,		Date
_		PRACTICAL 3
<u>. </u>		
<u> </u>	1	Decimal equivalent of (3A)16
-		3 A (1)
-		3 10
)		$= 3.10 \times 16^{\circ} + 3 \times 16' = (58)$
		210 210 3270 (38 770
	2	8 bit unsigned binary of (56) to - (31) to
)		$(56)_{70} - (31)_{10} = (25)_{10}$
•		(00011001),
•		(0001100)12
	3	Result of adding (7), & (-4),
,		$(7)_{10} + (-4)_{10} = (3)_{10}$
		Jana Halland
_		(11)2
_	1,	Lichich of the follows the test of Frence 7 number of
	1	which of the tellowing 48 test bit Excess 3 number is
		Type V West 10 5 16
_		5+3=(8)16
<u> </u>		(8) 6 3 (2) 2 3 (1000) 2
	5	Consider the equation (125) = (x8), with x and
_	_	Consider the equation (125) = (x8), with x and as unknown. The rumber of parible solution:
_		,

	Date
	Converding (125) 5 -8 ()10
	(40)10
	(40), = (x8)y
	5(2)16
	(28) $\rightarrow 0$
	(28)8
	32
	(18) ₃₂ — (5)
	As 2 solution
6	Compost binary to Hexadesimal
	1111 1111 0010
	15 15 2
	15 15 2 15 F
	-3(FF2)16
7	O(101 + 100)
	Octal to decimal -> (532.2)8
	$(537.2)_{8}$ $5x8^{2} + 3x8' + 2x8'' + 2x8''$
	320 + 24 + 2 + 0.25
	-S (346.25),
12/19/19	

	Date
8	The decimal equivalent of octal no (645) is
9	The quantity of double word is 4/8 bits
19	Octal to binasy (24) &
	(24)8
	2 4
	010 100
	-3 (010100) ₂
11	Convert binary to octal
	(110110001010)2 -3 (2) 8
	110 110 001 00
	→ (6612) ₈
12	The octal no. (65).124) & is equivalent to (425.1640625),
13	Convert Mexadecimal to decimal
	(1E2) ₆
	$2 \times 16^{\circ} + 14 \times 16^{1} + 1 \times 16^{2}$ $2 + 224 + 256$
	(482)

	Date
14	let r denote number system radix. The only value r that satisfy the equation V121 r = 11 r is lave
	value r that satisfy the equation
	$\sqrt{121}_{R} = 11_{R} + 15_{R}$
	The first of the second of the
	The equation is true for any value of
	$\times > 2$
Name of the second	