VAK 512+517.2(07)

Задания к типовым расчетам по математике/Владим. политехн. ян-т; Соот. Н.И.Дуоровин. Владимир, 1993. 64 с.

Приведены индивидуальные задания к типовым расчетам по оледуваим разделам: линейная алгебра и вналитическая геометрия, введение в анализ, дифференциальное исчисление функций одной переменной, функции нескольких переменных.

Предназначены для отудентов первого курсв всех специельностей дневной формы обучения.

Табл. 12. Ил. 4.

Печатается по решению редакционно-издательского совета Владимирокого политехнического института.

Рецензент д-р физ.-мат. наук В.В. Жиков (Владимирский государотвенный педагогический институт).

ПРЕДИСЛОВИЕ

Материал настоящих заданий соответствует программе первого семестра по высшей математике высшего технического учебного заведения. Каждый раздел имеет свою нумерацию; колитество вариантов в задании 30. В начале разделов приведены решения некоторых наиболее трудных типовых задач, которые призваны помочь студентам справиться с типовым расчетом.

Несколько слов об обозначениях. В разд. І через $\{X,Y,Z\}$ обозначаются координаты вектора, в то время как координаты точки евклидова пространства обозначаются (x,y,Z). Знаки \bot и # означают перпендикулярность и коллинеарность (т.е. параллельность либо совпадение) прямых и плоскостей; i, j, k — стандартный базис пространства R^j ; и X — знаки операций скалярного и векторного произведений. Расстояние между точками, прямыми и плоскостями обозначается символом \mathcal{P} (,). В разд. З y_x^2 означает производную функции y(x) по x, а $y(x)/x=x_0$ — результат подстановки в функцию y(x) числа x_0 вместо переменной x (т.е. $y(x_0)$). В последнем, четвертом разделе, символом x0 обозначается принадлежность элемента множеству. Символ x3 заменяет слова "тогда и только тогда".

В подборе заданий принимали участие преподаватели кафедры высшей математики: разд. І, аналитическая геометрия — В.В.Брыксин, О.И.Трубина; разд. І, линейная алгебра — С.Г.Танкеев, Т.В. Дубровина, В.А.Скляренко; разд. 2 — С.В.Левизов, И.Ф.Курбико; разд. 3 — В.П.Собакин; А.Г.Сорокина, Е.В.Филинова; разд. 4 — В.В.Евликов.

При составлении заданий и задач активно использовались также "Сборник задач по математике"/Под ред. А.В. Ефимова, Б.М.Демидовича. М.: Наука, 1981. 463 с. и "Сборник заданий по высшей математике" (Кузнецов Л.А.).

В заключение составитель выражает благодарность лаборантам кафедры высшея математики Глазовой Л.И., Ерлыковой И.Б. и зав.лабораторией Блиновой В.В. за техническую работу при подготовке настоящих заданий.

- 5 -PASAEM I. AHAMMTNUECKAR FEOMETPUR **И ЛИНЕЙНАЯ АЛГЕБРА**

Задача І. Найти площадь \triangle ABC, если A(1-3-2), B(4,0,-5), f(1,0,-1).

Решение. Наидем координаты векторов \overrightarrow{AB} и \overrightarrow{AC} :

$$\vec{A}\vec{B} = \{4-1, 0+3, -5-2\} = \{3, 3, -4\}; \vec{A}\vec{C} = \{0, 3, -3\}.$$

Вычислим векторное произведение:

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & j & k \\ 3 & 3 & -7 \\ 0 & 3 & -3 \end{vmatrix} = \begin{vmatrix} 3 - 7 \\ 3 - 3 \end{vmatrix} i - \begin{vmatrix} 3 - 7 \\ 0 - 3 \end{vmatrix} j + \begin{vmatrix} 3 & 3 \\ 0 & 3 \end{vmatrix} k =$$

$$= 12i + 9j + 9k = \{12, 9, 9\}$$

Тогда площадь $\triangle ABC$ равна

OTBET: 37 2 4, 434.

Задача 2. Наяти уравнение высоты, опущенной из точки P (5.-3,1) HA HAOCKOCTS J': 2x+44-2+4=0.

Решение. Вектор $\vec{l} = \{2, 7, -1\}$ перпендикулярен плоскости \mathcal{F} и, значит, коллинеарен искомой прямой ℓ .

Ответ: каноническое уравнение прямой ℓ :

$$\frac{x-5}{2} = \frac{y+3}{4} = \frac{x-1}{-1}.$$

Задача 3. Наити уравнение плоскости, проходящей через точки M(1, 0, 2), N(3, -1, 4) и перпендикулярной плоскости $\pi\colon +x - \lambda + \beta = 0.$

Решение. Имеем: $n^2\{4,-2,3\} \perp 37$ и поэтому \vec{n} n^2 , где r^2 искомая плоскость. Вектор $\vec{M}\vec{N}\{2,-1,2\}$ также коллинеарен \mathcal{Z} . Следовательно, векто

$$MN \times R = \begin{vmatrix} i & j & k \\ 2 & -1 & 2 \\ 7 & 2 & 3 \end{vmatrix} = i + 11j + 3k$$

перпендикулярен ${\cal C}$. Тогда задача сводитоя к стандартной: найти уравнение плоскости γ , проходящей через т. M и перпендикувярной вектору $\{1, 11, 3\}$. Получаем уравнение плоскости Y: 1.(x-1)+11.(y-0)+3.(x-2)=0.

OTHET: 2: x+114+32-4=0.

Задача 4. Найти расстояние между скрещивающимися прямыми ℓ_{i} : $\frac{3c-1}{3} = \frac{3+2}{6} = \frac{2}{5}$ u $\frac{2}{5} : \frac{x+1}{4} = \frac{y-y}{6} = \frac{2-8}{3}$ u уравнение их общего перпендикуляра.

Решение. Общая точка прямой $\ell_t = A(3t+1, -2, 5t)$, а прямой $\ell_{r} = \mathcal{B}(4u-1,u+9,3u+8)$. Здесь t, $u \in \mathbb{R}$. Находим параметры і и и так, чтобы вектор АВ был перпендикулярен в, и в, одновременно. Т.к. $\overrightarrow{AE} = \{-4u - 3t - 4u, u + 11, 3u - 5t + 8\}$ и R(13, 0.5), R(14, 1.3) — направляющие векторы прямых ℓ , и ℓ , соответственно, то для $\iota \iota$ и t получаем систему двух линейных уравнений: $\overrightarrow{AB} \cdot \overrightarrow{R} = \overrightarrow{AB} \cdot \overrightarrow{M} = 0$ или

откуда находим u=0 . t=1 : A(4,-2,5) , B(-1,9,8) . Тогда $\overrightarrow{AB} = \{-5,11,3^2\}$. Расстояние между прямыми \mathcal{E}_1 и \mathcal{E}_2 равно P(l. l.)= V(-512+112+32 = 1755 = 12 45

$$\ell: \frac{x-4}{-5} = \frac{3+2}{11} = \frac{2-5}{3}.$$

OTHET: $p(\ell_1, \ell_2) \approx 12,45$.

Каноническое уравнение общего перпендикуляра: $\frac{x-4}{-5} = \frac{y+2}{11} = \frac{x-5}{2}$.

Задача 5. В ромб с диагоналями $2d_1$, $2d_2$ вписан элхипс

 $(d, \ge d_{\lambda})$. Точка касания делит сторону ромов в отношении та:п. Найти каноническое уравнение эллипса.

Решение. Выберем систему координат, как указано на рисунке; координаты точки касания в первои квадранте обозначин x_o . Уо . Так как BE EC=m:n

по условив, то $\frac{x_0}{\alpha_i \cdot x_0} = \frac{m}{n}$. Отседа $x_0 = \frac{d_i m}{m+n}$. Аналогично, $y_o = \frac{\alpha_2 n}{m+n}$. Пусть $\frac{x^2}{\delta^2} + \frac{x^2}{\delta^2} = 1$ (ж) — каноническое уравнение элжипса. Требуется найти a и b . Тангено угла наждона прямой BC

равен – $\frac{d_{\mathbf{z}}}{d_{\mathbf{z}}}$, что совпадает с производной в точке x_s функции $y(\infty)$, зеденной неявно соотношением (ж). Дифференцируя (ж) по ∞ , считая $y=y(\infty)$ и подставляя $x=x_0$ и $y'(x_0)=-d_2/d_1$, получим:

$$\frac{2x}{u^2} + \frac{2y \cdot y'}{6z} = 0 \implies \frac{x_0}{u^2} - \frac{y_0 \cdot d_1}{6z \cdot d_1} = 0. \tag{1}$$

Kpone roro.

$$\frac{x_o^2}{u^2} + \frac{y_o^2}{6^2} = 1 \tag{2}$$

(I) и (2) - линейная система двух уравнений относительно неизвестных $1/a^2$, $1/6^2$. Решая ее, получим

$$\frac{d^{2} = \lambda_{0}^{2} + \lambda_{0} y_{0} \frac{d_{2}}{d_{1}} = \frac{J_{1}^{2} m^{2}}{(m+n)^{2}} + \frac{d_{1} d_{1} mn}{d_{1}} \frac{d_{2}}{d_{1}} = \frac{d_{1}^{2} m^{2} + d_{1}^{2} mn}{(m+n)^{2}},$$

$$\frac{d^{2}}{d_{2}} = \frac{J_{0}^{2} + J_{0}^{2}}{(m+n)^{2}}.$$

OTBET: $a = \sqrt{d_{1}^{2} m^{2} + d_{2}^{2} mn} / (m+n)$, $\beta = \sqrt{d_{2}^{2} n^{2} + d_{1}^{2} mn} / (m+n)$. Задача 6. Написать уравнение биссектрисн угла АВС, где

A(1,3), B(-2,0), C(5,-1).Решение. Наиден $BA = \{3,3\}$, $BC = \{7,-1\}$. Пусть вектор $\widetilde{u}=\{X,Y\}$ коллинеарен биссектрисе угла ABC . Тогда Cos (& BA)= COS (& BC); OTKYAB

$$\frac{3 \cdot X + 3 \cdot Y}{\sqrt{3^2 \cdot 3^2} \sqrt{X^2 \cdot Y^2}} = \frac{\cancel{\cancel{4} \cdot X} + (-1) \cdot \cancel{Y}}{\sqrt{\cancel{\cancel{7}^2 \cdot (-1)^2}} \sqrt{X^2 \cdot \cancel{\cancel{4}^2}}}$$

UNU (50' 3 (X+Y) = 312' (7 X-Y). откуда $\exists \, Y = X$. Следовательно, в качестве направилющего вектора биссектриси можно взять $\{3,1\}$. Тогда $\frac{2+2}{3} = \frac{1}{2}$ - каноничеэкое уравнение биссектрисы.

OTBET: $y = \frac{x}{3} + \frac{2}{3} - ypanenue Guocektpuch.$

Задача 7. Решить систему линейных уравнений

$$\begin{cases}
2x + 2y + 3z = 4, \\
2x + 2y - z = 3, \\
3x + 3y + 2z = z
\end{cases}$$

Решение. Сначала систему приводим к ступенчатому виду. Джя этого первое уравнение умножаем на -2, -3 и прибавляем ко второму и третьему правнению соответственно:

$$\begin{cases} x + 2y + 3z = 4, \\ -3y - 7z = -6, \\ -3y + 7z = -6 \end{cases} \iff \begin{cases} x + 2y + 3z = 4, \\ 3y + 4z = 5... \end{cases}$$

Далее, вычитая из третьего уравнения второе, получаем ступенчатый вид. Число ненулевых уравнений (=2) меньше, чем число неизвестных (=3); отсода следует, что система неопределена. Для того, чтобы записать формулу общего решения, объявим неизвестную $\mathcal X$ свободной; ∞ и $\mathcal Y$ выражаются тогда через $\mathcal Z$.

OTHET:
$$\begin{cases} x = 5/3 \cdot 2 + 4/3; \\ y = -4/3 \cdot 2 + 5/3, \end{cases}$$
, $z \in \mathbb{R}$

Задача 8. Найти собственные числа и собственные вектора линейного оператора пространства \mathbb{R}^{3} у заданного матрицеи $A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 2 & 2 \end{pmatrix}$

Решение. Соот авляем и решаем характеристическое уравнение

$$\begin{vmatrix} 3-\lambda & 2 & 0 \\ 2 & 2-\lambda & 2 \\ 0 & 2 & 1-\lambda \end{vmatrix} = 0 \iff (3-\lambda)(2-\lambda)(1-\lambda) - 4(1-\lambda) + 4(3-\lambda) = 0;$$

$$\iff (3-\lambda)(2-\lambda)(1-\lambda) - 8(2-\lambda) - 0 \iff (2-\lambda)(\lambda^2 - 4\lambda - 5) = 0;$$

$$\lambda_1 = 2, \lambda_2 = -1, \lambda_3 = 5.$$

Определяем собственные векторы $\vec{\rho_1}$, $\vec{\rho_2}$, $\vec{\rho_3}$, соответствующие найденным характеристическим числам $\vec{\rho_4}$, $\vec{\lambda_2}$, $\vec{\lambda_3}$, из системы однородных уравнений $(A-\lambda_L E) \vec{\rho_2} = U$ (i=1,2,3)

ΠοπγναεΜ

1)
$$λ_1 = 2$$

2) $λ_2 = -1$

3) $λ_3 = 5$

$$\begin{cases}
x + 2y = 0 \\
2x + 2y = 0
\end{cases}
\begin{cases}
4x + 2y = 0 \\
2x + 2y + 2z = 0
\end{cases}
\begin{cases}
-2x + 2y = 0 \\
2x - 3y + 2z = 0
\end{cases}$$

$$x = 2t, y = -2t; x = 2t; x = 2t; x = 2t, y = 2t, z = t;$$

$$\vec{P}_1 = \{2, -1, -2\} \cdot t; \vec{P}_2 = \{1, -2, 2\} \cdot t; \vec{P}_3 = \{2, 2, 1\} \cdot t.$$

Ответ. Собственные числа — $n_1=2$, $n_2=1$, $n_3=5$; соответствующие им собственные векторы — $\vec{p_1}=\{2,-1,-2\}t$, $\vec{p_2}=\{1,-2,2\}t$, $\vec{p_3}=\{2,2,1\}t$, $(t\in\mathbb{R},t\neq0)$.

- 9 -R N H A **K** A &

 $A_1A_2A_3A_4$. Наити

- I) ўгол A между ребрами A_1A_2 и A_4A_4 ;
- 2) площадь S грани $A_1A_2A_3$;
- 3) объем V пирамиди;
- 4) уравнение плоскости \mathcal{F} грани $A_1 A_2 A_3$;
- 5) yron β между ребром $A_1 A_4$ и гранью $A_1 A_2 A_3$;
- 6) уравнение высоты, опущенной из вершины A_{μ} на грань $A_{\mu}A_{\mu}A_{\mu}$.

	ţ		•	·
Вари-	Aı	Az	Α3	A ₄
<u>I</u>	! 2	! 3	4	. 5
I	(-2; 0; 2)	(2; 3; 14)	(-6; -3; 14)	(I; -4; I4)
2	(-1; -1; 0)	(II; 2; -4)	(II; -4; 4)	(I; 3; 3)
3	(-2; 0; 0)	(-I; 2; -2)	(-I2; -2; II)	(I; -3; 3)
4	(-2; 0; I)	(0; I; -I)	(-4; 2; 0)	(-I; 3; 2)
5	(2; -I; I)	(I; I; -I)	(4; -2; -1)	(2; 3; 2)
6	(2; I; -2)	(4; -4; 12)	(-8; -10; 0)	(3; -3; -1)
7	(-2; -I; -2)	(-I; I; 0)	(0; -3; -1)	(I; 0; -3)
8	(0; I; I)	(2; 0; -I)	(2; -9; -10)	(2; -2; 6)
9	(-2; 0; 2)	(-4; -1; 4)	(0; -2; 3)	(0; 5; 5)
10	(-2; 2; 0)	(I2; 4; 5).	(-4; -9; IO)	(0; -4; -2)
II	(0; I; I)	(2; -4; -I3)	(10; 12; 3)	(3; -1; 0)
12	(I; 2; -2)	(3; 3; -4)	(2; 4; 0)	(3; -3; 2)
13	(0; -I; 2)	(12; -21; 11)	(16; -22; 14)	(-3; 0; 6)
14	(0; -1; 2)	(-I; -3; 4)	(-5; 13; 0)	(3; 4; I)
15	(-2; 0; -2)	(-3; 2; -4)	(-7; -14; 0)	(-I; 2; 7)
16	(2, 0, -2)	(-2; 8; -3)	(9; 4; 2)	(10; 1; -8)
17	(0; -2; -2)	(-4; 10; -5)	(-I2; 6; -II) 8	?(-9; 6; IO)
18	(-2; 'I; 0)	(-4; 0; -2)	(-I2; -I0; 2)	(-2; 2; 7)
19	(2, 2; 0)	(4; 3; 2)	(-8; -9; 2)	(2; -2; -1)
20	(2; I; 2)	(-3; -I3; 4)	(12; -1; 13)	(-I; 3; 7)
21	(-1; 1; 0)	(0; 3; 2)	(I; 2; -2)	(5; -3; -2)
S S	(3; 0; 2)	(2; 2; 0)	(5; -I; 0)	(3; 4; 3)
- 23	·(-ī; 2; 0)	(I; 3; 2)	(-6; 4; -34)	(-I; 5; 3)
24	(2; 2; I)	(4; -3; 15)	(-8; -9; 3)	(3; -2; 2)
25	(2; 0; -2)	(6; 2; -6)	(-2; 4; -4)	(-2; -10; -8)

I	2	3	4	5
26	(0; 1; 2)	(4; 3; -2)	(-4; 5; 0)	(2; 7; 4)
27	(-I; I; 2)	(3; 3; -2)	(-5; 5; 0)	(I; 7; 4)
28	(-I; 3; 2)	(I; 4; 4)	(-6; 5; -I2)	(-1; 6; 5)
29	(-I; -2; -2)	(I; -I; -4)	(0; 0; 0)	(4; -3; 4)
3 0	(-2; -I; -2)	(-I; I; -4)	(-I2; -3; 9)	(I; -4; I)

Заданы плоскость $\mathfrak T$ и точка M . Написать уравнение плоскости $\mathfrak T$. Проходящей через точку M параллельно плоскости $\mathfrak T$. Найти расстояние ρ между плоскостями.

