Módulo Funções - Noções Básicas

Resolução de Exercícios

9° ano E.F.

Professores Cleber Assis e Tiago Miranda

Funções - Noções Básicas Resolução de Exercícios

1 Exercícios Introdutórios

Exercício 1. Três amigos conversavam sobre suas matérias preferidas dentre quatro: matemática (M), português (P), história (H) e geografia (G), sendo que Alberto (A) prefere matemática, Beto (B) prefere português e Carlos (C) prefere geografia (G). Sejam os conjuntos $T = \{A, B, C\}$, formado pelos três amigos, e $Q = \{M, P, G, H\}$, formado pelas matérias em discussão, pode-se dizer que a função $f: T \to Q$ é:

- b) sobrejetiva.
- c) bijetiva.
- d) nem injetiva nem sobrejetiva.

Exercício 2. O armário de João possui 4 gavetas: uma de meias M, outra de calças C, outra de bermudas B e uma última de sapatos S. Neste armário, João guarda duas meias M_1 e M_2 , três calças C_1 , C_2 e C_3 , quatro bermudas B_1 , B_2 , B_3 e B_4 , e dois sapatos S_1 e S_2 . Seja a função $f: R \rightarrow G$, onde $R = \{M_1, M_2, C_1, C_2, C_3, B_1, B_2, B_3, B_4, S_1, S_2\}$ e $G = \{M, C, B\}$, podemos afirmar que f é:

- a) injetiva.
- b) sobrejetiva.
- c) bijetiva.
- d) nem injetiva nem sobrejetiva.

Exercício 3. Seja a função f:

$$f: \{1,2,3\} \rightarrow \{2,4,6\}$$
$$x \longmapsto f(x) = 2x.$$

Podemos afirmar que f é:

- a) injetiva.
- b) sobrejetiva.
- c) bijetiva.
- d) nem injetiva nem sobrejetiva.

Exercício 4. Sobre a função $f:A\to B$, cuja relação está representada na figura, podemos afirmar que f é:

- a) injetiva.
- b) sobrejetiva.
- c) bijetiva.
- d) nem injetiva nem sobrejetiva.

Exercício 5. Sobre a função $f:A\to B$, cuja relação está representada na figura, podemos afirmar que f é:

- a) injetiva.
- b) sobrejetiva.
- c) bijetiva.
- d) nem injetiva nem sobrejetiva.

Exercício 6. Na função $f : \mathbb{R} \to \mathbb{R}$, definida por $y = x^2$, calcule f(1) e f(-1) para justificar o fato de que f NÃO é injetiva.

2 Exercícios de Fixação

Exercício 7. Seja a função $f: \mathbb{R} - \left\{\frac{3}{4}\right\} \to \mathbb{R}$, definida por $f(x) = \frac{3x+5}{4x-3}$. A função f é sobrejetiva?

Exercício 8. Seja a função $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$, definida por $f(x) = x^2 + \frac{1}{x^2}$. Calcule $f\left(\frac{1}{2}\right)$ e f(2). A função f é injetiva?

Exercício 9. Seja a função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \frac{2x-3}{x^2+1}$. Resolva as equações f(x) = 1 e f(x) = -1, concluindo que f não é injetiva nem sobrejetiva.

Exercício 10. Construa o gráfico e classifique em injetiva, sobrejetiva ou bijetiva a função $f: \mathbb{R} \to \mathbb{R}_+$, definida por $f(x) = x^2 - 4x + 4$.

Exercício 11. Seja a função $f: [-1, +\infty] \to B$, definida por $f(x) = x^2 + 2x + 1$. Determine B para que f admita inversa.

Exercício 12. Considere a função $f : \mathbb{Z} \to \mathbb{Z}$, definida por:

$$f(x) = \begin{cases} \frac{x}{2}, & \text{se } x \text{ \'e par;} \\ \frac{x+1}{2}, & \text{se } x \text{ \'e impar.} \end{cases}$$

Verifique se f é sobrejetiva, injetiva ou bijetiva.

