Языковое моделирование курс «Практикум на ЭВМ», весна 2019

Попов Артём Сергеевич

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

19 сентября 2018 г.

Задача языкового моделирования (language modeling)

Дано:

Традиционные LM

- ► $D = \{d_1, ..., d_N\}$ коллекция документов
- ▶ документ d последовательность слов $\{w_1, ..., w_{n_d}\}$ n_d — длина документа d
- ightharpoonup слово $w_i \in W$, W множество всех слов

Задача языкового моделирования:

оценить вероятность появления любой последовательности слов (w_1, \ldots, w_n) в «реальном» тексте.

Языковая модель (language model, LM) — модель, позволяющая вычислить вероятность $p(w_1, ..., w_n)$ для любых $w_1, \ldots, w_n \in W$.

Стандартные обозначения

Цепное правило (chain rule):

$$p(w_1, \ldots, w_n) = p(w_n|w_{n-1}, \ldots, w_1) \ldots p(w_2|w_1)p(w_1)$$

Предположение Маркова:

$$p(w_n|w_{n-1},\ldots,w_1)\approx p(w_n|w_{n-1},\ldots,w_{n-k})=p(w_n|w_{n-k}^{n-1})$$

Ещё одна постановка задачи:

оценить вероятность появления слова w после последовательности слов (w_1, \ldots, w_n) .

Посимвольный вариант задачи:

оценить вероятность появления символа с после последовательности символов (c_1, \ldots, c_n) .

Оценка качества модели

▶ Правдоподобие

$$\mathcal{L}(D_{test}) = \prod_{d \in D_{test}} \prod_{i=1}^{n_d} p(w_i|w_1^{i-1})$$

Перплексия

$$\mathcal{P}(D_{test}) = \mathcal{L}(D_{test})^{-1/N_{test}}$$

▶ Итоговое качество приложения

Языковая модель почти никогда не представляет ценности сама по себе!

Задача LM

0000000

Приложения LM

- ▶ Исправление опечаток
- Машинный перевод
- ▶ Распознавание рукописного текста
- Распознавание речи

Задача LM

0000000

Результат модели машинного перевода:

- исходное предложение: дом, милый дом.
- ▶ варианты перевода: home sweet home, house sweet house
- выбираем ответ с помощью языковой модели:

$$p(home, sweet, home) \gg p(house, sweet, house)$$

В каких ситуациях такая постобработка может существенно улучшать качество?

Приложения LM: постобработка результата MT

Результат модели машинного перевода:

- исходное предложение: дом, милый дом.
- ▶ варианты перевода: home sweet home, house sweet house
- выбираем ответ с помощью языковой модели:

```
p(home, sweet, home) \gg p(house, sweet, house)
```

В каких ситуациях такая постобработка может существенно улучшать качество?

Если размер выборки из предложений их переводов небольшой, но есть большое количество неразмеченных предложений на языке перевода.

Приложения LM: постобработка результата OCR

Результат модели распознавания текста:

- варианты распознавания: москва, можва
- выбираем ответ с помощью языковой модели:

$$p(M, o, c, K, B, a) \gg p(M, o, ж, B, a)$$

Может помочь, если есть априорное знание о распознаваемом тексте (например, это поле в документе).

Приложения LM: исправление опечаток

Традиционные LM

Спеллчекер Питера Норвига + языковое моделирование 12

- 1. входное предложение w_1, \ldots, w_n
- **2.** для каждого слова w_i генерируем кандидатов:
 - удаляем один символ
 - вставляем лишний символ
 - меняем один символ на другой
 - меняем два соседних символа местами
- 3. удаляем кандидатов, не входящих в W
- 4. с помощью языковой модели выбираем лучшего из кандидатов

¹http://norvig.com/spell-correct.html

²https://habr.com/ru/post/346618/

N-граммные модели

Используем предположение Маркова с параметром k.

$$p(w_n|w_1^{n-1}) \approx p(w_n|w_{n-k}^{n-1})$$

Используем численную оценку вероятности:

$$p(w|w_1,\ldots,w_k)=\frac{C(w_1,\ldots,w_k,w)}{C(w_1,\ldots,w_k)},$$

где $C(w_1, ..., w_k)$ — число появлений последовательности $(w_1, \ldots w_k)$ в обучающей выборке.

Обучение модели — запоминание статистик появления последовательностей.

Какие проблемы есть у N-граммных модели?

Проблемы *N*-граммных моделей

Какие проблемы есть у N-граммных модели?

