Name: _____

_ / 2

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. **Show all work for full credit.**

- **1. [11 points]** Let P(2,2) be a point on the graph of $f(x) = \frac{6-x}{x}$.
 - **a**. Find the slope of the secant line passing through P and the point Q(1, f(1)).
 - **b.** Find the slope of the secant line passing through P and the point Q(3, f(3)).
 - **c**. The table below lists the slope of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.

X	1.9	1.99	1.999	2.001	2.01	2.1
` /	2.157895					
m_{sec}	-1.57895	-1.50754	-1.50075	-1.49925	-1.49254	-1.42857

Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(2,2).

- **d**. Use the slope from part (c) above to write an equation of the tangent line at point P(2,2).
- **e.** Below is a sketch of the graph of $f(x) = \frac{6-x}{x}$. Sketch the tangent line to the graph at the point P(2,2).

2. [14 points] A spring is stretched out and released. Its length in inches at time *t* seconds is given by the function:

$$L(t) = 4\cos(\pi t) + 6$$

.

a. Sketch a graph of L(t) below. (Hint: Find L(0), L(1), L(2), L(3), and L(4).)

b. Calculate the length of the spring at $t = \frac{1}{3}$ seconds and $t = \frac{2}{3}$ seconds. Include units in your final answer.

$$L\left(\frac{1}{3}\right) =$$

$$L\left(\frac{2}{3}\right) =$$

- **c.** Calculate the **average rate of change** of the length of the spring from $t = \frac{1}{3}$ seconds to $t = \frac{2}{3}$ seconds. Show your work and include units in your final answer.
- **d**. Based on your graph in part (a) from above, estimate the **instantanous rate of change** of the length of the spring at t = 2 seconds. Unclude units in your final answer.