

Gustavo Fabián Paredes Delaloye <lu2jgp@gmail.com>

Buses Trazados en esquematico.

martin ribelotta <martinribelotta@gmail.com>

22 de enero de 2020, 12:32

Para: "Gustavo F. Paredes - LU2JGP" <lu2jgp@gmail.com>

Cc: Pablo Gomez <elpablogomez@gmail.com>, Diego Essaya <dessaya@gmail.com>, Alejandro Permingeat <apermingeat@gmail.com>, Ariel Lutenberg <alutenberg@gmail.com>

Algunas inexactitudes:

Nota 1: El uProcesador posee 16 pines para direccionamiento, mientras que el MVBC02 posee 19. Las conexiones MA17-u a MA19-u no existen y estan a masa en el Address Buffer del lado del uProcesador.

Eso no es así, el micro tiene 24 pines de dirección en su FMC... de hecho, los estas conectando a cualquier lado menos al FMC del micro... este seria el listado de conexiones:

Pin	Name	FMC Label	Function	Polarity
86	PD5	FMC_NWE	Write enable	Negated
85	PD4	FMC_NOE	Output enable	Negated
93	PB7	FMC_NL	Address Latch	Negated
64	PC7	FMC_NE1	Chip Select	Negated
98	PE1	FMC_NBL1	Byte enable high (815)	Negated
97	PE0	FMC_NBL0	Byte enable low (07)	Negated
57	PD10	FMC_DA15		
56	PD9	FMC_DA14		
55	PD8	FMC_DA13		
45	PE15	FMC_DA12		
44	PE14	FMC_DA11		
43	PE13	FMC_DA10		
42	PE12	FMC_DA9		
41	PE11	FMC_DA8	Data 015, multiplexed addres 015	Non negated
40	PE10	FMC_DA7		Won negated
39	PE9	FMC_DA6		
38	PE8	FMC_DA5		
37	PE7	FMC_DA4		
82	PD1	FMC_DA3		
81	PD0	FMC_DA2		
62	PD15	FMC_DA1		
61	PD14	FMC_DA0		
1	PE2	FMC_A23		
5	PE6	FMC_A22		
4	PE5	FMC_A21		
3	PE4	FMC_A20	Address 1623	Non negated
2	PE3	FMC_A19	7 daress 1020	Won negated
60	PD13	FMC_A18		
59	PD12	FMC_A17		
58	PD11	FMC_A16		

Si te fijas, tenes que usar un latch mas para separar la parte baja y alta de las direcciones...

Ademas, deberias usar el stm32h743 que es el mismo micro con mas flash (es unos dolares mas caro pero no necesitas de la flash externa) para liberarte los pines de la QSPI que hacen falta para la FMC

Otra opción que te simplificaria es usar la version de 144 pines que no necesita latch externo (no multiplexa address y data) y ademas te deja sacar 26 bits de direcciones (al pedo porque vos necesitas 20)

Pin Name Label **Function Polarity**

El stm32h743 en 144 pines es exactamente igual al stm32h743 en 100 pines pero dispone de mas puertos, y el stm32h743 en cualquiera de sus empaquetados es exactamente igual al stm32h750 salvo que no tiene crypto por hardware y tiene 1M de flash interna en vez de 128k como el h750

Byte enable low (D0..7)

Chip enable

Output enable

Write enable

Byte enable high (D8..15)

Inverted

Inverted

Inverted

Inverted

Inverted

Te vuelvo a recomendar FUERTEMENTE usar esta herramienta: https://www.st.com/en/development-tools/stm32cubemx.html

FMC D12

FMC D13

FMC D14

FMC D15

FMC NBL0

FMC NBL1

FMC_NE1

FMC NOE

FMC_NWE

68

77

78

79

141

142

97

118

119

PE15

PD8

PD9

PD10

PE0

PE1

PC7

PD4

PD5

Para planificar el floorplane de tus pines, estos micros son muy complejos y las funciones que tienen son enormes asi que es muy facil perderse si no tenes estas herramientas a mano...

El mar., 21 ene. 2020 a las 19:48, Gustavo F. Paredes - LU2JGP (<lu2jgp@gmail.com>) escribió: [El texto citado está oculto]