

UNIVERSIDADE ESTADUAL DO TOCANTINS SISTEMAS DE INFORMAÇÃO INFORMAR A DISCIPLINA

Prof: Itamar Júnior Data:

Identificação:

Aluno:

Atividade Avaliativa de Substituição da A1

1. Faça um AFD sobre o alfabeto $\Sigma = \{0,1,2,3,4,5\}$, conforme descrito abaixo:

O AFD deve reconhecer cadeias com até 5 elementos, ou seja, |w| <= 5, cujo somatório dos elementos que constituem a cadeia é igual à multiplicação entre 2 elementos distintos do alfabeto, onde o resultado da multiplicação é menor que 20. Por exemplo, são aceitas as cadeias:

- 111 que tem como resultado o somatório 1+1+1=3 que é igual ao resultado da multiplicação de 3*1=3,
- 5421 que tem como resultado o somatório 5+4+2+1=12 que é igual ao resultado da multiplicação de 4*3=12.
- 334 que tem como resultado o somatório 3+3+4=10 que é igual ao resultado da multiplicação de 5*2=10.

Já a cadeia 335 não é aceita, pois o somatório é igual a 11 e não existe multiplicação entre dois números distintos pertencentes ao alfabeto que resulte em 11.

- 2 Sistemas De Informação Por Amor, Vasco Da Gama, Itamar Melhor Professor, O Que Estou Fazendo Aqui, Gloria A-Deuxxx, Vai Ser Divertido são palavras do Alfabeto Romano. Descreva o prefixo e o sufixo das palavras acima listadas.
- 3. Considere o alfabeto $\Sigma = \{t, z\}$. Dê o diagrama de estados e a definição formal dos AFDs listados abaixo:
 - a {w|w contém um único t}.
 - b $\{w|w \text{ tem pelo menos um símbolo z}\}.$
 - c {w|w contém a cadeia ttz como uma subcadeia e zz como sufixo}.
 - d {w|todo z em w é seguido por pelo menos dois tt}.
 - e {w|w é uma cadeia de comprimento par}.
- 4. Desenvolva AFD's, com ou sem movimentos vazios, que reconheçam as seguintes linguagens sobre o alfabeto $\Sigma = \{a, b\}$:
 - a $\{w_1w_2w_1 \mid w_2 \text{ \'e qualquer cadeia pertencente ao alfabeto e } |w_1|=3\}.$
 - b $\{w \mid o \text{ décimo símbolo da direita para a esquerda de } \mathbf{w} \in \mathbf{a}\}.$
- 5. Desenvolva, sobre o alfabeto $\Sigma = \{a, b, c\}$:
 - a Autômato finito não determinístico e a expressão regular que reconheça a seguinte linguagem:
 - $\{\mathbf{w} \mid \mathbf{a} \text{ ou } \mathbf{bb} \text{ ou } \mathbf{cc} \text{ \'e sufixo } \mathbf{de } \mathbf{w}\}.$

- b Autômato finito não-determinístico e a expressão regular com movimentos vazios que reconheça a seguinte linguagem:
 - $\{ \mathbf{w} \mid \mathbf{aa} \text{ ou } \mathbf{bb} \text{ ou } \mathbf{cccc} \text{ \'e sufixo } \mathbf{de} \mathbf{w} \}.$
- 6. Desenvolva expressões regulares e o diagrama de estados que gerem/representem as seguintes linguagens sobre o alfabeto $\Sigma = \{a, b\}$.
 - a $\{ \mathbf{w} \mid \mathbf{w} \text{ não possui aba como subpalavra.} \}$.
 - b $\{ \mathbf{w} \mid \text{qualquer par de } \mathbf{a} \text{ antecede qualquer par de } \mathbf{b} \}.$
- 7. Dada a descrição formal de grafos não-direcionados abaixo, faça a apresentação gráfica deles, e dê o grau do(s) nó(s) de cada um dos grafos não-direcionados.
 - a $(\{1, 2, 3, 4, 5\}, \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)\}).$
 - b $\{\{1, 2, 3, 4\}, \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}\}$.
- 8. Dê um AFN que reconheça a linguagem (01U001*010)*.
- 9. Para cada uma das linguagens a seguir, apresente a definição formal, o diagrama de estados (AFN) e, 3 cadeias que sejam membros e duas que não sejam membros. Considere o alfabeto $\Sigma = \{a, b\}$ em todos os casos:
 - a a^*b^*
 - $b (ba)^*b$
 - c a^*Ub^*
 - $d(aaa)^*$
 - e $\Sigma^* a \Sigma^* b \Sigma^* a$
 - f *($a \cup ba \cup bb$) Σ *
- 10. Dado o diagrama abaixo, dê a definição formal, a expressão regular e a descrição em português para linguagem que ele representa.

