

Aijun Zhang, Ph.D.

Corporate Model Risk, Wells Fargo

Model Validation Class, UNCC Master of Data Science, Fall 2023

Disclaimer: This material represents the views of the presenter and does not necessarily reflect those of Wells Fargo.

- Machine Learning Model Uncertainty
 - Sources of Uncertainty
 - Split Conformal Prediction
- Conformal Prediction for Regression Models
 - Naïve SCP Method
 - Conformal Residual Fitting
 - Conformalized Residual Quantile Regression
- Probability Calibration for Binary Classifiers
- Unreliable Region Detection
 - Feature Identification
 - Segmented Bandwidth/Uncertainty

pip install PiML

PiML Package: https://github.com/SelfExplainML/PiML-Toolbox

PiML User Guide: https://selfexplainml.github.io/PiML-Toolbox

Google Colab Notebooks:

- <u>CaliforniaHousing Case (Regression)</u>
- SimuCredit Case (Binary Classification)

Medium PiML Tutorials:

- 10/09/2023: Model Diagnostics Error and Resilience
- 10/21/2023: Model Diagnostics Overfitting and Robustness
- 10/31/2023: Model Diagnostics Prediction Uncertainty (Todo)
- 11/xx/2023: Model Diagnostics Bias and Fairness (Todo)

Machine Learning Model Uncertainty

- Quantifying uncertainty in machine learning prediction is critical for real-world decision making.
 - Additional layer of model transparency, for increasing reliability and level and confidence;
 - Particularly important in high-risk applications where uncertainty leads to serious consequences.

• SR11-7 Model Risk Management, regarding Outcome Analysis

- Establishing expected ranges for those actual outcomes in relation to the intended objectives and assessing the reasons for observed variation
- Back-testing involves the comparison of actual outcomes with model forecasts not used in model development. The comparison is generally done using expected ranges or statistical confidence intervals around model forecasts.

NIST's AI Risk Management Framework (Initial Draft, 03/17/2022)

Reliability indicates whether a model consistently generates the same results, within the bounds of
acceptable statistical error. [It] can be a factor in determining thresholds for acceptable risk.

Sources of Uncertainty

Data uncertainty

- Data with noise: low or high, constant or heterogenous, outliers, distribution shift, etc.
- Data sparsity in regions, with limited representation or learning capacity
- Randomness in data partitioning (e.g., train-test-split)

Model uncertainty

- Hyperparameter tuning and feature selection leads to uncertain model prediction;
- Stochastic optimization: random state, initialization, early stopping, non-guaranteed optimum.
- This tutorial: prediction uncertainty of a pre-trained model, where the uncertainty may come from data noise and sparsity and lack of model fit.
- Future tutorial: model retraining uncertainty due to a) random data splitting, b) hyperparameter tuning, and c) stochastic optimization.

Split Conformal Prediction

- **Conformal prediction** is a distribution-free uncertainty quantification (UQ) framework in machine learning:
 - Pioneered by Vladimir Vovk since 1990s; see Vovk, Gammerman and Shafer (2005; 2022) or <u>alrw.net</u>
 - A gentle introduction by Angelopoulos and Bates (2023) in Foundations and Trends in Machine Learning or <u>arXiv</u>
- **Split conformal prediction** (as illustrated):
 - Simple and easy to implement
 - Model-agnostic, applicable to arbitrary ML models
 - Prediction interval/set can be effectively generated for regression and multi-class problems, but less informative for binary classification;
 - Guaranteed coverage of true response in the unconditional or marginal sense, but impossible in the conditional sense.

PiML Tools for Quantifying Prediction Uncertainty

- PiML toolbox provides a diagnostic suite including the reliability test:
 - exp.model_diagnose [reliability]: a novel approach of split conformal prediction for regression models,
 a conventional approach of probability calibration for binary classification models, both including
 segmented bandwidth/uncertainty analysis;
 - exp.model_compare[reliability]: prediction uncertainty benchmarking analysis.
- PiML reliability test also supports unreliable region detection:
 - Slicing technique based on the quantified bandwidth/uncertainty
 - Distribution shift analysis between unreliable and reliable samples
 - Surrogate modeling for feature identification w.r.t. prediction uncertainty
- Larger bandwidth → Wider prediction interval → Less reliable prediction

- Machine Learning Model Uncertainty
 - Sources of Uncertainty
 - Split Conformal Prediction
- Conformal Prediction for Regression Models
 - Naïve SCP Method
 - Conformal Residual Fitting
 - Conformalized Residual Quantile Regression
- Probability Calibration for Binary Classifiers
- Unreliable Region Detection
 - Feature Identification
 - Segmented Bandwidth/Uncertainty

