

Улучшение качества тональной классификации с использованием лексиконов

Русначенко Н.Л. kolyarus@yandex.ru

1. Задача

- ▶ Построение модели на основе методов МL для решения задачи тональной классификации сообщений сети Twitter. (соревнования SentiRuEval)
- **Тональность определяется** для сообщения в целом, и по отношению к рассматриваемым в сообщении организациям.
- Задача решается отдельно для каждой организации (коллекции данных):
 - **▶ ВАNК** банковские компании;
 - ➤ ТКК телекоммуникационные компании.
- ➤ Сообщению может быть проставлена одна из следующих тональных оценок: {1, 0, -1}

2. Идея

- Использование признаков на основе лексиконов:
- словарей, состоящих из пар (t,v), где t терм, $v \in \mathbb{R}$ тональная окраска терма.
- Увеличение объема (балансировка тональных классов) обучающей коллекции (пополнение сообщениями внешних источников);

3. Смежные работы

- ▶ Построение лексиконов на основе:
 - **≻ РМІ** меры взаимной информации
 - ➤ SO сематической ориентации
 - > (Turney P., 2002)
- ➤ Автообучение: авторазметка сообщений с целью дополнения тональных классов обучающих коллекций (Severyn A., Moshitti A., 2015)
- ▶ Использование вспомогательных признаков, в том числе на основе лексиконов (Saif. M. Kiritchenko S., Xiaodan Z., 2015)

4. Построение лексиконов

На основе меры **взаимной информации** термов t_1, t_2 :

PMI
$$(t_1, t_2) = \log_2 \frac{P(t_1 \wedge t_2)}{P(t_1) \cdot P(t_2)}$$

Введем маркер в качестве одного из параметров *РМІ*. Возможные значения маркера:

- Excellent хороший;
- Poor плохой.

Семантической ориентацией называется величина:

SO(t) = PMI(t, Excellent) - PMI(t, Poor)

- Знак SO(t) определяет один из двух маркеров, к которому принадлежит t;
- |SO(t)| степень принадлежности маркеру.

Лексикон составляется на основе коллекции $K = K_{Excellent} \cup K_{Poor}$:

 $S: \{ \langle t, SO(t) \rangle \mid t \in K_{Excellent} \cup K_{Poor} \}$

- $K_{Excellent}$ -- сообщения с меткой **Excellent**.
- K_{Poor} -- сообщения с меткой **Poor**.

Составление тональной коллекции с нуля (авторазметка сообщений):

- ightharpoonup Прием трансляции сообщений сети *Twitter*, и составление коллекции K.
- ightharpoonup <u>Разбиение коллекции</u> сообщений K на $K_{Excellent}$ и K_{Poor} с помощью:
 - Эмотиконов в сообщении (смайликов 😊, 🙁);

5. Построенные лексиконы

- 1. На основе корпуса коротких текстов **Ю. Рубцовой**;
- 2. Сообщений сети Twitter за январь 2016 года
- 3. Тональный словарь созданный вручную экспертами

$ \mathcal{N}_{\underline{0}} $	$K_{\text Excellent}$	K_{Poor}	Всего
	термов	термов	термов
1	62 637	50 177	112 814
1	(56%)	(44%)	112 014
2	7 370	228 721	236 091
2	(3%)	(97%)	230 091
3	2 774	7 148	10 668
)	(26%)	(67%)	10 008

6. Подход

Классификация *методом опорных векторов*, **SVM**, линейное ядро классификации.

Обработка сообщений:

- 1. Лемматизация сообщений (Mystem, Yandex);
- 2. Удаление символов 'RT', @пользователей, URL (из метаинформации остаются #хэштеги).Используемая весовая мера *TF-IDF*;
- 3. Использование стоп слов;
- 4. Замена лемм на тональные префиксы '+', '-':

Сейчас хорошо работать не то что раньше Сейчас +работать –то что раньше.

Признаки классификации:

- ✓ Учет эмотиконов (смайликов ; ⊗);
- ✓ Число слов записанных в верхнем регистре;
- ✓ Число подряд идущих знаков {'?', '...', '!'}.
- ✓ Вычисление суммы $x = \sum SO(t), t \in S$, термов t, составляющих сообщение и в входящих в лексикон S.

