Cartesian Product

An **ordered pair** $\langle a, b \rangle$ is a pair of objects a and b where the order of a and b matters (so, if $a \neq b$, then $\langle a, b \rangle \neq \langle b, a \rangle$).

Let A and B be arbitrary sets. The Cartesian product of A and B, written $A \times B$, is defined by:

$$A{ imes}B riangleq \{\ \langle a,b
angle\ |\ a\in A \land b\in B\ \}$$

We will write A^2 for $A \times A$

Equality on elements of $A \times B$ is defined as:

$$orall a,b,c,d \ (\langle a,b
angle =_{A imes B} \langle c,d
angle riangleq a =_A c \wedge b =_B d)$$

Let A and B be finite sets. Then $|A \times B| = |A| \times |B|$

Proof: By counting. Suppose that A and B are arbitrary sets with $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$. To represent the product space, we draw a table with m rows and n columns of the members of $A \times B$:

$$\langle a_1, b_1 \rangle$$
 $\langle a_1, b_2 \rangle$... $\langle a_1, b_n \rangle$
 $\langle a_2, b_1 \rangle$ $\langle a_2, b_2 \rangle$... $\langle a_2, b_n \rangle$
 \vdots \vdots \vdots \vdots \vdots \vdots \vdots $\langle a_m, b_1 \rangle$ $\langle a_m, b_2 \rangle$... $\langle a_m, b_n \rangle$

Such a table has $m \times n$ entries.