Rangfolgenbildung und Spielvorhersage mit Massey's Methode

Übersicht

Ranking: Problemstellung und Definitionen

Einführung in Massey's Methode

- Das idealisierte Modell f
 ür zwei Teams und ein Spiel
- Erweiterung auf Ligen mit n Teams und m (abgeschlossenen) Spielen
- Probleme mit dem idealisierten Ansatz und Lösungen
 - Methode der kleinsten Quadrate
 - Anwendung in (basic) Massey Rating Method und Beispiel

Erweiterungen der Basismethode

- Offensiv- und Defensivstatistiken
- Eigenschaften von Massey's Ratingmethode

Varianten von Massey's Methode in der Praxis

- Bowl Championship Series
- Ranking von Webseiten

Autor der Methode

Erfunden 1997 vom damaligen Studenten Kenneth Massey (Bluefield College)

- Entwickelte für seine Abschlussarbeit ein Ratingsystem für College- Football
- Wird hier als "Massey's Methode" bezeichnet; es gibt aber mehrere
- Heute: Professor f
 ür Mathematik, Carson-Newman College
 - Entwickelt dort seine Ratingmodelle weiter

Ranking: Problemstellung und Definitionen

Problemstellung und gesuchte Lösung

Gegeben

- In Konkurrenz zueinander stehende Akteure
- In einer Konfrontation: stets zwei Akteure gegeneinander
 - Sieger bekannt
- Quantitative Evaluation jeder Konfrontation
 - Abstand des Siegers zum Unterlegenen pro Konfrontation bekannt

Gesucht

- Rangfolge aller Akteure nach einer Menge von Konfrontationen
- Möglichkeit, zukünftige Konfrontationen abzuschätzen
 - Annahme 1: relative Leistung eines Akteurs relativ konstant
 - Annahme 2: Ausreichende Datenbasis

Ranking: Problemstellung und Definitionen Übertragung auf den Sport und Formalisierung

Gegeben

- **n** Teams t_1, t_2, \dots, t_n
- m Spiele und deren Ausgang
- In der Regel: m >> n
 - Sonst sowieso keine gute Aussage möglich

Gesucht

- Rating-Rangfolge $r_a \ge r_b \ge r_c \ge ... \ge r_n$
- Vorhersagemöglichkeit für Spiel k mit Teams i und j: $predict_k(t_i, t_j) = y_k$

Zwei Teams und ein Spiel: Vorhersage

Annahme:

- Ratings zweier Teams berechnet: r_i und r_j

Intention:

- Ratings selbst sind direkt auch Abschätzung neuer Spielergebnisse
- Idealisiert: $predict_k(t_i, t_j) = r_i r_j = y_k$
- Wobei y_k Vorhersage des Ergebnisses von Spiel k ist (margin of victory)

Erweiterung auf Ligen

Ein Spiel, zwei Teams:

- Lineare Gleichung: $predict_k(t_i, t_i) = r_i r_i = y_k$
- 2 Unbekannte: die Ratings beider beteiligten Teams r_i und r_j
- Trivial: kann nicht aufgelöst werden

m Spiele, je zwei Teams:

- m lineare Gleichungen obiger Form, eine pro Spiel k: $k \in [1,2,...,m]$
- ... mit n Unbekannten $r_1, r_2, ..., r_n$
 - Nämlich genau die gesuchten Ratings aller Teams
- ... ergibt: lineares Gleichungssystem! Xr = y

Erweiterung auf Ligen

Probleme und Verbesserungen

Eigenschaften des LGS

- Überbestimmt (m >> n)
- Inkonsistent (aus natürlichen Daten)
 - Kleine Widersprüche; da menschliche Sportlerteams

Methode der kleinsten Quadrate

- Ist mathematische Optimierungsmethode (Ausgleichsrechnung)
- Intention: aus sehr vielen, "nicht ganz" konsistenten Daten...
 - Auf ein zugrundeliegendes rauschfreies **Modell** schließen
- Wie der Name schon sagt: minimiere die Summe...
 - Der quadrierten Abweichungen (Residuen) vom Modell

Methode der kleinsten Quadrate

Normalengleichungen

Gegeben

- Matrixgleichung $A\vec{x} = \vec{b}$

Gesucht

- Gleichung, die die Summe der Quadratdifferenzen auf beiden Seiten minimiert
 - Normalengleichung $A^T A \vec{x} = A^T \vec{b}$
 - Geometrische Intention: Abstand Ax zu b minimieren das ist der Fall wenn Fehlervektor orthogonal auf Bild(A)
 - Lässt daher den "besten Fehler" als Lösung zu

Massey und Normalengleichungen

Einführung in Massey's Methode Massey und Normalengleichungen

... die Massey- Matrix und p können direkt bestimmt werden!

Letztes Problem

Letztes Hindernis: rank(M) < n

- Die Zeilen summieren sich zu Null auf!
- Die Spalten sind linear abhängig; Das System hat keine eindeutige Lösung

Lösung: rank(M) == n garantieren

- Irgendeine Zeile in M durch Einsen ersetzen
- Entsprechenden Eintrag in p durch Null ersetzen
- Effekt: zusätzliche Bedingung an das System
 - Die Ratings (Komponenten des Lösungsvektors) summieren zu 0
 - Jetzt hat die Koeffizientenmatrix M vollen Rang

Miniaturbeispiel

Folgende Beispielliga:

