An example to try at home

Vikram Khaire

15 Januray 2025

Simple Harmonic Motion with Damping

A mass-spring system undergoes simple harmonic motion, where the displacement of the mass at any time t is given by:

$$x(t) = A\cos(\omega t)$$

where:

- A is the amplitude of oscillation (in meters),
- $\omega = \sqrt{\frac{k}{m}}$ is the angular frequency (in radians per second),
- k is the spring constant (in N/m),
- m is the mass (in kilograms).

If the system experiences damping after 5 seconds, the displacement is modified to:

$$x(t) = A\cos(\omega t)e^{-c(t-5)}$$

for t > 5, where c is the damping coefficient (in ${\bf s}^{-1}$).

Parameters:

- Amplitude $A = 1.0 \,\mathrm{m}$,
- Spring constant $k = 10.0 \,\mathrm{N/m}$,
- Mass $m = 2.0 \,\mathrm{kg}$,
- Damping coefficient $c = 0.1 \,\mathrm{s}^{-1}$,
- Time interval: t ranges from 0 to 20 seconds in 0.1-second steps.

Tasks:

- 1. Calculate the displacement x(t) of the mass for all time intervals t.
- 2. Use the undamped formula $x(t) = A\cos(\omega t)$ for $t \le 5$.
- 3. Apply the damped formula $x(t) = A\cos(\omega t)e^{-c(t-5)}$ for t > 5.
- 4. Print the displacement values for each time step.

Additional help:

- 1. Use numpy.cos function to get cosine.
- 2. Use numpy.squrt function to get a square root.
- 3. Use numpy.exp for exponential.
- 4. You may use numpy.zeros(len(t)) to initialize an array with zeros having a length equal to the time array.