PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/01008 (11) International Publication Number: A1 H01L 21/336, 29/51, 29/78 6 January 2000 (06.01.00) (43) International Publication Date:

US

(21) International Application Number: PCT/US99/13787

(22) International Filing Date: 21 June 1999 (21.06.99)

(30) Priority Data: 09/109.992

(71) Applicant: LAM RESEARCH CORPORATION (US/US):

30 June 1998 (30.06.98)

4650 Cushing Parkway, Fremont, CA 94538-6470 (US) (72) Inventor: SETTON, Michael: 58, place de la Faita, F-38920

Crolles (FR).

(74) Agent: PETERSON, James, W.; Burns, Doane, Swecker & Mathis, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD. GE. GH. GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, GW, ML, MR, NE, SN. TD. TG).

Published

With international search report.

(54) Title: ULSI MOS WITH HIGH DIELECTRIC CONSTANT GATE INSULATOR

(57) Abstract

MOS transistor formed on a semiconductor substrate of a first conductivity type and method of fabrication are provided. The device includes (a) an interfacial layer formed on the substrate; (b) a high dielectric constant layer covering the interfacial layer that comprises a material that is selected from the group consisting of Ta₂O₅, Ta₂(O_{1-x}N_x)₅ wherein x ranges from greater than 0 to 0.6, a solid solution of (Ta2Os)-(TiO2)1-r wherein r ranges from about 0.9 to 1, a solid solution (Ta2Os)-(Al2O3)1-a wherein s ranges from 0.9 to 1, a solid solution of (Ta2Os)-(ZrO2)1-4 wherein t ranges from about 0.9 to 1, a solid solution of (Ta2Os)u-(HfO2)1-4 wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate; (c) a gate electrode having a width of less than 0.3 micron covering the high dielectric constant layer, (d) first and second lightly doped regions of a second conductivity type disposed on respective areas of the substrate surface; (e) a source and drain regions of the second conductivity type; and (f) a pair of spacers formed adjacent to the gate electrode and formed on the high dielectric constant layer. The high dielectric layer can be subject to densification. The gate oxide material will significantly improve the performance of an MOS device by reducing or eliminating the current leakage associated with prior art devices.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria .	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan `	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland .		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri I anka	SP	Sweden		

WO 00/01008 PCT/US99/13787

ULSI MOS WITH HIGH DIELECTRIC CONSTANT GATE INSULATOR

Field of the Invention

5

10

15

20

25

30

The present invention relates generally to methods for fabricating integrated circuits using metal oxide semiconductor (MOS) technology. More particularly, the present invention relates to MOS devices with a gate width of less than 0.3 micron.

Background of the Invention

Metal oxide semiconductors are well known in the art. With the rapid integration of elements in the device, the thickness of the silicon oxide gate dielectric layer has approached the 2 nm thickness level. Such thin gate oxide layers require stringent protocols during fabrication especially in the gate etching process. In addition, concomitant with this reduction in the thickness of the gate oxide layer is the device's high leakage current caused by direct tunneling effects.

Shinriki et. al., U.S. Patent 5,292,673 describes a MOSFET that contains a tantalum pentoxide gate insulating film. Although the patent asserts that the device exhibits improved electrical characteristics, nevertheless, it is believed that the device suffers from, among other things, high leakage currents because of the silicon oxide layer, which is formed by reoxidation between the tantalum pentoxide gate insulating film and the silicon substrate, has defects including non-uniformity.

Summary of the Invention

The present invention is based in part on the recognition that employing a gate dielectric layer formed at least in part from a high dielectric constant material comprising Ta₂O₅ will significantly improve the performance of the MOS device by, among other things, reducing or eliminating the current leakage associated with prior art devices.

Accordingly, in one aspect the invention is directed to a method for fabricating an MOS device having a gate width of less than 0.3 micron that includes the steps of:

(a) forming an interfacial layer on a semiconductor substrate of a first conductive type wherein the interfacial is preferably sufficiently thin to limit parasitic capacitance of the device:

20

25

30

- (b) forming a high dielectric constant layer on the interfacial layer that comprises a material that is selected from the group consisting of Ta_2O_5 , $Ta_2(O_{1.2}N_2)_5$ wherein x ranges from greater than 0 to 0.6, a solid solution of $(Ta_2O_5)_r(TiO_2)_{1.r}$ wherein r ranges from about 0.9 to 1, a solid solution $(Ta_2O_3)_{1.r}(Al_2O_3)_{1.r}$ wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_5)_r(TiO_2)_{1.r}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_5)_{1.r}(HfO_2)_{1.r}$ wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
- (c) depositing a layer of electrically conductive material on the high
 dielectric constant layer;
 - (d) selectively removing portions of the layer of electrically conductive material to form a gate electrode and to expose portions of the high dielectric constant layer;
- (e) implanting impurity ions through the exposed portions of the high
 dielectric constant layer into the substrate to form source and drain regions of a second conductive type;
 - (f) forming first spacers that are adjacent the gate electrode and cover portions of the source and drain regions of the second conductive type;
 - (g) removing the exposed portions of the high dielectric constant layer;
 - (h) implanting a second dose of impurity ions into the source and drain regions;
 - depositing a layer of insulator material over the surface of the device, wherein the layer of insulator material may have an irregular surface;
 - (j) optionally, planarizing the surface of the insulator material;
 - (k) removing portions of the insulator material to form contact holes in the insulator material that are in communication with the source and drain regions; and
 - filling the contact holes with contact material.

In preferred embodiments, the electrically conductive material comprises metal that is selected from the group consisting of TiN, W, Ta, Mo and mixtures thereof.

Alternatively, the electrically conductive material comprises doped polysilicon.

In another embodiment the method includes the step of forming second spacers that are adjacent the first spacers and cover portions of the source and drain regions

10

following step (g) and before step (h) and/or the step of forming a silicide layer on the source and drain regions following step (h).

In another aspect, the invention is directed to an MOS transistor formed on a semiconductor substrate of a first conductivity type that includes:

- (a) an interfacial layer formed on the substrate;
- (b) a high dielectric constant layer covering the interfacial layer that comprises a material that is selected from the group consisting of Ta_2O_3 , $Ta_2(O_{1,x}N_x)_5$ wherein x ranges from greater than 0 to 0.6, a solid solution of $(Ta_2O_3)_r$ - $(TiO_2)_{1,x}$ wherein r ranges from about 0.9 to 1, a solid solution $(Ta_2O_3)_r$ - $(Al_2O_3)_{1,x}$ wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_3)_r$ - $(ZrO_2)_{1,x}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_3)_r$ - $(HfO_2)_{1,u}$ wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
- (c) a gate electrode having a width of less than 0.3 micron covering the high dielectric constant layer;
 - (d) first and second lightly doped regions of a second conductivity type disposed on respective areas of the substrate surface;
 - (e) a source and drain regions of the second conductivity type; and
- (f) a pair of spacers formed adjacent to the gate electrode and formed on the high dielectric constant laver.

In a preferred embodiment, the MOS transistor also includes an insulator layer covering the device and defining a first contact hole that is filled with a first contact material and a second contact hole that are filled with a second contact material, wherein the insulator layer has a substantially planar surface.

25

Brief Description of the Drawings

Figures 1A through 1H illustrate the steps in fabricating an MOS device according to the present invention.

30 Detailed Description of the Preferred Embodiments

It is to be noted that "n+" and "n-" are used throughout the present disclosure.

The short hand notation specifies the electron concentration of various regions of a
metal-oxide-semiconductor device. For instance, "n-" specifies a region of light

10

15

20

25

30

electron concentration (on the order of $1x10^{18}$ cm⁻³) while "n+" specifies a region of high electron concentration (on the order of $1x10^{20}$ cm⁻³).

Figures 1A-1H illustrate an exemplary method for fabricating an integrated circuit device with the inventive process. A p type semiconductor substrate will be employed for illustrative purposes. Therefore, n- source and n- drain regions and n+ source and n+ drain regions are formed in the substrate. Referring to Figure 1A, silicon substrate 100 has an interfacial layer 105 preferably comprising SiO₂, Si₂N₄, or silicon oxynitride formed on an upper surface of the substrate. The interfacial layer is formed by conventional processes, such as, for example, rapid thermal processing (RTP), thermal annealing, CVD, plasma nitridation or oxidation, or wet chemical treatment, such as immersion into boiling nitric acid. A preferred method of forming the interfacial layer comprises exposing the silicon substrate in an RF or microwave plasma in an atmosphere containing ozone, oxygen, N₂O, nitrogen, or mixtures thereof. The interfacial layer serves to prevent reaction of Ta₂O₃ in layer 110 with the silicon substrate. The interfacial layer will have a thickness that is sufficient to prevent reaction between the high dielectric constant layer and the silicon substrate and the thickness typically ranges from about 1 nm to 5 nm and preferably about 1 nm to 2 nm.

Subsequently, high dielectric constant layer 110 and electrically conductive layer 120 are formed on interfacial layer 105. The high dielectric constant layer 110 preferably comprises material that is selected from Ta2O5, Ta2(O1xNx)5 wherein x preferably ranges from greater than 0 to 0.6, a solid solution of (TaO₅), (TiO₅), wherein r preferably ranges from about 0.9 to 1, a solid solution of (Ta₂O₂),-(Al₂O₂), wherein s preferably ranges from 0.9 to 1, a solid solution of (Ta2O5)1-(ZrO2)1-1 wherein t preferably ranges from about 0.9 to 1, a solid solution of $(Ta_2O_5)_u$ - $(HfO_2)_{1-u}$ wherein u ranges from about 0.9 to 1, and mixtures thereof. Typically, the high dielectric constant layer will have a thickness that ranges from about 4 nm to 12 nm and preferably from about 5 nm to 10 nm. The high dielectric constant layer will form the gate oxide layer. The particular high dielectric constant materials employed with the present invention allows for a thicker gate oxide layer to be formed, resulting in less stringent requirements on gate etching selectivity during the fabrication process. In addition, it is believed that during operation of the MOS transistors, the devices will exhibit a higher transconductance parameter. Further, since Ta has already been used in MOS fabrication, Ta2O5 containing gate oxides are expected to be compatible with

WO 00/01008 PCT/US99/13787 -5-

the materials in the other MOS materials. The high dielectric constant film can be fabricated by conventional means including, for example, LPCVD, PECVD, ECR CVD, UVCVD, and reactive sputtering.

In particular Ta,O, films can be prepared by chemical vapor deposition (CVD) 5 and physical vapor deposition (PVD) as described in Alers et al., "Nitrogen Plasma Annealing for Low Temperature Ta,O, Films", Appl. Phys. Lett., Vol. 72, (11), March 1998, pages 1308-1310. Ta₂(O_{1-x}N_x)₅ films can be prepared by thermal CVD or plasma-assisted CVD as described in U.S. Patent 5,677,015. $(Ta_2O_5)_f$ - $(TiO_2)_{1,r}$ films can be prepared by RF magnetron sputtering deposition as described in Gan et al. "Dielectric property of (TiO₂)_x - (Ta₂O₅)_{1-x} Thin Films", Appl. Phys. Lett. Vol. 72, (3), 10 January 1998, pages 332-334 or by chemical CVD as described in U.S. Patent 4,734,340. (Ta₂O₅)₃-(Al₂O₃)₁₋₅ films can be prepared by metalorganic solution deposition as described in Joshi et al., "Structural and electrical properties of crystalline (1-x)Ta₂O₅-xAl₂O₃ thin films fabricated by metalorganic solution deposition technique". 15 Appl. Phys. Lett. Vol. 71, (10), September 1997. Each of the above cited references is incorporated herein. Finally, the (Ta2O5),-(ZrO2)1, and (Ta2O5)u-(HfO2)1-u thin films can be fabricated by techniques used in fabricating the other solid solution materials. Prior to formation of the electrically conductive layer 120, the high dielectric constant material is preferably subjected to a densification process comprising, for example, 20 exposing the silicon substrate to a RTP or an RF or microwave plasma in an atmosphere containing ozone, oxygen, N,O, nitrogen, or mixtures thereof. Densification is further described in Alers et. al. cited above. Densification improves the high dielectric constant material with respect to the leakage current of the MOS device made.

Electrically conductive layer 120 preferably comprises one or more layers of a high melting metal such as, for example, TiN, W, Ta, Mo which can be deposited by sputtering. This layer typically has a thickness that ranges from about 100 nm to 300 nm, and preferably from about 150 nm to 250 nm. As will be described herein, this electrically conductive layer will form the gate electrode in this embodiment.

An optional oxide layer can be deposited and patterned over the electrically conductive layer 120. Subsequently, a layer of photoresist material 160 is applied onto electrically conductive layer 120 before the photoresist is masked and patterned using conventional photoresist techniques to form a gate pattern. After etching, the line width (L) of the gate 121 is typically less than 0.3 micron, and preferably equal to or less than

25

10

15

20

25

30

about 0.18 micron. Etching down to the top high dielectric constant layer 110 removes the exposed electrically conductive material as shown in Figure 1B. Source 190 and drain 180 regions are formed by self aligned ion implantation before the remaining photoresist material 160A is removed to form the device shown in Figure 1C. As is apparent, interfacial layer 105 shown in Figures 1A and 1B is not shown in Figure 1C or subsequent figures although the layer is present in the structures illustrated.

Referring to Figure 1D, spacers 122 are formed by depositing a phosphosilicate glass (PSG) film 124 over the entire surface of the device of Figure 1C and then anisotropic etching the glass. The spacers can also be made from oxides or nitrides. Subsequently, the exposed high dielectric constant material is removed by plasma etching using fluorine or chlorine containing etchant gases to yield the structure of Figure 1E. The remaining layer of high dielectric material 115 serves as the gate oxide. Second spacers 126 are formed by the same procedure as for spacers 122. Lightly doped source (n-) 129 and drain (n-) 128 regions are then formed by ion implantation as shown in Figure 1F with the concomitant formation of source (n+) 290 and drain (n+) 280 regions.

Silicide layers 133 and 132 are then formed on the source and drain regions.

One method comprises the steps of (1) depositing a layer of suitable metal preferably titanium, cobalt, or multiple layers of these metals, over the surface of the device of Figure 1F, (2) allowing the metal and silicon in the substrate to react, and thereafter (3) removing unreacted metal. Another method comprises depositing silicide, e.g., metal_xSi_y, directly onto source and drain regions using conventional selective deposition techniques, e.g., CVD.

Following formation of the silicide regions, a conformal layer of PSG film 40 is deposited on the structure of Figure 1G, thereafter, the top surface of the PSG film is planarized by conventional techniques such as chemical-mechanical polishing (CMP). CMP is particularly advantageous when small contact holes (less than 0.3 micron) are required. Subsequently, contact holes are etched in the PSG and they then filled with an electrically conductive, e.g., metal, material 42 and 43 as shown in Fig. 1H.

As is apparent, the above structure has a metal gate electrode 121. In an alternative embodiment, instead of a metal gate electrode, a doped polysilicon gate electrode can be employed. In this case, a doped polysilicon layer would be deposited in place of the electrically conductive 120 layer as shown in Figure 1A. Optionally, a

15

diffusion barrier layer made from a suitable material such as, for example, TiN, WN, and TaN, can be deposited between layers 110 and 120. This barrier layer, which is typically 5 nm to 15 nm thick, prevents polysilicon gate material from reacting with the tantalum pentoxide in the gate dielectric. In this scenario, the rest of the process would be essentially the same as above, however, the preferred silicidation procedure entails depositing a metal film over the structure so that a polycide layer on the surface of the doped polysilicon layer is formed as well.

It is to be emphasized that although n channel transistors have been described in detail herein, the present invention may also be practiced as a p channel transistor. In fabricating the p channel device, the doping conductives of the p channel device are simply opposite to those of the n channel device.

Although only preferred embodiments of the invention are specifically disclosed and described above, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

CLAIMS:

5

10

15

- A method for fabricating a MOS device having a gate width of less than
 0.3 micron that comprises the steps of:
- (a) forming an interfacial layer on a semiconductor substrate of a first conductivity type;
- (b) forming a high dielectric constant layer on the interfacial layer that comprises a material that is selected from the group consisting of Ta₂O₃, Ta₂(O_{1-x}N_x)₅ wherein x ranges from greater 0 to 0.6, a solid solution of (Ta₂O₃)_r(TiO₂)_{1-x} wherein r ranges from about 0.9 to 1, a solid solution (Ta₂O₃)_r(Al₂O₃)_{1-x} wherein s ranges from 0.9 to 1, a solid solution of (Ta₂O₃)_r(ZrO₂)_{1-x} wherein t ranges from about 0.9 to 1, a solid solution of (Ta₂O₃)_r(HfO₂)_{1-x} wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate:
- depositing a layer of electrically conductive material on the high dielectric constant layer;
- (d) selectively removing portions of the layer of electrically conductive material to form a gate electrode and to expose portions of the high dielectric constant layer;
- (e) implanting impurity ions through the exposed portions of the high dielectric constant layer into the substrate to form source and drain regions of a second conductivity type;
 - (f) forming first spacers that are adjacent the gate electrode and cover portions of the source and drain regions of the second conductivity type;
 - (g) removing the exposed portions of the high dielectric constant layer:
- 25 (h) implanting a second dose of impurity ions into the source and drain regions;
 - (i) depositing a layer of insulator material over the surface of the device;
 - (j) optionally, planarizing the surface of the insulator material;
- (k) removing portions of the insulator material to form contact holes in the 30 insulator material that are in communication with the source and drain regions; and
 - (l) filling the contact holes with contact material.

- The method of claim 1 comprising the step of densifying the high dielectric constant layer.
- The method of claim 1 wherein the electrically conductive material comprises metal that is selected from the group consisting of TiN, W, Ta, Mo and multilayers thereof.
 - The method of claim 1 wherein the electrically conductive material comprises doped polysilicon.

15

5

- The method of claim 4 further comprising the step of forming a barrier layer between the electrically conductive material and the high dielectric constant layer.
- The method of claim 1 further comprising the step of forming second spacers that are adjacent the first spacers and cover portions of the source and drain regions following step (g) and before step (h).
 - 7. The method of claim 1 further comprising the step of forming a silicide layer on the source and drain regions following step (h).

20

25

8. The method of claim 7 wherein forming the silicide layer comprises the steps of:

depositing a layer of metal over the at least the source and drain regions; heating the layer of metal to cause the metal to react with the silicon on the surface of the source and drain regions to form metal silicide layers in the source and drain regions; and

removing unreacted metal from the laver of metal.

