PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	
C12N 15/12, C07K 14/47, C12N 15/11, C12Q 1/68, C07K 16/18, G01N 33/68, A61K 38/17	

(11) International Publication Number:

WO 00/00610

(43) International Publication Date:

6 January 2000 (06.01.00)

(21) International Application Number:

PCT/US99/14484

A2

(22) International Filing Date:

25 June 1999 (25.06.99)

(30) Priority Data:

60/090,762	26 June 1998 (26.06.98)	US
60/094,983	31 July 1998 (31.07.98)	US
60/102,686	1 October 1998 (01.10.98)	US
60/112,129	11 December 1998 (11.12.98)	US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

TIC	bbweneions	
US		60/000 7/0 (777)
Filed on		60/090,762 (CIP)
		26 June 1998 (26.06.98)
US		60,004,000
Filed on		60/094,983 (CIP)
		31 July 1998 (31.07.98)
US		60(100 606 10
Filed on		60/102,686 (CIP)
		1 October 1998 (01.10.98)
US		60(110.100.00)
Filed on		60/112,129 (CIP)
1 1100 011	11.	December 1998 (11.12.98)
		(11.12.96)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US). (72) Inventors; and

(75) Inventors/Applicants (for US only): LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AKERBLOM, Ingrid, E. [US/US]; 1234 Johnson Street, Redwood City, CA 94061 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US).

(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HUMAN SIGNAL PEPTIDE-CONTAINING PROTEINS

(57) Abstract

The invention provides human signal peptide-containing proteins (HSPP) and polynucleotides which indentify and encode HSPP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HSPP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	ŔO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

HUMAN SIGNAL PEPTIDE-CONTAINING PROTEINS

TECHNICAL FIELD

5

This invention relates to nucleic acid and amino acid sequences of human signal peptidecontaining proteins and to the use of these sequences in the diagnosis, treatment, and prevention of
cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological,
reproductive, and developmental disorders.

BACKGROUND OF THE INVENTION

Protein transport is essential for cellular function. Transport of a protein may be 15 mediated by a signal peptide located at the amino terminus of the protein itself. The signal peptide is comprised of about ten to twenty hydrophobic amino acids which target the nascent protein from the ribosome to a particular membrane bound compartment such as the endoplasmic reticulum (ER). Proteins targeted to the ER may either proceed through the secretory pathway or remain in any of the secretory organelles such as the ER. Golgi 20 apparatus, or lysosomes. Proteins that transit through the secretory pathway are either secreted into the extracellular space or retained in the plasma membrane. Secreted proteins are often synthesized as inactive precursors that are activated by post-translational processing events during transit through the secretory pathway. Such events include glycosylation, phosphorylation, proteolysis, and removal of the signal peptide by a signal 25 peptidase. Other events that may occur during protein transport include chaperonedependent unfolding and folding of the nascent protein and interaction of the protein with a receptor or pore complex. Examples of secreted proteins with amino terminal signal peptides are discussed below and include receptors, extracellular matrix molecules, cytokines, hormones, growth and differentiation factors, neuropeptides, vasomediators, 30 phosphokinases, phosphatases, phospholipases, phosphodiesterases, G and Ras-related proteins, ion channels, transporters/pumps, proteases, and transcription factors. (Reviewed in Alberts. B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, NY, pp. 557-560, 582-592.)

G-protein coupled receptors (GPCRs) comprise a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines such as dopamine, epinephrine, histamine, glutamate (metabotropic effect), acetylcholine (muscarinic effect), and serotonin; for lipid mediators of inflammation such as prostaglandins, platelet activating factor, and leukotrienes; for peptide hormones such as calcitonin, C5a anaphylatoxin, follicle stimulating hormone, gonadotropin releasing hormone, neurokinin, oxytocin, and thrombin; and for sensory signal mediators such as retinal photopigments and olfactory stimulatory molecules. The structure of these highly conserved receptors consists of seven hydrophobic transmembrane regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. The N-terminus interacts with ligands, the disulfide bridges interact with agonists and antagonists, and the large third intracellular loop interacts with G proteins to activate second messengers such as cyclic AMP, phospholipase C, inositol triphosphate, or ion 15 channels. (Reviewed in Watson, S. and Arkinstall, S. (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego, CA, pp. 2-6; and Bolander, F.F. (1994) Molecular Endocrinology, Academic Press, San Diego, CA, pp. 162-176.)

Other types of receptors include cell surface antigens identified on leukocytic cells of the immune system. These antigens have been identified using systematic, monoclonal antibody (mAb)-based "shot gun" techniques. These techniques have resulted in the production of hundreds of mAbs directed against unknown cell surface leukocytic antigens. These antigens have been grouped into "clusters of differentiation" based on common immunocytochemical localization patterns in various differentiated and undifferentiated leukocytic cell types. Antigens in a given cluster are presumed to identify a single cell surface protein and are assigned a "CD" number. Some of the genes encoding proteins identified by CD antigens have been isolated and characterized as both transmembrane proteins and cell surface proteins anchored to the plasma membrane via covalent attachment to fatty acid-containing glycolipids such as glycosylphosphatidylinositol (GPI). (Reviewed in Barclay, A. N. et al. (1993) The

Leucocyte Antigen Facts Book, Academic Press, San Diego, CA, pp. 144-145; Noel, L. S. et al. (1998) J. Biol. Chem. 273:3878-3883.)

Tetraspanins are a superfamily of membrane proteins which facilitate the formation

and stability of cell-surface signaling complexes containing lineage-specific proteins, integrins, and other tetraspanins. They are involved in cell activation, proliferation (including cancer), differentiation, adhesion, and motility. These proteins cross the membrane four times, have conserved intracellular – and C-termini and an extracellular, non-conserved hydrophilic domain. Tetraspanins include, e.g., platelet and endothelial cell membrane proteins, leukocyte surface proteins, tissue specific and tumorous antigens, and the retinitis pigmentosa-associated gene peripherin. (Maecker, H.T. et al. (1997) FASEB J. 11:428-442.)

Matrix proteins (MPs) are transmembrane and extracellular proteins which

function in formation, growth, remodeling, and maintenance of tissues and as important
mediators and regulators of the inflammatory response. The expression and balance of
MPs may be perturbed by biochemical changes that result from congenital, epigenetic, or
infectious diseases. In addition, MPs affect leukocyte migration, proliferation,
differentiation, and activation in the immune response. MPs are frequently characterized

by the presence of one or more domains which may include collagen-like domains, EGFlike domains, immunoglobulin-like domains, and fibronectin-like domains. In addition,
some MPs are heavily glycosylated. MPs include extracellular proteins such as
fibronectin, collagen, and galectin and cell adhesion receptors such as cell adhesion
molecules (CAMs), cadherins, and integrins. (Reviewed in Ayad, S. et al. (1994) The

Extracellular Matrix Facts Book, Academic Press, San Diego, CA, pp. 2-16; Ruoslahti, E.
(1997) Kidney Int. 51:1413-1417; Sjaastad, M.D. and Nelson, W.J. (1997) BioEssays
19:47-55.)

Lectins are proteins characterized by their ability to bind carbohydrates on cell membranes by means of discrete, modular carbohydrate recognition domains, CRDs.

25 (Kishore, U. et al. (1997) Matrix Biol. 15:583-592.) Certain cytokines and membrane-spanning proteins have CRDs which may enhance interactions with extracellular or intracellular ligands, with proteins in secretory pathways, or with molecules in signal transduction pathways. The lipocalin superfamily constitutes a phylogenetically conserved group of more than forty proteins that function by binding to and transporting a variety of physiologically important ligands. (Tanaka, T. et al. (1997) J. Biol. Chem. 272:15789-15795; and van't Hof, W. et al. (1997) J. Biol. Chem. 272:1837-1841.)

Selectins are a family of calcium ion-dependent lectins expressed on inflamed vascular

endothelium and the surface of some leukocytes. (Rossiter, H. et al. (1997) Mol. Med. Today 3:214-222.)

Protein kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Reversible protein

5 phosphorylation is a key strategy for controlling protein functional activity in eukaryotic cells. The high energy phosphate which drives this activation is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals, cell cycle checkpoints, and environmental or nutritional stresses.

10 Protein kinases may be roughly divided into two groups; protein tyrosine kinases (PTKs) which phosphorylate tyrosine residues, and serine/threonine kinases (STKs) which phosphorylate serine or threonine residues. A few protein kinases have dual specificity. A majority of kinases contain a similar 250-300 amino acid catalytic domain. (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I, pp. 7-47, Academic Press,

15 San Diego, CA.)

Protein phosphatases remove phosphate groups from molecules previously modified by protein kinases thus participating in cell signaling, proliferation, differentiation, contacts, and oncogenesis. Protein phosphorylation is a key strategy used to control protein functional activity in eukaryotic cells. The high energy phosphate is transferred from ATP to a protein by protein kinases and removed by protein phosphatases. There appear to be three, evolutionarily-distinct protein phosphatase gene families: protein phosphatases (PPs); protein tyrosine phosphatases (PTPs); and acid/alkaline phosphatases (APs). PPs dephosphorylate phosphoserine/threonine residues and are an important regulator of many cAMP mediated, hormone responses in cells.

PTPs reverse the effects of protein tyrosine kinases and therefore play a significant role in cell cycle and cell signaling processes. Although APs dephosphorylate substrates in vitro, their role in vivo is not well known. (Charbonneau, H. and Tonks, N.K. (1992) Annu. Rev. Cell Biol. 8:463-493.)

Cyclic nucleotides (cAMP and cGMP) function as intracellular second messengers

to transduce a variety of extracellular signals, including hormones, light and
neurotransmitters. Cyclic nucleotide phosphodiesterases (PDEs) degrade cyclic
nucleotides to their corresponding monophosphates, thereby regulating the intracellular

concentrations of cyclic nucleotides and their effects on signal transduction. At least seven families of mammalian PDEs have been identified based on substrate specificity and affinity, sensitivity to cofactors and sensitivity to inhibitory drugs. (Beavo, J.A. (1995) Physiological Reviews 75: 725-748.)

5

15

Phospholipases (PLs) are enzymes that catalyze the removal of fatty acid residues from phosphoglycerides. PLs play an important role in transmembrane signal transduction and are named according to the specific ester bond in phosphoglycerides that is hydrolyzed, i.e., A₁, A₂, C or D. PLA₂ cleaves the ester bond at position 2 of the glycerol moiety of membrane phospholipids giving rise to arachidonic acid. Arachidonic acid is 10 the common precursor to four major classes of eicosanoids, namely prostaglandins, prostacyclins, thromboxanes and leukotrienes. Eicosanoids are signaling molecules involved in the contraction of smooth muscle, platelet aggregation, and pain and inflammatory responses. (Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, Inc., New York, NY, pp. 85, 211, 239-240, 642-645.)

The nucleotide cyclases, i.e., adenylate and guanylate cyclase, catalyze the synthesis of the cyclic nucleotides, cAMP and cGMP, from ATP and GTP, respectively. They act in concert with phosphodiesterases, which degrade cAMP and cGMP, to regulate the cellular levels of these molecules and their functions. cAMP and cGMP function as intracellular second messengers to transduce a variety of extracellular signals, e.g., 20 hormones, and light and neurotransmitters. (Stryer, L. (1988) Biochemistry W.H. Freeman and Co., New York, pp. 975-980, 1029-1035.)

Cytokines are produced in response to cell perturbation. Some cytokines are produced as precursor forms, and some form multimers in order to become active. They are produced in groups and in patterns characteristic of the particular stimulus or disease, 25 and the members of the group interact with one another and other molecules to produce an overall biological response. Interleukins, neurotrophins, growth factors, interferons, and chemokines are all families of cytokines which work in conjunction with cellular receptors to regulate cell proliferation and differentiation and to affect such activities as leukocyte migration and function, hematopoietic cell proliferation, temperature regulation, acute 30 response to infections, tissue remodeling, apoptosis, and cell survival. Studies using antibodies or other drugs that modify the activity of a particular cytokine are used to elucidate the roles of individual cytokines in pathology and physiology.

Chemokines, in particular, are small chemoattractant cytokines involved in inflammation, leukocyte proliferation and migration, angiogenesis and angiostasis, regulation of hematopoiesis, HIV infectivity, and stimulation of cytokine secretion. Chemokines generally contain 70-100 amino acids and are subdivided into four subfamilies based on the presence of conserved cysteine-based motifs. (Callard, R. and Gearing, A. (1994) The Cytokine Facts Book. Academic Press, New York, NY, pp. 181-190, 210-213, 223-227.)

Growth and differentiation factors are secreted proteins which function in intercellular communication. Some factors require oligomerization or association with 10 MPs for activity. Complex interactions among these factors and their receptors trigger intracellular signal transduction pathways that stimulate or inhibit cell division, cell differentiation, cell signaling, and cell motility. Most growth and differentiation factors act on cells in their local environment (paracrine signaling). There are three broad classes of growth and differentiation factors. The first class includes the large polypeptide growth factors such as epidermal growth factor, fibroblast growth factor, transforming growth factor, insulin-like growth factor, and platelet-derived growth factor. The second class includes the hematopoietic growth factors such as the colony stimulating factors (CSFs). Hematopoietic growth factors stimulate the proliferation and differentiation of blood cells such as B-lymphocytes, T-lymphocytes, erythrocytes, platelets, eosinophils, basophils, neutrophils, macrophages, and their stem cell precursors. The third class includes small peptide factors such as bombesin, vasopressin, oxytocin, endothelin, transferrin, angiotensin II, vasoactive intestinal peptide, and bradykinin which function as hormones to regulate cellular functions other than proliferation.

Growth and differentiation factors play critical roles in neoplastic transformation of cells in vitro and in tumor progression in vivo. Inappropriate expression of growth factors by tumor cells may contribute to vascularization and metastasis of melanotic tumors.

During hematopoiesis, growth factor misregulation can result in anemias, leukemias, and lymphomas. Certain growth factors such as interferon are cytotoxic to tumor cells both in vivo and in vitro. Moreover, some growth factors and growth factor receptors are related both structurally and functionally to oncoproteins. In addition, growth factors affect transcriptional regulation of both proto-oncogenes and oncosuppressor genes. (Reviewed in Pimentel, E. (1994) Handbook of Growth Factors, CRC Press, Ann Arbor, MI, pp. 1-9.)

Proteolytic enzymes or proteases either activate or deactivate proteins by hydrolyzing peptide bonds. Proteases are found in the cytosol, in membrane-bound compartments, and in the extracellular space. The major families are the zinc, serine, cysteine, thiol, and carboxyl proteases.

5

Zinc proteases, e.g., carboxypeptidase A, have a zinc ion bound to the active site. These proteases recognize C-terminal residues that contain an aromatic or bulky aliphatic side chain, and hydrolyze the peptide bond adjacent to the C-terminal residues. Serine proteases have an active site serine residue and include digestive enzymes, e.g., trypsin and chymotrypsin, components of the complement and blood-clotting cascades, and 10 enzymes that control the degradation and turnover of extracellular matrix (ECM) molecules. Cysteine proteases (e.g. cathepsin) are produced by monocytes, macrophages and other immune cells, and are involved in diverse cellular processes ranging from the processing of precursor proteins to intracellular degradation. Overproduction of these enzymes can cause the tissue destruction associated with rheumatoid arthritis and asthma. 15 Thiol proteases, e.g., papain, contain an active site cysteine and are widely distributed within tissues. Carboxyl proteases, e.g., pepsin, are active only under acidic conditions (pH 2 to 3).

Guanosine triphosphate-binding proteins (G proteins) can be grouped into two major classes: heterotrimeric G proteins and small G proteins. Heterotrimeric G proteins interact with GPCRs that respond to hormones, growth factors, neuromodulators, or other signaling molecules. The interaction between GPCR and G protein allows the G protein to exchange GTP for guanosine diphosphate (GDP). This exchange activates the G protein, allowing it to dissociate from the receptor and interact with the its cognate second messenger-generating protein, e.g., adenylate cyclase, guanylate cyclase, phospholipase C, 25 or ion channels. The hydrolysis of GTP to GDP by the G protein acts as an on-off switch, terminating the action of the G protein and preparing it to interact with another receptor molecule, thus beginning another round of signal transduction.

The small G proteins consist of single 21-30 kDa polypeptides. They can be classified into five subfamilies: Ras, Rho, Ran, Rab, and ADP-ribosylation factor. These 30 proteins regulate cell growth, cell cycle control, protein secretion, and intracellular vesicle interaction. In particular, the Ras proteins are essential in transducing signals from receptor tyrosine kinases to serine/threonine kinases which control cell growth and

differentiation. Mutant Ras proteins, which bind but can not hydrolyze GTP, are permanently activated and cause continuous cell proliferation or cancer. All five subfamilies share common structural features and four conserved motifs. Most of the membrane-bound G proteins require a carboxy terminal isoprenyl group (CAAX), added posttranslationally, for membrane association and biological activity. The G proteins also have a variable effector region, located between motifs I and II, which is characterized as the interaction site for guanine nucleotide exchange factors or GTPase-activating proteins.

Eukaryotic cells are bound by a membrane and subdivided into membrane-bound compartments. Membranes are impermeable to many ions and polar molecules, therefore transport of these molecules is mediated by ion channels, ion pumps, transport proteins, or pumps. Symporters and antiporters regulate cytosolic pH by transporting ions and small molecules, e.g., amino acids, glucose, and drugs, across membranes; symporters transport small molecules and ions in the same direction, and antiporters, in the opposite direction. Transporter superfamilies include facilitative transporters and active ATP binding cassette transporters involved in multiple-drug resistance and the targeting of antigenic peptides to MHC Class I molecules. These transporters bind to a specific ion or other molecule and undergo conformational changes in order to transfer the ion or molecule across a membrane. Transport can occur by a passive, concentration-dependent mechanism or can be linked to an energy source such as ATP hydrolysis or an ion gradient.

Ion channels, ion pumps, and transport proteins mediate the transport of molecules across cellular membranes. Symporters and antiporters regulate cytosolic pH by transporting ions and small molecules such as amino acids, glucose, and drugs. Symporters transport small molecules and ions unidirectionally, and antiporters, bidirectionally. Transporter superfamilies include facilitative transporters and active ATP-binding cassette transporters which are involved in multiple-drug resistance and the targeting of antigenic peptides to MHC Class I molecules. These transporters bind to a specific ion or other molecule and undergo a conformational change in order to transfer the ion or molecule across the membrane. Transport can occur by a passive, concentration-dependent mechanism or can be linked to an energy source such as ATP hydrolysis. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of The Cell, Garland Publishing, New York, NY, pp. 523-546.)

Ion channels are formed by transmembrane proteins which create a lined passageway across the membrane through which water and ions, such as Na⁺, K⁺, Ca²⁺, and Cl⁻, enter and exit the cell. For example, chloride channels are involved in the regulation of the membrane electric potential as well as absorption and secretion of ions across the membrane. Chloride channels also regulate the internal pH of membrane-bound organelles.

Ion pumps are ATPases which actively maintain membrane gradients. Ion pumps are classified as P, V, or F according to their structure and function. All have one or more binding sites for ATP in their cytosolic domains. The P-class ion pumps include Ca²⁺

ATPase and Na⁺/K⁺ ATPase and function in transporting H⁺, Na⁺, K⁺, and Ca²⁺ ions. P-class pumps consist of two α and two β transmembrane subunits. The V- and F-class ion pumps have similar structures and but transport only H⁺. F class H⁺ pumps mediate transport across the membranes of mitochondria and chloroplasts, while V-class H⁻ pumps regulate acidity inside lysosomes, endosomes, and plant vacuoles.

A family of structurally related intrinsic membrane proteins known as facilitative glucose transporters catalyze the movement of glucose and other selected sugars across the plasma membrane. The proteins in this family contain a highly conserved, large transmembrane domain comprised of 12 α -helices, and several weakly conserved, cytoplasmic and exoplasmic domains (Pessin, J. E., and Bell, G.I. (1992) Annu. Rev. Physiol. 54:911-930).

15

Amino acid transport is mediated by Na⁺ dependent amino acid transporters.

These transporters are involved in gastrointestinal and renal uptake of dietary and cellular amino acids and in neuronal reuptake of neurotransmitters. Transport of cationic amino acids is mediated by the system y+ family and the cationic amino acid transporter (CAT)

family. Members of the CAT family share a high degree of sequence homology, and each contains 12-14 putative transmembrane domains (Ito, K. and Groudine, M. (1997) J. Biol. Chem. 272:26780-26786).

Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorbtion of peptides using an electrochemical H⁺ gradient as the driving force. A heterodimeric peptide transporter, consisting of TAP 1 and TAP 2, is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum so

they can be presented to the major histocompatibility complex class I molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette. (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289.)

5

Hormones are secreted molecules that travel through the circulation and bind to specific receptors on the surface of, or within, target cells. Although they have diverse biochemical compositions and mechanisms of action, hormones can be grouped into two categories. One category consists of small lipophilic hormones that diffuse through the plasma membrane of target cells, bind to cytosolic or nuclear receptors, and form a 10 complex that alters gene expression. Examples of these molecules include retinoic acid, thyroxine, and the cholesterol-derived steroid hormones such as progesterone, estrogen, testosterone, cortisol, and aldosterone. The second category consists of hydrophilic hormones that function by binding to cell surface receptors that transduce signals across the plasma membrane. Examples of such hormones include amino acid derivatives such 15 as catecholamines and peptide hormones such as glucagon, insulin, gastrin, secretin, cholecystokinin, adrenocorticotropic hormone, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and vasopressin. (See, for example, Lodish et al. (1995) Molecular Cell Biology, Scientific American Books Inc., New York, NY, pp. 856-864.)

20 Neuropeptides and vasomediators (NP/VM) comprise a large family of endogenous signaling molecules. Included in this family are neuropeptides and neuropeptide hormones such as bombesin, neuropeptide Y, neurotensin, neuromedin N, melanocortins, opioids, galanin, somatostatin, tachykinins, urotensin II and related peptides involved in smooth muscle stimulation, vasopressin, vasoactive intestinal peptide, 25 and circulatory system-borne signaling molecules such as angiotensin, complement, calcitonin, endothelins, formyl-methionyl peptides, glucagon, cholecystokinin and gastrin. NP/VMs can transduce signals directly, modulate the activity or release of other neurotransmitters and hormones, and act as catalytic enzymes in cascades. The effects of NP/VMs range from extremely brief to long-lasting. (Reviewed in Martin, C. R. et al. (1985) Endocrine Physiology, Oxford University Press, New York, NY, pp. 57-62.)

Regulatory molecules turn individual genes or groups of genes on and off in response to various inductive mechanisms of the cell or organism; act as transcription factors by determining

whether or not transcription is initiated, enhanced, or repressed; and splice transcripts as dictated in a particular cell or tissue. Although they interact with short stretches of DNA scattered throughout the entire genome, most gene expression is regulated near the site at which transcription starts or within the open reading frame of the gene being expressed. Many of the transcription factors incorporate one of a set of DNA-binding structural motifs, each of which contains either α helices or β sheets and binds to the major groove of DNA. (Pabo, C.O. and R.T. Sauer (1992) Ann. Rev. Biochem. 61:1053-95.) Other domains of transcription factors may form crucial contacts with the DNA. In addition, accessory proteins provide important interactions which may convert a particular protein complex to an activator or a repressor or may prevent binding. (Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing Co, New York, NY pp. 401-474.)

10

The discovery of new human signal peptide-containing proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders.

SUMMARY OF THE INVENTION

The invention features substantially purified polypeptides, proteins with signal 20 peptides, referred to collectively as "HSPP" and individually as "HSPP-1", "HSPP-2", "HSPP-3", "HSPP-4", "HSPP-5", "HSPP-6", "HSPP-7", "HSPP-8", "HSPP-9", "HSPP-10", "HSPP-11", "HSPP-12", "HSPP-13", "HSPP-14", "HSPP-15", "HSPP-16", "HSPP-17", "HSPP-18", "HSPP-19", "HSPP-20", "HSPP-21", "HSPP-22", "HSPP-23", "HSPP-24", "HSPP-25", "HSPP-26", "HSPP-27", "HSPP-28", "HSPP-29", "HSPP-30", "HSPP-25 31", "HSPP-32", "HSPP-33", "HSPP-34", "HSPP-35", "HSPP-36", "HSPP-37", "HSPP-38", "HSPP-39", "HSPP-40", "HSPP-41", "HSPP-42", "HSPP-43", "HSPP-44", "HSPP-45", "HSPP-46", "HSPP-47", "HSPP-48", "HSPP-49", "HSPP-50", "HSPP-51", "HSPP-52", "HSPP-53", "HSPP-54", "HSPP-55", "HSPP-56", "HSPP-57", "HSPP-58", "HSPP-59", "HSPP-60", "HSPP-61", "HSPP-62", "HSPP-63", "HSPP-64", "HSPP-65", "HSPP-30 66", "HSPP-67", "HSPP-68", "HSPP-69", "HSPP-70", "HSPP-71", "HSPP-72", "HSPP-73", "HSPP-74", "HSPP-75", HSPP-76", "HSPP-77", "HSPP-78", "HSPP-79", "HSPP-80", "HSPP-81", "HSPP-82", "HSPP-83", "HSPP-84", "HSPP-85", "HSPP-86", "HSPP-87", "HSPP-88", "HSPP-89", "HSPP-90", "HSPP-91", "HSPP-92", "HSPP-93", "HSPP-93", "HSPP-998", "HSPP-99 94", "HSPP-95", "HSPP-96", "HSPP-97", "HSPP-98", "HSPP-99", "HSPP-100", "HSPP-

101", "HSPP-102", "HSPP-103", "HSPP-104", "HSPP-105", "HSPP-106", "HSPP-107", "HSPP-108", "HSPP-109", "HSPP-110", HSPP-111", "HSPP-112", "HSPP-113", "HSPP-114", "HSPP-115", "HSPP-116", "HSPP-117", "HSPP-118", "HSPP-119", "HSPP-120", "HSPP-121", "HSPP-122", "HSPP-123", "HSPP-124", "HSPP-125", "HSPP-126", 5 "HSPP-127", "HSPP-128", "HSPP-129", "HSPP-130", "HSPP-131", "HSPP-132". "HSPP-133", and "HSPP-134". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID 10 NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO: 28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, 15 SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID 20 NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEO ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ 25 ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID 30 NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID

NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID

NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134 (SEQ ID NO:1-134), and fragments thereof.

The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:187, SEQ ID NO:187, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:191, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:195, SEQ ID NO:194, SEQ ID NO:195

NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID 5 NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID 10 NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID 15 NO:266, SEQ ID NO:267, SEQ ID NO:268 (SEQ ID NO:135-268), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:135-268, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is 20 complementary to the polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:135-268, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-134, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder associated with decreased expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-134, and fragments thereof.

25

30

10

BRIEF DESCRIPTION OF THE TABLE

Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NO), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HSPP.

Table 2 shows features of each polypeptide sequence, including predicted signal peptide sequences, and methods and algorithms used for identification of HSPP.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which
5 Incyte cDNA clones encoding HSPP were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HSPP.

Table 6 shows the regions of the full-length nucleotide sequences of HSPP to which cDNA fragments of Table 1 correspond.

10

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"HSPP" refers to the amino acid sequences of substantially purified HSPP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to HSPP, increases or prolongs the duration of the effect of HSPP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HSPP.

An "allelic variant" is an alternative form of the gene encoding HSPP. Allelic
variants may result from at least one mutation in the nucleic acid sequence and may result
in altered mRNAs or in polypeptides whose structure or function may or may not be
altered. Any given natural or recombinant gene may have none, one, or many allelic
forms. Common mutational changes which give rise to allelic variants are generally
ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these
types of changes may occur alone, or in combination with the others, one or more times in
a given sequence.

"Altered" nucleic acid sequences encoding HSPP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HSPP or a polypeptide with at least one functional characteristic of HSPP.

20 Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HSPP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HSPP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HSPP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of HSPP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine,

isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HSPP which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain some biological activity or immunological activity of HSPP. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

15

The term "antagonist" refers to a molecule which, when bound to HSPP, decreases the amount or the duration of the effect of the biological or immunological activity of HSPP. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HSPP.

The term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HSPP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete

with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence.

5 Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

10

15

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic HSPP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence "5' A-G-T 3" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules. 20 The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition 25 comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HSPP or fragments of HSPP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence"refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a 5 computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to produce the consensus sequence.

The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence 10 encoding HSPP, by northern analysis is indicative of the presence of nucleic acids encoding HSPP in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HSPP.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

15

The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is 20 one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word "similarity." A partially complementary sequence that at least partially inhibits an 25 identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the 30 binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require

that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" or "% identity" refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences 10 according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of 15 sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known 20 in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term "humanized antibody" refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary

bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" or "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray" refers to an arrangement of distinct polynucleotides on a substrate.

The terms "element" or "array element" in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

15

20

The term "modulate" refers to a change in the activity of HSPP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HSPP.

The phrases "nucleic acid" or "nucleic acid sequence," as used herein, refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers 25 to those nucleic acid sequences which, comprise a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:135-268, for example, as distinct from any other sequence in the same genome. For example, a fragment of SEQ ID NO:135-268 is useful in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:135-268 from related polynucleotide sequences. A fragment of 30 SEQ ID NO:135-268 is at least about 15-20 nucleotides in length. The precise length of the fragment of SEQ ID NO:135-268 and the region of SEQ ID NO:135-268 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based

on the intended purpose for the fragment. In some cases, a fragment, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide.

While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms

15 "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding HSPP, or fragments thereof, or HSPP itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the

presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be 5 defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

15

20

30

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

"Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being 25 transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HSPP polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g.,

replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HSPP. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants.

10 A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

The invention is based on the discovery of new human signal peptide-containing proteins (HSPP), the polynucleotides encoding HSPP, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HSPP. Columns 1 and 2 show the sequence identification numbers (SEQ ID NO) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HSPP were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5

shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HSPP and are useful as fragments in hybridization technologies.

Table 6 shows the regions of the full-length nucleotide sequences of HSPP to

5 which cDNA fragments of Table 1 correspond. Column 1 lists nucleotide sequence
identifiers and column 2 shows the clone ID of the Incyte clone in which nucleic acids
encoding each HSPP were identified. Column 3 shows Incyte clones and shotgun
sequences which are part of the consensus nucleotide sequence of each HSPP and are
useful as fragments in hybridization technologies. Column 4 lists the starting nucleotide
position and column 5 the ending nucleotide position of the region of the full-length HSPP
to which the cDNA fragment corresponds.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each HSPP as a signal peptide-containing protein. Note that in column 5, the first line of each cell lists the amino acid residues comprising predicted signal peptide sequences. Additional identifying motifs or signatures are also listed in column 5. Of particular note is the presence of a glycosyl hydrolase family 9 active site signature in SEQ ID NO:126, a ribosomal protein S18 signature in SEQ ID NO:127, an adrenodoxin family iron-sulfur binding region signature and a cytochrome c family hemebinding site signature in SEQ ID NO:132, and a urotensin II signature sequence in SEQ ID NO:96.

Using BLAST, SEQ ID NO:68 (HSPP-68) has been identified as a TWIK-related acid-sensitive K⁺ channel, and SEQ ID NO:92 (HSPP-92) has been identified as a tyrosine-specific protein phosphatases. The tyrosine-specific protein phosphatases signature in SEQ ID NO:92 (HSPP-92) from about V328 through about F340 (including the putative active site cysteine residue at C330) was identified using BLOCKS and PRINTS. Also of note is the identification of SEQ ID NO:66 (HSPP-66) as a steroid binding protein using BLAST.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HSPP. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HSPP as a fraction of total tissue categories expressing HSPP. The third 5 column lists the diseases, disorders, or conditions associated with those tissues expressing HSPP. The fourth column lists the vectors used to subclone the cDNA library. Of particular note is the expression of SEQ ID NO:200, SEQ ID NO:203, and SEQ ID NO:225 in lung tissues; the expression of SEQ ID NO:212, SEQ ID NO:216, and SEQ ID NO:220 in reproductive tissues; the expression of SEQ ID NO:223 in cancerous tissues; 10 the expression of SEQ ID NO:232 in gastrointestinal tissue, specifically the small intestine or colon (fifteen out of sixteen (93.8%) cDNA libraries); and the expression of SEQ ID NO:224 in cancerous and proliferating tissues. Also of particular interest is the tissuespecific expression of SEQ ID NO:252 and SEQ ID NO:257. SEQ ID NO:252 is derived from OVARTUT01, an ovarian tumor cDNA library and is exclusively expressed in 15 reproductive tumor tissue. SEQ ID NO:257 is derived from THP1AZT01, a 5-aza-2'-deoxycytidine treated human promonocyte cDNA library and is exclusively expressed in hematopoietic tissue.

The following fragments of the nucleotide sequences encoding HSPP are useful in hybridization or amplification technologies to identify SEQ ID NO:135-268 and to

20 distinguish between SEQ ID NO:135-268 and related polynucleotide sequences. The useful fragments are the fragment of SEQ ID NO:230 from about nucleotide 75 to about nucleotide 104; the fragment of SEQ ID NO:231 from about nucleotide 210 to about nucleotide 239; the fragment of SEQ ID NO:232 from about nucleotide 157 to about nucleotide 186; the fragment of SEQ ID NO:233 from about nucleotide 268 to about nucleotide 297; the fragment of SEQ ID NO:234 from about nucleotide 160 to about nucleotide 186; the fragment of SEQ ID NO:235 from about nucleotide 201 to about nucleotide 230; the fragment of SEQ ID NO:236 from about nucleotide 165 to about nucleotide 194; the fragment of SEQ ID NO:237 from about nucleotide 366 to about nucleotide 395; the fragment of SEQ ID NO:238 from about nucleotide 714 to about nucleotide 743; the fragment of SEQ ID NO:239 from about nucleotide 1731 to about nucleotide 1760; the fragment of SEQ ID NO:240 from about nucleotide 419 to about nucleotide 448; the fragment of SEQ ID NO:241 from about nucleotide 494 to about

nucleotide 523; the fragment of SEQ ID NO:242 from about nucleotide 100 to about nucleotide 129; the fragment of SEQ ID NO:243 from about nucleotide 104 to about nucleotide 133; the fragment of SEQ ID NO:244 from about nucleotide 136 to about nucleotide 165; the fragment of SEQ ID NO:245 from about nucleotide 140 to about nucleotide 169; the fragment of SEQ ID NO:246 from about nucleotide 125 to about nucleotide 154; the fragment of SEQ ID NO:247 from about nucleotide 687 to about nucleotide 758; the fragment of SEQ ID NO:248 from about nucleotide 327 to about nucleotide 398; the fragment of SEQ ID NO:249 from about nucleotide 741 to about nucleotide 785; the fragment of SEQ ID NO:250 from about nucleotide 184 to about nucleotide 255; the fragment of SEQ ID NO:251 from about nucleotide 165 to about nucleotide 242; the fragment of SEQ ID NO:252 from about nucleotide 271 to about nucleotide 342; the fragment of SEQ ID NO:253 from about nucleotide 1081 to about nucleotide 1152; the fragment of SEQ ID NO:254 from about nucleotide 781 to about nucleotide 852; the fragment of SEQ ID NO:255 from about nucleotide 620 to about nucleotide 691; the fragment of SEQ ID NO:256 from about nucleotide 872 to about nucleotide 916; the fragment of SEQ ID NO:257 from about nucleotide 242 to about nucleotide 313; the fragment of SEQ ID NO:258 from about nucleotide 595 to about nucleotide 648; the fragment of SEQ ID NO:259 from about nucleotide 163 to about nucleotide 216; the fragment of SEQ ID NO:260 from about nucleotide 244 to about 20 nucleotide 315; the fragment of SEQ ID NO:261 from about nucleotide 75 to about nucleotide 128; the fragment of SEQ ID NO:262 from about nucleotide 650 to about nucleotide 703; the fragment of SEQ ID NO:263 from about nucleotide 143 to about nucleotide 214; the fragment of SEQ ID NO:264 from about nucleotide 434 to about nucleotide 487; the fragment of SEQ ID NO:265 from about nucleotide 218 to about 25 nucleotide 271; the fragment of SEQ ID NO:266 from about nucleotide 89 to about nucleotide 145; the fragment of SEQ ID NO:267 from about nucleotide 198 to about nucleotide 254; and the fragment of SEQ ID NO:268 from about nucleotide 10 to about nucleotide 54.

The invention also encompasses HSPP variants. A preferred HSPP variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HSPP amino acid sequence, and which contains at least one functional or structural characteristic of HSPP.

The invention also encompasses polynucleotides which encode HSPP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:135-268, which encodes HSPP.

5

The invention also encompasses a variant of a polynucleotide sequence encoding HSPP. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding HSPP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:135-268 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:135-268. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of HSPP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HSPP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HSPP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HSPP and its variants are preferably

capable of hybridizing to the nucleotide sequence of the naturally occurring HSPP under
appropriately selected conditions of stringency, it may be advantageous to produce
nucleotide sequences encoding HSPP or its derivatives possessing a substantially different
codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to
increase the rate at which expression of the peptide occurs in a particular prokaryotic or
eukaryotic host in accordance with the frequency with which particular codons are utilized
by the host. Other reasons for substantially altering the nucleotide sequence encoding
HSPP and its derivatives without altering the encoded amino acid sequences include the

production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HSPP and HSPP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HSPP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable 10 of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:135-268 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably 15 less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as 25 needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μ g/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 30 % formamide, and 200 μ g/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

15 Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA 25 sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, 30 pp. 856-853.)

The nucleic acid sequences encoding HSPP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect

upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses 5 primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome 10 DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). 15 Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g.,

GENOTYPER and SEQUENCE NAVIGATOR. Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HSPP may be cloned in recombinant DNA molecules that direct expression of HSPP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HSPP.

5

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HSPP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HSPP may be synthesized, in whole
or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al.
(1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res.
Symp. Ser. 225-232.) Alternatively, HSPP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.)

25 Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HSPP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g, Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid

part thereof, to produce a variant polypeptide.

analysis or by sequencing. (See, e.g., Creighton, T. (1984) <u>Proteins, Structures and Molecular Properties</u>, WH Freeman, New York NY.)

In order to express a biologically active HSPP, the nucleotide sequences encoding HSPP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a 5 vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HSPP. Such elements may vary in their strength and specificity. Specific initiation signals may also be 10 used to achieve more efficient translation of sequences encoding HSPP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding HSPP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HSPP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding HSPP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral

expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected 5 depending upon the use intended for polynucleotide sequences encoding HSPP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HSPP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies). Ligation of sequences encoding HSPP into the vector's multiple cloning site disrupts the 10 lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HSPP are 15 needed, e.g. for the production of antibodies, vectors which direct high level expression of HSPP may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HSPP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of HSPP. Transcription of sequences encoding HSPP may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. 30 et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated

25

transfection. (See, e.g., <u>The McGraw Hill Yearbook of Science and Technology</u> (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized.

In cases where an adenovirus is used as an expression vector, sequences encoding HSPP

may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HSPP in host cells.

(See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods

(liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HSPP in cell lines is preferred. For example, sequences encoding HSPP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to

the aminoglycosides, neomycin and G-418; and als or pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate ß-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HSPP is inserted within a marker gene sequence, transformed cells containing sequences encoding HSPP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HSPP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HSPP and that express HSPP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

20

Immunological methods for detecting and measuring the expression of HSPP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on HSPP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al.

(1990) <u>Serological Methods, a Laboratory Manual</u>, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) <u>Current Protocols in Immunology</u>, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) <u>Immunochemical Protocols</u>, Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HSPP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HSPP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HSPP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HSPP may be designed to contain signal sequences which direct secretion of HSPP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK,

HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Manassas, VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic 5 acid sequences encoding HSPP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HSPP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of HSPP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, cmyc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, 15 calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HSPP encoding sequence and the heterologous protein sequence, so that 20 HSPP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HSPP may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ³⁵S-methionine.

Fragments of HSPP may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, <u>supra</u>, pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation.

Automated synthesis may be achieved, for example, using the ABI 431A Peptide

Synthesizer (Perkin-Elmer). Various fragments of HSPP may be synthesized scparately and then combined to produce the full length molecule.

THERAPEUTICS

5 Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HSPP and signal peptide sequences. In addition, chemical and structural similarity, in the context of sequences and motifs, exists between HSPP-66 and prostatic steriod-binding C3 precursor from rat (GI 206453); between HSPP-68 and TWIK-related acid-sensitive K+channel from human (GI 2465542); and between HSPP-92 10 and tyrosine specific protein phosphatases (PROSITE PDOC00323). In addition, the expression of HSPP is closely associated with proliferative, cancerous, inflamed, cardiovascular, nervous, reproductive. hematopoietic/immune, and developmental tissue. Therefore, HSPP appears to play a role in cell proliferative disorders including cancer; inflammation; and cardiovascular, 15 neurological, reproductive, and developmental disorders. In the treatment of cell proliferative disorders including cancer; inflammation; and cardiovascular, neurological, reproductive, and developmental disorders associated with increased HSPP expression or activity, it is desirable to decrease the expression or activity of HSPP. In the treatment of the above conditions associated with decreased HSPP expression or activity, it is desirable to increase the expression or activity of HSPP.

Therefore, in one embodiment, HSPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP. Examples of such disorders include, but are not limited to, cell proliferative disorders such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia,

30 gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; inflammatory disorders, such as acquired immunodeficiency syndrome (AIDS), Addison's

disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, 5 dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; cardiovascular disorders including disorders of the blood vessels such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors; disorders of the heart such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and disorders of the lungs such as congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse

30 interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary

hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, and pleural tumors; neurological disorders such as epilepsy, ischemic cerebrovascular disease, 5 stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; reproductive disorders such as disorders of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian 25 hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, carcinoma of the male breast, and gynecomastia; and developmental 30 disorders, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis,

WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental

retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss.

In another embodiment, a vector capable of expressing HSPP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HSPP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HSPP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HSPP including, but not limited to, those listed above.

15

In a further embodiment, an antagonist of HSPP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HSPP.

Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HSPP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HSPP.

In an additional embodiment, a vector expressing the complement of the

25 polynucleotide encoding HSPP may be administered to a subject to treat or prevent a
disorder associated with increased expression or activity of HSPP including, but not
limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act

synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of HSPP may be produced using methods which are generally 5 known in the art. In particular, purified HSPP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HSPP. Antibodies to HSPP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression 10 library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HSPP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, 15 various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HSPP have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, 25 naturally occurring molecule. Short stretches of HSPP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

20

Monoclonal antibodies to HSPP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. 30 These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42;

Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule

5 with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.)

Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HSPP-specific single chain

10 antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries.

(See, e.g., Burton D.R. (1991) Proc. Natl. Acad. Sci. 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for HSPP may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the

desired specificity. Numerous protocols for competitive binding or immunoradiometric
assays using either polyclonal or monoclonal antibodies with established specificities are
well known in the art. Such immunoassays typically involve the measurement of complex
formation between HSPP and its specific antibody. A two-site, monoclonal-based
immunoassay utilizing monoclonal antibodies reactive to two non-interfering HSPP

epitopes is preferred, but a competitive binding assay may also be employed (Pound,
supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HSPP. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of HSPP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HSPP epitopes, represents the average affinity, or avidity, of the antibodies for HSPP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HSPP epitope, represents a true measure of affinity. Highaffinity antibody preparations with K_a ranging from about 109 to 1012 L/mole are preferred for use in immunoassays in which the HSPP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HSPP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HSPP-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HSPP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding HSPP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HSPP. Thus, complementary molecules or fragments may be used to modulate HSPP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and

sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HSPP.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HSPP. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding HSPP can be turned off by transforming a cell or tissue with

expression vectors which express high levels of a polynucleotide, or fragment thereof,
encoding HSPP. Such constructs may be used to introduce untranslatable sense or
antisense sequences into a cell. Even in the absence of integration into the DNA, such
vectors may continue to transcribe RNA molecules until they are disabled by endogenous
nucleases. Transient expression may last for a month or more with a non-replicating

vector, and may last even longer if appropriate replication elements are part of the vector
system.

As mentioned above, modifications of gene expression can be obtained by designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HSPP. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by

30

endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HSPP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HSPP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and
equally suitable for use <u>in vivo</u>, <u>in vitro</u>, and <u>ex vivo</u>. For <u>ex vivo</u> therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or

by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HSPP, antibodies to HSPP, and mimetics, agonists, antagonists, or inhibitors of HSPP. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

15

25

30

In addition to the active ingredients, these pharmaceutical compositions may

contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be

added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc,

10 polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules

made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as
glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or
binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and,
optionally, stabilizers. In soft capsules, the active compounds may be dissolved or
suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with
or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HSPP, such labeling would include amount, frequency, and method of administration.

15

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HSPP or fragments thereof, antibodies of HSPP, and agonists, antagonists or inhibitors of HSPP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically

effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about $0.1~\mu g$ to $100,000~\mu g$, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

25 DIAGNOSTICS

In another embodiment, antibodies which specifically bind HSPP may be used for the diagnosis of disorders characterized by expression of HSPP, or in assays to monitor patients being treated with HSPP or agonists, antagonists, or inhibitors of HSPP.

Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for HSPP include methods which utilize the antibody and a label to detect HSPP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled

by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HSPP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HSPP expression. Normal or standard values for HSPP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HSPP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HSPP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HSPP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HSPP may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HSPP, and to monitor regulation of HSPP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting

20 polynucleotide sequences, including genomic sequences, encoding HSPP or closely
related molecules may be used to identify nucleic acid sequences which encode HSPP.

The specificity of the probe, whether it is made from a highly specific region, e.g., the 5'
regulatory region, or from a less specific region, e.g., a conserved motif, and the
stringency of the hybridization or amplification (maximal, high, intermediate, or low), will

25 determine whether the probe identifies only naturally occurring sequences encoding
HSPP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the HSPP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:135-268 or from genomic sequences including promoters, enhancers, and introns of the HSPP gene.

Means for producing specific hybridization probes for DNAs encoding HSPP include the cloning of polynucleotide sequences encoding HSPP or HSPP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HSPP may be used for the diagnosis of disorders associated with expression of HSPP. Examples of such disorders include, but are not limited to, cell proliferative disorders such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, 15 melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; inflammatory disorders, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED). bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with 25 lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's 30 syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic,

protozoal, and helminthic infections, and trauma; cardiovascular disorders including disorders of the blood vessels such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, and vascular tumors; disorders of the heart such as congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, and congenital heart disease; and disorders of the lungs such as congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, 15 emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary 20 hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, and pleural tumors; neurological disorders such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, 25 dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous 30 system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal

hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; reproductive disorders such as disorders of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; disruptions of the estrous cycle, disruptions of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, 15 cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, carcinoma of the male breast, and gynecomastia; and developmental disorders, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing 25 loss. The polynucleotide sequences encoding HSPP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HSPP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HSPP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HSPP may be labeled by standard methods and added

30

to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HSPP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with

expression of HSPP, a normal or standard profile for expression is established. This may
be accomplished by combining body fluids or cell extracts taken from normal subjects,
either animal or human, with a sequence, or a fragment thereof, encoding HSPP, under
conditions suitable for hybridization or amplification. Standard hybridization may be
quantified by comparing the values obtained from normal subjects with values from an

experiment in which a known amount of a substantially purified polynucleotide is used.

Standard values obtained in this manner may be compared with values obtained from
samples from patients who are symptomatic for a disorder. Deviation from standard
values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HSPP may involve the use of PCR. These oligomers may be chemically

synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding HSPP, or a fragment of a polynucleotide complementary to the polynucleotide encoding HSPP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of HSPP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. 10 Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a

spectrophotometric or colorimetric response gives rapid quantitation.

20

In further embodiments, oligonucleotides or longer fragments derived from any of 15 the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. 25 (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HSPP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a 30 specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries.

(See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HSPP on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, HSPP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HSPP and the agent being tested may be measured.

25

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen,

et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with HSPP, or fragments thereof, and washed. Bound HSPP is then detected by methods well known in the art. Purified HSPP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HSPP specifically compete with a test compound for binding HSPP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HSPP.

In additional embodiments, the nucleotide sequences which encode HSPP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all applications, patents, and publications, mentioned above and below, in particular US Ser. No. 60/090,762, US Ser. No. 60/094,983, US Ser. No. 60/102,686, and US Ser. No. 60/112,129, are hereby expressly incorporated by reference.

EXAMPLES

25 I. Construction of cDNA Libraries

20

RNA was purchased from Clontech or isolated from tissues described in Table 4.

Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine

isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries 10 were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate 15 restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids were recovered from host cells by <u>in vivo</u> excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a MAGIC or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid 5 DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

Sequencing and Analysis III.

20

The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 10 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced 15 using the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). In yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a 25 brief description thereof, the third column presents the references which are incorporated by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San 30 Francisco CA) and LASERGENE software (DNASTAR).

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based

on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probalistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Cur. Opin. Str. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length

15 polynucleotide and amino acid sequences were also used to identify polynucleotide
sequence fragments from SEQ ID NO:135-268. Fragments from about 20 to about 4000
nucleotides which are useful in hybridization and amplification technologies were
described in The Invention section above.

IV. Northern Analysis

20

30

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel, 1995, <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical
25 or related molecules in nucleotide databases such as GenBank or LIFESEQ database
(Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based
hybridizations. In addition, the sensitivity of the computer search can be modified to
determine whether any particular match is categorized as exact or similar. The basis of the
search is the product score, which is defined as:

% sequence identity x % maximum BLAST score

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HSPP occurred. Analysis involved the categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of HSPP Encoding Polynucleotides

Full length nucleic acid sequences of SEQ ID NOs:135-229 were produced by extension of the component fragments described in Table 1, column 5, using oligonucleotide primers based on these fragments. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGOTM 4.06 (National Biosciences, Plymouth, MN), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence.

30 If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

High fidelity amplification was obtained by following the instructions for the XL-PCRTM kit (The Perkin-Elmer Corp., Norwalk, CT) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research, Inc., Watertown, MA), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

	Step 1	94° C for 1 min (initial denaturation)
	Step 2	65° C for 1 min
	Step 3	68° C for 6 min
	Step 4	94° C for 15 sec
10	Step 5	65° C for 1 min
	Step 6	68° C for 7 min
	Step 7	Repeat steps 4 through 6 for an additional 15 cycles
	Step 8	94° C for 15 sec
	Step 9	65° C for 1 min
15	Step 10	68° C for 7:15 min
	Step 11	Repeat steps 8 through 10 for an additional 12 cycles
	Step 12	72° C for 8 min
	Step 13	4° C (and holding)
		_ ,

A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICKTM (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

After ethanol precipitation, the products were redissolved in 13 μl of ligation buffer, 1μl T4-DNA ligase (15 units) and 1μl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16° C. Competent E. coli cells (in 40 μl of appropriate media) were transformed with 3 μl of ligation mixture and cultured in 80 μl of SOC medium. (See, e.g., Sambrook, supra,
Appendix A, p. 2.) After incubation for one hour at 37°C, the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μl of liquid LB/2x carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The
following day, 5 μl of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μl from each sample was transferred into a PCR

array.

For PCR amplification, $18 \mu l$ of concentrated PCR reaction mix (3.3x) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

5	Step 1	94° C for 60 sec
	Step 2	94° C for 20 sec
	Step 3	55° C for 30 sec
	Step 4	72° C for 90 sec
	Step 5	Repeat steps 2 through 4 for an additional 29 cycles
10	Step 6	72° C for 180 sec
	Step .7	4° C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

The full length nucleic acid sequences of SEQ ID NO:230-268 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

25

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as

follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 µl 5 PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 µl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:135-268 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

5 VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:135-268 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.

25 VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of

complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be 5 selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the HSPP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HSPP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the 20 coding sequence of HSPP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HSPP-encoding transcript.

25 IX. **Expression of HSPP**

15

Expression and purification of HSPP is achieved using bacterial or virus-based expression systems. For expression of HSPP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria

express HSPP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG).

Expression of HSPP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HSPP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HSPP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from HSPP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch 10 and 16). Purified HSPP obtained by these methods can be used directly in the following activity assay.

25

30

X. Demonstration of HSPP Activity HSPP-68

HSPP-68 activity is measured by determining the potassium current using voltage clamp analysis on single <u>Xenopus laevis</u> oocytes injected with HSPP-68 cRNA. HSPP-68 cRNA is synthesized <u>in vitro</u> from linearized HSPP-68 encoding plasmids using the T7

RNA polymerase and injected into oocytes.. Injected oocytes are used two to four days after injection. In a 0.3 ml perfusion chamber, a single oocyte is impaled with two standard microelectrodes (1-2.5 MΩ) filled with 3 M KCl. The oocyte is maintained under voltage clamp by using a Dagan TEV 200 amplifier, in buffer containing 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, 2 mM MgCl₂, 5 mM HEPES, pH 7.4 with NaOH. Stimulation of the preparation, data acquisition, and analysis is performed using a computer. All experiments are performed at room temperature (21-22 °C). Following a depolarizing pulse, the characteristics of the resulting potassium current are measured via the recording electrode. The amount of potassium current that flows in response to a unit depolarization is proportional to the activity of HSPP-68 in the cell. (Duprat, F. et al. (1997) EMBO J. 16:5464-5471.)

HSPP-92

20

HSPP-92 protein phosphatase activity is measured by the hydrolysis of P-nitrophenyl phosphate (PNPP). HSPP-92 is incubated together with PNPP in HEPES buffer pH 7.5, in the presence of 0.1% b-mercaptoethanol at 37°C for 60 min. The reaction is stopped by the addition of 6 ml of 10 N NaOH and the increase in light absorbance at 410 nm resulting from the hydrolysis of PNPP is measured using a spectrophotometer. The increase in light absorbance is proportional to the activity of PP in the assay. (Diamond R.H. et al (1994) Mol Cell Biol 14:3752-62.)

Alternatively, HSPP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HSPP, washed, and any wells with labeled HSPP complex are assayed. Data obtained using different concentrations of HSPP are used to calculate values for the number, affinity, and association of HSPP with the candidate molecules.

Alternatively, an assay for HSPP activity measures the expression of HSPP on the cell surface. cDNA encoding HSPP is subcloned into an appropriate mammalian expression vector suitable for high levels of cDNA expression. The resulting construct is transfected into a nonhuman cell line such as NIH3T3. Cell surface proteins are labeled with biotin using methods known in the art. Immunoprecipitations are performed using HSPP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to

unlabeled immunoprecipitant is proportional to the amount of HSPP expressed on the cell surface.

Alternatively, an assay for HSPP activity measures the amount of HSPP in secretory, membrane-bound organelles. Transfected cells as described above are harvested and lysed. The lysate is fractionated using methods known to those of skill in the art, for example, sucrose gradient ultracentrifugation. Such methods allow the isolation of subcellular components such as the Golgi apparatus, ER, small membrane-bound vesicles, and other secretory organelles. Immunoprecipitations from fractionated and total cell lysates are performed using HSPP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The concentration of HSPP in secretory organelles relative to HSPP in total cell lysate is proportional to the amount of HSPP in transit through the secretory pathway.

XI. Functional Assays

HSPP function is assessed by expressing the sequences encoding HSPP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, preferably 20 of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent 25 Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as 30 measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in

expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of HSPP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HSPP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HSPP and other genes of interest can be analyzed by northern analysis or microarray techniques.

15 XII. Production of HSPP Specific Antibodies

HSPP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the HSPP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic,

blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HSPP Using Specific Antibodies

Naturally occurring or recombinant HSPP is substantially purified by

immunoaffinity chromatography using antibodies specific for HSPP. An immunoaffinity column is constructed by covalently coupling anti-HSPP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HSPP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HSPP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HSPP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HSPP is collected.

15 XIV. Identification of Molecules Which Interact with HSPP

10

HSPP, or biologically active fragments thereof, are labeled with ¹²⁵I

Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HSPP, washed, and any wells with labeled HSPP complex are assayed. Data obtained using different concentrations of HSPP are used to calculate values for the number, affinity, and association of HSPP with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

TABLE

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
_	135	443531	MPHGNOT03	443531H1 (MPHGNOT03), 1406807F6 (LATRTUT02), 443531T6 (MPHGNOT03), SBBA00451F1, SBBA00676F1
2	136	632860	NEUTGMT01	632860H1 (NEUTGMT01), 784715R3 (PROSNOT05), 509590H1 (MPHGNOT03)
3	137	670010	CRBLNOT01	670010H1 (CRBLNOT01), 669971R1 (CRBLNOT01), 1553045F1 (BLADTUT04)
4	138	726498	SYNOOAT01	726498HI (SYNOOAT0I), 726498R6 (SYNOOAT0I), 866599R3 (BRAITUT03)
S	139	795064	OVARNOT03	795064H1 (OVARNOT03), 4339458H1 (BRAUNOT02), 937605R3 (CERVNOT01), 2381151F6 (ISLTNOT01), 1466346F6 (PANCTUT02)
9	140	924925	BRAINOT04	924925HI (BRAINOT04), 3268330HI (BRAINOT20), 759120R3 (BRAITUT02)
7	141	962390	BRSTTUT03	962390H1 (BRSTTUT03), 1907958F6 (CONNTUT01), 023569F1 (ADENINB01), 167282F1 (LIVRNOT01), 1309211F1 (COLNFET02), SAUA00696F1, SAUA02860F1
∞	142	1259405	MENITUT03	1259405H1 (MENITUT03), 2472425H1 (THP1NOT03), 774303R1 (COLNNOT05), 1520779F1 (BLADTUT04), 1693833F6 (COLNNOT23), 1831858T6.comp (THP1AZT01), 1527737T6.comp (UCMCL5T01)
6	143	1297384	BRSTNOT07	1297384HI (BRSTNOT07), 1269310F6 (BRAINOT09), 1457367F1 (COLNFET02), 415587RI (BRSTNOT01), SANA02967F1
	144	1299627	BRSTNOT07	1299627H1 (BRSTNOT07), 1359140F6 (LUNGNOT09), 1349224F1 (LATRTUT02), SBAA01431F1, SBAA02909F1, SBAA01156F1
=	145	1306026	PLACNOT02	1306026H1 (PLACNOT02), 1464088R6 (PANCNOT04), SBAA02496F1, SBAA04305F1
12	146	1316219	BLADTUT02	1316219H1 (BLADTUT02), 2458603F6 (ENDANOT01), 2504756T6 (CONUTUT01)
13	147	1329031	PANCNOT07	1329031H1 (PANCNOT07), 1329031T6 (PANCNOT07), 1329031F6 (PANCNOT07)

-75-

TABLE 1 (cont.)

				,		,				
Fragments	1483050H1 (CORPNOT02), 855049H1 (NGANNOT01), 077017F1 (SYNORAB01), 1483050F6 (CORPNOT02), 1480024T6 (CORPNOT02), 159486R1 (BRAITUT02)	1514160H1 (PANCTUT01), 1866765T7 (SKINBIT01), 782676R1 (MYOMNOT01), 008055X4 (HMC1NOT01), 008055X5 (HMC1NOT01), 1866765F6 (SKINBIT01), SAOA03127F1	1603403H1 (LUNGNOT15), 372910F1 (LUNGNOT02), 733299R7 (LUNGNOT03)	1652303H1 (PROSTUT08), 1671806H1 (BLADNOT0S), 1341743T1 (COLNTUT03), 3803812H1 (BLADTUT03), 1878546F6 (LEUKNOT03), 1428640F1 (SINTBST01), 2058609R6 (OVARNOT03), 1331621F1 (PANCNOT07), 1306331T1 (PLACNOT02)	1693358H1 (COLNNOT23), 2498265H1 (ADRETUT05), 1867125F6 (SKINBIT01), 1693358T6 (COLNNOT23), 224584RR6 (HIPONON02)	1707711H1 (DUODNOT02), 1484609T1 (CORPNOT02), 1707711F6 (DUODNOT02), 1267959F1 (BRAINOT09), 1484609F1 (CORPNOT02), SAJA00930F1, SAJA01300R1, SAJA00999R1	1738735H1 (COLNNOT22), SAJA00944R1, SAJA00137F1, SAJA03629F1	1749147H1 (STOMTUT02), 1749147F6 (STOMTUT02), 1749147T6 (STOMTUT02)	1817722HI (PROSNOT20), 2011085HI (TESTNOT03)	1831290H1 (THP1AZT01), 3473958H1 (LUNGNOT27), 1972268F6 (UCMCL5T01), 1301277F1 (BRSTNOT07), 1521574F1 (BLADTUT04), 1561690T6 (SPLNNOT04), 891461R1 (STOMTUT01)
Library	CORPNOT02	PANCTUT01	LUNGNOTIS	PROSTUT08	COLNNOT23	DUODNOT02	COLNNOT22	STOMTUT02	PROSNOT20	THP1AZT01
Clone ID	1483050	1514160	1603403	1652303	1693358	1707711	1738735	1749147	1817722	1831290
Nucleotide SEQ ID NO:	148	149	051	151	152	153	154	155	156	157
Protein SEQ ID NO:	14	15	91	17	18	19	20	21	22	23

-76-

Library Fragments	THPIAZT01 1831477H1 (THPIAZT01), 1582867H1 (DUODNOT01), 1336769T1 (COLNNOT13), 1933092H1 (COLNNOT16), 1519909F1 (BLADTUT04), 1220946H1 (NEUTGMT01), 809556T1 (LUNGNOT04), 1217559T1 (NEUTGMT01), 1309225F1 (COLNFET02)	COLNNOT07 1841607H1 (COLNNOT07), SBHA03588F1	LUNGFET03 1852391H1 (LUNGFET03), 734140H1 (TONSNOT01), 1852391F6 (LUNGFET03)	HNT3AZT01 1854555H1 (HNT3AZT01), 2511711H1 (CONUTUT01), 782453R1 (MYOMNOT01), 1854555F6 (HNT3AZT01), 1840675T6 (COLNNOT07), 2109736H1 (BRAITUT03)	PROSNOT18 1855755H1 (PROSNOT18), 3040236H1 (BRSTNOT16), 1283207F1 (COLNNOT16), 833763T1 (PROSNOT07), 1920926R6 (BRSTTUT01)	PROSNOT19 1861434H1 (PROSNOT19), 980291R1 (TONGTUT01), 1861434T6 (PROSNOT19), SARA01525F1, SARA02548F1	LEUKNOT02 1872334H1 (LEUKNOT02), 1872334F6 (LEUKNOT02), SBGA03684F1	LEUKNOT03 1877230H1 (LEUKNOT03), 2519841H1 (BRAITUT21), 1877230T6 (LEUKNOT03), 1254693F1 (LUNGFET03), 077020R1 (SYNORAB01), 1232336F1 (LUNGFET03), 1004952R6 (BRSTNOT03), SARA01879F1, SARA02654F1	LEUKNOT03 1877885HI (LEUKNOT03), 508020FI (TMLR3DT01), 2751126R6 (THP1AZS08), SARA02571FI	BLADTUT07 1889269H1 (BLADTUT07), 1915551H1 (PROSTUT04), 629493X12 (KIDNNOT05), 1441289F1 (THYRNOT03), 1215274X34F1 (BRSTTUT01), 1818447F6 (PROSNOT20), 1208463R1 (BRSTNOT02)	
FI	THPI	COLN	TRING	HNT3	PROS	PROS	LEUK	LEUK	LEUK	BLAD	BI ADTITO7
Clone ID	1831477	1841607	1852391	1854555	185755	1861434	1872334	1877230	1877885	692681	1890243
Nucleotide SEQ ID NO:	158	159	160	191	162	163	164	165	166	167	168
Protein SEQ ID NO:	24	25	26	. 27	28	29	30	31	32	33	34

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	. Clone ID	Library	Fragments
35	691	1900433	BLADTUT06	1900433H1 (BLADTUT06), SATA00396F1, SATA02742F1
36	170	1909441	CONNTUT01	1909441H1 (CONNTUT01), 1398811F1 (BRAITUT08), 3039939H1 (BRSTNOT16), 3324740H1 (PTHYNOT03), 1442131F6 (THYRNOT03), 2254056H1 (OVARTUT01), 2199453T6 (SPLNFET02), 1692610F6 (COLNNOT23), 1698531H1 (BLADTUT05)
37	. 171	1932226	COLNNOT16	1932226H1 (COLNNOT16), 2320569H1 (OVARNOT02), 1932226F6 (COLNNOT16), 2469455T6 (THP1NOT03), 2469455F6 (THP1NOT03), 1907140F6 (OVARNOT07), SATA02592F1
38	172	1932647	COLNNOT16	1932647H1 (COLNNOT16), 1492745T1 (PROSNON01), 1492745H1 (PROSNON01), SASA02355F1, SASA00117F1, SASA00192F1
39	173	2124245	BRSTNOT07	2124245H1 (BRSTNOT07), 1235393F1 (LUNGFET03), 1402264F6 (LATRTUT02), 1303990F1 (PLACNOT02), 1402264T6 (LATRTUT02)
40	174	2132626	OVARNOT03	2132626H1 (OVARNOT03), 1723432T6 (BLADNOT06), 2132626R6 (OVARNOT03), 1736723T6 (COLNNOT22), 1504738F1 (BRAITUT07)
14	175	2280639	PROSNON01	2280639H1 (PROSNON01), 1435330H1 (PANCNOT08), 1377560F6 (LUNGNOT10)
42	176	2292356	BRAINON01	2292356H1 (BRAINON01), 4086827H1 (LIVRNOT06), 1754442F6 (LIVRTUT01), 3571126H1 (HEAPNOT01), 1601305F6 (BLADNOT03)
43	177	2349310	COLSUCT01	2349310H1 (COLSUCT01), 2349310T6 (COLSUCT01)
44	178	2373227	ADRENOT07	2373227H1 (ADRENOT07), 331644H1 (PROSBPT03), 302685R6 (TESTNOT04), SASA02181F1, SASA01923F1, SASA03516F1
45	179	2457682	ENDANOT01	2457682H1 (ENDANOT01), 2457682F6 (ENDANOT01)
46	180	2480426	SMCANOT01	2480426H1 (SMCANOT01), 2480426F6 (SMCANOT01)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
47	181	2503743	CONUTUT01	2503743HI (CONUTUT01), 1853909HI (HNT3AZT01), 1517619FI (PANCTUT01), 1467896F6 (PANCTUT02), 490031FI (HNT2AGT01), 1208654RI (BRSTNOT02), 880544RI (THYRNOT02)
48	182	2537684	BONRTUT01	2537684H1 (BONRTUT01), 2005493H1 (TESTNOT03), 730969H1 (LUNGNOT03), 2537601F6 (BONRTUT01), 916487H1 (BRSTNOT04), 996135R1 (KIDNTUT01), 1920738R6 (BRSTTUT01), 1957710F6 (CONNNOT01)
49	183	2593853	OVARTUT02	2593853H1 (OVARTUT02), 807497H1 (STOMNOT02), 914020R6 (STOMNOT02), 889992R1 (STOMTUT01)
50	184	2622354	KERANOT02	2622354H1 (KERANOT02), 2623992H1 (KERANOT02), 1556510F6 (BLADTUT04)
51	185	2641377	RUNGTUT08	2641377H1 (LUNGTUT08), 4341415H2 (BRAUNOT02), SBCA07049F3
52	186	2674857	KIDNNOT19	2674857H1 (KIDNNOT19), 1872373H1 (LEUKNOT02), 470512R6 (MMLR1DT01), 1728547H1 (PROSNOT14), 3013651F6 (MUSCNOT07), SBCA01366F1, SBCA00694F1
53	187	2758485	THP1AZS08	2758485H1 (THP1AZS08), 3097533H1 (CERVNOT03), 1578959F6 (DUODNOT01)
54	188	2763296	BRSTNOT12	2763296H1 (BRSTNOT12), 3486025F6 (KIDNNOT31), SBDA07002F3
55	189	2779436	OVARTUT03	2779436H1 (OVARTUT03), 2779436F6 (OVARTUT03), SBDA07009F3
56	190	2808528	BLADTUT08	2808528H1 (BLADTUT08), 2611513F6 (THYMNOT04), SBDA07021T3
57	191	2809230	BLADTUT08	2809230H1 (BLADTUT08), 2213849H1 (SINTFET03), 711706R6 (SYNORAT04), 958323R1 (KIDNNOT05), 030732F1 (THP1NOB01)
58	192	2816821	BRSTNOT14	2816821H1 (BRSTNOT14), 3746964H1 (THYMNOT08), 2816821F6 (BRSTNOT14), 948722T6 (PANCNOT05), 807947R6 (STOMNOT02)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
59	193	2817268	BRSTNO'F14	2817268H1 (BRSTNOT14), 3591308H1 (293TF5T01), 419522R1 (BRSTNOT01), 2073028F6 (ISLTNOT01), 1308781F6 (COLNFET02)
60	194	2923165	SININOT04	2923165H1 (SININOT04), 2011630H1 (TESTNOT03), 1457250F1 (COLNFET02), 754668R1 (BRAITUT02), 1406510F6 (LATRTUT02)
19	195	2949822	KIDNFET01	2949822H1 (KIDNFET01), SBDA07078F3
62	961	2992192	KIDNFET02	2992192H1 (KIDNFET02), 2534324H2 (BRAINOT18), 2815255T6 (OVARNOT10), 1551107T6 (PROSNOT06), 1551107R6 (PROSNOT06)
63	161	2992458	KIDNFET02	2992458HI (KIDNFET02), 2618951HI (GBLANOT01), 1479252FI (CORPNOT02), 1879054HI (LEUKNOT03), 1879054F6 (LEUKNOT03), 2215240HI (SINTFET03), 1535968TI (SPLNNOT04)
64	198	3044710	HEAANOT01	3044710H1 (HEAANOT01), 3741773H1 (MENTNOT01), 859906X42C1 (BRAITUT03), 1534347F1 (SPLNNOT04), 1421122F1 (KIDNNOT09), 1303865F1 (PLACNOT02), 1704452F6 (DUODNOT02), 1251642F1 (LUNGFET03), 1781694R6 (PGANNON02)
65	199	3120415	LUNGTUTI3	3120415H1 (LUNGTUT13), 1360123T1 (LUNGNOT12), 1375015H1 (LUNGNOT10)
99	200	126758	LUNGNOT01	126758HI (LUNGNOT01), 126758XII (LUNGNOT01), 811864TI (LUNGNOT04)
29	201	674760	CRBLNOT01	674760H1 (CRBLNOT01), 3253976H1 (OVARTUN01), SAUA03387F1
89	202	1229438	BRAITUT01	1229438H1 (BRAITUT01), 1230616H1 (BRAITUT01), 1461187R1 (PANCNOT04), 2493039H1 (ADRETUT05), 2891628H1 (LUNGFET04)
69	203	1236935	LUNGFET03	1236935H1 (LUNGFET03), SBAA00983F1, SBAA02057F1, SBAA00170F1
70	204	1359283	LUNGNOT12	1359283H1 (LUNGNOT12), SBAA01213F1, SBAA03934F1
71	205	1450703	PENITUT01	551298F1 (BEPINOT01), 551298R1 (BEPINOT01), 1450703H1 (PENITUT01), 2748715H1 (LUNGTUT11)

-80-

Fragments	1269346H1 (BRAINOT09), 1380872F1 (BRAITUT08), 1910668F6 (CONNTUT01), 1910668H1 (CONNTUT01), SATA02800F1, SATA03799F1, SARA02035F1	1955143F6 (CONNNOT01), 1955143H1 (CONNNOT01)	867025H1 (BRAITUT03), 1961637H1 (BRSTNOT04), 2809064T6 (BLADTUT08), 2938714H1 (THYMFET02), 2956402H1 (KIDNFET01), 3808735T6 (CONTTUT01)	1990762H1 (CORPNOT02), 1990762T3 (CORPNOT02), SBGA04911F1, SBGA01201F1, SBGA01205F1	1994131H1 (CORPNOT02), 2645984F6 (OVARTUT04)	1752307F6 (LIVRTUT01), 1853730H1 (HNT3AZT01), 1997745H1 (BRSTTUT03), SAZA00953F1	2009035H1 (TESTNOT03), 2009035R6 (TESTNOT03)	2009152H1 (TESTNOT03), 2009152R6 (TESTNOT03), 2783263H1 (BRSTNOT13)	2061752H1 (OVARNOT03), 2061752T6 (OVARNOT03), 2732805H1 (OVARTUT04), SAZA01310F1, SAZA00830F1	046580R1 (CORNNOT01), 746061R1 (BRAITUT01), 826996R1 (PROSNOT06), 2061933H1 (OVARNOT03)	2081422F6 (UTRSNOT08), 2081422H1 (UTRSNOT08), SBCA04793F1, SBCA05657F1, SBDA00065F1	2101278H1 (BRAITUT02), SAXA00399F1, SAXA01284F1, SAXA01227F1	341437H1 (NEUTFMT01), 687136H1 (UTRSNOT02), 2121353H1 (BRSTNOT07), SASA01311F1
Library	CONNTUT01	CONNNOT01	BRSTNOT04	CORPNOT02	CORPNOT02	BRSTTUT03	TESTNOT03	TESTNOT03	OVARNOT03	OVARNOT03	UTRSNOT08	BRAITUT02	BRSTNOT07
Clone ID	8990161	1955143	1691961	7920661	1994131	1997745	2006002	2009152	2061752	2061933	2081422	2101278	2121353
Nucleotide SEQ ID NO:	206	207	208	209	210	211	212	213	214	215	216	217	218
Protein SEQ ID NO:	72	73	74	75	9/	11	78	62	08	81	82	83	84

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
85	219	2241736	PANCTUT02	833263H1 (PROSTUT04), 2241736H1 (PANCTUT02), SAZA01148F1, SASA03299F1, SASA01349F1
98	220	2271935	PROSNON01	2271935H1 (PROSNON01), 2276774H1 (PROSNON01), 2760171T6 (THP1AZS08)
28	122	2295344	BRSTNOT05	2295344H1 (BRSTNOT05), 3288561F6 (BONRFET01), SBGA01801F1
88	222	2303994	BRSTNOT05	905482T1 (COLNNOT08), 1858636F6 (PROSNOT18), 2303994H1 (BRSTNOT05)
68	223	2497805	ADRETUT05	2497805F6 (ADRETUT05), 2497805H1 (ADRETUT05)
06	224	2646362	LUNGTUTII	1754702H1 (LIVRTUT01), 2640776T6 (LUNGTUT08), 2646362H1 (LUNGTUT11), 3356773H1 (PROSTUT16)
16	225	2657146	LUNGTUT09	2657146F6 (LUNGTUT09), 2657146H1 (LUNGTUT09)
92	226	2755786	THPIAZS08	288436R1 (EOSIHET02), 1252824F6 (LUNGFET03), 1305549H1 (PLACNOT02), 1364975R1 (SCORNON02), 2018293H1 (THP1NOT01), 2047320H1 (THP1T7T01), 2184537F6 (SININOT01), 2755786H1 (THP1AZS08), 4111022H1 (PROSBPT07)
93	227	2831245	TLYMNOT03	2831245H1 (TLYMNOT03), SBMA01396F1
94	228	3116250	LUNGTUT13	126263F1 (LUNGNOT01), 2729942H1 (OVARTUT04), 3116250H1 (LUNGTUT13)
56	229	3129630	LUNGTUT12	3129630F6 (LUNGTUT12), 3129630H1 (LUNGTUT12), SBDA06436F1
96	230	007632	HMC1NOT01	007632H1 (HMCINOT01), 007632R6 (HMCINOT01), 007632T6 (HMCINOT01)
26	231	1236968	LUNGFET03	1236968H1 (LUNGFET03), SBAA02713F1, SBAA03203F1, SBAA04196F1
86	232	1334153	COLNNOT13	776410R1 (COLNNOT05), 1334153H1 (COLNNOT13), 1334153T1 (COLNNOT13), 1800085F6 (COLNNOT27), 2701948H1 (OVARTUT10)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
66	233	1396975	BRAITUT08	864113H1 (BRAITUT03), 876139R1 (LUNGAST01), 1268313F1 (BRAINOT09), 1351348T1 (LATRTUT02), 1396975H1 (BRAITUT08), 1485768F6 (CORPNOT02), 1815364F6 (PROSNOT20)
100	234	1501749	SINTBST01	079080R1 (SYNORAB01), 1501749H1 (SINTBST01), 1724970H1 (PROSNOT14)
101	235	1575240	LNODNOT03	081858R1 (SYNORAB01), 1575240H1 (LNODNOT03), 3451462R6 (UTRSNON03)
. 102	236	1647884	PROSTUT09	1647884H1 (PROSTUT09), 1647884T6 (PROSTUT09), 3998922R6 (HNT2AZS07)
103	237	1661144	BRSTNOT09	720941X17 (SYNOOAT01), 1661144H1 (BRSTNOT09), 2181782H1 (SININOT01)
104	238	1685409	PROSNOTIS	755203RI (BRAITUT02), 1226185TI (COLNNOT01), 1300837FI (BRSTNOT07), 1685409HI (PROSNOT15), 1705256HI (DUODNOT02)
105	239	1731419	BRSTTUT08	1731419H1 (BRSTTUT08), 1731419X319T3 (BRSTTUT08), 1731419X322F1 (BRSTTUT08), 1731419X326F1 (BRSTTUT08), 1731419X329F1 (BRSTTUT08), 1733786F6 (BRSTTUT08), SZAH01494F1
106	240	2650265	BRSTNOT14	1680316T6 (STOMFET01), 2650265H1 (BRSTNOT14), 2650265T6 (BRSTNOT14), 2760588R6 (BRAINOS12)
107	241	2677129	KIDNNOT19	1592129H1 (CARGNOT01), 2645962H1 (OVARTUT04), 2677129F6 (KIDNNOT19), 2677129H1 (KIDNNOT19), 2910973H1 (KIDNTUT15), 4571722H1 (PROSTMT02), 4906791H2 (TLYMNOT08)
108	242	3151073	ADRENON04	3150857T6 (ADRENON04), 3151073H1 (ADRENON04), 3151073R6 (ADRENON04)
109	243	3170095	BRSTNOT18	3170095F6 (BRSTNOT18), 3170095H1 (BRSTNOT18)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
110	244	3475168	LUNGNOT27	079680F1 (SYNORAB01), 443811T6 (MPHGNOT03), 1509356T6 (LUNGNOT14), 1873596F6 (LEUKNOT02), 2440867H1 (EOSITXT01), 3475168H1 (LUNGNOT27)
111	245	3836893	DENDTNT01	446637H1 (MPHGNOT03), 1219376R6 (NEUTGMT01), 3735467F6 (SMCCNOS01), 3735467T6 (SMCCNOS01), 3836893H1 (DENDTNT01)
112	246	4072159	KIDNNOT26	2129415T6 (KIDNNOT05), 4072159F6 (KIDNNOT26), 4072159H1 (KIDNNOT26)
113	247	916£001	BRSTNOT03	620937R6 (PGANNOT01), 1003916H1 and 1003916R6 (BRSTNOT03), 1413623H1 (BRAINOT12), 1435945F1 (PANCNOT08), 1479127F1 (CORPNOT02), 1969146R6 (BRSTNOT04), 2517587F6 (BRAITUT21), 2967848H1 (SCORNOT04)
114	248	2093492	PANCNOT04	489651H1 (HNTZAGT01), 1265353T1 (SYNORAT05), 1431505R6 (BEPINON01), 1605237F6 (LUNGNOT15), 2093492H1 and 2093492T6 (PANCNOT04), 4195560H1 (COLITUT02)
115	249	2108789	BRAITUT03	2108789H1 and 2108789R6 (BRAITUT03), 2182008T6 (SININOT01), 3255751R6 and 3255751T6 (OVARTUN01)
116	250	2171401	ENDCNOT03	037241F1 (HUVENOB01), 1821492F6 (GBLATUT01), 2055814T6 (BEPINOT01), 2171401F6 and 2171401H1 (ENDCNOT03), 2668952F6 (ESOGTUT02), 3140313H1 and 3140313T6 (SMCCNOT02), 5031775H1 (EPIBTXT01)
117	251	2212530	SINTFET03	187596R6 and 187596T6 (CARDNOT01), 919634R6 (RATRNOT02), 1992331H1 (CORPNOT02), 2062034H1 (OVARNOT03), 2212530F6 and 2212530H1 (SINTFET03), 2520479H1 (BRAITUT21), 2878284F6 (THYRNOT10), 2992354H1 (KIDNFET02), 4020719F6 (BRAXNOT02)
118	252	2253036	OVARTUT01	2253036H1 and 2253036R6 (OVARTUT01)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
611	253	2280161	PROSNON01	482326H1 (HNT2RAT01), 934345H1 (CERVNOT01), 1379358F1 and 1379358T1 (LUNGNOT10), 1438562T1 (PANCNOT08), 1467511F6 (PANCTUT02), 1568138F1 (UTRSNOT05), 1636106T6 (UTRSNOT06), 2134534F6 (ENDCNOT01), 2280161H1 and 2280161X19F1 (PROSNON01), 2789845F6 (COLNTUT16), 3096938H1 (CERVNOT03), 3774621F6 (BRSTNOT25), 4222971H1 (PANCNOT07), 5111983H1 (ENDITXT01), 5324177H1 (FIBPFEN06)
120	254	2287485	BRAINON01	1454588F1 (PENITUT01), 1593332F6 (BRAINOT14), 2287485H1 and 2287485R6 (BRAINON01), 3765992H1 (BRSTNOT24), 4374293H1 (CONFNOT03), 4937931H1 (PROSTUS18), SBCA01722F1
121	255	2380344	ISLTNOT01	2380344F6 and 2380344H1 (ISLTNOT01), 2888536T3 (LUNGFET04), SASA0364F1, SASA03689F1
122	256	2383171	ISLTNOT01	956296R1 (KIDNNOT0S), 1342250F1 (COLNTUT03), 1468046F1 and 1468046T1 (PANCTUT02), 2383171H1 (ISLTNOT01), SBYA05452U1, SBYA01369U1
123	257	2396046	THP1A2T01	2396046F6, 2396046H1 and 2396118T6 (THP1AZT01)
124	258	2456587	ENDANOT01	2456587H1 and 2456587T6 (ENDANOT01), 2872569H1 (THYRNOT10), SBCA03778F1, SBDA00115F1, SBCA02401F1, SBCA03351F1, SBCA05164F1, SBCA04783F1, SBCA00155F1, SBCA04141F1
125	259	2484813	BONRTUT01	1234970T1 (LUNGFET03), 1338090F6 (COLNNOT13), 2484813H1 (BONRTUT01), SBCA00053F1, SBCA02064F1, SBCA02151F1, SBCA03770F1, SBCA04866F1, SBCA03406F1
126	260	2493851	ADRETUT05	2493851H1 (ADRETUT05), 3805916F6 (BLADTUT03), 4500439H1 and 4500748H1 (BRAVTXT02), 5120601H1 (SMCBUNT01)
127	261	2495719	ADRETUT05	603447R1 (BRSTTUT01), 2495719H1 (ADRETUT05), 2917493F6 (THYMFET03), 4647103H1 (PROSTUT20), SBRA04984D1

		Π					
Fragments	1833135R6 (BRAINON01), 1966515R6 (BRSTNOT04), 2331103R6 (COLNNOT11), 2614153H1 (GBLANOT01), 2656691F6 (LUNGTUT09), 3951176H1 (DRGCNOT01)	2655184H1 (THYMNOT04), SBDA05215F1, SBDA05213F1, SBDA01516F1	1297974F1 and 1297974T6 (BRSTNOT07), 2630138F6 (COLNTUT15), 2848362H1 (BRSTTUT13)	1541617R1 and 1541617T1 (SINTTUT01), 2684504F6 and 2684504T6 (LUNGNOT23), 2796805H1 (NPOLNOT01), 2849906H1 (BRSTTUT13)	2899137H1 (DRGCNOT01), 3026490F6 and 3026490T6 (HEARFET02), 3483359H1 (KIDNNOT31)	1740227T6 (HIPONON01), 2986229H1 (CARGDIT01)	1754079F6 (LIVRTUT01), 3222081H1 (COLNNON03), 4053813T6 (SPLNNOT13), 4230282H1 (BRAMDIT01), SBDA07029F3
Library	GBLANOT01	THYMNOT04	BRSTTUT13	BRSTTUT13	DRGCNOT01	CARGDIT01	COLNNON03
Clone ID	2614153	2655184	2848362	2849906	2899137	2986229	3222081
Nucleotide SEQ ID NO:	262	263	264	265	266	267	268
Protein SEQ ID NO:	128	129	130	131	132	133	134

FABLE 2

		,	,							
Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification										
Signature Sequences	M1 - A21	M1 - F28	MI - T18	M1 - A29	MI - R24	M1 - N21	M1 - Q20	MI - A28	MI - A29	MI - A29
Potential Glycosylation Sites				N58		N34	N100	N60		
Potential Phosphorylation Sites	T83 S38 T76	S30 S40 T47 T119 W125	170	S32 T64	T27 S39 S39 S44 S22 T27 S28 S57	T55 S30 S40 T55	S220 S70 S83 T131 S134 S141 T158 Y123	S62 T123 S142 S189 S62 T100 Y85	T48	
Amino Acid Residues	88	128	111	110	78	88	227	198	65	154
Protein SEQ ID NO:	_	2	۳ .	4	ی	9	7	∞	6	10

TABLE 2 (cont.)

on Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification				-		·					
Signature Sequences	MI - A19	MI - G27	M1 - A23	MI - T20	M88 - R112	MI - G19	MI - C19	MI - A21	M1 - C19	MI - G25	MI - G21
Potential Glycosylation Sites	N128	Ń166		N42 N47 N72 N207		N37		N121 N171			
Potential Phosphorylation Sites	T116 T26 T79 T85 T182 T188 T194 T206 S60 S123 S176 S213	T158 S128	S41	S49 T63 S92 T110 S127 T239	S43 S94 T114	S38 S43	T64 T67	S36 T58 T133 Y31	929		S39 S53 S60
Amino Acid Residues	237	225	117	253	171	78	71	188	80	80	84
Protein SEQ ID NO:	=	12	13	14	15	16	17	18	19	20	21

Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification			·						
Signature Sequences	M3 - A21	MI - C25	MI - A32	M1 - L29	MI - S18	MI - G34	MI - E25	MI - E29	MI - G20
Potential Glycosylation Sites		26N	N49 N91 N108 N128 N135 N190				N138 N206	N105	
Potential Phosphorylation Sites	S41 T150	S3 S44 T75 S86 S183 S223 S36 S92 S205 Y40 Y110	T5 S76 T82 T93 T109 S121 T137 T170 S184 S11 T53 S75 S84 T132 S223 S274 Y69		S46 Y26		S93 S50 S167 S233 S89 T105 T214 S302 T318	S63	S21 S65 T93
Amino Acid Residues	171	243	311	57	82	115	327	133	129
Protein SEQ ID NO:	22	23	. 24	25	26	27	28	29	30

TABLE 2

			Ĭ				l			
Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification										
Signature Sequences	M1 - A21	M1 - F28	MI - T18	M1 - A29	MI - R24	MI - N21	MI - Q20	M1 - A28	MI-A29	MI - A29
Potential Glycosylation Sites				N58		N34	N100	09N		
Potential Phosphorylation Sites	T83 S38 T76	S30 S40 T47 T119 W125	T70	S32 T64	T27 S39 S39 S44 S22 T27 S28 S57	T55 S30 S40 T55	S220 S70 S83 T131 S134 S141 T158 Y123	S62 T123 S142 S189 S62 T100 Y85	T48	
Amino Acid Residues	88	128	Ξ	110	78	88	227	861	65	154
Protein SEQ ID NO:	_	2	۳.	4	5	9	7	8	6	10

TABLE 2 (cont.)

Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification											
Signature Sequences	M1 - A19	MI - G27	MI - A23	M1 - T20	M88 - R112	MI - G19	MI - C19	MI - A21	MI-C19	MI - G25	M1 - G21
Potential Glycosylation Sites	N128	N166		N42 N47 N72 N207		N37		N121 N171			
Potential Phosphorylation Sites	T116 T26 T79 T85 T182 T188 T194 T206 S60 S123 S176 S213	T158 S128	S41	S49 T63 S92 T110 S127 T239	S43 S94 T114	S38 S43	T64 T67	S36 T58 T133 Y31	S76		S39 S53 S60
Amino Acid Residues	237	225	117	253	171	78	7.1	188	80	80	84
Protein SEQ ID NO:	11	12	13	14	15	91	17	81	19	20	21

Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification									
Signature Sequences	М3 - А21	MI - C25	MI - A32	MI - L29	M1-S18	MI - G34	MI - E25	MI - E29	MI - G20
Potential Glycosylation Sites		76N	N49 N91 N108 N128 N135 N190				N138 N206	N105	
Phosphorylation Sites	S41 T150	S3 S44 T75 S86 S183 S223 S36 S92 S205 Y40 Y110	T5 S76 T82 T93 T109 S121 T137 T170 S184 S11 T53 S75 S84 T132 S223 S274 Y69		S46 Y26		S93 S50 S167 S233 S89 T105 T214 S302 T318	863	S21 S65 T93
	171	243	311	57	82	115	327	133	129
Protein Amino SEQ ID NO: Acid Residues	22	23	. 24	25	26	27	28	29	30

TABLE 2 (cont.)

o_ 8	Potenti Phosphorylat		Potential Glycosylation Sites	Signature Sequences	Identification	Analytical Methods
472 S164 T32 S42 T141 N61 N179 N353 T154 S155 T235 N356 N396 T262 T271 T334 T376 S402 S421 S435 T441 S19 S29 T327 S378	- 6	N61 N179 N35 N356 N396	<u>e</u>	MI - G20	hematopoietic lineage switch 2 (g3169729)	Signal Peptide HMM BLAST - GenBank
93 T21	121			MI - A18		Signal Peptide HMM
92 S57 S5	S57 SS			M1 - G47		SPScan
143 T6 T14 T135	T6 T14 T135			M9 - G40		Signal Peptide HMM
89 T15 S58 S66	T15 S58 S66			MI-A19		Signal Peptide HMM
560 T7 T76 S150 T224 N163 N184 S228 S257 S358 N379 S474 S529 S539 T186 S219 S368 Y523	24	N163 N184 N379		M1 - E34		SPScan
197 T80 S163	T80 S163			M1 - G28		Signal Peptide HMM
437 T47 T146 S233 S391 N46 N189 N382 S403 T43 S130 S273 S339 S364	S391 S273	N46 N189 N3	82	M1 - A21		Signal Peptide HMM

Analytical Methods	Signal Peptide HMM	Signal Peptide HMM BLAST - GenBank	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification		receptor-activity-modifying protein (RAMP, g4165368)						
Signature Sequences	MI - G28	M1 - R24	MI - V25	MI - S24	MI - T23	MI - G22	MI - G23	MI - P18
Potential Glycosylation Sites	N46 N64 N166 N191	N29 N58 N71 N103					N40	
Potential Phosphorylation Sites	S197 T49 T150 S193 T214 T215 T49 S111 S237	T73 S141		S89 S165 T174 T182 T83 S155	S54 S29 S98 S50 S57 T104	T29 S106 T120 S161 S195 S37 S47 T51 S136 S223 S230 S281	S21 T63 T63 A146	865
Amino Acid Residues	330	148	188	222	Ξ	341	148	87
Protein SEQ ID NO:	39	40	41	42	43	44	45	46

	T	 		T	 		T		1	
Analytical Methods	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM BLAST - GenBank	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification						putative involvement in cell wall structure or biosynthesis (g3738170)				
Signature Sequences	MI - P23	MI-L18	MI - A20	MI - C21	MI - G18	M1 - L25	MI - A26	M1 - G25	MI - A22	M1 - P23
Potential Glycosylation Sites	N93 N207			N71		N250 N321 N463		N39		
Potential Phosphorylation Sites	T77 S95 S108 S280 S351 S121 S124 S153 T187	S25 S22	S62	T100 T73 S97 Y48	817 8110	S205 T31 S86 T236 S7 T447	T55 S34 S46 S69 T98 S108 T119 T167 S194 S2 S34 T153	S65 S36 T41 S51 S69 S81	S56	S29
Amino Acid Residues	383	109	185	110	126	488	197	84	97	140
Protein SEQ ID NO:	47	48	49	50	51	52	53	54	55	56

TABLE 2 (cont.)

Analytical Methods	Signal Peptide HMM	Signal Peptide HMM BLAST - GENESEQ	Signal Peptide HMM	SPScan	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM	Signal Peptide HMM
Identification		3-acylating enzyme (Q4449)			0 1	W.T.	0 T	S I	SH
Signature Sequences	MI - A25	M1 - G28	MI - C22	M55 - E84ß	MI - G18	MI - G27	MI - G18	MI - G23	M1 - A18
Potential Glycosylation Sites	N153	06IN			N67			N53 N130 N289	
Potential Phosphorylation Sites	S53 S108 T216 S253 S277	S62 T166 S62 S71 Y246	S120 T154 T34 T37 S174	S98 T136 T67 S112 S234 S237	Т68	T21 S117 S120	S107 S97 S146 S339 S440 S245 T303 S304 S399	T145 T214 T16 S24 S35 S45 T145 T269 S297 T300 T314 Y87	S38 S25 S75
Amino Acid Residues	285	262	189	257	82	202	450	322	104
Protein SEQ ID NO:	57	58	59	09	. 61	62	63	64	65

TABLE 2 (cont.)

Analytical Methods	SPscan HMM	SPscan HMM MOTIFS	SPScan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS
Identification							
Signature Sequences	M1 through about S18 Transmembrane: M1 through about Y17	M1 through about A24	M1 through about S31 Transmembrane: about M159 through about F178 about F109 through about S127 about F225 through about V243	M1 through about S23 Transmembrane: M1 through about L16	M1 through about Q18	M1 through about S25	M1 through about G27
Potential Glycosylation Sites			N53	69N			
Potential Phosphorylation Sites		S23 S64	S392 S393 S31 S127 S179 S334 T338 S358 T383 Y323	859	S11 T26	S41 T79	S56
Amino Acid Residues	93	71	394	72	11	247	73
Protein SEQ ID NO:	99	67	- 97	69		7.1	72

TABLE 2 (cont.)

Analytical Methods	SPscan HMM	SPscan HMM	SPScan	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS
Identification								
Signature Sequences	MI through about G20	MI through about G30	M I through about G26	M1 through about S19	M1 through about G27 Transmembrane: about W79 through about H97	M1 through about N34	M1 through about C18	M1 through about S30
Potential Glycosylation Sites						N48		
Potential Phosphorylation Sites				T29 S46 T51	S62 S65		T33 R55	S34
Amino Acid Residues	70	67	16	56	112	54	57	52
Protein SEQ ID NO:	73	74	7.5	-98-	77	78	79	80

TABLE 2 (cont.)

	,						
Analytical Methods	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS
Identification							
Signature Sequences	MI through about S41	M1 through about A31 Transmembrane: about L38 through about F55	M1 through about E23	M1 through about A38 Transmembrane: about L23 through about T41	MI through about K30 Microbodies C-terminal targetting signal: A65KV	M1 through about S29	M1 through about L19 Transmembrane: about 13 through about G20
Potential Glycosylation Sites				N89 N95		N40	
Potential Phosphorylation Sites	T43 Y27	S45		6018 698	828	S29 S42 S46	S25 S46
Amino Acid Residues	64		56	120	<i>L</i> 9	62	75
Protein SEQ ID NO:	18	. 82	83	48	85	98	87

TABLE 2 (cont.)

	T				~		
Analytical Methods	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPscan HMM MOTIFS	SPScan BLOCKS PRINTS MOTIFS	SPscan HMM	SPscan HMM MOTIFS
Identification							
Signature Sequences	M1 through about A20	M1 through about C48	M1 through about G22	M1 through about P21	M1 through about S18 Tyrosine specific protein phosphatases signature: about V328 through about F340	M1 through about S25	M1 through about S22 Transmembrane: about V3 through about S21
Potential Glycosylation Sites					N226		
Potential Phosphorylation Sites	128	SII	S38	S43	S415 S52 T77 S97 T178 T228 S282 S320 S332 S384 T401 T424 S483 S207 S230 S357 T410 Y263 Y365		S39·
Amino Acid Residues	80	50	116	29	538	58	119
Protein SEQ ID NO:	88	89	06.	16	92	93	94

-100-

TABLE 2 (cont.)

Protein SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences	Identification	Analytical Methods
95	128	891		M1 through about G31 Transmembrane: about F108 through about L126		SPscan HMM MOTIFS
96	124	T115 T43 S91		M1-S20		SPScan
·				P116-V124 (urotensin II		HMM Motifs BLOCKS
64	182	S28 T70 S172 S25 S32 S48 S108 S131		MI-S23, MI-S25		SPScan HMM Motifs
86	237	S55 S88 S121 S135	N45 N73 N107 N118 N132 N172 N175 N185	MI-A16, MI-S21 C40-C198 (cysteine spacing pattern similar to that of RoBo-1)		SPScan HMM Motifs BLAST
66	160	S36 S59 T143		M1-A27		SPScan HMM Motifs
100	148	T76 S64 Y103		MI-S30, MI-G31		SPScan HMM Motifs
101	170	S78 T4 T30 S130 S25 S29 T122		MI-A23, MI-L28		SPScan HMM Motifs

-101-

TABLE 2 (cont.)

Analytical Methods	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs	SPScan HMM Motifs
Identification								
Signature Sequences	MI-A26, MI-S28	MI-A25, MI-G26	M1-G18, M1-T25	MI-G22, MI-A20	MI-G26, MI-C25	M1-A22	MI-P19, MI-L22	MI-TIS, MI-P19
Potential Glycosylation Sitcs				•	N32 N101			N50
Potential Phosphorylation Sites	S50 S78 S91	T57 T80	T3	T29 S40 S72	T115 S38 T41	S53 S217 S240 S283 T224	S88 T73 S84	T82 S52 S77
Amino Acid Residues	150	142	110	120	135	301	103	95
Protein SEQ ID NO:	102	103	104	105	106	107	108	601

-102-

TABLE 2 (cont.)

Analytical Methods	SPScan HMM Motifs	SPScan HMM Motifs BLAST - GenBank	SPScan HMM Motifs	SPScan Motifs BLAST	SPScan	HMM Motifs	SPScan Motifs	HMM Motifs
Identification		NK cell activating receptor (g4493702)		Signal Peptide Containing Protein, Homology with KIAA0206	Signal Peptide Containing Protein	Signal Peptide Containing Protein	Signal Peptide Containing Protein	Signal Peptide Containing Protein
Signature Sequences	MI-P19, M1-A24	M1-A20	MI-G30, MI-G27	M1-G26 Signal Peptide	M1-Q29 Signal Peptide	M1-A20 Signal Peptide	M1-G23 Signal Peptide	M1-A24 Signal Peptide
Potential Glycosylation Sites		N146 N191 N194					N280 N384	N87
Potential Phosphorylation Sites	T84 S4	S179 S184 S51 T70 T158 S168 T228 Y29	S39 T61	SSI T46 S191		S29	S143 T156 T227 S235 T271 T293 T436 S453 S117 T148 T213 S263 S417 Y73	S19 S320 S69 S151 T171 T97 S393 Y193 Y378
Amino Acid Residues	113	234	611	200	225	155	468	403
Protein SEQ ID NO:	110	Ξ .	112	113	114	115	116	117

-103-

	T	7			,	_
Analytical Methods	SPScan Motifs	SPScan Motifs HMM BLAST	SPScan Motifs	SPScan MotifS	SPScan Motifs BLAST	SPScan
Identification	Signal Peptide Containing Protein	Signal Peptide Containing Protein, Weakly similar to Putative Transmembrane Protein (PTM1) Precursor	Signal Peptide Containing Protein,	Signal Peptide Containing Protein	Signal Peptide Containing Protein, Weakly similar to OXA1L	Signal Peptide Containing Protein
Signature Sequences	M1-G25 Signal Peptide	M1-P21 Signal Peptide L226-W244, Y402-W422, V375-L392 and Y355-I376 Transmembrane Domains	M1-G24 Signal Peptide	M1-S15 Signal Peptide	M1-L25 Signal Peptide	M1-W16 Signal Peptide
Potential Glycosylation Sites	N116	N62 N79 N127 N157 N160	N100 N168 N319			
Potential Phosphorylation Sites	T131 S24 T79 T118 T123 T127	T176 S192 S196 T220 S344 S369 S476 T501 S529 S541 T548 T553 S48 S115 S121 T386 T424 S500	T104 T457 T80 S86 T141 T372 T420 S447 S94 T102 S112 T240 S297 S353 S470	T46 S78 T12	S57 T320 S339 S396 S100 S239	
Amino Acid Residues	181	929	514	109	431	142
Protein SEQ ID NO:	118		120	121	122	123

TABLE 2 (cont.)

	T				
Analytical Methods	SPScan Motifs Pfam BLAST	SPScan Motifs	SPScan Motifs PROFILE- SCAN	SPScan Motifs BLAST Pfam PROFILE-	SPScan Motifs BLAST
Identification	Signal Peptide Containing Protein, Thrombospondin Type I Protein	Signal Peptide Containing Protein	Signal Peptide Containing Protein, Glycosyl Hydrolase Protein	Signal Peptide Containing Protein, Ribosomal Protein S18	Signal Peptide Containing Protein, Homology with GTP Binding Protein
Signature Sequences	MI-S28 Signal Peptide, D37-C81, W380-C437, W440- C492 and F526-C583 Thrombospondin Type 1 Domains	M1-T19 Signal Peptide	M1-R32 Signal Peptide, V4-L53 Glycosyl Hydrolase Family 9 Active Site Signature	M1-S26 Signal Peptide, H79-H123 Ribosomal Protein S18 Signature	M1-S35 Signal Peptide
Potential Glycosylation Sites	N251	N322			N37 N92
Potential Phosphorylation Sites	T8 S28 S77 T169 T199 T235 S252 T320 S402 T413 S414 S58 S22 T25 S56 S62 S120 T184 S329 T423 S475 S574 Y226	S510 T24 T80 S91 T153 T165 S232 S248 S262 T300 T334 S380 S446 S16 T19 T60 S127 S273 T436 T531 S554 T564 Y135 Y489	T62 S27 T36	T105 T47 T56 S158	S112 S131
Amino Acid Residues	643	568	125	196	214
Protein SEQ ID NO:	124	125	126	127	128

-105-

TABLE 2 (cont.)

	T	 _	T	T	,	
Analytical Methods	НММ	SPScan Motifs Pfam	SPScan Motifs	HMM Motifs BLOCKS PRINTS Pfam	SPScan Motifs Pfam	SPScan Motifs BLAST
Identification	Signal Peptide Containing Protein	Signal Peptide Containing Protein, Immunoglobulin Superfamily Protein	Signal Peptide Containing Protein	Signal Peptide Containing Protein, Adrenodoxin Family Iron-Sulfur Binding Protein, and Cytochrome C Family Heme Binding Protein	Signal Peptide Containing Protein, PF00646 F-Box Protein	Signal Peptide Containing Protein, F45G2.10 and Yhr122wp Homology
Signature Sequences	M1-S24 Signal Peptide	M1-A48 Signal Peptide, G59-S142 Immunoglobulin Domain	M1-A30 Signal Peptide	MI-W24 Signal Peptide, E131-K168 and C105-H115 Adrenodoxin Iron-Sulfur Binding Signature, C111-V116 Cytochrome C Heme Binding Signature, N69-A162 Iron-Sulfur Cluster Binding Domain	M1-G30 Signal Peptide, V28-L74 PF00646 F-Box Domain	M1-A27 Signal Peptide
Potential Glycosylation Sites		NS0 N109				
Potential Phosphorylation Sites		S146 S179 S192 S239 S70 T126 T150	T176 T56 S72 S179 S256 S87	SII T4I T42 S83	S93 T89 Y9	T46 T55 S65 S124 T125 T46
Amino Acid Residues	88	260	295	183	113	160
Protein SEQ ID NO:	129	130	131	132	133	134

-106-

TABLE

Nucleotide SEQ 1D NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
135	Hematopoietic/Immune (1.000)	Inflammation (1.000)	PBLUESCRIPT
136	Hematopoietic/Immune (0.750) Cardiovascular (0.250)	Inflammation (0.750) Cancer (0.250)	pSPORTI
137	Nervous (1.000)	Trauma (1.000)	pSPORTI
138	Musculoskeletal (1.000)	Inflammation (1.000)	pSPORTI
139	Gastrointestinal (0.714) Cardiovascular (0.143) Reproductive (0.143)	Cancer (0.714) Trauma (0.143)	pSPORTI
140	Nervous (1.000)	Neurological (0.500) Trauma (0.500)	pSPORTI
141	Reproductive (0.293) Gastrointestinal (0.146) Hematopoietic/Immune (0.146)	Cancer (0.524) Inflammation (0.256) Fetal (0.146)	pSPORTI
142	Reproductive (0.266) Gastrointestinal (0.170) Nervous (0.138)	Cancer (0.479) Inflammation (0.277) Fetal (0.181)	pINCY
143	Reproductive (0.417) Nervous (0.292) Developmental (0.125)	Cancer (0.417) Inflammation (0.250) Fetal (0.167)	pINCY
144	Reproductive (0.321) Cardiovascular (0.143) Developmental (0.143)	Cancer (0.464) Fetal (0.214) Inflammation (0.143)	pINCY
145	Reproductive (0.600) Gastrointestinal (0.400)	Cancer (0.400) Trauma (0.400) Inflammation (0.200)	pINCY
146	Cardiovascular (0.400) Dermatologic (0.200) Nervous (0.200)	Cancer (0.600) Fetal (0.600)	pINCY
147	Developmental (0.667) Gastrointestinal (0.333)	Fetal (0.667) Cancer (0.333)	pINCY
148	Reproductive (0.256) Nervous (0.248) Cardiovascular (0.137)	Cancer (0.479) Inflammation (0.214) Fetal (0.145)	pINCY
149	Reproductive (0.244) Nervous (0.178) Hematopoietic/Immune (0.167)	Cancer (0.433) Inflammation (0.322) Fetal (0.156)	pINCY

-107-

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
150	Cardiovascular (0.923) Developmental (0.077)	Cancer (0.692) Fetal (0.154) Inflammation (0.154)	pINCY
151	Reproductive (0.215) Nervous (0.190) Gastrointestinal (0.177)	Cancer (0.494) Inflammation (0.278) Trauma (0.152)	pINCY
152	Reproductive (0.200) Nervous (0.171) Hematopoietic/Immune (0.143)	Inflammation (0.371) Cancer (0.229) Fetal (0.200)	pINCY
153	Reproductive (0.333) Nervous (0.157) Hematopoietic/Immune (0.137)	Cancer (0.549) Inflammation (0.176) Fetal (0.137)	pINCY
154	Gastrointestinal (0.500) Urologic (0.167)	Inflammation (0.667) Cancer (0.167) Trauma (0.167)	pINCY
155	Gastrointestinal (0.429) Reproductive (0.286) Nervous (0.143)	Inflammation (0.429) Cancer (0.286) Trauma (0.143)	pINCY
156	Reproductive (1.000)	Cancer (0.500) Inflammation (0.500)	pINCY
157	Hematopoietic/Immune (0.346) Reproductive (0.154) Gastrointestinal (0.115)	Cancer (0.404) Inflammation (0.404) Fetal (0.212)	pINCY
158	Reproductive (0.236) Hematopoietic/Immune (0.217) Gastrointestinal (0.132)	Cancer (0.415) Inflammation (0.358) Fetal (0.142)	pINCY
159	Gastrointestinal (1.000)	Cancer (1.000)	pSPORT1
160	Developmental (0.500) Hematopoietic/Immune (0.250) Nervous (0.250)	Fetal (0.500) Inflammation (0.250) Trauma (0.250)	pINCY
191	Hematopoietic/Immune (0.250) Reproductive (0.250) Nervous (0.208)	Cancer (0.583) Fetal (0.292) Inflammation (0.250)	pINCY
162	Gastrointestinal (0.412) Reproductive (0.412) Cardiovascular (0.088)	Cancer (0.735) Inflammation (0.176) Fetal (0.029)	pINCY

-108-

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
163	Reproductive (0.298) Cardiovascular (0.170) Nervous (0.149)	Cancer (0.532) Inflammation (0.213) Fetal (0.191)	pINCY
164	Gastrointestinal (0.333) Hematopoietic/Immune (0.333) Reproductive (0.333)	Cancer (0.667) Inflammation (0.333)	pINCY
165	Reproductive (0.295) Gastrointestinal (0.159) Nervous (0.148)	Cancer (0.534) Inflammation (0.284) Fetal (0.091)	pINCY
. 166	Hematopoietic/Immune (0.538) Cardiovascular (0.077) Reproductive (0.077)	Inflammation (0.731) Cancer (0.154) Fetal (0.154)	pINCY
167	Reproductive (0.483) Gastrointestinal (0.121) Nervous (0.103)	Cancer (0.672) Inflammation (0.155)	pINCY
168	Gastrointestinal (0.222) Hematopoietic/Immune (0.222) Nervous (0.148)	Cancer (0.519) Inflammation (0.370) Fetal (0.259)	pINCY
169	Urologic (1.000)	Cancer (0.333) Fetal (0.333) Inflammation (0.333)	pINCY
170	Reproductive (0.214) Gastrointestinal (0.179) Nervous (0.143)	Cancer (0.643) Inflammation (0.143) Fetal (0.107)	pINCY
171	Reproductive (0.261) Developmental (0.174) Nervous (0.174)	Cancer (0.391) Fetal (0.304) Inflammation (0.217)	pINCY
172	Reproductive (0.357) Gastrointestinal (0.321) Cardiovascular (0.071)	Cancer (0.571) Inflammation (0.286) Fetal (0.107)	pINCY
173	Reproductive (0.306) Nervous (0.161) Cardiovascular (0.129)	Cancer (0.387) Inflammation (0.323) Fetal (0.226)	pINCY
174	Reproductive (0.129) Nervous (0.188) Cardiovascular (0.167)	Cancer (0.521) Inflammation (0.312) Trauma (0.146)	pSPORTI

-109-

TABLE 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
175	Reproductive (0.444) Developmental (0.167) Cardiovascular (0.111)	Cancer (0.556) Fetal (0.278) Trauma (0.111)	pSPORTI
176	Reproductive (0.294) Gastrointestinal (0.176) Cardiovascular (0.118)	Cancer (0.765) Fetal (0.118) Inflammation (0.118)	pSPORT1
177	Gastrointestinal (1.000)	Cancer (0.667) Inflammation (0.333)	pINCY
178	Reproductive (0.385) Nervous (0.231) Gastrointestinal (0.154)	Cancer (0.385) Inflammation (0.385)	pINCY
179	Reproductive (0.500) Cardiovascular (0.167) Gastrointestinal (0.167)	Cancer (0.667) Fetal (0.167) Inflammation (0.167)	PBLUESCRIPT
180	Cardiovascular (0.231) Reproductive (0.231) Gastrointestinal (0.154)	Cancer (0.615) Inflammation (0.308) Fetal (0.154)	pINCY
181	Reproductive (0.324) Gastrointestinal (0.176) Cardiovascular (0.130)	Cancer (0.519) Inflammation (0.222) Fetal (0.157)	pINCY
182	Reproductive (0.320) Nervous (0.180) Gastrointestinal (0.120)	Cancer (0.580) Inflammation (0.160) Fetal (0.100)	PINCY
183	Gastrointestinal (0.667) Reproductive (0.333)	Cancer (1.000)	pINCY
184	Urologic (0.667) Dermatologic (0.333)	Cancer (0.667) Fetal (0.333)	pSPORTI
185	Cardiovascular (0.500) Reproductive (0.500)	Cancer (1.000)	pINCY
186	Reproductive (0.393) Developmental (0.107) Urologic (0.107)	Cancer (0.607) Fetal (0.179) Inflammation (0.107)	pINCY
187	Cardiovascular (0.400) Reproductive (0.333) Gastrointestinal (0.133)	Inflammation (0.467) Cancer (0.267) Fetal (0.267)	pSPORTI
188	Nervous (0.318) Reproductive (0.227) Urologic (0.136)	Cancer (0.636) Inflammation (0.136) Trauma (0.091)	pINCY

-110-

TABLE 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
189	Cardiovascular (0.500) Reproductive (0.500)	Cancer (1.000)	pINCY
190	Reproductive (0.318) Nervous (0.227) Hematopoietic/Immune (0.136)	Cancer (0.500) Fetal (0.227) Inflammation (0.227)	pINCY
161	Reproductive (0.253) Cardiovascular (0.158) Gastrointestinal (0.147)	Cancer (0.463) Inflammation (0.232) Fetal (0.200)	pINCY
192	Reproductive (0.333) Gastrointestinal (0.286) Cardiovascular (0.095)	Cancer (0.571) Inflammation (0.333) Fetal (0.095)	pINCY
193	Reproductive (0.304) Cardiovascular (0.217) Gastrointestinal (0.130)	Cancer (0.435) Inflammation (0.391) Fetal (0.174)	pINCY
194	Reproductive (0.312) Nervous (0.188) Cardiovascular (0.125)	Cancer (0.438) Inflammation (0.250) Fetal (0.188)	pINCY
195	Developmental (1.000)	Fetal (1.000)	pINCY
961	Reproductive (0.233) Cardiovascular (0.209) Nervous (0.140)	Cancer (0.605) Fetal (0.186) Inflammation (0.116)	pINCY
197	Reproductive (0.182) Gastrointestinal (0.136) Hematopoietic/Immune (0.136)	Cancer (0.477) Inflammation (0.341) Fetal (0.182)	pINCY
198	Gastrointestinal (0.205) Reproductive (0.205) Cardiovascular (0.114)	Inflammation (0.341) Cancer (0.250) Fetal (0.227)	pINCY
199	Cardiovascular (0.520) Reproductive (0.280) Developmental (0.160)	Cancer (0.720) Fetal (0.200) Inflammation (0.080)	pINCY
200	Lung (0.958) Developmental (0.25) Musculoskeletal (0.042)	Cancer (0.583) Fetal or Proliferating (0.292) Inflammation (0.167)	PBLUESCRIPT
201	Reproductive (0.571) Musculoskeletal (0.143) Nervous (0.143) Urologic (0.143)	Cancer (0.429) Inflammation (0.571)	pSPORTI

-111-

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
202	Endocrine (0.250) Nervous (0.250) Cardiovascular (0.125) Developmental (0.125) Gastrointestinal (0.125) Reproductive (0.125)	Cancer (0.375) Inflammation (0.625) Fetal or Proliferating (0.125)	pSPORTI
203	Lung (1.000)	Fetal or Proliferating (1.000)	pINCY
204	Lung (0.500) Penis (0.500)	Cancer (0.500)	pINCY
205	Cardiovascular (0.231) Dermatologic (0.231) Reproductive (0.231)	Fetal or Proliferating (0.385) Cancer (0.308)	pINCY
206	Nervous (0.596) Reproductive (0.154) Gastrointestinal (0.077)	Cancer (0.442) Neurological (0.192) Inflammation (0.231)	pINCY
207	Gastrointestinal (1.000)	Inflammation (1.000)	pINCY
208	Reproductive (0.300) Hematopoietic/Immune (0.200) Nervous (0.150)	Cancer (0.450) Inflammation (0.400) Fetal or Proliferating (0.250)	pSPORTI
209	Heart (0.500) Brain (0.500)	Neurological (0.500) Inflammation (0.500)	pINCY
210	Nervous (0.625) Reproductive (0.250) Musculoskeletal (0.125)	Cancer (0.750) Fetal or Proliferating (0.250) Neurological (0.125)	pINCY
211	Nervous (0.261) Reproductive (0.304) Gastrointestinal (0.174)	Cancer (0.522) Fetal or Proliferating (0.174) Inflammation (0.130)	pSPORTI
212	Testis (1.000)	Inflammation (1.000)	PBLUESCRIPT
213	Nervous (0.400) Reproductive (0.400) Gastrointestinal (0.200)	Cancer (0.400) Inflammation (0.400) Neurological (0.200)	pBLUESCRIPT
214	Reproductive (0.476) Gastrointestinal (0.286) Cardiovascular (0.095)	Cancer (0.714) Inflammation (0.286) Neurological (0.048)	pSPORTI

TABLE 3 (cont.)

<u> </u>	Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
	215	Reproductive (0.284) Gastrointestinal (0.216) Nervous (0.176) Hematopoietic/Immune (0.108) Cardiovascular (0.108)	Cancer (0.486) Inflammation (0.351) Fetal or Proliferating (0.122)	pSPORTI
	216	Uterus (0.500) Prostate (0.500)	Cancer (0.500) Inflammation (0.500)	pINCY
	217	Nervous (0.429) Cardiovascular (0.143) Gastrointestinal (0.143) Hematopoietic/Immune (0.143) Reproductive (0.143)	Cancer (0.571) Inflammation (0.429) Fetal or Proliferating (0.285)	pSPORTI
	218	Reproductive (0.450) Hematopoietic/Immune (0.200) Nervous (0.100) Gastrointestinal (0.100)	Cancer (0.650) Inflammation (0.200) Fetal or Proliferating (0.050)	pINCY
-11:	219	Reproductive (0.364) Cardiovascular (0.182) Nervous (0.182)	Cancer (0.636) Fetal or Proliferating (0.182)	pINCY
3-	220	Prostate (1.000)	Inflammation (1.000)	pSPORT1
	221	Developmental (0.333) Nervous (0.333) Reproductive (0.333)	Cancer (0.667) Fetal or Proliferating (0.667)	pSPORT1
	222	Reproductive (0.393) Hematopoietic/Immune (0.180) Nervous (0.098) Cardiovascular (0.098)	Cancer (0.508) Inflammation (0.344) Fetal or Proliferating (0.066)	pSPORT1
	223	Endocrine (0.333) Gastrointestinal (0.333) Reproductive (0.333)	Cancer (1.000)	pINCY
	224	Cardiovascular (0.200) Developmental (0.200) Gastrointestinal (0.200) Reproductive (0.200) Urologic (0.200)	Cancer (0.800) Fetal or Proliferating (0.200)	pINCY
	225	Lung (1.000)	Cancer (1.000)	pINCY
	226	Reproductive (0.302) Hematopoietic/Immune (0.254) Cardiovascular (0.111)	Cancer (0.381) Inflammation (0.381) Fetal or Proliferating (0.286)	pSPORTI

227 Lymphocytes (1.000) 228 Cardiovascular (0.531) Reprodu Urologic (0.094) 229 Reproductive (0.333) Cardiovas Gastrointestinal (0.167) Endocri Hematopoietic/Immune (0.167) 230 Hematopoietic/Immune (0.500) 231 Cardiovascular (0.333) Nervous	(000)		
		Inflammation (1.000)	pINCY
	0.531) Reproductive (0.250)	Cancer (0.656) Inflammation (0.250) Fetal or Proliferating (0.094)	pINCY
	Reproductive (0.333) Cardiovascular (0.167) Gastrointestinal (0.167) Endocrine (0.167) Hematopoietic/Immune (0.167)	Cancer (0.500) Fetal or Proliferating (0.167) Inflammation (0.333)	pINCY
-	Hematopoietic/Immune (0.500) Reproductive (0.500)	Cell Proliferation (0.500) Inflammation (0.500)	pBLUESCRIPT
Developmental (0.167)	0.333) Nervous (0.333) 0.167)	Cancer (0.500) Cell Proliferation (0.333) Inflammation (0.167)	pINCY
232 Gastrointestinal (0.938)	0.938) Reproductive (0.062)	Cancer (0.500) Inflammation (0.500)	pINCY
233 Nervous (0.324) Reproductive (Hematopoietic/Immune (0.118)	Nervous (0.324) Reproductive (0.235) Hematopoietic/Immune (0.118)	Cancer (0.456) Inflammation (0.235) Trauma (0.147)	pINCY
234 Nervous (0.255) Repro-	Nervous (0.255) Reproductive (0.255) Musculoskeletal (0.182)	Cancer (0.545) Inflammation (0.255) Trauma (0.109)	pINCY
235 Musculoskeletal (0.308) Gastrointestinal (0.154)	(0.308) Reproductive (0.231)	Cancer (0.538) Inflammation (0.231) Trauma (0.154)	pINCY
236 Nervous (1.000)		Cancer (1.000)	pINCY
237 Gastrointestinal (0.429) Hematopoietic/Immune	0.429) nmune (0.143) Nervous (0.143)	Cancer (0.571) Cell Proliferation (0.143) Trauma (0.143)	pINCY
238 Reproductive (0.254) G Nervous (0.128)	254) Gastrointestinal (0.160)	Cancer (0.453) Inflammation (0.241) Cell Proliferation (0.175)	pINCY
239 Nervous (0.333) I Endocrine (0.167)	Jermatologic (0.167)	Trauma (0.333) Cancer (0.167) Cell Proliferation (0.167)	pINCY

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
240	Nervous (0.273) Reproductive (0.227) Endocrine (0.136)	Cancer (0.545) Cell Proliferation (0.182) Inflammation (0.182)	pINCY
241	Reproductive (0.273) Hematopoietic/Immune (0.182) Urologic (0.182)	Cancer (0.455) Cell Proliferation (0.273) Inflammation (0.273)	pINCY
242	Endocrine (1.000)	Тгаита (1.000)	pSPORT1
243	Reproductive (1.000)	Cancer (1.000)	pINCY
244	Hematopoietic/Immune (0.545) Musculoskeletal (0.182) Cardiovascular (0.091)	Inflammation (0.636) Trauma (0.182) Cancer (0.091)	pINCY
245	Hematopoietic/Immune (0.400) Musculoskeletal (0.300) Cardiovascular (0.150)	Inflammation (0.650) Cancer (0.300)	pINCY
246	Urologic (1.000)	Cancer (0.500) Cell Proliferation (0.500)	pINCY
247	Nervous (0.292) Reproductive (0.222) Musculoskeletal (0.125)	Cell Proliferation (0.625) Inflammation/Trauma (0.181)	pSPORTI
248	Reproductive (0.211) Developmental (0.132) Nervous (0.132)	Cell Proliferation (0.658) Inflammation/Trauma (0.184)	pSPORTI
249	Nervous (0.500) Gastrointestinal (0.300) Hematopoietic/Immune (0.100)	Cell Proliferation (0.900) Inflammation/Trauma (0.300)	pSPORT1
250	Cardiovascular (0.209) Gastrointestinal (0.140) Hematopoietic/Immune (0.140)	Cell Proliferation (0.605) Inflammation/Trauma (0.256)	pINCY
251	Nervous (0.308) Cardiovascular (0.154) Gastrointestinal (0.154)	Cell Proliferation (0.616) Inflammation/Trauma (0.269)	pINCY
252	Reproductive (1.000)	Cell Proliferation (1.000)	pSPORTI

-115-

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
253	Reproductive (0.324) Nervous (0.162) Gastrointestinal (0.113)	Cell Proliferation (0.641) Inflammation/Trauma (0.197)	pSPORTI
254	Reproductive (0.315) Nervous (0.296) Developmental (0.093)	Cell Proliferation (0.630) Inflammation/Trauma (0.278)	pSPORTI
255	Nervous (0.211) Reproductive (0.211) Gastrointestinal (0.158)	Cell Proliferation (0.579) Inflammation/Trauma (0.298)	pINCY
. 256	Reproductive (0.250) Gastrointestinal (0.148) Hematopoietic/Immune (0.148)	Cell Proliferation (0.705) Inflammation/Trauma (0.193)	pINCY
257	Hematopoietic/Immune (1.000)	Cell Proliferation (0.400) Inflammation/Trauma (0.600)	pINCY
258	Cardiovascular (0.333) Reproductive (0.333) Developmental (0.167)	Cell Proliferation (0.833) Inflammation/Trauma (0.333)	PBLUESCRIPT
259	Cardiovascular (0.333) Reproductive (0.250) Developmental (0.167)	Cell Proliferation (0.625) Inflammation/Trauma (0.208)	pINCY
260	Endocrine (0.500) Cardiovascular (0.250) Nervous (0.250)	Cell Proliferation (0.750) Inflammation/Trauma (0.500)	pINCY
261	Reproductive (0.252) Cardiovascular (0.155) Hematopoietic/Immune (0.136)	Cell Proliferation (0.728) Inflammation/Trauma (0.194)	pINCY
262	Reproductive (0.274) Cardiovascular (0.177) Nervous (0.145)	Cell Proliferation (0.742) Inflammation/Trauma (0.210)	pINCY
263	Reproductive (0.267) Cardiovascular (0.160) Hematopoietic/Immune (0.127)	Cell Proliferation (0.654) Inflammation/Trauma (0.193)	pINCY
264	Nervous (0.229) Hematopoietic/Immune (0.200) Reproductive (0.200)	Cell Proliferation (0.743) Inflammation/Trauma (0.286)	pINCY
265	Hematopoietic/Immune (0.333) Gastrointestinal (0.167) Nervous (0.133)	Cell Proliferation (0.600) Inflammation/Trauma (0.333)	pINCY

-116-

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease/Condition-Specific Expression (Total of Fraction)	Vector
266	Nervous (0.290) Reproductive (0.258) Cardiovascular (0.129)	Cell Proliferation (0.677) Inflammation/Trauma (0.194)	pINCY
267	Reproductive (0.261) Hematopoietic/Immune (0.217) Cardiovascular (0.087)	Cell Proliferation (0.652) Inflammation/Trauma (0.391)	pINCY
268	Gastrointestinal (0.227) Reproductive (0.193) Hematopoietic/Immune (0.168)	Cell Proliferation (0.731) Inflammation/Trauma (0.227)	pSPORTI

TABLE 4

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
135	443531	MPHGNOT03	The library was constructed using RNA isolated from plastic adherent mononuclear cells isolated from buffy coat units obtained from unrelated male and female donors.
136	632860	NEUTGMT01	The library was constructed using RNA isolated from peripheral blood granulocytes collected by density gradient centrifugation through Ficoll-Hypaque. The cells were isolated from buffy coat units obtained from 20 unrelated male and female donors. Cells were cultured in 10 nM GM-CSF for 1 hour before washing and harvesting for RNA preparation.
. 137	670010	CRBLNOT01	The library was constructed using RNA isolated from the cerebellum tissue of a 69-year-old Caucasian male who died from chronic obstructive pulmonary disease. Patient history included myocardial infarction, hypertension, and osteoarthritis.
138	726498	SYNOOAT01	The library was constructed using RNA isolated from the knee synovial membrane tissue of an 82-year-old female with ostcoarthritis.
139	795064	OVARNOT03	The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, cerebrovascular disease, breast cancer, and uterine cancer.
140	924925	BRAINOT04	The library was constructed using RNA isolated from the brain tissue of a 44-year-old Caucasian male with a cerebral hemorrhage. The tissue, which contained coagulated blood, came from the choroid plexus of the right anterior temporal lobe. Family history included coronary artery disease and myocardial infarction.

-118-

Library Description	The library was constructed using RNA isolated from breast tumor tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes.	The library was constructed using RNA isolated from brain meningioma tissue removed from a 35-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a benign neoplasm in the right cerebellopontine angle of the brain. Patient history included hypothyroidism. Family history included myocardial infarction and breast cancer.	The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes.	The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes.	The library was constructed using RNA isolated from the placental tissue of a Hispanic female fetus, who was prematurely delivered at 21 weeks' gestation. Serologies of the mother's blood were positive for CMV (cytomegalovirus).
Library	BRSTTUT03	MENITUT03	BRSTNOT07	BRSTNOT07	PLACNOT02
Clone ID	962390	1259405	1297384	1299627	1306026
Polynucleotide SEQ ID NO:	14]	. 142	143	144	145

-119-

Library Library Description	BLADTUT02 The library was constructed using RNA isolated from bladder tumor tissue removed from an 80-year-old Caucasian female during a radical cystectomy and lymph node excision. Pathology indicated grade 3 invasive transitional cell carcinoma. Family history included osteoarthritis and atherosclerosis.	PANCNOT07 The library was constructed using RNA isolated from the pancreatic tissue of a Caucasian male fetus, who died at 23 weeks' gestation.	CORPNOT02 The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.	PANCTUT01 The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included type II diabetes, osteoarthritis, cardiovascular disease, benign neoplasm in the large bowel, and a cataract. Family history included cardiovascular disease, type II diabetes, and stomach cancer.	LUNGNOT15 The library was constructed using RNA isolated from lung tissue removed from a 69-year-old Caucasian male during a segmental lung resection. Pathology for the associated tumor tissue indicated residual grade 3 invasive squamous cell carcinoma. Patient history included acute myocardial infarction, prostatic hyperplasia, and malignant skin neoplasm. Family history included cerebrovascular disease, type I diabetes, acute myocardial infarction, and arteriosclerotic coronary disease.	PROSTUT08 The library was constructed using RNA isolated from prostate tumor tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 3+4). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst. Family history included tuberculosis, cerebrovascular disease, and arteriosclerotic
Clone ID	1316219	1329031	1483050	1514160	1603403	1652303
Polynucleotide SEQ ID NO:	146	147	. 148	149	150	151

Clone 1D 1693358 CC 1707711 DU 1749147 STP 1831290 TH	Library Library Description	COLNNOT23 The library was constructed using RNA isolated from diseased colon tissue removed from a 16- year-old Caucasian male during a total colectomy with abdominal/perineal resection. Pathology indicated gastritis and pancolonitis consistent with the acute phase of ulcerative colitis. There was only mild involvement of the ascending and sigmoid colon, and no significant involvement of the cecum, rectum, or terminal ileum. Family history included irritable bowel syndrome.	DUODNOT02 The library was constructed using RNA isolated from duodenal tissue of a 8-year-old Caucasian female, who died from head trauma. Serology was positive for cytomegalovirus (CMV).	COLNNOT22 The library was constructed using RNA isolated from colon tissue removed from a 56-year-old Caucasian female with Crohn's disease during a partial resection of the small intestine. Pathology indicated Crohn's disease of the ileum and iteal-colonic anastomosis, causing a fistula at the anastomotic site that extended into pericolonic far. The ileal mucosa showed linear and puncture ulcers with intervening normal tissue. Previous surgeries included a partial ileal resection and permanent ileostomy. Family history included irritable bowel syndrome.	STOMTUT02 The library was constructed using RNA isolated from stomach tumor tissue obtained from a 68- year-old Caucasian female during a partial gastrectomy. Pathology indicated a malignant lymphoma of diffuse large-cell type. Patient history included thalassemia. Family history included acute leukemia, malignant neoplasm of the esophagus, malignant stomach neoplasm, and atherosclerotic coronary artery disease.	PROSNOT20 The library was constructed using RNA isolated from diseased prostate tissue removed from a 65-year-old Caucasian male during a radical prostatectomy. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma.	THP1AZT01 The library was constructed using 1 microgram of polyA RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute
Clor 1707 1749 1749	le ID						

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
158	1831477	THP1AZT01	The library was constructed using 1 microgram of polyA RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
159	1841607	COLNNOT07	The library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy.
160	1852391	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation.
161	1854555	HNT3AZT01	Library was constructed using RNA isolated from the hNT2 cell line (derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor). Cells were treated for three days with 0.35 micromolar 5-aza-2'-deoxycytidine (AZT).
162	1855755	PROSNOT18	The library was constructed using RNA isolated from diseased prostate tissue removed from a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated adenofibromatous hyperplasia. This tissue was associated with a grade 3 transitional cell carcinoma. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
163	1861434	PROSNOT19	The library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+3). The patient presented with elevated prostate-specific antigen (PSA). Patient history included colon diverticuli and thrombophlebitis. Family history included benign hypertension, multiple myeloma, hyperlipidemia and rheumatoid arthritis.
164	1872334	LEUKNOT02	The library was constructed using RNA isolated from white blood cells of a 45-year-old female with blood type O+. The donor tested positive for cytomegalovirus (CMV).
165	1877230	LEUKNOT03	The library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
166	1877885	LEUKNOT03	The library was constructed using RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
167	1889269	BLADTUT07	The library was constructed using RNA isolated from bladder tumor tissue removed from the anterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated a grade 3 transitional cell carcinoma in the left lateral bladder. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
. 168	1890243	всартито7	The library was constructed using RNA isolated from bladder tumor tissue removed from the anterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated a grade 3 transitional cell carcinoma in the left lateral bladder. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
691	1900433	BLADTUT06	The library was constructed using RNA isolated from bladder tumor tissue removed from the posterior bladder wall of a 58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and gastrostomy. Pathology indicated grade 3 transitional cell carcinoma in the left lateral bladder wall. Patient history included angina and emphysema. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and type II diabetes.
170	1909441	CONNTUT01	The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin.
171	1932226	. COLNNOT16	The library was constructed using RNA isolated from sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy.
172	1932647	COLNNOT16	The library was constructed using RNA isolated from sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy.

Clone ID Library Library Description	The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, atherosclerotic coronary artery disease, and type II diabetes.	2132626 OVARNOT03 The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, cerebrovascular disease, breast cancer, and uterine cancer.	The library was constructed and normalized from 4.4 million independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.	The library was constructed and normalized from 4.88 million independent clones from the BRAINON01 library. Starting RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.	The library was constructed using RNA isolated from diseased sigmoid colon tissue obtained from a 70-year-old Caucasian male during colectomy with permanent ileostomy. Pathology indicated chronic ulcerative colitis. Patient history included benign neoplasm of the colon. Family history included atherosclerotic coronary artery disease and myocardial infarctions.	2373227 ADRENOT07 The library was constructed using RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the
Clone II	212424;	2132626	2280639	2292356	2349310	2373227
Polynucleotide SEQ ID NO:	173	. 174	175	176	7.21	178

-124-

WO 00/00610 PCT/US99/14484

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
6/1	2457682	ENDANOT01	The library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.
081	2480426	SMČANOT01	The library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant.
181	2503743	CONUTUT01	The library was constructed using RNA isolated from sigmoid mesentery tumor tissue obtained from a 61-year-old female during a total abdominal hysterectomy and bilateral salpingo-oophorectomy with regional lymph node excision. Pathology indicated a metastatic grade 4 malignant mixed mullerian tumor present in the sigmoid mesentery at two sites.
182	2537684	BONRTUT01	The library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated a metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall.
183	2593853	OVARTUT02	The library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year-old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer, and uterine cancer.
184	2622354	KERANOT02	The library was constructed using RNA isolated from epidermal breast keratinocytes (NHEK). NHEK (Clontech #CC-2501) is a human breast keratinocyte cell line derived from a 30-year-old black female during breast-reduction surgery.

Library Description	The library was constructed using RNA isolated from lung tumor tissue removed from a 63-year-old Caucasian male during a right upper lobectomy with fiberoptic bronchoscopy. Pathology indicated a grade 3 adenocarcinoma. Patient history included atherosclerotic coronary artery disease, an acute myocardial infarction, rectal cancer, an asymptomatic abdominal aortic aneurysm, and cardiac dysrhythmia. Family history included congestive heart failure, stomach cancer, and lung cancer, type II diabetes, atherosclerotic coronary artery disease, and an acute myocardial infarction.	The library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, prostate cancer, myocardial infarction, and atherosclerotic coronary artery disease.	The subtracted THP-1 promonocyte cell line library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZT) treated THP-1 cell library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZT. The library was oligo(dT)-primed, and cDNAs were cloned directionally into the pSPORT1 vectoring system using Sal1 (5') and Notl (3'). The hybridization probe for subtraction was derived from a similarly constructed library, made from 1 microgram of polyA RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (Nucl. Acids Res. (1991) 19:1954) and Bonaldo et al. (Genome Res (1996) 6: 791-806).	The library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocystic disease. Family history included benign hypertension and atherosclerotic coronary artery disease.
Library	LUNGTUT08	KIDNNOT19	THP1AZS08	BRSTNOT12
Clone ID	2641377	2674857	2758485	2763296
Polynucleotide SEQ ID NO:	185	98 -126	187	188

-126-

Library Description	The library was constructed using RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma forming a mass in the left ovary. The endometrium was atrophic. Multiple (2) leiomyomata were identified, one subserosal and 1 intramural. Pathology also indicated a metastatic grade 3 seroanaplastic carcinoma involving the omentum, cul-de-sac peritoneum, left broad ligament peritoneum, and mesentery colon. Patient history included breast cancer, chronic peptic ulcer, and joint pain. Family history included colon cancer, cerebrovascular disease, breast cancer, type II diabetes, esophagus cancer, and depressive disorder.	The library was constructed using RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma in the right bladder base. Family history included myocardial infarction, cerebrovascular disease, brain cancer, and myocardial infarction.	The library was constructed using RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma in the right bladder base. Patient history included pure hypercholesterolemia and tobacco abuse. Family history included myocardial infarction, cerebrovascular disease, brain cancer, and myocardial infarction.	The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type. Ductal carcinoma in situ, comedo type, comprised 60% of the tumor mass. Metastatic adenocarcinoma was identified in one (of 14) axillary lymph nodes with no perinodal extension. The tumor cells were strongly positive for estrogen receptors and weakly positive for progesterone receptors. Patient history included a benign colon neoplasm, hyperlipidemia, and cardiac dysrhythmia. Family history included atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian cancer, lung cancer, and cerebrovascular disease.
Library	OVARTUT03	BLADTUT08	BLADTUT08	BRSTNOT14
Clone ID	2779436	2808528	2809230	2816821
Polynucleotide SEQ ID NO:	· ·	190	191	192

-127-

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
193	2817268	BRSTNOT14	The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal type. Ductal carcinoma in situ, comedo type, comprised 60% of the tumor mass. Metastatic adenocarcinoma was identified in one (of 14) axillary lymph nodes with no perinodal extension. The tumor cells were strongly positive for estrogen receptors and weakly positive for progesterone receptors. Patient history included a benign colon neoplasm, hyperlipidemia, and cardiac dysrhythmia. Family history included atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian cancer, lung cancer, and cerebrovascular disease.
194	2923165	SININOT04	The library was constructed using RNA isolated from diseased ileum tissue obtained from a 26-year-old Caucasian male during a partial colectomy, permanent colostomy, and an incidental appendectomy. Pathology indicated moderately to severely active Crohn's disease. Family history included enteritis of the small intestine.
195	2949822	KIDNFET01	The library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks' gestation from anencephalus.
196	2992192	KIDNFET02	The library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation.
197	2992458	KIDNFET02	The library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation.
861	3044710	HEAANOT01	The library was constructed using RNA isolated from right coronary and right circumflex coronary artery tissue removed from the explanted heart of a 46-year-old Caucasian male during a heart transplantation. Patient history included myocardial infarction from total occlusion of the left anterior descending coronary artery, atherosclerotic coronary artery disease, hyperlipidemia, myocardial ischemia, dilated cardiomyopathy, and left ventricular dysfunction. Previous surgeries included cardiac catheterization. Family history included atherosclerotic coronary artery disease.

_	Library	Library Description
3120415	LUNGTUT13	The library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes.
126758	LUNGNOT01	The library was constructed at Stratagene using RNA isolated from the lung tissue of a 72-year-old male.
674760	CRBLNOT01	The library was constructed using RNA isolated from the cerebellum tissue of a 69-year-old Caucasian male who died from chronic obstructive pulmonary disease. Patient history included myocardial infarction, hypertension, and osteoarthritis.
1229438	BRAITUTOI	The library was constructed using RNA isolated from brain tumor tissue removed from a 50-year-old Caucasian female during a frontal lobectomy. Pathology indicated recurrent grade 3 oligoastrocytoma with focal necrosis and extensive calcification. Patient history included a speech disturbance and epilepsy. The patient's brain had also been irradiated with a total dose of 5,082 cyg (Fraction 8). Family history included a brain tumor.
1236935	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
1359283	LUNGNOT12	The library was constructed using RNA isolated from lung tissue removed from a 78-year-old Caucasian male during a segmental lung resection and regional lymph node resection. Pathology indicated fibrosis pleura was puckered, but not invaded. Pathology for the associated tumor tissue indicated an invasive pulmonary grade 3 adenocarcinoma. Patient history included cerebrovascular disease, arteriosclerotic coronary artery disease, thrombophlebitis, chronic obstructive pulmonary disease, and asthma. Family history included intracranial hematoma, cerebrovascular disease, arteriosclerotic coronary artery disease, and type I diabetes.

-129-

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
205	1450703	PENITUTOI	The library was constructed using RNA isolated from tumor tissue removed from the penis of a 64-year-old Caucasian male during penile amputation. Pathology indicated a fungating invasive grade 4 squamous cell carcinoma involving the inner wall of the foreskin and extending onto the glans penis. Patient history included benign neoplasm of the large bowel, atherosclerotic coronary artery disease, angina pectoris, gout, and obesity. Family history included malignant pharyngeal neoplasm, chronic lymphocytic leukemia, and chronic liver disease.
206	1910668	CONNTUT01	The library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin.
207	1955143	CONNNOT01	The library was constructed using RNA isolated from mesentery fat tissue obtained from a 71-year-old Caucasian male during a partial colectomy and permanent colostomy. Family history included atherosclerotic coronary artery disease, myocardial infarction, and extrinsic asthma.
208	1961637	BRSTNOT04	The library was constructed using RNA isolated from breast tissue removed from a 62-year-old East Indian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 ductal carcinoma. Patient history included benign hypertension, hyperlipidemia, and hematuria. Family history included cerebrovascular and cardiovascular disease, hyperlipidemia, and liver cancer.
209	1990762	CORPNOT02	The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.
210	1994131	CORPNOT02	The library was constructed using RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male who died from Alzheimer's disease.

Library Description	The library was constructed using RNA isolated from breast tumor tissue removed from a 58-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated multicentric invasive grade 4 lobular carcinoma. The mass was identified in the upper outer quadrant, and three separate nodules were found in the lower outer quadrant of the left breast. Patient history included skin cancer, rheumatic heart disease, osteoarthritis, and tuberculosis. Family history included cerebrovascular disease, coronary artery aneurysm, breast cancer, prostate cancer, atherosclerotic coronary artery disease, and type I diabetes.	The library was constructed using polyA RNA isolated from testicular tissue removed from a 37-year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.	The library was constructed using polyA RNA isolated from testicular tissue removed from a 37-year-old Caucasian male who died from liver disease. Patient history included cirrhosis, jaundice, and liver failure.	The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer.	The library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine
Library	BRSTTUT03	TESTNOT03	TESTNOT03	OVARNOT03	OVARNOT03
Clone ID	1997745	2009035	2009152	2061752	2061933
Polynucleotide SEQ ID NO:	211	. 212	213	214	215

-131-

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
216	2081422	UTRSNOT08	The library was constructed using RNA isolated from uterine tissue removed from a 35-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated that the endometrium was secretory phase with a benign endometrial polyp 1 cm in diameter. The cervix showed mild chronic cervicitis. Family history included atherosclerotic coronary artery disease and type II diabetes.
217	2101278	BRAITUT02	The library was constructed using RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hypernephroma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Family history included a malignant neoplasm of the kidney.
218	2121353	BRSTNOT07	The library was constructed using RNA isolated from diseased breast tissue removed from a 43-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology indicated mildly proliferative fibrocystic changes with epithelial hyperplasia, papillomatosis, and duct ectasia. Pathology for the associated tumor tissue indicated invasive grade 4, nuclear grade 3 mammary adenocarcinoma with extensive comedo necrosis. Family history included epilepsy, cardiovascular disease, and type 11 diabetes.
219	2241736	PANCTUT02	The library was constructed using RNA isolated from pancreatic tumor tissue removed from a 45-year-old Caucasian female during radical pancreaticoduodenectomy. Pathology indicated a grade 4 anaplastic carcinoma. Family history included benign hypertension, hyperlipidemia and atherosclerotic coronary artery disease.
220	2271935	PROSNON01	This normalized prostate library was constructed from 4.4 M independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.

-132-

-133-

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
. 226	2755786	THPIAZS08	This subtracted THP-1 promonocyte cell line library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZ) treated THP-1 cell library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZ. The hybridization probe for subtraction was derived from a similarly constructed library, made from RNA isolated from untreated THP-1 cells. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al., NAR (1991) 19:1954, and Bonaldo et al., Genome Research (1996) 6:791. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.
227	2831245	TLYMNOT03	The library was constructed using RNA isolated from nonactivated Th1 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-12 and B7-transfected COS cells.
228	3116250	LUNGTUT13	The library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes.
229	3129630	LUNGTUT12	The library was constructed using RNA isolated from tumorous lung tissue removed from a 70-year-old Caucasian female during a lung lobectomy of the left upper lobe. Pathology indicated grade 3 (of 4) adenocarcinoma and vascular invasion. Patient history included tobacco abuse, depressive disorder, anxiety state, and skin cancer. Family history included cerebrovascular disease, congestive heart failure, colon cancer, depressive disorder, and primary liver.
230	007632	HMC1NOT01	The library was constructed using RNA isolated from the HMC-1 human mast cell line derived from a 52-year-old female. Patient history included mast cell leukemia.
231	1236968	LUNGFET03	The library was constructed using RNA isolated from lung tissue removed from a Caucasian female fetus who died at 20 weeks' gestation.
232	1334153	COLNNOT13	The library was constructed using RNA isolated from ascending colon tissue of a 28-year-old Caucasian male with moderate chronic ulcerative colitis.

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
233	1396975	BRAITUT08	The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 47-year-old Caucasian male during excision of cerebral meningeal tissue. Pathology indicated grade 4 fibrillary astrocytoma with focal tumoral radionecrosis. Patient history included cerebrovascular disease, deficiency anemia, hyperlipidemia, epilepsy, and tobacco use. Family history included cerebrovascular disease and malignant prostate neoplasm.
234	1501749	SINTBST01	The library was constructed using RNA isolated from ileum tissue removed from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
235	1575240	LNODNOT03	The library was constructed using RNA isolated from lymph node tissue removed from a 67-year-old Caucasian male during a segmental lung resection and bronchoscopy. This tissue was extensively necrotic with 10% viable tumor. Pathology for the associated tumor tissue indicated invasive grade 3-4 squamous cell carcinoma. Patient history included hemangioma. Family history included atherosclerotic coronary artery disease, benign hypertension, and congestive heart failure.
236	1647884	PROSTUT09	The library was constructed using RNA isolated from prostate tumor tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology indicated grade 3 transitional cell carcinoma. Patient history included lung neoplasm, and benign hypertension. Family history included malignant breast neoplasm, tuberculosis, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer.
237	1661144	BRSTNOT09	The library was constructed using RNA isolated from breast tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated invasive nuclear grade 2-3 adenocarcinoma. Patient history included valvuloplasty of mitral valve and rheumatic heart disease. Family history included cardiovascular disease and type II diabetes.

		T	 	T	
Library Description	The library was constructed using RNA isolated from diseased prostate tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 2+3). The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension.	The library was constructed using RNA isolated from breast tumor tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology indicated invasive nuclear grade 2-3 adenocarcinoma. Patient history included valvuloplasty of mitral valve and rheumatic heart disease. Family history included cardiovascular disease and type II diabetes.	The library was constructed using RNA isolated from breast tissue removed from a 62-year-old Caucasian female during a unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma. Patient history included a benign colon neoplasm, hyperlipidemia, cardiac dysrhythmia, and obesity. Family history included cardiovascular and cerebrovascular disease and colon, ovary and lung cancer.	The library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hemia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, and prostate cancer.	The normalized adrenal gland library was constructed from 1.36 x 1e6 independent clones from an adrenal tissue library. Starting RNA was made from adrenal gland tissue removed from a 20-yearold Caucasian male who died from head trauma. The library was normalized in two rounds using conditions adapted from Soares et al. (PNAS (1994) 91:9228-9232) and Bonaldo et al. (Genome Res (1996) 6: 791-806) using a significantly longer (48-hours/round) reannealing hybridization period.
Library	PROSNOT15	BRSTTUT08	BRSTNOT14	KIDNNOT19	ADRENON04
Clone ID	1685409	1731419	2650265	2677129	3151073
Polynucleotide SEQ ID NO:	238	239	240	241	242

Polynucleotide SEQ ID NO:	Clone ID	Library	Library Description
243	3170095	BRSTNOT18	The library was constructed using RNA isolated from diseased breast tissue removed from a 57-year-old Caucasian female during a unilateral simple extended mastectomy. Pathology indicated mildly proliferative breast disease. Patient history included breast cancer and osteoarthritis. Family history included type II diabetes, gallbladder and breast cancer, and chronic lymphocytic leukemia.
244	3475168	LUNGNOT27	The library was constructed using RNA isolated from lung tissue removed from a 17-year-old Hispanic female.
245	3836893	DENDTNT01	The library was constructed using RNA isolated from treated dendritic cells from peripheral blood.
246	4072159	KIDNNOT26	The library was constructed using RNA isolated from left kidney medulla and cortex tissue removed from a 53-year-old Caucasian female during a nephroureterectomy. Pathology for the associated tumor tissue indicated grade 2 renal cell carcinoma involving the lower pole of the kidney. Patient history included hyperlipidemia, cardiac dysrhythmia, menorrhagia, cerebrovascular disease, atherosclerotic coronary artery disease, and tobacco abuse. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
247	1003916	BRSTNOT03	The library was constructed using RNA isolated from diseased breast tissue removed from a 54-year-old Caucasian female during a bilateral radical mastectomy. Pathology for the associated tumor tissue indicated residual invasive grade 3 mammary ductal adenocarcinoma. Patient history included kidney infection and condyloma acuminatum. Family history included benign hypertension, hyperlipidemia and a malignant neoplasm of the colon.
248	2093492	PANCNOT04	The library was constructed using RNA isolated from the pancreatic tissue of a 5-year-old Caucasian male who died in a motor vehicle accident.
249	2108789	BRAITUT03	The library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe a 17-year-old Caucasian female during excision of a cerebral meningeal lesion. Pathology indicated a grade 4 fibrillary giant and small-cell astrocytoma. Family history included benign hypertension and cerebrovascular disease.
250	2171401	ENDCNOT03	The library was constructed using RNA isolated from dermal microvascular endothelial cells removed from a neonatal Caucasian male.

Library Description	The library was constructed using RNA isolated from small intestine tissue removed from a Caucasian female fetus, who died at 20 weeks' gestation.	The library was constructed using RNA isolated from ovarian tumor tissue removed from a 43-year-old Caucasian female during removal of the fallopian tubes and ovaries. Pathology indicated grade 2 mucinous cystadenocarcinoma involving the entire left ovary. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer.	The normalized prostate library was constructed from 4.4 M independent clones from the PROSNOT11 library. Starting RNA was made from prostate tissue removed from a 28-year-old Caucasian male who died from a self-inflicted gunshot wound. The normalization and hybridization conditions were adapted from Soares, M.B. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9228-9232, using a longer (19 hour) reannealing hybridization period.	The library was constructed and normalized from 4.88 million independent clones from the BRAINOT03 library. RNA was made from brain tissue removed from a 26-year-old Caucasian male during cranioplasty and excision of a cerebral meningeal lesion. Pathology for the associated tumor tissue indicated a grade 4 oligoastrocytoma in the right fronto-parietal part of the brain.	The library was constructed using RNA isolated from a pooled collection of pancreatic islet cells.	The library was constructed using RNA isolated from a pooled collection of pancreatic islet cells.	The library was constructed using RNA isolated from THP-1 promonocyte cells treated for three days with 0.8 micromolar 5-aza-2'-deoxycytidine. THP-1 (ATCC TIB 202)is a human promonocyte line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia.	The library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.
Library	SINTFET03	OVARTUT01	PROSNON01	BRAINONOI	ISLTNOT01	ISLTNOT01	THP1AZT01	ENDANOT01
Clone ID	2212530	2253036	2280161	2287485	2380344	2383171	2396046	2456587
Polynucleotide SEQ ID NO:	251	252	253	254	255	256	257	258

Library Description	The library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated a metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall.	The library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.	The library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.	The library was constructed using RNA isolated from diseased gallbladder tissue removed from a 53-year-old Caucasian female during a cholecystectomy. Pathology indicated mild chronic cholecystitis and cholelithiasis with approximately 150 mixed gallstones. Family history included benign hypertension.	The library was constructed using RNA isolated from thymus tissue removed from a 3-year-old Caucasian male, who died from anoxia. Serologies were negative. The patient was not taking any medications.	The library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer.	The library was constructed using RNA isolated from breast tumor tissue removed from the right breast of a 46-year-old Caucasian female during a unilateral extended simple mastectomy with breast reconstruction. Pathology indicated an invasive grade 3 adenocarcinoma, ductal type with apocrine features and greater than 50% intraductal component. Patient history included breast cancer.
Library	BONRTUT01	ADRETUT05	ADRETUT05	GBLANOT01	THYMNOT04	BRSTTUT13	BRSTTUT13
Clone ID	2484813	2493851	2495719	2614153	2655184	2848362	2849906
Polynucleotide SEQ ID NO:	259	260	261	262	263	264	265

Table :

	Program	Description	Reference	Parameter Threshold
	ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
	ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
	ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
-141-	BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
	FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity-95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
	BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS and PRINTS databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and Probability value= 1.0E-3 or less
	PFAM	A Hidden Markov Models-based application useful for protein family search.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score≃ 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186- 194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12: 431-439.	Score=5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <u>supra;</u> Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

TABLE 6

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		443531H1	_	253
		1406807F6	152	336
135	443531	443531T6	847	355
		SBBA00451F1	396	856
		SBBA00676F1	546	865
		632860H1	13	253
136	632860	784715R3	17	999
		509590H1	455	902
137	670010	670010H1		263
		669971R1	-	633
		726498H1	13	263
138	726498	726498R6	13	489
		866599R3	7	099
		795064H1	98	323
		4339458H1	4	284
139	795064	937605R3	86	505
		2381151F6	592	1057
		1466346F6	857	1241
		924925H1	111	412
140	924925	3268330H1	2	239
		759120R3	111	629
		1907958F6	_	478
141	962390	023569F1	1122	470
		167282F1	1216	543
		1309211F1	911	1224

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		1259405HI	46	277
		2472425H1	331	354
		774303R1	190	743
142	1259405	1520779F1	418	1001
		1693833F6	914	1467
		1831858T6.comp	1336	1742
		1527737T6.comp	1386	1829
		1297384H1	402	641
		1269310F6	-	492
143	1297384	1457367F1	792	1380
		415587RI	1358	1712
		SANA02967F1	1143	614
		1299627H1		250
		1359140F6	1004	1573
144	1299621	1349224F1	1330	1731
		SBAA01431F1	46	397
		SBAA02909F1	898	262
		SBAA01156F1	901	1266
		1306026HI		223
145	1306026	1464088R6	302	829
		SBAA02496F1	92	568
		SBAA04305F1	366	883
		131621911	246	491
146	1316219	2458603F6	_	. 402
		2504756T6	086	380
		1329031H1		264
147	1329031	1329031T6	505	_
		1329031F6	_	523
			T	

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		1483050H1	722	931
		855049H1	_	267
		077017F1	1069	629
148	1483050	1483050F6	722	1215
		1480024T6	2063	. 1315
		1483050T6	2068	1535
		759486RI	1762	2089
		1514160H1	1640	1838
		1866765T7	2383	2210
		782676R1	1652	1875
149	1514160	008055X4	1090	1804
		008055X5	1316	1952
		1866765F6	2209	2391
		SAOA03127F1	2129	1703
		1603403H1		224
150	1603403	372910F1	420	44
		733299R7	219	420
		1652303HI	4	256
		1671806HI	_	224
		1341743T1	2069	0061
		3803812H1	389	269
151	1652303	1878546F6	747	1344
		1428640F1	1801	1664
		2058609R6	1715	2098
		1331621F1	1780	2096
		1306331TI	1897	2098

TABLE 6 (cont.)

	T													1				Г					·						
Ending Nucleotide of Fragment	125	252	373	416	1103	626	1855	286	2182	2178	1132	1212	1142	236	S	685	42	276	457	-	268	545	257	242	617	852	1602	1058	1738
Starting Nucleotide of Fragment	41	-	205	1094	737	408	2165	408	1721	1855	544	1675	1675	7	393	913	435		47	479		344	10	70	163	413	1024	1729	1261
Fragment of SEQ ID NO	1693358HI	2498265H1	1867125F6	1693358T6	2245848R6	1707711HI	1484609TI	1707711F6	1267959F1	1484609F1	SAJA00930F1	SAJA01300R1	SAJA00999R1	1738735HI	SAJA00944R1	SAJA00137F1	SAJA03629F1	1749147H1	1749147F6	1749147T6	1817722H1	2011085H1	1831290H1	3473958H1	1972268F6	1301277F1	1521574FI	1561690T6	891461R1
Clone ID			1693358						170711						1738735				1749147		1817722				,	1831290			
Nucleotide SEQ ID NO:			152						153						154			155	155	155	156					157		-	

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		1831477HI	65	337
		1582867H1	_	661
		1336769T1	9861	1639
		1933092H1	525	789
158	1831477	1519909F1	841	1296
		1220946H1	1901	1318
		809556TI	1983	1687
		1217559TI	2002	1445
		1309225F1	1747	2001
159	1841607	1841607HI	13	192
		SBHA03588FI	13	172
		1852391HI	86	367
091	1852391	734140H1	-	225
		1852391F6	86	542
		1854555HI		265
		2511711HI	37	58
191	1854555	782453R1	223	712
		1854555F6		346
		1840675T6	1046	098
		2109736H1	938	1054
		1855755H1	17	224
		3040236H1	_	179
162	1855755	1283207F1	306	816
		833763T1	1148	835
		1920926R6	854	1161
		1861434H1	13	253
163	1861434	1861434T6	872	261
	-	SARA01525F1	426	808
		SARA02548F1	587	889

TABLE 6 (cont.)

