《瀚海之巅》2024 第 2 期 - 征解解答

中国科大数学科学学院团委 《瀚海之巅》项目组

日期: 2024年4月19日

- 1. 我们来考察有限阿贝尔群的对偶群 (**dual group**) 的相关性质. 对阶为 n 的有限阿贝尔群 G, 定义 \hat{G} 是所有 $G \to \mathbb{C}_{\neq 0}$ 的积性复值函数构成的集合, 也就是说, 对任意 $e \in \hat{G}$, 以及任意 $a,b \in G$, $e(a \cdot b) = e(a)e(b)$.
 - (a) \hat{G} 是群. 验证 \hat{G} 在以下运算下构成阿贝尔群:

$$(e_1 \cdot e_2)(a) = e_1(a)e_2(a), \ \forall a \in G.$$

- (b) 证明: 对任意 $e \in \hat{G}$, 以及任意 $a \in G$, e(a) 是某个 n 次单位根.
- (c) \hat{G} 的阶. 研究所有 $G \to \mathbb{C}$ 的复值函数构成的向量空间 V, 在 V 上定义 Hermite 内积

$$(f,g) = \frac{1}{n} \sum_{a \in G} f(a) \overline{g(a)}.$$

- (i) 证明: \hat{G} 的元素在上述内积下构成一组标准正交向量组, 进而 $|\hat{G}| \leq n$.
- (ii) 证明: \hat{G} 的元素在上述内积下构成一组标准正交基, 进而 $|\hat{G}| = n$.
- (d) \hat{G} 的结构. 证明: $\hat{G} \cong G$.

供题人: 胡洁洋

证明. (a) 对任意 $e_1, e_2 \in \hat{G}$, 和任意 $a, b \in \hat{G}$,

 $(e_1 \cdot e_2)(a \cdot b) = e_1(a \cdot b)e_2(a \cdot b) = e_1(a)e_2(a)e_1(b)e_2(b) = (e_1 \cdot e_2)(a)(e_1 \cdot e_2)(b),$ 从而 $e_1 \cdot e_2 \in \hat{G}$.

结合律: 任取 $e_1, e_2, e_3 \in \hat{G}$, 和 $a \in G$, 有

$$[(e_1 \cdot e_2) \cdot e_3](a) = [e_1 \cdot (e_2 \cdot e_3)](a) = e_1(a)e_2(a)e_3(a),$$

从而 $(e_1 \cdot e_2) \cdot e_3 = e_1 \cdot (e_2 \cdot e_3)$, 结合律成立.

单位元存在性: 令 $e_{\mathrm{Id}} = 1, \forall a \in G$, 不难验证其为 \hat{G} 的单位元.

逆元存在性: 对 $e \in \hat{G}$, 令 $e^{-1}(a) = e(a)^{-1}$, 不难验证 $e^{-1} \in \hat{G}$, 且 $e_{\mathrm{Id}} = e \cdot e^{-1} = e^{-1} \cdot e$.

同时, 任取 $e_1, e_2 \in \hat{G}$, 类似可验证 $e_1 \cdot e_2 = e_2 \cdot e_1$.

综上, \hat{G} 构成阿贝尔群.

(b) 设 1_G 是 G 的单位元. $e(1_G) = e(1_G \cdot 1_G) = e(1_G)^2$, 得 $e(1_G) = 1$. 又对任意

 $a \in G, a^n = 1_G, \mathbb{M}\overline{\mathbb{m}}$

$$1 = e(1_G) = e(a^n) = e(a)e(a^{n-1}) = \dots = e(a)^n,$$

即 e(a) 是某个 n 次单位根.

(c) (i) 一方面, 对任意 $e \in \hat{G}$,

$$(e,e) = \frac{1}{n} \sum_{a \in G} e(a) \overline{e(a)} = \frac{1}{n} \sum_{a \in G} |e(a)|^2 = 1,$$

另一方面, 对 $e_1, e_2 \in \hat{G}$, $e_1 \neq e_2$, 下证 $(e_1, e_2) = 0$. 任取 $b \in G$ 满足 $e_1(b) \neq e_2(b)$.

$$(e_1, e_2) = \frac{1}{n} \sum_{a \in G} e_1(a) \overline{e_2(a)}$$

$$= \frac{1}{n} \sum_{a \in G} (e_1 \cdot e_2^{-1})(a)$$

$$= \frac{1}{n} \sum_{a \in G} (e_1 \cdot e_2^{-1})(ab \cdot b^{-1})$$

$$= \frac{(e_1 \cdot e_2^{-1})(b)^{-1}}{n} \sum_{a \in G} (e_1 \cdot e_2^{-1})(ab)$$

$$= \frac{(e_1 \cdot e_2^{-1})(b)^{-1}}{n} \sum_{a \in G} (e_1 \cdot e_2^{-1})(a)$$

$$= (e_1 \cdot e_2^{-1})(b)^{-1}(e_1, e_2),$$

由 $(e_1 \cdot e_2^{-1})(b) \neq 1$, 我们有 $(e_1, e_2) = 0$. 进而 \hat{G} 的元素在上述内积下构成一组标准正交向量组. 平凡地, $\dim V = n$, 而正交向量组必为线性无关组, 故 $|\hat{G}| < n$.

(ii) 我们只需验证任意 $f:G\to\mathbb{C}$ 都是 \hat{G} 中元素的线性组合. 考虑证明

$$f = \frac{n}{|\hat{G}|} \sum_{e \in \hat{G}} (f, e)e.$$

引理. 对任意 $a \neq 1_G$, 有

$$\sum_{e \in \hat{G}} e(a) = 0.$$

引理证明: 先说明存在 $e_0 \in \hat{G}$, $e_0(a) \neq 1$. 由有限阿贝尔群的结构 定理, 设

$$G \cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \cdots \times \mathbb{Z}_{p_l^{k_l}}.$$

同构映射 φ 将 a 映为 $(\overline{\alpha_1},\overline{\alpha_2},\cdots,\overline{\alpha_l})$, 不失一般性, $\overline{\alpha_1}\neq\overline{0}$. 取

$$e_0(\varphi^{-1}(\overline{\beta_1}, \overline{\beta_2}, \cdots, \overline{\beta_l})) = \exp\left(\frac{2\beta_1\pi i}{p_1^{k_1}}\right), \forall \beta_1, \beta_2, \cdots, \beta_l \in \mathbb{Z},$$

