Discrete Distributions: Bernoulli Distribution

STAT 330 - Iowa State University

Outline

In this lecture, we will overview the common named discrete distributions used in practice. We first look at the Bernoulli distribution.

Discrete Distributions

Discrete Distributions

Common distributions for discrete random variables

Bernoulli distribution

$$X \sim Bern(p)$$

• Binomial distribution

$$X \sim Bin(n, p)$$

Geometric distribution

$$X \sim Geo(p)$$

Poisson distribution

$$X \sim Pois(\lambda)$$

We will also discuss *joint distributions* for 2 or more discrete random variables

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Experiment: Random experiment with only 2 outcomes:

- Success (S)
- Failure (F)

where
$$\mathbb{P}(\mathsf{Success}) = \mathbb{P}(\mathsf{S}) = p$$
 for $p \in [0,1]$

Example 1: (Bernoulli experiments):

- 1. Flip a coin: S = heads, F = tails
- 2. Watch stock prices: S = increase, F = decrease
- 3. Cancer screening: S = cancer, F = no cancer

Working with Bernoulli Random Variable

Suppose we have a situation that matches a Bernoulli experiment (only 2 outcomes: "success" and "failure").

We obtain the outcome "success" with probability p

When random variable X follows a *Bernoulli Distribution*, we write

$$X \sim Bern(p)$$

Define a random variable X

$$X = \begin{cases} 1 & \text{Success (S)} \\ 0 & \text{Failure (F)} \end{cases}$$

Bernoulli Random Variable Cont.

Probability Mass Function (pmf)

1.
$$Im(X) = \{0, 1\}$$

2. $\mathbb{P}(X = 1) = \mathbb{P}(S) = p$
 $\mathbb{P}(X = 0) = \mathbb{P}(F) = 1 - p$

The pmf can be written in tabular form:

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline p_X(x) & 1-p & p \end{array}$$

The pmf can be written as a function:

$$p_X(x) = \begin{cases} p^x (1-p)^{1-x} & x \in \{0,1\} \\ 0 & \text{otherwise} \end{cases}$$

Typically, we use the above functional form to describe the *probability mass function (pmf)* of Bernoulli random variable.

Bernoulli Random Variable Cont.

• Cumulative distribution function (cdf)

$$F_X(t) = \mathbb{P}(X \leq t) = \left\{egin{array}{ll} 0 & t < 0 \ 1-p & 0 \leq t < 1 \ 1 & t \geq 1 \end{array}
ight.$$

• Expected Value: $\mathbb{E}(X) = p$

$$\mathbb{E}(X) = \sum_{x \in \{0,1\}} x \mathbb{P}(X = x) = 0(1 - p) + 1(p) = p$$

• Variance: Var(X) = p(1-p)

Recap

Students should now be aware that there are many named distributions that are used for various scenarios. Students should now be familiar with the Bernoulli distribution.