CONSTANTES

Constante de Avogadro = $6,02 \times 10^{23} \text{ mol}^{-1}$ Constante de Faraday (F) = $9,65 \times 10^4 \text{ C mol}^{-1}$ Volume molar de gás ideal = 22,4 L (CNTP)Carga elementar = $1,602 \times 10^{-19} \text{ C}$

Constante dos gases (R) = $8.21 \times 10^{-2} \text{ atm L K}^{-1} \text{ mol}^{-1}$

8,31 J K⁻¹ mol⁻¹

62,4 mmHg L K⁻¹ mol⁻¹ 1,98 cal mol⁻¹ K⁻¹

DEFINIÇÕES

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições-padrão: 25 °C, 1 atm, concentração das soluções: 1 mol/L (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão. (s) ou (c) = sólido cristalino; (l) = líquido; (g) = gás; (aq) = aquoso; (CM) = Circuito Metálico.

MASSAS MOLARES

Elemento	Número	Massa Molar	Elemento	Número	Massa Molar
Químico	Atômico	(g/mol)	Químico	Atômico	(g/mol)
Н	1	1,01	Cl	17	35,45
Be	4	9,01	Ar	18	39,95
В	5	10,81	K	19	39,10
C	6	12,01	Cr	24	52,00
N	7	14,01	Mn	25	54,94
O	8	16,00	Se	34	78,96
F	9	19,00	Br	35	79,91
Na	11	22,99	Kr	36	83,80
Al	13	26,98	Ag	47	107,87
Si	14	28,09	Sn	50	118,71
P	15	30,97	I	53	126,90
S	16	32,06	Pb	82	207,21

As questões de **01 a 20 <u>NÃO</u>** devem ser resolvidas no caderno de soluções. Para respondê-las, marque a opção escolhida para cada questão na **folha de leitura óptica** e na **reprodução da folha de leitura óptica** (que se encontra na última página do caderno de soluções).

Questão 01. Considere as seguintes espécies no estado gasoso: NF_3 , BeF_2 , BCl_3 , ClF_3 , KrF_4 e SeO_4^{2-} . Ouais delas apresentam momento de dipolo elétrico?

 $\textbf{A}\,(\) \quad \text{Apenas NF}_3 \ e \ SeO_4^{2-}. \qquad \textbf{B}\,(\) \quad \text{Apenas BeF}_2\,, \ ClF_3 \ e \ KrF_4\,. \qquad \textbf{C}\,(\) \quad \text{Apenas BCl}_3\,, \ SeO_4^{2-} \ e \ KrF_4\,.$

 ${f D}$ () Apenas NF $_3$ e ClF $_3$. ${f E}$ () Apenas BeF $_2$, BCl $_3$ e SeO $_4^{2-}$.

Questão 02. A adição de glicose sólida (C₆ H₁₂ O₆) a clorato de potássio (KClO₃) fundido, a 400 °C, resulta em uma reação que forma dois produtos gasosos e um sólido cristalino. Quando os produtos gasosos formados nessa reação, e resfriados à temperatura ambiente, são borbulhados em uma solução aquosa 0,1 mol/L em hidróxido de sódio, contendo algumas gotas de fenolftaleína, verifica-se a mudança de cor desta solução de rosa para incolor. O produto sólido cristalino apresenta alta condutividade elétrica, tanto no estado líquido como em solução aquosa. Assinale a opção CORRETA que apresenta os produtos formados na reação entre glicose e clorato de potássio:

A() ClO₂(g), H₂(g), C(s).

 $\mathbf{B}(\)$ $\mathrm{CO}_{2}(\mathbf{g}),\,\mathrm{H}_{2}\mathrm{O}(\mathbf{g}),\,\mathrm{KCl}(\mathbf{s})$.

- C() CO(g), H₂O(g), KClO₄(s).
- $\mathbf{D}()$ CO(g), CH₄(g), KClO₂(s).
- E() $Cl_2(g)$, $H_2O(g)$, $K_2CO_3(s)$.

Questão 03. Considere as seguintes configurações eletrônicas de espécies no estado gasoso:

- I. $1s^2 2s^2 2p^1$.

- II. $1s^2 2s^2 2p^3$. III. $1s^2 2s^2 2p^4$. IV. $1s^2 2s^2 2p^5$. V. $1s^2 2s^2 2p^5 3s^1$.

Assinale a alternativa **ERRADA**.