SEQ ID NO:		r ragment of	Starting Nucleotide of	Ending Nucleotide of
		SEQ ID NO	Fragment	Fragment
		1872334H1		229
164	1872334	1872334F6		424
		SBGA03684F1	358	425
		1877230H1	1405	1677
		2519841H1	-	251
		1877230T6	1903	1405
_		1254693F1	335	716
165	1877230	077020R1	682	1414
		1232336F1	906	1507
	•	1004952R6	1451	1904
		SARA01879F1	1545	1921
		SARA02654F1	1545	1923
		1877885HI	89	323
991	1877885	508020F1	499	51
	-	2751126R6	219	919
		SARA02571F1	407	499
		1889269Hi	757	1020
		1915551H1	-	161
		629493X12	481	865
167	1889269	1441289F1	693	865
		1215274X34F1	1106	1631
		1818447F6	1307	1540
		1208463R1	1372	1493
		1890243H1	6	268
		SARA01884F1	521	168
891	1890243	SATA00046F1	1057	851
		SARA03294F1	1329	910
		SARA02790F1	1138	1535

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		1900433H1		242
691	1900433	SATA00396F1	409	124
		SATA02742F1	_	294
		1909441H1	786	1048
		1398811F1	_	550
		3039939HI	607	876
170	1909441	3324740H1	685	944
		1442131F6	787	1232
		2254056H1	1423	1522
		2199453T6	1955	1351
		1698531H1	1968	1796
		1932226H1	294	.510
		2320569HI		266
		1932226F6	294	\$89
171	1932226	2469455T6	1475	101
		2469455F6	1034	1492
		1907140F6	1158	1482
		SATA02592F1	857	518
		1932647H1	17	246
		1492745T1	1582	1418
172	1932647	1492745H1	1418	1599
		SASA02355F1	386	61
		SASA00117F1	250	569
		SASA00192F1	515	816
		2124245H1	45	061
3	•	1235393F1	495	895
173	2124245	1402264F6	323	925
		1303990F1	682	1240
		1402264T6	1613	950

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		2132626HI	406	651
		1723432T6	1299	746
174	2132626	2132626R6	406	904
		1736723T6	1292	857
		1504738F1	898	1320
175	2280639	2280639H1	28	303
		1377560F6	261	777
		2292356HI	717	896
		4086827H1	-	275
176	2292356	1754442F6	232	577
		3571126H1	497	808
		1601305F6	808	1464
177	2349310	2349310H1		236
:		2349310T6	682	2
		2373227H1	298	524
		3316444HI	801	1053
178	2373227	302685R6	1141	1496
		SASA02181F1	577	_
		SASA01923F1	963	466
		SASA03516F1	1102	1249
179	2457682	2457682H1		226
		2457682F6	-	554
180	2480426	2480426H1		213
		2480426F6	1	501

 FABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		2503743HI	9	222
		1853909H1	-	272
		1517619F1	172	830
181	2503743	1467896F6	540	1112
		490031F1	1647	1068
		1208654R1	1382	1633
		880544R1	1450	1648
		2537684HI	434	682
		2005493HI		194
		730969H1	307	547
182	2537684	916487HI	723	686
		996135R1	266	1598
		1920738R6	1306	1692
		1957710F6	1472	1692
		2593853HI	_	252
183	2593853	807497H1	2	217
		914020R6	284	740
		889992R1	416	729
		2622354HI	3	266
184	2622354	2623992H1		246
		1556510F6	81	258
		2641377H1	126	369
185	2641377	4341415H2	01	345
		SBCA07049F3	126	599

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		2674857H1	139	393
		1872373HI		270
		470512R6	1486	1502
981	2674857	1728547H1	1285	1508
		3013651F6	1423	1987
		SBCA01366F1	819	385
		SBCA00694F1	973	1198
		2758485H1	20	267
187	2758485	3097533H1	-	158
		1578959F6	291	177
		2763296HI	63	301
188	2763296	3486025F6	-	130
		SBDA07002F3	63	[87
		2779436HI		233
189	2779436	2779436F6	-	577
		SBDA07009F3	-	809
		2808528HI	25	335
061	2808528	2611513F6	2	489
		SBDA07021T3	1058	443
		2809230H1	409	630
		2213849H1		133
161	2809230	711706R6	396	169
		958323R1	407	800
		030732F1	1366	623
		2816821H1	210	501
192	2816821	3746964H1		307
	•	2816821F6	210	682
		948722T6	959	527

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		2817268HI	42	282
		3591308HI	13	264
193	2817268	419522R1	179	808
		2073028F6	446	924
		1308781F6	698	1112
		2923165HI	8	295
		2011630H1	18	238
194	2923165	1457250F1	268	856
		754668R1	327	878
		1406510F6	558	901
195	2949822	2949822H1		280
		SBDA07078F3	_	909
		2992192H1	25	321
•		2534324H2	_	240
961	2992192	2815255T6	069	219
		1551107T6	893	471
		1551107R6	471	069
		2992458H1	48	362
		2618951HI		247
		1479252F1	163	610
197	2992458	1879054H1	563	840
		1879054F6	563	9601
		2215240H1	951	1202
		1535968T1	1729	1173

TABLE 6 (cont.)

Nucleotide	Clone ID	Fragment of	Starting Nucleotide of	Ending Nucleotide of
SEQ ID NO:		SEQ ID NO	Fragment	Fragment
		3044710H1	652	952
		3741773HI	_	283
		859906X42C1	94	192
		1534347F1	06	268
198	3044710	1421122F1	830	1392
		1303865F1	1033	1487
		1704452F6	1432	1934
		1251642F1	2006	1544
		1781694R6	1894	2017
		3120415H1	72	363
199	3120415	1360123T1	523	141
		1375015H1	380	. 526

What is claimed is:

- 1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ 5 ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9. SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ 10 ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, 15 SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID 20 NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID 25 NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134 (SEQ ID 30 NO:1-134), and fragments thereof.
 - 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.

3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.

4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.

5

- 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
- 6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
- 7. A method for detecting a polynucleotide, the method comprising the steps 10 of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid in a sample, thereby forming a hybridization complex; and
 - (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.
 - 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.
- 9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:135, SEQ ID NO:136, SEQ 20 ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ 25 ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ 30 ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ

ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:223, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:238, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268 (SEQ ID NO:135-268), and fragments thereof.

- 15 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.
 - 11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.
- 12. An expression vector comprising at least a fragment of the polynucleotide 20 of claim 3.
 - 13. A host cell comprising the expression vector of claim 12.
 - 14. A method for producing a polypeptide, the method comprising the steps of:
 - a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
 - 15. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.
 - 16. A purified antibody which specifically binds to the polypeptide of claim 1.
 - 17. A purified agonist of the polypeptide of claim 1.
- 30 18. A purified antagonist of the polypeptide of claim 1.

19. A method for treating or preventing a disorder associated with decreased expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 15.

A method for treating or preventing a disorder associated with increased
 expression or activity of HSPP, the method comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

```
<110> INCYTE PHARMACEUTICALS, INC.
       LAL, Preeti
       TANG, Y. Tom
       GORGONE, Gina A.
       CORLEY, Neil C.
       GUEGLER, Karl J.
       BAUGHN, Mariah R.
       AKERBLOM, Ingrid E.
       AU-YOUNG, Janice
       YUE, Henry
       PATTERSON, Chandra
       REDDY, Roopa
       HILLMAN, Jennifer L.
       BANDMAN, Olga
<120> HUMAN SIGNAL PEPTIDE-CONTAINING PROTEINS
<130> PF-0541 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/090,762; 60/094,983; 60/102,686; 60/112,129
<151> 1998-06-26; 1998-07-31; 1998-10-01; 1998-12-11
<160> 268
<170> PERL Program
<210> 1
<211> 88
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 443531
<400> 1
Met Ser Trp Trp Leu Cys Leu Pro Leu Gly Leu Phe Gly Ser Cys
                 5
                                    10
Leu Ala Pro Ala Ala Ala Ala Leu Ser Glu Phe Thr Gln Glu
                 20
                                    25
Gln His Asp Gly Ala Gln Pro Ser Pro Lys Cys Leu Ala Glu Glu
                 35
                                    40
Leu Gly Asp Ala Trp Thr Ile Gln Ile Glu Ala Asn Trp Lys Tyr
                 50
                                    55
Arg Ala Val Asn Thr Asn Gln Arg Gly Lys Leu Leu Ala Ser Glu
                65
                                    70
Thr Trp Lys Gly Arg Arg Asn Thr Phe Phe Leu Pro
                80
                                    85
```

<210> 2

```
<211> 128
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 632860
<400> 2
Met Trp Pro Ala Gly Leu Gly Arg Ser Leu Leu Ala Gln Pro Ala
                                    10
Leu Cys Ser Phe Met Gly Pro Gln Trp Ile Leu Gln Phe Cys Ser
                 20
                                    25
Trp Leu Glu Pro Arg Gln Leu Arg Trp Ser Trp Thr Glu Pro Pro
                 35
                                     40
Phe Thr Leu Leu Asp Ser Leu Gly Leu Arg Ala Ala Gln Asp Ser
                 50
                                    55
Cys Ser Phe Thr Thr Leu Val Pro Leu Thr Leu Asp Ser Ser Phe
                65
                                    70
Met Thr Val Asn Val Val Pro Phe Val Trp Thr Ser Ser Phe Phe
                80
                                    85
Arg Ala Phe Gln Tyr Pro Val Thr Ser Pro Cys Arg Thr Lys Asn
                95
                                   100
Thr Pro Leu Leu Ile Asp Gly Val Thr Arg Ile Gln Ala Thr Trp
                110
Pro Glu Ala Arg Ser Gln His Glu
                125
<210> 3
<211> 111
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 670010
<400> 3
Met Gly Leu Leu Leu Val Leu Phe Leu Ser Leu Leu Pro Val
                 5
Ala Tyr Thr Ile Met Ser Leu Pro Pro Ser Phe Asp Cys Gly Pro
                 20
                                    25
Phe Arg Cys Arg Val Ser Val Ala Arg Glu His Leu Pro Ser Arg
                                     40
Gly Ser Leu Leu Arg Gly Pro Arg Pro Arg Ile Pro Val Leu Val
                                    55
Ser Cys Gln Pro Val Lys Gly His Gly Thr Leu Gly Glu Ser Pro
                                    70
Met Pro Phe Lys Arg Val Phe Cys Gln Asp Gly Asn Val Arg Ser
                                    85
Phe Cys Val Cys Ala Val His Phe Ser Ser His Gln Pro Pro Val
                                   100
Ala Val Glu Cys Leu Lys
```

110

```
<210> 4
<211> 110
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 726498
<400> 4
Met Trp Arg Leu Arg Arg Asn Leu Ala Leu Pro Pro Gly Lys Leu
                                     10
Ala Trp Leu Tyr Leu Ser Val Phe Ser Gln Gly Ser Arg Ala Met
                 20
                                     25
Met Ser Leu Thr Glu Ile Arg Leu Lys His Met Leu Glu Ile Trp
                                     40
His Gly Arg Gln Ala Arg Ala Cys Glu Asn Leu Arg Asn Gln Thr
                                     55
Arg Val Ala Thr Lys Val Glu Pro Gln Lys Gly Arg Ser Thr Glu
                 65
                                     70
Ile Cys Cys Leu Ala Val Val Pro Leu Asn Glu Val Val Gln Ser
                                     85
Ser Ile Leu Trp Trp Val Trp Ser Cys Cys Gln His Gln Glu Asp
                                    100
                                                        105
Lys Leu Gly Ala Lys
```

<210> 5

<211> 78

<212> PRT

<213> Homo sapiens

<220>

<221> misc feature

<223> Incyte Clone No: 795064

<400> 5

Met Ala Glu Ser Gly Leu Thr Ser Leu Pro Gly Thr Ala Ser Trp 5 10 Phe Cys Phe Leu Pro Val Ser Gln Arg Lys Ala Thr Ser Lys Lys 20 25 Leu Leu Lys Ala Arg Lys Lys Ser Gly Phe Glu Leu Ser Val 35 40 Thr Asp Ser Ser Glu Cys Phe Arg Val Thr Ala Ser Val Arg Gly 50 55 Met Lys Asn Arg His Ala Lys Gly Asn Gly Cys Thr Arg Asp Pro 65 70 Cys Phe Gly

WO 00/00610 PCT/US99/14484 ·

<210> 6

```
<211> 88
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 924925
<400> 6
Met Trp Pro Ser Gln Val Pro Leu Leu Ala Phe Cys Phe Leu Leu
                                     10
Val Lys Ser Thr Ser Asn Ile Asn Leu Pro Thr Pro Pro Pro Ser
                 20
Ser Leu Glu Asn Ser Ser Phe Val Val Ser Gln Arg Gly Asn Leu
                                     40
Ile Val Phe Gly Gly Gln Lys Lys Ala Thr Phe Arg Tyr His Phe
                                     55
Tyr Leu Asp Arg Met Pro Phe Tyr Ser Gln Ile Ser Val Tyr Phe
                                     70
Val Asn Gly Phe Arg Val Asn Gly Tyr Leu Cys Asn Asn
<210> 7
<211> 227
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 962390
<400> 7
Met Gly Arg Pro Leu Leu Leu Pro Leu Leu Leu Leu Gln Pro
                 5
                                    10
Pro Ala Phe Leu Gln Pro Gly Gly Ser Thr Gly Ser Gly Pro Ser
                                    25
Tyr Leu Tyr Gly Val Thr Gln Pro Lys His Leu Ser Ala Ser Met
                 35
                                    40
Gly Gly Ser Val Glu Ile Pro Phe Ser Phe Tyr Tyr Pro Trp Glu
                 50
                                     55
Leu Ala Ile Val Pro Asn Val Arg Ile Ser Trp Arg Arg Gly His
                65
                                    70
Phe His Gly Gln Ser Phe Tyr Ser Thr Arg Pro Pro Ser Ile His
                80
                                    85
Lys Asp Tyr Val Asn Arg Leu Phe Leu Asn Trp Thr Glu Gly Gln
                                   100
Glu Ser Gly Phe Leu Arg Ile Ser Asn Leu Arg Lys Glu Asp Gln
                                   115
```

130

Ser Val Tyr Phe Cys Arg Val Glu Leu Asp Thr Arg Arg Ser Gly

Arg Gln Gln Leu Gln Ser Ile Lys Gly Thr Lys Leu Thr Ile Thr

```
| Ser | Ser
```

```
<210> 8
<211> 198
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1259405
<400> 8
Met Ala Thr Leu Trp Gly Gly Leu Leu Arg Leu Gly Ser Leu Leu
                                     10
Ser Leu Ser Cys Leu Ala Leu Ser Val Leu Leu Leu Ala Gln Leu
                                     25
Ser Asp Ala Ala Lys Asn Phe Glu Asp Val Arg Cys Lys Cys Ile
                                     40
Cys Pro Pro Tyr Lys Glu Asn Ser Gly His Ile Tyr Asn Lys Asn
                                    55
Ile Ser Gln Lys Asp Cys Asp Cys Leu His Val Val Glu Pro Met
                                     70
Pro Val Arg Gly Pro Asp Val Glu Ala Tyr Cys Leu Arg Cys Glu
                                    85
Cys Lys Tyr Glu Glu Arg Ser Ser Val Thr Ile Lys Val Thr Ile
                                   100
Ile Ile Tyr Leu Ser Ile Leu Gly Leu Leu Leu Tyr Met Val
                110
                                    115
Tyr Leu Thr Leu Val Glu Pro Ile Leu Lys Arg Arg Leu Phe Gly
                125
                                    130
His Ala Gln Leu Ile Gln Ser Asp Asp Ile Gly Asp His Gln
                140
                                    145
Pro Phe Ala Asn Ala His Asp Val Leu Ala Arg Ser Arg Ser Arg
                155
                                    160
Ala Asn Val Leu Asn Lys Val Glu Tyr Ala Gln Gln Arg Trp Lys
                170
                                   175
Leu Gln Val Gln Glu Gln Arg Lys Ser Val Phe Asp Arg His Val
```

Val Leu Ser

```
<210> 9
<211> 65
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1297384
Met Met Pro Arg Leu Leu Gly Leu Gly Leu Phe Ser Phe Gly
                                     10
Gly Leu Pro Leu Leu Leu Phe Phe Gln Arg Ser Arg Ala Ser
Leu Ala Ser Ser Ser Thr Gly Leu Trp Ile Asn Gln Leu Pro Lys
                                   40
Gly Cys Thr Cys Arg Val Val Trp Ala Cys Ile Pro Asp Val Leu
Glu Tyr Ala Trp Met
<210> 10
<211> 154
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1299627
<400> 10
Met Asp Ala Pro Arg Leu Pro Val Arg Pro Gly Val Leu Leu Pro
1
                                     10
Lys Leu Val Leu Leu Phe Val Tyr Ala Asp Asp Cys Leu Ala Gln
                                     25
Cys Gly Lys Asp Cys Lys Ser Tyr Cys Cys Asp Gly Thr Thr Pro
                                     40
Tyr Cys Cys Ser Tyr Tyr Ala Tyr Ile Gly Asn Ile Leu Ser Gly
                 50
                                     55
Thr Ala Ile Ala Gly Ile Val Phe Gly Ile Val Phe Ile Met Gly
                 65
                                     70
Val Ile Ala Gly Ile Ala Ile Cys Ile Cys Met Cys Met Lys Asn
                                    85
His Arg Ala Thr Arg Val Gly Ile Leu Arg Thr Thr His Ile Asn
```

100

115

130

145

6/167

Thr Val Ser Ser Tyr Pro Gly Pro Pro Pro Tyr Gly His Asp His

Glu Met Glu Tyr Cys Ala Asp Leu Pro Pro Pro Tyr Ser Pro Thr

Pro Gln Gly Pro Ala Gln Arg Ser Pro Pro Pro Pro Tyr Pro Gly

95

110

125

Asn Ala Arg Lys

```
<210> 11
<211> 237
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1306026
Met Lys Pro Leu Val Leu Leu Val Ala Leu Leu Trp Pro Ser
                                   10
Ser Val Pro Ala Tyr Pro Ser Ile Thr Val Thr Pro Asp Glu Glu
                20
Gln Asn Leu Asn His Tyr Ile Gln Val Leu Glu Asn Leu Val Arg
Ser Val Pro Ser Gly Glu Pro Gly Arg Glu Lys Lys Ser Asn Ser
Pro Lys His Val Tyr Ser Ile Ala Ser Lys Gly Ser Lys Phe Lys
               65
                                   70
Glu Leu Val Thr His Gly Asp Ala Ser Thr Glu Asn Asp Val Leu
                                  85
Thr Asn Pro Ile Ser Glu Glu Thr Thr Thr Phe Pro Thr Gly Gly
                               100
                95
Phe Thr Pro Glu Ile Gly Lys Lys Lys His Thr Glu Ser Thr Pro
                                 115
               110
Phe Trp Ser Ile Lys Pro Asn Asn Val Ser Ile Val Leu His Ala
                               130
               125
Glu Glu Pro Tyr Ile Glu Asn Glu Glu Pro Glu Pro Glu Pro Glu
               140
                                 145
Pro Ala Ala Lys Gln Thr Glu Ala Pro Arg Met Leu Pro Val Val
               155
                                 160
Thr Glu Ser Ser Thr Ser Pro Tyr Val Thr Ser Tyr Lys Ser Pro
               170
                                 175
Val Thr Thr Leu Asp Lys Ser Thr Gly Ile Glu Ile Ser Thr Glu
               185
                      190 .
Ser Glu Asp Val Pro Gln Leu Ser Gly Glu Thr Ala Ile Glu Lys
               200
                                 205
Pro Glu Ser Trp Lys His Gln Arg Val Gly Tyr Asp Ala Phe Glu
               215
                                 220
Lys Asn Leu Val Leu Ile Thr Met His Arg His Phe
               230
                                 235
```

```
<210> 12

<211> 225

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1316219

<400> 12
```

```
Met Thr Pro Glu Gly Val Gly Leu Thr Thr Ala Leu Arg Val Leu
Cys Asn Val Ala Cys Pro Pro Pro Pro Val Glu Gly Gln Gln Lys
                20
Asp Leu Lys Trp Asn Leu Ala Val Ile Gln Leu Phe Ser Ala Glu
                35
                                    40
Gly Met Asp Thr Phe Ile Arg Val Leu Gln Lys Leu Asn Ser Ile
                                    55
Leu Thr Gln Pro Trp Arg Leu His Val Asn Met Gly Thr Thr Leu
His Arg Val Thr Thr Ile Ser Met Ala Arg Cys Thr Leu Thr Leu
                                   85
Leu Lys Thr Met Leu Thr Glu Leu Leu Arg Gly Gly Ser Phe Glu
                95
                                  100
Phe Lys Asp Met Arg Val Pro Ser Ala Leu Val Thr Leu His Met
                                115
               110
Leu Leu Cys Ser Ile Pro Leu Ser Gly Arg Leu Asp Ser Asp Glu
                                   130
Gln Lys Ile Gln Asn Asp Ile Ile Asp Ile Leu Leu Thr Phe Thr
                                  145
Gln Gly Val Asn Glu Lys Leu Thr Ile Ser Glu Glu Thr Leu Ala
                                  160
Asn Asn Thr Trp Ser Leu Met Leu Lys Glu Val Leu Ser Ser Ile
                                  175
Leu Lys Val Pro Glu Gly Phe Phe Ser Gly Leu Ile Leu Leu Ser
                           190
Glu Leu Leu Pro Leu Pro Leu Pro Met Gln Thr Thr Gln Val Ser
                                  205
Leu Pro Tyr Asn Met His Leu Ile Asn Asp Cys Ser Asn Thr Phe
                                  220
```

```
<211> 117
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1329031
<400> 13
Met Pro Ser Pro Gly Thr Val Cys Ser Leu Leu Leu Gly Met
                                    10
Leu Trp Leu Asp Leu Ala Met Ala Gly Ser Ser Phe Leu Ser Pro
                                     25
Glu His Gln Arg Val Gln Gln Arg Lys Glu Ser Lys Lys Pro Pro
Ala Lys Leu Gln Pro Arg Ala Leu Ala Gly Trp Leu Arg Pro Glu
                 50
Asp Gly Gly Gln Ala Glu Gly Ala Glu Asp Glu Leu Glu Val Arg
Phe Asn Ala Pro Phe Asp Val Gly Ile Lys Leu Ser Gly Val Gln
```

Tyr Gln Gln His Ser Gln Ala Leu Gly Lys Phe Leu Gln Asp Ile

<210> 13

105

240

<210> 14 <211> 253 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1483050 <400> 14 Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu 10 Ser Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp 25 Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp 35 40 Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp 55 Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val 70 Gly Leu Trp Arg Arg Cys Ile Thr Ile Pro Lys Asn Met His Trp 85 Tyr Ser Pro Pro Glu Arg Thr Glu Ser Phe Asp Val Val Thr Lys 95 100 Cys Val Ser Phe Thr Leu Thr Glu Gln Phe Met Glu Lys Phe Val 110 115 Asp Pro Gly Asn His Asn Ser Gly Ile Asp Leu Leu Arg Thr Tyr 125 130 Leu Trp Arg Cys Gln Phe Leu Leu Pro Phe Val Ser Leu Gly Leu 140 145 Met Cys Phe Gly Ala Leu Ile Gly Leu Cys Ala Cys Ile Cys Arg

Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu His Leu Leu Ala

Gly Leu Cys Thr Leu Gly Ser Val Ser Cys Tyr Val Ala Gly Ile

Glu Leu Leu His Gln Lys Leu Glu Leu Pro Asp Asn Val Ser Gly

Glu Phe Gly Trp Ser Phe Cys Leu Ala Cys Val Ser Ala Pro Leu

Gln Phe Met Ala Ser Ala Leu Phe Ile Trp Ala Ala His Thr Asn

Arg Lys Glu Tyr Thr Leu Met Lys Ala Tyr Arg Val Ala

95

110

155

170

185

200

215

230

245

Leu Trp Glu Glu Ala Lys Glu Ala Pro Ala Asp Lys

<210> 15 <211> 171

160

175

190

205

220

235

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1514160
<400> 15
Met Ser Leu Pro Ile Pro Trp Leu Ser Leu Pro Pro Cys Pro Ile
 1
                                    10
Leu Gly Gln Pro Ala Gly Leu Leu Leu Trp Leu Phe Arg Pro Phe
Ser Gln Cys Cys Gln Cys Pro Trp Glu Gly Arg Ala Ser Leu Arg
His Pro Asn Gly Pro Ser Gly Cys Arg Glu Ala Glu Ala Trp Pro
                                    55
Gln Arg Ser Leu Leu Arg Gln Gln Leu Gln Gln Ala His Pro Leu
Pro Thr Leu Pro Thr Pro Glu Arg Leu Pro Glu Gln Met Leu Phe
                                    85
Pro Ser Ser Ser Lys Pro Phe Ser Leu Leu Ser Leu Thr Ile
                95
                                   100
Trp Ala Arg Leu Val Gly Arg Leu Thr Asn Arg Ile Cys Pro Val
                110
                                  115
Pro Pro Gly Ser Val Ala Ser Ser Met Ser Leu Gln Ala Gly Arg
                125
                                  130
Cys Gly Asn Pro Val Val Leu Pro Gln Pro Met Pro Pro Gly Leu
                140
                                  145
Leu Cys Met Asn Glu Cys Ser Leu Val Pro Gly Leu Gly Arg Gly
               155
                                  160
Gln Val Asn Ser Arg Val
                170
<210> 16
<211> 78
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1603403
<400> 16
Met Gly Ser Gly Leu Pro Leu Val Leu Leu Leu Thr Leu Leu Gly
                 5
                                   10
Ser Ser His Gly Thr Gly Pro Gly Met Thr Leu Gln Leu Lys Leu
                                    25
Lys Glu Ser Phe Leu Thr Asn Ser Ser Tyr Glu Ser Ser Phe Leu
                                    40
Glu Leu Leu Glu Lys Leu Cys Leu Leu His Leu Pro Ser Gly
                                    55
Thr Ser Val Thr Leu His His Ala Arg Ser Gln His His Val Val
                                    70
```

Cys Asn Thr

```
<210> 17
<211> 71
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1652303
<400> 17
Met Lys Leu Leu Ser Cys Leu Leu Phe Leu Lys Ala Pro Leu Tyr
1
                                     10
Pro Thr Leu Cys Ser Lys Asp Pro Arg Ala Gly His Ser Leu Ile
                                     25
Cys Gly Gln Ala Gly Gln Ile Pro Glu Ala Gln Leu Gly Phe Ser
                 35
                                     40
Ser Asp Phe Lys Leu Cys Trp Cys Trp Asp Gln Gln Lys Ala Asn
                 50
                                    55
Val Gln Pro Thr His Arg Thr Val Arg Gly Leu
```

<210> 18 <211> 188 <212> PRT

<213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1693358 <400> 18 Met Val Pro Gly Ala Ala Gly Trp Cys Cys Leu Val Leu Trp Leu Pro Ala Cys Val Ala Ala His Gly Phe Arg Ile His Asp Tyr Leu 20 25 Tyr Phe Gln Val Leu Ser Pro Gly Asp Ile Arg Tyr Ile Phe Thr 35 Ala Thr Pro Ala Lys Asp Phe Gly Gly Ile Phe His Thr Arg Tyr 50 55 Glu Gln Ile His Leu Val Pro Ala Glu Pro Pro Glu Ala Cys Gly 65 Glu Leu Ser Asn Gly Phe Phe Ile Gln Asp Gln Ile Ala Leu Val 80 85 Glu Arg Gly Gly Cys Ser Phe Leu Ser Lys Thr Arg Val Val Gln 100 Glu His Gly Gly Arg Ala Val Ile Ile Ser Asp Asn Ala Val Asp 110 115 Asn Asp Ser Phe Tyr Val Glu Met Ile Gln Asp Ser Thr Gln Arg 125 130 Thr Ala Asp Ile Pro Ala Leu Phe Leu Leu Gly Arg Asp Gly Tyr 140 145

<210> 19 <211> 80 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1707711 <400> 19 Met Lys Ala Gln Pro Leu Glu Ala Leu Leu Leu Val Ala Leu Val 1 5 10 Leu Ser Phe Cys Gly Val Trp Phe Glu Asp Trp Leu Ser Lys Trp Arg Phe Gln Cys Ile Phe Gln Leu Ala His Gln Pro Ala Leu Val Asn Ile Gln Phe Arg Gly Thr Val Leu Gly Ser Glu Thr Phe Leu 50 55 Gly Ala Glu Glu Asn Ser Ala Asp Val Arg Ser Trp Gln Thr Leu Ser Tyr Phe Glu Leu

<211> 80 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 1738735 <400> 20 Met Ile Asp Leu Trp Leu Pro Ala Leu Phe Val Leu Val Ala Leu 1 5 10 Glu Ser Leu Leu Ser Pro Cys Pro Gly Thr Ser Ser Thr Leu 20 25 Thr Arg Thr Phe Phe Pro Ser Leu Val Ser Cys Val Gln Val Pro 35 40 Phe Ser Trp Ile Pro Cys Leu Glu Cys Phe Leu Ile Tyr Phe Leu 50 55

Ile Leu Ala Glu Asp Val Leu Gln Leu Phe Ser Gly Asn Ala Asn

Met Gln Val Asn Gln

65

<210> 20

80

```
<210> 21
<211> 84
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1749147
<400> 21
Met Gln Arg Pro Phe Leu Ser Val Pro Cys Leu Leu Leu Pro
Ala Arg Val Val Trp Gly Cys Trp Cys Phe Leu Pro Gly Glu Asp
                20
Gly Gly Gly Cys Pro Thr Pro Ser Ser Gly Arg Ile Lys Leu Leu
                                    40
Gln Gln Cys Leu Leu His Pro Ser Leu Arg Ser Ile Thr Val Ser
                                   55
Arg Arg Ser Ala Gln Leu Leu Cys Arg Leu Lys Leu Gln Asn His
                                    70
Ile Pro Lys Val Pro Gly Lys Asn Val
                80
```

<210> 22 <211> 171 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1817722

<400> 22 Met His Met Ile Leu Lys Val Leu Thr Thr Ala Leu Leu Gln 10 Ala Ala Ser Ala Leu Ala Asn Tyr Ile His Phe Ser Ser Tyr Ser 25 Lys Asp Gly Ile Gly Val Pro Phe Met Gly Ser Leu Ala Glu Phe 35 40 Phe Asp Ile Ala Ser Gln Ile Gln Met Leu Tyr Leu Leu Ser 50 55 Leu Cys Met Gly Trp Thr Ile Val Arg Met Lys Lys Ser Gln Ser 65 70 Arg Pro Leu Gln Trp Asp Ser Thr Pro Ala Ser Thr Gly Ile Ala 80 85 Val Phe Ile Val Met Thr Gln Ser Val Leu Leu Leu Trp Glu Gln 95 100 Phe Glu Asp Ile Ser His His Ser Tyr His Ser His His Asn Leu 110 115 120

```
Ala Gly Ile Leu Leu Ile Val Leu Arg Ile Cys Leu Ala Leu Ser 135

Leu Gly Cys Gly Leu Tyr Gln Ile Ile Thr Val Glu Arg Ser Thr 140

Leu Lys Arg Glu Phe Tyr Ile Thr Phe Ala Lys Val Trp Val Trp 155

Lys Glu Asn Gly Leu Phe I70

Leu Lys Glu Asn Gly Leu Phe I70

Leu I70
```

<210> 23 <211> 243 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1831290 <400> 23 Met Ser Ser Gly Thr Glu Leu Leu Trp Pro Gly Ala Ala Leu Leu 5 10 Val Leu Leu Gly Val Ala Ala Ser Leu Cys Val Arg Cys Ser Arg 25 Pro Gly Ala Lys Arg Ser Glu Lys Ile Tyr Gln Gln Arg Ser Leu 40 Arg Glu Asp Gln Gln Ser Phe Thr Gly Ser Arg Thr Tyr Ser Leu 55 Val Gly Gln Ala Trp Pro Gly Pro Leu Ala Asp Met Ala Pro Thr 70 Arg Lys Asp Lys Leu Leu Gln Phe Tyr Pro Ser Leu Glu Asp Pro 85 Ala Ser Ser Arg Tyr Gln Asn Phe Ser Lys Gly Ser Arg His Gly 95 100 Ser Glu Glu Ala Tyr Ile Asp Pro Ile Ala Met Glu Tyr Tyr Asn 110 115 Trp Gly Arg Phe Ser Lys Pro Pro Glu Asp Asp Ala Asn Ser 130 Tyr Glu Asn Val Leu Ile Cys Lys Gln Lys Thr Thr Glu Thr Gly 145 Ala Gln Gln Glu Gly Ile Gly Gly Leu Cys Arg Gly Asp Leu Ser 160 Leu Ser Leu Ala Leu Lys Thr Gly Pro Thr Ser Gly Leu Cys Pro 170 175 Ser Ala Ser Pro Glu Glu Asp Glu Glu Ser Glu Asp Tyr Gln Asn 190 Ser Ala Ser Ile His Gln Trp Arg Glu Ser Arg Lys Val Met Gly 200 205 Gln Leu Gln Arg Glu Ala Ser Pro Gly Pro Val Gly Ser Pro Asp 215 220 Glu Glu Asp Gly Glu Pro Asp Tyr Val Asn Gly Glu Val Ala Ala 230 Thr Glu Ala

```
<210> 24
 <211> 311
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1831477
 <400> 24
 Met Gly Val Pro Thr Ala Pro Glu Ala Gly Ser Trp Arg Trp Gly
                                     10
 Ser Leu Leu Phe Ala Leu Phe Leu Ala Ala Ser Leu Gly Pro Val
Ala Ala Phe Lys Val Ala Thr Pro Tyr Ser Leu Tyr Val Cys Pro
Glu Gly Gln Asn Val Thr Leu Thr Cys Arg Leu Leu Gly Pro Val
                                     55
Asp Lys Gly His Asp Val Thr Phe Tyr Lys Thr Trp Tyr Arg Ser
                 65
                                     70
Ser Arg Gly Glu Val Gln Thr Cys Ser Glu Arg Arg Pro Ile Arg
                 80
                                    85
Asn Leu Thr Phe Gln Asp Leu His Leu His His Gly Gly His Gln
                                    100
Ala Ala Asn Thr Ser His Asp Leu Ala Gln Arg His Gly Leu Glu
                110
                                    115
Ser Ala Ser Asp His His Gly Asn Phe Ser Ile Thr Met Arg Asn
                                    130
Leu Thr Leu Leu Asp Ser Gly Leu Tyr Cys Cys Leu Val Val Glu
                140
                                    145
Ile Arg His His Ser Glu His Arg Val His Gly Ala Met Glu
                155
                                    160
Leu Gln Val Gln Thr Gly Lys Asp Ala Pro Ser Asn Cys Val Val
                170
                                    175
Tyr Pro Ser Ser Gln Glu Ser Glu Asn Ile Thr Ala Ala Ala
                185
                                    190
Leu Ala Thr Gly Ala Cys Ile Val Gly Ile Leu Cys Leu Pro Leu
                200
                                    205
Ile Leu Leu Val Tyr Lys Gln Arg Gln Ala Ala Ser Asn Arg
                215
                                   220
Arg Ala Gln Glu Leu Val Arg Met Asp Ser Asn Ile Gln Gly Ile
                230
                                   235
Glu Asn Pro Gly Phe Glu Ala Ser Pro Pro Ala Gln Gly Ile Pro
                245
                                   250
Glu Ala Lys Val Arg His Pro Leu Ser Tyr Val Ala Gln Arg Gln
                                   265
Pro Ser Glu Ser Gly Arg His Leu Leu Ser Glu Pro Ser Thr Pro
                                  280
Leu Ser Pro Pro Gly Pro Gly Asp Val Phe Phe Pro Ser Leu Asp
                                   295
Pro Val Pro Asp Ser Pro Asn Phe Glu Val Ile
                                   310
```

```
<210> 25
<211> 57
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1841607
<400> 25
Met Ala Ser Ser Cys Phe Ser Leu Ser Phe Pro Pro Leu Ser Leu
 1
                  5
                                     10
Ala Gly Ser Leu Ala Leu Trp Gly His Cys Cys Val Arg Leu Gly
                                     25
Cys Ser Phe Trp Ser Val Ser Ala Met Ala Gln Arg Leu Pro Ser
                 35
                                     40
Gln Asn Thr Tyr Asn Pro Pro Leu Cys Trp Ala Trp
<210> 26
<211> 82
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1852391
<400> 26
Met Phe Ser Leu Phe Ser Cys Leu Leu Ala Cys Leu Leu Asp Leu
  1
                5
                                    10
Leu Leu Ser Arg Val Ala Asp Glu Ala Phe Tyr Lys Gln Pro Phe
                 20
                                     25
Ala Asp Val Ile Gly Tyr Val Tyr Val Ala Lys Leu Ile Pro Phe
                 35
                                     40
Ser Thr Ser Asp Ser Phe Tyr Phe Cys Leu Glu Leu Met Leu Leu
                 50
                                    55
Leu Cys His Gln Leu Leu Cys Phe Leu Asn Tyr Phe Lys Leu Ala
                 65
                                    70
Leu Trp Gly Leu Pro Lys Asn
                 80
<210> 27
<211> 115
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1854555
```

```
<400> 27
Met Ala Gly Thr Val Leu Gly Val Gly Ala Gly Val Phe Ile Leu
                5
                                    10
Ala Leu Leu Trp Val Ala Val Leu Leu Cys Val Leu Leu Ser
                20
Arg Ala Ser Gly Ala Ala Arg Phe Ser Val Ile Phe Leu Phe Phe
                35
Gly Ala Val Ile Ile Thr Ser Val Leu Leu Phe Pro Arg Ala
                                    55
Gly Glu Phe Pro Ala Pro Glu Val Glu Val Lys Ile Val Asp Asp
                                    70
Phe Phe Ile Gly Arg Tyr Val Leu Leu Ala Phe Leu Ser Ala Ile
                                    85
Phe Leu Gly Gly Leu Phe Leu Val Leu Ile His Tyr Val Leu Glu
                                   100
Pro Ile Tyr Ala Lys Pro Leu His Ser Tyr
               110
```

<210> 28
<211> 327
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1855755

<400> 28

Met Ala Glu Leu Pro Gly Pro Phe Leu Cys Gly Ala Leu Leu Gly 10 Phe Leu Cys Leu Ser Gly Leu Ala Val Glu Val Lys Val Pro Thr 25 Glu Pro Leu Ser Thr Pro Leu Gly Lys Thr Ala Glu Leu Thr Cys 40 Thr Tyr Ser Thr Ser Val Gly Asp Ser Phe Ala Leu Glu Trp Ser 55 Phe Val Gln Pro Gly Lys Pro Ile Ser Glu Ser His Pro Ile Leu 70 Tyr Phe Thr Asn Gly His Leu Tyr Pro Thr Gly Ser Lys Ser Lys 85 Arg Val Ser Leu Leu Gln Asn Pro Pro Thr Val Gly Val Ala Thr 100 Leu Lys Leu Thr Asp Val His Pro Ser Asp Thr Gly Thr Tyr Leu 110 115 Cys Gln Val Asn Asn Pro Pro Asp Phe Tyr Thr Asn Gly Leu Gly 125 130 Leu Ile Asn Leu Thr Val Leu Val Pro Pro Ser Asn Pro Leu Cys 140 145 Ser Gln Ser Gly Gln Thr Ser Val Gly Gly Ser Thr Ala Leu Arg 155 160 Cys Ser Ser Ser Glu Gly Ala Pro Lys Pro Val Tyr Asn Trp Val 170 175 Arg Leu Gly Thr Phe Pro Thr Pro Ser Pro Gly Ser Met Val Gln 185 190 195

```
Asp Glu Val Ser Gly Gln Leu Ile Leu Thr Asn Leu Ser Leu Thr
              200
                               205 210
Ser Ser Gly Thr Tyr Arg Cys Val Ala Thr Asn Gln Met Gly Ser
                              220 . 225
              215
Ala Ser Cys Glu Leu Thr Leu Ser Val Thr Glu Pro Ser Gln Gly
              230
                               235
Arg Val Ala Gly Ala Leu Ile Gly Val Leu Leu Gly Val Leu Leu
              245
                               250
Leu Ser Val Ala Ala Phe Cys Leu Val Arg Phe Gln Lys Glu Arg
              260
                               265
Gly Lys Lys Pro Lys Glu Thr Tyr Gly Gly Ser Asp Leu Arg Glu
              275
                               280
Asp Ala Ile Ala Pro Gly Ile Ser Glu His Thr Cys Met Arg Ala
              290
                               295
Asp Ser Ser Lys Gly Phe Leu Glu Arg Pro Ser Ser Ala Ser Thr
                    · 310
              305
Val Thr Thr Lys Ser Lys Leu Pro Met Val Val
             320
```

<210> 29
<211> 133
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1861434

<400> 29 Met Arg Met Ser Leu Ala Gln Arg Val Leu Leu Thr Trp Leu Phe 5 10 Thr Leu Leu Phe Leu Ile Met Leu Val Leu Lys Leu Asp Glu Lys 20 25 Ala Pro Trp Asn Trp Phe Leu Ile Phe Ile Pro Val Trp Ile Phe 35 Asp Thr Ile Leu Leu Val Leu Leu Ile Val Lys Met Ala Gly Arg 50 Cys Lys Ser Gly Phe Asp Pro Arg His Gly Ser His Asn Ile Lys 65 Lys Lys Ala Trp Tyr Leu Ile Ala Met Leu Leu Lys Leu Ala Phe 80 Cys Leu Ala Leu Cys Ala Lys Leu Glu Gln Phe Thr Thr Met Asn 95 100 Leu Ser Tyr Val Phe Ile Pro Leu Trp Ala Leu Leu Ala Gly Ala 110 115 Leu Thr Glu Leu Gly Tyr Asn Val Phe Phe Val Arg Asp · 125

<210> 30 <211> 129 <212> PRT

<213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1872334 <400> 30 Met Gly Leu Thr Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly 1 5 Gln Gly Ile Val Gly Ser Leu Pro Glu Val Leu Gln Ala Pro Val Gly Ser Ser Ile Leu Val Gln Cys His Tyr Arg Leu Gln Asp Val 40 Lys Ala Gln Lys Val Trp Cys Arg Phe Leu Pro Glu Gly Cys Gln 50 55 Pro Leu Val Ser Ser Ala Val Asp Arg Arg Ala Pro Ala Gly Arg 65 70 Arg Thr Phe Leu Thr Asp Leu Gly Gly Leu Leu Gln Val Glu 80 Met Val Thr Leu Gln Glu Glu Asp Ala Gly Glu Tyr Gly Cys Met 95 100 Val Asp Gly Ala Arg Gly Pro Gln Ile Leu His Arg Val Ser Leu 110 115 Asn Ile Leu Pro Pro Gly Glu Leu Ser 125 <210> 31 <211> 472 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1877230 <400> 31 Met Lys Phe Leu Ile Phe Ala Phe Phe Gly Gly Val His Leu Leu 10 Ser Leu Cys Ser Gly Lys Ala Ile Cys Lys Asn Gly Ile Ser Lys 20 25 Arg Thr Phe Glu Glu Ile Lys Glu Glu Ile Ala Ser Cys Gly Asp 35 40 Val Ala Lys Ala Ile Ile Asn Leu Ala Val Tyr Gly Lys Ala Gln 55 Asn Arg Ser Tyr Glu Arg Leu Ala Leu Leu Val Asp Thr Val Gly 65 70 Pro Arg Leu Ser Gly Ser Lys Asn Leu Glu Lys Ala Ile Gln Ile 80 85 Met Tyr Gln Asn Leu Gln Gln Asp Gly Leu Glu Lys Val His Leu 95 100

115

130

Glu Pro Val Arg Ile Pro His Trp Glu Arg Gly Glu Glu Ser Ala

Val Met Leu Glu Pro Arg Ile His Lys Ile Ala Ile Leu Gly Leu

110

```
Gly Ser Ser Ile Gly Thr Pro Pro Glu Gly Ile Thr Ala Glu Val
                                     145
Leu Val Val Thr Ser Phe Asp Glu Leu Gln Arg Arg Ala Ser Glu
                                     160
Ala Arg Gly Lys Ile Val Val Tyr Asn Gln Pro Tyr Ile Asn Tyr
                 170
                                    175
Ser Arg Thr Val Gln Tyr Arg Thr Gln Gly Ala Val Glu Ala Ala
                                    190
Lys Val Gly Ala Leu Ala Ser Leu Ile Arg Ser Val Ala Ser Phe
                                    205
Ser Ile Tyr Ser Pro His Thr Gly Ile Gln Glu Tyr Gln Asp Gly
                                    220
Val Pro Lys Ile Pro Thr Ala Cys Ile Thr Val Glu Asp Ala Glu
                                    235
Met Met Ser Arg Met Ala Ser His Gly Ile Lys Ile Val Ile Gln
                245
                                    250
Leu Lys Met Gly Ala Lys Thr Tyr Pro Asp Thr Asp Ser Phe Asn
                260
                                    265
Thr Val Ala Glu Ile Thr Gly Ser Lys Tyr Pro Glu Gln Val Val
                275
                                    280
Leu Val Ser Gly His Leu Asp Ser Trp Asp Val Gly Gln Gly Ala
                290
                                    295
Met Asp Asp Gly Gly Ala Phe Ile Ser Trp Glu Ala Leu Ser
                305
                                    310
Leu Ile Lys Asp Leu Gly Leu Arg Pro Lys Arg Thr Leu Arg Leu
                320
                                    325
Val Leu Trp Thr Ala Glu Glu Gln Gly Gly Val Gly Ala Phe Gln
                335
                                    340
Tyr Tyr Gln Leu His Lys Val Asn Ile Ser Asn Tyr Ser Leu Val
                350
                                    355
Met Glu Ser Asp Ala Gly Thr Phe Leu Pro Thr Gly Leu Gln Phe
                365
                                    370
Thr Gly Ser Glu Lys Ala Arg Ala Ile Met Glu Glu Val Met Ser
                380
                                    385
Leu Leu Gln Pro Leu Asn Ile Thr Gln Val Leu Ser His Gly Glu
                395
                                    400
Gly Thr Asp Ile Asn Phe Trp Ile Gln Ala Gly Val Pro Gly Ala
                410
                                    415
Ser Leu Leu Asp Asp Leu Tyr Lys Tyr Phe Phe Phe His His Ser
                425
                                    430
His Gly Asp Thr Met Thr Val Met Asp Pro Lys Gln Met Asn Val
                440
                                    445
Ala Ala Ala Val Trp Ala Val Val Ser Tyr Val Val Ala Asp Met
                455
                                    460
Glu Glu Met Leu Pro Arg Ser
                470
```

```
<210> 32
<211> 93
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte Clone No: 1877885 <400> 32 Met Ile His Leu Gly His Ile Leu Phe Leu Leu Leu Leu Pro Val 10 Ala Ala Ala Gln Thr Thr Pro Gly Glu Arg Ser Ser Leu Pro Ala 25 Phe Tyr Pro Gly Thr Ser Gly Ser Cys Ser Gly Cys Gly Ser Leu 40 Ser Leu Pro Leu Leu Ala Gly Leu Val Ala Ala Asp Ala Val Ala 50 55 Ser Leu Leu Ile Val Gly Ala Val Phe Leu Cys Ala Arg Pro Arg 70 Arg Ser Pro Ala Gln Glu Asp Gly Lys Val Tyr Ile Asn Met Pro . 85 80 Gly Arg Gly <210> 33 <211> 92 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 1889269 <400> 33 Met Asn Arg Pro Ser Ala Arg Asn Ala Leu Gly Asn Val Phe Val 10 Ser Glu Leu Leu Glu Thr Leu Ala Gln Leu Arg Glu Asp Arg Gln 20 25 Val Arg Val Leu Leu Phe Arg Ser Gly Val Lys Gly Val Phe Cys 40 Ala Gly Ala Asp Leu Lys Glu Arg Glu Gln Met Ser Glu Ala Glu 50 55 Val Gly Val Phe Val Gln Arg Leu Arg Gly Leu Met Asn Asp Ile 65 70 Gly Glu Asp Leu Gly Val Gly Trp Arg Arg Gly Phe Gly Gly Pro 85 Cys Arg <210> 34 <211> 143 <212> PRT <213> Homo sapiens <220>

<221> misc_feature <223> Incyte Clone No: 1890243 <400> 34

```
Met Trp Ile Lys Gly Thr Met Lys Met Arg Gly Gly Lys Thr Ser
                                     10
Arg Ser Ala Val Leu Pro Val Ala Gln Leu Thr Leu Ile Ala Ser
'Cys Phe Pro Asn Ser Gln Thr Val Leu Gly Thr Glu Gly Thr Leu
Asp Val Glu Ser Ser Pro Leu Ala Leu Leu Thr Gly Leu Trp Ala
                                     55
Ser Pro Glu Ser Leu Ser Leu Tyr Leu Val Thr Leu Leu Cys Val
                                     70
Cys Pro Ala Leu Gln Ser Cys Gln Gly Gln Gln Ala Asp Val Thr
                                     85
Leu Ala Pro Cys Glu Ile Phe Ile Pro Gln Thr Leu Ala Cys Glu
                 95
                                   100
Pro Phe Pro Ser Gln Trp Arg Ala Leu Lys Gly Ala Ser Leu Glu
                110
                                   115
Ser Ser Ser Val Leu Trp Val Ala Pro Cys Arg Trp Pro Leu Thr
                125
Leu Arg Cys Ser Arg Val His Leu
                140
```

```
<211> 89
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1900433
<400> 35
Met Glu Arg Val Thr Leu Ala Leu Leu Leu Ala Gly Leu Thr
                 5
                                    10
Ala Leu Glu Ala Asn Asp Pro Phe Ala Asn Lys Asp Asp Pro Phe
                                    25
Tyr Tyr Asp Trp Lys Asn Leu Gln Leu Ser Gly Leu Ile Cys Gly
                                    40
Gly Leu Leu Ala Ile Ala Gly Ile Ala Ala Val Leu Ser Gly Lys
                                    55
```

Cys Lys Tyr Lys Ser Ser Gln Lys Gln His Ser Pro Val Pro Glu

Lys Ala Ile Pro Leu Ile Thr Pro Gly Ser Ala Thr Thr Cys

<210> 36 <211> 560 <212> PRT <213> Homo sapiens <220> <221> misc_feature

<210> 35

<223> Incyte Clone No: 1909441

<400> 36 Met Ala Lys Lys Leu Thr Glu Met Ile Pro Leu Cys Asn His Pro Ala Ser Phe Val Lys Leu Phe Val Ala Leu Gly Pro Ile Ala 25 Gly Pro Glu Glu Lys Lys Gln Leu Lys Ser Thr Met Leu Leu Met 40 Ser Glu Asp Leu Thr Gly Glu Gln Ala Leu Ala Val Leu Gly Ala 50 55 Met Gly Asp Met Glu Ser Arg Asn Ser Cys Leu Ile Lys Arg Val 65 70 Thr Ser Val Leu His Lys His Leu Asp Gly Tyr Lys Pro Leu Glu 80 85 Leu Leu Lys Ile Thr Gln Glu Leu Thr Phe Leu His Phe Gln Arg 95 100 Lys Glu Phe Phe Ala Lys Leu Arg Glu Leu Leu Ser Tyr Leu 110 115 Lys Asn Ser Phe Ile Pro Thr Glu Val Ser Val Leu Val Arg Ala 125 130 Ile Ser Leu Leu Pro Ser Pro His Leu Asp Glu Val Gly Ile Ser 145 Arg Ile Glu Ala Val Leu Pro Gln Cys Asp Leu Asn Asn Leu Ser 160 Ser Phe Ala Thr Ser Val Leu Arg Trp Ile Gln His Asp His Met 170 175 Tyr Leu Asp Asn Met Thr Ala Lys Gln Leu Lys Leu Leu Gln Lys 185 190 Leu Asp His Tyr Gly Arg Gln Arg Leu Gln His Ser Asn Ser Leu 200 205 Asp Leu Leu Arg Lys Glu Leu Lys Ser Leu Lys Gly Asn Thr Phe 215 220 Pro Glu Ser Leu Leu Glu Glu Met Ile Ala Thr Leu Gln His Phe 235 Met Asp Asp Ile Asn Tyr Ile Asn Val Gly Glu Ile Ala Ser Phe 245 250 Ile Ser Ser Thr Asp Tyr Leu Ser Thr Leu Leu Leu Asp Arg Ile 260 265 Ala Ser Val Ala Val Gln Gln Ile Glu Lys Ile His Pro Phe Thr 275 280 Ile Pro Ala Ile Ile Arg Pro Phe Ser Val Leu Asn Tyr Asp Pro 290 - 295 Pro Gln Arg Asp Glu Phe Leu Gly Thr Cys Val Gln His Leu Asn 305 310 Ser Tyr Leu Gly Ile Leu Asp Pro Phe Ile Leu Val Phe Leu Gly 320 325 Phe Ser Leu Ala Thr Leu Glu Tyr Phe Pro Glu Asp Leu Leu Lys 335 340 Ala Ile Phe Asn Ile Lys Phe Leu Ala Arg Leu Asp Ser Gln Leu 350 355 Glu Ile Leu Ser Pro Ser Arg Ser Ala Arg Val Gln Phe His Leu 365 370 Met Glu Leu Asn Arg Ser Val Cys Leu Glu Cys Pro Glu Phe Gln 380 385 Ile Pro Trp Phe His Asp Arg Phe Cys Gln Gln Tyr Asn Lys Gly 395 400

```
Ile Gly Gly Met Asp Gly Thr Gln Gln Gln Ile Phe Lys Met Leu
Ala Glu Val Leu Gly Gly Ile Asn Cys Val Lys Ala Ser Val Leu
Thr Pro Tyr Tyr His Lys Val Asp Phe Glu Cys Ile Leu Asp Lys
                                    445
Arg Lys Lys Pro Leu Pro Tyr Gly Ser His Asn Ile Ala Leu Gly
                                    460
Gln Leu Pro Glu Met Pro Trp Glu Ser Asn Ile Glu Ile Val Gly
                                    475
Ser Arg Leu Pro Pro Gly Ala Glu Arg Ile Ala Leu Glu Phe Leu
                485
                                    490
Asp Ser Lys Ala Leu Cys Arg Asn Ile Pro His Met Lys Gly Lys
                500
                                    505
Ser Ala Met Lys Lys Arg His Leu Glu Ile Leu Gly Tyr Arg Val
                515
                                    520
Ile Gln Ile Ser Gln Phe Glu Trp Asn Ser Met Ala Leu Ser Thr
                530
                                    535
Lys Asp Ala Arg Met Asp Tyr Leu Arg Glu Cys Ile Phe Gly Glu
                545
                                    550
Val Lys Ser Cys Leu
```

<210> 37 <211> 197 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1932226

<400> 37 Met Gly Val Pro Leu Gly Leu Gly Ala Ala Trp Leu Leu Ala Trp Pro Gly Leu Ala Leu Pro Leu Val Ala Met Ala Ala Gly Gly Arg 25 Trp Val Arg Gln Gln Gly Pro Arg Val Arg Arg Gly Ile Ser Arg 40 Leu Trp Leu Arg Val Leu Leu Arg Leu Ser Pro Met Ala Phe Arg 55 Ala Leu Gln Gly Cys Gly Ala Val Gly Asp Arg Gly Leu Phe Ala 70 Leu Tyr Pro Lys Thr Asn Lys Asp Gly Phe Arg Ser Arg Leu Pro 80 85 Val Pro Gly Pro Arg Arg Arg Asn Pro Arg Thr Thr Gln His Pro 95 100 Leu Ala Leu Leu Ala Arg Val Trp Val Leu Cys Lys Gly Trp Asn 110 115 Trp Arg Leu Ala Arg Ala Ser Gln Gly Leu Ala Ser His Leu Pro 125 130 Pro Trp Ala Ile His Thr Leu Ala Ser Trp Gly Leu Leu Arg Gly 140 145 Glu Arg Pro Thr Arg Ile Pro Arg Leu Leu Pro Arg Ser Gln Arg

160

175

Gln Leu Gly Pro Pro Ala Ser Arg Gln Pro Leu Pro Gly Thr Leu

Ala Gly Arg Arg Ser Arg Thr Arg Gln Ser Arg Ala Leu Pro Pro

```
Trp Arg
<210> 38
<211> 437
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1932647
<400> 38
Met Ser Ala Val Leu Leu Leu Ala Leu Leu Gly Phe Ile Leu Pro
                  5
                                     10
Leu Pro Gly Val Gln Ala Leu Leu Cys Gln Phe Gly Thr Val Gln
                                     25
His Val Trp Lys Val Ser Asp Leu Pro Arg Gln Trp Thr Pro Lys
                 35
                                     40
Asn Thr Ser Cys Asp Ser Gly Leu Gly Cys Gln Asp Thr Leu Met
                                     55
Leu Ile Glu Ser Gly Pro Gln Val Ser Leu Val Leu Ser Lys Gly
                                     70
Cys Thr Glu Ala Lys Asp Gln Glu Pro Arg Val Thr Glu His Arg
                                     85
Met Gly Pro Gly Leu Ser Leu Ile Ser Tyr Thr Phe Val Cys Arg
                                    100
Gln Glu Asp Phe Cys Asn Asn Leu Val Asn Ser Leu Pro Leu Trp
                110
                                    115
Ala Pro Gln Pro Pro Ala Asp Pro Gly Ser Leu Arg Cys Pro Val
                                    130
Cys Leu Ser Met Glu Gly Cys Leu Glu Gly Thr Thr Glu Glu Ile
                                    145
Cys Pro Lys Gly Thr Thr His Cys Tyr Asp Gly Leu Leu Arg Leu
                155
                                    160
Arg Gly Gly Gle Phe Ser Asn Leu Arg Val Gln Gly Cys Met
                170
                                    175
Pro Gln Pro Gly Cys Asn Leu Leu Asn Gly Thr Gln Glu Ile Gly
                185
                                    190
Pro Val Gly Met Thr Glu Asn Cys Asn Arg Lys Asp Phe Leu Thr
                200
                                    205
Cys His Arg Gly Thr Thr Ile Met Thr His Gly Asn Leu Ala Gln
                215
                                    220
Glu Pro Thr Asp Trp Thr Thr Ser Asn Thr Glu Met Cys Glu Val
                230
                                    235
Gly Gln Val Cys Gln Glu Thr Leu Leu Leu Ile Asp Val Gly Leu
                245
                                    250
Thr Ser Thr Leu Val Gly Thr Lys Gly Cys Ser Thr Val Gly Ala
                260
                                    265
Gln Asn Ser Gln Lys Thr Thr Ile His Ser Ala Pro Pro Gly Val
```

```
275
                                    280
                                                         285
Leu Val Ala Ser Tyr Thr His Phe Cys Ser Ser Asp Leu Cys Asn
                                    295
Ser Ala Ser Ser Ser Ser Val Leu Leu Asn Ser Leu Pro Pro Gln
                                    310
Ala Ala Pro Val Pro Gly Asp Arg Gln Cys Pro Thr Cys Val Gln
                                    325
Pro Leu Gly Thr Cys Ser Ser Gly Ser Pro Arg Met Thr Cys Pro
                335
                                    340
Arg Gly Ala Thr His Cys Tyr Asp Gly Tyr Ile His Leu Ser Gly
                350
                                    355
Gly Gly Leu Ser Thr Lys Met Ser Ile Gln Gly Cys Val Ala Gln
                365
                                    370
Pro Ser Ser Phe Leu Leu Asn His Thr Arg Gln Ile Gly Ile Phe
                380
                                    385
Ser Ala Arg Glu Lys Arg Asp Val Gln Pro Pro Ala Ser Gln His
                395
                                    400
Glu Gly Gly Gly Ala Glu Gly Leu Glu Ser Leu Thr Trp Gly Val
                410
                                    415
Gly Leu Ala Leu Ala Pro Ala Leu Trp Trp Gly Val Val Cys Pro
                                    430
Ser Cys
```

<210> 39 <211> 330 <212> PRT <213> Homo sapiens <220> <221> misc_feature

<223> Incyte Clone No: 2124245

<400> 39

Met Glu Gly Ala Pro Pro Gly Ser Leu Ala Leu Arg Leu Leu Leu Phe Val Ala Leu Pro Ala Ser Gly Trp Leu Thr Thr Gly Ala Pro 25 Glu Pro Pro Pro Leu Ser Gly Ala Pro Gln Asp Gly Ile Arg Ile 40 Asn Val Thr Thr Leu Lys Asp Asp Gly Asp Ile Ser Lys Gln Gln Val Val Leu Asn Ile Thr Tyr Glu Ser Gly Gln Val Tyr Val Asn 65 70 Asp Leu Pro Val Asn Ser Gly Val Thr Arg Ile Ser Cys Gln Thr 80 85 Leu Ile Val Lys Asn Glu Asn Leu Glu Asn Leu Glu Glu Lys Glu 95 100 Tyr Phe Gly Ile Val Ser Val Arg Ile Leu Val His Glu Trp Pro 110 115 Met Thr Ser Gly Ser Ser Leu Gln Leu Ile Val Ile Gln Glu Glu 125 130 Val Val Glu Ile Asp Gly Lys Gln Val Gln Gln Lys Asp Val Thr 140 145 Glu Ile Asp Ile Leu Val Lys Asn Arg Gly Val Leu Arg His Ser

```
155
                                    160
                                                         165
Asn Tyr Thr Leu Pro Leu Glu Glu Ser Met Leu Tyr Ser Ile Ser
                170
                                     175
Arg Asp Ser Asp Ile Leu Phe Thr Leu Pro Asn Leu Ser Lys Lys
                185
                                     190
Glu Ser Val Ser Ser Leu Gln Thr Thr Ser Gln Tyr Leu Ile Arg
                200
                                     205
Asn Val Glu Thr Thr Val Asp Glu Asp Val Leu Pro Gly Lys Leu
                215
                                     220
Pro Glu Thr Pro Leu Arg Ala Glu Pro Pro Ser Ser Tyr Lys Val
                230
                                    235
Met Cys Gln Trp Met Glu Lys Phe Arg Lys Asp Leu Cys Arg Phe
                245
                                    250
Trp Ser Asn Val Phe Pro Val Phe Phe Gln Phe Leu Asn Ile Met
                                    265
Val Val Gly Ile Thr Gly Ala Ala Val Val Ile Thr Ile Leu Lys
                                    280
Val Phe Phe Pro Val Ser Glu Tyr Lys Gly Ile Leu Gln Leu Asp
                290
                                    295
Lys Val Asp Val Ile Pro Val Thr Ala Ile Asn Leu Tyr Pro Asp
                305
                                    310
Gly Pro Glu Lys Arg Ala Glu Asn Leu Glu Asp Lys Thr Cys Ile
                320
                                    325
```

```
<210> 40
<211> 148
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
```

<223> Incyte Clone No: 2132626

<400> 40

```
Met Glu Thr Gly Ala Leu Arg Arg Pro Gln Leu Leu Pro Leu Leu
                                     10
Leu Leu Cys Gly Gly Cys Pro Arg Ala Gly Gly Cys Asn Glu
                 20
                                     25
Thr Gly Met Leu Glu Arg Leu Pro Leu Cys Gly Lys Ala Phe Ala
                 35
Asp Met Met Gly Lys Val Asp Val Trp Lys Trp Cys Asn Leu Ser
                 50
                                     55
Glu Phe Ile Val Tyr Tyr Glu Ser Phe Thr Asn Cys Thr Glu Met
                 65
Glu Ala Asn Val Val Gly Cys Tyr Trp Pro Asn Pro Leu Ala Gln
                 80
                                     85
Gly Phe Ile Thr Gly Ile His Arg Gln Phe Phe Ser Asn Cys Thr
                 95
                                    100
Val Asp Arg Val His Leu Glu Asp Pro Pro Asp Glu Val Leu Ile
                                    115
Pro Leu Ile Val Ile Pro Val Val Leu Thr Val Ala Met Ala Gly
                125
                                    130 -
Leu Val Val Trp Arg Ser Lys Arg Thr Asp Thr Leu Leu
                140
                                    145
```

```
<210> 41
<211> 188
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2280639
Met Ala Pro Pro Pro Pro Ser Pro Gln Leu Leu Leu Ala Ala
                                    10
Leu Ala Arg Leu Leu Gly Pro Ser Glu Val Met Ala Gly Pro Ala
                                    25
Glu Glu Ala Gly Ala His Cys Pro Glu Ser Leu Trp Pro Leu Pro
                 35
                                    40
Pro Gln Val Ser Pro Arg Val Thr Tyr Thr Arg Val Ser Pro Gly
                 50
                                     55
Gln Ala Glu Asp Val Thr Phe Leu Tyr His Pro Cys Ala His Pro
                 65
                                    70
Trp Leu Lys Leu Gln Leu Ala Leu Leu Ala Tyr Ala Cys Met Ala
                 80
                                    85
Asn Pro Ser Leu Thr Pro Asp Phe Ser Leu Thr Gln Asp Arg Pro
                95
                                    100
Leu Val Leu Thr Ala Trp Gly Leu Ala Leu Glu Met Ala Trp Val
                110
                                   115
Glu Pro Ala Trp Ala Ala His Trp Leu Met Arg Arg Arg Arg
                125
                                   130
Lys Gln Arg Lys Lys Lys Ala Trp Ile Tyr Cys Glu Ser Leu Ser
                140
                                   145
                                                        150
Gly Pro Ala Pro Ser Glu Pro Thr Pro Gly Arg Gly Arg Leu Cys
               155
                                   160
Arg Arg Gly Cys Val Gln Ala Leu Ala Leu Ala Phe Ala Leu Arg
               170
                                   175
                                                       180
Thr Gly Gly Pro Leu Ala Gln Arg
               185
<210> 42
<211> 222
<212> PRT
```

```
Pro Trp Lys Glu Ala Leu Val Arg Pro Pro Gly Ser Tyr Ser Ser
                 35
                                     40
Ser Ser Asn Ser Gly Asp Trp Gly Trp Asp Leu Ala Ser Asp Gln
                 50
                                     55
Ser Ser Pro Ser Thr Pro Ser Pro Pro Leu Pro Pro Glu Ala Ala
                                     70
His Phe Leu Phe Gly Glu Pro Thr Leu Arg Lys Arg Lys Ser Pro
                                     85
Ala Gln Val Met Phe Gln Cys Leu Trp Lys Ser Cys Gly Lys Val
                 95
                                    100
Leu Ser Thr Ala Ser Ala Met Gln Arg His Ile Arg Leu Val His
Leu Gly Cys Gly Gly Ala Trp Gly Ala Ala Gly Pro Ala Gly Trp
                                    130
Leu Gly Leu Leu Gly Pro Ala Arg Pro Pro Leu Gln Leu Pro Leu
                140
                                   145
Ala Gly Cys Val Ser Arg Arg Gln Ala Glu Pro Glu Gln Ser
                                    160
Asp Gly Glu Glu Asp Phe Tyr Tyr Thr Glu Leu Asp Val Gly Val
                                    175
Asp Thr Leu Thr Asp Gly Leu Ser Ser Leu Thr Pro Val Phe Pro
                                   190
Glu Gly Phe His Ala Ser Leu Pro Ser Pro Ala Leu Lys Leu Arg
                                    205
Arg Leu Gly Gly Thr Arg Gln Pro Arg Gln Tyr Pro
```

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2349310
<400> 43
Met Gly Pro Ser Ser Cys Leu Leu Leu Ile Leu Ile Pro Leu Leu
                  5
                                     10
Gln Leu Ile Asn Leu Gly Ser Thr Gln Cys Ser Leu Asp Ser Val
                 20
                                     25
Met Asp Lys Lys Ile Lys Asp Val Leu Asn Ser Leu Glu Tyr Ser
                 35
                                     40
Pro Ser Pro Ile Ser Lys Lys Leu Ser Cys Ala Ser Val Lys Ser
                 50
Gln Gly Arg Pro Ser Ser Cys Pro Ala Gly Met Ala Val Thr Gly
                 65
Cys Ala Cys Gly Tyr Gly Cys Gly Ser Trp Asp Val Gln Leu Glu
                 80
                                     85
Thr Thr Cys His Cys Gln Cys Ser Val Val Asp Trp Thr Thr Ala
                 95
                                    100
Arg Cys Cys His Leu Thr
```

<210> 43 <211> 111

```
<210> 44
 <211> 341
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2373227
<400> 44
 Met Val Pro Ala Ala Gly Ala Leu Leu Trp Val Leu Leu Asn
                                     10
 Leu Gly Pro Arg Ala Ala Gly Ala Gln Gly Leu Thr Gln Thr Pro
                                  . 25
 Thr Glu Met Gln Arg Val Ser Leu Arg Phe Gly Gly Pro Met Thr
                                     40
 Arg Ser Tyr Arg Ser Thr Ala Arg Thr Gly Leu Pro Arg Lys Thr
 Arg Ile Ile Leu Glu Asp Glu Asn Asp Ala Met Ala Asp Ala Asp
 Arg Leu Ala Gly Pro Ala Ala Ala Glu Leu Leu Ala Ala Thr Val
                                     85
 Ser Thr Gly Phe Ser Arg Ser Ser Ala Ile Asn Glu Glu Asp Gly
                                   100
 Ser Ser Glu Glu Gly Val Val Ile Asn Ala Gly Lys Asp Ser Thr
                110
 Ser Arg Glu Leu Pro Ser Ala Thr Pro Asn Thr Ala Gly Ser Ser
                125
Ser Thr Arg Phe Ile Ala Asn Ser Gln Glu Pro Glu Ile Arg Leu
Thr Ser Ser Leu Pro Arg Ser Pro Gly Arg Ser Thr Glu Asp Leu
                155
                                    160
Pro Gly Ser Gln Ala Thr Leu Ser Gln Trp Ser Thr Pro Gly Ser
                170
                        175
Thr Pro Ser Arg Trp Pro Ser Pro Ser Pro Thr Ala Met Pro Ser
                185
Pro Glu Asp Leu Arg Leu Val Leu Met Pro Trp Gly Pro Trp His
                200
Cys His Cys Lys Ser Gly Thr Met Ser Arg Ser Arg Ser Gly Lys
Leu His Gly Leu Ser Gly Arg Leu Arg Val Gly Ala Leu Ser Gln
                230
                                    235
Leu Arg Thr Glu His Lys Pro Cys Thr Tyr Gln Gln Cys Pro Cys
                245
                                    250
Asn Arg Leu Arg Glu Glu Cys Pro Leu Asp Thr Ser Leu Cys Thr
                                    265
Asp Thr Asn Cys Ala Ser Gln Ser Thr Thr Ser Thr Arg Thr Thr
                275
                                   280
Thr Thr Pro Phe Pro Thr Ile His Leu Arg Ser Ser Pro Ser Leu
                                    295
Pro Pro Ala Ser Pro Cys Pro Ala Leu Ala Phe Trp Lys Arg Val
                                  310
Arg Ile Gly Leu Glu Asp Ile Trp Asn Ser Leu Ser Ser Val Phe
                320
                                  325
Thr Glu Met Gln Pro Ile Asp Arg Asn Gln Arg
```

335

340

```
<210> 45
<211> 148
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2457682
<400> 45
Met Ala Gly Leu Ala Ala Arg Leu Val Leu Leu Ala Gly Ala Ala
Ala Leu Ala Ser Gly Ser Gln Gly Asp Arg Glu Pro Val Tyr Arg
Asp Cys Val Leu Gln Cys Glu Glu Gln Asn Cys Ser Gly Gly Ala
Leu Asn His Phe Arg Ser Arg Gln Pro Ile Tyr Met Ser Leu Ala
Gly Trp Thr Cys Arg Asp Asp Cys Lys Tyr Glu Cys Met Trp Val
                                    70
Thr Val Gly Leu Tyr Leu Gln Glu Gly His Lys Val Pro Gln Phe
                                    85
His Gly Lys Trp Pro Phe Ser Arg Phe Leu Phe Phe Gln Glu Pro
                                  100
Ala Ser Ala Val Ala Ser Phe Leu Asn Gly Leu Ala Ser Leu Val
                                   115
Met Leu Cys Arg Tyr Arg Thr Phe Val Pro Ala Ser Ser Pro Met
               125
                                   130
Tyr His Thr Cys Val Ala Phe Ala Trp Leu Ser Gly Arg
```

<210> 46
<211> 87
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2480426

<400> 46

 Met Arg
 Pro
 Leu
 Leu
 Val
 Leu
 Leu
 Leu
 Gly
 Leu
 Ala
 Ala
 Gly

 1
 5
 5
 10
 Leu
 Ala
 Ala
 6ly

 Ser
 Pro
 Pro
 Asp
 Asp
 Asp
 Ley
 Ile
 Pro
 Ser
 Leu
 Cys
 Pro
 Gly

 Leu
 Pro
 Gly
 Pro
 Arg
 Gly
 Asp
 Pro
 Gly
 Pro
 Arg
 Gly
 Ala
 Gly

 Leu
 Pro
 Gly
 Pro
 Arg
 Gly
 Asp
 Pro
 Gly
 Pro
 Arg
 Gly
 Ala
 Gly

 Ala
 Gly
 Pro
 Arg
 Gly
 Asp
 Pro
 Gly
 Pro
 Arg
 Gly
 Ala
 Gly

 Ala
 Gly
 Pro
 Thr
 Gly
 Leu
 Ala
 Gly
 Gly
 Ser
 Val
 Pro
 Pro

 Ala
 Gly
 Pro
 Thr
 Gly
 Leu
 Ala
 Gly
 Gly

Arg Ser Ala Phe Ser Ala Lys Arg Ser Glu Ile Arg Val Pro Pro 65 70 75

Leu Ser Asp Ala Pro Leu Pro Ser Thr Ala Cys Trp 85

<210> 47 <211> 383 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2503743 <400> 47 Met Ala Gly Ile Pro Gly Leu Leu Phe Leu Leu Phe Phe Leu Leu 5 Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro 20 Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu 50 55 Val Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile 95 100 Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser 125 130 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe 140 145 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val 155 160 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly 170 175 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu 185 190 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr 200 205 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys 215 220 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp 230 235 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro 245 250 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys 260 265 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp 275 280 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu

```
290
                                   295
Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala
               305
                                   310
Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln
               320
                                   325
Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp
               335
                                   340
Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg
               350
                                   355
Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly
                                   370
Asn Tyr Leu Asp Cys Arg Glu Gly
```

```
<210> 48
<211> 109
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2537684
Met Leu Leu Pro Ala Leu Cys Ala Trp Leu Leu Trp Val Pro Trp
 1
                 5
                                     10
Cys Leu Leu Val Ala Gly Ser Gly Arg Ser Gly Gly Glu Leu Cys
                 20
                                     25
Cys Ser Ser Tyr Gly Val Ser Val Ile Ser Val Trp Ser Lys Cys
                                     40
Ser Val Cys Arg Cys Leu Met Gly Ser Val Pro Arg Ile Phe Phe
                 50
                                     55
Ala Phe Tyr Pro Ile Ala Trp Leu Pro Leu Pro Gly Ser Gln Gly
                                    70
Cys Trp Ser Arg Ser Trp Glu Trp Pro Leu Val Glu Pro Ala Ser
                                    85
Cys Leu Val Cys Leu Cys Phe Thr Phe Gly Val Leu Ser Gly Val
                                    100
```

```
<210> 49
<211> 185
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2593853

<400> 49
Met Lys Phe Thr Ile Val Phe Ala Gly Leu Leu Gly Val Phe Leu
```

Val Ala Val Lys

```
5
                                    10
Ala Pro Ala Leu Ala Asn Tyr Asn Ile Asn Val Asn Asp Asp Asn
                20
                                    25
Asn Asn Ala Gly Ser Gly Gln Gln Ser Val Ser Val Asn Asn Glu
                35
His Asn Val Ala Asn Val Asp Asn Asn Gly Trp Asp Ser Trp
                50
                                    55
Asn Ser Ile Trp Asp Tyr Gly Asn Gly Phe Ala Ala Thr Arg Leu
                65
Phe Gln Lys Lys Thr Cys Ile Val His Lys Met Asn Lys Glu Val
                                    85
Met Pro Ser Ile Gln Ser Leu Asp Ala Leu Val Lys Glu Lys Lys
                                    100
Leu Gln Gly Lys Gly Pro Gly Gly Pro Pro Pro Lys Gly Leu Met
                                    115
Tyr Ser Val Asn Pro Asn Lys Val Asp Asp Leu Ser Lys Phe Gly
Lys Asn Ile Ala Asn Met Cys Arg Gly Ile Pro Thr Tyr Met Ala
                                   145
Glu Glu Met Gln Glu Ala Ser Leu Phe Phe Tyr Ser Gly Thr Cys
                                   160
Tyr Thr Thr Ser Val Leu Trp Ile Val Asp Ile Ser Phe Cys Gly
                                   175
Asp Thr Val Glu Asn
               185
```

```
<210> 50
<211> 110
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2622354
Met Ala Pro Arg Gly Cys Ile Val Ala Val Phe Ala Ile Phe Cys
                                     10
Ile Ser Arg Leu Leu Cys Ser His Gly Ala Pro Val Ala Pro Met
                                     25
Thr Pro Tyr Leu Met Leu Cys Gln Pro His Lys Arg Cys Gly Asp
                                     40
Lys Phe Tyr Asp Pro Leu Gln His Cys Cys Tyr Asp Asp Ala Val
                 50
                                     55
Val Pro Leu Ala Arg Thr Gln Thr Cys Gly Asn Cys Thr Phe Arg
                 65
                                    70
Val Cys Phe Glu Gln Cys Cys Pro Trp Thr Phe Met Val Lys Leu
                                    85
Ile Asn Gln Asn Cys Asp Ser Ala Arg Thr Ser Asp Asp Arg Leu
                 95
Cys Arg Ser Val Ser
```

```
<210> 51
 <211> 126
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2641377
 <400> 51
 Met Trp Leu Gly Ser Trp Leu Thr Ser Leu Leu Ser Pro Tyr
                                      10
 Gly Ser Gly Trp Glu Lys Val Pro Cys Cys Val Thr Gly His Leu
                  20
 Arg Ser Cys Ser Cys Cys Leu Leu Gly Leu Ala Gly Val Gln Ser
                  35
 Asp His Phe Ser Glu Gly Phe Phe Ser Glu Tyr Ser Ser Asp Val
                  50
 Leu Pro Trp Gly Arg Arg Ser Phe Leu Pro Gln Gly Asp Ala Ser
                  65
Leu Leu Ala Cys Glu Cys Phe Leu His Leu Gln Val Val Trp Gly
                  80
                                      85
Gln Phe Cys Leu Leu Glu Ala Trp Ala Gly Phe Thr Glu Gly Ser
                 95
                                     100
Met Pro Ala Pro Ser Cys Arg Val His Phe Trp Cys Arg Val Asn
                110
Thr Cys Ala Phe Met Ser
                125
<210> 52
<211> 488
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2674857
<400> 52
Met Ala Gly Lys Gly Ser Ser Gly Arg Arg Pro Leu Leu Gly
Leu Leu Val Ala Val Ala Thr Val His Leu Val Ile Cys Pro Tyr
Thr Lys Val Glu Glu Ser Phe Asn Leu Gln Ala Thr His Asp Leu
                 35
                                     40
Leu Tyr His Trp Gln Asp Leu Glu Gln Tyr Asp His Leu Glu Phe
                                    55
Pro Gly Val Val Pro Arg Thr Phe Leu Gly Pro Val Val Ile Ala
```

70

85

100

105

Val Phe Ser Ser Pro Ala Val Tyr Val Leu Ser Leu Leu Glu Met

Ser Lys Phe Tyr Ser Gln Leu Ile Val Arg Gly Val Leu Gly Leu

