DBMS LAB REPORT (PROGRAM 1-10)

NAME: VAIBHAVI PATIL USN:1BM19CS217 CSE SECTION 'A'

PROGRAM 1: INSURANCE DATABASE

Consider the Insurance database given below.

The data types are specified.

PERSON (driver_id: String, name: String, address: String)

CAR (reg_num: String, model: String, year: int)

ACCIDENT (report_num: int, accident_date: date, location: String)

OWNS (driver_id: String, reg_num: String)

PARTICIPATED (driver_id: String,reg_num: String, report_num: int, damage_amount: int)

i) Create the above tables by properly specifying the primary keys and the foreign keys. ii)Enter at least five tuples for each relation.

```
create database insudb;
use insudb:
create table PERSON(
driver id varchar(10) NOT NULL,name varchar(10) NOT NULL,address varchar(20) NOT
NULL, primary key (driver_id)
);
create table CAR(
Regno varchar(10) NOT NULL, model varchar(10) NOT NULL, year int NOT NULL, primary key
(Regno)
);
create table ACCIDENT(
report number int NOT NULL, accdate date, location varchar(20), primary key (report number)
);
create table OWNS(
driver id varchar(10), Regno varchar(10), primary key (driver id, Regno), foreign key (driver id)
references PERSON (driver id), foreign key (Regno) references CAR (regno)
);
create table PARTICIPATED(
driver id varchar(10),Regno varchar(10),report number int,damage amount int,primary key
(driver id, Regno, report number), foreign key (driver id) references PERSON (driver id), foreign
key (Regno) references car (Regno),
foreign key (report number) references ACCIDENT (report number)
);
insert into PERSON values("A01", "Richard", "Srinivas nagar"),
("A02","Pradeep","Rajaji nagar"),
("A03", "Smith", "Ashok nagar"),
("A04","Venu","NR Colony"),
("A05","Jhon","Hanumanth nagar");
```

```
insert into CAR values("KA052250","Indica","1990"),
("KA031181","Lancer","1957"),
("KA095477","Toyota","1998"),
("KA053408","Honda","2008"),
("KA041702","Audi","2005");
insert into OWNS VALUES("A01","KA052250"),
("A02","KA053408"),
("A03", "KA031181"),
("A04","KA095477"),
("A05","KA041702");
insert into ACCIDENT values("11","2003-01-01","Mysore Road"),
("12","2004-02-02","Southend circle"),
("13","2003-01-21","Bull temple road"),
("14","2008-02-17","Mysore Road"),
("15","2005-03-04","Kanakpura road");
insert into PARTICIPATED values ("A01", "KA052250", "11", "10000"),
("A02","KA053408","12","50000"),
("A03","KA095477","13","25000"),
("A04","KA031181","14","3000"),
("A05","KA041702","15","5000");
```

select * from person;

PERSON

select * from car;

CAR

Select * from owns;

OWNS

Select * from accident;

ACCIDENT

Select * from participated;

PARTICIPATED

iii)Demonstrate how you

a.Update the damage amount to 25000 for the car with a specific reg-num(example 'K

A053408') for which the accident report number was 12.

Ans: update participated set damage_amount = 25000 where report_number = 12 and Regno = "KA053408";

	driver_id	Regno	report_number	damage_amount
•	A01	KA052250	11	10000
	A02	KA053408	12	25000
	A03	KA095477	13	25000
	A04	KA031181	14	3000
	A05	KA041702	15	5000
	NULL	NULL	NULL	NULL

b.Add a new accident to the database.

Ans: insert into ACCIDENT values("16","2001-11-09","Majestic circle");

iv)Find the total number of people who owned cars that were involved in accidents in 2008.

Ans: select count(*) from person p,accident ac,participated pa where (p.driver_id=pa.driver_id) and (ac.report_number=pa.report_number) and (accdate like "2008%");

v)Find the number of accidents in which cars belonging to a specific model (example Indica)were involved.

select count(*) as accident_beloging_to_model_Indica from car c,accident ac,participated pa where(c.Regno=pa.Regno) and (ac.report_number=pa.report_number) and c.model="Indica";

PROGRAM 2: BANKING ENTERPRISE DATABASE

Consider the following database for a banking enterprise.

```
Branch (branch-name: String, branch-city: String, assets: real)
BankAccount(accno: int, branch-name: String, balance: real)
```

BankCustomer (customer-name: String, customer-street: String, customer-city: String)

Depositer(customer-name: String, accno: int)

Loan (loan-number: int, branch-name: String, amount: real)

i. Create the above tables by properly specifying the primary keys and the foreign keys.

ii. Enter at least five tuples for each relation.

```
create database bankingdatabase1;
use bankingdatabase1;
create table BRANCH(
branch name varchar(20) NOT NULL, branch city varchar(20) NOT NULL, assets real, primary
key(branch name)
);
create table BANKACCOUNT(
accno int NOT NULL, branch name varchar(20) NOT NULL, balance real, primary key(accno),
foreign key (branch name) references BRANCH(branch name)on delete cascade
);
create table BANKCUSTOMER(
customer name varchar(20), customer street varchar(25) NOT NULL, customer city
varchar(20) NOT NULL, primary key(customer name)
);
create table DEPOSITOR(
customer name varchar(20),
accno int.
primary key(customer name, accno),
foreign key(customer name) references bankcustomer(customer name),
foreign key (accno) references BANKACCOUNT(accno)
);
create table LOAN(
loan number int, branch name varchar(20), amount real, primary key(loan number),
foreign key (branch name) references branch(branch name)
);
insert into branch values("SBI_Chamrajpet", "Banglore", "50000"),
("SBI ResidencyRoad", "Banglore", "10000"),
("SBI ShivajiRoad", "Bombay", "20000"),
("SBI_ParlimentRoad","Delhi","10000"),
```

```
("SBI_Jantarmantar","Delhi","20000");
select * from branch;
insert into bankaccount values("1", "SBI_Chamrajpet", "2000"),
("2", "SBI ResidencyRoad", "5000"),
("3", "SBI ShivajiRoad", "6000"),
("4", "SBI ParlimentRoad", "9000"),
("5", "SBI_Jantarmantar", "8000"),
("6", "SBI_ShivajiRoad", "4000"),
("8","SBI_ResidencyRoad","4000"),("9","SBI_ParlimentRoad","3000"),
("10", "SBI_ResidencyRoad", "5000"), ("11", "SBI_Jantarmantar", "2000");
select * from bankaccount;
insert into bankcustomer values("Avinash", "Bull_Temple_Road", "Banglore"),
("Dinesh", "Baneergatta Road", "Banglore"),
("Mohan", "NationalCollege_Road", "Banglore"),
("Nikil", "Akbar_Road", "Delhi"),
("Ravi", "Prithviraj Road", "Delhi");
select * from bankcustomer;
insert into depositor values("Avinash","1"),
("Dinesh","2"),
("Nikil","4"),
("Ravi", "5"),
("Avinash", "8"),
("Nikil", "9"),
("Dinesh","10"),
("Nikil","11");
select * from depositor;
insert into loan values("1", "SBI_Chamrajpet", "1000"),
("2", "SBI ResidencyRoad", "2000"),
("3", "SBI_ShivajiRoad", "3000"),
("4", "SBI ParlimentRoad", "4000"),
("5", "SBI Jantarmantar", "5000");
select * from loan;
```

Select * from branch; BRANCH

Select * from bankaccount; BANKACCOUNT

Select * from bankcustomer; BANKCUSTOMER

Select * from depositor; DEPOSITOR

Select * from loan; LOAN

	loan_number	branch_name	amount
•	1	SBI_Chamrajpet	1000
	2	SBI_ResidencyRoad	2000
	3	SBI_ShivajiRoad	3000
	4	SBI_ParlimentRoad	4000
	5	SBI_Jantarmantar	5000
	NULL	NULL	NULL

loan 1 ×

iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).

