Modal Logic, Winter 2019 Homework 5 due Tuesday, February 12

1 Exercise 3.1

- 1. $1 \Vdash p \land *q$ $1 \Vdash p \land *q$ if and only if $1 \Vdash p$ and $1 \Vdash *q$. We have $1 \Vdash p$ since in room 1, p is true. Notice that $2 \Vdash q$ since in room 2, q is true; then $1 \Vdash *q$. Therefore $1 \Vdash p \land *q$.
- 2. $2 \Vdash *(p \land *q)$ $2 \Vdash *(p \land *q)$ if and only if $1 \Vdash p \land *q$, which is true by part 1.
- 3. $1 \Vdash *(*p \land q)$ $1 \Vdash *(*p \land q)$ if and only if $2 \Vdash *p \land q$ if and only if $2 \Vdash *p$ and $2 \Vdash q$. $2 \Vdash *p$ since in room 1, p is true. $2 \Vdash q$ since in room 2, q is true. Hence $2 \Vdash *p \land q$; therefore $1 \Vdash *(*p \land q)$.
- 4. 2 ⊩ * * * * *q*

$$2 \Vdash * * * * q \iff 1 \Vdash * * * q$$

$$\iff 2 \Vdash * * q$$

$$\iff 1 \Vdash * q$$

$$\iff 2 \Vdash q$$

We know $2 \Vdash q$ since in room 2, q is true. Hence $2 \Vdash * * * * q$.

2 Exercise 3.3

Show the following in the natural deduction proof system:

 $\neg * \varphi$

 $\neg * \varphi \rightarrow * \neg \varphi$

1. $\vdash * \neg * \varphi \rightarrow * * \neg \varphi$

- 1.
- 2.
- 3.
- 4.
- 5. $**\neg\varphi$
- 6. $*\neg *\varphi \rightarrow **\neg\varphi$

- Assume
- *,

Determinacy Axiom

- \rightarrow_e , 2, 3
- $*_i$
- \rightarrow_i , 1-5

2. \vdash *maze* \rightarrow * * * * *maze*

- 1. | *maze*
- 2. $maze \rightarrow **maze$
- 3. | * * maze
- 4. $\star \star maze \rightarrow \star \star \star \star maze$
- 5. **** *maze*
- 6. $maze \rightarrow ****maze$

Assume

Involution Lemma

 \rightarrow_e , 1, 2

Involution Lemma

- \rightarrow_e , 1, 2
- \rightarrow_i , 1 5

3. $\vdash \neg * \bot$

- 1. ∗⊥
- 2. ¬∗⊥

Assume

 \neg_i , 1

4. Involution Lemma: $\vdash \varphi \rightarrow **\varphi$

3 Exercise 3.7

Show that for all models M, $1 \Vdash *(p \rightarrow q) \rightarrow (*p \rightarrow *q)$.

Fix a model M. We want to show that $1 \Vdash *(p \to q) \to (*p \to *q)$. If $1 \nvDash *(p \to q) \to (*p \to *q)$, we're done. So we can assume that $1 \Vdash *(p \to q)$. We want to show that $1 \Vdash (*p \to *q)$. As before, if $1 \nvDash *p$, we're done. So we can assume that $1 \Vdash *p$. It is our job to show that $1 \Vdash *q$. This means that $2 \Vdash q$, so we show that $2 \Vdash q$. Since $1 \Vdash *(p \to q)$, we know $2 \Vdash p \to q$. Similarly, since $1 \Vdash *p$, we have $2 \Vdash p$. Thus we have $2 \Vdash q$, and hence $1 \Vdash *q$. Therefore $1 \Vdash *p \to *q$ and we can conclude that $1 \Vdash *(p \to q) \to (*p \to *q)$.

4 Exercise 3.8

1.
$$p_1 \rightarrow *p_1$$

This is satisfiable, here is such a model that the sentence is true in:

But it is not valid, here is a model where the sentence is not true

2.
$$p_1 \rightarrow \neg * p_1$$

This is satisfiable, here is a model that it is true in:

But it is not valid, here is a model where it is false:

3.
$$(*p_1) \wedge (*\neg p_1)$$

This is not satisfiable, because it is equivalent to $\varphi \land \neg \varphi$. Since there is no model where this is true, it is definitely not valid either.

4.
$$(p_1 \wedge *p_2) \vee \neg (p_1 \wedge *p_2)$$

This is both, because it is equivalent to $\varphi \lor \neg \varphi$.

5.
$$****p_2 \rightarrow *p_2$$

This is satisfiable, here is such a model it is true in.

To show it is valid we provide a formal proof:

By soundness, we know this is a tautology, so it is valid.

5 Exercise **3.10**

One of these is true, one is false. Which is which?

1. $treadmill \models_L *treadmill$

The above statement is false, because you would have to walk into the other room to know whether or not there is a treadmill there.

2. $treadmill \models_G *treadmill$

This statement is true because φ has to be true in both rooms for global modeling, and if φ is true in both rooms, then $*\varphi$ is true in both as well.

6 Exercise 3.11

Prove that the following are equivalent:

1.
$$\varphi_1,\ldots,\varphi_n\models_1\psi$$

2.
$$\varphi_1,\ldots,\varphi_n\models_2 \psi$$

Denote $\Gamma := \{\varphi_1, \dots, \varphi_n\}$. Suppose $\Gamma \models_1 \psi$. Prove $\Gamma \models_2 \psi$. Fix a model M and assume every sentence $\varphi_i \in \Gamma$ is true in room 2 of M. We show $2 \Vdash \psi$ in M. Consider M*, the mirror image of M. By our assumption, every sentence $\varphi_i \in \Gamma$ that is true in room 2, is true in room 1 of M*, by Lemma 3.11. Then, since $\Gamma \models_1 \psi$, $1 \Vdash \psi$ in M*. By Lemma 3.11 again, we must have $2 \Vdash \psi$ in M.

For the other direction, assume $\Gamma \models_2 \psi$, and we must show $\Gamma \models_1 \psi$. Fix a model M and assume every sentence $\varphi_i \in \Gamma$ is true in room 1 of M. We show $1 \Vdash \psi$ in M. Consider M*, the mirror image of M. By our assumption, every sentence $\varphi_i \in \Gamma$ that is true in room 1, is true in room 2 of M*, by Lemma 3.11. Then, since $\Gamma \models_2 \psi$, $2 \Vdash \psi$ in M*. By Lemma 3.11 again, we must have $1 \Vdash \psi$ in M. This completes the proof.