

Conversión de AFN-ε a AFD

Contenido

- Operación de cerradura épsilon
- Operación mover
- Operación Ir_A
- Algoritmo de conversión de un AFN-ε a un AFD

Operación de cerradura épsilon

Dado un AFN definimos la **operación cerradura épsilon** de un estado s como:

- Cerradura-épsilon (s): Conjunto de estados del AFN alcanzables desde el estado s del AFN con transiciones épsilon.
- C_ε(s) = {s} U {T | T es alcanzable con transiciones ε a partir de s }
- Donde s es un estado y T es un conjunto de estados del AFN

Operación Cerradura épsilon

$$C_{\epsilon}(q_1) = \{q_1\} \cup \{\epsilon\}$$
 $C_{\epsilon}(q_3) = \{q_3\} \cup \{q_4\}$
 $C_{\epsilon}(q_0) = \{q_0\} \cup \{q_1, q_2, q_3, q_4\}$

Operación mover

- Mueve (Τ, α): Conjunto de estados del AFN hacia los cuales hay una transición con el símbolo de entrada α desde algún estado s en T del AFN.
- Mover (s, α) = {T| ∃ una transacción de s con α hacia T}
- Donde s es un estado y T es un conjunto de estados del AFN

Operación mover

Mover
$$(q_1, b) = q_4$$

Mover $(\{q_0, q_3\}, \epsilon) = \{q_1, q_2, q_4\}$

Operación Ir_A

• Ir_A (T, α) donde T es un conjunto {s₁, s₂,...,s_n} de estados del AFN y α es un símbolo del alfabeto del mismo AFN:

$$Ir_A(T, a) = C_\epsilon(Mover(T, a))$$

Algoritmo de conversión de un AFN-ε a un AFD

- **1. Se calcula la C_ E** del estado inicial del AFN, el resultado será el estado inicial S_0 del AFD y el primer S_i del AFD.
- 2. Se calcula para cada S_i la operación Ir_A para cada a $\in \Sigma$, la cual arrojara un estado S_i (Pudiendo repetirse).
- 3. Se realiza la operación 2 con todos los estados hasta que ya no surjan estados diferentes.

Algoritmo de conversión de un AFN-ε a un AFD

• El estado inicial del AFD será S_0 y los estados finales serán todos aquellos S_i que contengan al estado final del AFN original.

 La función de transición es el resultado de todas las operaciones Ir_A sobre los S_i.

 Convertir el autómata finito no determinista de la expresión regular (b|b*a)a, a un autómata finito determinista.

(b|b*a)a

$$C_{\epsilon}(q_0) = \{q_0, q_1, q_2, q_3, q_5, q_8\} = A$$

Ir_A(A,a) = C_ ε (Mover(A,a)) = C_ ε
$$\{q_6\}=\{q_6,q_7,q_{10}\}=B$$

Ir_A(A,b) = C_ ε (Mover(A,b)) =

$$C_{\epsilon} \{q_4, q_9\} = \{q_4, q_3, q_5, q_9, q_{10}\} = C$$

$$Ir_A(B,a) = C_{\epsilon}(Mover(B,a)) = C_{\epsilon}(q_{11}) = \{q_{11}\} = D$$

Ir_A(B,b) = C_
$$\epsilon$$
 (Mover(B,b)) = C_ ϵ { λ } = { λ }

(b|b*a)a

```
Ir_A(C,a)= C_ \epsilon (Mover(C,a))= C_ \epsilon {q<sub>6</sub>,q<sub>11</sub>}={q<sub>6</sub>,q<sub>7</sub>,q<sub>10</sub>,q<sub>11</sub>}=E
Ir_A(C,b)= C_ \varepsilon (Mover(C,b))= C_ \varepsilon {q<sub>4</sub>}={q<sub>4</sub>,q<sub>3</sub>,q<sub>5</sub>}=F
```

Ir_A(D,a)= C_
$$\epsilon$$
 (Mover(D,a))= C_ ϵ { λ }={ λ }

Ir_A(D,b)= C_
$$\epsilon$$
 (Mover(D,b))= C_ ϵ { λ }={ λ }

Ir_A(E,a)= C_
$$\epsilon$$
 (Mover(E,a))= C_ ϵ {q₁₁}={q₁₁}=D

Ir_A(E,b)= C_
$$\epsilon$$
 (Mover(E,b))= C_ ϵ { λ }={ λ }

(b|b*a)a

Ir_A(F,a)= C_
$$\epsilon$$
 (Mover(F,a))= C_ ϵ {q₆}={q₆,q₇,q₁₀}=B
Ir_A(F,b)= C_ ϵ (Mover(F,b))= C_ ϵ {q₄}={q₄,q₃,q₅}=F

- El estado inicial es A, ya que originalmente contiene a q₀.
- Los estados finales son D y E ya que contienen a q₁₁.

Δ	а	b
->A	В	С
В	D	Ø
С	E	F
*D	Ø	Ø
*E	D	Ø
F	В	F

• Es posible omitir el estado Ø, para una fácil interpretación, pero es importante hacer notar que puede ser tratado como un estado más (estado de error), y es necesario para la implementación correcta del autómata.

Ejercicios

- Construir el diagrama y formalizar los autómatas para las siguientes expresiones regulares a través de la nomenclatura de Thompson y realizar el proceso de conversión para obtener los autómatas finitos deterministas correspondientes.
- 1. (a|b|c)*b*
- 2. (a|b)*
- 3. (a*b*c*)*
- 4. (bc)+|(ab)*
- 5. ((b|b*a)*)a
- 6. (a*|b+)+