Réduction d'endomorphismes ou Diagonalisation de matrices

A. DAOUDI

Notions abordées

- I. Matrice diagonale, valeur propre/vecteur propre associé à un endomorphisme/matrice
- II. Sous-espace propre associé à une valeur propre
- III. Polynôme caractéristique associé à un endomorphisme/matrice
- IV. Conditions de diagonalisation d'un endomorphisme/matrice

Dans ce chapitre, on note K = R ou K = C.

Pour $n \in \mathbf{N}^*$, $M_n(\mathbf{K})$ désigne l'ensemble des matrices carrées de type $n \times n$ à coefficients dans \mathbf{K}

I. Matrice diagonale, valeur propre/vecteur propre associé à un endomorphisme/matrice

Définition (matrice diagonale)

Soit $A \in M_n(\mathbf{K})$.

On dit que A est une matrice diagonale $\Leftrightarrow \exists \lambda_1, \lambda_2, ..., \lambda_n \in \mathbf{K}$, tel que

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}$$

Exemples

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix} \text{ et } A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 4 \end{pmatrix} \text{ sont des matrices diagonales.}$$

Définitions (valeur propre/vecteur propre)

Soit $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n (c'est-à-dire f est linéaire)

- 1) Soit $\lambda \in \mathbf{K}$, λ est une valeur propre de $f \Leftrightarrow \exists u_0 \in \mathbf{K}^n$ et $u_0 \neq 0_{\mathbf{K}^n}$ tel que $f(u_0) = \lambda u_0$
- 2) Soit $u_0 \in \mathbf{K}^n$, u_0 est un vecteur propre de $f \Leftrightarrow u_0 \neq 0_{\mathbf{K}^n}$ et $\exists \lambda \in \mathbf{K}$ tel que $f(u_0) = \lambda u_0$

D'après les définitions 1) et 2) on dit :

 u_0 est un vecteur associé à la valeur propre λ ou λ est une valeur propre associée au vecteur propre u_0 .

Remarques (important)

1) Si $A = M_f(B)$ où f est un endomorphisme de \mathbf{K}^n et B est une base de \mathbf{K}^n , on a :

Pour $\lambda \in \mathbf{K}$, λ est une valeur propre de A si λ est une valeur propre de f

Idem pour $u_0 \in \mathbf{K}^n$, u_0 est un vecteur propre de A si u_0 est un vecteur propre de f

2) Si $A \in M_n(\mathbf{K})$, il existe alors un unique endomorphisme f de \mathbf{K}^n tel que $A = M_f(B)$ où B est la base canonique de \mathbf{K}^n ,

Exemple 1:

Etant donnés une matrice $A \in M_n(\mathbf{K})$ et un vecteur $v \in \mathbf{K}^n$ non nul, comment vérifier que v est un vecteur propre de A?

Réponse : On calcul Av puis on cherche un scalaire $\lambda \in \mathbf{K}$ vérifiant $Av = \lambda v$.

Soit
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 4 & 1 \\ 5 & -3 & 0 \end{pmatrix}$$
 la matrice associée à un endomorphisme f de \mathbf{R}^3 par rapport à la

base canonique B de \mathbb{R}^3 .

Montrez que le vecteur v = (1,1,1) est un vecteur propre de A (ou de f).

$$Av = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 4 & 1 \\ 5 & -3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Leftrightarrow Av = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \Leftrightarrow Av = 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Donc Av = 2v et comme $v \neq 0_{\mathbb{R}^3}$ alors v est un vecteur propre de A associé à la valeur propre 2.

Exemple 2:

Etant donnés une matrice $A \in M_n(\mathbf{K})$ et un scalaire $\lambda \in \mathbf{K}$, comment vérifier que λ est une valeur propre de A?

Réponse :

Notons f l'endomorphisme de \mathbf{K}^n associé à A par rapport à la base canonique B de \mathbf{K}^n . Plusieurs méthodes sont possibles:

1ère méthode : vérifier que $\dim (Ker(f-\lambda \operatorname{Id}_{\mathbf{K}^n})) \ge 1$ en appliquant le théorème du rang à l'endomorphisme $(f-\lambda \operatorname{Id}_{\mathbf{K}^n})$ (sans calculer une base de $Ker(f-\lambda \operatorname{Id}_{\mathbf{K}^n})$)

 $\mathbf{2}^{\mathrm{ème}}$ méthode : vérifier que $\mathit{Ker}(f - \lambda \mathit{Id}_{\mathbf{K}^n}) \neq \left\{0_{\mathbf{K}^n}\right\}$

(vérifier que le système $(A - \lambda I_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$ admet une solution non nulle dans \mathbf{K}^n)

 $3^{\text{ème}}$ méthode : vérifier que λ est une racine du polynôme caractéristique associé à la matrice $A: P_{A}(X) = \det(A - X I_{n})$, c'est-à-dire vérifier que $P(\lambda) = 0$.

Les méthodes proposées dans l'exemple 2, sont des conséquences des résultats du théorème suivant.

