

Informacijska i komunikacijska tehnologija:

Obradba informacija Telekomunikacije i informatika

Višemedijske komunikacije

2.

Osnove kodiranja i kompresije

Osnove kodiranja i kompresije

- Uvod, definicije
 - Što je višemedijski sadržaj?
 - Definicije, podjela metoda kompresije
 - Hibridno kodiranje
 - Kompresija u sklopu komunikacijskog sustava
- Entropijsko kodiranje
 - Karakteristike izvora informacije
 - Vrste kodova i njihova svojstva
 - Metode entropijskog kodiranja
- Izvorno kodiranje
 - Osnovna svojstva i principi
 - Osnovne metode izvornog kodiranja

- Huffmanovo kodiranje
- Aritmetičko kodiranje
- Metode rječnika (LZ77, LZ78, LZW)
- Metode skraćivanja niza (potiskivanje nula, slijedno kodiranje)
- Kvantizacija
- Poduzorkovanje
- Transformacijsko kodiranje
- Diferencijalno (predikcijsko) kodiranje
- Potpojasno kodiranje
- Kodiranje zasnovano na modelu

Što je (više)medijski sadržaj?

- Zavod za telekomunikacije
- analogni medij → uzorkovanje → kvantizacija → kodiranje/kompresija → digitalni medij
- medij se pretvara u digitalni oblik, pogodan za obradu, pohranu ili prijenos

Kodiranje i kompresija

- Kodiranje: dodjela kodnih riječi simbolima poruke
- Kompresija: kodiranje koje smanjuje broj bitova potreban za izražavanje poruke
- U jasnom kontekstu, koristimo ove pojmove kao sinonime
- Kompresija se vrši u koderu informacije

Zašto je kompresija moguća?

- Postupci kompresije se uglavnom temelje na redundanciji u podacima:
 - vremenska redundancija (npr. korelacija uzastopnih uzoraka audia)
 - prostorna redundancija (npr. korelacija susjednih elemenata slike - pixela)
 - spektralna (npr. korelacija između boja ili svjetline u slici)
 - percepcijska (ljudski percepcijski sustav; primjena: slika i zvuk)

Osnovna svojstva kompresije

- Kompresija bez gubitaka
 - Komprimirani podaci mogu se dekomprimiranjem rekonstruirati bez gubitka informacije (*reverzibilno*)
 - Primjene: npr. tekst, medicinske slike, satelitske snimke
- Kompresija s gubicima
 - Cilj je ili dobiti najbolju vjernost rekonstruiranih podataka za zadanu brzinu (bit/s) ili postići najmanju brzinu za zadanu granicu vjernosti
 - Primjene: npr. govor, slika, video
- Važan parametar je omjer kompresije
 - Omjer veličine komprimiranih i originalnih podataka, npr. 1:10

Klasifikacija postupaka kodiranja

Hibridno kodiranje

- Kombinacija izvornog i entropijskog kodiranja
- Primjene na razne vrste medija (slika, video, glazba...)
- Različite metode, uglavnom s gubicima (ljudima manje ili više neprimjetnima)
- Omjer kompresije ovisan o sadržaju i (subjektivnoj) kvaliteti

Primjeri primjene hibridnog kodiranja

- Zvuk
 - PCM, ADPCM, MPEG audio,...
- Nepomična slika
 - GIF, JPEG, JPEG 2000,...
- Video
 - H.261, MPEG video...
- 3D modeli i animacija
 - MPEG-4

Odabrane metode hibridnog kodiranja zvuka i slike obrađene su u predavanjima koja slijede.

Kompresija u sklopu komunikacijskog sustava

Entropijsko kodiranje

Entropijsko kodiranje

- Uvod u entropijsko kodiranje
- Karakteristike izvora informacije
 - Stacionarni izvor, ergodički izvor, izvori s memorijom (Markovljevi)
- Vrste kodova i njihova svojstva
 - Singularni, nesingularni, jednoznačno dekodabilni, prefiksni kodovi
- Optimalno kodiranje
- Metode entropijskog kodiranja
 - Huffmanovo kodiranje
 - Aritmetičko kodiranje
 - Metode rječnika (LZ77, LZ78, LZW)
 - Metode skraćivanja niza (potiskivanje nula, slijedno kodiranje)

Uvod u entropijsko kodiranje

- Osnovna ideja: skraćeno zapisati višestruko ili često ponavljane simbole ili nizove simbola
- Zajedničko svim metodama entropijskog kodiranja:
 - temelje se direktno na teoriji informacije
 - kodiranje <u>bez</u> gubitaka
 - omjer kompresije ovisi samo o statističkim svojstvima izvora informacije
 - poruka se promatra isključivo kao niz niz slučajnih vrijednosti, ne uzimaju se u obzir svojstva medija (za razliku od izvornog kodiranja)

