ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. К аккумулятору с внутренним сопротивлением 2 Ом и ЭДС 12 В подключена электрическая лампочка сопротивлением 8 Ом. Определить заряд, который будет перенесён через лампочку за 5 минут. Ответ дать в единицах СИ.

Решение:

Запишем определение силы тока $I = \Delta q/\Delta t$. Отсюда заряд, который будет перенесён через лампочку за время Δt : $\Delta q = I \cdot \Delta t$. Силу тока I можно определить и закона Ома для замкнутой цепи:

$$I = \varepsilon/(R + r)$$
.

В результате для заряда получим выражение:

$$\Delta q = \varepsilon \Delta t / (R + r)$$
.

Подставляя численные значения и проводя расчеты, получим: $\Delta q = 12 \cdot 300/(8+2) = 360 \; \mathrm{Kp}$.

Ответ: $\Delta q = 360$ Кл.

2. Нагрузкой усилителя служит цепь, состоящая из резистора R_1 сопротивлением 2 Ом, включенного последовательно с параллельно соединёнными резисторами $R_2 = 5$ Ом и $R_3 = 20$ Ом. Ток в резисторе R_2 равен 1 А. Найти силу тока в резисторе R_1 . Ответ дать в единицах СИ.

<u>Дано:</u> $R_1 = 2 \text{ Ом}$ $R_2 = 5 \text{ Ом}$ $R_3 = 20 \text{ Ом}$ $I_2 = 1 \text{ A}$ <u>Найти:</u> $I_1 = ?$

Решение:

Для разветвлённой цепи, изображённой на рисунке, справедливо условие: $I_1 = I_2 + I_3$.

Найдём значение силы тока I_3 . Для этого учтём, что при параллельном соединении резисторов напряжение на них одинаково: $U_2 = U_3$, т.е. $I_2R_2 = I_3R_3$.

Отсюда $I_3 = I_2 R_2 / R_3$.

B HTOPE, $I_1 = I_2 + I_2 R_2 / R_3 = I_2 (R_3 + R_2) / R_3$.

Обратим внимание на то, что значение R_1 нам не понадобилось. Проводя вычисления, получим $I_1 = 1 \cdot (20 + 5)/20 = 1,25$ А.

Ответ: $I_1 = 1,25$ A.

3. Для измерения ЭДС своего аккумулятора автомобилист последовательно соединил источник с ЭДС, равной 2 В, и амперметр. При этом амперметр показал ток равный 1 А. При изменении полярности включения аккумулятора ток в цепи стал равен 0,75 А. Какова ЭДС аккумулятора? Ответ дать в единицах СИ.

Рисунок – Включение источников тока в цепь: а) последовательное; б) встречное

При первом способе включения в цепь источников тока (рисунок, а) их ЭДС складываются, т.е. результирующая ЭДС в цепи равна: $\epsilon_1 = \epsilon + \epsilon_r$.

Из закона Ома для замкнутой цепи сила тока $I_1 = \varepsilon_1/R = (\varepsilon + \varepsilon_x)/R$, где R — полное сопротивление цепи. При втором способе соединения (рисунок, б) источники тока включены навстречу друг другу, поэтому результирующая ЭДС в цепи будет находиться как $\varepsilon_2 = \varepsilon_x - \varepsilon$ (предполагая, что $\varepsilon_x > \varepsilon$).

Используя закон Ома для данного случая, получим:

$$I_2 = \varepsilon_2/R = (\varepsilon_x - \varepsilon)/R$$
.

Взяв отношение выражений для сил токов $I_1/I_2=(\varepsilon_x+\varepsilon)/(\varepsilon_x-\varepsilon)$ и выражая ε_x , получим: $\varepsilon_x=\varepsilon\cdot(I_1+I_2)/(I_1-I_2)$.

Вычислим: $\varepsilon_x = 2 \cdot (1 + 0.75)/(1 - 0.75) = 14 \text{ B}.$

Ответ: $\varepsilon_x = 14 \text{ B}.$

4. Определить в единицах СИ сопротивление шунта, который нужно подключить параллельно к амперметру, чтобы можно было измерять токи до 5 А. Амперметр имеет шкалу на 1 А и внутреннее сопротивление 5 Ом.

