REFERENCE NO.

16

In re application of: Lawrence R. McGee, et al.

Application No.: 10/719,997 Filing Date: November 20, 2003

Attorney Docket No.: 018781-006330US

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07C 235/56, 217/84, C07D 263/32,
C07C 311/21, A61K 31/165, 31/135,
31/18, 31/395

A1

(11) International Publication Number:

WO 99/55663

(43) International Publication Date:

4 November 1999 (04.11.99)

(21) International Application Number:

PCT/US99/09005

(22) International Filing Date:

26 April 1999 (26.04.99)

(30) Priority Data:

60/083.385

29 April 1998 (29.04.98)

US

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SAUNDERS, Jeffrey [US/US]; 164 Parker Street, Acton, MA 01720 (US). ELBAUM, Daniel [US/US]; 25 Sherrin Road, Newton, MA 02462 (US). NOVAK, Perry [US/US]; 35 Debbie Lane, Milford, MA 01757 (US). NAEGELE, Douglas [US/US]; 1010 23rd Street N.W., Washington, DC 20037 (US). BETHIEL, Scott [US/US]; 20 Meadowbrook Road, Bedford, MA 01730 (US). RONKIN, Steven [US/US]; Apartment #14, 39 Bridge Street, Watertown, MA 02472 (US). BADIA, Michael [US/US]; 20 Meadowbrook Road, Bedford, MA 01730 (US). FRANK, Catharine [US/US]; 16 Meer Drive, Langhorne, PA 19053 (US). STAMOS, Dean [US/US]; 28 Londonderry Avenue, Framingham, MA 01701 (US).

WALTERS, William [US/US]; 5803 Stearns Hill Road, Waltham, MA 02154 (US). PEARLMAN, David [US/US]; 150 Jason Street, Arlington, MA 02476 (US).

- (74) Agents: HALEY, James, F., Jr. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).
- (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: INHIBITORS OF IMPDH ENZYME

(57) Abstract

The present invention relates to compounds which inhibit IMPDH. This invention also relates to pharmaceutical compositions comprising these compounds. The compounds and pharmaceutical compositions of this invention are particularly well suited for inhibiting IMPDH enzyme activity and consequently, may be advantageously used as therapeutic agents for IMPDH mediated processes. This invention also relates to methods for inhibiting the activity of IMPDH using the compounds of this invention and related compounds.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	\$1!-
AM	Armenia	FI	Finland	LT	Lithuania		Slovenia
AT	Austria	FR	France	LU	Luxembourg	SK	Slovakia
ΑÜ	Australia	GA	Gabon	LV	Latvia	SN	Senegal
AZ	Azerbaijan	GB	United Kingdom	MC		SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Monaco	TD	Chad
BB	Barbados	GH	Ghana		Republic of Moldova	TG	Togo
BE	Belgium	GN	Guinea	MG	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR		MK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria		Greece		Republic of Macedonia	TR	Turkey
BJ	Benin	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BR	Brazil	IE	Ireland	MN	Mongolia	UA	Ukraine
BY		IL 	Israel	MR	Mauritania	UG	Uganda
	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		241104040
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	. LR	Liberia	SG	Singapore		
				50	omemore		

WO 99/55663 PCT/US99/09005

INHIBITORS OF IMPDH ENZYME

TECHNICAL FIELD OF THE INVENTION

The present invention relates to compounds

which inhibit IMPDH. This invention also relates to
pharmaceutical compositions comprising these compounds.

The compounds and pharmaceutical compositions of this
invention are particularly well suited for inhibiting
IMPDH enzyme activity and consequently, may be
advantageously used as therapeutic agents for IMPDH
mediated processes. This invention also relates to
methods for inhibiting the activity of IMPDH using the
compounds of this invention and related compounds.

15 BACKGROUND OF THE INVENTION

20

25

The synthesis of nucleotides in organisms is required for the cells in those organisms to divide and replicate. Nucleotide synthesis in mammals may be achieved through one of two pathways: the *de novo* synthesis pathway or the salvage pathway. Different cell types use these pathways to a different extent.

Inosine-5'-monophosphate dehydrogenase (IMPDH; EC 1.1.1.205) is an enzyme involved in the *de novo* synthesis of guanosine nucleotides. IMPDH catalyzes the NAD-dependent oxidation of inosine-5'-monophosphate (IMP) to xanthosine-5'-monophosphate (XMP) [Jackson R.C. et. al., Nature, 256, pp. 331-333, (1975)].

30

IMPDH is ubiquitous in eukaryotes, bacteria and protozoa [Y. Natsumeda & S.F. Carr, Ann. N.Y. Acad., 696, pp. 88-93 (1993)]. The prokaryotic forms share 30-40% sequence identity with the human enzyme. Regardless of 5 species, the enzyme follows an ordered Bi-Bi reaction sequence of substrate and cofactor binding and product release. First, IMP binds to IMPDH. This is followed by the binding of the cofactor NAD. The reduced cofactor, NADH, is then released from the product, followed by the 10 product, XMP [S.F. Carr et al., J. Biol. Chem., 268, pp. 27286-90 (1993); E.W. Holmes et al., Biochim. Biophys. Acta, 364, pp. 209-217 (1974)]. This mechanism differs from that of most other known NAD-dependent dehydrogenases, which have either a random order of substrate addition or require NAD to bind before the substrate.

Two isoforms of human IMPDH, designated type I and type II, have been identified and sequenced [F.R. Collart and E. Huberman, J. Biol. Chem., 263, pp. 15769-20 15772, (1988); Y. Natsumeda et. al., <u>J. Biol. Chem.</u>, 265, pp. 5292-5295, (1990)]. Each is 514 amino acids, and they share 84% sequence identity. Both IMPDH type I and type II form active tetramers in solution, with subunit molecular weights of 56 kDa [Y. Yamada et. al., 25 Biochemistry, 27, pp. 2737-2745 (1988)].

The de novo synthesis of guanosine nucleotides, and thus the activity of IMPDH, is particularly important in B and T-lymphocytes. These cells depend on the de novo, rather than salvage pathway to generate sufficient levels of nucleotides necessary to initiate a proliferative response to mitogen or antigen [A.C. Allison et. al., Lancet II, 1179, (1975) and A.C. Allison

et. al., <u>Ciba Found. Symp.</u>, 48, 207, (1977)]. Thus, IMPDH is an attractive target for selectively inhibiting the immune system without also inhibiting the proliferation of other cells.

Immunosuppression has been achieved by inhibiting a variety of enzymes including for example, the phosphatase calcineurin (inhibited by cyclosporin and FK-506); dihydroorotate dehydrogenase, an enzyme involved in the biosynthesis of pyrimidines (inhibited by leflunomide and brequinar); the kinase FRAP (inhibited by rapamycin); and the heat shock protein hsp70 (inhibited by deoxyspergualin). [See B. D. Kahan, Immunological Reviews, 136, pp. 29-49 (1993); R. E. Morris, The Journal of Heart and Lung Transplantation, 12(6), pp. S275-S286 (1993)].

Inhibitors of IMPDH are also known. United States patents 5,380,879 and 5,444,072 and PCT publications WO 94/01105 and WO 94/12184 describe mycophenolic acid (MPA) and some of its derivatives as potent, uncompetitive, reversible inhibitors of human IMPDH type I (K_i=33 nM) and type II (K_i=9 nM). MPA has been demonstrated to block the response of B and T-cells to mitogen or antigen [A. C. Allison et. al., Ann. N. Y. Acad. Sci., 696, 63, (1993).

Immunosuppressants, such as MPA, are useful drugs in the treatment of transplant rejection and autoimmune diseases. [R. E. Morris, <u>Kidney Intl.</u>, 49, Suppl. 53, S-26, (1996)]. However, MPA is characterized by undesirable pharmacological properties, such as gastrointestinal toxicity and poor bioavailability. [L. M. Shaw, et. al., <u>Therapeutic Drug Monitoring</u>, 17, pp. 690-699, (1995)].

10

15

20

Nucleoside analogs such as tiazofurin, ribavirin and mizoribine also inhibit IMPDH [L. Hedstrom, et. al. <u>Biochemistry</u>, 29, pp. 849-854 (1990)]. These compounds, which are competitive inhibitors of IMPDH, suffer from lack of specificity to this enzyme.

Mycophenolate mofetil, a prodrug which quickly liberates free MPA in vivo, was recently approved to prevent acute renal allograft rejection following kidney transplantation. [L. M. Shaw, et. al., Therapeutic Drug Monitoring, 17, pp. 690-699, (1995); H. W. Sollinger, Transplantation, 60, pp. 225-232 (1995)]. clinical observations, however, limit the therapeutic potential of this drug. [L. M. Shaw, et. al., Therapeutic Drug Monitoring, 17, pp. 690-699, (1995)]. MPA is rapidly metabolized to the inactive glucuronide in vivo. [A.C. Allison and E.M. Eugui, Immunological Reviews, 136, pp. 5-28 (1993)]. The glucuronide then undergoes enterohepatic recycling causing accumulation of MPA in the gastrointestinal tract where it cannot exert its IMPDH inhibitory activity on the immune system. effectively lowers the drug's in vivo potency, while increasing its undesirable gastrointestinal side effects.

More recently, IMPDH inhibitors of a different class have been described in PCT publication WO 97/40028.

It is also known that IMPDH plays a role in other metabolic events. Increased IMPDH activity has been observed in rapidly proliferating human leukemic cell lines and other tumor cell lines, indicating IMPDH as a target for anti-cancer as well as immunosuppressive chemotherapy [M. Nagai et. al., Cancer Res., 51, pp. 3886-3890, (1991)]. IMPDH has also been shown to play a role in the proliferation of smooth muscle cells,

15

25

indicating that inhibitors of IMPDH, such as MPA or rapamycin, may be useful in preventing restenosis or other hyperproliferative vascular diseases [C. R. Gregory et al., <u>Transplantation</u>, 59, pp. 655-61 (1995); PCT publication WO 94/12184; and PCT publication WO 94/01105].

Additionally, IMPDH has been shown to play a role in viral replication in some viral cell lines. [S.F. Carr, <u>J. Biol. Chem.</u>, 268, pp. 27286-27290 (1993)].

Analogous to lymphocyte and tumor cell lines, the implication is that the *de novo*, rather than the salvage, pathway is critical in the process of viral replication.

Thus, there remains a need for potent IMPDH inhibitors with improved pharmacological properties. Such inhibitors would have therapeutic potential as immunosuppressants, anti-cancer agents, anti-vascular hyperproliferative agents, anti-inflammatory agents, antifungal agents, antipsoriatic and anti-viral agents.

20 <u>SUMMARY OF THE INVENTION</u>

The present invention provides compounds, and pharmaceutically acceptable derivatives thereof, that are useful as inhibitors of IMPDH. These compounds can be used alone or in combination with other therapeutic or prophylactic agents, such as anti-virals, anti-inflammatory agents, antibiotics, and immunosuppressants for the treatment or prophylaxis of transplant rejection and autoimmune disease.

Additionally, these compounds are useful, alone or in combination with other agents, as therapeutic and prophylactic agents for antiviral, anti-tumor, anticancer, anti-inflammatory agents, antifungal agents,

antipsoriatic immunosuppressive chemotherapy and restenosis therapy regimens.