Exercício 13. Seja a função $f:[1,4] \to [1,k]$, definida por f(x) = 2x - 1. Determine o valor de k para que f seja sobrejetiva.

Exercício 14. Determine p, para que a função $f: \mathbb{R} \to [p, +\infty]$, definida por $f(x) = x^2 - 2$, seja injetora.

3 Exercícios de Aprofundamento e de Exames

Exercício 15. Considere a função bijetora $f:[1,+\infty) \to (-\infty,3]$, definida por $f(x)=-x^2+2x+2$ e seja (a,b) o ponto de interseção de f com sua inversa. O valor numérico da expressão a+b é:

- a) 2.
- b) 4.
- c) 6.
- d) 8.
- e) 10.

Exercício 16. Sabendo que "c" e "d" são números reais, o maior valor de "d" tal que a função $f : \mathbb{R} \to \mathbb{R}$, definida por:

$$f(x) = \begin{cases} -x + c, & \text{para } x \ge d \\ x^2 - 4x + 3, & \text{para } x < d, \end{cases}$$
 seja injetora é:

- a) 0.
- b) 1.
- c) 2.
- d) 3.
- e) 4.

Exercício 17. Assinale a alternativa que representa o conjunto de todos os números reais para os quais está definida a função f(x): $\frac{\sqrt{x^2-6x+5}}{\sqrt[3]{x^2-4}}$.

- a) $\mathbb{R} \{-2, 2\}$.
- b) $(-\infty, 2) \cup (5, +\infty)$.
- c) $(-\infty, 2) \cup (-2, 1) \cup [5, +\infty)$.
- d) $(-\infty,1) \cup (5,+\infty)$.
- e) $(-\infty, -2) \cup [2, +\infty)$.

Exercício 18. Considere as funções reais f e g, tais que $f(x) = \sqrt{x} + 4$ e $f(g(x)) = x^2 - 5$, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores de x, que satisfazem os dados do enunciado.

- a) \mathbb{R} -] 3,3[.
- b) $\mathbb{R}-]-\sqrt{5},\sqrt{5}[.$
- c) $]\sqrt{5}, \sqrt{5}[.$
- d)]-3,3[.
- e) $\mathbb{R}-]-\infty,3[$.

Exercício 19. Sejam f e g funções de D em D. Mostre que se f e g são injetivas, então a função $f \circ g$ é injetiva.

Exercício 20. Sejam f e g funções de D em D. Mostre que se f e g são sobrejetivas, então a função $g \circ f$ é sobrejetiva.

Exercício 21. Determine uma função f de modo que g(f(x)) = x para todo x no domínio de f, sedo g dada por $g(x) = 2 + \frac{3}{x+1}$.

Exercício 22. Seja n um inteiro positivo ímpar e sejam $\{x_1, x_2, \ldots, x_n\}$ números reais distintos. Encontre todas as funções bijetivas

$$f: \{x_1, x_2, \ldots, x_n\} \to \{x_1, x_2, \ldots, x_n\}$$

tais que

$$|f(x_1) - x_1| = |f(x_2) - x_2| = \ldots = |f(x_n) - x_n|.$$

Respostas e Soluções.

- **1.** A.
- **2.** B.
- 3. C.
- **4.** D.
- **5.** C.
- **6.** f(1) = f(-1) = 1, ou seja, $\exists x_1 \neq x_2$, tal que $f(x_1) = f(x_2)$, portanto f não é injetiva.
- 7. (Extraído da Vídeo Aula) Fazendo $y = \frac{3x+5}{4x-3}$, temos:

$$y = \frac{3x+5}{4x-3}$$

$$4xy-3y = 3x+5$$

$$4xy-3x-3y-5 = 0$$

$$(4y-3)x-(3y+5) = 0.$$

Fazendo 4y-3=0 e $3y+5\neq 0$, chegamos a $y=\frac{3}{4}$ e $y\neq -\frac{5}{3}$, donde:

$$\frac{3x+5}{4x-3} = \frac{3}{4}$$

$$12x+20 = 12x-9$$

$$20 = -9.$$

Como chegamos em um absurdo, significa que para $y=f(x)=\frac{3}{4}, \nexists x \in \mathbb{R}-\left\{\frac{3}{4}\right\}$, ou seja, f não é sobrejetiva.

