

CARRERA DE ESPECIALIZACIÓN EN SISTEMAS EMBEBIDOS

PROTOCOLOS DE COMUNICACIÓN EN SISTEMAS EMBEBIDOS

Trabajo final:

Driver para módulo MAX30102 para Oximetría y pulsímetro

Alumno: Lucas Zalazar

Profesores: Gonzalo Sanchez

Pablo Gómez

INTRODUCCIÓN

Pulsímetro

Monitor de frecuencia cardíaca.

Oximetría

Monitor de saturación de oxígeno en sangre.

MAX 30102

PRINCIPIO DE FUNCIONAMIENTO

DIAGRAMA FUNCIONAL

REGISTROS

FIFO												
FIFO												
FIFO Write Pointer			FIFO_WR_PTR[4:0]				0x04	0x00	R/W			
Overflow Counter				OVF_COUNTER[4:0]				0x05	0x00	R/W		
FIFO Read Pointer				FIFO_RD_PTR[4:0]				0x06	0x00	R/W		
FIFO Data Register	FIFO_DATA[7:0]						0x07	0x00	R/W			
CONFIGURATION												
FIFO Configuration	SMP_AVE[2:0]		FIFO_ ROLL OVER_EN	FIFO_A_FULL[3:0]		0x08	0x00	RW				
Mode Configuration	SHDN	RESET					MODE[2:0]	0x09	0x00	R/W		
SpO ₂ Configuration	0 (Reserved)	SPO2_AI	_	SPO2_SR[2:0] LED_PW[1:0]		LED_PW[1:0]	0x0A	0x00	R/W			
RESERVED							0x0B	0x00	RW			
LED Pulse	LED1_PA[7:0]							0x0C	0x00	R/W		
Amplitude	LED2_PA[7:0]								0x00	RW		
RESERVED								0x0E	0x00	RW		
RESERVED								0x0F	0x00	RW		
Multi-LED Mode Control Registers			SLOT2[2:0)]		SLOT1[2:0]		0x11	0x00	RW		
		SLOT4[2:0]					0x12	0x00	R/W			

LECTURA DE DATOS EN FIFO

```
The central processor evaluates the number of samples to be read from the FIFO:
NUM AVAILABLE SAMPLES = FIFO WR PTR - FIFO RD PTR
(Note: pointer wrap around should be taken into account)
NUM SAMPLES TO READ = < less than or equal to NUM AVAILABLE SAMPLES >
Second transaction: Read NUM SAMPLES TO READ samples from the FIFO:
START;
Send device address + write mode
Send address of FIFO DATA;
REPEATED START;
Send device address + read mode
for (i = 0; i < NUM_SAMPLES_TO_READ; i++) {
Read FIFO DATA;
Save LED1[23:16];
Read FIFO DATA;
Save LED1[15:8];
Read FIFO DATA;
Save LED1[7:0];
Read FIFO DATA;
Save LED2[23:16];
Read FIFO DATA;
Save LED2[15:8];
Read FIFO DATA;
Save LED2[7:0];
Read FIFO DATA;
STOP;
START:
Send device address + write mode
Send address of FIFO RD PTR;
Write FIFO_RD_PTR;
STOP;
```

LIBRERÍA MAX30102

```
initStructMax30102( void );
/* Inicializar device */
bool t max30102 Init( max30102 t driver config );
bool t max30102 setup ( max30102 config t configDevice );
bool t max30102 config ( uint8 t register, uint8 t param, uint8 t shitf );
bool t max30102 reset ( void );
uint8 t max30102 readPartID
                                   ( void ):
                                   ( void );
bool t max30102 clearFIF0
                                   ( void );
float t max30102 readNewValue
                                   ( void );
int16 t max30102 check
                                   ( void );
uint8 t max30102 getWritePointer
                                   ( void );
uint8 t max30102 getReadPointer
                                   ( void );
float t max30102 oxygenSaturation
                                   (uint32 t * ledIr, uint32 t * ledR, int32 t numSamples );
uint32 t max30102 hearBeat
                                   ( void );
/* Funcion para enmascarar registros */
void max30102 maskRegister ( uint8 t register, uint8 t mask, uint8 t bitMask );
```


DEMOSTRACIÓN FUNCIONAL

VIDEO

LECTURA/ESCRITURA DE REGISTROS

PART ID										
Revision ID	REV_ID[7:0]	0xFE	0xXX*	R						
Part ID	PART_ID[7]	0xFF	0x15	R						

^{*}XX denotes a 2-digit hexadecimal number (00 to FF) for part revision identification. Contact Maxim Integrated for the revision ID number assigned for your product.

LECTURA DE DATOS

LECTURA DE DATOS II

iGracias!