Вариант	· J	M .
I	2	3
I	11x - 16y - 8z - 16 = 0	(1; 1; 0)
2	-3x -6y + 2 = -1 = 0	(2; 2; -I)
3	3x + 4 = + 3 = 0	(I; -I; I)
ħ	-10x - 26y + 22 + 3 = 0	(-2; 0; 2)
5	9x - 2y - 6z + 6 = 0	(2; I; 0)
6	-6x - 18y - 18z + 22 = 0	(-I; 0; -I)
.7	-13x - 16y + 42 - 24 = 0	(2: 0: 2)
8	19x -4y +8 = +20 =0	(2; 2; -1)
9	$-18x^2 - 3y - 142 + 24 = 0$	(0; 2; -2)
IO	-x - 4y + 8z + 18 = 0	(-I; -Z; 0)
II	20x + 212 + 10 = 0	(2; 2; -I)
12	15x + 12y - 16z - 23 = 0	(-1; -1; 0)
13	-9x + 8y - 12z + 11 = 0	(-2; 0; I)
14	-6x - 17y + 62 - 5 = 0	(-2; 0; 2)
15	-12x+12y-21z-3=0	(0; -2; 0)
16	-8x - 12y + 9z + 9 = 0	(-1; 0; 0)
17	-4x -8y + 2+6=0	(-1; -1; 0)
18	6x - 22y - 3z - 14 = 0	(-I; 0; I)
19	- 4x - 4y + 4 = + 17 = 0	(-2; -1 ; -2)
20	13x-4y-162-5=0	(2; 0; 0)
21	x + 4y + 8z + 19 = 0	(0; 2; 0)
22	4x+20y+52+10=0	(I; -2; I)
23	-3x+14y-18z-19=0	(-2; -2; -I)
24	-3x-4y-122+12=0	(2; I; -2) .

I	2	3
25	X + 4y + 8 = + 26 = 0	(I; 0; 0)
26	12x-21y+16=+9=0	(-I; 0; 2)
27	20x + 9y - 12z + 9 = 0	(2; 0; 2)
28	16x + 12y - 21z - 13 = 0	(-I; 0; 0)
29	11x + 16y - 8z + 20 = 0	(2; 0; 0)
30	18x - y - 6z - 26 = 0	⟨-I; I; 2)

 \mathcal{M}_2 Написать уравнение плоскости \mathcal{C} , проходящей через точки \mathcal{M}_1 и \mathcal{M}_2 перпендикулярно заданной плоскости $\widehat{\pi}$.

Вари-	T	M ₁	M ₂
<u> </u>	<u> </u>	<u>! 3</u>	44
I	-20x - 9y + 12z - 24 = 0	(2; 2; 0)	(14; 1; 12)
2	4x + 8y - 122 - 6 = 0	(-2; 2; 2)	(-5; -14; 26)
3	18# + y + 6 ± -8 = 0	(-I; 2; 0)	(-2; -16; 6)
4	2x + 3y - 6z - 17 = 0	(2; I; -2)	(-4; -1; -5)
5	x+2y+2=+19=0	(I;I;I)	(-I; 0; 3)
6	15x -12y -16 = +23 =0	(2; 0; -I)	(5; -12; -5)
7	-12x - 16y - 152 + 22 = 0	(0; 2; 1)	(-II;-22;-II)
8	6x - 6y + 17z + 16 = 0	(-1; 1; 0)	(-2; -17; -6)
9	15x - 12y - 16z - 8 = 0	(0; -1; 1)	(12; 2; 5)
IO	14x - 23y - 2z + 27 = 0	(I; -I; -2)	(-6; -3; -28)
II	16x+12y-15z-14=0	(I; 0; I)	(13; -1; 13)
12	7x+22y+14z+10=0	(I; I; -2)	(3; 15; -25)
13	16x-12y+15z-4=0	(0; -I; -I)	(3; -17; -25)
14	10x+24-25z+27=0	(0; 2; I) ⁸	7(I0; -23; 3)
15	11x+12y-24z+3=0	(1; -1; -1)	(2; -13; -13)
16	3x+12y+4z+10=0	(0; I; I)	(3; -II; 5)
17	24x+11 y -122+24=0	(0; -2; -1)	(-I2; -5; -5)
I8	2x - 2y - z - 25 = 0	(-1; 0; -1)	(I; I; I)
19	-2x - 10y - 10x + 9 = 0	(1; 0; -2)	(2; 2; -4)
20	6x - 6y - 7z - 8 = 0	(0; -2; I)	(2; 7; -5)
21	-11x - 2y + 10z - 14 = 0	(2; I; 0)	(0; 2; -2)
55	6x +6y + 17z-17=0	(0: -2: -2)	(1; -20; 4)
23	9x+20y+12z+6=0	(-2; I; -I)	(-6; 13; -4)

	0 к (ончание	таолицы
I	2	3	4
24	10x - 11y + 2z + 1 = 0	(0; I; -I)	(2; 0; -3)
25	2x - y - 2z + 27 = 0	(-I; 0; -2)	(-2; 2; -4)
26	-10x - 11y - 2z + 7 = 0	(-2; I; 0)	(3; -1; -14)
27	11x + 24y - 12z - 8 = 0	(-I; -2; I)	(-25; I; -I5)
28	-24x - 3y - 16z - 25 = 0	(-2; 0; -2)	(-I; I2; -I4)
29	12x - 15y - 16z - 8 = 0	(0; -1; I)	(-I; II; -II)
30	9x - 12y - 20z + 6 = 0	(-2; 0; I)	(22; 3; -15)
4.	Таны прямая & и точка M .	-	4
I)	Написать уравнение плоскости Ж	, проходящей	через прямую в
M TOY	oky M .		
2)) Написать уравнение плоскости ${\mathcal T}$, проходящей	через точку/

перпендикулярно прямой ℓ .

3) Написать канонические уравнения прямой k, проходящей через

гочку М пер	пендикулярно к $ \ell . $	
Вариант	l	M
I	2	. 3
Ι.	$\frac{x-2}{2} = \frac{y-1}{-1} = \frac{z-1}{2}$	(2; 0; 2)
2	来= 其= ====	(I; -I; -3)
. 3	$\frac{x}{25} = \frac{y+2}{-a} = \frac{z-1}{-10}$	(1; -3; 1)
4	$\frac{x+2}{2} = \frac{y+1}{10} = \frac{z-1}{11}$	(-4; I; 2)
5	$\frac{x+2}{1} = \frac{y-2}{2} = \frac{z+1}{-2}$	(-I; 3; -I)
6	$\frac{2}{-26} = \frac{y-1}{-2} = \frac{z}{10}$	(-I; 0; 0)
7	$\frac{x+2}{-2} = \frac{y-2}{-2} = \frac{z}{-2}$	(-I; I; 0)
8	$\frac{x-2}{1} = \frac{x-2}{+2} = \frac{z}{-2}$	(3; 2; -1)
Q.	$\frac{x+1}{2} = \frac{y}{2} = \frac{z}{2}$	(0; -I; 0)

ī	2	3
10	$\frac{x+2}{10} = \frac{y+1}{-11} = \frac{z+1}{-2}$	(-I; -3; -3)
11	$\frac{2c+1}{-2} = \frac{y-1}{-1} = \frac{z}{-2}$	(-2; 2; -4)
12	$\frac{32+2}{1} = \frac{4}{8} = \frac{7+1}{-4}$	(-I; I; -I)
13	$\frac{x}{2} - \frac{y-2}{-10} = \frac{z+1}{-11}$	(2; I; -3)
14	$\frac{32}{5} - \frac{4-2}{-2} = \frac{2}{14}$	(I; 3; 0)
15	$\frac{x+2}{-2} = \frac{y+2}{-14} = \frac{z+1}{5}$	(-I; -2; 0)
16	$\frac{x+1}{2} = \frac{y-2}{-5} = \frac{z-2}{-14}$	(0; I; -2)
17	$\frac{x-2}{-9} = \frac{x-1}{-2} = \frac{z+2}{6}$	(I; 0; -2)
18	$\frac{x+2}{g} = \frac{y}{-2} = \frac{z+2}{6}$	(-I; -I; -2)
I9	$\frac{x+2}{16} = \frac{y+2}{12} = \frac{z+2}{10}$	(2; 1; -1)
20	$\frac{x+2}{8} = \frac{y-1}{-1} = \frac{z}{4}$	(-I; 0; 0)
21	$\frac{z}{-2} = \frac{y-3}{44} = \frac{z-1}{-5}$	(I; 2; 0)
22	$\frac{x-1}{12} = \frac{y+1}{3} = \frac{z+1}{4}$	(I; 0; ~5)
23	$\frac{\alpha-2}{-7}=\frac{3}{-4}=\frac{2+2}{4}$	(î; -4; -1)
24	$\frac{x}{-5} = \frac{y}{-2} = \frac{z-1}{14}$	(-I; I; I)
25	$\frac{x-1}{-6} = \frac{y}{18} = \frac{z}{651}$	(I; I; -I)
2 6	2-1 - 4+1 - 2+1	(2; -5; 0)
. 27	$\frac{2}{6} = \frac{4+8}{6} = \frac{2-8}{-18}$	(0; -1; 1)
		•

I	2	3
28	$\frac{x+2}{-1} = \frac{y-2}{-2} = \frac{z+2}{2}$	(-3; L; -2)
29	$\frac{x+2}{-1} = \frac{y-1}{2} = \frac{z-2}{-2}$	(-3; I; I)
30	$\frac{x-2}{2} = \frac{y-1}{-5} = \frac{z-2}{-14}$	(2; 0; 0)

5. Даны уравнения прямых ℓ_1 и ℓ_2 .

1) Убедиться в том, что прямые ℓ_1 и ℓ_2 окремивающиеся.

2) Составить уравнение плоскости π , проходящей через ℓ_1 па-

раллельно ℓ_2 .

3) Найти расстояние ρ между прямыми ℓ_4 и ℓ_2 .

4) Составить канонические уравнения общего перпендикуляра \hbar пряных ℓ_1 и ℓ_2 .

Ba- ри- ант	ℓ_{i}	ℓ_2
၁ <u>I i</u>	2	3
I	$\frac{x-0}{-2} = \frac{y-2}{14} = \frac{z-1}{-5}$	$\frac{x+1}{5} = \frac{y-3}{-14} = \frac{z-6}{2}$
2	$\frac{x-1}{1} = \frac{x-2}{2} = \frac{x}{-2}$	$\frac{x+16}{-14} = \frac{y-13}{2} = \frac{z-3}{-5}$
3	$\frac{x-1}{-9} = \frac{y-8}{12} = \frac{2}{-20}$	$\frac{x+6}{12} = \frac{y-3}{-16} = \frac{z+1}{21}$
4	$\frac{x}{z} = \frac{y-1}{i} = \frac{z+i}{-z}$	$\frac{x-14}{14} = \frac{y-2}{-2} = \frac{z}{-5}$
5	$\frac{32}{10} = \frac{3-1}{2} = \frac{2+2}{25}$	$\frac{x-23}{10} = \frac{y-38}{-25} = \frac{z-15}{-2}$
6	$\frac{x-1}{4} = \frac{y}{-3} = \frac{z-1}{-12}$	$\frac{x-25}{8} = \frac{y}{-9} = \frac{z-2}{12}$
7	$\frac{x+2}{-1} = \frac{y+1}{12} = \frac{z-2}{-12}$	$\frac{x+3}{12} = \frac{y-22}{-8} = \frac{z-7}{-9}$
8	$\frac{x-1}{6} = \frac{y-2}{9} = \frac{z}{-2}$	$\frac{x-8}{6} = \frac{y-2}{-2} = \frac{z+17}{9}$

ī	2	3
9	$\frac{x}{3} = \frac{y-2}{2} = \frac{x-2}{6}$	$\frac{x+13}{2} = \frac{y-12}{6} = \frac{z+3}{-3}$
10	$\frac{x-2}{2} = \frac{y}{1} = \frac{z+2}{-2}$	$\frac{x+1}{1} = \frac{y-3}{2} = \frac{z+8}{2}$
II	$\frac{x-1}{4} = \frac{y-1}{1} = \frac{z}{-8}$	$\frac{x-2}{x} = \frac{y+10}{4} = \frac{z+11}{4}$
12	$\frac{x}{2} = \frac{y+2}{-1} = \frac{z-2}{2}$	$\frac{x-1}{1} = \frac{y+1}{-2} = \frac{z+3}{-2}$
13	$\frac{x-1}{-6} = \frac{y-2}{-g} = \frac{z+1}{-2}$	$\frac{x+18}{7} = \frac{y-1}{-6} = \frac{z}{6}$
14	$\frac{x+2}{2} = \frac{y}{-3} = \frac{z+1}{-6}$	$\frac{x-g}{3} = \frac{y-1}{6} = \frac{z+6}{-2}$
15	$\frac{x-1}{1} = \frac{y-1}{12} = \frac{z+1}{12}$	$\frac{x-1}{11} = \frac{y-3y}{-24} = \frac{z-2}{12}$
16	$\frac{x-1}{-8} = \frac{y-2}{-1} = \frac{z}{4}$	$\frac{x-12}{1} = \frac{y+g}{8} = \frac{z+11}{4}$
17	$\frac{x-2}{2} = \frac{x}{14} = \frac{x+2}{5}$	$\frac{x-15}{-5} = \frac{y+5}{-14} = \frac{z-5}{-9}$
18	$\frac{x-2}{2} = \frac{y-2}{2} = \frac{z+2}{-1}$	$\frac{2+7}{1} = \frac{3+1}{-2} = \frac{2+17}{-2}$
19	$\frac{x+2}{2} = \frac{y-1}{1} = \frac{z+2}{2}$	$\frac{x-10}{2} = \frac{y+11}{-5} = \frac{z-10}{14}$
20	$\frac{x+1}{1} = \frac{y-2}{-4} = \frac{z-2}{8}$	$\frac{x-4}{4} = \frac{y-9}{8} = \frac{z-13}{1}$
21	$\frac{x-2}{4} = \frac{y+1}{-1} = \frac{z}{-8}$	$\frac{x-9}{4} = \frac{y-4}{8} = \frac{z-13}{1}$
22	$\frac{x-2}{-2} = \frac{y-1}{-1} = \frac{z}{2}$	$\frac{x-15}{10} = \frac{y+12}{2} = \frac{z-11}{11}$
23	$\frac{x-1}{4} = \frac{y+1}{-12} = \frac{z}{3}$	$\frac{x\cdot 18}{-9} = \frac{1}{12} = \frac{2+7}{-8}$
24	x+2 = 4 = 2 = 2	$\frac{x+1}{12} = \frac{y-11}{4} = \frac{z+9}{-4}$
25	$\frac{x+2}{2} = \frac{y+2}{1} = \frac{z}{2}$	$\frac{x+1}{2} = \frac{y-3}{-2} = \frac{2-1}{-1}$

I	2	.3
26	$\frac{x-2}{4} = \frac{y-3}{-3} = \frac{z}{1}$	$\frac{x-1}{-4} = \frac{y-13}{-1} = \frac{z-11}{8}$
27	$\frac{x+2}{-12} = \frac{y-2}{-1} = \frac{z}{12}$	$\frac{x-3}{9} = \frac{y-1}{-12} = \frac{z-29}{8}$
28	$\frac{x+2}{4} = \frac{y-1}{-3} = \frac{z-1}{12}.$	$\frac{x-17}{3} = \frac{y-6}{-4} = \frac{z}{-12}$
29	$\frac{x-1}{5} = \frac{3}{3} = \frac{3+1}{-8}$	$\frac{x \cdot 3}{8} = \frac{y - 4}{9} = \frac{z - 14}{4}$
30	$\frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{4}$	$\frac{x-1}{-4} = \frac{y+9}{-1} = \frac{z-14}{8}$

6. В ромо о диагоналями d_1 и d_2 вписан эллипо так,что больший из диаметров эллипса лежит на большей из диагоналей ромба. Сторона ромба в точке касания с эдлипсом делится в отношении n:m.

BUY NO AN TE:

- 1) координаты фокусов эллипса;
- 2) полуоси эдлипоа;
- 3) эксцентрисит т эллипса;
- 4) длины фокальных радиусов, проведенных в точку касания;
- 5) с точностью до I градуса угол нежду указанными фокальными радиусами;
 - б) координаты точки касания в І-и квадранте.

- Написать уравнения пряных, проходящих через указанную точку касания и фожусы завипов.

Ва- ри- ант	n	m	d_{I}	d_{z}	Ва- ри- ант	n	m	d_{i}	da	Ba- pu- aht	n	m	d_{i}	dz
I	2	3	4 !	5	1	. [2	3	4 !	5	I	1 . 2	3	4 !	2
1	I	7	80	16	8	I	4	70	10	15	I	7	80	16
2	5.	A	36	18	9	5	3	80	48	16	I	15	158	32
3	2	3	20	10	10	9	II.	. 160	120	17	2	7	72	18
4	ī	3	16	8	11	1	1	12	- 4	18	5	4	90	18
5	ļ	8	54	18		7		30	10	19	2	3	80	10
	7	-	•	18		7	o.	TAO	20	20	5	11	64	32
. 6.	5	7	3 6				5		36		1	7	48	16
7	8	1	90	36	14	4	7	,,-)	••	•	•	70	44

Окончание таблицы

	1	r												
L	2	3	4	5	I	2	3	4	5	I	.2	3	4	.5
22	5	II	96	64	25	16	9	250	200	28	4	ī	70	40
23	2	3	40	30	26	I	I	36	28	29	5	13	180	TOB
24	I	3	56	32	27	2	7	I 44	18	30	4	I	90	20

- 7. Даны координаты вершин четырехугольника (ХА; УА). (хв; YB), (XC; YC), (X9; YE).
- 1) Провзить без построения чертежа, что четырекугольник выпуклыя.

