AUTHOR GUIDELINES FOR MLSP PROCEEDINGS MANUSCRIPTS

Author(s) Name(s) omitted for double blind review

Author Affiliation(s) omitted for double blind review

ABSTRACT

In this paper we propose a convolutive and recurrent neural network based extensions to autoencoders for source separation.

Index Terms— One, two, three, four, five

1. INTRODUCTION

Talk about what we are doing and why it is interesting.

Give some background.

2. AUTOENCODERS

2.1. Feed-forward Autoencoder

Define standard autoencoder. Provide a toy example to illustrate the shortcomings of this.

2.2. CNN-CNN Autoencoder

The approximation \hat{X} for a given spectrogram X is computed as follows:

$$\hat{H}(k,t) = \sigma_1 \left(\sum_{f,t'} X(f,t-t') F_e(f,t',k) \right)$$

$$\hat{X}(f,t) = \sigma_2 \left(\sum_k \sum_{t'} \hat{H}(k,t-t') F_d(f,t',k) \right)$$
(1)

2.3. Multilayer of CNN-CNN Autoencoder

This loses the interpretability, but maybe good for accuracy?

2.4. RNN-CNN Autoencoder

This is the same as CNN-CNN case, except the computation of the activations H. In the CNN encoder, each filter was of finite length. With RNN-CNN version, we are attempting to use an infinite length filter. The computation of \hat{H} is as follows:

Thanks to XYZ agency for funding.

$$Z(:,k,t) = \sigma(WZ(:,k,t-1) + UX(:,t))$$

$$\hat{H}(k,t) = \sum_{f} Z(f,k,t)$$
(2)

Give a toy example which shows what this model can do that CNN-CNN can not.

3. EXPERIMENTS

Try each model in a given K range in speech-speech source separation task.

4. REFERENCES