MMX, SSE

Иван Викторович Михайлов

итмо, кт

imihajlow@gmail.com

25.02.2015

Multi-media extensions 1997, Pentium MMX

ММХ. Регистры

- 8 штук (ММ0-ММ7);
- 64 бита;
- Совмещены с регистрами FPU.

ММХ. Типы данных

Упакованные целые (2x32bit, 4x16bit, 8x8bit).

					Packed Byte Integers
63		-		0	
					Packed Word Integers
63				0	
					Packed Doubleword Integers
63				0	

MMX. EMMS

EMMS

 $\mathsf{FPU}\;\mathsf{Tag} \leftarrow \mathsf{0xffff}$

SIMD

ММХ. Насыщение

- С заворачиванием (wraparound);
- С насыщением (saturated):
 - Знаковая;
 - Беззнаковая.

ММХ. Пересылка данных

MOVD

MOVD dst, src

 $\mathsf{reg} \leftrightarrow \mathsf{MM}$ $\mathsf{mem} \leftrightarrow \mathsf{MM}$

32 бита. Старшие 32 зануляются.

MOVQ

MOVQ dst, src

 $MM \leftrightarrow MM$ 64 бита.

Память должна быть выравнена на 8 байт!

ММХ. Упаковка

a) PACKSSWB mm, mm/m64 или PACKUSWB mm, mm/m64

6) PACKSSDW mm, mm/m64

Рис. 2.27. Выполнение команд PACKSSWB, PACKUSWB (a), PACKSSDW (б)

ММХ. Распаковка

PUNPCKLBW, -LWD, -LDQ

Figure 4-18. PUNPCKLBW Instruction Operation Using 64-bit Operands

ММХ. Распаковка

PUNPCKHBW, -HWD, -HDQ

Figure 4-16. PUNPCKHBW Instruction Operation Using 64-bit Operands

ММХ. Сложение и вычитание

- PADDB, PADDW, PADDD сложение с заворачиванием;
- PADDSB, PADDSW сложение с знаковым насыщением;
- PADDUSB, PADDUSW сложение с беззнаковым насыщением;
- PSUBB, PSUBW, PSUBD вычитание с заворачиванием;
- PSUBSB, PSUBSW вычитание с знаковым насыщением;
- PSUBUSB, PSUBUSW вычитание с беззнаковым насыщением;

ММХ. Умножение

Только знаковое.

PMULHW, PMULLW

По словам (16 бит).

Сохранить старшие 16 бит (PMULHW), младшие 16 бит (PMULLW) результата.

MMX. Сравнение

- РСМРЕQВ, РСМРЕQW, РСМРЕQD равенство;
- PCMPGTB, PCMPGTW, PCMPGTD знаковое "больше".

Результат - маска.

ММХ. Логические операции

- PAND dst = dst & src;
- PANDN dst = (~dst) & src;
- $POR dst = dst \mid src;$
- PXOR dst = dst ^ src.

ММХ. Сдвиги

- PSLLW, PSLLD, PSLLQ сдвиг влево;
- PSRLW, PSRLW, PSRLQ логический сдвиг вправо;
- PSRAW, PSRAD арифметический сдвиг вправо.

MMX и FPU

Любая ММХ-инструкция:

- Устанавливает FPU TOS = 0;
- FPU Tag = 0 (valid);
- Все единицы в экспоненту.

EMMS:

• Устанавливает FPU Tag = 1 (empty);

SSE Streaming SIMD Extensions 1999, Pentium III

SSE. Регистры

- 8 штук (xmm0-xmm7);
- 128 бит.

SSE. Регистры

XMM

- 8 штук (xmm0-xmm7);
- 128 бит;
- 4 32-битных числа с плавающей точкой (float).

Регистр MXCSR – флаги состояния и управления.

SSE. Регистры

XMM

- 8 штук (xmm0-xmm7);
- 128 бит;
- 4 32-битных числа с плавающей точкой (float).

Регистр MXCSR – флаги состояния и управления.

SSE. Пересылка данных

MOVSS	младшие 32 бита
MOVAPS	128 бит, выровненные
MOVUPS	128 бит, невыровненные
MOVLPS	младшие 64 бита
MOVHPS	старшие 64 бита
MOVLHPS	$[127:64] \leftarrow [63:0]$
MOVHLPS	$[63:0] \leftarrow [127:64]$

SSE. SHUFPS

SHUFPS dest, src, imm8

Figure 4-22. SHUFPS Shuffle Operation

SSE. UNPCKHPS

Figure 4-24. UNPCKHPS Instruction High Unpack and Interleave Operation

SSE. UNPCKLPS

Figure 4-26. UNPCKLPS Instruction Low Unpack and Interleave Operation

SSE. Векторные операции

Figure 10-5. Packed Single-Precision Floating-Point Operation

SSE. Скалярные операции

Figure 10-6. Scalar Single-Precision Floating-Point Operation

SSE. Арифметика

ADDSS, ADDPS
SUBSS, SUBPS
MULSS, MULPS
DIVSS, DIVPS
RCPSS, RCPPS
SQRTSS, SQRTPS
MAXSS, MAXPS
MINSS, MINPS
RSQRTSS, RSQRTPS

