12. METHODE DER FINITEN ELEMENTE

Die Methode der **finiten Elemente** ist ein Galerkin-Verfahren mit einer speziellen Wahl des Approximationsraumes V_N . In Abschnitt 11.3 haben wir den Raum der stückweise linearen Splines als Ansatzraum kennengelernt.

12.1 Einführung

Im Folgenden nehmen wir an, dass das Gebiet Ω ein Polygon ist oder durch ein Polygon angenähert wird. Wir beschreiben die Methode der finiten Elemente zunächst am Beispiel der Poisson-Gleichung (11.10) auf dem Einheitsquadrat $\Omega = (0,1)^2$ mit homogenen Dirichlet-Randbedingungen.

Triangulierung von Ω

Das Gebiet Ω wird so in endlich viele Dreiecke ("finite Elemente") unterteilt, dass die Ecken eines Dreiecks andere Dreiecke wieder nur in Ecken berühren.

Die Dreiecke bezeichnen wir mit K^e , $e=1,\ldots,E$, die Ecken in Ω (innere Knoten) mit $a_i=(x_i,y_i),\,i=1,\ldots,N$. Es gilt dann $\overline{\Omega}=\bigcup_{e=1}^E K^e$.

Wahl der Basisfunktionen

Im einfachsten Fall wählen wir stückweise lineare Basisfunktionen $\varphi_1,\ldots,\varphi_N$ mit

$$\varphi_i(a_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j, \end{cases} \quad i, j = 1, \dots, N$$

Nach Konstruktion ist dann $\varphi_i = 0$ auf allen Dreiecken, die a_i nicht enthalten und wegen $\varphi_i = 0$ auf Γ liegen die Basisfunktionen in $V = H_0^1(\Omega)$. Den Ansatzraum $V_N \subset V$ wählen wir als den von $\varphi_1, \ldots, \varphi_N$ erzeugten Vektorraum. In diesem suchen wir eine Näherungslösung der Form

$$u_N = \sum_{i=1}^N \mu_i \varphi_i.$$

Diese erfüllt $u_N(a_i) = \mu_i$ und $u_N = 0$ auf Γ . Die Galerkin-Approximation ist durch

$$a(u_N, v_N) = \ell(v_N) \qquad \forall v_N \in V_N$$

charakterisiert oder äquivalent durch das lineare Gleichungssystem

$$A\mu = b, \qquad A = \left(a(\varphi_j, \varphi_i)\right)_{i,j=1}^N, \qquad b = \begin{bmatrix} \ell(\varphi_1) \\ \vdots \\ \ell(\varphi_N) \end{bmatrix}.$$
 (12.1)

A heißt **Steifigkeitsmatrix**, b **Lastvektor**. Da die Basisfunktionen auf jedem K^e stückweise linear sind, gilt

$$a_{ij} = a(\varphi_j, \varphi_i) = \int_{\Omega} \left(\frac{\partial \varphi_i}{\partial x} \frac{\partial \varphi_j}{\partial x} + \frac{\partial \varphi_i}{\partial y} \frac{\partial \varphi_j}{\partial y} \right) d(x, y)$$

$$= \sum_{\substack{\text{alle Dreiecke } K^e, \text{ die} \\ a_i \text{ und } a_j \text{ enthalten}}} \int_{K^e} \left(\frac{\partial \varphi_i}{\partial x} \frac{\partial \varphi_j}{\partial x} + \frac{\partial \varphi_i}{\partial y} \frac{\partial \varphi_j}{\partial y} \right) d(x, y)$$

$$= \sum_{\substack{\text{alle Dreiecke } K^e, \text{ die} \\ a_i \text{ und } a_j \text{ enthalten}}} \int_{K^e} C^e d(x, y)$$

$$= \sum_{\substack{\text{alle Dreiecke } K^e, \text{ die} \\ a_i \text{ und } a_j \text{ enthalten}}} C^e (\text{Fläche von } K^e).$$

Somit ist $a_{ij} \neq 0$ nur möglich, wenn i, j Knoten eines gemeinsamen finiten Elementes sind. Die Steifigkeitsmatrix ist also dünn besetzt. Analog erhalten wir für den Lastvektor

$$b_{i} = \ell(\varphi_{i}) = \int_{\Omega} f\varphi_{i}d(x, y)$$

$$= \sum_{\substack{\text{alle Dreiecke } K^{e}, \\ \text{die } a_{i} \text{ enthalten}}} \int_{K^{e}} f\varphi_{i}d(x, y).$$

12.2. Finite Elemente

Die Berechnung dieser Integrale ist im Allgemeinen nur noch näherungsweise möglich. Man kann zum Beispiel die Approximation

$$f \approx \sum_{j=1}^{N} f(a_j) \varphi_j$$

verwenden und damit das Integral analytisch berechnen.

Implementierung

Wie schon im eindimensionalen Fall diskutiert, erfolgt die Implementierung der Methode der finiten Elemente durch elementweises Zusammensetzen. Jeder Knoten erhält wieder eine globale Nummer im Gebiet Ω und eine lokale Nummer im finiten Element K^e . i^e sei die Abbildung, die einer lokalen Nummer in K^e die globale Nummer in Ω zuweist. K^e sei die Anzahl der (inneren) Knoten in K^e , also $K^e \leq 3$.

Die stückweise linearen Basisfunktionen eingeschränkt auf ein finites Element ergeben die lokale Basisfunktion:

$$\varphi_r^e = \varphi_i|_{K^e}$$
 für $i = i^e(r)$.

Die lokalen Basisfunktionen φ_r^e sind linear auf K^e und erfüllen $\varphi_r^e(a_{i^e(r)}) = 1$. Mit Hilfe der lokalen Steifigkeitsmatrix und des lokalen Lastvektors

$$a_{rs}^e = \int_{K^e} \left(\frac{\partial \varphi_r^e}{\partial x} \frac{\partial \varphi_s^e}{\partial x} + \frac{\partial \varphi_r^e}{\partial y} \frac{\partial \varphi_s^e}{\partial y} \right) d(x, y), \qquad b_r^e = \int_{K^e} f \varphi_r^e d(x, y)$$

berechnen wir jetzt A und b wie in Algorithmus 11.1 und 11.2 beschrieben.

12.2 Finite Elemente

Nachdem wir nun spezielle finite Elemente in einer und zwei Dimensionen kennengelernt haben, wollen wir nun allgemeine finite Elemente definieren:

Definition 12.1. Ein finites Element ist eine kompakte und zusammenhängende Teilmenge $K \subset \mathbb{R}^n$ zu der folgendes gegeben ist:

- (a) Knotenpunke $a_1, \ldots, a_R \in K$;
- (b) Endlichdimensionaler Vektorraum \mathcal{P} bestehend aus Polynomfunktionen $p: K \to \mathbb{R}$ derart, dass für beliebige $c_1, \ldots, c_R \in \mathbb{R}$ die Interpolationsaufgabe $p(a_r) = c_r$, $r = 1, \ldots, R$ eine eindeutige Lösung $p \in \mathcal{P}$ hat.

