Электричество и магнетизм.					
Закон Кулона:	$ec{F} = rac{q_1 \cdot q_2}{r^2} \cdot rac{ec{r}}{r}$	Электрическая ёмкость сферического конденсатора:	$C = \frac{q}{\Delta \varphi} = \frac{\varepsilon R_1 R_2}{R_2 - R_1}$		
Напряжённость электрического поля:	$\vec{E} = \frac{q}{r^2} \cdot \frac{\vec{r}}{r}$	Электрическая ёмкость циллиндрического конденсатора:	$C = \frac{\varepsilon l}{2\ln(b/a)} = \frac{\varepsilon al}{2d} = \frac{\varepsilon S}{4\pi d}$		
Поле диполя:	$\vec{E} = \frac{3(\vec{p}\cdot\vec{r})\vec{r} - \vec{p}\cdot r^2}{r^5}$	Взаимная энергия зарядов:	$U_{12} = \frac{q_1 \cdot q_2}{r_{12}}$ $U =$		
Теорема Гаусса (Интегральная форма):	$\oint_S \vec{E} d\vec{S} = 4\pi q$	Взаимная энергия произвольного числа зарядов:			
Теорема Гаусса (Дифф. форма):	$\operatorname{div} \vec{E} = 4\pi\rho$	Взаимная энергия произвольно распределенных зарядов:	$ \begin{array}{ll} U & = \\ \frac{1}{2} \int_{V} \rho(\vec{r}) \varphi(\vec{r}) dV & + \\ \frac{1}{2} \int_{S} \sigma(\vec{r}) \varphi(\vec{r}) dS & \end{array} $		
Разность потенциалов:	$\int_{(1)}^{(2)} \vec{E}(\vec{r}) d\vec{r} = \varphi_1 - \varphi_2$	Энергия электрического поля:	$\delta U = \int \frac{\vec{E}\delta\vec{D}}{8\pi} dV$		
Теорема о циркуляции в вакууме (Статика) (Интегральная форма):	$\oint_L \vec{E} d\vec{r} = 0$	Энергия жёсткого диполя в электрическом поле:			
Теорема о циркуляции в вакууме (Статика) (Дифф. форма):	$\cot \vec{E} = 0$	Сила, действующая на диполь в неоднородном электрическом поле:	$ec{F} = (ec{p} \cdot ec{ abla})$		
Связь потенциала с напряженностью:		Энергия упругого диполя в электрическом поле:	$kl = qE,$ $p = \frac{q^2E}{\kappa} = \beta E,$ $U = \frac{\kappa l^2}{2} = \frac{qEl}{2} = \frac{pE}{2},$ $U = \frac{1}{2}\vec{p} \cdot \vec{E}$		
Потенциал поля точечного диполя:	$\varphi = -(\vec{l} \cdot \vec{\nabla}) \frac{q}{r} = \frac{\vec{p} \cdot \vec{r}}{r^3}$	Плотность тока:	$\vec{j} = \rho \vec{u}$		
Уравнение Пуассона:	$\Delta \varphi = -4\pi \rho$	Ток:	$J = \int_{S} \vec{j} d\vec{S}$ $i = \frac{dJ}{dt}$		
Уравнение Лапласа (Уравнение Пуассона в случае $\rho = 0$):	$\Delta \varphi = 0$	Линейная плотность тока (для поверхностных токов):	at		
Граничные условия (Нормаль):	$\left \left(\vec{E}_1 - \vec{E}_2 \right) \vec{n} = 4\pi\sigma \right $	Закон сохранения заряда (Дифф. форма):	$\frac{\partial \rho}{\partial t} + \operatorname{div} \vec{j} = 0$		
Граничные условия (Параллельная):	$ (\vec{E}_1 - \vec{E}_2) \vec{\tau} = 0 $ $ \vec{E}_{in} = 0, \varphi_{in} = C $ $ \vec{P} = \frac{\vec{p}}{V} $	Закон Ома (Интегральная форма):	$J = \frac{U}{R}$		
