Midterm Trevor Klar 1. Explain how one defines the product topology and the subspace topology. Using the definitions you have given, show that Y is homeomorphic to $\{x\} \times Y$ when equipped with the subspace topology (considered as a subset of $X \times Y$).

Definition. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces. We denote the *product topology on* $X \times Y$ by $\mathcal{T}_{X \times Y}$. A set $U \subseteq X \times Y$ is open with respect to $\mathcal{T}_{X \times Y}$ if there exist open sets $U_{\alpha} \in \mathcal{T}_X, V_{\alpha} \in \mathcal{T}_Y$ such that

$$U = \bigcup_{\alpha} U_{\alpha} \times V_{\alpha}.$$

Definition. Let (X, \mathcal{T}_X) be a topological space, and let $A \subseteq X$. We denote the *subspace* topology on A by \mathcal{T}_A . A set $U \subseteq A$ is open with respect to \mathcal{T}_A if there exists a open set $\widetilde{U} \in \mathcal{T}_X$ such that

$$\widetilde{U} \cap A = U.$$

Proof Let $x \in X$. We will show that the inclusion map $\iota : Y \hookrightarrow \{x\} \times Y$ (whose inverse is the projection map $\pi : \{x\} \times Y \to Y$) is a homeomorphism.

• ι is 1-1 and onto, since

$$\iota(y_1) = \iota(y_2) \implies (x, y_1) = (x, y_2) \implies y_1 = y_2,$$

and for any $(x, y) \in \{x\} \times Y$, there exists $y \in Y$ with $\iota(y) = (x, y)$.

• ι and π are inverses, since for any $y \in Y$,

$$\iota \circ \pi(x,y) = \iota(y) = (x,y)$$
, and $\pi \circ \iota(y) = \pi(x,y) = y$.

• ι is an open map, since for any $V \in \mathcal{T}_Y$,

$$\iota(V) = \{x\} \times V,$$

and we can choose any $U \in \mathcal{T}_X$ containing x to see that

$$U\times V\cap \{x\}\times Y=\{x\}\times V,$$

so $\{x\} \times V$ is open in the subspace topology of the product topology.

• π is an open map, since any open set in $\{x\} \times Y$ is of the form $U \times V \cap \{x\} \times Y = \{x\} \times V$, where $U \in \mathcal{T}_X, V \in \mathcal{T}_Y$. Then

$$\pi\left(\left\{ x\right\} \times V\right) = V,$$

Which is open in Y.

Thus ι is a continuous bijection with continuous inverse, and therefore a homeomorphism.

2. Suppose that (X, \mathcal{T}) is a topological space with two properties: namely X is compact and Hausdorff.

Prove that one cannot make the topology on on X either coarser (i.e. is a strict subset of \mathcal{T}) or finer (i.e. is a strict superset of \mathcal{T}) without destroying one of those properties.

Proof We will show that (i) any topology finer than \mathcal{T} is not compact, and (ii) any topology courser than \mathcal{T} is not Hausdorff. If we call a set "open" without reference to \mathcal{T} or \mathcal{T}' , then it is open in both topologies. The same goes for "closed".

(i) Suppose $\mathcal{T}' \supseteq \mathcal{T}$. Then there exists $W \in \mathcal{T}'$ which is not open in \mathcal{T} . To see that (X, \mathcal{T}') is not compact, we will produce a covering of X consisting of sets in \mathcal{T}' which has no finite subcovering. Since W is not open in \mathcal{T} , then W^{\complement} is not closed in \mathcal{T} , so there exists some $x \in W$ which is also in $\overline{W^{\complement}}$. Since (X, \mathcal{T}) is Hausdorff, for any $y \in W^{\complement}$, we can find $U_y \ni x, V_y \ni y$ with U_y, V_y open and disjoint. Then

$$W \cup \bigcup_{y \in W^{\complement}} V_y$$

covers X. Suppose for contradiction that this covering has a finite subcovering, call it $W \cup \bigcup_{i=1}^N V_{y_i}$. Then since each V has a corresponding U, then $\bigcap_{i=1}^N U_{y_i}$ is an open set containing $x \in \overline{W^{\complement}}$, so

$$\bigcap_{i=1}^{N} U_{y_i} \cap W^{\complement} \neq \emptyset.$$

But $\bigcap_{i=1}^N U_{y_i} \subset U_{y_i}$ for all U_{y_i} , so

$$\bigcap_{i=1}^{N} U_{y_i} \cap V_{y_i} = \emptyset$$

for all V_{y_i} , so $\bigcap_{i=1}^N U_{y_i}$ and $\bigcup_{i=1}^N V_{y_i}$ are disjoint. This means that $W \cup \bigcup_{i=1}^N V_{y_i}$ doesn't cover $\bigcap_{i=1}^N U_{y_i} \cap W^{\complement}$, contradiction.

(ii) Let $\mathcal{T}' \subseteq \mathcal{T}$. We will show that if (X, \mathcal{T}') is Hausdorff, then $\mathcal{T}' \supseteq \mathcal{T}$, so $\mathcal{T}' = \mathcal{T}$. Let W be open in \mathcal{T} , and let $x \in W$. Since (X, \mathcal{T}') is Hausdorff, then for every $y \in W^{\complement}$, there exist sets $U'_y \ni x$, $V'_y \ni y$ which are open in \mathcal{T}' and disjoint. Since W^{\complement} is closed in (X, \mathcal{T}) , and (X, \mathcal{T}) is compact, and $\{V'_y\}_{v \in W^{\complement}} \subset \mathcal{T}' \subseteq \mathcal{T}$, then we can produce a finite subcover $\{V'_{y_i}\}_{i=1}^N$ of W^{\complement} . Now for each V' we have a corresponding U', so by similar reasoning as in (i) we find that $\bigcap_{i=1}^N U'_{y_i}$ is open in \mathcal{T}' , disjoint with $\bigcup_{i=1}^N V'_{y_i}$ so a subset of W, and contains x by construction. Thus by the openness criterion, W is open in \mathcal{T}' .