Die zweite Bedingung besagt, dass p eindeutig durch die Werte in den Knoten bestimmt ist. Dazu ist offenbar notwendig, dass dim $\mathcal{P} = R$ ist, denn $P \cong \mathbb{R}^R : p \mapsto (p(a_r))_{r=1}^R$. Es existieren somit Basisfunktionen $\varphi_1, \ldots, \varphi_R \in \mathcal{P}$ mit

$$\varphi_r(a_s) = \begin{cases} 1, & r = s, \\ 0, & r \neq s, \end{cases} \quad r, s = 1, \dots, R$$

(Knotenbasis). Jedes $p \in \mathcal{P}$ lässt sich eindeutig darstellen als

$$p = \sum_{r=1}^{R} p(a_r) \varphi_r.$$

Wichtige Beispiele finiter Elemente sind in Dimension 2 Dreiecks- und Rechteckselemente und in Dimension 3 Tetraeder- und Quaderelemente. Mit \mathcal{P}_k bezeichnen wir den Raum der Polynome vom Grad $\leq k$,

$$\mathcal{P}_k = \{ p \mid p(x) = \sum_{|\alpha| \le k} c_{\alpha} x^{\alpha} \},$$

und mit \mathcal{Q}_k den Raum der Polynome vom Grad $\leq k$ bzgl. jeder einzelnen Variablen.

Dreieckselemente

Lineare Elemente:

$$\mathcal{P} = \mathcal{P}_1$$
, dim $\mathcal{P} = 3$.

Basisfunktionen im Referenzdreieck:

$$\widehat{\varphi}_1(x,y) = 1 - x - y$$

 $\widehat{\varphi}_2(x,y) = x$

$$\widehat{\varphi}_3(x,y) = x$$

 $\widehat{\varphi}_3(x,y) = y$

Quadratische Elemente:

$$\mathcal{P} = \mathcal{P}_2$$
, dim $\mathcal{P} = 6$.

Kubische Elemente:

$$\mathcal{P} = \mathcal{P}_3$$
, dim $\mathcal{P} = 10$.

Rechteckselemente

Bilineare Elemente:

$$\mathcal{P} = \mathcal{Q}_1, \dim \mathcal{P} = 4$$

Basisfunktionen auf $[0,1]^2$:

$$\widehat{\varphi}_1(x,y) = 1 - x - y + xy
\widehat{\varphi}_2(x,y) = 1 - (1-x) - y + (1-x)y
\widehat{\varphi}_3(x,y) = 1 - x - (1-y) + x(1-y)
\widehat{\varphi}_4(x,y) = 1 - (1-x) - (1-y) + (1-x)(1-y).$$

Biquadratische Elemente:

$$\mathcal{P} = \mathcal{Q}_2, \dim \mathcal{P} = 9.$$

Ausgehend von einem Referenz-finiten-Element \widehat{K} möchten wir weitere finite Elemente K erzeugen. Sei dazu \widehat{K} ein finites Element mit Knoten \widehat{a}_r und Basisfunktionen $\widehat{\varphi}_r$, $r=1,\ldots,R$. Die Abbildung $F:\widehat{K}\to K$ sei bijektiv. Auf K definieren wir die Knoten $a_r=F(\widehat{a}_r)$ und die Basisfunktionen $\varphi_r=\widehat{\varphi}_r\circ F^{-1}$. Dann gilt

$$\varphi_r(a_s) = \widehat{\varphi}_r(\widehat{a}_s) = \begin{cases} 1, & r = s \\ 0, & r \neq s, \end{cases} \quad r, s = 1, \dots, R.$$

Durch diese Transformation kann man Rechnungen mit φ_r auf solche mit $\widehat{\varphi}_r$ auf dem Referenzelement zurückführen. K mit den Knoten a_r und den Basisfunktionen φ_r ist wieder ein finites Element, falls F ein Polynom ist.

In der Praxis wählt man etwa F affin, d. h.

oder F isoparametrisch, d. h. zu vorgegebenen Knoten a_r setzt man

(F ist bijektiv, wenn die Verzerrungen nicht allzu groß sind.) Der Vorteil isoparameterischer Transformationen ist die erhöhte geometrische Flexibilität. Gebiete Ω mit krummlinigem Rand können rechnerisch ohne Mehraufwand behandelt werden.

12.3 Zusammensetzen von finiten Elementen

Gegeben seien finite Elemente K^e , $e=1,\ldots,E$ mit Knoten $\mathbb{A}^e=\{a_1^e,\ldots,a_{R^e}^e\}$, Polynomräumen \mathcal{P}^e und Basisfunktionen $\varphi_1^e,\ldots,\varphi_{R^e}^e$. Zunächst triangulieren wir das Gebiet Ω

wie in Abschnitt 12.1 beschrieben. An die Knoten stellen wir die Kompatibilitätsvoraussetzung, dass Knoten auf gemeinsamen Seiten übereinstimmen sollen:

$$\mathbb{A}^{e_1} \cap K' = \mathbb{A}^{e_2} \cap K'$$
 für $K' = K^{e_1} \cap K^{e_2}$.

Die globale Knotenmenge sei

$$\mathbb{A} = \{a_1, \dots, a_I\} = \bigcup_{e=1}^E \mathbb{A}^e.$$

Bei homogenen Neumann-Randbedingungen auf dem gesamten Rand Γ ist I = N, sonst ist I > N, wie wir später sehen werden. Globale Basisfunktionen $\varphi_i : \overline{\Omega} \to \mathbb{R}$ werden durch

$$\varphi_i|_{K^e} = \begin{cases} \varphi_r^e, & \text{falls } a_i = a_r^e \\ 0, & \text{sonst} \end{cases}$$

abschnittsweise definiert. Die globalen Basisfunktionen haben folgende Eigenschaften:

(a) $\varphi_i|_{K^e}$ ist ein Polynom in \mathcal{P}^e

(b)
$$\varphi_i(a_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j, \end{cases}$$
 $i, j = 1, \dots, I.$

Die Basisfunktionen haben also kleinen Träger. Insbesondere ist $\varphi_i(x) \neq 0$ nur, falls x und a_i im gleichen finiten Element liegen.

Ohne weitere Zusatzannahmen sind die Basisfunktionen φ_i auf gemeinsamen Seiten $K' = K^{e_1} \cap K^{e_2}$ nicht wohldefiniert. Für Konvergenzaussagen ist es wichtig, $\varphi_i : \overline{\Omega} \to \mathbb{R}$ stetig und damit $\varphi_i \in H^1(\Omega)$ zu haben. Daher verlangen wir als weitere Kompatibilitätsbedingung, dass die Polynomräume auf gemeinsamen Seiten übereinstimmen:

$$\mathcal{P}^{e_1}|_{K'} = \mathcal{P}^{e_2}|_{K'} =: \mathcal{P}'$$
 für $K' = K^{e_1} \cap K^{e_2}$.

Des Weiteren gelte für jede Seite K' eines finiten Elements mit Knoten $\mathbb{A}' = \mathbb{A} \cap K'$ die Interpolationseigenschaft, dass durch Vorgabe der Werte in den Knoten \mathbb{A}' ein Polynom in \mathcal{P}' eindeutig bestimmt ist. Mit anderen Worten verlangen wir, dass K' mit \mathbb{A}' und \mathcal{P}' ein finites Element der Dimension n-1 ist. Diese Kompatibilitätsbedingung garantiert, dass $\varphi:\overline{\Omega}\to\mathbb{R}$ stetig ist. Der finite Elementraum ist durch $\mathcal{P}=\mathrm{span}\{\varphi_1,\ldots,\varphi_I\}$ gegeben und die Elemente in \mathcal{P} sind stetige Funktionen, die stückweise Polynome sind und durch

$$v = \sum_{i=1}^{I} v(a_i) \varphi_i$$

dargestellt werden können.