The invention also provides pharmaceutical compositions comprising the compounds of this invention, as well as multi-component compositions comprising additional IMPDH compounds together with an immunosuppressant. The invention also provides methods of using the compounds of this invention, as well as other related compounds, for the inhibition of IMPDH.

10

15

5

DETAILED DESCRIPTION OF THE INVENTION

In order that the invention herein described may be more fully understood, the following detailed description is set forth. In the description, the following abbreviations are used:

Designation	Reagent or Fragment
Ac	acetyl
Me	methyl
Et	ethyl
Bn	benzyl
CDI	carbonyldiimidazole
DIEA	diisopropylethylamine
DMAP	dimethylaminopyridine
DMF	dimethylformamide
DMSO	dimethylsulfoxide
EDC	1-(3-dimethylaminopropyl)-3-
	ethylcarbodiimide hydrochloride
EtOAc	ethyl acetate
THF	tetrahydrofuran
	Ac Me Et Bn CDI DIEA DMAP DMF DMSO EDC

30

The following terms are employed herein:

10

15

20

Unless expressly stated to the contrary, the terms " $-SO_2-$ " and " $-S(O)_2-$ " as used herein refer to a sulfone or sulfone derivative (i.e., both appended groups linked to the S), and not a sulfinate ester.

The terms "halo" or "halogen" refer to a radical of fluorine, chlorine, bromine or iodine.

The term "immunosuppressant" refers to a compound or drug which possesses immune response inhibitory activity. Examples of such agents include cyclosporin A, FK506, rapamycin, leflunomide, deoxyspergualin, prednisone, azathioprine, mycophenolate mofetil, OKT3, ATAG, interferon and mizoribine.

The term "interferon" refers to all forms of interferons, including but not limited to alpha, beta and gamma forms.

IMPDH-mediated disease refers to any disease state in which the IMPDH enzyme plays a regulatory role in the metabolic pathway of that disease. Examples of IMPDH-mediated disease include transplant rejection and autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, juvenile diabetes, asthma, and inflammatory bowel disease, as well as inflammatory diseases, cancer, viral replication diseases and vascular diseases.

For example, the compounds, compositions and methods of using them of this invention may be used in the treatment of transplant rejection (e.g., kidney, liver, heart, lung, pancreas (islet cells), bone marrow, cornea, small bowel and skin allografts and heart valve xenografts), rheumatoid arthritis, multiple sclerosis, juvenile diabetes, asthma, inflammatory bowel disease (Crohn's disease, ulcerative colitis), lupus, diabetes,

mellitus myasthenia gravis, psoriasis, dermatitis, eczema, seborrhea, pulmonary inflammation, eye uveitis, hepatitis, Grave's disease, Hashimoto's thyroiditis, Behcet's or Sjorgen's syndrome (dry eyes/mouth),

- pernicious or immunohaemolytic anaemia, idiopathic adrenal insufficiency, polyglandular autoimmune syndrome, and glomerulonephritis, scleroderma, lichen planus, viteligo (depigmentation of the skin), autoimmune thyroiditis, and alveolitis, inflammatory diseases such
- as osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma and adult respiratory distress syndrome, as well as in the treatment of cancer and tumors, such as solid tumors, lymphomas and leukemia, vascular diseases, such as restenosis, stenosis and atherosclerosis, and DNA and RNA viral replication diseases, such as retroviral diseases, and herpes.

Additionally, IMPDH enzymes are also known to be present in bacteria and thus may regulate bacterial growth. As such, the IMPDH-inhibitor compounds, compositions and methods described herein may be useful

compositions and methods described herein may be useful in treatment or prevention of bacterial infection, alone or in combination with other antibiotic agents.

The term "treating" as used herein refers to the alleviation of symptoms of a particular disorder in a patient or the improvement of an ascertainable measurement associated with a particular disorder. As used herein, the term "patient" refers to a mammal, including a human.

The terms "HBV", "HCV" and "HGV" refer to

hepatitis-B virus, hepatitis-C virus and hepatitis-G

virus, respectively.

According to one embodiment, the invention provides compounds of formula I:

wherein:

15

20

25

each R₆ is independently selected from hydrogen, C₁
C₄ straight or branched alkyl, C₂-C₄ straight or branched alkenyl or alkynyl, Ar-substituted-C₁-C₄ straight or branched alkyl, or Ar-substituted-C₂-C₄ straight or branched alkenyl or alkynyl; wherein

 $R_{\rm 6}$ is optionally substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino;

each R_{12} is independently selected from R_6 , $W-[C_1-C_4]$ straight or branched alkyl], $W-[C_2-C_4]$ straight or branched alkenyl or alkynyl], Ar-substituted- $[W-[C_1-C_4]$ straight or branched alkyl]], Ar-substituted- $[W-[C_2-C_4]$ straight or branched alkenyl or alkynyl]], O-Ar, $N(R_6)$ -Ar, S-Ar, S(O)-Ar, $S(O)_2-Ar$, S-C(O)H, $N(R_6)-C(O)H$, or O-C(O)H; wherein

W is 0-, 0-C(0)-, S-, S(0)-, S(0)₂-, S-C(0)-, N(R₆)-, or N(R₆)-C(0)-; and wherein

each R_{12} is optionally and independently substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino.

and

Y is selected from -O-, -S-, -C=C-, -C(R₁₂)₂-C(R₁₂)₂-, -C(R₁₂)₂- or -C(R₁₂)=C(R₁₂)-; wherein

each of R₁, R₂, R₃, R₄, R₅, R₇, R₈, R₉, R₁₀ and R₁₁ is independently selected from hydrogen, halo, hydroxy, cyano, nitro, amino, -C(O)NH₂, Z-[(C₁-C₄)-straight or branched alkyl], Z-[(C₂-C₄)-straight or branched alkenyl or alkynyl], Ar-substituted-[(C₁-C₄)-straight or branched alkyl], Ar-substituted-[(C₂-C₄)-straight or branched

- alkenyl or alkynyl], Ar, Q-Ar, [(C₁-C₄)-straight or branched alkyl]-Q-Ar, [(C₂-C₄)-straight or branched alkenyl or alkynyl]-Q-Ar, O-[(C₁-C₄)-straight or branched alkyl]-Q-Ar, O-[(C₂-C₄)-straight or branched alkyl]-Q-Ar, [C₁-C₄ straight or branched alkyl]-Q-R₁₃,
- [C₂-C₄ straight or branched alkenyl or alkynyl]-Q-R₁₃, or any two adjacent R groups may be taken together with the carbon atoms to which they are bound to form a 5 to 6-membered aromatic carbocyclic or heterocyclic ring; wherein
- Z is selected from a bond, O-, S-, $S(O)_2$ -, C(O)-, OC(O)-, or N(H)C(O)-;

Q is selected from O, -O-C(O)-, -C(O)-O-, -N(H)-C(O)-O-, -O-N(H)-C(O)-, -N(H)-C(O)-, -C(O)-N(H)-, -O-C(O)-N(H)-, or -C(O)-N(H)-O-;

Ar is selected from phenyl, 1-naphthyl, 2-naphthyl, indenyl, azulenyl, fluorenyl, anthracenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyraxolyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl,

isotriazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazinyl, 1,3,5-trithianyl, indolizinyl, indolyl,

20

25

isoindolyl, 3H-indolyl, indolinyl, benzo[b]furanyl,
benzo[b]thiophenyl, 1H-indazolyl, benzimidazolyl,
benzthiazolyl, purinyl, 4H-quinolizinyl, quinolinyl,
isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinyl,
cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl,
1,8-naphthyridinyl, peridinyl, carbazolyl, acridinyl,
phenazinyl, phenothiazinyl or phenoxazinyl or other
chemically feasible monocyclic, bicyclic or tricyclic
ring systems, wherein each ring consists of 5 to 7 ring
atoms and wherein each ring comprises 0 to 3 heteroatoms
independently selected from N, O and S;

 R_{13} is selected from $[C_1-C_{12}$ straight or branched alkyl] or, $[C_2-C_{12}$ straight or branched alkenyl or alkynyl]; wherein R_{13} is optionally substituted with 1 to 4 substituents independently selected from R_{14} or R_{15} , wherein

each R_{14} is a monocyclic or a bicyclic ring system consisting of 3 to 7 members per ring, wherein said ring system optionally comprises up to 4 heteroatoms selected from N, O, or S; wherein a CH_2 adjacent to said N, O or S maybe substituted with C(0); and wherein R_{14} optionally comprises up to 2 substituents independently selected from (C_1-C_4) -straight or branched alkyl, (C_2-C_4) straight or branched alkenyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, $(CH_2)_n-R_{16}$, $-S-(CH_2)_n-R_{16}$, $-S(0)-(CH_2)_n-R_{16}$, $-S(0)_2-(CH_2)_n-R_{16}$, $-O-(CH_2)_n-R_{16}$, or $-N(R_{18})-(CH_2)_n-R_{16}$ wherein n is 0, 1 or 2;

 $R_{16} \text{ is selected from halogen, } -CN, -NO_2, -CF_3, -OCF_3, \\ -OH, -S-(C_1-C_4)-alkyl, -S(O)-(C_1-C_4)-alkyl, -S(O)_2-(C_1-C_4)-alkyl, -NH_2, -NH-(C_1-C_4)-alkyl, N((C_1-C_4)-alkyl)_2, COOH, \\ C(O)-O-(C_1-C_4)-alkyl \text{ or } O-(C_1-C_4)-alkyl; \text{ and}$

10

15

each R_{15} is independently selected from $-OR_{17}$, or $-N(R_{18})_{\,2}$;

 R_{17} is selected from hydrogen, $-(C_1-C_6)$ -straight alkyl, $-(C_1-C_6)$ -straight alkyl-Ar, $-C(0)-(C_1-C_6)$ -straight or branched alkyl, -C(0)-Ar, or $-(C_1-C_6)$ -straight alkyl-CN; and

each R_{18} is independently selected from $-(C_1-C_6)$ - straight or branched alkyl, $-(C_1-C_6)$ -straight or branched alkyl-Ar, $-(C_1-C_6)$ -straight alkyl-CN, $-(C_1-C_6)$ -straight alkyl-OH, $-(C_1-C_6)$ -straight alkyl-OR₁₇, -C(0)- (C_1-C_6) -straight or branched alkyl, -C(0)-Ar, $-S(0)_2$ - (C_1-C_6) -straight or branched alkyl, or $-S(0)_2$ -Ar

any alkyl, alkenyl or alkynyl group is optionally substituted with 1 to 3 independently selected halo groups; and

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, nitro, cyano, amino, (C_1-C_4) -straight or branched alkyl; $O-(C_1-C_4)$ -straight or branched alkyl; $O-(C_1-C_4)$ -

straight or branched alkyl, (C_2-C_4) -straight or branched alkenyl or alkynyl, or $O-(C_2-C_4)$ -straight or branched alkenyl or alkynyl; and

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally benzofused.

In addition, in these compounds, at least two of R_1 , R_2 , R_3 , R_4 , or R_5 is hydrogen;

no more than two of R_1 , R_2 , R_3 , R_4 , or R_5 comprises Ar;

at least two of R_7 , R_8 , R_9 , R_{10} or R_{11} is hydrogen; and no more than two of R_7 , R_8 , R_9 , R_{10} or R_{11} comprises Ar.

25

30

The compounds of this invention specifically exclude those wherein X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is $O-(C_1-C_4)-$ straight or branched alkyl, seven of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is hydrogen and the remaining two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are bound together to form a 5 to 6-membered aromatic carbocyclic or heterocyclic ring.

