Chapter 5

Bitmapped Image

2017.03

Prof. Park Kyusik

Contents

- Basic about Bitmap image
- JPEG image compression
 - Entropy coding
 - Hybrid JPEG encoding
- Some image processing
 - Pixel Point Processing
 - Pixel Group Processing
 - Geometrical Transformation

Bitmapped Images

- Naturally created from an external source in an analog form
 - Scanner, Digital camera, Satellite Image, X-ray
 - Basic Elements Pixel, Resolution, Color
 - Smallest image element : Pixel or Pel
 - Pixel based image is stored as Bitmap format

Image Compression

- Image files may be too big for network transmission
 - Image compression Discard some redundant information to reduce data file size
 - Effectiveness of compression will depend on the structure of actual image data
 - Lossy or Lossless compression (JPEG?)

Lossless Compression

- No loss on data compression
 - Sometimes called Entropy Coding
 - Run-length encoding (RLE)
 - Huffman coding
 - Dictionary-based schemes LZ77, LZ78, LZW
 (LZW used in GIF)

Run Length Encoding (RLE)

- Consider a character runs of 15 'A'
 - Require 15 bytes to store
 - RLE counts number of repetition of the same characters
- Example)

```
AAAAAAAAAAAAAACCCB // 19 bytes

> 15A3C1B // 7 bytes
```

- Fax transmission
 - Counts white(1) and black(0) pixel runs

- Compression is normally measured with the compression ratio :
 - Compression Ratio =(original size / compressed size) : 1
- Example with 16 characters string
 - 000pppppppXXXXXaaa → 3(0),6(p),4(X),3(a)
 16 byte string → 8 bytes
 - In this case, RLE yields a compression ratio of 2:1

Huffman Coding

- Basic principle
 - Allocate less bits to the more frequently occurring symbols

- Step 1) Analyze message symbols to have occurring frequency or probability for each symbol
- Step 2) Generate binary Huffman code tree by taking account of symbol frequency

Encoding Ex)

- String of symbols "AAAABBCD"
- Tree derivation

Generate Binary Huffman Tree

Binary 1 means right path, 0 means left path

- (Checking!) weight: D1 C1 2 B2 4 A4 8
 - If weight list lies in increasing order, correct coding!
 - Note allocate less bits to more occurring symbols

Lossy Compression

There is loss on data compression

❖ JPEG, JPEG 2000

 Analyze and compress image on the frequency domain

Main Idea

- Peoples are not very sensitive to high frequencies area of the image!
- Some high frequency information can be discarded without perceptible loss of quality

Key Compression - DCT

Compression using spatial correlation in image


```
spatial = 2D space

Image pixel is located at

2D position (x_0, y_0)
```

x

- Low frequency area of image (Background)
 - Neighboring pixels are changing smoothly
 - → High spatial correlation between pixels
- High frequency area of image (Edge)
 - Neighboring pixels are changing rapidly
 - → Low spatial correlation between pixels

DCT (Discrete Cosine Transform)

- Transform spatial-domain image pixels to the frequency domain by using
 DCT
 - After transform, most of energy is concentrated on the low frequency area (Energy Compaction)
 - Less energy on high frequency
- Bit allocation principle
 - Allocate bits depending on energy
 - Allocate more bits to low frequency area, and allocate less bits to high frequency area
 - Ignore the component below some threshold

Image (Video) 압축 표준(IS)

	IS	Serial	Name	Year
Fax	ITU-T	T.4	G3 Fax(PSTN)	1980
		T.6	G4 Fax(ISDN)	1984
Still Image	ISO/IEC	10918-1	JPEG, JPEG2000	1992
		11544-1	JBIG (Binary Image)	1993
Video	ITU-T	H.261	pX64Kbps,	1990
			ISDN Video conferencing	
		H.263	PSTN, ISDN Video Conf.	1995
	ISO/IEC	11172-2	MPEG1(VHS)	1992
		13818-2	MPEG2 (HDTV)	1994
		H.264	MPEG4 (Mobile)	2002