select d.customer_name from depositor d ,bankaccount a where a.accno=d.accno and a.branch_name="SBI_ResidencyRoad" group by d.customer_name having count(*)>=2;

iv. Find all the customers who have an account at all the branches located in a specific city (Ex. Delhi).

select d.customer_name from bankaccount a, depositor d,branch b where d.accno=a.accno and b.branch_name=a.branch_name and b.branch_city="Delhi" group by d.customer_name having count(distinct b.branch_name)=(select count(branch_name) from branch where branch_city="Delhi");

v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

delete from bankaccount where branch_name in(select branch_name from branch where branch_city="Bombay");

PROGRAM 3: SUPPLIER DATABASE

```
Consider the following schema:
SUPPLIERS(sid: integer, sname: string, address: string)
PARTS(pid: integer, pname: string, color: string)
CATALOG(sid: integer, pid: integer, cost: real)
The Catalog relation lists the prices charged for parts by Suppliers.
create database supplierdb1;
use supplierdb1;
create table suppliers(
sid int,
sname varchar(20),
address varchar(25),
primary key(sid)
);
create table parts(
pid int,
pname varchar(20),
color varchar(20),
primary key(pid)
);
create table catalog(
sid int,
pid int,
cost real,
primary key(sid,pid),
foreign key (sid)references suppliers (sid),
foreign key (pid)references parts (pid));
insert into suppliers values ("10001", "Acme Widget", "Banglore");
insert into suppliers values ("10002", "Johns", "Kolkata");
```

```
insert into suppliers values ("10003", "Vimal", "Mumbai");
insert into suppliers values ("10004", "Reliance", "Delhi");
insert into parts values ("20001", "Book", "Red");
insert into parts values ("20002", "Pen", "Red");
insert into parts values ("20003", "Pencil", "Green");
insert into parts values ("20004", "Mobile", "Green");
insert into parts values ("20005", "Charger", "Black");
insert into catalog values ("10001","20001","10");
insert into catalog values ("10001","20002","10");
insert into catalog values ("10001","20003","30");
insert into catalog values ("10001","20004","10");
insert into catalog values ("10001","20005","10");
insert into catalog values ("10002","20001","10");
insert into catalog values ("10002","20002","20");
insert into catalog values ("10003","20003","30");
insert into catalog values ("10004","20003","40");
insert into catalog values ("10003","20002","10");
```

Select * from suppliers; SUPPLIERS

Select * from parts;

PARTS

Select * from catalog;

CATALOG

i)Find the pnames of parts for which there is some supplier.
select distinct P.pname from Parts P,Catalog C where P.pid=C.pid and exists(select 'X' from Catalog where pid=P.pid);

ii) Find the snames of suppliers who supply every part.

select S.sname, S.sid from suppliers S where S.sid IN (select C.sid from catalog C group by C.sid having count(distinct C.pid) = (select count(pid) from parts));

iii)Find the snames of suppliers who supply every red part.

select S.sname from suppliers S where S.sid IN (select C.sid from catalog c where not exists (select P.pid from parts P where P.color="red"and(not exists(select C1.sid from catalog C1 where C1.sid=C.sid and C1.pid=P.pid))));

iv)Find the pnames of parts supplied by Acme Widget Suppliers and by no one else. select P.pname from parts P,catalog C,suppliers S where P.pid=C.pid and C.sid=S.sid and S.sname="Acme Widget"and not exists(select * from catalog c1,Suppliers s1 where P.pid=C1.pid and C1.sid=S1.sid and S1.sname<>"Acme Widget");

v) Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part)

select distinct C.sid from Catalog C where C.cost>(select avg(C1.cost) from catalog C1 where C1.pid=C.pid);

vi) For each part, find the sname of the supplier who charges the most for that part.

Select P.pname, P.pid ,S.sname from parts p,Suppliers S,catalog C where C.pid=P.pid and C.sid=S.sid and C.cost = (select max(C1.cost) from catalog C1 where C1.pid=P.pid);

PROGRAM 4: STUDENT FACULTY DATABASE

Consider the following database for student enrollment for course :

STUDENT(snum: integer, sname:string, major: string, lvl: string, age: integer)

CLASS(<u>cname</u>: string, meetsat: time, room: string, fid: integer)

ENROLLED(snum: integer, cname:string)

FACULTY(fid: integer, fname:string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level(IVI) is a two character

code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL.

No duplicates should be printed in any of the answers.

Select * from student;

select * from faculty;

select * from class;

	cname	meetsat	room	fid
•	Class 1	2012-11-15 10:15:16	R1	14
	Class 10	2012-11-15 10:15:16	R128	14
	Class2	2012-11-15 10:15:20	R2	12
	Class3	2012-11-15 10:15:25	R3	11
	Class4	2012-11-15 20:15:20	R4	14
	Class5	2012-11-15 20:15:20	R3	15
	Class6	2012-11-15 13:20:20	R2	14
	Class7	2012-11-15 10:10:10	R3	14
	NULL	NULL	NULL	NULL

select * from enrolled;

i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by the name "Shiva".

select s.sname from STUDENT s, CLASS c, ENROLLED e where s.snum=e.snum and c.cname = e.cname and c.fid =(select fid from FACULTY where fname = "Shiva") and s.lvl ="Jr";

ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

SELECT C.cname FROM Class C
WHERE C.room = "R128"
or C.cname IN (SELECT E.cname FROM Enrolled E GROUP BY E.cname HAVING count(E.snum) >= 5);

iii. Find the names of all students who are enrolled in two classes that meet at the same Time.

select distinct s.sname from student s where s.snum in (select e1.snum from enrolled e1, enrolled e2, class c1, class c2 where e1.snum = e2.snum and e1.cname != e2.cname and e1.cname = c1.cname and e2.cname = c2.cname and c1.meetsat = c2.meetsat);

iv. Find the names of faculty members who teach in every room in which some class is taught.

select f.fname,c.fid from faculty f,class c where f.fid=c.fid group by c.fid having count(c.fid)=(select count(distinct room)from class);

v. Find the names of faculty members for whom the combined enrollment of the courses that they teach less than five.

select distinct f.fname from faculty f where 5>(select COUNT(e.snum) from Class c, enrolled e where c.cname = e.cname and c.fid = f.fid);

vi. Find the names of students who are not enrolled in any class.

select distinct s.sname from student s where s.snum not in(select e.snum from enrolled e);

vii. For each age value that appears in Students, find the level value that appears most select s.age ,s.lvl from student s group by s.age having s.lvl in (select s1.lvl from student s1 where s1.age = s.age group by s1.age having count(*)>= all(select s2.lvl from student s2 where s2.age = s1.age group by s2.age));

PROGRAM 5: AIRLINE FLIGHT DATABASE

Consider the following database that keeps track of airline flight information: FLIGHTS(flno: integer, from: string, to: string, distance: integer, departs: time, arrives: time, price: integer) AIRCRAFT(aid: integer, aname: string, cruisingrange: integer) **CERTIFIED(eid: integer, aid: integer)** EMPLOYEES(eid: integer, ename: string, salary: integer) Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly. Write each of the following queries in SQL. create database airlinedb; use airlinedb; create table FLIGHTS(flno int. fromplace varchar(20), toplace varchar(20), distance integer, departs datetime, arrives datetime, price int, primary key(flno)); create table AIRCRAFT(aid int, aname varchar(20), cruisingrange int, primary key (aid)); create table EMPLOYEES(eid int, ename varchar(20), salary int, primary key (eid)); create table certified(

