INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

(à n'utiliser que pour les commandes de reproduction)

②1) N° d'enregistrement national :

99 05000

(51) Int CI7: B 29 C 45/56 // B 29 L 7:00

(12)

DEMANDE DE BREVET D'INVENTION

Δ

- 2 Date de dépôt : 16.04.99.
- 30 Priorité :

- (71) Demandeur(s): APPLICATIONS INDUSTRIELLES DES PLASTIQUES Société anonyme — FR.
- Date de mise à la disposition du public de la demande : 20.10.00 Bulletin 00/42.
- (56) Liste des documents cités dans le rapport de recherche préliminaire : Ce dernier n'a pas été établi à la date de publication de la demande.
- Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): MAES JEAN.
- 73) Titulaire(s) :
- (4) Mandataire(s): GERMAIN ET MAUREAU.

<u>54</u>)

PROCEDE ET MACHINE DE FABRICATION PAR MOULAGE D'OBJETS PLATS EN MATIERE SYNTHETIQUE.

(1): La machine comprend au moins une unité de moulage (1): chaque unité (1) comprend une première et une deuxième parties de moule (2, 3), chacune de ces parties de moule (2, 3) présentant une face (2a, 6a) qui délimite l'une des deux faces principales de la cavité de moulage correspondant aux deux faces principales de l'objet plat à obtenir, la première partie de moule (2) comporte au moins une buse (5) d'injection de ladite matière synthétique, débouchant directement au niveau de la face (2a) précitée de cette partie de moule (2); ladite deuxième partie de moule (3) est mobile en rapprochement et en écartement de ladite première partie de moule (2), en pouvant être placée par rapport à cette première partie de moule (2) selon au moins trois positions, à savoir: (i) une position d'ouverture du moule, (ii) une position de fermeture du moule, et (iii) une position intermédiaire, proche de ladite position de fermeture de moule, dans laquelle la face (6a) se trouve en regard de l'orifice de la buse (5) et est à même de permettre une pré-répartition de cette matière dans la cavité de moulage lors de l'injection.

La présente invention concerne un procédé et une machine de fabrication, par moulage, d'objets plats en matière synthétique ; ces objets peuvent notamment être des ébauches sous forme de plaques destinées à être façonnées par thermoformage.

Une application particulièrement intéressante de l'invention est la fabrication de plateaux à alvéoles destinés à supporter du matériel médical lors de la stérilisation de ce matériel.

5

10

20

25

30

35

De tels plateaux sont actuellement réalisés par thermoformage d'ébauches sous forme de plaques, obtenues par extrusion.

Bien que couramment employées, ces ébauches ont pour inconvénient important de subir des déformations et des variations dimensionnelles, qui se produisent soit lors de l'échauffement des ébauches en vue du thermoformage, soit lors de ce thermoformage, soit après refroidissement du matériau suite à ce thermoformage. Ces déformations et variations dimensionnelles résultent notamment d'étirements ou de rétractations localisés du matériau, et sont difficiles à contrôler et à anticiper. Elles conduisent au gauchissement d'un certain nombre de plateaux, devant être mis au rebut.

De plus, les nombreux échauffements et refroidissements que subissent de tels plateaux lors des cycles de stérilisation ont également pour effet de gauchir notablement un certain nombre de ces plateaux, jusqu'à les rendre inutilisables.

Par ailleurs, les dimensions dans lesquelles lesdites ébauches sont actuellement disponibles sont limitées et ne correspondent pas particulièrement aux dimensions usuelles des plateaux de stérilisation. Il en résulte la nécessité de découper ces ébauches aux dimensions voulues, ce qui complexifie la fabrication de ces plateaux et engendre des chutes en quantités non négligeables. Ces chutes sont d'autant plus indésirables que la matière employée pour réaliser de tels plateaux est relativement coûteuse.

En outre, les différentes natures de matières synthétiques dans lesquelles ces plaques sont actuellement disponibles ne sont pas optimales pour la fabrication de plateaux de stérilisation et le nombre de couleurs dans lesquelles ces mêmes ébauches sont disponibles est très restreint.

La présente invention vise à remédier à l'ensemble de ces inconvénients pratiques essentiels.

