Hurricane Hurvey in 2017

Table of Contents

BACKGROUND AND SCOPE	
Import Using Function:	
Two States Most Impacted by Harvey:	2
VISUALIZATIONS:	
Figure of Event Types	
Figure of Event Locations	
Analysis	8
Three Counties with Most Events in State 1	
Three Counties with Most Events in State 2	9
Three Counties with Highest Property Cost in State 1	
Three Counties with Highest Property Cost in State 2	
Conclusion and Recommendations:	

BACKGROUND AND SCOPE

Import Using Function:

we have created an import function in order to import data from the csv file.

stormevents=importfile("StormEvents_2017_finalProject.csv")

stormevents = 57006×13 table

	State	Month	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time
1	State	Month	Event_Type	CZ_Name	NaT	NaT
2	NEW JER	April	Thunderstorm Wind	GLOUCESTER	2017-04-06 15:09	2017-04-06 15:
3	FLORIDA	April	Tornado	LEE	2017-04-06 09:30	2017-04-06 09:
4	ОНЮ	April	Thunderstorm Wind	GREENE	2017-04-05 17:49	2017-04-05 17:
5	OHIO	April	Flood	CLERMONT	2017-04-16 17:59	2017-04-16 19:
6	NEBRASKA	April	Hail	CASS	2017-04-15 15:50	2017-04-15 15:
7	INDIANA	April	Flash Flood	SWITZERLAND	2017-04-29 09:15	2017-04-29 11:
8	VIRGINIA	April	Thunderstorm Wind	WESTMOREL	2017-04-21 19:15	2017-04-21 19:
9	GULF OF	October	Marine Thunders	ATCHAFALA	2017-10-22 10:15	2017-10-22 10:
10	ОНЮ	April	Flash Flood	CLERMONT	2017-04-29 09:45	2017-04-29 11:
11	NEBRASKA	April	Thunderstorm Wind	BURT	2017-04-15 18:55	2017-04-15 18:
12	ARKANSAS	April	Hail	FRANKLIN	2017-04-26 07:57	2017-04-26 07:
13	OKLAHOMA	October	Hail	KIOWA	2017-10-21 15:20	2017-10-21 15:
14	ATLANTI	October	Marine Strong W	DE BAY WA	2017-10-24 02:24	2017-10-24 02:

:

stormevents = 57006×14 table

•	•	٠

	State	Month	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time
1	State	Month	Event_Type	CZ_Name	NaT	NaT
2	NEW JER	April	Thunderstorm Wind	GLOUCESTER	2017-04-06 15:09	2017-04-06 15:
3	FLORIDA	April	Tornado	LEE	2017-04-06 09:30	2017-04-06 09:
4	OHIO	April	Thunderstorm Wind	GREENE	2017-04-05 17:49	2017-04-05 17:
5	OHIO	April	Flood	CLERMONT	2017-04-16 17:59	2017-04-16 19:
6	NEBRASKA	April	Hail	CASS	2017-04-15 15:50	2017-04-15 15:
7	INDIANA	April	Flash Flood	SWITZERLAND	2017-04-29 09:15	2017-04-29 11:
8	VIRGINIA	April	Thunderstorm Wind	WESTMOREL	2017-04-21 19:15	2017-04-21 19:
9	GULF OF	October	Marine Thunders	ATCHAFALA	2017-10-22 10:15	2017-10-22 10:
10	OHIO	April	Flash Flood	CLERMONT	2017-04-29 09:45	2017-04-29 11:
11	NEBRASKA	April	Thunderstorm Wind	BURT	2017-04-15 18:55	2017-04-15 18:
12	ARKANSAS	April	Hail	FRANKLIN	2017-04-26 07:57	2017-04-26 07:
13	OKLAHOMA	October	Hail	KIOWA	2017-10-21 15:20	2017-10-21 15:
14	ATLANTI	October	Marine Strong W	DE BAY WA	2017-10-24 02:24	2017-10-24 02:

stormevents = movevars(stormevents, 'TotalCost', 'Before', 'Begin_Lat');

Two States Most Impacted by Harvey:

In this subsection, I created another table to display the two states without changining the main table's content.

hurricanesummary=groupsummary(stormevents, "State", "sum", "TotalCost")

hurricanesummary = 68×3 table

	State	GroupCount	sum_TotalCost
1	ALABAMA	1300	31582600
2	ALASKA	231	6525000
3	AMERICA	13	107000
4	ARIZONA	498	11445300
5	ARKANSAS	1212	61096500
6	ATLANTI	707	5020
7	ATLANTI	498	500
8	CALIFOR	1889	815823710

	State	GroupCount	sum_TotalCost
9	COLORADO	1095	24871300
10	CONNECT	201	1337500
11	DELAWARE	152	60
12	DISTRIC	46	0
13	E PACIFIC	12	10
14	FLORIDA	1155	3.7042e+09
	•		

hurricanesummary = sortrows(hurricanesummary,'sum_TotalCost','descend')

hurricanesummary = 68x3 table

	State	GroupCount	sum_TotalCost
1	TEXAS	3628	4.6265e+10
2	PUERTO	222	1.9028e+10
3	FLORIDA	1155	3.7042e+09
4	CALIFOR	1889	815823710
5	SOUTH C	912	755496810
6	MICHIGAN	628	742021000
7	GEORGIA	1679	312589360
8	IDAHO	520	171094200
9	MISSOURI	2289	156203000
10	WISCONSIN	1346	123900100
11	OKLAHOMA	1933	121881000
12	LOUISIANA	821	107641100
13	OREGON	398	101098000
14	WASHING	521	81766000

display("So"+" " + "State "+string(hurricanesummary.State(1)) + " faced maximum damage. A

"So State TEXAS faced maximum damage. And State PUERTO RICO faced second most damage."

Two_state=hurricanesummary(hurricanesummary.State == hurricanesummary.State(1) | hurricanesummary

Two_state = 2×3 table

		State	GroupCount	sum_TotalCost
	1	TEXAS	3628	4.6265e+10
Ì	2	PUERTO	222	1.9028e+10

VISUALIZATIONS:

Please enter the name of two states in order to visualise data of the two states .

Figure of Event Types

```
state1 = "TEXAS"

state1 =
"TEXAS"

state2 = "PUERTO RICO"
```

State2 - FOERIO RICO

state2 =
"PUERTO RICO"

stateOne=stormevents(stormevents.State == state1,:)

 $stateOne = 3628 \times 14 table$

• • •

	State	Month	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time
1	TEXAS	May	Hail	HENDERSON	2017-05-03 14:06	2017-05-03 14:
2	TEXAS	January	Tornado	BOSQUE	2017-01-15 18:17	2017-01-15 18:
3	TEXAS	January	Thunderstorm Wind	DALLAS	2017-01-02 05:50	2017-01-02 05:
4	TEXAS	January	Thunderstorm Wind	LEON	2017-01-02 05:58	2017-01-02 05:
5	TEXAS	January	Thunderstorm Wind	ELLIS	2017-01-02 05:10	2017-01-02 05:
6	TEXAS	January	Thunderstorm Wind	LEON	2017-01-02 06:04	2017-01-02 06:
7	TEXAS	January	Thunderstorm Wind	RAINS	2017-01-02 06:30	2017-01-02 06:
8	TEXAS	January	Hail	JOHNSON	2017-01-15 20:06	2017-01-15 20:
9	TEXAS	January	Hail	TARRANT	2017-01-15 20:24	2017-01-15 20:
10	TEXAS	January	Thunderstorm Wind	TARRANT	2017-01-15 20:30	2017-01-15 20:
11	TEXAS	January	Flash Flood	JOHNSON	2017-01-15 20:30	2017-01-15 20:
12	TEXAS	January	Thunderstorm Wind	TARRANT	2017-01-15 20:55	2017-01-15 20:
13	TEXAS	January	Thunderstorm Wind	COLLIN	2017-01-15 21:30	2017-01-15 21:
14	TEXAS	January	Thunderstorm Wind	DALLAS	2017-01-15 21:39	2017-01-15 21:

:

stateTwo=stormevents(stormevents.State == state2,:)

 $stateTwo = 222 \times 14 table$

 State
 Month
 Event_Type
 CZ_Name
 Begin_Date_Time
 End_Date_Time

 1
 PUERTO ...
 September
 Hurricane
 EASTERN I...
 2017-09-20 11:00...
 2017-09-20 23:...

	State	Month	Event_Type	CZ_Name	Begin_Date_Time	End_Date_Time
2	PUERTO	September	Hurricane	EASTERN I	2017-09-20 11:00	2017-09-20 23:
3	PUERTO	September	Flash Flood	COAMO	2017-09-20 06:02	2017-09-21 15:
4	PUERTO	September	Flash Flood	COROZAL	2017-09-20 06:29	2017-09-21 15:
5	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
6	PUERTO	September	Flash Flood	AGUAS BUE	2017-09-20 05:12	2017-09-21 15:
7	PUERTO	September	Flash Flood	TOA BAJA	2017-09-20 06:00	2017-09-21 15:
8	PUERTO	September	Flash Flood	VEGA ALTA	2017-09-20 06:00	2017-09-21 15:
9	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
10	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
11	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
12	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
13	PUERTO	September	Hurricane	CENTRAL I	2017-09-20 11:00	2017-09-20 23:
14	PUERTO	September	Flash Flood	GUAYAMA	2017-09-20 03:00	2017-09-21 15:

summary1=groupsummary(stateOne,"Event_Type")

 $summary1 = 31 \times 2 table$

	Event_Type	GroupCount
1	Astronomical Lo	2
2	Blizzard	3
3	Coastal Flood	7
4	Cold/Wind Chill	3
5	Debris Flow	1
6	Drought	106
7	Dust Storm	1
8	Excessive Heat	12
9	Extreme Cold/Wi	1
10	Flash Flood	365
11	Flood	59
12	Frost/Freeze	49
13	Funnel Cloud	15
14	Hail	1290

:

 $summary2 = 12 \times 2 table$

	Event_Type	GroupCount
1	Coastal Flood	3
2	Flash Flood	130
3	Flood	35
4	Funnel Cloud	7
5	Hail	2
6	Heavy Rain	20
7	High Surf	1
8	Hurricane	11
9	Lightning	1
10	Rip Current	4
11	Thunderstorm Wind	7
12	Tornado	1

bar(summary2.Event_Type,summary2.GroupCount)
title("Bar Plot Of the state "+string(state2))

Figure of Event Locations

geobubble(stateOne.Begin_Lat,stateOne.Begin_Lon,stateOne.Property_Cost,stateOne.Event_StateOne.Begin_Lon

geobubble(stateTwo.Begin_Lat,stateTwo.Begin_Lon,stateTwo.TotalCost,stateTwo.Event_Type)
legend show
geolimits([17.11 19.32],[-67.53 -65.71])

Analysis

Three Counties with Most Events in State 1

```
table1 = groupsummary(stateOne, "CZ_Name", "mode", "Event_Type");
table1 = sortrows(table1, 'GroupCount', 'descend')
```

 $table1 = 268 \times 3 table$

	CZ_Name	GroupCount	mode_Event_Type
1	COLLIN	64	Hail
2	HARRIS	64	Flash Flood
3	TARRANT	63	Thunderstorm Wind
4	MIDLAND	61	Hail
5	DENTON	59	Hail
6	GUADALUPE	59	High Wind
7	POTTER	49	Hail

	CZ_Name	GroupCount	mode_Event_Type
8	ECTOR	46	Hail
9	RANDALL	46	Thunderstorm Wind
10	ANGELINA	41	Hail
11	SMITH	41	Hail
12	HUTCHINSON	40	Hail
13	DALLAS	39	Hail
14	TOM GREEN	39	Thunderstorm Wind

```
disp("The three Counties are 1."+string(table1.CZ_Name(1)))
```

The three Counties are 1.COLLIN

```
disp("2."+string(table1.CZ_Name(2)))
```

2.HARRIS

```
disp("3."+string(table1.CZ_Name(3)))
```

3.TARRANT

Three Counties with Most Events in State 2

```
table2 = groupsummary(stateTwo, "CZ_Name", "mode", "Event_Type");
table2 = sortrows(table2, 'GroupCount', 'descend')
```

 $table2 = 68 \times 3 table$

	CZ_Name	GroupCount	mode_Event_Type
1	MAYAGUEZ	14	Flash Flood
2	SAN JUAN	13	Flood
3	GUAYNABO	12	Flash Flood
4	NAGUABO	12	Flash Flood
5	CAROLINA	9	Flash Flood
6	HATILLO	8	Flash Flood
7	CENTRAL I	7	Hurricane
8	PATILLAS	7	Flash Flood
9	COMERIO	5	Flash Flood
10	EASTERN I	5	Hurricane
11	RIO GRANDE	5	Flash Flood
12	AGUADA	4	Flash Flood

```
CZ_Name
                         GroupCount
                                            mode_Event_Type
13
     BAYAMON
                                   4 Flash Flood
14
     CAGUAS
                                      Flash Flood
```

```
disp("The three Counties are 1."+string(table2.CZ_Name(1)))
```

The three Counties are 1.MAYAGUEZ

```
disp("2."+string(table2.CZ_Name(2)))
```

2.SAN JUAN

```
disp("3."+string(table2.CZ_Name(3)))
```

3.GUAYNABO

Three Counties with Highest Property Cost in State 1

```
table3 = groupsummary(stateOne, "CZ_Name", "sum", "TotalCost")
```

 $table3 = 268 \times 3 table$

	CZ_Name	GroupCount	sum_TotalCost
1	ANDERSON	7	6000
2	ANDREWS	5	0
3	ANGELINA	41	100000
4	ARANSAS	13	387000
5	ARCHER	9	8000
6	ARMSTRONG	15	0
7	ATASCOSA	3	0
8	AUSTIN	5	150000
9	BAILEY	7	1420000
10	BANDERA	11	0
11	BASTROP	20	1505000
12	BAYLOR	8	0
13	BEE	10	6150000
14	BELL	21	131000

```
table3 = sortrows(table3,'sum_TotalCost','descend')
```

 $table3 = 268 \times 3 table$

	CZ_Name	GroupCount	sum_TotalCost
1	HARRIS	64	1.0002e+10
2	GALVESTON	34	1.0000e+10
3	FORT BEND	31	8.0040e+09
4	MONTGOMERY	12	7.0000e+09
5	JEFFERSON	29	3.0000e+09
6	BRAZORIA	25	2.0013e+09
7	ORANGE	9	1.5000e+09
8	NUECES	32	1.0016e+09
9	WALKER	12	600033000
10	HARDIN	8	600002000
11	REFUGIO	6	520030000
12	SAN PATRI	11	506205000
13	SAN JACINTO	6	350010000
14	POLK	7	300040000

```
disp("The Three Counties are: 1."+string(table3.CZ_Name(1)))
The Three Counties are: 1.HARRIS
disp(" 2."+string(table3.CZ_Name(2)))
2.GALVESTON
disp("3."+string(table3.CZ_Name(3)))
3.FORT BEND
```

Three Counties with Highest Property Cost in State 2

```
table4 = groupsummary(stateTwo, "CZ_Name", "sum", "TotalCost")
```

 $table4 = 68 \times 3 table$

	CZ_Name	GroupCount	sum_TotalCost
1	ADJUNTAS	3	750760000
2	AGUADA	4	750000000
3	AGUADILLA	2	750005000
4	AGUAS BUE	2	750177000

	CZ_Name	GroupCount	sum_TotalCost
5	AIBONITO	1	750000000
6	ANASCO	1	750000000
7	ARECIBO	2	750250000
8	ARROYO	2	750000000
9	BARCELONETA	. 2	750250000
10	BARRANQUI	2	750250000
11	BAYAMON	4	750251000
12	CABO ROJO	1	750000000
13	CAGUAS	4	750350000
14	CAMUY	2	750250000
	•		

table4 = sortrows(table4,'sum_TotalCost','descend')

 $table4 = 68 \times 3 table$

	CZ_Name	GroupCount	sum_TotalCost
1	TOA BAJA	1	2.5000e+09
2	ADJUNTAS	3	750760000
3	CANOVANAS	2	750500000
4	CAGUAS	4	750350000
5	BAYAMON	4	750251000
6	ARECIBO	2	750250000
7	BARCELONETA	. 2	750250000
8	BARRANQUI	2	750250000
9	CAMUY	2	750250000
10	CAROLINA	9	750250000
11	CATANO	4	750250000
12	CEIBA	3	750250000
13	UTUADO	3	750200000
14	AGUAS BUE	2	750177000

:

```
disp("The Three Counties are: 1."+string(table4.CZ_Name(1)))
```

```
The Three Counties are: 1.TOA BAJA
```

```
disp(" 2."+string(table4.CZ_Name(2)))
```

2.ADJUNTAS

```
disp("3."+string(table4.CZ_Name(3)))
```

3.CANOVANAS

Conclusion and Recommendations:

From the above data ,at first we got to know about the most damaged two states . Then we determined most damaged three counties of each as well as three counties where maximum event_type (disasters) occurs .So from the above data, I recommend the two most affected states ,1>TEXAS and 2>PUERTO RICO . Besides ,we should give priorities of those counties which are mostly affected .

From State 1, We got to know that, "Harris" is both in maximum event_type and total_property_cost ,so we should give priority first .

From state 2, "Toa Baja" faced maximum damaged cost . So we should give prioritise it .

Again, we got an idea about maximum event_type from the table 1 and table 2, it will be helpful to predict about which county should we give priority in future. Because several clamities occur most in several season.

Thank You!!