Monday, March 18: Proof of ??

Learning Objectives. By the end of class, students will be able to:

- Find the number of roots of unity modulo m
- Prove primitive roots exist modulo a prime.

Reading None

Roots of unity (35 minutes)

Finish proof of Proposition 5.8

In-class Problem 1 Let p be prime, m a positive integer, and d = (m, p-1). Prove that $a^m \equiv 1 \pmod{p}$ if and only if $a^d \equiv 1 \pmod{p}$.

Solution: Let p be prime, m a positive integer, and d = (m, p-1). Let $a \in \mathbb{Z}$. If $p \mid a$, then $a^i \equiv 0 \pmod{p}$ for all positive integers i. Thus, we are only considering $a \in \mathbb{Z}$ such that $p \nmid a$. Otherwise, $a^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem.

By Proposition 5.1, $a^m \equiv 1 \pmod{p}$ if and only if $\operatorname{ord}_p a \mid m$. Similarly, $a^{p-1} \equiv 1 \pmod{p}$ if and only if $\operatorname{ord}_p a \mid p-1$. Thus, $\operatorname{ord}_p a$ is a common divisor of [m] and [p-1]. Combining and gives $\operatorname{ord}_p a$ is a common divisor of [m] and [p-1] if and only if $\operatorname{ord}_p a \mid d$. One final application of Proposition 5.1 gives $\operatorname{ord}_p a \mid d$ if and only if $a^d \equiv 1 \pmod{p}$.

In-class Problem 2 Let p be prime and m a positive integer. Prove that

$$x^m \equiv 1 \pmod{p}$$

has exactly (m, p-1) incongruent solutions modulo p.

Proof Let p be prime, m a positive integer, and d = (m, p - 1). By In-class Problem 1, $x^m \equiv 1 \pmod{p}$ if and only if $x^d \equiv 1 \pmod{p}$. By Proposition 5.8 there are exactly d solutions to $x^d \equiv 1 \pmod{p}$. Thus, there are exactly d solutions to $x^m \equiv 1 \pmod{p}$.

Primitive roots modulo a prime (15 minutes)

We will now prove the existence of primivitive roots modulo a prime combining the two methods from the reading: we will show that when $d \mid p-1$, there are $\phi(d)$ incongruent integers of order d modulo p, like Strayer. However, we will prove this using the method from ?? instead of results from Chapter 3.

Theorem (Theorem 5.9). Let p be a prime and let $d \in \mathbb{Z}$ with d > 0 and $d \mid p - 1$. Then there are exactly $\phi(d)$ incongruent integers of order d modulo p.

Finish proof of the existence of primitive roots modulo a prime (10 minutes) Week 9-MAT-255 Number Theory

Proof Let p be a prime and let $d \in \mathbb{Z}$ with d > 0 and $d \mid p - 1$. First we will prove the theorem for $d = q^s$ modulo p where q is prime and s is a nonnegative integer.

By Proposition 5.8, there are exactly q^s incongruent solutions to

$$x^{q^s} \equiv 1 \pmod{p} \tag{1}$$

and exactly q^{s-1} incongruent solutions to

$$x^{q^{s-1}} \equiv 1 \pmod{p}. \tag{2}$$

Since $(x^{q^{s-1}})^q = x^{q^s}$, all solutions to (2) are solutions to (1). Thus, there are exactly $q^s - q^{s-1} = q^{s-1}(q-1)$ integers a where $a^{q^s} \equiv 1 \pmod{p}$ and $a^{q^{s-1}} \not\equiv 1 \pmod{p}$. Thus, by Proposition 5.1, $\operatorname{ord}_p a \mid q^s$ and $\operatorname{ord}_p a \nmid q^{s-1}$. Since q is prime, $\operatorname{ord}_p a = q^s$. By Theorem 3.3, $\phi(q^s) = q^s - q^{s-1} = q^{s-1}(q-1)$, so we have shown there are $\phi(q^s)$ incongruent integers with order q^s modulo p.

