Primer on Semiconductors

Unit 3: Equilibrium Carrier Concentrations

Lecture 3.5: Carrier concentration vs. temperature

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Carrier concentration vs. temperature

2

The extrinsic region

3

The extrinsic region

N-type

$$N_D - N_A >> n_i$$

$$n_0 = N_D - N_A$$

$$p_0 = \frac{n_i^2}{n_0}$$

P-type

$$N_A - N_D >> n_i$$

$$p_0 = N_A - N_D$$

$$n_0 = \frac{n_i^2}{p_0}$$

The intrinsic region

Result: N-type

$$\frac{n_i^2}{n_0} - n_0 + N_D - N_A = 0$$

$$n_0 = \frac{N_D - N_A}{2} + \left[\left(\frac{N_D - N_A}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$p_0 = \frac{n_i^2}{n_0}$$
 cannot be neglected

Result: P-type

$$p_0 - \frac{n_i^2}{p_0} + N_D - N_A = 0$$

$$p_0 = \frac{N_A - N_D}{2} + \left[\left(\frac{N_A - N_D}{2} \right)^2 + n_i^2 \right]^{1/2}$$

$$n_0 = \frac{n_i^2}{p_0}$$
 cannot be neglected

Example 3

Consider Si doped with phosphorus at $N_D = 2.00 \text{ x } 10^{15} \text{ cm}^{-3}$ The temperature is 600 K. What are *n* and *p*?

Recall that at 300 K in Si, $n_i = 1.00 \times 10^{10} \text{ cm}^{-3}$

$$n_i = \sqrt{N_C N_V} e^{-E_G/2k_BT}$$

$$N_C = 2 \left[\frac{\left(m_n^* k_B T \right)}{2\pi \hbar^2} \right]^{3/2}$$

Computing n_i requires a careful treatment of the temperature dependent of the band gap and effective masses.

$$N_V = 2 \left\lceil \frac{\left(m_p^* k_B T\right)}{2\pi\hbar^2} \right\rceil^{3/2}$$

Example 3 (cont.)

$$n_i (T = 600 \text{ K}) = 4 \times 10^{15} \text{ cm}^{-3}$$

From Fig. 4.17, of R.F. Pierret, *Advanced Semiconductor Fundamentals*, 2nd Ed., Prentice Hall, 2003.

$$n_0 = \frac{N_D}{2} + \left[\left(\frac{N_D}{2} \right)^2 + n_i^2 \right]^{1/2}$$
 $N_D = 2 \times 10^{15} \text{ cm}^{-3}$

$$n_0 = 1.0 \times 10^{15} + \left[\left(1.0 \times 10^{15} \right)^2 + \left(4.0 \times 10^{15} \right)^2 \right]^{1/2} = 5.1 \times 10^{15} \text{ cm}^{-3}$$

$$p_0 = \frac{n_i^2}{n_0} = \frac{\left(4.0 \times 10^{15}\right)^2}{5.1 \times 10^{15}} = 3.3 \times 10^{15} \text{ cm}^{-3}$$

Example 3

The freeze-out region

Solving for the carrier density: N-type

1) charge neutrality:

$$p_0 - n_0 + N_D^+ - N_A^- = 0$$

2) Neglect minority carriers: $n_0 p_0 = n_i^2 \rightarrow p_0 = n_i^2 / n_0 \ll n_0$

$$n_0 p_0 = n_i^2 \rightarrow p_0 = n_i^2 / n_0 << n_0$$

3) result:

$$n_0 = N_D^+ - N_A^-$$

We just need to compute the net concentration of ionized dopants.

Low temperature

T > 0 K

A few extrinsic carriers due to doping, but no intrinsic carriers due to thermal excitation across the band gap.

Ionized donor concentration

fraction of donor level

$$\frac{N_D^0}{N_D} = f_0 (E_D)$$

$$\frac{N_D^+}{N_D} = 1 - \frac{N_D^0}{N_D} = 1 - f_0(E_D)$$

$$f_0(E_D) = \frac{1}{1 + e^{(E_D - E_F)/k_B T}}$$

Ionized donor concentration

$$\frac{N_D^+}{N_D} = 1 - f_0(E_D)$$

$$N_D^+ \qquad 1$$

This is **almost correct**. The statistics of occupying donor (and acceptor) levels are a bit different from occupying band states.

$$\frac{N_D^+}{N_D} = \frac{1}{1 + g_D e^{(E_F - E_D)/k_B T}}$$
16

Ionized dopant concentration

See R.F. Pierret, *Advanced*Semiconductor Fundamentals, Sec. 4.4.4 for a discussion.

$$g_A = 4$$
 (standard value)

Example: N-type sample

These two equations can be solved for $n_0(T)$ – see R.F. Pierret, *Advanced Semiconductor Fundamentals*, 2nd Ed. Sec. 4.5.2.

The freeze-out region

The freeze-out region

Comment

Metal-insulator transition

$$T = 0 K$$

Freeze-out does not occur in heavily doped semiconductors.

Metals conduct electricity at 0 K.

Semiconductors become insulators at 0 K because of freeze-out.

Heavily doped semiconductors are different.

When the dopants are close to each other, their wave functions overlap. Impurity levels become impurity bands.

In Si, for $N_D > 10^{19}$ cm⁻³, the impurity band merges with the conduction band.

Question

We now understand how the carrier concentration varies with temperature. How does the Fermi level vary with temperature?

Fermi level vs. temperature

Summary

You should also understand E_F vs. T qualitatively.

25