SCNet:

Automatic Multi-Channel Genome Network Inference from Single-Cell RNA Sequences

Shiyin Wang (wangshiy16@mails.tsinghua.edu.cn)

December 23, 2019

Outline

- 1 Introduction
 - Single-Cell RNA Sequencing
 - Mathematics Preliminaries
- 2 Methods
 - Probabilistic models
 - Optimization
- 3 Results
- 4 Future Work
- 5 Q & A

Introduction

O

O

What is single-cell RNA sequencing?

Tsunemoto, Rachel, et al. "Diverse reprogramming codes for neuronal identity." Nature 557.7705 (2018): 375.

Results 0

Datasets

Introduction

oo

oo

00 ●0 Mathematics Preliminaries

Introduction

Bayesian Methods

Likelihood

How probable is the evidence given that our hypothesis is true?

Prior

How probable was our hypothesis before observing the evidence?

$$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses? $P(e) = \sum P(e \mid H_i) P(H_i)$

Introduction

00

Markov Chain Monte Carlo

- \blacktriangleright Initialise $x^{(0)}$.
- ightharpoonup For i=0 to N-1
 - ightharpoonup Sample $u \sim U_{[0,1]}$.
 - Sample $x^* \sim q(x^*|x^{(i)})$.

else

$$x^{(i+1)} = x^{(i)}$$

Choose Log-Scale to Model Gene Expression

Bayesian Hierarchical Linear Model

X and Y are the expression profiles of two genes. The edge weights in the desired network correspond to the regression coefficient k in the equation.

$$log(Y+1) = klog(X+1) + \epsilon$$

$$k \sim N(\beta, \sigma)$$

$$\epsilon \sim N(0, \gamma^2)$$
(1)

This model estimates k from single-cell RNA sequencing records.

Methods

Define Transition Probability through Edge Weights

Once we have a weighted network, we can define the association probability between two nodes X and Y by a very trivial model.

$$Pr(X \to Y) = 1 - (1 - w_{X,Y}) \Pi_{a \in V} (1 - w_{X,a} w_{a,Y}) \Pi_{a \in V, b \in V} (1 - w_{X,a} w_{a,b} w_{b,Y})$$
(2)

For simplicity, I expanded the search for three steps. Walk length is flexible to choose.

Maximal Likelihood Optimization

Bayesian hierarchical linear model and transition probability explain the network dynamics from two different angles. Now we can combine them together to infer the edge weights of networks (V, E, W).

maximize
$$L(W;_k, \Sigma_k) = \sum_{v_1 \in V} \sum_{v_2 \in V} Pr_{N(k, \Sigma_k)}(w = Pr(v_1 \rightarrow v_2))$$

$$(3)$$

Add regulation term $\lambda |V|$ to restrain the number of edges in the network.

maximize
$$L(W;_k, \Sigma_k) = \sum_{v_1 \in V} \sum_{v_2 \in V} Pr_{N(k,\Sigma_k)}(w = Pr(v_1 \rightarrow v_2)) - \lambda |V|$$

$$\tag{4}$$

Data Preprocessing - Normalization

Methods

- Retained the top genes ordered by variance as in [Lopez et al., $2018]^{1}$
- 2 Normalize genes to standard Gaussian distribution N(0,1)

Reason for normalization to standard deviation: So that the regression coefficient in $Y = kX + \epsilon$ is $\hat{k} = \frac{cov(X,Y)}{var(X)} = cov(X,Y)$, which is exchangeable and bidirectional.

¹Lopez, R., Regier, J., Cole, M.B. et al. Deep generative modeling for single-cell transcriptomics. Nat Methods 15, 1053-1058 (2018) doi:10.1038/s41592-018-0229-2

Why use Poisson Distribution

Methods

Figure: This fraction changes rapidly when x is far away from λ , while not significant when x is close to λ . By adjusting parameter λ , we can guide the sparsity of the network.

Choose Log-Scale to Model Gene Expression

Figure: The convergence curves and results on the osmFISH dataset.

Possible Directions

- Theoretical analysis and case study to compare with other methods that derive networks from covariance matrix directly
- Integrate existing knowledge from protein-protein interaction networks (STRING, OmniPATH, ConsensusPath, etc) as priors
- Design better probability models
- Make interactive transition videos

Resources

■ 10x Genomics: Datasets providing single cell and spatial views of biological systems (https://www.10xgenomics.com)

Questions & Answers

