

- ****** ISBN (International Book Serial Number)
- # Fungsi hash
- * Kriptografi
- * Pembangkit bilangan acak-semu
- ₩ dll

- ★ Kode ISBN terdiri dari 10 karakter, biasanya dikelompokkan dengan spasi atau garis, misalnya 0-3015-4561-9.
- ***** ISBN terdiri atas empat bagian kode:
- kode yang mengidentifikasikan bahasa,
- kode penerbit,
- kode unik untuk buku tersebut,
 - karakter uji (angka atau huruf X (=10)).

* Karakter uji dipilih sedemikian sehingga

$$\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}$$

$$\sum_{i=1}^{9} ix_i \pmod{11} = \text{karakter uji}$$

0: kode kelompok negara berbahasa Inggris,

4561 : kode unik buku yang diterbitkan

8 : karakter uji.

Karakter uji ini didapatkan sebagai berikut:

$$1 \cdot 0 + 2 \cdot 3 + 3 \cdot 0 + 4 \cdot 1 + 5 \cdot 5 + 6 \cdot 4 + 7 \cdot 5 + 8 \cdot 6 + 9 \cdot 1 = 151$$

★ Jadi, karakter ujinya adalah 151 mod 11 = 8.

Catatlah bahwa untuk kode ISBN ini,

$$\sum_{i=1}^{10} i X_i = \sum_{i=1}^{9} i X_i + 10x_{10} = 151 + 10 \cdot 8 = 231$$
dan 231 mod 11 = 0 atau 231 \equiv 0 (mod 11).

- ** Buatlah sebuah program (C) untuk mencari karakter uji dari
 - **ISBN**
 - ◆EAN-13
- * dicetak, didalamnya diberi komentar NIM dan Nama Mahasiswa.

- Sembilan angka pertama dari kode ISBN sebuah buku adalah 0-07-053965. Tentukan karakter uji untuk buku ini!
- ** ISBN sebuah buku mengenai algoritma adalah 0-201-57P85-1, yang dalam hal ini P adalah angka. Berapa nilai P?

* Tujuan: pengalamatan di memori

- # Bentuk: $h(k) = k \mod m$
 - m: jumlah lokasi memori yang tersedia
- k : kunci (integer)
- h(k): lokasi memori untuk *record* dengan kunci k

Contoh: m = 11 mempunyai sel-sel memori yang diberi indeks 0 sampai 10. Akan disimpan data record yang masing-masing mempunyai kunci 15, 558, 32, 132, 102, dan 5.

$$h(15) = 15 \mod 11 = 4$$

 $h(558) = 558 \mod 11 = 8$
 $h(32) = 32 \mod 11 = 10$
 $h(132) = 132 \mod 11 = 0$
 $h(102) = 102 \mod 11 = 3$
 $h(5) = 5 \mod 11 = 5$

132			102	15	5			558		32
0	1	2	3	4	5	6	7	8	9	10

- ★ Jika terjadi kolisi, cek elemen berikutnya yang kosong.
- * Fungsi *hash* juga digunakan untuk me-*locate* elemen yang dicari.

- * Kunci= 327, 100, 121, 310, 414, 110, 017
 - 327 mod 31 = 17
 - 100 mod 31 = 7
 - 121 mod 31 = 28
 - $310 \mod 31 = 0$
 - 414 mod 31 = 11
 - 110 mod 31 = 17 karena sudah terpakai disimpan (18)
 - 017 mod 31 = 17 karena 17, 18 sudah dipakai, maka (19)

- ** Tunjukkan bagaimana sekumpulan data dengan kunci
- ** 714, 631, 26, 373, 775, 906, 509, 2032, 42, 4, 136, 1028
- ☼ Ditempatkan di dalam memori dengan fungsi hash h(k)= k mod 17

• Pesan: data atau informasi yang dapat dibaca dan dimengerti maknanya.

Nama lain: plainteks (plaintext)

- Pesan dapat berupa: teks, gambar, audio, video.
- Pesan ada yang dikirim atau disimpan di dalam media penyimpanan.

Tujuan: agar pesan tidak dapat dimengerti maknanya oleh pihak lain.

Cipherteks harus dapat diubah kembali ke plainteks semula

Contoh:

Plainteks:

culik anak itu jam 11 siang

Cipherteks:

t^\$gfUi89rewoFpfdWqL:p[uTcxZ

** **Dekripsi** (*decryption*): Proses mengembalikan cipherteks menjadi plainteksnya.

Gambar 1.1 Enkripsi dan dekripsi

*Dari Bahasa Yunani yang artinya "secret writing"

*Definisi: kriptografi adalah ilmu dan seni untuk menjaga keamanan pesan.

