Question One: (15 Marks) Start a new sheet of paper.

a) Find
$$\int \frac{x}{\sqrt{2-x^2}} dx$$
 using the substitution $x = \sqrt{2} \sin \theta$. [2]

- b) Show that sin(A + B) + sin(A B) = 2 sin A cos B, and hence find $\int sin 5x cos 3x dx$. [3]
- c) Use Integration by Parts to show that $\int_{0}^{1} \tan^{-1} x dx = \frac{\pi}{4} \frac{1}{2} \ln 2.$ [3]
- d) Given that $J_n = \int_0^{\frac{\pi}{2}} \cos^n x dx$:
 - i) Prove that $J_n = \frac{(n-1)}{n} J_{n-2}$, where *n* is an integer and $n \ge 2$. [4]
 - ii) Hence evaluate $\int_{0}^{\frac{\pi}{2}} \cos^6 x dx$. [3]

Ouestion Two: (15 Marks) Start a new sheet of paper.

a) Given that z = 2 + i and $\omega = 2 - 3i$, find, in the form a + ib

i)
$$\left(\overline{z}\right)^2$$

ii)
$$\left(\frac{z}{\omega}\right)$$
 [1]

b) On the Argand diagram, shade the region where the inequalities

$$Q < |z| < 1$$
 and $\frac{\pi}{4} < \arg(z) < \frac{3\pi}{4}$ both hold. [3]

c) Find the complex square roots of $7 + 6i\sqrt{2}$, giving your answer in the form a + ib, where a and b are real. [3]

(Question 2 continued over)

- d) Given the two complex numbers $z_1 = r_1 cis\theta$ and $z_2 = r_2 cis\phi$,
 - i) Show that, if z_1 and z_2 are parallel, $z_1 = kz_2$, for k real. [1]

ABCD is a quadrilateral with vertices A, B, C and D represented by the complex numbers (vectors) z_1 , z_2 , z_3 and z_4 , as shown in the sketch opposite.

[2]

- ii) Give two possible vectors (in terms of z_1, z_2) for side AB. [1]
- iii) If ABCD is a parallelogram, show that $z_1 z_2 z_3 + z_4 = 0$. [3]
- e) Explain the fallacy in the following argument: [2] $-1 = \sqrt{-1} \times \sqrt{-1} = \sqrt{(-1)(-1)} = \sqrt{1} = 1. \text{ Hence } 1 = -1.$

Question Three: (15 Marks) Start a new sheet of paper.

a) F(x) is defined by the equation $f(x) = x^2 \left(x - \frac{3}{2}\right)$, on the domain $-2 \le x \le 2$.

Note: each sketch below should take about one third of a page.

i) Draw a neat sketch of F(x), labelling all intersections with coordinate axes and turning points.

ii) Sketch
$$y = \frac{1}{F(x)}$$
 [2]

iii) Sketch
$$y = \sqrt{F(x)}$$
 [2]

iv) Sketch
$$y = \ln(F(|x|))$$
 [2]

- b) The Hyperbola **4** has the equation $\frac{x^2}{25} \frac{y^2}{9} = 1$.
 - i) Find the eccentricity of **%**. [1]
 - ii) Find the coordinates of the foci of \mathcal{H} . [1]
 - iii) Draw a neat one third of a page size sketch of \mathcal{H} . [2]
 - iv) The line x = 6 cuts \mathcal{H} at A and B. Find the coordinates of A and B if A is in the first quadrant. [1]
 - v) Derive the equation of the tangent to \mathcal{H} at A. [2]

Question Four: (15 Marks) Start a new sheet of paper.

a) The shaded region bounded by $y = 3 - x^2$, $y = x^2 - x$ and x = 1 is rotated about the line x = 1. The point P is the intersection of $y = 3 - x^2$ and $y = x^2 - x$ in the second quadrant.