- The method of claim 7 wherein forming the silicide layer comprises
 selectively depositing silicide over the source and drain regions.
 - 10. The method of claim 1 wherein the high dielectric constant material layer has a thickness that ranges from about 4 nm to 12 nm.

- 11. The method of claim 1 wherein the interfacial layer comprises silicon oxide, silicon nitride, or silicon oxynitride.
- 12. The method of claim 1 wherein step (h) comprises introducing a light dosage of impurities to form lightly doped source and drain regions.
 - The method of claim 1 wherein the high dielectric constant material is Ta₂O₄.
- 10 14. The method of claim 1 wherein the high dielectric constant material is Ta₂(O₁₂N₂)₅ wherein x ranges from greater than 0 to 0.6.
 - The method of claim 1 wherein the high dielectric constant material is a solid solution (Ta₂O₃), (TiO₂)₁₋₁ wherein r preferably ranges from about 0.9 to 1.
 - $16. \quad \text{ The method of claim 1 wherein the high dielectric constant material is} \\ a solid solution (Ta_2O_3)_r(Al_2O_3)_{1+} \text{ wherein s ranges from 0.9 to 1.}$
- The method of claim 1 wherein the high dielectric constant material is
 a solid solution (Ta₂O₃)₋(ZrO₂)_{1-x} wherein t ranges from about 0.9 to 1.
 - 18. The method of claim 1 wherein the high dielectric constant material is a solid solution of $(Ta_2O_3)_{u^*}(HfO_2)_{1:u}$ wherein u ranges from about 0.9 to 1.
- 25 19. The method of claim 1 wherein the substrate comprises silicon.
 - The method of claim 1 wherein the first spacers comprise an oxide or nitride material.
- 30 21. The method of claim 1 wherein step (i) comprises depositing a conformal layer of insulator material and (j) planarizes the surface of the insulator material by chemical mechanical planarization.

- 22. An MOS transistor formed on a semiconductor substrate of a first conductivity type comprising:
 - (a) an interfacial layer formed on the substrate;
- (b) a high dielectric constant layer covering the interfacial layer that comprises a material that is selected from the group consisting of Ta₂O₅, Ta₂(O_{1,7}N₇)₅ 5 wherein x ranges from greater than 0 to 0.6, a solid solution of (Ta₂O₅)_r-(TiO₂)_{1-r} wherein r ranges from about 0.9 to 1, a solid solution (Ta2O5)s-(Al2O3)1-s wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_5)_t$ - $(ZrO_2)_{1-t}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_5)_u$ - $(HfO_2)_{1-u}$ wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
 - (c) a gate electrode having a width of less than 0.3 micron covering the high dielectric constant layer;
- first and second lightly doped regions of a second conductivity type (d) 15 disposed on respective areas of the substrate surface;
 - (e) a source and drain regions of a second conductivity type; and
 - (f) a pair of spacers formed adjacent to the gate electrode and formed on the high dielectric constant laver.
- 20 23. The MOS transistor of claim 22 comprising:
 - (g) an insulator layer covering the device and defining a first contact hole that is filled with a first contact material and a second contact hole that are filled with a second contact material, wherein the insulator layer has a substantially planar surface.
 - 24. The MOS transistor of claim 22 wherein the gate electrode is formed from a metal that is selected from the group consisting of TiN, W, Ta, MO and multilayers thereof.
- 30 25. The MOS transistor claim 22 wherein the gate electrode comprises doped polysilicon.

15

25

- 26. The MOS transistor of claim 25 comprising a barrier layer between the gate electrode and the high dielectric constant layer.
- The MOS transistor of claim 22 comprising a pair of second spacers that are adjacent to the first spacers and formed on the lightly doped regions.
 - 28. The MOS transistor of claim 22 comprising a silicide layer on the source and drain regions.
- 10 29. The MOS transistor of claim 22 wherein the high dielectric constant material layer has a thickness that ranges from about 4 nm to 12 nm.
 - 30. The MOS transistor of claim 22 wherein the high dielectric constant material is ${\rm Ta}_2{\rm O}_5$.

31. The MOS transistor of claim 22 wherein the high dielectric constant material is Ta₂(O_{1-x}N_x)₅ wherein x ranges from 0 to 0.6.

- 32. The MOS transistor of claim 22 herein the high dielectric constant 20 material is a solid solution of (Ta₂O₃)_r-(TiO₂)_{1-r} wherein r preferably ranges from about 0.9 to 1.
 - The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution (Ta₂O₃)_z-(Al₂O₃)_{z+} wherein s ranges from 0.9 to 1.
 - 34. The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution $(Ta_2O_3)_{r}(ZrO_2)_{1s}$ wherein t ranges from about 0.9 to 1.
- 35. The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution of (Ta₂O₃)₀-(HfO₂)₁₋₀ wherein u ranges from about 0.9 to 1.

- 36. The MOS transistor of claim 22 wherein the substrate comprises silicon.
- 37. The MOS transistor of claim 22 wherein the first spacers comprise an
 oxide or nitride material.

FIG. I.D

FIG. 1E

BNSDCCID: -WO 0001000411

Ir --national Application No

		ruT/US 99/13787
IPC 7	HO1L21/336 HO1L29/51 HO1L29/78	
	to International Patent Classification (IPC) or to both national classification and IPC	
	SEARCHED	
IPC 7	ocumentation searched (classification system followed by classification symbols) H01L	
Documenta	tion searched other than minimum documentation to the extent that such documents are inclu-	ded in the fields searched
Electronic o	sata base consulted during the international search (name of data base and, where practical.	saarch farms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the ralavant passages	Ralevant to claim No
X	US 5 292 673 A (SHINRIKI HIROSHI ET AL) 8 March 1994 (1994-03-08) cited in the application figures 6-9	22, 24-27, 29,30, 36,37
	column 2, line 3 - line 9	25 -
	column 3, line 41 -column 4, line 5 column 4, line 25 - line 65	8
	column 5, line 9 - line 11	
	column 5, line 22 -column 7, line 19	7
`		1,3-6,
		10,11,
		13,13,20
	-/	
	-	
- 1		ı

Further documents are listed in the continuation of box C.

Patent family membars are listed in annex.

Special categories of cited documents

- "A" document defining the ganaral state of tha art which is not considered to be of particular ralavance
- "E" earlier document but published on or after the international filing date
 1- document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority data claimed

 Date of the actual completion of the international search
- T' lafer document published after the international filing date or promity date and not in conflict with the application but dited to understand the principle or theory underlying the mention
 X' document of particular relevance; the claimed invention
- "X" document of particular rélavance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is faken alone
- "Y" document of particular relevance; the claimed immation cannot be considered fo involve an inventiva step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document mamber of the same patent family

 Date of mailing of the international search report

30 September 1999

15/10/1999

Authorized officer

Name and mailing address of the ISA European Patent Offi

ng abriess of ma ISA European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswrijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Polesello, P

Form PCT/ISA/210 (second sheet) (July 1992)

Int "national Application No Full/US 99/13787

Category	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
	Transition of the court and passages	nerevarii lo cialifi No.
Ρ,Χ	PATENT ABSTRACTS OF JAPAN vol. 098, no. 011, 30 September 1998 (1998-09-30) -& JP 10 178170 A (FUJITSU LTD), 30 June 1998 (1998-06-30)	22,30,36
P,A	abstract; figures 1-6	1,11,13, 19
A	EP 0 844 647 A (TEXAS INSTRUMENTS INC) 27 May 1998 (1998-05-27) figure 2	1,4,5, 10-12, 19,20, 22,25, 26,36,37
	column 2, line 7 - line 12 column 2, line 50 -column 3, line 54	
٩.	US 5 596 214 A (ENDO NOBUHIRO) 21 January 1997 (1997-01-21)	1,3,11, 13,19, 22-24, 30,36
	figures 3,5,7,9 column 14, line 48 -column 15, line 27 column 16, line 63 -column 17, line 11 column 18, line 45 -column 19, line 12	
۱	US 3 731 163 A (SHUSKUS A) 1 May 1973 (1973-05-01) figure 1	1-4,11, 13-19, 22,24, 25,30-36
	column 3, line 61 -column 4, line 30	
١	US 5 702 972 A (HSU SHUN-LIANG ET AL) 30 December 1997 (1997-12-30)	1,4,6-9. 11,12, 19-23, 25,27, 28,36,37
1	figures 2-7,9 column 2, line 35 -column 4, line 4	20,30,37
	US 5 688 724 A (YOON EUISIK ET AL) 18 November 1997 (1997-11-18) figures 1-6 column 3, line 63 -column 6, line 18	1-5,11, 13,19
	PRATT I H: "Thin-film dielectric properties of r.f. sputtered oxides" SOLID STATE TECHNOLOGY, DEC. 1969, USA, vol. 12, no. 12, pages 49-57, XP002117110 ISSN: 0038-111X page 53, column 2, line 5 -page 55, column 2, line 28 tables II-III figure 10	1,13,16, 18,22, 30,33,35
- 1	 -/ - -	

