These problems are for practice and understanding purpose.

1 Groups

Problem 1. Let (G, \circ) be a group. Define * on G by $a * b = b \circ a$. Is (G, *) a group?

Problem 2. Let $R = \mathbb{R} \setminus \{0\}$, where \mathbb{R} is the set of real numbers. Define * on R by

$$x * y = \begin{cases} xy, & \text{if } x > 0, \\ \frac{x}{y}, & \text{if } x < 0. \end{cases}$$

Show that (R, *) is a non-abelian group.

Problem 3. Let G be the set

$$G = \{\pm e, \pm a, \pm b, \pm c\}$$

where

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad c = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Show that G forms a group under matrix multiplication.

Problem 4. Give an example of a group with 105 elements. Give two examples of groups with 44 elements.

Problem 5. Show that a group G is abelian if and only if $(ab)^2 = a^2b^2$ for all $a, b \in G$.

Problem 6. For any group elements a and b, prove that |ab| = |ba|.

Problem 7. Let $G = \{x \in \mathbb{R} \mid 0 \le x < 1\}$, and for $x, y \in G$, let x * y be the fractional part of x + y (i.e., $x * y = x + y - \lfloor x + y \rfloor$, where $\lfloor a \rfloor$ is the greatest integer less than or equal to a).

Prove that * is a well-defined binary operation on G and that G is an abelian group under * (called the real numbers mod 1).

Problem 8. Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}.$

- (a) Prove that G is a group under multiplication (called the group of roots of unity in \mathbb{C}).
- (b) Prove that G is not a group under addition.

Problem 9. Let $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}.$

- (a) Prove that G is a group under addition.
- (b) Prove that the nonzero elements of G are a group under multiplication. ("Rationalize the denominators" to find multiplicative inverses.)

Problem 10. If a and b are commuting elements of G, prove that $(ab)^n = a^nb^n$ for all $n \in \mathbb{Z}$. (Do this by induction for positive n first.)

Problem 11. Prove that if $x^2 = 1$ for all $x \in G$, then G is abelian.

Problem 12. If (A, *) and (B, \diamond) are groups, we can form a new group $A \times B$, called their direct product, whose elements are those in the Cartesian product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

and whose operation is defined componentwise:

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 * a_2, b_1 \diamond b_2).$$

Prove that $A \times B$ is a group.

Problem 13. Prove that $A \times B$ is an abelian group if and only if both A and B are abelian.

Problem 14. If x is an element of infinite order in G, prove that the elements x^n , for $n \in \mathbb{Z}$, are all distinct.

Problem 15. If x is an element of finite order n in G, use the Division Algorithm to show that any integral power of x equals one of the elements in the set $\{1, x, x^2, \dots, x^{n-1}\}$ (so these are all the distinct elements of the cyclic subgroup generated by x in G).

Problem 16. The quaternion group, Q_8 , is defined by

$$Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$$

with the product \cdot computed as follows:

$$1 \cdot a = a \cdot 1 = a$$
, for all $a \in Q_8$,
 $(-1) \cdot (-1) = 1$, $(-1) \cdot a = a \cdot (-1) = -a$, for all $a \in Q_8$,
 $i \cdot i = j \cdot j = k \cdot k = -1$,
 $i \cdot j = k$, $j \cdot k = i$, $k \cdot i = j$,
 $j \cdot i = -k$, $k \cdot j = -i$, $i \cdot k = -j$.

Verify all the group axioms. And then compute the order of all the elements in Q_8 . Is this group abelian or not? Also check that it is cyclic or not.

Problem 17. Let G be an Abelian group, and let $H = \{x \in G \mid |x| \text{ is odd}\}$. Prove that H is a subgroup of G.

Problem 18. Let G be an Abelian group, and let $H = \{x \in G \mid |x| \text{ is 1 or even}\}$. Give an example to show that H need not be a subgroup of G.

Problem 19. Consider the elements

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

$$B = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

from $SL(2,\mathbb{R})$, , the group of 2×2 real matrices with determinant 1. Find |A|, |B|, and |AB|. Does your answer surprise you?

Problem 20. There is always a 1–1 onto mapping between any two right cosets of H in G.

Problem 21. Give an example of an infinite group in which every element is of finite order. (Think about quotient group Q/Z where (Q, +) is group of rational numbers with addition operation and (Z, +) is group of integers with addition operation.)

2 Homomorphism & Isomorphism

Problem 22. If $f: G \to G'$ is a homomorphism, then prove the following:

- 1. f(e) = e' (where e and e' are the identity elements of G and G' respectively),
- 2. $f(x^{-1}) = (f(x))^{-1}$ for all $x \in G$, and
- 3. $f(x^n) = (f(x))^n$ for all $x \in G$ and n an integer.

Problem 23. If $\varphi: G \to H$ is an isomorphism, prove that $|\varphi(x)| = |x|$ for all $x \in G$. Deduce that any two isomorphic groups have the same number of elements of order n for each $n \in \mathbb{Z}^+$. Is the result true if φ is only assumed to be a homomorphism?

Problem 24. Prove that the multiplicative groups $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ are not isomorphic.

Problem 25. Prove that the additive groups \mathbb{R} and \mathbb{Q} are not isomorphic.

Problem 26. Prove that the additive groups \mathbb{Z} and \mathbb{Q} are not isomorphic.

Problem 27. Let A and B be groups. Prove that $A \times B$ is isomorphic to $B \times A$.

Problem 28. Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^2$ is a homomorphism if and only if G is abelian.

Problem 29. Suppose that f is an isomorphism from a group G onto a group G'.

- 1. f carries the identity of G to the identity of G'.
- 2. For every integer n and for every group element a in G, $f(a^n) = [f(a)]^n$.
- 3. For any elements a and b in G, a and b commute if and only if f(a) and f(b) commute.
- 4. $G \cong \langle a \rangle$ if and only if $G' \cong \langle f(a) \rangle$.
- 5. |a| = |f(a)| for all a in G (isomorphisms preserve orders).
- 6. For a fixed integer k and a fixed group element b in G, the equation $x^k = b$ has the same number of solutions in G as does the equation $x^k = f(b)$ in G'.
- 7. If G is finite, then G and G' have exactly the same number of elements of every order.

Problem 30. Suppose that f is an isomorphism from a group G onto a group G'.

- 1. f^{-1} is an isomorphism from G' onto G.
- 2. G is Abelian if and only if G' is Abelian.
- 3. G is cyclic if and only if G' is cyclic.
- 4. If K is a subgroup of G, then $f(K) = \{f(k) \mid k \in K\}$ is a subgroup of G'.
- 5. If K is a subgroup of G, then $f^{-1}(K) = \{g \in G \mid f(g) \in K\}$ is a subgroup of G.
- 6. f(Z(G)) = Z(G).