Stochastik für Informatiker

Dr. rer. nat. Johannes Riesterer

Übungsaufgaben

Aufgabe

Einer Ihrer Bekannten behauptet, einen intelligenten Roboter gebaut zu haben. Um dies zu überprüfen, stellen Sie dem Roboter n=20 Fragen, die er mit Ja oder Nein beantworten soll. Entwerfen Sie einen statistischen Test auf Basis des Binomial-Modells, aus dem hervorgeht, ab wie vielen richtig beantworteten Ja-Nein-Fragen c man mit einer Irrtumswahrscheinlichkeit von 0.05 davon ausgehen kann, dass der Roboter tatsächlich intelligent ist und nicht nur zufällig die Antworten geraten hat.

Aufgabe

Welchen Effekt hat eine Erhöhung der Anzahl der Versuche n auf Ihren Test?

Lösung

Wir wählen das Binomialmodell

$$(\mathcal{X} = \{0, \dots, n\}, P(\mathcal{X}), P_{\rho} = B_{n,\rho} : \rho \in \Theta = [\frac{1}{2}, 1])$$
, wobei
$$P_{\rho}(\{k\}) = B_{n,\rho}(\{k\}) = \binom{n}{k} \rho^{k} (1 - \rho)^{n-k} \text{ die } \underline{\text{Binomialverteilung}}$$

bezeichnet. Wir testen die Nullhypothese $H_0: \rho \in \Theta_0$ gegen die Alternative $H_1: \rho \in \Theta_1$ mit $\theta_0 = \frac{1}{2}$ und $\Theta_1 = (\frac{1}{2},1]$. Als Signifikanzniveau wählen wir $\alpha = 0.05$ und als Statistik wählen wir die Identität T(x) = x. Als Testfunktion wählen wir $\varphi = 1_{\{c,\cdots,n\}}$ und müssen $c \in \mathcal{X}$ so wählen, dass $\sup_{\rho \in \Theta_0} \mathbb{E}(\varphi) < \alpha$ gilt. Wir ermitteln also c-1 als das 0.05-Fraktil der Binomialverteilung und damit c=15, da

$$P_{\frac{1}{2}}(x \ge 15) = 1 - P_{\frac{1}{2}}(x \le 14) \approx 1 - 0,9793 = 0.027.$$

Lösung

Bei Erhöhung der Versuche *n* nimmt die Macht des Tests zu. Der Fehler zweiter Art wird also kleiner und der Test kann besser detektieren, dass der Roboter intelligent ist, wenn er es tatsächlich ist.

n = 20 - c = 15 (durchgezogen), n = 40 - c = 27 gestrichelt.

Figure: Quelle: Stochastik; Hans-OttoGeorgii