Zusammenfassung - Algorithmen für planare Graphen

Julian Shen

22. Mai 2023

1 Einführung

Definition: Graph ist ein Tupel G=(V,E) mit endliche Knotenmenge V und endliche Kantenmenge E

- Kante $e \in E$ hat Form e = uv mit $u, v \in V$.
- $uv = vu \rightarrow \text{Graphen ungerichtet}$
- e = uu ist erlaubt \rightarrow Schlinge
- Auch e = uv und e' = uv erlaubt mit $e \neq e' \rightarrow \mathbf{Mehrfachkante}$
- ullet Einfacher Graph \iff ohne Schlingen und Mehrfachkanten
- Zusammenhängend \iff ein Weg zwischen je zwei Knoten

Definition: Eine **Zeichnung** von G = (V, E) bildet diesen so auf \mathbb{R}^2 ab, dass

- 1. Knoten Punkte in der Ebene sind, d.h. $V \subset \mathbb{R}^2$
- 2. Kante e=uv ist injektive, stetige Kurve von u nach v, d.h. $\gamma_e\colon [0,1]\to \mathbb{R}^2$ mit
 - $\gamma_e(0) = u$ und $\gamma_e(1) = v$
 - $\gamma_e(0) \notin V$ für alle 0 < t < 1
- Zeichnung heißt **kreuzungsfrei** bzw. **planar** wenn für je zwei Kanten e, e' und 0 < t, t' < 1 gilt: $\gamma_e(t) \neq \gamma_e(t')$
- Graph heißt **planar**, wenn er mindestens eine kreuzungsfreie Zeichnung besitzt

Definition: Für $n \in \mathbb{N}$ ist der vollständige Graph K_n

- $V(K_n) = \{v_1, \dots, v_n\}$
- $E(K_n) = \{v_i v_j \mid v_i, v_j \in V, i \neq j\}$

Lemma: Graph K_5 ist nicht planar

Beweis: Betrachte beliebige Zeichnung von K_5

- \bullet Betrachte v_1 und seine 4 ausgehenden Kanten
- \bullet O.B.d.A. Kanten kreuzungsfrei zu v_2,v_3,v_4,v_5 in zyklischer Reihenfolge um v_1
- Kanten v_1v_3, v_3v_5, v_5v_1 bilden geschlossene Kurve in \mathbb{R}^2 die v_2 und v_4 trennt $\Longrightarrow v_2v_4$ kann nicht kreuzungsfrei gezeichnet sein

Definition: Für $m, n \in \mathbb{N}$ ist der vollständig bipartite Graph $K_{m,n}$

- $V(K_{m,n}) = \{a_1, \dots, a_m\} \cup \{b_1, \dots, b_n\}$
- $E(K_{m,n}) = \{a_i b_j \mid i \in \{1, \dots, m\}, j \in \{1, \dots, n\}\}$

Lemma: Graph $K_{3,3}$ ist nicht planar

Beweis: Betrachte beliebige Zeichnung von $K_{3,3}$

• Kreis $a_1b_1a_2b_2a_3b_3$ im Graphen bildet eine geschlossene Kurve in \mathbb{R}^2

- Jede Kante von a_1b_2, a_2b_3, a_3b_1 liegt komplett innerhalb oder komplett außerhalb dieser Kurve
 - ⇒ mindestens zwei liegen auf der gleichen Seite
 - ⇒ diese zwei kreuzen sich

Definitionen: Für eine feste planare Zeichnung eines planaren Graphen definiere:

- Facetten: Zusammenhangskomponenten von \mathbb{R}^2 nach Entfernen aller Knoten und Kanten \implies Es gibt genau eine **äußere Facette** und mehrere **innere Facetten**
- Äußere Knoten sind die, die inzident zur äußeren Facette sind
- Innere Knoten sind die übrigen Knoten
- \bullet $\ddot{\mathbf{A}}\mathbf{u}\mathbf{\beta}\mathbf{ere}$ \mathbf{Kanten} sind die, die komplett im Rand der äußeren Facette liegen
- Innere Kanten sind die übrigen Kanten

n = 9 Knoten (5 äußere, 4 innere) m = 14 Kanten (8 äußere, 6 innere) f = 7 Facetten (1 äußere, 6 innere)

 ${\bf Satz}$ von ${\bf Euler}:$ Sei Gein zusammenhängender Graph mit einer planaren Zeichnung mit n Knoten, m Kanten und f Facetten. Dann gilt

$$n - m + f = 2$$

Beweis: Beweise m - (f - 1) = n - 1, woraus die Behauptung folgt. Führe dafür eine Induktion nach f - 1, der Anzahl der inneren Facetten, durch.