Also excluded are compounds wherein X is $-NH-S(O)_2- \text{ or } -S(O)_2-N(H)-, \text{ two of } R_1, R_2, R_3, R_4, R_5, R_7, \\ R_8, R_9, R_{10} \text{ or } R_{11} \text{ are } O-(C_1-C_4)-\text{straight or branched alkyl}, \\ \text{seven of } R_1, R_2, R_3, R_4, R_5, R_7, R_8, R_9, R_{10} \text{ or } R_{11} \text{ is} \\ \text{hydrogen and the remaining one of } R_1, R_2, R_3, R_4, R_5, R_7, \\ R_8, R_9, R_{10} \text{ or } R_{11} \text{ is } -NO_2, -CN \text{ or } -Ar.$

Another set of compounds excluded from the present invention are those wherein X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$, two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are $O-(C_1-C_4)$ -straight or branched alkyl, six of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is hydrogen and the remaining two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are both halo.

Yet another set of compounds excluded are those wherein X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is Ar and the remaining 9 of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are each hydrogen.

Another set of excluded compounds are those wherein X is -N(H)-C(O)-S- or -S-C(O)-N(H)-, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is -OH, eight of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are hydrogen and the remaining one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is halo; and those wherein X is -N(H)-C(O)-S- or -S-C(O)-N(H)-, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is

20

25

-OH, seven of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are hydrogen, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is $O-(C_1-C_4)$ -straight or branched alkyl and the remaining one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is halo or (C_1-C_4) -straight or branched alkyl.

The above-described exclusions from the compounds of this invention reflect compounds which are commercially available. However, those compounds are not known or suggested to inhibit IMPDH, nor have they ever been know or suggested to be formulated with a pharmaceutically acceptable adjuvant, carrier or excipient. Accordingly, these compounds are not excluded from aspects of this invention which involve any methods or compositions recited below.

The term "heterocyclic ring" as used herein refers to a ring which comprises 1 to 4 heteroatoms independently selected from N, O or S.

The terms "Ar-substituted- (C_1-C_4) -straight or branched alkyl" and "Ar-substituted- (C_2-C_4) -straight or branched alkenyl or alkynyl" denote that one or more Ar groups may be attached to the alkyl, alkenyl or alkynyl chain at any chemically feasible position on the chain, including the termini.

References to "[branched alkyl, alkenyl or alkynyl]-Ar" or "[branched alkyl, alkenyl or alkynyl]-Q-Ar" denote that an "Ar" or "Q-Ar" moiety is attached to one or more terminal ends of the branched alkyl, alkenyl or alkynyl chain.

According to a preferred embodiment X is selected from $-C(O)-N(R_6)-$, $-N(R_6)-C(O)-$, $-CH_2-N(R_6)-$, or $-N(R_6)-CH_2-$ or $-N(R_6)-C(O)-Y$. More preferably, X is

10

15

 $-N(R_6)-C(O)-Y$.

Most preferably X is $-N(R_6)-C(O)-C(R_{12})=C(R_{12})-.$ According to another preferred embodiment, R_1 is selected from H, (C_1-C_4) -straight or branched alkyl, OH, $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, OCF₃, halo,

 $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, OCF_3 , halo, cyano or $S-(C_1-C_4)$ -straight or branched alkyl. In an alternate preferred embodiment, R_1 is H when R_2 is not H.

 R_2 is preferably selected from H, (C_1-C_4) -straight or branched alkyl, Ar, $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, OCF₃, halo, cyano, C(O)NH₂ or S(O)₂- (C_1-C_4) -straight or branched alkyl. More preferably, R_2 is H.

 R_3 is preferably selected from H, Ar, cyano, O- $(C_1-C_4)-{\rm straight}$ or branched alkyl, O-Ar, S-(C_1-C_4)- straight or branched alkyl, CF_3 or OCF_3.

In another preferred embodiment, R_4 is selected from H, (C_1-C_4) -straight or branched alkyl, OH, O- (C_1-C_4) -straight or branched alkyl, O-Ar, OCF₃, halo, cyano or S- (C_1-C_4) -straight or branched alkyl.

 R_5 is preferably selected from H, $(C_1-C_4)-C_5$ straight or branched alkyl, Ar, $O-(C_1-C_4)-C_5$ straight or branched alkyl, O-Ar, OCF_3 , halo, cyano, $C(O)NH_2$ or $S(O)_2-(C_1-C_4)-C_5$ straight or branched alkyl. More preferably, R_5 is H.

According to another preferred embodiment, R_7 is selected from H, OH, OC(O)-(C_1 - C_4)-straight or branched alkyl, O-(C_1 - C_4)-straight or branched alkyl, O-Ar, amino, or N(H)C(O)-(C_1 - C_4)-straight or branched alkyl. Even more preferred is when R_7 is OH.

R₈ is preferably H, (C_1-C_4) -straight or branched alkyl, $O-(C_1-C_4)$ -straight or branched alkyl, or (C_1-C_4) -straight or branched alkyl-N(H)C(O)O-Ar.

10

According to another preferred embodiment, R_9 is selected from H, (C_1-C_4) -straight or branched alkyl, O- (C_1-C_4) -straight or branched alkyl, or R_9 is taken together with R_{10} and the carbon atoms to which they are bound to form a fused benzene ring. More preferred is when R_9 and R_{10} are taken together with the carbon atoms to which they are bound to form a fused benzene ring.

According to a further preferred embodiment, R_{10} is selected from H, (C_1-C_4) -straight or branched alkyl, O- (C_1-C_4) -straight or branched alkyl, or R_{10} is taken together with R_9 and the carbon atoms to which they are bound to form a fused benzene ring.

In another preferred embodiment, R_{11} is selected from H, OH, OC(O)-(C_1 - C_4)-straight or branched alkyl, O-15 (C_1 - C_4)-straight or branched alkyl, O-Ar, amino, or $N(H)C(O)-(C_1-C_4)$ -straight or branched alkyl. More preferably, R_{11} is H.

In yet another preferred embodiment, Q is -N(H)-C(O)-O-.

According to another embodiment, preferred compounds of the invention are listed in the table below.

	H ₃ C O H Br	H ₃ C O CH ₃	H ₃ C O _H
	103 103	104	105
1. Preferre	H ₃ C OH	H ₃ C O CH ₃	CH ₃

	•		1
pd Molecular Structure	Ho N	H ₃ C O N	H _{3C}
Cmpd 109		110	111
Cmpd Molecular Structure	H ₃ C O _H C _{H₂} C _{H₂}	T O O O O O O O O O O O O O O O O O O O	H C C C C C C C C C C C C C C C C C C C

<u> </u>	Cmpd Molecular Structure	Z Z	H ₃ C _O CH ₃	СР ₃
112 H ₃ C N CH ₃ O C C C C C C C C C C C C C C C C C C		D N O O O O O O O O O O O O O O O O O O	OHO N	

Molecular Structure	E	TO Z	₹ 0= 2
Cmpd	121 H ₃ C	122 H ₃ C	ES4 T T T T T T T T T T T T T T T T T T T
Molecular Structure	H ₃ C CH ₃		
Cmpd	1	120	

		- 21 -	
Molecular Structure	CH ₃		O N N N N N N N N N N N N N N N N N N N
Cmpd	127	128	129
pd Molecular Structure	F F P OH	O C H ₃	CH ₃ OH
Cmpd		 5	2

Cmpd Molecular Structure		134 O CH ₃	135 O N N N N N N N N N N N N N N N N N N N
Cmpd Molecular Structure	HO N	HO O N	CH ₃

Molecular Structure H ₃ C O O H	CH ₂	CH3 PE
139 139	140	14
Molecular Sinuture F O OH N O OH		H ₃ C O O O DEH
136 136	/81	9

Molecular Structure		H ₃ C _N	OH OH	
Cmpd	145	146	147	\dashv
Cmpd Molecular Structure	H ₃ C N N N N N N N N N N N N N N N N N N N		0= N = N = N = N = N = N = N = N = N = N	

_		- 25 -	
Molecular Structure	H ₃ C OH ₃	OCH ₃	CH ₃
Cmpd		152	153
Molecular Structure	CH ₃	H ₃ C O OH Br	CH ₃
Cmpd	148	149	150

Cmpd 157 Nolecular Structure 157 CH ₃ CH ₃		159 CH ₃ OH OH
Ablecular Structure 154 CH3 O OH N N N N N N N N N N N N N	155 P	2

Molecular Structure		H ₃ C OH OH	H ₃ C O N O H
Cmpd	163	164	165
Molecular Structure	H ₃ C O H	D N	HO N
Cmpd	<u> </u>		162

Cmpd Molecular Structure	HO-W N	CI CI CH3 HO CI CI CH3	HO CH S CH
Cmpd Molecular Structure	T O Z	CH ₃	See

d Molecular Structure	N N N N N N N N N N N N N N N N N N N		H_3C CH_3 N N H_3C N
Cmp	175		177
Molecular Structure	HO N O C C C C S	S CH ₃	H ₃ C O CH ₃
Cmpd	172	173	174

Cmpd Molecular Structure 181 CH ₃ HO Cl CH ₃ CH ₃	182 OH3 N	183 ON N
Cmpd 178 CH3 CH3 Nolecular Structure PH3C OH 170	H ₃ C O H	H O N N N N N N N N N N N N N N N N N N

Cmpd Molecular Structure	CH ₃	H ₃ C C H ₃	
Molecular Structure	184 0 CH ₃ 1 CH ₃ 1 CH ₃ 1 CH ₃	TO Z	186 GH ₃ CH ₃

Cmpd	Molecular Structure	Cmpd	Molecular Structure
	но	194	O CH ₃
	H ₃ C CH ₃	195	O CH ₃
192	ОН	196	O CH3
193	OH OH	197	СH ₃

Cmpd	Molecular Structure	Cmnd	Mala 1 O
198		Cmpd	
	H ₃ C CH ₃	202	H ₃ C OH
199	CH ₃	203	Вг ОН
200	CH ₃	204	Вг
201	Br OH OH		

Cmpd Molecular Structure 304	305 CI CH ₃	306 H ₃ C N S O O O O O O O O O O O O O O O O O O
	301 N	302 H ₃ C O III

Ompd Molecular Structure	312 H ₃ C O N N N N N N N N N N N N N N N N N N	H ₃ C B ₁ B ₁ C B ₂ C B ₃ C C C C C C C C C
Molecular Structure OH E OH OH OH OH OH OH OH OH	H ₃ C O S - N - 20 CH ₃ O - N - 20	H ₃ C O CH ₃
S S S	၁၉	309

Cmpd Molecular Structure 314 H ₃ C-0 N Column Structure	315 H.C. O. S. N. C.	0:	H ₃ C O CH ₃
Cmpd Molecular Structure	311 H ₃ C O O O O O O O O O O O O O O O O O O O	316	H ₃ C O C C C C C C C C C C C C C C C C C C

Cmpd Molecular Structure 321	ID HO O OH OH	N S O OH OTHER CHASE	BR CH ₃
Cmpd Molecular Structure 317 0 0 N→ O	O _E H	Br S NH 2 NH 2 CH 3 CH 3	Br

Cmpd Molecular Structure	HO N S O O O O O O O O O O O O O O O O O	CH ₃	CH ₃
Cmpd Molecula	325	7-1	0 1 ×

The compounds of this invention may contain one or more asymmetric carbon atoms and thus may occur as racemates and racemic mixtures, single enantiomers, diastereomeric mixtures and individual diastereomers.

