Model of two dimensional diffusion of dye molecules in a membrane

Agata Witkowska

Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany

International Max Planck Research School for Molecular Biology at the University of Göttingen, Germany

Supporting Material to a model performed for

Rapid SNARE-mediated fusion of liposomes and chromaffin granules with giant unilamellar vesicles

Agata Witkowska and Reinhard Jahn Biophysical Journal (2017), http://dx.doi.org/10.1016/j.bpj.2017.03.010

Determination of number of dye molecules

This calculations were inspired by a description by Encapsula NanoSciences (see *References*).

Total number of particles in a liposome membrane (N) can be calculated from the following formula:

$$N = \frac{\left[4\pi \left(\frac{d}{2}\right)^2 + 4\pi \left(\frac{d}{2} - h\right)^2\right]}{a} \tag{1}$$

where d is the liposome diameter, h is the thickness of the bilayer, and a is the lipid headgroup area.

For performing simulation following parameters were taken:

- $d = 100 \,\mathrm{nm}$, as the average diameter of an LUV (large unilamellar liposome) used in this study (prepared according to Hernandez et al., 2012);
- h = 4.6 nm, as the average membrane thickness (usually between 4–5 nm, see e.g. Träuble and Haynes, 1971; Gallová et al., 2004);
- $a = 0.582 \,\mathrm{nm^2}$, as the average headgroup area, calculated as the weighted average (weight represents fraction of total lipids, concentrations and areas used are presented in table 1).

Table 1. Lipid headgroups area

Lipid	Concentration (mol%)	Area (nm ²)	Reference
$ ho C^1$	50	0.71	Israelachvili and Mitchell, 1975
$ ho ext{E}^2$	20	0.41	Israelachvili and Mitchell, 1975
PS^3	20	0.63	Pan et al., 2014
cholesterol	10	0.19	Israelachvili and Mitchell, 1975

¹phosphatidylcholine

Assuming these values, LUV would be composed of $N \approx 98500$ molecules. Labelled lipid simulated here is Texas Red coupled PE, that was incorporated into membrane in a fraction of 1 mol%. Taken this together, it can be calculated that there will be ~ 985 dye molecules.

²phosphatidylethanolamine

³phosphatidylserine

Radius of a membrane patch

Assuming $d = 100 \,\mathrm{nm}$ as the average diameter of an LUV (see *Determination of number of dye molecules*), membrane area (A) can be calculated from:

$$A = 4\pi \left(\frac{d}{2}\right)^2 \tag{2}$$

Taken this area value, a circle radius (R) of a corresponding area can be calculated from:

$$R = \sqrt{\frac{A}{\pi}} \tag{3}$$

These simple calculations give $R \approx 100 \,\mathrm{nm}$.

Diffusion-mediated particle displacement

The diffusion of dye particles was simulated by using a random walk. According to Einstein (1905), in each time step dt (in simulation dt = 1 ms) every molecule was displaced by a distance dx, in every direction (here in x and y):

$$dx = \sqrt{dt \times 2 \times D} \tag{4}$$

with D being a diffusion coefficient of a particle (here taken average value of $D = 2.83 \,\mu\text{m}^2/\text{s}$ from Fig. 1 in Witkowska and Jahn, 2017).

Particles coming from an LUV after fusion to a GUV, form a round spot with randomly distributed dye molecules. Position of these spots at time $t=0\,\mathrm{ms}$ can be easily determined coming from polar coordinates:

$$\varphi_N = 2\pi \times rand_N \tag{5}$$

$$r_N = R \times \sqrt{rand_N} \tag{6}$$

$$X_N = r_N \times \cos\varphi_N \quad Y_N = r_N \times \sin\varphi_N \tag{7}$$

where φ and r are the angle and radius of polar coordinates, respectively; N is the particle number (with a total number of 985 molecules, see *Determination* of number of dye molecules); rand is a random number from a uniformly distributed set of numbers between 0 and 1; and X_N and Y_N are the Cartesian coordinates of the N^{th} molecule, assuming patch centre at (0,0).

From the initial coordinates particles then diffuse in the GUV membrane. The molecule displacement in x and y after each time step dt can be obtained from:

$$X_N(t) = X_N(t - dt) + dx \times randn_N \tag{8}$$

$$Y_N(t) = Y_N(t - dt) + dx \times randn_N \tag{9}$$

where t is time, and randn is a is a random number from a normally distributed set of numbers having 0 mean and variance 1.

Acknowledgements

I wish to thank Lukasz Jablonski (MPI for Biophysical Chemistry, Göttingen, Germany) for discussions and help with the development of this model.

References

- Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322, 549–560.
- Encapsula NanoSciences (2009). http://www.liposomes.org/2009/01/number-of-lipid-molecules-per-liposome.html.
- Gallová, J., Uhríková, D., Islamov, A., Kuklin, A. and Balgavý, P. (2004). Effect of cholesterol on the bilayer thickness in unilamellar extruded DLPC and DOPC liposomes: SANS contrast variation study. General Physiology and Biophysics 23, 113–128.
- Hernandez, J., Stein, A., Behrmann, E., Riedel, D., Cypionka, A., Farsi, Z., Walla, P. J., Raunser, S. and Jahn, R. (2012). Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336, 1581–1584.
- Israelachvili, J. N. and Mitchell, D. J. (1975). A model for the packing of lipids in bilayer membranes. Biochimica Et Biophysica Acta 389, 13–19.
- Pan, J., Cheng, X., Monticelli, L., Heberle, F. A., Kučerka, N., Tieleman, D. P. and Katsaras, J. (2014). The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations. Soft Matter 10, 3716–3725.
- Träuble, H. and Haynes, D. H. (1971). The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition. Chemistry and Physics of Lipids 7, 324–335.
- Witkowska, A. and Jahn, R. (2017). SNARE-mediated fusion of liposomes and chromaffin granules with giant unilamellar vesicles with millisecond kinetics. Biophysical Journal 113, http://doi.org/10.1016/j.bpj.2017.03.010.