§ 1.1. Structure of finite/local/global field

Road map

	finite field	local_ Archi	field	global field	Adéle
base field F F* integral ring OF units OF	6 IF, IFP E. Mr Mr.1 — — —	R or C R*x 21/2 C*	3 Q _p F _p ((t)) Z _p [*] × Z F _p ((t)] [*] × Z Z _p F _p ((t)] Z _p [*] F _p ((t)] [*]	4 Q Fp(t) Q* Fp(t)* Z' Fp[t] Z'22 Fp*	↓ A _k I _k K? I [×] ?
Gal(F ^{sep} /F) ari Frob # ext of day n Spec OF	\widehat{Z} ? \widehat{Z} ? can 1? 1 Spec $\Vdash_q = k(\widehat{Z}, 1)$ [étale, 22.4]	Z/ _{2Z/} Id total order: 1/0	most known choose a lift finite	dre	7
topology topo of OF measure	? discrete — ? discrete	Euclidean — Lebesgue	profinite cpt, not discrete M(OF) = 1		restricted K is a lattice in Ak Can be computed

Also, discuss

- field extension, norm, trace,...
 their connection to geometry, ramification theory
 analog with knot theory

1 finite field 1Fg

Any fin field is of form IFq, where $q = p^r$, $r \in IN_{\geq 1}$, IFq = the splitting field of $X^q - X$ over IFp. $Gal(\overline{\mathbb{F}_q}/\mathbb{F}_q) \cong \widehat{\mathcal{Z}}$ as top gps

Frobp \iff 1

2. Archi local field IR or C

No difficulty: $Gal(C/R) \cong Z/2Z$ Gal(C/C) = Id C is the unique local field which is alg closed.

3. NA local field Define NA local field as (finite ext of Q_p) or $F_q((T))$.

Individual structure

Task Read [NAlocal], answer the following questions:

- Describe O, p, k, U, U in terms of v
- What is the structure of Qr??
- For F, Fx, O, Ox, which are opt?
- Can we classify open subgps of F.Fx?
- Give a description of the Haar measure on F and Fx.

Field extension

Task Read [NA ext], answer the following questions.

- Describe the field extension tower of F
- Find a wild extension of exp & [Fp[[t]]
- Can we "see the geometry of Qp" vividly?

We will discuss section 4 in [NAext] together. Some questions.

- Define IF, PF
- Construct IF/PF ~ 2(P)
- Explain why we have $F_r = T^{-1} = T^9$.

Task Read [NAval], answer the following questions: (Not necessary for future discussion)

- What is the difference of NA valued field (with NA local field)?
- When is the field extension over Qp complete?

- Using the result in [NAval], computes the following Galois gps.

$$G_{al}\left(|F_{p}((t\stackrel{\dot{\vdash}}{P^{\omega}}))^{sep}/|F_{p}((t\stackrel{\dot{\vdash}}{P^{\omega}}))\right), \ G_{al}\left(\widehat{\overline{Q}_{p}}/\widehat{\overline{Q_{p}^{uv}}}\right), \ G_{al}\left(\overline{\overline{Q_{p}(p^{\dot{\vdash}^{\omega}})}}/\overline{Q_{p}(p^{\dot{\vdash}^{\omega}})}\right)$$

$$G_{|F_{p}((t))}$$

$$G_{|F_{p}((t))}$$