

密级状态: 绝密() 秘密() 内部() 公开(√)

RK3288(W_Version)_ANDROID9.0_ MID_SDK 软件开发指南

(技术部,第二系统产品部)

文件状态:	当前版本:	V1.0.0
[]正在修改	作 者:	陈锦森
[√] 正式发布	完成日期:	2019-04-10
	审核:	黄祖芳、吴良清、陈海燕
	完成日期:	2019-04-10

福州瑞芯微电子股份有限公司

Fuzhou Rockchips Electronics Co., Ltd

(版本所有,翻版必究)

版本历史

版本号	作者	修改日期	修改说明	备注
V1.0.0	陈锦森	2019.04.10	发布初始版本	

目 录

RK3288(W_Version)_ANDROID9.0_MID_SDK 软件升友指南	I
前 言	1
1 支持列表	2
1.1 DDR 支持列表	2
1.2 EMMC 支持列表	2
1.2.1 高性能 EMMC 颗粒的选取	2
1.3 SDK 软件包适用硬件列表	3
1.4 WiFi/BT 支持列表	3
1.5 多媒体编解码支持列表	4
2 文档/工具索引	4
2.1 文档索引	4
2.2 工具索引	9
3 SDK 编译/烧写	12
3.1 SDK 获取	12
3.1.1 SDK 下载链接	12
3.1.2 repo	12
3.1.3 SDK 代码压缩包	12
3.2 SDK 编译	13
3.2.1 JDK 安装	13
3.2.2 编译模式	13
3.2.3 SDK 代码编译	13
3.2.4 固件生成步骤	14
3.2.5 全自动编译脚本	14
3.3 固件烧写	15
3.4 量产烧写	16
4 U-Boot 开发	16
4.1 Rockchip U-Boot 简介	16
4.2 平台配置	17

4.3	固件生成	. 17
	4.3.1 一级 Loader 模式	. 17
	4.3.2 二级 Loader 模式	. 17
4.4	U-Boot 编译	18
4.5	U-Boot 充电相关配置	. 18
	4.5.1 充电图片打包	18
	4.5.2 DTS 使能充电	. 19
	4.5.3 低功耗休眠	20
	4.5.4 更换充电图片	20
5 Kerne	l 开发	. 20
5.1	DTS 介绍	. 21
	5.1.1 DTS 说明	. 21
	5.1.2 新增一个产品 DTS	21
5.2	Wi-Fi & BT 配置	. 21
5.3	GPIO	. 21
5.4	ARM、GPU、DDR 频率修改	. 22
5.5	温控配置	. 23
6 Andro	id 常见配置	. 23
6.1	Android9.0 系统新特性说明	. 23
6.2	Android 产品配置	. 23
	6.2.1 lunch 选项说明	23
	6.2.2 添加一个新的产品	23
6.3	常用功能配置说明	24
	6.3.1 常用配置宏说明	24
	6.3.2 预装 APK	. 25
	6.3.3 开/关机动画及铃声	25
6.4	Parameter 说明	25
6.5	新增分区配置	25
6.6	OTA 升级	25
7 系统调	试	. 26

	7.1 ADB 工具	26
	7.1.1 概述	26
	7.1.2 USB ADB 使用说明	26
	7.1.3 网络 ADB 使用要求	27
	7.1.4 SDK 网络 ADB 端口配置	27
	7.1.5 网络 ADB 使用	27
	7.1.6 手动修改网络 ADB 端口号	27
	7.1.7 ADB 常用命令详解	28
	7.2 Logcat 工具	29
	7.2.1 Logcat 命令使用	29
	7.2.2 常用的日志过滤方式	30
	7.2.3 查看上次 log	31
	7.3 Procrank 工具	31
	7.3.1 使用 procrank	31
	7.3.2 检索指定内容信息	32
	7.3.3 跟踪进程内存状态	32
	7.4 Dumpsys 工具	33
	7.4.1 使用 Dumpsys	33
	7.5 串口调试	33
	7.5.1 串口配置	33
	7.5.2 FIQ 模式	34
	7.6 音频 codec 问题调试工具及文档	34
	7.7 Last log 开启	34
8	常用工具说明	35
	8.1 StressTest	35
	8.2 PCBA 测试工具	36
	8.3 DDR 测试工具	36
	8.4 Android 开发工具	36
	8.4.1 下载镜像	36
	8.4.2 升级固件	37

8.4.3 高级功能	38
8.5 update.img 打包	38
8.6 固件签名工具	39
8.7 序列号/Mac/厂商信息烧写-WNpctool 工具	39
8.7.1 使用 WNpctool 写入	39
8.7.2 使用 WNpctool 读取	40
8.8 量产工具使用	41
8.8.1 工具下载步骤	41

前言

概述

本文档主要介绍 Rockchip RK3288(W_Version) Android 9.0 MID 平台软件开发指南,旨在帮助软件开发工程师更快上手 RK3288(W_Version)的开发及调试。

注: 本 SDK 软件包仅支持 RK3288(W_Version), 不支持旧 RK3288 芯片。

产品版本

芯片名称	内核版本	Android 版本
RK3288(W_Version)	Linux 4.4	Android 9.0.0

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

1 支持列表

RK3288(W_Version)为旧版 RK3288 芯片的升级版本,下方所列相关支持列表同旧版 RK3288 芯片。

1.1 DDR 支持列表

RK3288 DDR 目前选型列表支持双通道 DDR3、DDR3L、LPDDR2、LPDDR3。

表 1-1 RK3288 DRAM Support Type

Chip	DRAM Support Type
RK3288(W_Version)	DDR3/DDR3L/LPDDR2/LPDDR3

RK3288 DDR 颗粒支持程度列表,详见 RKDocs\common\Platform support lists 目录下《RK DDR Support List Ver2.34》,下表中所标示的 DDR 支持程度表,只建议选用 √、T/A标示的颗粒。

表 1-2 RK3288 DDR Support Symbol

Symbol	Description
J	Fully Tested and Mass production
T/A	Fully Tested and Applicable
N/A	Not Applicable

1.2 EMMC 支持列表

RK3288 支持 eMMC4.5,SDIO3.0,可运行 HS200 模式,详见 RKDocs\Common\Pla tform support lists 目录下《RKeMMCSupportList Ver1.41_2018_10_30》,下表中所标示的 DDR 支持程度表,只建议选用 √、T/A 标示的颗粒。

表 1-3 RK3288 EMMC Support Symbol

Symbol	Description
\checkmark	Fully Tested , Applicable and Mass Production
T/A	Fully Tested , Applicable and Ready for Mass Productio
D/A	Datasheet Applicable, Need Sample to Test
N/A	Not Applicable

1.2.1 高性能 EMMC 颗粒的选取

为了提高系统性能,选取高性能的 EMMC 颗粒也是需要的。请在挑选 EMMC 颗粒前,参照我们的支持列表的型号,对应的研究下厂商提供的 Datasheet,重点关注下厂商标注的 performance 章节。

参照厂商大小、读写的速率进行筛选。建议选取顺序读速率>200Mb/s、顺序写速率>40Mb/s。 如有选型上的疑问,也可直接联系我们的 Fae 窗口。

6.1.5 Performance

[Table 23] Performance

Density	Portition Type	Perfor	mance
Density	Partition Type	Read(MB/s)	Write (MB/s)
16GB		285	40
32GB	General	310	70
64GB	General	310	140
128GB		310	140
16GB		295	80
32GB	Enhanced	320	150
64GB	Ellianced	320	245
128GB		320	245

