Hashing

Estrutura de Dados II Jairo Francisco de Souza

Resolução de colisões

- ✓ Endereçamento aberto
- ✓ Re-hashing
- ✓ Encadeamento
 - ✓ Separado
 - √ Coalescido
 - ✓ Coalescido com porão
- ✓ Endereçamento em balde

Endereçamento Aberto

- Usar próxima posição vazia
- Inserimos chave u, x, v, w, y e z na tabela:
 - Inserir u e v \rightarrow h(u)=423 e h(x)=425.

422	423	424	425	426	427	428	
	u		х				

- Inserir $v \rightarrow h(v) = 423$
 - (colisão com u → h(u)=423)
 - Próxima posição vazia é 424

422	423	424	425	426	427	428	
	u	v	х				

• Inserir w \rightarrow h(w)=423 (onde inserir w?)

422	423	424	425	426	427	428	
	u	v	х	w			

• Inserir y e z \rightarrow h(y)=h(z)=425

422	423	424	425	426	427	428	
	u	٧	х	W	У	z	

Endereçamento Aberto

Resultado da inserção de u, x, v, w, y e z

422	423	424	425	426	427	428	
	u	v	х	W	У	z	

- Suponha que deseja-se procurar n, onde h(n)=424
 - É necessário ir até o 429 para concluir que não n não está presente
- Remoção com endereçamento aberto também leva a inconsistência. Se x for removido, acessos a w, y e z estariam perdidos
- Em alguns casos, não há remoção quando se usa "hashing"

- Se houver colisão, usar outra função para encontrar próxima posição
 - Exemplo: utilizar r(x) para resolver colisão
- Posições para uma chave x são encontradas da seguinte forma:
 - $\bullet p_1 = h(x)$
 - $\bullet p_2 = h(x) + r(x),$
 - $p_3 = h(x) + 2*r(x)$
 - Etc
- De forma mais geral:
 - $h(k, i) = (h_1(k) + ih_2(k)) \mod m$

- Considere a tabela abaixo com 13 espaços
- Considere incluir o valor 14 na tabela, com
 - $h_1(k) = k \mod 13$
 - $h_{y}(k) = 1 + (k \mod 11)$
- Em qual posição k=14 será inserida?

0	
1	79
2	
3	
4	69
5	98
6	
7	72
8	
9	
10	
11	50
12	

- Considere a tabela abaixo com 13 espaços
- Considere incluir o valor 14 na tabela, com
 - $h_1(k) = k \mod 13$
 - $h_{y}(k) = 1 + (k \mod 11)$
- Em qual posição k=14 será inserida?
 - posição 9!

0	
1	79
2	
3	
4	69
5	98
6	
7	72
8	
9	
10	
11	50
12	

- Vantagem de usar outra função r diferente de h:
 - se h(x)=h(y)=h(z)=i, é pouco provável que r(y)=r(z), logo
 - x fica em i;
 - y fica em i+r(y); e
 - z em i+2*r(z)
 - busca por z é mais rápida, pois evita calcular r(y)
- Identificação de que não está presente, quando encontra-se posição vazia
- Tem problemas também para remoção

Encadeamento (separado)

Cada posição da tabela está associada com uma lista ligada

- Este método é chamado de encadeamento separado
- Neste método a tabela nunca irá transbordar
- Aumento do comprimento da lista pode degradar o desempenho da recuperação
- Pode-se ordenar os registros presentes na lista ligada
 - Não será executada busca exaustiva
- Necessidade de espaço adicional para os ponteiros

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅

0		
1		
2	A_2	
3	A ₂ A ₃	
4		
34567	A ₅	
6		
7		
8 9		
9		

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅
 - Inserir B₅
 - Colisão com A₅

0		
1		
2	A ₂	
3	A ₂ A ₃	
4		
5	A ₅	
6		
7		
8		
9		

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅
 - Inserir B₅
 - Colisão com A₅
 - Inserir B₅na posição vazia a partir do final da tabela

0			
1			
2	A_2		
3	A_2		
4			
5	A ₅	9	
5 6 7			
7			
8 9			
9	B ₅		

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅
 - Inserir B₅
 - Colisão com A₅
 - Inserir B₅na posição vazia a partir do final da tabela
 - Inserir A₄ (Colisão com B₅)

0			
1			
2	A_2		
3	A_2		
4			
1 2 3 4 5 6 7	A ₅	9	
6			
7			/
8 9			
9	B ₅	-	

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅
 - Inserir B₅
 - Colisão com A₅
 - Inserir B₅na posição vazia a partir do final da tabela
 - Inserir A₉ (Colisão com B₅)
 - Inserir na próxima posição vazia e apontar

A_2		
A_2		
A ₅	9	
A_9		
A ₉ B ₅	8	

3

5

6

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:
 - Inserir A₂, A₃, A₅
 - Inserir B₅
 - Colisão com A₅
 - Inserir B, na posição vazia a partir do final da tabela
 - Inserir A₉ (Colisão com B₅)
 - Inserir na próxima posição vazia e apontar
 - Inserir B₂ (Colisão com A₂)

