EGG PRODUCT WITH LOW CHOLESTEROL

Patent number:

JP2020264

Publication date:

1990-01-23

Inventor:

MALY EUGENE R; OLSON PAULINE M; YANG JASON H

Applicant:

SANDOZ AG

Classification:

- international:

A23L1/32

- european:

Application number: JP19890130288 19890525

Priority number(s):

Abstract of JP2020264

PURPOSE: To obtain an egg product having flavor and texture of a whole egg and having low cholesterol amt. b compounding an egg white and food gum into a yolk in a smaller amt. than that in a whole egg, controlling the m to specified pH and then pasteurizing.

CONSTITUTION: An egg white and food gum are compounded into a smaller amt. of a yolk than that in a whole and the pH of the egg component is controlled to obtain 6.35 to 7.8 pH of the finish product. Further, each comp or mixture of these are pasteurized to produce an egg product with a low cholesterol content. By compounding f gum, the flavor and texture of a whole egg can be maintained even when about 90wt.% of the yolk in a whole egg replaced by an egg white. As for the food gum, &kappa -carrageenan, &iota -carrageenan or a mixture of these food gum such as carob bean gum and fine crystalline cellulose can be used.

Also published as

EP034412 EP034412

⑩ 日本国特許庁(JP)

① 特許出願公開

平2-20264 ⑩ 公 開 特 許 公 報 (A)

@Int. Cl. 5

識別記号

庁内整理番号

個公開 平成2年(1990)1月23日

A 23 L 1/32

Z 7803-4B

> 審査請求 未請求 請求項の数 2 (全8頁)

60発明の名称 低コレステロールの卵製品

> 願 平1-130288 20特

願 平1(1989)5月25日 220出

優先権主張 図1988年5月27日図米国(US)図199567

70発 明 者 ユージン・アール・マ アメリカ合衆国ミネソタ州55369メイブルグローブ・ワン リイ

ハンドレッドアンドフアーストプレイス 10866

ポーリン・エム・オル 饱発 明者 アメリカ合衆国ミネソタ州55123イーガン・サドベリイレ

イン 906

スイス国バーゼル (番地なし) 勿出 願 人 サンド・アクチエンゲ

ゼルシヤフト

70代 型 人 弁型士 小田島 平吉

ソン

最終頁に続く

1. [発明の名称]

低コレステロールの卵製品

2. [特許請求の範囲]

1. 全卵中に存在するよりも少量の卵黄含量と 6.35~7.8の範囲の州を有する卵白、卵黄及 び食品ゴムを含んでなる全卵と関連した舌ざわり をもつ低コレステロールの卵製品。

- 2. a) 最終製品の咁が 6.35~7.8の範囲 にあるように卵成分の凹を調節し;
- b) 各成分を一緒にし且つ混合し; そして
- c) 随時各成分又はその混合物を殺菌する、 という任意の順序での工程を含む上記しの卵製品 の製造法。

3. [発明の詳細な説明]

本発明は、低コレステロールの卵製品及びその 製造法に関する。

要約すれば本発明は、卵黄の90%までが対応 する量の卵白で代替されている、但し食品ゴムを 含んでなり且つ 6.25~7.8の範囲の出を有す

-1-

る卵質の彼ぜられた製品に関するものである。

卵は主たる食品蛋白質源の1つであり、単独で 或いは他の食品製品の成分として消費されている。 本明細書に用いる如き卵とは、鶏卵又はその同等 物を指すものとする。殻のついた卵は、2種類の 蛋白質、即ち卵黄と液体卵白を含み、卵黄は卵の 脂肪及びコレステロールの本質的にすべてを含有 する。卵の卵黄含量は変化し且つ殻つき卵の約3 9 重量%までを構成するけれど、これは一般には 全殻つき卵の約30重量%を構成しよう。ここに 用いる全卵とは、以下卵の固体約23.5~25 重量%及び水約75~76.5重量%を含有する 全殻つき卵に関するものである。全卵は蛋白質的 12重量%、脂肪約11重量%及びコレステロー ル約0.4~0.5重量%を含有する。以下ここに 用いる如き卵白とは、卵中に天然に産し且つ卵の 固体約11~12重量%を含んでなる液体卵白の 組成を有ずる生成物に関するものである。卵白は 蛋白質を約10重量%含有し、脂肪は痕跡量にす ぎず且つコレステロールは存在しない。

