Applied Statistical Analysis I Bivariate regression

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

October 13, 2023

Today's Agenda

- (1) Lecture recap & exam review
- (2) Git pull
- (3) Tutorial exercises

Linear regression model

What is a linear regression model? What interpretations can we make?

So far, correlation analysis

Just by looking at the plot, can you identify the straight line which best describes the joint variation between X and Y?

^{*}This is fictional data.

What is a linear regression model?

Bivariate regression 0000000000000

• Find linear line of best fit, $Y_i = \alpha + \beta X_i + \epsilon_i$

What is a linear regression model?

- Find linear line of best fit, $Y_i = \alpha + \beta X_i + \epsilon_i$
- α (intercept): expected value of Y when X=0
- β (slope): expected change in Y when X increases by one unit
- \hat{Y} (expected value): predicted outcome based on the regression model. $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$
- ϵ (error/residual): difference between actual and predicted outcome. $\epsilon_i = Y_i - \hat{Y}_i$

What interpretations can we make?

 $income = \alpha + \beta * education$ income = 1072.5490 + 221.5686 * education

What interpretations can we make? (intercept)

If an individual has a university education of 0 years, what income would we expect for that person?

income = 1072.5490 + 221.5686 * 0 = 1072.5490

What interpretations can we make? (slope)

If the university education increases by one year, how much more Euros would we expect an individual to earn? income = 1072.5490 + 221.5686 * 1 = 1294.1176

→ With every additional year of university education, the expected income increases by 221.5686 Euros.

Varieties of linear relationships

Bivariate regression

What interpretations can we make? (expected value)

If an individual has 3 university education years, what income would we expect for that person?

income = 1072.5490 + 221.5686 * 3 = 1737.2548

What interpretations can we make? (residual)

income = 1072.5490 + 221.5686 * 5 = 2180.392Residual = Actual - Predicted Residual = 1700 - 2180.392 = -480.392

How to include binary independent variables in simple linear regression?

How to include binary independent variables in simple linear regression?

$$Y_i = \alpha + \beta X_i + \epsilon_i$$
 (X_i =binary/dummy variable)

- α (intercept): expected value of Y when X=0
- β (slope): expected change in Y for X=1, in comparison to X = 0 (the reference category).

How to include binary independent variables in simple linear regression?

```
Regime Longevity<sub>i</sub> = \alpha + \beta_1 * Regime Type_i
```

```
Call:
lm(formula = democracy duration ~ democracy, data = democracy gdp 2020)
Residuals:
           1Q Median 3Q
                                 Max
-52.610 -24.610 -10.051 7.949 175.949
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 54.610 4.975 10.976 <2e-16 ***
democracy
           -9.560 6.396 -1.495
                                       0.137
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.66 on 193 degrees of freedom
Multiple R-squared: 0.01144, Adjusted R-squared: 0.00632
F-statistic: 2.234 on 1 and 193 DF, p-value: 0.1366
```

In comparison to autocracies (= reference category), democracies last 9.56 years fewer.

How to include binary independent variables in simple linear regression?

$$\hat{Y}_i = \alpha + \beta_1 * Regime Type_i$$

Model for Autocracies:

$$\hat{Y}_i = 54.610 + (-9.560 * Regime Type_i)$$

 $\hat{Y}_i = 54.610 + (-9.560 * 0)$

$$\hat{Y}_i = 54.610 + (-9.500 * 0)$$

 $\hat{Y}_i = 54.610$

Model for Democracies:

$$\hat{Y}_i = 54.610 + (-9.560 * Regime Type_i)$$

$$\hat{Y}_i = 54.610 + (-9.560 * 1)$$

$$\hat{Y}_i = 45.05$$

How to include binary independent variables in simple linear regression?

Partitioning the error

How can be partition the error?

Total sum of squares (SS_T)

 $SS_T = Sum$ of squared differences between observed values of Y and the mean, $SS_T = \sum_{i=n}^n (y_i - \bar{y})^2$

Residual sum of squares (SS_R)

 $SS_R = Sum$ of squared differences between observed values of Y and the regression line, $SS_R = \sum_{i=n}^n (y_i - \hat{y}_i)^2$

Model sum of squares (SS_M)

 $SS_M = \text{Sum of squared differences between the regression line and the mean of Y, <math>SS_M = \sum_{i=n}^n (\hat{y}_i - \bar{y})^2$

 \rightarrow Improvement if regression model is used rather than the mean.

