RWC23_ELT2_Regulated_Genes

RTPW

4/13/2020

Decide if plots should be saved to files:

Change plot to TRUE if you want to write plots to a file change plot to FALSE if you do not want to write plots to a file

```
plot <- FALSE
plotdir <- "./03_plots/"</pre>
```

Install Packages

```
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install()
# BiocManager::install("biomaRt")
# install.packages("tidyverse")
# install.packages("readxl")
# BiocManager::install("ComplexHeatmap")
# install.packages("matrixStats")
# install.packages("pheatmap")
# install.packages("RVAideMemoire")
# install.packages("dendextend")
# install.packages("binom")
```

Load Package Libraries

```
library(biomaRt)
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.3.0
                                0.3.4
                      v purrr
## v tibble 3.0.1
                      v dplyr
                                0.8.5
## v tidyr
            1.0.3
                      v stringr 1.4.0
## v readr
            1.3.1
                      v forcats 0.5.0
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## x dplyr::select() masks biomaRt::select()
```

```
library(readxl)
library(ComplexHeatmap)
## Loading required package: grid
## ==============
## ComplexHeatmap version 2.2.0
## Bioconductor page: http://bioconductor.org/packages/ComplexHeatmap/
## Github page: https://github.com/jokergoo/ComplexHeatmap
## Documentation: http://jokergoo.github.io/ComplexHeatmap-reference
## If you use it in published research, please cite:
## Gu, Z. Complex heatmaps reveal patterns and correlations in multidimensional
    genomic data. Bioinformatics 2016.
library(matrixStats)
##
## Attaching package: 'matrixStats'
## The following object is masked from 'package:dplyr':
##
##
      count
library(pheatmap)
library(RVAideMemoire)
## *** Package RVAideMemoire v 0.9-75 ***
library(dendextend)
##
## -----
## Welcome to dendextend version 1.13.4
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
library(binom)
library(circlize)
## ===============
## circlize version 0.4.9
## CRAN page: https://cran.r-project.org/package=circlize
```

```
## Github page: https://github.com/jokergoo/circlize
## Documentation: https://jokergoo.github.io/circlize_book/book/
##
## If you use it in published research, please cite:
## Gu, Z. circlize implements and enhances circular visualization
    in R. Bioinformatics 2014.
##
##
## This message can be suppressed by:
    suppressPackageStartupMessages(library(circlize))
##
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:dplyr':
##
      intersect, setdiff, union
##
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
```

Background and Rationale

ELT-2 is the C. elegans intestine master regulator. Deletion of ELT-2 leads to a larval lethal phenotype, and expression of ELT-2 in non-intestine tissue induces an intestine fate.

This documet will generate plots to address the questions outlined below.

For genes differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which expression pattern clusters associate with ELT-2 binding?
- 2) which expression pattern clusters associate with ELT-2 binding categories?
- For all genes
- For only genes bound by ELT-2
- 3) Which expression pattern clusters associate with intestine expression? (MA plot for each expression set)
- For all genes
- For genes only bound by ELT-2

For clusters of transcription factors (TFs) differentially expressed during elt-2 (-) and/or elt-7(-):

- 1) which transcription factor clusters associate with ELT-2 binding?
- 2) which transcription factor clusters associate with ELT-2 binding categories
- for all TFs
- For only TFs bound by ELT-2
- 3) which transcription factor clusters associate with intestine expression?
- for all
- for only ELT-2 bound

Description of Data

I will integrate a RNA-seq experiment, a microarray experiment and a ChIP-seq experiments.

The first is a set of RNA-seq experiments in L1 stage worms (Dineen and Nishimura, 2018). They were collected from the following genotypes, all in the L1 stage:

- wildtype (wt)
- elt-7 deleted (elt7D)
- elt-2 deleted (elt2D)
- combination fo elt-7 and elt-2 deleted (elt2Delt7D)

The purpose of including elt-7 and elt-2/elt-7 double deletion is because these two transcription factors have overlapping functionality. Deletion of elt-7 alone does not have a phenotype, but deletion of elt-7 in combination with elt-2 has an enhanced lethal phenotype of just elt-2 alone.

The second dataset is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

The ChIP-seq experiments are performed against ELT-2 and are from the following developmental stages:

- late embryo (LE)
- L1
- L3

They were collected as part of the modENCODE consortium and were processed by David King. He has provided gene mapping of ELT-2 targets and categories of ELT-2 binding. The ELT-2 binding categories are as follows:

- Not changing
- Larval
- L3 high
- Embryonic
- Increasing

Citations

- Dineen, A., Osborne Nishimura, E., Goszczynski, B., Rothman, J. H., & McGhee, J. D. (2018). Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Developmental Biology, 435(2), 150–161. https://doi.org/10.1016/J.YDBIO.2017.12.023
- 2) Kudron, M. M., Victorsen, A., Gevirtzman, L., Hillier, L. W., Fisher, W. W., Vafeados, D., ... Waterston, R. H. (2018). The modern resource: genome-wide binding profiles for hundreds of Drosophila and Caenorhabditis elegans transcription factors. Genetics, 208(3), 937–949. https://doi.org/10.1534/genetics.117.300657
- 3) Spencer, W. C., Zeller, G., Watson, J. D., Henz, S. R., Watkins, K. L., McWhirter, R. D., Petersen, S., Sreedharan, V. T., Widmer, C., Jo, J., Reinke, V., Petrella, L., Strome, S., Von Stetina, S. E., Katz, M., Shaham, S., Rätsch, G., & Miller, D. M. (2011). A spatial and temporal map of C. elegans gene expression. Genome Research, 21(2), 325–341. https://doi.org/10.1101/gr.114595.110
- 4) Boeck, M. E., Huynh, C., Gevirtzman, L., Thompson, O. A., Wang, G., Kasper, D. M., Reinke, V., Hillier, L. W., & Waterston, R. H. (2016). The time-resolved transcriptome of C. elegans. Genome Research, 26(10), 1441–1450. https://doi.org/10.1101/gr.202663.115

Code

Source functions

source("../RWC23_Functions.R")