Théorème

Soient $\lambda \in \mathbf{K}$ et $A = M_f(B)$ où f est un endomorphisme de \mathbf{K}^n et B est une base de \mathbf{K}^n , on a :

- 1) λ est une valeur propre de $A \Leftrightarrow Ker(f \lambda Id_{\mathbf{K}^n}) \neq \{0_{\mathbf{K}^n}\}$
- 2) λ est une valeur propre de $A \Leftrightarrow \dim(Ker(f \lambda Id_{\mathbf{K}^n})) \geq 1$
- 3) λ est une valeur propre de $A \Leftrightarrow P(\lambda) = 0$ (c'est-à-dire λ racine du polynôme P) où $P_A(X) = \det(A X I_n)$: ce polynôme s'appelle le polynôme caractéristique associé à A.

Preuve du théorème.

1) λ est une valeur propre de $A \Leftrightarrow \lambda$ est une valeur propre de f

$$\Leftrightarrow \exists u_0 \in \mathbf{K}^n \text{ et } u_0 \neq 0_{\mathbf{K}^n} \text{ tel que } f(u_0) = \lambda u_0$$

$$\Leftrightarrow \exists u_0 \in \mathbf{K}^n \text{ et } u_0 \neq 0_{\mathbf{K}^n} \text{ tel que } f(u_0) - \lambda u_0 = 0_{\mathbf{K}^n}$$

$$\Leftrightarrow \exists u_0 \in \mathbf{K}^n \text{ et } u_0 \neq 0_{\mathbf{K}^n} \text{ tel que } (f - \lambda Id_{\mathbf{K}^n})(u_0) = 0_{\mathbf{K}^n}$$

$$\Leftrightarrow \exists u_0 \in \mathbf{K}^n \text{ et } u_0 \neq 0_{\mathbf{K}^n} \text{ tel que } u_0 \in Ker(f - \lambda Id_{\mathbf{K}^n})$$

$$\Leftrightarrow Ker(f - \lambda Id_{\mathbf{K}^n}) \neq \{0_{\mathbf{K}^n}\}$$

2) D'après 1) on a :

$$\lambda \text{ est une valeur propre de } A \Leftrightarrow Ker(f - \lambda \operatorname{Id}_{\mathbf{K}^n}) \neq \left\{0_{\mathbf{K}^n}\right\} \\ \Leftrightarrow \dim \left(Ker(f - \lambda \operatorname{Id}_{\mathbf{K}^n})\right) \neq 0 \\ \Leftrightarrow \dim \left(Ker(f - \lambda \operatorname{Id}_{\mathbf{K}^n})\right) \geq 1 \text{ car } \dim \left(Ker(f - \lambda \operatorname{Id}_{\mathbf{K}^n})\right) \in \mathbf{N}$$

3) Rappel important:

Si $M=M_{g}(B)$ où g est un endomorphisme de \mathbf{K}^{n} et B est une base de \mathbf{K}^{n} , on a :

g bijective de \mathbf{K}^n sur $\mathbf{K}^n \Leftrightarrow g$ injective de \mathbf{K}^n sur $\mathbf{K}^n \Leftrightarrow \ker(g) = \{0_{\mathbf{K}^n}\}$

D'où la matrice M est inversible $\Leftrightarrow \ker(g) = \{0_{\kappa^n}\}$

Par suite $\ker(g) \neq \{0_{\mathbf{K}^n}\} \Leftrightarrow M$ n'est pas inversible d'où $\ker(g) \neq \{0_{\mathbf{K}^n}\} \Leftrightarrow \det(M) = 0$

Résumé:

Si $M=M_g(B)$ où g est un endomorphisme de \mathbf{K}^n et B est une base de \mathbf{K}^n , on a :

$$\ker(g) \neq \{0_{\mathbf{K}^n}\} \Leftrightarrow \det(M) = 0$$

En appliquant le résultat ci-dessus à l'endomorphisme $(f - \lambda Id_{\kappa^n})$ on a alors $Ker(f - \lambda Id_{\mathbf{K}^n}) \neq \{0_{\mathbf{K}^n}\} \iff \det(A - \lambda I_n) = 0 \iff P(\lambda) = 0 \text{ où } P(X) = \det(A - X I_n)$ Or d'après 1) on a : λ est une valeur propre de $A \Leftrightarrow Ker(f - \lambda Id_{\kappa^n}) \neq \{0_{\kappa^n}\}$

D'où λ est une valeur propre de $A \Leftrightarrow P(\lambda) = 0$ (c'est-à-dire où λ racine du polynôme P) où $P_A(X) = \det(A - X I_n)$

Soit
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 4 & 1 \\ 5 & -3 & 0 \end{pmatrix}$$
 la matrice associée à l'endomorphisme f de \mathbf{R}^3 par rapport à la base canonique B de \mathbf{R}^3

base canonique B de \mathbb{R}^3 .

Montrez que 2 est une valeur propre de A (ou de f).