- 1. Проблема оценки первого слова в предложении
- 2. Проблема Out-of-vocabulary слов. Если слово w не встречалось в словаре, любая условная вероятность, содержащая в посылке w, будет равна 0
- 3. Чем больше N тем лучше учитываем контекст, но тем больше нулевых вероятностей

Предложение, для которого хотим оценить вероятность:

$$d = (i, will, be, back)$$

Задача LM

Биграммная модель (N=2) на примере

Предложение, для которого хотим оценить вероятность:

$$d = (i, will, be, back)$$

Можно так:

0000000

$$p(d) = p(back|be)p(be|will)p(will|i)p(i)$$

Но лучше так:

$$p(d) = p(back|be)p(be|will)p(will|i)p(i|)$$

Добавляем в начало каждого предложения токен <start>, чтобы лучше моделировать вероятности первых слов.

0000000

Сглаживание Лапласа (Add-one smoothing)

Если слова нет в словаре, любая вероятность, содержащая это слово, будет равна нулю.

$$p(w|w_1,\ldots,w_k)=\frac{C(w_1,\ldots,w_k,w)+\alpha}{C(w_1,\ldots,w_k)+\alpha|W|},$$

Чем плох такой подход?

Откат (Katz backoff)

0000000

Традиционные LM

Основная идея: если не встречали n-грамму, но встречали (n-k)-грамму, то можем произвести «откат»

$$\hat{p}(w|w_1^k) = egin{cases} eta(w_1^k,w) p(w|w_1^k), \ ext{если} \ C(w_1^k,w) > 0 \ lpha(w_1^k) p(w|w_2^k), \ ext{иначе} \end{cases}$$

где $\alpha(w_1^k)$ и $\beta(w_1^k, w)$ выбираются из условия:

$$\sum_{w \in W} \hat{p}(w|w_1^k) = 1$$

Интерполяция (Interpolation smoothing, Jelinek-Mercer smoothing)

Смесь из нескольких моделей:

$$\hat{p}(w|w_1^k) = \sum_{i=1}^k \lambda_i p(w|w_i^k)$$

$$\sum_{i=1}^k \lambda_i = 1$$

Другие виды сглаживания

- ► Good-Turing
- ► Witten-Bell
- ► Kneser-Ney
- ► Absolute discounting

Задача моделирования последовательности

Дано:
$$\{x_1, \dots, x_n\}$$
 — последовательность входов $\{y_1, \dots, y_n\}$ — последовательность выходов $x_i \in \mathbb{R}^d, y_i \in \mathbb{R}^D$

Хотим: для любой последовательности входов предсказывать последовательность выходов

Как можно работать с последовательностями?

- ▶ Обучение отдельного классификатора на признаках, зависящих от позиции элемента в последовательности
- ► Графические модели (HMM/CRF)
- ► Рекуррентные нейронные сети (RNN, LSTM, GRU)
- ▶ Комбинация подходов

Модель рекуррентной нейронной сети (RNN)

0000000000

 h_t — скрытое состояние в момент t

$$h_t = f(Vx_t + Wh_{t-1} + b)$$
$$\hat{y}_t = g(Uh_t + \hat{b})$$

Обучение сети — минимизация суммарных потерь:

$$\sum_{t=1}^n \mathcal{L}_t(y_t, \hat{y}_t)
ightarrow \min_{V,U,W,b,\hat{b}}$$

Сеть обучается с помощью алгоритма Backpropagation³

 $^{^3}$ Часто, вариацию алгоритма Backpropagation для обучения RNN называют Backpropagation through time

Детали обучения RNN: производные по U и W

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU}$$
 =

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} =$$

Задача LM

Детали обучения RNN: производные по U и W

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{dh_t}{dW}$$

$$\frac{dh_t}{dW} = \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{dh_{t-1}}{dW} =$$

$$= \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{dh_{t-2}}{dW} =$$

$$= \ldots = \sum_{k=1}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Градиент по V считается аналогично градиенту по W

Детали обучения RNN: взрыв и затухание градиентов

Взрыв градиента:

$$\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \to \infty$$

Затухание градиента:

$$\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \to 0$$

$$rac{\partial h_i}{\partial h_{i-1}} = diag\left(rac{1}{\mathsf{ch}^2(z_i)}
ight) W$$
 $z_i = Vx_i + Wh_{i-1} + b$ если $f = \mathsf{tanh}$

Популярные способы борьбы с взрывом/затуханием:

- ► Gradient clipping (против взрыва)
- ► Модели LSTM и GRU (против затухания)