Load and Process Datasets

2 WBGene00015956

Load Dineen and Osborne Nishimura et. al. Data

```
dineen nishimura counts <-
  read_xlsx(path = "./01_input/Table_S2_rlog_Stabilized_Read_Counts.xlsx",
            sheet = "Sheet1")
dineen_nishimura_counts_matrix <- dineen_nishimura_counts %>%
  column to rownames(var = "WBGeneID") %>%
  data.matrix()
dineen_nishimura_counts_matrix %>% head
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene0000001
                     8.957161
                                  8.858238
                                              8.841623
                                                          8.923111
                                                                          8.505028
## WBGene00000002
                     7.489159
                                  7.382905
                                              7.518631
                                                          7.492399
                                                                          7.378168
## WBGene0000003
                     9.061810
                                 8.748589
                                              9.295497
                                                          9.286834
                                                                          9.480361
## WBGene0000004
                    10.916559
                                10.786200
                                             11.010430
                                                          10.826657
                                                                         10.836827
## WBGene0000005
                                              3.116144
                     2.990777
                                  2.864044
                                                          2.715502
                                                                          2.584081
## WBGene0000007
                     5.799066
                                  6.026780
                                              5.831420
                                                          6.072836
                                                                          5.699261
##
                  elt7D_sorted_2 elt7D_sorted_3 elt2D_sorted_1 elt2D_sorted_2
## WBGene0000001
                        8.568569
                                        8.517438
                                                       9.172904
                                                                       9.249496
## WBGene00000002
                                                                       7.289884
                        7.582425
                                        7.512668
                                                       7.503760
## WBGene0000003
                        9.451384
                                        9.008938
                                                       8.669299
                                                                       8.593847
## WBGene0000004
                       10.806534
                                       10.819497
                                                      10.303062
                                                                      10.296768
## WBGene0000005
                        2.881642
                                        2.827526
                                                       2.953325
                                                                       2.835451
## WBGene0000007
                        5.492677
                                        5.220378
                                                       4.683237
                                                                       4.797660
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000001
                        9.211660
                                        9.346959
                                                             9.379698
## WBGene00000002
                        7.386127
                                        7.262063
                                                             7.904008
## WBGene0000003
                        8.753835
                                        8.781267
                                                             8.791018
## WBGene00000004
                                                            10.332489
                       10.356820
                                       10.366512
## WBGene0000005
                        2.886842
                                        2.979650
                                                             2.499412
## WBGene00000007
                                                             4.602235
                        4.495252
                                        4.593047
##
                  elt2Delt7D sorted 2 elt2Delt7D sorted 3
## WBGene0000001
                             9.217403
                                                  9.101997
## WBGene00000002
                             7.870852
                                                  7.762023
## WBGene0000003
                             8.795191
                                                  8.936724
## WBGene0000004
                             10.223675
                                                 10.597407
## WBGene0000005
                              2.763405
                                                  2.428255
## WBGene0000007
                             4.641832
                                                  4.476899
list of all dynamically expressed genes
dynamic_regulated_genes <-</pre>
  read.table(file = "./01_input/2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt",
             quote = "",
             header = FALSE)
colnames(dynamic_regulated_genes) <- "WBGeneID"</pre>
dynamic_regulated_genes %>% head
##
           WBGeneID
## 1 WBGene00004020
```

```
## 3 WBGene00000216
## 4 WBGene00001795
## 5 WBGene00008167
## 6 WBGene00010049
Load differential expression clusters from Dineen and Nishimura et al (2018).
dineen nishimura clusters <-
  read_xlsx(path = "./01_input/Table_S6_All_Dynamically_Expressed_Genes_Clusters.xlsx",
            sheet = "dataset")
dineen_nishimura_sets <-
  dineen_nishimura_clusters %>% select(WBGeneID, set)
dineen_nishimura_sets_ascend <-
  arrange(dineen_nishimura_sets, WBGeneID)
dineen_nishimura_sets_ascend$set <-
  toupper(dineen_nishimura_sets_ascend$set)
dineen_nishimura_sets_ascend %>% head
## # A tibble: 6 x 2
##
     WBGeneID
##
     <chr>>
## 1 WBGene00000007 SET6
## 2 WBGene00000008 SET6
## 3 WBGene00000009 SET3
## 4 WBGene00000013 SET1
## 5 WBGene00000016 SET1
## 6 WBGene00000017 SET1
Load ELT-2 ChIP-seq binding annotations
# elt2 GRange <- readRDS("./01 input/200719 annotatedPeaks.rds")
# elt2_peaks <- mcols(elt2_GRange) %>% as.data.frame() %>% remove_rownames()
# elt2 peaks
# elt2_peaks <- elt2_peaks %>% rename(cluster.description = k4labels, WBGeneID = feature)
# write_csv(elt2_peaks,"./01_input/200719_annotatedPeaks.csv")
elt2_peaks <- read_csv(file = "./01_input/200719_annotatedPeaks.csv")</pre>
## Parsed with column specification:
## cols(
##
     .default = col_double(),
##
     name = col_character(),
##
     cluster.description = col_character(),
##
     peak = col_character(),
##
     WBGeneID = col_character(),
##
     feature_strand = col_character(),
     insideFeature = col_character(),
##
     fromOverlappingOrNearest = col_character()
##
## See spec(...) for full column specifications.
elt2_peaks$cluster.description <-
  factor(
```

elt2_peaks\$cluster.description,

```
levels = c(
      "Embryo_Specific",
      "Larval",
      "Increasing",
      "L3_High",
      "Not_Changing"
  )
elt2_cluster_names <- c("Embryo_Specific",</pre>
                        "Larval",
                         "Increasing",
                         "L3_High",
                         "Not_Changing")
elt2_peaks %>% head
## # A tibble: 6 x 32
      LE_1 LE_2 L1_1 L1_2 L3_1 L3_2 LE_IDR L1_IDR L3_IDR summit_agreement
##
     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                          <dbl>
                                                  <dbl>
                                                         <dbl>
                                                                           <dbl>
## 1 1.93
           1.60
                  4.25
                        3.77
                              4.88
                                    5.01
                                               0
                                                      1
                                                                            27.4
     2.11
            1.94
                  4.05
                        4.46
                              4.95
                                     5.94
                                               0
                                                      1
                                                             1
                                                                            12.4
## 3 1.22
           1.53 2.61
                        2.85
                              2.45
                                     2.86
                                                                           137
                                               0
## 4 1.81
           1.42 2.74
                        3.28
                              4.18
                                     4.49
                                               0
                                                      0
                                                                             2.5
                                                              1
## 5 2.22
           2.17
                  2.24
                        2.13
                              4.02
                                     4.10
                                               1
                                                      1
                                                              1
                                                                            10
## 6 1.89 2.10
                  3.43 2.85 3.42 3.53
                                                                           124.
                                               0
## # ... with 22 more variables: k4cluster <dbl>, k11cluster <dbl>,
       k4weights <dbl>, k11weights <dbl>, LE_nonNormed <dbl>, L1_nonNormed <dbl>,
       L3_nonNormed <dbl>, LE_std <dbl>, L1_std <dbl>, L3_std <dbl>, name <chr>,
## #
## #
       cluster.description <fct>, variance <dbl>, peak <chr>, WBGeneID <chr>,
       start_position <dbl>, end_position <dbl>, feature_strand <chr>,
## #
       insideFeature <chr>, distancetoFeature <dbl>, shortestDistance <dbl>,
       fromOverlappingOrNearest <chr>
Make a set of genes with ELT-2 binding detected in the L1 stage.
elt2_detected_in_L1 <-
  elt2_peaks %>% select(WBGeneID, L1_IDR) %>% filter(L1_IDR == 1) %>% select(WBGeneID) %>% unique()
elt2_detected_in_L1 %>% head
## # A tibble: 6 x 1
##
     WBGeneID
##
     <chr>>
## 1 WBGene00022277
## 2 WBGene00022276
## 3 WBGene00021026
## 4 WBGene00022037
## 5 WBGene00022042
## 6 WBGene00007009
elt2_detected_in_L1 %>% dim
## [1] 2416
```

Make a dataframe that records the number of peaks per gene that fall in a particular binding catagory.

```
binding_cluster_gene_counts <-</pre>
  table(elt2_peaks$WBGeneID, elt2_peaks$cluster.description)
binding cluster gene counts <-
  as.data.frame.matrix(binding_cluster_gene_counts)
binding_cluster_gene_counts %>% head()
##
                   Embryo_Specific Larval Increasing L3_High Not_Changing
## WBGene00000004
                                 0
                                         2
                                                    0
                                                    2
                                                             0
## WBGene0000007
                                 0
                                         0
                                                                           0
## WBGene00000008
                                 0
                                         0
                                                    1
                                                             0
                                                                           0
## WBGene00000009
                                 0
                                         1
                                                    0
                                                             0
                                                                           0
## WBGene0000018
                                         0
                                                    0
                                 0
                                                             1
                                                                           0
## WBGene00000022
                                 0
                                         0
                                                    0
                                                                           0
```

Load Spencer et. al. intestine expression

select(spencer_L2_ID,

This data is from a 2011 paper using FACS sorting of Late Embryo (LE) and Larval Stage 2 (L2) intestine cells, measured with microarray. See Spencer et. al, (2011).

```
spencerLEgenes <-
 read.table(
    "./01 input/Spencer et al 2010 FACS and pulldown tilling array/LE-intestine enr vs ref.WS200.txt",
    quote = "\"",
    comment.char = "",
    header = TRUE
  )
colnames(spencerLEgenes) <-</pre>
  str_c("spencer_LE_", colnames(spencerLEgenes))
spencer_LE_subset <-</pre>
  spencerLEgenes %>% select(spencer_LE_ID,
                             spencer_LE_AveExpr,
                             spencer_LE_adj_P_Val,
                             spencer_LE_FC)
spencer_LE_subset %>% head
      spencer_LE_ID spencer_LE_AveExpr spencer_LE_adj_P_Val spencer_LE_FC
## 1 WBGene00008163
                                   7.57
                                                                       13.86
## 2 WBGene00021252
                                   8.21
                                                             0
                                                                        7.30
## 3 WBGene00019986
                                   9.29
                                                             0
                                                                       10.67
## 4 WBGene00007904
                                   8.16
                                                             0
                                                                        6.89
## 5 WBGene00012018
                                  10.14
                                                             0
                                                                        6.25
## 6 WBGene00010540
                                                             0
                                   8.43
                                                                        4.15
spencerL2genes <-
 read.table(
    "./01_input/Spencer_et_al_2010_FACS_and_pulldown_tilling_array/L2-intestine_enr_vs_ref.WS200.txt",
    quote = "\"",
    comment.char = "",
    header = TRUE
  )
colnames(spencerL2genes) <-</pre>
  str_c("spencer_L2_", colnames(spencerL2genes))
spencer_L2_subset <- spencerL2genes %>%
```

```
spencer_L2_AveExpr,
spencer_L2_adj_P_Val,
spencer_L2_FC)
spencer_L2_subset %>% head
```

```
##
      spencer_L2_ID spencer_L2_AveExpr spencer_L2_adj_P_Val spencer_L2_FC
## 1 WBGene00020352
                                    7.52
                                                                         7.51
## 2 WBGene00017225
                                    7.28
                                                             0
                                                                         5.32
## 3 WBGene00007973
                                    7.91
                                                             0
                                                                         5.93
## 4 WBGene00018683
                                    8.27
                                                             0
                                                                         5.10
## 5 WBGene00003696
                                    7.95
                                                             0
                                                                         3.73
## 6 WBGene00044776
                                    7.77
                                                             0
                                                                         6.65
```

