

Getting Started with HFSS: Silicon Spiral Inductor

ANSYS, Inc.
Southpointe
2600 ANSYS Drive
Canonsburg, PA 15317
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494

Release 18.0 December 2016

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001:2008 companies.

Copyright and Trademark Information

© 2016 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited. ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement. ANSYS, Inc. is certified to ISO 9001:2008.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

Conventions Used in this Guide

Please take a moment to review how instructions and other useful information are presented in this guide.

- Procedures are presented as numbered lists. A single bullet indicates that the procedure has only one step.
- Bold type is used for the following:
 - Keyboard entries that should be typed in their entirety exactly as shown. For example,
 "copy file1" means the word copy must be typed, then a space must be typed, and then file1 must be typed.
 - On-screen prompts and messages, names of options and text boxes, and menu commands. Menu commands are often separated by carats. For example, "click HFSS>Excitations>Assign>Wave Port."
 - Labeled keys on the computer keyboard. For example, "Press Enter" means to press the key labeled Enter.
- Italic type is used for the following:
 - o Emphasis.
 - The titles of publications.
 - Keyboard entries when a name or a variable must be typed in place of the words in italics.
 For example, "copy file name" the word copy must be typed, then a space must be typed, and then name of the file must be typed.
- The plus sign (+) is used between keyboard keys to indicate that you should press the keys at the same time. For example, "Press Shift+F1" means to press the Shift key and the F1 key at the same time.
- Toolbar buttons serve as shortcuts for executing commands. Toolbar buttons are displayed after the command they execute. For example,

"On the Draw menu, click Line "" means that you can click the Draw Line toolbar button to execute the Line command.

Getting Help: ANSYS Technical Support

For information about ANSYS Technical Support, go to the ANSYS corporate Support website, http://www.ansys.com/Support. You can also contact your ANSYS account manager in order to obtain this information.

All ANSYS software files are ASCII text and can be sent conveniently by e-mail. When reporting difficulties, it is extremely helpful to include very specific information about what steps were taken or what stages the simulation reached, including software files as applicable. This allows more rapid and effective debugging.

Help Menu

To access online help from the menu bar, click **Help** and select from the menu:

- HFSS Contents click here to open the contents of the online help.
- **HFSS Search** click here to open the search function of the online help.

Context-Sensitive Help

To access online help from the user interface, do one of the following:

- To open a help topic about a specific menu command, press **Shift+F1**, and then click the command or toolbar icon.
- To open a help topic about a specific dialog box, open the dialog box, and then press **F1**.

Table of Contents

Table of Contents	Contents-1
1 - Introduction	1-1
Sample Project - Silicon Spiral Inductor	1-1
2 - Set Up the Project	2-1
Launch Electronics Desktop	2-1
Set Tool Options	2-2
Insert HFSS design	2-3
Set Model Units	2-4
Set Solution Type	2-4
3 - Set Up Si Spiral Inductor	3-1
Create 3D Model for Dielectrics	3-1
Create Substrate	3-2
Create Oxide	
Create Passivation	
Create Air Body	3-8
Assign Radiation Boundary	3-9
Create Ground	3-11
Assign Perfect E Boundary to the Ground	3-12
Hide Dielectrics	3-13
Create Spiral Inductor Geometry	3-13
Create Offset Coordinate System	3-15
Create Spiral Path	3-15
Create Polyline Freehand	3-15
Create Polyline from the Status Bar	3-18
Assign Thickness to the Spiral	3-20
Create Underpass	3-21
Create Via1	3-22
Create Via2	3-23

Create Feed	3-24
Unite Spiral Objects	3-25
Seed Mesh Conductors	3-26
Create Ground Ring	3-28
Create Inner Ring	3-29
Complete the Ring	3-30
Create Extension 1	3-31
Create Extension 2	3-32
Create Source 1	3-33
Create Source 2	3-33
Group the Conductors	3-34
Assign Excitation for Source1	3-34
Assign Excitation for Source2	3-35
Show All	3-36
Boundary Display (Optional)	3-36
4 - Analyze Spiral Conductor	4-1
Create Analysis Setup	4-1
Add a Frequency Sweep	4-3
Model Validation	4-5
Analyze the Model	4-6
Review Solution Data	4-6
Review the Profile Panel	4-6
Review the Convergence Panel	4-8
Review the Matrix Data Panel	4-8
Review the Mesh Statistics Panel	4-9
Generate Reports	4-9
Create S-parameter vs. Frequency Plot	4-9
Custom Equations – Output Variables	4-11
Use Output Variables for Next Report	4-14
Simulate with Solve Inside Conductors	4-16

esults with Solve Inside	4-1

Getting Started with HFSS: Silicon Spiral Inductor

Getting Started with HFS	S: Silicon Spiral I	nductor		

1 - Introduction

This document is intended as supplementary material to HFSS for beginners and advanced users. It includes instructions to create, simulate, and analyze a silicon spiral inductor model.

This chapter contains the following topic:

• Sample Project - Silicon Spiral Inductor

Sample Project - Silicon Spiral Inductor

In this project, we will use HFSS to create, simulate, and analyze a 2.5 turn spiral inductor.

Figure 1-1 Spiral Inductor

This nominal design consists of the following components with their corresponding dimensions:

- Spiral: 2.5T, W=15um, S=1.5um, Rad=60um.
 M6, 2um, σ= 2.8e7 S/m.
- Underpass: M5, 0.5um, σ= 2.8e7 S/m.
 Stackup: Passivation: 0.7um, εr = 7.9.
- Oxide: 9.8um, εr = 4.0.
 Substrate: 300um.
 εr = 11.9, σ= 10 S/m.

