Introduction to Optical Modeling

Friedrich-Schiller-University Jena Institute of Applied Physics

Lecture 3
Prof. Uwe D. Zeitner

Course Overview

Part 1: Geometrical optics based modeling and design (U.D. Zeitner)

- 1. Introduction
- 2. Paraxial approximation / Gaussian optics
- 3. ABCD-matrix formalism
- 4. Real lenses
- 5. Optical materials
 - glass types, dispersion
 - chromatic aberrations
- 6. Imaging systems
 - apertures/stops, entrance-/exit-pupil
 - wavefront aberrations

Part 2: Wave-optics based modeling (F. Wyrowski)

2.4 Real Lens

→ refraction at two surfaces according to Eq. (2.1), spaced at a distance *d*

 f'_{BFL} ... back focal length (measured from vertex point S')

P, P' ... principle planes → planes of 'apparent' ray deflection

S, S' ... vertex points of the surfaces (intersection of the optical axis)

Definition:
$$\Phi = -\frac{n_1}{f} = \frac{n_2}{f'}$$
 refractive power (2.20)

Thin Lens

"thin lens": → radii of curvature large compared to the lens thickness

i.e.
$$|c_{1/2} \cdot d| \ll 1$$

 \rightarrow principle planes coincide and $f' = f'_{BFL}$

If
$$n_1 = n_2 = 1$$
 (lens in air):
$$\frac{1}{f'} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
 (2.21)

more general: if *d* is not negligible

$$\Phi = \frac{1}{f'} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) + \frac{(n-1)^2 \cdot d}{n \cdot R_1 \cdot R_2}$$
 (2.22)

2.5 Optical Materials

Typical optical materials:

- Glasses
- Crystals
- Plastics
- Liquids
- Gases
- Glues and Cements

$$\tilde{n}(\lambda) = \sqrt{\tilde{\varepsilon}_r(\lambda)} = n(\lambda) + i \cdot \kappa(\lambda)$$

absorption:
$$\alpha = \frac{4\pi}{\lambda} \kappa = 2k_0 \kappa$$

Data-sheets of optical glasses: values given relative to air at normal conditions

$$T = 293$$
K $p = 1013$ mbar

Here: restrict ourselves to (isotropic) dielectric materials → transparent materials

Fit Equations for Material Dispersion

 λ [µm]

Cauchy:

$$n(\lambda) = A_0 + \frac{A_1}{\lambda^2} + \frac{A_2}{\lambda^4}$$

Sellmeier:

$$n(\lambda) = \sqrt{\frac{k_1 \lambda}{\lambda^2 - L_1} + \frac{k_2 \lambda}{\lambda^2 - L_2} + \frac{k_3 \lambda}{\lambda^2 - L_3} + 1}$$

Schott-formula:

$$n(\lambda) = \sqrt{A_0 + A_1 \lambda^2 + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^4} + \frac{A_4}{\lambda^6} + \frac{A_5}{\lambda^8}}$$

Herzberger (IR-region): $n(\lambda) = A + BL + CL^2 + D\lambda^2 + E\lambda^4 + F\lambda^6$ with $L = \frac{1}{(\lambda^2 - 0.028)}$

Drude (metals):
$$n^2(\lambda) - k^2(\lambda) = A_0 - \frac{A_1 A_2^2 \lambda^2}{\lambda^2 + A_2^2}$$
 $2n(\lambda)k(\lambda) = \frac{A_1 A_2 \lambda^3}{\lambda^2 + A_2^2}$

Dispersion of BK7 glass

Dispersion in the optical design

 λ_0 ... primary wavelength λ_1, λ_2 ... secondary wavelengths / colors

Specific choice (typical):

I)
$$\lambda_e = 546.07 \text{ nm} \\ \lambda_{F'} = 480.0 \text{ nm} \\ \lambda_{C'} = 643.8 \text{ nm}$$
 microscopy

II) $\lambda_d = 587.56 \text{ nm}$ $\lambda_F = 486.1 \text{ nm}$ $\lambda_C = 656.3 \text{ nm}$ photography

Wavelengths of the most important spectral lines.

λ in [nm]	Name	Color	Element
248.3		UV	Нg
280.4		UV	Hg
296.7278		UV	Hg
312.5663		UV	Hg
334.1478		UV	Hg
365.0146	i	UV	Hg
404.6561	h	violet	Hg
435.8343	g	blue	Hg
479.9914	F'	blue	Cd
486.1327	F	blue	Н
546.0740	е	green	Hg
587.5618	d	yellow	Не
589.2938	D	yellow	Na
632.8		red	HeNe laser
643.8469	C'	red	Cd
656.2725	С	red	Н
706.5188	r	red	He
852.11	S	NIR	Cs
1013.98	t	NIR	Hg
1060.0		IR	Nd-glass laser
1529.582		IR	Hg line in the IR
1970.09		IR	Hg line in the IR
2325.42		IR	Hg line in the IR

Glass Diagram

Glass Diagram

Definition:

crown glass: n < 1.6 $v_e > 55$

n > 1.6 $v_e > 50$

flint glass: $n < 1.6 \quad v_e < 55$

n > 1.6 $v_e < 50$

Figure 4-28: Glass diagram of Schott. Division into ranges of glass families.

Crown Glass (historic)

historic window

Flint Glass (historic)

term stems from **flint nodules** (found in chalk deposits)

→ flint-stone

source of high purity silica, used to produce <u>lead</u> containing glasses (starting in 17th century) (traditionally 4-60% lead oxide content)

today typically replaced by TiO₂ and ZrO₂