 $1^{\text{ère}}$ méthode : vérifier que $\dim(Ker(f-2Id_{\mathbf{R}^3}))\geq 1$ en appliquant le théorème du rang à l'endomorphisme $(f-2Id_{\mathbf{p}^3})$

$$rg(A-2I_3) = rg\begin{pmatrix} -1 & -1 & 2 \\ -3 & 2 & 1 \\ 5 & -3 & -2 \end{pmatrix} = rg\begin{pmatrix} -1 & -1 \\ -3 & 2 \\ 5 & -3 \end{pmatrix} \le 2 \operatorname{car} \begin{pmatrix} -1 \\ -3 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} = -\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$$

De plus
$$\det \begin{pmatrix} -1 & -1 \\ -3 & 2 \end{pmatrix} = 1 \neq 0$$
 d'où $rg(A - 2I_3) = rg \begin{pmatrix} -1 & -1 \\ -3 & 2 \\ 5 & -3 \end{pmatrix} = 2$

Et d'après le théorème du rang on a : $\dim(\mathbf{R}^3) = rg(A - 2I_3) + \dim(\ker(f - 2Id_{\mathbf{R}^3}))$ Donc $3 = 2 + \dim(\ker(f - 2Id_{\mathbf{R}^3}))$ d'où $\dim(\ker(f - 2Id_{\mathbf{R}^3})) = 1 \ge 1$

Conclusion : 2 est une valeur propre de A (ou de f)

2^{ème} méthode : vérifier que $Ker(f-2Id_{\mathbf{R}^3}) \neq \{0_{\mathbf{R}^3}\}$

$$(x, y, z) \in Ker(f - 2Id_{\mathbf{R}^3}) \Leftrightarrow (A - 2I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} -1 & -1 & 2 \\ -3 & 2 & 1 \\ 5 & -3 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -x - y + 2z = 0 \\ -3x + 2y + z = 0 \\ 5x - 3y - 2z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y-2z=0 \\ -3x+2y+z=0 \\ 5x-3y-2z=0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+y-2z=0 \\ 5y-5z=0 \\ -8y+8z=0 \end{cases} \Leftrightarrow \begin{cases} x+y-2z=0 \\ y=z \\ y=z \end{cases}$$

 $\begin{array}{l} \text{D'où } \textit{Ker}(f-2\textit{Id}_{\mathbf{R}^3}) = \left\{ (z,z,z)/z \in \mathbf{R} \right\} = \left\{ z (1,\!1,\!1)/z \in \mathbf{R} \right\} = \textit{vect}(\left\{ (1,\!1,\!1) \right\}) \text{ et } (1,\!1,\!1) \neq 0_{\mathbf{R}^3} \\ \text{Donc } \textit{Ker}(f-2\textit{Id}_{\mathbf{R}^3}) \neq \left\{ 0_{\mathbf{R}^3} \right\} \\ \end{array}$

Conclusion : 2 est une valeur propre de A (ou de f) de plus $\{(1,1,1)\}$ est une base de $Ker(f-2Id_{\mathbf{R}^3})$ et (1,1,1) est un vecteur propre de A (ou de f) associé à la valeur propre 2.

 $3^{\text{ème}}$ méthode : vérifier que 2 est une racine du polynôme caractéristique $P_{A}(X) = \det(A - X I_{3})$

$$P_A(X) = \det(A - X I_3) = \det\begin{pmatrix} 1 - X & -1 & 2 \\ -3 & 4 - X & 1 \\ 5 & -3 & -X \end{pmatrix} = \dots = (1 - X)(X^2 - 4X + 3) + 13X - 27$$

D'où $P_A(2) = -1(4-8+3) + 26 - 27 = 1 - 1 = 0$

Donc 2 est une racine du polynôme caractéristique $P_A(X) = \det(A - X I_3)$

Conclusion : 2 est une valeur propre de A (ou de f)

II. Sous-espace propre associé à une valeur propre

Définition (Sous-espace propre)

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et λ une valeur propre de f .

On note $E_{\lambda}=Ker(f-\lambda \operatorname{Id}_{\mathbf{K}^n})$ et s'appelle le sous-espace propre de f associé à la valeur propre λ .

Remarque

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et λ une valeur propre de f $E_{\lambda} = Ker(f - \lambda \operatorname{Id}_{\mathbf{K}^n}) = \left\{ u \in \mathbf{K}^n / (f - \lambda \operatorname{Id}_{\mathbf{K}^n})(u) = 0_{\mathbf{K}^n} \right\} = \left\{ u \in \mathbf{K}^n / f(u) - \lambda (u) = 0_{\mathbf{K}^n} \right\}$ D'où $E_{\lambda} = \left\{ u \in \mathbf{K}^n / f(u) = \lambda (u) \right\}$

Résumé :

si $u \in \mathbf{K}^n$ et $u \neq 0_{\mathbf{K}^n}$ alors on a:

 $u \in E_{\lambda} \Leftrightarrow u$ est un vecteur propre de f associé à la valeur propre $\lambda \Leftrightarrow f(u) = \lambda u$

Exemple

Si
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 4 & 1 \\ 5 & -3 & 0 \end{pmatrix}$$
 est la matrice associée à l'endomorphisme f de \mathbf{R}^3 par rapport à la

base canonique B de \mathbb{R}^3 .