```
Gly Val Ile Phe Gly Leu Trp Thr Leu Gln Lys Glu Val Arg Arg
                110
                                   115
 His Phe Gly Ala Met Val Ala Thr Met Phe Cys Trp Val Thr Ala
                                  130
                125
 Met Gln Phe His Leu Met Phe Tyr Cys Thr Arg Thr Leu Pro Asn
                140
                                  145
Val Leu Ala Leu Pro Val Val Leu Leu Ala Leu Ala Ala Trp Leu
                155
                                  160
 Arg His Glu Trp Ala Arg Phe Ile Trp Leu Ser Ala Phe Ala Ile
                170
                                   175
 Ile Val Phe Arg Val Glu Leu Cys Leu Phe Leu Gly Leu Leu
                185
                                   190
Leu Leu Ala Leu Gly Asn Arg Lys Val Ser Val Val Arg Ala Leu
                200
                                   205
Arg His Ala Val Pro Ala Gly Ile Leu Cys Leu Gly Leu Thr Val
                215
                                 . 220
Ala Val Asp Ser Tyr Phe Trp Arg Gln Leu Thr Trp Pro Glu Gly
                230
                                   235
Lys Val Leu Trp Tyr Asn Thr Val Leu Asn Lys Ser Ser Asn Trp
                245
                                   250
Gly Thr Ser Pro Leu Leu Trp Tyr Phe Tyr Ser Ala Leu Pro Arg
                260
                                   265
Gly Leu Gly Cys Ser Leu Leu Phe Ile Pro Leu Gly Leu Val Asp
                275
                                  280
Arg Arg Thr His Ala Pro Thr Val Leu Ala Leu Gly Phe Met Ala
                290
                                   295
Leu Tyr Ser Leu Leu Pro His Lys Glu Leu Arg Phe Ile Ile Tyr
                                   310
Ala Phe Pro Met Leu Asn Ile Thr Ala Ala Arg Gly Cys Ser Tyr
               320
                                   325
Leu Leu Asn Asn Tyr Lys Lys Ser Trp Leu Tyr Lys Ala Gly Ser
               335
                                   340
Leu Leu Val Ile Gly His Leu Val Val Asn Ala Ala Tyr Ser Ala
               350
                                  355
Thr Ala Leu Tyr Val Ser His Phe Asn Tyr Pro Gly Gly Val Ala
               365
                                  370
Met Gln Arg Leu His Gln Leu Val Pro Pro Gln Thr Asp Val Leu
               380
                                   385
Leu His Ile Asp Val Ala Ala Ala Gln Thr Gly Val Ser Arg Phe
               395
                                  400
Leu Gln Val Asn Ser Ala Trp Arg Tyr Asp Lys Arg Glu Asp Val
                                  415
Gln Pro Gly Thr Gly Met Leu Ala Tyr Thr His Ile Leu Met Glu
                                 430
Ala Ala Pro Gly Leu Leu Ala Leu Tyr Arg Asp Thr His Arg Val
                                  445
Leu Ala Ser Val Val Gly Thr Thr Gly Val Ser Leu Asn Leu Thr
Gln Leu Pro Pro Phe Asn Val His Leu Gln Thr Lys Leu Val Leu
               470
Leu Glu Arg Leu Pro Arg Pro Ser
               485
```

```
<211> 197
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2758485
<400> 53
Met Ser Pro Arg Arg Thr Leu Pro Arg Pro Leu Ser Leu Cys Leu
                                     10
Ser Leu Cys Leu Cys Leu Cys Leu Ala Ala Leu Gly Ser Ala
                 20
Gln Ser Gly Ser Cys Arg Asp Lys Lys Asn Cys Lys Val Val Phe
Ser Gln Gln Glu Leu Arg Lys Arg Leu Thr Pro Leu Gln Tyr His
Val Thr Gln Glu Lys Gly Thr Glu Ser Ala Phe Glu Gly Glu Tyr
Thr His His Lys Asp Pro Gly Ile Tyr Lys Cys Val Val Cys Gly
Thr Pro Leu Phe Lys Ser Glu Thr Lys Phe Asp Ser Gly Ser Gly
                 95
                                    100
Trp Pro Ser Phe His Asp Val Ile Asn Ser Glu Ala Ile Thr Phe
Thr Asp Asp Phe Ser Tyr Gly Met His Arg Val Glu Thr Ser Cys
Ser Gln Cys Gly Ala His Leu Gly His Ile Phe Asp Asp Gly Pro
Arg Pro Thr Gly Lys Arg Tyr Cys Ile Asn Ser Ala Ala Leu Ser
                155
Phe Thr Pro Ala Asp Ser Ser Gly Thr Ala Glu Gly Gly Ser Gly
                170
Val Ala Ser Pro Ala Gln Ala Asp Lys Ala Asp Ser Glu Ser Asn
                185
Gly Glu
<210> 54
<211> 84
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2763296
<400> 54
Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser
                                    10
Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu
                                     25
Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser
```

40

Leu His Tyr Tyr Trp Ser Met Arg Leu Gln Ala Arg Gly Gly Pro

55

Ser Pro Leu Lys Ser Asn Ser Asp Ser Ala Arg Leu Pro Ile Ser 65 70 75

50

```
Ser Gly Ser Thr Ser Ser Ser Arg Ile
<210> 55
<211> 97
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
.<223> Incyte Clone No: 2779436
Met Gln Leu Gly Thr Gly Leu Leu Leu Ala Ala Val Leu Ser Leu
                                    10
Gln Leu Ala Ala Glu Ala Ile Trp Cys His Gln Cys Thr Gly
                                    25
Phe Gly Gly Cys Ser His Gly Ser Arg Cys Leu Arg Asp Ser Thr
                                     40
His Cys Val Thr Thr Ala Thr Arg Val Leu Ser Asn Thr Glu Asp
Leu Pro Leu Val Thr Lys Met Cys His Ile Gly Cys Pro Asp Ile
Pro Ser Leu Gly Leu Gly Pro Tyr Val Ser Ile Ala Cys Cys Gln
                                     85
Thr Ser Leu Cys Asn His Asp
<210> 56
<211> 140
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2808528
Met Ala Ala Ser Leu Gly Gln Val Leu Ala Leu Val Leu Val Ala
Ala Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ala
                                    25
Gly Leu Gln Arg Val His Glu Pro Thr Trp Ala Gln Gln Leu Leu
                35
                                    40
Gln Glu Met Lys Thr Leu Phe Leu Asn Thr Glu Tyr Leu Met Pro
```

50

55

70

Phe Leu Leu Asn Gln Cys Gly Ser Leu Leu Tyr Tyr Leu Thr Leu

<210> 57

<211> 285 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2809230 <400> 57 Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala 1 5 10 Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val 40 Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu 50 55 Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala 70 Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val 85 Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile 100 Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val 115 Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly 130 Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn 145 Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu 160 Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg 170 175 Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly 190 Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln 200 205 Lys Tyr Ser Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg 215 220 Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu 230 235 Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Gln

WO 00/00610 PCT/US99/14484 ·

250

Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu

Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp

255

245

260

```
<210> 58
<211> 262
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2816821
<400> 58
Met Thr Gln Pro Val Pro Arg Leu Ser Val Pro Ala Ala Leu Ala
                                     10
Leu Gly Ser Ala Ala Leu Gly Ala Ala Phe Ala Thr Gly Leu Phe
                                     25
Leu Gly Arg Arg Cys Pro Pro Trp Arg Gly Arg Arg Glu Gln Cys
                 35
                                     40
Leu Leu Pro Pro Glu Asp Ser Arg Leu Trp Gln Tyr Leu Leu Ser
                                     55
Arg Ser Met Arg Glu His Pro Ala Leu Arg Ser Leu Arg Leu Leu
                 65
                                     70
Thr Leu Glu Gln Pro Gln Gly Asp Ser Met Met Thr Cys Glu Gln
                 80
                                     85
Ala Gln Leu Leu Ala Asn Leu Ala Arg Leu Ile Gln Ala Lys Lys
                                    100
Ala Leu Asp Leu Gly Thr Phe Thr Gly Tyr Ser Ala Leu Ala Leu
                110
                                    115
Ala Leu Ala Leu Pro Ala Asp Gly Arg Val Val Thr Cys Glu Val
                125
                                    130
Asp Ala Gln Pro Pro Glu Leu Gly Arg Pro Leu Trp Arg Gln Ala
                140
                                    145
Glu Ala Glu His Lys Ile Asp Leu Arg Leu Lys Pro Ala Leu Glu
                155
                                    160
Thr Leu Asp Glu Leu Leu Ala Ala Gly Glu Ala Gly Thr Phe Asp
                170
                                    175
Val Ala Val Val Asp Ala Asp Lys Glu Asn Cys Ser Ala Tyr Tyr
                185
                                    190
Glu Arg Cys Leu Gln Leu Leu Arg Pro Gly Gly Ile Leu Ala Val
                200
                                    205
Leu Arg Val Leu Trp Arg Gly Lys Val Leu Gln Pro Pro Lys Gly
                215
                                    220
Asp Val Ala Ala Glu Cys Val Arg Asn Leu Asn Glu Arg Ile Arg
                230
                                    235
Arg Asp Val Arg Val Tyr Ile Ser Leu Leu Pro Leu Gly Asp Gly
                245
                                   250
Leu Thr Leu Ala Phe Lys Ile
                260
```

<210> 59

```
<211> 189
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2817268
<400> 59
Met Ala Leu Leu Ser Arg Pro Ala Leu Thr Leu Leu Leu Leu
Met Ala Ala Val Val Arg Cys Gln Glu Gln Ala Gln Thr Thr Asp
                 20
                                     25
Trp Arg Ala Thr Leu Lys Thr Ile Arg Asn Gly Val His Lys Ile
                                      40
Asp Thr Tyr Leu Asn Ala Ala Leu Asp Leu Leu Gly Gly Glu Asp
                                     55
Gly Leu Cys Gln Tyr Lys Cys Ser Asp Gly Ser Lys Pro Phe Pro
                 65
                                     70
Arg Tyr Gly Tyr Lys Pro Ser Pro Pro Asn Gly Cys Gly Ser Pro
                 80
                                     85
Leu Phe Gly Val His Leu Asn Ile Gly Ile Pro Ser Leu Thr Lys
                 95
                                    100
Cys Cys Asn Gln His Asp Arg Cys Tyr Glu Thr Cys Gly Lys Ser
                110
                                    115
Lys Asn Asp Cys Asp Glu Glu Phe Gln Tyr Cys Leu Ser Lys Ile
                125
                                    130
Cys Arg Asp Val Gln Lys Thr Leu Gly Leu Thr Gln His Val Gln
                140
                                    145
Ala Cys Glu Thr Thr Val Glu Leu Leu Phe Asp Ser Val Ile His
                155
                                    160
Leu Gly Cys Lys Pro Tyr Leu Asp Ser Gln Arg Ala Ala Cys Arg
                170
                                    175
Cys His Tyr Glu Glu Lys Thr Asp Leu
                185
<210> 60
<211> 257
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2923165
<400> 60
Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile Ala Phe Gly
                                     10
Pro Ala Leu Ala Leu Tyr Val Phe Thr Ile Ala Thr Glu Pro Leu
                 20
                                     25
Arg Ile Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val Ser
                 35
                                     40
```

```
Leu Leu Ile Ser Ser Leu Val Trp Phe Met Ala Arg Val Ile Ile
Asp Asn Lys Asp Gly Pro Thr Gln Lys Tyr Leu Leu Ile Phe Gly
Ala Phe Val Ser Val Tyr Ile Gln Glu Met Phe Arg Phe Ala Tyr
                                     85
Tyr Lys Leu Leu Lys Lys Ala Ser Glu Gly Leu Lys Ser Ile Asn
                                   100
Pro Gly Glu Thr Ala Pro Ser Met Arg Leu Leu Ala Tyr Val Ser
                110
                                   115
Gly Leu Gly Phe Gly Ile Met Ser Gly Val Phe Ser Phe Val Asn
                125
                                   130
Thr Leu Ser Asp Ser Leu Gly Pro Gly Thr Val Gly Ile His Gly
                140
                                   145
Asp Ser Pro Gln Phe Phe Leu Tyr Ser Ala Phe Met Thr Leu Val
                155
                                   160
Ile Ile Leu Leu His Val Phe Trp Gly Ile Val Phe Phe Asp Gly
               170
                                   175
Cys Glu Lys Lys Trp Gly Ile Leu Leu Ile Val Leu Leu Thr
                185
                                   190
His Leu Leu Val Ser Ala Gln Thr Phe Ile Ser Ser Tyr Tyr Gly
               200
                                   205
Ile Asn Leu Ala Ser Ala Phe Ile Ile Leu Val Leu Met Gly Thr
               215
                                   220
Trp Ala Phe Leu Ala Ala Gly Gly Ser Cys Arg Ser Leu Lys Leu
               230
                                   235
Cys Leu Leu Cys Gln Asp Lys Asn Phe Leu Leu Tyr Asn Gln Arg
                                   250
Ser Arg
```

```
<211> 82
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2949822
<400> 61
Met Pro Phe Ser Trp Met Val Ile Ile Leu Gly Phe Leu Cys Gly
                                     10
Leu Ser Gly Gln Leu Gln Ile Met Asn Thr Leu Ser Ser Leu Pro
                 20
                                     25
Ile Val Leu Leu Val Ser Ser Ser Cys Leu Ile Leu Ala Arg Met
                 35
                                     40
Ser Tyr Ser Ile Leu Thr Ser Ser Tyr Gly Gly Gly Val Phe Ile
                 50
                                    55
Leu Leu Asp Leu Lys Arg Asn Thr Ser Lys Val Ser Pro Leu Met
                 65
                                     70
Met Met Phe Ala Ile Gly His
                 80
```

<210> 61

```
<210> 62
<211> 202
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2992192
<400> 62
Met Ala Ala Pro Trp Arg Arg Trp Pro Thr Gly Leu Leu Ala Val
Leu Arg Pro Leu Leu Thr Cys Arg Pro Leu Gln Gly Thr Thr Leu
                 20
                                     25
Gln Arg Asp Val Leu Leu Phe Glu His Asp Arg Gly Arg Phe Phe
                 35
                                     40
Thr Ile Leu Gly Leu Phe Cys Ala Gly Gln Gly Val Phe Trp Ala
                                     55
Ser Met Ala Val Ala Ala Val Ser Arg Pro Pro Val Pro Val Gln
                 65
                                     70
Pro Leu Asp Ala Glu Val Pro Asn Arg Gly Pro Phe Asp Leu Arg
                 80
                                     85
Ser Ala Leu Trp Arg Tyr Gly Leu Ala Val Gly Cys Gly Ala Ile
                 95
                                    100
Gly Ala Leu Val Leu Gly Ala Gly Leu Leu Phe Ser Leu Arg Ser
                110
                                    115
Val Arg Ser Val Val Leu Arg Ala Gly Gly Gln Gln Val Thr Leu
                125
                                    130
Thr Thr His Ala Pro Phe Gly Leu Gly Ala His Phe Thr Val Pro
                140
                                    145
Leu Lys Gln Val Ser Cys Met Ala His Arg Gly Glu Val Pro Ala
               155
                                    160
Met Leu Pro Leu Lys Val Lys Gly Arg Arg Phe Tyr Phe Leu Leu
               170
                                   175
Asp Lys Thr Gly His Phe Pro Asn Thr Lys Leu Phe Asp Asn Thr
                185
                                   190
Val Gly Ala Tyr Arg Ser Leu
                200
<210> 63
<211> 450
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2992458
```

<400> 63

10

25

Met Leu Val Thr Ala Tyr Leu Ala Phe Val Gly Leu Leu Ala Ser

Cys Leu Gly Leu Glu Leu Ser Arg Cys Arg Ala Lys Pro Pro Gly

5

Arg Ala Cys Ser Asn Pro Ser Phe Leu Arg Phe Gln Leu Asp Phe Tyr Gln Val Tyr Phe Leu Ala Leu Ala Ala Asp Trp Leu Gln Ala Pro Tyr Leu Tyr Lys Leu Tyr Gln His Tyr Tyr Phe Leu Glu Gly 70 Gln Ile Ala Ile Leu Tyr Val Cys Gly Leu Ala Ser Thr Val Leu 85 Phe Gly Leu Val Ala Ser Ser Leu Val Asp Trp Leu Gly Arg Lys 95 100 Asn Ser Cys Val Leu Phe Ser Leu Thr Tyr Ser Leu Cys Cys Leu 110 115 Thr Lys Leu Ser Gln Asp Tyr Phe Val Leu Leu Val Gly Arg Ala 125 130 Leu Gly Gly Leu Ser Thr Ala Leu Leu Phe Ser Ala Phe Glu Ala 145 Trp Tyr Ile His Glu His Val Glu Arg His Asp Phe Pro Ala Glu 160 Trp Ile Pro Ala Thr Phe Ala Arg Ala Ala Phe Trp Asn His Val 175 Leu Ala Val Val Ala Gly Val Ala Ala Glu Ala Val Ala Ser Trp 190 Ile Gly Leu Gly Pro Val Ala Pro Phe Val Ala Ala Ile Pro Leu 200 205 Leu Ala Leu Ala Gly Ala Leu Ala Leu Arg Asn Trp Gly Glu Asn 215 220 Tyr Asp Arg Gln Arg Ala Phe Ser Arg Thr Cys Ala Gly Gly Leu 235 Arg Cys Leu Leu Ser Asp Arg Arg Val Leu Leu Leu Gly Thr Ile 245 250 Gln Ala Leu Phe Glu Ser Val Ile Phe Ile Phe Val Phe Leu Trp 260 265 Thr Pro Val Leu Asp Pro His Gly Ala Pro Leu Gly Ile Ile Phe 275 280 Ser Ser Phe Met Ala Ala Ser Leu Leu Gly Ser Ser Leu Tyr Arg 290 295 Ile Ala Thr Ser Lys Arg Tyr His Leu Gln Pro Met His Leu Leu 305 310 Ser Leu Ala Val Leu Ile Val Val Phe Ser Leu Phe Met Leu Thr 320 325 Phe Ser Thr Ser Pro Gly Gln Glu Ser Pro Val Glu Ser Phe Ile 335 340 Ala Phe Leu Leu Ile Glu Leu Ala Cys Gly Leu Tyr Phe Pro Ser 350 355 Met Ser Phe Leu Arg Arg Lys Val Ile Pro Glu Thr Glu Gln Ala 365 370 Gly Val Leu Asn Trp Phe Arg Val Pro Leu His Ser Leu Ala Cys 380 385 Leu Gly Leu Leu Val Leu His Asp Ser Asp Arg Lys Thr Gly Thr 395 400 Arg Asn Met Phe Ser Ile Cys Ser Ala Val Met Val Met Ala Leu 410 415 Leu Ala Val Val Gly Leu Phe Thr Val Val Arg His Asp Ala Glu 425 430 Leu Arg Val Pro Ser Pro Thr Glu Glu Pro Tyr Ala Pro Glu Leu 440 445

```
<210> 64
<211> 322
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3044710
<400> 64
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp
                  5
                                    10
Thr Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu
                 20
Ser Ile Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser
                                     40
Lys Lys Ala Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala
                 50
                                     55
Cys Arg Leu Leu Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu
                 65
                                     70
Thr Ala Leu Lys Ala Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val
                 80
                                     85
Gly Asp Gly Phe Val Val Ile Ser Arg Ile Ser Pro Asn Pro Lys
                 95
                                    100
Cys Gly Lys Asn Gly Val Gly Val Leu Ile Trp Lys Val Pro Val
                                    115
Ser Arg Gln Phe Ala Ala Tyr Cys Tyr Asn Ser Ser Asp Thr Trp
                125
                                    130
Thr Asn Ser Cys Ile Pro Glu Ile Ile Thr Thr Lys Asp Pro Ile
                                    145
Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr Glu Phe Ile Val Ser
                                    160
Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser Thr Ile Pro Ala
               170
                                    175
Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser Ile Pro Arg
                                    190
Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu Thr Ser
               200
                                    205
Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala Ala
                                    220
Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
                                    235
Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly
                                    250
Phe Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn
               260
                                    265
Lys Asn Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu
               275
                                    280
Glu Lys Ala Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr
               290
                                    295
Asp Lys Asn Pro Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val
               305
                                   310
Arg Cys Leu Glu Ala Glu Val
               320
```

```
<210> 65
<211> 104
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3120415
<400> 65
Met Lys Leu Ala Ala Leu Leu Gly Leu Cys Val Ala Leu Ser Cys
      5
                                   10
Ser Ser Ala Ala Ala Phe Leu Val Gly Ser Ala Lys Pro Val Ala
                                    25
Gln Pro Val Ala Ala Leu Glu Ser Ala Ala Glu Ala Gly Ala Gly
                35
                                    40
Thr Leu Ala Asn Pro Leu Gly Thr Leu Asn Pro Leu Lys Leu Leu
                50
                                   55
Leu Ser Ser Leu Gly Ile Pro Val Asn His Leu Ile Glu Gly Ser
                65
                                   70
Gln Lys Cys Val Ala Glu Leu Gly Pro Gln Ala Val Gly Ala Val
                80
                                   85
Lys Ala Leu Lys Ala Leu Leu Gly Ala Leu Thr Val Phe Gly
                95
```

<211> 93 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 126758 <400> 66 Met Lys Leu Val Thr Ile Phe Leu Leu Val Thr Ile Ser Leu Cys 10 Ser Tyr Ser Ala Thr Ala Phe Leu Ile Asn Lys Val Pro Leu Pro 20 25 Val Asp Lys Leu Ala Pro Leu Pro Leu Asp Asn Ile Leu Pro Phe 35 40 Met Asp Pro Leu Lys Leu Leu Lys Thr Leu Gly Ile Ser Val 50 55 Glu His Leu Val Glu Gly Leu Arg Lys Cys Val Asn Glu Leu Gly 70 65 Pro Glu Ala Ser Glu Ala Val Lys Lys Leu Leu Glu Ala Leu Ser 85 His Leu Val

<210> 66

<210> 67

```
<211> 71
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 674760
<400> 67
Met Thr Ala Gly Gln Phe Pro Ala Leu Val Ser Leu Ala Leu Leu
Leu Asp Gly Gly Arg Arg Ala Ser Ala Arg Arg Asn Arg Gly His
                                     25
Leu Trp Val Phe Cys Thr Ser Phe Leu Leu Ala Pro Trp Glu Val
                 35
                                     40
Glu Asp Val Gly Trp Lys Lys Gly Leu Asp Leu Pro Pro Ser Ser
                                     55
Ser Pro Pro Ser Pro Lys Glu Leu Ala Leu Gln
<210> 68
<211> 394
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1229438
<400> 68
Met Lys Arg Gln Asn Val Arg Thr Leu Ala Leu Ile Val Cys Thr
                                    10
Phe Thr Tyr Leu Leu Val Gly Ala Ala Val Phe Asp Ala Leu Glu
                                     25
Ser Glu Pro Glu Leu Ile Glu Arg Gln Arg Leu Glu Leu Arg Gln
                 35
                                     40
Gln Glu Leu Arg Ala Arg Tyr Asn Leu Ser Gln Gly Gly Tyr Glu
                 50
                                     55
Glu Leu Glu Arg Val Val Leu Arg Leu Lys Pro His Lys Ala Gly
                 65
                                     70
Val Gln Trp Arg Phe Ala Gly Ser Phe Tyr Phe Ala Ile Thr Val
                 80
                                    85
Ile Thr Thr Ile Gly Tyr Gly His Ala Ala Pro Ser Thr Asp Gly
                95
                                    100
Gly Lys Val Phe Cys Met Phe Tyr Ala Leu Leu Gly Ile Pro Leu
               110
                                    115
Thr Leu Val Met Phe Gln Ser Leu Gly Glu Arg Ile Asn Thr Leu
               125
                                    130
Val Arg Tyr Leu Leu His Arg Ala Lys Lys Gly Leu Gly Met Arg
```

140

155

145

160

Arg Ala Asp Val Ser Met Ala Asn Met Val Leu Ile Gly Phe Phe

Ser Cys Ile Ser Thr Leu Cys Ile Gly Ala Ala Ala Phe Ser His

```
170
                                    175
Tyr Glu His Trp Thr Phe Phe Gln Ala Tyr Tyr Tyr Cys Phe Ile
                185
                                    190
Thr Leu Thr Thr Ile Gly Phe Gly Asp Tyr Val Ala Leu Gln Lys
                                    205
Asp Gln Ala Leu Gln Thr Gln Pro Gln Tyr Val Ala Phe Ser Phe
                                   220
Val Tyr Ile Leu Thr Gly Leu Thr Val Ile Gly Ala Phe Leu Asn
                                   235
Leu Val Val Leu Arg Phe Met Thr Met Asn Ala Glu Asp Glu Lys
                245
                                   250
Arg Asp Ala Glu His Arg Ala Leu Leu Thr Arg Asn Gly Gln Ala
                260
                                   265
Gly Gly Gly Gly Gly Gly Ser Ala His Thr Thr Asp Thr Ala
                275
                                   280
Ser Ser Thr Ala Ala Ala Gly Gly Gly Phe Arg Asn Val Tyr
                290
                                   295
Ala Glu Val Leu His Phe Gln Ser Met Cys Ser Cys Leu Trp Tyr
               305
                                   310
Lys Ser Arg Glu Lys Leu Gln Tyr Ser Ile Pro Met Ile Ile Pro
               320
                                   325
Arg Asp Leu Ser Thr Ser Asp Thr Cys Val Glu Gln Ser His Ser
               335
                                   340
Ser Pro Gly Gly Gly Arg Tyr Ser Asp Thr Pro Ser Arg Arg
               350
                                   355
Cys Leu Cys Ser Gly Ala Pro Arg Ser Ala Ile Ser Ser Val Ser
               365
                                   370
Thr Gly Leu His Ser Leu Ser Thr Phe Arg Gly Leu Met Lys Arg
               380
                                   385
Arg Ser Ser Val
```

```
<210> 69
<211> 72
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1236935
<400> 69
Met Cys Pro Phe Phe Pro Leu Thr Ser Leu Ile Val Phe Leu Ile
                                     10
Leu Phe Phe Lys Thr Ile Ala Ser Ser Gly Ser Gly Ser Cys
                 20
                                     25
Leu Gly Leu Pro Lys Cys Trp Asp Tyr Arg Arg Glu His Arg Ala
                 35
                                     40
Arg Pro Thr Ile Val Phe Ser Lys His Val Tyr Thr Tyr Ser Met
                 50
                                   . 55
Arg Met Gln Ile Glu Ile Ser Thr Asn Ile Ser Gln
                 65
```

```
<210> 70
<211> 71
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1359283
<400> 70
Met Arg Leu Thr Gly Leu Thr Leu Leu Leu Ser Leu Met Glu Ser
                                    10
Leu Gly Gln Val Glu Asp Arg Phe Phe Ser Thr His Arg Arg Phe
                                     25
Pro His His Thr Pro Ile Ser Gly Leu Leu Cys Arg Glu Phe Ser
                 35
                                     40
Leu Pro Lys Arg Ser Gly Val Pro Trp Thr Arg Val Leu Ile Ser
                 50
                                     55
Cys Ile Trp Arg Ser Gly Ala Gly Lys Arg Met
                 65
<210> 71
<211> 247
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1450703
<400> 71
Met His Leu Ala Arg Leu Val Gly Ser Cys Ser Leu Leu Leu
                                    10
Leu Gly Ala Leu Ser Gly Trp Ala Ala Ser Asp Asp Pro Ile Glu
                 20
                                     25
Lys Val Ile Glu Gly Ile Asn Arg Gly Leu Ser Asn Ala Glu Arg
                 35
                                     40
Glu Val Gly Lys Ala Leu Asp Gly Ile Asn Ser Gly Ile Thr His
                 50
                                     55
Ala Gly Arg Glu Val Glu Lys Val Phe Asn Gly Leu Ser Asn Met
                 65
                                     70
Gly Ser His Thr Gly Lys Glu Leu Asp Lys Gly Val Gln Gly Leu
                80
                                    85
Asn His Gly Met Asp Lys Val Ala His Glu Ile Asn His Gly Ile
                95
                                   100
Gly Gln Ala Gly Lys Glu Ala Glu Lys Leu Gly His Gly Val Asn
               110
                                   115
Asn Ala Ala Gly Gln Ala Gly Lys Glu Ala Asp Lys Ala Val Gln
               125
                                   130
Gly Phe His Thr Gly Val His Gln Ala Gly Lys Glu Ala Glu Lys
```

145

160

Leu Gly Gln Gly Val Asn His Ala Ala Asp Gln Ala Gly Lys Glu

Val Glu Lys Leu Gly Gln Gly Ala His His Ala Ala Gly Gln Ala

140

```
170
                               175
Gly Lys Glu Leu Gln Asn Ala His Asn Gly Val Asn Gln Ala Ser
             185
                   190
Lys Glu Ala Asn Gln Leu Leu Asn Gly Asn His Gln Ser Gly Ser
             200
                              205
Ser Ser His Gln Gly Gly Ala Thr Thr Thr Pro Leu Ala Ser Gly
             215
                              220
Ala Ser Val Asn Thr Pro Phe Ile Asn Leu Pro Ala Leu Trp Arg
             230
                              235
Ser Val Ala Asn Ile Met Pro
             245
```

```
<210> 72
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1910668
<400> 72
Met Thr Cys Trp Met Leu Pro Pro Ile Ser Phe Leu Ser Tyr Leu
                5
                                    10
Pro Leu Trp Leu'Gly Pro Ile Trp Pro Cys Ser Gly Ser Thr Leu
                 20
                                    25
Gly Lys Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg Pro Trp
                 35
                                    40
Asp Ala Ala Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Glu Asn
                 50
                                    55
Gln Tyr Glu Lys Trp Gly Gln Gly Thr His Ser Ser Leu
                 65
```

```
<210> 73
<211> 70
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1955143
Met Gly Arg Leu Arg Tyr Phe Phe Ser Leu Leu Leu Arg Trp
                 5
                                    10
Gly Gln Leu Leu Gly Ala Asp Glu Phe Cys Cys His Lys Ser Tyr
                 20
                                    25
Ile Ala His Leu Val Cys Thr Glu Ser Ala Ile Leu Asn Pro Gly
                35
His Ala Leu Glu Leu Tyr Lys Lys Asn Leu Gln Val Ser Ile Leu
                 50
```

Ser Pro Tyr Pro Thr Asp Pro Ile His Leu 65 70

<210> 74 <211> 67 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1961637 <400> 74 Met Met Phe Thr Ser Leu Ser Leu Ala Leu Pro Phe Leu Leu Gln 10 Thr Met Leu Cys Leu Arg Ala Leu Leu Ile Ala Val Pro His Gly 20 25 His Asp Trp Asn Arg Asp Ala Thr Ser Phe Tyr Thr Ser Thr Val 35 40 Ser Trp Val Lys Ser Phe Phe Leu Phe Val Leu Asp Gly Val Ser 50 55 Leu Leu Pro Arg Leu Glu 65

<210> 75 <211> 91 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone N

<223> Incyte Clone No: 1990762

<400> 75 Met Trp Pro Thr Thr Trp Ala Trp Ser Trp Val Gln Thr Leu Thr 10 Leu Ala Leu Leu Ile Ser Cys Val Thr Leu Gly Gln Leu Ile Thr 20 25 Thr Leu Gln Val Ser Phe Leu Ile Cys Glu Met Asp Val Ile Ile 35 40 Gly Cys Asp Glu Met Ile Pro Ser Glu Ser Leu Val Leu Leu Trp 50 55 Pro Pro Pro Leu Leu Leu Gly Glu Phe Trp Ile Trp Asn Pro 65 70 Val Ser Arg Ile Leu Phe Trp Leu Cys His Val Pro Ala Gly Gln

Leu

```
<210> 76
<211> 56
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1994131
<400> 76
Met Asn Glu Trp Trp Leu Leu Leu Leu His Leu His Pro Pro
                 5
                                   10 15
Arg Val Ile Ser Pro Phe Trp Phe Ile Val Ser Val Leu Thr Ala
                20
                                    25
Cys Asp Asn Arg Lys Tyr Ile Leu Leu Arg Thr Val Pro Val Phe
                35
                                    40
Ser Phe Pro Glu Asn Thr Tyr Phe Asp Val Gly
                50
<210> 77
<211> 112
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1997745
<400> 77
Met Pro Leu Phe Leu Ser Ile Pro Ser Leu Phe Leu Thr Leu Ser
         5
                                   10
Gly Leu Gly Leu Ala Val Gln Ser Pro Ala Gly Gly Cys Trp Gly
                20
                                   25
Leu Ser Leu Cys Arg His Cys Val Phe Leu Arg Gly Cys Pro Gln
                35
                                    40
Asn Thr Pro Pro Ala Pro Trp Gly Ser Ser Gly Ser His Phe Ser
                50
                                    55
Trp Ser Leu Arg Ser Gln Lys Gln Leu Leu Gln Glu Ala Lys Lys
                65
                                   70
Arg Leu Gly Trp Leu Leu Val Leu Met Met Ala Phe Ile Leu Leu
                80
                                   85
Gly His Phe Gly Tyr Ile His Gly His Cys Phe His Leu Ser Phe
                95
                                 100
Leu Pro Val Pro Pro Leu Pro
               110
<210> 78
<211> 54
<212> PRT
<213> Homo sapiens
```

<220>

```
<221> misc_feature
 <223> Incyte Clone No: 2009035
<400> 78
Met Met Leu Gln Pro Val Asp Leu Leu Gln Ser Tyr Leu Leu Leu
                                    10
Leu Tyr Cys Trp Ser Phe Ser Leu Leu Phe Thr Leu Leu Cys Asn
                 20
                                    25
Ala Val Arg Asn Asp Phe Phe His Lys Leu Phe Ser Ile Tyr Trp
                 35
                                     40
Met Tyr Asn Leu Thr His Ser Lys His
                 50
<210> 79
<211> 57
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2009152
<400> 79
Met Lys Phe Tyr Ala Val Leu Leu Ser Ile Cys Leu Leu Ser
                 5
                                    10
Cys Trp Cys Ala Cys His Val Arg Asp Cys Asn Leu Ile Cys Leu
                 20
                                    25
Phe Ser Thr Val Lys Ala Ile Thr Arg Glu Leu Leu Gln Leu Pro
                 35
                                    40
Ser Tyr Val Lys Arg Phe Phe Phe Asn Ser Leu Arg
<210> 80
<211> 52
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2061752
<400> 80
Met Gln Arg Leu Gly Lys Ala Pro Gly Thr Trp Gln Ala Ile Ser
                5
                                    10
Lys Cys Trp Leu Leu Leu Leu Ser Leu Pro Phe Ser Gln Ser
                                    25
Ile Ile Ile Ser Leu Arg Ala Gly Thr Met Ser Tyr Leu Pro Leu
                                    40
Tyr Phe Pro Gln Tyr Phe Pro
                50
```

```
<210> 81
<211> 64
 <212> PRT
 <213> Homo sapiens
<220>
 <221> misc_feature
<223> Incyte Clone No: 2061933
Met Lys Leu Leu Leu Lys Leu Asp Phe Phe Ile Leu Leu Gly
                                  . 10
Ser Glu Glu Ser Arg Cys Leu Val Asp Val Gln Tyr Val Ile Phe
                 20
                                    25
Phe Leu Ile Glu Cys Val His Leu Lys Ser Ser Leu Thr Phe Leu
                 35
                                    40
Glu Arg Leu Leu Ser Ile Asn Asn Gly Ile Leu Glu Glu Lys Trp
                 50
Phe Phe Lys Ser
<210> 82
<211> 65
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2081422
<400> 82
Met Lys Pro Leu Ile Pro Phe Leu Ser Pro Pro Pro Leu Leu Pro
                 5
                                   10
Leu Thr Phe Phe Leu Ser Ser Leu Leu Leu Ser Pro Leu Cys Arg
                 20
                                    25
Ala Leu Gly Thr Ser Gln Ala Val Pro Pro Leu Arg Ala Leu Ser
                 35
                                    40
Val Thr Asp Ala His Gly Ser Leu Leu Leu His Pro Lys Thr Leu
                                   55
Ala Cys Pro Cys Leu
<210> 83
<211> 56
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
```

50

110

<210> 84 <211> 120 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 2121353 Met Pro Ala Leu Pro Pro Gly Phe Ser Gln Ala Gly Ser Cys Val 10 Pro Thr Gly Ser Ser Leu Val Leu Cys Leu Leu Ala Ala Ser Leu 20 25 Leu Leu Phe Val Pro Thr Leu Ala Leu Leu Thr Gly Ala Thr Thr 35 40 Cys Trp Cys Leu His Asn Lys Arg Leu Ala Leu Arg Pro Leu Ala 50 55 Trp Gln Gly Leu Trp Gly Leu Val Ser Thr Arg Leu Ser His Gly 65 70 Arg Thr Ser Phe Tyr Phe Asn Ser Leu Pro Leu Gln Thr Asn Ser 80 85 Ser Thr Cys Gln Asn His Ser Trp Asp Ser Gly Ala Arg Ala Thr 95 100 Ala Leu Ala Ser Gly Arg Thr Gln Glu Gly Gly Val Gly Ser Val

<210> 86 <211> 62 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2271935 <400> 86 Met Ala Trp Leu Ser Phe Ala Ala Val Glu Met Thr Leu Leu Leu 5 10 His Ser Ser Ser Leu Leu Ser Phe Ala Lys Val Val Leu Ser Leu 20 25 Pro Glu Ile Arg Pro Phe Gly Asp Gly Asn Phe Ser Leu Lys Gln 35 40 Ser Ser Lys Gln Asn Pro Asn Pro Ala Arg Val Gly Arg Lys Ser 50 Met Phe

<210> 87 <211> 75 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2295344 Met Met Ile Leu Leu Ser Leu Leu Val Ala Leu Ile Ser Val Ser 5 10 Leu Val Phe Leu Gly Leu Val Arg Phe Ser Arg Glu Asp Phe Ser 20 25 Phe Pro Leu Trp Arg Glu Lys Ala Phe Tyr Gln His Ser Ser Ser 35 40 Ser Val Gly Glu Arg Leu Gln Ala Leu Arg Lys His Ala Phe Thr 50 55 Leu Phe Gly Thr Ile Pro Leu Leu Val Thr Val Pro Gln Val Pro

65

```
<210> 88
<211> 80
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2303994
<400> 88
Met Asn Ser Ile Phe Phe Leu Ser Leu Cys Leu Pro Leu Trp Val
                 5
                                    10
Ser Leu Leu Trp Ala Lys Pro Leu Glu Met His Lys Thr Ser Arg
                 20
                                    25
His Gly Phe Trp Gln Lys Leu His Asp Phe Lys Leu Ala Leu Leu
                 35
                                     40
Leu Leu Thr Phe His Arg Glu Lys Ile Phe Pro Leu Lys Lys Thr
                 50
                                    55
Gly Leu Val Ile Phe Ser Leu Val Ala Leu Ser Arg Asp Ile Ser
                 65
Ala Leu His Tyr Thr
                 80
<210> 89
<211> 50
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2497805
Met Arg Pro Ala Arg Leu Gly Pro Arg Cys Ser Asp Leu Asp Phe
                 5
                                   10
Gly Leu Val Leu Ser Ser Trp Leu Arg Leu Ala Arg Cys Pro Leu
                20
                                    25
Glu Ser Ser Phe Gly Phe Ala Phe Phe Val Cys Leu Phe Ser Pro
                35
                                   40
Asn Phe Cys Gln Thr
<210> 90
<211> 116
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2646362
```

WO 00/00610 PCT/US99/14484 ·

```
<400> 90
Met Trp Trp Ala Leu Cys Ser Met Leu Pro Leu Leu Gly Cys Ala
                                     10
Cys Ser Ser Gly Cys Trp Gly Ser Gly Pro Thr Pro Leu Leu Ala
                 20
Glu Pro Thr Phe Leu Cys Val Ser Ser Arg Pro His Asn Pro Leu
                                     40
Ser Phe Leu Ser Val Leu Pro Cys Ser Arg Gly Pro Gly Pro Ser
                                     55
Gly Leu Gln Gly Asp Gly Ala Gly Leu Pro Ala His Leu Gly Pro
                 65
                                    70
Leu Ser Cys Ile Cys Leu Pro Ser Leu Leu Cys Asp Leu Gly Glu
                 80
                                    85
Arg Gln Cys Pro Leu Trp Ala Val Arg Ser Thr Gln Cys Leu Ile
                95
                                   100
Ala Gly Lys Lys Val Leu Gln Arg Leu Cys Pro
               110
```

Lys Ser Leu Val Pro Pro Ala 65

50

<210> 91

<210> 92
<211> 538
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2755786

<400> 92
Met Ala Gly Ala Arg Ala Ala Ala Ala Ala Ser Ala Gly Ser
1 5 10

Ser Ala Ser Ser Gly Asn Gln Pro Pro Gln Glu Leu Gly Leu Gly Glu Leu Leu Glu Glu Phe Ser Arg Thr Gln Tyr Arg Ala Lys Asp Gly Ser Gly Thr Gly Gly Ser Lys Val Glu Arg Ile Glu Lys Arg Cys Leu Glu Leu Phe Gly Arg Asp Tyr Cys Phe Ser Val Ile Pro Asn Thr Asn Gly Asp Ile Cys Gly His Tyr Pro Arg His Ile Val 85 Phe Leu Glu Tyr Glu Ser Ser Glu Lys Glu Lys Asp Thr Phe Glu 100 Ser Thr Val Gln Val Ser Lys Leu Gln Asp Leu Ile His Arg Ser 110 115 Lys Met Ala Arg Cys Arg Gly Arg Phe Val Cys Pro Val Ile Leu 125 130 Phe Lys Gly Lys His Ile Cys Arg Ser Ala Thr Leu Ala Gly Trp 140 145 Gly Glu Leu Tyr Gly Arg Ser Gly Tyr Asn Tyr Phe Phe Ser Gly 155 160 Gly Ala Asp Asp Ala Trp Ala Asp Val Glu Asp Val Thr Glu Glu 170 175 Asp Cys Ala Leu Arg Ser Gly Asp Thr His Leu Phe Asp Lys Val 185 190 Arg Gly Tyr Asp Ile Lys Leu Leu Arg Tyr Leu Ser Val Lys Tyr 200 205 Ile Cys Asp Leu Met Val Glu Asn Lys Lys Val Lys Phe Gly Met 220 Asn Val Thr Ser Ser Glu Lys Val Asp Lys Ala Gln Arg Tyr Ala 235 Asp Phe Thr Leu Leu Ser Ile Pro Tyr Pro Gly Cys Glu Phe Phe 250 Lys Glu Tyr Lys Asp Arg Asp Tyr Met Ala Glu Gly Leu Ile Phe 260 265 Asn Trp Lys Gln Asp Tyr Val Asp Ala Pro Leu Ser Ile Pro Asp 275 280 Phe Leu Thr His Ser Leu Asn Ile Asp Trp Ser Gln Tyr Gln Cys 295 Trp Asp Leu Val Gln Gln Thr Gln Asn Tyr Leu Lys Leu Leu 310 Ser Leu Val Asn Ser Asp Asp Ser Gly Leu Leu Val His Cys 325 Ile Ser Gly Trp Asp Arg Thr Pro Leu Phe Ile Ser Leu Leu Arg 340 Leu Ser Leu Trp Ala Asp Gly Leu Ile His Thr Ser Leu Lys Pro 355 Thr Glu Ile Leu Tyr Leu Thr Val Ala Tyr Asp Trp Phe Leu Phe 365 370 Gly His Met Leu Val Asp Arg Leu Ser Lys Gly Glu Glu Ile Phe 380 385 Phe Phe Cys Phe Asn Phe Leu Lys His Ile Thr Ser Glu Glu Phe 395 400 Ser Ala Leu Lys Thr Gln Arg Arg Lys Ser Leu Pro Ala Arg Asp 410 415 Gly Gly Phe Thr Leu Glu Asp Ile Cys Met Leu Arg Arg Lys Asp 425 430 Arg Gly Ser Thr Thr Ser Leu Gly Ser Asp Phe Ser Leu Val Met

```
440
                                    445
                                                        450
Glu Ser Ser Pro Gly Ala Thr Gly Ser Phe Thr Tyr Glu Ala Val
                455
Glu Leu Val Pro Ala Gly Ala Pro Thr Gln Ala Ala Trp Leu Ala
                                    475
Ala Leu Ser Asp Arg Glu Thr Arg Leu Gln Glu Val Arg Ser Ala
                                    490
Phe Leu Ala Ala Tyr Ser Ser Thr Val Gly Leu Arg Ala Val Ala
                500
                                    505
Pro Ser Pro Ser Gly Ala Ile Gly Gly Leu Leu Glu Gln Phe Ala
                515
                                    520
Arg Gly Val Gly Leu Arg Ser Ile Ser Ser Asn Ala Leu
                530
                                   535
```

<210> 93

<210> 94

50

55

<210> 95 <211> 128 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 3129630 <400> 95 Met Ala Tyr Ser Thr Val Gln Arg Val Ala Leu Ala Ser Gly Leu Val Leu Ala Leu Ser Leu Leu Leu Pro Lys Ala Phe Leu Ser Arg 25 Gly Lys Arg Gln Glu Pro Pro Pro Thr Pro Glu Gly Lys Leu Gly 40 Arg Phe Pro Pro Met Met His His His Gln Ala Pro Ser Asp Gly 55 Gln Thr Pro Gly Ala Arg Phe Gln Arg Ser His Leu Ala Glu Ala 70 Phe Ala Lys Ala Lys Gly Ser Gly Gly Gly Ala Gly Gly Gly 80 85 Ser Gly Arg Gly Leu Met Gly Gln Ile Ile Pro Ile Tyr Gly Phe 100 Gly Ile Phe Leu Tyr Ile Leu Tyr Ile Leu Phe Lys Val Ser Arg 110 115 Ile Ile Leu Ile Ile Leu His Gln 125

<210> 96
<211> 124
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 007632

<400> 96

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Ile Gly Phe Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Asn Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser

```
20
                                     25
Phe Gln Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu
                                     40
Glu Leu Glu Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu
                                     55
Gly Ala Glu Arg Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr
                 65
                                     70
Asn Ile Phe Asn Pro Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe
                 80
                                     85
Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser'His Leu Leu Ala Arg
                 95
                                   100
Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro Asp Cys Phe Trp
                                    115
                                                        120
Lys Tyr Cys Val
```

<210> 97 <211> 182 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1236968 <400> 97 Met Trp Pro Leu Ser Ser Asp Ser Ser Trp Ser Leu Trp Ile Ser 10 Thr Gly Met Ala Pro Ala Pro Ser Ser Ser Thr Arg Ser Phe Ser 25 Glu Ser Leu Lys Gln Lys Leu Val Arg Val Leu Glu Glu Asn Leu 35 40 Ile Leu Ser Glu Lys Ile Gln Gln Leu Glu Glu Gly Ala Ala Ile 50 55 Ser Ile Val Ser Gly Gln Gln Ser His Thr Tyr Asp Asp Leu Leu 65 70 His Lys Asn Gln Gln Leu Thr Met Gln Val Ala Cys Leu Asn Gln 80 85 Glu Leu Ala Gln Leu Lys Lys Leu Glu Lys Thr Val Ala Ile Leu 95 100 His Glu Ser Gln Arg Ser Leu Val Val Thr Asn Glu Tyr Leu Leu 110 115 Gln Gln Leu Asn Lys Glu Pro Lys Gly Tyr Ser Gly Lys Ala Leu 125 130 Leu Pro Pro Glu Lys Gly His His Leu Gly Arg Ser Ser Pro Phe 140 145 Gly Lys Ser Thr Leu Ser Ser Ser Pro Val Ala His Glu Thr 155 160 Gly Gln Tyr Leu Ile Gln Ser Val Leu Asp Ala Ala Pro Glu Pro

170

Gly Leu

```
<210> 98
<211> 237
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1334153
<400> 98
Met Lys Gly Ile Leu Val Ala Gly Ile Thr Ala Val Leu Val Ala
                  5
Ala Val Glu Ser Leu Ser Cys Val Pro Cys Asn Ser Trp Glu Lys
                                     25
Ser Cys Val Asn Ser Ile Ala Ser Glu Cys Pro Ser His Ala Asn
                                     40
Thr Ser Cys Ile Ser Ser Ser Ala Ser Ser Ser Leu Glu Thr Pro
                                     55
Val Arg Leu Tyr Gln Asn Met Phe Cys Ser Ala Glu Asn Cys Ser
                 65
                                     70
Glu Glu Thr His Ile Thr Ala Phe Thr Val His Val Ser Ala Glu
                 80
                                     85
Glu His Phe His Phe Val Ser Gln Cys Cys Gln Gly Lys Glu Cys
                 95
                                    100
Ser Asn Thr Ser Asp Ala Leu Asp Pro Pro Leu Lys Asn Val Ser
                110
                                    115
Ser Asn Ala Glu Cys Pro Ala Cys Tyr Glu Ser Asn Gly Thr Ser
                125
                                    130
Cys Arg Gly Lys Pro Trp Lys Cys Tyr Glu Glu Glu Gln Cys Val
                140
                                    145
Phe Leu Val Ala Glu Leu Lys Asn Asp Ile Glu Ser Lys Ser Leu
                155
                                    160
Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln Phe
                170
                                    175
Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys
               185
                                    190
Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro
                200
                                    205
Thr Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu
                215
                                    220
Ala Leu Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro
                230
                                    235
```

```
<210> 99
<211> 160
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1396975

<400> 99
Met Arg Pro Gly Pro Met Leu Gln Ala Arg Val Ser Ile Pro Ala
```

```
10
Ala Leu Gly Thr Leu Phe Pro Arg Pro Gly Trp Ala Pro Gly Glu
                20
                                    25
Val Ser Ser Glu Ile Ser Ser Arg Asp Leu Leu Asn Pro His Pro
                35
                                    40
Ser Thr Pro Ser Cys Cys Ser Gln Ser Trp Ser Pro Met Ser Val
                50
                                   55
Leu Glu Pro Asp Ser Arg Gly Pro Pro Pro Ile Ser Leu Thr His
                65
                                    70
Thr Gly Ile His Thr Pro Gln Lys Thr Ser Gln Met Arg Pro Asp
                80
                                    85
Ser Gly Ser Arg Gly Met Cys Phe Cys Pro Cys Lys Gly Phe Gly
                95
                                   100
                                                       105
Glu Gly Gly Asn Ile Val Glu Ala Gly Lys Ser Pro Gln Thr Cys
               110
                                   115
Ala His Ala Pro Pro Ala Leu Arg Phe His Ser Ala Phe Ser Glu
               125
                                  130
Cys Pro Cys Cys Thr Gln Thr Thr Gly Gln Glu Arg Pro Ser Leu
               140
                                  145
Pro Leu Gln Pro Leu Ser Leu Pro Phe Asn
               155
                                  160
```

<210> 100 <211> 148 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 1501749

<400> 100

Met Ala Ala Ser Pro Ala Arg Pro Ala Val Leu Ala Leu Thr Gly 10 Leu Ala Leu Leu Leu Leu Cys Trp Gly Pro Gly Gly Ile Ser 20 25 Gly Asn Lys Leu Lys Leu Met Leu Gln Lys Arg Glu Ala Pro Val 35 40 Pro Thr Lys Thr Lys Val Ala Val Asp Glu Asn Lys Ala Lys Glu 50 55 Phe Leu Gly Ser Leu Lys Arg Gln Lys Arg Gln Leu Trp Asp Arg 65 70 Thr Arg Pro Glu Val Gln Gln Trp Tyr Gln Gln Phe Leu Tyr Met 80 85 Gly Phe Asp Glu Ala Lys Phe Glu Asp Asp Ile Thr Tyr Trp Leu 100 Asn Arg Asp Arg Asn Gly His Glu Tyr Tyr Gly Asp Tyr Tyr Gln 110 115 Arg His Tyr Asp Glu Asp Ser Ala Ile Gly Pro Arg Ser Pro Tyr 125 130 Gly Phe Arg His Gly Ala Ser Val Asn Tyr Asp Asp Tyr 140

```
<210> 101
<211> 170
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1575240
<400> 101
Met Thr Pro Thr Lys Arg Glu Pro Pro Ala Ala Pro Leu Leu Leu
                                    10
Arg Val Leu Pro Gln Leu Ser Ala Met Ser Leu Arg Leu Ser Thr
                20
                                    25
Arg Arg Glu Asp Met Ile Gly Gln Thr Ser Gly Met Cys Ser Phe
                 35
                                    40
Cys Ser Phe Gln Asn Met Arg Gly Glu Ser Ile Trp Leu Leu Cys
                50
                                    55
Leu Glu Glu Gly Ala Gly Leu Cys Gln Asn Ser Leu Asp Lys
                65
                                    70
Arg Phe Ser Gln Lys Glu Gly Cys Ser Asp Asp Lys Ser Pro Leu
                80
                                    85
His His Phe Pro Trp Leu Ser Asp Ala Pro Pro Ser Ser His Ala
                95
                                   100
Arg Thr Ser Glu Ile Arg Leu Pro Pro Asp Ile Thr Gln Pro Cys
               110
                                   115
Leu Thr Lys Arg Gln Trp Phe Ile Pro Ser Leu Gly Glu Lys Arg
               125
                                   130
Gly Asn Ala Lys Leu Leu His Gln Leu Leu Ile Leu Leu Pro Ala
               140
                           145
Arg Asn Pro Gly Tyr Leu Gln Val Ser Leu Pro Leu Val Trp Ser
                                  160
               155
Trp Leu Ser Leu Phe
               170
<210> 102
<211> 150
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1647884
<400> 102
Met Gly Ala Ala Ala Trp Ala Arg Pro Leu Ser Val Ser Phe Leu
                                    10
Leu Leu Leu Pro Leu Pro Gly Met Pro Ala Gly Ser Trp Asp
                20
                                    25
Pro Ala Gly Tyr Leu Leu Tyr Cys Pro Cys Met Gly Lys Ala Ser
                35
                                    40
Gln Ala Leu Cys Ser Asp Gly Glu Thr Glu Ala Gly Arg Gly Lys
                50
                                   55
```

```
Ala Thr Pro Gln Met Arg Pro Glu Thr Pro Ser Gln Val Gln Glu 75

Arg Thr Ser Glu Arg Asp Gly Ala Cys Ser Ser Pro Leu Cys Leu 80

Ser Cys Lys Gly Thr Glu Gly Pro Thr Cys Pro Thr Phe His Leu 105

Thr Asp Glu Lys Thr Glu Ala Gly Arg Gly Tyr Val Thr Cys Leu 120

Arg Ser Lys Pro Val Gln Gly Pro Val Asn Gly Val Ser Gly Ala 135

Gly Leu Asp Val Thr Asp Pro Arg Trp Leu Leu Val Ile Phe His 150
```

```
<210> 103
<211> 142
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1661144
<400> 103
Met Gly Cys Leu Val Trp Gly Pro Ser Trp Pro Pro Leu Ser Leu
                                     10
Leu Ala Ser Leu Leu His Ser Gly Ile Ala Gly Arg Cys Leu Leu
                 20
                                     25
Cys Leu Phe Lys Gly Leu Ala Ala Ala Ala Ser Leu Gln Ile Arg
                 35
                                     40
Asp Leu Ala Ser Arg Leu Thr Thr Gly Pro Arg Thr Cys Arg Val
                 50
                                     55
Gln Pro Pro Pro His Pro Gln Ser Ser Pro Pro Trp Pro Gly Pro
                 65
                                     70
Pro Gly Ala Glu Thr Cys Arg Pro Leu Ser Arg Thr Val Gly Gly
                 80
                                     85
Val Cys Pro Ser Asp Trp Pro Val Ser Trp Leu Leu Pro Pro
                 95
                                    100
Leu Pro Glu Val Val Thr Cys Ser Cys Pro Arg Ile Lys Ala Arg
               110
                                    115
Pro Glu Arg Thr Pro Glu Leu Leu Cys Ala Trp Gly Gly Arg Gly
               125
                                   130
Lys His Ser Gln Leu Val Ala
```

<210> 104 <211> 110 <212> PRT <213> Homo sapiens <220> <221> misc feature

<223> Incyte Clone No: 1685409

<400> 104 Met Glu Thr Gly Arg Leu Leu Ser Leu Ser Ser Leu Pro Leu Val 10 Leu Leu Gly Trp Glu Tyr Ser Ser Gln Thr Leu Asn Leu Val Pro 20 25 Ser Thr Ser Ile Leu Ser Phe Val Pro Phe Ile Pro Leu His Leu 35 40 Val Leu Phe Ala Leu Trp Tyr Leu Pro Val Pro His His Leu Tyr 50 55 Pro Gln Gly Leu Gly Asp His Ala Ala Glu Ala Glu Lys Gly Lys 65 70 Arg Glu Glu Gly Gly Thr Gln Val Ala Leu Trp Leu Arg Val Gln 80 85 Pro Ser Cys Pro Ser Pro Val Cys Leu Glu Pro Val Pro Pro Arg 95 100 Ser Arg Phe Leu Leu

<210> 105 <211> 120 <212> PRT <213> Homo sapiens <220>

<221> misc_feature <223> Incyte Clone No: 1731419

<400> 105

Met Ser Arg Ala Gly Met Leu Gly Val Val Cys Ala Leu Leu Val 10 Trp Ala Tyr Leu Ala Val Gly Lys Leu Val Val Arg Met Thr Phe 20 25 Thr Glu Leu Cys Thr His His Pro Trp Ser Leu Arg Cys Glu Ser 35 40 Phe Cys Arg Ser Arg Val Thr Ala Cys Leu Pro Ala Pro Ala Pro 50 55 Trp Leu Arg Pro Phe Leu Cys Pro Met Leu Phe Ser Asp Arg Asn 65 70 Pro Val Glu Cys His Leu Phe Gly Glu Ala Val Ser Asp Pro Val 80 85 Cys Lys Gly Leu Leu Pro His Tyr Phe Trp His Pro Thr Phe Phe 95 100 Pro Val Lys Ala Asn Cys Leu Val Ser Phe Cys Pro Thr Thr Val 110 115

<210> 106 <211> 135 <212> PRT <213> Homo sapiens

```
<220>
<221> misc_feature
<223> Incyte Clone No: 2650265
<400> 106
Met Ala Arg Phe Trp Val Cys Val Ala Gly Ala Gly Phe Phe Leu
                                     10
Ala Phe Leu Val Leu His Ser Arg Phe Cys Gly Ser Pro Val Leu
                                     25
Arg Asn Phe Thr Phe Ala Val Ser Trp Arg Thr Glu Lys Ile Leu
                 35
                                     40
Tyr Arg Leu Asp Val Gly Trp Pro Lys His Pro Glu Tyr Phe Thr
                 50
                                    55
Gly Thr Thr Phe Cys Val Ala Val Asp Ser Leu Asn Gly Leu Val
                 65
                                    70
Tyr Ile Gly Gln Arg Gly Asp Asn Ile Pro Lys Ile Leu Val Phe
                 80
Thr Glu Asp Gly Tyr Phe Leu Arg Ala Trp Asn Tyr Thr Val Asp
                 95
                                    100
Thr Pro His Gly Ile Phe Ala Ala Ser Thr Leu Tyr Glu Gln Ser
                110
                                   115
Val Trp Ile Thr Asp Val Gly Ser Gly Met Tyr Ser Asn Ile Tyr
                                    130
<210> 107
```

<210> 107
<211> 301
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2677129

<400> 107

Met Leu Met Ile Ile Ile Glu Pro Phe Ser Val Leu Ile Leu 10 Phe Lys Ser Gly Ile Leu Ala Asp Phe Phe Ala Leu Leu Leu 25 Ile Asn Phe Phe Leu Val Ser Phe Phe Leu Ala Tyr Pro Leu Phe 40 Asn Asn Gln Ile Asn Ser Arg Ser Met Asn Glu Ile Lys Asn Leu 50 55 Gln Tyr Leu Pro Arg Thr Ser Glu Pro Arg Glu Val Leu Phe Glu 65 70 Asp Arg Thr Arg Ala His Ala Asp His Val Gly Gln Gly Phe Asp 80 85 Trp Gln Ser Thr Ala Ala Val Gly Val Leu Lys Ala Val Gln Phe 95 100 Gly Glu Trp Ser Asp Gln Pro Arg Ile Thr Lys Asp Val Ile Cys 110 115 Phe His Ala Glu Asp Phe Thr Asp Val Val Gln Arg Leu Gln Leu 125 130 Asp Leu His Glu Pro Pro Val Ser Gln Cys Val Gln Trp Val Asp 140 145

WO 00/00610 PCT/US99/14484 ·

```
Glu Ala Lys Leu Asn Gln Met Arg Arg Glu Gly Ile Arg Tyr Ala
                155
                                    160
Arg Ile Gln Leu Cys Asp Asn Asp Ile Tyr Phe Ile Pro Arg Asn
                170
Val Ile His Gln Phe Lys Thr Val Ser Ala Val Cys Ser Leu Ala
                                   190
Trp His Ile Arg Leu Lys Gln Tyr His Pro Val Val Glu Ala Thr
                                   205
Gln Asn Thr Glu Ser Asn Ser Asn Met Asp Cys Gly Leu Thr Gly
                215
                                   220
Lys Arg Glu Leu Glu Val Asp Ser Gln Cys Val Arg Ile Lys Thr
                230
                                   235
Glu Ser Glu Glu Ala Cys Thr Glu Ile Gln Leu Leu Thr Thr Ala
                245
                                   250
Ser Ser Ser Phe Pro Pro Ala Ser Glu Leu Asn Leu Gln Gln Asp
               260
                                   265
Gln Lys Thr Gln Pro Ile Pro Val Leu Lys Val Glu Ser Arg Leu
               275
                                   280
Asp Ser Asp Gln Gln His Asn Leu Gln Glu His Ser Thr Thr Ser
                290
                                   295
Val
```

<210> 108 <211> 103 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 3151073 Met Ser Phe Val Pro Gly Leu Leu Leu Cys Phe Val Leu Leu Leu 10 Cys Val Ser Pro Val Tyr Leu Pro Ser Arg Ser Pro Ser Thr Phe 20 25 Pro Ile Ser Glu Pro Leu Ser Phe Ile Gly Met Ser Ala Trp Pro 35 40 Gln Cys Ser Pro Ile Tyr Ser Gln Thr Pro Gly Leu Ala Tyr Glu 50 55 Pro Ser Ser Phe Pro Lys Arg Arg Tyr Trp Val Cys Thr Leu His 65 70 Glu Ile Lys Trp Glu Cys Pro Arg Ser Arg Arg Thr Ser Asp Ala 80 85 Val His Ala Asn Lys Leu Gly Leu Pro Leu Lys Ile Ile

<210> 109 <211> 95 <212> PRT <213> Homo sapiens

95

<220> <221> misc_feature <223> Incyte Clone No: 3170095 <400> 109 Met Lys Phe Leu Leu Val Leu Ala Ala Leu Gly Phe Leu Thr 5 10 Gln Val Ile Pro Ala Ser Ala Gly Gly Ser Lys Cys Val Ser Asn 20 25 Thr Pro Gly Tyr Cys Arg Thr Cys Cys His Trp Gly Glu Thr Ala 35 40 Leu Phe Met Cys Asn Ala Ser Arg Lys Cys Cys Ile Ser Tyr Ser 50 55 Phe Leu Pro Lys Pro Asp Leu Pro Gln Leu Ile Gly Asn His Trp 65 70 Gln Ser Arg Arg Arg Asn Thr Gln Arg Lys Asp Lys Lys Gln Gln 80 85 Thr Thr Val Thr Ser 95

<211> 113 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 3475168 <400> 110 Met Ser Pro Ser Pro Arg Trp Gly Phe Leu Cys Val Leu Phe Thr 5 10 Ala Val His Pro Ala Pro Ser Thr Ala Pro Val Gln Asp Lys Cys 20 25 Pro Val Asn Thr Trp Glu Ala Met Gln Ala Ser Ser Gln Gln Leu 35 40 Leu Gln Thr Asp Pro Arg Pro Lys Pro Phe Leu Leu Pro Pro Leu 50 55 Pro Pro Leu Leu Ile Ser Ala Gly Thr Glu Val Ser Ser Leu 65 70 Val Phe Gln Lys Ser Pro Leu His Thr Gln Pro Glu Gly Ala Ile 80 85 Lys Thr Ala Gly Gln Pro Thr Ser Val His Ser Lys Val Leu Ser 95 100 105 Lys Gly Ser Leu Leu Leu Gly Glu

<210> 111 <211> 234 <212> PRT <213> Homo sapiens

110

```
<220>
<221> misc feature
<223> Incyte Clone No: 3836893
<400> 111
Met Arg Lys Thr Arg Leu Trp Gly Leu Leu Trp Met Leu Phe Val
                                     10
Ser Glu Leu Arg Ala Ala Thr Lys Leu Thr Glu Glu Lys Tyr Glu
                20
                                     25
Leu Lys Glu Gly Gln Thr Leu Asp Val Lys Cys Asp Tyr Thr Leu
                                     40
Glu Lys Phe Ala Ser Ser Gln Lys Ala Trp Gln Ile Ile Arg Asp
                 50
                                     55
Gly Glu Met Pro Lys Thr Leu Ala Cys Thr Glu Arg Pro Ser Lys
                65
                                     70
Asn Ser His Pro Val Gln Val Gly Arg Ile Ile Leu Glu Asp Tyr
                80
                                     85
His Asp His Gly Leu Leu Arg Val Arg Met Val Asn Leu Gln Val
                95
                                    100
Glu Asp Ser Gly Leu Tyr Gln Cys Val Ile Tyr Gln Pro Pro Lys
               110
                                    115
Glu Pro His Met Leu Phe Asp Arg Ile Arg Leu Val Val Thr Lys
               125
                                    130
Gly Phe Ser Gly Thr Pro Gly Ser Asn Glu Asn Ser Thr Gln Asn
               140
                                   145
Val Tyr Lys Ile Pro Pro Thr Thr Thr Lys Ala Leu Cys Pro Leu
               155
                                   160
Tyr Thr Ser Pro Arg Thr Val Thr Gln Ala Pro Pro Lys Ser Thr
               170
                                   175
Ala Asp Val Ser Thr Pro Asp Ser Glu Ile Asn Leu Thr Asn Val
               185
                                   190
Thr Asp Ile Ile Arg Val Pro Val Phe Asn Ile Val Ile Leu Leu
               200
                                   205
Ala Gly Gly Phe Leu Ser Lys Ser Leu Val Phe Ser Val Leu Phe
               215
                                   220
Ala Val Thr Leu Arg Ser Phe Val Pro
               230
```

```
      Ser Arg Gly Asn Gly Lys Met Thr Ser Pro Pro Arg Gly Pro Gly

      50
      55
      60

      Thr His Arg Thr Ala Glu Leu Ala Arg Ala Glu Glu Leu Leu Glu
      65
      70
      75

      Gln Gln Leu Glu Leu Tyr Gln Ala Leu Leu Glu Gly Gln Glu Gly
      80
      85
      90

      Ala Trp Glu Ala Gln Ala Leu Val Leu Lys Ile Gln Lys Leu Lys
      95
      100
      105

      Glu Gln Met Arg Arg His Gln Glu Ser Leu Gly Gly Gly Ala
      115
      115
```

```
<211> 200
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1003916
<400> 113
Met Ala Ser Ser Leu Thr Cys Thr Gly Val Ile Trp Ala Leu Leu
                                    10
Ser Phe Leu Cys Ala Ala Thr Ser Cys Val Gly Phe Phe Met Pro
                20
                                    25
Tyr Trp Leu Trp Gly Ser Gln Leu Gly Lys Pro Val Ser Phe Gly
                35
                                    40
Thr Phe Arg Arg Cys Ser Tyr Pro Val His Asp Glu Ser Arg Gln
                50
                                    55
Met Met Val Met Val Glu Glu Cys Gly Arg Tyr Ala Ser Phe Gln
                65
                                    70
Gly Ile Pro Ser Ala Glu Trp Arg Ile Cys Thr Ile Val Thr Gly
                80
                                    85
Leu Gly Cys Gly Leu Leu Leu Val Ala Leu Thr Ala Leu Met
                95
                                   100
Gly Cys Cys Val Ser Asp Leu Ile Ser Arg Thr Val Gly Arg Val
               110
                                   115
Ala Gly Gly Ile Gln Phe Leu Gly Gly Leu Leu Ile Gly Ala Gly
               125
                                   130
Cys Ala Leu Tyr Pro Leu Gly Trp Asp Ser Glu Glu Val Arg Gln
               140
                                   145
Thr Cys Gly Tyr Thr Ser Gly Gln Phe Asp Leu Gly Lys Cys Glu
               155
                                   160
Ile Gly Trp Ala Tyr Tyr Cys Thr Gly Ala Gly Ala Thr Ala Ala
               170
                                   175
Met Leu Leu Cys Thr Trp Leu Ala Cys Phe Ser Gly Lys Lys Gln
               185
                                  190
Lys His Tyr Pro Tyr
              200
```

<210> 114

```
<211> 225
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2093492
<400> 114
Met Gly Phe Arg Leu Glu Gly Ile Phe Pro Ala Ala Leu Leu Pro
                                     10
Leu Leu Leu Thr Met Ile Leu Phe Leu Gly Pro Leu Met Gln Leu
                 20
                                     25
Ser Met Asp Cys Pro Cys Asp Leu Ala Asp Gly Leu Lys Val Val
                                     40
Leu Ala Pro Arg Ser Trp Ala Arg Cys Leu Thr Asp Met Arg Trp
                 50
                                     55
Leu Arg Asn Gln Val Ile Ala Pro Leu Thr Glu Glu Leu Val Phe
                 65
                                     70
Arg Ala Cys Met Leu Pro Met Leu Ala Pro Cys Met Gly Leu Gly
                 80
                                     85
Pro Ala Val Phe Thr Cys Pro Leu Phe Phe Gly Val Ala His Phe
                 95
                                    100
His His Ile Ile Glu Gln Leu Arg Phe Arg Gln Ser Ser Val Gly
                110
                                    115
Asn Ile Phe Leu Ser Ala Ala Phe Gln Phe Ser Tyr Thr Ala Val
                125
                                    130
Phe Gly Ala Tyr Thr Ala Phe Leu Phe Ile Arg Thr Gly His Leu
                140
                                    145
Ile Gly Pro Val Leu Cys His Ser Phe Cys Asn Tyr Met Gly Phe
                155
                                    160
Pro Ala Val Cys Ala Ala Leu Glu His Pro Gln Arg Arg Pro Leu
                170
                                    175
Leu Ala Gly Tyr Ala Leu Gly Val Gly Leu Phe Leu Leu Leu
                185
                                    190
Gln Pro Leu Thr Asp Pro Lys Leu Tyr Gly Ser Leu Pro Leu Cys
                200
                                    205
Val Leu Leu Glu Arg Ala Gly Asp Ser Glu Ala Pro Leu Cys Ser
                215
                                    220
<210> 115
<211> 155
```

```
Thr Asp Pro Pro Pro Pro Arg Leu Gln Pro His His Val Ser Gly
                 35
Leu Gly Leu Gly Gln Ala Trp Ala Gln Ser Trp Ala Pro Arg Gly
                 50
Ser Pro Pro Leu Thr Trp Leu Leu Pro Thr Leu Pro Leu Lys Asp
                 65
                                    70
Gly Pro Ala Ala Arg Leu Pro Pro Pro Pro His Thr Leu Gly
                                    85
Gly Leu Ser His Pro Pro Gln Pro Arg Ser Ala Gln Thr Asp Pro
                 95
                                    100
His Ser Ile Pro Arg Pro Ala Ala Gln Val Arg Gly Pro Val Leu
                110
                                    115
Pro Gly Ala Trp Ala Thr Pro Tyr Ala Ile Ser Ser Glu Gln Pro
                125
                                   130
Gly Pro Thr Asp Pro His Ala Leu Ser Tyr Val Pro Phe Ser Pro
                140
                                   145
Asp Phe Phe Cys Thr
                155
```

<210> 116

<211> 468 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2171401 <400> 116 Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val 10 Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr 20 25 Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp 35 40 Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg 55 Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg 70 Tyr Tyr Lys Val Asn Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp 80 85 Ile Ser Gln Cys Gly Arg Arg Asp Cys Ala Val Lys Pro Cys Gln 95 100 Ser Asp Glu Val Pro Asp Gly Ile Lys Ser Ala Ser Tyr Lys Tyr 110 115 Ser Glu Glu Ala Asn Asn Leu Ile Glu Glu Cys Glu Gln Ala Glu 125 130 Arg Leu Gly Ala Val Asp Glu Ser Leu Ser Glu Glu Thr Gln Lys 140 145 Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser Ser Asp Asn Phe 155 Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala Glu Tyr Val Asp 170 175 Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly Pro Asp

```
185
                                    190
Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys Phe Lys
                                    205
Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly Gln
Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu
                                    235
Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His
                                    250
Ala Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu
                                    265
Thr Trp Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln
                275
                                    280
Gln Arg Phe Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg
                290
                                   295
Leu Lys Asn Leu Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu
               305
                                   310
Ser Lys Val Leu Pro Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe
               320
                                   325
Thr Gly Asn Lys Ile Gln Asp Glu Glu Asn Lys Met Leu Leu Leu
               335
                                    340
Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu His Phe Asp Glu
               350
                                   355
Asn Ser Phe Phe Ala Gly Asp Lys Lys Glu Ala His Lys Leu Lys
               365
                                   370
Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp
                                   385
Cys Val Gly Cys Phe Lys Cys Arg Leu Trp Gly Lys Leu Gln Thr
               395
                                    400
Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu
                                   415
Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu
                                   430
Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile
                                   445
Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln
                                   460
Asn Ile His
```

20

Thr Val Val Thr Phe Gly Leu Leu Ala Pro Leu Ala Cys His Arg

```
40
Leu Leu His Ser Tyr Phe Tyr Leu Arg His Trp His Leu Asn Gln
                 50
Met Ser Gln Glu Phe Leu Gln Gln Ser Leu Lys Glu Gly Glu Ala
Ala Leu His Tyr Phe Glu Glu Leu Pro Ser Ala Asn Gly Ser Val
                                     85
Pro Ile Val Trp Gln Ala Thr Pro Arg Pro Trp Leu Val Ile Thr
                                    100
Ile Ile Thr Val Asp Arg Gln Pro Gly Phe His Tyr Val Leu Gln
                110
                                    115
Val Val Ser Gln Phe His Arg Leu Leu Gln Gln Cys Gly Pro Gln
                125
                                   130
Cys Glu Gly His Gln Leu Phe Leu Cys Asn Val Glu Arg Ser Val
                140
                                   145
Ser His Phe Asp Ala Lys Leu Leu Ser Lys Tyr Val Pro Val Ala
                155
                                   160
Asn Arg Tyr Glu Gly Thr Glu Asp Asp Tyr Gly Asp Asp Pro Ser
                170
                                   175
Thr Asn Ser Phe Glu Lys Glu Lys Gln Asp Tyr Val Tyr Cys Leu
                                   190
Glu Ser Ser Leu Gln Thr Tyr Asn Pro Asp Tyr Val Leu Met Val
               200
                                    205
Glu Asp Asp Ala Val Pro Glu Glu Gln Ile Phe Pro Val Leu Glu
                                   220
His Leu Leu Arg Ala Arg Phe Ser Glu Pro His Leu Arg Asp Ala
                                   235
Leu Tyr Leu Lys Leu Tyr His Pro Glu Arg Leu Gln His Tyr Ile
                                   250
Asn Pro Glu Pro Met Arg Ile Leu Glu Trp Val Gly Val Gly Met
                                   265
Leu Leu Gly Pro Leu Leu Thr Trp Ile Tyr Met Arg Phe Ala Ser
                                   280
Arg Pro Gly Phe Ser Trp Pro Val Met Leu Phe Phe Ser Leu Tyr
                                   295
Ser Met Gly Leu Val Glu Leu Val Gly Arg His Tyr Phe Leu Glu
                                   310
Leu Arg Arg Leu Ser Pro Ser Leu Tyr Ser Val Val Pro Ala Ser
               320
                                   325
Gln Cys Cys Thr Pro Ala Met Leu Phe Pro Ala Pro Ala Ala Arg
               335
                                   340
Arg Thr Leu Thr Tyr Leu Ser Gln Val Tyr Cys His Lys Gly Phe
               350
                                   355
Gly Lys Asp Met Ala Leu Tyr Ser Leu Leu Arg Ala Lys Gly Glu
               365
                                   370
Arg Ala Tyr Val Val Glu Pro Asn Leu Val Lys His Ile Gly Leu
               380
                                   385 ·
                                                       390
Phe Ser Ser Leu Arg Tyr Asn Phe His Pro Ser Leu Leu
               395
                                   400
```

<210> 118

<211> 131

<212> PRT

<213> Homo sapiens

```
<220>
<221> misc_feature
<223> Incyte Clone No: 2253036
<400> 118
Met Glu Arg Cys Phe His Cys Phe Pro Val His Leu Val Phe Asn
                                     10
Leu Val Gln Ser Phe Ser Pro Ile Ser Gly Val Glu Ser Cys Leu
                                     25
Leu Pro Gln Cys Asp Lys Cys Trp Pro Met Val Tyr Arg Ser Cys
                                     40
Asp Ala Ser Arg Gly Leu Val Asn Ala Cys Ile Leu Gly Phe Val
                 50
                                     55
Leu Leu Glu Cys Ser Phe Val Gly Ala Leu Asn Asn Tyr Val Arg
                 65
                                     70
Ser Leu Ala Thr Leu Leu Glu Arg Thr His Gly Gly Lys Arg Leu
                 80
Lys Leu Cys Glu Glu Ser Gln Ala Ser His Pro Ser Phe Ser Ala
                 95
                                   100
Glu Pro Arg His Gln Pro Thr Cys Gln Leu Asn Ala Thr Val Arg
                110
                                   115
Val Ile Thr Ser Lys Ile Thr Arg Lys Thr Thr
                125
<210> 119
<211> 556
```

<211> 556
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2280161

<400> 119

Met Ala Ala Ala Trp Leu Gln Val Leu Pro Val Ile Leu Leu Leu Leu Gly Ala His Pro Ser Pro Leu Ser Phe Phe Ser Ala Gly 25 Pro Ala Thr Val Ala Ala Ala Asp Arg Ser Lys Trp His Ile Pro 35 40 Ile Pro Ser Gly Lys Asn Tyr Phe Ser Phe Gly Lys Ile Leu Phe 50 55 Arg Asn Thr Thr Ile Phe Leu Lys Phe Asp Gly Glu Pro Cys Asp 65 70 Leu Ser Leu Asn Ile Thr Trp Tyr Leu Lys Ser Ala Asp Cys Tyr 80 85 Asn Glu Ile Tyr Asn Phe Lys Ala Glu Glu Val Glu Leu Tyr Leu 95 100 Glu Lys Leu Lys Glu Lys Arg Gly Leu Ser Gly Lys Tyr Gln Thr 110 115 Ser Ser Lys Leu Phe Gln Asn Cys Ser Glu Leu Phe Lys Thr Gln 125 130 Thr Phe Ser Gly Asp Phe Met His Arg Leu Pro Leu Leu Gly Glu 140