以下用いる如き卵質は、卵の卵質の組成を有し 且つ約11~12重量%の卵の固体を含んでなる 生成物に関するものである。卵黄は蛋白質約14 重量%、脂肪約30%、及びコレステロール約2 %を含む。

全卵、卵白及び卵黄は天然の生成物であるから、 その組成は変動することが理解されよう。

血中コレステロールの冠状病との関連のためにコレステロールの該ぜられた食品の有利な効果が一般に知れるようになり、卵製品のコレステロール含量を減ずる動機となつた。

卵のコレステロールを減ずることに関する多くの過去の技術の努力は、卵黄に対する代替物に焦点が当てられていた。この代替物は、代替された卵製品の風味及び舌ざわりを、全卵のそれから実質的に変更してしまうから、大衆に受け入れられなかつた。

それ故に全卵の風味と舌ざわりを有するコレス テロール量の演ぜられた卵製品が必要とされている。

-3-

7.8の範囲の叫を有する卵白、卵黄及び食品ゴムを含んでなる全卵と関連した舌ざわりをもつ低コレステロール及び低脂肪の卵製品を提供する。 好ましくは本発明の卵製品において、全卵の卵黄の60%以上が卵白で代替される。

本明細書において用いる如き食品ゴムは、いずれかの栄養的に許容しうる食品ゴム、更に特にゲル構造を構成し且つ蛋白質と相互作用するような食品ゴム、好ましくは混合物中の固体によつて中断されてないそれぞれ硬いゲルを形成するゴムである。

好適な食品ゴムは、ジェラン(geilan*) {ケルコ (Kelko) によつて開発された未許可の食品添加物]、寒天、カラジーナン (特にカツパカラジーナン及びイオタカラジーナン)、及びこれらと、イナゴマメゴム、微結晶セルロース (HCC) 又はメチルセルロースから選択される食品ゴムとの混合物を含む。

そのような食品ゴムの混合物の特に好適な例は、 特に4:1~1:1の範囲の重量比の、カツバカ 本発明は、全卵の卵黄の90重量%まで、例えば75重量%までが対応する量の卵白で代替されている黄味の波ぜられた組成物を有し且つ食品コム、例えばイオタカラジーナンを含んでなる卵生成物を提供する。

料理した卵製品の最も重要な特徴は、その舌ざわりである。本発明の意味に入る料理ずみの卵は炒り卵である。全卵から作つた炒り卵はぱさぱさした又は柔い状態でなくてしつかりした口あたりを有すると考えられる。卵質を除いた卵製品は望しくないゼラチン様の口あたりを示す。

今回、低コレステロールの及び全卵と関連した 舌ざわりの卵製品は、全卵において卵黄の90重量%までを対応する量の卵白で代替し且つ官能的 に有効な量の食品ゴムを抵加することによつて製 造しうることが発見された。ここに官能的に有効 な量は、妙り卵の形において炒つた新鮮な卵と同 様の舌ざわりを有する卵製品をもたらす食品ゴム の量に関するものである。従つて本発明は全卵 中に存在するよりも少量の卵黄含量と6.35~

-4-

ラジーナン/イナゴマメゴム、イオタカラジーナン/ 微結晶セルロース、及びイオタカラジーナン /メチルセルロースを含む。イオン及び極性残基と 疑集する二重ら 線構造の形成によりゲルを生成して支持性網状構造を作るイオタカラジーナンは 最も好適である。

使用しうる食品ゴムの量は、簡便には炒つた新しい卵と同様の舌ざわりを有する、即ちしつかりした口あたりを与え且つ炒り卵製品と比べて粘稠すぎない、ばさばさしすぎない、ゴム状すぎない、かたすぎない、ねばねばしすぎない、乾いていすぎない又は歌かすぎない炒り卵製品を与えるように選択されるであろう。

