DSP - MAC0317/5920 - Terceira lista de exercícios

Exercício 2.16. Calcule (à mão) a DFT bidimensional da matriz

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$

Em seguida calcule a transformada inversa do resultado obtido.

Exercício 2.17. Sejam \mathbf{x} e \mathbf{y} dois vetores-coluna de dimensão m e n, respectivamente, com DFT's \mathbf{X} e \mathbf{Y} . Seja \mathbf{z} a matriz $m \times n$ definida por

$$z_{r,s} = x_r y_s$$
, com $0 \le r \le m - 1$ e $0 \le s \le n - 1$

e seja ${\bf Z}$ a DFT bidimensional de ${\bf z}$.

- (a) mostre que \mathbf{z} é uma matriz $m \times n$ que satisfaz $\mathbf{z} = \mathbf{x}\mathbf{y}^T$, onde \mathbf{y}^T denota a transposta de \mathbf{y} .
- (b) Mostre que $Z_{k,l} = X_k Y_l$ ou equivalentemente $\mathbf{Z} = \mathbf{X} \mathbf{Y}^T$, onde $Z_{k,l}$ denota o elemento da linha k e coluna l de \mathbf{Z} .

Exercício 2.19. Seja $\mathbf{x} \in \mathbb{C}^N$ com DFT \mathbf{X} . Seja $\mathbf{y} \in \mathbb{C}^N$ o vetor obtido pelo deslocamento circular de \mathbf{x} em m índices:

$$y_k = x_{(k+m) \bmod N}$$

Mostre que a DFT de y tem componentes $Y_r = e^{2\pi i r m/N} X_r$ e que $|X_r| = |Y_r|$ para todo r.

Exercício 3.12. Mostre que a DCT é uma transformada ortogonal, ou seja, que

$$\left\| DCT(\mathbf{x}) \right\|^2 = \left\| \mathbf{x} \right\|^2$$

utilizando a norma Euclidiana usual para vetores em \mathbb{C}^N . Esta é a versão da identidade de Parseval para a DCT. Dica: para qualquer vetor $\mathbf{v} \in \mathbb{C}^N$, temos que $\|\mathbf{v}\|^2 = \mathbf{v}^*\mathbf{v}$ onde \mathbf{v}^* é o vetor-linha dado por $\mathbf{v}^* = \overline{\mathbf{v}}^T$.

Exercício 3.16. Suponha que $\mathbf{x} \in \mathbb{R}^N$ tem DCT \mathbf{X} . Seja $\tilde{\mathbf{x}}$ o vetor com componentes $\tilde{x}_k = x_{N-k-1}$, ou seja

$$\tilde{\mathbf{x}} = (x_{N-1}, x_{N-2}, \dots, x_1, x_0).$$

- (a) Mostre que a DCT $\tilde{\mathbf{X}}$ de $\tilde{\mathbf{x}}$ tem componentes $\tilde{X}_k = (-1)^k X_k$.
- (b) Suponha que "R" denote a operação de reversão que leva \mathbf{x} em $\tilde{\mathbf{x}}$ e "C" denote a compressão por limi-arização (corte de coeficientes pequenos) da DCT, ou seja, "C" denota a sequência DCT—Limiarização—IDCT. Explique porque o resultado da parte (a) mostra que $R(C(\mathbf{x})) = C(R(\mathbf{x}))$, ou seja, a abordagem de compressão por limiarização é invariante com respeito à reversão temporal. Dica: Mostre que $R(C(\mathbf{x}))$ e $C(R(\mathbf{x}))$ têm a mesma DCT (e como a DCT é inversível, têm que ser o mesmo vetor).