What interpretations can we make? (model performance)

• R^2 : the proportion of variation of Y explained by X. Varies between 0 and 1. If X explains all the variation in Y, then $R^2 = 1$

$$R^2 = 1 - \frac{SS_R}{SS_T} =$$

$$1 - \frac{\text{Variation not explained by model}}{\text{Total variation in y}} =$$

 $SS_T = SS_M + SS_R$ and $SS_M = SS_T - SS_R$

$$\frac{SS_M}{SS_T} = \frac{\text{Variation explained by model}}{\text{Total variation in y}}$$

Bivariate regression

Exam review

Week 1-Introduction & stats review

Measurement Scales

How can we measure concepts? And why does it matter?

(Kellstedt and Whitten 2018, Chap. 5)

<u>Discrete:</u> finite set of possible values.

Continuous: infinite set of possible values.

Population, sample, parameter, statistic

What is the relationship between population and sample?

- Population: "the total set of subjects of interest in a study" (Agresti and Finlay 2009, 5).
- <u>Parameter</u>: "numerical summary of the population" (Agresti and Finlay 2009, 5).
- Sample: "the subset of the population on which the study collects data" (Agresti and Finlay 2009, 5).
- <u>Statistic</u>: "a numerical summary of the sample data" (Agresti and Finlay 2009, 5).
- Observation: single subject/unit, one row in dataset

Measures of central tendency and variability (dispersion)

How can we describe variables?

- Mean: $\bar{y} = \text{Sum of all values divided by the number of}$ observations, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- Variance: $s^2(y) = \text{Sum of squared deviations divided by number}$ of observations (deviation is the difference between observed value and the mean, $y_i - \bar{y}$), $s^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n^{-1}}$
- Standard Deviation: Return original units by taking square root, $s = \sqrt{\frac{\sum_{i=1}^{n}(y_i - \bar{y})^2}{n-1}}$

Distributions and probability distributions

What is a probability distribution?

• <u>Probability distribution</u> "lists the possible outcomes and their probabilities" (Agresti and Finlay 2009, 75).

Sampling distribution

Sampling distribution

What is a sampling distribution?

- Sampling distribution "A sampling distribution of a statistic is the probability distribution that specifies probabilities for the possible values the statistic can take" (Agresti and Finlay 2009, 87).
- In other words, a probability distribution for a statistic rather than values of observations \rightarrow What is the probability of $\bar{Y}=0.5$, rather than what is the probability of Y=3?

Sampling distribution

Why is this important?

- The corresponding probability theory "helps us predict how close a statistic falls to the parameter it estimates" (Agresti and Finlay 2009, 87). \rightarrow how close is \bar{y} to μ ?
- Usually only one sample/one estimate → Point estimate: "is a single number that is the best guess for the parameter value" (Agresti and Finlay 2009, 107).

The sampling distribution of the mean, \bar{y}

- "If we repeatedly took samples, then in the long run, the mean of the sample means would equal the population mean μ " (Agresti and Finlay 2009, 90). \rightarrow mean of the sampling distribution of \bar{y} equals the population mean, hence, $\mu = \bar{y}$
- "The standard error describes how much \bar{y} varies from sample to sample" (Agresti and Finlay 2009, 90). \rightarrow standard error is estimated based on standard deviation, hence, $\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$
- Why does this work?

Central Limit Theorem

What is the Central Limit Theorem?

• "For random sampling with a large sample size n, the sampling distribution of the sample mean \bar{y} is approximately a normal distribution" (Agresti and Finlay 2009, 93). \rightarrow regardless of the population distribution

Central Limit Theorem

What is the Central Limit Theorem?

• "Knowing that the sampling distribution of \bar{y} can be approximated by a normal distribution helps us to find probabilities for possible values of \bar{y} (Agresti and Finlay 2009, 94). \rightarrow key in inferential statistics

Confidence intervals

What are confidence intervals?

- Confidence interval: "an interval of numbers around the point estimate that we believe contains the parameter value" (Agresti and Finlay 2009, 110). → Point estimate ± Margin of error
- <u>Confidence level</u>: "The probability that this method produces an interval that contains the parameter" (usually 0.95, 0.99) (Agresti and Finlay 2009, 110).
- Margin of error = multiple of the standard error, $\sigma_{\bar{y}} = \frac{\sigma}{\sqrt{n}}$ (Agresti and Finlay 2009, 117).
- For example, for 95% confidence level, the margin of error is $\pm 1.96\sigma_{\bar{\nu}}$ (have a look at the normal distribution).

