Cohomology in Cubical Type Theory and Agda

Axel Ljungström

Table of Contents

1 Introduction

② Eilenberg-MacLane spaces for integer cohomology

Group characterisations

Introduction

- Cohomology is a powerful tool for characterising topological spaces
- A fair bit of cohomology theory been done in Homotopy Type Theory (HoTT):
 - Licata & Finster (2014)
 - Cavallo (2015)
 - Brunerie (2016)
 - Buchholtz & Favonia (2018)
 - van Doorn (2018)
- I have been working on integer cohomology in Cubical Type Theory (CuTT)

Introduction

- In CuTT, univalence has computational content, an thus we should be able to carry out computations relating to cohomology (e.g. in Cubical Agda)
- Problem with previous work: Either too general or not optimised enough for this to be feasible

Introduction

- In CuTT, univalence has computational content, an thus we should be able to carry out computations relating to cohomology (e.g. in Cubical Agda)
- Problem with previous work: Either too general or not optimised enough for this to be feasible
- In this talk, I will show how one can do integer cohomology in CuTT fairly directly, without having to rely on
 - The Mayer-Vietrois sequence
 - The Freudenthal suspension theorem
 - Theory about connected types and functions

Preliminaries – Paths

- CuTT comes with a primitive interval type I
- This type has two constructors, i_0 and i_1 . These are to be though of as 0 and 1 on the unit interval.
- Given a two points x, y : A, the type of paths from x to y is denoted by $x \equiv y$

Preliminaries – Paths

- CuTT comes with a primitive interval type I
- This type has two constructors, i_0 and i_1 . These are to be though of as 0 and 1 on the unit interval.
- Given a two points x, y : A, the type of paths from x to y is denoted by x ≡ y
- We construct an element of this type by providing a function $f: I \to A$ such that $f(i_0) := x$ and $f(i_1) := y$
- Here := denotes definitional equality

Preliminaries – Paths

- CuTT comes with a primitive interval type I
- This type has two constructors, i_0 and i_1 . These are to be though of as 0 and 1 on the unit interval.
- Given a two points x, y : A, the type of paths from x to y is denoted by x ≡ y
- We construct an element of this type by providing a function $f: I \to A$ such that $f(i_0) := x$ and $f(i_1) := y$
- Here := denotes definitional equality
- If A itself is a type depending on I, so that e.g. $x : A(i_0)$ and $y : A(i_1)$ and f is a dependent function $(i : I) \rightarrow A(i)$, we say that we have a dependent path from x to y over A

Preliminaries – Function application/cong

• I will use cong for the construction usually referred to as ap in e.g. the HoTT book. Recall, this is just the function

$$cong_f : x \equiv y \rightarrow f(x) \equiv f(y)$$

 $cong_f(p) := \lambda i \cdot f(p(i))$

where $f: A \rightarrow B$ and x, y: A.

Preliminaries - Function application/cong

• I will use cong for the construction usually referred to as ap in e.g. the HoTT book. Recall, this is just the function

$$\operatorname{cong}_f : x \equiv y \to f(x) \equiv f(y)$$

 $\operatorname{cong}_f(p) := \lambda i \cdot f(p(i))$

where $f: A \rightarrow B$ and x, y: A.

 Given a binary function g: A → B → C, with x, y: A and z, w: B, there is a binary version of cong which will be used often.

$$\operatorname{cong}_g^2: x \equiv y \to z \equiv w \to g(x, z) \equiv g(y, w)$$
$$\operatorname{cong}_g^2(p, q) := \lambda i \cdot g(p(i), q(i))$$

Preliminaries – Suspensions

Definition 1

The suspension of a type A, denoted Susp(A), is a HIT with the following constructors

- Two points north, south : Susp(A)
- For every x : A, a path $merid(x) : north \equiv south$

Preliminaries – Spheres

Definition 2

- We define the *n*-sphere by induction on $n \ge 0$.
- For n = 0, we let $\mathbb{S}^0 := \mathsf{Bool}$.
- For n = 1, it is the HIT with the following constructors.
 - A point base : \mathbb{S}^1
 - A loop loop : base ≡ base
- For n > 1, we define it by

$$\mathbb{S}^n \coloneqq \mathsf{Susp}(\mathbb{S}^{n-1})$$

Preliminaries – Loop spaces

Definition 3

Given a pointed type $(A, *_A)$ and an integer $n \ge 1$, we define its n:th loop space $\Omega^n A$ by induction on n.

- $\Omega^1 A := (*_A \equiv *_A)$. This is itself a pointed type, pointed by $\operatorname{refl}_{*_A}$.
- $\Omega^{n+1}A := \Omega^1(\Omega^n A)$.

For n = 1, we drop the superscript and simply write ΩA .

Preliminaries – Truncations

Definition 4

Given a type A and an integer $n \ge -1$, its n-truncation, denoted by $||A||_n$, is a HIT with constructors

- For x : A, a term $|x| : ||A||_n$
- For every function $f: \mathbb{S}^{n+1} \to \|A\|_n$, a term $\mathsf{hub}_f: \|A\|_n$
- For every function $f: \mathbb{S}^{n+1} \to \|A\|_n$ and point $x: \mathbb{S}^{n+1}$, a path $\operatorname{spoke}_f(x): f(x) \equiv \operatorname{hub}_f$.

 $\|-\|_n$ turns a type into an *n*-type. That is, a type such that all loop spaces of dimension $\geq n$ are contractible.

Cohomology

Cohomology in HoTT is defined using Eilenberg-MacLane spaces.

Definition 5

Given an abelian group G, its n:th Eilenberg-MacLane space is the (unique) space $K_n(G)$ satisfying:

- $\Omega^n(K_n(G)) \simeq G$
- $||K_n(G)||_{n-1}$ is trivial that is, $K_n(G)$ is (n-1)-connected.

