

Análise top-down com tabela preditiva

- Os dois métodos apresentados até agora para fazer análise descendente usam recursividade.
 - Cada não-terminal tem um procedimento associado;
 - Chamadas com ou sem retrocesso.
 - Para gramáticas LL1 não tem retrocesso
- · Chamadas recursivas usam uma pilha implícita
 - A pilha das chamadas!
 - Sobrecusto!
- Idéia: retirar a recursão do procedimento:
 - Usa-se uma pilha para armazenar os não-terminais encontrados;
 - Usa-se uma tabela para orientar as derivações.

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$		
S			S → cAa	-		
Α	$A \rightarrow B$	$A \rightarrow B$		Car		
В				1		
			THE RESERVE			

S → cAa $A \rightarrow cB \mid B$ B → bcB | ε $First(A) = \{b, c, \epsilon\}$ $First(B) = \{b, \epsilon\}$ $First(S) = \{c\}$

 $Follow(B) = \{a\}$

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			$S \rightarrow cAa$	
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	Com
В				

S → cAa A → cB | B $B \rightarrow bcB \mid \epsilon$ First(A) = $\{b, c, \epsilon\}$ First(B) = $\{b, \epsilon\}$ First(S) = {c}

 $Follow(B) = \{a\}$

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	6
В	$B \to \epsilon$			

S → cAa A → cB | B $B \to bcB \mid \epsilon$ $First(A) = \{b, c, \epsilon\}$ $First(B) = \{b, \epsilon\}$ $First(S) = \{c\}$

Follow(S) = {\$} Follow(A) = {a} Follow(B) = {a}

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	-
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	E. C.
В	$B \to \epsilon$	B →bcB		

A → cB | B $B \rightarrow bcB \mid \epsilon$ $First(A) = \{b, c, \epsilon\}$ $First(B) = \{b, \epsilon\}$ $First(S) = \{c\}$

Follow(S) = {\$} Follow(A) = {a} Follow(B) = {a}

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$	
S	ERRO	ERRO	S → cAa	ERRO	
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	ERRO	
В	B → e	B →bcB	ERRO	ERRO	

S → cAa $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$ $First(A) = \{b, c, \epsilon\}$ $First(B) = \{b, \epsilon\}$ First(S) = {c}

Follow(S) = {\$} Follow(A) = {a} Follow(B) = {a}

Usando a tabela

· String: "cbca"

Pilha	Entrada	Ação
S\$	cbca\$	S->cAa
cAa\$	cbca\$	casar c
Aa\$	bca\$	A->B
Ba\$	bca\$	B->bcB
bcBa\$	bca\$	casar b
cBa\$	ca\$	casar c
Ba\$	a\$	Β-> ε
a\$	a\$	casar a
\$	\$	casar \$, sucesso

Algoritmo para construir a tabela

- Re-escrever a gramática para satisfazer condições de LL(1)
- Calcular os conjuntos First e Follow
- Para cada produção A $ightarrow \alpha$
 - 1. Para cada a ∈ First(α)
 - incluir a produção $A \rightarrow \alpha$ em M[A,a]
 - 2. Se $\varepsilon \in First(\alpha)$
 - incluir a produção A $ightarrow \alpha$ em M[A,b] para cada b em Follow(A)
 - 3. Se $\varepsilon \in First(\alpha)$ e $\varepsilon \in Follow(A)$
 - incluir $A \rightarrow \alpha$ to M[A,\$]
- Todas entradas não definidas são erros

Mais um exemplo...

Símbolo	First	Follow
E E' T T' F	{(, id} {+, \varepsilon} {(, id} {*, \varepsilon} {(, id}	{\$,)} {\$,)} {+, \$,)} {+, \$,)} {*, +, \$,)}
	E E' T T'	E {(, id} E' {+, ε} T {(, id} T' {*, ε}

Mais um exemplo...

alested and the authorized and the authorized a	MANAGEMENT PROPERTY.	AND STATE OF THE STATE OF	MODEL CONTROL OF THE		
E → TE'	S	ímbolo	First	Follow	
	E		{(, id}	{\$,)}	
$ E' \rightarrow +TE' \epsilon$	E	,	$\{+, \epsilon\}$	{\$,)}	
$T \rightarrow FT'$	T		$\{(, id)\}$	{+, \$,)}	
$T' \rightarrow *FT' \mid \epsilon$	T		{*, ε}	{+, \$,)}	
$F \longrightarrow (E) Id$	F		{(, id}	{*, +, \$,)}	
* id	(+)	\$	
F $F \rightarrow id$	F → (E)			1	
E E → TE'	E → TE'				100
E'		$E' \rightarrow +T$	E' E'-	€ E' →ε	
T $T \rightarrow FT'$	$T \rightarrow FT'$		31/1		
$T' \mid T' \rightarrow *FT'$		T' →ε	T'-	€ T' →8	
				7 - 7 -	15

Exercício LL(1)

Para: G = (T,N,P,S) $P: S \rightarrow XYZ$ $T = \{a,b,c,d,e,f\}$ $X \to aXb \mid \epsilon$ $\mathsf{N} = \{\mathsf{S}, \mathsf{X}, \mathsf{Y}, \mathsf{Z}\}$ $Y \rightarrow cYZcX \mid d$ $Z \rightarrow eZYe \mid f$ Construir Tabela e Analisar a string: abcdfcf $First(X) = \{a, \epsilon\}$ $Follow(X) = \{c, d, b, e, f\}$ $Follow(Y) = \{e, f\}$ $First(Y) = \{c, d\}$ $First(Z) = \{e, f\}$ $Follow(Z) = \{\$, c, d\}$ $First(S) = \{a, c, d\}$ $Follow(S) = \{\$\}$

Observação sobre a Tabela

- A tabela indica se há ambigüidade!
 - Mais de uma regra numa entrada!
- · Soluções?
 - Tornar a gramática LL(1)
 - · Eliminar ambiguidade, recursividade.
 - Usar uma heurística para desempatar as regras
 - · Qual?
- Usar outros algoritmos do que os top-down!
- · Exemplo total: if... Then... Else:

 $S \rightarrow i E t S | i E t S e S | a$

 $\mathsf{E}\to \mathsf{b}$

Gerenciamento de Erros

- · Relatar erros & recuperar
 - Relatar erros assim que possível
 - Mensagens de erro adequadas
 - Continua após o erro
- Evitar a cascata de erros
- Nível-Frase (local) x Modo-Pânico
 - Nível frase: tenta-se alterar UM símbolo para recuperar.
 - Modo pânico: pula x tokens de entrada até poder voltar a fazer a análise.
 - · = até encontrar um token de sincronização

Recuperação em Modo Pânico

- Pula tokens até que um "conjunto de sincronização" é encontrado
 - Follow(A) (A sendo no topo da pilha)
 - Símbolos de alta hierarquia na gramática
 { , for, while, if...
 - First(A)
 - Epsilon produção
 - Pop/Insert um terminal no topo da pilha.
- · Adicione ações de sincronia para a tabela

19

Sumário

- Análise top-down possibilita o reconhecimento eficiente e simples de gramáticas LL(1):
 - Implementação preditiva com tabela.
 - Baseada nos cálculos dos conjuntos First/Follow
 - Obs: têm casos que não foram tratados (e.g. o '+')
- Limitação:
 - Quando a gramática não é LL(1)!
- Por isso: usa-se também análise ascendente (bottom-up).

20

Bibliografia

Leituras:

- A. M. A. Price, S. S. Toscani. Implementação de Linguagens de Programação: Compiladores. 3ª ed. Porto Alegre: Sagra-Luzzatto. 2005. Cap 3, Seção 3.2.3.
- A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques and Tools. Reading: Addison-Wesley. 1985. Seção 4.4 (parser não recursivo, preditivo).

21

Exercícios

- A. M. A. Price, S. S. Toscani. Implementação de Linguagens de Programação: Compiladores. 3ª ed. Porto Alegre: Sagra-Luzzatto. 2005. Cap 3.
 - 1 a 7

/ 2: