Most of the works are borrowed from Minh Tang's thesis "Graph metrics and dimension reduction"

1 Network Distance

The distance correlation(dCor) \mathcal{R}^2 between random vectors $X(\in \mathbf{R}^p)$ and $Y(\in \mathbf{R}^q)$ is defined based on Euclidean distance between two. In the contexts of network, if node attributes vector Y is all continuous, we can think its distance matrix, but we cannot intuitively think of Euclidean distance for their underlying networks. It is known that a dissimilarity matrix Δ is a Type-2 Euclidean distance matrix if and only if $\tau(\Delta)$ is positive definite, where $\tau(A) = -\frac{1}{2}(I-11^T/n)A(I-11^T/n)$. Based on this, we suggest diffusion distance as a distance matrix corresponding to Euclidean distance matrix for network. Diffusion distance at time t between two nodes can be measured as the dissimilarity of two in the network space with connectivity between them at t step. Let me introduce some notations.

- Similarity measure ω

$$\omega[i,j] =$$
 (the number of synapses starting from i to j)

- Transition probability (Assume time homogeneous Markov chain; left stochastic matrix)

$$P[i,j] = Pr(X_n = j | X_{n-1} = i)$$

We define the transition matrix $\mathbf{P}=(p_{ij})$ of a Markov chain as:

$$p_{ij} = \begin{cases} \frac{w(\{i,j\})}{\deg(i)} & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

- Stationary distribution : A probability vector π is a stationary distribution for Markov chain P if $\pi P = \pi$. Over the long run, no matter what the starting state was, the proportion of time

the chain spends in node j is approximately $\pi(j)(j=1,...,n)$. Use statdistr in r.

Let $G=(V,E,\omega)$ be an undirected graph with ω being a similarity measure between vertices of V. Denote by ${\bf P}$ the probability transition matrix of G. The diffusion distance at time t, $\rho_t(u,v)$, between two nodes $u,v\in V$ is defined as:

$$\rho_t^2 = \sum_{w \in V} (\mathbf{P}^t(u, w) - \mathbf{P}^t(v, w))^2 \frac{1}{\pi(w)} = \kappa(\mathbf{P}^{2t} \Pi^{-1})$$

Diffusion distances for Directed Graph at time t is defined as :

$$\Delta_{\rho_t^2} = \kappa(\mathbf{P}^t \Pi^{-1} (\mathbf{P}^t)^T)$$

where
$$\kappa(\mathbf{A}) = \mathbf{A}_{dg}\mathbf{1}\mathbf{1}^T - \mathbf{A} - \mathbf{A}^T + \mathbf{1}\mathbf{1}^T\mathbf{A}_{dg}$$

2 Network Generating Model

Consider a latent variable dependent model, where the node attributes and their network structures are correlated each other. Generate an undirected connected graph on n=500 nodes.

3 Simulation results for univariate case

First of all, I have observed p-values at each time point. We could see the patterns in p-values – the more neighbor you include in your network space, the lower their p-values are. Significance looks more independent on the choice of network neighborhood than the choice of attribute neighborhood.

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N) \stackrel{i.i.d}{\sim} N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$
 (1)

$$\log\left(\frac{P(T_{ij})}{1 - P(T_{ij})} | X_i, X_j\right) = f(|X_i - X_j|)$$
(2)

$$f(|X_i - X_j|) = \begin{cases} 2/|X_i - X_j| & \max(0.01, |X_i - X_j|) < 0.10 \\ |X_i - X_j| & 0.10 \le |X_i - X_j| < 0.50 \\ -|X_i - X_j| & 1.00 \le |X_i - X_j| < 1.50 \\ -10 \cdot |X_i - X_j| & |X_i - X_j| \ge 1.50 \end{cases}$$

$$\text{MGC pvalue 0.048 at t=1} \qquad \text{MGC pvalue 0.048 at t=1} \qquad \text{MGC pvalue 0.12 at t=2}$$

$$\text{MGC pvalue 0.064 at t=5} \qquad \text{MGC pvalue 0.064 at t=1} \qquad \text{MGC pvalue 0.176 at t=10}$$

$$\text{MGC pvalue 0.064 at t=5} \qquad \text{MGC pvalue 0.176 at t=10}$$

Figure 1: log-scale of P-values when $\rho = 0.2$

(d) t=10

(c) t=5

On the other hand, p-values might happen to be low because they are also random variables. Moreover we never know the optimal scale nor power. The following results are from re-sampling procedures. Generate M=500 random graphs and their nodes' (1) univariate / (2) multivariate attributes from the same joint distribution. The power of independence is calculated in the following ways:

Power
$$= \hat{P}(\text{ p-values } \leq 0.05)$$

Figure 2: Estimated power when $\rho = 0.0$

5

Figure 3: Estimated power when $\rho = 0.1$

Figure 4: Estimated power when $\rho = 0.2$

4 Simulation results for univariate case

$$(X_{1}, Y_{11}, Y_{12}, Y_{13}), \dots, (X_{N}, Y_{1N}, Y_{2N}, Y_{3N}) \stackrel{i.i.d}{\sim} N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \rho_{3} \\ \rho_{1} & 1 & 0 & 0 \\ \rho_{2} & 0 & 1 & 0 \\ \rho_{3} & 0 & 0 & 1 \end{pmatrix}$$
(4)

(0)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.0, 0.0, 0.0)$$

(1)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.1, 0.1, 0.1)$$

(2)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.2, 0.2, 0.2)$$

(3)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.2, 0.0, 0.0)$$

(4)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.2, 0.2, 0.0)$$

(5)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.2, -0.2, 0.0)$$

All of the above simulation schemes are planned to be based on M=500 independent iterations and n=500 nodes(subjects) for each network. It requires a lot of time to complete, so I prepared *small* simulation, which iterates M=100 times and contains n=300 nodes(subjects) per network.

(1)
$$\rho = (\rho_1, \rho_2, \rho_3) = (0.1, 0.1, 0.1)$$
 ($M = 100; n = 300$)

Figure 5: Estimated power when $\rho = (0.1, 0.1, 0.1)$

The maximum estimated power is 0.50(t=1), 0.59(t=2), 0.66(t=5), and 0.65(t=10). (4) $\rho=(\rho_1,\rho_2,\rho_3)=(0.2,0.2,0.0)$ (M=100;n=300)

9

Figure 6: Estimated power when $\rho = (0.2, 0.2, 0.0)$

The maximum estimated power is 0.95(t = 1), 0.97(t = 2), 0.98(t = 5), and 0.99(t = 10).

10

5 Comparison between distance measures

Dissimilarity matrix vs. Geodesic distance vs. Diffusion Distance

- 5.1 Univariate node attributes
- 5.2 Multivariate node attributes

6 Test independence between two graphs(networks)

6.1 Dependent Latent Variable Model

Assume a network H and G have same node index - maybe they are all considering same individuals but different networks. Someone might be interested in independence between online friendship and offline friendship; independence between physical connections and functional relationship, etc.

$$H_0: f_{GH} = f_G f_H$$

For all nodes $i \neq j$ in a graph G, and all nodes $u \neq v$ in a graph H, suppose the following latent variable model:

$$(X_1, W_1), (X_2, W_2), ..., (X_N, W_N) \stackrel{i.i.d}{\sim} N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$
 (5)

$$\log\left(\frac{P(T_{ij})}{1 - P(T_{ij})}|X_i, X_j\right) = f(|X_i - X_j|) = \log\left(\frac{P(T_{uv})}{1 - P(T_{uv})}|W_i, W_j\right)$$
(6)

Simple Example

(1)
$$\rho = 0.0$$
 ($M = 100$ iterations; $n = 300$)

Figure 7: Estimated power when $\rho = 0.0$

Figure 8: Estimated power when $\rho = 0.2$

14

7 Application to Real Data

8 Application to Real Data

- Similarity measure ω

$$\omega[i,j] =$$
 (the number of synapses starting from i to j)

- Transition probability (Assume time homogeneous Markov chain; left stochastic matrix)

$$P[i,j] = Pr(X_n = j | X_{n-1} = i)$$

We define the transition matrix $\mathbf{P} = (p_{ij})$ of a Markov chain as:

$$p_{ij} = \begin{cases} \frac{w(\{i,j\})}{deg(i)} & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

Figure 9: Transition matrix P

- Stationary distribution : A probability vector π is a stationary distribution for Markov chain P if $\pi P = \pi$. Over the long run, no matter what the starting state was, the proportion of time

the chain spends in node j is approximately $\pi(j)(j=1,...,n)$. Use statdistr in r.

Figure 10: Stationary probability based on P

Let $G=(V,E,\omega)$ be an undirected graph with ω being a similarity measure between vertices of V. Denote by ${\bf P}$ the probability transition matrix of G. The diffusion distance at time t, $\rho_t(u,v)$, between two nodes $u,v\in V$ is defined as:

$$\rho_t^2 = \sum_{w \in V} (\mathbf{P}^t(u, w) - \mathbf{P}^t(v, w))^2 \frac{1}{\pi(w)} = \kappa(\mathbf{P}^{2t} \Pi^{-1})$$

Diffusion distances for Directed Graph at time t is defined as :

$$\Delta_{\rho_t^2} = \kappa(\mathbf{P}^t \Pi^{-1} (\mathbf{P}^t)^T)$$

where
$$\kappa(\mathbf{A}) = \mathbf{A}_{dg}\mathbf{1}\mathbf{1}^T - \mathbf{A} - \mathbf{A}^T + \mathbf{1}\mathbf{1}^T\mathbf{A}_{dg}$$

Figure 11: Heatmap of distance measures

- Difficulties of applying diffusion distance to categorical variable graph : G must be connected. Otherwise, transition probability between different categories will be zero.