```
Lys Gln Glu Ala Lys Glu Asn Gly Thr Asn Leu Thr Phe Ile Gly
                                     160
Asp Lys Thr Ala Met His Glu Pro Leu Gln Thr Trp Gln Asp Ala
                                     175
Pro Tyr Ile Phe Ile Val His Ile Gly Ile Ser Ser Ser Lys Glu
                 185
                                    190
Ser Ser Lys Glu Asn Ser Leu Ser Asn Leu Phe Thr Met Thr Val
                 200
                                    205
Glu Val Lys Gly Pro Tyr Glu Tyr Leu Thr Leu Glu Asp Tyr Pro
                 215
                                    220
Leu Met Ile Phe Phe Met Val Met Cys Ile Val Tyr Val Leu Phe
                 230
                                     235
Gly Val Leu Trp Leu Ala Trp Ser Ala Cys Tyr Trp Arg Asp Leu
                 245
                                     250
Leu Arg Ile Gln Phe Trp Ile Gly Ala Val Ile Phe Leu Gly Met
                                     265
Leu Glu Lys Ala Val Phe Tyr Ala Glu Phe Gln Asn Ile Arg Tyr
                275
                                     280
Lys Gly Glu Ser Val Gln Gly Ala Leu Ile Leu Ala Glu Leu Leu
                290
                                     295
Ser Ala Val Lys Arg Ser Leu Ala Arg Thr Leu Val Ile Ile Val
                305
                                    310
Ser Leu Gly Tyr Gly Ile Val Lys Pro Arg Leu Gly Val Thr Leu
                320
                                     325
His Lys Val Val Val Ala Gly Ala Leu Tyr Leu Leu Phe Ser Gly
                335
                                    340
Met Glu Gly Val Leu Arg Val Thr Gly Tyr Phe Ser Tyr Pro Leu
                350
                                    355
Thr Leu Ile Val Asn Leu Ala Leu Ser Ala Val Asp Ala Cys Val
                365
                                    370
Ile Leu Trp Ile Phe Ile Ser Leu Thr Gln Thr Met Lys Leu Leu
                380
                                    385
Lys Leu Arg Arg Asn Ile Val Lys Leu Ser Leu Tyr Arg His Phe
                395
                                    400
Thr Asn Thr Leu Ile Leu Ala Val Ala Ala Ser Ile Val Phe Ile
                410
                                    415
Ile Trp Thr Thr Met Lys Phe Arg Ile Val Thr Cys Gln Ser Asp
                425
                                    430
Trp Arg Glu Leu Trp Val Asp Asp Ala Ile Trp Arg Leu Leu Phe
                440
                                    445
Ser Met Ile Leu Phe Val Ile Met Val Leu Trp Arg Pro Ser Ala
                455
                                    460
Asn Asn Gln Arg Phe Ala Phe Ser Pro Leu Ser Glu Glu Glu Glu
                470
                                    475
Glu Asp Glu Gln Lys Glu Pro Met Leu Lys Glu Ser Phe Glu Gly
                485
                                    490
Met Lys Met Arg Ser Thr Lys Gln Glu Pro Asn Gly Asn Ser Lys
                500
                                    505
Val Asn Lys Ala Gln Glu Asp Asp Leu Lys Trp Val Glu Glu Asn
                515
                                    520
Val Pro Ser Ser Val Thr Asp Val Ala Leu Pro Ala Leu Leu Asp
                530
                                    535
Ser Asp Glu Glu Arg Met Ile Thr His Phe Glu Arg Ser Lys Met
                545
                                    550
Glu
```

```
<211> 514
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2287485
<400> 120
Met Ser Trp Pro Arg Arg Leu Leu Leu Arg Tyr Leu Phe Pro Ala
                                    10
Leu Leu His Gly Leu Gly Glu Gly Ser Ala Leu Leu His Pro
                 20
                                     25
Asp Ser Arg Ser His Pro Arg Ser Leu Glu Lys Ser Ala Trp Arg
                 35
                                     40
Ala Phe Lys Glu Ser Gln Cys His His Met Leu Lys His Leu His
                 50
                                     55
Asn Gly Ala Arg Ile Thr Val Gln Met Pro Pro Thr Ile Glu Gly
                                     70
His Trp Val Ser Thr Gly Cys Glu Val Arg Ser Gly Pro Glu Phe
                 80
                                     85
Ile Thr Arg Ser Tyr Arg Phe Tyr His Asn Asn Thr Phe Lys Ala
                                    100
Tyr Gln Phe Tyr Tyr Gly Ser Asn Arg Cys Thr Asn Pro Thr Tyr
                                    115
                                                        120
Thr Leu Ile Ile Arg Gly Lys Ile Arg Leu Arg Gln Ala Ser Trp
                                   130
Ile Ile Arg Gly Gly Thr Glu Ala Asp Tyr Gln Leu His Asn Val
                140
                                   145
Gln Val Ile Cys His Thr Glu Ala Val Ala Glu Lys Leu Gly Gln
                155
                                    160
Gln Val Asn Arg Thr Cys Pro Gly Phe Leu Ala Asp Gly Gly Pro
                170
                                   175
Trp Val Gln Asp Val Ala Tyr Asp Leu Trp Arg Glu Glu Asn Gly
                185
                                   190
Cys Glu Cys Thr Lys Ala Val Asn Phe Ala Met His Glu Leu Gln
                200
                                    205
Leu Ile Arg Val Glu Lys Gln Tyr Leu His His Asn Leu Asp His
                215
                                   220
Leu Val Glu Glu Leu Phe Leu Gly Asp Ile His Thr Asp Ala Thr
                230
                                   235
Gln Arg Met Phe Tyr Arg Pro Ser Ser Tyr Gln Pro Pro Leu Gln
               245
                                   250
Asn Ala Lys Asn His Asp His Ala Cys Ile Ala Cys Arg Ile Ile
               260
                                   265
Tyr Arg Ser Asp Glu His His Pro Pro Ile Leu Pro Pro Lys Ala
               275
                                   280
Asp Leu Thr Ile Gly Leu His Gly Glu Trp Val Ser Gln Arg Cys
               290
                                   295
Glu Val Arg Pro Glu Val Leu Phe Leu Thr Arg His Phe Ile Phe
               305
                                   310
His Asp Asn Asn Asn Thr Trp Glu Gly His Tyr Tyr His Tyr Ser
               320
                                   325
Asp Pro Val Cys Lys His Pro Thr Phe Ser Ile Tyr Ala Arg Gly
               335
                                   340
```

```
Arg Tyr Ser Arg Gly Val Leu Ser Ser Arg Val Met Gly Gly Thr
               350
                    355
Glu Phe Val Phe Lys Val Asn His Met Lys Val Thr Pro Met Asp
               365
                                  370
Ala Ala Thr Ala Ser Leu Leu Asn Val Phe Asn Gly Asn Glu Cys
               380
                                   385
Gly Ala Glu Gly Ser Trp Gln Val Gly Ile Gln Gln Asp Val Thr
               395
                                   400
His Thr Asn Gly Cys Val Ala Leu Gly Ile Lys Leu Pro His Thr
               410
                                   415
Glu Tyr Glu Ile Phe Lys Met Glu Gln Asp Ala Arg Gly Arg Tyr
               425
                                   430
Leu Leu Phe Asn Gly Gln Arg Pro Ser Asp Gly Ser Ser Pro Asp
               440
                                   445
Arg Pro Glu Lys Arg Ala Thr Ser Tyr Gln Met Pro Leu Val Gln
               455
                                   460
Cys Ala Ser Ser Pro Arg Ala Glu Asp Leu Ala Glu Asp Ser
               470
                                   475
Gly Ser Ser Leu Tyr Gly Arg Ala Pro Gly Arg His Thr Trp Ser
               485
                                  490
Leu Leu Leu Ala Ala Leu Ala Cys Leu Val Pro Leu Leu His Trp
               500
                                  505
                                                      510
Asn Ile Arg Arg
```

```
<210> 121
<211> 109
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2380344
```

<400> 121 Met Leu Trp Trp Leu Val Leu Leu Leu Pro Thr Leu Lys Ser 10 Val Phe Cys Ser Leu Val Thr Ser Leu Tyr Leu Pro Asn Thr Glu 20 25 Asp Leu Ser Leu Trp Leu Trp Pro Lys Pro Asp Leu His Ser Gly 35 40 Thr Arg Thr Glu Val Ser Thr His Thr Val Pro Ser Lys Pro Gly 50 55 Thr Ala Ser Pro Cys Trp Pro Leu Ala Gly Ala Val Pro Ser Pro 65 70 Thr Val Ser Arg Leu Glu Ala Leu Thr Arg Ala Val Gln Val Ala 80 85 Glu Pro Leu Gly Ser Cys Gly Phe Gln Gly Gly Pro Cys Pro Gly Arg Arg Arg Asp

```
<211> 431
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2383171
Met Ser Trp Val Gln Ala Thr Leu Leu Ala Arg Gly Leu Cys Arg
                                     10
Ala Trp Gly Gly Thr Cys Gly Ala Ala Leu Thr Gly Thr Ser Ile
                 20
Ser Gln Val Pro Arg Arg Leu Pro Arg Gly Leu His Cys Ser Ala
                                    40
Ala Ala His Ser Ser Glu Gln Ser Leu Val Pro Ser Pro Pro Glu
                                     55
Pro Arg Gln Arg Pro Thr Lys Ala Leu Val Pro Phe Glu Asp Leu
                 65
                                     70
Phe Gly Gln Ala Pro Gly Glu Arg Asp Lys Ala Ser Phe Leu
                 80
                                     85
Gln Thr Val Gln Lys Phe Ala Glu His Ser Val Arg Lys Arg Gly
                 95
                                    100
His Ile Asp Phe Ile Tyr Leu Ala Leu Arg Lys Met Arg Glu Tyr
                110
                                   115
Gly Val Glu Arg Asp Leu Ala Val Tyr Asn Gln Leu Leu Asn Ile
                125
                                   130
Phe Pro Lys Glu Val Phe Arg Pro Arg Asn Ile Ile Gln Arg Ile
                140
                                    145
Phe Val His Tyr Pro Arg Gln Gln Glu Cys Gly Ile Ala Val Leu
                155
                                    160
Glu Gln Met Glu Asn His Gly Val Met Pro Asn Lys Glu Thr Glu
                170
                                   175
Phe Leu Leu Ile Gln Ile Phe Gly Arg Lys Ser Tyr Pro Met Leu
                185
                                    190
Lys Leu Val Arg Leu Lys Leu Trp Phe Pro Arg Phe Met Asn Val
                200
                                    205
Asn Pro Phe Pro Val Pro Arg Asp Leu Pro Gln Asp Pro Val Glu
                215
                                    220
Leu Ala Met Phe Gly Leu Arg His Met Glu Pro Asp Leu Ser Ala
                230
                                   235
Arg Val Thr Ile Tyr Gln Val Pro Leu Pro Lys Asp Ser Thr Gly
                245
                                    250
Ala Ala Asp Pro Pro Gln Pro His Ile Val Gly Ile Gln Ser Pro
                260
                                   265
Asp Gln Gln Ala Ala Leu Ala Arg His Asn Pro Ala Arg Pro Val
                275
                                   280
Phe Val Glu Gly Pro Phe Ser Leu Trp Leu Arg Asn Lys Cys Val
                290
                                   295
Tyr Tyr His Ile Leu Arg Ala Asp Leu Leu Pro Pro Glu Glu Arg
                305
                                   310
Glu Val Glu Glu Thr Pro Glu Glu Trp Asn Leu Tyr Tyr Pro Met
                                    325
Gln Leu Asp Leu Glu Tyr Val Arg Ser Gly Trp Asp Asn Tyr Glu
                                    340
Phe Asp Ile Asn Glu Val Glu Glu Gly Pro Val Phe Ala Met Cys
                                   355
```

```
      Met
      Ala
      Gly
      Ala
      His
      Asp
      Gln
      Ala
      Thr
      Met
      Ala
      Lys
      Trp
      Ile
      Gln
      375

      Gly
      Leu
      Gln
      Glu
      Thr
      Asn
      Pro
      Thr
      Leu
      Ala
      Gln
      Ile
      Pro
      Val
      Val

      Arg
      Leu
      Ala
      Gly
      Ser
      Thr
      Arg
      Glu
      Leu
      Gln
      Thr
      Ser
      Ala

      Asp
      Leu
      Glu
      Glu
      Fro
      Leu
      Pro
      Glu
      Asp
      His
      Glu
      Glu
      Asp

      Asp
      Asn
      Leu
      Glu
      Asp
      His
      Glu
      Glu
      Asp

      Asp
      Asn
      Leu
      Glu
      Glu
      Glu
      Glu
      Glu
      Glu
      Ser

      Asp
      Asn
      Leu
      Glu
      Glu
      Glu
      Glu
      Ser
      His
      Glu
      Glu
      Glu
      Ser

      Asp
      Asp
      Asp
      His
      Glu
      Glu
      Glu
      Fro
      Glu
      Glu
      G
```

```
<210> 123
<211> 142
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2396046
<400> 123
Met Leu Leu Gly Val Arg Ala Val Pro Leu Cys Ser Ala Trp Gln
                                    10
Gly Ala Val Gly Leu Val Ser Leu Ala Ile Ser Ile Cys Lys His
                 20
                                     25
Gly Leu Ser Ser Gln Gln Asn Leu Val Pro Gly Lys Ser Asn Val
                 35
                                    40
Pro Lys Ala Ser Asp Met Pro Arg Cys Pro Pro Val Phe Gln Ser
                 50
                                    55
Pro Asn Leu Thr Pro Phe Pro His His Thr Lys His Thr Ser Gln
                65
                                    70
Gly Ser His Leu Gly Val Pro Pro Pro Ala Pro Met Pro Trp Cys
                80
                                    85
Pro Gln Ala Gln Gly Phe Gly Leu Ser Cys Gln Ser Leu Asp Ala
                95
                                   100
Phe Glu Gly Gln Leu Gly Cys Gly Trp Gly Val Gln Ala Ala Gly
               110
                                   115
Glu Pro Arg Leu Arg Ile Ile His Thr Leu Leu Phe Gly Ala Phe
               125
                                   130
Val Glu Val Ser Arg Ile Pro
               140
```

```
<210> 124
<211> 643
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2456587
```

<400> 124 Met Glu Cys Cys Arg Arg Ala Thr Pro Gly Thr Leu Leu Leu Phe Leu Ala Phe Leu Leu Ser Ser Arg Thr Ala Arg Ser Glu Glu Asp Arg Asp Gly Leu Trp Asp Ala Trp Gly Pro Trp Ser Glu Cys Ser Arg Thr Cys Gly Gly Gly Ala Ser Tyr Ser Leu Arg Arg Cys Leu Ser Ser Lys Ser Cys Glu Gly Arg Asn Ile Arg Tyr Arg Thr Cys Ser Asn Val Asp Cys Pro Pro Glu Ala Gly Asp Phe Arg Ala Gln Gln Cys Ser Ala His Asn Asp Val Lys His His Gly Gln Phe Tyr Glu Trp Leu Pro Val Ser Asn Asp Pro Asp Asn Pro Cys Ser Leu Lys Cys Gln Ala Lys Gly Thr Thr Leu Val Val Glu Leu Ala Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Ile Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro Ala Ser Asp Gly Tyr Lys Gln Ile Met Pro Tyr Asp Leu Tyr His Pro Leu Pro Arg Trp Glu Ala Thr Pro Trp Thr Ala Cys Ser Ser Ser Cys Gly Gly Gly Ile Gln Ser Arg Ala Val Ser Cys Val Glu Glu Asp Ile Gln Gly His Val Thr Ser Val Glu Glu Trp Lys Cys

```
Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys Asn Ile Phe
                425
                                    430
Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys Thr Val
                440
                                    445
Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile Asp
                455
                                    460
His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
                470
                                    475
His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro
                485
                                    490
Lys Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln
                                    505
Ala Gln Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser
                515
                                    520
Phe Ile Pro Glu Ala Trp Ser Ala Cys Thr Val Thr Cys Gly Val
                530
                                    535
Gly Thr Gln Val Arg Ile Val Arg Cys Gln Val Leu Leu Ser Phe
                545
                                    550
Ser Gln Ser Val Ala Asp Leu Pro Ile Asp Glu Cys Glu Gly Pro
                560
                                    565
Lys Pro Ala Ser Gln Arg Ala Cys Tyr Ala Gly Pro Cys Ser Gly
                575
                                    580
Glu Ile Pro Glu Phe Asn Pro Asp Glu Thr Asp Gly Leu Phe Gly
                590
                                    595
Gly Leu Gln Asp Phe Asp Glu Leu Tyr Asp Trp Glu Tyr Glu Gly
                605
                                    610
Phe Thr Lys Cys Ser Glu Ser Cys Gly Gly Gly Val Gln Glu Ala
                620
                                    625
Val Val Ser Cys Leu Asn Lys Gln Thr Arg Glu Pro Cys
                635
```

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2484813
<400> 125
Met Val Leu Leu His Trp Cys Leu Leu Trp Leu Leu Phe Pro Leu
                                     10
Ser Ser Arg Thr Gln Lys Leu Pro Thr Arg Asp Glu Glu Leu Phe
                 20
                                     25
Gln Met Gln Ile Arg Asp Lys Ala Phe Phe His Asp Ser Ser Val
                                     40
Ile Pro Asp Gly Ala Glu Ile Ser Ser Tyr Leu Phe Arg Asp Thr
                 50
                                     55
Pro Lys Arg Tyr Phe Phe Val Val Glu Glu Asp Asn Thr Pro Leu
                 65
                                     70
Ser Val Thr Val Thr Pro Cys Asp Ala Pro Leu Glu Trp Lys Leu
                 80
                                     85
Ser Leu Gln Glu Leu Pro Glu Asp Arg Ser Gly Glu Gly Ser Gly
```

<210> 125 <211> 568

```
100
                                                         105
Asp Leu Glu Pro Leu Glu Gln Gln Lys Gln Gln Ile Ile Asn Glu
                                    115
Glu Gly Thr Glu Leu Phe Ser Tyr Lys Gly Asn Asp Val Glu Tyr
                125
                                    130
Phe Ile Ser Ser Ser Pro Ser Gly Leu Tyr Gln Leu Asp Leu
                                    145
Leu Ser Thr Glu Lys Asp Thr His Phe Lys Val Tyr Ala Thr Thr
                155
                                    160
Thr Pro Glu Ser Asp Gln Pro Tyr Pro Glu Leu Pro Tyr Asp Pro
                170
                                    175
Arg Val Asp Val Thr Ser Leu Gly Arg Thr Thr Val Thr Leu Ala
                185
                                    190
Trp Lys Pro Ser Pro Thr Ala Ser Leu Leu Lys Gln Pro Ile Gln
                200
                                    205
Tyr Cys Val Val Ile Asn Lys Glu His Asn Phe Lys Ser Leu Cys
                215
                                    220
Ala Val Glu Ala Lys Leu Ser Ala Asp Asp Ala Phe Met Met Ala
                230
                                    235
Pro Lys Pro Gly Leu Asp Phe Ser Pro Phe Asp Phe Ala His Phe
                                    250
Gly Phe Pro Ser Asp Asn Ser Gly Lys Glu Arg Ser Phe Gln Ala
                                    265
Lys Pro Ser Pro Lys Leu Gly Arg His Val Tyr Ser Arg Pro Lys
                275
                                    280
Val Asp Ile Gln Lys Ile Cys Ile Gly Asn Lys Asn Ile Phe Thr
                290
                                    295
Val Ser Asp Leu Lys Pro Asp Thr Gln Tyr Tyr Phe Asp Val Phe
                305
                                    310
Val Val Asn Ile Asn Ser Asn Met Ser Thr Ala Tyr Val Gly Thr
                320
                                    325
Phe Ala Arg Thr Lys Glu Glu Ala Lys Gln Lys Thr Val Glu Leu
               335
                                    340
Lys Asp Gly Lys Ile Thr Asp Val Phe Val Lys Arg Lys Gly Ala
                350
                                    355
Lys Phe Leu Arg Phe Ala Pro Val Ser Ser His Gln Lys Val Thr
                365
                                    370
Phe Phe Ile His Ser Cys Leu Asp Ala Val Gln Ile Gln Val Arg
                380
                                    385
Arg Asp Gly Lys Leu Leu Ser Gln Asn Val Glu Gly Ile Gln
                395
                                    400
Gln Phe Gln Leu Arg Gly Lys Pro Lys Ala Lys Tyr Leu Val Arg
               410
                                    415
Leu Lys Gly Asn Lys Lys Gly Ala Ser Met Leu Lys Ile Leu Ala
               425
                                    430
Thr Thr Arg Pro Thr Lys Gln Ser Phe Pro Ser Leu Pro Glu Asp
                440
                                   445
Thr Arg Ile Lys Ala Phe Asp Lys Leu Arg Thr Cys Ser Ser Ala
                455
                                   460
Thr Val Ala Trp Leu Gly Thr Gln Glu Arg Asn Lys Phe Cys Ile
                470
                                   475
Tyr Lys Lys Glu Val Asp Asp Asn Tyr Asn Glu Asp Gln Lys Lys
                485
                                    490
Arg Glu Gln Asn Gln Cys Leu Gly Pro Asp Ile Arg Lys Lys Ser
               500
                                    505
Glu Lys Val Leu Cys Lys Tyr Phe His Ser Gln Asn Leu Gln Lys
               515
                                   520
```

<211> 125 <212> PRT <213> Homo sapiens <220> <221> misc feature <223> Incyte Clone No: 2493851 <400> 126 Met Trp Leu Val Gly Pro Ser Phe Leu Ser Cys Pro Leu Gly Lys 5 10 Val Pro Pro Ala Gly Leu Leu Leu Ala Gly Ser Ser Gly Arg Gly 20 25 Ala Arg Arg Pro Ala Thr Pro Arg His Trp Ser Ser Thr Thr Pro 35 40 Gly Leu Arg Leu Glu Ala Pro Leu Cys Gln Leu Cys Pro Leu Gly 50 55 Gly Thr Arg Gln Asp Cys Gln Pro Leu Ser Trp Gln Val Thr Ser 65 70 Ala Phe Lys Leu Thr Val Pro Ser Pro Phe His Ala Pro Pro Arg 80 85 Ser Trp Ser Cys Leu Leu Gly Ile Phe Pro Gly Gln Ala Leu 95 100 Ala Leu Glu Pro Trp His Leu Phe Leu Gly Ser Met Leu Pro Arg 110 115 Cys Asp Gly Glu Cys 125

<210> 127
<211> 196
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2495719

<210> 126

```
35
                                     40
Thr Thr Ile Ile Glu Gly Arg Ile Thr Ala Thr Pro Lys Glu Ser
                                    55
Pro Asn Pro Pro Asn Pro Ser Gly Gln Cys Pro Ile Cys Arg Trp
                                    70
Asn Leu Lys His Lys Tyr Asn Tyr Asp Asp Val Leu Leu Ser
                 80
                                    85
Gln Phe Ile Arg Pro His Gly Gly Met Leu Pro Arg Lys Ile Thr
                 95
                                   100
Gly Leu Cys Gln Glu Glu His Arg Lys Ile Glu Glu Cys Val Lys
                                   115
Met Ala His Arg Ala Gly Leu Leu Pro Asn His Arg Pro Arg Leu
               125
                                   130
Pro Glu Gly Val Val Pro Lys Ser Lys Pro Gln Leu Asn Arg Tyr
               140
                                   145
Leu Thr Arg Trp Ala Pro Gly Ser Val Lys Pro Ile Tyr Lys Lys
               155
                                   160
Gly Pro Arg Trp Asn Arg Val Arg Met Pro Val Gly Ser Pro Leu
               170
                                   175
Leu Arg Asp Asn Val Cys Tyr Ser Arg Thr Pro Trp Lys Leu Tyr
               185
                                   190
His
```

<210> 128 <211> 214 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte Clone No: 2614153 <400> 128 Met Val Leu Gly Gly Cys Pro Val Ser Tyr Leu Leu Cys Gly Gln Ala Ala Leu Leu Cly Asn Leu Leu Leu His Cys Val 25 Ser Arg Ser His Ser Gln Asn Ala Thr Ala Glu Pro Glu Leu Thr 35 Ser Ala Gly Ala Ala Gln Pro Glu Gly Pro Gly Gly Ala Ala Ser 50 Trp Glu Tyr Gly Asp Pro His Ser Pro Val Ile Leu Cys Ser Tyr 65 70 Leu Pro Asp Glu Phe Ile Glu Cys Glu Asp Pro Val Asp His Val 80 85 Gly Asn Ala Thr Ala Ser Gln Glu Leu Gly Tyr Gly Cys Leu Lys 95 100 Phe Gly Gly Gln Ala Tyr Ser Asp Val Glu His Thr Ser Val Gln 110 115 Cys His Ala Leu Asp Gly Ile Glu Cys Ala Ser Pro Arg Thr Phe 125 130 Leu Arg Glu Asn Lys Pro Cys Ile Lys Tyr Thr Gly His Tyr Phe 140 145 Ile Thr Thr Leu Leu Tyr Ser Phe Phe Leu Gly Cys Phe Gly Val

```
155
                                     160
Asp Arg Phe Cys Leu Gly His Thr Gly Thr Ala Val Gly Lys Leu
                 170
                                     175
Leu Thr Leu Gly Gly Leu Gly Ile Trp Trp Phe Val Asp Leu Ile
                 185
                                    190
Leu Leu Ile Thr Gly Gly Leu Met Pro Ser Asp Gly Ser Asn Trp
Cys Thr Val Tyr
<210> 129
<211> 88
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2655184
<400> 129
Met Ala Cys Phe Ser Phe Phe Leu Cys Phe Leu Val His Leu Leu
Ile Lys Met Asn Pro Val Thr Glu Ser Pro Ser Cys Leu Phe Ser
                 20
                                     25
Pro Pro Ser Glu Ser Ala Leu Ala Ser Gln Leu Ala Leu Ser Ala
                 35
                                     40
Ser Cys Asp Gln Arg Ala Pro Phe Ser Leu Ala Gly Val Val Ser
                 50
                                     55
His Asp Pro Gly Trp Pro Val Val Arg Leu His Arg Pro Leu Val
                 65
                                     70
Pro Glu His Ala Val Phe Ser Gln Pro Ser Leu Gln Pro
                 80
<210> 130
<211> 260
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2848362
<400> 130
Met Pro Asp Pro Leu Phe Ser Ala Val Gln Gly Lys Asp Glu Ile
                                    10
Leu His Lys Ala Leu Cys Phe Cys Pro Trp Leu Gly Lys Gly Gly
```

25

40

55

Met Glu Pro Leu Arg Leu Leu Ile Leu Leu Phe Val Thr Glu Leu

Ser Gly Ala His Asn Thr Thr Val Phe Gln Gly Val Ala Gly Gln

Ser Leu Gln Val Ser Cys Pro Tyr Asp Ser Met Lys His Trp Gly

35

```
65
                                    70
Arg Arg Lys Ala Trp Cys Arg Gln Leu Gly Glu Lys Gly Pro Cys
                80
                                  85
Gln Arg Val Val Ser Thr His Asn Leu Trp Leu Leu Ser Phe Leu
                95
                                  100
Arg Arg Trp Asn Gly Ser Thr Ala Ile Thr Asp Asp Thr Leu Gly
               110
                                  115
Gly Thr Leu Thr Ile Thr Leu Arg Asn Leu Gln Pro His Asp Ala
               125
                                  130
Gly Leu Tyr Gln Cys Gln Ser Leu His Gly Ser Glu Ala Asp Thr
               140
                                  145
Leu Arg Lys Val Leu Val Glu Val Leu Ala Asp Pro Leu Asp His
               155
                                  160
Arg Asp Ala Gly Asp Leu Trp Phe Pro Gly Glu Ser Glu Ser Phe
               170
                                  175
Glu Asp Ala His Val Glu His Ser Ile Ser Arg Ser Leu Leu Glu
               185
                                  190
Gly Glu Ile Pro Phe Pro Pro Thr Ser Ile Leu Leu Leu Ala
               200
                                  205
Cys Ile Phe Leu Ile Lys Ile Leu Ala Ala Ser Ala Leu Trp Ala
               215
                                  220
Ala Ala Trp His Gly Gln Lys Pro Gly Thr His Pro Pro Ser Glu
               230
                                  235
Leu Asp Cys Gly His Asp Pro Gly Tyr Gln Leu Gln Thr Leu Pro
               245
                                 250
Gly Leu Arg Asp Thr
               260
```

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2849906
Met Gly Leu Pro Val Ser Trp Ala Pro Pro Ala Leu Trp Val Leu
                                    10
Gly Cys Cys Ala Leu Leu Leu Ser Leu Trp Ala Leu Cys Thr Ala
                20
                                    25
Cys Arg Arg Pro Glu Asp Ala Val Ala Pro Arg Lys Arg Ala Arg
                35
                                    40
Arg Gln Arg Ala Arg Leu Gln Gly Ser Ala Thr Ala Ala Glu Ala
                50
                                    55
Ser Leu Leu Arg Arg Thr His Leu Cys Ser Leu Ser Lys Ser Asp
                65
                                    70
Thr Arg Leu His Glu Leu His Arg Gly Pro Arg Ser Ser Arg Ala
                80
Leu Arg Pro Ala Ser Met Asp Leu Leu Arg Pro His Trp Leu Glu
                95
                                   100
Val Ser Arg Asp Ile Thr Gly Pro Gln Ala Ala Pro Ser Ala Phe
                                   115
```

<210> 131 <211> 295

```
Pro His Gln Glu Leu Pro Arg Ala Leu Pro Ala Ala Ala Thr
                                    130
Ala Gly Cys Ala Gly Leu Glu Ala Thr Tyr Ser Asn Val Gly Leu
                                    145
Ala Ala Leu Pro Gly Val Ser Leu Ala Ala Ser Pro Val Val Ala
                155
                                   160
Glu Tyr Ala Arg Val Gln Lys Arg Lys Gly Thr His Arg Ser Pro
                170
                                    175
Gln Glu Pro Gln Gln Gly Lys Thr Glu Val Thr Pro Ala Ala Gln
                185
                                    190
Val Asp Val Leu Tyr Ser Arg Val Cys Lys Pro Lys Arg Arg Asp
                200
                                    205
Pro Gly Pro Thr Thr Asp Pro Leu Asp Pro Lys Gly Gln Gly Ala
                215
                                    220
Ile Leu Ala Leu Ala Gly Asp Leu Ala Tyr Gln Thr Leu Pro Leu
                                    235
Arg Ala Leu Asp Val Asp Ser Gly Pro Leu Glu Asn Val Tyr Glu
               245
                                    250
Ser Ile Arg Glu Leu Gly Asp Pro Ala Gly Arg Ser Ser Thr Cys
                260
                                   265
Gly Ala Gly Thr Pro Pro Ala Ser Ser Cys Pro Ser Leu Gly Arg
               275
                                    280
Gly Trp Arg Pro Leu Pro Ala Ser Leu Pro
               290
```

```
<210> 132
<211> 183
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2899137
<400> 132
Met Ala Ala Ser Met Ala Arg Gly Gly Val Ser Ala Arg Val Leu
Leu Gln Ala Ala Arg Gly Thr Trp Trp Asn Arg Pro Gly Gly Thr
                                     25
Ser Gly Ser Gly Glu Gly Val Ala Leu Gly Thr Thr Arg Lys Phe
                 35
                                     40
Gln Ala Thr Gly Ser Arg Pro Ala Gly Glu Glu Asp Ala Gly Gly
                                     55
Pro Glu Arg Pro Gly Asp Val Val Asn Val Val Phe Val Asp Arg
                 65
                                     70
Ser Gly Gln Arg Ile Pro Val Ser Gly Arg Val Gly Asp Asn Val
                 80
Leu His Leu Ala Gln Arg His Gly Val Asp Leu Glu Gly Ala Cys
                 95
                                    100
Glu Ala Ser Leu Ala Cys Ser Thr Cys His Val Tyr Val Ser Glu
                110
                                    115
Asp His Leu Asp Leu Leu Pro Pro Pro Glu Glu Arg Glu Asp Asp
                125
                                    130
```

Met Leu Asp Met Ala Pro Leu Leu Gln Glu Asn Ser Arg Leu Gly

```
Cys Gln Ile Val Leu Thr Pro Glu Leu Glu Gly Ala Glu Phe Thr
                155
                                    160
Leu Pro Lys Ile Thr Arg Asn Phe Tyr Val Asp Gly His Val Pro
                170
                                    175
Lys Pro His
<210> 133
<211> 113
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2986229
<400> 133
Met Trp Arg Lys Pro Asp Val Leu Tyr Ser Val Ile Pro Val Thr
                                    10
Ser Leu Phe Phe Leu Leu Ala Leu Asn Leu Pro Asp Val Phe Gly
                 20
                                     25
Leu Val Val Leu Pro Leu Glu Leu Lys Leu Arg Ile Phe Arg Leu
                 35
                                     40
Leu Asp Val Arg Ser Val Leu Ser Leu Ser Ala Val Cys Arg Asp
                 50
                                     55
Leu Phe Thr Ala Ser Asn Asp Pro Leu Leu Trp Arg Phe Leu Tyr
                 65
                                     70
Leu Arg Asp Phe Arg Gly Asp Phe Arg Asn Asp Ile Phe Thr Arg
                 80
                                     85
Lys Gly Ser Tyr Cys Leu Asp Tyr Ser Ala His Gln Lys Phe Leu
                 95
                                    100
Val Val Gly Phe Phe Cys Cys Lys
                110
<210> 134
<211> 160
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3222081
<400> 134
Met Gln Arg Val Ser Gly Leu Leu Ser Trp Thr Leu Ser Arg Val
Leu Trp Leu Ser Gly Leu Ser Glu Pro Gly Ala Ala Arg Gln Pro
Arg Ile Met Glu Glu Lys Ala Leu Glu Val Tyr Asp Leu Ile Arg
                                     40
Thr Ile Arg Asp Pro Glu Lys Pro Asn Thr Leu Glu Glu Leu Glu
```

```
55
                                                          60
Val Val Ser Glu Ser Cys Val Glu Val Gln Glu Ile Asn Glu Glu
                 65
                                      70
Glu Tyr Leu Val Ile Ile Arg Phe Thr Pro Thr Val Pro His Cys
                 80
                                      85
Ser Leu Ala Thr Leu Ile Gly Leu Cys Leu Arg Val Lys Leu Gln
                 95
                                     100
                                                         105
Arg Cys Leu Pro Phe Lys His Lys Leu Glu Ile Tyr Ile Ser Glu
                110
                                     115
                                                         120
Gly Thr His Ser Thr Glu Glu Asp Ile Asn Lys Gln Ile Asn Asp
                125
                                     130
Lys Glu Arg Val Ala Ala Met Glu Asn Pro Asn Leu Arg Glu
                140
                                     145
Ile Val Glu Gln Cys Val Leu Glu Pro Asp
                155
<210> 135
<211> 865
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 443531
<400> 135
attecteaat tttecagtet ecettgaget aagtgtggee etatgaetea ettecageea 60
tgaaaacaag tgcaaatctg ttaggagtat gttctggggc aatttttgct ctcctgatga 120
agacaaagge tgttgateea etgaaceeae eeagacaeta tgtggtttet tgaatgteet 180
acgtacattt tgatggatta cccaaggact atctgatgaa gaataataga gacatataaa 240
tacatatggg ctacatcttg gcaaaataaa gtaatcctga agtaaattct aaggatgttc 300
tgaattgaca cctcttaagc acaaccgaat gtcctggtgg ctttgcctcc cactggggct 360
ttttggctct tgtttggccc cagcggctgc tgcagctctg tctgaattca cacaggagca 420
acatgatggt geteageeet egeegaagtg tettgetgaa gagttgggag atgettggae 480
tattcagata gaagccaact ggaagtacag ggcagtcaac acaaaccaga gaggcaaact 540
tttggccagt gagacatgga aagggagaag aaatacattc ttctttctcc cctagagtga 600
ggaccaacct gagtcccagt cacctggaat cccctcagac gagcgtccct tgagatccag 660
cacatggcag ccagcgtgct gacgattcct tcctgcctac tggctccttc ttatttctgc 720
ctccgtggaa ctgtattctc taatcaatat tagcacatac atattgcccc agactgtacc 780
teetgggaac ecaggataaa geactateta aacattttgt ettggaattg taataaactt 840
caaaagaaaa atacaaaaaa aaaaa
<210> 136
<211> 706
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 11, 12
<223> a or g or c or t, unknown, or other
```

<220>

```
<221> misc feature
<223> Incyte Clone No: 632860
<400> 136
cggaccgtgg nnttggtaaa gcccatttcc gaggatttta gggagaccta ggtggggcag 60
acactagaag tgtccagcct ccaagcccaa gagatgtggc cggcagggct gggcaggtcc 120
ttgctggctc agcctgctct ttgctccttc atgggacccc agtggatcct gcagttctgc 180
tettggetgg aaccaegeca gettegetgg agetggaetg ageegeettt tacattattg 240
gacteteteg ggttgagage tgcccaggae teetgeagtt teaccaceet tgtteetttg 300
actettgaet cateatteat gacegttaac gtggtteeat ttgtatggae ttettette 360
ttcagagcat ttcagtatcc tgttacctcc ccatgcagaa caaagaatac tccacttttg 420
atagatgggg ttaccaggat tcaggctaca tggcctgagg caaggtcaca acatgagtga 480
cagaatgtgt cctggaagcc aggcatcctc tggggtgtat ttggggcgct caacaaggct 540
tgatcgaget ttgggggtag atctagetat tecatgggga ttettttcag aattgetgtt 600
ttcggtaact aattccatga ccaggtccat ggcattggat gacattgcgc tacactgttg 660
ctcacccggg tcacccgtcc tcacaggttg gatggcaagc atgttg
<210> 137
<211> 801
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 670010
<400> 137
acttctacat gggcctcctg ctgctggtgc tcttcctcag cctcctgccg gtggcctaca 60
ccatcatgtc cctcccaccc tcctttgact gcgggccgtt caggtgcaga gtctcagttg 120
cccgggagca cctcccctcc cgaggcagtc tgctcagagg gcctcggccc agaattccag 180
ttctggtttc atgccagcct gtaaaaggcc atggaacttt gggtgaatca ccgatgccat 240
ttaagagggt tttctgccag gatggaaatg ttaggtcgtt ctgtgtctgc gctgttcatt 300
tcagtagcca ccagccacct gtggccgttg agtgcttgaa atgaggaact gagaaaatta 360
atttctcatg tatttttctc atttatttat taatttttaa ctgatagttg tacatatttg 420
ggggtacatg tgatatttgg atacatgtat acaatatata atgatcaaat cagggtaact 480
gggatatcca tcacatcaaa catttatttt ttattctttt tagacagagt ctcactctgt 540
cacccagget ggagtgcagt ggtgccatet cagettactg caacctetge etgecaggtt 600
caagegatte teatgeetee accteecaag tagetgggae tacaggeatg caccacaatg 660
cccaactaat ttttgtattt ttagtagaga cggggttttg ccatgttgcc caggctggcc 720
ttgaactcct ggcctcaaac aatccacttg cctcggcctc ccaaagtgtt atgattacag 780
gcgtgagcca ccgtgcctgg g
<210> 138
<211> 664
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 505, 518, 527, 540, 565, 566
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 726498
```

```
<400> 138
 cggacgcgtg ggctggaagg agctctggag tcggaatcag gatgtggagg ctgagaagaa 60
 atctggctct accacctggg aaactggcat ggttgtattt gtcagtgttc agtcagggga 120
gcagagccat gatgagtctt acggaaataa ggttaaaaca tatgcttgaa atttggcatg 180
gcagacaagc cagagcttgt gaaaatctaa gaaaccaaac acgtgtagcc accaaagtgg 240
aaccacaaaa gggaagatct acagaaattt gttgccttgc tgtagttcca ttaaatgagg 300
ttgtgcagtc aagcatcttg tggtgggtct ggagctgttg ccagcatcag gaagacaagc 360
 tgggtgctaa gtgaagaaat acacaatgta gaaactgtca ggcatctctg cccctggact 420
 tcaccatatc tgatgatgtt ctcagagtca gggcactgct tcacttttcg cttccaaatc 480
tcacacaaaa ttctctgtta ggcancccca gcttagancc ttacaantga gggggatcan 540
ggaaatggag tacccagata cccanngtga tatactttta tgccctcagt ttcttatctt 600
tcagtgggga taatatcctc ggatacaaaa gagtgtacat atataccctg tatttggtaa 660
acta
<210> 139
<211> 1241
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 795064
<400> 139
ccaggcaata tctcaggata tggaagtttc tgggtttatt tacccctcag tgcccagagt 60
taaagtttca gaagagactt gtgcacataa gggcttcatc tcaagtgtat tgcagtaatg 120
getgaategg ggttaacate eettecagge acagegagtt ggttetgett tttgeetgta 180
agccaaagaa aagccacatc taaaaagcta ctactaaaag ccagaaagaa aagtggattt 240
gaactcagtg tcaćagactc ttctgagtgt tttagggtca cagctagtgt aagaggcatg 300
aagaatagac atgcaaaagg gaacgggtgc accagagacc cctgttttgg ctgacagacc 360
atatgtccca ccagctgggg aatctgacaa gaggacatag gtggcactct ttttttaaag 420
ctatttattg tatctatttt taaataaaat tgcccatcct cattcagctc ttagaacaaa 480
agcaaaaaac cctgtaaatc aggagatata agcacatctg cacccagaat aggcccatat 540
gatagggcaa ccctgagctt aaacaatgac atcttcaagg gtagaactaa tctgaaaccc 600
ccttccagcc tctggaagac actggcctgc atcagttaga gtcagagcaa gtgtcacttc 660
acagggaaaa gaaggattat atagacttcc tatccctaga gtttataaat gtcaactata 720
taaaaaaagc tcaaaacagt gttaaaggaa tgaacagtag aattttaata ggctgtccaa 780
agaagccagg tetgetgtgg gcaagtatag eetaaceeta gtettgtaaa ataagccaga 840
aagggttact gagccacctt aagctagtac ctatatagta ggcaaaaagt acagaaatag 900
atgcaataag tgtggtgagt ctttgagcct acgagtcatg ccaccagcca taagttgacc 960
tatcacttga gaacctcctc agcaaagatg ccagaaaaca ttcaatcaag ttggcaaatg 1020
acacagggag ctggccctct gaccatcttc ctggcaaacc tggactggaa gggccatttg 1080
cagcactgtc ctggagctaa tacactgttt cactgcctct gccatataat gatgccagca 1140
ctagccaget ggtgggtatt tggaggaatc ctgcatgagg attgcccaat aaggggcagg 1200
tacacatacc tggcaaagtg atgatgatgt gaattgtttc c
<210> 140
<211> 750
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 570, 641
<223> a or g or c or t, unknown, or other
```

```
<220>
 <221> misc_feature
<223> Incyte Clone No: 924925
<400> 140
tggagtgggg agaagagcat acgccaggag cctcctgcct caaagtgctc ccctaagtct 60
tetteeteet gtgetgacet cagggtggte tgaccettee eteggtgtgg gggatgtgge 120
ceteteaggt geceetactt getttetget teettetggt gaagteeace teeaacatta 180
acctgcccac cccacccccg tcatccctgg agaattccag ctttgtcgta tctcagagag 240
ggaatctaat tgtttttggg gggcaaaaga aagcaacgtt taggtatcac ttctacttgg 300
accgcatgcc tttttatagc caaatttctg tgtatttcgt aaatggattt cgcgttaatg 360
gatatttatg taataactag acttctcaga ttattgtgag aagggtcagg ttggaagggg 420
tgtaggaaga cgggtgaggg gtagttttt tctgtcctag ttttttttt ttttattgtc 480
atctctgagg tggactttgt cacctgtggt tattggggcc aagtggactc agctccgggg 540
gagaaggett etetgecatt teggtecaan ggtgaetgae acaggegtae tttttgggae 600
tgtggaagca tcagatgcca gcactgactt cagaccagca nttcgggcta gaggaagatg 660
ggacetttea ggatggaaat accttggact ttettttggt eecteggaaa ettgggettt 720
ctctaccgac ttgcccagat ttcatttcac
<210> 141
<211> 1235
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 962390
ccctcaggca gcccctccac aggacccctc tcctgcctgg acagctctgc tggtctcccc 60
gtcccctgga gaagaacaag gccatgggtc ggcccctgct gctgcccctg ctgctcctgc 120
tgcagccgcc agcatttctg cagcctggtg gctccacagg atctggtcca agctaccttt 180
atggggtcac tcaaccaaaa cacctctcag cctccatggg tggctctgtg gaaatcccct 240
teteetteta ttacccetgg gagttageca tagtteecaa egtgagaata teetggagae 300
ggggccaett ccaegggeag teettetaca geacaaggee geetteeatt caeaaggatt 360
atgtgaaccg getetttetg aactggacag agggteagga gageggette etcaggatet 420
caaacctgcg gaaggaggac cagtctgtgt atttctgccg agtcgagctg gacacccgga 480
gatcagggag gcagcagttg cagtccatca aggggaccaa actcaccatc acccaggctg 540
tcacaaccac caccacctgg aggcccagca gcacaaccac catagccggc ctcagggtca 600
cagaaagcaa agggcactca gaatcatggc acctaagtct ggacactgcc atcagggttg 660
cattggctgt cgctgtgctc aaaactgtca ttttgggact gctgtgcctc ctcctcctgt 720
ggtggaggag aaggaaaggt agcagggcgc caagcagtga cttctgacca acagagtgtg 780
gggagaaggg atgtgtatta gccccggagg acgtgatgtg agacccgctt gtgagtcctc 840
cacactegtt ecceattgge aagatacatg gagageacec tgaggacett taaaaggeaa 900
agccgcaagg cagaaggagg ctgggtccct gaatcaccga ctggaggaga gttacctaca 960
agageettea tecaggagea tecacaetge aatgatatag gaatgaggte tgaacteeae 1020
tgaattaaac cactggcatt tgggggctgt ttattatagc agtgcaaaga gttcctttat 1080
cctccccaag gatggaaaaa tacaatttat tttgcttacc atacacccct tttctcctcg 1140
tccacatttt ccaatctgta tggtggctgt cttctatggc agaaggtttt ggggaataaa 1200
tagogtgaaa tgotgotgac acttaaaaaa aaaaa
<210> 142
<211> 1834
<212> DNA
<213> Homo sapiens
```

```
<220>
 <221> misc_feature
 <223> Incyte Clone No: 1259405
<400> 142
gacggaagtg cgggcggagg atccccagcc gggtcccaag cctgtgcctg tgcctgagcc 60
tgagcctgag cctgagcccg agccgggagc cggtcgcggg ggctccgggc tgtgggaccg 120
ctgggccccc agcgatggcg accctgtggg gaggccttct tcggcttggc tccttgctca 180
gcctgtcgtg cctggcgctt tccgtgctgc tgctggcgca gctgtcagac gccgccaaga 240
atttcgagga tgtcagatgt aaatgtatct gccctcccta taaagaaaat tctgggcata 300
tttataataa gaacatatct cagaaagatt gtgattgcct tcatgttgtg gagcccatgc 360
ctgtgcgggg gcctgatgta gaagcatact gtctacgctg tgaatgcaaa tatgaagaaa 420
gaagetetgt cacaateaag gttaccatta taatttatet etecattttg ggeettetae 480
ttctgtacat ggtatatctt actctggttg agcccatact gaagaggcgc ctctttggac 540
atgcacagtt gatacagagt gatgatgata ttggggatca ccagcctttt gcaaatgcac 600
acgatgtgct agcccgctcc cgcagtcgag ccaacgtgct gaacaaggta gaatatgcac 660
agcagegetg gaagetteaa gtecaagage agegaaagte tgtetttgae eggeatgttg 720
teeteageta attgggaatt gaatteaagg tgaetagaaa gaaacaggca gacaactgga 780
aagaactgac tgggttttgc tgggtttcat tttaatacct tgttgatttc accaactgtt 840
gctggaagat tcaaaactgg aagcaaaaac ttgcttgatt ttttttctt gttaacgtaa 900
taatagagac atttttaaaa gcacacagct caaagtcagc caataagtct tttcctattt 960
gtgactttta ctaataaaaa taaatctgcc tgtaaattat cttgaagtcc tttacctgga 1020
acaagcactc tctttttcac cacatagttt taacttgact ttcaagataa ttttcagggt 1080
agtggttaac aacttttttc aagtcacttt actaaacaaa cttttgtaaa tagaccttac 1200
cttctatttt cgagtttcat ttatattttg cagtgtagcc agcctcatca aagagctgac 1260
ttactcattt gacttttgca ctgactgtgt tatctgggta tctgctgtgt ctgcacttca 1320
tggtaaacgg gatctaaaat gcctggtggc ttttcacaaa aagcagattt tcttcatgta 1380
ctgtgatgtc tgatgcaatg catcctagaa caaactggcc atttgctagt ttactctaaa 1440
gactaaacat agtottggtg tgtgtggtct tactcatott ctagtacott taaggacaaa 1500
tcctaaggac ttggacactt gcaataaaga aattttattt taaacccaag cctccctgga 1560
ttgataatat atacacattt gtcagcattt ccggtcgtgg tgagaggcag ctgtttgagc 1620
tccaatgtgt gcagctttga actagggctg gggttgtggg tgcctcttct gaaaggtcta 1680
accattattg gataactggc ttttttcttc ctctttggaa tgtaacaata aaaataattt 1740
ttgaaacatc catcagtgta tctatctatg tctcctagtt ttttcctcct ccctcttttg 1800
ctgtataatg agagagaaga tctgatgaga taac
<210> 143
<211> 1722
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1297384
tacgagaccc ggccgcaccc cgagtcacac aggcccccgg ggccacggcg ttcgtctctc 60
ctgtgctgtc ctcaggcctc cgctcctgtt ttggtggccc aggctctccc ctgccccatc 120
ctcgctcccc cacctccttg ggtcatgccc acccacctt tcctgcctcc tccgtgtgaa 180
gacatccaac atccacgtga cttttccagc tccattttta aacagtgact gagattctag 240
aaaaactggc tgctaactgg cctgagccag gcaacactga ttccaatccc tcctcctttt 300
ttaagttatt tgatggaaga ctcacctaat ttgtgacctg aaactgttga agaaatagag 360
ctaggttact gggtttgggg ggattgttt cttttggggg ccttcccctt ttactccttt 480
tettecagag atcaagaget tetettgeat ettettecae tgggetetgg attaatcaat 540
```

```
tacccaaagg ctgcacctgc cgtgttgtct gggcttgcat cccagatgtg ttggagtatg 600
catggatgta gtgcttttta gaggagccac tgggcaaggc caccaagaac aaatgcatga 660
cattttatag ccaaggacgc ctcgctaaag tcttatgggc gtcccctggg gttggggggg 720
cacaaggttt tggaggaaga agacaacttc cctcattcca tcatcaccat ctctttctca 780
ctaggttctt tctagttttc aagcaatagt tctagcctgc cttggacaag ggggccccag 840
ttaaacaaac tacccatcca tgaggtgcca ggcagtcaaa aacagaagct tccccgactt 900
gtgagtccct gagatgtgct cttgttgttt ggcatttggg gtgacaggga gtgacccaga 960
ggccaccact gcttttcatg caggagttac agacactggt ttcttggaaa atggagagaa 1020
gcgcactttg cacagacgtc gtcaattaag tcccaatttg ccacttggta ttgagtacac 1080
tggaccetga ccaetggete ttgggcaaac gtccttcctc acggggcgcc tccgccaagc 1140
cggcccagct gcacccctcc cttcctggag ggatggccag ggaaggagaa aacagagaac 1200
tgacaccttt gaaaccacag aatgtgttac atgcagactc gctcaagggc ataagttatt 1260
gtgaacgttt ttgccaatca ctgctcaaca gccctgctag attttgtatg atgctgaatt 1320
attatgcaga ctaattccac ccagttgaga cacaccatgc ttgttcactt gtatttattg 1380
aaactgtgga ttcttgcccg tgctgtccct tgtatttact ttaagcactg atcacttatc 1440
atteattegg tatggtttte cetgteeett gtacacatte tggtatgaat ttgtaaaaat 1500
aacctgctac aaattggttg aatgtttctg tctgtggtgc gaaccagcat taacggatgg 1560
ggcacgtgcc caactgagga acaggagaag aaatcaccaa tttgggctct cagagctaag 1620
acacacttat tgattctgtt gcacattttg cactggttta tggcgattgt tttcttggac 1680
ggatagtgta aaataaactt ctctgttctc taaaaaaaaa aa
<210> 144
<211> 1741
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1299627
<400> 144
ttcgctccaa gcctcaggcc accggcttgg atggacgctc cgaggctacc cgtgcgtcca 60
ggggtettge tteegaagtt ggteetgete tttgtetaeg eagatgattg eettgeteag 120
tgtggcaaag attgcaaatc ttactgctgt gatggaacca cgccctactg ttgctcctac 180
tacgettata ttgggaatat ceteteggge actgeaattg egggeattgt ttttggaata 240
gtatttatca tgggggtcat tgctgggatt gccatatgca tctgcatgtg catgaagaac 300
cacagggcga cccgcgtggg catcctcagg acgactcaca tcaacaccgt ctcctcctat 360
cctggaccac caccctacgg tcacgaccac gagatggaat actgtgcaga cttgcctcct 420
ccatactccc ccaccccaca gggtccagca cagcgttctc caccccctcc ttatcctgga 480
aacgcaagga aataatctat ctcccagaac agaacatgtg ccaatgggcg atcttgcctg 540
gaataaaatg cctctactca gaaacaggca ggaaagaatt gctccaagga atactttttg 600
gggtcagata atgtgtcagg tggaatatcc ctgctaggag atataggatt tctactctgc 660
tcaaagctga ccccatctgg agtattaatg tttggttcta tggaaccaca ttttaagaga 720
tetgetgate caectaagea catteaggga agagtaatgt aattgacaaa atatetgata 780
atcatgttgt ttaagggcta ggtgaagaaa gtttcagtat tgatcctgga aaaaaagaag 840
atctaagtag gatgggagaa tgatttggcc cacacaagga agcaacttta ttctatatag 900
ctttaaaagt cagaactaga attgttcatt ctttcattca tcaataaatg tattttgagt 960
gcctaagagt ttactatgtg cctagcactg tttgaggtcc tgatggaagt tacaggatgg 1020
gtactctggt tttagtacaa gaaagagcaa tgactagatt gctttgtgaa gctcttggta 1080
gagacacgct ccagaaggga taacaaaatc aaatagtaga tgggttcatt gggcctcaga 1140
agttctgctc gtattttagg tgggtgtgaa gtgaatttct atatgtccag gagtgaatac 1200
aacagaaaga gttggatctt atttatttaa ttagggagtt aaaacaagac caaaaagact 1260
caacageege ttgaageeaa gaactettea atgeeageta etgeeaceta aaaateatet 1320
ggctttatag tggatcagaa taaaggttat tctaactgtg gggagaaaaa aaaaattgta 1380
tcaagttcca caggtagcag acacttcact tccaagtaaa agatgagaaa tcaattattc 1440
ccacaggatt ttaggtcagg gagcaaaaat ctcagaactt gaccatgaag atacacaaca 1500
```

```
gactcgcaaa aataaagtgg gaaatgaagt tcagattccc ttctgtagat ttccttaaaa 1560
 ctattatttt tttcttcttc gtaaaatttt gataatctgt tctcttaaaa aagttaatga 1620
 cacaattaag atactgacat caaattgttg ccttttacca aaatgcaaat tttatgaagt 1680
 <210> 145
 <211> 997
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 973
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 1306026
ggacaaccgt tgctgggtgt cccagggcct gaggcaggac ggtactccgc tgacacctte 60
cctttcggcc ttgaggttcc cagcctggtg gccccaggac gttccggtcg catggcagag 120
tgctacggac gacgcctatg aagcccttag tccttctagt tgcgcttttg ctatggcctt 180
cgtctgtgcc ggcttatccg agcataactg tgacacctga tgaagagcaa aacttgaatc 240
attatataca agttttagag aacctagtac gaagtgttcc ctctggggag ccaggtcgtg 300
agaaaaaatc taactctcca aaacatgttt attctatagc atcaaaggga tcaaaattta 360
aggagetagt tacacatgga gaegetteaa etgagaatga tgttttaace aateetatea 420
gtgaagaaac tacaactttc cctacaggag gcttcacacc ggaaatagga aagaaaaaac 480
acacggaaag taccccattc tggtcgatca aaccaaacaa tgtttccatt gttttgcatg 540
cagaggaacc ttatattgaa aatgaagagc cagagccaga gccggagcca gctgcaaaac 600
aaactgaggc accaagaatg ttgccagttg ttactgaatc atctacaagt ccatatgtta 660
cctcatacaa gtcacctgtc accactttag ataagagcac tggcattgag atctctacag 720
aatcagaaga tgttcctcag ctctcaggtg aaactgcgat agaaaaaccc gagagttgga 780
agcaccagag agtgggatat gatgcatttg aaaaaaattt agtattaatc acaatgcaca 840
ggcacttcta gtgacacagc acccagctat agagagatat gaaggggtac gagctcgaat 900
togaatcatg toatagotgt troctgtgtg aartggtato gotcacaatg cacacacata 960
cgagcggaag ctnaattggt aagcgggggt gccatga
                                                                997
<210> 146
<211> 981
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1316219
<400> 146
gttttaaatt tacttaataa atataaaata ttgtatgttc ttaacttgaa gctcatattt 60
tcaagtaatt ccttgtctgg aattttctgt tgatctcatg ggtactaaga aacgaaatat 120
tctgttcatt ttcattttta aagaatatcg ataacttgat gaccccagaa ggagttggcc 180
ttaccactgc cttacgtgtt ctctgtaatg ttgcatgccc accacctcct gttgaaggtc 240
aacagaaaga totgaaatgg aatottgoog ttattcagot tttttctgot gaaggaatgg 300
acacgtttat tcgagttctg caaaaattga acagtattct gactcagcct tggaggctcc 360
```

```
atgtcaacat ggggactacc cttcacagag ttactactat ttcaatggct cgctgcacac 420
tractettet taaaactatg ttaacggaac teetgagagg tggateettt gagtttaagg 480
acatgcgtgt tccttcagcg cttgttactt tacatatgct cctgtgctct atccccctct 540
caggtcgttt ggatagtgat gaacagaaaa ttcagaatga tatcattgat attttactga 600
cttttacaca aggagttaat gaaaaactca caatctcaga agagactctg gccaataata 660
cttggtcttt aatgttaaaa gaagttcttt cttcaatctt gaaggttcct gaaggatttt 720
tttctggact catactcctt tcagagetgc tgcctcttcc attgcccatg caaacaactc 780
aggtatcact tccatataac atgcatctta taaatgactg cagtaacact ttttaaaaag 840
ccagtgattt tgttaaaaaa caaaaaccct catctccctt cctcccaaaa agacataaaa 900
taaccggatg agggggagat aaaactgaaa caagttggtc attgaggaaa tatgggggta 960
aaaattttaa ataaattttt g
                                                                   981
<210> 147
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1329031
<400> 147
ctgcaggccc acctgtctgc aacccagctg aggccatgcc ctccccaggg accgtctgca 60
geotectget ceteggeatg ctetggetgg acttggecat ggcaggetec agetteetga 120
gccctgaaca ccagagagtc cagcagagaa aggagtcgaa gaagccacca gccaagctgc 180
agccccgagc tctagcaggc tggctccgcc cggaagatgg aggtcaagca gaaggggcag 240
aggatgaact ggaagtccgg ttcaacgccc cctttgatgt tggaatcaag ctgtcagggg 300
ttcagtacca gcagcacagc caggccctgg ggaagtttct tcaggacatc ctctgggaag 360
aggecaaaga ggececagee gacaagtgat egeceacaag cettaeteac etetetetaa 420
gtttagaagc gctcatctgg cttttcgctt gcttctgcag caactcccac gactgttgta 480
caageteagg aggegaataa atgtteeaac etggtaaaaa aaaaaa
<210> 148
<211> 2090
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1483050
gaggcgcggg gagagtaggg tgctgtggtc tgagctagag ggtgaagctg gcggagcagg 60
aggatgggcg tatgcaggtg atagactaga gaacaagacc tctgtctccg tagcatcctg 120
gagcagtetg aatgccagaa tggataaccg ttttgctaca gcatttgtaa ttgcttgtgt 180
gettageete atttecacca tetacatgge ageeteeatt ggeacagaet tetggtatga 240
atatcgaagt ccagttcaag aaaattccag tgatttgaat aaaagcatct gggatgaatt 300
cattagtgat gaggcagatg aaaagactta taatgatgca ctttttcgat acaatggcac 360
agtgggattg tggagacggt gtatcaccat acccaaaaac atgcattggt atagcccacc 420
agaaaggaca gagtcatttg atgtggtcac aaaatgtgtg agtttcacac taactgagca 480
gttcatggag aaatttgttg atcccggaaa ccacaatagc gggattgatc tccttaggac 540
ctatctttgg cgttgccagt tccttttacc ttttgtgagt ttaggtttga tgtgctttgg 600
ggetttgate ggaetttgtg ettgeatttg eegaagetta tateeeacca ttgeeacgg 660
cattetecat etecttgeag gtetgtgtae aetgggetea gtaagttgtt atgttgetgg 720
aattgaacta ctccaccaga aactagaget ceetgacaat gtateeggtg aatttggatg 780
```

```
gtccttctgc ctggcttgtg tctctgctcc cttacagttc atggcttctg ctctctcat 840
ctgggctgct cacaccaacc ggaaagagta caccttaatg aaggcatatc gtgtggcatg 900
agcaagaaac tgcctgcttt acaattgcca tttttatttt tttaaaataa tactgatatt 960
ttccccacct ctcaattgtt tttaattttt atttgtggat ataccatttt attatgaaaa 1020
tctattttat ttatacacat tcaccactaa atacacactt aataccacta aaatttatgt 1080
ggtttacttt aagcgatgcc atctttcaaa taaactaatc taggtctaga cagaaagaaa 1140
tggatagaga cttgacacaa atttatgaaa gaaaattggg agtaggaatg tgaccgaaaa 1200
caagttgtgc taatgtctgt tagacttttc agtaaaacta aagtaactgt atctgttcaa 1260
ctaaaaactc tatattagtt tctttgggaa acctctcatc gtcaaaactt tatgttcact 1320
ttgctgttgt agatagccag tcaaccagca gtattagtgc tgttttcaaa gatttaagct 1380
ctataaaatt gggaaattat ctaagatcat tttccctaag cattgacaca tagcttcatc 1440
tgaggtgaga tatggcagct gtttgtatct gcactgtgtc tgtctacaaa aagtgaaaaa 1500
tacagtgttt acttgaaatt ttaactttgt aactgcaaga attccagttc agccgggcga 1560
ggattagtat tatttttaac teteegtaag atttteagta eeaccaaatt gttttggatt 1620
tttttttttt cctcttcaca taccagggtt attaaaagtg tgctttcttt ttacattata 1680
ttacagttac aaggtaaaat teeteaactg etatttattt attecageee agtactataa 1740
agaacgtttc accataatga ccctccagag ctgggaaacc taccacaaga tctaaagttc 1800
tggctgtcca ttaacctcca actatggtct ttatttcttg tggtaatatg atgtgccttt 1860
ccttgcctaa atcccttcct ggtgtgtatc aacattattt aatgtcttct aattcagtca 1920
tttttttata agtatgtcta taaacattga actttaaaaa acttatttat ttattccact 1980
actgtagcaa ttgacagatt aaaaaaatgt aacttcataa tttcttacca taacctcaat 2040
<210> 149
<211> 2403
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1514160
<400> 149
gggagagagc agcagagacc tcatcagcag accaaggaag tggtgggtgc tccccctccc 60
taagctccag ggtccctgaa tcttctgaaa tctcaaatga gtggaggcct cctggggtgg 120
cctgtcctgc aggggccctg gaatgggggc aagcagctgg gtgggcagaa tgcagagtag 180
acteggggga ggateettte acttteeget teeeettetg atgeatggag gatggtgtga 240
gettttcage aggeceggaa aggtacgcag gtgacgcett ageageceeg cagetggtge 300
tetgeecege ggtactggeg ccatcaggge etecettgee egeetgagag cagcagcagt 360
ctctgtcatc ccgtcgcccc ttacccccca ccccaggcca ctgggcccct cccacaccac 420
ctggggagct gagaagagga ggctggagta agggaggact tgatcatcca agaaatactt 480
tttattgctg ggagtcttct gaacctcacc aaactgaggc cagagctgag ctcctggggg 540
agttaattca gaggggagag gccagcacct ccctcctcca tcgctcgctg tgtgccttaa 600
actocatoto atgtocotoc coatococtg gotttocoto cotocttgcc coatoctggg 660
ccagccagca gggctcctcc tctggctctt cagacctttc agccagtgct gtcagtgccc 720
ctgggaggga agggcatccc tgaggcaccc gaatggtccc tcagggtgca gggaggcaga 780
agectggcca cagaggagee teetaaggea geagetgeag caagegeace eteteceeae 840
tetececaeg ccagagegge ttecagagea gatgetgttt ccatectect egteaaaace 900
attetegetg etgagettga caatetggge aaggettgtg gggegettga caaacagaat 960
ctgccctgtg ccgcctggtt ccgtggcctc cagcatgagc ctgcaggcag ggcgctgcgg 1020
gaacccagtt gtgctgcccc agcccatgcc tccgggtctg ctgtgcatga atgagtgctc 1080
acttgtcccg ggtttaggac gtggtcaagt gaacagcagg gtctaactgt gcttacttag 1140
cccagttcaa acagaacaaa ggaaaaatat agaaagcaac atctgttgat catttaggtt 1200
tttttttaaa ccaccatgtc actttgagtc cttcatgggt ttttgaacag catttatcaa 1260
gaagaaaatg tgggcttttt cccctctccc gtgttttgtt tgtcctgtag atagagggag 1320
gaaagccgtg cagtggcagg cgggaccccc tctggtggcg ggaccccctc ttgcggtggt 1380
```

```
cttgcggggc cagccgggac ctgtcacttt attatttaag gagtgtgtgt gtagagtcgc 1440
 tggcttatta acagtattgt gtgtgggttg ggtttttagt ttgttccttc tttttgaagt 1500
 ecetteattt caateettga etetetetee eetteeettg eceagetetg ttgaatgetg 1560
ctgtgcgcgt gtgagggccg ctctgcacac agggcccttg ggttgtgtga actgaaattc 1620
tccctgtatt tgtgagactc gcaggagtcc ccatctgtag cacaggcaat gccagtgcca 1680
tgctgcagcc tcagaaacca ggcctctcac tccagcagca ggcagaaccg tgtctgtggt 1740
cgggtgctgt ccacagctct gtctgccttg ttcttgggct tgagctggat agaggtgggg 1800
tetetteace tteectgaat teagaacaga ecetgtgeet ggeeceagtg tgeecaggea 1860
attecceagg ccctcattgg gagecettgg tgttctgage ageagggece aggeageaca 1920
tgagcagtgc ccaggggctc cctgcgtgag gacggcaagg tgcgatgtat gtctaactta 1980
ttgatggcag gcagccccct gtgcccccta agcctggccc tggttattgc tgagctctgt 2040
gctcagtgct gcggcctggc cgtggctcgt ctgttccttt ggggggcccg ggcgggttgt 2100
gggaatcagt cttcacagac agacgtgagc caggcggagg actcgttcct tgcagaggtc 2160
agtectcace tgcaggtgtc ggggtggggg ggggcaagga ggggcaggca cacaccatgt 2220
ctgacctgaa cccgattctg gggagcatct tcccgctccg gccccacgac ctccacaggg 2280
ttacattgta atatatatgc cccagctaac ctgtctgatg gtggcatctt cctgcagaca 2340
tttcaaacat gtaactttta tatgaaaaaa aataaacaca gatgaaagct gaaaaaaaaa 2400
aaa
                                                                   2403
<210> 150
<211> 431
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1603403
<400> 150
ggccaccggg acttcagtgt ctcctccatc ccaggagcgc agtggccact atggggtctg 60
ggctgcccct tgtcctcctc ttgaccctcc ttggcagctc acatggaaca gggccgggta 120
tgactttgca actgaagctg aaggagtctt ttctgacaaa ttcctcctat gagtccagct 180
teetggaatt gettgaaaag etetgeetee teeteeatet eeetteaggg accagegtea 240
ccctccacca tgcaagatct caacaccatg ttgtctgcaa cacatgacag ccattgaagc 300
ctgtgtcctt cttggcccgg gcttttgggc cggggatgca ggaggcaggc cccgaccctg 360
tettteagea ggececcace eteetgagtg geaataaata aaatteggta tgetgaatte 420
aaaaaaaaa a
                                                                  431
<210> 151
<211> 2109
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1652303
tttgtagcca agtgggagct attttctttt ttgtgcatat agatatttct taaatgaagc 60
tgctttcttg tctttattt ctaaaagccc ccttataccc cactttgtgc agcaaagatc 120
cccgtgcagg tcacagcctg atttgtggcc aggctggaca aattcctgag gcacaacttg 180
gcttcagttc agatttcaag ctgtgttggt gttgggacca gcagaaggca aacgtccagc 240
caacacacag gactgtaaga ggactctgag ctacgtgccc tgtgaagacc cccaggcttt 300
gtcataggag gtcgttcagc ttccccaaag tcagaggtga tttgatttgg ggaagactga 360
atattcacac ctaagtcgtg agcatatect gagttttact teettatgge ttgeeeteea 420
```

```
agttetetet eteatacaea cacacaecet tgetecagaa teaceagaea eeteeatgge 480
tccagctatg ggaacagctg cattggggct gcctttctgt ttggcttagg aacttctgtg 540
cttcttgtgg ctccactcgc gaggcagctc ggaggtgtgg actccgattg ggctgcaggc 600
agetetggga eggeacaggg egggegetet gateageteg tgtaaaacac acegtettet 660
tggcctcctg gccagtcttt ctgcgaatag tcctctccct ggccagttga atgggggaag 720
ctgctggcac aggaaggaga ggcgatcccg gctgaggctt aggaaattgc tqqaqccqqc 780
tccaagcaga taattcactg gggaggtttt cagagtcaaa catcattctg cctgtgttgg 840
gggccaggtg tgtcacacaa gcatctcaaa gtcaaaagcc atctggggct gctgcttctc 900
tttctcaggc tctggggaaa ggaatctccc tctcctctca cttgattcca agtgtggttg 960
aattgtctgg agcactggga ctttttttct cttttccttg atggaccaac agtgcaaatg 1020
caatetegee atttaaettt eaggtegatt teettteetg ateagacate tttgtgeece 1080
ctttaggaag gaaaagaata cacctacgat gtgccaggca ctgtgttagg cgcttttata 1140
tagatecteg ttaggatgag actaagggat gaggacatet etttataaaa ggeeeetaag 1200
taatggataa acagaaacac ttagaggtga gaaggtctgt cttcaagatc caaggtaaga 1260
ttgccttcag tctgatgttt gttctcaagg acttatcccc tacaatattc tcccactcca 1320
tactteteet tetaceccae catgtgetee egtgeactee teagatggte agaggggtaa 1380
cccaagtcct tagagaattt ggggaccaat agaatatgtg atgtgtgaat tttctttaaa 1440
aaacttaagg agtctttgct accttctgct tgttgagttg ttttggcatt catattaaaa 1500
gccagcatct cactatttat tgacaggttg ggctgtgtgt gtgcgcatgt gtgtatacat 1560
ttccaggcgt gcctgtgtcc tgtagctttt taaaaggaaa cccagtcatc ccactatgaa 1620
tetggeatet tettatgett etagtgtttt ggeeatacat caaccaaggg gtttaattta 1680
tccaatgctt gacgacatgt tcaggagggg ctggatcaaa ttttgagagg gttatgggaa 1740
agggaggggg agaagaaatt gacatttatt ttattattta ttttaaatgt ttacatcttc 1800
tttatgttgt atcaagcctg aatagaaact gatagcatta aaatactccg ttcctctctc 1860
tetteteget teettettt tettettaa atttaggata acacattett gettetaaag 1920
tgatttgtga tttgtgctgt ataaactgta taaaaggttc tgtttttaaa ggtggatttt 1980
catteetetg gggacagtgg tegecaagae atetacattg taagagaaca cagtggaaga 2040
tectgteetg atteteaaaa attatttet etgtatgatt aaaagtttat tecatttaaa 2100
aaaaaaaa
<210> 152
<211> 1114
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1693358
<400> 152
ggccggagca gctgtcaggc tgaagtcctg cgagcgacgc gcggcggggc ggcgagagga 60
aacgcggcgc cgggccgggc cgggccctgg agatggtccc cggcgccgcg ggctggtgtt 120
gtetegtget etggeteece gegtgegteg eggeceaegg etteegtate eatgattatt 180
tgtactttca agtgctgagt cctggggaca ttcgatacat cttcacagcc acacctgcca 240
aggactttgg tggtatcttt cacacaaggt atgagcagat tcaccttgtc cccgctgaac 300
ctccagaggc ctgcggggaa ctcagcaacg gtttcttcat ccaggaccag attgctctgg 360
tggagagggg gggctgctcc ttcctctcca agactcgggt ggtccaggag cacggcgggc 420
gggcggtgat catctctgac aacgcagttg acaatgacag cttctacgtg gagatgatcc 480
aggacagtac ccagcgcaca gctgacatcc ccgccctctt cctgctcggc cgagacggct 540
acatgateeg eegetetetg gaacageatg ggetgeeatg ggecateatt tecateeeag 600
tcaatgtcac cagcatcccc acctttgagc tgctgcaacc gccctggacc ttctggtaga 660
agagtttgtc ccacattcca gccataagtg actctgagct gggaagggga aacccaggaa 720
ttttgctact tggaatttgg agatagcatc tggggacaag tggagccagg tagaggaaaa 780
gggtttgggc gttgctaggc tgaaagggaa gccacaccac tggccttccc ttccccaggg 840
cccccaaggg tgtctcatgc tacaagaaga ggcaagagac aggccccagg gcttctggct 900
agaacccgaa acaaaaggag ctgaaggcag gtggcctgag agccatctgt gacctgtcac 960
```

```
acteacetgg etecageete ecetacecag ggtetetgea cagtgacett cacageagtt 1020
gttggagtgg tttaaagagc tggtgtttgg ggactcaata aaccetcact gactttttag 1080
caataaagct tctcatcagg gttaaaaaaa aaaa
<210> 153
<211> 2192
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1707711
<400> 153
ggaactcatg agccaacagc tgaagaaacc cattgctaca gcttccagtt gaatgccggg 60
gagaaacctg tccaatttta gcaggtttga agggaggatc ttcttcagtt gtagtttgga 120
aggttccttg gtgtggctca tgaaatcaca gagctcagag ataccatctt gagaaatcct 180
ccttggtatc atgaaactgg agcagaggaa ttgcaattta gcaggaggtc ctctactggt 240
gataccctca ccttggggta atggtcctaa cccagaccca gggtctggaa gcttaatgtt 300
gagttggtga ctccagcctc tttctcctgg aggtcacaag atgatgattg cgtagatgtt 360
gcctggtgca aagtgcccca aacagcaata gaaaggcata tgtataacca aactccaagt 420
gataaccaga cccatctctc etccaccttg acaaaagcag attatagtat acaaggtagq 480
aattootgto otatttgaga tgaactatat cotgtacoto tgtgototgt gtotgoatga 540
aggeteagee tttagaggea etecttetag ttgeattagt actgtettte tgtggagttt 600
ggtttgaaga ctggctcagc aagtggaggt ttcaatgtat ttttcagttg gctcatcagc 660
cagcattggt gaatattcag tttaggggaa cagttctagg gagtgagaca tttttgggag 720
cagaggaaaa ctctgctgat gttcggtcct ggcaaacatt gagttatttt gagctgtgaa 780
ggcagtcgtc tctgttacac agtggcagct cttgagttat gcactgtgaa gaatgagaag 840
ggaaaagcaa aaattateet tgtgaaatat etgetgattg tgeeetaete tttgeaeetg 900
acttttccta gttgtcctgg tgctaacaca ggagctacac cttgatcctc tcctggcatg 960
aaaataaaac aaaggttttc gttgttgttg ttccattgcc catttccccc atgttgtctt 1020
teeettgget gatgeeteet etgggteaca ttgettetta teetgaacac ttgacacett 1080
gagggtagaa tttagcgttt ggtttttacc tcctagcata tgctgtttgg tatgtgaggg 1140
tttcagtaca aatgctgctg tctatttctg tgcacttaac aatggaaccc aaacagaaga 1200
gaataaagcc ttgataccaa aattgggaaa gaacatgtgt ccatttggac caaacqttgt 1260
tggtttttaa aaaattttat tttgtttttt tgtttttgtt tttgtttttt ttcatcttaa 1320
tatgtaccag tggcacttaa ccaaaagata cagtgatata gccatgtact gtgggtggga 1380
cagatacagt ctccttggcc tataatgaaa ccactaggac tttatacagt tttccttaat 1440
ttgttgacat ataaatggta aattatattt aggettatee tgttttgaaa tgatggtagt 1500
catctttctt actgctactt tcatgttgct ttctagaaaa cagcatttca ttccaaaata 1560
actaggatet geatttagaa caagaateat tatttgteet gaeettttea gteetacaga 1620
gacgcatctg tggttctttt gtacttgcca tagatgtaac ctaaaaagtt ttggcatatt 1680
taggtcagcc tagcggaact tttttttca tttaaatgga gctgaataat ggagattttg 1740
tgtctgcaaa attcctgaga tcattgaaaa agtaacaagc tgttccttgt ttctgataca 1800
taaaattatt ttaagcattt tatcaatcat taaaatttac tgccagttgt gagtggcttt 1860
ttaattaact tgtctttcat tgcacttcac tctgcctgtt ttcaagggga gtaagattgg 1920
taacatttgg ggagactgta tctgtctact tagcgtggct gttttgaggg actgtcccat 1980
cagtgaacaa actgcatggc cttggagaga gactctgggc tcttggctca gatgtgttca 2040
tcaaatactc ctttcagagc tgttgtgggt gtaagtgaca tgatgtggcc aaaaatccaa 2100
actgtgcagt tgcgttgtga caaacatgca atgtgctgta aaaattcaat acagtttaaa 2160
taaaatctct atattagtgc tgaaaaaaaa aa
                                                                  2192
<210> 154
```

<211> 913

<212> DNA

```
<213> Homo sapiens
 <220>
<221> misc_feature
<223> Incyte Clone No: 1738735
ctcgagcggc tcgagagcgg ggcaaactgc ttggcacctc ttcaataggt gacattcaat 60
gatagatete tggetteetg etetgtttgt tetggttgee etggaaagee tgetgeteag 120
cccatgcccc gggacttcct ccaccctcac caggacattc tttccatctc ttgtctcctg 180
tgtgcaagtc cctttctcct ggattccatg tcttgaatgt ttcttaattt acttcctcat 240
tttggcagag gatgtcctcc agttgttttc tgggaatgct aatatgcaag tgaaccagtg 300
acctgcagtt ctgcccacac agggttaata accaatcaga ttctctcttt tcaagatggt 360
taacataaca gacaccaaga aagggaagag gagccgacag cagaggggga agctgaaaag 420
acgcacaaag aatggccata aaagatatga gcaaccccag ctttccagac agtcactttt 480
cccagtggtc atacctggtc tggaagattc cccatcatct cgaataaagc tgttgttgct 540
tttaactcca tggagagacc gaatggagtg agcccagcag ggcatgctgg gcaagagagg 600
tececegagt eccaaataag aattteaaet agtataaaae gaggeagega acceaeaegt 660
ggaagtetga taccgettge agaagggaat tgaatagatg tetecetatt ggtaaggatg 720
tggttttatt gacttgaaat aacaaagccc gcaagcaaca actgatcatc cgcgggatgc 780
tgccacaagg aataattgag cactcattca gacacagggg aaaccactgc ctctttcagt 840
ctttctccca gattccaaca gtcagtgtta cagcatttca ccttgttcac ctccctgaga 900
agacgttgca ggg
                                                                   913
<210> 155
<211> 480
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1749147
<400> 155
cttctgttca ggctgggatt acaggtgtga gccgctgcgc tcggccttct ttgatttat 60
attattagga gcaaaagtaa atgaagccca ggaaaacacc tttgggaaca aactcttcct 120
ttgatggaaa atgcagaggc cetteetete tgtgeegtge ttgeteetet tacetgeeeg 180
ggtggtttgg gggtgttggt gtttcctccc tggagaagat gggggaggct gtcccactcc 240
cagetetgge agaateaage tgttgeagea gtgeettett cateetteet taegateaat 300
cacagtetee agaagateag eteaattget gtgeaggtta aaaetacaga accacateee 360
aaaggtacct ggtaagaatg tttgaaagat cttccatttc taggaacccc agtcctgctt 420
ctccgcaatg gcacatgctt ccactccatc catactgcag tcgtcaaata aacagatatg 480
<210> 156
<211> 545
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1817722
<400> 156
caggetatta agaaaggegg acceatgeac atgattttaa aggttetgae aactgeattg 60
ctgttacaag ctgcttcagc tttagctaat tacattcatt tctccagtta ctccaaagat 120
```