Nous avons montré que (1,1,1) est un vecteur propre de f associé à la valeur propre 2 D'où $(1,1,1) \in E_2$.

Remarques (important)

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n , $A = M_f(B)$ où B est une base \mathbf{K}^n et λ une valeur propre de f, on a :

- 1) $E_{\lambda} \neq \{0_{\mathbf{K}^n}\}$ c'est-à-dire $\dim(E_{\lambda}) \neq 0$;
- 2) On peut calculer $\dim(E_i)$ par deux méthodes :

 - $2^{\mathrm{ème}}$ méthode : on cherche une base de E_{λ} en résolvant dans \mathbf{K}^n le système

$$(A - \lambda I_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Exemple

D'après les calculs de l'exemple traité précédemment, on a :

D'après le théorème du rang : $\dim(E_2) = 1$ et en résolvant dans \mathbf{R}^3 le système

$$(A-2I_3)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix} \text{, nous avons montr\'e que } E_2 = Ker(f-2Id_{\mathbf{R}^3}) = vect(\left\{(1,1,1)\right\}) \text{ et }$$

comme $(1,1,1) \neq 0_{\mathbf{R}^3}$ alors $\{(1,1,1)\}$ est une base de E_2 par suite $\dim(E_2) = card(\{(1,1,1)\}) = 1$

III. Polynôme caractéristique associé à un endomorphisme/matrice

Définition (Sous-espace propre)

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n .

On note $P_A(X) = \det(A - X I_n)$

 $P_{\scriptscriptstyle A}(X)$ s'appelle le polynôme caractéristique associée à la matrice A.

Remarque (important)

Soit $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n

Si $A = M_f(B)$ où B est une base \mathbb{K}^n et $D = M_f(B')$ où B' est une autre base \mathbb{K}^n

Alors
$$P_A(X) = P_D(X)$$
 où $P_A(X) = \det(A - X I_n)$ et $P_D(X) = \det(D - X I_n)$

C'est la raison pour laquelle on dit « le polynôme caractéristique ».

En d'autres termes, le polynôme caractéristique ne dépend pas du choix de la base de \mathbb{K}^n .

Preuve. D'après la formule de changement de bases, on a : $D = P^{-1}AP$ où P est la matrice de passage de la base B à la base B'.

On a
$$(D-XI_n) = (P^{-1}AP - XI_n)$$
 car $D = P^{-1}AP$

D'où
$$(D - X I_n) = P^{-1} (A - X I_n) P$$
 car

$$P^{-1}(A-X\,I_{\scriptscriptstyle n})\,P = (P^{-1}A-X\,P^{-1}I_{\scriptscriptstyle n})P = P^{-1}A\,P - X\,(P^{-1}I_{\scriptscriptstyle n}P) = P^{-1}A\,P - X\,I_{\scriptscriptstyle n} \text{ puisque } P^{-1}I_{\scriptscriptstyle n}P = P^{-1}P = I_{\scriptscriptstyle n}$$

Donc on a bien $(D-XI_n) = P^{-1}(A-XI_n)P$ par suite

$$\det(D - X I_n) = \det(P^{-1}(A - X I_n) P) = \det(P^{-1}) \det(A - X I_n) \det(P)$$
 car
$$\det(M N) = \det(M) \det(N)$$

Et puisque
$$P^{-1}P = I_n$$
 alors $\det(P^{-1}P) = \det(I_n) \Leftrightarrow \det(P^{-1})\det(P) = 1 \Leftrightarrow \det(P^{-1}) = \frac{1}{\det(P)}$

D'où
$$\det(D - X I_n) = \frac{1}{\det(P)} \det(A - X I_n) \det(P) = \det(A - X I_n)$$

Conclusion:

$$P_{\!\scriptscriptstyle A}(X) = P_{\!\scriptscriptstyle D}(X) \text{ où } P_{\!\scriptscriptstyle A}(X) = \det(A - X \, I_{\!\scriptscriptstyle n}) \text{ et } P_{\!\scriptscriptstyle D}(X) = \det(D - X \, I_{\!\scriptscriptstyle n})$$

Définitions et propriétés (racine d'un polynôme et multiplicité d'une racine)

On note $\mathbf{R}[X]$ l'ensemble des polynômes à coefficients dans \mathbf{R} ,

et ${f C}[X]$ l'ensemble des polynômes à coefficients dans ${f C}$.

On remarque évidement que $\mathbf{R}[X] \subset \mathbf{C}[X]$.

1) Soient $P \in \mathbf{R}[X]$ ou $P \in \mathbf{C}[X]$ et $a \in \mathbf{C}$.

