

https://www.youtub e.com/embed/O1Z QtTwPwYk? enablejsapi=1

Deep Learning Modell

https://www.youtub e.com/embed/qFES 8S9D8RM? enablejsapi=1

Architektur: Neuronale Netzstruktur

Neuronales Netz = einfache Dartstellung komplexer Rechnung einfacher Bausteine

LinReg mit Basisfunktionen aus LinReg mit Basis aus Linreg mit Basis aus ...

Modell = Architektur mit Satz von Parametern

Layer

Layer = Level für Lineare Regression Mehrere Knoten (Perceptronen)

Knoten = gewichtete Summe & Aktivierungsfunktion

Inputs Weights Net input Activation funtion funtion output 0.0 (w1 1.016) **-**1.062 → 0.0 0.0 (-1.016 1.0

https://www.youtub e.com/embed/ynFZ 3wBqsao? enablejsapi=1

Wofür Aktivierung?

Ohne Aktivierung: N Layer = 1 Layer

Lineare Kombination von Linearkombinationen ist eine Linearkombination

Nicht-Lineare Aktivierung ermöglicht komplexe Modellierung

$$egin{aligned} z_{1,j} &= \sum_{i=1}^n c_{1,ij} \cdot x_i \ z_2 &= \sum_{j=1}^m c_{2,j} \cdot z_{1,j} \ &= \sum_{j=1}^m c_{2,j} \cdot \left(\sum_{i=1}^n c_{1,ij} \cdot x_i
ight) \ &= \sum_{i=1}^n \left(\sum_{j=1}^m c_{2,j} \cdot c_{1,ij}
ight) \cdot x_i \ &= \sum_{i=1}^n c_{\mathrm{ges},i} \cdot x_i \end{aligned}$$

$$egin{aligned} \mathbf{z_1} &= \mathbf{W_1}\mathbf{x} + \mathbf{b_1} \ \mathbf{z_2} &= \mathbf{W_2}\mathbf{z_1} + \mathbf{b_2} \ &= \mathbf{W_2}(\mathbf{W_1}\mathbf{x} + \mathbf{b_1}) + \mathbf{b_2} \ &= \mathbf{W_2}\mathbf{W_1}\mathbf{x} + \mathbf{W_2}\mathbf{b_1} + \mathbf{b_2} \ &= \mathbf{W_{ges}}\mathbf{x} + \mathbf{b_{ges}} \end{aligned}$$

https://www.youtub e.com/embed/IRN7

Sigmoid

$$\sigma(x)=rac{1}{1+e^{-x}}$$

$$\operatorname{ReLU}(x) = \max(0, x)$$

$$anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

Wahl der Aktivierung:

- Output: Wertebereich Target
- Hidden: Effizienz (?)

Mehr zu Aktivierungen

Sigmoid

$$\sigma(x) = rac{1}{1+e^{-x}} \ \sigma'(x) = \sigma(x)(1-\sigma(x))$$

$$anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}} \ anh'(x)=1- anh^2(x)$$

$$\operatorname{ReLU}(x) = \max(0, x)$$

$$ext{ReLU}'(x) = egin{cases} 0 & ext{if } x < 0 & ullet & ext{Output: Wertebereich Ta} \ 1 & ext{if } x > 0 & ullet & ext{Hidden: Effizienz (ReLU)} \end{cases}$$

Wahl der Aktivierung:

- Output: Wertebereich Target

Mehr zu Aktivierungen

Dying ReLU:

- Permanent x < 0
- ReLU & Ableitung = 0
- Perceptron lernt nicht
- Wird Unbrauchbar

$$ext{ReLU}(x) = \max(0,x) \ ext{ReLU}'(x) = egin{cases} 0 & ext{if } x < 0 \ 1 & ext{if } x > 0 \end{cases}$$

Dying ReLU:

- Permanent x < 0
- ReLU & Ableitung = 0
- Perceptron lernt nicht
- Wird Unbrauchbar

Leaky
$$\operatorname{ReLU}(x) = \max(\alpha x, x)$$

$$ext{Leaky ReLU'}(x) = egin{cases} lpha & ext{if } x < 0 \ 1 & ext{if } x > 0 \end{cases}$$

$$ext{ALReLU}(x) = egin{cases} x & ext{if } x > 0 \ |lpha \cdot x| & ext{if } x < 0 \end{cases}$$
 nützlich bei sehr seltener Aktivierung $ext{ALReLU}'(x) = egin{cases} 1 & ext{if } x > 0 \ -lpha & ext{if } x < 0 \end{cases}$

$$\operatorname{ReLU}(x) = \max(0, x)$$

$$ext{ReLU}'(x) = egin{cases} 0 & ext{if } x < 0 \ 1 & ext{if } x > 0 \end{cases}$$