2) В каком отношении диагонали делятся в точке пересечения?

							-	
Вариант	XΑ		Χß	YB	xc	YC	ΧĐ	Y90
<u> </u>	! 2	! 3	1 4	5	1 6	! 7	8	9
I	5	-I	I	-I	2	5	22	13
2	17	б	0	-3	- I 6	-5	-4	9
3	- I	7	-I4	7	17	-17	14	0
4	-I	23	12	5	6	-5	-1 2	-I
5	0	-3	-I 0	-5	-9	. 6	0	. 5
6	-I	9	-9	15	-5	-3	~2	I
7	2	8	8	0	-7	-10	-1 6	-8
8	-I	5	15	-5	-II	-3	-I8	6
9	-3	-10	6	-13	5	-2	-I	8
10	-2	-6	2	~4	4	13	-6	12
11	2	3	II	16	2	-9	-16	-20
IS	-15	-8	-5	1	12	0	- 5	-9
Ĭ3	-6	-15	II	-IO	2	4	- I 6	8
14	-6	-I4	12	-10	I	0	-1 5	8
15	-4	I	-4	-6	2	-5	€ 20.	12
Iε	4	3	-3	4	-4	~5	- 5	-4
17	3	-5	-II	-17	0	4	13	19
18	-9	-I	-I	8	27	-10	7	-16
19	3	13	10	-3	-6`	~5	-IO	7
20	6	8	•2	8	-5	-I4	6	-28
SI -	0	I	2	-I 5	-21	76	-5	6
22	6	4	20 ·	-7	-4	-6	-24	4
23	13	13	3.	-5	-20	-9	5 `	6
24	-10	• 0	I	7	6	8	8	-11

I	2	3	4,	5	6	7	i, 8.	9
25	-5	-2	-6	4,	4,	4,	18.	-I2
26	-I2	-19	3,	-I4	IO.	I 4,	- 5	2
27	-IO	-3	-3 :	IO.	18:	4	4,	-4
28	-10	2	-7	-4	8	· -7	0	3
29	-I	I2	-5	I,	-IO	-24.	-2	-2
30	2	-I	I	2	8	- 5	19	-4

- 8. Дана гипербола y = (ax+b)/(cx+d).
- I) Построить график;
- 2) привести уравнение к каноническому виду и вычислить параметры гиперболы;
 - 3) наити координаты фокусов в исходной системе координат.

Ва- ри- ант	a	в	C	d	Ba- pu- aнт	a	В	С	d	Ва- ри- ант	a	в	.c	d
			I			8	-54	I	-7	21.	-3	IA:	I	6
2	-8	80	I.	-9	12	-9	27	· I	-I.	22	-6.	-44	1	6
3	2	34	. I.	8	. 13	-7	-24	. I,	6.	23.	-8	72	Ιţ	-8
4	7	-54	I	-8	I4.	-3	. 35	I:	-I	24,	-4%	38	Ĭ,	-5
5	-5	-17	I,	7	15.	2	48	I,	8n	25	4,	- 18 c	Iŗ	-9
6	2	4.	I	L	16	-5	17	· I	3	26.	-2,	-8 1	1.	5
					I7	-4	4.	, I,	3,	27	-80	42	1:	-5
, 8						-9	44,	, I,	-44	28/1	77	30	I.	4
9.						8-	. 42,	I,	3,	29u	80	-54	I.	-9
			•		. 20	-3	. 39	. L,	-7 7	30 :1	-:4:	20	I	-3

9. Дана парабола $y = a x^2 + b x + C$. Найти координать фокуса и указать систему координат. в котором ураднание параболь имеет канонический вид.

Ba- pu- ahr	a	в	c	Ва- ри- ант	a	в	c	Ва- ри- ант	a:	8	. с
I	2,5	5,0	4,5	II	-I,5	-I,5	3,0	21	0,5	2,5	3,0
2	0, I	-9,0	2,0	12	2,5	-2,5	-5.0	22	O, I-	-4.0	-9,0
*	-I,5	-3:0	-2,5	13	0,5	-3,5	5.0	23	-0.5	-2.0	-6,0
*4	-0.5	2,0	6.0	14	1.0	4.0	6,0	24	O', I-	5.0	-4.0
5	0,5	-4,0	8,0	15	0, T-	-2,0	-6,0	25	2,5	-5,0	5,5
6	2,0	6,0	4,0	I 6	-0,5	I.0	-3,5	26	5, 0ن	-0,5	-6,0
7	-0,5	-2,0	-0,5	17	-I ,0	2,0	-2,0	27	-2,5	-5,0	-3,5
8	-I,0	2,0	8,0	18	0,5	-2,0	3,0	28	0,5	3.0	4,0
9	-0,5	I,0	7,5	19	I,0	-4,0	-5,0	29	0.5	-2,0	5,0
10	1,0	4,0	3,0	20	-2,0	-8,0	-6,0	30	-0.5	1,0	-5,5
_					1/4 -		V 0 -				

- IO. Jahn TPH TOYKH (XA;YA), (XB;YB), (XC;YC).
- 1) Проверить, что эти три точки не лежат на одной прямой, т.е. образуют треугольник;
- 2) вычислить параметры треугольника (площедь, периметр, величину угла (\mathcal{C}) с точностью до одного градуса);
 - 3) написать уравнение описанной скружности;
 - 4) написать уравнение биссектрисы угла (C):
- 5) написать уравнения двух перпендикуляров, опущенных из точек A и B на биссектрису угла (C) и вычислить расстояние между тими.

Ва-	XΑ	ΥA	хв	УB	XC.	YC	Ba- pu- aht		ΥA	хв	γв	ХC	YC
. !	2	3.	Ą	5	6	7.1	1	2	.3	4	5	6	7
I	15	-13	7	-I3	14	14	II	-I5	ŧż	-5 -5	13	-I4	I4
2	24	Ţ.	18	7	12	-5	12	-23	-2	-5	-2	-I4	I
3	6	21	0	21	-Í	ĭ4	13	-4	-22	2	-22	-I	-13
4	-Ì	-5	-19	-2	-10	-5	14	II	6	17	0	3	-2
- 5	I	-3	-17	9	-10	8	15	-55	B	-16	2	-10	14
б	I	-8	7	-5		-7	15	5	21	-13	9	-2	12
7	-18	. 5	-10	-б	24	Ć	17	7	Ş	و۔	18	-5	· 6
8	-4	5	-12	5	-8	7	18	14	Í	20	-5	- 8	c -I
9	-I 5	I4	-7	-IO	-5	4	19	15	ÌÌ	21	II	14	IS
10	-6	-I9	, 0	-19	I	-12	20	-3	20	3	20	. 4	13

	1 2 1	<u>a !</u>											
1	! ~ !		~~~~	5			_					10 1	<u>[</u>]
2 I	-4	9	-12	-15	-2	-5	26	7	11	-3	I	I	7
22	2	-18	20	-12	6	-I4	27	-16	-4	2	-1 0	-S	-6
23	16	16	8	16	7	13	28	` -5	-19	-13	-19	-9	-ŢI
24	-2	-5	-8	-5	-9	-6	29	· 3	-13	· 2I	-I	10	-4
25	18	9	6	3	IO	3	30	8	-18	.0	6	10	_1,
, 1	II. Pe	ешить	CHCT	енн ли	нейны	ax yp	авне	: Иин		•			
I.	(3	1:x2 + 4	4 -	Z = -	2		5	5x -	-3 Z	= 0	•		
	1	ze + 4	y +	Z = - 5Z = 3	3	•	1 2	x -	4+	ž = 10	7		

$$\begin{cases} 4x - y + 3z = 8 & 3x + y - 4z = -10 \\ 8x + y + z = 19 \\ x + 3y - z = 2 & 5x - y + 2z = 16 \end{cases}$$

7.

$$\begin{cases} 5x + y - z = 14 \\ 2x - y + 4z = 10 \\ 8x + 3y - 2z = 22 \end{cases}$$

$$\begin{cases} 3x - y + 4z = 22 \\ 4x + 2y - 7 = 1 \\ 10x + 7z = 45 \end{cases}$$

$$\begin{cases} 5x + y - 2z = -7 \\ 3x + 3y + z = 13 \\ 2x - 3y + 4z = 0 \end{cases}$$

$$\begin{cases} 3x + 2y + 5z = 23 \\ 2x - y + 10z = 13 \\ x + 3y - 5z = 9 \end{cases}$$

$$\begin{cases} x - 2y + 4z = 4 \\ 2x + y - z = 10 \\ -x + 7y + 2z = 4 \end{cases}; \begin{cases} 7x + 8y - z = 0 \\ 2x - 5y + 8z = 0 \\ 9x + 3y + 7z = 0 \end{cases}$$

$$\begin{cases} 3x - 2y + 77 = 25 \\ x + 3y - 2 = -13 \\ 5x - y + 42 = 17 \end{cases}, \begin{cases} 3x + 2y - 47 = 3 \\ x + 5y - 32 = 8 \\ 4x + 7y - 72 = 16 \end{cases}$$

$$\begin{cases} 2x + 5y - 7z = 12 \\ 3x - y + 4z = 7 \\ x + 7y - 3z = 20 \end{cases}, \begin{cases} 2x - 3y - 7z = 0 \\ 9x - 7y + z = 0 \\ -\alpha - y - z = 0 \end{cases}$$

8.
$$\begin{cases} -x + 4y - \overline{z} = 9 \\ 3x + 2y + \overline{z} = -9 \end{cases}$$

$$\begin{cases} 5x + y - 4\overline{z} = -6 \end{cases}$$

$$\begin{cases} 2x + y - 3\overline{z} = -22 \\ 4x + 3y + \overline{z} = 2 \end{cases}$$

$$\begin{cases} 3x + y + 2\overline{z} = 2 \\ 2x - 4y - 5\overline{z} = 14 \end{cases}$$

$$\begin{cases} 3x - y + \overline{z} = 0 \\ 4x + 3y + \overline{z} = 2 \end{cases}$$

$$\begin{cases} 5x + 3y - \overline{z} = 0 \\ 13x + 2y = 1 \end{cases}$$

$$\begin{cases} 5x + 2y - 7\overline{z} = 3 \\ 2x + 4y + 5\overline{z} = 17 \end{cases}$$

$$\begin{cases} 4x + 3y - 5\overline{z} = -4 \\ 3x - 2y + 7\overline{z} = -5 \\ 2x + 5y - \overline{z} = 10 \end{cases}$$

$$\begin{cases} 5x - y - 3\overline{z} = 0 \\ -x + 4y + 19\overline{z} = 22 \end{cases}$$

$$\begin{cases} 5x - y - 3\overline{z} = 0 \\ -x + 4y + 19\overline{z} = 22 \end{cases}$$

$$\begin{cases} 5x - y - 3\overline{z} = 0 \\ 3x + 2y - 7\overline{z} = -13 \end{cases}$$

$$\begin{cases} 9x - 6y + 5\overline{z} = -11 \\ 4x - y + \overline{z} = -2 \end{cases}$$

$$\begin{cases} 3x - y - 3z = 0 \\ 3x + 2y - 7z = -13 \\ 2x + y + 4z = 17 \end{cases}$$

$$\begin{cases} 4x - 2y + 5z = -7 \end{cases}$$

$$\begin{cases} 2x + y + 5z = -7 \end{cases}$$

$$\begin{cases} 4x - 2y + 5z = -7 \\ 3x + 5y - 2z = -1 \\ 2x + 3y + z = -7 \end{cases}$$

13.

14.

I5.

$$\begin{cases} x + 5y - 2 = -15 \\ 3x + 2y + 42 = 8 \\ 5x - y + 22 = 17 \end{cases}$$

$$\begin{cases} 8x - 10y + 7 = 24 \\ 5x + y + 37 = 3 \\ 2x + 3y - 57 = 11 \end{cases}$$

16.
$$\begin{cases} -5x + 4y - 2 = 13 \\ 2x - 3y + 52 = 13 \\ x + 4y - 2 = 5 \end{cases}$$

$$\begin{cases} 9x - 6y + 5z = -11 \\ 4x - y + z = -2 \\ 13x - 7y + 6z = -12 \end{cases}$$

$$\begin{cases} 2x + y + 5z = 9 \\ 7x + 3y - z = 29 \\ 3x + y - 11z = 11 \end{cases}$$

$$\begin{cases} 3x + 3y + 5z = 23 \\ -2x + y + 3z = 6 \\ x + 4y + 8z = 29 \end{cases}$$

$$\begin{cases} x + 4y - z = 5 \end{cases}$$

$$2x + 4y - 2 = 5$$

$$2x - 3y + 52 = 13$$

$$4x + 5y + 32 = 23$$

$$\begin{cases} 2x + 3y - 5z = 11 \\ 5x + y + 3z = 3 \\ 3x - 2y + 8z = -8^{\circ} \end{cases}$$

- 22 -(7x - 3y + 42 = -4 5x - y + 2 = 17 3x + 3y + 52 = 23 3x +2y + 42 = 8 (-2x+y+3z=6 L8x + y + 6z = 25 18. (3x-y+4z=1 2x+34+2=-7 7x + 3y - z = 2943x - 5y - 2z = -12x + y + 5z = 9_ 5x + 8y - ≥ = -8 19. 19x-6y+5z=-11 2x+y+42=17 3x + 2y - Z = 3 3x +2y -72=-13 5æ+3y-3z=4 20. ~ 8x - 6y + 7z = 9. 2x + 5y - 2 = 105x + 24 - Z = 6 3x-2y+72=-5 [8x+y+13z=0 21. 14x-7y+6Z=-3 2x+4y+57=0 2x - 2y + 3z = 03x-2y+72=-5 8x + 19 = 0 22. 2x + 5y -92 = -4 3x - y + 5z = 08x - y + 2 = 0

5x +3y - 2 = 2 23.

3x+y+2==2

9x - 4y + z = 186x + 5y - 2z = 27

25. $\int 10x - y + z = g$ 2 +54-32 =8 3x + 2y - 4z = 3

24.

4x +3y + Z =0 L10x+4+112=0

5x + y - 4 = -6 3x + 2y + z = -g2x - y - 5z = 3

2 + 74 - 3Z = 20 3x - y + 4 z = 7

5x-y+4==0 2 +3y-Z=0 6x+24+3Z=0 $\int 30e + 7y - 2z = 4$ -x + 9y + 2 = 4 2x - 5y + 8z = 312x + y - z = 103x + 9y = 24

2x - 4 + 10 = 13 2ce - 3y + 47 = 0 3x + 2y + 5z = 233x + 74 + Z = 13 9x - y + 7z = 627x + y +9Z =13

28. 4x+2y-z=1 8x +34-22 =22 3x - 4 + 4z = 222x - y + 4z = 10_4x +5y -10z = 2 29.

5x - y + 27 = 163x + 2y - z = 330. (2x - y + z = 10)

x-44+92=15 2x - y + 3z = 83x +4 -42 =-10 x+4y+52=3 4x +3y -32 = 0 5x+2y+11 ==19

12. Вычислить определитель

-I -7 -2 -3 -7

-5 8 **3**I 26

16 3 2

I+3y-Z=2

8x +2y+7Z =19

0

15.

