Design of Integrated Microrobotic Fish Presentation 5 - COMSOL Simulation (3D Partial)

Yihua Liu

UM-SJTU Joint Institute

March 22, 2021

1/11

Contents

① COMSOL Simulation (3D)

COMSOL Simulation (3D)

Parameters

Name	Expression	Value	Description	
sigma_KCL	2.1*10^(-3)[S/m]	0.0021 S/m	Conductivity of	
Sigilia_INCL			the KCL solution	
c0	1.4[mol/m^3]	1.4 mol/m^3	Initial concentration	
eps_r	80.2	80.2	Relative permittivity	
			of the fluid	
t	0[s]	0 s	Start time	
V0	0.1[V]	0.1 V	Applied voltage	
omogo	2*pi[rad]*1000[Hz]	6283.2 Hz	Frequency of the	
omega		0203.2 HZ	applied potential	
D	1e-11[m^2/s]	1E-11 m^/2s	Sample ion diffusivity	
zeta	-0.1[V]	-0.1 V	Zeta potential	
U0	0.001[mm/s]	1E-6 m/s	Average velocity	

Geometry

Material

KCL [liquid] (mat1)

**	Property	Variable	Value	Unit
~	Electrical conductivity	sigma	sigma_K	S/m
~	Dynamic viscosity	mu	eta(T[1/	Pa∙s
~	Relative permittivity	epsilo	eps_r	1
	Thermal conductivity	k_iso ;	k_liquid	W/(m·
	Resistivity	res_is	res(T[1/	Ω·m
	Coefficient of thermal expansi	alpha	(alpha_li	1/K
	Heat capacity at constant pres	Ср	C_liquid	J/(kg·K)
	Density	rho	rho_liqu	kg/m³
	Tangent coefficient of thermal	alphat	CTE_liqu	1/K
	Thermal strain	dL_iso	(dL_liqui	1

Gold [solid] (mat2)

**	Property	Variable	Value	Unit
	Thermal conductivity	k_iso ;	k_solid	W/(m·
	Resistivity	res_is	res_soli	Ω·m
	Coefficient of thermal expansi	alpha	(alpha(T	1/K
	Heat capacity at constant pres	Ср	C_solid	J/(kg·K)
	Electrical conductivity	sigma	sigma_s	S/m
	Density	rho	rho(T[1/	kg/m³
	Tangent coefficient of thermal	alphat	CTE(T[1	1/K
	Thermal strain	dL_iso	(dL(T[1/	1
	Young's modulus	E	E(T[1/K]	Pa
	Poisson's ratio	nu	nu(T[1/K])	1
	Bulk modulus	K	kappa(T	N/m²

Electric Currents ec

small electrodes

large electrodes

Transport of Diluted Species tds

Concentration 1

Outflow 1

Creeping Flow spf

Inlet 1

Outlet 1

Mesh

Free Tetrahedral 1

Result

Thanks!