Figure 1-2 Passivation, Oxide and Substrate

2 - Set Up the Project

This chapter contains the following topics:

- Launch HFSS
- · Set Tool Options
- Insert HFSS design
- Set Model Units(cm)
- Set Solution Type(Terminal)

Launch Electronics Desktop

Store a shortcut of the ANSYS Electronics Desktop application on your desktop.

1. Double-click the **ANSYS Electronics Desktop**icon to launch the application.

Figure 2-1 Electronics Desktop launched

Note If the application does not list the folder, go to **File** and click **New**. If the **Project Manager** window does not appear, go to **View** and enable it.

Set Tool Options

Verify the options under the **Tools** menu as follows:

1. Go to Tools>Options>General Options.

The **Options** dialog box appears.

Figure 2-2 Assignment Options

- 2. Click Boundary Assignment to ensure all Assignment Options are checked.
- 3. Click 3D Modeler Options.
 - The **Modeler Options** dialog box appears.
- 4. Click **Drawing** and ensure the **Automatically cover closed polylines** option is selected.

Figure 2-3 The option on the Operation tab

5. Again, on the **Drawing** tab check **Edit properties of new primitives** and click **OK**.

Figure 2-4 option on the Drawing tab

Note This option causes a **Properties** dialog box to appear automatically whenever you create a new object.

Insert HFSS design

The icon represents the Insert HFSS design (IHd) option.

- 1. Expand the project tree.
- 2. If **IHd** is present, proceed to rename and save the project and if it is absent click the **IHd** icon to include it.

Note Inclusion of **IHd** modifies the project and hence the asterisk appears on **Project***n*.

Figure 2-5 IHd included

3. Click **Project_n***, hit **F2**, rename the project as *si_spiral_inductor*, and save it.

Set Model Units

Set the units for the geometric model as follows:

- On the HFSS toolbar, click Modeler> Units.
 The Set Model Units dialog box appears.
- 2. Select the unit as um and click OK.

Figure 2-6 Set Model Units dialog

Set Solution Type

To set the solution type:

On the toolbar, click HFSS> Solution Type
 The Solution Type dialog box appears.

Figure 2-7 Solution Type dialog

2. Select Driven Terminal and click OK.

Note Driven Terminal calculates the terminal-based S-parameters of multi-conductor transmission line ports. The S-matrix solutions will be expressed in terms of terminal voltages and currents.

Getting Started with H	IFSS: Silicon Spi	ral Inductor		

3 - Set Up Si Spiral Inductor

This chapter describes how to build the 3D spiral inductor model in HFSS.

This chapter contains the following topics:

- Create 3D Model for Dielectrics
- Create Substrate
- Create Oxide
- · Create Passivation
- · Create Air Body
- Assign Radiation Boundary
- Create Ground
- · Assign Perfect E Boundary to the Ground
- Create Spiral Inductor Geometry
- · Assign Thickness to the Spiral
- Create Underpass
- Create Via1
- Create Via2
- Create Feed
- Unite Spiral Objects
- Solve Inside Conductors
- Seed Mesh Conductors Set for Solve Inside
- Create Ground Ring
- · Create Inner Ring
- · Complete The Ring
- Create Extension1
- Create Extension2
- Create Source1
- Create Source2
- Group the Conductors
- Assign Excitation for Source1
- Assign Excitation for Source2

Create 3D Model for Dielectrics

To create the 3D model, you must draw a number of objects. The following sections contain the steps to create the geometry.

Create Substrate

To create the substrate, first draw a box freehand as follows:

1. Click Draw>Box.

The cursor is accompanied by a black square box.

- 2. Click inside the Modeler window to establish the x,y axes and drag the mouse to draw a rectangle
- 3. Click the mouse to establish the z axis and drag the mouse along the z-axis to draw the height.
- 4. Click the mouse again, to complete the box.

The **Properties** dialog box appears.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
Position	-270 ,-270 ,0	um	-270um , -270um ,
XSize	540	um	540um
YSize	540	um	540um
ZSize	300	um	300um

Figure 3-1 Properties dialog

- 5. Edit the fields in the **Command** dialog box as in "View/Edit Material dialog " on the facing page.
- 6. On the **Attribute**, enter *Sub* in the **Name** field and from the **Materials** drop-down menu, select **Edit.**

The **Select Definition** dialog box appears.

7. Click **Add Material** and edit the fields in the dialog box as shown in the following figure.

Note: Mainly change relative permittivity to 11.9 and bulk conductivity to 10 siemens/m.

Figure 3-2 View/Edit Material dialog

- 8. Click **OK** to close the **View/Edit Material** dialog box and repeat the same on the other dialog boxes to exit.
- 9. Do Ctrl+D to fit the view.

Figure 3-3 Substrate created

Create Oxide

To create the oxide, first draw a box and specify its size and location as follows:

1. Draw the box freehand.

The **Properties** dialog box appears.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
Position	-270 ,-270 ,300	um	-270um , -270um , 300um
XSize	540	um	540um
YSize	540	um	540um
ZSize	9.8	um	9.8um

Figure 3-4 Command dialog for Oxide

- 2. On the **Command** tab, edit the fields as in "Command dialog for Oxide" above and click **Attribute** and rename box to: *Oxide*
- 3. From the ${\it Materials}$ drop-down menu, select ${\it Edit}$.
 - The **Select Definition** dialog box appears.
- 4. Click **Add Material** and edit the fields as in "View/Edit Material dialog" on the facing page.

Note The View/Edit Material dialog box appears.