- \bullet I.A.: f-1=0,d.h. keine innere Facette $\to G$ ist ein Baum, also kreisfrei und zusammenhängend $\to m=n-1$
- I.S.: $f-1 \ge 1$, d.h. min. eine innere Facette
 - Sei e eine Kante zwischen äußerer und innerer Facette $\to G' = G \setminus e$ ist zusammenhängend \to In G' gilt n' = n, m' = m 1, f' = f 1
 - Mit I.V. folgt: $m' (f' 1) = n' 1 \Leftrightarrow m 1 (f 1 1) = n 1 \Leftrightarrow m (f 1) = n 1$

Korollar aus Euler-Formel: Sei G ein planarer, einfacher Graph mit $n \geq 3$ Knoten, m Kanten, und kleinstem vorkommenden Knotengrad $\delta(G)$. Dann gilt

$$m \le 3n - 6$$
 und $\delta(G) \le 5$

Beide Ungleichungen sind bestmöglich.

Beweis: $m \leq 3n - 6$

ullet O.B.d.A. G ist zusammenhängend, da man Kanten einfügen kann bis er das ist

• Jede Facette ist berandet von min. 3 Kantenseiten, da $n \geq 3$

• Jede Kantenseite in genau eine Facette

• Jede Kante hat genau 2 Seiten

 $\implies 3f \le$ Anzahl der Seiten-Facetten-Inzidenzen = 2m

 $\implies 3(2+m-n) \le 2m \implies m \le 3n-6 \text{ (mit Euler-Formel)}$

Beweis: $\delta(G) \leq 5$

• Jede Kante hat genau 2 inzidente Knoten

 \bullet Jeder Knoten v hat genau $\deg(v)$ inzidente Kanten

- Für jeden Knoten v gilt $\deg(v) \ge \delta(G)$

 $\implies 2m = \text{Anzahl}$ der Knoten-Kanten-Inzidenzen = $\sum_{v \in V(G)} \deg(v) \geq \delta(G) \cdot n$

$$\implies 2(3n-6) \ge 2m \ge \delta(G) \cdot n \implies \delta(G) \le 6 - 12/n$$

2 Einbetten und Dualisieren

Einbettung = Äquivalenzklasse von planaren Zeichnungen

Definition: Sei G = (V, E) ein zusammenhängender Graph mit einer planaren Zeichnung. Die (kombinatorische) Einbettung ist

- \bullet für jeden Knoten v die zyklische (cw = "clockwise") Reihenfolge der inzidenten Halbkanten an v
- \bullet für jede Facette f die zykl. (cw) Reihenfolge der inzidenten Kantenseiten an f

Betrachte dafür beliebige Orientierung der Kanten und man erhält Halbkanten $e^{\rm in}$ und $e^{\rm out}$ sowie Kantenseiten $e^{\rm left}$ und $e^{\rm right}$ von e

Alle Zeichnungen mit der gleichen Einbettung sind äquivalent.

Definition: Sei G = (V, E) ein zusammenhängender Graph mit einer festen Einbettung und Facettenmenge F. Der **Dualgraph** $G^* = (V^*, E^*)$ ist

- $V^* = F$, das heißt, $f \in F \mapsto v_f \in V^*$
- \bullet für jede Kante $e \in E$ läuft die duale Kante e^* zwischen der Facette an e^{left} und der an e^{right}

Die Einbettung des **Primalgraphen** G = (V, E) induziert eine Einbettung des **Dualgraphen** $G^* = (V^*, E^*)$:

primal	dual
$f \in F$	$V_f = f \in V^* = F$
$e^{\text{left}}, e^{\text{right}}$	$(e^*)^{\text{out}}, (e^*)^{\text{in}}$
$v \in V$	$f_v = v \in F^*$
e Brücke	e* Schlinge
e Schlinge	<i>e</i> * Brücke

Bemerkungen:

- \bullet Der Dualgraph G^* ist immer zusammenhängend
- Falls G zusammenhängend ist, gilt $G = (G^*)^*$
- \bullet Für jede Einbettung von G und jede Facette f gibt es eine planare Zeichnung mit dieser Einbettung und f als äußere Facette

3 Graphfärbung

Definition: Sei G = (V, E) ein Graph, $k \in \mathbb{N}$. Eine **k-Färbung** von G ist eine Abbildung $c: V \to \{1, 2, \dots, k\}$, sodass $c(u) \neq c(v)$ für jede Kante $uv \in E$

- Kleinstes k, für das so eine k-Färbung existiert, heißt chromatische Zahl $\chi(G)$
- Bei Färbungen nehmen wir Graphen implizit als schlingenfrei an

Frage: Was ist die größte chromatische Zahl die ein planarer Graph annehmen kann, d.h. was ist $\chi_{\text{planar}} := \max\{\chi(G) \mid G \text{ planar}\}$?

