

Two Way ANOVA

Evaluation Methods & Statistics-Lecture 11

Benjamin Cowan & Andrew Howes

Research Example (Last Time)

- Consequences of a secondary task on driving
 - Texting
 - Talking on phone
 - Control (no secondary task)

Research Example (This week)

Consequences of a secondary task on driving

- Texting
- Talking on phone
- Control (no secondary task)

Gender effect

- Male
- Female

What are our DV and IVs?

- IV 1- Secondary Driving Task
 - Level 1- Control Group (No secondary task)
 - Level 2- Texting
 - Level 3- Talking
- IV 2- Participant Gender
 - Male
 - Female

DV-Driving score

How would we analyse the data?

- We could do lots of t-tests
 - Control to Texting for Males
 - Control to Talking for Males
 - Talking to Texting for Males
 - Control to Texting for Females
 - Control to Talking for Females
 - Talking to Texting for Females
 - Control (Males) to Control (Females) etc.....

■ This would inflate our Type I error rate

Factorial ANOVA- The Idea

 One Way ANOVA cannot deal with two factors (i.e. two Independent variables)

We need to use a different type of ANOVA if we have two independent variables

Types of Factorial ANOVA

- Independent factorial design
 - All independent variables are between subjects
- Repeated Measures
 - All independent variables are within subjects
 - E.g. Measuring satisfaction pre and post (IV 1) 3 different interfaces (IV 2) all experienced one after another
- Mixed Design
 - Some independent variables are within subjects and some are between subjects
 - Gender (IV1) on pre and post scores (IV2)

Types of Factorial ANOVA

What type of ANOVA are we going to use in our example?

Types of Factorial ANOVA

What type of ANOVA are we going to use in our example?

- Independent factorial design
 - All independent variables are between subjects

ANOVA Names

- Number of IV's
- Number of levels in IV's
- Experiment design used to gather data
 - Independent (Between subjects)
 - Repeated Measures (Within subjects)

If we had:

- IV 1- Gender (2 levels- Between)
- IV2- Secondary Task (2 levels- Between)

2x2 Independent ANOVA

- or-

Two Way Independent ANOVA

If we had:

- IV 1- Gender (2 levels- Between Subjects)
- IV2- Secondary Task (3 levels- Between Subjects)

2x3 Independent ANOVA

- or-

Two Way Independent ANOVA

If we had:

- IV 1- Gender (2 levels) (Between Subject)
- IV2- Secondary Task (3 levels) (Within Subjects)

2x3 Mixed Design ANOVA

-or-

Two Way Mixed Design ANOVA

The Key (again): ANOVA & F Ratio

F ratio is the ratio of explained (that accounted for by the model we are proposing) to unexplained variation

■ This is calculated using the **Mean Squares**

What ANOVA is doing

Step 1- Total Sum of Squares

- The total amount of variation in our data
- This should look familiar (see Lecture 6)

$$SS_T = \sum \left(x_i - \overline{x}_{grand}\right)^2$$

Step 2- Model Sum of Squares

- We now need to know how much variation our model can explain
- How much the total variation can be explained due to data points coming from different groups in "the perfect model"
- $lack n_k$ is the number of people in that condition
- Sum all levels of IVs together

$$SS_M = \sum n_k (\bar{x}_k - \bar{x}_{grand})^2$$

Scatterplot of driving scores

Step 3- Main Effect of Gender

- We group data by levels of Gender alone
- How much the total variation can be explained due to data points coming from different gender groups only in "the perfect model"
- $m{n}_k$ is the number of people in that condition
- Sum both levels of IV together

$$SS_1 = \sum n_k (\overline{x}_k - \overline{x}_{grand})^2$$

Scatterplot of driving scores

Step 4- Main Effect of Task

- We group data by levels of Task alone
- How much the total variation can be explained due to data points coming from different Task conditions alone in "the perfect model"
- $m{n}_k$ is the number of people in that condition
- Sum levels of IV together

$$SS_2 = \sum n_k (\overline{x}_k - \overline{x}_{grand})^2$$

Scatterplot of driving scores for control (red), talking (blue) and text (green) conditions

Step 5- Interaction (Gender *Task)

- SS1, SS2, SS1*2
- Therefore easiest way is to take away SS1 and SS2 from SSM

$$SS_{1*2} = SS_M - SS_1 - SS_2$$

Step 6- Residual Sum of Squares

How much of the variation cannot be explained by the model i.e. what error is there in the model prediction?

