Manual de Ejercicios: Estimación por Intervalos (Diseño y Análisis de Experimentos)

Facultad de Ingeniería Tampico – UAT Autores:

Dr. Alejandro González Turrubiates Dr. Carlos Alfredo Loredo Hernández Dr. Juan Enrique Bermea Barrios

1 de septiembre de 2025

Índice

1.	Introducción	1
2 .	Ejercicios de estimación por intervalos	1
3.	Rúbrica de evaluación	4
4.	Ejercicios de estimación de proporciones	4
5 .	Rúbrica de evaluación	7
6.	Pruebas de hipótesis (muestras grandes)	7
7.	Rúbrica de evaluación	9

1. Introducción

Este manual reúne ejercicios sobre **estimación por intervalos** aplicados a contextos típicos de *Ingeniería Industrial*. Cada ejercicio incluye: contexto, datos, guía de pasos, y una *clave rápida* para el profesor.

2. Ejercicios de estimación por intervalos

Ejercicio 1. Tiempo de setup en prensa (n=40)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de setup $en \ prensa$. Se toma una muestra de tamaño n=40 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.7, 11.9, 13.4, 12.1, 12.8, 11.6, 14.0, 12.5, 13.1, 12.0, 11.8, 12.9, 13.3, 12.2, 11.7, 12.6, 13.0, 12.4, 11.5, 12.3, 13.2, 12.7, 11.9, 12.8, 13.5, 12.6, 12.0, 11.8, 12.1, 13.1, 12.5, 11.6, 12.9, 13.0, 12.4, 11.7, 12.3, 13.4, 12.2, 11.9
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Ejercicio 2. Tiempo de inspección final por lote (n=50)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de inspección final por lote*. Se toma una muestra de tamaño n=50 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.2, 12.6, 11.8, 12.7, 12.9, 12.4, 11.9, 12.2, 12.8, 12.3, 12.3, 11.6, 11.9, 13.7, 12.3, 12.3, 12.0, 13.2, 12.5, 12.4, 12.1, 12.4, 13.5, 12.8, 12.5, 12.7, 12.7, 12.3, 11.8, 12.1, 13.0, 12.2, 12.5, 13.5, 12.7, 12.9, 12.2, 13.0, 11.4, 13.2, 12.0, 12.7, 11.9, 12.1, 12.6, 13.8, 11.4, 12.6, 13.3
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Ejercicio 3. Tiempo de cambio de herramienta CNC (n=39)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de cambio de herramienta CNC*. Se toma una muestra de tamaño n=39 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.2, 11.2, 12.4, 12.6, 11.8, 12.5, 12.5, 12.6, 12.5, 11.3, 12.2, 12.9, 12.8, 11.8, 12.0, 12.2, 12.8, 12.8, 12.3, 11.0, 12.9, 13.3, 13.4, 12.5, 12.8, 12.3, 12.2, 12.5, 12.6, 13.1, 13.6, 12.6, 12.6, 11.8, 12.2, 11.4, 11.9, 12.8, 11.6
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con ql = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Ejercicio 4. Tiempo de transporte interno por pallet (n=46)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de transporte interno por pallet. Se toma una muestra de tamaño n=46 y se solicita construir un **IC al 95** % para la media.

Datos (muestra)

```
12.3, 13.7, 13.0, 11.6, 11.9, 12.8, 12.7, 12.4, 12.4, 12.7, 13.1, 12.4, 13.4, 13.3, 12.1, 13.0, 12.2, 12.2, 12.9, 12.8, 10.9, 12.4, 12.9, 11.2, 13.2, 12.7, 13.1, 11.8, 12.8, 12.7, 12.2, 11.6, 12.6, 13.3, 12.3, 12.8, 11.2, 12.8, 12.2, 12.4, 11.8, 13.6, 12.0, 12.3, 12.8, 12.4
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con ql = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Ejercicio 5. Tiempo de verificación dimensional (n=45)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de verificación dimensional. Se toma una muestra de tamaño n=45 y se solicita construir un **IC** al 95% para la media.

Datos (muestra)

