

A connecting rod is supported by a knife-edge at Point A. For small oscillations the angular acceleration of the connecting rod is governed by the relation $\alpha = -6\theta$ where α is expressed in rad/s² and θ in radians. Knowing that the connecting rod is released from rest when $\theta = 20^{\circ}$, determine (a) the maximum angular velocity, (b) the angular position when t = 2 s.

SOLUTION

Angular motion relations:

$$\alpha = \frac{d\omega}{dt} = \frac{\omega d\omega}{d\theta} = -6\theta \tag{1}$$

Separation of variables ω and θ gives

$$\omega d\omega = -6\theta d\theta$$

Integrating, using $\omega = 0$ when $\theta = \theta_0$,

$$\int_0^{\omega} \omega d\omega = -6 \int_{\theta_0}^{\theta} \theta d\theta$$

$$\frac{1}{2} \omega^2 = -3(\theta^2 - \theta_0^2) = 3(\theta_0^2 - \theta^2)$$

$$\omega^2 = 6(\theta_0^2 - \theta^2) \qquad \omega = \sqrt{6(\theta_0^2 - \theta^2)}$$

(a) ω is maximum when $\theta = 0$.

Data:

$$\theta_0 = 20^{\circ} = 0.34907 \text{ radians}$$

$$\omega_{\text{max}}^2 = 6(0.34907^2 - 0) = 0.73108 \text{ rad}^2/\text{s}$$

 $\omega_{\text{max}} = 0.855 \text{ rad/s} \blacktriangleleft$

(b) From
$$\omega = \frac{d\theta}{dt}$$
 we get $dt = \frac{d\theta}{\omega} = \frac{1}{\sqrt{6}} \frac{d\theta}{\sqrt{\theta_0^2 - \theta^2}}$

Integrating, using t = 0 when $\theta = \theta_0$,

$$\int_{0}^{t} dt = \frac{1}{\sqrt{6}} \int_{\theta_{0}}^{\theta} \frac{d\theta}{\sqrt{\theta_{0}^{2} - \theta^{2}}}$$

$$t = -\frac{1}{\sqrt{6}} \cos^{2-1} \frac{\theta}{\theta_{0}} \Big|_{\theta_{0}}^{\theta} = -\frac{1}{\sqrt{6}} \left[0 - \cos^{-1} \frac{\theta}{\theta_{0}} \right] = -\frac{1}{\sqrt{6}} \cos^{-1} \frac{\theta}{\theta_{0}}$$

$$\theta = \theta_0 \cos(\sqrt{6}t) = 0.34907 \cos[(\sqrt{6})2] = (0.34907)(0.18551) = 0.064756$$
 radians

An automobile travels to the right at a constant speed of 48 mi/h. If the diameter of a wheel is 22 in., determine the velocities of Points B, C, D, and E on the rim of the wheel.

SOLUTION

$$\mathbf{v}_A = 48 \text{ mi/h} = 70.4 \text{ ft/s}$$

$$d = 22$$
 in. $r = \frac{d}{2} = 11$ in. = 0.91667 ft

$$\omega = \frac{v_A}{r} = \frac{70.4}{0.91667} = 76.8 \text{ rad/s}$$

$$v_{B/A} = v_{D/A} = v_{E/A} = r\omega$$

= (0.91667)(76.8) = 70.4 ft/s

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} = [70.4 \text{ ft/s} \longrightarrow] + [70.4 \text{ ft/s} \longrightarrow]$$

$$\mathbf{v}_D = \mathbf{v}_A + \mathbf{v}_{D/A} = [70.4 \text{ ft/s} \longrightarrow] + [70.4 \text{ ft/s} \cancel{30}^\circ]$$

$$\mathbf{v}_E = \mathbf{v}_A + \mathbf{v}_{E/A} = [70.4 \text{ ft/s} \longrightarrow] + [70.4 \text{ ft/s}]$$

 $v_0 = 136.0 \text{ ft/s} < 15.0^{\circ}$

$$v_F = 99.6 \text{ ft/s} \le 45.0^{\circ} \blacktriangleleft$$

$$\mathbf{v}_{c} = 0$$

$$\mathbf{v}_{B} = 140.8 \text{ ft/s} \longrightarrow \blacktriangleleft$$

A painter is halfway up a 10-m ladder when the bottom starts sliding out from under him. Knowing that point A has a velocity $\mathbf{v}_A = 2$ m/s directed to the left when $\theta = 60^\circ$, determine (a) the angular velocity of the ladder, (b) the velocity of the painter.

