$11a_{278} (K11a_{278})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.19641 \times 10^{18} u^{40} - 1.14397 \times 10^{19} u^{39} + \dots + 1.66044 \times 10^{18} b + 1.81027 \times 10^{19}, \\ &\quad 4.68165 \times 10^{19} u^{40} - 5.02396 \times 10^{20} u^{39} + \dots + 3.98505 \times 10^{19} a - 1.19786 \times 10^{21}, \\ &\quad u^{41} - 11 u^{40} + \dots - 239 u + 24 \rangle \\ I_2^u &= \langle -u^{22} a - 6 u^{21} a + \dots - a - 1, \ -u^{21} a - 3 u^{22} + \dots + a^2 - 13 u, \ u^{23} + 7 u^{22} + \dots + 4 u + 1 \rangle \\ I_3^u &= \langle 2 u^{15} + 15 u^{14} + \dots + b + 8, \ -8 u^{16} - 54 u^{15} + \dots + 5 a + 43, \ u^{17} + 8 u^{16} + \dots + 29 u + 5 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 104 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. }I_1^u = \\ \langle 1.20 \times 10^{18} u^{40} - 1.14 \times 10^{19} u^{39} + \dots + 1.66 \times 10^{18} b + 1.81 \times 10^{19}, \ 4.68 \times 10^{19} u^{40} - \\ 5.02 \times 10^{20} u^{39} + \dots + 3.99 \times 10^{19} a - 1.20 \times 10^{21}, \ u^{41} - 11 u^{40} + \dots - 239 u + 24 \rangle \end{array}$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.17480u^{40} + 12.6070u^{39} + \dots - 319.545u + 30.0588 \\ -0.720540u^{40} + 6.88956u^{39} + \dots + 67.6080u - 10.9023 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1.14574u^{40} - 11.8183u^{39} + \dots - 20.0365u + 6.80811 \\ 0.738778u^{40} - 6.60293u^{39} + \dots - 93.3051u + 9.76711 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.633150u^{40} - 5.52375u^{39} + \dots - 208.982u + 22.2813 \\ -0.938766u^{40} + 10.6746u^{39} + \dots - 322.499u + 32.6119 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.454264u^{40} + 5.71745u^{39} + \dots - 387.153u + 40.9611 \\ -0.720540u^{40} + 6.88956u^{39} + \dots + 67.6080u - 10.9023 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.28278u^{40} + 13.4475u^{39} + \dots - 94.7279u + 10.9155 \\ 0.663004u^{40} - 8.31978u^{39} + \dots + 296.668u - 30.7866 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.277139u^{40} - 1.62154u^{39} + \dots - 383.007u + 40.2112 \\ -0.534336u^{40} + 6.09950u^{39} + \dots - 87.8238u + 6.80221 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.29615u^{40} + 24.6191u^{39} + \dots - 309.565u + 27.7328 \\ -0.339712u^{40} + 2.80144u^{39} + \dots + 173.961u - 19.8874 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.29615u^{40} + 24.6191u^{39} + \dots - 309.565u + 27.7328 \\ -0.339712u^{40} + 2.80144u^{39} + \dots + 173.961u - 19.8874 \end{pmatrix}$$

(ii) Obstruction class = -1