Проводники:	$\vec{E}_{in} = 0, \varphi_{in} = C$	Закон Ома (Дифф. форма):	$\vec{j} = \lambda \vec{E}$		
Вектор поляризации:	$\vec{P} = \frac{\vec{p}}{V}$	Первое правило Кирхгофа (Узел):	$\sum_{k} J_{k} = 0$		
Величина поляризованных зарядов в диэлектрике:	$q_{pol} = -\int_{V} \operatorname{div} \vec{P} dV$	Второе правило Кирхгофа (Замкнутый контур):	$\sum_{i} \mathcal{E}_{i} = \sum_{k} J_{k} R_{k}$		
Плотность поляризованных зарядов в диэлектрике:	$ \rho_{pol} = -div\vec{P} $	Закон Джоуля—Ленца (Дифф. форма):	$\begin{array}{ccc} w = n\vec{F}\vec{u} = \vec{j} \cdot \vec{E} = \\ \lambda \vec{E}^2 \end{array}$		
Поверхностная плотность поляризованных зарядов на поверхности диэлектрика:	$P_n = \frac{\vec{P} \cdot \vec{S}}{S} = \frac{1}{S} \left(\frac{\sigma S \vec{l}}{\vec{S} \cdot \vec{l}} \right) \vec{S} = \sigma$	Закон Джоуля—Ленца (Инт. форма):	$W = \mathcal{E}^2/R = J\mathcal{E}$		
Вектор электрической индукции:	$\vec{D} = \vec{E} + 4\pi \vec{P}$	Сила Лоренца:	$ \vec{F}_{\Pi} = \frac{q}{c} [\vec{v} \times \vec{B}] $ $ d\vec{F} = \frac{1}{c} [\vec{j} \times \vec{B}] dV, $		
Поляризуемость (α) :	$\vec{P} = \alpha \vec{E}$	Сила Ампера:	$d\vec{F} = \frac{J}{a}[\vec{dl} \times \vec{B}]$		
Диэлектрическая проницаемость:	$\vec{D} = (1 + 4\pi\alpha)\vec{E} = \varepsilon\vec{E}$	Закон Био-Савара-Лапласа:	$d\vec{B} = \frac{1}{c} \frac{[\vec{j} \times \vec{r}]}{r^3} dV, \ d\vec{B} = 0$		
Теорема Гаусса (Дифф. форма):		Магнитный момент рамки:	$\frac{J}{c} \frac{[d\vec{l} \times \vec{r}]}{r^3}$ $\vec{m} = \frac{J}{c} \vec{s}$		
Теорема Гаусса (Интегральная форма):	$ \oint_{S} \vec{E} d\vec{S} = 4\pi (q + q_{\text{pol}}) $ $ q_{pol} = -\oint_{S} \vec{P} d\vec{S} $ $ \oint_{S} \vec{D} d\vec{S} = 4\pi q $	Момент сил, действующих на рамку с током:	$ec{M} = [ec{m} imes ec{B}]$		
Граничные условия на границе раз- дела двух диэлектриков:	$\begin{array}{ccc} D_{1n} - D_{2n} &= 4\pi\sigma \\ E_{1\tau} - E_{2\tau} &= 0 \end{array}$	Теорема о циркуляции магнитного поля в вакууме (Инт. форма):	$\oint_{L(S)} \vec{B} d\vec{l} = \frac{4\pi}{c} J$		
Электрическая ёмкость проводника:	$C = \frac{q}{\varphi}$	Теорема о циркуляции магнитного поля в вакууме (Дифф. форма):	$\cot \vec{B} = \frac{4\pi}{c}\vec{j}$		
Электрическая ёмкость конденсатора:	$C = \frac{q}{\Delta \varphi}$	Магнитное поле соленоида:	$B = \frac{4\pi}{c}nJ = \frac{4\pi}{c}i$		
Электрическая ёмкость плоского конденсатора:	$C = \frac{q}{\Delta \varphi} = \frac{\varepsilon S}{4\pi d}$	Теорема Гаусса для магнитного поля (Инт. форма):	$\oint_S \vec{B} d\vec{S} = 0$		

Электричество и магнетизм.					
