Лабораторная работа 3.

Организация циклов с контрольным выводом итераций

Цель

- 1. Знакомство с операторами циклов и итерационными процессами.
- 2. Организация пользовательских классов
- 3. Освоение вывода данных.

Постановка задачи

Согласно варианту задания, найдите сумму ряда с общим членом a_n и точностью $|a_n| \le \varepsilon$. Организуйте вывод построчно на экран следующих значений: номера итерации, значения текущего члена ряда и суммы.

Контроль сходимости ряда должен осуществляться с помощью переменных целого типа: Stop1, Stop2, Stop3, в которые пользователь вводит значения контрольных итераций. После попадания на контрольную итерацию делать остановку вычислений. Спросить у пользователя о необходимости продолжения вычислений. Если пользователь согласился — продолжить цикл. Предусмотреть средства борьбы с возможным зацикливанием приложения.

Рекомендации:

При составлении программы с типами переменных невысокой точности необходимо учесть возможность переполнения результатов вычислений, когда число выходит за пределы допустимые для описанного типа. Один из способов, позволяющий избежать такой ситуации — это производить вычисления последующего члена ряда через предыдущий. Для этого необходимо получить множитель по формуле:

$$k_n = \frac{a_{n+1}}{a_n}.$$

Член ряда a_0 считаем вручную, а затем вычисления члена ряда организовываем следующим образом:

$$a_{1} = k_{0} \cdot a_{0},$$

$$a_{2} = k_{1} \cdot a_{1},$$

$$\dots$$

$$a_{n} = k_{n-1} \cdot a_{n-1},$$

$$a_{n+1} = k_{n} \cdot a_{n}$$

Более простой способ – это переход к данным повышенной точности, однако, он менее эффективен, чем предыдущий.

Итерационный цикл организуйте при помощи оператора цикла, считая, что необходимое количество итераций заранее неизвестно.

В цикле организовать проверку на попадание в контрольную итерацию. Вывести на экран вопрос о продолжении расчета, с вариантами ответа для пользователя. Предусмотреть возможность, как продолжения расчета, так и возможность досрочного выхода из цикла с помощью **return** или **break.**

Метод расчета последующего члена ряда через предыдущий организовать отдельным статическим классом. В него же включить отдельно метод вывода на экран расчетных данных и метод расчета суммы ряда с определенной точностью, согласно варианту.

Варианты задания:

1.
$$a_n = (-1)^{n-1} / n^n$$
, $\varepsilon = 10^{-25}$.

2.
$$a_n = 1/2^n + 1/3^n$$
, $\varepsilon = 2.10^{-15}$.

3.
$$a_n = (2n-1)/2^n$$
, $\varepsilon = 5.10^{-16}$.

4.
$$a_n = 1/((3n+1)!)$$
, $\varepsilon = 5.10^{-10}$.

5.
$$a_n = 10^n / n!$$
, $\varepsilon = 2.10^{-17}$.

6.
$$a_n = (n!)/(2n)!$$
, $\varepsilon = 5.10^{-8}$

7.
$$a_n = n!/n^n$$
, $\varepsilon = 10^{-17}$.

8.
$$a_n = (-1)^n n! / (n^n)^2$$
, $\varepsilon = 2.10^{-27}$.

9.
$$a_n = 3^n/(3n)!$$
, $\varepsilon = 5 \cdot 10^{-15}$.

10.
$$a_n = (n+2)!/(n^n)^2$$
, $\varepsilon = 10^{-26}$.

Контрольные вопросы для сдачи лабораторной работы:

- 1. Какие типы циклов имеются в языке Java?
- 2. Опишите параметры цикла **for**.
- 3. Как можно выйти из цикла?
- 4. Что такое переполнение и исчезновение числа, и как с этим бороться?
- 5. Как в Java реализуется возведение в степень?
- 6. Что такое статические классы и методы?