What Is Claimed Is:

- 1. A stent for neutron capture therapy, the stent comprising a body portion fabricated from a material that incorporates a stable atomic element having a neutron capture cross-section greater than 10³ barns.
- 2. The stent of claim 1, wherein the stable atomic element is chosen from the group consisting of 157 Gd, 155 Gd, 149 Sm, 113 Cd and 151 Eu.
- 3. The stent of claim 2, wherein the body portion comprises a metallic wire mesh.
- 4. The stent of claim 3, wherein the metallic wire mesh is fabricated from hollow wires, the stable atomic element located within the hollow wires.
- 5. The stent of claim 1, wherein the material comprises an alloy or mix incorporating the stable atomic element and a bulk material having a neutron capture cross-section less than 10^2 barns.
- 6. The stent of claim 3, wherein the metallic wire mesh is fabricated from an alloy or mix incorporating the stable atomic element.
- 7. The stent of claim 1, wherein the body portion is coated with a biologically compatible material that prevents contact between body tissue and the stable atomic element.

- 8. The stent of claim 1, wherein the stable atomic element is incorporated into the stent in a nonuniform density to vary a radiation dose obtained during neutron radiation therapy.
- 9. The stent of claim 1, wherein the stable atomic element further comprises multiple stable atomic elements.
- 10. The stent of claim 3 further comprising a fabric in communication with the metallic wire mesh.
- 11. The stent of claim 10, wherein the fabric provides a continuous tubular profile to the stent.
- 12. The stent of claim 1 further comprising a radiation source in communication with the stable atomic element.
- 13. The stent of claim 12, wherein the radiation source comprises a radiation source suitable for boron neutron capture therapy.
- 14. The stent of claim 12, wherein the radiation source comprises an accelerator.
- 15. A method of manufacturing a stent for neutron capture therapy, the method comprising introducing a material into a body portion of the stent, the material incorporating a stable atomic

element having a neutron capture cross-section suitable for radiation when subjected to neutron irradiation.

- 16. The method of claim 15, wherein the radiation comprises localized temporal gamma radiation.
- 17. The method of claim 15, wherein introducing the material comprises introducing a stable atomic element chosen from the group consisting of ¹⁵⁷Gd, ¹⁵⁵Gd, ¹⁴⁹Sm, ¹¹³Cd and ¹⁵¹Eu.
- 18. The method of claim 15, wherein introducing the material comprises alloying or mixing the material with a bulk material used to fabricate the body portion of the stent.
- 19. The method of claim 15 further comprising distributing the stable atomic element when forming the stent body to obtain a stent suited for distributed radiation when subjected to neutron irradiation.
- 20. A method of performing neutron capture therapy, the method comprising:

providing a stent comprising a body portion fabricated from a material that incorporates a stable atomic element, the element having a neutron capture cross-section greater than 10³ barns;

deploying the stent at a treatment site within a patient's vasculature; and

externally irradiating the patient near the treatment site, the stable atomic element

preferentially absorbing and emitting the radiation to tissue at the treatment site.

- 21. The method of claim 20, wherein preferentially absorbing and emitting the radiation comprises providing localized radiation therapy to the treatment site in a concentrated dose.
- 22. The method of claim 20, wherein the emitted radiation acts on surrounding tissue to a therapeutic benefit.
- 23. The method of claim 22, wherein the therapeutic benefit comprises reducing restenosis encountered after an interventional procedure.
- 24. The method of claim 23, wherein the interventional procedure is chosen from the group consisting of angioplasty and stenting.
- 25. The method of claim 20, wherein providing a stent comprising a body portion fabricated from a material that incorporates a stable atomic element comprises providing a stable atomic element chosen from the group consisting of ¹⁵⁷Gd, ¹⁵⁵Gd, ¹⁴⁹Sm, ¹¹³Cd and ¹⁵¹Eu.
- 26. The method of claim 20, wherein the stable element provides negligible radiation when not irradiated.

27. The method of claim 20, wherein the stable element has a half life on the order of milliseconds or less.

THE STATE OF STATE OF