Cuba Country Insights

21 Feb 2025

Congratulations! This country has available data.

This page includes country-specific insights and more detailed analysis, including carbon stocks, emissions factors, and ecosystem wetland area for mangrove, marsh, and seagrass ecosystems. This report details information for the selected country, **Cuba**.

Please explore the rest of the dashboard for more exciting visualizations, map features, and data.

Resources referenced to calculate estimates for **Cuba** are listed below under 'References' at the bottom of this document.

Total Carbon Stock Estimates

Total Carbon stock estimates were calculated for each country and habitat At this time total Carbon stock estimates do not include seagrass

We estimate that **Cuba** contains between 79806809.74 to 70000880.61 metric tonnes of soil C to a depth of 1 m, with a mean estimate of 74903845.18 metric tonnes C.

country	territory	habitat	$total_stocks$	$total_stocks_lower$	$total_stocks_upper$	total_stocks_se
Cuba	Cuba	total	74903845	79806810	70000881	2501513

This total estimate includes total mangrove carbon stocks, from NA to NA metric tonnes of soil C to a depth of 1 m, with a mean estimate of 56743086.46

country	territory	habitat	$total_stocks$	$total_stocks_lower$	total_stocks_upper	total_stocks_se
Cuba	Cuba	mangrove	56743086	NA	NA	NA

This total estimate also includes total tidal marsh carbon stocks, ranging from NA to NAmetric tonnes of soil C to a depth of 1 m, with a mean estimate of 18160758.71

country	territory	habitat	total_stocks	total_stocks_lower	total_stocks_upper	total_stocks_se
Cuba	Cuba	marsh	18160759	NA	NA	2553627

Seagrass carbon stocks were not included in the total value due to lack of a global, transparent, and independently assessed seagrass habitat map, however, best available areas and stocks for **Cuba** are explored in the following 'Wetland Areas and Activities' section.

Wetland Areas and Activities

We estimate mangrove area in **Cuba** to be 374528.163841555 to 80511.5656576723 hectares, with a mean estimate of 426538.821419122 hectares according to Global Mangrove Watch Bunting et al. (2018).

We estimate tidal marsh area in **Cuba** to be 43137.9298764678 to 80511.5656576723 hectares, with a mean estimate of hectares according to Worthington et al. (2024).

We estimate seagrass area to be **Cuba** to be a mean of 1607300 hectares, according to McKenzie et al. (2020), aggregating data from multiple sources.

McKenzie et al. (2020) classifies seagrass area estimates as either high or medium to low confidence. seagrass_area_high_confidence % of the estimated seagrass area of **Cuba** is considered high to medium confidence, while seagrass area low confidence % of the estimated seagrass area is categorized as low confidence.

Calculated Stocks and Emissions Factors

This section of the report details whether data is available to estimate Tier I, Tier II, or Tier III value estimates for tidal marsh, mangrove, and seagrass ecosystems in **Cuba**.

If data for the selected country is available in the Coastal Carbon Atlas, we have applied a Tier II emission factor based on a simple average of country specific data queried from the Atlas.

Data from Cuba includes 1 soil profiles from 1 watersheds. This data comes from 1 different habitat types.

If there is not yet any country specific information in the Coastal Carbon Atlas, we instead applied IPCC Tier I estimate. IPCC Tier I estimates for mangrove, marsh, and seagrass ecosystems are listed below. **SOURCE**

The table in this section also details whether the calculated Tier II value is significantly different from the estimated Tier I values. This is observed in the "Overlap" column.

Table 4: IPCC Tier I Value Estimates

Habitat	Mean	Lower_CI	Upper_CI
mangrove	386	351	424
marsh	255	254	297
seagrass	108	84	139

Table 5: Availiability of Tier I and Tier II Data

Country	Territory	Habitat	Tier	Overlap
Cuba	Cuba	mangrove	Tier II	NA
Cuba	Cuba	marsh	Tier I	NA
Cuba	Cuba	seagrass	Tier I	NA

Tier I Carbon Stocks

This table includes Tier I Carbon Stocks included for Cuba.

country	territory	habitat	stock_MgHa_mestnck	_MgHa_lowerstdock_	_MgHa_uppe t @	@F	carbon_pool
Cuba	Cuba	marsh	255	254	297 T	`ierI	soil
Cuba	Cuba	seagrass	108	84	139 T	`ierI	soil

Tier II Carbon Stocks

This table includes Tier II Carbon Stock estimates for **Cuba**. Estimates in this table were derived from data queried from the Coastal Carbon Atlas. SOURCE

country	territory	habitat tier	$\operatorname{carbon}_{\underline{}}$	_pooltock_MgHa_	_nsteackMgHa_streeck_	_MgHa_	_up stex@ I_MgHa_	lowerCI
Cuba	Cuba	${\it mangrove Tier II}$	soil	133.0315	NA	NA	NA	_

Tier III Carbon Stocks

Tier III carbon stocks were estimated, when available, from remote sensing data from Maxwell et al 2021 and Sanderman et al 2018. The table below details whether estimated values are available for **Cuba**, and any overlap with associated Tier I or Tier II values.

If there are no Tier III estimates associated with the selected country, please refer to Tier I and Tier II tables.

countryerritorhyabitastock_MgHzckmMgHzckmMgHzckmMgHzcLluppgtftflieidf_blverlapisrIfflerHftlttidrieH_loverlaps_titiefr									
Cuba Cuba mangr 4% 7.0238 407.955	566.0926	greater than	NA	greater than	Remote-sensing esimate overlaps Tier I	Tier III			

References

Bunting, Pete, Ake Rosenqvist, Richard M. Lucas, Lisa-Maria Rebelo, Lammert Hilarides, Nathan Thomas, Andy Hardy, Takuya Itoh, Masanobu Shimada, and C. Max Finlayson. 2018. "The Global Mangrove Watch—a New 2010 Global Baseline of Mangrove Extent." Remote Sensing 10 (10): 1669. https://doi.org/10.3390/rs10101669.

McKenzie, Len J, Lina M Nordlund, Benjamin L Jones, Leanne C Cullen-Unsworth, Chris Roelfsema, and Richard K F Unsworth. 2020. "The Global Distribution of Seagrass Meadows." *Environmental Research Letters* 15 (7): 074041. https://doi.org/10.1088/1748-9326/ab7d06.

Worthington, Thomas A., Mark Spalding, Emily Landis, Tania L. Maxwell, Alejandro Navarro, Lindsey S. Smart, and Nicholas J. Murray. 2024. "The Distribution of Global Tidal Marshes from Earth Observation Data." Global Ecology and Biogeography 33 (8). https://doi.org/10.1111/geb.13852.