MASTER OF COMPUTER APPLICATIONS

PRACTICAL RECORD WORK ON 20MCA135 DATA STRUCTURES LAB

Submitted
Ву
(Reg No :)

DEPARTMENT OF COMPUTER APPLICATIONS COLLEGE OF ENGINEERING VADAKARA (CAPE – GOVT.OF KERALA)

DECEMBER 2021

DEPARTMENT OF COMPUTER APPLICATIONS COLLEGE OF ENGINEERING VADAKARA (CAPE – GOVT.OF KERALA)

CERTIFICATE

Certified that this is a bonafide record of the practical work on the			
course 20MCA135 DATA STRUCTURE LAB done by			
Mr/Mrs(F	,		
First semester MCA student of Department of Computer Applications			
at College of Engineering Vadakara in the practical fulfillment for the			
award of the degree of Master of Computer Applications (MCA) of			
APJ Abdul Kalam Technological University (KTU)			
(Mrs. Bindu S Mony)			
FACULTY-IN-CHARGE	HEAD OF THE DEPARTMENT		
DATE:			
EV A NAINIED C			
EXAMINERS:			

	INDEX				
SL.NO	PROGRAMS	PAGE NO	REMARKS		
1	Implementation of Array	4			
2	Array deletion	5			
3	Exchange sort	7			
4	Merge 2 arrays	8			
5	Linear search	10			
6	Binary search	12			
7	Stack using array	14			
8	Queue using array	17			
9	Circular queue	21			
10	Queue using stack	28			
11	Sum of elements in odd position	33			
12	Sum and difference of matrix	34			
13	Transpose of matrix	38			
14	Fibonacci up to a range	40			
15	Matrix multiplication	41			

1. Implementation of Array

```
#include<stdio.h>
Void main()
{
 Int a[10],I,n,os,num;
 Printf("Enter the No. of elements:");
 Scanf("%d",&n);
 Printf("Enter the elements:");
 For(i=0;i<n;i++)
 {
  Scanf("%d",&a[i]);
 }
 n++;
 printf("Enter the Position");
 scanf("%d",&pos);
 printf("Enter the No. to be inserted:");
 scanf("%d",num);
 for(i=n-1;i>=pos;i--)
 {
   a[i]=a[i-1];
   a[pos-1]=num;
 }
 Printf("New Array:");
 For(i=0;i<n;i++)
 {
```

```
printf("%d",&a[i]);
}
```

```
Enter the No. of element: 5
Enter the Elements:
12345
Enter the Position: 3
Enter the NO to be inserted: 7
127345
```

2. Implementation of Array deletion

```
#include<stdio.h>
void main()
{
  int a[10],i,n,pos;
  printf("Enter no of elements \n");
  scanf("%d",&n);
  printf("Enter the elements \n");
  for (i=0;i<n;i++)
  {
    scanf("%d",&a[i]);</pre>
```

```
}
  printf("Elements of array are\n");
  for(i=0;i<n;i++)
  {
    printf("a[%d] = %d\n",i,a[i]);
  }
  printf("Enter the position of number has to be deleted\n");
  scanf("%d",&pos);
  for(i=pos;i<n-1;i++)
  {
    a[i]=a[i+1];
  }
  n=n-1;
  printf("Array after deletion:");
  for(i=0;i<n;i++)
  {
    printf("%d",a[i]);
  }
}
```

Enter the No of Elements: 4

Enter the element:

1234

Enter the postion of No. to be delete: 2

Array after deletion:

134

3. Implementation of Exchange sort

```
#linclude<stdio.h>
void main()
{
  int i,j,n,a[10],temp;
  printf("Enter the number of elements:\n");
  scanf("%d",&n);
  printf("Enter the elements\n");
  for(i=0;i<n;i++)
  {
    scanf("%d",&a[i]);
  }
  for(i=0;i<n;i++)
   {
     for(j=i+1;j<n;j++)
     {
        if(a[i]>a[j])
        {
          temp=a[i];
          a[i]=a[j];
          a[j]=temp;
```

```
}
     }
  }
 printf("Elements sorted in ascending order are\n");
  for(i=0;i<n;i++)
  {
    printf("%d ",a[i]);
  }
}
OUTPUT:
Enter the No. of elements: 5
Enter the elements:
4 21 36 14 5
Elements sorted in ascending order are:
4 5 14 21 36
4. Merge two arrays
#include<stdio.h>
Void main()
{
```

```
int a[50], b2[50], n,m,i, p;
printf("Enter Array 1 Size: ");
scanf("%d", &n);
printf("Enter Array 1 Elements: ");
for(i=0; i<n; i++)
{
  scanf("%d", &a[i]);
}
printf("\nEnter Array 2 Size: ");
scanf("%d", &m);
printf("Enter Array 2 Elements: ");
for(i=0; i<m; i++)
{
  scanf("%d", &b[i]);
}
P=n+m;
for(i=0; i<n; i++)
{
  C[i]=a[i];
}
for(i=n; i<p; i++)
{
   C[i]=b[i];
printf("The new array after merging is:\n");
for(i=0; i<n; i++)
```

```
{
    scanf("%d", &a[i]);
  }
}
OUTPUT:
Enter Array 1 Size: 3
Enter Array 1 Elements:
123
Enter Array 2 Size:3
Enter Array 2 Elements: 456
The new array after merging:
123456
5. Searching an element using Linear Search
```

```
#include<stdio.h>
void main()
{
  int i,n,a[100],search,flag=0;
  printf("Enter the number of elements:");
  scanf("%d",&n);
  printf("Enter the elements\n");
  for(i=0;i<n;i++)
  {
```

```
scanf("%d",&a[i]);
  }
  printf("Enter the element to be searched\n");
  scanf("%d",&search);
  for(i=0;i<n;i++)
  {
    if(a[i]==search)
    {
      printf("Element %d found at %d position\n",search,i);
      flag=1;
      break;
    }
  }
  if(flag==0)
  {
    printf("Element %d not found\n",search);
  }
}
```

Enter the no of elements:4

Enter the elements:

```
1743
```

Enter the No to be searched: 4 Element 4 found at 3 position

6. Searching an element using Binary Search

```
#include<stdio.h>
void main()
{
  int a[10],i,n,item,flag=0,f,mid;
  printf("\n Enter the size of an array: ");
  scanf("%d",&n);
  printf("\n Enter the elements in ascending order: ");
  for(i=0;i<n;i++)
  {
    scanf("%d",&a[i]);
  }
  printf("\n Enter the number to be search: ");
  scanf("%d",&item);
  f=0,l =n-1;
  for(i=0i<ni++)
  {
     Mid=(f+I)/2;
```

```
If(a[m]==item)
     {
        Flag=1;
        t==m+1;
     }
  elseif(a[m]<s)
   {
      f=m+1;
   }
   else
   {
       m=l-1;
   }
 }
  if(flag==1)
  printf("The number is found and its position is: %d",t");
  else
  {
  printf("Element not found );
  }
}
```

Enter the no of elements:4

Enter the elements:

1743

Enter the No to be searched: 4

Element 4 found at 3 position

7. Implementation of Stack using array

```
#include<stdio.h>
int SIZE = 3;
void push(int a[],int *last)
if(*last >= SIZE - 1)
printf("stack overflow");
else
*last +=1;
printf("\n Enter the element");
scanf("%d",&a[*last]);
printf("\n%d pushed in to the stack",a[*last]); }
int pop(int a[],int *last)
int ele;
if(*last > -1)
ele = a[*last];
*last -=1;
printf("\n The value %d poped from the stack", ele); }
else
printf("stack underflow");
```

```
void display(int a[], int *last)
int i;
if(*last < 0)
{
printf("\n stack is empty");
return;
else
{
printf("\n The stack elements are:");
for(i=0;i <= *last;i++)
      printf("%d ",a[i]);
}
int main()
int arr[SIZE],ch,e=1;
int last=-1;
while(e)
printf("\n STACK USING ARRAY");
printf("\n....");
printf("\n 1.Push \n 2.Pop \n 3.Display \n 4.Exit");
printf("\n....");
printf("\n Enter your choice");
scanf("%d",&ch);
switch(ch)
{
      case 1:
            push(arr,&last);
            break;
      case 2:
            pop(arr,&last);
            break;
      case 3:
            display(arr,&last);
```

```
break;
     case 4:
           e=0;
           printf("\n exiting");
           break;
     default: printf("\n please enter valid choice");
}
return 0;
OUTPUT:
STACK USING ARRAY
.....MENU.....
1.Push
2.Pop
3.Display
4.Exit
.....
Enter your choice1 Enter
the element2
2 pushed in to the stack STACK
USING ARRAY
.....MENU.....
1.Push
2.Pop
3.Display
4.Exit
.....
Enter your choice1 Enter the
element98
```

