# Epsilon Squad BIKE SHARING DEMAND





# Background

- Bikesharing merupakan bisnis dengan impact yang luas terhadap masyarakat.
- bisnis ini sangat menantang. Tidak sedikit perusahaan yang gagal dan tidak dapat bertahan lama.
- Analisis permintaan penyewaan dari sepeda berdasarkan situasi tertentu akan membantu perusahaan.
- Kami memposisikan diri sebagai Tim Data Science dari Capital Bike Share, sebuah perusahaan asal amerika serikat.





#### **Problem statement for Analytics:**

 Seperti apa program yang sesuai dengan behavior dan segmen yang berbeda?

 Kapan dan dalam situasi apa program yang dijalankan dapat meningkatkan revenue?

#### **Problem statement for Machine Learning:**

 Bagaimana memprediksi banyaknya demand penyewaan sepeda sehingga kita bisa meminimalisir stock sepeda yang berlebih atau kehilangan konsumen karena stock sepeda tidak tersedia?



- Memaksimalkan profit berdasarkan situasi yang dinamis.
- Menghindari potensi kehilangan pelanggan
- Mengurangi resiko bertambahnya biaya perawatan



# Data Understanding



- Data yang digunakan penyewaan <u>Capital</u>
   <u>Bike Share</u> pada tahun 2011 & 2012.
- Kami menambahkan juga data external.
- Data external yang dipakai disesuaikan dengan kondisi waktu agar relevan.

# Data Understanding Attributes Information

1. dteday: tanggal

2. season: Season / Musim

**3. yr** : Tahun

4. **Instant:** index

5. mnth: Bulan

**6. hr** : Jam

 holiday: hari libur selain weekend(hasil ekstraksi Holiday Schedule Washington D.C)

**8. weekday**: Day of the week

9. workingday : Hari kerja

**10. casual** : Jumlah demand user nonmember

**11. registered**: Jumlah demand user member

12.cnt: Total demand

13. weathersit: Kondisi cuaca

**14. temp**: Temperature (Celsius)

**15. atemp** : feels-like temperature (skala

Celsius).

16. hum: Kelembaban.

# Data Understanding Attributes Information (External data)

Data external yang ditambahkan disesuaikan, yaitu pada tahun 2011 dan 2012.

- 1. **Duration**: Durasi trip
- 2. **Start Date**: Keterangan waktu mulai trip
- 3. **End Date**: Keterangan waktu selesai trip
- 4. Start Station: Dock keberangkatan
- 5. End Station: Dock pengembalian
- 6. **Bike Number**: ID Sepeda
- 7. **Member Type**: Tipe konsumen Member/Non-Member

#### **Exploratory Data Analysis**



- Pada kolom **weathersit**; kondisi "Heavy rain" sangat kecil, hanya 3 data poin
- Kami masukan dalam kategori terdekat, yaitu "Hujan"

# Exploratory Data Analysis Missing Value

- Tidak ada Missing Value
- Hanya ada jam yang tidak tercantum



# Exploratory Data Analysis Outlier Detection



Terlihat terdapat outlier di kolom windspeed dan hum



# Data Analytics

### **Data Analytics** 2011-2012 Trend



(2011-2012 Demand)

### 2011-2012

- Ada peningkatan demand dari 2011-2012
- Terlihat pergerakan yang berpola

#### Data Analytics

#### Demand sepeda tiap musim



- rental sepeda tertinggi pada Musim gugur & paling sedikit di musim semi.
- Penyewaan Ketika cuaca buruk sangat kecil.

#### **Weathersit:**

- 1 = Cerah
- 2 = Berawan
- 3 = Hujan/Badai

#### **Musim:**

- 1 = Spring
- 2 = Summer
- 3 = Fall
- 4 = Winter

# *Data Analytics*Peak Hour Analysis



(Peak Hour Registered User)

registered consumer peak hournya ada pada jam 8 pagi dan jam 6 sore.

#### Data Analytics Peak Hour Analysis



(Peak Hour Casual User)

casual consumer ada pada siang hari.

# Data Analytics Proporsi Demand



(Persentase permintaan tiap tipe user)

# Data Analytics Durasi berkendara



- Durasi berkendara konsumer casual > registered user.
- registered -> sarana commuter. Casual user -> sarana olahraga/rekreasi.

### Data Analytics

### **Hubungan Suhu & Demand**



Suhu mempengaruhi banyaknya demand

### Data Analytics Demand sepeda tiap bulan



- Bulan-paling ramai terjadi pada pertengahan tahun.
- Terlihat penurunan ketika akhir dan awal tahun.
- Ada perbedaan signifikan saat bulan januari & Februari

# Data Analytics Analysis Station/Docks

| 60    | value        |
|-------|--------------|
| count | 193.000000   |
| mean  | 5121.860104  |
| std   | 6000.756751  |
| min   | 1.000000     |
| 25%   | 729.000000   |
| 50%   | 2731.000000  |
| 75%   | 7781.000000  |
| max   | 39416.000000 |



- Ada ketimpangan antara Docks yang terpasang.
- Satu dock bisa menerima 39.416 sepeda. Sedangkan ada yang hanya 1 kedatangan.
- evaluasi penempatan station/docks.

# Data Analytics Analysis Station/Docks





- Massachusetts Ave & Duport Circle menjadi stasiun tersibuk.
- Puncak kesibukan di Stasiun ada di hari libur.
- Pengembangan stasiun di daerah strategis akan berdampak positif.



#### Insight:

 Terdapat waktu tertentu demand berkurang signifikan.

#### **Recommendation:**

Volume sepeda bisa dikurangi.

Bulan-bulan sepi dapat dijadikan waktu maintenance tahunan.