5

7.	2	-1	IO	13	
	3	2	5	23	
	9	-I	7	62	
	2	I	I	0	

I.
$$\begin{pmatrix} 1 & 0 & -9 \\ -7 & 3 & -2 \\ 5 & 3 & 3 \end{pmatrix}$$
 6. $\begin{pmatrix} 3 & 7 & -5 \\ -4 & -2 & 0 \\ -4 & -8 & -5 \end{pmatrix}$ II. $\begin{pmatrix} 1 & 9 & 6 \\ 4 & 5 & 0 \\ 9 & -3 & -3 \end{pmatrix}$

3.
$$\begin{pmatrix} -\mathbf{I} & \mathbf{3} & \mathbf{0} \\ \mathbf{9} & \mathbf{I} & -6 \\ \mathbf{3} & 8 & -6 \end{pmatrix}$$
 8. $\begin{pmatrix} 2 & 4 & 8 \\ \mathbf{0} & 5 & -2 \\ 4 & \mathbf{0} & -3 \end{pmatrix}$ 13. $\begin{pmatrix} \mathbf{0} \mathbf{I} & -5 & \mathbf{9} \\ -5 & 3 & 3 \\ -4 & 7 & 6 \end{pmatrix}$

5.
$$\begin{pmatrix} -8 & 0 & 9 \\ -5 & -9 & 0 \\ 9 & 1 & -1 \end{pmatrix}$$
 10. $\begin{pmatrix} 0 & 8 & 6 \\ -2 & 2 & -6 \\ 8 & 9 & 5 \end{pmatrix}$ 15. $\begin{pmatrix} 6 & 6 \\ 7 & 6 \end{pmatrix}$

16.
$$\begin{pmatrix} 3 & -8 & -3 \\ -I & I & -3 \\ I & -I & -6 \end{pmatrix}$$
 21. $\begin{pmatrix} 9 & 6 & 9 \\ -5 & I & -I \\ 6 & 8 & -7 \end{pmatrix}$

$$\begin{array}{cccc}
27 \cdot \begin{pmatrix}
-4 & -5 & 5 \\
7 & I & -8 \\
2 & 4 & -6
\end{pmatrix}$$

I8.
$$\begin{pmatrix} I & 2 & 8 \\ 0 & 7 & -9 \\ 9 & -9 & -7 \end{pmatrix}$$

$$\begin{array}{cccc}
30. & -9 & -8 & -5 \\
-2 & 0 & \mathbf{I} \\
-7 & -7 & -6
\end{array}$$

14. Найти собственные числа

$$\begin{pmatrix}
4 & -2 & -1 \\
-1 & 3 & -1 \\
1 & -2 & 2
\end{pmatrix}$$

II.
$$\begin{pmatrix} 5 & -4 & 4 \\ 2 & 1 & 2 \\ 2 & 0 & 3 \end{pmatrix}$$

3.
$$\begin{pmatrix} 3 & -I & I \\ 0 & 2 & -I \\ 0 & -I & 2 \end{pmatrix}$$

4.
$$\begin{pmatrix} 5 & -I & -I \\ 0 & 4 & -I \\ 0 & -I & 4 \end{pmatrix} \qquad 9. \begin{pmatrix} 4 & I & 0 \\ I & 4 & 0 \\ -I & I & 5 \end{pmatrix} \qquad I4. \begin{pmatrix} 5 & -2 & 2 \\ 0 & 5 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$

5.
$$\begin{pmatrix} 6 & -2 & -I \\ -I & 5 & -I \\ I & -2 & 4 \end{pmatrix}$$
 10. $\begin{pmatrix} I & 0 & -2 \\ 0 & I & 2 \\ -2 & 2 & -I \end{pmatrix}$ 15. $\begin{pmatrix} 7 & -4 & 4 \\ 2 & 3 & 2 \\ 2 & 0 & 5 \end{pmatrix}$

$$\begin{pmatrix}
7 & -6 & 6 \\
4 & -1 & 4 \\
4 & -2 & 5
\end{pmatrix}.$$

 $\begin{bmatrix}
 7 & -6 & 6 \\
 2 & 3 & 2 \\
 2 & 2 & 3
 \end{bmatrix}$

2I.
$$\begin{pmatrix} 5 & 0 & 0 \\ \frac{2}{3} & \frac{13}{3} - \frac{4}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{11}{3} \end{pmatrix}$$

2I.
$$\begin{pmatrix}
5 & 0 & 0 \\
\frac{2}{3} & \frac{13}{3} - \frac{4}{3} \\
\frac{2}{3} & -\frac{2}{3} & \frac{11}{3}
\end{pmatrix}$$
26.
$$\begin{pmatrix}
5 & 0 & 0 \\
1 & 4 & -1 \\
1 & -1 & 4
\end{pmatrix}$$
22.
$$\begin{pmatrix}
\frac{19}{3} & \frac{2}{3} - \frac{2}{3} \\
2 & 5 & -2 \\
\frac{2}{3} & -\frac{2}{3} & \frac{11}{3}
\end{pmatrix}$$
27.
$$\begin{pmatrix}
6 & 1 & -1 \\
2 & 5 & -2 \\
1 & -1 & 4
\end{pmatrix}$$

23.
$$\begin{pmatrix}
\mathbf{I} & \mathbf{I} & \mathbf{3} \\
\mathbf{I} & \mathbf{I} & -3 \\
\mathbf{3} & -3 & 3
\end{pmatrix}$$
28.
$$\begin{pmatrix}
-2 & -\mathbf{I} & 2 \\
-\mathbf{I} & -2 & -2 \\
2 & -2 & \mathbf{I}
\end{pmatrix}$$
24.
$$\begin{pmatrix}
2 & \mathbf{I} & -\mathbf{I} \\
\mathbf{I} & 2 & -\mathbf{I} \\
0 & 0 & \mathbf{I}
\end{pmatrix}$$
29.
$$\begin{pmatrix}
5 & 2 & 4 \\
3 & 3 & 3 & 3 \\
0 & \mathbf{I} & 0 \\
-\frac{2}{3} & \frac{2}{3} & \frac{7}{3}
\end{pmatrix}$$

РАЗЛЕЛ 2. ВВЕДЕНИЕ В АНАЛИЗ

Напомним, что графики функций а) f(-x), б) -f(x), в) f(x-a), г) f(x)+A, д) f(kx), е) |f(x)| получаются из графика функции f(x) оледующими геометрическими преобразованиями: а) отражением относительно оси 0 , б) отражением относительно оси 0 , б) отражением относительно оси 0 . В) сдвигом вдоль оси 0 на a единиц, г) сдвигом вдоль оси a на a единиц, д) гомотетией вдоль оси a в a единиц, д) гомотетией вдоль оси a той части графика, которая лежит ниже этой оси.

Задача I. Используя элементарные преобразования, построить график функции $y = |x^2-3\infty| + 2$.

Решение. Сначала отроим график параболи $f(x) = x^2 - 3x$. Затем применяем последовательно преобразования е) и г) – сдвиг по оси на 2 единицы.

Приведем некоторые арифметические формулы, которые можно доказать методом математической индукции:

1+ 2+3+...+
$$n = \frac{4}{2} \cdot n \cdot (n+1);$$

1+3+5+...+(2n-1) = $n^2;$
 $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{4}{6} n \cdot (n+1)(2n+1);$
1+ $a + a^2 + ... + a^n = \frac{(a^{n+1}-1)}{(a-1)}, (a \neq 1).$

 $\frac{-29}{3}$ Вычиолить предел $\lim_{n\to\infty} \frac{1^2+2^2+...+n^2}{n^3}$

Решение. Используя третью из формул, приведенных выше, полуми:

$$\frac{1^2+2^2+\ldots+n^2}{n^3}=\frac{1}{6}\cdot\frac{n(n+1)(2n+1)}{n^3}=\frac{1}{6}(1+\frac{1}{n})(2+\frac{1}{n}).$$

Tak kak $\lim_{n\to\infty} \frac{1}{n} = 0$. To

$$\lim_{n\to\infty} \frac{1^2+2^2+\dots+n^2}{n^2} = \lim_{n\to\infty} \frac{1}{6} \left(1+\frac{1}{n}\right) \left(2+\frac{1}{n}\right) =$$

$$= \frac{4}{6} \left(1+\lim_{n\to\infty} \frac{1}{n}\right) \left(2+\lim_{n\to\infty} \frac{1}{n}\right) = \frac{1}{6} \cdot 1 \cdot 2 = \frac{10}{3}.$$

OTBET: I/3.

Напомнии, что порядком малости бесконечно малоя величины (даяее б.м.) $\mathcal{B}(x)$ относительно бесконечно малой $\mathcal{L}(x)$ ($x \rightarrow a$) называется такое натуральное число n, что существует и не равен 0 мредел отношения $\mathcal{B}(x)/\mathcal{L}(x)^n$ при $x \rightarrow a$. Обозначим через $V_{\mathcal{L}}(\beta)$ порядок малости б.м. β относительно б.м. \mathcal{L} . Тогда

$$V_{\lambda}(\beta_1\beta_2) = \overline{V}_{\lambda}(\beta_1) + V_{\lambda}(\beta_2) \tag{1}$$

дяя явонх б.м. β_1 , β_2 , для которых определены порядки мелости отчествень ф. Действительно, если $n_1=V_L(\beta_1)$, $n_2=V_L(\beta_2)$, то

$$\lim_{x\to a}\frac{\beta_1}{2^n}\frac{\beta_2}{2^n}=\lim_{x\to a}\frac{\beta_1}{2^n}\cdot\lim_{x\to a}\frac{\beta_2}{2^n}\neq 0,$$

что доказывает равенство (I).

Задаче 3. Определить порядок малости б.м. $\beta(x) = (\cos 2x - 1)x$ $x(e^x - e^x) \cdot (\sin x - tgx)$ гносительно $\lambda(x) = x$ при x = x.

Решение. Имеем: $\cos 2x-1=-2\sin^2x$. Так как $V_\infty(\sin x)=1$ соглаоно первому замечательному пределу, то V_∞ ($\Im 2x-1$)= $=V_\infty(\sin x)+V_\infty(\sin x)=2$. Далее, $e^x=e^x=e^x$ ($e^{2x}-1$)
и так как $\lim_{x\to 0}(e^{2x}-1)/x=2$, то $V_\infty(e^2-e^x)=1$. Функцию $\lim_{x\to 0}x=\lim_{x\to 0}x=\lim_{x$

Ответ: порядок малости $\beta(\infty)$ относительно x ($x \rightarrow 0$) равен 6.

Задача 4. Вычислить $\lim_{x\to 0} \left(\frac{x^2-2x+3}{x^2-3x+2}\right)^{\frac{3mx}{\infty}}$.

Решение. Обозначим $J(\alpha) = \frac{x^2 - 2x + 3}{x^2 - 3\alpha + 2}$, $\beta(x) = \frac{\sin x}{x}$. Тогда

$$\lim_{x\to 0} \Delta(x) = \frac{0^2 - 2.0 + 3}{0^2 - 3.0 + 2} = \frac{3}{2} , \lim_{x\to 0} \beta(x) = 1$$

в силу непрерывности функции $\mathcal{L}(x)$ и первого замечательного предела. Следовательно,

 $\lim_{x\to 0} \ln \left(\Delta(x)^{\beta(x)} \right) = \lim_{x\to 0} [\beta(x) \ln \Delta(x)] = 1 \cdot \ln \frac{3}{2} = \ln \frac{3}{2};$

 $\lim_{x\to 0} \Delta(x)^{\beta(x)} = e^{\ln x} = 3/2,$

где использована непрерывность функции $\ell n x$ и e^x . Ответ: 3/2.

Задача 5. Локализовать какой-либо ко рень уравнения $e^{-x} = x+2$ с вочностью до 0,1.

Решение. Локализовать корень x_0 с точностью до \mathcal{E} , это эна-чит найти такое число x^* , что $x_0 \in (x^* - \mathcal{E}, x^* + \mathcal{E})$. Тогда $x_0 \approx x^*$ с точностью \mathcal{E} . Заметим, что $e^x_{x=0} < x + 2/_{x=0}$ и $e^x_{x=2} > x + 2/_{x=2}$. Так как функции e^x и x + 2 непрерывны, то по теорене Больцано-Коши существует корень $x_0 \in (0,2)$ уравнения $e^x = x + 2$. Для локализации этого корня будем использовать метод дихотомии (деления пополам). Вычисления сведем в таблицу

\propto	0	2	I	I,5	I,25	1,125	1
e ^x	I	7,39	2,72	4,48	3,49	3,08	•••
x+2	2	4	3	3,5	3,25	3,125	
ex, ? x+2	<	>	Z	>	>	.۷	• • • :

В этой таблице, начиная со столбца x=1, выбор значения осуществляется по правилу x=(a+b)/2, где a, b — значения переменной x в предыдущих столбцах с условием, что неравенства в последней строке, соответствующие a и b, разного смысла и разность |b-a| при этом наименьшая. Так как $x \in (1.125; 1.25)$ и интервал (1.125; 1.25) содержится в интервале (1.15 — 0.1; 1.15 + 0.1)

то $x^* = 1.15 -$ искомая точка.

Ответ: один из корней уравнения $e^{x} = x + 2$ содержится в интервале (1,15 - 0,1; 1,15 + 0,1).

RNHAKAE

I. Для заданной функции f(x) и числа x_o

I) найти область допустимых значений (ОДЗ) функции $f(\infty)$;

2) элементарными преобразованиями (см. задачу I) построить график функции f(x):

3) если x_0 принадлежит ОДЗ, то наити число ∂^2 Чакое, что $|f(x)-f(x_0)|<0$, как только $|x-x_0|<\partial^2$; если же x, не принадлежит ОДЗ, то найти число ∂^2 такое, что |f(x)|>50 как только $|x-x_0|<\partial^2$, $x\neq x_0$.

I.
$$\left| \frac{x-i}{x+i} \right|$$
 , -1 I6. $\frac{|x-2i|}{x-2}$; 2

3.
$$x^2-3|x|+2$$
; 0 18. $x^2+5|x|-6$; -1

4.
$$\frac{|x-1|}{|x+1|}$$
; -1 19. $\frac{x+2}{|x-2|}$; 2

6.
$$|x^2-3x+2|$$
; 2 21. $|x^2-|5x-6|$; 1

7.
$$\frac{x-1}{|x+1|}$$
; -1 22. $\frac{|x|+3}{|x-3|}$; 3

9.
$$x^2 + 13 \cdot x - 21$$
; 1 24. $1x^2 + 5x^2 = 6$; = 3

10.
$$\frac{|x|-1}{x+1}$$
, 1 25. $\frac{x+2}{|x|-2}$, 8

13.
$$\left|\frac{x+2}{x-2}\right|$$
; 2 28. $\left|\frac{x+1}{x-2}\right|$; 2

14.
$$\cos(\frac{r}{e} - \frac{x}{e})$$
; $-\frac{2r}{3}$ 29. $e^{-(x)}$

15.
$$|x^2| | |x^2| |x^2| |x^2| | |x^2| | |x^2| |x^2| | |x^2| | |x^2| | |x^2| |x^2| |x^2| |x^2| |x^2| |x^2| |$$

2. Вычислить предел последовательности

I.
$$\frac{1}{n!} \sum_{k=1}^{n} (2k-1)$$
 If. $\frac{3^{n}-2^{n}}{3^{n-1}+2^{n}}$

2.
$$\frac{(2n+1)! + (2n+2)!}{(2n+3)!}$$
 I7. $\frac{2}{3} - \frac{1}{(n+2)^2} \sum_{k=1}^{n} k$

3.
$$\frac{1}{n+1} \sum_{k=1}^{n} (2k+1) - \frac{2n+3}{2}$$
 I8. $\sum_{k=1}^{n} \frac{3^{k}+2^{k}}{6^{k}}$

4.
$$\frac{1}{2^{n+1}+3^{n+1}}$$
 I9. $\frac{1}{n+3}\sum_{k=0}^{n}(-1)^{k}(3k+2)$

5.
$$\frac{1}{\sqrt{9n^2+1}} \sum_{k=1}^{n} (k+1)$$
 20. $\frac{(2n+1)!+(2n+2)!}{(2n+3)!-(2n+2)!}$

6.
$$\frac{1+3+...+(2n-1)}{1+2+...+n}$$
 2I. $\frac{2+4+...+2n}{1+3+...+(2n-1)}$

7.
$$\frac{1}{n+3}\sum_{k=1}^{n}(2k-1)-n$$
 22. $\sum_{k=1}^{n}\frac{2^{k}+1}{4^{k}}$

8.
$$\frac{1+4+...+(3n-2)}{\sqrt{5n^4+n+1}}$$
 23.
$$\frac{1}{n^2+\sqrt{n^2}}\sum_{k=1}^{n}(5n-3)$$

9.
$$\frac{(n+4)! - (n+2)!}{(n+3)!}$$
 24. $\sum_{k=0}^{n} \frac{2^k + 5^k}{10^k}$

10.
$$\frac{(3n-1)! + (3n+1)!}{(n-1)\cdot(3n)!}$$
 25.
$$\frac{1-2+3-4+...-2n}{\sqrt[3]{n^3+2n+2}}$$

II.
$$\frac{2^n - 5^{n+1}}{2^{n+1} + 5^{n+2}}$$
 26. $\frac{5^{n+2} + 3^{n+2}}{5^n + 3^n}$

12.
$$\sum_{k=1}^{n} \left(\frac{1}{3}\right)^{k} / \sum_{k=1}^{n} \left(\frac{1}{5}\right)^{k}$$
 27. $\frac{1}{n^{3}} \sum_{k=1}^{n} \left(2k-1\right)^{k}$

13.
$$\frac{1}{\sqrt{n^2+n+1}} \sum_{k=0}^{n} (-1)^k (4k+3)$$
 28. $\frac{1+3+5+...+(2n-1)}{2+4+6+...+2n}$

14.
$$\frac{1}{n} \sum_{k=0}^{2n} (-1)^k (2k+1)$$
 29. $\frac{1}{n^2} \sum_{k=1}^{n} (3k+2)$

15.
$$\frac{\sqrt[3]{n^3+5^2} - \sqrt{3n^4+2^2}}{1+3+5+\ldots+(2n-1)}$$
 30. $\frac{1}{n^2} \sum_{k=1}^{2n} (-1)^k \cdot k^2$

3. Дана числовая последовательность
$$\mathcal{L}_{n}$$
.

3) Указать натуральное число $\mathcal{N}(\mathcal{E})$ такое, начиная с которого выполняется неравенство $|\mathcal{L}_n - A| < \mathcal{E}$.

