

Représentation des nombres

Algo & Prog avec R

Arnaud Malapert

21 avril 2019

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

Cours en AUTOFORMATION

Représentation des nombres

- ► Système positionel : binaire, décimal, octal, et héxadécimal.
- ► Nombre non signé seulement (positif).
- ▶ Représentation en machine des entiers naturels seulement!

Prérequis

Savoir additionner, soustraire, multiplier, et diviser! Surtout par 2!

Évaluation : Gagner un max de points en peu de temps!

- QCM sur Moodle comptant un peu pour le contrôle continu.
- ▶ 3 points du même QCM dans le contrôle terminal.
- Exercices de programmation autour des algorithmes de conversion.
- Activité de programmation d'une appli web de conversion.

Table des matières

1. Système positionnel

Entiers naturels

Nombres fractionnaires

- 2. Multiplication et division égyptiennes
- 3. Arithmétique binaire
- 4. Représentation des nombres en machine

Système positionnel

Représentation des nombres

On représente les nombres grâce à des symboles.

Représentation unaire : un symbole de valeur unique.

- ▶ I=1, II=2, III=3, let IIIIIIIII=10.
- ► Le calcul est facile.
 - ightharpoonup 1 + III = IIII;
- mais cela devient vite incompréhensible

Chiffres Romains : plusieurs symboles ayant des valeurs différentes.

- Le nombre de symboles est théoriquement infini.
 - ► I=1, V=5, X = 10, L = 50
- Le calcul est impossible.

Représentation des nombres

Système positionnel : symboles dont la valeur dépend de la position

- \triangleright 999 = 900 + 90 + 9
- À Babylone, système sexagésimal (60) (Ile millénaire av J-C).
- ► Transmission de l'orient vers l'occident avec le zéro (env. 825 ap. J-C)¹

Un brin de cynisme

Les hommes sont comme les chiffres, ils n'acquièrent de la valeur que par leur position.

Napoléon Bonaparte

^{1. «} Al-jabr wa'l-muqâbalah » Muhammad ibn Müsä al-Khuwärizmï

Système positionnel

Utilisation d'une base b

- Les nombres sont représentés à l'aide de *b* symboles distincts.
- La valeur d'un chiffre dépend de la base.

Un nombre x est représenté par une suite de symboles :

$$x=a_na_{n-1}\ldots a_1a_0.$$

$$\label{eq:decimale} \begin{array}{l} \textbf{D\'ecimale} \ \ (b=10), \ \ a_i \in \{0,1,2,3,4,5,6,7,8,9\} \\ \textbf{Binaire} \ \ (b=2), \ \ a_i \in \{0,1\} \\ \textbf{Hexad\'ecimale} \ \ (b=16), \ \ a_i \in \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\} \end{array}$$

Les bases les plus utilisées sont : 10, 2, 3, 2^k , 12, 16, 60, $\frac{\sqrt{5}-1}{2}$...

Notation

 $(x)_b$ indique que le nombre x est écrit en base b.

Système positionnel

Entiers naturels

Représentation des entiers naturels

En base b

$$x = a_n a_{n-1} \dots a_1 a_0 = \sum_{i=0}^n a_i b^i$$

- ightharpoonup a₀ est le chiffre de poids faible,
- ightharpoonup a_n est le chiffre de poids fort.

En base 10

$$(1998)_{10} = 1 \times 10^3 + 9 \times 10^2 + 9 \times 10^1 + 8 \times 10^0.$$

En base 2

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 4 + 0 + 1 = 5.

Traduction vers la base 10

Méthode simple

- ► On applique simplement la formule.
- ► Cela revient donc à une simple somme.
- ► En pratique, on peut utiliser la multiplication égyptienne ??.

Schéma de Horner

- ► Méthode générale pour calculer l'image d'un polynôme en un point.
- ► Moins d'opération que la méthode simple.
- ▶ Plus efficace pour une machine, pas nécessairement pour un humain.

