Lista 4

Q1. Relação de incerteza generalizada

Sejam \hat{A} e \hat{B} dois operadores que correspondem a observáveis físicos cujas incertezas são indicadas por ΔA e ΔB . Demonstre que sempre vale a relação:

$$\Delta A \, \Delta B \ge \frac{1}{2i} \left\langle [\hat{A}, \hat{B}] \right\rangle,$$

onde $[\hat{A},\hat{B}]$ é o comutador desses operadores. Use esse resultado para verificar a conhecida relação do princípio de incerteza de Heisenberg para posição e momentum.

Q2. Operadores de projeção

 $\overline{\mathsf{O}}$ conjunto $\{\ket{\Phi_1},\ket{\Phi_2}\}$ é uma base ortonormal completa e o operador \hat{A} é definido por:

$$\hat{A} = 2 |\Phi_1\rangle\langle\Phi_1| - i |\Phi_1\rangle\langle\Phi_2| + i |\Phi_2\rangle\langle\Phi_1| + 2 |\Phi_2\rangle\langle\Phi_2|.$$

- a) Diga se \hat{A} é um operador projetor, justificando sua resposta. Dica: confira a seção 5.9 das notas de aula online para rever as propriedades do projetor.
- b) Calcule Tr(A) e $Tr(A^2)$.

Q3. Funções de operadores

Dado que $[\hat{A}, \hat{B}^n] = n[\hat{A}, \hat{B}]\hat{B}^{n-1}$, mostre que $[\hat{A}, F(\hat{B})] = [\hat{A}, \hat{B}]F'(\hat{B})$, onde $F'(\hat{B})$ é a a derivada de F com respeito a \hat{B} .

Q4. Fase global e equivalência de estados

Considere dois kets $|\psi\rangle$ e $|\psi\rangle'$, tal que $|\psi\rangle'=e^{i\theta}\,|\psi\rangle$, onde θ é um número real qualquer.

- a) Mostre que se $\left|\psi\right\rangle$ é normalizado então $\left|\psi\right\rangle'$ também será.
- b) Prove que as predições de qualquer medida física são idênticas para os dois vetores, isto é, que ambos representam o mesmo estado físico.

Q5. Autofunções em espaços vetoriais contínuos

 $\overline{\text{Considere um operador } \hat{O} = -i rac{d}{d arphi}}$ onde arphi é o ângulo azimutal em coordenadas esféricas.

- a) Ache as autofunções $f(\varphi)$ e autovalores λ sujeitos ao vínculo de que $f(0)=f(2\pi)=1/\sqrt{2\pi}$ e que os autovalores devem ser positivos.
- b) Considerando que $\hat{\varphi}$ age como um operador de posição, i.e. $\hat{\varphi}f=\varphi f$, ache $[\hat{O},\hat{\varphi}]$.

1

c) Determine se \hat{O} é Hermetiano.

S.R.Muniz

Q6. Autovetores de posição e momento linear no espaço de Hilbert Sejam $\mathbf{r}=(x,y,z)$ e $\mathbf{p}=(p_x,p_y,p_z)$ os vetores de posição e momento linear de uma

Sejam $\mathbf{r}=(x,y,z)$ e $\mathbf{p}=(p_x,p_y,p_z)$ os vetores de posição e momento linear de uma partícula quântica. Mostre que os $kets |\mathbf{r}\rangle$ e $|\mathbf{p}\rangle$ são autovetores dos respectivos operadores de posição e momento linear.

Q7. Representações da posição e do momento linear Mostre que $\langle \mathbf{r} | \hat{\mathbf{p}} | \psi \rangle = -i\hbar \nabla \langle \mathbf{r} | \psi \rangle$. Escreva $\langle \phi | \hat{\mathbf{p}}_x | \psi \rangle$ usando as funções de onda correspondentes a $|\phi\rangle$ e $|\psi\rangle$.

Q8. Equação de Schrödinger nas representações de posição e momento linear O Hamiltoniano de uma partícula quântica num potencial $V(\mathbf{r})$ é dado por

$$\hat{\mathbf{H}} = \frac{1}{2m}\hat{\mathbf{p}}^2 + \hat{\mathbf{V}}(\mathbf{r}).$$

- a) Partindo da equação de operadores, acima, escreva a equação de Schrödinger para funções de onda $\psi(r,t)$ na representação da posição (*r-representation*).
- b) Repita o mesmo procedimento para escrever a equação de Schrödinger para funções de onda na representação do momento linear (*p-representation*).

Q9. Equações de Ehrenfest e representação de Heisenberg Considere uma partícula quântica num potencial estacionário $V(\mathbf{r})$. Usando a representação de Heisenberg, mostre que são válidas as equações de Ehrenfest indicadas abaixo:

a)
$$\frac{\mathrm{d}\left\langle \hat{\mathbf{r}}\right\rangle }{\mathrm{d}t}=\frac{\left\langle \hat{\mathbf{p}}\right\rangle }{m};$$
 b) $\frac{\mathrm{d}\left\langle \hat{\mathbf{p}}\right\rangle }{\mathrm{d}t}=-\left\langle \nabla\hat{\mathbf{V}}(\mathbf{r})\right\rangle .$

Q10. Operador densidade: diferenças entre estados puros e misturas estatísticas Os conjuntos $\{ |A\rangle, |B\rangle, |C\rangle \}$ e $\{ |1\rangle, |2\rangle, |3\rangle \}$ são base ortonormais completas, cuja relação é indicada abaixo. Considere $\hat{\rho}_A = |A\rangle\langle A|$ e $\hat{\rho}_m = \frac{1}{4}|1\rangle\langle 1| + \frac{1}{2}|2\rangle\langle 2| + \frac{1}{4}|3\rangle\langle 3|$.

$$|A\rangle = \frac{1}{2} \left(|1\rangle + \sqrt{2} |2\rangle + |3\rangle \right)$$
$$|B\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |3\rangle)$$
$$|C\rangle = \frac{1}{2} \left(|1\rangle - \sqrt{2} |2\rangle + |3\rangle \right)$$

- a) Calcule $\hat{\rho}_A$ na base $\{ |1\rangle, |2\rangle, |3\rangle \}$ e $\hat{\rho}_m$ na base $\{ |A\rangle, |B\rangle, |C\rangle \}$, determinando as quatro matrizes densidades. Use-as para determinar a pureza dos estados $\hat{\rho}_A$ e $\hat{\rho}_m$.
- b) Usando as matrizes densidades, calcule as probabilidades $\mathscr{P}_1, \mathscr{P}_2, \mathscr{P}_3$ e $\mathscr{P}_A, \mathscr{P}_B, \mathscr{P}_C$ quando o sistema é preparado em $\hat{\rho}_A$ e $\hat{\rho}_m$.
- c) Determine o operador e a matriz densidade de um estado completamente misturado e ordene esse estado junto com $\hat{\rho}_A$ e $\hat{\rho}_m$, colocando-os em ordem crescente de pureza.