On dit que a est une racine de P si P(a) = 0

- 2) a est racine de $P \Leftrightarrow (X-a)$ divise $P \Leftrightarrow \exists Q \in \mathbb{C}[X]$, P = (X-a)Q
- 3) Soient $\alpha, \lambda_1, \dots, \lambda_p \in \mathbb{C}$ et $n_1, \dots, n_p \in \mathbb{N}^*$ tel que pour $1 \le i \le p$ et $1 \le j \le p$, si $i \ne j$ on a $\lambda_i \ne \lambda_j$ (c'est-à-dire les valeurs λ_i sont deux à deux distinctes)

Si la décomposition en produit de facteurs irréductibles de P dans $\mathbf{C}[X]$ est de la forme : $P = \alpha (X - \lambda_1)^{n_1} \cdots (X - \lambda_n)^{n_p}$,

Alors, α est le coefficient du plus haut degré de P et $\deg(P)=n_1+\cdots+n_p$ (c'est le degré de P)

De plus, pour tout i vérifiant $1 \le i \le p$, on dit que λ_i est une racine de P de multiplicité n_i .

Remarques

1) Soit $P \in \mathbb{C}[X]$ tel que sa décomposition en produit de facteurs irréductibles dans $\mathbb{C}[X]$ est de la forme : $P = \alpha (X - \lambda_1)^{n_1} \cdots (X - \lambda_p)^{n_p}$

Si l'un des $n_i = 1$ on dit que λ_i est une racine simple de P

Si l'un des $n_i = 2$ on dit que λ_i est une racine double de P

Si l'un des $n_i = 3$ on dit que λ_i est une racine triple de P

- 2) Si $P = a_0 + a_1 X + \dots + a_k X^k$, pour déterminer les racines de P, il suffit de résoudre dans C l'équation P(x) = 0 c'est-à-dire $a_0 + a_1 X + \dots + a_k X^k = 0$
- 3) Soient P_1 et P_2 deux polynômes de $\mathbb{C}[X]$.

Attention: $P_1(x) + P_2(x) = 0$ n'est pas équivalent à $P_1(x) = 0$ et $P_2(x) = 0$.

Mais
$$P_2(x) P_2(x) = 0 \iff P_1(x) = 0 \text{ ou } P_2(x) = 0$$

D'où pour faciliter la recherche des racines d'un polynôme, on essaie de le factoriser.

Exemples

1) Attention si $P = (X - 1)(X^2 - 1)$ on ne peut dire que 1 est une racine simple de P car on doit encore factoriser pour avoir la décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$.

En effet
$$P = (X-1)(X-1)(X+1)$$
 car $(X^2-a^2) = (X-a)(X+a)$

D'où décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$ est de la forme :

$$P = (X-1)^2(X+1)$$

Conclusion:

-1 est une racine simple de P et 1 est une racine double de P .

2) Soit $P = (X+2)(4X^2-3X-1)^2$ déterminez les racines de P ainsi que leur multiplicité.

$$P(x) = 0 \Leftrightarrow (x+2)(4x^2 - 3x - 1)^2 = 0$$

\Rightarrow (x+2) = 0 ou $(4x^2 - 3x - 1)^2 = 0$
\Rightarrow x = -2 ou $4x^2 - 3x - 1 = 0$

Pour l'équation : $4x^2 - 3x - 1 = 0$ calculons $\Delta = 25$ d'où

$$4x^2 - 3x - 1 = 0 \iff x = \frac{3+5}{8}$$
 ou $x = \frac{3-5}{8} \iff x = 1$ ou $x = \frac{-1}{4}$

Conclusion :
$$P = 16(X+2)(X-1)^2(X+\frac{1}{4})^2$$

Donc -2 est une racine simple de P.

1 et $\frac{-1}{4}$ sont des racines doubles de P.

Remarques (important)

- 1) Soit $P \in \mathbf{R}[X]$ tel que $P = aX^2 + bX + c$ avec $a \in \mathbf{R}^*$ et $(b,c) \in \mathbf{R}^2$
- Si $\Delta = (b^2 4ac) < 0$ alors P est irréductible dans $\mathbf{R}[X]$ alors P n'admet pas une racine réelle mais il existe λ_1 et λ_2 deux complexes **non réels**, tel que $\lambda_2 = \overline{\lambda_1}$ (λ_2 est le conjugué du complexe λ_1) et $P = a(X \lambda_1)(X \lambda_2) = a(X \lambda_1)(X \overline{\lambda_1})$
- 2) Si $P \in \mathbf{R}[X]$ et $\deg(P) \ge 3$ alors :

il existe $\lambda \in \mathbf{R}$ tel que $(X - \lambda)$ divise P ou il existe $a \in \mathbf{R}^*$ et $(b,c) \in \mathbf{R}^2$ tel que $aX^2 + bX + c$ divise P.

Exemples

1) Soit $P = (X - 1)(X^2 + 1)$ et $(X^2 + 1) \in \mathbf{R}[X]$ de plus $\Delta = -4 < 0$ donc $(X^2 + 1)$ n'a pas de racine réelle et $(X^2 + 1)$ irréductible dans $\mathbf{R}[X]$.

Conclusion : $P = (X - 1)(X^2 + 1)$ est la décomposition en produits de facteurs irréductibles dans $\mathbf{R}[X]$ et 1 est l'unique racine réel de P.

