Во всех задачах считать, что требуется доказать утверждение при натуральных n, если не сказано обратного.

Задача 1

Докажите, что $\frac{(2n)!}{(n!)^2} > \frac{4^n}{n+1}$

Задача 2

Докажите, что $\sum_{k=1}^n \sin kx = \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}$, где $x \neq 2\pi k, k \in \mathbb{Z}$

Задача 3

Докажите, что $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$

Задача 4

Докажите, что при $q \neq 1$ верно $1 + q + q^2 + \ldots + q^n = \frac{q^{n+1} - 1}{q - 1}$

Задача 5

Докажите, что $1^2-2^2+3^2-4^2+\ldots+(-1)^{n-1}n^2=(-1)^{n-1}\frac{n(n+1)}{2}$

Задача 6

Докажите, что $n! < 2^{\frac{1}{2}n(n+1)}$

Задача 7

Докажите, что $\frac{1}{\sqrt{4n}} \leq \frac{(2n-1)!!}{(2n)!!} \leq \frac{1}{\sqrt{3n+1}}$

Задача 8

Пусть даны x_1, x_2, \dots, x_n положительные. Докажите, что $\frac{x_1}{x_2} + \frac{x_2}{x_3} + \dots + \frac{x_{n-1}}{x_n} + \frac{x_n}{x_1} \ge n$

Задача 9

Докажите, что $\sum_{k=1}^n \arctan \frac{1}{2k^2} = \operatorname{arctg} \frac{n}{n+1}$

Задача 10*

Докажите, что в разложении числа $a_n = \frac{(2n)!}{n!}$ на простые множители ровно n двоек.

NotaBene: обратите внимание, что искомое число имеет вид $(n+1)(n+2) \cdot \ldots \cdot (2n)$. Проверьте базу при n=1 и попробуйте выразить a_{n+1} число через a_n .

1

Задача 11*

Докажите, что $|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$.

Задача 12*

Известно, что $u_0=0,u_1=1,$ а при $n\geq 2$ и $n\in\mathbb{N}$ $u_n=u_{n-1}+u_{n-2}.$ Докажите, что $u_{3n}=u_{n+1}^3+u_n^3-u_{n-1}^3$