8. (Extraído da Vídeo Aula) Calculando $f\left(\frac{1}{2}\right)$ e f(2), temos:

(a)
$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 + \frac{1}{\left(\frac{1}{2}\right)^2} = \frac{1}{4} + 4 = \frac{17}{4};$$

(b)
$$f(2) = 2^2 + \frac{1}{2^2} = 4 + \frac{1}{4} = \frac{17}{4}$$
.

Como $f\left(\frac{1}{2}\right)=f(2)$, então f não é injetora.

9. (Extraído da Vídeo Aula) Para f(x) = 1, temos:

$$\frac{2x-3}{x^2+1} = 1$$

$$2x-3 = x^2+1$$

$$-x^2+2x-4 = 0$$

$$x^2-2x+1 = -3$$

$$(x-1)^2 = -3$$

Isso significa que, para f(x) = 1, $\nexists x \in \mathbb{R}$, portanto f não é sobrejetiva.

Fazendo agora f(x) = -1, temos:

$$\frac{2x-3}{x^2+1} = -1$$

$$2x-3 = -x^2-1$$

$$x^2+2x-2 = 0$$

$$x^2+2x+1 = 3$$

$$(x+1)^2 = 3$$

$$x = -1 \pm \sqrt{3}$$

Assim, se para f(x) = -1 temos $x_1 = -1 + \sqrt{3}$ e $x_2 = -1 - \sqrt{3}$, então f não é injetiva.

Portanto, f não é injetiva nem sobrejetiva.

10. Como $\exists x_1 \neq x_2$, sendo x_1 , $x_2 \in \mathbb{R}$, tal que $f(x_1) = f(x_2)$, então f não é injetiva, por exemplo f(0) = f(4) = 4. Analisando o gráfico, vemos que $Im = CD = \mathbb{R}_+$, ou seja, f é sobrejetiva.

11. Fazendo um esboço do gráfico da função, temos:

Perceba que, por conta do domínio, o gráfico é apenas uma parte de uma parábola (o conjunto de pontos cujo valor de x é maior ou igual a -1). Perceba também que o vértice da parábola é o ponto (-1,0), que coincide com o "início" do gráfico, o que garante que $\forall x_1 \neq x_2$, temos $f(x_1) \neq f(x_2)$, ou seja, f é injetiva. Para que f seja sobrejetiva, devemos ter Im = CD, ou seja, $B = R_+$. Dessa forma f é bijetiva e, por consequência, admite inversa.

- **12.** (Extraído da Vídeo Aula) Para a primeira parte da equação, temos $y=\frac{x}{2}$, que implica em x=2y; e para a segunda parte, temos $y=\frac{x+1}{2}$, que implica em x=2y-1. Assim, f(2y)=f(2y-1)=y, ou seja, f é sobrejetiva. Pela relação encontrada, vemos que y=f(2y) e também y=f(2y-1), ou seja, f não é injetiva e, por consequência, não é bijetiva.
 - 13. Se y = 2x 1, então $x = \frac{y+1}{2}$. Como D = [1,4] e o gráfico de f é um segmento de reta, temos:

$$1 \leq \frac{y+1}{2} \leq 4$$

$$2 \leq y+1 \leq 8$$

$$1 \leq y \leq 7.$$

Portanto, Im = [1,7]. Como f é sobrejetiva, então CD = Im, ou seja, k = 7.

14. Analisando o gráfico de f, para $CD = \mathbb{R}$, vemos que trata-se de uma parábola cujo vértice é o ponto (0, -2). Assim, para que f seja injetora, nas condições do problema, devemos ter $p \ge 0$.

