SENG 696 Agent-Based Software Engineering

Multi-Agent Daily Planning System (MADPS)

Report 1B GAIA Design

Ali Mohammadi Ruzbahani [30261140], Shuvam Agarwala [30290444]

Course Agent-Based Software Engineering (SENG 696)

Instructor: Professor Behrouz Far

Date: October 8, 2025

Contents

1	Me	thodology & Overview
	1.1	Design Objectives
2	Goa	als & Traceability
	2.1	Goal Set
	2.2	$Goals \rightarrow Roles \rightarrow Services$ (Traceability)
	2.3	Acceptance Criteria
3	Rol	es Model
	3.1	Roles Table (Updated)
4	Age	ent System Architecture
	4.1	Component Diagram
5	Inte	eraction Model
	5.1	Protocol Specification (FIPA-style)
	5.2	Message Schema (Headers/Body)
	5.3	Message Sequence Charts
6	PA.	A Algorithms & Behaviour 11
	6.1	Planning/Replanning Flowchart
	6.2	PAA Statechart
	6.3	Agent Workflow (End-to-End)
	6.4	Fitness Function & Local Repair
7	Ser	vices Model 14
8	Dat	a Specification 15
	8.1	Data Dictionary
	8.2	E–R Sketch
9	Qua	ality Attributes & Risks
	9.1	NFR Scenarios

10 Acquaintance Model & Summary	17
10.1 Acquaintance Model	17
10.2 Summary	17

List of Figures

4.1	High-level component/agent architecture	8
5.1	Plan request protocol	10
5.2	Disruption handling protocol	10
6.1	PAA planning and re-planning flow	11
6.2	PAA behavioural statechart	12
6.3	Agent workflow from task intake to plan commit	12
8.1	E–B sketch for MAPS storage.	15

List of Tables

3.1	Table 3.1: Roles Table (updated with Permissions, Knowledge, and I/O &	
	KPIs)	7

1. Methodology & Overview

We adopt the **GAIA** methodology to specify: goals, roles, interactions, agent model, services model, acquaintance model, and internal architectures. The design targets a single-user daily planning MAS with three core agents: *UserProfileAgent (UPA)*, *TaskManagementAgent (TMA)*, and the merged *Planning & Adaptation Agent (PAA)*.

1.1 Design Objectives

- Produce feasible, high-quality schedules under deadlines, dependencies, and availability.
- Re-plan rapidly on disruptions while minimizing schedule churn.
- Learn user-specific energy curves and preference weights to improve fit.

2. Goals & Traceability

2.1 Goal Set

- G1 Maximize priority satisfaction under constraints.
- G2 Minimize re-plan latency and plan churn after disruptions.
- G3 Personalize plans using learned energy/pref models.

2.2 Goals \rightarrow Roles \rightarrow Services (Traceability)

Goal	Primary Role(s)	Key Services	
G1	PAA, TMA	GeneratePlan, ValidateConstraints, CommitSchedule	
G2	PAA	RePlanFast (local repair), GlobalOptimize (GA), DeltaPropose	
G3	UPA, PAA	LearnPreferences, ForecastEnergy, Plan-WithEnergy	

2.3 Acceptance Criteria

- Initial plan for a typical day (\leq 40 tasks) in \leq 2s; local re-plan p50 \leq 150ms; p95 \leq 500ms.
- No hard-constraint violations (deadlines, double booking); conflicts resolved before commit.
- Energy alignment score improves week-over-week (monotone non-decreasing median).

3. Roles Model

3.1 Roles Table (Updated)

Role	Responsibilities (Liveness / Safety)	Permissions	Knowledge	I/O & KPIs
User Profile Agent (UPA)	Liveness: $(ReceiveEvents \cdot Update \cdot PublishForecast)^{\omega}$ Safety: Forecast $\in [0,1]$; no raw PII exposure.	Read event stream; write model param- eters; answer forecast queries.	Energy curve parameters; preference weights; feed- back history.	In: events, feedback. Out: energy_curve, weights. KPIs: MAE of energy forecast, feedback acceptance rate.
Task Management Agent (TMA)	Liveness: $(Validate \ Version \ Safety: DAG only; immutable IDs.$	Full CRUD on tasks; pub- lish versioned graphs; validate dependencies.	Task DAG; critical path; effort/priority metadata.	In: task CRUD. Out: task_graph (ver). KPIs: validation error rate, time-to-graph.
Planning & Adaptation Agent (PAA)	Liveness: InitPlan (Observe RePlan)*. Safety: respect hard constraints; no double booking.	Read forecast- s/graphs; write schedule store; propose/com- mit via UI.	Constraint set; schedule model; scoring weights; churn threshold θ .	In: plan request, disruption events. Out: schedule, delta, rationale. KPIs: plan latency (p50/p95), violations=0, churn $\leq \theta$.

Table 3.1: Table 3.1: Roles Table (updated with Permissions, Knowledge, and I/O & KPIs).

4. Agent System Architecture

4.1 Component Diagram

Figure 4.1: High-level component/agent architecture.

5. Interaction Model

5.1 Protocol Specification (FIPA-style)

Protocol	Performatives	Pre/Post Conditions	Timeout/Retry
PlanRequest	REQUEST, QUERY,	Pre: Task graph version exists;	2s / 1 retry
	INFORM, PRO-	forecast ready or default. Post:	
	POSE, ACCEPT /	committed schedule or rejection.	
	REJECT		
Disruption Han- INFORM, PRO-		Pre: Current schedule exists. Post:	1s / 2 retries
dling	POSE, ACCEPT	updated schedule (delta) commit-	
		ted.	
FeedbackLoop	INFORM	Pre: Feedback payload valid. Post:	async
		model weights updated; optional	
		forecast refresh.	

5.2 Message Schema (Headers/Body)

Header Fields	performative,	topic,	conversation_id,	correlation_id,
	timestamp			
Body (JSON)	$\verb"type", \verb"payload" (e$.g., task_g	graph, energy_curve, so	chedule, disruption)

5.3 Message Sequence Charts

MS1: Plan Request

MS2: Disruption Handling

Figure 5.1: Plan request protocol.

Figure 5.2: Disruption handling protocol.

6. PAA Algorithms & Behaviour

6.1 Planning/Replanning Flowchart

Figure 6.1: PAA planning and re-planning flow.

6.2 PAA Statechart

Figure 6.2: PAA behavioural statechart.

6.3 Agent Workflow (End-to-End)

Figure 6.3: Agent workflow from task intake to plan commit.

6.4 Fitness Function & Local Repair

Fitness Components

Component	Weight Range	Notes
Priority Satisfaction	$w_p \in [0.3, 0.6]$	Task importance, deadlines, criticality path
Energy Alignment	$w_e \in [0.2, 0.5]$	Match energy curve to task difficulty
Travel/Transition	$w_t \in [0.0, 0.2]$	Minimize context switches/travel time
Penalty		
Constraint Penalty	$w_c \in [0.3, 0.7]$	Hard constraints get large negative penalties

Local Repair (pseudo-code)

Listing 6.1: Greedy local repair at disruption

```
def local_repair(schedule, disruption):
    impacted = find_impacted_blocks(schedule, disruption)
    for block in sort_by_urgency(impacted):
        slots = enumerate_feasible_slots(schedule, block.task)
        best = argmax(slots, key=lambda s: score_delta(schedule, block, s))
        if best and respects_hard_constraints(best):
            schedule = place(schedule, block, best)
        else:
            return escalate_to_global(schedule, impacted)
        return schedule
```

7. Services Model

Service	Inputs	Pre-Conditions	Post-Conditions / Failure Modes
GeneratePlan	task_graph, energy_forecast, availability	Valid DAG; availability defined	Schedule persisted; conflicts=0. Fail: invalid graph, timeout.
RePlanFast	disruption_event	Current schedule exists	Delta applied; churn $\leq \theta$. Fail: escalate to GA.
GlobalOptimize	task_graph, energy_forecast	Impact is global	New schedule proposed. Fail: timeout \Rightarrow fallback template.
LearnPreferences	events, feedback	Data window available	Updated weights; monotonic constraints enforced.

8. Data Specification

8.1 Data Dictionary

Entity	Fields	Key
Task	id, title, deadline, effort, priority, status, depends_on (nullable)	pk:id
ScheduleBlock	id, task_id, start, end, confidence	pk:id, fk:task_id
Preference	id, key, value (float), updated_at	pk:id
Event	id, ts, type, payload(json)	pk:id

8.2 E-R Sketch

Figure 8.1: E-R sketch for MAPS storage.

9. Quality Attributes & Risks

9.1 NFR Scenarios

Attribute	Scenario	Target
Performance	Initial plan for ≤ 40 tasks	$\leq 2s$
Performance	Local re-plan after single overrun	p50
		\leq 150ms;
		p95
		$\leq 500 \mathrm{ms}$
Reliability	Crash during planning; on restart	Recover last
		committed
		schedule
Privacy	All data local; encrypted at rest	AES-256;
		minimal
		payloads
		over bus

10. Acquaintance Model & Summary

10.1 Acquaintance Model

 $UI \leftrightarrow PAA$ (plan lifecycle), $UI \leftrightarrow TMA$ (task CRUD), $UI \leftrightarrow UPA$ (feedback), $PAA \leftrightarrow UPA$ (forecasts), $PAA \leftrightarrow TMA$ (graphs), $All \rightarrow Logger$.

10.2 Summary

This extended GAIA design provides traceability from goals to roles and services, formalizes protocols and message schemas, details PAA behaviour via flowchart and statechart, and adds an end-to-end agent workflow for implementation (SPADE/JADE) and assessment.