5 All such isomeric forms of these compounds are expressly included in the present invention. Each stereogenic carbon may be of the R or S configuration.

envisioned by this invention are only those that result

in the formation of stable compounds. The term "stable",
as used herein, refers to compounds which possess
stability sufficient to allow manufacture and which
maintains the integrity of the compound for a sufficient
period of time to be useful for the purposes detailed

herein (e.g., therapeutic or prophylactic administration
to a mammal or for use in affinity chromatography
applications). Typically, such compounds are stable at a
temperature of 40°C or less, in the absence of moisture or
other chemically reactive conditions, for at least a

week.

As used herein, the compounds of this invention, are defined to include pharmaceutically acceptable derivatives or prodrugs thereof. A "pharmaceutically acceptable derivative or prodrug" means any pharmaceutically acceptable salt, ester, salt of an ester, or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention. Particularly favored derivatives and prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally

administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.

Preferred prodrugs include derivatives where a group which enhances aqueous solubility or active transport through the gut membrane is appended to the structure of the compounds of this invention.

Pharmaceutically acceptable salts of the

compounds of this invention include those derived from
pharmaceutically acceptable inorganic and organic acids
and bases. Examples of suitable acid salts include
acetate, adipate, alginate, aspartate, benzoate, benzene
sulfonate, bisulfate, butyrate, citrate, camphorate,

- camphor sulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate,
- 20 methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, pamoate, pectinate, persulfate, 3-phenyl-propionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosylate and undecanoate. Base salts include ammonium salts, alkali metal salts, such as
- sodium and potassium salts, alkaline earth metal salts, such as calcium and magnesium salts, salts with organic bases, such as dicyclohexylamine salts, N-methyl-D-glucamine, and salts with amino acids such as arginine, lysine, and so forth.
- Also, the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride,

bromides and iodides; dialkyl sulfates, such as dimethyl, diethyl, dibutyl and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides, such as benzyl and phenethyl bromides and others. Water or oil-soluble or dispersible products are thereby obtained.

The compounds of this invention may be synthesized using conventional techniques.

Advantageously, these compounds are conveniently synthesized from readily available starting materials.

In general, compounds of this invention are conveniently obtained via methods illustrated in Scheme 1 below:

$$\begin{array}{c} R_{3} \stackrel{R_{2}}{\underset{R_{4}}{\longleftarrow}} R_{1} \\ R_{4} \stackrel{R_{7}}{\underset{R_{5}}{\longleftarrow}} R_{1} \\ R_{11} \stackrel{R_{7}}{\underset{R_{10}}{\longleftarrow}} R_{8} \\ \end{array} \begin{array}{c} \text{couple} \\ R_{3} \stackrel{R_{2}}{\underset{R_{1}}{\longleftarrow}} R_{1} \\ R_{11} \stackrel{R_{7}}{\underset{R_{10}}{\longleftarrow}} R_{8} \\ \end{array}$$

The coupling step indicated in Scheme 1 was used to produce the benzamide, arylacetamide, sulfonamide, carbamate and thiocarbamate compounds of this invention.

Materials used for coupling and reduction are indicated below:

10

20

For benzamide synthesis, A in the initial step was $-N(H)R_6$ and B was -C(0)OH or -C(0)Cl. The coupling was performed in the presence of EDC, HOAt and CH_3CN .

For arylacetamide synthesis, A in the initial step was $-N(H)R_6$ and B was -Y-C(0)OH or -Y-C(0)Cl. The coupling was performed in the presence of EDC, CH_2Cl_2 and DMAP.

For sulfonamide synthesis, A in the initial step was $N(H)R_6$ and B was $S(O)_2Cl$. The coupling was performed in the presence of TEA and CH_2Cl_2 .

For carbamate synthesis, A in the initial step was $N(H)R_6$ and B was OC(O)Cl. The coupling was performed in the presence of TEA and CH_2Cl_2 .

For thiocarbamate synthesis, A in the initial step was NC(0) and B was SH. The coupling was performed in the presence of DMAP and CH_2Cl_2 .

The reduction step indicated in scheme 1 was used to produce the benzyl amines of this invention. In the coupled molecule A'-B' was $N(R_6)-C(O)$ and reduction was carried out in the presence of $BH_3 \cdot THF/THF$.

The above reactions were carried out at room temperature for 5 hours with constant shaking.

Once synthesized, compounds were purified by solid phase extraction (SPE) on a bed of Varian DEA and

Varian SCX sorbents in a 2:1 ratio (w/w): 180 mg was packed into 1 mL cartridges.

The procedure is as follows:

Event	Volume	Flow rate
condition sorbent	1.5 ml	3 mL/min
load and collect	0.9 ml	3 mL/min
elute	1.5 ml	1 mL/min

5 The collected solution contained product at >95% purity (HPLC: 210 nm) with traces of O-acylated impurity. Yields were typically 8-12 mg.

As can be appreciated by the skilled artisan, the above synthetic schemes are not intended to comprise a comprehensive list of all means by which the compounds described and claimed in this application may be synthesized. Further methods will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps described above may be performed in an alternate sequence or order to give the desired compounds.

The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.

The novel compounds of the present invention are excellent ligands for IMPDH. Accordingly, these compounds are capable of targeting and inhibiting IMPDH

enzyme. Inhibition can be measured by various methods, including, for example, IMP dehydrogenase HPLC assays (measuring enzymatic production of XMP and NADH from IMP and NAD) and IMP dehydrogenase spectrophotometric assays (measuring enzymatic production of NADH from NAD). [See C. Montero et al., Clinica Chimica Acta, 238, pp. 169-178 (1995)].

Compositions of this invention comprise a compound of this invention or a salt thereof; an additional agent selected from an immunosuppressant, an 10 anti-cancer agent, an anti-viral agent, anti-inflammatory agent, antifungal agent, antibiotic, or an anti-vascular hyperproliferation compound; and any pharmaceutically acceptable carrier, adjuvant or vehicle. Alternate compositions of this invention comprise a compound of 15 this invention or a salt thereof; and a pharmaceutically acceptable carrier, adjuvant or vehicle. composition may optionally comprise an additional agent selected from an immunosuppressant, an anti-cancer agent, 20 an anti-viral agent, anti-inflammatory agent, antifungal agent, antibiotic, or an anti-vascular hyperproliferation compound. Preferably, the compositions of this invention are pharmaceutical compositions.

The term "pharmaceutically acceptable carrier or adjuvant" refers to a carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical

compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as $d\alpha$ -tocopherol polyethyleneglycol 1000 succinate, 5 surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or 10 electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based 15 substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as $\alpha\text{--},\ \text{\ensuremath{\mbox{\ensuremath{\beta}}\mbox{--}}}$, and $\gamma\text{--cyclodextrin},\ \text{or chemically modified}$ 20 derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl-ß-cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of this invention.

The pharmaceutical compositions of this

invention may be administered orally, parenterally, by
inhalation spray, topically, rectally, nasally, buccally,
vaginally or via an implanted reservoir. We prefer oral
administration or administration by injection. The
pharmaceutical compositions of this invention may contain
any conventional non-toxic pharmaceutically-acceptable
carriers, adjuvants or vehicles. In some cases, the ph
of the formulation may be adjusted with pharmaceutically

acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as 10 a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending The sterile injectable preparation may also be a agents. sterile injectable solution or suspension in a non-toxic 15 parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride 20 solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are 25 useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant such as those described in Pharmacopeia Helvetica, Ph. Helv., 30 or a similar alcohol, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the

formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.

The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, 10 capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral 15 administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. 20 If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.

Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound 15 suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches are also included in this invention.

The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability,

fluorocarbons, and/or other solubilizing or dispersing agents known in the art.

Dosage levels of between about 0.01 and about 100 mg/kg body weight per day, preferably between about 5 0.5 and about 75 mg/kg body weight per day of the IMPDH inhibitory compounds described herein are useful in a monotherapy and/or in combination therapy for the prevention and treatment of IMPDH mediated disease. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 5 10 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and 15 the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Preferably, such preparations contain from about 20% to about 80% active compound.

When the compositions of this invention comprise a combination of an IMPDH inhibitor of this invention and one or more additional therapeutic or prophylactic agents, both the IMPDH inhibitor and the additional agent should be present at dosage levels of between about 10 to 100%, and more preferably between about 10 to 80% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of this invention.

Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of this invention in a single composition.

According to one embodiment, the pharmaceutical compositions of this invention comprise an additional immunosuppression agent. Examples of additional immunosuppression agents include, but are not limited to, cyclosporin A, FK506, rapamycin, leflunomide, deoxyspergualin, prednisone, azathioprine, mycophenolate mofetil, OKT3, ATAG, interferon and mizoribine.

According to an alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an anti-cancer agent. Examples of anti-cancer agents include, but are not limited to, cisplatin, actinomycin D, doxorubicin, vincristine, vinblastine, etoposide, amsacrine, mitoxantrone, tenipaside, taxol, colchicine, cyclosporin A,

15 phenothiazines, interferon and thioxantheres.

According to another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an anti-viral agent. Examples of anti-viral agents include, but are not limited to,

20 Cytovene, Ganciclovir, trisodium phosphonoformate, Ribavirin, d4T, ddI, AZT, and acyclovir.

pyridinylmethyl)benzofuran-2-carboxylate.

According to yet another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an anti-vascular hyperproliferative agent. Examples of anti-vascular hyperproliferative agents include, but are not limited to, HMG Co-A reductase inhibitors such as lovastatin, thromboxane A2 synthetase inhibitors, eicosapentanoic acid, ciprostene, trapidil, ACE inhibitors, low molecular weight heparin, 30 mycophenolic acid, rapamycin and 5-(3'-

PCT/US99/09005

Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level, treatment should cease. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.

As the skilled artisan will appreciate, lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the infection, the patient's disposition to the infection and the judgment of the treating physician.

In an alternate embodiment, this invention provides methods of treating or preventing IMPDH mediated disease in a mammal comprising the step of administrating to said mammal any of the pharmaceutical compositions and combinations described above. If the pharmaceutical composition only comprises the IMPDH inhibitor of this invention as the active component, such methods may additionally comprise the step of administering to said mammal an agent selected from an anti-inflammatory agent, immunosuppressant, an anti-cancer agent, an anti-viral agent, or an anti-vascular hyperproliferation compound. Such additional agent may be administered to the mammal

25

30

prior to, concurrently with, or following the administration of the IMPDH inhibitor composition.

In a preferred embodiment, these methods are useful in suppressing an immune response in a mammal.

- Such methods are useful in treating or preventing diseases, including, transplant rejection (e.g., kidney, liver, heart, lung, pancreas (islet cells), bone marrow, cornea, small bowel and skin allografts and heart valve xenografts), graft versus host disease, and autoimmune
- diseases, such as rheumatoid arthritis, multiple sclerosis, juvenile diabetes, asthma, inflammatory bowel disease (Crohn's disease, ulcerative colitus), lupus, diabetes, mellitus myasthenia gravis, psoriasis, dermatitis, eczema, seborrhea, pulmonary inflammation,
- eye uveitis, Grave's disease, Hashimoto's thyroiditis,
 Behcet's or Sjorgen's syndrome (dry eyes/mouth),
 pernicious or immunohaemolytic anaemia, idiopathic
 adrenal insufficiency, polyglandular autoimmune syndrome,
 glomerulonephritis, scleroderma, lichen planus, viteligo
- 20 (depigmentation of the skin), autoimmune thyroiditis, and alveolitis.

