CLAIMS

1	1. A 1	method for creating a three-dimensional visual representation of an object
2	having mu	ltiple resolutions, comprising the steps of:
3		retrieving coordinates of vertices for the object;
4		determining a collapse order for the vertices identified in the vertex list;
5		reordering the vertices identified in the vertex list responsive to the
6		determined collapse order;
7		creating a vertex collapse list responsive to the collapse order where the
8		vertex collapse list specifies, for a target vertex, a neighbor vertex
9		to collapse to;
10		using the vertex collapse list and a level of detail to identify at least one
11		display vertex of the object; and
12		rendering the display vertex to produce a three-dimensional visual
13		representation of the object.
1	2. Tì	ne method of claim 1 wherein determining the collapse order comprises the steps
2	of:	
3		determining a set of collapse paths;
4		selecting a collapse path from the set of collapse paths;
5		computing visual distortion factors for the selected collapse path;
6		responsive to the computed visual distortion factors, determining a
7		collapse value for the selected collapse path;

8		repeating selecting a collapse path, computing visual distortion factors,
9.		determining a collapse value for each collapse path;
10		selecting a next vertex to be collapsed as a vertex having a collapse path
11		causing the least visual distortion to the object;
12		collapsing the next vertex to be collapsed along the corresponding collapse
13		path; and
14		repeating the above steps until a minimum resolution level is attained.
1	3.	The method of claim 2 wherein computing visual distortion factors comprises the
2	steps	of:
3		computing an area change factor for the selected collapse path;
4		computing an angular deviation factor for the selected collapse path; and
5		computing a local volume change factor for the selected collapse path.
1	4.	The method of claim 3 wherein the computing an area change factor for each
2	collap	ose path further comprises:
3		computing an area of the object after collapsing the target vertex along the
4		collapse path; and
5		subtracting the computed area from an area of the object prior to the
6		collapse.
1	5.	The method of claim 3 wherein the computing a volume change factor for the
2	selec	ted collapse path comprises:
3		computing a volume of the object after collapsing the target vertex along
4		the collapse path;

5	subtracting the computed volume from a volume of the object prior to the
6	collapse.
1	6. The method of claim 5, wherein the step of computing a volume further
2	comprises:
3	selecting the target vertex to be an apex for a pyramid;
4	forming a base of the pyramid from a triangle connecting three
5	consecutive neighbor vertices to the target vertex;
6	computing a volume of the pyramid;
7	constructing a next pyramid from a next set of three consecutive neighbor
8	vertices;
9	computing a volume of the next pyramid;
10	repeating the constructing a next pyramid and computing a volume steps
11	for all unique three consecutive neighbor vertex sets; and
12	summing the volumes of the pyramids to obtain a volume of the object.
1	7. The method of claim 2 further comprising the step of receiving an input from a
2	user specifying a priority weight for a visual distortion factor, and the determining a
3	collapse value step further comprises, responsive to the computed visual distortion factors
4	and priority weights, determining a collapse value for the selected collapse path.
1	8. The method of claim 2 wherein, responsive to collapsing the next vertex to be
2	collapsed along the corresponding collapse path, collapse paths local to the next vertex
3	are identified and the computing visual distortion factors for the selected collapse path

subtracting the computed volume from a volume of the object prior to the

4	and the determining a collapse value for the selected collapse path steps are repeated only
5	for the local collapse paths.
1	9. The method of claim 2 wherein determining a set of collapse paths further
2	comprises:
3	selecting a target vertex;
4	receiving input specifying a maximum number of neighbor vertices for a
5	target vertex;
6	identifying a number of neighbor vertices, responsive to the received
7	input;
8	determining a collapse path responsive to coordinates of the target vertex
9	and an identified neighbor vertex;
10	repeating the determining step for all identified neighbor vertices;
11	repeating the selecting a target vertex, identifying, determining, and
12	repeating steps for a plurality of vertices.
1	10. The method of claim 2 further comprising the steps of:
2	responsive to selecting a collapse path, displaying the object prior to
3	collapsing the object along the selected path;
4	collapsing the object along the specified path;
. 5	displaying the object after being collapsed along the specified path;
6	responsive to receiving an input selecting the collapse path, storing the
7	collapse path and corresponding vertex on the collapse order list as
8	the next vertex to be collapsed.