- aturan untuk enkripsi dan dekripsi
- fungsi matematika yang digunakan untuk enkripsi dan dekripsi.
- * Kunci: parameter yang digunakan untuk transformasi enciphering dan dechipering
- Kunci bersifat rahasia, sedangkan algoritma kriptografi tidak rahasia

- * Sudah digunakan di Yunani 400 BC
- * Alat yang digunakan: scytale

Gambar 1.2 Scytale

Aplikasi Kriptografi

Pengiriman data melalui saluran komunikasi
 (data encryption on motion).

2. Penyimpanan data di dalam *disk storage* (data encryption at rest)

Data ditransmisikan dalam bentuk chiperteks. Di tempat penerima chiperteks dikembalikan lagi menjadi plainteks.

* Data di dalam media penyimpanan komputer (seperti *hard disk*) disimpan dalam bentuk chiperteks. Untuk membacanya, hanya orang yang berhak yang dapat mengembalikan chiperteks menjadi plainteks.

Contoh enkripsi pada dokumen

Plainteks (plain.txt):

Ketika saya berjalan-jalan di pantai, saya menemukan banyak sekali kepiting yang merangkak menuju laut. Mereka adalah anak-anak kepiting yang baru menetas dari dalam pasir. Naluri mereka mengatakan bahwa laut adalah tempat kehidupan mereka.

Cipherteks (cipher.txt):

Ztâxzp/épêp/qtüyp{p}<yp{p}/sx/\partition
épêp/|t}t|\azp\/qp\\end{epz/\etzp\{x/zt\partition
}v \etap\v/|t\partition
}vzpz/|t\\ay\ay\av\eta\eta\example
psp\{pw/p\pz<p\pz/zt\partition
v/qp\underline
t\\atap\eta/sp\underline
y\\atap\underline
t\\atap\eta/sp\underline
p\\ata\underline
t\\underline
t\\un

Cipherteks (lena2.bmp):

Plainteks (siswa.dbf):

NIM	Nama	Tinggi	Berat
000001	Elin Jamilah	160	50
000002	Fariz RM	157	49
000003	Taufik Hidayat	176	65
000004	Siti Nurhaliza	172	67
000005	Oma Irama	171	60
000006	Aziz Burhan	181	54
000007	Santi Nursanti	167	59
000008	Cut Yanti	169	61
000009	Ina Sabarina	171	62

NIM	Nama	Tinggi	Berat
000001	tüp}vzpz/ t}äyä/{äâ	äzp}	épêp
000002	t}tâpé/spüx/sp	péxü=	ztwxsä□
000003	ât □pâ/ztwxsä□p}/	}/ tü	spüx/
000004	épêp/ t}t äzp}/qpêpz	qp}êpz	wxsä
000005	étzp{x/zt□xâx}v êp}	päâ/psp	étzp{
000006	spüx/sp{p /□péxü=/]	xâx}v	ttüzp/
000007	Ztâxzp/épêp/qtüypp}<	äzp}	}äyä/{
000008	qpwåp/{päâ/psp{pw	Ztwxs	xâx}v
000009	}t äzp}/qp}êpz/ép{	qp}êp	äzp}/qp

Keterangan: hanya field Nama, Berat, dan Tinggi yang dienkripsi.

Notasi Matematis

Misalkan:

C =chiperteks

P = plainteks dilambangkan

Fungsi enkripsi E memetakan P ke C, E(P) = C

Fungsi dekripsi D memetakan C ke P, D(C) = P

Dengan menggunakan kunci K, maka fungsi enkripsi dan dekripsi menjadi

$$E_K(P) = C$$

$$D_K(C) = P$$

dan kedua fungsi ini memenuhi

$$D_K(E_K(P)) = P$$

* Jika kunci enkripsi sama dengan kunci dekripsi, maka sistem kriptografinya disebut sistem simetri atau sistem konvensional.

- * Algoritma kriptografinya disebut algoritma simetri atau algoritma konvensional .
- ***** Contoh algoritma simetri:
 - DES (Data Encyption Standard)
 - Rijndael

Skema algoritma simetri

- * Jika kunci enkripsi tidak sama dengan kunci dekripsi, maka sistem kriptografinya disebut **sistem nirsimetri** (asymmetric system)
- * Nama lain: sistem kriptografi kunci-publik karena, kunci enkripsi bersifat publik (public key) sedangkan kunci dekripsi bersifat rahasia (private key).