I.
$$\frac{3-n^2}{1+2n^2}$$
 9. $\frac{3n+4}{2n+1}$ I7. $\frac{n+1}{4n-1}$ 25. $\frac{g-n^3}{1+2n^3}$
2. $\frac{4n-1}{2n+1}$ I0. $\frac{2n-5}{3n+1}$ I8. $\frac{4n^2+1}{3n^2+2}$ 26. $\frac{4n-3}{2n+1}$
3. $\frac{1-2n^2}{2+4n^2}$ II. $\frac{n+1}{1-2n}$ I9. $\frac{1-2n^3}{n^2+3}$ 27. $\frac{n}{3n-1}$
4. $\frac{-5n}{n+1}$ I2. $\frac{2n+4}{3n-5}$ 20. $\frac{3n^2}{2-n^2}$ 28. $\frac{3n^3}{n^3-2}$
5. $\frac{4+2n}{1-3n}$ I3. $\frac{3n-2}{2n+1}$ 21. $\frac{3n-1}{5n+1}$ 29. $\frac{2-3n}{5n^2+4}$
6. $\frac{5n+45}{6-n}$ I4. $\frac{2n-1}{2-3n}$ 22. $\frac{4n-3}{2n+1}$ 30. $\frac{3n^3+2}{4n^3-1}$
7. $\frac{1+3n}{6-n}$ I5. $\frac{3n-1}{2n+1}$ 23. $\frac{5n+1}{3n-5}$
8. $\frac{2n+1}{4n-1}$ I6. $\frac{8-3n^3}{2n+1}$ 24. $\frac{4n^3}{4n^3}$

4. Вычислить предел последовательности

I.
$$\left(\frac{3n^2 + 4n}{3n^2 - 2n}\right)^{2n+5}$$

7. $\left(\frac{n-1}{n+3}\right)^{n^2}$

2. $\left(\frac{n^2 + n + 1}{n^2 + n - 1}\right)^{-n^2}$

8. $\left(\frac{10n - 3}{10n + 1}\right)^{2n+1}$

3. $\left(\frac{2n + 3}{2n + 1}\right)^{n+1}$

9. $\left(\frac{n^2 + 21n - 7}{n^2 + 18n + 9}\right)^{2n+1}$

4. $\left(\frac{n-1}{n+3}\right)^{n+2}$

10. $\left(\frac{3n^2 - 5n}{3n^2 - 5n + 7}\right)^{n+1}$

5. $\left(\frac{2n^2 + 5n + 7}{2n^2 + 5n + 3}\right)^n$

11. $\left(\frac{n+4}{n+2}\right)^{2n-1}$

6. $\left(\frac{5n^2 + 3n - 1}{5n^2 + 3n + 3}\right)^{n^2}$

12. $\left(\frac{2n-1}{2n+1}\right)^{n+1}$

13.
$$\left(\frac{n^2 - 6n + 5}{n^4 - 5n + 5}\right)^{3n+2}$$
 22. $\left(\frac{n+3}{n+6}\right)^{n+4}$

I4.
$$\left(\frac{3n^2+14n-15}{7n^2+11n+2}\right)^{n+3}$$
 23. $\left(\frac{13n+3}{15n-10}\right)^{n-3}$

15.
$$\left(\frac{6n-7}{6n+4}\right)^{3n+2}$$
 24.
$$\left(\frac{n-7}{n+5}\right)^{\frac{4}{5}+1}$$

I6.
$$\left(\frac{3n^2-6n+7}{3n^2+20n}\right)^{-n+2}$$
 25. $\left(\frac{4n^2+4n-1}{4n^2+2n+3}\right)^{2-2n}$

17.
$$\left(\frac{n^2-3n+6}{n^2+5n+1}\right)^{\frac{n}{4}}$$
 26. $\left(\frac{3n-2}{3n+1}\right)^{n-4}$

18.
$$\left(\frac{n^2-10}{n+1}\right)^{3n+1}$$
 27. $\left(\frac{n^2+1}{n^2-3}\right)^{-n^2}$

19.
$$\left(\frac{3n+1}{3n-1}\right)^{2n+3}$$
 28. $\left(\frac{n+3}{n-1}\right)^{n+2}$

20.
$$\left(\frac{2n^2+2}{2n^4-1}\right)^{n^2}$$
 29. $\left(\frac{n+2}{n+4}\right)^{4n+4}$

2I.
$$\left(\frac{2n^{2}-3n+2}{2n^{2}+5n+1}\right)^{-n/4}$$
 30.
$$\left(\frac{2n+1}{2n-1}\right)^{n+4}$$

5. Вычислить предел функции

I.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)(x - 1)}{x^4 + 4x^2 - 6}$$
 7. $\lim_{x \to -1} \frac{(1 + x)^3 - 1 - 3x}{x^4 + x}$

2.
$$\lim_{x \to -3x - 2} \frac{x^3 - 3x - 2}{x^2 + x^2}$$
 8. $\lim_{x \to -2} \frac{x^3 - 3x + 6}{2x^3 - x - 1}$

3.
$$\lim_{x \to -2} \frac{(2x^2 - x - 1)^4}{x^3 + 4x^2 + 3x}$$
 9. $\lim_{x \to -2} \frac{x^3 - 6x - 2}{x^2 - x - 2}$

6.
$$\lim_{x \to -1} \frac{(x^3 - 2x - 1)^2}{x^4 + 2x + 1}$$
 I2. $\lim_{x \to -1} \frac{x^3 - 3x - 2}{x^4 + 2x + 1}$

14.
$$\lim_{x\to -1} \frac{x^3-3x-2}{(x^2-x-2)^2}$$

15.
$$\lim_{x \to 1} \frac{x^4 - 1}{2x^4 - x^2 - 1}$$

16.
$$\lim_{x\to 1} \frac{x^3-2x+1}{x^4-2x+1}$$

17.
$$\lim_{x\to 1} \frac{1-x^2}{2x^3-x^2-1}$$

19.
$$\lim_{x\to 3} \frac{x^3-4x^2-3x+18}{x^3-6x^2+3x+9}$$

20.
$$\lim_{x \to -3} \frac{x^3 + 7x^2 + 15x + 9}{x^3 + 8x^2 + 21x + 18}$$

21.
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$$

22.
$$\lim_{x \to 1} \frac{x^3 + x^2 - 5x + 3}{x^3 - x^2 - x + 1}$$

23.
$$\lim_{x \to -1} \frac{x^3 + 4x^2 + 6x + 2}{x^3 - 3x - 2}$$

25.
$$\lim_{x\to -2} \frac{x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 - 4}$$

26.
$$\lim_{x \to -3} \frac{x^3 + 4x^2 + 3x}{(2x^2 - x + 1)^2}$$

27.
$$\lim_{x\to 1} \frac{2x^4-x^2-1}{x^4-1}$$

28.
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^3 - 3x - 2}$$

29.
$$\lim_{x \to -1} \frac{x + x^2}{x^3 - 3x - 2}$$

30.
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^2 - 1}$$

6. Вычислить предел функции

I.
$$\lim_{x\to 1} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$$

2.
$$\lim_{x\to -8} \frac{\sqrt{1-x^2}-3}{2+\sqrt{x^2}}$$

3.
$$\lim_{x \to 1} \frac{\sqrt{x'-1}}{\sqrt{x'-1'}}$$

4.
$$\lim_{x \to 3} \frac{\sqrt{x+13}-2\sqrt{x+1}}{x^2-9}$$

5.
$$\lim_{x\to -2} \frac{\sqrt{x-6}+2}{x^3+8}$$

6. lim
$$\sqrt{x-2}$$

10.
$$\lim_{x\to 0} \frac{\sqrt[4]{27+x'} - \sqrt{27-x'}}{x+2\sqrt[4]{x''}}$$

II.
$$\lim_{x \to 1} \frac{\sqrt[3]{x'} - 1}{\sqrt{x+1} \sqrt{2x'}}$$

12.
$$\lim_{x\to 0} \frac{\sqrt{1+x'} - \sqrt{1-x'}}{\sqrt[3]{x+1'} - \sqrt[3]{1-x'}}$$

13. lim \(\frac{\sqrt{x}' - 2}{\sqrt{x}' - \sqrt{x} \tau} \)	22. $\lim_{x \to -2} \frac{\sqrt[3]{8+x^3}}{2-\sqrt{x+6}}$
14. lin \(\frac{\sqrt{x}-6'+2}{x+2}\)	23. lin 10-x-6V1-x 2+Vx
15. lim \(\frac{\sqrt{16x'} - 4}{\sqrt{4+x'} - \sqrt{2x'}}\)	24. $\lim_{x \to 8} \frac{\sqrt[4]{x'} - 2}{\sqrt{9 + 2x'} - 5}$
16. lim √9+2x - 5 x → 8 √x2 - 4	25. $\lim_{x \to 4} \frac{\sqrt{x'-2}}{\sqrt{1+2x'}-3}$
17. $\lim_{x\to 0} \frac{\sqrt[3]{1+x'} + \sqrt{11x-1'}}{\sqrt[3]{x'}}$	26. lim x+2 x→2 √x-6'+2
18. $\lim_{x \to 16} \frac{\sqrt[4]{x'} - 2}{(\sqrt{x} - 4)^{\frac{1}{2}}}$	27. $\lim_{x \to t} \frac{\sqrt{x} - 1}{1 - x^2}$
19. lim 2-VZ' 2-4 VZ'-16	28. $\lim_{x\to 3} \frac{\sqrt[3]{9x'}-3}{\sqrt{3+x'}-\sqrt{2x'}}$
20. $\lim_{x \to 3} \frac{\sqrt{x+13'} - 2\sqrt{x+1'}}{\sqrt[3]{x^2 - g'}}$	29. $\lim_{x \to 1} \frac{1-x}{\sqrt[4]{x'}-1}$
2I. lim $\sqrt{2x+9}-5$ $x\to 8$ $\sqrt{x}-2$	30. $\lim_{x \to 16} \frac{4 - \sqrt{x'}}{\sqrt[4]{x'} - 2}$
7. Вичислить предел выражени	ия [d.(x]] ^{в(x)} при x→0.

	The state of the s	ipi 20-0
Вари- ант	L(x)	$\beta(x)$
I	2	3
I	$1 - \ln(1+x^3)$	x sinx
2	clos (\sqrt{x}')	1
3	$\frac{1+\alpha\cdot z^{\alpha}}{1+x\cdot 3^{x}}$	1
4	$2-(3)^{arctg\sqrt{x'}}$	2 cosee x
5 ₁₋₃ •	$1 + \sin x (\cos x - \cos 2x)$	ctg3x
6 _	5 - 4 sec &	(Cosec sx) ²
7	1 - ln (1+\vec{x})	x (Cosee $\sqrt[3]{x}$) 4

I	2	3
8	$2 - \exp(arsin \sqrt{x})$	\$
9	ans Ta	zestn sa
10	1+sin²3x	(ln cosx)-1
II	$t_{y}\left(\frac{T}{4}-x\right)$	ct _y x
12	1-æsineæ	$(\ln(1+Jx^3))^{-1}$
13	$2-(5)^{\sin x^3}$	cosec ² ic
Í4	2 - cos 3 æ	$(ln(1+x^2))^{-1}$
15	2 - exp(sinx)	cty sx
16	cos x	$(ln(1+sin^2x))$
17	$2 - \exp(x^2)$	$ctg^{2}(\frac{fx}{3})$
18	3 - 2 cos æ	- cosee ² æ
19	2 - (3) sin 2 2	(lucosæ)-1
20	2 - cox	The state of the s
21	6 - 5 see x	ctges
22	3 - 2 see x	$cosec(x^3)$
23	$2 - \exp(x^2)$	1 - cos Fix
24	1 - lncosx	ctg ² x
25	1-sin²2æ	(arctg3x)-2
26	1 + sin æ	#
27	cos æ	走
28	cos æ	de e
29	$\frac{x^2-2x+3}{x^2-3x+2}$	sinæ æ
30	x².	$\frac{2}{(\alpha+1)}$

8. Определить порядок малости бесконечно малоя величины
$$\beta(x)$$
 тносительно $d(x) = x$ при $x \to 0$

1. $\cos 4x - \cos 3x$ II. $ty(f(x+2))$ 21. $\sqrt{2+x'} - \sqrt{2}$

2.
$$1 - \cos^3(2x)$$
 I2. $\arctan(e^{x^2} - 1)$ 22. $\sin(2x)(x + 1)$

3.
$$\ln(1-\arcsin 4x^2)$$
 I2. $\arctan(e^{x^2}-1)$ 22. $\sin(2\pi(x+10))$
3. $\ln(1-\arcsin 4x^2)$ I3. $\sin 3x(3x^2-5x)$ 23. $\tan(2\pi(x+10))$

4.
$$1 - \sqrt{3x+1}$$
 I4. $\ln(1-2x)$ arety $3x = 24$. $\sin(2xx)$

4.
$$1 - \sqrt{3x+1}$$
 I4. $\ln(1-2x)$ are $\log x$ 24. $\sin(e^{3x}-1)$
5. $\sin^2 x - \log^2 x$ I5. $\ln(e-x^2) - 1$ 25. $\ln(e^{-x^2})$

5.
$$\sin^2 x - t g^2 x$$
 15. $\ln(e-x^2) - 1$ 25. $\ln(x^2+1)(t x^2+1-1)$
6. $(e^{3x} - 1)(t x^2+1-1)$

6.
$$(e^{3x}-1)(\sqrt{x+1}'-1)$$
 I6. $(1-\cos 2x)(\tan x)$ 26. $\tan (x+1)(\sqrt{x+1}-1)$ 7. $\sin 3x(1-\cos 2x)$ 17. $\cos x$

7.
$$\sin 3x (1 - \cos 3x)$$
 17. $yex = 5 - 3x$ 27. $\sin 3x - \sin 5x$

8.
$$e^{\pm} + e^{-x} - a$$
 I8. $a - \sqrt{\cos x'} - 3^{x} = 28$. $(4^{x} - g^{-x})(x + tyx^{2})$

9.
$$u_1(t_g(f-2x))$$
 19. $e^x - e^{-x}$ 29. $cos2x - cosx$

10.
$$t_{1}x - sin x = 20$$
. $\sqrt{4 + x'} - 2$ 30. $t_{2}(e^{2x} - cos x)$

I.
$$x^3+2x-8=0$$
 II. $x=10lyx$ 2I. $x+sin x=2$

1.
$$x^{2}+2x^{2}-8=0$$
 II. $x=10lyx$ 2I. $x+\sin x=2$
2. $x^{4}-4x+1=0$ I2. $x^{2}=-\ln x$ 22. $x=-x$

2.
$$x^4 - 4x + 1 = 0$$
 I2. $x^2 = -\ln x$ 22. $4x = 2^x$
3. $x = \sqrt[4]{5-x'}$ I3. $x^2 = \cos x$ 23. $\ln x = \cot x$

4.
$$x^{2}$$
 arc $px = 1$
13. $x^{2} = \cos x$
23. $\ln x = \operatorname{arct} px$

5.
$$x = 2 + \sqrt[4]{x'}$$
 I5. $x^5 + x + 1 = 0$ 24. $x^3 - 6x + 1 = 0$

5.
$$x = 2 + \sqrt{x}$$
 15. $x^5 + x + 1 = 0$ 25. $x = 2 - lgx$ 6. $x^2 - ln(x+1)$ 16. $x^2 - 2 = e^x$ 26. $x - cos = e^x$

$$\frac{6. \ x^{2} = ln(x+1)}{7. \ x = arctp(\sqrt[3]{T})} \quad \frac{16. \ x^{2} - 2 = e^{x}}{17. \ x^{3} = arctp(\sqrt[3]{T})} \quad \frac{26. \ x = cos 2x}{27. \ x^{3} = arctp(\sqrt[3]{T})}$$

7.
$$x = avety(\sqrt[3]{x})$$
 17. $x^3 - 2x - 5 = 0$ 27. $x^4 - 2x = 2$

8.
$$x^3 + 60x - 80 = 0$$
 18. $x^4 + 2x - 24 = 0$ 28. $x^6 - 3x^2 - 1 = 0$

$$\frac{8. \ x^{3} + 60x - 80 = 0}{9. \ e^{-x} = \ln x} \quad \text{I8.} \quad x^{4} + 2x - 24 = 0 \quad 28. \quad x^{6} - 3x^{2} = 1 - x$$

I.
$$\left(2^{\frac{x}{1-x}}-1\right)^{-1}$$
 4. $\frac{\cos x-1}{x^2}$ 7. $(x+2)\csc(x^2-4)$

2.
$$(x^{-1})\sin(\frac{1}{x^{2}-1})$$
 5. $\frac{1}{\lg |x-2|}$ 8. $[\ln(\sin x)]^{-1}$

3.
$$(x+1)$$
 arcty $(\frac{1}{x})$ 6. $exp(seex)$ 9. $\frac{-x^3 + 5x^2}{(2)^{5hx} - (2)^{5hx}}$

10.
$$\sin \frac{1}{x}$$
 17. $\frac{2^{1/2}+1}{2^{1/2}-2}$ 24. (4) $\frac{1}{3+x}$

II.
$$\frac{(x+i)^2}{\sin(x+i)}$$
 IB. $\frac{\arcsin(x-i)}{i}$ 25. $\frac{\arccos x}{x^2-i}$

12.
$$\frac{3^{1/2}-1}{3^{1/2}-\sqrt{3^{1}}}$$
 19. $e^{-\frac{1}{x}}$ 26. $\frac{\ln(1-x^{2})}{\cos 2x-1}$

13.
$$\frac{1x-41\sin(x+4)}{\arcsin(16-x^2)}$$
 20.
$$\frac{e^x-1}{x}$$
 27.
$$\arctan\left(\frac{1}{2(1-x)}\right)$$

14.
$$\frac{1}{x-1} = \frac{1}{x}$$
 21. $\arctan\left(\frac{11+x}{x-1}\right)$ 28. $\frac{1}{x^2}(\cos 3x - \cos x)$ 15. $(1-2^{\frac{x}{2}})^{-1}$ 22. $+\ln\left(\frac{1-x}{x}\right)$ 20. $-\frac{1}{x^2}$

5.
$$(1-2^{\frac{1}{2}x})^{-1}$$
 22. $\frac{1}{x} \ln\left(\frac{1-x}{1+x}\right)$ 29. $e^{-\frac{1}{x^2}}$
6. $(7)^{\frac{1}{2-x^2}}$ 23. $(x-1)^{\frac{1}{2}}$

I6.
$$(7)^{\frac{1}{2-x^2}}$$
 23. $(x-\frac{1}{2})\sec x$ 30. $[\ln(\cos x)]^{-1}$

РАЗДЕЛ 3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Задача I. Вычислить производную функции $y=x^3$ x x^4x^2 .

Решение. Наидем сначала логарифмическую производную функции y ($\ln y$) = $(3^{\infty} \ln x + \sqrt{x} \ln x)'$ =

$$= (3^{x} + \sqrt{x})' \ln x + \frac{3^{x} + \sqrt{x}}{x} = (3^{x} \ln 3 + \frac{1}{2\sqrt{x}}) \ln x + \frac{3^{x} + \sqrt{x}}{x}.$$

Tax kax $(lny)' = \frac{y'}{y}$, to y' = y' (lny)'.