SOLUTION

Given:
$$\mathbf{v}_A = -2\mathbf{i} \text{ m/s}, \ \theta = 60^\circ$$

Geometry:
$$\mathbf{r}_{B/A} = 10\cos 60^{\circ} \mathbf{i} + 10\sin 60^{\circ} \mathbf{j}$$

$$\mathbf{r}_{P/A} = 5\cos 60^{\circ}\mathbf{i} + 5\sin 60^{\circ}\mathbf{j}$$

Relative Velocity:
$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} = \mathbf{v}_A + \omega_{AB} \mathbf{k} \times \mathbf{r}_{B/A}$$

$$v_B \mathbf{j} = -2\mathbf{i} + \omega_{AB} \mathbf{k} \times (5\mathbf{i} + 8.660\mathbf{j})$$
$$= -(2 + 8.660\omega_{AB})\mathbf{i} + 5\omega_{AB}\mathbf{j}$$

Equate Components:

(a) i:
$$0 = -(2 + 8.660\omega_{AB})$$

 $\omega_{AB} = -0.231 \text{ rad/s}$

 $\omega_{AB} = 0.231 \text{ rad/s}$

Velocity of Painter (point P):
$$\mathbf{v}_p = \mathbf{v}_A + \mathbf{v}_{P/A} = \mathbf{v}_A + \omega_{AB} \mathbf{k} \times \mathbf{r}_{P/A}$$

= $-2\mathbf{i} - 0.23 \, \mathbf{l} \mathbf{k} \times (2.5\mathbf{i} + 4.330\mathbf{j})$

(b)
$$\mathbf{v}_P = -(1.00 \text{ m/s})\mathbf{i} - (0.577 \text{ m/s})\mathbf{j} \blacktriangleleft$$

The plate shown moves in the xy plane. Knowing that $(v_A)_x = 250 \text{ mm/s}$, $(v_B)_x = -450 \text{ mm/s}$, and $(v_C)_x = -500 \text{ mm/s}$, determine (a) the angular velocity of the plate, (b) the velocity of Point A.

SOLUTION

Angular velocity:

$$\omega = \omega \mathbf{k}$$

Relative position vectors:

$$\mathbf{r}_{B/A} = (150 \text{ mm})\mathbf{i}$$

 $\mathbf{r}_{C/A} = (200 \text{ mm})\mathbf{i} + (150 \text{ mm})\mathbf{j}$

Velocity vectors:

$$\mathbf{v}_A = (250 \text{ mm/s})\mathbf{i} + (v_A)_{y} \mathbf{j}$$

$$\mathbf{v}_B = (v_B)_x \mathbf{i} - (450 \text{ mm/s}) \mathbf{j}$$

$$\mathbf{v}_C = -(500 \text{ mm/s})\mathbf{i} + (v_C)_v \mathbf{j}$$

Unknowns are ω , $(v_A)_v$, $(v_B)_x$, and $(v_C)_v$.

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} = \mathbf{v}_A + \omega \mathbf{k} \times \mathbf{r}_{B/A}$$

$$(v_B)_x \mathbf{i} - 450 \mathbf{j} = 250 \mathbf{i} + (v_A)_y \mathbf{j} + \omega \mathbf{k} \times 150 \mathbf{i}$$

= $250 \mathbf{i} + (v_A)_y \mathbf{j} + 150 \omega \mathbf{j}$

i:
$$(v_R)_v = 250$$
 (1)

j:
$$-450 = (v_A)_v + 150\omega$$
 (2)

$$\mathbf{v}_C = \mathbf{v}_A + \mathbf{v}_{C/A} = \mathbf{v}_A + \omega \mathbf{k} \times \mathbf{r}_{C/A}$$

$$-500\mathbf{i} + (v_C)_y \mathbf{j} = 250\mathbf{i} + (v_A)_y \mathbf{j} + \omega \mathbf{k} \times (200\mathbf{i} - 150\mathbf{j})$$

= $250\mathbf{i} + (v_A)_y \mathbf{j} + 200\omega \mathbf{j} + 150\omega \mathbf{i}$

i:
$$-500 = 250 + 150\omega$$
 (3)

$$\mathbf{j}: \qquad (v_C)_v = (v_A)_v + 150\omega \tag{4}$$

(a) Angular velocity of the plate.

From Eq. (3),

$$\omega = -\frac{750}{150} = -5$$

 $\omega = -(5.00 \text{ rad/s})\mathbf{k} = 5.00 \text{ rad/s}$

(b) Velocity of Point A.

From Eq. (2), $(v_A)_y = -450 - 150\omega = -450 - (150)(-5) = 300 \text{ mm/s}$

 $\mathbf{v}_A = (250 \text{ mm/s})\mathbf{i} + (300 \text{ mm/s})\mathbf{j}$

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

In the planetary gear system shown, the radius of gears A, B, C, and D is 30 mm and the radius of the outer gear E is 90 mm. Knowing that gear E has an angular velocity of 180 rpm clockwise and that the central gear A has an angular velocity of 240 rpm clockwise, determine (a) the angular velocity of each planetary gear, (b) the angular velocity of the spider connecting the planetary gears.

