Exercises

- 1. Is 10! + 1 divisible by 11 and why?
- 2. What is the remainder when $5! \cdot 25!$ is divided by 31? (Hints: $30 \equiv -1 \pmod{31}$.)
- 3. Use Wilson's theorem to find the remainder of 149! divided by a prime 139. (Hints: inspection)
- 4. Show that if p is an odd prime, then $2(p-3)! \equiv -1 \pmod{p}$. Hints: $(p-1)! = (p-2)! \cdot (p-1)$.
- 5. What is the remainder when 5^{100} is divided by 7?
- 6. What is the remainder when 41^{75} is divided by 3?
- 7. Find the last digit of 7^{1000} .
- 8. What are the last two digits of $3^{3^{333}}$? What are the last two digits of $(3^3)^{333}$? Note that $\phi(100) = 40$ and $\phi(40) = 16$.
- 9. Let p be a prime and $p \nmid a$. Show that there exists solution x for

$$ax \equiv b \pmod{p}$$
.

such that $x = a^t b$ for some t. Express such t in terms of p.

10. Let $\lambda(n)$ be the smallest positive integer such that for every integer a relatively prime to n,

$$a^{\lambda(n)} \equiv 1 \pmod{n}$$
.

The $\lambda(n)$ is named the Carmichael function. Compute $\lambda(n)$ for n=7 and n=8. Is it possible $\lambda(n) < \phi(n)$?