3D Transformation

Translation

3D Translation is a process of moving an object from one position to another in a three-dimensional plane.

Consider a point object O has to be moved from one position to another in a 3D plane.

Let-

Initial coordinates of the object $O = (X_{old}, Y_{old}, Z_{old})$

- New coordinates of the object O after translation = $(X_{\text{new}}, Y_{\text{new}}, Z_{\text{old}})$
- Translation vector or Shift vector = (T_x, T_y, T_z)

Given a Translation vector (T_x, T_y, T_z) -

- \bullet T_x defines the distance the X_{old} coordinate has to be moved.
- \bullet T _y defines the distance the Y _{old} coordinate has to be moved.
- T_z defines the distance the Z_{old} coordinate has to be moved.

Translation

This translation is achieved by adding the translation coordinates to the old coordinates of the object as-

- $X_{new} = X_{old} + T_x$ (This denotes translation towards X axis)
- $Y_{new} = Y_{old} + T_y$ (This denotes translation towards Y axis)
- $Z_{\text{new}} = Z_{\text{old}} + T_z$ (This denotes translation towards Z axis)

Translation Matrix

Example

Given a 3D object with coordinate points A(0, 3, 1), B(3, 3, 2), C(3, 0, 0), D(0, 0, 0). Apply the translation with the distance 1 towards X axis, 1 towards Y axis and 2 towards Z axis and obtain the new coordinates of the object.

Scaling

In computer graphics, scaling is a process of modifying or altering the size of objects.

Consider a point object O has to be scaled in a 3D plane.

Let- Initial coordinates of the object O = (Xold, Yold, Zold)

- Scaling factor for X-axis = Sx
- Scaling factor for Y-axis = Sy
- Scaling factor for Z-axis = Sz
- New coordinates of the object O after scaling = (Xnew, Ynew, Znew)

This scaling is achieved by using the following scaling equations-

- Xnew = Xold x Sx
- Ynew = Yold x Sy
- Znew = Zold x Sz

Scaling Matrix

$$\begin{bmatrix} X_{new} \\ Y_{new} \\ Z_{new} \\ 1 \end{bmatrix} = \begin{bmatrix} S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} X_{old} \\ Y_{old} \\ Z_{old} \\ 1 \end{bmatrix}$$
3D Scaling Matrix

Example

Given a 3D object with coordinate points A(0, 3, 3), B(3, 3, 6), C(3, 0, 1), D(0, 0, 0). Apply the scaling parameter 2 towards X axis, 3 towards Y axis and 3 towards Z axis and obtain the new coordinates of the object.

Shearing

3D Shearing is an ideal technique to change the shape of an existing object in a three-dimensional plane.

Shearing in X axis

Shearing in Y axis

Shearing in Z axis

Shearing

Consider a point object O has to be sheared in a 3D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old}, Z_{old})$
- Shearing parameter towards X direction = Sh_x
- Shearing parameter towards Y direction = Sh_y
- Shearing parameter towards Z direction = Sh_z
- New coordinates of the object O after shearing = $(X_{new}, Y_{new}, Z_{new})$

Shearing in X Axis-

Shearing in Y Axis-

Shearing in Z Axis-

Example

Given a 3D triangle with points (0, 0, 0), (1, 1, 2) and (1, 1, 3). Apply shear parameter 2 on X axis, 2 on Y axis and 3 on Z axis and find out the new coordinates of the object.

Rotation

3D Rotation is a process of rotating an object with respect to an angle in a three-dimensional plane

Rotation

Consider a point object O has to be rotated from one angle to another in a 3D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old}, Z_{old})$
- Initial angle of the object O with respect to origin = Φ
- Rotation angle = θ
- New coordinates of the object O after rotation = $(X_{new}, Y_{new}, Z_{new})$

For X-Axis Rotation-

For Y-Axis Rotation-

For Z-Axis Rotation-

Example

Given a homogeneous point (1, 2, 3). Apply rotation 90 degree towards X, Y and Z axis and find out the new coordinate points.

Reflection

- Reflection is a kind of rotation where the angle of rotation is 180 degree.
- The reflected object is always formed on the other side of mirror.
- The size of reflected object is same as the size of original object.

Reflection

Consider a point object O has to be reflected in a 3D plane.

Let-

- Initial coordinates of the object $O = (X_{old}, Y_{old}, Z_{old})$
- New coordinates of the reflected object O after reflection = $(X_{new}, Y_{new}, Z_{new})$

Types of Reflection

Reflection relative to XY plane

Reflection relative to YZ plane

Reflection relative to XZ plane

Reflection Relative to XY Plane:

Reflection Relative to YZ Plane:

Reflection Relative to XZ Plane:

Example

Given a 3D triangle with coordinate points A(3, 4, 1), B(6, 4, 2), C(5, 6, 3). Apply the reflection on the XY plane and find out the new coordinates of the object.

QUIZ

Thank You