Predicting Weekly Sales for Walmart Retail Stores

Capstone 2 Project Damilola T. Olaiya

Audience

The audience includes:

- 1. A combination of executive + technical professionals
- 2. Springboard
- 3. Potential future employers

Proposal

- 1. Hypothesis → How can Walmart use its reported sales data to (i) predict and take advantage of future sales/demand and (ii) potentially improve inventory allocation/scheduling?
- 2. Criteria for success → Creating a model that can accurately predict the sales with regards to single and multiple features

Data Wrangling

- 1. The dataset contains sales information from 45 walmart stores and was obtained from here.
- There were 7 features/columns were store, weekly_sales, holiday_flag, temperature, fuel_price, cpi and unemployment.
 - a. The target feature is weekly_sales.
- 3. There were 6435 entries/samples in the data. This corresponded to 143 entries each for 45 stores.
- 4. There were no missing values. The data was clean.
- 5. Store-to_store analysis yielded the following:
 - a. Total and Average weekly sales per store

b. Boxplot of weekly sales grouped by store

Exploratory Data Analysis (EDA)

- 1. The date feature was removed and expanded into its own separate dataframe. This included extracting weekday, month and year from each sample.
- 2. Categorical and numeric features were parsed and listed out. There were 2 categorical (holiday_flag, store) and 4 numerical features (unemployment, fuel_price, cpi, temperature, weekly_sales).
- 3. As expected, there are far more non-holidays than holidays.
- 4. EDA produced several infographics including:
 - a. Distribution and Countplot of weekly sales

b. Year and Holiday Count plots

Pre-processing and Training

- 1. The data was checked for uniqueness and no duplicate rows were found.
- 2. Outliers were removed using the IQR (inter quartile range). This involved dropping all samples/rows from numerical features whose values were greater than (75th percentile + 1.5 * IQR) or less than (25th percentile + 1.5 * IQR).
 - a. This resulted in the number of samples going from 6435 to 5951 (7.52% drop) and yielded the following boxplot

- 3. The holiday_flag feature was one-hot encoded (the values were 1 for holiday and 0 for non-holiday) and dummy variables were created for store, weekday, month and year features.
 - a. The first column was dropped in each case to prevent issues of multicollinearity.
 - b. The end result was a dataframe with 69 features/columns.
- 4. The data was split into X_train, X_test, y_train and y_test.
 - a. It was then scaled/standardized to have a mean of 0 and a standard deviation of 1.
 - b. Note that the standard scaler was fit and transformed using X_train only then used to transform X_test. This was done so that the model would be completely unaffected by the testing data.

- 5. Principal component analysis (PCA) was performed on the data.
 - a. Using all features (no reduction), the variance was explained as such:

b. Using PCA and linear regression, RMSE was calculated on the train and test datasets for features ranging in number from 1 to 69. Naturally, the error reduced with more features as more variance was explained.

Modeling

- 1. Using dummy variables for all categorical features makes the data too granular and convoluted (69 features/columns) as evidenced by the PCA decomposition result from pre-processing.
 - a. Going forward, I assumed that all stores (store 1 to store 45) are within the same market segment and ignored store to store differences.
 - b. Additionally, the holiday_flag feature did not need to be standardized as the values were already within scale for analysis.
 - c. To that effect, I mapped the holiday_flag feature back to 1s and 0s and eliminated the store, month and year features from the data.
 - d. This left 11 features remaining in the dataset (holiday_flag, temperature, fuel_price, cpi, unemployment, weekday 1, weekday 2, weekday 3, weekday 4, weekday 5, weekday 6).
- 2. I was able to infer that feature reduction may be unnecessary as, although 90% of the variance is explained cumulatively by 8/11 principal components, only one of the components had a variance that was significantly lower than the others.
 - a. That, combined with the relatively small number of features, may allow us to ignore feature reduction.

- 3. There were **four** different models used: multiple linear regression, lasso regression, ridge regression and random forest regression.
- 4. Cross validation was performed for ridge, lasso and random forest regressions using:
 - a. alphas of 0.1, 1, 10, 100,1000 and 10000 for lasso and ridge regression
 - b. parameter {n_estimators: [300,400,500], max_depth:[4,6,8], min_samples_leaf:[0.1,0.2], max_features:['log2','sqrt']} for random forest regression
 - c. The best alpha for both lasso and ridge was found to be **100**.
 - d. The best parameters for the random forest regression were found to be {'max_depth': 6, 'max_features': 'log2', 'min_samples_leaf': 0.1, 'n_estimators': 400}.
- 5. During modeling, the Model Evaluation Comparison Matrix (MECM) was created and populated
 - a. When sorted by **increasing Test RMSE**, I obtained:

	Train-R2	Test-R2	Train-RSS	Test-R\$\$	Train-MSE	Test-MSE	Train-RMSE	Test-RMSE
Random Forest Regression Model (RF)	0.036973	0.040372	1.490568e+15	3.847395e+14	3.131446e+11	3.230391e+11	559593.245026	568365.259504
Lasso Linear Regression (LLR)	0.019928	0.018191	1.516950e+15	3.936325e+14	3.186869e+11	3.305059e+11	564523.605053	574896.441420
Ridge Linear Regression (RLR)	0.019971	0.017923	1.516884e+15	3.937400e+14	3.186731e+11	3.305961e+11	564511.408328	574974.888760
Multiple Linear Regression (MLR)	0.020051	0.017895	1.516760e+15	3.937511e+14	3.186470e+11	3.306055e+11	564488.278884	574983.013229

Inference

- 1. Lower RMSE implies a better the model. That said, a significant disparity between training and testing scores would suggest overfitting.
- 2. All regression models were fairly similar in terms of training and test R2 and RMSE.
- 3. However, Multiple linear regression performed best in training metrics but worst in test metrics suggesting that it was slightly overfitting.
 - a. This is in line with what we would expect from lasso and ridge regression which work to combat overfitting.
- 4. Random forest regression performed best for all metrics and gave the best overall results.

Conclusions

- 1. The dataset was quite small with just 6435 samples initially, which dropped 7.5% after cleaning.
- 2. Cross validating the Lasso and Ridge regressions allowed us to select the best alpha.
- 3. We will proceed with the Random forest regression model as it performed best.

Further Steps to consider

- 1. Using pca for feature reduction
- 2. Using more of the generated features in the regression
- 3. Testing more parameters in the grid search cv at the cost of time
- 4. Using random forest with bagging, boosting etc
- 5. Using a polynomial regression model