

Circunferencia como L.G.

Una circunferencia es el lugar geométrico de todos los puntos de un plano que equidistan de un punto fijo del plano.

El punto fijo se llama *centro* y la distancia del centro a cualquier punto de la circunferencia se llama *radio* de la circunferencia.

Ecuaciones de la circunferencia

- Ecuación de la circunferencia de centro C(h,k) y radio r, r > 0 $(x-h)^2 + (y-k)^2 = r^2$
- Ecuación General de la circunferencia

$$x^2 + y^2 + Dx + Ey + F = 0$$

Ejemplo 1

Determinar ecuación de la circunferencia:

a) De centro C(1,-2) y radio r=3

Resolución:

a) La ecuación de la circunferencia es:

$$(x-1)^2 + (y+2)^2 = 9$$
 (Ecuación Centro-Radio)

Desarrollando se obtiene:

$$x^2 + y^2 - 2x + 4y - 4 = 0$$
 (Ecuación General)

Instituto de Matemática

Universidad Austral de Chile

Determinar ecuación de la circunferencia:

b) Que tiene P(-5,7), P'(1,1) como puntos extremos de un diámetro. ¿El origen es punto interior, punto exterior o punto de la circunferencia? Grafique

Resolución:

b) Sean C'(h,k) el centro y el radio de la circunferencia, entonces:

$$h = (-5+1)/2 = -2$$
, $k = (7+1)/2 = 4 \implies C'(-2,4)$

Además,
$$r' = d(C', P') = \sqrt{(1+2)^2 + (1-4)^2} = 3\sqrt{2}$$

Luego, la ecuación de la circunferencia es

$$(x+2)^2 + (y-4)^2 = 18$$
 ó $x^2 + y^2 + 4x - 8y + 2 = 0$

Como $d(O,C') = \sqrt{4+16} = \sqrt{20} > \sqrt{18} = r'$,

entonces es punto exterior a la circunferencia.

Ejemplo 2

Identifique los lugares geométricos definidos por las ecuaciones:

a)
$$x^2 + y^2 - 6x + 4y + 9 = 0$$

b)
$$4x^2 + 4y^2 + 4x - 8y + 5 = 0$$

c)
$$x^2 + y^2 - 2x - 8y + 18 = 0$$

Resolución:

En todos los casos completamos cuadrados de binomios.

a)
$$(x^2-6x+9)+(y^2+4y+4)+9-9-4=0$$

 $(x-3)^2+(y+2)^2=4$ Es una circunferencia con centro (3,-2) y radio 2.

b)
$$4(x^2 + x) + 4(y^2 - 2y) + 5 = 0$$

 $4(x + \frac{1}{2})^2 + 4(y - 1)^2 + 5 - 1 - 4 = 0$
 $(x + \frac{1}{2})^2 + (y - 1)^2 = 0$ El gráfico es el punto

c)
$$(x-1)^2 + (y-4)^2 = -1$$

El gráfico es el conjunto vacío.

Ejemplo 3

Determine la ecuación de la circunferencia, en cada caso:

a) Que pasa por los puntos P(-1,2), Q(0,0), R(3,0)

Resolución:

a) Sea $x^2 + y^2 + Dx + Ey + F = 0$ la ecuación de la circunferencia. Como P, Q, R son puntos de la circunferencia, se debe tener:

Su centro es $(\frac{3}{2}, 2)$ y su radio es $\frac{5}{2}$

Instituto de Matemática

Universidad Austral de Chile

Ejemplo 4

Determine la ecuación de la circunferencia, en cada caso:

b) Que pasa por los puntos (-1,-4), (2,-1) y cuyo centro está en la recta de ecuación 4x+7y+5=0.

Resolución:

b) Sean (h,k) el centro y el radio de la circunferencia de ecuación $(x-h)^2 + (y-k)^2 = r^2$

Entonces:

$$\begin{aligned}
(-1-h)^{2} + (-4-k)^{2} &= r^{2} \\
(2-h)^{2} + (-1-k)^{2} &= r^{2} \\
4h + 7k + 5 &= 0
\end{aligned}
\Rightarrow
\begin{vmatrix}
h^{2} + k^{2} + 2h + 8k + 17 &= r^{2} \\
h^{2} + k^{2} - 4h + 2k + 5 &= r^{2} \\
4h + 7k + 5 &= 0
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
h + k + 2 &= 0 \\
4h + 7k + 5 &= 0
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
h + k + 2 &= 0 \\
4h + 7k + 5 &= 0
\end{vmatrix}$$

De aquí, h = -3, k = 1, $r = \sqrt{29}$

Así, la ecuación de la circunferencia es $(x+3)^2 + (y-1)^2 = 29$

o bien
$$x^2 + y^2 + 6x - 2y - 19 = 0$$

Instituto de Matemática

Universidad Austral de Chile

Tangentes a una Circunferencia

<u>1er Caso</u>: Dada la circunferencia y el punto de tangencia.