Figure 3-5 View/Edit Material dialog

5. Click **OK** to close the **View/Edit Material** dialog box and repeat the same on the other dialog boxes to exit.

Figure 3-6 Oxide Substrate

Create Passivation

To create passivation, draw a box and specify its size and location as follows:

1. Draw the box freehand.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
Position	-270 ,-270 ,309.8	um	-270um , -270um , 309.8
XSize	540	um	540um
YSize	540	um	540um
ZSize	0.7	um	0.7um

Figure 3-7 Command tab for passivation

- 2. On the **Command** tab edit the fields as shown in "Command tab for passivation" above and on the **Attribute** tab rewrite the **Name** field to *Pass*.
- 3. Select **Edit** from the **Materials** drop down menu.
- 4. Click **Add Material** and edit the fields as in the following figure.

Figure 3-8 View/Edit Material dialog

5. Click **OK** to close the **View/Edit Material** dialog box and repeat the same on the other dialog boxes to exit.

Figure 3-9 Passivation applied

Create Air Body

To create an air body, draw a box and specify its size and location as follows:

- 1. Draw a box freehand.
- 2. Set the **Command** dialog box as in the following figure.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	Global		
Position	-270 ,-270 ,0	um	-270um , -270um , 0um
XSize	540	um	540um
YSize	540	um	540um
ZSize	600	um	600um

Figure 3-10 Properties dialog for Air

- 3. On the Attribute tab, rename object to Air.
- Ensure that the **Material** selected is *vacuum* and click **OK**.
 The box gets updated with the new dimensions and properties that you set.

Figure 3-11 Air Enclosure drawn

Assign Radiation Boundary

Now assign the radiation boundary to the air box.

- Select Air from the History Tree dialog box.
 The air body gets highlighted.
- 2. Right click **Air** and select **Assign Boundary>Radiation** from the short-cut menu. The **Radiation Boundary** dialog box appears.
- 3. Edit the fields as shown in the figure below and click **OK**.

Figure 3-12 Radiation Boundary

Figure 3-13

Create Ground

To create the ground, draw a rectangle as described below.

- 1. Click **Draw> Rectangle**.
- 2. Draw a rectangle freehand.
 - The **Properties** dialog box appears.
- 3. Click **OK** to accept the values in the **Properties** dialog box.
- 4. Double-click **CreateRectangle** from the history tree.
 - The **Command** dialog box appears.

Name	Value	Unit	Evaluated Value
Command	CreateRectangle		
Coordinate System	Global		
Position	-270 ,-270 ,0	um	-270um , -270um , 0um
Axis	Z		
XSize	540	um	540um
YSize	540	um	540um

Figure 3-14 Properties for Rectangle

- 5. Edit the fields as shown in "Properties for Rectangle" above. The rectangle updates itself with the new settings.
- 6. Double-click **Rectangle1** in the history tree and on the **Attribute** dialog box enter *Ground* in the **Name** field and click **OK**.

Figure 3-15 The structure with rectangle drawn

Assign Perfect E Boundary to the Ground

- 1. Click outside the structure to deselect all 2D and 3D objects.
- 2. Select Ground from the history tree to highlight it.
- 3. Right-click **Ground** and select **Assign Boundary>Perfect E** from the short-cut menu. The **Perfect E Boundary** dialog box appears.
- 4. Enter PerfE_Ground in the Name field.

Figure 3-16 Perfect E boundary dialog

5. Leave the **Infinite Ground Plane** unchecked and click **OK**.

The Perfect E boundary is applied and the Message Manager gives the following warning:

• Boundary Rad1 and Boundary PerfE_Ground overlap.

This is because you applied the PerfE boundary on a face that already has the Radiation boundary. However, PerfE_Ground overrides the Radiation boundary on that face owing to a higher priority.

Note By default priority is assigned according to the order in which the boundaries are applied. Since PerfE_Ground was assigned after Rad1, it has a higher priority. HFSS lets you re-prioritize the boundaries, but it is not needed for this project.

Hide Dielectrics

- 1. Click Edit>Select All Visible
- 2. Click View>Visibility>Hide Selection>All Views
 All the objects are now hidden.

Create Spiral Inductor Geometry

Before you create the spiral inductor, set the default material.

1. From the Modeler Materials toolbar, choose Select.

The **Select Definition** dialog box appears.

2. Click Add Material.

The View/Edit Material dialog box appears.

Edit the fields as shown in the following figure.

Figure 3-17 View/Edit Material dialog

3. Click **OK** to close the **View/Edit Material** dialog box and repeat the same on the other dialog box to exit.

Create Offset Coordinate System

- 1. Click Modeler>Coordinate System>Create>Relative CS>Offset
- 2. In the coordinate fields, enter the origin as follows:

X:0.0, Y: 0.0, Z:304.8.

Note The co-ordinate fields appear on the status bar at the bottom and are titled **Select the origin**.

3. Press Enter.

Create Spiral Path

To create the spiral draw a Polyline using one of the following methods:

- Create Polyline Freehand
- Create Polyline From the Status Bar

Create Polyline Freehand

This section shows how to create the spiral by drawing it free hand and then, editing its coordinates.

- 1. Click **Draw>Line**.
- 2. Click anywhere in the modeler to establish the first point and drag the cursor to draw a line and click again, to establish the second point as shown in the figure below.

Figure 3-18

- 3. Continue to drag and click the mouse to establish 13 such points as shown in the figure below where we have labeled all the 13 points.
- 4. Right click and select **Done** from the short cut menu.

Figure 3-19 Polyline with 13 points

5. Double-click **CreateLine** from the history tree and edit the coordinates for the vertices in its Segment tab as shown below.

