1. In this part, you will implement a mini face recognition system. Download the ORL face database from http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att\_faces.zip. It contains 40 sub-folders, one for each of the 40 subjects/persons. For each person, there are ten images in the appropriate folder named 1.pgm to 10.pgm. The images are of size 92 by 110 each. Each image is in the pgm format. You can view the images in this format, either through MATLAB or through image viewers like IrfanView on Windows, or xv/display/gimp on Unix. Though the face images are in different poses, expressions and facial accessories, they are all roughly aligned (the eyes are in roughly similar locations in all images). For the first part of the assignment, you will work with the images of the first 32 people. For each person, you will include the first six images in the training set (that is the first 6 images that appear in a directory listing as produced by the dir function of MATLAB) and the remaining four images in the testing set. You implement the recognition system by using the svd function of MATLAB on an appropriate data matrix. Record the recognition rate using squared difference between the eigencoefficients while testing on all the images in the test set, for k ∈ {1,2,3,5,10,15,20,30,50,75,100,150,170}. Plot the rates in your report in the form of a graph. Now modify the required few lines of the code but using the eig function of MATLAB (on the L matrix as defined in class) instead of svd.

Repeat the same experiment (using just the svd routine) on the Yale Face database from the homework folder. This database contains 64 images each of 38 individuals (labeled from 1 to 39, with number 14 missing). Each image is in pgm format and has size 192 by 168. The images are taken under different lighting conditions but in the same pose. Take the first 40 images of every person for training and test on the remaining 24 images (that is the first 40 images that appear in a directory listing as produced by the dir function of MATLAB). Plot in your report the recognition rates for  $k \in \{1, 2, 3, 5, 10, 15, 20, 30, 50, 60, 65, 75, 100, 200, 300, 500, 1000\}$  based on (a) the squared difference between all the eigencoefficients and (b) the squared difference between all except the three eigencoefficients corresponding to the eigenvectors with the three largest eigenvalues. [30 points]

- Display in your report the reconstruction of any one face image from the ORL database using
  k ∈ {2, 10, 20, 50, 75, 100, 125, 150, 175} values. Plot the 25 eigenvectors (eigenfaces) corresponding to the 25
  largest eigenvalues using the subplot or subimage commands in MATLAB. [10 points]
- 3. What will happen if you test your system on images of people which were not part of the training set? (i.e. the last 8 people from the ORL database). What mechanism will you use to report the fact that there is no matching identity? Work this out carefully and explain briefly in your report. Write code to test whatever you propose on all the 32 remaining images (i.e. 8 people times 4 images per person), as also the entire test set containing 6 images each of the first 32 people. How many false positives/negatives did you get? [15 points]