CSE 543 Information Assurance and Security

Information Assurance in Cloud Computing Systems

Professor Stephen S. Yau

Evolution of Computing Paradigms

CSE543

Major New Computing Paradigms (cont.)

- Service-oriented Computing

- Service-oriented computing
 - Abstraction of functional units as software services with discoverable and interoperable interfaces, which can be described using common standards, such as WSDL
 - Major characteristics: loosely-coupling, latebinding, autonomy, composability
 - Realize workflows (business processes) by service composition

Cloud Computing

- Derived from service computing and resource virtualization technologies (including Internet)
- Massively scalable computing capabilities provided 'as a service' to multiple customers simultaneously
- IT resources across the Internet are dynamically configured and virtualized
- IT as an *on-demand* service
- Private, public and hybrid cloud systems

CSE543

Major Characteristics of Cloud Computing

- Resource pooling
- Heterogeneity
- Broad network access
- Agility
- Usability
- On-demand service
- Usage accounting
- Automation

Cloud Computing Paradigms (cont.)

Cloud Computing System Architecture

CSE543

- Emerging and considered as a cloud computing infrastructure, where *data* and *processing* occur outside mobile devices
 - enabling new types of applications involving use of mobile devices, including handset centric features and network related features, such as GPS and/or cell-based location information.

- Most cloud users are concerned with <u>leakage</u> of their sensitive data in the cloud because their data is processed and stored on machines owned and operated by various service providers, not controlled by users.
- Due to the severe limitation of resources available in *mobile devices* and characteristics of mobile cloud computing, *security* for mobile cloud computing are *more severe*.

Challenges: IA in Cloud Computing

How to protect *confidentiality and privacy* of users' sensitive data *from service providers*?

- Who have access to my data?
- How can we be sure that the service providers do not abuse our sensitive data?
- How can we be sure that service providers provide proper protections on our sensitive data against attackers?

Challenges: IA in Cloud Computing (cont.)

- How to protect <u>integrity of users' data</u> within cloud?
 - Who are running applications on these same machines?
 - How can we be sure that there is *no data mixing*?
 - What are *data backed up policies and mechanisms*? How often? Where is the back up stored?
 - Is the recovery process effective?
- How to ensure that <u>service providers</u> will <u>comply</u> with <u>security policies</u>?
 - How to specify security policies?
 - Are there effective policy enforcement mechanisms?
 - How to protect intellectual property rights of service users?

Challenges: IA in Cloud Computing

- How to ensure the <u>availability and reliability of</u> each <u>third-party service</u>?
 - Are service providers' data centers safe from natural disasters?
 - Are the services always available on demand?
 - Are the services always functioning properly?
 - Will the services work properly under stress conditions?
 - Are the services resilient to failures?
 - Are the services vulnerable to various cyber attacks, viruses and worms?

Challenges: IA in Cloud Computing (cont.)

- How to support *QoS adaptation* in dynamic situation of the cloud?
 - How to adapt SLAs between service providers and consumers dynamically, including trade-offs among multiple QoS factors and multiple consumers?
 - How to ensure the service providers can satisfy multiple QoS factors, such as security, performance, timeliness, throughput, and reliability, for multiple consumers simultaneously and dynamically?

Challenges: IA in Mobile Cloud Computing

- How to improve <u>authentication and</u> <u>authorization</u> of mobile devices in mobile cloud?
 - What kinds of *information can be collected* by mobile devices?
 - How the information can prevent attackers from successfully attacking the mobile cloud after its mobile devices are lost or stolen?
 - What effective mechanisms are needed for authentication and authorization of mobile devices in mobile cloud?

Challenges: IA in Mobile Cloud Computing (cont.)

- How to improve <u>network security</u>, including mobile networks?
 - Which *interfaces* have the potential to expose sensitive information and possibly receive malicious data?
 - How service providers and users can interact in a trusted and secure network?
 - What are *the security requirements* for monitoring and checking of the trusted and secure networks of mobile cloud?
 - What are the requirements for establishing *secure routing* and connections in mobile cloud?

Challenges: IA in Cloud Computing (cont.)

- How to avoid *threat of malwares* in cloud computing, especially in mobile cloud?
 - How to avoid the malware injected in mobile cloud, especially via lost or stolen mobile devices?
 - How to avoid leveraging social networks to deliver malwares?
 - How to avoid *data leakage*?
 - How to avoid *backdoor* triggered via SMS?
 - How to avoid account privilege escalated to root?

Current State of Art: IA in Cloud Computing

- Protection of *confidentiality and privacy* of users' sensitive data *from service providers*
 - User-centric identity management and access control
 - Trustworthy computing: Trust management in cloud
 - Data encryption and obfuscation
 - Privacy-preserving data mining
 - Anonymous computing

Current State of Art: IA in Cloud Computing (cont.)

- Protection of integrity of cloud
 - Dynamic auditing
 - Efficient backup and recovery planning
 - Virtual machine isolation
 - Integrity verification in the cloud
- Assurance that service providers will comply with security policies
 - Dynamic establishment and enforcement of SLA between service providers and consumers
 - Security policy specification
 - Security policy conflict detection and resolution

Current State of Art: IA in Cloud Computing (cont.)

- Assurance of availability and reliability of third party services
 - Critical infrastructure protection: Intrusion detection, cyber attack prevention, analyzing and defeating malware, worms and viruses
 - Cyber situational awareness
 - Automated efficient risk management: risk identification, assessment and mitigation
 - Data backups and contingency plans
 - Fault/error tolerant computing
 - High availability through virtual machine live migration

- Support for QoS adaptation in cloud computing
 - QoS requirement specification for dynamic situation
 - Dynamic resource allocation to support situation changes and dynamic users' requirements
 - Efficient trade-off techniques for multiple QoS factors and multiple consumers

Current State of Art: IA in Mobile Cloud Computing

- Improve authentication and authorization for mobile cloud
 - Location-based authentication and authorization
 - Policy-based authorization
 - Biometrics: notably keystroke dynamics and typing patterns

Current State of Art: IA in Mobile Cloud Computing (cont.)

- Improve *mobile network security*.
 - Virtualization
 - Virtual network construction, backup and recovery in mobile network environments
 - Monitoring of hypervisors
 - Light weight encryption and obfuscation
- Reduce threat of malware in mobile cloud
 - Monitoring and auditing the use of mobile devices
 - Location-based access control
 - Host-based mobile malware detection