NRSG 741 - Homework 2 - Exploratory Data Analysis

Alexander Maillis 2/11/2020

INSTRUCTIONS

- Use this Rmarkdown file N741Spring2020_Homework02.Rmd to get started.
- Change the author to YOUR NAME
- Change the date
- Note: This Rmarkdown file has one R code chunk at the top that reads in the dataset and loads the R packages you will need.
- After each question below, insert an R code chunk to enter the R code needed to answer that question.

 Do this for each question.
- Outside of the R code chunk, type in any text needed to provide explanation or answer the questions further.

Note: BEFORE you Knit your document, be sure to comment out any code that is not fully running yet by adding a # at the beginning of that line of code.

Note: All you need to do is correctly fill in the blanks ___ in the code chunks below.

Goal of Homework 2

This homework is meant to further your dplyr and ggplot2 skills.

Modify R code chunks

In each of the R code chunks below, scaffolding is provided. Everywhere you see 3 underscores _____, you will need to fill in the appropriate code, variable name, function name, etc.

Abalones Dataset from UCI Repository

For this homework, you will keep working with the abalone dataset from the UCI data repository at https://archive.ics.uci.edu/ml/datasets/abalone.

Use tools within the dplyr package as much as possible to answer the following questions.

Question 1: What kind of R object is the abalone dataset?

```
# insert R code here to answer question 1
# HINT: The name of the dataset is abalone

class(abalone)

## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

Data Frame
```

Question 2: How many observations are in the abalone dataset?

```
# HINT: there are multiple ways to answer this - pick one
dim(___)
str(___)
glimpse(___)
nrow(abalone)
```

Question 3: For diameter, how many abalones have diameters less than 0.5mm?

```
# the variable name is diameter
abalone %>%
filter(diameter< 0.5) %>%
nrow()
## [1] 3388
```

Question 4: How many abalones have shucked weights larger than their whole weight?

NOTE: There should be NO measurements where the shucked weight is > whole weight. If there are some these are probably data entry errors in this dataset.

```
# HINT: Use a logical expression inside a filter step
# HINT: Check the spelling and case for the
# variable names for shucked weight and whole weight
abalone %>%
filter(shuckedWeight> wholeWeight) %>%
nrow()
## [1] 4
```

Create a subset containing only infants sex == "I". Call this new dataset infants

```
# HINT: Put the logical statement inside the filter() function
# Dont forget to use the assign operator <- to create the infants object
infants <- abalone %>%
  filter(sex == "I")
```

Question 5: How many infants are in this subset?

3388

```
# Hint: see code in question 2 above
# pick the function you prefer to answer this question
nrow(infants)
## [1] 1342
```

Show off your dplyr skills with group_by() - we didn't get a chance to fully explore group_by() in class but it is added in the examples below to help you answer these questions.

Question 6: What is the average whole weight for each abalone sex (get whole weight means for females "F", males "M" and infants "I" separately)?

```
# Hint: put the variables used in the select statement
# and in the summarise() statement. Remember to put
# in a name for the output of the mean() function
# something like meanwt
abalone %>%
  select(sex, wholeWeight) %>%
  group_by(sex) %>%
  summarise(mean1 = mean(wholeWeight, na.rm=TRUE))
## # A tibble: 3 x 2
##
    sex
           mean1
##
     <chr> <dbl>
## 1 F
           1.05
## 2 I
           0.431
## 3 M
           0.991
sex mean1
1 F 1.05
2 I 0.431
3 M 0.991
Question 7: Get the means for the abalone length and height by sex?
```

```
# Hint: put variable names in the select statement
# put the function name for the mean in the
# summarise_all() function
abalone %>%
  select(sex, length, height) %>%
  group_by(sex) %>%
  summarise all(mean, na.rm=TRUE)
## # A tibble: 3 x 3
##
   sex
           length height
##
     <chr> <dbl> <dbl>
## 1 F
            0.579 0.158
## 2 I
            0.428 0.108
## 3 M
            0.561 0.151
sex length height
1 F 0.579 0.158
2 I 0.428 0.108
3 M 0.561 0.151
```

Test your graphing skills using ggplot2

Using the abalone dataset, create the following graphics/figures using ggplot() and associated geom_xxx() functions.

Question 8: Create a histogram of abalone whole weight

BONUS: Outline the histogram bars with a black line and fill the histogram bars with a green color

```
# Hint: the first option in the ggplot() function
# is the name of the dataset
# the variable name is put inside aes()
ggplot(abalone, aes(x=wholeWeight)) +
   geom_histogram()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# BONUS:
ggplot(abalone, aes(x=wholeWeight)) +
geom_histogram(color = "black", fill = "green")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

What do you notice about the distribution (any outliers or skewness)?

Right skewed distribution from the outliers.

Question 9: Create side-by-side boxplots of the number of rings by gender - color the bars by $\sec x$

 $HINT\ use\ geom_boxplot\ with\ x=sex\ and\ y=rings$

```
ggplot(abalone, aes(x=sex, y=rings, fill=sex)) +
geom_boxplot()
```


Question 10: Create a scatterplot of the whole weight on the X axis and shucked weight on the Y axis and color the points by sex

```
ggplot(abalone, aes(x=wholeWeight, y=shuckedWeight, color=sex)) +
  geom_point() +
  geom_abline(intercept = 0, slope = 1)
```


Can you see which abalones have shucked weights > whole weights which should not happen? Look at the y=x reference line. What sex are the abalones with the incorrect weights?

Final Instructions

- KNIT this RMD file to PDF (or to HTML or DOC and save as PDF)
 Upload your PDF document to Canvas