A

Slots	0	1	2	3	4
Job	Alpha	Beta	Gamma	Delta	Theta
Profit	60	100	20	40	20
Deadline	2	1	3	2	1

e.g.

Set of jobs for scheduling, using Greedy algorithm.

Slots	0	1	2	3	4
Job	Beta	Alpha	Delta	Gamma	Theta
Profit	100	60	40	20	20
Deadline	1	2	2	3	1

Create a vector (size = max. deadline, 3 in this case) of two elements profit and name of jobs. Initialize profit with 0 and name with XYZ.

	Index	0	1	2	3
C	Job	XYZ	XYZ	XYZ	XYZ
	Profit	0	0	0	0

Table B slot O selected, and added in index O (deadline - 1) table (.

	Index	0	1	2	3
C	Job	Beta	XYZ	XYZ	XYZ
	Profit	100	0	0	0

Table B slot 1 selected, and added in index 1 (deadline - 1) table C.

	Index	0	1	2	3
C	Job	Beta	Alpha	XYZ	XYZ
	Profit	100	60	0	0

Table B slot 2 selected, and rejected because all the indices <= (deadline - 1) are already occupied by higher profit jobs.

Table B slot 3 selected, and added in index 2 (deadline - 1) table (.

	Index	0	1	2	3
C	Job	Beta	Alpha	Gamma	XYZ
	Profit	100	60	20	0

Table B slot 4 selected, and rejected for the same reason.

Final set of jobs in the sequential order

	Index	0	1	2
C	Job	Beta	Alpha	Gamma
	Profit	100	60	20

Maximum profit that can be earned
$$= 100 + 60 + 20 = 180$$

X

Slots	0	1	2
Job	Pi	Chi	Psi
Profit	60	100	40
Deadline	2	1	2

e.g.

Set of jobs for scheduling, using Brute Force algorithm.

	Slots	0	1	2
v	Job	Chi	Pi	Psi
ľ	Profit	100	60	40
	Deadline	1	2	2

Generate all the possible solution sets.

E		F			G	
0	1	0	1	0	1	2
Chi	Psi	Pi	Psi	Chi	Pi	Psi
100	40	60	40	100	60	40
1	2	2	2	1	2	2

```
Set A selected, and is feasible (index assigned <= deadline - 1
for each element of the set).
Current profit = 100 & current solution set = A
Set B selected, and is feasible. But rejected, because profit(B)
< current profit.
Set C selected, and is feasible. Profit(C) > current profit.
Current profit and solution set updated.
Current profit = 160 & current solution set = C
Set D selected, and is feasible. But rejected, because profit
(D) < current profit.
Same as set D<sub>1</sub> set E & F are rejected.
Set G selected, and rejected, because it is not feasible.
```

Final set of jobs in the sequential order

	Index	0	1
C	Job	Chi	Pi
	Profit	100	60

Maximum profit that can be earned = 100 + 60 = 160