

Self Practice:

- a. Find the value of f(0).
- **b.** Find the value of x for which (i) f(x) = 3 and
- (ii) f(x) = 0.
- **c.** Find the domain of f.
- **d.** Find the range of f.

Self Practice:

- **a.** Find the value of f(7).
- **b.** Find the values of x corresponding to the point on the graph of f located at a height of 5 units from the x-axis.
- c. Find the points on the x-axis at which the graph of f crosses it. What are the values of f(x) at those points?
- **d.** Find the domain and range of f.

Consider the following function defined by its graph:

Find the following limits:

$$\lim_{x \to -2^-} f(x)$$

$$\lim_{x \to -2^-} f(x) \qquad b) \lim_{x \to -2^+} f(x) \qquad c) \lim_{x \to -2} f(x) \qquad d) \lim_{x \to -3} f(x) \qquad e) \lim_{x \to 5} f(x)$$

$$c) \lim_{x \to -2} f(x)$$

$$d$$
 $\lim_{x \to -3} f(x)$

$$e) \lim_{x \to 5} f(x)$$

Practice:

1. Consider the following piece-wise defined function: $f(x) = \begin{cases} 1 - 3x + 2x^2 & \text{if } x < -2 \\ 25 + 3x - x^2 & \text{if } x > -2 \end{cases}$

Find the following limits:

a)
$$\lim_{x \to -2^{-}} f(x)$$
 b) $\lim_{x \to -2^{+}} f(x)$ c) $\lim_{x \to -2} f(x)$ d) $\lim_{x \to -3} f(x)$ e) $\lim_{x \to -1} f(x)$

b)
$$\lim_{x \to -2^+} f(x)$$

$$c) \lim_{x \to -2} f(x)$$

$$d$$
 $\lim_{x \to -3} f(x)$

$$e$$
) $\lim_{x \to -1} f(x)$

5. Consider the following piece-wise defined function: $f(x) = \begin{cases} 3 & \text{if } x < 1 \\ 2 & \text{if } x = 1 \\ 8 - x - x^2 & \text{if } x > 1 \end{cases}$

Find the following limits:

$$a) \lim_{x \to 1^-} f(x)$$

a)
$$\lim_{x \to 1^{-}} f(x)$$
 b) $\lim_{x \to 1^{+}} f(x)$ c) $\lim_{x \to 1} f(x)$ d) $\lim_{x \to 0} f(x)$ e) $\lim_{x \to 2} f(x)$

$$c) \lim_{x \to 1} f(x)$$

$$d$$
 $\lim_{x\to 0} f(x)$

$$e$$
) $\lim_{x \to 2} f(x)$

$$\lim_{x\to 3} \frac{x-3}{|x-3|}$$

Practice:

5. Analyse the continuity of the following function. Graph the function.

$$f(x) = \begin{cases} x^2 - 2x + 1 & , & x \le 0 \\ 1 & , & 0 < x < 4 \\ \sqrt{x}, & x \ge 4 \end{cases}$$

9. Analyse the continuity of the function. Graph the function.

$$f(x) = \begin{cases} \frac{x \mid x - 1 \mid}{x - 1} &, x \neq 1 \\ 0 &, x = 1 \end{cases}$$

Chap-2 THE DERIVATIVE

Average Rates of Change

Definition:

The average rate of change of y with respect to x, as x changes from x_1 to x_2 , is the ratio of the change in output to the change in input: $y_2 - y_1$

$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_2 \neq x_1$.

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1},$$

Examining the graph of the function, the average rate of change *and* the slope of the line from $P(x_1, y_1)$ to $Q(x_2, y_2)$ are the same. The line through P and Q, is called a **secant line**.

2.1.1 DEFINITION Suppose that x_0 is in the domain of the function f. The *tangent line* to the curve y = f(x) at the point $P(x_0, f(x_0))$ is the line with equation

$$y - f(x_0) = m_{tan}(x - x_0)$$

where

$$m_{\tan} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

provided the limit exists. For simplicity, we will also call this the tangent line to y = f(x) at x_0 .