即满足条件. 进而, 类似 (i),

$$\sum_{e \in \hat{G}} e(a) = \sum_{e \in \hat{G}} (e \cdot e_0)(a) = e_0(a) \sum_{e \in \hat{G}} e(a),$$

我们有

$$\sum_{e \in \hat{G}} e(a) = 0.$$

回原题. 任取 $a \in G$,

$$\frac{n}{|\hat{G}|} \sum_{e \in G} (f, e)e(a) = \frac{1}{|\hat{G}|} \sum_{e \in \hat{G}} e(a) \sum_{b \in G} f(b)\overline{e(b)}$$

$$= \frac{1}{|\hat{G}|} \sum_{b \in G} f(b) \sum_{e \in \hat{G}} e(ab^{-1})$$

$$= \frac{1}{|\hat{G}|} f(a) \sum_{e \in \hat{G}} e(aa^{-1}) + \frac{1}{|\hat{G}|} \sum_{\substack{b \in \hat{G} \\ b \neq a}} f(b) \sum_{e \in \hat{G}} e(ab^{-1})$$

$$= f(a) + \frac{1}{|\hat{G}|} \sum_{\substack{b \in \hat{G} \\ b \neq a}} f(b) \sum_{e \in \hat{G}} e(ab^{-1})$$

$$= f(a).$$

故

$$f = \frac{n}{|\hat{G}|} \sum_{e \in \hat{G}} (f, e)e.$$

由此, \hat{G} 的元素在上述内积下构成一组标准正交基, 进而 $|\hat{G}| = n$.

(d) 分三步证明.

第一步: 结论对有限循环群成立. 考虑 n 阶循环群 $G=\langle a \rangle$. 则 $e(a^k)=e(a)^k$, 进而 e 由 e(a) 完全决定, 构造映射 $\psi:G\to \hat{G}$, $[\psi(a^k)](a^m)=\exp\left(\frac{2km\pi i}{n}\right)$, 不难验证确实是同构映射.

第二步: 证明 $\widehat{G_1 \times G_2} \cong \widehat{G_1} \times \widehat{G_2}$. 注意对任意 $e \in \widehat{G}$, 存在 $e_i \in \widehat{G_i}$ (i = 1, 2), 使得对任意 $g_i \in G_i$ (i = 1, 2), $e(g_1, g_2) = (e_1(g_1), e_2(g_2))$, 对任意 $e_i \in \widehat{G_i}$ (i = 1, 2), 也有唯一的 e 与它们对应, 进而得证.

第三步: 证明本问题. 注意到

$$\begin{split} \hat{G} &\cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \dots \times \mathbb{Z}_{p_l^{k_l}} \\ &\cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \dots \times \mathbb{Z}_{p_{l-1}^{k_{l-1}}} \times \widehat{\mathbb{Z}_{p_l^{k_l}}} \\ & \dots \\ &\cong \widehat{\mathbb{Z}_{p_1^{k_1}}} \times \widehat{\mathbb{Z}_{p_2^{k_2}}} \times \dots \times \widehat{\mathbb{Z}_{p_l^{k_l}}} \\ &\cong \mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \dots \times \mathbb{Z}_{p_l^{k_l}} \\ &\cong G. \end{split}$$

命题得证.

2. (范德蒙德行列式的推广) 在平稳随机过程的研究中, 出现了下述行列式:

$$\Delta_n(k_1, x_1; \dots; k_m, x_m) = \begin{vmatrix} M_{k_1}^n(x_1) \\ M_{k_2}^n(x_2) \\ \vdots \\ M_{k_m}^n(x_m) \end{vmatrix},$$

其中 x_1, x_2, \ldots, x_m 是未知量; k_1, \ldots, k_m 是正整数, $k_1 + k_2 + \cdots + k_m = n$; $M_k^n(x)$ 是 $k \times n$ 阶矩阵, 形如

$$M_k^n(x) = \begin{pmatrix} 1 & x & x^2 & \cdots & x^{n-1} \\ 0 & 1 & \binom{2}{1}x & \cdots & \binom{n-1}{1}x^{n-2} \\ 0 & 0 & 1 & \cdots & \binom{n-1}{2}x^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \binom{n-1}{k-1}x^{n-k} \end{pmatrix}.$$

证明:

$$\Delta_n(k_1, x_1; \dots; k_m, x_m) = \prod_{1 \le i < j \le m} (x_j - x_i)^{k_i k_j}.$$

证明. 对 n 做归纳, 当 n=2 时, 结论显然成立. 假设小于 n 时结论均成立, 当 n 时, 将 $\Delta_n(k_1,x_1;\ldots;k_m,x_m)$ 的每一列乘以 x_1 ,然后用后一列减去这一乘积. 注意到 $\binom{n+1}{m+1} - \binom{n}{m+1} = \binom{n}{m}$,故有

$$M_{k_1}^n(x_1) \to M_{k_1,1}^n(x_1) = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & x_1 & x_1^2 & \cdots & x_1^{n-2} \\ 0 & 0 & 1 & {n \choose 2} x_1 & \cdots & {n-2 \choose 1} x_1^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & {n-2 \choose k_1-2} x_1^{n-k_1} \end{pmatrix}$$

而对于任一i = 2, 3, ..., m有

$$x_i^2(x_i - x_1)$$
 ... $x_i^{n-2}(x_i - x_1)$

$$M_{k_i}^n(x_i) o M_{k_i,1}^n(x_i) =$$

$$\begin{pmatrix} 1 & x_i - x_1 & x_i(x_i - x_1) & x_i^2(x_i - x_1) & \cdots & x_i^{n-2}(x_i - x_1) \\ 0 & 1 & (x_i - x_1) + x_i & \binom{2}{1}x_i(x_i - x_1) + x_i^2 & \cdots & \binom{n-2}{1}x_i^{n-3}(x_i - x_1) + x_i^{n-2} \\ 0 & 0 & 1 & (x_i - x_1) + \binom{2}{1}x_i & \cdots & \binom{n-2}{2}x_i^{n-4}(x_i - x_1) + \binom{n-2}{1}x_i^{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \binom{n-2}{k_{i-1}}x_i^{n-k_{i-1}}(x_i - x_1) + \binom{n-2}{k_{i-2}}x_i^{n-k_i} \end{pmatrix}$$
现在将 Δ_n 按 M_i^n ,的第一行展开,则 $M_{k+1}(x_1)$ 的剩余部分即为 $M_i^{n-1}(x_1)$,对于

