble

| Tox                       | 2.48nm     |                                         |
|---------------------------|------------|-----------------------------------------|
| Channel Concentration     | 1.20E+20   | for MOS Vt fine tuning                  |
| D/S Surface Concentration | 6.00E+20   |                                         |
| D/S Xj                    | 60nm       |                                         |
| D/S Rsh                   | 20 ohm/sq  |                                         |
| LDD Surface Concentration | 6.00E+19   |                                         |
| LDD Xj                    | 25nm       |                                         |
| LDD Rsh                   | 500 ohm/sq |                                         |
| Vto                       | -240mV     | 100mv more Vto to reduce leakage by 10x |

#### Drann Non Admit On Asole

| Tox                       | 2.33nm     |                                         |
|---------------------------|------------|-----------------------------------------|
| Channel Concentration     | 6.0E+19    | for MOS Vt fine tuning                  |
| D/S Surface Concentration | 3.00E+20   |                                         |
| D/S Xj                    | 60nm       |                                         |
| D/S Rsh                   | 10 ohm/sq  |                                         |
| LDD Surface Concentration | 3.00E+19   |                                         |
| LDD Xj                    | 25nm       |                                         |
| LDD Rsh                   | 250 ohm/sq |                                         |
| Vto                       | 270mV      | 100mv more Vto to reduce leakage by 10x |

#### 000m2m5&mPTV±00x3e

| Tox                       | 5.6nm      |                        |
|---------------------------|------------|------------------------|
| Channel Concentration     | 1.20E+20   | for MOS Vt fine tuning |
| D/S Surface Concentration | 6.00E+20   |                        |
| D/S Xj                    | 60nm       |                        |
| D/S Rsh                   | 20 ohm/sq  |                        |
| LDD Surface Concentration | 6.00E+19   |                        |
| LDD Xj                    | 25nm       |                        |
| LDD Rsh                   | 500 ohm/sq |                        |
| Vto                       | -400mV     |                        |

#### 1200m2m58/nINTM2008:

| Tox                       | 5.8nm      |                        |
|---------------------------|------------|------------------------|
| Channel Concentration     | 6.0E+19    | for MOS Vt fine tuning |
| D/S Surface Concentration | 3.00E+20   |                        |
| D/S Xj                    | 60nm       |                        |
| D/S Rsh                   | 10 ohm/sq  |                        |
| LDD Surface Concentration | 3.00E+19   |                        |
| LDD Xj                    | 25nm       |                        |
| LDD Rsh                   | 250 ohm/sq |                        |
| Vto                       | 450mV      |                        |

### KeynFræsttSTatvleModel Parameters

| Fast Vto %      | -10 |
|-----------------|-----|
| Slow Vto %      | 10  |
| Fast Tox %      | -10 |
| Slow Tox %      | 10  |
| Fast Mobility % | -30 |
| Slow Mobility % | 30  |
| Fast LDD Rsh %  | -30 |
| Slow LDD Rsh %  | 30  |

# **DF2 Layer Tables**

**CDB** lavers

| CDB layers |    |           |  |
|------------|----|-----------|--|
| Oxide      | 2  | Oxide     |  |
| Oxide_thk  | 4  | Oxide_thk |  |
| Nwell      | 6  | Nwell     |  |
| Poly       | 10 | Poly      |  |
| Nhvt       | 11 | Nhvt      |  |
| Nimp       | 12 | Nimp      |  |
| Phvt       | 13 | Phvt      |  |
| Pimp       | 14 | Pimp      |  |
| Nzvt       | 15 | Nzvt      |  |
| SiProt     | 16 | SiProt    |  |
| Nburied    | 18 | Nburied   |  |
| Cont       | 20 | Cont      |  |
| Metal1     | 30 | Metal1    |  |
| Via1       | 32 | Via1      |  |
| Metal2     | 34 | Metal2    |  |
| Via2       | 36 | Via2      |  |
| Metal3     | 38 | Metal3    |  |
| Via3       | 40 | Via3      |  |
| Metal4     | 42 | Metal4    |  |
| Via4       | 44 | Via4      |  |
| Metal5     | 46 | Metal5    |  |
| Via5       | 48 | Via5      |  |
| Metal6     | 50 | Metal6    |  |
| Via6       | 52 | Via6      |  |
| Metal7     | 54 | Metal7    |  |
| Via7       | 56 | Via7      |  |
| Metal8     | 58 | Metal8    |  |
| Via8       | 60 | Via8      |  |
| Metal9     | 62 | Metal9    |  |

