ORGANIZACIÓN DE COMPUTADORAS

2do Parcial

Turno Recursantes Tema 00

Anellidos y Nombres:	Número de Legaio:

<u>Observaciones:</u> NO USAR CALCULADORA. Completar las respuestas **con tinta en imprenta mayúscula**. Por cada respuesta correcta, se obtendrá el puntaje indicado en cada ítem dentro del ejercicio. **Se APRUEBA con 10 (DIEZ) o más puntos sobre un máximo posible de 20 (VEINTE) puntos.**

1) Dado un byte **X**, indique en la columna de la izquierda las operaciones lógicas junto con sus máscaras para **poner en uno** los bits 0 y 7, **poner en cero** los bits 3 y 6 e **invertir** los bits 1 y 5, dejando inalterados al resto de los bits (no use más de tres operaciones lógicas para lograrlo). Dado otro byte **Y**, escriba en la columna de la derecha los resultados de aplicar las operaciones lógicas indicadas.

XXXXXXXX			уууууууу	
	(0,5p)	NAND	01100101	
				(0,5p)
	(0,5p)	<u>XNOR</u>	11001100	
				(0,5p)
	(0,5p)	<u>NOR</u>	10100110	
$10\overline{x}$ x0x \overline{x} 1				(0,5p)

2) Complete la tabla de verdad para las siguientes ecuaciones:

$$F = \overline{(A + C) \cdot B}$$

$$G = \overline{(A \oplus B) + (B \cdot C)}$$

Α	В	С	F	G	
0	0	0			(0,25p)
0	0	1			(0,25p)
0	1	0			(0,25p)
0	1	1			(0,25p)
1	0	0			(0,25p)
1	0	1			(0,25p)
1	1	0			(0,25p)
1	1	1			(0,25p)

- 3) Dibuje al dorso de la hoja el diagrama de compuertas para las ecuaciones dadas en el ejercicio 2, vinculando las entradas A, B y C con las salidas F y G. (4p)
- 4) Transforme el circuito del ejercicio 3 en otro equivalente formado únicamente por compuertas NAND. (6p)
- 5) Indique cuales de las siguiente fórmulas son equivalentes (marcando debajo de \square) y cuáles no lo son (marcando debajo de \square) a la fórmula: F = A . $(\overline{B} + \overline{C}) \oplus D$

$$\square$$
 \square D . $(\overline{A}$ + B + C) + A . \overline{B} . \overline{C} . \overline{D}

(± 1p)

$$\sqcap \sqcap (A . \overline{B} + A . \overline{C}) \oplus D$$

(± 1p)

$$\sqcap \sqcap \overline{D} \oplus (C + B + \overline{A})$$

(± 1p)

IMPORTANTE: Las respuestas correctas SUMAN el puntaje indicado mientras que las incorrectas lo RESTAN

6) Si se tiene un flip flop J-K sincrónico activado por flanco ascendente, cuyo estado inicial es Q=0 y \overline{Q} =1, ¿cómo quedarán las salidas Q y \overline{Q} luego de que CLK cambie de 1 a 0, sabiendo que la entrada J=1 y la entrada K=1?

$$Q = \overline{Q} = \overline{Q}$$
 (2p)