位相幾何

Fefr

目次

1	位相空間の (コ) ホモロジー	2
1.1	圏と関手	2

1 位相空間の (コ) ホモロジー

1.1 圏と関手

圏の定義は略。

圏の例をすこしあげる。

例 1

位相空間 X から位相空間 Y への写像の族 $f_i: X \to Y$ に対し、写像 $F: X \times [0,1] \to Y$ を

$$F(x,t) = f_i(x)$$
 $(x \in X, t \in [0,1])$

で定義するとき、F が連続ならば写像族 $\{f_i\}$ を f_0 から f_1 へのホモトピー (homotopy) という。

連続写像 $f, f': X \to Y$ に対し、f から f' へのホモトピーが存在するとき f は f' に**ホモトープ** (homotop) であるといい、 $f \simeq f': X \to Y$ で表す。

ホモトープという関係は同値関係となる。

実際、反射律は $f\simeq f:X\to Y$ は $f_t=f$ とすることにより、対称律は $f\simeq f':X\to Y$ とすると、f' の f へのホモトピー $\{f_t'\}$ は f の f' へのホモトピー $\{f_t\}$ を用いて $f'_t=f_{1-t}$ で与えられる。推移律は、 $f\simeq f',f'\simeq f'':X\to Y$ ならば f の f'' へのホモトピー $\{h_t\}$ が f から f' へのホモトピー $\{f_t\}$ 、f' から f'' へのホモトピー $\{g_t\}$ を用いて

$$h_t = \begin{cases} f_{2t} & (0 \le t \le 1/2) \\ g_{2t-1} & (1/2 \le t \le 1) \end{cases}$$

で与えれる。

上の同値類を連続写像のホモトピー類 (えいやくだれか教えて)という。

明らかに $f \simeq f': X \to Y$ で $g \simeq g': Y \to Z$ ならば

$$g \circ f \simeq g \circ f' \simeq g' \circ f' \simeq g' \circ f : X \to Z$$

である。 $(\{g \circ f_t\})$ が $g \circ f$ から $g \circ f'$ へのホモトピーを与え、 $\{g_t \circ f'\}$ が $g \circ f'$ から $g' \circ f'$ へのホモトピーを与える。)

すなわち、ホモトープな連続写像の合成はホモトープである。

よって、対象を位相空間とし、射を連続者像のホモトピー類で定義することにより、1 つの 圏が得られる。 加群, 加群の準同型写像の定義は略。R 加群、R 準同型写像を単に加群、準同型写像という。簡単のため R を可換環と仮定する。可換性が必要がない場面もある。

例 2

整数の集合 ${\bf Z}$ を添字集合とする R 上の加群の族 $C=\{C_q\}$ を R 上の次数つき加群 (graded module) といい、 C_q の元 c を C の次数 q の元といって、 $q=\deg c$ と書く。C,C' を次数つき加群とし、d を 1 つの整数とする。このとき ${\bf Z}$ を添字集合とする準同型写像 $\varphi_q:C_q\to C_{q+d}$ の族 $\varphi=\{\varphi_q\}$ を C から C' への次数 d の準同型写像といい、 $\varphi:C\to C'$ で表す。

C'' も加群とし、 $\varphi':C'\to C''$ を次数 d' の準同型写像とするとき、次数 d+d' の準同型写像 $\varphi'\circ\varphi:C\to C''$ を

$$(\varphi' \circ \varphi)_q = \varphi'_{d+q} \circ \varphi_q$$

で定義し、 φ と φ' の合成という。いま、次の二つの圏が得られる。

- 次数つき加群を対象とし、任意の次数の準同型写像を射とする圏
- 次数つき加群を対象とし、次数 0 の準同型写像を射とする圏

例 3

R 上の次数つき加群 C において、次数 -1 の準同型写像 $\partial: C \to C$ で

$$\partial \circ \partial = 0$$

を満たすものが与えられたとき、 (C,∂) を R 上のチェイン複体 (chain complex) という。 チェイン複体は加群 C_q と準同型写像 $\partial_q:C_q\to C_{q-1}$ の列

$$\cdots \longrightarrow C_{q+1} \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \xrightarrow{\partial_{q-1}} C_{q-2} \xrightarrow{} \cdots$$

で、各々に対し

$$\partial_{q-1} \circ \partial_q = 0$$

の成り立つもの、と言い換えることができる。 $\partial=\{\partial_q\}$ を**バウンダリ作用素** (えいやく d(((() という。チェイン複体 (C,∂) を単に C で表す。

C,C' をチェイン複体とするとき、次数 0 の準同型写像 $\varphi:C\to C'$ で、C,C' のバウンダ リ作用素 ∂ に対し

$$\partial \circ \varphi = \varphi \circ \partial$$

を満たすものを**チェイン写像** (chain map) という。すなわち、準同型写像 $\varphi_q:C_q\to C_q'$ の族 $\varphi=\{\varphi_q\}$ で、各 q に対し

$$\partial_a \circ \varphi_a = \varphi_{a-1} \circ \partial_a$$

の成り立つものがチェイン写像である。

チェイン複体の恒等写像はチェイン写像