SMART SOLUTIONS FOR RAILWAYS

Submitted by

MOHAMMED MUSTHAKEEM A [724019104012]

FAIZAL [724019104004]

MASOOD [724019104008]

MOHAMMED SULPIKAR M [724019104013]

MUHAMED SANHAR K T [724019104015]

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

COMPUTER SCIENCE AND ENGINEERING

DHAANISH AHMED INSTITUTE OF TECHNOLOGY

COIMBATORE

ANNA UNIVERSITY: CHENNAI 600 025

NOVEMBER - 2022

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "SMART SOLUTION FOR RAILWAYS" is the Bonafide work of "MOHAMMED MUSTHAKEEM A [724019104012], FAIZAL A [724019104004], [724019104008], **MOHAMMED MASOOD SULPIKAR** \mathbf{M} [724019104013], MUHAMMED SANHAR K T [724019104015]" who carried out the project work under my supervision.

SIGNATURE	SIGNATURE
Dr. R. Vadivelu Ph.D.,	Mr. Manoj Prabhakar J M.E,
HEAD OF THE DEPARTMENT	SUPERVISOR
Associate Professor	Assistant professor
Department of CSE	Department of CSE
Dhaanish Ahmed Institute of	Dhaanish Ahmed Institute of
Technology	Technology
Coimbatore - 641105	Coimbatore - 641105

Submitted for the ANNA UNIVERSITY examination held on_____

Internal Examiner

External Examiner

ACKNOWLEDGMENT

Any accomplishment requires the effort of many people and this work is no different. I would primarily like to thank the Almighty God for blessing us with this grace for the completion of my work.

We wish to express our sincere gratitude to the following persons with whose help and encouragement we have completed our project successfully.

We extend our thanks to our chairman **Alhaj K Moosa**, for his leadership and socialism which helped us to carry out this project.

Our deepest sincere gratitude and hearty thanks to our principal **Dr. K. G. Parthiban M.E., Ph.D.,** for his patronage and leadership which has helped us to carry out this project.

Our sincere gratitude and thanks to the Head of the department **Dr. R. Vadivelu, Ph.D.,** Department of Computer Science and Engineering for his encouragement, guidance and support to complete the project.

We deeply express our profound gratitude to our beloved Internal guide **Mr. Manoj Prabhakar J M.E.**, for having extended his full cooperation and guidance without which this project would not have been a success.

We also thank our class advisor and all other staff members and friends for their most cooperation

ABSTRACT

Even with greatest of ideas to avoid railway accidents, many trains accidents still happen worldwide. This paper shares an idea on how to avoid train collision by using an automated control incorporated in the trains. In this proposed paper we have implemented ideas such as pre-crashing using RFID sensor, ultrasonic sensor in-order to choose an array of commands which would run as per the conditional algorithm created in the microcontroller. We would also have a EPM to control the speed of the motor to lessen speed. This system will be more efficient since it was fully automated and also it was cost effective

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
	ABSTRACT	i
	LIST OF FIGURES	iv
	LIST OF TABLES	v
	LIST OF ABBREVIATIONS	vi
1.	INTRODUCTION	1
	1.1 PROJECT OVERVIEW	1
	1.2 PURPOSE	2
2.	LITERATURE SURVEY	3
	2.1 EXISTING SYSTEM	3
	2.2 REFERENCES	4
	2.3 PROBLEM STATEMENT DEFINITION	5
3.	IDEATION & PROPOSED SOLUTION	6
	3.1 EMPATHY MAP CANVAS	6
	3.2 IDEATION & BRAINSTORMING	7
	3.3 PROPOSED SOLUTION	9
	3.4 PROBLEM SOLUTION FIT	11
4.	REQUIREMENT ANALYSIS	14
	4.1 FUNCTIONAL REQUIREMENTS	14
	4.2 NON-FUNCTIONAL REQUIREMENTS	15
5.	PROJECT DESIGN	16
	5.1 DATA FLOW DIAGRAM	16
	5.2 SOLUTION & TECHNICAL	17
	ARCHITECTURE	
	5.3 USER STORIES	18