Schéma de Horner

Une reformulation judicieuse de l'écriture en base b

$$a_n a_{n-1} \dots a_1 a_0 = \sum_{i=0}^n a_i b^i$$

= $((\dots((a_n b + a_{n-1})b + a_{n-2})\dots)b + a_1)b + a_0$

Algorithme simple et efficace

- lnitialiser l'accumulateur : v = 0.
- ▶ Pour chaque chiffre a_i en partant de la gauche : $v \leftarrow (v \times b) + a_i$.

Schéma de Horner

Algorithme simple et efficace

- Initialiser l'accumulateur : v = 0.
- ▶ Pour chaque chiffre a_i en partant de la gauche : $v \leftarrow (v \times b) + a_i$.

$(10110)_2 = (22)_{10}$			($(12321)_3 = (169)_{10}$		
ai	V	Calcul de v		a_i	V	Calcul de <i>v</i>
1	1	$2 \times 0 + 1$		1	1	$3 \times 0 + 1$
0	2	$2 \times 1 + 0$		2	5	$3 \times 1 + 2$
1	5	$2 \times 2 + 1$	3	3	18	$3 \times 5 + 3$
1	11	$2 \times 5 + 1$		2	56	$3 \times 18 + 2$
0	22	$2 \times 11 + 0$	-	1	169	$3 \times 56 + 1$

Traduction entre des puissances de 2

Du binaire vers une base 2^k

Regrouper les bits par k en partant de la droite et les traduire.

D'une base 2^k vers le binaire

Traduire chacun des symboles en un nombre binaire.

Du binaire vers l'héxadécimal (24)

Regrouper les bits par 4 en partant de la droite.

Du binaire vers l'octal (2³)

Regrouper les bits par 3 en partant de la droite.

D'une base 2^k vers une base 2^p

- 1. Passer par le binaire : $(x)_{2^k} \rightarrow (x)_2 \rightarrow (x)_{2^p}$.
- 2. Généraliser la méthode précédente si k est un diviseur/multiple de p.
- 3. Appliquer un algorithme de traduction vers une base quelquonque.

Traduction vers une base quelquonque

Nombre entier

On procède par divisions euclidiennes successives :

- ► On divise le nombre par la base,
- ▶ puis le quotient par la base,
- ▶ ainsi de suite jusqu'à obtenir un quotient nul.

La suite des restes obtenus correspond aux chiffres de a_0 à a_n dans la base visée.

$$(44)_{10} = (101100)_2$$

$$44 = 22 \times 2 + 0$$

$$22 = 11 \times 2 + 0$$

$$11 = 5 \times 2 + 1$$

$$2 = 2 \times 2 + 1$$

$$3 = 1$$

$$2 = 1 \times 2 + 0$$

$$3_4 = 0$$

$$1 = 0 \times 2 + 1$$

$$3_5 = 1$$

$$(44)_{10} = (1122)_3$$

$$44 = 14 \times 3 + 2$$

$$3_0 = 2$$

$$14 = 4 \times 3 + 2$$

$$3_1 = 2$$

$$4 = 1 \times 3 + 1$$

$$3_2 = 1$$

$$1 = 0 \times 3 + 1$$

$$3_3 = 1$$

$$1 = 0 \times 2 + 1$$

$$3_5 = 1$$

Traduction depuis une base quelquonque

Il faut diviser dans la base d'origine. Les calculs sont donc difficiles pour un humain!

$$(101100)_2 = (1122)_3$$

 $101100 = 1110 \times 11 + 10$ $a_0 = 2$
 $1110 = 100 \times 11 + 10$ $a_1 = 2$
 $100 = 1 \times 11 + 1$ $a_2 = 1$
 $1 = 0 \times 11 + 1$ $a_3 = 1$

Passez par le décimal! $(x)_b \rightarrow (x)_{10} \rightarrow (x)_{b'}$.

Exercices

- ► Traduire (10101)₂ en écriture décimale.
- ► Traduire (10101101)₂ en écriture décimale.
- ► Traduire (10101001110101101)₂ en écriture hexadécimale.
- ► Traduire $(1AE3F)_{16}$ en écriture binaire.
- ► Traduire $(1AE3F)_{16}$ en écriture octal.
- ► Traduire (927)₁₀ en écriture binaire.
- ► Traduire (1316)₁₀ en écriture binaire.

