

MATH1131 Mathematics 1A – Algebra

Lecture 10: Complex Division and Conjugates

Lecturer: Sean Gardiner - sean.gardiner@unsw.edu.au

Based on slides by Jonathan Kress

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$

is often represented as a plane called the Argand diagram or complex plane:

If a and b are real numbers, then the complex number

$$z = a + bi$$

has real part a and imaginary part b.

The set of complex numbers

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

is often represented as a plane called the Argand diagram or complex plane:

If a and b are real numbers, then the complex number

$$z = a + bi$$

has real part a and imaginary part b.

We write:

$$Re(z) = a$$
 and $Im(z) = b$.

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

We say $z \in \mathbb{C}$ is imaginary if $z = \text{Im}(z)i \Leftrightarrow \text{Re}(z) = 0$.

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

We say $z \in \mathbb{C}$ is imaginary if $z = \text{Im}(z)i \Leftrightarrow \text{Re}(z) = 0$.

Examples

• 3 is real

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

We say $z \in \mathbb{C}$ is imaginary if $z = \text{Im}(z)i \Leftrightarrow \text{Re}(z) = 0$.

Examples

- 3 is real
- 3*i* is imaginary

Note that z = Re(z) + Im(z)i, where $\text{Re}(z) \in \mathbb{R}$ and $\text{Im}(z) \in \mathbb{R}$.

We say $z \in \mathbb{C}$ is real if $z = \text{Re}(z) \iff \text{Im}(z) = 0$.

We say $z \in \mathbb{C}$ is imaginary if $z = \text{Im}(z)i \Leftrightarrow \text{Re}(z) = 0$.

Examples

- 3 is real
- 3*i* is imaginary
- Both 3 and 3i are complex

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i$$
.

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption, 23 + 14i = (3 + 4i)(a + bi)

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$
= $(3a - 4b) + (4a + 3b)i$

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$
= $(3a - 4b) + (4a + 3b)i$

Comparing real and imaginary parts, we need:

$$3a - 4b = 23$$
 and $4a + 3b = 14$.

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a,b\in\mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$
= $(3a - 4b) + (4a + 3b)i$

Comparing real and imaginary parts, we need:

$$3a - 4b = 23$$
 and $4a + 3b = 14$.

Solving these simultaneously gives the answer a = 5 and b = -2.

Note: Two complex numbers are equal if and only if their real and imaginary parts are equal.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

By assumption,
$$23 + 14i = (3 + 4i)(a + bi)$$

= $3a + 3bi + 4ai + 4bi^2$
= $(3a - 4b) + (4a + 3b)i$

Comparing real and imaginary parts, we need:

$$3a - 4b = 23$$
 and $4a + 3b = 14$.

Solving these simultaneously gives the answer a = 5 and b = -2.

Note: We will see a neater way to solve this problem in a few slides.

Example

Find the multiplicative inverse of 2 + 5i.

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a+bi with $a,b\in\mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1$$

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1=1+0i,$$

so $2a-5b=1$ and $5a+2b=0$.

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1=1+0i,$$

so
$$2a - 5b = 1$$
 and $5a + 2b = 0$.

Solving these simultaneously gives the answer $a = \frac{2}{29}$ and $b = -\frac{5}{29}$.

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1=1+0i$$
,

so
$$2a - 5b = 1$$
 and $5a + 2b = 0$.

Solving these simultaneously gives the answer $a = \frac{2}{29}$ and $b = -\frac{5}{29}$.

Hence

$$(2+5i)^{-1} = \frac{1}{2+5i} = \frac{2}{29} - \frac{5}{29}i.$$

Example

Find the multiplicative inverse of 2 + 5i.

We want to find the complex number a + bi with $a, b \in \mathbb{R}$, such that

$$(2+5i)(a+bi)=1.$$

Expanding yields

$$(2a-5b)+(5a+2b)i=1=1+0i$$
,

so
$$2a - 5b = 1$$
 and $5a + 2b = 0$.

Solving these simultaneously gives the answer $a = \frac{2}{29}$ and $b = -\frac{5}{29}$.

Hence

$$(2+5i)^{-1} = \frac{1}{2+5i} = \frac{2}{29} - \frac{5}{29}i.$$

Note: We will see a neater way to solve this problem in a few slides.

Example

Find the square roots of -3 + 4i.