图 1-1 EMMC Performance 示例

1.3 SDK 软件包适用硬件列表

本 SDK 是基于谷歌 Android9.0 最新系统,只适配瑞芯微 RK3288(W_Version),只适用于 RK3288(W_Version)MID 平台及基于其上开发的产品,旧 RK3288 芯片不支持 9.0 系统。

SDK 附带了 RK3288 SDK (EVB) 样机板的硬件使用说明,请参见: RKDocs\rk3288\RK3288EVB2.0(RK_EVB_RK3288_LPDDR3P232SD6_V10_20171012S QJ)用户指南_20171228.pdf。

1.4 WiFi/BT 支持列表

RK3288 内核运行 Linux4.4,WiFi/BT 支持列表详见 RKDocs\common\Platform suppor t lists 目录下《Rockchip_WiFi_Situation_20180611.pdf》。文档中所列的的 Wifi/Bt 芯片列表经过大量测试,建议按照列表上的型号进行选型。如果有其他 WiFi/BT 芯片调试,可先与 WiFi/BT 芯片原厂沟通,是否有可以稳定在 Linux4.4 运行的驱动程序,并能提供调试帮助。

如有疑问和建议请联系瑞芯微 Fae 窗口。

WiFi Chip	IFACE	IEEE 802.11 Standard	2.4GHz Band	5.0GHz Band	BT	GPS	NFC	11AC	SDIO3.	мімо	BT4.0	BT4.2	Android7.1	Android8.1	VTS
AP6335	SDIO	IEEE 802.11A/B/G/N/AC	~	~	V	×	×	~	V	×	~	~	√	V	~

图 1-2 RK3288 Wi-Fi/BT 支持列表

1.5 多媒体编解码支持列表

具体的编解码支持列表,详见 RKDocs\rk3288 目录下《RK3288 Multimedia Codec Ben chmark v1.8》。

2 文档/工具索引

2.1 文档索引

RK3288 SDK 发布文档旨在帮助开发者快速上手开发及调试,文档中涉及的并不能涵盖所有的知识和问题。文档列表也正在不断更新,如有文档上的疑问及需求,请联系我们的 Fae 窗口。

RK3288 SDK 中在 RKDocs 目录下附带了三大块的文档,分别为: android (android 相关 开发文档),rk3288(3288 相关发布文档),common(公共开发文档);common 目录细分为 内核驱动开发文档、uboot 开发文档、模块开发文档、Platform support lists(支持列表)、RKTools manuals (工具使用文档)等。

an	droid
├—— an	droid
I	- Android 增加一个分区配置指南 V1.00.pdf
I	- Android_定制开关机铃声和动画说明_V1.0_20181112.pdf
I	- Android_性能模式使用说明_V1.0_20181112.pdf
I	- Android_恢复出厂设置保护功能说明_V1.0_20181112.pdf
I	- Android_预安装应用功能说明文档_V1.1_20190123.pdf
I	- Android_验证启动功能说明_V1.0_20181112.pdf
I	- bt
1 1	├── ROCKCHIP_ANDROID_8.1_BT 配置说明_V1.0_20180103.pdf
1 1	ROCKCHIP_ANDROID_9.0_BT 配置说明_V1.0_20181116.pdf
I	- project.config
I	- RK_PCBA_Camera_移植说明_v1.0.pdf
I	- Rockchip Android 8.1 BOX 显示框架配置说明文档 V1.0-20180210.pdf
I	- Rockchip Android Pie AVB Howto.pdf
I	- Rockchip Android Pie 安全启动方案使用指南 V1.00.pdf
I	- Rockchip Box 媒体中心使用说明-v1.0.1-20170216.pdf
I	- Rockchip_Magisk_installation_guidelines.pdf

I		├── REPO 镜像服务器搭建和管理_V2.2_20131231.pdf
I		RKUpgrade_DII_UserManual.pdf
1		├── RK 平台 apache_tomcat_ota 服务器搭建说明.rar
I		├── rk 平台量产升级指导文档 V1.1.pdf
- 1	1	├── RockChip Box 厂测工具 V2.0.rar
- 1	-	├── Rockchip Box 厂测工具操作说明 V2.0.pdf
- 1	-	Rockchip Keybox Burning Guide V1.2-20180315.pdf
- 1	-	Rockchip Parameter File Format Ver1.3.pdf
- 1	-	├── Rockchip 量产烧录 指南 V1.1-20170214.pdf
- 1	-	├── WNpctool 写号工具简要使用说明_V1.1.2.pdf
- 1	-	├── 压力测试 Stresstest 文档 forVR_ver3.0.pdf
- 1	-	├── 固件升级失败原因分析 V1.1 20121122.pdf
- 1	-	├── 瑞芯微 KeyWrite 使用指南_V1.3_20180508.pdf
- 1	-	└── 量产工具升级及相关问题处理.pdf
- 1		security
- 1	-	
- 1	-	Rockchip-Secure-Boot-Application-Note-V1.9.pdf
- 1	-	├── Rockchip_TEE 安全 SDK 开发手册_V1.1_20170516.pdf
- 1	1	Rockchip Vendor Storage Application Note.pdf
- 1	<u> -</u>	Sensors
- 1	1	└── Rockchip_Sensors_开发指南_V1.0_20180605.pdf
- 1	-	SPI
- 1	- [Rockchip-Developer-Guide-linux4.4-SPI.pdf
- 1	<u> </u>	-— Thermal
- 1	- [Rockchip-Developer-Guide-Linux4.4-Thermal-CN.pdf
- 1	- [Rockchip-Developer-Guide-Linux4.4-Thermal-EN.pdf
I	-	TRUST
I		└── Rockchip-Developer-Guide-Trust.pdf
I	-	UART
I		Rockchip-Developer-Guide-linux4.4-UART.pdf
		Q

2.2 工具索引

RK3288 SDK 发布的工具,用于开发调试阶段及量产阶段使用。工具可能随 SDK 更新不断更新,如有工具上的疑问及需求,请联系我们的 Fae 窗口。

RK3288 SDK 中在 RKTools 目录下附带了 linux(Linux 操作系统环境下使用工具)、windows (Windows 操作系统环境下使用工具)。

3 SDK 编译/烧写

3.1 SDK 获取

SDK 通过瑞芯微代码服务器对外发布。客户向瑞芯微技术窗口申请 SDK,需同步提供 SSH 公钥进行服务器认证授权,获得授权后即可同步代码。关于瑞芯微代码服务器 SSH 公钥授权,请参考《RK3288(W_Version)_ANDROID9.0_MID_SDK_V1.0.0_20190410 发布说明.pdf》。

3.1.1 SDK 下载链接

RK3288(W_Version)_ANDROID9.0_MID_SDK 下载地址如下:

\$ repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-release/tools/re
po.git -u ssh://git@www.rockchip.com.cn:2222/Android_pie_stable/platform/rk3288
/manifests.git -m RK3288_Android_Pie_release.xml

如果需要包含 GMS 包的 SDK(需要开通权限),使用如下地址:

\$ repo init --repo-url=ssh://git@www.rockchip.com.cn:2222/repo-release/tools/re
po.git -u ssh://git@www.rockchip.com.cn:2222/Android_pie_stable/platform/rk3288
/manifests.git -m RK3288_Android_Pie_Express_release.xml

3.1.2 repo

Repo 是 Google 用 Python 脚本写的调用 Git 的一个脚本,主要是用来下载、管理 Android 项目的软件仓库,其下载地址如下:

\$ git clone ssh:// git@www.rockchip.com.cn:2222/repo-release/tools/repo

3.1.3 SDK 代码压缩包

为方便客户快速获取 SDK 源码,瑞芯微技术窗口通常会提供对应版本的 SDK 初始压缩包,开发者可以通过这种方式,获得 SDK 代码的初始压缩包,该压缩包解压得到的源码,与通过 Repo下载的源码是一致的。以 RK3288(W_Version)_ANDROID9.0_MID_SDK_V1.0.0_2019041 0.tar.qz 为例,拷贝到该初始化包后,通过如下命令可检出源码:

- \$ mkdir rk3288
- \$ tar zxvf RK3288(W_Version)_ANDROID9.0_MID_SDK_V1.0.0_20190410.tar.gz C rk3288
 - \$ cd rk3288
 - \$.repo/repo/repo sync -l
 - \$.repo/repo/repo sync

后续开发者可根据 Fae 窗口定期发布的更新说明,通过 ".repo/repo/repo sync" 命令同步

更新。

3.2 SDK 编译

3.2.1 JDK 安装

Android9.0 系统编译依赖于 JAVA 8。编译之前需安装 OpenJDK。

安装命令如下:

\$ sudo apt-get install openjdk-8-jdk

配置 JAVA 环境变量,例如,安装路径为/usr/lib/jvm/java-8-openjdk-amd64,可在终端执行如下命令配置环境变量:

- \$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
- \$ export PATH=\$JAVA_HOME/bin:\$PATH
- \$ export CLASSPATH=.:\$JAVA_HOME/lib:\$JAVA_HOME/lib/tools.jar

SDK 带有 Open JDK8 的配置脚本,在工程根目录下,命名为 javaenv.sh。

可直接执行以下命令,配置 JDK:

\$ source javaenv.sh

3.2.2 编译模式

SDK 默认以 userdebug 模式编译。

使用 adb 时,需要先执行 adb root ,adb disable-verity 关闭 system 分区的 verity 特性, 重启后再执行 adb root, adb remount,进而进行 push 操作来 debug。

3.2.3 SDK 代码编译

uboot 编译:

- \$ cd u-boot
- \$ make clean
- \$ make mrproper
- \$./make.sh rk3288

kernel 编译:

- \$ cd kernel
- \$ make ARCH=arm rockchip_defconfig
- \$ make ARCH=arm rk3288-evb-android-rk808-edp-avb.img -j12

Android 编译:

- \$ source build/envsetup.sh
- \$ lunch rk3288-userdebug
- \$ make -j12

\$./mkimage.sh

注: Android 9.0 的工程 debug 阶段,要使修改的 kernel 生效,如果未开启 AVB 特性(见 6.1 章节),则只需要重新编译内核并执行./mkimage.sh,烧写固件输出目录 rockdev/Image-xxx 下的 boot.img;若开启 AVB 特性,需要重新编译整个固件,即内核编译之后,需要重新对 android 进行编译打包: make installclean && make -j12 && ./mkimage.sh,然后烧写固件输出目录 rockdev/Image-xxx 下的 boot.img。

3.2.4 固件生成步骤

执行./mkimage.sh 后,在 rockdev/Image-xxx/目录生成完整的固件包(xxx 是具体 lunch 的产品名)。

得到所有镜像文件后,为了方便烧写及量产,通常可手动将这些单独的镜像通过脚本打包成为 update.img。

3.2.5 全自动编译脚本

如前几节所述,编译可大致分为 u-boot、kernel、android 三大部分进行编译,为了提高编译的效率,降低人工编译可能出现的误操作,该 SDK 中集成了全自动化编译脚本,方便固件编译、备份。

1) 该全自动化编译脚本原始文件存放于:

device/rockchip/RK3288/build.sh

2) 在 repo sync 的时候,通过 manifest 中的 copy 选项拷贝至工程根目录下:

3) 修改 build.sh 脚本中的特定变量以编出对应产品固件。

KERNEL DTS=rk3288-evb-android-rk808-avb

变量请按实际项目情况,对应修改:

KERNEL_DTS 变量指定编译 kernel 的产品板极配置;

Android 编译需要指定对应的 lunch 选项,请在执行 build.sh 之前执行 lunch 操作,确保使用了正确的 lunch 选项,例如:

\$ lunch rk3288-userdebug

4) 执行自动编译脚本:

\$./build.sh -U -K -A -u -p -v userdebug

该脚本会自动配置 JDK 环境变量,编译 u-boot,编译 kernel,编译 Android,继而生成固件和版本信息,并打包成 update.img。

5) 脚本生成内容:

脚本会将编译生成的固件拷贝至:

IMAGE/RK3288 *****_RELEASE_TEST/IMAGES 目录下,具体路径以实际生成为准。每次编译都会新建目录保存,自动备份调试开发过程的固件版本,并存放固件版本的各类信息。建议在每次大版本编译的时候,使用这个编译脚本生成固件,里面包含了很多的版本信息,便于追查问题的时候定位代码的状态。

该目录下的 update.img 可直接用于 Android 开发工具及工厂烧写工具下载更新。

3.3 固件烧写

刷机说明详见 RKDocs\common\RKTools manuals 目录下《Android 开发工具手册.pdf》。 SDK 提供烧写工具,如下图所示。编译生成相应的固件后,进入烧写模式,即可进行刷机。对于已 烧过其它固件的机器,可以选择重新烧录固件,或是选择低格设备,擦除 idb,然后进行刷机。

图 3-1 Android 开发工具烧写界面

注:

1) 烧写前,需安装最新的 USB 驱动,驱动详见:

RKTools/windows/ —— DriverAssitant_v4.5.zip

2) Android9.0 相比 Android8.1 多了 Dtbo.img 和 vbmeta.img, 固件烧写的时候必须烧写这两个 img, 否则系统无法开机。

3.4 量产烧写

量产上考虑到生产效率及工厂工位安排,量产烧写说明详见 RKDocs\ common\RKTools manuals 目录下《Rockchip 量产烧录 指南 V1.1-20170214.pdf》。

在量产过程中如涉及到工具上的问题,可以联系我们的 Fae 窗口。

4 U-Boot 开发

本节简单介绍 U-Boot 基本概念和编译的注意事项,帮助客户了解 RK 平台 U-Boot 框架。 U-Boot 基本概念、编译的注意事项和 RK 平台 U-Boot 框架等具体的开发细节可参考 RKDocs\common\u-boot 目录下《Rockchip-Developer-Guide-UBoot-nextdev.pdf》。

4.1 Rockchip U-Boot 简介

Rockchip U-Boot 是基于开源的 UBoot 2014.10 正式版进行开发的,主要支持:

- 支持芯片: rk3288、rk3036、rk312x、rk3368、rk312x、rk3366、rk3399等;
- 支持 Android 平台的固件启动;
- 支持 ROCKUSB 和 Google Fastboot 两种方式烧写;

- 支持 secure boot 固件签名加密保护机制;
- 支持 LVDS、EDP、MIPI、HDMI、CVBS 等显示设备:
- 支持 SDCard、Emmc、Nand Flash、U 盘等存储设备;
- 支持开机 logo 显示、充电动画显示,低电管理、电源管理;
- 支持 I2C、SPI、PMIC、CHARGE、GUAGE、USB、GPIO、PWM、DMA、GMAC、EMMC、NAND 中断等驱动;

4.2 平台配置

平台配置文件位于 U-Boot 根目录下的 configs 文件夹下,其中 Rockchip 相关的以 RK 开头,并根据产品形态分为 MID 和 BOX 两种配置:

```
rk3128_defconfig
rk3128_defconfig
rk3128_defconfig
rk3368_defconfig
rk3288_defconfig
rk3288_box_defconfig
rk3128_box_defconfig
rk3036_box_defconfig
rk3036_box_defconfig
rk3368_box_defconfig
rk3368_box_defconfig
rk322x_box_defconfig
```

4.3 固件生成

Rockchip 平台 Loader 分为一级模式和二级模式,根据不同的平台配置生成相应的 Loader 固件。通过宏 CONFIG_SECOND_LEVEL_BOOTLOADER 定义二级 Loader 模式。

4.3.1 一级 Loader 模式

U-BOOT 作为一级 Loader 模式,那么仅支持 EMMC 存储设备,编译完成后生成的镜像:

```
rk3288_loader_v1.06.236.bin
```

其中 v1.06.236 是发布的版本号。

4.3.2 二级 Loader 模式

U-Boot 作为二级 Loader 模式,那么固件支持所有的存储设备,该模式下,需要 MiniLoader

支持,通过宏 CONFIG_MERGER_MINILOADER 进行配置生成。同时引入 Arm Trusted Firmware 后会生成 trust image,这个通过宏 CONFIG_MERGER_TRUSTIMAGE 进行配置生成。

以 RK3288 编译生成的镜像为例:

rk3288_loader_v1.06.236.bin

uboot.img

trust.img

其中 v1.06.236 是发布的版本号,rockchip 定义 U-Boot loader 的版本,其中 1.06.236 是根据存储版本定义的,客户务必不要修改这个版本。

uboot.img 是 U-Boot 作为二级 loader 的打包。

trust.img 是 U-Boot 作为二级 loader 的打包。

RK3036、RK3126、RK3128、RK322x、RK3368、RK3366、RK3399、RK3399Pro 等 采用二级 loader 模式。

4.4 U-Boot 编译

RK3288 SDK 编译使用的是如下配置:

./make.sh rk3288

编译完,会生成 trust.img、rk3288_loader_v1.06.236.bin、uboot.img 三个文件。

4.5 U-Boot 充电相关配置

4.5.1 充电图片打包

充电图片需要打包进 resource.img 才能被充电驱动读取并且显示。编译内核时默认不会打包充电图片,所以需要另外单独把这些图片打包进 resource.img。

打包命令:

./pack_resource.sh <input resource.img>

这个命令默认会把./tools/images/目录里的图片作为充电图片打包进 resource.img,新的 resource.img 会生成在 UBoot 根目录下,烧写的时候请烧写这个新的 resource.img。

如下是打包时的提示信息:

./pack resource.sh /home/guest/3399/kernel/resource.img

Pack ./tools/images/ & /home/guest/3399/kernel/resource.img to resource.img

. . .

ery_5.bmp

```
Unpacking old image(/home/guest/3399/kernel/resource.img):
rk-kernel.dtb logo.bmp logo_kernel.bmp
Pack to resource.img successed!
Packed resources:
rk-kernel.dtb battery_1.bmp battery_2.bmp battery_3.bmp battery_4.bmp batt
```

battery_fail.bmp logo.bmp logo_kernel.bmp battery_0.bmp resource.img is packed ready

4.5.2 DTS 使能充电

默认代码已经使能了该驱动,通过在 dts里增加并且使能 charge-animation 节点即可使能充电动画的功能。

```
charge-animation {
    compatible = "rockchip,uboot-charge";
    status = "okay";
    rockchip,uboot-charge-on = <0>; // 是否在 U-Boot 进行充电
    rockchip,android-charge-on = <1>; // 是否在 Android 进行充电
    rockchip,uboot-exit-charge-level = <5>; // U-Boot 充电时,允许开机的最低电量
    rockchip,uboot-exit-charge-voltage = <3650>; // U-Boot 充电时,允许开机的最低电量
```

rockchip,screen-on-voltage = <3400>; // U-Boot 充电时,允许点亮屏幕的最低电压 rockchip,uboot-low-power-voltage = <3350>; // U-Boot无条件强制进入充电模式的 最低电压

```
rockchip,system-suspend = <1>; // 灭屏时进入trust 进行低功耗待机 rockchip,auto-off-screen-interval = <20>; // 亮屏超时后自动灭屏,单位秒。(如果没有这个属性,则默认 15s)
```

rockchip,auto-wakeup-interval = <10>; // 休眠自动唤醒时间,单位秒。(如果值为 0 或没有这个属性,则禁止休眠自动唤醒)

rockchip,auto-wakeup-screen-invert = <1>; // 休眠自动唤醒的时候,是否让屏幕产生亮/灭效果

};

自动休眠唤醒功能的作用:

- 1. 考虑到有些电量计(比如 adc)需要定时更新软件算法,否则会造成电量统计不准,因此不能让 cpu一直处于休眠状态;
 - 2. 方便进行休眠唤醒的压力测试;

4.5.3 低功耗休眠

进入充电流程后可通过短按 power 实现系统亮灭屏,灭屏时进入低功耗待机状态,再次按下按键可唤醒。非低电状态下,按 power 可退出充电流程进行开机。

4.5.4 更换充电图片

1. 更换./tools/images/目录下的图片,图片采用8bit 或 24bit bmp 格式。使用命令"Is | sort"确认图片排列顺序是

低电量到高电量,在使用pack_resource.sh 脚本打包时,所有图片会按照这个顺序被打包进resource:

2. 修改./drivers/power/charge_animation.c里的图片和电量关系信息:

name: 图片的名字;

soc: 图片对应的电量;

period: 图片刷新时间(单位: ms);

- **注意: **最后一张图片一定要是 failed 的图片,且 "soc=-1" 不可改变。
- 3. 执行pack_resource.sh 打包命令获取新的 resource.img 即可;

5 Kernel 开发

本节简单介绍内核一些常见配置的修改,主要是 dts 的配置,帮助客户更快更方便的进行一些简单的修改。 RK3288 kernel 版本是 4.4, config 配置文件统一为 arch/arm/configs/rockchip_defconfig, RK3288 的串口波特率为 115200,调试时请保证设置准确。

5.1 DTS 介绍

5.1.1 DTS 说明

RK3288 的 dts 文件在 kernel/arch/arm/boot/dts/下,其中 rk3288.dtsi 是核心配置文件 定义了平台相关的内容; RK3288-android.dtsi 是产品级配置文件定义了一些外围设备; 具体的产品 dts 需要 include 这两个文件,如 Tablet 产品的 dts 文件 rk3288-th804.dts。产品的 dts 里面根据具体的产品需求配置 CPU、GPU、DDR 的频率和电压表; 配置 io、屏、wifi、bt、sensor、温控、背光、电池、系统供电配置等等。

SDK 板采用 rk3288-evb-android-rk808-edp-avb.dts 这个文件。

5.1.2 新增一个产品 DTS

Rk3288 的产品 dts 文件需放在 kernel/arch/arm/boot/dts/下。

- 1、以 rk3288-evb-android-rk808-edp-avb.dts 为参照,拷贝一份 dts 文件命名为 rk328 8-product-avb.dts。
 - 2、修改 arch/arm/boot/dts/Makefile 文件,添加对应 dtb 声明:

+rk3288-product-avb.dtb

- 3、修改编译脚本或编译命令。
- 4、重新编译内核。

5.2 Wi-Fi & BT 配置

RK3288 Android 9.0 平台上 WiFi、BT 可做到自动兼容,按照 RK 提供的编译 Android 9.0 编译步骤,生成固件后,默认就可以支持相应的 WiFi 模块,并且一套固件可以支持多个 WiFi 模块。在硬件完全按照 RK SDK 规范设计的前提下,RK3288 android 9.0 平台 wifi、bt 模块 android 和 kernel 无需做任何配置。