现在将 Δ_n 按 $M_{k_1,1}^n$ 的第一行展开,则 $M_{k_1,1}(x_1)$ 的剩余部分即为 $M_{k_1-1}^{n-1}(x_1)$. 对于 $M_{k_i}^n(x_i)(i \neq 1)$ 的剩余部分, 先将第一行公因式的 $(x_i - x_1)$ 提取出来, 再用第二行

减去第一行, 然后第二行也有了公因式 $(x_i - x_1)$, 将这一公因式提取出来后又用第 三行减去第二行,第三行也有了公因式 $(x_i - x_1) \cdots$ 如此反复进行下去,最终会 得到 $M_{k_i}^{n-1}(x_i)$, 并且总共提取出来了 $k_i \uparrow (x_i - x_1)$. 于是, 经过上面的变形, 我们 得到

$$\Delta_n(k_1, x_1; \dots; k_m, x_m) = \prod_{i=2}^m (x_i - x_1)^{k_i} \Delta_{n-1}(k_1 - 1, x_1; \dots; k_m, x_m)$$
(1)

而由归纳假设,我们有

$$\Delta_{n-1}(k_1 - 1, x_1; \dots; k_m, x_m) = \prod_{2 \le i < j \le m} (x_j - x_i)^{k_i k_j} \prod_{t=2}^m (x_t - x_1)^{(k_1 - 1)k_t}$$
 (2)

将(2)代入(1)即得所求证.

- 3. (a) 证明: 存在无穷多个正整数 n, 使得 $\sigma(n)\varphi(n)$ 不为完全平方数;
 - (b) 证明: 存在无穷多个正整数 n, 使得 $\sigma(n)\varphi(n)$ 为完全平方数.

供题人: 邓博文

- **证明.** (a) 取 n 为素数, 此时 $\sigma(n)\varphi(n) = n^2 1$ 不为完全平方数, 这样的 n 有无穷 多个.
- (b) 设素数从小到大排列为 $p_1 < p_2 < \cdots$. 若满足 $\sigma(n)\varphi(n)$ 为完全平方数的 n 只 有有限个,取正整数 α 使得这些 n 的最大素因子不超过 p_{α} . 由素数定理,存在 充分大的 ε ∈ N*, 使得

$$\#\left\{p|p$$
是素数, $p \in \left(\frac{p_{\varepsilon}+1}{2}, p_{\varepsilon}\right]\right\} > \alpha$.

设 $\beta \in \mathbb{N}^*$ 满足

$$p_{\beta} \le \frac{p_{\varepsilon} + 1}{2} < p_{\beta + 1},$$

则

$$\varepsilon - \beta = \pi(p_{\varepsilon}) - \pi(\frac{p_{\varepsilon} + 1}{2}) > \alpha,$$

即 $\varepsilon - \alpha > \beta$. 定义函数 $g: \mathbb{N}^* \to \mathbb{N}^*$,

$$g(t) = \prod_{\substack{p \ni h \bar{x} \\ v_p(t) \ni h \hat{a} \\ y}} p.$$

注意到

$$\prod_{i=\alpha+1}^{\beta} (p_i^2 - 1) = 2^{2\varepsilon - 2\alpha} \prod_{i=\alpha+1}^{\varepsilon} \frac{p_i - 1}{2} \prod_{i=\alpha+1}^{\varepsilon} \frac{p_i + 1}{2},$$

从而

$$\Omega\left(\prod_{i=\alpha+1}^{\varepsilon} p_i^2 - 1\right) \le \frac{p_{\varepsilon} + 1}{2}.$$

而对任意集合 $A \subseteq \{\alpha + 1, \alpha + 2, \dots, \epsilon\}$,

$$g\left(\prod_{i\in A}(p_i^2-1)\right)\in \left\{\prod_{i=1}^\beta p_i^{r_i}\Big|r_i\in\{0,1\},1\leq i\leq\beta\right\},$$

从而 $g\left(\prod_{i\in A}(p_i^2-1)\right)$ 的取值至多有 2^{β} 种可能. 又这样的 A 一共有 $2^{\varepsilon-\alpha}$ 个,且 $2^{\varepsilon-\alpha} > 2^{\beta}$,故存在两个不同的集合 $A_1, A_2 \subseteq \{\alpha+1, \alpha+2, \cdots, \varepsilon\}$,使得

$$g\left(\prod_{i\in A_1}(p_i^2-1)\right) = g\left(\prod_{i\in A_2}(p_i^2-1)\right),$$

这说明

$$\prod_{i \in A_1} (p_i^2 - 1) \prod_{i \in A_2} (p_i^2 - 1)$$

为完全平方数,进而

$$\prod_{i \in A_1 \Delta A_2} (p_i^2 - 1)$$

为完全平方数. 取非空集合 $A' = A_1 \Delta A_2$, 令

$$l = \prod_{i \in A'} p_i,$$

则

$$\sigma(l)\varphi(l) = \prod_{i \in A_1 \Delta A_2} (p_i^2 - 1)$$

为完全平方数. 又 l 含有大于 p_{α} 的素因子, 这与反证假设矛盾, 原命题得证.

4. 设 $P_0(x_0, y_0), P_1(x_1, y_1), \cdots, P_n(x_n, y_n)$ 是平面直角坐标系 xOy 中的 n+1 个整点, 其横坐标满足 $x_1-x_0, x_2-x_1, \cdots, x_n-x_{n-1}$ 是互异的正整数, 纵坐标满足 $y_0 < y_1 < \cdots < y_n$, 且斜率满足

$$\frac{y_1 - y_0}{x_1 - x_0} < \frac{y_2 - y_1}{x_2 - x_1} < \dots < \frac{y_n - y_{n-1}}{x_n - x_{n-1}}.$$

已知对 $i = 0, 1, \dots, n-3$, 在直线 $P_i P_{i+1}, P_{i+1} P_{i+1}, P_{i+2} P_{i+3}$ 所围成三角形的内部与边界上只有两个整点 (即 P_{i+1} 与 P_{i+2}). 求证: $x_1 - x_0, x_2 - x_1, \dots, x_n - x_{n-1}$ 至多有 2^{n-1} 种可能的大小顺序.

供题人: 徐子健

证法 1, 徐子健. 先证明如下引理.

引理.

$$x_2 - x_1 < \max\{x_1 - x_0, x_3 - x_2\}.$$

引理证明: 不妨设 $P_1(0,0)$ 再设 $P_2(p,q)$, 那么我们知道 p,q 互质.