ir' -national Application No

REDDY P K ET AL: "Dielectric properties of tantalum oxynitride films. (Thin film capacitors for hybrid integrated circuits)" PHYSICA STATUS SOLIDI A, 16 JULY 1979, EAST GERMANY, vol. 54, no. 1, pages K63-K66, XP002117111 ISSN: 0031-8965 page K63, line 23 -page K65, line 16 figure 2 GAN J -Y ET AL: "Dielectric property of fT10/sub 2///sub x-(Ta/sub 2/0/sub 5/)/sub 1-X thin films"	1,14,22, 31
of tantalum oxynitride films. (Thin film capacitors for hybrid integrated circuits)" PHYSICA STATUS SOLIDI A, 16 JULY 1979, EAST GERMANY, vol. 54, no. 1, pages K63-K66, XP002117111 ISSN: 0031-8965 page K63, line 23 -page K65, line 16 figure 2 GAN J -Y ET AL: "Dielectric property of (TiO/sub 2/)/sub x-(Ta/sub 2/O/sub 5/)/sub 1-X thin films"	
EAST GERMANY, vol. 54, no. 1, pages K63-K66, XP002117111 ISSN: 0031-8965 page K63, line 23 -page K65, line 16 figure 2 GAN J -Y ET AL: "Dielectric property of /Ti0/sub 2///sub x/-(Ta/sub 2/0/sub 5/\/ysub 1-x/ thin films"	
(TiO/sub 2/)/sub x/-(Ta/sub 2/O/sub 5/)/sub 1-x/ thin films"	
APPLIED PHYSICS LETTERS, 19 JAN. 1998, AIP, USA, vol. 72, no. 3, pages 332-334, XP002116551 ISSN: 0003-6951 cited in the application * the whole document *	1,2,15,22,31
A JOSHI P C ET AL: "Structural and electrical properties of crystalline (1-x)Ta/sub 2/0/sub 5/-xAl/sub 2/0/sub 3/ thin films fabricated by metalorganic solution deposition technique" APPLIED PHYSICS LETTERS, 8 SEPT. 1997, AIP, USA, vol. 71, no. 10, pages 1341-1343, XP002116552 ISSN: 0003-6951	1,16,22,
cited in the application abstract page 1343, column 2, line 9 - line 16 page 1343, column 2, line 23 - line 27	(X)
A VLASOV Y G ET AL: "Analytical applications of pH-ISFETS" SENSORS AND ACTUATORS B (CHEMICAL), DEC. 1992, SWITZERLAND, vol. Blo, no. 1, pages 1-6, XP002117112 ISSN: 0925-4005 page 1, column 1, line 17 - line 25	1,17,19, 22,34,36

In' national Application No Pull/US 99/13787

Category ·	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
Α		
A	annealing for low temperature Ta/sub 2/0/sub 5/ films" APPLIED PHYSICS LETTERS, 16 MARCH 1998, AIP, USA, vol. 72, no. 11, pages 1308-1310	2
	XP002116553 ISSN: 0003-6951 cited in the application page 1308, column 1, line 13 - line 29	
- 1		
	*	
-) -	* * * * * * * * * * * * * * * * * * *	
		*
	· · · · · · · · · · · · · · · · · · ·	
	e e	
-		
	· · · · · · · · · · · · · · · · · · ·	
	*	

Information on patent family members

Int Inational Application No

				101700	, ,,, 15,0,
	atent document d in search report		Publication date	Patent family member(s)	Publication date
US	5292673	A	08-03-1994	JP 2816192 B JP 3074878 A	27-10-1998 29-03-1991
JP	10178170	A	30-06-1998	NONE	
EP	0844647	A	27-05-1998	JP 10189587 A	21-07-1998
US	5596214	A	21-01-1997	JP 2643833 B JP 7326681 A	20-08-1997 12-12-1995
US	3731163	Α	01-05-1973	NONE	
US	5702972	Α	30-12-1997	NONE	
US	5688724	Α	18-11-1997	JP 6077402 A	18-03-1994

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number: WO 00/01008
H01L 21/336, 29/51, 29/78	A1	(43) International Publication Date: 6 January 2000 (06.01.00)
(21) International Application Number: PCT/US95 (22) International Filing Date: 21 June 1999 (21 (30) Priority Data: 30 June 1998 (30.06.98) (71) Applicant: LAM RESEARCH CORPORATION IL 4650 Cushing Parkway, Firemont, CA 94538-6470 (72) Inventor: SETTON, Michael; 58, place de la Faita, F. Crolles (FR). (74) Agent: PETERSON, James, W.; Burns, Doane, Swe Mathis, LL.P., P.O. Box 1404, Alexandria, VA 2231 (US).	US/US (US). -3892	BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, G, G, GB, GH, GM, RR, HU, DI, LI, N, IS, IP, KE, KG KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MM, MM, MX, MO, NO, ZP, LP, TR, OR, RU, SD, SS, GS, SK, SL, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARPO patent (GH, GM, KE, LS, MW, SD, SL, SC, UZ, ZV), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TT, TM, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, EL, TI, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE) Published & With international search report.
		*

(54) Title: ULSI MOS WITH HIGH DIELECTRIC CONSTANT GATE INSULATOR

(57) Abstract

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain . :	 LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	G۸	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	- GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobaso
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israei	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimhahwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugai		
CU	Cuba	KZ	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/01008 PCT/US99/13787

ULSI MOS WITH HIGH DIELECTRIC CONSTANT GATE INSULATOR

Field of the Invention

5

10

15

20

25

30

The present invention relates generally to methods for fabricating integrated circuits using metal oxide semiconductor (MOS) technology. More particularly, the present invention relates to MOS devices with a gate width of less than 0.3 micron.

Background of the Invention

Metal oxide semiconductors are well known in the art. With the rapid integration of elements in the device, the thickness of the silicon oxide gate dielectric layer has approached the 2 nm thickness level. Such thin gate oxide layers require stringent protocols during fabrication especially in the gate etching process. In addition, concomitant with this reduction in the thickness of the gate oxide layer is the device's high leakage current caused by direct tunneling effects.

Shinriki et. al., U.S. Patent 5,292,673 describes a MOSFET that contains a tantalum pentoxide gate insulating film. Although the patent asserts that the device exhibits improved electrical characteristics, nevertheless, it is believed that the device suffers from, among other things, high leakage currents because of the silicon oxide layer, which is formed by reoxidation between the tantalum pentoxide gate insulating film and the silicon substrate, has defects including non-uniformity.

Summary of the Invention

The present invention is based in part on the recognition that employing a gate dielectric layer formed at least in part from a high dielectric constant material comprising Ta₂O₅ will significantly improve the performance of the MOS device by, among other things, reducing or eliminating the current leakage associated with prior art devices.

Accordingly, in one aspect the invention is directed to a method for fabricating an MOS device having a gate width of less than 0.3 micron that includes the steps of:

 (a) forming an interfacial layer on a semiconductor substrate of a first conductive type wherein the interfacial is preferably sufficiently thin to limit parasitic capacitance of the device;

15

20

25

30

- (b) forming a high dielectric constant layer on the interfacial layer that comprises a material that is selected from the group consisting of Ta_bO_5 , $Ta_2(O_{1-k}N_k)_5$ wherein x ranges from greater than 0 to 0.6, a solid solution of $(Ta_2O_5)_r(TiO_2)_{1-r}$ wherein r ranges from about 0.9 to 1, a solid solution $(Ta_2O_5)_r(Al_2O_5)_{1-r}$ wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_5)_r(ZrO_2)_{1-r}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_5)_r(HfO_2)_{1-r}$ wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
- (c) depositing a layer of electrically conductive material on the high
 dielectric constant layer;
 - (d) selectively removing portions of the layer of electrically conductive material to form a gate electrode and to expose portions of the high dielectric constant layer;
 - (e) implanting impurity ions through the exposed portions of the high dielectric constant layer into the substrate to form source and drain regions of a second conductive type;
 - (f) forming first spacers that are adjacent the gate electrode and cover portions of the source and drain regions of the second conductive type;
 - (g) removing the exposed portions of the high dielectric constant layer;
 - (h) implanting a second dose of impurity ions into the source and drain regions;
 - depositing a layer of insulator material over the surface of the device, wherein the layer of insulator material may have an irregular surface;
 - (j) optionally, planarizing the surface of the insulator material;
 - (k) removing portions of the insulator material to form contact holes in the insulator material that are in communication with the source and drain regions; and
 - (l) filling the contact holes with contact material.

In preferred embodiments, the electrically conductive material comprises metal that is selected from the group consisting of TiN, W, Ta, Mo and mixtures thereof.

Alternatively, the electrically conductive material comprises doped polysilicon.

In another embodiment the method includes the step of forming second spacers that are adjacent the first spacers and cover portions of the source and drain regions

10

following step (g) and before step (h) and/or the step of forming a silicide layer on the source and drain regions following step (h).

In another aspect, the invention is directed to an MOS transistor formed on a semiconductor substrate of a first conductivity type that includes:

- (a) an interfacial layer formed on the substrate:
- (b) a high dielectric constant layer covering the interfacial layer that comprises a material that is selected from the group consisting of Ta_2O_5 , $Ta_2(O_{1-x}N_x)_5$ wherein x ranges from greater than 0 to 0.6, a solid solution of $(Ta_2O_5)_{r}(TiO_2)_{1-x}$ wherein r ranges from about 0.9 to 1, a solid solution $(Ta_2O_3)_{r}(Al_2O_3)_{r-x}$ wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_3)_{r-x}(ZrO_2)_{1-x}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_3)_{r-x}(ZrO_2)_{1-x}$ wherein t ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
- (c) a gate electrode having a width of less than 0.3 micron covering the high 15 dielectric constant layer:
 - (d) first and second lightly doped regions of a second conductivity type disposed on respective areas of the substrate surface;
 - (e) a source and drain regions of the second conductivity type; and
- (f) a pair of spacers formed adjacent to the gate electrode and formed on the 20 high dielectric constant layer.