Système positionnel

Nombres fractionnaires

Représentation des nombres fractionnaires

En base b

La formule est la même, mais il existe des exposants négatifs.

$$x = a_n a_{n-1} \dots a_1 a_0, a_{-1} a_{-2} \dots a_{-k} = \sum_{i=-k}^{n} a_i b^i$$

En base 10

$$19.98 = 1 \times 10^{1} + 9 \times 10^{0} + 9 \times 10^{-1} + 8 \times 10^{-2}.$$

En base 2

$$(101,01)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$

= 4 + 0 + 1 + 0 + 0.25 = 5,25.

Traduction vers une base quelquonque

Nombre fractionnaire

ightharpoonup On décompose le nombre en partie entière et fractionnaire si x>0 :

$$x = E[x] + F[x].$$

On convertit la partie entière par la méthode précédente :

$$E[x] = a_n a_{n-1} \dots a_1 a_0.$$

► On convertit la partie fractionnaire :

$$F[x] = 0, a_{-1}a_{-2} \dots a_{-m}.$$

Finalement, on additionne la partie entière et fractionnaire :

$$x = a_n a_{n-1} \dots a_1 a_0, a_{-1} a_{-2} \dots a_{-m} \dots$$

Traduction vers une base quelquonque

Partie fractionnaire

- ightharpoonup on multiplie F[x] par b. Soit a_{-1} la partie entière de ce produit,
- on recommence avec la partie fractionnaire du produit pour obtenir a₋₂,
- ▶ et ainsi de suite . . .
- on stoppe l'algorithme si la partie fractionnaire devient nulle.

$$(0,734375)_{10} = (0, BC)_{16}$$

 $0,734375 \times 16 = 11,75$ $a_{-1} = B$
 $0,75 \times 16 = 12$ $a_{-2} = C$

Traduction de 0,3 en base 2

```
(0,3)_{10} = (0,01001100110011...)_2

0,3 \times 2 = 0,6 a_{-1} = 0

0,6 \times 2 = 1,2 a_{-2} = 1

0,2 \times 2 = 0,4 a_{-3} = 0

0,4 \times 2 = 0,8 a_{-4} = 0

0,8 \times 2 = 1,6 a_{-5} = 1

0,6 \times 2 = 1,2 a_{-6} = 1

0,2 \times 2 = 0,4 a_{-7} = 0
```

La conversion d'un nombre fractionnaire ne s'arrête pas toujours.

- ► En base b, on ne peut représenter exactement que des nombres fractionnaires de la forme X/b^k
- La conversion d'un nombre entier s'arrête toujours.

Il faudra arrondir ...

Exercices

- ► Traduire (10101101)₂ en écriture décimale.
- ► Traduire (10101001110101101)₂ en écriture hexadécimale.
- ► Traduire $(1AE3F)_{16}$ en écriture décimale.
- ► Traduire $(1AE3F)_{16}$ en écriture binaire.
- ► Traduire (13.1)₁₀ en écriture binaire.

Multiplication et division

égyptiennes

Multiplication égyptienne

Principe

- Décomposition d'un des nombres en une somme.
 On décompose généralement le plus petit.
- ► Création d'une table de puissance pour l'autre nombre
- ► Très souvent, traduction du décimal vers le binaire. Il existe des variantes en fonction de la complexité de l'opération.
- ► Il suffit de savoir multiplier par deux et additionner!

Multiplication égyptienne : $x \times y$

▶ On construit la ligne i+1 en multipliant par deux 2^i et $x \times 2^i$ tant que $2^{i+1} < y$.