12.4 Aufstellen des Galerkin-Systems

Es sei

$$a(u,v) = \int_{\Omega} \left[\sum_{i,j=1}^{n} A_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_j} + A_0 u v \right] d(x_1, \dots, x_n)$$
$$= \int_{\Omega} \left[(Du)^T \mathcal{A} Dv + A_0 u v \right] dx,$$

wobei

$$\mathcal{A} = (A_{ij})_{i,j=1}^n, \qquad Du = \begin{bmatrix} u_{x_1} \\ \vdots \\ u_{x_n} \end{bmatrix}$$

und

$$\ell(v) = \int_{\Omega} fv dx$$
 bzw. $\ell(v) = \int_{\Omega} fv dx + \int_{\Gamma} gv d\sigma$.

Gesucht ist die Galerkin-Approximation zum Approximationsraum $V_N \subset V$, also $u_N \in V_N$ mit

$$a(u_N, v_N) = \ell(v_N) \qquad \forall v_N \in V_N.$$

Es sei $\Gamma = \Gamma_0 \cup \Gamma_1$, wobei auf Γ_0 eine wesentliche Randbedingung vorgegeben ist. Dann wählen wir

$$V = \{v \in H^1(\Omega) \mid v|_{\Gamma_0} = 0\}, \qquad V_N = \operatorname{span}\{\varphi_1, \dots, \varphi_N\} \subset V,$$

wobei $\varphi_1, \ldots, \varphi_N$ Basisfunktionen mit $\varphi_i|_{\Gamma_0} = 0$ sind.

Das Aufstellen von A und b erfolgt üblicherweise in zwei getrennten Schritten:

- \bullet Berechnung von A, b für das Problem ohne wesentliche Randbedingung
- Berücksichtigung der Randbedingung

Steifigkeitsmatrix

Die Steifigkeitsmatrix wird, wie in Abschnitt 12.1 beschrieben, aus den Elementmatrizen

$$a_{rs}^e = \int_{K^e} \left[(D\varphi_r^e)^T \mathcal{A} D\varphi_s^e + A_0 \varphi_r^e \varphi_s^e \right] dx$$

berechnet. Wir lassen im Folgenden den Index e weg. Falls K sich durch $F: \widehat{K} \to K$ auf das Referenz-finite-Element zurückführen lässt, ist

$$a_{rs} = \int_{\widehat{K}} \left[(D\widehat{\varphi}_r)^T \widehat{\mathcal{A}} D\widehat{\varphi}_s + \widehat{A}_0 \widehat{\varphi}_r \widehat{\varphi}_s \right] |\det DF| d\widehat{x},$$

wobei $\widehat{\varphi}_r = \varphi_r \circ F$ die Basisfunktion auf \widehat{K} ist, $\widehat{A}_0 = A_0 \circ F$ und $\widehat{\mathcal{A}} = (DF)^{-1} (\mathcal{A} \circ F) (DF)^{-T}$. Die Abbildung F wird aus den Knoten berechnet. Falls F affin ist, $F(\widehat{x}) = B\widehat{x} + c$, ist DF = B. Für $\widehat{a}_1 = [0, 0]^T$, $\widehat{a}_2 = [1, 0]^T$ und $\widehat{a}_3 = [0, 1]^T$ ist

$$c = a_1, \qquad B = \begin{bmatrix} a_2 - a_1 & a_3 - a_1 \end{bmatrix} \in \mathbb{R}^{2,2}.$$

Bei isoparametrischem F ist

$$F(x) = \sum_{r=1}^{R} a_r \widehat{\varphi}_r(x), \qquad DF = \sum_{r=1}^{R} a_r D\widehat{\varphi}_r(x).$$

Die Ableitungen $D\widehat{\varphi}_r(x)$ müssen ohnehin für die Steifigkeitsmatrix berechnet werden.

Die Berechnung des Integrals erfolgt im Allgemeinen näherungsweise durch eine Quadraturformel:

$$\int_{\widehat{K}} \phi dx \approx \sum_{m=1}^{M} w_m \phi(\widehat{x}_m)$$

Beispiele sind in Tabelle 12.1 angegeben.

Sind \mathcal{A} und A_0 konstant und ist F affin, so können die Integrale exakt berechnet werden.

Tabelle 12.1: Quadraturknoten und -gewichte für finite Elemente.

Lastvektor

Auch der Lastvektor wird aus den Elementvektoren zusammengesetzt

$$\int_{K} f \varphi_r dx = \int_{\widehat{K}} \widehat{f} \widehat{\varphi}_r |\det DF| dx, \qquad \widehat{f} = f \circ F,$$

wobei auch hier die Integrale mit Quadraturformeln approximiert werden. Bei inhomogenen Neumann-Randbedingungen ist für

$$b_i = \int_{\Omega} f\varphi_i dx + \int_{\Gamma^i} g\varphi_i d\sigma$$

zusätzlich ein Kurvenintegral zu approximieren, wobei Γ^i den Durchschnitt des Randes des Trägers von φ_i mit Γ bezeichnet. Die Berechnung muss also nur für alle i mit $a_i \in \Gamma_1$ erfolgen, da sonst $\varphi_i = 0$ in den Knoten auf Γ_1 ist, also $\varphi_i = 0$ auf Γ_1 . Γ_1 ist aus Elementkanten Γ^j zusammengesetzt:

$$\Gamma_1 = \bigcup_{j=1}^J \Gamma^j.$$

Integrale

$$\int_{\Gamma^j} g\varphi_r^e d\sigma$$

sind für $e=e_j$, der Nummer des Elements mit Kante j, und dem Index r mit $a_r^e \in \Gamma^j$ rückführbar auf Integrale der Gestalt $\int_0^1 \Psi ds$. Diese können mit Gauß-Quadraturformeln (etwa mit einem oder zwei Knoten) approximiert werden.

Dirichlet-Randbedingungen

Für das Randwertproblem seien auf $\Gamma_0 \subset \Gamma$ Dirichlet-Randbedingungen u = g auf Γ_0 vorgeschrieben. Die Triangulierung sei so gewählt, dass Γ_0 nur vollständige Seiten von finiten Elementen enthält. a_1, \ldots, a_I seien die Knoten der Triangulierung, $\varphi_1, \ldots, \varphi_I$ die Basisfunktionen der Knotenbasis, wobei $\varphi_1, \ldots, \varphi_N$ die Basisfunktionen mit $\varphi_i|_{\Gamma_0} = 0$, $V_N = \text{span}\{\varphi_1, \ldots, \varphi_N\}$ sind. Ferner sei $J_0 = \{N+1, \ldots, I\}$ so definiert, dass $j \in J_0$ genau dann, wenn $a_j \in \Gamma_0$.

Das Problem ist lösbar, falls $g=u_0|_{\Gamma_0}$ für ein $u_0\in H^1(\Omega)$, vgl. Abschnitt 11.9. Als Approximation verwenden wir

$$\widetilde{u}_0 = \sum_{j \in J_0} g(a_j) \varphi_j.$$

Diese ist in $H^1(\Omega)$ und erfüllt

$$\widetilde{u}_0(a_j) = g(a_j) \quad \forall j \in J_0, \qquad \widetilde{u}_0(a_j) = 0 \quad \forall j \notin J_0,$$

aber im Allgemeinen nicht $\widetilde{u}_0|_{\Gamma_0} = g$. Das approximierte Problem lautet dann: Suche $u_N \in V_I$ mit $u_N - \widetilde{u}_0 \in V_N$, so dass

$$a(u_N, v_N) = \ell(v_N) \qquad \forall v_N \in V_N$$

beziehungsweise äquivalent: Suche $w_N = u_N - \widetilde{u}_0 \in V_N$ mit

$$a(w_N, v_N) = \ell(v_N) - a(\widetilde{u}_0, v_N) \qquad \forall v_N \in V_N.$$

Formuliert als lineares Gleichungssystem entspricht dies

$$A\mu = b - \left(\sum_{j \in J_0} g(a_j)a(\varphi_j, \varphi_i)\right)_{i=1}^N.$$

Schließlich ist

$$u_N = w_N + \widetilde{u}_0 = \sum_{i=1}^N \mu_i \varphi_i + \sum_{j=N+1}^I g(a_j) \varphi_j$$

die Galerkin-Approximation an das approximierte Problem.