Karakteristike izvora informacije

 Izvor informacije promatramo kao stohastički proces, tj. niz slučajnih varijabli:

$$X_1, X_2, ..., X_n$$

 Izvor u potpunosti opisan raspodjelom združenih vjerojatnosti pojavljivanja varijabli:

$$P\{(X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)\} = p(x_1, x_2, ..., x_n)$$

Općenito, moguća zavisnost među varijablama

Stacionarni izvor

Statistička svojstva se ne mijenjaju s vremenom

$$P\{(X_1, X_2, ..., X_n) = (x_1, x_2, ..., x_n)\} = P\{(X_{1+l}, X_{2+l}, ..., X_{n+l}) = (x_1, x_2, ..., x_n)\},\$$

$$\forall l, (x_1, x_2, ..., x_n) \in X^n, n > 0$$

- Trivijalan primjer stacionarnog izvora: AEAEAEAEAEAEAE.....
- Trivijalan primjer nestacionarnog izvora: AEAAEEAAAEEEAAAAEEEEAAAAAEEEEE...

DEFINICIJA

Ergodički izvor

- Izvor kao skup svih mogućih proizvedenih nizova
 - Prosjek po skupu: prosjek pojavljivanja simbola na nekom mjestu u nizu, gledano među svim nizovima
 - Prosjek po vremenu: učestalost pojavljivanja simbola unutar pojedinog niza
- Ergodičnost: prosjek po skupu = prosjek po vremenu
- Svaki proizvedeni niz ima ista svojstva i ona se ne mijenjaju u vremenu
- Za entropijsko kodiranje promatramo ergodičke izvore (aproksimacija stvarnih izvora)

Ergodičnost izvora - primjer

- Izvor počinje 1/3 sa A, 1/3 B i 1/3 E
 - Ako počne sa A ili B ponavlja ih izmjenično
 - Ako počne sa E, ponavlja samo E
 - Skup mogućih nizova:

Niz 1: ABABABABABABAB...

Niz 2: BABABABABABA...

Niz 3: EEEEEEEEEEE...

Simbol	Prosjek po vremenu za niz 1	Prosjek po vremenu za niz 2	Prosjek po vremenu za niz 3	Prosjek po skupu
Α	1/2	1/2	0	1/3
В	1/2	1/2	0	1/3
E	0	0	1	1/3

Izvori s memorijom

- Vjerojatnost pojavljivanja simbola je ovisna o jednom ili više prethodnih simbola
- Neki nizovi simbola vjerojatniji od drugih
- Većina prirodnih izvora su izvori s memorijom
 - Npr. iz slova u tekstu, zvuk govora, slika

Markovljevi informacijski izvori

- Izvori s memorijom često se mogu opisati pomoću Markovljevih
- Stanja, vjerojatnosti prijelaza
- Pri prijelazu stanja generira se simbol

Primjer Markovljevog izvora

Binarni Markovljev izvor s memorijom od dva

simbola

Tipičan izlaz:

Kodiranje

Zavod za telekomunikacije

Dodjela kodnih riječi simbolima poruke

$$X = \{x_1, x_2, ..., x_i, ..., x_n\}$$

$$x_i \in X \xrightarrow{KODIRANJE} C(x_i)$$

$$C(x_i) \in D^*, D = \{a_1, a_2, ..., a_d\},$$

- Kodiranje sa svojstvom sažimanja: kompresija
- U praksi gotovo uvijek binarna abeceda
 - $d = 2, D = \{0,1\}$
 - Izlaz kodera: struja bitova (engl. bitstream)

Vrste kodova

Optimalni kodovi

Zavod za telekomunikacije

Minimum prosječne duljine kodne riječi se dobiva za:

$$l_i^* = -\log_d p_i \Longrightarrow L = -\sum_{i=1}^n p_i \log_d p_i = H(X)$$

 Ali l_i moraju biti cijeli brojevi, pa se ne može uvijek postići L=H:

$$L \ge H(X)$$

- * Za optimalni kod, prosječna duljina kodne riječi je unutar jednog bita od entropije: $H(X) \le L < H(X) + 1$
- Efikasnost koda: $\varepsilon = \frac{H(X)}{L}$

Metode entropijskog kodiranja

Huffmanovo kodiranje

- optimalno kodiranje
- binarno stablo
- kraći zapis čestih znakova
- Aritmetičko kodiranje
 - poopćenje Huffmanovog kodiranja
 - cijela poruka se pretvara u jednu kodnu riječ
- Metode rječnika
 - isti rječnik kodnih riječi na strani pošiljatelja i primatelja
 - dinamička konstrukcija rječnika
 - Lempel-Ziv (LZ77, LZ78), Lempel-Ziv-Welch (LZW)
- Metode skraćivanja niza
 - potiskivanje nula, slijedno kodiranje