Slope of the Secant Line

► Figure 2.1.11

If desired, we can let $h = x_1 - x_0$, and rewrite (8) and (9) as

$$r_{\text{ave}} = \frac{f(x_0 + h) - f(x_0)}{h} \tag{10}$$

$$r_{\text{inst}} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \tag{11}$$

Slope of secant / tangent → Derivative

The average rate of change of f over the interval [x, x + h] or slope of the secant line to the graph of f through the points (x, f(x)) and (x + h, f(x + h)) is

$$\frac{f(x+h) - f(x)}{h} \tag{9}$$

The instantaneous rate of change of f at x or slope of the tangent line to the graph of f at (x, f(x)) is

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{10}$$

2.2.1 **DEFINITION** The function f' defined by the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (2)

is called the *derivative of f with respect to x*. The domain of f' consists of all x in the domain of f for which the limit exists.

The term "derivative" is used because the function f' is derived from the function f by a limiting process.

Constant Rule:
$$\frac{d}{dx}[c] = 0$$

Power Rule:
$$\frac{d}{dx}[x^n] = n \cdot x^{n-1}$$

Constant Multiple Rule:
$$\frac{d}{dx}[c \cdot u] = c \cdot \frac{du}{dx}$$

Sum and Difference Rule:
$$\frac{d}{dx}[u \pm v] = \frac{du}{dx} \pm \frac{dv}{dx}$$

Product Rule:
$$\frac{d}{dx}[u \cdot v] = u \cdot \frac{dv}{dx} + v \cdot \frac{du}{dx}$$

Quotient Rule:
$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

Practice:

EXAMPLE If
$$f(x) = \sqrt{x} g(x)$$
, where $g(4) = 2$ and $g'(4) = 3$, find $f'(4)$.

Example: Suppose that
$$f(2) = -3$$
, $g(2) = 4$, $f'(2) = -2$, and $g'(2) = 7$. Find $h'(2)$.

(a)
$$h(x) = 5f(x) - 4g(x)$$
 (b) $h(x) = f(x)g(x)$

(c)
$$h(x) = \frac{f(x)}{g(x)}$$
 (d) $h(x) = \frac{g(x)}{1 + f(x)}$

Example: If F(x) = f(g(x)), where f(-2) = 8, f'(-2) = 4, f'(5) = 3, g(5) = -2, and g'(5) = 6, find F'(5).

If
$$h(x) = \sqrt{4 + 3f(x)}$$
, where $f(1) = 7$ and $f'(1) = 4$, find $h'(1)$.

Example: Find y' if $sin(x + y) = y^2 cos x$.

Table 2.6.1
GENERALIZED DERIVATIVE FORMULAS

$$\frac{d}{dx}[u^r] = ru^{r-1} \frac{du}{dx}$$

$$\frac{d}{dx}[\sin u] = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}[\cos u] = -\sin u \frac{du}{dx}$$

$$\frac{d}{dx}[\cot u] = -\csc^2 u \frac{du}{dx}$$

$$\frac{d}{dx}[\cot u] = -\csc^2 u \frac{du}{dx}$$

$$\frac{d}{dx}[\cot u] = -\csc u \cot u \frac{du}{dx}$$

$$\frac{d}{dx}[\sin^{-1}u] = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx}$$

$$\frac{d}{dx}[\tan^{-1}u] = \frac{1}{1+u^2}\frac{du}{dx}$$

$$\frac{d}{dx}[\sec^{-1}u] = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

$$\frac{d}{dx}[\cos^{-1}u] = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}$$

$$\frac{d}{dx}[\cot^{-1}u] = -\frac{1}{1+u^2}\frac{du}{dx}$$

$$\frac{d}{dx}[\csc^{-1}u] = -\frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx}$$

OTHER DERIVATIVE NOTATIONS

$$f'(x) = \frac{d}{dx}[f(x)]$$
 or $f'(x) = D_x[f(x)]$

$$f'(x) = y'(x)$$
 or $f'(x) = \frac{dy}{dx}$

$$f'(x_0) = \frac{d}{dx} [f(x)] \bigg|_{x=x_0}, \quad f'(x_0) = D_x [f(x)] \bigg|_{x=x_0}, \quad f'(x_0) = y'(x_0), \quad f'(x_0) = \frac{dy}{dx} \bigg|_{x=x_0}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- **Example 6** The graph of y = |x| in Figure 2.2.10 has a corner at x = 0, which implies that f(x) = |x| is not differentiable at x = 0.
- (a) Prove that f(x) = |x| is not differentiable at x = 0 by showing that the limit in Definition 2.2.2 does not exist at x = 0.
- (b) Find a formula for f'(x).

2.2.3 THEOREM If a function f is differentiable at x_0 , then f is continuous at x_0 .

If y = f(x), then we define the average rate of change of y with respect to x over the interval $[x_0, x_1]$ to be

$$r_{\text{ave}} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \tag{8}$$

and we define the instantaneous rate of change of y with respect to x at x_0 to be

$$r_{\text{inst}} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Exercise 2.1 (class work)

- **11–14** A function y = f(x) and values of x_0 and x_1 are given.
- (a) Find the average rate of change of y with respect to x over the interval [x₀, x₁].
- (b) Find the instantaneous rate of change of y with respect to x at the specified value of x₀.
- (c) Find the instantaneous rate of change of y with respect to x at an arbitrary value of x_0 .
- (d) The average rate of change in part (a) is the slope of a certain secant line, and the instantaneous rate of change in part (b) is the slope of a certain tangent line. Sketch the graph of y = f(x) together with those two lines. ■
- 11. $y = 2x^2$; $x_0 = 0$, $x_1 = 1$ 12. $y = x^3$; $x_0 = 1$, $x_1 = 2$
- **13.** y = 1/x; $x_0 = 2$, $x_1 = 3$ **14.** $y = 1/x^2$; $x_0 = 1$, $x_1 = 2$

Exercise 2.2 (Home work)

9-14 Use Definition 2.2.1 to find f'(x), and then find the tangent line to the graph of y = f(x) at x = a.

9.
$$f(x) = 2x^2$$
; $a = 1$

9.
$$f(x) = 2x^2$$
; $a = 1$ **10.** $f(x) = 1/x^2$; $a = -1$

11.
$$f(x) = x^3$$
; $a = 0$

11.
$$f(x) = x^3$$
; $a = 0$ **12.** $f(x) = 2x^3 + 1$; $a = -1$

13.
$$f(x) = \sqrt{x+1}$$
; $a = 8$

13.
$$f(x) = \sqrt{x+1}$$
; $a = 8$ 14. $f(x) = \sqrt{2x+1}$; $a = 4$

15–20 Use Formula (12) to find dy/dx.

15.
$$y = \frac{1}{x}$$

15.
$$y = \frac{1}{x}$$
 16. $y = \frac{1}{x+1}$ 17. $y = x^2 - x$

17.
$$y = x^2 - x$$

18.
$$y = x^4$$

9.
$$y = \frac{1}{\sqrt{x}}$$

18.
$$y = x^4$$
 19. $y = \frac{1}{\sqrt{x}}$ **20.** $y = \frac{1}{\sqrt{x-1}}$

Differentiable on an Interval; One-Sided Derivatives

A function y = f(x) is **differentiable** on an open interval (finite or infinite) if it has a derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it is differentiable on the interior (a, b) and if the limits

$$\lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$
 Right-hand derivative at a
$$\lim_{h \to 0^-} \frac{f(b+h) - f(b)}{h}$$
 Left-hand derivative at b

Example 2: Given
$$f(x) = \begin{cases} x^2, & \text{if } x < 1 \\ 4 - 3x, & \text{if } x \ge 1 \end{cases}$$
. Is f continuous at $x = 1$? Is f differentiable at $x = 1$? Sketch the graph of f .

LHD=
$$\lim_{h \to 0^-} \frac{f(1+h) - f(1)}{h}$$
 RHD = $\lim_{h \to 0^+} \frac{f(1+h) - f(1)}{h}$

Solution:

Given
$$f(x) = \begin{cases} x^2, & \text{if } x < 1 \\ 4 - 3x, & \text{if } x \ge 1 \end{cases}$$

(i)
$$f(1) = 4 - 3(1) = 1$$

Given
$$f(x) = \begin{cases} x^2, & \text{if } x < 1 \\ 4 - 3x, & \text{if } x \ge 1 \end{cases}$$
 Is $f \text{ continuous at } x = 1$?

