|                                                                                                       | Teste de Matemática A                                                 |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                       | 2022 / 2023                                                           |
| Teste N.º 4                                                                                           |                                                                       |
| Matemática A                                                                                          |                                                                       |
|                                                                                                       |                                                                       |
| 12.º Ano de Escolaridade                                                                              |                                                                       |
| Nome do aluno:                                                                                        | N.º: Turma:                                                           |
|                                                                                                       |                                                                       |
|                                                                                                       |                                                                       |
|                                                                                                       |                                                                       |
| Utilize apenas caneta ou esferográfica de tinta az                                                    | zul ou preta.                                                         |
| Não é permitido o uso de corretor. Risque aquilo                                                      | que pretende que não seja classificado.                               |
| É permitido o uso de calculadora.                                                                     |                                                                       |
| Apresente apenas uma resposta para cada item.                                                         |                                                                       |
| As cotações dos itens encontram-se no final do ε                                                      | enunciado.                                                            |
| As cotações dos itens encontram-se no linar do e                                                      |                                                                       |
| As cotações dos itens encontram-se no linar do e                                                      |                                                                       |
|                                                                                                       | viono a onoão correta. Eccrova na folha do                            |
| Na resposta aos itens de escolha múltipla, selec                                                      |                                                                       |
| Na resposta aos itens de escolha múltipla, selec<br>respostas o número do item e a letra que identifi | ica a opção escolhida.                                                |
| Na resposta aos itens de escolha múltipla, selec                                                      | ica a opção escolhida.<br>os os cálculos que tiver de efetuar e todas |

# **Formulário**

### Geometria

### Comprimento de um arco de circunferência

 $\alpha r$  ( $\alpha$  – amplitude, em radianos, do ângulo ao centro; r – raio)

**Área de um polígono regular**: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\ \text{do\ \^{a}ngulo\ ao\ centro};r-\text{raio})$$

Área lateral de um cone:  $\pi r g (r - raio da base;$ 

$$g$$
 – geratriz)

Área de uma superfície esférica:  $4 \pi r^2 (r - raio)$ 

**Volume de uma pirâmide:**  $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$ 

**Volume de um cone:**  $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$ 

Volume de uma esfera:  $\frac{4}{3} \pi r^3 (r - raio)$ 

# **Progressões**

Soma dos n primeiros termos de uma progressão  $(u_n)$ 

Progressão aritmética:  $\frac{u_1+u_n}{2} \times n$ 

Progressão geométrica:  $u_1 \times \frac{1-r^n}{1-r}$ 

# **Trigonometria**

$$sen(a + b) = sen a cos b + sen b cos a$$

$$cos(a + b) = cos a cos b - sen a sen b$$

## **Complexos**

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho\,e^{\,i\theta}} = \sqrt[n]{\rho}\,e^{i\frac{\theta+2k\pi}{n}} \quad (k\,\in\,\{0,\ldots,n-1\}\,\mathrm{e}\,\,n\in\mathbb{N})$$

# Regras de derivação

$$(u+v)'=u'+v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n . u^{n-1} . u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u'. \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'.e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} (a \in \mathbb{R}^+ \setminus \{1\})$$

#### Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

- 1. De um grupo de doze cozinheiros profissionais, vão ser escolhidos três, ao acaso, para serem os apresentadores de um conhecido concurso televisivo de culinária. Nesse grupo de doze cozinheiros, há três amigos o José, a Joana e o João que gostariam de ser os escolhidos. Qual é a probabilidade de serem escolhidos, exatamente, esses três amigos?
  - **(A)**  $\frac{3!}{12}$   $C_3$
- **(B)**  $\frac{1}{12}C_3$
- (C)  $\frac{3}{12A_3}$

- **(D)**  $\frac{1}{12A_3}$
- 2. Uma empresa que comercializa telemóveis fez um estudo acerca das marcas de telemóveis que os alunos de uma determinada escola possuem. No âmbito desse estudo, questionaram-se todos os alunos do sexo feminino e todos os alunos do sexo masculino de 12.º ano, verificando-se que todos possuíam um telemóvel. Dos alunos questionados, sabe-se que:
  - há tantos alunos do sexo feminino como do sexo masculino;
  - 80% dos alunos possuem um telemóvel da marca *I*;
  - $\frac{3}{10}$  dos alunos do sexo masculino não possuem um telemóvel da marca I.
  - 2.1. No final de um dia de aulas, verificou-se que ficou esquecido um telemóvel da marca I pertencente a um aluno de 12.º ano dessa escola.
    Qual é a probabilidade de o telemóvel pertencer a um aluno do sexo feminino?
    Apresente o resultado sob a forma de percentagem.
  - **2.2.** Escolhe-se, ao acaso, um grupo de dois alunos de 12.º ano dessa escola. Sabe-se que a probabilidade de o grupo escolhido ser constituído por um aluno que possui um telemóvel da marca I e outro que possui um telemóvel de outra marca é igual a  $\frac{64}{199}$ . Seja n o número total de alunos de 12.º ano dessa escola. Determine o valor de n. Para resolver este problema, percorra as seguintes etapas:
    - equacione o problema;
    - resolva a equação, sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos.
- **3.** Para um determinado número real k, considere a função f, de domínio  $\mathbb{R}\setminus\{0\}$ , definida por:

$$f(x) = \begin{cases} \frac{\sin x}{e^{2x} - 1} & \text{se} \quad x < 0\\ (x+1)^2 \ln(x+k^2) & \text{se} \quad x > 0 \end{cases}$$

