Todo:

- Eulerkreise: Algorithmen

- Kruskal, von Prim Algorithman

- Skizze "Wertemenge", "Definitionsbereich", "Bildmenge"

Martin Hediger, FHNW

1 Zahlenmengen

 $\mathbb{N} := \{0, 1, 2, ...\}$ - natürliche Zahlen

 $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$ - ganze Zahlen

 $\mathbb{Q} := \{ \frac{m}{m} | m \in \mathbb{Z} \land n \in \mathbb{N} \land n \neq 0 \}$ - rationale Zahlen

 $\mathbb{R}:=\{\tilde{x}|x$ als endlicher oder unendlicher Bruch darstellbar $\}$ - reelle Zahlen

2 Aussagenlogik

2.1 Wahrheitstabellen

A	В	-	$A \wedge B$	A	В	A \	В	A	В	$A \implies B$
0	0		0	0	0	0		0	0	1
0	1		0	0	1	1		0	1	1
1	0		0	1	0	1		1	0	0
1	1		1	1	1	1		1	1	1
A	A I	3	A <==	> B	Α	В	A	XOF	В	
0	(1		0	0		0		
0	1	.	0		0	1		1		
1)	0		1	0		1		
1	. 1	.	1		1	1		0		

Implikation: Wenn wir sagen A impliziert B, dann bedeutet dies "Wenn A wahr ist, dann kann die Aussage, dass dann B falsch ist, nicht mehr wahr sein".

Kontraposition: $(A \Longrightarrow B) \equiv (\neg B \Longrightarrow \neg A)$

Regen impliziert nasse Strassen. Trockene Strasse impliziert Sonnenschein. Nasse Strasse impliziert **nicht** Regen. Sonnenschein impliziert **nicht** trockene Strassen.

2.2 Normalformen

Berechnen mit Wahrheitstabelle oder Rechenregeln.

A	В	$^{\rm C}$	f	KNF Klausel	DNF Klausel
0	0	0	0	$(A \lor B \lor C)$	Nicht relevant für DNF
0	0	1	0	$(A \lor B \lor \neg C)$	Nicht relevant für DNF
0	1	0	1	$(A \lor B \lor \neg C)$ Nicht relevant für KNF	$(\neg A \land B \land \neg C)$
1	1	0	0	$(\neg A \lor \neg B \lor C)$	Nicht relevant für DNF

Konjunktive NF: $f=f_1 \wedge f_2 \wedge \ldots$, für KNF sind wegen den Identitätsgesetzen nur die Zeilen massgebend, welche f den Wahrheitswert 0 (false) zuordnen (Zeilen die 1 sind spielen keine Rolle weil $f \wedge true = f$)

Disjunktive NF: $f = f_1 \vee f_2 \vee \dots$

Angenommen, f(0,1,0)=1, dh die DNF muss für (0,1,0) 1 zurückgeben. Die DNF $(f_1\vee f_2\vee\ldots)$ ist = 1, wenn nur schon eine Klausel = 1 ist. Also müssen in der DNF die Argumente der Klausel umgedreht werden (da sie in der Klammer mit \land verknüpft sind).

3 Mengenalgebra

3.1 Rechenregeln Quantoren

 $\exists !x : A(x) \Longrightarrow \exists x : A(x)$

 $\forall x : A(x) \Longrightarrow \exists x : A(x)$

Sprachgebrauch:

"Einige meiner Freunde sind schlau." $\iff \exists x: F(x) \land S(x)$ $\exists x: (\forall y: A(x,y)):$ "Es gibt (mind.) ein Produkt, welches im Korb jeder Person liegt."

 $\forall y: (\exists x: A(x,y))$: "Alle Personen haben (mind.) 1 Produkt im Korb."

