SPb HSE, 1 курс ПМИ, осень 2024/25 Конспект лекций по алгоритмам

Собрано 2 сентября 2024 г. в 10:35

Содержание

1. Асимптотика
1.1. О курсе. Хорошие алгоритмы.
1.2. Асимптотика, \mathcal{O} -обозначния
1.3. Рекуррентности и Карацуба
1.4. Теоремы о рекуррентных соотношениях
1.5. Доказательства по индукции
1.6. Числа Фибоначчи
1.7. (*) \mathcal{O} -обозначения через пределы
1.8. (*) Замена сумм на интегралы
1.9. Примеры по теме асимптотики
1.10. Сравнение асимптотик

Лекция #1: Асимптотика

1-я пара, 2024/25

1.1. О курсе. Хорошие алгоритмы.

Что такое алгоритм, вы представляете. А что такое хороший алгоритм?

- 1. Алгоритм, который работает на всех тестах. Очень важное свойство. Нам не интересны решения, для которых есть тесты, на которых они не работают.
- 2. Алгоритм, который работает быстро. Что такое быстро? Время работы программы зависит от размера входных данных. Размер данных часто обозначают за n. Алгоритм, находящий минимум в массиве длины n делает $\approx 4n$ операций. Нам прежде всего важна зависимость от n (пропорционально n), и только во-вторых константа (≈ 4). На самом деле разные операции выполняются разное время, об этом в следующей главе.

Насколько быстро должны работать наши программы? Обычные процессоры для ноутов и телефонов имеют несколько ядер, каждое частотой \sim 2GHz. Параллельные алгоритмы мы изучать не будем, всё, что изучим, заточено под работу на одном ядре. \sim 2GHz это $2\,000\,000\,000$ элементарных операций в секунду. Если мы пишем на языке C++ (а мы будем), то это \approx 10 9 команд в секунду. Если, например, на рутноп, то реально мы успеем выполнить 10^6 , в \approx 1000 раз меньше команд в секунду. За эталон мы берём именно одну секунду — минута по человеческим ощущениям очень медленно, а сотую секунды человек не почувствует.

- 3. Алгоритм, который использует мало оперативной памяти. Вообще память более дорогой ресурс, чем время, об этом будет в следующей главе, в части про кеш.
- 4. Простые и понятные алгоритмы. Если алгоритм сложно понять, пересказать (выше порог вхождения), если он содержит много крайних случаев \Rightarrow его сложно корректно реализовать, в нём вероятны ошибки, которые однажды выстрелят.

• Асимптотика.

Ближайшие две главы мы будем говорить преимущественно про скорость работы. Рассмотрим простейший алгоритм, который перебирает все пары $i, j : i \leq j \leq n$.

```
1 int ans = 0;
for (int i = 1; i <= n; i++) // нам дали n

for (int j = 1; j <= i; j++)

ans++;
cout << ans << endl;
```

Мы можем посчитать точное число всех операций (сравнение, присваивание, сложение, ...) в зависимости от n: $1+3(1+2+3+\ldots+n)+1$ и получить $f(n)=\frac{3}{2}n(n+1)+2$.

f(n) — время работы программы в зависимости от n, а n — параметр задачи, зачастую «размер входных данных». Ниже мы будем предполагать, что $n \in \mathbb{N}$, f(n) > 0. Интересно, насколько быстро растёт время программы в зависимости от n (размера данных). Наша $f(n) \sim n^2$, мы будем говорить «асимптотически работает за n^2 » или «за n^2 с точностью до константы», это и есть асимптотическая часть времени работы, асимптотика времени работы.

Выше мы считали, что все операции работают одно и то же время, просто считали их количество. А потом ещё и забили на константу $\frac{3}{2}$ при n^2 . Дальше мы разберёмся с константами и с тем,

какие операции медленнее, какие быстрее. А сейчас сосредоточимся только на асимптотике.

1.2. Асимптотика, \mathcal{O} -обозначния

Рассмотрим функции $f, g: \mathbb{N} \to \mathbb{R}^{>0}$.