eid int,

```
aid int.
foreign key (eid) references employees(eid),
foreign key (aid) references aircraft(aid)
);
insert into aircraft values
("101","747","3000"),("102","Boeing","900"),("103","647","800"),("104","Dreamliner","10000"),("1
05","Boeing","3500"),("106","707","1500"),("107","Dream","120000");
select * from aircraft;
insert into flights values("101", "Banglore", "Delhi", "2500", "05/05/13 07.15.31", "05/05/13
07.15.31", "5000"), ("102", "Banglore", "Lucknow", "3000", "05/05/13 07.15.31", "05/05/13
11.15.31","6000"),("103","Lucknow","Delhi","500","05/05/13 12.15.31","05/05/13
17.15.31", "3000"),
("107","Banglore","Frankfrut","8000","05/05/13 07.15.31","05/05/13 22.15.31","60000"),
("104","Banglore","Frankfrut","8500","05/05/13 07.15.31","05/05/13 23.15.31","75000"),
("105", "Kolkata", "Delhi", "3400", "05/05/13 07.15.31", "05/05/13 09.15.31", "7000");
insert into flights values("106", "Delhi", "kolkata", "4000", "05/05/13 09.15.31", "06/05/13
06.00.00","2000");
select * from flights;
insert into employees values
("701","A","50000"),("702","B","100000"),("703","C","150000"),("704","D","90000"),("705","E","40
000"),("706","F","60000"),("707","G","90000");
select * from employees;
insert into certified
values("701","101"),("701","102"),("701","106"),("701","105"),("702","104"),("703","104"),("704","
104"),("702","107"),("703","107"),("704","107"),("702","101"),("703","105"),("704","105"),("705","1
03");
```

select * from aircraft;

select * from flights;

select * from employees;

	eid	ename	salary
•	701	Α	50000
	702	В	100000
	703	C	150000
	704	D	90000
	705	E	40000
	706	F	60000
	707	G	90000
	NULL	NULL	NULL

select * from certified;

Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs.80,000

select distinct A.aname from aircraft A where A.aid in (select C.aid from certified C,Employees E where C.eid=E.eid and not exists (select * from employees E1 where E1.eid=E.eid and E1.salary<80000));

For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.

select C.eid ,max(A.cruisingrange) from certified C,aircraft A where C.aid=A.aid group by C.eid having count(*)>3;

Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.

select distinct E.ename from employees E where E.salary <(select min(F.price) from flights F where F.fromplace="Banglore" and F.toplace="Frankfrut");

For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.

select A.aname, A.cruisingrange, avg(E.salary) from aircraft A, employees E, Certified C where C.eid=E.eid and C.aid=A.aid group by A.aname having A.cruisingrange>1000;

Find the names of pilots certified for some Boeing aircraft.

select distinct E.ename from employees E,certified C,aircraft A where E.eid = C.eid and C.aid = A.aid and A.aname LIKE "Boeing";

Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi select A.aid from aircraft A where A.cruisingrange > (select min(F.distance) from flights F where F.fromplace = "Banglore" and F.toplace = "Delhi");

A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

select f.fromplace,f.toplace,f.arrives from flights f where(f.fromplace="Banglore" and f.toplace=(select fromplace from flights where toplace="kolkata"))or f.toplace="kolkata";

PROGRAM 6: ORDER DATABASE

Consider the following schema for Order Database:

```
SALESMAN (Salesman_id, Name, City, Commission)
CUSTOMER (Customer_id, Cust_Name, City, Grade, Salesman_id)
ORDERS (Ord_No, Purchase_Amt, Ord_Date, Customer_id, Salesman_id)
```

- 1. Count the customers with grades above Bangalore's average.
- 2. Find the name and numbers of all salesmen who had more than one customer.
- 3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)
- 4. Create a view that finds the salesman who has the customer with the highest order of a day.
- 5. Demonstrate the DELETE operation by removing salesman with id 1000. All his orders must also be deleted.

```
create database orderdb1;
use orderdb1;
create table salesman(
salesman id varchar(20),
salesman_name varchar(20),
salesman city varchar(20),
commission varchar(20),
primary key(salesman_id)
);
create table customer(
customer id varchar(20),
customer name varchar(20),
customer_city varchar(20),
grade varchar(20),
salesman id varchar(20),
primary key(customer_id),
foreign key(salesman id) references salesman(salesman id) on delete set null);
create table orders(
ord_no int,
purchase_amt double,
ord date date,
```

```
customer id varchar(20),
salesman_id varchar(20),
foreign key(salesman id) references salesman(salesman id) on delete cascade,
foreign key(customer id) references customer(customer id) on delete cascade
);
insert into salesman values("1000", "JHON", "BANGLORE", "25%"),
("2000", "RAVI", "BANGLORE", "20%"),
("3000","KUMAR","MYSORE","15%"),
("4000", "SMITH", "DELHI", "30%"),
("5000","HARSHA","HYDRABAD","15%");
select * from salesman:
insert into customer values("10","PREETHI","BANGLORE","100","1000"),
("11","VIVEK","MANGLORE","300","1000"),
("12", "BHASKAR", "CHENNAI", "400", "2000"),
("13", "CHETHAN", "BANGLORE", "200", "2000"),
("14", "MAMTHA", "BANGLORE", "400", "3000");
select * from customer;
insert into orders values("50","5000","17-05-04","10","1000"),
("51","450","17-01-20","10","2000"),
("52","1000","17-02-24","13","2000"),
("53","3500","17-04-13","14","3000"),
("54", "550", "17-03-09", "12", "2000");
select * from orders;
insert into salesman values("1000", "JHON", "BANGLORE", "25%"),
("2000", "RAVI", "BANGLORE", "20%"),
("3000","KUMAR","MYSORE","15%"),
("4000", "SMITH", "DELHI", "30%"),
("5000","HARSHA","HYDRABAD","15%");
select * from salesman;
insert into customer values("10","PREETHI","BANGLORE","100","1000"),
("11","VIVEK","MANGLORE","300","1000"),
("12","BHASKAR","CHENNAI","400","2000"),
("13","CHETHAN","BANGLORE","200","2000"),
("14","MAMTHA","BANGLORE","400","3000");
select * from customer;
insert into orders values("50","5000","17-05-04","10","1000"),
("51","450","17-01-20","10","2000"),
```

```
("52","1000","17-02-24","13","2000"),
("53","3500","17-04-13","14","3000"),
("54","550","17-03-09","12","2000");
select * from orders;
```

select * from salesman;

	salesman_id	salesman_name	salesman_city	commission
٠	1000	JHON	BANGLORE	25%
	2000	RAVI	BANGLORE	20%
	3000	KUMAR	MYSORE	15%
	4000	SMITH	DELHI	30%
	5000	HARSHA	HYDRABAD	15%
	NULL	NULL	NULL	NULL

salesman 1 ×

select * from customer;

	customer_id	customer_name	customer_city	grade	salesman_id
•	10	PREETHI	BANGLORE	100	1000
	11	VIVEK	MANGLORE	300	1000
	12	BHASKAR	CHENNAI	400	2000
	13	CHETHAN	BANGLORE	200	2000
	14	MAMTHA	BANGLORE	400	3000
	NULL	HULL	NULL	NULL	NULL

customer 2 ×

select * from orders;

	ord_no	purchase_amt	ord_date	customer_id	salesman_id
٠	50	5000	2004-05-17	10	1000
	51	450	2020-01-17	10	2000
	52	1000	2024-02-17	13	2000
	53	3500	2013-04-17	14	3000
	54	550	2009-03-17	12	2000

orders 3 🗙

1. Count the customers with grades above Bangalore's average.

select grade,count(distinct customer_id)
from customer group by grade
having grade > (select avg(grade)
from customer where customer_city ="BANGLORE");

	grade	count(distinct customer_id)	
•	300	1	
	400	2	

2. Find the name and numbers of all salesmen who had more than one customer.

select salesman_id ,salesman_name
from salesman S
where 1 <(select count(*)
from customer where salesman id = S.salesman id);</pre>

