2 Ensembles

2.1 Formalisation

Définition 2.1 (Ensemble, élément, appartenance)

- Un **ensemble** est une collection d'objets _____, et ____.
- Les objets d'un ensemble sont appelés ses
- Lorsque a est un élément d'un ensemble E, on dit que a **appartient à** E (ou E contient a), et on note $a \in E$.
- Lorsque E possède un nombre fini d'éléments, on appelle ce nombre son

Notations

- \bullet un ensemble se note entre accolades « { . . . } »
- \bullet l'ensemble vide (ne contenant aucun élément) se note \emptyset

Exemples

• {1,3,5}

• {{1,2},{2,4}}

• {Jean, Jacques}

• ..

Types de représentation

Un ensemble peut être défini :

- $\bullet\,$ en $\,$: on liste tous les éléments de l'ensemble.
- en : on liste le début d'une suite logique d'éléments en finissant par « . . . » (à éviter)
- en On définit les éléments d'un ensemble comme ceux appartenant à un sur-ensemble E et vérifiant une certaine propriété (définie par P).

Ensembles classiques

- \bullet N : ensemble des entiers naturels (positifs)
- \bullet $\mathbb Z$: ensemble des entiers relatifs
- $\bullet \ \mathbb{D}$: ensemble des nombres décimaux
- \mathbb{Q} : ensemble des nombres rationnels (de la forme $\frac{a}{b}$ avec a et b entiers)
- \bullet $\mathbb R$: ensemble des nombres réels

Définition 2.2 Soient E et F deux ensembles.

On dit que E est inclus dans F si tous les éléments de E appartiennent à F. On notera alors $E \subset F$, et on dira que E est une partie ou un sous-ensemble de F.

[Tree 100 mg	۱
Exemp.	165

 $\overline{\text{Si } E \text{ est}}$ un ensemble :

- $\emptyset \subset E$
- \bullet $E \subset E$

- $\mathbb{N} \subset \mathbb{R}$
- $\{1,3\} \subset \{1,2,3\}$

Définition 2.3 (Égalité ensembliste) Soient E et F deux ensembles.

On dit que E = F si $E \subset F$ et $F \subset E$.

Exemples

- {1,3,4,6} __ {3,4,1,6} {1,1,2,3} __ {3,1,2} {1,6,8} _ {1,2,8,6}

Définition 2.4 Soient E et F deux ensembles.

On dit que E et F sont $si E \cap F = \emptyset$.

Exemples

- $\{1,3,4,6\}$ et $\{2,4,5\}$
- {1,2,3} et {9,10,11}

Opérations ensemblistes 2.2

Définition 2.5 Soient E et F deux sous-ensembles de Ω .

• l' de E et F, notée $E \cup F$ est l'ensemble :

• l' de E et F, notée $E \cap F$ est l'ensemble :

• le _____ de E dans Ω , noté \bar{E} est l'ensemble :

	sembles non vides A_1, A_2, \ldots, A_p de E forment une
de E si :	(4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• ils somi	$(A_i \cap A_j = \emptyset \text{ pour tous } i, j \text{ avec } i \neq j)$ $soit A_1 \cup A_2 \cup \cdots \cup A_p = E$
• its forment an	$Som A_1 \cup A_2 \cup \cdots \cup A_p = E$
Définition 2.7 Soient E et	F deux sous-ensembles de Ω .
ullet la de E	$et\ F,\ not\'ee\ ___$ $est\ l'ensemble$:
• la	$de\ E\ et\ F,\ not\'ee$ $est\ l'ensemble:$
	t des sous-ensembles de E on a les résultats suivants :
$\bullet \ Cara(A \cup B) = $	
	ats alors $Card(A \cup B) =$
• $Card(\overline{A}) =$	
• Si A_1, A_2, \ldots, A_p de B	E forment une partition de E, alors :
Soient A et B deux sous-ens	ambles de O
Solent A et D deux sous-ens	embles de 11.
$\bullet \ A \cup A = \ _$	• $A \cap \Omega = $
$\bullet \ A \cap A = \ _$	\bullet $A \cup \emptyset = $
• $A \backslash A = $ _	$\bullet \ A \cap \emptyset = _$
$\bullet \ A\Delta A = \underline{}$	• Si $B \subset A : A \cup B = $
• $A \cup \Omega =$	• Si $B \subset A : A \cap B = $
Définition 2.8	, est constitué de tous les sous-
ensembles de E .	
Exemple	
	$F = \{1, 4, 5\}$ out :
L'ensemble des parties de <i>I</i>	$z = \{1, 4, 5\} \text{ est }.$
Propriété	
<u>Propriété</u> Si E est de cardinal e palor	