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a+bi with $a,b\in\mathbb{R}$, such that

$$(a+bi)^2=-3+4i.$$

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi$$

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi = -3 + 4i$$
,
so $a^2 - b^2 = -3$ and $2ab = 4$.

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^{2} + 2abi + b^{2}i^{2} = (a^{2} - b^{2}) + 2abi = -3 + 4i,$$

so
$$a^2 - b^2 = -3$$
 and $2ab = 4$.

Substituting for a gives $b^4 - 3b^2 - 4 = (b^2 - 4)(b^2 + 1) = 0$,

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi = -3 + 4i$$
,
so $a^2 - b^2 = -3$ and $2ab = 4$.

Substituting for a gives $b^4 - 3b^2 - 4 = (b^2 - 4)(b^2 + 1) = 0$, so $b = \pm 2$ and $a = \pm 1$ respectively.

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi = -3 + 4i$$
,
so $a^2 - b^2 = -3$ and $2ab = 4$.

Substituting for a gives $b^4 - 3b^2 - 4 = (b^2 - 4)(b^2 + 1) = 0$, so $b = \pm 2$ and $a = \pm 1$ respectively.

Thus the square roots of -3 + 4i are 1 + 2i and -1 - 2i.

Example

Find the square roots of -3 + 4i.

We want to find the complex numbers a + bi with $a, b \in \mathbb{R}$, such that

$$(a+bi)^2 = -3+4i$$
.

Expanding yields

$$a^2 + 2abi + b^2i^2 = (a^2 - b^2) + 2abi = -3 + 4i$$
,
so $a^2 - b^2 = -3$ and $2ab = 4$.

Substituting for a gives $b^4 - 3b^2 - 4 = (b^2 - 4)(b^2 + 1) = 0$, so $b = \pm 2$ and $a = \pm 1$ respectively.

Thus the square roots of -3 + 4i are 1 + 2i and -1 - 2i.

Note: We will see a neater way to solve this problem in a few lectures, once we have seen the polar form.

Definition

Let z = a + bi be a complex number with $a, b \in \mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

Definition

Let z=a+bi be a complex number with $a,b\in\mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

$$\overline{2+i} =$$

$$\overline{-2i} =$$

$$\overline{3} =$$

Definition

Let z = a + bi be a complex number with $a, b \in \mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

$$\overline{2+i} = 2-i$$

$$\overline{-2i} =$$

$$\overline{3} -$$

Definition

Let z = a + bi be a complex number with $a, b \in \mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

$$\overline{2+i} = 2-i$$

$$\overline{-2i} = 2i$$

$$\overline{3} -$$

Definition

Let z = a + bi be a complex number with $a, b \in \mathbb{R}$. The complex conjugate of z is

$$\overline{z} = a - bi$$
.

$$\overline{2+i} = 2-i$$

$$\overline{-2i} = 2i$$

$$\overline{3} = 3$$

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

$$\frac{1}{2+5i}$$

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

$$\frac{1}{2+5i} = \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

$$\frac{1}{2+5i} = \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$
$$= \frac{2-5i}{2^2-(5i)^2}$$

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

$$\frac{1}{2+5i} = \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$
$$= \frac{2-5i}{2^2-(5i)^2}$$
$$= \frac{2-5i}{4+25}$$

To simplify a complex fraction, multiply the top and bottom by the conjugate of the denominator.

Example

Find the multiplicative inverse of 2 + 5i.

$$\frac{1}{2+5i} = \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$

$$= \frac{2-5i}{2^2-(5i)^2}$$

$$= \frac{2-5i}{4+25}$$

$$= \frac{2}{29} - \frac{5}{29}i$$

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$
$$= \frac{a-bi}{a^2-(bi)^2}$$

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$
$$= \frac{a-bi}{a^2-(bi)^2}$$
$$= \frac{a-bi}{a^2+b^2}$$

Example

What is

$$\frac{1}{a+bi}$$

for any $a, b \in \mathbb{R}$ (not both 0)?

$$\frac{1}{a+bi} = \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{a-bi}{a^2-(bi)^2}$$

$$= \frac{a-bi}{a^2+b^2}$$

$$= \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

We can use the same method for division by complex numbers.

We can use the same method for division by complex numbers.

Example

Find $a,b\in\mathbb{R}$ satisfying

$$(3+4i)(a+bi)=23+14i.$$

We can use the same method for division by complex numbers.

Example

Find $a,b\in\mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i$$
.

