CS-2050-All-Sections CS 2050 Homework 6 (HOWARD, FAULKNER, ELLEN)

Vidit Dharmendra Pokharna

TOTAL POINTS

101.5 / 100

OUESTION 1

Question 1 6 pts

1.1 a 3 / 3

✓ - **0 pts** \$\$2^4 \cdot 3^3 \cdot 5^3 \cdot 13^2 \cdot 23^2\$\$

- 3 pts Incorrect / No Answer

1.2 b 3 / 3

- √ 0 pts \$\$2^7 \cdot 3^2 \cdot 5 \cdot 7\$\$
 - 3 pts Incorrect / No Answer

QUESTION 2

- 2 Question 2 4 / 4
 - √ 0 pts \$\$ \frac{8^3}{\ln(8^3)} \approx 82\$\$
 - 4 pts Incorrect / No Answer

QUESTION 3

- 3 Question 3 4 / 4
 - √ 0 pts \$\$(101000001)_2\$\$
 - 1 pts No subscript indicating base 2
 - 2 pts Minor error in work
 - 3 pts Major error in work / no work shown
 - 4 pts Incorrect / No Answer

QUESTION 4

4 Question 4 4 / 4

√ - 0 pts Octal: \$\$(246)_8\$\$

Hex: \$\$(A6)_{16}\$\$

Decimal: \$\$(166)_{10}\$\$

Partly correct

- 1 pts Incorrect Octal
- 1 pts Incorrect Hex
- 1 pts Incorrect Decimal
- 1 pts Missed labelling a subscript
- 2 pts Minor error in work
- 3 pts Major error in work / No work shown
- 4 pts Incorrect / No Answer

QUESTION 5

5 Question 5 4 / 4

- √ 0 pts \$\$(1100 1001 1010 0110)_2\$\$
 - 1 pts No subscript indicating base 2
 - 2 pts Minor error in work
 - 3 pts Major error in work / No work shown
 - 4 pts Incorrect / No Answer

QUESTION 6

6 Question 6 3 / 4

- **0 pts** \$\${(135023)_8}\$\$
- √ 1 pts No subscript indicating base 8
 - 2 pts Minor error in work
 - 3 pts Major error in work / No work shown

- 4 pts Incorrect / No Answer

QUESTION 7

Question 7 16 pts

7.1 a 4/4

√ - 0 pts 5

- 4 pts Incorrect / No Answer

7.2 b 4 / 4

√ - 0 pts 9

- 4 pts Incorrect / No Answer

7.3 **C 4 / 4**

√ - 0 pts 0

- 4 pts Incorrect / No Answer

7.4 **d 4 / 4**

√ - 0 pts 3

- 4 pts Incorrect / No Answer

QUESTION 8

Question 8 9 pts

8.1 a 3 / 3

 $\sqrt{-0}$ pts \$\$c = 1\$\$

- 3 pts Incorrect / No Answer

8.2 b 3/3

 $\sqrt{-0}$ pts \$\$c = 10\$\$

- 3 pts Incorrect / No Answer

8.3 C 3 / 3

 $\sqrt{-0}$ pts \$\$c = 1\$\$

- 3 pts Incorrect / No Answer

QUESTION 9

9 Question 9 8 / 8

√ - 0 pts Correct

 - 1 pts Missing/incorrect introduction (doesn't mention proof type and/or match assumptions made)

 2 pts Does not state assumption(s) in introduction or proof body

- **3 pts** Invalid assumption (e.g. assumes entire statement is true, assumes conclusion is true in a direct proof, etc.)