Line 1

Name	Value	Unit	Evaluated Value
Segment Type	Line		
Point1	-67.5 ,7.5 ,1	um	-67.5um , 7.5um , 1um
Point2	-67.5 ,-67.5 ,1	um	-67.5um , -67.5um , 1um

Figure 3-20 Coordinates for Line1

6. Edit the fields for each of the 12 **CreateLine** options on their corresponding **Segment** tabs as shown below.

	7	,	-	
	Name	Value	Unit	Evaluated Value
T: 0	Segment Type	Line		
Line 2	Point1	-67.5 ,-67.5 ,1	um	-67.5um , -67.5um , 1um
	Point2	8467.5 ,1	um	84um , -67.5um , 1um
			,	
	Name	Value	Unit	Evaluated Value
Line 3	Segment Type	Line		
Daie 3	Point1	84 ,-67.5 ,1	um	84um , -67.5um , 1um
	Point2	84 .84 .1	um	84um , 84um , 1um
			,	
	Name	Value	Unit	Evaluated Value
Line 4	Segment Type	Line		
Line 4	Point1	84 ,84 ,1	um	84um , 84um , 1um
	Point2	-84 ,84 ,1	um	-84um , 84um , 1um
	Name	Value	Unit	Evaluated Value
Line 5	Segment Type	Line		
				04 04 1
Line 3	Point1	-84 ,84 ,1	um	-84um , 84um , 1um
Line 3	Point1 Point2	-84 .84 .1 -8484 .1	um	-84um , -84um , 1um
Luic 3				
Line 3				
	Point2	-84 ,-84 ,1	um	-84um , -84um , 1um
Line 6	Point2	-8484 .1 Value	um	-84um , -84um , 1um
	Point2 Name Segment Type	-84 ,-84 ,1 Value Line	Unit	-84um , -84um , 1um Evaluated Value
	Point2 Name Segment Type Point1	-8484 .1 Value Line -8484 .1	Unit um	-84um , -84um , 1um Evaluated Value -84um , -84um , 1um
	Point2 Name Segment Type Point1	-8484 .1 Value Line -8484 .1	Unit um	-84um , -84um , 1um Evaluated Value -84um , -84um , 1um
Line 6	Point2 Name Segment Type Point1 Point2	-84 ,-84 ,1 Value Line -84 ,-84 ,1 100.5 ,-84 ,1	Unit um um	-84um , -84um , 1um Evaluated Value -84um , -84um , 1um 100.5um , -84um , 1um
	Point2 Name Segment Type Point1 Point2 Name	-8484 .1 Value Line -8484 .1 100.5 ,-84 .1 Value	Unit um um	-84um , -84um , 1um Evaluated Value -84um , -84um , 1um 100.5um , -84um , 1um
Line 6	Point2 Name Segment Type Point1 Point2 Name Segment Type	-8484 .1 Value Line -8484 .1 100.584 .1 Value Line	Unit um um Unit	-84um , -84um , 1um Evaluated Value -84um , -84um , 1um 100.5um , -84um , 1um Evaluated Value

Figure 3-21 Coordinates for Line 2 through Line 7

Line 8

Name	Value	Unit	Evaluated Value
Segment Type	Line		
Point1	1, 100.5, 100.5	um	100.5um , 100.5um , 1um
Point2	-100.5 ,100.5 ,1	um	-100.5um , 100.5um , 1um

Line 9

Name	Value	Unit	Evaluated Value
Segment Type	Line		
Point 1	-100.5 ,100.5 ,1	um	-100.5um , 100.5um , 1um
Point2	-100.5 ,-100.5 ,1	um	-100.5um , -100.5um , 1um

Line 10

Name	Value	Unit	Evaluated Value
Segment Type	Line		
Point1	-100.5 ,-100.5 ,1	um	-100.5um , -100.5um , 1um
Point2	117 ,-100.5 ,1	um	117um , -100.5um , 1um

Line 11

Name	Value	Unit	Evaluated Value
Segment Type	Line		
Point 1	117 ,-100.5 ,1	um	117um , -100.5um , 1um
Point2	117 ,0 ,1	um	117um , 0um , 1um

Line 12

Name	Value	Unit	Evaluated Value	
Segment Type	Line			
Point1	117 ,0 ,1	um	117um , 0um , 1um	
Point2	131 ,0 ,1	um	131um , Oum , 1um	

Figure 3-22 Coordinates for Line 8 through Line 12

Create Polyline from the Status Bar

In this method, enter the coordinates of the points in the status bar as described below.

- 1. Click Draw>Line.
- 2. Edit the coordinate entry fields as follows: Enter the vertex field for point 1:

X: **-67.5**, Y: **7.5**, Z: **1.0** Press the **Enter** key.

Enter the vertex field for point 2:

X: **-67.5**, Y: **-67.5**, Z: **1.0** Press the **Enter** key.

Enter the vertex field for point 3:

X: **84.0**, Y: **- 67.5**, Z: **1.0** Press the **Enter** key.

Enter the vertex field for point 4:

X: **84.0**, Y: **84.0**, Z: **1.0** Press the **Enter** key.

Enter the vertex field for point 5:

X: - **84.0**, Y: **84.0**, Z: **1.0** Press the **Enter** key.

Enter the vertex field for point 6:

X: - 84.0, Y: -84.0, Z: 1.0, Press the Enter key.

Enter the vertex field for point 7:

X: 100.5, Y: -84.0, Z: 1.0, Press the Enter key.

Enter the vertex field for point 8:

X: **100.5**, Y: **100.5**, Z: **1.0**, Press the **Enter** key.

Enter the vertex field for point 9:

X: - 100.5, Y: 100.5, Z: 1.0, Press the **Enter** key.

Enter the vertex field for point 10:

X: - 100.5, Y: - 100.5, Z: 1.0, Press the Enter key.

Enter the vertex field for point 11:

X: **117.0**, Y: **-100.5**, Z: **1.0**, Press the **Enter** key.

Enter the vertex field for point 12:

X: **117.0**, Y: **0.0**, Z: **1.0**, Press the **Enter** key.

