Systematic Studies for the π^0 Calibration of the Crystal-Ball Detector

Martin Sobotzik

Johannes Gutenberg-Universität Mainz

xx.yy.2017

$$\gamma + p \to \pi^0 + p \to p + \gamma_1 \gamma_2 \tag{1}$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$
 (2)

$$\gamma + p \to \pi^0 + p \to p + \gamma_1 \gamma_2 \tag{1}$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$
 (2)

 How can it be checked if there is a energy dependency in the CB?

$$\gamma + p \to \pi^0 + p \to p + \gamma_1 \gamma_2 \tag{1}$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$
 (2)

 How can it be checked if there is a energy dependency in the CB?

$$\to |E_1 - E_2| < 25 \, \text{MeV}$$

$$\gamma + p \to \pi^0 + p \to p + \gamma_1 \gamma_2 \tag{1}$$

$$m_{\pi^0} = \sqrt{2E_1 E_2 (1 - \cos(\alpha))}$$
 (2)

 How can it be checked if there is a energy dependency in the CB?

$$\rightarrow |E_1 - E_2| < 25 \, \text{MeV}$$

• What are the reasons for the dependency?

Crystal-Ball-Function / Reduction of the Underground

 $\bullet \ \, \text{Gaussian Fit Function} \to \text{Crystal-Ball Fit Function} \\$

Crystal-Ball-Function / Reduction of the Underground

- ullet Gaussian Fit Function o Crystal-Ball Fit Function
- Check if the registered particles are charged
 - \rightarrow Reduction of the underground

Crystal-Ball-Function / Reduction of the Underground

- ullet Gaussian Fit Function o Crystal-Ball Fit Function
- Check if the registered particles are charged
 - → Reduction of the underground

Figure: Beamtime: Example for not reduced and reduced underground

Event Generator

Event Generator

- The condition $|E_1-E_2|<25\,\mathrm{MeV}$ is a strong cut
 - \rightarrow There is no package with enough events

Event Generator

- The condition $|E_1-E_2|<25\,{\rm MeV}$ is a strong cut \to There is no package with enough events
- Creating a new package with enough events would take to much time (multiple days on blaster)

- The condition $|E_1 E_2| < 25 \,\mathrm{MeV}$ is a strong cut → There is no package with enough events
- Creating a new package with enough events would take to much time (multiple days on blaster)
- It would be better if the same generator is used for all studies \rightarrow The generator should be able to simulate MAMI-Beam and isotropic decay

Event Generator

```
auto cmd Emin
                  = cmd.add<TCLAP::ValueArg<double>>
                                                          ("". "Emin".
                                                                                 "Minimal incident energy [MeV]", false, 0.0, "double [MeV]"):
auto cmd Emax
                  = cmd.add<TCLAP::ValueArg<double>>
                                                          ("". "Emax".
                                                                                 "Maximal incident energy [MeV]", false, 1.6*GeV, "double [MeV]");
auto cmd events
                  = cmd.add<TCLAP::ValueArg<int>>
                                                                                 "number of events", false, 10000, "n");
                  = cmd.add<TCLAP::SwitchArg>
                                                          ("", "sym",
                                                                                 "Require symmetric photon energies");
auto cmd_reqsym
auto cmd zboost
                  = cmd.add<TCLAP::SwitchArg>
                                                                                 "Boost the Pions in z-Direction; True or False");
                  = cmd.add<TCLAP::SwitchArg>
                                                                                 "Get the Product of the Pion; Change Beam Energy with E min and E max" );
auto cmd Prod
```

Figure: π^0 -Event Generator: Commands

- ullet Emin: Minimal energy of the beam or the π^0 , if Prod is false
- Emax: Maximal energy of the beam or the π^0 , if Prod is false
- Events: Number of events
- Regsym: Require $|E_1 E_2| < 25 \,\mathrm{MeV}$
- ZBoost: Boost the π^0 in z-Direction
- Prod: Get the production of the π^0

No Additional Cut

- Beamtime October 2014
- No additional cut

Figure: Beamtime: No additional cut

Detectors on the Edge

- Beamtime October 2014
- Neglect the detectors at the edge

Figure: Beamtime: With and without considerations of the detectors on the edge of the beam entrance and exit