一般にそのような舌ざわりは、本発明の卵製品・中に食品ゴムを0.01~0.6%、特に0.02~0.55%、例えば0.1~0.5重量%の量で用いて達成されよう。

本明細書に用いる如き卵黄含量は、卵質:卵白及び卵質の全重量の重量比を用いるために使用される。

本発明の卵製品は簡便にはブルツクフィールド LVT型粘度計で決定して室温(約15~25℃) で300cpsを越えない粘度を有する安定な分散 液である。

本発明の卵製品は、32.3:1~7.8:1の 範囲内、特に32.3:1~8.4:1の範囲内、 更に特に32.3:1~10:1、好ましくは3 2.3:1~12.3:1の範囲内の重量比で卵白 : 卵黄を含んでなる。本発明の典型的な卵製品は 85~97重量%、特に90~97%、好ましく は92.5~97%の卵白からなる卵成分(卵白 及び卵黄)を含んでなる。

本発明の卵製品の別は舌ざわりの創節のために6.35~7.8の範囲内の別に調整される。

7.0~7.8の別は一般に好適であり、この場合製品は迅速料理時間で使用できる、例えば製品は短時間で妙つたり、料理したりすることができる。

製品をビユツフェ用に使うことが意図され(即 ち製品をある期間、即ち 2 時間までスチーム・テ

-7-

ダイズ分離物及び他の豆類相当物、特に脱脂乾燥 ミルクが添加でき、好ましくは添加されよう。一般に卵製品の舌ざわりは、そのような蛋白質を約 0.5~1.0 重量%含有している時に実質的に改 良される。

本発明の好選な卵製品は95.0%以上、特に97%以上、更に特に98重量%以上の卵白及び卵費からなつていよう。食品着色剤及び食品風味剤は簡便にはそれぞれ0.005~0.03重量%の範囲内にあろう。

本発明の典型的な卵製品は例えば次の成分を含有しうる:

成分	重量%	
卵白	85 ~ (例えば85.0 ~	
卵黄	3 ~ (例えば8.6 -	11.5
植物又は動物蛋白質 (例えば脱脂乾燥ミ		1.0
·水 ,.	. 0.0 -	1.0
食品ゴム	0.01-	0.6

ーブル上に置いたままでいる場合)ていて卵製品の変色(緑色他)を防止したいならば、引は更に低い、例えば 6.35~6.5であるであろう。

州の調整は好ましくは本発明の卵製品と適合する生理学的に許容しうるカルボン酸(食品酸)、例えばクエン酸、乳酸など、好ましくはクエン酸を用いて達成されよう。所望の叫を達成するために適用される食品酸の量は一般に全卵製品の約0・1~0・3 重量%を構成しよう。 州の酸での調整は高卵白含量と関連したゼラチン状、ゴム状の舌ざわりを減少させる。

本発明の卵製品は、卵白、卵黄、食品ゴム及び 随時カルポン酸のほかに他の成分を含有していて もよい。

そのような更なる成分の例は、水、生理学的に 許容しうる食品着色料、風味剤及び植物及び/又 は動物蛋白質を含む。即ち例えば本発明の卵製品 の舌ざわりを改良するために、植物又は動物の蛋 白質例えば脱脂乾燥ミルク、乳漿蛋白質、ナトリ ウムカゼイネート、ダイズ濃縮物、ダイズ蛋白質、

-8-

引調整のための食品数0.1- 0.3食品着色剤(天然植物油)0.005- 0.03食品風味剤0.005- 0.03本発明の卵製品は任意の順序で、

- b) 各成分を一緒にし且つ混合し; そして
- c) 随時各成分又はその混合物を殺菌する、 の工程を含む方法で得ることができる。

本発明の方法は好ましくは病原パクテリヤを排除するために低温殺菌工程を含むことは理解されよう。そのような低温殺菌工程は卵白及び卵黄の各低温殺菌に公知の方法で行ないうる。

本発明の低脂肪/低コレステロールの卵製品において卵白含量が高いから、これらの製品を低温 殺菌することは非常に困難である。卵白は約5 6 . 7 ℃で凝固しはじめる。しかしながら全卵は、卵黄中の鉄がコナルブミン(感熱性物質)を安定化しうるから卵白よりも約11.1℃高い温度に耐えることができる。コナルブミンを安定化