Enter the vertex field for point 13:

X: **131.0**, Y: **0.0**, Z: **1.0**, Press the **Enter** key.

- 3. Using the mouse, right-click and from the short-cut menu select **Done**.
- 4. Select **Attribute** and enter *Spiral* in the **Name** field and click **OK**.

Figure 3-23 Spiral drawn

Assign Thickness to the Spiral

To assign trace width and thickness perform the following:

- 1. Right-click Create Polyline under Spiral from the History Tree.
- 2. Select **Properties** from the short-cut menu.

The **Properties** dialog box appears.

Figure 3-24 History Tree

Name	Value	Unit	Evaluated Value
Command	CreatePolyline		
Coordinate System	RelativeCS1		
Number of points	13		
Number of curves	12		
Cross Section			
Туре	Rectangle		
Orientation	Auto		
Width/Diameter	15	um	15um
Top Width	0	um	0um
Height	2	um	2um
Number of Segments	0		0
Bend Type	Comer		

Figure 3-25 Command dialog box

3. Edit the fields as shown in "Command dialog box" above. and click **OK** to close the **Properties** dialog box.

The spiral is assigned the thickness that you set.

Figure 3-26 The updated spiral

Create Underpass

Before creating the underpass ensure the grid plane is XY as follows:

1. Click Modeler>Grid Plane>XY.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-60 ,7.5 ,-0.8	um	-60um , 7.5um , -0.8um
XSize	-75	um	-75um
YSize	-15	um	-15um
ZSize	-0.5	um	-0.5um

Figure 3-27 Properties dialog (underpass)

- 2. Draw a box freehand and edit the fields on the **Command** tab as shown in "Properties dialog (underpass)" above. .
- 3. On the **Attribute** tab rename object as *Underpass* and click **OK** to close the **Properties** dialog box.

Figure 3-28 The Underpass

Create Via1

To create the Via, first draw a box.

- 1. Draw a box freehand and on the **Command** tab edit the fields as shown in "Properties dialog Via1" on the facing page. .
- 2. On the **Attribute** tab enter *Via1* in the **Name** field and click **OK**.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-60 ,7.5 ,0	um	-60um , 7.5um , 0um
XSize	-15	um	-15um
YSize	-15	um	-15um
ZSize	-0.8	um	-0.8um

Figure 3-29 Properties dialog Via1

Figure 3-30 Via1 applied

Create Via2

To create another via, again, draw a box.

1. Draw a box freehand and edit the fields on the Command tab as shown in "Via2 Properties" below. .

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-120 ,7.5 ,0	um	-120um , 7.5um , 0um
XSize	-15	um	-15um
YSize	-15	um	-15um
ZSize	-0.8	um	-0.8um

Figure 3-31 Via2 Properties

2. On the **Attribute** tab enter *Via2* in the **Name** field and click **OK**.

Figure 3-32 Via2 applied

Create Feed

1. Draw a box freehand.

The **Properties** dialog box appears.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-120 ,7.5 ,0	um	-120um , 7.5um , 0um
XSize	-22	um	-22um
YSize	-15	um	-15um
ZSize	2	um	2um

Figure 3-33 Feed Properties

- 2. Edit the fields as shown in "Feed Properties" above. and on the **Attribute** tab enter *Feed* in the **Name** field and click **OK** to close the **Properties** dialog box.
- 3. Do Ctrl+D to fit the view.

Figure 3-34 Feed applied

Unite Spiral Objects

You will now unite the spiral objects.

1. Click Spiral, press the Ctrl key and select Via1, Via2, Feed, and Underpass.

Figure 3-35 The pieces united

Note The order in which you select the objects determines the name of the united structure. For example if you select **spiral** first followed by the rest, the united structure will be named spiral. If you select **Feed** first, then, the united structure will be named as **Feed**.

2. Click Modeler>Boolean>Unite

Figure 3-36 The united object names itself as spiral

- 3. Do Ctrl+D to fit the view.
- 4. Double-click spiral from the history tree and make sure Solve Inside is unchecked on the Attribute tab.

Note The conductive material is represented by a boundary condition that removes the need to solve inside metal.

Seed Mesh Conductors

In this section you will set HFSS to refine the length of the tetrahedral elements for the spiral until they are below the specified value.

- 1. Click **Edit>Select All Visible** and select Spiral.
- 2. Click HFSS> Mesh Operations>Assign>Inside Selection>Length Based
 The Element Length Based Refinement dialog box appears.
- 3. Edit the fields as shown in the figure below and click **OK**.

Figure 3-37 Element Length Based Refinement settings

Figure 3-38

Create Ground Ring

To create a ground ring, first draw a box freehand.

- 1. Click **Draw>Box**.
- 2. Draw a box freehand.

The **Properties** dialog box appears.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-225 ,-225 ,0	um	-225um , -225um , 0um
XSize	450	um	450um
YSize	450	um	450um
ZSize	2	um	2um

Figure 3-39 Ring Properties

- 3. On the **Command** tab edit the fields as shown in "Ring Properties" above.
- 4. On the **Attribute** tab enter *Ring* in the **Name** field and select **Edit** from the **Materials** dropdown menu.
 - The **Select Definition** window appears.
- 5. Type pec in the Search by Name field.
- 6. Click **OK** to close the **View/Edit Material** dialog box and repeat the same on the other dialog boxes to exit.

Figure 3-40 Select Definition window

Figure 3-41 Ring applied

Create Inner Ring

To create the inner ring, again draw a box.

- 1. Click **Draw>Box**.
- 2. Draw a box freehand.

The **Properties** dialog box appears.