SOLUTION

Since the motions of the planetary gears B, C, and D are similar, only gear B is considered. Let Point B be the effect contact point between gears B and let Point B be the effective contact point between gears B and B.

Given angular velocities:

$$\omega_E = 180 \text{ rpm}$$
 $= 6\pi \text{ rad/s}$ $\omega_A = 240 \text{ rpm}$ $= 8\pi \text{ rad/s}$

Outer gear E:

$$radius = r_E = 90 \text{ mm}$$

$$v_E = r_E \omega_E = (90 \text{ mm})(6\pi \text{ rad/s}) = 540\pi \text{ mm/s}$$

$$\mathbf{v}_E = 540\pi \text{ mm/s} \longrightarrow$$

Gear A:

$$radius = r_A = 30 \text{ mm}$$

$$v_H = r_A \omega_A = (30 \text{ mm})(8\pi \text{ rad/s}) = 240\pi \text{ mm/s}$$

$$\mathbf{v}_H = 240\pi \text{ mm/s} \longrightarrow$$

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

PROBLEM 15.49 (Continued)

Planetary gear B:

radius =
$$r_B = 30$$
 mm, $\omega_B = \omega_B$ \rangle
 $\mathbf{v}_H = \mathbf{v}_E + \mathbf{v}_{H/E}$

 $[(30 \text{ mm})\omega_A \longrightarrow] = [540\pi \text{ mm/s} \longrightarrow] + [(60 \text{ mm})\omega_B \longleftarrow]$

$$30\omega_A = 540\pi - 60\omega_B$$

 $\omega_B = \frac{540\pi + 30\omega_A}{60} = 9\pi + \frac{1}{2}\omega_A = 9\pi - \frac{1}{2}(8\pi) = 5\pi \text{ rad/s}$

(a) Angular velocity of planetary gears:

$$\omega_B = \omega_C = \omega_D = 5\pi \text{ rad/s}$$
 = 150 rpm

$$\mathbf{v}_B = \mathbf{v}_H + v_{BH} = [(30 \text{ mm})\omega_A \longrightarrow] + [30 \text{ mm} \omega_B \longrightarrow]$$

 $v_B = (30 \text{ mm})(8\pi \text{ rad/s}) + (30 \text{ mm})(5\pi \text{ rad/s}) = 390\pi \text{ mm/s}$

(b) Spider:

$$arm = r_1 = 60 \text{ mm}, \quad \boldsymbol{\omega}_s = \omega_s$$

$$v_B = r_s \omega_s$$

$$\omega_s = \frac{v_B}{r} = \frac{390\pi \text{ mm/s}}{60 \text{ mm}} = 6.5\pi \text{ rad/s}$$

$$\boldsymbol{\omega}_s = 6.5\pi \text{ rad/s}$$
 = 195 rpm $\boldsymbol{\searrow}$

P B B

PROBLEM 15.61

In the engine system shown, l = 160 mm and b = 60 mm. Knowing that the crank AB rotates with a constant angular velocity of 1000 rpm clockwise, determine the velocity of the piston P and the angular velocity of the connecting rod when (a) $\theta = 0$, (b) $\theta = 90^{\circ}$.

SOLUTION

$$\omega_{AB} = 1000 \text{ rpm}$$
 $= \frac{(1000)(2\pi)}{60} = 104.72 \text{ rad/s}$

(a)
$$\theta = 0^{\circ}$$
. Crank AB. (Rotation about A) $\mathbf{r}_{B/A} = 0.06 \text{ m}$

$$\mathbf{v}_B = v_{B/A}\omega_{AB} = (0.06)(104.72) = 6.2832 \text{ m/s}$$

Rod BD. (Plane motion = Translation with B +Rotation about B)

$$\mathbf{v}_{D} = \mathbf{v}_{B} + v_{D/B}$$

$$v_{D} = \begin{bmatrix} 6.2832 & \longrightarrow \end{bmatrix} + \begin{bmatrix} v_{D/B} & \longleftarrow \end{bmatrix}$$

$$v_{D} = 0$$

$$v_{D/B} = 6.2832 \text{ m/s}$$

$$v_{P} = v_{D}$$

$$\omega_{BD} = \frac{v_B}{l} = \frac{6.2832}{0.16}$$

$$\mathbf{v}_P = 0$$
 $\mathbf{\omega}_{BD} = 39.3 \text{ rad/s}$

(b)
$$\theta = 90^{\circ}$$
. Crank AB. (Rotation about A) $\mathbf{r}_{B/A} = 0.06 \text{ m}$

$$\mathbf{v}_B = r_{B/A}\omega_{AB} = (0.06)(104.72) = 6.2832 \text{ m/s}$$

Rod BD. (Plane motion = Translation with B + Rotation about B.)

