# Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

# Lecture #9 – Discrete RVs III

Variance and Standard Deviation of a Random Variable

Binomial Random Variable

#### Variance and Standard Deviation of a RV

The Defs are the same for continuous RVs, but the method of calculating will differ.

Variance (Var)

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = E[(X - E[X])^2]$$

Standard Deviation (SD)

$$\sigma = \sqrt{\sigma^2} = SD(X)$$

# **Key Point**

Variance and std. dev. are expectations of functions of a RV

#### It follows that:

- 1. Variance and SD are constants
- 2. To derive facts about them you can use the facts you know about expected value

#### How To Calculate Variance for Discrete RV?

Remember: it's just a function of X!

Recall that 
$$\mu = E[X] = \sum_{\text{all } x} xp(x)$$

$$Var(X) = E[(X - \mu)^2] = \sum_{\text{all } x} (x - \mu)^2 p(x)$$

#### Shortcut Formula For Variance

This is *not* the definition, it's a shortcut for doing calculations:

$$Var(X) = E[(X - \mu)^2] = E[X^2] - (E[X])^2$$

We'll prove this in an upcoming lecture.

# Example: The Shortcut Formula



Let  $X \sim \text{Bernoulli}(1/2)$ . Calculate Var(X).

$$E[X] = 0 \times 1/2 + 1 \times 1/2 = 1/2$$
  
 $E[X^2] = 0^2 \times 1/2 + 1^2 \times 1/2 = 1/2$ 

$$E[X^2] - (E[X])^2 = 1/2 - (1/2)^2 = 1/4$$

#### Variance of Bernoulli RV – via the Shortcut Formula

Step 
$$1 - E[X]$$
  
 $\mu = E[X] = \sum_{x \in \{0,1\}} p(x) \cdot x = (1 - p) \cdot 0 + p \cdot 1 = p$   
Step  $2 - E[X^2]$ 

$$E[X^2] = \sum_{x \in \{0,1\}} x^2 p(x) = 0^2 (1-p) + 1^2 p = p$$

Step 3 - Combine with Shortcut Formula

$$\sigma^2 = Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1-p)$$

#### Variance of a Linear Transformation

$$Var(a + bX) = E \left[ \{ (a + bX) - E(a + bX) \}^{2} \right]$$

$$= E \left[ \{ (a + bX) - (a + bE[X]) \}^{2} \right]$$

$$= E \left[ (bX - bE[X])^{2} \right]$$

$$= E[b^{2}(X - E[X])^{2}]$$

$$= b^{2}E[(X - E[X])^{2}]$$

$$= b^{2}Var(X) = b^{2}\sigma^{2}$$

The key point here is that variance is defined in terms of expectation and expectation is linear.

#### Variance and SD are NOT Linear

$$Var(a+bX) = b^2\sigma^2$$

$$SD(a+bX) = |b|\sigma$$

These should look familiar from the related results for sample variance and std. dev. that you worked out on an earlier problem set.

#### Binomial Random Variable

Let X = the sum of n independent Bernoulli trials, each with probability of success p. Then we say that:  $X \sim \text{Binomial}(n, p)$ 

#### **Parameters**

p= probability of "success," n=# of trials

#### Support

 $\{0, 1, 2, \ldots, n\}$ 

Probability Mass Function (pmf)

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

# http://fditraglia.shinyapps.io/binom\_cdf/

Try playing around with all three sliders. If you set the second to 1 you get a Bernoulli.



# Where does the Binomial pmf come from?



#### Question

Suppose we flip a fair coin 3 times. What is the probability that we get exactly 2 heads?

#### Answer

Three basic outcomes make up this event: {HHT, HTH, THH}, each has probability  $1/8 = 1/2 \times 1/2 \times 1/2$ . Basic outcomes are mutually exclusive, so sum to get 3/8 = 0.375

# Where does the Binomial pmf come from?

#### Question

Suppose we flip an *unfair* coin 3 times, where the probability of heads is 1/3. What is the probability that we get exactly 2 heads?