- i) Find the x coordinate of P. [1]
- ii) Use the method of cylindrical shells to express the volume of the resulting solid of resolution as an integral. [3]
- iii) Evaluate the integral in part (ii) above. [2]

b) Find real numbers A, B and C such that

$$\frac{x}{(x-1)^2(x-2)} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2} + \frac{C}{(x-2)}.$$
 [2]

Hence show that
$$\int_{0}^{\frac{1}{2}} \frac{x}{(x-1)^{2}(x-2)} dx = 2 \ln\left(\frac{3}{2}\right) - 1.$$
 [2]

c) Find all x such that
$$\cos 2x = \sin 3x$$
, if $0 \le x \le \frac{\pi}{2}$. [2]

d) Solve for
$$x : tan^{-1}(3x) - tan^{-1}(2x) = tan^{-1}\left(\frac{1}{5}\right)$$
 [3]

Ouestion Five: (15 Marks) Start a new sheet of paper.

a) For the polynomial equation $x^3 + 4x^2 + 2x - 3 = 0$ with roots α , β and γ , find:

i) The value of
$$\alpha^2 + \beta^2 + \gamma^2$$
 [1]

ii) The equation whose roots are
$$(1-\alpha)$$
, $(1-\beta)$, $(1-\gamma)$. [2]

iii) The equation whose roots are
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$, $\frac{1}{\gamma}$. [3]

- b) Determine all the roots of $8x^4 25x^3 + 27x^2 11x + 1 = 0$ given that it has a root of multiplicity 3. [4]
- c) The equation $x^4 + 4x^3 + 5x^2 + 2x 20 = 0$ has roots α , β , γ and δ over the complex field.
 - i) Show that the equation whose roots are $\alpha + 1$, $\beta + 1$, $\gamma + 1$ and $\delta + 1$ is given by $x^4 x^2 20 = 0$. [2]
 - ii) Hence solve the equation $x^4 + 4x^3 + 5x^2 + 2x 20 = 0$. [3]

Question Six: (15 Marks) Start a new sheet of paper.

a)

The circles above have centres at O and radii of 5 units and 3 units respectively.

A ray from O making an angle θ with the positive x-axis, cuts the circles at the points M and N as shown.

NS is drawn parallel to the y-axis and MT parallel to the x-axis.

NS and MT intersect at P.

i) Show that the parametric equations of the locus of P in terms of θ are given by $x = 5\cos\theta$ and $y = 3\sin\theta$. [2]

ii) By eliminating θ , find the Cartesian equation of this locus. [1]

iii) Find the equation of the normal (in general form) at the point P when $\theta = \frac{\pi}{3}$. [2]

b) The functions S(x) and C(x) are defined by the formulae $S(x) = \frac{1}{2} \left(e^x - e^{-x} \right) \text{ and } S(x) = \frac{1}{2} \left(e^x + e^{-x} \right).$

i) Verify that S'(x) = C(x). [1]

ii) Show that
$$S(x)$$
 is an increasing function for all real x . [1]

iii) Prove
$$[C(x)]^2 = 1 + [S(x)]^2$$
 [2]

iv)
$$S(x)$$
 has an inverse function, $S^{-1}(x)$, for all real values of x .
Briefly justify this statement. [1]

v) Let
$$y = S^{-1}(x)$$
. Prove that $\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}}$. [2]

vi) Hence, or otherwise, show that
$$S^{-1}(x) = ln\{x + \sqrt{1 + x^2}\}$$
. [3]

Ouestion Seven: (15 Marks) Start a new sheet of paper.

a) Let OAB be an isosceles triangle, OA = OB = r, AB = b.

Let OABD be a triangular pyramid with height OD = h and OD perpendicular to the plane of OAB as in the diagram above.

Consider a slice S of the pyramid of width δa as shown at EFGH in the diagram. The slice S is perpendicular to the plane of OAB at FG with FG || AB and BG = a. Note that GH || OD.

