MM 225: AI AND DATA SCIENCE

CONDITIONAL PROBABILITIES

M P Gururajan and Hina A Gokhale

August 24, 2023

Guru and Hina Al and Data Science August 24, 2023 1/35

LECTURE 6: CONDITIONAL PROBABILITIES

Outline

- Discrete conditional probability
- 2 Bayes probabilities
- Independent events
- 4 Joint and Marginal distributions

DISCRETE CONDITIONAL PROBABILITY

4 / 35

Guru and Hina Al and Data Science August 24, 2023

Question

Let X be the outcome of an experiment that consists of rolling a die. Let F be the event X = 6. What is P(F)?

Answer

What is P(F)?

Link: https://www.menti.com/al5bh8pjsno3

• Code: Go to menti.com and use code 8623 7695

Results

▶ Results of the poll

Question

Let X be the outcome of an experiment that consists of rolling a die. Let F be the event X = 6. Let E be the event X > 4. Suppose if you know the event E occurred, what is P(F)?

Answer

What is P(F)?

Link: https://www.menti.com/al2z9np5yhj4

• Code: Go to menti.com and use code 2800 8237

Results

▶ Results of the poll

Conditional probability

- We assign a distribution function to a sample space
- We learn that an event (E) has occurred
- How do we change the probabilities of the remaining events?
- The new probability for the event F given E: conditional probability
- Conditional probability: P(F|E)

11 / 35

Question

Suppose in a population of 100000 females, 89.835% are expected to live to age 60 and 57.062% are expected to live to age 80. Given that a woman is 60, what is the probability that she lives to age 80?

Answer

The probability that a woman is 60, the probability that she lives to 80 is

Link: https://www.menti.com/aljfyf45g66t

• Code: Go to menti.com and use code 4763 5780

Results

▶ Results of the poll

Questions

Suppose three candidates G, H and S are running for office.

- Suppose H and S have an equal chance of winning while G only half as likely to win as H. What are the probabilities of win?
- Suppose H drops out of race; what are the probabilities of win?
- Suppose H drops out of race, and, in the absence of H in the race, most voters will favour
 G. What are the probabilities of win?

Conditional probability

$$P(F|E) = \frac{P(F \cap E)}{P(E)} \tag{1}$$

16 / 35

BAYES PROBABILITY

17 / 35

Guru and Hina Al and Data Science August 24, 2023

A problem

- We have two urns, say Urn I and Urn II.
- Urn I contains 1 black ball and 1 white ball. Urn II contains 2 black balls and 3 white balls.
- If a black ball is drawn, what is the probability that it came from Urn I?

Solution using tree diagram

19 / 35

Bayes probability

•
$$P(I|B) = \frac{P(I \cap B)}{P(B)}$$

•
$$P(I \cap B) = \frac{1}{4}$$

$$P(B) = P(B \cap I) + P(B \cap II)$$

•
$$P(B) = \frac{1}{5} + \frac{1}{4}$$

•
$$P(I|B) = \frac{5}{9}$$

- Original tree: probability of black given urn chosen
- Bayes: reverse; given colour, probability for the urn from which it came

Monty Hall

There are three doors. Behind one is a car and behind the others are goats. You pick a door. The game show host opens another and shows you that there is a goat. Should you switch or stick to your original door? Can you see that this is a conditional probability problem? Can you write a python script to do a simulation to check your intuition?

INDEPENDENT EVENTS

Independent events

Theorem

If P(E) > 0 and P(F) > 0, then E and F are independent events if and only if $P(E \cap F) = P(E)P(F)$.

A question

Suppose a coin, when tossed, comes up heads with proabbility p and tails with probability q. Let this coin be tossed twice. Let E be the event that the heads turns up in the first toss and F be the event that tails turns up in the second toss. Are these two events independent?

Another question

Consider a fair coin; that is, when tossed, it comes up heads with probability 0.5 and tails with probability 0.5. Let this coin be tossed twice. Let A be the event that the heads turns up in the first toss and B be the event that the two outcomes are the same. Are these two events independent?

One more question

Consider a fair coin; that is, when tossed, it comes up heads with probability 0.5 and tails with probability 0.5. Let this coin be tossed twice. Let A be the event that the heads turns up in the first toss and B be the event that two heads turn up. Are these two events independent?

