Chapter 1 Notes

- 1.1. Starting out
- 1.2. Subspace distance
- 1.3. Spaces of real sequences
- 1.4. Spaces of functions
- 1.5. Product metrics
- 1.6. Isometries

Chapter 1 Notes

1.1. Starting out

4 axioms for metric:

(M0): non-negative

(M1): $\forall x, y \in X$, d(x, y) = 0 if and only if x = y

(M2): Symmetry

(M3): Triangle inequality: $\forall x,y,z\in X$, $d(x,z)\leq d(x,y)+d(y,z)$

Lemma 1.1.6

 $\max(a+b,c+d) \le \max(a,c) + \max(b,d)$

Cauchy-Schwarz Inequality

 $\forall a_1, \cdots, a_n, b_1, \cdots, b_n \in \mathbb{R}$, the following inequality holds:

$$(\sum_{i=1}^n a_i b_i)^2 \leq \sum_{i=1}^n a_i^2 \cdot \sum_{i=1}^n b_i^2$$

 d_∞ for \mathbb{R}^n :

$$d_{\infty}(x,y) = \max_{1 \leq i \leq n} \lvert x_i - y_i \rvert$$

 d_p for \mathbb{R} :

$$d_p(x,y) = (\sum_{i=1}^n |x_i - y_i|^p)^{rac{1}{p}}$$

discrete distance

$$d_{discr}(x,y) = egin{cases} 0 & x = y \ 1 & x
eq y \end{cases}$$

1.2. Subspace distance

We can just measure distances on the subset using the global distance defined on the larger metric space

1.3. Spaces of real sequences

To extend our definition of distance d_p to spaces whose elements are sequences,

$$d_p(A,B) = (\sum_{n=0}^{\infty} |A_n - B_n|^p)^{rac{1}{p}} = \lim_{N o \infty} (\sum_{n=0}^N |A_n - B_n|^p)^{rac{1}{p}}$$

and

$$d_{\infty}((A_n),(B_n))=\sup_{n\in\mathbb{N}}|A_n-B_n|$$

By definition, a distance is required to be a non-negative real number, which $+\infty$ is not.

Thus, we define l^p and l^∞ sequence space:

$$l^p=\{(A_n)|\sum_{n=0}^{\infty}|A_n|^p<\infty\}$$

$$l^{\infty} = \{(A_n)|\ (A_n)\ is\ bounded\}$$

We say (A_n) is bounded if $\exists M \in \mathbb{R}$ s.t. $|A_n| \leq M, \ \forall n \in \mathbb{N}$

Theorem 1.3.4.

 $orall p \geq 1$ (and also for $p=\infty$) the function d_p defines a distance on the set l^p

Proposition 1.3.5.

For $p \leq q$, the inclusion $l^p \subseteq l^q$ holds (and this inclusion also holds when $q = \infty$)

Corollary 1.3.6.

 (l^p,d_q) is a metric space (a metric subspace of (l^q,d_q)) whenever $p\leq q$

Theorem 1.3.10 — 闵可夫斯基不等式

$$\left(\sum_{n=0}^{\infty} |A_n + B_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=0}^{\infty} |A_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=0}^{\infty} |B_n|^p\right)^{\frac{1}{p}} \tag{1}$$

where $p \geq 1$

Tips: when p=2, (1) is Cauchy-Schwarz inequality

1.4. Spaces of functions

Definition 1.4.1

$$C[0,1] := \{f : [0,1] \rightarrow \mathbb{R} \mid s.t. \mid f \mid s \mid continuous\}$$

Metric on C[0,1]

Definition 1.4.2.

$$d_{L^1}(f,g) = \int_0^1 \lvert f(x) - g(x)
vert dx$$

$$d_{L^\infty}(f,g) = \max_{x \in [0,1]} \lvert f(x) - g(x) \rvert$$

1.5. Product metrics

1.6. Isometries

Definition 1.6.1.

An *isometry* from (X,d_x) to (Y,d_Y) is a function $\phi:X o Y$ s.t.

(1)
$$orall x_1, x_2 \in X, d_Y(\phi(x_1), \phi(x_2)) = d_x(x_1, x_2)$$

(2) ϕ is surjective

Lemma 1.6.2

An isometry is *injective*

Definition 1.6.3.

Two metric spaces $(X,d_x),(Y,d_Y)$ are isometric if there exists an isometry $\phi:(X,d_x) o (Y,d_Y)$