A cet effet, le procédé qu'elle concerne comprend les opérations successives suivantes :

- chargement de la matière synthétique sous forme divisée, notamment sous forme de granulés, dans un dessicateur et séchage de cette matière de manière à extraire l'humidité résiduelle qu'elle contient ;
- transfert de la matière à l'état fondu, sans contact avec l'air ambiant, vers une unité de moulage ; cette unité comprend une première et une deuxième parties de moule, chacune de ces parties de moule présentant une face qui délimite l'une des deux faces principales de la cavité de moulage correspondant aux deux faces principales de l'objet plat à obtenir; la première partie de moule comporte au moins une buse d'injection de ladite matière synthétique, débouchant directement au niveau de la face précitée de cette partie de moule qui délimite l'une des deux faces principales de la cavité de moulage ; ladite deuxième partie de moule est mobile en rapprochement et en écartement de la première partie de moule selon une direction parallèle à l'axe d'injection de la matière synthétique, en pouvant être placée par rapport à cette première partie de moule selon au moins trois positions, à savoir : (i) une position d'ouverture du moule, permettant le démoulage de l'objet plat obtenu, (ii) une position de fermeture du moule, permettant le moulage de cet objet et (iii) une position intermédiaire, proche de ladite position de fermeture de moule, dans laquelle la face précitée de cette deuxième partie de moule qui délimite l'autre face principale de la cavité de moulage se trouve en regard de l'orifice de la buse et est à même de permettre, par fluage de la matière synthétique le long d'elle-même, une pré-répartition de cette matière dans la cavité de moulage lors de l'injection;
- injection de cette matière dans la cavité de moulage au moyen de ladite ou desdites buses, alors que lesdites parties de moule sont dans la position intermédiaire précitée ;

25

- déplacement desdites parties de moule dans ladite position de fermeture de moule, de manière à réaliser une répartition complète de la matière synthétique dans la cavité du moule, et
 - démoulage, après refroidissement, de l'objet plat obtenu.
- Le procédé selon l'invention permet ainsi de sécher et de fondre 35 la matière synthétique puis d'injecter cette matière directement dans le fond de la cavité, à proximité de la face de ladite deuxième partie de moule

située en regard de l'orifice de chaque buse, et par conséquent d'opérer un fluage latéral de la matière en fusion pour obtenir la pré-répartition de celle-ci dans le moule; la répartition complète de la matière est opérée par le déplacement des deux parties de moule jusqu'en position de fermeture, ce qui se produit sur une durée brève compte tenu de la course limitée de ce déplacement; la matière n'a donc pas le temps de refroidir et la pression devant être exercée sur cette matière pour réaliser ladite répartition complète est faible, de sorte qu'il n'existe pas ou très peu de contraintes internes dans la matière suite à ce moulage.

Il a été découvert par la demanderesse que les variations dimensionnelles précitées des ébauches obtenues par extrusion résultaient des contraintes internes importantes que le procédé d'extrusion génère dans le matériau, ces contraintes se libérant lors des opérations de thermoformage ou lors des cycles successifs de stérilisation.

10

15

20

25

30

35

La demanderesse a également constaté que le taux d'humidité dans la matière synthétique des ébauches obtenues par extrusion était important, du fait que le procédé d'extrusion comprend des opérations de traitement de cette matière à l'air libre, et que ce taux d'humidité influait de manière néfaste, pour l'application industrielle envisagée, sur l'apparition des contraintes et variations dimensionnelles précitées.

En outre, le procédé d'extrusion impose l'une des dimensions des plaques tandis que le procédé selon l'invention permet de prévoir une cavité de moulage ayant des dimensions précisément adaptées à celles des plateaux à obtenir. Toutes les opérations de découpe ultérieure des ébauches sont éliminées, de même que les chutes de matériau.

De préférence, le procédé selon l'invention comprend l'opération consistant à opérer, après moulage, une diminution progressive de la température de l'objet moulé.

La matière synthétique de cet objet ne subit donc pas un refroidissement brutal après moulage, comme cela se produit avec la technique d'extrusion. Cette absence de refroidissement brutal contribue notablement à éliminer, ou tout au moins à réduire fortement, les contraintes internes existant dans la matière synthétique.

Le procédé selon l'invention permet en outre l'utilisation de natures de matériau très variées, dont certaines s'avèrent particulièrement

adaptées à la fabrication de plateaux de stérilisation, ainsi que de pigments permettant de donner des couleurs variées à la matière synthétique utilisée.

L'invention concerne également la machine de mise en oeuvre du procédé décrit ci-dessus.

