Sensors for Mobile Robots

- Contact sensors: Bumpers
- Proprioceptive sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, time of flight, phase)
 - Light-based (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Proximity Sensors

- The central task is to determine P(z|x), i.e., the probability of a measurement z given that the robot is at position x.
- Question: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Beam-based Sensor Model

Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

- We split the state into the robot pose x and a map of the environment m which we here assume as given
- Individual measurements are independent given the robot position and map.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Beam-based Sensor Model

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Typical Measurement Errors of Range Measurements

- 1. Beams reflected by obstacles
- 2. Beams reflected by people / caused by crosstalk
- 3. Random measurements
- 4. Maximum range measurements

Proximity Measurement

- Measurement can be caused by ...
 - a known obstacle.
 - cross-talk.
 - an unexpected obstacle (people, furniture, ...).
 - missing all obstacles (total reflection, glass, ...).
- Noise is due to uncertainty ...
 - in measuring distance to known obstacle.
 - in position of known obstacles.
 - in position of additional obstacles.
 - whether obstacle is missed.

Key Idea of the Beam-based Model

- Considers beams individually
- Uses the following approximation:

$$P(z \mid x) = P(z \mid x, m) \approx P(z \mid z_{exp}(x, m)) = P(z \mid z_{exp})$$

z_{exp} (x,m) equals distance to closest obstacle in direction of measurement (obtained by ray casting)

Beam-based Proximity Model

Measurement noise

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z-z_{\text{exp}})^2}{b}}$$

 η is a normalizer

Unexpected obstacles

$$P_{\text{unexp}}(z \mid x, m) = \begin{cases} \eta \ \lambda \ e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{cases}$$

 η is a normalizer, λ a model parameter

Beam-based Proximity Model

Random measurement

$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

 η is a normalizer

Max range

$$P_{\max}(z|x,m) = \begin{cases} 1 & z = z_{\max} \\ 0 & \text{otherwise} \end{cases}$$

Resulting Mixture Density

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix}^{T} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

The model parameters can be learned from data

Learning the Model Parameters from Real Sensor Data

Measured distances for expected distance of 300 cm.

Learned Models

Laser

Sonar