するために卵白を金属イオンで処理することは可能である。これは技術的に公知の方法で、例えば 卵白を、例えば乳酸-硫酸アルミニウムを用いて アルミニウムイオンで処理することによつて行な いうる。斯くして安定化された卵白は約61.1 ℃での低温殺菌を可能にする。

しかしながらこのように処理した卵白製品は、「すべてが天然」の製品であると考えられない。 従つて卵白の金属イオン安定化を必要としない低 温段菌工程を用いることが好適であろう。

卵白の低温殺菌は好ましくは H₂O₂ の存在下に行なわれる。これは卵白の腰固温度(約56.7℃)以下の温度での効果的な低温殺菌を可能にする。H₂O₂ は35%工業用混合物の形で簡便に用いられる。USDA(米国農業省)の許可する卵白のH₂O₂ 低温殺菌条件は、H₂O₂(純粋)0.05重量%を含んでなる卵白を最小3.5分間最低約51.7℃に加熱することを含む。

本発明の低温殺菌した卵製品の好適な製造法は、上述の理由から卵白と卵質を別々に低温殺菌する

-11-

工程を含んでなる。

H₂O₂ は簡便には 0 . 0 5 ~ 0 . 1 重量%、好ま しくは 0 . 0 7 ~ 0 . 0 8 重量%の量で添加される。 工程 1 の混合物は、好ましくは H₂O₂ を完全に

上程1の混合物は、好ましくは H₂O₂ を完全に 分解させるのに十分な時間工程に供せられる。過 酸化水素の分解を促進するために触媒を使用して もよい。

工程 2 における液体卵黄は好ましくは液体全卵の形で使用される。この場合に使用される液体全卵の量は好ましくは最終生成物の卵白;卵黄の重量比が 3 2 . 3 : 1 ~ 7 . 8 : 1 の範囲内にあるように選択される。

液体全卵混合物の粥(工程2)は好ましくは 6.4~7.0である。

最終製品の**団(工程4)は好ましくは約6.4** ~ 7.4 である。

本発明の方法は回分法又は連続法として行なうことができる。

次の実施例は好適な食品ゴムの選択及び本発明 の卵製品の製造を例示する。 ことを含む。卵白部分の叫調整は好ましくは低温 殺菌後に行なわれる(卵白の自然の叫はバクテリ ヤの死滅をより良く誘導する)。低温殺菌に対し て、卵白部分は食品ゴムを含有していてよい。し かしながら食品ゴムは卵質部分に添加し、次いで 低温殺菌してもよい。有利な製造法は、

- 液体卵白を、随時食品ゴムとの混合物において、最小0.05重量%の H₂0₂ の添加 後に、最低51.7℃の温度で最小3.5分 間低温殺菌し;
- 2)液体卵黄の叫を、所望ならば液体全卵の形で及び/又は食品ゴム及び蛋白質、着色剤及び風味剤を含む随意の成分との混合物において、6.35~7.8の範囲の別に調整し;
- 3) 工程 2) の混合物を最低 6 1 . 1 ℃の温度で最小 3 . 5 分間低温殺菌し;
- 4) 工程 !)の卵白混合物を工程 3)の卵黄混合物と混合し、そして混合物の別を 6 . 3 5~7.8に調整する、

-12-

実施例1 - 食品ゴムの評価

次の組成(第1表)を用いることにより、卵質を減じた製品における種々の食品ゴムの適当性を. 評価した:

第1表

<u>成分</u>	<u>%</u>
卵白	87.1665 - 89.0665
卵黄	8.8000
脱脂乾燥ミルク	1.0000
水	1.0000
着色剤(アンナツト)	0.01200
食品ゴム	0.10000 - 2.0000
卵風味剤混合物	0.021
クエン酸	0.15 (州を6.5-6.8に

ゴムの評価法は次の通りである。バツチ成分 (第1表) は限定成分として卵白に基づいて計算 した。脱脂乾燥ミルクと食品ゴムを除く成分を一 緒にし、完全に混合した。クエン酸を用いて混合 物を約引 6.6 に調整した。この基剤の一部を選 択したゴム及び脱脂乾燥ミルクの乾燥混合物と一緒にした。水和の時間後、卵混合物の粘度を測定した。次いで混合物を料理し(炒り)、舌ざわりと口あたりに関して評価した。

