

Next Generation Sequencing Bioinformatics Course 2021

Module 2: Session 3
Introduction to NGS
Illumina Sequencing

Illumina flow cells

Patterned flow cell

Hybridization and amplification

Solid-phase amplification (Bridge amplification)

Solid-phase amplification: Cluster formation

~1000 copies of single fragment within 1um diameter

Sequence determination

Base identification: a closer look

Assigning bases to cluster (read)

4 - Channel chemistry

Each base labelled with unique fluorophore

Each base emits light of unique intensity

4 images are captured for each cycle

Used in GA, HiSeq and MiSeq machines

2 - Channel chemistry

- Two channel SBS uses two images
- Clusters appearing in green only are T
- Clusters appearing in red only are
- Clusters appearing in both images are A
- Clusters not present in either green nor red are G
- Cluster intensities are plotted and bases are called accordingly

Green Image

Paired-end sequencing

1. Sequenced strand stripped and 3' block removed

4. Read2 sequencing primer hybridization and sequence reading

2. Bridge amplification

3. Forward strand cleavage

Troubleshooting a sequence run

Optimized flow cell clustering determines data quality and overall data yield

Library Concentration

Over-clustering can result in:

- · Loss of data quality and data output
- Reduced base calls and Q30 scores
- Complete run failure
- Loss of focus

Under-clusterring can result in:

- Loss of time and money
- Loss of focus
- · Complete run failure

MiSeq Sequence v3 run metrics

MiSeq Run

Cluster density >900 K/mm²

Cluster passing >85% Q30 output >85%

Data output 10-15 GB

Raw sequence data

HQ reads (q30) >80% Length >60b

Reference Alignment

Reads mapped >95% Ref cov. (>20x) >95%

Applications

Platform	iSeq 100	MiniSeq	MiSeq	NextSeq	HiSeq	NovaSeq
Large Genomes						
Small Genomes						
Exome Sequencing						
Targeted Resequencing						
Transcriptome Sequencing						
Gene Expression Profiling						
miRNAs						
DNA-Protein Interactions						
Methylation Sequencing						
16S Metagenomic sequencing						

Limitations

- Some systematic errors:
 - Difficult to spot rare variants (<1%).
- Low complexity templates.
 - Add complex library to 30%, phase ensure variation at start of read.
- Sequencing short fragments doesn't give any long range information.
- Index hopping
- Transposase based library prep can introduce bias leading to uneven coverage
- Difficult to assemble complete genome

Thank you