Huffmanovo kodiranje

- D. A. Huffman, 1952. godine
- Kodira pojedinačne simbole kodnim riječima promjenjive duljine, ovisno o (poznatim!) vjerojatnostima njihova pojavljivanja
- Temelji se na dvije jednostavne činjenice:
 - (1) U optimalnom kodu, simboli s većom vjerojatnošću pojavljivanja imaju kraće kodne riječi od onih s manjom vjerojatnošću
 - (2) U optimalnom kodu, dva simbola s najmanjim vjerojatnostima imaju kodne riječi jednake duljine (vrijedi za prefiksni kod)
- Ishod: sažetiji zapis (npr. tipičan tekst se sažima za 45%)

Huffmanovo kodiranje: postupak

- Algoritam stvaranja koda:
 - 1. Sortiraj simbole po padajućim vjerojatnostima
 - 2. Pronađi dva simbola s najmanjim vjerojatnostima
 - 3. Jednom od njih dodijeli simbol "0", drugom "1"
 - 4. Kombiniraj ta dva simbola u jedan nadsimbol (nadsimbol je novi simbol čija je vjerojatnost pojavljivanja jednaka zbroju vjerojatnosti pojavljivanja dvaju simbola od kojih je nastao) i zapiši ih kao dvije grane binarnog stabla, a nadsimbol kao račvanje iznad njih
 - 5. Ponavljaj 1-4 dok ne dobiješ samo jedan nadsimbol
 - 6. Povratkom kroz stablo očitaj kodove
- Podatkovna struktura algoritma je binarno stablo
- Algoritam dekodiranja koristi isti postupak za gradnju stabla
 - Dekoder mora znati vjerojatnosti pojavljivanja simbola

Huffmanovo kodiranje: primjer

Zavod za telekomunikacije

- Skup simbola {A, B, C, D, E} s vjerojatnostima pojavljivanja
 p(A) = 0.16, p(B) = 0.51, p(C) = 0.09, p(D) = 0.13, p(E) = 0.11
- * Za uniformni kod, prosječna duljina koda je **3 bit/simbol** (jer je $2^2 \le 5 \le 2^3$).
- Entropija: 1.96 bit/simbol

Prosječna duljina dobivenog koda u našem slučaju je:

$$L = \sum_{x \in X} p_x l_x = 3 \times (0.09 + 0.11 + 0.13 + 16) + 0.51 = 1.98 \text{ bit/simbol}$$

Huffmanovo kodiranje: svojstva

- kodiranje je idealno ako su vjerojatnosti 1/2, 1/4, ..., 1/2ⁿ
- u stvarnim slučajevima to obično nije slučaj, te rezultat ovisi o vjerojatnostima pojavljivanja simbola
- prednosti:
 - jednostavan za izvedbu
 - vrlo dobro kodiranje za "dobre" vjerojatnosti pojavljivanja simbola
- nedostaci:
 - vjerojatnosti pojavljivanja simbola moraju biti poznate; ovise o primjeni (tekst, slika)
 - za "loše raspoređene" vjerojatnosti pojavljivanja dobiju se izrazito loši kodovi

Primjer lošeg koda i prošireni Huffmanov kod

Simbol	Vjerojatnost	Kodna riječ
a ₁	0.95	0
a_2	0.02	10
a_3	0.03	11

PROSIRENI KOD				
Simbol	Vjerojatnost	Kodna riječ		
a₁a₁	0.9025	0		
a ₁ a ₂	0.0190	111		
a₁a₃	0.0285	100		
a ₂ a ₁	0.0190	1101		
a_2a_2	0.0004	110011		
a ₂ a ₃	0.0006	110001		
a ₃ a ₁	0.0285	101		
a_3a_2	0.0006	110010		
a_3a_3	0.0009	110000		

- Entropija: 0.335 bit/simbol
- Prosječna duljina:1.05 bit/simbol: 213% više od entropije!!
- Prošireni kod: 1.222 / 2 = 0.611 bit/simbol: 72% više od entropije.
- Bolje je kodirati duže sekvence, ali tada broj kodnih riječi raste eksponencijalno

Huffmanovo kodiranje: primjene

Česta primjena unutar složenijih algoritama

- Primjeri:
 - standardi za telefaks (T.4, T.6)
 - standard za nepomičnu sliku JPEG

