Chapter 5: Part C Simple applications of macroscopic thermodynamics

Zhi-Jie Tan Wuhan University

2019 spring semester

- > free expansion
- > Throttling process
- heat engine

Free energy expansion and throttling process 5.9 free expansion

Open valve and the gas is free to expand to fill the volume V_2 from V_1

container is adiabatically insulated,

$$Q = 0$$

does no work in the process

$$W = 0$$

$$\Delta E = 0$$

Free energy expansion and throttling process 5.9 free expansion

First law

 $\Delta E = 0$

Then

$$E(T_2, V_2) = E(T_1, V_1)$$

Specially, for ideal gas
$$E(T_2) = E(T_1)$$
 $T_2 = T_1$

Generally,

$$E(T_2, V_2) = E(T_1, V_1)$$

$$\Omega \propto V^{N} \chi(E)$$

$$\beta = \frac{\partial \ln \chi(E)}{\partial E}$$

$$\beta = \beta(E)$$

Free energy expansion and throttling process

5.9 free expansion

V-T curvo

Cas

Valve

Free energy expansion and throttling process 5.9 free expansion: example

Van de Waals gas

$$\epsilon(T_2,v_2) = \epsilon(T_1,v_1)$$

$$dE = C_V dT + \left[T \left(\frac{\partial p}{\partial T} \right)_V - p \right] dV$$

$$\int_{T_1}^{T_2} c_V(T') \ dT' - \frac{a}{v_2} = \int_{T_2}^{T_2} c_V(T') \ dT' - \frac{a}{v_1}$$

$$\int_{T_1}^{T_2} c_V(T') dT' - \int_{T_0}^{T_1} c_V(T') dT' = a \left(\frac{1}{v_2} - \frac{1}{v_1} \right)$$
$$\int_{T_1}^{T_2} c_V(T') dT' = a \left(\frac{1}{v_2} - \frac{1}{v_1} \right)$$

Free energy expansion and throttling process

5.9 free expansion: example

 $\epsilon(T_2,v_2) = \epsilon(T_1,v_1)$

Van de Waals gas

Ignore c_V change in $[T_1, T_2]$

$$c_{V}(T_{2}-T_{1})=a\left(\frac{1}{v_{2}}-\frac{1}{v_{1}}\right)$$

$$T_{2}-T_{1}=-\frac{a}{c_{V}}\left(\frac{1}{v_{1}}-\frac{1}{v_{2}}\right)$$

For an expansion where $v_2 > v_1$,

$$T_2 < T_1$$

Steady-stateexperiment by J-T

A porous plug provide a constriction to the flow of gas;

A continuous steam of gas flow from left to right; p_1 in the left > p_2 in the right;

T₁ is the temperature in left, what is T₂ in right?

Initial: Left, p₁, V₁

Final: right, p₂, V₂

$$\Delta E = E_2 - E_1 = E(T_2, p_2) - E(T_1, p_1)$$

$$W = p_2 V_2 - p_1 V_1$$

To external and by external

adiabatically insulated

$$Q = 0$$

Then,

$$\Delta E + W = Q = 0$$

$$(E_2 - E_1) + (p_2V_2 - p_1V_1) = 0$$

$$E_2 + p_2V_2 \approx E_1 + p_1V_1$$

Already define
$$H \equiv E + pV$$

$$(E_2 - E_1) + (p_2V_2 - p_1V_1) = 0$$

$$E_2 + p_2V_2 = E_1 + p_1V_1$$

$$H(T_2,p_2) = H(T_1,p_1)$$

$$H = H(T)$$

For ideal gas,

$$H = E + pV = E(T) + \nu RT$$

$$H(T_2) = H(T_1) \qquad T_2 = T_1$$

in throttling process

More generally, H = H(T, p)

$$\mu \equiv \left(\frac{\partial T}{\partial p}\right)_{\! H}$$

μ>0, T increases with p μ<0, T decreases with p

Inversion curve

$$\mu == ??$$

1st law 2nd law

$$dE = T dS - p dV$$

$$dH \equiv d(E + pV) = T dS + V dp$$

$$dH = 0.$$

$$C_p = T(\partial S/\partial T)_p$$
.

