

"Si algo es tecnológicamente posible, el hombre tratará de hacerlo. Está en la esencia de nuestro propio ser. Control metabólico. Percepción sensorial mejorada. Mejores reflejos y capacidad muscular. Mayor capacidad y velocidad para almacenar datos. Todas esto gracias a nuestros cerebros electrónicos y cuerpos de metal."

(Ghost in the Shell, 1995)

Lo que es a día de hoy:

- Identificación de pensamientos concretos.
- Movilidad externa limitada.
- Capacidad de comunicación (reducida)

Lo que NO es:

- Leer la mente
- Movilidad completa externa
- Avatar de James Cameron

Motor Imagery: una persona imagina un movimiento.

- Se dan estímulos externos para ayudar a pensar sólo en eso.
- Se capturan las ondas cerebrales mientras eso ocurre.

Lo Bueno:

- No invasivo
- Extraplolable entre sujetos (en teoría)

Lo Malo:

 Menos precisión en la captura de señal

Nuestra tarea:

• 4 clases:

• Pocas muestras¹

 Características "duras": electroencefalograma.

1. Tangermann, M., Müller, K. R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., ... & Blankertz, B. (2012). Review of the BCI competition IV. Frontiers in neuroscience, 6, 55.

Enhanced Multimodal Fusion Framework

- 1. Capturar la señal
- 2. Fast Fourier Transform

- 1. Capturar la señal
- 2. Fast Fourier Transform
- 3. Diferenciación de Señal

Activación neuronal C.Elegans visualizando el calcio²:

- Las medidas engañan³.
- Los picos no interesan.

^{2.} Nguyen, J. P., Shipley, F. B., Linder, A. N., Plummer, G. S., Liu, M., Setru, S. U., ... & Leifer, A. M. (2016). Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. *Proceedings of the National Academy of Sciences*, 113(8), E1074-E1081.

^{3.} Aguilera, M., C. Alquézar-Baeta and E. Izquierdo. "Signatures of criticality in a maximum entropy model of the C. elegans brain during free behaviour." ECAL (2017).

- 1. Capturar la señal
- 2. Fast Fourier Transform
- 3. <u>Diferenciación de Señal</u>
- 4. Common Space Patterns

- 1. Capturar la señal
- 2. Fast Fourier Transform
- 3. <u>Diferenciación de Señal</u>
- 4. Common Space Patterns
- 5. Entrenamiento

- 1. Capturar la señal
- 2. Fast Fourier Transform
- 3. <u>Diferenciación de Señal</u>
- 4. Common Space Patterns
- 5. Entrenamiento
- 6. <u>Decisión multimodal</u>

Decisión Unimodal

Experto 3

Decisión

Decisión Multimodal Experto 5 Experto 3 Experto 1 Experto 6 Experto 4 Decisión Decisión Α Experto 2

