A Relaxation Approach to Feature Selection for Linear Mixed-Effects Models

Aleksei Sholokhov, James V. Burke, Peng Zheng, Damian Santomauro, and Aleksandr Aravkin

Thursday 8th June, 2023

Feature Selection for Mixed-Effect Models

Mixed-effect models

- ▶ Used for analyzing **combined data** across a range of **groups**.
- ▶ Use covariates to separate the **population variability** from the **group variability**.
- Borrow strength across groups to estimate key statistics.

¹Picture is taken from covid19.healthdata.org

Feature Selection for Mixed-Effect Models

Practitioners:

- Often seek sparse models that select most informative covariates.
- ▶ Want to be **flexible but efficient** in using various sparsity-promoting terms.
- Want a library to be universal and compatible with e.g. sklearn.

Sparse Relaxed Regularized Regression $(SR3)^2$ showed great results for t linear models:

Goal: create a feature selection library that uses a relaxation approach for feature-selection in mixed-effect models.

²Zheng and Aravkin, "Relax-and-split method for nonconvex inverse problems". 4 🗆 🕨 4 💆 🕨 4 🚆 🕨 💈 🤟 🔾 🖎

Linear Mixed-Effect (LME) Models

Dataset: m groups (X_i, Z_i, y_i) , i = 1, ... m, each has n_i observations

- ► $X_i \in \mathbb{R}^{n_i \times p}$ group *i* design matrix for fixed features
- $ightharpoonup Z_i \in \mathbb{R}^{n_i \times q}$ group i design matrix for random features
- $y_i \in \mathbb{R}^{n_i}$ group *i* observations

Model:

$$y_i = X_i \beta + Z_i u_i + \varepsilon_i$$

$$\varepsilon_i \sim \mathcal{N}(0, \Lambda_i)$$

$$u_i \sim \mathcal{N}(0, \Gamma)$$

Equivalently:

$$y_i = X_i \beta + \omega_i$$

$$\omega_i \sim \mathcal{N}(0, Z_i \Gamma Z_i^T + \Lambda_i)$$

Simplifying assumption:

$$\Gamma = \operatorname{diag}(() \gamma)$$

Notation

$$y_i = X_i \beta + Z_i u_i + \varepsilon_i$$
 $i = 1 \dots m$
 $\varepsilon_i \sim \mathcal{N}(0, \Lambda_i)$ (1)
 $u_i \sim \mathcal{N}(0, \Gamma)$

- \triangleright p number of fixed features, q number of random effects.
- $m{\triangleright}\ eta \in \mathbb{R}^p$ fixed effects, or mean effects
- $\mathbf{v}_i \in \mathbb{R}^q$ random effects
- Γ ∈ covariance matrix of random effects, often Γ = diag ((γ))
- $\mathbf{\varepsilon}_i \in \mathbb{R}^{n_i}$ observation noise
- \land $\Lambda_i \in R^{n_i \times n_i}$ covariance matrix for noise

Unknowns: β , u_i , γ , sometimes Λ_i .

Likelihood for Mixed Models

Optimization problem:

$$\mathcal{FS} - \mathcal{LME} \quad \min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{2}$$

Where \mathcal{L} :

$$\mathcal{L}(\beta, \gamma) = \sum_{i=1}^{m} \frac{1}{2} (y_i - X_i \beta)^T (Z_i \Gamma Z_i^T + \Lambda_i)^{-1} (y_i - X_i \beta) +$$

$$+ \frac{1}{2} \log \det (Z_i \Gamma Z_i^T + \Lambda_i), \quad \Gamma = \operatorname{diag}((\gamma))$$
(3)

- \blacktriangleright $\mathcal{L}(\beta, \gamma)$ is smooth on its domain, quadratic w.r.t. β and $\bar{\eta}$ -weakly-convex w.r.t. γ .
- $ightharpoonup R(\beta, \gamma)$ is closed, proper, with easily computed *prox operator*

Regularization

 \triangleright $R(\beta, \gamma)$ is closed, proper, with easily computed prox operator

$$\operatorname{prox}_{\alpha R + \delta_{\mathcal{C}}}(\tilde{\beta}, \tilde{\gamma}) \coloneqq \underset{(\beta, \gamma) \in \mathcal{C}}{\operatorname{argmin}} R(\beta, \gamma) + \frac{1}{2\alpha} \|(\beta, \gamma) - (\tilde{\beta}, \tilde{\gamma})\|_{2}^{2},$$

$$\operatorname{where } \mathcal{C} \coloneqq \mathbb{R}^{p} \times R^{q}$$

$$(4)$$

Examples:

- ► $R(x) = \lambda \sum_{j=1}^{p} w_j ||x_j||_1$ LASSO and Adaptive LASSO penalties³
- $ightharpoonup R(x) = \lambda ||x||_0 \ell_0 \text{ penalty}^4$
- ightharpoonup R(x) SCAD penalty (5)

Figure: Four commonly-used regularizers which promote sparsity

³Bondell, Krishna, and Ghosh, "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models"; Lin, Pang, and Jiang, "Fixed and random effects selection by REML and pathwise coordinate optimization".

⁴Vaida and Blanchard, "Conditional Akaike information for mixed-effects models"; Jones, "Bayesian information criterion for longitudinal and clustered data".

^{5).} Fan and Li, "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties"; Y. Fan and Li, "Variable selection in linear mixed effects models".

SR3-Relaxation for Mixed-Effect Models ($\mathcal{MSR}3$)

Original problem $FS - \mathcal{LME}$:

$$\min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} \mathcal{L}(\beta, \gamma) + R(\beta, \gamma) \tag{5}$$

Relaxed problem MSR3:

$$\min_{\beta,\tilde{\beta}\in\mathbb{R}^{p},\,\gamma,\tilde{\gamma}\in\mathbb{R}^{q}_{+}}\mathcal{L}(\beta,\gamma)+\phi_{\mu}(\gamma)+\kappa_{\eta}(\beta-\tilde{\beta},\gamma-\tilde{\gamma})+R(\tilde{\beta},\tilde{\gamma})$$
(6)

where the relaxation κ_{η} decouples the likelihood and the regularizer

$$\kappa_{\eta}(\beta - \tilde{\beta}, \gamma - \tilde{\gamma}) := \frac{\eta}{2} \|\beta - \tilde{\beta}\|_{2}^{2} + \frac{\eta}{2} \|\gamma - \tilde{\gamma}\|_{2}^{2}, \quad \eta > \bar{\eta}$$
 (7)

and the *perspective mapping* ϕ_{μ} replaces $\gamma \geq 0$ with a log-barrier

$$\phi_{\mu}(\gamma) := \begin{cases} -\mu \sum_{i=1}^{q} \ln(\gamma_i/\mu), & \mu > 0\\ \delta_{\mathbb{R}^q_+}(\gamma), & \mu = 0\\ +\infty, & \mu < 0 \end{cases}$$
(8)

Value Function Reformulation

MSR3-relaxation replaces the original likelihood \mathcal{L} with a value function $u_{\eta,\mu}$:

$$v_{\eta,\mu}(\tilde{\beta},\tilde{\gamma}) := \min_{(\beta,\gamma)} \mathcal{L}_{\eta,\mu}((\beta,\gamma),(\tilde{\beta},\tilde{\gamma}))$$

$$:= \min_{(\beta,\gamma)} \mathcal{L}(\beta,\gamma) + \phi_{\mu}(\gamma) + \kappa_{\eta}(\beta - \tilde{\beta},\gamma - \tilde{\gamma})$$
(9)

so \mathcal{MSR} 3-formulation (6) becomes

$$\min_{\beta \in \mathbb{R}^p, \ \gamma \in \mathbb{R}^q_+} v_{\eta,\mu}(\tilde{\beta}, \tilde{\gamma}) + R(\tilde{\beta}, \tilde{\gamma})$$
(10)

When η is larger than the weak-convexity constant

- \triangleright $v_{\eta,\mu}$ is well-defined and continuously differentiable.
- As $\mu \to 0$ and $\eta \to \infty$, cluster points of solutions to $\mathcal{MSR}3$ are first-order stationary points for $\mathcal{FS} \mathcal{LME}$
- \triangleright $v_{\eta,\mu}$ don't need to be evaluated precisely.

Value Function Reformulation

Figure: Comparison of the level-sets for the original likelihood (left) and $\mathcal{MSR}3$ -likelihood (right), for fixed (top) and random (bottom) effects.

