Asymptotic Notations

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_{0}, such that \forall n \geq n_{0}, we have 0 \leq f(n) \leq cg(n) }
```

Intuitively: Set of all functions whose *rate of* growth is the same as or lower than that of g(n).

g(n) is an asymptotic upper bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$

 $\Theta(g(n)) \subset O(g(n)).$

```
O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq f(n) \leq cg(n) \}
```

- Any linear function an + b is in $O(n^2)$. How?
- Show that $3n^3=O(n^4)$ for appropriate c and n_0 .

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

$$\Omega(g(n)) = \{f(n) :$$
 $\exists \text{ positive constants } c \text{ and } n_{0,} \text{ such that } \forall n \geq n_{0},$
we have $0 \leq cg(n) \leq f(n)\}$

Intuitively: Set of all functions whose *rate of* growth is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n)).$

```
\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}
```

• $\sqrt{n} = \Omega(\lg n)$. Choose *c* and n_0 .

Θ-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0}, \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

Intuitively: Set of all functions that have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n).

 $c_2g(n)$

Θ-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

```
\Theta(g(n)) = \{f(n): \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,} \text{ such that } \forall n \geq n_0,  we have 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) }
```

Technically, $f(n) \in \Theta(g(n))$. Older usage, $f(n) = \Theta(g(n))$. I'll accept either...

f(n) and g(n) are nonnegative, for large n.


```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \\ 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

- $10n^2 3n = \Theta(n^2)$
- What constants for n_0 , c_1 , and c_2 will work?
- Make c_1 a little smaller than the leading coefficient, and c_2 a little bigger.
- To compare orders of growth, look at the leading term.
- Exercise: Prove that $n^2/2-3n = \Theta(n^2)$

```
\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \geq n_0, \\ 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}
```

- Is $3n^3 \in \Theta(n^4)$??
- How about $2^{2n} \in \Theta(2^n)$??

Relations Between Θ , O, Ω

Relations Between Θ , Ω , O

```
Theorem: For any two functions g(n) and f(n), f(n) = \Theta(g(n)) iff f(n) = O(g(n)) and f(n) = \Omega(g(n)).
```

- I.e., $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time \Rightarrow O(f(n)) bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time \Rightarrow $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Longrightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
 - Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

- Insertion sort takes $\Theta(n^2)$ in the worst case, so sorting (as a problem) is $O(n^2)$. Why?
- Any sort algorithm must look at each item, so sorting is $\Omega(n)$.
- In fact, using (e.g.) merge sort, sorting is $\Theta(n \lg n)$ in the worst case.
 - Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.