Def 1.2.1.
$$f = \Theta(g)$$
 $\exists N > 0, C_1 > 0, C_2 > 0 : \forall n \ge N, C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$

Def 1.2.2.
$$f = \mathcal{O}(g)$$
 $\exists N > 0, C > 0 : \forall n \ge N, f(n) \le C \cdot g(n)$

Def 1.2.3.
$$f = \Omega(g)$$
 $\exists N > 0, C > 0 : \forall n \ge N, f(n) \ge C \cdot g(n)$

Def 1.2.4.
$$f = o(g)$$
 $\forall C > 0 \ \exists N > 0 : \forall n \geqslant N, f(n) \leqslant C \cdot g(n)$

Def 1.2.5.
$$f = \omega(g)$$
 $\forall C > 0 \ \exists N > 0 : \forall n \geqslant N, f(n) \geqslant C \cdot g(n)$

Понимание Θ : «равны с точностью до константы», «асимптотически равны».

Понимание \mathcal{O} : «не больше с точностью до константы», «асимптотически не больше».

Понимание о: «асимптотически меньше», «для сколь угодно малой константы не больше».

Θ	0	Ω	0	ω
=	\leq	\geqslant	<	>

Замечание 1.2.6. $f = \Theta(g) \Leftrightarrow g = \Theta(f)$

Замечание 1.2.7.
$$f = \mathcal{O}(g), g = \mathcal{O}(f) \Leftrightarrow f = \Theta(g)$$

Замечание 1.2.8.
$$f = \Omega(g) \Leftrightarrow g = \mathcal{O}(f)$$

Замечание 1.2.9.
$$f = \omega(g) \Leftrightarrow g = o(f)$$

Замечание 1.2.10.
$$f = \mathcal{O}(g), g = \mathcal{O}(h) \Rightarrow f = \mathcal{O}(h)$$

Замечание 1.2.11. Обобщение:
$$\forall \beta \in \{\mathcal{O}, o, \Theta, \Omega, \omega\}$$
: $f = \beta(g), g = \beta(h) \Rightarrow \boxed{f = \beta(h)}$

Замечание 1.2.12.
$$\forall C>0 \quad C{\cdot}f=\Theta(f)$$

Докажем для примера Rem 1.2.6.

Доказательство.
$$C_1 \cdot g(n) \leqslant f(n) \leqslant C_2 \cdot g(n) \Rightarrow \frac{1}{C_2} f(n) \leqslant g(n) \leqslant \frac{1}{C_3} g(n) \leqslant f(n)$$

Упражнение 1.2.13.
$$f = \mathcal{O}(\Theta(\mathcal{O}(g))) \Rightarrow f = \mathcal{O}(g)$$

Упражнение 1.2.14.
$$f = \Theta(o(\Theta(\mathcal{O}(g)))) \Rightarrow f = o(g)$$

Упражнение 1.2.15.
$$f = \Omega(\omega(\Theta(g))) \Rightarrow f = \omega(g)$$

Упражнение 1.2.16. $f = \Omega(\Theta(\mathcal{O}(g))) \Rightarrow f$ может быть любой функцией

Lm 1.2.17.
$$g = o(f) \Rightarrow f \pm g = \Theta(f)$$

Доказательство.
$$g = o(f) \; \exists N \colon \forall n \geqslant N \; g(n) \leqslant \frac{1}{2} f(n) \Rightarrow \frac{1}{2} f(n) \leqslant f(n) \pm g(n) \leqslant \frac{3}{2} f(n)$$

Lm 1.2.18.
$$n^k = o(n^{k+1})$$

Доказательство.
$$\forall C \, \forall n \geqslant C \quad n^{k+1} \geqslant C \cdot n^k$$

$$\underline{\mathbf{Lm}}$$
 1.2.19. $P(x)$ – многочлен, тогда $P(x) = \Theta(x^{\mathtt{deg}P})$ при старшем коэффициенте > 0.

Доказательство. $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$. По леммам Rem 1.2.12, Lm 1.2.18 имеем, что все слагаемые кроме $a_k x^k$ являются $o(x^{\text{deg}P})$. Поэтому по лемме Lm 1.2.17 вся сумма является $\Theta(x^k)$.

