- \*7.7 (Count single digits) Write a program that generates 100 random integers between 0 and 9 and displays the count for each number. (Hint: Use an array of ten integers, say counts, to store the counts for the number of 0s, 1s, ..., 9s.)
- \*7.13 (Random number chooser) Write a method that returns a random number between 1 and 54, excluding the numbers passed in the argument. The method header is specified as follows:

```
public static int getRandom(int... numbers)
```

\*7.30 (Pattern recognition: consecutive four equal numbers) Write the following method that tests whether the array has four consecutive numbers with the same value.

```
public static boolean isConsecutiveFour(int[] values)
```

Write a test program that prompts the user to enter a series of integers and displays if the series contains four consecutive numbers with the same value. Your program should first prompt the user to enter the input size—i.e., the number of values in the series. Here are sample runs:

```
Enter the number of values: 8 —Enter
Enter the values: 3 4 5 5 5 5 4 5 —Enter
The list has consecutive fours
```

Enter the number of values: 9 Finter

Enter the values: 3 4 5 5 6 5 5 4 5 Finter

The list has no consecutive fours

\*8.1 (Sum elements column by column) Write a method that returns the sum of all the elements in a specified column in a matrix using the following header:

```
public static double sumColumn(double[][] m, int columnIndex)
```

Write a test program that reads a 3-by-4 matrix and displays the sum of each column. Here is a sample run:



**8.5** (*Algebra: add two matrices*) Write a method to add two matrices. The header of the method is as follows:

```
public static double[][] addMatrix(double[][] a, double[][] b)
```

In order to be added, the two matrices must have the same dimensions and the same or compatible types of elements. Let **c** be the resulting matrix. Each element  $c_{ij}$  is  $a_{ij} + b_{ij}$ . For example, for two 3 × 3 matrices **a** and **b**, **c** is

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$$

Write a test program that prompts the user to enter two  $3 \times 3$  matrices and displays their sum. Here is a sample run: