TPC2 - PCF

João Torres - PG47345

31 de Maio de 2022

1 $wait_n(wait_m(p)) \sim wait_{n+m}(p)$

De modo a verificar a equivalência entre os dois programas, em primeiro lugar, temos de calcular os outputs de ambos usando as regras da semântica.

1.1 $wait_n(wait_m(p))$

$$\frac{< p, \sigma > \Downarrow v, \sigma'}{a} a < wait_m(p), \sigma > \Downarrow m + v, \sigma' \\ < wait_n(wait_m(p)), \sigma > \Downarrow n + m + v, \sigma'$$

1.2 $wait_{n+m}(p)$

$$\frac{< p, \sigma > \Downarrow v, \sigma'}{< wait_{n+m}(p), \sigma > \Downarrow n+m+v, \sigma'}$$

Em seguida, é necessário que a partir de um dos programas seja possível chegar ao outro.

1.3 $wait_n(wait_m(p)) \Rightarrow wait_{n+m}(p)$

$$< wait_n(wait_m(p)), \sigma > \Downarrow n + m + v, \sigma'$$
 (1)

 \Rightarrow

$$< wait_m(p), \sigma > \Downarrow m + v, \sigma'$$
 (2)

 \Rightarrow

$$\langle p, \sigma \rangle \psi v, \sigma'$$
 (3)

 \Rightarrow

$$< wait_{n+m}(p), \sigma > \downarrow n+m+v, \sigma'$$
 (4)

1.4 $wait_{n+m}(p) \Rightarrow wait_n(wait_m(p))$

$$< wait_{n+m}(p), \sigma > \Downarrow n+m+v, \sigma'$$
 (5)

 \Rightarrow

$$\langle p, \sigma \rangle \Downarrow v, \sigma'$$
 (6)

 \Rightarrow

$$< wait_m(p), \sigma > \Downarrow m + v, \sigma'$$
 (7)

 \Rightarrow

$$< wait_n(wait_m(p)), \sigma > \Downarrow n + m + v, \sigma'$$
 (8)