レポート課題(4回目)

「Rで学ぶデータサイエンス」12.3節の問題(p135)

Rに組込まれているFisherとAndersonによるアヤメの分類データセットirisを用いて深層学習により、以下のことを行いなさいなお、

- ・Rのライブラリー: h2oを使用する(他のパッケージの使用も可) (pythonの場合には適当な深層学習ライブラリを使用すること)
- Irisのデータの80%を学習データに、20%を実験データとする (交差検証でも可)
- ・評価尺度: 実験データで正しくSpeciesを判定できた割合(判別精度)

課題1: 学習データについて、Speciesを目的変数,他の4変数を説明変数として判別関数を決定しなさい(モデルの出力)

課題2: 判別関数を実験データの判別に適用しなさい**((平均)判別** 精度)

12.3 ♦ 問題

Rに組み込まれている Fisher と Anderson によるアヤメの分類データセット iris を用いる. 同じ問題を, すでに他の手法で判別している. ここでは, 深層学習を用いて以下のことを行いなさい.

>	data(iris)					
>	head(iris)					
	Sepal.Length	sepal.Width	Petal.Length	Petal.Width	Species .	
1	5.1	3.5	1.4	0.2	setosa	
2	4.9	3.0	1.4	0.2	setosa	
3	4.7	3.2	1.3	0.2	setosa	
4	4.6	3.1	1.5	0.2	setosa	
5			1.4	0.2	setosa	
6			1.7	0.4	setosa	
5	5.0 5.4	3.6 3.9				

- ① 学習データについて、Species を目的変数、他の 4 変数を説明変数として判別関数を決定しなさい。
- ② 判別関数を実験データの判別に適用しなさい.

レポート提出方法

- Manaba+Rのレポート機能を用いてレポートを提出する
- ・レポートの先頭に氏名と学生証番号を記入すること 形式は自由
- レポートのファイル形式はpdf(pdf以外は減点)
- ・レポートの締切日時 15回目の講義日前日(1/17)の17:00
- レポートに記述すべき項目
 - ・ 課題1と課題2 実行結果のキャプチャー画面とその説明文他
 - R(Python等も可)のソースプログラム
 - 更なる分析結果(詳細な評価.他の手法との比較.他のデータへの適用等)
 - 考察
 - 感想