Среда, 11.09.2024, 09:48

Вы вошли как Гость I Группа "Не зарегистрированный"Приветствую Вас Гость I RSS

Найти

Главная | Каталог статей | Мой профиль | Регистрация | Выход | Вход

QO.DO.AM

>>>мир предметника 050202

Форма входа Войти

Основное меню

Главная страница
Информация о сайте
Каталог статей
Гостевая книга
Обратная связь

Предложить свой продукт

Меню 050202

Теоретический материал
Образовательные журналы для
050202
Книга On-Line
Экзамены по Информатике и ИКТ
Цифровой образовательный
ресурс (ЦОР алd ЭОР)
Занимательная информатика
Задания
Архив тестов
Авторские презентации
Авторские конспекты уроков
Образовательные видео-уроки
Программирование в Delphi и

Учительская OnLine Ваш образовательный сайт

Создание электронной презентации

Компьютерные журналы OnLine
Музыкальные композиции
Социальные сети "в обход
фильтра"
Мощный графический редактор
Играй от Alawar
Флешь приколы

Категории раздела

8 класс-теория [49] Теоретический материал по Информатики и ИКТ

9 класс [40]

10 класс [34]

11 класс [37]

Лабораторный практикум [23] Из математической логики <u>Главная</u> » <u>Архив Информатики и ИКТ</u> » <u>Теория</u> » <u>Алексеев Е.Г., Богатырев С.Д.</u>

3.2. Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

1	2	3	4	5
I	II	III	IV	V
6	7	8	9	10
VI	VII	VIII	IX	Х
11	13	18	19	22
XI	XIII	XVIII	XIX	XXII
34	39	40	60	99
XXXIV	XXXIX	XL	LX	XCIX
200	438	649	999	1207
CC	CDXXXVIII	DCXLIX	CMXCIX	MCCVII
2045	3555	3678	3900	3999
MMXLV	MMMDLV	MMMDCLXXVIII	MMMCM	MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале XIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это

1 of 3 9/11/24, 09:48

Алексеев Е.Г., Богатырев С.Д. [97] Алексеев Е.Г., Богатырев С.Д., Информатика. Мультимедийный электронный учебник, содержит: теорию по Информатике и ИКТ, закрепляющие тесть, иллюстративные материалы для угока Информатики и ИКТ урока Информатики и ИКТ

ИНФОРМАТИКА И ИКТ "Учебное

ПОСОБИЕ" [17] Содержательный материал по Информатике и ИКТ. Преподается краткое и отборочное содержание для подготовки и проведения уроков Информатики и ИКТ 8-9 классы 10-11 классы

Технические средства информатизации [31] Данное учебное пособие предназначено для изучения предназначено для изучения дисциплины «Технические средства информатизации» в средних специальных учебных заведениях на специальности 2203 - «Программное обеспечение вычислительной техники и автоматизированных систем».

Материалы к урокам ИНФОРМАТИКИ И ИКТ лля учащихся с 8-11 классы [57] чащился с о-тт классы [57]
Переработанный материал по
Информатике и ИКТ, блок схемы,
выделение основных понятий
информатики красочно и кратко,
автор разработок Давыдова Елена Владимировна

Статистика

Онлайн всего: 2 Гостей: 2 Пользователей: 0 // page contents

Счетчики

исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр - 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы "+" и "-" для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в XVII - XIX веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра А соответствует десятеричному числу 10, шестнадцатеричная В – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная	Двоичная	Восьмеричная	Шестнадцатеричная
1	001	1	1
2	010	2	2
3	011	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Источник: http://go.do.am

Категория: <u>Алексеев Е.Г., Богатырев С.Д.</u> | Добавил: <u>metalworker</u> (20.03.2013)

Просмотров: 1436 | Теги: 9 класс, теория и практика, скачать, 10-11 класс, Образование, Информатика и ИКТ, 8 класс, цор,

Всего комментариев: 0

Добавлять комментарии могут только зарегистрированные пользователи [Регистрация | Вход]

2 of 3 9/11/24, 09:48 3.2. Виды систем счисления - Алексеев Е.Г., Богатырев С... https://qo.do.am/publ/teorija/alekseev_e_g_bogatyrev_s_d/...

qo.do.am © 2024

3 of 3 9/11/24, 09:48