Now we will prove the general case. Let

$$d = q_1^{s_1} q_2^{s_2} \cdots q_k^{s_k}$$

for distinct primes q_1, q_2, \ldots, q_k and positive integers s_1, s_2, \ldots, s_k . Let a_1, a_2, \ldots, a_k be elements of order $q_1^{s_1}, q_2^{s_2}, \ldots, q_k^{s_k}$ respectively. Consider $a = a_1 a_2 \cdots a_k$ and a^2, a^3, \ldots, a^d . By Homework 6, Problem 6, a has order $q_1^{s_1} q_2^{s_2} \cdots q_k^{s_k} = d$. By Proposition 5.8, there are exactly d solutions to $x^d \equiv 1 \pmod{p}$. Thus, a, a^2, \ldots, a^d are all incongruent solutions to $x^d \equiv 1 \pmod{p}$ by Proposition 5.1. By Proposition 5.4, $\operatorname{ord}_p a^i = \frac{d}{(d,i)} = d$ if and only if (d,i) = 1. Since there are $\phi(d)$ such integers i, there are in fact $\phi(d)$ incongruent integers with order d modulo p.

Corollary (Corollary 5.10). Let p be prime. There are exactly $\phi(p-1)$ primitive roots modulo p.

Wednesday, March 20: Introduction to quadratic residues

Learning Objectives. By the end of class, students will be able to:

- \bullet Define a quadratic residue modulo m
- Prove that the quadratic congruence $x^2 \equiv a \pmod{p}$ has zero or one solution modulo a prime when $p \nmid a$
- Use the solution to a quadratic congruence modulo a prime to find the other solution .

Reading: Strayer Section 4.1

Turn in: Exercise 3 Find all incongruent solutions of the quadratic congruence $x^2 \equiv 1 \pmod{8}$. Is it not true that quadratic congruences have either no solutions or exactly two incongruent solutions? Explain.

Solution: As we have seen on many previous questions, $x^2 \equiv 1 \pmod{8}$ for all odd numbers. So there are 4 incongruent solutions modulo 8, which is not a contradiction because 8 is not an odd prime number.

Finish proof of the existence of primitive roots modulo a prime (10 minutes)

Quadratic residues (40 minutes)

Definition 1 (quadratic residue). Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. The a is said to be a quadratic residue modulo m if the quadratic congruence $x^2 \equiv a \pmod{m}$ is solvable in \mathbb{Z} . Otherwise, a is said to be a quadratic nonresidue modulo m.

Remark 1. When finding squares modulo m, we only need to check up to $\frac{m}{2}$, since $(-a)^2 = a^2$ and $m - a \equiv -a \pmod{m}$

In-class Problem 3 Find all incongruent quadratic residues and nonresidues modulo 2, 3, 4, 5, 6, 7, 8, and 9.

Solution: I also included solutions modulo 10, 11, 12

Modulus	least nonnegative re-	quadratic	quadratic non-
	duced residues	residues	residues
2	1	1	N/A
3	1,2	1	2
4	1,3	1	3
5	1, 2, 3, 4	$\boxed{1,4}$	2,3
6	1,5	1	5
7	1, 2, 3, 4, 5	$\boxed{1,2,4}$	$\boxed{3,5,6}$
8	$\boxed{1,3,5,7}$	1	3, 5, 7
9	1, 2, 4, 5, 7, 8	$\boxed{1,4,7}$	2, 4, 8
10	1, 3, 7, 9	1,9	$\overline{3,7}$
11	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	1, 3, 4, 5, 9	2, 6, 7, 8, 10
12	$\boxed{1,5,7,11}$	1	5,7,11

Lemma (Generalized Porism 4.2). Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. If the quadratic congruence $x^2 \equiv a \pmod{m}$ is solvable, say with $x = x_0$, then $m - x_0$ is also a solution. If m > 2, then $x_0 \not\equiv m - x_0 \pmod{m}$, and solutions occur in pairs.

Proof Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. If the quadratic congruence $x^2 \equiv a \pmod{m}$ is solvable, say with $x = x_0$. Then

$$(m - x_0)^2 \equiv (-x_0)^2 \equiv x_0^2 \equiv a \pmod{m}.$$

If $x_0 \equiv m - x_0 \pmod{m}$, then $2x_0 \equiv m \equiv 0 \pmod{m}$ and $m \mid 2x_0$ by definition. Since (a, m) = 1, it must be that $(x_0, m) = 1$ since $(x_0, m) \mid (a, m)$. Thus, $m \mid 2$, so m = 2. Therefore, when m > 2, then $x_0 \not\equiv m - x_0 \pmod{m}$, and solutions occur in pairs.

Remark 2. Since $x_0 \equiv m - x_0 \pmod{m}$ implies $x_0 \equiv \frac{m}{2}$, we can say that if $x^2 \equiv a \pmod{m}$ is solvable and $\frac{m}{2}$ is not a solution, then solutions occur in pairs.

