Matematiikan ylioppilaskoe 24.3.2010

Pitkä oppimäärä

Vastaukset

- 1. a) $x_1 = 0$, $x_2 = -\frac{6}{7}$.
 - **b)** $2\sqrt{a}$.
 - c) $x > \frac{3}{2}$.
- **2.** a) *e*.
 - **b)** $\sin x + x \cos x$.
 - **c**) 32.
- **3.** a) 108.2° .
 - **b)** p = 4, q = -2.
- **4.** 26 %.
- 5. $\bar{a} = 2\bar{i} + \bar{j}, \, \bar{b} = 2\bar{i}.$
- 6. a) $\frac{1}{2}$.
 - b) $\frac{2}{3}$.
- 7. $2\sqrt{2}$, 1.
- **8.** 3.75 m.
- $\begin{array}{ll} \textbf{9.} & f(x) = 3\tan x 4x 1; \ f'(x) = 0 \iff x = \pm \frac{\pi}{6}. \\ & \lim_{x \to -\frac{\pi}{2}+} f(x) = -\infty, \ f(-\frac{\pi}{6}) < 0, \ f(\frac{\pi}{6}) < 0, \ \lim_{x \to \frac{\pi}{2}-} f(x) = \infty. \\ & \text{Siis yksi juuri.} \end{array}$

10. Piirit:
$$p_1 = a + 2\sqrt{b^2 + a^2/4}$$
, $p_2 = a + b + \sqrt{a^2 + b^2}$.
 $p_1 \le p_2 \iff 2\sqrt{b^2 + a^2/4} \le b + \sqrt{a^2 + b^2}$
 $\iff (2\sqrt{b^2 + a^2/4})^2 \le (b + \sqrt{a^2 + b^2})^2$
 $\iff 4(b^2 + a^2/4) \le b^2 + a^2 + b^2 + 2b\sqrt{a^2 + b^2}$
 $\iff b^2 \le b\sqrt{a^2 + b^2}$,

missä viimeinen epäyhtälö on tosi.

11.
$$a_1 = \frac{3}{2}, q_1 = \frac{1}{4} \text{ tai } a_2 = \frac{1}{2}, q_2 = \frac{3}{4}.$$

12.
$$p^2 - 1 = (p-1)(p+1)$$
. p alkuluku ja $p > 3 \implies p$ pariton, tekijänä ei ole 3; luvuissa $p-1$, p , $p+1$ yhdessä on tekijänä 3 \implies joko luvussa $p-1$ tai $p+1$ on tekijänä 3; p pariton $\implies p-1$ ja $p+1$ parillisia \implies kummassakin tekijänä 2. Siis luvussa p^2-1 on tekijöinä 3, 2 ja 2, ts. 12.

14. a)
$$a_n = 1 - \frac{1}{10^n}$$
.

- **b**) $\frac{1}{10^n}$ vähenevä $\implies a_n$ kasvava; a-kohdan mukaan $a_n < 1$.
- c) $\lim_{n\to\infty} a_n = 1$.
- **d)** $0.999 \cdots = 1.$

b)
$$\frac{3}{2}$$
.
c) $\int_{(n-1)\pi}^{n\pi} \sin x \, dx = 2(-1)^{n-1}$;
 $\int_{0}^{n\pi} f(x) \, dx = \sum_{k=1}^{n} 2^{1-k} \cdot 2(-1)^{k-1} = \frac{4}{3} [1 - (-\frac{1}{2})^{n}]$.

d)
$$\lim_{n \to \infty} \int_0^{n\pi} f(x) \, dx = \frac{4}{3}.$$