Thick lens

$$f_e$$
 = effective focal length (EFL)
 f_f = forward focal length (FFL)
 f_b = back focal length (BFL)

PP₁ e PP₂ = principal planes

Thick lens

Spherical diopter of radius
$$R_2$$
 with thickness d of radius R_1
$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{1}{n_2 - n_3} & \frac{n_2}{n_3} \\ \frac{1}{n_3 R_2} & \frac{1}{n_3} \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{n_1 - n_2} & \frac{n_1}{n_2} \\ \frac{1}{n_2 R_1} & \frac{n_2}{n_2} \end{bmatrix}$$

 $\begin{array}{ll} n_1=n_3=1 \\ n_2=n \end{array} \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} \frac{1}{n-1} & 0 \\ \frac{1}{R_2} & n \end{bmatrix} \quad \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \frac{1}{1-n} & \frac{1}{n} \\ \frac{1}{nR_1} & \frac{1}{n} \end{bmatrix}$

Thick lens

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{n-1}{R_2} & n \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1-n}{nR_1} & \frac{1}{n} \end{bmatrix}$$

$$= \begin{bmatrix} 1 + \frac{d}{R_1} \frac{1-n}{n} & \frac{d}{n} \\ -\left((n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) + \frac{(n-1)^2}{n} \frac{d}{R_1 R_2}\right) & 1 + \frac{d}{R_2} \frac{n-1}{n} \end{bmatrix}$$

$$\frac{-}{n}$$
 $\frac{d}{n} \frac{n-1}{n}$

411

 $q = \text{distance image-PP}_2$

Laser Physics T. Cesca

Optics and

Effective focal length (EFL)

Optics and Laser Physics T. Cesca

Effective focal length

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f_e}$$

The distances p and q are referred to the corresponding

principal planes.
$$f = \frac{f_1 f_2}{f_2 - \frac{1}{f_2}}$$

$$f_e = \frac{f_1 f_2}{f_1 + f_2 - d} = -\frac{1}{C}$$

Transverse magnification

Effective focal length (EFL) Laser Physics T. Cesca Principal planes

Effective focal length

$$f_f = f_e - h_f$$

The distances p and q are referred to the corresponding principal planes.

$$h_f = \frac{f_e d}{f_2} = \frac{D - 1}{C}$$

$$f_f = \frac{f_e d}{f_2} = \frac{D - 1}{C}$$

lens have **negative distance**.

Optics and

The principal planes on the **left** of the corresponding

424

Q: a ray parallel to the optical axis, at a height y_1 from it, propagates in air (n=1) through an optical system made of a <u>thin diverging lens</u> with focal length $f_1 = -10 \ cm$ and a <u>thin converging lens</u> with focal length $f_2 = 20 \ cm$ at a distance d.

Determine: the distance d so that the ray will emerge from the converging lens still parallel to the optical axis, and the height y_2 of the emerging ray.

Q: a ray parallel to the optical axis, at a height y_1 from it, propagates in air (n=1)through an optical system made of a thin diverging lens with focal length $f_1 = -10 \ cm$ and a thin converging lens with focal length $f_2 = 20 \ cm$ at a distance d.

Determine: the distance d so that the ray will emerge from the converging lens still parallel to the optical axis, and the height y_2 of the emerging ray.

A:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_2} & 1 \end{bmatrix} \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_1} & 1 \end{bmatrix} = \begin{bmatrix} 1 - \frac{u}{f_1} & d \\ -\left(\frac{1}{f_2} + \frac{1}{f_1}\right) + \frac{d}{f_1 f_2} & 1 - \frac{d}{f_2} \end{bmatrix}$$

$$\begin{bmatrix} y_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ 0 \end{bmatrix}$$

incident ray parallel to the optical axis

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} y_1 \\ 0 \end{bmatrix}$$

$$\begin{cases} y_2 = \left(1 - \frac{d}{f_1}\right) y_1 \\ \theta_2 = \left(-\left(\frac{1}{f_2} + \frac{1}{f_1}\right) + \frac{d}{f_1 f_2}\right) y_1 \end{cases}$$
 cident ray parallel to the optical axis

Q: a ray parallel to the optical axis, at a height y_1 from it, propagates in air (n=1) through an optical system made of a <u>thin diverging lens</u> with focal length $f_1 = -10$ cm and a <u>thin converging lens</u> with focal length $f_2 = 20$ cm at a distance d.

Determine: the distance d so that the ray will emerge from the converging lens still parallel to the optical axis, and the height y_2 of the emerging ray.

A:

In order to have an emerging beam parallel to the optical axis:

$$\theta_2 = \left(-\left(\frac{1}{f_2} + \frac{1}{f_1}\right) + \frac{d}{f_1 f_2} \right) y_1 = 0 \quad \implies \quad \frac{d}{f_1 f_2} = \left(\frac{1}{f_2} + \frac{1}{f_1}\right) = \frac{f_1 + f_2}{f_1 f_2}$$

$$\implies$$
 $d = f_1 + f_2 \implies d = -10 \text{ cm} + 20 \text{ cm} = 10 \text{ cm}$

$$y_2 = \left(1 - \frac{d}{f_1}\right)y_1 = \left(1 - \frac{10 \ cm}{-10 \ cm}\right)y_1 = 2y_1$$
 Beam expander

Q: a ray parallel to the optical axis, at a height y_1 from it, propagates in air (n=1) through an optical system made of a <u>thin diverging lens</u> with focal length $f_1 = -10$ cm and a <u>thin converging lens</u> with focal length $f_2 = 20$ cm at a distance d.

Determine: the distance d so that the ray will emerge from the converging lens still parallel to the optical axis, and the height y_2 of the emerging ray.

Q: an optical system consists of a diverging thin lens with focal length $f_1=-20.0\ cm$ and a converging thin lens with focal length $f_2=10.0\ cm$ at a distance $d=5.0\ cm$. Determine: effective focal length (f_e) , forward focal length (f_f) and back focal length (f_b) of the optical system; position of the principal planes and transversal magnification of an object at a distance $z=20\ cm$ from lens 1.

Optics and Laser Physics T. Cesca

Q: an optical system consists of a diverging thin lens with focal length $f_1 = -20.0 \ cm$

and a converging thin lens with focal length $f_2=10.0\ cm$ at a distance $d=5.0\ cm$.

Determine: effective focal length (f_e) , forward focal length (f_f) and back focal length (f_b) of the optical system; position of the principal planes and transversal magnification of an object at a distance z = 20 cm from lens 1.

Q: an optical system consists of a diverging thin lens with focal length $f_1 = -20.0 \ cm$ and a converging thin lens with focal length $f_2 = 10.0 \ cm$ at a distance $d = 5.0 \ cm$. Determine: effective focal length (f_e) , forward focal length (f_f) and back focal length (f_b) of the optical system; position of the principal planes and transversal magnification of an object at a distance $z = 20 \ cm$ from lens 1.

Optics and Laser Physics T. Cesca

Q: an optical system consists of a diverging thin lens with focal length $f_1 = -20.0 \ cm$

and a converging thin lens with focal length $f_2=10.0\ cm$ at a distance $d=5.0\ cm$. Determine: effective focal length (f_e) , forward focal length (f_f) and back focal length (f_b)

Determine: effective focal length (f_e) , forward focal length (f_f) and back focal length (f_b) of the optical system; position of the principal planes and transversal magnification of an object at a distance $z = 20 \ cm$ from lens 1.