目前对外发布 RK3288(W_Version) Android9.0 SDK, Wi-Fi 自动兼容框架已经搭建完毕, 如果客户需要自行调试其他模块, 只需按照 RKDocs\android\wifi\目录下《RealTek wifi 驱动移植说明_V1.1.pdf》及《ROCKCHIP_ANDROID_9.0_WIFI 配置说明_V1.4.pdf》提到的注意事项进行修改即可。

5.3 GPIO

关于原理图上的 gpio 跟 dts 里面的 gpio 的对应关系,例如 GPIO4c0,那么对应的 dts 里面应该是"gpio4 16"。因为 GPIO4A 有 8 个 pin,GPIO4B 也有 8 个 pin,以此计算可得 c0 口就是 16,c1 口就是 17,以此类推;

GPIO 的使用请参考 RKDocs\common\PIN-Ctrl\目录下《Rockchip Pin-Ctrl 开发指南 V1.0-20160725.pdf》。

5.4 ARM、GPU、DDR 频率修改

DVFS (Dynamic Voltage and Frequency Scaling) 动态电压频率调节,是一种实时的电压和频率调节技术。目前 4.4 内核中支持 DVFS 的模块有 CPU、GPU、DDR。

CPUFreq 是内核开发者定义的一套支持动态调整 CPU 频率和电压的框架模型。它能有效的降低 CPU 的功耗,同时兼顾 CPU 的性能。

CPUFreq 通过不同的变频策略,选择一个合适的频率供 CPU 使用,目前的内核版本提供了以下几种策略:

- interactive: 根据 CPU 负载动态调频调压;
- conservative:保守策略,逐级调整频率和电压;
- ondemand:根据 CPU 负载动态调频调压,比 interactive 策略反应慢;
- userspace: 用户自己设置电压和频率,系统不会自动调整;
- powersave: 功耗优先,始终将频率设置在最低值;
- performance: 性能优先,始终将频率设置为最高值;

详细的模块功能及配置,请参考 RKDocs/common/DVFS/目录下《Rockchip-Developer-Guide-Linux4.4-CPUFreq-CN.pdf》和《Rockchip-Developer-Guide-Linux4.4-Devfreq.pd f》文档。

ARM/GPU/DDR 分别有对应的调试接口,可以通过 ADB 命令进行操作,对应的接口目录如下:

- ARM: /sys/devices/system/cpu/cpu0/cpufreq/
- GPU: /sys/class/devfreq/ffa30000.gpu/
- DDR: /sys/class/devfreg/dmc/

这些目录下有如下类似节点:

- available_frequencies: 显示支持的频率
- available_governors: 显示支持的变频策略
- cur_freq:显示当前频率
- Governor: 显示当前的变频策略
- max_freq: 显示当前最高能跑的频率
- min_freq: 显示当前最低能跑的频率

以 GPU 为例进行定频操作,流程如下:

- 查看支持哪些频率
 - cat /sys/class/devfreq/ffa30000.gpu/available_frequencies
- 切换变频策略
 - echo userspace > /sys/class/devfreq/ffa30000.gpu/governor
- 定频
 - echo 400000000 > /sys/class/devfreq/ffa30000.gpu/userspace/set_freq
- 设置完后,查看当前频率

 cat /sys/class/devfreg/ffa30000.qpu/cur freq

5.5 温控配置

在 Linux 内核中,定义一套温控框架 linux Generic Thermal Sysfs Drivers,在 4.4 内核 arm 版本,我们使用 thermal 框架的 sysfs 接口读取当前的温度;温控策略是自定义的方式:

- performance 策略: 温度超过一定的温度, CPU 会设定在固定的频率, 具体的数值配置 在芯片级 dtsi 文件。
- normal 策略: 当前温度超过设定值不同的温度时, CPU 会降低相应的频率, 具体的数值 配置在芯片级 dtsi 文件。

详细的模块功能及配置,请参考 RKDocs\common\Thermal\目录下的开发说明文档。

6 Android 常见配置

6.1 Android9.0 系统新特性说明

该部分内容请参阅 SDK 中 RKDocs/rk3288 目录下《Android_9.0 系统新特性说明_V1.1_20181205.pdf》。

6.2 Android 产品配置

6.2.1 lunch 选项说明

rk3288-userdebug: //rk3288 平台平板产品 userdebug rk3288-user: //rk3288 平台平板产品 user

6.2.2 添加一个新的产品

各开发厂商可能有同款芯片不同产品开发的需求,一套 SDK 需同时编译生成多款产品固件。 rk3288 平台支持各种平板类型产品形态,当需要添加一个新的产品时,如下以建立一个新的平板产品为例进行说明,具体步骤为:

● 在 device/rockchip/rk3288/目录下,基于 rk3288.mk 创建 rk3288_xxx.mk。

cd device/rockchip/rk3288

cp rk3288.mk ./rk3288_xxx.mk

● 在 device/rockchip/rk3288/AndroidProducts.mk 中添加:

PRODUCT_MAKEFILES := \
\$(LOCAL_DIR)/rk3288.mk \
\$(LOCAL_DIR)/rk3288_xxx.mk

● 在 vendorsetup.sh 中添加产品对应的 lunch 选项:

add_lunch_combo rk3288-userdebug
add_lunch_combo rk3288-user
add_lunch_combo rk3288_xxx-userdebug
add_lunch_combo rk3288_xxx-user

- 修改 rk3288_ xxx.mk 中新产品所需要修改的配置。
- 修改编译脚本或编译命令,重新 lunch 产品名称进行新产品编译。

6.3 常用功能配置说明

6.3.1 常用配置宏说明

宏配置	功能说明
BUILD_WITH_GOOGLE_MARKET	若为 true 则集成 GMS 包,false 不集成
BUILD_WITH_GOOGLE_MARKET_ALL	若为 true 集成 full 的 GMS 包,false 集
	成 mini 的 GMS 包
BUILD_WITH_GOOGLE_FRP	使能恢复出厂设置保护 FRP 功能
BUILD_WITH_FORCEENCRYPT	使能默认全盘加密
PRODUCT_SYSTEM_VERITY	使能 Verified boot
BUILD_WITH_GMS_CER	GMS 认证配置选项
BUILD_WITH_WIDEVINE	集成 Widevine level3 插件库
BOARD_NFC_SUPPORT	使能 NFC 功能
BOARD_SENSOR_ST	选用 ST 的 sensor 框架
BOARD_SENSOR_MPU	选用 MPU 的 sensor 框架
BOARD_SENSOR_MPU_VR	选用 MPU_VR 的 sensor 框架

BOARD_GRAVITY_SENSOR_SUPPORT	使能 G-Sensor
BOARD_COMPASS_SENSOR_SUPPORT	使能 Compass
BOARD_GYROSCOPE_SENSOR_SUPPORT	使能陀螺仪 Gyroscope
BOARD_PROXIMITY_SENSOR_SUPPORT	使能距离感应器
BOARD_LIGHT_SENSOR_SUPPORT	使能光感应器
BOARD_PRESSURE_SENSOR_SUPPORT	使能压力感应器
BOARD_TEMPERATURE_SENSOR_SUPPORT	使能温度传感器
BOARD_ENABLE_3G_DONGLE	使能 3G Dongle 功能
TARGET_ROCKCHIP_PCBATEST	使能 PCBA 测试
BOOT_SHUTDOWN_ANIMATION_RINGING	使能开关机动画+铃声
BOARD_SYSTEMIMAGE_PARTITION_SIZE	System 分区最大容量

6.3.2 预装 APK

Android 上的应用预安装功能,主要是指配置产品时,根据厂商要求,将事先准备好的第三方应用预制进 Android 系统。预安装分为不可卸载安装、可永久卸载安装以及卸载后恢复出厂设置后自动恢复安装,详细配置和使用请参阅工程目录 RKDocs/android/下相关说明文档:

《Android_预安装应用功能说明文档_V1.0_20171109.pdf》。

6.3.3 开/关机动画及铃声

定制 Android 9.0 的开机铃声,关机铃声,开机动画,关机动画的详细方法请参阅工程目录 RKDocs/android/ 下 的 说 明 文 档 : 《 Android_ 定 制 开 关 机 动 画 (铃 音) 说 明 _V1.0_20181112.pdf》。

6.4 Parameter 说明

RK3288 Android 9.0 平台有平板、Box、Laptop 等产品形态,不同的产品形态可能需要不同的 parameter 参数,关于 parameter 中各个参数、分区情况细节,请参考\RKDocs\common\RKTools manuals\Rockchip Parameter File Format Ver1.3.pdf。

6.5 新增分区配置

请参考\RKDocs\android\《Android 增加一个分区配置指南 V1.00.pdf》。

6.6 OTA 升级

OTA (over the air) 升级是 Android 系统提供的标准软件升级方式。它功能强大,提供了完全升级(完整包)、增量升级模式(差异包),可以通过本地升级,也可以通过网络升级。详细

的 OTA 升级及 Recovery 模块功能及配置,请参考 RKDocs\android 目录下《Rockchip Recovery 用户操作指南 V1.03》。

7系统调试

本节重点介绍 SDK 开发过程中的一些调试工具和调试方法,并会不断补充完善,帮助开发者快速上手基础系统调试,并做出正确的分析。

7.1 ADB 工具

7.1.1 概述

ADB (Android Debug Bridge) 是 Android SDK 里的一个工具,用这个工具可以操作管理 Android 模拟器或真实的 Android 设备。主要功能有:

- 运行设备的 shell (命令行)
- 管理模拟器或设备的端口映射
- 计算机和设备之间上传/下载文件
- 将本地 apk 软件安装至模拟器或 Android 设备

ADB 是一个"客户端一服务器端"程序,其中客户端主要是指 PC,服务器端是 Android 设备的实体机器或者虚拟机。根据 PC 连接设备的方式不同,ADB 可以分为两类:

- 网络 ADB: 主机通过有线/无线网络(同一局域网)连接到 STB 设备
- USB ADB: 主机通过 USB 线连接到 STB 设备

7.1.2 USB ADB 使用说明

USB ADB 使用有以下限制:

- 只支持 USB OTG 口
- 不支持多个客户端同时使用(如 cmd 窗口, eclipse 等)
- 只支持主机连接一个设备,不支持连接多个设备

连接步骤如下:

- 1、设备已经运行 Android 系统,设置->开发者选项->已连接到计算机打开, usb 调试开关打开。
 - 2、PC 主机只通过 USB 线连接到机器 USB OTG 口,然后电脑通过如下命令与设备相连。

\$ adb shell

3、测试是否连接成功,运行"adb devices"命令,如果显示机器的序列号,表示连接成功。

7.1.3 网络 ADB 使用要求

ADB 早期版本只能通过 USB 来对设备调试,从 adb v1.0.25 开始,增加了通过 tcp/ip 调试 Android 设备的功能。

如果你需要使用网络 ADB 来调试设备,必须要满足如下条件:

- 1、设备上面首先要有网口,或者通过 Wi-Fi 连接网络。
- 2、设备和研发机(PC 机)已经接入局域网,并且设备设有局域网的 IP 地址。
- 3、要确保研发机和设备能够相互 ping 得通。
- 4、研发机已经安装了 ADB。
- 5、确保 Android 设备中 adbd 进程(ADB 的后台进程)已经运行。adbd 进程将会监听端口 5555 来进行 ADB 连接调试。

7.1.4 SDK 网络 ADB 端口配置

SDK 默认未对网络 ADB 端口进行配置,需要手动修改打开配置。

修改 device/rockchip/rkxxxx/device.mk 文件,在 PRODUCT_PROPERTY_OVERRIDES 后面追加如下配置:

service.adb.tcp.port=5555

7.1.5 网络 ADB 使用

本节假设设备的 IP 为 192.168.1.5,下文将会用这个 IP 建立 ADB 连接,并调试设备。

- 1、首先 Android 设备需要先启动,如果可以话,可以确保一下 adbd 启动(ps 命令查看)。
- 2、在 PC 机的 cmd 中,输入:

\$ adb connect 192.168.1.5:5555

如果连接成功会进行相关的提示,如果失败的话,可以先 kill-server 命令,然后重试连接。

\$ adb kill-server

- 3、如果连接已经建立,在研发机中,可以输入 ADB 相关的命令进行调试了。比如 adb shell,将会通过 TCP/IP 连接设备上面。和 USB 调试是一样的。
 - 4、调试完成之后,在研发机上面输入如下的命令断开连接:

\$ adb disconnect 192.168.1.5:5555

7.1.6 手动修改网络 ADB 端口号

若 SDK 未加入 ADB 端口号配置,或是想修改 ADB 端口号,可通过如下方式修改:

- 1、首先还是正常地通过 USB 连接目标机,在 windows cmd 下执行 adb shell 进入。
- 2、设置 ADB 监听端口:

#setprop service.adb.tcp.port 5555

- 3、通过 ps 命令查找 adbd 的 pid
- 4、重启 adbd

#kill -9<pid>, 这个pid 就是上一步找到那个pid

杀死 adbd 之后,Android 的 init 进程会自动重启 adbd。adbd 重启后,发现设置了 service. adb.tcp.port,就会自动改为监听网络请求。

7.1.7 ADB 常用命令详解

(1) 查看设备情况

查看连接到计算机的 Android 设备或者模拟器:

\$ adb devices

返回的结果为连接至开发机的 Android 设备的序列号或是 IP 和端口号(Port)、状态。

(2) 安装 APK

将指定的 APK 文件安装到设备上:

\$ adb install <apk 文件路径>

示例如下:

\$ adb install "F:\WishTV\WishTV.apk"

重新安装应用:

\$ adb install - r <apk 文件路径>

示例如下:

- \$ adb install r "F:\WishTV\WishTV.apk"
 - (3) 卸载 APK

完全卸载:

\$ adb uninstall <package>

示例如下:

- \$ adb uninstall com.wishtv
 - (4) 使用 rm 移除 APK 文件:
- \$ adb shell rm <filepath>

示例如下:

- \$ adb shell
- \$ rm "system/app/WishTV.apk"

示例说明:移除"system/app"目录下的"WishTV.apk"文件。

(5) 进入设备和模拟器的 shell

进入设备或模拟器的 shell 环境:

\$ adb shell

(6) 从电脑上传文件到设备

用 push 命令可以把本机电脑上的任意文件或者文件夹上传到设备。本地路径一般指本机电脑: 远程路径一般指 ADB 连接的单板设备。

\$ adb push <本地路径><远程路径>

示例如下:

\$ adb push "F:\WishTV\WishTV.apk" "system/app"

示例说明:将本地"WishTV.apk"文件上传到 Android 系统的"system/app"目录下。

(7) 从设备下载文件到电脑

pull 命令可以把设备上的文件或者文件夹下载到本机电脑中。

\$ adb pull <远程路径><本地路径>

示例如下:

\$ adb pull system/app/Contacts.apk F:\

示例说明:将 Android 系统"system/app"目录下的文件或文件夹下载到本地"F:\"目录下。

(8) 查看 bug 报告

需要查看系统生成的所有错误消息报告,可以运行 adb bugreport 指令来实现,该指令会将 Android 系统的 dumpsys、dumpstate 与 logcat 信息都显示出来。