PReLU, RReLU, ELU, SELU, GELU, Swish, Mish, ReLU6, ... 8

https://www.youtub e.com/embed/32bE K-m_30l? enablejsapi=1

Implementation

	Pytorch f	Tensorflow G
Eigenschaften	Pythonic, einfache Syntax schnelleres Training dynamischer Berenchnungsgraph höhere Flexibilität	Skalierbar Speichereffizient statisch oder dynamisch
Hauptanwendun g	Forschung Prototyping	Grossprojekte Produktion
Community	Forschung	Industrie
Pakete	TorchText, TorchVision, TorchAudio	TF Extended, TF Lite, TF Serving

Beide Frameworks sehr nützlich & weit verbreitet

Mathematik identisch & Aufbau sehr ähnlich

Wahl meist durch Arbeitsumfeld bestimmt

Architektur entwerfen

https://www.youtub e.com/embed/Vakb vsvzbD4? enablejsapi=1

Wenn möglich, bereits existierende Architektur / Modelle verwenden

- 1. Aufgabe klar definieren (Klassifikation, Regression, Erkennung, ...)
- 2. Ein- und Ausgabedimension festlegen (MNIST: In: 784; Out: 10)
- 3. Geeignete Art von Schichten bestimmen (Linear, Convolutional, ...)
- 4. Anzahl Schichten und Neuronen pro Schicht festlegen
- 5. Aktivierungsfunktionen festlegen (Hidden & Output)

• MNIST Classifier

MNIST Classifier

```
1 from torch import nn
   import torch.nn.functional as F
   class Classifier(nn.Module):
       def init (self):
           super(). init ()
10
11
12
       def forward(self, x):
13
14
15
16
17
           return x
18
   model = Classifier()
20 output = model(data)
```

- MNIST Classifier
- 10 Outputs

```
1 from torch import nn
   import torch.nn.functional as F
   class Classifier(nn.Module):
       def init (self):
           super(). init ()
10
           self.fc4 = nn.Linear(784, 10)
11
12
       def forward(self, x):
13
14
15
16
           x = self.fc4(x)
17
           return x
18
19 model = Classifier()
20 output = model(data)
```

- MNIST Classifier
- 10 Outputs
- 3 Hidden Layer

```
1 from torch import nn
   import torch.nn.functional as F
   class Classifier(nn.Module):
       def init (self):
           super(). init ()
           self.fc1 = nn.Linear(784, 64)
           self.fc2 = nn.Linear(64, 64)
           self.fc3 = nn.Linear(64, 64)
10
           self.fc4 = nn.Linear(64, 10)
12
       def forward(self, x):
13
           x = self.fcl(x)
14
           x = self.fc2(x)
15
           x = self.fc3(x)
           x = self.fc4(x)
16
17
           return x
18
19 model = Classifier()
20 output = model(data)
```

- MNIST Classifier
- 10 Outputs
- 3 Hidden Layer

```
1 from torch import nn
   import torch.nn.functional as F
   class Classifier(nn.Module):
       def init (self):
           super(). init ()
           self.fc1 = nn.Linear(784, 64)
           self.fc2 = nn.Linear(64, 64)
           self.fc3 = nn.Linear(64, 64)
10
           self.fc4 = nn.Linear(64, 10)
12
       def forward(self, x):
13
           x = F.relu(self.fcl(x))
14
           x = F.relu(self.fc2(x))
15
           x = F.relu(self.fc3(x))
16
           x = self.fc4(x)
17
           return x
18
19 model = Classifier()
20 output = model(data)
```

- MNIST Classifier
- 10 Outputs
- 3 Hidden Layer
- Softmax activation

```
1 from torch import nn
   import torch.nn.functional as F
   class Classifier(nn.Module):
       def init (self):
           super(). init ()
           self.fc1 = nn.Linear(784, 64)
           self.fc2 = nn.Linear(64, 64)
           self.fc3 = nn.Linear(64, 64)
10
           self.fc4 = nn.Linear(64, 10)
12
       def forward(self, x):
13
           x = F.relu(self.fcl(x))
14
           x = F.relu(self.fc2(x))
15
           x = F.relu(self.fc3(x))
16
           x = F.softmax(self.fc4(x), dim=1)
17
           return x
18
19 model = Classifier()
20 output = model(data)
```