3. List all salesmen and indicate those who have and don't have customers in their cities (Use UNION operation.)

select salesman.salesman_id ,salesman_name,customer_name,commission from salesman,customer where salesman_city = customer_city union

select salesman_id,salesman_name ,'NO MATCH FOUND',commission from salesman where not salesman_city = any(select customer_city from customer)order by 2 desc;

	salesman_id	salesman_name	customer_name	commission
•	4000	SMITH	NO MATCH FOUND	30%
	2000	RAVI	PREETHI	20%
	2000	RAVI	CHETHAN	20%
	2000	RAVI	MAMTHA	20%
	3000	KUMAR	NO MATCH FOUND	15%
	1000	JHON	PREETHI	25%
	1000	JHON	CHETHAN	25%
	1000	JHON	MAMTHA	25%
	5000	HARSHA	NO MATCH FOUND	15%

4. Create a view that finds the salesman who has the customer with the highest order of a day. create view best_salesman as select b.ord_date ,a.salesman_id,a.salesman_name from salesman a,orders b where a.salesman_id=b.salesman_id and b.purchase_amt=(select max(purchase_amt) from orders c where c.ord_date=b.ord_date);

select * from best_salesman;

	ord_date	salesman_id	salesman_name
•	2004-05-17	1000	JHON
	2020-01-17	2000	RAVI
	2024-02-17	2000	RAVI
	2013-04-17	3000	KUMAR
	2009-03-17	2000	RAVI
5000	st_salesman 1		

LAB PROGRAM 7: BOOK DATABASE

```
BOOK (Book id, Title, Publisher Name, Pub Year)
BOOK_AUTHORS (Book_id, Author_Name)
PUBLISHER (Name, Address, Phone)
BOOK COPIES (Book id, Branch id, No-of Copies)
BOOK LENDING (Book id, Branch id, Card No, Date Out, Due Date)
LIBRARY BRANCH (Branch id, Branch Name, Address)
create database bookdb1;
use bookdb1;
CREATE TABLE PUBLISHER
(NAME VARCHAR(20) PRIMARY KEY,
PHONE VARCHAR(10),
ADDRESS VARCHAR(20));
CREATE TABLE BOOK(
BOOK ID INTEGER PRIMARY KEY,
TITLE VARCHAR(20),
PUB YEAR VARCHAR(20),
PUBLISHER NAME VARCHAR(20),
FOREIGN KEY (PUBLISHER NAME) REFERENCES PUBLISHER (NAME) ON DELETE
CASCADE);
CREATE TABLE BOOK AUTHORS(
AUTHOR_NAME VARCHAR(20),
BOOK ID INTEGER.
PRIMARY KEY (BOOK ID, AUTHOR NAME),
FOREIGN KEY (BOOK ID) REFERENCES BOOK (BOOK ID) ON DELETE CASCADE );
CREATE TABLE LIBRARY BRANCH (
BRANCH ID INTEGER PRIMARY KEY,
BRANCH NAME VARCHAR(20),
ADDRESS VARCHAR(20));
CREATE TABLE BOOK COPIES
NO_OF_COPIES INTEGER,
BOOK ID INTEGER,
BRANCH ID INTEGER,
PRIMARY KEY (BOOK ID, BRANCH ID),
FOREIGN KEY (BOOK ID) REFERENCES BOOK (BOOK ID) ON DELETE CASCADE,
FOREIGN KEY (BRANCH ID) REFERENCES LIBRARY BRANCH (BRANCH ID) ON
DELETE CASCADE);
CREATE TABLE CARD
(CARD NO INTEGER PRIMARY KEY);
```

```
CREATE TABLE BOOK_LENDING(
DATE OUT DATE,
DUE DATE DATE,
BOOK ID INTEGER.
BRANCH ID INTEGER.
CARD NO INTEGER,
PRIMARY KEY (BOOK ID, BRANCH ID, CARD NO),
FOREIGN KEY (BOOK ID) REFERENCES BOOK (BOOK ID) ON DELETE CASCADE,
FOREIGN KEY (CARD NO) REFERENCES CARD (CARD NO) ON DELETE CASCADE,
FOREIGN KEY (BRANCH ID) REFERENCES LIBRARY BRANCH (BRANCH ID) ON
DELETE CASCADE);
INSERT INTO PUBLISHER VALUES ("MCGRAW-HILL", "9989076587", "BANGALORE"),
("PEARSON", "9889076565", "NEWDELHI"),
("RANDOM HOUSE", "7455679345", "HYDRABAD").
("HACHETTE LIVRE", "8970862340", "CHENNAI"),
("GRUPO PLANETA", "7756120238", "BANGALORE");
INSERT INTO BOOK VALUES ("1","DBMS","JAN-2017", "MCGRAW-HILL"),
("2","ADBMS","JUN-2016", "MCGRAW-HILL"),
("3", "CN", "SEP-2016", "PEARSON"),
("4","CG","SEP-2015","GRUPO PLANETA"),
("5","OS","MAY-2016","PEARSON");
INSERT INTO BOOK AUTHORS VALUES ("NAVATHE","1"),
("NAVATHE","2"),
("TANENBAUM","3"),
("EDWARD ANGEL","4"),
("GALVIN", "5");
INSERT INTO LIBRARY BRANCH VALUES ("10", "RR NAGAR", "BANGALORE"),
("11", "RNSIT", "BANGALORE"),
("12", "RAJAJI NAGAR", "BANGALORE"),
("13","NITTE","MANGALORE"),
("14", "MANIPAL", "UDUPI");
INSERT INTO BOOK COPIES
VALUES("10","1","10"),("5","1","11"),("2","2","12"),("5","2","13"),("7","3","14"),("1","5","10"),("3","4
","11");
INSERT INTO CARD VALUES ("100"),("101"),("102"),("103"),("104");
INSERT INTO BOOK LENDING VALUES ("17-01-01","17-06-01","1","10","101"),
("17-01-17","17-03-17","3", "14", "101"),
("17-02-21","17-04-21", 2, 13, 101),
("17-03-15","17-07-15", "4", "11", "101"),
("17-04-12","17-05-12", "1", "11", "104");
```

SELECT * FROM PUBLISHER;

	NAME	PHONE	ADDRESS
١	GRUPO PLANETA	7756120238	BANGALORE
	HACHETTE LIVRE	8970862340	CHENNAI
	MCGRAW-HILL	9989076587	BANGALORE
	PEARSON	9889076565	NEWDELHI
	RANDOM HOUSE	7455679345	HYDRABAD
	NULL	NULL	NULL

PUBLISHER 3 ×

SELECT * FROM BOOK;

	BOOK_ID	TITLE	PUB_YEAR	PUBLISHER_NAME
•	1	DBMS	JAN-2017	MCGRAW-HILL
	2	ADBMS	JUN-2016	MCGRAW-HILL
	3	CN	SEP-2016	PEARSON
	4	CG	SEP-2015	GRUPO PLANETA
	5	OS	MAY-2016	PEARSON
	MULL	NULL	NULL	NULL

B00K4 ×

SELECT * FROM BOOK_AUTHORS;

	AUTHOR_NAME	BOOK_ID
•	NAVATHE	1
	NAVATHE	2
	TANENBAUM	3
	EDWARD ANGEL	4
	GALVIN	5
	NULL	NULL

BOOK_AUTHORS 5 ×

SELECT * FROM LIBRARY_BRANCH;

	BRANCH_ID	BRANCH_NAME	ADDRESS
•	10	RR NAGAR	BANGALORE
	11	RNSIT	BANGALORE
	12	RAJAJI NAGAR	BANGALORE
	13	NITTE	MANGALORE
	14	MANIPAL	UDUPI
	NULL	NULL	NULL

LIBRARY_BRANCH 6 ×

SELECT * FROM BOOK_COPIES;

	NO_OF_COPIES	BOOK_ID	BRANCH_ID
•	10	1	10
	5	1	11
	2	2	12
	5	2	13
	7	3	14
	3	4	11
	1	5	10
	NULL	NULL	NULL

BOOK_COPIES 7 ×

SELECT * FROM CARD;

	CARD_NO
•	100
	101
	102
	103
	104
	HULL

SELECT * FROM BOOK LENDING;

	DATE_OUT	DUE_DATE	BOOK_ID	BRANCH_ID	CARD_NO
•	2017-01-01	2017-06-01	1	10	101
	2017-04-12	2017-05-12	1	11	104
	2017-02-21	2017-04-21	2	13	101
	2017-01-17	2017-03-17	3	14	101
	2017-03-15	2017-07-15	4	11	101
	NULL	NULL	NULL	NULL	MULL

BOOK_LENDING 9 ×

I. Retrieve details of all books in the library – id, title, name of publisher, authors, number of copies in each branch, etc.