OTHET: $y' = x^{3x} + \mathbb{E}\left[\left(3^{x} \ln 3 + \frac{1}{2\sqrt{x}}\right) \ln x + \frac{3^{x} + \sqrt{x}}{x}\right].$

Задача 2. Найти $y_{xx}^{"}$ от функции, заданной параметрически: $\begin{cases} x = \ln(1+t^2), \\ y = t - arctgt. \end{cases}$

Решение. Имеем:

$$y_{\infty}^{1} = \frac{y_{\pm}^{\prime}}{\infty!} = \frac{1 - \frac{1}{1 + t^{2}}}{2 \pm /(1 + t^{2})} = \frac{1 + t^{2} - 1}{2 t} = \frac{t}{2};$$

$$y_{xx}^{"} = \frac{(y_x)_t}{x_t'} = \frac{1/2}{2t/(1+t^2)} = \frac{1+t^2}{4t}$$
.

OTHET: $y''_{xx} = (1+t^2)/4t$.

Задача 3. Вычислить приближенно с понощью дифференциала y(1,77), где $y(\infty) = \sqrt{42C+3}$.

Решение. Рассмотрим точку $\mathcal{X}_o = \mathbf{I}.75$, в которой $\mathcal{Y}(1,75) = \sqrt{4}.175+3 = \sqrt{g} = 3$ и $\Delta x = 1.77-1.75$ мало. Заменяя $\Delta y = y(1,77) - y(1,75)$ на дифференциал в точке $\mathcal{X}_o = \mathbf{I}.75$ и при $\Delta \mathcal{X} = 0$, 62 получим:

$$y(1,77) \approx y(1,75) + dy = 3 + y_{\infty}'(1,75) \cdot 0,02 = 3 + \frac{2}{\sqrt{4x+3}} / x = 1,75$$

Orser: 3,01%.

В задании 13 предлагается следующий план исследования функции с параллельным построением графика:

- а) общие особенности функции область допустимых значений, четность нечетность, периодичность, ограниченность, положительность и т.п.;
 - б) точки разрива функции и их классификация;
- в) исследование функции по первой производной участки возрастания и убывания, точки экстремума;
- г) исследование функции по второй производной участки выпуклости - вогнутости, точки перегиба;
 - д) асимптотическое поведение функции на ± ...

Задача 4. Исследовать функцив $y = \ell_N \left| \frac{\infty - 1}{3C + 1} \right|$ и построить ее график.

Решение. а) Функция $\frac{x-1}{x+1}$ не определена в точке x=-1. Так как функция $\ln x$ определена, только если x>0, а $\left|\frac{x-1}{x+1}\right|>0$, причем $\frac{x-1}{x+1}=0$ лишь в одной точке x=1, то получаем еще одну особенность — x=1 — функции y(x). Итак, ОДЗ — вся числовая ось кроме точек x=1.

Далее

$$y(-\infty) = \ln \left| \frac{-x-1}{-x+1} \right| = \ln \left| \frac{x+1}{x-1} \right| = -\ln \left| \frac{x-1}{x+1} \right| = -y(x),$$

поэтому y(x) — нечетная функция, а ее график оимметричен относительно начала коо рдинат. Найдем точки пересечения графика функции y(x) о осьв $\mathcal{O}X$:

$$y(x)=0 \iff \left|\frac{x-1}{x+1}\right|=1 \iff \frac{x-1}{x+1}=\pm 1 \iff x=0.$$

Определим знаки функции $y(\infty)$ в интервалах знакопостоянотва ($-\infty$, -I); (-I, 0); (0, I); (I, $+\infty$)

- б) Так как $\lim_{x\to -1} \left| \frac{x-1}{x+1} \right| = +\infty$ и $\ln x$ монотонно возраставщая неограниченная функция, то x=-1 вертикальная асимптота и $\lim_{x\to -1} y(x) = +\infty$. В силу нечетности x=1 также вертикальная асимптота и $\lim_{x\to -1} y(x) = -\infty$.
 - в) Находим решения уравнения y'(x)=0 . Имеем: $\frac{x-1}{x+1} \geqslant 0 \iff x > 1$ или $x < -1 \iff |x| > 1$.

Torga
$$y'(\infty) = \frac{x+1}{x-1} \left(\frac{x-1}{x+1}\right)' \frac{x+1}{x-1} \left(\frac{2}{x+1}\right) = \frac{2}{x^2-1}$$
.
Echu me $|x|<1$, to
$$y'(\infty) = \frac{1+\infty}{1-\infty} \left(\frac{1-\infty}{1+\infty}\right)' = \frac{1+\infty}{x-1} \left(\frac{x-1}{x+1}\right)' = \frac{2}{x^2-1}.$$

Следовательно, $y'(x) \neq 0$ в области допустимых значения. Знаки производной y'(x) , значит, и участки монотонности функции $\psi(x)$ будут следурщими

Ваметии, что y'(o)=2 — тангенс угла наклона касательной графика Функции $y(\infty)$ в точке (0,0).

г) Вычисляем $y' = \left(\frac{2}{x^2-1}\right)' = \frac{-2 \cdot 2 \cdot x}{(x^2-1)^2} = -\frac{4 \cdot x}{(x^2-1)^2}$ и находим решения уравнения y''(x)=0 . Имеем один корень: x=0 . Знаки y''и участки выпуклости будут следующими:

A) Tak kak $\lim_{x\to +\infty} \left|\frac{x-1}{x+1}\right| = 1$, to $\lim_{x\to +\infty} y(x) = \ln 1 = 0$ и поэтому y=0 - горизонтальная асимптота на $\pm \infty$.

RNHAIAE

І. Найти производную функции

I.
$$\sin^2 3x + \frac{\sin^2 4x}{3\cos 6x}$$

3.
$$\cos(x^2) - \frac{\sin^2 2\alpha}{4\cos 4x}$$

17. $\cot y(x^3) - \frac{\cos^2 4x}{3\sin 3x}$

4. $\cot y(x^2) - \frac{\sin^2 2\alpha}{4\cos 10x}$

18. $\sin(x^3) + \frac{2\cos^2 3x}{3\sin 4x}$

5. $\cot y(x^2) + \frac{\sin^2 6x}{6\cos 3x}$

19. $\cot y(x^2) - \frac{\cos^2 8\alpha}{10\sin 2x}$

6. $\sin \ln x + \frac{\sin^2 10x}{5\cos 6x}$

20. $\sqrt[4]{ty} x^2 - \frac{\cos^2 10x}{10\sin 2x}$

7. $\sin \sqrt{x}^2 + \frac{\sin^2 5x}{5\cos 10x}$

21. $\ln(\sin x) - \frac{4\cos^2 2x}{\sin 8x}$

8. $\ln(\cos x) - \frac{\cos^2 6x}{4x \ln 4x}$

22. $\cos \frac{1}{\sqrt{x}} - \frac{\cos^2 14x}{4\sin 4x}$

9. $\sin \frac{1}{\sqrt{x}} + \frac{\sin^2 17x}{17\cos 34x}$

23. $\ln(\sin x) + \frac{\sin^2 15x}{5\cos 3x}$

10. $\cot y(x^2) + \frac{\sin^2 17x}{19\cos 38x}$

24. $\cot y(x^3) + \frac{\sin^2 15x}{9\cos 38x}$

25. $\sin \sqrt{x^3} - \frac{\cos^2 18x}{9\sin 9x}$

16. $\cot y(x^3) + \frac{\sin^2 25x}{9\cos 36x}$

27. $\cot y(x^3) + \frac{\sin^2 25x}{11\sin 10x}$

28. $\cot y(x^3) + \frac{\cos^2 26x}{2\sin 6x}$

19. $\cot y(x^3) + \frac{\sin^2 25x}{2\cos 36x}$

29. $\cot y(x^3) + \frac{\cos^2 26x}{2\sin 2x}$

110. $\cot y(x^3) + \frac{\sin^2 27x}{2\cos 36x}$

211. $\cot y(x^3) + \frac{\sin^2 27x}{2\cos 36x}$

222. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

233. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

244. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

255. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

266. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

277. $\cot y(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

288. $\cot x(x^3) + \frac{\cos^2 28x}{3\sin 2x}$

299. $\cot x(x^3) + \frac{\cos^2 30x}{3\sin x}$

200. $\cot x(x^3) + \frac{\cos^2 30x}{3\cos x}$

200. $\cot x(x^3) + \frac{\cos^2 30x}{3\cos x}$

2. Наити производную функции

I. arct
$$\frac{e^{x}-e^{-x}}{\sqrt{2}}$$
 2. arcsin $\frac{e^{x}-2}{\sqrt{5}e^{x}}$

3. 2x-1 \(\frac{2}{4} + \frac{1}{8} \are \frac{2}{3} + \frac{1}{8} \are \frac{2}{3} \frac{1}{3} = \frac{1}{3} = \frac{1}{3} = \frac{2}{3} = \frac{1}{3} = \frac{2}{3} = \frac{1}{3} = \frac{2}{3} = \frac{1}{3} = \f

4. wrocos $\frac{x^2-4}{\sqrt{x^4+16'}}$ I8. $\frac{x}{e\sqrt{1-kx^2}}$ arcsin $2x+\int_{0}^{x} \ln(1-4x^2)$

5. $\frac{1}{4} \ln \frac{e^{x}}{e^{x}+1} - \frac{1}{2} \operatorname{arcty} e^{x}$ 19. $\sqrt{1+2x-x^{2}} \operatorname{arcsin} \frac{x\sqrt{2}}{x+1} - \sqrt{2} \ln (1+x)$

6. arcty $\frac{\sqrt{1+e^{3x^2}-1}}{x}$ 20. $\frac{x^3}{3}$ arccos $x - \frac{x+x^2}{y}\sqrt{1-x^2}$

7. $\sqrt{\frac{2}{3}} \operatorname{arcty} \frac{3e^{2}-1}{\sqrt{6e^{2}}}$ 21. $\frac{3+2}{2} \sqrt{2x-x^{2}} + 3\operatorname{arccos} \sqrt{\frac{x}{2}}$

8. $(x-4)\sqrt{8x-x^2-x^2}$ - garceos $\sqrt{\frac{x-1}{6}}$ 22. $\arcsin\sqrt{\frac{x}{x+1}}$ + $\arcsin\sqrt{x}$

9. $\frac{\operatorname{arctp} 2^{2}}{4^{2}} + \frac{1}{3.8^{2}}$ 23. $\operatorname{Carcsin} \frac{\sqrt{2}}{2} - \frac{6+x}{2}\sqrt{4x-x^{2}}$

10. $\frac{1}{2\sqrt{x'}} + \frac{1+x}{2x} \operatorname{arcty} \sqrt{x'}$ 24. $\frac{(1+3^{24})\operatorname{arcty} 3^{24}}{3^{24}}$

II. $\frac{4+x^4}{x^3}$ rety $\frac{x^2}{2} + \frac{4}{x}$ 25. $\frac{2x}{4}\sqrt{5x-4-x^2} + \frac{9}{4}$ oresin $\sqrt{\frac{x^2-1}{3}}$

12. $\frac{\sqrt{1-g^2}}{2}$ arccos 3^{∞} 26. arcsin $\frac{3^{\infty}-3}{(3^{\infty}-1)\sqrt{2}}$

13. $\frac{x-3}{2}\sqrt{6x-x^2-8} + \arcsin\sqrt{\frac{x-2}{2}}$ 27. $\sqrt{\ln x} + \frac{1}{3} \operatorname{arctg} \sqrt{\ln x} - \frac{3}{3} \operatorname{arctg} \sqrt{\frac{1}{2}}$

14. $\frac{2\sqrt{1-4}}{4}$ $\frac{x}{4}$ \frac{x}

15. arety $2^{x} + \frac{5}{6} ln \frac{4^{x}+1}{4^{x}+4}$ 29. $(2x^{2}-x+\frac{1}{2})$ arety $\frac{x^{2}-1}{x\sqrt{3}} - \frac{x^{3}}{2\sqrt{3}} - \frac{\sqrt{3}}{2}$

 $16.\sqrt{1-l_1^2x^2}-l_1xarcsin\sqrt{1-l_1^2x^2}$ 30. arcty $\frac{e^{x/2}-1}{2}+e^{x/2}\sqrt{e^x-1}$

Э. Найти производную функции

I. arcsin³(lnx)arccos² lnx 2. Varety x arccos² vx

3. cty 8x Varety 5x

17. Varceos (2ln x). e-totix

4. Vancsine (lnx) . e to 2

18. ln (arecos 3x) arecos 3 3 lnx

5. ancsine (4+). 4 1922

19. Ven (suresin x). arccos 3

6. 4 5 anct 3 (3x2)

2: 4 -arctg 4x arcctg 4

Varcsin 2 arccos 2 21. arcsin Ven x arccos (inx)

8. Varety (ln x) arecty (ln x) 22. Varety $\frac{5}{x^2}$. arccty $(5x^2)$

9. tg 3 (4 2) ln 2 (sm 4x)

23. $3^{-lety sx^{\frac{1}{2}}}$. $arety^{3}(\frac{3}{x^{3}})$

10. Vln (arctg 2x) arcotg 2(2x) 24. 24. 24. arcsin 4(ctg 2x)

II. $2^{-\frac{c}{3}2x}$ are $\sin^4\frac{1}{2x}$ 25. $y^5(3\ln x)$ are $\sin^2\sqrt{\ln x}$

12. $arcty^{5}(\frac{1}{6\pi})\sqrt{(n^{5}(10\pi))}$ 26. $2^{-10y} = 2\pi$. $arcsin^{5}(\frac{1}{2\pi})$

13. to 4(2-x2) arosin (2/2) 21. 34 (3x) Junicos 3/2

14. Varecos (2) . e - 200822 28. 2 cy 82. aresin (1/82)

15. arcsin (late). Vy 3x. 29. Vent (1+tplx) arcto (1)

16. anccos4(*x). Varcip 7xe

30. arcsin 5 (3ln 2). arccos (1)

4. Найти производную функции

I. x^{2^x} . x^x

2. $(arcty 3x)^{ln\sqrt[4]{x}}$

20.

21.

22.

25.

5. $(\sin \sqrt{x})^{\ln \sin \sqrt{x}}$ 19. $(\sin \sqrt{2x})^{e^{2x}}$ 6. $(\operatorname{arety} \sqrt{x})^{e^{-\frac{1}{2}}}$ 20. $(\operatorname{arcsin} 2x)^{e^{\sqrt{2x}}}$

7. $(t_0 3^x)^{e^{\cos^2 t}}$ 2I. $(\cos \sqrt{1 - ox^2})^{t_0 x}$ 8. $(x \sin x)^{\sin(x \sin x)}$ 22. $(\sin 2x)^{t_0 2x}$

9. $(\cos x^3)^{\ln \cos x^3}$ 23. $(\arcsin x)^{\sqrt{1-x^2}}$ 10. $(1-x^2)^{\cos x^3}$ 24. x^{x^2} . x^2

II. $(\sin \frac{2}{x})^{5\frac{x}{2}}$ 25. $(\operatorname{arety}_{2x})^{\sin \frac{x}{2}}$

12. x t. x the 26. x x 2. 2 to 25. 2 to 26. x 2 to 27. (arcsin \(\sqrt{1-x^2} \) ctg x

13. $(\sin \sqrt{x'})^{e^{\frac{\pi}{2}}}$ 27. $(\arcsin \sqrt{1-x^2})^{e^{\frac{\pi}{2}}}$ 14. $(ty 2x)^{\frac{1}{4}}$ 14. $(\cos \frac{1}{x})^{arety}$ 28. $(\cos \frac{1}{x})^{arety}$

15. (cos 2x.) tencos 2x 29. Rearetyz

16. (aresin $\frac{3x}{\sqrt{3}}$) sin sx 30. xe^{x} . $x^{\frac{1}{2}}$

5. Найти производную ${\mathcal Y}_{\infty}^{\prime}$

1. $\begin{cases} x = \frac{1}{\sqrt{1+t^2}} - \ln \frac{1+\sqrt{1+t^2}}{t} \\ y = \frac{t}{\sqrt{1+t^2}} \end{cases}$ 2. $\begin{cases} x = \sqrt{2t-t^2} \\ y = \frac{1}{\sqrt{(t-1)^2}} \end{cases}$

2. $\begin{cases} \mathcal{R} = \sqrt{1-t^2} \\ y = ty\sqrt{1+t^2} \end{cases} \qquad \begin{cases} \mathcal{R} = \ln\left(t+\sqrt{1+t^2}\right) \\ y = \sqrt{1+t^2} - \ln\frac{1+\sqrt{1+t^2}}{t} \end{cases}$

5. $\begin{cases} x = \ln (t + \sqrt{t^2 + 1}) & 16. \\ y = t \cdot \sqrt{t^2 + 1} & \begin{cases} x = \ln \frac{1 - t}{1 + t} \\ y = \sqrt{1 - t^2} \end{cases}$

6. $\begin{cases} x = \sqrt{2t - t} e^{t} \\ y = \arcsin(t - 1) \end{cases}$ 7. $\begin{cases} x = \sqrt{2t - t} e^{t} \\ 0 = \sqrt{2t - t} e^{t} \end{cases}$ 18.