Puisque $X^2 + 1 = (X - i)(X + i)$, la décomposition en produit de facteurs irréductibles de P dans $\mathbb{C}[X]$ est: P = (X-1)(X-i)(X+i).

Conclusion: 1, -i et i sont les racines de P et sont toutes des racines simples.

Théorème

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n . Les valeurs propres de A (ou de f) sont les racines du polynôme caractéristique $P_{A}(X)$

Preuve.

Il résulte de la propriété suivante (déjà démontrée) :

 λ est une valeur propre de A (ou de f) \Leftrightarrow

 λ est une racine du polynôme caractéristique $P_A(X) = \det(A - X I_n)$

Exemple

Soit
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -3 & 4 & 1 \\ 5 & -3 & 0 \end{pmatrix}$$
 la matrice associée à l'endomorphisme f de \mathbf{R}^3 par rapport à la

base canonique B de \mathbb{R}^3 .

Cherchons toutes les valeurs propres de A (sachant que 2 est une valeur propre de A)

On a:
$$P_A(X) = \det(A - X I_p) = (1 - X)(X^2 - 4X + 3) + 13X - 27$$

Donc
$$P_A(X) = -X^3 + 5X^2 + 6X - 24$$

On sait que 2 est une valeur propre de A d'où 2 est une racine du polynôme caractéristique $P_A(X)$ (c'est-à-dire $P_A(2)=0$) donc (X-2) divise $P_A(X)$.

Effectuons alors la division euclidienne de $P_{A}(X)$ par (X-2) (division suivant les puissances décroissantes)

Conclusion 1:
$$P_A(X) = -X^3 + 5X^2 + 6X - 24 = (X - 2)(-X^2 + 3X + 12)$$

$$P_A(x) = 0 \Leftrightarrow (x-2)(-x^2 + 3x + 12) = 0$$

$$\Leftrightarrow$$
 $(x-2) = 0$ ou $(-x^2 + 3x + 12) = 0$

Résolvons l'équation : $-x^2+3x+12=0$, $\Delta=9+48=57$ d'où

$$-x^2 + 3x + 12 = 0 \iff x = \frac{-3 - \sqrt{57}}{-2} \text{ ou } x = \frac{-3 + \sqrt{57}}{-2} \iff x = \frac{3 + \sqrt{57}}{2} \text{ ou } x = \frac{3 - \sqrt{57}}{2}$$

Donc
$$-X^2 + 3X + 12 = -(X - \frac{3 + \sqrt{57}}{2})(X - \frac{3 - \sqrt{57}}{2})$$

Par suite
$$P_A(X) = -(X-2)(X - \frac{3+\sqrt{57}}{2})(X - \frac{3-\sqrt{57}}{2})$$

Conclusion : les valeurs propres de A sont : 2 , $\frac{3+\sqrt{57}}{2}$ et $\frac{3-\sqrt{57}}{2}$

IV. Conditions de diagonalisation d'un endomorphisme/matrice

Théorème

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n .

On suppose qu'on a :

 λ_1 est une valeur propre de f associée au vecteur propre u_1 ,

et λ , est une valeur propre de f associée au vecteur propre u_2 .

1) Si $\lambda_1 \neq \lambda_2$ alors la famille $\{u_1, u_2\}$ est libre

2) Si $\lambda_1 \neq \lambda_2$ alors $E_{\lambda_1} \cap E_{\lambda_2} = \{0_{\mathbf{K}^n}\}$

Preuve

1) Par hypothèse on a : $f(u_1) = \lambda_1 u_1$ et $u_1 \neq 0_{\mathbf{K}^n}$ idem $f(u_2) = \lambda_2 u_2$ et $u_2 \neq 0_{\mathbf{K}^n}$.

Montrons que si $\lambda_1 \neq \lambda_2$ alors la famille $\{u_1, u_2\}$ est libre.

Soient $\alpha \in \mathbf{K}$ et $\beta \in \mathbf{K}$ tel que $\alpha u_1 + \beta u_2 = 0_{\mathbf{K}^n}$ montrons que $\alpha = \beta = 0$ en utilisant la condition $\lambda_1 \neq \lambda_2$.

$$\begin{split} \alpha \, u_1 + \beta \, u_2 &= 0_{\mathbf{K}^n} \Rightarrow f(\alpha \, u_1 + \beta \, u_2) = f(0_{\mathbf{K}^n}) \\ &\Rightarrow \alpha \, f(u_1) + \beta \, f(u_2) = 0_{\mathbf{K}^n} \text{ car } f: \mathbf{K}^n \to \mathbf{K}^n \text{ est une application linéaire} \\ &\Rightarrow \alpha \, \lambda_1 \, u_1 + \beta \, \lambda_2 \, u_2 = 0_{\mathbf{K}^n} \text{ car } f(u_1) = \lambda_1 \, u_1 \text{ et } f(u_2) = \lambda_2 \, u_2 \end{split}$$

On a donc : (1) $\alpha u_1 + \beta u_2 = 0_{\mathbf{K}^n}$ et (2) $\alpha \lambda_1 u_1 + \beta \lambda_2 u_2 = 0_{\mathbf{K}^n}$