Cohomology

 Classically, we may identify the n:th cohomology group (with coefficients in a group G) of a CW-complex A with the space

$$\langle A \rightarrow K_n(G) \rangle$$

That is, the space of homotopy classes of functions from A to $K_n(G)$

- In HoTT, we take this as our definition of cohomology
 - The classical definition of (singular) cohomology uses notions that are not homotopy invariant, so we have no choice

Cohomology

Definition 6 (Cohomology with coefficients in G)

Given a type A, its n:th cohomology group with coefficients in G is defined by

$$H^n(A, G) := \|A \rightarrow K_n(G)\|_0$$

Table of Contents

1 Introduction

2 Eilenberg-MacLane spaces for integer cohomology

Group characterisations

Integer cohomology

• In this talk, we consider the case when $G = \mathbb{Z}$.

Definition 7

Given a type A, its n:th cohomology group with coefficients in $\mathbb Z$ is defined by

$$H^n(A) := ||A \rightarrow K_n||_0$$

where K_n is the family of types defined by

$$K_0 := \mathbb{Z}$$

$$K_{n+1} := \left\| \mathbb{S}^{n+1} \right\|_{n+1}$$

Integer cohomology

• We define the base point, $0_k : K_n$ by

$$0_k := 0$$
 if $n = 0$
 $0_k := |*_{\mathbb{S}^n}|$ if $n \ge 1$

 We need to show that our spaces K_n satisfy the axioms of Eilenberg-MacLane spaces. The connectivity criterion is immediate by definition of n-truncations.

 We need to show that our spaces K_n satisfy the axioms of Eilenberg-MacLane spaces. The connectivity criterion is immediate by definition of n-truncations.

Proposition 8

 \mathbb{S}^n is (n-1)-connected for each $n \geq 1$.

 We need to show that our spaces K_n satisfy the axioms of Eilenberg-MacLane spaces. The connectivity criterion is immediate by definition of n-truncations.

Proposition 8

 \mathbb{S}^n is (n-1)-connected for each $n \geq 1$.

Proof.

- We want to show that $\|\mathbb{S}^n\|_{n-1}$ is contractible.
- The definition of $\|A\|_{n-1}$ tells us that every map from \mathbb{S}^n into $\|A\|_{n-1}$ is constant. In particular, this means that the constructor $|-|:\mathbb{S}^n \to \|\mathbb{S}^n\|_{n-1}$ is constant.
- Thus, $\|\mathbb{S}^n\|_{n-1}$ is contractible.

Corollary 9

 K_n is (n-1)-connected for each $n \ge 1$.

Proof.

We have

$$\|K_n\|_{n-1} := \|\|\mathbb{S}^n\|_n\|_{n-1}$$
$$= \|\mathbb{S}^n\|_{n-1}$$

which is contractible by Proposition 8.

- We still need to show that $\Omega^n K_n \simeq \mathbb{Z}$
- We have $\Omega K_1 \simeq \Omega \mathbb{S}^1 \simeq \mathbb{Z}$, so the missing component is a proof that $\Omega K_{n+1} \simeq K_n$

- We still need to show that $\Omega^n K_n \simeq \mathbb{Z}$
- We have $\Omega K_1 \simeq \Omega \mathbb{S}^1 \simeq \mathbb{Z}$, so the missing component is a proof that $\Omega K_{n+1} \simeq K_n$
- In e.g. Brunerie (2016) the equivalence $\Omega K_{n+1} \simeq K_n$ is used to define the group structure on $H^n(A)$
 - K_n inherits a group structure from (path composition in) ΩK_{n+1}
 - $A \rightarrow K_n$ inherits this group structure by pointwise addition

• In this talk, we do things the other way around

- In this talk, we do things the other way around
 - First, define a commutative addition operation $+_k: K_n \times K_n \to K_n$.

- In this talk, we do things the other way around
 - First, define a commutative addition operation $+_k: K_n \times K_n \to K_n$.
 - Then, use this to get $\Omega K_{n+1} \simeq K_n$ "for free".

- In this talk, we do things the other way around
 - First, define a commutative addition operation $+_k: K_n \times K_n \to K_n$.
 - Then, use this to get $\Omega K_{n+1} \simeq K_n$ "for free".
- In order to define $+_k$, we give a more direct proof of a special case of the *Wedge Connectivity Lemma* (Lemma 8.6.2 in the HoTT book).

Wedge connectivity lemma for spheres

Lemma 10

Let $n, m \ge 1$ and suppose we have a fibration $P: \mathbb{S}^n \times \mathbb{S}^m \to (n+m-2)$ —Type together with functions

$$f_l: (x:\mathbb{S}^n) \to P(x,*)$$

 $f_r: (y:\mathbb{S}^m) \to P(*,y)$

and a path

$$p:f_l(*)\equiv f_r(*)$$

Wedge connectivity lemma for spheres

Then there is a function

$$f:((x,y):\mathbb{S}^n\times\mathbb{S}^m)\to P(x,y)$$

with homotopies

$$left: (x: \mathbb{S}^n) \to f(x, *) \equiv f_l(x) \tag{1}$$

$$right: (y:\mathbb{S}^m) \to f(*,y) \equiv f_r(y) \tag{2}$$

such that

$$p \equiv \operatorname{left}(*)^{-1} \cdot \operatorname{right}(*)$$

Furthermore, either left or right will hold definitonally.

Proof Sketch

ullet The proof proceeds by induction on n and m

Proof Sketch

- The proof proceeds by induction on n and m
- The case when n = m = 1, the function f is easily defined by pattern matching on \mathbb{S}^1 , sending

$$(x,\mathsf{base})\mapsto f_l(x) \ (\mathsf{base},\mathsf{loop}(i))\mapsto (p\cdot'\mathsf{cong}_{f_r}(\mathsf{loop})\cdot'p^{-1})(i) \ (\mathsf{loop}(i),\mathsf{loop}(j))\mapsto Q(i,j)$$

where \cdot' is dependent path composition and Q is given for free, using the fact that P is 0-truncated

Proof Sketch

- The proof proceeds by induction on n and m
- The case when n = m = 1, the function f is easily defined by pattern matching on \mathbb{S}^1 , sending

$$(x,\mathsf{base})\mapsto f_l(x) \ (\mathsf{base},\mathsf{loop}(i))\mapsto (p\cdot'\mathsf{cong}_{f_r}(\mathsf{loop})\cdot'p^{-1})(i) \ (\mathsf{loop}(i),\mathsf{loop}(j))\mapsto Q(i,j)$$

where \cdot' is dependent path composition and Q is given for free, using the fact that P is 0-truncated

 The idea for larger values of n and m is to repeat the above pattern and construct the path corresponding to the loop-cases above (which will now be merid(a)) by applying the induction hypothesis

Group structure on K_n

- Using this lemma, we get an immediate definition of $+_k: K_n \times K_n \to K_n$ when $n \ge 2$:
- By truncation elimination, it suffices to provide a map $\mathbb{S}^n \times \mathbb{S}^n \to K_n$
- K_n is an n-type, and thus by wedge connectivity, we only need to define maps

$$f_l, f_r: \mathbb{S}^n \to K_n$$

and prove that they agree on $*_{\mathbb{S}^n}$

- In both cases, we simply choose the inclusion map
 | − |: Sⁿ → K_n. The fact that these agree on * now holds trivially.
- This certainly looks like a naive choice of maps, but it provably agrees with with the addition on K_n defined in Brunerie (2016)
 - In fact, any two h-structures on K_n must be equal

Wedge connectivity breaks down for the special case n = 1.
 Fortunately, the addition here is easy to define explicitly by induction on S¹:

Wedge connectivity breaks down for the special case n = 1.
 Fortunately, the addition here is easy to define explicitly by induction on S¹:

$$|x| +_k |\mathsf{base}| := |x|$$

Wedge connectivity breaks down for the special case n = 1.
 Fortunately, the addition here is easy to define explicitly by induction on S¹:

$$|x| +_k |\mathsf{base}| := |x|$$

 $|\mathsf{base}| +_k |\mathsf{loop}(j)| := |\mathsf{loop}(j)|$

Wedge connectivity breaks down for the special case n = 1.
 Fortunately, the addition here is easy to define explicitly by induction on S¹:

$$|x| +_k |\mathsf{base}| := |x|$$

$$|\mathsf{base}| +_k |\mathsf{loop}(j)| := |\mathsf{loop}(j)|$$

$$|\mathsf{loop}(i)| +_k |\mathsf{loop}(j)| := P(i,j)$$

where P is a suitably chosen filler of the square

- For n = 0, $+_k$ is just regular integer addition
- With this addition, the group laws are very easy to prove using wedge connectivity and definitional equalities
- For instance, we can prove that $+_k$ is commutative directly and without any reference to Eckmann-Hilton

Commutativity

Proposition 11

For any $n \ge 0$ and $x, y : K_n$, we have that

$$x +_k y \equiv y +_k x$$

Proof

The case when n = 0 is trivial, so let us assume that $n \ge 1$.

• The goal type is an (n-1)-type. Hence, we may apply the wedge-connectivity lemma.

Commutativity

Proof (contd.)

• We have, due to reductions:

refl:
$$|x| +_k 0_k \equiv |x|$$

right (x) : $0_k +_k |x| \equiv |x|$

 It remains to show that these two paths are equal at *. This holds by definition.

Commutativity

- The remaining group laws are proved in a similar manner
- Subtraction is easily constructed using the fact that $+_k$ is an equivalence (since it is just the identity at 0_k)
- Before we continue, we look at some other consequences of this new operation

Properties of ΩK_n

Lemma 12

For any $p, q : \Omega K_n$, we have $p \cdot q \equiv \operatorname{cong}_{+_k}^2(p, q)$

Proof.

Since $p, q: 0_k \equiv 0_k$ and $0_k +_k 0_k \equiv 0_k$ holds definitionally, we have, by the right- and left-unit laws that

$$p \equiv \mathsf{cong}_{\lambda \times ... \times +_k 0_k}(p)$$

$$q \equiv \mathsf{cong}_{\lambda \, y \, . \, \mathsf{0}_k +_k y}(q)$$

By functoriality of cong², we have that

$$cong_{\lambda_{X}, x+k}(p) \cdot cong_{\lambda_{Y}, 0_{k}+k}(q) \equiv cong_{+k}^{2}(p, q)$$

and we are done.

Properties

Lemma 13

For any $p, q : \Omega K_n$, we have that $\operatorname{cong}_{+_k}^2(p, q) \equiv \operatorname{cong}_{+_k}^2(q, p)$

Proof.

Proved like Lemma 12, abusing definitional equalities and commutativity of $+_k$.

Corollary 14

 ΩK_n is commutative w.r.t. path composition.

$$\Omega K_{n+1} \simeq K_n$$

• Our new addition also simplifies the proof of $\Omega K_{n+1} \simeq K_n$ significantly.

Theorem 15

For any $n \geq 1$, we have $\Omega K_{n+1} \simeq K_n$.

Proof

The proof is by the encode-decode method. It boils down to showing that the map $\sigma: K_n \to \Omega K_{n+1}$ (defined below) is an equivalence.

$$\sigma(|a|) := \operatorname{cong}_{\lambda \times .|x|}(\operatorname{merid}(a) \cdot \operatorname{merid}(*)^{-1})$$

$$\Omega K_{n+1} \simeq K_n$$

• The proof is by the encode-decode method. We begin by defining the code fibration Code : $K_{n+1} \rightarrow n$ -Type. Since n-Type is an (n+1)-type, we may do this by truncation elimination.

$$egin{aligned} \operatorname{Code}(|\operatorname{north}|) &\coloneqq \mathcal{K}_n \ \operatorname{Code}(|\operatorname{south}|) &\coloneqq \mathcal{K}_n \ \operatorname{Code}(|(\operatorname{merid}(a))(i)|) &\coloneqq (\operatorname{ua}(\lambda\,y\,.|\,a|\,+_k\,y))(i) \end{aligned}$$

using that $\lambda y \cdot x +_k y$ is an equivalence for any $x : K_n$.

Cohomology group structure

• The encode function $\operatorname{encode}_x: 0_k \equiv x \to \operatorname{Code}(x)$ is as usual defined by

$$encode_x(p) := transport^{\lambda i \cdot Code(p(i))}(0_k)$$

• The decode function $\operatorname{decode}_x : \operatorname{Code}(x) \to 0_k \equiv x$ is slightly more involved, but by the group laws of K_n things turn out to be pretty straight-forward. We do it by inducting on x so that

$$\mathsf{decode}_{|\mathsf{north}|}(|a|) \coloneqq \sigma(|a|)$$

 $\mathsf{decode}_{|\mathsf{south}|}(|a|) \coloneqq \mathsf{cong}_{\lambda \times .|x|}(\mathsf{merid}(a))$

$$\Omega K_{n+1} \simeq K_n$$

- For the case of $decode_{|(merid(b))(i)|}$, the problem essentially reduces to proving that σ is morphism in the sense that it maps addition in K_n to path composition.
- This is easily proved using wedge connectivity.
- Proving that these maps cancel over the base point follows by path induction and some simple algebra over K_n .