 $189 \times 21 = 3969$

i	a _i	2 ⁱ	189×2^i
0		1	189
1		2	378
2		4	756
3		8	1512
4		16	3024

Multiplication égyptienne : $x \times y$

- ▶ On construit la ligne i+1 en multipliant par deux 2^i et $x \times 2^i$ tant que $2^{i+1} < y$.
- ▶ On traduit 21 en binaire en remontant dans le tableau.
- ▶ On calcule $\sum_{i=0}^{n} a_i(x \times 2^i)$.

$$189 \times 21 = 3969$$

i	a _i	2 ⁱ	189×2^{i}		
0	1	1	189	\checkmark	(1 - 1 = 0)
1	0	2	378		
2	1	4	756	\checkmark	(5 - 4 = 1)
3	0	8	1512		
4	1	16	3024	\checkmark	(21 - 16 = 5)
			3969		

Méthode genérale

Des opérations plus complexes faisant intervenir par exemple des fractions exigeaient une décomposition avec :

- ► les puissances de deux,
- ▶ les fractions fondamentales,
- les dizaines.

La technique est rigoureusement la même mais offre plus de liberté au scribe quant à la décomposition du petit nombre.

$$\begin{array}{c|cccc}
243 \times 27 &= 6561 \\
1 & 243 \\
2 & 486 \\
4 & 972 \\
\hline
20 & 4860 \\
\hline
27 & 6561 \\
\end{array}$$

Papyrus Rhind :
$$\frac{1}{14} \times \frac{7}{4} = \frac{1}{8}$$

$$\begin{array}{c|c}
1 & \frac{1}{14} \\
\frac{1}{2} & \frac{1}{28} \\
\frac{1}{4} & \frac{1}{56} \\
\hline
\frac{7}{4} & \frac{1}{8} \\
\end{array} \quad \left(\frac{4+2+1}{56}\right)$$

Division égyptienne : $x \div y$

Par quoi doit-on multiplier y pour trouver x?

▶ On construit la ligne i+1 en multipliant par deux 2^i et $y \times 2^i$ tant que $y \times 2^{i+1} < x$.

$539 \div 7 = 77$					
i	2 ⁱ	7×2^i			
0	1	7			
1	2	14			
2	4	28			
3	8	56			
4	16	112			
5	32	224			
6	64	448			

Division égyptienne : $x \div y$

Par quoi doit-on multiplier y pour trouver x?

- ▶ On construit la ligne i+1 en multipliant par deux 2^i et $y \times 2^i$ tant que $y \times 2^{i+1} < x$.
- ▶ On décompose x par les $y \times 2^i$ en remontant dans le tableau.
- ightharpoonup On calcule la somme des 2^i de la décomposition.

$539 \div 7 = 77$					
i	2 ⁱ	7×2^i			
0	1	7	√	(7 - 7 = 0)	
1	2	14			
2	4	28	\checkmark	(35 - 28 = 7)	
3	8	56	\checkmark	(91 - 56 = 35)	
4	16	112			
5	32	224			
6	64	448	\checkmark	(539 - 448 = 91)	
	77		-		

Division dont le résultat est fractionnaire

$234 \div 12 = 19.5$					
i	2 ⁱ	12×2^i			
0	1	12			
1	2	24			
2	4	48			
3	8	96			
4	16	192			

Division dont le résultat est fractionnaire

$234 \div 12 = 19.5$					
i	2 ⁱ	12×2^i			
0	1	12	\checkmark	(6)	
1	2	24	\checkmark	(18)	
2	4	48			
3	8	96			
4	16	192	\checkmark	(42)	
			-		

Division dont le résultat est fractionnaire

Exercices

- 1. Multipliez 187 par 11.
- 2. Multipliez 2012 par 1515 (indice : utilisez la méthode genérale).

Exercices

- 1. Multipliez 187 par 11.
- 2. Multipliez 2012 par 1515 (indice: utilisez la méthode genérale).

187×11					
i	a _i	2 ⁱ	21×2^i		
0	1	1	187		
1	1	2	374		
2	0	4	748		
3	1	8	1496		
		11	2057		

2012×1515				
5	10060			
10	20120			
500	1006000			
1000	2012000			
1515	3048180			

Arithmétique binaire

Représentation de l'information en machine

- ► Informations en général représentées et manipulées sous forme binaire.
- L'unité d'information est le chiffre binaire ou bit (binary digit).
- ► Les opérations arithmétiques de base sont faciles à exprimer en base 2.
- La représentation binaire est facile à réaliser : systèmes à deux états obtenus à l'aide de transistors.