$$\frac{\text{(iii) Cusp Shapes}}{\frac{734545644265820275638}{1660437713445795359}} u - \frac{\frac{1664141169681345798}{1660437713445795359} u^{40}}{\frac{59737924674909497694}{1660437713445795359}} - \frac{\frac{20019045792937126226}{1660437713445795359} u^{39} + \dots + \frac{1660437713445795359}{1660437713445795359} u^{40} - \frac{1660437713445795359}{16604377134579} u^{40} - \frac{1660437713445795359}{16604377134579} u^{40} - \frac{16604377134579}{16604377134579} u^{40} - \frac{16604377134579}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{41} - 12u^{39} + \dots - 2u + 1$
c_2,c_5	$u^{41} - 11u^{40} + \dots - 239u + 24$
c_3, c_6	$u^{41} - u^{40} + \dots + 6u + 1$
c_4, c_8	$u^{41} - 3u^{39} + \dots + 39u + 19$
c_7, c_{10}, c_{11}	$u^{41} - 8u^{40} + \dots + 9u - 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{41} - 24y^{40} + \dots + 96y - 1$
c_2, c_5	$y^{41} + 23y^{40} + \dots - 10223y - 576$
c_{3}, c_{6}	$y^{41} + 27y^{40} + \dots - 82y - 1$
c_4, c_8	$y^{41} - 6y^{40} + \dots + 4637y - 361$
c_7, c_{10}, c_{11}	$y^{41} + 40y^{40} + \dots - 87y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.029022 + 1.006330I		
a = 1.62224 + 0.62151I	3.33397 + 0.06687I	6.02301 + 0.24252I
b = 1.118340 - 0.475258I		
u = -0.029022 - 1.006330I		
a = 1.62224 - 0.62151I	3.33397 - 0.06687I	6.02301 - 0.24252I
b = 1.118340 + 0.475258I		
u = 0.212627 + 0.952062I		
a = 1.81242 - 0.15435I	1.10287 - 3.44596I	-5.05254 - 2.71451I
b = 0.78122 - 1.20521I		
u = 0.212627 - 0.952062I		
a = 1.81242 + 0.15435I	1.10287 + 3.44596I	-5.05254 + 2.71451I
b = 0.78122 + 1.20521I		
u = 1.052800 + 0.131390I		
a = 0.017775 - 0.158160I	0.26528 + 7.29842I	-3.00000 - 7.62825I
b = -0.971790 - 0.691117I		
u = 1.052800 - 0.131390I		
a = 0.017775 + 0.158160I	0.26528 - 7.29842I	-3.00000 + 7.62825I
b = -0.971790 + 0.691117I		
u = -0.125412 + 1.084050I		
a = -1.83248 - 0.48717I	8.77240 + 0.69151I	5.83897 + 1.00152I
b = -1.204160 + 0.550939I		
u = -0.125412 - 1.084050I		
a = -1.83248 + 0.48717I	8.77240 - 0.69151I	5.83897 - 1.00152I
b = -1.204160 - 0.550939I		
u = -1.12668		
a = -0.245548	-2.19078	-19.8800
b = -0.130087		
u = 0.821173 + 0.119690I		
a = -0.297539 + 0.031863I	0.99974 + 2.62993I	-0.91222 - 3.18628I
b = 0.933904 + 0.677894I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.821173 - 0.119690I		
a = -0.297539 - 0.031863I	0.99974 - 2.62993I	-0.91222 + 3.18628I
b = 0.933904 - 0.677894I		
u = 1.182590 + 0.075770I		
a = 0.116810 + 0.162777I	6.46948 + 11.04650I	0 7.47384I
b = 0.978144 + 0.696826I		
u = 1.182590 - 0.075770I		
a = 0.116810 - 0.162777I	6.46948 - 11.04650I	0. + 7.47384I
b = 0.978144 - 0.696826I		
u = -0.388375 + 1.153130I		
a = 0.886517 + 0.002500I	5.35338 + 3.81903I	0
b = 0.509537 - 0.312406I		
u = -0.388375 - 1.153130I		
a = 0.886517 - 0.002500I	5.35338 - 3.81903I	0
b = 0.509537 + 0.312406I		
u = 0.717608 + 0.311811I		
a = -0.110757 - 0.623250I	7.82283 - 0.16471I	3.38955 + 1.65431I
b = -1.032150 + 0.566413I		
u = 0.717608 - 0.311811I		
a = -0.110757 + 0.623250I	7.82283 + 0.16471I	3.38955 - 1.65431I
b = -1.032150 - 0.566413I		
u = 0.495810 + 1.155840I		
a = 0.816045 + 0.781921I	4.52174 - 1.46436I	0
b = 1.125660 - 0.059155I		
u = 0.495810 - 1.155840I		
a = 0.816045 - 0.781921I	4.52174 + 1.46436I	0
b = 1.125660 + 0.059155I		
u = -1.215000 + 0.331445I		
a = 0.383654 - 0.112321I	1.95983 + 1.37588I	0
b = 0.206819 - 0.088073I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.215000 - 0.331445I		
a = 0.383654 + 0.112321I	1.95983 - 1.37588I	0
b = 0.206819 + 0.088073I		
u = 0.038850 + 0.715738I		
a = -1.55374 - 1.28578I	7.32305 + 0.14265I	5.03936 + 0.27284I
b = -1.154670 + 0.349145I		
u = 0.038850 - 0.715738I		
a = -1.55374 + 1.28578I	7.32305 - 0.14265I	5.03936 - 0.27284I
b = -1.154670 - 0.349145I		
u = -0.185808 + 0.685986I		
a = -1.118850 + 0.444113I	-0.087291 + 1.322900I	-3.26673 - 3.24423I
b = -0.249566 + 0.572464I		
u = -0.185808 - 0.685986I		
a = -1.118850 - 0.444113I	-0.087291 - 1.322900I	-3.26673 + 3.24423I
b = -0.249566 - 0.572464I		
u = 0.347665 + 1.264830I		
a = -1.77476 - 0.18019I	12.33800 - 3.83464I	0
b = -1.31566 + 0.98619I		
u = 0.347665 - 1.264830I		
a = -1.77476 + 0.18019I	12.33800 + 3.83464I	0
b = -1.31566 - 0.98619I		
u = 0.490892 + 1.239610I		
a = 1.70373 + 0.26449I	4.41136 - 7.49164I	0
b = 1.40330 - 0.98654I		
u = 0.490892 - 1.239610I		
a = 1.70373 - 0.26449I	4.41136 + 7.49164I	0
b = 1.40330 + 0.98654I		
u = 0.684336 + 1.194050I		
a = -0.636884 - 0.796428I	10.00540 - 5.34593I	0
b = -1.128510 - 0.133079I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.684336 - 1.194050I $a = -0.636884 + 0.796428I$	10.00540 + 5.34593I	0
b = -1.128510 + 0.133079I $u = 0.325776 + 1.364770I$		
a = -0.829707 - 0.563437I $b = -0.920142 + 0.089185I$	5.42164 + 2.35534I	0
u = 0.325776 - 1.364770I $a = -0.829707 + 0.563437I$	5.42164 - 2.35534I	0
b = -0.920142 - 0.089185I $u = 0.558892 + 1.297930I$	_	
a = -1.62402 - 0.22838I $b = -1.40055 + 0.94692I$	3.92238 - 13.02370I	0
u = 0.558892 - 1.297930I $a = -1.62402 + 0.22838I$	3.92238 + 13.02370I	0
b = -1.40055 - 0.94692I $u = 0.58068 + 1.35810I$ $a = 1.60234 + 0.17682I$	10.5240 - 17.2112I	0
b = 1.38863 - 0.93704I $u = 0.58068 - 1.35810I$ $a = 1.60234 - 0.17682I$ $b = 1.38863 + 0.93704I$	10.5240 + 17.2112I	0
u = 0.113639 + 0.464794I $a = -1.43312 + 0.66702I$ $b = 0.144535 + 0.741778I$	-0.006980 + 1.308310I	1.77615 - 2.91870I
u = 0.113639 - 0.464794I $a = -1.43312 - 0.66702I$ $b = 0.144535 - 0.741778I$	-0.006980 - 1.308310I	1.77615 + 2.91870I
u = 0.38362 + 1.54611I $a = 0.727259 + 0.513748I$ $b = 0.852167 - 0.006427I$	11.91810 + 4.98494I	0

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.38362 - 1.54611I		
a =	0.727259 - 0.513748I	11.91810 - 4.98494I	0
b =	0.852167 + 0.006427I		

II.