Cohomology group structure

The group structre on cohomology groups is immediately inherited from the structure on K_n . Given a type A, we define

$$0_h: H^n(A)$$

+_h: $H^n(A) \to H^n(A) \to H^n(A)$
-_h: $H^n(A) \to H^n(A)$

by

$$0_{h} := |\lambda x . 0_{k}|$$

$$|f| +_{h} |g| := |\lambda x . f(x) +_{k} g(x)|$$

$$-_{h} |f| := |\lambda x . -_{k} f(x)|$$

Table of Contents

1 Introduction

② Eilenberg-MacLane spaces for integer cohomology

3 Group characterisations

Group characterisations

- We are now ready to compute some cohomology groups
 - $H^n(\mathbb{S}^n)$
 - $H^n(A \vee B)$
 - $H^2(\mathbb{K}^2)$
- It turns out that all of these groups can be characterised by means of direct synthetic proofs, rather than by Mayer-Vietoris.
- Note: We only establish type equivalences and not group equivalences.

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$H^1(\mathbb{S}^1) \coloneqq \left\| \mathbb{S}^1 \to K_1 \right\|_0$$

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$H^{1}(\mathbb{S}^{1}) := \left\| \mathbb{S}^{1} \to K_{1} \right\|_{0}$$
$$\simeq \left\| \sum_{x:K_{1}} x \equiv x \right\|_{0}$$

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$H^{1}(\mathbb{S}^{1}) := \left\| \mathbb{S}^{1} \to K_{1} \right\|_{0}$$

$$\simeq \left\| \sum_{x:K_{1}} x \equiv x \right\|_{0}$$

$$\simeq \left\| K_{1} \times \Omega K_{1} \right\|_{0} \qquad \text{(base change)}$$

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$\begin{split} & \mathcal{H}^1(\mathbb{S}^1) \coloneqq \left\| \mathbb{S}^1 \to \mathcal{K}_1 \right\|_0 \\ & \simeq \left\| \sum_{x:\mathcal{K}_1} x \equiv x \right\|_0 \\ & \simeq \left\| \mathcal{K}_1 \times \Omega \mathcal{K}_1 \right\|_0 \qquad \text{(base change)} \\ & \simeq \left\| \mathcal{K}_1 \right\|_0 \times \left\| \Omega \mathcal{K}_1 \right\|_0 \end{split}$$

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$\begin{split} & \mathcal{H}^{1}(\mathbb{S}^{1}) \coloneqq \left\| \mathbb{S}^{1} \to \mathcal{K}_{1} \right\|_{0} \\ & \simeq \left\| \sum_{x:\mathcal{K}_{1}} x \equiv x \right\|_{0} \\ & \simeq \left\| \mathcal{K}_{1} \times \Omega \mathcal{K}_{1} \right\|_{0} \\ & \simeq \left\| \mathcal{K}_{1} \right\|_{0} \times \left\| \Omega \mathcal{K}_{1} \right\|_{0} \\ & \simeq \mathbb{I} \times \mathbb{Z} \end{split} \tag{base change}$$

Proposition 16

For $n \geq 0$, we have $H^n(\mathbb{S}^n) \simeq \mathbb{Z}$.

Proof

$$\begin{split} & \mathcal{H}^{1}(\mathbb{S}^{1}) \coloneqq \left\| \mathbb{S}^{1} \to \mathcal{K}_{1} \right\|_{0} \\ & \simeq \left\| \sum_{x:\mathcal{K}_{1}} x \equiv x \right\|_{0} \\ & \simeq \left\| \mathcal{K}_{1} \times \Omega \mathcal{K}_{1} \right\|_{0} \\ & \simeq \left\| \mathcal{K}_{1} \right\|_{0} \times \left\| \Omega \mathcal{K}_{1} \right\|_{0} \\ & \simeq \mathbb{1} \times \mathbb{Z} \\ & \simeq \mathbb{Z} \end{split} \tag{base change}$$

Proof (contd.)

$$H^{n+1}(\mathbb{S}^{n+1}) \coloneqq \left\| \mathsf{Susp}(\mathbb{S}^n) \to K_{n+1} \right\|_0$$

Proof (contd.)

$$H^{n+1}(\mathbb{S}^{n+1}) := \|\operatorname{Susp}(\mathbb{S}^n) \to K_{n+1}\|_0$$

$$\simeq \left\| \sum_{x,y:K_{n+1}} (\mathbb{S}^n \to x \equiv y) \right\|_0$$

Proof (contd.)

$$H^{n+1}(\mathbb{S}^{n+1}) := \|\operatorname{Susp}(\mathbb{S}^n) \to K_{n+1}\|_0$$

$$\simeq \left\| \sum_{x,y:K_{n+1}} (\mathbb{S}^n \to x \equiv y) \right\|_0$$

$$\simeq \| K_{n+1} \times K_{n+1} \times (\mathbb{S}^n \to \Omega K_{n+1}) \|_0$$

Proof (contd.)

$$\begin{split} H^{n+1}(\mathbb{S}^{n+1}) &:= \|\mathsf{Susp}(\mathbb{S}^n) \to K_{n+1}\|_0 \\ &\simeq \left\| \sum_{x,y:K_{n+1}} (\mathbb{S}^n \to x \equiv y) \right\|_0 \\ &\simeq \| K_{n+1} \times K_{n+1} \times (\mathbb{S}^n \to \Omega K_{n+1}) \|_0 \\ &\simeq \| \mathbb{S}^n \to \Omega K_{n+1} \|_0 \end{split}$$

Proof (contd.)