In a preferred embodiment, the MOS transistor also includes an insulator layer covering the device and defining a first contact hole that is filled with a first contact material and a second contact hole that are filled with a second contact material, wherein the insulator layer has a substantially planar surface.

25

Brief Description of the Drawings

Figures 1A through 1H illustrate the steps in fabricating an MOS device according to the present invention.

30 Detailed Description of the Preferred Embodiments

It is to be noted that "n+" and "n-" are used throughout the present disclosure.

The short hand notation specifies the electron concentration of various regions of a
metal-oxide-semiconductor device. For instance, "n-" specifies a region of light

10

15

20

25

30

electron concentration (on the order of $1x10^{18}$ cm³) while "n+" specifies a region of high electron concentration (on the order of $1x10^{10}$ cm³).

Figures 1A-1H illustrate an exemplary method for fabricating an integrated circuit device with the inventive process. A p type semiconductor substrate will be employed for illustrative purposes. Therefore, n- source and n- drain regions and n+source and n+ drain regions are formed in the substrate. Referring to Figure 1A, silicon substrate 100 has an interfacial layer 105 preferably comprising SiQ, Si₂N₄, or silicon oxynitride formed on an upper surface of the substrate. The interfacial layer is formed by conventional processes, such as, for example, rapid thermal processing (RTP), thermal annealing, CVD, plasma nitridation or oxidation, or wet chemical treatment, such as immersion into boiling nitric acid. A preferred method of forming the interfacial layer comprises exposing the silicon substrate in an RF or microwave plasma in an atmosphere containing ozone, oxygen, N₂O, nitrogen, or mixtures thereof. The interfacial layer serves to prevent reaction of Ta₂O₃ in layer 110 with the silicon substrate. The interfacial layer will have a thickness that is sufficient to prevent reaction between the high dielectric constant layer and the silicon substrate and the thickness typically ranges from about 1 nm to 5 nm and preferably about 1 nm to 2 nm.

Subsequently, high dielectric constant layer 110 and electrically conductive layer 120 are formed on interfacial layer 105. The high dielectric constant layer 110 preferably comprises material that is selected from Ta2O5, Ta2(O1,N2)5 wherein x preferably ranges from greater than 0 to 0.6, a solid solution of (Ta,O₅),-(TiO₂),. wherein r preferably ranges from about 0.9 to 1, a solid solution of (Ta,O₅),-(Al₂O₃)_{1,c} wherein s preferably ranges from 0.9 to 1, a solid solution of (Ta₂O₅),-(ZrO₂)₁₋₁ wherein t preferably ranges from about 0.9 to 1, a solid solution of (Ta2O5)u-(HfO2)1-u wherein u ranges from about 0.9 to 1, and mixtures thereof. Typically, the high dielectric constant layer will have a thickness that ranges from about 4 nm to 12 nm and preferably from about 5 nm to 10 nm. The high dielectric constant layer will form the gate oxide layer. The particular high dielectric constant materials employed with the present invention allows for a thicker gate oxide layer to be formed, resulting in less stringent requirements on gate etching selectivity during the fabrication process. In addition, it is believed that during operation of the MOS transistors, the devices will exhibit a higher transconductance parameter. Further, since Ta has already been used in MOS fabrication, Ta,O, containing gate oxides are expected to be compatible with

10

15

20

25

30

the materials in the other MOS materials. The high dielectric constant film can be fabricated by conventional means including, for example, LPCVD, PECVD, ECR CVD, UVCVD, and reactive sputtering.

In particular Ta,O, films can be prepared by chemical vapor deposition (CVD) and physical vapor deposition (PVD) as described in Alers et al., "Nitrogen Plasma Annealing for Low Temperature Ta,O, Films", Appl. Phys. Lett., Vol. 72, (11), March 1998, pages 1308-1310. Ta₂(O_{1-x}N_x)₅ films can be prepared by thermal CVD or plasma-assisted CVD as described in U.S. Patent 5,677,015. (Ta₂O₅)_t-(TiO₂)_{1-t} films can be prepared by RF magnetron sputtering deposition as described in Gan et al. "Dielectric property of (TiO2)x - (Ta2O5)1.x Thin Films", Appl. Phys. Lett. Vol. 72, (3), January 1998, pages 332-334 or by chemical CVD as described in U.S. Patent 4,734,340. (Ta₂O₅)₅-(Al₂O₃)₁₋₅ films can be prepared by metalorganic solution deposition as described in Joshi et al., "Structural and electrical properties of crystalline (1-x)Ta₂O₅-xAl₂O₃ thin films fabricated by metalorganic solution deposition technique". Appl. Phys. Lett. Vol. 71, (10), September 1997. Each of the above cited references is incorporated herein. Finally, the (Ta2O5),-(ZrO2)1, and (Ta2O5)u-(HfO2)1-u thin films can be fabricated by techniques used in fabricating the other solid solution materials. Prior to formation of the electrically conductive layer 120, the high dielectric constant material is preferably subjected to a densification process comprising, for example, exposing the silicon substrate to a RTP or an RF or microwave plasma in an atmosphere containing ozone, oxygen, N2O, nitrogen, or mixtures thereof. Densification is further described in Alers et. al. cited above. Densification improves the high dielectric constant material with respect to the leakage current of the MOS device made.

Electrically conductive layer 120 preferably comprises one or more layers of a high melting metal such as, for example, TiN, W, Ta, Mo which can be deposited by sputtering. This layer typically has a thickness that ranges from about 100 nm to 300 nm, and preferably from about 150 nm to 250 nm. As will be described herein, this electrically conductive layer will form the gate electrode in this embodiment.

An optional oxide layer can be deposited and patterned over the electrically conductive layer 120. Subsequently, a layer of photoresist material 160 is applied onto electrically conductive layer 120 before the photoresist is masked and patterned using conventional photoresist techniques to form a gate pattern. After etching, the line width (L) of the gate 121 is typically less than 0.3 micron, and preferably equal to or less than

10

15

20

25

30

about 0.18 micron. Etching down to the top high dielectric constant layer 110 removes the exposed electrically conductive material as shown in Figure 1B. Source 190 and drain 180 regions are formed by self aligned ion implantation before the remaining photoresist material 160A is removed to form the device shown in Figure 1C. As is apparent, interfacial layer 105 shown in Figures 1A and 1B is not shown in Figure 1C or subsequent figures although the layer is present in the structures illustrated.

Referring to Figure 1D, spacers 122 are formed by depositing a phosphosilicate glass (PSG) film 124 over the entire surface of the device of Figure 1C and then anisotropic etching the glass. The spacers can also be made from oxides or nitrides. Subsequently, the exposed high dielectric constant material is removed by plasma etching using fluorine or chlorine containing etchant gases to yield the structure of Figure 1E. The remaining layer of high dielectric material 115 serves as the gate oxide. Second spacers 126 are formed by the same procedure as for spacers 122. Lightly doped source (n-) 129 and drain (n-) 128 regions are then formed by ion implantation as shown in Figure 1F with the concomitant formation of source (n+) 290 and drain (n+) 280 regions.

Silicide layers 133 and 132 are then formed on the source and drain regions.

One method comprises the steps of (1) depositing a layer of suitable metal preferably titanium, cobalt, or multiple layers of these metals, over the surface of the device of Figure 1F, (2) allowing the metal and silicon in the substrate to react, and thereafter (3) removing unreacted metal. Another method comprises depositing silicide, e.g., metal, Si,, directly onto source and drain regions using conventional selective deposition techniques, e.g., CVD.

Following formation of the silicide regions, a conformal layer of PSG film 40 is deposited on the structure of Figure 1G, thereafter, the top surface of the PSG film is planarized by conventional techniques such as chemical-mechanical polishing (CMP). CMP is particularly advantageous when small contact holes (less than 0.3 micron) are required. Subsequently, contact holes are etched in the PSG and they then filled with an electrically conductive, e.g., metal, material 42 and 43 as shown in Fig. 1H.

As is apparent, the above structure has a metal gate electrode 121. In an alternative embodiment, instead of a metal gate electrode, a doped polysilicon gate electrode can be employed. In this case, a doped polysilicon layer would be deposited in place of the electrically conductive 120 layer as shown in Figure 1A. Optionally, a

10

15

diffusion barrier layer made from a suitable material such as, for example, TiN, WN, and TaN, can be deposited between layers 110 and 120. This barrier layer, which is typically 5 nm to 15 nm thick, prevents polysilicon gate material from reacting with the tantalum pentoxide in the gate dielectric. In this scenario, the rest of the process would be essentially the same as above, however, the preferred silicidation procedure entails depositing a metal film over the structure so that a polycide layer on the surface of the dooed polysilicon layer is formed as well.

It is to be emphasized that although n channel transistors have been described in detail herein, the present invention may also be practiced as a p channel transistor. In fabricating the p channel device, the doping conductives of the p channel device are simply opposite to those of the n channel device.

Although only preferred embodiments of the invention are specifically disclosed and described above, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention.