We can use the same method for division by complex numbers.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i$$
.

$$\frac{23+14i}{3+4i} = \frac{23+14i}{3+4i} \times \frac{3-4i}{3-4i}$$

We can use the same method for division by complex numbers.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i.$$

$$\frac{23+14i}{3+4i} = \frac{23+14i}{3+4i} \times \frac{3-4i}{3-4i}$$
$$= \frac{23\times 3-23\times 4i+14\times 3i-14\times 4i^2}{3^2-(4i)^2}$$

We can use the same method for division by complex numbers.

Example

Find $a, b \in \mathbb{R}$ satisfying

$$(3+4i)(a+bi) = 23+14i$$
.

$$\frac{23+14i}{3+4i} = \frac{23+14i}{3+4i} \times \frac{3-4i}{3-4i}$$

$$= \frac{23\times 3 - 23\times 4i + 14\times 3i - 14\times 4i^2}{3^2 - (4i)^2}$$

$$= \frac{125-50i}{25}$$

We can use the same method for division by complex numbers.

Example

Find $a,b\in\mathbb{R}$ satisfying

$$(3+4i)(a+bi)=23+14i.$$

$$\frac{23+14i}{3+4i} = \frac{23+14i}{3+4i} \times \frac{3-4i}{3-4i}$$

$$= \frac{23\times 3 - 23\times 4i + 14\times 3i - 14\times 4i^2}{3^2 - (4i)^2}$$

$$= \frac{125-50i}{25}$$

$$= 5-2i$$

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

$$\frac{c+di}{a+bi} = \frac{c+di}{a+bi} \times \frac{a-bi}{a-bi}$$

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

$$\frac{c+di}{a+bi} = \frac{c+di}{a+bi} \times \frac{a-bi}{a-bi}$$
$$= \frac{ac-bci+adi-bdi^2}{a^2-(bi)^2}$$

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

$$\frac{c+di}{a+bi} = \frac{c+di}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{ac-bci+adi-bdi^2}{a^2-(bi)^2}$$

$$= \frac{(ac+bd)+(ad-bc)i}{a^2+b^2}$$

Exercise

What is

$$\frac{c + di}{a + bi}$$

for $a, b, c, d \in \mathbb{R}$ with a and b not both zero?

$$\frac{c+di}{a+bi} = \frac{c+di}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{ac-bci+adi-bdi^2}{a^2-(bi)^2}$$

$$= \frac{(ac+bd)+(ad-bc)i}{a^2+b^2}$$

$$= \frac{ac+bd}{a^2+b^2} - \frac{ad-bc}{a^2+b^2}i$$

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\text{Re}(z))^2 + (\text{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\text{Re}(z))^2 + (\text{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Proof

Let $z=a+bi\in\mathbb{C}$ where $a,b\in\mathbb{R}$. Then

$$\overline{(\overline{z})} = \overline{(\overline{a+bi})} = \overline{a-bi} = a+bi = z.$$

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\operatorname{Re}(z))^2 + (\operatorname{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Proof

Let $z = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$. Then

$$z + \overline{z} = (a + bi) + (a - bi) = 2a = 2\operatorname{Re}(z)$$

and

$$z - \overline{z} = (a + bi) - (a - bi) = 2bi = 2\operatorname{Im}(z)i.$$

Hence
$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
 and $\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z})$.

Theorem

For all $z \in \mathbb{C}$,

- $\overline{(\overline{z})} = z$
- $\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$ and $\operatorname{Im}(z) = \frac{1}{2i}(z \overline{z})$
- $z\overline{z} = (\text{Re}(z))^2 + (\text{Im}(z))^2$, so $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$

Proof

Let $z = a + bi \in \mathbb{C}$ where $a, b \in \mathbb{R}$. Then

$$z\overline{z} = (a + bi)(a - bi) = (a^2 - (bi)^2) = a^2 + b^2$$

Since $a, b \in \mathbb{R}$, and the square of a real number is non-negative, it follows that $z\overline{z} \in \mathbb{R}$ and $z\overline{z} \geq 0$.

