

Application 12

Supervised Machine Learning

Logistic Regression

There is one data set which contains information about the passengers from Titanic.

This data set describe multiple features about survived and non survived passengers.

Passengerid	Age	Fare	Sex	sibsp	Parch	zero	Pclass	Embarked	Survived
1	22	7.25	0	1	0	0	3	2	0
2	38	71.2833	1	1	0	0	1	0	1
3	26	7.925	1	0	0	0	3	2	1
4	35	53.1	1	1	0	0	1	2	1
5	35	8.05	0	0	0	0	3	2	0
6	28	8.4583	0	0	0	0	3	1	0
7	54	51.8625	0	0	0	0	1	2	0
8	2	21.075	0	3	1	0	3	2	0
9	27	11.1333	1	0	2	0	3	2	1
10	14	30.0708	1	1	0	0	2	0	1

Consider below characteristics of Machine Learning Application:

Classifier: Logistic Regression

DataSet: Titanic Dataset

Features: Passenger id, Gender, Age, Fare, Class etc

Labels: -

Consider below application which uses Logistic Regression algorithm from skit learn ibrary to train above data set and predict whether passenger survived or not.

```
1 import math
2 import numpy as np
3 import pandas as pd
4 import seaborn as sns
5 from seaborn import countplot
6 import matplotlib.pyplot as plt
7 from matplotlib.pyplot import figure, show
8 from sklearn.metrics import accuracy_score
9 from sklearn.metrics import confusion_matrix
10 from sklearn.metrics import classification_report
11 from sklearn.model_selection import train_test_split
12 from sklearn.linear_model import LogisticRegression
13
14 def MarvellousTitanicLogistic()
     # step 1 : Load data
15
16
     titanic_data = pd.read_csv('MarvellousTitanicDataset.csv')
17
18
     print("First 5 entries from loaded dataset")
19
     print(titanic_data.head())
20
21
     print("Number of passangers are "+str(len(titanic_data)))
22
23
     #Step 2: Analyze data
24
     print("Visualisation : Survived and non survied passangers")
25
     figure()
26
     target = "Survived"
27
28
     countplot(data=titanic_data,x=target).set_title("Marvellous Infosystems :Survived and non survied
        passangers")
29
     show()
30
31
     print("Visualisation: Survived and non survied passangers based on Gender")
32
     figure()
33
     target = "Survived"
34
     countplot(data=titanic_data,x=target, hue="Sex").set_title("Marvellous Infosystems : Survived and non
35
        survied passangers based on Gender")
36
37
38
     print("Visualisation: Survived and non survied passangers based on the Passanger class")
39
     figure()
     target = "Survived"
40
41
42
     countplot(data=titanic_data,x=target, hue="Pclass").set_title("Marvellous Infosystems: Survived and non
        survied passangers based on the Passanger class")
43
     show()
45
     print("Visualisation: Survived and non survied passangers based on Age")
46
47
     titanic_data["Age"].plot.hist().set_title("Marvellous Infosystems : Survived and non survied passangers base
        on Age")
48
     show()
49
50
     print("Visualisation: Survived and non survied passangers based on the Fare")
     figure()
```



```
52
      titanic_data["Fare"].plot.hist().set_title("Marvellous Infosystems : Survived and non survied passangers based
         on Fare")
 53
      show()
 54
 55
      # Step 3: Data Cleaning
      titanic_data.drop("zero", axis = 1, inplace = True)
 57
 58
      print("First 5 entries from loaded dataset after removing zero column")
 59
      print(titanic_data.head(5))
 60
 61
      print("Values of Sex column")
 62
      print(pd.get_dummies(titanic_data["Sex"]))
 63
                                                                                               3/9
      print("Values of Sex column after removing one field")
      Sex = pd.get_dummies(titanic_data["Sex"], drop_first = True)
 65
 66
      print(Sex.head(5))
 67
      print("Values of Plass column after removing one field")
 68
 69
      Pclass = pd.get_dummies(titanic_data["Pclass"], drop_first = True)
 70
      print(Pclass.head(5))
      print("Values of data set after concatenating new columns")
      titanic_data = pd.concat([titanic_data,Sex,Pclass],axis =1)
      print(titanic_data.head(5))
 75
 76
      print("Values of data set after removing irrelevent columns")
      titanic_data.drop(["Sex","sibsp","Parch","Embarked"], axis = 1, inplace = True)
 77
 78
      print(titanic_data.head(5))
 79
 80
      x = titanic_data.drop("Survived",axis = 1)
 81
      y = titanic_data["Survived"]
 82
 83
      # Step 4: Data Training
      xtrain, xtest , ytrain, ytest = train_test_split(x,y,test_size=0.5)
 85
 86
      logmodel = LogisticRegression()
 87
 RR.
      logmodel.fit(xtrain,ytrain)
 89
 90
      # Step 4: Data Testing
 91
      prediction = logmodel.predict(xtest)
 92
      # Step 5 : Calculate Accuracy
      print("Classification report of Logistic Regression is: ")
 95
      print(classification_report(ytest,prediction))
 96
 97
      print("Confusion Matrix of Logistic Regression is: ")
 98
      print(confusion_matrix(ytest,prediction))
 99
100
      print("Accuracy of Logistic Regression is: ")
101
      print(accuracy_score(ytest,prediction))
102
103 def main():
104
      print("---- Marvellous Infosystems by Piyush Khairnar----")
105
      print("Suervised Machine Learning")
107
108
      print("Logistic Regreesion on Titanic data set")
109
110
      MarvellousTitanicLogistic()
111
112 if __name__ == "__main__":
113
      main()
114
```


