SciPy Continuous Distribution Matrix

Distribution	Syntax Tips	MEAN	VAR	PDF	CDF
Normal	loc is μ scale is σ	μ	σ^2	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$rac{1}{2}\left[1+ ext{erf}\left(rac{x-\mu}{\sigma\sqrt{2}} ight) ight]$
<pre>norm_dist = scs.norm(loc=0, scale=2) norm_sample = scs.norm.rvs(loc=0, scale=1, size=20)</pre>		norm_dist.mean()	norm_dist.var()	norm_dist.pdf(x=0)	norm_dist.cdf(x=0)
Uniform	$egin{array}{cccc} {\sf loc} & {\sf is} a \ & {\sf scale} & {\sf is} b - a \end{array}$	$\frac{a+b}{2}$	$\frac{(a+b)^2}{12}$	$rac{1}{b-a}$ for $x\in \mid a,b\mid$ 0 otherwise	0 for $x < a$ $rac{x-a}{b-a}$ for $x \in \mid a,b$ 1 for $x \geq b$
<pre>unif_dist = scs.uniform(loc=0, scale=10) unif_sample = scs.uniform.rvs(loc=0, scale=10, size=20)</pre>		unif_dist.mean()	unif_dist.var()	unif_dist.pdf(x=3)	unif_dist.cdf(x=3)
Exponential	scale is λ loc is typically 0	λ^{-1}	λ^{-2}	$\lambda e^{-\lambda x}$	$\lambda e^{-\lambda x}$
<pre>exp_dist = scs.expon(loc=0, scale=2) exp_sample = scs.expon.rvs(loc=0, scale=2, size=20)</pre>		exp_dist.mean()	exp_dist.var()	exp_dist.pdf(x=1)	exp_dist.cdf(x=1)
Gamma	${\mathfrak a}$ is k scale is ${\theta}$ loc is typically 0	$k\theta$	$k heta^2$	$rac{1}{\Gamma(k) heta^k}x^{k-1}e^{-rac{x}{ heta}}$	$rac{1}{\Gamma(k)}\gamma(k,rac{x}{ heta})$
<pre>gam_dist = scs.gamma(a=1, loc=0, scale=2) gam_sample = scs.gamma.rvs(a=1, loc=0, scale=2, size=20)</pre>		gam_dist.mean()	am_dist.var()	gam_dist.pdf(x=3)	gam_dist.cdf(x=3)

References

Mathematical equations are copied from Wikipedia.