SELECT B.BOOK_ID, B.TITLE, B.PUBLISHER_NAME,
A.AUTHOR_NAME,C.NO_OF_COPIES,L.BRANCH_ID
FROM BOOK B, BOOK_AUTHORS A, BOOK_COPIES C, LIBRARY_BRANCH L
WHERE B.BOOK_ID=A.BOOK_ID AND B.BOOK_ID=C.BOOK_ID AND
L.BRANCH ID=C.BRANCH ID;

	BOOK_ID	TITLE	PUBLISHER_NAME	AUTHOR_NAME	NO_OF_COPIES	BRANCH_ID
•	1	DBMS	MCGRAW-HILL	NAVATHE	10	10
	1	DBMS	MCGRAW-HILL	NAVATHE	5	11
	2	ADBMS	MCGRAW-HILL	NAVATHE	2	12
	2	ADBMS	MCGRAW-HILL	NAVATHE	5	13
	3	CN	PEARSON	TANENBAUM	7	14
	4	CG	GRUPO PLANETA	EDWARD ANGEL	3	11
	5	OS	PEARSON	GALVIN	1	10

Il Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017

SELECT CARD_NO FROM BOOK_LENDING
WHERE DATE_OUT BETWEEN "2017-01-01" AND "2017-07-01"
GROUP BY CARD_NO
HAVING COUNT(*)>3;

III Delete a book in BOOK table. Update the contents of other tables to reflect this data manipulation operation.

DELETE FROM BOOK WHERE BOOK ID=3;

SELECT * FROM BOOK;

	BOOK_ID	TITLE	PUB_YEAR	PUBLISHER_NAME
•	1	DBMS	JAN-2017	MCGRAW-HILL
	2	ADBMS	JUN-2016	MCGRAW-HILL
	4	CG	SEP-2015	GRUPO PLANETA
	5	OS	MAY-2016	PEARSON
	NULL	NULL	NULL	NULL

SELECT * FROM BOOK AUTHORS;

	AUTHOR_NAME	BOOK_ID
•	NAVATHE	1
	NAVATHE	2
	EDWARD ANGEL	4
	GALVIN	5
	NULL	HULL

SELECT * FROM BOOK_COPIES;

	NO_OF_COPIES	BOOK_ID	BRANCH_ID
•	10	1	10
	5	1	11
	2	2	12
	5	2	13
	3	4	11
	1	5	10
	NULL	NULL	NULL

SELECT * FROM BOOK_LENDING;

	DATE_OUT	DUE_DATE	BOOK_ID	BRANCH_ID	CARD_NO
•	2017-01-01	2017-06-01	1	10	101
	2017-04-12	2017-05-12	1	11	104
	2017-02-21	2017-04-21	2	13	101
	2017-01-17	2017-03-17	3	14	101
	2017-03-15	2017-07-15	4	11	101
	NULL	HULL	NULL	NULL	NULL

IV Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.

CREATE VIEW YEAR_OF_PUBLICATION AS SELECT PUB_YEAR FROM BOOK;

SELECT * FROM YEAR_OF_PUBLICATION;

YEAR_OF_PUBLICATION 2 ×

V Create a view of all books and its number of copies that are currently available in the Library.

CREATE VIEW BOOKS_AVAILABLE_IN_LIBRARY AS SELECT B.BOOK_ID, B.TITLE, C.NO_OF_COPIES FROM BOOK B, BOOK_COPIES C, LIBRARY_BRANCH L WHERE B.BOOK_ID=C.BOOK_ID AND C.BRANCH ID=L.BRANCH ID;

SELECT * FROM BOOKS_AVAILABLE_IN_LIBRARY;

	BOOK_ID	TITLE	NO_OF_COPIES
•	1	DBMS	10
	1	DBMS	5
	2	ADBMS	2
	2	ADBMS	5
	3	CN	7
	4	CG	3
	5	OS	1

LAB PROGRAM 8 : STUDENT ENROLLMENT

Consider the following database of student enrollment in courses & books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate:date)

COURSE (course #:int, cname:string, dept:string)

ENROLL (regno:string, course#:int, sem:int, marks:int)

BOOK _ ADOPTION (course# :int, sem:int, book-ISBN:int)

TEXT (book-ISBN:int, book-title:string, publisher:string, author:string)

Database applications laboratory GCEM DEPARTMENT OF CSE Page - 5 - 5th semester

i. Create the above tables by properly specifying the primary keys and the foreign keys.

ii. Enter at least five tuples for each relation.

```
create database studentenrollment;
use studentenrollment:
CREATE TABLE STUDENT(
reg no VARCHAR(20),
name VARCHAR(20),
major VARCHAR(20),
bdate DATE.
PRIMARY KEY(reg_no));
CREATE TABLE COURSE(
course no INT,
cname VARCHAR(20),
dept VARCHAR(20),
PRIMARY KEY (course no));
CREATE TABLE ENROLL(
reg no VARCHAR(15),
course no INT,
sem INT.
marks INT,
PRIMARY KEY (reg_no,course_no),
FOREIGN KEY (reg no) REFERENCES student (reg no).
FOREIGN KEY (course no) REFERENCES course (course no));
CREATE TABLE TEXT(
book isbn INT,
book title VARCHAR(20),
publisher VARCHAR(20),
author VARCHAR(20),
PRIMARY KEY (book isbn));
```

```
CREATE TABLE BOOK_ADOPTION(
course no INT,
sem INT,
book isbn INT,
PRIMARY KEY (course no,book isbn),
FOREIGN KEY (course no) REFERENCES course (course no),
FOREIGN KEY (book isbn) REFERENCES text(book isbn));
INSERT INTO STUDENT (reg_no,name,major,bdate) VALUES ('1pe11cs001','a','sr',19931230),
("1pe11cs002","b","sr","19930924"),
("1pe11cs003","c","sr","19931127"),
("1pe11cs004","d","sr","19930413"),
("1pe11cs005","e","jr","19940824");
INSERT INTO COURSE(course no,cname,dept) VALUES
("111","OS","CSE"),
("112", "EC", "CSE"),
("113", "SS", "ISE"),
("114","DBMS","CSE"),
("115", "SIGNALS", "ECE");
INSERT INTO TEXT(book isbn,book title,publisher,author) VALUES
("10","DATABASE SYSTEMS","PEARSON","SCHIELD"),
("900","OPERATING SYS","PEARSON","LELAND"),
("901", "CIRCUITS", "HALL INDIA", "BOB"),
("902", "SYSTEM SOFTWARE", "PETERSON", "JACOB"),
("903", "SCHEDULING", "PEARSON", "PATIL"),
("904","DATABASE SYSTEMS","PEARSON","JACOB"),
("905","DATABASE MANAGER","PEARSON","BOB"),
("906", "SIGNALS", "HALL INDIA", "SUMIT");
INSERT INTO BOOK ADOPTION(course no,sem,book isbn) VALUES
("111", "5", "900"),
("111", "5", "903"),
("111", "5", "904"),
("112", "3", "901"),
("113", "3", "10"),
("114", "5", "905"),
("113", "5", "902"),
("115", "3", "906");
INSERT INTO ENROLL(reg_no,course_no,sem,marks) VALUES
("1pe11cs001","115","3","100"),
("1pe11cs002","114","5","100"),
("1pe11cs003","113","5","100"),
("1pe11cs004","111","5","100"),
("1pe11cs005","112","3","100");
```

