Задача о максимальном потоке в графе

команда группы АС-22-05

Арчаков Ильяс

Епишов Сергей

Дмитриева Екатерина

Котков Роман

Сахаров Данила

Смирнова Анна

Шпагин Алексей

Введение постановка задачи и ее актуальность

Постановка задачи

Дана транспортная сеть N = (V, E) с источником $s \in V$ и пропускными способностями $c(u, v) \ge 0$.

Величиной **потока** называется сумма потоков из источника $|f| = \sum_{u \in V} f(w, t)$.

Задача о максимальном потоке заключается в нахождении такого потока, где величина потока максимальна.

Мы проанализируем различные алгоритмы и сравним их время работы, на основе чего сделаем выводы.

Актуальность

Максимальный поток — это широко применимая модель решения проблем.

- Транспортная логистика
- Телекоммуникационные сети
- Электроэнергетика
- Банковские операции
- Расписание рейсов
- Сегментация изображения
- Сегментация васкуляризации печени

Актуальность

• Сегментация изображения

Алгоритмы

Алгоритм	Сложность		
Алгоритм Форда-Фалкерсона (FF)	O(EU)		
Алгоритм Эдмонса-Карпа (ЕС)	$O(VE^2)$		
Алгоритм Диница (D)	$O(V^2E)$		
Алгоритм проталкивания предпотока (PR)	$O(V^2E)$		
Алгоритм масштабирования потока (FS)	$O(E^2 \log U)$		
Алгоритм Голдберга-Тарьяна (GT)	$O(V^3)$		
Алгоритм «поднять в начало» (RTF)	$O(V^3)$		

Алгоритм Форда-Фалкерсона

Идея алгоритма заключается в следующем. Изначально величине потока присваивается значение 0: f(u,v)=0 для всех $u,v\in V$.

Затем величина потока **итеративно увеличивается** посредством поиска увеличивающего пути (путь от источника s к стоку t, вдоль которого можно послать больший поток). Процесс повторяется, **пока можно найти увеличивающий путь**.

Алгоритм Форда-Фалкерсона

Особенности:

- Алгоритм не конкретизирует, какой именно путь мы ищем или как мы это делаем. В реализации использовался **обход в глубину (DFS)**.
- Гарантированно сходится только для целых пропускных способностей, но даже для них при больших значениях пропускных способностей он может работать очень долго.
- Если пропускные способности вещественны, алгоритм может работать бесконечно долго, не сходясь к оптимальному решению.
- Сложность: O(EU), где U величина максимального потока.

Алгоритм Эдмондса-Карпа

Алгоритм представляет собой **частный случай** метода Форда-Фалкерсона. Впервые был опубликован в 1970 году советским учёным Е. А. Диницом. Позже, в 1972 году, был независимо открыт Эдмондсом и Карпом.

Алгоритм Эдмондса-Карпа — это вариант алгоритма Форда-Фалкерсона, при котором на каждом шаге выбирают **кратчайший дополняющий путь** из s в t в остаточной сети (полагая, что **каждое ребро имеет единичную длину**).

Алгоритм Эдмондса-Карпа

Особенности:

- На каждом шаге выбирают кратчайший дополняющий путь.
- Кратчайший путь находится поиском в ширину(BFS).
- Есть граф «Грибок», на котором алгоритм дает плохую асимптотику (нижняя

граница времени работы)

• Сложность: $O(VE^2)$.

Полиномиальный алгоритм, предложенный в 1970 году советским (впоследствии израильским) математиком Ефимом Диницем, частный случай метода Форда-Фалкерсона.

Используются понятия вспомогательной сети, остаточной сети и блокирующего потока.

Блокирующим потоком в данной сети называется такой поток, что любой путь из истока **s** в сток **t** содержит насыщенное этим потоком ребро. Иными словами, в данной сети не найдётся такого пути из истока в сток, вдоль которого можно беспрепятственно увеличить поток.

Остаточной сетью G^R по отношению к сети G и некоторому потоку f в ней называется сеть, в которой каждому ребру $(u,v)\in G$ с пропускной способностью c_{uv} и потоком f_{uv} соответствуют два ребра:

$$(u, v): c_{uv}^R = c_{uv} - f_{uv}$$

 $(v, u): c_{vu}^R = f_{uv}$

Для начала определим для каждой вершины v данной сети G длину кратчайшего пути $s \to t$ и обозначим её d[v] (для этого можно воспользоваться **обходом в ширину**).

В слоистую сеть включаем только те рёбра (u,v) исходной сети, для которых d[u]+1=d[v]. Полученная сеть **ациклична**, и любой путь $s\to t$ в слоистой сети является **кратчайшим путём** в исходной, из свойств обхода в ширину.

Слоистую сеть для графа G будем называть вспомогательной сетью.

Особенности:

- Представляет собой **несколько фаз**: построение остаточной сети (обход в ширину), поиск блокирующего потока в слоистой сети (обход в глубину) и прибавление его к текущему потоку.
- Схож с алгоритмом Эдмондса-Карпа, но на каждой итерации поток увеличивается не вдоль одного кратчайшего $s \to t$, а **вдоль целого набора таких путей**.
- Используются алгоритмы поиска в глубину(DFS) и поиска в ширину(BFS).
- Сложность: $O(V^2E)$.

Обобщенный алгоритм нахождения максимального потока в сети. В отличие от алгоритма Эдмондса-Карпа и алгоритма Диница не является частным случаем метода Форда-Фалкерсона.

Используются понятия предпотока, избыточного потока и высоты вершины.

Функция h_u называется **высотой вершины**, если она удовлетворяет условиям:

$$h(s) = |V|,$$

$$h(t)=0,$$

$$\forall (u, v) \in E_f \ h(u) \le h(v) + 1.$$

Предпотоком (preflow) будем называть функцию $f: V \times V \to R$, удовлетворяющую следующим свойствам:

f(u,v) = -f(v,u) (антисимметричность), $f(u,v) \leq c(v,u)$ (ограничение пропускной способностью), $\forall u \in V \setminus \{s,t\} \ \sum_{u \in V} f(u,v) \geq 0$ (Неотрицательность избыточного потока).

Содержащаяся в этом свойстве сумма $\sum_{u \in V} f(u, v) \ge 0$ называется избыточным потоком (excess) и обозначается e_u .

Мы называем вершину переполненной, если она не является источником или стоком, а избыточный поток в эту вершину строго положителен.

Алгоритм применяет две операции: проталкивание(push) и подъём(relabel).

Операция **проталкивания(push)** из вершины u в вершину v может применяться тогда, когда вершина u является **переполненной**:

Операция **подъёма(relabel)** применима для вершины u, если e(u) > 0 и $\forall (u,v) \in E_f \ h(u) \le h(v)$:

```
function relabel(Node u)

h(u) = min\{h(v): f(u, v) - c(u, v) < 0\} + 1
```

Алгоритм:

- Инициализировать предпоток, избыточные потоки и высоты.
- Пока возможно проталкивание или подъём, выполнить любую возможную операцию.

Особенности:

- Считается одним из наиболее эффективных алгоритмов максимального потока.
- Сложность: $O(V^2E)$.
- Конкретные варианты алгоритмов обеспечивают **еще более низкую** временную сложность: $O(V^3)$, $O(V^2\sqrt{E})$ и $O(VE\log\frac{V^2}{E})$.

Алгоритм масштабирования потока

Является модификацией алгоритма Форда-Фалкерсона для нахождения максимального потока в сети.

Идея алгоритма заключается **в нахождении путей с высокой пропускной способностью в первую очередь**, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.

Для этого используют **масштабом** Δ , изначально предполагая, что

$$\Delta = 2^{\lfloor \log_2 U \rfloor}$$
.

На каждой итерации в дополняющей сети алгоритм находит **дополняющие пути** с пропускной способностью **не меньшей** Δ , и увеличивает поток вдольних. **Уменьшив** масштаб Δ в **2 раза**, переходит к следующей итерации.

Алгоритм масштабирования потока

Для этого используют **масштабом** Δ , изначально предполагая, что

$$\Delta = 2^{\lfloor \log_2 U \rfloor}.$$

На каждой итерации в дополняющей сети алгоритм находит **дополняющие пути** с пропускной способностью **не меньшей** Δ , и увеличивает поток вдольних. **Уменьшив** масштаб Δ **в 2 раза**, переходит к следующей итерации.

Очевидно, что **при** $\Delta = \mathbf{1}$, алгоритм вырождается в алгоритм **Эдмондса-Карпа**, вследствие чего является корректным.

Количество необходимых увеличений путей, основанных на кратчайших путях, может быть много больше количества увеличений, основанных на путях с высокой пропускной способностью.

Алгоритм масштабирования потока

Особенности:

- Введение масштаба ∆ позволяет уменьшить количество фаз алгоритма, ускоряя сходимость.
- Алгоритм **эффективен** для сетей **с большими пропускными способностями**, так как он уменьшает количество фаз.
- Может **не эффективно** работать на графах **с малыми пропускными способностями,** так как масштаб ∆ может стать **слишком большим**.
- **Не работает** с графами, где пропускные способности имеют **нецелочисленные** значения (аналогично алгоритму Форда-Фалкерсона).
- Сложность: $O(E^2 \log U)$.

Алгоритм Голдберга-Тарьяна

Модификация алгоритма **проталкивания предпотока**, использующая правило выбора **FIFO** (First In First Out).

Изначально все вершины, кроме источника и стока, имеют высоту 0, а все ребра имеют нулевой поток.

Алгоритм ищет **наилучший путь** из источника s в сток t, используя операции **push** (проталкивание) и **relabel** (переустановка высоты).

Алгоритм продолжает выполнять операции **push** и **relabel** до тех пор, пока не будет достигнута максимальная пропускная способность (максимальный поток) между источником s и стоком t.