RNN LM

Gradient clipping

Традиционные LM

Ограничение нормы градиентов:

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}$$
if $\|\hat{\mathbf{g}}\| \geq threshold \ \mathbf{then}$
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
end if

Как выбрать порог? Например, брать среднюю норму градиента для весов по запускам без gradient clipping

Используем более сложную структуру ячейки:

LSTM ячейка

Обучается с помощью алгоритма Backpropagation Почему решает проблему затухающих градиентов? Задача LM

$$\begin{aligned} z_t &= [h_{t-1}, x_t] \\ f_t &= \sigma(W_f \cdot z_t + b_f) \\ i_t &= \sigma(W_i \cdot z_t + b_i) \\ \hat{C}_t &= \operatorname{th}(W_c \cdot z_t + b_c) \\ C_t &= f_t \cdot C_{t-1} + i_t \cdot \hat{C}_t \\ o_t &= \sigma(W_o \cdot z_t + b_o) \\ h_t &= o_t \cdot \operatorname{tanh}(C_t) \end{aligned}$$

Обучается с помощью алгоритма Backpropagation

Почему решает проблему затухающих градиентов?

Частично потому, что C_t зависит от C_{t-1} линейно, т.е

$$\frac{\partial C_t}{\partial C_{t-1}} = f_t$$

Разные архитектуры рекуррентных сетей

Примеры задач:

one to many Генерация описания изображения many to one Классификация предложений many to many(1) Перевод с одного языка на другой many to many(2) Определение частей речи

RNN LM

Выходы одной рекуррентной сети подаются на вход другой:

$$h_t^1, C_t^1 = LSTM(h_{t-1}^1, C_{t-1}^1, x_t)$$

$$h_t^2, C_t^2 = LSTM(h_{t-1}^2, C_{t-1}^2, h_t^1)$$

$$h_t^3, C_t^3 = LSTM(h_{t-1}^1, C_{t-1}^1, h_t^2)$$

$$y_t = g(Uh_t^2 + \hat{b})$$

Двунаправленные сети (bidirectional)

Конкатенация выходов двух сетей, одна идёт слева направо, другая справа налево:

$$\overrightarrow{h_t}, \overrightarrow{C_t} = \overrightarrow{LSTM}(\overrightarrow{h_{t-1}}, \overrightarrow{C_{t-1}}, x_t)$$

$$\overleftarrow{h_t}, \overleftarrow{C_t} = \overleftarrow{LSTM}(\overleftarrow{h_{t-1}}, \overleftarrow{C_{t-1}}, x_t)$$

$$y_t = g(U[\overrightarrow{h_t}, \overleftarrow{h_t}] + \hat{b})$$

На практике часто работают лучше чем однонаправленные!

Резюме по RNN

- ► RNN Нейросетевая архитектура для работы с последовательностями
- ► Обучается с помощью алгоритма Backpropagation
- ▶ В исходном виде RNN сложно обучается, необходимо использовать LSTM (или GRU, или другие модификации) и gradient clipping
- ▶ С помощью разных архитектур сети можно решать разные задачи

Задача языкового моделирования (language modeling) Хотим уметь оценивать вероятность $p(w|w_n, \ldots, w_1)$

Предположение марковости (Markov assumption):

$$p(w_n|w_{n-1},\ldots,w_1)\approx p(w_n|w_{n-1},\ldots w_{n-k})$$

 $\mathsf{Идея}$: моделировать $p(w|w_{n-1},\dots w_{n-k})$ с помощью RNN

Почему не моделируем $p(w|w_{n-1},\ldots,w_1)$?

Задача языкового моделирования (language modeling) Хотим уметь оценивать вероятность $p(w|w_n, \ldots, w_1)$

Предположение марковости (Markov assumption):

$$p(w_n|w_{n-1},\ldots,w_1)\approx p(w_n|w_{n-1},\ldots w_{n-k})$$

Идея: моделировать $p(w|w_{n-1},\ldots w_{n-k})$ с помощью RNN

Почему не моделируем $p(w|w_{n-1},\ldots,w_1)$?