设 $pp' \equiv 1 \pmod{q}, qq' \equiv 1 \pmod{p}$ 且 $p' \in \{1, 2, \dots, q-1\}, q' \in \{1, 2, \dots, p-1\}.$

曲 $pp'+qq' \equiv 1 \pmod{p}$, $pp'+qq' \equiv 1 \pmod{q}$ 且 p,q 互质知 $pp'+qq' \equiv 1 \pmod{pq}$. 又由于 1 < pp'+qq' < 2pq 故

$$pp' + qq' = pq + 1.$$

考虑点 X(q',q-p') 于是有

$$\frac{q-p'}{q'} < \frac{q}{p}.$$

故 X 在 P_1P_2 下方. 由题设, X 在 P_0P_1 或者 P_2P_3 下方.

若 X 在 P_0P_1 下方, 设 $P_0(-p_1, -q_1)$, 于是

$$\frac{q-p'}{q'}<\frac{q}{p_1}<\frac{q}{p}.$$

于是

$$p_1(q-q')+1 \le q_1q', pq_1 \le p_1q-1.$$

相乘得

$$q'(p_1q-1) \ge pp_1(q-p') + p.$$

于是

$$p_1 = p_1(pp' + qq' - pq) \ge p + q' > p.$$

此即 $x_2 - x_1 < x_1 - x_0$.

若 X 在 P_2P_3 下方, 设 $P_3(p+p_2,q+q_2)$, 于是

$$\frac{q}{p} < \frac{q_2}{p_2} < \frac{p'}{p - q'}.$$

于是

$$p_2q + 1 \le pq_2, q_2(p - 1') \le p_2p' - 1.$$

相乘得

$$p(p_2p'-1) \ge (p-q')(p_2q+1).$$

于是

$$p_2 = p_2(pp' + qq' - pq) \ge 2p - q' > p.$$

此即 $x_2 - x_1 < x_3 - x_2$.

引理的叙述对 $P_i, P_{i+1}, P_{i+2}, P_{i+3}$ 都成立, 反复使用即可得到结论.

证法 2, 杨文颜. 类似地我们也要证明证法 1 中的引理, 然而为了证明之我们先来证明一个引理.

我们构作平行四边形 P_1QP_2Q' , 由题设平行四边形 P_1QP_2Q' 内仅有 P_1, P_2 为整点.

引理 1. 称坐标为整数或半整数的点为半整点. 若 $x_2 - x_1 > 1$ 且 $y_2 - y_1 > 1$,则平行四边形 P_1QP_2Q' 内仅有 P_1, P_2 为半整点.

引理 1 证明. 仅对 P 的横纵坐标均为半整数的情形证明, 其余两种情形类似.

若不然, 不妨设平行四边形 P_1QP_2Q' 包含如图所示的 G, P, T 三个整点.(包含横向的三个半整点同理会与 $y_2-y_1>1$ 矛盾)

由于 P_0P_1 斜率为正, 且平行四边形 P_1QP_2Q' 不能包含 Z_1 作为整点除非 $Z_1 = P_1$ 但这与 $x_2 - x_1 > 1$ 矛盾. 故 P_1 一定位于 GZ_1 这条线下方, 故我 们可以看出 GZ_1 和 TZ_2 这一条平行带状区域内只有 $Z_2 = P_1$ 是可能的, 但这与 $x_2 - x_1 > 1$ 矛盾. 又由于平行四边形 P_1QP_2Q' 不能包含 Z_2 作为整点, 故 P_1 一定位于 GZ_2 这条线的下方. 重复上述过程, P_1 无论选取在何处总会得到矛盾.

我们回到主要引理!的证明.

 $x_2 - x_1 = 1$ 或 $y_2 - y_1 = 1$ 时引理显然成立. 下设 $x_2 - x_1 > 1, y_2 - y_1 > 1$. 由引理 1, 平行四边形 P_1QP_2Q' 内仅有 P_1, P, P_2 为半整点. 由 Minkowski 定理可知 $S_{P_1QP_2Q'} \leq 1$. 记 Q(x,y) 可以得到

$$S_{P_1QP_2Q'} = -(y - y_1)(x_2 - x) + (y_2 - y)(x - x_1) \le 1.$$

即

$$\frac{y_2 - y}{x_2 - x} - \frac{y - y_1}{x - x_1} \le \frac{1}{(x_2 - x)(x - x_1)} \le \frac{4}{(x_2 - x_1)^2}.$$

记 $p_1 = y_1 - y_0, q_1 = x_1 - x_0, p_2 = y_3 - y_2, q_2 = x_3 - x_2, p = y_2 - y_1, q = x_2 - x_1.$ 于是我们得到

$$LHS = \frac{p_1q_2 - p_2q_1}{q_1q_2} \le \frac{4}{q^2} = RHS.$$

¹指证法1中的引理.

若 $p_1q_2 - p_2q_1 \ge 4$, 则 $q_1q_2 \ge q^2$, 故 $\max\{q_1, q_2\} \ge q$. 现在只需考虑 $p_1q_2 - p_2q_1 = 1, 2, 3$ 的情形.

引理 **2.** 若 $p_1q_2 - p_2q_1 = n$, 则 $nq \ge q_1 + q_2$.

引理 2 证明. 此时 $\frac{p_1}{q_1} < \frac{p}{q} < \frac{p_2}{q_2}$,故 $p_1qq_2 < pq_1q_2 < p_2q_1q$,而 $pq_1q_2 - p_1qq_2 = (pq_1 - p_1q)q_2 \ge q_2, p_2q_1q - pq_1q_2 = (p_2q - pq_2)q_1 \ge q_1$,而 $p_2q_1q - pq_1q_2 = q(p_2q_1 - p_1q_2) = n$,即得.

设 $p_1q_2 - p_2q_1 = 1$, 由引理 2 与上述结果 $q \ge q_1 + q_2$, 而 $q_1q_2 \ge \frac{1}{4}q^2$, 故 $4q_1q_2 \ge (q_1 + q_2)^2$ 即 $(q_1 - q_2)^2 \le 0$, 矛盾!

设 $p_1q_2 - p_2q_1 = 2$, 由引理 2 与上述结果 $2q \ge q_1 + q_2$, 而 $q_1q_2 \ge \frac{1}{2}q^2$, 故 $8q_1q_2 \ge (q_1 + q_2)^2$, 矛盾!

