Un protone penetra in una regione di spazio in cui è presente un campo magnetico uniforme di modulo $|\vec{B}| = 1,00$ mT. Esso inizia a muoversi descrivendo una traiettoria a elica cilindrica, con passo costante $\Delta x = 38,1$ cm, ottenuta dalla composizione di un moto circolare uniforme di raggio r = 10,5 cm e di un moto rettilineo uniforme. Determinare il modulo del vettore velocità e l'angolo che esso forma con \vec{B} .

Costanti fisiche			
carica elementare	e	1,602 · 10 ⁻¹⁹ C	
massa del protone	m_p	$1,673 \cdot 10^{-27} \text{ kg}$	
velocità della luce	С	2,998 · 10 ⁸ m/s	

 B A		[1,16 × 10 ⁴ m ; 60,0°]
ν,	$\pi = \frac{m \sqrt{1}}{e B} \Rightarrow$	NI = reB
	$\Delta S = \frac{2\pi m}{2B} N_{II} = >$	
$N = \sqrt{N_{\perp}^2 + N_{\parallel}^2}$		MI tand = MI
d = orctan (N) =	/d	
$= \arctan \left(\frac{2 \pi \pi}{\Delta S} \right)$		
$W = \frac{aB}{m} \sqrt{R^2 + \frac{\Delta 5^2}{4\pi^2}}$		$(0.7)^{-3}$ $(0.105 + 0.381^{2})$ $(0.105 + 0.381^{2})$ $(0.105 + 0.381^{2})$
= 0,1163 ×10 ⁵		
V = actor (2 T · 10,	5 \ _ 50003 0	

Un flusso di elettroni e protoni provenienti dallo spazio con un'energia cinetica $K = 2.5 \times 10^2$ eV giunge in corrispondenza del polo Nord perpendicolarmente al campo magnetico terrestre a un'altezza in cui il modulo di quest'ultimo vale $B = 2.3 \times 10^{-5} \text{ T}$.

- ▶ Calcola il raggio della traiettoria percorsa dagli elettroni.
- ▶ Calcola, in due modi diversi, la velocità che dovrebbero avere i protoni per percorrere una traiettoria con lo stesso raggio degli elettroni.

 $[2,3 \text{ m}; 5,1 \times 10^3 \text{ m/s}]$

1eV=1,602×1013 J

$$\frac{2^{9} \text{ Molo}}{R} = \frac{m_{p} N_{p}}{2 B} \implies N_{p} = \frac{\pi 2 B}{m_{p}} = \frac{(2,318...m)(1,602 \times 10^{-13} \text{ C})(e,3 \times 10^{-5} \text{ T})}{1,67 \times 10^{-27} \text{ keg}} = 5,1143... \times 10^{3} \frac{m_{p}}{2} \approx \frac{5,1 \times 10^{3} \frac{m_{p}}{2}}{2}$$