

Group Members: Natalie Gomas, Davis Ulrich, Alex Popescu, Tyler Nunez, Graham Kutchek

Research Problem Statement

Research Problem

- We set out to develop a DIY predictionary algorithm for our personal playlists
- Based on our own spotify playlists, could we develop similar song suggestions?
- We wanted to build a model which provided personalized predictions, based on input songs

\Diamond	Ain't No Sunshine	Bill Withers	Just As I Am	2019-12-01
\Diamond	Breakfast In America - Remastered	Supertramp	Breakfast In Ame	2016-10-24
\Diamond	Moving in Stereo	The Cars	The Cars	2019-05-09

Research Problem, cont.

- Stakeholders for this work include anyone who uses
 Spotify and has interest in finding new music!
- Spotify's current prediction models are hidden and therefore our research enables users to have more hands on control of song suggestions
- We all love music, which motivated us to pursue this music centric data topic

The Dataset

- The data we utilized was sourced from a **kaggle** project which attempted to provide open-source, large-scale spotify data.
- Including over 170,000 track entries, the dataset was more than comprehensive for the scope of our goals

Here are the features of our dataset:

Dataset Cont.

- The Dataset included multiple csv's which sorted individual tracks by song, artist, genre, and year
- Our main dataframe was sorted by song, and had 16 features that described each song

Features:

Primary:

• **id** (Id of track generated by Spotify)

Numerical:

- acousticness (Ranges from 0 to 1)
- danceability (Ranges from 0 to 1)
- energy (Ranges from 0 to 1)
- duration_ms (Integer typically ranging from 200k to 300k)
- instrumentalness (Ranges from 0 to 1)
- valence (Ranges from 0 to 1)
- popularity (Ranges from 0 to 100)
- **tempo** (Float typically ranging from 50 to 150)
- liveness (Ranges from 0 to 1)
- **loudness** (Float typically ranging from -60 to 0)
- speechiness (Ranges from 0 to 1)
- year (Ranges from 1921 to 2020)

Dummy:

- **mode** (0 = Minor, 1 = Major)
- **explicit** (0 = No explicit content, 1 = Explicit content)

Categorical:

- **key** (All keys on octave encoded as values ranging from 0 to 11, starting on C as 0, C# as 1 and so on...)
- artists (List of artists mentioned)
- release_date (Date of release mostly in yyyy-mm-dd format, however precision of date may vary)
- name (Name of the song)

Data Pre-Processing

- For initial data pre-processing, we created unique identifiers for songs and artists that allowed us to represent them as integers
- We also removed low-impact features such as release date, and normalized columns to increase performance of the model

Dimensionality Reduction

- Our last step before constructing the model was to reduce our 16 song features down to 2 features
- We used a combination of principal component analysis and t-SNE to do this
- This dimensionality reduction was crucial to do before fitting the clustering model or else we ended with all datapoints in the same cluster

Spectral Clustering

- We utilized spectral clustering to produce genre-based cluster mappings
- This approach allowed us to associate specific tracks with other tracks of the same genre
- Optimal k was found through eigen decomposition, but corrected by visualizing it

Other approaches

- Explored basic clustering with a k-means modeling process
- K-means process yielded inconclusive results compared to spectral model
- Dimensionality reduction was key to model success

Final Model

- Our final model had 22 clusters, each of which created their own distinct genre of music
- For example, cluster 9 at the bottom was comprised of rock & roll songs
- These clusters were made without using genre information in the model

Generating Personal Playlist Data

- Used Spotify Developer API to get same metrics for personal playlists
- Created individual
 DataFrames for each person

Adding Our Music

- Removed our songs from the main DataFrame
- Formatted our individual playlists to be visualized with main data set
- Assigned one clustering to find "home" cluster
- Assigned second clustering with our names

Playlist based predictions

- Personalized suggestions started with formatting personal playlists
- Each song on the playlist was then compared with the clusterings
- Songs are then suggested based on the cluster with most songs from the playlist

Recommendations

Alex: Caught Up -- Usher Davis: I Remember You -- Skid Row Graham: Roundabout -- Yes

Natalie: Haunting -- Halsey

Results and Conclusions

Overall Findings

- The model proved to ultimately produce strong suggestions based on our playlist inputs
- Predictions came at a relatively high computational cost

User takeaways

- Users can feed the model specific input data for training and subsequent playlists for fine tuned suggestions
- Overall the model allows user to diversify their music taste

Reflections

- Preprocessing, dimensionality reduction, and model selection were all essential for yielding useful predictions
- Elevated user customization and model control would be a future goal
- Expansion beyond Spotify?

Links / sources

- "Spotify Dataset 1921-2020, 160k+ Tracks" Yamaç Eren Ay
 - https://www.kaggle.com/yamaerenay/spotify-dataset-19
 212020-160k-tracks
- "Interactive 2D Visualization Tool for Cluster Analysis" Zach Pardos
 - https://github.com/CAHLR/d3-scatterplot