

Security+ Lab Series

Lab 11: Configuring a Network Based Firewall

Document Version: 2020-12-10

Copyright © 2020 Network Development Group, Inc. www.netdevgroup.com

NETLAB Academy Edition, NETLAB Professional Edition, NETLAB+ Virtual Edition, and NETLAB+ are registered trademarks of Network Development Group, Inc.

Contents

Introdu	uction	3
Object	ives	3
Lab To	pology	4
Lab Set	ttings	5
	onfiguring ICMP on the Firewall	
1.1		
2 Re	edirecting Traffic to Internal Hosts on the Network	
2.1	Configuring pfSense to Allow a Port and Redirect Requests	11
2.2	Retargeted SSH Connection	13
3 Co	onfiguring VPN on a pfSense	
3.1	Configuring VPN Server	15
3.2	Exporting VPN Client Data	
3.3	Configuring the VPN Client	25
3.4	Connecting the VPN Client	
3.5	Managing VPN Connections	

Introduction

In this lab, you will be conducting network security practices using the pfSense VM.

Objectives

- Install and configure network components, both hardware and software-based, to support organizational security
- Given a scenario, implement secure network architecture

Lab Topology

Lab Settings

The information in the table below will be needed to complete the lab. The task sections below provide details on the use of this information.

Virtual Machine	IP Address	Account	Password
DVL	10.1.1.10 /28	root	toor
Kali	203.0.113.2 /29	root	toor
pfSense	eth0: 192.168.1.1 /24 eth1: 10.1.1.1 /28 eth2: 203.0.113.1 /29	admin	pfsense
SecOnion	eth0: 192.168.1.6 /24	soadmin	mypassword
CCCOMOT		root	mypassword
	192.168.1.50 /24	student	securepassword
Ubuntu		root	securepassword
Win12R2	10.1.1.12 /28	administrator	Train1ng\$
Win16	192.168.1.100 /24	lab-user	Train1ng\$
WIITO		Administrator	Train1ng\$

1 Configuring ICMP on the Firewall

1.1 Blocking ICMP Requests on pfSense

- 1. Launch the **Ubuntu** virtual machine to access the graphical login screen.
- 2. Log in as **student** with **securepassword** as the password.

3. Open a terminal window by clicking on the **terminal** icon located in the left menu pane.

4. Send a ping request to the **Kali** system; **203.0.113.2**. Type the command below followed by pressing the **Enter** key.

student@Ubuntu:~\$ ping -c4 203.0.113.2

```
student@Ubuntu:~$ ping -c4 203.0.113.2

PING 203.0.113.2 (203.0.113.2) 56(84) bytes of data.

64 bytes from 203.0.113.2: icmp_req=1 ttl=63 time=82.7 ms

64 bytes from 203.0.113.2: icmp_req=2 ttl=63 time=0.639 ms

64 bytes from 203.0.113.2: icmp_req=3 ttl=63 time=0.394 ms

64 bytes from 203.0.113.2: icmp_req=4 ttl=63 time=0.733 ms

--- 203.0.113.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3001ms

rtt min/avg/max/mdev = 0.394/21.137/82.784/35.592 ms

student@Ubuntu:~$
```

- 5. After a successful ping, launch the **Kali** virtual machine to access the graphical login screen
- 6. Log in as **root** with **toor** as the password. Open the **Kali** *PC Viewer*.
- 7. Open a new terminal window by clicking on the **terminal** icon located in the top toolbar.

8. From the Kali terminal, send a ping request to the **Ubuntu** system; **192.168.1.50**.

```
root@Kali-Attacker:~# ping -c4 192.168.1.50
```

```
root@Kali-Attacker:~# ping -c4 192.168.1.50
PING 192.168.1.50 (192.168.1.50) 56(84) bytes of data.
64 bytes from 192.168.1.50: icmp_req=1 ttl=63 time=0.433 ms
64 bytes from 192.168.1.50: icmp_req=2 ttl=63 time=0.507 ms
64 bytes from 192.168.1.50: icmp_req=3 ttl=63 time=0.725 ms
64 bytes from 192.168.1.50: icmp_req=4 ttl=63 time=0.735 ms
64 bytes from 192.168.1.50: icmp_req=4 ttl=63 time=0.535 ms
65 cot 192.168.1.50 ping statistics ---
67 packets transmitted, 4 received, 0% packet loss, time 2998ms
67 rtt min/avg/max/mdev = 0.433/0.550/0.725/0.107 ms
67 root@Kali-Attacker:~#
```

9. After the successful ping, change focus to the **Ubuntu** system and open the **Firefox** web browser.

10. In the address space, type http://192.168.1.1. Press Enter.

11. Type the username admin and password pfsense. Click the Login button.

12. Once in the *pfSense* management graphical user interface, navigate to **Firewall > Rules**.

13. While viewing the **EXTERNAL_GW** tab, click the **+** icon on the top right to add a new rule.

14. Click the drop-down box next to Action and select Block.

15. Select **ICMP** as the *Protocol* selection.

16. Select **Network** as the *Source Type* and enter **203.0.113.0** in the address space along with a **/29** mask.

- 17. Leave all other options as defaults.
- 18. Click the **Save** button located towards the bottom of the page.
- 19. When brought back to the *Firewall: Rules* page, notice the warning message. Select **Apply Changes**.

20. Select Close on the new warning message.

21. Verify that the firewall rules table represents exactly like the image below for the *EXTERNAL_GW* interface.

22. Change focus to the **Kali** system and navigate to the **terminal** window.

23. Attempt to ping the Ubuntu system.

root@Kali-Attacker:~# ping -c4 192.168.1.50

```
root@Kali-Attacker:~# ping -c4 192.168.1.50
PING 192.168.1.50 (192.168.1.50) 56(84) bytes of data.
--- 192.168.1.50 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 3025ms
root@Kali-Attacker:~#
```


After 1-2 minutes, notice that 4 packets were transmitted and 0 were received, resulting in an unsuccessful ping attempt. The new firewall rule is effective.

24. Leave the terminal window open for the next task.

2 Redirecting Traffic to Internal Hosts on the Network

2.1 Configuring pfSense to Allow a Port and Redirect Requests

1. While on the *Kali* system, enter the command below to scan for open ports on the firewall appliance.

root@Kali-Attacker:~# nmap 203.0.113.1

```
root@Kali-Attacker:~# nmap 203.0.113.1

Starting Nmap 6.47 ( http://nmap.org ) at 2018-08-02 10:49 EDT
Nmap scan report for 203.0.113.1
Host is up (0.00032s latency).
Not shown: 998 filtered ports
PORT STATE SERVICE
53/tcp open domain
80/tcp open http
MAC Address: 00:50:56:9C:D3:F6 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 18.28 seconds
root@Kali-Attacker:~#
```

- 2. Change focus to the **Firefox** window on the **Ubuntu** system.
- In the pfSense management interface, navigate to Firewall > NAT.

4. On the *Firewall: NAT: Port Forward* interface, click the + icon on the top-right to add a new rule.

- 5. While on the Firewall: NAT: Port Edit interface, make the following changes:
 - a. Change *Destination port range* to **SSH** for both "**from**" and "**to**" from the drop-down menu.

b. Change Redirect Target IP to 192.168.1.50.

c. Change Redirect Target Port to **SSH** from the drop-down menu.

- d. Click the **Save** button located towards the bottom of the page.
- 6. For the new configuration to take place, click the **Apply changes** button.

7. When the warning message appears, click the **Close** button.

2.2 Retargeted SSH Connection

1. Change focus to the **Kali** system and initiate a quick scan against the firewall appliance using the terminal.

```
root@Kali-Attacker:~# nmap 203.0.113.1
```

```
root@Kali-Attacker:~# nmap 203.0.113.1
Starting Nmap 6.47 ( http://nmap.org ) at 2018-08-02 11:07 EDT
Nmap scan report for 203.0.113.1
Host is up (0.00031s latency).
Not shown: 997 filtered ports
PORT STATE SERVICE
22/tcp open ssh
53/tcp open domain
80/tcp open http
MAC Address: 00:50:56:9C:D3:F6 (VMware)
Nmap done: 1 IP address (1 host up) scanned in 17.72 seconds
root@Kali-Attacker:~#
```


Notice the change of open ports on the system; SSH is now open.

2. Verify the SSH configuration made on the firewall by typing the following command. If prompted for a password, enter **securepassword**.

```
root@Kali-Attacker:~# ssh 203.0.113.1
```

```
root@Kali-Attacker:~# ssh 203.0.113.1
root@203.0.113.1's password:
Welcome to Ubuntu 12.04.5 LTS (GNU/Linux 3.13.0-32-generic i686)

* Documentation: https://help.ubuntu.com/
0 packages can be updated.
0 updates are security updates.
New release '14.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

Your Hardware Enablement Stack (HWE) is supported until April 2017.
Last login: Sun Dec 17 12:30:57 2017 from 203.0.113.2
root@Ubuntu:~#
```


3. Confirm you are on the correct system by using the following command.

root@Ubuntu:~# ifconfig

```
root@Ubuntu:~# ifconfig
         Link encap:Ethernet HWaddr 00:50:56:9c:59:78
eth0
         inet addr:192.168.1.50 Bcast:192.168.1.255 Mask:255.255.255.0
         inet6 addr: fe80::250:56ff:fe9c:5978/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:1577 errors:0 dropped:0 overruns:0 frame:0
         TX packets:2260 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:893890 (893.8 KB) TX bytes:213373 (213.3 KB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:599 errors:0 dropped:0 overruns:0 frame:0
         TX packets:599 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:40710 (40.7 KB) TX bytes:40710 (40.7 KB)
root@Ubuntu:~#
```