実施例1に従つて評価した食品ゴムの例は、寒 天、アルギン酸塩、ジェラン、カツパカラジー ナン、イオタカラジーナン [FMC ジェカリン (Gelcarin*) として炉ル形及び FMC ビスカリン (Viscarin*) として卵ゲル形の双方]、MCC、メ チルセルロース、カツパカラジーナン/イナゴマ メゴム (1:1)、 (ゲル化) イオタカラジーナ ン/ MCC (4:1) 及び (ゲル化) イオタカラジ ーナン/メチルセルロース (1:1) を含んだ。 結果は次の食品ゴムが本発明の卵製品に用いる のに特に適当であるということを示す:

ジェラン(ケルコの開発した未許可の食品添加 剤)、寒天、カツパカラジーナン、イオタカラジ ーナン及びこれと、イナゴマメゴム、 数結晶セル ロース (MCC) 又はメチルセルロースとの混合物、 更に好ましくはカツパカラジーナン又はイオタカ

-15-

次の実施例3~5において、次の装置を用いた:
二重渦流高速混合機 [プレッド(Breddo)社]、容量5000ポンド。混合機の底部に2組のチョッピング (chopping) 翼をもつ。

低温殺菌機:標準的な市販のブレート形熱交換器。 保持管 (holding tube) : (USDA 刊行の卵の低

温穀菌法に従い)層流を保証するために各足に対して另"隆起しているように配置された標準的な市販の2½"ステンレス鋼製保持管。 静的混合機:管内にヘリツクスをもつ2½"の管 [クリーブランド・スタチック・ミキシング・ システム(Cleaveland Static Nixing System、

Bedfoud N.H.)]。 秤量ポンプ [プラン・アンド・リユーベ (Bran &

実施例3-回分法

Lubbe)] .

工程1-固体11%を含む液体卵白3463ポンドを混合機中に押り入れた。クエン酸剤液を鑑加して出を7.45まで低下させた。カラジーナン13.5ポンドを混合

ラジーナン或いはそのようなカラジーナンとイナ ゴマメゴム、NCC 又はメチルセルロースとの混合 なか。

特に好適な食品ゴム混合物はカツパカラジーナン/イナゴマメゴム(1:1)、イオタカラジーナン/散結晶セルロース(4:1)、及びイオタカラジーナン/メチルセルロース(1:1)を含む。

一般に、試験した人々は、非ゲル化形又はゲル 化形、特に後者の形のイオタカラジーナンを含ん でなる卵製品を、その好ましい舌ざわり及び口あ たりのために好んだ。

最良の結果は、0.6 重量%以下の食品ゴムを、 含んでなる卵製品の場合に得られた。

実施例2

95.5 重量%までの卵白及び0.01~0.6 重量%の食品ゴムを含んでなる本発明の組成物を 用いて同様の試験を行なつた。再び実施例1に記述したゴム系を用いた場合に特に良好な結果が得 られた。

-16- .

機に添加し、2分間混合した。次いで H₂O₂を最終決度 O · O 5 重量%まで保持 管に注入して、混合物を 1 2 8 下で 3 · 5 分間低温殺菌した。この低温殺菌した 卵白をポンプで保持タンクに送入し、夜 通して滞留させて H₂O₂ を完全に分解し、 泡状物を消滅させた。

- 工程 2 固体 2 3 . 5 %を含む全卵 1 4 6 7 ポンドをポンプで混合機中に送入した。クエン酸溶液を添加して叫を 6 . 6 5 まで下げた。脱脂乾燥ミルク 5 0 ポンド、アンナト (annato) 着色剤 0 . 8 ポンド、及び天然风味剤 1 ポンドを混合機に添加し、3 分間混合した。次いで混合した全卵を最近 1 4 2 下で3 5 分間低温 数 割した。
- 工程 3 工程 1 からの低温 投菌 した卵白 及び工程 2 からの低温 投菌 した全卵 混合物 をポンプで混合 タンク中に入れ、そして 3 0 分間 混合して、ポンプで充填機に送り包装した。最終製品の配は 7・1 であつた。

