AL310 AA11/12 (Teoria delle Equazioni)					APF	PELL	ОВ (Scrit		Roma, 2 Febbraio 2012.	
COGNOME											
	FIRMA	1	2	3	4	5	6	7	8	TOT.	
1. Rispondere alle sequenti doi portano punteggio nullo):	mande forne	endo	una g	giustif	icazio	one di	i una	riga	(gius	tificazioni	incomplete o poco chiare com-
a. È vero che ogni gruppo	abeliano fir	nito è	il grı	uppo	di Ga	alois d	li qua	ilche j	poline	omio irrid	ucibile in $\mathbf{Q}[X]$?

b. Scrivere una $\mathbf{Q}[i]$ -base del campo di spezzamento del polinomio $X^4-2 \in \mathbf{Q}[i][X]$.

c. È vero che se K ha caratteristica p allora il polinomio $X^p - X + 1$ non ha radici in K?

d. È vero che se E/F è un estensione finita, allora il numero di F-endomorfismi è sempre al più [E:F]?

e. Sia E/\mathbf{Q} un estensione di Galois tale che $\#\mathrm{Gal}(E/\mathbf{Q})=2^{\alpha}$ ($\alpha\in\mathbf{N}$). È vero che $E\cap\mathbf{R}$ contiene solo numeri costruibili?

4.	Calcolare il gruppo	di Galois de	l polinomio ($(X^3 - 5)(X^3 -$	$-2)(X^3-7) \in \mathbf{\Omega}[$	X].

5. Dimostrare che se $p \ge 3$ è primo, allora il discriminante di $X^p - 2$ è $(-1)^{(p-1)/2}2^{p-1}p^p$. Suggerimento: Usare la formula per il discriminante che ha a che fare con la derivata prima.

7. Scrivere tutti i fattori irriducibili del polinomio $(X^{2^3} - X)(X^{2^2} - X) \in \mathbf{F}_2[X]$.

8. Dato $f \in \mathbf{Q}[X]$ irriducibile di grado n, dimostrare che se $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{GL}_2(\mathbf{Q})$, allora $(cX+d)^n f((aX+b)/(cX+d))$ ha lo stesso campo di spezzamento di f(X).