98 pushed in to the stack STACK
USING ARRAYMENU
1.Push 2.Pop
3.Display
4.Exit
Enter your choice1
Enter the element7
7 pushed in to the stack
STACK USING ARRAY
MENU 1.Push
2.Pop
3.Display
4.Exit
Enter your choice3
The stack elements are:2 98 7 STACK USING ARRAY
MENU
1.Push
2.Pop 3.Display
4.Exit
Enter your choice2
The value 7 named from the stack

The value 7 poped from the stack

8. Implementation of Queue using array

#include <stdio.h> #include<stdlib.h> int SIZE = 10;

```
void insert(int a[], int *front, int *rear)
{
if(*rear > SIZE - 2)
printf("\n Queue is full\n");
return;
}
else
{
int e;
printf("\n Enter a value\n");
scanf("%d",&e);
if(*front == -1 && *rear == -1)
*front = *rear = 0;
else
 *rear += 1;
a[*rear] = e;
printf("\n Entered element %d is inserted\n", e); }
void delete(int a[], int *front, int *rear) {
int e;
if(*front < 0)</pre>
printf("\n Queue is empty\n");
else
e = a[*front];
printf("\n Element %d is deleted\n",e);
 *front += 1;
}
void display(int a[], int *front, int *rear)
{
int i;
if(*front < 0)
printf("\n queue is empty\n");
```

```
return;
else
printf("\n The queue elements are:\n");
for(i = *front;i <= *rear;i++)</pre>
printf("%d ",a[i]);
int main()
int arr[SIZE];
int front, rear;
int ch, e=1;
front = rear = -1;
while(e)
printf("\n QUEUE USING ARRAY");
printf("\n....");
printf("\n 1.INSERT \n 2.DELETE \n 3.DISPLAY \n
4.EXIT"); printf("\n....");
printf("\n Enter your choice");
scanf("%d",&ch);
switch(ch)
{
      case 1:
             insert(arr, &front, &rear);
             break;
      case 2:
             delete(arr, &front, &rear);
             break;
       case 3:
             display(arr, &front, &rear);
             break;
      case 4:
             e=0;
```

```
printf("\n exiting...");
           break;
     default: printf("\n please enter valid choice"); }
}
return 0;
OUTPUT:
QUEUE USING ARRAY
.....MENU.....
1.INSERT
2.DELETE
3.DISPLAY
4.EXIT
.....
Enter your choice1
Enter a value
12
Entered element 12 is inserted
QUEUE USING ARRAY
.....MENU.....
1.INSERT
2.DELETE
3.DISPLAY
4.EXIT
.....
Enter your choice1
Enter a value
7
Entered element 7 is inserted
QUEUE USING ARRAY
.....MENU.....
```

1.INSERT 2.DELETE 3.DISPLAY
4.EXIT
Enter your choice1
Enter a value 3
Entered element 3 is inserted
QUEUE USING ARRAYMENU 1.INSERT 2.DELETE 3.DISPLAY 4.EXIT
Enter your choice3
The queue elements are: 12 7 3 QUEUE USING ARRAYMENU 1.INSERT 2.DELETE 3.DISPLAY 4.EXIT
Enter your choice2
Element 12 is deleted
9.Imlementation of Circular Queue

#include <stdio.h>

#define SIZE 5

```
void enqueue(int a[], int *front, int *rear)
{
int e;
printf("\nEnter number:");
scanf("%d", &e);
if ((*rear + 1) % SIZE == *front)
printf("\nQUEUE overflow");
return;
}
else if (*front > 0 && *rear == SIZE - 1)
*rear = 0;
else if ((*front == -1) && (*rear == -1))
*front = 0;
*rear = 0;
}
else
printf("then");
*rear += 1;
a[*rear] = e;
printf("\nThe entered element %d is inserted in to
the QUEUE\n", e);
}
void dequeue(int a[], int *front, int *rear)
if (*front == -1)
printf("\nQUEUE underflow\n");
else if (*front == SIZE - 1)
{
```

```
*front = 0;
else
{
int e;
e = a[*front];
printf("\nThe element %d deleted from QUEUE",
e); *front += 1;
}
}
void display(int a[], int *front, int *rear)
if (((*front == -1) && (*rear == -1)))
printf("Queue is empty");
else
int i;
printf("\nthe QUEUE elements are:");
if(*front>*rear)
for (i = *front; i<=(*rear+SIZE);</pre>
i++) printf("\t%d", a[i%SIZE]);
}
else{
for (i = *front; i<=(*rear); i++)
printf("\t%d", a[i]);
}
}
void search(int a[], int *front, int *rear,int ele) {
if (((*front == -1) && (*rear == -1)))
{
```

```
printf("Queue is empty");
}
else
if(*front>*rear)
for (int i=*front;i<=(*rear+SIZE);i++)</pre>
if(a[i%SIZE]==ele)
printf("Item found!!!");
return;
}
printf("Item not found!!!");
else
for (int i=*front;i<=(*rear);i++)</pre>
if(a[i]==ele)
printf("Item found!!!");
return;
printf("Item not found!!!");
int main()
```

```
int arr[SIZE], front = -1, rear = -1, ch, e = 1,
val; while (e)
{
printf("\nCIRCULAR QUEUE OPERATIONS");
       \n"); printf("\n\t 1. insert\n\t 2. delete\n\t 3.
Display\n\t 4. Search\n\t 5. Exit\n");
printf("\n
printf("\nEnter your choice:");
scanf("%d", &ch);
switch (ch)
{
case 1:
enqueue(arr, &front, &rear);
break;
case 2:
dequeue(arr, &front, &rear);
break;
case 3:
display(arr, &front, &rear);
break;
case 4:
printf("\nEnter the data to be
searched:"); scanf("%d", &val);
search(arr, &front, &rear, val);
break;
case 5:
e = 0;
printf("\nExiting from the programe"); break;
default:
printf("\n please enter valid choice"); }
return 0;
}
```

CIRCULAR QUEUE OPERATIONSMENU
 insert delete Display Search Exit
Enter your choice:1
Enter number:2
The entered element 2 is inserted in to the QUEUE
CIRCULAR QUEUE OPERATIONSMENU
 insert delete Display Search
5. Exit
Enter your choice:1
Enter number:4 then
The entered element 4 is inserted in to the QUEUE
CIRCULAR QUEUE OPERATIONS

MENU		
 insert delete 		
3. Display		
4. Search		
5. Exit		
Enter your choice:1		
Enter number:6 then		
The entered element 6 is inserted in to the QUEUE		
CIRCULAR QUEUE OPERATIONSMENU		
1. insert		
2. delete		
3. Display		
4. Search		
5. Exit		
Enter your choice:4		
Enter the data to be searched:6		
Item found!!!		
CIRCULAR QUEUE OPERATIONS		
MENU		
1. insert		
2. delete		
3. Display		

```
4. Search
5. Exit

_____Enter your choice:2

The element 2 deleted from QUEUE
CIRCULAR QUEUE OPERATIONS
_____MENU_

1. insert
2. delete
3. Display
4. Search
5. Exit

_____Enter your choice:3
```

the QUEUE elements are: 4 6 CIRCULAR QUEUE OPERATIONS

10.Implementation of Queue using stack

```
#include <stdio.h>
#include <stdlib.h>
struct node
{
  int data;
  struct node *next;
};
struct node *front = NULL;
struct node *rear = NULL;

void insert()
```

```
{
struct node *temp;
int val;
temp = (struct node*)malloc(sizeof(struct
node)); if(temp == NULL)
{
printf("\n Queue Overflow");
return;
}
else
printf("\n Enter the value");
scanf("%d",&val);
temp -> data = val;
temp -> next = NULL;
if(front == NULL)
front = rear = temp;
else
rear -> next = temp;
rear = temp;
printf("\n One value is inserted into the queue"); }
}
void delete()
struct node *temp;
if(front == NULL)
{
printf("\n Underflow");
return;
}
else
temp = front;
front = front -> next;
```

```
printf("\n %d is deleted from the queue", temp ->
data); free(temp);
}
void display()
{
struct node *temp;
temp = front;
if(front == NULL)
printf("\n Empty Queue");
return;
}
else
{
printf("\n Queue elements are");
while(temp != NULL)
printf("%d ", temp -> data);
temp = temp -> next;
}
int main()
int ch, e=1;
while(e)
printf("\n QUEUE USING LINKED
LIST"); printf("\n.....MENU.....");
printf("\n 1.INSERT \n 2.DELETE \n 3.DISPLAY \n
4.EXIT"); printf("\n....");
printf("\n Enter your choice");
scanf("%d",&ch);
switch(ch)
```

```
{
      case 1:
            insert();
            break;
      case 2:
            delete();
            break;
      case 3:
            display();
            break;
      case 4:
            e=0;
            printf("\n exiting...");
            break;
      default: printf("\n please enter valid choice"); }
}
return 0;
OUTPUT:
QUEUE using STACKS
-----MENU-----
1. Enqueue
2. Dequeue
3. Display
4. Exit
Enter your choice:1
Enter the element:23
-----MENU-----
1. Enqueue
2. Dequeue
3. Display
```

4. Exit
Enter your choice:1 Enter the element:6
MENU
 Enqueue Dequeue Display Exit
Enter your choice:1 Enter the element:9
MENU
 Enqueue Dequeue Display Exit
Enter your choice:3 23 6 9MENU
 Enqueue Dequeue Display
4. Exit
Enter your choice:2 The element 23 is deleted from gueue

11. Write a program to find the sum of all elements in an array which are at odd position

```
#include<stdio.h>
#include<conio.h>
int sum(int [],int);
int main()
{
int a[20],n,i;
printf("Enter the range:");
scanf("%d",&n);
printf("Enter the elements\n");
for(i=0;i<n;i++)
scanf("%d",&a[i]);
printf("Required sum:%d",sum(a,n));
getch();
return 0;
}
int sum(int a[],int n)
{
int i,s=0;
for(i=0;i<n;i++)
{
if(i%2!=0)
s=s+a[i];
}
```

```
return s;
}
OUTPUT:
Enter the range:5
Enter the elements
1
2
3
4
5
Required sum:6
12.sum and difference of matrix
#include<stdio.h>
int main()
{
  int n, m, c, d, first[10][10], second[10][10], sum[10][10], diff[10][10];
  printf("\nEnter the number of rows and columns of the first matrix \n\n");
  scanf("%d%d", &m, &n);
  printf("\nEnter the %d elements of the first matrix n^*, m*n);
  for(c = 0; c < m; c++) // to iterate the rows
```

```
for(d = 0; d < n; d++) // to iterate the columns
    scanf("%d", &first[c][d]);
printf("\nEnter the %d elements of the second matrix \n\n", m*n);
for(c = 0; c < m; c++) // to iterate the rows
  for(d = 0; d < n; d++) // to iterate the columns
    scanf("%d", &second[c][d]);
printf("\n\nThe first matrix is: \n\n");
for(c = 0; c < m; c++) // to iterate the rows
{
  for(d = 0; d < n; d++) // to iterate the columns
  {
    printf("%d\t", first[c][d]);
  }
printf("\n");
}
printf("\n");
for(c = 0; c < m; c++) // to iterate the rows
{
  for(d = 0; d < n; d++) // to iterate the columns
  {
    printf("%d\t", second[c][d]);
  }
printf("\n");
}
```

```
for(c = 0; c < m; c++)
    for(d = 0; d < n; d++)
      sum[c][d] = first[c][d] + second[c][d];
  printf("\n);
  for(c = 0; c < m; c++)
  {
    for(d = 0; d < n; d++)
    {
      printf("%d\t", sum[c][d]);
    }
    printf("\n");
  }
  for(c = 0; c < m; c++)
    for(d = 0; d < n; d++)
      diff[c][d] = first[c][d] - second[c][d];
  printf("\n\nThe difference(subtraction) of the two entered matrices is:
n'n;
  for(c = 0; c < m; c++)
  {
    for(d = 0; d < n; d++)
    {
      printf("%d\t", diff[c][d]);
    }
    printf("\n");
  }
```

```
return 0;
}
OUTPUT:
Enter the number of rows and columns of the first matrix 3
3
Enter the 9 elements of the first matrix
143674084
Enter the 9 elements of the second matrix
245967034
The first matrix is
478
The second matrix is
The sum of the two entered matrices is:
3
15
0
8
13
11
8 11 8
The difference <subtraction) of the two entered matrices is :
-2
-3
-3
0
```

