Week 7 Report

Howard Jin

11/11/2023

Problem 1

Table 1: Comparison of Greeks for Call and Put Options using Closed Form and Finite Difference Methods

Greek	Call (Closed Form)	Put (Closed Form)	Call (Finite Difference)	Put (Finite Difference)
Delta	0.0830	-0.9165	0.0830	-0.9165
Gamma	0.0168	0.0168	0.0168	0.0168
Vega	6.9387	6.9387	6.9387	6.9387
Theta	-8.1265	-1.9410	-8.1263	-1.9408
Rho	1.1026	-13.7580	-0.0304	-1.2427
Carry Rho	1.1330	-12.5153	1.1330	-12.5153

Table 2: Values of Call and Put Options Using Binomial Tree

Condition	Call Option Value	Put Option Value
Without Dividend	0.3360	14.0370
With Dividend	0.2986	14.5566

Table 3: Greeks of Call and Put Options Using Binomial Tree

Greek	Call	Put
Delta	0.0726	-0.9383
Gamma	-0.0000	0.0000
Vega	6.3194	5.6755
Theta	-7.4679	-0.4490
Rho	-0.0244	-1.1609
Carry Rho	0.9627	-11.3111

Table 4: Sensitivity to Dividend Amount for Call and Put Options

Option Type	Call Sensitivity	Put Sensitivity
Dividend Sensitivity	-0.021	0.941

Problem 2

The functions fail to compile (compile time too long)

Problem 3

Table 5: Expected Annual Returns of Stocks

Stock	Annual Return
AAPL	0.1571
META	0.0179
UNH	0.2538
MA	0.2229
MSFT	0.1559
NVDA	0.2797
HD	0.1206
PFE	0.0769
AMZN	-0.0429
BRK-B	0.1299
PG	0.0815
XOM	0.5218
TSLA	-0.0333
JPM	0.0983
V	0.2411
DIS	-0.1554
GOOGL	-0.0171
JNJ	0.1242
BAC	-0.1123
CSCO	0.1478

The annual covariance matrix is in the jupyter notebook (too big to display)

Table 6: Super Efficient Portfolio Weights

Stock	\mathbf{Weight}	
AAPL	0.00	
META	0.00	
UNH	22.57	
MA	0.00	
MSFT	0.00	
NVDA	0.00	
HD	0.00	
PFE	0.00	
AMZN	0.00	
BRK-B	0.00	
PG	0.00	
XOM	57.44	
TSLA	0.00	
JPM	0.00	
V	12.93	
DIS	0.00	
GOOGL	0.00	
JNJ	7.05	
BAC	0.00	
CSCO	0.00	

The Sharpe Ratio of the super efficient portfolio is 1.47