

General information

Designation

Betula alleghaniensis

Typical uses

Furniture; boxes; baskets; crates; woodenware; cooperage; interior finish; doors. As veneer in plywood: flush doors; furniture; paneling; radio & television cabinets; aircraft.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural						
Base material	Wood (ha	Wood (hardwood)					
Renewable content	100		%				
Composition detail (polymers and natur	al materials)						
Wood	100			%			
Price							
Price	* 0.67	-	1.34	USD/kg			
Physical properties							
Density	620	-	760	kg/m^3			
				-			
Mechanical properties							
Young's modulus	* 2.01	-	2.24	GPa			
Yield strength (elastic limit)	* 3.42	-	4.2	MPa			
Tensile strength	5.7	-	7	MPa			
Elongation	* 0.84	-	1.03	% strain			
Compressive strength	6.02	-	7.36	MPa			
Flexural modulus	1.83	-	2.04	GPa			
Flexural strength (modulus of rupture)	* 5.7	-	7	MPa			
Shear modulus	* 0.208	-	0.285	GPa			
Shear strength	* 35.1	-	42.9	MPa			
Rolling shear strength	* 1.3	-	3.9	MPa			
Bulk modulus	* 1.03	-	1.15	GPa			
Poisson's ratio	* 0.02	-	0.04				
Shape factor	5.6						
Hardness - Vickers	5.04	-	6.17	HV			
Hardness - Brinell	* 27.3	-	33.3	MPa			
Hardness - Janka	5.04	_	6.17	kN			

Birch (betula alleghaniensis) (t)

Fatigue strength at 10^7 cycles	*	1.71	-	2.1	MPa
Mechanical loss coefficient (tan delta)	*	0.017	-	0.021	
Differential shrinkage (radial)		0.18	-	0.24	%
Differential shrinkage (tangential)		0.26	-	0.31	%
Radial shrinkage (green to oven-dry)		6.6	-	8	%
Tangential shrinkage (green to oven-dry)		8.6	-	10.5	%
Volumetric shrinkage (green to oven-dry)		15.1	-	18.5	%
Work to maximum strength	*	12.9	-	15.8	kJ/m^3
Impact & fracture properties					
Fracture toughness	*	0.521	-	0.637	MPa.m^0.5
Thermal properties					
Glass temperature		77	-	102	°C
Maximum service temperature		120	-	140	°C
Minimum service temperature	*	-73	-	-23	°C
Thermal conductivity		0.12	-	0.14	W/m.°C
Specific heat capacity		1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	*	31.2	-	41.8	μstrain/°C
Electrical properties Electrical resistivity	*	8.73e14	-	1.3e15	µohm.cm
Dielectric constant (relative permittivity)	*	3.87	-	4.74	
Distinction factor (distrated lase toward)	*	0.054	-	0.065	
Dissipation factor (dielectric loss tangent)			-	2	MV/m
Dissipation factor (dielectric loss tangent) Dielectric strength (dielectric breakdown)	*	1			
Dielectric strength (dielectric breakdown)	*	1			
• • • • • • • • • • • • • • • • • • • •	*	Non-magr	netic	;	
Dielectric strength (dielectric breakdown) Magnetic properties Magnetic type	*		netic	;	
Dielectric strength (dielectric breakdown) Magnetic properties	*		netic	;	
Dielectric strength (dielectric breakdown) Magnetic properties Magnetic type Optical properties Transparency	*	Non-magr	netic	;	
Dielectric strength (dielectric breakdown) Magnetic properties Magnetic type Optical properties Transparency Durability	*	Non-magr Opaque		;	
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh)	*	Non-magr Opaque	se		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt)	*	Non-magr Opaque Limited us Limited us	se se		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids	*	Non-magra Opaque Limited us Limited us Limited us	se se		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids	*	Non-magr Opaque Limited us Limited us Limited us Unaccept	se se se		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids Weak alkalis	*	Non-magr Opaque Limited us Limited us Limited us Unaccept Acceptab	se se se able		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids Weak alkalis Strong alkalis	*	Non-magra Opaque Limited us Limited us Unaccept Acceptab Unaccept	se se able		
Magnetic properties Magnetic type Optical properties Transparency Durability Water (fresh) Water (salt) Weak acids Strong acids Weak alkalis	*	Non-magr Opaque Limited us Limited us Limited us Unaccept Acceptab	se se able le able		

Birch (betula alleghaniensis) (t)

	Good				
Flammability	Highly fla	Highly flammable			
Primary production energy, CO2 and water					
Embodied energy, primary production	11.6	-	12.8	MJ/kg	
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Ham MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	nmond and Jones, 2008);	11.6 N	IJ/kg (Hubb	ard and Bowe, 2010); 23.7	
CO2 footprint, primary production	0.574	-	0.633	kg/kg	
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/	/kg (Hammond and Jones	2008	r 0 909 kg/	kg (Hubbard and Bowe	
Vater usage	* 665	-	735	I/kg	
3				<u> </u>	
Processing energy, CO2 footprint & water					
Coarse machining energy (per unit wt removed)	* 0.567	-	0.627	MJ/kg	
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	kg/kg	
Fine machining energy (per unit wt removed)	* 1.4	-	1.54	MJ/kg	
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	kg/kg	
Grinding energy (per unit wt removed)	* 2.32	-	2.56	MJ/kg	
			0.192	kg/kg	
Grinding CO2 (per unit wt removed)	* 0.174	-	0.192	kg/kg	
Grinding CO2 (per unit wt removed) Recycling and end of life	* 0.174	_	0.192	ng/ng	
,	* 0.174	-	0.192	ng/ng	
Recycling and end of life		-	9.45	%	
Recycling and end of life Recycle	×	-		•	
Recycling and end of life Recycle Recycle fraction in current supply	× 8.55	-		•	
Recycling and end of life Recycle Recycle fraction in current supply Downcycle	× 8.55	-		•	
Recycling and end of life Recycle Recycle fraction in current supply Downcycle Combust for energy recovery	× 8.55 √		9.45	%	
Recycling and end of life Recycle Recycle fraction in current supply Downcycle Combust for energy recovery Heat of combustion (net)	* 8.55		9.45	% MJ/kg	