AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Atty Dkt: 925-284

Art Unit: 3681

- 1. (Previously Presented) A one-way clutch unit comprising:
 - a rotating shaft;
 - a first one-way clutch comprising:

a first outer ring having in an inner periphery thereof an engagement surface and a raceway surface which are adjacent to each other;

a first inner ring contacting the rotating shaft and having in an outer periphery thereof an engagement surface and a raceway surface which are adjacent to each other;

first engagement members disposed between the engagement surface of the first outer ring and the engagement surface of the first inner ring; and

first balls disposed between the raceway surface of the first outer ring and the raceway surface of the first inner ring; and

a second one-way clutch comprising:

a second outer ring having in an inner periphery thereof an engagement surface and a raceway surface which are adjacent to each other;

a second inner ring having in an outer periphery thereof an engagement surface and a raceway surface which are adjacent to each other;

second engagement members disposed between the engagement surface of the second outer ring and the engagement surface of the second inner ring; and

second balls disposed between the raceway surface of the second outer ring and the raceway surface of the second inner ring; wherein

an annular recess is provided in an inner periphery of the first inner ring of the first one-way clutch.

ICHIHARA et al **Atty Dkt: 925-**284 Serial No. 10/786,472 **Art Unit: 3**681

2. (Original) The one-way clutch unit according to claim 1, wherein the annular recess is provided in the inner periphery of a side of the raceway surface of the first inner ring of the first one-way clutch.

3. (Original) The one-way clutch unit according to claim 2, wherein, in the first one-way clutch, the first engagement members are engagement rollers, the engagement surface of the first outer ring is an engagement cylindrical surface, and the engagement surface of the first inner ring is an engagement cam-surface.

4. (Original) The one-way clutch unit according to claim 1, wherein an end portion on the side of the raceway surface of the second one-way clutch is disposed in the annular recess.

5. (Original) The one-way clutch unit according to claim 4, wherein, in the second one-way clutch, the second engagement members are engagement rollers, the engagement surface of the second outer ring is an engagement cam-surface, and the engagement surface of the second inner ring is an engagement cylindrical surface.

6. (Original) The one-way clutch unit according to claim 1, wherein a curved surface connects an end surface and a peripheral surface in the annular recess of the first inner ring; and wherein a curved surface connects an end surface and an outer peripheral surface in an end portion of the second outer ring which is disposed in the annular recess of the first inner ring.

- 7. (Cancelled)
- 8. (Cancelled)
- 9. (Cancelled)
- 10. (Cancelled)

ICHIHARA et al **Atty Dkt: 925-**284 **Serial No.** 10/786,472 **Art Unit:** 3681

11. (Cancelled)

12. (Cancelled)

13. (Previously Presented) The one-way clutch unit according to claim 1, wherein the first inner ring and the second inner ring directly contact the rotating shaft.

14. (Cancelled)

15. (Currently Amended) The one-way clutch unit according to claim 1, wherein the first inner ring is configured to have different diameters relative to a rotational axis of the rotating shaft for defining the cam surface of the first inner ring and the raceway surface of the first inner ring and for providing sufficient thickness of the first inner ring between the annular recess 67 and the raceway surface of the first inner ring.

16. (Currently Amended) The one-way clutch unit according to claim 1, wherein the first inner ring is configured to have different diameters relative to a rotational axis of the rotating shaft for defining a cam surface of the first inner ring and a raceway surface of the first inner ring and for providing sufficient thickness of the first inner ring between the annular recess and the raceway surface of the first inner ring to provide strength against radial loads.

17. (Previously Presented) The one-way clutch unit according to claim 1, wherein the engagement surface of the first inner ring is positioned radially further from the rotating shaft than the engagement surface of the second inner ring.

18. (Cancelled)