Complex conjugate - Properties

Theorem

For all z, $w \in \mathbb{C}$,

•
$$\overline{z+w} = \overline{z} + \overline{w}$$
 and $\overline{z-w} = \overline{z} - \overline{w}$

•
$$\overline{zw} = \overline{z} \overline{w}$$
 and $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$

Complex conjugate - Properties

Theorem

For all $z, w \in \mathbb{C}$,

•
$$\overline{z+w} = \overline{z} + \overline{w}$$
 and $\overline{z-w} = \overline{z} - \overline{w}$

•
$$\overline{zw} = \overline{z} \overline{w}$$
 and $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$

Proof

Let $z=a+bi\in\mathbb{C}$ and $w=c+di\in\mathbb{C}$ where $a,b,c,d\in\mathbb{R}$. Then

$$\overline{z+w} = \overline{(a+bi)+(c+di)}$$

$$= \overline{(a+c)+(b+d)i}$$

$$= (a+c)-(b+d)i$$

$$= (a-c)+(b-d)i$$

$$= (a-c)-(b-d)i$$

$$= (a-bi)+(c-di)$$

$$= \overline{z}+\overline{w}, \text{ and}$$

$$\overline{z-w} = \overline{(a+bi)-(c+di)}$$

$$= (a-c)-(b-d)i$$

$$= (a-bi)-(c-di)$$

$$= \overline{z}-\overline{w}.$$

Complex conjugate – Properties

Theorem

For all $z, w \in \mathbb{C}$,

•
$$\overline{z+w} = \overline{z} + \overline{w}$$
 and $\overline{z-w} = \overline{z} - \overline{w}$

•
$$\overline{zw} = \overline{z} \ \overline{w}$$
 and $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$

Proof

Let
$$z=a+bi\in\mathbb{C}$$
 and $w=c+di\in\mathbb{C}$ where $a,b,c,d\in\mathbb{R}$. Then
$$\overline{zw}=\overline{(a+bi)(c+di)}$$

$$=\overline{(ac-bd)+(ad+bc)i}$$

$$=(ac-bd)-(ad+bc)i$$

$$=(a-bi)(c-di)$$

It follows that
$$\overline{z} = \overline{\left(\frac{z}{w}w\right)} = \overline{\left(\frac{z}{w}\right)} \ \overline{w}$$
. Hence $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.

 $= \overline{z} \overline{w}$.

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z+\overline{w}}{z-\overline{w}}}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z}{z}+\overline{w}}}{\overline{z}-\overline{w}}\right)$$
$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z}{z}+\overline{w}}}{\overline{z}-\overline{w}}\right)$$

$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{z\overline{z}-z\overline{w}+w\overline{z}-w\overline{w}+\overline{z}z-\overline{z}w+\overline{w}z-\overline{w}w}{(z-w)(\overline{z}-\overline{w})}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z+\overline{w}}{z-\overline{w}}}\right)$$

$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{z\overline{z}-z\overline{w}+w\overline{z}-w\overline{w}+z\overline{z}-z\overline{w}+\overline{w}z-\overline{w}w}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{2(z\overline{z}-w\overline{w})}{(z-w)(\overline{z}-\overline{w})}\right)$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z}{z}+\overline{w}}}{\overline{z}-\overline{w}}\right)$$

$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{z\overline{z}-z\overline{w}+w\overline{z}-w\overline{w}+z\overline{z}-z\overline{w}+\overline{w}z-\overline{w}w}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{2(z\overline{z}-w\overline{w})}{(z-w)(\overline{z}-\overline{w})}\right) = 0 \quad (z\overline{z}=w\overline{w})$$

Example

Let $z, w \in \mathbb{C}$ with $z\overline{z} = w\overline{w}$. Prove that $\frac{z+w}{z-w}$ is imaginary.

To prove something is imaginary, show that its real part is 0:

$$\operatorname{Re}\left(\frac{z+w}{z-w}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\left(\frac{z+w}{z-w}\right)}\right) = \frac{1}{2}\left(\frac{z+w}{z-w} + \overline{\frac{z}{z}+\overline{w}}}{\overline{z}-\overline{w}}\right)$$

$$= \frac{1}{2}\left(\frac{(z+w)(\overline{z}-\overline{w}) + (\overline{z}+\overline{w})(z-w)}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{z\overline{z}-z\overline{w}+w\overline{z}-w\overline{w}+\overline{z}z-\overline{z}w+\overline{w}z-\overline{w}w}{(z-w)(\overline{z}-\overline{w})}\right)$$

$$= \frac{1}{2}\left(\frac{2(z\overline{z}-w\overline{w})}{(z-w)(\overline{z}-\overline{w})}\right) = 0 \quad (z\overline{z}=w\overline{w})$$

So since its real part is 0, the expression is imaginary.