Data Management and Manipulation Lecture 02.1: Data Management

Lauren Sullivan

Module: Data Management, Visualization & Reproducibility

Readings

Required for class:

► NA

Optional:

- ► Lind, E.M. (2016) Unified Data Management for Distributed Experiments: A Model for Collaborative Grassroots Scientific Networks. *Ecological Informatics*. 23:231-236.
- ► Hart et al. (2016) Ten Simple Rules for Digital Data Storage. *Plos Computational Biology*.
- ▶ Borer, E.T. et al. (2009) Some Simple Guidelines for Effective Data Management. Bulletin of the Ecological Society of America. 90(2):205-214.

Why Manage Data?

- ▶ Allows you to **quality control** your data more easily.
- ► Helps you stay **organized** through the whole process of file management, script creation, version control, backups, etc.
- ▶ Enables **reproducibility**. You always want to be able to recreate figures and analyses from the data that produced them. Even 3 years later.
- ▶ Helps you **share** your data more easily for future meta-analyses, etc. This allows for larger understanding of your field.

Organization is Key to Data & Project Management

For each R project/manuscript, you will want to have a set of folders. Here is a suggestion, but there are many options.

- ► Data
- ▶ Data Wrangling
- ► Analysis
- ► Graphics
- **▶** Documents
- ► ReadMe

Folder Structure in Detail

- Data
 - raw data (read-only, pristine backup, not to be touched)
 - ▶ tidy data (intermediate and final R datasets)
 - ▶ Data Wrangling
 - ▶ DataAcquisition.R script for compiling all data files into a single, usable dataset.
 - Analysis
 - ► Graphics
 - Documents
 - ▶ Manuscript folder
 - Literature folder
 - ► ReadMe
 - metadata
 - write down the driving questions and purposes of the project and other notes.

Note: Your code will stay cleaner if you use many smaller scripts, e.g. one for all analyses, one for all figures OR one for each analysis and the associated figures

Tips for Entering Raw Data for R Analysis

- ► No spaces in column headers
- Note units either in column header or in associated metadata
- ▶ R is case sensitive so keep column headers in a case structure (e.g. snake_case, dot.case)
- ► The difference between "0" and "NA" and a blank cell all tells you something
- ▶ Fill all columns

BAD plot	species	mass	BETTER		species	mass
				_		
1	ARTFRI	0.005		1	ARTFRI	0.005
		0.01		1	ARTFRI	0.01
		0.012		1	ARTFRI	0.012
		0.007		1	ARTFRI	0.007
2	ARTFRI	0.006		2	ARTFRI	0.006
		0.009		2	ARTFRI	0.009
		0.011		2	ARTFRI	0.011
		0.012		2	ARTFRI	0.012

Relational Data

When thinking about how to enter your data...

- ▶ Store data as smaller units (hierarchical and by type) and link through code.
- ▶ For example: store site level data in one file, and plot level data in another. Then link these datasets through code.
 - ► This helps avoid confusion and repetition
 - ► Great for large, interconnected datasets, especially those that can change
 - ▶ Data management systems play well with data in this format (e.g. Tidy, SQL)
 - ► Can be linked as 1:1, many to one (n:1), or one to many (1:n)

An Extreme Example of Relational Data

Figure 1: From Lind (2016) Ecological Informatics

Git and GitHub

GitHub is a great resource for managing data and code. If you are interested, there are lots of great resources out there. Here are a few.

- ▶ Perez-Riverol, Y. et al. (2016) Ten Simple Rules for Taking Advantage of Git and GitHub. *PLOS Computational Biology*.
- ► GitHub Guides