 $\begin{cases} x = cty(2e^{t}) & 18. \\ y = ln tye^{t} & 8. \end{cases}$ $\begin{cases} x = ln ctyt & 19. \end{cases}$

 $y = \frac{1}{\cos^2 t}$ 9. $(x = \operatorname{cont}_{y}(e^{t/2}))$

10. $y = \sqrt{e^{t} + t'}$ $x = \ln \sqrt{\frac{1 - \frac{t}{t}}{t + t'}}$

II. $\int x = \ln\left(\frac{1}{\sqrt{1-t^{N}}}\right)$

12. $\begin{cases} y = \arcsin \frac{1-t^2}{1+t^2} \\ x = \sqrt{1-t^2} \end{cases}$

13. $\int_{\infty}^{\infty} e^{-\frac{t}{\sqrt{1-t^2}}} e^{-2t}.$

 $\begin{cases} y = (\arccos t)^2 \\ 4. \end{cases} \begin{cases} x = \frac{t}{\sqrt{1-t^2}} \end{cases}$

15. $\begin{cases} y = 4 + \sqrt{1-t^2} \\ t \end{cases}$ $\begin{cases} x = (1 + \cos^2 t)^2 \end{cases}$ $y = \frac{\cos t}{\sin^2 t}$

 $\begin{cases} x = \arccos\left(\frac{t}{t}\right) \\ y = \sqrt{t^2 - 1} + \arcsin\left(\frac{t}{t}\right) \\ (x = \frac{t}{t+1}) \end{cases}$

 $\begin{cases} x = \frac{1}{\ln t} \\ y = \ln \frac{1 + \sqrt{1 - t^2}}{t} \end{cases}$ $\begin{cases} x = \arcsin \sqrt{t} \end{cases}$

 $\begin{cases} x = (\arcsin t)^2 \\ y = \frac{t}{\sqrt{1 - t^2}} \\ x = t \cdot \sqrt{t^2 + 1} \end{cases}$

 $y = \ln \frac{1+\sqrt{1+t^2}}{t}$ x = (arctpt) $y = \ln \frac{\sqrt{1+t^2}}{t+1}$ $x = \ln (1-t^2)$

 $y = \arcsin \sqrt{1-t^2}$ $\begin{cases} x = \arctan \frac{t+1}{t-1} \\ y = \arcsin \sqrt{1-t^2} \end{cases}$

 $\begin{cases} x = \ln \sqrt{(1-\sin t)}/(1+\sin t) \\ y = \frac{1}{2} t p^2 t + \ln \cos t \end{cases}$ $\begin{cases} x = \sqrt{t-t^2} - \arctan \sqrt{\frac{1-t}{t}} \\ y = \sqrt{t} - \sqrt{1-t} \arcsin \sqrt{t} \end{cases}$

27.
$$\begin{cases} x = \ln t p t \\ y = \frac{t}{\sin^2 t} \end{cases}$$

$$\begin{cases} x = e^{\sin^2 t} \\ y = t \cdot \ln c \cdot s t + t p t - t \end{cases}$$
28.
$$\begin{cases} x = \frac{t^2 \cdot \ln t}{1 - t^2} + \ln \sqrt{1 - t^2} \\ y = \frac{t}{\sqrt{1 - t^2}} \operatorname{arcsin} t + \ln \sqrt{1 - t^2} \end{cases}$$

$$\begin{cases} x = \frac{t}{\sqrt{1 - t^2}} \operatorname{arcsin} t + \ln \sqrt{1 - t^2} \\ y = \frac{t}{\sqrt{1 - t^2}} \end{cases}$$

6. Найти производную второго порядка \mathscr{Y}_{xx} от функции, заданной параметрически

I.
$$\begin{cases} x = \cos 2t \\ y = 2 \sec^2 t \end{cases}$$
II.
$$\begin{cases} x = \arccos \sqrt{t} \\ y = \sqrt{t - t^2} \end{cases}$$
2.
$$\begin{cases} x = \sqrt{1 - t^2} \\ y = \frac{t}{t} \end{cases}$$
3.
$$\begin{cases} x = e^{t} \cos t \\ y = e^{t} \sin t \end{cases}$$
4.
$$\begin{cases} x = sh^{2}t \\ y = 1/ch^{2}t \end{cases}$$
5.
$$\begin{cases} x = t + \sin t \\ y = 2 - \cos t \end{cases}$$
6.
$$\begin{cases} x = \frac{t}{t} \\ y = \frac{t}{t + t^{2}} \end{cases}$$
7.
$$\begin{cases} x = \sqrt{t} \\ y = \frac{t}{t + t^{2}} \end{cases}$$
8.
$$\begin{cases} x = \sin t \\ y = \sec t \end{cases}$$
9.
$$\begin{cases} x = t + \sin t \\ y = \cos t \end{cases}$$
19.
$$\begin{cases} x = \cos t \\ y = \ln \cot t \end{cases}$$
19.
$$\begin{cases} x = t + \sin t \\ y = -\cos t \end{cases}$$
10.
$$\begin{cases} x = t + \sin t \\ y = -\cos t \end{cases}$$
20.
$$\begin{cases} x = t + \sin t \\ y = 2 - \cos t \end{cases}$$
21.
$$\begin{cases} x = \cos 2t \\ y = t + \sin t \end{cases}$$
22.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
23.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
24.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
25.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
26.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
27.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
28.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
29.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
20.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
21.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
22.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
23.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
24.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
25.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
26.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
27.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
28.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
29.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
20.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
21.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
22.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
23.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
24.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
25.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
26.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
27.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
28.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
29.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$
20.
$$\begin{cases} x = t + \sin t \\ y = t + \sin t \end{cases}$$

17 = VE-1

21. (x = cost 26. (x = arety t Ly = lusint 14= 手 22. For = cost + tsin t 27. $fa = 2(t - \sin t)$ y = sint - tcost $\mathcal{J} = 4(2 + \cos t)$ 23. (x = arcsin t 28. · (x = sint - tcost $y = \ln(1-t^2)$ ly = cost + tsint cx = cost(x = ln t y=sin"(手) 1y = arctite25. (x = arcty t)30. $\int x = \cos t + \sin t$ $\int y = \sin 2t$ $1y = ln(i+t^2)$?. Найти производную y_x' функции y(x) , зеданной неявно 14. e^{α} siny $-e^{\alpha}\cos x = 0$ I. x - y + arcty y = 015. Vx2+ y2 = acarety # 2. 4 = arety = 3. xy = ex I6. $y \sin x = \cos(x-y)$ 4. x-y+asiny=0 17. $e^{x-y} = x \cdot y$ 5. $x-y+e^{x}$ arcty x=018. $x^3 + y^3 - 3axy = 0$ 6. $e^{2y} - x^2 + y^2 = 0$ 19. luy = arcte 3 20. $x\sin y - y\cos x = 0$ 7. $\cos(x-y)-2x+4y=0$ 8. $cos(xy) = \frac{y}{x}$ 21. $y \sin x + \cos (x - y) = \cos y$ 9. e = sin # 22. $xe^y + ye^x = xey$ II. $y \ln x - x \ln y = x + y$ 23. xy + lny - 2 ln x = 0 24. $arety = ln(x^2 + y^2)$ II. asiny+ysin a = 0 12. 2ª+2¥=2ª+¥ 25. 28 = ya 13. xy = arcty 3 , 26. ea+e4-2 =1

27.
$$arcly = \ln \sqrt{x^2 + y^2}$$
 29. $\sqrt[3]{y} = \sqrt[3]{x^2}$
28. $e^{xy} = x + y$ 30. $y \sin x - \cos(x - y) = 0$

8. Найти производную второго порядка от функции
$$y(x)$$
 , заданной неявно

I.
$$e^{x \cdot y} = xy$$

16. $\ln(y - x) = x \cdot y$

2. $y = 1 + xe^{y}$

17. $\sqrt{x^{2} + y^{2}} = e^{areig}$

3.
$$xy - \ln y = 1$$
 18. $e^{x-y} = x \cdot y$

4.
$$e^{x \cdot y} = x$$
 Is. $arety = \ln \sqrt{x^2 + y^2}$

5.
$$y = \cos(x + y)$$
 20. $xy = \ln y$

6.
$$y = ty(x+y)$$
 21. $x^3 + y^3 - 3xy = 0$

7.
$$x^2y = e^x$$
 22. $xy = e^x$

8.
$$e^y + \alpha y = e$$
 23. $\alpha - y + \operatorname{arctp} y = 0$

9.
$$\cos(x+y)+x=0$$
 24. $ye^{x}+e^{y}=0$

10.
$$\ln(x+y) = x-y$$
 25. $\ln(x-y) = x+y$

11.
$$arct_{\theta}(x+y)-y=0$$
 26. $x-y=e^{x+y}$

12.
$$y = c + lny$$
 27. $arcty = x + y$

13.
$$x+y=e^{x-y}$$
 28. $x+y=e^{x+y}$

14.
$$\ln(x+y) = y+a$$
 29. $\arctan(x^2+y^2)$

15.
$$e^{x} - e^{y} = y - x$$
 30. $e^{x-y} = y$

9. Найти дифференциал функции ${m y}(x)$

$$2.\sqrt{1+2x^2}-\ln(x+\sqrt{1+2x^2})$$
 8. $\ln\frac{x+\sqrt{x^2+1}}{2x}$

3. arecos
$$\frac{1}{\sqrt{1+1x^2}}$$
 9. $e^{arctg\sqrt{1+ln(ex+3)}}$

4.
$$x\sqrt{1-x^2} + arcty \sqrt{1-x^2}$$
 10. $x arcty x - \ln \sqrt{1+x^2}$

6. arcsin
$$\frac{a}{x}$$
 + $\ln \sqrt{x^2 + a^2}$ 12. $x \ln (x + \sqrt{x^2 + a^2}) - \sqrt{x^2 + a^2}$

13.
$$x^{2} \operatorname{arctp} \sqrt{x^{2}-1} - \sqrt{x^{2}-1}$$
 22. $e^{-\cos^{2}(4-\frac{1}{2})^{3}}$

14.
$$x \ln (x + \sqrt{x^2 + 3}) - \sqrt{x^2 + 3}$$
 23. $x \arccos x - \sqrt{1 - x^2}$

15. arccos
$$\frac{x^2-1}{x^2\sqrt{x}}$$
 24. $x(\sinh x - \cos \ln x)$

16.
$$\ln(x+\sqrt{1+x^2})-\sqrt{1-x^2}$$
 arety 25. $\cos x \ln t_y x - \ln t_y x$

17.
$$\ln(e^x + \sqrt{e^{2x}-1}) + \arcsin(e^x)$$
 26. $\sqrt{x}' - (1+x) \operatorname{arctg}(\sqrt{x}')$

18.
$$\ln t \varphi \frac{x}{2} - \frac{x}{\sin x}$$
 27. $e^{x}(\cos 2x + 2\sin 2x)$

20.
$$\operatorname{arcty} \frac{x^2-1}{x}$$
 29. $\sqrt{3+x^2}-x\ln(x+\sqrt{3+x^2})$

21. arety
$$\frac{x}{\sqrt{1-x^2}}$$
 30. arecty $\frac{x}{\sqrt{1-x^2}}$ + arecos x

10. Для заданной функции y(x) и заданного числа \overline{x} вычислить приближенно $y(\overline{x})$ с помощью дифференциала первого порядка

2.
$$\sqrt[4]{x}$$
; 7,76 I4. x^{5} , 2,997

4.
$$\sqrt[4]{x^2+2x+5}$$
; 0,97 16. $\sqrt[4]{x}$; 15,68

5.
$$arctg x$$
; 0,98 17. $\sqrt[4]{x^5+7x}$; 1,012

8.
$$\sqrt[4]{x^2}$$
; 1,03 20. $\sqrt{x^2+x+3}$; 1,97

10.
$$x^2$$
; 1,996 22. $\sqrt[3]{x}$; 1,21

II.
$$\frac{1}{\sqrt{2x^2+x^2+1}}$$
; 1,016 23. x^{21} ; 0,998

1. $(4x-x^2)/4$; 2 16. $2x^2+3x-1$; -2

12. Применяя правило Лопиталя, наити предел функции

данной функции в заданной точке

2. $x - x^3$; -1

3. $x + \sqrt{x^3}$; 1

4. $\frac{1+\sqrt{x'}}{1-\sqrt{x'}}$; 4

5. 2x2-3x+1; 1

6. \(\frac{1}{x'} - 3 \frac{1}{x'}\); 64

7. $2x^2+3$; -1

8. x2-4x; 1

9. $\frac{2e^{3}-1}{2e^{4}+1}$; 1

II. $\frac{x}{x^{\ell+1}}$; -2

12. $\frac{2x}{x^2+1}$, 1

15. 30 + 3; 2

I. $\lim_{x \to \frac{\pi}{2}} \frac{2^{\cos^2 x} - 1}{\ln \sin x}$

2. lien 1+x3inx-cosex

3. $\lim_{x\to 0} \frac{e^{x}-e^{-x}-2}{\sin^{2}x}$

13. 1+3000 1

I4. 3\\\ \varepsilon = \sqrt{x}' : 1

10. 3(V. = 2 \x'); 1

7. lim 11+xsinx-1

19. lim 1-cos2x+tp2x

20. $\lim_{x\to 0} \frac{e^{3x} - 3x - 1}{\sin^2 5x}$

21. $\lim_{x\to 0} \frac{e^x - e^{-x} \cdot x}{x - \sin x}$ 22. lim ex-1 cosx-1

23. lim cos3x - cosx tp22x

24. lim <u>x-arcty x</u>

25. lim <u>sin 2x - 2 sin x</u> 1+0 xln cos 5 x

26. lim √cosæ - 1 3in² 2æ

27. $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos 2x}$ 15. lim 1-005x

28. $\lim_{x\to 0} \frac{x(1-\cos\sqrt{x'})}{1-\cos x}$ 16. lim tox-sinx x (1-cosex)

29. lim <u>cos 5x - cos 3x</u> sin x I7. lin $\frac{\ln(x^2+i)}{1-\sqrt{x^2+i}}$

9. lim lnews 2x

10. lim ln (2+cosx)

II lim lneos # 2 lneos # x

12. lim ln3inx (2x-5)2

14. lin 1-103x

18. lim <u>2x sin x</u> 1-cos x.

13. lim 1-005 2 Vers 2x

30. lim 1-cos32 x 30 x 3in 2x

25. $\sqrt{4x-1}$; 2,56 28. $\sqrt{x^3}$; 0,98

17. $x^2 + 8\sqrt{x'} - 32$; 4

18. $\sqrt[3]{x^2} - 20$; -8

19. 8 1/2 - 70; 16

20. # 3 + 16 ; 3

21. 23+2 ; 2

22. $\frac{x^{10}+6}{x^{1}+1}$; 1

23. $2x + \frac{1}{2}$; 1 24. $\frac{x^{16}+9}{1-5x^2}$; 1

 $25. \quad \frac{1}{3x+2} \quad ; \quad 2$

26. $\frac{1}{3}(x^2-3x+3)$; 3 21. $-2(\sqrt[4]{x}^2 + 3\sqrt{x}^2)$; 1

29. $f(3x-2x^3)$; 1 30. $\pm(x^2-2x-3)$, 4

4. lim <u>lnsin 3æ</u>
x→€ (6æ - F)²

5. $\lim_{x\to 2\pi} \frac{(x-2\pi)^2}{t_0(\cos x-1)}$

6. $\lim_{x \to f} \frac{(2x-1)^2}{e^{\sin 3\pi x}}$

28. 14VZ - 15VZ+2:1

26. VI+x+sinx; 0,01 29. \$\square 2x-sin 14: 1.02 27. x^{2} ; 2,002 30. $\sqrt{x^{2}+5}$; 1,97

II. Составить уравнение нормали и касательной к графику за

13. Провести полное исследование функции и построить графики

I.
$$\frac{3x^{1}-6x}{x-1}$$
; xe^{x+1} I6. $\frac{x+\sqrt{2}}{x^{2}-1}$; $\sqrt[3]{(x^{2}-1)^{2}}$

2. $x^{2}\ln x$; $\frac{(x-0)(x-2)}{x}$ I7. $\frac{x}{x^{2}-1}$; $(1+x^{2})e^{-x^{2}}$

3. $\frac{1}{(x-1)^{2}}-\frac{1}{(x+1)^{2}}$; $xe\ln x$ I8. $\sqrt[3]{\frac{x-1}{x+1}}$; $(13+4x^{2})e^{-x^{2}}$

4. $\sqrt[3]{x^{1}-1}$; $\sqrt[3]{12x-4x^{3}}$ I9. $e^{-x^{2}}$; $(2x-1)(2-x)$

5. $e^{x^{1}-6x}$; $\frac{4x-8}{(x-1)^{2}}$ 20. $\sqrt[3]{6x^{1}-x^{3}}$; $\frac{8x-2x^{2}}{(x-2)^{2}}$

6. $\sqrt[3]{1-x^{3}}$; $\sqrt{\frac{x-1}{x+1}}$ 21. $\frac{x^{3}}{x^{2}-3}$; $x-\ln(x+1)$

7. $\frac{x^{2}}{x^{2}+3}$; $axetyx-x$ 22. $(x-1)^{2}e^{x}$; $\sqrt[3]{4x^{3}-12x}$

8. $-\frac{x^{3}}{(x+1)^{2}}$; $(x-1)e^{x-1}$ 23. $\frac{x}{\sqrt{x^{2}-1}}$; $x^{2}e^{x}$

9. $\frac{x^{2}}{x^{2}-1}$; $\frac{4x}{4+x^{2}}$ 24. $\frac{x}{\sqrt{x^{2}-1}}$; $\frac{18x-3x^{2}}{(x-3)^{2}}$

10. $\frac{x}{x^{2}+3}$; $\frac{1}{x^{2}-6x+5}$ 25. $\frac{16}{x^{2}(x-4)}$; $\frac{18x-3x^{2}}{(x-3)^{2}}$

11. $\frac{x^{3}}{x^{2}+3}$; $\frac{1}{x^{2}-6x+5}$ 26. $\frac{x^{3}}{(x-2)^{2}}$; xe^{-x}

12. $\frac{x^{4}+9}{(x+2)^{2}}$; $2^{\frac{1}{2}}$ 27. $\frac{2x-1}{x^{2}}$; $\sqrt[3]{x^{3}+1}+\sqrt[3]{x^{3}-1}$

13. $\frac{1}{x\sqrt{1-x^{2}}}$; $\sqrt[3]{4x^{2}+4}$ 28. $\frac{1x-11}{x}$; $\frac{1}{(x+3)(1-x)}$

14. $x+2axetyx$; $(x-1)e^{-x}$ 29. $x^{3}-3x$; $\frac{(2x+1)x}{(x+3)(1-x)}$

15. $\frac{x^{3}-5}{(x-3)^{2}}$; $(x-3)\sqrt{x^{2}}$ 30. $\sqrt[3]{(x-1)^{2}}-\sqrt[3]{(x+1)^{2}}$; $(x+5)e^{-x}$

РАЗДЕЛ 4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Задача I. Исследовать на экстремум функцию $z=x^3+y^3-3xy$. Решение. Наидем частные производные I-го порядка и воспользуемся необходимым условием экстремума

$$\begin{cases} \frac{\partial z}{\partial x} = 3x^{2} - 3y = 0 \\ \frac{\partial z}{\partial y} = 3y^{2} - 3x = 0 \end{cases} \iff \begin{cases} x^{2} - y = 0 \\ y^{2} - x = 0 \end{cases}$$

Решая эту систему, получим две стационарные точки: $P_1(0,0)$ и $P_2(1,1)$. Наидем частные производные 2-го порядка:

$$A = \frac{\partial^2 Z}{\partial x^2} = 6 \, \text{c}, \quad B = \frac{\partial^2 Z}{\partial x \partial y} = -3, \quad C = \frac{\partial^2 Z}{\partial y^2} = 6 \, \text{y}.$$

Затем вычислим дискриминант $\mathfrak{D} = AC - B^2 = 36 \infty y - 9$ для каждой отационарной точки:

$$\Re p_1 = 36.0.0 - 9 = -9 < 0;$$

 $\Re p_2 = 36.4.1 - 9 = 27 > 0;$ $A/p_2 = 6 > 0.$

Следовательно, в силу достаточного условия экстремума в точке P_2 экстремума нет, а в точке P_2 докальный минимум.