JPEG (Joint Picture Expert Group)

- ❖ ISO/IEC JTC 1 : SC29 WG1
 - Compression algorithm for still color image up to 20:1
- Feature
 - Hybrid coding Lossless + Lossy Coding
 - Supporting format : B/W, Color format- YUV, YIQ, YCbCr
 - Applications- Still Camera, Image Database,...
- Now moving to JPEG 2000 (Wavelet coding)

JPEG Encoder structure

2017-02-27

Multimedia System

Major Steps in JPEG

- Image preparation (Color format)
- DCT
- Quantization
- Zigzag Scan
- DPCM coding for DC component
- RLE coding for AC component
- Entropy (Huffman) Coding

Image preparation

- Transform color format of image (optional)
 - RGB \rightarrow YIQ or YUV or YCbCr (see later!)
- Segment into Macro Block (MB)
 - 8 X 8 size block segmentation

DCT (Discrete Cosine Transform)

Similar to FFT, transform a spatial-domain signal into frequency components

- Takes array of pixel values → produces an array of coefficients of frequency components
- Identify high frequency components and discard
- Allocate fewer bits for higher frequency area

Conversion 8X8 Block

Spatial-domain ⇒ Frequency-domain

$$F(u,v) = \frac{\Lambda(u)\Lambda(v)}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} \cos \frac{(2i+1) \cdot u\pi}{16} \cdot \cos \frac{(2j+1) \cdot v\pi}{16} \cdot f(i,j)$$

$$\Lambda(\xi) = \begin{cases} \frac{1}{\sqrt{2}} & for \ \xi = 0\\ 1 & otherwise \end{cases}$$

Quantization

Data Reduction

- Reduce number of bits to represent pixel value after DCT
- F'[u,v] = round[F[u,v]/q[u,v])
 - q[u, v] is quantization coefficient
- Q. Error is main source of Lossy coding

Quantization Example

 $\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & 0 & 1 & 4 & 1 & 0 & 1 & 2 \\ \end{bmatrix}$

-26	-3	-6	2	2	-1	0	0
0	-2	-4	1	1	0	0	0
-3	1	5	-1	-1	0	0	0
-4	1	2	-1	0	0	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

High frequency are

DCT coefficients

_									
	[16]) } }_	10	16	24	40	51	61	
	12	12	14	19	26	58	60	55	
						57			
	14	17	22	29	51	87	80	62	•
	18	22	37	56	68	109	103	77	
	24	35	55	64	81	104	113	92	
	49	64	78	87	103	121	120	101	
	2	92	95	98	112	100	103	99	

Quantized

round
$$\left(\frac{-415}{16}\right) = \text{round}(-25.9375) = -26$$

Same as allocating more bits to low frequency area and

less bits to high frequency area

Quantization Table

017-02-27 Multimedia System

24

DCT Examples)

Original Image

DCT Coefficients

Reconstructed Image

Error Image

25

Zigzag Scan

- ❖ Maps 8X8 Q. DCT MB into a 1 X 64 vector
- Group low frequency coefficients in top of vector

Encoding of Q. DCT Coefficients

- AC Component
 - Do Run Length Encoding (RLE)

- DC component of Quantized DCT
 - DC values of neighboring MB are large and similar
 - Use DPCM (Differential PCM) Coding
 - Encode only the difference between the current 8X8 Macro Block and previous Macro Block

- Entropy Coding- Final stage of JPEG
 - → Huffman coding

JPEG Decoder (Inverse of Encoder)

JPEG - Sequential Mode

Each image is encoded in a single left to right, top to bottom

JPEG - Progressive Mode

Goal : Display low quality image and successively improve

JPEG2000

- Discrete Wavelet Transform (DWT)
 - Image is divided into tiles. It can be any size up to the entire image
 - Wavelet decomposition : coarse → fine
 - Add progressively more detail to the image