$$I_2^u = \langle -u^{22}a - 6u^{21}a + \dots - a - 1, \ -u^{21}a - 3u^{22} + \dots + a^2 - 13u, \ u^{23} + 7u^{22} + \dots + 4u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{22}a + 6u^{21}a + \dots + a + 1 \\ -u^{21} - 8u^{20} + \dots - a - 3 \\ -u^{22}a - 6u^{21}a + \dots - a - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{21} - 6u^{20} + \dots - a + 3 \\ u^{22}a + 6u^{21}a + \dots + a - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{22}a - 6u^{21}a + \dots - 4u - 1 \\ u^{22}a + 6u^{21}a + \dots + a + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{21}a - u^{21} + \dots + a + 4 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{21} + 6u^{20} + \dots + a + 4 \\ -u^{22}a - 6u^{21}a + \dots - a + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{21} - 6u^{20} + \dots + a + 2 \\ u^{22}a + 6u^{21}a + \dots + a - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{21} - 6u^{20} + \dots + a + 2 \\ u^{22}a + 6u^{21}a + \dots + a - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{22} - 20u^{21} - 72u^{20} - 172u^{19} - 320u^{18} - 444u^{17} - 436u^{16} - 196u^{15} + 308u^{14} + 932u^{13} + 1500u^{12} + 1784u^{11} + 1704u^{10} + 1348u^9 + 844u^8 + 436u^7 + 148u^6 + 16u^5 - 20u^4 - 28u^3 - 4u^2 - 8u - 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{46} - u^{45} + \dots + 8u^2 + 1$
c_2,c_5	$(u^{23} + 7u^{22} + \dots + 4u + 1)^2$
c_3, c_6	$u^{46} - 7u^{45} + \dots - 188u + 37$
c_4, c_8	$u^{46} + u^{45} + \dots + 36u + 11$
c_7, c_{10}, c_{11}	$(u^{23} + 5u^{22} + \dots + 6u^2 - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{46} + 7y^{45} + \dots + 16y + 1$
c_2, c_5	$(y^{23} + 15y^{22} + \dots - 12y - 1)^2$
c_{3}, c_{6}	$y^{46} - 5y^{45} + \dots + 23412y + 1369$
c_4, c_8	$y^{46} - 13y^{45} + \dots + 4820y + 121$
c_7, c_{10}, c_{11}	$(y^{23} + 23y^{22} + \dots + 12y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.233567 + 1.031350I		
a = 0.34801 + 1.50362I	7.62895 - 7.86344I	3.61806 + 10.44591I
b = 0.60058 + 2.13953I		
u = 0.233567 + 1.031350I		
a = -2.69560 + 0.51605I	7.62895 - 7.86344I	3.61806 + 10.44591I
b = -0.596857 + 0.409017I		
u = 0.233567 - 1.031350I		
a = 0.34801 - 1.50362I	7.62895 + 7.86344I	3.61806 - 10.44591I
b = 0.60058 - 2.13953I		
u = 0.233567 - 1.031350I		
a = -2.69560 - 0.51605I	7.62895 + 7.86344I	3.61806 - 10.44591I
b = -0.596857 - 0.409017I		
u = 0.186753 + 0.913593I		
a = 0.54495 - 1.43828I	0.48240 - 3.68961I	-4.31455 + 10.86650I
b = 0.02137 - 2.03091I		
u = 0.186753 + 0.913593I		
a = 2.57289 - 0.13037I	0.48240 - 3.68961I	-4.31455 + 10.86650I
b = 0.443646 - 0.589013I		
u = 0.186753 - 0.913593I		
a = 0.54495 + 1.43828I	0.48240 + 3.68961I	-4.31455 - 10.86650I
