

# Flow transition over surface gaps in 2D incompressible laminar boundary layers

<u>Víctor Ballester Ribó</u><sup>1</sup>, Jeffrey Crouch<sup>2</sup>, Yongyun Hwang<sup>1</sup>, Spencer Sherwin<sup>1</sup>

 $^{1}$ Department of Aeronautics, Imperial College London, UK  $^{2}$ The Boeing Company, USA

2 July 2025

**IMPERIAL** 



# **Motivation**





Figure: Wing of a Boeing 737-800

#### **Framework**

- 2D Incompressible Navier-Stokes
- We linearize the flow around a steady baseflow:

$$\mathbf{u}(x, y, t) = \mathbf{U}(x, y) + \tilde{\mathbf{u}}(x, y, t)$$

From LST we can obtain disturbances of the form:

$$\tilde{\mathbf{u}} = \boldsymbol{\phi}(y) e^{-\alpha_i x} e^{i(\alpha_r x - \omega t)}$$

ullet But this is a local representation! To account for streamwise growth in the BL we use the  $e^N$  method:

$$n(x,\omega) = -\int_{x_0}^x \alpha_i(s,\omega) \, \mathrm{d}s = \log\left(\frac{|\tilde{\mathbf{u}}(\omega)|}{|\tilde{\mathbf{u}}_0|}\right)$$
$$N(x) = \max_{\omega} n(x,\omega)$$

 $\implies$  Distrubances of amplitude  $A_0$  satisfy  $A(x) \leq A_0 e^{N(x)}$ .

#### **Previous Work**



Characterizing surface-gap effects on boundary-layer transition dominated by Tollmien-Schlichting instability

J. D. Crouch<sup>1, \*</sup> O, V. S. Kosorygin<sup>2</sup>, M. I. Sutanto<sup>1</sup> and G. D. Miller<sup>1</sup>

<sup>1</sup>The Boeing Company, P.O. Box 3707, Seattle, WA 98124-2207, USA <sup>2</sup>Institute of Theoretical and Applied Mechanics, Novosibirsk 630090, Russia \*Corresponding author. E-mail: jeffreyd.crouch@boeing.com

Received: 7 July 2021: Revised: 24 January 2022: Accepted: 24 January 2022



Figure:  $\Delta N = N - N_{\rm ref}$  for different gap dimensions

Crouch JD, Kosorygin VS, Sutanto MI, Miller GD. Characterizing surface-gap effects on boundary-layer transition dominated by Tollmien–Schlichting instability. Flow. 2022;2:E8.

# Setup

PICTURE BL blasius + gap

•  $Re_{\delta^*} = 1000$ 



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



Figure: Classification of the topological behavior of points downstream the gap.



**Figure** 

### **Future Work**

- Go to higher Ma number (compressible regime)
- Account for spanwise effects (quasi-3d)