ΛΥΣΗ

a)

i. Έχουμε:

$$x(e^{x}-1)=0 \Leftrightarrow x=0 \text{ } \acute{\eta} e^{x}-1=0$$

$$\Leftrightarrow x=0 \text{ } \acute{\eta} e^{x}=1$$

$$\Leftrightarrow x=0 \text{ } \acute{\eta} e^{x}=e^{0}$$

$$\Leftrightarrow x=0$$

ii. Από το ερώτημα (i) γνωρίζουμε ότι κάθε παράγοντας του γινομένου $x\left(e^x-1\right)$ έχει ρίζα το 0. Ακόμη είναι $e^x-1>0 \Leftrightarrow e^x>1 \Leftrightarrow e^x>e^0 \Leftrightarrow x>0$ και $e^x-1<0 \Leftrightarrow x<0$. Ο προσδιορισμός του προσήμου του γινομένου $x\left(e^x-1\right)$ γίνεται με τη βοήθεια του παρακάτω πίνακα.

х	$-\infty$	0 +∞
х	_	+
e^x-1	_	+
$x(e^x-1)$	+	+

Ώστε το γινόμενο $x\left(e^{x}-1\right)$ είναι θετικό για κάθε $x\neq 0$.

β)

- i. Η συνάρτηση f ορίζεται για εκείνες τις τιμές του x, για τις οποίες ισχύει $xig(e^x-1ig)\geq 0$. Από το ερώτημα (α) προκύπτει ότι $xig(e^x-1ig)\geq 0 \Leftrightarrow x\in \mathbb{R}$. Άρα το πεδίο ορισμού της συνάρτησης f είναι το \mathbb{R} .
- ii. Είναι

$$\begin{split} f(0) &= \sqrt{0 \cdot \left(e^0 - 1\right)} = 0 \\ f(\ln 2) &= \sqrt{\ln 2 \cdot \left(e^{\ln 2} - 1\right)} = \sqrt{\ln 2 \cdot \left(2 - 1\right)} = \sqrt{\ln 2} \\ f(-\ln 2) &= \sqrt{-\ln 2 \cdot \left(e^{-\ln 2} - 1\right)} = \sqrt{-\ln 2 \cdot \left(e^{-\ln 2} - 1\right)} = \sqrt{-\ln 2 \cdot \left(\frac{1}{2} - 1\right)} = \sqrt{\frac{\ln 2}{2}} \end{split}$$

iii. Επειδή ισχύει $-\ln 2 < 0$ και $f(-\ln 2) > f(0)$ συμπεραίνουμε ότι η συνάρτηση f δεν είναι γνησίως αύξουσα στο $\mathbb R$.

Επειδή ισχύει $0<\ln 2$ και $f(0)< f(\ln 2)$ συμπεραίνουμε ότι η συνάρτηση f δεν είναι γνησίως φθίνουσα στο $\mathbb R$.

Τελικά, ο ισχυρισμός « η συνάρτηση $f(x) = \sqrt{x(e^x - 1)}$ είναι γνησίως μονότονη στο πεδίο ορισμού της» είναι ψευδής.