Cette machine comprend:

5

10

20

25

30

35

 au moins un dessicateur permettant de sécher par chauffage la matière synthétique sous forme divisée, notamment sous forme de granulés, de manière à extraire l'humidité résiduelle que contient cette matière;

- au moins une unité de transfert de la matière synthétique fondue, sans contact avec l'air ambiant, vers une unité de moulage ; et

- au moins une unité de moulage ; chaque unité comprend une première et une deuxième parties de moule, chacune de ces parties de moule présentant une face qui délimite l'une des deux faces principales de la cavité de moulage correspondant aux deux faces principales de l'objet plat à obtenir; la première partie de moule comporte au moins une buse d'injection de ladite matière synthétique, débouchant directement au niveau de la face précitée de cette partie de moule qui délimite l'une des deux faces principales de la cavité de moulage ; ladite deuxième partie de moule est mobile en rapprochement et en écartement de ladite première partie de moule selon une direction parallèle à l'axe d'injection de la matière synthétique, en pouvant être placée par rapport à cette première partie de moule selon au moins trois positions, à savoir : (i) une position d'ouverture du moule, permettant le démoulage de l'objet plat obtenu, (ii) une position de fermeture du moule, permettant le moulage de cet objet et (iii) une position intermédiaire, proche de ladite position de fermeture de moule, dans laquelle la face précitée de cette deuxième partie de moule qui délimite l'autre face principale de la cavité de moulage se trouve en regard de l'orifice de la buse et est à même de permettre, par fluage de la matière synthétique le long d'elle-même, une pré-répartition de cette matière dans la cavité de moulage lors de l'injection.

Avantageusement, chaque buse d'injection est démontable.

Une buse reliée à une unité de transfert pour l'injection d'une matière synthétique déterminée peut ainsi être remplacée, par simple démontage, par une buse reliée à une autre unité de transfert pour l'injection d'une autre matière synthétique; étant donné que l'orifice de la

buse débouche immédiatement dans la cavité de moulage, il n'existe pas de matière résiduelle dans l'unité de moulage, de sorte que le simple démontage précité et le simple remplacement d'une buse par une autre permettent l'injection d'une matière synthétique différente.

Cette machine élimine toute modification d'outillage, toute opération de nettoyage et toute perte de matière, et permet le moulage d'objets dans des natures de matériau différentes, ou dans des couleurs de matériau très variées.

5

10

15

20

25

30

35

Avantageusement, la machine comprend des entretoises interchangeables permettant de déterminer la position relative des parties de moule précitées dans ladite position de fermeture.

L'interchangement de ces entretoises permet ainsi de régler facilement et rapidement l'épaisseur d'un objet à obtenir. En effet, plusieurs épaisseurs d'objets plats peuvent être recherchées selon les différents types de produits à obtenir, en particulier dans le cas de plateaux de stérilisation.

Pour sa bonne compréhension, l'invention est à nouveau décrite ci-dessous en référence au dessin schématique annexé représentant, à titre d'exemple non limitatif, une forme de réalisation préférée d'une unité de moulage que comprend la machine qu'elle concerne.

La figure 1 est une vue très simplifiée de cette unité, dans une position déterminée de deux parties de moule que comprend cette unité, et

la figure 2 est une vue similaire à la figure 1, dans une autre position de ces deux parties de moule.

Les figures représentent une unité de moulage 1 que comprend une machine de fabrication, par moulage, d'objets plats en matière synthétique. Ces objets plats sont notamment des ébauches sous forme de plaques destinées à être façonnées par thermoformage pour constituer des plateaux à alvéoles servant à supporter du matériel médical lors de la stérilisation de ce matériel.

Outre l'unité 1, cette machine comprend un dessicateur permettant de sécher par chauffage la matière synthétique sous forme de granulés, de manière à extraire l'humidité résiduelle que contient cette matière, et une unité de transfert de la matière synthétique fondue, sans contact avec l'air ambiant, vers l'unité de moulage 1. Ce dessicateur et

cette unité de transfert sont de type connu, et n'ont donc pas été représentés sur le dessin.

L'unité 1 comprend une première partie de moule 2 et une deuxième partie de moule 3.

La première partie de moule 2 est fixe et comprend une cavité de dimensions correspondant à celles de l'ébauche à obtenir ; le fond de cette cavité est délimité par une face 2a qui permet de mouler l'une des deux faces principales de cette ébauche, les autres faces 2b permettant de mouler les bords de cette ébauche.

