

NUFFT and Compressed Sensing

Dr. Zhengguo Tan and Prof. Dr. Moritz Zaiß

Friedrich-Alexander-Universität Erlangen-Nürnberg March 4, 2024

Outline

Non-Uniform FFT (NUFFT)

Compressed Sensing (CS)

1 Non-Uniform FFT (NUFFT)

Introduction: Cartesian Sampling (e.g. FLASH) ¹

Gradients:

- (a) Slice selection
- (b) Rewinder
- (c) Prephasing
- (d) Readout

¹Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging. Rapid NMR imaging using low flip-angle pulses. *J Magn Reson* (1986).

Introduction: Fast Fourier Transform

$$s(k_x, k_y) = \int \rho(x, y) \cdot e^{-i(k_x \cdot x + k_y \cdot y)} dx dy$$
 (1)

Non-Cartesian Sampling (e.g. Radial ² and Spiral ³)

²Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. *Nature* (1973).

³Nishimura DG, Irarrazabal P, Meyer C. A velocity k-space analysis of flow effects in echo-planar and spiral imaging. *Magn Reson Med* (1995).

Downsides of non-Cartesian sampling

- Reconstruction is more complicated
- Sensitive to gradient errors (delays, eddy currents)
- Sensitive to B0 errors

Good for PhD theses!

3

Courtesy: Dr. Frank Ong @ UC Berkeley

Image Reconstruction of Non-Cartesian Data Requires NUFFT

NUFFT: Non-Uniform FFT 4, 5, 6

- 1. Density compensation
- 2. Gridding: Convolution with the Kaiser-Bessel window
- 3. Deapodization & Inverse FFT

⁴OSulllivan J. A fast sinc function gridding algorithm for Fourier inversion in computed tomography. *IEEE Trans Med Imaging* (1985).

⁵Jackson J, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. *IEEE Trans Med Imaging* (1991).

⁶Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. *IEEE Trans Med Imaging* (2003).

NUFFT Step 1: Density Compensation

- \blacktriangleright Non-Cartesian samples are usually not uniformly acquired in k-space.
- ightharpoonup e.g. In radial sampling, the central k-space points are more densely acquired than peripheral k-space points.
- Analytical density compensation function (DCF) in radial sampling.

Given
$$ktrj = k_x + 1i * k_y$$
,

$$DCF = \sqrt{k_x^2 + k_y^2} \tag{2}$$

DCF in Radial Sampling

NUFFT Step 2: Gridding (Interpolation) with the Kaiser-Bessel Window

Interpolation ^a

ahttps://users.fmrib.ox.ac.uk/~karla/reading_group/lecture_notes/AdvRecon_Pauly_ read.pdf

Kaiser-Bessel Window

NUFFT Step 3: Deapodization

► The gridded signal on Cartesian grids can be written as the convolution between the non-Cartesian signal and the Kaiser-Bessel window,

$$s_{\text{Cart}} = s_{\text{non-Cart}} \circledast W_{\text{kb}}$$
 (3)

with FFT, it becomes

$$\mathcal{F}\{s_{\text{Cart}}\} = \mathcal{F}\{s_{\text{non-Cart}}\} \cdot \mathcal{F}\{W_{\text{kb}}\}$$
(4)

► Then deapodization is

$$I = \mathcal{F}\{s_{\text{Cart}}\}./\mathcal{F}\{W_{\text{kb}}\}\tag{5}$$

NUFFT Implementations

- 1. Python / PyTorch -
 - ▷ sigpy: https://github.com/mikgroup/sigpy
 - torchkbnufft: https://github.com/mmuckley/torchkbnufft
- 2. C -
 - ▶ Gridding Functions: http://mrsrl.stanford.edu/~brian/gridding/
 - ▶ BART: https://github.com/mrirecon/bart

► Double "num_samples" in the function "make_adc"

- ► Double "num_samples" in the function "make_adc"
- ► Reduce "Nphase", what undersampling artifacts do you see?

- Double "num_samples" in the function "make_adc"
- ► Reduce "Nphase", what undersampling artifacts do you see?
- ▶ What artifacts do you see in the presence of gradient delays?

- Double "num_samples" in the function "make_adc"
- ► Reduce "Nphase", what undersampling artifacts do you see?
- What artifacts do you see in the presence of gradient delays?
- ▶ Do gradient delays also exist in Cartesian sampling? If so, why don't you see image artifacts there?

