Solar Flare Analysis

XUVI: Lecture - 5

Data Capturing

Solar brightness can be measured as a function of number of photos striking the observational area per unit time (usually every second)

The data that we'll be working on is captured by Solar X-Ray Monitor (XSM) aboard the Chandrayaan-2 orbiter and can be obtained from the <u>Pradan</u> website maintained by <u>ISRO</u>

Solar X-Ray Monitor

Reference: Link

Sensitivity

Solar Flare Modelling

A Solar Flare can be modelled as a convolution of 2 functions:

Gauss function:

$$f(t) = Ae^{(-(t-B)^2/C^2)}$$

Exponential function:

$$f(t) = e^{(-Dt)}$$

Plus some background level represented as:

Linear background

$$f_{bg}(t) = Et + F$$

Reference: Link

EFP - Convolution of two Functions

$$f(t) = \frac{1}{2}\sqrt{\pi}A C \exp\left[D(B-t) + \frac{C^2D^2}{4}\right] \left[\operatorname{erf}(Z) - \operatorname{erf}\left(Z - \frac{t}{C}\right)\right]$$

The Solar Flare Profile (also known as the Elementary Flare Profile (EFP)) helps to model single flare events and to decompose multi-peak events in terms of single-peak events.

The main task at hand is to determine these 6 parameters to successfully model a flare.

$$Z = \frac{2B + C^2D}{2C}$$

Gauss Function

Exponential Function

Convolution

Raw Data

Pre-Processing

Guess the method for noise reduction?

Isolating Flares

Extracting Information

Multiple Flares

Over Longer Duration

Flux Levels

Classification Criteria

Flares can be classified based on their peak flux or peak count rate. We'll be using count rate to classify the flux as per the following table:

CLASS	FLUX (Wm ⁻²)	COUNT RATE (s ⁻¹)
А	X < 10 ⁻⁷	N < 250
В	$10^{-7} < X < 10^{-6}$	250 < N < 2,500
С	$10^{-6} < X < 10^{-5}$	2,500 < N < 25,000
М	$10^{-5} < X < 10^{-4}$	25,000 < N < 250,000
Х	10 ⁻⁴ < X	N > 250,000

Further discrete classification can be done by taking logarithms since each class is an order of magnitude greater than its preceding class. Doing so each class can be further divided into 10 subclasses (0-9). For example, peak flux of M3 class would be $10^{-5^{\circ}(10^{\circ}(3/10))} = 10^{-4.7}$