```
13.2, 11.8, 12.6, 13.1, 11.5, 13.0, 13.4, 12.9, 12.4, 12.9, 13.5, 12.4, 11.8, 12.6, 11.7, 12.2, 13.2, 13.3, 12.3, 13.0, 13.1, 12.0, 12.8, 10.9, 12.4, 12.0, 12.2, 12.0, 13.4, 12.1, 12.2, 12.6, 12.5, 12.5, 13.4, 13.9, 12.9, 12.8, 11.8, 13.0, 12.1, 12.4, 13.0, 13.3, 13.2
```

Actividad

1. Calcule \bar{x} y s.

- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1,96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Ejercicio 6. Tiempo de soldadura por punto (n=47)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de soldadura por punto*. Se toma una muestra de tamaño n=47 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.2, 13.4, 12.0, 12.5, 12.2, 12.8, 12.0, 13.5, 13.2, 13.1, 11.6, 11.9, 12.6, 12.6, 11.6, 12.5, 11.2, 12.5, 11.8, 12.9, 12.3, 12.6, 12.1, 13.1, 12.8, 12.5, 12.5, 12.2, 13.3, 12.6, 12.1, 12.3, 12.0, 12.9, 11.8, 12.4, 12.8, 12.6, 12.2, 12.2, 12.8, 12.7, 12.8, 12.9, 13.0, 12.3, 12.7
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

3. Rúbrica de evaluación

La siguiente rúbrica aplica a todos los ejercicios de esta sección.

Criterio	Descripción	Puntos
Cálculo de la media muestral	Correcto cálculo de la media de los datos.	10
Cálculo de la desviación estándar muestral	Obtención adecuada de la desviación estándar.	10
Cálculo del error estándar (SE)	Determinación correcta de $SE = s/\sqrt{n}$.	10
Selección del valor crítico	Elección correcta entre Z o t y justificación.	15
Margen de error (ME)	Cálculo correcto del margen de error.	10
Construcción del interva- lo de confianza	Intervalo calculado correctamente.	20
Interpretación de resul- tados	Explicación contextualizada en Ingeniería Industrial.	15
Presentación y orden	Trabajo ordenado, claro y legible.	10

Cuadro 1: Rúbrica de evaluación (100 puntos).

4. Ejercicios de estimación de proporciones

Ejercicio 7. Defectuosos en producción (n=200)

En una muestra de n=200 tornillos producidos, se detectaron x=18 defectuosos. Se desea estimar la **proporción de defectuosos** con un IC al 95 %.

Datos (muestra)

$$n = 200$$
, $x = 18$

Actividad

- 1. Calcule $\hat{p} = x/n$.
- 2. Calcule $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.
- 3. Seleccione el valor crítico (Z = 1.96).
- 4. Obtenga $ME = Z \times SE$ e informe el IC $\hat{p} \pm ME$.
- 5. Interprete el intervalo en el contexto de la calidad de producción.

Ejercicio 8. Envases con fuga (n=150)

En una muestra de n=150 envases, x=24 presentaron fugas. Se desea estimar la **proporción de envases defectuosos** con un IC al 95%.

Datos (muestra)

$$n = 150$$
, $x = 24$

Actividad

1. Calcule $\hat{p} = x/n$.

- 2. Calcule $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.
- 3. Seleccione el valor crítico (Z = 1,96).
- 4. Obtenga $ME = Z \times SE$ e informe el IC $\hat{p} \pm ME$.
- 5. Interprete el intervalo en el contexto de control de envases.

Ejercicio 9. Uso de EPP (n=80)

Se observa el uso de equipo de protección personal en n=80 empleados y x=68 lo portaban correctamente. Se desea estimar la **proporción de cumplimiento** con un IC al 95%.

Datos (muestra)

$$n = 80$$
, $x = 68$

Actividad

- 1. Calcule $\hat{p} = x/n$.
- 2. Calcule $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.