#### Answer

No longer true that *all* basic outcomes are equally likely, but those with exactly two heads *still are* 

$$P(HHT) = (1/3)^2(1 - 1/3) = 2/27$$
  
 $P(THH) = 2/27$   
 $P(HTH) = 2/27$ 

Summing gives  $2/9 \approx 0.22$ 

# Where does the Binomial pmf come from?

Starting to see a pattern?

Suppose we flip an unfair coin 4 times, where the probability of heads is 1/3. What is the probability that we get exactly 2 heads?

Six equally likely, mutually exclusive basic outcomes make up this event:

$$\binom{4}{2}(1/3)^2(2/3)^2$$

# R Commands for Binomial(n, p) RV

```
Probability Mass Function
dbinom(x, size, prob), where size is n and prob is p
Cumulative Distribution Function
pbinom(q, size, prob), where q is x_0, size is n and prob is p
Make Random Draws
rbinom(n, size, prob), where n is the number of draws, size
is n and prob is p
```

```
x <- 0:10
px <- dbinom(x, size = 10, prob = 0.3)
x0 <- seq(from = -2, to = 12, by = 0.01)
Fx <- pbinom(x0, size = 10, prob = 0.3)
par(mfrow = c(1, 2))
plot(x, px, type = 'h', ylab = 'p(x)', main = 'Binom(10, 0.3) pmf')
plot(x0, Fx, type = 'l', ylab = 'F(x)', main = 'Binom(10, 0.3) CDF')</pre>
```



# 

#### Binom(10, 0.3) CDF



Lecture 9 - Slide 16



# Binomial(10, 0.3) pmf

Х

Econ 103

# Lecture #10 - Discrete RVs IV

Joint vs. Marginal Probability Mass Functions

Conditional Probability Mass Function & Independence

Expectation of a Function of Two Discrete RVs, Covariance

Linearity of Expectation Reprise, Properties of Binomial RV

# Multiple RVs at once - Definition of Joint PMF

Let X and Y be discrete random variables. The joint probability mass function  $p_{XY}(x,y)$  gives the probability of each pair of realizations (x,y) in the support:

$$p_{XY}(x,y) = P(X = x \cap Y = y)$$

# Example: Joint PMF in Tabular Form

|   |   |     | Y   |     |
|---|---|-----|-----|-----|
|   |   | 1   | 2   | 3   |
| X | 0 | 1/8 | 0   | 0   |
|   | 1 | 0   | 1/4 | 1/8 |
|   | 2 | 0   | 1/4 | 1/8 |
|   | 3 | 1/8 | 0   | 0   |

# Plot of Joint PMF



# What is $p_{XY}(1,2)$ ?



|   |   |     | Y   |     |
|---|---|-----|-----|-----|
|   |   | 1   | 2   | 3   |
| X | 0 | 1/8 | 0   | 0   |
|   | 1 | 0   | 1/4 | 1/8 |
|   | 2 | 0   | 1/4 | 1/8 |
|   | 3 | 1/8 | 0   | 0   |

$$p_{XY}(1,2) = P(X = 1 \cap Y = 2) = \frac{1}{4}$$
  
 $p_{XY}(2,1) = P(X = 2 \cap Y = 1) = 0$ 

# Properties of Joint PMF

- 1.  $0 \le p_{XY}(x, y) \le 1$  for any pair (x, y)
- 2. The sum of  $p_{XY}(x, y)$  over all pairs (x, y) in the support is 1:

$$\sum_{x}\sum_{y}p(x,y)=1$$

# Joint versus Marginal PMFs

#### Joint PMF

$$p_{XY}(x,y) = P(X = x \cap Y = y)$$

#### Marginal PMFs

$$p_X(x) = P(X = x)$$

$$p_Y(y) = P(Y = y)$$

You can't calculate a joint pmf from marginals alone but you *can* calculate marginals from the joint!

# Marginals from Joint

$$p_X(x) = \sum_{\mathsf{all } y} p_{XY}(x, y)$$

$$p_Y(y) = \sum_{\mathsf{all}\ x} p_{XY}(x,y)$$

Why?

$$p_Y(y) = P(Y = y) = P\left(\bigcup_{\text{all } x} \{X = x \cap Y = y\}\right)$$
$$= \sum_{\text{all } x} P(X = x \cap Y = y) = \sum_{\text{all } x} p_{XY}(x, y)$$

To get the marginals sum "into the margins" of the table.

|   |   |     | Y   |     |     |
|---|---|-----|-----|-----|-----|
|   |   | 1   | 2   | 3   |     |
| X | 0 | 1/8 | 0   | 0   | 1/8 |
|   | 1 | 0   | 1/4 | 1/8 | 3/8 |
|   | 2 | 0   | 1/4 | 1/8 | 3/8 |
|   | 3 | 1/8 | 0   | 0   | 1/8 |
|   |   |     |     |     | 1   |

$$p_X(0) = 1/8 + 0 + 0 = 1/8$$
  
 $p_X(1) = 0 + 1/4 + 1/8 = 3/8$   
 $p_X(2) = 0 + 1/4 + 1/8 = 3/8$   
 $p_X(3) = 1/8 + 0 + 0 = 1/8$ 

# What is $p_Y(2)$ ?



|   |   |     | Y   |     |   |
|---|---|-----|-----|-----|---|
|   |   | 1   | 2   | 3   |   |
| V | 0 | 1/8 | 0   | 0   |   |
|   | 1 | 0   | 1/4 | 1/8 |   |
| X | 2 | 0   | 1/4 | 1/8 |   |
|   | 3 | 1/8 | 0   | 0   |   |
|   |   | 1/4 | 1/2 | 1/4 | 1 |

$$p_Y(1) = 1/8 + 0 + 0 + 1/8 = 1/4$$
  
 $p_Y(2) = 0 + 1/4 + 1/4 + 0 = 1/2$   
 $p_Y(3) = 0 + 1/8 + 1/8 + 0 = 1/4$ 

#### Definition of Conditional PMF

How does the distribution of y change with x?

$$p_{Y|X}(y|x) = P(Y = y|X = x) = \frac{P(Y = y \cap X = x)}{P(X = x)} = \frac{p_{XY}(x, y)}{p_X(x)}$$

# Conditional PMF of Y given X = 2

|   |   |     | Y   |     |     |
|---|---|-----|-----|-----|-----|
|   |   | 1   | 2   | 3   |     |
| V | 0 | 1/8 | 0   | 0   | 1/8 |
|   | 1 | 0   | 1/4 | 1/8 | 3/8 |
| X | 2 | 0   | 1/4 | 1/8 | 3/8 |
|   | 3 | 1/8 | 0   | 0   | 1/8 |

$$p_{Y|X}(1|2) = \frac{p_{XY}(2,1)}{p_X(2)} = \frac{0}{3/8} = 0$$

$$p_{Y|X}(2|2) = \frac{p_{XY}(2,2)}{p_X(2)} = \frac{1/4}{3/8} = \frac{2}{3}$$

$$p_{Y|X}(3|2) = \frac{p_{XY}(2,3)}{p_X(2)} = \frac{1/8}{3/8} = \frac{1}{3}$$

# What is $p_{X|Y}(1|2)$ ?



|   |   |     | Y   |     |  |
|---|---|-----|-----|-----|--|
|   |   | 1   | 2   | 3   |  |
| X | 0 | 1/8 | 0   | 0   |  |
|   | 1 | 0   | 1/4 | 1/8 |  |
| ^ | 2 | 0   | 1/4 | 1/8 |  |
|   | 3 | 1/8 | 0   | 0   |  |
|   |   | 1/4 | 1/2 | 1/4 |  |

$$p_{X|Y}(1|2) = \frac{p_{XY}(1,2)}{p_{Y}(2)} = \frac{1/4}{1/2} = \frac{1/2}{1/2}$$

Similarly:

$$p_{X|Y}(0|2) = 0$$
,  $p_{X|Y}(2|2) = 1/2$ ,  $p_{X|Y}(3|2) = 0$ 

# Independent RVs: Joint Equals Product of Marginals

#### Definition

Two discrete RVs are independent if and only if

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$

for all pairs (x, y) in the support.