12.5 Fehlerabschätzungen und Konvergenz: Vorbemerkungen

Approximiert man ein elliptisches Randwertproblem 2. Ordnung in variationeller Formulierung

$$a(u, v) = \ell(v) \qquad \forall v \in V$$

mit Hilfe der Finite-Element-Methode, so treten folgende Fehlerquellen auf

- Galerkin-Ansatz (V wird durch endlichdimensionalen Unterraum V_N ersetzt)
- numerische Integration
- Approximation des Gebietsrandes (z. B. bei nichtpolygonalen Gebieten)
- Lösen des linearen Gleichungssystems
- Rundungsfehler

Wir konzentrieren uns hier auf den Galerkin-Fehler. Es sei $V_N = \text{span}\{\varphi_1, \dots, \varphi_N\} \subset V$ der finite-Element-Raum, h sei der maximale Durchmesser (Durchmesser des Umkreises) von finiten Elementen der Triangulierung von Ω . Im Folgenden schreiben wir V_h statt V_N . Dann ist die Galerkin-Approximation gegeben durch

$$a(u_h, v_h) = \ell(v_h) \quad \forall v_h \in V_h.$$

Unter welchen Voraussetzung gilt $u_h \to u$ für $h \to 0$?

Nach Céa's Lemma (Satz 11.4) ist u_h optimal in der Energienorm $||v||_a = \sqrt{a(v,v)}$:

$$||u_h - u||_a = \min_{v_h \in V_h} ||v_h - u||_a.$$

Da a V-elliptisch ist, ist die Energienorm äquivalent zur Sobolev-Norm, denn nach Definition 11.22 ist

$$\alpha \|v\|_1^2 \le a(v,v) \le M \|v\|_1^2$$
.

Damit ist

$$||u_h - u||_1 \le C \min_{v_h \in V_h} ||v_h - u||_1, \qquad C = \sqrt{M/\alpha}.$$

Wir wählen jetzt speziell

$$v_h = \Pi_h u := \sum_{j=1}^N u(a_j) \varphi_j \in V_h.$$

 Π_h ist ein Interpolationsoperator, denn $v_h(a_j) = u(a_j)$ für alle j = 1, ..., N. Er ist wohldefiniert, falls u stetig ist. Somit ist der Fehler in der Sobolev-Norm beschränkt durch den Interpolationsfehler:

$$||u_h - u||_1 \le C ||\Pi_h u - u||_1.$$

Diesen führen wir jetzt auf einzelne finite Elemente zurück:

$$\|\Pi_h u - u\|_{1,\Omega}^2 = \sum_{e=1}^E \|\Pi_h u - u\|_{1,K^e}^2 = \sum_{e=1}^E \|\Pi_{K^e} u - u\|_{1,K^e}^2,$$

wobei

$$\Pi_{K^e} u = \Pi_h u|_{K^e} = \sum_{i=1}^N u(a_i) \varphi_i|_{K^e} = \sum_{r=1}^R u(a_r^e) \varphi_r^e,$$

denn Integrale über Ω können durch die Summe der Integrale über die Elemente K^e ersetzt werden. Daher genügt es, den Interpolationsfehler $\|\Pi_K u - u\|_{1,K}$ für jedes finite Element K zu untersuchen.

Für den Interpolationsfehler werden wir unter zusätzlichen Voraussetzungen an die Triangulierung zeigen, dass

$$\|\Pi_K u - u\|_{1,K} \le Ch^k |u|_{k+1,K}$$

gilt, falls $u \in H^{k+1}(K)$. Für den Galerkin-Fehler folgt dann

$$||u_h - u||_{1,\Omega} \le Ch^k |u|_{k+1,\Omega},$$

falls der Polynomraum der finiten Elemente alle Polynome vom Grad $\leq k$ enthält. Wir beginnen mit k=1.

12.6 Fehlerabschätzungen für lineare finite Elemente

Es sei K ein beliebiges Dreieck, der Polynomraum sei \mathcal{P}_1 . Um die Konvergenz zu untersuchen benötigen wir eine Abschätzung für den Interpolationsfehler $\|\Pi_K v - v\|_1$.

Dazu zeigen wir zunächst eine Variante der Poincaré-Ungleichung (Satz 11.25).

Lemma 12.2. Es sei $K \subset \mathbb{R}^n$ kompakt und konvex und habe Durchmesser $\leq h$.

$$M(v) = \int_{K} v dx / \int_{K} 1 dx$$

bezeichne den Mittelwert von v auf K. Dann gilt

$$||v - Mv||_{0,K} \le C(n)h|v|_{1,K} \qquad \forall v \in H^1(K) := H^1(\overset{\circ}{K}).$$

Es ist
$$C(2) = \sqrt{2}$$
, $C(3) = \sqrt{3}$.

Beweis. Es sei $V = \int_K 1 dx$. Dann gilt für $x, y \in K$

$$v(y) - v(x) = \int_0^1 \frac{d}{dt} v(ty + (1-t)x) dt$$

= $\int_0^1 Dv(ty + (1-t)x)(y-x) dt$, $||x-y|| \le h$

und daraus ergibt sich mit der Cauchy-Schwarz'schen Ungleichung die Abschätzung

$$|v(y) - v(x)|^2 \le h^2 \int_0^1 ||Dv(ty + (1 - t)x)||^2 dt \qquad \forall x, y \in K,$$
 (12.2)

wobei mit $\|\cdot\|$ hier die Euklid-Norm gemeint ist. Wiederum mit der Cauchy-Schwarz'schen Ungleichung erhält man

$$\int_{K} (v(y) - Mv)^{2} dy = \int_{K} \left(\frac{1}{V} \int_{K} 1 \cdot (v(y) - v(x)) dx\right)^{2} dy$$

$$\leq \frac{1}{V} \int_{K} \int_{K} (v(y) - v(x))^{2} dx dy$$

$$\stackrel{(12.2)}{\leq} \frac{h^{2}}{V} \int_{K} \int_{K} \int_{0}^{1} ||Dv(ty + (1 - t)x)||^{2} dt dx dy$$

$$= \frac{2h^{2}}{V} \int_{K} \int_{K} \int_{0}^{1/2} ||Dv(ty + (1 - t)x)||^{2} dt dx dy,$$

wobei die letzte Ungleichung aus der Symmetrie durch Vertauschen von x, y im Integral $\int_{1/2}^1 \cdot dt$ folgt. Wir vertauschen jetzt die Integrationen nach t und x und substituieren x durch $\xi = ty + (1-t)x$. Es ist $\xi \in K$ wegen der Konvexität von K und $d\xi = (1-t)^n dx$, also gilt

$$\begin{split} \int_{K} & \left(v(y) - Mv \right)^{2} dy \leq \frac{2h^{2}}{V} \int_{K} \int_{0}^{1/2} \int_{K} \|Dv(\xi)\|^{2} (1 - t)^{-n} d\xi dt dy \\ &= \frac{2h^{2}}{V} \int_{0}^{1/2} (1 - t)^{-n} dt \ V \ \int_{K} \|Dv(\xi)\|^{2} d\xi \\ &\leq h^{2} \ C(n)^{2} |v|_{1}^{2} \end{split}$$

mit
$$C(n)^2 = (2^n - 2)/(n - 1)$$
.