**3.1.** Para que valores reais de k existe  $\lim_{x\to 0} f(x)$ ?

**(A)** 
$$-\frac{1}{e} e^{\frac{1}{e}}$$

(C) 
$$-\sqrt{e}$$
 e  $\sqrt{e}$ 

**(D)** 
$$-\sqrt[4]{e}$$
 e  $\sqrt[4]{e}$ 

**3.2.** Considere k = 1.

Recorrendo a processos exclusivamente analíticos, estude, no intervalo  $]0, +\infty[$ , a função fquanto à monotonia e quanto à existência de extremos relativos, e determine, caso exista(m), esse(s) extremo(s). Na sua resposta, apresente o(s) intervalo(s) de monotonia.

- 3.3. Sem recorrer à calculadora, exceto para efetuar eventuais cálculos numéricos, mostre que existe pelo menos um ponto do gráfico de f, de abcissa compreendida entre  $-\frac{\pi}{2}$  e  $-\frac{\pi}{3}$ , no qual a reta tangente ao gráfico de f nesse ponto é paralela ao eixo 0x.
- **4.** Seja  $(u_n)$  a sucessão definida por  $u_n = \left(\frac{n+1}{n}\right)^n$ . De uma certa função f, sabe-se que  $\lim f(u_n) = +\infty$ . Em qual das seguintes opções pode estar representada parte do gráfico da função f?

(A)





(C)





5. Determine, sem recorrer à calculadora, o conjunto dos números reais que verificam a condição:

$$e^{-x}(2+e^{2x})<3$$

Apresente a sua resposta na forma de intervalo ou de reunião de intervalos de números reais.

- 6. Na Internet, no dia 26 de agosto de 2022, pelas 10 horas, colocaram-se à venda todos os bilhetes de um espetáculo. O último bilhete foi vendido 30 minutos após o início da venda. Admita que, t minutos após o início da venda, o número de bilhetes vendidos, em centenas, é dado, aproximadamente, por  $N(t) = 40 \log_2(kt+1)$ ,  $0 \le t \le 30$ , em que k é uma constante real positiva.
  - **6.1.** Durante a venda, houve um instante  $t_1$  em que o número de bilhetes vendidos foi igual a 6000 unidades. Qual é o valor de k?

(A) 
$$\frac{2^{1,5}-1}{t_1}$$

**(B)** 
$$\frac{2^{1,5}+1}{t_1}$$

(C) 
$$2^{1,5} + t_1$$

**(D)** 
$$2^{1,5} - t_1$$

**6.2.** Considere k = 5.

Existe um instante  $t_2$ , a partir do qual, passados dois minutos, o número de bilhetes vendidos aumentou 10%.

Determine, recorrendo à calculadora, o valor desse instante  $t_2$ , sabendo-se que existe e é único. Apresente o resultado em minutos e segundos (com os segundos arredondados às unidades).

Não justifique a validade do resultado obtido na calculadora.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação;
- apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às milésimas.
- **7.** Seja g a função, de domínio  $\mathbb{R}$ , definida por:

$$g(x) = \begin{cases} \frac{1}{4}e^{2x} - e^x & \text{se } x \le 1\\ 4x - 2\ln(x - 1) & \text{se } x > 1 \end{cases}$$

Resolva os itens 7.1. e 7.2., sem recorrer à calculadora.

- **7.1.** Estude a função g quanto à existência de assíntotas ao seu gráfico, no intervalo  $]1,+\infty[$  e, caso existam, escreva as respetivas equações.
- **7.2.** Estude a função g quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão, no intervalo  $]-\infty,1[$ .

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de *g* tem a concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de q tem a concavidade voltada para cima;
- as coordenadas do(s) ponto(s) de inflexão do gráfico de g.
- **8.** Em  $\mathbb{C}$ , conjunto dos números complexos, considere os números complexos z e w tais que, para  $\theta \in \left]0, \frac{\pi}{2}\right[$ :

$$z = e^{i\theta}$$
 e  $w = 3e^{i(\pi - \theta)}$ 

A qual dos quadrantes do plano complexo pertence o afixo do número complexo  $\overline{z} + w$ ?

- (A) Primeiro
- (B) Segundo
- (C) Terceiro
- (D) Quarto

**9.** Em  $\mathbb{C}$ , conjunto dos números complexos, considere:

$$z_1 = -3 - \sqrt{3}i$$
 e  $z_2 = -\cos\left(-\frac{\pi}{3}\right) - i\sin\left(-\frac{\pi}{3}\right)$ 

Determine o menor valor de n natural para o qual  $(z_1 \times z_2)^n$  é um número real positivo.

**FIM** 

### **COTAÇÕES**

|                     | Item |      |      |      |    |    |      |      |      |      |    |    |       |
|---------------------|------|------|------|------|----|----|------|------|------|------|----|----|-------|
| Cotação (em pontos) |      |      |      |      |    |    |      |      |      |      |    |    |       |
| 1.                  | 2.1. | 2.2. | 3.1. | 3.2. | 4. | 5. | 6.1. | 6.2. | 7.1. | 7.2. | 8. | 9. | Total |
| 10                  | 18   | 19   | 10   | 18   | 10 | 19 | 10   | 19   | 19   | 19   | 10 | 19 | 200   |