Neural Machine Translation

Radek Bartyzal
rbartyzal1@gmail.com
31.8.2016
Let's talk ML in Prague

History

- ~ WW2: Word by word + language rules
 - Requires linguists
 - Does not work well in real world

History

- ~ 1980: Statistical Machine Translation (SMT)
 - Requires parallel corpora = Rosetta stones
 - Must be tweaked for every pair of languages
 - 1) Find all translations of each word
 - 2) Generate all possible sentences from these translations including all possible orderings of words
 - 3) Pick the sentence that has the most likely word translations while also being the most similar overall to real sentences

Recurrent Neural Network

- Next state = function of previous state and input
- Used for sequential processing

RNN Encoder - Decoder

- Variable length in
 - = input sequence
- => fixed size encoding
 - = vector of size N = number of hidden units
- => decoded output
 - = function of:
 - prev decoded output
 - prev state
 - encoding
- Variable length out

Training

• Train = maximize the conditional probability of the target sequence given a source sequence

Encoder & Decoder trained jointly

Usage

- Model output
 - = translation probability of an English phrase to a corresponding French phrase

• Used in good old phrase-based SMT for scoring each phrase pair in the phrase table

Hidden units

- Simple recurrent unit
- Gated recurrent unit = GRU
- Long Short-Term Memory unit = LSTM

Point?

How much information is kept from the previous state

Current research

- Attention based NMT
 - peek into the input at every decoding step
 - local = look only at a group of words
 - global = look at all the input words

Sources

- RNN Encoder Decoder
- Easy to read explanation of seq2seq
- Effective Approaches to Attention-based Neural Machine Translation
- Tensor Flow seq2seq