сложение вычитание умножение деление dest=1/src максимум минимум $dest=1/\sqrt{src}$

SSE. Сравнение

CMPSS, CMPPS

 ${\rm CMP}[{\rm S/P}]{\rm S}$ dst, src, imm8 ${\rm CMP}{\it op}[{\rm S/P}]{\rm S}$ dst, src ${\it op}={\rm EQ}$, NE, LE, LT, NLE, NLT, UNORD, ORD Результат — маска.

COMISS, UCOMISS

[U]COMISS dst, src Результат — EFLAGS. UCOMISS допускает QNaN.

SSE. Преобразование

CVTSS2SI, CVTPS2PI float к целому
CVTSI2SS, CVTPI2PS целое к float
CVTTSS2SI, CVTTPS2PI float к целому с округлением к нулю

SSE. Битовые операции

- ANDPS;
- ANDNPS;
- ORPS;
- XORPS;

SSE. Целочисленные операции

С регистрами ММХ.

PMULHUW
PSADBW
PAVGB, PAVGW
PMAXUB, PMINUB
PMAXSW, PMINSW
PEXTRW, PINSRW
PMOVMSKB
PSHUFW

как PMULHW, но беззнаковая сумма абсолютных разностей байт среднее тах и то беззнаковых байт тах и то знаковых байт выделение п-го слова, замена п-го слова выделение старших бит байт копирование слов в произвольном порядке

SSE2 Streaming SIMD Extensions 2 2001, Pentium IV

SSE2. 2 x double

SSE2. Целые типы

- Инструкции ММХ;
- Инструкции ММХ с суффиксом -Q.

SSE2. Пересылка данных

MOVDQ2Q MOVQ2DQ MOVDQA MOVDQU PSHUFHW, PSHUFLW PSHUFD PUNPCKHQDQ, PUNPCKLQDQ

XMM → MMX MMX → XMM 128 бит выровненные 128 бит невыровненные перестановка слов перестановка двойных слов распаковка двойных слов

SSE2. Преобразования

Figure 11-8. SSE and SSE2 Conversion Instructions

SSE3 Streaming SIMD Extensions 3 2004, Pentium IV Prescott

SSE3. Асимметричная арифметика

ADDSUBPS
$$[x_3 + y_3, x_2 - y_2, x_1 + y_1, x_0 - y_0]$$

ADDSUBPS $[x_1 + y_1, x_0 - y_0]$

SSE3. Горизонтальная арифметика

Figure 12-2. Horizontal Data Movement in HADDPD

HADDPD, HADDPS, HSUBPD, HSUBPS

SSE3. MOVDDUP

SSE3. MOVSHDUP

SSE3. MOVSLDUP

SSSE3 Supplemental SSE3 2006, Xeon Woodcrest

SSSE3. Горизонтальная арифметика

PHADDD, PHADDW PHADDSW

целочисленное горизонтальное сложение целочисленное горизонтальное сложение с

PHSUBD, PHSUBW PHSUBSW целочисленное горизонтальное вычитание целочисленное горизонтальное вычитание с насыщением

насыщением

SSSE3. Вертикальная арифметика

```
PSIGNB, PSIGNW, PSIGND dst = dst \times sign(src)
PABSB, PABSW, PABSD dst = |src|
```

SSSE3. Умножение

PMULHRSW

Умножение чисел с фиксированной точкой.

PMADDUBSW

Умножение и сложение со знаковым насыщением.

SSSE3. Битовые операции

PALIGNR

Конкатенация и сдвиг.

PSHUFB

Перестановка байт.

SSE4 Streaming SIMD Extensions 4 2006-2007

SSE₄

- BLEND*, PBLEND* условное копирование;
- MPSADBW сумма абсолютных разностей;
- PCMP*STR* сравнение строк;
- CRC32;
- РОРСПТ число единичных бит;
- LZCNT число ведущих нулей;
- И другие, см. мануал и википедию.

- Расширение вычислений до 256 бит (регистры YMM).
- Многие инструкции ММХ и SSEn расширены до трех операндов.

$$YMMx[127:0] = XMMx$$

FMA Fused Add-Multiply 2011-2014

Практика.

Практика

```
https://github.com/itmoasm2015/practice
git pull
```

Что почитать

- Intel® 64 and IA-32 Architectures Software Developer's Manual, Vol. 1, Chapters 9, 10, 11, 12, 14
- Intel® 64 and IA-32 Architectures Software Developer's Manual, Vol.

Конец.