奥施例4 - 連続法

工程1-工程1は実施例3の数示に従つた。

工程2-工程2は実施例3の数示に従つた。

工程3-工程1からの低温殺菌した卵白混合物及び工程2からの低温殺菌した全卵混合物を、静的混合機中において、全卵混合物1部に対して卵白混合物2.3~9.0部の割合で連続的に混合した。

実施例5-回分又は連続法

工程1においてカタラーゼ約3オンスを添加して H₂O₂の分解を促進させ且つ保持時間を短縮する以外実施例3の数示に従つて工程1、2及び3を行なつた。

随時工程 3 において、連続法の場合には実施例 4 の数示に従つた。

本発明を、全卵混合物を用いる工程2について 記述したけれど、最終製品の全卵白と卵黄の比が 約32.3:1~10.1:1の範囲にある限りに おいて、卵黄混合物に対しても同様の工程を適用 することができる。

-19-

工程3-工程1からの卵白混合物及び工程2からの全卵混合物をポンプで混合タンク中に送り、更なるグェン酸を添加して引を7.3にした。

奥施例7 - 液体卵白と液体卵黄

工程1-実施例6と同じ

工程 2 - 液体卵費 (固体約50%) 150ポンド 及び液体卵白 (固体11%) 365ポントをポンプで混合機中に送り、そして50%クエン酸溶液を添加して叫を6.65に調整した。残りは実施例6の工程2と同一であつた。

工程3-実施例6と同じ。

灾施例 8 - 連続法

工程1-実施例6と同じ

工程2-実施例6と同じ

工程3-工程1からの低温殺菌した卵白混合物及び工程2からの低温殺菌した全卵混合物を7.8:1の比で秤量ポンプにより送り、静的混合機で混合して保持タンク又

奥施例 6 - 液体卵白/液体全卵

一回分式

工程1-液体卵白(固体11%) 4420ポンドをポンプで混合機中に送り、イオタカラジーナン13.5ポンドを抵加し、2分間混合した(カラギーナンは好むならば工程2に抵加することができる)。次いで H₂0:を最終決度0.05重量%まで注入して、この混合物を128°Fで34分間低温殺菌した。この低温殺菌した卵白をポンプで保持タンクに送り、H₂0:が完全に分解するまで保持した。

工程 2 - 液体全卵 (固体 2 3 . 5 %) 5 1 5 ポンドをポンプで混合機中に送り、5 0 % クエン酸溶液を室温で添加して、引を6 . 6 5 に調整した。脱脂乾燥ミルク5 0 ポンド、アンナト着色剤 0 . 8 ポンド及び天然の風味剤 1 ポンドを添加し、3 分間混合した。次いで全卵混合物を1 4 3 下で3 ½時間低温殺菌した。

~20-

は充填機に直接送つた。同時にクェン酸 溶液を添加して引を7.3に調整した。

実施例9-クエン酸溶液の組成及び製造

クエン酸 100 ポンド

水 <u>100 ポン</u>ド・

合計 200 ポンド

クエン酸 1 0 0 ポンドを水 1 0 0 ポンドに 極加し、 蓋つきの水 蒸気 ジャケットを 備えた 釜中で 沸とうするまで 加熱した。 この 静液を 使用前に 室温まで 冷却した。 必要 なクエン 酸 静液の 量は 出発物質として 用いる 液体卵の 引に 依存すること が 理解されよう。

実施例10-組成物例

液体卵白(固体11%) 4430 ポンド 液体全卵(固体23.5%) 515 ポンド 脱脂乾燥ミルク 50 ポンド カラジーナン(イオタ) 13.5 ポンド クエン酸 6 ポンド 食品着色刺(アンナト) 0.8 ポンド 天然の風味剤 1 ポンド 本発明の特徴及び態様は以下の通りである。

