Feuille de TD n°1 Corrigés des exercices supplémentaires

Corrigé de l'exercice n°27

1. (a) $u_0 = a, v_0 = b > 0$ et on voit que si pour $n \ge 0, u_n > 0, v_n > 0$, et

$$u_{n+1} = \frac{u_n + v_n}{2} > 0$$
 et $v_{n+1} = \sqrt{\frac{u_n^2 + v_n^2}{2}} > 0$.

On en déduit par récurrence que, pour tout $n \ge 0$, $u_n > 0$ et $v_n > 0$;

(b) Après calcul, si $n \ge 0$,

$$v_{n+1}^2 - u_{n+1}^2 = \frac{u_n^2 + v_n^2}{2} - \frac{1}{4} \left[u_n^2 + 2u_n v_n + v_n^2 \right]$$
$$= \frac{1}{4} \left[u_n^2 - 2u_n v_n + v_n^2 \right] = \left(\frac{v_n - u_n}{2} \right)^2 \ge 0.$$

Comme, pour $n \ge 0$, $v_{n+1}, u_{n+1} > 0$ on en déduit que pour tout $n \ge 1$ $v_n \ge u_n$ et c'est encore vrai pour n = 0, $v_0 = b \ge a = u_0$;

- 2. (a) Comme, pour $n \ge 0$, $u_{n+1} = (u_n + v_n)/2$, on obtient $u_{n+1} u_n = (v_n u_n)/2 \ge 0$ est la suite (u_n) est croissante;
 - (b) On a, pour $n \ge 0$,

$$v_{n+1}^2 - v_n^2 = \frac{1}{2} \left[u_{n+1}^2 - u_n^2 + v_{n+1}^2 - v_n^2 \right],$$

d'où

$$v_{n+1}^2 - v_n^2 = u_{n+1}^2 - u_n^2.$$

Comme (u_n) est croissante, (v_n^2) est croissante et (v_n) $(v_n \ge 0)$ est donc croissante.

Corrigé de l'exercice n°28

- 1. $u_1 = 3 \times 0 2 \times 0 + 3 = 3$, $u_2 = 9 6 + 3 = 6$;
- 2. On a que $u_0 = 0 \ge 0$. De plus, si $n \in \mathbb{N}$ et $u_n \ge n$ alors $u_{n+1} = 3u_n 2n + 3 \ge n + 3 \ge n + 1$. Donc, pour tout $n \in \mathbb{N}$, $u_n \ge n$;
- 3. Pour $n \in \mathbb{N}$, $u_{n+1} u_n = 2(u_n n) + 3$. Or $u_n n \ge 0$ donc $u_{n+1} u_n \ge 0$ et (u_n) est croissante;
- 4. (a) Si $n \in \mathbb{N}$, $v_{n+1} = 3u_n 2n + 3 (n+1) + 1 = 3(u_n n + 1) = 3v_n$, (v_n) est une suite géométrique de raison 3 et de terme initial 1;
 - (b) On a donc, si $n \in \mathbb{N}$, $v_n = 3^n$ d'où $u_n = v_n + n 1 = 3^n + n 1$.

Corrigé de l'exercice n°29

1. Si
$$\in \mathbb{N}$$
, $v_{n+1} = u_{n+1} - 3 = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2} - 3 = -\frac{1}{2}\left[u_n^2 - 6u_n + 9\right] = -\frac{1}{2}v_n^2$;

2. $-1 \le v_0 = 2 - 3 = -1 \le 0$. De plus, si, pour $n \in \mathbb{N}, -1 \le v_n \le 0$ alors $-\frac{1}{2}v_n \ge 0$ et

$$-1 \le -\frac{1}{2} \le \frac{1}{2}v_n \le -\frac{1}{2}v_n^2 \le 0$$

ou $-1 \le v_{n+1} \le 0$. Ceci montre bien que pour tout $n \in \mathbb{N}, -1 \le v_n \le 0$;

- (a) On a, pour $n \in \mathbb{N}$, $v_{n+1} v_n = -\frac{1}{2}v_n^2 v_n = -v_n(\frac{1}{2}v_n + 1)$.
- (b) On sait que, pour $n \geq 0$, $v_n \leq 0$. D'autre part $-1 \leq v_n$ donc $-\frac{1}{2} \leq \frac{1}{2}v_n$ et $0 \leq \frac{1}{2}v_n + \frac{1}{2} \leq \frac{1}{2}v_n + 1$. La suite (v_n) est donc décroissante.

Corrigé de l'exercice n°30

- 1. (a) Simple vérification par récurrence en utilisant que $u_0 = 2$ et la définition par récurrence de la suite;
 - (b) si $n \in \mathbb{N}$,

$$u_{n+1} = \frac{u_n + 2}{2u_n + 1} - 1 = \frac{u_n + 2 - (2u_n + 1)}{2u_n + 1} = \frac{-u_n + 1}{2u_n + 1};$$

(c) On a $u_0 - 1 = 2 - 1 = 1$ du signe de $(-1)^0 = 1$. Si, pour $n \in \mathbb{N}$, $u_n - 1$ a le même signe que $(-1)^n$,

$$u_{n+1} - 1 = -(2u_n + 1)\frac{u_n - 1}{2u_n + 1},$$

avec $2u_n + 1 > 0$ car $u_n > 0$, donc $u_{n+1} - 1$ a le signe opposé de celui de $u_n - 1$, c'est à dire $(-1)^{n+1}$. On obtient donc bien que pour tout $n \in \mathbb{N}$, $u_n - 1$ a le signe de $(-1)^n$;

2. (a), pour $n \in \mathbb{N}$,

$$v_{n+1} = \frac{\frac{u_n+2}{2u_n+1} - 1}{\frac{u_n+2}{2u_n+1} + 1} = \frac{-u_n+1}{3u_n+3} = -\frac{1}{3} \left(\frac{u_n-1}{u_n+1} \right) = -\frac{1}{3} v_n;$$

- (b) Le calcul qui précède montre que (v_n) est une suite de raison -1/3 et de terme initial 1/3. On a donc, pour $n \in \mathbb{N}$, $v_n = \frac{(-1)^n}{3^{n+1}}$
- (c) On a pour $n \in \mathbb{N}$, $v_n = (u_n 1)/(u_n + 1)$ donc $(u_n + 1)v_n = u_n 1$ donc $u_n(v_n 1) = -(v_n + 1)$ et le résultat. On déduit de ce qui précède que, pour $n \in \mathbb{N}$, $u_n = \frac{3^{n+1} + (-1)^n}{3^{n+1} (-1)^n}$

Corrigé de l'exercice n°31

1. $u_0 \in [0,1]$. D'autre part, si, pour $n \in \mathbb{N}$, $u_n \in [0,1]$, $\ln(1+u_n^2) \ge \ln(1) = 0$, et comme $1 \ge u_n$, puis $1 \ge u_{n+1} = u_n - \ln(1+u_n^2)$.

En utilisant que, pour tout $x \ge -1$, $\ln(1+x) \le x$ (inégalité «classique» obtenue en étudiant les variations de $x \to x - \ln(1+x)$), on obtient, comme $u_n \in [0,1]$, que $u_n \ge u_n^2 \ge \ln(1+u_n^2)$ et $v_{n+1} \ge 0$;

2. Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = -\ln(1 + u_n^2) \le 0$ car $u_n^2 \ge 0$. donc la suite (u_n) est croissante.