These methods comprise the step of administering to the mammal a composition comprising a compound of this invention and a pharmaceutically acceptable adjuvant. In a preferred embodiment, this particular method comprises the additional step of administering to said mammal a composition comprising an additional immunosuppressant and a pharmaceutically acceptable adjuvant.

Alternatively, this method comprises the step of administering to said mammal a composition comprising a compound of this invention; an additional

immunosuppressive agent and a pharmaceutically acceptable adjuvant.

In an alternate preferred embodiment, these methods are useful for inhibiting viral replication in a mammal. Such methods are useful in treating or preventing DNA and RNA viral diseases caused by infection for example, by orthomyxoviruses (influenza viruses types A and B), paramyxoviruses (respiratory syncytial virus (RSV), subacute sclerosing panencephalitis (SSPE) virus) 10 measles and parainfluenza type 3), herpesviruses (HSV-1, HSV-2, HHV-6, HHV-7, HHV-8, Epstein Barr Virus (EBV), cytomegalovirus (HCMV) and varicella zoster virus (VZV)), retroviruses (HIV-1, HIV-2, HTLV-1, HTLV-2), flavi- and pestiviruses (yellow fever virus (YFV), hepatitis C virus 15 (HCV), dengue fever virus, bovine viral diarrhea virus (BVDV), hepatotrophic viruses (hepatitis A virus (HAV), hepatitis B virus (HBV), HCV, hepatitis D virus (HDV), hepatitis E virus (HEV), hepatitis G virus (HGV), Crimean-Congo hemorrhagic fever virus (CCHF),

- bunyaviruses (Punta Toro virus, Rift Valley fever virus (RVFV), and sandfly fever Sicilian virus), Hantaan virus, Caraparu virus), human papilloma viruses, encephalitis viruses (La Crosse virus), arena viruses (Junin and Tacaribe virus), reovirus, vesicular stomatitis virus,
- rhinoviruses, enteroviruses (polio virus, coxsackie viruses, encephalomyocarditis virus (EMC)), Lassa fever virus, and togaviruses (Sindbis and Semlike forest viruses) and poxviruses (vaccinia virus), adenoviruses, rubiola, and rubella.
- These methods comprise the step of administering to the mammal a composition comprising a compound of this invention, and a pharmaceutically

acceptable adjuvant. In a preferred embodiment, this particular method comprises the additional step of administering to said mammal a composition comprising an additional anti-viral agent and a pharmaceutically acceptable adjuvant.

Alternatively, this method comprises the step of administering to said mammal a composition comprising a compound of this invention; an additional anti-viral agent and a pharmaceutically acceptable adjuvant.

In another alternate preferred embodiment, these methods are useful for inhibiting vascular cellular hyperproliferation in a mammal. Such methods are useful in treating or preventing diseases, including, restenosis, stenosis, artherosclerosis and other hyperproliferative vascular disease.

These methods comprise the step of administering to the mammal a composition comprising a compound of this invention, and a pharmaceutically acceptable adjuvant. In a preferred embodiment, this particular method comprises the additional step of administering to said mammal a composition comprising an additional anti-vascular hyperproliferative agent and a pharmaceutically acceptable adjuvant.

Alternatively, this method comprises the step
25 of administering to said mammal a composition comprising
a compound of this invention; an additional anti-vascular
hyperproliferative agent and a pharmaceutically
acceptable adjuvant.

In another alternate preferred embodiment,

30 these methods are useful for inhibiting tumors and cancer
in a mammal. Such methods are useful in treating or

25

preventing diseases, including, tumors and malignancies, such as lymphoma, leukemia and other forms of cancer.

These methods comprise the step of administering to the mammal a composition comprising a compound of this invention, and a pharmaceutically acceptable adjuvant. In a preferred embodiment, this particular method comprises the additional step of administering to said mammal a composition comprising an additional anti-tumor or anti-cancer agent and a pharmaceutically acceptable adjuvant.

Alternatively, this method comprises the step of administering to said mammal a composition comprising a compound of this invention; an additional anti-tumor or anti-cancer agent and a pharmaceutically acceptable adjuvant.

In another alternate preferred embodiment, these methods are useful for inhibiting inflammation and inflammatory diseases in a mammal. Such methods are useful in treating or preventing diseases, including, osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma and adult respiratory distress syndrome.

These methods comprise the step of administering to the mammal a composition comprising a compound of this invention, and a pharmaceutically acceptable adjuvant. In a preferred embodiment, this particular method comprises the additional step of administering to said mammal a composition comprising an anti-inflammatory agent and a pharmaceutically acceptable adjuvant.

In order that this invention be more fully understood, the following examples are set forth. These examples are for the purpose of illustration only and are

not to be construed as limiting the scope of the invention in any way.

EXAMPLE 1

5

Synthesis of Compound 100

Solutions of acid (80 μL, 32 μmol) and aniline (100 μL, μmol) in THF were dispensed into a teflon 96-well plate. A solution containing 0.4M EDC.HCl and 0.4M HOAt in MeCN (100 μL, 40 μmol) was added and the reactions mixed in a vortex shaker for 5h. MeOH (500 μL) was added.

HPLC-MS data: retention time in 0.1% TFA: 8.81 min. LRMS (EI): 294.1 (M + H, relative intensity 100%)

15

EXAMPLE 2

Synthesis of Compound 103:

20

To a room temperature solution of the amide (65 mg, 0.168 mmole) in 5 ml of THF was added BH3·THF (0.45 ml, 0.539 mmole). The resulting mixture was heated to reflux overnight, then cooled to room temperature, and concentrated in vacuo. The resulting crude product was

diluted in 5 ml of saturated HCl in MeOH and heated to reflux for 3 hours. The resulting mixture was cooled to room temperature, diluted with ethyl acetate, washed successively with saturated NaHCO3, water, brine, then dried over Na₂SO₄. The crude product was purified by silica-gel chromatography (9/1 hexanes/ether) to give 33 mg (53% yield) of the desired benzylamine.

1H NMR (CDCL3, 500 MHz): 10.51 (1H, broad s); 7.96 (1H,
10 s); 7.67 (1H, d); 7.57 (1H, s); 7.55 (1H, dd); 7.34 (1H,
s); 7.32 (1H, d); 7.26 (1H, dd); 7.09 (1H, dd); 7.04 (1H,
d); 4.41 (2H, s); 4.06 (3H, s); 2.75 (3H, s).

EXAMPLE 3

15

Synthesis of Compound 302

To a 0°C solution of the sulfonyl chloride (100 mg, 0.44 mmoles) in CH₂Cl₂ (5 mL) was added o-anisidine (45mL, 0.44 mmoles). The resulting mixture was allowed to warm to room temperature and stirred overnight. The crude reaction was diluted with ethyl acetate, washed with sat. NaHCO₃, 0.5 N HCl, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by MPLC to give the 88 mg (64%) of the desired sulfonamide.

¹H NMR (CDCl₃, 500 MHz): 8.31 (1H, s); 7.82 (3H, m); 7.70 (1H, d); 7.54 (3H, m); 7.06 (1H, s); 6.97 (1H, dd); 6.88 (1H, dd); 6.67 (1H, d); 3.56 (3H, s)

5

EXAMPLE 4

Synthesis of Compound 325

To a room temperature solution of the acid (76 mg, 0.272 mmole) in CH₂Cl₂ (4 ml) was added the aniline (57 mg, 0.30 mmole), EDC (104 mg, 0.544 mmole) and DMAP (catalytic amount). The resulting mixture was stirred at room temperature for 16 hours, then diluted with ethyl acetate and water. The phases were separated and the organic phase was washed with 1.0 N HCl, sat. NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. Crude product was purified via flash chromatography to give 56 mg (46%) of the desired amide as a white solid.

20

25

1H NMR (DMSO-d6, 500 MHz): 10.50 (1H, s); 8.40 (1H, s);
7.85 (1H, broad t); 7.65 (1H, d); 7.45 (1H, s); 7.50-7.35
(3H, m); 7.30-7.10 (4H, m); 5.15 (1H, broad m); 4.20 (2H, d); 3.90 (3H, s); 3.80-3.60 (4H, m); 2.10 (1H, m); 1.85
(1H, m).

25

EXAMPLE 5

Synthesis of Compound 326

To a stirred, 0°C solution of the phenol (86 5 mg, 0.362 mmole) in CH_2Cl_2 (1.5 mL) was added DIPEA (59 mL, 0.434 mmole) and phosgene (742 mL, 0.74 mmole, 1.0 M $\,$ in PhMe). The resulting solution was warmed to room temperature, stirred for 2.5 hours, then concentrated in 10 vacuo. The resulting chloroformate was diluted in CH2Cl2 (2 mL), cooled to 0 °C, then treated with a CH_2Cl_2 solution of the aniline (83 mg, 0.434 mmole) and DIPEA (74 mL, 0.543 mmole). The resulting mixture was stirred at room temperature overnight, then diluted in ethyl acetate and water. The phases were separated, the 15 organic phase washed with sat. NaHCO3, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to give 40 mg (24%) of the desired carbamate as a slightly yellow 20 foam.

1_H NMR (DMSO-d6, 500 MHz): 10.40 (1H, s); 8.38 (1H, s);
7.80 (1H, broad t); 7.62 (1H, d); 7.58 (1H, d); 7.45 (1H, s); 7.30-7.10 (5H, m); 5.12 (1H, m); 4.18 (2H, d); 3.90 (3H, s); 3.80-3.60 (4H, m); 3.65 (2H, s); 2.10 (1H, m);
1.95 (1H, m).

EXAMPLE 6

IMPDH Activity Inhibition Assay

IMP dehydrogenase activity was assayed following an adaptation of the method first reported by 5 Magasanik. [B. Magasanik et al., J. Biol. Chem., 226, p. 339 (1957), the disclosure of which is herein incorporated by reference]. Enzyme activity was measured spectrophotometrically, by monitoring the increase in 10 absorbance at 340 nm due to the formation of NADH (ϵ 340 is 6220 $\mathrm{M}^{-1}~\mathrm{cm}^{-1}$). The reaction mixture contained 0.1 M Tris pH 8.0, 0.1 M KCl, 3 mM EDTA, 2 mM DTT, 0.1 M IMP and enzyme (IMPDH human type II) at a concentration of 15 to 50 nM. This solution is incubated at 37°C for 10 15 minutes. The reaction is started by adding NAD to a final concentration of 0.1M and the initial rate is measured by following the linear increase in absorbance at 340 nm for 10 minutes. For reading in a standard spectrophotometer (path length 1 cm) the final volume in 20 the cuvette is 1.0 ml. The assay has also been adapted to a 96 well microtiter plate format; in this case the concentrations of all the reagents remain the same and the final volume is decreased to 200 μ l.

For the analysis of inhibitors, the compound in question is dissolved in DMSO to a final concentration of 20 mM and added to the initial assay mixture for preincubation with the enzyme at a final volume of 2-5% (v/v). The reaction is started by the addition of NAD, and the initial rates measured as above. K_i

determinations are made by measuring the initial velocities in the presence of varying amounts of inhibitor and fitting the data using the tight-binding

equations of Henderson (Henderson, P. J. F. (1972) Biochem. J. 127, 321].

