Problem Set #2 Due: by 11:59 pm, April 17

- Upload a scanned PDF to Gradescope
- Show all work and/or computer code used in your calculations
- 1. An RRRP SCARA robot, which is popular for pick-and-place operations, is shown below is in its zero position.
 - a) Determine the end-effector zero position configuration M, the screw axes S_i in $\{0\}$, and the screw axes B_i in $\{b\}$.
 - b) For $l_0 = l_1 = l_2 = 1$ and the joint variables $\theta = (0, \pi/2, -\pi/2, 1)$, write a program in the language of your choice (e.g. Matlab, Python) that calculates the end-effector configuration $T \in SE(3)$. Show that your answers using both sets of screw axes agree with each other. Include your code and the program output in your submission.

- 2. The RRP robot shown below is in its zero position.
 - a) Write down the screw axes in the space frame. Evaluate the forward kinematics when $\theta = (90^{\circ}, 90^{\circ}, 1)$. Obtain the space Jacobian J_s for this configuration.
 - b) Write down the screw axes in the end-effector body frame. Evaluate the forward kinematics when $\theta = (90^o, 90^o, 1)$ and confirm that you get the same result as in part a). Obtain the body Jacobian J_b for this configuration.

3. List the members of your group project.