Lemma: $\chi_{\text{planar}} \leq 6$

Beweis: Führe Induktion über |V|

- \bullet I.A.: $|V| \leq 6$: Man erhält eine Färbung, indem jeder Knoten eine eigene Farbe bekommt
- I.S.: |V| > 6
 - Nach Euler-Formel gibt es $v \in V$ mit $\deg(v) \leq 5$
 - Nach I.V. gibt es 6-Färbung von $G \setminus v$
 - Nachbarn von v in $G \setminus v$ decken höchstens fünf Farben ab \to Färbe v in verbleibender Farbe

Lemma: $\chi_{\text{planar}} \leq 5$

Beweis: Induktion analog zum oberen Beweis

I.S.:

- Nach Euler-Formel gibt es $v \in V$ mit $\deg(v) \leq 5$
- \bullet Nach I.V. gibt es 5-Färbung von $G \setminus v$
- Betrachte Teilgraph, der nur blau-gelbe Knoten enthält:

Färbung von G

Färbung von G

- Fall 1: 1 und 3 liegen in unterschiedlichen Zusammenhangskomponenten
 - \rightarrow Tausche in einer Zusammenhangskomponente alle blauen durch gelbe und alle gelben Knoten durch blaue aus \rightarrow Farbe wird für v frei
- <u>Fall 2</u> (siehe Bild): 1 und 3 liegen in der selben Zusammenhangskomponente.
 Für rot-lila-Teilgraph können 2 und 4 nicht in der selben Zusammenhangskomponente liegen, da Graph sonst nicht mehr planar wäre
 - \rightarrow Farbe wird für v frei

Definition: Sei G = (V, E) ein einfacher Graph. Sei $L \colon V \to 2^{\mathbb{N}}$ eine Listenzuweisung, d.h. L(v) ist Menge von Zahlen / Farben. Eine **L-Listenfärbung** von G ist eine Knotenfärbung c mit

- $c(v) \in L(v)$ für jeden Knoten $v \in V$
- $c(u) \neq c(v)$ für jede Kante $uv \in E$

G heißt **k-listenfärbbar** wenn für jede Listenzuweisung L mit $|L(v)| \ge k$ für jeden Knoten $v \in V$ eine L-Listenfärbung von G existiert.

• Kleinstes k, für das G k-listenfärbbar ist, heißt listenchromatische Zahl $\chi_{\text{list}}(G)$

Beweisskizze zu Listenfärbungen:

- $\chi_{\text{list}}(G) > k$: \exists Listen L $\not\equiv$ L-Listenfärbung
- $\chi_{\text{list}}(G) \leq k$: \forall Listen $L = \exists L$ -Listenfärbung

Lemma: Für jeden planaren Graphen gilt $\chi_{\text{list}}(G) \leq 6$

Beweis: Die gleiche Argumentation wie für $\chi_{\text{planar}} \leq 6$ funktioniert

Beobachtung: Für jeden Graphen G gilt $\chi_{\text{list}}(G) \geq \chi(G)$

Beweis:

- Setze $L(v) = \{1, \dots, k\}$ für jeden Knoten v
- Dann sind L-Listenfärbungen genau k-Knotenfärbungen $\implies \chi(G) \le \chi_{\text{list}}(G)$

Satz von Voigt: Es gibt einen planaren Graphen mit $\chi_{\text{list}}(G) \geq 5$

Beweis: Konstruiere einen planaren Graphen G mit Listenzuweisung L, sodass

- |L(v)| = 4 für jeden Knoten v
- keine L-Listenfärbung von G existiert

Betrachte dazu folgendes Gadget $H(\alpha, \beta)$:

Dieses Gadget ist nicht färbbar. Konstruiere nun aus 16 Gadgets den folgenden Graphen:

Dieser ist nicht L-listenfärbbar, denn für jede Färbung c ist Gadget H(c(p),c(q)) nicht färbbar.