设 $p_1q_2 - p_2q_1 = 3$, 由引理 2 与上述结果 $3q \ge q_1 + q_2$, 而 $q_1q_2 \ge \frac{3}{4}q^2$, 故 $12q_1q_2 \ge (q_1 + q_2)^2$, 矛盾!

故引理成立.

5. 证明: 对 $n \in \mathbb{N}^*$,

$$\begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & 1 & \frac{1}{2} & \cdots & \frac{1}{n-1} \\ \frac{1}{3} & \frac{1}{2} & 1 & \cdots & \frac{1}{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n-1} & \frac{1}{n-2} & \cdots & 1 \end{vmatrix} > 0.$$

供题人: 邓博文

证明. 命题等价于

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{1 + |i - j|} x_i x_j$$

为正定二次型,也即

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{a_i a_j}{1 + |i - j|} \ge 0,$$

等号成立当且仅当 $a_1 = a_2 = \cdots = a_n = 0$.

断言 1.

$$\sum_{k \in \mathbb{Z}} e^{ikx} r^{|k|} = \frac{1 - r^2}{1 - 2r \cos x + r^2} . (r < 1)$$

断言1证明.

$$LHS = -1 + \sum_{k=0}^{+\infty} e^{ikx} r^k + \sum_{k=0}^{+\infty} e^{-ikx} r^k$$
$$= -1 + \frac{1}{1 - re^{ix}} + \frac{1}{1 - re^{-ix}}$$
$$= RHS.$$

断言 2.

$$\sum_{k \in \mathbb{Z}} \frac{1}{1+|k|} e^{ikx} = \int_0^1 \frac{1-r^2}{1-2r\cos x + r^2} dr > 0.$$

断言 2 的证明.

$$LHS = \sum_{k \in \mathbb{Z}} \int_0^1 r^{|k|} \mathrm{d}r \cdot \mathrm{e}^{ikx}$$

$$= \int_0^1 \sum_{k \in \mathbb{Z}} r^{|k|} \mathrm{e}^{ikx} \mathrm{d}r$$

$$= \int_0^1 \sum_{k \in \mathbb{Z}} \mathrm{e}^{ikx} r^{|k|} \mathrm{d}r$$

$$= \int_0^1 \frac{1 - r^2}{1 - 2r \cos x + r^2} \mathrm{d}r$$
 > 0 . 断言 3. 对 $k \in \mathbb{Z}_{\neq 0}$,

$$\int_{0}^{2\pi} e^{ikx} dx = 0.$$

此断言平凡地成立.

从而结合断言 3,

$$\int_{0}^{2\pi} \left(\sum_{k \in \mathbb{Z}} \frac{1}{1+|k|} e^{ikx} \right) \left| \sum_{k=1}^{n} a_{k} e^{ikx} \right|^{2} dx$$

$$= \int_{0}^{2\pi} \left(\sum_{k \in \mathbb{Z}} \frac{1}{1+|k|} e^{ikx} \right) \left(\sum_{k=1}^{n} a_{k} e^{ikx} \right) \left(\sum_{k=1}^{n} a_{k} e^{-ikx} \right) dx$$

$$= \int_{0}^{2\pi} \left(\sum_{k \in \mathbb{Z}} \frac{1}{1+|k|} e^{ikx} \right) \left(\sum_{1 \le s,t \le n} a_{s} a_{t} e^{i(s-t)x} \right) dx$$

$$= \int_{0}^{2\pi} \sum_{1 \le s,t \le n} a_{s} a_{t} e^{i(t-s)x} \frac{1}{1+|s-t|} e^{i(s-t)} dx$$

$$= 2\pi \sum_{1 \le s,t \le n} \frac{a_{s} a_{t}}{1+|s-t|},$$

则由断言 2,

$$\sum_{1 \le i, j \le n} \frac{a_i a_j}{1 + |i - j|} = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k \in \mathbb{Z}} \frac{1}{1 + |k|} e^{ikx} \right) \left| \sum_{k=1}^n a_k e^{ikx} \right|^2 dx \ge 0.$$

$$\mathbb{R} \not\cong \mathbb{N}, \, \forall x \in (0, 2\pi),$$

$$\sum_{k=1}^{n} a_k e^{ikx} = 0.$$

故对任意 $x_1, x_2, \cdots, x_n \in (0, 2\pi)$, 有

$$\begin{cases} e^{ix_1}a_1 + e^{2ix_1}a_2 + \dots + e^{nix_1}a_n = 0, \\ e^{ix_2}a_1 + e^{2ix_2}a_2 + \dots + e^{nix_2}a_n = 0, \\ \dots \\ e^{ix_n}a_1 + e^{2ix_n}a_2 + \dots + e^{nix_n}a_n = 0, \end{cases}$$

系数行列式

$$\begin{vmatrix} e^{ix_1} & e^{2ix_1} & \cdots & e^{nix_1} \\ \vdots & \vdots & & \vdots \\ e^{ix_n} & e^{2ix_n} & \cdots & e^{nix_n} \end{vmatrix} = \prod_{j=1}^n e^{ix_j} \prod_{1 \leq s < t \leq n} (e^{ix_t} - e^{ix_s}),$$
取定一组 (x_1, \cdots, x_n) , 使得 $\prod_{1 \leq s < t \leq n} (e^{ix_t} - e^{ix_s}) \neq 0$, 这表明 $a_1 = a_2 = \cdots = a_n = 0$. 进而, 原命题成立.

- 6. 设 $A \subset \mathcal{P}(X)$ 是一个代数, A_{σ} 是 A 中集合的可数并的全体, $A_{\sigma\delta}$ 是 A_{σ} 中集合的可 数交的全体. 设 μ 是 \mathcal{A} 上的一个预测度, $\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu(E_i) : E_i \in \mathcal{A}, E \subset \bigcup_{i=1}^{\infty} E_i \right\}$ 是 μ 诱导的外测度, 证明:
 - (1) 对于任意 $E \in X$ 以及 $\epsilon > 0$, 存在 $A \in \mathcal{A}_{\sigma}$ 满足 $E \subset A$ 且 $\mu^{\star}(A) \leq \mu^{\star}(E) + \epsilon$.
 - (2) 如果 $\mu^*(E) < \infty$, 则 $E \in \mu^*$ -可测的当且仅当存在 $B \in \mathcal{A}_{\sigma\delta}$ 满足 $E \subset B$ 且 $\mu^{\star}(B \setminus E) = 0.$
 - (3) 设 (X, M, μ) 是一个测度空间, $\mu^*(E) = \inf\{\sum_{i=1}^{\infty} \mu(E_i) : E_i \in M, E \subset \bigcup_{i=1}^{\infty} E_i\}$ 是 μ 诱导的外测度, M^* 是 μ^* -可测集全体, $\hat{\mu} = \mu^*|_{M^*}$. 证明: $\hat{\mu}$ 是 μ 的完备化的 饱和化.

