Geometric Transformations

- Translation
- Rotation
- Scaling
- Reflection
- Shear

Geometric Transformations

- Changing an object's position (translation), orientation (rotation) or size (scaling)
- Others transformations: reflection and shearing operations

2D Translation

$$-x' = x + t_x, y' = y + t_y$$

$$P = \left[\frac{x}{y}\right], P' = \left[\frac{x'}{y'}\right], T = \left[\frac{t_x}{t_y}\right]$$

- P'=P+T
- Translation moves the object without deformation

2D Translation

- To move a line segment, apply the transformation equation to each of the two line endpoints and redraw the line between new endpoints
- To move a polygon, apply the transformation equation to coordinates of each vertex and regenerate the polygon using the new set of vertex coordinates

2D Translation Routine

```
class wcPt2D {
   public:
     GLfloat x, y;
 };
 void translatePolygon (wcPt2D * verts, GLint nVerts, GLfloat tx, GLfloat ty)
   GLint k;
   for (k = 0; k < nVerts; k++) {
     verts [k].x = verts [k].x + tx;
     verts [k].y = verts [k].y + ty;
   glBegin (GL_POLYGON);
     for (k = 0; k < nVerts; k++)
       glVertex2f (verts [k].x, verts [k].y);
   glEnd();
```

- 2D Rotation
 - Rotation axis
 - Rotation angle
 - rotation point or pivot point (x_r, y_r)

2D Rotation

- At first, suppose the pivot point is at the origin
- $x'=r cos(\theta+\Phi) = r cos θ cos Φ r sin θ sin Φ$ y'=r sin(θ+Φ) = r cos θ sin Φ + r sin θ cos Φ
- $-x = r \cos \Phi$, $y = r \sin \Phi$
- $x'=x \cos \theta y \sin \theta$
 - $y'=x \sin \theta + y \cos \theta$

2D Rotation

$$-P'=R\cdot P$$

$$R = \begin{bmatrix} \cos\Theta & -\sin\Theta \\ \sin\Theta & \cos\Theta \end{bmatrix}$$

2D Rotation

- Rotation for a point about any specified position (x_r, y_r) $x'=x_r+(x-x_r)\cos\theta-(y-y_r)\sin\theta$ $y'=y_r+(x-x_r)\sin\theta+(y-y_r)\cos\theta$

- Rotations also move objects without deformation
- A line is rotated by applying the rotation formula to each of the endpoints and redrawing the line between the new end points
- A polygon is rotated by applying the rotation formula to each of the vertices and redrawing the polygon using new vertex coordinates

2D Rotation Routine

```
class wcPt2D {
  public:
    GLfloat x, y;
};
void rotatePolygon (wcPt2D * verts, GLint nVerts, wcPt2D pivPt, GLdouble theta)
  wcPt2D * vertsRot;
  GLint k:
  for (k = 0; k < nVerts; k++) {
    vertsRot [k].x = pivPt.x + (verts [k].x - pivPt.x) * cos (theta) - (verts [k].y - pivPt.y) * sin (theta);
    vertsRot [k].y = pivPt.y + (verts [k].x - pivPt.x) * sin (theta) + (verts [k].y - pivPt.y) * cos (theta);
  glBegin (GL_POLYGON);
    for (k = 0; k < nVerts; k++)
      glVertex2f (vertsRot [k].x, vertsRot [k].y);
  glEnd();
```

2D Scaling

- Scaling is used to alter the size of an object
- Simple 2D scaling is performed by multiplying object positions (x, y) by scaling factors s_x and s_y

$$x' = x \cdot s_{x}$$

$$y' = y \cdot s_{x}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_{x} & 0 \\ 0 & s_{y} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

or $P' = S \cdot P$

- 2D Scaling
 - Any positive value can be used as scaling factor
 - Values less than 1 reduce the size of the object
 - Values greater than 1 enlarge the object
 - If scaling factor is 1 then the object stays unchanged
 - If $s_x = s_y$, we call it <u>uniform scaling</u>
 - If scaling factor <1, then the object moves closer to the origin and If scaling factor >1, then the object moves farther from the origin

2D Scaling

 We can control the location of the scaled object by choosing a position called the **fixed point** (x_f,y_f)

$$x' - x_f = (x - x_f) s_x$$
 $y' - y_f = (y - y_f) s_y$

$$x'=x \cdot s_x + x_f (1 - s_x)$$

 $y'=y \cdot s_y + y_f (1 - s_y)$

 Polygons are scaled by applying the above formula to each vertex, then regenerating the polygon using the transformed vertices

2D Scaling Routine

```
class wcPt2D {
   public:
     GLfloat x, y;
 };
 void scalePolygon (wcPt2D * verts, GLint nVerts, wcPt2D fixedPt, GLfloat sx,
GLfloat sy)
   wcPt2D vertsNew;
   GLint k:
   for (k = 0; k < n; k++) {
     vertsNew [k].x = verts [k].x * sx + fixedPt.x * (1 - sx);
     vertsNew [k].y = verts [k].y * sy + fixedPt.y * (1 - sy);
   glBegin (GL_POLYGON);
     for (k = 0; k < n; k++)
       glVertex2v (vertsNew [k].x, vertsNew [k].y);
   glEnd();
```