 Kurangi stok sepeda di station sepi pada waktu tertentu.





#### Insight:

 User terbagi menjadi dua segmen dengan behavior yang berbeda.

#### **Recommendations:**

- Pengembangan dock di titik strategis.
- kerjasama dengan dengan perusahaan disekitar rute dengan program bike to work.
- Pemberian promo pada waktu khusus seperti pada peak hour, liburan musim panas dan weekend







## Skenario B



 Kebanyakan stasiun dengan stock sepeda berlebih berada di pusat kota

### Skenario B



 Kebanyakan stasiun yang kekurangan sepeda berada di daerah permukiman







## Feature Engineering

#### ENCODING

- -One Hot Encoder
- -Spline Transformer
- -Polynomial Feature

#### Data Splitting

Train = 80% Test = 20%

#### Cross validation

TimeSeries Split

#### Scaling

Robust Scaler



### **Basic Model Building**

#### Cross validation

#### TimeSeries Split

n\_splits = 5 Gap = 48 Max\_train\_size = 1000 Test\_size = 1000

#### Benchmark model

- Linear Regression
- Ridge
- Svr
- Enet
- Knn regressor
- Xgb regressor



# **Basic Model Building**

| Model   | Mean_RMSE                               | Std_RMSE                                                                                  | Mean_MAPE                                                                                                                                  | Std_MAPE                                                                                                                                                                                     |
|---------|-----------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LinearR | -107.774721                             | 13.983314                                                                                 | -0.600739                                                                                                                                  | 0.097023                                                                                                                                                                                     |
| Ridge   | -108.237006                             | 13.683174                                                                                 | -0.595972                                                                                                                                  | 0.097607                                                                                                                                                                                     |
| KNNR    | -105.879671                             | 21.601031                                                                                 | -0.504949                                                                                                                                  | 0.169661                                                                                                                                                                                     |
| XGBR    | -93.069028                              | 10.143670                                                                                 | -0.342203                                                                                                                                  | 0.049263                                                                                                                                                                                     |
| svr     | -86.666137                              | 9.111367                                                                                  | -0.528166                                                                                                                                  | 0.137176                                                                                                                                                                                     |
| enet    | -243.460666                             | 53.474712                                                                                 | -2.977934                                                                                                                                  | 0.893733                                                                                                                                                                                     |
|         | LinearR<br>Ridge<br>KNNR<br>XGBR<br>svr | LinearR -107.774721  Ridge -108.237006  KNNR -105.879671  XGBR -93.069028  svr -86.666137 | LinearR -107.774721 13.983314  Ridge -108.237006 13.683174  KNNR -105.879671 21.601031  XGBR -93.069028 10.143670  svr -86.666137 9.111367 | LinearR -107.774721 13.983314 -0.600739  Ridge -108.237006 13.683174 -0.595972  KNNR -105.879671 21.601031 -0.504949  XGBR -93.069028 10.143670 -0.342203  svr -86.666137 9.111367 -0.528166 |

- XGboost dan SVR menjadi 2 kandidat teratas.
- Selanjutnya, kami bandingkan dengan memprediksi pada Test Set

# **Predict to Test Set**

| <b>XGB</b> 98.072714 0.617815<br><b>svr</b> 217.782254 2.750528 |     | RMSE       | МАРЕ     |
|-----------------------------------------------------------------|-----|------------|----------|
| svr 217.782254 2.750528                                         | XGB | 98.072714  | 0.617815 |
|                                                                 | svr | 217.782254 | 2.750528 |

- Nilai dari XG Boost Regressor lebih baik.
- model tersebut yang akan dilakukan hyperparameter tuning.

#### **Machine Learning**





# **Model Tuning**

#### Hyperparameter:

- Max\_depth
- Learning rate
- n\_estimators
- Subsample
- Gamma
- Colsample\_bytree
- Reg\_alpha
- Min\_child\_weight

#### RandomizedSearchCV:

- N\_iter = 50
- Random\_state = 2022

### **Before & After Tuning**



|        | RMSE | MAPE |
|--------|------|------|
| Before | 79   | 0.50 |
| After  | 73   | 0.46 |

### **Feature Importances**



 Hour, temp, humidity menjadi feature dengan kontribusi tertinggi dalam perubahan jumlah demand sepeda





- Metrik evaluasi yang adalah RMSE & MAPE.
- Hasil RMSE: 79

### Conclusion

 asumsikan perusahaan sebelumnya menerapkan model linear regression (RMSE = 112).

Perusahaan akan menerima benefit dengan selisih 33 unit.



# Perbandingan model kami dengan actual demand & linear regression







### Conclusion

- median durasi = 10 menit.
- harga dasar 0,05 dollar/menit.
- Maka opportunity cost setiap sepedanya adalah 3 dollar/perjam.
- Selisih dari model kami adalah 33
- 33 X \$3 = 99 dollar.



Perusahaan bisa menghindari kerugian sebesar 99 dolar/jamnya. Maka dengan mempertimbangkan jam sibuk 10 jam/hari, perusahaan akan menghindari kerugian sebesar :











### Limitasi model

- Bila demand sepeda perjamnya diluar rentang, model tidak dapat dipercaya
- Data yang kami gunakan observasi tahun 2011 2012, tidak relevan bila digunakan masa sekarang
- Masih terdapat outlier dalam model





## Pengembangan model

- Menggunakan data terbaru yang dimiliki Capital Bike Share
- Total biaya penyewaan
- Menambahkan fitur yang lebih detail :
  - Durasi
  - Jarak tempuh
  - Jarak dock dengan moda transportasi lain
  - Latitude & Longitude

# Terima Kasih .

