DeepSolar

Jordan Landers | Thinkful Unit 3 Capstone

Deep Solar Dataset

- Solar panel systems were counted from satellite images using a semi-supervised convolutional neural network
- Published dataset includes solar, geographic, and demographic data for 48 contiguous states at census tract resolution

Jiafan Yu, Zhecheng Wang, Arun Majumdar, Ram Rajagopal. **DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States**. *Joule*, 2018; 2 (12): 2605 DOI: 10.1016/j.joule.2018.11.021

Data Prep

- voting_2012_dem_percentage, voting_2012_gop_percentage were dropped because they were not reported in CO, CT, FL, GA, SC, UT, WY.
- Geographic/climate related values missing from 5208 tracts, affecting as many as 25% of tracts in certain states
 - For sets of missing tracts accounting for less than a threshold percentage of the respective county land area, missing values were replaced with county averages. 0%, 25% and 30% were investigated as threshold percentages.
- Dropped null, infinite, and NaN values
- Dropped categorical variables

Target Variable: solar_systems_count_residential

~75% of solar installations accounted for by median household income < \$100k

92% of households have income < \$100k

Challenges

- Data reflect cumulative effect of various economic conditions and incentive programs, demographic data is a snapshot that may/may not reflect the characteristics of the population that installed solar systems
- Cost of living varies so money related variables are locally calibrated
 - \$67k (average median_household_income in CA) represents less buying power in CA than it does in TN, but to the model \$67k is \$67k
- Class imbalance (1.13% of households in dataset have solar installations)
- Inconsistent distribution
 - 62% of residential solar systems are located in CA (skew of residential solar systems = 7.4)
 - CA represents 11% of households
- Data do not reflect a system at saturation
 - Solar is being adopted at an increasing rate, so a household without solar is not necessarily a "non-solar household" as much as "not *yet*-solar household"

Exploring the Data

Populations are statistically different (p=0) but distributions clearly overlap.

	Income		Median Value	Radiation
		> 5 installations p	er tract	
count	24533	24533	24533	24533
mean	68653	1176	311485	4.54
Standard dev.	31159	884	233107	.63
min	9100	6	9999	3.35
max	250001	20482	2000000	5.65
		- 1		
		<= 5 installations	per tract	
count	43403	43403	43403	43403
mean	50779	702	173116	4.07

648

10471

0

Count Higher Ed

Housing Unit

147227

2000001

9999

Daily Solar

.4

3.3

5.65

Median Household

Standard dev.

min

max

23723

4147

250001

Feature Set

140 variables in published data set pertaining to residential Heating, Weather, Income, Education, Employment, Race, Age, Occupation, Commute, Political, Energy consumption/Pricing, Incentives

- PCA suggests that over 99% of variance can be accounted for using 92 principle components
- No strong feature loading in first 15 components

Modeling

Considerations

- Regression
- Complicated relationships between variables
- 100 140 variables
- 50,000 training examples

Model Candidates

- Ridge
- Random Forests
- Support Vector Machines
- Gradient Boosting

Model Sets

- 0%, 25%, 30% = threshold percent of county land requiring imputed geo values
- w/ rates, w/o rates = including/excluding rate variables from feature set
- PCA, all = reduce feature set using PCA, or retain all variables

Results: PCA (n=100)

* Same Training/Test sets used for all tests except where noted

	Ridge	Random Forests	SVM-R	Gradient Boosting- Regression
Training/Test 1	0.435 ∓ 0.028	.474 ∓ 0.045	0.608 ∓ 0.029	0.660 + 0.035
Training/Test 2	0.434 ∓ 0.012	.471 ∓ 0.015	0.623 ∓ 0.042	0.640 ∓ 0.008
Training/Test 3	0.430 ∓ 0.031	.485 ∓ 0.018	0.627 = 0.030	0.654 ∓ 0.034
CV score	0.433 ∓ 0.026	.477 ∓ 0.030	0.621 ∓ 0.034	0.652 ∓ 0.031
Total score	0.445 ∓ 0.004	.468 ∓ 0.019	0.594 ∓ 0.022	0.647 ∓ 0.012
Time to fit (s)	0.154 ∓ 0.006	448.2 ∓ 8.37	1961 ∓ 25.6	669.2 + 6.6

Results: Full Feature Set

* Same Training/Test sets used for all tests except where noted

	Ridge	Random Forests	SVM-R	Gradient Boosting- Regression
Training/Test 1	.47 ∓ .031	.637 ∓ .029	.62 ∓ .025	.777 ∓ .02
Training/Test 2	.463 ∓ .015	.643 ∓ .02	.632 ∓ .039	.775 ∓ .028
Training/Test 3	.469 ∓ .011	.632 ∓ .02	.630 ∓ .01	.772 ∓ .015
CV score	.468 ∓ .021	.637 ∓ .02	.627 ∓ .028	.775 ∓ .022
Total score	.48 ∓ .011	.643 ∓ .023	.61 ∓.017	. 771 ∓ .01
Time to fit (s)	.111 ∓ .005	390.8 ∓ 1.26	1452 ∓ 25.5	569.7 ∓ 2.04

Model Results: feature set comparison

* Same Training/Test sets used for all tests except where noted

	With rates	Without rates	30% threshold	No imputed data	No dropped columns
Training/Test 1	0.777 = 0.02	0.775 ∓ 0.02	0.775 = 0.027	0.77 = 0.026	0.773 ∓ 0.019
Training/Test 2	0.775 ∓ 0.028	0.771 ∓ 0.026	0.776 ∓ 0.017	0.776 ∓ 0.014	0.781 ∓ 0.027
Training/Test 3	0.772 ∓ 0.015	0.767 + 0.015	0.773 ∓ 0.036	0.774 ∓ 0.013	0.79 ∓ 0.011
CV score	0.775 ∓ 0.022	0.771 ∓ 0.021	0.775 ∓ 0.023	0.772 = 0.019	0.781 ∓0.021
score	0.771 ∓ 0.01	0.77 = 0.003	0.773 ∓ 0.005	0.781 ∓ 0.004	0.783 ∓ 0.006
Time to fit (s)	569.7 + 2.04	584.2 ∓ 69.4	7 46 ∓ 45.4	1955.9 ∓ 1210.4	1573.5 ∓ 1215.0

Different training/test sets used

Model Optimization & Performance

Used GridSearchCV to optimize performance of Gradient Boosting (~9 hrs)

	Option 1	Option 2
criterion	friedman_mse	mae
loss	Is	huber
max_depth	3	6
n_estimators	400	500
learning_rate	.01	.1
min_samples_spl it	2	4

Test score: 0.77 = 0.007

CV score (n=6): $0.775 \pm .023$ Mean time to fit: 723.3 ± 113.3

What's next?

Solar companies & public utilities have stakes in residential solar predictions

- Where to market solar?
 - Affinity Propagation to investigate groups of tracts that are similar to those that were overpredicted
- Where to prepare the grid for upcoming shifts in usage patterns?

Potential next steps:

- Clustering data and training separate models for each cluster
 - Separating data based on thresholds of single variables did not yield interesting results, but clusters based on unsupervised learning might do better