- Many graphics applications involve sequences of geometric transformations
 - Animations
 - Design and picture construction applications
- We will now consider matrix representations of these operations
 - Sequences of transformations can be efficiently processed using matrices

- $P' = M_1 \cdot P + M_2$
 - P and P' are column vectors
 - M₁ is a 2 by 2 array containing multiplicative factors
 - M₂ is a 2 element column matrix containing translational terms
 - For translation M₁ is the identity matrix
 - For rotation or scaling, M₂ contains the translational terms associated with the pivot point or scaling fixed point

- To produce a sequence of operations, such as scaling followed by rotation then translation, we could calculate the transformed coordinates one step at a time
- A more efficient approach is to combine transformations, without calculating intermediate coordinate values

- Multiplicative and translational terms for a 2D geometric transformation can be combined into a single matrix if we expand the representations to 3 by 3 matrices
 - We can use the third column for translation terms, and all transformation equations can be expressed as matrix multiplications

- Expand each 2D coordinate (x,y) to three element representation (x_h,y_h,h) called homogenous coordinates
- h is the homogenous parameter such that $x = x_h/h$, $y = y_h/h$,
- A convenient choice is to choose h = 1

2D Translation Matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

or,
$$\mathbf{P'} = \mathbf{T}(t_x, t_y) \cdot \mathbf{P}$$

2D Rotation Matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

or,
$$P' = R(\theta) \cdot P$$

2D Scaling Matrix

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

or, **P'** =
$$S(s_x, s_y) \cdot P$$

Inverse Transformations

2D Inverse Translation Matrix

$$T^{-1} = \begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse Transformations

2D Inverse Rotation Matrix

$$R^{-1} = \begin{bmatrix} \cos\Theta & \sin\Theta & 0 \\ -\sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Inverse Transformations

2D Inverse Scaling Matrix

$$S^{-1} = \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- We can setup a sequence of transformations as a composite transformation matrix by calculating the product of the individual transformations
- P'=M₂·M₁·P
 P'=M·P

Composite 2D Translations

$$\begin{bmatrix} 1 & 0 & t_{2x} \\ 0 & 1 & t_{2y} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & t_{1x} \\ 0 & 1 & t_{1y} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{1x} + t_{2x} \\ 0 & 1 & t_{1y} + t_{2y} \\ 0 & 0 & 1 \end{bmatrix}$$

Composite 2D Rotations

$$\begin{bmatrix} \cos\Theta_2 & -\sin\Theta_2 & 0 \\ \sin\Theta_2 & \cos\Theta_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos\Theta_1 & -\sin\Theta_1 & 0 \\ \sin\Theta_1 & \cos\Theta_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos(\Theta_1 + \Theta_2) & -\sin(\Theta_1 + \Theta_2) & 0 \\ \sin(\Theta_1 + \Theta_2) & \cos(\Theta_1 + \Theta_2) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Composite 2D Scaling

$$\begin{bmatrix} s_{2x} & 0 & 0 \\ 0 & s_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_{1x} & 0 & 0 \\ 0 & s_{1y} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} s_{1x} \cdot s_{2x} & 0 & 0 \\ 0 & s_{1y} \cdot s_{2y} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Figure 5-9 A trans-formation sequence for rotating an object about a specified pivot point using the rotation matrix $\mathbf{R}(\theta)$ of transformation 5-19.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

General 2D Pivot-Point Rotation

$$\begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\Theta & -\sin\Theta & x_r(1-\cos\Theta) + y_r\sin\Theta \\ \sin\Theta & \cos\Theta & y_r(1-\cos\Theta) - x_r\sin\Theta \\ 0 & 0 & 1 \end{bmatrix}$$

Figure 5-10

A trans-formation sequence for scaling an object with respect to a specified fixed position using the scaling matrix $S(s_x, s_y)$ of transformation 5-21.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

General 2D Pivot-Point Rotation

$$\begin{bmatrix} 1 & 0 & x_f \\ 0 & 1 & y_f \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_f \\ 0 & 1 & -y_f \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} s_x & 0 & x_f (1 - s_x) \\ 0 & s_y & y_f (1 - s_y) \\ 0 & 0 & 1 \end{bmatrix}$$

Matrix Concatenation Properties

$$-M_3 \cdot M_2 \cdot M_1 = (M_3 \cdot M_2) \cdot M_1 = M_3 \cdot (M_2 \cdot M_1)$$

 $-M_2 \cdot M_1 \neq M_1 \cdot M_2$

Figure 5-13

Reversing the order in which a sequence of transformations is performed may affect the transformed position of an object. In (a), an object is first translated in the x direction, then rotated counterclockwise through an angle of 45° . In (b), the object is first rotated 45° counterclockwise, then translated in the x direction.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Other Two Dimensional Transformations

- Reflection
 - Transformation that produces a mirror image of an object

Reflection

- Image is generated relative to an axis of reflection by rotating the object 180° about the reflection axis
- Reflection about the line y=0 (the x axis)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Other Two Dimensional Transformations

