AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

1. (Currently amended): A compound of the formula

wherein the bond between carbon atoms 22 and 23 is a single or double bond;

- m is 0 or 1:
- R₁ is C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl; and either
- (A) R2 is -N(R3)R4, and
 - (1) X is O, wherein

 R_3 is hydrogen, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, aryl or heterocyclyl, and

 R_4 is mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted and or mono- to trisubstituted heterocyclyl, unsubstituted and or

mono- to pentasubstituted aryl, NH₂, NHC₁-C₁₂alkyl, N(C₁-C₁₂alkyl)₂, C₁-C₆alkyl-N(C₁-C₁₂alkyl)₂, -C₁-C₆alkyl-N⁺(C₁-C₁₂alkyl)₃, SO₂NH₂, SO₂NHC₆H₅, SO₂Phenyl, SO₂Benzyl, OH, -OC₁-C₁₂alkyl, -OC₁-C₁₂alkenyl or -OC₁-C₁₂alkynyl; or

(2) X is S, wherein

 $R_3 \ is \ hydrogen, \ unsubstituted \ or \ mono- \ to \ pentasubstituted \ C_1-C_{12} alkyl,$ unsubstituted or mono- \ to pentasubstituted \ C_2-C_{12} alkyl, \ unsubstituted \ or \ mono- \ to \ pentasubstituted \ C_2-C_{12} alkenyl, \ unsubstituted \ or \ mono- \ to \ pentasubstituted \ C_2-C_{12} alkynyl; \ aryl \ or \ heterocyclyl, \ and \ \ notation \ heterocyclyl, \ and \ notation \ heterocyclyl, \ and \ notation \ heterocyclyl, \ notation \

 R_4 is hydrogen, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkeyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkyl, unsubstituted and or mono- to trisubstituted heterocyclyl, unsubstituted and or mono- to pentasubstituted aryl, NH2, NHC1- C_{12} alkyl, N(C_1 - C_{12} alkyl)2, SO2NH2, SO2NH2, SO2NHC6H5, SO2Phenyl, SO2Benzyl, OH or -OC1- C_{12} alkyl; or

- (3) X is O or S, wherein R₃ and R₄ together are a three- to seven-membered alkylene or a four- to seven-membered alkenylene bridge, in which a CH₂ group may be replaced by O, S, C=O or NR₆; or
- (B) R_2 is OR_5 and X is O or S, wherein R_5 is C_4 - C_{42} alkyl, mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl;

in which the substituents of the alkyl-, alkenyl-, alkynyl-, alkylene-, alkenylene-, heterocyclyl-, aryl- and cycloalkyl-radicals mentioned under R_3 , R_4 and R_5 are selected from the group consisting of OH, halogen, halo- C_1 - C_2 alkyl, CN, SCN, NO₂, C_2 - C_6 alkynyl, C_3 - C_8 cycloalkyl which is unsubstituted or substituted by one to three methyl groups; norbornylenyl; C_3 - C_8 cycloalkenyl which is unsubstituted or substituted by one to three methyl groups; C_3 - C_8 chalocycloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkoxy, C_3 - C_8 cycloalkoxy,

C1-C12alkylthio, C3-C8cycloalkylthio, C1-C12haloalkylthio, C1-C12alkylsulfinyl, C3-C₈cycloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₁₂alkylsulfonyl, C2-C8cycloalkylsulfonyl, C1-C12haloalkylsulfonyl, C3-C8halocycloalkylsulfonyl, C2-C8alkenyl, C2-C8alkynyl, -N(R6)2, wherein the two R6 are independent of each other; -C(=O)R7, $-O-C(=O)R_8$, $-NHC(=O)R_7$, $-S-C(=S)R_8$, $-P(=O)(OC_1-C_6alkyl)_2$, $-S(=O)_2R_{11}$; $-NH-S(=O)_2R_{11}$, -OC(=O)-C₁-C₆alkyl-S(=O)₂R₁₁; aryl, benzyl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio, heterocyclylthio; and also aryl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio or heterocyclylthio which, depending on the possibilities of substitution on the ring, are may be mono- to pentasubstituted by substituents selected from the group consisting of OH, halogen, CN, NO2, C1-C12alkyl, C2-C8cycloalkyl, C1-C12haloalkyl, C1-C12alkoxy, C1-C12haloalkoxy, C1-C12alkylthio, C1-C12haloalkylthio, C1-C6alkoxy-C1-C6alkyl, dimethylamino-C₁-C₆alkoxy, C₂-C₈alkenyl, C₂-C₈alkynyl, phenoxy, phenyl-C₁-C₆alkyl, methylenedioxy, $-C(=O)R_7$, $-O-C(=O)-R_8$, $-NH-C(=O)R_8$, $-N(R_{10})_2$, wherein the two R_{10} are independent of each other; C₁-C₆alkylsulfinyl, C₂-C₈cycloalkylsulfinyl, C₁-C₆haloalkylsulfinyl, C3-C8halocycloalkylsulfinyl, C1-C6alkylsulfonyl, C3-C8cycloalkylsulfonyl, C1-C6haloalkylsulfonyl and C3-C8halocycloalkylsulfonyl;

 R_6 is H, C_1 - C_8 alkyl, hydroxy- C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, benzyl, -C(=O) R_7 , or -CH $_2$ -C(=O)- R_7 ;