1.3. Рекуррентности и Карацуба

• Алгоритм умножения чисел в столбик

Рассмотрим два многочлена $A(x) = 5 + 4x + 3x^2 + 2x^3 + x^4$ и $B(x) = 9 + 8x + 7x^2 + 6x^3$. Запишем массивы a[] = {5, 4, 3, 2, 1}, b[] = {9, 8, 7, 6}.

```
for (i = 0; i < an; i++) // an = 5
for (j = 0; j < bn; j++) // bn = 4
c[i + j] += a[i] * b[j];</pre>
```

Мы получили в точности коэффициенты многочлена C(x) = A(x)B(x).

Теперь рассмотрим два числа A = 12345 и B = 6789, запишем те же массивы и сделаем:

```
1 // Перемножаем числа без переносов, как многочлены
2 for (i = 0; i < an; i++) // an = 5
3 for (j = 0; j < bn; j++) // bn = 4
4 c[i + j] += a[i] * b[j];
5 // Делаем переносы, массив c = [45, 76, 94, 100, 70, 40, 19, 6, 0]
6 for (i = 0; i < an + bn; i++)
7 if (c[i] >= 10)
8 c[i + 1] += c[i] / 10, c[i] %= 10;
9 // Массив c = [5, 0, 2, 0, 1, 8, 3, 8, 0], ответ = 83810205
```

Данное умножение работает за $\Theta(nm)$, или $\Theta(n^2)$ в случае n=m.

Следствие 1.3.1. Чтобы умножать длинные числа достаточно уметь умножать многочлены.

Многочлены мы храним, как массив коэффициентов. При программировании умножения, нам важно знать не степень многочлена d, а длину этого массива n = d + 1.

• Алгоритм Карацубы

Чтобы перемножить два многочлена (или два длинных целых числа) A(x) и B(x) из n коэффициентов каждый, разделим их на части по $k = \frac{n}{2}$ коэффициентов – A_1, A_2, B_1, B_2 . Заметим, что $A \cdot B = (A_1 + x^k A_2)(B_1 + x^k B_2) = A_1 B_1 + x^k (A_1 B_2 + A_2 B_1) + x^{2k} A_2 B_2$. Если написать рекурсивную функцию умножения, то получим время работы:

$$T_1(n) = 4T_1(\frac{n}{2}) + \Theta(n)$$

Из последующей теоремы мы сделаем вывод, что $T_1(n) = \Theta(n^2)$. Алгоритм можно улучшить, заметив, что $A_1B_2 + A_2B_1 = (A_1 + A_2)(B_1 + B_2) - A_1B_1 - A_2B_2$, где вычитаемые величины уже посчитаны. Итого три умножения вместо четырёх:

$$T_2(n) = 3T_2(\frac{n}{2}) + \Theta(n)$$

Из последующей теоремы мы сделаем вывод, что $T_2(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.585...})$. Данный алгоритм применим и для умножения многочленов, и для умножения чисел.

Псевдокод алгоритма Карацубы для умножения многочленов:

```
Mul(n, a, b): // n = 2^k, c(w) = a(w)*b(w)
1
2
       if n == 1: return {a[0] * b[0]}
3
       a --> a1, a2
4
       b \longrightarrow b1, b2
5
       x = Mul(n / 2, a1, b1)
6
       y = Mul(n / 2, a2, b2)
       z = Mul(n / 2, a1 + a2, b1 + b2)
8
       // Умножение на \mathbf{w}^{i} - сдвиг массива на і вправо
       return x + y * w^n + (z - x - y) * w^{n/2};
9
```

Чтобы умножить числа, сперва умножим их как многочлены, затем сделаем переносы.