SELECT * FROM STUDENT;

	reg_no	name	major	bdate
•	1pe11cs001	a	sr	1993-12-30
	1pe11cs002	Ь	sr	1993-09-24
	1pe11cs003	C	sr	1993-11-27
	1pe11cs004	d	sr	1993-04-13
	1pe11cs005	e	jr	1994-08-24
	NULL	HULL	NULL	NULL

STUDENT 6 ×

SELECT * FROM COURSE;

	course_no	cname	dept
١	111	OS	CSE
	112	EC	CSE
	113	SS	ISE
	114	DBMS	CSE
	115	SIGNALS	ECE
	NULL	NULL	NULL

COURSE 7 ×

SELECT * FROM TEXT:

	book_isbn	book_title	publisher	author
•	10	DATABASE SYSTEMS	PEARSON	SCHIELD
	900	OPERATING SYS	PEARSON	LELAND
	901	CIRCUITS	HALL INDIA	BOB
	902	SYSTEM SOFTWARE	PETERSON	JACOB
	903	SCHEDULING	PEARSON	PATIL
	904	DATABASE SYSTEMS	PEARSON	JACOB
	905	DATABASE MANAGER	PEARSON	BOB
	906	SIGNALS	HALL INDIA	SUMIT
	NULL	NULL	HULL	NULL

SELECT * FROM ENROLL;

	reg_no	course_no	sem	marks
	1pe11cs001	115	3	100
	1pe11cs002	114	5	100
	1pe11cs003	113	5	100
	1pe11cs004	111	5	100
	1pe 11cs 005	112	3	100
2	NULL	NULL	NULL	NULL

SELECT * FROM BOOK_ADOPTION;

	course_no	sem	book_isbn
•	111	5	900
	111	5	903
	111	5	904
	112	3	901
	113	3	10
	113	5	902
	114	5	905
	115	3	906
	NULL	NULL	NULL

BOOK_ADOPTION 10 ×

iii. Demonstrate how you add a new text book to the database and make this book be adopted by some department.

INSERT INTO TEXT(book_isbn,book_title,publisher,author) VALUES("907","COMPUTER NETWORKS","PEARSON","FORTAN"); INSERT INTO BOOK_ADOPTION(course_no,sem,book_isbn) VALUES("111","3","907");

SELECT * FROM TEXT;

	book_isbn	book_title	publisher	author
•	10	DATABASE SYSTEMS	PEARSON	SCHIELD
	900	OPERATING SYS	PEARSON	LELAND
	901	CIRCUITS	HALL INDIA	BOB
	902	SYSTEM SOFTWARE	PETERSON	JACOB
	903	SCHEDULING	PEARSON	PATIL
	904	DATABASE SYSTEMS	PEARSON	JACOB
	905	DATABASE MANAGER	PEARSON	BOB
	906	SIGNALS	HALL INDIA	SUMIT
	907	COMPUTER NETWORKS	PEARSON	FORTAN
	NULL	NULL	NULL	NULL

TEXT 1 ×

SELECT * FROM BOOK_ADOPTION;

	course_no	sem	book_isbn
•	111	5	900
	111	5	903
	111	5	904
	111	3	907
	112	3	901
	113	3	10
	113	5	902
	114	5	905
	115	3	906
	HULL	NULL	NULL

iv. Produce a list of text books (include Course #, Book-ISBN, Book-title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.

	course_no	book_isbn	book_title
•	111	907	COMPUTER NETWORKS
	111	904	DATABASE SYSTEMS
	111	900	OPERATING SYS
	111	903	SCHEDULING

v. List any department that has all its adopted books published by a specific publisher.

SELECT c.dept
FROM course c, book_adoption ba
WHERE c.course_no=ba.course_no
GROUP BY c.dept
HAVING count(ba.book_isbn)=(SELECT count(ba2.book_isbn)
FROM TEXT t,book_adoption ba2,course c2
WHERE t.book_isbn=ba2.book_isbn AND c2.course_no=ba2.course_no AND t.publisher='HALL INDIA' AND c2.dept=c.dept);

PROGRAM 9: MOVIE DATABASE

Consider the schema for Movie Database:

ACTOR (Act_id, Act_Name, Act_Gender)
DIRECTOR (Dir id, Dir Name, Dir Phone)

PRIMARY KEY (MOV ID),

MOVIES (Mov id, Mov Title, Mov Year, Mov Lang, Dir id)

```
MOVIE CAST (Act id, Mov id, Role)
RATING (Mov_id, Rev Stars)
CREATE DATABASE MOVIEDB:
USE MOVIEDB;
CREATE TABLE ACTOR (
ACT ID INT,
ACT NAME VARCHAR (20),
ACT GENDER CHAR (1),
PRIMARY KEY (ACT ID));
CREATE TABLE DIRECTOR (
DIR ID INT,
DIR NAME VARCHAR (20),
DIR PHONE LONG,
PRIMARY KEY (DIR ID));
CREATE TABLE MOVIES (
MOV ID INT,
MOV TITLE VARCHAR (25),
MOV YEAR INT,
MOV LANG VARCHAR (12),
DIR ID INT,
PRIMARY KEY (MOV ID),
FOREIGN KEY (DIR ID) REFERENCES DIRECTOR (DIR ID));
CREATE TABLE MOVIE CAST (
ACT_ID INT,
MOV ID INT,
ROLE VARCHAR(10),
PRIMARY KEY (ACT ID, MOV ID),
FOREIGN KEY(ACT ID) REFERENCES ACTOR(ACT ID) ON DELETE CASCADE,
FOREIGN KEY(MOV ID) REFERENCES MOVIES(MOV ID) ON DELETE CASCADE);
CREATE TABLE RATING (
MOV_ID INT,
REV STARS VARCHAR (25),
```

```
FOREIGN KEY (MOV ID) REFERENCES MOVIES (MOV ID));
INSERT INTO ACTOR VALUES ("301","ANUSHKA","F"),
              ("302","PRABHAS","M"),
              ("303","PUNITH","M"),
              ("304","JERMY","M");
INSERT INTO DIRECTOR VALUES ("60", "RAJAMOULI", "8751611001"),
               ("61","HITCHCOCK", "7766138911"),
               ("62", "FARAN", "9986776531"),
               ("63", "STEVEN SPIELBERG", "8989776530");
INSERT INTO MOVIES VALUES ("1001", "BAHUBALI-2", "2017", "TELAGU", "60"),
              ("1002", "BAHUBALI-1", "2015", "TELAGU", "60"),
              ("1003", "AKASH", "2008", "KANNADA", "61"),
              ("1004","WAR HORSE", "2011", "ENGLISH", "63");
INSERT INTO MOVIE CAST VALUES ("301","1002", "HEROINE"),
                 ("301","1001", "HEROINE"),
                 ("303", "1003", "HERO"),
                 ("303", "1002", "GUEST"),
                 ("304", "1004", "HERO");
INSERT INTO RATING VALUES ("1001","4"),
              ("1002", "2"),
              ("1003","5"),
              ("1004", "4");
```

SELECT * FROM ACTOR;

SELECT * FROM DIRECTOR;

	DIR_ID	DIR_NAME	DIR_PHONE
•	60	RAJAMOULI	8751611001
	61	HITCHCOCK	7766138911
	62	FARAN	9986776531
	63	STEVEN SPIELBERG	8989776530
	NULL	NULL	NULL

DIRECTOR 3 ×

SELECT * FROM MOVIES;

	MOV_ID	MOV_TITLE	MOV_YEAR	MOV_LANG	DIR_ID
•	1001	BAHUBALI-2	2017	TELAGU	60
	1002	BAHUBALI-1	2015	TELAGU	60
	1003	AKASH	2008	KANNADA	61
	1004	WAR HORSE	2011	ENGLISH	63
	NULL	NULL	HULL	NULL	NULL

MOVIES 4 ×

SELECT * FROM MOVIE_CAST;

	ACT_ID	MOV_ID	ROLE
•	301	1001	HEROINE
	301	1002	HEROINE
	303	1002	GUEST
	303	1003	HERO
	304	1004	HERO
_	NULL	NULL	NULL

SELECT * FROM RATING;

	MOV_ID	REV_STARS
۲	1001	4
	1002	2
	1003	5
	1004	4
	NULL	NULL

1. List the titles of all movies directed by 'Hitchcock'.

SELECT MOV_TITLE
FROM MOVIES
WHERE DIR_ID IN (SELECT DIR_ID
FROM DIRECTOR
WHERE DIR_NAME = 'HITCHCOCK');

2. Find the movie names where one or more actors acted in two or more movies.

SELECT MOV_TITLE
FROM MOVIES M, MOVIE_CAST MV
WHERE M.MOV_ID=MV.MOV_ID AND ACT_ID IN (SELECT ACT_ID
FROM MOVIE_CAST GROUP BY ACT_ID
HAVING COUNT(ACT_ID)>1)
GROUP BY MOV_TITLE
HAVING COUNT(*)>1;

3. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN operation).

