Tarea 1

Entrega: 19 de febrero de 2023

Problema 1

La relación para la velocidad relativa es:

$$\beta = \frac{v}{c} = \left[\frac{2E}{m_0 c^2}\right]^{\frac{1}{2}},\tag{1.1}$$

y la expresión para la energía cinética se ve como:

$$E = mc^2 - m_0 c^2, (1.2)$$

donde:

$$m = \frac{m_0}{\sqrt{1-\beta^2}}. ag{1.3}$$

a) Utilizando las expresiones anteriores, realiza el procedimiento algebraico para llegar a:

$$\beta = \frac{v}{c} = \left[\frac{(E + m_0 c^2)^2 - (m_0 c^2)^2}{(E + m_0 c^2)^2} \right]^{\frac{1}{2}}.$$
 (1.4)

b) Si

$$\frac{E}{m_0 c^2} \ll 1. \tag{1.5}$$

 λ A qué se reduce la energía (1.4)?

Problema 2

La expresión clásica de la energía cinética es:

$$E = \frac{1}{2}mv^2. (2.1)$$

Usando la expresión (1.4), realiza los cálculos de la velocidad β en función de la energía cinética y la masa:

$$\beta = \frac{v}{c} = f(E, m_0). \tag{2.2}$$

Coloca la tabla de tus resultados y la gráfica en escala semilogarítmica (ya que solo un eje va de forma logarítmica) para las siguientes energías (también se incluyen las masas con las que se tienen que trabajar):

Partículas	uma [u]	${\rm Masas~[MeV/c^2]}$	Energía $[\mathrm{MeV/c^2}]$										
			10^{0}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}
Protón	1.007	928.272											
Deuterio	2.014	1875.612											
Helio-4	4.002	3727.838											
Carbono-12	12.000	11177.928											

Tabla 1: Tabla de las masas a usar y las energías (las van a graficar en escala logarítmica) correspondientes para los cálculos.