1.4. Теоремы о рекуррентных соотношениях

Теорема 1.4.1. *Мастер Теорема* (теорема о простом рекуррентном соотношении)

Пусть $T(n) = aT(\frac{n}{b}) + f(n)$, где $f(n) = n^c$. При этом $a > 0, b > 1, c \ge 0$. Определим глубину рекурсии $k = \log_b n$. Тогда верно одно из трёх:

$$\begin{cases} T(n) = \Theta(a^k) = \Theta(n^{\log_b a}) & a > b^c \\ T(n) = \Theta(f(n)) = \Theta(n^c) & a < b^c \\ T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \log n) & a = b^c \end{cases}$$

Доказательство. Раскроем рекуррентность:

$$T(n) = f(n) + aT(\frac{n}{b}) = f(n) + af(\frac{n}{b}) + a^2f(\frac{n}{b^2}) + \dots = n^c + a(\frac{n}{b})^c + a^2(\frac{n}{b^2})^c + \dots$$

Тогда $T(n) = f(n)(1 + \frac{a}{b^c} + \left(\frac{a}{b^c}\right)^2 + \dots + \left(\frac{a}{b^c}\right)^k)$. При этом в сумме k+1 слагаемых. Обозначим $q = \frac{a}{b^c}$ и оценим сумму $S(q) = 1 + q + \dots + q^k$. Если q = 1, то $S(q) = k+1 = \log_b n + 1 = \Theta(\log_b n) \Rightarrow T(n) = \Theta(f(n)\log n)$. Если q < 1, то $S(q) = \frac{1-q^{k+1}}{1-q} = \Theta(1) \Rightarrow T(n) = \Theta(f(n))$.

Если
$$q = 1$$
, то $S(q) = k + 1 = \log_b n + 1 = \Theta(\log_b n) \Rightarrow T(n) = \Theta(f(n) \log n)$.

Если
$$q < 1$$
, то $S(q) = \frac{1-q^{k+1}}{1-q} = \Theta(1) \Rightarrow T(n) = \Theta(f(n))$.
Если $q > 1$, то $S(q) = q^k + \frac{q^k-1}{q-1} = \Theta(q^k) \Rightarrow T(n) = \Theta(a^k(\frac{n}{b^k})^c) = \Theta(a^k)$.

Теорема 1.4.2. Обобщение Мастер Теоремы

Mастер Теорема верна и для $f(n) = n^c \log^d n$

 $T(n) = aT(\frac{n}{b}) + n^c \log^d n$. При $a > 0, b > 1, c \ge 0, d \ge 0$.

$$\begin{cases} T(n) = \Theta(a^k) = \Theta(n^{\log_b a}) & a > b^c \\ T(n) = \Theta(f(n)) = \Theta(n^c \log^d n) & a < b^c \\ T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \log^{d+1} n) & a = b^c \end{cases}$$

Без доказательства.

Теорема 1.4.3. Об экспоненциальном рекуррентном соотношении

Пусть $T(n) = \sum b_i T(n - a_i)$. При этом $a_i > 0, b_i > 0, \sum b_i > 1$.

Тогда $T(n) = \Theta(\alpha^n)$, при этом $\alpha > 1$ и является корнем уравнения $1 = \sum b_i \alpha^{-a_i}$, его можно найти бинарным поиском.

Доказательство. Предположим, что $T(n) = \alpha^n$, тогда $\alpha^n = \sum b_i \alpha^{n-a_i} \Leftrightarrow 1 = \sum b_i \alpha^{-a_i} = f(\alpha)$. Теперь нам нужно решить уравнение $f(\alpha) = 1$ для $\alpha \in [1, +\infty)$.

Если $\alpha=1$, то $f(\alpha)=\sum b_i>1$, если $\alpha=+\infty$, то $f(\alpha)=0<1$. Кроме того $f(\alpha)\searrow [1,+\infty)$. Получаем, что на $[1, +\infty)$ есть единственный корень уравнения $1 = f(\alpha)$ и его множно найти бинарным поиском.

Мы показали, откуда возникает уравнение $1 = \sum b_i \alpha^{-a_i}$. Доказали, что у него $\exists!$ корень α . Теперь докажем по индукции, что $T(n) = \mathcal{O}(\alpha^n)$ (оценку сверху) и $T(n) = \Omega(\alpha^n)$ (оценку снизу). Доказательства идентичны, покажем $T(n) = \mathcal{O}(\alpha^n)$. База индукции:

$$\exists C : \forall n \in B = [1 - \max_{i} a_i, 1] \ T(n) \leqslant C\alpha^n$$

Переход индукции:

$$T(n) = \sum b_i T(n - a_i) \overset{\text{по индукции}}{\leqslant} C \sum b_i \alpha^{n - a_i} \overset{\text{(*)}}{=} C \alpha^n$$

(*) Верно, так как α – корень уравнения.