SELECT ACT_NAME, MOV_TITLE, MOV_YEAR
FROM ACTOR A
JOIN MOVIE_CAST C
ON A.ACT_ID=C.ACT_ID
JOIN MOVIES M
ON C.MOV_ID=M.MOV_ID
WHERE M.MOV_YEAR NOT BETWEEN 2000 AND 2015;

ACT_NAME	MOV_TITLE	MOV_YEAR
ANUSHKA	BAHUBALI-2	2017

4. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.

SELECT MOV_TITLE,MAX(REV_STARS)
FROM MOVIES M,RATING R
WHERE M.MOV_ID=R.MOV_ID
GROUP BY MOV_TITLE
HAVING COUNT(*)>=1
ORDER BY MOV_TITLE;

	MOV_TITLE	MAX(REV_STARS)
•	AKASH	5
	BAHUBALI-1	2
	BAHUBALI-2	4
	WAR HORSE	4

5. Update rating of all movies directed by 'Steven Spielberg' to 5

UPDATE RATING
SET REV_STARS=5
WHERE MOV_ID IN(SELECT MOV_ID FROM MOVIES
WHERE DIR_ID IN(SELECT DIR_ID
FROM DIRECTOR
WHERE DIR_NAME = 'STEVEN SPIELBERG'));

SELECT * FROM RATING;

	MOV_ID	REV_STARS
•	1001	4
	1002	2
	1003	5
	1004	5
	NULL	NULL

LAB PROGRAM 10 : COLLEGE DATABASE

```
Consider the schema for College Database:
STUDENT (USN, SName, Address, Phone, Gender)
SEMSEC (SSID, Sem, Sec)
CLASS (USN, SSID)
SUBJECT (Subcode, Title, Sem, Credits)
IAMARKS (USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)
```

CODE

CREATE DATABASE COLLEGEDATABASEENTRY; USE COLLEGEDATABASEENTRY:

CREATE TABLE STUDENT (USN VARCHAR (10), SNAME VARCHAR (25), ADDRESS VARCHAR (25), PHONE LONG, GENDER CHAR (1), PRIMARY KEY (USN));

CREATE TABLE SEMSEC (SSID VARCHAR (5), SEM INT, SEC CHAR (1), PRIMARY KEY (SSID)); select * from semsec;

CREATE TABLE CLASS (
USN VARCHAR (10),
SSID VARCHAR (5),
PRIMARY KEY (USN, SSID),
FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));
select * from class;

CREATE TABLE SUBJECT (
SUBCODE VARCHAR (8),
TITLE VARCHAR (20),
SEM INT,
CREDITS INT,
PRIMARY KEY (SUBCODE));
select * from subject;

CREATE TABLE IAMARKS (USN VARCHAR (10), SUBCODE VARCHAR (8), SSID VARCHAR (5),

```
TEST1 INT.
TEST2 INT.
TEST3 INT,
FINALIA INT,
PRIMARY KEY (USN, SUBCODE, SSID),
FOREIGN KEY (USN) REFERENCES STUDENT (USN),
FOREIGN KEY (SUBCODE) REFERENCES SUBJECT (SUBCODE),
FOREIGN KEY (SSID) REFERENCES SEMSEC (SSID));
select * from iamarks;
INSERT INTO STUDENT VALUES ('1RN13CS020','AKSHAY','BELAGAVI', 8877881122,'M').
               ('1RN13CS062', 'SANDHYA', 'BENGALURU', 7722829912, 'F').
               ('1RN13CS091','TEESHA','BENGALURU', 7712312312,'F'),
               ('1RN13CS066','SUPRIYA','MANGALURU', 8877881122,'F'),
               ('1RN14CS010', 'ABHAY', 'BENGALURU', 9900211201, 'M'),
               ('1RN14CS032', 'BHASKAR', 'BENGALURU', 9923211099, 'M'),
               ('1RN14CS025', 'ASMI', 'BENGALURU', 7894737377, 'F'),
               ('1RN15CS011','AJAY','TUMKUR', 9845091341,'M');
INSERT INTO STUDENT VALUES ('1RN15CS029','CHITRA','DAVANGERE', 7696772121,'F'),
               ('1RN15CS045','JEEVA','BELLARY', 9944850121,'M'),
               ('1RN15CS091','SANTOSH','MANGALURU', 8812332201,'M'),
               ('1RN16CS045', 'ISMAIL', 'KALBURGI', 9900232201, 'M'),
               ('1RN16CS088', 'SAMEERA', 'SHIMOGA', 9905542212, 'F'),
               ('1RN16CS122','VINAYAKA','CHIKAMAGALUR', 8800880011,'M');
INSERT INTO SEMSEC VALUES ('CSE8A', 8,'A'),
               ('CSE8B', 8,'B'),
               ('CSE8C', 8,'C'),
               ('CSE7A', 7,'A'),
               ('CSE7B', 7,'B'),
               ('CSE7C', 7,'C'),
               ('CSE6A', 6,'A'),
               ('CSE6B', 6,'B'),
               ('CSE6C', 6,'C'),
               ('CSE5A', 5,'A'),
              ('CSE5B', 5,'B'),
               ('CSE5C', 5,'C'),
               ('CSE4A', 4,'A'),
               ('CSE4B', 4,'B'),
               ('CSE4C', 4,'C'),
               ('CSE3A', 3,'A'),
               ('CSE3B', 3,'B'),
               ('CSE3C', 3,'C'),
               ('CSE2A', 2,'A'),
               ('CSE2B', 2,'B'),
               ('CSE2C', 2,'C'),
               ('CSE1A', 1,'A'),
```

```
('CSE1B', 1,'B'),
                ('CSE1C', 1,'C');
INSERT INTO CLASS VALUES ('1RN13CS020', 'CSE8A'),
('1RN13CS062','CSE8A'),
('1RN13CS066','CSE8B'),
('1RN13CS091','CSE8C'),
('1RN14CS010','CSE7A'),
('1RN14CS025','CSE7A'),
('1RN14CS032','CSE7A'),
('1RN15CS011','CSE4A'),
('1RN15CS029','CSE4A'),
('1RN15CS045','CSE4B'),
('1RN15CS091','CSE4C'),
('1RN16CS045','CSE3A'),
('1RN16CS088','CSE3B'),
('1RN16CS122','CSE3C');
INSERT INTO SUBJECT VALUES ('10CS81', 'ACA', 8, 4),
('10CS82','SSM', 8, 4),
('10CS83','NM', 8, 4),
('10CS84','CC', 8, 4),
('10CS85','PW', 8, 4),
('10CS71','OOAD', 7, 4),
('10CS72', 'ECS', 7, 4),
('10CS73','PTW', 7, 4),
('10CS74','DWDM', 7, 4),
('10CS75','JAVA', 7, 4),
('10CS76', 'SAN', 7, 4),
('15CS51', 'ME', 5, 4),
('15CS52','CN', 5, 4),
('15CS53','DBMS', 5, 4),
('15CS54','ATC', 5, 4),
('15CS55','JAVA', 5, 3),
('15CS56','AI', 5, 3),
('15CS41','M4', 4, 4),
('15CS42','SE', 4, 4),
('15CS43','DAA', 4, 4),
('15CS44','MPMC', 4, 4),
('15CS45','OOC', 4, 3),
('15CS46','DC', 4, 3),
('15CS31','M3', 3, 4),
('15CS32','ADE', 3, 4),
('15CS33','DSA', 3, 4),
('15CS34','CO', 3, 4),
('15CS35','USP', 3, 3),
('15CS36','DMS', 3, 3);
```