Рисунок – Амперметр с шунтом

Ни рисунке изображена схема подключения амперметра с шунтом. Предполагается, что через неразветвлённый участок цепи течёт максимальный ток I, а через амперметр максимально допустимый ток I_A . Запишем закон Ома для двух параллельных участков цепи $I_{\rm III} = U_{\rm III}/R_{\rm III}$ — для шунта и $I_A = U_A/R_A$ — для амперметра. Для параллельных участков падения напряжения равны $U_{\rm III} = U_A$, следовательно $I_{\rm III} \cdot R_{\rm III} = I_A \cdot R_A$, и $R_{\rm III} = I_A \cdot R_A/I_{\rm III}$. Силу тока через шунт $I_{\rm III}$ можно найти из условия $I = I_A + I_{\rm III}$, $I_{\rm III} = I - I_A$. В результате подстановки получим окончательное выражение для $R_{\rm III}$:

$$R_{
m III}=I_{
m A}\cdot R_{
m A}/(I-I_{
m A}).$$
 Расчёт даёт: $R_{
m III}=1\cdot 5/(5-1)=1,25~{
m Om}.$ Ответ: $R_{
m III}=1,25~{
m Om}.$

5. Определить в единицах СИ сопротивление резистора, который необходимо подключить последовательно с вольтметром, чтобы можно было измерять напряжения до 50 В. Вольтметр имеет шкалу максимум на 10 В и внутреннее сопротивление 200 Ом.

Рисунок – Вольтметр с резистором

Ни рисунке изображена схема подключения вольтметра с резистором. Максимально допустимое напряжение на вольтметре при подаче на цепь максимального напряжения внешней цепи U будет равно $U_{\rm V}$. Запишем закон Ома для двух участков цепи

 $I_{\rm V}=U_{
m V}/R_{
m V}$ — для вольтметра и $I_{
m R}=U_{
m R}/R$ — для резистора. При последовательном соединении токи равны $(I_{
m V}=I_{
m R})$, тогда $U_{
m V}/R_{
m V}=U_{
m R}/R$, и $R=R_{
m V}\cdot U_{
m R}/U_{
m V}$.

Напряжение на резисторе можно найти из условия

$$U = U_{R} + U_{V}, U_{R} = U - U_{V}.$$

В результате подстановки получим окончательное выражение для R: $R = R_{
m V} \cdot (U - U_{
m V}) / U_{
m V}.$

Подставляя численные значения, получим:

$$R = 200 \cdot (50 - 10)/10 = 800 \text{ Om}.$$

Ответ: $R = 800 \, \text{Ом}$.

6. Шнур питания магнитофона изготовлен из проводника с удельным сопротивлением 40 нОм⋅м и плотностью 8000 кг/м³. Определить массу материала, пошедшего на изготовление провода, если его поперечное сечение 3 мм² и сопротивление 0,01 Ом. Ответ дать в единицах СИ.

Дано: $\rho_R = 4 \cdot 10^{-8} \text{ Ом·м}$ $\rho = 8 \cdot 10^3 \text{ кг/м}^3$ $S = 3 \cdot 10^{-6} \text{ м}^2$ R = 0.01 Ом<u>Найти:</u> m = ?

Решение:

Масса проводника m пропорциональна его объёму V: $m = \rho V = \rho S l$, где l-длина проводника. Сопротивление проводника можно определить из выражения $R = \rho_R \cdot l/S$. Отсюда выразим длину проводника и подставим в выражение для массы:

 $m = \rho S^2 R / \rho_R$.

Проведём расчёты и получим:

$$m = 8.10^3 \cdot (3.10^{-6})^2 \cdot 0.01/4 \cdot 10^{-8} = 0.018 \text{ Kg}.$$

Ответ: m = 0.018 кг.

7. Проводник из материала с температурным коэффициентом сопротивления $0{,}003~{\rm K}^{-1}$ при включении в сеть постепенно нагрелся от $0~{\rm ^{o}C}$ до $100~{\rm ^{o}C}$. Во сколько раз уменьшилась мощность, потребляемая проводником при неизменном напряжении в сети?

Решение:

Запишем выражения для мощности, потребляемой проводником в начале нагрева: $P_0 = U^2/R_0$, и в конце нагрева: $P = U^2/R$, где R_0 и R — начальное и конечное сопротивления проводника.

Тогда искомое отношение мощностей:

$$P_0/P = R/R_0$$
.

Подставляя сюда выражения для температурной зависимости сопротивления проводника (при условии неизменности его геометрических параметров):

 $R=
ho_R\cdot l/S=
ho_0\cdot (1+lpha t)\cdot l/S=(
ho_0 l/S)\cdot (1+lpha t)=R_0\cdot (1+lpha t),$ получим $P_0/P=(1+lpha t).$ Вычисляя, находим $P_0/P=(1+0.003\cdot 100)=1.3.$

Ответ: $P_0/P = 1,3$.

8. К аккумулятору с внутренним сопротивлением 2 Ом и ЭДС 12 В подключены две последовательно соединённые лампочки сопротивлением 5 Ом каждая. Определить мощность, выделяющуюся в одной лампочке. Ответ дать в единицах СИ.

