

DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

18PYB103J – Semiconduuctor Physics

Optical Transitions Using Fermi's Golden Rule

Introduction

Fermi's golden rule is a simple expression for the transition probabilities between states of a quantum system, which are subjected to a perturbation. It is used for a large variety of physical systems covering, e.g., nuclear reactions, optical transitions, or scattering of electrons in solids.

Consider a semiconductor illuminated by electromagnetic radiations (light). The interaction between photons and the electrons in the semiconductor can be described by the Hamiltonian operator.

$$\vec{H} = \frac{1}{2m_0} (\vec{p} - e\vec{A})^2 + \vec{V}(r)$$

Where,

m $_0$ is the free electron mass, \vec{A} is the vector potential accounting part of electromagnetic field.

$$\overrightarrow{V}(r)$$
 is the periodic potential and $e = -|e|$

Using the time dependent perturbation theory, the transition rate for the absorption of a photon can be derived, assuming an electron is initially at state E_1 is given by Fermi's Golden rule

$$W_{abs} = \frac{2\pi}{\hbar} |\langle b|H'(r)|a \rangle|^2 \delta (E_b - E_a - \hbar \omega)$$

Where $E_b > E_a$ is assumed.

The total upward transition rate per unit volume

Where $E_b > E_a$ has been assumed. The total upward transition rate per unit volume(S⁻¹, cm⁻³) in the crystal taking into account the probability that state a is occupied and state b is empty is

$$R_{a-b} = \frac{2}{v} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} \left| H'_{ba} \right|^2 \delta \left(E_b - E_a - \hbar \omega \right) f_a \left(1 - f_b \right)$$

Where we sum over the initial and final states and assume that the Fermi-Dirac distribution f_a is the probability that the state a is occupied. A similar expression holds for f_b with E_a replaced by E_b , and $(1 - f_b)$ is probability that the state b is empty. The prefactor 2 takes into account the sum over spins, and the matrix element H'_{ba} is given by

$$H'_{ba} = |\langle b|H'(r)|a \rangle|^2 = \int \psi^*(r)H'(r)\psi_a(r)d^3r$$

Similarly, The transition rate for the emission of a photon (fig.2) if an electron is initially at state b is.

$$W_{\text{ems}} = \frac{2\pi}{\hbar} \left| \langle a | H'^{+}(r) | b \rangle \right|^{2} \delta \left(E_{a} - E_{b} + \hbar \omega \right)$$

The downward transition rate per unit volume (S⁻¹ cm⁻³) is

$$R_{b-a} = \frac{2}{V} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} |H'^{+}_{ab}|^2 \delta (E_a - E_b + \hbar \omega) f_b (1 - f_a)$$

Using the even property of the delta function, $\delta(-x) = \delta(x)$ and $|H'_{ba}| = |H'_{ab}|$.

The net upward transition rate per unit volume can be written as,

$$R = R_{a \to b} - R_{b \to a}$$

$$R = \frac{2}{V} \sum_{K_a} \sum_{K_b} \frac{2\pi}{\hbar} \left| H'_{ba} \right|^2 \delta \left(E_b - E_a - \hbar \omega \right) (f_a - f_b)$$

An Optical absorption coefficient

The absorption coefficient α_0 ($\frac{1}{cm}$) in the crystal is the fraction of photons absorbed per unit distance

$$\alpha_0 = \frac{Number\ or\ Photons\ absorbed\ per\ second\ per\ unit\ volume}{Number\ of\ injected\ photons\ per\ second\ per\ unit\ area}$$

The injected number of photons per second per unit area of the optical intensity ρ (W/Cm²) divided by the energy of a photon ($\hbar\omega$). Therefore,

$$\alpha (\hbar \omega) = \frac{R}{\frac{p}{\hbar \omega}} = \frac{\hbar \omega R}{(\frac{n_r C \varepsilon_0 \omega^2 A_0^2}{2})}$$

Where, R is the net upward transition rate per unit volume

 $\omega - \frac{2\pi}{\lambda}$, wave number / angular velocity

C- Velocity of light

 n_r – Refractive index of the medium.

A – Vector potential for electromagnetic field.

 ε_0 - Permittivity of the free space.

Thank you