Mechanical Processing in Internally Coupled Ears

Anupam Prasad Vedurmudi

TMP Thesis Defence July 5, 2013

Auditory Systems

Independent Ears

Eustachian tubes typically very narrow.

Effectively independent eardrum vibrations.

Coupled Ears

Eardrums connected through wide eustachian tubes and a large mouth cavity.

Eardrums vibrations influence eachother.

Evaluation

The Model

Introduction

Conclusion

Mouth Cavity

Mouth Cavity

The Model

•0000

$$V_{\rm cyl} = \pi a_{\rm tymp}^2 L$$

- $ightharpoonup V_{
 m cyl}$ based on anatomical data.
- $ightharpoonup a_{\rm cyl} = \sqrt{V_{\rm cyl}/\pi L}$

Acoustic Head Model

- ▶ I Ipsilateral C Contralateral
- Sound source far enough away from the animal ("Infinity").
- ▶ Phase difference between sound at both ears $\Delta = 1.5kL\sin\theta$.
- No appreciable amplitude difference, $|p_0| = |p_L|$.

Cavity Pressure

3D Wave Equation

$$\frac{1}{c^2}\partial_t^2 p(x, r, \phi, t) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p(x, r, \phi, t)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial p(x, r, \phi, t)}{\partial \phi^2} + \frac{\partial p(x, r, \phi, t)}{\partial x^2} \tag{1}$$

No-penetration at all solid boundaries

$$-j\rho\omega\mathbf{v} = \nabla p(x, r, \phi; t) = 0 \tag{2}$$

Mouth Cavity

Eardrum

Sketch of a Tokay eardrum as seen from the outside^a.

COL - approximate position opposite the extracolumella insertion.

The ICE eardrum.

Extracolumella (dark) - rigid, stationary.

Tympanum - assumed linear elastic.

Rigidly clamped at the boundaries ($r = a_{\rm tymp}$ and $\phi = \beta, \ 2\pi - \beta$)

^aG. A. Manley, "The middle ear of the tokay gecko," *Journal of Comparative Physiology*, vol. 81, no. 3, pp. 239–250, 1972

Mouth Cavity

Membrane Vibrations

The Model

00000

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_M^2 \nabla^2 u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
(3)

Thank You