- 证明. (1) 根据 μ^* 定义知, $\forall \epsilon > 0$, $\exists E_i \in \mathcal{A}$, 使得 $E \subset \bigcup_{i=1}^{\infty} E_i$ 且 $\sum_{i=1}^{\infty} \mu(E_i) \leq \mu^*(E) + \epsilon$, 令 $A = \bigcup_{i=1}^{\infty} E_i$, 则 $A \in \mathcal{A}_{\sigma}$ 满足 $E \subset A$, $\mu^*(A) = \mu^*(\sum_{i=1}^{\infty} E_i) \leq \mu^*(E)$ $\sum_{i=1}^{\infty} \mu^{\star}(E_i) \le \mu^{\star}(E) + \epsilon.$
 - (2) (⇒): 根据 (1), 存在 $A_n \in A$, 满足 $E \subset A_n \perp \mu^*(A_n) \leq \mu^*(E) + \frac{1}{n}$. 因为 E是 μ^* - 可测的, $\mu^*(A_n) = \mu^*(A_n \cap E) + \mu^*(A_n \cap E^c) = \mu^*(E) + \mu^*(A_n \setminus E)$. 因为 $\mu^*(E) < \infty$, 两边同时减去 $\mu^*(E)$ 得到 $\mu^*(A_n \setminus E) = \mu^*(A_n) - \mu^*(E)$. 令 $B = \bigcap_{n=1}^{\infty} A_n$, 则 $E \subset B$, $0 \le \mu^*(B \setminus E) \le \mu^*(A_n \setminus E) = \mu^*(A_n) - \mu^*(E) \le \frac{1}{n}$,

(\iff): 根据定义, 我们只要证明对于任意的 $A \subset X$, $\mu^*(A) \geqslant \mu^*(A \cap E) +$ $\mu^*(A \cap E^c)$. 由 Carathéodory 定理知 B 是 μ^* 可测的, 因此 $\mu^*(A) = \mu^*(A \cap E^c)$ $B) + \mu^*(A \cap B^c)$. 所以我们只需证明 $\mu^*(A \cap B) + \mu^*(A \cap B^c) \geqslant \mu^*(A \cap E) + \mu^*(A \cap E^c)$. 因为 $A \cap B \supset A \cap E$, 因此 $\mu^*(A \cap B) \geqslant \mu^*(A \cap E)$. 由于 $\mu^*(A \cap E) \leq \mu^*(E) < \infty$, 因此我们只需证明 $\mu^*(A \cap B^c) \geqslant \mu^*(A \cap E^c)$. 根据条件 知 $\mu^*(B \cap E^c) = \mu^*(B \setminus E) = 0$. 注意到 $A \cap E^c \subseteq (A \cap B^c) \cup (B \cap E^c)$, 因此 $\mu^*(A \cap B^c) = \mu^*(A \cap B^c) + \mu^*(B \cap E^c) \geqslant \mu^*(A \cap E^c)$.

(3) 我们记 M 的完备化为 \overline{M} , M 的饱和化为 \widehat{M} . 我们先证明以下三个引理

引理 1. 如果 $E \in M^*$ 且 $\mu^*(E) < \infty$, 则 $E \in \overline{M}$.

引理 1 证明. 因为 $E \in M^*$, 所以 E 和 E^c 都是 μ^* — 可测的. 根据 (2), 存在 B_1 、 $B_2 \in M$, 使得 $E \subset B_1$, $\mu^*(B_1 \setminus E) = 0$, $E^c \subset B_2$, $\mu^*(B_2 \setminus E) = 0$. 因此 $E = B_2^c \cup (E \setminus B_2^c)$, $B_2^c \in M$, $E \setminus B_1^c \subset B_1 \setminus B_1^c = B_1 \cap B_2$, 由完备化的定义知我们只需证明 $\mu^*(B_1 \cap B_2) = 0$. 由于 $B_1 \cap B_2 \subset (B_1 \cap E^c) \cup (B_2 \cap E)$, 因此 $0 \le \mu^*(B_1 \cap B_2) \le \mu^*(B_1 \cap E^c) + \mu^*(B_2 \cap E) = 0$, 这就推出 $\mu^*(B_1 \cap B_2) = 0$.

引理 2. $\forall E \subset X$, $\exists B \in M$, 满足 $E \subset B$ 且 $\mu^*(B) = \mu^*(E)$.

引理 2 证明. 根据 (1), 存在 $A_n \in M$, 满足 $E \subset A_n$ 且 $\mu^*(A_n) \le \mu^*(E) + \frac{1}{n}$. 令 $B = \bigcap_{n=1}^{\infty} A_n$, 则 $E \subset B$ 且 $\mu^*(E) \le \mu^*(B) \le \mu^*(E) + \frac{1}{n}$, 令 $n \to \infty$, 即得 $\mu^*(B) = \mu^*(E)$.

引理 3. 如果 $A \in \overline{M}$, 则 $A \in M^*$ 且 $\mu^*(A) = \overline{\mu}(A)$.

引理 3 证明. 根据完备化的定义, 设 $A = E \cup F$, 其中 $E \in M$, $F \subset N$, $\mu(N) = 0$. 因此 $\mu^*(F) \leq \mu^*(N) = \mu(N) = 0 \Longrightarrow \mu^*(F) = 0. \forall P \subset X$, $\mu^*(P \cap F) \leq \mu^*(F) = 0$, 因此 $\mu^*(P) \geqslant \mu^*(P \cap F^c) = \mu^*(P \cap F^c) + \mu^*(P \cap F)$, 所以 $F \not\in \mu^*$ 可测的. 因为 $E \in M \subset M^*$, 所以 $E \not\in \mu^*$ 可测的 $\Longrightarrow A = E \cup F \not\in \mu^*$ 可测的, 即 $A \in M^*$. 根据定义, $\overline{\mu}(A) = \mu(E) = \mu^*(E)$. 而 $\mu^*(E) \leq \mu^*(A) = \mu^*(E \cup F) \leq \mu^*(E) + \mu^*(F) = \mu^*(E)$, 因此 $\mu^*(A) = \mu^*(E) = \overline{\mu}(A)$.

