

Grado en Ingeniería Informática

Examen extraordinario. Curso 2020-2021 1 de julio de 2021

GRUPO:

CONTESTE CADA PROBLEMA POR SEPARADO

Problema 1.1 (4 p., 30 min.)

Dado el siguiente circuito, en donde M4_1E es un multiplexor 4 a 1:

a) Complete la tabla de verdad, incluyendo los nombres de las entradas en el orden que considere más conveniente, para la salida Z

Entradas			Salida
			Z

TECNOLOGÍA DE COMPUTADORES Grado en Ingeniería Informática

Examen extraordinario. Curso 2020-2021 1 de julio de 2021

GRUPO:

CONTESTE CADA PROBLEMA POR SEPARADO

b) Obtenga sus expresiones canónicas

c) Realice su diseño en VHDL

Grado en Ingeniería Informática

Examen extraordinario. Curso 2020-2021 1 de julio de 2021

GRUPO:

CONTESTE CADA PROBLEMA POR SEPARADO

Problema 1.2 (3 p., 30 min.)

Se dispone del código VHDL que se presenta a continuación:

```
library ieee;
       use ieee. std_logic_1164. all;
entity CRS_cir is
       port(
              Vector: --- COMPLETAR ---
                      --- COMPLETAR ---
              Salida: --- COMPLETAR ---
end CRS cir;
architecture FUNCIONAL of CRS_cir is
signal a, b, c, d: --- COMPLETAR ---
signal Sz: --- COMPLETAR ---
signal Sel: --- COMPLETAR ---
begi n
d <= Vector(3); c <= Vector(2); b <= Vector(1); a <= Vector(0);</pre>
Sel <= d&c;
process (--- COMPLETAR ---)
begi n
       case Sel is
             when "00" | "01" => Sz <= a xor b;
             when "10" => Sz <= a and (not b);
             when others => Sz <= (not a) and b;
       end case;
end process;
Z \leq Sz;
Salida <= '1' when (Vector="0011" or Sz='1' or (c and d)='1') else '0';
end archi tecture;
```

Se pide:

- a) Complete en la entidad y en la arquitectura, las zonas de texto incompletas (declaraciones de puertos, declaraciones de señales y lista de sensibilidad).
- b) Represente con componentes discretos el esquema completo del circuito que se encuentra codificado en VHDL.

Grado en Ingeniería Informática

Examen extraordinario. Curso 2020-2021 1 de julio de 2021

GRUPO:

CONTESTE CADA PROBLEMA POR SEPARADO

C)	Represente la tabla de la verdad de la función Salida. Puede ser de ayuda identificar primero
	la tabla de la verdad de Sz.

Grado en Ingeniería Informática

Examen extraordinario. Curso 2020-2021 1 de julio de 2021

GRUPO:

CONTESTE CADA PROBLEMA POR SEPARADO

D 1 1	1/2	20	! \	١
Problema 1.3	3 (3 D.,	20	min.)

a) Complete la siguiente tabla con las representaciones de los números en los diferentes sistemas. Utilice 8 bits para todas las conversiones.

	Número 1	Número 2
Decimal	42 ₁₀	
Binario natural		
Hexadecimal		
Octal		
BCD		10010111 _{BCD}

	Octal		
	BCD		10010111 _{BCD}
b) Cons	siderando los siguientes do	s números representados en com _l	plemento a 2:
	$A = 011011110_{2C}$		
	B = 101111100 _{2C}		
	b.1) Escriba la representa	ción de los dos números en sistem	a decimal.
		es A+B y A-B en complemento a 2. l damiento en alguna de las operaci	
A+B :			
A-B :			

Computer Science and Engineering Degree

Extraordinary Exam. 2020-2021 July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

Exercise 1.1 (4 p., 30 min.)

Answer the questions below for the following circuit, where M4_1E is a 4:1 multiplexer:

a) Complete the truth table, including the names of the inputs in the order that you consider most convenient, for the output Z

Inputs			Output
			Z

Computer Science and Engineering Degree

Extraordinary Exam. 2020-2021 July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

b) Write the canonical expressions of Z

c) Write the VHDL description of the circuit

Computer Science and Engineering Degree

Extraordinary Exam. 2020-2021 July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

Exercise 1.2 (3 p., 30 min.)