Aritmetičko kodiranje

- Autori Pasco & Rissanen (nezavisno), 1976. godine
- Algoritam uzima kao ulaz cijele nizove simbola ("poruke") i preslikava ih na realne brojeve, ovisno o (poznatim!) statističkim svojstvima

Aritmetičko kodiranje: postupak

- Podijeli interval [0, 1) u n podintervala koji odgovaraju simbolima iz abecede; duljina svakog podintervala proporcionalna vjerojatnosti odgovarajućeg simbola
- 2. Iz promatranog skupa podintervala, odaberi podinterval koji odgovara sljedećem simbolu u poruci
- 3. Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 4. Ponavljaj korake 2 i 3 dok cijela poruka nije kodirana
- 5. Konačni kod za čitavu poruku je jedan broj iz intervala u binarnom obliku

Aritmetičko kodiranje: primjer (1)

- *M*=2
- simboli: X, Y p(X) = 2/3p(Y) = 1/3
- poruka duljine 2

 (moguće poruke
 XX, XY, YX, YY)
 kodira se onim
 brojem bita
 dovoljnim za
 jedinstveno
 određivanje
 intervala
 (binarni razlomak!)

Aritmetičko kodiranje: primjer (2)

Zavod za telekomunikacije

 primjer za poruku duljine 3

- *M*=2
- simboli:

$$p(X) = 2/3$$

$$p(Y) = 1/3$$

Postupak dekodiranja

- 1. Podijeli početni interval [0, 1) u podintervale po vjerojatnostima pojavljivanja simbola
- 2. Uzmi primljeni kod kao realni broj
- 3. Pronađi podinterval u kojem se nalazi broj (kod)
- Zapiši simbol koji odgovara tom podintervalu
- 5. Podijeli taj podinterval u n novih podintervala, proporcionalno vjerojatnostima pojavljivanja simbola iz abecede; tako nastaje novi skup podintervala koji promatramo
- 6. Ponavljaj korake 3-5 dok ne dođe kraj poruke

Dekodiranje: primjer

 primjer za poruku duljine 3

- *M*=2
- simboli:

$$p(X) = 2/3$$

$$p(Y) = 1/3$$

Primljeni kod 1111tj. 15/16

Odabir koda

- Kojim brojem iz podintervala kodirati poruku?
- Može se uzeti bilo koja vrijednost iz podintervala
- Dovoljan broj znamenki:

$$l(x) = \left\lceil \log \frac{1}{P(x)} \right\rceil + 1 \text{ [bit]}$$

Na ovakav način dobiva se uvijek prefiksni kod

Implementacija

- Do sada opisani algoritam neupotrebljiv
 - Neprihvatljivo čekanje do kraja poruke
 - Algoritam podrazumijeva beskonačnu preciznost realnih brojeva – na računalu prikaz s pomičnim zarezom
 - Operacije s realnim brojevima su skupe
- Potreban je algoritam koji:
 - Koristi operacije sa cijelim brojevima
 - Koristi prikaz sa fiksnim brojem bitova
 - Proizvodi simbole koda tokom postupka kodiranja, a ne na kraju

Aritmetičko kodiranje: praktičan postupak

- Osnovni postupak podjele na podintervale je isti
- Koristi se fiksni broj znamenki za prikaz intervala
- Kada je prva znamenka u prikazu gornje i donje granice ista, interval se renormalizira:
 - Prvih n znamenki se šalje na izlaz kodera
 - Znamenke se pomiću ulijevo za jedno mjesto
 - Desno se dodaje znamenka: 0 na donju, 1 na gornju granicu intervala (ako su znamenke binarne)

Renormalizacija: primjer

F=R

X	p(x)
RAZMAK	1/10
A	1/10
В	1/10
Е	1/10
G	1/10
I	1/10
L	2/10
S	1/10
T	1/10

				Zavod za telekomunik
	GORNJA GRANICA	DONJA GRANICA	DULJINA INTERVALA	KUMULATIVNI IZLAZ
Početno stanje	99999	00000	100000	
Kodiraj B (0.2-0.3)	29999	20000		
Renormalizacija, izlaz: 2	99999	00000	100000	.2
Kodiraj I (0.5-0.6)	59999	50000		.2
Renormalizacija, izlaz: 5	99999	00000	100000	.25
Kodiraj L (0.6-0.8)	79999	60000	20000	.25
Kodiraj L (0.6-0.8)	75999	72000		.25
Renormalizacija, izlaz: 7	59999	20000	40000	.257
Kodiraj RAZMAK (0.0-0.1)	23999	20000		.257
Renormalizacija, izlaz: 2	39999	00000	40000	.2572
Kodiraj G (0.4-0.5)	19999	16000		.2572
Renormalizacija, izlaz: 1	99999	60000	40000	.25721
Kodiraj A (0.1-0.2)	67999	64000		.25721
Renormalizacija, izlaz: 6	79999	40000	40000	.257216
Kodiraj T (0.9-1.0)	79999	76000		.257216
Renormalizacija, izlaz: 7	99999	60000	40000	.2572167
Kodiraj E (0.3-0.4)	75999	72000		.2572167
Renormalizacija, izlaz: 7	59999	20000	40000	.25721677
Kodiraj S (0.8-0.9)	55999	52000		.25721677
Renormalizacija, izlaz: 5	59999	20000		.257216775
Renormalizacija, izlaz: 2				.2572167752
Renormalizacija, izlaz: 0				.25721677520