- 1. Из-за проблемы взрывающихся/затухающих градиентов не можем обрабатывать длинные последовательности
- 2. Технически проще работать с последовательностями одинаковой длины

RNN LM

Обозначения

Традиционные LM

W — множество всех слов, |W| — мощность множества Слово w_i — вектор $[0,\ldots,0,\underbrace{1},0,\ldots,0]$ длины |W|

Применение линейного слоя к one-hot вектору:

$$Vw_i = V_i, \quad V_i$$
 — эмбединг слова w_i

Операция softmax (мягкий максимум):

softmax
$$x = \left\{ \frac{\exp(x_i)}{\sum_{j=1}^d \exp(x_j)} \right\}_{i=1}^d$$
 $x \in \mathbb{R}^d$

 $\operatorname{softmax}$ преобразует вектор в дискретное распределение:

$$\hat{y}_t = p(w|w_{n-1}, \dots, w_{n-t}) = \text{softmax}(Uh_t + \hat{b})$$

 $h_t, C_t = LSTM(h_{t-1}, C_{t-1}, w_t)$

RNN для LM с одним выходом

Для каждой последовательности используется функция потерь:

$$\mathcal{L} = \mathcal{L}_k = -\sum_{w \in W} [w = w_n] \log p(w = w_n | w_{n-1}, \dots, w_{n-k})$$

Можно ли как-то лучше?

RNN LM

RNN для LM с k выходами

Традиционные LM

Для каждой последовательности используется функция потерь:

$$\mathcal{L} = \sum_{t=1}^{k} \mathcal{L}_t$$

$$\mathcal{L}_t = -\sum_{t=1}^{k} [w = w_t] \log p(w = w_t | w_{n-t}, \dots, w_{n-k})$$

RNN LM Нейросетевые приложения 0000 00000000 0000000

Слова, не представленные в словаре (out of vocabulary)

Добавление в словарь <UNK> токена

Задача LM

- ▶ Заменить редкие слова на <UNK> токены при обучении
- ► На каждой итерации обучения с малой вероятностью заменять одно из слов на <UNK>

Использовать посимвольную RNN (charRNN)

- Вероятность встретить новый символ крайне мала...
- ► Во многих задачах charRNN работает не хуже wordRNN

Использовать посимвольную RNN для новых слов

- ► Если встречаем незнакомое слово, используем charRNN для его кодирования
- ► На каждой итерации обучения с малой вероятностью считаем одно из слов новым

Сравнение RNN LM и Kneser-Ney Smoothing¹²

Table 2: Comparison of various configurations of RNN LMs and combinations with backoff models while using 6.4M words in training data (WSJ DEV).

		PPL	WER		
Model	RNN	RNN+KN	RNN	RNN+KN	
KN5 - baseline	-	221	-	13.5	
RNN 60/20	229	186	13.2	12.6	
RNN 90/10	202	173	12.8	12.2	
RNN 250/5	173	155	12.3	11.7	
RNN 250/2	176	156	12.0	11.9	
RNN 400/10	171	152	12.5	12.1	
3xRNN static	151	143	11.6	11.3	
3xRNN dynamic	128	121	11.3	11.1	

³Mikolov, Karafiát, Burget, Cernocký, and Khudanpur. Recurrent neural network based language model. INTERSPEECH 2010.

³Ноутбук Голдберга с сравнением (ссылка)

Как генерировать текст с помощью обученной RNN?

- 1. Сгенерировать/выбрать слово w_1
- 2. Применить RNN к w_1
- 3. Получить слово w_2 , взяв arg max от последнего выхода
- 4. Применить RNN к w_2
- **5.** . . .

Задача LM

Детали реализации генерации

Задача LM

Что можно использовать кроме arg max?

- ▶ Сэмплировать слово из полученного распределения.
- ▶ Использовать beam search.

Как генерировать конечные последовательности?

 Добавить специальный токен <EOS> в конец каждой обучающей последовательности. При генерации <EOS> прекращать процесс.

Как генерировать первое слово?

▶ Добавить специальный токен <SOS> в начало каждой последовательности. Всегда начинать новую последовательность с <SOS>.

Как это работает, если использовать arg max?

Детали реализации генерации

Традиционные LM

Что можно использовать кроме arg max?

- Сэмплировать слово из полученного распределения.
- ▶ Использовать beam search.

Как генерировать конечные последовательности?

▶ Добавить специальный токен <EOS> в конец каждой обучающей последовательности. При генерации <EOS> прекращать процесс.

Как генерировать первое слово?

► Добавить специальный токен <SOS> в начало каждой последовательности. Всегда начинать новую последовательность с <SOS>.

Как это работает, если использовать arg max? Генерирует одно и то же, если $h_0 = 0$.