Decisión

Resultados - EMF

	Mean /	Median	Choquet	CFminmin S	Sugeno	H. Sugeno	F-Sugeno	Min	Max	CF12	OWA1	OWA2	OWA3	CF (GM :	SO F	НМ
Mean	0,798508	0,764969	0,798508	0,762809	0,762809	0,769059	0,801466	0,807202	0,807202	0,828729	0,793236	0,798508	0,780376	0,791975	0,831379	0,850206	0,832922
Median	0,750026	0,7232	0,754475	0,728652	0,728832	0,746759	0,755658	0,755478	0,755478	0,750617	0,747377	0,753755	0,738066	0,748405	0,749949	0,750026	0,753112
Choquet	0,798508	0,764969	0,815484	0,77428	0,77428	0,786728	0,820705	0,832613	0,763889	0,841101	0,762834	0,819624	0,787757	0,794856	0,849923	0,857099	0,851569
CFminmin	0,777675	0,745448	0,7991	0,746836	0,747068	0,762011	0,838349	0,759053	0,717747	0,572608	0,72927	0,791924	0,772402	0,772094	0,800874	0,861883	0,802881
Sugeno	0,777675	0,745448	0,7991	0,746836	0,747068	0,762011	0,838349	0,759002	0,717747	0,572608	0,72927	0,791924	0,772402	0,772094	0,8009	0,861883	0,802881
H. Sugeno	0,812474	0,771425	0,816255	0,773045	0,773045	0,793441	0,836163	0,788246	0,711548	0,853241	0,737629	0,811703	0,799434	0,809568	0,830864	0,86355	0,821168
F-Sugeno	0,803138	0,768441	0,821759	0,778575	0,778575	0,793493	0,828575	0,842078	0,747788	0,84429	0,754835	0,826466	0,79357	0,798843	0,854707	0,859053	0,857459
Min	0,818107	0,775103	0,836265	0,777186	0,777186	0,802572	0,842155	0,858565	0,711445	0,853241	0,737654	0,836471	0,806996	0,81196	0,861008	0,861008	0,860211
Max	0,818107	0,775103	0,766744	0,723971	0,724048	0,716204	0,745705	0,711445	0,858565	0,786677	0,828729	0,731687	0,777701	0,803601	0,796116	0,796116	0,774126
CF12	0,779115	0,749048	0,81412	0,762088	0,762088	0,786523	0,208513	0,853344	0,724228	0,171811	0,779552	0,823097	0,772608	0,764223	0,849691	0,413683	0,859234
OWA1	0,78948	0,757742	0,75607	0,726286	0,726286	0,732202	0,747222	0,734542	0,825437	0,769985	0,808436	0,739841	0,763349	0,781662	0,772402	0,769727	0,759079
OWA2	0,798508	0,764969	0,820525	0,777418	0,777418	0,793956	0,827212	0,83786	0,732305	0,842104	0,742207	0,82518	0,791332	0,795396	0,852186	0,858308	0,854115
OWA3	0,77037	0,739815	0,77963	0,74375	0,74375	0,765406	0,782948	0,788632	0,76911	0,78948	0,76142	0,779861	0,759234	0,767181	0,784336	0,785494	0,788812
CF	0,791332	0,758951	0,781327	0,742361	0,742361	0,750566	0,807073	0,796553	0,791409	0,837011	0,790484	0,781867	0,770448	0,783025	0,825077	0,84573	0,83071
GM	0,799254	0,765278	0,807793	0,767052	0,767052	0,775592	0,814841	0,858128	0,795396	0,834234	0,78678	0,814095	0,782382	0,793853	0,848354	0,85216	0,857948
SO	0,799254	0,765278	0,807793	0,767052	0,767052	0,775592	0,753421	0,858128	0,795396	0,165766	0,78678	0,814095	0,782382	0,793853	0,848354	0,85216	0,857948
НМ	0,800437	0,767001	0,815432	0,768801	0,768801	0,782176	0,826157	0,859928	0,783822	0,836831	0,780556	0,824588	0,7857	0,794753	0,854295	0,853395	0,859516

Mejor resultado: **86,35%** (Previo mejor: ~78%⁴)

4. Ko, L. W., Lu, Y. C., Bustince, H., Chang, Y. C., Chang, Y., Fernandez, J., ... & Lin, C. T. (2019). Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface. *IEEE Computational Intelligence Magazine*, 14(1), 96-106.

Fumanal-Idocin, J., Takáč, Z., Sanz, J. F. J. A., Goyena, H., Lin, C. T., Wang, Y. K., & Bustince, H. (2020). Interval-valued aggregation functions based on moderate deviations applied to Motor-Imagery-Based Brain Computer Interface. arXiv preprint arXiv:2011.09831.

(IEEE Transactions on Cybernetics)

Fumanal-Idocin, J., Wang, Y. K., Lin, C. T., Fernández, J., Sanz, J. A., G.P. Dimuro & Bustince, H. (2021). Motor-Imagery-Based Brain Computer Interface using Signal Derivation and Aggregation Functions. arXiv preprint arXiv:2101.06968.

(IEEE Transactions on Fuzzy Systems)

Fumanal-Idocin J., Vidaurre C., Fernández J., Gómez M., Andreu J., Prasad M. and Bustince H. (2021) Multi-cost penalty functions applied to Motor-Imagery based Brain-Computer-Interface (Frontiers on Neurobotics)

Habilidades "blandas": movimiento

Sistemas de "Quita y pon"

FUTURE LINES

Sistemas integrados