(i) $f(1) = 4 - 3(1) = 1$

(ii)
$$\begin{cases} \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} x^2 = 1^2 = 1 \\ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4 - 3x) = 4 - 3(1) = 1 \end{cases} \Rightarrow \lim_{x \to 1} f(x) = 1$$

(iii) If $f(x) = \lim_{x \to 1^+} f(x) = 1 = f(1) \Rightarrow \text{vac. } f \text{ is continuous at } x = 1$

(iii) $\lim_{x \to 0} f(x) = 1 = f(1) \Rightarrow \text{yes}, f \text{ is continuous at } x = 1.$ $x \rightarrow 1$

Is f differentiable at x = 1?

$$LHD = \lim_{b \to 1^{-}} \frac{f(b) - f(1)}{b - 1} = \lim_{b \to 1^{-}} \frac{b^{2} - 1}{b - 1} = \lim_{b \to 1^{-}} \frac{(b - 1)(b + 1)}{b} = 2$$

$$RHD = \lim_{b \to 1^+} \frac{f(b) - f(1)}{b - 1} = \lim_{b \to 1^+} \frac{(4 - 3b) - 1}{b - 1} = \lim_{b \to 1^+} \frac{-3b + 3}{b - 1} = ^{-3}$$

Exercise 2.2

47. Show that

$$f(x) = \begin{cases} x^2 + 1, & x \le 1 \\ 2x, & x > 1 \end{cases}$$

is continuous and differentiable at x = 1. Sketch the graph of f.

48. Show that

$$f(x) = \begin{cases} x^2 + 2, & x \le 1 \\ x + 2, & x > 1 \end{cases}$$

is continuous but not differentiable at x = 1. Sketch the graph of f.

3.6 L'HÔPITAL'S RULE; INDETERMINATE FORMS

$$\frac{0}{0} \frac{\infty}{\infty} \infty - \infty$$

$$0 = 0$$

$$0 = 0$$

THEOREM (L'Hôpital's Rule for Form 0/0) Suppose that f and g are differentiable functions on an open interval containing x = a, except possibly at x = a, and that

$$\lim_{x \to a} f(x) = 0 \quad and \quad \lim_{x \to a} g(x) = 0$$

If $\lim [f'(x)/g'(x)]$ exists, or if this limit is $+\infty$ or $-\infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Moreover, this statement is also true in the case of a limit as $x \to a^-$, $x \to a^+$, $x \to -\infty$, or as $x \to +\infty$.

 Example 2 In each part confirm that the limit is an indeterminate form of type 0/0, and evaluate it using L'Hôpital's rule.

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

(b)
$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}$$

(c)
$$\lim_{x \to 0} \frac{e^x - 1}{x^3}$$

(d)
$$\lim_{x \to 0^-} \frac{\tan x}{x^2}$$

(e)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(a)
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$
 (b) $\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}$ (c) $\lim_{x \to 0} \frac{e^x - 1}{x^3}$ (d) $\lim_{x \to 0^-} \frac{\tan x}{x^2}$ (e) $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$ (f) $\lim_{x \to +\infty} \frac{x^{-4/3}}{\sin(1/x)}$

Example 3 In each part confirm that the limit is an indeterminate form of type ∞/∞ and apply L'Hôpital's rule.

(a)
$$\lim_{x \to +\infty} \frac{x}{e^x}$$

(a)
$$\lim_{x \to +\infty} \frac{x}{e^x}$$
 (b) $\lim_{x \to 0^+} \frac{\ln x}{\csc x}$

$$\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$$

$$\lim_{x \to +\infty} \frac{x^n}{e^x} = 0 \quad \text{and} \quad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

(a)
$$\lim_{x \to 0^+} x \ln x$$

(a)
$$\lim_{x \to 0^+} x \ln x$$
 (b) $\lim_{x \to \pi/4} (1 - \tan x) \sec 2x$

Example 5 Evaluate
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$
.