- Double "num_samples" in the function "make_adc"
- ► Reduce "Nphase", what undersampling artifacts do you see?
- ▶ What artifacts do you see in the presence of gradient delays?
- ▶ Do gradient delays also exist in Cartesian sampling? If so, why don't you see image artifacts there?
- ► How would you correct for gradient delays in reality?

- Double "num_samples" in the function "make_adc"
- Reduce "Nphase", what undersampling artifacts do you see?
- What artifacts do you see in the presence of gradient delays?
- ▶ Do gradient delays also exist in Cartesian sampling? If so, why don't you see image artifacts there?
- ► How would you correct for gradient delays in reality?
- ▶ What if the density compensation function is unknown?

2 Compressed Sensing (CS)

Compressed Sensing

- Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math (2006).
- ► Lustig M, Dohono D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. *Magn Reson Med* (2007).
- ▶ Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. *Magn Reson Med* (2007).
- ► Comics from http://people.eecs.berkeley. edu/~mlustig/comics1.html

Courtesy: Prof. Dr. Jon Tamir @ UT Austin

What is Nyquist Limit?

Nyquist Sampling Requirement

Given an imaging field-of-view (FOV), the sampling in k-space must satisfy

$$\Delta k \le 1/\text{FOV}$$
 (6)

Z Tan & M Zaiß · FAU · NUFFT & CS

How Compressed Sensing Goes Beyond Nyquist?

How Compressed Sensing Goes Beyond Nyquist?

Before Compressed Sensing: Parallel Imaging as SENSE 7

⁷Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. *Magn Reson Med* (1999).

Parallel Imaging as SENSE: Solving a Linear Inverse Problem

Objective function:

$$\operatorname{argmin}_{x} \|y - \mathcal{PFS}x\|_{2}^{2} \tag{7}$$

- ► Solver: gradient descent, or conjugate gradient, or ADAM, ...
- ▶ Data update via gradient method, e.g. FISTA 8:

$$x^{(t+1)} = x^{(t)} + \alpha \cdot \mathcal{S}^H \mathcal{F}^{-1} \mathcal{P}^H (y - \mathcal{P} \mathcal{F} \mathcal{S} x^{(t)})$$

⁸Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sciences (2009).

What is Linear Inverse Problem and What is Gradient?

Objective function:

$$\operatorname{argmin}_{x} \|2 - x\|_{2}^{2}$$
 (8)

Given initial guess $x_{\text{prev}} = 0$ and learning rate $\alpha = 0.1$,

Iteration	$x_{ m prev}$	grad = 2 * (2 - x)	$x_{\text{curr}} = x_{\text{prev}} + \alpha * \text{grad}$
0	0	4	0.4
1	0.4	3.2	0.72
:	:	:	:
47	1.9999	0.0001	2

What is Linear Inverse Problem and What is Gradient?

```
x_prev = 0

for n in range(50):

    g = 2 * (2 - x_prev)

    x_curr = x_prev + 0.1 * g

    print(' iter %2d x_prev %6.4f grad %6.4f x_curr %6.4f'%(n, x_prev, g, x_curr))

    x_prev = x_curr
```


Inverse Problems can Become Under-determined / III-posed

Objective function:

$$\operatorname{argmin}_{x_1, x_2} \|2 - x_1 - x_2\|_2^2 \tag{9}$$

➤ You can't find an unique solution for this function.

Inverse Problems can Become Under-determined / III-posed

Objective function:

$$\operatorname{argmin}_{x_1, x_2} \|2 - x_1 - x_2\|_2^2 \tag{9}$$

- ➤ You can't find an unique solution for this function.
- ..., however, when there is prior knowledge, e.g.

s.t.
$$x_1 = x_2$$
 (10)

Inverse Problems can Become Under-determined / III-posed

Objective function:

$$\operatorname{argmin}_{x_1, x_2} \|2 - x_1 - x_2\|_2^2 \tag{9}$$

- ➤ You can't find an unique solution for this function.
- ..., however, when there is prior knowledge, e.g.

s.t.
$$x_1 = x_2$$
 (10)

 \blacktriangleright We can easily solve it, $x_1 = x_2 = 1$.

Z Tan & M Zaiß · FAU · NUFFT & CS 24/31 March 4, 2024

We can write this toy example in a matrix format

Objective function:

$$\operatorname{argmin}_{x_1, x_2} \|2 - x_1 - x_2\|_2^2 \tag{11}$$

It is equivalent to

$$\operatorname{argmin}_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \tag{12}$$

where
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, $\mathbf{y} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$

Does it look similar to the inverse problem in MRI?

$$\operatorname{argmin}_{x} \|y - \mathcal{PFS}x\|_{2}^{2} \tag{13}$$

Prior is the Game Changer in Compressed Sensing

▶ Prof. Dr. Gary Golver from Stanford: "We eventually only need to measure one point in k-space!!!"