Алгоритм Голдберга-Тарьяна

Особенности:

- Алгоритм организует активные узлы в **очередь**. Вершины, которые протолкнули поток, записываются в очередь для дальнейшего рассмотрения **по очереди**. Используется правило **FIFO**.
- Используется **перемаркировка** вершин, **переполненная** вершина (e(u) > 0) здесь называется **активной**.
- Сложность: $O(V^3)$.

Алгоритм «поднять в начало» (Relabel To Front) представляет собой более эффективную, чем описано выше, реализацию алгоритма проталкивания предпотока.

Алгоритм использует понятие **допустимых рёбер,** применяется дополнительная операция: **разрядка (discharge) вершины.**

Кроме предпотока, высот и избыточного потока, алгоритм хранит следующее:

- ullet Для каждой вершины u список её соседей N[u];
- ullet Для каждой вершины u указатель current[v] (в терминах С++ итератор);
- Список L всех вершин, кроме источника и стока;
- ullet Указатель it на один из элементов списка L (в терминах C++ итератор).

Ребро (u,v) называется **допустимым (admissable)**, если выполнены два условия:

- 1. f(u,v) < c(u,v), или, что то же самое, **ребро** (u,v) присутствует в остаточной сети.
- 2. $h_u = h_v + 1$.

<u>Таким образом:</u>

- 🖢 Проталкивание осуществляется только по допустимым рёбрам.
- Подъём допустим тогда и только тогда, когда поднимаемая вершина переполнена и из неё не исходит допустимых рёбер.

Опишем функцию, которую называется разрядка (discharge) вершины. Разрядка применяется только к переполненным вершинам и выполняется следующим образом:

Шаг 1. Пока вершина u **переполнена**, выполнять шаги 2-4.

Шаг 2. Если *current* вышел за конец списка, **поднять** вершину u и вернуть *current* в начало списка.

Шаг 3. Иначе, если допустимо проталкивание от u к $\mathit{current}[u]$, выполнить его.

Шаг 4. Иначе продвинуть *current* на 1 элемент вперёд.

Особенности:

- Алгоритм может работать **плохо** на некоторых графах, особенно **с высокой плотностью** или с большой разницей между максимальной и минимальной емкостью.
- Алгоритм **не подходит для динамических графов**, структура которых часто меняется, поскольку для поддержания структур данных **требуются значительные вычислительные затраты**.
- Сложность: $O(V^3)$, самый быстрый из представленных.

	Nº	FF	EC	D	PR	FS	GT	RTF
	Nº	Время, $10^{-6}\ c$ (среднее за 5.000.000)						
	1	2,20003	3,7043	2,09825	2,09964	2,10066	2,04848	0,034555
X	2	4,27919	8,04156	4,21923	4,20167	4,2206	2,688	0,069376

FF

5,53781

8,51387

12,6396

Nº

3

V	FF	EC	D	PR	FS	GT	RTF
V	Время, 10^{-6} с (среднее за 500), плотность = 0,33						
50	2881,16	162,499	23,0714	28,7416	25,2182	117,517	0,0326
100	50231,4	1089,09	127,313	147,682	133,826	119,029	0,0656
200	945961	9113	1035,38	1058,09	1042,69	121,26	0,1022
300	3,478E+06	31087,2	2137,72	2156,84	2147,22	3265,14	0,1354
400	1,098E+07	90325,3	4134,82	4126,22	4040,2	3268,74	0,1678
500	2,67E+07	194165	7609,27	7379,36	7338,18	3275,48	0,2006
600	4,96E+07	360883	13756,5	13470	13339,6	3280,64	0,2338
700	8,57E+07	638307	22194,1	21841,2	21997,1	3286,55	0,2666
800	1,43E+08	1081040	29153,6	28737,9	28854,5	26220,4	0,2996
900	2,18E+08	1738430	40153,8	39239,5	39424,9	26227,8	0,3324
1000	3,22E+08	2531250	58030,1	56985	57194,2	26236,1	0,3654

Алгоритм	Сложность		
Алгоритм Форда-Фалкерсона (FF)	O(EU)		
Алгоритм Эдмонса-Карпа (ЕС)	$O(VE^2)$		
Алгоритм Диница (D)	$O(V^2E)$		
Алгоритм проталкивания предпотока (PR)	$O(V^2E)$		
Алгоритм масштабирования потока (FS)	$O(E^2 \log U)$		
Алгоритм Голдберга-Тарьяна (GT)	$O(V^3)$		
Алгоритм «поднять в начало» (RTF)	$O(V^3)$		

Выводы

- Алгоритм Форда-Фалкерсона оказался самым медленным, что и ожидалось увидеть.
- Алгоритм «поднять в начало» оказался **самым быстрым** из представленных.
- Три алгоритма с абсолютно разным подходом и разной реализацией показали очень **схожие результаты**, что подтверждает их схожую временную сложность.
- Задача о максимальном потоке оказалась намного обширнее, чем изначально предполагалось, и имеет большое количество применений.

Репозиторий GitHub