Usporedba aritmetičko - Huffman

Huffman	Aritmetičko kodiranje
Kodira svaki simbol posebno	Kodira cijelu poruku jednim kodom: realni broj 0 - 1
Minimalno 1 bit/simbol	Moguće < 1 bit/simbol
Duljina poruke nije važna	Teoretski optimalno za dugačke poruke
Kodiranje niza simbola moguće samo proširenim Huffman kodom	Uvijek se kodira cijela poruka
Jednostavno za računanje	Zahtjevnije za računanje

Aritmetičko kodiranje: primjene

 Primjena kao komponente u raznim standardima i za razne vrste medija

- Dokumenti
 - JBIG (Joint Bi-level Image Processing Group)
- Slika
 - JPEG
- Sintetički sadržaji/animacija
 - MPEG-4 FBA (Face and Body Animation)

Metode rječnika

- Algoritmi kodiranja metodama rječnika uzimaju kao ulaz nizove simbola ("riječi") promjenjive duljine i kodiraju ih kodnim riječima stalne duljine iz rječnika
- Ne trebaju znati vjerojatnosti pojavljivanja simbola, nazivaju se i univerzalni koderi
- Koder i dekoder moraju imati isti rječnik
- Rječnik moze biti statičan, no najčešće je prilagodljiv

Metode s prilagodljivim rječnikom

- Koder i dekoder dinamički grade rječnik
 - LZ77: Rječnik je posmični prozor
 - LZ78: riječi se grade dodavanjem slova na postojeće riječi (u početku rječnik je prazan)
 - Lempel-Ziv-Welch (LZW) algoritam
 - izvorni algoritam smislili Ziv i Lempel (1977 LZ77, 1978 -LZ78), a Welch ga je doradio i poboljšao 1984 (zato LZW)
 - algoritam relativno jednostavan, iako složeniji od Huffmanovog
 - izvorni LZW algoritam koristi rječnik s 4K riječi, s tim da su prvih 256 riječi standardni ASCII kodovi

Algoritam LZ77

- Rječnik je posmični prozor od N zadnjih simbola
- U svakom koraku traži se u rječniku najduži niz simbola jednak nadolazećim simbolima, te se kodira kao uređena trojka (pomak, duljina, sljedeći_simbol)
- Nedostatak: "kratka" memorija

LZ77: primjer kodiranja

Algoritmi LZ78 i LZW

- Umjesto posmičnog prozora, zasebna memorija za rječnik
 - Rječnik je poredana lista riječi (nizova simbola)
 - Riječ se dovaća pomoću indeksa (rednog broja)
- LZ78
 - Rječnik u početku prazan
 - U svakom koraku šalje se (*indeks*, *idući simbol*)
 - Indeks pokazuje na najdulju riječ u rječniku jednaku nadolazećem nizu simbola
 - Rječnik se nadopunjava novim riječima tijekom kodiranja

LZW algoritam

Algoritam kodiranja:

```
1. RadnaRiječ = slijedeći simbol sa ulaza
 2. WHILE (ima još simbola na ulazu) DO
 3.
     NoviSimbol = slijedeći simbol sa ulaza
      IF RadnaRiječ+NoviSimbol postoji u rječniku THEN
5.
         RadnaRiječ = RadnaRiječ+NoviSimbol
     ELSE
7.
         IZLAZ: kod za RadnaRiječ
8.
         dodaj RadnaRiječ+NoviSimbol u rječnik
9.
         RadnaRiječ = NoviSimbol
10.
     END IF
11 END WHILE
12. IZLAZ: kod za RadnaRiječ
```

Kodiranje algoritmom LZW: primjer

Zavod za telekomunikacije

Sadržaj rječnika na početku:

kodna riječ	znak
(1)	Α
(2)	В
(3)	C

Niz znakova koje treba kodirati:

Mjesto Simbol A B B A B A B A C

LZW:

korak	mjesto	sadržaj rječnika	izlaz iz kodera
1.	1	(4) A B	(1)
2.	2	(5) BB	(2)
3.	3	(6) BA	(2)
4.	4	(7) ABA	(4)
5.	6	(8) ABAC	(7)
6.	9		(3)