Process rlog counts

Subset rlog matrix based on presence in list 2017-11-20_all_changing_genes_0.1alpha_0.8lfc.txt. Row scale and center the rlog counts per genes.

```
##
                  wt_sorted_1 wt_sorted_2 wt_sorted_3 wt_sorted_4 elt7D_sorted_1
## WBGene0000007
                    1.0068329 1.37348252
                                             1.0589277
                                                         1.4476397
                                                                       0.84613352
## WBGene00000008
                    2.2632093 1.13063525
                                             1.1251278
                                                         1.0262925
                                                                      -0.03607787
## WBGene00000009
                    0.1468716 -0.09556483
                                            -0.3465276
                                                        -0.8378633
                                                                       0.07003147
## WBGene0000013
                  -1.0765042 0.04628523
                                            -1.0478603
                                                        -0.4296435
                                                                      -0.61401384
## WBGene0000016
                   -0.1629274 0.14035593
                                            -0.8318355
                                                        -0.2209018
                                                                      -0.52814604
## WBGene0000017
                    0.1344074 0.43209491 -0.4453539
                                                         0.5202470
                                                                      -0.19720767
##
                  elt7D_sorted_2 elt7D_sorted_3 elt2D_sorted_1 elt2D_sorted_2
## WBGene0000007
                      0.51350637
                                     0.07506888
                                                     -0.7898010
                                                                    -0.6055647
## WBGene00000008
                     -0.39030667
                                     0.02722321
                                                     -0.4521136
                                                                     -1.0292850
## WBGene00000009
                     -0.11586861
                                     0.42221560
                                                      0.8406016
                                                                     1.2349599
## WBGene0000013
                     -0.58009755
                                     -0.38693983
                                                     -0.4767996
                                                                     0.3851813
## WBGene0000016
                     -0.50445577
                                     -0.16186256
                                                     -0.5681545
                                                                    -0.6137809
## WBGene00000017
                      0.05519157
                                     0.37152702
                                                     -0.9790560
                                                                    -1.0378885
##
                  elt2D_sorted_3 elt2D_sorted_4 elt2Delt7D_sorted_1
## WBGene0000007
                     -1.09248186
                                     -0.9350192
                                                          -0.9202246
## WBGene00000008
                     -0.46498937
                                     -0.8771172
                                                          -0.9402531
## WBGene00000009
                      0.98161197
                                      1.7266509
                                                          -1.7004545
## WBGene0000013
                      0.09286966
                                     -0.5163112
                                                           2.5457794
## WBGene0000016
                     -0.75209134
                                     -1.0136068
                                                           1.7015008
## WBGene0000017
                     -1.16996644
                                     -1.7376299
                                                           1.4066491
##
                  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
## WBGene0000007
                           -0.8564679
                                               -1.1220323
```

```
## WBGene00000008
                           -0.5550156
                                                -0.8273297
## WBGene00000009
                           -0.8668929
                                                -1.4597714
## WBGene0000013
                            1.4999051
                                                 0.5581492
## WBGene0000016
                            2.1353949
                                                 1.3805110
## WBGene0000017
                            1.6701858
                                                 0.9767996
dynamic_counts_matrix_scaled_ascend <-</pre>
  dynamic_counts_matrix_scaled[order(rownames(dynamic_counts_matrix_scaled)),]
```

Must use arrange to sort genes in descending order to ensure row order is preserved

Recreate Supplementary Figure S4a from Dineen and Nishimura et al.

Use expression clusters from Dineen and Nishimura et al to split the clusters.

```
Heatmap(
    dynamic_counts_matrix_scaled_ascend,
    name = "elt2D-elt7D\nRNAseq",
    col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
    cluster_columns = FALSE,
    clustering_distance_rows = "spearman",
    clustering_method_rows = "complete",
    show_row_names = FALSE,
    show_column_names = TRUE,
    row_names_gp = gpar(cex = 0.2),
    column_names_gp = gpar(cex = 0.4),
    heatmap_legend_param = list(color_bar = "continuous"),
    row_split = dineen_nishimura_sets_ascend$set
)
```


Add expression set and column labels.

```
RNA_column_order <-
  factor(c(
    rep("WT", 4),
    rep("elt7D", 3),
    rep("elt2D", 4),
    rep("elt7Delt2D", 3)
  ),
  levels = c("WT", "elt7D", "elt2D", "elt7Delt2D"))
RNA_column_order
##
   [1] WT
                    WT
                               WT
                                           WT
                                                       elt7D
                                                                  elt7D
   [7] elt7D
                    elt2D
                                           elt2D
                                                      elt2D
                                                                  elt7Delt2D
                               elt2D
## [13] elt7Delt2D elt7Delt2D
## Levels: WT elt7D elt2D elt7Delt2D
column_labels <-</pre>
  structure(
    c(
      "rep1",
      "rep2",
      "rep3",
      "rep4",
      "rep1",
      "rep2",
      "rep3",
      "rep1",
```

```
"rep2",
      "rep3",
      "rep4",
      "rep1",
      "rep2",
      "rep3"
    ),
    names = colnames(dynamic_counts_matrix_scaled_ascend)
column_labels
##
           wt_sorted_1
                                wt\_sorted_2
                                                     wt_sorted_3
                                                                         wt_sorted_4
##
                "rep1"
                                     "rep2"
                                                          "rep3"
                                                                               "rep4"
##
        elt7D_sorted_1
                             elt7D_sorted_2
                                                 elt7D_sorted_3
                                                                      elt2D_sorted_1
##
                                                          "rep3"
                "rep1"
                                     "rep2"
                                                                               "rep1"
##
                                                 elt2D_sorted_4 elt2Delt7D_sorted_1
        elt2D_sorted_2
                             elt2D_sorted_3
                                                          "rep4"
                                                                               "rep1"
                "rep2"
                                     "rep3"
##
##
  elt2Delt7D_sorted_2 elt2Delt7D_sorted_3
##
                "rep2"
Ha <- Heatmap(</pre>
  dynamic_counts_matrix_scaled_ascend,
  name = "elt2D-elt7D\nRNAseq",
  col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
  cluster_columns = FALSE,
  clustering_distance_rows = "spearman",
  clustering_method_rows = "complete",
  show_row_names = FALSE,
  show column names = TRUE,
  column_labels = column_labels[colnames(dynamic_counts_matrix_scaled_ascend)],
  column_names_gp = gpar(cex = 0.7),
  heatmap_legend_param = list(color_bar = "continuous"),
  row_split = dineen_nishimura_sets_ascend$set,
  row_title = NULL,
  column_title = NULL,
  column_split = RNA_column_order,
  bottom_annotation = HeatmapAnnotation(
   foo = anno_block(
      labels = c("WT", "elt7D", "elt2D", "elt7D;elt2D"),
      labels_gp = gpar(cex = .8),
      gp = gpar(border = NA, lty = "blank")
      ),
    foo2 = anno_block(gp = gpar(fill = "black"), height = unit(0.5, "mm"))
  ),
  left_annotation = rowAnnotation(foo = anno_block())
    labels = c("SET1", "SET2", "SET3", "SET4", "SET5", "SET6"),
    labels_rot = 0,
    gp = gpar(border = NA, lty = "blank", cex = 0.4)
 ))
)
Нa
```


Sanity check to ensure that cluster splitting is occuring correctly. Remap the Set assignments back to the heatmap as a row annotation.

```
Ha + rowAnnotation(set = dineen_nishimura_sets_ascend$set)
```


Add L1 stage ELT-2 binding

1 WBGene0000007

This section will add annotation to the rows of the elt2/elt7 differentiall expression heatmap with ELT-2 ChIP-seq binding during the L1 stage. This will determine what differential expression sets associate with ELT-2 binding during the L1 stage. The reason L1 stage ChIP-seq eaks are being used is because the elt2/elt7 RNA-seq experiment was conducted in the L1 stage.