b = 0.02137 + 2.03091I		
u = 0.186753 - 0.913593I		
a = 2.57289 + 0.13037I	0.48240 + 3.68961I	-4.31455 - 10.86650I
b = 0.443646 + 0.589013I		
u = -1.07372		
a = -0.257664 + 0.016236I	-2.18491	-16.7310
b = -0.133412 + 0.236476I		
u = -1.07372		
a = -0.257664 - 0.016236I	-2.18491	-16.7310
b = -0.133412 - 0.236476I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.126300 + 0.206470I		
a = 0.499507 - 0.147399I	1.93766 + 1.32101I	-4.99704 - 4.34736I
b = 0.427226 + 0.266230I		
u = -1.126300 + 0.206470I		
a = 0.321072 - 0.184827I	1.93766 + 1.32101I	-4.99704 - 4.34736I
b = -0.003992 - 0.480793I		
u = -1.126300 - 0.206470I		
a = 0.499507 + 0.147399I	1.93766 - 1.32101I	-4.99704 + 4.34736I
b = 0.427226 - 0.266230I		
u = -1.126300 - 0.206470I		
a = 0.321072 + 0.184827I	1.93766 - 1.32101I	-4.99704 + 4.34736I
b = -0.003992 + 0.480793I		
u = -0.616588 + 1.034050I		
a = 1.49907 - 0.31690I	4.52825 + 4.72419I	-0.87243 - 5.66443I
b = 1.218300 + 0.349141I		
u = -0.616588 + 1.034050I		
a = -0.246425 + 0.316671I	4.52825 + 4.72419I	-0.87243 - 5.66443I
b = -0.515604 - 0.701003I		
u = -0.616588 - 1.034050I		
a = 1.49907 + 0.31690I	4.52825 - 4.72419I	-0.87243 + 5.66443I
b = 1.218300 - 0.349141I		
u = -0.616588 - 1.034050I		
a = -0.246425 - 0.316671I	4.52825 - 4.72419I	-0.87243 + 5.66443I
b = -0.515604 + 0.701003I		
u = -0.356806 + 1.198900I		
a = -0.908631 + 0.827801I	4.04810 + 4.55921I	5.41713 - 6.09867I
b = -0.674442 - 0.472287I		
u = -0.356806 + 1.198900I		
a = 1.68320 + 0.12017I	4.04810 + 4.55921I	5.41713 - 6.09867I
b = 1.47512 + 0.74465I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.356806 - 1.198900I		
a = -0.908631 - 0.827801I	4.04810 - 4.55921I	5.41713 + 6.09867I
b = -0.674442 + 0.472287I		
u = -0.356806 - 1.198900I		
a = 1.68320 - 0.12017I	4.04810 - 4.55921I	5.41713 + 6.09867I
b = 1.47512 - 0.74465I		
u = 0.089537 + 0.682903I		
a = -1.058990 - 0.734558I	-0.19963 + 1.69919I	-7.29306 - 0.59779I
b = 0.199185 + 0.887413I		
u = 0.089537 + 0.682903I		
a = -2.31010 + 1.12368I	-0.19963 + 1.69919I	-7.29306 - 0.59779I
b = -0.994995 + 1.004440I		
u = 0.089537 - 0.682903I		
a = -1.058990 + 0.734558I	-0.19963 - 1.69919I	-7.29306 + 0.59779I
b = 0.199185 - 0.887413I		
u = 0.089537 - 0.682903I		
a = -2.31010 - 1.12368I	-0.19963 - 1.69919I	-7.29306 + 0.59779I
b = -0.994995 - 1.004440I		
u = -0.184645 + 1.327800I		
a = -1.58659 - 0.65447I	11.44280 + 6.01561I	9.34351 - 5.45649I
b = -1.47802 - 1.24587I		
u = -0.184645 + 1.327800I		
a = 1.53384 - 0.96668I	11.44280 + 6.01561I	9.34351 - 5.45649I
b = 0.765206 + 0.253347I		
u = -0.184645 - 1.327800I		
a = -1.58659 + 0.65447I	11.44280 - 6.01561I	9.34351 + 5.45649I