6.	PROJECT PLANNING & SCHEDULING	22
	6.1 SPRINT PLANNING & ESTIMATION	22
	6.2 SPRINT DELIVERY SCHEDULE	24
7.	CODING& SOLUTIONING	25
	7.1 FEATURE 1	25
	7.2 FEATURE 2	28
8.	TESTING	30
	8.1 TEST CASES	30
	8.2 USER ACCEPTANCE TESTING	30
9.	RESULTS	33
	9.1 PERFORMANCE METRICS	33
10.	ADVANTAGES & DISADVANTAGES	34
11.	CONCLUSION	35
12.	FUTURE SCOPE	36
13.	APPENDIX	37
	SOURCE CODE	37
	GITHUB LINK	38

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO		NO.
3.1.1	EMPATHY MAP	6
3.2.1	BRAINSTORMING & GROUP IDEAS	7
3.2.2	PRIORITIZE & COLLABORATE	8
3.4.1	PROBLEM SOLUTION FIT	11
3.4.2	GROUP IDEAS	12
3.4.3	PRIORITIZE	13
5.1.1	DATA FLOW DIAGRAM	16
5.2.1	SOLUTION & TECHNICAL ARCHITECTURE	17
6.1.1	SPRINT PLANNING & ESTIMATION	22
6.1.2	SPRINT PLANNING & ESTIMATION	23
7.1.1	USER MODULE	25
7.2.1	CLOUD SERVICE MODULE	28
9.1.1	PERFORMANCE MATRICS	33

LIST OF TABLES

TABLE	TITLE	PAGE
NO.		NO.
3.3.1	PROPOSED SOLUTION	10
4.1.1	FUNCTIONAL REQUIREMENTS	14
4.2.1	NON-FUNCTIONAL REQUIREMENTS	15
5.3.1	USER STORIES	21
6.2.1	SPRINT DELIVERY SCHEDULING	24
8.1.1	Test Sprint-1	31
8.1.2	Test Sprint-2	31
8.1.3	Test Sprint-3	32
8.1.4	Test Sprint-4	32

LIST OF ABBREVIATIONS

IoT : INTERNET OF THINGS

GPS : GLOBAL POSITIONING SYSTEM

FR : FUNCTIONAL REQUIREMENTS

NFR : NON-FUNCTIONAL REQUIREMENTS

DFD : DATA FLOW DIAGRAM

MQTT : MQ TELEMETRY TRANSPORT

SQL : STRUCTURED QUERY LANGUAGES

STT : SECURITY TRANSACTIONS TAX

DB : DATABASE

RFID : RADIO FREQUENCY IDENTIFICATION

UAT : USER ACCEPTANCE TESTING

WIFI : WIRELESS FIDELITY

CCTV : CLOSED CIRCUTE TELEVISION

IP : INTERNET PROTOCOL

USN :USER STORY NUMBER

LED : LIGHT EMITTING DIODE

LDR : LIGHT DEPENDENT RESISTER

GSM : GLOBAL SYSTEM FOR MOBILE COMMUNICATION

SMS : SHORT MESSAGE SERVISE

TTR THRESHOLD TRANSACTION REPORT

INTRODUCTION

1.1 PROJECT OVERVIEW

Smart Solutions For Railways is to manage Indian Railways is the largest railway network in Asia and additionally world's second largest network operated underneath a single management. Due to its large size it is difficult to monitor the cracks in tracks manually. This paper deals with this problem and detects cracks in tracks with the help of ultrasonic sensor attached to moving assembly with help of stepper motor. Ultrasonic sensor allows the device to moves back and forth across the track and if there is any fault, it gives information to the cloud server through which railway department is informed on time about cracks and many lives can be saved. This is the application of IoT, due to this it is cost effective system. This effective methodology of continuous observation and assessment of rail tracks might facilitate to stop accidents. This methodology endlessly monitors the rail stress, evaluate the results and provide the rail break alerts such as potential buckling conditions, bending of rails and wheel impact load detection to the concerned authorities.

