14 Federn

Federsteifigkeit, Federarbeit, Schwingverhalten

Federn mit

Linearer Kennlinie:

Federsteifigkeit bei
$$c = \frac{F}{s}$$
 (14.1)

Zug-, Druck- und Biegefedern
$$c = \frac{1}{s}$$

Federsteifigkeit bei Drehfedern
$$c_{t} = \frac{M_{t}}{\varphi}$$
 (14.2)

c in N/mm,

c_t in Nmm/rad, s in mm,

 $M_{\rm t}$ in Nmm,

 φ in rad

Die Benennung der Federrate ist uneinheitlich. In manchen Federnormen heißt sie R, in anderen, z. B. DIN 2095, jedoch c. Da sind im allgemeinen technisch-physikalischen Gebrauch der Buchstabe c durchgesetzt hat, wird hier c

bzw. c_t verwendet (wie auch in DIN 740). Es sei aber ausdrücklich darauf hingewiesen, dass in manchen DIN-Normen auch R bzw. R_t benutzt wird.

Bei nichtlinearen Federkennlinien gilt:

$$c = \frac{\mathrm{d}F}{\mathrm{d}s}$$
, $c_{\mathrm{t}} = \frac{\mathrm{d}M_{\mathrm{t}}}{\mathrm{d}\varphi}$

Ggf. wird die Federkennlinie abschnittsweise berechnet. Der Kehrwert der Federsteifigkeit (auch Federrate genannt) heißt **Federnachgiebigkeit** δ . Es gilt:

$$\boldsymbol{\delta} = \frac{1}{c} \quad bzw. \quad \boldsymbol{\delta}_{t} = \frac{1}{c_{t}} \tag{14.1a}$$

Federarbeit bei linearer Kennlinie

Federarbeit von Zug-, Druck- und Biegefedern
$$W = \frac{F}{2}s$$
 (14.3)

Federarbeit von Drehfedern
$$W_{\rm t} = \frac{M_{\rm t}}{2} \, \varphi$$
 (14.4)

 W, W_t in Nmm Federarbeit, M_t in Nmm Federdrehmoment, F in N Federkraft, φ in rad Federdrehwinkel. S in mm Federweg,

allgemein gilt für die Federarbeit:

$$W = \int\limits_0^{s_{ ext{max}}} F \cdot \mathrm{d}s \quad ext{bzw.} \quad W_{ ext{t}} = \int\limits_0^{arphi_{ ext{max}}} M_{ ext{t}} \cdot \mathrm{d}arphi$$

Federschwingsysteme

Eigenfrequenz eines Schwingsystems
$$f_e = \frac{1}{2\pi} \sqrt{\frac{c}{m}}$$
 (14.5)

 $f_{\rm e}$ in ${\rm s}^{-1}={\rm Hz}$ Eigenfrequenz des Federschwingsystems (Hz = Hertz),

c in N/m Federsteifigkeit,

m in kg abgefederte Masse.

Eigenfrequenz eines Schwingsystems mit Drehfeder
$$f_{\rm e} = \frac{1}{2\pi} \sqrt{\frac{c_{\rm t}}{J}}$$
 (14.6)

 c_t in Nm/rad Federrate = Federkonstante,

J in kg·m² Drehmasse oder Trägheitsmoment der abgefederten Masse zur Drehachse.

Zusammenwirken mehrerer Federn

Parallelschaltung von Federn (Bild 14.1a)

Gesamtfedersteifigkeit
$$c_{ges} = c_1 + c_2 + c_3 + \dots$$
 (14.7)

Es addieren sich also die Federsteifigkeiten.

Hintereinanderschaltung von Federn (Bild 14.1b)

Gesamtfedernachgiebigkeit
$$\delta_{ges} = \delta_1 + \delta_2 + \delta_3 + \dots$$
 (14.8)

Es addieren sich also die Federnachgiebigkeiten.

Mischschaltung von Federn (Bild 14.1c)

$$c_{\text{ges}} = \frac{1}{\frac{1}{c_1 + c_2} + \frac{1}{c_3 + c_4}} \tag{14.9}$$

Bild 14.1 Zusammenwirken mehrerer Federn

- a) Parallelschaltung
- b) Hintereinanderschaltung
- c) Mischschaltung

68 14 Federn

Zylindrische Schraubenfedern aus runden Drähten oder Stäben

Druckfedern

Mit *n* als Anzahl der federnden Windungen (wirksamen Windungen) beträgt bei **kaltgeformten Druckfedern** aus runden Drähten entspr. Bild 14.2 die

Gesamtwindungszahl $n_t = n + 2$, d. h. $n = n_t - 2$.

Bild 14.2 Kaltgeformte Druckfedern nach

DIN EN 15800

- a) Endwindungen angelegt und geschliffen,
- b) Endwindungen angelegt,
- c) Formabweichungen,
- d) Kräfte und Federlängen

und bei warmgeformten Druckfedern aus runden Stäben entspr. Bild 14.3:

Gesamtwindungszahl $n_t = n + 1,5$, d. h. $n = n_t - 1,5$.

Die Gesamtwindungszahl einer Druckfeder soll auf 0,5 enden ($n_t = 5,5,6,5,7,5$ usw.). Bei der kleinsten, zulässigen Federlänge $L_n = L_c + S_a$ soll die Summe der lichten Mindestabstände zwischen den einzelnen wirksamen Windungen betragen für

kaltgeformte Federn
$$S_a = \left(0.0015 \frac{D^2}{d} + 0.1d\right)n$$
 (14.10)

warmgeformte Federn
$$S_a = 0.02(D+d) n$$
 (14.11)

D in mm mittlerer Windungsdurchmesser

d in mm Drahtdurchmesser,

n Anzahl der wirksamen Windungen.

Bild 14.3 Warmgeformte Druckfedern aus Rundstäben nach DIN 2096

- a) Federenden angelegt und aus dem Vollen geschliffen,
- b) Federenden angelegt, geschmiedet und geschliffen,
- c) Federenden unbearbeitet,
- d) Steigungsteller

Bei dynamischer Beanspruchung der Federn ist der S_a -Wert bei warmgeformten Federn zu verdoppeln, bei kaltgeformten Federn muss er das 1,5fache betragen.

Im zusammengedrückten Zustand, wenn alle Windungen aneinander liegen, beträgt die größtmögliche

Blocklänge der Druckfeder
$$L_{\rm c} = k_{\rm n} \cdot d_{\rm max}$$
 (14.12)

k_n Windungszahlbeiwert

bei kaltgeformten Federn mit angelegten, geschliffenen Federenden $= n_t$,

bei kaltgeformten Federn mit angelegten, unbearbeiteten Federenden $= n_t + 1.5$,

bei warmgeformten Federn mit angelegten, planbearbeiteten Federenden = $n_t - 0.3$,

bei warmgeformten Federn mit unbearbeiteten Federenden = $n_t + 1,1$.

 $n_{\rm t}$ Gesamtzahl der Windungen,

 d_{max} in mm Nennmaß des Draht- bzw. Stabdurchmessers (Tab. 14.4 bis 14.6), vermehrt um das obere Abmaß (Tab. 14.13).

Damit beträgt die

kleinste zulässige Länge der mit
$$F_n$$
 belasteten Druckfeder $L_n = L_c + S_a$ (14.13)

Beim Zusammendrücken einer Schraubendruckfeder wird der Windungsdurchmesser geringfügig größer. Bei der Blocklänge L_c und freier Lagerung der Federenden beträgt die

Vergrößerung des äußeren Windungsdurchmessers
$$\Delta D_{\rm e} = 0.1 \; \frac{m^2 - 0.8m \cdot d - 0.2d^2}{D}$$
 (14.14)

in mm Windungsabstand (Steigung) für Federn mit angelegten, planbearbeiteten Enden = $\frac{L_0 - d}{n}$, für Federn mit unbearbeiteten Enden = $\frac{L_0 - 2.5 d}{n}$

 L_0 in mm Länge der ungespannten Feder,

Anzahl der wirksamen Windungen,

d, D siehe Legende zur Gl. (14.11).