Multimedia System

Basic Image Processing

- Pixel Point Processing
 - Histogram, Histogram equalization, Brightness control, Contrast, S-curve
- Pixel Group Processing
 - Blurring, Sharpening, Noise filtering, Edge detection, Mosaic
- Geometrical transformation
 - Interpolation, reflection, rotation

Pixel Point Processing

Histogram definition

Image Histogram

Image tone explains Brightness, Contrast

Image Tone Example

Image Histogram Example

brightness depends on the distributi on of histogram

Image Histogram Example

contrast depends on the width of histogram

Adjustments in Photoshop

Brightness and Contrast Control

- Brightness (pixel processing)
 - Brighter : pixel + Δ
 - Darker : pixel Δ

- Contrast
 - Stretch or compress the histogram

Brightness Control

pixel + 30

pixel – 30

41

Contrast Stretching

Called Histogram Equalization

Improve image contrast

a) Original Histogram :b) histogram - low :c) (histogram - low) * 255 / (high - low)

Histogram Equalization

Histogram Equalization

S-curve mapping

- Easy way of
 - Brightness and contrast control
 - Giving special effects

output

input

47

2017- Special effects

Pixel Group Processing

- Image processing based on the Mask
 - Applied to pixel group
 - Mask = Template or window, kernel, filter
 - Convolution = spatial filtering with mask
 - Smoothing, Blurring, Sharpening
 - Noise filtering, Edge detection, Embossing, Mosaic

Image Smoothing - LPF

Results

- sharp edge \rightarrow smooth edge (Blurring)
- detailed part → blurred

	Smooth	euge
117	57	27
117	57	27
117	57	27
117	57	27
117	57	27

smooth

Pdop

Blurring - LPF

- Convolution mask with equal weights
 - Note sum=1

$\left(1/9\right)$	1/9	1/9
1		1/9
1/9	1/9	1/9

Gaussian Blurring

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

Sharpening

- Eliminate low freq. component.
 - 3x3 convolution mask coefficients all equal to minus value except center, sum=1
 - smooth edge \rightarrow sharp edge

-1	-1	-1
-1	9	-1
-1	-1	-1

Embossing Effects

*3 Mask types (135°, 90°, 45°)

-1	0	0
0	0	0
0	0	1

0	-1	0
0	0	0
0	1	0

0	0	-1
0	0	0
1	0	0

❖ Mask center value=0, sum= 0

2017-02-27

method: 0

method: 2

Multimedia System

Noise Filtering

Median Filter

Salt & pepper noise

원 영상(impulse noise)

원 영상(uniform noise)

미디언 필터링 결과

미디언 필터링 결과

2017-02-27

57

Edge Detection

58

Interpolation

*3 Methods

- Nearest neighbor
 - Use value of pixel in nearest neighbor
- Bilinear interpolation
 - Use weighted value of all four adjacent pixels
- Bicubic interpolation
 - Use values of all four adjacent pixels, weighted using cubic splines

❖ Image zoom in (X 1.5)

- Fill the empty pixel value
 - → Called interpolation

Nearest neighborhood interpolation

Simplest, but mosaic effect

Bilinear Interpolation

Image zoom with Bilinear method

Comparison

Nearest-neighbour (left), bilinear (middle) and bicubic (right) interpolation

Image Rotation

New pixel location

$$x' = (x - centerX) \cdot \cos \theta - (y - centerY) \cdot \sin \theta$$

 $y' = (x - centerX) \cdot \sin \theta - (y - centerY) \cdot \cos \theta$

Image Reflection

Homework

Do image operations in lecture PT using image editing program such as Photoshop

Digital Camera

- ❖ Picture 빛의 예술 (Art of light)
 - 노출 (Exposure) 빛의 양 (light amount)