LZW kodiranje: primjer dekodiranja

KORAK	RADNA RIJEČ	ULAZ DEKODERA	DEKODIRA NI SIMBOLI	SADRŽAJ RJEČNIKA
1		(1)	A	
2	А	(2)	В	(4) AB
3	В	(2)	В	(5) BB
4	В	(4)	AB	(6) BA
5	AB	(7)	ABA	(7) ABA
6	ABA	(3)	С	

Metode rječnika: primjene

- LZW
 - UNIX compress
 - GIF
 - Modem V.24 bis
- * LZ77
 - ZIP

Metode skraćivanja niza

- potiskivanje ponavljanja (engl. repetition supression)
- primjer potiskivanje nula:
- zastavica (flag) koja označuje nule $\rightarrow 894132$ broj ponavljanja

- slijedno kodiranje (engl. run-length encoding)
- algoritam kodiranja temelji se na kraćem zapisu ponavljanih simbola pomoću specijalnog znaka (!)
- primier: ABCCCCCCCDEFFFABC...

DEFFFABC... ABCCCCCCC 8 okteta 3 okteta

DEFFFABC... ABC!8 3 okteta 3 okteta

← "isplati" se za 4+ znakova

Primjena: prva generacija telefaksa, unutar JPEG-a

Izvorno kodiranje

Izvorno kodiranje

Uvod

- Svojstva metoda izvornog kodiranja
- Analogni mediji u diskretnom kom. sustavu
- Principi kompresije pri izvornom kodiranju
- Osnovne metode izvornog kodiranja
 - Kvantizacija
 - Poduzorkovanje
 - Transformacijsko kodiranje
 - Diferencijalno (predikcijsko) kodiranje
 - Potpojasno kodiranje
 - Kodiranje zasnovano na modelu

Svojstva metoda izvornog kodiranja

- Najčešće sažimaju s gubicima
- Koriste semantiku izvora, tj. posebna svojstva pojedinih medija
- Koriste karakteristike ljudske percepcije medija za bolju kompresiju uz malo primjetnu pogrešku
- Omjer kompresije jako ovisan o sadržaju
- Koriste se u sklopu hibridnih metoda za kodiranje pojedinih medija
 - Obično prvo izvorno kodiranje, zatim entropijsko

Analogni mediji u diskretnom komunikacijskom sustavu

Principi kompresije pri izvornom kodiranju

- Uklanjanje zalihosti (redundancije):
 - Vremenska zalihost (npr. korelacija uzastopnih uzoraka zvučnog signala)
 - Prostorna zalihost (npr. korelacija susjednih elemenata slike - pixela)
 - Spektralna zalihost (npr. korelacija između boja ili svjetline u slici)
- Uklanjanje irelevantnosti:
 - Granice ljudske precepcije
 - Spuštenje razine kvalitete reprodukcije

Osnovne metode izvornog kodiranja

Kvantizacija

- Aproksimacija signala konačnim skupom kodova
 - Raspon ulaza podijeljen na inervale
 - Sve vrijednosti u intervalu isti kod nije reverzibilno!
 - Kod intervala dekodira se kao razina kvantizacije
 - Svaka vrijednost se svodi na jednu razinu kvantizacije
- A/D pretvorba uvijek uvodi kvantizaciju
- Izuzetno korisna kao metoda kompresije
 - Primjer: zvuk 16 bit (65536 razina) → 8 bit (256 razina)
- Linearna i nelinearna kvantizacija
- Skalarna i vektorska kvantizacija

Pogreška kvantizacije

Linearna i nelinearna kvantizacija

Vektorska kvantizacija

- Podaci se grupiraju u n-dimenzionalne vektore
- Za svaki vektor se u kodnoj tablici pronalazi najbliži kodni vektor; njegov indeks je kod
- Za dekodiranje se koristi ista kodna tablica

Primjer: 2D vektorska kvantizacija

Kodna tablica:

$$\mathbf{i} = 1$$
: $y_1 = (0, 0)$

$$i = 2$$
: $y_2 = (2, 1)$

$$y_3 = (1, 3)$$

$$i = 4$$
: $y_4 = (1, 4)$

- Poruka: 0 1 2 3 2 0
- Kodirano:13

Dekodirana poruka:

Pogreška kvantizacije:

Primjer: vektorska kvantizacija slike (1/2)

Izvorna slika sastoji se od točaka b_i; svaka točka je vrijednost 0-255

Parovi svjetlina susjednih točaka slike

Primjer: vektorska kvantizacija slike (2/2)