3.2 Rechenregeln

Operatoren	$\cap/\cup \to AND/OR \to Konj/Disj$	
Idempotenz	$A \cap A = A$	$A \cup A = A$
Kommutativ	$A \cap B = B \cap A$	$A \cup B = B \cup$
Identität	$A \cap G = A$	$A \cup \emptyset = A$
	$A \cap \emptyset = \emptyset$	$A \cup G = G$
Assoziativ	$(A \cap B) \cap C = A \cap (B \cap C)$	
	$(A \cup B) \cup C = A \cup (B \cup C)$	
Absorption	$A \cap (A \cup B) = A$	$A \cup (A \cap B)$
Distributiv	$A \cap (B \cup B) = (A \cap B) \cup (A \cap C)$	` /
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
De Morgan	$(A \cap B)^c = A^c \cup B^c$	$(A \cup B)^c = A$
Komplementär	$A \cap A = \emptyset$	$A \cup A^{c'} = G$
•	$(A^c)^c = A$	
	$G^c = \emptyset$	
	$\emptyset^c = G$	
Teilmengen	$A \subseteq B \implies (A \cap B = A)$	
9	$A \subseteq B \implies (A \cup B = B)$	
	$(A \subseteq B) \land (B \subseteq C) \Longrightarrow (A \subseteq C)$	

3.3 Definitionen

Vereinigung: $A \cup B := \{x \in G | x \in A \lor x \in B\}$ Schnitt: $A \cap B := \{x \in G | x \in A \land x \in B\}$ Differenz: $A \setminus B := \{x \in G | (x \in A \land x \not\in B)\}$ Sym Diff.: $A \triangle B := \{x \in G | (x \in A \land x \not\in B) \lor (x \in B \land x \not\in A)\}$ Complement: $A^c := \{x \in G | x \not\in A\} = G \setminus A$ Kart. Produkt: $A \times B := \{(x,y) | x \in A \land y \in B\}$

3.4 Partition

Alle Partitionen von $\{0,1,2\}$: $\{\{0\},\{1\},\{2\}\},\{\{0\},\{1,2\}\},\{\{1\},\{0,2\}\},\{\{2\},\{0,1\}\},\{\{0,1,2\}\}.$

3.5 Potenzmenge

Menge aller Teilmengen einer Menge A wird Potenzmenge genannt.

 $A:=\{1,2,3\},$ dann ist $P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},A\}.$ Mächtigkeit der Potenzmenge einer endlichen Menge ist $|P(A)|=2^{|A|}.$

4 Relationen

Reflexivität: Jeder Knoten hat eine Schleife, $\forall x \in A : (x, x) \in R$. Kontrollieren: $(x, x) \in R$?

Symmetrie: Für jeden Pfeil gibt es einen Pfeil in Gegenrichtung (Schleifen siend gleichzeitig Pfeil uend Pfeil in Gegenrichtung). Kontrollieren $(x, y) \in R$ und $(y, x) \in R$?

 $\forall x, y \in A : ((x, y) \in R \implies (y, x) \in R)$

Antisymmetrie: Für jeden Pfeil, der nicht Schleife ist, gibt es keinen Pfeil in Gegenrichtung.

 $\forall x, y \in A : (x \neq y \land (x, y) \in R \implies (y, x) \notin R)$

Kontrollieren $(x,y) \in R$ und $(y,x) \not \in R?$ Falls ja ist es antisymmetrisch

Transitivität: Jeder Pfad entlang zweier Pfeile (mit gleichem Richtungssinn) hat einen abkürzenden Pfeil vom Anfangs- zum Endknoten des Pfades

 $\forall x, y, z \in A : ((x, y) \in R \land (y, z) \in R \implies (x, z) \in R)$

Beachten: für Transitivität ist erforderlich mind. zwei Paare $(x,y) \in R$ und $(y,z) \in R$ zu haben, ansonsten wäre Prämisse der Definition der Implikation nicht erfüllt. Wenn nicht zwei Paare vorhanden sind $\in R$, ist die Relation automatisch transitiv.