- Show that the volume of S is $\left(\frac{r-a}{r}\right)b\left(\frac{ah}{r}\right)\delta a$ when δa is small. (You may assume the slice is approximately a rectangular prism of base EFGH and height δa).
- ii) Hence show that the pyramid DOAB has a volume of $\frac{1}{6}hbr$. [2]

- iii) Suppose now that $\angle AOB = \frac{2\pi}{n}$ and that *n* identical pyramids DOAB are arranged about O as the centre with common vertical axis OD to from a solid C. Show that the volume V_n of C is given by $V_n = \frac{1}{3}r^2hn\sin\frac{\pi}{n}$. [2]
- iv) Note that when n is large, C approximates a right circular cone. Hence, find $\lim_{n\to\infty} V_n$ and verify a right circular cone of radius r and height h has a volume of $\frac{1}{3}\pi r^2 h$. [2]
- b) On the hyperbola $xy = c^2$, three points P, Q and R are on the same branch, with parameters p, q and r respectively. The tangents at P and Q intersect at U. If O, U and R are collinear, find the relationship between p, q and r. [6]

Question Eight: (15 Marks) Start a new sheet of paper.

a)

i) Use the substitution
$$x = \frac{2}{3} \sin \theta$$
 to prove that
$$\int_{0}^{\frac{2}{3}} \sqrt{4 - 9x^2} dx = \frac{\pi}{3}.$$
 [3]

ii) Hence, or otherwise, find the area enclosed by the ellipse

$$9x^2 + y^2 = 4. ag{1}$$

b)

i) Use an appropriate substitution to verify that
$$\int_{0}^{a} \sqrt{a^2 - x^2} dx = \frac{\pi a^2}{4}.$$
 [2]

ii) Deduce that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is given

by
$$\pi ab$$
. [2]

c) The diagram below shows a mound of height H. At height h above the horizontal base, the horizontal cross-section of the mound is elliptical in shape, with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \lambda^2$, where $\lambda = 1 - \frac{h^2}{H^2}$, and x, y are appropriate coordinates in the plane of the cross-section.

Show that the volume of the mound is $\frac{8\pi abH}{15}$. [3]

- d) The quadratic equation $x^2 (2\cos\theta)x + 1 = 0$ has roots α and β .
 - i) Find expressions for α and β . [1]
 - ii) Show that $\alpha^{10} + \beta^{10} = 2\cos(10\theta)$. [3]

SOLUTIONS: Yr 12 TRIAL HSC EXTN II: 2003	MARKING	COMMENTS P
$A)$ i) $J_n = \int_{-\infty}^{\frac{\pi}{2}} \cos^n x dx$	1 correct method	
= (cox con x dx	for splitting as	. many tred the approach
= $\left[\sin x \cos^{n-1} x \right]_{x}^{\frac{\pi}{2}} - \int_{x}^{\frac{\pi}{2}} (n-1) \cos^{n-2} x \cdot \sin x \cdot \sin x dx$	ا د و د د الم	-
$= (0-0) + (n-1) \int_{0}^{\frac{\pi}{2}} \cos^{\frac{\pi}{2}} x \sin^{2} x dx$	O resolving to	and got lost. These need to be known.
$= (n-1) \int_{-\infty}^{\infty} (1-cn^2\pi) con^{-2}\pi dsc$	integral	be known.
=(n-i) \(\frac{1}{2}\cos^{n-2}xdx -(n-i) \(\frac{1}{6}\cos^n xdx \)	7.7	
$J_n = (n-1) J_{n-2} - (n-1) J_n$	O resolving to	
$J_n + (n-1)J_n = (n-1)J_{n-2}$	Jn-z	
$n J_n = (n-1) J_{n-2}$	1) correct algoba	
$\int_{n} = \frac{(n-1)}{n} \int_{n-2}$	to solution	
ii) (* cos x dac = J6		
. Jo = 0 5 Ja	Descriptuse	ال المحمد
$=\frac{5}{6}\cdot\frac{3}{4}$ J ₂	of formula	. well done.
= \frac{5}{48} \frac{1}{2} \tau_{\text{o}} = \frac{1}{48} \frac{1}{2} \text{da}	1 evaluates J.	
= 48.) = de	1) answer	
= 48. [2]		
= 96		
QUESTION TWO:		. some sumple numates made
(\hat{z})		· nome sumple
$= (2-i)^2$		·
= 4-4c-1	1 answer	
= 3-4: -> (Z)		
(2+i) $(2+3i)$		
- (2-3i) (2+3i) - 4+6i+2i-3 - 4+9		· generally good
- 4+9 1+8i	1) answer	
	Obsurdances	
20g2=# . argz=#	Desmeet 121	· generally good.
	(A)	
12/<1	Ocorrect any	
	Minus .	
	•	

