1 lógica y computación

- · Elementos :
- lenguage Jornal
- -> Senantica o Teoria de Modelos : vallelez y sals jacibilidad
- Teorià de Demostración

2. lenguages Jornales

- -> Aljabelo (conjunto de símbolos admitidas en el lenguaje)
 - + Variables o simboles proposicionales Q = {p,q,z,...}
 - + Conectivos a operadores (69100 / 7, V, A, ->, -> /
 - + Delimitadores 1(,) 1
- → Oromatica (conjunto de reglas semanticas que cadenas se consideran Jbys)

3 Semantica o teoria de modelas

Valores semantes S= 50,13

Valores destacados D= 11/

Functiones (interpretaciones) $I = \{I \in I; I : Cl \rightarrow \{0,1\}\}$ $A \rightarrow I(A)$

- So existe $I \in I$ tell que $I(A) = 1 \Rightarrow A$ es sodisfacible.

 Mod $(A) = \int I \in I$: $I(A) = 1 \int Mod(A) \neq \emptyset$ I es un modelo de A
- Si para tedo $I \in I$: $I(A) = 0 \Rightarrow A$ es insatisfacible

 Mod (A) = 0 Mod $(A) = \emptyset$ I is in contramodelo de
- Si para todo I e I : $I(A) = 1 \implies A$ es valida Mod(A) = I

أوروا

* Si A es satisfacible

A es satisfacible

* Si A es válida

A es satisfacible

Es Demostación

A es insatisfacible => TA es surfisfacible

A es insatisfacible => TA es valida

- Si A es insatisfacible, Mod (A) = \emptyset \Rightarrow para fodo $T \in \mathcal{I}$; T(A) = 0T(TA) = 1 para fodo $T \in \mathcal{I}$
- · Par lo tanto, Mod (TA) = I = TA es valida

4 lógica Chisian Proposicional

100!

10 6	P	9	70	70/9	7019	$(\neg p \lor q) \rightarrow (\neg p \land q)$
T1	0	0	1	1	0	0
Iz	0	1	1	1	1	1
I3	1	0	0	0	0	1
Iu	1	1	0	1	0	o

Sear Ay B Jornulas :

Mod (7A) = & I & I (AA) = 1 & = & I & I (A) = 0 & = Mod (A)

 $Mod (A \lor B) = Mod (A) \cup Mod (B) ?$ $Mod (A \lor B) = \begin{cases} I \in I & T (A \lor B) = 1 \end{cases} = \begin{cases} I \in I & T(A) = 1 \end{cases} o$ $I(B) = 1 \end{cases} = \begin{cases} I \in I & T(A) = 1 \end{cases} \cup \begin{cases} I \in I & T(B) = 1 \end{cases} = Mod (A) \cup Mod (B)$

A = fA1, Az, ..., An f -> conjunto de Jérmilas

A -> Joinula

" por tanto, por consiguiente " V 1- A

A es consecuencia, se dezua semanticomente o se injere de 12 si bodo modelo de 12 es modelo de A (Mod (11) C Mod (A))

iOyo! Demostra que $-n \models A$ para $-n = \sqrt{-1}q \rightarrow p$, $-1q \lor z \checkmark$ y $A = \sqrt{-1}p \rightarrow z \checkmark$

	P	9	Z	¬ρ	79	79 → P	79 V z	¬p → z
I ₁	0	0	0			0	1	0
Iz	0	0	1	1	1	0	1	1
I ₃	6	1	0	1	6	1	0	0
I4	0	1	1	1	0 (8	1	1	131
I5	1	0	0	0	1	1	1	1
I6	1	0	1	0	1	1	1	1
I7	1	1	0	0	0	1	0	1
I8	1	1	1	0	0	1	1	1

Mod(n) = / I4, I5, I6, I8 / C / Iz, I4, I5, I6, I7, I8/

10,0 | Demostranos por table de verdod o aplicando los leyes $= 7(A \wedge B) = 74 \vee 7B$

 $Mod (\neg (AAB)) = Mod (AAB) =$ $= Mod (A) \cap Mod (B) =$ $= Mod (A) \cup Mod (B) =$ $= Mod (\neg A) \cup Mod (\neg B) = Mod (\neg A \vee \neg B)$

- · leyes de Morgan => 7(AAB) = 7A V 7B 7(AVB) = 7A A 7B
- · leyes comutativas => AAB = BAA · AVB = BVA
- · leges asociativas => (AAB) AC = AA(BAC)
- ley distribution de 1 respecto V ⇒ A1(BVC) = (A1B) V(A1C)
- € ley distributiva de V respecto Λ ⇒ AV(BΛC) = (AVB)Λ(AVC)
- Abscreen \Rightarrow An(AVB) \equiv A AV(ANB) \equiv A
- · Trasposición ⇒ A → B = ¬B → ¬A
- Interdefinación ⇒ A → B = 7AVB de → y V AVB = 7A → B
- Conmutativical $\Rightarrow A \rightarrow B \equiv B \rightarrow A$

- Idenyotencia \Rightarrow A \land A \Rightarrow A \lor A \Rightarrow A
- · Doble negación ⇒ 77A = A
- Interdefinición $\Rightarrow \neg (A \rightarrow B) \equiv A \land \neg B$ de $\rightarrow y \land A \land B \equiv \neg (A \rightarrow \neg B)$
- Asociatividad \Rightarrow $A \leftrightarrow (B \leftrightarrow C) \equiv$ $(A \leftrightarrow B) \leftrightarrow C$

6 Principio de refutación

1 = A correcto ↔ Mod(n) ⊆ Mod(A) ↔ n v 17A1 es

Demostración o

Mod (A)
[Mod I

- = { At, At, ..., An } - \(\) = { A1, A2, ..., An, An+1, Am }

100 Demostración Mod (nun') = Mod (n) n Mod (n')

Mod (\(\Omega \) = \(\sum \) = \(\tau \)

7. Métado de las tablas semanticas

→ literal : Jórmula atómica y la negación de una Jórmula atómica.