INSERT INTO IAMARKS VALUES ('1RN13CS091','10CS81','CSE8C', 15, 16, 18,17),

```
('1RN13CS091','10CS82','CSE8C', 12, 19, 14,17), ('1RN13CS091','10CS83','CSE8C', 19, 15, 20,20), ('1RN13CS091','10CS84','CSE8C', 20, 16, 19,20), ('1RN13CS091','10CS85','CSE8C', 15, 15, 12,15);
```

SELECT * FROM STUDENT;

	USN	SNAME	ADDRESS	PHONE	GENDER
•	1RN13CS020	AKSHAY	BELAGAVI	8877881122	М
	1RN13CS062	SANDHYA	BENGALURU	7722829912	F
	1RN13CS066	SUPRIYA	MANGALURU	8877881122	F
	1RN13CS091	TEESHA	BENGALURU	7712312312	F
	1RN14CS010	ABHAY	BENGALURU	9900211201	M
	1RN14CS025	ASMI	BENGALURU	7894737377	F
	1RN14CS032	BHASKAR	BENGALURU	9923211099	M
	1RN15CS011	AJAY	TUMKUR	9845091341	M
	1RN15CS029	CHITRA	DAVANGERE	7696772121	F
	1RN15CS045	JEEVA	BELLARY	9944850121	М
	1RN15CS091	SANTOSH	MANGALURU	8812332201	M
	1RN16CS045	ISMAIL	KALBURGI	9900232201	М
	1RN16CS088	SAMEERA	SHIMOGA	9905542212	F
	1RN16CS122	VINAYAKA	CHIKAMAG	8800880011	M
	NULL	NULL	HULL	NULL	NULL

SELECT * FROM CLASS;

	USN	SSID
•	1RN16CS045	CSE3A
	1RN16CS088	CSE3B
	1RN16CS122	CSE3C
	1RN15CS011	CSE4A
	1RN15CS029	CSE4A
	1RN15CS045	CSE4B
	1RN15CS091	CSE4C
	1RN14CS010	CSE7A
	1RN14CS025	CSE7A
	1RN14CS032	CSE7A
	1RN13CS020	CSE8A
	1RN13CS062	CSE8A
	1RN13CS066	CSE8B
	1RN13CS091	CSE8C
	NULL	NULL

SELECT * FROM SEMSEC;

	SSID	SEM	SEC
•	CSE1A	1	Α
	CSE1B	1	В
	CSE1C	1	C
	CSE2A	2	Α
	CSE2B	2	В
	CSE2C	2	C
	CSE3A	3	Α
	CSE3B	3	В
	CSE3C	3	C
	CSE4A	4	Α
	CSE4B	4	В
	CSE4C	4	С
	CSE5A	5	A
	CSE5B	5	В
	CSE5C	5	C
	CSE6A	6	Α
	CSE6B	6	В
	CSE6C	6	С
	CSE7A	7	Α
	CSE7B	7	В
	CSE7C	7	C
	CSE8A	8	Α
	CSE8B	8	В
	CSE8C	8	С
	NULL	NULL	NULL

SELECT * FROM SUBJECT;

	SUBCODE	TITLE	SEM	CREDITS
١	10CS71	OOAD	7	4
	10CS72	ECS	7	4
	10CS73	PTW	7	4
	10CS74	DWDM	7	4
	10CS75	JAVA	7	4
	10CS76	SAN	7	4
	10CS81	ACA	8	4
	10CS82	SSM	8	4
	10CS83	NM	8	4
	10CS84	CC	8	4
	10CS85	PW	8	4
	15CS31	M3	3	4
	15CS32	ADE	3	4
	15CS33	DSA	3	4
	15CS34	CO	3	4
	15CS35	USP	3	3
	15CS36	DMS	3	3
	15CS41	M4	4	4
	15CS42	SE	4	4
	15CS43	DAA	4	4
	15CS44	MPMC	4	4
	15CS45	OOC	4	3
	15CS46	DC	4	3
	15CS51	ME	5	4
	15CS52	CN	5	4
	15CS53	DBMS	5	4
	15CS54	ATC	5	4
	15CS55	JAVA	5	3
	15CS56	AI	5	3
	NULL	NULL	NULL	NULL

1. List all the student details studying in fourth semester 'C' section.

SELECT S.*, SS.SEM, SS.SEC FROM STUDENT S, SEMSEC SS, CLASS C WHERE S.USN = C.USN AND SS.SSID = C.SSID AND SS.SEM = 4 AND SS.SEC='C';

USN	SNAME	ADDRESS	PHONE	GENDER	SEM	SEC
1RN15CS091	SANTOSH	MANGALURU	8812332201	M	4	С

2. Compute the total number of male and female students in each semester and in each section.

SELECT SS.SEM, SS.SEC, S.GENDER, COUNT(S.GENDER) AS COUNT FROM STUDENT S, SEMSEC SS, CLASS C WHERE S.USN = C.USN AND SS.SSID = C.SSID GROUP BY SS.SEM, SS.SEC, S.GENDER ORDER BY SEM;

	SEM	SEC	GENDER	COUNT
•	3	Α	М	1
	3	В	F	1
	3	C	M	1
	4	Α	F	1
	4	Α	M	1
	4	В	M	1
	4	C	M	1
	7	Α	F	1
	7	Α	M	2
	8	Α	F	1
	8	A	M	1
	8	В	F	1
	8	C	F	1

3. Create a view of Test1 marks of student USN '1BI15CS101' in all subjects.

CREATE VIEW STUDENT_TEST1_MARKS_VIEW AS SELECT TEST1, SUBCODE FROM IAMARKS WHERE USN = '1RN13CS091';

SELECT * FROM STUDENT TEST1 MARKS VIEW;

4. Categorize students based on the following criterion:

If FinalIA = 17 to 20 then CAT = 'Outstanding'

If FinalIA = 12 to 16 then CAT = 'Average'

If FinalIA< 12 then CAT = 'Weak'

Give these details only for 8th semester A, B, and C section students.

SELECT S.USN,S.SNAME,S.ADDRESS,S.PHONE,S.GENDER,

(CASE

WHEN IA.FINALIA BETWEEN 17 AND 20 THEN 'OUTSTANDING'

WHEN IA.FINALIA BETWEEN 12 AND 16 THEN 'AVERAGE'

ELSE 'WEAK'

END) AS CAT

FROM STUDENT S, SEMSEC SS, IAMARKS IA, SUBJECT SUB

WHERE S.USN = IA.USN AND

SS.SSID = IA.SSID AND

SUB.SUBCODE = IA.SUBCODE AND

SUB.SEM = 8;

	USN	SNAME	ADDRESS	PHONE	GENDER	CAT
•	1RN13CS091	TEESHA	BENGALURU	7712312312	F	OUTSTANDING
	1RN13CS091	TEESHA	BENGALURU	7712312312	F	OUTSTANDING
	1RN13CS091	TEESHA	BENGALURU	7712312312	F	OUTSTANDING
	1RN13CS091	TEESHA	BENGALURU	7712312312	F	OUTSTANDING
	1RN13CS091	TEESHA	BENGALURU	7712312312	F	AVERAGE