Common Errors

- 1 pts Missing domain for 1 variable

- 2 pts Missing domain for 2+ vairables

- 2 pts Uses the same variable for different
 definitions of divisibility (e.g., saying \$\$b = ak\$\$
 and \$\$c = bk\$\$)

Invalid Steps

- 2 pts 1 Invalid Step

- 4 pts 2 Invalid steps

- 6 pts 3+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step

- 4 pts 2 Skipped Steps

- 6 pts 3+ Skipped Steps

Miscited Steps

- 1 pts 1 Miscited Steps

- 2 pts 2 Miscited Steps

- 3 pts 3 Miscited Steps

- 4 pts 4+ Miscited Steps

- 2 pts Missing or Incorrect Conclusion

Must say that if \$\$a | b\$\$ and \$\$b | a\$\$ then \$\$b

- = a\$\$ or \$\$b =-a\$\$
 - 8 pts No Answer

QUESTION 10

10 Question 10 10 / 10

- √ 0 pts Correct
 - 3 pts Minor math error
 - 6 pts Major Math Error

Missed / Incorrect / Invalid prime

- 2 pts 1 Missed / Incorrect / Invalid prime
- 4 pts 2 Missed / Incorrect / Invalid prime
- 6 pts 3 Missed / Incorrect / Invalid prime
- 8 pts 4+ Missed / Incorrect / Invalid prime
- 10 pts No Answer

QUESTION 11

Question 11 6 pts

11.1 a 3 / 3

- √ 0 pts 2
 - 3 pts Incorrect / No Answer

11.2 b 3 / 3

- √ 0 pts \$\$2^3 \cdot 3^2 \cdot 7\$\$ or \$\$504\$\$
 - 3 pts Incorrect / No Answer

OUESTION 12

Question 12 4 pts

12.1 **a 2 / 2**

- **√ 0 pts** \$\$2^4 \cdot 3 \cdot 7 \cdot 11\$\$ or \$\$3696\$\$
 - 2 pts Incorrect / No Answer

12.2 **b** 2 / 2

✓ - **0 pts** \$\$2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13\$\$ or \$\$31853250000\$\$

- 2 pts Incorrect / No Answer

QUESTION 13

Question 13 4 pts

13.1 a 2 / 2

- √ 0 pts No
 - 2 pts Incorrect / No Answer

13.2 **b** 2 / 2

- √ 0 pts Yes
 - 2 pts Incorrect / No Answer

QUESTION 14

Question 148 pts

14.1 **a 4 / 4**

- $\sqrt{-0}$ pts \$\$\qcd(123, 456) = 3\$\$
 - 4 pts Incorrect / No Answer

14.2 b 4 / 4

- $\sqrt{-0}$ pts \$\$\gcd(423, 72) = 9\$\$
 - 4 pts Incorrect / No Answer

QUESTION 15

Question 15 9 pts

15.1 a 3/3

- √ **0** pts 10
 - 3 pts Incorrect / No Answer

15.2 b 3 / 3

- **√ 0 pts** 22
 - 3 pts Incorrect / No Answer

15.3 **C 3 / 3**

- **√ 0 pts** 8
 - 3 pts Incorrect / No Answer

QUESTION 16

- 16 Matching 0/0
 - ✓ 0 pts Correct
 - **5 pts** Incorrect

QUESTION 17

- 17 On Time 2.5 / 0
 - √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - 10 pts 1 day late
 - **25 pts** 2 days late

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

1.1 a 3 / 3

- **√ 0 pts** \$\$2^4 \cdot 3^3 \cdot 5^3 \cdot 13^2 \cdot 23^2\$\$
 - 3 pts Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

1.2 b 3 / 3

- **√ 0 pts** \$\$2^7 \cdot 3^2 \cdot 5 \cdot 7\$\$
 - 3 pts Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

2 Question 2 4 / 4

- √ 0 pts \$\$ \frac{8^3}{\ln(8^3)} \approx 82\$\$
 - 4 pts Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

3 Question 3 4 / 4

- √ 0 pts \$\$(101000001)_2\$\$
 - 1 pts No subscript indicating base 2
 - **2 pts** Minor error in work
 - **3 pts** Major error in work / no work shown
 - **4 pts** Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

4 Question 4 4 / 4

√ - 0 pts Octal: \$\$(246)_8\$\$

Hex: \$\$(A6)_{16}\$\$

Decimal: \$\$(166)_{10}\$\$

Partly correct

- 1 pts Incorrect Octal
- 1 pts Incorrect Hex
- 1 pts Incorrect Decimal
- **1 pts** Missed labelling a subscript
- **2 pts** Minor error in work
- 3 pts Major error in work / No work shown
- 4 pts Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

5 Question 5 4 / 4

- √ 0 pts \$\$(1100 1001 1010 0110)_2\$\$
 - **1 pts** No subscript indicating base 2
 - **2 pts** Minor error in work
 - 3 pts Major error in work / No work shown
 - 4 pts Incorrect / No Answer

CS 2050 HW 6

1.

a.
$$46^226^215^3 = 2^223^22^213^23^35^3 = 2^43^35^313^223^2$$

b.
$$8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^3 7^1 2^1 3^1 5^1 2^2 3^1 2^1 = 2^7 3^2 5^1 7^1$$

2. According to the Prime Number Theorem, the approximate number of primes is $\frac{512}{\ln{(512)}} \approx 82.07331$

3.

$$321 - 256 = 65$$

$$65 - 64 = 1$$

$$1 - 1 = 0$$

$$321 = 256 + 64 + 1$$

Binary: 101000001

4.

- Binary to Octal: $010|100|110 \rightarrow 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0|1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 246$
- Binary to Hexadecimal: $1010|0110 \rightarrow 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0|0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow A6$
- Binary to Decimal: $10100110 \rightarrow 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \rightarrow 128 + 32 + 4 + 2 = 166$

5.

• Hexadecimal to Binary: $C|9|A|6 \rightarrow 12|9|10|6 \rightarrow 1100|1001|1010|0110 \rightarrow 1100100110100110$

- Hexadecimal to Binary: $B|A|1|3 \rightarrow 11|10|1|3 \rightarrow 1011|1010|0001|0011 \rightarrow 1011101000010011$
- Binary to Octal: $001|011|101|000|010|011 \rightarrow 1|3|5|0|2|3 \rightarrow 135023$

6 Question 6 3 / 4

- **0 pts** \$\${(135023)_8}\$\$
- **√ 1 pts** No subscript indicating base 8
 - 2 pts Minor error in work
 - **3 pts** Major error in work / No work shown
 - **4 pts** Incorrect / No Answer

```
a. (43^2 \mod 36) \mod 8
   = (((43 \mod 36)^2 \mod 36) \mod 8)
   = (7^2 \mod 36) \mod 8
   = (49 \mod 36) \mod 8
   = 13 \mod 8
   = 5
b. (9^3 \mod 11)^2 \mod 18
   = (((9^2 \bmod 11)(9 \bmod 11)) \bmod 11)^2 \bmod 18
   = ((4)(9) \bmod 11)^2 \bmod 18
   = (36 \mod 11)^2 \mod 18
   = 3^2 \mod 18
   =9
c. (24<sup>2</sup> mod 6) mod 7003
   = (((24 \mod 6)^2 \mod 6) \mod 7003)
   = (((0)^2 \mod 6) \mod 7003)
   = (0 \bmod 6) \bmod 7003
   = 0 \mod 7003
   = 0
d. ((-7)^3 \mod 10)^3 \mod 5
   = ((-7 \bmod 10)^3 \bmod 10)^3 \bmod 5
   = (3^3 \mod 10)^3 \mod 5
   = (27 \mod 10)^3 \mod 5
   = 7^3 \mod 5
   = (7 \mod 5)^3 \mod 5
   = 2^3 \mod 5
   = 8 \mod 5
   =3
```

7.1 **a 4 / 4**

√ - 0 pts 5

- 4 pts Incorrect / No Answer

```
a. (43^2 \mod 36) \mod 8
   = (((43 \mod 36)^2 \mod 36) \mod 8)
   = (7^2 \mod 36) \mod 8
   = (49 \mod 36) \mod 8
   = 13 \mod 8
   = 5
b. (9^3 \mod 11)^2 \mod 18
   = (((9^2 \bmod 11)(9 \bmod 11)) \bmod 11)^2 \bmod 18
   = ((4)(9) \bmod 11)^2 \bmod 18
   = (36 \mod 11)^2 \mod 18
   = 3^2 \mod 18
   =9
c. (24<sup>2</sup> mod 6) mod 7003
   = (((24 \mod 6)^2 \mod 6) \mod 7003)
   = (((0)^2 \mod 6) \mod 7003)
   = (0 \bmod 6) \bmod 7003
   = 0 \mod 7003
   = 0
d. ((-7)^3 \mod 10)^3 \mod 5
   = ((-7 \bmod 10)^3 \bmod 10)^3 \bmod 5
   = (3^3 \mod 10)^3 \mod 5
   = (27 \mod 10)^3 \mod 5
   = 7^3 \mod 5
   = (7 \mod 5)^3 \mod 5
   = 2^3 \mod 5
   = 8 \mod 5
   =3
```

7.2 **b** 4 / 4

√ - 0 pts 9

- 4 pts Incorrect / No Answer

```
a. (43^2 \mod 36) \mod 8
   = (((43 \mod 36)^2 \mod 36) \mod 8)
   = (7^2 \mod 36) \mod 8
   = (49 \mod 36) \mod 8
   = 13 \mod 8
   = 5
b. (9^3 \mod 11)^2 \mod 18
   = (((9^2 \bmod 11)(9 \bmod 11)) \bmod 11)^2 \bmod 18
   = ((4)(9) \bmod 11)^2 \bmod 18
   = (36 \mod 11)^2 \mod 18
   = 3^2 \mod 18
   =9
c. (24<sup>2</sup> mod 6) mod 7003
   = (((24 \mod 6)^2 \mod 6) \mod 7003)
   = (((0)^2 \mod 6) \mod 7003)
   = (0 \bmod 6) \bmod 7003
   = 0 \mod 7003
   = 0
d. ((-7)^3 \mod 10)^3 \mod 5
   = ((-7 \bmod 10)^3 \bmod 10)^3 \bmod 5
   = (3^3 \mod 10)^3 \mod 5
   = (27 \mod 10)^3 \mod 5
   = 7^3 \mod 5
   = (7 \mod 5)^3 \mod 5
   = 2^3 \mod 5
   = 8 \mod 5
   =3
```

7.3 **C 4 / 4**

√ - 0 pts 0

- 4 pts Incorrect / No Answer

```
a. (43^2 \mod 36) \mod 8
   = (((43 \mod 36)^2 \mod 36) \mod 8)
   = (7^2 \mod 36) \mod 8
   = (49 \mod 36) \mod 8
   = 13 \mod 8
   = 5
b. (9^3 \mod 11)^2 \mod 18
   = (((9^2 \bmod 11)(9 \bmod 11)) \bmod 11)^2 \bmod 18
   = ((4)(9) \bmod 11)^2 \bmod 18
   = (36 \mod 11)^2 \mod 18
   = 3^2 \mod 18
   =9
c. (24<sup>2</sup> mod 6) mod 7003
   = (((24 \mod 6)^2 \mod 6) \mod 7003)
   = (((0)^2 \mod 6) \mod 7003)
   = (0 \bmod 6) \bmod 7003
   = 0 \mod 7003
   = 0
d. ((-7)^3 \mod 10)^3 \mod 5
   = ((-7 \bmod 10)^3 \bmod 10)^3 \bmod 5
   = (3^3 \mod 10)^3 \mod 5
   = (27 \mod 10)^3 \mod 5
   = 7^3 \mod 5
   = (7 \mod 5)^3 \mod 5
   = 2^3 \mod 5
   = 8 \mod 5
   =3
```