$$\mathbf{v}_{D} = \mathbf{v}_{B} + \mathbf{v}_{D/B}$$

$$[v_{D}] \downarrow] = [6.2832] \downarrow + [v_{D/B} \nearrow \beta]$$

$$v_{D/B} = 0, \quad v_{D} = 6.2832 \text{ m/s}$$

$$\omega_{BD} = \frac{v_{D/B}}{l}$$

$$\mathbf{v}_P = \mathbf{v}_D = 6.2832 \text{ m/s}$$

$$\omega_{BD} = 0$$

$$\mathbf{v}_P = 6.28 \text{ m/s}$$

B 100 mm 200 mm 120 mm 100 mm

PROBLEM 15.68

In the position shown, bar DE has a constant angular velocity of 10 rad/s clockwise. Knowing that h = 500 mm, determine (a) the angular velocity of bar FBD, (b) the velocity of Point F.

SOLUTION

Bar DE: (Rotation about E)

$$\mathbf{\omega}_{DE} = 10 \text{ rad/s }) = -(10 \text{ rad/s})\mathbf{k}$$

$$\mathbf{r}_{D/E} = -(0.1 \text{ m})\mathbf{i} + (0.2 \text{ m})\mathbf{j}$$

$$\mathbf{v}_{D} = \mathbf{\omega}_{DE} \times \mathbf{r}_{D/E} = (-10\mathbf{k}) \times (-0.1\mathbf{i} + 0.2\mathbf{j})$$

 $= \boldsymbol{\omega}_{DE} \times \mathbf{r}_{D/E} = (-10\mathbf{k}) \times (-0.1\mathbf{i} + 0.2\mathbf{j})$ $= (1 \text{ m/s})\mathbf{j} + (2 \text{ m/s})\mathbf{i}$

Bar FBD: (Plane motion = Translation with D + Rotation about D.)

$$\mathbf{\omega}_{BD} = \omega_{BD} \mathbf{k} \quad \mathbf{r}_{B/D} = -(0.3 \text{ m})\mathbf{i} + (0.1 \text{ m})\mathbf{j}$$

$$\mathbf{v}_{B} = \mathbf{v}_{D} + \mathbf{\omega}_{BD} \times \mathbf{r}_{B/D}$$

$$= \mathbf{j} + 2\mathbf{i} + (\omega_{BD}\mathbf{k}) \times (-0.3\mathbf{i} + 0.1\mathbf{j})$$

$$= \mathbf{j} + 2\mathbf{i} - 0.3\omega_{BD}\mathbf{j} - 0.1\omega_{BD}\mathbf{i}$$

Bar AB: (Rotation about A)

$$\mathbf{\omega}_{AB} = \omega_{AB} \mathbf{k}$$
 $\mathbf{r}_{B/A} = (0.42 \text{ m})\mathbf{j}$
 $\mathbf{v}_{B} = \mathbf{\omega}_{AB} \times \mathbf{r}_{B/A} = (\omega_{AB} \mathbf{k}) \times (0.42 \mathbf{j}) = -0.42 \omega_{AB} \mathbf{i}$

Equating components of the two expressions for v_B ,

$$1 - 0.3\omega_{BD} = 0$$
 $\omega_{BD} = 3.3333$ rad/s

$$\omega_{BD} = 3.33 \text{ rad/s}$$

i:

$$2 - 0.1\omega_{BD} = -0.42\omega_{AB}$$
 $2 - (0.1)(3.3333) = -0.42\omega_{AB}$

$$\omega_{AB} = -3.9683 \text{ rad/s}$$
 $\omega_{AB} = 3.97 \text{ rad/s}$

Bar FBD:

$$\mathbf{r}_{F/D} = C\mathbf{r}_{B/D}$$
 where $C = \frac{h + 0.3}{0.3}$

$$\mathbf{v}_F = \mathbf{v}_B + \mathbf{\omega}_{BD} \times \mathbf{r}_{F/D}$$

= $\mathbf{j} + 2\mathbf{i} + C(-0.3\omega_{BD}\mathbf{j} - 0.1\omega_{BD}\mathbf{i})$
= $\mathbf{j} + 2\mathbf{i} + C(-\mathbf{j} - 0.33333\mathbf{i})$

With

$$h = 500 \text{ mm} = 0.5 \text{ m}, \quad C = \frac{0.8}{0.3} = 2.6667$$

$$\mathbf{v}_E = \mathbf{j} + 2\mathbf{i} - 2.6667\mathbf{j} - 0.88889\mathbf{i}$$

(b)

$$\mathbf{v}_F = (1.11111 \text{ m/s})\mathbf{i} - (1.66667 \text{ m/s})\mathbf{j} \quad \mathbf{v}_F = 2.00 \text{ m/s} \times 56.3^{\circ} \blacktriangleleft$$