Ответ: (I,I) - точка локального минимума.

Точка $P(x_0, y_0)$ назнавется условным максимумом (минимумом) Функции z = f(x, y) о условием связи g(x, y) = 0, если существует окрестность U точки P такая, что $f(x_1, y_1) \in f(x_0, y_0)$ ($f(x_1, y_1) \geqslant f(x_0, y_0)$) как только $f(x_1, y_1) \in U$ $g(x_1, y_1) = 0$.

Задача о вычислении условного экстремума сводится к исследованию на обычный экстремум функции Лагранжа $\mathcal{L}(x,y,\lambda)=\mathcal{F}(x,y)+\lambda \varphi(x,y)$. Итак, оистема трех уравнения $\frac{\partial \mathcal{L}}{\partial x}=0$, $\frac{\partial \mathcal{L}}{\partial y}=0$. $\frac{\partial \mathcal{L}}{\partial x}=0$ выражает необходимое условие условного экстремума. Пусть (x_0,y_0,λ_0) — решение этой системы, а

$$\Delta = - \begin{vmatrix} 0 & g'_{x}(P) & g'_{y}(P) \\ g'_{x}(P) & L''_{xx}(P, \lambda_{o}) & L''_{xy}(P, \lambda_{o}) \\ g'_{y}(P) & L''_{xy}(P, \lambda_{o}) & L''_{yy}(P, \lambda_{o}) \end{vmatrix}$$

Если $\Delta < 0$, то $P(x_s, y_s)$ — условный максимум; в одучае $\Delta > 0$ $P(x_s, y_s)$ — условный минимум.

 $\frac{3 \text{ адача 2.}}{x^2 + y^2 = 5}$ Найти уоловный экотремум функции x = x + 2y при

Решение. Составии функцию Лагранжа $L(x,y,\lambda) = x + 2y + \lambda(x^2 + y^2 - 5)$ и воспользуемся необходимым условнем условного экстремума:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = 1 + 2\lambda x = 0 \\ \frac{\partial \mathcal{L}}{\partial y} = 2 + 2\lambda y = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + y^2 = 5 \end{cases} \iff \begin{cases} x = -1 \lambda \cdot \lambda \\ y = -4 \lambda \\ x^2 + y^2 = 5 \end{cases}$$

Решая эту систему, получим две точки: $x_1 = -1$, $y_2 = -2$, $y_3 = -2$; $x_2 = 1$, $y_2 = 2$, $y_4 = -12$. Так как

$$\frac{\partial \mathcal{L}}{\partial x^2} = 2\lambda, \quad \frac{\partial^2 \mathcal{L}}{\partial x^2 y} = 0, \quad \frac{\partial^2 \mathcal{L}}{\partial y^2} = 2\lambda, \quad \mathcal{G}_x' = 2x, \quad \mathcal{G}_y' = 2y;$$

$$\Delta = - \begin{vmatrix} 0 & 2x & 2y \\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{vmatrix} = -8(-x^2\lambda - y^2\lambda) = 8\lambda(x^2 + y^2).$$

Имеен: $\triangle (x_1, y_1, \lambda_1) = 8 \cdot \frac{1}{2} \cdot (1+4) = 20 > 0$ и $\triangle (x_1, y_2, \lambda_2) = 8 \cdot (-\frac{1}{2}) \cdot (1+4) = -20 < 0$. Следовательно, P_1 (-I,-2) — точка условного минимума, а P_2 (I,2) — точка условного максимума.

Ответ: (-I,-2) — точка условного минимума. (I,2) — точка условного максимума.

Задача 3. Найти наибольшее и наименьшее значения функции $z=x^2y$ (y=x-y) в треугольнике, ограниченном прямыми x+y=6, x=0, y=0

Решение. Во-первых, отметим, что \mathcal{Z} - непрерывная функция, а $\triangle OAB$ (см. рисунск) - ограниченная замкнутая соласть.

Следовательно, по теореме Вейерштрасса существуют наибольшее и наименьшее значения функции \mathbf{X} в Δ OAB. Точка, в которой достигается наибольшее (наименьшее) значение, является либо стационарной точкой функции \mathbf{X} , лежащей внутри Δ OAB, либо стационарной точкой сужения функции \mathbf{X} на одну из сторон Δ OAB, либо, наконец, совпадает с одной из вершин O, A, B.

Найдем стационарные точки внутри Д ОАВ.

$$\begin{cases} \frac{\partial \overline{z}}{\partial x} = 8xy - 3x^2y - 2xy^2 = 0 \\ \frac{\partial z}{\partial y} = 4x^2 - x^3 - 2x^2y = 0 \end{cases} \Leftrightarrow \begin{cases} 8 - 3x - 2xy = 0 \\ 4 - x - 2y = 0 \end{cases} \begin{cases} x = 2. \end{cases}$$

Ввиду того, что x>0 и y>0 внутри $\triangle OAB$, мы смогли сократить на x и y. Точка P_1 (1,2) действительно лежит внутри $\triangle OAB$ и Z (1,2) = 4.

Далее, сужая функцию \mathbb{Z} на стороны OA и OB , находим, что $\mathcal{H}_{OA} = \mathcal{H}_{OB} = 0$. На стороне AB зависимость y от x такова: y = 6 - x ; постому

$$\neq_{AB} = x^2(6-x)(4-x-6+x) = -12x^2+2x^3$$

Находим стационарные точки этой функции в интервале (0.6):

$$(-12x^2+2x^3)'=0 \iff -24x+6x^2=0 \iff x_1=0, x_2=4.$$

Из этих двух точек интервалу (0,6) принадлежит только вторая, лля которой $y_2 = 6 - 4 = 2$ и $\geq (x_2, y_2) = 4^2 \cdot 2 \cdot (4 - 4 - 2) = -64$.

Наибольшее значение функции \mathcal{Z} в $\triangle OAB$ совпадает с наибольшим значением в точках P_2 , P_2 , O, A, B, а также значением O в любом из внутренних точек сторон OA и OB. Последнее наибольшее значение не составляет труда внчислить: $Z_{max} = 4$, так как Z(O) = Z(A) = Z(B) = 0 и O < 4; -64 < 4. Аналогично, $Z_{min} = -64$. Ответ: $Z_{max} = Z(1, 2) = 4$; $Z_{min} = Z(4, 2) = -64$.

Заметим, что при решении 3-й задачи мы не пользовались достаточным условием экстремума.

RNHALAE

І. Наити дирференциал эторого порядка

1.
$$Z = e^{xy}$$
4. $Z = x\cos y + y\sin x$
2. $Z = e^{x}\cos y$
5. $Z = x^{2}+2y^{2}-3xy+4x+2y$
3. $Z = \frac{x}{2}$
6. $Z = arc y x y$

7.
$$\vec{z} = x\vec{y}$$

19. $\vec{z} = cty(x^2 - y^2)$

8. $\vec{z} = ln xy$

20. $\vec{z} = xarcsan y^2$

9. $\vec{z} = arcsin xy$

21. $\vec{z} = yazccos x^2$

10. $\vec{z} = xaccos xy$

22. $\vec{z} = yx^2$

11. $\vec{z} = ln(x^2 + y^2)$

23. $\vec{z} = xy^2$

12. $\vec{z} = sin xy^2$

24. $\vec{z} = \frac{x^2 + y^2}{x^2 + y^2}$

15. $\vec{z} = l^2 sin x$

26. $\vec{z} = \frac{x^2 + y^2}{x^2 + y^2}$

16. $\vec{z} = l^2 sin x$

27. $\vec{z} = \frac{x^2 + y^2}{x^2 + y^2}$

18. $\vec{z} = l(x^2 + y^2)$

29. $\vec{z} = cos \frac{x^2 + y^2}{x^2 + y^2}$

2. $local alba a b ha skot penym wy h k k k limb aby ne pemerha k limb a skot penym wy h k k k limb a skot penym wy h k limb a$

```
3. Определить наибольшее и наименьшее значения функции двух
 переменных в указанных областях
 I. Z=1+x+2y;
                   x 20, y 20, x+y 61
 2. Z=1-x+3y;
                   x \neq 0, y \neq 0, x + y \neq 1
 3. Z=2+2x-y; 0=x=2; -1=y=2
 4. Z=3-x+y;
                   -1=x=2; 0 = y = 2
 5. Z= + 22 -3y;
                     x=0, y=0, x-y=1
 6. Z=1-x+2y;
                  0 \le \alpha \le 3, -2 \le y \le 2
 7. Z = 5+3x-2y;
                      x=0, y=0, -x+y=1
 8. Z=-2+2x-3y;
                      x =0, y=0, -x-y=2
 9. Z = -1+x-2y;
                      x 70, y =0, x y = 2
10. Z = xy
                      0 = x = 1; 0 = y = 1
II. z=2-xy;
                      x = 0, y = 0, -x+y=3
12. Z=5-x-y;
                      -1= R = 2 , O= y = 1
13. Z = 1 + xy ;
                      06x, y >0, x+y=3
I4. Z = 1 - 2xy;
                     -2=x=2, 0=y=2
IS Z = -3+2x-y;
                      x = 0, y = 0, -x+y=1
16. Z = 2-x+3y
                      x =0, y =0, x-y=5
17. Z = (x-1)^2 + y
                       x >0, y =0, x+y=2
18. Z = x - (y+x)^c
                       0 = x = 1; 0 = y = 3
19. z = 2x + 3y - 1;
                       x =0, y=0, x-y=2
20. Z = 3x - 2y +1;
                       x =0, y =0, -x-y=2
2I. Z = 4x+2y-5;
                       x = 0, y = 0, - x + y = 5
22. Z = x + (2y-3)^2
                       -1 = x = 3, 0 = y = 1
23. Z = 4x - 5y+2;
                        x =0, y =0, x+y=3
24. Z = -x - y -6;
                        0 = x = 3 , -1 = y = 1
25. Z = -2x+4y-1;
                        0=x, y=0, -x-y=4
26. Z = xy + x ;
                       06261, 06461
27. Z = xy + y ;
                        0 = 251, -1 = y = 0
```

28.	Z = xy - &x	-1 ≤ R ≤ 0,	0=4=1
29.	z = 2xy - y	-3 ± 2 ≤ 0,	-1=y=3
30.	Z = 2xy + x + y;	x=0, y >0	P, -12+4 = 10
	4. Определить условные	экстремумы функции	и двух переменных
I.	I = xy	при условии	x + y = 2
2.	Z = x+3y	при условии	$x^2 + y^2 = 1$
3.	$Z = x^2 + y^2$	при условии	x + y = 1
4.	Z = 2x - y + 1	при условии	$x^2-y=1$
5.	$z = x^2 - y^2$	при условии	-x+y=a
6.	Z = -x2+ y2	при условии	芒·等三人
7.	Z = x2- y2+ 2y	при условии	-x+y=2
8.	Z = -x2 + y2 + 3x	при условии	x - 2y = 1
9.	Z = x - 3y + 2	при условии	x"+ y2 = 3
IO.	Z = xy + x + y	при условии	x + y = 1
II.	Z = xy - x + 2y	при условии	x - y = 2
12.	Z = x 2 - y 2 + 2x - y	при условии	-x+y=1
13.	Z = x2+y2-x+y	при условии	2x+y=2
I4.	$Z = 2x^2 - y^2 + x$	при условии	20x - 2y = 1
15.	Z = 2x - 2y + 3	при условии	$x^2 + 2y^2 = 1$
I 6.	Z=3x+2y+1	при условии	x2 - y2 = 2
I7.	Z = -x + 3y + 2	при условии	2x2+3y2=1
18.	z = 2xy + 3x - y	при условии	2x-3y=2
19.	Z = 2y - 3x + 2y + 1	при условии	-x+2y=2
20.	Z = -2xy +2x -3y -	при условии	2x - 3y = 3
ZI.	Z=3x2+2y2-x-y	при условии	x + y = 3
22.	Z = - 4x2 + 4y2 + 2y	при условии	$x \cdot y = 2$
23.	Z - 4x2-4y2-2x	при условии	-x-2y=2
24.	Z = 5x -3y + 2	при условии	x2+ y2=1
25.	Z = -2x +4y +1	при условии	$x^2 + y^2 = 2$
	V		•

```
26. Z = x + 4y + 8
                        при условии
                                     2x213y2 = 3
27. Z=1-2x-3y-xy
                        при условии
                                      Ardy =1
28. Z=2+y+3xy
                        при условии
                                     20e 3y =5
29. Z=-1-x-2y+3xy
                        при условии
30. Z = x2 - xy + y2
                        при условии
  5. Наяти производные сложных функции
I. Z = x2 + xy + y2,
    7 = Vx2 . y2
                      x = sint, y = cost
                      x = e^{\pm}, \quad y = 1 - e^{2t}
 4. Z = xe^y,
   \mathcal{Z} = x^3 - 3yx,
                       y=ex
                       y = cosx
   王=基-豪,
                        x= u-20, y= 5+24
   Z = 3 1
                      x = u + 2U, \quad y = U - 2u
                       x = 24 - 5, y = 30 + 4
                       x=31-1, y=2111
10. Z = 3x^3 - 2xy + 3,
                        x = t, y = t^e
     Z = arety &
                        x=at, y=3t-1
     z = arcsur (xy)
   Z = 30-4,
                         y=lna
I4. Z = x^2 - 4y^2,
                         y = 3x2+2x-1
                         y = 1
                        x = 34 - 40, y = 24
     Z = xy
                        x=4, y=4-0
                        x = u2+0, y = 2u+3i
      Z = Vx+4
                       x=uv, y=u-v
                        x=t, y=2t
     Z = e^{xy}
                        x=t+1, y=t^{2}
     Z=arcsin =
                        x = 5t2-t, y=6t
     Z=xes
```

 $x = u + \delta$, $y = u - \delta$ 6. Найти производные \mathbf{Z}_{x}^{\prime} , \mathbf{Z}_{y}^{\prime} (дибо \mathbf{y}_{x}^{\prime}) неявно зеданных функций

1.
$$x^2 + y^2 - 4x + 6y = 0$$

2. $x^2 + y^2 + z^2 - 6x = 0$

3.
$$Z^{\ell} = xy$$

4. $x^{\ell} - 4y^{2} = 4$

6.
$$y + x = e^{y/x}$$

7.
$$2\cos(x-2y) = 2y-x$$

8. $x^2+y^2+z^2-2zx=a^2$

10.
$$xy = a^3$$

11. $x^{2/3} + y^{2/3} = a^{2/3}$

13.
$$\mathcal{L}_{xy} = y$$

14. arety
$$y = x + y$$

15. $ln(x+y) = xy$

16.
$$\arcsin(x+y) = 2x-y$$

17.
$$3x^3 - 6xy^2 + 5x^2y - 6y = 0$$
18. $z^5 - x + y + z$

20.
$$arccos(x+z)=z^2+x-y$$

21.	$x^4 - 2x z^2 + 3y^2 - 4x z = 0$
22.	2 + xy = 28 - x + y
23.	$z^2 - 3z + y - \alpha = 0$
24.	ctg # = sin x
25.	3x2-6xy+y2-Z2-Z=0
26.	$\frac{x+y}{x} = y^2$
27.	x+4 = y-1
28.	x + y + 2x - 2y = 2
29.	$x^3 - 4x^2y + y^2 - 2y = 0$
3 0.	5x2+6y2-3x+y=0

ОГЛАВЛЕНИЕ

ПРЕДИСЛО	вие	
PASAET I	AGATHA RAHKEHNI N RNYTENGET RAKKEPNTNIAHA.	
PASAETI 2	BBEA EHNE B AHAJINS	21
РАЗДЕЛ 3	. ДИБФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ	
•	ПЕРЕМЕННОЙ	4(
РАЗДЕЛ 4	ДИБФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ	
	ПЕР ЕМЕННЫХ	5