**CDB** layers

| Metal1_slot | 71 | M1slot |
|-------------|----|--------|
| Metal2_slot | 72 | M2slot |
| Metal3_slot | 73 | M3slot |
| Metal4_slot | 74 | M4slot |
| Metal5_slot | 75 | M5slot |
| Metal6_slot | 76 | M6slot |
| Metal7_slot | 77 | M7slot |
| Metal8_slot | 78 | M8slot |
| Metal9_slot | 79 | M9slot |

CDB layers

| IND3dummy | 114 | IND3dum |
|-----------|-----|---------|
| ESDdummy  | 115 | ESDdum  |

CDB layers

text 230 text

CDB layers

| CDB layers |     |           |  |
|------------|-----|-----------|--|
| Psub       | 80  | Psub      |  |
| DIOdummy   | 82  | DIOdum    |  |
| PNPdummy   | 84  | PNPdum    |  |
| PWdummy    | 85  | PWdummy   |  |
| NPNdummy   | 86  | NPNdum    |  |
| IND2dummy  | 88  | IND2dum   |  |
| INDdummy   | 90  | INDdum    |  |
| BJTdum     | 92  | BJTdum    |  |
| Cap3dum    | 93  | Cap3dum   |  |
| Resdum     | 94  | Resdum    |  |
| Bondpad    | 95  | Bondpad   |  |
| Capdum     | 96  | Capdum    |  |
| CapMetal   | 97  | CapMetal  |  |
| ResWdum    | 98  | ResWdum   |  |
| M1Resdum   | 99  | M1Resdum  |  |
| M2Resdum   | 100 | M2Resdum  |  |
| M3Resdum   | 101 | M3Resdum  |  |
| M4Resdum   | 102 | M4Resdum  |  |
| M5Resdum   | 103 | M5Resdum  |  |
| M6Resdum   | 104 | M6Resdum  |  |
| M7Resdum   | 105 | M7Resdum  |  |
| M8Resdum   | 106 | M8Resdum  |  |
| M9Resdum   | 107 | M9Resdum  |  |
| VPNP2dum   | 108 | VPNP2dum  |  |
| VPNP5dum   | 109 | VPNP5dum  |  |
| VPNP10dum  | 110 | VPNP10dum |  |
|            |     |           |  |

# **DF2 Layer Purposes Tables**

CDB purposes

| - 1 - 1 - |    |     |
|-----------|----|-----|
| slot      | 1  | slt |
| port1     | 2  | pt1 |
| region    | 3  | reg |
| grid      | 4  | grd |
| ppath     | 5  | pp0 |
| ppath1    | 6  | pp1 |
| macro     | 7  | mac |
| nwell     | 8  | nwl |
| dnwell    | 9  | dnw |
| ipwell    | 10 | ipw |
| GeoShare  | 11 | geo |
| port      | 12 | pt0 |
| fill      | 13 | fil |