- * Pengirim pesan menggunakan kunci publik si penerima pesan untuk mengenkripsi pesan
- * Penerima pesan mendekripsi pesan dengan kunci privatnya sendiri.
- * Contoh algoritmai: RSA

Caesar Cipher

Tiap huruf alfabet digeser 3 huruf ke kanan

p; : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

C; : DEFGHIJKLMNOPQRSTUVWXYZABC

Contoh:

Plainteks: AWASI ASTERIX DAN TEMANNYA OBELIX

Cipherteks: DZDVL DVWHULA GDQ WHPDQQBA REHOLA

** Misalkan A = 0, B = 1, ..., Z = 25, maka secara matematis caesar *cipher* dirumuskan sebagai berikut:

Enkripsi: $c_i = E(p_i) = (p_i + 3) \mod 26$

Dekripsi: $p_i = D(c_i) = (c_i - 3) \mod 26$

$$p_1 = \text{`A'} = 0 \implies c_1 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$$
 $p_2 = \text{`W'} = 22 \implies c_2 = E(22) = (22+3) \mod 26 = 25 = \text{`Z'}$
 $p_3 = \text{`A'} = 0 \implies c_3 = E(0) = (0+3) \mod 26 = 3 = \text{`D'}$
 $p_4 = \text{`S'} = 18 \implies c_4 = E(18) = (18+3) \mod 26 = 21 = \text{`V'}$
 dst...

* Alternatif lain: gunakan tabel substitusi

* Jika pergeseran huruf sejauh k, maka:

Enkripsi: $c_i = E(p_i) = (p_i + k) \mod 26$ Dekripsi: $p_i = D(c_i) = (c_i - k) \mod 26$ k = kunci rahasia

```
program enkripsi;
{ Mengenkripsi berkas 'plain.txt'
  menjadi 'cipher.txt' dengan
  metode caesar cipher }
uses
  crt;
var
   F1, F2 : text;
   p : char;
   c : integer;
   k : integer;
begin
   assiqn(F1, 'plain.txt');
   reset(F1);
   assign(F2, 'cipher.txt');
   rewrite(F2);
   write('k = ?'); readln(k);
   while not EOF(F1) do
    begin
      while not EOLN(F1) do
       begin
         read(F1, p);
         c := (ord(p) + k) \mod 256;
         write(F2, chr(c));
       end:
      readln(F1);
      writeln(F2);
   end;
   close(F1);
   close(F2);
end.
```

```
program dekripsi;
{ Mendekripsi berkas 'cipher.txt'
  menjadi 'plain2.txt' dengan
  metode caesar cipher }
uses
  crt;
var
   F1, F2 : text;
   p : char;
   c : integer;
   k : integer;
begin
   assign(F1, 'cipher.txt');
   reset(F1);
   assign(F2, 'plain2.txt');
   rewrite(F2);
   write('k = ?'); readln(k);
   while not EOF(F1) do
    begin
      while not EOLN(F1) do
       begin
         read(F1, p);
         c := (ord(p) - k) \mod 256;
         write(F2, chr(c));
       end:
      readln(F1);
      writeln(F2);
   end;
   close(F1);
   close(F2)
end.
```


* Ditemukan oleh tiga peneliti dari *MIT* (*Massachussets Institute of Technology*), yaitu Ron Rivest, Adi Shamir, dan Len Adleman, pada tahun 1976.

* Termasuk algoritma kriptografi nirsimetri.

- 1. Kunci publik: untuk enkripsi
- 2. Kunci privat: untuk dekripsi

** Kunci publik tidak rahasia (diktehui semua orang), kunci privat rahasia (hanya diketahui pemilik kunci saja)

- 1. Pilih dua bilangan prima, a dan b (rahasia)
- 2. Hitung n = a b. Besaran n tidak perlu dirahasiakan.

- 3. Hitung m = (a-1)(b-1).
- 4. Pilih sebuah bilangan bulat untuk kunci publik, sebut namanya e, yang relatif prima terhadap m.
- 5. Hitung kunci dekripsi, d, melalui $d \equiv 1 \pmod{m}$.

Enkripsi

- 1. Nyatakan pesan menjadi blok-blok plainteks: p_1, p_2, p_3, \dots (harus dipenuhi persyaratan bahwa nilai p_i harus terletak dalam himpunan nilai $0, 1, 2, \dots, n-1$ untuk menjamin hasil perhitungan tidak berada di luar himpunan)
- 2. Hitung blok cipherteks c_i untuk blok plainteks p_i dengan persamaan

$$c_i = p_i^e \mod n$$

yang dalam hal ini, e adalah kunci publik.