Définition 2.9 Le produit cartésien de deux ensembles E et F est l'ensemble défini
par:
$E \times F =$
Un élément (x,y) d'un tel ensemble est appelé couple et vérifie :
$(x,y) = (x',y') \iff x = x' \text{ et } y = y'$
• Si $E=F,$ on note le produit cartésien E^2 au lieu de $E\times E$
\bullet Le produit cartésien de trois ensembles E,F et G est défini par :
$E \times F \times G = (E \times F) \times G$
Ses éléments se nomment des triplets et se représentent sous la forme (x, y, z) avec
$x \in E, y \in F \text{ et } z \in G$
• Plus généralement, on définit le produit cartésien de $n \ge 3$ ensembles E_1, E_2, \dots, E_n
Ses éléments se nomment des (ou tuples en python) et se représentent
sous la forme (x_1, x_2, \dots, x_n) avec $x_i \in E_i$.
Propriété

Soit E un ensemble fini de cardinal n. Le cardinal de l'ensemble E^p des p-uplets de E est ___ .

Exemple

Combien y a-t-il de numéros de téléphone commençant par 06 70 50?

Définition 2.10 Soit E un ensemble fini de cardinal n et p un entier naturel tel que $p \le n$.

Exempl	ലട
LACIII P.	LOD

	• Combien y a-t-il de résult	ats possibles pour un tiercé (avec ordre) sur une
	course opposant 20 cheva	ux?
	Le nombre de résultats	correspond au nombre de
	. Soit	et, pour chacune de
	ces possibilités,	et, pour chacun de
	ces couples,	. Il y a donc
	résultats possibles.	
 Propri	été	
Soit I	— E un ensemble fini de cardi	inal n et p un entier naturel tel que $0 \le p \le n$.
	ombre de p-arrangements de	
Le no	ombre de permutations est	
Bo no	more de permatacions est	
		existe p! permutations possibles de ses éléments pour
		tir de la propriété précédente on peut donc en déduire
la suiv		
Propri		. 414
Le no	ombre de combinaisons de p	elements de <i>E</i> est :
•	Ces coefficients C_n^p , aussi n	otés $\binom{n}{p}$, sont appelés coefficients binomiaux ou com-
	binatoire de p éléments par	
	Ils représentent le nombre	de façons de choisir p objets parmi n. L'ordre n'importe
	_	iée et un objet ne peut être sélectionné deux fois (tirage
	simultané et sans remise).	

• Chaque p-combinaison représente une partie de E et l'ensemble de ces p-combinaisons (avec $0 \le p \le n$) réalise un recouvrement de _ _ _ _ . Or on a énoncé précédemment . On peut donc en déduire que :

Relations et fonctions 2.3

On considère 3 clients c_1 , c_2 et c_3 , achetant leurs fournitures chez 4 fournisseurs f_1 , $f_2, f_3 \text{ et } f_4.$

On note $C = \{c_1, c_2, c_3\}$ et $F = \{f_1, f_2, f_3, f_4\}$.

Cette situation peut être décrite par :

• un tableau simple:

Clients	c_1	c_2	c_3	
Fournisseurs	f_1, f_4	f_2, f_4	f_3	

• une partie de $C \times F$:

ł	ſ ((c_1, \ldots)	f_1). (c_1 .	f_{Λ}). (Co.	f_2). (Co.	f_{Λ}). (Co.	f_2)}
٦	ı١	$c_1,$	11.	/,\	(c_1)	J4.	۱, ۱	$c_2,$	J_2	۱, ۱	C_2	J4	/,\	c_3	J3)	ľſ

• un diagramme sagittal :

Cette situation illustre une **relation binaire** de C vers F.

 \mathscr{R} (ou _____) entre deux ensembles E et Définition 2.11 Une F est un sous-ensemble S du produit cartésien $E \times F$.

Exemples

• Sur les ensembles $E = \{1, 4, 7\}$ et $F = \{2, 5, 6\}$, la relation \leq (au sens classique) entre E et F est représentée par :

 \bullet Sur une promotion : la relation « Un étudiant x a l'enseignant y en TD de maths discrètes. »

Remarque : la plupart des relations que nous manipulerons seront définies **sur** un $m\hat{e}me$ ensemble. i.e. on aura E=F

Définition 2.12 Soit \mathscr{R} une relation définie sur $E.\mathscr{R}$ est dite :
ullet $lorsque$
ullet $lorsque$
ullet $lorsque$
ullet $lorsque$
ullet lorsque
Vrai ou Faux?
Sur \mathbb{R} : • \leq est symétrique?:
• ≤ est réflexive?: • ≤ est anti-symétrique?:
• ≤ est irréflexive? : • ≤ est transitive? :
Définition 2.13 Soit E un ensemble et \mathcal{R} une relation sur E .
On dit que \mathscr{R} est une si elle est :
•
•
• et
Lorsque E possède une relation d'ordre, on dit qu'il est
Exemple
• \leq est une relation d'ordre sur \mathbb{R} .
Applications
• La notion de croissance n'est définie que sur des ensembles ordonnés.
• Les notions de minimum et de maximum n'existent que sur des ensembles ordonnés.
Définition 2.14 Soit E un ensemble et \mathcal{R} une relation sur E .
On dit que \mathscr{R} est une si elle est :
•
•
• et
Exemple
• L'appartenance à un même groupe de TD est une relation d'équivalence

sur l'ensemble des étudiants de la promotion.