Si C(h,k) es el centro, r es el radio y $P(x_0, y_0)$ es punto de tangencia

La pendiente del segmento
$$\overline{CP}$$
 es $\frac{y_0 - k}{x_0 - h}$

La pendiente de la tangente es
$$-\frac{x_0 - h}{y_0 - k}$$

Luego la recta tangente es
$$y - y_0 = -\frac{x_0 - h}{y_0 - k}(x - x_0)$$

que se puede expresar como

$$(x_0 - h)(x - h) + (y_0 - k)(y - k) = r^2$$

2º Caso: Dada la circunferencia y un punto exterior a ella (por donde pasa la tangente).

Si C(h,k) es el centro, r es el radio y $P(x_1, y_1)$ es punto exterior a la circunferencia, por donde debe pasar la tangente.

La familia de rectas que pasan por $P(x_1, y_1)$ es $L_m: y - y_1 = m(x - x_1)$

Se debe cumplir que $d(C, L_m) = r$

De aquí se obtiene valor de r (Dos soluciones)

Tangentes a una Circunferencia

3er Caso: Dada la circunferencia y la pendiente de la recta tangente.

Análogo al caso 2° , considerando ahora la familia de rectas con pendiente dada m, que es L_b : y = mx + b. (También hay dos soluciones)

Ejemplo 5

Halle la ecuación de la recta tangente a la circunferencia de ecuación:

$$x^{2} + y^{2} - 8x - 6y + 20 = 0$$
, en el punto (3,5)

Resolución

Completando cuadrados se obtiene que la circunferencia tiene ecuación

$$(x-4)^2 + (y-3)^2 = 5$$
, centro $C(4,3)$ y radio $r = \sqrt{5}$

La recta tangente L es perpendicular al segmento CP con P(3,5)

Entonces:
$$m_{CP} = -2 \implies m_L = \frac{1}{2}$$

Luego, la ecuación de la recta tangente es $y-5=\frac{1}{2}(x-3)$

o bien
$$x-2y+7=0$$

Instituto de Matemática

Universidad Austral de Chile

Ejemplo 6

Halle la ecuación de la recta tangente a la circunferencia de ecuación:

$$x^{2} + y^{2} + 2x + 2y - 24 = 0$$
, trazada desde el punto (8,6)

Resolución

La circunferencia tiene ecuación
$$(x+1)^2 + (y+1)^2 = 26$$
ntro

$$C(\pm 1adi\Phi)$$

$$r = \sqrt{26}$$

La ecuación de la familia de rectas que pasan por (8,6) es y-6=m(x-8)o también

$$mx - y - 8m + 6 = 0$$

$$d(C, L_m) = n$$

Se debe cumplir
$$d(C, L_m) = r$$
 O sea $\frac{\left|-m+1-8m+6\right|}{\sqrt{m^2+1}} = \sqrt{26}$

$$\Leftrightarrow |7 - 9m| = \sqrt{26}\sqrt{m^2 + 1} \Leftrightarrow 55m^2 - 126m + 23 = 0 \Rightarrow m_1 = \frac{1}{5}, m_2 = \frac{23}{11}$$

Así se obtienen dos rectas tangentes de ecuaciones

$$y-6=\frac{1}{5}(x-8)$$
, $y-6=\frac{23}{11}(x-8)$ o bien $x-5y+22=0$, $23x-11y-118=0$

$$x - 5y + 22 = 0$$
, $23x - 11y - 118 = 0$

Ejemplo 7

Halle la ecuación de la recta tangente a la circunferencia de ecuación:

$$x^{2} + y^{2} - 10x + 2y + 18 = 0$$
 y que tiene pendiente 1.

Resolución

La circunferencia tiene centro C(5,-1) y radio $\sqrt{8}$

La familia de rectas de pendiente 1 está dada por y = x + b con $b \in \mathbb{R}$.

O bien
$$L_b: x-y+b=0$$
.

Se debe cumplir.
$$d(C, L_b) = r$$
 o sea $\frac{|6+b|}{\sqrt{2}} = \sqrt{8}$

Resolviendo se obtiene b = -2, b = -10

Luego, las ecuaciones de las rectas son

$$y = x - 2$$
, $y = x - 10$