International Rectifier

RADIATION HARDENED LOGIC LEVEL POWER MOSFET SURFACE MOUNT (UB)

IRHLUB770Z4 JANSR2N7616UB 60V, N-CHANNEL

REF: MIL-PRF-19500/744

Product Summary

Part Number	Radiation Level	RDS(on)	ΙD	QPL Part Number
IRHLUB770Z4	100K Rads (Si)	0.68Ω	0.8A	JANSR2N7616UB
IRHLUB730Z4	300K Rads (Si)	0.68Ω	0.8A	JANSF2N7616UB

Refer to Page 11 for 3 Additional Part Numbers - IRHLUBN770Z4, IRHLUBC770Z4, IRHLUBCN770Z4

International Rectifier's R7TM Logic Level Power MOSFETs provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within acceptable operating limits over the full operating temperature and post

low signal source in PWM, voltage comparator and operational

radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity.

These devices are used in applications such as current boost

Features:

- 5V CMOS and TTL Compatible
- Fast Switching
- Single Event Effect (SEE) Hardened
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Light Weight
- Complimentary P-Channel Available -IRHLUB7970Z4, IRHLUBN7970Z4 IRHLUBC7970Z4 & IRHLUBCN7970Z4

Absolute Maximum Ratings

Pre-Irradiation

	Parameter		Units
ID @ VGS = 4.5V, TC = 25°C	Continuous Drain Current	0.8	
ID @ VGS = 4.5V, TC = 100°C	Continuous Drain Current	0.5	Α
IDM	Pulsed Drain Current ①	3.2	
PD @ TC = 25°C	Max. Power Dissipation	0.6	W
	Linear Derating Factor	0.005	W/°C
VGS	Gate-to-Source Voltage	±10	V
EAS	Single Pulse Avalanche Energy ②	26.6	mJ
IAR	Avalanche Current ①	0.8	Α
EAR	Repetitive Avalanche Energy ①	0.06	mJ
dv/dt	Peak Diode Recovery dv/dt 3	4.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (for 5s)	
	Weight	43 (Typical)	mg

For footnotes refer to the last page

amplifiers.

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	60	_	_	V	V _G S = 0V, I _D = 250μA
ΔBVDSS/ΔTJ	J Temperature Coefficient of Breakdown Voltage		0.07	_	V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-State	_	_	0.68	Ω	VGS = 4.5V, ID = 0.5A ^④
	Resistance					
VGS(th)	Gate Threshold Voltage	1.0	_	2.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
ΔVGS(th)/ΔTJ	Gate Threshold Voltage Coefficient	_	-4.04	_	mV/°C	
9fs	Forward Transconductance	0.23	_	_	S	V _{DS} = 10V, I _{DS} = 0.5A ④
IDSS	Zero Gate Voltage Drain Current		_	1.0		V _{DS} = 48V ,V _{GS} =0V
			—	10	μΑ	$V_{DS} = 48V,$
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	-	100	nA	V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	—	-100		VGS = -10V
Qg	Total Gate Charge	_	-	3.6		$V_{GS} = 4.5V, I_{D} = 0.8A$
Qgs	Gate-to-Source Charge	_	_	1.5	nC	$V_{DS} = 30V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	_	1.8		
td(on)	Turn-On Delay Time	_	_	8.0		$V_{DD} = 30V, I_{D} = 0.8A,$
t _r	Rise Time	_	—	24	ns	$V_{GS} = 5.0V, R_{G} = 24\Omega$
td(off)	Turn-Off Delay Time	_	_	30]	
tf	Fall Time	_	_	13		
Ls+LD	Total Inductance	_	8.4	_	nH	Measured from the center of
						drain pad to center of source pad
Ciss	Input Capacitance	_	166	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance	_	42	_	pF	f = 100KHz
C _{rss}	Reverse Transfer Capacitance		3.5	_		
Rg	Gate Resistance		_	14	Ω	f = 1.0MHz, open drain

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	0.8	Α	
Ism	Pulse Source Current (Body Diode) ①		_	_	3.2		
VsD	Diode Forward Voltage		_	_	1.2	V	$T_j = 25^{\circ}C$, $I_S = 0.8A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		_	_	78	ns	$T_j = 25^{\circ}C$, $I_F = 0.8A$, $di/dt \le 100A/\mu s$
QRR	Reverse Recovery Charge	_	_	75	nC	V _{DD} ≤ 25V ④	
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{th} JA	Junction-to-Ambient	_	_	200	°C/W	

Note: Corresponding Spice and Saber models are available on International Rectifier Web site.