These results are shown in Table 2. Category "A" indicates a K_I of less than 10 μM , category "B" indicates a K_I of between 10 and 20 μM , category "C" indicates a K_I greater than 20 μM .

Table 2. IMPDH inhibitory activity.

Compour	nd Ki	Compound	Ki	Compound	Ki
100	A	143	× A	188	·B
101	В	144	В	190	C
102	· A	145	B	5 191	Č
103	В	146	В	192	C
104	∑_B	1147	A	193	B
105	В	148	В	194	C
106	B	149	В	195	B
107	В	150	В	196	В
108	B. /		A	197	C:
109	A	152	В	198	С
110	B	**************************************	-A	199	₩C;
111	Α	154	В	200	В
112	B	d55 -	В	201	В
113	Α	156	В	202	C
114.	A	4157	Β.	203	ଅ¢୍
115	A	159	В	204	С
116		1.60	B	300	B
117	C	161	A	301	В
118	. CB	162	⊬B.	302	В
119	C	163	В	303	C
120	, B	164	A	304	C
121	B	165	В	305	A
122	Siez P	166	Ë.	306	В
123 124	Α	167	_ B	307	В
124	A. A.	168	B	308	В
125	В	169	A A	309	В
127	Ä	170	A	310	В
127	A B	171	В	311	В
129		172	- A :	312	В
130	В	173	ָ ב	313	В
130	В	174	В	314	В
132	В	175	A	315	В
132	В	177	В	316	В

Compoun	d∞Ki	Compoun	d Ki	Compoun	d∞ Ki
133	В	178	Α	317	B
134	В	179	В	318	B
135	В	180	В	319	B
136	В	181	A	320	_
137	В	182	Α	321	B
138	. A	183	A	322	∂"R
139	Α	184	В	323	B
140	A	185	A	324	Ř
141	Α	186	В	325	A
142	В	187	B	326	Δ.

Other compounds of this invention will also have IMPDH inhibitory activity.

5

EXAMPLE 7 Anti-Viral Assays

The anti-viral efficacy of compounds may be evaluated in various in vitro and in vivo assays. For example, compounds may be tested in in vitro viral replication assays. In vitro assays may employ whole cells or isolated cellular components. In vivo assays include animal models for viral diseases. Examples of such animal models include, but are not limited to, rodent models for HBV or HCV infection, the Woodchuck model for HBV infection, and chimpanzee model for HCV infection.

While we have hereinbefore presented a number of embodiments of this invention, it is apparent that my basic construction can be altered to provide other embodiments which utilize the methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the claims appended hereto rather than the specific embodiments which have been presented hereinbefore by way of example.

CLAIMS

We claim:

A compound of the formula:

$$R_3$$
 R_4
 R_5
 R_1
 R_7
 R_8
 R_8
 R_{10}

wherein:

each R_6 is independently selected from hydrogen, $C_1\text{-}C_4$ straight or branched alkyl, $C_2\text{-}C_4$ straight or branched alkenyl or alkynyl, Ar-substituted- $C_1\text{-}C_4$ straight or branched alkyl, or Ar-substituted- $C_2\text{-}C_4$ straight or branched alkenyl or alkynyl; wherein

 R_6 is optionally substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino;

each R_{12} is independently selected from R_6 , W- $\{C_1-C_4 \text{ straight or branched alkyl}\}$, W- $\{C_2-C_4 \text{ straight or branched alkenyl}\}$, Ar-substituted- $\{W-\{C_2-C_4 \text{ straight or branched alkyl}\}\}$, Ar-substituted- $\{W-\{C_2-C_4 \text{ straight or branched alkenyl or alkynyl}\}\}$, O-Ar, $N(R_6)$ -Ar, S-Ar, S(O)-Ar, $S(O)_2$ -Ar, S-C(O)H, $N(R_6)$ -C(O)H, or O-C(O)H; wherein

W is O-, O-C(O)-, S-, S(O)-, S(O)₂-, S-C(O)-, $N(R_6)$ -, or $N(R_6)$ -C(O)-; and wherein

each R_{12} is optionally and independently substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino;

Y is selected from -O-, -S-, -C=C-, -C(R₁₂)₂- C(R₁₂)₂-, -C(R₁₂)₂- or -C(R₁₂)=C(R₁₂)-;

each of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{11} is independently selected from hydrogen, halo, hydroxy, cyano, nitro, amino, $-C(0)NH_2$, $Z-[(C_1-C_4)-straight or$ branched alkyl], $Z-[(C_2-C_4)-straight or branched alkenyl$ or alkynyl], Ar-substituted- $[(C_1-C_4)$ -straight or branched alkyl], Ar-substituted- $[(C_2-C_4)$ -straight or branched alkenyl or alkynyl], Ar, Q-Ar, $[(C_1-C_4)$ -straight or branched alkyl]-Q-Ar, [(C_2-C_4)-straight or branched alkenyl or alkynyl]-Q-Ar, O- $[(C_1-C_4)$ -straight or branched alkyl]-Q-Ar, $O-[(C_2-C_4)$ -straight or branched alkenyl or alkynyl]-Q-Ar, $[C_1-C_4]$ straight or branched alkyl]-Q- R_{13} , $[C_2-C_4 \text{ straight or branched alkenyl or alkynyl}]-Q-R_{13}$, or any two adjacent R groups may be taken together with the carbon atoms to which they are bound to form a 5 to 6-membered aromatic carbocyclic or heterocyclic ring; wherein

Z is selected from a bond, O-, S-, $S(0)_2$ -, C(0)-, OC(0)-, or N(H)C(0)-;

Q is selected from O, -O-C(O)-, -C(O)-O-, -N(H)-C(O)-O-, -O-N(H)-C(O)-, -N(H)-C(O)-, -C(O)-N(H)-, -O-C(O)-N(H)-, or -C(O)-N(H)-O-;

Ar is selected from phenyl, 1-naphthyl, 2-naphthyl, indenyl, azulenyl, fluorenyl, anthracenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl,

pyraxolyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isotriazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazinyl, 1,3,5-trithianyl, indolizinyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, benzo[b]furanyl, benzo[b]thiophenyl, 1H-indazolyl, benzimidazolyl, benzthiazolyl, purinyl, 4H-quinolizinyl, quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 1,8-naphthyridinyl, peridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl or phenoxazinyl or other chemically feasible monocyclic, bicyclic or tricyclic ring systems, wherein each ring consists of 5 to 7 ring atoms and wherein each ring comprises 0 to 3 heteroatoms independently selected from N, O and S;

 R_{13} is selected from $[C_1-C_{12}$ straight or branched alkyl] or, $[C_2-C_{12}$ straight or branched alkenyl or alkynyl]; wherein R_{13} is optionally substituted with 1 to 4 substituents independently selected from R_{14} or R_{15} , wherein

each R_{14} is a monocyclic or a bicyclic ring system consisting of 3 to 7 members per ring, wherein said ring system optionally comprises up to 4 heteroatoms selected from N, O, or S; wherein a CH_2 adjacent to said N, O or S maybe substituted with C(0); and wherein R_{14} optionally comprises up to 2 substituents independently selected from (C_1-C_4) -straight or branched alkyl, (C_2-C_4) straight or branched alkenyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, $(CH_2)_n-R_{16}$, $-S-(CH_2)_n-R_{16}$, $-S(0)-(CH_2)_n-R_{16}$, $-S(0)_2-(CH_2)_n-R_{16}$, $-O-(CH_2)_n-R_{16}$, or $-N(R_{18})-(CH_2)_n-R_{16}$ wherein n is 0, 1 or 2; R_{16} is selected from halogen, -CN, $-NO_2$, $-CF_3$, $-OCF_3$,

-OH, $-S-(C_1-C_4)$ -alkyl, $-S(0)-(C_1-C_4)$ -alkyl, $-S(0)_2-(C_1-C_4)$ -alkyl, $-NH_2$, $-NH-(C_1-C_4)$ -alkyl, $N((C_1-C_4)$ -alkyl)₂, COOH, C(0)-O- (C_1-C_4) -alkyl or O- (C_1-C_4) -alkyl; and

each R_{15} is independently selected from $-OR_{17},$ or $-N\left(R_{18}\right)_{2};$

 R_{17} is selected from hydrogen, $-(C_1-C_6)$ -straight alkyl, $-(C_1-C_6)$ -straight alkyl-Ar, $-C(0)-(C_1-C_6)$ -straight or branched alkyl, -C(0)-Ar, or $-(C_1-C_6)$ -straight alkyl-CN; and

each R_{18} is independently selected from $-(C_1-C_6)$ - straight or branched alkyl, $-(C_1-C_6)$ -straight or branched alkyl-Ar, $-(C_1-C_6)$ -straight alkyl-CN, $-(C_1-C_6)$ -straight alkyl-OH, $-(C_1-C_6)$ -straight alkyl-OR₁₇, $-C(O)-(C_1-C_6)$ -straight or branched alkyl, -C(O)-Ar, $-S(O)_2-(C_1-C_6)$ -straight or branched alkyl, or $-S(O)_2$ -Ar; wherein

any alkyl, alkenyl or alkynyl group is optionally substituted with 1 to 3 independently selected halo groups; and

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, nitro, cyano, amino, (C_1-C_4) -straight or branched alkyl; $O-(C_1-C_4)$ -straight or branched alkyl, (C_2-C_4) -straight or branched alkenyl or alkynyl, or $O-(C_2-C_4)$ -straight or branched alkenyl or alkynyl;

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally benzofused; with the provisos that: at least two of R_1 , R_2 , R_3 , R_4 , or R_5 is hydrogen; no more than two of R_1 , R_2 , R_3 , R_4 , or R_5 comprises Ar;

at least two of R_7 , R_8 , R_9 , R_{10} or R_{11} is hydrogen; and

no more than two of $R_{7},\ R_{8},\ R_{9},\ R_{10}$ or R_{11} comprises Ar;

when X is $-NH-S(O)_2- or -S(O)_2-N(H)_-$,

one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is O-(C₁-C₄)-straight or branched alkyl, and

seven of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} are hydrogen, then

the remaining two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are not bound together to form a 5 to 6-membered aromatic carbocyclic or heterocyclic ring;

when X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$,

two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are O-(C₁-C₄)-straight or branched alkyl, and

seven of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} are hydrogen, then

the remaining one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is not $-NO_2$, -CN or -Ar;

when X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$,

two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are O-(C_1 - C_4)-straight or branched alkyl, and

six of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} are hydrogen, then

the remaining two of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are not both halo;

when X is $-NH-S(O)_2-$ or $-S(O)_2-N(H)-$, and

one of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} is Ar, then

the remaining 9 of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are not each hydrogen;

when X is -N(H)-C(O)-S- or -S-C(O)-N(H)-,

one of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} is -OH, and

eight of $R_1,\ R_2,\ R_3,\ R_4,\ R_5,\ R_7,\ R_8,\ R_9,\ R_{10}$ or R_{11} are hydrogen, then

the remaining one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is not halo;

when wherein X is -N(H)-C(O)-S- or -S-C(O)-N(H)-, one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is -OH, seven of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} are hydrogen, and

one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is O-(C₁-C₄)-straight or branched alkyl, then

the remaining one of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} or R_{11} is not halo or (C_1-C_4) -straight or branched alkyl.