(9) 查看设备的系统信息

在 adb shell 下查看设备系统信息的具体命令。

\$ adb shell getprop

7.2 Logcat 工具

Android 日志系统提供了记录和查看系统调试信息的功能。日志都是从各种软件和一些系统的缓冲区中记录下来的,缓冲区可以通过 Logcat 来查看和使用。Logcat 是调试程序用的最多的功能。该功能主要是通过打印日志来显示程序的运行情况。由于要打印的日志量非常大,需要对其进行过滤等操作。

7.2.1 Logcat 命令使用

用 logcat 命令来查看系统日志缓冲区的内容:

基本格式:

[adb] logcat [<option>] [<filter-spec>]

示例如下:

- \$ adb shell
- \$ logcat

7.2.2 常用的日志过滤方式

控制日志输出的几种方式:

● 控制日志输出优先级。

示例如下:

- \$ adb shell
- \$ logcat *:W

示例说明:显示优先级为 warning 或更高的日志信息。

● 控制日志标签和输出优先级。

示例如下:

- \$ adb shell
- \$ logcat ActivityManager:I MyApp:D *:S

示例说明:支持所有的日志信息,除了那些标签为"ActivityManager"和优先级为"Info"以上的、标签为"MyApp"和优先级为"Debug"以上的。

● 只输出特定标签的日志

示例如下:

- \$ adb shell
- \$ logcat WishTV:* *:S

或者

- \$ adb shell
- \$ logcat -s WishTV

示例说明:只输出标签为 WishTV 的日志。

● 只输出指定优先级和标签的日志

示例如下:

- \$ adb shell
- \$ logcat WishTV:I *:S

示例说明: 只输出优先级为 I,标签为 WishTV 的日志。

7.2.3 查看上次 log

可以加-L 参数来打印出上次系统复位前的 logcat 信息。若出现拷机异常或者异常掉电的情况,可通过该命令打印出上一次 Android 运行状态的日志。命令如下:

- \$ adb shell
- \$ logcat -L

7.3 Procrank 工具

Procrank 是 Android 自带一款调试工具,运行在设备侧的 shell 环境下,用来输出进程的内存快照,便于有效的观察进程的内存占用情况。

包括如下内存信息:

- VSS: Virtual Set Size 虚拟耗用内存大小(包含共享库占用的内存)
- RSS: Resident Set Size 实际使用物理内存大小(包含共享库占用的内存)
- PSS: Proportional Set Size 实际使用的物理内存大小(比例分配共享库占用的内存)
- USS: Unique Set Size 进程独自占用的物理内存大小(不包含共享库占用的内存)

注意:

- USS 大小代表只属于本进程正在使用的内存大小,进程被杀死后会被完整回收;
- VSS/RSS 包含了共享库使用的内存,对查看单一进程内存状态没有参考价值;
- PSS 是按照比例将共享内存分割后,某单一进程对共享内存区的占用情况。

7.3.1 使用 procrank

执行 procrank 前需要先让终端获取到 root 权限

\$ su

命令格式:

procrank [-W] [-v | -r | -p | -u | -h]

常用指令说明:

- -v: 按照 VSS 排序
- -r: 按照 RSS 排序
- -p: 按照 PSS 排序
- -u: 按照 USS 排序
- -R: 转换为递增[递减]方式排序
- -w: 只显示 working set 的统计计数

- -W: 重置 working set 的统计计数
- -h: 帮助

示例:

-输出内存快照:

procrank

-按照 VSS 降序排列输出内存快照:

procrank - v

默认 procrank 输出是通过 PSS 排序。

7.3.2 检索指定内容信息

查看指定进程的内存占用状态,命令格式如下:

procrank | grep [cmdline | PID]

其中 cmdline 表示需要查找的应用程序名, PID 表示需要查找的应用进程。

输出 systemUI 进程的内存占用状态:

```
procrank | grep "com.android.systemui"
```

或者:

procrank | grep 3396

7.3.3 跟踪进程内存状态

通过跟踪内存的占用状态,进而分析进程中是否存在内存泄露场景。使用编写脚本的方式,连续输出进程的内存快照,通过对比 USS 段,可以了解到此进程是否内存泄露。

示例:输出进程名为 com.android.systemui 的应用内存占用状态,查看是否有泄露:

1、编写脚本 test.sh

#!/bin/bash

while true;do

adb shell procrank | grep "com.android.systemui"

sleep 1

done

2、通过 ADB 工具连接到设备后,运行此脚本:./test.sh。如图所示。

2226	49024K	48692K	30259K	27596K	com. android. systemui
2226	49036K	48704K	30271K	27608K	com. android. systemui
2226	49040K	48708K	30275K	27612K	com. android. systemui
2226	49040K	48708K	30275K	27612K	com. android. systemui
2226	49040K	48708K	30275K	27612K	com. android. systemui
2226	49040K	48708K	30275K	27612K	com. android. systemui

图 7-1 跟踪进程内存状态

7.4 Dumpsys 工具

Dumpsys 工具是 Android 系统中自带的一款调试工具,运行在设备侧的 shell 环境下,提供系统中正在运行的服务状态信息功能。正在运行的服务是指 Android binder 机制中的服务端进程。 dumpsys 输出打印的条件:

- 1、只能打印已经加载到 ServiceManager 中的服务;
- 2、如果服务端代码中的 dump 函数没有被实现,则没有信息输出。

7.4.1 使用 Dumpsys

● 查看 Dumpsys 帮助

作用:输出 dumpsys 帮助信息。

\$ dumpsys -help

● 查看 Dumpsys 包含服务列表

作用:输出 dumpsys 所有可打印服务信息,开发者可以关注需要调试服务的名称。

\$ dumpsys -I

● 输出指定服务的信息

作用:输出指定的服务的 dump 信息。

格式: dumpsys [servicename]

示例:输出服务 SurfaceFlinger 的信息,可执行命令:

\$ dumpsys SurfaceFlinger

● 输出指定服务和应有进程的信息

作用:输出指定服务指定应用进程信息。

格式: dumpsys [servicename] [应用名]

示例:输出服务名为 meminfo,进程名为 com.android.systemui 的内存信息,执行命令:

\$ dumpsys meminfo com.android.systemui

注意: 服务名称是大小写敏感的,并且必须输入完整服务名称。

7.5 串口调试

7.5.1 串口配置

调试过程中最方便的就是串口的输入输出,这里需要注意的是RK3288波特率设置为115200。 RTS/CTS 不要勾选,否则串口无法输入。

7.5.2 FIQ 模式

快速中断请求(Fast Interrupt Request, FIQ)在 ARM 中, FIQ 模式是特权模式中的一种, 同时也属于异常模式一类。

RK 平台上,在串口输入"fiq",可以进入该模式。此时会有使用帮助跳出,可根据情况进行一些调试。经常在死机,或系统卡死的时候起作用。

7.6 音频 codec 问题调试工具及文档

请参考 RKDocs\common\Audio\Rockchip Audio 开发指南 V1.1-20170215-linux4.4. pdf。

7.7 Last log 开启

在 dts 文件里面添加下面两个节点, rk3288-android.dtsi 里面已经默认开启了:

```
ramoops_mem: ramoops_mem {
    reg = <0x0 0x110000 0x0 0xf0000>;
    reg-names = "ramoops_mem";
};

ramoops {
    compatible = "ramoops";
    record-size = <0x0 0x20000>;
    console-size = <0x0 0x80000>;
    ftrace-size = <0x0 0x00000>;
    pmsg-size = <0x0 0x50000>;
    memory-region = <&ramoops_mem>;
};
```

root@rk3288:/sys/fs/pstore # ls

dmesg-ramoops-0 上次内核 panic 后保存的 log。
pmsg-ramoops-0 上次用户空间的 log,android 的 log。
ftrace-ramoops-0 打印某个时间段内的 function trace。
console-ramoops-0 last_log 上次启动的 kernel log,但只保存了优先级比默认 log
level 高的 log。