0

Output of above application

■ Titanic_Logistic_Regression — python + python old_py — 51+20 ■ Titanic_Logistic_Regression — python old_py — 51+20
egression marvellous\$ python old.py Marvellous Infosystems by Piyush Khairnar Suervised Machine Learning Logistic Regreesion on Titanic data set First 5 entries from loaded dataset Passengerid Age Embarked Survived 0
[5 rows x 10 columns] Number of passangers are 1309 Visualisation: Survived and non survied passangers Visualisation: Survived and non survied passans based on Gender Visualisation: Survived and non survie 4/9 at based on the Passanger class
Visualisation: Survived and non survied passangers based on Age Visualisation: Survived and non survied passangers based on the Fare

from loaded dataset First 5 entries after removing zero column Embarked Sur vi ved Passengeri d

2.0

01234 38.0 0.0 1 234 2.0 26.0 1 35.0 1

Age

22.0

1

2.0 35.0 0

9 columns] rows x Val ues o f Sex column 1 0 0 1

0123 1 0 1 0 0 1


```
Sex column after removing one field
Values
        o f
   1
0
   0
1
   1
234
   1
   1
   0
Values of
           Plass column after removing one field
   2
0
   0
       1
1
2
3
4
       0
   0
   0
       1
   0
       0
   0
       1
Values of data
                 set after concatenating
                                              new columns
   Passengeri d
                    Age
                              Fare
                                              2
                                                  3
                                           1
0
                   22.0
                           7.2500
               1
                                           0
                                              0
                                                  1
1 2 3
                          71.2833
               2
                   38.0
                                           1
                                              0
                                                  0
                   26.0
                           7.9250
               3
                                           1
                                              0
                                                  1
                   35.0
                          53.1000
                                                  0
                                           1
             0
                       0.86
                                   0.94
                                               0.90
                                                            4
83
             1
                       0.78
                                   0.55
                                               0.65
                                                            1
72
    micro avq
                       0.84
                                   0.84
                                               0.84
                                                            6
55
                       0.82
    macro
                                   0.75
                                               0.77
           avq
                                                            6
55
weighted ava
                       0.84
                                   0.84
                                               0.
                                                   5/9
                                                            E
55
Confusion Matrix of Logistic Regression is :
[[456
         27]
    77
         9511
              Logistic Regression is :
Accuracy of
0.8412213740458016
(base) MacBook-Pro-de-MARVELLOUS: Titanic_Logistic_R
egression marvellous$
```


Graphs generated by Data Analysis

6/9