•

UTIONS: YA 12 TRIAL HSC EXTN II: 2003	MARKING	COMMENTS p3
c) $(a+ib) = \sqrt{7+6i\sqrt{2}}$ a, b real (a+ib) = $7+6i\sqrt{2}$ $a^2-b^2+2abi = 7+6\sqrt{2}i$ equating real and imaginary parts. $a^2-b^2=7-0$ $2ab=6\sqrt{2}$ $a=\frac{67^2}{2b}$ $=\frac{35^2}{b}-2$ substituting ② in O: $(\frac{35^2}{b})^2-b^2=7$ $-\frac{15}{b^2}-b^2=7$ $-18-b^4=7b^2$	O setup a, b relationshy	mostly well done. Some students tried to use formular for funding aguare roots of complex numbers (not very successfully)
$(a \ b^{4} + 7b^{2} - 18 = 0)$ $(b^{2} + 9)(b^{2} - 2) = 0$ $b^{2} = 2, -9$ reject $b^{2} = -9$ as b is real. $b = \pm \sqrt{2} \text{in } @:$	@ reacher for correct to value	
$b = \sqrt{2}$ $a = \sqrt{2}$ $a = \sqrt{2}$ $a = -\sqrt{2}$ $= 3$ $= -3$ $= -3$ $= -3 - \sqrt{2}i$	O correct roots.	
1) i) for $Z_1 \parallel Z_2$, $\theta = \phi$, $Z_2 = \Gamma_2 \cos \theta$ $= \cos \theta = \frac{Z_2}{\Gamma_2}$ $= : from Z_1 = \Gamma_1 \cos \theta$		generally well done
= $r_1 \cdot \frac{z_2}{r_2}$ = $r_2 \cdot \frac{z_2}{r_2}$ where $k = \frac{r_1}{r_2}$	o deducing relationship.	
ii) Side AB is either \overrightarrow{AB} or \overrightarrow{BA} iii) Side AB is either \overrightarrow{AB} or \overrightarrow{BA} iii) Side AB is either \overrightarrow{AB} or \overrightarrow{BA} iii) Side AB is either \overrightarrow{AB}	① for both possibilities	, oK

SLUTIONS: Yr 12 TRIAL H.S.C. EXTN II: 2003	MARKING	COMMENTS
s)i) $a=5$, $b=3$ and for hyperbola: $b^2=a^2(e^2-1)$ $a=5$, $b=3$ and for hyperbola: $b^2=a^2(e^2-1)$ $a=5$, $a=5$, $a=6^2-1$ $a=5$, $a=6^2-1$ $a=6^$	© correct value	
ii) Foci are S(ae,0) and S'(-ae,0) -: (134,0) and (-134,0)	Donect four.	
$y = \frac{5}{5}x$ $y = \frac{5}{5}x$	① asymptotes ① correct shape + intercepts.	, could also get thus marke if shape is reasonable an scool inchicated on y-acci
$x = 6: \frac{36}{25} - \frac{4^{2}}{4} = 1$ $\frac{36}{25} - 1 = \frac{1}{9}$ $y^{2} = \frac{9 \times 11}{25}$ $y = \pm \frac{1}{5}$ $Aio (6, \frac{11}{5}) \text{ and } Bio (6, -\frac{11}{5})$	Ocornect A and B	
$ \frac{25}{25} - \frac{1}{4} = 1 $ $ \frac{21}{25} - \frac{1}{4} = 1 $ $ \frac{21}{25} - \frac{1}{4} = 0 $ $ \frac{21}{25} - \frac{1}{4} = 0 $ $ \frac{1}{25} - 1$	O correct differentiation for da O correct subst to egn.	· ignored small arithmet errors