1.2. PURPOSE

Internet is basically system of interconnected computers through network. But now its use is changing with changing world and it is not just confined to emails or web browsing. Today's internet also deals with embedded sensors and has led to development of smart homes, smart rural area, e-health care's etc. and this introduced the concept of IoT. Internet of Things refers to interconnection or communication between two or more devices without humanto-human and human-to-computer interaction. Connected devices are equipped with sensors or actuators perceive their surroundings. IOT has four major components which include sensing the device, accessing the device, processing the information of the device, and provides application and services. In addition to this it also provides security and privacy of data. Automation has affected every aspect of our daily lives. More improvements are being introduced in almost all fields to reduce human effort and save time. Thinking of the same is trying to introduce automation in the field of track testing. Railroad track is an integral part of any company's asset base, since it provides them with the necessary business functionality. Problems that occur due to problems in railroads need to be overcome. The latest method used by the Indian railroad is the tracking of the train track which requires a lot of manpower and is time-consuming

LITERATURE SURVEY

2.1 EXISTING SYSTEM

In the Existing train tracks are manually researched. LED (Light Emitting Diode) and LDR (Light Dependent Resister) sensors cannot be implemented on the block of the tracks]. The input image processing is a clamorous system with high cost and does not give the exact result. The Automated Visual Test Method is a complicated method as the video color inspection is implemented to examine the cracks in rail track which does not give accurate result in bad weather. This traditional system delays transfer of information. Srivastava et al., (2017) proposed a moving gadget to detect the cracks with the help of an array of IR sensors to identify the actual position of the cracks as well as notify to nearest railway station. Mishra et al., (2019) developed a system to track the cracks with the help of Arduino mega power using solar energy and laser. A GSM along with a GPS module was implemented to get the actual location of the faulty tracks to inform the authorities using SMS via a link to find actual location on Google Maps. Rizvi Aliza Raza presented a prototype in that is capable of capturing photos of the track and compare it with the old database and sends a message to the authorities regarding the crack detected. The detailed analysis of traditional railway track fault detection techniques is explained in table.

2.2 REFERENCES

- 1. D. Hesse, "Rail Inspection Using Ultrasonic Surface Waves" Thesis, Imperial College of London, 2007.
- 2. Md. Reya Shad Azim1 , Khizir Mahmud2 and C. K. Das. Automatic railway
- 6 track switching system, International Journal of Advanced Technology, Volume 54, 2014.
- 2. S. Somalraju, V. Murali, G. saha and V. Vaidehi, "Title-robust railway crackdetection scheme using LED (Light Emitting Diode) LDR (Light Dependent Resistor) assembly IEEE 2012.
- 3. S. Srivastava, R. P. Chourasia, P. Sharma, S. I. Abbas, N. K. Singh, "Railway Track Crack detection vehicle", IARJSET, Vol. 4, pp. 145-148, Issued in 2, Feb 2017.
- 4. U. Mishra, V. Gupta, S. M. Ahzam and S. M. Tripathi, "Google Map Based

Railway Track Fault Detection Over the Internet", International Journal of Applied Engineering Research, Vol. 14, pp. 20-23, Number 2, 2019.

- 5. R. A. Raza, K. P. Rauf, A. Shafeeq, "Crack detection in Railway track using Image processing", IJARIIT, Vol. 3, pp. 489-496, Issue 4, 2017.
- 6. N. Bhargav, A. Gupta, M. Khirwar, S. Yadav, and V. Sahu, "Automatic Fault Detection of Railway Track System Based on PLC (ADOR TAST)", International Journal of Recent Research Aspects, Vol. 3, pp. 91-94, 2016.

