DIOPHANTINE APPROXIMATION

DIOPHANTINE APPROXIMATION

Question

Given a real number α , approximate it by rational numbers.

A typical Diophantine approximation theorem would claim the existence or infinitude of rational numbers r approximating the given real number α within a reasonable bound f(r):

$$|\alpha - r| \leq f(r)$$
.

The first theorem in the field of Diophantine approximation follows from the geometry of number line.

Theorem 3.3.1

Let α be a real number and b be a positive integer. Then there is an integer a such that

$$\left|\alpha - \frac{a}{b}\right| \leqslant \frac{1}{2b}.$$

E.g.
$$\pi = 3.1415926...$$

$$\left| \pi - \frac{3/4}{100} \right| \le 0.0016$$

$$\left| \pi - \frac{1}{2 \times 100} \right| = 0.005$$

PROOF OF THE THEOREM

Proof. Let's first plot $\frac{1}{b}\mathbb{Z}$ on the number line:

PROOF OF THE THEOREM

Proof. Let's first plot $\frac{1}{b}\mathbb{Z}$ on the number line:

Let's say α is between $\frac{c}{b}$ and $\frac{c+1}{b}$. One of $\frac{c}{b}$ and $\frac{c+1}{b}$ is closer to α than the other. Choose the closer one to be $\frac{a}{b}$. Then we have

$$\left| \frac{\alpha}{a} - \frac{a}{b} \right| \le \frac{1}{2} \text{length of the interval } \left[\frac{c}{b}, \frac{c+1}{b} \right] = \frac{1}{2b}.$$

DIOPHANTINE APPROXIMATION

Sometimes, we have far better approximation.

Example 3.3.2

$$\pi = 3.1415926...$$

- $\frac{a}{b} = 3.14 = \frac{157}{50}$: $\left| \pi \frac{a}{b} \right| \approx 0.00159$, while $\frac{1}{2b} = 0.01$. (~)
- $\frac{a}{b} = \frac{22}{7}$: $|\pi \frac{a}{b}| \approx 0.0013$, while $\frac{1}{2b} \approx 0.07$. (~2%)
- $\frac{a}{b} = \frac{355}{113}$: $\left| \pi \frac{a}{b} \right| \approx 0.00000027$, while $\frac{1}{2b} \approx 0.0044$. (~ 0.006%)

DIOPHANTINE APPROXIMATION AND TRANSCENDENTAL NUMBERS

One motivation to study Diophantine approximation is the following phenomenon.

Guideline

If an irrational number α can be approximated by rational numbers too well, then α is likely to be transcendental.

E.g.
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$$

$$\begin{vmatrix} e - \sum_{k=0}^{n} \frac{1}{k!} \\ = k \end{vmatrix} = \sum_{k=n+1}^{\infty} \frac{1}{k!} < \frac{1}{2(n+1)!}$$

$$\frac{1}{n+1}$$

DIOPHANTINE APPROXIMATION AND TRANSCENDENTAL NUMBERS

Theorem 3.3.3 (Liouville, 1840s)

Let α be an irrational algebraic number of degree $\leq n$ (which means it is a root of an integer polynomial of degree n). Then there is a constant C > 0 such that

$$\left| \frac{\alpha}{a} - \frac{a}{b} \right| > \frac{C}{b^n}$$
 for all $a \in \mathbb{Z}, b \in \mathbb{Z}_+$.

DIOPHANTINE APPROXIMATION AND TRANSCENDENTAL NUMBERS

Theorem 3.3.4 (Thue-Siegel-Roth, 1900s-1950s)

Let α be an irrational algebraic number and ε a small positive real number. Then there is a constant C > 0 such that

$$\left| \frac{\alpha}{\alpha} - \frac{a}{b} \right| > \frac{C}{b^{2+\varepsilon}}$$
 for all $a \in \mathbb{Z}, b \in \mathbb{Z}_+$.

DIRICHLET'S APPROXIMATION THEOREM

Theorem 3.3.5 (Dirichlet, 1840)

Let α be an irrational number, Then there are infinitely many fractions $\frac{a}{b}$ such that

$$\left|\frac{\alpha}{a} - \frac{a}{b}\right| \leqslant \frac{1}{2b^2}.$$

DIRICHLET'S APPROXIMATION THEOREM

Theorem 3.3.5 (Dirichlet, 1840)

Let α be an irrational number, Then there are infinitely many fractions $\frac{a}{b}$ such that

$$\left| \frac{\alpha}{\alpha} - \frac{a}{b} \right| \leqslant \frac{1}{2b^2}.$$

N.B. this theorem doesn't imply that for *all* positive integer b, there is a fraction $\frac{a}{b}$ approximating α with above error bound. (Compare it with theorem 3.3.1)

E.g. for $\pi = 3.1415926...$:

- b = 1 works: $\left| \pi \frac{3}{1} \right| \approx 0.14 < \frac{1}{2}$.
- b = 2 doesn't work: $\left| \pi \frac{6}{2} \right| \approx 0.14 > \frac{1}{2 \cdot 2^2} = 0.125$.

OUTLINE OF THE PROOF

To prove this theorem, we first interpret the inequality

$$\left| \frac{\alpha}{\alpha} - \frac{a}{b} \right| \leqslant \frac{1}{2b^2}$$

in terms of geometry:

it means the point α is within distance $\frac{1}{2b^2}$ from the point $\frac{a}{b}$.

OUTLINE OF THE PROOF

To prove this theorem, we first interpret the inequality

$$\left| \frac{\alpha}{\alpha} - \frac{a}{b} \right| \leqslant \frac{1}{2b^2}$$

in terms of geometry:

it means the point α is within distance $\frac{1}{2b^2}$ from the point $\frac{a}{b}$.

Recall how we prove Theorem 3.3.1, mark $\frac{1}{h}\mathbb{Z}$ on the number line.

Instead of consider intervals $\left[\frac{c}{b}, \frac{c+1}{b}\right]$, we put circles of diameter $\frac{1}{b^2}$ at each $\frac{a}{b}$. So the inequality holds whenever α is covered by one of such circles.