For the following VHDL code:

```
library ieee;
       use ieee. std_logic_1164. all;
entity CRS_cir is
       port(
              Vector: --- TO COMPLETE ---
                      --- TO COMPLETE ---
              Z:
              Salida: --- TO COMPLETE ---
end CRS cir;
architecture FUNCIONAL of CRS_cir is
signal a, b, c, d: --- TO COMPLETE ---
signal Sz: --- TO COMPLETE ---
signal Sel: --- TO COMPLETE ---
begi n
d <= Vector(3); c <= Vector(2); b <= Vector(1); a <= Vector(0);</pre>
Sel <= d&c;
process (---TO COMPLETE ---)
begi n
       case Sel is
             when "00" | "01" => Sz <= a xor b;
             when "10" => Sz <= a and (not b);
             when others => Sz <= (not a) and b;
       end case;
end process;
Z \leq Sz;
Salida <= '1' when (Vector="0011" or Sz='1' or (c and d)='1') else '0';
end archi tecture;
```

- a) Complete the entity and the architecture for the incomplete areas (declaration of ports, declaration of signals and sensitivity list)
- b) Draw a complete schema of the circuit described by the VHDL code using discrete components

COMPUTER TECHNOLOGY Computer Science and Engineering Degree

Computer Science and Engineering Degree
Extraordinary Exam. 2020-2021

July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

c) Write the truth table of the output Salida. It may be helpful to identify the Sz truth table first.

Computer Science and Engineering Degree

Extraordinary Exam. 2020-2021 July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

Exercise 1.	3	(3 n.	. 20	min.)

a) Complete the following table with the representations of the numbers in the various systems. Use 8 bits in all cases.

	Number 1	Number 2
Decimal	42 ₁₀	
Natural Binary		
Hexadecimal		
Octal		
BCD		10010111 _{BCD}

	505		1001011166
b) Consider	the following two num	nbers in 2's Complement:	
A =	01101110 _{2C}		
B =	10111100 _{2C}		
b.1)) Write the decimal rep	resentation of the two numbers.	
b.2	Perform the operation any of the operations	ns A+B and A-B in 2's complement. . Justify your answer.	Determine if there is overflow in
A+B :			
A-B :			

Computer Science and Engineering Degree

Extraordinary Exam. 2020-2021 July 1st, 2021

GROUP:

ANSWER EACH PROBLEM IN A DIFFERENT SHEET

Dado el siguiente circuito:

En donde M4_1E es un multiplexor 4 a 1.

(a) Completar la tabla de verdad, incluyendo los nombres de las entradas en el orden que considere más conveniente, para la salida Z

	Entradas			
Т	Р	М	F	Z
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

(b) Obtenga sus expresiones canónicas

$$\sum Minterms(0,2,4,5,6,8,13,14) = \overline{T}\overline{P}\overline{M}\overline{F} + \overline{T}\overline{P}M\overline{F} + \cdots$$

(c) Realice su diseño en VHDL

```
LIBRARY ieee;
USE ieee.std_logic_l164.all;

ENTITY CombA IS

PORT (
F, M, P, T: IN std_logic;
En: IN std_logic;
z: OUT std_logic
);
END CombA;
```

Implementación a partir de la tabla de verdad

```
■ ARCHITECTURE corto OF CombA IS
 signal Aux:
                   std_logic_vector(3 downto 0);
BEGIN
     Aux <= T&P&M&F;
    Process (Aux, En)
        begin
            if En = '0' then
                Z <= '0';
             else
                 case Aux is
                    When "0000" | "0010" | "0100" | "0101" | "0110" | "1000" | "1101" | "1110" =>
                        Z <='1';
                    When others =>
                       Z <= '0';
            end if;
    End process;
 END corto ;
```

Otra forma de hacerlo

```
■ ARCHITECTURE largo OF CombA IS
 ■BEGIN
    Aux <= T&P;
Process (Aux, e0, e1, e2, e3, En)
       begin
           if En = '0' then
              Z <= '0';
           else
              case Aux is
When "00" =>
                     Z <= e0;
                  When "01" =>
                     Z <= e1;
                  When "10" =>
                     Z <= e2;
                  When others =>
                     Z <= e3;
           end if;
    End process;
    e0 <= not F;
    el <= not(F and M);
    e2 <= not(F or M);</pre>
    e3 <= F xor M;
 end largo;
```

