Elliptic Curve Cryptography

an introduction which is entirely too short

```
by Giacomo Fenzi (ETH Zurich)
on 6 January 2022
```

» Motivation

*

```
'It is possible to write endlessly on elliptic curves.
(This is not a threat.)' Serge Lang
```

[2/19]

» Outline

- * Historical Notes
- * Mathematical Background
- * Addition on Elliptic Curves
- * Discrete Logarithm and Diffie Hellman
- Pairings
- * Isogenies

» History

Historically originated in the context of solving Diophantine equations such as

$$X^n + Y^n = Z^n, X, Y, Z \in \mathbb{Z}$$

or equivalently

$$x^n + y^n = 1, \ x, y \in \mathbb{Q}$$

Often very hard, and in general undecidable¹! Let us see what we can do...

¹In fact, already undecidable with 11 integers variables!

» History: One variable

$$a_n x^n + a_{n-1} x^{n-1} + \dots a_1 x + a = 0$$

Quite easy! We can show that:

Theorem

Let $\frac{p}{q} \in \mathbb{Q}$ be a solution of the above equation. Then q divides a_n and p divides a_0 .

Check the finite list of candidates.

Alternatively, solve numerically and find candidate of form $\frac{b}{a_n}$

» History: Linear and Quadratic

$$ax + by = c$$

Theorem

Has infinitely many rational solution. If $\gcd(a,b)$ does not divide c, then no integers solutions. Else, infinitely many.

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

These are rational points on a conic.

- * Given a rational point, all of them can be found geometrically
- * Hasse principle allows us to test if a rational point exists

» History: Cubics

What about:

$$ax^3 + bx^2y + cxy^2 + dy^3 + ex^2 + fxy + gy^2 + hx + iy + j = 0$$
?

This is the general form of an elliptic curve! We have that

Theorem (Mordell)

If the curve is non singular, and it has a rational point then the group of rational points is finitely generated

But no equivalent of Hasse principle!

Elliptic Curves \neq Ellipse

» Background: Fields

Definition

A field $\mathbb F$ is set together with two operations $+,\cdot$ such that

- * \mathbb{F} is an abelian group under + with identity 0
- * $\mathbb{F} \{0\}$ is an abelian group under multiplication with identity 1.
- * For every $a,b,c\in\mathbb{F}$ we have that a(b+c)=ab+ac
- $* 0 \neq 1$

Informally, we can add, subtract, multiply and divide non zero elements.

» Background: Finite Fields

We are mostly interested in finite fields. We have that:

Theorem

For every prime p, and every $n \in \mathbb{Z}^+$ there is an unique field of size p^n , which we denote by either $\mathbb{GF}(p^n)$ or \mathbb{F}_{p^n}

If n=1, then $\mathbb{F}_p=\mathbb{Z}_p$, if not we can write them as

$$\mathbb{F}_{p^n} = \frac{\mathbb{F}_p[X]}{(f(x))}$$

where f(x) is an irreducible polynomial of degree n.

» Background: Characteristic

For any field, $\operatorname{char}(\mathbb{F})$ is the least integer² ℓ such that

$$\underbrace{1+\ldots 1}_{\ell \text{ times}} = 0$$

We have that $char(\mathbb{F}_{p^n}) = p$.

 $^{^2\}text{Or} \infty$ if no such integer exists

» Background: Field Extensions

Let k, K be two fields. If there is an homomorphism $k \to K$, we can identify k with a subfield of K. In that case, K is a **field extension** of k which we denote by $k \subseteq K$.

Given any field K we can construct the algebraic closure \overline{K} which is the smallest algebraically closed extension containing K. Some examples:

- $* \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- $* \mathbb{F}_p \subseteq \mathbb{F}_{p^2} \subseteq \mathbb{F}_{p^3} \cdots \subseteq \overline{\mathbb{F}}_p$

» Weierstrass Form

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} + ex^{2} + fxy + gy^{2} + hx + iy + j = 0$$

$$\downarrow$$

$$y^{2} + axy + by = x^{3} + cx^{2} + dx + e$$

$$\downarrow \operatorname{char}(\mathbb{F}) \neq 2, 3$$

$$y^{2} = x^{3} + ax + b$$

Much easier to manage!

» Elliptic Curves

Definition

Let $\mathbb F$ be a field. An elliptic curve E defined over a field $\mathbb F$ is given by

$$E: y^2 = x^3 + ax + b$$

for $a,b\in\mathbb{F}$. For any extension $\mathbb{F}\subseteq\mathbb{E}$ we define

$$E(\mathbb{E}) = \left\{ (x,y) \in \mathbb{E} \times \mathbb{E} \mid y^2 = x^3 + ax + b \right\} \cup \{\infty\}$$

Mathematicians are often interested with $E(\mathbb{Q})\subseteq E(\mathbb{R})\subseteq E(\mathbb{C})$ but we mostly consider the finite case.

» Some elliptic curves (In $E(\mathbb{R})$ since they look better...)

TODO: One singular with cusp, one node and three non singular

» Fundamental Quantities

Definition

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve.

The **discriminant** of E is

$$\Delta = -16(4a^3 + 27b^2)$$

A curve is **singular** if $\Delta = 0$.

If E is non-singular the j-invariant of E is

$$j(E) = -1728 \frac{(4A)^3}{\Delta}$$

Theorem

Let E, E' be two elliptic curves over K. Then $E \cong E'$ if and only if j(E) = j(E').

» The Group Law

TODO: Picture group law

» The Group Law: Formulae

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve. Let $P_i = (x_i, y_i) \in E(K)$. Define

$$-P_0 = (x_0, -y_0)$$

Now, for $P_1 + P_2$:

- * If $x_1=x_2$ and $y_1=-y_2$, then $P_1+P_2=\infty$
- * If $P_1 = \infty$ then $P_1 + P_2 = P_2$, and viceversa.
- * Let $x_3 = \lambda^2 x_1 x_2$, $y_3 = \lambda(x_1 x_3) y_1$ where λ is defined as:

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & x_1 \neq x_2\\ \frac{3x_1^2 + a}{2y_1}, & \text{otherwise} \end{cases}$$

» Resources

- * J.H. Silverman, The Arithmetic of Elliptic Curves
- * J.H. Silverman, J.T. Tate, Rational Points on Elliptic Curves
- * D.A. Cox, Primes of the form $x^2 + ny^2$
- * P. Aluffi, Algebra: Chapter 0