Math Behind Conformal Prediction

- Suppose W_1 , ..., W_n , W_{n+1} are exchangeable (i.e., permutation invariant, weaker than i.i.d.)
 - a) The rank of W_{n+1} is uniformly distributed over 1,2, ..., n+1.
 - b) For $\alpha \in [0,1]$, th probability that W_{n+1} is among the $\lceil (n+1)(1-\alpha) \rceil$ smallest of W_1, \dots, W_{n+1} is given by

$$\mathbb{P}(\text{rank}(W_{n+1}) \le \lceil (n+1)(1-\alpha) \rceil) = \frac{\lceil (n+1)(1-\alpha) \rceil}{n+1}$$

- c) Let $\hat{q} = \text{Quantile}\left(\{W_1, \dots, W_n\}; \frac{\lceil (n+1)(1-\alpha) \rceil}{n+1}\right)$
- d) We can derive that $\mathbb{P}(W_{n+1} \le \hat{q}) = \frac{[(n+1)(1-\alpha)]}{n+1} \in [1-\alpha, 1-\alpha+\frac{1}{n+1}).$

Split Conformal Prediction: Procedure

- Given a pre-trained regression model $\hat{f}(x)$, a hold-out calibration data $\mathcal{X}_{\text{calib}}$, a test sample x_{test} , and an error rate α (say 0.1). Define a conformal score measuring the prediction uncertainty, $S(x, y, \hat{f}) \in \mathbb{R}$, which is assumed exchangeable among calibration and testing samples.
 - 1) Calculate the score $S_i = S(x, y, \hat{f})$ for each sample in $\mathcal{X}_{\text{calib}}$;
 - 2) Compute the calibrated score quantile $\hat{q} = \text{Quantile}\left(\{S_1, \dots, S_n\}; \frac{\lceil (n+1)(1-\alpha) \rceil}{n+1}\right)$;
 - 3) Construct the prediction set for the test sample x_{test} by $\mathcal{T}(x_{\text{test}}) = \{y : S(x_{\text{test}}, y, \hat{f}(x_{\text{test}})) \le \hat{q}\}$.
- Under the exchangeability condition of conformal scores, we have the coverage guarantee

$$1 - \alpha \le \mathbb{P}(Y_{\text{test}} \in \mathcal{T}(\boldsymbol{x}_{\text{test}})) \le 1 - \alpha + \frac{1}{n+1}$$

which provides the prediction bounds with α -level acceptable error.

Split Conformal Prediction: Scores

- Naïve SCP based on $S(x, y, \hat{f}) = |y \hat{f}(x)|$, generates prediction intervals with constant bandwidth $\mathcal{T}(x_{\text{test}}) = \{y: |y \hat{f}(x_{\text{test}})| \leq \hat{q}\}$
- Conformal residual fitting (CRF) with locally adaptive conformal score $S(x,y,\hat{f}) = \frac{|y-\hat{f}(x)|}{\sigma(x)}$, where $\sigma(x)$ is trained with an auxiliary model on hold-out sample $\{(x,|y-\hat{f}(x)|),x\in\mathcal{X}_{\mathrm{res}}\}$.

- CQR (conformalized quantile regression, by Romano, et al. 2019) and CHR (conditional histogram regression, by Sesia and Romano, 2021) are 10 not directly suitable for pre-trained model diagnostics.
- PiML-reliability test: residual-based CQR for pre-trained models.

CRQR (Conformalized Residual Quantile Regression)

- 1. Fit a GBM with quantile loss on $\{x_i, y_i \hat{f}(x_i), i \in \mathcal{X}_{res}\}$ (holdout sample) to predict the residual quantiles $[\hat{g}_{\alpha/2}(x), \hat{g}_{1-\alpha/2}(x)]$;
- 2. Define score $S(x, y, \hat{f}) = \max\{\hat{g}_{\alpha/2}(x) y + \hat{f}(x), y \hat{f}(x) \hat{g}_{1-\alpha/2}(x)\}$
- 3. Calculate $\hat{q} = \text{Quantile}\left(\{S_1, \dots, S_n\}; \frac{\lceil (n+1)(1-\alpha) \rceil}{n+1}\right)$, using $S(x, y, \hat{f})$ on $\mathcal{X}_{\text{calib}}$
- 4. Construct the prediction interval for the test sample x_{test} by

$$\mathcal{T}(\boldsymbol{x}_{\text{test}}) = \left[\hat{f}(\boldsymbol{x}_{\text{test}}) + \hat{g}_{\alpha/2}(\boldsymbol{x}_{\text{test}}) - \hat{q}, \ \hat{f}(\boldsymbol{x}_{\text{test}}) + \hat{g}_{1-\alpha/2}(\boldsymbol{x}_{\text{test}}) + \hat{q} \right]$$

Interpretation of $\mathcal{T}(x_{\text{test}})$:

the final prediction interval is composed of three terms, namely the original prediction, the fitted residual quantiles, and the calibrated adjustment.

