Probability

Donald Kong dkkl1137@gmail.com

 $:\!\! D$

Contents

1	Con	Combinatorial Analysis		
	Axioms of Probability			
	2.1	Sample Space, Events, Experiments	3	
	2.2	Kolmogorov's Axioms	4	
	2.3	Probabilities	4	

1 Combinatorial Analysis

Theorem (Generalised Principle of Counting). If r experiments are such that each i-th experiment has n_i possible outcomes, there are a total of $n_1 \cdot n_2 \cdots n_r$ possible outcomes for the r experiments.

Proof. Enumerating all the possible outcomes of two experiments, we have

$$(1,1), (1,2) \cdots (1,n)$$

 $(2,1), (2,2) \cdots (2,n)$
 $\vdots \vdots \vdots \cdots \vdots$
 $(m,1), (m,2) \cdots (m,n)$

where the outcome is (i, j) if experiment 1 results in the *i*-th possible outcome and experiment 2 then results in its *j*-th possible outcome. The set of possible outcomes consists m rows of n elements. Applying this result repeatedly, we extend the principle to r experiments.

Permutations

Proposition. Suppose we have n objects. There are $n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 = n!$ distinct permutations of the objects.

Proposition (Permutations of alike objects). For n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike, we have

$$\frac{n!}{n_1! \, n_2! \cdots n_r!}$$

distinct permutations.

Combinations

Proposition. Suppose we have n objects. There are $\frac{n!}{(n-r)!r!}$ different subsets of r objects from the set of n objects.

Proof. From a set of n objects, we have n possible ways to choose the first object, (n-1) possible ways to choose the second object, ..., (n-r+1) possible ways to choose the r-th object. By the generalised principle of counting, we have

$$n(n-1)\cdots(n-r+1)$$

ways to select a group of r objects from n objects, when order is relevant. Each group of r objects will be counted r! times in this count, since there are r! permutations of r objects. It follows that there are

$$\frac{n!}{(n-r)!\,r!}$$

distinct groups where order is irrelevant.

Notation $\binom{n}{r}$. We define $\binom{n}{r}$ for $r \leq A$ as the number of subsets of size r that can be chosen from a set of size n

$$\binom{n}{r} = \frac{n!}{(n-r)! \, r!}.$$

Theorem (Pascal's Identity).

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}, 1 \le r \le n$$

Proof. Suppose a group of n objects. Consider a particular object, Object 1. There are $\binom{n-1}{r-1}$ r-sized groups that contain Object 1, and $\binom{n-1}{r}$ r-sized groups that do not contain Object 1. Since there are a total of $\binom{n}{r}$ r-sized groups, Pascal's Identity follows.

Theorem (Binomial Theorem).

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Proof. Consider the product

$$(x_1+y_1)(x_2+y_2)\cdots(x_n+y_n)$$

The expansion consists a sum of 2^n terms, each term a product of n factors, where for each i = 1, 2, ..., n, either x_i or y_i is contained as a factor. There are $\binom{n}{k}$ terms that have k of the x's and (n - k) of the y's as a factor. Letting $x_i = x, y_i = y$, we have the result.

Notation (Multinomial Coefficients). For $n_1 + n_2 + \cdots + n_r = n$,

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}.$$

 $\binom{n}{n_1, n_2, \dots, n_r}$ represents the number of possible divisions of n distinct objects into r distinct groups sized n_1, n_2, \dots, n_r .

Theorem (Multinomial Theorem). Generalisation of the Binomial Theorem.

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{\{(n_1, \dots, n_r) \in \mathbb{N}^r : n_1 + \dots + n_r = n\}} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}.$$

Proposition (Number of Integer Solutions). For the equation:

$$x_1 + x_2 + \dots + x_r = n,$$

there are $\binom{n-1}{r-1}$ distinct positive vectors $(x_1, x_2, \ldots, x_r) \in \mathbb{N}^r_*$ and $\binom{n+r-1}{r-1}$ distinct non-negative vectors $(x_1, x_2, \ldots, x_r) \in \mathbb{N}^r$.

The number of nonnegative solutions of $x_1 + x_2 + \cdots + x_r = n$ equals the number of positive solutions of $y_1 + y_2 + \cdots + y_r = n + r$, by letting $y_i = x_i + 1$.

2 Axioms of Probability

2.1 Sample Space, Events, Experiments

Definition (Experiment). An experiment is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes. It is modeled by a probability space (S, \mathcal{F}, P) , consisting a sample space S, an event space \mathcal{F} , a probability function P.

Definition (Sample Space). The set of all possible outcomes of an experiment, denoted by S.

Definition (Event Space). A set consisting subsets of S, $\mathcal{F} \subseteq \mathcal{P}(S)$, such that it contains the sample space and is closed under complements and countable unions. Also known as a σ -algebra.

Union, intersection, complement operations are defined on the event space.

Definition (Event). Any $E \in \mathcal{F}$ is known as an event, a subset of S that consists possible outcomes of the experiment. If the outcome of an experiment is in E, we say that E has occurred.

If events $E_1 \cap E_2 \cap \ldots \cap E_n = \emptyset$, we say that E_1, E_2, \ldots, E_n are mutually exclusive events.

Theorem (De Morgan's Laws).

$$\left(\bigcup_{i=1}^{n} E_i\right)^c = \bigcap_{i=1}^{n} E_i^c \qquad \left(\bigcap_{i=1}^{n} E_i\right)^c = \bigcup_{i=1}^{n} E_i^c.$$

2.2 Kolmogorov's Axioms

 $\forall E \in \mathcal{F}, P(E) \in \mathbb{R}$ and satisfies the following:

- 1. $0 \le P(E) \le 1$
- 2. P(S) = 1
- 3. For any sequence of mutually exclusive events E_1, E_2, \ldots

$$P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

 $P(\cdot)$ satisfying the three axioms is known as a probability function.

Remark. For sample spaces that are uncountably infinite sets, P(E) is defined only for measurable events. Events of practical interest are measurable.

2.3 Probabilities

Proposition (Results of Kolmogorov's Axioms). For any events E, F,

$$P(E^c) = 1 - P(E).$$

 $E \subseteq F \implies P(E) \le P(F).$

Theorem (Principle of Inclusion-Exclusion (PIE)). For any events E_1, E_2, \ldots, E_n ,

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots + (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

Corollary. Given any two events E, F,

$$P(E \cup F) = P(E) + P(F) - P(EF).$$