TIONS: Y- 12 TRIAL HSC. EXTN II: 2003	MARKING	COMMENTS P?
(cont) : $y - \frac{\sqrt{99}}{5} = \frac{579}{579}(\pi - 6)$	·	
$5\sqrt{194}$, $-99 = 54x - 324$		
$o = 54x - 5\sqrt{99}y - 225$		
PESTION 4:		
$(x) = x^2 = x^2 - x$		
$0 = 2x^2 - x - 3$		
$= 2x^2 + 2x - 3x - 3$	1 correct	
$=2\pi(\pi+1)-3(\pi+1)$	1 correct value for x	
=(x+1)(2x-3)		
$x = -1, \frac{3}{2}$		
: x co-ord of P 10 -1 (as P us in 2nd quadrant)		
typical shell:		
unner radius: r=1-x		
outer Radius: R = 1-(x+8x)		
-: Area of annulus:	1 area of	
$SA = \pi R^2 - \pi r^2$	annulus SA	
$= \pi \left(1 - \left(x + \delta \alpha\right)^2 - \pi \left(1 - \alpha\right)^2 \right)$		
$= \pi \left[(-2(x+5x) + (x+5x)^2 - (1-2x+x^2)) \right]$		
$= \sqrt{1-2x-26x+x^2+2x6x+6x^2-1+2x-x^2}$	}	
$= \pi \left(2x \delta x - 2 \delta x + \delta x^2 \right)$		If the terms
=27(x-1) 8x (ignoring Sx as		I mark: volume of typical shall
too small).		imate , correct limits
a small volume of shell is given by	1 correct h	(mark: untegration
$SV = SA.h$ where $h = (3-x^2) - (x^2-x)$	leading to	
$=3+x-2x^2$	81	
$SV = 2\pi (x-1)(3+x-2x^2)Sx$!
$=2\pi (3x+x^2-2x^3-3-x+2x^2)$		·
$=2\pi(-3+2x+3x^2-2x^3)\delta x$	1 correct summing	
. Volume of the solid is given by	leading to	
V= ≥ SV,	integral	·
= \$x-70 x=-, 2T (-3+2x+3x2-2x3) Sx		
$=2\pi\int_{0}^{\pi}-3+2x+3x^{2}-2x^{3}dx$		
~.I		

COMMENTS OLUTIONS: YE 12 TRIAL HSC EXTN IT: 2003 MARKING i) - V= 211 [-3x+x2+x3-2x9]. 1) correct . Full marks only for correct $=2\pi \left[\left[\left(-3+1+1-\frac{1}{2} \right) - \left(3+1-1-\frac{1}{2} \right) \right] \right]$ solution. integration =21 -12 - 22 0 correct $= 8\pi \omega$ $\frac{x}{2} = \frac{A(x-1)(x-2) + B(x-2) + C(x-1)^{2}}{2}$ answer $(x-1)^{2}(x-2)$ $(x^{2}-1)^{2}(x-2)$: $x = A(x-1)(x-2) + B(x-2) + C(x-1)^2 - 0$ 1 subst to in (): x=1 x=2 ques: 1 = B(1-2) gues: $2 = C(2-1)^2$ find B, C (or ie B=-1 ie C=2 any other method) ubo, from 0: $x = A(x^2-3x+2) + B(x-2) + C(x^2-2x+1)$ () equating 6-eff equating coefficients of x2: 0=A+C to find A. _'. A = -2 $\frac{x}{(x-1)^2(x-2)} = \frac{-2}{(x-1)} - \frac{1}{(x+1)^2} + \frac{2}{x-2}$ $\int_{0}^{\pi} \frac{x}{(x-1)^{2}(x-2)} dx$ 1 correct reamangement $= \int_{0}^{\frac{\pi}{2}} \frac{2}{(\pi-2)} - \frac{2}{\pi-1} - \frac{1}{(\pi-1)^{2}} dx$ to get to integration $= \int_{-2\pi}^{2\pi} \frac{-2}{2-x} + \frac{2}{1-x} - \frac{1}{(5c-1)^2} dx$ $= \left[-2\ln(2-x)\cdot(-1) + 2\ln(1-x)\cdot(-1) + \frac{1}{x-1}\right]_0^{1/2}$ Ocorrect subst = [2ln(2-x)-2ln(1-x)+x-1]" to show = 2ln 2 + 2ln2-2-(2ln2-2ln1-1) answer. =21n3+21n2-2-21n2+0+1 $=2\ln(3)-1$. c) $\cos 2x = c = \sin 3x$ c constant $\therefore \sin 3x = c$