Proposition (Proposition 4.1). Let p be an odd prime number and let $a \in \mathbb{Z}$ with $p \mid a$. Then the quadratic congruence $x^2 \equiv a \pmod{p}$ has either no solutions or exactly two incongruent solutions modulo p.

Proof Let p be an odd prime number and let $a \in \mathbb{Z}$ with $p \mid a$. Consider the quadratic congruence $x^2 \equiv a \pmod{p}$. If no solutions exist, we are done.

If solutions to the quadratic congruence exist, then Generalized Porism 4.2 says that there are at least two solutions, since p>2. Theorem 5.7 (Lagrange) says that there are at most two solutions to $x^2-a\equiv 0\pmod p$ and therefore $x^2\equiv a\pmod p$. Thus, there are exactly two incongruent solutions modulo p.

Proposition (Proposition 4.3). Let p be an odd prime number. Then there are exactly $\frac{p-1}{2}$ incongruent quadratic residues modulo p and exactly $\frac{p-1}{2}$ incongruent quadratic nonresidues modulo p.

Proof Consider the p-1 quadratic congruences

$$x^{2} \equiv 1 \pmod{p}$$

$$x^{2} \equiv 2 \pmod{p}$$

$$\vdots$$

$$x^{2} \equiv p - 1 \pmod{p}.$$

Since each congruence has either zero or two incongruent solutions modulo p by Proposition 4.1, and no integer is a solution to more than one of the congruences, exactly half are solvable. Therefore, there are exactly $\frac{p-1}{2}$ incongruent quadratic residues modulo p and exactly $\frac{p-1}{2}$ incongruent quadratic nonresidues modulo p.

Friday, March 22: Legendre symbol

Learning Objectives. By the end of class, students will be able to:

- Define the Legendre symbol
- Prove basic facts about the Legendre symbol
- Use the definition and basic facts to find the Legendre symbol for specific examples.

Reading: Strayer Section 4.2 through Example 4

Turn in: Exercise 12 Use Euler's Criterion to evaluate the following Legendre symbols

(a)
$$\left(\frac{11}{23}\right)$$

Solution:
$$\left(\frac{11}{23}\right) \equiv 11^{(23-1)/2} \equiv 11^{11} \pmod{23}$$
 By Euler's Criterion. Then
$$11^{11} \equiv (11^2)^5 (11) \equiv 6^5 (11) \equiv (6^2)(6^3)(11) \equiv (13)(9)(11) \equiv (-90)(11) \equiv -1 \pmod{23}$$

(b)
$$\left(\frac{-6}{11}\right)$$

Solution:
$$\left(\frac{-6}{11}\right) \equiv (-6)^{(11-1)/2} \equiv (-6)^5 \pmod{11}$$
 By Euler's Criterion. Then $(-6)^5 \equiv ((6)^2)^2(-6) \equiv 3^2(-6) \equiv -54 \equiv 1 \pmod{11}$

Quiz (15 minutes)

Technical difficults with printer and projector.

Legendre symbol (35 minutes)

Definition 2 (Legendre symbol). Let p be an odd prime number and let $a \in \mathbb{Z}$ with $p \nmid a$. The Legendre symbol, denoted $\left(\frac{a}{p}\right)$, is

Theorem (Euler's Criterion). Let p be an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. Then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

We will not prove this today, but we will use it to go over the solution to the reading assignment and to prove the following proposition.

Proposition (Proposition 4.5). Let p be an odd prime number and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$. Then

$$(a) \left(\frac{a^2}{p}\right) = 1$$

(b) If
$$a \equiv b \pmod{p}$$
 then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

$$(c) \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Proof Let p be an odd prime number and $a, b \in \mathbb{Z}$ with $p \nmid a$ and $p \nmid b$. Then a^2 is a quadratic residue modulo p, by definition, so $\left(\frac{a^2}{p}\right) = 1$ by the definition of the Legendre symbol.

If $a \equiv b \pmod{p}$, then either both a and b are quadratic residues modulo p or both a and b are quadratic nonresidues modulo p. Thus $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

For the last part, Euler's Criterion gives

$$\left(\frac{ab}{p}\right) \equiv (ab)^{(p-1)/2} \equiv (a^{(p-1)/2})(b^{(p-1)/2}) \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \pmod{p}$$

_