- As configurações I e IV podem representar estados fundamentais de cátions do segundo período da Tabela Periódica.
- As configurações II e III podem representar tanto um estado fundamental como um estado excitado de átomos neutros do segundo período da Tabela Periódica.
- A configuração V pode representar um estado excitado de um átomo neutro do segundo período da Tabela Periódica. **C**()
- **D**() As configurações II e IV podem representar estados excitados de átomos neutros do segundo período da Tabela Periódica.
- As configurações II, III e V podem representar estados excitados de átomos neutros do segundo período da Tabela **E**() Periódica.

Questão 04. Considere as seguintes afirmações relativas aos sistemas descritos abaixo, sob pressão de 1 atm:

- I. A pressão de vapor de uma solução aquosa de glicose 0,1 mol/L é menor do que a pressão de vapor de uma solução de cloreto de sódio 0,1 mol/L a 25 °C.
- II. A pressão de vapor do n-pentano é maior do que a pressão de vapor do n-hexano a 25 °C.
- A pressão de vapor de substâncias puras como: acetona, éter etílico, etanol e água, todas em ebulição, tem o mesmo valor. III.
- IV. Quanto maior for a temperatura, maior será a pressão de vapor de uma substância.
- V. Quanto maior for o volume de um líquido, maior será a sua pressão de vapor.

Destas afirmações, estão CORRETAS

- **A**() apenas I, II, III e IV.
- **B**() apenas I, II e V.
- C() apenas I, IV e V.

- **D**() apenas II, III e IV.
- **E** () apenas III, IV e V.

Questão 05. A figura abaixo mostra como a capacidade calorífica, C_p, de uma substância varia com a temperatura, sob pressão constante.

 T_f = Temperatura de fusão

T_e = Temperatura de ebulição

Considerando as informações mostradas na figura acima, é ERRADO afirmar que

- a substância em questão, no estado sólido, apresenta mais de uma estrutura cristalina diferente.
- a capacidade calorífica da substância no estado gasoso é menor do que aquela no estado líquido. **B**()
- quer esteja a substância no estado sólido, líquido ou gasoso, sua capacidade calorífica aumenta com o aumento da **C**()
- caso a substância se mantenha no estado líquido em temperaturas inferiores a T_f, a capacidade calorífica da substância **D**() líquida é maior do que a capacidade calorífica da substância na fase sólida estável em temperaturas menores do que T_f.
- **E**() a variação de entalpia de uma reação envolvendo a substância em questão no estado líquido aumenta com o aumento da temperatura.

Questão 06. A respeito de compostos contendo silício, qual das opções abaixo apresenta a afirmação CORRETA?

- A () Vidros são quimicamente resistentes ao ataque de hidróxido de sódio.
- **B** () Vidros se fundem completamente em um único valor de temperatura na pressão ambiente.
- C () Quartzo apresenta um arranjo ordenado de suas espécies constituintes que se repete periodicamente nas três direções.
- **D** () Vidros comerciais apresentam uma concentração de dióxido de silício igual a 100 % (m/m).
- E () Quartzo é quimicamente resistente ao ataque de ácido fluorídrico.

Questão 07. Considere uma reação química representada pela equação: Reagentes \rightarrow Produtos. A figura abaixo mostra esquematicamente como varia a energia potencial (E_p) deste sistema reagente em função do avanço da reação química. As letras \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{d} e \mathbf{e} representam diferenças de energia.

Com base nas informações apresentadas na figura é **CORRETO** afirmar que

- ${f B}$ () a variação de entalpia da reação é a diferença de energia dada por ${f e}-{f d}$.
- $C\left(\right)$ a energia de ativação da reação direta é a diferença de energia dada por $\mathbf{b} + \mathbf{d}$.
- \mathbf{D} () a variação de entalpia da reação é a diferença de energia dada por $\mathbf{e} (\mathbf{a} + \mathbf{b})$.
- E () a variação de entalpia da reação é a diferença de energia dada por e.

I. Se a ordenada representar a constante de equilíbrio de uma reação química exotérmica e a abscissa, a temperatura, o gráfico pode representar um trecho da curva relativa ao efeito da temperatura sobre a constante de equilíbrio dessa reação.

Questão 08. Considere as seguintes afirmações relativas ao gráfico apresentado ao lado:

- II. Se a ordenada representar a massa de um catalisador existente em um sistema reagente e a abscissa, o tempo, o gráfico pode representar um trecho relativo à variação da massa do catalisador em função do tempo de uma reação.
- III. Se a ordenada representar a concentração de um sal em solução aquosa e a abscissa, a temperatura, o gráfico pode representar um trecho da curva de solubilidade deste sal em água.