or Con (2-32) = c

 $\frac{\pi}{2} - 3x = \cos^{-1}(c) + 2\pi n \quad n = 0, \pm 1, \pm 2...$

MONS: YE12 TRIAL H.S.C. EXTN III: 2003	MARKING	COMMENTS	9
1 (cont) 3x = 7 + 2TTN + cos (c)			•
or $3x = \frac{\pi}{2} - 2\pi n - cor^{-1}(c)$	1 correct		
but cos2x=c also,	setup of problem		
$2x = cor^{-1}(c)$	(any method)		
$3x = \frac{\pi}{2} - 2\pi n - 2x$			
$5x = \left(\frac{1-4n}{2}\right)\Pi$	1 correct		
$\therefore x = \left(\frac{1-4n}{10}\right)\pi$	solutions in		
for $0 \le x \le \frac{\pi}{2}$, we get (using n=0, n=-) $x = \frac{\pi}{10}, \frac{\pi}{2}$	range.		
d) let tan 3x = 0 and tan 2x = 0			
: tano= 3x tano= 2x	•		
for $\tan^{-1}(\frac{1}{5}) = \tan^{-1}(3x) - \tan^{-1}(2x)$	1) correct use		
$= \Theta - \phi$	of tan		
taking tan of both sides:			
$tan(tan'' \frac{1}{5}) = tan(\theta - \phi)$ $\frac{tan \theta - tan \phi}{1 + tan \theta tan \phi}$			
$\frac{1}{5} = \frac{1 + \tan \theta \tan \phi}{3x - 2x}$			
$= \frac{3x - 2x}{1 + 3x \cdot 2x}$	1 forms		
$1+6n^2=5n$	quadrahi		
$or o = 6x^2 - 5x + 1$			
$= 6x^{2} - 3x - 2x + 1$ $= 3x(2x - 1) - 1(2x - 1)$	0. +		
= 5x(2x-1) - 1(2x-1) $= (2x-1)(3x-1)$	10 correct		
$\begin{array}{c} = (2x-1)(3x-1) \\ \therefore x = \frac{1}{2}, \frac{1}{3} \end{array}$	answers		
QUESTION 5:			
a) x+ p+8 = -4			
$\alpha\beta + \alpha\Upsilon + \beta\Upsilon = 2$			
$\angle \beta Y = 3$. some had an incorrect	ŧ
i) $\alpha^2 + \beta^2 + \delta^2 = (\alpha + \beta + \delta) - 2(\alpha \beta + \beta \delta + \alpha \delta)$	1) answer	squares expansion!	
$= (-4)^2 - 2(2)$			
= 12			
		r	

		^
LUTIONS: Y. 12 TRIAL H.S.C. EXTN II: 2003	MARKING	COMMENTS PIL
ii) for roots $x = 1 - x \implies \alpha = (1 - x)$		
i. (1-x) in eqn gives:	Ocorrect	· many simple algebraic
$(1-x)^3+4(1-x)^2+2(1-x)^3=0$	setup with coots	exton
$1-3x+3x^2-x^3+4-8x+4x^2+2x-2x-3=0$	1 correct egn.	
$-13x + 7x^2 - x^3 = 0$		
or $x^3 - 7x^2 + 13x - 4 = 0$		
iii) for roots $x = \frac{1}{x}$		
$(\frac{1}{2})^3 + 4(\frac{1}{2})^2 + 2(\frac{1}{2}) - 3 = 0$	roots	
xx^3 : $1 + 4x + 2x^2 - 3x^3 = 0$	1 correct egn.	
$\frac{3x^3 - 2x^2 - 4x - 1 = 0}{3x^3 - 2x^2 - 4x - 1} = 0$		
b) let a be the root of multiplicity 3,		1 1 6"(4)=0
then $f(\alpha) = f'(\alpha) = f''(\alpha) = 0$.		· several used P"(x)=0
$f'(x) = 32x^3 - 75x^3 + 54x - 11$	1) set up	· many did not understand
$P''(x) = 96x^2 - 150x + 54$	problem with	the implications for a root with multiplicity!
if Paj=0, a w the solution 0= 96x2-150x +54	P"(a)=0	
or $0 = 48x^2 - 75x + 27$ $75 \pm \sqrt{2625 - 4.48.27}$		
$2. x = \frac{75 \pm \sqrt{2625 - 4.48.27}}{96}$ $15 \pm \sqrt{441}$		
= 75±21 = 76	1 correct	
$=1,\frac{9}{16}$	possibilities for	
now, $P'(i) = 32-75+54-11$	tripple root.	
= 0	, _{(f}	
and P(1) = 8-25+27-11+1.		
= 0		1 de malcide date
(x-1) is a factor of P(x)	1 correct	· need to explicitly state the other root. (8x-1) as
$(x-1)^3$ is a factor of $f(x)$ so $\alpha = 1$ so the tripple root.	tripple root with	a factor unplies a root of
$Rlso$ $d^3B = 8$	reasons	x=1.
i): x= x+1 is a root of the region egn	Oother root	·
c) let & B, 8 and 8 be the roots of the equation		
i): x = x+1 is a root of the regd egn	1) correct subst	
40 K = X-1	for root.	
$(x-1)^{4} + 4(x-1)^{3} + 5(x-1)^{2} + 2(x-1) - 20 = 0$	ļ .	

