ACH 2025 – Laboratório de Banco de Dados José de J. Pérez-Alcázar

Prova 2 – Turma 04

- 1) O Clube Globetrotters é organizado em capítulos. O presidente de um capítulo nunca pode servir como o presidente de qualquer outro capítulo, e cada capítulo dá ao seu presidente algum salário. Capítulos continuam se movendo para novos locais e um novo presidente é eleito quando (e somente quando) um capítulo se move. Esses dados são armazenados em uma relação G(C, S, L, P), onde os atributos são capítulos (C), salários (S), localizações (L) e presidentes (P). A consulta a seguir é feita com frequência e você deve ser capaz de respondê-la eficientemente: "Quem era o presidente do capútlo X quando estava no local Y?". Dadas as seguintes dependências funcionais: $PC \rightarrow S$; $CL \rightarrow P$; e $P \rightarrow C$ (data a primeira e terceira dependência, podemos deduzir que $P \rightarrow S$) 30%
 - a. Defina quais são as chaves candidatas para a relação G?
- b. Em qual forma normal está a relação G? Crie um esquema de banco de dados normalizado para o clube. Justifique as suas decisões.
 - c. Escreva a consulta descrita acima em SQL.
- d. Quais índices (supondo que pode definir índices de hash e agrupados) e de que tipo você criaria para melhorar a sua consulta? Justifique
 - e. Se os índices não são suficientes para melhorar o desempenho da consulta o que você faria?

2) A Figura abaixo, mostra o log correspondente a determinado plano, para quatro transações T1, T2, T3, T4, no ponto da queda do sistema. Suponha que usemos o protocolo de atualização **imediata** com checkpoint. Descreva o processo para recuperação da queda do sistema. Especifique quais transações serão revertidas, quais operações do log serão refeitas e quais (se houver) serão desfeitas, e se poderá ocorrer alguma reversão em cascata. 20%

```
[start transaction, T1]
[read_item, T1, A]
[write_item, T1, D, 20, 25]
[commit, T1]
[checkpoint]
[start_transaction, T2]
[read_item, T2, B]
[write_item, T2, B, 12, 18]
[start_transaction, T4]
[read_item, T4, D]
[write_item, T4, D, 25, 15]
[start_transaction, T3]
[write_item, T3, C, 30, 40]
[read_item, T4, A]
[write_item, T4, A, 30, 20]
[commit, T4]
[read_item, T2, D]
[write_item, T2, D, 15, 25] ← system crash
```

- 3) Assinale como verdadeiro e falso as alternativas a seguir (duas erradas anulam uma certa) 50%
 - a) No caso da transação falhar sob um esquema de log incremental de atualização adiada, qual das seguintes opções será necessária:

I.	Uma operação desfazer	()
II.	Uma operação refazer	()
III.	Uma operação desfazer e refazer	()
IV.	Nenhuma acima.	()

	b)	No controle de concorrência baseado em Timestamp:	
		I. Ocorrem deadlocks	()
		II. Se uma transação Ti tenta executar um ler_item(X) e write_TS(X) > TS(Ti), então o item X ()	Ti lê
		III. Se uma transação Ti tenta executar um escrever_item(X) e write_TS(X) > TS(Ti), Ti aborta ()	então
		IV. Pode-se ter a opção de controle de concorrência multi-versão	()
	c)	As técnicas de controle de concorrência otimistas:	
		I. São conhecidas como de validação ou certificação	()
		II. Executam alguma ação de verificação antes que uma operação de banco de dados ser executada ()	possa
		III. Assumem que ocorrerá muita interferência em transações	()
		IV. As atualizaçõs são aplicadas inicialmente a versões dos dados.	()
d)		Se uma abordagem de shadowing for usada:	
		 I. Para gravar um item de dado de volta no disco, ele será gravado na mesma localiz do disco () 	ação
		II. O mecanismo de controle de concorrência que melhor se adapta é o de multi-versã	ăo()
		III. Ela é caracterizada como uma técnica NO-UNDO/REDO	()
		IV. O estado do BD antes da execução da transação está totalmente disponível no catá Shadow. ()	ilogo
e)		Sobre o artigo "Aplicando técnicas de tuning para melhoria de desempenho em banco dados PostgresSQL":	s de
		I. PostgresSQL permite os seguintes métodos de indexação: Btree, Hash, R-tree e o	GIST
		()	
		II. PostgresSQL usa índice em consultas que tenham LIKE e começam com um carac '%' ou '_'()	ctere
		III. Em PostgresSQL, o comando EXPLAIN é responsável por mostrar o plano de exe que o otimizador gera ()	ecução
		IV. Em PostgresSQL, o administrador pode dirigir a escolha dos algorítmos utilizados otimizador com comandos como enable_nestloop ()	s pelo