Дано: r = 2 Ом $\epsilon = 12 \text{ B}$ $R_{\text{Л}} = 5 \text{ Ом}$ <u>Найти:</u> $P_{\text{П}} = ?$ Решение:

Мощность, выделяющаяся в одной лампочке, можно рассчитать по формуле $P_{\Pi} = I^2 R_{\Pi}$.

Ток I, текующий в цепи, найдём из законо Ома для замкнутой цепи: $I = \varepsilon/(R+r)$, где R — сопротивление нагрузки, состоящей из двух последовательно соединённых ламп

$$R = R_{\mathrm{JI}} + R_{\mathrm{JI}} = 2R_{\mathrm{JI}}.$$

Произведём подстановку в вуражение для мощности и получим

 $P_{\mathrm{JI}} = \varepsilon^2 \cdot R_{\mathrm{JI}} / (2R_{\mathrm{JI}} + r)^2.$ Вычислим: $P_{\mathrm{JI}} = 12^2 \cdot 5 / (10 + 2)^2 = 5 \; \mathrm{Bt}.$

Ответ: $P_{\rm JI} = 5 \, {\rm Br.}$

9. Три одинаковых проводника соединили параллельно и включили в сеть. При этом за 40 с выделилось 200 Дж теплоты. Сколько времени потребуется для выделения 200 Дж теплоты, если эти же проводники соединить последовательно и включить в ту же сеть? Ответ дать в единицах СИ.

<u>Дано:</u> $t_1 = 40 \text{ c}$ Q = 200 Дж<u>Найти:</u> $t_2 = ?$

Решение:

Рассмотрим два случая включения сопротивлений в цепи с неизменным внешним напряжением U.

1. При параллельном соединении проводников их общее сопротивление R_1 определяется из

выражения:

$$1/R_1 = 1/R + 1/R + 1/R = 3/R$$
, $R_1 = R/3$,

где R — сопротивление каждого проводника. Количество тепла, выделяющегося в проводниках можно найти по формуле:

$$Q = U^2 \cdot t_1 / R_1 = 3U^2 \cdot t_1 / R.$$

2. При последовательном соединении проводников их общее сопротивление R_2 определяется как $R_2 = R + R + R = 3R$. Количество тепла, выделяющегося в проводниках в этом случае, можно найти по формуле: $Q = U^2 \cdot t_2 / R_2 = U^2 \cdot t_2 / 3R$.

Так как, по условию, количество тепла в обоих случаях выделяется одинаковое, то приравняем полученные выражения и выразим искомое значение времени t_2 : $t_2 = 9t_1$.

Вычисляя, получим $t_2 = 9.40 = 360$ с.

Ответ: $t_2 = 360$ с.

10. Чему равен коэффициент полезного действия источника тока, если при увеличении в два раза внешнего сопротивления, на которое он замкнут, разность потенциалов на обкладках источника увеличивается на 10 %? Ответ дать в процентах, округлив до целого числа.

 $egin{aligned} & \underline{\Pi} ext{ано:} \ & R_2 = 2R_1 \ & U_2 = 1, 1U_1 \ & \underline{\textbf{Найти:}} \ & \eta_1 = ? \end{aligned}$

Решение:

Коэффициент полезного действия источника тока определяется выражением:

$$\eta_1 = R_1/(R_1 + r) = (1 + r/R_1)^{-1},$$

где R_1 – сопротивление нагрузки, а r – внутреннее сопротивление источника. В итоге, нужно найти

отношение r/R_1 .

Запишем закон Ома для полной цепи в первом и втором случае:

$$\varepsilon = I_1(R_1 + r) = U_1 + I_1r, \ \varepsilon = I_2(R_2 + r) = U_2 + I_2r.$$

Отсюда, $I_1(R_1+r)=I_2(R_2+r)$ (*).

Учитывая условие задачи $R_2 = 2R_1$ и $U_2 = 1,1U_1$, найдём:

$$2I_2R_1 = 1, 1 \cdot I_1R_1, I_2 = 0, 55 \cdot I_1.$$

Возвращаясь к выражению (*), получим:

$$I_1(R_1 + r) = 0.55I_1(2R_1 + r),$$
 $R_1 + r = 1.1R_1 + 0.55r,$ $0.1R_1 = 0.45r,$ $r/R_1 = 2/9.$

Подставляя отношение r/R_1 в выражение для КПД, найдём:

$$\eta_1 = (1 + 2/9)^{-1} = 9/11 = 0.818 \approx 82 \%.$$

Ответ: $\eta_1 = 82 \%$.