Detectors on the Edge

- Simulation
- Red: No additional cut
 Black: Neglect the detectors on the edge

Figure: Simulation: Left: Example for the two dimensional histogram with simulated data. Right: Deviation with and without the detectors on the edge

Minimum Opening Angle

- Simulation
- Opening angle α has to be bigger than 30° degree
- $m_{\pi^0} = \sqrt{2E_1E_2(1-\cos(\alpha))}$ with $E_1 \approx E_2$ $\rightarrow E_{max} \approx 250 \, \text{MeV}$

Figure: Left: Number of reconstructed candidates for different opening angles. Right: Deviation with $\alpha > 30 \, \text{MeV}$

Isotropic Decay

- Simulation
- \bullet π^0 decay in the origin of the target
- π^0 are boosted isotropic with an energy of $1420\,\mathrm{MeV}$ to $1580\,\mathrm{MeV}$

Figure: Simulation: Isotropic decay in the origin of the target

z-Vertex Dependency

- Simulation
- Neglect the detectors on the edge
- Devide the target in smaller sections of 1 cm

Figure: Simulation: Deviations for different z-Vertices

Angle between Generated and Reconstructed Candidates

- Simulation
- The angle between generated and reconstructed candidate is calculated

Figure: Simulation: Angle between gen. and rec. candidates. Left: Photon energy between $125\,\text{MeV}$ and $150\,\text{MeV}$. Right: Photon energy between $425\,\text{MeV}$ and $450\,\text{MeV}$

Difference between Generated and Reconstructed Opening Angle

- Simulation
- $\Delta \alpha = \alpha_{rec} \alpha_{gen}$

Figure: Simulation: $\Delta\alpha$ for different photon energies. Left $125\,\text{MeV}$ to $150\,\text{MeV}$. Right from $425\,\text{MeV}$ to $450\,\text{MeV}$

$\Delta \alpha$ for Different z-Vertices

- Simulation
- $\Delta \alpha$ for different z-Vertices

Figure: Simulation: $\Delta \alpha$ for different photon energies. Decay at different z-Vertices (Beginning, Center and End)

Hot Crystals

- Beamtime October 2014
- Photon energy between 0 MeV and 100 MeV

Figure: Beamtime: Marked are Hot and known Dead Crystals

Table: Beamtime: Element No. and No. in figure

Number in the figures 1 2 3 4 5

Element Number 549 565 597 677 265

Hot Crystals and Clustersize > 3

- Beamtime October 2014
- Photon energy between 0 MeV and 100 MeV
- Clustersize > 3

Figure: Beamtime: Marked are Dead and Hot Crystals. The Clustersize must be bigger than 3

Hot Crystals for Higher Energies

- Beamtime October 2014
- ullet Photon energy between $300\,\mathrm{MeV}$ and $400\,\mathrm{MeV}$

Figure: Beamtime: Marked are Dead and Hot Crystals for high energies

Dead Crystals

- Beamtime October 2014
- ullet Photon energy between $300\,\mathrm{MeV}$ and $400\,\mathrm{MeV}$

Figure: Beamtime: Marked are probably Dead Crystals

Table: Beamtime: No. of events for the Dead Crystals of and their neighbors

No. in Fig.	Element Number	No. of Hits
6	678	48
	677	0
	676	11808
7	17	21
	16	3311
	18	7175
	19	3439
8	125	513
	122	6613
	128	5307
	126	4103
9	89	2500
	88	8591
	90	7975
	91	4652

ϕ -Distribution in the CB

- Beamtime October 2014
- Photon energy between 200 MeV and 225 MeV

Figure: Beamtime: Distribution in the CB

nclusion

- There is a energy dependency in the detector
- The reconstructed opening angle is too big for high energies
 - \rightarrow wrong reconstruction of the photon impact position is probably the reason for the dependency (Clustering Algorithm)
- The hardware of some PIDs has to be checked (too few or to many events)
- There is a strange ϕ -distribution in the detector
 - \rightarrow reason for this has also to be determined

Appendix

Figure: Simulation:Left: Reconstructed energy and true opening angle. Right: True energy and reconstructed opening angle