Designing an Algorithm

 $G_{\nu,\eta}$ encodes both gradient of a Lagrangian (lines 1-2) and the complementarity condition (line 3):

$$G_{\nu,\eta}((\beta,\gamma,\nu),(\tilde{\beta},\tilde{\gamma})) := \begin{bmatrix} \nabla_{\beta} \mathcal{L}(\beta,\gamma) + \eta(\beta - \tilde{\beta}) \\ \nabla_{\gamma} \mathcal{L}(\beta,\gamma) + \eta(\gamma - \tilde{\gamma}) - \nu \\ \nu \bigodot \gamma - \mu \mathbf{1} \end{bmatrix}$$
(11)

We apply Newton method to G while geometrically decreasing μ . **Lemma:** For every $(\mu, \eta) \in \mathbb{R}_+ \times \mathbb{R}_{++}$,

$$(\hat{\beta}, \hat{\gamma}) = \underset{(\beta, \gamma)}{\operatorname{argmin}} \mathcal{L}_{\eta, \mu}((\beta, \gamma), (\tilde{\beta}, \tilde{\gamma}))$$

$$\iff \exists \hat{\gamma} \in \mathbb{R}^{q}_{+} \text{ s.t. } G_{\nu, \eta}((\beta, \gamma, \hat{\nu}), (\tilde{\beta}, \tilde{\gamma})) = 0$$
(12)

If $\mu>0$, then $\hat{v}=-\nabla\phi_{\mu}(\hat{\gamma})$, and if μ = 0, then \hat{v} is the unique KKT multiplier associated with the constraint $0<\gamma$.

MSR3-fast Algorithm

```
1 progress \leftarrow True; iter = 0;
     2 \beta^+, \tilde{\beta}^+ \leftarrow \beta_0; \quad \gamma^+, \tilde{\gamma}^+ \leftarrow \gamma_0; \quad v^+ \leftarrow 1 \in \mathbb{R}^q; \quad \mu \leftarrow \frac{v^{+1}\gamma^+}{10\alpha}
     3 while iter < max_iter and \|G_{\mu}(\beta^+, \gamma^+, v^+)\| > tol and progress
                                 do
       4 \beta \leftarrow \beta^+; \quad \gamma \leftarrow \gamma^+; \quad \tilde{\beta} \leftarrow \tilde{\beta}^+; \quad \tilde{\gamma} \leftarrow \tilde{\gamma}^+
       [dv, d\beta, d\gamma] \leftarrow \nabla G_{ii}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma}))^{-1} G_{ii}((\beta, \gamma, v), (\tilde{\beta}, \tilde{\gamma}))
                                                         \alpha \leftarrow 0.99 \times \min\left(1, -\frac{\gamma_i}{dc_i}, \forall i: d\gamma_i < 0\right)
     6 \beta^+ \leftarrow \beta + \alpha d\beta; \gamma^+ = \gamma + \alpha d\gamma; v^+ \leftarrow v + \alpha dv
                                       if \|\gamma^+ \odot v^+ - q^{-1} \gamma^{+T} v^+ \mathbf{1}\| > 0.5 q^{-1} v^{+T} \gamma^+ then continue;
                                                   else
                                                       \tilde{\beta}^+ = \operatorname{prox}_{\alpha R}(\beta^+); \ \tilde{\gamma}^+ = \operatorname{prox}_{\alpha R + \delta_m} \ (\gamma^+); \ \mu = \frac{1}{10} \frac{v^+ \gamma^+}{a}
                                                     end
   10
                                                     progress = (\|\beta^+ - \beta\| \ge \text{tol or } \|\gamma^+ - \gamma\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}\| \ge \text{tol or } \|\tilde{\beta}^+ - \tilde{\beta}
11
                                                            \|\tilde{\gamma}^+ - \tilde{\gamma}\| > \text{tol}
                                                       iter += 1
13 end
14 return \tilde{\beta}^+, \tilde{\gamma}^+
```

Application to Synthetic Problems

- ▶ The number of fixed effects *p* and random effects *q* is 20.
- $\beta = \gamma = \frac{1}{2}[1, 2, 3, \dots, 10, 0 \dots, 0]$
- ▶ 9 groups with sizes [10, 15, 4, 8, 3, 5, 18, 9, 6]
- $X_i \sim \mathcal{N}(0, I)^p, Z_i = X_i, \varepsilon_i \sim \mathcal{N}(0, 0.3^2 I)$
- ► Each experiment is repeated 100 times.
- ▶ Grid-search for $\eta \in [10^{-4}, 10^2]$, golden search for $\lambda \in [0, 10^5]$
- Final model is chosen to maximize BIC