1	11.	The method of claim 1, further comprising receiving an input specifying a set of
2	minin	num vertices, and the determining collapse order step further comprises determining
3	a colla	apse order in which the specified set of minimum vertices are not collapsed.
1	12.	The method of claim 1 wherein multiple resolution levels of the object exist,
2	furthe	er comprising the steps of:
3		ordering the resolution levels from highest to lowest resolution;
4		selecting a highest resolution level for collapsing;
5		the determining a collapse order step comprises determining a collapse
6		order for the highest resolution level, wherein vertices in the next
7		lowest resolution level are not collapsed; and
8		repeating the selecting and determining steps for each resolution level.
1	13.	The method of claim 1 wherein the vertex coordinates are associated with vertex
2	attrib	utes.
1 .	14.	The method of claim 2 wherein the vertices have coordinates in a texture map,
2	furthe	er comprising the steps of:
3		responsive to a selected collapse path collapsing a first vertex into a
4		second vertex to create a new vertex, assigning the texture map
5		coordinates of the second vertex to the new vertex;
6		responsive to the first and second vertex being on an edge of a texture
7		discontinuity, identifying the collapse path as a collapse path not t
8		be used.

1	15. The method of claim 2 wherein the vertices have coordinates in a normal map,
2	further comprising the steps of:
3	responsive to a selected collapse path collapsing a first vertex into a
4	second vertex to create a new vertex, assigning the normal map
5	coordinates of the second vertex to the new vertex.
1	16. The method of claim 2 wherein the vertices have coordinates in a color map,
2	further comprising the steps of:
3	responsive to a selected collapse path collapsing a first vertex into a
4	second vertex to create a new vertex, assigning the color map
5	coordinates of the second vertex to the new vertex; and
6	responsive to the first and second vertex being on an edge of a color
7	discontinuity, identifying the collapse path as a collapse path not to
8	be used.
1	17. A method for displaying an object, wherein a vertex list and a neighbor list is
2	stored for the object, and vertices in the vertex list are identified by a collapse priority,
3	and the neighbor list identifies the path of a collapse for the vertices, comprising the steps
4	of:
5	performing a collapse of the object responsive to the vertex list and
6	neighbor list;
7	storing vertex information for each collapse level, wherein the vertex
8	information indicates which vertices exist in the object in the

9

10	collapse level;
11	receiving input requesting a collapse level for the object;
12	responsive to the requested collapse level requiring a higher resolution
13	than a current collapse level, adding vertices to the vertex list for
14	the object responsive to the vertex list and stored vertex
15	information;
16	responsive to the requested collapse level requiring a lower resolution than
17	a current collapse level, collapsing vertices in the vertex list of the
18	object responsive to the vertex list and stored vertex information;
19	and
20	rendering the vertices in the vertex list to produce a three-dimensional
21	visual representation of the object.
1	18. The method of claim 17 further comprising the step of:
2	storing extended collapse information, wherein the extended collapse
3	information includes triangle connectivity information for the
4	vertices.
•	
1	19. A method for displaying an object, wherein a vertex list and a neighbor list is
2	stored for the object, and vertices in the vertex list are identified by a collapse priority,
3	and the neighbor list identifies the path of a collapse for the vertices, comprising the steps
4	of:

collapse level immediately higher and lower than the current

5	performing a collapse of the object responsive to the vertex list and
6	neighbor list;
7	storing vertex information for each collapse level, wherein the vertex
8	information indicates which vertices exist in the object in the
9	collapse level immediately higher and lower than the current
10	collapse level;
11	analyzing the object to determine a collapse level;
12	responsive to the determined collapse level requiring higher resolution,
13	adding vertices to the vertex list for the object responsive to the
14	vertex list and stored vertex information;
15	responsive to the determined collapse level requiring a lower resolution,
16	collapsing vertices in the vertex list for the object responsive to the
17	vertex list and stored vertex information; and
18	rendering the vertices in the vertex list to produce a three-dimensional
19	visual representation of the object.
1	20. The method of claim 19 wherein the step of analyzing the object further
2	comprises:
3	determining a velocity of the object; and
4	determining a projected area of the object.
1	21. The method of claim 20 wherein the step of analyzing the object further
2	comprises:
3	determining the number of polygons currently being displayed;

4	comparing the determined number to a predefined target number of
5	polygons; and
6	responsive to the number of polygons currently being displayed being less
7	than the predefined number, adding polygons to the object.
1	22. The method of claim 19 wherein the step of analyzing the object further
2	comprises:
3	determining a current frame rate;
4	comparing the current frame rate to a predefined frame rate; and
5	responsive to the current frame being less than the predefined frame rate,
6	collapsing vertices in the object.
1	23. A method for transferring data across a remote connection, in a system in which a
2	minimal resolution of an object is stored and separate packets of information comprising
3	data for creating higher resolutions of the object are stored, comprising the steps of:
4	receiving a request for a transmission of an object to be displayed;
5	transmitting a minimal resolution version of the object responsive to the
6	received request;
7	transmitting a packet of information comprising data for creating a next
8	higher resolution of the object;
9	determining whether a target resolution of the object has been met; and
10	responsive to a target resolution of the object not being met, repeating the
11	transmitting a packet of information comprising data for creating a
12	next higher resolution of the object step.