Characterizing a Spring Pendulum with Monte Carlo Methods

Dawn Sargent and Mattison Johnson Fairmont State University 26 April 2018

Performance Metric

What is chaotic motion?

Motion	Gravity	Initial Angle	Initial Stretch	Length	Mass	Spring
Regular	9.57	10.85	0.099	0.8	1.4	29.895
Chaotic	9.73	10.16	0.088	1.065	1.058	29.79

Performance metric: If the max angle exceeds 21°, it is chaotic.

Kernel Density Estimate

What is a kernel density estimate?

 $https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm \\ https://web.stanford.edu/~hastie/Papers/ESLII.pdf$

KDE

K-Nearest Neighbors

What is the k-nearest neighbor method?

https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/

Accuracy

Parameters	Accuracy
Mass vs Length	86.94%
Mass vs Initial Stretch	83.03%
Mass vs Initial Angle	78.70%
Mass vs Spring	78.32%
Mass vs Gravity	78.31%
Length vs Initial Stretch	70.97%
Initial Angle vs Length	65.95%
Length vs Spring	65.84%
Length vs Gravity	65.81%
Initial Angle vs Initial Stretch	65.50%
Initial Stretch vs Spring	65.18%
Initial Stretch vs Gravity	65.11%
Initial Angle vs Spring	58.56%
Initial Angle vs Gravity	58.53%
Spring vs Gravity	57.94%

Further Investigation

- Step sizes, computation time, and error
- Parallel processing