

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

CODE: MTH 412 TIME: 3

HOURS

TITLE: NORMED LINEAR SPACES TOTAL: 70%

CREDIT UNIT: 3

INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE (5) QUESTIONS

BEAR FULL MARKS

1(a) Let $X = \mathbb{R}^2$. For each vector $X = (x_1, x_2) \in X$. Define $||.||_2 : X \to \mathbb{R}$ by $\sum_{k=1}^{2} \chi_k^2$ $||x||_2 = (\sum_{k=1}^{2} \chi_k^2)^{\frac{1}{2}}$. Show that ||.|| is a norm on X. - 7 marks

1(a) The surface of a unit sphere centered around the origin of a linear $\{(x_1,x_2,\cdots\}$ space with the $\underline{\ell^p}$ -norm is the locus of points . Show

$$\left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} = 1$$

that 7marks

2(a) What is a Convex set? If $x \in R^n$ and if r > 0; show that the ball $B(s^*, r) = \{ t \in R^n : ||s - t^*|| < r \}$ centred at s^* of radius r is a convex set - 7marks

2(b) Let s, and t be vectors in \mathbf{R}^n , show that the line L through x in the direction of t given by L = {s+ α t : α e \mathbf{R} } is a convex set.

-7marks

- 3(a) Let (X, ρ) be a metric space. Define Cauchy sequence. 5marks
- 3(b) Let (X, ρ) be a complete metric space, and let $E \subset X$. Show that $(E, \rho E)$ is complete if and only if it is closed. (Where ρE is the subspace metric induced by ρ).
- 4(a) Let S be a linear space over a scalar field $T = (\mathbf{R} \text{ or } \mathbf{C})$. When is a function $||.|| : S \to R$ said to be a norm (in S)?

 -5marks
- 4(b) Show that the real line \mathbf{R} becomes a normed linear space if you set ||S|| = |S| for every number $S_{\epsilon}\mathbf{R}$.
- 5(a) Let S = c[0,1] = T, where c[0,1] is endowed with the supnorm. Let $D = \{f \ \epsilon c'[0,1] : f' \epsilon \ c[0,1]\}$ where the prime denotes differentiation.

Let $T: c[0,1] \rightarrow c[0,1]$ be a map with domain D defined by Tf = f' (i.e. differentiation operator). Show that:

i) S is linear

-2½marks

ii) S is closed.

-2½marks

- Show that an inner product space E becomes a normed linear space when equipped with the norm $\|t\| = \sqrt{\langle t,t\rangle} \quad \text{for all } t_{\epsilon} \text{ E.}$ 9marks
- 6(a) Define the convergence of a sequence $\{s_n\}$ of elements of S to a point s_ES ?

-5marks

6(b) Let P = [-4, 4] with complete. $\|f\|_2 = \left(\int_{-4}^4 \left| f(t) \right|^2 \right)$ show that P is not -9 marks

7(a) Define Linear Maps. 5marks

7(b) Let $X = I_2$. For each $X = (x_1, x_2, x_3, \dots x_k, \dots)$ in I_2 . Show that if $X = T(x_1, x_2, x_3, \dots x_k, \dots) = (0, x_1, x_2/2, x_3/3, \dots x_k/k, \dots)$, then $X = I_2$ map on I_3 and I_4 has a linear map on I_4 has a linear space.