

Semester 1 Examinations 2023/2024

Course Instance Codes 10A2, 4BCT1, 4BMS2, 4BS2

Exams 4th Science, Study Abroad

Module Code MA416 Module Rings

External Examiner Prof. C. Roney-Dougal Internal Examiner *Dr T. Rossmann

<u>Instructions:</u> Answer all four questions.

Each question carries 25 marks. All workings must be shown.

Duration 2 hours

No. of Pages 3 pages, including this one

Discipline Mathematics

Requirements: No special requirements

Release to Library Yes
Release in Exam Venue Yes
MCQ No
Statistical / Log Tables No
Non-programmable Calculator Yes
Mathematical Tables No
Graph paper No

- **Q1.** (a) Let $R = \{a + b\sqrt{17} : a, b \in \mathbf{Z}\}.$
 - (i) Show that R is a subring of \mathbf{R} .
 - (ii) Show that $4 + \sqrt{17}$ is a unit of R.
 - (iii) Using (ii) or otherwise, show that R has infinitely many units. [12 marks]
 - (b) (i) Give an example (with justification) of a ring R and a non-zero zero divisor $a \in R$.
 - (ii) Give an example (with justification) of a non-constant unit of $C(\mathbf{R})$, the ring of all continuous functions $\mathbf{R} \to \mathbf{R}$ with pointwise operations.
 - (iii) Let $\mathbf{R}[\varepsilon]$ denote the ring of dual numbers. Give an example (with justification) of a unit $f \in (\mathbf{R}[\varepsilon])[X]$ with $\deg(f) > 0$. [9 marks]
 - (c) Exhibit two different ring endomorphisms of the dual numbers $\mathbf{R}[\varepsilon]$. [4 marks]
- **Q2.** (a) Let R be a ring. Let I and J be (two-sided) ideals of R.
 - (i) Show that the intersection $I \cap J = \{a \in R : a \in I \text{ and } a \in J\}$ is a (two-sided) ideal of R.
 - (ii) Give the definition of the product IJ. (You do not need to show that this is an ideal of R.)
 - (iii) Show by means of an explicit example (with justification) that the union $I \cup J = \{a \in R : a \in I \text{ or } a \in J\}$ need not be an ideal of R. [10 marks]
 - (b) Let R be a ring. Let I be a (two-sided) ideal of R. Give an example of a ring R' and ring homomorphism $f: R \to R'$ with I = Ker(f). [4 marks]
 - (c) Let R be a commutative ring and let I be an ideal of R. Show that I is maximal if and only if R/I is a field. [6 marks]
 - (d) Let $\operatorname{Fun}(\mathbf{R}, \mathbf{Z}/2\mathbf{Z})$ denote the ring of all functions $\mathbf{R} \to \mathbf{Z}/2\mathbf{Z}$ with pointwise addition and multiplication. Give an example (with justification) of a maximal ideal of $\operatorname{Fun}(\mathbf{R}, \mathbf{Z}/2\mathbf{Z})$. [5 marks]

Q3. (a) Let $f: R \to S$ and $g: S \to T$ be ring homomorphisms. Let $q: R \to R/\operatorname{Ker}(f)$ be the quotient map. Show that there exists a ring homomorphism $h: R/\operatorname{Ker}(f) \to T$ such that the diagram

$$R \xrightarrow{f} S$$

$$\downarrow^{q} \qquad \downarrow^{g}$$

$$R/\operatorname{Ker}(f) \xrightarrow{h} T$$

commutes. [6 marks]

- (b) Let R be an integral domain and let $a, b \in R$. Show that aR = bR if and only if a and b are associates. [8 marks]
- (c) State the definition of a *Euclidean domain*. [5 marks]
- (d) Show that every Euclidean domain is a principal ideal domain. [6 marks]
- **Q4.** Let R denote the integral domain $\mathbf{Z}[\sqrt{10}] = \{a + b\sqrt{10} : a, b \in \mathbf{Z}\}$. In the following, you may use without proof that every element $r \in R$ admits a unique representation $r = a + b\sqrt{10}$ with $a, b \in \mathbf{Z}$. For $r \in R$, $r = a + b\sqrt{10}$ with $a, b \in \mathbf{Z}$, define

$$N(r) = a^2 - 10b^2 = (a + b\sqrt{10})(a - b\sqrt{10}).$$

- (a) Let $r, s \in R$. Show that N(rs) = N(r)N(s). [6 marks]
- (b) Let $r \in R$. Show that $r \in R^{\times}$ if and only if $N(r) = \pm 1$. [5 marks]
- (c) Show that 2 is an irreducible element of R. [5 marks]
- (d) Using $6 = 2 \cdot 3 = (4 + \sqrt{10})(4 \sqrt{10})$ or otherwise, show that 2R is not a prime ideal of R. [6 marks]
- (e) Show that R is not a unique factorisation domain. [3 marks]