3. On the **Command** tab, edit the fields as shown in "The Properties dialog box for Inner Ring" below. .

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-210 ,-210 ,0	um	-210um , -210um , 0um
XSize	420	um	420um
YSize	420	um	420um
ZSize	2	um	2um

Figure 3-42 The Properties dialog box for Inner Ring

4. On the **Attribute** tab enter *Inner* in the **Name** field and ensure that the **Material** assigned is *pec* and click **OK**.

Figure 3-43 Inner ring drawn

Complete the Ring

Click Edit>Select>By Name
 The Select Object dialog box appears.

Figure 3-44 Select Object dialog box

- 2. Select **Ring**, press the **Ctrl** key and click **Inner** and click **OK**.
- 3. Click Modeler>Boolean>Subtract

The **Subtract** dialog box appears.

4. Verify *Ring* is in the **Blank Parts** and *Inner* in the **Tool Parts** and click **OK**.

Post subtraction, the structure should resemble the one in "The subtracted ring" below.

Figure 3-45 Subtract dialog box

Figure 3-46 The subtracted ring

Create Extension 1

- Draw a box freehand.
 The **Properties** dialog box appears.
- 2. On the **Command** tab edit the fields as shown in "Extension1 properties" on the next page. .
- 3. On the **Attribute** tab enter the **Name** as *Ring_Ext1*, ensure that *pec* is selected from the **Material** drop-down and click **OK**.

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	-157 ,7.5 ,0	um	-157um , 7.5um , 0um
XSize	-53	um	-53um
YSize	-15	um	-15um
ZSize	2	um	2um

Figure 3-47 Extension1 properties

Figure 3-48 The Ring_Ext1 applied

Create Extension 2

- 1. Draw a box freehand.
 - The **Properties** dialog box appears.
- 2. Edit the fields as shown in "Properties dialog box for Ring_Ext2" below. .

Name	Value	Unit	Evaluated Value
Command	CreateBox		
Coordinate System	RelativeCS1		
Position	146 ,7.5 ,0	um	146um , 7.5um , 0um
XSize	64	um	64um
YSize	-15	um	-15um
ZSize	2	um	2um

Figure 3-49 Properties dialog box for Ring_Ext2

3. On the **Attribute** tab enter the **Name** as *Ring_Ext2* and click **OK**.

Figure 3-50 Ring_Ext2 applied

Create Source 1

- 1. Draw the rectangle freehand.
- The **Properties** dialog box appears.

 2. Click **OK** to accept the current settings.
- 3. Double click CreateRectangle from the history tree.
- 4. Edit the fields in the **Command** dialog box as in the following figure.

Name	Value	Unit	Evaluated Value
Command	CreateRectangle		
Coordinate System	RelativeCS1		
Position	-142 ,7.5 ,1	um	-142um , 7.5um , 1um
Axis	Z		
XSize	-15	um	-15um
YSize	-15	um	-15um

Figure 3-51 Command dialog box for Source1

5. Click **Attribute** and enter **Name** type as *Source1* and click **OK**.

Create Source 2

- 1. Draw the rectangle freehand.
 - The **Properties** dialog box appears.
- 2. Click **OK** to close the dialog box.
- 3. Under **Rectangle1**, double click **CreateRectangle** from the history tree.
- 4. Edit the fields as shown in the following figure.

Name	Value	Unit	Evaluated Value
Command	CreateRectangle		
Coordinate System	RelativeCS1		
Position	131 ,7.5 ,1	um	131um , 7.5um , 1um
Axis	Z		
XSize	15	um	15um
YSize	-15	um	-15um

Figure 3-52 Command dialog box for Source2

5. Double-click **Rectangle1** and enter *Source2* in the **Name** field and click **OK**.

Group the Conductors

- 1. Click Edit>Select>By Name
- 2. In the Select Object dialog box, select the Ring, Ring_Ext1, Ring_Ext2
- 3. Click OK.
- 4. Click Modeler>Boolean>Unite
- 5. Do Ctrl+D to fit the view.

Assign Excitation for Source1

We will use wave ports to excite source1:

Click Source1 from the history tree.
 Source1 gets highlighted in the structure.

Figure 3-53 Reference Conductor Terminal dialog box

- 2. Right click **Source1**, and select **Assign Excitation>Assign>Lumped Port Reference Conductor for Terminals** dialog box appears.
- 3. Set the options as shown in "Reference Conductor Terminal dialog box" above. and click **OK**.

Assign Excitation for Source2

To select the object Source2:

- 1. In the **History** tree, expand the **Unassigned** objects tree.
- 2. Select Source2.

Figure 3-54 History Tree

To assign lumped port excitation

- 1. Click HFSS>Excitations>Assign>Lumped Port
- 2. Enter 2 for the Port Name.
- 3. Set the rest of the options as in "Reference Conductor Terminal dialog box" on the previous page. and click **OK**.

Show All

To show all objects do the following:

- 1. Click View>Visibility>Show All>All Views
- 2. Do Ctrl+D to fit the view.

Boundary Display (Optional)

Boundary display/solver view provides a snapshot of all boundaries in the model including ports and surface residing on the surrounding background object. It can be very useful for diagnosing problems with design setups.

- 1. Click HFSS>Boundary Display (Solver View)
 - The Solver View of Boundaries dialog box appears.
 - **Note** HFSS identifies all the unique boundary conditions and ports to display where the boundaries are physically located in the model.
- 2. Select the boundaries you wish to view from the dialog box as shown in "Solver View of Boundaries dialog box" on the facing page. .
 - The choices made here will show the boundaries in the **Modeler** field. See "Solver Boundaries selected" on the facing page. .

