

Rebalancing Citibike, A Time Series Analysis

By: Mitchell Krieger

Bike share systems like Citibike in NYC face a unique problem.

When bike docks are full, riders can't return bikes.

When bike docks are empty, there are no bikes to take out

System Balance:

- When a the Citibike System is balanced it means that bike are distributed so that stations don't get too full nor too empty.
- Signs of an unbalanced system:

Bike Pools:

Stations where riders deposit bikes but don't take them out

Causes too full stations

Bike Drains:

Stations where riders take bikes out but don't return them

Causes empty stations

How can we ensure a balanced system?

To do so we'll need to be able to understand:

- System Traffic: How Users Ride
 - When and Where to Rebalance?
- Number of bikes at a given station
 - O How much to re-balance?
- Station, Rider and other behavior that leads to bike drainage & poolage
 - Why did it become unbalanced?
 - Possibly exogenous variables such as weather, elevation and holidays

Methodology

6. Incorporate Exogenous Variables

7. Create Dashboard
Deployment

5. Clustering into pools, drains and balanced stations

Analysis to predict available bikes at a given station

2. Clean and Prep Data for Analysis

The Data:

- Data Collected From Citbike Live Feed and Open Bus Project
- Focused Analysis on 2018
- Operated by Motivate, a subsidiary of Lyft

System Stats:

- Launched in 2013
- 1200+ stations between NYC & JC
 - Huge growth from 650+ stations in 2018
- 1.75 million trips in 2018
- Majority of trips are <15 minutes

Visualizing the system in a typical weekday...

...we can see both seasonality and pools/drains.

Diving Deeper into Seasonality:

There is both Weekly and Daily Seasonality present

- Weekly:
 - Weekdays behave differently than weekends
 - Tues/Weds/Thurs are heaviest days
- Daily:
 - Peaks occur during rush hour commuting time
 - Bikes nearly "freeze" in pace overnight

Yearly Seasonality?

- It exists but is weak on a individual station by station basis
- The season is only obvious when aggregated by month or day
- May not actually be useful in modeling

Modeling

Goal: A model that captures the seasonality (weekly and daily) and closely predicts number of available bikes (low RMSE and MAE values).

Best version of each type of Model:

Model	Seasonality Captured	RMSE	MAE
Dummy ARIMA	None	8.97	8.05
SARIMA	Daily	9.71	7.77
RNN/LSTM	Daily, (weekly incorrectly)	11.65	9.19
Facebook Prophet	Daily, Weekly	6.30	5.15

The Facebook Prophet Model

- Closely Models both the train (green) and test (blue) sets
 - Much of the data is within the confidence interval
- Captures both daily and weekly seasonality extremely well
- Very distant forecasts also perform quite well

Seasonality Extraction

Captures patterns identified in the Exploratory Data Analysis:

- Weekly Season:
 - Tues/Weds/Thurs are hot
 - Weekends behave differently
- Daily Season:
 - High activity during Rush Hour commuting times

We can use the daily season extraction to classify pools, drains and balanced stations.

Balanced stations' extracted daily season should:

- Return to where they start after a cycle
- Have a curve centered mostly around zero in a:
 - U Shape (residential neighborhoods)
 - ∩ Shape (business districts)

Unbalanced stations' extracted daily seasons could:

- Have a ∪ or ∩ curve centered far from zero
 - Center < 0 (drain)
 - Center > 0 (pool)
 - Fulton St & Broadway Daily Cycle 10.0 5.0 25 0.0 -2.5 -5.0 09:00 06:00 15:00 18:00 21:00 00:00 17-Jun date time

Have a trend

- Decreasing (drain)
- Increasing (pool)
- Have a flat line
 - At Zero (station is unused)
 - Below Zero (drain)
 - Above Zero (pool)

Conclusion

- Once Stations are identified as pools, drains, or balanced:
 - Take advantage of daily and weekly seasonality to redistribute bikes from pools to drains during strategic times:
 - During late night hours bikes are nearly frozen
 - The relative lull between the morning and evening commuter rush hour
 - Weekends
 - Consider adding additional stations in areas with many pools/drains
- Monitor changes in balancing as Citibike Continues to expand

Next Steps

- Further tune models (or maybe try new ones)
- Cluster stations into pools, drains and balanced
- Incorporate exogenous variables such as holidays, weather, electric bikes and elevation
- Make interactive dashboard via dash, bokeh or tableau

Thank you!

For more information:

- GitHub Repository for this Project
- Citibike System Data
- Bloomberg 2014 profile of the mathematics of rebalancing

Contact Information:

- Email: <u>mitkrieger@gmail.com</u>
- GitHub: @mitkrieg