 R_7 is H, OH, SH, -N(R₁₀)₂, wherein the two R₁₀ are independent of each other; C₁-C₂₄alkyl, C₂-C₁₂alkenyl, C₁-C₈hydroxyalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₁₂haloalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₁₂alkylhio, C₂-C₈alkenyloxy, C₂-C₈alkynyloxy, NH-C₁-C₆alkyl-C(=O)R₉, -N(C₁-C₆alkyl)-C₁-C₆alkyl-C(=O)-R₉, -O-C₁-C₂alkyl-C(=O)-R₉, -C₁-C₆alkyl-S(=O)₂R₉; aryl, benzyl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy; or aryl, benzyl, heterocyclyl, aryloxy, benzyloxy or heterocyclyloxy, which are unsubstituted or mono- to trisubstituted in the ring independently of one another by halogen, nitro, C₁-C₆alkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl or C₁-C₆haloalkoxy;

 R_8 is H, C_1 - C_2 -alkyl, C_1 - C_1 -haloalkyl, C_1 - C_1 -hydroxyalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, $N(R_{10})_2$, wherein the two R_{10} are independent of each other; - C_1 - C_6 alkyl-C(=O) R_{10} , - C_1 - C_6 alkyl-S(=O) R_{10} , - C_1 - C_6 alkyl-S(=O) R_{10} , aryl, benzyl, heterocyclyl; or aryl, benzyl or heterocyclyl

which, depending on the possibilities of substitution on the ring, are may be mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkyl, C₁-C₁₂haloalkylthio;

 $R_9 \text{ is H, OH, } C_1\text{-}C_2\text{-}alkyl \text{ which is optionally substituted with OH, or } -S(=O)_2\text{-}C_1\text{-}C_6\text{alkyl}; \\ C_1\text{-}C_{12}\text{alkenyl, } C_1\text{-}C_{12}\text{alkynyl, } C_1\text{-}C_1\text{-}alkoxy, } C_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkyl, } C_1\text{-}C_6\text{alkoxy-}C_1\text{-}C_6\text{alkoxy, } C_2\text{-}C_8\text{alkenyloxy, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or } -N(R_{10})_2, \text{ wherein the two } R_{10} \text{ are independent of each other;}$

 R_{10} is H, C_1 – C_6 alkyl, which is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 – C_6 alkoxy, hydroxy and cyano; C_1 – C_6 -cycloalkyl, aryl, benzyl, heterocyclyl; or aryl, benzyl or heterocyclyl, which, depending on the possibilities of substitution on the ring; may be are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 – C_{12} alkyl, C_1 – C_{12} haloalkyl, C_1 – C_{12} alkoxy, C_1 – C_{12} haloalkoxy, C_1 – C_{12} alkylthio and C_1 – C_{12} haloalkylthio;

or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each ease in free form or in a salt form thereof.

- (Original) A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- (Withdrawn) A method for controlling pests wherein a composition as defined in claim 2 is applied to the pests or their habitat.
- (Withdrawn) A process for preparing a composition as defined in claim 2 which contains at least one auxiliary, wherein the active compound is mixed intimately and/or ground with the auxiliary(s).

5. (Cancelled)

6. (Cancelled)

(Withdrawn) A method for protecting plant propagation material against damage by a
pest, wherein the propagation material or the location where the propagation material is planted
is treated with a composition as defined in claim 2.

 (Withdrawn) Plant propagation material treated in accordance with the method defined in claim 7.

(New) The compound of claim 1, wherein R₂ is -N(R₃)R₄, and X is O.

10. (New) The compound of claim 1, wherein R2 is -N(R3)R4, and X is S.

11. (New) The compound of claim 1, wherein R₂ is -N(R₃)R₄, and X is O or S, wherein R₃ and R₄ together are a three- to seven-membered alkylene or a four- to seven-membered alkenylene bridge, in which a CH₂ group may be replaced by O, S, C=O or NR₆.

12. (New) The compound of claim 1, wherein R2 is OR5 and X is O or S.

13. (New) The compound of claim 1, wherein:

R2 is -N(R3)R4,

X is O;

R₃ is hydrogen; and

 R_4 is mono- to pentasubstituted C_1 - C_{12} alkyl, or unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl.

14. (New) The compound of claim 1, wherein:

 R_2 is $-N(R_3)R_4$,

X is O:

R3 is hydrogen; and

R₄ is unsubstituted or mono- to pentasubstituted C₂-C₁₂alkenyl, or unsubstituted or monoto pentasubstituted C₂-C₁₂alkynyl.

15. (New) The compound of claim 1, wherein:

R2 is -N(R3)R4.

X is O:

R₃ is hydrogen; and

R₄ is unsubstituted or mono- to trisubstituted heterocyclyl, or unsubstituted and mono- to pentasubstituted aryl.

16. (New) The compound of claim 1, wherein:

R2 is -N(R3)R4,

X is S:

R₃ is hydrogen; and

 R_4 is hydrogen, mono- to pentasubstituted C_1 - C_{12} alkyl, or unsubstituted or mono- to pentasubstituted C_2 - C_{12} cycloalkyl.

17. (New) The compound of claim 1, wherein:

R2 is -N(R3)R4,

X is S;

R₃ is hydrogen; and

 R_4 is unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, or unsubstituted or monoto pentasubstituted C_3 - C_{12} cycloalkyl.

18. (New) The compound of claim 1, wherein:

R2 is -N(R3)R4,

X is S;

R3 is hydrogen; and

R₄ is unsubstituted or mono- to trisubstituted heterocyclyl unsubstituted, or mono- to pentasubstituted aryl.

19. (New) The compound of claim 1, wherein:

R2 is OR5, and

 R_5 is mono- to pentasubstituted C_1 - C_{12} alkyl, or unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl.

20. (New) The compound of claim 1, wherein:

R2 is OR5, and

 R_3 is unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, or unsubstituted or monoto pentasubstituted alkynyl.

- 21. (New) The compound of claim 1, wherein the configuration at the ε -position is (R).
- 22. (New) The compound of claim 1, wherein the configuration at the ϵ -position is (S).