Se dispone del código VHDL que se presenta a continuación:

```
library ieee;
       use ieee. std_logic_1164. all;
entity CRS_cir is
       port(
              Vector: --- COMPLETAR ---
              Z: COMPLETAR ---
              Salida: --- COMPLETAR ---
end CRS_cir;
architecture FUNCIONAL of CRS_cir is
signal a, b, c, d: --- COMPLETAR ---
signal Sz: --- COMPLETAR --- signal Sel: --- COMPLETAR ---
begi n
d <= Vector(3); c <= Vector(2); b <= Vector(1); a <= Vector(0);</pre>
Sel \leq d&c;
process (--- COMPLETAR ---)
begi n
       case Sel is
              when "00" | "01" => Sz <= a xor b;
              when "10" \Rightarrow Sz \iff a and (not b);
              when others => Sz <= (not a) and b;
       end case;
end process;
Z \leq Sz;
Salida \leftarrow '1' when (Vector="0011" or Sz='1' or (c and d)='1') else '0';
end archi tecture;
```

Se pide:

- a) Complete en la entidad y en la arquitectura, las zonas de texto incompletas (definición de variables, señales y lista de sensibilidad).
- b) Represente con componentes discretos el esquema completo del circuito que se encuentra codificado en VHDL.
- c) Represente la tabla de la verdad de la función Z=f(d,c,b,a).
- d) Represente en miniterminos la función Salida=f(d,c,b,a).

```
library ieee;
       use ieee. std_logic_1164. all;
entity CRS_cir is
       port(
              Vector: in std_logic_vector(3 downto 0);
              Z: out std_logic;
              Salida: out std_logic
end CRS_cir;
architecture FUNCIONAL of CRS_cir is
signal a, b, c, d: std_logic;
signal Sz: std_logic;
signal Sel: std_logic_vector(1 downto 0);
begi n
d <= Vector(3); c <= Vector(2); b <= Vector(1); a <= Vector(0);</pre>
Sel \leq d&c;
process (a, b, Sel)
begi n
       case Sel is
             when "00" | "01" => Sz <= a xor b;
              when "10" => Sz <= a and (not b);
              when others => Sz <= (not a) and b;
       end case;
end process;
Z \leq SZ
Salida \leftarrow '1' when (Vector="0011" or Sz='1' or (c and d)='1') else '0';
end archi tecture;
```


Propuesta Examen Extraordinario. Junio 2021

Problema 3

a) Complemente la siguiente tabla con las representaciones de los números en los diferentes sistemas. Utilice 8 bits para todas las conversiones.

	Número 1 (0.6p)	Número 2 <mark>(0.6p)</mark>
Decimal	42 ₁₀	97
Binario natural	00101010	01100001
Hexadecimal	2A	61
Octal	52	141
BCD	01000010 _{BCD}	10010111 _{BCD}

b) Considerando los siguientes dos números representados en complemento a 2:

 $A = 01101110_{2C}$

 $B = 10111100_{20}$

b.1) Escriba la representación de los dos números en sistema decimal. (0.2+0.2p)

A representa un número positivo mientras que B representa un número negativo.

$$A = 01101110_{2C} \rightarrow A = 110_{10}$$

B = 101111100₂c→ Obtenemos la magnitud de B aplicando la operación complemento a 2:

$$abs(B) = 2C(101111100_{2C}) = 01000100 = 68$$

Como B es un número negativo: B = -68.

b.2) Realice las operaciones A+B (0.4p) y A-B (0.6p) mediante una suma binaria de 8 bits de números representados en complemento a 2. Indique, justificando su respuesta, si se produce desbordamiento en alguna de las operaciones (0.4p).

A+B:

 $01101110_{2c} \qquad (110)$ + $10111100_{2c} \qquad (-68)$ $\frac{(1)}{(1)}00101010_{2c} \qquad (42)$

No hay desbordamiento ya que el resultado se puede representar con 8 bits. No puede haber desbordamiento en la suma de un número positivo con otro negativo.

Propuesta Examen Extraordinario. Junio 2021

A-B:

A-B = A+(-B) = A+2C(B)

2C(B) = 01000100(68)

01101110_{2c} (110) + 01000100_{2c} (68) 10110010_{2c} (-78)

Hay desbordamiento ya que el resultado es negativo siendo los operandos positivos. El rango de números enteros que se pueden representar con 8 bits en complemento a 2 va desde -128 a +127. El resultado de la resta en representación decimal (188) está fuera de este rango.