In ComplexHeatmap the row order of input matrix and annotation df must be identical to accurately plot data.

```
## 2 WBGene00000008 bound

## 3 WBGene00000009 not.bound

## 4 WBGene00000013 not.bound

## 5 WBGene00000016 not.bound

## 6 WBGene00000017 not.bound
```

Incorporate this into a heatmap annotation


```
if (plot == TRUE) {
myPDFplot(Ha_L1chip, "01a_DE_Heatmap_elt2elt7DERNAseq_L1elt2bound", 4, 4.5, plotdir)
}
```

Add Spencer intestine data

```
spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"
    ),
    spencerL2 = ifelse(</pre>
```

```
test = rownames(dynamic_counts_matrix_scaled_ascend) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
  )
)
Ha_L1chip_spencer <- Ha_L1chip +</pre>
  rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    border = TRUE
  )
Ha_L1chip_spencer
```



```
if (plot == TRUE) {
   myPDFplot(Ha_L1chip_spencer, "01b_DE_Heatmap_elt2elt7DERNAseq_L1elt2bound_spencerRNA", height = 6.5,
}
```

Visually it appears that some elt2/elt7 differential expression clusters have more or less ELT-2 binding associated with the sets. I would like to be more quantitative with this assessment.

Determine enrichment of ELT-2 binding during L1 stage. I will calculate the percentage of genes with an ELT-2 ChIP-seq peak detected during the L1 stage.

First use merge to combine the ELT-2 binding status and expression set for each gene.

```
expression_L1_binding <-
  merge(elt2_L1_anno, dineen_nishimura_sets_ascend, by = "WBGeneID")
expression_L1_binding %>% head
```

```
## WBGeneID elt2_detected_in_L1 set
## 1 WBGene00000007 bound SET6
## 2 WBGene00000008 bound SET6
## 3 WBGene00000009 not.bound SET3
## 4 WBGene00000013 not.bound SET1
## 5 WBGene00000016 not.bound SET1
## 6 WBGene00000017 not.bound SET1
```

Next use table to tally the number of bound and not bound genes per expression set.

```
clust_L1bound_counts <-
   table(expression_L1_binding$set,
        expression_L1_binding$elt2_detected_in_L1)
clust_L1bound_counts</pre>
```

```
##
##
           bound not.bound
##
     SET1
              31
                         260
##
             163
                        1045
     SET2
##
     SET3
             173
                         232
##
     SET4
              37
                          66
##
     SET5
              17
                          48
     SET6
             251
                         769
##
```

Use prop.table to convert these values to percentages within each set.

```
clust_L1bound_prop <- prop.table(clust_L1bound_counts, 1)
clust_L1bound_prop</pre>
```

```
## bound not.bound
## SET1 0.1065292 0.8934708
## SET2 0.1349338 0.8650662
## SET3 0.4271605 0.5728395
## SET4 0.3592233 0.6407767
## SET5 0.2615385 0.7384615
## SET6 0.2460784 0.7539216
```

Adjust the percentages object into a dataframe that ggplot2 can use.

```
clust_Libound_prop_ggplot <- as.data.frame(clust_Libound_prop)

colnames(clust_Libound_prop_ggplot) <- c("SET", "Status", "Freq")

clust_Libound_prop_ggplot$Status <-
   factor(clust_Libound_prop_ggplot$Status,
   levels = c("not.bound", "bound"))</pre>
```

```
clust_L1bound_prop_ggplot$SET <-</pre>
  factor(
    clust_L1bound_prop_ggplot$SET,
    levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
clust_L1bound_colors <- c("bound" = "green", "not.bound" = "black")</pre>
l1bound_percents <-
  ggplot(
    clust_L1bound_prop_ggplot %>% filter(Status == "bound"),
     x = SET,
     y = Freq,
     fill = Status,
     order = Status
    )
  ) +
  geom_bar(stat = "identity") +
  scale_color_manual(values = clust_L1bound_colors,
                     aesthetics = c("color", "fill")) +
  ggtitle("Percentage of L1 Stage ELT-2 Binding Per
          Expression Set") +
  xlab("Expression Set") +
  ylab("Percentage") +
  theme_classic() +
  theme(axis.text.x = element_text(size = 13)) +
  ylim(0, 1)
11bound_percents
```

Percentage of L1 Stage ELT–2 Binding Per Expression Set

This plot shows that all of the differential expression sets have less than 50% of genes bound by ELT-2.

Rather than viewing percentages of genes bound, what is the number of "bound" vs "not.bound" per cluster?

bound_per_cluster

Number of L1 Stage ELT–2 Binding Site Per Expression Set


```
if (plot == TRUE) {
myggsave(
   plot = bound_per_cluster,
   name = "03_number_of_l1elt2_per_expression_cluster",
   height = 2,
   width = 5,
   plotdir = plotdir
   )
}
```

Use the binomial test to determine if the different expression clusters are enriched or depleted for ELT-2 binding.

Use binom.test and first do a two-tailed test.

First calculate the proportion of bound genes over the total number of genes in the analysis.

```
proportion = as.numeric(colSums(clust_L1bound_counts)[1]) /
   as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
proportion
```

[1] 0.2173351

Use custom function ctable_binom() to calculate p-vaule and confidence intervals for each set.

```
l1bound_binom <- ctable_binom(clust_L1bound_counts, "two.sided")</pre>
```

```
## Set pval conf.lower conf.upper bool
```

```
## 1 SET1 1.089477e-06 0.07353755 0.1477938 TRUE

## 2 SET2 3.090100e-13 0.11616023 0.1555038 TRUE

## 3 SET3 3.491899e-21 0.37843660 0.4769565 TRUE

## 4 SET4 1.095787e-03 0.26704257 0.4597282 TRUE

## 5 SET5 3.695287e-01 0.16032876 0.3853937 FALSE

## 6 SET6 2.765586e-02 0.21991907 0.2737118 TRUE
```

This says that all sets but SET5 have a significant difference in genes bound compared to the entire dataset.

Now use the less or greater argument of binom.test to see if there is more or less binding.

```
ctable_binom(ctable = clust_L1bound_counts, alt = "less")
##
     Set
                 pval conf.lower conf.upper bool
## 1 SET1 5.771887e-07
                               0 0.1410586
## 2 SET2 1.554820e-13
                               0 0.1521773 TRUE
## 3 SET3 1.000000e+00
                               0 0.4691260 FALSE
## 4 SET4 9.996741e-01
                               0 0.4441844 FALSE
## 5 SET5 8.449320e-01
                               0 0.3660888 FALSE
## 6 SET6 9.873319e-01
                               0 0.2692809 FALSE
```

This says that set 1 and 2 have less ELT-2 binding compared to the entire dataset.

Now try greater.

```
ctable_binom(clust_L1bound_counts, "greater")
```

This says that SET3, SET4 and SET6 have a higher percentage of genes bound compared the "background" percent of bound genes for the entire dataset.

Make a plot that visually depicts this. Draw line on the percentage plot to indicate background percentage of L1 stage ELT-2 binding.


```
if (plot == TRUE) {
myggsave(
  plot = l1bound_percents_verticle,
  name = "04_percentage_l1bound_per_expression_cluster",
  width = 4,
  height = 5,
  plotdir = plotdir
)
}
```

Use the hypergeometric test to determine: Are changing genes (all sets) enriched for L1 binding?

```
N <- 20470
k <- nrow(elt2_detected_in_L1)
x3 <- as.numeric(colSums(clust_L1bound_counts)[1])
m <-
    as.numeric(colSums(clust_L1bound_counts)[1] + colSums(clust_L1bound_counts)[2])
dhyper(x3, m, N, k)</pre>
```

[1] 3.957929e-93

A very small p-value for the hypergeometric test suggests that the entire dataset is enriched for ELT-2.

The next section with compute pairwise fisher's exact tests for the different sets. I have a difficult time interpreting these results.

```
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")
```

##
Pairwise comparisons using Fisher's exact test for count data

```
##
## data: clust_L1bound_counts
##
##
             SET1
                        SET2
                                  SET3
                                          SET4 SET5
## SET2 1.000e+00
## SET3 3.332e-20 1.647e-31
## SET4 5.641e-07 1.004e-06 1.000e+00
## SET5 3.200e-02 1.370e-01 2.077e-01 1.0000
## SET6 1.161e-06 3.066e-10 6.302e-10 0.2603
##
## P value adjustment method: bonferroni
fisher.multcomp(clust_L1bound_counts, p.method = "bonferroni")$p.value < 0.05
##
         SET1
               SET2
                     SET3
                            SET4
                                  SET5
## SET2 FALSE
                 NA
                        NA
                              NA
                                    NA
## SET3
        TRUE
               TRUE
                        NA
                              NA
                                    NA
## SET4
         TRUE
               TRUE FALSE
                              NA
                                    NA
  SET5
         TRUE FALSE FALSE FALSE
                                    NA
                     TRUE FALSE FALSE
         TRUE
               TRUE
```

Row annotation of ELT-2 Binding Pattern Clusters

This section will add annotation to the rows of the elt2/elt7 differential expression heatmap with ELT-2 ChIP-seq binding pattern clusters. This will determine what differential expression sets associate with ELT-2 binding patters.