7.4 **d 4 / 4**

√ - 0 pts 3

- 4 pts Incorrect / No Answer

$$a = 2 + 15x, x \in \mathbb{Z}$$

 $b = 11 + 15y, y \in \mathbb{Z}$

... refers to any term containing a multiple of 15, which would not matter when determining the value in modulo 15 as it is congruent to 0 in modulo 15, therefore, replaced with ...

a.
$$c \mod 15$$

 $= 11(11 + \cdots) \mod 15$
 $= (121 \mod 15)$
 $= 1$
 $\rightarrow c \mod 15 = 1$
 $\rightarrow c = 1$
b. $c \mod 15$
 $= ((2 + 15x)^3 + 2(11 + 15y)^2) \mod 15$
 $= ((8 + \cdots) + 2(121 + \cdots)) \mod 15$
 $= ((8 \mod 15) + (2(121 \mod 15) \mod 15)) \mod 15$
 $= (8 + (2 \mod 15)) \mod 15$
 $= (8 + 2) \mod 15$
 $= 10 \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= (8(2 + \cdots))^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= 1 \mod 15$

8.1 a 3 / 3

√ - 0 pts \$\$c = 1\$\$

- 3 pts Incorrect / No Answer

$$a = 2 + 15x, x \in \mathbb{Z}$$

 $b = 11 + 15y, y \in \mathbb{Z}$

... refers to any term containing a multiple of 15, which would not matter when determining the value in modulo 15 as it is congruent to 0 in modulo 15, therefore, replaced with ...

a.
$$c \mod 15$$

 $= 11(11 + \cdots) \mod 15$
 $= (121 \mod 15)$
 $= 1$
 $\rightarrow c \mod 15 = 1$
 $\rightarrow c = 1$
b. $c \mod 15$
 $= ((2 + 15x)^3 + 2(11 + 15y)^2) \mod 15$
 $= ((8 + \cdots) + 2(121 + \cdots)) \mod 15$
 $= ((8 \mod 15) + (2(121 \mod 15) \mod 15)) \mod 15$
 $= (8 + (2 \mod 15)) \mod 15$
 $= (8 + 2) \mod 15$
 $= 10 \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= (8(2 + \cdots))^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= 1 \mod 15$

8.2 **b** 3 / 3

√ - 0 pts \$\$c = 10\$\$

- 3 pts Incorrect / No Answer

$$a = 2 + 15x, x \in \mathbb{Z}$$

 $b = 11 + 15y, y \in \mathbb{Z}$

... refers to any term containing a multiple of 15, which would not matter when determining the value in modulo 15 as it is congruent to 0 in modulo 15, therefore, replaced with ...

a.
$$c \mod 15$$

 $= 11(11 + \cdots) \mod 15$
 $= (121 \mod 15)$
 $= 1$
 $\rightarrow c \mod 15 = 1$
 $\rightarrow c = 1$
b. $c \mod 15$
 $= ((2 + 15x)^3 + 2(11 + 15y)^2) \mod 15$
 $= ((8 + \cdots) + 2(121 + \cdots)) \mod 15$
 $= ((8 \mod 15) + (2(121 \mod 15) \mod 15)) \mod 15$
 $= (8 + (2 \mod 15)) \mod 15$
 $= (8 + 2) \mod 15$
 $= 10 \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= 10$
 $\rightarrow c \mod 15$
 $= (8(2 + \cdots))^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= (16 \mod 15)^{2000} \mod 15$
 $= 1 \mod 15$