] \$dt\_Nimp dummy dummy ] \$layer2 dummy \$layer3 dummy BJTdum input 15;0 df2order 103 packet zbip fillStyle outline input 36;0 df2order 96 (Bondpad drawing) packet pass Bondpad Cap3dum input 84;0 df2order 102 packet zcap fillStyle outline CapMetal input 14;0 df2order 72 (CapMetal drawing) packet mcap Capdum input 12;0 df2order 102 packet zcap fillStyle outline Cont input 6;0 df2order 24 (Cont drawing) packet cw via ☐ DIOdummy input 22;0 df2order 107 (DIOdummy drawing) packet zdiode input 74:0 df2order 110 (ESDdummy drawing) packet **ESDdummy** IND2dummy input 17:0 df2order 100 (IND2dummy drawing) packet zind2 IND3dummy input 70;0 df2order 101 (IND3dummy drawing) packet zind3 ☐ INDdummy input 16;0 df2order 99 (INDdummy drawing) packet zind M1Resdum input 75:0 (M1Resdum drawing) df2order 104 packet zrm1 M2Resdum input 76;0 (M2Resdum drawing) df2order 104 packet zrm2 M3Resdum input 77;0 (M3Resdum drawing) df2order 104 packet zrm3 M4Resdum input 78:0 (M4Resdum drawing) df2order 104 packet M5Resdum input 79;0 (M5Resdum drawing) df2order 104 packet M6Resdum input 80;0 (M6Resdum drawing) df2order 104 packet zrm6 M7Resdum input 81;0 (M7Resdum drawing) df2order 104 packet zrm7 M8Resdum input 82;0 (M8Resdum drawing) df2order 104 packet zrm8 M9Resdum input 83;0 (M9Resdum drawing) df2order 104 packet zrm9 Metal1 Metal1\_d\_n or Metal1\_p or Metal1\_f Metal1 d input 7:0 df2order 30 (Metal1 drawing) packet m1 Attach Text: 7;3 (Metal1 label) if MergePinAndNet Metal1\_d or Metal1\_n else Metal1\_d\_n Metal1 d Metal1 f input 7;5 df2order 81 (Metal1 fill) packet m1 fill input 7;4 df2order 30 (Metal1 net) packet m1 Metal1\_n input 7;1 df2order 30 (Metal1 pin) packet m1 Metal1\_p Attach Text: 7;3 (Metal1 label) input 7;2 df2order 81 (Metal1 slot) packet m1 slot Metal1\_slot Metal1\_slot\_not\_BP Metal1\_slot andnot (Bondpad size 3) Metal1 v Metal1\_p and Metal1\_d via Metal2 Metal2\_d\_n or Metal2\_p or Metal2\_f Metal2 d input 9;0 df2order 34 (Metal2 drawing) packet m2 Attach Text: 9;3 (Metal2 label)

**GPDK 90nm Mixed Signal Process Spec** 

Feb 14, 2011

page A1

**GPDK 90nm Mixed Signal Process Spec** if MergePinAndNet Metal2 d or Metal2 n else Metal2\_d\_n Metal2 d Metal2 f input 9;5 df2order 82 (Metal2 fill) packet m2 fill Metal2\_n input 9;4 df2order 34 (Metal2 net) packet m2 Metal2\_p input 9;1 df2order 34 (Metal2 pin) packet m2 Attach Text: 9;3 (Metal2 label) Metal2\_slot input 9;2 df2order 82 (Metal2 slot) packet m2\_slot Metal2\_slot\_not\_BP Metal2\_slot andnot (Bondpad size 3) Metal2 v Metal2 p and Metal2 d via Metal3\_d\_n or Metal3\_p or Metal3\_f Metal3 Metal3 d input 11;0 df2order 38 (Metal3 drawing) packet m3 Attach Text: 11;3 (Metal3 label) if MergePinAndNet Metal3\_d or Metal3 n else Metal3\_d\_n Metal3 d Metal3 f input 11;5 df2order 83 (Metal3 fill) packet m3 fill input 11:4 df2order 38 (Metal3 net) packet m3 Metal3 n Metal3 p input 11:1 df2order 38 (Metal3 pin) packet m3 Attach Text: 11;3 (Metal3 label) input 11;2 df2order 83 (Metal3 slot) packet m3 slot Metal3 slot Metal3 slot not BP Metal3\_slot andnot (Bondpad size 3) Metal3 v Metal3\_p and Metal3\_d via Metal4 Metal4\_d\_n or Metal4\_p or Metal4\_f ☐ Metal4\_d input 31;0 df2order 42 (Metal4 drawing) packet m4 Attach Text: 31;3 (Metal4 label) if MergePinAndNet Metal4 d or Metal4 n else Metal4\_d\_n Metal4 d ¹∟¹ Metal4 f input 31;5 df2order 84 (Metal4 fill) packet m4 fill Metal4 n input 31;4 df2order 42 (Metal4 net) packet m4 ☐ Metal4\_p input 31;1 df2order 42 (Metal4 pin) packet m4 Attach Text: 31;3 (Metal4 label) input 31;2 df2order 84 (Metal4 slot) packet m4 slot Metal4\_slot\_not\_BP Metal4\_slot andnot (Bondpad size 3) ☐ Metal4 v Metal4 p and Metal4 d via Metal5\_d\_n or Metal5\_p or Metal5\_f Metal5 Metal5\_d input 33;0 df2order 46 (Metal5 drawing) packet m5 Attach Text: 33;3 (Metal5 label) Metal5\_d\_n if MergePinAndNet Metal5\_d or Metal5\_n else Metal5 d input 33;5 df2order 85 (Metal5 fill) packet m5 fill Metal5\_n input 33;4 df2order 46 (Metal5 net) packet m5 ☐ Metal5 p input 33:1 df2order 46 (Metal5 pin) packet m5 Attach Text: 33;3 (Metal5 label) input 33;2 df2order 85 (Metal5 slot) packet m5\_slot ... Metal5\_slot ..... Metal5 slot not BP Metal5 slot andnot (Bondpad size 3) Metal5 p and Metal5 d Metal5 v via Metal6\_d\_n or Metal6\_p or Metal6\_f Metal6 ☐ Metal6 d input 35;0 df2order 50 (Metal6 drawing) packet m6 Attach Text: 35;3 (Metal6 label) if MergePinAndNet Metal6 d or Metal6 n else Metal6 d n Metal6 d input 35;5 df2order 86 (Metal6 fill) packet m6\_fill Metal6 n input 35;4 df2order 50 (Metal6 net) packet m6 input 35;1 df2order 50 (Metal6 pin) packet m6 ] Metal6\_p Attach Text: 35;3 (Metal6 label) input 35;2 df2order 86 (Metal6 slot) packet m6 slot 