2.3 PROBLEM STATEMENT DEFINITION

Among the various modes of transport, railways is one of the biggest modes of transport in the world. Though there are competitive threats from airlines, luxury buses, public transports, and personalized transports the problem statement is to answer the question "What are the problems faced by the passengers while travelling by train at station and on board".

IDEATION AND PROPOSED SOLUTON

3.1 EMPATHY MAP CANVAS

Fig 3.1.1 Empathy Map

3.2 IDEATION & BRAINSTORMING

Fig 3.2.1 BRAINSTORMING & GROUP IDEAS

Fig 3.2.2 PRIORITIZE & COLLABORATION

3.3 PROPOSED SOLUTION

S.NO	PARAMETER	DESCRIPTION		
	Problem Statement (Problem to be provides various services to it			
1	solved)	passengers can face some problems		
		The idea is to minimize the ticket booking problems		
		among the passengers by providing Onlinemode of		
		booking rather than papers In queues in front of the		
2	Idea / Solution	ticket counters in railway stations have been		
	description	drastically increased overthe time.		
		Online mode of booking is mostcommon and so ease		
		of access to everyone that makes more efficient		
		uniqueness of utilizing the technique. People can book		
3	Novelty / Uniqueness	their ticket through online and they get a QR code		
	Novelty / Offiqueness	through SMS		
		Customers for sure they get satisfied as they are in the		
		fast-roaming world this technique makes more easier		
		for travelling passengers. A web page is designed in		
		which the user can book tickets and will be provided		
		with the QR code, which will be shown to the ticket		
4	Social Impact / Customer Satisfaction	collector and by scanning the QR code the ticket		
•	Customer Satisfaction	collector will get the passenger details		
		A web page is designed in which the user can book		
		tickets and will be provided with the QR code, which		
		will be shown to the ticket collector and by scanning		
		the QR code the ticket collector will get the passenger		
5	Business Model (Revenue	details. The booking details of the user will be stored		
	Model)	in the database, which can be retrieved any time		

6 Scalability of the Solution		The scalability of this solution is most feasible among
		the passengers who are willing to travel. No need of
	taking printout Counter ticket has to be handled with	
	care, but SMS on mobile is enough. No need to taking	
	Scalability of the Solution	out wallet and showing your ticket to TTR just tell
		your name to TTR that you are a passenger with valid
		proof

Table 3.3.1 Proposed Solution

3.4.1 PROBLEM SOLUTION FIT

Fig 3.4.1 PROBLEM SOLUTION FIT

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

20 minutes

Fig 3.4.2 Group Ideas

Fig 3.4.3 Prioritize

REQUIREMENT ANALYSIS

4.1. FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Unique accounts Booking options	Every online booking needs to be associated with an account One account cannot be associated with multiple users Search results should enable users to find the most recent and relevant booking options
FR-3	Mandatory fields	System should only allow users to move to payment only when mandatory fields such as date, time, location has been mentioned
FR-4	Synchronization	System should consider timezone synchronisation when accepting bookings from different timezones
FR-5	Authentication	Booking confirmation should be sent to user to the specified contact details

Table 4.1.1 Functional Requirements

4.2 NON-FUNCTIONAL REQUIREMENTS

quirement	Description
Isahility	Search results should populate
Osability	within acceptable time limits
	System should visually confirm as
Security	well as send booking confirmation
,	to the user's contact
	System should accept payments
	via different payment methods,
Reliability	like PayPal, wallets, cards,
	vouchers, etc
Performance	Search results should populate
Terrormanee	within acceptable time limits
	User should be helped
Availability	appropriately to fill in the
11,01100011109	mandatory fields, incase of invalid
	input
	Use of captcha and encryptionto
calability	avoid bots from booking
	tickets
	Security Reliability Performance Availability