8.3 **C 3 / 3**

- **√ 0 pts** \$\$c = 1\$\$
 - 3 pts Incorrect / No Answer

9. I will use direct proof to show that if a|b and b|a, then b=a or b=-a

Line	Statement	Reason			
1	a b	Given			
2	b a	Given			
3	$b = ac, c \in \mathbb{Z}$	Definition of a divides b (1)			
4	$a = bd, d \in \mathbb{Z}$	Definition of b divides a (2)			
5	a = (ac)d	Substitute (3) into (4)			
6	a = a(cd)	Associativity			
7	1 = cd	Simplify (6) by dividing a from both side			
8	$c = d = \pm 1$	Given c and d are both integers, both must			
		be either 1 or -1 as there are no other			
		pairs of (c, d) that would make (7) true			
9	$b = a(\pm 1)$	Plug (8) into (3)			
10	$b = \pm a$	Simplify (9)			
11	b = a or b = -a	Definition of ±			

[:] Using direct proof, a|b and b|a, then b=a or b=-a. I proved this by instantiating two integer variables to explain the concept of "divides" and later used logic to show that the conditional statement was true.

9 Question 9 8 / 8

- ✓ 0 pts Correct
 - 1 pts Missing/incorrect introduction (doesn't mention proof type and/or match assumptions made)
 - 2 pts Does not state assumption(s) in introduction or proof body
- **3 pts** Invalid assumption (e.g. assumes entire statement is true, assumes conclusion is true in a direct proof, etc.)

Common Errors

- 1 pts Missing domain for 1 variable
- 2 pts Missing domain for 2+ vairables
- 2 pts Uses the same variable for different definitions of divisibility (e.g., saying \$\$b = ak\$\$ and \$\$c = bk\$\$)

Invalid Steps

- 2 pts 1 Invalid Step
- 4 pts 2 Invalid steps
- 6 pts 3+ Invalid Steps

Skipped Steps

- 2 pts 1 Skipped Step
- 4 pts 2 Skipped Steps
- 6 pts 3+ Skipped Steps

Miscited Steps

- 1 pts 1 Miscited Steps
- 2 pts 2 Miscited Steps
- 3 pts 3 Miscited Steps
- 4 pts 4+ Miscited Steps
- 2 pts Missing or Incorrect Conclusion

Must say that if \$\$a | b\$\$ and \$\$b | a\$\$ then \$\$b = a\$\$ or \$\$b =-a\$\$

- 8 pts No Answer

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115						

Crossed out multiples of: 2 3 5 7 11

Values that are left:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

This is a total of 30 primes

a.
$$-294 = -(2^{1} \cdot 3^{1} \cdot 7^{2})$$

 $274 = (2^{1} \cdot 137^{1})$
 $gcd(-294, 274) = 2^{1} = 2$
b. $a = (2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2})$
 $b = (2^{3} \cdot 3^{4} \cdot 7^{1})$
 $gcd(a, b) = 2^{3} \cdot 3^{2} \cdot 7^{1} = 504$

a.
$$77 = (7^1 \cdot 11^1)$$

 $336 = (2^4 \cdot 3^1 \cdot 7^1)$
 $lcm(77, 336) = 2^4 \cdot 3^1 \cdot 7^1 \cdot 11^1 = 3696$
b. $a = (3^4 \cdot 5^6 \cdot 11^2)$
 $b = (2^4 \cdot 5^3 \cdot 13)$
 $lcm(a, b) = 2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13 = 31853250000$

10 Question 10 10 / 10

- ✓ 0 pts Correct
 - 3 pts Minor math error
 - 6 pts Major Math Error

Missed / Incorrect / Invalid prime

- 2 pts 1 Missed / Incorrect / Invalid prime
- 4 pts 2 Missed / Incorrect / Invalid prime
- 6 pts 3 Missed / Incorrect / Invalid prime
- 8 pts 4+ Missed / Incorrect / Invalid prime
- 10 pts No Answer