Теорема Гаусса для магнитного поля (Дифф. форма):	$\operatorname{div} \vec{B} = 0$	Установление тока в цепи, содержащей индуктивность:	$J(t) = \frac{\mathcal{E}}{R} \left(1 - \exp\left(-\frac{R}{L}t \right) \right)$		
Вектор намагниченности:	$ec{I}=rac{dec{m}}{dV}$	Магнитная энергия тока:	$\frac{\mathcal{E}}{R} \left(1 - \exp\left(-\frac{R}{L}t\right) \right)$ $U = \int_0^J \delta A = \frac{LJ^2}{2c^2} = \frac{J\Phi}{2L}$		
Связь вектора намагниченности с молекулярными токами (Инт. форма):	$J_m = c \oint_L \vec{I} d\vec{l}$	Плотность энергии магнитного поля:	$\frac{\underline{J\Phi}}{\underline{Jc}} = \frac{\Phi^2}{\underline{2L}}$ $u_m = \frac{\mu \vec{H}^2}{8\pi} = \frac{\vec{B} \cdot \vec{H}}{8\pi} = \frac{\vec{B}^2}{8\pi\mu}$		
Связь вектора намагниченности с молекулярными токами (Дифф. форма):	$\vec{j}_m = c \text{ rot } \vec{I}$	Взаимная энергия токов (собственный - own, взимный - mutual):	$\begin{array}{cccc} dU & = & dU_{\rm o} & + \\ dU_{\rm m}, & dU_{\rm o} & = \\ \frac{1}{c^2} \sum_{i=1}^n L_{ii} J_i dJ_i, \\ dU_{\rm m} & = \\ \frac{1}{c^2} \sum_{i,k=1; i \neq j}^n L_{ik} J_i dJ_k \end{array}$		
Вектор магнитной напряженности:	$\vec{H} = \vec{B} - 4\pi \vec{I}$	Взаимная энергия токов:	$\begin{array}{ccc} U &= U_{\rm o} + U_{\rm m} &= \\ \frac{1}{2c^2} \sum_{i,k}^n L_{ik} J_i J_k & & & & & & & & & & & & & & & & & & &$		
Теорема о циркуляции магнитного поля в веществе (Инт. форма):	$\oint_L \vec{H} d\vec{l} = \frac{4\pi}{c} J$	Теорема взимности:	$L_{ik} = L_{ki}$		
Теорема о циркуляции магнитного поля в веществе (Дифф. форма):	$rot \vec{H} = \frac{4\pi}{c}$	Взаимная индуктивность двух катушек на общем магнитопроводе:	$L_{12} = L_{21} = \sqrt{L_1 L_2}$		
Граничные условия для вектора магнитной индукции:	$\left(\vec{B}_1 - \vec{B}_2\right)\vec{n} = 0$	Ток смещения:	$ \cot \vec{H} = \frac{4\pi}{c} \left(\vec{j} + \vec{j}_m \right) div \vec{j}_m = -\operatorname{div} \vec{j} = \frac{\partial \rho}{\partial t} \vec{j}_m = \frac{1}{4\pi} \frac{\partial \vec{D}}{\partial t} $		
Граничные условия для вектора магнитной напряженности:	$\left(ec{H}_1-ec{H}_2 ight)ec{ au}=rac{4\pi}{c}i_N$	1 уравнение Макссвелла (Интегральная форма):	$ \oint_{S(V)} \vec{D}d\vec{S} = 4\pi Q, Q = \int_{V} \rho dV $		
Граничные условия для вектора магнитной напр. (В векторной форме):	$[\vec{n} \times (\vec{H}_1 - \vec{H}_2)] = \frac{4\pi}{c}\vec{i}$	2 уравнение Макссвелла (Интегральная форма):	$ \oint_{L(S)} \vec{E} d\vec{l} = $ $ -\frac{1}{c} \int_{S} \frac{\partial \vec{B}}{\partial t} d\vec{S} $		
Магнитная восприимчивость (κ):	$ec{I}=\kappaec{H}$	3 уравнение Макссвелла (Интегральная форма):	$\oint_{S(V)} \vec{B} d\vec{S} = 0$		
Магнитная проницаемость (μ) :	$\vec{B} = \mu \vec{H}, \mu = 1 + 4\pi \kappa$	4 уравнение Макссвелла (Интегральная форма):	$ \oint_{L(S)} \vec{H} d\vec{l} = \\ \frac{4\pi}{c} (J + J_{cu}) = \\ \frac{4\pi}{c} J + \frac{1}{c} \int_{S} \frac{\partial \vec{D}}{\partial t} d\vec{S} \\ \text{div } \vec{D} = 4\pi\rho $		
Магнитная напряженность внутри намагниченного шара:	$\vec{H} = -\frac{4\pi}{3}\vec{I}$	1 уравнение Макссвелла (Дифф. форма):	$\operatorname{div} \vec{D} = 4\pi\rho$		
Магнитная напряженность вне на- магниченного шара:	$\vec{H}=\vec{B}=rac{3(\vec{m}\cdot\vec{r})\vec{r}-\vec{m}r^2}{r^5},$ $\vec{m}=rac{4\pi}{3}R^3\vec{I}$ — магнитный момент шара.	2 уравнение Макссвелла (Дифф. форма):	$\cot \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$		
Первое правило Кирхгофа для магнитных цепей:	$\sum_{i} \Phi_{i} = 0$	3 уравнение Макссвелла (Дифф. форма):	$\operatorname{div} \vec{B} = 0$		
Второе правило Кирхгофа для магнитных цепей:	$\sum_{i} \Phi_{i} R_{mi} = \sum_{k} F_{k}$	4 уравнение Макссвелла (Дифф. форма):			
ЭДС индукции:	$\mathcal{E}_{\mathrm{ind}} = -\frac{1}{c} \frac{d\Phi}{dt}$	Граничные условия:	$D_{2n} - D_{1n} = 4\pi\sigma,$ $E_{2t} = E_{1t}, B_{2n} = E_{1t}$ $E_{2t} = H_{1t} = \frac{4\pi}{c} i_N$		
ЭДС индукции (Дифф. форма):	$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$	Уравнение бегущей волны:	$\begin{array}{rcl} u(x,t) & = & a\cos[k(x-t)] \\ v(t) & = & a\cos[k(x-t)] \end{array}$		
Переход в СО, которая движется относительно старой со скоростью \vec{v} :	$\vec{E}' = \vec{E} + \frac{1}{c} [\vec{v} \times \vec{B}]$ $\vec{B}' = \vec{B} - \frac{1}{c} [\vec{v} \times \vec{E}]$	Угловая частота:	$kv = \omega$		
Индуктивность (самоиндукция):	$\Phi = \frac{1}{c}LJ$ $\Phi_{12} = \frac{1}{c}L_{12}J_2$	Уравнение бегущей волны:	$u(x,t) = a\cos(kx - \omega t)$		
Взаимная индукция (Φ_{12} - поток поля, создаваемого первым проводником, проходящее через второй):	C	Длина волны:	$\lambda = \frac{2\pi}{k}$		
Индуктивность идеального сол-да:	$L = \frac{4\pi\mu N^2 S}{l}$	Уравнение стоячей волны (простой случай):	$u(x,t) = a\cos(kx - \omega t) + a\cos(kx + \omega t) = 2a\cos kx \cos \omega t$		

	Электричество и магнетизм.					
Индуктивность тороидальнойой катушки ($a << R$ для второй ф-лы):	$L = 2\mu N^2 b \ln\left(1 + \frac{a}{R}\right), L = \frac{2\mu N^2 S}{R}$	Ёмкость коаксильного кабеля (a - внутренний радиус, d - внешний):	$C_1 = \frac{\tau}{\Delta \varphi} = \frac{\varepsilon}{2 \ln(d/a)}$			
Е-волна в волноводе	$ec{H} \perp z$	Индуктивность коаксильного кабеля $(a$ - внутренний радиус, d - внешний):	$L_1 = 2\mu \ln(d/a)$			
Н-волна в волноводе:	$ec{E} \perp z$	Скорость волны в 2-проводной линии, кабеле:	$v = \frac{c}{\sqrt{L_1 C_1}} = \frac{c}{\sqrt{\varepsilon \mu}}$			
Уравнение Гельмольца:	$ \begin{vmatrix} \frac{1}{v^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2}, \\ v = c/\sqrt{\varepsilon \mu} \end{aligned} $	Вектор Пойнтинга (вектор плотности потока энергии):	$\vec{S} = \frac{c}{4\pi} [\vec{E} \times \vec{H}]$			
Уравнение Гельмольца $(\vec{E}(\vec{r},t)=\vec{E}_1(\vec{r})e^{-i\omega t})$:	$v = c/\sqrt{\varepsilon\mu}$ $\frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} + \frac{\omega^2}{c^2} \vec{E} = 0$	Теорема Пойнтинга (Интегральная форма):	$\frac{dW}{dt} = -\oint_{\Pi(V)} \vec{S} d\vec{P} i - Q, Q = \int_{V} j E dV$			
Н-волна:	$E_y = E_y(x, z, t) = E_0 \sin\left(\frac{\pi n}{a}x\right) \cdot \exp\left(ik_z z - i\omega t\right)$	Теорема Пойнтинга (Дифф. форма):	$\frac{\partial w}{\partial t} \doteq -\vec{j}\vec{E} - \operatorname{div}\vec{S}$			
