The subset construction game

Thm. If A=L(N) for NFA N, then there exist a DFA M such that L(M)=L(N)=A. In other words, A is regular.

Assume $N = (Q_N, \Xi, \Delta_N, S_N, F_N)$

Then we take $M = (Q_M, \Sigma, S_M, S_M, F_M)$

where:

 $* Q_M = 2 = \{ B \subseteq Q_N \}$ \star S_M $({}^4_A, x) = \Delta (A, x)$ might use YACQN $\forall \gamma_{A} \in Q_{M}$ * $s_M = S_N$ YXEZ*

* FM = { 9A ∈ QM: An FN ≠ Ø} interchangebly.

{ x ∈ {a, b} +: the last letter of x is a OR |x| mod 2 = 13

990,928 { 4, 19, 193} 0 b \$ 4. 991, 9 fz unreachable be ignored

A and 9A

why does subset construction work?

why does subset construction work (* Lemma Gil in the book: * For any x, y & E*, and A = QN, $\hat{\triangle}(A, \overline{X}\overline{Y}) = \hat{\triangle}(\hat{\triangle}(A, X), Y)$ proof: induction on ly). * Lemma 6,3 in the book: * For any ACQN and XEE*, $\hat{S}_{N}(q_{A},x) = \hat{\Delta}_{N}(A,x)$ M is the DFA that we created using subset construction. *Thm L(M) = L(N)

2AC3_W24 Page 2