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115						

Crossed out multiples of: 2 3 5 7 11

Values that are left:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

This is a total of 30 primes

a.
$$-294 = -(2^{1} \cdot 3^{1} \cdot 7^{2})$$

 $274 = (2^{1} \cdot 137^{1})$
 $gcd(-294, 274) = 2^{1} = 2$
b. $a = (2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2})$
 $b = (2^{3} \cdot 3^{4} \cdot 7^{1})$
 $gcd(a, b) = 2^{3} \cdot 3^{2} \cdot 7^{1} = 504$

a.
$$77 = (7^1 \cdot 11^1)$$

 $336 = (2^4 \cdot 3^1 \cdot 7^1)$
 $lcm(77, 336) = 2^4 \cdot 3^1 \cdot 7^1 \cdot 11^1 = 3696$
b. $a = (3^4 \cdot 5^6 \cdot 11^2)$
 $b = (2^4 \cdot 5^3 \cdot 13)$
 $lcm(a, b) = 2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13 = 31853250000$

11.1 **a** 3 / 3

√-0 pts 2

- 3 pts Incorrect / No Answer

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115						

Crossed out multiples of: 2 3 5 7 11

Values that are left:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

This is a total of 30 primes

a.
$$-294 = -(2^{1} \cdot 3^{1} \cdot 7^{2})$$

 $274 = (2^{1} \cdot 137^{1})$
 $gcd(-294, 274) = 2^{1} = 2$
b. $a = (2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2})$
 $b = (2^{3} \cdot 3^{4} \cdot 7^{1})$
 $gcd(a, b) = 2^{3} \cdot 3^{2} \cdot 7^{1} = 504$

a.
$$77 = (7^1 \cdot 11^1)$$

 $336 = (2^4 \cdot 3^1 \cdot 7^1)$
 $lcm(77, 336) = 2^4 \cdot 3^1 \cdot 7^1 \cdot 11^1 = 3696$
b. $a = (3^4 \cdot 5^6 \cdot 11^2)$
 $b = (2^4 \cdot 5^3 \cdot 13)$
 $lcm(a, b) = 2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13 = 31853250000$

11.2 b 3 / 3

- **√ 0 pts** \$\$2^3 \cdot 3^2 \cdot 7\$\$ or \$\$504\$\$
 - 3 pts Incorrect / No Answer

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115						

Crossed out multiples of: 2 3 5 7 11

Values that are left:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

This is a total of 30 primes

a.
$$-294 = -(2^{1} \cdot 3^{1} \cdot 7^{2})$$

 $274 = (2^{1} \cdot 137^{1})$
 $gcd(-294, 274) = 2^{1} = 2$
b. $a = (2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2})$
 $b = (2^{3} \cdot 3^{4} \cdot 7^{1})$
 $gcd(a, b) = 2^{3} \cdot 3^{2} \cdot 7^{1} = 504$

a.
$$77 = (7^1 \cdot 11^1)$$

 $336 = (2^4 \cdot 3^1 \cdot 7^1)$
 $lcm(77, 336) = 2^4 \cdot 3^1 \cdot 7^1 \cdot 11^1 = 3696$
b. $a = (3^4 \cdot 5^6 \cdot 11^2)$
 $b = (2^4 \cdot 5^3 \cdot 13)$
 $lcm(a, b) = 2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13 = 31853250000$

12.1 **a 2 / 2**

- **√ 0 pts** \$\$2^4 \cdot 3 \cdot 7 \cdot 11\$\$ or \$\$3696\$\$
 - 2 pts Incorrect / No Answer

1	2	3	4	5	6	7	8	9	10	11
12	13	14	15	16	17	18	19	20	21	22
23	24	25	26	27	28	29	30	31	32	33
34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	64	65	66
67	68	69	70	71	72	73	74	75	76	77
78	79	80	81	82	83	84	85	86	87	88
89	90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109	110
111	112	113	114	115						