Start by using custom function make_cluster_annotation(). This function takes two objects: the matrix of gene expression values and a dataframe of counts ELT-2 binding patterns per genes. It returns a dataframe with the number of ELT-2 binding categories associated with each gene.

```
##
           WBGeneID Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene0000007
                                    0
                                                        2
                                                                 0
                                                                               0
                                    0
                                                                               0
## 2 WBGene00000008
                                            0
                                                        1
                                                                 0
## 3 WBGene00000009
                                    0
                                                                               0
                                            1
                                                        0
                                                                 0
## 4 WBGene0000013
                                    0
                                            0
                                                        0
                                                                 0
                                                                               0
## 5 WBGene00000016
                                    0
                                            0
                                                        0
                                                                 0
                                                                               0
## 6 WBGene0000017
                                                                               0
```

Sanity check to ensure that the order and number of rows is preserved.

```
unique(rownames(dynamic_counts_matrix_scaled_ascend) == chip_annotation$WBGeneID)
```

```
## [1] TRUE
nrow(dynamic_counts_matrix_scaled) == nrow(chip_annotation)
## [1] TRUE
```

Build add row annotation for the number of ELT-2 binding clusters associated with each gene.

```
Ha_L1chip_bindcluster <- Ha_L1chip +
rowAnnotation(Embryo_Specific = chip_annotation$Embryo_Specific) +</pre>
```

```
rowAnnotation(Larval = chip_annotation$Larval) +
rowAnnotation(Increasing = chip_annotation$Increasing) +
rowAnnotation(L3_High = chip_annotation$L3_High) +
rowAnnotation(Not_Changing = chip_annotation$Not_Changing)
Ha_L1chip_bindcluster
```


Have the colors match plot from David.

Convert ChIP binding clusters to a present/absence list.

```
chip_annotation_present_absent <-
make_cluster_binary_annotation(chip_annotation)</pre>
```

Plot the heatmap with presence/absence.

```
Ha_L1chip_clusterchip <-
    Ha_L1chip + binding_cluster_row_annotation(chip_annotation_present_absent)</pre>
Ha_L1chip_clusterchip
```



```
if(plot == TRUE){
  myPDFplot(
    plot = Ha_L1chip_clusterchip,
    name = "05a_DE_Heatmap_L1elt2bound_elt2bindclusters_anno",
    height = 6.5,
    width = 6,
    plotdir = plotdir
)
}
```

Add Spencer intestine RNA row annotation

```
Ha_L1chip_clusterchip_spencerRNA <- Ha_L1chip_clusterchip +
rowAnnotation(
    LE.intestine = spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
) +
rowAnnotation(
    L2.intestine = spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
)</pre>
```



```
if (plot == TRUE){
  myPDFplot(
    plot = Ha_L1chip_clusterchip_spencerRNA,
    name = "05b_DE_Heatmap_L1elt2bound_elt2bindclusters_spencerRNA_anno",
    height = 6.5,
    width = 8,
    plotdir = plotdir
)
}
```

Plot percentage of expression cluster group having binding pattern assignment.

```
exprclust_bindclust <-
merge(
    dineen_nishimura_sets_ascend,
    chip_annotation_present_absent,
    by.x = "WBGeneID",
    by.y = "WBGeneID"
)

exprclust_bindclust %>% head
```

```
##
           WBGeneID set Embryo_Specific
                                          Larval Increasing L3_High Not_Changing
## 1 WBGene00000007 SET6
                                  absent
                                          absent
                                                    present
                                                             absent
                                                                           absent
## 2 WBGene00000008 SET6
                                                                           absent
                                  absent absent
                                                              absent
                                                    present
## 3 WBGene00000009 SET3
                                  absent present
                                                     absent
                                                             absent
                                                                           absent
```

```
## 4 WBGene00000013 SET1 absent absent absent absent absent ## 5 WBGene00000016 SET1 absent absent
```

What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

Make a dataframe that addresses the question:

```
##
       set absent present
                              ELT2_cluster
                                                percent
## 1
      SET1
              286
                         5 Embryo_Specific 0.017182131
## 2 SET2
             1188
                        20 Embryo_Specific 0.016556291
## 3 SET3
              397
                         8 Embryo_Specific 0.019753086
## 4 SET4
              101
                         2 Embryo Specific 0.019417476
## 5 SET5
               63
                         2 Embryo_Specific 0.030769231
## 6 SET6
             1012
                         8 Embryo_Specific 0.007843137
## 7
      SET1
              277
                        14
                                    Larval 0.048109966
## 8
      SET2
             1087
                       121
                                    Larval 0.100165563
## 9
      SET3
              331
                       74
                                    Larval 0.182716049
## 10 SET4
                       18
                                    Larval 0.174757282
               85
## 11 SET5
               52
                       13
                                    Larval 0.200000000
## 12 SET6
              877
                       143
                                    Larval 0.140196078
## 13 SET1
              243
                        48
                                Increasing 0.164948454
## 14 SET2
              961
                       247
                                Increasing 0.204470199
## 15 SET3
              191
                       214
                                Increasing 0.528395062
## 16 SET4
               48
                        55
                                Increasing 0.533980583
## 17 SET5
               46
                       19
                                Increasing 0.292307692
## 18 SET6
              688
                      332
                                Increasing 0.325490196
## 19 SET1
              256
                        35
                                   L3_High 0.120274914
## 20 SET2
             1044
                       164
                                   L3_High 0.135761589
## 21 SET3
              323
                       82
                                   L3 High 0.202469136
## 22 SET4
               86
                        17
                                   L3_High 0.165048544
## 23 SET5
               50
                        15
                                   L3 High 0.230769231
                       168
## 24 SET6
              852
                                   L3_High 0.164705882
## 25 SET1
              279
                        12
                              Not_Changing 0.041237113
## 26 SET2
             1174
                        34
                              Not_Changing 0.028145695
```

```
## 27 SET3
                        2
                             Not_Changing 0.004938272
              403
## 28 SET4
              102
                        1
                             Not_Changing 0.009708738
               59
                        6
                             Not_Changing 0.092307692
## 29 SET5
## 30 SET6
             1007
                       13
                             Not_Changing 0.012745098
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster.

First, calculate the percentage of each ELT-2 binding category against the total dataset.

Next calculate the the 95% Confidence Interval with the Bionomial Test.

```
## # A tibble: 30 x 3
## # Groups:
               set [6]
      set
          ELT2_cluster
##
                            percent
##
      <chr> <fct>
                              <dbl>
## 1 SET1 Embryo_Specific 0.0172
## 2 SET1 Larval
                             0.0481
## 3 SET1 Increasing
                             0.165
## 4 SET1 L3_High
                             0.120
## 5 SET1 Not_Changing
                             0.0412
## 6 SET2 Embryo_Specific 0.0166
## 7 SET2 Larval
                             0.100
## 8 SET2 Increasing
                             0.204
## 9 SET2 L3_High
                             0.136
## 10 SET2 Not_Changing
                             0.0281
## # ... with 20 more rows
Calculate the binomial pvalue and confidence intervals.
 \textit{\# Add a column for the background percentage of \textit{ELT2 binding clusters per the whole expression dataset } \\
expression_binding_stats <-
  expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent = sum(prese
                                                                             (sum(present) + sum(absent))
# Use binom.test to calculate pvalue and confidence intervales for the percentage of ELT2 binding clust
expression_binding_stats <- expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
   pval = binom.test(
      x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
   )$p.value,
    conf.upper = binom.test(
     x = c(present, absent),
      n = present + absent,
     p = background_percent,
     alternative = "two.sided"
   )$conf.int[2],
    conf.lower = binom.test(
      x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
expression_binding_stats$set <-
  factor(
    expression_binding_stats$set,
    levels = c("SET6", "SET5", "SET4", "SET3", "SET2", "SET1")
  )
```

