1.

Step 1: Extension to the Boundary

Since D is a Jordan domain, it is bounded and simply connected with a boundary that is a simple closed curve. By the Riemann mapping theorem, there exists a conformal map $\phi: D \to \mathbb{D}$, where \mathbb{D} is the unit disk. By Carathéodory's theorem, since D is a Jordan domain, ϕ extends to a homeomorphism $\overline{\phi}: \overline{D} \to \overline{\mathbb{D}}$, and its inverse $\phi^{-1}: \mathbb{D} \to D$ extends to a homeomorphism $\overline{\phi^{-1}}: \overline{\mathbb{D}} \to \overline{D}$.

Let $f: D \to D$ be a conformal automorphism. Consider the composition:

$$g = \phi \circ f \circ \phi^{-1}.$$

Since f and ϕ are biholomorphic, $g: \mathbb{D} \to \mathbb{D}$ is a conformal automorphism of the unit disk. The conformal automorphisms of \mathbb{D} are Möbius transformations of the form:

$$g(z) = e^{i\theta} \frac{z - a}{1 - \overline{a}z}, \quad |a| < 1, \quad \theta \in \mathbb{R}.$$

Such maps extend continuously to $\overline{\mathbb{D}}$ and are homeomorphisms of $\overline{\mathbb{D}}$ to itself.

Now express f in terms of g:

$$f = \phi^{-1} \circ g \circ \phi.$$

Since $\overline{\phi}: \overline{D} \to \overline{\mathbb{D}}$, $\overline{\phi^{-1}}: \overline{\mathbb{D}} \to \overline{D}$, and $g: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ are all continuous, their composition is continuous. Thus, $f: \overline{D} \to \overline{D}$ is continuous, and $f|_D$ is holomorphic. Therefore, f extends continuously to ∂D .

Step 2: Uniquely Determined by Images of Three Boundary Points

Let $a, b, c \in \partial D$ be three distinct boundary points. Suppose f_1 and f_2 are conformal automorphisms of D such that:

$$f_1(a) = f_2(a), \quad f_1(b) = f_2(b), \quad f_1(c) = f_2(c).$$

We need to show that $f_1 = f_2$.

Fix a conformal map $\phi:D\to\mathbb{D}$ extending to a homeomorphism $\bar{\phi}:\overline{D}\to\overline{\mathbb{D}}$ as before. Define:

$$\alpha = \bar{\phi}(a), \quad \beta = \bar{\phi}(b), \quad \gamma = \bar{\phi}(c).$$

Since $\bar{\phi}$ is a homeomorphism, $\alpha, \beta, \gamma \in \partial \mathbb{D}$ are distinct.

For each i = 1, 2, define:

$$g_i = \phi \circ f_i \circ \phi^{-1}$$
.

Then $g_i : \mathbb{D} \to \mathbb{D}$ is a conformal automorphism extending to $\overline{\mathbb{D}}$. Now compute $g_i(\alpha)$:

$$g_i(\alpha) = \phi(f_i(\phi^{-1}(\alpha))) = \phi(f_i(a)),$$

since $\phi^{-1}(\alpha) = a$. Similarly:

$$g_i(\beta) = \phi(f_i(b)), \quad g_i(\gamma) = \phi(f_i(c)).$$

Given that $f_1(a) = f_2(a)$, $f_1(b) = f_2(b)$, and $f_1(c) = f_2(c)$, it follows that:

$$g_1(\alpha) = g_2(\alpha), \quad g_1(\beta) = g_2(\beta), \quad g_1(\gamma) = g_2(\gamma).$$

Thus, g_1 and g_2 agree on the three distinct boundary points $\alpha, \beta, \gamma \in \partial \mathbb{D}$.

Conformal automorphisms of \mathbb{D} are Möbius transformations and are uniquely determined by their values at three distinct boundary points because:

· any linear-fractional mapping Lizi= az+b is uniquely determined by three points

· proof: Recall Problem 4 in HWI, the cross-ratio of four points $\frac{22-23}{22-24}$; $\frac{21-33}{21-24}$ is invariant under linear-

fractional mapping.

If $w_i = L(z_i)$ for i=1,2,3 bet $w=L(z_i)$,

bet $F(z_i) = \frac{z_2-z_3}{z_2-z_3} : \frac{z_1-z_3}{z_1-z_3}$, $G(w) = \frac{w_2-w_3}{w_2-w} : \frac{w_1-w_3}{w_1-w}$ Then $F(z_i) = G(w_i)$, then we can solve a, b, c, d (ad-bc=1) uniquely from $F(z_i) = G(w_i)$.

2. Solution: Since f(z)= z3. e=, hence 7=0 is an escential singularity for the Taylor expansion near 0 is: $f(z) = z^3 (1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^2} + \dots)$ = 23+2+ 3+... By the Big Picard Theorem, for any small £>0, f(B*(0)) = [| E where E= \$\phi\$ or 2a3 or 2a,6]. Hence: f(C/103) C TIE. Since e=+0 for any 2+0, hence: f(z)=0 iff z=0. Hence: $0 \notin f(C(703))$. Hence E = \$. For f(z)= z3e=, then: f(z)=(z)3 e= $= \left(\underline{5}\right) \cdot \left(\underline{6}_{\frac{5}{4}}\right) = \left(\underline{5}_{\frac{5}{4}} \cdot \underline{6}_{\frac{5}{4}}\right) = \underline{1}_{(5)}.$ Hence: if z ∉ f(C \ 403), then z ∉ f(C \ 303). Hence there doesn't exist Zto, st: Zf f(C/103) for E has at most 2 elements. Hence E=303 Hence: f(C/303)= C/103. 個.

```
3. fiz= / ( 1+ hz=1)
1) If we choose the branch of 1271 such that \sqrt{1} = 1, let w = 1 + \sqrt{2} + 1
   choose the branch of low such that |n|=0
  The branch points of 1241 are I'z and oo,
  branch points of Inw are o and oo, but It JEZH +0.
   So branch points of In (1+ NZ+1): ±2, 00.
  At 2, /n (1+ \23+1) = /n (1+ \2-i \2+2), Z= 2 is a branch
  point of Jz-z with order 2, so z=z is a branch point of
  fiz) with order 2, similarly, Z=-z is also a branch point of
  fiz) with order 2. Iz are algebraic branch points of fiz).
  For 00, 20 is a logarithmic branch point of Inw, so also
  is a logarithmic branch point of f(z).
  So the domain of fize: a simply connected domain in C
  without ti, ∞, such as (-∞,-1) i U(1,+∞) i
 Prisenx Series: (notice that Vzi = Iti)
At 2=2:
   NZ41 = √Z-2 √(Z-1)+22 , Let t=√Z-2, then √Z41= t√+422
    1+42i= 12i+ + 10(+2) . let w= 1241
    ln(1+w) = w - \frac{1}{2}w^2 + \frac{1}{3}w^3 + o(w^3)
            = (1+2) (3-2) (3-2) + -5+52 (3-2) (3-2) (3-2)
```

Similarly, at ==-2, J=2= 1-2

$$\int (3) = (|-i|)(2+i)^{1/2} + i(3+i) + \frac{-5-5i}{12}(3+i)^{3/2} + o((3+i)^{3/2})$$

2) If we choose the branch of $\sqrt{2}$ 41 such that $\sqrt{1} = -1$, let $w = 1 + \sqrt{2}$ 41 choose the branch of $\ln w$ such that $\ln 1 = 0$

The branch points of 12241 are 12 and 00,

branch points of $\ln \omega$ are 0 and ∞ , the when $\omega = 0$, $\omega = 0$. So branch points of $\ln (1+\sqrt{z^2+1})$: $\pm z$, ∞ , 0.

Also, similarly, $Z = \pm i z$ one bromch points of fiz) with order 2. $Z = \infty$ is a logarithmic branch point of fiz). w = 0 is a logarithmic branch point of $\ln w$, so also a logarithmic branch point of f(Z).

So the domain of f(z): a simply connected domain in C without $\pm i$, ∞ , o, such as $C \setminus (-\infty, -1)i$ $U(1, +\infty)i$ $U(-\infty, 0)$ Puiseux Series: (notice that $\sqrt{2i} = -1-i$)

At 2=2:

 $\sqrt{z^{2}+1} = \sqrt{z^{2}-2} \sqrt{(z^{2}-2)+22}$, Let $t = \sqrt{z^{2}-2}$, then $\sqrt{z^{2}+1} = t \sqrt{t^{2}+22}$ $\sqrt{t^{2}+22} = \sqrt{2} + \frac{t^{2}}{2\sqrt{2}} + o(t^{2})$. Let $w = \sqrt{z^{2}+1}$

 $l_n (1+w) = w - \frac{1}{2}w^2 + \frac{1}{3}w^3 + o(w^3)$

Similarly at ==-2, J===-1+2

$$\int (3) = (1+2)(2+2)^{\frac{1}{2}} + 2(3+2) + \frac{5+52}{12}(3+2)^{\frac{3}{2}} + o((3+2)^{\frac{3}{2}})$$