La partie 2 comporte au moins une buse 5 d'injection de la matière synthétique, qui débouche directement au niveau de la face 2a.

Chaque buse 5 est démontable.

5

10

35

La deuxième partie de moule 3 comprend une protubérance 6 dimensionnée pour pouvoir être engagée dans la cavité délimitée par la partie 2 et pour former avec celle-ci la cavité de moulage de l'ébauche, la face d'extrémité 6a de cette protubérance 6 permettant de mouler l'autre des deux faces principales de l'ébauche.

La partie 3 est mobile en rapprochement et en écartement de la partie 2, selon une direction parallèle à l'axe d'injection de la matière 20 synthétique. Elle peut être placée par rapport à la partie 2 selon au moins trois positions, à savoir : (i) une position d'ouverture du moule (non représentée), permettant le démoulage de l'ébauche, (ii) une position de fermeture du moule, montrée à la figure 2, permettant le moulage de cette ébauche et (iii) une position intermédiaire, montrée à la figure 1, proche de ladite position de fermeture de moule, dans laquelle la face 6a se trouve en regard de l'orifice de la buse 5 et est à même de permettre une prérépartition de la matière synthétique dans la cavité de moulage lors de l'injection, par fluage de cette matière le long de cette face 6a.

Il apparaît en outre que la partie 3 comprend des entretoises 7 30 permettant de déterminer la position relative des parties de moule 2, 3 dans ladite position de fermeture. Ces entretoises 7 sont montées de manière interchangeable, notamment par des assemblages à queue d'arronde, pour permettre de régler facilement et rapidement l'épaisseur de l'ébauche à obtenir, plusieurs épaisseurs d'ébauche pouvant être recherchées selon les différents types de plateaux de stérilisation à obtenir.

En pratique, la matière synthétique est séchée dans le dessicateur par chauffage à 150°C pendant au moins cinq heures, ce qui provoque également sa fonte, puis est transférée à l'état fondu, sans contact avec l'air ambiant, vers l'unité de moulage 1.

Cette matière est alors injectée dans la cavité de moulage au moyen de ladite ou desdites buses 5, alors que lesdites parties de moule 2 et 3 sont dans la position intermédiaire précitée, comme le montre la figure 1. Cette injection se fait donc directement dans le fond de la cavité 5, à proximité de la face 6a, ce qui opère un fluage latéral de la matière en fusion pour obtenir la pré-répartition de celle-ci dans le moule.

5

10

20

25

30

Les parties de moule 2, 3 sont ensuite déplacées dans ladite position de fermeture de moule, montrée à la figure 2, de manière à réaliser une répartition complète de la matière synthétique dans la cavité. Cette répartition est opérée rapidement compte tenu de la faible course de déplacement nécessaire pour passer de ladite position intermédiaire à ladite position de fermeture, de sorte que la matière synthétique n'a pas le temps de refroidir et que la pression devant être exercée sur cette matière pour réaliser ladite répartition complète est faible.

Après refroidissement de l'ébauche obtenue, les parties de moule 2 et 3 sont écartées l'une de l'autre pour permettre le démoulage de cette ébauche.

L'invention fournit ainsi un procédé et une machine de fabrication, par moulage, d'objets plats en matière synthétique, qui permettent de remédier aux inconvénients des techniques antérieures. Les ébauches ou objets plats obtenus n'ont que peu ou pas de contraintes internes et ne subissent donc pas de déformations ou de variations dimensionnelles soit lors de leur échauffement en vue de leur thermoformage, soit lors de ce thermoformage, soit après refroidissement du matériau suite à ce thermoformage, soit lors des cycles de stérilisation des plateaux façonnés à partir de ces ébauches; les ébauches peuvent être fabriquées dans des dimensions correspondant précisément aux dimensions usuelles des plateaux de stérilisation, et ces ébauches peuvent être fabriquées dans des natures de matières synthétiques optimales pour la fabrication de plateaux de stérilisation.