■ Easy way to calculate: $SS_R = SS_T - SS_M$

Degrees of Freedom for each SS

- Degrees of Freedom for SS_T (dfT).
 - N-1 = 48-1 = 47
- Degrees of Freedom for $SS_M(dfM)$:
 - Gender: Number of Conditions (k) -1 = 1
 - Task: Number of Conditions (k) -1 = 2
 - Gender*Task= df Gender*df Task = 2
- Degrees of Freedom for $SS_R(dfR)$:
 - (N-1)*Number of groups = (8-1)*6= 42

F Ratio

F Ratio gained for each effect (IV) and the interaction

- Mean Squares model (MS_M):
 - \blacksquare SS_M/df_M
 - This is done for main effects SS and interaction SS
- Mean Squares residual (error) (MS_R) :
 - \blacksquare SS_R/df_R

F Ratio

Mean Square Model (MS_M)

Mean Square Residual (MS_R)

Variation explained by our model

Variation unexplained by our model

F Distribution

 F Distribution for specific pair of degrees of freedom ■ Table of Critical Values

Figure K.1: The F distribution

Critical values of F for the 0.05 significance level:

	1	2	3	4	5	6	7
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29
10	4.97	4.10	3.71	3.48	3.33	3.22	3.14
- 11	4.84	3.98	3.59	3.36	3.20	3.10	3.01
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91

Output in R

```
> summary(analysis)
                Df Sum Sq Mean Sq F value Pr(>F)
                   5.39
                          5.387
                                  4.409 0.04180 *
gender
condition
                2 16.67
                          8.337
                                  6.823 0.00272 **
                          8.453
                                  6.918 0.00253 **
gender:condition 2 16.91
Residuals
                42 51.32
                          1.222
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```


Significant effect of an IV irrespective of the other IV

 Significant effect of gender on driving score irrespective of the task completed

Output in R

```
> summary(analysis)
                Df Sum Sq Mean Sq F value Pr(>F)
                   5.39
                          5.387
                                  4.409 0.04180 *
gender
condition
                2 16.67
                          8.337
                                  6.823 0.00272 **
                          8.453
                                  6.918 0.00253 **
gender:condition 2 16.91
Residuals
                42 51.32
                          1.222
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Interactions

- The effect of secondary task on score is not that same for male and females
- interaction effect
- Females have a higher score in the texting condition compared to males
- Interactions supersedes main effects

Omnibus test & Post Hoc

- ANOVA is omnibus test
- How do they break down?
 - Male vs Female ? (Main Effect)
 - Control vs Text, Control vs Talk, Talk vs Text ? (Main effect of Task)
 - Male:Control vs Female Control etc (interaction)
- Again we need post hoc tests (See last lecture)

Reporting ANOVA

- Fratio
- Degrees of Freedom (dof_M, dof_R)
- P value
 - F(2, 42)= 5.097, p<0.05

Output in R

```
> summary(analysis)
                Df Sum Sq Mean Sq F value Pr(>F)
                   5.39
                          5.387
                                  4.409 0.04180 *
gender
condition
                2 16.67
                          8.337
                                  6.823 0.00272 **
                          8.453
                                  6.918 0.00253 **
gender:condition 2 16.91
Residuals
                42 51.32
                          1.222
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Reporting ANOVA

e.g. Main effect of Gender

■ F(1, 42)= 4.409, p<0.05

Reading

■ Field (2012) Discovering Statistics Using R, Chapters 12-14