Lab5 Notes

zjx@ustc.edu.cn 2019.5.9

分布式双端口存储器

• CPU端口

a: 读/写地址

d: 写数据

spo: 读数据

• 调试端口

dpra: 读地址

dpo: 读数据

Encoding of the Opcode Field

R-type op(6 bits) rs(5 bits) rt(5 bits) rd(5 bits) shamt(5 bits) funct(6 bits)

I-type op(6 bits) rs(5 bits) rt(5 bits) addr/immediate(16 bits)

J-type op(6 bits) addr(26 bits)

ор	code	bits 2826							
		0	1	2	3	4	5	6	7
bits	3129	000	001	010	011	100	101	110	111
0	000	SPECIAL δ	REGIMM δ	J	JAL	BEQ	BNE	BLEZ	BGTZ
1	001	ADDI	ADDIU	SLTI	SLTIU	ANDI	ORI	XORI	LUI
2	010	СОР0 δ	COP1 δ	СОР2 θδ	COP1X ¹ δ	BEQL φ	BNEL ø	BLEZL ø	BGTZL ø
3	011	β	β	β	β	SPECIAL2 δ	JALX ε	3	SPECIAL3 ² δ⊕
4	100	LB	LH	LWL	LW	LBU	LHU	LWR	β
5	101	SB	SH	SWL	SW	β	β	SWR	CACHE
6	110	LL	LWC1	LWC2 θ	PREF	β	LDC1	LDC2 θ	β
7	111	SC	SWC1	SWC2 θ	*	β	SDC1	SDC2 θ	β

SPECIAL Opcode Encoding of Function Field

R-type op(6 bits) rs(5 bits) rt(5 bits) rd(5 bits) shamt(5 bits) funct(6 bits)

fun	nction	bits 20							
		0	1	2	3	4	5	6	7
bit	s 53	000	001	010	011	100	101	110	111
0	000	SLL ¹	MOVCI δ	SRL 8	SRA	SLLV	*	SRLV δ	SRAV
1	001	JR ²	JALR ²	MOVZ	MOVN	SYSCALL	BREAK	*	SYNC
2	010	MFHI	MTHI	MFLO	MTLO	β	*	β	β
3	011	MULT	MULTU	DIV	DIVU	β	β	β	β
4	100	ADD	ADDU	SUB	SUBU	AND	OR	XOR	NOR
5	101	*	*	SLT	SLTU	β	β	β	β
6	110	TGE	TGEU	TLT	TLTU	TEQ	*	TNE	*
7	111	β	*	β	β	β	*	β	β

测试代码

```
j start
.data
.word 0,8,1,6,0xfffffff8,1,3,5,0 #编译成机器码时编译器会在
前面多加个0
start:
addi $t0,$0,3
               #t0=3
addi $t1,$0,5
               #t1=5
addi $t2,$0,1
               #t2=1
add $s0,$t1,$t0 #s0=t1+t0=8 测试add指令正确继续执行
lw $s1,12($0
bne $s1,$s0,_fail #不正确跳到fail
```

测试代码 (续1)

```
sw $t1,40($0)
lw $s1,40($0)
beg $t1,$s1, sucess
fail:
sw $0,8($0)
           #失败通过看存储器地址0x08里值,若为0
           则测试不通过. 最初地址0x08里值为0
 fail
sucess:
           #全部测试通过,存储器地址0x08里值为1
sw $t2,8($0)
           #判断测试通过的条件是最后存储器地址
j sucess
           0x08里值为1. 说明全部通过测试
```

COE文件

memory_initialization_radix = 16; memory_initialization_vector = 0800000b

j _start

.word

80000000 00000000 00000008

0,8,1,6,0xfffffff8,1,3,5,0

0000001 00000006 fffffff8

0000001 00000003 00000005

0000000

addi \$t0,\$0,3 #

#t0=3

addi \$t1,\$0,5

#t1=5

20080003 20090005 200a0001

addi \$t2,\$0,1

#t2=1

01288020

add \$s0,\$t1,\$t0

• • • • • •

寄存器使用约定

REGISTER	NAME	USAGE
\$0	\$zero	常量0(constant value 0)
\$1	\$at	保留给汇编器(Reserved for assembler)
\$2-\$3	\$v0-\$v1	函数调用返回值(values for results and expression evalua
\$2-\$3	ΦΛΩ-ΦΛ I	tion)
\$4-\$7	\$a0-\$a3	函数调用参数(arguments)
\$8-\$15	\$t0-\$t7	暂时的(或随便用的)
\$16-\$23	\$s0-\$s7	保存的(或如果用,需要SAVE/RESTORE的)(saved)
\$24-\$25	\$t8-\$t9	暂时的(或随便用的)
\$28	\$gp	全局指针(Global Pointer)
\$29	\$sp	堆栈指针(Stack Pointer)
\$30	\$fp	帧指针(Frame Pointer)
\$31	\$ra	返回地址(return address)

The End