On multiplie alors (1) par λ_1 et on obtient (3) $\alpha \lambda_1 u_1 + \beta \lambda_1 u_2 = 0_{\kappa^n}$

D'après (2) et (3) on a donc : $\beta(\lambda_2-\lambda_1)u_2=0_{\mathbf{K}^n}$

D'où $\beta(\lambda_2 - \lambda_1) = 0$ car $u_2 \neq 0_{\mathbf{K}^n}$ par suite $\beta = 0$ car $\lambda_1 \neq \lambda_2$

Donc (1) devient $\alpha u_1 = 0_{\mathbf{K}^n}$ d'où $\alpha = 0$ car $u_1 \neq 0_{\mathbf{K}^n}$

Résumé:

Pour $\alpha \in \mathbf{K}$ et $\beta \in \mathbf{K}$ tel que $\alpha u_1 + \beta u_2 = 0_{\mathbf{K}^n}$ on a $\alpha = \beta = 0$ si $\lambda_1 \neq \lambda_2$.

C'est-à-dire si $\lambda_{1} \neq \lambda_{2}$ alors la famille $\left\{u_{1}\,,u_{2}\right\}$ est libre

2) Montrons que si $\lambda_1 \neq \lambda_2$ alors $E_{\lambda_1} \cap E_{\lambda_2} = \left\{0_{\mathbf{K}^n}\right\}$

Rappels. Soient E et F deux ensembles on a :

 $E = F \Leftrightarrow (E \subset F \text{ et } F \subset E).$

 $u \in (E \cap F) \Leftrightarrow (u \in E \text{ et } u \in F)$

On sait que $0_{\mathbf{K}^n} \in E_{\lambda_1}$ et $0_{\mathbf{K}^n} \in E_{\lambda_2}$ car E_{λ_1} et E_{λ_2} sont deux sous-espaces vectoriels de \mathbf{K}^n donc $0_{\mathbf{K}^n} \in (E_{\lambda_1} \cap E_{\lambda_2})$ c'est-à-dire $\left\{0_{\mathbf{K}^n}\right\} \subset (E_{\lambda_1} \cap E_{\lambda_2})$

Reste à montrer que $(E_{\lambda_1} \cap E_{\lambda_2}) \subset \{0_{\mathbf{K}^n}\}$

Soit $u \in (E_{\lambda_1} \cap E_{\lambda_2})$, montrons que $u \in \{0_{\mathbf{K}^n}\}$ c'est-à-dire $u = 0_{\mathbf{K}^n}$ en utilisant la condition $\lambda_1 \neq \lambda_2$

En effet
$$u \in (E_{\lambda_1} \cap E_{\lambda_2}) \Leftrightarrow u \in E_{\lambda_1}$$
 et $u \in E_{\lambda_2}$
$$\Leftrightarrow u \in \mathbf{K}^n, f(u) = \lambda_1 u \text{ et } f(u) = \lambda_2 u$$

$$\Rightarrow u \in \mathbf{K}^n \text{ et } \lambda_1 u - \lambda_2 u = 0_{\mathbf{K}^n}$$

$$\Rightarrow u \in \mathbf{K}^n \text{ et } (\lambda_1 - \lambda_2) u = 0_{\mathbf{K}^n}$$
$$\Rightarrow u = 0_{\mathbf{K}^n} \text{ car } \lambda_1 \neq \lambda_2$$

D'où
$$(E_{\lambda_1} \cap E_{\lambda_2}) \subset \{0_{\mathbf{K}^n}\}$$
 si $\lambda_1 \neq \lambda_2$

Conclusion. Si $\lambda_1 \neq \lambda_2$ alors $E_{\lambda_1} \cap E_{\lambda_2} = \{0_{\mathbf{K}^n}\}$

Remarque

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n .

Pour chaque $i \in \{1, ..., p\}$, on suppose qu'on a une valeur propre λ_i de f associée au vecteur propre u_i .

Si
$$\forall i \in \{1,...,p\}, \ \forall j \in \{1,...,p\}, \ i \neq j \text{ on a } \lambda_i \neq \lambda_j,$$

Alors la famille $\{u_1, ..., u_n\}$ est libre

Théorème

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n .

On suppose qu'on a, deux valeurs propres de f, notées λ_1 et λ_2 .