- Team A, B und C (n = 3)
- Bereits absolvierte Spiele: (m = 4)
 - A vs B; A gewinnt 10:5 (Gewinnmarge 5)
 - B vs C; B gewinnt 15:5 (Gewinnmarge 10)
 - A vs C: A gewinnt 10:8 (Gewinnmarge 2)
 - A vs B: A gewinnt 8:6 (Gewinnmarge 2)
- C hat also 2 Spiele absolviert, A und B jeweils 3.
 - Für deutlicheres Beispiel
- Jedes Team ist jedem anderem Team mindestens einmal begegnet
- Wie wir gesehen haben, können wir direkt mit M und p anfangen
 - Werden wir hier aber nicht, um das Beispiel besser verfolgen zu können

Originales Gleichungssystem

Normalengleichungen

..danach: letzte Reihe von M := 1 letzter Eintrag von p := 0

Lösung

Team A: 2,6

Team B: 1,4

Team C: -4,0

Offensiv- und Defensivwerte

Mit Massey's System:

- Wir haben jetzt Ratings für jedes Team.
- Interessant wäre aber noch: Trennung zwischen Offensive und Defensive
 - Zwei neue Ratingvektoren o und d
 - Es soll sein: r = o+d
 - Betrachten wir den Vektor p (kumulative Punktdifferenz pro Team)
 - Es sei f der Vektor aller gesamten Punkte des Teams
 - und a der Vektor aller Punkte, die das Team "einstecken" musste.
 - Also p = f ("points for") a ("points against").
 - Zwei neue Matrizen T und P
 - Es soll sein: M = T P
 - T ist Diagonalmatrix, die #Spiele des Teams enthält
 - P enthält #(paarweise Matchups) zwischen Teams

Ein paar Substitutionen

Mit dieser Notation jetzt:

$$M \vec{r} = p$$

$$(T-P)\vec{r} = p$$

$$(T-P)(\vec{o} + \vec{d}) = p$$

$$T \vec{o} - P \vec{o} + T \vec{d} - P \vec{d} = p$$

$$T \vec{o} - P \vec{o} + T \vec{d} - P \vec{d} = \vec{f} - \vec{a}$$

... das kann aufgeteilt werden in $T\vec{o}-P\vec{d}=\vec{f}$ und $P\vec{o}-T\vec{d}=\vec{a}$

- $T\vec{o}-P\vec{d}=\vec{f}$ sagt: #(Punkte eines Teams) kann gebildet werden durch: #(Spiele des Teams) x (Offensivwert des Teams)

Summe aller Defensivwerte sämtlicher Gegner

Offensiv- und Defensivwerte herleiten

Wir verwenden jetzt die linke Gleichung $T\vec{o}-P\vec{d}=\vec{f}$ zur Herleitung.

$$T\vec{o} - P\vec{d} = \vec{f}$$

$$T(\vec{r} - \vec{d}) - P\vec{d} = \vec{f}$$

$$T\vec{r} - T\vec{d} - P\vec{d} = \vec{f}$$

$$T\vec{r} = T\vec{d} + P\vec{d} + \vec{f}$$

$$T\vec{r} - \vec{f} = T\vec{d} + P\vec{d}$$

Der Ratingvektor r ist ja bereits bekannt! Wir erhalten wieder ein Gleichungssystem

Mit bekannter Koeffizientenmatrix (T+P)

$$(T+P)\vec{d} = T\vec{r} - \vec{f}$$

$$A\vec{d} = \vec{b}$$

Mit unbekanntem Defensivvektor d

Mit bekannter rechter Seite Tr – f

Haben wir jetzt r und d, können wir o wegen r = o+d auch berechnen!

Für unser kleines Beispiel

Für unser kleines Beispiel: Ergebnisse

Nützliche Eigenschaften

Benutzung von domänerelevanter Metrik

- Im Sport: Tore, Körbe, jede Art von Score
- Für jeden Kontext geeignet
 - solange ein paarweiser Vergleich ("Match") möglich ist

Erweiterte Vorhersagen möglich

- Es gibt Offensiv- und Defensivstatistiken
- Unterscheiden diese sich stark für ein Team, sind seine Leistungen möglicherweise stärker schwankend
 - Es können neben einer Vorhersage über den exakten Ausgang eines Matchups auch +/- Werte abgeschätzt werden (spätere Kapitel)

Massey's Methode in der Praxis

Bowl Championship Series

Bowl Championship Series

- Ratingsystem f
 ür College- Football
 - Zweck: bestimmen von Matchups
- Ratings setzen sich aus menschlichem Input und Computerberechnungen zusammen
 - Menschlicher Input: Medien, Trainer der Teams
 - Maschineller Input: 6 verschiedene Modelle
 - Eine davon ist eine Variante von Massey's Methode
 - Details zu dieser nicht völlig bekannt
 - Auf Massey's Webseite mehr Infos: masseyratings.com
- Das BCS System ist sehr kontrovers
 - Besonders zwei Saisons: 2001 und 2003
 - Wird statt Qualifikationsspielen eingesetzt
 - Daher hängt für die Teams viel davon ab

Massey's Methode in der Praxis

masseyratings.com

Beispiel: Massey- Werte für TCU Horned Frogs

Massey's Methode in der Praxis

Ranking von Webseiten

Wir brauchen:

- Das Konzept eines "Matches" zwischen zwei Webseiten: Vergleich eines Werts
 - z.B. gemessenes Datenübertragungsvolumen
 - Oder besser: PageRank- Measure

Wir erhalten:

- Ein relatives Ranking der Webseiten
- Je nach Vergleichsmetrik auch verwertbare Aussage über "Abstand" zwischen zwei Webseiten
- Offensiv- und Defensivwerte!
 - Für Webseiten??
 - Je nach Metrik kann das viel Sinn machen!
 - z.b. Seiten mit vielen relevanten(!) Links zu einem Thema
 - vs Seiten mit viel direkter Information zu einem Thema
 - = "hubs" vs "authorities" im HITS- Algorithmus