4. Type the command below to determine the *default gateway*.

```
root@Ubuntu:~# route
```

```
root@Ubuntu:~# route
Kernel IP routing table
                Gateway
Destination
                                Genmask
                                                 Flags Metric Ref
                                                                     Use Iface
default
                192.168.1.1
                                0.0.0.0
                                                UG
                                                       0
                                                              0
                                                                       0 eth0
link-local
                                255.255.0.0
                                                U
                                                       1000
                                                              0
                                                                       0 eth0
192.168.1.0
                                255.255.255.0
                                                              0
                                                U
                                                                       0 eth0
root@Ubuntu:~#
```

5. Determine what ports are accessible on the internal network when attempting to scan the firewall appliance.

```
root@Ubuntu:~# nmap 192.168.1.1
```

```
root@Ubuntu:~# nmap 192.168.1.1

Starting Nmap 5.21 ( http://nmap.org ) at 2018-08-02 11:13 EDT Nmap scan report for 192.168.1.1

Host is up (0.00026s latency).

Not shown: 997 filtered ports

PORT STATE SERVICE

53/tcp open domain

80/tcp open http

3128/tcp open squid-http

MAC Address: 00:50:56:9C:3F:57 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 17.52 seconds root@Ubuntu:~#
```


3 Configuring VPN on a pfSense

3.1 Configuring VPN Server

- 1. Change focus to the **Ubuntu** system and focus on the **Firefox** web browser. If you are not already logged into the *pfSense firewall management interface*, do so now.
- 2. While logged in, navigate to **System > Cert Manager**.

3. On the *System: Certificate Authority Manager* page, while on the *CAs* tab, click on the + icon.

- 4. A new page should open; fill in the necessary fields.
 - a. Descriptive Name: MyCA

b. Method: Create an internal Certificate Authority

c. Key Length: 2048 bits

d. Lifetime: 3650 days

e. Distinguished name:

i. Country Code: US

ii. State or Province: Texas

iii. City: Austin

iv. Organization: xxz

v. Email Address: admin@xyz.corp vi. Common Name: internal-ca

- f. Click Save.
- 5. Add a server certificate this time by navigating to the **Certificates** tab.

6. To add a new certificate, click on the + icon.

7. A new page should open; select the drop-down menu next to *Method* and select **Create an internal Certificate**.

- 8. Fill in the necessary fields:
 - a. Descriptive Name: VPNServerCert

b. Certificate authority: MyCA

c. Key Length: 2048 bits

d. Certificate Type: Server Certificate

e. Lifetime: 3650 days

- f. Distinguished Name:
 - i. Country Code: US
 - ii. State or Province: Texas
 - iii. City: Austin
 - iv. Organization: xyz
 - v. Email Address: admin@xyz.corp
 - vi. Common Name: openvpn.xyz.corp

- g. Click Save.
- 9. Navigate to **System > User Manager**.

10. On the System: User Manager page, click the + icon to create a new user.

- 11. Fill in the necessary fields:
 - a. Username: student

b. Password: bpassx

c. Full name: Student

d. Check the box next to **Click to create a user certificate** (more options will appear):

i. Descriptive name: student_certii. Certificate Authority: MyCaiii. Key Length: 2048 bitsiv. Lifetime: 3650 days

- e. Click Save.
- 12. Navigate to VPN > OpenVPN.

13. While on the *OpenVPN: Server* page, click on the **Wizards** tab.

14. A new page appears; select Local User Access for Type of Server. Click Next.

15. On the next page, select **MyCA** as the *Certificate Authority*. Click **Next**.

16. Next, select **VPNServerCert** as the *Certificate*. Click **Next**.

- 17. On the next page, fill in all necessary fields as mentioned below (if the field is not mentioned, leave its default setting):
 - a. Interface: INTERNAL_GW

b. Protocol: UDP

c. Local Port: 1194

d. Description: myVPNServer

e. Cryptographic Settings:

i. TLS Authentication: Checkedii. Generate TLS Key: Checkediii. DH Parameters Length: 2048 bit

iv. Encryption Algorithm: AES-128-CBC (128-bit)

v. Hardware Crypto: No Hardware Crypto Acceleration

f. Tunnel Settings:

i. Tunnel Network: 172.16.1.0/24
ii. Redirect Gateway: Checked
iii. Local Network: 10.1.1.0/28
iv. Concurrent Connections: 10

v. Compression: Enabled without Adaptive Compression

g. Client Settings:

i. Dynamic IP: Checked

Address Pool: Provide a virtual adapter IP address to clients (see Tunnel Network).

