

UNIVERSIDAD TÉCNICA ESTATAL DE QUEVEDO FACULTAD CIENCIAS DE LA INGENIERÍA

Redes de datos

- Favor silenciar sus micrófonos y desactivar sus cámaras
- Para solicitar palabra, escribir por chat de la conferencia (Meet)

Empezaremos en breve..

Política de uso de información

Queda prohibido el uso indebido de la captación y/o grabación de la sesión de videoconferencia, así como su reproducción o difusión, en todo o en parte, por cualquier medio o dispositivo utilizado, representando una vulneración al Código de Ética de la UTEQ, pudiendo derivarse las pertinentes responsabilidades legales.

Cableado estructurado

Los <u>inicios</u> de sistemas de cableado estructurado están en las comunicaciones por telégrafo y teléfono que se iniciaron a mediados del siglo XIX, donde el principal <u>problema era la velocidad</u> en las comunicaciones.

En el siglo XX, se introduce el tema que impulsa los sistemas de cableado estructurado, es decir las redes de datos y la interconexión de todos los dispositivos a partir de la red de redes.

Un sistema de cableado diseñado en una jerarquía lógica que adapta todo el cableado existente, y el futuro, en un único sistema.

Cableado Estructurado

Es el cableado de un edificio o una serie de edificios que permite interconectar equipos activos, de diferentes o igual tecnología permitiendo la integración de los diferentes servicios que dependen del tendido de cables como datos, telefonía, control, etc.

- Cableado de campus: Cableado de todos los distribuidores de edificios al distribuidor de campus
- Cableado Vertical: Cableado de los distribuidores del piso al distribuidor del edificio
 - Cableado Horizontal: Cableado desde el distribuidor de piso a los puestos de usuario

Cableado de Usuario: Cableado del puesto de usuario a los equipos

Organismos y Normas

ANSI: American National Standards Institute

Organización Privada sin fines de lucro fundada en 1918, la cual administra y coordina el sistema de estandarización voluntaria del sector privado de los Estados Unidos.

EIA: Electronics Industry Association

Fundada en 1924. Desarrolla normas y publicaciones sobre las principales áreas técnicas: los componentes electrónicos, electrónica del consumidor, información electrónica, y telecomunicaciones.

TIA: Telecommunications Industry Association

Fundada en 1985 después del rompimiento del monopolio de AT&T. Desarrolla normas de cableado industrial voluntario para muchos productos de las telecomunicaciones y tiene más de 70 normas preestablecidas.

Organismos y Normas

ISO: International Standards Organization

Organización no gubernamental creada en 1947 a nivel Mundial, de cuerpos de normas nacionales, con más de 140 países.

IEEE: Instituto de Ingenieros Eléctricos y de Electrónica

Principalmente responsable por las especificaciones de redes de área local como 802.3 Ethernet,802.5 Token Ring, ATM y las normas de Gigabit Ethernet

Normas

ANSI/TIA/EIA-568-B

Cableado de Telecomunicaciones en Edificios Comerciales.

- TIA/EIA 568-B1: Requerimientos generales
- TIA/EIA 568-B2: Componentes de cableado mediante par trenzado balanceado
- TIA/EIA 568-B3: Componentes de cableado, Fibra óptica

ANSI/TIA/EIA-569-A

Normas de Recorridos y Espacios de Telecomunicaciones en Edificios Comerciales

- ANSI/TIA/EIA-570-A: Normas de Infraestructura Residencial de Telecomunicaciones
- ANSI/TIA/EIA-606-A: Normas de Administración de Infraestructura de Telecomunicaciones en Edificios Comerciales
- ANSI/TIA/EIA-607: Requerimientos para instalaciones de sistemas de puesta a tierra de Telecomunicaciones en Edificios Comerciales.
- ANSI/TIA/EIA-758: Norma Cliente-Propietario de cableado de Planta Externa de Telecomunicaciones

Selección del medio

Los factores que deben tomarse en cuenta cuando se hace la elección son:

- ✓ Flexibilidad respecto a los servicios soportados.
- ✓ Vida útil requerida para e vertebral.
- ✓ Tamaño del lugar y población de usuarios.

Componentes del cableado estructurado

- √Área de trabajo.
- ✓ Cableado horizontal.
- ✓ Armario de telecomunicaciones (racks, closet).
- ✓ Cableado vertical.
- ✓ Sala de equipos.
- ✓ Backbone de Campus

Área de trabajo

Se extiende de la toma/conector de telecomunicaciones o el final del sistema de cableado horizontal, hasta el equipo de la estación y está fuera del alcance de la norma EIA/TIA 568-A.

Consideraciones cuando se diseña el cableado de las áreas de trabajo:

- ✓ El cableado de las áreas de trabajo generalmente no es permanente y debe ser fácil de cambiar.
- ✓ La longitud máxima del cable horizontal se ha especificado con el supuesto que el cable de parcheo empleado en el área de trabajo tiene una longitud máxima de 3 m.
- ✓ Se emplean cordones con conectores idénticos en ambos extremos. Cuando se requieran adaptaciones especificas a una aplicación en el área de trabajo, éstas deben ser externas a la toma/conector de telecomunicaciones

Adaptaciones comunes en el área de trabajo:

✓ Un cable especial para adaptar el conector del equipo computadora, terminal, teléfono al conector de la salida de telecomunicaciones.

