M408M Learning **Module Pages** Main page

Equations of planes

Planes: To describe a line, we needed a point ${f b}$ and a vector ${f v}$ along the line. We could also start with two points \mathbf{b} and \mathbf{a} and take $\mathbf{v} = \mathbf{a} - \mathbf{b}$.

Chapter 10: **Parametric Equations** and Polar

To describe a plane, we need a point Q and a vector ${f n}$ that is **perpendicular** to the plane. Later on, we'll see

Coordinates

Chapter 12: Vectors and <u>the</u> **Geometry** of Space

Learning module LM 12.1: 3-<u>dimensional</u> rectangular coordinates:

Learning module LM 12.2: **Vectors:**

Learning module LM 12.3: Dot products:

Learning module LM 12.4: Cross products:

Learning module LM 12.5: **Equations of** Lines and **Planes:**

Equations of a line **Equations** of planes Finding the normal to a <u>plane</u> **Distances** to lines and

Learning module LM 12.6: **Surfaces:**

planes

Chapter 13: **Vector Functions**

Chapter 14: **Partial Derivatives**

how to get n from other kinds of data, like the location of three points in the plane.

point-normal

three points

Let Q(a, b, c) be a fixed point in the plane, P(x, y, z) an arbitrary point in the plane, and $\mathbf{n} = \langle A, B, C \rangle$ the normal to the plane. If

$$\mathbf{b} = \langle a, b, c \rangle, \qquad \mathbf{r} = \langle x, y, z \rangle,$$

$$\overrightarrow{QP} = \mathbf{r} - \mathbf{b} = \langle x - a, y - b, z - c \rangle$$

lies in the plane, and is **perpendicular** to n.

Thus $\mathbf{n} \cdot (\mathbf{r} - \mathbf{b}) = 0$. In terms of coordinates, this becomes

$$\langle\,A,\,B,\,C\,\rangle\cdot\langle\,x-a,\,y-b,\,z-c\,\rangle \ = \ 0\,,$$

where $\mathbf{n} = \langle A, B, C \rangle$. In other words, we get the point-normal equation

$$A(x-a) + B(y-b) + C(z-c) = 0.$$

for a plane.

To emphasize the normal in describing planes, we often ignore the special fixed point Q(a, b, c) and simply

$$Ax + By + Cz = D$$

for the equation of a plane having normal $\mathbf{n}=\langle\,A,\,B,\,C\,\rangle$. Here $D=\mathbf{n}\cdot\mathbf{b}=Aa+Bb+Cc$. The next three examples show useful this way of writing planes can be.

Example 1: Find an equation for the plane whose graph in the first octant is

Solution: The basic idea is to look at the points of intersection of the plane and the coordinate axes:

$$Ax + By + Cz = D$$

intersects the x-axis when y=z=0, i.e., when x = D/A. Similarly, it intersects the y-axis when y = D/B, and the z-axis when z = D/C.

Thus from the given graph

$$\frac{d}{a} = 4, \qquad \frac{d}{b} = 5, \qquad \frac{d}{c} = 3.$$

Consequently,

$$\frac{x}{4} + \frac{y}{5} + \frac{z}{3} = 1$$

is an equation for the plane.

Example 2: Find the vector equation of the line passing through the point P(2,-4,3) and perpendicular to the plane

$$x+4y-2z = 5.$$

 $\mathbf{n} = \langle 1, 4, -2 \rangle$. Thus the line has

$$\mathbf{v} = \langle 1, 4, -2 \rangle$$

Chapter 15: Multiple Integrals

Solution: when the line is perpendicular to the plane, then the direction vector of the line is parallel to the normal to the plane. When the plane is

$$x + 4y - 2z = 5$$

this means the plane has normal

as direction vector for. But $P(2,\,-4,\,3)$ lies on the line, so the vector

$$\mathbf{b} = \langle 2, -4, 3 \rangle$$

determines a point on the line.

Consequently, in vector form the equation of the line is

$$\mathbf{r}(t) = t\mathbf{v} + \mathbf{b} = t\langle 1, 4, -2 \rangle + \langle 2, -4, 3 \rangle.$$

Example 3: Find an equation for the plane passing through the point $Q(1,\,1,\,1)$ and parallel to the plane

$$2x + 3y + z = 5$$
.

Solution: parallel planes have the same normal. So any plane parallel to $2x+3y+z\ =\ 5$ has normal

$$\mathbf{n} = \langle 2, 3, 1 \rangle$$
.

On the other hand, since $Q(1,\,1,\,1)$ lies on the parallel plane, the vector

$$\mathbf{b} = \langle 1, 1, 1 \rangle$$

determines a point on the parallel plane.

Now let $\mathbf{r}=\langle x,y,z\rangle$ be an arbitrary point on the parallel plane. Then the vector

$$\overrightarrow{QP} = \mathbf{r} - \mathbf{b} = \langle x - 1, y - 1, z - 1 \rangle$$

lies in the plane and so will be perpendicular to $\boldsymbol{n}.$ In this case,

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{b}) = \langle 2, 3, 1 \rangle \cdot \langle x - 1, y - 1, z - 1 \rangle$$

= $2(x - 1) + 3(y - 1) + (z - 1) = 0$.

Consequently, an equation for the plane is

$$2x+3y+z = 6.$$