Vamos a cerroz las ramas cuando tengamos dos literales opiestos

7(

$$\Rightarrow$$
 Férmulas α o conjuntivas $\alpha = \alpha_1 \wedge \alpha_2$
 \Rightarrow
Férmulas β o clisyuntivas $\beta = \beta_1 \vee \beta_2$
 $\beta_1 \otimes \beta_2 \otimes \beta_3 \otimes \beta_4 \otimes \beta_2 \otimes \beta_4 \otimes \beta_2 \otimes \beta_4 \otimes \beta_2 \otimes \beta_4 \otimes \beta_4 \otimes \beta_5 \otimes \beta_6 \otimes$

×	XI	dz
ALNAZ	As	Az
T(ALVAZ)	7A1	TAZ
7 (As - Az)	As	7 Az
TTA	As	Az

B	Be	Bz
B1 V BZ	Ba	Bz
7 (BINBZ)	781	7Bz
Be- Bz	7B1	Bz

✓ la Józmila ya ha sido usada para extendor la labla \$\frac{1}{2} ozziba - abajo

** Zama cenada, no adganos nada de ella

	Entrada
A es valida	TA
ın ⊨A	2 U 37A 5
IL = {A1, Az, An } es satisfacible	~

1000 con interpretar

E. N= {p→ 7((z→q)→q), pvz, z→p } es satisfacible??

Solución : table abienta y completa, es solucion e I(q) = I(z) = 0 y I(p) = 1 es un modelo de n

$$\frac{5}{4} = (((p \land q) \rightarrow z) \land (p \rightarrow q)) \rightarrow (p \rightarrow z) \quad \text{es valida ??}$$

$$\frac{7}{(((p \land q) \rightarrow z) \land (p \rightarrow q)) \rightarrow (p \rightarrow z))} \propto 1^{\circ} \checkmark$$

$$\frac{7}{(p \land q) \rightarrow z} \wedge (p \rightarrow q) \rightarrow 2^{\circ} \checkmark$$

$$\frac{7}{(p \land q)} \rightarrow 2^{\circ} \checkmark$$

$$\frac{7}{(p \land q)} \rightarrow 2^{\circ} \checkmark$$

$$\frac{7}{(p \land q)} \rightarrow 2^{\circ} \checkmark$$

$$\frac{7}{2} \rightarrow 2^{\circ} \rightarrow 2^{\circ} \rightarrow 2^{\circ}$$

$$\frac{7}{2} \rightarrow 2^{\circ} \rightarrow 2^{\circ}$$

$$\frac{7}{2} \rightarrow 2^{\circ} \rightarrow 2^{\circ}$$

$$\frac{7}{2} \rightarrow 2^{\circ} \rightarrow 2^{\circ}$$

Solución: fabla cenada -> insatisfacible. Por 6 fanto, si 7 A e insata-

$$\frac{5}{3}(\rho \wedge q) \rightarrow z, \quad \rho \rightarrow q \quad | \qquad \rho \rightarrow z \quad | \qquad \rho \rightarrow z$$

Solución: tabla corrada => inscrtujacible, se comple [n = A]

$$(\rho \vee \varphi) \rightarrow z \quad \beta \quad z^{\circ} \vee$$

$$\neg (\rho \vee z) \quad \alpha \quad 1^{\circ} \vee$$

$$\neg \rho$$

$$\neg z$$

$$3^{\circ} \alpha \quad \neg (\rho \vee \varphi) \qquad z$$

$$\neg \rho \qquad \times$$

7 p x

Solvain : table complete y abjects \Rightarrow satisficable. No se de -2 + A $I(p) = I(q) = I(z) = 0 \quad \text{(contramodels)}$

- 7. Teoría zesolvez ejercicios teóricos !!
- 1 Me lengo que saber les relaciones entre les modelos y las leyes.
- @ Propiedad de monotonia: { n c n' \ Mod (n') c Mod (n)
- (3 (Mod (NUL') = Mod (N) n Mod (N')
- $Q | Mod(A) \subseteq Mod(B) \iff Mod(A) \cap Mod(B) = \emptyset$

Mod(B)
[Mod(A)]

"SI IL = BAC entonces IL = By IL = C" Demoster

- · Hirôtesis => I = B \ C por definición es Mod (I) & Mod (B\C)

 Mod (I) & Mod (B) \(\text{N}\) Mod (C)
- Objetivo \Rightarrow Mod (Ω) \subseteq Mod (B) \neq Mod (Ω) \subseteq Hod (C)

 Definción de intersección $\begin{cases} C \cap O \subseteq C \\ O \cap C \subseteq D \end{cases}$

100 Demostaz 12U SAS = AVB

· Hipótesis >> Mod (rugas) = Mod (r) n Mod (A) @

Subernos que Mod (AVB) = Mod (A)U Mod (B)

@ Mod (PL) n (Mod A) & Mod (A) U Mod (B)

° SI RUSAS = B enforces R = A → B"

· Hyoteis => I USAS = B; dej => Mod (NUSAS) & Mod (B)

· Objetivo ⇒ . Mod (A) ⊆ Mod (A → B) ⇔ Mod (A) ∪ Mod (B)

Sabernos que Mod (∩ ∪ SA S) = Mod (∩) ∩ Mod (A) ⊆ Mod (B)

Mod (1) n Mod (A), n Mod (B) = Ø

Mod (s) c Mod (A) n Mod (B) = Mod (A) U Mod (B) =

= Mod (A) v Mod (B)