#### **Equivalent Definition**

$$p_{Y|X}(y|x) = p_Y(y) \text{ and } p_{X|Y}(x|y) = p_X(x)$$

for all pairs (x, y) in the support.

# Are X and Y Independent?



$$(A = YES, B = NO)$$

|     |   |     | Y   |     |     |
|-----|---|-----|-----|-----|-----|
|     |   | 1   | 2   | 3   |     |
|     | 0 | 1/8 | 0   | 0   | 1/8 |
| \ \ | 1 | 0   | 1/4 | 1/8 | 3/8 |
| X   | 2 | 0   | 1/4 | 1/8 | 3/8 |
|     | 3 | 1/8 | 0   | 0   | 1/8 |
|     |   | 1/4 | 1/2 | 1/4 |     |

$$p_{XY}(2,1) = 0$$
  
 $p_X(2) \times p_Y(1) = (3/8) \times (1/4) \neq 0$ 

Therefore X and Y are *not* independent.

#### Expectation of Function of Two Discrete RVs

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \rho_{XY}(x,y)$$

# Some Extremely Important Examples

Same For Continuous Random Variables

Let 
$$\mu_X = E[X], \mu_Y = E[Y]$$

#### Covariance

$$\sigma_{XY} = Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

#### Correlation

$$\rho_{XY} = Corr(X, Y) = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

#### Shortcut Formula for Covariance

Much easier for calculating:

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

I'll mention this again in a few slides. . .

# Calculating Cov(X, Y)

|   |   |     | Y   |     |     |
|---|---|-----|-----|-----|-----|
|   |   | 1   | 2   | 3   |     |
| X | 0 | 1/8 | 0   | 0   | 1/8 |
|   | 1 | 0   | 1/4 | 1/8 | 3/8 |
|   | 2 | 0   | 1/4 | 1/8 | 3/8 |
|   | 3 | 1/8 | 0   | 0   | 1/8 |
|   |   | 1/4 | 1/2 | 1/4 |     |

$$E[X] = 3/8 + 2 \times 3/8 + 3 \times 1/8 = 3/2$$

$$E[Y] = 1/4 + 2 \times 1/2 + 3 \times 1/4 = 2$$

$$E[XY] = 1/4 \times (2+4) + 1/8 \times (3+6+3)$$

$$= 3$$

$$Cov(X,Y) = E[XY] - E[X]E[Y]$$

$$= 3 - 3/2 \times 2 = 0$$

$$Corr(X,Y) = Cov(X,Y)/[SD(X)SD(Y)] = 0$$

Hence, zero covariance (correlation) does not imply independence!

### Zero Covariance versus Independence

While zero covariance (correlation) *does not* imply independence, independence *does* imply zero covariance (correlation).

You will prove this in an extension problem...

## Linearity of Expectation, Again

Holds for Continuous RVs as well, but different proof.

In general  $E[g(X,Y)] \neq g(E[X],E[Y])$ . But if g is linear, then:

$$E[aX + bY + c] = aE[X] + bE[Y] + c$$

where X, Y are random variables and a, b, c are constants.

You will prove this as a review problem...

## Application: Proof of Shortcut Formula for Variance

By the Linearity of Expectation,

$$Var(X) = E[(X - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

### Expected Value of Sum = Sum of Expected Values

Repeatedly applying the linearity of expectation,

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

regardless of how the RVs  $X_1, \ldots, X_n$  are related to each other. In particular it doesn't matter if they're dependent or independent.

# Independent and Identically Distributed (iid) RVs

#### Example

 $X_1, X_2, \dots X_n \sim \text{iid Bernoulli}(p)$ 

#### Independent

Realization of one of the RVs gives no information about the others.

#### Identically Distributed

Each  $X_i$  is the same kind of RV, with the same values for any parameters. (Hence same pmf, cdf, mean, variance, etc.)

### Recall: Binomial(n, p) Random Variable

#### Definition

Sum of n independent Bernoulli RVs, each with probability of "success," i.e. 1, equal to p

#### Using Our New Notation

Let  $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p)$ ,  $Y = X_1 + X_2 + \ldots + X_n$ . Then  $Y \sim \text{Binomial}(n, p)$ .

### Expected Value of Binomial RV

Use the fact that a Binomial(n, p) RV is defined as the sum of n iid Bernoulli(p) Random Variables and the Linearity of Expectation:

$$E[Y] = E[X_1 + X_2 + ... + X_n] = E[X_1] + E[X_2] + ... + E[X_n]$$
  
=  $p + p + ... + p$   
=  $np$ 

### Variance of a Sum $\neq$ Sum of Variances!

$$Var(aX + bY) = E\left[\{(aX + bY) - E[aX + bY]\}^2\right]$$

$$\vdots$$

$$= a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

You'll fill in the missing steps as an extension problem...

Since  $\sigma_{XY} = \rho \sigma_X \sigma_Y$ , this is sometimes written as:

$$Var(aX + bY) = a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y$$

Independence 
$$\Rightarrow Var(X + Y) = Var(X) + Var(Y)$$

X and Y independent  $\Rightarrow Cov(X, Y) = 0$ . Hence:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$
  
=  $Var(X) + Var(Y)$ 

#### Also true for three or more RVs

If  $X_1, X_2, \dots, X_n$  are independent, then

$$Var(X_1 + X_2 + \dots X_n) = Var(X_1) + Var(X_2) + \dots + Var(X_n)$$

#### Crucial Distinction

#### **Expected Value**

#### Always true that

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$$

#### Variance

### Not true in general that

 $Var[X_1 + X_2 + ... + X_n] = Var[X_1] + Var[X_2] + ... + Var[X_n]$  except in the special case where  $X_1, ... X_n$  are independent (or at least uncorrelated).

#### Variance of Binomial Random Variable

#### Definition from Sequence of Bernoulli Trials

If 
$$X_1, X_2, \ldots, X_n \sim \mathsf{iid} \; \mathsf{Bernoulli}(p) \; \mathsf{then}$$
 
$$Y = X_1 + X_2 + \ldots + X_n \sim \mathsf{Binomial}(n, p)$$

#### Using Independence

$$Var[Y] = Var[X_1 + X_2 + ... + X_n]$$

$$= Var[X_1] + Var[X_2] + ... + Var[X_n]$$

$$= p(1-p) + p(1-p) + ... + p(1-p)$$

$$= np(1-p)$$

### Lecture #11 - Continuous RVs I

Introduction: Probability as Area

Probability Density Function (PDF)

Relating the PDF to the CDF

Calculating the Probability of an Interval

Calculating Expected Value for Continuous RVs

### Continuous RVs – What Changes?

- Probability Density Functions replace Probability Mass Functions
- 2. Integrals Replace Sums

Everything Else is Essentially Unchanged!

## What is the probability of "Yellow?"





### From Twister to Density – Probability as Area



For continuous RVs, probability is defined as *area under a curve*.

Zero area means zero probability!

# Probability Density Function (PDF)

For a continuous random variable X,

$$P(a \le X \le b) = \int_a^b f(x) \ dx$$

where f(x) is the probability density function for X.

#### Extremely Important

For any realization x, P(X = x) = 0 since  $\int_a^a f(x) dx = 0$ . In other words, zero area means zero probability!

### For a Continuous RV, Zero Probability $\neq$ Impossible

It is crucial to specify the support set of a continuous RV:

- ▶ Any *x* outside the support set of *X* is *impossible*.
- Any x in the support set of X is a possible outcome even though P(X = x) = 0 for all x.

There is no way around this slightly awkward situation: it is a consequence of defining probability as the *area under a curve*.

## Properties of PDFs

1.  $f(x) \ge 0$  for all x in the support of X and zero otherwise.

$$2. \int_{-\infty}^{\infty} f(x) \ dx = 1$$

Warning: f(x) is not a probability

Can have f(x) > 1 for some x as long as  $\int_{-\infty}^{\infty} f(x) dx = 1$ .

Relating the CDF to the PDF

$$F(x_0) \equiv P(X \le x_0) = \int_{-\infty}^{x_0} f(x) \ dx$$

# Example: Suppose X has Support Set [0,1]

Let f(x) = 6x(1-x) for  $x \in [0,1]$  and zero otherwise.

```
curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)')
abline(h = 1, lty = 2)
```



# Example: Suppose X has Support Set [0,1]

Let f(x) = 6x(1-x) for  $x \in [0,1]$  and zero otherwise.

#### Is f a valid PDF?

- 1. Is  $f(x) \ge 0$  for  $x \in [0,1]$  and zero otherwise?
- 2. Does the total area under f equal one?

$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{1} 6x(1-x)dx = 6 \int_{0}^{1} (x-x^{2})dx$$
$$= 6 \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right) \Big|_{0}^{1} = 1$$

So yes, f is a valid PDF  $\checkmark$ 

# Integrating a Function in R

```
pdf <- function(x) {
  6 * x * (1 - x)
}
integrate(pdf, lower = 0, upper = 1)
## 1 with absolute error < 1.1e-14</pre>
```

You can use this to check your work!

Example: f(x) = 6x(1-x) for  $x \in [0,1]$ , zero otherwise.

What is the CDF of X?

$$F(x_0) \equiv P(X \le x_0) = \int_{-\infty}^{x_0} f(x) \, dx = \int_0^{x_0} 6x(1-x) \, dx$$
$$= 6\left(\frac{x^2}{2} - \frac{x^3}{3}\right)\Big|_0^{x_0} = 3x_0^2 - 2x_0^3$$

$$F(x_0) = \begin{cases} 0, & x_0 < 0 \\ 3x_0^2 - 2x_0^3, & 0 \le x_0 \le 1 \\ 1, & x_0 > 1 \end{cases}$$

```
par(mfrow = c(1,2))
curve(6 * x * (1 - x), from = 0, to = 1, ylab = 'f(x)', main = 'PDF')
curve(3 * x^2 - 2 * x^3, from = 0, to = 1, ylab = 'F(x)', main = 'CDF')
```



```
par(mfrow = c(1,1))
```

### Relationship between PDF and CDF

Integrate PDF to get CDF

$$F(x_0) = P(X \le x_0) = \int_{-\infty}^{x_0} f(x) \ dx$$

Differentiate CDF to get PDF

$$f(x) = \frac{d}{dx}F(x)$$

This is just the First Fundamental Theorem of Calculus.

Example: f(x) = 6x(1-x) for  $x \in [0,1]$ , zero otherwise.

### Differentiate CDF to get PDF

$$f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}(3x^2 - 2x^3)$$
$$= 6x - 6x^2$$
$$= 6x(1 - x)$$

# Key Idea: Probability of an Interval for a Continuous RV

$$P(a \le X \le b) = \int_a^b f(x) \ dx = F(b) - F(a)$$

This is just the Second Fundamental Theorem of Calculus.

Example: f(x) = 6x(1-x) for  $x \in [0,1]$ , zero otherwise.