```
expression_binding_stats %>% head()
## # A tibble: 6 x 9
## # Groups: ELT2_cluster, set [6]
          absent present ELT2_cluster percent background_perc~ pval conf.upper
    set
    <fct> <int> <int> <fct>
                                        <dbl>
                                                        <dbl> <dbl>
                                                                          <dbl>
## 1 SET1
            286
                      5 Embryo_Spec~ 0.0172
                                                       0.0146 0.621
                                                                         0.0396
## 2 SET2
          1188
                     20 Embryo_Spec~ 0.0166
                                                      0.0146 0.546
                                                                         0.0255
## 3 SET3
           397
                      8 Embryo_Spec~ 0.0198
                                                      0.0146 0.399
                                                                         0.0385
## 4 SET4
            101
                       2 Embryo_Spec~ 0.0194
                                                       0.0146 0.664
                                                                         0.0684
## 5 SET5
             63
                       2 Embryo_Spec~ 0.0308
                                                      0.0146 0.244
                                                                         0.107
## 6 SET6
            1012
                       8 Embryo Spec~ 0.00784
                                                      0.0146 0.0869 0.0154
## # ... with 1 more variable: conf.lower <dbl>
per_cluster_pattern_percent <- ggplot(expression_binding_stats,</pre>
      aes(x = set,
          y = percent, fill = ELT2_cluster)) +
 geom bar(stat = "identity") +
 scale_y_continuous(limits = c(0, 0.75)) +
 theme_classic() +
 geom_hline(
   data = percent_bound_per_ELT2_cluster,
   color = "red",
   linetype = "dashed",
   aes(yintercept = percent)
 geom_errorbar(
   ymax = expression_binding_stats$conf.upper,
   ymin = expression_binding_stats$conf.lower,
   width = 0.1
 ) +
 coord_flip() +
 facet_grid(. ~ ELT2_cluster) +
 scale_fill_manual(values = as.character(cluster_colors$val))
per_cluster_pattern_percent
```


Subset ELT-2/ELT-7 differentially expressed genes based on ELT-2 binding in L1 stage

```
RNA_heatmap2(
    dynamic_counts_matrix_scaled_ascend,
    column_split = RNA_column_order,
    row_split = elt2_L1_anno$elt2_detected_in_L1
) +
    elt2_l1_row_annotation(elt2_L1_anno) +
    binding_cluster_row_annotation(chip_annotation_present_absent)
```



```
data.frame(
    WBGeneID = rownames(dynamic_counts_matrix_scaled_bound_only),
    set = paste("SET", kclus$cluster, sep = "")
  )
head(bound_only_sets)
##
           WBGeneID set
## 1 WBGene00000007 SET3
## 2 WBGene00000008 SET3
## 3 WBGene00000064 SET1
## 4 WBGene00000067 SET4
## 5 WBGene00000107 SET3
## 6 WBGene00000136 SET3
Draw heatmap and check that set assignment is correct.
Ha_bound_only <-</pre>
  RNA_heatmap2(mat = dynamic_counts_matrix_scaled_bound_only,
              column_split = RNA_column_order,
              row_split = bound_only_sets$set,
              row_title = c("SET2", "SET3", "SET1", "SET4"))
Ha_bound_only
SET2
SET3
                                                                                elt2D-elt7D
SET1
                                                                                RNAseq
                                                                                  4
                                                                                  2
                                                                                  0
                                                                                   -2
SET4
                 WT
                                  elt7D
                                                   elt2D
                                                                  elt7D;elt2D
if (plot == TRUE){
  myPDFplot(
    plot = Ha_bound_only,
    name = "09a_DE_Heatmap_L1elt2boundOnly",
```

```
height = 6.5, width = 6,
    plotdir = plotdir
  )
}
Ha_bound_only +
  rowAnnotation(sets = bound_only_sets$set)
SET2
SET3
                                                                                elt2D-elt7D
                                                                                RNAseq
                                                                                   2
SET1
                                                                                   0
                                                                                   -2
                                                                                sets
                                                                                   SET1
                                                                                   SET2
SET4
                                                                                   SET3
                                                                                   SET4
                                                                             sets
                 WT
                                 elt7D
                                                 elt2D
                                                               elt7D;elt2D
                rep2
                         ep4
                                   .eb2
           .eb
                              ep1
bound_only_annotation <-</pre>
  merge(bound_only_elt2_clust_anno,
        bound_only_sets,
        by.x = "WBGeneID",
        by.y = "WBGeneID")
bound_only_annotation_ascend <-
  bound_only_annotation %>% arrange(WBGeneID)
head(bound_only_annotation_ascend)
##
           WBGeneID Embryo_Specific Larval Increasing L3_High Not_Changing set
## 1 WBGene00000007
                              absent
                                       absent
                                                 present absent
                                                                         absent SET3
## 2 WBGene00000008
                                                                         absent SET3
                              absent absent
                                                 present absent
## 3 WBGene00000064
                              absent
                                      absent
                                                                         absent SET1
                                                 present present
## 4 WBGene00000067
                              absent present
                                                 present absent
                                                                         absent SET4
## 5 WBGene00000107
                               absent absent
                                                                         absent SET3
                                                 present present
## 6 WBGene00000136
                              absent present
                                                 present absent
                                                                         absent SET3
Ha_bound_only_chipClust <-</pre>
  Ha_bound_only + binding_cluster_row_annotation(bound_only_elt2_clust_anno)
Ha_bound_only_chipClust
```


Add Spencer intestine expression row annotation

```
bound_only_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"
    ),
    spencerL2 = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_bound_only) %in% spencer_L2_subset$spencer_L2_ID,
        yes = "enriched",
        no = "depleted"
    )
)

Ha_bound_only_chipClust_spencer <- Ha_bound_only_chipClust +</pre>
```

```
rowAnnotation(
                        LE.intestine = bound_only_spencer_rna_anno$spencerLE,
                         col = list(LE.intestine = c(
                                      "enriched" = "blue", "depleted" = "white"
                        )),
                        border = TRUE
            ) +
            rowAnnotation(
                        L2.intestine = bound_only_spencer_rna_anno$spencerL2,
                         col = list(L2.intestine = c(
                                      "enriched" = "blue", "depleted" = "white"
                        )),
                        border = TRUE
             )
Ha_bound_only_chipClust_spencer
SET2
                                                                                                                                                                                                                                                                                                                                                                          elt2D-elt7D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LE.intestine
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  depleted
                                                                                                                                                                                                                                                                                                                                                                           RNAseq
                                                                                                                                                                                                                                                                                                                                                                                            4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    enriched
SET3
                                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 L2.intestine
                                                                                                                                                                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  depleted
                                                                                                                                                                                                                                                                                                                                                                                           -2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             enriched
                                                                                                                                                                                                                                                                                                                                                                                             -4
SET1
                                                                                                                                                                                                                                                                                                                                                                           Embryo_Specific
                                                                                                                                                                                                                                                                                                                                                                                           absent
                                                                                                                                                                                                                                                                                                                                                                                present
                                                                                                                                                                                                                                                                                                                                                                         Larval
                                                                                                                                                                                                                                                                                                                                                                                            absent
SET4
                                                                                                                                                                                                                                                                                                                                                                                 present
                                                                                                                                                                                                                                                                                                                                                                         Increasing
                                                                                                                                                                                                                                                                                                                                                                                            absent
                                                                                                                                                                                                                                                                                                                                                                                    present
                                                              WT elt7D elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt2Øt7D;elt
                                                                                                                                                                                                                                                                            L3_High
                                                                                                                                                                                                                                                                                                                             LE.intestine ∐
                                                                                                                                                                                                                                                                                                                                                  absenting absent
                                                                                                                                                                                                                                                        Increasing
                                                                                                                                                                                                                                Larval
                                                                                                                                                                                                                                                                                                      Not_Changing|
                                                                                                                                                                                                                                                                                                                                                                                           absent
                                                                                                                                                                                                                                                                                                                                                                                present
                                                                                                                                                                                                                                                                                                                                                                          Not_Changing
                                                                                                                                                                                                                                                                                                                                                                                           absent
                                                                                                                                                                                                                                                                                                                                                                                         present
if (plot == TRUE){
            myPDFplot(
                        plot = Ha_bound_only_chipClust_spencer,
                        name = "09c_DE_Heatmap_L1elt2boundOnly_elt2bindclusters_spencerRNA",
                        height = 6.5,
                        width = 6,
                        plotdir = plotdir
             )
            }
```

What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