- IV. Se a ordenada representar a pressão de vapor de um equilíbrio líquido ☐ gás e a abscissa, a temperatura, o gráfico pode representar um trecho da curva de pressão de vapor deste líquido.
- V. Se a ordenada representar a concentração de $NO_2(g)$ existente dentro de um cilindro provido de um pistão móvel, sem atrito, onde se estabeleceu o equilíbrio $N_2O_4(g) \Box 2NO_2(g)$, e a abscissa, a pressão externa exercida sobre o pistão, o gráfico pode representar um trecho da curva relativa à variação da concentração de NO_2 em função da pressão externa exercida sobre o pistão, à temperatura constante.

Destas afirmações, estão CORRETAS

A() apenas I e III. B() apenas I, IV e V. C() apenas II, III e V. D() apenas II e V. E() apenas III e IV.

Questão 09. Para as mesmas condições de temperatura e pressão, considere as seguintes afirmações relativas à condutividade elétrica de soluções aquosas:

- I. A condutividade elétrica de uma solução 0,1 mol/L de ácido acético é menor do que aquela do ácido acético glacial (ácido acético praticamente puro).
- II. A condutividade elétrica de uma solução 1 mol/L de ácido acético é menor do que aquela de uma solução de ácido tri-cloro-acético com igual concentração.
- III. A condutividade elétrica de uma solução 1 mol/L de cloreto de amônio é igual àquela de uma solução de hidróxido de amônio com igual concentração.
- **IV.** A condutividade elétrica de uma solução 1 mol/L de hidróxido de sódio é igual àquela de uma solução de cloreto de sódio com igual concentração.
- V. A condutividade elétrica de uma solução saturada em iodeto de chumbo é menor do que aquela do sal fundido.

Destas afirmações, estão ERRADAS

$\begin{array}{c} \textbf{A}(\) \ \text{ apenas I e II.} \\ \textbf{B}(\) \ \text{ apenas I, III, e IV.} \\ \textbf{C}(\) \ \text{ apenas II e V.} \\ \textbf{D}(\) \ \text{ apenas III, IV e V.} \\ \textbf{E}(\) \ \text{ todas.} \\ \textbf{Questão 10}. \ \text{Seja S a solubilidade de } Ag_3PO_4 \ \text{em 100 g de água pura numa dada temperatura. A seguir, para a mesma temperatura, são feitas as seguintes afirmações a respeito da solubilidade de Ag_3PO_4 \ \text{em 100 g de diferentes soluções aquosas:} \end{array}$
I. A solubilidade do Ag_3PO_4 em solução aquosa 1 mol/L de HNO_3 é maior do que ${\bf S}$.
II. A solubilidade do Ag_3PO_4 em solução aquosa 1 mol/L de $AgNO_3$ é menor do que S .
III. A solubilidade do Ag_3PO_4 em solução aquosa 1 mol/L de Na_3PO_4 é menor do que ${\bf S}$.
${\bf IV.}\;$ A solubilidade do $Ag_3PO_4\;$ em solução aquosa 1 mol/L de $KCN\;$ é maior do que ${\bf S}$.
V. A solubilidade do Ag_3PO_4 em solução aquosa 1 mol/L de $NaNO_3$ é praticamente igual a S .
Destas afirmações, estão CORRETAS
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Questão 11 . A massa de um certo hidrocarboneto é igual a 2,60 g. As concentrações, em porcentagem em massa, de carbono e de hidrogênio neste hidrocarboneto são iguais a 82,7 % e 17,3 %, respectivamente. A fórmula molecular do hidrocarboneto é
${\bf A}(\) \ {\bf C}{\bf H}_4. \qquad {\bf B}(\) \ {\bf C}_2{\bf H}_4. \qquad {\bf C}(\) \ {\bf C}_2{\bf H}_6. \qquad {\bf D}(\) \ {\bf C}_3{\bf H}_8. \qquad {\bf E}(\) \ {\bf C}_4{\bf H}_{10}.$
Questão 12. Um elemento galvânico é constituído pelos eletrodos abaixo especificados e separados por uma ponte salina.
ELETRODO I: placa de chumbo metálico mergulhada em uma solução aquosa 1 mol/L de nitrato de chumbo.
ELETRODO II: sulfato de chumbo sólido prensado contra uma "peneira" de chumbo metálico mergulhada em uma solução aquosa 1 mol/L de ácido sulfúrico.
Nas condições-padrão, o potencial de cada um destes eletrodos, em relação ao eletrodo padrão de hidrogênio, é
$E_{Pb/Pb^{2+}}^{\circ} = -0,1264 \text{ V}$ (ELETRODO I).
$E_{Pb/PbSO_4, SO_4^{2-}}^{\circ} = -0.3546 \text{ V}$ (ELETRODO II).
Assinale a opção que contém a afirmação CORRETA sobre as alterações ocorridas neste elemento galvânico quando os dois eletrodos são conectados por um fio de baixa resistência elétrica e circular corrente elétrica no elemento.
 A () A massa de sulfato de chumbo sólido na superfície do ELETRODO II aumenta. B () A concentração de íons sulfato na solução aquosa do ELETRODO II aumenta. C () O ELETRODO I é o pólo negativo. D () O ELETRODO I é o anodo . E () A concentração de íons chumbo na solução aquosa do ELETRODO I aumenta.
Questão 13. Considere os valores da temperatura de congelação de soluções 1 milimol/L das seguintes substâncias:
I. $Al_{2}(SO_{4})_{_{3}}$. II. $Na_{2}B_{4}O_{7}$. III. $K_{2}Cr_{2}O_{7}$. IV. $Na_{2}CrO_{4}$. V. $Al(NO_{3})_{_{3}} \cdot 9H_{2}O$.
Assinale a alternativa CORRETA relativa à comparação dos valores dessas temperaturas.
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Questão 14. Qual das substâncias abaixo apresenta isomeria geométrica?