Beam search (лучевой поиск)

- ► Применить RNN к w_1
- ▶ Выбрать m самых вероятных слов w_2
- ▶ К каждой новой последовательности применить RNN
- ightharpoonup В каждой последовательности выбрать m самых вероятных слов w_3
- ightharpoonup Оставить m самых вероятных последовательностей
- ▶ ...

Задача LM

Есть существенные отличия в входных данных для сети:

Этап	На входе ячейки
Обучение	Истинное w_i
Тест	Предсказанное $\hat{w}_i = arg \max p(w w_{i-1}, \dots, w_{i-k-1})$

- + Модель быстро обучается обычно с хорошим качеством
 - Модель плохо генерирует следующее слово для плохо сгенерированного предложения (таких случаев нет в обучении)

Beam serach частично решает эту проблему!

Scheduled Sampling¹

Традиционные LM

Выбираем с вероятностью ϵ_i истинное слово, иначе сгенерированное:

 ϵ_i убывает с течением итераций по одному из трёх законов:

$$\epsilon_i = \max(\epsilon, k - c_i)$$
 $\epsilon_i = k^i$ $\epsilon_i = k/(k + \exp(i/k))$

³S. Bengio, O. Vinyals, N. Jaitly, N. Shazeer. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. 2015

Результаты Scheduled Sampling

Задача описания изображения (image captioning):

Approach vs Metric	BLEU-4	METEOR	CIDER
Baseline	28.8	24.2	89.5
Baseline with Dropout	28.1	23.9	87.0
Always Sampling	11.2	15.7	49.7
Scheduled Sampling	30.6	24.3	92.1
Uniform Scheduled Sampling	29.2	24.2	90.9
Baseline ensemble of 10	30.7	25.1	95.7
Scheduled Sampling ensemble of 5	32.3	25.4	98.7

Uniform Scheduled Sampling — сэмплируем не из модели, а из равномерного распределения

Scheduled Sampling улучшает качество модели и даже качество ансамбля моделей

Резюме по языковым моделям

Задача LM

- RNN хорошо подходит для построения языковых моделей
- Можно использовать как и посимвольные модели, так и пословные
- ► При генерации текста можно использовать beam search для улучшения результата
- ▶ При обучении текста можно использовать scheduled sampling, чтобы расширить обучающую выборку без сильного проигрыша во времени

Дополнительные приложения LM

- ► Trasfer learning (перенос обучения)
- Multitask learning
- ▶ Регуляризация сети
- ▶ ...

Задача LM

Использование LM (language model) для transfer learning¹

- Обучить LM на большом корпусе (например, википедии), используя достаточно глубокую архитектуру
- ▶ Дообучить LM на корпусе, который используется в задаче
- Добавить линейный слой, решающий конечную задачу (например, NER)

Примеры моделей:

- ► ELMO
- ► ULMfit
- ► GPT
- ▶ BERT

ULMfit

³Jeremy Howard, Sebastian Ruder. Universal Language Model Fine-tuning for Text Classification. ACL-2018

Задача LM

Использование LM даёт выигрыш в качестве:

LM fine-tuning	IMDb	TREC-6	AG
No LM fine-tuning	6.99	6.38	6.09
Full	5.86	6.54	5.61
Full + discr	5.55	6.36	5.47
Full + discr + stlr	5.00	5.69	5.38

Table 6: Validation error rates for ULMFiT with different variations of LM fine-tuning.

discr — свой learning rate для каждого слоя stlr — специальный способ изменения learning rate

Нейросетевые приложения

LM в multitask learning¹

Используем три функции потерь:

- ▶ Кросс-энтропия для NER
- ▶ Кросс-энтропия для LM при прямом проходе
- ▶ Кросс-энтропия для LM при обратном проходе

³Marek Rei. Semi-supervised Multitask Learning for Sequence Labeling. ACL-2017.

LM в multitask learning

Использование дополнительных функций потерь даёт выигрыш в качестве исходной задачи:

	FCE DEV	V FCE TEST			CoNLL-14 TEST1			CoNLL-14 TEST2		
	$F_{0.5}$	P	R	$F_{0.5}$	P	R	$F_{0.5}$	P	R	$F_{0.5}$
Baseline	48.78	55.38	25.34	44.56	15.65	16.80	15.80	25.22	19.25	23.62
+ dropout	48.68	54.11	23.33	42.65	14.29	17.13	14.71	22.79	19.42	21.91
+ LMcost	53.17	58.88	28.92	48.48	17.68	19.07	17.86	27.62	21.18	25.88

Резюме по приложениям LM

► LM интересны не только сами по себе, их можно использовать не только для генерации текста