- 3. Seleccione el valor crítico (Z = 1.96).
- 4. Obtenga $ME = Z \times SE$ e informe el IC $\hat{p} \pm ME$.
- 5. Interprete el intervalo en el contexto de seguridad laboral.

Ejercicio 10. Rechazo de lotes (n=120)

En una auditoría de materia prima con n=120 lotes, se rechazaron x=15. Se desea estimar la **proporción de rechazo** con un IC al 95 %.

Datos (muestra)

$$n = 120$$
, $x = 15$

Actividad

- 1. Calcule $\hat{p} = x/n$.
- 2. Calcule $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.
- 3. Seleccione el valor crítico (Z=1,96).
- 4. Obtenga $ME = Z \times SE$ e informe el IC $\hat{p} \pm ME$.
- 5. Interprete el intervalo en el contexto de control de calidad.

Ejercicio 11. Entregas a tiempo (n=250)

De n=250 pedidos, x=223 llegaron a tiempo. Se desea estimar la **proporción de entregas puntuales** con un IC al 95%.

Datos (muestra)

$$n = 250$$
, $x = 223$

Actividad

- 1. Calcule $\hat{p} = x/n$.
- 2. Calcule $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.
- 3. Seleccione el valor crítico (Z = 1.96).
- 4. Obtenga $ME = Z \times SE$ e informe el IC $\hat{p} \pm ME$.
- 5. Interprete el intervalo en el contexto de logística y entregas.

5. Rúbrica de evaluación

Criterio	Descripción	Puntos
Cálculo de la proporción muestral \hat{p}	Correcto cálculo de la proporción x/n .	15
Cálculo del error estándar (SE)	Determinación correcta de $SE = \sqrt{\hat{p}(1-\hat{p})/n}$.	15
Selección del valor crítico	Elección adecuada del valor Z para el nivel de confianza.	15
Cálculo del margen de error (ME)	Cálculo correcto de $ME = Z \times SE$.	15
Construcción del interva- lo de confianza	Intervalo calculado correctamente.	20
Interpretación de resultados	Explicación contextualizada en el problema de Ingeniería Industrial.	15
Presentación y orden	Trabajo ordenado, claro y legible.	5

Cuadro 2: Rúbrica de evaluación para intervalos de confianza de proporciones (100 puntos).

6. Pruebas de hipótesis (muestras grandes)

Ejercicio 12. Duración de lotes en línea de ensamble (n=900)

Un ingeniero de procesos afirma que el tiempo promedio para ensamblar un lote es de $\mu_0 = 150$ minutos. La gerencia sospecha que el tiempo real es diferente y propone como hipótesis alternativa $\mu_1 = 147$. Se conoce que la desviación estándar del proceso es $\sigma = 28$ y se cuenta con una muestra de n = 900 lotes. Se desea aplicar una prueba de hipótesis bilateral con $\alpha = 0,05$.

Datos (muestra)

$$\mu_0 = 150$$
, $\mu_1 = 147$, $n = 900$, $\sigma = 28$, $\alpha = 0.05$

Actividad

- 1. Plantee $H_0: \mu = 150 \text{ y } H_1: \mu \neq 150.$
- 2. Calcule $\sigma_{\bar{x}} = \sigma/\sqrt{n}$.
- 3. Use $Z_{\alpha/2}=1{,}96$ y forme el intervalo de aceptación $\mu_0\pm Z\,\sigma_{\bar x}$.
- 4. Verifique si μ_1 cae dentro/fuera del intervalo y concluya sobre H_0 .

Ejercicio 13. Tiempo de inspección de calidad (n=1600)

El departamento de calidad asegura que el tiempo promedio para inspeccionar un lote de producto terminado es de $\mu_0 = 80$ minutos. Un auditor externo duda de esta cifra y sospecha que el tiempo podría ser mayor. Para contrastar, se propone como hipótesis alternativa $\mu_1 = 82,2$. Se sabe que la desviación estándar del proceso es $\sigma = 12$, con n = 1600 observaciones. Nivel de significancia: $\alpha = 0,10$ (bilateral).