Crossed out multiples of: 2 3 5 7 11

Values that are left:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

This is a total of 30 primes

a.
$$-294 = -(2^{1} \cdot 3^{1} \cdot 7^{2})$$

 $274 = (2^{1} \cdot 137^{1})$
 $gcd(-294, 274) = 2^{1} = 2$
b. $a = (2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2})$
 $b = (2^{3} \cdot 3^{4} \cdot 7^{1})$
 $gcd(a, b) = 2^{3} \cdot 3^{2} \cdot 7^{1} = 504$

a.
$$77 = (7^1 \cdot 11^1)$$

 $336 = (2^4 \cdot 3^1 \cdot 7^1)$
 $lcm(77, 336) = 2^4 \cdot 3^1 \cdot 7^1 \cdot 11^1 = 3696$
b. $a = (3^4 \cdot 5^6 \cdot 11^2)$
 $b = (2^4 \cdot 5^3 \cdot 13)$
 $lcm(a, b) = 2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13 = 31853250000$

12.2 **b 2 / 2**

- **√ 0 pts** \$\$2^4 \cdot 3^4 \cdot 5^6 \cdot 11^2 \cdot 13\$\$ or \$\$31853250000\$\$
 - 2 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	,-
123	456	456 mod 123 = 87
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

13.1 **a 2 / 2**

- **√ 0 pts** *No*
 - 2 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	,-
123	456	456 mod 123 = 87
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

13.2 **b 2 / 2**

- **√ 0 pts** Yes
 - 2 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	,-
123	456	456 mod 123 = 87
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

14.1 **a 4 / 4**

- $\sqrt{-0}$ pts \$\$\gcd(123, 456) = 3\$\$
 - 4 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	,-
123	456	456 mod 123 = 87
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

14.2 **b** 4 / 4

- $\sqrt{-0}$ pts \$\$\gcd(423, 72) = 9\$\$
 - 4 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	-
123	456	$456 \mod 123 = 87$
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

15.1 **a 3 / 3**

√ - 0 pts 10

- 3 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	-
123	456	$456 \mod 123 = 87$
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

15.2 **b** 3 / 3

√ - 0 pts 22

- 3 pts Incorrect / No Answer

a.
$$15 = (3^1 \cdot 5^1)$$

 $175 = (3^1 \cdot 5^1 \cdot 7^1)$
 $39 = (3^1 \cdot 13^1)$
 $gcd(15, 175) = (3^1 \cdot 5^1) = 15$

Therefore, the set is not pairwise relatively prime

b.
$$63 = (3^2 \cdot 7^1)$$

 $50 = (2^1 \cdot 5^2)$
 $17 = (17^1)$
 $gcd(63, 50) = 1$
 $gcd(50, 17) = 1$

gcd(63, 17) = 1

Therefore, the set is pairwise relatively prime

14.

a.		
X	У	r
123	456	-
123	456	$456 \mod 123 = 87$
87	123	$123 \mod 87 = 36$
36	87	$87 \mod 36 = 15$
15	36	$36 \mod 15 = 6$
6	15	$15 \mod 6 = 3$
3	6	$6 \mod 3 = 0$

gcd(123, 456) = 3

b.		
X	У	r
423	72	
72	423	$423 \mod 72 = 63$
63	72	$72 \mod 63 = 9$
9	63	$63 \mod 9 = 0$

gcd(423,72) = 9

a.
$$\varphi(22) = \varphi(2 \cdot 11) = 22\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{11}\right) = 22\left(\frac{1}{2}\right)\left(\frac{10}{11}\right) = 10$$

b.
$$\varphi(23) = 23\left(1 - \frac{1}{23}\right) = 23\left(\frac{22}{23}\right) = 22$$

c.
$$\varphi(24) = \varphi(2^3 \cdot 3) = 24\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 24\left(\frac{1}{2}\right)\left(\frac{2}{3}\right) = 8$$

15.3 **C** 3 / 3

√ - 0 pts 8

- 3 pts Incorrect / No Answer

16 Matching 0/0

- **√ 0 pts** Correct
 - **5 pts** Incorrect

17 On Time 2.5 / 0

- √ + 2.5 pts On Time (Before Thursday)
 - 0 pts On Time (Friday)
 - **10 pts** 1 day late
 - **25 pts** 2 days late