		L.	_13012.3	- aa 13/10
Nome e Cognome:	□LUN Data:	□MAR	□GIO	(12)

Curve caratteristiche di collettore del transistor (con Arduino)

Obiettivo dell'esperienza è realizzare un esperimento con presa dati <u>automatizzata</u> via Arduino finalizzato a ricostruire per punti una famiglia di curve caratteristiche di uscita, o di collettore, I_C vs V_{CE} , del transistor npn modello 2N1711. La famiglia si riferisce a valori di I_B discreti nell'intervallo consigliato da circa 1 a circa 35 μ A.

Il transistor è montato su una basetta alloggiata in un telaietto: è necessario che preliminarmente individuiate le connessioni alle varie boccole, che sono quelle rappresentate qui a fianco.

Quindi, visto che il setup sperimentale è abbastanza complicato, procedete per passi successivi, come qui di seguito illustrato.

1. Montate il circuito sotto indicato (si consiglia $R_p = 68$ oppure 330 kohm nominali), che serve per polarizzare la giunzione BE; scegliete correttamente tra i due multimetri a vostra disposizione con quale misurare la corrente I_B e con quale la

2. Verificate che ruotando l'alberino del potenziometro vanga variata la polarizzazione della giunzione BE: potete farlo qualitativamente o, meglio, costruendo un rapido grafico I_B vs V_{BE}. Commentate qui sotto se l'andamento soddisfa le aspettative e anche se, e perché, la misura del voltmetro è veramente rappresentativa della d.d.p. tra base ed emettitore.

3. Predisponete il generatore di funzioni per gli scopi dell'esperienza: a questo scopo, esso deve produrre una forma d'onda triangolare di d.d.p. (rispetto terra) <u>rigorosamente</u> compresa tra circa 0 e circa 5 V . Verificate poi che il segnale all'uscita TTL/CMOS OUTPUT (lo trovate riportato su un cavo coassiale già collegato, il nero è la terra), che userete come segnale di sincronismo, sia "come ve lo aspettate" (fate un disegnino nei commenti per dimostrarlo).

Commenti e/o disegnini per mostra	are le forme d'onda rilevanti:	

- 4. Preliminarmente ai cicli di acquisizione, dovete eseguire l'upload dello sketch curv.ino nella memoria di Arduino utilizzando il programma Arduino (o Arduino IDE) nel computer di laboratorio.
- 5. Quindi dovete modificare lo script di Python (nome curv_v1.py) che serve per gestire la comunicazione seriale via USB, scegliendo il nome (eventualmente la directory) del file generato. Lo script prevede anche <u>l'impostazione</u> dell'intervallo di tempo Δt fra due campionamenti successivi, impostabile da 1 a 9 ms in passi discreti unitari.
- 6. Prima di eseguire i cicli di acquisizione, dovete aggiustare la frequenza f del generatore di funzioni sulla base del Δt prescelto, allo scopo di permettere un'"ottimale" registrazione dei dati: tenete presente che l'acquisizione avviene su un massimo di 256 punti, e ragionate di conseguenza.

7. A questo punto potete montare l'intero circuito, che prevede di usare i componenti montati finora per la polarizzazione della giunzione BE (si può omettere il voltmetro), il generatore di funzioni per produrre il segnale V_I (vedi lo schema), la scheda Arduino per la digitalizzazione e misura di $V_2 = V_{CE}$ e di V_I , necessaria per dedurre I_C tramite misura di R_C (si consiglia $R_C = 1$ kohm nominale).

- 8. Fissate un certo valore di I_B ed eseguite l'acquisizione. Per vostra comodità, lo script di Python scrive su console il numero di punti acquisito e i valori min e max di V_I : se non siete soddisfatti, aggiustate quello che dovete aggiustare e ripetete l'acquisizione. Al termine si ottiene un file di due colonne (e fino a 256 righe) che riportano nell'ordine i valori digitalizzati di V_I e V_2 .
- 9. Ripetete la procedura per <u>qualche</u> valore di I_B e graficate le curve I_C vs V_{CE} in unico grafico.
- 10. Per la conversione delle tensioni digitalizzate in unità fisiche, potete misurare la d.d.p. tra porta 7 di Arduino (boccola rossa) e terra, che, in prima approssimazione, si trova al valore V_{ref} , consentendo di determinare il fattore di conversione ξ .
- 11. Determinate (dalle curve) il valore del guadagno in corrente continua $\beta_F = I_C/I_B$ per diversi valori di I_B e un certo valore di V_{CE} (si suggerisce $V_{CE} \sim 1$ V); riportatelo in tabella, valutando in maniera coscienziosa l'incertezza associata.
- 12. Stimate il valore del guadagno in corrente per "deboli segnali" a una certa corrente (si suggerisce $I_B \sim 10$ -15 μ A), definito qui come $\beta_f \cong \Delta I_C/\Delta I_B$ (Δ indica la differenza tra valori acquisiti per valori di I_B "prossimi" tra loro).
- 13. <u>Facoltativo, ma consigliato</u>: scegliete un certo valore di I_B (da dichiarare) e selezionate il tratto della curva I_C vs V_{CE} che vi aspettate orrispondere sicuramente al "regime attivo"; fatene un grafico e un best-fit secondo una retta non passante per l'origine, con lo scopo di determinare il parametro V_{Early} definito dalla: Riportate il valore di V_{Early} e <u>tutte</u> le

Riportate il valore di V_{Early} e <u>tutte</u> le informazioni per la comprensione del best-fit, oltre a ogni eventuale altro commento, nel riquadro qui sotto o sui fogli dei grafici.

$V_{I} \text{ BLU}$ from $R_{C} \Rightarrow$	GIALLO from C transistor from OUTPUT function generator
$V_{porta\ 7} = V_{ref}\ [V]$	ξ [mV/digit]

ARDUINO

≅ ∼	[V]
$I_C[mA]$	$\beta_F = I_C / I_B$

$I_B \sim$	[μ A] ; $V_{CE} \sim$	[V]
$\Delta I_B[\mu A]$	$\Delta I_C[\text{mA}]$	$\beta_f = \Delta I_C / \Delta I_B$

Commenti sull'eventuale	best-fit e su	ogni altro	aspetto	secondo v	oi rilevante::