Reflection

Reflection about the line x=0 (the y axis)

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Reflection about the origin $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Other Two Dimensional Transformations

Shear

 Transformation that distorts the shape of an object such that the transformed shape appears as the object was composed of internal layers that had been caused to slide

Other Two Dimensional Transformations

Shear

An x-direction shear relative to the x axis

$$\begin{bmatrix} 1 & sh_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad x' = x + sh_x \cdot y$$

-An y-direction shear relative to the y axis

	0	0
sh_y	1	0
$\bigcup_{i=1}^{n} 0_i$	0	1_

Geometric Transformations in Three-Dimensional Space

Geometric Transformations in Three-Dimensional Space

- 3D transformation methods are extended from 2D methods by including considerations for the z coordinate
- A 3D homogenous coordinate is represented as a four-element column vector
 - Each geometric transformation operator is a 4 by 4 matrix

3D Translation

• $x' = x + t_x$, $y' = y + t_y$, $z' = z + t_z$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

P'=P'T

3D Rotation

 Positive rotation angles produce counterclockwise rotations about a coordinate axis, assuming that we are looking in the negative direction along that coordinate axis

Figure 5-36

Positive rotations about a coordinate axis are counterclockwise, when looking along the positive half of the axis toward the origin.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

3D Rotation

- z-axis rotation
 - $-x'=x\cos\theta-y\sin\theta$
 - $y'=x \sin \theta + y \cos \theta$
 - -z'=z

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 & 0 \\ \sin \Theta & \cos \Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

or,
$$P' = R_z(\theta) \cdot P$$

3D Scaling

Scaling relative to the coordinate origin

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

or, **P'** = **S**·**P**

3D Scaling

Scaling with respect to a fixed point (x_f, y_f, z_f)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & (1-s_x)x_f \\ 0 & s_y & 0 & (1-s_y)y_f \\ 0 & 0 & s_z & (1-s_z)z_f \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

OpenGL Geometric Transformation Functions

- A separate function is available for each of the basic geometric transformations AND
- All transformations are specified in three dimensions

Basic OpenGL Geometric Transformations

Translation

- glTranslate* (tx, ty, tz);
 - * is either f or d
 - tx, ty and tz are any real number
 - For 2D, set tz=0.0

Rotation

- glRotate* (theta, vx, vy, vz);
 - * is either f or d
 - theta is rotation angle in degrees
 - Vector v=(vx, vy, vz) defines the orientation for a rotation axis that passes through the coordinate origin
 - For 2D, set tz=0.0

Basic OpenGL Geometric Transformations

- Scaling
 - glScale* (sx, sy, sz);
 - * is either f or d
 - sx, sy and sz are any real number
 - Negative values generate reflection

OpenGL Matrix Operations

- Modelview matrix, used to store and combine geometric transformations
 - glMatrixMode(GL_MODELVIEW);
- A call to a transformation routine generates a matrix that is multiplied by the current matrix
- To assign the identity matrix to the current matrix
 - glLoadIdentity();

OpenGL Matrix Stacks

- OpenGL maintains a matrix stack for transformations
- Initially the modelview stack contains only the identity matrix
- To save the current matrix on the stack
 - glPushMatrix();
- To restore the matrix from the stack
 - glPopMatrix();

OpenGL Transformation Examples

```
glMatrixMode (GL_MODELVIEW);
glColor3f (0.0, 0.0, 1.0);
glRecti(50,100,200,150);
glColor3f (1.0, 0.0, 0.0);
glTranslatef(-200.0,-50.0, 0.0);
glRecti(50,100,200,150);
glLoadIdentity();
glColor3f (0.0, 1.0, 0.0);
glRotatef(90.0,0.0, 0.0,1.0);
glRecti(50,100,200,150);
glLoadIdentity();
glColor3f (0.0, 0.0, 0.0);
glScalef(-0.5,1.0, 1.0);
glRecti(50,100,200,150);
```


OpenGL Transformation Examples

This is more efficient

```
glMatrixMode (GL MODELVIEW);
glColor3f (0.0, 0.0, 1.0);
glRecti(50,100,200,150);
glPushMatrix();
glColor3f (1.0, 0.0, 0.0);
glTranslatef(-200.0,-50.0, 0.0);
glRecti(50,100,200,150);
glPopMatrix();
glPushMatrix();
glColor3f (0.0, 1.0, 0.0);
glRotatef(90.0,0.0, 0.0,1.0);
glRecti(50,100,200,150);
glPopMatrix();
glColor3f (0.0, 0.0, 0.0);
glScalef(-0.5,1.0, 1.0);
glRecti(50,100,200,150);
```


OpenGL Transformation Routines

- For example, assume we want to do in the following order:
 - translate by +2, -3, +4,
 - rotate by 45⁰ around axis formed between origin and 1, 1, 1
 - scale with respect to the origin by 2 in each direction.
- Our code would be glMatrixMode(GL_MODELVIEW); glLoadIdentity(); //start with identity glScalef(2.0,2.0,2.0); //Note: Start with the LAST operation glRotatef(45.0,1.0,1.0,1.0); glTranslatef(2.0,-3.0, 4.0); //End with the FIRST operation