Feb 14, 2011

page A2

**GPDK 90nm Mixed Signal Process Spec** Feb 14, 2011 page A3 Metal6\_slot\_not\_BP Metal6\_slot andnot (Bondpad size 3) Metal6\_p and Metal6\_d Metal6\_v via Metal7 Metal7\_d\_n or Metal7\_p or Metal7\_f Metal7\_d input 38;0 df2order 54 (Metal7 drawing) packet m7 Attach Text: 38;3 (Metal7 label) if MergePinAndNet Metal7\_d or Metal7\_n else Metal7 d n Metal7 d Metal7 f input 38;5 df2order 87 (Metal7 fill) packet m7\_fill Metal7 n input 38;4 df2order 54 (Metal7 net) packet m7 Metal7\_p input 38;1 df2order 54 (Metal7 pin) packet m7 Attach Text: 38;3 (Metal7 label) Metal7\_slot input 38;2 df2order 87 (Metal7 slot) packet m7\_slot Metal7\_slot\_not\_BP Metal7\_slot andnot (Bondpad size 3) Metal7 p and Metal7 d ] Metal7 v via Metal8 Metal8\_d\_n or Metal8\_p or Metal8\_f input 40:0 df2order 58 (Metal8 drawing) packet m8 Metal8 d Attach Text: 40;3 (Metal8 label) if MergePinAndNet Metal8 d or Metal8 n else Metal8 d n Metal8 d ... Metal8 f input 40;5 df2order 88 (Metal8 fill) packet m8\_fill Metal8 n input 40;4 df2order 58 (Metal8 net) packet m8 Metal8\_p input 40:1 df2order 58 (Metal8 pin) packet m8 Attach Text: 40;3 (Metal8 label) input 40;2 df2order 88 (Metal8 slot) packet m8\_slot Metal8 slot Metal8\_slot\_not\_BP Metal8\_slot andnot (Bondpad size 3) ] Metal8\_v Metal8\_p and Metal8\_d via Metal9\_d\_n or Metal9\_p or Metal9\_f Metal9 Metal9 d input 42;0 df2order 62 (Metal9 drawing) packet m9 Attach Text: 42;3 (Metal9 label) Metal9 d n if MergePinAndNet Metal9 d or Metal9 n else Metal9 d Metal9 f input 42;5 df2order 89 (Metal9 fill) packet m9\_fill Metal9 n input 42;4 df2order 62 (Metal9 net) packet m9 input 42;1 df2order 62 (Metal9 pin) packet m9 Metal9\_p Attach Text: 42;3 (Metal9 label) input 42;2 df2order 89 (Metal9 slot) packet m9 slot ■ Metal9 slot Metal9\_slot\_not\_BP Metal9\_slot andnot (Bondpad size 3) Metal9\_p and Metal9\_d ] Metal9\_v via DON F SNA Oxide and Nimp UII NPNdummy input 20;0 df2order 105 (NPNdummy drawing) packet ☐ Nburied input 19:0 df2order 73 (Nburied drawing) packet npblk input 18;0 df2order 13 (Nhvt drawing) packet nhvt Nhvt input 4;0 df2order 14 (Nimp drawing) packet nplus Nimp input 2;0 df2order 2 (Nwell drawing) packet nwell NweⅡ input 52;0 df2order 16 (Nzvt drawing) packet Nzvt Nzvt input 1;0 df2order 3 (Oxide drawing) packet tox 7 Oxide Oxide\_thk input 24;0 df2order 4 (Oxide\_thk drawing) packet PNPdummy input 21:0 df2order 105 (PNPdummy drawing) packet zpnp