Table 4.2.1 Non-Functional Requirements

PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

Fig 5.1.1 DATA FLOW DIAGRAM

5.2 SOLUTION & TECHNICAL ARCHITECTURE

Fig 5.2.1 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Number	User Story/Task	Acceptance criteria	Priority	Release
Customer (Mobile user, Web user)	Registration	USN-1	As a user,I can register Through the form byFilling in my details	I can register and create my account/da shboard	High	Sprint-1
		USN-2	As a user,I can register through phone numbers,Gmail,Fac ebook or other social sites	I can register & create my dashboard with Facebook login or other social sites	High	Sprint-2
	Conformation	USN-3	As a user,I will receive confirmation through OTP once registrationis successful	I can login and access my account/da shboard	High	Sprint-1
	Authentication	USN-4	As a user,I can login via id and password or through OTP received on register phone number	I can login and access my account/da shboard	High	Sprint-1
	Display Train details	USN-5	As a user,I can enter the start and destination to get the list of trains available connecting the above	I can view the train details (nameν mber),corr esponding routes it passes through based on the start and destination entered.	High	Sprint-1

Booking	USN-6	As a use, I can provide the basic the details such as a name, age, gender etc.	I will view, modify or confirm the details enter.	High	Sprint-1
	USN-7	As a user, I can choose the class, seat/berth. If a preferred seat/berth is not available, I can be allocated based on the availability	I will view, modify or confirm the seat/class berth selected.	High	Sprint-1
Payment	USN-8	As a user, I can choose to pay through credit card/debit card/UPI.	I can view the payment options available and select my desirable choice to proceed with the payment	High	Sprint-1
	USN-9	As a user, I will be redirected to the selected payment gateway and upon successful completion of payment, I will be redirected to the booking website	I can pay through the payment portal and confirm the booking if any changes need to be done, can move back the initial payment wage		

User type	Functional requirement (epic)	User story number	User story /task	Acceptance criteria	Priority	Release
	Ticket generation	USN-10	As a user,I can download the generated e-ticket for my journey along with the QR code which is used for authentication during my journey	I can show the generate QR code so that authenticati on can be done quickly	high	Sprint- 1
	Ticket status	USN-11	As a user,I can see the status of my ticket whether it's confirmed/waitin g/RAC	I can confidential ly get the information and arrange alternate transport if the ticket isn't confirmed	High	Sprint-
	Remainders notification	USN-12	As a user ,I get remainders about my journey A day before my actual journey	I can make sure that I don't miss the journey because of the constant notifications	Medium	Sprint-
		USN-13	As a user, I can track the train using GPS and can get information such as ETA, Current stop and delay	I can track the train and go to know about the delays plan accordingly	Medium	Sprint-
	Ticket cancellation	USN-14	As a user I can cancel my ticket if there's any change in plan	I can cancel the ticket and get are refund based on how close the date is to the journey	High	Sprint-
	Raise queries	USN-15	As a user I can raise queries through the query box or via mail	I can view my previous queries	Low	Sprint-

Customer Care executive	Answer the queries	USN-16	AS a user I will answer he question raised by the customer	I can view the queries and make once resolved	Medium	Sprint-
Administrato r	Feed details	USN-17	As a user I will feed the information about the train delays and add extra seat if new added	I can view and ensure the information that is feed	High	Sprint-

Table 5.3.1 User Stories

PROJECT PLANNING AND SCHEDULING

6.1. SPRINT PLANNING & ESTIMATION

Fig 6.1.1 SPRINT PLANNING & ESTIMATION

Fig 6.1.2 SPRINT PLANNING & ESTIMATION

SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)			
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022			
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	5 Nov 2022			
Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)			
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022			
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov2022			

Table 6.2.1 Sprint Delivery Schedule

CODING AND SOLUTIONING

7.1. FEATURE 1

7.1.1 User Module

As member of IoT ecosystem, user notifies about their needs and desires, and provides feedback within the networked intelligence to manually progress their individual ability to rule the actuators of the system at their services. User device means handheld devices

