Generalizing the Dot Product

Spencer T. Parkin

November 17, 2023

Hello, Paul. Consider $a \cdot B$ where a is a vector and B is an n-dimensional blade (or n-blade) with $n \geq 1$. We are very familiar with the case of n = 1, and we really just take it as a definition to understand the meaning of $a \cdot B$ when B is a vector. But how do we generalize this idea to higher dimensions? To do that, I like to take a step back and consider $a \wedge B$. The outer product is used to build up blades. You can think of the vector a in this case as being used to extrude B into a new dimension, provided a really does go into a dimension B does not. If this is not the case, then $a \wedge B$ collapses to zero. So to intuitively grasp $a \cdot B$, we simply think of it as doing the opposite of $a \wedge B$. That is, $a \cdot B$ is taking B and collapsing it down by one dimension. The part of a that is perpendicular to B, if any, is the only part of a that extrudes B to get $a \wedge B$ non-zero. Similarly, the only part of a that is parallel to B, if any, is the only part of a that collapses B to get $a \cdot B$ non-zero.

So let's look at $a \cdot B$ when B is a 2-blade. Like you said, we can write $a \cdot B = a \cdot (b \wedge c)$ with b perpendicular to c, without loss of generality, but we don't need to introduce the geometric product here. Furthermore, if we let a_{\perp} be the part of a perpendicular to B, and a_{\parallel} be the part of a parallel to B, then we can choose b such that $b = a_{\parallel}$, and write...

$$a \cdot B = (a_{\perp} + a_{\parallel}) \cdot (b \wedge c) = a_{\parallel} \cdot (b \wedge c) \equiv (a_{\parallel} \cdot b)c = |a_{\parallel}|^2 c$$

...where here I have used the symbol \equiv to denote an equality that follows by definition. (Again, instead of extruding a blade into a new dimension, if we collapse B down into a lower dimensional blade using the direction of a_{\parallel} , we get a vector in the direction of c.)

Note that up to now, getting $a \cdot B$ into pure vector form $(|a_{\parallel}|^2 c)$ was all about our clever choices for how to factor B into vectors b and c. But if we chose any vector b and c such that $B = b \wedge c$, then how do we arrive at...

$$a \cdot (b \wedge c) = (a \cdot b)c - (a \cdot c)b$$

Well, going back to the vectors b and c we had chosen before, let's play with what we had. We can write...

$$a \cdot B = (a_{\parallel} \cdot b)c = (a_{\parallel} \cdot b)c - (a_{\parallel} \cdot c)b$$

...because $a_{\parallel} \cdot c = 0$. Now replace a_{\parallel} with $a - a_{\perp}$ to get...

$$a \cdot B = (a \cdot b)c - (a \cdot c)b$$

But this is still working under the assumption of our original choice of vectors for b and c. To generalize here, I think we have to look at...

$$b \wedge c = (b + \gamma c) \wedge c = b \wedge (c + \beta b)$$

...for any scalars β and γ , and then try to convince ourselves that the original formula will continue to hold. For example, let's replace b with $b + \gamma c$, and then see what happens to our formula. We get...

$$a \cdot B = (a \cdot b)c - (a \cdot c)b$$

$$= (a \cdot (b + \gamma c))c - (a \cdot c)(b + \gamma c)$$

$$= (a \cdot b)c + \gamma(a \cdot c)c - (a \cdot c)b - \gamma(a \cdot c)c$$

$$= (a \cdot b)c - (a \cdot c)b$$

As we can see, the formula was not modified by the replacement. Similiarly, replacing c with $c+\beta b$ should give the same result. This shows that the formula holds for any factorization of B, because any one factorization can be reached from any other factorization by a sequence of such replacements.

Anyhow, that's my attempt to generalize the dot product after years of not doing any GA. I can't promise I didn't make a mistake, but it seems sound. A further generalization, by the way, would be to consider $A \cdot B$ where A is an m-blade and B is an n-blade. The result will be of grade |m-n|.