Introduction

CptS 223 – Advanced Data Structures

Larry Holder
School of Electrical Engineering and Computer Science
Washington State University

Advanced Data Structures

- "Why not just use a big array?"
- Example problem
 - Search for a number k in a set of N numbers
- Solution #1
 - Store numbers in an array of size N
 - Iterate through array until find k
 - Number of checks
 - Best case?
 - Worst case?
 - Average case?

Advanced Data Structures

- Solution #2
 - Store numbers in a balanced binary search tree
 - Search tree until find k
 - Number of checks
 - Best case?
 - Worst case?
 - Average case?

- Does it matter?
 - N vs. (log₂ N)

Analysis

- Does it matter?
- Assume
 - N = 1,000,000,000
 - 1 billion (Walmart transactions in 1 month)
 - 1 Ghz processor = 10⁹ cycles per second
- Solution #1 (10 cycles per check)
 - Worst case: 1 billion checks = 10 seconds
- Solution #2 (100 cycles per check)
 - Worst case: 30 checks = 0.000003 seconds

Advanced Data Structures

Moral

 Appropriate data structures ease design and improve performance

Challenge

- Design appropriate data structure and associated algorithms for a problem
- Analyze to show improved performance

Course Overview

- Advanced data structures
 - Trees, hash tables, heaps, disjoint sets, graphs
- Algorithm development and analysis
 - Insert, delete, search, sort
- Applications
- Object-oriented implementation in C++

Course Details

- Everything on Canvas
 - Syllabus
 - Schedule
 - Lecture notes
 - Homework assignments
 - Exams