 $E \in \overline{M}$, 由饱和测度定义知 $\widetilde{\mu}(E) = \overline{\mu}(E) = \mu^*(E)$; 若 $E \notin \overline{M}$, 则由引理 1 知 $\mu^*(E) = \infty$, 由饱和测度定义知 $\widetilde{\mu}(E) = \infty = \mu^*(E)$.

7. 设 A(t), B(t) 和 C(t) 是三个实值连续可微函数, 满足方程组:

$$\begin{cases} A' = 4 \frac{(B-C)^2 - A^2}{BC} \\ B' = 4 \frac{(A-C)^2 - B^2}{AC} \\ C' = 4 \frac{(A-B)^2 - C^2}{AB}. \end{cases}$$

在给定初值条件 $A(0) = A_0 > 0$, $B(0) = B_0 > 0$, $C(0) = C_0 > 0$ 的情况下, 求证:

- (1) 该方程组的解的右行最大存在区间有限.
- (2) 设这个最大的右行区间为 [0,T), 则 $\lim_{t\to T} A(t) = \lim_{t\to T} B(t) = \lim_{t\to T} C(t) = 0$, 且 $\lim_{t\to T} \frac{A(t)}{B(t)} = \lim_{t\to T} \frac{B(t)}{C(t)} = 1$.

供题人: 计科羽

证明. 由对称性, 我们可以假设初值的大小关系 $A_0 \leq B_0 \leq C_0$, 然后证明 $A(t) \leq B(t) \leq C(t)$ 对任意 $t \in [0,T)$ 成立:

$$(b) \le C(b) \text{ ATIME } t \in [0, T) \text{ MAL}.$$

$$(B-A)' = 4\frac{(C-A)^2B - B^3 - (B-C)^2A + A^3}{ABC} = 4(B-A)\frac{C^2 - (A+B)^2}{ABC}.$$

由于 $\frac{C^2-(A+B)^2}{ABC}$ 为 [0,T) 光滑函数,且 $B_0-A_0\geq 0$,可知 $B(t)-A(t)\geq 0$ 对 $\forall t\in [0,T)$ 成立,同理 $C(t)\geq B(t)$ 对 $\forall t\in [0,T)$ 成立.

现在做(1),为此研究C的变化:

$$C' = -8 + \frac{4(A^2 + B^2 - C^2)}{AB} \le -8 + \frac{4A}{B} \le -4.$$

这表明 $T < +\infty$, 否则 C 会在有限时间内变为 0, 这是不允许的.

下面对 C 的上界进行控制, 为此, 计算:

$$\left(\frac{C-A}{A}\right)' = \frac{C'A - A'C}{A^2} = 8\left(\frac{C-A}{A}\right)\left(\frac{B-A-C}{AB}\right) \le 0.$$

于是 $\frac{C-A}{A} \leq \frac{C_0-A_0}{A_0}$, 由此可得 $C(t) \leq \lambda A(t), \forall t \in [0,T)$, 这表明

$$\lim_{t \to T^{-}} A(t) = \lim_{t \to T^{-}} B(t) = \lim_{t \to T^{-}} C(t) = 0.$$

最后来证 (2), 为此只需要证 $\lim_{t\to T^-} \frac{C(t)-A(t)}{A(t)}=0$. 假设不然, 则

$$\left| \int_0^T \frac{\mathrm{d}}{\mathrm{d}t} \left[\log \left(\frac{C - A}{A} \right) \right] \mathrm{d}t \right| < +\infty.$$

根据前面的计算,这表明

$$\left| \int_0^T \frac{B - A - C}{AB} dt \right| < +\infty.$$

由于 $-\frac{C}{AB} \leq \frac{B-A-C}{AB} \leq -\frac{1}{B}$, 可知 $\frac{B-A-C}{AB} \sim -\frac{1}{A}(t \to T^-)$, 于是只需研究 A^{-1} 作为

[0, T] 上瑕积分的敛散性.

$$A' = -8 + 4\frac{B^2 + C^2 - A^2}{BC} \ge -8 + 4\frac{C}{B} \ge -4 \lim_{t \to T^-} A(t) = 0.$$

得到 $A(t) \le 4(T-t)$, 故 $A^{-1} \ge \frac{1}{4(T-t)}$, 它在 [0,T] 上的积分发散! 这样便得到矛盾. 由此

$$\lim_{t\to T^-}\frac{C(t)}{A(t)}=1\Rightarrow \lim_{t\to T^-}\frac{B(t)}{C(t)}=\lim_{t\to T^-}\frac{A(t)}{B(t)}=1.$$

评论. 此题背景是 Ricci 流理论中的 Isenberg-Jackson 定理, 其具体研究了在对称性充分好的 \mathbb{S}^3 上, 给定初始度量后相应 Ricci 流的解的性态. 为此, 视 $\mathbb{S}^3 = SU(2)$ 为李群并考虑其李代数生成元

$$x_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, x_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, x_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

之后取 $\{x_1, x_2, x_3\}$ 的对偶左不变 1-形式 $\{\sigma^1, \sigma^2, \sigma^3\}$. 则 \mathbb{S}^3 上的度量可以表示为

$$g = A\sigma^1 \otimes \sigma^1 + B\sigma^2 \otimes \sigma^2 + C\sigma^3 \otimes \sigma^3.$$

将其代入 Ricci 流方程 $\frac{\partial g(t)}{\partial t} = -2 \text{Ric}(g(t))$ 中就可计算得到题目中的方程.

在该题目结论的基础上,还可进一步得到

$$\lim_{t \to T^{-}} \frac{A(t)}{4(T-t)} = \lim_{t \to T^{-}} \frac{B(t)}{4(T-t)} = \lim_{t \to T^{-}} \frac{C(t)}{4(T-t)} = 1.$$

这表明度量 $\frac{1}{4(T-t)}g(t)$ 在 $t\to T^-$ 时收敛于 \mathbb{S}^3 上标准度量, 这就是 Ricci 流研究中常用的爆破技巧.

8. A 是一个戴德金整环, K 为其分式域, L|K 为一个可分扩张, N 为 L 的伽罗瓦闭包, \mathfrak{p} 为 A 的素理想, 证明: \mathfrak{p} 在 L 上完全分裂当且仅当 \mathfrak{p} 在 N 上完全分裂.

