#### Learning Objectives

#### After this lesson, you should be able to:

- Define natural language processing
- List common tasks associated with
  - Use-cases
  - Tokenization
  - Stemming and lemmatization
  - Tagging and parsing
- Demonstrate how to classify text or documents using scikit-learn

### End-of-Course/Projects Countdown

| Unit Project 4        | June 21; due next session |
|-----------------------|---------------------------|
| Final Project, Part 4 | June 30; due in 2 weeks   |
| Final Project, Part 5 | July 8; due in 3 weeks    |



Q & A



### Review



### Review

**Decision Trees and Random Forests** 



## Today

### Here's what's happening today:

- Announcements and Exit Tickets
- Review
- Natural Language Processing
  - Understanding and generation
  - NLP is hard...
  - Tokenization
  - Stemming and lemmatization
  - Tagging and parsing
  - Demo Tokenizing, tagging, and parsing with spacy

- Text Classification
  - Bag-of-words classification
  - Text Processing with *sklearn*
  - Term-Frequency and Inverse-Document-Frequency (TF-IDF)
- Lab Natural Language Processing and Text
   Classification
- Office hours during class for final projects
- Review

## Where does Natural Language Processing fits in the course?

| Research Design<br>and Data Analysis | Research Design                      | Data Visualization in pandas | Statistics                     | Exploratory Data<br>Analysis in <i>pandas</i> |
|--------------------------------------|--------------------------------------|------------------------------|--------------------------------|-----------------------------------------------|
| Foundations of Modeling              | Linear Regression                    | Classification<br>Models     | Evaluating Model Fit           | Presenting Insights<br>from Data Models       |
| Data Science in the<br>Real World    | Decision Trees and<br>Random Forests | Time Series Data             | Natural Language<br>Processing | Databases                                     |

Therefore, today we are refocusing on the MINE the data and REFINE the data steps but with a focus on natural language processing and text classification





Q & A



### Pre-Work

#### Pre-Work

#### Before this lesson, you should already be able to:

- Experience with *sklearn* classifiers, specifically random forests and decision trees
- Install the Python package *spacy* with conda install spacy
- Run the *spacy* download data command with python -m spacy.en.download --force all



## Natural Language Processing

### What is Natural Language Processing?

Natural Language Processing (NLP) is the study of the computational treatment of natural (human) language, i.e., teaching computers how to understand (and generate) human language

## Basic NLP Pipeline: Understanding and Generation



# NLP is tasked with extracting meaning and information from (text) documents

#### **Understanding**

For most tasks, a fair amount of pre-processing is required to make the text digestible for our algorithms. We typically need to add structure to our unstructured data

#### Generation

These tasks may range from simple classification tasks, such as deciding what category a piece of text falls into, to more complex tasks like translating or summarizing text

### What are some real-world examples of NLP?

- Search engines (E.g., Google and Bing)
- Natural language assistants (E.g., Apple's Siri uses voice recognition to record a command and then various fairly advanced NLP engines to identify the question asked and possible answers)
- Machine translation (E.g., Google Translate)
- Question answering (E.g., IBM's Watson)
- News digest (E.g., Yahoo!)

# Computers are confused by (human) language

• E.g., "Children make delicious snacks"

• Are Children delicious snacks?

Do children *prepare* delicious snacks?

## Each genre of text (e.g., blogs, emails, press releases, chats) presents different challenges to NLP

- E.g., newspapers news headlines
  - "Red tape holds up new bridges"
  - "Government head seeks arms"
  - "Blair wins on budget, more lies ahead"



## Natural Language Processing

**Tokenization** 

# Tokenization is the task of separating a sentence into its constituent parts, or *tokens*

- Determining the "words" of a sentence seems easy but can quickly become complicated with unusual punctuation (common in social media) or different language conventions
- What sort of difficulties may there be with the following sentence?
  - \* "The L.A. Lakers won the NBA championship in 2010, defeating the Boston Celtics"

# "The L.A. Lakers won the NBA championship in 2010, defeating the Boston Celtics"

- To perform a proper analysis, we need to be able to identify that:
  - The periods in "L.A." don't mark the end of a sentence but an abbreviation
  - "L.A. Lakers" and "Boston Celtics" are one concept.
  - "2010" is the word used, not "2010,"

### Tokenization Examples

| Sentence                         | Tokens                                 |
|----------------------------------|----------------------------------------|
| My house is located in Uptown.   | [My, house, is, located, in, Uptown]   |
| The Lakers are my favorite team. | [The, Lakers, are, my, favorite, team] |
| Data Science is the future!      | [Data, Science, is, the, future]       |
| GA has many locations.           | [GA, has, many, locations]             |



## Natural Language Processing

Stemming and Lemmatization

Stemming and lemmatization help identify common roots of words

• How would you describe the relationship between the terms 'bad' and 'badly' or 'different' and 'differences'?

# Stemming is a crude process of removing common endings from words

- To stem a word is to reduce it to a base form, called the *stem*, after removing various suffixes and endings and, sometimes, performing some additional transformations
- In practice, prefixes are sometimes preserved, so 'rescan' will not be stemmed to 'scan'

- E.g.,
  - $\rightarrow$  badly  $\rightarrow$  bad
  - computing  $\rightarrow$  comput
  - $\rightarrow$  computed  $\rightarrow$  comput
  - wipes  $\rightarrow$  wip
  - wiped  $\rightarrow$  wip
  - wiping  $\rightarrow$  wip

# Lemmatization is a more refined process that uses specific language and grammar rules to derive the root of a word

This is useful for words that do not share an obvious root such as 'best' and 'better'

- E.g.,
  - $\rightarrow$  best  $\rightarrow$  good
  - $\rightarrow$  better  $\rightarrow$  good
  - ightharpoonup good ightharpoonup good
  - wiping  $\rightarrow$  wipe
  - $\rightarrow$  hidden  $\rightarrow$  hide
  - $\rightarrow$  shouted  $\rightarrow$  shout



## Natural Language Processing

Tagging and Parsing

### Tagging and Parsing

In order to understand the various elements of a sentence, we need to *tag* important topics and *parse* their dependencies



DT - Determiner

NN - Noun, singular or mass

NNP - Proper noun, singular

NP - Noun phrase

 ${\sf S}$  -  ${\sf Simple}$  declarative clause

VBD - Verb, past tense

VP - Verb phrase

### Tagging and Parsing (cont.)

 Our goal is to identify the actors and actions in the text in order to make informed decisions

- E.g., if we are processing financial news, we might need to identify which companies are involved and any actions they are taking
- E.g., if we are writing an assistant application, we might need to identify specific command phrases in order to determine what is being asked (e.g. "Siri, when is my next appointment?")

# Tagging and parsing is made up of a few overlapping subtasks

- Parts of speech tagging: What are the parts of speech in a sentence? (e.g. noun, verb, adjective)
- Named entity recognition: Can we identify specific proper nouns? Can we pick out people and locations?
- Chunking: Can we identify the pieces of the sentence that go together in meaningful chunks? (e.g. noun or verb phrases)

#### Tagging

John/NNP hit/VBD the/DT ball/NN

```
Parsing

(ROOT
  (S
     (NP (NNP John))
     (VP (VBD hit)
          (NP (DT the) (NN ball)))))
```

# These subtasks are very difficult because language is complex and ever changing

- Most often, we are looking for heuristics to search through large amounts of text data
  - The results may not be perfect and that's okay
- These techniques rely on rule-based systems but more recent research has focused on more flexible systems, focusing on words used rather than on the structure of the sentence
- We'll see an example of these modern approaches in the next class



### Natural Language Processing

Demo – Tokenizing, Tagging, and Parsing with spacy

#### Natural Language Processing in Python

- Most NLP techniques require pre-processing large collections of annotated text in order to learn specific language rules
  - There are many tools available for English and other popular languages
  - Each tool typically requires a large amount of data and large databases of special use-cases like language inconsistencies and slang
- In Python, two popular NLP packages are *nltk* and *spacy* 
  - *nltk* is more popular but not as advanced and well maintained; *spacy* is more modern but not available for commercial use

### Tokenizing, tagging, and parsing with spacy

- spacy has 3 pre-processing engines:
  - A tokenizer: to identify the word tokens
  - A tagger: to identify the concepts described by the words
  - A parser: to identify the phrases and links between different words
- Each of these engines can be overridden with a different, specialized tool
  - You can even write your own and use them in place of the defaults

# We'll be using *spacy* to tokenize, tag, and parse "John hit the ball"

• nlp\_toolkit runs each of the individual pre-processing tools

```
from spacy.en import English
nlp_toolkit = English()

sentence = u'John hit the ball'
parsed = nlp_toolkit(sentence)

for (i, word) in enumerate(parsed):
    print word
    print "\tParent: {}".format(word.head.lemma_)
    print "\tPhrase type: {}".format(word.dep_)
    print "\tKnown entity type: {}".format(word.ent_type_ if word.ent_type_ else 'n/a')
    print "\tLemma: {}".format(word.lemma_)
```

