Zusammenfassung LE7: Innovative IKT

5. Juni 2018

Überblick der Vorgehensmodelle zur Anwendungsentwicklung

Das V-Modell

Das V-Modell XT

Spiralmodell der Softwarentwicklung

Prinzipien agiler Softwareentwicklung

Agile Software-Entwicklung – Beispiel SCRUM

- Komplexe Entwicklungsprozesse nicht im Voraus exakt planbar
- Selbstorganisierendes Team:
 - Scrum Master: sorgt für Einhaltung SCRUM-Prinzip,
 Planungsvorgaben kontrollieren
 - o Product Owner: legt Entwicklungsziel fest, verwaltet Budget
 - Team: = Mitarbeiter; selbstorganisierte Aufgabenverteilung,
 Realisierungszeitpunkt festlegen
 - o Product Backlog: dort werden alle Aufgabenpakete aufgeführt

• Daily Standup:

- o Kurzes, tägliches Status-Meeting
- o "Was habe ich gemacht, was plane ich zu tun?"

• Sprint Planning:

- Festlegung der zu entwickelnden Anforderungen
- Festlegung der Art und Weise der Umsetzung

• Sprint Retrospektive

- o Kritische Hinterfragung der Arbeitsweise
- Planung von Verbesserungsmaßnahmen

Methoden zur Aufwandsschätzung

Kategorie	Ausgewählte Methoden
Algorithmische Methoden	COCOMO II PRICE-Schätzmodelle IBM-Faktor-Methode Zeit-Kosten-Planung
Vergleichsmethoden	Function Point Methode Schätzung über Analogie Erfahrungsdatenbank
Kennzahlenmethoden	Wolvertonmethode Boeing-Methode Aron-Methode Phasenorientierte Verteilung von Zeit und Ressourcen
Vorgehensweisen und Querschnittsverfahren	Expertenschätzung Tragfähigkeit (Price-to-win Methode) Verfügbarkeit (Parkinson-Methode) Bottom-Up-Schätzung Top-Down-Schätzung

Software-Kosten-Relationen bei Eigenentwicklung

Projekt - Produkt - Prozess

Projekt

- o einmalige Zielvorgabe
- o einmalige zeitliche, finanzielle und andere Begrenzungen
- o Abgrenzung gegenüber anderen Vorhaben
- o Projektspezifische Organisation

Produkt

 materieller oder immaterieller Gegenstand, der den Output von Projekten darstellt

Prozess

 Abfolge von Unternehmensverrichtungen, die der Leistungserstellung dient

Alternativen der SW Einführung

- Stichtagsumstellung (Komplette Umstellung von alt auf neu)
- Parallelisierung (Übergangsweise werden sowohl das alte als auch das neue System genutzt)
- Teilweise Einführung (Kombination von Stichtagsumstellung und Parallelisierung für einzelne Teile)

Einordnung von IS-Architekturen

Definition IS-Architektur:

"Eine IS-Architektur ist die <u>strukturierende Abstraktion</u> existierender oder geplanter <u>Informationssysteme</u>."

Ziele der Entwicklung einer IS-Architektur

- Gemeinsame Kommunikationsplattform f
 ür alle, die an der Gestaltung von Informationssystemen beteiligt sind
- Erhöhung der Planbarkeit und Steuerbarkeit der Gestaltung der betrieblichen Anwendungslandschaft

Management der Aneignung von IKT

Modell der Technikauswirkung

Technik ändert sich fortlaufend, doch nicht jeder Bereich muss kontinuierlich beobachtet und beurteilt werden. Aus dem Modell ist ersichtlich, welche Potenziale der IKT relevant sind:

Technische Entwicklungen der Hard- und Software

			Funktionen der IKT		
			Speicherung	Verarbeitung	Kommuni- kation
Trends für IKT Anwendungen	L e i	Kapazität	Umfang der	Umfang der System- Funktionen	Größe des Netzwerks, Population
	s t u	Qualität	Angemes- sen heit der Daten	Benutzer- freundlich- keit	Angemes- senheit der Medien
	n g	Stückkosten	Kosten der Daten- verwaltung	Kosten per -Nutzer -Transaktion	Kosten per -Nachricht -Nutzer

Die Pfeile indizieren, ob die jeweilige Ausprägung steigt (z.B. Umfang der Systemfunktionen), sich nicht ändert (z.B. Angemessenheit der Daten) oder sinkt (z.B. Kosten der Datenverwaltung).

Abgrenzung Diffusion - Adoption - Akzeptanz

Klassisches Diffusionsmodell (nach Rogers)

4 Eckpunkte der Diffusionstheorie:

- Innovation selbst
- Kommunikation über Kanäle
- Zeit
- Soziales System

Eckpunkt Innovation:

Innovationseigenschaften beeinflussen die Adoption und die Geschwindigkeit der Innovationsdiffusion

Kommunikation

Definition Kommunikation: darunter versteht man ein Ein- und Zweiwege-Informationsfluss, der ein kooperatives Handeln zwischen einer Adoptereinheit, die von der Innovation Kenntnis hat sowie einer, die noch keine Kenntnis besitzt, ermöglicht.

Adoptereinheiten sind durch Kommunikationskanäle verbunden welche in Massenmedien und Interpersonale Kommunikation unterschieden werden können.

Adopterkategorien

Anhand der Innovationsfreudigkeit können Adopter in folgende Kategorien eingeteilt werden:

Die Adoptionsrate beschreibt die Anzahl von Adoptern über die Zeit hinweg.

Verarbeitungsmanagement

- Aufgaben: Organisation, Steuerung und Kontrolle aller Daten und Informationen sowie deren Veränderungen (Transformation, Aggregation & Spezifizierung)
- Herausforderungen: finden eines Gleichgewichts zwischen nutzungsbedingten Verarbeitungsanforderungen und Möglichkeiten der Durchführung des Verarbeitungsbetriebs
- Zentrale vs Dezentrale Verarbeitung

Dezentrale	Zentrale
Geringere Anfangskosten	Größere Hardwarefähigkeiten
Bessere Größenvariation	Bessere Lastverteilung
Innovativ	Weniger Redundanz
Autonome Nutzer	Höhe Integrität der Daten
Einfachere Datenpflege	Einheitliche Verfahren anwendbar
Individuelle Verfahren anwendbar	Qualifizierteres Personal
Kosten sind zurechenbar	Weniger Aus- und Fortbildungsaufwand

Moore's Law

Die komplexität eines Komponenten verdoppelt sich in einem 12 Monate zyklus, während die Kosten sich um 30 - 50 Prozent verringern. (Bsp: Verdoppelung der Transistoren auf Mikrochips)

Seiten 52 - 62

Definition Cloud Computing:

IT-basiertes Bereitstellungsmodell, bei dem Ressourcen, sowohl in Form von Infrastruktur, als auch Anwendungen und Daten, als verteilter Dienst über das Internet durch einen oder mehrere Leistungserbringer bereitgestellt werden.

Perspektiven des Cloud Computings:

Wertschöpfungsnetzwerk:

