Modelos em PR – Estudo de Caso: Uma Apresentação

Claudio Cesar de Sá¹

¹Departamento de Ciência da Computação – DCC Centro de Ciências Tecnológicas – CCT Universidade do Estado de Santa Catarina – UDESC

Projeto de um Livro – Modelos em PR CCT-UDESC Outubro de 2015 – SC

Um Problema Difícil (NP): Cabo de Guerra

Critério de escolha do times: por peso

Figura: O mais pesado tem mais força!

Especificando o problema do Cabo de Guerra

Que seja feita a divisão:

Joao ₁	Pedro ₂	Manoel ₃	 Zecan
45	39	79	 42

- Divisão por peso
- Respeitar critérios como: $|N_A-N_B| \leq 1$
- Todos devem brincar
- Bem, esta simples <u>restrição</u> ($|N_A N_B| \le 1$), de nosso cotidiano tornou um simples problema em mais uma questão combinatória. Um arranjo da ordem de $\frac{n!}{(n/2)!}$. Casualmente, nada trivial para grandes valores!

Estratégia de Modelagem

Variável de Decisão: análogo a árvore do SAT

Nomes (n_i) :	n_1	n ₂	<i>n</i> ₃	 n _n
Peso (p_i) :	45	39	79	 42
Binária (x_i) :	0/1	0/1	0/1	 0/1

- Assim $N_A \approx N/2$, $N_B \approx N/2$ e $|N_A N_B| \le 1$
- $x_i = 0$: n_i fica para o time A
- $x_i = 1$: n_i fica para o time B
- Logo a soma:

$$\sum_{i=1}^n x_i p_i$$

é o peso total do time $B(P_B)$

Modelagem das Restrições

- Falta encontrar peso total do time $A(P_A)$, dado por:
- $P_A = P_{total} P_B$
- ou

$$P_A = \sum_{i=1}^n p_i - \sum_{i=1}^n x_i p_i$$

• Finalmente, aplicar uma minimização na diferença: $|P_A - P_B|$

Uma Estratégia de Implementação

Figura: Se $x_i = 0$, então n_i segue para o time A, caso $x_i = 1$, então n_i vai para o time BQual a técnica usada?

Implementação em Minizinc

8 / 11

Resultados e Análise

Números aleatórios de 1 a 150

Usando um solver médio do Minizinc (G12 lazyfd) padrão:

tempo	P_A	P_B	
40msec	276	278	
46msec	518	519	
98msec	1198	1197	
411msec	2290	2291	
2s 485msec	3133	3133	
470msec	4142	4142	
7s 2msec	4992	4992	
605msec	5823	5823	
642msec	6777	6778	
> 10min	_		
	40msec 46msec 98msec 411msec 2s 485msec 470msec 7s 2msec 605msec 642msec	40msec 276 46msec 518 98msec 1198 411msec 2290 2s 485msec 3133 470msec 4142 7s 2msec 4992 605msec 5823 642msec 6777	

Referência: cpu 4-core, 4 G ram, SO: Linux-Debian

Reflexões

■ Enfim, este problema é uma variação de clássicos NPs, mais especificamente o *sub-set-sum*

Leia-se: Problema da Mochila

■ Implemente este problema usando Programação Dinâmica (PD)