- 2. The compound according to claim 1, wherein X is selected from $-C(O)-N(R_6)-$, $-N(R_6)-C(O)-$, $-CH_2-N(R_6)-$, or $-N(R_6)-CH_2-$.
- 3. The compound according to claim 1, wherein R_1 is selected from H, (C_1-C_4) -straight or branched alkyl, OH, O- (C_1-C_4) -straight or branched alkyl, O-Ar, OCF₃, halo, cyano or S- (C_1-C_4) -straight or branched alkyl.
- 4. The compound according to claim 2, wherein R_1 is H and R_2 is not H.
- 5. The compound according to claim 1, wherein R_2 is selected from H, (C_1-C_4) -straight or branched alkyl, Ar, $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, OCF_3 , halo, cyano, $C(O)NH_2$ or $S(O)_2-(C_1-C_4)$ -straight or branched alkyl.

- 6. The compound according to claim 5, wherein R_2 is H.
- 7. The compound according to claim 1, wherein R_3 is selected from H, Ar, cyano, $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, $S-(C_1-C_4)$ -straight or branched alkyl, CF_3 or OCF_3 .
- 8. The compound according to claim 1, wherein R_4 is selected from H, (C_1-C_4) -straight or branched alkyl, OH, O- (C_1-C_4) -straight or branched alkyl, O-Ar, OCF₃, halo, cyano or S- (C_1-C_4) -straight or branched alkyl.
- 9. The compound according to claim 1, wherein R_5 is selected from H, (C_1-C_4) -straight or branched alkyl, Ar, $O-(C_1-C_4)$ -straight or branched alkyl, O-Ar, OCF_3 , halo, cyano, $C(O)NH_2$ or $S(O)_2-(C_1-C_4)$ -straight or branched alkyl.
- 10. The compound according to claim 9, wherein $R_{5}\ \text{is H}.$
- 11. The compound according to claim 1, wherein R_7 is selected from H, OH, OC(O)-(C_1 - C_4)-straight or branched alkyl, O-(C_1 - C_4)-straight or branched alkyl, O-Ar, amino, or N(H)C(O)-(C_1 - C_4)-straight or branched alkyl.
- 12. The compound according to claim 11, wherein R_7 is OH.
- 13. The compound according to claim 1, wherein R_{δ} is H, (C_1-C_4) -straight or branched alkyl, $O_{}^-(C_1-C_4)_{}^-$

straight or branched alkyl, or (C_1-C_4) -straight or branched alkyl-N(H)C(O)O-Ar.

- 14. The compound according to claim 1, wherein R_9 is selected from H, (C_1-C_4) -straight or branched alkyl, $O-(C_1-C_4)$ -straight or branched alkyl, or R_9 is taken together with R_{10} and the carbon atoms to which they are bound to form a fused benzene ring.
- 15. The compound according to claim 14, wherein R_9 and R_{10} are taken together with the carbon atoms to which they are bound to form a fused benzene ring.
- 16. The compound according to claim 1, wherein R_{10} is selected from H, (C_1-C_4) -straight or branched alkyl, $O-(C_1-C_4)$ -straight or branched alkyl.
- 17. The compound according to claim 1, wherein R_{11} is selected from H, OH, OC(0)-(C_1 - C_4)-straight or branched alkyl, O-(C_1 - C_4)-straight or branched alkyl, O-Ar, amino, or N(H)C(O)-(C_1 - C_4)-straight or branched alkyl.
- $$18$. \label{eq:theorem}$ The compound according to claim 17, wherein R_{11} is H.
 - 19. A composition comprising:
 - a) a compound of the formula:

$$R_3$$
 R_4
 R_5
 R_1
 R_7
 R_8
 R_9
 R_{10}

wherein:

each R_6 is independently selected from hydrogen, C_1 - C_4 straight or branched alkyl, C_2 - C_4 straight or branched alkenyl or alkynyl, Ar-substituted- C_1 - C_4 straight or branched alkyl, or Ar-substituted- C_2 - C_4 straight or branched alkenyl or alkynyl; wherein

 R_6 is optionally substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino;

each R_{12} is independently selected from R_6 , W- $[C_1-C_4]$ straight or branched alkyl], W- $[C_2-C_4]$ straight or branched alkenyl or alkynyl], Ar-substituted- $[W-[C_1-C_4]$ straight or branched alkyl]], Ar-substituted- $[W-[C_2-C_4]$ straight or branched alkenyl or alkynyl]], O-Ar, $N(R_6)$ -Ar, S-Ar, S(O)-Ar, $S(O)_2$ -Ar, S-C(O)H, $N(R_6)$ -C(O)H, or O-C(O)H; wherein

W is O-, O-C(0)-, S-, S(0)-, S(0)₂-, S-C(0)-, $N(R_6)$ -, or $N(R_6)$ -C(0)-; and wherein

each R_{12} is optionally and independently substituted with up to 3 substituents independently selected from halo, hydroxy, nitro, cyano or amino;

Y is selected from -O-, -S-, -C \equiv C-, -C(R₁₂)₂- C(R₁₂)₂-, -C(R₁₂)₂- or -C(R₁₂)=C(R₁₂)-;

each of R_1 , R_2 , R_3 , R_4 , R_5 , R_7 , R_8 , R_9 , R_{10} and R_{11} is independently selected from hydrogen, halo, hydroxy, cyano, nitro, amino, $-C(0)NH_2$, $Z-[(C_1-C_4)-straight or$

branched alkyl], $Z-[(C_2-C_4)$ -straight or branched alkenyl or alkynyl], Ar-substituted- $[(C_1-C_4)$ -straight or branched alkyl], Ar-substituted- $[(C_2-C_4)$ -straight or branched alkenyl or alkynyl], Ar, Q-Ar, $[(C_1-C_4)$ -straight or branched alkenyl or alkynyl]-Q-Ar, $[(C_2-C_4)$ -straight or branched alkenyl or alkynyl]-Q-Ar, $O-[(C_1-C_4)$ -straight or branched alkyl]-Q-Ar, $O-[(C_2-C_4)$ -straight or branched alkenyl or alkynyl]-Q-Ar, $[C_1-C_4]$ -straight or branched alkyl]-Q-R₁₃, $[C_2-C_4]$ -straight or branched alkyl]-Q-R₁₃, or any two adjacent R groups may be taken together with the carbon atoms to which they are bound to form a 5 to 6-membered aromatic carbocyclic or heterocyclic ring; wherein

Z is selected from a bond, O-, S-, $S(O)_2$ -, C(O)-, OC(O)-, or N(H)C(O)-;

Q is selected from O, -O-C(O)-, -C(O)-O-, -N(H)-C(O)-O-, -O-N(H)-C(O)-, -N(H)-C(O)-, -C(O)-N(H)-, -O-C(O)-N(H)-, or -C(O)-N(H)-O-;

Ar is selected from phenyl, 1-naphthyl, 2-naphthyl, indenyl, azulenyl, fluorenyl, anthracenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyraxolyl, 2-pyrazolinyl, pyrazolidinyl, isoxazolyl, isotriazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazinyl, 1,3,5-trithianyl, indolizinyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, benzo[b]furanyl, benzo[b]thiophenyl, 1H-indazolyl, benzimidazolyl, benzthiazolyl, purinyl, 4H-quinolizinyl, quinolinyl, isoquinolinyl, 1,2,3,4-tetrahydro-isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, cinnolinyl, phthalazinyl, quinazolinyl, acridinyl, 1,8-naphthyridinyl, peridinyl, carbazolyl, acridinyl,

phenazinyl, phenothiazinyl or phenoxazinyl or other chemically feasible monocyclic, bicyclic or tricyclic ring systems, wherein each ring consists of 5 to 7 ring atoms and wherein each ring comprises 0 to 3 heteroatoms independently selected from N, O and S;

 R_{13} is selected from $[C_1-C_{12}$ straight or branched alkyl] or, $[C_2-C_{12}$ straight or branched alkenyl or alkynyl]; wherein R_{13} is optionally substituted with 1 to 4 substituents independently selected from R_{14} or R_{15} , wherein

each R_{14} is a monocyclic or a bicyclic ring system consisting of 3 to 7 members per ring, wherein said ring system optionally comprises up to 4 heteroatoms selected from N, O, or S; wherein a CH_2 adjacent to said N, O or S maybe substituted with C(0); and wherein R_{14} optionally comprises up to 2 substituents independently selected from (C_1-C_4) -straight or branched alkyl, (C_2-C_4) straight or branched alkenyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, $(CH_2)_n-R_{16}$, $-S-(CH_2)_n-R_{16}$, $-S(0)-(CH_2)_n-R_{16}$, $-S(0)_2-(CH_2)_n-R_{16}$, $-O-(CH_2)_n-R_{16}$, or $-N(R_{18})-(CH_2)_n-R_{16}$ wherein n is 0, 1 or 2;

each R_{15} is independently selected from $-OR_{17}$, or $-N\left(R_{18}\right)_{2}$;

 R_{17} is selected from hydrogen, $-(C_1-C_6)$ -straight alkyl, $-(C_2-C_6)$ -straight alkyl-Ar, $-C(0)-(C_1-C_6)$ -straight or branched alkyl, -C(0)-Ar, or $-(C_1-C_6)$ -straight alkyl-CN; and

each R_{18} is independently selected from $-(C_1-C_6)$ -

straight or branched alkyl, $-(C_1-C_6)$ -straight or branched alkyl-Ar, $-(C_1-C_6)$ -straight alkyl-CN, $-(C_1-C_6)$ -straight alkyl-OH, $-(C_1-C_6)$ -straight alkyl-OR₁₇, $-C(O)-(C_1-C_6)$ -straight or branched alkyl, -C(O)-Ar, $-S(O)_2-(C_1-C_6)$ -straight or branched alkyl, or $-S(O)_2$ -Ar; wherein

any alkyl, alkenyl or alkynyl group is optionally substituted with 1 to 3 independently selected halo groups; and

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally substituted with 1 to 3 substituents independently selected from halo, hydroxy, nitro, cyano, amino, (C_1-C_4) -straight or branched alkyl; $O-(C_1-C_4)$ -straight or branched alkyl, (C_2-C_4) -straight or branched alkenyl or alkynyl, or $O-(C_2-C_4)$ -straight or branched alkenyl or alkynyl;

any Ar, aromatic carbocyclic ring or heterocyclic ring is optionally benzofused; with the provisos that:

at least two of R_1 , R_2 , R_3 , R_4 , or R_5 is hydrogen; no more than two of R_1 , R_2 , R_3 , R_4 , or R_5 comprises Ar;

at least two of R_7 , R_8 , R_{9} , R_{10} or R_{11} is hydrogen; and no more than two of R_7 , R_8 , R_{9} , R_{10} or R_{11} comprises Ar; and

- b) a pharmaceutically acceptable carrier, adjuvant or vehicle.
- 20. The composition according to claim 19, further comprising of this invention comprise a compound an additional agent selected from an immunosuppressant, an anti-cancer agent, an anti-viral agent, anti-inflammatory agent, antifungal agent, antibiotic, or an anti-vascular hyperproliferation compound.

