Géométrie différentielle et théorie de jauge

Solutions to exercises

04/02/2020

3. Cohomology of $\mathbb{R}^2 \setminus \mathbb{Z}$. Consider the point $p_n = (n, 0)$, where $n \in \mathbb{Z}$, and a small circle $C_n = \partial D_n$ centered at p_n , boundary of a disk D_n . In polar coordinates centered at the point (n, 0), we define the angular form $d\theta_n = \frac{(x-n)dy-ydx}{(x-n)^2+y^2}$ which is defined on $\mathbb{R}^2 \setminus \{p_n\}$. Then, by Stokes theorem, if $p \neq n$,

$$\int_{C_p} d\theta_n = \int_{D_p} d(d\theta_n) = 0.$$

This does not work for p = n, since $d\theta_n$ is not defined on the whole D_n , and we have on the contrary

$$\int_{C_n} d\theta_n = 2\pi.$$

Since \int_{C_n} is a linear form on $H^1(\mathbb{R}^2 \setminus \mathbb{Z})$, it follows that $([d\theta_n])_{n \in \mathbb{Z}}$ is a free family in $\mathbb{R}^2 \setminus \mathbb{Z}$, therefore $\dim H^1(\mathbb{R}^2 \setminus \mathbb{Z}) = \infty$. **4. Cohomology of** $\mathbb{R}P^n$. Since $p \circ \tau = p$, for a form α on $\mathbb{R}P^n$ we have $p^*\alpha = (p \circ \tau)^*\alpha = \tau^*(p^*\alpha)$. Conversely, if $\tilde{\alpha} \in \Omega^k(S^n)$ satisfies $\tau^*\tilde{\alpha} = \tilde{\alpha}$, then, since p is a local diffeomorphism, near any $x \in \mathbb{R}P^n$, noting $x_1, x_2 = \tau(x_1) \in S^n$ the two points such that $p(x_i) = x$, we can find small open sets $U \ni x$, $U_1 \ni x_1$ and $U_2 = \tau(U_1) \ni x_2$ such that $p|_{U_1} : U_1 \to U$ and $p|_{U_2} : U_2 \to U$ are diffeomorphisms. Observe that $(p|_{U_1})_*(\tilde{\alpha}|_{U_1}) = (p|_{U_1})_*(\tau_*\tilde{\alpha}|_{U_2}) = (p|_{U_1} \circ \tau)_*(\alpha|_{U_2}) = (p|_{U_2})_*(\tilde{\alpha}|_{U_2})$. Therefore we have no choice but to define α on $U \ni x$ by $\alpha = (p|_{U_i})_*(\tilde{\alpha}|_{U_i})$ for i = 1 or 2, and we have $\tilde{\alpha}|_{p^{-1}(U)} = p^*\alpha|_U$. By uniqueness of α the various α thus constructed on small open sets match on intersections, and we have a global form α on $\mathbb{R}P^n$ such that $\tilde{\alpha} = p^*\alpha$.

Suppose $\alpha \in \Omega^k(\mathbb{R}P^n)$ satisfies $p^*\alpha = d\tilde{\beta}$. Since $\tau^*(\tilde{\beta} + \tau^*\tilde{\beta}) = \tilde{\beta} + \tau^*\tilde{\beta}$, there exists $\beta \in \Omega^{k-1}(\mathbb{R}P^n)$ such that $\frac{\tilde{\beta} + \tau^*\tilde{\beta}}{2} = p^*\beta$. Then $p^*\alpha = \tau^*p^*\alpha = \tau^*d\tilde{\beta} = d(\tau^*\tilde{\beta}) = d(\frac{\tilde{\beta} + \tau^*\tilde{\beta}}{2}) = dp^*\beta = p^*d\beta$, which implies $\alpha = d\beta$.

Therefore, if a closed form $\alpha \in \Omega^k \mathbb{R} P^n$ is such that $[p^*\alpha] = 0$ on S^n , then there exists $\beta \in \Omega^{k-1} \mathbb{R} P^n$ such that $\alpha = d\beta$, that is $[\alpha] = 0$. It follows that the application

$$[p^*]: H^k(\mathbb{R}P^n) \longrightarrow H^k(S^n)$$

is injective. Since $\tau^*p^*\alpha=p^*\alpha$, its image is contained in $\{c\in H^k(S^n), [\tau^*]c=c\}$; it is actually equal to this later space, since if $[\tau^*][\tilde{\alpha}]=[\tilde{\alpha}]$, then $\tau^*\tilde{\alpha}-\tilde{\alpha}=d\tilde{\beta}$, and therefore $[\tilde{\alpha}]=[\frac{\tilde{\alpha}+\tau^*\tilde{\alpha}}{2}]+[\frac{\tilde{\alpha}-\tau^*\tilde{\alpha}}{2}]=[\frac{\tilde{\alpha}+\tau^*\tilde{\alpha}}{2}]$; taking $\alpha\in\Omega^k(\mathbb{R}P^n)$ such that $p^*\alpha=\frac{\tilde{\alpha}+\tau^*\tilde{\alpha}}{2}$, we obtain $[\tilde{\alpha}]=[p^*\alpha]=[p^*][\alpha]$.

It follows that $[p^*]$ is an isomorphism on $\{c \in H^k(S^n), [\tau^*]c = c\}$. So $H^0(\mathbb{R}P^n) = \mathbb{R}$, $H^k(\mathbb{R}P^n) = 0$ for 0 < k < n, and $H^n(\mathbb{R}P^n) = \mathbb{R}$ is n is odd or 0 if n is even (indeed, $H^n(S^n)$ is represented by the volume form Ω and we have seen that $\tau^*\Omega = (-1)^{n-1}\Omega$).

6. Action of a connected group on the cohomology. If a group G acts on M, each element $g \in G$ induces a diffeomorphism of M and therefore a linear action $[g^*]: H^k(M) \to H^k(M)$. We will see that this action is always trivial is G connected (this is not true if G is not connected, see the previous example with the group \mathbb{Z}_2 acting on S^n).

We have $\phi_{t+t'}^* \alpha = \phi_t^* (\phi_{t'}^* \alpha)$. Differentiating at t' = 0 gives

$$\frac{d}{dt}\phi_t^*\alpha = \phi_t^* \mathcal{L}_X \alpha = \phi_t^* \Big(di(X)\alpha + i(X)d\alpha \Big).$$

If α is closed $(d\alpha = 0)$, then $\frac{d}{dt}\phi_t^*\alpha = \phi_t^*(di(X)\alpha) = d(\phi_t^*(i(X)\alpha))$, and therefore $\frac{d}{dt}[\phi_t^*\alpha] = 0$, that is the cohomology class $[\phi_t^*\alpha]$ is constant.

If the group G is connected, then we deduce that for any X in the Lie algebra \mathfrak{g} , we have $[(e^{tX})^*\alpha]$ is constant. Since the set $(e^X)_{X\in\mathfrak{g}}$ covers an open neighbourhood U of $1\in G$, we have for any $g\in U$ the identity $[g^*\alpha]=[\alpha]$. If $g,g'\in U$ we have $[(gg')^*\alpha]=[(g')^*][\alpha]=[\alpha]$ and therefore $[g^*\alpha]=[\alpha]$ for all elements g in the group generated by U. Since U is an open neighbourhood of 1 and G is connected, U generates G itself and it follows that $[g^*\alpha]=[\alpha]$ for any $g\in G$. Therefore the action of G on H(M) is trivial.