MONS: YOLZ TRIAL H.S.C. EXTN II: 2003	MARKING	COMMENTS PIL
(cont): (x4-4x3+6x2-4x+1)+(4x3-12x2+12x-4)+(5x2-10x+5)+2x-2-2=	1 correct alg.	· many errors expanding this
$\frac{1}{2}x^{4}-x^{2}-20=0$ as regd.	10 30,11	
i) now $x^4 - x^2 - 20 = 0$ $(x^2 - 5)(x^2 + 4) = 0$. many had fromble texting
$\pm x^2 = 5, -4$ $\pm x = \pm \sqrt{5}, \pm 2i$	Ocorrect roots	the rootsback to the ariginal with K=X-1
-: the roots of $x^{7} + 4x^{3} + 5x^{2} + 2x - 20 = 0$ are guen by $x = x - 1$	nodes for orig.	
2UESTION 6:	egn.	· link back to the definition given in the diagram . This
a) i) $x_0 = 0.5$ $y_0 = 0.7$ $= 5 \cos \theta = 3 \sin \theta$	1 each	is the steeling point, and many nimed it. · 'chiminate 0" => show how
ii) - $\frac{26}{5} = \cos \theta$ and $\frac{3}{3} = \sin \theta$ $\frac{x^2}{25} = \cos^2 \theta$ $\frac{x^2}{9} = \sin^2 \theta$ $\frac{x^2}{25} + \frac{1}{9} = \cos^2 \theta + \sin^2 \theta$	1) correct	this happens, don't just write the equation down!
iii) normal to an ellipse is given by		- many found tangent instead
$\frac{ax}{\cos \theta} - \frac{by}{\sin \theta} = a^2 - b^2$ where $a = 5, b = 3$ $\theta = \frac{\pi}{3}$	1 correct subst	· put your answer into one of
$\frac{5x}{\cos^{\frac{2}{3}}} - \frac{3y}{\sin^{\frac{2}{3}}} = 25 - 9$ $10x - \frac{6y}{\sqrt{3}} = 16$	m formula	left their answer unfinished
$\frac{10\sqrt{3} \times -6y - 16\sqrt{3} = 0 \text{in eqn.}}{b) \text{ i) } S(x) = \frac{d}{dx} (\frac{1}{2}(e^x - e^{-x}))$	(any form)	
$=\frac{1}{2}(e^{x}+e^{-x})$	O set out	
$= C(x)$ ii) $e^{x} > 0$ for all x	dearly.	reasons why SEX)>0. Just
$e^{-x}>0$ for all x $e^{-x}+e^{-x}>0$ for all x	Denect	stating it earns no marks.
ie S'(x)>0 for all x	reasoning.	
=> S(x) is monotonically increasing		