```
bound_only_exprclust_bindclust <-</pre>
  merge(bound_only_sets,
        chip_annotation_present_absent,
        by.x = "WBGeneID",
        by.y = "WBGeneID")
bound_only_exprclust_bindclust %>% head
           WBGeneID set Embryo_Specific Larval Increasing L3_High Not_Changing
## 1 WBGene00000007 SET3
                                  absent
                                          absent
                                                    present absent
                                                                           absent
## 2 WBGene00000008 SET3
                                                    present absent
                                  absent absent
                                                                           absent
## 3 WBGene00000064 SET1
                                  absent absent
                                                    present present
                                                                           absent
## 4 WBGene00000067 SET4
                                  absent present
                                                    present absent
                                                                           absent
## 5 WBGene00000107 SET3
                                  absent absent
                                                    present present
                                                                           absent
## 6 WBGene00000136 SET3
                                  absent present
                                                     present absent
                                                                           absent
Make a dataframe that addresses the question:
bound_only_expressionSet_per_BindingCluster <- data.frame()</pre>
for (i in elt2_cluster_names) {
  toappend <-
    table(bound_only_exprclust_bindclust$set,
          bound_only_exprclust_bindclust[[i]]) %>%
    as.data.frame.matrix() %>%
   rownames to column(var = "set") %>%
   mutate(ELT2 cluster = i,
           percent = present / (present + absent))
  bound only expressionSet per BindingCluster <-
    bind_rows(bound_only_expressionSet_per_BindingCluster, toappend)
}
bound_only_expressionSet_per_BindingCluster$ELT2_cluster <-
  factor(bound_only_expressionSet_per_BindingCluster$ELT2_cluster,
         levels = elt2_cluster_names)
bound_only_expressionSet_per_BindingCluster
##
       set absent present
                             ELT2 cluster
                                              percent
## 1 SET1
              138
                        3 Embryo_Specific 0.021276596
## 2
     SET2
              146
                        3 Embryo_Specific 0.020134228
## 3 SET3
              237
                        1 Embryo_Specific 0.004201681
## 4 SET4
              141
                        3 Embryo_Specific 0.020833333
## 5 SET1
              100
                                   Larval 0.290780142
                       41
## 6 SET2
                                   Larval 0.234899329
              114
                       35
## 7 SET3
              167
                       71
                                   Larval 0.298319328
## 8 SET4
               98
                       46
                                   Larval 0.319444444
## 9 SET1
                       97
                               Increasing 0.687943262
               44
```

Increasing 0.818791946

Increasing 0.768907563

Increasing 0.77777778

L3_High 0.446808511

L3_High 0.234899329

10 SET2

11 SET3

12 SET4

13 SET1

14 SET2

27

55

32

78

114

122

183

112

63

35

```
## 15 SET3
                       62
                                   L3_High 0.260504202
              176
## 16 SET4
              103
                        41
                                   L3_High 0.284722222
## 17 SET1
              130
                        11
                              Not_Changing 0.078014184
              149
                        0
                              Not_Changing 0.000000000
## 18 SET2
## 19 SET3
              232
                        6
                              Not_Changing 0.025210084
## 20 SET4
              142
                        2
                              Not_Changing 0.013888889
```

Make a plot that addresses the question: What is the percentage of genes with annotated ELT2 binding clusters per expression dataset?

}

What is the percentage of genes within each Expression Set that are associated with an ELT-2 binding cluster?

```
bound_percent_plot_inverse <- ggplot(
  bound_only_expressionSet_per_BindingCluster,
  aes(x = ELT2_cluster, y = present, fill = set)
) +
  geom_bar(stat = "identity", position = "fill") +
  theme_classic()
bound_percent_plot_inverse</pre>
```


Make a series of horizontal barplots with percentage of ELT-2 binding cluster per expression cluster.

First, calculate the percentage of each ELT-2 binding category against the total dataset.

```
bound_only_percent_bound_per_ELT2_cluster <-
bound_only_expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% summarise(percent = sum(pr
```

(present + absent))

```
Next calculate the the 95% Confidence Interval with the Bionomial Test.
```

x = c(present, absent),
n = present + absent,
p = background_percent,
alternative = "two.sided"

conf.upper = binom.test(
 x = c(present, absent),
 n = present + absent,
 p = background_percent,
 alternative = "two.sided"

)\$p.value,

```
## # A tibble: 20 x 3
## # Groups:
               set [4]
##
      set
            ELT2_cluster
                            percent
                              <dbl>
##
      <chr> <fct>
  1 SET1 Embryo_Specific 0.0213
##
## 2 SET1 Larval
                            0.291
## 3 SET1 Increasing
                            0.688
## 4 SET1 L3_High
                            0.447
## 5 SET1 Not_Changing
                            0.0780
## 6 SET2 Embryo_Specific 0.0201
## 7 SET2 Larval
                            0.235
## 8 SET2 Increasing
                            0.819
## 9 SET2 L3_High
                            0.235
## 10 SET2 Not_Changing
                            0
## 11 SET3 Embryo_Specific 0.00420
## 12 SET3 Larval
                            0.298
## 13 SET3
           Increasing
                            0.769
## 14 SET3 L3_High
                            0.261
## 15 SET3
           Not_Changing
                            0.0252
## 16 SET4
           Embryo_Specific 0.0208
## 17 SET4
           Larval
                            0.319
## 18 SET4 Increasing
                            0.778
## 19 SET4
                            0.285
           L3_High
## 20 SET4
           Not_Changing
                            0.0139
Calculate the binomial pvalue and confidence intervals.
# Add a column for the background percentage of ELT2 binding clusters per the whole expression dataset
bound_only_expression_binding_stats <-</pre>
  bound_only_expressionSet_per_BindingCluster %>% group_by(ELT2_cluster) %>% mutate(background_percent
                                                                                        (sum(present) + s
# Use binom.test to calculate pualue and confidence intervales for the percentage of ELT2 binding clust
bound_only_expression_binding_stats <-</pre>
  bound_only_expression_binding_stats %>%
  group_by(ELT2_cluster, set) %>%
  mutate(
   pval = binom.test(
```

bound_only_expressionSet_per_BindingCluster %>% group_by(set, ELT2_cluster) %>% summarise(percent = pre

```
)$conf.int[2],
    conf.lower = binom.test(
     x = c(present, absent),
     n = present + absent,
      p = background_percent,
      alternative = "two.sided"
    )$conf.int[1]
bound_only_expression_binding_stats$set <-
  factor(bound_only_expression_binding_stats$set,
         levels = c("SET4", "SET3", "SET2", "SET1"))
bound_only_expression_binding_stats %>% head()
## # A tibble: 6 x 9
## # Groups:
             ELT2_cluster, set [6]
          absent present ELT2_cluster percent background_perc~ pval conf.upper
                    <int> <fct>
##
     <fct> <int>
                                         <dbl>
                                                           <dbl> <dbl>
                                                                            <dbl>
## 1 SET1
                                                                           0.0609
             138
                        3 Embryo_Spec~ 0.0213
                                                         0.0149 0.471
## 2 SET2
              146
                        3 Embryo_Spec~ 0.0201
                                                         0.0149 0.489
                                                                           0.0577
## 3 SET3
              237
                        1 Embryo_Spec~ 0.00420
                                                         0.0149 0.276
                                                                           0.0232
## 4 SET4
            141
                        3 Embryo_Spec~ 0.0208
                                                         0.0149 0.478
                                                                           0.0597
             100
## 5 SET1
                       41 Larval
                                       0.291
                                                         0.287 0.926
                                                                           0.373
                                                         0.287 0.175
## 6 SET2
              114
                       35 Larval
                                       0.235
                                                                           0.311
## # ... with 1 more variable: conf.lower <dbl>
bound_percent_multi <- ggplot(bound_only_expression_binding_stats,</pre>
       aes(x = set,
           y = percent, fill = ELT2_cluster)) +
  geom_bar(stat = "identity") +
  scale_y_continuous(limits = c(0, 1.5)) +
  theme_classic() +
  geom_hline(
   data = bound_only_percent_bound_per_ELT2_cluster,
   color = "red",
   linetype = "dashed",
   aes(yintercept = percent)
  ) +
  geom_errorbar(
   ymax = bound_only_expression_binding_stats$conf.upper,
   ymin = bound_only_expression_binding_stats$conf.lower,
   width = 0.1
  ) +
  coord_flip() +
  facet_grid(. ~ ELT2_cluster) +
  scale_fill_manual(values = as.character(cluster_colors$val))
bound_percent_multi
```


Make a TF subset heatmap

plotdir = plotdir)

```
clustering_method_rows = "complete",
  show_row_names = TRUE,
  show_column_names = TRUE,
  column_title = "Differential Expression of\nAll Transcription Factors"
)
tf_heatmap
```



```
if (plot == TRUE) {
  myPDFplot(
    plot = tf_heatmap,
    name = "12_Differential_Expression_of_All_TFs",
    height = 20,
    width = 4,
    plotdir = plotdir
)
}
```

Add row annotation to indicate ELT-2 binding in L1 stage

```
elt2_detected_in_L1 %>% filter(WBGeneID %in% rownames(dynamic_counts_matrix_scaled_TFs))
```

