1.2次元ベクトル回転

ベクトル成分は常に原点からの成分として考えられる。

そのため、2次元ベクトルの回転は原点基準での座標回転と同じである。

したがって、点P(a, b)を原点のまわりに θ だけ回転させた点Qの座標は

 $Q(a\cos\theta - b\sin\theta, a\sin\theta + b\cos\theta)$

となる。

であったので、2次元ベクトル回転は

 $\vec{p} = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$

3.3次元ベクトル回転

3次元ベクトルの回転を考える。 全ての回転は、

- ·x軸上の回転
- ・y軸上の回転
- ·z軸上の回転

の組み合わせで表せる。 各軸上の回転は2次元ベクトルの回転と同じで あるので、

4.3次元ベクトルでの図形回転(原点基準)

図示するのが難しいので図示は省略するが、 2次元ベクトルと同じで、全ての頂点に向かう ベクトルを作成して回転させる。

• 基本問題

1.次の2次元ベクトルをΘ=30°回転させよ。

$$\vec{a} = (3,4)$$

2.2次元ベクトルでの図形回転(原点基準)

図形を描く頂点それぞれに 原点からのベクトルが伸びて いると考える。

それらのベクトルを回転させれば、その成分が回転した 図形の座標になる。

 $\vec{a} = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$

 $\vec{b} = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$

 $\vec{c} = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$

x軸上の回転:

 $\vec{p} = (x, y\cos\theta - z\sin\theta, y\sin\theta + z\cos\theta)$ v軸上の回転:

 $\vec{p} = (x\cos\theta + z\sin\theta, y, -x\sin\theta + z\cos\theta)$ Z軸上の回転:

 $\vec{p} = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, z)$

導出は省くが、

それぞれの軸に対して考えれば上記が出る。

x軸上に θ =~, y軸上に θ =~, z軸上に θ =~ とそれぞれやって、求める。

2次元ベクトルとの比較としては、 作成するベクトルの数が多くなるのと、 計算過程が3倍になることである。

2.次の3次元ベクトルを x軸上でθ=60°回転させよ。

$$\vec{b} = (3,4,5)$$