A () Ciclo-propano. B () Ciclo-buteno. C () Ciclo-pentano. D () Ciclo-hexano. E () Benzeno.
Questão 15. Considere os sistemas apresentados a seguir:
I. Creme de leite. II. Maionese comercial. III. Óleo de soja. IV. Gasolina. V. Poliestireno expandido.
Destes, são classificados como sistemas coloidais
${f A}$ () apenas I e II. ${f B}$ () apenas I, II e III. ${f C}$ () apenas II e V. ${f D}$ () apenas I, II e V. ${f E}$ () apenas III e IV.
Questão 16. Assinale a opção que apresenta um par de substâncias isomorfas.
 A () Grafita (s), diamante (s). B () Oxigênio (g), ozônio (g). C () Cloreto de sódio (s), cloreto de potássio (s). D () Dióxido de enxofre (g), trióxido de enxofre (g). E () Monóxido de chumbo (s), dióxido de chumbo (s).
Questão 17. Considere as soluções aquosas obtidas pela dissolução das seguintes quantidades de solutos em um 1 L de água:
 I. 1 mol de acetato de sódio e 1 mol de ácido acético. II. 2 mols de amônia e 1 mol de ácido clorídrico. III. 2 mols de ácido acético e 1 mol de hidróxido de sódio. IV. 1 mol de hidróxido de sódio e 1 mol de ácido clorídrico. V. 1 mol de hidróxido de amônio e 1 mol de ácido acético.
Das soluções obtidas, apresentam efeito tamponante
A () apenas I e V. B () apenas I, II e III. C () apenas I, II, III e V. E () apenas IV e V.
Questão 18. Considere o caráter ácido-base das seguintes espécies:
$ \textbf{II.} C_5H_5N \ (\text{piridina}). \qquad \qquad \textbf{III.} \left(C_2H_5\right)_2 \ NH \ (\text{di-etil-amina}). $
IV. $\left[\left(C_2H_5\right)_2NH_2\right]^+$ (di-etil-amônio). V. C_2H_5OH (etanol).
Segundo a definição ácido-base de Brönsted, dentre estas substâncias, podem ser classificadas como base
$ A (\) \ \ \text{apenas I e II.} \qquad B (\) \ \ \text{apenas I, II e III.} \qquad C (\) \ \ \text{apenas II e III.} \qquad D (\) \ \ \text{apenas III, IV e V.} \qquad E (\) \ \ \text{todas.} $
Questão 19. A equação química que representa a reação de decomposição do iodeto de hidrogênio é:
2 HI(g) \rightarrow H ₂ (g) + I ₂ (g); Δ H(25 °C) = -51,9 kJ.
Em relação a esta reação, são fornecidas as seguintes informações:
 a) A variação da energia de ativação aparente dessa reação ocorrendo em meio homogêneo é igual a 183,9 kJ. b) A variação da energia de ativação aparente dessa reação ocorrendo na superfície de um fío de ouro é igual a 96,2 kJ.
Considere, agora, as seguintes afirmações relativas a essa reação de decomposição:
 I. A velocidade da reação no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo. II. A velocidade da reação no meio homogêneo diminui com o aumento da temperatura. III. A velocidade da reação no meio heterogêneo independe da concentração inicial de iodeto de hidrogênio. IV. A velocidade da reação na superfície do ouro independe da área superfícial do ouro. V. A constante de velocidade da reação realizada no meio homogêneo é igual a da mesma reação realizada no meio heterogêneo.
Destas afirmações, estão CORRETAS
${f A}$ () apenas I, III e IV. ${f B}$ () apenas I e IV. ${f C}$ () apenas II, III e V.