7. Обучающие коллекции

- Несбалансированные:
 - Предоставленные организаторами:

2015 (количество сообщений)				
Коллекция	③	(1)	②	всего
BANK	356	3 482	1 077	4 015
DAINK	(7%)	(71%)	(21%)	4 915
ТКК	956	2 269	1 634	4 859
	(19%)	(47%)	(34%)	4 839
2016				
BANK	1 354	4 870	2 550	8 783
DANK	(15%)	(55.4%)	(29%)	0 /03
ТКК	704	6 756	1 741	9 102
	(7%)	(74.22%)	(19%)	9 102
<u></u>	(770)	(7 1022 70)	(1) /0)	

- Сбалансированные:
 - Балансировка: на основе корпуса коротких текстов Ю. Рубцовой построен лексикон и произведен отбор сообщений $m = \{t_i\}_{i=1}^N$ из той же коллекции, по формуле:

$$\max_{i=1..N} |SO(t_i)| > P$$

- P пороговое значение, t_i термы сообщения.
 - α сбалансированная коллекция 2015.
- **β** балансировка коллекций 2015 и 2016 (их объединений) годов.

Сбалансированные (количество сообщений)			
Коллекция	α	β	
TTK	6888	14610 (+112%)	
BANK	10446	20268 (+94%)	

8. Результаты

Параметры прогонов:

- №1- только русскоязычные термы и хэштеги;
- №2 №1 + применение тональных префиксов, использование построенных лексиконов 1 и 2, <u>учет всех признаков</u>;
- $N_{2}3 N_{2}2 + \underline{\text{использование всех лексиконов}}$.

Мера оценки качества: $F_1 macro_{(neg,pos)}$

BANK (SentiRuEval-2016)				
$N_{\underline{0}}$	α	β		
1	0.384	0.4536 (+18.1%)		
2	0.3849	0.4672 (+ 20.9%)		
3	0.3862	0.4683 (+21.25%)		
	TKK (SentiRuEval-2016)			
No	2016	eta		
1	0.4849	0.5103 (+5,2%)		
2	0.4832	0.5231 (+8.2%)		
3	0.5099	0.5286 (+3.6%)		

ightharpoonup Обучение на коллекции ho показывает прирост оценки (правый столбец).

9. Улучшение

- **b** нижний порог результаты, относительно которого отмечается изменение качества.
- ➤ Настройка параметра *C* штрафной функции SVM классификатора (влияет на размер отступа разделяющей гиперплоскости):

$$C = 0.5$$

Улучшенные результаты, С = 0.5		
No	BANK	TKK
b	0.4536	0.5103
1	0.4558 (+0.48)	0.5235 (+2,58%)
2	0.4795 (+5.70)	0.5338 (+4,60%)
3	0.4768 (+5.11)	0.5452 (+6.83%)

ightharpoonup Добавление новых признаков y,z: вычисление min и max значений $SO(t_i)$ (с учетом нормализации) среди всех термов t_i сообщения m по каждому из лексиконов:

$$y = \min_{i=1..N} SO(t_i), \ t_i \in m, t_i \in S$$
$$z = \max_{i=1..N} SO(t_i), \ t_i \in m, t_i \in S$$

	Улучшенные результаты,		
	C = 0.5, использование новых признаков		
$N_{\underline{0}}$	BANK	TKK	
b	0.4795	0,5452	
1	0.4955 (+3.34%)	0.5259 (-3.53%)	
2	0.5012 (+4.53%)	0.5283 (-3.09%)	
3	0.5239 (+9.52%)	0.5453 (+0.01%)	

Вывод

качества

- Стабильное повышение классификации.
- Наибольший прирост качества достигается для задачи **BANK**.

Прирост качества	BANK	TKK
Общий	+36,4%	+12,4%

Возможные дальнейшие улучшения:

- > Использование иерархической классификации;
- ▶ В вычисление признаков на основе лексиконов, с зависимостью от TF-IDF весов термов.