CLAIMS:

10

15

20

- A method for fabricating a MOS device having a gate width of less than
 3 micron that comprises the steps of:
- (a) forming an interfacial layer on a semiconductor substrate of a first conductivity type;
 - (b) forming a high dielectric constant layer on the interfacial layer that comprises a material that is selected from the group consisting of Ta_2O_3 , $Ta_2(O_{1,n}N_3)_5$ wherein x ranges from greater 0 to 0.6, a solid solution of $(Ta_2O_3)_{r-}(TiO_2)_{1-r}$ wherein r ranges from about 0.9 to 1, a solid solution $(Ta_2O_3)_{r-}(Al_2O_3)_{1-r}$ wherein s ranges from 0.9 to 1, a solid solution of $(Ta_2O_3)_{r-}(ZrO_2)_{1-r}$ wherein t ranges from about 0.9 to 1, a solid solution of $(Ta_2O_3)_{r-}(HfO_2)_{1-r}$ wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate:
- depositing a layer of electrically conductive material on the high dielectric constant layer;
- (d) selectively removing portions of the layer of electrically conductive material to form a gate electrode and to expose portions of the high dielectric constant layer;
- (e) implanting impurity ions through the exposed portions of the high dielectric constant layer into the substrate to form source and drain regions of a second conductivity type;
- (f) forming first spacers that are adjacent the gate electrode and cover portions of the source and drain regions of the second conductivity type;
 - (g) removing the exposed portions of the high dielectric constant layer;
- (h) implanting a second dose of impurity ions into the source and drain regions;
 - (i) depositing a layer of insulator material over the surface of the device:
 - (j) optionally, planarizing the surface of the insulator material;
- (k) removing portions of the insulator material to form contact holes in the
 insulator material that are in communication with the source and drain regions; and
 - (l) filling the contact holes with contact material.

- The method of claim 1 comprising the step of densifying the high dielectric constant layer.
- The method of claim 1 wherein the electrically conductive material comprises metal that is selected from the group consisting of TiN, W, Ta, Mo and multilayers thereof.
- The method of claim 1 wherein the electrically conductive material comprises doped polysilicon.

- 5. The method of claim 4 further comprising the step of forming a barrier layer between the electrically conductive material and the high dielectric constant layer.
- 6. The method of claim 1 further comprising the step of forming second 15 spacers that are adjacent the first spacers and cover portions of the source and drain regions following step (g) and before step (h).
 - The method of claim 1 further comprising the step of forming a silicide layer on the source and drain regions following step (h).

20

25

8. The method of claim 7 wherein forming the silicide layer comprises the steps of:

depositing a layer of metal over the at least the source and drain regions;

heating the layer of metal to cause the metal to react with the silicon on the surface of the source and drain regions to form metal silicide layers in the source and drain regions; and

removing unreacted metal from the layer of metal.

- The method of claim 7 wherein forming the silicide layer comprises
 selectively depositing silicide over the source and drain regions.
 - The method of claim 1 wherein the high dielectric constant material layer has a thickness that ranges from about 4 nm to 12 nm.

15

- The method of claim 1 wherein the interfacial layer comprises silicon oxide, silicon nitride, or silicon oxynitride.
- The method of claim 1 wherein step (h) comprises introducing a light dosage of impurities to form lightly doped source and drain regions.
 - 13. The method of claim 1 wherein the high dielectric constant material is ${\rm Ta}_2{\rm O}_3.$
- 10 14. The method of claim 1 wherein the high dielectric constant material is Ta₂(O₁₊,N₂), wherein x ranges from greater than 0 to 0.6.
 - 15. The method of claim 1 wherein the high dielectric constant material is a solid solution $(Ta_2O_3)_r(TiO_2)_{1r}$ wherein r preferably ranges from about 0.9 to 1.

16. The method of claim 1 wherein the high dielectric constant material is a solid solution (Ta₂O₄)_x-(Al₂O₄)_{1x} wherein s ranges from 0.9 to 1.

- 17. The method of claim 1 wherein the high dielectric constant material is 20 a solid solution (Ta₂O₂)₇(ZrO₂)₁, wherein t ranges from about 0.9 to 1.
 - 18. The method of claim 1 wherein the high dielectric constant material is a solid solution of $(Ta_2O_3)_u$ - $(HfO_2)_{1:u}$ wherein u ranges from about 0.9 to 1.
- 25 19. The method of claim 1 wherein the substrate comprises silicon.
 - The method of claim 1 wherein the first spacers comprise an oxide or nitride material.
- 30 21. The method of claim 1 wherein step (i) comprises depositing a conformal layer of insulator material and (j) planarizes the surface of the insulator material by chemical mechanical planarization.

- 22. An MOS transistor formed on a semiconductor substrate of a first conductivity type comprising:
 - (a) an interfacial layer formed on the substrate;
- (b) a high dielectric constant layer covering the interfacial layer that comprises a material that is selected from the group consisting of Ta₂O₅, Ta₂(O_{1-x}N_x)₅ wherein x ranges from greater than 0 to 0.6, a solid solution of (Ta₂O₅)_x-(TiO₂)_{1-x} wherein r ranges from about 0.9 to 1, a solid solution (Ta₂O₅)_x-(Al₂O₅)_{x-4} wherein s ranges from 0.9 to 1, a solid solution of (Ta₂O₅)_x-(ZfO₂)_{1-x} wherein t ranges from about 0.9 to 1, a solid solution of (Ta₂O₅)_x-(HfO₂)_{1-x} wherein u ranges from about 0.9 to 1, and mixtures thereof wherein the interfacial layer separates the high dielectric constant layer from the substrate;
 - (c) a gate electrode having a width of less than 0.3 micron covering the high dielectric constant layer;
- (d) first and second lightly doped regions of a second conductivity type disposed on respective areas of the substrate surface;
 - (e) a source and drain regions of a second conductivity type; and
 - (f) a pair of spacers formed adjacent to the gate electrode and formed on the high dielectric constant layer.
 - The MOS transistor of claim 22 comprising:
 - (g) an insulator layer covering the device and defining a first contact hole that is filled with a first contact material and a second contact hole that are filled with a second contact material, wherein the insulator layer has a substantially planar surface.
 - 24. The MOS transistor of claim 22 wherein the gate electrode is formed from a metal that is selected from the group consisting of TiN, W, Ta, MO and multilayers thereof.
- 30 25. The MOS transistor claim 22 wherein the gate electrode comprises doped polysilicon.

10

15

20

- 26. The MOS transistor of claim 25 comprising a barrier layer between the gate electrode and the high dielectric constant layer.
- The MOS transistor of claim 22 comprising a pair of second spacers
 that are adjacent to the first spacers and formed on the lightly doped regions.
 - The MOS transistor of claim 22 comprising a silicide layer on the source and drain regions.
- 10 29. The MOS transistor of claim 22 wherein the high dielectric constant material layer has a thickness that ranges from about 4 nm to 12 nm.
 - 30. The MOS transistor of claim 22 wherein the high dielectric constant material is ${\rm Ta}_2{\rm O}_5$.
 - 31. The MOS transistor of claim 22 wherein the high dielectric constant material is $Ta_2(O_{1-x}N_y)_5$ wherein x ranges from 0 to 0.6.
- 32. The MOS transistor of claim 22 herein the high dielectric constant material is a solid solution of (Ta₂O₅)_r-(TiO₂)_{1-r} wherein r preferably ranges from about 0.9 to 1.
 - The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution (Ta₂O₄)_s-(Al₂O₃)_{1-s} wherein s ranges from 0.9 to 1.
 - The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution (Ta₂O₃)_r(ZrO₂)_{1-t} wherein t ranges from about 0.9 to 1.
- 35. The MOS transistor of claim 22 wherein the high dielectric constant material is a solid solution of (Ta₂O₅)_u-(HfO₂)_{1-u} wherein u ranges from about 0.9 to 1.

15

- 36. The MOS transistor of claim 22 wherein the substrate comprises silicon.
- The MOS transistor of claim 22 wherein the first spacers comprise an oxide or nitride material.

1/3

FIG. 1A

FIG. 1B

FIG. 1C SUBSTITUTE SHEET (RULE 26)

FIG. 1D

FIG. 1E

FIG. 1F SUBSTITUTE SHEET (RULE 26)

FIG. 1G

FIH. 1H

SUBSTITUTE SHEET (RULE 26)

ir :-national Application No

A. CLASSII	FICATION OF SUBJECT	MATTER	
IPC 7	H01L21/336	H01L29/51	H01L29/78
110/	H01F51/330	U01F53/21	HU1L29//C

According to International Patent Classification (IPC) or to both national classification end IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category ³	Citation of document, with indication, where appropriate, of the relevant passages	Relevent to claim No.
X	US 5 292 673 A (SHINRIKI HIROSHI ET AL) 8 March 1994 (1994-03-08) cited in the application figures 6-9	22, 24-27, 29,30, 36,37
	column 2, line 3 - line 9 column 3, line 41 -column 4, line 5 column 4, line 25 - line 65 column 5, line 9 - line 11 column 5, line 22 -column 7, line 19	
A		1,3-6, 10,11, 13,19,20
	-/ -	