LUTIONS: YO 12 TRIAL H.S.C. EXTN II: 2003	MARKING	COMMENTS PL
iii) $[C(\alpha)]^2 = \left[\frac{1}{2}(e^{\alpha} + e^{-\alpha})\right]^2$	() ехргозмоп	
$=\frac{1}{4}(e^{2x}+2e^{x}-x+e^{-2x})$	for [C(x)]	
$=\frac{1}{4}\left(e^{2x}+e^{-2x}+2\right)$	correct	
$1+[S(e)]^2=1+[\frac{1}{2}(e^x-e^{-x})]^2$		
$=1+\frac{1}{4}(e^{2x}-2e^{x}e^{-x}+e^{-2x})$	Oreduction	
$=\frac{1}{4}(4+e^{2x}-2+e^{-2x})$	of 1+[sx)]	
$=\frac{1}{4}(e^{2x}+e^{-2x}-2)$	correct (or	
= [c(x)] from above	equivalent)	· many attempted explanations
iv) as S&) is monotonically increasing, each x must produce a unique y value	(i) appropriate	revealed a lack of understand
each x must produce a unique y value	explaination	of what invene means.
=> S(x) has a 1-1 correspondence .: 5'(x) exists for all values of x.		
$v)$ $u = S^{-1}(x)$. very few piched up the lunks
$y = S^{-1}(x)$ $S(y) = x$	() inverse rules	parts, so many futile atten
$\frac{dx}{dy} = S(y)$ $= C(y)$	to give dy	at a simple problem. Look at
C(y)	arreatly	unhedparts like this one - the make the colution simpler!
$= \sqrt{1 + \mathcal{D}(y)}$	(1) correct subst	
$\frac{1}{2} = \sqrt{1+\chi^2}$	to formula.	
$\frac{1}{(x)} \frac{dx}{dx} = \sqrt{1+x^2}$ $\frac{dx}{(x)} = \sqrt{1+x^2} \qquad etx = tan \theta $	1 reduction	· The question is to show the
$d\sigma = nec^2 \Theta d\Theta$	_	relationship => not using the standardintegral table. The
1 1266 6 402	1 correct	integration is the quistion,
$= \int \frac{J + \tan^2 \theta}{\int \sec^2 \theta} d\theta$ $= \int \frac{\sec^2 \theta}{\cot \theta} d\theta$ $= \int \sec \theta d\theta$	of sec 0	its not part of something
	1 correct sulet	bigger
= Seco(seco+tano) do 01	to give y interm	
= In (seco + tano) +c	对大,	
$\frac{1}{2} = \ln(x + \sqrt{1 + x^2}) + c$		
QUESTION 7:	Desmect	
a)i)In base \triangle OAB:	setup of	
$NB = \frac{1}{2} OG = V-a$	vanables	
1 N3 18		
H &- b>		

ILUTIONS: Yr 12 TRIAL H.S.C. E.	хти II: 2003	MARKING	COMMENTS /
ii) from $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,
$b^{2}x^{2} + a^{2}y^{2} = a^{2}b^{2}$ $a^{2}y^{2} = a^{2}b^{2}$	-b ² x ²		
$-y = b^2 - y = \sqrt{b^2}$	- 2 x2	1) reducing equation to	
= 5 5	$\frac{a^2 - b^2 \chi^2}{a^2}$	stad for	
= $\frac{b}{a} \sqrt{a}$ area of 1st quadrant is		:	,
area of 1st quadrant is $A_1 = \int_0^a \frac{b}{a} \sqrt{a}$	•	1 correct	
= b. Ta	from (i)	reasoning to Soln.	
i total area (from syn			
$A = 4. \frac{\text{tab}}{4}$ $= \pi ab$		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
c) DV = A Dh where A w			
ellipse at from (b) above:	hught h.	① correct	
H=71 ab 2	ı	deduction of A	
$\left(a_{3} \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \lambda^{2}\right)$ $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$			
$\Delta V = \pi ab \lambda^2 \Delta h$ $V = \int_{-\infty}^{\infty} \pi ab \left(1 - \frac{1}{2}\right)^2 dt$	1 2 2 1 L	1 correct	. wrong A, but correct
- DO	2, ht 11	Vin terms of	· wrong & , but correce method, gained mark
$= \pi ab \int_0^{\pi} 1 - \frac{2h^2}{H^2}$	HT ON	h's.	
= Trab [h-3]		1 correct	
= 17ab 5 15H - 10H	+ 34	leading to soln	
= 8 TabH 00	regd,		