Design of a PID Controller for a Molten Salt Microreactor Master's Plan

Sam J. Root,¹
Major Professor: Michael McKellar,¹
Committee Members: Robert A. Borrelli¹, Dakota Roberson²

University of Idaho · Idaho Falls Center for Higher Education ¹Department of Nuclear Engineering and Industrial Management ²Department of Electrical and Computer Engineering

Outline

Scope

Molten Salt Nuclear Battery (MSNB)

• Self-Contained liquid fueled molten salt micro-reactor

Simplified schematic drawing of an $\ensuremath{\mathsf{MSNB}}$

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor
- 1 MW design using *UF*₄dissolved in *FLiNaK*

Simplified schematic drawing of an MSNB

Molten Salt Nuclear Battery (MSNB)

- Self-Contained liquid fueled molten salt micro-reactor
- 1 MW design using *UF*₄dissolved in *FLiNaK*
- Criticality is manipulated using axial control drums
 - Neutron absorber plate covering cylinders of neutron reflector
 - Drums are rotated to point more absorber towards the core to insert negative control reactivity

MsNB Control Drums

Background on MSNB

Neutronics

[?]

Thermal Hydraulics

[?]

Process Control

Me

[?]

[?]

MSNB design

Figures from plotter (neutronics paper?), with a focus on control actuation

Applied Literature Review

Passive Feedback

Time-Variance and Non-Linearity

Future Work

Control Drum Characterization MCNP

Process Simulation

Python

Controller Tuning

MATLAB-Simulink

Python

Timeline

Table: Timeframe for Execution of Project

Tasks	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.
Control Drums	X	X	X				
Process Simulation		X	X	X			
Controller Tuning				X	X		
Implementation					X	X	
Cross-Cutting						X	X
Defend							X

Final Remarks

Other Considerations

Discussion

Acknowledgements

This work and my coursework is being completed under a Graduate Fellowship funded by Nuclear Regulatory Commission (NRC)

References

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some udata that should have been added to the final page this extra page has been added to the final page this extra page will go away, because the document (without altering it) this surplus page will go away, because

now knows how many pages to expect for this document.