REVENDICATIONS

- 1 Procédé de fabrication, par moulage, d'objets plats en matière synthétique, notamment d'ébauches sous forme de plaques destinées à être façonnées par thermoformage, caractérisé en ce qu'il comprend les opérations successives suivantes :
- chargement de la matière synthétique sous forme divisée, notamment sous forme de granulés, dans un dessicateur et séchage de cette matière de manière à extraire l'humidité résiduelle qu'elle contient;
- transfert de la matière à l'état fondu, sans contact avec l'air ambiant, vers une unité de moulage (1); cette unité (1) comprend une 10 première et une deuxième parties de moule (2, 3), chacune de ces parties de moule (2, 3) présentant une face (2a, 6a) qui délimite l'une des deux faces principales de la cavité de moulage correspondant aux deux faces principales de l'objet plat à obtenir; la première partie de moule (2) comporte au moins une buse (5) d'injection de ladite matière synthétique, débouchant directement au niveau de la face (2a) précitée de cette partie de moule (2) qui délimite l'une des deux faces principales de la cavité de moulage ; ladite deuxième partie de moule (3) est mobile en rapprochement et en écartement de la première partie de moule (2) selon une direction parallèle à l'axe d'injection de la matière synthétique, en pouvant être 20 placée par rapport à cette première partie de moule (2) selon au moins trois positions, à savoir : (i) une position d'ouverture du moule, permettant le démoulage de l'objet plat obtenu, (ii) une position de fermeture du moule, permettant le moulage de cet objet et (iii) une position intermédiaire, proche de ladite position de fermeture de moule, dans laquelle la face (6a) précitée 25 de cette deuxième partie de moule (3) qui délimite l'autre face principale de la cavité de moulage se trouve en regard de l'orifice de la buse (5) et est à même de permettre, par fluage de la matière synthétique le long d'elle-même, une pré-répartition de cette matière dans la cavité de moulage lors de l'injection; 30
 - injection de cette matière dans la cavité de moulage au moyen de ladite ou desdites buses (5), alors que lesdites parties de moule (2, 3) sont dans la position intermédiaire précitée;
- déplacement desdites parties de moule (2, 3) dans ladite
 position de fermeture de moule, de manière à réaliser une répartition complète de la matière synthétique dans la cavité du moule, et

- démoulage, après refroidissement, de l'objet plat obtenu.
- 2 Procédé selon la revendication 1, caractérisé en ce que le séchage s'opère à une température de 150°C pendant au moins cinq heures.
- 3 Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce qu'il comprend l'opération consistant à opérer, après moulage, une diminution progressive de la température de l'objet moulé.

5

- 4 Machine pour la mise en œuvre du procédé selon l'une des revendications 1 à 3, caractérisée en ce qu'elle comprend :
- au moins un dessicateur permettant de sécher par chauffage la matière synthétique sous forme divisée, notamment sous forme de granulés, de manière à extraire l'humidité résiduelle que contient cette matière ;
- au moins une unité de transfert de la matière synthétique fondue, sans contact avec l'air ambiant, vers une unité de moulage (1) ; et 15 - au moins une unité de moulage (1); chaque unité (1) comprend une première et une deuxième parties de moule (2, 3), chacune de ces parties de moule (2, 3) présentant une face (2a, 6a) qui délimite l'une des deux faces principales de la cavité de moulage correspondant aux deux faces principales de l'objet plat à obtenir ; la première partie de moule 20 (2) comporte au moins une buse, (5) d'injection de ladite matière synthétique, débouchant directement au niveau de la face (2a) précitée de cette partie de moule (2) qui délimite l'une des deux faces principales de la cavité de moulage; ladite deuxième partie de moule (3) est mobile en rapprochement et en écartement de ladite première partie de moule (2) 25 selon une direction parallèle à l'axe d'injection de la matière synthétique, en pouvant être placée par rapport à cette première partie de moule (2) selon au moins trois positions, à savoir : (i) une position d'ouverture du moule, permettant le démoulage de l'objet plat obtenu, (ii) une position de fermeture du moule, permettant le moulage de cet objet et (iii) une position intermédiaire, proche de ladite position de fermeture de moule, dans laquelle la face (6a) précitée de cette deuxième partie de moule (3) qui délimite l'autre face principale de la cavité de moulage se trouve en regard de l'orifice de la buse (5) et est à même de permettre, par fluage de la matière synthétique le long d'elle-même, une pré-répartition de cette

matière dans la cavité de moulage lors de l'injection.

- 5 Machine selon la revendication 4, caractérisée en ce que chaque buse d'injection (5) est démontable.
- 6 Machine selon la revendication 4 ou la revendication 5,
 caractérisée en ce qu'elle comprend des entretoises (7) interchangeables
 permettant de déterminer la position relative des parties de moule (2, 3)
 dans ladite position de fermeture.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.