TRABAJO PRÁCTICO 2 - EJERCICIO 5 c

$$f: D \to \mathbb{R} / f(x,y) = \ln(9 - x^2 - y^2)$$

DOMINIO:

Para que un punto $(x,y)\in\mathbb{R}^2$ pertenezca al dominio de f, debe cumplir $9-x^2-y^2>0$, para poder evaluar el logaritmo.

Así.

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 9\},\$$

es decir que el dominio es un disco abierto con centro en el origen de coordenadas y radio 3. Es un conjunto abierto, no cerrado y acotado; la frontera del dominio es el conjunto $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 9\}$.

IMAGEN:

La imagen o rango de f es un subconjunto de $\mathbb R$ formado por los valores que f asume. Como la función $g(t) = \ln(t)$ es una función creciente, la función $f(x,y) = \ln(9-x^2-y^2)$ tomará valores mayores cuanto mayor sea el argumento $9-x^2-y^2$ del logaritmo y, menores, cuanto menor sea dicho argumento.

 $9-x^2-y^2$ del logaritmo y, menores, cuanto menor sea dicho argumento. Este argumento, $9-x^2-y^2$, para (x,y) tales que $x^2+y^2<9$, tomará valores entre 0 (cuando x^2+y^2 tienda a 9) y 9 (cuando $x^2+y^2=0$):

$$0 < 9 - x^2 + y^2 < 9$$
.

Así, $-\infty < f(x,y) \le \ln(9)$, es decir:

$$-\infty < \ln(9 - x^2 - y^2) \le \ln(9),$$

con lo cual podemos asegurar que $I \subset (\infty, \ln 9]$.

OBSERVACIÓN: (PUEDE NO LEER ESTA PARTE.) ¿Cómo sabemos que TODOS los valores de $(\infty, \ln 9]$ son asumidos por f? Si consideramos la función de una variable $f(x,0) = \ln(9-x^2)$, por la continuidad de esta función en cualquier intervalo cerrado de la forma [0,M] (para 0 < M < 3), el TEOREMA DEL VALOR INTERMEDIO garantiza que todos los valores intermedios (entre $-\infty$ y $\ln(9-M^2)$) son asumidos. Como esto vale para todo M entre 0 y 3, tenemos que $I=(\infty, \ln 9]$.

CURVAS DE NIVEL:

Curvas de nivel: son conjuntos f(x,y)=k; es importante que $k\in I$, es decir, $k\leq \ln 9$, para que el conjunto de nivel no sea vacío. Sea $k\leq \ln 9$:

Igualando $\ln(9 - x^2 - y^2) = k$, obtenemos:

$$9 - x^2 - y^2 = e^k$$

$$x^2 + y^2 = 9 - e^k$$

Las curvas de nivel son circunferencias con radios $\sqrt{9-e^k}$, donde $9-e^k \ge 0$ siempre que $k \le \ln 9$.