Bevor wir den Interpolationsfehler für allgemeine Dreiecke abschätzen, behandeln wir als Spezialfall das Referenzdreieck \widehat{K} . Der allgemeine Fall folgt dann aus einer Transformation. Es bezeichne $\widehat{\Pi} = \Pi_{\widehat{K}}$ die lineare Interpolation in den Ecken von \widehat{K} .

Lemma 12.3. Für alle $v \in H^2(\widehat{K})$ gilt $|v - \widehat{\Pi}v|_1 \leq \widehat{C}|v|_2$.

Beweis. Die Interpolierende $\widehat{\Pi}v$ kann explizit angegeben werden:

$$\widehat{\Pi}v(x,y) = xv(1,0) + yv(0,1) + (1-x-y)v(0,0).$$

Durch

$$\frac{\partial}{\partial x}\widehat{\Pi}v = v(1,0) - v(0,0) = \int_0^1 \frac{\partial v}{\partial x}(t,0)dt =: L\left(\frac{\partial v}{\partial x}\right)$$

wird für $v \in H^2(\widehat{K})$ ein linearer und stetiger Operator $L: H^1(\widehat{K}) \to L^2(\widehat{K})$ definiert:

Es gilt dann

$$\begin{split} \int_{\widehat{K}} \left(\frac{\partial v}{\partial x} - \frac{\partial}{\partial x} \widehat{\Pi} v \right)^2 d(x, y) &= \left\| \frac{\partial v}{\partial x} - L \left(\frac{\partial v}{\partial x} \right) \right\|_{0, \widehat{K}}^2 \\ &\stackrel{L_c = c}{=} \left\| \left(\frac{\partial v}{\partial x} - c \right) - L \left(\frac{\partial v}{\partial x} - c \right) \right\|_{0, \widehat{K}}^2 \\ &\leq \left\| I - L \right\|^2 \cdot \left\| \frac{\partial v}{\partial x} - c \right\|_1^2 \quad \forall c \in \mathbb{R} \end{split}$$

Hierbei ist

$$||I - L|| = \sup_{u \in H^1(\widehat{K}), u \neq 0} \frac{||(I - L)u||_0}{||u||_1}$$

die Operatornorm von $I - L : H^1(\widehat{K}) \to L^2(\widehat{K})$. Wählen wir speziell $c = c_x = M(\frac{\partial v}{\partial x})$, so ist nach Lemma 12.2 wegen $h = \sqrt{2}$

$$\left\| \frac{\partial v}{\partial x} - c \right\|_{1}^{2} = \left\| \frac{\partial v}{\partial x} - c \right\|_{0}^{2} + \left| \frac{\partial v}{\partial x} \right|_{1}^{2} \le 5 \left| \frac{\partial v}{\partial x} \right|_{1}^{2}.$$

Analog zeigt man die Abschätzung für y und schließt aus

$$\begin{aligned} \left|v - \widehat{\Pi}v\right|_{1}^{2} &= \left\|\frac{\partial v}{\partial x} - \frac{\partial}{\partial x}\widehat{\Pi}v\right\|_{0}^{2} + \left\|\frac{\partial v}{\partial y} - \frac{\partial}{\partial y}\widehat{\Pi}v\right\|_{0}^{2} \\ &\leq C^{2} \left(\left\|\frac{\partial v}{\partial x} - c_{x}\right\|_{1}^{2} + \left\|\frac{\partial v}{\partial y} - c_{y}\right\|_{1}^{2}\right) \\ &\leq \widehat{C}^{2} \left(\left|\frac{\partial v}{\partial x}\right|_{1}^{2} + \left|\frac{\partial v}{\partial y}\right|_{1}^{2}\right) \\ &= \widehat{C}^{2} |v|_{2}^{2} \end{aligned}$$

die Behauptung.

Für ein finites Element K sei ρ der Inkreisradius, d. h. das maximale r, so dass

$${x \in \mathbb{R}^2 \text{ mit } ||x - S|| \le r} \subset K.$$

Hierbei bezeichnet S den Schwerpunkt von K.

Lemma 12.4. Es sei K ein beliebiges Dreieck mit Durchmesser h und Inkreisradius ρ . Π sei der lineare Interpolationsoperator auf K. Dann gilt

$$|v - \Pi v|_{1,K} \le C \frac{h^2}{\rho} |v|_{2,K} \qquad \forall v \in H^2(K).$$

Beweis. Wir führen die Aussage auf die für das Referenzdreieck \widehat{K} mittels der affinen und bijektiven Transformation $F:\widehat{K}\to K,\, F(\widehat{x})=B\widehat{x}+c$ zurück. Es ist

$$\widehat{v} := v \circ F, \qquad D\widehat{v} = (Dv \circ F)DF = (Dv \circ F)B,$$

$$\widehat{\Pi}\widehat{v} := (\Pi v) \circ F, \qquad D^2\widehat{v} = (D^2v \circ F)B^2$$

und wir erhalten

$$\begin{split} |v - \Pi v|_1^2 &= \int_K \|Dv - D\Pi v\|^2 \, dx & \|\cdot\| \text{ Euklid-Norm in } \mathbb{R}^2 \\ &= \int_{\widehat{K}} \|D\widehat{v}B^{-1} - D\widehat{\Pi}\widehat{v}B^{-1}\|^2 \, |\!\det B| \, d\widehat{x} \\ &\leq \int_{\widehat{K}} \|D\widehat{v} - D\widehat{\Pi}\widehat{v}\|^2 \, d\widehat{x} \, \|B^{-1}\|^2 |\!\det B| \\ &= |\widehat{v} - \widehat{\Pi}\widehat{v}|_1^2 \, \|B^{-1}\|^2 \, |\!\det B| \\ &\leq \widehat{C}^2 |\widehat{v}|_2^2 \, \|B^{-1}\|^2 \, |\!\det B| & \text{Lemma 12.3} \\ &= \widehat{C}^2 \int_{\widehat{K}} \|D^2\widehat{v}\|_F^2 \, d\widehat{x} \, \|B^{-1}\|^2 \, |\!\det B| \\ &\leq \widehat{C}^2 \int_K \|D^2v\|_F^2 \, dx \, \|B\|^4 \, \|B^{-1}\|^2 \end{split}$$

Bezeichnen wir mit \hat{h} und $\hat{\rho}$ den Durchmesser und Inkreisradius des Referenzdreiecks, so zeigen wir in einem zweiten Schritt

$$||B|| \le \frac{h}{\widehat{\rho}}, \qquad ||B^{-1}|| \le \frac{\widehat{h}}{\widehat{\rho}}.$$

Es genügt ein Beweis der ersten Abschätzung. Die zweite folgt dann durch Vertauschen von K und \widehat{K} .

Sei $\widehat{x} \in \mathbb{R}^2$ mit $\|\widehat{x}\| = 2\widehat{\rho}$ beliebig gewählt. Nach Definition des Inkreisradius gibt es $\widehat{y}, \widehat{z} \in \widehat{K}$ mit $\widehat{x} = \widehat{y} - \widehat{z}$ (zum Beispiel $\widehat{y} = S + \frac{1}{2}\widehat{x}$ und $\widehat{y} = S - \frac{1}{2}\widehat{x}$). Es gilt dann

$$B\widehat{x} = B\widehat{y} - B\widehat{z} = F(\widehat{y}) - F(\widehat{z}),$$

wobei $F(\widehat{y}) \in K$ und $F(\widehat{z}) \in K$ nach Definition von F. Daher ist $||B\widehat{x}|| \leq h$ und es folgt

$$||B|| = \max_{\|\widehat{x}\| = 2\widehat{\rho}} \frac{||B\widehat{x}||}{2\widehat{\rho}} \le \frac{h}{2\widehat{\rho}}.$$

Insgesamt gilt also

$$||B||^2 ||B^{-1}|| \le \frac{h^2}{4\hat{\rho}^2} \frac{\hat{h}}{2\rho} \le C \frac{h^2}{8\rho}$$

und daraus folgt die Behauptung.

