BRASIL-SR

Modelo de transferência radiativa

Institucional

- CCST (Centro de Ciências do Sistema Terrestre) → DIIAV (Divisão de Impactos, Adaptação e Vulnerabilidade) da CGCT (Coordenação Geral de Ciências da Terra): formulação de cenários para um desenvolvimento nacional sustentável, fortemente embasados em redes de monitoramento de dados ambientais e modelagem do Sistema Terrestre
- LABREN (Laboratório de Modelagem e Estudos de Recursos Renováveis de Energia): atividades de pesquisa e ensino na área de meteorologia aplicada ao setor de energia, com ênfase nas relações entre energias e sistema climático, através do emprego de dados de satélite, de atividades de modelagem computacional e de dados observacionais em campo (rede SONDA estações solarimétricas e dados meteorológicos complementares)

Atlas Brasileiro de Energia Solar

Institut für Geophysik Meteorologie – Universität zu Köln

Atlas Brasileiro de Energia Solar

PREFÁCIO	8			10 VARIA
-				VARIA
1 INTRODUÇÃO	9			TEND
2 CONTEXTO SOCIOAMBIENTAL		11		11 CENÁ
3 PANORAMA ELÉTRICO NACIONAL		13		Роте
4 CONCEITOS BÁSIC	os	15		Ge
5 METEOROLOGIA	DA ENERGIA	20		POTE
6 INSTRUMENTAÇÃ	O E AQUISIÇÃO D	E DADOS	24	Ge
SENSORES	24			Po
Piranômetro de	e termopilha	24		
Piranômetro de fotodiodo		25		Po
Pirheliômetro		25		
Sistemas de so	mbreamento	25		Pe
Estação solarimétrica		26		
BASE DE DADOS OB Rede SONDA	SERVADOS 27	27		12 CONS
	orológicas automá	ticas do INME	T 29	REFERÊ
7 METODOLOGIA	30			ACRÔNI
MODELO BRASIL-	-SR 30			
VALIDAÇÃO DAS EST	TIMATIVAS DO MODE	LO BRASIL-S	SR 33	FIGURA
8 MAPAS DE IRRADI	IAÇÃO	35		TABELA
9 VALIDAÇÃO DO MODELO BRASIL-SR			42	
VALIDAÇÃO DA IRRADIAÇÃO GLOBAL HORIZONTAL			42	
VALIDAÇÃO DA IRRA	ADIAÇÃO DIRETA NO	RMAL	43	

10 VARIABILIDADE INTERANUA	AL E TENDÊNCIAS			
VARIABILIDADE INTERANUAL DA	IRRADIAÇÃO SOLAR			
TENDÊNCIAS REGIONAIS	47			
11 CENÁRIOS E APLICAÇÕES DE	ENERGIA SOLAR			
POTENCIAL SOLAR TÉRMICO	52			
Aquecimento solar para us	o doméstico			
Geração de energia elétric	a heliotérmica			
Outras aplicações da energ	gia solar térmica			
POTENCIAL FOTOVOLTAICO	57			
Geração solar fotovoltaica centralizada				
Geração solar fotovoltaica	distribuída			
Potencial e perspectivas di distribuída (GD)	a geração fotovoltaica			
Potencial e perspectivas de centralizada de grande p	•			
Perspectivas com os veícul inteligentes (smart grids				
12 CONSIDERAÇÕES FINAIS	66			
REFERÊNCIAS	69			
ACRÔNIMOS E ABREVIAÇÕES	75			
FIGURAS	77			
	80			

BRASIL-SR

- Modelo físico computacional que estima a irradiação solar descendente na superfície pela interpolação entre condições claras e nubladas usando o parâmetro de índice efetivo de cobertura de nuvens, obtido a partir de imagens visíveis de satélite
- Cobertura de nuvens é considerada o principal fator de modulação da transmitância atmosférica
- As demais propriedades óticas são parametrizadas a partir das variáveis meteorológicas de temperatura na superfície, umidade relativa do ar, visibilidade atmosférica e albedo de superfície

Dados de entrada

- longitude;
- latitude;
- altitude;
- temperatura de superfície;
- umidade relativa;
- vapor de água precipitável total;
- ozônio total na coluna;
- AOD em 550 nm;
- expoente de Ångström;
- classificação do bioma;
- parâmetros do kernel das funções de distribuição de reflexão bidirecional (BRDF) do Espectroradiômetro de imagem de resolução moderada (MODIS).

Fluxo de radiação solar incidente em superfície

$$G = G_0 \left\{ (\tau_{clear} - \tau_{cloud}) \cdot (1 - C_{eff}) + \tau_{cloud} \right\}$$

Radiação incidente no topo da atmosfera (W/m²)

Transmitância de céu claro

Transmitância de céu totalmente encoberto:

- microfísica definida pela distribuição de tamanhos de gotículas do tipo de nuvem;
- nuvens atenuam totalmente radiação direta do Sol em condições de céu encoberto
- nuvens são homogêneas (vertical e horizontal)

Coeficiente efetivo de cobertura de nuvens

Radiância visível medida pelo satélite $C_{eff} = \frac{L - L_{clr}}{L_{cld} - L_{clr}}$

Radiância de céu encoberto céu claro (estatística para período de 30 dias)

C_{eff}: atenuação do feixe de radiação incidente na direção do Sol no pixel

Parametrização, usuário escolhe (1 tipo, stratus, mais frequente p/ BR → testes de sensibilidade deram pouca mudança no BIAS e RMSE

Premissas

- Modelo assume que o fluxo de radiação solar medido pelo satélite no topo da atmosfera está linearmente distribuído entre duas condições de atmosfera: céu claro e céu completamente encoberto de nuvens
- Modelo espectral (135 intervalos de comprimento de onda) e 30 camadas atmosféricas
- Método de "dois fluxos" (transmitâncias): equação geral de propagação pode ser reduzida a um par de equações diferenciais, cuja solução resulta em um par de irradiâncias (uma ascendente e outra descendente) em uma atmosfera estratificada
- A parcela da radiação difusa é estimada considerando-se o efeito das múltiplas reflexões entre as diversas camadas atmosféricas
- Processos radiativos simulados: nuvens, espalhamento Rayleigh devido aos gases atmosféricos, absorção por gases atmosféricos (O₃, CO₂ e vapor d'água) e espalhamento Mie devido aos aerossóis

Souza, Silva & Ceballos (2008) tps://doi.org/10.1

https://doi.org/10.15 90/S0102-261X200 8000100003

Aerossóis

- Parametrização da espessura ótica de aerossóis em cada camada atmosférica a partir de um perfil continental de aerossóis (McClatchey et al., 1972) → perfil vertical de aerossóis, nos primeiros 5 km de altura, está associado a valores de visibilidade horizontal observados em estações meteorológicas operadas pelo INMET e em função de dados de espessura óptica dos aerossóis em 550 µm oriundos de reanálises do MACC/ECMWF (Costa, 2012)
- Parametrização de absorção e espalhamento da radiação solar por aerossóis baseada em Angström (1964), sendo o coeficiente de turbidez de Angström estimado a partir de valores de visibilidade horizontal da atmosfera

http://labren.ccst.inpe.br/brasil-sr-pt.html (fortran e makefiles)