Bivariate regression

Week 2-Hypothesis testing, experiments, difference in means

Exam review

Null-hypothesis significance testing

TABLE 6.1: The Five Parts of a Statistical Significance Test

1. Assumptions

Type of data, randomization, population distribution, sample size condition

2. Hypotheses

Null hypothesis, H_0 (parameter value for "no effect") Alternative hypothesis, H_a (alternative parameter values)

Test statistic

Compares point estimate to H_0 parameter value

4. P-value

Weight of evidence against H_0 ; smaller P is stronger evidence

Conclusion

Report P-value

Formal decision (optional; see Section 6.4)

(Agresti and Finlay 2009, 147)

Significance test for a mean (t-test)

TABLE 6.3: The Five Parts of Significance Tests for Population Means

1. Assumptions

Quantitative variable

Randomization

Normal population (robust, especially for two-sided H_a , large n)

2. Hypotheses

$$H_0$$
: $\mu = \mu_0$

$$H_a$$
: $\mu \neq \mu_0$ (or H_a : $\mu > \mu_0$ or H_a : $\mu < \mu_0$)

3. Test statistic

$$t = \frac{\overline{y} - \mu_0}{se}$$
 where $se = \frac{s}{\sqrt{n}}$

4. P-value

In t curve, use

 $P = \text{Two-tail probability for } H_a: \mu \neq \mu_0$

 $P = \text{Probability to right of observed } t\text{-value for } H_a: \mu > \mu_0$

 $P = \text{Probability to left of observed } t\text{-value for } H_a$: $\mu < \mu_0$

5. Conclusion

Report *P*-value. Smaller *P* provides stronger evidence against H_0 and supporting H_a . Can reject H_0 if $P \le \alpha$ -level.

Significance test for a difference in means (t-test)

What is a t-test for the difference in means?

- Null and alternative hypothesis: (Step 2) The means of two groups are identical, $\bar{v}_1 = \bar{v}_2$ or $\bar{v}_1 - \bar{v}_2 = 0$ (H_0), the means of two groups are different, $\bar{y}_1 \neq \bar{y}_2$ (H_a) .
- Test statistics: (Step 3) "measures the number of standard errors between the estimate and the H_0 value" (Agresti and Finlay 2009, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t = \frac{(\bar{y}_1 - \bar{y}_2) - 0}{\text{se}}$$
, H_0 assumes $\bar{y}_2 - \bar{y}_1 = 0$, $se = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Causal effect

What is a causal effect?

- <u>Causal effect</u>: "change in some feature of the world that would result from a change to some other feature of the world", $Y_{T=1,i} Y_{T=0,i} = Y_i^1 Y_i^0$
- Counterfactual comparison: "outcome would be different in a counterfactual world in which the action was different" → what would be the state of Y, had X not occurred?
- Fundamental problem of causal inference: "we can only observe, at most, one of the two quantities— Y_{1i} or Y_{0i} —for any individual at a particular point in time" (Bueno de Mesquita and Fowler 2021, 164). \rightarrow causal effect is unobservable

(Bueno de Mesquita and Fowler 2021, 159)

Sample average treatment effect, Difference in means

- Sample average treatment effect (SATE) is unobservable due to fundamental problem of causal inference \rightarrow we only observe sample difference in means
- Sample difference in means is biased estimate of the true SATE
 - → Correlation does not imply causation
- Baseline differences: "[d]ifference in the average potential outcome between two groups (e.g., the treated and untreated groups), even when those two groups have the same treatment status"

 — Confounders may cause baseline differences, which may cause bias (omitted variable bias)

(Bueno de Mesquita and Fowler 2021, 187)

Week 3-Contingency tables, correlation & bivariate regression Week 4-Bivariate regression, inference & prediction

Exam review

Chi-square test of independence

What is the Chi-square test of independence?

- Null and alternative hypothesis: Two variables are independent, $f_o = f_e$ (H_0), two variables are dependent, $f_o \neq f_e$ (H_a).
- <u>Test statistics</u>: "compares the observed frequencies in the contingency table with values that satisfy the null hypothesis of independence" (Agresti and Finlay 2009, 225), $X^2 = \sum \frac{(f_o f_e)^2}{f_e}$

Correlation

How can we measure correlation?