- 1. 全卵中に存在するよりも少量の卵質含量と6.35~7.8の範囲の叫を有する卵白、卵質及び食品ゴムを含んでなる全卵と関連した舌ざわりをもつ低コレステロールの卵製品。
- 2. 全卵中に存在する含量に関し、卵質の90 重量%までが対応する量の卵白で代替されている ことに相当する卵質含量を有する上配1の卵製品。
- 3. 卵製品の全重量に対して 0.01~0.6%、特に 0.02~0.55%、特に 0.1~0.5重量%の食品ゴムを含んでなる上記 1 又は 2 の卵製品。
- 4. 卵白: 卵黄の重量比が32.3:1~7.8:1、特に32.3:1~8.4:1、更に特に32.3:1~1.1、好ましくは32.3:1~12.3:10範囲である上記1~3の卵製品。
- 5. 生理学的に許容しうるカルボン酸を用いて 州の調整を達成する上記1~4の卵製品。
- 6. 水、食品碧色剤、風味剤、植物蛋白質及び 動物蛋白質から選択される成分を1種又はそれ以

-23-

及びカツバカラジーナン及びこれと、イナゴマメ ゴム、微結晶セルロース及びメチルセルロースか ら選択される食品ゴムとの混合物から選ばれた上 記9の卵製品。

- 1 1 . 食品ゴムがイオタカラジーナンである上記 1 0 の卵製品。
- 12.カルボン酸がクエン酸である上記1~1 1の卵黄の彼ぜられた卵製品。
 - 13.a) 最終製品の叫が6.35~7.8の範囲にあるように卵成分の叫を調節し;
 - b)各成分を一緒にし且つ混合し;そし
 - c) 随時各成分又はその混合物を殺菌す る、

という任意の順序での工程を含む上記 1~12の
卵製品の製造法。

- 14. 卵白及び卵質部分を別々に低温殺菌する で導入する上記 16の方法。 ことを含んでなる上記 13の方法。 18. 工程 iv) において、
- 15. 卵白を H₂O₂ の存在下に低温殺菌することを含んでなる上記 | 4の方法。

上更に含んでなる上配3の卵製品。

7. 卵白及び卵黄を95.0%以上、特に97. 0%以上、更に特に98.0度量%以上含んでなる上記6の卵製品。

8. 重量%で、

明白 約85.0~96.0%

明黄 約3.0~11.5%

植物又は動物の蛋白質 約0.5~1.0%

水 約0.0~1.0%

食品ゴム 約0.01~0.6%

カルボン酸 約0.1~0.3%

食品着色剤 約0.005~0.03%

を含んでなる上記7の卵製品。

9. 食品ゴムを、ジェラン、寒天、カツバカラジーナン、イオタカラジーナン及びこれと、イナゴマメゴム、散結晶セルロース及びメチルセルロースから選択される食品ゴムとの混合物から選ばれた上記1~8の卵製品。

10.食品ゴムを、寒天、イオタカラジーナン

- 24 -

- 1 6 · i)液体卵白を、随時食品ゴムとの混合物において、最小 0 · 0 5 重量%のH₂O₂ の添加後に、最低 5 1 · 7 ℃の温度で最小 3 · 5 分間低温殺菌し;
 - ii)液体卵黄の吲を、所望ならば液体全卵の形で及び/又は食品ゴム及び蛋白質、着色剤及び風味剤を含む随意の成分の1種又はそれ以上との混合物において、6・35~7・8の範囲の別に調整し;
 - ii)工程 ii)の混合物を最低 6 1 . 1 ℃の 温度で最小 3 . 5 分間低温殺菌し;
 - iv) 工程 i) の卵白混合物を工程 ii) の 卵質混合物と混合する、

ことを含んでなる上記15の方法。

17. 工程 ii)において、卵黄を液体全卵の形で導入する上記 16の方法。

18. 工程 iv) において、工程 i) 及び ii) の 成分を、全卵混合物 1 部に対して卵白混合物的 2.3~9.0 部の割合で連続的に混合する上記 17の方法。

19. 工程i) において、カタラーゼを抵加して B₂O₂ の分解を促進する上記 16~18の方法。
20. 工程ii) において、低温殺菌前の混合物を1000~1500psiで均質化する上記 16~19の方法。

2 1 . 室温において 3 0 0 cpsを越えない粘度 を有する上記 1 ~ 1 3 の卵製品。

特許出願人 サンド・アクチエンゲゼルシャ フト

代理 人 弁理士 小田島 平 5

- 27 -

第1頁の続き

優先権主張

⑩発 明 者

ジエイソン・エイチ・ アメリカ合衆国ミネソタ州55447プリマス・オリーブレイ ヤング ン 2420