X Further documents are listed in the continuation of box C.	Patent family members ere listed in annex.
*Special categories of cited documents: *A document darking the general state of the ert which is not considered to be of particust relevance. *E* earlier document but published on or effert the international sling date. *L* document which may throw doubts on priority, claim(s) or considered or of other special research (as specified). *O* document referring to an oral disclosure, use, exhibition or other means. *P* document published prior to the international rifling date but later than the priority data.	To later document published after the international filing date or priority date and not in contilid with the application but date to understand the principle or theory underlying the understand the principle or theory underlying the document of particular relevance; the claimed invention cannot be considered not over of crannot be considered to involve an inventive step when the document is taken alone. You document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the cannot be considered to involve an inventive step when the cannot be considered to involve an inventive step when the cannot be considered to involve an inventive step when the mental control of the considered to involve an inventive step when the cannot be considered to invention and the cannot be considered to involve an inventive step
Date of the actual completion of the international search	Date of mailing of the international search report
30 September 1999	15/10/1999
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 229 14 Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Polesello, P

Form PCT/ISA/210 (second sheet) (July 1992)

Int Inational Application No Fulf/US 99/13787

Category -	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
		nerevant to claim No.
P,X	PATENT ABSTRACTS OF JAPAN vol. 098, no. 011, 30 September 1998 (1998-09-30) -& JP 10 178170 A (FUJITSU LTD), 30 June 1998 (1998-06-30)	22,30,36
P,A	abstract; figures 1-6	1,11,13, 19
A	EP 0 844 647 A (TEXAS INSTRUMENTS INC) 27 May 1998 (1998-05-27)	1,4,5, 10-12, 19,20, 22,25, 26,36,37
	figure 2 column 2, line 7 - line 12 column 2, line 50 -column 3, line 54	2,0,30,37
۹ - ِ	US 5 596 214 A (ENDO NOBUHIRO) 21 January 1997 (1997-01-21)	1,3,11, 13,19, 22-24, 30,36
	figures 3,5,7,9 column 14, line 48 -column 15, line 27 column 16, line 63 -column 17, line 11 column 18, line 45 -column 19, line 12	30,30
4	US 3 731 163 A (SHUSKUS A) 1 May 1973 (1973-05-01) figure 1	1-4,11, 13-19, 22,24, 25,30-36
	column 3, line 61 -column 4, line 30	
۱	US 5 702 972 A (HSU SHUN-LIANG ET AL) 30 December 1997 (1997-12-30)	1,4,6-9, 11,12, 19-23, 25,27, 28,36,37
	figures 2-7,9 column 2, line 35 -column 4, line 4	
` "	US 5 688 724 A (YOON EUISIK ET AL) 18 November 1997 (1997-11-18) figures 1-6 column 3, line 63 -column 6, line 18	1-5,11, 13,19
	PRATT I H: "Thin-film dielectric properties of r.f. sputtered oxides" SOLID STATE TECHNOLOGY, DEC. 1969, USA, vol. 12, no. 12, pages 49-57, XP002117110 ISSN: 0038-11X page 53, column 2, line 5 -page 55, column 2, line 28 tables II-III figure 10	1,13,16, 18,22, 30,33,35
	page 53, column 2, line 5 -page 55, column 2, line 28 tables II-III	÷

Form PCT/ISA/210 (continuation of second sheet) (July 19

in -national Application No

Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
А	REDDY P K ET AL: "Dielectric properties of tantalum oxynitride films. (Thin film capacitors for hybrid integrated circuits)" PHYSICA STATUS SOLIDI A, 16 JULY 1979, EAST GERMANY, vol. 54, no. 1, pages K63-K66,	1,14,22,
	XP002117111 ISSN: 0031-8965 page K63, line 23 -page K65, line 16 figure 2	
A	GAN J -Y ET AL: "Dielectric property of (TIO/sub 2/)/sub x/-(Ta/sub 2/O/sub 5/)/sub l-x/ thin films" APPLIED PHYSICS LETTERS, 19 JAN. 1998, AIP, USA, vol. 72, no. 3, pages 332-334,	1,2,15, 22,31
	XP002116551 ISSN: 0003-6951 cited in the application * the whole document *	
1	JOSHI P C ET AL: "Structural and electrical properties of crystalline (1-x)Ta/sub 2/0/sub 5/-xAl/sub 2/0/sub 3/ thin films fabricated by metalorganic solution deposition technique" APPLIED PHYSICS LETTERS, 8 SEPT. 1997, AIP, USA, vol. 71, no. 10, pages 1341-1343,	1,16,22,
	XPO02116552 ISSN: 0003-6951 cited in the application abstract page 1343, column 2, line 9 - line 16 page 1343, column 2, line 23 - line 27	
	VLASOV Y G ET AL: "Analytical applications of pH-ISFETS" SENSORS AND ACTUATORS B (CHEMICAL), DEC. 1992, SWITZERLAND, vol. B10, no. 1, pages 1-6, XP002117112 ISSN: 0925-4005 page 1, column 1, line 17 - line 25	1,17,19, 22,34,36
	- 	*

Pur/US 99/13787

Category *	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
	ALERS G B ET AL: "Nitrogen plasma annealing for low temperature Ta/sub 2/0/sub 5/ films" APPLIED PHYSICS LETTERS, 16 MARCH 1998, AIP, USA, vol. 72, no. 11, pages 1308-1310, XP002116553 ISSN: 0003-6951 cited in the application page 1308, column 1, line 13 - line 29	2
~		
	t g	
	* "	
	* .	- 7
		*
	*	
		*
	, a	
	*	

Information on patent family members

In* national Application No

F	atent document		Dates I			C1/US 9	99/13787
cite	d in search repor	t	Publication date		Patent family member(s)		Publication date
US	5292673	A	08-03-1994	JP JP	2816192 3074878		27-10-1998 29-03-1991
JP	10178170	A	30-06-1998	NONE		·	
EP	0844647	Α	27-05-1998	JP	10189587	Α	21-07-1998
US 	5596214	A	21-01-1997	JP JP	2643833 7326681		20-08-1997 12-12-1995
US	3731163	Α	01-05-1973	NONE			
US	5702972	Α	30-12-1997	NONE			
US	5688724	A	18-11-1997	JP	6077402	A	18-03-1994

Form PCT/ISA/210 (palent family annex) (July 1992)

From the INTERNATIONAL SEARCHING AUTHORITY

To: MYERS BIGEL SIBLEY & SAJOVEC P.O. Box 37428 Raleigh, NC 27627

PCT

NOTIFICATION OF TRANSMITTAL OF THE INTERNATIONAL SEARCH REPORT OR THE DECLARATION

Raleigh, NC 27627 UNITED STATES OF AMERICA	(PCT Rule 44.1)
	(PCT Hule 44.1)
	1
	Date of malling (day/month/year) 15/02/2002
Applicant's or agent's file reference	FOR FURTHER ACTION See paragraphs 1 and 4 below
5347.208.WO	
International application No. PCT/US 01/19787	International filing date (day/month/year) 21/06/2001
Applicant	21.00,2001
NORTH CAROLINA STATE UNIVERSITY	
1. X The applicant is hereby notified that the International Searce	th Report has been established and is transmitted herewith.
Filing of amendments and statement under Article 19: The applicant is entitled, if he so wishes, to amend the clair	
When? The time limit for filing such amendments is norm	
Where? Directly to the International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Fascimile No.: (41–22) 740.14.3	5
For more detailed instructions, see the notes on the according	ompanying sheet.
The applicant is hereby notified that no international Search Article 17(2)(a) to that effect is transmitted herewith.	th Report will be established and that the declaration under
3. With regard to the protest against payment of (an) additi	onal fee(s) under Rule 40.2, the applicant is notified that:
the protest together with the decision thereon has been	on transmitted to the International Bureau together with the otest and the decision thereon to the designated Offices.
no decision has been made yet on the protest; the ap	plicant will be notified as soon as a decision is made.
4. Further action(s): The applicant is reminded of the following:	
Shortly after 18 months from the priority date, the international a if the applicant wishes to avoid or postpone publication, a notic priority claim, must reach the international Eureau as provided completion of the technical preparations for international public	e of withdrawal of the international application, or of the in Rules 90 <i>bis.</i> 1 and 90 <i>bis.</i> 3, respectively, before the
Within 19 months from the priority date, a demand for internation wishes to postpone the entry into the national phase until 30 m	nal preliminary examination must be filed if the applicant onths from the priority date (in some Offices even later).
Within 20 months from the priority date, the applicant must perfu before all designated Offices which have not been elected in the priority date or could not be elected because they are not bour	he demand or in a later election within 19 months from the
Name and mailing address of the International Searching Authority	Authorized officer BOGKE (CD)

NOTES TO FORM PCT/ISA/220

These Notes are intended to give the basic instructions concerning the filing of amendments under article 19. The Notes are based on the requirements of the Patient Cooperation Treatly, the Regulations and the Administrative instructions under that Treaty, in case of discrepancy between these Notes and those requirements, the latter are applicable, For more detailed information, see sho the POT Applicant's Guide, a publication of WIPO.

in these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the international search report, one opportunity to amend the claims of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the international preliminary examination procedure, there is usually no need to file amendments of the claims under Article 19 except twent, e.g. the applicant wants the latter to be publicated for the purposes of provisional protection or has another reason for amending the claims before international publication. Furthermore, it should be emphasized that provisional protection is available in smore States only.

What parts of the international application may be amended?

Under Article 19, only the claims may be amended.

During the international phase, the claims may also be amended (or further amended) under Article 34 before the International Profilminary Examining Authority. The description and drawings may only be amended under Article 34 before the International Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Article 28 or, where applicable, Article 41.

When?