b = -1.47802 + 1.24587I		
u = -0.184645 - 1.327800I		
a = 1.53384 + 0.96668I	11.44280 - 6.01561I	9.34351 + 5.45649I
b = 0.765206 - 0.253347I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.54822 + 1.33148I		
a = 0.914945 - 0.015844I	1.92714 + 5.73570I	-6.54258 - 11.45569I
b = 0.843719 + 0.814001I		
u = -0.54822 + 1.33148I		
a = -1.365520 + 0.207271I	1.92714 + 5.73570I	-6.54258 - 11.45569I
b = -1.065870 - 0.549777I		
u = -0.54822 - 1.33148I		
a = 0.914945 + 0.015844I	1.92714 - 5.73570I	-6.54258 + 11.45569I
b = 0.843719 - 0.814001I		
u = -0.54822 - 1.33148I		
a = -1.365520 - 0.207271I	1.92714 - 5.73570I	-6.54258 + 11.45569I
b = -1.065870 + 0.549777I		
u = -0.388479 + 0.400318I		
a = -1.155830 - 0.149061I	-0.02603 + 1.77955I	-5.09313 - 4.79070I
b = 0.438402 + 0.600768I		
u = -0.388479 + 0.400318I		
a = -1.14506 + 1.66093I	-0.02603 + 1.77955I	-5.09313 - 4.79070I
b = -0.919497 + 0.346909I		
u = -0.388479 - 0.400318I		
a = -1.155830 + 0.149061I	-0.02603 - 1.77955I	-5.09313 + 4.79070I
b = 0.438402 - 0.600768I		
u = -0.388479 - 0.400318I		
a = -1.14506 - 1.66093I	-0.02603 - 1.77955I	-5.09313 + 4.79070I
b = -0.919497 - 0.346909I		
u = 0.300297 + 0.396341I		
a = -0.36424 + 1.38690I	5.91614 + 5.40360I	-0.73363 - 1.75125I
b = -0.583913 - 0.986914I		
u = 0.300297 + 0.396341I		
a = 3.16595 - 0.53729I	5.91614 + 5.40360I	-0.73363 - 1.75125I
b = 0.874871 - 0.799916I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.300297 - 0.396341I		
a = -0.36424 - 1.38690I	5.91614 - 5.40360I	-0.73363 + 1.75125I
b = -0.583913 + 0.986914I		
u = 0.300297 - 0.396341I		
a = 3.16595 + 0.53729I	5.91614 - 5.40360I	-0.73363 + 1.75125I
b = 0.874871 + 0.799916I		
u = -0.55226 + 1.43648I		
a = -0.920559 - 0.249915I	6.99739 + 7.32012I	2.83321 - 9.36955I
b = -0.878187 - 0.988227I		
u = -0.55226 + 1.43648I		
a = 1.43177 - 0.29444I	6.99739 + 7.32012I	2.83321 - 9.36955I
b = 1.037170 + 0.468605I		
u = -0.55226 - 1.43648I		
a = -0.920559 + 0.249915I	6.99739 - 7.32012I	2.83321 + 9.36955I
b = -0.878187 + 0.988227I		
u = -0.55226 - 1.43648I		
a = 1.43177 + 0.29444I	6.99739 - 7.32012I	2.83321 + 9.36955I
b = 1.037170 - 0.468605I		

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{8}{5}u^{16} + \frac{54}{5}u^{15} + \dots - 44u - \frac{43}{5} \\ -2u^{15} - 15u^{14} + \dots - 47u - 8 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{5}u^{16} + \frac{8}{5}u^{15} + \dots + 19u + \frac{24}{5} \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{5}u^{16} - \frac{8}{5}u^{15} + \dots - 17u - \frac{14}{5} \\ u^{4} + 2u^{3} + 3u^{2} + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{8}{5}u^{16} + \frac{64}{5}u^{15} + \dots + 3u - \frac{3}{5} \\ -2u^{15} - 15u^{14} + \dots - 47u - 8 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{4}{5}u^{16} + \frac{32}{5}u^{15} + \dots + 8u - \frac{4}{5} \\ -u^{15} - 7u^{14} + \dots - 23u - 4 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{8}{5}u^{16} + \frac{59}{5}u^{15} + \dots - 28u - \frac{28}{5} \\ -2u^{15} - 15u^{14} + \dots - 45u - 8 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{2}{5}u^{16} + \frac{11}{5}u^{15} + \dots - 39u - \frac{42}{5} \\ -u^{15} - 7u^{14} + \dots - 16u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{2}{5}u^{16} + \frac{11}{5}u^{15} + \dots - 39u - \frac{42}{5} \\ -u^{15} - 7u^{14} + \dots - 16u - 2 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes

$$= -8u^{16} - 73u^{15} - 345u^{14} - 1129u^{13} - 2811u^{12} - 5603u^{11} - 9220u^{10} - 12735u^9 - 14949u^8 - 15016u^7 - 12923u^6 - 9534u^5 - 5946u^4 - 3070u^3 - 1267u^2 - 373u - 64$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^{17} + 3u^{15} + \dots - u - 1$
c_2	$u^{17} - 8u^{16} + \dots + 29u - 5$
c_3, c_6	$u^{17} + u^{16} + \dots + u + 1$
c_4, c_8	$u^{17} - 4u^{15} + \dots - 2u^2 + 1$
<i>C</i> ₅	$u^{17} + 8u^{16} + \dots + 29u + 5$
	$u^{17} - 5u^{16} + \dots + 6u - 1$
c_{10}, c_{11}	$u^{17} + 5u^{16} + \dots + 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{17} + 6y^{16} + \dots + 7y - 1$
c_2, c_5	$y^{17} + 8y^{16} + \dots - 159y - 25$
c_{3}, c_{6}	$y^{17} - 7y^{16} + \dots + y - 1$
c_4, c_8	$y^{17} - 8y^{16} + \dots + 4y - 1$
c_7, c_{10}, c_{11}	$y^{17} + 17y^{16} + \dots - 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.212883 + 0.989804I		
a = -1.78717 - 0.40799I	1.43397 + 3.72395I	9.02521 - 8.71756I
b = -0.65506 - 1.31329I		
u = -0.212883 - 0.989804I		
a = -1.78717 + 0.40799I	1.43397 - 3.72395I	9.02521 + 8.71756I
b = -0.65506 + 1.31329I		
u = 0.187789 + 0.804462I		
a = -1.56094 - 1.01561I	7.01302 - 6.58132I	2.73271 + 4.66890I
b = -0.263040 - 1.039610I		
u = 0.187789 - 0.804462I		
a = -1.56094 + 1.01561I	7.01302 + 6.58132I	2.73271 - 4.66890I
b = -0.263040 + 1.039610I		
u = -0.049862 + 0.811132I		
a = 1.77966 + 0.76282I	0.38103 - 2.23066I	3.27072 + 6.66488I
b = 0.299763 + 1.223360I		
u = -0.049862 - 0.811132I		
a = 1.77966 - 0.76282I	0.38103 + 2.23066I	3.27072 - 6.66488I
b = 0.299763 - 1.223360I		
u = -1.26194		
a = -0.0920978	-1.98855	20.3120
b = -0.443696		
u = -0.623402 + 0.351291I		
a = 0.635918 + 0.086672I	-0.81423 - 1.18978I	-7.16259 + 1.41463I
b = -0.381807 + 0.805862I		
u = -0.623402 - 0.351291I		
a = 0.635918 - 0.086672I	-0.81423 + 1.18978I	-7.16259 - 1.41463I
b = -0.381807 - 0.805862I		
u = -0.159792 + 1.337940I		