Remarks

- First problem: our probability assignment makes sure that independent events give the right probability
- Second and third problems: the formula helps determine whether two events are independent or not

Independent events: generalisation

Theorem

A set of events $\{A_1, A_2, A_3, \cdots A_n\}$ is said to be mutually independent if for any subset $\{A_1, A_2, A_3, \cdots A_m\}$ of these events we have $P(A_1 \cap A_2 \cap \cdots \cap A_m) = P(A_1)P(A_2)\cdots P(A_m)$.

Equivalently, if for any sequence
$$\bar{A_1}$$
, $\bar{A_2} \cdots \bar{A_n}$ with $\bar{A_i} = A_i$ or $\bar{A_i}$ $P(\bar{A_1} \cap \bar{A_2} \cap \cdots \cap \bar{A_m}) = P(\bar{A_1})P(\bar{A_2})\cdots P(\bar{A_m})$ then, the events are mutually independent.

Remark

Any sequence of possible outcomes of a Bernoulli trials process forms a sequence of mutually independent events.

Remark

Independent, Identical Distribution (i.i.d): usual assumption in data (except in time series)

Example 1

Remark

First example: $P(A_1 \cap A_2 \cap \cdots \cap A_m) = P(A_1)P(A_2)\cdots P(A_m)$ does not imply $A_1, A_2, \cdots A_n$ are mutually independent.

Let $\Omega=\{a,b,c,d,e,f\}$. Assume that $m(a)=m(b)=\frac{1}{8}$ and $m(c)=m(d)=m(e)=m(f)=\frac{3}{16}$. Let A,B and C be the events $A=\{d,e,a\}$, $B=\{c,e,a\}$ and $C=\{c,d,a\}$. Show that $P(A\cap B\cap C)=P(A)P(B)P(C)$ but no two of these events are independent.

29 / 35

Guru and Hina Al and Data Science August 24, 2023

Example 2

Remark

Second example: If all pairs of a set are independent does not necessarily imply that the whole set is mutually independent.

A coin is tossed twice. Consider the events: A – heads on the first toss; B – Heads on the second toss; C – The two tosses come out the same. Show that A, B and C are pairwise independent, but A, B, C are not independent.

JOINT AND MARGINAL DISTRIBUTIONS

31 / 35

Guru and Hina Al and Data Science August 24, 2023

Coin toss

- Let us toss a coin thrice
- The random variable X_i : outcome of the *i*-th toss (i = 1, 2, 3)
- Joint random variable \bar{X} : (X_1, X_2, X_3)
- Y_i: number of heads in the first i tosses
- Joint random variable $\bar{Y} = (0 \le a_1 < 1, 0 \le a_2 \le 2, 0 \le a_3 \le 3)$ with $a_1 < a_2 < a_3$
- Probability of outcomes for \bar{X} : $\frac{1}{8}$
- Probability of outcomes for \bar{Y} : $\frac{1}{8}$ (for allowed combinations) and zero othwewise
- ullet Joint distribution function: probability of function all outcomes of $ar{X}$

32 / 35

Guru and Hina Al and Data Science

Definitions

Definition

Let X_1, X_2, \cdots, X_n be the random variables associated with an experiment. Suppose that the sample space (i.e., the set of possible outcomes) of X_i is the set R. Then, the joint random variable $\bar{X}=(X_1,X_2,\cdots,X_n)$ is defined to be the random variable whose outcomes consist of ordered n-tuples of outcomes, with the i-th coordinate lying in the set R_i . The sample space Ω of \bar{X} is the Cartesian product of the R_i 's: $\Omega=R_1\times R_2\times\cdots\times R_n$. The joint distribution function of \bar{X} is the function which gives the probability of each of the outcomes of \bar{X} .

Definition

The random variables X_1, X_2, \dots, X_n are mutually independent (or, independent) if $P(X_1 = r_1, X_2 = r_2, \dots, X_n = r_n) = P(X_1 = x_1)P(X_2 = r_2) \dots P(X_n = r_n)$ for any choice of $r_1, r_2, \dots r_n$.

33 / 35

Joint and Marginal distributions

- Joint distribution (C,S)
- Marginial: distribution of individual random variables
- Note: S and C are not independent; P(C = 1|S = 1) > P(C = 1)

THANK YOU!!!

35 / 35