2010 年第二届全国大学生数学竞赛初赛 (数学类) 试卷

一、(本题共 10 分) 设 $\varepsilon\in(0,1)$, $x_0=a$, $x_{n+1}=a+\varepsilon\sin x_n$ $(n=0,1,2\cdots)$. 证明 $\xi=\lim_{n\to+\infty}x_n$ 存在,且 ξ 为方程 $x-\varepsilon\sin x=a$ 的唯一根.

二、(本题共 15 分) 设
$$B=egin{pmatrix}0&10&30\\0&0&2010\\0&0&0\end{pmatrix}$$
. 证明 $X^2=B$ 无解,这里 X 为三阶未知复方

阵.

三、(本题共 10 分) 设 $D \subset \mathbb{R}^2$ 是凸区域,函数 f(x,y) 是凸函数. 证明或否定: f(x,y) 在 D 上连续.

注: 函数 f(x,y) 为凸函数的定义是 $\forall \alpha \in (0,1)$ 以及 $(x_1,y_1), (x_2,y_2) \in D$,成立 $f(\alpha x_1 + (1-\alpha)x_2, \alpha y_1 + (1-\alpha)y_2) \leq \alpha f(x_1,y_1) + (1-\alpha)f(x_2,y_2)$

四、(本题共 10 分) 设 f(x) 在 $\left[0,1\right]$ 上黎曼(Riemann)可积,在 x=1 可导, f(1)=0, f'(1)=a . 证明: $\lim_{n\to +\infty} n^2 \int_0^1 x^n f(x) \,\mathrm{d}\, x=-a$.

五、(本题共15分)已知二次曲面∑ (非退化)过以下九点:

$$A(1,0,0), B(1,1,2), C(1,-1,-2), D(3,0,0), E(3,1,2),$$

$$F(3,-2,-4), G(0,1,4), H(3,-1,-2), I(5,2\sqrt{2},8).$$

问∑是哪一类曲面?

六、(本题共 20 分) 设 A 为 $n \times n$ 实矩阵(未必对称),对任一n 维实向量 $\alpha = (\alpha_1, ..., \alpha_n), \alpha A \alpha^{\mathrm{T}} \geq 0$ (这里 α^{T} 表示 α 的转置),且存在 n 维实向量 β 使得 $\beta A \beta^{\mathrm{T}} = 0$.同时对任意 n 维实向量 x 和 y ,当 $x A y^{\mathrm{T}} \neq 0$ 时有 $x A y^{\mathrm{T}} + y A x^{\mathrm{T}} \neq 0$.证明:对任意 n 维实向量 v ,都有 $v A \beta^{\mathrm{T}} = 0$.

七、(本题共 10 分) 设 f 在区间 $\left[0,1\right]$ 上黎曼(Riemann)可积, $0\leq f\leq 1$.求证:对任何 $\varepsilon>0$,存在只取值为 0 和 1 的分段(段数有限)常值函数 g(x) ,使得 $\forall \left[\alpha,\beta\right]\subseteq \left[0,1\right]$,

$$\left|\int_{-lpha}^{-eta} \left(f(x)-g(x)
ight)dx
ight|$$

八、(10 分) 已知 $\varphi:(0,+\infty)\to(0,+\infty)$ 是一个严格单调下降的连续函数,满足 $\lim_{t\to 0^+}\varphi(t)=+\infty,$ 且 $\int_0^{+\infty}\varphi(t)\,\mathrm{d}\,t=\int_0^{+\infty}\varphi^{-1}(t)\,\mathrm{d}\,t=a<+\infty,$ 其中 φ^{-1} 表示

$$arphi$$
的反函数. 求证: $\int_0^{+\infty} \left[arphi \left(t \right) \right]^2 \mathrm{d}\, t + \int_0^{+\infty} \left[arphi^{-1}(t) \right]^2 \mathrm{d}\, t \geq \frac{1}{2} a^{\frac{3}{2}}.$