

Complexidade de Algoritmos

Huffman

- **▼** Denilson Grosa
- ▼ Fernando Kaway
- Helder Cesar

Algoritmo de Huffman?

- ▼ Compressão de dados;
- ▼ Técnicas estatísticas;
- Conceitos básicos de Estrutura de Dados:
 - Lista com Prioridade;
 - ▼ Árvore Binária.

Algoritmo de Huffman?

- ▼ Algumas aplicações:
 - **¬** JPEG;
 - **■** MP3;
 - ▼ Zip.
- Variações:
 - Codificação n-ária de Huffman;
 - Codificação Adaptativa de Huffman;

JPEG

JPEG

■ Descompressão:

■ Vamos codificar a mensagem:

"CASA PAPEL HOTEL PASTEL"

▼ Tabela de frequências:

Letra	Frequencia
С	1
Α	4
S	2
Р	3
Е	3
L	3
Н	1
0	1
Т	2
Espaço	3

- ▼ Texto original: "CASA_PAPEL_HOTEL_PASTEL"
- Texto codificado:

23*4 = **92**bits

Letra	Código
С	0000
А	0001
S	0010
Р	0011
Е	0100
L	0101
Н	0110
0	0111
Т	1000
Espaço	1001

■ Lista com prioridade:

									Esp
1	4	2	3	3	3	1	1	2	3

■ Lista com prioridade ordenada:

С	Н	0	S	Т	Р	E	L	Esp	Α
1	1	1	2	2	3	3	3	3	4

■ Construção da árvore:

С	Н	0	S	Т	Р	E	L	Esp	Α
1	1	1	2	2	3	3	3	3	4

C+H	0	S	Т	Р	E	L	Esp	Α
2	1	2	2	3	3	3	3	4

■ Atribuição de código:

Letra	Código
С	0010
Α	111
S	1101
Р	010
Е	011
L	100
Н	0011
0	1100
Т	000
Esp.	101

- ▼ Comparando o "antes" e o "depois":
- ▼ Texto original: "CASA_PAPEL_HOTEL_PASTEL"
- ▼ Texto codificado (antes):

▼ Texto codificado (depois):

Tam. Total: 92bits

Tam. Total: 74bits!!!!

Taxa de Compressão ~ 20%

Decodificação

■ Texto codificado:
"001011111011111
010101110100111
001010011110000
0011100101011
111010000111100"

Letra	Código
С	0010
Α	111
S	1101
Р	010
Е	011
L	100
Н	0011
0	1100
Т	000
Esp.	101

Fontes Consultadas

- Goodrich, M. T.; Tamassia, R.; **Projeto de Algoritmos**, Bookman, 2002;
- Huffman, D. A.; Method for the Construction of Minimum-Redundancy Codes, In: Proceedings of the Institute of Radio Engineers, Vol. 40, Nr. 9 (September 1952), p. 1098-1101.
- http://www.cprogramming.com/tutorial/computersciencetheory/huffman.html
- http://algs4.cs.princeton.edu/55compression/Huffman.java.html
- http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html
- http://en.wikipedia.org/wiki/Huffman_coding