Example 6 Find
$$\lim_{x\to 0} (1+\sin x)^{1/x}$$
.

$$\frac{0}{0} \frac{\infty}{\infty} \infty - \infty$$

$$0 \cdot \infty \quad 1^{\infty} \quad 0^{0} \quad \infty^{0}$$

9.
$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta}$$

11.
$$\lim_{x \to \pi^+} \frac{\sin x}{x - \pi}$$

13.
$$\lim_{x \to +\infty} \frac{\ln x}{x}$$

15.
$$\lim_{x \to 0^+} \frac{\cot x}{\ln x}$$

17.
$$\lim_{x \to +\infty} \frac{x^{100}}{e^x}$$

19.
$$\lim_{x\to 0} \frac{\sin^{-1} 2x}{x}$$

21.
$$\lim_{x \to +\infty} xe^{-x}$$

23.
$$\lim_{x \to +\infty} x \sin \frac{\pi}{x}$$

25.
$$\lim_{x \to \pi/2^{-}} \sec 3x \cos 5x$$

27.
$$\lim_{x \to +\infty} (1 - 3/x)^x$$

10.
$$\lim_{t\to 0} \frac{te^t}{1-e^t}$$

12.
$$\lim_{x \to 0^+} \frac{\sin x}{x^2}$$

14.
$$\lim_{x \to +\infty} \frac{e^{3x}}{x^2}$$

16.
$$\lim_{x\to 0^+} \frac{1-\ln x}{e^{1/x}}$$

18.
$$\lim_{x \to 0^+} \frac{\ln(\sin x)}{\ln(\tan x)}$$

20.
$$\lim_{x\to 0} \frac{x - \tan^{-1} x}{x^3}$$

22.
$$\lim_{x \to \pi^{-}} (x - \pi) \tan \frac{1}{2} x$$

24.
$$\lim_{x \to 0^+} \tan x \ln x$$

26.
$$\lim_{x \to \pi} (x - \pi) \cot x$$

28.
$$\lim_{x\to 0} (1+2x)^{-3/x}$$

Exercise: 3.6

Section: A

QUIZ-1

1- Solve the inequality (any one)

a)
$$x^2 - 5x > 6$$

a)
$$x^2 - 5x > 6$$
 b) $\frac{3}{|2x-1|} \ge 4$

- 2- Find domain and range of the function $f(x) = \sqrt{3-x}$
- 3- Complete the table then Evaluate the following limit

$$f(x) = \frac{\sin^{-1} 2x}{x}; \lim_{x \to 0} f(x)$$

X	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

4- a)
$$\lim_{x \to 2-} \frac{x}{x^2-4}$$
 b) $\lim_{x \to 2+} \frac{x}{x^2-4}$ c) $\lim_{x \to 2} \frac{x}{x^2-4}$

b)
$$\lim_{x \to 2+} \frac{x}{x^2-4}$$

c)
$$\lim_{x\to 2} \frac{x}{x^2-4}$$

5- Consider
$$f(x) = \begin{cases} 2x+3, & \text{if } x \le 4 \\ 7 + \frac{16}{x}, & \text{if } x > 4 \end{cases}$$
 Find $\lim_{x \to 4} f(x)$

Skecth the graph, Discuss type of discountinuity

QUIZ-1

Section:C

1- Solve the inequality

a)
$$x^2 - 9x + 20 \le 0$$

2- Find domain and range of the function $f(x) = 2 + \sqrt{x^2 - 4}$

3- Consider
$$f(x) = \begin{cases} 2x - 3, & \text{if } x \le 2 \\ x^2, & \text{if } x > 2 \end{cases}$$
 Find $\lim_{x \to 2} f(x)$

Is f(x) continuous at x=2 if not then write discontinuity type also write interval on which f(x) is continuous, Skecth the graph

Section:F

1- Check continuity at x=0, write type of discontinuity if exist

$$f(x) = \begin{cases} 2x \mp 1, & \text{if } x \le 0 \\ x^2 - x, & \text{if } x > 0 \end{cases}$$

write interval on which f(x) is continuous, Skecth the graph

2- Solve the inequality (any one)

a)
$$x^2 - 3x < 10$$
 b) $\frac{3x+1}{x-2} < 1$

b)
$$\frac{3x+1}{x-2} < 1$$

3- a) Find domain and range of the function $f(x) = \sqrt{x^2 - 9}$

4- Let $R=\{(-2,-1),(0,3),(5,4),(-2,3)\}$ write domain / Range Check the above relation is function or not?