● 使用方法:

cat dmesg-ramoops-0

cat console-ramoops-0

logcat -L (pmsg-ramoops-0) 通过 logcat 取出来并解析 cat ftrace-ramoops-0

8 常用工具说明

本节简单介绍 SDK 附带的一些开发及量产工具的使用说明,方便开发者了解熟悉 RK 平台工具的使用。详细的工具使用说明请见 RKTools 目录下各工具附带文档,及 RKDocs\ common\ RK Tools manuals 目录下工具文档。

8.1 StressTest

设备上使用 Stresstest 工具,对待测设备的各项功能进行压力测试,确保各项整个系统运行的稳定性。SDK 通过打开计算器应用,输入"83991906="暗码,可启动 StressTest 应用,进行各功能压力测试。

Stresstest 测试工具测试的内容主要包括:

模块相关

- Camera 压力测试:包括 Camera 打开关闭, Camera 拍照以及 Camera 切换。
- Bluetooth 压力测试:包括 Bluetooth 打开关闭。
- Wi-Fi 压力测试:包括 Wi-Fi 打开关闭, (ping 测试以及 iperf 测试待加入)。

非模块相关

- 飞行模式开关测试
- 休眠唤醒拷机测试
- 视频拷机测试
- 重启拷机测试
- 恢复出厂设置拷机测试
- ARM 变频测试
- GPU 变频测试
- DDR 变频测试

8.2 PCBA 测试工具

PCBA 测试工具用于帮助在量产的过程中快速地甄别产品功能的好坏,提高生产效率。目前包括屏幕(LCD)、无线(WiFi)、蓝牙(Bluetooth)、DDR/eMMC 存储、SD卡(SDCard)、USB HOST、按键(Key),喇叭耳机(Codec)测试项目。

这些测试项目包括自动测试项和手动测试项。无线网络、DDR/eMMC、以太网为自动测试项,按键、SD 卡、USB Host、Codec、为手动测试项目。

具体 PCBA 功能配置及使用说明,请参考:

\RKDocs\common\RKTools manuals\Rockchip PCBA 模块开发指南--20170210.pdf

8.3 DDR 测试工具

设备上使用 DDR 测试工具,对待测设备的 DDR 进行稳定性测试,确保 DDR 功能正常及稳定。 本平台 DDR 测试工具还未发布,后续会随 SDK 更新。

8.4 Android 开发工具

8.4.1 下载镜像

图 8-1 Android 开发工具下载镜像

1) 连接开发板进入下载模式。

下载模式: 先按住开发板 reset 按键,再长按 recovery 按键约 3-4s 时间进入。

2) 打开工具,点击"下载镜像"菜单。单击每一行末尾红色箭头所指处,会弹出文件选择框。 选择对应分区的 img 文件路径。

- 3) 依次设置所有 img 文件的路径。
- 4) 配置完成后,点击"执行"。右侧信息框将显示相关信息。
- 5) 按钮说明
- "低格"按钮:用于擦除设备
- "清空"按钮:清空信息框

8.4.2 升级固件

图 8-2 Android 开发工具升级固件

- 1) 准备目标固件。(可参考 update.img 打包)
- 2) 确认设备已经进入下载模式。

下载模式进入方法: 先按住开发板 reset 按键,再长按 recovery 按键约 3-4s 时间进入。

- 3) 点击"固件"按钮,选择目标固件 update.img 文件。
- 4) 点击"升级"按钮进行下载。右侧信息框将显示相关信息。

8.4.3 高级功能

誌芯微开发工具 v2	1.63					3/ 30	1000
載镜像 升级固件	= 高级功能				等待Loader成功 测试设备开始		
Boot:				下载	测试设备成功 正在下载Gpt(100%) 开始下载uboot		
固件:				解包	开始下载 uboot(100%) 正在下载 uboot(100%) 开始下载trust		
脚本:				执行	正在下载 trust(100%) 开始下载misc		
读取FlashID	读取Flash信息	读取Chip信息	读取Capability		正在下载 misc(100%) 开始下载dtbo 正在下载 dtbo(100%)		
测试设备	重启设备	进入Maskrom	清空序列号		开始下载vbmeta 正在下载 vbmeta(100%) 开始下载boot		
导出IDB	擦除扇区				正在下载 boot(100%) 开始下载recovery 正在下载 recovery(100%) 开始下载system		
导出镜像	起始扇区:	扇	☑数:		正在下载 system(100%) 开始下载vendor 正在下载 vendor(100%)		
没有发现设备					开始下载oem 正在下载 oem(100%) 下载完成		

图 8-3 Android 开发工具高级功能

高级功能说明:

- 1) Boot 只能选择打包好的 update.img 文件或是 loader 文件。
- 2) 固件必须使用打包后的 update.img。
- 3) 解包功能可将 update.img 拆解为各部分镜像文件。

8.5 update.img 打包

本平台支持将各零散镜像文件,打包成一个完整的 update.img 形式,方便量产烧写及升级。 具体打包步骤如下:

- 1) 打开 AndroidTool 工具目录底下的 rockdev 目录。编辑 package-file。
- 2) 按照 package-file 进行配置,package-file 里面有一些 img 镜像放在 Image 目录底下的,如果没有该目录存在,则自己手工新建该 Image 目录,并将需要放到 Image 目录的镜像放进去即可。且注意配置时,镜像名字的准确。其中注意 bootloader 选项,应该根据自己生成的 loader 名称进行修改。
- 3) 编辑 mkupdate.bat。
- 4) 修改 loader 名称为实际存放的 loader 名称。
- 5) 点击 mkupdate.bat 运行,结束后会在该目录生成一个 update.img。

8.6 固件签名工具

参考 RKTools\windows\SecureBootTool_v1.83_foruser.rar 中的《Rockchip Secure Boot Application Note》。

8.7 序列号/Mac/厂商信息烧写-WNpctool 工具

本平台使用 WNpctool 工具进行序列号/Mac/厂商信息的烧写。以下说明该工具的基本用法。

8.7.1 使用 WNpctool 写入

图 8-4WNpctool 工具

- 1) 进入 loader 模式。
- 2) 点击"设置"菜单,下拉框中取消勾选"读取"。

(勾选"读取"进行读取,未勾选"读取"则切换到写入功能)

3) 点击"设置"菜单,点击"模式",弹出"模式"窗口,用来设置 SN/WIFI/LAN/BT。

图 8-5WNpctool 工具模式设置

- 4) 设置完成后,点击"应用"按钮,关闭模式设置窗口,返回主窗口。
- 5) 点击"写入"按钮即可。

8.7.2 使用 WNpctool 读取

- 1) 进入 loader 模式。
- 2) 点击"设置"菜单,下拉框中勾选"读取"。

(勾选"读取"进行读取,未勾选"读取"则切换到写入功能)

3) 点击"读取"按钮即可。

8.8 量产工具使用

8.8.1 工具下载步骤

图 8-8 量产工具

- 1)点击固件按钮,选择打包工具打包后的 update.img,等待解包成功。
- 2) 连接设备,并让设备进入 loader 或者 maskrom 模式,工具会自动进行下载。
- 3) 可同时连接多台设备,进行一拖多烧写,提高工厂烧写效率。