$$0 = T \left[\left(\frac{\partial S}{\partial T} \right)_p dT + \left(\frac{\partial S}{\partial p} \right)_T dp \right] + V dp$$

$$C_p dT + \left[T \left(\frac{\partial S}{\partial p} \right)_T + V \right] dp = 0$$

$$\mu \equiv \left(\frac{\partial T}{\partial p}\right)_{H}$$

$$\mu \equiv \left(\!\frac{\partial T}{\partial p}\!\right)_{\! H}$$

$$\mu \equiv \left(\frac{\partial T}{\partial p}\right)_{H} = -\frac{T(\partial S/\partial p)_{T} + V}{C_{p}}$$

$$\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$$
Maxwell

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{v}$$

$$\left(\frac{\partial S}{\partial p}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{p} = -V\alpha$$

$$\mu = \frac{V}{C_p} (T\alpha - 1)$$

For ideal gas, $\alpha = T^{-1}$

$$\alpha = T^{-1}$$

$$\mu = 0$$

J-T effect constitute a practical method for cooling gas.

1, It is necessary to work in the region of pressure and T where $\mu > 0$.

2, The initial T < T maximum on the inversion curve

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..)

Joule-Thomson effect and molecular force

```
For ideal gas,

T does not change for free expansion

for throttling process
```

These process becomes interesting for realistic gas virial expansion

For any gas, $n \equiv N/V$.

$$p = kT[n + B_2(T)n^2 + B_3(T)n^3 \cdot \cdot \cdot]$$
virial coefficent
$$p = \frac{N}{V}kT\left(1 + \frac{N}{V}B_2\right)$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ...)

Joule-Thomson effect and molecular force

$$p = \frac{N}{V} kT \left(1 + \frac{N}{V} B_2 \right)$$

At low T, attractive force play dom. role, $B_2<0$; At high T, (exclusion) collision play dom. role, $B_2>0$ B_2 increases with T

$$\mu == ??$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..) Joule-Thomson effect and molecular force

$$p = \frac{N}{V} kT \left(1 + \frac{N}{V} B_2 \right)$$

$$p = \frac{NkT}{V}\left(1 + \frac{p}{kT}B_2\right) = \frac{N}{V}(kT + pB_2)$$

$$V = N\left(\frac{kT}{p} + B_2\right)$$

$$\mu = \frac{V}{C_p} \left(T\alpha - 1 \right)$$

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p$$

$$\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

$$\mu = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right] = \frac{N}{C_p} \left(T \frac{\partial B_2}{\partial T} - B_2 \right)$$

Free energy expansion and throttling process 5.10 throttling process (Joule-Thomson ..) Joule-Thomson effect & molecular force: discussion

$$\mu = \frac{1}{C_p} \left[T \left(\frac{\partial V}{\partial T} \right)_p - V \right] = \frac{N}{C_p} \left(T \frac{\partial B_2}{\partial T} - B_2 \right)$$

At low T, $B_2<0$, $\mu>0$ At high T, $B_2>0$, μ can <0

The inversion curve $(\mu=0)$ indicates the competition between attraction and repulsion.

Historically, the subject of thermodynamics began with the study of engines:

- 1, great technological important
- 2, intrinsic physical interests

It is easy to do mechanical work w upon a device, and then extract from it heat q (q=w)

To what extent is it possible to proceed in the reversal way?

To build a device to extract internal energy from a heat reservoir in form of heat, and convert it to work?

The device is called heat engine!

Heat engine--- key point:

The work cannot be provided by the engine itself; or the heat-to-work process cannot be continued. Thus one wish the heat engine keeps the same macro-state at the end of process (cycle);

Heat engine--- Question?

To what extent is it possible to exact a net amount of energy from heat reservoir?

In reservoir, energy is randomly distributed over many degree of freedom.

To energy associated the single freedom connected with the external parameter.

Heat engine--- Question?

First law since E of M does not change

not realizable.

Work→ heat is an irreversible process

Since accessible states more random and entropy increases

Ideal heat engine violates 2nd law!

$$\Delta S \geq 0$$

Heat reservoir, absorbed heat == (-q)The entropy change $-q/T_{1}$

Wish w>0,
So it cannot be satisfied!!!

$$\frac{q}{T_1} = \frac{w}{T_1} \le 0$$

Wish w>0, So it cannot be satisfied!!!

It is impossible to construct a perfect heat engine.

