2020SM2 Workshop Week 9 Exercise 1

Comp20008

1- Consider the following data set for a binary class problem and consider building a decision tree using this data.

Feature A	Feature B	Class Label
Т	F	+
Т	Т	+
Т	T	+
Т	F	-
Т	Т	+
F	F	-
F	F	-
F	F	-
Т	Т	-
Т	F	-

 $\Delta = E_{Orig} - \frac{7}{10}E_{A=T} - \frac{3}{10}E_{A=F} = 0.2813$

- Write a formula for the information gain when splitting on feature A.
- Contingency Table after splitting on feature A

	A = T	A = F
+	4	0
-	3	3

• The overall entropy before splitting:

$$E_{Orig} = -0.4 \log 0.4 - 0.6 \log 0.6 = 0.9710$$

• The information gain after splitting on A is:

$$E_{A=T} = -\frac{4}{7}\log\frac{4}{7} - \frac{3}{7}\log\frac{3}{7} = 0.9852$$

$$E_{A=F} = -\frac{3}{3}\log\frac{3}{3} - \frac{0}{3}\log\frac{0}{3} = 0$$

1- Consider the following data set for a binary class problem and consider building a decision tree using this data.

Feature A	Feature B	Class Label
Т	F	+
Т	T	+
Т	Т	+
Т	F	-
Т	Т	+
F	F	-
F	F	-
F	F	-
Т	T	-
Т	F	-

 $\Delta = E_{Orig} - ?E_{B=T} - ?E_{B=F} = ?$

- Write a formula for the information gain when splitting on feature B.
- Contingency Table after splitting on feature B

	B = T	B = F
+	?	?
-	?	?

• The overall entropy before splitting:

$$E_{Orig} = -0.4 \log 0.4 - 0.6 \log 0.6 = 0.9710$$

The information gain after splitting on B is:

$$E_{B=T} = -? \log? -? \log? =?$$

$$E_{B=F} = -? \log? -? \log? =?$$

1- Consider the following data set for a binary class problem and consider building a decision tree using this data.

Feature A	Feature B	Class Label
Т	F	+
Т	Т	+
Т	T	+
Т	F	-
Т	Т	+
F	F	-
F	F	-
F	F	-
Т	Т	-
Т	F	-

 $\Delta = E_{Orig} - \frac{4}{10}E_{B=T} - \frac{6}{10}E_{B=F} = 0.2565$

- Write a formula for the information gain when splitting on feature B.
- Contingency Table after splitting on feature B

	B = T	B = F
+	3	1
-	1	5

• The overall entropy before splitting:

$$E_{Orig} = -0.4 \log 0.4 - 0.6 \log 0.6 = 0.9710$$

• The information gain after splitting on B is:

$$E_{B=T} = -\frac{3}{4}\log\frac{3}{4} - \frac{1}{4}\log\frac{1}{4} = 0.8113$$

$$E_{B=F} = -\frac{1}{6}\log\frac{1}{6} - \frac{5}{6}\log\frac{5}{6} = 0.6500$$

• The information gain after splitting on A is:
$$\Delta = E_{Orig} - \frac{7}{10} E_{A=T} - \frac{3}{10} E_{A=F} = 0.2813$$

• The information gain after splitting on B is:
$$\Delta = E_{Orig} - \frac{4}{10}E_{B=T} - \frac{6}{10}E_{B=F} = 0.2565$$

- Therefore attribute? will be chosen to split the node
- Therefore attribute A will be chosen to split the node