Within 2 months from the date of transmittal of the international search report or 16 months from the priority date, whichever time limit expires later. It should be noted, neverer, that the amendments will be considered as having been received on time if they are received by the international Bureau after the expiration of the applicable time limit but before the completion of the technical preparations for international publication (Rules 46.1).

Where not to file the amendments?

The amendments may only be filed with the International Bureau and not with the receiving Office or the International Searching Authority (Rule 46.2).

Where a demand for international preliminary examination has been is filed, see below

How?

Either by cancelling one or more entire claims, by adding one or more new claims or by amending the text of one or more of the claims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendment or amendments, differs from the sheet originally filed.

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim is cancelled, no renumbering of the other claims is required. In all cases where claims are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application is to be published.

What documents must/may accompany the amendments?

Letter (Section 205(b)):

The amendments must be submitted with a letter

The letter will not be published with the international application and the amended claims. It should not be confused with the "Statement under Article 19(1)" (see below, under "Statement under Article 19(1)").

The letter must be in English or French, at the choice of the applicant. However, if the language of the international application is English, the letter must be in English; if the language of the international application is French, the letter must be in French.

Notes to Form PCT/ISA/220 (first sheet) (January 1994)

NOTES TO FORM PCT/ISA/220 (continued)

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications concerning several claims may be grouped), whether

- (i) the claim is unchanged:
- (ii) the claim is cancelled:
- (iii) the claim is new:
- (iv) the claim replaces one or more claims as filed:
- (v) the claim is the result of the division of a claim as filed.

The following examples illustrate the manner in which amendments must be explained in the accompanying letter:

- [Where originally there were 48 claims and after amendment of some claims there are 51]: "Claims 1 to 29, 31, 32, 34, 35, 37 to 48 replaced by amended claims bearing the same numbers; claims 30, 33 and 36 unchanged; new claims 49 to 51 added."
- [Where originally there were 15 claims and after amendment of all claims there are 11]: "Claims 1 to 15 replaced by amended claims 1 to 11."
- 3. [Where originally there were 14 claims and the amendments consist in cancelling some claims and in adding new claims]: "Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or "Claims 7 to 13 cancelled; new claims 15, 16 and 17 added; all other claims unchanged."
- [Where various kinds of amendments are made]: Claims 1-10 undraped, claims 11 to 13, 18 and 19 cancelled, claims 14, 15 and 16 replaced by amended claim 14, claim 17 subdivided into amended claims 15, 16 and 17, new claims 20 and 21 added.

"Statement under article 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating any impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.

it must be in the language in which the international appplication is to be published.

It must be brief, not exceeding 500 words if in English or if translated into English.

It should not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 19(1)."

It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference to citations, relevant to a given claim, contained in the international search report may be made only in connection with an amendment of that claim.

Consequence if a demand for international preliminary examination has already been filed

If, at the time of filing any amendments under Artiole 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the same time of filing the amendments with the international Bureau, also file a copy of such amendments with the international Preliminary Examining Authority (see Rule 62.2(a), first sentence).

Consequence with regard to translation of the international application for entry into the national phase

The applicant's attention is drawn to the fact that, where upon entry into the national phase, a translation of the claims as amended under Article 19 may have to be furnished to the designated/elected Offices, instead of, or in addition to the translation of the claims as filed.

For further details on the requirements of each designated/elected Office, see Votume II of the PCT Applicant's Guide

Notes to Form PCT/ISA/220 (second sheet) (January 1994)

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	(Form PCT/ISA/2	of Transmittal of International Search Report 20) as well as, where applicable, Item 5 below.
5347.208.W0	ACTION	
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)
PCT/US 01/19787	21/06/2001	26/06/2000
Applicant		
NORTH CAROLINA STATE UNIV	ERSITY	
This International Search Report has been according to Article 18. A copy is being tre This International Search Report consists		nority and is transmitted to the applicant
	a copy of each prior art document cited in this	report.
Basis of the report		
a. With regard to the language, the	international search was carried out on the bases otherwise indicated under this Item.	sis of the international application in the
the international search was Authority (Rule 23.1(b)).	as carried out on the basis of a translation of the	ne international application furnished to this
was carried out on the basis of the	d/or amino acid sequence disclosed in the in e sequence listing: nal application in written form.	ternational application, the international search
filed together with the inter	mational application in computer readable form	1.
furnished subsequently to	this Authority In written form.	
furnished subsequently to	this Authority in computer readble form.	
the statement that the sub international application as	sequently furnished written sequence listing do	bes not go beyond the disclosure in the
		Identical to the written sequence listing has been
2. Certain claims were four	nd unsearchable (See Box I).	
Unity of Invention is lack	ing (see Box II).	
4. With regard to the title,		
the text is approved as sut	omitted by the applicant. ned by this Authority to read as follows:	
are text liab been establish	led by this Additionly to read as follows:	
5. With regard to the abstract,		
the text is approved as sub- the text has been establish within one month from the	mitted by the applicant. led, according to Rule 38.2(b), by this Authorit date of malling of this international search rep	y as it appears in Box III. The applicant may, ort, submit comments to this Authority.
6. The figure of the drawings to be public	shed with the abstract is Figure No.	
as suggested by the applic		X None of the figures.
because the applicant falle	d to suggest a figure.	-
because this figure better of	characterizes the invention.	

international Application No PCT/US 01/19787

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01L21/316 H01L29/51

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, PAJ, CHEM ABS Data

C. DOCUMENTS CUNSIDERED TO BE RELEVANT

Category *	Citation of document, with Indication, where appropriate, o	f the relevant passages	Relevant to claim No.
X	EP 0 962 986 A (LUCENT TECHNO 8 December 1999 (1999-12-08) the whole document	DLOGIES INC)	1,4-8, 11,16,22
X	MIKHAELASHVILI V ET AL: "ELE CHARACTERISTICS OF METAL-DIEL AND METAL- DIELECTRIC-SEMICON STRUCTURES BASED ON ELECTRON	ECTRIC-METAL DUCTOR	1,3,11, 15,16, 22,23
	EVAPORATED Y203, TA205 AND AL FILM" JOURNAL OF APPLIED PHYSICS, A INSTITUTE OF PHYSICS. NEW YOR VOI. 84, no. 12, 15 December 1998 (1998-12-15) 6747-6752, XP000834966 ISSN: 0021-8979 the whole document	203 THIN MERICAN K, US,	
χ Furti	ner documents are listed in the continuation of box C.	-/	
A) - ruii	ner documents are tisted in the continuation of box C.	χ Patent family members are listed	in annex.
A docume consid E earlier of filing d L docume which citation	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another or other special reason (as specified) ant referring to an oral disclosure, use, exhibition or	"I" later document published after the inte or priority date and not in conflict with international conflict with invention." "Occument of particular relevance: the conance to consider down or cannot involve an inventive step when the do- cannot be considered not verview or in- ternational control of particular revenue; the ci- cannot be considered to involve an in- central control of particular revenue; the ci- cannot be considered to involve an in- ments, such combination being device.	the application but lony underlying the laimed invention be considered to zument is taken alone laimed invention entive step when the re other such docu-
P' docume	ant published prior to the international filing date but an the priority date claimed	in the art. *&* document member of the same patent if	,
Date of the a	actual completion of the international search	Date of mailing of the international sea	
8	February 2002	15/02/2002	
lame and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Riiswfik	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni.		

International Application No

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. HARA N ET AL: "FORMATION OF AL203-TA205 DOUBLE-OXIDE THIN FILMS BY LOW-PRESSURE 1.4-8.22 MOCVD AND EVALUATION OF THEIR CORROSION RESISTANCES IN ACID AND ALKALI SOLUTIONS" JOURNAL OF THE ELECTROCHEMICAL SOCIETY. ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, vol. 146, no. 2, February 1999 (1999-02). pages 510-516. XP001012429 ISSN: 0013-4651 the whole document X PATENT ABSTRACTS OF JAPAN vol. 010, no. 332 (E-453), 1,11,24, 12 November 1986 (1986-11-12) & JP 61 137370 A (TOSHIBA CORP). 25 June 1986 (1986-06-25) abstract X US 6 060 755 A (MA YANJUN ET AL) 9 May 2000 (2000-05-09) 24.25. 27-32. 34.37. 39,40. the whole document 43-46 WO 00 01008 A (LAM RES CORP) 6 January 2000 (2000-01-06) 1,11 the whole document X EP 0 816 537 A (UBE INDUSTRIES) 24.26 7 January 1998 (1998-01-07) the whole document m PCT/ISA/210 (continuation of second sheet) (July 1992)

International Application No PCT/US 01/19787

Patent document		Publication	T		101/03	01/19787
cited in search report		date	L	Patent family member(s)		Publication date
EP 0962986	Α	08-12-1999	US EP JP TW	6060406 0962986 2000012840 420837	A2	09-05-2000 08-12-1999 14-01-2000 01-02-2001
JP 61137370	Α	25-06-1986	NONE			
US 6060755	A	09-05-2000	JP US US	2001077111 6207589 6297539	B1	23-03-2001 27-03-2001 02-10-2001
WO 0001008	A	06-01-2000	AU CN EP TW WO	4956299 1308772 1092236 421821 0001008	T A1 B	17-01-2000 15-08-2001 18-04-2001 11-02-2001 06-01-2000
EP 0816537	A	07-01-1998	JP JP CN EP US	10017396 10067573 1171379 0816537 5981415	A A A2	20-01-1998 10-03-1998 28-01-1998 07-01-1998 09-11-1999