4.1 Äquivalenzrelationen

 $A^c \cap B^c$ Definition: Eine binäre Relation $R \subseteq A \times A$ heisst Äquivalenzrelation gdw. sie reflexiv, symmetrisch, transitiv ist. Zwei Objekte $x,y \in A$ mit $(x,y) \in R$ heissen dann äquivalent zueinander, geschrieben $x \sim y$, oder auch $\sim (x,y)$ wenn $(x,y) \in \sim$ ist.

Äquivalenzklasse: $[x]_+ := \{y \in A | x \sim y\}$

Beispiel: Äquivalenzrelation mit drei Äquivalenzklassen $x \sim y \iff 3 \mid |x - y|$ (3 teilt Betrag):

 $[0]_{\sim} = \{0, 3, 6, 9, ...\}$ $[1]_{\sim} = \{1, 4, 7, 10, ...\}$ $[2]_{\sim} = \{2, 5, 8, 11, ...\}$

Äquivalenzrelationen partitionieren ihre Menge und sind gegenseitig disjunkt.

4.2 Ordnungsrelationen

Definition: Eine Relation R auf Menge A heisst Halbordnung gdw. R reflexiv, antisymmetrisch, transitiv ist.

Beispiel: $M := \{0,1,2,3\}$, dann ist $\leq := \{(x,y) \in M^2 | x \leq y\}$ eine Halbordnung auf M.

Teilbarkeit: $a|b\iff \exists m\in\mathbb{Z}:b=ma$

4.3 Grundbegriffe Halbordnungen

Minimales Element: Keine direkten Vorgänger

 $Kleinstes\ Element:$ Alle anderen Elemente nachfolger von x

Maximales Element: Keine direkten Nachfolger

 $Gr\ddot{o}sstes$ Element: Alle anderen Elemente Vorgänger von x

Zeichnen: Starten bei Knoten von dem möglichst viele Pfeile ausgehen (ohne Schleifen). Dann weitergehen, transitive Pfeile weglassen. Gerichteter Graph: $a \to b \to c$, $a \to c$ wird zu a - b - c.

4.4 Verknüpfung

Definition: $R \subseteq A \times B$ und $S \subseteq B \times C$, Verknüpfung $S \circ R := \{(x, z) \in A \times C | \exists y \in B : ((x, y) \in R \land (y, z) \in S)\}$

4.5 Inverse Relation

Relation umdrehen: Beide Mengen vertauschen und Pfeile umdrehen ${\cal R}^{-1}$

Definition: Für $R \subseteq A \times B$, $R^{-1} = \{(y, x) \in B \times A | (x, y) \in R\}$

5 Funktionen

5.1 Allgemein

Bei (totalen) Funktionen geht von linken Knoten genau ein Pfeil aus. Eine totale Funktion ist rechtseindeutig. **Rechtseindeutigkeit:** Das was ich rechts habe ist für ein linkes Element eindeutig. **Beispiel:** Ist homogene Relation $R_3 = \{(x,y) \in \mathbb{R}^2 | y^2 = x\}$ eine Funktion?

Nein, denn es sind z.b. $(1,-1) \in R_3$, aber auch $(1,1) \in R_3$. Somit existieren für $x=1 \in \mathbb{R}$ zwei Elemente $y_1=-1 \in \mathbb{R}$ und $y_2=1 \in \mathbb{R}$, so dass $(1,1) \in R_3$ und $(1,-1) \in R_3$ ist.

5.2 Injektiv, Surjektiv, Bijektiv

surjektiv: Alle Elemente der Wertemenge B gehören zur Bildmenge f(A):

 $\forall y \in B \exists x \in A : f(x) = y, \text{ dh. falls } f(A) = B$

injektiv: Für zwei verschiedene Argumente $x_1, x_2 \in A$ sind die dazugehörigen Funktionswerte $f(x_1)$ und $f(x_2)$ unterschiedlich: $\forall x_1, x_2 \in A : (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$