

סילבוס קורס

קריפטוגרפיה 7090003

שנה אקדמית: תשפו

סוג הקורס: חובה

רמת הקורס: תואר ראשון

צורת העברה: פנים אל פנים.

דרישות קדם:

דרישות במקביל: מבוא להסתברות למדמ"ח

שפת הוראה: עברית

סביבת עבודה:

מתרגל/ים:

קמׄפוּס; אשדַודּ־

מחלקה: מדעי המחשב

תחום:

שנת לימוד: ב' סמסטר: א

נקודות זכות: 3

4.5 :ECTS נקודות

מרצה/ים: ד"ר ירמיהו מילר

jeremmi@sce.ac.il

מטרה

הקניית העקרונות והמושגים הבסיסיים של קריפטוגרפיה מודרנית ויישומם באפליקציות מעשיות במדעי המחשב.

תפוקות למידה

עם סיום מוצלח של הקורס, הסטודנטים יהיו מסוגלים:

- 1. להשתמש באלגות תם של אוקליד כדי למצוא את המחלק הגדול ביותר של שני איברים בחוג, ולמצוא את השארית של מספר שלם בחלוקה במשפר שלם אחר.
 - להְבחין האם קריפטוּ-מערכת ניתנת לפענוח באמצעות המשפטים היסודיים של תורת המספרים, תכונות של ג'ל להְבחין האם קריפטוּ-מערכת ניתנת לפענוח באמצעות המשפטים היסודיים של תורת המספרים, תכונות של ג'ל מספרים ראשוניים, משפטי פרמה ופונקצית אוילר.
 - 3. /לפתוך מערכת של משוואות מודולריות מעל חוגים באמצעות המשפט השאריות הסינית.
 - לייצג האלפיבית הלטינית באמצעות החוג ,Z26 לבצע חיבור וכפל של איברים בחוג ,Z26 ולבצע כפל מטריצות לייצג האלפיבית בחוג ,Z26 והכללה ל- m אותיות.
- להצפין טקסט גלוי ולפענח טקסט מוצפן לפי הצפנים הבסיסיים, כולל צופן הזזה (צופן קיסר), צופן החלפה, צופן של .5 תמורה,צופן היל וצופן ויז'נר.
 - 6. להשתמש בקריפטו-אנליזה לפענח טקסט מוצפן ולבנות אלגוריתמים לשיתוף סודות והסתרת מידע.
 - 7. להוכיח האם לקריפטו-מערכת יש סודיות מושלמת על ידי תורת שנון ולהשתמש בשיטות שונות לאבטחת העברת ועיבוד המידע.
 - . IDEA וצופן DES להצפין ולפענח מספרים בינארים באמצעות צופן פייסטל, צופן 8.
 - 9. להצפין ולפענח מספרים שלמים באמצעות צופן RSA וצופן אל-גמאל.
 - 10. לזהות שלמות המידע.

תוכן הקורס

מקורות רלוונטים	שא מקורות רלוונטים		
[1] פסקאה 1.1 [2] פסקאה 2.1 [3] פסקאות 1.5 - 1.6	האלגוריתם של אוקליד והאלגוריתם המוכלל של אוקליד. המשפטים של [2		
[1] פסקאה 1.1 [2] פסקאה 2.1 _[3] פסקאות 1.5 - 1.6	ההגדרה הפורמלית של חוג מתמטי. קבוצת השארית מודולו p. חוגים של אלפבתיות. החוג Z26 של האלפבית הלטינית וחוגים של אלפבתיות כלליות Zm. הפיכת מטריצה בחוגים.	2	
[1] פסקאות 1.1 - 1.2 [2] פסקאות 2.1 - 2.2	הגדרות פורמליות של פונקצית הצפנה, ופונקצית פענוח, טקסט גלוי וטקסט מוצפן. צפנים הבסיסיים: הצפנים הבסיסיים: צופן ההזזה, צופן ההחלפה, צופן האפיני, צופן התמורה, צופן ויז'נר. התנאים ההחרכיים של צופן הניתן לפענוח.	3	
[1] פסקאות 1.1 - 1.2 [2] פסקאות 2.1 - 2.2	קריפטו - אנליזה: סוגים של התקפת סייבר. פונקצית ההסתברות של האותיות של-האלפבית הלטינית. המדד צירוף המקרים. קריפטו-אנליזה של הצופן∕האפיני, צופן ההחלפה וצופן של היל.	4	
[1] פסקאות 5.3 - 5.1 [2] פסקאות 6.3 - 6.3	צופן RSA: הפרוטוקול דיפי-הלמן לקביעת מפתח משותף. ההגדרה הפורמלית של צופן RSA וההוכחה שהוא ניתן לפענוח. המשפט השאריות הסיני ושימוש בפענוח של צופן RSA. שימוש בשארית ריבועית מודולו ראשוני p בפענוח של צופן RSA.	5	
5.4 - 5.8 פסקאות [1] [2] פסקאות 6.4 - 6.8	הבעיית הפירוק של מספירם וצופן רבין: מבחנים ראשוניות. שימוש בקריטריון אוילר. האלגוריתם מילר-רבין לבדיקת ראשוניות. שיטת החישוב של שורש מודולו - p. אלגוריתמים לפירוק של מספרים שלמים. צופן רבין.	6	
6.1 - 6.7 פסקאות 6.7 - 7.1 [2] פסקאות 7.2 - 7.1	צופן אל-גמאל וקריפטוגרפיה של מפתח פומבי: ההגדרה הפורמלית של הצופן אל-גמאל וההוכחה שהוא ניתן לפענוח. בעיית הפירוק לגורמים ובעיית הלוגריתם הדיסקרטי. חישוב משותף של הפרמטרים הפומביים. שימוש בערך המשותף. פרוטוקול דיפי-הלמן מעל חבורה כללית. בטיחות השיטה ובעיות דיפי- הלמן.	7	