a = 1.264290 + 0.275164I	9.78949 + 6.03317I	3.31072 - 5.48564I
b = 0.691210 + 0.860233I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.159792 - 1.337940I		
a = 1.264290 - 0.275164I	9.78949 - 6.03317I	3.31072 + 5.48564I
b = 0.691210 - 0.860233I		
u = -0.459989 + 1.288470I		
a = -1.256360 + 0.121374I	2.67441 + 5.22342I	1.79503 - 5.33597I
b = -0.988881 - 0.741602I		
u = -0.459989 - 1.288470I		
a = -1.256360 - 0.121374I	2.67441 - 5.22342I	1.79503 + 5.33597I
b = -0.988881 + 0.741602I		
u = -1.41090 + 0.33080I		
a = 0.174049 - 0.117023I	2.33565 + 1.27004I	12.05941 + 2.53511I
b = 0.570172 - 0.082917I		
u = -1.41090 - 0.33080I		
a = 0.174049 + 0.117023I	2.33565 - 1.27004I	12.05941 - 2.53511I
b = 0.570172 + 0.082917I		
u = -0.63999 + 1.39192I		
a = 0.996603 - 0.187799I	6.14483 + 5.85758I	2.31283 - 5.33514I
b = 0.949489 + 0.516009I		
u = -0.63999 - 1.39192I		
a = 0.996603 + 0.187799I	6.14483 - 5.85758I	2.31283 + 5.33514I
b = 0.949489 - 0.516009I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_9	$(u^{17} + 3u^{15} + \dots - u - 1)(u^{41} - 12u^{39} + \dots - 2u + 1)$ $\cdot (u^{46} - u^{45} + \dots + 8u^{2} + 1)$
c_2	$(u^{17} - 8u^{16} + \dots + 29u - 5)(u^{23} + 7u^{22} + \dots + 4u + 1)^{2}$ $\cdot (u^{41} - 11u^{40} + \dots - 239u + 24)$
c_3, c_6	$(u^{17} + u^{16} + \dots + u + 1)(u^{41} - u^{40} + \dots + 6u + 1)$ $\cdot (u^{46} - 7u^{45} + \dots - 188u + 37)$
c_4, c_8	$(u^{17} - 4u^{15} + \dots - 2u^2 + 1)(u^{41} - 3u^{39} + \dots + 39u + 19)$ $\cdot (u^{46} + u^{45} + \dots + 36u + 11)$
c_5	$(u^{17} + 8u^{16} + \dots + 29u + 5)(u^{23} + 7u^{22} + \dots + 4u + 1)^{2}$ $\cdot (u^{41} - 11u^{40} + \dots - 239u + 24)$
C ₇	$(u^{17} - 5u^{16} + \dots + 6u - 1)(u^{23} + 5u^{22} + \dots + 6u^{2} - 1)^{2}$ $\cdot (u^{41} - 8u^{40} + \dots + 9u - 2)$
c_{10},c_{11}	$(u^{17} + 5u^{16} + \dots + 6u + 1)(u^{23} + 5u^{22} + \dots + 6u^{2} - 1)^{2}$ $\cdot (u^{41} - 8u^{40} + \dots + 9u - 2)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_9	$(y^{17} + 6y^{16} + \dots + 7y - 1)(y^{41} - 24y^{40} + \dots + 96y - 1)$ $\cdot (y^{46} + 7y^{45} + \dots + 16y + 1)$
c_2, c_5	$(y^{17} + 8y^{16} + \dots - 159y - 25)(y^{23} + 15y^{22} + \dots - 12y - 1)^{2}$ $\cdot (y^{41} + 23y^{40} + \dots - 10223y - 576)$
c_3, c_6	$(y^{17} - 7y^{16} + \dots + y - 1)(y^{41} + 27y^{40} + \dots - 82y - 1)$ $\cdot (y^{46} - 5y^{45} + \dots + 23412y + 1369)$
c_4, c_8	$(y^{17} - 8y^{16} + \dots + 4y - 1)(y^{41} - 6y^{40} + \dots + 4637y - 361)$ $\cdot (y^{46} - 13y^{45} + \dots + 4820y + 121)$
c_7, c_{10}, c_{11}	$(y^{17} + 17y^{16} + \dots - 8y - 1)(y^{23} + 23y^{22} + \dots + 12y - 1)^{2}$ $\cdot (y^{41} + 40y^{40} + \dots - 87y - 4)$