- h. Click Next.
- 18. On the Firewall Rule Configuration page, fill in the necessary fields:
 - a. Firewall Rule: Checkedb. OpenVPN rule: Checked
 - c. Click Next.

19. On the final configuration page, select Finish.

3.2 Exporting VPN Client Data

- While logged in the pfSense webConfigurator, navigate to VPN > OpenVPN if not already.
- 2. Click on the **Client Export** tab.

- 3. Verify the configurations:
 - a. Remote Access Server: myVPN_Server UDP:1194

b. Host Name Resolution: Interface IP Address

c. Very Server CN: Automatic ...

d. Use Random Local Port: Checked

Use Random Local Port

Use a random local source port (Iport) for traffic from the client. Without this set, two clients may not run concurrently.

- e. *Certificate Export Options*: Check the box to **Use a password to protect the pkcs12 file.**
 - i. Type **bpassx** in both fields.

4. Scroll down towards the bottom where the *Client Install Packages* table is presented. Underneath the *Export* column, click on the **Archive** link for **Standard Configurations**.

5. A download message appears. Select **Save File** and click **OK**.

The file will be saved in the **/home/student/Downloads** directory by default.

3.3 Configuring the VPN Client

1. While on the **Ubuntu** system, open a **terminal** and type the command below to change to the **Downloads** directory.

student@Ubuntu:~\$ cd /home/student/Downloads

```
student@Ubuntu:~$ cd /home/student/Downloads
student@Ubuntu:~/Downloads$
```

2. **Unzip** the downloaded zip file.

student@Ubuntu:~/Downloads\$ unzip pfsense-udp-1194-student-config.zip

```
student@Ubuntu:~/Downloads$ unzip pfsense-udp-1194-student-config.zip
Archive: pfsense-udp-1194-student-config.zip
creating: pfsense-udp-1194-student/
inflating: pfsense-udp-1194-student/pfsense-udp-1194-student.ovpn
inflating: pfsense-udp-1194-student/pfsense-udp-1194-student-tls.key
extracting: pfsense-udp-1194-student/pfsense-udp-1194-student.p12
student@Ubuntu:~/Downloads$
```

Open the Network Manager by clicking on the network icon located on the top pane and navigate to VPN Connections > Configure VPN.

4. On the *Network Connections* window, confirm you are on the **VPN** tab. Click on the **Import** button.

5. In the *File Manager* window, select **Downloads** from the menu on the left. Double-click on the **pfsense-udp-1194-student** folder.

6. Select the **pfsense-udp-1194-student.ovpn** file and click the **Open** button.

7. In the new pop-up window, set the *Gateway* to 192.168.1.1.

8. Confirm that the *Authentication Type* is configured to **Password with Certificate** (TLS).

9. Type **student** in the *User name* field.

10. Type **bpassx** in the *Password* field.

11. Confirm that the file **pfsense-udp-1194-student.p12** occupies the entry for *User Certificate, CA Certificate,* and *Private Key*.

12. Type bpassx in the *Private Key Password* field.

13. Leave everything else in their **default** settings.

14. Verify that the configurations reflect the image below. Click the **Save** button.

15. Close the Network Connections window.

3.4 Connecting the VPN Client

 Connect using the VPN settings by clicking on the Network Manager icon on the top pane and navigate to VPN Connection > pfsense-udp-1194-student.

Verify the VPN tunnel and the IP address given by entering the command below in a terminal.

student@Ubuntu:~/Downloads\$ ifconfig

```
student@Ubuntu:~/Downloads$ ifconfig
eth0
          Link encap:Ethernet HWaddr 00:50:56:9c:59:78
          inet addr:192.168.1.50 Bcast:192.168.1.255 Mask:255.255.255.0
          inet6 addr: fe80::250:56ff:fe9c:5978/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:2375 errors:0 dropped:0 overruns:0 frame:0
          TX packets:6179 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:1395272 (1.3 MB) TX bytes:502749 (502.7 KB)
lo
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:1219 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1219 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:82099 (82.0 KB) TX bytes:82099 (82.0 KB)
tun0
          Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00
 00
          inet addr:172.16.1.6 P-t-P:172.16.1.5 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:100
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
```

3.5 Managing VPN Connections

- 1. Once connected to the *VPN server*, switch to the **Firefox** web browser and navigate back to the **pfSense Web Configurator**.
- 2. When logged in as *admin*, navigate to **Status > System Logs** from the top menu pane.

3. On the new page, select the **OpenVPN** tab.

4. Notice the steps per student's authentication to the VPN server.

5. Navigate to **Status > OpenVPN**.

6. Notice how the current active VPN connections are listed here.

7. The lab is now complete; you may end the reservation.