

# FACULTAD DE CIENCIAS

# Tarea 03

Alumno:

Ramírez López Alvaro. 316276355

Profesor: Jesús Villagómez Chávez Ayudantes: Gabriela Peña Franco Martha Rubí Gutiérrez González

9 de septiembre de 2024

- 1. ¿Cuáles de las siguientes relaciones son funciones? En caso de ser función, calcula su dominio y su imagen:
  - a)  $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n,m \ge 0 \land 5n = m\}.$
  - b)  $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land 5m = n\}.$
  - c)  $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n,m \ge 0 \land m \le n\}.$
  - $d) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n \ge 0 \land m = 3\}.$
  - $e) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m = n^2\}.$
  - $f) \ \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m^2 = n^2\}.$
  - $g) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : 4n + 2m = 6\}.$

## Solución:

Aquí va la solución.

- 2. Determina la inyectividad, suprayectividad y biyectividad de las siguientes funciones:
  - $a) f: \mathbb{N} \to \mathbb{N}, f(n) = 2n.$
  - b)  $f: \mathbb{N} \to \mathbb{N}, f(n) = n + 7.$
  - c)  $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n + 7.$
  - $d) \ f:A\to A/R, f(a)=[a]_R,$ donde A es un conjunto y R una relación de equivalencia sobre A.

# Solución:

Aquí va la solución.

- 3. Sea  $f:A\to B$  una función. Demuestra que:
  - $a)\ f$ es inyectiva si y sólo si  $f^{-1}[f[X]]=X,$  para todo  $X\subseteq A.$
  - b) f es inyectiva si y sólo si  $f[X \cap Y] = f[X] \cap f[Y]$ , para  $X, Y \subseteq A$ .
  - c) f es suprayectiva si y sólo si  $f[f^{-1}[Y]] = Y$ , para todo  $Y \subseteq B$ .
  - $d)\ f$ es biyectiva si y sólo si  $f[X^c]=(f[X])^c,$  para todo  $X\subseteq A.$

# Solución:

Aquí va la solución.

4. Responde las siguientes preguntas:

- a) ¿Existe  $g: \mathbb{N} \to \mathbb{N}$  función tal que  $g \neq \mathrm{Id}_{\mathbb{N}}$  y  $g \circ g = g$ ?
- b) ¿Existe  $g: \mathbb{N} \to \mathbb{N}$  función biyectiva tal que  $g \neq \mathrm{Id}_{\mathbb{N}}$  y  $g \circ g = g$ ?
- c) ¿Existe  $g: \mathbb{N} \to \mathbb{N}$  función biyectiva tal que  $g \neq \mathrm{Id}_{\mathbb{N}}$  y  $g \circ g = \mathrm{Id}_{\mathbb{N}}$ ?

### Solución:

Aquí va la solución.

- 5. (Extra) Sea  $f:A\to B$  una función. Definimos la asignación  $F:B\to A$  con regla de correspondencia  $F(Y)=f^{-1}[Y]$ . Demuestra que:
  - a) F es función.
  - b) Si f es inyectiva, entonces F es suprayectiva.
  - c) Si f es suprayectiva, entonces F es inyectiva.
  - d) Si F es suprayectiva, entonces f es inyectiva.
  - e) Si F es inyectiva, entonces F es suprayectiva.

### Solución:

Aquí va la solución.