A ₂	
A ₂ A ₃	
A_5	9
A_9	
$B_{\scriptscriptstyle{5}}$	8

3

6

- Cada posição na tabela possui espaço para a chave (ou info) e para um ponteiro que aponta para a posição da próxima chave
- Método quando ocorre colisão
 - Encontrar primeira posição disponível
 - Armazenar índice dessa posição com a chave que já está na tabela da lista ligada
 - Exemplo:

Inserir	Α,,	А,	A_{5}
	۷-	J -	J

- Inserir B₅
- Colisão com A₅
- Inserir B₅na posição vazia a partir do final da tabela
- Inserir A₉ (Colisão com B₅)
- Inserir na próxima posição vazia e apontar
- Inserir B₂ (Colisão com A₂)
- Inserir na próxima posição vazia e apontar

		_
A_2	6	
A ₂ A ₃		
A ₅	9	
B ₂		
A_9		
$\frac{A_9}{B_5}$	8	

3

6

8

 Posições disponíveis podem ser marcadas, por exemplo, -2 em next

 -1 pode ser usado para indicar o final de uma cadeia

0		-2
1		-2
2	A_2	6
3	A ₃	-1
4		-2
5	A ₅	9
6	B ₂	-1
7		-2
8	A_9	-1
9	B ₅	8

 Posições disponíveis podem ser marcadas, por exemplo, -2 em next

 -1 pode ser usado para indicar o final de uma cadeja

Caueia			
• Evampla:	0		-2
• Exemplo:	1		-2
Inserir A₇	2	A_2	6
• Inserir C ₂	3	A ₃	-1
 Colisão com A₂ 	4		-2
 Segue-se para posição 6 	5	A ₅	9
 Posição 6 está ocupada 	6	B ₂	-1
 Next indica fim da cadeia (-1) 	7	A ₇	-1
	8	A_9	-1

9

- Posições disponíveis podem ser marcadas, por exemplo, -2 em next
- -1 pode ser usado para indicar o final de uma cadeia

Exemplo:	
• Incoris A	

- Inserir A₇
- Inserir C₂
- Colisão com A₂
- Segue-se para posição 6
- Posição 6 está ocupada
- Next indica fim da cadeia (-1)
- Achar nova posição vazia
 - a partir do final
 - posição 4

	-2	
	-2	
A_2	6	
A_3	-1	
	-2	
A_5	9	
B_2	-1	
A_7	-1	
A_9	-1	
B ₅	8	

8

- Posições disponíveis podem ser marcadas, por exemplo, -2 em next
- -1 pode ser usado para indicar o final de uma cadeia
- Exemplo:

• Inserir A ₇	0		-2
• Inserir C ₂	1		-2
 Colisão com A₂ 	2	A_2	6
 Segue-se para posição 6 	3	A_3	-1
 Posição 6 está ocupada 	4	C_2	-1
Next indica fim da cadeia (-1)	5	A ₅	9
 Achar nova posição vazia 	6	B ₂	4
a partir do finalposição 4	7	A_7	-1
• Inserir C ₂	8	A_9	-1
 Montar cadeia (posição 6 aponta para 	9	B ₅	8

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

• Inserir A₂, A₃ e A₅

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente
- Exemplo:
 - Inserir A₂, A₃ e A₅
 - Inserir B₅ (colisão com A₅)
 - Achar posição no porão

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

- Inserir A₂, A₃ e A₅
- Inserir B₅ (colisão com A₅)
- Achar posição no porão
- Incluir link entre as posições

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

- Inserir A₂, A₃ e A₅
- Inserir B₅ (colisão com A₅)
- Achar posição no porão
- Incluir link entre as posições
- Inserir B, (colisão com A,)

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

- Inserir A₂, A₃ e A₅
- Inserir B₅ (colisão com A₅)
- Achar posição no porão
- Incluir link entre as posições
- Inserir B₂ (colisão com A₂)
- Achar posição no porão
- Incluir link entre as posições

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

- Inserir A₂, A₃ e A₅
- Inserir B₅ (colisão com A₅)
- Achar posição no porão
- Incluir link entre as posições
- Inserir B₂ (colisão com A₂)
- Achar posição no porão
- Incluir link entre as posições
- Inserir A₉ e B₉

- porão)
 Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente

• Exemplo:	
Inserir A₂, A₃ e A₅	
 Inserir B₅ (colisão com A₅) 	
 Achar posição no porão 	
 Incluir link entre as posições 	

, ,
 Incluir link entre as posições
 Inserir B₂ (colisão com A₂)
 Achar posição no porão
 Incluir link entre as posições
Inserir A₉ e B₉

