16. Полиномы Чебышева

Определение 1: Многочленом Чебышева называется функция:

$$T_n(x) = \cos(n \arccos x)$$
, где $n \in N_0$, $x \in [-1; 1]$ (1)

Убедимся, что функция $T_n(x)$, представленная с помощью тригонометрических функций, на самом деле является многочленом при любом n=0,1,2,... . Непосредственной подстановкой в (1) значений n=0 и n=1 получаем $T_0(x)=1,T_1(x)=x$.

Положив $\alpha = \arccos x$, имеем: $T_1(x) = \cos \alpha$, $T_{n-1}(x) = \cos (n-1)\alpha$, $T_n(x) = \cos n\alpha$, $T_{n+1}(x) = \cos (n+1)\alpha$ и так как (по формуле суммы косинусов) $\cos (n+1)\alpha + \cos (n-1)\alpha = 2\cos \alpha \cos n\alpha$, то, значит, справедливо равенство: $T_{n+1}(x) + T_{n-1}(x) = 2T_1(x) T_n(x)$, которое может быть переписано в виде: $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$ (2).

Формула (2) рекуррентно определяет при n=0,1,2,... последовательность функций $T_n(x)$, начинающуюся с $T_0(x)=1,T_1(x)=x$; при этом нужно иметь в виду, что здесь, как и в формуле (1) $x\in[-1;1]$.

Подставляя в (2) заданные начальные члены последовательности $\{T_n(x)\}$, найдем несколько ее последующих членов:

$$T_2(x) = 2x^2 - 1$$
; $T_3(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x$; $T_4(x) = 2x(4x^3 - 3x) - 2x^2 + 1 = 8x^4 - 8x^2 + 1$; $T_5(x) = 2x(8x^4 - 8x^2 + 1) - 4x^3 + 3x = 16x^5 - 20x^3 + 5x$ и т.д.

Графики нескольких многочленов Чебышева (с первого по четвертый) изображены на рисунке 1:

Рис.1. Графики многочленов $T_1(x)$, $T_2(x)$, $T_3(x)$, $T_4(x)$

Анализ рекуррентной формулы (2) позволяет считать очевидными следующие факты:

- 1. Все функции $T_n(x)$, определенные в (1), являются многочленами при любом натуральном п;
- 2. Степени этих многочленов возрастают с увеличением n, причем старший член многочлена $T_n(x)$ равен $2^{n-1}x^n$.
- 3. Многочлены $T_n(x)$ при четных n выражаются через степенные функции только четных степеней, при нечетных только нечетных.

<u>Определение 2:</u> Многочлены, получаемые из $T_n(x)$ делением на старший коэффициент, т.е. $\widehat{T}_n(x) = \frac{1}{2^{n-1}} T_n(x)$, называются нормированными многочленами Чебышева (имеют старший коэффициент 1).

Свойства многочленов Чебышева:

- 1. Многочлен Чебышева $T_n(x)$ (а значит, и многочлен $\widehat{T}_n(x)$) имеет на отрезке [-1;1] ровно п различных действительных корней; все они задаются формулой: $x_k = \cos\frac{2k+1}{2n}\pi$, где $k=0,1,\dots$, n-1.
- 2. Корни многочленов Чебышева перемежаются с точками их наибольших и наименьших значений, равных соответственно 1 и -1 для $T_n(x)$ и $\frac{1}{2^{n-1}}$ и $-\frac{1}{2^{n-1}}$ для $\widehat{T}_n(x)$. А именно, при $j=0,1,\dots$, n имеют место экстремумы $T_n(x_j)=(-1)^j$, $\widehat{T}_n(x_j)=\frac{(-1)^j}{2^{n-1}}$ в точках $x_j=\cos\frac{j}{n}\pi$.
- 3. **Теорема Чебышева**: Из всех многочленов степени n со старшим коэффициентом 1 нормированный многочлен Чебышева $\hat{T}_n(x)$ наименее уклоняется от нуля на отрезке [-1;1].

Источник: https://vk.com/doc75405550_503374868?hash=e1b101b09f98f31dc5&dl=92b9d13d20c26dc1f0, страницы 384 - 389.