MATH 307

Assignment #10

Due Friday, April 1, 2022

CORRECTION: Removed a duplicate problem #1: 29Mar2022.

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or \mathbf{Proof} – as appropriate.

- 1. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.
- 2. (a) Suppose that T is a self-adjoint operator on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of T. Prove that $T^2 5T + 6I = 0$.
 - (b) Give an example of an operator $T \in \mathcal{L}(\mathbb{C}^3)$ such that 2 and 3 are the only eigenvalues of T and $T^2 5T + 6I \neq 0$.
- 3. Suppose that T is a normal operator on V. Suppose also that $v, w \in V$ satisfy the equations

$$||v|| = ||w|| = 2, \quad Tv = 3v, \quad Tw = 4w.$$

Show that ||T(v + w)|| = 10.

- 4. Suppose $T \in \mathcal{L}(V)$ is normal. Prove that range $T = \text{range } T^*$.
- 5. Consider the statement: If $T \in \mathcal{L}(V)$ and there exists an orthonormal basis e_1, \ldots, e_n of V such that $||Te_j|| = ||T^*e_j||$ for each j, then T is normal. Show that a counterexample to the statement is given by the matrix $T = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$ with respect to the standard basis in \mathbb{R}^2 .
- 6. (CST) Suppose $\mathbf{F} = \mathbf{C}$ and $T \in \mathcal{L}(V)$. Prove that T is normal if and only if all pairs of eigenvectors corresponding to distinct eigenvalues of T are orthogonal and

$$V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$$

where $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T.

- 7. (CST) Prove that a normal operator on a complex inner product space is self-adjoint if and only if all its eigenvalues are real.
- 8. (CST) Suppose V is a complex inner product space. Prove that every normal operator on V has a square root. (An operator $S \in \mathcal{L}(V)$ is called a *square root* of $S \in \mathcal{L}(V)$ if $S^2 = T$.)