- ✓ Un adaptador en "Y" para proporcionar dos servicios en un solo cable multipar, ejemplo teléfono con dos extensiones.
- ✓ Un adaptador activo para conectar dispositivos que utilicen diferentes esquemas de señalización, EIA 232 a EIA 422
- ✓ Un cable con pares transpuestos.

Distancias de cableado

✓ Para minimizar la distancia de cableado, la conexión cruzada principal debe estar localizada cerca del centro de un lugar

✓ Las instalaciones que exceden los límites de distancia deben dividirse en áreas, cada una de las cuales pueda ser soportada por el vertebral dentro del alcance de la norma EIA/TIA 568-A

Las interconexiones entre las áreas individuales que están fuera del alcance de esta norma, se pueden llevar a cabo utilizando equipos y tecnologías normalmente empleadas para aplicaciones de área amplia.

Evitar interferencia electromagnética:

A la hora de establecer la ruta del cableado de los closets, a los nodos es una consideración primordial evitar el paso del cable por los siguientes dispositivos:

- ✓ Motores eléctricos grandes o transformadores (mínimo 1.2 metros).
- ✓ Cables de corriente alterna
- ✓ Mínimo 13 cm. para cables con 2KVA o menos
 - ✓ Mínimo 91cm. para cables con más de 5KVA, luces fluorescentes y balastros (mínimo 12 centímetros).

- ✓ El ducto debe ir perpendicular a las luces fluorescentes y cables o ductos eléctricos
- ✓ Aires acondicionados, ventiladores, calentadores (mínimo 1.2 metros)

Cuarto de telecomunicaciones

El diseño de cuartos de telecomunicaciones debe considerar, además de voz y datos, la incorporación de otros sistemas de información del edificio tales como televisión por cable, alarmas, seguridad, audio y otros sistemas de telecomunicaciones.

El diseño depende:

- ✓ El tamaño del edificio.
- ✓ El espacio de piso a servir.
- ✓ Las necesidades de los ocupantes.
- ✓ Los servicios de telecomunicaciones a utilizarse.

Cuarto de telecomunicaciones

- Deben haber tomacorrientes suficientes para alimentar los dispositivos a instalarse en los andenes.
- Alimentación eléctrica de emergencia con activación automática.
 - Dispositivos electrónicos se podrá hacer con UPS y regletas montadas en los andenes.
 - ✓ El cuarto de telecomunicaciones debe contar con una barra de puesta a tierra que a su vez debe estar conectada mediante un cable de mínimo 6 AWG con aislamiento verde al sistema de puesta a tierra de telecomunicaciones especificaciones según las ANSI/TIA/EIA-607.
 - Se debe mantener el cuarto de telecomunicaciones con llave en todo momento. Además limpio y ordenado.

de

Cuarto de telecomunicaciones

Disposición de equipos:

- ✓ Los andenes (racks) deben de contar con al menos 82 cm. de espacio de trabajo libre alrededor (al frente y detrás) de los equipos y paneles de telecomunicaciones.
- ✓ De acuerdo al NEC, NFPA-70 Artículo 110-16, debe haber un mínimo de 1 metro de espacio libre para trabajar de equipo con partes expuestas sin aislamiento.
 - ✓ Todos los andenes y gabinetes deben cumplir con las especificaciones de ANSI/EIA-310.
 - ✓ Se recomienda dejar un espacio libre de 30 cm. en las esquinas.

✓ Las paredes deben ser pintadas con pintura resistente al fuego, lavable, mate y de color claro.

Elementos de un cableado estructurado

Rack piso abierto

Rack piso cerrado

Organizador de cable

bandejas

Patch panel

PLANES DE MANTENIMIENTO

→ Los planes de mantenimiento se llevan a cabo en tres niveles: Hardware, Software y Documentación.

ACCIONES DE MANTENIMIENTO

Herramientas de monitorización

Una vez en marcha una red se recomienda medir ciertos parámetros del sistema para verificar su estado.

Un **monitor** es una herramienta para observar la actividad de una red durante su funcionamiento.

 Las herramientas de monitorización según su implementación pueden ser

- Monitor software
- Monitor hardware
- Monitor híbridos

Tipos de herramientas de monitorización

Monitorización de servicios, host y red.

En este marco la monitorización de las redes cobra cada vez más importancia y forma parte de las tareas de mantenimiento de las mismas.

- A más de la función de supervisión, también ayuda a la detección precoz de problemas de mal funcionamiento en alguno de sus componentes.
- Existen herramientas de monitorización comerciales, algunas de ellas proporcionadas por el propio fabricante del hardware y utilizadas para monitorear sus equipos.

Analizadores de red (sniffers)

El análisis de redes es un procedimiento más importante de lo que pueda parecer en un primer momento, sirve para conocer su estado y ver si hay algún problema en ellas.

Aplicaciones como:

- Tcpdump
- Ettercap
- Ethereal
- Iptraff
- Wireshark

Analizadores de red (sniffers)

Monitorear servicios:

Son herramientas software que se utilizan para capturar el tráfico (entrante y saliente), que pasa por el equipo donde esta instalada, con la finalidad de analizarlo posteriormente.

Microsistemas de monitorización complejos

Guía de sistemas de cableado estructurado

Guía de sistemas de cableado estructurado

•Autores: Xavier Cadenas Sanchez - Agustín Zaballos Diego

•ISBN: 9788415179436

• Editorial: Ediciones Experiencia

•Año de Edición: 2015

Redes de Datos

Ing. Janeth Mora

MUCHAS GRACIAS