7 POD **SNA** Oxide and Pimp PWdummy input 85;0 df2order 85 (PWdummy drawing) packet zpw Phvt input 23;0 df2order 15 (Phvt drawing) packet phvt N Pimp input 5;0 df2order 12 (Pimp drawing) packet pplus input 3;0 df2order 10 (Poly drawing) packet poly1 Poly Psub input 25;0 (Psub drawing) df2order 75 packet psub ResWdum input 71;0 df2order 103 (ResWdum drawing) packet zrwell input 13;0 df2order 102 (Resdum drawing) packet Resdum zrpoly SiProt input 72;0 df2order 18 (SiProt drawing) packet siprot input 60;0 df2order 103 packet zvpnp2 fillStyle outline VPNP2dum VPNP5dum input 61:0 df2order 103 packet zvpnp5 fillStyle outline VPNP10dum input 62;0 df2order 103 packet zpnp10 fillStyle outline Via1 input 8;0 df2order 32 (Via1 drawing) packet v1 via input 10:0 df2order 36 (Via2 drawing) packet v2 Via2 via Via3 input 30;0 df2order 40 (Via3 drawing) packet v3 via input 32;0 df2order 44 (Via4 drawing) packet v4 Via4 via Via5 input 34;0 df2order 48 (Via5 drawing) packet v5 via input 37;0 df2order 52 (Via6 drawing) packet v6 Via6 via Via7 input 39;0 df2order 56 (Via7 drawing) packet v7 via input 41;0 df2order 60 (Via8 drawing) packet v8 Via8 via bondpad\_metal1 (Metal1 and (( ( ( ( fill Metal1 ) enclose Bondpad ) downUp 25.0) and (fill Metal1) enclose Bondpad))) bondpad\_metal1\_filled ((( (fill Metal1) enclose Bondpad) downUp 25.0) and (fill Metal1) ) enclose Bondpad bondpad metal1 slot holes bondpad metal1 bondpad\_metal1\_slot\_ (bondpad metal1 slot buttOnly == 1 ( on\_edge bondpad\_metal1\_slot drcSep <= 2.5 )) bondpad metal2 (Metal2 and (( ( ( ( fill Metal2 ) enclose Bondpad ) downUp 25.0 ) and (fill Metal2 ) ) enclose Bondpad ))) bondpad\_metal2\_filled ((( (fill Metal2) enclose Bondpad) downUp 25.0) and (fill Metal2) ) enclose Bondpad bondpad\_metal2\_slot holes bondpad\_metal2 bondpad\_metal2\_slot\_ (bondpad\_metal2\_slot buttOnly == 1 ( bondpad\_metal2\_slot drcSep <= 2.5 )) on edge bondpad\_metal3 (Metal3 and (( ( ( ( fill Metal3 ) enclose Bondpad ) downUp 25.0 ) and (fill Metal3) ) enclose Bondpad))) bondpad metal3 filled ((( (fill Metal3) enclose Bondpad) downUp 25.0) and (fill Metal3) ) enclose Bondpad bondpad\_metal3\_slot holes bondpad metal3 bondpad metal3 slot (bondpad metal3 slot buttOnly == 1 ( bondpad\_metal3\_slot drcSep <= 2.5 )) on\_edge bondpad metal4 (Metal4 and (( ( ( ( fill Metal4 ) enclose Bondpad ) downUp 25.0 ) and (fill Metal4)) enclose Bondpad))) bondpad metal4 filled ((( (fill Metal4) enclose Bondpad) downUp 25.0) and (fill Metal4) ) enclose Bondpad bondpad\_metal4\_slot holes bondpad\_metal4 bondpad metal4 slot (bondpad\_metal4\_slot buttOnly == 1 ( on\_edge bondpad\_metal4\_slot drcSep <= 2.5 )) (Metal5 and (( ( ( ( fill Metal5 ) enclose Bondpad ) bondpad\_metal5 downUp 25.0) and (fill Metal5)) enclose Bondpad)))

**GPDK 90nm Mixed Signal Process Spec** 

Feb 14, 2011

page A4