# "John hit the ball" after tokenization, tagging, and parsing

```
John
          Parent: hit
          Phrase type: nsubj
          Known entity type: PERSON
          Lemma: john
hit
          Parent: hit
          Phrase type: ROOT
          Known entity type: n/a
          Lemma: hit
the
          Parent: ball
          Phrase type: det
          Known entity type: n/a
          Lemma: the
ball
          Parent: hit
          Phrase type: dobj
          Known entity type: n/a
          Lemma: ball
```



e.g. 'the man' - det(man,the), 'which man' - det(man,which)

det: link from a noun to its determiner

# "John hit the ball" after tokenization, tagging, and parsing (cont.)



nsubj: link between a verb and an NP subject e.g. 'Clinton defeated Dole' - nsubj(defeated,Clinton)

dobj: link between a verb and one of its accusative objects e.g. 'she gave me a raise' - dobj(gave,raise)

det: link from a noun to its determiner
e.g. 'the man' - det(man,the), 'which man' - det(man,which)

- In this output,
  - "John" is identified as a person(PERSON)
  - We identify that "hit" is at its root as it is the action "John" took



Text classification is the task
 of predicting what category or
 topic a piece of text is from

- For example, we may want to identify whether an article is a sports or business story
- Or whether has positive or negative sentiment

- Typically, this is done by using the text as features and the label as the target output. This is referred to as bag-of-words classification
- To include text as features, we usually create a binary feature for each word, i.e. does this piece of text contain that word?

- As we do this, we need to consider several things
  - Does order of words matter?
  - Does punctuation matter?
  - Does upper or lower case matter?

### "John hit the ball"

• To create binary text features, we first create a vocabulary to account for all possible words in our universe:

$$x = (x_{aardvark}, \dots, x_{ball}, \dots, x_{hit}, \dots, x_{John}, \dots, x_{the}, \dots, x_{zyzzogeton})$$

"John hit the ball"

$$x = \left( \underbrace{\cdots}_{0}, \underbrace{x_{ball}}_{1}, \underbrace{\cdots}_{0}, \underbrace{x_{hit}}_{1}, \underbrace{\cdots}_{0}, \underbrace{x_{John}}_{1}, \underbrace{\cdots}_{0}, \underbrace{x_{the}}_{1}, \underbrace{\cdots}_{0} \right)$$



Codealong - Text Processing with sklearn



Term Frequency and Inverse Document Frequency (TF-IDF)

#### TF-IDF

- An alternative bag-of-words approach to CountVectorizer is a Term Frequency Inverse Document Frequency (TF-IDF) representation
- TF-IDF uses the product of two intermediate values, the Term Frequency and Inverse Document Frequency

### Term Frequency (TF)

Term Frequency is equivalent to CountVectorizer features but using frequencies, not counts

$$tf(t,d) = \frac{number\ of\ occurences\ of\ term\ t\ in\ document\ d}{number\ of\ terms\ in\ document\ d}$$

• Term Frequency assigns high weight to frequent words (words that appear frequently) in a documents

### Inverse Document Frequency (IDF)

- Document Frequency is the percentage of documents that a particular word appears in
- Inverse Document Frequency is Document Frequency's inverse

$$idf(t,D) = \frac{total\ number\ of\ documents\ D}{number\ of\ documents\ term\ t\ appears\ in\ them}$$

• Inverse Document Frequency assigns high weight to rare words in all the documents

### TF-IDF (cont.)

Combining,

$$tf - idf(t, d, D) = tf(t, d) \cdot idf(t, D)$$

- ▶ The intuition behind *TF-IDF* is to assign high weight to words that either
  - appear frequently in this document or
  - appear rarely in other documents (and are therefore specific to this document)



## Lab

Natural Language Processing and Text Classification



# Review

#### Review

- Natural language processing (NLP) is the task of pulling meaning and information from text
- This typically involves many sub problems including tokenization, cleaning (stemming and lemmatization), and parsing
- After we have structured our text, we can identify features for other tasks, including classification, summarization, and translation
- In *scikit-learn*, we use vectorizers to create text features for classification, such as CountVectorizer and TfIdfVectorizer



Q&A



### **Before Next Class**

#### Before Next Class

#### Before the next lesson, you should already be able to:

- → Install *gensim* with conda install gensim
- Recall and apply unsupervised learning techniques
- Recall probability distributions, specifically discrete multinomial distributions
- Recall NLP essentials, including experience with spacy
- BONUS: Setup Twitter API credentials using the provided instructions

# Next Class

Latent Variables and Natural Language Processing

### Learning Objectives

#### After the next lesson, you should be able to:

- Understand what latent variables are
- Understand the uses of *latent variables* in language processing
- Use the *word2vec* and LDA algorithms of *genism*



### Exit Ticket

Don't forget to fill out your exit ticket <a href="here">here</a>

#### Sources

• Introduction to Natural Language Processing, University of Michigan