COSC 3337 : Data Science I

N. Rizk

College of Natural and Applied Sciences
Department of Computer Science
University of Houston

Decision Trees

N.Rizk (University of Houston)

Decision Tree

When do I play tennis?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree

Is the decision tree correct?

- Let's check whether the split on Wind attribute is correct.
- We need to show that Wind attribute has the highest information gain.

When do I play tennis?

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

N.Rizk (University of Houston

Wind attribute – 5 records match

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Note: cal	culate the entro	ny only on	evamples that
	D4	Rain	N			(Outlook=Rain)
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
T	D11	Sunny	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

Calculation

• Let

$$S = \{D4, D5, D6, D10, D14\}$$

• Entropy: $(=-p/(p+n)\log(p/(p+n)-n/(p+n)\log(n/(p+n)$

$$H(S) = -3/5log(3/5) - 2/5log(2/5) = 0.971$$

Information Gain

$$IG(S, Temp) = H(S) - H(S/Temp) = 0.01997$$

 $IG(S, Humidity) = H(S) - H(S/Humidity) = 0.01997$
 $IG(S, Wind) = H(S) - H(S/Wind) = 0.971$

Entropy of outlook

14=9(yes)+5(No)

Outlook	P	n	H(sunny or)
Sunny	2	3	0.971
Overcast	4	0	0
Rain	3	2	0.971

H(Playtennis,outlook)=Σpro*H(sunny or ..)

H(Playtennis,Outlook)=(2+3)/14*0.971+(4+0)/14*0+(3+2)/14*0.971=0.692

Entropy: $(=-p/(p+n)\log(p/(p+n)-n/(p+n)\log(n/(p+n)$

H(PlayingTennis) = -9/14*log(9/14) -5/14*log(5/14) = 0.940

Information G(outlook)= 0.940-0.692=0.248

...G(temp)=0.029 ; G(Humidity)=0.151 ; G(Wind)=0.048 Highest

More about Decision Trees

The root is Outlook(high IG)

H(sunny)!=0 → Split again

11

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	\underline{Ye} s
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	$\underline{\underline{Ye}}$ s
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

N.Rizk (University of Houston)

Decision Tree

Split Sunny

Entropy:
$$(=-p/(p+n)\log(p/(p+n)-n/(p+n)\log(n/(p+n)$$

$$H(S) = -1/5log(1/5) - 2/5log(2/5) = 1/5 \ 2.3219 + 2/5*1.3219$$

= 0.464+0.528

Entropy of Windy

Weak 1 2 H(Weak) = 0.918

Strong 1 1 H(Strong) =1

$$H(Windy)=(1+2)/5 * 0.918 + (1+1)/5 * 1=0.950$$

Gain= 0.971-0.950=0.02

Sunny should not split on Windy

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

N.Rizk (University of Houston)

Decision Tree

Split Sunny?

Entropy:
$$(=-p/(p+n)\log(p/(p+n)-n/(p+n)\log(n/(p+n)$$

$$H(S) = -3/5log(3/5) - 2/5log(2/5) = 0.971$$

Entropy of Humidity

High 0 3 H(high)=0Normal 2 0 H(Normal)=0

Humidity=0

Gain= 0.971-0.0=0.971

Sunny should be split on humidity ...high and Normal

Python implementation of Decision Tree

Balance Scale Data Set

This data set was generated to model psychological experimental results.

Each example is classified as having the balance scale tip to the right, tip to the left, or be balanced.

The attributes are the left weight, the left distance, the right weight, and the right distance.

The correct way to find the class is the

greater of (left-distance * left-weight) and (right-distance * right-weight).

If they are equal, it is balanced.

```
In [2]: # Importing the required packages
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix
```


Inside importdata
Function add commands
to understand
the data
....info()...describe...find
missing value

```
from sklearn.cross validation import train test split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import classification report
# Function importing Dataset
def importdata():
   balance_data = pd.read_csv(
'https://archive.ics.uci.edu/ml/machine-learning-'+
'databases/balance-scale/balance-scale.data',
   sep= ',', header = None)
   # Printing the dataswet shape
   print ("Dataset Lenght: ", len(balance_data))
   print ("Dataset Shape: ", balance data.shape)
   # Printing the dataset obseravtions
   print ("Dataset: ",balance data.head())
   return balance data
```

```
Dataset Lenght: 625

Dataset Shape: (625, 5)

Dataset: 0 1 2 3 4

0 B 1 1 1 1

1 R 1 1 1 2

2 R 1 1 1 3

3 R 1 1 1 4

4 R 1 1 1 5
```



```
# Function to split the dataset
def splitdataset(balance_data):

# Seperating the target variable
X = balance_data.values[:, 1:5]
Y = balance_data.values[:, 0]

# Spliting the dataset into train and test
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size = 0.3, random_state = 100)

return X, Y, X_train, X_test, y_train, y_test
```

N.Rizk (University of Houston)

Decision Tree

clf_gini = train_using_gini(X_train, X_test, y_train)

```
# Function to make predictions
def prediction(X_test, clf_object):

    # Predicton on test with giniIndex
    y_pred = clf_object.predict(X_test)
    print("Predicted values:")
    print(y_pred)
    return y_pred
```

Prediction using gini
y_pred_gini = prediction(X_test, clf_gini)

```
# Function to calculate accuracy
def cal_accuracy(y_test, y_pred):
    print("Confusion Matrix: ",
        confusion_matrix(y_test, y_pred))
    print ("Accuracy : ",
        accuracy_score(y_test,y_pred)*100)
    print("Report : ",
        classification_report(y_test, y_pred))
```


cal_accuracy(y_test, y_pred_gini)

```
Confusion Matrix: || 0 6 7|
 [ 0 67 18]
 [ 0 19 71]]
Accuracy: 73.40425531914893
Report :
                                  recall f1-score
                      precision
                                                     support
                           0.00
                                     0.00
                 0.00
                                                 13
                 0.73
                           0.79
                                     0.76
                                                 85
                 0.74
                           0.79
                                     0.76
                                                 90
avg / total
                           0.73
                                     0.71
                 0.68
                                                188
```

N.Rizk (University of Houston)

Decision Tree


```
# Function to make predictions
def prediction(X_test, clf_object):

    # Predicton on test with giniIndex
    y_pred = clf_object.predict(X_test)
    print("Predicted values:")
    print(y_pred)
    return y_pred
```

```
print("Results Using Entropy:")
# Prediction using entropy
y_pred_entropy = prediction(X_test, clf_entropy)
```


21

```
# Function to calculate accuracy
def cal_accuracy(y_test, y_pred):
    print("Confusion Matrix: ",
        confusion_matrix(y_test, y_pred))
    print ("Accuracy : ",
        accuracy_score(y_test,y_pred)*100)
    print("Report : ",
        classification_report(y_test, y_pred))
```

cal_accuracy(y_test, y_pred_entropy)

```
Confusion Matrix: [[ 0 6 7]
 [ 0 63 22]
[ 0 20 70]]
Accuracy: 70.74468085106383
Report :
                     precision
                                 recall f1-score
                                                    support
                 0.00
                          0.00
                                    0.00
                                               13
         В
                 0.71
                          0.74
                                    0.72
                                               85
                 0.71
                          0.78
                                    0.74
                                               90
avg / total
                          0.71
                                    0.68
                                              188
                 0.66
```

```
# Driver code
def main():
    # Building Phase
    data = importdata()
    X, Y, X train, X test, y train, y test = splitdataset(data)
    clf gini = train using gini(X train, X test, y train)
    clf entropy = tarin using entropy(X train, X test, y train)
    # Operational Phase
    print("Results Using Gini Index:")
    # Prediction using gini
    y pred gini = prediction(X test, clf gini)
    cal accuracy(y test, y pred gini)
    print("Results Using Entropy:")
    # Prediction using entropy
    y pred entropy = prediction(X test, clf entropy)
    cal accuracy(y test, y pred entropy)
# Calling main function
if __name__ == "__main ":
    main()
```


Import libraries

- import numpy as np
- import pandas as pd
- from sklearn.cross_validation import train_test_split
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.metrics import accuracy score
- from sklearn import tree

Read from file

- data = pd.read csv(
- ... 'http://archive.ics.uci.edu/ml/machinelearning-databases/balance-scale/balancescale.data',
- ... header= None)

Print length of dataset

• print('Dataset length:', len(name))

•Dataset length: 625

Data Slicing

- Dataset consists of 5 attributes
- 4 feature attributes and 1 target attribute
- The index of the target attribute is 1st

- X = data.values[:,1:5]
- Y = data.values[:,0]

Split dataset between train and test

- X_train, X_test, y_train, y_test =
 train_test_split(X, Y, test_size = 0.3)
- X train and y train = training data
- X test and y test = test data
- Test_size = test set will be 30% of whole dataset and training will be 70%

Decision Tree Training

- clf_entropy = DecisionTreeClassifier(max_depth=3)
- clf entropy.fit(X train, y train)

• Result

Prediction

- y_pred_en = clf_entropy.predict(X_test)
- y_pred_en