Questão 20. O frasco mostrado na figura ao lado contém uma solução aquosa saturada em oxigênio, em contato com ar atmosférico, sob pressão de 1 atm e temperatura de 25 °C. Quando gás é borbulhado através desta solução, sendo a pressão de entrada do gás maior do que a pressão de saída, de tal forma que a pressão do gás em contato com a solução possa ser considerada constante e igual a 1 atm, é **ERRADO** afirmar que a concentração de oxigênio dissolvido na solução

- A () permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C, é ar atmosférico.
- **B** () permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C é nitrogênio gasoso.
- C () aumenta, quando o gás borbulhado, sob temperatura de 15 °C, é ar atmosférico.
- **D** () aumenta, quando o gás borbulhado, sob temperatura de 25 °C, é oxigênio praticamente puro.
- **E** () permanece inalterada, quando o gás borbulhado, sob temperatura de 25 °C, é uma mistura de argônio e oxigênio, sendo a concentração de oxigênio nesta mistura igual à existente no ar atmosférico.

As questões dissertativas, numeradas de 21 a 30, devem ser respondidas no caderno de soluções.

Questão 21. A figura abaixo representa um sistema constituído por dois recipientes, A e B, de igual volume, que se comunicam através da válvula V. Água pura é adicionada ao recipiente A através da válvula V_A , que é fechada logo a seguir. Uma solução aquosa 1,0 mol/L de NaCl é adicionada ao recipiente B através da válvula V_B , que também é fechada a seguir. Após o equilíbrio ter sido atingido, o volume de água líquida no recipiente A é igual a 5,0 mL, sendo a pressão igual a P_A ; e o volume de solução aquosa de NaCl no recipiente B é igual a 1,0 L, sendo a pressão igual a P_B . A seguir, a válvula V é aberta (tempo t = zero), sendo a temperatura mantida constante durante todo o experimento.

- (a) Em um mesmo gráfico de pressão (ordenada) versus tempo (abscissa), mostre como varia a pressão em cada um dos recipientes, desde o tempo t= zero até um tempo $t=\infty$.
- (b) Descreva o que se observa neste experimento, desde tempo t=0 até $t=\infty$, em termos dos valores das pressões indicadas nos medidores e dos volumes das fases líquidas em cada recipiente.

Questão 22. Na tabela abaixo são mostrados os valores de temperatura de fusão de algumas substâncias

Substância	Temperatura de fusão (°C)		
Bromo	-7		
Água	0		
Sódio	98		
Brometo de Sódio	747		
Silício	1414		

Em termos dos tipos de interação presentes em cada substância, justifique a ordem crescente de temperatura de fusão das substâncias listadas.

Questão 23. A equação química que representa a reação de decomposição do gás N_2O_5 é:

$$2 N_2 O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$$
.

A variação da velocidade de decomposição do gás N_2O_5 é dada pela equação algébrica: v=k . $\left[N_2O_5\right]$, em que k é a constante de velocidade desta reação, e $\left[N_2O_5\right]$ é a concentração, em mol/L, do N_2O_5 , em cada tempo.

A tabela ao lado fornece os valores de $ln[N_2O_5]$ em função do tempo, sendo a temperatura mantida constante.

Tempo (s)	$ln[N_2O_5]$
0	- 2,303
50	- 2,649
100	- 2,996
200	- 3,689
300	- 4,382
400	- 5,075

- (a) Determine o valor da constante de velocidade (k) desta reação de decomposição. Mostre os cálculos realizados.
- (b) Determine o tempo de meia-vida do N_2O_5 no sistema reagente. Mostre os cálculos realizados.