Kelvin's formulation of the second law

First law

$$q_1=w+q_2$$

2nd law

$$\Delta S = \frac{(-q_1)}{T_1} + \frac{q_2}{T_2} \ge 0$$

$$\frac{-q_1}{T_1} + \frac{q_1 - w}{T_2} \ge 0$$

First law __ 2n

2nd law

$$\frac{-q_1}{T_1} + \frac{q_1 - w}{T_2} \ge 0$$

$$\frac{w}{T_2} \leq q_1 \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\eta = \frac{T_1 - T_2}{T_1}$$

$$\begin{array}{c|c}
T_1 \\
\downarrow \\
M \\
\downarrow \\
q_2
\end{array}$$

$$\begin{array}{c|c}
T_2 \\
\end{array}$$

$$\begin{array}{c|c}
T_2 \\
\end{array}$$

Define
$$\eta \equiv \frac{w}{q_1} \le 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1}$$

Efficiency of heat engine

if quasi-static,

$$\eta = \frac{T_1 - T_2}{T_1}$$

Heat engine and refrigerator 5.11 Carnot engines How does such a engine operate quasi-statically between two heat reservoirs ?

Heat engine and refrigerator 5.11 Carnot engines: process

- 1. $a \to b$: The engine is thermally insulated Its external parameter is changed slowly until the engine temperature reaches T_1 . Thus $x_a \to x_b$ such that $T_2 \to T_1$.
- 2. $b \to c$: The engine is now placed in thermal contact with the heat reservoir at temperature T_1 . Its external parameter is changed further, the engine remaining at temperature T_1 and absorbing some heat q_1 from the reservoir. Thus $x_b \to x_c$ such that heat q_1 is absorbed by the engine.
- 3. $c \to d$: The engine is again thermally insulated. Its external parameter is changed in such a direction that its temperature goes hack to T_2 . Thus $x_c \to x_d$ such that $T_1 \to T_2$.
- 4. $d \rightarrow a$: The engine is now placed in thermal contact with the heat reservoir at temperature T_2 . Its external parameter is then changed until it returns to its initial value x_a , the engine remaining at temperature T_2 and rejecting some heat q_2 to this reservoir. Thus $x_d \rightarrow x_a$ and heat q_2 is given off by the engine.

The engine is now back in its initial state and the cycle is completed.

Heat engine and refrigerator 5.11 Carnot engines: process

- $a \rightarrow b$; thermally insulted; compression; $T_2 \rightarrow T_1; q = 0$
- $b \rightarrow c$; thermal contact with T_1 ; expansion; q_1
- $c \rightarrow d$; thermally insulted; expansion; $T_1 \rightarrow T_2$; q = 0
- $d \rightarrow a$; thermal contact with T_2 ; compression; $-q_2$

$$w = \int_{a}^{b} p \, dV + \int_{b}^{c} p \, dV + \int_{c}^{d} p \, dV + \int_{d}^{a} p \, dV$$

$$\eta \equiv \frac{w}{q_1} \le 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1}$$

Heat engine and refrigerator 5.11 Refrigerator

Remove heat from reservoir at low T to that at high T

First law

$$w+q_2=q_1$$

Heat engine and refrigerator **5.11 Refrigerator**

Remove heat from reservoir at low T to that at high T

Perfect refrigerator
$$\Delta S = \frac{q}{T_1} + \frac{(-q)}{T_2} \ge 0$$
$$q\left(\frac{1}{T_1} - \frac{1}{T_2}\right) \ge 0$$

It is impossible to construct a perfect refrigerator.

the Clausius formulation of the second law

Heat engine and refrigerator 5.11 Refrigerator: real

First law

$$q_2 = q_1 - w$$

2nd law

$$\Delta S = \frac{q_1}{T_1} + \frac{(-q_2)}{T_2} \ge 0$$
 $\frac{q_2}{q_1} \le \frac{T_2}{T_1}$

$$\varepsilon = \frac{q_2}{w} = \frac{q_2}{q_1 - q_2} = \frac{1}{q_1/q_2 - 1}$$

$$\leq \frac{1}{T_1/T_2 - 1} = \frac{T_2}{T_1 - T_2}$$

Class-work

P 198 5.26

Homework

P 192 5.18,5.20,5.23,5.24