ME 4470/ESE 4470/ME 5475-02 Wind and Tidal Energy

Problem: Determine the aerodynamic loads on a blade using Blade Element Momentum Theory

Given: Blade airfoil properties given below as well as lift/drag data for each airfoil

• Blade and chord distribution:

r (m)	c (m)	$\theta_p(\deg)$	Shape
4	1.5	26.0	DU-97-W-300
6	1.4	16.0	DU-97-W-300
8	1.3	10.0	DU-97-W-300
10	1.2	5.7	DU-91-W-250
12	1.0	3.7	DU-91-W-250
14	0.8	2.5	DU-91-W-250
16	0.6	2.0	DU-95-W-180
18	0.4	1.5	DU-95-W-180
20	0.2	1.0	DU-95-W-180

• Blade minimum radius: 3 m

• Blade tip radius: 21 m

• Rotational speed: 30 rpm

• Number of blades: 3

Find: Develop a BEM code and apply to this blade to determine the following for a 10 m/s wind at sea level ($\rho = 1.23 \text{ kg/m}^3$).

- a. Plot the local angle of attack α in degrees as a function of distance from the hub with and without the Prandtl tip correction.
- b. Plot the local Normal and Tangential Force Coefficients with and without the Prandtl tip correction as a function of distance from the hub. and without it. Where does the correction have the most effect?
- c. Determine the total thrust, torque, and power experienced by the turbine blades from the results determined using the Prandtl tip correction. Since these quantities require integration over the blade, make sure you explain how you evaluate each quantity.

Solution: Using BEM, the following equations are derived.

$$\tan \phi = \frac{V}{U} \tag{1}$$

$$\alpha = \phi - \theta_p \tag{2}$$

$$C_N = C_L \cos(\phi) + C_D \sin(\phi) \tag{3}$$

$$C_T = C_L \sin(\phi) - C_D \cos(\phi) \tag{4}$$

$$F_N = C_N \frac{1}{2} \rho W^2 c \tag{5}$$

$$F_T = C_T \frac{1}{2} \rho W^2 c \tag{6}$$

$$\sigma = \frac{cB}{2\pi r} \tag{7}$$

$$a = \left(1 + \frac{4\sin^2(\phi)}{\sigma C_N}\right)^{-1} \tag{8}$$

$$a' = \left(\frac{4\sin(\phi)\cos(\phi)}{\sigma C_T} - 1\right)^{-1} \tag{9}$$

The Prandtl tip corrections are given by the following relations.

$$a = \left(1 + \frac{4F\sin^2(\phi)}{\sigma C_N}\right)^{-1} \tag{10}$$

$$a' = \left(\frac{4F\sin(\phi)\cos(\phi)}{\sigma C_T}\right)^{-1} \tag{11}$$

$$F = \frac{2}{\pi} \cos^{-1}(e^{-f}) \tag{12}$$

$$f = \frac{B}{2} \frac{R - r}{r \sin \phi} \tag{13}$$

A BEM code was written that carried out the following steps.

- 1. Initialize a and a' to 0.
- 2. Compute flow angle ϕ at each r_i using Eq. 1 with U and V.
- 3. Determine W from U and V.
- 4. Determine α using Eq. 2 with ϕ and θ_p .
- 5. Determine C_l and C_d using the appropriate tabulated airfoil data.
- 6. Determine C_N and C_T using Eqns. 3 and 4 with C_l and C_d .

- 7. Determine the induction factors a and a' using Eqns. 8 and 9 (no tip correction) or Eqns. 10 and 11 (with tip correction).
- 8. If induction factors have changed significantly, update with

$$a_{diff} = a - a_{previous}$$

$$a_{new} = a_{previous} + a_{diff}/2$$

and repeat from step 2.

9. Once the induction factors converge, determine F_N and F_T using Eqns. 5 and 6.

Having determined the force distributions $(F_N(r))$ and $F_T(r)$, the thrust, torque and power can be determined using the following equations.

$$T = B \int_{r_m in}^{R} F_N dr$$

$$T_x = B \int_{r_m in}^{R} r F_T dr$$
$$P = T_x * \Omega$$

Using this approach, the following results were determined.

a. The angle of attack across the blade is shown in the figure below.

Note that the correction has the most effect in the outboard section of the blade. The absolute changes in angle of attack are small.

- b. The force coefficients and force distributions are shown in the figures above. In accordance with the angle of attack, the only significant changes are observed outboard.
- c. The Thrust, torque, and power with and without corrections are listed below.

	Thrust	Torque	Power
	kN	kN*m	kW
No Correction	43.1	86.0	270.0
With Correction	42.9	84.7	266.0

Note that again, the changes to the predicted thrust, torque, and power are small. The largest (<2%) are for the torque and power as the outboard part of the blade is weighted heavier in these results.