Name	Туре	Solver Visibility	Visibility	Colo
Rad1	User Defined	Visible to solver.		
PerfE1	User Defined	Visible to solver.	~	
1	User Defined	Visible to solver.	~	
2	User Defined	Visible to solver.	~	
outer	Default	Overridden by other boundaries. Invisible to solver.	~	
smetal	Default	Visible to solver.	~	

Figure 3-55 Solver View of Boundaries dialog box

Figure 3-56 Solver Boundaries selected

Note If you double-click the fields under **Color**, you can change the color as you want from the palette that appears. The background is displayed as the outer boundary and the perfect conductors are displayed as the smetal boundary.

ting Started with	HFSS: Silicon S	piral inductor		

4 - Analyze Spiral Conductor

This chapter describes how to run the simulation and generate reports.

This chapter contains the following topics:

- · Create Analysis Setup
- Add Frequency Sweep
- Model Validation
- · Analyze the Model
- Solution Data
- Profile
- Convergence
- Matrix Data
- Mesh Statistics
- Generate Reports
- Create S-Parameter vs Frequency Plot
- Custom Equations Output Variables
- Use Output Variables for Next Report

Create Analysis Setup

To create an analysis setup:

Click HFSS>Analysis Setup>Add Solution Setup
 The Add Solution Set-up dialog box appears.

Figure 4-1 Solution Set-up window

- 2. In the Solution Setup window: click the General tab.
- 3. Edit the fields as shown in "Solution Set-up window" above.
- 4. Click **Options**, edit the fields as in the figure below and click **OK**.

Figure 4-2 Options tab

Add a Frequency Sweep

- Click HFSS>Analysis Setup>Add Sweep
 The Edit Frequency Sweep dialog box appears.
- 2. Enter the following fields in Edit Frequency Sweep dialog box as shown in the figure below.

Figure 4-3 Edit Frequency Sweep

3. Click the Interpolation tab and edit the fields as in shown in the figure below and click OK.

Figure 4-4 Interpolation

Model Validation

Before running the simulation your model must pass the ${\bf Validation\ Check}.$

To validate the model:

1. Click HFSS>Validation Check

Figure 4-5 Validation Check

- 2. Verify whether your dialog box is the same as Figure 5.
- 3. Click Close.

Note: For this project, ignore warnings as no action is required.

Analyze the Model

To start the solution process:

1. Click HFSS>Analyze All

Note Change the design name to *No_Solve_Inside(Driven Terminal)* and then, save the project *si_spiral_inductor*.

Review Solution Data

To view the Solution Data:

- 1. Click HFSS>Results>Solution Data
- 2. Click **Profile**, **Convergence**, **Matrix Data** etc to see those panels and the results they contain.

Review the Profile Panel

The Profile window lets you view a synopsis of the simulation results ranging from mesh creation and refinement to information about the different adaptive passes, the matrix assembly and solve along with extraction of electromagnetic field and SYZ parameter data. The more highly refined the mesh, i.e. higher the number of tetrahedra, more accurate is HFSS' solution of the design generating optimum results. However, there is a trade-off in the number of tetrahedra used and the computational resources required. Higher the number of tetrahedra the more accurate the solutions. Keep in mind that increased accuracy requires more computational resources and more time.

Task	Real Time	CPU Time	Memory	Information	
				Solution Basis Order: Mixed	
Mesh Refinement				Manual Seed Based	
Mesh (volume, seed)	00:00:00	00:00:00	27.3 M	2882 tetrahedra	
Mesh Refinement				Lambda Based	
Mesh (lambda based)	00:00:01	00:00:01	29.2 M	4017 tetrahedra	
Simulation Setup	00:00:00	00:00:00	32.9 M	Disk = 0 KBytes	
Port Adaptation	00:00:00	00:00:00	42.8 M	Disk = 3 KBytes, 3551 tetrahedra	
Mesh (port based)	00:00:02	00:00:02	28.8 M	4195 tetrahedra	
				Length1	
Adaptive Pass 1				Frequency: 12GHz	
Adaptive Meshing Frequency: 12GHz on					
Simulation Setup	00:00:00	00:00:00	33.6 M	Disk = 0 KBytes	
Matrix Assembly	00:00:00	00:00:01	64.6 M	Disk = 67 KBytes, 3710 tetrahedra , 2 lumped ports	
Solver DCS8	00:00:00	00:00:01	96.3 M	Disk = 0 KBytes, matrix size 10752 , matrix bandwidth 16.8	
Field Recovery	00:00:00	00:00:01	96.3 M	Disk = 2417 KBytes, 2 excitations , Average Order 0.280054	
Adaptive Pass 2				Frequency: 12GHz	
Mesh (volume, adaptive)	00:00:00	00:00:00	30.2 M	5314 tetrahedra	
Adaptive Meshing Frequency: 12GHz on					
Simulation Setup	00:00:00	00:00:00	35 M	Disk = 0 KBytes	
Matrix Assembly	00:00:00	00:00:01	90.1 M	Disk = 0 KBytes, 4783 tetrahedra , 2 lumped ports	
Solver DCS8	00:00:00	00:00:03	142 M	Disk = 0 KBytes, matrix size 19497 , matrix bandwidth 18.5	
Field Recovery	00:00:00	00:00:01	142 M	Disk = 2695 KBytes, 2 excitations, Average Order 0.448881	
Adaptive Pass 3				Frequency: 12GHz	
Mesh (volume, adaptive)	00:00:00	00:00:01	30.9 M	6040 tetrahedra	
Adaptive Meshing Frequency: 12GHz on					
Simulation Setup	00:00:00	00:00:00	36 M	Disk = 0 KBytes	
Matrix Assembly	00:00:00	00:00:01	110 M	Disk = 0 KBytes, 5469 tetrahedra , 2 lumped ports	
Solver DCS8	00:00:00	00:00:04	192 M	Disk = 0 KBytes, matrix size 25658 , matrix bandwidth 19.4	
Field Recovery	00:00:00	00:00:01	192 M	Disk = 3000 KBytes, 2 excitations, Average Order 0.532821	
Adaptive Pass 4				Frequency: 12GHz	
Mesh (volume, adaptive)	00:00:01	00:00:01	31.7 M	6921 tetrahedra	
Adaptive Meshing Frequency: 12GHz on					
Simulation Setup	00:00:00	00:00:00	37 M	Disk = 0 KBytes	
Matrix Assembly	00:00:00	00:00:01	128 M	Disk = 0 KBytes, 6295 tetrahedra , 2 lumped ports	
Solver DCS8	00:00:00	00:00:05	265 M	Disk = 0 KBytes, matrix size 31898 , matrix bandwidth 19.9	
Field Recovery	00:00:00	00:00:01	265 M	Disk = 3431 KBytes, 2 excitations , Average Order 0.596346	
	1	1	1		