```
ggaatagggg taccatttat gggaagtttg gcagaatttt ttgacatcgc ttcccaaatt 180
 cagatgttat acttactttt gagtctatgc atgggttgga caatagtcag aatgaagaag 240
 totcaaagca gacctotcca gtgggattot acacctgcat ccactggcat tgcagtattc 300
 attgtcatga cacagagtgt tttgctactt tgggaacagt ttgaagatat cagtcatcat 360
 agetaceatt cacaccacaa ettageaggg atectectaa ttgttetaag aatttgeeta 420
 gcattgtcat taggctgtgg actctatcag atcatcacag tggagagaag tacactcaaa 480
 agggagttet acateacatt tgecaaagta tgggtttgga aagaaaatgg tttattetga 540
 <210> 157
 <211> 1746
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1831290
<400> 157
ttggcatcag cttgggcagg tgtgcgggct caggatgggg cggccgtggt gaggaaccct 60
ggacteteag cateacaaga ggeaacaeca ggagecaaca tgageteggg gaetgaaetg 120
ctgtggcccg gagcagcgct gctggtgctg ttgggggtgg cagccagtct gtgtgtgcgc 180
tgctcacgcc caggtgcaaa gaggtcagag aaaatctacc agcagagaag tctgcgtgag 240
gaccaacaga getttacggg gtcccggacc tactccttgg tcgggcaggc atggccagga 300
cccctggcgg acatggcacc cacaaggaag gacaagctgt tgcaattcta ccccagcctg 360
gaggatccag catcttccag gtaccagaac ttcagcaaag gaagcagaca cgggtcggag 420
gaageetaca tagaceecat tgeeatggag tattacaact gggggeggtt etegaageec 480
ccagaagatg atgatgccaa ttcctacgag aatgtgctca tttgcaagca gaaaaccaca 540
gagacaggtg cccagcagga gggcataggt ggcctctgca gaggggacct cagcctgtca 600
ctggccctga agactggccc cacttctggt ctctgtccct ctgcctcccc ggaagaagat 660
gaggaatctg aggattatca gaactcagca tccatccatc agtggcgcga gtccaggaag 720
gtcatggggc aactccagag agaagcatcc cctggcccgg tgggaagccc agacgaggag 780
gacggggaac cggattacgt gaatggggag gtggcagcca cagaagccta gggcagacca 840
agaagaaagg agccaaggca aagagggacc actgtgctca tggacccatc gctgccttcc 900
aaggaccatt teecagaget acteaacttt taageeestg ceatggttge teetggaagg 960
agaaccagcc accctgagga ccacctggcc atgcgtgcac agcctgggaa aagacagtta 1020
ctcacgggag ctgcaggccc gtcaccaagc cctctcccga cccaggcttt gtggggcagg 1080
cacctggtac caagggtaac ccggctcctg gtatggacgg atgcgcagga tttaggataa 1140
getgtcacce agtccccata acaaaaccac tgtccaacac tggtatctgt gttcttttgt 1200
gctatgaatt tggattccta attgctattg ttggttgctg gggttttaaa tgattgataa 1260
gcttgtacag ttaacttata gaggggagc catatttaac attctggatt tcagagtaga 1320
gatttctgtg ttgtctccta gaaagcatta catgtagttt atttcagcat ccttgttggg 1380
tggggccctg gctctcttcc cctttggtgg gacctcccct ttctttgggc ttcagttcac 1440
tcaggaagaa atgaggctgt cgccatcttt atgtgcttcc agtggaaatg tcacttgcta 1500
cagacaatag tgcatgagag tctagagaag tagtgaccag aacagggcag agtaggtccc 1560
ctccatggcc ctgaatcctc ctctgctcca gggctggcct ctgcagagct gattaaacag 1620
tgttgtgact gtctcatggg aagagctggg gcccagaggg accttgagtc agaaatgttg 1680
ccagaaaaag tatctcctcc aaccaaaaca tctcaataaa accattttag ttgaaaaaaa 1740
aaaaaa
                                                                  1746
<210> 158
<211> 2011
<212> DNA
```

<213> Homo sapiens

```
<220>
<221> misc_feature
<223> Incyte Clone No: 1831477
<400> 158
ggagcacggc gctggggccg cccgcagcgc tcactcgctc gcactcagtc gcgggaggct 60
teccegegee ggeegegtee egeeegetee eeggeaceag aagtteetet gegegteega 120
cggcgacatg ggcgtcccca cggccccgga ggccggcagc tggcgctggg gatccctgct 180
cttegetete tteetggetg egteectagg teeggtggea geetteaagg tegecaegee 240
gtattccctg tatgtctgtc ccgaggggca gaacgtcacc ctcacctgca ggctcttggg 300
ccctgtggac aaagggcacg atgtgacctt ctacaagacg tggtaccgca gctcgagggg 360
cgaggtgcag acctgctcag agcgccggcc catccgcaac ctcacgttcc aggaccttca 420
cctgcaccat ggaggccacc aggctgccaa caccagccac gacctggctc agcgccacgg 480
getggagteg geeteegace accatggeaa etteteeate accatgegea acetgaeeet 540
gctggatagc ggcctctact gctgcctggt ggtggagatc aggcaccacc actcggagca 600
cagggtccat ggtgccatgg agctgcaggt gcagacaggc aaagatgcac catccaactg 660
tgtggtgtac ccatcetect cccaggagag tgaaaacate acggetgcag ccctggetac 720
gggtgcctgc atcgtaggaa tcctctgcct cccctcatc ctgctcctgg tctacaagca 780
aaggcaggca gcctccaacc gccgtgccca ggagctggtg cggatggaca gcaacattca 840
agggattgaa aaccccggct ttgaagcctc accacctgcc caggggatac ccgaggccaa 900
agteaggeac eccetgteet atgtggeeca geggeageet tetgagtetg ggeggeatet 960
gcttteggag cccagcaccc ccetgtetec tccaggeccc ggagacgtet tetteccate 1020
cetggaccet gtccctgact ctccaaactt tgaggtcatc tagcccagct gggggacagt 1080
gggctgttgt ggctgggtct ggggcaggtg catttgagcc agggctggct ctgtgagtgg 1140
ceteettgge eteggeeetg gtteeeteee teetgetetg ggeteagata etgtgacate 1200
ccagaagccc agcccctcaa cccctctgga tgctacatgg ggatgctgga cggctcagcc 1260
cctgttccaa ggattttggg gtgctgagat tctcccctag agacctgaaa ttcaccagct 1320
acagatgeca aatgaettae atettaagaa gteteagaae gteeageeet teageagete 1380
tcgttctgag acatgagcct tgggatgtgg cagcatcagt gggacaagat ggacactggg 1440
ccaccetece aggeaceaga cacagggeae ggtggagaga ettetecece gtggeegeet 1500
tggctccccc gttttgcccg aggctgctct tctgtcagac ttcctctttg taccacagtg 1560
gctctggggc caggcctgcc tgcccactgg ccatcgccac cttccccagc tgcctcctac 1620
cagcagtttc tctgaagatc tgtcaacagg ttaagtcaat ctggggcttc cactgcctgc 1680
attccagtcc ccagagettg gtggtcccga aacgggaagt acatattggg gcatggtggc 1740
ctccgtgagc aaatggtgtc ttgggcaatc tgaggccagg acagatgttg ccccacccac 1800
tggagatggt gctgagggag gtgggtgggg ccttctggga aggtgagtgg agaggggcac 1860
ctgccccccg ccctccccat cccctactcc cactgctcag cgcgggccat tgcaagggtg 1920
ccacacaatg tettgtecae eetgggacae ttetgagtat gaagegggat getattaaaa 1980
actacatggg gaaacaggtg caaaaaaaaa a
                                                                   2011
<210> 159
<211> 480
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 440
<223> a or g or c or t, unknown, or other
<220>
<221> misc_feature
<223> Incyte Clone No: 1841607
cccacgcgtc cgaaaagaaa agaaaaaaga aaatggcctc atcttgtttc agcctcagtt 60
```

```
ttcctcccct cagtctggct gggagcttag ctctttgggg tcattgctgt gtcaggctgg 120
 gttgttcctt ttggtctgtt tctgccatgg cccagcgcct tccctctcag aatacataca 180
 atcccccct ctgctgggcg tggtgactca tgtctataat cccagctctt tgggaggcca 240
 gggcgggtgg atcacttgag cctaggagtt cgaaaccagc ctgagcaaca tggtgaaagc 300
 ccatctctac gaaaaatgca aaagttagcc aggcatggtg gtgcacgtct gtagacccag 360
 ctacttggga ggctgaggca ggaggatcct tgagcccagg aggcagaagc tgcagtgagc 420
 tgtgatcgca ccactgctcn tcagcctggc gacagagcga gattccctca aaaaaaaaa 480
 <210> 160
 <211> 542
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1852391
<400> 160
ttgaatcaac ataatgtatg tgaaagggct tagtccatga ttgggtgctt aatatgcccg 60
tgttgctggg gtgagccaaa gggatgaagt tggcagtgct tgctctgtcg tggagcagtc 120
cccacgtggg aaggccagcg ggaaaccagg cctgctgaag tctccagcgc tggaagcctc 180
acgggggtta ggaaggagcc ttgggagcag ctcctcagag cacagttgta cctcaattgt 240
ggattttaga tgtttctgct tctcaatgtt ctctcttttt tcctgcctgc ttgcctgcct 300
tttggacete ttgetgteta gggtggeaga tgaagettte tacaaacaac cettegetga 360
cgtgattggt tatgtgtatg ttgcaaaact aattcctttt tctacatctg attctttcta 420
cttttgttta gagttaatgc tccttttatg tcaccagttg ctttgctttt taaattattt 480
caaattggca ctttgggggc tgcctaagaa ttgataagcg gggtatgatc tgttgatgaa 540
tc
<210> 161
<211> 1066
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1854555
<400> 161
ttaggctttc tgtatttgtc tgaatgcttt cacgggagtg tgtcgcactg gagcacagag 60
gacactcgat cgtgcggcgc gcagggcggg gggccgccgc tgcctccccg cgggatggct 120
ggcactgtgc teggagtegg tgegggegtg tteatettag ecetgetetg ggtggeagtg 180
ctgctgctgt gtgtgctgct gtccagagcc tccggggcgg cgaggttctc tgtcattttt 240
ttattetteg gtgetgtgat cateacatea gttetgttge tttteeegeg agetggtgaa 300
ttcccagccc cagaagtgga agttaagatt gtggatgact ttttcattgg ccgctatgtc 360
ctgctggctt tccttagtgc catcttcctt ggaggcctct tcttggtttt aatccattat 420
gttctggagc cgatctatgc caaaccactg cactcctact gaccactctt caggaaaacg 480
aaaacctgtt ctctccttca ttgtgatgac attgatgagc aggaaggcac tattcagagc 540
cttgttttga cagccctcat gccttaaggt tagaggagta tctgtccatc actaagacaa 600
atctctggag tcctggcttc cagaaacagg attgccaaat tgtccctgtg gggctagatt 660
cttaccaget taagaaggat attgetatet tettagtace egtacettag gatttecaac 720
tgttttgaaa gggaaatagt aacagtgatc tgcttagagt ggattttcac tcaagtcctt 780
agtaagtgga ttttggggaa aaaagcacat gggcttctgg ttctttttga taatatataa 840
aattattcat tatgaggttg cagttgtttg caaaggagag gcactcaaat ttgaaaggtt 900
attttaatgt gataatttgg aagacttact cagatgttgg tcattgacca ctctgtgcat 960
```

```
atatttctgc agagctctgt gaaggcaatg agtgtcactt ccctctgctc taataaagca 1020
 ataaataata gctaaagggc tgactttcac ttcgaaaaaa aaaaaa
 <210> 162
 <211> 1173
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1855755
<400> 162
gtetegetee tgeccagece gggeggetge cettgggtge tecetteeet geecgacace 60
cagaccgacc ttgaccgccc acctggcagg agcaggacag gacggccgga cgcggccatg 120
geogagetee eggggeeett tetetgeggg geeetgetag getteetgtg eetgagtggg 180
ctggccgtgg aggtgaaggt acccacagag ccgctgagca cgcccctggg gaagacagcc 240
gagetgaeet geacetaeag caegteggtg ggagaeaget tegecetgga gtggagettt 300
gtgcagcctg ggaaacccat ctctgagtcc catccaatcc tgtacttcac caatggccat 360
ctgtatccaa ctggttctaa gtcaaagcgg gtcagcctgc ttcagaaccc ccccacagtg 420
ggggtggcca cactgaaact gactgacgtc cacccctcag atactggaac ctacctctgc 480
caagtcaaca acccaccaga tttctacacc aatgggttgg ggctaatcaa ccttactgtg 540
ctggttcccc ccagtaatcc cttatgcagt cagagtggac aaacctctgt gggaggctct 600
actgcactga gatgcagete ttccgagggg getectaage cagtgtacaa etgggtgegt 660
cttggaactt ttcctacacc ttctcctggc agcatggttc aagatgaggt gtctggccag 720
ctcattctca ccaacctctc cctgacctcc tcgggcacct accgctgtgt ggccaccaac 780
cagatgggca gtgcatcctg tgagctgacc ctctctgtga ccgaaccctc ccaaggccga 840
gtggccggag ctctgattgg ggtgctcctg ggcgtgctgt tgctgtcagt tgctgcgttc 900
tgcctggtca ggttccagaa agagagggg aagaagccca aggagacata tgggggtagt 960
gacetteggg aggatgeeat egeteetggg atetetgage acaettgtat gagggetgat 1020
tetageaagg ggtteetgga aagaeeeteg tetgeeagea eegtgaegae caccaagtee 1080
aageteeeta tggtegtgtg aetteteeeg ateeetgagg geggtgaggg ggaatateaa 1140
taattaaagt ctgtgggtac caaaaaaaa aaa
                                                                   1173
<210> 163
<211> 890
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1861434
<400> 163
ctcgagccgg agagatcctc taccgcagtc gtttgaggag gcggaactga agttttttct 60
taattatcat gtgacgggtt ctggatttaa tggggggaaa agggcggaaa aggacaagga 120
tecaaactgg egaatttget gatettegeg teceteteeg ettteeggee ggeagegetg 180
ccagggtata tttccttttt tccgatcctg caacagcctc tttaaactgt ttaaatgaga 240
atgteettgg etcagagagt actacteace tggettttea cactactett ettgateatg 300
ttggtgttga aactggatga gaaagcacct tggaactggt tcctcatatt cattccagtc 360
tggatatttg atactatcct tcttgtcctg ctgattgtga aaatggctgg gcggtgtaag 420
tetggetttg accetegaca tggateacae aatattaaaa aaaaageetg gtaceteatt 480
gcaatgttac ttaaattagc cttctgcctc gcactctgtg ctaaactgga acagtttact 540
accatgaatc tatcctatgt cttcattcct ttatgggcct tgctggctgg ggctttaaca 600
gaactcggat ataatgtctt ttttgtgaga gactgacttc taagtacatc atctcctttc 660
```

```
tattgctgtt caacaagtta ccattaaagt gttctgaatc tgtcaagctt caagaatacc 720
 agagaactga gggaaaatac caaatgtagt tttatactac ttccataaaa caggattggt 780
 gaatcacgga cttctagtca acctacagct taattattca gcatttgagt tattgagatc 840
 cttattatct ctatgtaaat aaagtttgtt ttggacctca aaaaaaaaa
 <210> 164
 <211> 806
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1872334
 <400> 164
 tgcatcagtg cccaggcaag cccaggagtt gacatttctc tgcccagcca tgggcctcac 60
cctgctcttg ctgctgctcc tgggactaga aggtcagggc atagttggca gcctccctga 120
ggtgctgcag gcacccgtgg gaagetecat tetggtgcag tgccactaca ggctccagga 180
tgtcaaagct cagaaggtgt ggtgccggtt cttgccggag gggtgccagc ccctggtgtc 240
ctcagctgtg gatcgcagag ctccagcggg caggcgtacg tttctcacag acctgggtgg 300
gggeetgetg caggtggaaa tggttaeeet geaggaagag gatgetggeg agtatggetg 360
catggtggat ggggccaggg ggccccagat tttgcacaga gtctctctga acatactgcc 420
cccaggtgag ttatcctagg ccagctacca ccccttagac ctaccctccc cacccccgcc 480
tattgccagg gctcatgggt tcttgaggag tgggggcccc tggggaggag gcattccaag 540
gagatateet ettgacaget etgeagggag eggaaaceaa aetgggtggg aagtetgaga 600
taaatcagct gaaaaccatc cctttccccc ttccacacta ctgcgcttcc ccacaggaag 660
gcatgteett eccaeteeag ggaettggee tettetteea geatttteaa cataettgat 720
gctaacttat tttttaatta gaaatatttt aaacaatgtt gaatctgagt gtataaaaca 780
gaataatttt tgtagctcca gtgttt
<210> 165
<211> 1923
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1877230
<400> 165
tggccggcaa gcagggctgc agtcacgggg cggcgcggag ggccccagcc cagtcagggg 60
tgtggccgcc gccaccgtaa ggctaggccg cgagcttagt cctgggagcc gcctccgtcg 120
ccgccgtcag agccgcccta tcagattatc ttaacaagaa aaccaactgg aaaaaaaaat 180
gaaatteett atettegeat titteggigg tgiteaeett tiateeetgi geteigggaa 240
agctatatgc aagaatggca tctctaagag gacttttgaa gaaataaaag aagaaatagc 300
cagctgtgga gatgttgcta aagcaatcat caacctagct gtttatggta aagcccagaa 360
cagatectat gagegattgg caettetggt tgataetgtt ggaeecagae tgagtggete 420
caagaaccta gaaaaagcca tccaaattat gtaccaaaac ctgcagcaag atgggctgga 480
gaaagttcac ctggagccag tgagaatacc ccactgggag aggggagaag aatcagctgt 540
gatgctggag ccaagaattc ataagatagc catcctgggt cttggcagca gcattgggac 600
tectecagaa ggeattacag cagaagttet ggtggtgace tetttegatg aactgeagag 660
aagggcctca gaagcaagag ggaagattgt tgtttataac caaccttaca tcaactactc 720
aaggacggtg caataccgaa cgcagggggc ggtggaagct gccaaggttg gggctttggc 780
ateteteatt egateegtgg eeteettete eatetaeagt eeteacaeag gtatteagga 840
ataccaggat ggcgtgccca agattccaac agcctgtatt acggtggaag atgcagaaat 900
```

```
gatgtcaaga atggcttctc atgggatcaa aattgtcatt cagctaaaga tgggggcaaa 960
 gacctaccca gatactgatt cetteaacae tgtageagag ateaetggga geaaatatee 1020
 agaacaggtt gtactggtca gtggacatct ggacagctgg gatgttgggc agggtgccat 1080
 ggatgatggc ggtggagcct ttatatcatg ggaagcactc tcacttatta aagatcttgg 1140
 gctgcgtcca aagaggactc tgcggctggt gctctggact gcagaagaac aaggtggagt 1200
 tggtgccttc cagtattatc agttacacaa ggtaaatatt tccaactaca gtctggtgat 1260
 ggagtetgae geaggaacet tettaceeae tgggetgeaa tteaetggea gtgaaaagge 1320
 cagggccatc atggaggagg ttatgagcct gctgcagccc ctcaatatca ctcaggtcct 1380
 gagecatgga gaagggacag acateaaett ttggatecaa getggagtge etggagecag 1440
 totacttgat gacttataca agtatttett ettecateae teecaeggag acaecatgae 1500
 tgtcatggat ccaaagcaga tgaatgttgc tgctgctgtt tgggctgttg tttcttatgt 1560
 tgttgcagac atggaagaaa tgctgcctag gtcctagaaa cagtaagaaa gaaacgtttt 1620
 catgettetg gecaggaate etgggtetge aactttggaa aacteetett cacataacaa 1680
tttcatccaa ttcatcttca aagcacaact ctatttcatg ctttctgtta ttatctttct 1740
tgatactttc caaattctct gattctagaa aaaggaatca ttctcccctc cctcccacca 1800
catagaatca acatatggta gggattacag tgggggcatt tctttatatc acctcttaaa 1860
<210> 166
<211> 518
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1877885
<400> 166
ttgacaccag cagggtgaca tccgctattg ctacttctct gctcccccac agttcctctg 60
gacttototg gaccacagto ototgocaga occotgocag accocagtoc accatgatoc 120
atctgggtca catcctcttc ctgcttttgc tcccagtggc tgcagctcag acgactccag 180
gagagagate atcactecet geettttace etggeaette aggetettgt teeggatgtg 240
ggtccctctc tctgccgctc ctggcaggcc tcgtggctgc tgatgcggtg gcatcgctgc 300
tcatcgtggg ggcggtgttc ctgtgcgcac gcccacgccg cagccccgcc caagaagatg 360
gcaaagtcta catcaacatg ccaggcaggg gctgaccctc ctgcagcttg gacctttgac 420
ttctgaccct ctcatcctgg atggtgtgtg gtggcacagg aacccccgcc ccaacttttg 480
gattgtaata aaacaattga aacaccaaaa aaaaaaaa
<210> 167
<211> 1631
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1889269
<400> 167
gcgagctctc agcgggagcc gagacggtgc agggccggag aagcaccttc actcccagcc 60
tgcgccccga tgctgcgcgt tctgtgcctc ctgcgcccct ggaggcccct tcgggcccgc 120
ggctgcgctt ccgacggggc ggccgggggc tcagagatcc aagtgcgcgc cctggcgggt 180
ccggaccaag gctgtaggtt ccatgaggac aggccttgag tctgtcctgg tctctggaat 240
cacggtgtct agtagaggcc agcacacagc aaatatataa atgtacaaat gagtgaatga 300
agagaatetg attggeetta aggaaettae geaettaaaa taattgggea gaagagaage 360
```

```
agtgaaggag tgcagaggca tcacctgaaa gtttacaagt ccttccactt tctctctgag 420
gcagaaagag caagggtttt tctctccatt ttatggttgg gaaaattgag gcctgcctga 480
gtgtgtgact tgtggcaagt cactctggtc atctagggca gaggctcccc agatcccagg 540
cctcctgcct ccagtcccca gcccgcagcc caggattagg cagagccagc tgctttcccg 600
tggctgccct gactccttac agggatcact gagattctga tgaacagacc ttctgcccgc 660
aatgeettgg ggaatgtett egteagtgag etgetggaaa etetggeeca getgegggag 720
gaccggcaag tgcgtgtcct gctcttcaga agtggagtga agggcgtgtt ctgtgcaggt 780
gcagacctga aggagcggga acagatgagt gaagcagagg tggggggtgtt tgtccagcga 840
ctccggggcc tgatgaatga catcggtgag gatctgggtg tagggtggag gagggggttt 900
gggggtccct gccgatgaca gtcccgctac ccccaccagc atctaaggag agtcttcttt 960
ctgtttggag ttctgtgata agacagatga ctcacccagg gggatggagg aggatgaccg 1020
agggcagttc tctcagagag ggagttctgg ctcttcagct tttgtgtccc gccccaccct 1080
cagggttcaa gcctggccat tccaaagcag ttaagtttcc ccaagcatgc tttcaagttt 1140
tgacaattgc tgttaccttt gcctgagata ccccttcttg gttacttgaa cttttacttg 1200
teetteaage cetecagtae eteeteetee aggaageett eecaaceeae eetetgaget 1260
ttttattgga gcactgatga tcctgggtca ataatgcctg atacacattt gtcttcccca 1320
tgagactgag ccccatggga acaaaggcta tgtctgattc attctgtgtt cccagttccc 1380
agcacccage acagggettg gcacaaagaa agggaggeee cagggaggee ageggattag 1440
geetgaacag ggateateca geeeateete eeatteetet teeetggetg attetgtaac 1500 -
tttccctaaa gggaaaattg gcttctgaga taacctggct gcgggaagca gaggttgtcg 1560
tgagcagaga ttgtgccatt gcactccagc ctgggcaaca acagcgagac tccatctcaa 1620
aaaaaaaaa a
<210> 168
<211> 1548
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1890243
<400> 168
atgcgctcca gcagcctgtt tgggaagcag cagtctctcc ttcagatact gtgggactca 60
tgctggagag gagccgccca cttccaggac ctgtgaataa gggctaatga tgagggttgg 120
tggggctctc tgtggggcaa aaaggtggta tgggggttag cactggctct cgttctcacc 180
ggagaaggaa gtgttctagt gtggtttagg aaacatgtgg ataaagggaa ccatgaaaat 240
gagaggagga aagacatcca gatcagctgt tttgcctgtt gctcagttga ctctgattgc 300
atcctgtttt cctaattccc agactgttct gggcacggaa gggaccctgg atgtggagtc 360
ttcccctttg gccctcctca ctggcctctg ggctagccca gagtccctta gcttgtacct 420
cgtaacactc ctgtgtgtct gtccagcctt gcagtcatgt caaggccagc aagctgatgt 480
gactettgee ceatgegaga tatttatace teaaacaetg geetgtgage cetttecaag 540
teagtggaga geeetgaaag gageeteaet tgaateeage teagtgetet gggtggeeec 600
ctgcaggtgg cccctgaccc tgcgttgcag cagggtccac ctgtgagcag gcccgccctg 660
gggcctcttc ctggatgtgc cctctctgag ttctgtgctg tctcttggag gcagggccca 720
ggagaacaaa gtgtggaggc ctcggggagt ggcttttcca gctctcatgc cccgcagtgt 780
ggaacaaggc agaaaaggat cctaggaaat aagtetettg geggteeetg agagteetge 840
tgaaatccag ccagtgtttt ttgtggtatg agaacaggca aaaagagatg ccccgagata 900
gaaggggagc cttgtgtttc tttcctgcag acgtgagatg aacactggag tgggcagagg 960
tggcccagga ccatggcacc cttagagtgc agaagctggg gggagaggct gcttcgaagg 1020
gcaggactgg ggataatcag aacctgcctg tcacctcagg gcatcactga acaaacattt 1080
cetgatggga actectgegg cagageeeag getggggaag tgaactaeee agggeageee 1140
ctttgtggcc caggataatc aacactgttc tctctgtacc atgagctcct ccaggagatt 1200
atttaagtgt attgtatcat tggttttctg tgattgtcat aacattgttt ttgttattgt 1260
tggtgctgtt gttatttatt attgtaattt cagtttgcct ctactggaga atctcagcag 1320
gggtttcagc ctgactgtct ccctttctct accagactct acctctgaat gtgctgggaa 1380
```

```
cctcttggag cctgtcagga actcctcact gtttaaatat ttatttattg tgacaaatgg 1440
agetggttte etagatatga atgatgtttg caateceeat ttteetgttt cageatgtta 1500
tattettata aaataaaage aaaagteaaa tatgaaaaaa aaaaaaaa
<210> 169
<211> 616
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1900433
<400> 169
gecageteag gtgagecete gecaaggtga eetegeagga eactggtgaa ggageagtga 60
ggaacctgca gagtcacaca gttgctgacc aattgagctg tgagcctgga gcagatccgt 120
gggctgcaga cccccgcccc agtgcctctc cccctgcagc cctgcccctc gaactgtgac 180
atggagagag tgaccctggc ccttctccta ctggcaggcc tgactgcctt ggaagccaat 240
gacccatttg ccaataaaga cgatcccttc tactatgact ggaaaaacct gcagctgagc 300
ggactgatet geggaggget cetggecatt getgggateg eggeagttet gagtggcaaa 360
tgcaaataca agagcagcca gaagcagcac agtcctgtac ctgagaaggc catcccactc 420
atcactecag getetgecae tacttgetga geacaggaet ggeetecagg gatggeetga 480
agectaacae tggcccccag caceteetee eetgggagge ettateetea aggaaggaet 540
tctctccaag ggcaggctgt taggcccctt tctgatcagg aggcttcttt atgaattaaa 600
ctcgccccac cacccc
<210> 170
<211> 1981
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1909441
<400> 170
cagaacttct ttttgacacc atagattctt ctgaggtcaa cgttgcaaaa agcatagcaa 60
agtttetteg aaatgttaga tategttate aaccactatt agaaagatgt aataaegtat 120
ttttaagtaa tgtggaccac cttgatttgg attccatcag taaaatactt agtgtataca 180
aatttctaca atttaatagt tttgaattta ttataatggc taaaaagaag ctaactgaaa 240
tgattcctct gtgtaatcat cctgctagct ttgtaaaatt gtttgtagca ttgggaccca 300
ttgcaggacc tgaagaaaag aaacaactta aatcaactat gttattgatg tcagaggacc 360
taactggcga gcaagccctg gcagtgttgg gagcaatggg agatatggaa agcagaaact 420
catgtctgat taaaagagtt acttcagttc tgcataaaca tttggatggc tataaaccat 480
tagagttgtt gaagataact caagaattga cttttctgca tttccaaagg aaggagtttt 540
ttgcgaaact tagagaatta ctgcttagtt atttgaaaaa tagtttcata ccaactgagg 600
tgtctgttct ggtccgtgct atttccctgc tcccttctcc tcacttggac gaagtgggga 660
tatcccgaat tgaagccgtt ttaccacagt gtgacctaaa taacctgagt agttttgcca 720
catctgtttt aagatggatt cagcatgatc acatgtattt ggataatatg actgcgaaac 780
aactgaaact acttcaaaaa ttagatcact atggtcgtca gagactacaa cacagcaaca 840
gtttggatct gttacggaag gaacttaaat ctctcaaagg aaacacgttt cctgagtcac 900
ttettgaaga aatgattget aetttacage attteatgga tgatattaat tacataaatg 960
ttggggagat tgcatctttt atttctagta ctgattacct cagtactttg ctactagata 1020
ggatageete agtggetgtt cageagattg aaaagateea teettttaca ateeetgeta 1080
ttattcgtcc attcagcgta ttgaactatg atccacctca aagggatgaa tttttgggaa 1140
```

```
cttgcgtgca acatcttaat tcttacttag gtatattgga tccttttata ttagtgtttc 1200
ttggtttctc tttggccaca cttgaatatt ttccagaaga tctgctaaag gcaattttta 1260
acatcaaatt cttagctaga ttggattctc aacttgaaat tttatctcca tctcgaagtg 1320
caagagtcca gtttcatctt atggagttaa atagatcagt ctgcttggaa tgccctgagt 1380
ttcagattcc atggtttcat gaccgcttct gtcaacaata taataaaggt attggtggca 1440
tggatggaac acaacagcag atttttaaaa tgttagcaga ggtactagga ggaatcaatt 1500
gtgtaaaagc ctcggttctt acgccttatt accacaaagt agattttgag tgtatcttgg 1560
ataaaagaaa aaaacctctt ccgtatggaa gccataatat agcattggga caactaccag 1620
aaatgeeetg ggaatcaaat ategaaatag ttggatcaag getgeeacca ggggetgaaa 1680
ggattgcttt ggaatttttg gattcaaaag cactttgtag aaatatccct cacatgaaag 1740
gaaaatctgc tatgaaaaaa cgacatttgg aaattctggg gtatcgtgta attcagattt 1800
cccagtttga atggaactct atggcactgt caacaaagga tgctcggatg gactacctga 1860
gagaatgtat atttggagaa gtcaagtcat gtttgtagtt tttatttaaa atgaatgtta 1920
q
                                                               1981
<210> 171
<211> 1492
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1932226
<400> 171
cttctgggtg aggagtttga gcttggctgg gtccagggcc cagcactgac tcccgtccct 60
gaggaggagg aagaagagga agagggggct ccgattggga cccctaggga tcctggagat 120
gccagccage tecetggact cetgteccat ggccteetgg ceggeetete etttgcagtg 240
gggtcetcet etggeeteet geeceteetg etgetgetge tgetteeatt getggeagee 300
cagggtgggg gtggcctgca ggcagcgctg ctggcccttg aggtggggct ggtgggtctg 360
ggggcctcct acctgctcct ttgtacagcc ctgcacctgc cctccagtct tttcctactc 420
ctggcccagg gtaccgcact gggggccgtc ctgggcctga gctggcgccg aggcctcatg 480
ggtgttcccc tgggccttgg agctgcctgg ctcttagctt ggccaggcct agctctacct 540
ctggtggcta tggcagcggg gggcagatgg gtgcggcagc agggcccccg ggtgcgccgg 600
ggcatatete gaetetggtt gegggttetg etgegeetgt cacceatgge etteegggee 660
ctgcagggct gtggggctgt gggggaccgg ggtctgtttg cactgtaccc caaaaccaac 720
aaggatgget teegeageeg eetgeeegte eetgggeeee ggeggegtaa teeeegeace 780
acccaacace cattagetet gttggcaagg gtetgggtee tgtgcaaggg etggaactgg 840
cgtctggcac gggccagcca gggtttagca tcccacttgc ccccgtgggc catccacaca 900
ctggccagct ggggcctgct tcggggtgaa cggcccaccc gaatcccccg gctactacca 960
cgcagccagc gccagctagg gccccctgcc tcccgccagc cactgccagg gactctagcc 1020
gggcggaggt cacgcacccg ccagtcccgg gccctgcccc cctggaggta gctgactcca 1080
gcccttccag cccaaatcta gagcattgag cactttatct cccacgactc agtgaagttt 1140
ctccagtccc tagtcctctc ttttcaccca ccttcctcag tttgctcact taccccaggc 1200
ccagcccttc ggacctctag acaggcagcc tcctcagctg tggagtccag cagtcactct 1260
gtgttctcct ggcgctcctc ccctaagtta ttgctgttcg cccgctgtgt gtgctcatcc 1320
tcaccctcat tgactcaggc ctggggccag gggtggtgga gggtgggaag agtcatgttt 1380
tttttctcct ctttgatttt gtttttctgt ctcccttcca acctgtcccc ttcccccac 1440
caaaaaaaga aaaagacaaa cacaaataaa atatctgagc ggaaaaaaaa aa
```

<210> 172 <211> 1613

```
<212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 1932647
 <400> 172
 ctcggaattc ggctcgagac gggtcatgag cgcggtatta ctgctggccc tcctggggtt 60
 catectecea etgecaggag tgeaggeget getetgeeag tttgggaeag tteageatgt 120
 gtggaaggtg tccgacctac cccggcaatg gacccctaag aacaccagct gcgacagcgg 180
 cttggggtgc caggacacgt tgatgctcat tgagagcgga ccccaagtga gcctggtgct 240
 ctccaagggc tgcacggagg ccaaggacca ggagccccgc gtcactgagc accggatggg 300
 ccccggcctc tccctgatct cctacacctt cgtgtgccgc caggaggact tctgcaacaa 360
 cetegttaac teeeteege tttgggeece acageececa geagacecag gateettgag 420
gtgcccagtc tgcttgtcta tggaaggctg tctggagggg acaacagaag agatctgccc 480
caaggggacc acacactgtt atgatggcct cctcaggctc aggggaggag gcatcttctc 540
caatctgaga gtccagggat gcatgcccca gccaggttgc aacctgctca atgggacaca 600
ggaaattggg cccgtgggta tgactgagaa ctgcaatagg aaagattttc tgacctgtca 660
tcgggggacc accattatga cacacggaaa cttggctcaa gaacccactg attggaccac 720
atcgaatacc gagatgtgcg aggtggggca ggtgtgtcag gagacgctgc tgctcataga 780
tgtaggactc acatcaaccc tggtggggac aaaaggctgc agcactgttg gggctcaaaa 840
ttcccagaag accaccatcc actcagcccc tcctggggtg cttgtggcct cctataccca 900
cttctgctcc tcggacctgt gcaatagtgc cagcagcagc agcgttctgc tgaactccct 960
ccctcctcaa gctgcccctg tcccaggaga ccggcagtgt cctacctgtg tgcagcccct 1020
tggaacctgt tcaagtggct cccccgaat gacctgcccc aggggcgcca ctcattgtta 1080
tgatgggtac attcatctct caggaggtgg gctgtccacc aaaatgagca ttcagggctg 1140
cgtggcccaa ccttccagct tcttgttgaa ccacaccaga caaatcggga tcttctctgc 1200
gcgtgagaag cgtgatgtgc agcctcctgc ctctcagcat gagggaggtg gggctgaggg 1260
cctggagtct ctcacttggg gggtggggct ggcactggcc ccagcgctgt ggtggggagt 1320
ggtttgccct tcctgctaac tctattaccc ccacgattct tcaccgctgc tgaccaccca 1380
cactcaacct ccctctgacc tcataaccta atggccttgg acaccagatt ctttcccatt 1440
ctgtccatga atcatcttcc ccacacaa tcattcatat ctattcacct aacagcaaca 1500
ctggggagag cctggagcat ccggacttgc cctatgggag aggggacgct ggaggagtgg 1560
<210> 173
<211> 1622
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2124245
<400> 173
tgtegegeee getggeegge teegeeetea ceteeeggee geggetgeee tetgeeeggg 60
ttgtccaaga tggagggcgc tccaccgggg tcgctcgccc tccggctcct gctgttcgtg 120
gegetaceeg ceteeggetg getgacgacg ggegeeeeg ageegeegee getgteegga 180
geeceacagg aeggeateag aattaatgta actacaetga aagatgatgg ggacatatet 240
aaacagcagg ttgttcttaa cataacctat gagagtggac aggtgtatgt aaatgactta 300
cctgtaaata gtggtgtaac ccgaataagc tgtcagactt tgatagtgaa gaatgaaaat 360
cttgaaaatt tggaggaaaa agaatatttt ggaattgtca gtgtaaggat tttagttcat 420
gagtggccta tgacatctgg ttccagtttg caactaattg tcattcaaga agaggtagta 480
gagattgatg gaaaacaagt tcagcaaaag gatgtcactg aaattgatat tttagttaag 540
aaccggggag tactcagaca ttcaaactat accctccctt tggaagaaag catgctctac 600
```

```
tctatttctc gagacagtga cattttattt acccttccta acctctccaa aaaagaaagt 660
gttagttcac tgcaaaccac tagccagtat cttatcagga atgtggaaac cactgtagat 720
gaagatgttt tacctggcaa gttacctgaa actcctctca gagcagagcc gccatcttca 780
tataaggtaa tgtgtcagtg gatggaaaag tttagaaaag atctgtgtag gttctggagc 840
aacgttttcc cagtattctt tcagtttttg aacatcatgg tggttggaat tacaggagca 900
getgtggtaa taaccatett aaaggtgttt tteecagttt etgaatacaa aggaattett 960
cagttggata aagtggacgt catacctgtg acagctatca acttatatcc agatggtcca 1020
gagaaaagag ctgaaaacct tgaagataaa acatgtattt aaaacgccat ctcatatcat 1080
ggactccgaa gtagcctgtt gcctccaaat ttgccacttg aatataattt tctttaaatc 1140
gttaagaatc agtttataca ctagagaaat tgctaaactc taagactgcc tgaaaattga 1200
cctttacagt gccaagttaa agtttacctt attctcggcc gggtgcagtg gctcatgcct 1260
gtaatcccag gactttggga ggccaatgcg ggcggatcac gaggtcagat caagaccatc 1320
ctgccaacat ggtgaaaccc tgtctctact aaaaaaaata aaaaaattag ctgggtgtgg 1380
cggtgcacgc ctgtagtccc agctacttgg gaggctgagg caggagaatt gcttgaaccc 1440
gggaggcgga ggctgcagtg agccaggatc acgccactgc actccagcct gggtgacaga 1500
gcgagactct gtttcaaaaa aaaaaagtt gaccttattc tctaaaaggg ctggctattc 1560
atatgatgaa ttgttaagga aaacttaaag tggacaagaa caggatgtga agagaggtga 1620
tg
<210> 174
<211> 1320
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2132626
<400> 174
gegtgaeeca getgeggeeg gecageeatg gagaetggag egetgeggeg eeegeaaett 60
ctcccgttgc tgctgctgct ctgcggtggg tgtcccagag caggcggctg caacgagaca 120
ggcatgttgg agaggctgcc cctgtgtggg aaggctttcg cagacatgat gggcaaggtg 180
gacgtctgga agtggtgcaa cctgtccgag ttcatcgtgt actatgagag tttcaccaac 240
tgcaccgaga tggaggccaa tgtcgtgggc tgctactggc ccaaccccct ggcccagggc 300
ttcatcaccg gcatccacag gcagttcttc tccaactgca ccgtggacag ggtccacttg 360
gaggaccccc cagacgaggt tctcatcccg ctgatcgtta tacccgtcgt tctgactgtc 420
gccatggctg gcctggtggt gtggcgcagc aaacgcaccg acacgctgct gtgagggtcc 480
cggtgagatg gagtgggtca cacctggcaa gctggaagaa agttccctgg ggatgggaga 540
gcgggtgggt gctgccaatc tccagctact gtggccacac cccacctggt catgggcaga 600
cccctccctt cctgggctga cctgctccct cgaggccagc ctgctccctg gctgaggctc 660
aggetateeg eccaagetet ttgeteatte tagggeeagt ggaggaaaat gtgataagge 720
cagagettgt gtgetgggca cagaaatcac etgetgeate etgtgeteeg caggetggge 780
cggagcctct gcccgcaggt ttctatgctg tttcttagca cagaatccag cctagcctta 840
geogragici aggeoctget tggactagga etectigett gaccecatet etggiteetg 900
ccctggctcc tgcaccagcc ccagctcctg cctacatcca ggcagaaaga taggcagggg 960
ctcttggaag acgttccgtg ctgtgacctc cgagccctcc tggtgggaag acagctggaa 1020
aggctgggag gagaagggag gggttggggg ttcccaggag ccatgcgtgg cctgcagagt 1080
ccattccatc atgatgctgt gcccgctatg ggctgtgtcc atgaccagag gctggagtgg 1140
gggtgtgtta gagcccctca ccgggacttg ctgtgcggat ggggcctggg cctccttcct 1200
acaggggete etetgtgggt gaggggeeet etggaatgge ateceatgag ettgtggeet 1260
ctatctgcta ccatctgtgt tttatctgag taaagttacc ttacttctgg aaaaaaaaa 1320
<210> 175
<211> 778
<212> DNA
```

```
<213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2280639
 <400> 175
gegetecete getggeggae ggetgggegg egggeegge ceggggeege ttggaatgge 60
geeteeteeg eettegeece aactgettet eetggeagee etegggagge teetgggtee 120
cagcgaggtg atggctggac cggcggagga ggcgggagcc cattgtcccg agagcctgtg 180
gcctctgcct ccgcaggtgt caccaagagt gacctacaca cgagtgagcc cagggcaggc 240
tgaggatgtc accttcctct accacccctg tgcccatccc tggctgaagc tccagcttgc 300
ceteetggee tatgettgta tggetaacee tteeeteace eetgaettea geeteacgea 360
ggatcggccc ctggtgctga ctgcatgggg gctggcgctg gagatggcct gggtagagcc 420
agcctgggct gcccactggc tgatgaggag gcggaggagg aagcagagga agaagaaggc 480
atggatetae tgtgaaagee ttteagggee tgeteeetee gageeaacte eeggtagagg 540
gaggetgtge egaagaggt gtgtgeagge eetggetetg geetttgete tgeggaetgg 600
cggccccttg gcacagaggt gacatctcaa gggcccaggc agccctcttc tagtggtgcc 660
aagacgegga tgctgeggge tgcacttggg teccageeca etegeteage eetgaggttt 720
ccctctgctt ccccagttag cttgatggcc aagcattcca tggcgggcta tcctggtt
<210> 176
<211> 1477
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2292356
<400> 176
cctggcctgg ctcgctgggg cctggggagc tgcccgtgct tccagcccag tctccccctg 60
gctgctgccg gctgctggcc actcccacct cccaggcctg gcgtgaggcc cacagctgct 120
gttgcacaac cctggtcatt gtgtgatggg gggaggcctg ggcctggccc gcccctctgc 180
cagggettea gacceetgee cageeecagt atetgaagga accaeagtgg ageeaageee 240
gcgatgtgga gaactcaggc ttcaggagac cctggccctg ctcctggcgg ctccgggtgg 300
ctttcagete tetetgcaac etgagetggg ggaggageca ggeetcatge ecagggetgg 360
gagtggggag cctggtgtgc acgcgtgccc aggcctgcac gtggaccgac caggggaggg 420
geccagaget etggetgggt caceegeace eegeceecat etectecaga gecaceecag 480
gaaaagcccg gctggacgag gtcatggctg ccgctgccct tacaagcctg tccaccagcc 540
aggaggeeet ggtgeggeee eeaggeaget acageageag eageaacagt ggagaetggg 660
gatgggacct ggccagtgac cagtcctctc cgtccacccc gtcaccccca ctgccccccg 720
aggcagecca etttetgttt ggggagecca eeetgagaaa aaggaagage eeggeecagg 780
tcatgttcca gtgtctgtgg aagagctgcg ggaaggtgct gagcacggcg tcggcgatgc 840
agagacacat ccgcctggtg cacctggggt gcggcggggc ctgggggtgcg gcggggcctg 900
cgggttggct ggggttgtta ggcccggcca ggccacccct tcagctccca ctggctggct 960
gtgtctcccg caggaggcag gcagagcctg agcagagtga tggtgaggag gacttctact 1020
acacagaget ggatgttggt gtggacaege tgacegaegg getgteeage etgacteeag 1080
ttttccccga gggcttccat gccagettgc cttcccccgc cctgaagetc cgcagacttg 1140
gtgggacccg ccaaccccgc cagtacccct gaggagcgcc gggatttagt cgaggtcctt 1200
tgtcggcgcc cacggggaat attaatagct cccggggggg gggaatactt ttgaaggcag 1260
ttgataaaaa attttccccc ccaaacagag ggaggcccga gaataaagaa cccctccggg 1320
aaaaaacaca gtgggagaca tagagttgat tctccctggg tgagaaaaat ttgggtaaag 1380
cggcttcaag caatttcgca gagcaagatt tgcgggcgcc ggaacccata aaggtggtaa 1440
aaccctgggg ggtccccaag agggggaagc tcaaccc
                                                                1477
```

WO 00/00610 PCT/US99/14484 ·

```
<210> 177
 <211> 682
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2349310
 <400> 177
totgaatgtt ttggtgaata aatotgttot toagcaacco tacotgotto tocaaactgo 60
ctaaagagat ccagtactga tgacgctgtt cttccatctt tactccctgg aaactaacca 120
cgttgtcttc tttccttcac caccacccag gagetcagag atctaagetg etttccatet 180
ttteteecag ecceaggaca etgaetetgt acaggatggg geegteetet tgeeteette 240
tcatcctaat cccccttctc cagctgatca acctggggag tactcagtgt tccttagact 300
ccgttatgga taagaagatc aaggatgttc tcaacagtct agagtacagt ccctctccta 360
taagcaagaa getetegtgt getagtgtea aaagceaagg cagacegtee teetgeeetg 420
ctgggatggc tgtcactggc tgtgcttgtg gctatggctg tggttcgtgg gatgttcagc 480
tggaaaccac ctgccactgc cagtgcagtg tggtggactg gaccactgcc cgctgctgcc 540
acctgacctg acagggagga ggctgagaac tcagttttgt gaccatgaca gtaatgaaac 600
cagggtccca accaagaaat ctaactcaaa cgtcccactt catttgttcc attcctgatt 660
cttgggtaat aaagacaaac tt
                                                                   682
<210> 178
<211> 1508
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 11, 139
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 2373227
<400> 178
gcgtaacccc ntgatctggt gataaacgta ttacccgctt ttgagtgagc tgataccgct 60
cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg agaaagcgga agagcgccca 120
atacgcaaac cgcttctcnc cgcgcgttgg ccgattcatt aatcagcttg cacgacaggt 180
ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag ctcactcccc 240
acccccttcc ccgcgggcct cggttcaaac gacccggtgg gtctacagcg gaagggaggg 300
agcgaaggta ggaggcaggg cttgcctcac tggccaccct cccaacccca agagcccagc 360
cccatggtcc ccgccgccgg cgcgctgctg tgggtcctgc tgctgaatct gggtccccgg 420
gcggcgggg cccaaggcct gacccagact ccgaccgaaa tgcagcgggt cagtttacgc 480
tttgggggcc ccatgacccg cagctaccgg agcaccgccc ggactggtct tccccggaag 540
acaaggataa teetagagga egagaatgat geeatggeeg aegeegaeeg eetggetgga 600
ccageggetg cegagetett ggeegeeacg gtgtecaceg getttageeg gtegteegee 660
attaacgagg aggatgggtc ttcagaagag ggggttgtga ttaatgccgg aaaggatagc 720
accagcagag agcttcccag tgcgactccc aatacagcgg ggagttccag cacgaggttt 780
atagecaata gteaggagee tgaaateagg etgaetteaa geetgeegeg eteeceeggg 840
aggtctactg aggacctgcc aggctcgcag gccaccctga gccagtggtc cacacctggg 900
tctaccccga gccggtggcc gtcaccctca cccacagcca tgccatctcc tgaggatctg 960
eggetggtgc tgatgccctg gggcccgtgg cactgccact gcaagtcggg caccatgagc 1020
```

```
cggagccggt ctgggaagct gcacggcctt tccgggcgcc ttcgagttgg ggcgctgagc 1080
 cageteegea eggageacaa geettgeace tateaacaat gteeetgeaa eegaettegg 1140
 gaagagtgcc ccctggacac aagtctctgt actgacacca actgtgcctc tcagagcacc 1200
 accagtacca ggaccaccac taccccette eccaccatee aceteagaag cagteecage 1260
 etgecacccg ccageccetg cccagecctg getttttgga aacgggtcag gattggeetg 1320
 gaggatattt ggaatagcct ctcttcagtg ttcacagaga tgcaaccaat agacagaaac 1380
 cagaggtaat ggccacttca tccacatgag gagatgtcag tatctcaacc tctcttgccc 1440
 tttcaatcct agcacccact agatattttt agtacagaaa aacaaaactg gaaaacaaaa 1500
 aaaaaaaa
 <210> 179
 <211> 558
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2457682
<400> 179
ggagaaagga tggccggcct ggcggcgcgg ttggtcctgc tagctggggc agcggcgctg 60
gcgagcggct cccagggcga ccgtgagccg gtgtaccgcg actgcgtact gcagtgcgaa 120
gagcagaact gctctggggg cgctctgaat cacttccgct cccgccagcc aatctacatg 180
agtetageag getggaeetg tegggaegae tgtaagtatg agtgtatgtg ggteaeegtt 240
gggctctacc tccaggaagg tcacaaagtg cctcagttcc atggcaagtg gcccttctcc 300
agectggtga tgetetgeeg ctacegeace ttegtgeeag ceteeteece catgtaceae 420
acctgtgtgg cettegeetg getttetgga agatgaeage etgtagetge tgaaggaate 480
agaggacaag ttcaggctgg actgaagacc cttggagcga gtcttcccca gttggggata 540
ctgcccccgc cctgctgg
<210> 180
<211> 502
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2480426
<400> 180
cttggagtct gggaggagga aagcggagcc ggcagggagc gaaccaggac tggggtgacg 60
gcagggcagg gggcgcctgg ccgggggagaa gcgcgggggc tggagcacca ccaactggag 120
ggteeggagt agegagegee eegaaggagg eeategggga geegggaggg gggaetgega 180
gaggaccccg gcgtccgggc tcccggtgcc agcgctatga ggccactcct cgtcctgctg 240
ctcctgggcc tggcggccgg ctcgcccca ctggacgaca acaagatccc cagcctctgc 300
ccgggactgc cgggacctcg aggggacccc gggccgcgag gagaggcggg acccgcgggg 360
cccaccgggc tagccgggga gtgctcggtg cctccgcgat ccgccttcag cgccaagcgc 420
teegagatee gggtgeetee getgtetgae geaccettge ettegacege gtgetggtga 480
acgagcaagg acattacgac qc
<210> 181
<211> 1659
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2503743
<400> 181
gctgtgcggc ggggcaggca tgggagccgc gcgctctctc ccggcgccca cacctgtctg 60
ageggegeac gageegegge eegggeggge tgeteggege ggaacagtge teggeatgge 120
agggatteca gggeteetet teettetett etttetgete tgtgetgttg ggcaagtgag 180
cccttacagt gccccctgga aacccacttg gcctgcatac cgcctccctg tcgtcttgcc 240
ccagtctacc ctcaatttag ccaagccaga ctttggagcc gaagccaaat tagaagtatc 300
ttcttcatgt ggaccccagt gtcataaggg aactccactg cccacttacg aagaggccaa 360
gcaatatetg tettatgaaa egetetatge caatggeage egeacagaga egeaggtggg 420
catctacate etcageagta gtggagatgg ggeecaacae egagaeteag ggtetteagg 480
aaagtetega aggaagegge agatttatgg etatgacage aggttcagea tttttgggaa 540
ggactteetg etcaactace ettteteaac atcagtgaag ttatecaegg getgeaeegg 600
caccetggtg geagagaage atgteeteae agetgeeeae tgeatacaeg atggaaaaae 660
ctatgtgaaa ggaacccaga agcttcgagt gggcttccta aagcccaagt ttaaagatgg 720
tggtcgaggg gccaacgact ccacttcagc catgcccgag cagatgaaat ttcagtggat 780
ccgggtgaaa cgcacccatg tgcccaaggg ttggatcaag ggcaatgcca atgacatcgg 840
catggattat gattatgccc tcctggaact caaaaagccc cacaagagaa aatttatgaa 900
gattggggtg agccctcctg ctaagcagct gccagggggc agaattcact tctctggtta 960
tgacaatgac cgaccaggca atttggtgta tcgcttctgt gacgtcaaag acgagaccta 1020
tgacttgctc taccagcaat gcgatgccca gccaggggcc agcgggtctg gggtctatgt 1080
gaggatgtgg aagagacagc agcagaagtg ggagcgaaaa attattggca ttttttcagg 1140
gcaccagtgg gtggacatga atggttcccc acaggatttc aacgtggctg tcagaatcac 1200
tcctctcaaa tatgcccaga tttgctattg gattaaagga aactacctgg attgtaggga 1260
ggggtgacac agtgttccct cctggcagca attaagggtc ttcatgttct tattttagga 1320
gaggccaaat tgttttttgt cattggcgtg cacacgtgtg tgtgtgtgt tgtgtgtgtg 1380
taaggtgtct tataatcttt tacctatttc ttacaattgc aagatgactg gctttactat 1440
ttgaaaactg gtttgtgtat catatcatat atcatttaag cagtttgaag gcatactttt 1500
gcatagaaat aaaaaaata ctgatttggg gcaatgagga atatttgaca attaagttaa 1560
tcttcacgtt tttgcaaact ttgatttta tttcatctga acttgtttca aagatttata 1620
ttaaatattt ggcatacaag agatatgaaa aaaaaaaaa
                                                                1659
<210> 182
<211> 2015
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2537684
<400> 182
aaaaacaaag gcaatgcatt ggcaagcctc acagcacaga gtgaccgctg cctggcgttc 60
cccagcactc ggtgtggaaa ggcccctacc tgctgtaaga ttatgggtcc atgaaagcag 120
taagctggac acagaggtgt agtgtgcggg acagagggcc ttgcagatgc ctttctgttg 180
gtgttttagt gttaaaatac ggagagtatg gaactettea cetecatttt etcagegget 240
gtgaagcagc ctcctagctt cggaagtacg gacactacgt cgcgttttca agcgtgtctg 300
ttctgcaggt aacagcatca agctgcacgt ggaagcatct cgcggttttc tagaaacagg 360
cattttctta tecetetece geteettttt ecacaaaggt gaatttcata aatgtaatae 420
tagtaaagtg aatgaattac tgagtttata cagaaattta ggtaacttct cctttagtct 480
caagagcgag tettgetttt taatgggtge egtttatgtt getgeeegee etgtgtgeet 540
```

```
tgtgctgcag ctcatacggt gtgtctgtca tctcagtctg gagtaaatgc agtgtctgcc 660
ggtgtctgat gggttctgtc cctcgtattt tctttgcctt ctatcccatt gcctggctac 720
cgctgcctgg cagccaaggg tgttggtcgc gaagctggga gtggcctctg gtggagcctg 780
catcttgtct cgtctgcctc tgctttacat ttggtgtact ttcgggcgtg gtggcagtaa 840
aatgacaccg tgattgagct tgtcagcaga gctgaaagag aaagtagaag gatgtgcatt 900
gtttcttgta agatatcttg catgtatctg tgtattcaaa ttcaaacaga gatggtttgt 960
ccatttgtcc actgagaaat tataaactag ggacaagggg gaggaaaagt actgaaatac 1020
agtttatgaa gcaagtgtgt ctcgggctgt gcttgtccca ggagccccag cagcatctga 1080
actgaggett cttcagtect geaggaacag gateatetgt etcageggtg ggeagatgtt 1140
ttcatagaca gccagggagt aaacactgtt ggctctgtgg gctgtatggt ctctgccata 1200
aatagtacag agatgtggct gtgtctagta caacttttag acacagaaat ctgaatgaca 1260
tatattgttc tgtgtcaaga aacttagatt ttttttttaa ctatttaaaa acgtgaaacc 1320
tattettage teacaggeea tggagaaget ggtggggaee agacecaget cettagetgg 1380
ctgggctggg gagggggcag tgacagtggc agctgctact cactgctcag tgtggaaaac 1440
acaggacttg gcaatcacag cccgcagaac catcatgtgt ggcagaagcc tgagggatgc 1500
ggtttettge ccaegtgete tgtteatttt etgttgtttt tetgeaetta aagaatteae 1560
atggaagcat gttttataaa atgaattacc agagaaacag agatgggccg agattctcag 1620
aaatggtccc atgtgaccaa gttctgctgt ttgggtgaca gtgctttgaa gatctccttt 1680
gaggatgtgc agtctttttt ttttttttt tttgagatgg agtttgttgc ccaggctgga 1740
gtgagtggca cagtctcggc tcactgcaac ctccacctcc tgggttcaag cagttctcgt 1800
geogeageet eccaagtage tgggaetaca ggeatgegee accaegeeag getaattttt 1860
gtatttttag tagagatggg gtttcaccat gtctcaaact cctgacctca ggcgatccac 1920
ccacctcage gtcccaaagt gctggggata taggggtgac cacccgcacc tgcgccaaga 1980
gtgggctttt aattagggac aaatccaatg gaagg
<210> 183
<211> 740
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2593853
<400> 183
ctgctttcgt gaagacaaga tgaagttcac aattgtcttt gctggacttc ttggagtctt 60
tctagctcct gccctagcta actataatat caacgtcaat gatgacaaca acaatgctgg 120
aagtgggcag cagtcagtga gtgtcaacaa tgaacacaat gtggccaatg ttgacaataa 180
caacggatgg gactcctgga attccatctg ggattatgga aatggctttg ctgcaaccag 240
actettteaa aagaagacat geattgtgea caaaatgaac aaggaagtea tgeeeteeat 300
tcaatccctt gatgcactgg tcaaggaaaa gaagcttcag ggtaagggac caggaggacc 360
accteceaag ggeetgatgt acteagteaa eecaaacaaa gtegatgace tgagcaagtt 420
cggaaaaaac attgcaaaca tgtgtcgtgg gattccaaca tacatggctg aggagatgca 480
agaggcaagc ctgttttttt actcaggaac gtgctacacg accagtgtac tatggattgt 540
ggacatttee ttetgtggag acaeggtgga gaactaaaca atttttaaa gecactatgg 600
atttagtcat ctgaatatgc tgtgcagaaa aaatatgggc tccagtggtt tttaccatgt 660
cattctgaaa tttttctcta ctagttatgt ttgatttctt taagtttcaa taaaatcatt 720
tagcattgaa aaaaaaaaa
                                                                  740
<210> 184
<211> 748
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc feature
<223> Incyte Clone No: 2622354
<400> 184
ctgcaaccac ccagagccat ggctccccga ggctgcatcg tagctgtctt tgccattttc 60
tgcatctcca ggctcctctg ctcacacgga gccccagtgg cccccatgac tccttacctg 120
atgctgtgcc agccacacaa gagatgtggg gacaagttct acgaccccct gcagcactgt 180
tgctatgatg atgccgtcgt gcccttggcc aggacccaga cgtgtggaaa ctgcaccttc 240
agagtetget ttgageagtg etgeceetgg acetteatgg tgaagetgat aaaceagaac 300
tgcgactcag cccggacctc ggatgacagg ctttgtcgca gtgtcagcta atggaacatc 360
aggggaacga tgactcctgg attctccttc ctgggtgggc ctggagaaag aggctggtgt 420
tacctgagat ctgggatgct gagtggctgt ttgggggcca gagaaacaca cactcaactg 480
cccacttcat tctgtgacct gtctgaggcc caccctgcag ctgccctgag gaggcccaca 540
ggtccccttc tagaattctg gacagcatga gatgcgtgtg ctgatggggg cccagggact 600
ctgaaccete ctgatgacce ctatggeeaa cateaacceg geaccacece aaggetgget 660
gggaaccett caccettetg tgagatttte catcatetea agttetette tatecaggag 720
caaagcacag gatcataata aatttatg
                                                                   748
<210> 185
<211> 648
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2641377
cggctcgagg atccccaagt ctctgaccca ccttcctgcc tgctcctctc ctcccacatt 60
ggctcagatt ctttccccgc tgtctgtggg tccacactcc cagtggcacc tccaggagag 120
aatctgattg gctcagttcg ccagataact caactttccc attggctacc tttgggtcag 180
gtgateteca etagacetat egeetatgee tgatggtggg teacatggtg caaatgttge 240
ctgagagett agtggattag ggatgtgget gggeteatgg ttgaegteec tgetgetgag 300
cccttacggg tcaggctggg agaaggtacc atgttgtgtg actggtcatt tgaggtcttg 360
cagctgttgc ttgctgggct tggcaggtgt tcaaagtgac catttttctg aagggttttt 420
ttctgagtat tcctcagatg tactcccctg gggccgacgg tctttccttc cacagggcga 480
tgcttcccta cttgcttgtg aatgtttcct tcatctccag gttgtctggg gacaattctg 540
tettttggag geetgggeag gatttacaga gggetecatg ceageteett eetgeegggt 600
ccacttctgg tgtagggtaa acacctgcgc attcatgtcc tagtgttg
<210> 186
<211> 2110
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 1932
<223> a or g or c or t, unknown, or other
<220>
<221> misc_feature
<223> Incyte Clone No: 2674857
<400> 186
```

```
cggcggccat ctttactcag ggcacagagg gtctctgcgg ccgtagcggc cggggctgcg 60
 ctgcttcctg ccgaggctgg cccaggcagc cgcgcttcga aggacgccgc cgggagctgc 180
ggacatgcgt ggagtggcag tgctaacggc tggtgtctcg cactgttggc ctgtgaaggt 240
acgtgaaget gaaageetgg aatggetgga aaggggteat caggeaggeg geeeetgetg 300
ctggggctgc tggtggccgt agccactgtc cacctggtca tctgtcccta caccaaagtg 360
gaggagaget teaacetgea ggecacacat gacetgetet accaetggea agacetggag 420
cagtacgacc atcttgagtt ccccggagtc gtccccagga cgttcctcgg gccagtggtg 480
ategeagtgt tetecagece egeggtttae gtgetttege tgttagaaat gtecaagttt 540
tactctcagc taatagttag aggagtgctt ggactcggcg tgatttttgg actctggacg 600
ttacaaaagg aagtgagacg gcacttcggg gccatggtgg ccaccatgtt ctgctgggtg 660
acggccatgc agttccacct gatgttctac tgcacgcgga cactgcccaa tgtgctggcc 720
ctgcctgtag tcctgctggc cctcgcggcc tggctgcggc acgagtgggc ccgcttcatc 780
tggctgtcag ccttcgccat catcgtgttc agggtggagc tgtgcctgtt cctgggcctc 840
ctgctgctgc tggccttggg caaccgaaag gtttctgtag tcagagccct tcgccacgcc 900
gtcccggcag ggatcctctg tttaggactg acggttgctg tggactctta tttttggcgg 960
cageteactt ggccggaagg aaaggtgett tggtacaaca etgteetgaa caaaagetee 1020
aactggggga cctccccgct gctgtggtac ttctactcag ccctgccccg cggcctgggc 1080
tgcagcctgc tcttcatccc cctgggcttg gtagacagaa ggacgcacgc gccgacggtg 1140
ctggcactgg gcttcatggc actctactcc ctcctgccac acaaggagct acgcttcatc 1200
atctatgeet tecceatget caacateaeg getgeeagag getgeteeta eetgetgaat 1260
aactataaaa agtettgget gtacaaageg gggtetetge ttgtgategg acaeetegtg 1320
gtgaatgccg cctactcagc cacggccctg tatgtgtccc atttcaacta cccaggtggc 1380
gtcgcaatgc agaggctgca ccagctggtg ccccccaga cagacgtcct tctgcacatt 1440
gacgtggcag ccgcccagac aggtgtgtct cggtttctcc aagtcaacag cgcctggagg 1500
tacgacaaga gggaggatgt gcagccgggg acaggcatgc tggcatacac acacatcctc 1560
atggaggegg cccctggget cctggccetc tacagggaca cacacegggt cctggccagc 1620
gtcgtgggga ccacaggtgt gagtctgaac ctgacccaac tgccccctt caacgtccac 1680
ctgcagacaa agctggtgct tctggagagg ctcccccggc cgtcctgagg gggaccaggc 1740
agccctcagc agccacaggc cttccaggag ctgttatcac taccagtttc tggcacaatt 1800
ccagcacaat tatgacaatt cagagaagca agtcaaagga ctggggcacc tgcctctgac 1860
agacaccaga ccaggtccag ggcctcctcc cacagcctca gctgggggct cttcagcaac 1920
caaagaacga anggggcccc aagttetttg tttgggcacc ccccggggta agcccacttg 1980
cccccaaggg tttgatgggg ttgggcccag cttccagggg ctttcccttg gccggggttt 2040
gacttgttcc ggccccagga ttcaagggtt ggcccaattt cccattgaac ttaaatttcc 2100
agggaaaggc
<210> 187
<211> 773
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2758485
<400> 187
cccggagccg gggagggagg gagcgaggtt cggacaccgg cggcggctgc ctggcctttc 60
catgageceg eggeggacee teeeggeee cetetegete tgeetetee tetgeetetg 120
cctctgcctg gccgcggctc tgggaagtgc gcagtccggg tcgtgtaggg ataaaaagaa 180
ctgtaaggtg gtcttttccc agcaggaact gaggaagcgg ctaacacccc tgcagtacca 240
tgtcactcag gagaaaggga ccgaaagtgc ctttgaagga gaatacacac atcacaaaga 300
tcctggaata tataaatgtg ttgtttgtgg aactccattg tttaagtcag aaaccaaatt 360
tgactccggt tcaggttggc cttcattcca cgatgtgatc aattctgagg caatcacatt 420
cacagatgac ttttcctatg ggatgcacag ggtggaaaca agctgctctc agtgtggtgc 480
tcaccttggg cacatttttg atgatgggcc tcgtccaact gggaaaagat actgcataaa 540
```

```
ttcggctgcc ttgtctttta cacctgcgga tagcagtggc accgccgagg gaggcagtgg 600
 ggtcgccagc ccggcccagg cagacaaagc ggactctgag agtaatggag agtgatggaa 660
 acaaagtgta cttaatgcac agcttattaa aaagatcaaa attgttatcc taatagatat 720
 attttttcaa aaactataag ggcagttttg tgctattgta atttttcctc ctt
 <210> 188
 <211> 714
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2763296
 <400> 188
gggagcetee caegetetee ageteacteg geaggeageg gggaceaggg etggeaggtt 60
aagestetgg gggtggatee tgaaaggtgg tecageegee tggecetgeg tgggaceete 120
cacctggcag caggtggtga cttccaagag tgactccgtc ggaggaaaat gactccccag 180
tegetgetge agacgacact gtteetgetg agtetgetet teetggteea aggtgeecae 240
ggcaggggcc acagggaaga ctttcgcttc tgcagccagc ggaaccagac acacaggagc 300
agectecaet actactggte catgeggetg caggeceggg gtggeceete ecetetgaag 360
agcaactcag acagcgccag gctccccatc agctcggca gcacctcgtc cagccgcatc 420
taggeeteea geecacetge ceatgtaatg aageagagat geggeetegt egeacactge 480
ctgtagecce egaaccegge ccagecccag gecagtaage egeagaettt agaaagceca 540
acgaccatgg agagatgggc cgttgccatg gtggacggac tcccgggctg ggcttttgag 600
attggcttag gggctactcg gctctcactc agctcccacg ggactcaaga atgcggcgcc 660
atgetgeett aggtaetgte eccaeatetg teccaaceca getggaggee tggt
<210> 189
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2779436
<400> 189
cggccagggc gccgacagcc cgacctcacc aggagaacat gcagctcggc actgggctcc 60
tgctggccgc cgtcctgagc ctgcagctgg ctgcagccga agccatatgg tgtcaccagt 120
gcacgggett cggagggtge teccatggat ecagatgeet gagggaetee acceaetgtg 180
tcaccactgc caccegggtc ctcagcaaca ccgaggattt gcctctggtc accaagatgt 240
gccacatagg ctgccccgat atccccagcc tgggcctggg cccctacgta tccatcgctt 300
getgecagae cageetetge aaccatgaet gaeggetgee etectecagg ecceeggaeg 360
ctcagecece acagececea cageetggeg ecagggetea eggeegeeee teeetegaga 420
ctggccagcc cacctetece ggcctetgca gccaccgtcc ageaccgett gtcctaggga 480
agtectgegt ggagtettge etcaatetge tgeegteeaa geetggggee categtgeet 540
geogecectt caggteecga cetececaca ataaaatgtg attggategt gtggtacaaa 600
aaaaaaac
                                                                  609
<210> 190
<211> 1088
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<223> Incyte Clone No: 2808528
<400> 190
tgtagaagac ageggegttg ccatggegge gtetetgggg caggtgttgg etetggtget 60
ggtggccgct ctgtggggtg gcacgcagcc gctgctgaag cgggcctccg ccggcctgca 120
gegggtteat gageegaeet gggeeeagea gttgetaeag gagatgaaga eeetettett 180
gaatactgag tacctgatgc cctttctcct caaccagtgt ggatcccttc tctattacct 240
caccttggca tcgacagatc tgaccctggc tgtgcccatc tgtaactctc tggctatcat 300
cttcacactg attgttggga aggcccttgg agaagatatt ggtggaaaac gagcagttgc 360
tggcatggtg ctcaccgtga taggaatttc actctgcatc acaagctcag tgagtaagac 420
ccaggggcaa cagtctaccc tttgagtggg ccgaacccac ttccagctct gctgcctcca 480
ggaagcccct gggccatgaa gtgctggcag tgagcggatg gacctagcac ttcccctctc 540
tggccttagc ttcctcctct cttatgggga taacagctac ctcatggatc acaataagag 600
aacaagagtg aaagagtttt gtaacettca agtgctgttc agctgcgggg atttagcaca 660
ggagacteta egeteaceet cageaacett tetgececag cagetetett eetgetaaca 720
tetcaggete ceageceage caccattact gtggcetgat etggactate atggtggeag 780
gttccatgga ctgcagaact ccagctgcat ggaaagggcc agctgcagac tttgagccag 840
aaatgcaaac gggaggcctc tgggactcag tcagagcgct ttggctgaat gaggggtgga 900
accgagggaa gaaggtgcgt cggagtggca gatgcaggaa atgagctgtc tattagcctt 960
gcctgcccca cccatgaggt aggcagaaat cctcactgcc agcccctctt aaacaggtag 1020
agagetgtga geeccageee caeetgaete cageacaeet ggegagtagt agetgteaat 1080
aaagctat
<210> 191
<211> 1377
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2809230
<400> 191
gcgggacttc ctgtgtcgta tttccaagga ctccaaagcg aggccgggga ctgaaggtgt 60
gggtgtcgag ccctctggca gagggttaac ctgggtcaaa tgcacggatt ctcacctcgt 120.
acagttacgc tctcccgcgg cacgtccgcg aggacttgaa gtcctgagcg ctcaagtttg 180
teegtaggte gagagaagge catggaggtg cegecacegg cacegeggag etttetetgt 240
agagcattgt gcctatttcc ccgagtcttt gctgccgaag ctgtgactgc cgattcggaa 300
gtccttgagg agcgtcagaa gcggcttccc tacgtcccag agccctatta cccggaatct 360
ggatgggacc gcctccggga gctgtttggc aaagatgaac agcagagaat ttcaaaggac 420
cttgctaata tctgtaagac ggcagctaca gcaggcatca ttggctgggt gtatggggga 480
ataccagett ttattcatge taaacaacaa tacattgage agagecagge agaaatttat 540
cataaccggt ttgatgctgt gcaatctgca catcgtgctg ccacacgagg cttcattcgt 600
tatggctggc gctggggttg gagaactgca gtgtttgtca ctatattcaa cacagtgaac 660
actagtctga atgtataccg aaataaagat gccttaagcc attttgtaat tgcaggagct 720
gtcacgggaa gtctttttag gataaacgta ggcctgcgtg gcctggtggc tggtggcata 780
attggageet tgetgggeae teetgtagga ggeetgetga tggeatttea gaagtaetet 840
ggtgagactg ttcaggaaag aaaacagaag gatcgaaagg cactccatga gctaaaactg 900
gaagagtgga aaggcagact acaagttact gagcacctcc ctgagaaaat tgaaagtagt 960
ttacaggaag atgaacctga gaatgatgct aagaaaattg aagcactgct aaaccttcct 1020
agaaaccctt cagtaataga taaacaagac aaggactgaa agtgctctga acttgaaact 1080
cactggagag ctgaagggag ctgccatgtc cgatgaatgc caacagacag gccactcttt 1140
ggtcagcctg ctgacaaatt taagtgctgg tacctgtggt ggcagtggct tgctcttgtc 1200
tttttctttt ctttttaact aagaatgggg ctgttgtact ctcactttac ttatccttaa 1260
```

```
atttaaatac atacttatgt ttgtattaat ctatcaatat atgcatacat gaatatatcc 1320
 acccacctag attttaagca gtaaataaaa catttcgcaa aagattaaaa aaaaaaa
 <210> 192
 <211> 985
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2816821
 <400> 192
 gcgggcccgc gagtccgaga cctgtcccag gagctccagc tcacgtgacc tgtcactgcc 60
 tecegeegee teetgeeege gecatgaeee ageeggtgee eeggetetee gtgeeegeeg 120
 cgctggccct gggctcagcc gcactgggcg ccgccttcgc cactggcctc ttcctgggga 180
 ggcggtgccc cccatggcga ggccggcgag agcagtgcct gcttcccccc gaggacagcc 240
geetgtggca gtatettetg ageegeteea tgegggagea eeeggegetg egaageetga 300
 ggctgctgac cctggagcag ccgcaggggg attctatgat gacctgcgag caggcccagc 360
tettggecaa cetggegegg etcatecagg ceaagaagge getggaeetg ggeaeettea 420
egggetaete egecetggee etggeeetgg egetgeeege ggaegggege gtggtgaeet 480
gcgaggtgga cgcgcagccc ccggagctgg gacggcccct gtggaggcag gccgaggcgg 540
agcacaagat cgacctccgg ctgaagcccg ccttggagac cctggacgag ctgctggcgg 600
cgggcgaggc cggcaccttc gacgtggccg tggtggatgc ggacaaggag aactgctccg 660
cctactacga gcgctgcctg cagctgctgc gacccggagg catcctcgcc gtcctcagag 720
tectgtggeg egggaaggtg etgeaacete egaaagggga egtggeggee gagtgtgtge 780
gaaacctaaa cgaacgcatc cggcgggacg tcagggtcta catcagcctc ctgcccctgg 840
gcgatggact caccttggcc ttcaagatct agggctggcc cctagtgagt gggctcgagg 900
gagggttgcc tgggaacccc aggaattgac cctgagtttt aaattcgaaa ataaagtggg 960
gctgggacac acgaaaaaaa aaaaa
                                                                   985
<210> 193
<211> 1310
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2817268
<400> 193
cccacgcgtc cgggttcacg taaagacagc gagatcctga gggccagccg ggaaggaggc 60
gtggatatgg agetggetge tgccaagtee ggggeeegeg eegetgeeta gegegteetg 120
gggactetgt ggggacgege ecegegeege ggetegggga ecegtagage eeggegetge 180
gegeatggee etgetetege geecegeget cacceteetg etecteetea tggeegetgt 240
tgtcaggtgc caggagcagg cccagaccac cgactggaga gccaccctga agaccatccg 300
gaacggcgtt cataagatag acacgtacct gaacgccgcc ttggacctcc tgggaggcga 360
ggacggtete tgccagtata aatgcagtga cggatetaag cettteccae gttatggtta 420
taaaccetce ccaccgaatg gatgtggete tecactgttt ggtgtteate ttaacattgg 480
tatcccttcc ctgacaaagt gttgcaacca acacgacagg tgctatgaaa cctgtggcaa 540
aagcaagaat gactgtgatg aagaattcca gtattgcctc tccaagatct gccgagatgt 600
acagaaaaca ctaggactaa ctcagcatgt tcaggcatgt gaaacaacag tggagctctt 660
gtttgacagt gttatacatt taggttgtaa accatatctg gacagccaac gagccgcatg 720
caggtgtcat tatgaagaaa aaactgatct ttaaaggaga tgccgacagc tagtgacaga 780
tgaagatgga agaacataac ctttgacaaa taactaatgt ttttacaaca taaaactgtc 840
```