Implementation: Architektur https://www.youtub e.com/embed/rQ6v

```
-xkh4cA?
 1 import tensorflow as tf
                                                                1 from torch import nn
   from tensorflow.keras import layers
                                                                  import torch.nn.functional as F
                                                                                                             enablejsapi=1
   class Classifier(tf.keras.Model):
                                                                  class Classifier(nn.Module):
                                                                      def init (self):
       def init (self):
           super(Classifier, self). init ()
                                                                          super(). init ()
           self.fc1 = layers.Dense(64, activation='relu')
                                                                          self.fc1 = nn.Linear(784, 64)
           self.fc2 = layers.Dense(64, activation='relu')
                                                                          self.fc2 = nn.Linear(64, 64)
           self.fc3 = layers.Dense(64, activation='relu')
                                                                          self.fc3 = nn.Linear(64, 64)
10
           self.fc4 = layers.Dense(10, activation='softmax')
                                                                          self.fc4 = nn.Linear(64, 10)
11
                                                               11
12
                                                               12
                                                                      def forward(self, x):
       def call(self, x):
13
           x = self.fcl(x)
                                                               13
                                                                          x = F.relu(self.fcl(x))
14
           x = self.fc2(x)
                                                               14
                                                                          x = F.relu(self.fc2(x))
15
           x = self.fc3(x)
                                                              15
                                                                          x = F.relu(self.fc3(x))
16
           x = self.fc4(x)
                                                              16
                                                                          x = F.softmax(self.fc4(x), dim=1)
17
                                                              17
           return x
                                                                          return x
18
                                                              18
   model = Classifier()
                                                               19 model = Classifier()
   model.build((None, 784))
                                                               20 output = model(data)
21 model(data)
```

Tensorflow (Google)

• MNIST Classifier

- 10 Outputs
- 3 Hidden Layer
- Softmax activation

Implementation: Architektur https://www.youtub

```
1 from tensorflow.keras import models
                                                                  import torch.nn as nn
  model = models.Sequential([
       layers.Dense(64, activation='relu', input shape=(784,)
       layers.Dense(64, activation='relu'),
       layers.Dense(64, activation='relu'),
       layers.Dense(10, activation='softmax')
  ])
10 model(data)
                                                               10
                                                               11
```

Tensorflow (Google)

```
enablejsapi=1
model = nn.Sequential(
    nn.Linear(784, 64),
    nn.ReLU(),
    nn.Linear(64, 64),
    nn.ReLU(),
    nn.Linear(64, 64),
    nn.ReLU(),
```

14 output = model(data)

nn.Linear(64, 10),

nn.Softmax(dim=1)

Pytorch (Meta)

-4Y0iWQ?

MNIST Classifier

12)

13

- 10 Outputs
- 3 Hidden Layer
- Softmax activation

Trainingsloop

https://www.youtub e.com/embed/nWn _5fPEf_E? enablejsapi=1

```
1 trainloader = DataLoader(trainset, batch_size=256, shuffle=True)
```

1. Daten laden (batch)

```
1 for images, labels in trainloader:
```

2. Modell anwenden (forward)

```
prediction = model(images)
```

3. Loss berechnen

```
loss = criterion(prediction, labels)
```

4. Updates berechnen (backward)

```
1     optimizer.zero_grad()
2     loss.backward()
```

5. Update durchfüren

```
1 optimizer.step()
```

Trainingsloop entwerfen

https://www.youtub e.com/embed/StQ9 tHHgxaM? enablejsapi=1

- 1. Aufgabe klar definieren
- 2. Lossfunktion bestimmen
- 3. Berechnungsschritte definieren

https://www.youtub e.com/embed/FVhK vumlyZY? enablejsapi=1

- Definiert das Ziel des Trainings
- Ziel: Loss minimieren
- erlaubt Vergleich von Modellen
- verschiedene Losses für verschiedene Aufgaben

 Mean Squared Error (MSE): mittlerer quadratische Abweichung

$$MSE = rac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

 Mean Squared Error (MSE): mittlerer quadratische Abweichung

$$MSE = rac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

Binäre Cross-Entropy (BCE):
 vergleich von Wahrscheinlichkeit einer Klasse

$$BCE = -\sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$$

 Mean Squared Error (MSE): mittlerer quadratische Abweichung

$$MSE = rac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Binäre Cross-Entropy (BCE):
 vergleich von Wahrscheinlichkeit einer Klasse

$$BCE = -\sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$$

Cross-Entropy (CE):
 vergleich von Wahrscheinlichkeiten mehrerer Klassen

$$CE = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_{ic} \log(\hat{y}_{ic})$$

https://www.youtub e.com/embed/Y_Sm xn0Wfss? enablejsapi=1

mehr zu

Hintergrund

und

Varianter²⁵

• Loss: CrossEntropy

• Loss: CrossEntropy

```
1 criterion = nn.CrossEntropyLoss()
2
3
4
5
6
7
8
9
10
11
12
13
```