15. (Extraído da EsPCEx - 2015) A interseção de uma função com a sua inversa ocorre sobre a bissetriz dos quadrantes ímpares, ou seja, sobre a reta y = x. Assim,

$$-x^{2} + 2x + 2 = x$$

$$-x^{2} + x + 2 = 0$$

$$x^{2} - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{1 + 8}}{2}$$

$$x = \frac{1 \pm 3}{2}$$

Como $D=[1,+\infty)$, x=2 e, consequentemente, o ponto de interseção é (2,2). Portanto a+b=4. Resposta B.

16. (Extraído da EsPCEx - 2015) A parte do gráfico onde x < d é uma parábola, cujo vértice é o ponto $\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right) = (2,-1)$. Assim, a função é injetora, nas condições do problema, para $x \le 2$, portanto, o maior valor de d é 2. Resposta D.

17. (Extraído da EsPCEx - 2015) Analisando o denominador, temos $x^2-4\neq 0$, segue que $x\neq \pm 2$. Agora, analisando o numerador, temos $x^2-6x+5\geq 0$, segue que $x\leq 1$ ou $x\geq 5$. Fazendo a interseção dos resultados encontrados, chegamos a $S=(-\infty,-2)\cup (-2,1]\cup [5,+\infty)$. Resposta C.

18. (Extraído da EsPCEx - 2016) Temos que:

$$f(x) = \sqrt{x+4}$$

$$f(g(x)) = \sqrt{g(x)+4}$$

$$x^2 - 5 = \sqrt{g(x)+4}$$

$$x^2 - 9 = \sqrt{g(x)}$$

Como g(x) é não negativa para todo x real, temos $x^2 - 9 \ge 0$, segue que $x \le -3$ ou $x \ge 3$. Resposta A.

- **19.** (Extraído da Vídeo Aula) Sejam $x_1, x_2 \in D$, tais que $x_1 \neq x_2$. Como g é injetiva, temos que $g(x_1) \neq g(x_2)$. Como f é injetiva e $g(x_1) \neq g(x_2)$, temos que $f(g(x_1)) \neq f(g(x_2))$. Logo $x_1 \neq x_2 \Rightarrow f \circ g(x_1) \neq f \circ g(x_2)$. Portanto $f \circ g$ é injetiva.
- **20.** (Extraído da Vídeo Aula) Como g é sobrejetiva, para todo $z \in D$ existe $y \in D$ tal que g(y) = z. Como f é sobrejetiva, para todo $y \in D$ existe $x \in D$ tal que f(x) = y. Para todo $z \in D$ existe $x \in D$ tal que $z = g(y) = g(f(x)) \Rightarrow g \circ f$ é sobrejetiva.

21.

$$g(f(x)) = x \Leftrightarrow$$

$$2 + \frac{3}{f(x) + 1} = x \Leftrightarrow$$

$$\frac{3}{f(x) + 1} = x - 2 \Leftrightarrow$$

$$f(x) + 1 = \frac{3}{x - 2} \Leftrightarrow$$

$$f(x) = \frac{3}{x - 2} - 1 \Leftrightarrow$$

$$f(x) = \frac{5 - x}{x - 2} \Leftrightarrow$$

A segunda linha mostra que é necessário termos $f(x)+1\neq 0$ e isso de fato ocorre com a função $f(x)=\frac{5-x}{x-2}$.

22. Seja
$$k = |f(x_i) - x_i|$$
. Daí,
$$f(x_1) - x_1 = \pm k$$

$$f(x_2) - x_2 = \pm k$$

$$f(x_3) - x_3 = \pm k$$

$$\dots$$

$$f(x_n) - x_n = \pm k$$

Como f é uma bijeção, $\{f(1), f(2), \ldots, f(n)\} = \{1, 2, \ldots, n\}$ e a soma de todos os membros dos lados esquerdos das equações anteriores é 0. Se $k \neq 0$, analisando o lado direito, a quantidade de vezes em que aparece +k tem que ser igual a quantidade de vezes em que aparece -k. Como n é ímpar, isso é impossível. Portanto, k=0 e a função é a identidade, ou seja, f(x)=x para todo x. Só existe uma função satisfazendo a condição dada.

Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino contato@cursoarquimedes.com