```
ttatttttgt gaaaggatta ttttgagacc ttaaaataat ttatatcttg atgttaaaac 900
 ctcaaagcaa aaaaagtgag ggagatagtg aggggagggc acgcttgtct tctcaggtat 960
 cttccccagc attgctccct tacttagtat gccaaatgtc ttgaccaata tcaaaaacaa 1020
 gtgcttgttt agcggagaat tttgaaaaga ggaatatata actcaatttt cacaaccaca 1080
 tttaccaaaa aaagagatca aatataaaat tcatcataat gtctgttcaa cattatctta 1140
 tttggaaaat ggggaaatta tcacttacaa gtatttgttt actatgaaat tttaaataca 1200
 catttatgcc tagaaggaac ggacttttt tttctatttt aattacacat aatatgtaat 1260
 taaagtacaa cataatatgt tgtttctctg tagcccgttg agcatatgag
 <210> 194
 <211> 914
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2923165
<400> 194
eggtggccat gactgeggce gtgttetteg getgegeett cattgeette gggeetgege 60
tegecettta tgtetteace ategecaceg agecgttgeg tateatette eteategeeg 120
gagetttett etggttggtg tetetaetga tttegteett tgtttggtte atggeaagag 180
tcattattga caacaaagat ggaccaacac agaaatatct gctgatcttt ggagcgtttg 240
tetetgteta tatecaagaa atgtteegat ttgeatatta taaaetetta aaaaaageea 300
gtgaaggttt gaagagtata aacccaggtg agacagcacc ctctatgcga ctgctggcct 360
atgtttctgg cttgggcttt ggaatcatga gtggagtatt ttcctttgtg aataccctat 420
ctgactcctt ggggccaggc acagtgggca ttcatggaga ttctcctcaa ttcttccttt 480
attcagettt catgacgetg gtcattatet tgctgcatgt attctgggge attgtatttt 540
ttgatggctg tgagaagaaa aagtggggca tcctccttat cgttctcctg acccacctgc 600
tggtgtcagc ccagaccttc ataagttctt attatggaat aaacctggcg tcagcattta 660
taateetggt geteatggge acetgggeat tettagetge gggaggeage tgeegaagee 720
tgaaactctg cctgctctgc caagacaaga actttcttct ttacaaccag cgctccagat 780
aacctcaggg aaccagcact tcccaaaccg cagactacat ctttagagga agcacaactg 840
tgcctttttc tgaaaatccc tttttctggt ggaattgaga aagaaataaa actatgcaga 900
tatgaaaaaa aaaa
<210> 195
<211> 606
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2949822
<400> 195
ttttttaata atgcctttta gttggatggt aattatcctg ggttttctat gtggattatc 60
aggicagett caaataatga acaccetete tietetteea attgittiae tigittette 120
ttcttgtctt atattagcca gaatgtcata tagtatattg accagtagct atggtggtgg 180
cgtttttatc ttattggact taaaaagaaa tacatcaaaa gtttctccat taatgatgat 240
gtttgctata gggcattgat agatagcctt caaaaagtta agaaagttct tttctttcta 300
gtcttcaagg ttaaaaagtt tttaaagatc ttaattgaat gtgaacttta tcaaatgcct 360
ttgtgatgtc tatggagata atcatgtatt tgcttcttta atacattcct gtggtgaaat 420
atgtgaataa gtgttctgat attgaattat ctttgcattt ctagaataag ccctaataag 480
tactattcaa ggtatttttc tcaaacacct gattggactc tgtaagctca tatttcattg 540
```

```
agtggatttc cttctatgtt tgtcagtgca attgcgctat aattcgcgtt gctgtcctca 600
 tctgaa
 <210> 196
 <211> 893
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 2992192
 <400> 196
ccacccgga agtcggctgg ccatggcggc gccttggagg cgatggccca cggggctgct 60
agcegtgetg eggeceetge teacetgeeg geeeetgeaa ggeaegaege tgeaaeggga 120
tgtgctgctc tttgagcatg atcggggccg cttcttcacc atcctcgggc tgttctgcgc 180
gggccagggc gtcttctggg cttccatggc tgtggcagcc gtgtcccggc ccccggttcc 240
ggtgcagcct ctggatgcgg aggtcccaaa tcgtggcccc ttcgacctgc gctccgcgct 300
ctggcgctac ggtctggccg tcggctgcgg cgccatcgga gccctcgtac tcggtgctgg 360
tettetette teteteeggt etgtgegete agtggtgett egagetggag ggeageaggt 420
gacceteace acteatgeec cetttggett gggggeecat tteacagtte etttgaagea 480
ggtatettge atggeceaee ggggtgaagt ceetgecatg etacetetga aagteaaagg 540
ccgacgette tattteetet tggacaaaac tggacaette eetaacacaa aactetttga 600
caatactgtg ggtgcctacc ggagcttgtg aagaaatgac ctcaagtcac tcacctctcc 660
aagaggagga taaaaactga accttgggga gccaggtgtg ttggttcaca cctgttgtaá 720
teccageaet ttgggagggt gaggeaggag caetgetega geccaggetg ggeaacatag 780
cgagaccttg tctctattta caaaaaaaa aacaaaaaa aacgccaatc ttagaatgga 840
gtaacaacca gggtcacaca aggaggtcaa gattcattaa caacaaataa agg
<210> 197
<211> 1730
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2992458
<400> 197
ggccagaggc tgcccggctc ccggaagcag gctgtgaggg gcgggagcgc tgctggaacc 60
cgagccggag ccggagccac agcggggagg gtggcctggc ggcctggagc cggacgtgtc 120
cggggcgtcc ccgcagaccg gggcagcagg tcgtccgggg gcccaccatg ctggtgactg 180
ectacettge ttttgtagge etcetggeet eetgeetggg getggaactg teaagatgee 240
gggctaaacc ccctggaagg gcctgcagca atccctcctt ccttcggttt caactggact 300
tetateaggt ctaetteetg geeetggeag etgattgget teaggeecee taeetetata 360
aactetacca geattactac tteetggaag gteaaattge cateetetat gtetgtggee 420
ttgcctctac agtcctcttt ggcctagtgg cctcctccct tgtggattgg ctgggtcgca 480
agaattettg tgteetette teeetgaett aeteactatg etgettaace aaactetete 540
aagactactt tgtgctgcta gtggggcgag cacttggtgg gctgtccaca gccctgctct 600
tetcageett egaggeetgg tatateeatg ageaegtgga aeggeatgae tteeetgetg 660
agtggatece agetacettt getegagetg cettetggaa ceatgtgetg getgtagtgg 720
caggtgtggc agctgaggct gtagccagct ggatagggct ggggcctgta gcgccctttg 780
tggctgccat ccctctcctg gctctggcag gggccttggc ccttcgaaac tggggggaga 840
actatgaccg gcagcgtgcc ttctcaagga cctgtgctgg aggcctgcgc tgcctcctgt 900
eggacegeeg egtgetgetg ttgggeacea tacaagetet atttgagagt gteatettea 960
```

```
tetttgtett cetetggaca cetgtgetgg acceacaegg ggeecetetg ggeattatet 1020
 tetecagett catggeagee agectgettg getetteeet gtacegtate gecaceteea 1080
agaggtacca cottcagece atgeacetge tgtcccttge tgtgctcate gtcgtcttct 1140
ctctcttcat gttgactttc tctaccagcc caggccagga gagtccggtg gagtccttca 1200
 tageetttet aettattgag tiggettgtg gattataett teecageatg agetteetae 1260
ggagaaaggt gatccctgag acagagcagg ctggtgtact caactggttc cgggtacctc 1320
tgcactcact ggcttgccta gggctccttg tcctccatga cagtgatcga aaaacaggca 1380
ctcggaatat gttcagcatt tgctctgctg tcatggtgat ggctctgctg gcagtggtgg 1440
gactetteae egtggtaagg catgatgetg agetgegggt acetteaeet actgaggage 1500
cctatgcccc tgagctgtaa ccccactcca ggacaagata gctgggacag actcttgaat 1560
tccagctatc cgggattgta cagatctctc tgtgactgac tttgtgactg tcctgtggtt 1620
teteetgeea ttgetttgtg tttgggagga catgatgggg gtgatggaet ggaaagaagg 1680
tgccaaaagt tccctctgtg ttactcccat ttagaaaata aacactttta
                                                                   1730
<210> 198
<211> 2029
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3044710
<400> 198
ccttgacaag tcagaagctt gaaagcaggg aaatccggat gtctcggtta tgaagtggag 60
cagtgagtgt gagcctcaac atagttccag aactctccat ccggactagt tattgagcat 120
ctgcctctca tatcaccagt ggccatctga ggtgtttccc tggctctgaa ggggtaggca 180
cgatggccag gtgcttcagc ctggtgttgc ttctcacttc catctggacc acgaggctcc 240
tggtccaagg ctctttgcgt gcagaagagc tttccatcca ggtgtcatgc agaattatgg 300
ggatcaccct tgtgagcaaa aaggcgaacc agcagctgaa tttcacagaa gctaaggagg 360
cctgtaggct gctgggacta agtttggccg gcaaggacca agttgaaaca gccttgaaag 420
ctagetttga aacttgeage tatggetggg ttggagatgg attegtggte atetetagga 480
ttagcccaaa ccccaagtgt gggaaaaatg gggtgggtgt cctgatttgg aaggttccag 540
tgagccgaca gtttgcagcc tattgttaca actcatctga tacttggact aactcgtgca 600
ttccagaaat tatcaccacc aaagatccca tattcaacac tcaaactgca acacaaacaa 660
cagaatttat tgtcagtgac agtacctact cggtggcatc cccttactct acaatacctg 720
cecetactae tacteeteet getecagett ceaettetat tecaeggaga aaaaaattga 780
tttgtgtcac agaagttttt atggaaacta gcaccatgtc tacagaaact gaaccatttg 840
ttgaaaataa agcagcattc aagaatgaag ctgctgggtt tggaggtgtc cccacggctc 900
tgctagtgct tgctctcctc ttctttggtg ctgcagctgg tcttggattt tgctatgtca 960
aaaggtatgt gaaggccttc ccttttacaa acaagaatca gcagaaggaa atgatcgaaa 1020
ccaaagtagt aaaggaggag aaggccaatg atagcaaccc taatgaggaa tcaaagaaaa 1080
ctgataaaaa cccagaagag tccaagagtc caagcaaaac taccgtgcga tgcctggaag 1140
ctgaagttta gatgagacag aaatgaggag acacacctga ggctggtttc tttcatgctc 1200
cttaccctgc cccagctggg gaaatcaaaa gggccaaaga accaaagaag aaagtccacc 1260
cttggttcct aactggaatc agctcaggac tgccattgga ctatggagtg caccaaagag 1320
aatgeeette teettattgt aaceetgtet ggateetate eteetaeete caaagettee 1380
cacggccttt ctagcctggc tatgtcctaa taatatccca ctgggagaaa ggagttttgc 1440
aaagtgcaag gacctaaaac atctcatcag tatccagtgg taaaaaggcc tcctggctgt 1500
ctgaggctag gtgggttgaa agccaaggag tcactgagac caaggctttc tctactgatt 1560
ccgcagetca gaccetttet teagetetga aagagaaaca egtateecae etgacatgte 1620
cttctgagcc cggtaagagc aaaagaatgg cagaaaagtt tagcccctga aagccatgga 1680
gatteteata aettgagace taatetetgt aaagetaaaa taaagaaata gaacaagget 1740
gaggatacga cagtacactg tcagcaggga ctgtaaacac agacagggtc aaagtgtttt 1800
ctctgaacac attgagttgg aatcactgtt tagaacacac acacttactt tttctggtct 1860
ctaccactgc tgatattttc tctaggaaat atacttttac aagtaacaaa aataaaaact 1920
```

```
cttataaatt tctattttta tctgagttac agaaatgatt actaaggaag attactcagt 1980
aatttgttta aaaagtaata aaattcaaca aacatttaaa aaaaaaaaa
<210> 199
<211> 543
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 3120415
<400> 199
ccggcgctgg aggggcgagg accgggtata agaagcctcg tggccttgcc cgggcagccg 60
caggitteece gegegeeeeg ageeeeegeg ceatgaaget egeegeeete etggggetet 120
gegtggeeet gteetgeage teegetgetg etttettagt gggeteggee aageetgtgg 180
cccagectgt egetgegetg gagteggegg eggaggeegg ggeegggaee etggeeaace 240
ccctcggcac cctcaacccg ctgaagctcc tgctgagcag cctgggcatc cccgtgaacc 300
acctcataga gggctcccag aagtgtgtgg ctgagctggg tccccaggcc gtgggggccg 360
tgaaggccct gaaggccctg ctgggggccc tgacagtgtt tggctgagcc gagactggag 420
catctacacc tgaggacaag acgctgccca cccgcgaggg ctgaaaaccc cgccgcgggg 480
aggaccgtcc atccccttcc cccggcccct ctcaataaac gtggttaaga gcaaaaaaaa 540
aaa
<210> 200
<211> 531
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 126758
<400> 200
gcaagtggaa ccactggctt ggtggatttt gctagatttt tctgattttt aaactcctga 60
aaaatateee agataaetgt catgaagetg gtaaetatet teetgetggt gaccateage 120
ctttgtagtt actctgctac tgccttcctc atcaacaaag tgccccttcc tgttgacaag 180
ttggcacctt tacctctgga caacattctt ccctttatgg atccattaaa gcttcttctg 240
aaaactctgg gcatttctgt tgagcacctt gtggaggggc taaggaagtg tgtaaatgag 300
ctgggaccag aggcttctga agctgtgaag aaactgctgg aggcgctatc acacttggtg 360
tgacatcaag ataaagagcg gaggtggatg gggatggaag atgatgctcc tatcctccct 420
gcctgaaacc tgttctacca attatagatc aaatgcccta aaatgtagtg acccgtgaaa 480
aggacaaata aagcaatgaa tacatttaaa ctcagaccat cgaatggaaa a
<210> 201
<211> 491
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 674760
<400> 201
```

```
etteteceat gaetgeegge eagttteetg eacttgttte tetegettta ttgetggaeg 60
 gtgggagaag ggcaagtgca agacggaatc gagggcacct ctgggtgttc tgtacctctt 120
 ttettettge acettgggaa gtggaggaeg tgggatggaa gaagggeetg gaceteeete 180
 ctteeteete eccaeettet ectaaggage ttgeeetgea gtaageecca aettteeett 240
cetettttee etetateaga gregregeee acceeettt eccaeegete ecctaeeeee 300
gccttcctgc caagccgagg gcgacggtga tccccagctt agtaagaaaa gtaaataggc 360
cgggcgcggt agctcacgcc tggaatccca gcactgtggg aggccgaggc gggcggatcg 420
cttgagccca ggagatcagg ttggagacag cctaggcaac atggcgaaac cctgtctcta 480
caaaaaaaa a
                                                                   491
<210> 202
<211> 1551
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1229438
<400> 202
ccggggggcc ggcggcggcc cgggcgggac gatgaagcgg cagaacgtgc gcacgctggc 60
geteategtg tgeacettea ectacetget ggtgggegee geggtetteg aegegetgga 120
gtcggagccc gagctgatcg agcggcagcg gctggagctg cggcagcagg agctgcgggc 180
gcgctacaac ctcagccagg gcggctacga ggagctggag cgcgtcgtgc tgcgcctcaa 240
geogeacaag geoggegtge agtggegett egeoggetee ttetaetteg ceateacegt 300
catcaccacc ateggetacg ggcacgeggc acceageacg gatggeggca aggtgttetg 360
catgttctac gcgctgctgg gcatcccgct cacgctcgtc atgttccaga gcctgggcga 420
gcgcatcaac accttggtga ggtacctgct gcaccgcgcc aagaaggggc tgggcatgcg 480
gegegeegae gtgtccatgg ccaacatggt getcategge ttettetegt gcateageae 540
gctgtgcatc ggcgccgccg ccttctccca ctacgagcac tggaccttct tccaggccta 600
ctactactgc ttcatcaccc tcaccaccat cggcttcggc gactacgtgg cgctgcagaa 660
ggaccaggec ctgcagacgc agecgcagta cgtggccttc agettcgtct acatecttac 720
gggcctcacg gtcatcggcg ccttcctcaa cctcgtggtg ctgcgcttca tgaccatgaa 780
cgccgaggac gagaagcgcg acgccgagca ccgcgcgctg ctcacgcgca acgggcaggc 840
gggcggcggc ggagggggtg gcagcgcgca cactacggac accgcctcat ccacggcggc 900
agcgggcggc ggcggcttcc gcaacgtcta cgcggaggtg ctgcacttcc agtccatgtg 960
ctcgtgcctg tggtacaaga gccgcgagaa gctgcagtac tccatcccca tgatcatccc 1020
gcgggacete tecaegteeg acaegtgegt ggageagage caetegtege egggaggggg 1080
eggeegetae agegacaege eetegegaeg etgeetgtge ageggggege eaegeteege 1140
catcageteg gtgtccacgg gtctgcacag cctgtccacc ttccgcggcc tcatgaageg 1200
caggagetee gtgtgaetge eeegagggae etggageaee tggggggegeg ggegggggae 1260
ccctgctggg aggccaggag actgcccctg ctgccttctg cccagtggga ccccgcacaa 1320
cateceteae caeteteeee cageaeeeee ateteegaet gtgeetgett geaeeageeg 1380
gcaggaggec gggetetgag gacecetggg gececeateg gagecetgea aatteegaga 1440
aatgtgaaac ttggtggggt cagggaggaa aggcagaagc tgggagcctc ccttcccttt 1500
gaaaatctaa gaagctccca gtcctcagag accctgctgg tacccagact a
<210> 203
<211> 936
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1236935
```

```
<400> 203
gtcagtttag tgtttgtggc attcccgctg cttttatggc acttcagtca ttttttagca 60
cacttecate catactacat gtgtcctttt ttccccttaa cttctctaat tgtgtttctt 120
atcettttet ttaaaaccat tgetteatet gggagtggtg gtteatgeet tggeeteeca 180
aagtgctggg attacaggcg tgagcaccgc gcccggccaa ctatagtgtt ttcaaaacat 240
gtgtacacat actotatgag gatgcaaatt gagatttcaa caaatattto tcagtgactt 300
acataaagee gtgetttate ttggegetta gatgaatttt gtttggttgg ttttggtttt 360
ggttttacat atateetagg aacatageag gtgatataga gtggtaaaga geacaegtee 420
actgttagta ggtattttta tgcacttgtt ttctcatcta taaaataagg ataaaattag 480
tgcctacctc acaggatatt agggagatgg agagaatgct cagaacacaa cagggcctag 540
cacagaggaa gcacaatgct gaggaacgag aaactgcacc tgtaaattct gcagtcactt 600
taaattataa aacgagtatt tgatgtatga tcataacttt gctaagaagc catcagttat 660
aatggatgca tgaactgtag ccatccagtg agtagtgacc aggatggagg agctttatgg 720
agggggaaga aaggaacctc aaagctttcc gattcatttt gaatcatgag atgtctacat 780
gtaaaaattc tgccttggta aactttgttt ataatgtttt agataatgca ttcacatggt 840
tttataaata tataaatata tatttgggga acatat
<210> 204
<211> 432
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1359283
<400> 204
cgctgtcctg ctaaagcaga ggatcacagc tttaataaag accctaaata tttatcttgc 60
ctgtggtcat gtatagctga acaatgcaca gcgaactcat ttagtttcca tgcgcttaac 120
tgggctaact ctgcttttga gcctaatgga aagcttgggg caggtggagg accggttctt 180
tagcactcac agacgattcc cacaccacac teccatatec ggtettetet geegagaatt 240
ctccctgccc aagaggtctg gggtgccctg gacacgtgtg ctcatctcct gtatttggag 300
atctggggct gggaagagaa tgtaaagcaa cctaaacagt aatttaagaa tggagaaaat 360
gggactaaat tattcagaca cgtttgagtg cctactcgct agcaggcatt ttccgctgcc 420
tataattatg ag
<210> 205
<211> 971
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1450703
<400> 205
gggagagagg ataaatagca gcgtggcttc cctggctcct ctctgcatcc ttcccgacct 60
teccageaat atgeatettg caegtetggt eggeteetge teceteette tgetaetggg 120
ggccctgtct ggatgggcgg ccagcgatga ccccattgag aaggtcattg aagggatcaa 180
ccgagggctg agcaatgcag agagagggt gggcaaggcc ctggatggca tcaacagtgg 240
aatcacgcat gccggaaggg aagtggagaa ggttttcaac ggacttagca acatggggag 300
ccacaccggc aaggagttgg acaaaggcgt ccaggggctc aaccacggca tggacaaggt 360
tgcccatgag atcaaccatg gtattggaca agcaggaaag gaagcagaga agcttggcca 420
tggggtcaac aacgetgetg gacaggeegg gaaggaagca gacaaagegg tecaagggtt 480
```

```
ccacactggg gtccaccagg ctgggaagga agcagagaaa cttggccaag gggtcaacca 540
 tgctgctgac caggctggaa aggaagtgga gaagcttggc caaggtgccc accatgctgc 600
tggccaggcc gggaaggagc tgcagaatgc tcataatggg gtcaaccaag ccagcaagga 660
ggccaaccag ctgctgaatg gcaaccatca aagcggatct tccagccatc aaggagggc 720
cacaaccacg ccgttagcct ctgggggcctc ggtcaacacg cctttcatca accttcccgc 780
cctgtggagg agcgtcgcca acatcatgcc ctaaactggc atccggcctt gctgggagaa 840
taatgtcgcc gttgtcacat cagctgacat gacctggagg ggttgggggt gggggacagg 900
tttctgaaat ccctgaaggg ggttgtactg ggatttgtga ataaacttga tacactaaaa 960
aaaaaaaaa a
                                                                971
<210> 206
<211> 1832
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1910668
<400> 206
tcaaggaagc tgatggggag ctgggcctta cccctgatgt aggaggggca cacagctggg 120
ggtgcagagc ccacctgggt acctgacccc caggggatga aaatgcaagg gtgagtctgc 180
ttgggcctga gagtttgatc tgcaggggca ggctcatctt ttctctcccc tgccttctcc 240
tecttetete eccagagece ecttgagece etetgeetat gtecetetge etectececa 300
tgcccccagt tgctgtggct tgattctgct accctgaccc caccatgtgc caggtggcat 360
ctgccttact gccttccctg aggagctggg acatgctggg cagttgtcag atgtaaaggc 420
acagctggag cagagggcat gtcagtaatg attggtccct ggggaaggtc tggctggctc 480
cagcacagtg aggcatttag gtatctctcg gtgaccgttg gattcctgga agcagtagct 540
gttctgtttg gatctggtag gacagggctc agagggctag gcacggaggg aaggtcagag 600
gagaaggcag gcagggccca gtgagagggg agcatgcctt ccccaccct ggcttgctct 660
tggtcacagg gcggttctgg gcacttgaac tcagggccga agcagaagca caggcccagt 720
ctetetgget ttagttttgt tttgttttee aaatcaaggt aacttgetee ettetgeeta 840
caggeettgg tettggettg teetcaceca gteggaacte cetaceactt teaggagagt 900
ggttttaggc ccgtggggct gttctgttcc aagcagtgtg agaacatggc tggtagaggc 960
tctagctgtg tgcggggcct gaaggggagt gggttctcgc ccaaagagca tctgcccatt 1020
teccaeette cettetecca ccagaagett geetgagetg tttggacaaa aatecaaace 1080
ccacttggct actctggcct ggcttcagct tggaacccaa tacctaggct tacaggccat 1140
cctgagccag gggcctctgg aaattctctt cctgatggtc ctttaggttt gggcacaaaa 1200
tataattgcc tctcccctct cccattttct ctcttgggag caatggtcac agtccctggt 1260
acctgaaaag gtacctaggt ctaggccctt cttccctttc ccttcctctc ccctacccca 1320
gaactttggc tccctttccc ttctctctc ggtagctcca ggaggcctgt gatccagctc 1380
cctgcctagc atccatgacc tgttggatgt tacctccaat cagtttcctg tcctacctgc 1440
ctctttggct tggacctata tggccatgct ctggctctac ccttgggaag cctgatcccg 1500
gtgtgtggcc cagcttgttc aggccctggg atgctgcatc tccaggcaac tatgcacttt 1560
cccggggaga gaaccagtat gagaagtggg ggcagggcac acattcatct ttgtaggaag 1620
gtctggcctg gggtcgggtg aaggagggcc caggtcagtt ctggggtccc agtgacctgc 1680
tttgccattc tcctggtgcc gctgctgctc cctgtttctg gagctggatg ttccccagct 1740
ggcagttgag ctgcctgagc caatgtgtct gtctttggta actgagtgaa ccataataaa 1800
ggggaacatt tggccctgtg aaaaaaaaa aa
<210> 207
<211> 567
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1955143
<400> 207
catagatcca taaatcatca tctgttgcaa aaaagcacat taattgattg gttgaatggg 60
gagattgaga tatttctttt ctcttcttct gctcaggtgg gggcaacttt tgggggcaga 120
tgagttctgt tgccacaaaa gttatatagc acatttggtt tgcactgaat cagcgattct 180
caatcctggc catgctttag aattatacaa gaaaaatctt caagtatcaa tactcagtcc 240
ctatectact gatecaatte atetatgata aagecagage attgattttt aagttetgea 300
agtgattcta atatacagcc aaggctaaga actactgata tgttccaaac actcctattt 360
tggagataaa gaagttgagg ctgaggatga gaccttagca cataaagttc cataactagt 420
aacagaccga agttctgtcc ttacaaataa aaaaaaaaag gggcggccgc cgacttagtg 480
gagettegte ggeeceggga atttatttee eggaeeggta eettgeaggg ggtteeaage 540
ttttcactct atagtggagg ccgtatt
<210> 208
<211> 1303
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1961637
<400> 208
gggggacaat tccacccact cgagggctgc cccctcttcc ttagcagacg aaccagtaat 60
gggggcaagg ctggggcatc ccagcccaca caccctggat gcccagcaag gccacagaaa 120
gagectgatg tecatgatee aggtggetet gagaagettg geetggacae etgageetge 180
ggccggtact cctgccttct ccccatctat ccccaaggcc tctgcctctc agcctcttcc 240
atggtcggtt taggctgctg agttttctgt gcttccccaa gaaccagtgg gatcaatgcc 300
ggcggcctct gtgatggttg ctgactaatc cgggatttca tgagtcagag gcaccacccc 360
tcaccccage tgcctgctgc ttctgacgga tcttggtgct caggctgcct ggctctccga 420
gtgaggacgc agcctccata tttggtgcac tcaggcatgg ctgggacaag ccagctgccc 480
cagggttett cecetggtga ttetegeetg ettteteate teaggggagg cagtggeace 540
tecetetece tgetgacatg aagagageta tgatatgeca etgetgecaa eteateetet 600
gececeacet egaaacecac agteeceagt ggagggecac tacteatece cattggttte 660
ccaggggagg ggtgttgtct ggaagggcag gttcagatgc agccttccag atttagaggc 720
actgggagga cagtggctga gtggaggcgc ccagacctgg gcaggcagca ggctcaggcc 780
cacaccttgt gatttttgaa accaaagccc agaagatgat gtttacttct ctctccctgg 840
ctctgccctt cttactgcaa accatgctgt gccttagggc ccttctcata gctgttcctc 900
atggccatga ctggaacagg gatgcaacct ctttctacac aagcacagtt agttgggtga 960
agtetttttt tttgtttgtt ttagacggag tttcactett gttgcccagg ctggagtgaa 1020
gtggcgtgac cttggctcac tgcaacctcc aggccagcct cagcctccct agtagctggg 1080
actacaggca cccactacca cgcctggcta attctttgta tttttagtag agatggggtt 1140
tgaccgtgtt agccaggatg gtctcgatct cctgacctcg tgatccaccc acctcggcct 1200
cccaaagtgc tgggattata ggtgtgagcc accgcgccgg gccggttgct ggcatcttaa 1260
tgttctgtag gtggaatatt tccaataaac acaaggtcgc cac
                                                                  1303
<210> 209
<211> 1355
<212> DNA
```

<213> Homo sapiens

```
<220>
<221> misc_feature
<223> Incyte Clone No: 1990762
<400> 209
gcagctcttt tctggaaatt tctcagggga tgtatctgaa gctccaggtc tctgagatac 60
tctggagggc ccgaccttgt ggagatgtgg ccaaccacat gggcctggag ctgggttcaa 120
accetgactt tggcactact tattagetgt gtgacettgg gacagttaat taccactetg 180
caggicagit tecteatetg tgagatggat gtaataatag ggtgtgatga gatgateeet 240
agtgagtcat tggtgttgct gtggccacca ccattgttgt tactgggaga gttttggatt 300
tggaatcccg tgagcaggat tctattctgg ctgtgccatg tgccagctgg gcagctgtag 360
gaagtcactt cctctctgag ccttcacttc ccagtctcta aactggggct cacaaatgtc 420
gcattgcagt ttgggggtgg atcttttgta agaatggaca gaaaaaagat ggtcaactgt 480
aatgtgtggt gcatcgtgag ctgtcactcc cgtgtgccct ggtctcctgc tggcctcact 540
gtggtttgac tcagacttgg actttcctgg aattctgaac tttgcctctc taagcaaagc 600
cccgccaggg ggtacactct gccttgtttt ccatggtgcc gtgtttccag ccctatccaa 660
caactggett etgategget gettttteac actgetgtte etgeaagget gtgtggeece 720
atggttaagg gtgagggttc tgcaagggtc agccagatgc gagttccggt cctaggtcca 780
ccacttactg gtcaggtgac ctcaagtaag ttgcctaacc aaggcttaac ctcttaggag 840
ctcagttttt cttcctgtaa aatggggata ataatagtac ctacctcagg ggaatagggg 900
atgaaaaatg gtcttatgaa atccccctgg ccctaactgg caaaagccaa ctcagttaac 960
ggggctccat tatcactgtt gggacctggg cttgtgggag ctcaggagtc ttctcagacc 1020
teeteattge tgtgecaggt ggaggaggtg tttgtattta etgagageaa ttgggecaat 1080
ggcccatagt ccttgagcac ccagctgacc caggccacag aggctgctca tcttggtctg 1140
gtgaccacag gaggctgtgg ctgttgggat gaccctcccc agtgttgtta acaacagtcc 1200
caggocatgt cctgctggcc ttgagttccc ctgtcctctt gtgaatgtcc ctagagccat 1260
ggcctcaagg ttcctgaagt tcccaataat gtgacatgct gcccagacct cactacactc 1320
cttttttatt ttgagcctgg gtgacagagc aagac
<210> 210
<211> 776
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1994131
<400> 210
gttcactgcc atattcctag ggacaagtaa agttccctgt atattgtagg agctaagtgt 60
tgaatgaatg aatggtggct gctattattg cttcaccttc accctccaag agtaatctcc 120
ccattctggt ttatagtttc tgtgctcact gcttgtgata atcgtaagta tatattgttg 180
agaacagtgc ctgttttctc tttccctgaa aacacatact ttgacgttgg ctgacatagt 240
teacteaget gtteetaace actgateeet etgtateaca ggtatetegg gggagetttg 300
tgccttgatg gatcaagttc atcatatgca gcactcaaaa tggcagcatc cttcggacct 360
caccacgcga aactacgccc gccgacagaa acatctgcaa agatacagtc tgactcagtg 420
ggttgacagg aacatgcgaa gccaccatcg gttccagcgt ctcccagact tctcgtacag 480
ttaatttgtg tcatcccatc agcaatgaag gtccctatcc agggtcctgc ttggagcagc 540
atttcatgtt cttttgctgt tttgtgcttt gccgattttg gattttattt ttcacaaaat 600
ttttatttaa aaaactcgtc accttttgga aatgcccatt gccgacttga atttttttgt 660
atggagtece cetgattttg tgtgtgtgt tetgtgttta ageaegegtt eggttggtat 720
agttttttat atgtattttt acattaaatt gaaggtagct gcctcctgga aagcag
<210> 211
<211> 817
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1997745
<400> 211
ggaggcgtta gaggagctgc cttcggaggc tcagggagtc cctttggagc tggttgtttc 60
cttggccctg cagcgcactg ctcggggctc ccaaggaggt tgtgtgtatg gttcttaatt 120
catcaggaca aagaccccca gcatgtgtgt accctgggac ccgatttctc tgggcccaca 180
tctatctcca atacctcagc ctcagatcag accetttctt ttttgtcttt cttctcttaa 240
tttttaaatg cotottttct tgagcattcc atctctctt ttgaccctct caggactggg 300
cttagetgte cagagecetg ceggagggtg etgggggetg teeetetgea ggeaetgtgt 360
tttcctcagg ggctgtcctc agaacacccc tcctgctccc tggggctcct cagggagcca 420
tttcagctgg agtctcaggt ctcaaaaaca acttctccag gaggccaaaa aaagactggg 480
ttggcttctg gtcctcatga tggcttttat cctcctggga cactttgggt atattcatgg 540
geattgttte catetgtett ttetacetgt gecaecectq ecetqattee acqqetqeet 600
caggeaggea ggeaaggage taggeeggtg cccqqccctq qcaqcaaqqq qtctttqtqc 660
agttggagat gctgccgttg tggcagagcg tcctqcaqcc ccqcttccat caqcaqqctc 720
tggggtgggg gctttgcagg ggatgctctc tgatgtttgt tccgttgttt aaataaaatg 780
cacttatttt tgttttttt tttgcaaaaa aaaaaaa
<210> 212
<211> 484
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2009035
<400> 212
ttttctttta tatgtattat taaatgactg ttactctaca aacatatggt tgttatttt 60
actttttgga taccattata gtgtaggcat ttcccaggtt tttttggtaa caccattttc 120
ttaatgatat gatgttgcag ccagtggatt tattacagtc ttacttatta ttqctctact 180
gttggtcctt tagtttgctt ttcactcttc tatgtaatgc tgtaagaaat gactttttcc 240
ataaactatt ttccatatat tggatgtata atttaacaca ttctaaacat taatgttaaa 300
acagacataa agcataaaaa ccgagatata tatttgatca tataaaaatt taagctgggc 360
acagtggetc ataccetgta teccageact ttgggaggec aaggtggggg tagaetggtt 420
gageteaggg gtteaagace ageetgggaa catggtgaaa eecaacteta ecaaaaaaa 480
aaaa
                                                                484
<210> 213
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2009152
<400> 213
cccagtttat taccattaga ccataccttt ttgtccaatc atttaaaaca aatttttata 60
```

```
tatataaaaa gttttaataa atacctaata tattatttaa tatgataaaa cttatattaa 180
 atgaaatttt atgetgttet ettgteaate tgtettttgt tatettgetg gtgtgeetgt 240
 catgtgaggg actgcaatct gatatgccta ttttccacag tcaaagcaat tacaagagaa 300
 ttgttacaat tacccagtta tgtcaagaga tttttttta attcactaag gtagagataa 360
 ggagaatgta ttaaaatagg atattttaat tataaatgca tgactgggga gggggtattg 420
 tttttgaata aaatatgagg ttatttgcca tgacaaaaaa aaaaagaagt aggaaaatcc 480
 catggaaatt tatgttcctt ctaactttt
 <210> 214
 <211> 1130
 <212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2061752
<400> 214
ggatttatca cattctgcct tgaatcatag ggaacagcat gtgtagtgga atgaacacag 60
gcctctgaat ccaagatatg agtttaaatc ccagctttgg aggtggttac ttaaagtctc 120
agtgccttca ttcttcttcc tatataaagt agatattaca atatctaact tacagagtca 180
ttgggagcta tacatgcagc gattgggtaa agcacctggc acatggcaag cgattagcaa 240
atgetggtta ettetaette tttetettee etttteeag tetateataa ttteettgag 300
agcaggcacc atgtettatt taccettgta ttteccacag tactteccat agtgagttac 360
ccttagtaaa tactcagtaa gttgaattga atttaaatta cctgtaagtc ttaaaatgtg 420
ggattaaatt aagaatatat tgtcctggaa atacccaaat gtctattgat ggatgaatgg 480
ataaacaaaa tgtggtatac acataatgga atattattca gccttaaaaa ggaatgaaat 540
tetgacatgt getacaatat gatgaacetg gaagacatta tatgtgaaat aageeagaca 600
gaaaaggaca aatactatat gattccactt atatgaagta cctagagtag tgtaattcat 660
agaaacagaa agtacaggtt gacatccaaa atctgaaatg agaaatgctc caaaaactga 720
aactttttca atgccgacac gatgctcaaa gaaaatgcta attggagcat ttcagatttt 780
ggatttttgg atttgggatg ctcaactggc ataatgtgaa tattccaaac tctgaaaaaa 840
totgaagtot aaaacactto tggtotcaag gattttggat aaaggatact caatgtgcaa 900
catgtagaat ggtggttgca aggtgggagg agagaatgga gagttactgt ttaatgatac 960
aatgtttccg tttgggaaga tggaaagttt tggagatgtg tgatggttat ggttgcgcaa 1020
caatgggaag gtacttagta ctgcttaact gtgcacactt aaaaatggta aaaatgataa 1080
<210> 215
<211> 1273
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2061933
<400> 215
attttctccc ttcagcaagc actcattaag gagtgaggct gagtatttta agatagagtg 60
agatetgtga gtgattgaaa ggtgatattt aaaaaettgg attteattee agtgteaggt 120
ttgggtttta agttcctttg gtccagggaa gggtccaagc agccacagtt gccctaaatc 180
tccatcatta agtcttccag caaggttaag tgcagtatgg aaggagaagg gggaagagga 240
cggtaacggc cccacactcc aggctgagaa agagtaatta ggaggcctga ggaggggccg 300
aggaaagget gttggggtgt getggggttg gtacccgage gccttcccct cacctcaacc 360
agagaagagc atccggttgc tttttaaagc ttttagcctg ccctagcaag gacaaagcat 420
```

```
gttagattag agatgettet getgategea ggggttetta tttgaaaaca tetatgatgg 480
 gggtggggtg ggaggagaca ggttgtggtt atgcaggaaa atcttgtcct aaaaatatat 540
 gagtttgggg gtaaggggtg ggatagccaa gcaaaatcag taattatttt aaaatgaaca 600
 tatgtatttt tattaacttt tagttaaata cagattttac aacgaggtca gcataagcct 660
 aaatctatat agagggctaa ctcaggcatt gtcttgttta tttgtagact ggattaaaaa 720
 caacctgtcc tgttttgtca gttcccagct tcttcgttta gaataaatta gaccaaaaga 780
 agaaacgtgc ttgtctctgt atacccgcag aatgaagtta ctgttgttaa aactggattt 840
 tttcatttta ctaggttccg aagagtccag atgcttggta gatgttcaat acgtgatttt 900
 ttttttaatt gaatgtgttc atttaaaatc ctccttaaca tttctagaaa gacttctttc 960
 aataaataat ggaatcttag aggaaaagtg gttttttaaa agctagggaa ctcctccact 1020
 aaaagtaacc attggaaacc tcgaatgagg gctaaagttt taatcataag agaaaaggca 1080
gcataatgaa atgtgtacac atacatagtc agtggtccat tttaggaagc cagtggcgtc 1140
 tototttatg ttgtttctct totgagtcat ggtaaaacaa taaattatca tototaggtg 1260
gaaaaaaaa aaa
                                                                 1273
 <210> 216
 <211> 1279
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2081422
<400> 216
ctttaacaga aggatggggg atagtcagat agtcggagga agtgggtgat ttgaacaagt 60
tcagagcagg gaggaagget gtgttgggga ettecagett geteteetea tgcatgaage 120
cactcattcc etttetetet eccecacece ttetteecet caetttette ettteeteae 180
tteteettte eestetgtge agagetettg geaccagtea agetgteeca eeseteaggg 240
ccctctcagt gactgatgcc catggctccc tcctcctaca cccaaagacc ctggcttgcc 300
catgtctctg atgagaattc aaagggagct gtgtttatat aacgtagagg gatttacctg 360
tggcttttcc tttactcact tcctcaaaac tgtacattta tggcatagga tgtcagtcct 420
aaaagtttta ttatcaaaac agtaggtggc aagtaattat tatcataaat ccagcaggtt 480
ctagagaagc caagttggag gagaaagcag gatagagtcc accatgacca ttgattgttg 540
ggcacattet ttetaagaaa cagattaatt eeattgtate tgttetetgt tateeeatae 600
cagettatga ttagagtett gageteacaa ettggteete taagaggtag teagtggtea 660
gegetteage ttgaccacag egtttggtte tttetttaag tgttgtgttg taatgettgg 720
attataaaag cettaacacg geeceatttg ateagtteee tgecaactet tgtateetea 780
tttcactaag ctttgttaca ctcactagac tgttaacaac ggagaaaaac ctgtgggtac 840
tgaatatgcc atatacaact tgctatttat tctgttccct gtttagaagg ccatggctac 900
cettaactat etgaactett eetgteetgt aagactgage teaetggeaa tateetatag 960
getgetttee ctaageetee ceatetttet teeteetee ttetaettet eteetaeete 1020
cttttccctc tctcccctac tcacctgctt tccttttgcc cctcccacat cctcttcccc 1080
cttcttgtca tttttccatg tcaagaaatt tccagatata taggaatatg atggagaatg 1140
ctgacaggca gttctttgag tagtcaaatt aagatgtaat ggttgaattg tataatggca 1200
atcacataaa ctacatatat aaagetteta gettagtaaa etetaaatgt gtttttttaa 1260
actaaagaat gagggggg
                                                                1279
<210> 217
<211> 899
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc feature
 <223> Incyte Clone No: 2101278
 <400> 217
 tggtttggga atgcttcgaa ttttattttt tctactccca attaatcagg agttgatgat 60
 cccatgagca ggaccgcctc catgattggg gagcatgcac ttgtgactgc agggtaagag 120
 tgggaagata ggtttgtgga gtggcaccga caggactgtg attgtgtgtg ggcctgcccc 180
 acatttetet gggggatget tatgtgagag tgggeceagt gaaagagtta ccaageeace 240
 cacaccccta acactgttct ggatgagaga tgagagcaga ccggcttctc cccatcagtg 300
 cattgtgcct gttgtacacc cctggaggag ccctggagcc agcccaggtg gggtacacaa 360
 tctttttaaa ttccatatgg ttgccagctt atttctttca cttgtttact gtaatatctg 420
 gcgtgttttt atttatctaa ttttgtattc agttataacc atggtagggg tagtgaatat 480
 atgacaggtg taatccctgg tgctgcagtg gaccttcttt tcttttggac aagataatac 540
 tgtgagtttc cctccttcct tccctctaat ttgttttcct tttttcccca gcctcttgca 600
 teceettett ttetaccetg tectacaact atcatatgea cagtettete tetttgtgtg 660
tgactgttac aaaatttcac ttttcaaaat cgaaatcagg tgtttgctca aatgagggga 720
 gatttttttt ttttttttt ttttaaatgc tgagacttca gcagagtact ttccttttgg 780
 tggtttcccc caaaaaccca tcagtctggg agagcattgg gagtggaaat catgttgcct 840
gggatgctgg tttctttgaa aattatataa aacgtatgta aaaggtcccc ccatttggg 899
<210> 218
<211> 645
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2121353
<400> 218
caaagtgctg ggattacagg tatgagccac cgcaccgggc ctgttctatt tttctagtta 60
agggaactga agetcagaga ggtgtcacca gcaggtgttc attcccatgc cagcettgcc 120
ecceggettt teccaggeag geteetgegt geccaetgge tecageetgg tectetgtet 180
ettggetget teaeteetge tetttgteee gaetetggee etgettaeag gggeeaetae 240
ctgctggtgc ctccataaca agcgtctggc gttgagaccc ctggcatggc aggggctttg 300
cctacaaaca aacagcagta cttgccagaa ccattcttgg gattcaggag ctcgggcgac 420
tgccttggcc tctggccgca cccaggaggg tggggttgga tctgtgtagt tgccaggccc 480
acacctgcca gcagggggct gactggatcc atgctttact gtgtttaatg ggggtaacag 540
gggtccctac agccctccca gctaaacatt tggaacaaaa caccagccct tttgtagtgg 600
atgcagaata aaattgttaa tccaatcacc tccaaaaaaa aaaaa
<210> 219
<211> 703
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2241736
<400> 219
ccacgcgtcc gctgtaaacc agaaaaatgt tggttatcta gaaaacttga gagagcatgt 60
agattaactt ttctctttgg agttctaaaa cattaactgg aaagattaga taatatacta 120
aatgtataca gaagtataca gactatacaa agactgaaac aagtcccttt tgcactacaa 180
```

```
ctctataaca ttaccgcaga aattttggtt ctatgtagca tggacctcct aaggaattct 240
 gtttctttta gcattgagat ccctggtgct cttttttac ctcagaattg gtacaatcat 300
 tattaaacgt taatttattt caaacttttt aattgaaaaa aggaaaggga aacttaattg 360
 gggataaatt caggcatcat attattatga tagagtctcc tgagtggttc gtctataggt 420
 aatgaactca ttggtgttat ttcttggaca tcttggcctt ttaatcaaag actgtgtgct 480
 gctatttgct atgagcaagg tttctcaaaa gcaaaaggtg cttggaccat ttggatcacc 540
 tgagttagaa tetetaggta tagggeecag gtatetgeat ttteacaggt ttettgtagg 600
 tgactttctg caagctaaag tatgagaacc attggcttgg atgtagttct aaacttttag 660
 gtctgtaaat cttgaaatct tgaactgaag gtcaactatt ggc
                                                                   703
 <210> 220
 <211> 536
 <212> DNA
 <213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2271935
<400> 220
ctttcatcat aattaaagtg ctgtcaggga aaatggcatg gctgagtttt gctgctgttg 60
aaatgaccet ceteetecae teetettege tteteteatt tgetaaagtg gteettete 120
tgcctgaaat caggcccttt ggtgatggaa attttagctt aaagcagagt tctaagcaga 180
atectaacee tgegagggtg gggagaaaat caatgttttg agetggtgte tgtttgeage 240
gaggtgctgg tgaggccatt ttcatcagga ggaacggtgg tggtggctac ttctgggctt 300
tagatccacg caaggtctcc taaatacaag tcactgtcat ggtacacaat ttagcaaaac 360
ttggaggctg attttccccg ttgacttagc tagggtcagg aggaagctgt ttagaagtac 420
agaggttetg catetgggag ggtaaaatcc aaacgeetet catgeteaga gggaaageat 480
gcctgcatgt ttactatcac tgctggccta cgtgcttgtg tgctgaattt agatgg
<210> 221
<211> 790
<212> DNA
<213> Homo sapiens
<220×
<221> misc_feature
<223> Incyte Clone No: 2295344
<400> 221
teegteeeeg geeggtagat titettetet tietaagget aatggtggta giittgiitt 60
ttgacgtttt cttataatga gtttttcttt ataattttta atttatgctg taatgtttct 120
tatttacaat gttatctctt aaatctttga gtacattaca ttttctcccc tgataatctc 180
ttctaaatta ccttctctag ttggttttct tcccttcctt aatgttagcc attcttcagg 240
tgaaggttaa tcctcaatgt actcttcatg tttaagggga gggtctaaaa ccttgtgggt 300
aggacttacc aacggagttt cattgcatga tgatcttatt gagcttattg gtagccctta 360
teteagtate tttagttttt ettgggetgg teagatttte aagagaagae tttteattte 420
ctttgtggag ggaaaaggcc ttttaccagc actcttcaag ctcagtaggg gaaagacttc 480
aagcactcag gaagcatgca ttcactttat ttggaacaat acccttactt gtaactgtgc 540
ctcaggtgcc atagtccaca gagacttctt ttacctgtcc agagaataaa attagttgtc 600
tgttggggta acaaaaagtg tggagctgaa gagggtacct ataaatgaag ttgttttctg 660
gccgggcgca gtggctcacg cctgtaatcc cagcacttcg ggaggccaag gtggagggat 720
cacttgagtc caggagtttg agaccagcct gggcaacata ctgagactcc gtctctccaa 780
aaaaaaaaa
                                                                  790
```

```
<210> 222
 <211> 1045
 <212> DNA
 <213> Homo sapiens
<220>
 <221> misc feature
<223> Incyte Clone No: 2303994
<400> 222
gggaagttga ggctgcagtg aactatgatt ttaccactgc actccagctt gggcaacaag 60
atgagaccct gtctcaaaaa aaaaaaaaag ttttctagaa taagcaggat gattgtttaa 120
tttgaagatg gaacaggaaa ctagagtgca tttaaaaatac tctgtcttca ttttaacatg 180
ttgaatggaa taactgcata tcaccatgag tttgttttgc ttttcataca gacttgtatg 240
tgtcatttga gtggtttcca gattggagcg aggttattct gatctaaatg aacagcattt 300
ttttccttag cctctgtttg ccactctggg tatctctcct atgggcaaag ccattagaaa 360
tgcataaaac ctcgagacat ggtttttggc aaaaactcca tgactttaaa ctagctcttt 420
tactactgac ctttcacaga gaaaaaatat ttcccttgaa aaaaactggg cttgtcattt 480
tttcccttgt agctttaagc agagacataa gtgccttgca ttacacatag taaactttct 540
ttaaaaaaaa aaaaaaagat tttggagact accagggtaa gattccaact tgtccaaaag 600
ctttctggcc ttacatattt tattataaaa attctcaagt ctggtaatct tctatgtcag 660
agctagtgat ttcaaaaaggt ttcacaattc cccaagacaa aagtgatttt cgttcattat 720
aataaggtta agtgatatgt gattcataac aattttgatg tgaagaaggg aaggacatca 780
ttgacttaat aatagtatca gtcggtgcaa cagttggcaa catgtgcctt cacactttac 840
cataaagaga cgggtttgag ggtttgcctt ctaaagtctg caacttcaag aaaaaaaatc 900
gacaccgtgg attgaccttc ccgggtccac taatataaag ccaataaagc ttaaaaacac 960
ctttggtaac ccatgtaatt taactccggt ccagtggccc tataattcca attaaaaatg 1020
gttcaatctc ttggaaaaaa aaaaa
<210> 223
<211> 553
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2497805
<400> 223
ctggcagatc cggacgggca ggactgggtg tgtcccatga gagcacctcc ttcctggcct 60
ttcctgtgga ctttgtccca caccacctgc ctgggttcct tcctttagtc acttccagct 120
ccaggcacag cagttggtga ctccttggtg ggagccgtgt cccacccggt cctgatactg 180
cogtettete tttcacagte etccaggett gggccagect tgggggcage agagettetg 240
gggtgagtgt cgagatcctg tgtcctgaga gcggtagtca gggagagggc tggtcggggc 300
agggetgeee gggcaggaca caggatgegg ceggeeagge tggggeeaag gtgtteagae 360
ctggactttg ggctcgtgct ttcttcatgg ttgcgccttg ctcgctgtcc cttggagtct 420
tcatttggtt ttgcttttt tgtttgtttg ttttcaccta atttttgcca gacttaagct 480
agttttgctg ccttttgaaa ctagtggaag aatcatttta ttcctgggga taatttgggg 540
gcttttgaat cca
<210> 224
<211> 706
<212> DNA
<213> Homo sapiens
```

```
<220>
 <221> misc_feature
 <223> Incyte Clone No: 2646362
 <400> 224
 ccgaccccca acctcaagtt gccgccggaa gagcggctca tctgaacgct ggggcctgct 60
 gcagccacca acactgccca ggactgcggg ttgctggctt gtacaccgca gctgccaccg 120
 agacaccage etetgatgge teaggaggae ttgtggggag aggetggggg cacccatgtg 180
gtgggctctg tgcagcatgt tgcctctgct tggctgtgcc tgcagctcag ggtgctgggg 240
ctcgggaccc accccctgc ttgcggaacc aacttttctc tgtgtgtcca gcaggcccca 300
caaccccctc tcctttcttt cagttctccc atgcagccga ggcccgggcc cctcaggact 360
ccaaggagac ggtgcagggc tgcctgccca tctaggtccc ctctcctgca tctgtctccc 420
 ttcattgctg tgtgaccttg gggaaaggca gtgccctctc tgggcagtca gatccaccca 480
gtgcttaata gcagggaaga aggtacttca aagactctgc ccctgaggtc aagagaggat 540
ggggctattc acttttatat atttatataa aattagtagt gagatgtaac aaaagcttta 600
ttggtgtgtt tgagctggtg ggtgccacat atttggggat ttgaagaagg aggtgagatg 660
tctggatggg gactgggatg ggtagaggat tcagtgatac tccgag
<210> 225
<211> 509
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 492
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 2657146
<400> 225
aaattttagt gtattacatt tgcctttact gtttatgtgc agcataaagt tgcttttgtt 60
acaattcatg ttgttttgta atggttgatc aaagcaaaga aagacatgtg ttactacgca 120
tgatctgtca atgtttaagg ctgttgttgg ttcttgtgac tttgctaata tgttttctc 180
ctgacaggtt aacctgccct cttaactcag cagtggttct agcgtcctat gccgtacaat 240
gtaagtcaca aagggagcat ttcacggatg gacaggttgt tctgatcagt gtgtggagaa 300
agtcactggt tectectget tgaccaagte cetetteece aggaateetg etgggeagea 360
tatetetgge tgtecagata tgtgttteta etcagaetgg caeteteetg tageatgggg 420
atgttagatt aaggaaggtg gttaaagggg aaagaatgaa tgaactgtgg tgtgaaattt 480
cttccaagga gnccatccga cagcagaca
                                                                   509
<210> 226
<211> 2153
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2755786
<400> 226
gaaggcggtg gctgaggcgg ttccggaggt tctagtgtcg gagttgggtg caggcaggtg 60
ccatgggecc gcttgaggca cactgagggg acgcggggct gggccatggc cggcgctcgg 120
```

```
geegeegeeg eegetgeete ggeggggtee teggeetett caggeaacca geegeeteag 180
 gagctggggc ttggggggct gctggaggag ttctcccgga ctcagtaccg ggccaaggat 240
 ggcagcggga ccggcggctc taaggttgag cgcattgaga agagatgtct ggagctgttt 300
 ggccgagact actgtttcag cgtgattcca aacacgaatg ggġatatctg tggccactat 360
 ccccggcaca tcgtgttcct ggagtatgag agttctgaga aggagaaaga cacgtttgag 420
 agtaccgtac aggtgagcaa gttgcaagac ctcatccacc gcagcaagat ggcccggtgc 480
 agaggacggt ttgtctgccc agtaatcctg ttcaagggca agcacatttg caggtcggcc 540
 acactggctg gatggggaga gctgtatgga cgctcaggct acaactattt tttctcaggg 600
ggtgcagatg atgcctgggc agatgtggag gacgtcacgg aggaggactg tgctcttcga 660
 agtggtgaca cgcatctttt tgataaggtc agaggctatg acatcaagct gcttcgatac 720
ctgtcagtca aatacatctg tgacctgatg gtggagaaca agaaggtgaa gtttggcatg 780
aatgtaacct cetetgagaa ggtggacaaa geeeageget atgeegaett caeteteete 840
tccatcccgt atccaggctg tgaatttttc aaggaatata aagatcggga ttacatggca 900
gaagggetea tatttaactg gaagcaggae tacgttgatg eeccattgag cateeeegae 960
ttcctgactc actctctgaa cattgactgg agccagtatc agtgttggga tctggtgcaa 1020
caaacacaaa actacctgaa gctgctgctt tccttagtta acagtgatga tgacagcggg 1080
ctgctggtac actgtatctc aggctgggat cggacccccc tcttcatctc cctcctgcgc 1140
ctttccttgt gggctgatgg gctcatccac acgtccctga agcccactga gatcctctac 1200
ctcactgtgg cctatgactg gttcctcttc gggcacatgt tggtagatcg gctcagcaaa 1260
ggggaggaga ttttcttctt ctgcttcaat tttttgaagc atattacctc cgaggagttc 1320
tctgctctga agacccagag gaggaagagt ttgccagccc gggatggagg cttcaccctg 1380
gaagacatet geatgetgag acgaaaggae egtggeagea eeaccageet tggeagegae 1440
ttctccctgg tcatggagag ttccccagga gccactggga gcttcaccta tgaggccgtg 1500
gagetggtee cageaggage gecaacteag geagettgge ttgeageeet gagtgatega 1560
gagactegge tgcaggaggt gegeteagee ttettggetg egtacageag cacagtgggg 1620
cttcgggcag tagcccccag tccttccggt gccatcgggg gcctgctgga gcaatttgcc 1680
cgtggtgttg gactccggag catcagcagc aatgccttgt gaagaagcca gcccatgaca 1740
ttttcctgct cctctctcag ctgagccctt agcagagaat caaagccatg cctggccgaa 1800
ggggtacttc caggtcaggg gaaatttcag tcccccatct ccatcatgaa catggcagcc 1860
ccaaagctga gcaaggccaa agacagggtt ttccaacccc cagcctcttg actggtgacc 1920
accacccctt cttgtcactg tctcccaccc accccatctt tgctgggatt cccatcaact 1980
ctcagaactg tgtggggttt ccctggggcc ttgtggaagc catgacttca caaagaccct 2040
acctgtcagt tcttgtttct ggggaggagg gatcacctgc actgagaatg aggcagtttg 2100
acacagatca caaaataaaa tcaaagtctt tttgaatagc caaaaaaaaa aaa
<210> 227
<211> 791
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2831245
<400> 227
ttaactgagg actaagttga tctatgcagg gtctgagtcc aaaccctggt gtcaaggtgt 60
taagtgcaaa ttattattat tatttttaa agaaaacact cttgttacaa tttggacaga 120
gagaatggta tggagatgaa aggttetegt gtatggettt tgeteetatt tatgtggaaa 180
gcacgcccta cattetttca aagetgtgtt gttcccttta ttctcagtcc ccagaattgt 240
gtgcaaacac actctcttgg cccaggggtt tggctgggtg tgtttccttc tggaagtctt 300
cactagcact cttgagttag ctggcaggag atcccttaaa accatttcca agcagttttt 360
ctcacttccc tataggggct aatcctgtac tttccacttc agttccagct gctgttgctt 420
gggaagaaac aaatttctgc tgtgttctca atctccagac ggtccatgaa aatttaatgt 480
ataagaacaa agaggetggg egeagtgget aaegeetgta ataeetgeae tttgggagge 540
tgaggtgggt ggatcacctg aggtcagaag ttcgagaaca gcctagccaa catggcgaaa 600
ccctgtctct actaaaaata ccaaatttgc tgaacgtgat ggtgggggct gttaacccca 660
```

```
gtacttggga ggctgaggca ggaaatcgct gaactcggga agcaaaggtt gcattaaggg 720
 tacgageteg aatteggtat catgttaaaa eegttteegg gttaaattgg tateegeeea 780
 caattcccac a
 <210> 228
 <211> 870
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <223> Incyte Clone No: 3116250
 <400> 228
cetgtteteg ecetcaaatg ggaacgetgg eetgggacta aagcatagac caccaggetg 60
agtatectga cetgagteat ecceagggat caggageete cageagggaa cettecatta 120
tattetteaa geaacttaca getgeacega eagttgegat gaaagtteta atetetteee 180
teeteetgtt getgecacta atgetgatgt ceatggtete tageageetg aateeagggg 240
tegecagagg ceacagggae egaggecagg ettetaggag atggetecag gaaggeggee 300
aagaatgtga gtgcaaagat tggttcctga gagccccgag aagaaaattc atgacagtgt 360
ctgggctgcc aaagaagcag tgcccctgtg atcatttcaa gggcaatgtg aagaaaacaa 420
gacaccaaag gcaccacaga aagccaaaca agcattccag agcctgccag caatttctca 480
aacaatgtca getaagaage tttgetetge etttgtagga getetgageg eccaetette 540
caattaaaca ttctcagcca agaagacagt gagcacacct accagacact cttcttctcc 600
cacctcactc tcccactgta cccaccccta aatcattcca gtgctctcaa aaagcatgtt 660
tttcaagatc attttgtttg ttgctctctc tagtgtcttc ttctctcgtc agtcttagcc 720
tgtgccctcc ccttacccag gcttaggctt aattacctga aagattccag gaaactgtag 780
cttcctagct agtgtcattt aaccttaaat gcaatcagga aagtagcaaa cagaagtcaa 840
taaatatttt taaatgtcac aaaaaaaaaa
<210> 229
<211> 764
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 3129630
<400> 229
gcacctgcga ccaccgtgag cagtcatggc gtactccaca gtgcagagag tcgctctggc 60
ttctgggctt gtcctggctc tgtcgctgct gctgcccaag gccttcctgt cccgcgggaa 120
gcggcaggag ccgccgccga cacctgaagg aaaattgggc cgatttccac ctatgatgca 180
teateaceag geacecteag atggeeagae teetgggget egttteeaga ggteteacet 240
tgccgaggca tttgcaaagg ccaaaggatc aggtggaggt gctggaggag gaggtagtgg 300
aagaggtctg atggggcaga ttattccaat ctacggtttt gggatttttt tatatatact 360
gtacattcta tttaaggtaa gtagaatcat cctaatcata ttacatcaat gaaaatctaa 420
tatggcgata aaaatcattg tctacattaa aacttcttat agttcataaa attatttcaa 480
atccatcatc tctttaaatc ctgcctcctc ttcatgaggt acttaggata gccatgattt 540
cagtttcaca taagaatgtt tactcaatgt ttaagtgtgt tgccccaaaa ttcccaacta 600
acaaggcaga actaggggac ttgaccttgg gacctttttg ggtcctaaac tccaggtaag 660
tataaacaat ttcaattggc ctttcccctt gccaagaaaa aaaaaaataa aggggcgggg 720
gggttccccg acccccggaa tttccggaaa cccttggtaa aacc
                                                                  764
```

```
<210> 230
<211> 540
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 007632
<400> 230
atcttgtggc gatcatgtat aagctggcct cctgctgttt gcttttcata ggattcttaa 60
atcctctctt atctcttcct ctccttgact ccagggaaat atcctttcaa ctctcagcac 120
ctcatgaaga cgcgcgctta actccggagg agctagaaag agcttccctt ctacagatac 180
tgccagagat gctgggtgca gaaagagggg atattctcag gaaagcagac tcaagtacca 240
acatttttaa cccaagagga aatttgagaa agtttcagga tttctctgga caaqatccta 300
acattttact gagtcatctt ttggccagaa tctggaaacc atacaaqaaa cgtgagactc 360
ctgattgctt ctggaaatac tgtgtctgaa gtgaaataag catctgttag tcagctcaga 420
aacacccatc ttagaatatg aaaaataaca caatgcttga tttgaaaaca gtgtggagaa 480
aaactaggca aactacaccc tgttcattgt tacctggaaa ataaatcctc tatqttttqc 540
<210> 231
<211> 857
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1236968
<400> 231
cacatttgaa cgcgcatgga cttccttcta cctaaacttt cgaacttttt ttagacacag 60
gaagtagcaa gaagggagat gccaagtgac aatcaccagg aagatgcctc tctctagtga 120
cetgggtagt ttgcacggtt tggctggaaa ccacagtece eccatetetq ccaqaacece 180
ccatgtggcc actgtcctca gacagetect ggagettgtg gataagcact ggaatggete 240
cggctccctc ctcctcaaca agaagtttct cggaaagttt gaagcaaaaa ctggtcagag 300
tgctggagga aaacctcatt ttgtcagaaa aaattcaaca gttggaggaa ggtgctgcca 360
tctcaattgt gagtgggcaa cagtcacata cttatgatga tcttctgcac aaaaaccaac 420
agctgaccat gcaggtggct tgcctgaacc aggagcttgc ccagctgaaa aagctggaga 480
agacagttgc cattetecat gaaagteaga gateeetggt ggtaactaat gagtatetge 540
tgcagcagct gaataaggag ccaaaaggtt attccgggaa agcgctcctg cctcctgaga 600
agggtcatca tctggggaga tcatcgccct ttgggaaaag cacgttgtct tcctcctcac 660
cagtggcaca tgagactggt cagtatctaa tacagagcgt cttggatgct gccccagagc 720
ctggcttata gagctagcat ggaactcaca ccacagcttc cctggtccac agaggctctc 780
accgccattg ccaccagtat ggtggtatgt actcacaaag attaagaaag aaatgtattc 840
tgattaaaaa aaaaaaa
<210> 232
<211> 1010
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 1334153
```

```
<400> 232
 gggaaccacc ttctgtagga cagtcaccag gccagatcca gaaggcttga ggccctgtgg 60
 tececateet tgggagaagt cageteeage accatgaagg geateetegt tgetggtate 120
 actgcagtgc ttgttgcagc tgtagaatct ctgagctgcg tgccgtgtaa ttcatgggaa 180
 aaatcctgtg tcaacagcat tgcctctgaa tgtccctcac atgccaacac cagctgtatc 240
 ageteeteag ecageteete tetagagaca ecagteagat tataceagaa tatgttetge 300
 tcagcggaga actgcagtga ggagacacac attacagcct tcactgtcca cgtgtctgct 360
 gaagaacact ttcattttgt aagccagtgc tgccaaggaa aggaatgcag caacaccagc 420
 gatgccctgg acceteceet gaagaacgtg tecageaacg cagagtgccc tgcttgttat 480
 gaatctaatg gaactteetg tegtgggaag eeetggaaat getatgaaga agaacagtgt 540
gtctttctag ttgcagaact taagaatgac attgagtcta agagtctcgt gctgaaaggc 600
tgttccaacg tcagtaacgc cacctgtcag ttcctgtctg gtgaaaacaa gactcttgga 660
ggagtcatct ttcgaaagtt tgagtgtgca aatgtaaaca gcttaacccc cacgtctgca 720
ccaaccactt cccacaacgt gggctccaaa gcttccctct acctcttggc ccttgccage 780
etecttette ggggaetget geeetgaggt eetggggetg eactttgeee ageaccecat 840
ttctgcttct ctgaggtcca gagcaccccc tgcggtgctg acaccctctt tccctgctct 900
gccccgttta actgcccagt aagtgggagt cacaggtctc caggcaatgc cgacagctgc 960
<210> 233
<211> 1981
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1396975
<400> 233
cagcactttg ggaggctggt ctcgaactcc tgatctcagg tgattcaccc gcctcagcct 60
tccaaagtgc tgggattata ggtgtgagcc accgcgcccg gcctggatct gttttcttag 120
cacgcagtga ggaatctttg tacttaaggc cagggcaaca aagtcaagag gtcaaggtgt 180
agggccatga ggcctggacc tatgctgcag gcaagggttt ccatccccgc tgccctaggc 240
actetettee caaggecagg ttgggeaeet ggggaggtea gtteagaaat atetageaga 300
gacctettaa acccccatee cagcacceca teetgttgtt eccagagetg gteteccatg 360
agtgtgctag agccagatag ccgtggcccc ccacccatct cactcacaca cacaggcatc 420
catacacccc agaagacttc ccaaatgagg ccagactcag ggtcacgggg aatgtgcttc 480
tgcccctgta agggctttgg ggaaggggc aacatagtag aggctggaaa gagcccccaa 540
acctgtgece atgecectee agecetgegt ttecattetg cetteteaga gtgeeettge 600
tgcacccaga ccaccggcca ggagagacct tctctcccac tccagcccct ctcactgccc 660
ttcaactaga getttcacct ttttacattt cccttctgaa ggacacaaat ctgctttct 720
gcccatacac tggcccaagg gctcacctaa cttgggaggg aaggggctgt tggtacaagg 780
atgattttct gttagactgc cattttgcac ggtctccccc ttcccatctg atgtgtcctg 840
cccctcagct ctttgcctta tctgtgtcac tgtcacttta gcaaaaatac agcggccatt 900
tgtatcagcc tetggtggtt gettgtgagg tgggaetett gegggaacag gtggaetttg 960
ggaggagtgg gcagggaggg agtggtagtg gcagttctcg agctatctga ttaagccatt 1020
ccgttagttc agttgtgccc tggagggcag gggacagggt cagtatctct ggggctgcag 1080
gecetettge ettggeette etggeatggg gtaaccacca geteagetet eeteetecag 1140
ctttcctctc tctagcacac cccagccagg gcaaggatgc ccacgggcat agctacagca 1200
accectgegg gatttggtgt ecacaceega gaggecagge cagatgggaa agggattage 1260
geotettece teacactetg ecaggetgee gggagettgg gecaggteta aggtaatgag 1320
gtgctcctct tcctgctgga aaaaccggac agactcagaa ccacaaaggc aggtgctgcc 1380
agcctggcgc cttcctctct gcttaggctg ggtgagcttg tccaggcctg tgcctcaccc 1440
cttctctctt ctaggctcag tgtatgctta atcaggcatg gtgcatcaga gcgggaagga 1500
gccatcaaca gtgtatactt ctggagcctt ctactgataa acagaggccc cagaagacga 1560
tttgacttac ctgagctccc agctgggact taaacccagg tgtgtctgag tcacaactct 1620
```

```
ccactcctgc catatcaggg ctggtctctg tggactcagc ccagggctgc ctcctctttg 1740
tcaccccaaa gtggggcagc cagggacagc cagggtgtgt tcagaatggg ttcttcctgc 1800
agggcaggaa gggcagattg ttaaaggggc tgcggcccag accaccctgg tccctcctcc 1860
ggcagtgact cagacccaca ctgtgccgtg cagctgtgtg ccctgcacac ccgcttgacg 1920
gcgcactgct cacttctggg gggccctttc agaggcactt ttaaagcaaa taaaacattt 1980
                                                                 1981
<210> 234
<211> 744
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1501749
<400> 234
gegeeeggtt etecetegea geacetegaa gtgegeeeet egeeeteetg etegegeeee 60
geogecatgg etgeeteece egegeggeet getgteetgg ecetgaeegg getggegetg 120
ctcctgctcc tgtgctgggg cccaggtggc ataagtggaa ataaactcaa gctgatgctt 180
caaaaacgag aagcacctgt tccaactaag actaaagtgg ccgttgatga gaataaagcc 240
aaagaattee ttggcageet gaagegeeag aageggeage tgtgggaeeg gaeteggeee 300
gaggtgcagc agtggtacca gcagtttctc tacatgggct ttgacgaagc gaaatttgaa 360
gatgacatca cctattggct taacagagat cgaaatggac atgaatacta tggcgattac 420
taccaacgtc actatgatga agactctgca attggtcccc ggagccccta cggctttagg 480
catggagcca gcgtcaacta cgatgactac taaccatgac ttgccacacg ctgtacaaga 540
agcaaatagc gattetette atgtatetee taatgeetta cactaettgg tttetgattt 600
gctctatttc agcagatctt ttctacctac tttgtgtgat caaaaaagaa gagttaaaac 660
aacacatgta aatgeetttt gatattteat gggaatgeet eteatttaaa aatagaaata 720
aagcattttg ttaaaaaaaa aaaa
<210> 235
<211> 979
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1575240
<400> 235
gggatgaagc ccagcaagtt cacagggatc cgggaagttg tgtggctgga aacccaggca 60
gggctgcacc acagggacca tttgctggag atgcagcact tgccacagcc accaccactg 120
acagcatgac acccacaaaa agggagcctc cagctgcacc cctgctgctg cgagtacttc 180
ctcagctgtc tgccatgagc ttaaggttaa gtaccaggag ggaggatatg attgggcaaa 240
cetcaggeat gtgttcattc tgtagettcc agaacatgcg aggagagage atctggetcc 300
tttgtctcga ggaggagggg gcaggactct gccagaactc actcgataaa agattttccc 360
aaaaggaagg gtgttcagat gacaaaagtc cactacacca ctttccttgg ctatctgatg 420
cacccccatc ttcccatgcg cgcacctcag aaatcaggct cccacctgac ataacacaac 480
catgcctcac aaaaagacag tggtttatcc cttccctagg agaaaagaga ggcaatgcca 540
agctgcttca tcaactgtta atacttcttc cagcccgcaa cccaggatat ctgcaggtgt 600
ctctccctct ggtttggtca tggctctctc tgttctagaa tgtatgggtt aaagtcggct 660
gccacaccat gccctcggca gtgtggtcca aggacccctg agggtcctca aggtccttcc 720
tttcccaacc ccacgtggtt ttcttcagtc aggataccat actgcaacag accgaaggcg 780
```

```
gaagcagcta tgaggatgca gcagccttct gttaagccag gctttaagga tctgcaaaaa 840
 tgtaaaacga tgccactcct actgatgaaa tatattgttt tggaaaatat aggtttaaaa 900
 atttttttaa ggtaacatgt aatggatgta tagtcttcaa atggatgaat aaatgttttt 960
cagagttaaa aaaaaaaa
<210> 236
<211> 760
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1647884
<400> 236
cccgactgtg cgccgcggct ggctcgggtt cccgggccga catgggcgcc gccgcgtggg 60
cacggccgct gagcgtgtct ttcctgctgc tgcttctgcc gctcccgggg atgcccgcgg 120
gctcctggga cccggccggt tacctgctct actgccctg catgggtaag gcctcccaag 180
ccctctgctc agatggagaa actgaggccg ggagaggaaa agccactcct cagatgcgcc 240
cagagacacc ttcacaggtc caggagagaa cctcagagcg ggacggggca tgctcttctc 300
ctctctgcct tagttgcaag ggccaacgtg tccaactttc catttgacag 360
atgagaaaac tgaggctggg agaggttacg tgacttgctt gaggtctaag ccagtccagg 420
gtccagtaaa tggagttagt ggggcaggac ttgatgtcac tgacccacgc tggctcctgg 480
tgatttttca ttgattcagc aaatatttat ggggcaccta ttctgtgccg ggccctgttc 540
tetgtaetgg gaataeegea gtgaataaga taaaeteegt gteettgtag ageetteatt 600
ttagttgggg aagacaaaca attgagaata agtaggccag gcgcggtggc tcacttctgt 660
aatcccacca ctttgagaga ccgaggcagg atcacttgaa gccaggagct cgagatcagc 720
ctaggcaaca tagtgaaaat ccaatctcaa aaaaaaaaa
                                                                  760
<210> 237
<211> 1080
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1661144
<400> 237
ttttttgtat ttttagtaga gatgggtcta accatgttgc ctaggctggt ctcgaactcc 60
tgagetcaag egateetett geetcaacet eecaaagtge tgggattgea getgtgagee 120
accgcacccg gccgcattct tctaaatcac agtacatctg gttcccagtg cccaggctct 180
cagggcagag ggtccagtgt gatcactttg catggcctct ctcccctcct gagcttgtgc 240
cagggcccca gggctgacct ggagaaggaa aatggcagag ggtgaagatg gggtgtctgg 300
tttggggacc atcctggccc cccttgtcac tgttggcatc tcttctgcac agtggcattg 360
ctgggaggtg cttactgtgc ctattcaagg ggctggcagc cgcagcctca ctgcagatca 420
gggacttggc ttcccggttg accacaggtc caagaacctg cagggtccag cctcccccc 480
atccccagtc ttccccaccc tggcccggcc ctccaggtgc agaaacatgc aggcccctct 540
ccaggactgt gggaggagtg tgtccctcag actggcctgt gtcctggctc ctcttaccac 600
etettecaga ggttgteace tgeagetgee ecaggataaa ggeaaggeea gagaggaete 660
ctgaacteet gtgtgeetgg ggtggeaggg gcaaacatag ccaactggtg geetgagegg 720
ggccatggtg aggacaccct tggtggcttg tcccacatca agctgggagg tgacactgag 780
gatgcattag tctgcagcgt atgataaaaa cggcatttca ggccaggcgt ggtggctcat 840
gcctgtcacc ccagcacctt gggaggccga ggtgggcgga tcatatgagg tcaggacttt 900
gagaccagcc tggccaacat ggtgaaaact catctgtact aaaaaaacaa aaattatgtg 960
```

```
ggttggtggt gtgcgcctgt aatcccagct acttgggagg ctgaggcagg agaatcactt 1020
 gaacetggga ggeggagget acaacgagee gaaattgeae caetgeaete cagegetgat 1080
 <210> 238
 <211> 1129
 <212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1685409
<400> 238
caacgtccga cagaacgagg ggacgtaacg gaggcaggtt ggagccgctg ccgtcgccat 60
gacccgcggt aaccagcgtg agctcgcccg ccagaagaat atgaaaaagc agagcgactc 120
ggttaaggga aagcgccgag atgacgggct ttctgctgcc gcccgcaagc agaggtagcc 180
ccagggaggg gagggaaagg gacggtggag acctgggtta gaccaagggt tatagaagga 240
aagagageta ceteaggget tgaatgtgga etagtegtga ggageagagt geattgette 300
ctctagggtt ttatttcctc cccaccctcc aaattgttag ctcacagcct tacaggaaag 360
gacgggggcg ggcgcctgcc ctcagtctga tttctgagcg tccctgggtc tgaccttaag 420
ggcaagggca gggagcttca catttcaaat acagttgtgg ttacggcagc ccagtacttt 480
tggccctcct tgctgttcgg ttctcctccc ttctcccaac ctcctcactg gtgttgctgg 540
gtgtggtcct caatacagaa tagagaccct tgggcctgtg tcaccagact tctgacccct 600
tgggcaacag ccagatggag actggtcgcc ttttgagcct cagctctctt cctcttgttc 660
tectagggtg ggagtacage agecaaacge tgaacttagt eccatecact tecatettat 720
cetttgtgcc ettcateccc etgcatettg teetttttgc eetetggtac eteceagtgc 780
cccatcatct ctacccccag ggactcggag atcatgcagc agaagcagaa aaaggcaaac 840
gagaagaagg aggaacccaa gtagctttgt ggcttcgtgt ccaaccctct tgcccttcgc 900
ctgtgtgcct ggagccagtc ccaccacgct cgcgtttcct cctgtagtgc tcacaggtcc 960
cagcaccgat ggcattccct ttgccctgag tctgcagcgg gtcccttttg tgcttccttc 1020
ccctcaggta gcctctctcc ccctgggcca ctcccggggg tgagggggtt accccttccc 1080
agtgtttttt attcctgtgg ggctcacccc aaagtattaa aagtagctt
                                                                   1129
<210> 239
<211> 2370
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 122, 124
<223> a or g or c or t, unknown, or other
<220>
<221> misc_feature
<223> Incyte Clone No: 1731419
<400> 239
agaaacttgg cccaagtttg tgacggttct gggtatgaaa gaagtcagtg tttcccaagt 60
gcctgccatg tgcgaggctc tgtgctgggg cgggtgcatg tgtgcgttgg gggcgtggac 120
angnggggtg ggaaaggcct gtgacatttc ctctggtggt ttccacgaac ccaggcgtca 180
ecceteggtg gagataaagt ggageeacce ageteeaccg tgteteagee tggggtegge 240
ctctgctgct tctggactca gtgaccctgg gctgtcaggg agcttctgag ccttggtttt 300
cctgtcgagt aagatggagg taatcgtgtc ttatggggtt gttttgaggg ttaaatgagc 360
tggtggctgt gtgggaaaga gctctgcctc ccgcagggag gaactgtgct gttcttatta 420
```