Fig 7.1.1 User Module

PROGRAM:

```
labl_0 = Label(base,

text="Registration

form",width=20,font=("bold", 20))

labl_0.place(x=90,y=53)

lb1= Label(base, text="Enter Name", width=10, font=("arial",12))

lb1.place(x=20, y=120)

en1= Entry(base)
```

```
en1.place(x=200, y=120)
1b3= Label(base, text="Enter Email", width=10, font=("arial",12))
lb3.place(x=19, y=160)
en3= Entry(base)
en3.place(x=200, y=160)
1b4= Label(base, text="Contact Number",
width=13,font=("arial",12))
1b4.place(x=19, y=200)
en4= Entry(base)
en4.place(x=200, y=200)
lb5= Label(base, text="Select Gender", width=15,
font=("arial",12))
lb5.place(x=5,
y = 240)var =
IntVar()
Radiobutton(base, text="Male", padx=5, variable=var,
value=1).place(x=180, y=240)
Radiobutton(base, text="Female", padx =10, variable=var,
value=2).place(x=240,y=240) 30
Radiobutton(base, text="others", padx=15, variable=var,
value=3).place(x=310,y=240)
list_of_cntry = ("United States", "India", "Nepal", "Germany")
```

```
cv =
OTP+=digits[math.floor(random.random()*10)]otp
= OTP + " is your OTP"
msg= otp
s = smtplib.SMTP('smtp.gmail.com', 587)
s.starttls()
s.login("Your Gmail Account", "You app password")
emailid = input("Enter your email: ")32
s.sendmail('&&&&&&&&,emailid,msg)
a = input("Enter Your OTP >>:
")if a == OTP:
print("Verifie
d")else:
print("Please Check your OTP again")
```

Explanation

In user module, user can use a blueprint to assess the smart solution to scan and book their tickets of the concerned area. User also check their status by this module. Payment can also be done by this module

7.2 FEATURE 2

7.2.1 CLOUD SERVICE MODULE

There are three major cloud service models software as a service (SaaS), infrastructure as a service (IaaS), platform as a service (PaaS), IBM Watson IoT platform, Node-Red etc.

Fig 7.2.2 Cloud Service Module

Program

from ibmcloudant import CouchDbSessionAuthenticator from ibm_cloud_sdk_core.authenticators import BasicAuthenticator

authenticator = BasicAuthenticator('apikey-v2-16u3crmdpkghhxefdi kvpssoh5fwezrmuup5fv5g3ubz', 'b0ab119f45d3e6255eabb978') service = CloudantV1(authenticator=authenticator)

service.set_service_url('https://apikey-v2-16u3ermdpkghhxefdikvpssoh5fwezrmuup5fv5g3ubz:b0ab119145d3e6255eabb978e7e2f0')

```
cap= cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN

while True:
   _, frame = cap.read()
decodedObjects = pyzbar.decode (frame)
for obj in decodedObjects:
    #print ("Data", obj.data)
    a=obj.data.decode('UTF-8')
```

```
cv2.putText(frame, "Ticket", (50, 50), font, 2,
                                                         (255, 0, 0), 3)
      #print (a)
      try:
            response = service.get_document(
                   db='booking',
                   doc id = a
            ).get_result()
            print (response)
            time.sleep(5)
      except Exception as e:
            print ("Not a Valid Ticket")
            time.sleep(5)
cv2.imshow("Frame",frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
      break
cap.release()
cv2.destroyAllWindows()
client.disconnect()
import wiotp.sdk.device
import time
import random
myConfig = {
"identity": {
      "orgId": "gagtey",
      "typeId": "GPS",
      "deviceId":"12345"
},
"auth": {
      "token": "12345678"
}
}
```

Explanation

As a user can register through IBM Watson IOT platform and the Watson will transfer the input to Node Red services which fetches the data from cloudant DB and Geofence. Then it will be passed on to the web user interface.

TESTING

8.1. TEST CASES

The purpose of testing is to discover errors. Testing is to process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of the components, sub-assemblies and finish the product. It is the process to indent of ensuring that the software system meets the requirements and user expectation. There are various types of test.

8.2 USER ACCEPTANCE TESTING

User Acceptance testing (UAT) is a type of testing performed by clients to understand the software system before moving the software application to invention environment. UAT is done in the final phase of testing after functional, integration and system testing is done.

Test Result: All the test cases mentioned above are passed approximately.

SPRINT - 1

				Date Team ID Project Name Maximum Marks	16-Nov-22 PNT2022MD44153 smart solutions for railways 4 marks								
Test case ID	Feature Type	Componen t	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
1	Functional	Registratio n	Registration through the form by Filling in my details		Click on register Z.Fill the registration form 3.click Register		Registration form to be filled is to be displayed	Working as expected	Pass				MUSTHAKEEN
2	UI	Generating OTP	Generating the otp for further process		1.Generating of OTP number		user can register through phone numbers, Gmail, Facebook or other social sites and to get oto number	Working as expected	pass				FAIZAL
3	Functional	OTP verificatio	Verify user otp using mail		1.Enter gmail id and enter password	Username: abc@gmail.com password: Testing123	OTP verifed is to be displayed	Working as expected	pass				MASOOD
4	Functional	Login page	Verify user is able to log into application with InValid credentials		1. Enter into log in page 2. Click on My Account dropdown button 3. Enter in Valid username/email in Email text box 4. Enter valid password in password text box 5. Click on login button	Username: abc@gmail password: Testing123	Application should show 'Incorrect email or password 'validation message.	Working as expected	pass				SANHAR
5	Functional	Display Train details	The user can view about the available train details		1.As a user, I can enter the start and destination to get the list of trains available connecting the above	Username: abc@gmail.com password: Testing1236786867868768 76	A user can view about the available trains to enter start and destination details	Working as expected	fail				SULPIKAR M

Table 8.1.1 Test Sprint-1

SPRINT - 2

		-	-			-					-		
				Date	16-Nov-22								
				Team ID	PNT2022MID44153								
				Project Name	smart solutions for railways								
				Maximum Marks	4 marks								
Test case ID	Feature Type	Componen t	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUGID	Executed By
1	Functional	Booking	user can provide the basic details such as a name, age, gender etc		1.Enter method of reservation 2.Enter name, age, gender 3.Enter how many tickets wants to be booked 4.Also enter the number member's details like name, age, gender		Tickets booked to be displayed	Working as expected	Pass				Musthakeem
2	UI	Booking seats	User can choose the class, seat/berth. If a preferred seat/berth isn't available I can be allocated based on the		1, known to which the seats are available		known to which the seats are available	Working as expected	pass				Faizal
3	Functional	Payment	user, I can choose to pay through credit Card/debit card/UPI.		1.user can choose payment method 2.pay using tht method		payment for the booked tickets to be done using payment method through either the following methods credit Card/debit	Working as expected	pass		-		Masgod
4	Functional	Redirection	user can be redirected to the selected		1.After payment the usre will be redirected to the previous page		After payment the usre will be redirected to the previous page	Working as expected	pass				Sulpikar

Table 8.1.2 Test Sprint-2

SPRINT - 3

Table 8.1.3 Test Sprint-3

SPRINT - 4

Table 8.1.4 Test Sprint-4

RESULTS

9.1. PERFORMANCE METRICS

Fig 9.1.1 Performance Metrics

ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES

- Openness compatibility between different system modules, potentially from different vendors;
- Orchestration ability to manage large numbers of devices, with fullvisibility over them;
- Dynamic scaling ability to scale the system according to the application needs, through resource virtualization and cloud operation;
- Automation ability to automate parts of the system monitoring application, leading to better performance and lower operation costs.

10.2. DISADVANTAGES

- Approaches to flexible, effective, efficient, and low-cost data collection for both railway vehicles and infrastructure monitoring, using regular trains;
- Data processing, reduction, and analysis in local controllers, and subsequent sending of that data to the cloud, for further processing;
- Online data processing systems, for real-time monitoring, usingemerging
- communication technologies;
- Integrated, interoperable, and scalable solutions for railway systemspreventive maintenance.

CONCLUSION

Accidents occurring in Railway transportation system cost a large number of lives. So this system helps us to prevent accidents and giving information about faults or cracks in advance to railway authorities. So that they can fix them and accidents cases becomes less. This project is cost effective. By using more techniques they can be modified and developed according to their applications. By this system many lives can be saved by avoiding accidents. The idea can be implemented in large scale in the long run to facilitate better safety standards for rail tracks and provide effective testing infrastructure for achieving better results in the future

FUTURE SCOPE

In future CCTV systems with IP based camera can be used for monitoring the visual videos captured from the track. It will also increase security for both passengers and railways. GPS can also be used to detect exact location of track fault area; IP cameras can also be used to show fault with the help of video. Locations on Google maps with the help of sensors can be used to detect in which area track is broken.

APPENDIX

13.1 SOURCE

PROGRAM

```
from ibmcloudant import CouchDbSessionAuthenticator
from ibm cloud sdk core.authenticators import BasicAuthenticator
authenticator = BasicAuthenticator('apikey-v2-16u3crmdpkghhxefdi
kvpssoh5fwezrmuup5fv5g3ubz', 'b0ab119f45d3e6255eabb978')
service = CloudantV1(authenticator=authenticator)
service.set service url('https://apikey-v2-
16u3ermdpkghhxefdikvpssoh5fwezrmuup5fv5g3ubz:b0ab119145d3e6255eabb978e7\\
e2f0')
cap= cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_PLAIN
while True:
_, frame = cap.read()
decodedObjects = pyzbar.decode (frame)
for obj in decodedObjects:
       #print ("Data", obj.data)
       a=obj.data.decode('UTF-8')
       cv2.putText(frame, "Ticket", (50, 50), font, 2, (255, 0, 0), 3)
       #print (a)
       try:
              response = service.get_document(
                     db='booking',
                     doc_id = a
              ).get_result()
              print (response)
              time.sleep(5)
       except Exception as e:
              print ("Not a Valid Ticket")
              time.sleep(5)
cv2.imshow("Frame",frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
       break
cap.release()
cv2.destroyAllWindows()
client.disconnect()
import wiotp.sdk.device
import time
import random
```

```
myConfig = {
"identity": {
       "orgId": "gagtey",
       "typeId": "GPS",
       "deviceId":"12345"
},
"auth": {
       "token": "12345678"
}
def myCommandCallback (cmd):
print ("Message received from IBM IoT Platform: %s" % cmd.data['command'])
m=cmd.data['command']
client = wiotp.sdk.device.DeviceClient(config=myConfig, logHandlers=None)
client.connect()
def pub (data):
client.publishEvent(eventId="status", msgFormat="json", data=myData, qos=0,
onPublish=None)
print ("Published data Successfully: %s", myData)
while True:
myData={'name': 'Train1', 'lat': 17.6387448, 'lon': 78.4754336}
pub (myData)
time.sleep (3)
#myData={'name': 'Train2', 'lat': 17.6387448, 'lon': 78.4754336)
#pub (myData)
#time.sleep (3)
myData={'name': 'Train1', 'lat': 17.6341908, 'lon': 78.4744722}
pub(myData)
time.sleep(3)
myData={'name': 'Train1', 'lat': 17.6340889, 'lon': 78.4745052}
pub (myData)
time.sleep (3)
myData={'name': 'Train1', 'lat': 17.6248626, 'lon': 78.4720259}
pub (myData)
time.sleep (3)
myData={'name': 'Train1', 'lat': 17.6188577, 'lon': 78.4698726}
pub (myData)
time.sleep (3)
myData={'name': 'Train1', 'lat': 17.6132382, 'lon': 78.4707318}
pub (myData)
time.sleep (3)
client.commandCallback = myCommandCallback
client.disconnect ()
```

13.2 GITHUB LINK

https://github.com/IBM-EPBL/IBM-Project-41208-1660640175