13. Find out the Transpose of a matrix

```
#include <stdio.h>
int main() {
 int a[10][10], transpose[10][10], r, c;
 printf("Enter rows and columns: ");
 scanf("%d %d", &r, &c);
 printf("\nEnter matrix elements:\n");
 for (int i = 0; i < r; ++i)
 for (int j = 0; j < c; ++j) {
  printf("Enter element a%d%d: ", i + 1, j + 1);
  scanf("%d", &a[i][j]);
 }
 printf("\nEntered matrix: \n");
 for (int i = 0; i < r; ++i)
 for (int j = 0; j < c; ++j) {
  printf("%d ", a[i][j]);
  if (j == c - 1)
  printf("\n");
 }
 for (int i = 0; i < r; ++i)
 for (int j = 0; j < c; ++j) {
  transpose[j][i] = a[i][j];
 }
```

```
printf("\nTranspose of the matrix:\n");
for (int i = 0; i < c; ++i)
for (int j = 0; j < r; ++j) {
    printf("%d ", transpose[i][j]);
    if (j == r - 1)
    printf("\n");
}
return 0;
}</pre>
```

Enter rows and columns: 2

3

Enter matrix elements:

Enter element a11: 1

Enter element a12: 4

Enter element a13: 0

Enter element a21: -5

Enter element a22: 2

Enter element a23: 7

```
Entered matrix:
1 4 0
-5 2 7
Transpose of the matrix:
1 -5
4 2
0 7
14.fibanacci up to a range
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c,n;
clrscr();
printf("\nEnter range:");
scanf("%d",&n);
a=0,b=1,c=0;
printf("%d \t %d",a,b);
c=a+b;
while(c<=n)
printf("\t%d",c);
```

a=b;

```
b=c;
c=a+b;
}
getch();
}
OUTPUT:
Enter range:13
0
      1
            1
                  2
                        3
                              5
                                    8
                                           13
15. Execute Matrix multiplication
#include <stdio.h>
void main()
{
int a[25][25],b[25][25],c[25][25],i,j,k,r,s;
int m,n;
printf("Enter the first matrix\n");
scanf("%d%d",&m,&n);
printf("Enter the second matrix\n");
scanf("%d%d",&r,&s);
if(m!=r)
printf("\n The matrix cannot multiplied");
else
printf("\n Enter the elements of first matrix ");
```

```
for(i= 0;i<m;i++)
for(j=0;j<n;j++)
scanf("\t%d",&a[i][j]);
}
printf("\n Enetr the elements of second matrix ");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
scanf("\t%d",&b[i][j]);
}
printf("\n The element of first matrix is");
for(i=0;i<m;i++)
{
printf("\n");
for(j=0;j<n;j++)
printf("\t%d",a[i][j]);
}
printf("\n The element of second matrix is");
for(i=0;i<m;i++)
{
printf("\n");
for(j=0;j<n;j++)
printf("\t%d",b[i][j]);
}
for(i=0;i<m;i++)
{
```

```
printf("\n");
for(j=0;j<n;j++)
{
c[i][j]=0;
for(k=0;k<m;k++)
c[i][j]=c[i][j]+a[i][k]*b[k][j];
}
}
printf("\n Multiplication of two matrix is");
for(i=0;i<m;i++)
{
printf("\n");
for(j=0;j<n;j++)
printf("\t%d",c[i][j]);
}
}
```

Enter the first matrix

2 2

Enter the second matrix

2 2

Enter the elements of first matrix

- 1 2
- 3 4

Enetr the elements of second matrix 1 2 1 2

The element of first matrix is

- 1 2
- 3 4

The element of second matrix is

- 1 2
- 1 2

Multiplication of two matrix is

- 3 6
- 7 14