```
ttgtgaactt agtgacaagt gtggcactat tacccatttc cttgtctgcc cccaaccctg 480
gggtcttggg cagagaacag gagttcttgc cattttctcc cagctcccac cttgtgctgg 540
cttgcgggtg ctgaggtcat atttgctggg tgaaagggtg caggccagat atgagccagg 600
cctggcagag agggttttgg tcagcagtga tacctgcagt gttctctgca gttggtttgg 660
getggecetg etectgagaa etectgggtt gteeetteag geaaceaggg aaggeteett 720
ggagcagcag catctcccct taccactcgc cgacaccagc ttccgcctga cccagagaag 780
gagtttgggg acagccacag cacgtccagg gcttccaagg cagctggcag agccaatgag 840
gagaccccaa cacccatccg acggetgcag ctctccctga cgtgtgttac cgcagccctg 900
gtcccagccg ctgtgcttct cagggcctgc ctgcccagcc cgggtggata tggtgcccag 960
gcgggccccg gggacacaat gagggccatt ctcagagcca ggcagagcgt gtggggcagt 1020
cctgtcagtc ctatgtgcaa cagctgggat attgtttagg gagtgctggc atcaggccgg 1080
ggeteteete etetggeeet geeetttggg atgageaage eeceaaagge etteetgggt 1140
teetetggtg caegtgeeet ggagttaeee ttetgaagga ggtagaettg teeteetgte 1200
ctgggtgcct ggggtgcagg ggtgtgaatt gggctatgtc aagatatgct gggcagtact 1260
gtgaggtggg ggcagagggg agaaggtgtc ccaggaggag ccttcctgga ggggatgata 1320
gtccagcatg ttctgaagtg ggagtagggt gcggcaggag tagggtacca gagaatgagt 1380
gagtcaggca gcagcctcca ctgcgccttg gacacaggtg gccgacagtg tccacctgga 1440
ctggetttge accepttctg aggteacagt tgtgteeett gaaaacttgg gcaggagcac 1500
ctgactggcc cagcttgggt catgccctag gcccagcagt gcgggaggcc aggaaagtag 1560
gcttggggag gctggcctct cctccagttt gaagcatggc aggggttccg ggggaggctg 1620
ctggggggcc tgcgagcatg tccagagcag gaatgcttgg ggtggtgtgt gctttgctcg 1680
tetgggetta tetggeegtg gggaagetgg ttgtgeggat gaegtteaet gagetgtgea 1740
cgcatcatcc atggagtctg cggtgtgagt ccttttgccg ctccagggtc acagcctgcc 1800
tecetgetee ageceeetgg etgaggeeet teetetgeee eatgetette teagacagga 1860
atcctgtgga atgtcatctc tttggggagg ccgtctctga ccctgtatgc aaaggccttc 1920
teccacatta tttttggcae eccaetttet teccegtgaa ageaaattgt ttggtgtett 1980
tetgteecac tacagtatag geeeggttea gacagaggee ttgteeacta ggeetgeget 2040
atctctgcgg agcccagcca aagcaggggc caggcgaatc ttttgttaaa agaacaatgc 2100
gegetgggea cagtgeteac geetgtaate ceageaettt gggagteega agetggagga 2160
tcacttgaac ccaagagttt gagaccaccc tgggcaacat aaggagaacc catctctaca 2220
caaaattagc tgggcgtggt ggtgtatgcc tgtagtccta gctacttggg aggctaaggt 2280
gggaggtggc tgaggtggga ggatcacttg agcctgggag gttgttgcag tgagagccat 2340
gatcgcgcta ctgggcaata gagcagaacc
                                                                  2370
<210> 240
<211> 981
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2650265
<400> 240
cggactgccc tgagggcggg aaagggtggt cactgggtca gcccgaagca cctgacatga 60
gggcggggac cccgaaatgc acacgaagtc cggaactggt cttctgtgat tttcattcgc 120
cetggtetet gttccctttc gtactcaaag ctcgtgcatc cagggagggg aaaccggaga 180
tagggtette gggeeceggg cagaccetet gtgeegetge aaaccgttge ageetgagge 240
tgtcaggtcc tcccccagac acctgcggac cctccctctc ctggcttccc gtctggtcat 300
ggcgagattc tgggtctgcg tagccggtgc tggcttcttt cttgcatttt tggttttgca 360
ttcgcgtttt tgtggctctc cagttttgag gaactttact tttgcagttt cctggagaac 420
tgagaaaatt ctttaccggc tggatgtggg ttggcctaag cacccagaat attttaccgg 480
aacaacattt tgtgttgcag ttgactccct caatggattg gtttacatag gtcaaagagg 540
ggataacatc ccaaagatat tagtgttcac agaggatgga tatttcctac gagcctggaa 600
ttatacagtt gacacacctc atggtatatt tgcagccagt actctatatg aacaatccgt 660
ctggatcacg gatgtaggaa gtggtatgta tagtaatatc tattaaatta tcttactgga 720
```

```
aatcacatct ttgcacatgt ccttgtttgt attgtttaaa atcagagttg ctgaatctaa 780
 ttgtaatttc tttaacgatt catgaaatca catgttttta acaaacttta ttttgtactt 840
 ctgtggaatt aagaaattta acaagggctg gacgccgtgc tcacgcctgt aatcccagca 900
ctttgggagg ccgaggcggg cggatcacga ggtcaggaga tcgagacgat cctggccaac 960
acggtgaaac ccccgtctcc a
<210> 241
 <211> 1204
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2677129
<400> 241
aggagaggaa ggtaattaca ttaagcatta taatatagtg tgttaaatgc taatgatcat 60
aatcattgaa cccttctcag tcctcatctt atttaaatct ggtattttag cagacttttt 120
tgccttactg ctattaatta atttttttt ggtctctttc ttccttgctt accctttgtt 180
taacaaccaa atcaactcta gatcaatgaa tgaaataaaa aatctccagt acctacctcg 240
gaccagtgaa ccccgcgaag ttctctttga agataggact agagctcatg ctgatcatgt 300
cggtcagggg tttgactggc agagtacggc tgctgttgga gttttgaaag ctgtacaatt 360
tggtgaatgg agtgaccaac ctcgcataac caaagatgtg atttgttttc atgctgagga 420
ttttactgat gttgtacaaa gacttcagtt agatcttcat gaacctccag tttcccagtg 480
cgtacagtgg gtagatgaag ctaaactaaa ccaaatgagg cgggaaggca ttcgttatgc 540
tagaattcag ctttgcgaca atgatatcta cttcatccct agaaatgtca ttcatcagtt 600
caaaacagtt teggeggtgt geagettage etggeatata aggettaaac agtaccacce 660
tgttgtggaa gccactcaaa acacagaaag caattctaac atggactgtg gtttaactgg 720
aaagcgagaa ttagaagttg actcccaatg tgtgaggata aaaactgaat ctgaagaagc 780
atgcacagag attcagetgt taacaactgc ttcatcatct ttcccacctg catcagaact 840
taatctacag caagatcaga agactcagcc tattccagtt ttaaaagtgg aaagtagact 900
ggactetgae cageaacaca atetgeaaga acatteaace aettetgtgt gatatgtaca 960
tattcaaaca cattttttaa cttttttaaa ttttgatgtg aagttatagt tttataactg 1020
gcttaagtta agttttattg gagaaatctt gcctataatt ctataaagag aaatgacatt 1080
cacaaatgtc agcatatctt tttacacaga tatgcaagtt agagtgtatc tatccggtag 1140
tacgtatgta taagtggtct gcgcacttct gttttaaggg tgaggtacat ccatctctct 1200
cgag
<210> 242
<211> 784
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3151073
<400> 242
cacagacaaa ccgtcaacag ctggtctcgc atgtcctttg ttcccggtct gctcttgtgt 60
ttcgttctcc tcctgtgtgt tagccctgtg taccttccct ctcgttcacc ctccacattt 120
cccatctctg agcccctcag ctttataggg atgtcagctt ggccccaatg tagtcccatt 180
tacagccaga etcetggaet tgcctatgag ccatettcat ttccaaaaag gcgatattgg 240
gtatgtacat tgcatgaaat aaagtgggaa tgtcccagaa gcagaaggac atctgatgca 300
gtccacgcca ataaattggg cttaccttta aaaatcatct gaatatgcag gtcttagggc 360
agagaatata gacagcttaa gattttctaa actacaagtc ccacccaaaa tacggtattt 420
```

```
tcatgatttc ccaaaggttg accatcagca agactggata tttttcagac ttaagatgac 480
 tgttcagtag ctgatgttct ggaaaagatc tgggccttca ccatgaaatc ttaaatgtga 540
gcagttactg gatgttgaat ttgaaaccta ttcatttctt tttttaaaac aagcttggtc 600
atttctgtgc aatgctataa ttcggaacga aacaaagcac aatgttaata aggtagacac 660
taattcattc ctctgaagag agatctcttc cagacatttt aagccagggc aagaaatgtt 720
taaagatgtt ttctgcagtt gccgtagaaa cactccttag cagtcatctt ggctgttggt 780
aaaa
<210> 243
<211> 426
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3170095
<400> 243
ctccattaaa ccaccaccag ctccccaagc caccccttca gccatgaagt tcctgctcct 60
ggtcttggca gccctcggat tcctgaccca ggtgatccca gccagtgcag gtgggtcaaa 120
atgtgtgagt aacaccccag gatactgcag gacatgttgc cactgggggg agacagcatt 180
gttcatgtgc aacgetteca gaaaatgetg catcagetae teetteetge egaageetga 240
cctaccacag ctcatcggta accactggca atcaaggaga agaaacacac aaaggaaaga 300
caagaagcaa caaacgaccg taacatcata ataaccactg ctatcgcctc caccaactca 360
gagaaatate atttecacag ttecaattee teetacattg etgagtaeta gecaaggete 420
ctcttt
                                                                   426
<210> 244
<211> 1732
<212> DNA
<213> Homo sapiens
<220>
<221>
<222> 1651, 1655
<223> a or g or c or t, unknown, or other
<220>
<221> misc feature
<223> Incyte Clone No: 3475168
<400> 244
cgggaccaga gcacgttcct ggctgcagag gccacaagtc acgctgtctc tgagagtgga 60
atgtcaccat cgcccaggtg gggatttttg tgtgttttgt tcactgctgt acacccagcc 120
cccagcacag egectgtcca ggacaagtgc ccagtaaaca cttgggaagc aatgcaageg 180
tecteccage agetectgea aacagaceee egacecaage ettteettet geetecaetg 240
ccaccactgc tgctcatctc tgctggcaca gaagtctctt ccctggtctt ccagaaatcc 300
cetetecaca etcagecaga gggagetatt aaaactgegg gecageceac atcagteeac 360
agcaaagtcc tctctaaggg atctctgttg cttggagaat aaaccctcgg attccttcct 420
tggetetegg ggeeteetet etgaceteee tetgteteet etcecageet teeteeteae 480
teacecteca gecatgetgg etteeteett geteetgaaa cageetgaga gecacaetge 540
cccgggccct ttgcactggc tgtttcctct gcctggagca cttctcctag gcatccacag 600
ggctccctcc cacaactcct tcgggtgccc acatgggaag ccatccctga ccacccccc 660
gactteette tgageaaggt agggtettte tacetagtea tgagggeagg gatttttgte 720
tgttgtgttc tctgtgtgcc cccagtgcca tcccagtgcc tggcagatgg taagtgctcg 780
```

```
acacacattg gctgactgcc tgaatgaaca actctatgag ccgatggcag ataaggacac 840
 tgaggtcctc tggggtaggt gaccagccca aggccacaca gctggtctga gattaggcca 900
 ggagaggagc ccgggttggt cacatcctgg agttggcgtc ttggaaactg catcaggaga 960
 ataacaaaga tgagacgcag gctctaacaa gtggatacca gtgactctcg ccccgccagc 1020
 cccagccctg cagccttggg cccttccagg agtcatggtc tgcctgcctg gggcattcca 1080
 ggettegace caggteetge actttetatt ttgageetet tagteetgag gaetgtgtgt 1140
 teceageagg eggegegge cagaggetga geetggetgt ggetgteace etatetgggg 1200
 ccagagaccc agattcccgg gcccttaacc tgttggctgc tgagggctct ggcataagcc 1260
 ctgttccctg cttgattgtc tccccttcaa gcccctgccc tggtatcgta tcggcccatc 1320
 tcaccttgga ttatatccct gtttggcccc atttgaatcc tggctctgcc cctttccagc 1380
 aatgtgacct tgggcaagtc acttcatctc tctggtctca gttcttcatc tggaaatggg 1440
 acaataagag tacctgtctc tggccatgtg tggtgactca tgcctgtaac cccagcgctt 1500
 tgggaageeg ageegagaga attgettgag accaggagtt tgagateage eetgggcaac 1560
 atagtgagac ccctgtctct acaaaattct aaaaaaatta gccggttgtg gtggtgtgtg 1620
 cctgtagtcc cagctattct agaggctgag ncggnaggat tgcttgagcc cagcagtttg 1680
 aggetgeagt gagetatgat tatgecegtg aaggeeece aaaaaaaaaa aa
<210> 245
<211> 918
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 3836893
<400> 245
ageetetagg teattgtggt geettgtage tgteeeggga geeeteagea geagttggag 60
ctggtgcaca ggaaggatga ggaagaccag gctctggggg ctgctgtgga tgctctttgt 120
ctcagaactc cgagctgcaa ctaaattaac tgaggaaaag tatgaactga aagaggggca 180
gaccctggat gtgaaatgtg actacacgct agagaagttt gccagcagcc agaaagcttg 240
gcagataata agggacggag agatgcccaa gaccctggca tgcacagaga ggccttcaaa 300
gaattcccat ccagtccaag tggggaggat catactagaa gactaccatg atcatggttt 360
actgcgcgtc cgaatggtca accttcaagt ggaagattct ggactgtatc agtgtgtgat 420
ctaccagect eccaaggage etcacatget gttegatege atecgettgg tggtgaccaa 480
gggtttttca gggacccctg gctccaatga gaattctacc cagaatgtgt ataagattcc 540
tectaceace actaaggeet tgtgeecact etataceage eccagaactg tgaeceaage 600
tecacecaag teaactgeeg atgreteeac teetgaetet gaaateaace tracaaatgt 660
gacagatate atcagggtte eggtgtteaa cattgteatt eteetggetg gtggatteet 720
gagtaagage etggtettet etgteetgtt tgetgteaeg etgaggteat ttgtaceeta 780
ggcccacgaa cccacgagaa tgtcctctga cttccagcca catccatctg gcagttgtgc 840
caagggagga gggaggaggt aaaaggcagg gagttaataa catgaattaa atctgtaatc 900
accagctaaa aaaaaaaa
                                                                  918
<210> 246
<211> 676
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 4072159
<400> 246
geteacacag eteceggeea ggteaceege catggteete cetetgeeet ggeteteteg 60
```

```
gtaccatttc cttcgcctcc ttctgccctc ctggtccttg gcaccccagg gctcccatgg 120
gtgctgctcc caaaacccca aagcaagcat ggaagagcag accaactcca gaggaaatgg 180
gaagatgacg teceeteeca ggggeeetgg gaeeeacege acagetgage tggeeegage 240
tgaagagttg ttggagcagc agctggagct gtaccaggcc ctccttgaag ggcaggaggg 300
agcctgggag gcccaagccc tggtgctcaa gatccagaag ctgaaggaac agatgaggag 360
gcaccaagag agcettggag gaggegeeta agttteecee agtgeecaca geacceteeg 420
gcactgaaaa tacacgcacc acccaccagg agccttggga tcataaacac cccagcgtct 480
teccaggeca gagaaagtgg aagagaccac aaaccgcagg caattggcag gcagtggggg 540
agccaggget etgcagtett agteceatte ceetttgate teacagcagg cagggeacca 600
caggeettae taggaattea eeetggaeea tgeeetaaaa taaceteaee eeaaatacaa 660
taaagggacg aggcaa
                                                                  676
<210> 247
<211> 2255
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 1003916
<400> 247
ccggtgcgtc ctgggtctgt ctgcgcggag ttccccgggg cgcgaggaga ggggactgga 60
gaaagaggag ggccgggcag cggaggggag gaggcggtgc gtgcctcgcc tgccaaaggg 120
agateegete etetgegtge gateeeegge geeegeeege geeeacageg eteegeeaga 180
gctgccgccg cggactcgcc gggagtgggg gtctccgctg gtgccagccc gcttctggag 240
acceteegee teetgecaae ecetgetett eeaggteggg ceeeggggtt etgeggetgt 300
tagggacaga ggcaaagaag ggcaggacgg tccggtttcc cgtggatgtt cccgcccgag 360
aaagacagca agttgtgtgt gcgcccggga cgcgggaggg aaggtagccg ccgcccgcca 420
gccatggacc atcatcttta gtgcagagga tggaaagttg atgcccagta agactgaaga 480
tocattotgc attacggaac tgtggattat ctgtgggtcc ctggtgattt cacacottca 540
ttcactcctg cagtccctga acacttactt ggggtcctca ttgccctatc tggtgaaaga 600
tggcatccag cetgacttgt actggagtaa tetgggettt getgtetttt etttgtgetg 660
ccacctcctg cgtggggttc tttatgcctt actggctctg gggatcacag ctgggcaagc 720
ctgtgtcctt cggtaccttc cggaggtgct catatcctgt gcatgatgag agtcggcaga 780
tgatggtgat ggtggaggaa tgtgggggct atgcctcctt ccagggcatc cccagcgcag 840
aatggaggat ctgcaccata gtgaccggcc tgggttgtgg cctcctcctc ctggtggcgc 900
teactgeect catgggttge tgtgttteeg aceteatete caggacagtg ggaagagtgg 960
ctggaggaat tcagtttctt gggggcttgt tgattggtgc tggctgtgcc ctctacccct 1020
tgggctggga cagtgaggaa gtccggcaga cttgtggcta cacttctggc cagtttgacc 1080
tggggaagtg tgaaatcggc tgggcctact actgcacggg agcaggtgcc actgccgcca 1140
tgctgctgtg cacgtggctg gcttgctttt cgggcaagaa acagaagcac tacccatact 1200
gagatggagc taccaagagc agacagagga gaagatgggc caaaggggct tggagaggtc 1260
aaaacatcca cctaccttca aaaggtggga tagtagttct aatccaatac aatgctaata 1320
aaatgaaacc cgataaaatc aggaacatga tataggaagg aaggattgta ggagatttgt 1380
gggggaaaaa aaaggagagt atagaatgat ggagaaaaat ggaccaaagg ctaaaaatat 1440
tgcagggcat cgggtgtttc tattccacag agtattgtta atgtacaaca cacacacaca 1500
cacacacaca cacacacaca acaaatctac atatacaaac aagggtttgg 1560
gttttagttt tttttttta aggtgaggac tcagaaaatc aaagggctag tagaaacagt 1620
gttatgttgg gaagcagggt acccccaaag atgttccctg taggtcacgg cactcccaaa 1680
agcacacaag cacatacaga catatgcatc cccacacacg cctatgcaca aacgtggatt 1740
atcgcacaga ctgggaggtt tagtggtgca tttctcctct gttttctttt taatatacat 1800
ttaaaaataca gtattatcac tttataaaac atacattaag cctaataaat ggaccaataa 1860
gccaaactat cagtattttg tatatcctgc ataaactcta atttagttcc tcaacatatt 1920
ttcagtgttt atgcagacct ttagagttaa gcctttgtat ttccatgtta ttccacaata 1980
tgcaatattt ctctgagtag cttctgctat gatattctta tgaagaaaag gggcaacttt 2040
```

```
ctgtccacta taggagagaa ttcagccgaa gatatgagag taatgagaga cattttccag 2100
tcattggatc gtgttttctt ttgtccatta ttgtactgtg ctgtaccaca tttattcta 2160
tattcatttt gtaaaaaatt taaaagtgct attttgtttg tatttgaaaa tctctgtgaa 2220
taaattctct ctttgatcaa tagcaaaaaa aaaaa
<210> 248
<211> 1223
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2093492
<400> 248
gacgetteae cagegteetg gtggtgteea gteteteaee eetgtgegtg etgetetgga 60
gggaactcac aggcatccag ccaggcacat ccctgctcac cctgatgggc ttcaggctgg 120
agggcatttt cccagcggcg ctgctgcccc tgttgctgac catgattctt ttcctgggcc 180
cactgatgca getetetatg gattgeeett gtgacetgge agatgggetg aaggttgtee 240
tggccccccg ctcctgggcc cgctgcctca cagacatgcg ttggctgcgg aaccaagtga 300
tegeceeget gacagaggag etggtgttee gggeetgtat getgeecatg ttageacegt 360
gcatgggcct gggccctgct gtgttcacct gcccgctctt ttttggagtt gcccattttc 420
accatattat tgagcagetg cgtttccgcc agagcagegt ggggaacatc ttcttgtctg 480
etgegtteca gttetectae acagetgtet teggtgeeta caetgettte etetteatee 540
gcacaggaca cctgattggg ccggttctct gccattcctt ctgcaattac atgggtttcc 600
cagetgtttg egeggeettg gageacceae agaggeggee eetgetggea ggetatgeee 660
tgggtgtggg actetteetg ettetgetee ageeeeteae ggaeeecaag etetaeggea 720
gccttcccct ttgtgtgctt ttggagcggg caggggactc agaggctccc ctgtgctcct 780
gacctatget cetggatacg etatgaacte teaceggete eccaçecte eccaceaagg 840
ggtactgcag gggaagggct ggctggggtc cccgagatct caggaatttt tgtaggggat 900
tgaagccaga gctagttgcg tcccagggac caagagaaag aagcagatat ccaaagggtg 960
cageceettt tgaaaggggt gtttacgage agetgtgagt gaggggacaa ggggcaggte 1020
ccaggagcca cacactccct tecteaettt ggaetgetge ttetettage teetetgeet 1080
ctgaaaagct gctcggggtt ttttatttat aaaacctctc cccacccccc accccccaac 1140
ttcctgggtt ttctcattgt ctttttgcat cagtactttg tattgggata ttaaagagat 1200
ttaacttggg taaaaaaaaa aaa
                                                                  1223
<210> 249
<211> 1188
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2108789
<400> 249
gcccctccca gcctgccaag aaaacggtag gggagcatga tggggccttt gaggcagggt 60
cgcagggaca agetcagett taggcaccat ctgttcccat cgcgcctgct gctgtgaccc 120
gttttggaaa actggtgtgt accgaggcgc tgactgcacg gctgaccgcc tgctcgtgcc 180
ttcattctgc agcggcatgg tccctcccat tctggctcca cctgcagcct ccctgggtgg 240
cctaggetcc cccgaccaag agacctccct ctcatgatca ctggtacctg ggggcctgaa 300
ttctggcccc cggctcccca cacagetggg actggcctgg atggctgtcc tggtagcccc 360
tgcccaccct gacagaggga gctgggcctc ccctcatcct ctgtaactcc cgccttcacc 420
agactcgagg acaccctggc cctgctgagg catacagagc ttcagcccag cacagaagca 480
```

```
agacaaaatc agtggctctt agagtttaga aaacaagaca gactctcaga tgaaagatct 540
gacaagcacc gtggccagtc acagggagag acttgatgtc tggcctttta attcctcctc 600
tgccagggtg ggtcctggga cctctaatgt gggcatgtcg tccaccccag gacgagccat 660
cagggacaga ccccccaccc ccaaggctgc agccacacca tgtttcaggc ttggggctgg 720
ggcaggettg ggetcaatce tgggcaceca ggggcagece acceetaace tggeteetae 780
ccaccttgcc cttgaaggat gggcctgctg cacgtctccc tcctccaccc cataccacac 840
tggggggtct gagccacccc cctcagcccc gttcggctca gaccgacccc cactccatcc 900
ccagacetge ageacaagtg egegggeetg teeteecagg ggeetgggeg actecatatg 960
caatcagtag cgagcagccg ggccccacag accctcatgc actctcttac gtgccattct 1020
ccccagactt tttttgtact taatgtatga aagatccaaa ctaatattgc tgtaaaaagg 1080
agagacaaat taatatagct tattctataa atatatctgt atataaaggt ttctgtatat 1140
tgtatagagc tgtgtataaa ctggatgtag aagcacaaaa aaaaaaaa
<210> 250
<211> 1792
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2171401
<400> 250
cgccgctggg gccggcccgc acggcttcat ctgagggcgc acggcccgcg accgagcgtg 60
cggactggcc tcccaagcgt ggggcgacaa gctgccggag ctgcaatggg ccgcggctgg 120
ggattettgt ttggeeteet gggegeegtg tggetgetea getegggeea eggagaggag 180
cageceeegg agacagegge acagaggtge ttetgeeagg ttagtggtta ettggatgat 240
tgtacctgtg atgttgaaac cattgataga tttaataact acaggctttt cccaagacta 300
caaaaacttc ttgaaagtga ctactttagg tattacaagg taaacctgaa gaggccgtgt 360
cctttctgga atgacatcag ccagtgtgga agaagggact gtgctgtcaa accatgtcaa 420
tctgatgaag ttcctgatgg aattaaatct gcgagctaca agtattctga agaagccaat 480
aatctcattg aagaatgtga acaagctgaa cgacttggag cagtggatga atctctgagt 540
gaggaaacac agaaggctgt tcttcagtgg accaagcatg atgattcttc agataacttc 600
tgtgaagctg atgacattca gtcccctgaa gctgaatatg tagatttgct tcttaatcct 660
gagcgctaca ctggttacaa gggaccagat gcttggaaaa tatggaatgt catctacgaa 720
gaaaactgtt ttaagccaca gacaattaaa agacctttaa atcctttggc ttctggtcaa 780
gggacaagtg aagagaacac tttttacagt tggctagaag gtctctgtgt agaaaaaaga 840
gcattctaca gacttatatc tggcctacat gcaagcatta atgtgcattt gagtgcaaga 900
tatcttttac aagagacctg gttagaaaag aaatggggac acaacattac agaatttcaa 960
cagcgatttg atggaatttt gactgaagga gaaggtccaa gaaggcttaa gaacttgtat 1020
tttctctact taatagaact aagggettta tccaaagtgt taccattctt cgagegeeca 1080
gattttcaac tetttactgg aaataaaatt caggatgagg aaaacaaaat gttacttetg 1140
gaaatacttc atgaaatcaa gtcatttcct ttgcattttg atgagaattc attttttgct 1200
ggggataaaa aagaagcaca caaactaaag gaggactttc gactgcattt tagaaatatt 1260
tcaagaatta tggattgtgt tggttgtttt aaatgtcgtc tgtggggaaa gcttcagact 1320
cagggtttgg gcactgctct gaagatctta ttttctgaga aattgatagc aaatatgcca 1380
gaaagtggac ctagttatga attccatcta accagacaag aaatagtatc attattcaac 1440
gcatttggaa gaatttctac aagtgtgaaa gaattagaaa acttcaggaa cttgttacag 1500
aatattcatt aaagaaaaca agctgatatg tgcctgtttc tggacaatgg aggcgaaaga 1560
gtggaatttc attcaaaggc ataatagcaa tgacagtctt aagccaaaca ttttatataa 1620
agttgctttt gtaaaggaga attatattgt tttaagtaaa cacattttta aaaattgtgt 1680
taagtctatg tataatacta ctgtgagtaa aagtaatact ttaataatgt ggtacaaatt 1740
```

```
<211> 2005
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
<223> Incyte Clone No: 2212530
<400> 251
gcgaggcggg aggaggtgag gctccggcgc acacccaaac cgcgctgcgc ccgctccttc 60
cgggccccgg agatggcgcc tccaccggga tgagctagcc agcctgggca ataccagagg 120
cggccctcgg cgcgcagg ggaccgagct ggtcgcccca accgggtttg atttctgatg 180
actetggeet gagttecagg atggttttt ettgggacca gacatgaaca aaagttgace 240
teatgageae tteaacetet ceagetgeea tgeteeteeg gaggetgegg egacteteet 300
ggggcagcac tgctgtccag ctcttcatcc taacagtggt gacgtttggc ctgctggccc 360
ccctggcctg tcaccgactt ctacactctt acttctatct gcgccattgg catctgaacc 420
aaatgagcca agagtteetg cagcaaaget tgaaagaggg tgaggetgee etecactatt 480
ttgaggaget teeetetgee aatggeteag tgeeeattgt etggeaggee acceeegge 540
cctggctggt gatcaccatc atcactgtgg acaggcagcc tggcttccac tacgtcctgc 600
aggttgtgtc ccagttccac cggcttcttc agcaatgtgg cccccagtgc gaggggcacc 660
aactetteet gtgcaacgtg gagegtagtg tgagecattt tgatgccaag ttgeteteea 720
agtatgteec tgtggecaat egetatgagg geactgagga tgattatggt gatgaceett 780
cgaccaactc gtttgagaaa gagaagcagg actatgtcta ttgcctggag tcatccctgc 840
agacctacaa cccagactac gtcctgatgg tagaagacga tgctgtacca gaagagcaga 900
tetteccagt ettggageae ettetgeggg etegettete tgagecacat eteagagatg 960
ccctttatct caagctgtat caccccgaga ggctccagca ctacatcaat ccagagccca 1020
tgcggatcct ggaatgggtt ggtgtaggca tgttgctggg gcccttacta acctggatat 1080
acatgaggtt tgccagccgc ccagggttta gctggcctgt aatgctcttc ttctccctgt 1140
atagcatggg tetggtggag etggtgggte ggeactattt eetggaactg eggeggetga 1200
gtectteect gtacagtgtg gtteetgeet eteagtgttg caceceagee atgetettee 1260
cggcacctgc ggcccgccgg accctcacct acctgtccca agtgtactgc cacaagggct 1320
ttggcaagga catggcactg tactcgctgt tgagggccaa gggagagagg gcctatgtag 1380
tggagccgaa cctcgtgaaa cacatcgggc tcttctccag tctccggtac aactttcatc 1440
ccagteteet ctagggtgee aagagatgee ttteggaagt tggccaette ttgaagatte 1500
aaatatttat ctctttattt agacatggtt gcctgcaggt atttcactgt ttactgttgt 1560
tagagatata ggcactgggg cagctgagga acctcaatat gttaagagcc ttggctttgg 1620
tagcetectg geaggageag eagtttgeea eaggteegga cetetecete eacacageea 1680
cactgeetea tgcagtetga eccaeccagt gagggtgeat ttgaacactg attatattet 1740
ccatttgttt ttaagctctg ctttgtgtta gagcttgtga ctgccaaaaa ttttgtgcac 1800
agtgatatga ctgttttagg atcttaaggg tagaattttg tgaaaggtga gatcctttgg 1860
aattgagttc tttctcattg ggtatgaaaa tggatgtatg tttagaatat atgcccaacg 1920
aggcaggacc atgtggatag attccatttg tttccttgac ctgatgtaat aaaaactgat 1980
aaaagccgtg cagtgcccgg catct
                                                                  2005
<210> 252
<211> 471
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2253036
<400> 252
tgggtatgtc tcatggagag gtgctttcac tgcttccctg ttcacctagt cttcaatctg 60
gtccagagtt tcagccccat ctctggagtt gagtcctgcc ttctccctca atgtgacaaa 120
```

```
tgttggccaa tggtatatcg cagttgtgat gcaagcagag gcttggtaaa tgcctgcata 180
ctggggtttg tcctcttgga atgctcattt gtgggagccc tgaacaacta tgtaagaagt 240
ctggctaccc tgctggagag aacacatggt gggaagagac taaaattatg tgaagagagt 300
caggocagec atcccagett ctetgetgag eccegecate agécaacetg ecagetgaat 360
gcaaccgtaa gagtgatcac cagcaagatc actagaaaaa ccacctaact gagcccaccc 420
tggattgaac aatcataaac aaataaaatg gttattgttt taaaaaaaaa a
<210> 253
<211> 3775
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2280161
<400> 253
tecetgagag gtgtecaetg atgteteete eteattteat ttageagete ttagtttgtg 60
aagaatetgt agatgeteaa agtataattg eeccagggaa tttatgetaa teacaacete 120
ttcttcagac accaagtcta ccttgaatgg gtttgctgtg atatggcact tcaggtctcc 180
ttttccatct gccaatatca gactgcctgt gtccccagag catgaaatca gccttacagt 240
gettggettg ettgtgagga cateeggaac tteaaatetg ggttttagag gagtetette 300
gttaatttta agcctgaaaa tgtttccttc tataccataa atttcagcca ggagaggaac 360
cttacttgct tcattgatga tttggaacct ggtgctgtct tcatctgttg tgactgaatc 420
caataatgcc cgataggtgg acttcttgga aagccactgt ttctgacgcc tgtaaaatgc 480
gatcttgtta cagtctctga aaatgttttt atctacagct tcatcttcaa cacttatttc 540
ctctttcact gctgcttcca tggcttctct gtcactccga ccagctccca gctctcagga 600
caagggccct gggcgatctt ttaaaaaagc cgattgggtg tctttctaaa attacaacca 660
gtacttcatc gtcaagtttc tgggaaggga gtcccctcca gattctcatg gagtgacaaa 720
tottgactot tgctcctgga atttttcagg cccaaactag cgtttctaca atgatttatt 780
tggcaaattt gtcttgatta tgggtggctg atgaggaacg tgcttttgtt aggaaccgaa 840
actgggcggc ggtgagggcg tgtacgcaat gagtccggaa gagggtgaaa tgctttcggt 900
aggeacteca eggetgtgaa gatggeggeg getgegtgge tteaggtgtt geetgteatt 960
cttctgcttc tgggagctca cccgtcacca ctgtcgtttt tcagtgcggg accggcaacc 1020
gtagctgctg ccgaccggtc caaatggcac attccgatac cgtcggggaa aaattatttt 1080
agttttggaa agatcctctt cagaaatacc actatcttcc tgaagtttga tggagaacct 1140
tgtgacctgt ctttgaatat aacctggtat ctgaaaagcg ctgattgtta caatgaaatc 1200
tataacttca aggcagaaga agtagagttg tatttggaaa aacttaagga aaaaagaggc 1260
ttgtctggga aatatcaaac atcatcaaaa ttgttccaga actgcagtga actctttaaa 1320
acacagacct tttctggaga ttttatgcat cgactgcctc ttttaggaga aaaacaggag 1380
gctaaggaga atggaacaaa ccttaccttt attggagaca aaaccgcaat gcatgaacca 1440
ttgcaaactt ggcaagatgc accatacatt tttattgtac atattggcat ttcatcctca 1500
ggtccctatg aatacctcac acttgaagac tatcccttga tgatttttt catggtgatg 1620
tgtattgtat atgtcctgtt tggtgttctg tggctggcat ggtctgcctg ctactggaga 1680
gateteetga gaatteagtt ttggattggt getgteatet teetgggaat gettgagaaa 1740
gctgtcttct atgcggaatt tcagaatatc cgatacaaag gagaatctgt ccagggtgct 1800
ttgateettg cagagetget ttcageagtg aaacgeteae tggetegaac cetggteate 1860
atagtcagtc tgggatatgg catcgtcaag ccacgccttg gagtcactct tcataaggtt 1920
gtagtagcag gagccctcta tcttttgttc tctggcatgg aaggggtcct cagagttact 1980
gggtattttt cttatccctt gactctgata gtaaacctgg ccctctcagc agttgacgcc 2040
tgtgttattt tatggatatt tattagcctg actcaaacaa tgaagctatt aaaacttcgg 2100
aggaacattg taaaactctc tttgtatcgg catttcacca acacgcttat tttggcagtg 2160
gcagcatcca ttgtgtttat catctggaca accatgaagt tcagaatagt gacatgtcag 2220
tcggactggc gggagctgtg ggtagacgat gccatctggc gcttgctgtt ctccatgatc 2280
ctctttgtca tcatggttct ctggcgacca tctgcaaaca accagaggtt tgccttttca 2340
```

```
ccattgtctg aggaagagga ggaggatgaa caaaaggagc ctatgctgaa agaaagcttt 2400
gaaggaatga aaatgagaag taccaaacaa gaacccaatg gaaatagtaa agttaacaaa 2460
gcacaggaag atgatttgaa gtgggtagaa gagaatgttc cttcttctgt gacagatgta 2520
gcacttccag cccttctgga ttcagatgag gaacgaatga tcacacactt tgaaaggtcc 2580
aaaatggagt aaggaatggg aagatttgca gttaaagatg gctaccatca gggaagagat 2640
cagcatctgt gtcagtcttc tgtacggctc catgggatta aaggaagcaa tgacatcctg 2700
atctgttcct tgatctttgg gcattggagt tggcgagagg tgtcagaaca aagagaacat 2760
cttactgaaa acaagttcat aagatgagaa aaatctacga gcttcttatt tacaacactg 2820
ctgcccctt tcctcccaga ctctgacatg gatgttcatg caacttaagt gtgttgttcc 2880
tgaactttct gtaatgtttc attttttaaa tctgacaaac taaaaagttt aacgtcttct 2940
aaaagattgt catcaacacc ataatatgta atctccagga gcaactgcct gtaattttta 3000
tttatttagg gagttacata ggtgatgggg gaaattgtta actacctttc attttcctgg 3060
gaagtcaagg ttacatcttg cagaggttgt tttgagaaaa aagggccctt ctgagttaag 3120
gattcagatc atttaaaaaa gcaaaatcaa gtgcaatttt gtttacaaat ggtgtatatt 3240
aaagattttt ctatttcaga tgtactttaa agagaaatat tagcttaact cttttgacat 3300
ctgctattgt gacacatccc attgctggca atgtggtgca cactccgaaa cttttaacta 3360
ctgttttgta agcctccaag ggtggcattg cagggtcctt aggcaatgtt ttgtttgcct 3420
ttatgcagag aggtgctcca agtgctgtga ttgagcaccg tgctagagga actgtaatgc 3480
ttcagaagtt gtagcttata caaaggaaac aggtcctgct ggcttaattt aaacagttat 3540
tgcatgaagt agcgtggagg ccctggactg ctgctcgttc tttaggatgg actgttctgg 3600
tatctggtat tggtttagag actgttaata agggacatca caaggtgatg ggattcattt 3660
gaagcactct atttctgttt taatggtttt atccaatttt gccttcccaa gatttttgtt 3720
ctacataaaa agttcatgcc actttttaat ataaaaaaat ttaacaaaaa aaaaa
<210> 254
<211> 1856
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2287485
<400> 254
ggagcgcggc gtgcgggagg gcccagagca ggactggaaa tgtcctggcc gcgccgcctc 120
ctgctcagat acctgttccc ggccctcctg cttcacgggc tgggagaggg ttctgccctc 180
cttcatccag acagcaggtc tcatcctagg tccttagaga aaagtgcctg gagggctttt 240
aaggagtcac agtgccatca catgctcaaa catctccaca atggtgcaag gatcacagtg 300
cagatgccac ctacaatcga gggccactgg gtctccacag gctgtgaagt aaggtcaggc 360
ccagagttca tcacaaggtc ctacagattc taccacaata acaccttcaa ggcctaccaa 420
ttttattatg gcagcaaccg gtgcacaaat cccacttata ctctcatcat ccggggcaag 480
atccgcctcc gccaggcctc ctggatcatc cgagggggca cggaagccga ctaccagctg 540
cacaacgtcc aggtgatctg ccacacagag gcggtggccg agaagctggg ccagcaggtg 600
aaccgcacat gcccgggctt cctcgcagac gggggtccct gggtgcagga cgtggcctat 660
gacetetgge gagaggagaa eggetgtgag tgeaceaagg eegtgaaett tgeeatgeat 720
gaacttcagc tcatccgggt ggagaagcag taccttcacc acaacctcga ccacctggtc 780
gaggagetet teettggtga catteacaet gatgecaeee agaggatgtt etaceggeee 840
tecagttace agececetet geagaatgee aagaaceaeg accatgeetg categeetgt 900
cggatcatct atcggtcaga cgagcaccac cctcccatcc tgcccccaaa ggcagacctg 960
accatcggcc tgcacgggga gtgggtgagc cagcgctgtg aggtgcgccc cgaagtcctc 1020
ttcctcaccc gccacttcat cttccatgac aacaacaaca cctgggaggg ccactactac 1080
cactactcag accoggtgtg caagcaccc accttctcca tctacgcccg gggccgctac 1140
agccgcggcg tcctctcgtc cagggtcatg ggaggcaccg agttcgtgtt caaagtgaat 1200
cacatgaagg tcacccccat ggatgcggcc acagcctcac tgctcaacgt cttcaacggg 1260
```

```
aatgagtgcg gggccgaggg ctcctggcag gtgggcatcc agcaggatgt gacccacacc 1320
 aatggctgcg tggccctggg catcaaacta cctcacacgg agtacgagat cttcaaaatg 1380
 gaacaggatg cccgggggcg ctatctgctg ttcaacggtc agaggcccag cgacgggtcc 1440
 agcccagaca ggccagagaa gagagccacg tcctaccaga tgcccttggt ccagtgtgcc 1500
 teetettege egagggeaga ggacetegea gaagacagtg gaageageet gtatggeegg 1560
gcccctggga ggcacacctg gtccctgctg ctggctgcac ttgcctgcct tgtccctctg 1620
 ctgcattgga acatccgcag atagaagttt tagaaagttc tatttttcca aaccaggatt 1680
 ccttactatt gacagatttt ctttaccaaa agaaaagaca tttattcttt tgatgcactt 1740
gaatgccaga gaactgtcct tctttttctc ctctccctcc ctcccagccc ctgagtcatg 1800
aacagcaagg agtgtttgaa gtttctgctt tgaactccgt ccagcctgat ccctgg
<210> 255
<211> 1545
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2380344
<400> 255
ggctggactg gaactcctgg tcccaagtga tccacccgcc tcagcctccc aaggtgctgt 60
gattataggt gtaagccacc gtgtctggcc tctgaacaac tttttcagca actaaaaaag 120
ccacaggagt tgaactgcta ggattctgac tatgctgtgg tggctagtgc tcctactcct 180
acctacatta aaatetgttt tttgttetet tgtaactage etttacette etaacacaga 240
ggatetgtea etgtggetet ggeceaaace tgaeetteae tetggaacga gaacagaggt 300
ttctacccac accgtcccct cgaagccggg gacagcctca ccttgctggc ctctcgctgg 360
agcagtgeee teaccaactg teteacgtet ggaggcaetg actegggeag tgeaggtage 420
tgagcctctt ggtagctgcg gctttcaagg tgggccttgc cctggccgta gaagggattg 480
acaageeega agattteata ggegatgget eeeactgeee aggeateage ettgetgtag 540
tcaatcactg ccctggggcc aggacgggcc gtggacacct gctcagaagc agtgggtgag 600
acatcacget geoegeceat etaacetttt catgteetge acatcacetg atccatggge 660
taatctgaac tctgtcccaa ggaacccaga gcttgagtga gctgtggctc agacccagaa 720
ggggtctgct tagaccacct ggtttatgtg acaggacttg cattctcctg gaacatgagg 780
gaacgccgga ggaaagcaaa gtggccaggg aaggaacttg tgccaaatta tgggtcagaa 840
aagatggagg tgttgggtta tcacaaggca tcgagtctcc tgcattcagt ggacatgtgg 900
gggaaggget geegatggeg catgacacac tegggaetea cetetgggge cateagacag 960
ccgtttccgc cccgatccac gtaccagctg ctgaagggca actgcaggcc gatgctctca 1020
tcagccagge agcagccaaa atctgcgatc accagccagg ggcagccgtc tgggaaggag 1080
caagcaaagt gaccatttct cetecectee tteeetetga gaggeeetee tatgteeeta 1140
ctaaagccac cagcaagaca tagctgacag gggctaatgg ctcagtgttg gcccaggagg 1200
tcagcaaggc ctgagagctg atcagaaggg cctgctgtgc gaacacggaa atgcctccag 1260
tetetgtgeg egatgeeetg ttgaaccaga tggteeacge etteeageag etgeageage 1320
atcatggcgg cgaggcgggg gctgggtgtg ttcacacaaa ggaagaagag tgacctccct 1380
ggaagaagat ggaattetge cageggeeag getteaaace tgaactgeae egetggetee 1440
tecetggete tecageetge eegeetaete tgeggetttt aagaetttge caateeceat 1500
agggagecag gteeteaaaa taaacetgee tetatataga cacat
<210> 256
<211> 1671
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
<223> Incyte Clone No: 2383171
 <400> 256
 gaatteggae getetetggg ccaatatgge agegeecage aacaagacag agetggeetg 60
 gagteegegg etggeegegt gagtaggtga ttgtetgaea ageagaggea tgagetgggt 120
 ccaggccacc ctactggccc gaggcctctg tagggcctgg ggaggcacct gcggggccgc 180
 ceteacagga acetecatet etcaggteec tegeeggete ceteggggee tecaetgeag 240
 egeagetgee catagetetg aacagteeet ggtteeeage ecaceggaac eceggeagag 300
gcccaccaag gctctggtgc cctttgagga cctgtttggg caggcgcctg gtggggaacg 360
ggacaaggcg agcttcctgc agacggtgca gaaatttgcg gagcacagcg tgcgtaagcg 420
gggccacatt gacttcatct acctggccct gcgcaagatg cgggagtatg gtgtcgagcg 480
ggacctggct gtgtacaacc agctgctcaa catcttcccc aaggaggtct tccggcctcg 540
caacatcatc cagcgcatct tcgtccacta ccctcggcag caggagtgtg ggattgctgt 600
cctggagcag atggagaacc acggtgtgat gcccaacaag gagacggagt tcctgctgat 660
tcagatettt ggacgcaaaa gctaccccat gctcaagttg gtgcgcctga agctgtggtt 720
ccctcgattc atgaacgtca accccttccc agtgccccgg gacctgcccc aggaccctgt 780
ggagctggcc atgtttggcc tgcggcacat ggagcctgac cttagtgcca gggtcaccat 840
ctaccaggtt cetttgccca aagactcaac aggtgcagca gatccccccc agccccacat 900
cgtaggaatc cagagtcccg atcagcaggc cgccctggcc cgccacaatc cagcccggcc 960
tgtctttgtt gagggcccct tctccctgtg gctccgcaac aagtgtgtgt attaccacat 1020
cctcagagct gacttgctgc ccccggagga gagggaagtg gaagagacgc cggaggagtg 1080
gaacctctac tacccgatgc agctggacct ggagtatgtg aggagtggct gggacaacta 1140
cgagtttgac atcaatgaag tggaggaagg ccctgtcttc gccatgtgca tggcgggtgc 1200
tcatgaccag gcgacgatgg ctaagtggat ccagggcctg caggagacca acccaaccct 1260
ggcccagate eccgtggtet teegeetege egggteeace egggagetee agacateete 1320
tgcagggetg gaggagccgc ccctgcccga ggaccaccag gaagaagacg acaacctgca 1380
gcgacagcag cagggccaga gctagtctga gccggcgcga gggcacgggc tgtggcccga 1440
ggaggcggtg gactgaaggc atgagatgcc ctttgagtgt acagcaaatc aatgttttcc 1500
tgcttggggc tctcttccct catctctagc agtatggcat cccctcccca ggatctcggg 1560
ctgccagcga tgggcaggcg agacccctcc agaatctgca ggcgcctctg gttctccgaa 1620
<210> 257
<211> 792
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2396046
<400> 257.
aattttaggg agaatgtggg ggggtggggt gttactttcc attttacaca tatttgtatt 60
ttcagatttt caacaataac agtattcaat acataatcag aaaaaagaga tgtggaggag 120
gaggagagaa acttcccaag gagctccctt gggtgctgct ggctcctaat tagtgtaacc 180
tgttaatcac atgttgctcg gtgttagagc ggtccctctg tgctctgcct ggcagggcgc 240
tgttggcctg gtctccctcg ctatttctat ttgcaagcat gggctttctt cccagcagaa 300
tetggtteet gggaagagta atgtteeaaa ggeetetgat atgeetegat geeeteetgt 360
cttccagage cccaacctca ctccctttcc ccaccataca aaacacacct cccaggggtc 420
acatttgggg gtcccgcccc ctgctccaat gccatggtgt ccccaagcac agggctttgg 480
cctgagttgt cagtctctgg atgcatttga ggggcagcta ggggtgtggct ggggggtcca 540
agcagetggg gageegagae teagaateat teacacaett etatttggag ettttgtgga 600
agtttccaga attccataat attcacctcc tgaatggtgg ctgcccctta tcagccaggg 660
ctggggtttc cagtgccctc ggagagcttg ctttagagtc ttggagagac ggccatggtc 720
tgcgtttgta tgtctgtcac atcttaccat catcacaaat tgaatataca acattaccta 780
attgtgtgat ca
                                                                 792
```

```
<210> 258
<211> 3045
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2456587
<400> 258
gtgagagggg ctgatggaag ctgataggca ggactggagt gttagcacca gtactggatg 60
tgacagcagg cagaggagca cttagcagct tattcagtgt ccgattctga ttccggcaag 120
gatecaagea tggaatgetg cegtegggea acteetggea caetgeteet etttetgget 180
ttcctgctcc tgagttccag gaccgcacgc tccgaggagg accgggacgg cctatgggat 240
gcctggggcc catggagtga atgctcacgc acctgcgggg gaggggcctc ctactctctg 300
aggcgctgcc tgagcagcaa gagctgtgaa ggaagaaata tccgatacag aacatgcagt 360
aatgtggact gcccaccaga agcaggtgat ttccgagctc agcaatgctc agctcataat 420
gatgtcaagc accatggcca gttttatgaa tggcttcctg tgtctaatga ccctgacaac 480
ccatgttcac tcaagtgcca agccaaagga acaaccctgg ttgttgaact agcacctaag 540
gtcttagatg gtacgcgttg ctatacagaa tctttggata tgtgcatcag tggtttatgc 600
caaattgttg gctgcgatca ccagctggga agcaccgtca aggaagataa ctgtggggtc 660
tgcaacggag atgggtccac ctgccggctg gtccgagggc agtataaatc ccagctctcc 720
gcaaccaaat cggatgatac tgtggttgca attccctatg gaagtagaca tattcgcctt 780
gtettaaaag gteetgatea ettatatetg gaaaccaaaa eeeteeaggg gaetaaaggt 840
gaaaacagtc tcagctccac aggaactttc cttgtggaca attctagtgt ggacttccag 900
aaatttccag acaaagagat actgagaatg gctggaccac tcacagcaga tttcattgtc 960
aagattegta actegggete egetgacagt acagtecagt teatetteta teaacecate 1020
atccaccgat ggagggagac ggatttcttt ccttgctcag caacctgtgg aggaggttat 1080
cagctgacat cggctgagtg ctacgatctg aggagcaacc gtgtggttgc tgaccaatac 1140
tgtcactatt acccagagaa catcaaaccc aaacccaagc ttcaggagtg caacttggat 1200
ccttgtccag ccagtgacgg atacaagcag atcatgcctt atgacctcta ccatccctt 1260
cctcggtggg aggccacccc atggaccgcg tgctcctcct cgtgtggggg gggcatccag 1320
agccgggcag tttcctgtgt ggaggaggac atccaggggc atgtcacttc agtggaagag 1380
tggaaatgca tgtacacccc taagatgccc atcgcgcagc cctgcaacat ttttgactgc 1440
cctaaatggc tggcacagga gtggtctccg tgcacagtga cgtgtggcca gggcctcaga 1500
taccgtgtgg tcctctgcat cgaccatcga ggaatgcaca caggaggctg tagcccaaaa 1560
acaaagcccc acataaaaga ggaatgcatc gtacccactc cctgctataa acccaaagag 1620
aaacttccag tcgaggccaa gttgccatgg ttcaaacaag ctcaagagct agaagaagga 1680
gctgctgtgt cagaggagcc ctcgttcatc ccagaggcct ggtcggcctg cacagtcacc 1740
tgtggtgtgg ggacccaggt gcgaatagtc aggtgccagg tgctcctgtc tttctctcag 1800
teegtggetg acctgcetat tgacgagtgt gaagggeeca agecageate ecagegtgee 1860
tgttatgcag gcccatgcag cggggaaatt cctgagttca acccagacga gacagatggg 1920
ctctttggtg gcctgcagga tttcgacgag ctgtatgact gggagtatga ggggttcacc 1980
aagtgeteeg agteetgtgg aggaggtgte caggaggetg tggtgagetg ettgaacaaa 2040
cagacteggg ageettgetg aggagaacet gtgegtgaee acegeeggee eccaeagete 2100
ctgaagtcct gcaatttgga tccctgccca gcaagtcctg tcatctagga aqaagcagta 2160
tegacteage atggaaegee tgeaaegtte tttgttagge aaccaagagg cetggettet 2220
catcetgetg teaceaacta getetgtgge etagggegag gtgtetgeee tttatgttte 2280
cacatetgea aagtgaactg gttgtacetg atgatetgag atcccatgae ttgeteacat 2340
gtcccatgat tctttatttt gtaggcagaa gcattaaaca gctactcctg ctgctgtgtg 2400
ctaatcattc ctgtaatttc tgttctgctt atttgccatt atttgaaaaa catgcaaaag 2460
ggtctttcta accacattcc tgtgttgtaa caacacccaa atgctgaggc agtgccgagg 2520
agteagtgee tgggaettge ttaaaactge tgggaetegt ggteectaaa ecettetttg 2580
agcaccaaaa cgaataggac atgagatgtt acttctcatt ctcaaagtac taactatgtt 2640
taagttacaa aaggttaggt tatcctgtga cccttttgtt gactcacaga caagaacagt 2700
tgttgagett aatgttgteg catttgetee agataaacte aattetetga ttteecacea 2760
```

```
gccaactgtc aagccaacag gcaagacctc tcactgggca cagccaggag tttcttgggt 2820
cgaccataca cattgaaaca tttgtagaag gttgctaatt gcaacaataa aggggaccaa 2880
agtataatgg cctaatctca tccaagagtc aaaacagatt ttccccctaa aaatgataat 2940
tgtatagagg tgcctttcct gtggaatatc tcactctgat gtdagagaaa aatctctcct 3000
<210> 259
<211> 2445
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2484813
<400> 259
gcatcttggc agggtccggg gacgtggact atttcgcaca ccacaccacg gggagggatt 60
tttttctatt ttccctacga aaaacagatc tttttaagga tggtgctgct ccactggtgc 120
ctgctgtggc tcctgtttcc actcagctca aggacccaga agttacccac ccgggatgag 180
gaactttttc agatgcagat ccgggacaag gcatttttc atgattcgtc agtaattcca 240
gatggagctg aaattagcag ttatctcttt agagatacac ctaaaaggta tttctttgtg 300
gttgaagaag acaatactcc attatcagtc acagtgacgc cctgtgatgc gcctttggag 360
tggaagetga geetceagga getgeeagag gacaggageg gggaaggete aggtgatetg 420
gaacctcttg agcagcagaa gcagcagatc attaatgagg aaggcactga gttattctcc 480
tacaaaggca atgatgttga gtattttata tegtetagtt ecceateegg tttatateag 540
ttggatcttc tttcaacaga gaaagacaca catttcaaag tatatgccac cacaactcca 600
gaatctgatc agccataccc tgagttaccc tatgacccaa gagtagatgt gacctcactg 660
gggcgcacca cggtcacttt ggcctggaaa ccaagcccca ctgcctcttt gctgaaacaa 720
cccattcagt actgtgtggt catcaacaaa gagcacaatt tcaaaagtct ctgtgcagtg 780
gaagcaaaac tgagtgcaga tgatgctttt atgatggcac cgaaacctgg tctggacttc 840
agcccctttg actttgccca ctttggattt ccttctgata attcaggtaa agaacgcagt 900
ttccaggcaa agcettetee aaaactgggg cgtcatgtet actccaggee caaggttgat 960
attcagaaaa tctgcatagg aaacaagaac atcttcaccg tctctgatct gaaacccgac 1020
acgcagtact actttgacgt atttgtggtc aacatcaaca gcaacatgag caccgcttat 1080
gtaggtacct ttgccaggac caaggaagaa gccaaacaga agacagtcga gctaaaagat 1140
gggaagataa cagatgtatt tgttaaaagg aagggagcaa agtttctacg gtttgctcca 1200
gtctcttctc accaaaaagt caccttcttt attcactctt gtctggatgc tgtccaaatc 1260
caagtgagaa gagatgggaa acttettetg teteagaatg tggaaggeat teageagttt 1320
cagettagag gaaaacetaa agetaaatae etegttegae tgaaaggaaa caagaaagga 1380
gcatctatgt tgaaaattct agctaccaca aggcctacta agcagtcatt tccctctct 1440
cctgaagaca caagaatcaa agcctttgac aagctccgta cctgttcctc qqccaccqtq 1500
gcttggctag gcactcagga aaggaacaag ttttgcatct acaaaaaaqa aqtqqatqat 1560
aactacaatg aagaccagaa gaaaagagag caaaaccaat qtctaqqacc aqatataaqq 1620
aagaagtcag aaaaggtcct ctgtaaatat ttccacagtc aaaacctgca gaaagcagtg 1680
accacagaaa caattaaagg tetteageet ggeaaatett acctgetgga tgtttatgte 1740
ataggacatg gggggcactc tgtaaagtat cagagtaagg ttgtgaaaac tagaaagttc 1800
tgttagttac cttcttatag agatatatta tgtagaactc caggagggac attaaatcac 1860
tttaagtata aactgactac tcccacagtt gagagaagtt gtgacctgta cttgtactat 1920
ggaaggaagg atatcaacgt gtgtatattg atgtttatat aagtaactct tgaaggagac 1980
ttgttctagc gtgccccatg gtacctagtg tgtgtctgat gccggttggt gtcaaagata 2040
gagggettet tgaaggaact tgccatteet tgetttgace actgcatgaa etgettetaa 2100
attattttat tacctaaaaa tttaaaatat gccattcatt gcacacaccc acaaatgcaa 2160
atcattcctc tctatagatg ctaggatata tataaattat tttataaatt cttgttttaa 2220
atgtcagtgt ttctatgatt gtaaactatt aaattctttt cctattaaag tacagatcta 2280
atctaagtat tattaagttg atagecetet agteagttat attgetattg taaattettg 2340
tttgttgagt aaaatgttta aatactatat gtatctcatg tacaaagttg acatacatta 2400
```

2445

tattcatgta cataaaatta aagagattag attatatagt gttca

```
<210> 260
<211> 672
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2493851
<400> 260
cccacgggcg cccagcctag gagtcgtccc ccaggcaatc cccagtactc ctgatgctgg 60
agagccagcc acactgcaca gtgccccggg ggcggtttct accaccctaa ggggtattct 120
tggctccagg catcagagtc catgtggctt gtggggccct catttctttc atgcccactg 180
gggaaggttc caccagcagg gctgttactg gcggggtcct ctgggagggg ggcaagaagg 240
ccagccacac caaggcactg gagctccacg actcctggcc ttcgattgga ggcccctctc 300
tgccagetet geceettggg gggcaccagg caggactgec agecgetete etggcaggtg 360
acatcagect teaageteae tgtgeeetea ceattteatg etececeaag gteetggtea 420
tgtcttctct tgggtatctt cccaggacag gcactggcac tggagccctg gcacttgttt 480
ctgggttcca tgcttcccag gtgtgatggt gaatgctgag tgtcagcttg actggattga 540
aggatgcaaa gtattgtcac tgggtgtgtc tgtgagggtg ttgccagagg agattcccat 600
ttgagtcagt gggctgggag aggcagaccc accetcaatc caggtgggca ccacctaatc 660
ggctgccagc aa
                                                                   672
<210> 261
<211> 1183
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2495719
<400> 261
gagagaaatg atgtgacagg agcaagcgaa ctacaacccc gccccgccgt tcctgcccca 60
ccactgcggc ggcgggcgct acgttccgga agcggaaatg gacgagaggt cagggtaggt 120
ttttgaagat ggcggccctc aaggetetgg tgteeggetg tgggeggett eteegtggge 180
tactageggg eccggeageg accagetggt eteggettee agetegeggg tteagggaag 240
tggtggagac ccaagaaggg aagacaacta taattgaagg ccgtatcaca gcgactccca 300
aggagagtcc aaatcctcct aacccctctg gccagtgccc catctgccgt tggaacctga 360
agcacaagta taactatgac gatgttctgc tgcttagcca gttcatccgg cctcatggaq 420
gcatgctgcc ccgaaagatc acaggcctat gccaggaaga acaccgcaag atcgaggagt 480
gtgtgaagat ggcccaccga gcaggtctat taccaaatca caggcctcgg cttcctgaag 540
gagttgttcc gaagagcaaa ccccaactca accggtacct gacgcgctgg gctcctggct 600
ccgtcaagcc catctacaaa aaaggccccc gctggaacag ggtgcgcatg cccgtggggt 660
cacceettet gagggacaat gtetgetaet caagaacaee ttggaagetg tateaetgae 720
agagagcagt gettecagag tteeteetge acetgtgetg gggagtagga ggeecactea 780
caagceettg gecacaacta tacteetgte ceaceceace acgatggeet ggteeeteea 840
acatgcatgg acaggggaca gtgggactaa cttcagtacc cttggcctgc acagtagcaa 900
tgctgggagc tagaggcagg cagggcagtt gggtcccttg ccagctgcta tggggcttag 960
gccatgctca gtgctgggga caggagtttt gcccaacgca gtgtcataaa ctgggttcat 1020
gggcttaccc attgggtgtg cgctcactgc ttgggaagtg cagggggtcc tgggcacatt 1080
gccagctggg tgctgagcat tgagtcactg atctcttgtg atggggccaa tgagtcaatt 1140
gaattcatgg gccaaacagg tcccatcctc ttcaaaaaaa aaa
```

```
<210> 262
<211> 1266
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2614153
<400> 262
geetgaceae geagttettg ggtetgtget getggeetgg ggttgtggtt gaggeegggt 60
ctccgctcct gtgcccggga agatggtgct aggtggttgc ccggttagtt acttacttct 120
gtgcggccag gcggctttgc tgctggggaa tttacttctg ctgcattgtg tgtctcggag 180
ccactegeaa aatgegaceg etgageetga geteacatee getggegeeg eccageegga 240
gggccccggg ggtgctgcga gctgggaata tggcgacccc cactctccgg tcatcctctg 300
ctcttaccta cctgatgaat ttatagaatg tgaagaccca gtggatcatg ttggaaatgc 360
aactgcatcc caggaacttg gttatggttg tctcaagttc ggcggtcagg cctacagcga 420
cgtggaacac acttcagtcc agtgccatgc cttagatgga attgagtgtg ccagtcctag 480
gacctttcta cgagaaaata aaccttgtat aaagtatacc ggacactact tcataaccac 540
tttactctac tccttcttcc tgggatgttt tggtgtggat cgattctgtt tgggacacac 600
tggcactgca gtagggaagc tgttgacgct tggaggactt gggatttggt ggtttgttga 660
cettattttg ctaattactg gagggetgat gecaagtgat ggcagcaact ggtgcactgt 720
ttactaaaaa gagctgccat catggcccag ggaggcgggt gaaagctccg tcttctgaat 780
tcatctctac aggetcaaaa etectetttg atatcagace tgatgttatt tteettettt 840
tggagggcat ttgtttggtt aagaaggctt ctttggactt tggaatttca acccagattt 900
taccttgcag acggaatgac aagcaaaaag tgttgtgggg aatcaaattt gttcctttcc 960
tcatgcacaa aacataaagg atagtggcga gtttacaagc tgtggatggg tttccatagt 1020
etteetttet gtacattget atatetteag teetttggag caagtggace taacaagttg 1080
agcaaaatga atatttggat ccatgttcct cttgtgaccc tgagtcttca tgcaaggaga 1140
tctgaagctg aacaatgaaa atcttcagca gaaatagaaa tggccgtgga ttgtaataca 1200
cactgaaatt ctgactttct gaatttaaat gtagaataaa ttttaccaac ttggaaaaaa 1260
aaaaaa
                                                                   1266
<210> 263
<211> 1093
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2655184
<400> 263
gatggcttgt ttttcatttt ttttgtgctt tttggtccat ctattaataa aaatgaaccc 60
cgttacagag tcaccatcat gtctcttctc accaccctct gaatctgcat tagccagtca 120
actagecett teagegteat gtgaceageg egececatte agettggetg gtgtegttte 180
acatgaccca ggctggccag tcgtcaggtt gcaccgccct ttggttcccg agcatgctgt 240
tttctctcag ccttctctcc aaccttaacc aaatcggcag cagccacctc gaccgcccac 300
acattcctgg ccaatcagct cagctgttta tttaccaaat gtcttcacaa caactacagc 360
agcagcette ggetaacaaa aaagcaggaa aaatccacaa caccccette gccaaccaac 420
taaatccaac gcaacatctg gcaaaacctt ttcagcaaat tcttcctggc cgtcagtccg 480
gcagcctcac ctcaccattt ctagcttgtt gaaacccaaa actaatctcc aagaaggaga 540
agettetete geageeggag eaggteeett tetagagata ggagaagaga gagategetg 600
tetegggaga gaaateacaa geegteeega teetteteta ggtetegtag tegatetagg 660
tcaaatgaaa ggaaatagaa gacagtttgc aagagaagtg gtgtacagga aattacttca 720
```

```
tttgacagga gtatgtacag aaaattcaag ttttgtttga gacttcataa gcttggtgca 780
tttttaagat gttttagctg ttcaaatctg tttgtctctt gaaacagtga cacaaaggtg 840
taattotota tggtttgaaa tggatcatac gaggcatgta ataccaagaa ttgttacttt 900
acaatgttcc cttaagcaaa attgaatttg ctttgaactt ttagttatgc acagactgat 960
aataaacctc taaacctgcc caqcgqaagt gtgttttttt taaatttaaa tacaqaacca 1020
ctggcaaaaa ttgaactaag atttactttt ttttccatag ctgggatata ggggggatcc 1080
                                                                   1093
<210> 264
<211> 1056
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2848362
<400> 264
geotgacatg cotgatocto tottttotgo agttoaaggg aaagacgaga tottgoacaa 60
ggcactctgc ttctgccctt ggctggggaa gggtggcatg gagcctctcc ggctgctcat 120
cttactcttt gtcacagagc tgtccggagc ccacaacacc acagtgttcc agggcgtggc 180
gggccagtcc ctgcaggtgt cttgccccta tgactccatg.aagcactggg ggaggcgcaa 240
ggcctggtgc cgccagctgg gagagaaggg cccatgccag cgtgtggtca gcacgcacaa 300
cttgtggctg ctgtccttcc tgaggaggtg gaatgggagc acagccatca cagacgatac 360
cctgggtggc actctcacca ttacgctgcg gaatctacaa ccccatgatg cgggtctcta 420
ccagtgccag agectccatg gcagtgaggc tgacaccctc aggaaggtcc tggtggaggt 480
getggeagae eccetggate acegggatge tggagatete tggtteeceg gggagtetga 540
gagettegag gatgeecatg tggageaeag cateteeagg ageetettgg aaggagaaat 600
ccccttccca cccacttcca tccttctcct cctggcctgc atctttctca tcaaqattct 660
ageageeage geeetetggg etgeageetg geatggaeag aageeaggga cacateeace 720
cagtgaactg gactgtggcc atgacccagg gtatcagctc caaactctgc cagggctgag 780
agacacgtga aggaagatga tgggaggaaa agcccaggag aagtcccacc agggaccagc 840
ccagcctgca tacttgccac ttggccacca ggactccttg ttctgctctg gcaagagact 900
actetgeetg aacactgett eteetggaee etggaageag ggaetggttg agggagtggg 960
gaggtggtaa gaacacctga caacttctga atattggaca ttttaaacac ttacaaataa 1020
atccaagact gtcatattta gctggaaaaa aaaaaa
                                                                  1056
<210> 265
<211> 1183
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte Clone No: 2849906
<400> 265
ggagetcage egagggetge acaaagacet teetggeetg eeccagacag agetgaggae 60
ccctggccgt gggcttgggc ctcggcttca caggatgggg ctgccagtgt cctgggcccc 120
tectgeecte tgggttetag ggtgetgege cetgeteete tegetgtggg egetgtgeae 180
agectgeege aggecegagg aegetgtage eeccaggaag agggegegga ggeageggge 240
gaggetgeag ggeagtgega eggeggegga agegteeeta etgaggegga eccaeetetg 300
etceetcage aagteggaca ecagaetgea egagetgeac eggggeeege geageageag 360
ggccctgcgg cctgccagca tggatctcct gcgcccacac tggctggagg tgtccaggga 420
catcaccgga ccgcaggcag ccccctctgc cttcccacac caggagctgc cccgggctct 480
```

```
geoggeaget geagecaceg cagggtgege tggeetegag gecacetatt ccaaegtggg 540
getggeggee etteeegggg teageetgge ggeeageest gtggtggeeg agtatgeeeg 600
cgtccagaag cgcaaaggga cccatcgcag tccccaagag ccacagcagg ggaagactga 660
ggtgaccccg gccgctcagg tggacgtcct gtactccagg gtctgcaagc ctaaaaggag 720
ggacccagga cccaccacag acccgctgga ccccaagggc cagggagcga ttctggccct 780
ggcgggtgac ctggcctacc agaccctccc gctcagggcc ctggatgtgg acagcggccc 840
cctggaaaac gtgtatgaga gcatccggga gctgggggac cctgctggca ggagcagcac 900
gtgcggggct gggacgcccc ctgcttccag ctgccccagc ctagggaggg gctggagacc 960
cotecetgee tecetgeest gaacacteaa ggacetgtge teetteetee agagtgagge 1020
cogtoccog cocogoccog cotcacaget gacagegcca gtcccaggtc cccgggccgc 1080
cagecegtga ggteegtgag gteetggeeg etetgaeage egeggeetee eegggeatee 1140
tagagaaggc ccgcgtctaa ataaagcgcc acgcagagtg atc
<210> 266
<211> 840
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2899137
<400> 266
gcatgtcatg gccgcctcca tggcccgggg aggcgtgagt gccagggttc tactgcaggc 60
tgccaggggc acctggtgga acagacctgg gggcacttcc gggtcggggg agggggtggc 120
gctggggaca accagaaagt ttcaagcgac aggctcgcgc ccggctggag aggaggacgc 180
gggcggcccg gagcggcccg gggacgtggt gaacgtggtg ttcgtagacc gctcaggcca 240
gcggatccca gtgagtggca gagtcgggga caatgttctt cacctggccc agcgccacgg 300
ggtggacctg gaaggggcct gtgaagcctc cctggcctgc tccacctgcc atgtgtatgt 360
gagtgaagac cacctggatc tcctgcctcc tcccgaggag agggaagacg acatgctaga 420
catggccccc ctcctccagg agaactcgcg gctgggctgc cagattgtgc tgacaccgga 480
gctggaagga gcggaattca ccctgcccaa gatcaccagg aacttctacg tggatggcca 540
tgtccccaag ccccactgac atgaacacct ggaccattcc acattgccat ggccccaggg 600
cccagattga gggaatagcc aggtgccagc cctgcccaga gtgcggacag gcccgggaga 660
gacqtggaag cccctgtgaa ggacaacacc cctgcttggg agagagtccc atgtccaggc 720
tctggtgggg acagggcccc tagtggggtg gccttcccca ggcccctgag aatcagggtt 780
<210> 267
<211> 606
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 2986229
<400> 267
aataatgttt gagacagaag agaccattgg ctagtattta gcaattatca tagttatttg 60
atttatatta aaaagcattt gtctttccac taaaacataa agggaataag ggcctagagt 120
tatatgagtt aatagtaatt atagtcaagc tggggttaaa aatttgttgt agatgatgca 180
tacttgggga taattaagag taccatctaa ttttctgtca ctttagaaag gaacaagtgg 240
caactttgtt gactatgtgg agaaagccag atgttcttta ctcagtaata cctgttactt 300
ctctttttt ccttttagca ctgaacctac cagatgtatt tgggttggtc gtcctcccat 360
tggaactgaa actacggatc ttccgacttc tggatgttcg ttccgtcttg tctttgtctg 420
```

```
cggtttgtcg tgacctcttt actgcttcaa atgacccact cctgtggagg tttttatatc 480
tgcgtgattt tcgaggtgat ttccgtaatg acatattcac aagaaagggc tcttattgtc 540
ttgattactc agctcaccaa aagtttttag ttgtaggatt tttctgttgc aaatgattac 600
aataaa
<210> 268
<211> 1025
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte Clone No: 3222081
<400> 268
gteettegag etacteegte tggeeeegee ttttetetge teteetgaac etttaggett 60
gtctcggccc atttgaagac caggaagttg atcaatcccg aggctgctga gagacggtgg 120
cgcgattggg acagtcgcca gggatggctg agcgtgaaga tgcagcgggt gtccgggctg 180
ctctcctgga cgctgagcag agtcctgtgg ctctccggcc tctctgagcc gggagctgcc 240
cggcagcccc ggatcatgga agagaaagcg ctagaggttt atgatttgat tagaactatc 300
cgggacccag aaaagcccaa tactttagaa gaactggaag tggtctcgga aagttgtgtg 360
gaagttcagg agataaatga agaagaatat ctggttatta tcaggttcac gccaacagta 420
cctcattgct ctttggcgac tcttattggg ctgtgcttaa gagtaaaact tcagcgatgt 480
ttaccattta aacataagtt ggaaatctac atttctgaag gaacccactc aacagaagaa 540
gacatcaata agcagataaa tgacaaagag cgagtggcag ctgcaatgga aaaccccaac 600
ttacgggaaa ttgtggaaca gtgtgtcctt gaacctgact gatagctgtt ttaagagcca 660
ctggcctgta attgtttgat atatttgttt aaactctttg tataatgtca gagactcatg 720
tttaatacat aggtgatttg tacctcagag cattttttaa aggattcttt ccaagcgaga 780
tttaattata aggtagtacc taatttgttc aatgtataac attctcagga tttgtaacac 840
ttaaatgatc agacagaata atattttcta gttattatgt gtaagatgag ttgctatttt 900
totgatgete attotgatae aactattttt egtgteaaat atctactgtg eccaaatgta 960
ctcaatttaa atcattactc tgtaaaataa ataagcagat gattcttata atgaaaaaaa 1020
aaaaa
```

PCT

(30) Priority Data:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 00/00610
C12N 15/12, C07K 14/47, C12N 15/ C12Q 1/68, C07K 16/18, G01N 33/0 A61K 38/17		(43) International Publication Date:	6 January 2000 (06.01.00)
(21) International Application Number:	PCT/US99/144	(75) Inventors/Applicants (for US on	uly): LAL, Preeti [IN/US];
(22) International Filing Date: 25 Jun	e 1999 (25.06.9	2382 Lass Drive, Santa Clara Y. Tom (CN/US): 4230 Ran	

60/090,762 26 June 1998 (26.06.98) US 60/094,983 31 July 1998 (31.07.98) US 60/102,686 I October 1998 (01.10.98) US 60/112,129 II December 1998 (11.12.98) US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications

US 60/090,762 (CIP) Filed on 26 June 1998 (26.06.98) US 60/094,983 (CIP) Filed on 31 July 1998 (31.07.98) 60/102,686 (CIP) US Filed on 1 October 1998 (01,10,98) US 60/112,129 (CIP) Filed on 11 December 1998 (11.12.98)

(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US). 95118 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AKERBLOM, Ingrid, E. [US/US]; 1234 Johnson Street, Redwood City, CA 94061 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US), REDDY. Roopa [IN/US]; 1233 W. McKinley Drive, Sunnyvale, CA 94086 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US).

(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 29 June 2000 (29.06.00)

(54) Title: HUMAN SIGNAL PEPTIDE-CONTAINING PROTEINS

(57) Abstract

The invention provides human signal peptide-containing proteins (HSPP) and polynucleotides which indentify and encode HSPP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HSPP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Тодо
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	· MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	11.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Interr d Application No PCT/US 99/14484

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/12 C07K14/47 C12N G01N33/68 A61K38/17	15/11	1201/68	C07K16/18
According to	o International Patent Classification (IPC) or to both national cla	assification and IPC	>	
	SEARCHED .			
Minimum do IPC 6	ocumentation searched (classification system followed by class C12N C07K C12Q G01N A61K	sification symbols)		
Documents	tion searched other than minimum documentation to the extent	t that such docume	nts are included in	the fields searched
Electronio d	data base consulted during the international search (name of da	ata base and, whe	re practical, search	terms used)
		•		
	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the	the relevant passa	ges	Relevant to claim No.
X	HUDSON T.: "Human STS." EMBL DATABASE ENTRY HS578357, NUMBER G22578,1 June 1996 (1998) XP002125359			5
	abstract			
A	TASHIRO K. ET AL.: "SIGNAL SI A CLONING STRATEGY FOR SECRETI AND TYPE I MEMBRANE PROTEINS" SCIENCE,	ED PROTEIN		1-16,19
	vol. 261, 1993, pages 600-603 ISSN: 0036-8075 the whole document	, XP002911	1163	
A	EP 0 607 054 A (HONJO TASUKU PHARMACEUTICAL CO (JP)) 20 July 1994 (1994-07-20) the whole document	;0NO		1-16,19
		-/- -		
X Furt	ther documents are listed in the continuation of box C.	X P	tent family member	s are listed in annex.
•	ategories of cited documents : ent defining the general state of the art which is not	or prio	rity date and not in	fter the international filing date conflict with the application but
consider *E* earlier of filing of	dered to be of particular relevance document but published on or after the international date	invent "X" docum	ion ent of particular rele	inciple or theory underlying the vance; the claimed invention elor cannot be considered to
which citatio	ent which may throw doubts on priority claim(s) or in the control of the control	"Y" docume	ent of particular rele t be considered to ir	when the document is taken alone vance; the claimed invention wolve an inventive step when the thone or more other such docu-
other "P" docum	means ent published prior to the international filing date but than the priority date claimed	ments in the	, such combination i	being obvious to a person skilled
Date of the	actual completion of the international search			national search report
2	20 December 1999		05. 04	2000
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authori	zed officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		landl, B	

1

Inter at Application No
PCT/US 99/14484

	PCT/US 99/14484
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
JACOBS K. A. ET AL: "A genetic selection for isolating cDNAs encoding secreted proteins" GENE, vol. 198, 1997, pages 289-296, XP002102962 ISSN: 0378-1119 the whole document	1-16,19
WALLIN E. ET AL.: "Properties of N-terminal tails in G-protein coupled receptors: a statistical study" PROTEIN ENGINEERING, vol. 8, no. 7, 1995, pages 693-698, XP002102961 ISSN: 0269-2139 the whole document	1-16,19
·	
·	
	JACOBS K. A. ET AL: "A genetic selection for isolating cDNAs encoding secreted proteins" GENE, vol. 198, 1997, pages 289-296, XP002102962 ISSN: 0378-1119 the whole document WALLIN E. ET AL.: "Properties of N-terminal tails in G-protein coupled receptors: a statistical study" PROTEIN ENGINEERING, vol. 8, no. 7, 1995, pages 693-698, XP002102961 ISSN: 0269-2139 the whole document

1

International application No.

PCT/US 99/14484

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 19 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. X Claims Nos.: 17, 18, 20 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
A. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: see additional sheet, subject 1.
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Further defect(s) under Article 17(2)(a):

Continuation of Box 3.

Claims Nos.: 17,18,20

Claims 17,18 and 20 refer to antagonists and agonists of the polypeptides without giving a true technical characterization. Moreover, no such specific compounds are defined in the application. In consequence, the scope of said claims is ambiguous and vague, and their subject-matter is not sufficiently disclosed and supported (Art. 5 and 6, PCT). No search can be carried out for such purely speculative claims whose wording is, in fact, a mere recitation of the results to be achieved.

The applicant's attention is drawn to the fact that claims, or parts of, claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

INVENTION 1: Claims 1-20 (all partially)

A polypeptide comprising the amino acid sequence of SEQ.ID.1 and variants having at least 90% amino acid sequence identity therewith; the polynucleotide encoding said polypeptide (as represented by SEQ.ID.135) and variants having at least 90% sequence identity with said polynucleotide; a polynucleotide that hybridizes therewith or a polynucleotide that is complementary thereto; a method for detecting said polynucleotide, an expression vector comprising said polynucleotide; a host cell comprising said vector; a method for producing said polypeptide; a pharmaceutical composition comprising said polypeptide; a purified antibody, agonist or antagonist specific for said polypeptide; and a method for treating or preventing a disorder associated with decreased or increased expression of said polypeptide.

INVENTIONS 2-134: Claims 1-20 (all partially)

Idem as subject 1 but limited to one DNA sequence selected from SEQ.IDs. 136-268 at a time and the corresponding polypeptide, where invention 2 is limited to SEQ.IDs. 136 and 2, invention 3 is limited to SEQ.IDs. 137 and 3, and invention 134 is limited to SEQ.IDs. 268 and 134.

h... rmation on patent family members

Inter al Application No PCT/US 99/14484

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0607054	A	20-07-1994	CA JP JP JP US	2113363 A 2879303 B 6315380 A 11308993 A 5525486 A	15-07-1994 05-04-1999 15-11-1994 09-11-1999 11-06-1996