Soient
$$B_1 = \{a_1, a_2, ..., a_p\}$$
 une base de $E_{\lambda_1} = Ker(f - \lambda_1 Id_{\mathbf{K}^n})$ et

$$B_2 = \left\{b_1, b_2, \dots, b_q\right\}$$
 une base de $E_{\lambda_2} = Ker(f - \lambda_2 Id_{\mathbf{K}^n})$

Si
$$\lambda_1 \neq \lambda_2$$
 alors $B_1 \cup B_2 = \{a_1, a_2, ..., a_p, b_1, b_2, ..., b_q\}$ est libre

Preuve

Soient $\alpha_1, \alpha_2, ..., \alpha_p$, $\beta_1, \beta_2, ..., \beta_q \in \mathbf{K}$, tel que

$$\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p + \beta_1 b_1 + \beta_2 b_2 + \dots + \beta_q b_q = 0_{\mathbf{K}^n}$$
, montrons que

$$\alpha_1 = \alpha_2 = \cdots = \alpha_p = \beta_1 = \beta_2 = \cdots = \beta_q = 0$$
 en utilisant la condition $\lambda_1 \neq \lambda_2$.

$$\text{En effet } \alpha_1\,a_1+\alpha_2\,a_2+\cdots+\alpha_p\,a_p+\beta_1\,b_1+\beta_2\,b_2+\cdots+\beta_q\,b_q=0_{\mathbf{K}^n} \Leftrightarrow$$

$$\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p = -(\beta_1 b_1 + \beta_2 b_2 + \dots + \beta_q b_q)$$

D'où
$$(\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p) \in E_{\lambda_2}$$
 (*) car $-(\beta_1 b_1 + \beta_2 b_2 + \dots + \beta_q b_q) \in E_{\lambda_2}$ puisque $B_{\lambda_2} = \{b_1, b_2, \dots, b_q\}$ set une base de E_{λ_2}

$$B_2 = \left\{b_1, b_2, \dots, b_q\right\}$$
 est une base de E_{λ_2} .

De plus
$$(\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p) \in E_{\lambda_1}$$
 (**) car $B_1 = \{a_1, a_2, \dots, a_p\}$ une base de E_{λ_1}

D'où
$$(\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p) \in (E_{\lambda_1} \cap E_{\lambda_2})$$
 d'après (*) et (**)

Or
$$\lambda_1 \neq \lambda_2$$
 on a : $E_{\lambda_1} \cap E_{\lambda_2} = \{0_{\mathbf{K}^n}\}$

Donc
$$\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p = 0_{\mathbf{K}^n}$$
 et comme $B_1 = \{a_1, a_2, \dots, a_p\}$ est libre (car base de E_{λ_1})

Alors
$$\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$$

Idem on prouve que $\beta_1b_1+\beta_2b_2+\cdots+\beta_qb_q=0_{\mathbf{K}^n}$ et puisque $B_2=\left\{b_1,b_2,\ldots,b_q\right\}$ est une base de E_{λ_2} alors $\beta_1=\beta_2=\cdots=\beta_q=0$

Résumé:

Si
$$\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_p a_p + \beta_1 b_1 + \beta_2 b_2 + \dots + \beta_q b_q = 0_{\mathbf{K}^n}$$
 et si $\lambda_1 \neq \lambda_2$ alors

$$\alpha_1 = \alpha_2 = \cdots = \alpha_p = \beta_1 = \beta_2 = \cdots = \beta_q = 0$$

Conclusion:

Si
$$\lambda_1 \neq \lambda_2$$
 alors $B_1 \cup B_2 = \{a_1, a_2, ..., a_p, b_1, b_2, ..., b_q\}$ est libre

Définition

Soit $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n .

f est diagonalisable s'il existe une base B de \mathbf{K}^n telle que $M_f(B)$ soit une matrice diagonale.

Définition

Soit $A \in M_n(\mathbf{K})$.

A est diagonalisable s'il existe une matrice inversible $P \in M_n(\mathbf{K})$ telle que la matrice $P^{-1}AP$ soit une matrice diagonale.

Remarque

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base de \mathbf{K}^n . On a f est diagonalisable si et seulement si A est diagonalisable

Exemple

Soient $f: \mathbf{R}^2 \to \mathbf{R}^2$ un endomorphisme de \mathbf{R}^2 et $A = M_f(B) = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}$ où B est la base

canonique de \mathbf{R}^2 .

Montrons que f et A sont diagonalisables.

On pose $a_1 = (1,0)$ et $a_2 = (1,1)$

On montre que $B' = \{a_1, a_2\}$ est une base \mathbb{R}^2 ;

et $M_f(B') = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ est une matrice diagonale donc f est diagonalisable.

De plus la matrice de passage de la base B à la base B' est $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $P^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ et

en calculant $P^{-1}AP = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ (résultat prévisible d'après la formule de changement de bases)

D'où $P^{-1}AP$ est une matrice diagonale donc A est diagonalisable.

Théorème (conditions de diagonalisation)

Soient $f: \mathbf{K}^n \to \mathbf{K}^n$ un endomorphisme de \mathbf{K}^n et $A = M_f(B)$ où B est une base \mathbf{K}^n .

On suppose que le polynôme caractéristique associé A est de la forme :

$$P_{A}(X) = \alpha (X - \lambda_{1})^{n_{1}} \cdots (X - \lambda_{p})^{n_{p}}$$

 $A \text{ est diagonalisable sur } \mathbf{K} \Leftrightarrow \begin{cases} \forall i \in \{1, \dots, p\}, \ \lambda_i \in \mathbf{K} \\ \forall i \in \{1, \dots, p\}, \ \dim(E_{\lambda_i}) = n_i \end{cases}$

Preuve (voir cours)

Exemples (voir cours)