For footnotes refer to the last page

Radiation Characteristics

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-39 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation © ©

	Parameter	Up to 300k	K Rads (Si)1	Units	Test Conditions
		Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	60	_	V	$V_{GS} = 0V, I_D = 250\mu A$
VGS(th)	Gate Threshold Voltage	1.0	2.0		$VGS = V_{DS}, I_{D} = 250 \mu A$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	nA	V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	-100		V _{GS} = -10V
I _{DSS}	Zero Gate Voltage Drain Current	_	1.0	μA	V _{DS} = 48V, V _{GS} = 0V
R _{DS(on)}	Static Drain-to-Source⊕				
	On-State Resistance (TO-39)	_	0.55	Ω	$V_{GS} = 4.5V, I_{D} = 0.5A$
R _{DS(on)}	Static Drain-to-Source On-state 4 Resistance (UB)	_	0.68	Ω	VGS = 4.5V, I _D = 0.5A
V _{SD}	Diode Forward Voltage ④	_	1.2	V	$V_{GS} = 0V, I_{D} = 0.8A$

^{1.} Part Numbers IRHLUB770Z4, IRHLUB730Z4 and additional part numbers listed on page 11.

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area

LET	Energy	Range	VDS (V)					
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS= 0V	@VGS= -2V	@VGS= -4V	@VGS= -5V	@VGS= -6V	@VGS= -7V
38 ± 5%	300 ± 7.5%	38 ± 7.5%	60	60	60	60	60	35
62 ± 5%	355 ± 7.5%	33 ± 7.5%	60	60	60	60	30	-
85 ± 5%	380 ± 7.5%	29 ± 7.5%	60	60	60	40	-	-

Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical On-Resistance Vs Gate Voltage

Fig 6. Typical On-Resistance Vs Drain Current

Fig 7. Typical Drain-to-Source Breakdown Voltage Vs Temperature

Fig 8. Typical Threshold Voltage Vs Temperature

Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 11. Typical Source-Drain Diode Forward Voltage

Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 12. Maximum Drain Current Vs. Case Temperature

Fig 13. Maximum Safe Operating Area

Fig 14. Maximum Avalanche Energy Vs. Drain Current

Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRHLUB770Z4, JANSR2N7616UB

Pre-Irradiation

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Basic Gate Charge Waveform

Fig 18a. Switching Time Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Gate Charge Test Circuit

Fig 18b. Switching Time Waveforms

Pre-Irradiation

IRHLUB770Z4, JANSR2N7616UB

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\odot}$ V_{DD} = 25V, starting T_J = 25°C, L= 83 mH Peak I_L = 0.8A, V_{GS} = 10V
- $\label{eq:local_local_spin_spin} \begin{tabular}{ll} \begin{tab$

- 4 Pulse width $\leq 300 \ \mu s$; Duty Cycle $\leq 2\%$
- Total Dose Irradiation with V_{GS} Bias. 10 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- © Total Dose Irradiation with Vps Bias. 48 volt Vps applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Additional Product Summaries (continued from page 1 and 3)

Product Summary

Part Number	Radiation Level	RDS(on)	ΙD	QPL Part Number	UDM
IRHLUBN770Z4	100K Rads (Si)	0.68Ω	0.8A	JANSR2N7616UBN	UBN (ISOLATED METAL LID)
IRHLUBN730Z4	300K Rads (Si)	0.68Ω	0.8A	JANSF2N7616UBN	(002.1123.1121.11213)

Product Summary

		, ,		QPL Part Number	UBC
IRHLUBC770Z4	100K Rads (Si)	0.68Ω	0.8A	JANSR2N7616UBC	(SHIELDED CERAMIC LID)
IRHLUBC730Z4	300K Rads (Si)	0.68Ω	0.8A	JANSF2N7616UBC	(OTHELDED OF ITAMO EID)

Product Summary

Part Number	Radiation Level	- (- /		QPL Part Number	
IRHLUBCN770Z4	100K Rads (Si)	0.68Ω	0.8A	JANSR2N7616UBCN	UBCN (ISOLATED CERAMIC LID)
				JANSF2N7616UBCN	(ISOLATED CERAIVIIC LID)

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 11/