Схема	Формула для определения сил Р(Н)
	$P \geq \frac{\sum_{j=1}^m M_j tg(\mathscr{S} + \mathscr{A})}{b \eta_{\rho}};$ Общий случай $ \text{для симметричных губок} $ $P \geq \frac{2M_j tg(\mathscr{S} + \mathscr{A})}{b \eta_{\rho}};$ $ m = 2; \eta \rho = 0.9; \beta = 4 \div 8 ^{\mathrm{o}}; \rho = 1 ^{\mathrm{o}}10' - \text{при осях на подшипниках скольжения; } \rho = 3 ^{\mathrm{o}} - \text{при осях на подшипниках качения} $
	$P \geq \frac{\sum\limits_{j=1}^{m} M_{j} \cos \alpha}{b \eta_{p}};$ Общий случай $P \geq \frac{2M_{j} \cos \alpha}{b \eta_{p}};$ для симметричных губок $\rho = 0.9 \div 0.95$
Z_{c} , m_{c} M_{j} C_{i} N_{i} F_{i}	$P \geq rac{2\displaystyle\sum_{j=1}^{m{m}}M_j}{m_{\mathcal{C}}^{m{z}}_{\mathcal{C}}\eta_{\mathcal{F}}};$ Общий случай $P \geq rac{4M_j}{m_{\mathcal{C}}^{m{z}}_{\mathcal{C}}\eta_{\mathcal{F}}};$ для симметричных губок

Обозначения.
 m— число губок захвата; ${\rm M_{j}}$ — удерживающий момент (Нм) для ј- й губки,

 $\eta \rho = 0.94$

$$M_i = \sum_{i=1}^k N_i \cos \omega_i^2 [a_i t g \omega_i^2 \pm c_i - \mu (a_i \pm c_i t g \omega_i^2)];$$

 N_i - сила контакта, определяемая формулами табл. 11, H; k — число точек контакта: a_i, c_i — расстояния от точки поворота губки до i-й точки контакта, м;

 ϕ_i — угол контакта, $^0;$ μ — коэффициент трения между губкой и заготовкой;

ho — приведенный угол трения, учитывающий сопротивление осей рычагов, °;

 β — угол клина, °; η_p — коэффициент полезного действия механизма; b — размер рычага, м; α — угол рычага, °; m_c — модуль сектора, м; z_c — полное число зубьев сектора.