Bemerkung. Ist die Triangulierung so gewählt, dass $h/\rho \leq const$, so gilt die Abschätzung

$$|v - \Pi v|_{1,K} \le C' h |v|_{2,K} \qquad \forall v \in H^2(K).$$

Man sollte also Dreiecke mit sehr spitzen Winkeln vermeiden.

Eine weitere Folgerung ist

Lemma 12.5. Unter den Voraussetzungen von Lemma 12.4 ist

$$||v - \Pi v||_{0,K} \le Ch^2 |v|_{2,K} \qquad \forall v \in H^2(K).$$

Beweis. (a) Wie oben zeigen wir die Behauptung zunächst für das Referenzdreieck. Mit partieller Integration erhält man

$$v(x) - v(0) = \int_0^1 \frac{d}{dt} v(tx) dt = Dv(x)x - \int_0^1 tx^T D^2 v(tx) x dt.$$
 (12.3)

Analog folgt wegen $D^2(\widehat{\Pi}v) = 0$

$$\widehat{\Pi}v(x) - \widehat{\Pi}v(0) = \int_0^1 \frac{d}{dt} \widehat{\Pi}v(tx)dt = D(\widehat{\Pi}v(x))x.$$
(12.4)

Da 0 Ecke von \widehat{K} ist, gilt $\widehat{\Pi}v(0) = v(0)$ und daraus folgt durch Subtraktion von (12.4) von (12.3)

$$\|v - \widehat{\Pi}v\|_{0,\widehat{K}} \le \|D(v - \widehat{\Pi}v)\|_{0,\widehat{K}} + \left(\int_{\widehat{K}} \left(\int_{0}^{1} tx^{T} D^{2}v(tx)xdt\right)^{2} dx\right)^{1/2}.$$

Den zweiten Term schätzen wir mit der Cauchy-Schwarz'schen Ungleichung ab

$$\int_{\widehat{K}} \left(\int_{0}^{1} 1 \cdot tx^{T} D^{2} v(tx) x dt \right)^{2} dx \leq \int_{\widehat{K}} \int_{0}^{1} t^{2} \left(x^{T} D^{2} v(tx) x \right)^{2} dt dx
\leq \int_{0}^{1} \int_{\widehat{K}} \|D^{2} v(\xi)\|_{F}^{2} d\xi dt \qquad \xi = tx, \ d\xi = t^{2} dx
= \int_{\widehat{K}} \|D^{2} v(\xi)\|_{F}^{2} d\xi
= |v|_{2\widehat{K}}^{2}.$$

Damit folgt aus Lemma 12.3

$$\|v - \widehat{\Pi}v\|_{0,\widehat{K}} \leq |v - \widehat{\Pi}v|_{1,\widehat{K}} + |v|_{2,\widehat{K}} \leq C|v|_{2,\widehat{K}}.$$

(b) Die Aussage für ein beliebiges Dreieck K zeigt man wie in Lemma 12.4 durch Transformation auf das Referenzdreieck. Wir verwenden dieselben Bezeichnungen wie dort. Durch Substitution von x durch $F(\widehat{x})$ erhält man aus Teil (a) dieses Beweises

$$\begin{aligned} \|v - \Pi v\|_{0,K}^2 &= \int_K (v - \Pi v)^2 dx \\ &= \int_{\widehat{K}} (\widehat{v} - \widehat{\Pi} \widehat{v})^2 |\det B| d\widehat{x} \\ &= |\det B| \|\widehat{v} - \widehat{\Pi} \widehat{v}\|_{0,\widehat{K}}^2 \\ &\leq \widetilde{C} |\det B| |\widehat{v}|_{2,\widehat{K}}^2 \\ &\leq \widetilde{C} |v|_{2,K}^2 \|B\|^4. \end{aligned}$$

Die Behauptung folgt wie in Lemma 12.4 aus $||B|| \le h/\widehat{\rho}$.

Satz 12.6. Unter den Voraussetzungen, dass

- (a) die Lösung u des elliptischen Randwertproblems in $H^2(\Omega)$ liegt und
- (b) alle Dreiecke der Triangulierung $h/\rho \leq const$ erfüllen,

gilt für die finite-Elemente-Methode mit linearen finiten Elementen

$$||u - u_h||_{1,\Omega} \le Ch|u|_{2,\Omega}.$$

Beweis. Lemma 12.4 und 12.5 liefern

$$||v - \Pi v||_{1,K} \le Ch|v|_{2,K}$$
 falls $\frac{h}{\rho} \le const.$

Die Fehlerabschätzung folgt damit direkt aus den Vorüberlegungen in Abschnitt 12.5. □

Ist Ω konvex oder mit C^2 -Rand und treten nur Dirichlet- oder nur Neumann-Randbedingungen, aber keine gemischten Randbedingungen auf, so ist das Problem H^2 regulär, d. h. die Lösung von

$$a(u,v) = \int_{\Omega} fv dx \qquad \forall v \in V$$

ist in $H^2(\Omega) \cap V$ für jedes $f \in L^2(\Omega)$ und es gilt

$$||u||_2 \le C_2 ||f||_0$$

mit einer Konstanten C_2 unabhängig von f.

Aus Lemma 12.5 wissen wir, dass der Interpolationsfehler in der L^2 -Norm sogar mit h^2 gegen Null geht. Unter den Voraussetzungen von Satz 12.6 können wir eine solche Abschätzung auch für die Galerkin-Approximation u_h zeigen. Jedoch ergibt sich diese Abschätzung nicht direkt aus Lemma 12.5, da die L^2 -Norm im Gegensatz zur H^1 -Norm nicht zur Energienorm äquivalent ist. Die Vorüberlegungen, die auf Céa's Lemma beruhten, sind hier nicht anwendbar.

Satz 12.7. Ist das Randwertproblem H^2 -regulär und erfüllen alle Dreiecke der Triangulierung $h/\rho \leq const$, dann gilt

$$||u_h - u||_0 \le Ch^2 |u|_2.$$

Beweis. Der Beweis beruht auf dem Nitsche-Trick. Man betrachtet das folgende Randwert-problem für φ :

$$a(v,\varphi) = \int_{\Omega} (u_h - u)v dx \qquad \forall v \in V.$$

Da das Problem H^2 -regulär ist, gilt für die Lösung

$$\varphi \in H^2(\Omega) \cap V$$
, $\|\varphi\|_2 \le C_2 \|u_h - u\|_0$.

Insbesondere ist für $v = u_h - u \in V$

$$a(u_h - u, \varphi) = ||u_h - u||_0^2$$

Für $u \in V$ und $u_h \in V_h \subset V$ gilt

$$\begin{array}{ll} a(u,v) &= \ell(v) & \forall v \in V \\ a(u_h,v_h) &= \ell(v_h) & \forall v_h \in V_h \subset V \end{array} \Longrightarrow a(u_h-u,v_h) = 0 \quad \forall v_h \in V_h.$$

Somit ist wegen der Beschränktheit von a

$$||u_h - u||_0^2 = a(u_h - u, \varphi - v_h) \le M ||u_h - u||_1 ||\varphi - v_h||_1 \quad \forall v_h \in V_h.$$

Wählen wir $v_h = \Pi_h \varphi$, so ergibt sich aus Lemma 12.4 und 12.5

$$\|\varphi - \Pi_h \varphi\|_1 \le C' h |\varphi|_2 \le C' C_2 h \|u_h - u\|_0.$$

Damit ist nach Satz 12.6

$$||u_h - u||_0^2 \le M||u_h - u||_1 C'C_2h||u_h - u||_0 \le C h^2|u|_2 ||u_h - u||_0$$

und die Behauptung folgt nach Division durch $||u_h - u||_0$.