1.5. Доказательства по индукции

Lm 1.5.1. Доказательство по индукции

Есть простой метод решения рекуррентных соотношений: угадать ответ, доказать его по индукции. Рассмотрим на примере $T(n) = \max_{x=1..n-1} \left(T(x) + T(n-x) + x(n-x) \right)$.

Докажем, что $T(n) = \mathcal{O}(n^2)$, для этого достаточно доказать $T(n) \leqslant n^2$:

База: $T(1) = 1 \le 1^2$.

Переход:
$$T(n) \le \max_{x=1..n-1} (x^2 + (n-x)^2 + x(n-x)) \le \max_{x=1..n-1} (x^2 + (n-x)^2 + 2x(n-x)) = n^2$$

• Примеры по теме рекуррентные соотношения

- 1. T(n) = T(n-1) + T(n-1) + T(n-2). Угадаем ответ 2^n , проверим по индукции: $2^n = 2^{n-1} + 2^{n-1} + 2^{n-2}$.
- 2. $T(n) = T(n-3) + T(n-3) \Rightarrow T(n) = 2T(n-3) = 4T(n-6) = \cdots = 2^{n/3}$
- 3. T(n) = T(n-1) + T(n-3). Применяем Thm 1.4.3, получаем $1 = \alpha^{-1} + \alpha^{-3}$, находим α бинпоиском, получаем $\alpha = 1.4655...$

1.6. Числа Фибоначчи

Def 1.6.1. $f_1 = f_0 = 1, f_i = f_{i-1} + f_{i-2}$. $f_n - n$ -е число Фибоначчи.

• Оценки снизу и сверху

 $f_n = f_{n-1} + f_{n-2}$, рассмотрим $g_n = g_{n-1} + g_{n-1}$, $2^n = g_n \geqslant f_n$. $f_n = f_{n-1} + f_{n-2}$, рассмотрим $g_n = g_{n-2} + g_{n-2}$, $2^{n/2} = g_n \leqslant f_n$. Воспользуемся Thm 1.4.3, получим $1 = \alpha^{-1} + \alpha^{-2} \Leftrightarrow \alpha^2 - \alpha - 1 = 0$, получаем $\alpha = \frac{\sqrt{5}+1}{2} \approx 1.618$. $f_n = \Theta(\alpha^n)$.

1.7. (*) *О*-обозначения через пределы

Def 1.7.1. f = o(g) Определение через предел: $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Def 1.7.2. $f = \mathcal{O}(g)$ Определение через предел: $\overline{\lim_{n \to +\infty}} \frac{f(n)}{g(n)} < \infty$

Здесь необходимо пояснение: $\overline{\lim_{n\to +\infty}} f(n) = \lim_{n\to +\infty} (\sup_{x\in [n..+\infty]} f(x))$, где \sup – верхняя грань.

$\underline{\mathbf{Lm}}$ 1.7.3. Определения o эквивалентны

Доказательство. Вспомним, что речь о положительных функциях f и g. Распишем предел по определению: $\forall C>0 \quad \exists N \quad \forall n\geqslant N \quad \frac{f(n)}{g(n)}\leqslant C \Leftrightarrow f(n)\leqslant Cg(n)$.

1.8. (*) Замена сумм на интегралы

Def 1.8.1. Определённый интеграл $\int_a^b f(x)dx$ положительной функции f(x) – площадь под графиком f на отрезке [a..b].

$$\underline{\operatorname{Lm}}$$
 1.8.2. $\forall f(x) \nearrow [a..a+1] \Rightarrow f(a) \leqslant \int_{a}^{a+1} f(x) dx \leqslant f(a+1)$

Lm 1.8.3.
$$\forall f(x) \nearrow [a..b+1] \Rightarrow \sum_{i=a}^{b} f(i) \leqslant \int_{a}^{b+1} f(x) dx$$

Доказательство. Сложили неравенства из Lm 1.8.2

Lm 1.8.4.
$$\forall f(x) \nearrow [a..b], f > 0 \Rightarrow \int_a^b f(x) dx \leqslant \sum_{i=a}^b f(i)$$

Доказательство. Сложили неравенства из Lm 1.8.2, выкинули [a-1,a] из интеграла.

