

Valid interpretation:
[] If I repeat the experiment multiple times, 2/5% of the CI's will include
exp#[]] # 1 exp#2[]#3 exp#46[]#4
(II) Before you do the experiment P(θ≤CIO, +d) - 1-d.
(July (skip)
(IV) In a hypothesis that you either reject to or reject that
ÔME G RRd ⇒ Reject Ho Brits 1 Ho
Omis & RR a => Reject HA (CR)
"p-value" is defined as:
P (seeing êmit "or move extreme" Ho)
F PCHo(x) that what you want
probabing
$5 \hat{\Gamma} = iid \text{ Beroulli} \qquad X = \langle 0, 1, 0 \rangle \qquad \hat{\theta}_{\text{MLE}} = \hat{X} = \hat{\beta}$
$CI_{\theta}, 95\% = \left[\frac{1}{3} \pm \mathbf{Z}_{0}\right] = \left[\frac{1}{3} \pm \mathbf{Z}_{0}\right] = \left[\frac{1}{3} \pm \mathbf{Z}_{0}\right]$
we know that 020! This is bad II cuz it dicht response the parameter space @
Why? n is too small (=3),, therefore fint NC) => wrong
Conditional probability On ditional probability
Conditional probability (LC) A: Smoking B: lung cancer Assume: P(A) = 0.2 P(B) = 0.06 P(A.B) = 0.036
P(lung cancer smoking), a constant probability = PCBIA)
A= A'CA

Inagine
$$x' \in X$$
, $Y = Supp(X) = Y(1, 2, 3, 4)$ supp $(X) = Y(1, 2, 3, 4)$

$$\int Mf f(X-Y) = P(Y=5) = \frac{\sum f(x, Y=5) - P(X=1, Y=6) + P(X=2, Y=5) + P(X=3, Y=5) + P(X=4, Y=5)}{xesupp(X)} + P(X=2, Y=5) = \frac{P(X=2, Y=5) - \frac{P(X=2, Y=5)}{P(Y=5)} = \frac{P(X=2, Y=5) - \frac{P(X=2, Y=5)}{P(X=2)}}{P(X=2)} = \frac{P(X=2, Y=5)}{P(X=2)} = \frac{P(X=$$

(an I write the following? $P(\Theta|x) = \frac{P(x|\Theta)P(\Theta)}{P(x)}$ O is a constant i.e a degenerate thus the formula is n't useful D~{O wp13 Olx~{Owp13

 $\rho(x) = \theta_0 \in \Theta P(x \theta_0) P(\theta_0)$	pcx) without knowing Bo	
$P(x) = \theta_0 \in \mathbb{R} P(x \theta_0) P(\theta_0)$ $\subseteq \int_{\mathbb{R}} P(x \theta_0) P(\theta_0) d\theta_0$	pcx) without knowing to This is Mansweralple without	Knowing Ap
O		