Figure 4-6 Profile

Review the Convergence Panel

To view the Convergence data click the **Convergence** tab.

Note: The default view is for convergence is **Table**. Select the **Plot** radio button to view a graphical representations of the convergence data.

Figure 4-7 Convergence dialog box

Review the Matrix Data Panel

To view matrices computed for the S-parameters, impedances, and propagation constants during each adaptive, non-adaptive, or sweep solution, click the **Matrix Data** tab.

Figure 4-8 Matrix Data

Note: To view a real-time update of the Matrix Data, set the Simulation to **Setup1**, **Last Adaptive**.

Review the Mesh Statistics Panel

As the title indicates this panel shows statistics of the mesh, more specifically, it gives break-ups of the tetrahedra used to solve the different components of the model and their size and data.

Figure 4-9 Mesh Statistics

Generate Reports

The subsequent sections describe how to create different reports, customize the equations for the Y axis and create output variables.

Create S-parameter vs. Frequency Plot

1. Click HFSS>Results>Create Terminal Solution Data Report>Rectangular Plot The Report dialog box appears.

Figure 4-10 Report dialog box

- 2. Edit the fields as shown in "Report dialog box" above. .
- 3. Click New Report and Click Close.

Figure 4-11 The XY Plot

Custom Equations – Output Variables

- Click HFSS>Results>Create Terminal Solution Data Report>Rectangular Plot
 The New Report dialog box appears.
- 2. Click Output Variables.

Figure 4-12 Output Variables dialog box

- 3. Enter Q11 in the Name field.
- 4. Select Terminal Y Parameters from Category.
- 5. Select Yt(Source1_T1, Source1_T1) as Quantity.
- 6. Select im from the Function list.
- 7. Click Insert Quantity into Expression.
- 8. Type the forward slash(/).

Figure 4-13 Expression

Note Notice the expression is in red ink because it is incomplete. The slash causes HFSS to expect another function. Red ink indicates inaccuracy or incompleteness.

- 9. Select Yt(Source1_T1, Source1_T1) in the Quantity field.
- 10. Select Function:re
- 11. Click Insert Quantity into Expression.
- 12. Click Add.

The output variable Q11 is added to the list.

- 13. Create **Q22** with *Yt(Source2_T1, Source2_T1)* as quantity.
- 14. Click Add.

Figure 4-14 Output Variables set

15. Click Done.

The **Output Variables** dialog box closes.

- 16. Edit the fields in the **Report** dialog box as in "Report dialog box" on the facing page. .
- 17. Click New Reports and click Close.

Figure 4-15 Report dialog box

Figure 4-16 Y parameters versus Frequency

Use Output Variables for Next Report

To use Output Variables for another report:

- 1. Click HFSS>Results>Create Terminal Solution Data Report>Rectangular Plot
- 2. In the **New Report** window, **Trace Tab** click the **Output Variables** button
- 3. In the **Output Variables** dialog box enter these values:
 - Name:L11
 - Type -1/(2*pi*freq* in the Expression field.
 - Select Terminal Y Parameters from Category.
 - Select Yt(Source1_T1, Source1_T1) from Quantity.
 - Clickim from the Function list.
- 4. Click Insert into Expression.
- 5. Type a bracket ")" key and click Add.

Figure 4-17 New Report dialog box

Figure 4-18 Output Variables dialog box

- 6. Click **Done** to close the **Output Variables** dialog box.
- 7. Edit the fields in **Report** dialog box as shown in the following figure.

Figure 4-19 Report dialog box

8. Click **New Report** and click **Close**.

Figure 4-20 L11 versus Frequency

Simulate with Solve Inside Conductors

In this section, we will select simulate the design with **Solve Inside** selected for the spiral. By default **Solve Inside** gets unchecked for metals or highly conductive materials. In such cases, the conductive material is represented by a boundary condition that removes the need to solve inside the metal. For most projects, we recommend that you use the default settings for **Solve Inside**. When **Solve Inside** is selected it includes tetrahedra inside a conductor for simulation which may require a large mesh. **Solve Inside** can be useful for low frequency analysis of electrically small projects for enhanced accuracy of sensitivity design parameters such as the Q factor.

1. In the **Project Manager** window select the design and copy it.

2. Go the project folder and paste the design.

3. Rename the pasted design.

4. Double-click **spiral** from the history tree and select **Solve Inside** in the **Attribute** dialog box.

The **Message Manager** displays the following message: Solving inside a solid with high conductivity may require a large mesh.

Note For this project, ignore this message.

5. Right click the design and select **Analyze All** from the short-cut menu.

Results with Solve Inside

All the plots get updated real time as the simulation takes place. For this design it may take more passes to converge than when **Solve Inside** was unchecked.

Figure 4-21 Convergence Plot

ANSYS Electromagnetics Suite 18.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.

Figure 4-22 Plot with Solve Inside