目 录

1	问题重述	1
2	符号说明	1
3	基本假设	1
4	问题分析	1
5	模型建立与求解	1
6	模型检验	2
7	模型优、缺点	3
8	模型优化	3
	8.1 矩阵	. 3
	8.2 多行公式	. 4
	8.3 行列式	. 4
	8.4 方程组	. 4
参	· 参考文献	4

- §1 问题重述
- $\S 2$ 符号说明

罗列方法:

- a. 座位数(3级标准)
- b. 长度
- **c.** 翼展
- d. 最大起飞机重量
- e. 巡航速度
- f. 最大航程(全载)
- g. 油箱容量

- §3 基本假设
- §4 问题分析

公式插入与自动编号:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} \tag{1}$$

§5 模型建立与求解

插图:

图 1 数据拟合图1

图 2 Zachary Karate Club

图 3 Enron Email Data

1)单张图: (见Figure1)

2)多张图: (见Figure2,3)

§6 模型检验

定理等:

定义.1 市场潜力是指在给定的条件下,在一段指定的时间内,能够合理的取得的

最大销售额。新产品的市场潜力是在一个既定的环境下, 当行业营销努力达到无穷 大时, 市场需求所趋向的极限。

§7 模型优、缺点

表格: (见Table1)

表 1	空勤人员	飞行每点	小时费用标准

最大飞机起飞全重/t	费率/US/km				
小于50	0.4				
51-100	0.45				
101-200	0.50				
大于200	按公式计算				

§8 模型优化

§8.1 矩阵

矩阵:

0.7177	0	0	0	6.6667	0.4607	0.7549
5.0239	5.3097	4.9383	0.8259	6.6667	6.0461	0.7549
13.1579	18.3628	17.0782	2.6336	6.6667	0.6238	0.7549
16.7464	24.1150	22.4280	3.8725	0	3.1190	0.7549

§8.2 多行公式

多行公式:

$$C_{labor} = 4(W_{emp} + 1.2 \times 10^{5})(1 + 0.59t_{flight}[(5 \times 10^{-5}W_{emp} + 6)(w_{emp} + 1.2 \times 10^{5}) - 6.3 \times 10^{5}] + 4N_{engine}[0.6t_{flight} + 0.3 + 3 \times 10^{-5}W_{max}$$

$$(0.9t_{flight} + 1)]) \div t_{block}$$
(2)

§8.3 行列式

$$\begin{vmatrix} 1 & 6 & 9 \\ 7 & 90 & f(x) \\ 9 & \psi(x) & g(x) \end{vmatrix}$$

§8.4 方程组

$$\begin{cases}
 u_{tt}(x,t) = b(t) \triangle u(x,t-4) \\
 -q(x,t)f[u(x,t-3)] + te^{-t}\sin^2 x, & t \neq t_k; \\
 u(x,t_k^+) - u(x,t_k^-) = c_k u(x,t_k), & k = 1,2,3...; \\
 u_t(x,t_k^+) - u_t(x,t_k^-) = c_k u_t(x,t_k), & k = 1,2,3....
\end{cases}$$
(3)

参考文献

[1] 刘承平,数学建模方法[M],高等教育出版社,2003。