Уравнение волны (\vec{E}) , бегущей в влоноводе вдоль оси z , $\vec{E_0} OY, \vec{E}(\vec{r},t) = \vec{E_0}(x,y) \exp(ik_z z - i\omega t)$	$E_y = E_y(x, z, t) = E_0 \sin\left(\frac{\pi n}{a}x\right) \cdot \exp\left(ik_z z - i\omega t\right)$	Закон отражения:	$\theta = \theta'$			
Критическая (мин.) частота $(\vec{E_0} OY)$:	$\omega_{\rm cr} = \pi c/a$	Закон преломления:	$n_1 \sin \theta = n_2 \sin \theta''$			
Уравнение волны (\vec{E}) , бегущей в влоноводе вдоль оси z:	$E_x = A_x \cos(k_x x) \sin(k_y y)$ $E_y = A_y \sin(k_x x) \cos(k_y y)$	Показатель преломления:	$n = \frac{c}{v}$			
Магнитное поле ТЕ-волны $(E_y = E_0 \sin\left(\frac{\pi x}{a}\right) \exp\left(ik_z z - i\omega t\right), E_x = E_z = 0)$:		Амплитудные коэффициенты отражения (r) и прохождения (d) волны:	$r = \frac{E_0'}{E_0}, d = \frac{E_0''}{E_0}$			
Отражение электромагнитной волны от плоской поверхности идеального проводника (OZ перпендикулярна поверхности):	$ E_x^{(1)} = E_x + E_x' = E_0 \left(e^{i(kz_z - \omega t)} - e^{i(-k_z z - \omega t)} \right) = = 2iE_0 e^{-i\omega t} \sin kz B_y^{(1)} = B_y + B_y' = B_0 \left(e^{i(k_z z - \omega t)} + e^{i(k_z' z - \omega t)} \right) = = 2B_0 e^{-i\omega t} \cos kz $	s-поляризованная волна (вектор \vec{E} перпендикулярен плоскости падения):	$r_{\perp} = -\frac{\sin(\theta - \theta'')}{\sin(\theta + \theta'')}, d_{\perp} = \frac{2\sin\theta''\cos\theta}{\sin(\theta + \theta'')}$			
Отражение электромагнитной волны от плоской поверхности идеального проводника (\vec{E}, \vec{B}, OZ) перпендикулярна поверхности):	$E_{0x} = -E'_{0x},$ $B'_{0y} = -E'_{0x},$ $B'_{0y} = B_{0y}$	р-поляризованная волна (вектор \vec{E} перпендикулярен плоскости падения):				
Соотношение между амплитудами полей в бегущей волне:	$\sqrt{\varepsilon}E = \pm \sqrt{\mu}H$	Коэффициент отражения:	$R = \frac{(I_{\text{reflected}})_z}{(I_{\text{coming}})_z}$			
Плотность импульса электромагнитой волны:	$\vec{g} = \frac{1}{c^2} \vec{S} = \frac{1}{4\pi c} [\vec{E} \times \vec{H}]$	Коэффициент прохождения:	$D = \frac{(I_{\text{through}})_z}{(I_{\text{coming}})_z}$			
Вектор магнитной напряженности, создаваемый движущимся зарядом:	$ec{H} = rac{1}{c} [ec{v} imes ec{E}]$	Коэффициент отражения (ещё формула):	$R = \frac{n_1 E_0'^2 \cos \theta'}{n_1 E_0^2 \cos \theta} = r^2$			
Средняя мощность, излучаемая диполем с дипольным моментом $\vec{p} = \vec{p}_0 \cos \omega t$ (законом Рэлея):	$\bar{Q} = \frac{p_0^2}{3c^3}\omega^4$	Коэффициент прохождения (ещё формула):	$D = \frac{n_2 E_0'' \cos \theta^n}{n_1 E_0^2 \cos \theta} = \frac{n_2 \cos \theta''}{n_1 \cos \theta} d^2$			
Спектр волн в объёмном резонаторе (Минимальная частота - ω_{101} , если $a>b$ и ω_{011} , если $a< b$):	$\frac{\omega^2}{c^2} = \frac{\pi^2 n^2}{a^2} + \frac{\pi^2 m^2}{b^2} + \frac{\pi^2 p^2}{h^2}$	Угол Брюстера:	$ ext{tg} heta_{ ext{E}} = n_2/n_1$			
Соотношение между амплитудами тока и напр. в 2-полосной линии $(L_1 = \frac{dL}{dx}, C_1 = \frac{dC}{dx})$:	$V_0 = \frac{1}{c} \sqrt{\frac{L_1}{C_1}} J_0$	Уравнение свободных колебаний:	$\frac{dJ}{dt} + JR + \frac{q}{C} = 0,$ $\ddot{q} + 2\gamma\dot{q} + \omega_0^2 q = 0$			

Электричество и магнетизм.				
Формула Томсона:	$T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{LC}$			
Коэффициент затухания (γ) :	$A(t) = q_0 e^{-\gamma t}$			
Время затухания:	$\tau = 1/\gamma$ $\delta = \gamma T = \frac{2\pi\gamma}{\omega}$			
Логарифмический коэффициент за-	$\delta = \gamma T = \frac{2\pi\gamma}{\omega}$			
тухания:				
Добротность:	$Q = \omega/2\gamma = \frac{1}{R}\sqrt{\frac{L}{C}}$			
Добротность через энергию:	$Q = 2\pi \frac{W}{\Delta W}$ $L\ddot{q} + R\dot{q} + \frac{1}{C}q =$			
Вынужденные колебания:				
АЧХ при вынужденных колебаниях:	$\begin{array}{c} V_0 & = \\ \frac{\omega_0^2}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}} \mathcal{E}_0 \\ \frac{V_{\max}}{V_{st}} &= \frac{\omega_0}{2\gamma} = Q \\ \Delta \omega &= \frac{\omega_0}{Q} \end{array}$			
V_{st} - амплитуда при малых частотах:	$\frac{V_{\text{max}}}{V_{st}} = \frac{\omega_0}{2\gamma} = Q$			
Ширина резонансной кривой на уровне $(V = \frac{V_0}{\sqrt{2}})$:	$\Delta\omega = \frac{\omega_0}{Q}$			
Импеданс конденсатора:	$Z_C = \frac{1}{i\omega C}$ $Z_L = iaL$			
Импеданс катушки индуктивности:				
Формула Эйлера:	$e^{ix} = \cos x + i\sin x$			
Сложение импедансов:	Аналогично R при			
	постоянном токе.			
Закон Джоуля-Ленца:				
Спектр амплитудно модулированных	$S(t) = A_0 e^{i\omega_0 t} +$			
колебаний $(x(t) = A(t) \cos \omega_0 t, A(t) =$	$\frac{mA_0'}{2}e^{i(\omega_0-\Omega)t}$ +			
$A_0(1+m\cos\Omega t):$	$\frac{mA_0}{2}e^{i(\omega_0+\Omega)t}$			
Спектр фазово модулированных колебаний $(x(t) =$	$S(t) = A_0 e^{i\omega_0 t} - \frac{\beta A_0}{2} e^{i(\omega_0 - \Omega)t} + \frac{\beta A_0}{2} e^{i(\omega_0 - \Omega)t}$			
$A_0 \cos(\omega_0 t + \beta \sin \Omega t), \Omega \ll \omega$:	$\frac{\beta A_0}{2} e^{i(\omega_0 + \Omega)t}$			
Ряд Фурье $(\omega_k = \frac{2\pi k}{T} = k\omega, \omega = \frac{2\pi}{T})$:	$\frac{\frac{2}{2}e^{t}}{\frac{mA_{0}}{2}e^{i(\omega_{0}+\Omega)t}} + \frac{\frac{mA_{0}}{2}e^{i(\omega_{0}+\Omega)t}}{\frac{\beta A_{0}}{2}e^{i(\omega_{0}-\Omega)t}} + \frac{\frac{\beta A_{0}}{2}e^{i(\omega_{0}+\Omega)t}}{\frac{\beta A_{0}}{2}e^{i(\omega_{0}+\Omega)t}} = \sum_{k=-\infty}^{+\infty} C_{k}e^{i\omega_{k}t}$			
Коэффициент в ряде Фурье:	1 (' + 1 + (+)			
Коэффициент в ряде Фурье (Ещё формула):	$C_k - \frac{1}{T} \int_0^T f(t) dt$ $\exp -i\omega_k t dt, \omega_k = \frac{2\pi k}{T}$ $C_k = \frac{1}{T} \int_{t_0}^{t_0+T} f(t) e^{-i\omega_k t} dt$			