Proses dekripsi dilakukan dengan menggunakan persamaan

$$p_i = c_i^d \bmod n,$$

yang dalam hal ini, d adalah kunci privat.

Contoh 21. Misalkan a = 47 dan b = 71 (keduanya prima), maka dapat dihitung

$$n = a \times b = 3337$$

 $m = (a-1)\times(b-1) = 3220.$

- * Pilih kunci publik e = 79 (yang relatif prima dengan 3220 karena pembagi bersama terbesarnya adalah 1).
- * Nilai *e* dan *n* dapat dipublikasikan ke umum.

★ Selanjutnya akan dihitung kunci dekripsi d dengan kekongruenan:

$$e \times d \equiv 1 \pmod{m}$$

$$d = \frac{1 + (k \times 3220)}{79}$$

Dengan mencoba nilai-nilai k = 1, 2, 3, ..., diperoleh nilai d yang bulat adalah 1019. Ini adalah kunci dekripsi.

atau dalam desimal ASCII: 7265827332737873

Pecah P menjadi blok yang lebih kecil (misal 3 digit):

$$p_1 = 726$$
 $p_4 = 273$
 $p_2 = 582$ $p_5 = 787$
 $p_3 = 733$ $p_6 = 003$

* Enkripsi setiap blok:

$$c_1 = 726^{79} \mod 3337 = 215$$

$$----e_2 = -582^{79} \mod -3337 = -776 + --- +--- + --- + --- + --- + --- + --- + --- + --- + --- + --- + ---$$

dst untuk sisa blok lainnya

Keluaran: chiperteks *C* = 215 776 1743 933 1731 158.

* Dekripsi (menggunakan kunci privat d = 1019)

$$p_1 = 215^{1019} \mod 3337 = 726$$

$$p_2 = 776^{1019} \mod 3337 = 582$$

dst untuk sisi blok lainnya

Keluaran: plainteks P = 7265827332737873 yang dalam ASCII karakternya adalah HARI INI.

- 1. $729^2 mod 3337 = (729 mod 3337). (729 mod 3337) mod 3337$
- 2. $729^4 \mod 3337 = \{729^2 \mod 3337, 729^2 \mod 3337\} \mod 3337$
- 3. $729^8 \mod 3337 = \{729^4 \mod 3337, 729^4 \mod 3337\} \mod 3337$
- 4. $729^{16} mod3337 = \{729^8 mod3337.729^8 mod3337\} mod3337$
- 5. $729^{32} mod3337 = \{729^{16} mod3337.729^{16} mod3337\} mod3337$
- 6. $729^{64} mod3337 = \{729^{32} mod3337.729^{32} mod3337\} mod3337$
- 7. $729^{72} mod3337 = \{729^{64} mod3337.729^8 mod3337\} mod3337$
- 8. $729^{76} mod3337 = \{729^{72} mod3337.729^4 mod3337\} mod3337$
- 9. $729^{78} mod3337 = \{729^{76} mod3337.729^2 mod3337\} mod3337$
- $10.\ 729^{79} mod 3337 = \{729^{78} mod 3337.729^{1} mod 3337\} mod 3337$

- * Kekuatan algoritma RSA terletak pada tingkat kesulitan dalam memfaktorkan bilangan non prima menjadi faktor primanya, yang dalam hal ini $n = a \times b$.
- ** Sekali n berhasil difaktorkan menjadi a dan b, maka $m = (a 1) \times (b 1)$ dapat dihitung. Selanjutnya, karena kunci enkripsi e diumumkan (tidak rahasia), maka kunci dekripsi d dapat dihitung dari persamaan $e \times d \equiv 1 \pmod{m}$. Ini berarti proses dekripsi dapat dilakukan oleh orang yang tidak berhak.

- ** Penemu algoritma *RSA* menyarankan nilai a dan b panjangnya lebih dari 100 digit. Dengan demikian hasil kali $n = a \times b$ akan berukuran lebih dari 200 digit.
- * Menurut Rivest dan kawan-kawan, uasaha untuk mencari faktor bilangan 200 digit membutuhkan waktu komputasi selama 4 milyar tahun! (dengan asumsi bahwa algoritma pemfaktoran yang digunakan adalah algoritma yang tercepat saat ini dan komputer yang dipakai mempunyai kecepatan 1 milidetik).