An Introduction to Discontinuous Galerkin Methods

Module 3A: To Higher-Orders - Solution Approximation

J. Bevan

Department of Mechanical Engineering, Grad Student University of Massachusetts at Lowell

Module 3A: To Higher-Orders - Solution Approximation

Weak Form- Revisited

Approximation Space

 L^2 Projection: Minimize norm

The Galerkin Condition

Arbitrary Order Basis: Monomials?

Linear Dependence

The ill-conditioned Hilbert matrix

[Recall] Lagrange Interpolation

Lagrange Spatial Approximation

Interpolation Points: Equispaced?

Runge's Phenomenon

Interpolation Points: Legendre Roots

Weak Form- Revisited: Approximation Space

$$\int_{\Omega} \frac{\partial q}{\partial t} \phi_j \, dx + \int_{\Omega} \frac{\partial f(q)}{\partial x} \phi_j \, dx = 0 \tag{1}$$

- ▶ Let's revisit the weak form in greater detail, we glossed over some important details.
- ➤ To get a flexible method, we'd like to be able to generate an arbitrary order solution approximation. How do we do this in code?
- We glossed over the construction of the bases, we can think in terms of nodal or modal

$$\widetilde{q}(x) = \sum_{i=0}^{M} a_i \psi_i(x) \tag{2}$$

L^2 Projection: Minimize norm

Where does the weak form come from? Approximate sol'n doesn't satisfy the PDE exactly, left with some residual

$$\frac{\partial \widetilde{q}}{\partial t} dx + \frac{\partial f(\widetilde{q})}{\partial x} dx = R(x)$$
 (3)

- ▶ A projection finds the "closest" fit on a vector space compared to the original. An orthogonal projection does just this.
- lacktriangle Minimizes the L^2 norm wrt the space projected upon

The Galerkin Condition

An orthogonal projection means that the difference between the original and the projection should be orthogonal to the space projected upon, so for each basis $\phi \in V_h$

$$\int (f - f_h) \phi dx = 0 = \int R(x) \phi dx \tag{4}$$

- ► The projected space doesn't have to be the same space as the solution approximation, but if we do choose them to be the same we have the Bubnov-Galerkin approach
- ▶ We could choose the two spaces to be different, this is a Petrov-Galerkin approach. As an example, a weight space of delta functions yields a collocation method

Arbitrary Order Basis: Monomials?

- Let's continue with the choice of polynomials for our basis functions.
- ▶ The easy and obvious choice is the monomials $\psi_i(x) = a_i x^i$ so the arbitrary order solution approximation is

$$\widetilde{q}(x) = \sum_{i=0}^{M} a_i \psi_i(x) = \sum_{i=0}^{M} a_i x^i$$
(5)

Can you think of why this a poor choice for a vector basis? Remember a basis needs to be complete and linearly independent. Let's see two separate ways why this is a poor choice.

Linear Dependence

- Normalize the basis wrt to the L^2 norm $|g|=\sqrt{\int g^2}$ so $\bar{\psi}_i=\sqrt{2i+1}x^i$
- Consider the inner product of two adjacent basis functions

$$\int \bar{\psi}_{i-1}\bar{\psi}_i \, dx = \sqrt{1 - \frac{1}{4i^2}} \tag{6}$$

- ▶ Linearly independent vectors are orthogonal, that is their inner product is zero. But for our monomials, even moderate values of *i* give an inner product of close to 1
- Very nearly dependent basis vectors mean small perturbations can lead to trouble finding the correct solution

The ill-conditioned Hilbert matrix

- ► The alternate way to consider this is to look at the mass matrix for a monomial basis
- **▶** 1
- **▶** x
- $\rightarrow x^2$
- $\rightarrow x^3$
- ▶ When we integrate from 0 to 1 it is easy to see the pattern of values, this is a Hilbert matrix
- ▶ It is ill-conditioned, let's see why this is a problem in Matlab

[Recall] Lagrange Interpolation

- Instead of a monomial basis, what if we were to use a Lagrange basis (commonly used for interpolation)
- Recall, the Lagrange basis is zero at all interp nodes except the basis node, which it is 1 at
- ▶ It has the form

$$L_q(x) = \prod_{p=1, p \neq q}^{Np} \frac{x - x_p}{x_q - x_p}$$
 (7)

We can compactly represent this as nn=elim(nd(1:N)',nd(1:N)',[1 3 2]); Lag= @(x,nv) prod(bsxfun(@rdivide,bsxfun(@minus,x,nn(nv,:,:)),... bsxfun(@minus,nd(nv),nn(nv,:,:))),3)

Lagrange Spatial Approximation

▶ We can now represent our arbitrary order sol'n approximation

$$\tilde{q}(x) = \sum_{i=0}^{M} a_i \psi_i(x) = \sum_{i=0}^{M} q(x_i) L_i(x)$$
 (8)

Where we must choose a collection of points to use as our interpolation nodes

Interpolation Points: Equispaced?

- It would seem logical that equispaced points are a good choice. They evenly cover the domain and are simple to calculate positions for.
- Indeed these points work well for low Np, so one would expect the accuracy to increase as Np increases
- lacktriangle Let's see how it behaves at large Np

Runge's Phenomenon

- The divergence of the interpolation is a result of Runge's phenomenon
- ▶ Why this fails is explainable in terms of two relations: the Bernstein and Markov Inequalities. For a polynomial $P^N \in [-1,1]$

$$|P'(x)| \le \frac{N}{\sqrt{1-x^2}} ||P||_{\infty}$$
 (9)

 The singularity in the Bernstein inequality can be bounded by the Markov inequality

$$||P'|| \infty \le N^2 ||P||_{\infty} \tag{10}$$

With the overall being

$$|P'(x)| \le \min\left(\frac{N}{\sqrt{1-x^2}}, N^2\right) ||P||_{\infty}$$
 (11)

Interpolation Points: Legendre Roots

- ► The overall inequality implies we'd like quadratic spacing near the element boundaries.
- ► Though it may seem arbitrary, the roots of the Legendre polynomials have a favorable spacing that matches out needs
- ► They avoid Runge's phenomenon, and have several other very nice features we shall see in the next module

http://en.wikipedia.org/wiki/File:Legendrepolynomials6.svg