12.7 Kompakte Einbettungen, Satz von Rellich

Definition 12.8. Es seien V und W Hilbert-Räume oder allgemeiner Banach-Räume. Die stetige und lineare Abbildung $T: V \to W$ heißt **kompakt**, wenn für jede beschränkte Folge $\{v_n\}$ in V die Folge $\{Tv_n\}$ in W eine konvergente Teilfolge hat.

Beispiel. Die Abbildung $T:V\to W$ mit dim $\operatorname{Bild}(T)<\infty$ ist kompakt, denn ist $\{v_n\}$ eine beschränkte Folge in V, dann ist wegen der Stetigkeit $\{Tv_n\}$ eine beschränkte Folge in $\operatorname{Bild}(T)\subseteq W$. Da $\operatorname{Bild}(T)\cong\mathbb{R}^N$ endlichdimensional ist, existiert nach dem Satz von Bolzano-Weierstraß eine konvergente Teilfolge. \diamond

Lemma 12.9. Es seien V und W Banach-Räume. $T_n, T: V \to W$ seien linear und stetig und sei T_n kompakt für $n = 0, 1, \ldots$ Dann folgt aus

$$||T_n - T|| = \sup_{0 \neq v \in V} \frac{||(T_n - T)v||_W}{||v||_V} \to 0, \quad n \to \infty,$$

dass auch T kompakt ist.

Beweis. Es sei $\{v_n\}$ eine beschränkte Folge in V.

$$\{T_1v_n\}$$
 hat konvergente Teilfolge in W , $\{T_1v_n^1\}$: $||T_1v_n^1-w_1|| \leq \frac{1}{n}$

$$\{T_2v_n^1\}$$
 hat konvergente Teilfolge in W , $\{T_2v_n^2\}$: $||T_2v_n^2-w_2|| \leq \frac{1}{n}$

:

$$\{T_k v_n^{k-1}\}$$
 hat konvergente Teilfolge in W , $\{T_k v_n^k\}$: $||T_k v_n^k - w_k|| \le \frac{1}{n}$

Für die Diagonalfolge $\widetilde{v}_n = v_n^n$ und $n \ge m$ gilt

$$||T\widetilde{v}_{n} - T\widetilde{v}_{m}|| \leq ||T\widetilde{v}_{n} - T_{m}\widetilde{v}_{n}|| + ||T_{m}\widetilde{v}_{n} - w_{m}|| + ||w_{m} - T_{m}\widetilde{v}_{m}|| + ||T_{m}\widetilde{v}_{m} - T\widetilde{v}_{m}||$$

$$\leq ||T - T_{m}||||\widetilde{v}_{n}|| + \frac{1}{n} + \frac{1}{m} + ||T_{m} - T||||\widetilde{v}_{m}||$$

$$\to 0, \qquad n, m \to \infty.$$

Daher ist $\{T\widetilde{v}_n\}$ eine Cauchyfolge in W, also konvergent.

Satz 12.10. Es sei Ω ein beschränktes, stückweises C^1 -Gebiet. Dann ist die Einbettung $H^1(\Omega) \hookrightarrow L^2(\Omega)$ kompakt, d. h. jede beschränkte Folge in $H^1(\Omega)$ (bezüglich $\|\cdot\|_1$) hat eine konvergente Teilfolge in $L^2(\Omega)$ (bezüglich $\|\cdot\|_0$).

Beweis. Wir unterteilen Ω in endlich viele Elementardreiecke Δ_j mit Durchmesser $\leq 1/n$ und definieren eine Folge von linearen, stetigen Abbildungen $T_n: H^1(\Omega) \to L^2(\Omega)$ durch

$$T_n v|_{\Delta_j} = M_{\Delta_j}(v) \qquad \forall j,$$

wobei $M_{\Delta_j}(v)$ den in Lemma 12.2 definierten Mittelwert von v auf Δ_j bezeichnet. T definieren wir als die natürliche Injektion $H^1(\Omega) \hookrightarrow L^2(\Omega)$. Dann ist T_n kompakt, da Bild (T_n) endliche Dimension hat. Ferner ist

$$||T_n - T|| \to 0, \qquad n \to \infty,$$

da nach Lemma 12.2 für jedes $v \in H^1(\Omega)$

$$||T_n v - Tv||_{0,\Omega}^2 = \sum_j ||M_{\Delta_j}(v) - v||_{0,\Delta_j}^2$$

$$\leq C^2 \frac{1}{n^2} \sum_j |v|_{1,\Delta_j}^2$$

$$= C^2 \frac{1}{n^2} |v|_{1,\Omega}^2$$

$$\leq C^2 \frac{1}{n^2} ||v||_{1,\Omega}^2$$

gilt. Somit ist $||T_n - T|| \leq C/n \to 0$. Nach Lemma 12.9 ist T kompakt und damit nach Definition von T auch die Einbettung $H^1(\Omega) \hookrightarrow L^2(\Omega)$.

Satz 12.11. (*Rellich*)

Es sei $\Omega \subseteq \mathbb{R}^n$ ein beschränktes, stückweises C^1 -Gebiet. Dann ist die Einbettung $H^{k+1}(\Omega) \hookrightarrow H^k(\Omega)$ kompakt für jedes $k \geq 0$.

Beweis. Für k=0 entspricht die Aussage der von Satz 12.10. Wir führen den allgemeinen Fall darauf zurück. Es ist

$$\begin{split} H^{k+1}(\Omega) &= \{ v \mid \partial^{\alpha} v \in L^2(\Omega) \text{ für } |\alpha| \leq k+1 \} \\ &= \{ v \mid \partial^{\beta} v \in H^1(\Omega) \text{ für } |\beta| \leq k \}. \end{split}$$

Sei $\{\beta \in \mathbb{N}_0^n \mid |\beta| \leq k\} = \{\beta_j \mid j = 1, \dots, M\}$ und $\{v_m\}$ eine beschränkte Folge in $H^{k+1}(\Omega)$. Dann ist $(\partial^{\beta_1} v_m)$ eine beschränkte Folge in $H^1(\Omega)$, hat also eine konvergente Teilfolge $\{\partial^{\beta_1} v_m^1\}$ in $L^2(\Omega)$. Ebenso ist $\{\partial^{\beta_2} v_m^1\}$ eine beschränkte Folge in $H^1(\Omega)$, hat also eine konvergente Teilfolge $\{\partial^{\beta_2} v_m^2\}$ in $L^2(\Omega)$, usw. Damit konvergent die Teilfolge $\{v_m^M\}$ in $H^k(\Omega)$.

12.8 Approximationssätze für Polynominterpolation

Es sei $\Omega \subset \mathbb{R}^n$ ein Polygon beziehungsweise ein Polyeder, n=2,3. Wie bisher sei \mathcal{P}_k der Raum aller Polynome vom Grad höchstens k. Im Folgenden sei stets $k \geq 1$.