Addition binaire

Tables d'addition

- ightharpoonup 0 + 0 = 0
- ightharpoonup 1 + 0 = 1
- ightharpoonup 0 + 1 = 1
- ▶ 1 + 1 = 10 (0 et on retient 1)

$$91 + 71 = 162$$

$$1 111111$$

$$1011011$$

$$+1000111$$

$$10100010$$

Soustraction binaire

Tables de soustraction

- ightharpoonup 0 0 = 0
- ightharpoonup 1 0 = 1
- ► (1)0 1 = 1 (1 et on retient 1)
- ightharpoonup 1 1 = 0

$$83 - 79 = 4$$

1 1

1010011

-1001111

1 1

0000100

Limitation: résultat négatif

On ne peut traiter x - y que si $x \ge y$.

Multiplication binaire

Tables de multiplication

- $ightharpoonup 0 \times 0 = 0$
- ▶ $1 \times 0 = 0$
- $ightharpoonup 1 \times 1 = 1$

$$23 \times 11 = 253$$

$$10111$$

$$\times 1011$$

$$11111$$

$$+ 10111$$

$$+ 10111$$

$$11111101$$

Division binaire

Soustractions et décalages comme la division décimale

- ▶ sauf que les digits du quotient ne peuvent être que 1 ou 0.
- ► Le bit du quotient est 1 si on peut soustraire le diviseur, sinon il est 0.

Limitation : division entière

Pour l'instant, on ne peut pas calculer la partie fractionnaire.

Exercices

- 1. Traduire $(1100101)_2$ et $(10101111)_2$ en écriture décimale.
- 2. Calculez la somme $(1100101)_2 + (10101111)_2$.
- 3. Calculez le produit $(10101111)_2 \times (1100101)$.
- 4. Calculez la soustraction $(10101111)_2 (1100101)_2$.
- 5. Vérifier tous les résultat en les traduisant en écriture décimale.

Représentation des nombres en machine

Représentation des nombres en machine

Précision finie

- ► Codés généralement sur 16, 32 ou 64 bits.
- ▶ Un codage sur n bits permet de représenter 2^n valeurs distinctes.

Un ordinateur ne calcule pas bien!

- Pour un ordinateur, le nombre de chiffres est fixé.
- Pour un mathématicien, le nombre de chiffres dépend de la valeur représentée.
- Lorsque le résultat d'un calcul doit être représenté sur plus de chiffres que ceux disponibles, il y a dépassement de capacité.

Représentation des entiers en machine

Entiers naturels

- ▶ Un codage sur *n* bits : tous les entiers entre 0 et $2^n 1$.
- ► La conversion d'un nombre entier s'arrête toujours.
- ▶ On ne peut traiter x y que si $x \ge y$.

Entiers relatifs : plusieurs représentations existent. Valeur absolue signée; complément à 1; complément à 2.

Tous les processeurs actuels utilisent le complément à 2.

- ▶ il y a un seul code pour 0;
- ▶ l'addition de deux nombres se fait en additionnant leurs codes;
- ▶ et il est très simple d'obtenir l'opposé d'un nombre.
- les processeurs disposent de fonctions spéciales pour l'implémenter.

Représentation des nombres réels

- Les ressources d'un ordinateur étant limitées, on représente seulement un sous-ensemble $\mathbb{F} \subset \mathbb{R}$ de cardinal fini.
- ightharpoonup Les éléments de \mathbb{F} sont appelés nombres à virgule flottante.
- lackbox Les propriétés de $\mathbb F$ sont différentes de celles de $\mathbb R$.
- ▶ Généralement, un nombre réel x est tronqué par la machine, définissant ainsi un nouveau nombre fl(x) qui ne coïncide pas forcément avec le nombre x original.

Problèmes et limitations

- les calculs sont nécessairement arrondis.
- l y a des erreurs d'arrondi et de précision
- On ne peut plus faire les opérations de façon transparente

```
> 0.1 + 0.1 + 0.1 == 0.3

[1] FALSE

> 10^20 + 1 == 10^20

[1] TRUE
```

Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R