

SF1686 Calculus in several variables Solutions to the exam 20 December 2021

1. Find an equation for the tangent plane at the point (1, -1, 0) to the surface

$$z = \ln(1 + x^2 + y^3).$$

Lösning. If $f(x,y) = \ln(1+x^2+y^3)$, we have that f(1,-1) = 0 and

$$f'_x = \frac{2x}{1 + x^2 + y^3}$$
 and $f'_y = \frac{3y^2}{1 + x^2 + y^3}$

and hence $f_x'(1,-1)=2$ and $f_y'(1,-1)=3$. An equation for the tangent plane is

$$z = 2(x-1) + 3(y+1).$$

Svar: z = 2(x-1) + 3(y+1)

2. Compute the line integral $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (e^{x+y} + y^2 + x + 1, e^{x+y} + x^2 + x + 2)$ and γ is the ellipse $2x^2 + 3y^2 = 6$.

Lösning. We see that $\mathbf{F} = (P,Q) = (e^{x+y} + y^2 + x + 1, e^{x+y} + x^2 + x + 2)$ is infinitely differentiable in the entire plane and that γ is the smooth positively oriented boundary of the ellipse D given by $2x^2 + 3y^2 \le 6$. We may therefore use Green's formula to obtain

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{D} (2x - 2y + 1) dx dy = \iint_{D} dx dy = \pi \sqrt{6},$$

where at last equality we have used symmetry to find that the integral of 2x and the integral of 2y are both 0 and that the area of the ellipse is $\pi\sqrt{3}\sqrt{2}$. (Assuming the ellipse is traversed once in the positive direction.)

Svar: $\pi\sqrt{6}$

3. Compute the integral

$$\iiint_{K} \frac{1}{1 + x^2 + y^2 + z^2} \, dV,$$

where K is the region given by the inequalities $x^2 + y^2 + z^2 \le 1$ and $z \le 0$.

Lösning. Using spherical coordinates (R,φ,θ) in the usual fashion the region K can be described by $0 \le R \le 1, \pi/2 \le \varphi \le \pi, 0 \le \theta \le 2\pi$. Remembering the jacobian $R^2 \sin \varphi$ we get

$$\iiint_{K} \frac{1}{1+x^{2}+y^{2}+z^{2}} dV = \int_{0}^{2\pi} \int_{\pi/2}^{\pi} \int_{0}^{1} \frac{R^{2} \sin \varphi}{1+R^{2}} dR d\varphi d\theta$$
$$= \int_{0}^{2\pi} d\theta \int_{\pi/2}^{\pi} \sin \varphi \, d\varphi \int_{0}^{1} \frac{R^{2}}{1+R^{2}} dR$$
$$= 2\pi \left(1 - \frac{\pi}{4}\right)$$

Svar: $2\pi \left(1 - \frac{\pi}{4}\right)$

4. Find the maximum and minimum values of $f(x, y, z) = x^2 + y + z$ on the unit sphere $x^2 + y^2 + z^2 = 1$.

Lösning. The function f is continuous and the unit sphere is compact so the existence of a maximum value is guaranteed. There are no singular points on the sphere and so according to Lagrange's multiplier method the maximum value is obtained at a point on the sphere where ∇f and ∇g are parallell (if $g(x,y,z)=x^2+y^2+z^2$). We get the system of equations

$$\begin{cases} 2x = k2x \\ 1 = k2y \\ 1 = k2z \\ x^2 + y^2 + z^2 = 1 \end{cases}$$

From the first equation we see that either x=0 or k=1. If x=0 equations 2 and 3 yield y=z and inserting this into equation 4 we obtain the points $\pm(0,1/\sqrt{2},1/\sqrt{2})$, where the function f takes the values $\pm\sqrt{2}$. If, on the other hand, k=1 then equations 2 and 3 yield y=z=1/2 and inserting this in equation 4 we get $x=\pm1/\sqrt{2}$. We obtain the points $\pm(1/\sqrt{2},1/2,1/2)$ where the function f takes the value 3/2. Comparing, we see that the maximum value of $f(x,y,z)=x^2+y+z$ on the unit sphere is 3/2 and the minimum value is $-\sqrt{2}$.

Svar: Maximum value 3/2, minimum value $-\sqrt{2}$

5. Use Stokes' theorem to compute $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = (-x^3, -z^3, y^3)$ and γ is the intersection of the cylinder $y^2 + z^2 = 1$ and the plane x + 2y + 2z = 3, positively oriented when viewed from the top of the positive x-axis.

Lösning. Since ${\bf F}$ is infinitely differentiable and γ is the smooth oriented boundary of a smooth surface D which is the part of the plane inside the cylinder, Stokes' theorem yields that

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \mathbf{curl} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS.$$

We compute $\operatorname{curl} \mathbf{F} = (3y^2 + 3z^2, 0, 0)$ and parametrize D by letting $x = 3 - 2r\cos\theta - 2r\sin\theta$ and $y = r\cos\theta$ and $z = r\sin\theta$ where $0 \le r \le 1$ and $0 \le \theta \le 2\pi$ and use this to compute the flux integral. We obtain:

$$\iint_D \mathbf{curl} \mathbf{F} \cdot \hat{\mathbf{N}} \, dS = \int_0^{2\pi} \int_0^1 3r^3 \, dr \, d\theta = \frac{3\pi}{2}.$$

Svar: $3\pi/2$

6. Give a precise formulation and a proof of the theorem that states that the gradient of a two-variable function at a point is normal to the level curve of the function passing through that point.

Lösning.	See the text boo	k, Calculus by	y Adams and	Essex,	Theorem 6 o	of Chapter 1	2.7.

Svar: