

House Price vs House Size

(b)右圖紅線為OLS迴歸線

Residual standard error: 102.8 on 498 degrees of freedom Multiple R-squared: 0.6413, Adjusted R-squared: 0.6406 F-statistic: 890.4 on 1 and 498 DF, p-value: < 2.2e-16

(c)

邊際效應為: 6.448092

(d)圖中綠線為二次迴歸線, 紫色為2000平方英尺之切線

(e) Quadratic Regression 在2000平方英尺之彈性為 3.782625

(f)左圖為OLS回歸之殘差, 右圖為二次回歸之殘差

Residuals of Linear Regression Model September 1997 September 20 40 60 80 House Size (hundreds of square feet)

Residuals of Quadratic Regression Model

兩者殘差分布稍微有些不同,可能違反假設SR3:Conditional Homoskedasticity,即在給定x的情況下,殘差之變異數應該為定值(constant)。

(g)利用殘差總和(Sum of squared residuals, SSE)選出較適合的模型

```
> sse_lm
```

[1] 5262847

> sse_quad

[1] 4207791

>

- > # 比較 SSE, SSE 較小的模型較適合
- > better_model <- ifelse(sse_lm < sse_quad, "Linear Model", "Quadratic Model")</pre>
- > better_model
- [1] "Quadratic Model"

Q25.

(a)繪製資料直方圖以及統計量和25,75百分位

> summary(data\$foodaway)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00 12.04 32.55 49.27 67.50 1179.00

> quantile(data\$foodaway, probs = c(0.25, 0.75))
25% 75%

12.0400 67.5025

(b)根據學歷進行分群, 計算中位數與平均

```
> cat("Mean FOODAWAY for households with an advanced degree:", mean_advanced, "\n")
Mean FOODAWAY for households with an advanced degree: 73.15494
> cat("Median FOODAWAY for households with an advanced degree:", median_advanced, "\n")
Median FOODAWAY for households with an advanced degree: 48.15
> cat("Mean FOODAWAY for households with a college degree:", mean_college, "\n")
Mean FOODAWAY for households with a college degree: 48.59718
> cat("Median FOODAWAY for households with a college degree:", median_college, "\n")
Median FOODAWAY for households with a college degree: 36.11
> cat("Mean FOODAWAY for households with no degree:", mean_no_degree, "\n")
Mean FOODAWAY for households with no degree: 39.01017
> cat("Median FOODAWAY for households with no degree:", median_no_degree, "\n")
Median FOODAWAY for households with no degree: 26.02
```

(c)計算取log後的統計量及直方圖, 應取log後會出現-Inf, 無法納入回歸, 應從樣本剃除。

Histogram of In(FOODAWAY)

> summary(data\$In_foodaway)

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 2.488 3.483 -Inf 4.212 7.072
```

(d)

Residuals:

```
Min 1Q Median 3Q Max -3.6547 -0.5777 0.0530 0.5937 2.7000
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1293004 0.0565503 55.34 <2e-16 ***
income 0.0069017 0.0006546 10.54 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8761 on 1020 degrees of freedom Multiple R-squared: 0.09826, Adjusted R-squared: 0.09738 F-statistic: 111.1 on 1 and 1020 DF, p-value: < 2.2e-16

(e)紅色直線為迴歸線

In(FOODAWAY) vs. INCOME

(f)

Residuals of Linear Regression Model

Q28. (a)計算教育程度與薪資這兩個變數的統計量, 教育程度為整數離散的變數, 薪資全距則較大

> summary(data\$wage) Min. 1st Qu. Median Mean 3rd Qu. Max. 3.94 13.00 19.30 23.64 29.80 221.10 > summary(data\$educ) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 12.0 14.0 14.2 16.0 21.0

Histogram of wage

Histogram of education

(b)計算回歸結果

Residuals:

Min 1Q Median 3Q Max -31.785 -8.381 -3.166 5.708 193.152

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 13.55 on 1198 degrees of freedom Multiple R-squared: 0.2073, Adjusted R-squared: 0.2067 F-statistic: 313.3 on 1 and 1198 DF, p-value: < 2.2e-16

(c)教育程度在16年的人,薪資的震盪幅度最大,表示變異數可能也是最大的一群。

Residuals vs education


```
(d)由上而下分別為男性、女性、黑人、白人之回歸結果
Call:
lm(formula = wage ~ educ, data = data[data$female == 0, ])
Residuals:
    Min
            1Q Median
                            30
-27.643 -9.279 -2.957 5.663 191.329
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.2849
                       2.6738 -3.099 0.00203 **
educ
             2.3785
                        0.1881 12.648 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.71 on 670 degrees of freedom
Multiple R-squared: 0.1927, Adjusted R-squared: 0.1915
F-statistic: 160 on 1 and 670 DF, p-value: < 2.2e-16
Call:
lm(formula = wage \sim educ, data = data[data$female == 1, ])
Residuals:
```

Coefficients:

Min

10 Median

-30.837 -6.971 -2.811 5.102 49.502

3Q

Max

Residual standard error: 11.5 on 526 degrees of freedom Multiple R-squared: 0.2764, Adjusted R-squared: 0.275 F-statistic: 200.9 on 1 and 526 DF, p-value: < 2.2e-16

```
Call:
lm(formula = wage ~ educ, data = data[data$black == 1, ])
Residuals:
              1Q Median
     Min
                                30
                                        Max
-15.673 -6.719 -2.673
                            4.321 40.381
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
             -6.2541
                            5.5539 -1.126
                                               0.263
                                     4.829 4.79e-06 ***
educ
               1.9233
                           0.3983
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.51 on 103 degrees of freedom
Multiple R-squared: 0.1846, Adjusted R-squared: 0.1767
F-statistic: 23.32 on 1 and 103 DF, p-value: 4.788e-06
Call:
lm(formula = wage ~ educ, data = data[data$black == 0, ])
Residuals:
             1Q Median
    Min
                              3Q
                                      Max
-32.131 -8.539 -3.119
                           5.960 192.890
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                  -5.034 5.6e-07 ***
(Intercept) -10.475
                           2.081
                           0.143 16.902 < 2e-16 ***
educ
               2.418
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 13.79 on 1093 degrees of freedom
Multiple R-squared: 0.2072, Adjusted R-squared: 0.2065
F-statistic: 285.7 on 1 and 1093 DF, p-value: < 2.2e-16
(e)Quadratic Regression
Residuals:
           1Q Median
   Min
                        3Q
-35.219 -8.047
                     5.307 193.439
             -2.708
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.82200
                   4.62512
                          1.691 0.0911 .
educ
          -0.42951
                   0.66438 -0.646
                                 0.5181
                          4.344 1.52e-05 ***
I(educ^2)
          0.10434
                   0.02402
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 13.45 on 1197 degrees of freedom
Multiple R-squared: 0.2196, Adjusted R-squared: 0.2183
F-statistic: 168.4 on 2 and 1197 DF, p-value: < 2.2e-16
```

與線性回歸比較marginal effect, 可以看到教育程度越高, 邊際效應越大, 但在線性回歸為一常數。

```
> cat("Marginal effect at 12 years of education for quadratic:", marginal_effect_12_q, "\n")
Marginal effect at 12 years of education for quadratic: 2.50421
> cat("Marginal effect at 16 years of education for quadratic:", marginal_effect_16_q, "\n")
Marginal effect at 16 years of education for quadratic: 3.338946
> cat("Marginal effect for linear:", marginal_effect_1, "\n")
Marginal effect for linear: 2.396761
```

(f) Quadratic Model更適合用於預測這些資料。

Linear vs Quadratic Fit