Questão 24. Em um balão fechado e sob temperatura de 27 °C, $N_2O_4(g)$ está em equilíbrio com $NO_2(g)$. A pressão total exercida pelos gases dentro do balão é igual a 1,0 atm e, nestas condições, $N_2O_4(g)$ encontra-se 20% dissociado.

- (a) Determine o valor da constante de equilíbrio para a reação de dissociação do $N_2O_4(g)$. Mostre os cálculos realizados.
- (b) Para a temperatura de 27 °C e pressão total dos gases dentro do balão igual a 0,10 atm, determine o grau de dissociação do $N_2O_4(g)$. Mostre os cálculos realizados.

Questão 25. Um produto natural encontrado em algumas plantas leguminosas apresenta a seguinte estrutura:

- (a) Quais são os grupos funcionais presentes nesse produto?
- **(b)** Que tipo de hibridização apresenta cada um dos átomos de carbono desta estrutura?
- (c) Quantas são as ligações sigma e pi presentes nesta substância?

$$O = \begin{bmatrix} H & 4 & H & NH_2 \\ 5 & I & I \\ 2 & 3 & CH_2 - CH & CO_2H \\ 2 & 6 & 7 & 8 \end{bmatrix}$$

Questão 26. A reação química de um determinado alceno **X** com ozônio produziu o composto **Y**. A reação do composto **Y** com água formou os compostos **A**, **B** e água oxigenada. Os compostos **A** e **B** foram identificados como um aldeído e uma cetona, respectivamente. A tabela abaixo mostra as concentrações (% m/m) de carbono e hidrogênio presentes nos compostos **A** e **B**:

Compostos	Carbono (% m/m)	Hidrogênio (% m/m)
A	54,6	9,1
В	62,0	10,4

Com base nas informações acima, apresente

- (a) as fórmulas moleculares e estruturais dos compostos: X, Y, A e B. Mostre os cálculos realizados, e
- (b) as equações químicas balanceadas relativas às duas reações descritas no enunciado da questão.

Questão 27. Em um béquer, a 25 $^{\circ}$ C e 1 atm, foram misturadas as seguintes soluções aquosas: permanganato de potássio (KMnO₄), ácido oxálico (H₂C₂O₄) e ácido sulfúrico (H₂SO₄). Nos minutos seguintes após a homogeneização desta mistura, nada se observou. No entanto, após a adição de um pequeno cristal de sulfato de manganês (MnSO₄) a esta mistura, observou-se o descoramento da mesma e a liberação de um gás.

Interprete as observações feitas neste experimento. Em sua interpretação devem constar:

- (a) a justificativa para o fato de a reação só ser observada após a adição de sulfato de manganês sólido, e
- (b) as equações químicas balanceadas das reações envolvidas.

Questão 28. Um béquer de 500 mL contém 400 mL de água pura a 25 °C e 1 atm. Uma camada fina de talco é espalhada sobre a superfície da água, de modo a cobri-la totalmente.

- (a) O que deverá ser observado quando uma gota de detergente é adicionada na região central da superfície da água coberta de talco?
- (b) Interprete o que deverá ser observado em termos das interações físico-químicas entre as espécies.

Questão 29. Considere o elemento galvânico da **QUESTÃO 12**, mas substitua a solução aquosa de $Pb(NO_3)_2$ do ELETRODO I por uma solução aquosa 1,00 x 10^{-5} mol/L de $Pb(NO_3)_2$, e a solução aquosa de H_2SO_4 do ELETRODO II por uma solução aquosa 1,00 x 10^{-5} mol/L de H_2SO_4 . Considere também que a temperatura permanece constante e igual a 25 °C.

(a) Determine a força eletromotriz deste novo elemento galvânico. Mostre os cálculos realizados.

Agora, considerando que circula corrente elétrica no novo elemento galvânico, responda:

- (b) Qual dos eletrodos, ELETRODO I ou ELETRODO II, será o anodo?
- (c) Qual dos eletrodos será o pólo positivo do novo elemento galvânico?
- (d) Qual o sentido do fluxo de elétrons que circula no circuito externo?
- (e) Escreva a equação química balanceada da reação que ocorre neste novo elemento galvânico.

uestão 30 . Explique por que 00 °C, enquanto água pura exp	osta à pressão atmosféric	a de 0,7 atm entra em e	bulição em uma tempera	tura de 90 °C.