Fiche révisions : Les complexes

<u>Écritures</u>		<u>Conjugué</u>	$\overline{z} + z = 2\operatorname{Re}(z)$
z = a + ib	$z = z e^{i \cdot \arg(z)} = \rho e^{i\theta}$	$\overline{a+ib} = a-ib$	$z - \overline{z} = 2i \operatorname{Im}(z)$
$z = z (\cos\theta + i\sin\theta)$		$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$	$z = -\overline{z} \Leftrightarrow z \in i\mathbb{R}$
<u>Module</u>	$ z = \sqrt{a^2 + b^2}$	$\overline{z+z'} = \overline{z} + \overline{z'}$	$\overline{-z} = -\overline{z}$
$z\overline{z} = z ^2$	zz' = z z'	$\overline{zz'} = \overline{z} \times \overline{z'}$	$\overline{\left(\frac{1}{z}\right)} = \frac{1}{\overline{z}}$
<u>Inégalités triangulaires</u>		<u>Exponentielle</u>	$e^{i\theta} = \cos\theta + i\sin\theta$
$ z+z' \le z + z' $	$\left \left z \right - \left z' \right \right \le \left z + z' \right $	$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$	$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$
Formule de Moivre	Angles moitiés	<u>Valeurs utiles</u>	
$\left(e^{i\theta}\right)^n = e^{i\theta n}, n \in \mathbb{Z}$	$e^{ix} + 1 = 2e^{i\frac{x}{2}}\cos\frac{x}{2}$	$e^{i\pi} + 1 = 0$	$e^{\frac{i\pi}{2}} = i$
<u>Second degré</u>		Groupe unitaire	<u>Argument</u>
Si $\Delta < 0$, alors $x = \frac{-b \pm i\sqrt{-\Delta}}{2a}$		$\mathbb{U} = \{z \in \mathbb{C} : z = 1\}$	$arg(z e^{i\theta}) = \theta$
Racines n ^{ièmes} de l'unité		$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}$	$z = z' \Leftrightarrow \theta = \theta'[2\pi]$
$\omega^n = 1$	$1 + \omega + \dots + \omega^{n-1} = 0$	$\sin\theta = \frac{b}{\sqrt{a^2 + b^2}}$	$\tan\theta = \frac{b}{a} \text{ si } a \neq 0$