[1] פסקאות 2.5 - 2.1 [2] פסקאות 3.4 - 3.1	תורת שֶנוֹן של סודיות: חזרה של תורת הסתברות בסיסית. ההצפנה של האפמן ושיטת עץ ההצפנה. ההגדבות הפורמליות של אנטרופיה וסודיות מושלמת. קוד מורס.	
[1] פסקאות 3.2, 3.5-3.6 [2] פסקאות 4.6 - 4.1	צפני בלוק וצפני זרם? הגדרה פורמלית של תמורה מתמטית וחישובים עם תמורות. רשתות החלפה-תמורה. צופן פייסטל. תקן הצפנת הנתונים - data encryption standard (DES). תרגילים פשוטים של הצפנה ופענוח ע"י DES. תקן ההצפנה המתקדם - ופענות ע"י advanced encryption standard (AES).	9
1] פסקאות 4.2 - 4.1 [2] פסקאות 5.2 - 5.1	פונקצׄיוּתּ תּמצוֹת קריפטוגרפיות: פונקציות תמצות ואמינות המידע. בטיחות של פונקציות תמצות. מודל האורקל האקראי. אלגוריתמים במודל האורקל האקראי. השוואה בין קריטריוני בטיחות.	10
1.3 פסקאות 4.5 - 4.3 [2] פסקאות 5.5 - 5.3	פונקציות תמצות קריפטוגרפיות (המשרְ): פונקציות תמצות איטרטיביות. הבניית מרקל-דמגרד (-Merkle Damgard). בניית ספוג ופונקציית התמצות SHA-3. קודמים לאורתנטיקציה של הודעות: MAC, מקונן ו- HMAC.	11
[1] פסקאות 7.4 - 7.2 [2] פסקאות 8.2 - 8.2	שיטות חתימה: דרישות בטיחות משיטות חתימה. שיטת החתימה של אל-גמאל. וריאנטים של שיטת החתימה של אל-גמאל. שיטת החתימה של שנור. אלגוריתם החתימה הדיגיטלית. סרטיפיקטים.	12
[1] פסקאות 7.5 - 7.5 [2] פסקאות 9.4 - 9.1	סכמות? לשיתוף סודות: סכמת הסף של שמיר. סכמת סף (t,t) פשוטה: מבני גישה ושיתוף סודות כללי. בניית המעגל המונוטוני. סכימות שיתוף סודות ניתנות לאימות.	13

מקורות ספרות נדרשים ומומלצים

ספר הקורס:

- 1. D.R. Stinson, Cryptography: Theory and Practice, 4th ed. Chapman Hall/CRC, 2018 מקורות נוספים:
- 2. C. Paar, J. Pelzl, "Understanding Cryptography: A Textbook for Students and .Practitioners" (available online for SCE students), Springer, 2010
- 3. Joseph J, Rotman A first course in abstract/algebra
- .2nd ed., Upper Saddle River, N.J., Prentice/Hall PTR, 2000
 4. Charlie ????Perlman?? ??Radia?? ??Kaufman,?? ????Mike?? ??Speciner, Network security: private communication in a public world .2nd ed., Upper Saddle River, N.J., Prentice Hall PTR, 2002
- 5. Baimel A., Dolev Sh., "Anonymous message delivery", Proceeding of FUN
- 6. Aumasson J-P, "Serious Cryptography. A practical introduction to modern encryption", No Starch Press, 2018
- Bashir I. "Mastering Blockchain", Packt Publishing Ltd., 2017
 Smart card & Security basics", CardLogix, 2019"

פעילויות למידה מתוכננות ושיטות הוראה

שעות הרצאה שבועיות:-3 שעות הרצאה שבועיות: 3 אין תרגול בקורס זו. ההוראה תתקיים בצורה פתונטאלית.

שיטות הערכה וקריטריונים

הערות	אחוז	קריטריון
ציון 56 ומעלה במבחן הינו תנאי לשקלול הבוחן ועבודות הגשה בציון הסופי. אחרת ציון המבחן הינו הציון הסופי בקורס.	75	בחינה סופית:
במהלך הסמסטר ינתנו כ3 עבודות בית.	25	:תרגילים