Pytorch

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4
5
6
7
8
9
10
11
12
13
```

Pytorch

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4 for e in range(epochs):
5
6
7
8
9
10
11
12
13
```

Pytorch

Epoche: alle Daten trainieren

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4 for e in range(epochs):
5
6    for images, labels in trainloader:
7
8
9
10
11
12
13
```

Pytorch

Batchweise Input & Target

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4 for e in range(epochs):
5
6     for images, labels in trainloader:
7         prediction = model(images)
8         loss = criterion(prediction, labels)
9
10
11
12
13
```

Pytorch

Forward-Pass

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4 for e in range(epochs):
5
6    for images, labels in trainloader:
7         prediction = model(images)
8         loss = criterion(prediction, labels)
9
10         optimizer.zero_grad()
11         loss.backward()
```

Pytorch

Backward-Pass

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
2 optimizer = optim.Adam(model.parameters(), lr=0.003)
3
4 for e in range(epochs):
5
6     for images, labels in trainloader:
7          prediction = model(images)
8          loss = criterion(prediction, labels)
9
10          optimizer.zero_grad()
11          loss.backward()
12          optimizer.step()
```

Pytorch

Update

- Loss: CrossEntropy
- Optimizer: Adam

```
1 criterion = nn.CrossEntropyLoss()
 2 optimizer = optim.Adam(model.parameters(), lr=0.003)
   for e in range(epochs):
       running loss = 0
       for images, labels in trainloader:
           prediction = model(images)
           loss = criterion(prediction, labels)
           optimizer.zero grad()
10
           loss.backward()
11
12
           optimizer.step()
13
           running loss += loss.item()
14
```

Pytorch

https://www.youtub e.com/embed/sjga-FLKP9k? enablejsapi=1

- Loss: CrossEntropy
- Optimizer: Adam

```
criterion = nn.CrossEntropyLoss()
 2 optimizer = optim.Adam(model.parameters(), 1r=0.003)
   for e in range(epochs):
       running loss = 0
       for images, labels in trainloader:
           prediction = model(images)
           loss = criterion(prediction, labels)
10
           optimizer.zero grad()
           loss.backward()
11
12
           optimizer.step()
13
           running loss += loss.item()
14
```

Tensorflow

Pytorch

Update

Ableitung der Kosten -> Richtung für Verbesserung -> Update

Gradient Descent
$$\; heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \;$$

 $\mid ext{Lernrate} \; lpha \mid$

Update

Ableitung der Kosten -> Richtung für Verbesserung -> Update

Gradient Descent
$$\, heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \,$$

Lernrate α

Update

https://www.youtub e.com/embed/0S70j 3Lh2Jg?

Ableitung der Kosten -> Richtung für Verbesserung -> Update enablejsapi=1

Gradient Descent
$$\, heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \,$$

Lernrate α

Update

https://www.youtub e.com/embed/wyP HES7Sr_U?

Ableitung der Kosten -> Richtung für Verbesserung -> Update enablejsapi=1

Gradient Descent
$$\, heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \,$$

Lernrate α

Gradient Descent

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

Forward:
$$\hat{y} = f(x)$$

https://www.youtub e.com/embed/DvTn akOFZos? enablejsapi=1

x: Input Daten

y: Ziel Daten

 \hat{y} : Vorhersage

f: Modell

 θ : Parameter

https://www.youtub e.com/embed/QiVIu vMSrCs? enablejsapi=1

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

b: Bias

w: Gewichte

a: Aktivierung

Forward:
$$\hat{y} = f(x) = a(z) = a(b + w \cdot x)$$

Gradient Descent

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

Forward:
$$\hat{y} = f(x) = a(z) = a(b + w \cdot x)$$

Backward: $\frac{\partial Loss}{\partial b}$

Gradient Descent

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

Forward:
$$\hat{y} = f(x) = a(z) = a(b + w \cdot x)$$

Backward:
$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial b}$$

Gradient Descent

https://www.youtub e.com/embed/hvf5 55EhBsw? enablejsapi=1

$$egin{aligned} heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \ Loss &= \sum_i (y_i - \hat{y}_i)^2 \end{aligned}$$