Définition 2.15 Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Pour tout $x \in E$, on appelle

L'ensemble des classes d'équivalence modulo $\mathscr R$ est appelé ; on le note $E_{/\mathscr R}$.

 $E_{\mathscr{R}}$ est naturellement

Définition 2.16 Soit A et B deux ensembles.

Une _____ de A vers B est une relation binaire entre A et B pour laquelle _____ est en relation avec un

Représentation sagittale

On pose f la fonction définie par : $\{(a,4),(b,4),(c,3)\}$

On peut la représenter par le diagramme sagittal :

Exemple : la fonction f définie par :

$$f: x \mapsto \frac{2x}{x^2 + 1}$$

peut être représentée par la liste de couples :

$$\{(0, \frac{2 \times 0}{0^2 + 1} = 0), (1, \frac{2 \times 1}{1^2 + 1} = 1), (0.3, \frac{0.6}{1.09}), \ldots\}$$

ou par le diagramme sagittal:

Soit A et B deux ensembles et f une fonction de A vers B.

- \bullet A est appelé ____ ou ___ de f
- ullet B est appelé ou de f

Supposons $a \in A$, $b \in B$ et f(a) = b.

- \bullet b est ____ de a par f
- $\bullet \ a$ est de b par f

Définition 2.17 Soit f une fe	onction de A vers B.	
On dit que f est	lorsque tout élément de B a	par
f.		
En logique, cela se traduit par	·:	
Exemples		
$ \begin{array}{c c} c \times 4 \\ b \times 3 \\ \times 2 \\ \times 1 \end{array} $	$ \begin{array}{c c} c \times 4 \\ b \times 3 \\ \times 2 \\ \bullet \times 1 \end{array} $	
Injective?:	Injective?:	
Soit f la fonction définie par :		
	$\mathbb{N} o \mathbb{N}$	
	$ \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ f : & n & \mapsto & 3n^2 + 2n + 5 \end{array} $	
Montrons que f est injective :		
Soit f la fonction définie pa	 	
	77 . N	
	$ \begin{array}{ccc} \mathbb{Z} & \to & \mathbb{N} \\ f : & n & \mapsto & 2n^2 + 4 \end{array} $	
	$J : H \rightarrow 2H + 4$	
Montrons que f n'est pas inje	ective:	
D '///		
Propriété Soient not nodes entiers tels	and $0 < n < n$. Alors, pour tout anomble F do	
	que $0 \le p \le n$. Alors, pour tout ensemble E de de cardinal n , le nombre d'injections de E dans F	
· //		

Exemple

- Un porte manteau comporte 5 patères. De combien de façons peut-on y accrocher 3 manteaux différents (avec au plus un manteau par patère car sinon il risque d'y en avoir un qui se retrouve par terre)?
- Notons $F = \{a; b; c; d; e\}$ les 5 patères. Chaque solution peut se voir comme un 3-arrangement de l'ensemble F (par exemple, (b, a, d) signifie : manteau n°1 sur b, manteau n°2 sur a et manteau n°3 sur d), ou comme une ______ de l'ensemble $E = \{1; 2; 3\}$ vers l'ensemble F. Il y a donc possibilités.

Définition 2.18 Soit f une fonction de A vers B.

On dit que f est _____ lorsque tout élément de B a _____ par f.

En logique, cela se traduit par :

Surjective?:

Surjective?:

Soit f la fonction définie par :

$$f: n \mapsto \begin{cases} -2n & \text{si } n \leq 0 \\ 2n - 1 & \text{sinon} \end{cases}$$

Montrons que f est surjective :

- •
- -----

\sim	

Prouver la surjectivité d'une fonction (2)

Soit f la fonction définie par :

$$\begin{array}{cccc} \mathbb{N} & \to & \mathbb{N} \\ f: & n & \mapsto & 2n+3 \end{array}$$

Montrons que f n'est \mathbf{pas} surjective :

Définition 2.19 Soit f une fonction de A vers B.

On dit que f est _____ lorsqu'elle est _____. En logique, cela se traduit par :

Exemples

Bijective?:

Bijective?: