80-311 Assignment 11

Karan Sikka ksikka@cmu.edu April 29, 2014

1

2.i

Claim:

Let f: a -¿ b and x and y be subsets of a, then:

 $f[x \cup y] = f[x] \cup f[y]$

To prove this we show that the LHS is a subset of the RHS, and the RHS is a subset of the LHS.

Part 1: $LHS \subseteq RHS$

First, let an arbitrary element t be a member of $f[x \cup y]$. Then by the defin of image,

we know that there exists u such that f(u) = t and $u \in (x \cup y)$.

By the defin of union, u must be in either x or y.

Then t is in either f[x] or f[y], so it is in $f[x] \cup f[y]$, which is the RHS.

Therefore any element t which is a member of the LHS is also a member of the RHS.

Then $LHS \subseteq RHS$

Part 2: $RHS \subseteq LHS$

Consider element t in $f[x] \cup f[y]$.

Then there is an element u either in x or y such that f(u) = t.

Then u is in $x \cup y$. Then t is in $f[x \cup y]$, so every element in the RHS is also in the LHS. Then $RHS \subseteq LHS$

2.ii

We want to show that every element in $f[x \cap y]$ is also in $f[x] \cap f[y]$.

Consider an arbitrary element t in $f[x \cap y]$.

By the definition of image, there exists a u such that f(u) = t and $u \in x \cap y$.

By the defin of binary intersection, u is in both x and y.

Then t is in both f[x] and f[y], so $t \in f[x] \cap f[y]$, proving that $LHS \subseteq RHS$.

2.iii

I conjecture that the formula is true when f is injective.

If an element t is in f[x] and f[y], then there is an element u such that f(u) = t and $u \in x$. There is also an element v such that f(v) = t and $v \in y$.

Karan Sikka ksikka@cmu.edu

If f is injective, then $f(v) = t \wedge f(u) = t \implies v = u$. Then we can say $v \in y => u \in y$, so $u \in x \cap y$, and $t \in f[x \cap y]$.

Fitch Proof of (ii):

3.i

Representability allows us to express THM in terms of first order logic ZF. Specifically, it states that

80-311

$$THM(\phi) \iff ZF \vdash thm('\phi')$$

3.ii

Let m and n be natural numbers.

Note: In this problem, m' is the set theoretic numeral for m.

Claims:

- 1. If m = n then $ZF \vdash m = n$
- 2. If $\neg m = n$ then $ZF \vdash \neg'm' = n'$

Proof of 1:

By induction. It holds true for the base case when m and n are 0, which is represented by the empty set. For the inductive hypothesis, assume it holds true for all naturals up to and including some fixed m and n such that m = n.

$$'m + 1' = 'm', 'm - 1', ..., '1', '0'$$

 $'n + 1' = 'n', 'n - 1', ..., '1', '0'$

and since we know m = n from the inductive hypothesis, then we make a simple substitution to obtain:

$$'m + 1' = 'n', 'n - 1', ..., '1', '0'$$

 $'n + 1' = 'n', 'n - 1', ..., '1', '0'$

Since m+1 and n+1 are sets with all the same elements, they are in fact the same set theoretic numerals.

Proof of 2:

By the hint, we seek to prove that if m < n then $ZF \vdash \neg m = n$.

Proceed by induction. We assume n is an arbitrary natural number larger than m. (2) holds true for the base case when m is 0, which is represented by the empty set. n will be presented by some set with elements which do not exist in m. Thus $\neg m' = n$.

For the inductive hypothesis, assume (2) is true for all naturals up to and including some fixed m such that m < n.

$$'m + 1' = 'm', 'm - 1', ..., '1', '0'$$

 $'n + 1' = 'n', 'n - 1', ..., '1', '0'$

and since we know m < n from the inductive hypothesis, then we make a simple substitution to obtain:

$$'m + 1' = 'm', 'm - 1'..., '1', '0'$$
 $'n + 1' = 'n', ..., 'm', 'm - 1'..., '1', '0'$

Since 'n + 1' contains elements not in 'm + 1' the sets are not equal.

For all m and n in the naturals both claims 1 and 2 hold true.

4