Теорема 1.8.5. Замена суммы на интеграл #1

$$\overline{\forall f(x) \nearrow [1..\infty)}, f > 0, S(n) = \sum_{i=1}^{n} f(i), I_1(n) = \int_{1}^{n} I_2(n) = \int_{1}^{n+1} I_1(n) = \Theta(I_2(n)) \Rightarrow S(n) = \Theta(I_1(n))$$

Доказательство. Из лемм Lm 1.8.3 и Lm 1.8.4 имеем $I_1(n) \leqslant S(n) \leqslant I_2(n)$.

$$C_1I_1(n) \leqslant I_2(n) \leqslant C_2I_1(n) \Rightarrow I_1(n) \leqslant S(n) \leqslant I_2(n) \leqslant C_2I_1(n)$$

Теорема 1.8.6. Замена суммы на интеграл #2

 $\forall f(x) \nearrow [a..b], f > 0$ $\int_{-b}^{b} f(x)dx \leqslant \sum_{i=1}^{b} f(i) \leqslant f(b) + \int_{-b}^{b} f(x)dx$

 ${\it Доказательство}.$ Первое неравенство – лемма ${\it Lin}^a$ 1.8.3. Второе – ${\it Lm}$ 1.8.4, применённая к ${\it b-1}$ ${\it \Sigma}$.

Следствие 1.8.7. Для убывающих функций два последних факта тоже верны. Во втором ошибкой будет не f(b), а f(a), которое теперь больше.

• Как считать интегралы?

Формула Ньютона-Лейбница: $\int\limits_a^b f'(x)dx=f(b)-f(a)$

Пример: $\ln'(n) = \frac{1}{n} \Rightarrow \int_{1}^{n} \frac{1}{x} dx = \ln n - \ln 1 = \ln n$

1.9. Примеры по теме асимптотики

• Вложенные циклы for

```
#define forn(i, n) for (int i = 0; i < n; i++)
int counter = 0, n = 100;
forn(i, n)
forn(j, i)
forn(k, j)
forn(l, k)
forn(m, l)
counter++;
cout << counter << endl;</pre>
```

Чему равен counter? Во-первых, есть точный ответ: $\binom{n}{5} \approx \frac{n^5}{5!}$. Во-вторых, мы можем сходу посчитать число циклов и оценить ответ как $\mathcal{O}(n^5)$, правда константа $\frac{1}{120}$ важна, оценка через \mathcal{O} не даёт полное представление о времени работы.

• За сколько вычисляется *n*-е число Фибоначчи?

```
1 f[0] = f[1] = 1;
2 for (int i = 2; i < n; i++)
3 f[i] = f[i - 1] + f[i - 2];</pre>
```

Казалось бы за $\mathcal{O}(n)$. Но это в предположении, что «+» выполняется за $\mathcal{O}(1)$. На самом деле мы знаем, что $\log f_n = \Theta(n)$, т.е. складывать нужно числа длины $n \Rightarrow$ «+» выполняется за $\Theta(i)$, а n-е число Фибоначчи считается за $\Theta(n^2)$.

ullet Задача из теста про $a^2 + b^2 = N$

Время работы $\Theta(N^{1/2})$, так как в сумме b уменьшится лишь $N^{1/2}$ раз. Здесь мы первый раз использовали так называемый «метод двух указателей».