Prior is the Game Changer in Compressed Sensing

- ▶ Prof. Dr. Gary Golver from Stanford: "We eventually only need to measure one point in k-space!!!"
- ► People like me: "What is going on here???"

Prior is the Game Changer in Compressed Sensing

- ▶ Prof. Dr. Gary Golver from Stanford: "We eventually only need to measure one point in k-space!!!"
- People like me: "What is going on here???"
- Prof. Dr. Mike Lustig @ UC Berkeley: "Sparsifying transformation changes the game!!!"

$$\operatorname{argmin}_{x} \|y - \mathcal{PFS}x\|_{2}^{2} + \lambda \|\Phi x\|_{1}$$
 (14)

where Φ is wavelet transform, total variation, ...

How to Solve this Problem?

Objective function:

$$\operatorname{argmin}_{x} \|y - \mathcal{PFS}x\|_{2}^{2} + \lambda \|\Phi x\|_{1}$$
 (15)

- ▶ the regularization term $\lambda \| \Phi x \|_1$ is not differentiable; ▶ soft thresholding $\mathcal{T}_{\lambda}(x) = (x \lambda)_{+} \mathrm{sign}(x)$

Compressed Sensing: Iterative Soft Thresholding

1. Gradient update:

$$\dot{x}^{(t+1)} = x^{(t)} + \alpha \cdot \mathcal{S}^H \mathcal{F}^{-1} \mathcal{P}^H (y - \mathcal{P} \mathcal{F} \mathcal{S} x^{(t)})$$

2. Soft thresholding:

$$x^{(t+1)} = \Phi^{-1} \mathcal{T}_{\lambda}(\Phi x^{(t+1)})$$

What is Gradient Update in Parallel MRI? 9

⁹Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary *k*-space trajectories. *Magn Reson Med* (2001).

- ▶ density correction *D*:
 - $D=1/d\mathbf{k}$, \mathbf{k} is the relative density of the k-space sampling pattern at the position \vec{k} .
- ▶ this changes the system equation:

$$(E^H DE)\mathbf{v} = E^H D\mathbf{m}$$

- ▶ density correction *D*: $D=1/d\mathbf{k}$, \mathbf{k} is the relative density of the k-space sampling pattern at the position \vec{k} .
- ▶ this changes the system equation: $(E^H DE)\mathbf{v} = E^H D\mathbf{m}$
- ▶ this speeds up the iterative procedure in practice.

30/31 March 4, 2024

- ▶ density correction D: $D = 1/d\mathbf{k}$, \mathbf{k} is the relative density of the k-space sampling pattern at the position \vec{k} .
- ► this changes the system equation: $(E^H DE)\mathbf{v} = E^H D\mathbf{m}$
- ▶ this speeds up the iterative procedure in practice.
- ► Exercise 1: run the gradient step many times without soft thresholding, are you able to get a similar reconstruction as the NUFFT reconstruction with density compensation?

- ▶ density correction D: $D = 1/d\mathbf{k}$, \mathbf{k} is the relative density of the k-space sampling pattern at the position \vec{k} .
- ► this changes the system equation: $(E^H D E) \mathbf{v} = E^H D \mathbf{m}$
- ▶ this speeds up the iterative procedure in practice.
- ► Exercise 1: run the gradient step many times without soft thresholding, are you able to get a similar reconstruction as the NUFFT reconstruction with density compensation?
- ► Exercise 2: try to tune the soft thresholding parameter, and show how it affects the reconstruction

Thank You for Your Attention!

- ► Slides: https://github.com/ZhengguoTan/teach_radial/blob/main/main.pdf
- ▶ Demo: https://github.com/ZhengguoTan/teach_radial/blob/main/demo/solF02_ bSSFP_2D_radial_CS.ipynb
- ▶ Prof. Dr. Florian Knoll @ FAU ¹⁰: "Instead of hand-crafted sparsifying transform, neural network learns it!!!"
- ► If you are interested in MRI (pulse sequence and image reconstruction), please feel free to reach out: zhengguo.tan@gmail.com

¹⁰Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. Learning a variational network for reconstruction of accelerated MRI data. *Magn Reson Med* (2018).