

Alumno:

Juan Cañar

Docente:

Ing. Diego Quisi.

Materia:

Sistemas Expertos

Ciclo:

9no

Fecha:

21/05/2020

Análisis de la calidad del vino

Procedimiento a realizar:

- Reprocesar los datos del corpus de acuerdo con las sugerencias desarrolladas
- por wguillen [github].
- Aplicar la técnica de los vecinos más cercanos indicada en clase y empleando la fórmula propuesta por wguillen.
- Desarrollar una pequeña interfaz en Python u otro lenguaje donde se coloquen los atributos y el sistema indique la calidad del vino.
- Realizar un pequeño informe del trabajo desarrollado, considerando los aspectos principales y qué tan preciso es el sistema.
- Reprocesar los datos del corpus de acuerdo con las sugerencias desarrolladas por wguillen [github].

Formula:

Código:

```
def similitudJaccard(valores_vino):
    def similitud(calidad, set_valores_vino):
           'calidad': calidad,
           'similitud': len(set_valores_vino.intersection(valores_vino)) / len(set_valores_vino.union(valores_vino))
    list = []
    with open("winequality-red.csv", "r") as f:
       valores_vino_data = f.readline()
       while valores_vino_data:
           valores_vino_data = f.readline()
           propiedades_vino = valores_vino_data.split(";")
           calidad = propiedades_vino[-1:][0].replace("\n", "")
           list.append(similitud(calidad, set(map(float, propiedades_vino[:-1]))))
    return sorted(list, key=lambda item: item['similitud'], reverse=True)
@app.route('/operacion', methods=['POST'])
def calcular calidad():
   valores_vino = list(map(float, request.form.values()))
   return render_template("vista.html")
@app.route('/')
def index():
    return render_template("vista.html")
    _name__ == '__main__':
    app.debug = True
    app.run()
```

Interfaz:

INGRESO DE DATOS

Fixed Acidity	1 🕶
Volatile Acidity	2 🔻
Citric Acid	3 🕶
Residual Sugar	1 •
Chlorides	1 •
Free Sulfur Dioxide	1 •
Volatile Acidity	2 🕶
Density	4 •
PH	1 •
Sulphates	4 🕶
Alcohol	2 T CALCULAR

RESULTADOS						
#	Calidad del Vino	Similitud del Vino				

Resultados:

INGRESO DE D	PATOS		RESULTADOS				
1.0	1 🔻	#	Calidad del Vino	Similitud del Vino			
		1	5	0.15384615384615385			
6.0	2 🕶	2	5	0.14285714285714285			
4.0	1 *	3	6	0.14285714285714285			
	2 •	4	6	0.14285714285714285			
5.0	2 *	5	6	0.14285714285714285			
5.0	1 *	6	6	0.14285714285714285			
5.0	1.	7	7	0.14285714285714285			
5.0		8	5	0.14285714285714285			
1.0	2 ▼	9	5	0.14285714285714285			
3.0	1.	10	6	0.14285714285714285			
3.0		11	5	0.14285714285714285			
4.0	1 *	12	5	0.14285714285714285			
5.0	2 🔻	13	7	0.14285714285714285			
3.0		14	7	0.14285714285714285			
6.0	3 ▼ CALCULAR	15	7	0.07692307692307693			
		16	7	0.07692307692307693			
		17	6	0.07142857142857142			
		18	6	0.07142857142857142			
		19	6	0.07142857142857142			
		20	6	0.07142857142857142			
		21	5	0.07142857142857142			
		22	7	0.07142857142857142			
		23	6	0.07142857142857142			
		24	5	0.07142857142857142			
		25	6	0.07142857142857142			
		26	3	0.07142857142857142			

fixed acidity	volatile acidit	citric acid	residual sugar	chlorides	free sulfur dio	total sulfur di	density	pH	sulphates	alcohol	quality
7.4	0.7		0 1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88		0 2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7		0 1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66		0 1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5
7.3	0.65		0 1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	5
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
5.6	0.615		0 1.6	0.089	16	59	0.9943	3.58	0.52	9.9	5
7.8	0.61	0.29	1.6	0.114	9	29	0.9974	3.26	1.56	9.1	5
8.9	0.62	0.18	3.8	0.176	52	145	0.9986	3.16	0.88	9.2	5
8.9	0.62	0.19	3.9	0.17	51	148	0.9986	3.17	0.93	9.2	5
8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	7
8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	1.28	9.3	5
7.4	0.59	0.08	4.4	0.086	6	29	0.9974	3.38	0.5	9	4
7.9	0.32	0.51	1.8	0.341	17	56	0.9969	3.04	1.08	9.2	6

Ε