BML. 1 Intro

1.5 Recap

DataLab CSIC

Contents

Recap Bayesian theory for quick reference

Recap. Exchangeability

Of data, models and parameters.....

Observations from random phenomena: independent given a certain parameter (conditionally independent) \rightarrow exchangeability

http://en.wikipedia.org/wiki/Exchangeable_random_variables

Finite set of rvs exchangeable: any two permutations have the same distribution

Infinite set of rvs exchangeable: any finite subset is exchangeable

De Finetti's theorem: set of rvs exchangeable iff ciid given a certain distribution

Recap: Classical vs Bayesian

Once model fixed, we want to learn about it (its parameters)

Classical	Bayesian
Parameters fixed	Parameters uncertain, prior
Given data, formulate likelihood	Given data, formulate likelihood
Maximize likelihood to find MLE (mimimum least squares, cross entropy,)	Aggregate likelihood and prior to get posterior

Recap: ML inference

Likelihood

MLE

$$\ell(\theta|x) = \int_{1=1}^{\infty} \int_{1=1}^{\infty} (xi|\theta)$$

$$h(\theta) = \log \left(\ell(\theta|x)\right)$$

$$\max_{\theta} h(\theta) \longrightarrow 0$$

Prior

Noninformative prior

Conjugate prior

Eliciting the prior

Posterior distribution. Bayes formula

$$J(\theta | x) = \frac{J(\theta) \times l(\theta | x)}{J(\theta) \times l(\theta | x)} \frac{J(\theta) \cdot l(\theta | x)}{J(x)} \propto J(\theta) \cdot l(\theta | x)$$

Recap: Bayesian inference. Recall in parallel simulations for this

Point estimation

Posterior mean

Posterior median

Posterior mode. MAP

$$E(\theta|x) = \int \theta \int (\theta|x) d\theta$$

$$Rr(\theta \leq \text{med}(x) \geqslant \frac{1}{2} \quad Rr(\theta \geqslant \text{med}(x) \geqslant \frac{1}{2}$$

$$argmax \int (\theta|x) \int (\theta)$$

$$argmax \int (\theta|x) \int (\theta)$$

$$argmax \int (\theta|x) \int (\theta)$$

Credible interval

Symmetric interval

HPD

Hypothesis testing

Forecasting

Recap: Bayesian decision analysis

Decision analysis

Recap: Inference as decision analysis. Example

$$A = (\theta - a)^{2}$$

$$= (\theta - a)^{2}$$

$$= (\theta - a)^{2} \int (\theta | x) d\theta = \text{appin in} \int \theta^{2} \int (\theta | x) d\theta - 2 a \int \theta \int (\theta | x) d\theta + a^{2} \int \int (\theta | x) d\theta$$

$$= \text{argmin} \quad a^{2} - 2a = (\theta | x) \implies \hat{a} = E(\theta | x)$$

Recap. Computational problems in BML

Plagued by complex integrals with complex integrands + optimisations

Easy conceptually... tough computationally

Appendix: Probabilistic graphical models

$$p(\mathbf{x}) = \prod_{i} p(\mathbf{x}_{i} \mid Pa_{\mathcal{G}}(\mathbf{x}_{i}))$$

 $p(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) = p(\mathbf{a})p(\mathbf{b} \mid \mathbf{a})p(\mathbf{c} \mid \mathbf{a}, \mathbf{b})p(\mathbf{d} \mid \mathbf{b})p(\mathbf{e} \mid \mathbf{c})$

PGMs with two nodes

PGMs with two nodes

Model for P(A,B)

Some MGPs with three nodes

PGMs with three nodes

Model P(A,B,C)

http://en.wikipedia.org/wiki/Conditional independence

PGMs. Asia

A dispnea may due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. An x-ray image cannot discern between cancer and tuberculosis, as neither the presence or absence of dispnea

PGMs. Asia

A dispnea may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. An x-ray image cannot discern between cancer and tuberculosis, as neither the presence or absence of dispnea

PGMs. Asia

A dispnea may be due to tuberculosis, lung cancer or bronchitis, none of them or several of them. A recent visit to Asia increases the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. An x-ray image cannot discern between cancer and tuberculosis, as neither the presence or absence of dispnea

PGM. Asia

PGM. Asia

 $P(A,T,S,L,B,O,X,D) = P(A)P(T|A)P(S)P(L|S)P(B|S)P(0|T,L)P(X|O)P(D|O,B) \quad P(t|no\ a,\ d)$

Appendix: Statistical models as PGMs. Inference and Prediction

Appendix: Statistical models as PGMs. Decision Analysis

Appendix: Statistical models as PGMs. Hierarchical models