PiML Demo: Regression Case

Consider the California Housing case with existing data and model pipelines (Google Colab Notebook)

```
from xgboost import XGBRegressor
XGB = XGBRegressor(max_depth=5, n_estimators=500)
exp.model_train(model=XGB, name='XGB5')

exp.model_diagnose(model="XGB5", show="reliability_table", alpha=0.1)

Empirical Coverage Average Bandwidth

0 0.890975 0.27162
```

- Machine Learning Model Uncertainty
 - Sources of Uncertainty
 - Split Conformal Prediction
- Conformal Prediction for Regression Models
 - Naïve SCP Method
 - Conformal Residual Fitting
 - Conformalized Residual Quantile Regression
- Probability Calibration for Binary Classifiers
- Unreliable Region Detection
 - Feature Identification
 - Segmented Bandwidth/Uncertainty

Probability Calibration for Binary Classifiers

- The simple and easy conformal prediction does not work as effectively for the binary classification case.
- We take a conventional approach of using **predict_proba** $\hat{p} = \mathbb{P}(Y = 1 | x)$ and measure the uncertainty by the quantity $\sqrt{\hat{p}(1-\hat{p})}$ for each point prediction.
- Caveat: there is no statistical guarantee of correct coverage of the true class.
- However, probability calibration is needed for raw predict_proba by some ML models, so the predicted probabilities align with the observed class frequencies, as shown by the reliability diagram or measured through the Brier score.
- There are lots of tutorials online, so we don't repeat here.
- In PiML, we adopt the isotonic regression to calibrate the predicted probabilities as a monotonic step function; while Platt scaling is a parametric sigmoid curve.

PiML Demo: Binary Classification Case

• Consider the SimuCredit case with existing data and model pipeline (Google Colab Notebook)

- Machine Learning Model Uncertainty
 - Sources of Uncertainty
 - Split Conformal Prediction
- Conformal Prediction for Regression Models
 - Naïve SCP Method
 - Conformal Residual Fitting
 - Conformalized Residual Quantile Regression
- Probability Calibration for Binary Classifiers
- Unreliable Region Detection
 - Feature Identification
 - Segmented Bandwidth/Uncertainty

Unreliable Region Detection

• PiML reliability test supports unreliable region detection, by utilizing the slicing technique on the test sample-wise bandwidth/uncertainty quantification.

• A Practical User Guide:

- 1) Identify the features sensitive to prediction uncertainty
 - Distribution shift analysis between unreliable and reliable samples (thresholding), or
 - Feature importance of a surrogate model fitted on $\{(x_i, Bandwidth(x_i)), i \in \mathcal{X}_{test}\}$
- 2) Perform segmented bandwidth analysis (i.e., slicing) according to identified features.
- 3) Verify the diagnostic result jointly with weak spot and other tests.

Feature Identification w.r.t. Prediction Uncertainty

Distribution Shift: Unreliable Regions vs. Remaining Reg

PiML Demo: California Housing Regression Case

PiML Demo: SimuCredit Binary Classification Case

Thank you

Aijun Zhang, Ph.D.

Email: Aijun.Zhang@wellsfargo.com

LinkedIn: https://www.linkedin.com/in/ajzhang/

An integrated Python toolbox for interpretable machine learning

pip install PiML

PiML Package: https://github.com/SelfExplainML/PiML-Toolbox

PiML User Guide: https://selfexplainml.github.io/PiML-Toolbox

Google Colab Notebooks:

- <u>CaliforniaHousing Case (Regression)</u>
- SimuCredit Case (Binary Classification)

Medium PiML Tutorials:

- <u>10/09/2023: Model Diagnostics Error and Resilience</u>
- 10/21/2023: Model Diagnostics Overfitting and Robustness
- 10/31/2023: Model Diagnostics Prediction Uncertainty (Todo)
- 11/xx/2023: Model Diagnostics Bias and Fairness (Todo)

Bias and Fairness

• For each demographic feature (Race, Gender), consider AIR between protected group vs reference group.

$$AIR = rac{(TP_p + FN_p)/n_r}{(TP_r + FN_r)/n_p}$$

- AIR below 0.8 is a sign of bias and unfairness.
- PiML provides segmented metrics conditional on a modeling variable (e.g., Balance below). It also provides methods to debias through feature binning and decision thresholding.

PiML Demo: Bias and Fairness