- + MSR3-relaxation improves feature selection performance of the original likelihood.
- + \mathcal{MSR} 3-fast optimization accelerates the compute time by $\sim 10^2$.
- Initialization of η is problem-specific

Comparison to Other Libraries

Algorithm	MSR3-Fast (ℓ_1)	glmmLasso ⁶⁷	lmmLasso ⁸⁹	PGD (ℓ_1)
Accuracy, %	88	48	66	73
FE Accuracy, %	86	52	47	56
RE Accuracy, %	91	45	84	91
Time, sec	0.19	1.37	11.51	38.39
Iterations, num	34	50	-	7693

⁹Schelldorfer, Bühlmann, and DE GEER, "Estimation for high-dimensional linear mixed-effects models using l1-penalization".

⁶https://rdrr.io/cran/glmmLasso/man/glmmLasso.html

⁷Groll and Tutz, "Variable selection for generalized linear mixed models by L 1-penalized estimation".

⁸ https://rdrr.io/cran/lmmlasso/

Choice of η

ℓ₀-based Covariate Selection for Bullying Study from GBD

Figure: Fixed and random covariate selection for Bullying dataset from ¹⁰. The model selected 9 covariates, 7 of which were historically significant, and did not select 4 covariates, 1 of which was historically significant.

¹⁰ Institute for Health Metrics and Evaluation (IHME). Bullying Victimization Relative Risk Bundle GBD 2020. Seattle, United States of America (USA), 2021.

Software

The code is available on GitHub: https://github.com/aksholokhov/pysr3

- ► All estimators are fully compatible to sklearn library.
- Implements SR3 for linear, generalized-linear, and linear mixed-effect models.
- Has tutorials, tests, and documentation.

References I

- Bondell, Howard D., Arun Krishna, and Sujit K. Ghosh. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models". In: <u>Biometrics</u> 66.4 (Dec. 2010), pp. 1069–1077. ISSN: 0006341X. DOI: 10.1111/j.1541-0420.2010.01391.x. arXiv: NIHMS150003. URL: http://doi.wiley.com/10.1111/j.1541-0420.2010.01391.x.
 - Fan, Jianqing and Runze Li. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties". In: Journal of the American Statistical Association 96.456 (Dec. 2001), pp. 1348–1360. ISSN: 0162-1459. DOI: 10.1198/016214501753382273. URL: http://www.tandfonline.com/doi/abs/10.1198/016214501753382273.
 - Fan, Yingying and Runze Li. "Variable selection in linear mixed effects models". In:

 The Annals of Statistics 40.4 (Aug. 2012), pp. 2043–2068. ISSN: 0090-5364. DOI:

 10.1214/12-A0S1028. URL: http://projecteuclid.org/euclid.aos/1351602536.
- Groll, Andreas and Gerhard Tutz. "Variable selection for generalized linear mixed models by L 1-penalized estimation". In: <u>Statistics and Computing</u> 24.2 (2014), pp. 137-154.
 - Jones, Richard H. "Bayesian information criterion for longitudinal and clustered data". In:

 Statistics in Medicine 30.25 (Nov. 2011), pp. 3050–3056. ISSN: 02776715. DOI:

 10.1002/sim.4323. URL: http://doi.wiley.com/10.1002/sim.4323.
 - Lin, Bingqing, Zhen Pang, and Jiming Jiang. "Fixed and random effects selection by REML and pathwise coordinate optimization". In: Journal of Computational and Graphical Statistics 22.2 (2013), pp. 341–355. ISSN: 10618600. DOI: 10.1080/10618600.2012.681219.
 - Schelldorfer, Jürg, Peter Bühlmann, and SARA VAN DE GEER. "Estimation for high-dimensional linear mixed-effects models using I1-penalization". In: Scandinavian Journal of Statistics 38.2 (2011), pp. 197–214.

References II

Vaida, Florin and Suzette Blanchard. "Conditional Akaike information for mixed-effects models". In: Biometrika 92.2 (June 2005), pp. 351–370. ISSN: 1464-3510. DOI: 10.1093/biomet/92.2.351. URL: http://academic.oup.com/biomet/article/92/2/351/233128/Conditional-Akaike-information-for-mixedeffects.

Zheng, Peng and Aleksandr Aravkin. "Relax-and-split method for nonconvex inverse problems". In: Inverse Problems 36.9 (2020). ISSN: 13616420. DOI: 10.1088/1361-6420/aba417.