Datos (muestra)

$$\mu_0 = 80$$
, $\mu_1 = 82.2$, $n = 1600$, $\sigma = 12$, $\alpha = 0.10$

Actividad

- 1. Plantee $H_0: \mu = 80 \text{ y } H_1: \mu \neq 80.$
- 2. Calcule $\sigma_{\bar{x}} = \sigma/\sqrt{n}$ y $Z_{\alpha/2}$.
- 3. Construya el intervalo de aceptación y decida sobre H_0 .

Ejercicio 14. Tiempos de preparación de máquina CNC (n=2500)

Un proveedor garantiza que el tiempo promedio de preparación de una máquina CNC es de $\mu_0 = 25$ minutos. Un supervisor cree que en realidad el tiempo es menor y propone como hipótesis alternativa $\mu_1 = 24,6$. Se sabe que la desviación estándar histórica es $\sigma = 5$, con n = 2500 mediciones. Se realiza la prueba al 20% de significancia.

Datos (muestra)

$$\mu_0 = 25$$
, $\mu_1 = 24.6$, $n = 2500$, $\sigma = 5$, $\alpha = 0.20$

Actividad

- 1. Plantee $H_0: \mu = 25 \text{ y } H_1: \mu \neq 25.$
- 2. Calcule $\sigma_{\bar{x}}$ y $Z_{\alpha/2}$.
- 3. Genere el intervalo de aceptación y concluya.

Ejercicio 15. Producción de piezas diarias (n=2000)

Se establece que la producción diaria promedio de una línea es de $\mu_0 = 300$ piezas. Un analista sospecha que la producción puede estar cambiando y toma como hipótesis alternativa $\mu_1 = 301$. La desviación estándar histórica es $\sigma = 40$ y se dispone de n = 2000 días de registro. Se usa un nivel de significancia $\alpha = 0.02$.

Datos (muestra)

$$\mu_0 = 300$$
, $\mu_1 = 301$, $n = 2000$, $\sigma = 40$, $\alpha = 0.02$

Actividad

- 1. Plantee $H_0: \mu = 300 \text{ y } H_1: \mu \neq 300.$
- 2. Calcule $\sigma_{\bar{x}}$ y $Z_{\alpha/2}$.
- 3. Construya el intervalo de aceptación y verifique si contiene μ_1 .

Ejercicio 16. Tiempo de ciclo en estación automática (n=3600)

En una estación automática se reporta que el tiempo de ciclo promedio es de $\mu_0 = 60$ segundos. Un investigador quiere comprobar si existe una desviación significativa, proponiendo $\mu_1 = 59,9$. Se sabe que $\sigma = 9$, n = 3600 y $\alpha = 0,01$.

Datos (muestra)

$$\mu_0 = 60$$
, $\mu_1 = 59.9$, $n = 3600$, $\sigma = 9$, $\alpha = 0.01$

Actividad

- 1. Plantee $H_0: \mu = 60 \text{ y } H_1: \mu \neq 60.$
- 2. Calcule $\sigma_{\bar{x}}$ y $Z_{\alpha/2}$.
- 3. Intervalo de aceptación y decisión sobre H_0 .

7. Rúbrica de evaluación

Criterio	Descripción	Puntos
Planteamiento de hipótesis	Redacción correcta de H_0 y H_1 según el problema.	15
Cálculo del error estándar (SE)	Determinación adecuada de $\sigma_{\bar{x}} = \sigma/\sqrt{n}$.	15
Selección del valor crítico	Elección correcta de $Z_{\alpha/2}$ según el nivel de significancia.	15
Construcción del intervalo de aceptación	Obtención correcta de $[\mu_0 \pm Z \cdot \sigma_{\bar{x}}]$.	20
Decisión estadística	Identificación correcta de si se acepta o rechaza H_0 .	15
Interpretación en contexto	Explicación clara en términos del proceso de Ingeniería Industrial.	15
Presentación y orden	Trabajo limpio, ordenado y legible.	5

Cuadro 3: Rúbrica de evaluación para pruebas de hipótesis en muestras grandes (100 puntos).