供题人: 励随之

证明. 记 A 在 L 中的整闭包为 B, 在 N 中的整闭包为 C, 熟知 B, C 都是戴德金整环、考察 \mathfrak{p} 在其中的分解情况

$$\mathfrak{p} = \prod_{i=1}^n \mathfrak{p}_{\mathfrak{i}} = \prod_{i=1}^n \prod_{j=1}^{m_i} \mathfrak{q}_{\mathfrak{i},\mathfrak{j}}.$$

其中 \mathfrak{p}_i 是 B 的素理想, $\mathfrak{q}_{i,j}$ 是 C 的素理想, $\mathfrak{p}_i = \prod_{i=1}^{m_i} \mathfrak{q}_{i,j}$.

假设 \mathfrak{p} 在 N 上完全分裂, 则 $\mathfrak{q}_{i,j}$ 两两不同, $[C/\mathfrak{q}_{i,j}:A/\mathfrak{p}]=1$. 由于理想的唯一分解性,这当然给出 \mathfrak{p}_i 是 B 中互不相同的素理想,并且 B/\mathfrak{p}_i 作为 $C/\mathfrak{q}_{i,j}$ 的子域,自然有 \mathfrak{p}_i 在 \mathfrak{p} 上惯性度数为 1, 即 \mathfrak{p} 在 L 上完全分裂.

反之设 \mathfrak{p} 在 L 上完全分裂. 记 $G = \operatorname{Gal}(N|K), H = \operatorname{Gal}(N|L), P_{\mathfrak{p}}$ 为所有在 \mathfrak{p} 上 的 B 的素理想构成的集合, \mathfrak{P} 为某个在 \mathfrak{p} 上的 C 中素理想, $G_{\mathfrak{P}} = \{\sigma \in G | \sigma \mathfrak{P} = \mathfrak{P}\}, H \setminus G/G_{\mathfrak{P}}$ 为 G 关于 H 和 $G_{\mathfrak{P}}$ 的双陪集, 熟知如下双射:

$$H\backslash G/G_{\mathfrak{P}}\to P_{\mathfrak{p}}:H\sigma G_{\mathfrak{P}}\to\sigma \mathfrak{P}\cap L.$$

 \mathfrak{p} 在 L 中完全分裂即 $|P_{\mathfrak{p}}|=[L:K]=[G:H]$,即双陪集的个数与 H 的右陪集个数一致,而双陪集为有限个右陪集的不交并,因此有 $H\sigma G_{\mathfrak{p}}=H\sigma, \forall \sigma\in G$,这就给出 $G_{\mathfrak{p}}$ 的所有共轭都在 H 中,记 $G_{\mathfrak{p}}$ 生成的正规子群为 $N(G_{\mathfrak{p}})$,那么 $N(G_{\mathfrak{p}})\leq H$,根据伽罗瓦对应,其对应于比 L 大的 K 的某个正规扩张,由于 N 是正规闭包,因此就是 N,这说明 $N(G_{\mathfrak{p}})=1$,给出 $G_{\mathfrak{p}}=1$,而在 \mathfrak{p} 上的 C 中不同的素理想和 $G/G_{\mathfrak{p}}$ 一一对应,因此在 C 中共有 |Gal(N|K)|=|N:K| 个素理想在 \mathfrak{p} 上,根据基本等式即知 \mathfrak{p} 在 N 上完全分裂.

- 9. 我们将构造两个含幺交换环 R, S, 使得 R, S 不同构, 但多项式环 R[T] 与 S[T] 同构.
 - (a) 前置: 对称代数 (Symmetric Algebra)
 - i. 定义: 设 A 为含幺交换环, M 为 A— 模,S(M) 是一个 A— 代数, 使得对所有 A— 代数 D, 以及 A— 模同态 M \to D, 存在唯一 A 代数同态 S(M) \to D 使得以下图表交换.

以下证明几个对称代数的简单性质:

- ii. S(M) 具有唯一性.
- iii. 对自由模 $M = \bigoplus_{i=1}^n AX_i, S(M) = A[X_1, \dots, X_n];$ 对 $M = \bigoplus_{i=1}^n AX_i/(Ay_1 + \dots + Ay_m), S(M) = A[X_1, \dots, X_n]/(y_1 + \dots + y_m).$
- iv. $S(M \oplus N) = S(M) \otimes_A S(N)$.
- - i. 令

$$\phi: A^3 \to A$$

$$(a, b, c) \longmapsto ax + by = cz$$

令 $E = \ker \phi$, 则 $A^3 \stackrel{\sim}{\to} E \oplus A$ (提示: 用分裂引理 (splitting lemma)).

- ii. 证明 $S(E)[T] \stackrel{\sim}{\to} A[P,Q,T]$, 其中 P,Q,T 为多项式环的变元.
- iii. 证明 S(E) = A[U, V, W]/(xU + yV + zW).
- iv. 证明 S(E) 与 A[P,Q] 不同构.

供题人: 孙之棋

证明. (a) ii: 泛性质具有唯一性.

iii: 略

iv: 由交换图知.

(b) i.

$$0 \longrightarrow E \longrightarrow A^3 \xrightarrow{\phi} A \longrightarrow 0$$

$$a(x,y,z) \longleftarrow a$$

- ii. $S(E)[T]=S(E) \otimes_A A[T]=S(E \oplus A)=S(A^3) = A[P, Q, T].$
- iii. 🗎 (a).iii.
- iv. 若 φ : $A[P,Q] \to S(E)$ 为同构. A[P,Q] 与 S(E) 中的可逆元均只有 \mathbb{R} , 故 $\varphi(\mathbb{R}) = \mathbb{R}$. 并且 $\mathrm{Aut}(\mathbb{R}) = \{\mathrm{Id}\}$. 故该映射保持 R . 容易验证 A[P,Q],A[U,V,W]/(xU+yV+zW) 中方程 $X^2+Y^2+Z^2=1$ 的解均在 A 中,故 $\varphi(A)=A$. 复合上 A 的自同构,不妨设 φ 保持 A 中所有元素. 设 $c=\varphi(P),c'=\varphi(Q)$. 设 $c=c_0+c_1+\ldots,c'=c'_0+c'_1+\ldots$ 其中 c_i,c'_i 均为 i 次齐次式. 注意到 $Ac_1+Ac'_1=(AU+AV+AW)/(xU+yV+zW)=E$. 但容易证明 E 不可被两个元素生成,由此得出矛盾.