❖노출 (Exposure) - 3가지 요소

빛의 양에 따른 사진의 변화

노출 부족

적정 노출

노출 과다

SK Energy Company Blog

- 조리개 (Aperture, F stop, Av)
- 셔터스피드 (Shutter speed, Tv)
- ISO (감도)

❖조리개 (Aperture)

- Camera 렌즈에 있는 움직이는 막(shield)
- 조리개를 조절해 빛을 받아들이는 양 조절

- Camera 렌즈는 최대 조리개 개방 수치에 따라 성능 및 가격 결정 (F=1.8 > F=2.8)
- 카메라 Av 모드
 - 조리개 설정 수치에 따라 셔터스피드 자동 조절

❖ 조리개 - Pan focus and Out focus

- 조리개는 피사계 심도 조절 기능
- Pan focus (풍경 사진)
 - 조리개를 조여(F↑)서 심도가 깊은 사진
- Out focus (인물 사진)
 - 조리개를 개방해서(F↓)서 심도가 낮은 사진

조리개와 피사계 심도의 이해

• 조리개를 열었을 때의 초점이 맞는 범위(피사계 심도) •

• 조리개를 조였을 때의 초점이 맞는 범위(피사계 심도) •

SK Energy Company Blog

Multimedia System

조리개 값에 따른 사진의 변화

SK Energy Company Blog

- ❖셔터 스피드(Shutter speed)
 - 카메라에 장착되어 있는 검정색 막. 막 뒤 에는 CMOS 센서가 위치하고 있음
 - 셔터(Shutter) 버튼을 누르면 순간 shutter
 가 열리면서 노출 결정
 - Bulb 모드(셔터를 누르는 동안 무한대 노출)
 - 15sec ~ 1/2000sec
 - Shutter speed를 설정해 느리게 또는
 빠르게 움직이는 물체를 찍을 때 설정

셔터스피드에 따른 사진의 변화

❖ Shutter speed — 떨어지는 pen

- (1/30sec) 손 떨림으로 인해 흐릿함 < 1/60sec
- (1/640sec) 물체를 고정시켜 보이는 효과
- 경주 자동차등의 빠른 물체를 찍을 때는 Shutter speed ↑, 계곡 물 등에 흐릿한 효과 ↓

❖조리개와 shutter speed를 이용한 노출

- 조리개와 shutter speed는 반비례
 - 조리개를 많이 열면, shutter speed는 빨라야 하고, 조 리개를 조이면, shutter speed를 느리게 조절
 - 조리개를 한 스톱(one stop) 높이면, shutter speed를 한 스톱 낮춤.
 - One stop ~ 빛을 받아 들이는 양이 정확히 2배가 되는 정도를 의미하는 용어

- ❖조리개와 shutter speed 수치 조절
 - Example) 적정 노출
 조리개 f11, shutter speed 1/125
 ISO = 100
 - 조리개와 shutter speed 상관 관계

❖ISO –광 감도

- CMOS 센서가 빛에 반응하는 감도 값
- 조리개와 shutter speed 만으로 적정
 노출을 얻기 어려운 어두운 환경에서 ISO
 값을 높여서 인위적을 밝은 사진 가능
 - ISO: 100 ~ 25600
 - 일반적으로 ISO 적정 값은 100 또는 200
 - ISO를 높이면 Noise가 끼게 됨

ISO 값에 따른 사진의 변화

ISO 100

ISO 6400

SK Energy Company Blog

❖카메라 모드

- 조리개 우선 모드 (Av)
 - 조리개 설정(Pan or Out focus)하면 shutter speed와 ISO는 카메라가 조절
- 셔터 스피드 우선 모드 (Tv)
 - 셔터 스피드 조절하면 조리개와 ISO 자동 설정
- M(Manual) 모드
 - 조리개, 셔터 스피드, ISO등 수동 조절
- 자동 모드
 - 카메라가 모든 수치 자동 조절

Add R programming examples from the internet