Skalarna kvantizacija prikazana u obliku vektorske kvantizacije

Vektorska kvantizacija

Poduzorkovanje

- Smanjivanje frekvencije uzorkovanja
 - Slika: rezolucija
 - Zvuk: broj uzoraka zvuka u sekundi
- Smanjivanje broja uzoraka = sažimanje
- Nyquist: granica poduzorkovanja bez pogreške
- Svjesno unošenje pogreške
 - Uzima se u obzir:
 - ograničenja ljudske percepcije
 - posebnosti pojedine primjene
 - Prije poduzorkovanja niskopropusni filtar

Transformacijsko kodiranje

- Poruka se pretvara (transformira) u oblik pogodniji za kompresiju
 - npr. iz vremenske u frekvencijsku domenu
- Transformacija je reverzibilna i ne komprimira
- Kompresija u drugom koraku: odbacivanje i/ili kvantizacija
 - Transformacija omogućuje kompresiju, premda je izravno ne vrši

Primjer: princip transf. kodiranja (1/3)

TEŽINA (X_0)	$VISINA(X_1)$
65	170
75	188
60	150
70	170
56	130
80	203
68	160
50	110
40	80
50	153
69	148
62	140
76	164
64	120

$$\mathbf{X} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

Primjer: princip transf. kodiranja (2/3)

Zavod za telekomunikacije

• Rotiramo točke grafa za Φ : $\Theta = AX$

$$\mathbf{A} = \begin{bmatrix} \cos \Phi & \sin \Phi \\ -\sin \Phi & \cos \Phi \end{bmatrix} = \begin{bmatrix} 0.37139068 & 0.92847669 \\ -0.92847669 & 0.37139068 \end{bmatrix}$$

Primjer: princip transf. kodiranja (3/3)

- Sve θ_1 izjednačimo s nulom (ne treba ih kodirati)
- Inverzna transformacija: $X = A^{-1}\Theta$

Izvorni podaci		Rekonstruirani podaci	
TEŽINA (X_0)	$VISINA(X_1)$	$TE\check{Z}INA(X_0)$	$VISINA(X_1)$
65	170	68	169
75	188	75	188
60	150	60	150
70	170	68	171
56	130	53	131
80	203	81	203
68	160	65	162
50	110	45	112
40	80	34	84
50	153	60	150
69	148	61	151
62	140	57	142
76	164	67	168
64	120	50	125

Primjer 2: Fourierova transformacija slike

Diferencijalno (predikcijsko) kodiranje

- Koristi korelaciju među susjednim uzorcima
 - U vremenu (npr. zvuka) ili prostoru (npr. slika)
- Svaki uzorak se predviđa iz prethodnih uzoraka
- Predviđena stvarna vrijednost = signal razlike
 - Manji raspon i promjena → bolje kodiranje
- Jednostavno predviđanje: $x_n = x_{n-1}$
 - Signal razlike je razlika među susjednim uzorcima

Primjer: diferencijalno kodiranje slike

Zavod za telekomunikacije

Direktnim entropijskim kodiranjem može se postići 7 bita po točki

Signal razlike

Razlika susjednih pixela

 Signal se ujednačuje, koncentracija u malom broju vrijednosti, entropija 2.6 bita po točki

Primitivni postupak diferencijalnog kodiranja

Zavod za telekomunikacije

DEKODER

$$x'_{n} = d_{n} + x'_{n-1} = x_{n} - x_{n-1} + x'_{n-1} = x_{n}$$

- $\{x_n\}$: 6.2 9.7 13.2 5.9 8 7.4 4.2 1.8
- $+ \{d_n\}$: 6.2 3.5 3.5 -7.3 2.1 -0.6 -3.2 -2.4
- * $\{x'_n\}$: 6.2 9.7 13.2 5.9 8 7.4 4.2 1.8
- Pogreška: 0

Primitivni postupak sa kvantizacijom

Zavod za telekomunikacije

$$d_n = x_n - x_{n-1}$$

$$d'_n = d_n + q_n$$

DEKODER

$$d_n = x_n - x_{n-1}$$
 $d'_n = d_n + q_n$ $x'_n = d'_n + x'_{n-1} = x_n + \sum_{k=1}^n q_k$

- Kvantizator sa 7 razina: -6, -4, -2, 0, 2, 4, 6
- \bullet { d'_n }: 6 4 4 -6 2 0 -4 -2
- $* \{x'_n\}$: 6 10 14 8 10 6 4
- * $\{\varepsilon_n\}$: 0.2 -0.3 -0.8 -2.1 -2 -2.6 -1.8 -2.2
 - Pogreška kvantizacije se akumulira

