9. GBI-Tutorium von Tutorium Nr. 31

Richard Feistenauer

09.Januar 2015

Inhaltsverzeichnis

- Groß-O-Notation
 - ullet Θ Ignorieren konstanter Faktoren

2 Aufgaben

Die Relation ≍

Definition

Für zwei Funktionen f,g : $\mathbb{N}_0 \to \mathbb{R}_0^+$ gilt $f \asymp g$ genau dann, wenn gilt:

$$\exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$

Bedeutung

 $f \simeq g$ bedeutet f wächst asymptotisch genauso schnell wie g.

Die Relation ≍

Example

- n \asymp 2n Beweis: Wähle $n_0=0, c=1, c'=\frac{1}{2}$ $\forall n \geq 0: 1 \cdot n \leq \frac{1}{2} \cdot 2 \cdot n$
- $n^2 + 2n \approx 5n^2 2n + 3$
- $n^2 \approx n^3$

Das gilt nicht! Beweis:

- Es müsste gelten: $\exists \cdots : n^3 < c \cdot n^2$
- Für n ; 0 gilt: $n^3 < c \cdot n^2 \Leftrightarrow n < c$
- Es gibt aber kein $c \in \mathbb{R}_+$ so dass gilt: $\forall n > n_0 : c \leq n$

Definition

$$\Theta(f(n)) = \{g(n) \mid f(n) \times g(n)\}$$

Bedeutung

 $\Theta(f)$ ist also die Menge aller Funktionen die zu einer Funktion f(n) in Relation \asymp stehen.

Die Relation ≍

Allgemeine Rechenregeln für ≍

- $a \cdot f \approx b \cdot f(a, b \in \mathbb{R}_+)$
- ullet f symp g, wenn f und g Polynome von gleichen Grad sind
- $log_a(n) \asymp log_b(n)$

$log_a(n) \asymp log_b(n)$

Wir wollen nun zeigen:

$$log_2(n) \asymp log_8(n)$$

Bemerkung

Allgemein gilt für a $\in \mathbb{R}_+$ und $n \in \mathbb{N}_+$:

$$a^{\log_a(n)} = n$$

$log_a(n) \asymp log_b(n)$

Anschaulich

n	1	5	64	512	4096	32768
$log_8(n)$	0	1	2	3	4	5
$log_2(n)$	0	3	6	9	12	15

Beweis

$$n = 8^{log_8(n)} = (2^3)^{log_8(n)} = 2^{3log_8(n)}$$

Also gilt für $n \le 1$: $log_2(n) = log_2(2^{3log_8(n)}) = 3log_8(n)$
 $\Rightarrow log_2(n) = 3log_8(n)$

Wegen $af(n) \approx bf(n)$ folgt $log_2(n) \approx log_8(n)$

$log_a(n) \asymp log_b(n)$

Allgemein

Man kann ebenso für allgemeine a und b zeigen, dass gilt:

$$log_a(n) \asymp log_b(n)$$

Im Allgemeinen kann man also einfach $\Theta(\log(n))$ schreiben, ohne die Basis anzugeben, weil sie egal ist.

Definition

- $f \leq g \Leftrightarrow \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_o : f(n) \leq cg(n)$
- $f \succeq g \Leftrightarrow \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : f(n) \geq cg(n)$

Bedeutung

f wächst asymptotisch mindestens / höchstens genauso schnell wie g (ab einem gewissen n)

Example

- $n^{10} \leq n^{15}$ Wähle z.B. $n_0 = 1, c = 1$
- $n^4 n^2 \succeq n^3$ Wähle z.B. $n_0 = 2, c = 1$

O und Ω

Definitionen

- $O(f(n)) = \{g(n) \mid g(n) \leq f(n)\}$
- $\Omega(f(n)) = \{g(n) \mid g(n) \succeq f(n)\}$

Example

- $n^{10} \in O(n^{15})$
- $n^4 n^2 \in \Omega(n^3)$

Keine totale Ordnung!

!!!Achtung!!!

 \prec und \succ bilden keine totale Ordnung! Es gibt unvergleichbare Funktionen

Beispiel

$$f(n) = \begin{cases} 1, & \text{wenn } n \text{ gerade,} \\ n, & \text{wenn } n \text{ ungerade.} \end{cases}$$

$$g(n) = \begin{cases} n, & \text{wenn } n \text{ gerade,} \\ 1, & \text{wenn } n \text{ ungerade.} \end{cases}$$

$$g(n) = \begin{cases} n, & \text{wenn } n \text{ gerade,} \\ 1, & \text{wenn } n \text{ ungerade,} \end{cases}$$

Es gilt weder $f \leq g$, noch $f \succeq g$ und schon gar nicht $f \approx g!$

Bemerkung

Es gilt

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

•
$$n \in \Theta(n)$$

- $n \in \Theta(n)$
- $n \in O(5n)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$
- $n \in \Omega(5n)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$
- $n \in \Omega(5n)$
- $O(n) \in O(n^2)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$
- $n \in \Omega(5n)$
- $O(n) \in O(n^2)$
- $O(n) \subset O(n^2)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$
- $n \in \Omega(5n)$
- $O(n) \in O(n^2)$
- $O(n) \subset O(n^2)$
- $O(n) \subset \Omega(n^2)$

- $n \in \Theta(n)$
- $n \in O(5n)$
- $n \in \Theta(5n^2)$
- $n \in \Omega(5n)$
- $O(n) \in O(n^2)$
- $O(n) \subset O(n^2)$
- $O(n) \subset \Omega(n^2)$
- $\Theta(f(n)) \subset O(f(n))$

Ende

Noch Fragen?

Unnützes Wissen

Weihnachten wurde 1647 vom englischen Parlament offiziell abgeschafft.