## 1 Congestion control

Consider the network presented in Figure 1. We have seven sources: one source with rate  $x_1$ , two sources with rate  $x_2$ , and four sources with rate  $x_3$ . Each of the links has the same capacity C.

- 1. Compute  $x_i$  assuming that the rates are distributed according to the max-min fairness.
- 2. Compute  $x_i$  assuming that the rates are distributed according to the proportional fairness.

Figure 1: Example network with flows



Solution.

1. max-min fairness:

$$x_1 = C/5, 2x_2 = C - C/5 = 4C/5, x_2 = 2C/5, x_3 = C/5$$

2. proportional fairness:

$$x_1 + 2x_2 = C$$
,  $x_1 + 4x_3 = C$ , so we can maximize the function:  $f(x_1) = ln(x_1) + 2ln((C - x_1)/2) + 4ln((C - x_1)/4)$  and we obtain:

$$x_1 = C/7, x_2 = 3C/7, x_3 = 3C/14$$