Inserir	C_2
---------------------------	-------

A_2	11	\
A ₂ A ₃		
A ₅	12	
A_9	10	
A ₉ B ₉	-	
B ₂		
B_5		

10

Porão

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente
- Exemplo:
 - Inserir A₂, A₃ e A₅
 - Inserir B₅ (colisão com A₅)
 - Achar posição no porão
 - Incluir link entre as posições
 - Inserir B₂ (colisão com A₂)
 - Achar posição no porão
 - Incluir link entre as posições
 - Inserir A₉ e B₉
 - Inserir C₂

- Uso de área de transbordamento para armazenar chaves quando não há mais espaço na tabela.
 - Esta área pode ser alocada dinamicamente
- Exemplo:
 - Inserir A₂, A₃ e A₅
 - Inserir B₅ (colisão com A₅)
 - Achar posição no porão
 - Incluir link entre as posições
 - Inserir B₂ (colisão com A₂)
 - Achar posição no porão
 - Incluir link entre as posições
 - Inserir A₉ e B₉
 - Inserir C₂

Usando:

-2 para posição vazia

-1 para fim da cadeia

A_2
A
A ₅
C_2
A
Bg
B ₂
B ₅

0

3

5

6

8

9

-2

-2

11

-1

-2

12

-2

-2

-1

10

-1

	' [1 0
Porão	7	11
		12

- Armazenar na mesma posição os elementos que colidem
- Associação de um balde a cada endereço
- Balde
 - Bloco de espaço grande o suficiente para armazenar múltiplos itens
- Não evita colisão
- Se o balde está cheio
 - Próximo elemento pode ser armazenado no próximo balde vazio
 - Área de transbordamento também pode ser utilizada
 - Neste caso, cada balde deve ser marcado para indicar se a busca deve ser continuada nessa área
 - Marcador sim/não
 - Em conjunto com o marcador pode-se utilizar um ponteiro para indicar onde a lista inicia na área de transbordamento

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A_2	
3	A ₃	
4 5		
5	A ₅	
6		
7		
8 9		
9		

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A_2	
3	A ₂ A ₃	
4 5		
5	A ₅	B ₅
6		
7		
8		
9		

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A_2	
3	A ₂ A ₃	
4 5		
5	A ₅	B ₅
6		
7		
8 9		
9	A_9	

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A ₂	B ₂
3	A ₂ A ₃	
4 5		
5	A ₅	B ₅
6		
7		
8		
9	A_9	

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A_2	B ₂
3	A ₂ A ₃	
4 5		
5	A ₅	B ₅
6		
7		
8		
9	A_9	B_9

- Exemplo: Balde e sondagem linear pela próxima posição vazia
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂

0		
1		
2	A_2	B_2
3	A ₂ A ₃	C ₂
4		
5	A ₅	B ₅
6		
7		
8		
9	A_9	B_9

- Exemplo: Balde e transbordamento
 - Inserir A₅, A₂, A₃, B₅, A₉, B₂, B₉, C₂
 - Ao inserir C₂o balde está cheio, logo este é inserido na área de transbordamento

 Área de transbordamento

- Com um método de encadeamento
 - Remover elemento leva à remoção de um nó da lista ligada que contém o elemento
- Para outros métodos
 - Remoção pode exigir tratamento mais cuidadoso da resolução de colisões, exceto no caso raro de uma função hashing perfeita ser utilizada

- Com um método de encadeamento
 - Remover elemento leva à remoção de um nó da lista ligada que contém o elemento
- Para outros métodos
 - Remoção pode exigir tratamento mais cuidadoso da resolução de colisões, exceto no caso raro de uma função hashing perfeita ser utilizada

- Possível solução
 - Manter chaves removidas, marcando as posições como elementos não válidos
 - Busca não termina prematuramente
 - Ao inserir nova chave, ela sobrescreve posição com elemento não válido

0		
1	A_1	
2	A_2	х
3	B_1	
4	A_4	Х
5	B ₄	
6		
7		
8		
9		

- Possível solução
 - Manter chaves removidas, marcando as posições como elementos não válidos
 - Busca não termina prematuramente
 - Ao inserir nova chave, ela sobrescreve posição com elemento não válido

0		
1	A_1	
2	A_2	X
3	B_1	
4	A_4	Х
5	B ₄	
6		
7		
8		
9		

Para muitas remoções e poucas inserções

- •A tabela se torna sobrecarregada de registros removidos
- •Necessidade de testar os elementos removidos Registros devem ser expurgados depois de certo tempo e tabela reorganizada

- Possível solução
 - Manter chaves removidas, marcando as posições como elementos não válidos
 - Busca não termina prematuramente
 - Ao inserir nova chave, ela sobrescreve posição com elemento não válido

0		
1	A_1	
2	B_1	
3		
4	B ₄	
5		
6		
7		
8		
9		

Para muitas remoções e poucas inserções

- •A tabela se torna sobrecarregada de registros removidos
- •Necessidade de testar os elementos removidos Registros devem ser expurgados depois de certo tempo e tabela reorganizada