- **3.** Let X and Y be topological spaces and let $f: X \to Y$ be a function.
 - (i) Show that f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$, where \overline{A} denotes the closure of A.

Proof

 (\Longrightarrow) Let $A\subset X$, let $x\in\overline{A}$, and let $V\in Y$ be any open set containing f(x). Then since f is continuous, $f^{-1}(V)$ contains x and is open. Since $x\in\overline{A}$, then $f^{-1}(V)\cap A\neq\emptyset$, so there exists $a\in f^{-1}(V)\cap A$ such that $f(a)\in V\cap f(A)$. Thus $f(x)\in\overline{f(A)}$, and we are done. (\longleftarrow) Let $D\in Y$ be closed. Then $f\left(\overline{f^{-1}(D)}\right)\subset\overline{f(f^{-1}(D))}=\overline{D}=D$, so $\overline{f^{-1}(D)}\subseteq f^{-1}(D)$ and it is always true that $\overline{f^{-1}(D)}\supseteq f^{-1}(D)$, therefore they are equal and $f^{-1}(D)$ is closed.

(ii) Show that if f is continuous and $f(\overline{A})$ is closed, then $f(\overline{A}) = \overline{f(A)}$.

Proof We know already that $f(\overline{A}) \subseteq \overline{f(A)}$ by (i), so we need to show that $\overline{f(A)} \subseteq f(\overline{A})$. Let $y \in \overline{f(A)}$. This means that for any open $V \ni y$, we have $V \cap f(A) \neq \emptyset$. Now suppose for contradiction that $y \notin f(\overline{A})$. Since $f(\overline{A})$ is closed, then $f(\overline{A})^{\complement}$ is open, and $y \in f(\overline{A})^{\complement}$. So there exists an open set V' such that $y \in V' \subset f(\overline{A})^{\complement}$ and furthermore that $V' \subset f(A)^{\complement}$. But since $y \in \overline{f(A)}$, then $V' \cap f(A) \neq \emptyset$, contradiction.

4. Let (X,d) be a compact metric space and let $f:X\to X$ be a map with the property that

$$d(f(x), f(y)) < d(x, y)$$

for every distinct $x, y \in X$.

Prove that (i) there is a unique point x_0 with $f(x_0) = x_0$, and (ii) show that this fails if the inequality is not always strict.

Proof (i) If such a point exists, it is unique. If not and there exist two invariant points $x_0 \neq x_1$, then $d(x_0, x_1) > d(f(x_0), f(x_1)) = d(x_0, x_1)$, contradiction.

It remains to be shown that there exists an invariant point. Observe that f is continuous (and in fact, uniformly continuous), since for any $\epsilon > 0$, if $d(x,y) < \epsilon$, then $d(f(x), f(y)) < \epsilon$.

Let $x_1 \in X$, and define $\{x_n\}_{n=1}^{\infty}$ by $x_{n+1} = f(x_n)$ for all n > 1. Since X is compact, then it is sequentially compact, so $\{x_n\}$ has a convergent subsequence (and without loss of generality suppose that subsequence is $\{x_n\}$ itself), and call the limit x_0 . Then

$$f(x_0) = f\left(\lim_{n \to \infty} (x_n)\right)$$
 and since f is continuous,

$$= \lim_{n \to \infty} f(x_n)$$

$$= \lim_{n \to \infty} (x_{n+1})$$

$$= x_0.$$

(ii) If we modify the property to be $d(f(x), f(y)) \le d(x, y)$, then we do not have uniqueness since the identity f(x) = x satisfies the property. Existence is still guaranteed.

5. Let A and B be disjoint compact subspaces of a Hausdorff topological space X. Prove that there are disjoint open sets U and V such that $U \supset A$ and $V \supset B$.

Proof Let $x \in A$. Since X is Hausdorff, for every $y \in B$ there exist disjoint open sets $U_{x_y} \ni x$ and $V_{x_y} \ni y$. Then $\bigcup_{y \in B} V_{x_y}$ is a covering of the compact set B, so it has a finite subcover $\bigcup_{i=1}^{N} V_{x_{y_i}}$. Using the corresponding U sets, define

$$U_x = \bigcap_{i=1}^N U_{x_{y_i}}$$
 and $V_x = \bigcup_{i=1}^N V_{x_{y_i}}$,

and observe that U_x and V_x are disjoint open sets such that $U_x \ni x$ and V_x covers B.

Construct similarly U_x and V_x for every $x \in A$. Then $\bigcup_{x \in A} U_x$ is an open cover of the compact set A, so it has finite subcover $\bigcup_{i=1}^{N} U_{x_i}$. Using the corresponding V sets, define

$$U = \bigcup_{i=1}^{N} U_{x_i} \quad \text{and} \quad V = \bigcap_{i=1}^{N} V_{x_i},$$

and observe that since every V_{x_i} covers B and is disjoint with U_{x_i} , then $U \supset A$, $V \supset B$, and U, V are open and disjoint.

[†]They are disjoint because $\forall i, U_x \subset U_{x_{y_i}} \subset V_{x_{y_i}}^{\complement}$, open because finite unions and intersections of open sets are open, and cover x and B respectively by construction.