- 21. A use of a composition according to claim 19 or 20 for the preparation of a medicament for treating or preventing an IMPDH-mediated disease or condition in a mammal.
- 22. The use according to claim 21, wherein said IMPDH-mediated disease or condition is selected from transplant rejection, graft versus host disease, an autoimmune disease.
- 23. A use of a composition according to claim 19 or 20 for the preparation of a medicament for inhibiting viral replication in a mammal.
- 24. The use according to claim 23, wherein the viral replication to be inhibited is that of a virus selected from orthomyxovirus, paramyxovirus, herpesvirus, retrovirus, flavivirus, pestivirus, hepatotrophic virus, bunyavirus, Hantaan virus, Caraparu virus, human papilloma virus, encephalitis virus, arena virus, reovirus, vesicular stomatitis virus, rhinovirus, enterovirus, Lassa fever virus, togavirus, poxvirus, adenovirus, rubiola, or rubella is inhibited.
- 25. A use of a composition according to claim 19 or 20 for the preparation of a medicament for inhibiting vascular cellular hyperproliferation in a mammal.
- 26. The use according to claim 25, wherein said medicament is useful in treating or preventing

restenosis, stenosis, artherosclerosis or other hyperproliferative vascular disease.

- 27. A use of a composition according to claim 19 or 20 for the preparation of a medicament for inhibiting tumors and cancer in a mammal.
- 28. The use according to claim 30, wherein said medicament is useful to treat or prevent lymphoma, leukemia and other forms of cancer.
- 29. A use of a composition according to claim 19 or 20 for the preparation of a medicament for inhibiting inflammation or an inflammatory disease in a mammal.
- 30. The use according to claim 29, wherein said medicament is useful for treating or preventing osteoarthritis, acute pancreatitis, chronic pancreatitis, asthma or adult respiratory distress syndrome.
- 31. The compound of claim 1 or the composition of claim 19 or 20, wherein X is $-N(R_6)-C(O)-Y-$.
- 32. The compound or composition of claim 31, wherein Y is $-C(R_{12})=C(R_{12})-$.
- 33. The compound of claim 1 or the composition of claim 19 or 20, wherein Q is -N(H)-C(O)-O-.

ational Application No PCT/US 99/09005

CLASSIFICATION OF SUBJECT MATTER
PC 6 C07C235/56 C07C217/84 C07D263/32 C07C311/21 A61K31/165 A61K31/135 A61K31/18 A61K31/395 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07C C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X CHEMICAL ABSTRACTS, vol. 110, no. 25, 1,19,20 19 June 1989 (1989-06-19) Columbus, Ohio, US; abstract no. 228120q,

THE HOLD THE HOLD THE TOTAL: "Combined immuno- and themselve on MULLINK H. ET AL.: non-radioactive hybridocytochemistry on cells and tissue sections:" page 317; column 1; XP002111108 abstract & J. HISTOCHEM. CYTOCHEM., vol. 37, no. 5, 1989, pages 603-609, X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 17/08/1999 3 August 1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Rufet, J

Fax: (+31-70) 340-3016

In: Itional Application No PCT/US 99/09005

C./Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 99/09005			
Category 3	Citation of document, with indication,where appropriate, of the relevant passages	Relevant to claim No.			
	the research, with accusor, more appropriate, or the relevant passages	Helevarit to claim No.			
X .	CHEMICAL ABSTRACTS, vol. 110, no. 1, 2 January 1989 (1989-01-02) Columbus, Ohio, US; abstract no. 3327n, WEBBER D. M. ET AL.: "A quantitative cytochemical assay for osteoclast acid phosphatase activity in fetal rat calvaria." page 309; column 2; XP002111109 abstract & HISTOCHEM. J., vol. 20, no. 5, 1988, pages 269-275,	1,20			
Y	WO 97 40028 A (VERTEX PHARMA) 30 October 1997 (1997-10-30) cited in the application claims 1-53; examples 1-14; tables IA-IIB, III	1-33			
Y	PATANI G A ET AL: "BIOISOSTERISM: A RATIONAL APPROACH IN DRUG DESIGN" CHEMICAL REVIEWS, vol. 96, no. 8, 1 January 1996 (1996-01-01), pages 3147-3176, XP000652176 ISSN: 0009-2665 page 3170, column 2; table 48	1-33			
X	DE 838 290 C (NAPHTOL-CHEMIE OFFENBACH) 16 August 1951 (1951-08-16) page 2	1			
X	US 3 064 049 A (ROBERT J. COX) 13 November 1962 (1962-11-13) the whole document	1			
x	US 1 935 554 A (ERNEST F. GRETHER ET AL.) 14 November 1933 (1933-11-14) claims 1-11; examples 1-3	1			
x	US 2 025 116 A (HERBERT A. LUBS ET AL.) 24 December 1935 (1935-12-24) claims 9-14; examples 1-4	1			
x	US 4 242 260 A (HASHIMOTO MITSURU ET AL) 30 December 1980 (1980-12-30) column 29 - column 42; example 1; table 1	1 .			
x	FR 1 584 606 A (EASTMAN KODAK COMPANY) 26 December 1969 (1969-12-26) page 3 - page 4	1			
	-/				

Int Ational Application No PCT/US 99/09005

		PC1/US 99/09005		
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category :	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	CHEMICAL ABSTRACTS, vol. 53, no. 12, 25 June 1959 (1959-06-25) Columbus, Ohio, US; abstract no. 11280a, JUN NISHINO ET AL.: "Azo dyes derived from catechol." page 11280; column 2; XP002111110 abstract & YÛKI GÔSEI KAGAKU KYÔKAISHI, vol. 17, 1959, pages 166-169,	1		
X	CHEMICAL ABSTRACTS, vol. 53, no. 15, 10 August 1959 (1959-08-10) Columbus, Ohio, US; abstract no. 14543f, ERNST HOCHULI ET AL.: "Printing of nontextile sheets." page 14543; column 1; XP002111111 abstract & CH 330 094 A (CIBA LTD) 15 July 1958 (1958-07-15)	1		
X	CHEMICAL ABSTRACTS, vol. 55, no. 24, 27 November 1961 (1961-11-27) Columbus, Ohio, US; abstract no. 24333c, C. R. BARR ET AL.: "Indoaniline dyes." page 24333; column 1; XP002111112 abstract & PHOT. SCI. ENG., vol. 5, 1961, pages 195-197,			
X	CHEMICAL ABSTRACTS, vol. 108, no. 5, 1 February 1988 (1988-02-01) Columbus, Ohio, US; abstract no. 37339s, KISHIMOTO SATOSHI ET AL.: "Synthesis of anilide derivatives of 1-hydroxy-2-naphthoic acid." page 584; column 2; XP002111113 abstract & KAGAKU TO KOGYO, vol. 61, no. 3, 1987, pages 84-88,			
		•		

Into Jonal Application No PCT/US 99/09005

(Ca=41-	otton Pooluling Course	PCT/US 99/09005		
.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT ategory * Citation of document, with indication where appropriate of the relevant passages.				
ategory -	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.		
	CHEMICAL ABSTRACTS, vol. 110, no. 24, 12 June 1989 (1989-06-12) Columbus, Ohio, US; abstract no. 214736h, SEBE ION ET AL.: "Organic pigments -AS-RS naphthol derivatives." page 103; column 1; XP002111114 abstract & REV. CHIM. (BUCHAREST), vol. 20, no. 10, 1989, no. 250, 051	1		
	vol. 39, no. 10, 1988, pages 850-851, CHEMICAL ABSTRACTS, vol. 85, no. 17, 25 October 1976 (1976-10-25) Columbus, Ohio, US; abstract no. 123834n, KEKRE J. S. ET AL.: "Syntheses and biological activity of 1,3-naphthoxazine-2,4-diones." page 636; column 1; XP002111115 abstract & INDIAN J. CHEM., SECT. B, vol. 148, no. 3, 1976, pages 212-213,	1		
(FRIEDRICH RICHTER: "BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE, 4th. Edition, Suppl. II, vol. 13" 1950, SPRINGER VERLAG, BERLIN GÖTTINGEN. HEIDELBERG (DE) XP002111105 page 181, paragraph 6	1		
	HANS-G. BOIT ET AL.: "BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE, 4th Edition, Suppl. III, vol. 13" 1973 , SPRINGER VERLAG , BERLIN . HEIDELBERG . NEW YORK XP002111106 * page 837, paragraph 4; page 838, paragraph 2; page 2155, paragraph 3 *	1		
	REINER LUCKENBACH ET AL.: "BEILSIENS HANDBUCH DER ORGANISCHEN CHEMIE, 4th Edition, Suppl. IV, vol. 13" 1985 , SPRINGER VERLAG , BERLIN . HEIDELBERG . NEW YORK . TOKYO XP002111107 page 1717, paragraphs 1,2	1		
	US 5 380 879 A (SJOGREN ERIC B) 10 January 1995 (1995-01-10) cited in the application abstract	1,20-30		

...ternational application No.

PCT/US 99/09005

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: 1-33 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	$oldsymbol{\cdot}$
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Rema	rk on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.
i	

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-33 (Partly)

Present claims 1-33 relate to an extremely large number of possible compounds. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found, however, for only a very small proportion of the compounds claimed. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the compounds of the examples 1 to 5 and the tested compounds (see table 2 of pages 62 and 63 of the description).

Claim 1 contains a list of provisos, which renders the scope of claim 1 unclear; since the scope of the claim is not defined in a positive manner.

In view of the preferred compounds of tabelle 1 (see table 1 p. 17 to 38), it appears that the majority of the compounds are N-phenyl-naphthalenecarboxamide derivatives, having a hydroxy or RO-substituent in ortho position. The search has therefore been directed to such compounds.

It is stressed, that the incomplete search has revealed a very large number of novelty destroying documents and that it was impossible to cite all of them in the search report.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

Information on patent family members

Inte ional Application No PCT/US 99/09005

			. —	· · · · · · · · · · · · · · · · · · ·			
	atent document d in search report		Publication date		tent family ember(s)		Publication date
WO	9740028	Α	30-10-1997	US AU CZ EP NO PL	5807876 2678597 9803380 0902782 984917 329639	A A A	15-09-1998 12-11-1997 17-02-1999 24-03-1999 23-12-1998 12-04-1999
DE	838290	С		NONE			
US	3064049	Α	13-11-1962	BE DE GB NL	597886 1178704 904484 259349	B	·
US	1935554	Α	14-11-1933	NONE			
US	2025116	Α	24-12-1935	NONE			
US	4242260	А	30-12-1980	JP JP JP JP JP JP	1207076 53133229 58038465 1303570 53133445 60027014 4272598	A B D C B A B B	11-05-1984 20-11-1978 23-08-1983 28-02-1986 21-11-1978 26-06-1985 09-06-1981
FR	1584606	Α	26-12-1969	BE DE GB US US	718809 1772980 1231269 357305 367941) A) A l A	31-12-1968 25-11-1971 12-05-1971 30-03-1971 25-07-1972
CH	330094	A		BE DE GB NL	537393 1024093 803643 196453	7 B 7 A	
US	5380879	A	10-01-1995	AU BR CA CN EP FI JP WO US ZA	191699 950682 218352 114336 074507 96321 950917 952253 544195	0 A 9 A 6 A 9 T 5 A	04-09-1995 09-09-1997 24-08-1995 19-02-1997 04-12-1996 11-10-1996 16-09-1997 24-08-1995 15-08-1995

THIS PAGE BLANK (USPTO)