Forward:
$$\hat{y} = f(x) = a(z) = a(b + w \cdot x)$$

Backward:
$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \hat{y}_i} \cdot \frac{\partial \hat{y}_i}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial b}$$

$$=\sum_i 2(y_i-\hat{y}_i)\cdot 1\cdot rac{\partial a}{\partial z}\cdot 1$$

Gradient Descent

$$egin{aligned} heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \ Loss &= \sum_i (y_i - \hat{y}_i)^2 \end{aligned}$$

Forward:
$$\hat{y} = f(x) = a(z) = a(b + w \cdot x)$$

Backward:
$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial b}$$

$$=\sum_i 2(y_i-\hat{y}_i)\cdot rac{\partial a}{\partial z}$$

Gradient Descent

$$egin{aligned} heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta} \ Loss &= \sum_i (y_i - \hat{y}_i)^2 \end{aligned}$$

 $\overline{ ext{Forward: } \hat{y}_i = f(x_i) = a_1}(z_1(x_i)) = a_1(b_1 + w_1 \cdot x_i)$

Backward:
$$\frac{\partial Loss}{\partial b_1} = \frac{\partial Loss}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial b_1}$$

$$=\sum_i 2(y_i-\hat{y}_i)rac{\partial a_1}{\partial z_1}$$

Gradient Descent

https://www.youtub e.com/embed/TXW RUcSuars? enablejsapi=1

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss - \sum (u_i - \hat{u}_i)^2$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

Forward:
$$\hat{y}_i = f(x_i) = a_2(z_2(a_1(z_1(x_i)))) = a_2(b_2 + w_2 \cdot a_1(b_1 + w_1 \cdot x_i))$$

Backward:
$$\frac{\partial Loss}{\partial b_1} = \frac{\partial Loss}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial b_1}$$

$$\hat{y}_i = \sum_i 2(y_i - \hat{y}_i) \cdot rac{\partial a_2}{\partial z_2} \cdot w_2 \cdot rac{\partial a_1}{\partial z_1}$$

Gradient Descent

https://www.youtub e.com/embed/Fn_U _GPg6il? enablejsapi=1

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

$$Loss = \sum_i (y_i - \hat{y}_i)^2$$

Forward:
$$\hat{y}_i = f(x_i) = a_3(z_3(a_2(z_2(a_1(z_1(x_i)))))) = a_3(b_3 + w_3 \cdot a_2(b_2 + w_2 \cdot a_1(b_1 + w_1 \cdot x_i)))$$

Backward:
$$\frac{\partial Loss}{\partial b_1} = \frac{\partial Loss}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial b_1}$$

$$\hat{y}_i = \sum_i 2(y_i - \hat{y}_i) \cdot rac{\partial a_3}{\partial z_3} \cdot w_3 \cdot rac{\partial a_2}{\partial z_2} \cdot w_2 \cdot rac{\partial a_1}{\partial z_1}$$

Gradient Descent

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

Berechnet Ableitung $\frac{\partial \text{Loss}}{\partial \theta}$ für jedes Update mit gesamten Datensatz

folgt exakt steilstem Abstieg

Bei Millionen von Daten sehr rechenintensiv...

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

Gradient Descent

Berechnet Ableitung $\frac{\partial \text{Loss}}{\partial \theta}$ für jedes Update mit gesamten Datensatz

folgt exakt steilstem Abstieg

Bei Millionen von Daten sehr rechenintensiv...

Stochastic Gradient Descent (SGD)

Zerlegt Datensatz in Batches
Update nach jeder Batch

folgt Schätzung des steilsten Abstiegs Forschritt kann Schwanken

Schnelle Konvergenz dank schneller Rechnung

Gradient Descent

$$heta \leftarrow heta - lpha \cdot rac{\partial ext{Loss}}{\partial heta}$$

https://www.youtub e.com/embed/WVU apM2JeJ0? enablejsapi=1

https://www.youtub e.com/embed/213n GdgPjx4? enablejsapi=1

SGD $\theta \leftarrow \theta - \alpha \cdot \tfrac{\partial \text{Loss}}{\partial \theta}$

Momentum $v \leftarrow \beta \cdot v + \alpha \cdot \frac{\partial \mathrm{Loss}}{\partial \theta}$ $\theta \leftarrow \theta - v$

mehr zu Optimizern₃₂

Model & Trainingsloop

Hands-On: MNIST Classifier

https://www.youtub e.com/embed/m6p kOvmWXdo? enablejsapi=1

Bearbeiten Sie dieses Notebook

- Erstellen Sie einen MNIST Classifier
- Definieren Sie die Trainingsloop
- Testen sie die Trainingsloop ueber zwei Epochen

Die Lösung finden Sie in diesem Notebook