5- See the graph and write domain/Range in term of interval notation

ROLLE'S THEOREM Let f be a function that satisfies the following three hypotheses:

- I. f is continuous on the closed interval [a, b].
- **2.** f is differentiable on the open interval (a, b).
- **3.** f(a) = f(b)

Then there is a number c in (a, b) such that f'(c) = 0.

THE MEAN VALUE THEOREM Let f be a function that satisfies the following hypotheses:

- 1. f is continuous on the closed interval [a, b].
- **2.** f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

Т

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or, equivalently,

2

$$f(b) - f(a) = f'(c)(b - a)$$

ROLLE'S THEOREM; MEAN-VALUE THEOREM

4.8.1 THEOREM (Rolle's Theorem) Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If

$$f(a) = 0$$
 and $f(b) = 0$

then there is at least one point c in the interval (a, b) such that f'(c) = 0.

[▶] Example 1 Find the two x-intercepts of the function $f(x) = x^2 - 5x + 4$ and confirm that f'(c) = 0 at some point c between those intercepts.

4.8.2 THEOREM (Mean-Value Theorem) Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). Then there is at least one point c in (a, b) such that

 $f'(c) = \frac{f(b) - f(a)}{b - a}$ (1)

▶ Example 4 Show that the function $f(x) = \frac{1}{4}x^3 + 1$ satisfies the hypotheses of the Mean-Value Theorem over the interval [0, 2], and find all values of c in the interval (0, 2) at which the tangent line to the graph of f is parallel to the secant line joining the points (0, f(0)) and (2, f(2)).

Example

$$f(x) = x^3 - x^2 - 2x$$
 on [-1,1]

(f is continuous and differentiable)

$$f'(x) = 3x^{2} - 2x - 2$$
$$f'(c) = \frac{-2 - 0}{1 - (-1)} = -1$$
$$3c^{2} - 2c - 2 = -1$$

$$(3c+1)(c-1)=0$$

$$c = -\frac{1}{3}, \quad c = 1$$

MVT applies

1-4 Verify that the hypotheses of Rolle's Theorem are satisfied on the given interval, and find all values of c in that interval that satisfy the conclusion of the theorem. ■

1.
$$f(x) = x^2 - 8x + 15$$
; [3, 5]

2.
$$f(x) = \frac{1}{2}x - \sqrt{x}$$
; [0, 4]

3.
$$f(x) = \cos x$$
; $[\pi/2, 3\pi/2]$

4.
$$f(x) = \ln(4 + 2x - x^2)$$
; [-1, 3]

5-8 Verify that the hypotheses of the Mean-Value Theorem are satisfied on the given interval, and find all values of c in that interval that satisfy the conclusion of the theorem.

5.
$$f(x) = x^2 - x$$
; [-3, 5]

6.
$$f(x) = x^3 + x - 4$$
; [-1, 2]

7.
$$f(x) = \sqrt{25 - x^2}$$
; [-5, 3]

8.
$$f(x) = x - \frac{1}{x}$$
; [3, 4]

3.5 LOCAL LINEAR APPROXIMATION; DIFFERENTIALS

a function that is differentiable at x_0 is sometimes said to be *locally linear* at x_0 .