Izbjegavanje akumulacije kvant. pogreške

Zavod za telekomunikacije

$$d_n = x_n - x'_{n-1}$$
 $d'_n = d_n + q_n$ $x'_n = d'_n + x'_{n-1} = x_n + q_n$

- $+ \{d'_n\}$: 6 4 4 -6 0 0 -4 -2
- * { x'_n }: 6 10 14 8 8 8 4 2
- * $\{\varepsilon_n\}$: 0.2 -0.3 -0.8 -2.1 0 -0.6 0.2 -0.2

Osnovni postupak diferencijalnog kodiranja

Zavod za telekomunikacije

DEKODER

- Prediktor: $x_n^p = P(x_{n-1}, x_{n-2}, ..., x_{n-k})$
- Linearna predikcija: $x_n^p = a_1 x_{n-1} + a_2 x_{n-2} + ... a_k x_{n-k}$

Podpojasno kodiranje

- Signal se razdvaja na frekvencijske pojaseve
 - Dobiva se niz signala, po jedan za svaki frek. pojas
 - Svaki ima drugačije karakteristike i važnost
- Kodiranje svakog pojasa posebno
 - Više ili manje bitova s obzirom na važnost
 - Razne metode kodiranja s obzirom na karakteristike
- Primjeri primjene: kodiranje zvuka (MP3), slike (JPEG 2000)

Primjer (1/5)

- Kodiramo niz {x_n}
 10 14 10 12 14 8 14 12 10 8 10 12
- Diferencijalno kodiranje; signal razlike
 10 4 -4 2 2 -6 6 -2 -2 2 2
- Dlnamički raspon -6 do 6 = 12
- Koristimo m bitova; $M = 2^m$ razina kvantizacije
- Kvantizacijski interval: △ = 12/M
- Maksimalna pogreška kvantizacije: Δ/2 = 6/M

Primjer (2/5)

Zavod za telekomunikacije

- Rastavimo niz $\{x_n\}$ na dva nova niza $\{y_n\}$ i $\{z_n\}$
 - {y_n} je prosjek susjednih vrijednosti niskofrekvencijska komponenta
 - {z_n} je razlika susjednih vrijednosti visokofrekvencijska komponenta

$$y_n = \frac{x_n + x_{n-1}}{2}$$

$$z_n = \frac{x_n - x_{n-1}}{2}$$

$$x_n = y_n + z_n$$

Primjer (3/5)

- Kodiramo niz {y_n}
 10 12 12 11 13 11 11 13 11 10 9 11
- Diferencijalno kodiranje; signal razlike
 10 2 0 -1 2 -2 0 2 -2 -1 -1 2
- Dinamički raspon -2 do 2 = 4
- Koristimo m bitova; $M = 2^m$ razina kvantizacije
- ♦ Kvantizacijski interval:
 Δ = 4/M
- Maksimalna pogreška kvantizacije: Δ/2 = 2/M

Primjer (4/5)

• Kodiramo niz $\{z_n\}$

- Signal razlike imao bi veću varijaciju od samog niza, stoga ne koristimo diferencijalno kodiranje nego direktno kvantiziramo
- Dinamički raspon -3 do 3 = 6
- Koristimo m bitova; $M = 2^m$ razina kvantizacije
- ◆ Kvantizacijski interval:
 △ = 6/M
- Maksimalna pogreška kvantizacije: Δ/2 = 3/M

Primier (5/5)

Zavod za telekomunikacije

Uz jednak broj bitova, max. pogreška kvantizacije

$$\blacksquare$$
 Za $\{x_n\} \rightarrow 6/M$

- \blacksquare Za $\{z_n\} \rightarrow 3/M$

■ $Za \{y_n\} \rightarrow 2/M$ | Rastavljanje na komponente = bolje kodiranje!

- Međutim, kodiramo dva niza umjesto jednog!?
 - Ne! Kodiramo samo svaki drugi član iz $\{y_n\}$ i $\{z_n\}$
 - Iz svakog drugog para y_n i z_n rekonstruiramo dva susjedna člana niza $\{x_n\}$

$$x_n = y_n + z_n$$

$$x_n = y_n + z_n \qquad x_{n-1} = y_n - z_n$$

Kodiranje zasnovano na modelu

- Ne prenose se uzorci, nego parametri modela
- Na dekoderu se iz parametara pomoću modela sintetiziraju podaci slični izvornima
- Primjer
 - Koderi govora zasnovani na modelu (GSM)
 - Fraktalno kodiranje slike
 - Kodiranje videa ljudskog lica

Primjer: video ljudskog lica

Zavod za telekomunikacije

Praćenje parametara u videu

Dekodiranje

Rezultat dekodiranja na drugom licu

Još jedan primjer