Two equivalent ways of calculating  $P(0.2 \le X \le 0.6)$ 

```
cdf <- function(x0) {</pre>
  3 * x0^2 - 2 * x0^3
cdf(0.6) - cdf(0.2)
## [1] 0.544
integrate(pdf, lower = 0.2, upper = 0.6)
## 0.544 with absolute error < 6e-15
```

Example: f(x) = 6x(1-x) for  $x \in [0,1]$ , zero otherwise.



$$P(0.2 \le X \le 0.6) = 0.544$$

### Expected Value for Continuous RVs

$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$$

Integrals Replace Sums!

### What about all those rules for expected value?

- ► The only difference between expectation for continuous versus discrete is how we do the *calculation*.
- Sum for discrete; integral for continuous.
- All properties of expected value continue to hold!
- Includes linearity, shortcut for variance, etc.

### Variance of Continuous RV

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \ dx$$

where

$$\mu = E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$

Shortcut formula still holds for continuous RVs!

$$Var(X) = E[X^2] - (E[X])^2$$

Example: f(x) = 6x(1-x) for  $x \in [0,1]$ , zero otherwise.

$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx = \int_{0}^{1} x \cdot 6x (1 - x) = 6 \left( \frac{x^{3}}{3} - \frac{x^{4}}{4} \right) \Big|_{0}^{1} = \frac{1}{2}$$

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f(x) \ dx = \int_{0}^{1} x^{2} \cdot 6x(1-x) = 6\left(\frac{x^{4}}{4} - \frac{x^{5}}{5}\right)\Big|_{0}^{1} = \frac{3}{10}$$

$$Var(X) = E[X^2] - (E[X])^2 = \frac{3}{10} - (\frac{1}{2})^2 = 1/20$$

Complete the algebra at home and check using integrate in R.

## Simulating a Beta(2,2) Random Variable

Our example from above is a special case of the *Beta distribution*.

The command rbeta(n, 2, 2) makes n draws for this RV. These simulations agree with our calculations from above:

```
set.seed(12345)
sims <- rbeta(10000, 2, 2)
mean(sims)
## [1] 0.5007002
var(sims)
## [1] 0.05012776
```

# Simulating a Beta(2,2) Random Variable

```
mean(sims^2)
## [1] 0.3008234
hist(sims, freq = FALSE)
```





#### The Uniform Random Variable

Several of your review questions along with one of your extension questions will involve the so-called *Uniform Random Variable*:

Uniform(0,1) Random Variable

f(x) = 1 for  $x \in [0, 1]$ , zero otherwise.

Uniform(a,b) Random Variable

f(x) = 1/(b-a) for  $x \in [a, b]$ , zero otherwise.

Simulating from a Uniform RV

runif(n, a, b) makes n draws from a Uniform(a, b) RV.

### Simulating Uniform Random Variables

```
sims1 <- runif(10000, 0, 1)
sims2 <- runif(10000, -1, 2)
par(mfrow = c(1, 2))
hist(sims1, freq = FALSE)
hist(sims2, freq = FALSE)</pre>
```

#### Histogram of sims1



#### Histogram of sims2



### We don't have time to cover these in Econ 103:

### Joint Density

$$P(a \le X \le b \cap c \le Y \le d) = \int_{c}^{d} \int_{a}^{b} f(x, y) \ dxdy$$

### Marginal Densities

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \ dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \ dx$$

Independence in Terms of Joint and Marginal Densities

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

### Conditional Density

$$f_{Y|X} = f_{XY}(x,y)/f_X(x)$$

#### So where does that leave us?

#### What We've Accomplished

We've covered all the basic properties of RVs on this Handout.

#### Where are we headed next?

Next up is the most important RV of all: the normal RV. After that it's time to do some statistics!

### How should you be studying?

If you *master* the material on RVs (both continuous and discrete) and in particular the normal RV the rest of the semester will seem easy. If you don't, you're in for a rough time...