The line that best approximates the graph of f in the vicinity of $P(x_0, f(x_0))$ is the tangent line to the graph of f at x_0 , given by the equation

$$y = f(x_0) + f'(x_0)(x - x_0)$$

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$
 (1)

This is called the *local linear approximation* of f at x_0 . This formula can also be expressed in terms of the increment $\Delta x = x - x_0$ as

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x \tag{2}$$

An important linear approximation for roots and powers is

$$(1+x)^k \approx 1 + kx$$
 (x near 0; any number k)

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$

$$\frac{1}{1-x} = (1-x)^{-1} \approx 1 + (-1)(-x) = 1 + x$$

$$\sqrt[3]{1+5x^4} = (1+5x^4)^{1/3} \approx 1 + \frac{1}{3}(5x^4) = 1 + \frac{5}{3}x^4$$

$$\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-1/2} \approx 1 + \left(-\frac{1}{2}\right)(-x^2) = 1 + \frac{1}{2}x^2$$

► Example 1

- (a) Find the local linear approximation of $f(x) = \sqrt{x}$ at $x_0 = 1$.
- (b) Use the local linear approximation obtained in part (a) to approximate √1.1, and compare your approximation to the result produced directly by a calculating utility.

Rule:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

DIFFERENTIALS

$$\frac{dy}{dx} = f'(x)$$

the symbols "dy" and "dx," which are called differentials,

$$dy = f'(x) dx$$

DEFINITION Differential

Let y = f(x) be a differentiable function. The differential dx is an independent variable. The differential dy is

$$dy = f'(x) dx$$
.

▲ Figure 3.5.7

Example 4 Let $y = \sqrt{x}$.

- (a) Find formulas for Δy and dy.
- (b) Evaluate Δy and dy at x = 4 with $dx = \Delta x = 3$. Then make a sketch of $y = \sqrt{x}$, showing the values of Δy and dy in the picture.

Rule:

$$\Delta y = f(x + \Delta x) - f(x)$$

Fxercise 3.5:

Rule:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

11-16 Confirm that the stated formula is the local linear approximation of f at $x_0 = 1$, where $\Delta x = x - 1$.

11.
$$f(x) = x^4$$
; $(1 + \Delta x)^4 \approx 1 + 4\Delta x$

12.
$$f(x) = \sqrt{x}$$
; $\sqrt{1 + \Delta x} \approx 1 + \frac{1}{2}\Delta x$

13.
$$f(x) = \frac{1}{2+x}$$
; $\frac{1}{3+\Delta x} \approx \frac{1}{3} - \frac{1}{9}\Delta x$

14.
$$f(x) = (4+x)^3$$
; $(5+\Delta x)^3 \approx 125+75\Delta x$

15.
$$\tan^{-1} x$$
; $\tan^{-1} (1 + \Delta x) \approx \frac{\pi}{4} + \frac{1}{2} \Delta x$

23-33 Use an appropriate local linear approximation to estimate the value of the given quantity.

23.
$$(3.02)^4$$
 24. $(1.97)^3$

25.
$$\sqrt{65}$$

26.
$$\sqrt{24}$$

26.
$$\sqrt{24}$$
 27. $\sqrt{80.9}$

28.
$$\sqrt{36.03}$$

Exercise 3.5:

39–42 Find formulas for dy and Δy .

39.
$$y = x^3$$

40.
$$y = 8x - 4$$

41.
$$y = x^2 - 2x + 1$$
 42. $y = \sin x$

42.
$$y = \sin x$$

43–46 Find the differential dy. ■

43. (a)
$$y = 4x^3 - 7x^2$$
 (b) $y = x \cos x$

(b)
$$y = x \cos x$$

44. (a)
$$y = 1/x$$

(b)
$$y = 5 \tan x$$

45. (a)
$$y = x\sqrt{1-x}$$
 (b) $y = (1+x)^{-17}$

(b)
$$y = (1+x)^{-17}$$

46. (a)
$$y = \frac{1}{x^3 - 1}$$
 (b) $y = \frac{1 - x^3}{2 - x}$

(b)
$$y = \frac{1-x^3}{2-x}$$

51–54 Use the differential dy to approximate Δy when x changes as indicated.

51.
$$y = \sqrt{3x - 2}$$
; from $x = 2$ to $x = 2.03$

52.
$$y = \sqrt{x^2 + 8}$$
; from $x = 1$ to $x = 0.97$

53.
$$y = \frac{x}{x^2 + 1}$$
; from $x = 2$ to $x = 1.96$

54.
$$y = x\sqrt{8x+1}$$
; from $x = 3$ to $x = 3.05$