Weitere Sätze und Beobachtungen:

- Für jeden planaren Graphen gilt $\chi_{\text{list}}(G) \leq 5$ (Satz von Thomassen)
 - \implies Mit obigem Satz folgt $\max\{\chi_{\text{list}}(G) \mid G \text{ planar}\} = 5$
- Es gibt einen planaren Graphen mit $\chi(G) \geq 4$
- Für jeden planaren Graphen G
 gilt $\chi(G) \leq 4$ (4-Farben-Satz)

$$\implies \chi_{\text{planar}} = 4$$

Ziel: Beweise $\chi_{\rm planar} \leq 5$ mit einer stärkeren Aussage

Satz: Sei G = (V, E) ein planarer Graph mit:

- jede innere Facette ist ein Dreieck
- \bullet äußere Facette ist ein einfacher Kreis C

Seien v_1, v_2 zwei aufeinanderfolgende Knoten auf C und L eine Listenzuweisung mit:

- |L(v)| = 5 für $v \in V \setminus C$
- |L(v)| = 3 für $v \in C \setminus \{v_1, v_2\}$
- $L(v_1) = \alpha, L(v_2) = \beta \text{ mit } \alpha \neq \beta$

Dann gibt es eine L-Listenfärbung von G.

Beweis: Führe Induktion über |V|

- I.A.: |V| = 3. Wähle $c(v_3) \in L(v_3) \setminus \{\alpha, \beta\}$
- I.S.: $|V| \ge 4$. Betrachte nun 2 Fälle:

- <u>Fall 1</u>: C hat eine Sehne $e = v_i v_j$. Zerteile G entlang e in zwei Graphen G_1, G_2 . O.B.d.A liegt $v_1 v_2$ in G_1 . Nach IV gibt es eine Färbung c_1 von G_1 . Sei $c_1(v_i) = \alpha'$ und $c_1(v_j) = \beta'$. Wende IV auf G_2 an mit Listen $\{\alpha'\}$ für v_i und $\{\beta'\}$ für v_j . \to Färbung c_2 von $G_2 \to$ Da c_1 und c_2 an der Sehne $v_i v_j$ übereinstimmen, erhalten wir eine Färbung von G.

- Fall 2: C hat keine Sehne. Betrachte Nachbarn $v_p \neq v_2$ von v_1 auf C. Lösche v_p auf G und erhalte G'. G' hat einfachen Kreis als äußere Facette, da v_p keine inzidente Sehne hat. Seien γ_1, γ_2 zwei Farben aus $L(v_p) \setminus \{\alpha\}$. Für jeden inneren Nachbarn w von v_p definiere $L'(w) = L(w) \setminus \{\gamma_1, \gamma_2\}$ und L'(v) = L(v) für jeden anderen Knoten v. Nach IV gibt es L'-Listenfärbung von G', sodass kein innerer Nachbar von v_p die Farbe γ_1 oder γ_2 hat. Wähle $c(v_p) \in \{\gamma_1, \gamma_2\} \setminus c'(v_{p-1})$ und erhalte somit eine L-Listenfärbung c von G.

Bemerkung: Für jeden beliebigen planaren Graphen G lassen sich Kanten und Knoten hinzufügen sowie Farben aus Listen entfernen, sodass der neue Graph G' den Anforderungen des obigen Satzes entspricht. Damit wurde die Aussage $\chi(G) \leq \chi_{\mathrm{list}(G)} \leq 5$ für jeden planaren Graphen G bewiesen.

4 Unterteilungen und Minoren

Definition: Sei G = (V, E) ein Graph, e = uv eine Kante. Dann ist die **Unterteilung** von e in G der Graph $G \circ e = (V', E')$ mit

• $V' = V + \{w\}$

 $\bullet \ E' = (E \setminus \{uv\}) + \{uw, vw\}$

Beobachtung: G planar \iff $G \circ e$ planar

Definition: Graph G ist eine **Unterteilung von** H wenn $G = ((H \circ e_1) \circ e_2) \cdots) \circ e_k$. Wir sagen auch G ist H-Unterteilung. Graph G enthält eine H-Unterteilung, wenn ein Teilgraph $G' \subseteq G$ eine H-Unterteilung ist.

Beobachtung:

- K_5 und $K_{3,3}$ -Unterteilungen sind nicht-planar
- Jeder Graph der eine K_5 oder $K_{3,3}$ -Unterteilung enthält, ist nicht planar

Satz von Kuratowski: G ist planar $\iff G$ enthält keine K_5 - oder $K_{3,3}$ -Unterteilung