# Optimising mesh features in point could reconstruction

Ugo PELISSIER

April 4, 2023

# 1 Problem description

For both the surface mesh (2D) and the volume mesh (3D), build an interactive visualisation software that will:

- Allow for the boundary surface visualisation by default
- Provide a way to introspect its interior in terms of 3D cells
- Compute and visualise various criteria that have driven the reconstruction, in each case ((2) and (3))

Is there a way to have a consistent meshing for both the boundary surface and the inner domain?

### 2 Mesh features

#### 2.1 Data creation with Gmsh

At first, the generation of data with the CGAL software was not successful. It was therefore decided to generate a test case using the open source mesh software Gmsh.

We generated a geometrical shape from the union of two basic geometrical shapes: a cube and a sphere.

We generated a surface mesh and a volume mesh. The final mesh was saved in .vtk format to be manipulated later.

```
1 SetFactory("OpenCASCADE");
2 R = DefineNumber[ 1.4 , Min 0.1, Max 2, Step 0.01, Name "Parameters/Box dimension"];
3 Rt = DefineNumber[ R*1.25, Min 0.1, Max 2, Step 0.01, Name "Parameters/Sphere radius"];
4
5 Box(1) = {0,0,0, 1,1,1};
6 Sphere(2) = {1,0.5,0.5,0.5};
7 BooleanUnion(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; };
```





Figure 1: 2D and 3D mesh obtained with Gmsh

# 2.2 Visualising the boundary surface

We then tried to visualise the boundary surface using VTK. First, we simply visualised the 3D mesh of the object again. using the *vtkExtractEdges* filter (fig. 2a).

Then we tried to visualise the surface of the object as well as the mesh at this surface. For that, we used the vtkDataSetSurfaceFilter by using a different color for the surface and the surface mesh (fig. 2b).

Finally, we made a cut in a longitudinal plane to observe the projection of the 3D mesh on this surface. We used the *vtkCutter* filter to do this work (fig. 2c).



Figure 2: Visualising the boundary surface

## 2.3 Dynamic clipping

Finally, we tried to implement a mobile cutting plane with which the user can interact. We used the vtkImplicit-PlaneWidget2 filter. This required the implementation of a callback function to handle the interaction with the user.

The interaction with the user does not work as expected, and more importantly the filter does not perform a cut even when positioned on the object (fig. 3).



Figure 3: Dynamic clipping