線形代数学・同演習 B

1月10日分 演習問題*1

数ベクトル \mathbb{R}^n の内積は標準内積により与えられているとする.また,多項式空間の内積は,特に断らない限り $(p|q)=\int_{-1}^1 p(x)q(x)\,dx$ により与えられているとする.

1. 次の R^3 の 2 本のベクトルと直交するベクトルをそれぞれ一つずつ求めよ*2.

$$(1) \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \quad (2) \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -4 \\ 2 \end{pmatrix} \quad (3) \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

 2^{\dagger} 次の $\mathbb{R}[x]_2$ の 2 本の多項式と直交する多項式を , それぞれ一つずつ求めよ .

(1)
$$p(x) = 4x^2 + 1$$
, $q(x) = x^2$ (2) $p(x) = x - 1$, $q(x) = x$

(3)
$$p(x) = 2x - 1$$
, $q(x) = x^2$ (4) $p(x) = 2x + 3$, $q(x) = x^2 + x + 1$

- $3.~M(n,\mathbb{R})$ を n 次正方行列全体のなすベクトル空間とする . $A,B\in M(n,\mathbb{R})$ に対して $(A|B):=\mathrm{tr}({}^t\!AB)$ により定義するとき , $(\cdot|\cdot)$ は内積の性質を満たすことを確認せよ .
- $4.\ V=\mathbb{R}[x]_2$ とし,内積の定義において積分範囲を[0,1] に変更したものを考える:

$$(p|q)_0 := \int_0^1 p(x)q(x) dx \quad (p, q \in V).$$

このとき, $(\cdot|\cdot)_0$ も内積の性質を満たすことを確認せよ.また多項式 p,q に対して,通常の内積での値 (p|q) と,この内積での値 $(p|q)_0$ が異なることを確認せよ.

 5^{\dagger} 区間 [-1,1] 上の (連続とは限らない) 実数値関数全体のなす空間 V はベクトル空間となる . このとき , 次で定義される $(\cdot|\cdot)$ は V の内積となるか :

$$(f|g) := \int_{-1}^{1} f(x)g(x) dx \quad (f, g \in V).$$

 6^{\dagger} 内積空間 V の部分空間 W に対して , V の部分集合 W^{\perp} を次のように定義する :

$$W^{\perp}:=\{oldsymbol{v}\in V\,;\,$$
すべての $oldsymbol{w}\in W$ に対して $(oldsymbol{v}\,|\,oldsymbol{w}\,)=0\}.$

- (1) W^{\perp} は V の部分空間となることを示せ *3 . (2) $W \cap W^{\perp} = \{\mathbf{0}_V\}$ を示せ .
- 7^{\dagger} 区間 $[-\pi,\pi]$ 上の滑らかな関数全体のなす集合を V とすると,これはベクトル空間となる. さて,V の内積を $(f|g):=\int_{-\pi}^{\pi}f(x)g(x)\,dx$ により定める.また,整数 $n,m\geq 1$ に対して, $s_n(x):=\sin nx,\,c_m(x):=\cos mx$ とおく.このとき,次の内積を計算せよ*4.

(1)
$$(s_n | c_m)$$
 (2) $(s_n | s_m)$ (3) $(c_n | c_m)$

 $8*~V=\mathbb{R}^2$ とし,2 次正方行列 A に対して $(m{x}|m{y})_A:={}^t\!xAm{y}$ とおく.このとき, $(\cdot|\cdot)_A$ が内積となるための A の条件を求めよ.

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

 $^{^{*2}}$ 数ベクトルの場合は外積 (クロス積) で求めることができる.

 $^{^{*3}}$ この W^{\perp} を , W の V における直交補空間という .

 $^{*^{4}(2),(3)}$ は n=m かどうかで場合分けが必要.