Satz 12.12. Es existiert eine Konstante $C = C(\Omega, k)$, so dass

$$\inf_{p \in \mathcal{P}_k} ||v - p||_{k+1} \le C |v|_{k+1} \qquad \forall v \in H^{k+1}(\Omega).$$

Beweis. Es sei $R = \dim \mathcal{P}_k$ und in Ω seien Punkte $x_i, i = 1, \ldots, R$ so gewählt, dass die Abbildung

$$p: \mathcal{P}_k \to \mathbb{R}^R, \qquad p \mapsto (p(x_r))_{r=1}^R$$

bijektiv ist.

Wir zeigen zunächst eine Verallgemeinerung der Poincaré'schen Ungleichung: Es existiert eine Konstante $C = C(\Omega, k) < \infty$, so dass

$$||v||_{k+1} \le C \left(|v|_{k+1} + \sum_{r=1}^{R} |v(x_r)| \right) \qquad \forall v \in H^{k+1}(\Omega).$$
 (12.5)

Man beachte, dass $v(x_r)$ wohldefiniert ist, da $H^{k+1}(\Omega) \subset C(\Omega)$ für $k+1 \geq 2$, $n \leq 3$ nach dem Sobolev'schen Einbettungssatz 11.26. Die Ungleichung (12.5) zeigen wir indirekt. Angenommen es gäbe eine Folge $\{w_m\}$ in $H^{k+1}(\Omega)$ mit

$$||w_m||_{k+1} \ge m \left(|w_m|_{k+1} + \sum_{r=1}^R |w_m(x_r)| \right), \quad m \to \infty$$

Dann gilt für $v_m = w_m/\|w_m\|_{k+1}$

- (i) $||v_m||_{k+1} = 1$,
- (ii) $|v_m|_{k+1} + \sum_{r=1}^{R} |v_m(x_r)| \le \frac{1}{m} \to 0$ für $m \to \infty$.

Nach Satz 12.11 von Rellich existiert eine Teilfolge $\{\widetilde{v}_m\}$ von $\{v_m\}$, die in $H^k(\Omega)$ konvergiert (bzgl. $\|\cdot\|_k$). Wegen (ii) muss für diese Teilfolge $|\widetilde{v}_m|_{k+1} \to 0$ gelten. $\{\widetilde{v}_m\}$ ist somit eine Cauchyfolge in H^{k+1} , denn $\|\cdot\|_{k+1}^2 = \|\cdot\|_k^2 + |\cdot|_{k+1}^2$. Diese konvergiert in $H^{k+1}(\Omega)$ gegen ein $v \in H^{k+1}(\Omega)$, welches $|v|_{k+1} = 0$ erfüllt, d. h.

$$\partial^{\alpha} v = 0$$
 $\forall \alpha \text{ mit } |\alpha| = k + 1.$

Damit ist v ein Polynom vom Grad höchstens k. Wegen (ii) konvergiert $|\widetilde{v}_m(x_r)| \to 0$, also ist $v(x_r) = 0$, denn die Einbettung $H^{k+1}(\Omega) \hookrightarrow C(\Omega)$ mit der Maximumsnorm ist stetig und ebenso die Abbildung

$$L_r: H^{k+1} \to \mathbb{R}: \quad v \mapsto v(x_r).$$

Auf der einen Seite konvergiert also $L_r(\widetilde{v}_m) \to L_r(v) = v(x_r)$ und auf der anderen Seite $L_r(\widetilde{v}_m) = \widetilde{v}_m(x_r) \to 0$, also $v(x_r) = 0$. Jedes $v \in \mathcal{P}_k$ mit $v(x_r) = 0$ für alle $r = 1, \ldots, R = \dim \mathcal{P}_k$ erfüllt aber v = 0 im Widerspruch zu

$$||v||_{k+1} = \lim_{m} ||\widetilde{v}_m||_{k+1} = 1.$$

Dies beweist (12.5).

Zu gegebenem $v \in H^{k+1}(\Omega)$ wählen wir das eindeutig bestimmte Interpolationspolynom $p \in \mathcal{P}_k$ mit $p(x_r) = v(x_r), r = 1, \dots, R$. Aus der verallgemeinerten Poincaré'schen Ungleichung folgt dann

$$||v - p||_{k+1} \le C ||v - p||_{k+1} = C ||v||_{k+1}.$$

Für das Infimum gilt die Ungleichung also erst recht.

Als Folgerung erhalten wir auf dem Referenz-finiten-Element \widehat{K}

Satz 12.13. (Bramble-Hilbert Lemma)

Die Abbildung $\Pi: H^{k+1}(\widehat{K}) \to H^m(\widehat{K}), m \leq k+1$ sei linear und stetig und erfülle $\Pi p = p$ für alle $p \in \mathcal{P}_k$ (z. B. sei Π die finite-Element-Interpolation). Dann gibt es eine Konstante $\widehat{C} = \widehat{C}(\widehat{K})$, so dass

$$||v - \Pi v||_m \le \widehat{C} |v|_{k+1}.$$

Beweis. Für beliebiges $p \in \mathcal{P}_k$ gilt

$$||v - \Pi v||_m = ||v - p - \Pi(v - p)||_m \le ||I - \Pi|| \cdot ||v - p||_{k+1}.$$

Die Abbildung $I-\Pi:H^{k+1}\to H^m$ ist linear und stetig und daher die Operatornorm $\|I-\Pi\|=:C_1$ beschränkt. Es folgt

$$||v - \Pi v||_m \le C_1 \inf_{p \in \mathcal{P}_k} ||v - p||_{k+1} \le C_1 C ||v||_{k+1},$$

mit Hilfe von Satz 12.12.

Satz 12.14. Es sei K ein finites Element mit Knoten a_1, \ldots, a_R und Polynomraum $\mathcal{P} \subseteq \mathcal{P}_k$, welches affin von $F(\widehat{x}) = B\widehat{x} + c$ aus \widehat{K} erzeugt wurde. h sei der Durchmesser von K, ρ der Inkreisradius und in der Knotenbasis φ_r , $r = 1, \ldots, R$, sei

$$\Pi v(x) = \sum_{r=1}^{R} v(a_r) \varphi_r(x).$$

Dann gilt für $m \le k + 1$

$$|v - \Pi v|_{m,K} \le C \frac{h^{k+1}}{\rho^m} |v|_{k+1,K} \qquad \forall v \in H^{k+1}(K).$$

Beweis. Der Beweis erfolgt analog zu dem von Lemma 12.4 durch Transformation auf das Referenz-finite Element \widehat{K} und Anwendung von Satz 12.13.

Ist $h/\rho < const$ für alle finiten Elemente, so erhält man aus Satz 12.14

$$||v - \Pi_h v||_{1,\Omega} \le C h^k |v|_{k+1,\Omega}$$

$$||v - \Pi_h v||_{0,\Omega} \le C h^{k+1} |v|_{k+1,\Omega}$$

und daraus das folgende Konvergenzresultat.

Satz 12.15. Unter den Voraussetzungen, dass

- (a) die Lösung u des elliptischen Randwertproblems in $H^{k+1}(\Omega)$ liegt und
- (b) alle finiten Elemente $\mathcal{P} \subset \mathcal{P}_k$ und $h/\rho \leq const$ erfüllen,

gilt für die finite-Elemente-Methode

$$||u - u_h||_{1,\Omega} \le Ch^k |u|_{k+1,\Omega}.$$

Ist das Problem H^2 -regulär, so gilt auch

$$||u - u_h||_{0,\Omega} \le Ch^{k+1}|u|_{k+1,\Omega}.$$

Beweis. Die erste Abschätzung folgt direkt aus den vorigen Sätzen, die zweite durch Anwendung des Nitsche-Tricks. \Box