```
## # A tibble: 22 x 1
      WBGeneID
##
      <chr>
## 1 WBGene00004096
## 2 WBGene00019327
## 3 WBGene00003711
## 4 WBGene00000793
## 5 WBGene00021082
## 6 WBGene00003607
## 7 WBGene00019743
## 8 WBGene00003689
## 9 WBGene00003648
## 10 WBGene00012101
## # ... with 12 more rows
tf bound anno <-
  data.frame(
    WBGeneID = rownames(dynamic_counts_matrix_scaled_TFs),
    elt2_detected_in_L1 = ifelse(
      test = rownames(dynamic_counts_matrix_scaled_TFs) %in% elt2_detected_in_L1$WBGeneID,
      yes = "bound",
     no = "not.bound"
    )
  )
tf_heatmap_L1bound <-
  tf_heatmap +
  rowAnnotation(L1_bound = tf_bound_anno$elt2_detected_in_L1,
                col = list(L1_bound = c(
                  "bound" = "green", "not.bound" = "black"
tf_heatmap_L1bound
```

Differential Expression of All Transcription Factors


```
# pdf("./03_plots/13a_Differential_Expression_of_All_TFs_L1elt2bound_anno.pdf", height = 5, width = 5.5
# tf_heatmap_L1bound
# dev.off()

if (plot == TRUE){
    myPDFplot(
        plot = tf_heatmap_L1bound,
        name = "13a_Differential_Expression_of_All_TFs_L1elt2bound_anno",
        height = 5,
        width = 5.5,
        plotdir = plotdir
)
}
```

Add row annotation of intestine expression from Spencer intestine RNA data

```
tf_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",
        no = "depleted"
    ),
    spencerL2 = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_TFs) %in% spencer_L2_subset$spencer_L2_ID,
        yes = "enriched",
        no = "depleted"
    )
)</pre>
```

```
tf_heatmap_L1bound_spencerRNA <- tf_heatmap_L1bound + rowAnnotation(
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
) +
rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
)
tf_heatmap_L1bound_spencerRNA</pre>
```

Differential Expression of All Transcription Factors


```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap_L1bound_spencerRNA,
    name = "13b_Differential_Expression_of_All_TFs_L1elt2bound_anno",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

Split heatmap based on L1 binding


```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap_L1bound_split,
    name = "14a_Differential_Expression_of_All_TFs_L1elt2bound_split",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

Add row annotation of intestine expression from Spencer intestine RNA data to split heatmap

```
tf_heatmap_L1bound_split_spencerRNA <- tf_heatmap_L1bound_split +
  rowAnnotation(
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
        "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
) +</pre>
```

```
rowAnnotation(
   L2.intestine = tf_spencer_rna_anno$spencerL2,
   col = list(L2.intestine = c(
        "enriched" = "blue", "depleted" = "white"
   )),
   border = TRUE
)

tf_heatmap_L1bound_split_spencerRNA
```



```
if (plot == TRUE){
  myPDFplot(
    plot = tf_heatmap_L1bound_split_spencerRNA,
    name = "14b_Differential_Expression_of_All_TFs_L1elt2bound_split_spencerRNA",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

Zoom in on only bound TFs

```
HAboundTF <- Heatmap(
    dynamic_counts_matrix_scaled_TFs_bound_names,
    col = colorRampPalette(c("cyan", "black", "yellow"))(1000),
    cluster_columns = FALSE,
    clustering_distance_rows = "spearman",
    clustering_method_rows = "complete",
    show_row_names = TRUE,
    row_names_side = "left",
    show_column_names = TRUE,
    column_title = "Differential Expression of\nELT-2 Bound Transcription Factors"
)</pre>
```

Differential Expression of ELT–2 Bound Transcription Factors


```
if (plot == TRUE){
  myPDFplot(
    plot = HAboundTF,
    name = "15a_Differential_Expression_Bound_TFs_only",
    height = 5,
    width = 5.5,
    plotdir = plotdir
)
}
```

```
tf_bound_spencer_rna_anno <- data.frame(
    spencerLE = ifelse(
        test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_LE_subset$spencer_LE_ID,
        yes = "enriched",</pre>
```

```
no = "depleted"
  ),
  spencerL2 = ifelse(
    test = rownames(dynamic_counts_matrix_scaled_TFs_bound) %in% spencer_L2_subset$spencer_L2_ID,
    yes = "enriched",
    no = "depleted"
)
HAboundTF_spencerRNA <- HAboundTF + rowAnnotation(</pre>
    LE.intestine = tf_spencer_rna_anno$spencerLE,
    col = list(LE.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  ) +
  rowAnnotation(
    L2.intestine = tf_spencer_rna_anno$spencerL2,
    col = list(L2.intestine = c(
      "enriched" = "blue", "depleted" = "white"
    )),
    border = TRUE
  )
HAboundTF_spencerRNA
```

Differential Expression of

ELT-2 Bound Transcription Factors


```
plot = HAboundTF_spencerRNA,
  name = "15b_Differential_Expression_Bound_TFs_only_spencerRNA",
  height = 5,
  width = 5.5,
  plotdir = plotdir
)
}
```

This plot suggests that transcription factors bound by ELT-2 are typically upregulated in the absence of ELT-2.

TFs to follow up: pqm-1 (intestine), zip-10, odd-1 (repressed by elt-2 alone, normally gut expressed). nhr-58 (vulva), zip-2 (neuron), cebp-1 (neuron), gla-3 (germline), zip-11

Session Info

```
sessionInfo()
```

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
## Matrix products: default
           /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
##
## other attached packages:
## [1] lubridate_1.7.8
                             circlize_0.4.9
                                                  binom_1.1-1
                             RVAideMemoire_0.9-75 pheatmap_1.0.12
  [4] dendextend_1.13.4
##
                             ComplexHeatmap_2.2.0 readxl_1.3.1
  [7] matrixStats_0.56.0
                             stringr_1.4.0
## [10] forcats_0.5.0
                                                  dplyr_0.8.5
## [13] purrr_0.3.4
                             readr_1.3.1
                                                  tidyr_1.0.3
## [16] tibble_3.0.1
                             ggplot2_3.3.0
                                                  tidyverse_1.3.0
## [19] biomaRt_2.42.1
##
## loaded via a namespace (and not attached):
  [1] nlme_3.1-147
                             fs_1.4.1
                                                  bit64_0.9-7
  [4] RColorBrewer_1.1-2
                                                  httr_1.4.1
                             progress_1.2.2
##
   [7] tools 3.6.3
                             backports 1.1.6
                                                  utf8 1.1.4
## [10] R6_2.4.1
                             DBI 1.1.0
                                                  BiocGenerics_0.32.0
## [13] colorspace_1.4-1
                             GetoptLong 0.1.8
                                                  withr 2.2.0
## [16] gridExtra_2.3
                             tidyselect_1.0.0
                                                  prettyunits_1.1.1
## [19] bit_1.1-15.2
                             curl_4.3
                                                   compiler_3.6.3
## [22] cli_2.0.2
                             rvest_0.3.5
                                                  Biobase_2.46.0
## [25] xml2_1.3.2
                             labeling 0.3
                                                   scales 1.1.0
## [28] askpass_1.1
                             rappdirs_0.3.1
                                                  digest_0.6.25
## [31] rmarkdown_2.1
                             pkgconfig_2.0.3
                                                  htmltools_0.4.0
```

```
## [34] dbplyr_1.4.3
                             rlang_0.4.6
                                                  GlobalOptions_0.1.1
## [37] rstudioapi_0.11
                             RSQLite_2.2.0
                                                  farver_2.0.3
## [40] shape_1.4.4
                             generics_0.0.2
                                                   jsonlite 1.6.1
## [43] magrittr_1.5
                             Rcpp_1.0.4.6
                                                  munsell_0.5.0
## [46] S4Vectors_0.24.4
                             fansi_0.4.1
                                                  viridis_0.5.1
## [49] lifecycle_0.2.0
                             stringi_1.4.6
                                                  yaml_2.2.1
## [52] BiocFileCache 1.10.2 blob 1.2.1
                                                  parallel 3.6.3
## [55] crayon_1.3.4
                             lattice_0.20-41
                                                  haven_2.2.0
## [58] hms 0.5.3
                             knitr_1.28
                                                  pillar_1.4.4
## [61] rjson_0.2.20
                             stats4_3.6.3
                                                   reprex_0.3.0
## [64] XML_3.99-0.3
                             glue_1.4.0
                                                   evaluate_0.14
## [67] modelr_0.1.7
                             png_0.1-7
                                                  vctrs_0.2.4
## [70] cellranger_1.1.0
                             gtable_0.3.0
                                                   openssl_1.4.1
## [73] clue_0.3-57
                             assertthat_0.2.1
                                                  xfun_0.13
## [76] broom_0.5.6
                             viridisLite_0.3.0
                                                   AnnotationDbi_1.48.0
## [79] memoise_1.1.0
                             IRanges_2.20.2
                                                   cluster_2.1.0
## [82] ellipsis_0.3.0
```