• Число делителей числа

```
1 vector < int > divisors [n + 1]; // все делители числа
2 for (int a = 1; a <= n; a++)
3 for (int b = a; b <= n; b += a)
4 divisors [b]. push_back(a);
```

За сколько работает программа?

$$\sum_{a=1}^{n} \left\lceil \frac{n}{a} \right\rceil = \mathcal{O}(n) + \sum_{a=1}^{n} \frac{n}{a} = \mathcal{O}(n) + n \sum_{a=1}^{n} \frac{1}{a} \stackrel{Thm}{=} {}^{1.8.5} \mathcal{O}(n) + n \cdot \Theta(\int_{1}^{n} \frac{1}{x} dx) = \Theta(n \log n)$$

• Сумма гармонического ряда

Докажем более простым способом, что $\sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$

$$1 + \lfloor \log_2 n \rfloor \geqslant \frac{1}{1} + \underbrace{\frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}}_{1/2} + \underbrace{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots}_{k=1} \geqslant \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots \geqslant 1 + \frac{1}{2} \lfloor \log_2 n \rfloor \Rightarrow \sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

1.10. Сравнение асимптотик

Def 1.10.1. Линейная сложность $\mathcal{O}(n)$

Def 1.10.2. Kвадратичная сложность

Def 1.10.3. Полиномиальная сложеность $\exists k > 0 : \mathcal{O}(n^k)$

Def 1.10.4. Π *onunorapu* ϕ *M* $\exists k > 0 : \mathcal{O}(\log^k n)$

Def 1.10.5. Экспоненциальная сложность $\exists c > 0 : \mathcal{O}(2^{cn})$

Теорема 1.10.6. $\forall x, y > 0, z > 1 \ \exists N \ \forall n > N \colon \ \log^x n < n^y < z^n$

Доказательство. Сперва докажем первую часть неравенства через вторую.

Пусть $\log n = k$, тогда $\log^x n < n^y \Leftrightarrow k^x < 2^{ky} = (2^y)^k = z^k \Leftarrow n^y < z^n$

Докажем вторую часть исходного неравенства $n^y < z^n \Leftrightarrow n < 2^{\frac{1}{y}n\log z}$

Пусть $n' = \frac{1}{y} n \log z$, обозначим $C = 1/(\frac{1}{y} \log z)$, пусть $C \leqslant n'$ (возьмём достаточно большое n), тогда $n^y < z^n \Leftrightarrow n < 2^{\frac{1}{y} n \log z} \Leftrightarrow C \cdot n' < 2^{n'} \Leftarrow (n')^2 < 2^{n'}$

Осталось доказать $n^2 < 2^n$. Докажем по индукции.

База: для любого значения из интервала [10..20) верно,

так как $n^2 \in [100..400) < 2^n \in [1024..1048576).$

Если n увеличить в два раза, то $n^2 \to 4 \cdot n^2$, а $2^n \to 2^{2n} = 2^n \cdot 2^n \geqslant 4 \cdot 2^n$ при $n \geqslant 2$.

Значит $\forall n \geqslant 2$ если для n верно, то и для 2n верно.

Переход: $[10..20) \rightarrow [20..40) \rightarrow [40..80) \rightarrow \dots$

Cnedembue 1.10.7. $\forall x, y > 0, z > 1$: $\log^x n = \mathcal{O}(n^y), n^y = \mathcal{O}(z^n)$

 $\ensuremath{\mathcal{A}\!\mathit{okaзameльcmso}}$. Возьмём константу 1.

Следствие 1.10.8. $\forall x, y > 0, z > 1$: $\log^x n = o(n^y), n^y = o(z^n)$

Доказательство. Достаточно перейти к чуть меньшим y, z и воспользоваться теоремой.

 $\exists N \, \forall n \geqslant N \, \log^x n < n^{y-\varepsilon} = \frac{1}{n^{\varepsilon}} n^y, \, \frac{1}{n^{\varepsilon}} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \log^x = o(n^y).$

 $\exists N \,\forall n \geqslant N \, n^y < (z - \varepsilon)^n = \frac{1}{(z/(z-\varepsilon))^n} z^n, \frac{1}{(z/(z-\varepsilon))^n} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow n^y = o(z^n).$

• Посмотрим как ведут себя функции на графике

Заметим, что $2^{n/2}, n^2$ и $\log^2 n, \sqrt{n}$ на бесконечности ведут себя иначе:

