A Good Problem - Solution Outline

David Wu

Problem Restatement

- We start with an array a = [0, 0, ..., 0] of length n.
- We want to transform a into target array b.
- Allowed operations:
 - **1 Type 1:** 1 x \rightarrow add 1 to all elements equal to x.
 - **2 Type 2:** 2 i \rightarrow add 1 to the element at index *i*.
- Constraint: total operations \leq 20000, with $n \leq$ 1000, $b_i \leq n$.

Algorithm Idea: Divide and Conquer

- Consider the value range [I, r] with midpoint $mid = \lfloor (I + r)/2 \rfloor$.
- Invariant before calling solve(1,r): every element a[i] with target $b[i] \in [I, r]$ currently equals I.
- Steps in solve(1,r): if l==r return
 - For all i with $b[i] \in (mid, r]$: perform 2 i (lift them from l to l+1).
 - ② For j = l + 1, ..., mid: perform 1 j (globally push elements in step 1 from l + 1 to mid + 1).
 - **3** Recurse on [I, mid] and [mid + 1, r].

Correctness

Invariant Preservation

- Left half [I, mid]: elements remain at value I ⇒ invariant holds for recursive call.
- Right half (mid, r]: after one 2 i and (mid l) global operations, they reach mid + 1. \Rightarrow invariant holds for recursive call.

Termination

When l = r, all elements with target b[i] = l are already equal to l, so no further operations are needed.

Complexity Analysis

- Recursion depth = $O(\log n)$ (value range [0, n] is split by halves).
- At each level:
 - Type 2 operations: each element is updated at most once per level $\Rightarrow O(n)$.
 - Type 1 operations: all elements in b is at most $n \Rightarrow at \mod n/2$ operations $\Rightarrow O(n)$.
- Total operations:

$$O(n)$$
 per level $\times O(\log n)$ levels $= O(n \log n)$.

Conclusion

- Divide-and-conquer on the value range ensures correctness.
- Each recursive step maintains the invariant.
- Total number of operations is $O(n \log n)$, well within the 20000 bound for $n \le 1000$.