- Covariance: covariance is the average of the product of deviations of two quantitative variables from the mean, $cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n}$ (only interpret sign)
- Correlation: (correlation coefficient, Pearson correlation coefficient, Pearson's r, r) standardized average of the product of deviations of two variables from the mean (=standardized covariance), $r_{xy} = \frac{covariance(XY)}{S_{yy}S_{yy}}$ (interpret magnitude, range -1 and 1)

Correlation

Exam review

How can we test the statistical significance of correlation?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\rho_{xy} = 0$ (H_0)
 - there is an association between X and Y, $\rho_{xy} \neq 0$ (H_a)
- Test statistic: $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ (in R)
- Test statistic: $t = \frac{r}{\sqrt{1-r^2/n-2}}$ (in Agresti and Finlay 2009)

Ordinary least squares (OLS)

Exam review

How are intercept and slope estimated?

- How do we find the line which best fits the data?
- Apply the OLS (Ordinary Least Squares) method, which minimizes the sum of squared errors (SSE).
- Sum of squared errors = the sum of squared differences between actual and predicted values of Y.
- $SSE = \sum_{i=1}^{n} (\hat{\epsilon}_i)^2 = \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i (\hat{\alpha} \hat{\beta}X_i))^2$ \rightarrow minimize this!

Assumptions of linear regression

Assumptions about the error (ϵ_i) , $Y_i = \alpha + \beta X_i + \epsilon_i$

$$\epsilon_i \sim N(0, \sigma^2)$$

- * ϵ_i is normally distributed \rightarrow needed for inference
- * $E(\epsilon_i) = 0$, no bias \rightarrow violated if error is not random, but correlated with omitted variable
- * ϵ_i has constant variance σ^2 (Homoscedasticity \leftrightarrow Heteroscedasticity)
- * No autocorrelation, "Autocorrelation occurs when the stochastic terms for any two or more cases are systematically related to each other".
- * X values are measured without error

(Kellstedt and Whitten 2018, 190-194)

Assumptions of linear regression

Assumptions about the model specification, $Y_i = \alpha + \beta X_i + \epsilon_i$

- * No causal variables left out and no noncausal variables included
- * Parametric linearity

(Kellstedt and Whitten 2018, 190-194)

Assumptions of linear regression

Minimal mathematical requirements, $Y_i = \alpha + \beta X_i + \epsilon_i$

- * X must vary
- Number of observations must be larger than the number of predictors
- * In multiple regression: No perfect multicollinearity

(Kellstedt and Whitten 2018, 190-194)

Inference about the slope

What is the t-test for the slope of a regression line?

- Null and alternative hypotheses:
 - there is no association between X and Y, $\beta = 0$ (H_0)
 - there is an association between X and Y, $\beta \neq 0$ (H_a)
- <u>Test statistic:</u> "measures the number of standard errors between the estimate and the H_0 value" (Agresti and Finlay 2009, 192).

$$t = \frac{\textit{Estimate of parameter} - \textit{Null hypothesis value of parameter}}{\textit{Standard error of estimate}}$$

$$t=rac{\hat{eta}-eta_{H_0}}{se_{\hat{eta}}}=rac{\hat{eta}}{se_{\hat{eta}}},\ H_0\ ext{assumes}\ eta=0$$

How to update your local repository? How to git pull?

- 1. Synchronize fork
- 2. Fetch origin

How to update your repository on GitHub? How to git push?

- 1. Make sure your local repository is updated:
 - * Synchronize fork
 - * Fetch origin
- 2. Commit changes in file (local)
- 3. Push commits to fork

Bivariate regression

Software check

What to do in the event of merging conflicts?

What to do in the event of merging conflicts?

- 1. Find out which files are causing the conflict in GitHub Desktop
- 2. Decide which version to keep, and delete the other one (either in GitHub Desktop or manually)

References I

- Agresti, Alan, and Barbara Finlay. 2009. Statistical methods for the social sciences. Essex: Pearson Prentice Hall.
 - Bueno de Mesquita, Ethan, and Anthony Fowler. 2021. *Thinking clearly with data: A guide to quantitative reasoning and analysis*. Princeton: Princeton University Press.
- Kellstedt, Paul M., and Guy D. Whitten. 2018. *The fundamentals of political science research*. Cambridge: Cambridge University Press.