$$\begin{split} H^{n+1}(\mathbb{S}^{n+1}) &:= \|\mathsf{Susp}(\mathbb{S}^n) \to K_{n+1}\|_0 \\ &\simeq \left\| \sum_{x,y:K_{n+1}} (\mathbb{S}^n \to x \equiv y) \right\|_0 \\ &\simeq \|K_{n+1} \times K_{n+1} \times (\mathbb{S}^n \to \Omega K_{n+1})\|_0 \\ &\simeq \|\mathbb{S}^n \to \Omega K_{n+1}\|_0 \\ &\simeq \|\mathbb{S}^n \to K_n\|_0 \end{split}$$

Proof (contd.)

$$H^{n+1}(\mathbb{S}^{n+1}) := \|\operatorname{Susp}(\mathbb{S}^{n}) \to K_{n+1}\|_{0}$$

$$\simeq \left\| \sum_{x,y:K_{n+1}} (\mathbb{S}^{n} \to x \equiv y) \right\|_{0}$$

$$\simeq \|K_{n+1} \times K_{n+1} \times (\mathbb{S}^{n} \to \Omega K_{n+1})\|_{0}$$

$$\simeq \|\mathbb{S}^{n} \to \Omega K_{n+1}\|_{0}$$

$$\simeq \|\mathbb{S}^{n} \to K_{n}\|_{0}$$

$$\coloneqq H^{n}(\mathbb{S}^{n})$$

$$\simeq \mathbb{Z}_{t}$$

Definition 17

Given two pointed types $(A, *_A)$ and $(B, *_B)$, their wedge sum $A \vee B$ is defined as a HIT with the following constructors

- Two inclusion functions inl : $A \rightarrow A \lor B$ and inr : $B \rightarrow A \lor B$.
- A path push : $inl(*_A) \equiv inr(*_B)$

Definition 17

Given two pointed types $(A, *_A)$ and $(B, *_B)$, their wedge sum $A \vee B$ is defined as a HIT with the following constructors

- Two inclusion functions inl : $A \rightarrow A \lor B$ and inr : $B \rightarrow A \lor B$.
- A path push : $inl(*_A) \equiv inr(*_B)$

Proposition 18

For any pointed types $(A, *_A)$ and $(B, *_B)$, we have $H^n(A \vee B) \simeq H^n(A) \times H^n(B)$ for $n \geq 1$.

Definition 17

Given two pointed types $(A, *_A)$ and $(B, *_B)$, their wedge sum $A \vee B$ is defined as a HIT with the following constructors

- Two inclusion functions inl : $A \rightarrow A \lor B$ and inr : $B \rightarrow A \lor B$.
- A path push : $inl(*_A) \equiv inr(*_B)$

Proposition 18

For any pointed types $(A, *_A)$ and $(B, *_B)$, we have $H^n(A \vee B) \simeq H^n(A) \times H^n(B)$ for $n \geq 1$.

Proof

We want to show that

$$||A \vee B \rightarrow K_n||_0 \simeq ||A \rightarrow K_n||_0 \times ||B \rightarrow K_n||_0$$

Proof (contd.)

 We pick the naive candidate for the left-to-right map F: simply forget about the additional data given by push

Proof (contd.)

- We pick the naive candidate for the left-to-right map F: simply forget about the additional data given by push
- That is, we define

$$F: \|A \vee B \to K_n\|_0 \to \|A \to K_n\|_0 \times \|B \to K_n\|_0$$
 by

$$F(|f|) := (|f \circ \mathsf{inl}|, |f \circ \mathsf{inr}|)$$

Proof (contd.)

- We pick the naive candidate for the left-to-right map F: simply forget about the additional data given by push
- That is, we define $F: \|A \vee B \to K_n\|_0 \to \|A \to K_n\|_0 \times \|B \to K_n\|_0 \text{ by}$ $F(|f|) \coloneqq (|f \circ \mathsf{inl}|, |f \circ \mathsf{inr}|)$
- The inverse F^{-1} is somewhat less obvious. Problem : There is no guarantee that two maps $f:A\to K_n$ and $g:B\to K_n$ satisfy $f(*_A)\equiv g(*_B)$.

Proof (contd.)

- We pick the naive candidate for the left-to-right map F: simply forget about the additional data given by push
- That is, we define $F: \|A \vee B \to K_n\|_0 \to \|A \to K_n\|_0 \times \|B \to K_n\|_0 \text{ by}$ $F(|f|) := (|f \circ \mathsf{inl}|, |f \circ \mathsf{inr}|)$
- The inverse F^{-1} is somewhat less obvious. Problem : There is no guarantee that two maps $f:A\to K_n$ and $g:B\to K_n$ satisfy $f(*_A)\equiv g(*_B)$.
- Solution: perform a suitable base change

Proof (contd.)

• We define $F^{-1}: \|A \to K_n\|_0 \times \|B \to K_n\|_0 \to \|A \lor B \to K_n\|_0$ by

$$F^{-1}(|f|,|g|) := |\phi_{f,g}|$$

where $\phi_{f,g}: A \vee B \to K_n$ is defined inductively by

Proof (contd.)

• We define $F^{-1}: \|A \to K_n\|_0 \times \|B \to K_n\|_0 \to \|A \lor B \to K_n\|_0$ by

$$F^{-1}(|f|,|g|) := |\phi_{f,g}|$$

where $\phi_{f,g}: A \vee B \to K_n$ is defined inductively by

$$\phi_{f,g}(\mathsf{inl}(x)) \coloneqq f(x) +_k g(*_B)$$

Proof (contd.)

• We define $F^{-1}: \|A \to K_n\|_0 \times \|B \to K_n\|_0 \to \|A \lor B \to K_n\|_0$ by

$$F^{-1}(|f|,|g|) := |\phi_{f,g}|$$

where $\phi_{f,g}:A\vee B\to K_n$ is defined inductively by

$$\phi_{f,g}(\mathsf{inl}(x)) \coloneqq f(x) +_k g(*_B)$$

$$\phi_{f,g}(\mathsf{inr}(x)) \coloneqq f(*_A) +_k g(x)$$

Proof (contd.)

• We define $F^{-1}: \|A \to K_n\|_0 \times \|B \to K_n\|_0 \to \|A \lor B \to K_n\|_0$ by

$$F^{-1}(|f|,|g|) := |\phi_{f,g}|$$

where $\phi_{f,g}:A\vee B\to K_n$ is defined inductively by

$$\phi_{f,g}(\mathsf{inl}(x)) := f(x) +_k g(*_B)$$

$$\phi_{f,g}(\mathsf{inr}(x)) := f(*_A) +_k g(x)$$

$$\phi_{f,g}(\mathsf{push}(i)) := f(*_A) +_k g(*_B)$$

Proof (contd.)

• We define $F^{-1}:\|A \to K_n\|_0 \times \|B \to K_n\|_0 \to \|A \lor B \to K_n\|_0$ by

$$F^{-1}(|f|,|g|) := |\phi_{f,g}|$$

where $\phi_{f,g}:A\vee B\to K_n$ is defined inductively by

$$\phi_{f,g}(\mathsf{inl}(x)) \coloneqq f(x) +_k g(*_B)$$

$$\phi_{f,g}(\mathsf{inr}(x)) \coloneqq f(*_A) +_k g(x)$$

$$\phi_{f,g}(\mathsf{push}(i)) \coloneqq f(*_A) +_k g(*_B)$$

• The fact that $F(F^{-1}(x)) \equiv x$ is easy

Proof (contd.)

We want to show that

$$F^{-1}(F(\mid f\mid)) := |\phi_{(f \circ \mathsf{inl}),(f \circ \mathsf{inr})}| \equiv |f|$$

for any $f: A \vee B \rightarrow K_n$

• Since this is a proposition and K_n is 0-connected, we may assume that we have a path

$$p: f(\mathsf{inl}(*_A)) \equiv 0_k$$

• Under this assumption, we prove that $f(x) \equiv \phi_{(f \circ \text{inl}), (f \circ \text{inr})}(x)$ for $x : A \vee B$ by induction on x.

Proof

$$P_I: (x:A) \rightarrow f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$

Proof

$$P_l: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by
$$f(\operatorname{inl}(x)) \xrightarrow{} f(\operatorname{inl}(x)) +_k 0_k$$

$$\xrightarrow{} f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$$

$$\xrightarrow{} f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$

Proof

$$P_l: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by $f(\operatorname{inl}(x)) \xrightarrow{\text{rUnit}} f(\operatorname{inl}(x)) +_k 0_k$
 $f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$
 $f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$

Proof

$$P_l: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by
$$f(\operatorname{inl}(x)) \xrightarrow{\operatorname{rUnit}} f(\operatorname{inl}(x)) +_k 0_k$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(p)} f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$$

$$\xrightarrow{\operatorname{f}(\operatorname{inl}(x))+_k} f(\operatorname{inl}(*_B))$$

Proof

$$P_{I}: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_{k} f(\operatorname{inr}(*_{B})) \text{ defined by}$$

$$f(\operatorname{inl}(x)) \xrightarrow{\text{rUnit}} f(\operatorname{inl}(x)) +_{k} 0_{k}$$

$$\xrightarrow{\text{cong}_{f(\operatorname{inl}(x))+k}(p)} f(\operatorname{inl}(x)) +_{k} f(\operatorname{inl}(*_{A}))$$

$$\xrightarrow{\text{cong}_{f(\operatorname{inl}(x))+k}(\operatorname{push})} f(\operatorname{inl}(x)) +_{k} f(\operatorname{inr}(*_{B}))$$

Proof

• For inl(x), we give the homotopy

$$P_{l}: (x:A) \rightarrow f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_{k} f(\operatorname{inr}(*_{B})) \text{ defined by}$$

$$f(\operatorname{inl}(x)) \xrightarrow{r\text{Unit}} f(\operatorname{inl}(x)) +_{k} 0_{k}$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+k}(p)} f(\operatorname{inl}(x)) +_{k} f(\operatorname{inl}(*_{A}))$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+k}(\operatorname{push})} f(\operatorname{inl}(x)) +_{k} f(\operatorname{inr}(*_{B}))$$

$$P_r: (x:B) \to f(\operatorname{inr}(x)) \equiv f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$$

Proof

For inl(x), we give the homotopy

$$P_I: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by

$$f(\operatorname{inl}(x)) \xrightarrow{\operatorname{rUnit}} f(\operatorname{inl}(x)) +_k 0_k$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(p)} f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(\operatorname{push})} f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$

$$P_r: (x:B) \to f(\operatorname{inr}(x)) \equiv f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$$
 defined by

$$f(\operatorname{inr}(x))$$
 $0_k +_k f(\operatorname{inr}(x))$ $f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$

Proof

• For inl(x), we give the homotopy

$$P_l: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by

$$f(\operatorname{inl}(x)) \xrightarrow{\operatorname{rUnit}} f(\operatorname{inl}(x)) +_k 0_k$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(p)} f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(\operatorname{push})} f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$

$$P_r: (x:B) \to f(\operatorname{inr}(x)) \equiv f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$$
 defined by

$$f(\operatorname{inr}(x))$$
 $0_k +_k f(\operatorname{inr}(x))$ $f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$

Proof

For inl(x), we give the homotopy

$$P_I: (x:A) \to f(\operatorname{inl}(x)) \equiv f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$
 defined by

$$f(\operatorname{inl}(x)) \xrightarrow{\operatorname{rUnit}} f(\operatorname{inl}(x)) +_k 0_k$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(p)} f(\operatorname{inl}(x)) +_k f(\operatorname{inl}(*_A))$$

$$\xrightarrow{\operatorname{cong}_{f(\operatorname{inl}(x))+_k}(\operatorname{push})} f(\operatorname{inl}(x)) +_k f(\operatorname{inr}(*_B))$$

$$P_r: (x:B) \to f(\operatorname{inr}(x)) \equiv f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$$
 defined by

$$f(\operatorname{inr}(x)) \xrightarrow{\operatorname{IUnit}} 0_k +_k f(\operatorname{inr}(x))$$

$$\xrightarrow{\operatorname{cong}_{-k}f(\operatorname{inl}(x))(p)} f(\operatorname{inl}(*_A)) +_k f(\operatorname{inr}(x))$$

Proof (contd.)

• For f(push(i)) we need to fill the following square

Proof (contd.)

• For f(push(i)) we need to fill the following square

• We may substitute 0_k for $f(inl(*_A))$ and $f(inr(*_B))$ (using the paths p and push)

Proof (contd.)

• For f(push(i)) we need to fill the following square

- We may substitute 0_k for $f(inl(*_A))$ and $f(inr(*_B))$ (using the paths p and push)
- This will give some nice reductions in $P_I(*_A)$ and $P_r(*_B)$

Proof.

 Exploiting definitional equalities, this substitution reduces the problem to filling the following square

Trivial

Definition 19

The Klein bottle, \mathbb{K}^2 , is a HIT defined by:

- A point base : \mathbb{K}^2
- Two paths ℓ_1, ℓ_2 : base \equiv base
- A filler □ of the following square

Alternatively, we may interpret \square as a path $\ell_2 \cdot \ell_1 \cdot \ell_2 \equiv \ell_1$. For our purposes, this interpretation is more useful.

• For any type A, we may characterise the function space $(\mathbb{K}^2 \to A)$ by the nested Σ -type

$$\sum_{x:A} \sum_{p,q:x\equiv x} (p \cdot q \cdot p \equiv q)$$

When path composition over A is commutative, we have that

$$(p \cdot q \cdot p \equiv q)$$

 $\simeq (p^2 \cdot q \equiv q)$
 $\simeq (p^2 \equiv \text{refl})$

• Thus, in particular we have that

$$(\mathbb{K}^2 o \mathcal{K}_n) \simeq \sum_{x:\mathcal{K}_n} \sum_{p,q:x\equiv x} (p^2 \equiv \mathsf{refl})$$

 This is the key-component in the proof of the following proposition.

Proposition 20

$$H^2(\mathbb{K}^2) \simeq \mathbb{Z}/2\mathbb{Z}$$

Proof

• We begin by rewriting $H^2(\mathbb{K}^2)$ in accordance with the previous discussion.

$$\begin{split} H^2(\mathbb{K}^2) &:= \left\| \mathbb{K}^2 \to K_2 \right\|_0 \\ &\simeq \left\| \sum_{x:K_2} \sum_{p,q:x \equiv x} (p^2 \equiv \mathsf{refl}) \right\|_0 \end{split}$$

Proof

• We begin by rewriting $H^2(\mathbb{K}^2)$ in accordance with the previous discussion.

$$H^2(\mathbb{K}^2) := \left\| \mathbb{K}^2 \to \mathcal{K}_2 \right\|_0$$

$$\simeq \left\| \sum_{x:\mathcal{K}_2} \sum_{p,q:x\equiv x} (p^2 \equiv \mathsf{refl}) \right\|_0$$

• For connectedness-reasons, this can be simplified to

$$\left\| \sum_{p:\Omega K_2} (p^2 \equiv \mathsf{refl})
ight\|_0$$

• Using the equivalence $\sigma: K_n \simeq \Omega K_{n+1}$ and the fact it is a morphism with respect to path composition and $+_k$, the above type is just

$$\left\| \sum_{x:K_1} x +_k x \equiv 0_k \right\|_0$$

• Using the equivalence $\sigma: K_n \simeq \Omega K_{n+1}$ and the fact it is a morphism with respect to path composition and $+_k$, the above type is just

$$\left\| \sum_{x:K_1} x +_k x \equiv 0_k \right\|_0$$

• An element |(x, p)| of this type falls into two categories:

• Using the equivalence $\sigma: K_n \simeq \Omega K_{n+1}$ and the fact it is a morphism with respect to path composition and $+_k$, the above type is just

$$\left\| \sum_{x:K_1} x +_k x \equiv 0_k \right\|_0$$

- An element |(x, p)| of this type falls into two categories:
 - When $x := 0_k$, p is just a loop in ΩK_1 (since $0_k +_k 0_k := 0_k$). Furthermore, p is equal to loop^k for some $k : \mathbb{Z}$.

• Using the equivalence $\sigma: K_n \simeq \Omega K_{n+1}$ and the fact it is a morphism with respect to path composition and $+_k$, the above type is just

$$\left\| \sum_{x:K_1} x +_k x \equiv 0_k \right\|_0$$

- An element |(x, p)| of this type falls into two categories:
 - When $x := 0_k$, p is just a loop in ΩK_1 (since $0_k +_k 0_k := 0_k$). Furthermore, p is equal to loop^k for some $k : \mathbb{Z}$.
 - When x := loop(i), p is essentially a path loop \cdot loop \equiv refl, since $\text{cong}_{+k}^2(\text{loop}, \text{loop}) := \text{loop} \cdot \text{loop}$.

- It suffices to show that for any element $\alpha: \left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$ on the form $|0_k, \mathsf{loop}^k|$ we have that
 - $\alpha \equiv |0_k, \text{refl}|$ if k is even
 - $\alpha \equiv |0_k, \text{loop}| \text{ if } k \text{ is odd}$

- It suffices to show that for any element $\alpha: \left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$ on the form $|0_k, \mathsf{loop}^k|$ we have that
 - $\alpha \equiv |0_k, \text{refl}|$ if k is even
 - $\alpha \equiv |0_k, \text{loop}| \text{ if } k \text{ is odd}$
- Idea: induct on k. Let us assume $k \ge 0$
 - k < 0 is handled in an entirely symmetric manner

- It suffices to show that for any element $\alpha: \left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$ on the form $|0_k, \mathsf{loop}^k|$ we have that
 - $\alpha \equiv |0_k, \text{refl}|$ if k is even
 - $\alpha \equiv |0_k, \text{loop}| \text{ if } k \text{ is odd}$
- Idea: induct on k. Let us assume k > 0
 - k < 0 is handled in an entirely symmetric manner
- When k = 0, 1, the lemma is trivial

• For the base case is k = 2. We want to show that $|0_k, \text{refl}| \equiv |0_k, \text{loop}^2|$. Let us ignore the truncation.

- For the base case is k = 2. We want to show that $|0_k, \text{refl}| \equiv |0_k, \text{loop}^2|$. Let us ignore the truncation.
- We first have to prove that the first components agree that is, we need a path $0_k \equiv 0_k$. Rather than choosing the tempting refl, we choose loop : $0_k \equiv 0_k$.

- For the base case is k = 2. We want to show that $|0_k, \text{refl}| \equiv |0_k, \text{loop}^2|$. Let us ignore the truncation.
- We first have to prove that the first components agree that is, we need a path 0_k ≡ 0_k. Rather than choosing the tempting refl, we choose loop: 0_k ≡ 0_k.
- We now need to provide a dependent path from refl to loop² over the path λi . (loop(i) + $_k$ loop(i) $\equiv 0_k$). But λi . loop(i) + $_k$ loop(i) is definitionally equal to loop², so this becomes trivial.

• For the inductive step, the trick is defining a multiplication \diamond on $\left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$ satisfying

$$|0_k, p| \diamond |0_k, q| \equiv |0_k, p \cdot q|$$

for any $p, q : \Omega K_1$

This is easily carried out using the wedge connectivity lemma

• We now have, for every $k \ge 0$

$$|0_k, \mathsf{loop}^{k+2}| \equiv |0_k, \mathsf{loop}^k| \diamond |0_k, \mathsf{loop}^2|$$

 $\equiv |0_k, \mathsf{loop}^k|$

and thus we are done by the inductive hypothesis

• We now have, for every $k \ge 0$

$$|0_k, \mathsf{loop}^{k+2}| \equiv |0_k, \mathsf{loop}^k| \diamond |0_k, \mathsf{loop}^2|$$

$$\equiv |0_k, \mathsf{loop}^k|$$

and thus we are done by the inductive hypothesis

• This proves (modulo some handwaving) that there are precisely 2 elements in $\left\|\sum_{x:K_1}x+_kx\equiv 0_k\right\|_0$

• We now have, for every $k \ge 0$

$$|0_k, \mathsf{loop}^{k+2}| \equiv |0_k, \mathsf{loop}^k| \diamond |0_k, \mathsf{loop}^2|$$

$$\equiv |0_k, \mathsf{loop}^k|$$

and thus we are done by the inductive hypothesis

- This proves (modulo some handwaving) that there are precisely 2 elements in $\left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$
- Thus $H^2(\mathbb{K}^2) \simeq \left\| \sum_{x:K_1} x +_k x \equiv 0_k \right\|_0 \simeq \mathbb{Z}/2\mathbb{Z}$

• We now have, for every $k \ge 0$

$$|0_k, \mathsf{loop}^{k+2}| \equiv |0_k, \mathsf{loop}^k| \diamond |0_k, \mathsf{loop}^2|$$

$$\equiv |0_k, \mathsf{loop}^k|$$

and thus we are done by the inductive hypothesis

- This proves (modulo some handwaving) that there are precisely 2 elements in $\left\|\sum_{x:K_1} x +_k x \equiv 0_k\right\|_0$
- Thus $H^2(\mathbb{K}^2)\simeq \left\|\sum_{x:K_1}x+_kx\equiv 0_k\right\|_0\simeq \mathbb{Z}/2\mathbb{Z}$
- It is easy to show that this map can be turned into a homomorphism, using decidability of $\mathbb{Z}/2\mathbb{Z}$

- Given a characterisation $f: H^n(A) \cong G$, I have run two tests in Cubical Agda:
- Test 1: check whether $f(f^{-1}(x))$ reduces to x (assuming G is a closed type)
- Test 2: check whether $f(f^{-1}(x) +_h f^{-1}(y))$ reduces to x + y

Group	Equiv.	Test 1	Test 2
$H^1(\mathbb{S}^1)$	\mathbb{Z}	Fast	Fast
$H^2(\mathbb{S}^2)$	\mathbb{Z}	Fast	?/very slow
$H^{n>2}(\mathbb{S}^n)$	\mathbb{Z}	?	?

Table: Spheres

Group	Equiv.	Test 1	Test 2
$H^1(\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2)$	$\mathbb{Z} \times \mathbb{Z}$	Fast	Fast
$H^2(\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2)$	\mathbb{Z}	Ok	?

Table: Wedge sums (of spheres)

Group	Equiv.	Test 1	Test 2
$H^1(\mathbb{T}^2)$	$\mathbb{Z} \times \mathbb{Z}$	Fast	Fast
$H^2(\mathbb{T}^2)$	\mathbb{Z}	Fast	?/very slow

Table: Torus

Group	Equiv.	Test 1	Test 2
$H^1(\mathbb{K}^2)$	\mathbb{Z}	Fast	Fast
$H^2(\mathbb{K}^2)$	$\mathbb{Z}/2\mathbb{Z}$?	?

Table: Klein bottle

Conclusions

- Elementary cohomology theory can be done synthetically in CuTT
- With the right choice of the addition $+_k$ on Eilenberg-MacLane spaces, things turn out to be even easier, due to reductions
- The cubical primitives help make many proofs particularly short
- Path induction is only used in some very specific cases (and even then can often be replaced by more cubical proofs)

Conclusions

- Agda still struggles with computations for dimension $n \ge 2$
- This is perhaps not so surprising at this stage, the computations are starting to look a lot like those of the Brunerie number
- In contrast to my previous efforts, however, there is a big improvement for n = 1 and n = 2.
- We get a bunch of new examples of "Brunerie numbers"

Future work

- Define the cup product and try to compute it for the cohomology rings of \mathbb{T}^2 and $\mathbb{S}^1 \vee \mathbb{S}^1 \vee \mathbb{S}^2$
- See what can be done about more general cohomology theories from a computational point of view

References I

- Guillaume Brunerie. "On the homotopy groups of spheres in homotopy type theory." In: (2016). URL: https://ezp.sub.su.se/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1606.05916&site=eds-live&scope=site.
- Ulrik Buchholtz and Kuen-Bang Hou Favonia. "Cellular Cohomology in Homotopy Type Theory". In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. Oxford, United Kingdom: Association for Computing Machinery, 2018, pp. 521–529. ISBN: 9781450355834. DOI: 10.1145/3209108.3209188. URL: https://doi.org/10.1145/3209108.3209188.
- Evan Cavallo. "Synthetic Cohomology in Homotopy Type Theory". In: (2015). Master's thesis.

References II

- Floris Doorn. "On the Formalization of Higher Inductive Types and Synthetic Homotopy Theory". In: (Aug. 2018).
- Daniel Licata and Eric Finster. "Eilenberg-MacLane spaces in homotopy type theory". In: (July 2014). DOI: 10.1145/2603088.2603153.