Equivalência entre Blocos Lógicos

BLOCO LÓGICO	BLOCO EQUIVALENTE
—— >	

Álgebra de Boole e Simplificação de Circuitos Lógicos

POSTULADOS		
Complementação	Adição	Multiplicação
$A = 0 \xrightarrow{\cdot} \overline{A} = 1$	0 + 0 = 0	0.0=0
$A = 1 \rightarrow \overline{A} = 0$	0 + 1 = 1	0.1 = 0
1990 Miller - Albert Colored de Carres (1970 Miller)	1 + 0 = 1	1.0 = 0
	1 + 1 = 1	1.1=1
IDENTIDADES		
Complementação	Adição	Multiplicação
$\overline{\overline{A}} = A$	A + 0 = A	$A \cdot 0 = 0$
6	A + 1 = 1	$A \cdot 1 = A$
*****	A + A = A	$A \cdot A = A$
	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
PROPRIEDADES		
Comutativa:	A + B = B + A	
6 3	$A \cdot B = B \cdot A$	
Associativa:	A + (B + C) = (A + B) + (B + C)	+ C = A + B + C
	$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$	
Distributiva:	$A \cdot (B + C) = A \cdot B + A$. C
TEOREMAS DE MORGAN		
$(\overline{A \cdot B}) = \overline{A} + \overline{B}$		
$(\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$		
IDENTIDADES AUXILIARES		
$A + A \cdot B = A$		
$A + \overline{A} \cdot B = A + B$		
$(A + B) \cdot (A + C) = A + B \cdot C$		