

浙江大学 Hello World 机械组培训 专用零件设计及加工原理

信电学院 刘健宇

3D打印

FDM 熔融沉积型

3D打印

LCD 光固化型

3D打印

					(10) PE A 100 - 10 - 10	
打印方式	熔融沉积成型	成型 光固化成型			选择性激光烧结成型	
具体类型名称	FDM	DLP SLA LCD		LCD	SLS/SLM	
打印成型速度	慢	快慢快		快	慢	
成型方式	点成型	面成型 点成型 面成型		面成型	点成型	
打印精度	较低		较高		较高	
操作复杂程度	简单	较复杂			较简单	
整机价格	便宜	昂贵 较高		便宜	昂贵	
主要部件寿命	K	K	长	较短	长	
可用材料	热塑性高分子材料,例如PLA、 ABS、PETG等材料,需要防潮 储存	光敏树脂,常见类型有刚性、 韧性、水洗、透明、柔性、 红蜡等,需避光储存			粉末型可熔融材料,种类多,除 高分子材料外还可加工金属和陶瓷	
耗材价格	较低	较高	较高	较高	视材料而定	
材料利用率	较高	较值	乱, 浪费比较严	亚 重	较高	
产品表面质量	表面层纹	表面光滑,细节丰富			表面粗糙	
产品机械性能	较好	较差			较好	
其它特点	即打即用 需要支撑 工作时无污染 工作时有较大噪音	需要支撑,需要在未完全固 化时去除 打印后需进一步固化处理 工作释放污染较多 耗材可能导致人体过敏			无需支撑 工作中会产生异味 成型大尺寸零件易翘曲 加工时间长,加工前需预热 加工后需冷却	

3D打印种类特性对比

3D打印

//对比仅供参 考·Laphael 家的耗材性 能都有差异	强度 -/ が開始 &弯曲强度	韧性	耐老化	耐紫外线 &腐蚀	打印难度 机器要求	价格/KG //取决于耗 材品质	代打价格 //仅供参考	其它特征	主要优点
PLA	低	低	低	低	非常容易 打印	≈40块	≈0.1每克	-	外观好看
PETG	中	中	自	恒	容易打印	≈30块	≈0.1每克	1	机械性能 良好
TPU	1	1	画	高	难度一般, 需要近程挤 出	≈70块	≈0.3-0.4 每克	柔性材料	柔性材料
ABS	中	中	中	中	难度较高, 需要高温& 封箱	≈35块	≈0.2-0.4 每克	必须通风 打印	-
ASA	中	中	非常高	非常高	难度较高, 需要高温& 封箱	≈50块	≈0.2-0.4 每克	必须通风 打印	户外性能 好
-CF	高	低	与原材料 类似	与原材料 类似	难度一般, 需要硬化钢 挤出机&喷嘴	≈60-90 块	≈0.2-0.4 每克	细磨砂质 感	机械性能 非常好
PLA+ PETG+	中	高	与原材料 类似	与原材料 类似	非常容易 打印	≈40-60 块	≈0.1-0.3 每克	-	韧性好

3D打印材料种类特性对比

3D打印

未来工厂 3D打印外发——复杂,强度

3D打印

设计打印件 基础注意事项:

- 1. 打印方向
- 2. 打印支撑与填充物
- 3. 打印精度(余量)
- 4. 材料特性(强度,精度光滑度)

3D打印

1. 打印方向

3D打印

2. 打印支撑 与填充物

3D打印

3. 打印精度(余量)

4. 材料特性 (强度,精度光

加工原理-金属加工

金属加工

铣削加工

车削加工

金属加工

设计铣削金属工件基础注意事项:

- 1. 铣削方向与工步数量
- 2. 刀具选用与工艺流程
- 3. 精度与表面质量
- 4. 装配工艺特征
- 5. 装配路线流程
- 6. 材料特性

加工原理-金属加工

金属加工

材料大类	材料小类	材料特点	使用场景	常配套表面处理	加工的周期
铝	POLID I	密度低、易加工、成本低、目 然 复少不生臻	有一定强度要求、但对于硬度、耐磨性 要求不高的绝大多数零件,在本次大赛 中90%以上的零件可以采用这类材料		7-9天
	7075	6061硬,变形小一些,自然氧		大多数采用喷砂氧化,少 数对硬度有要求的可以采 用硬质氧化	7-9天
钢	45#		长期需要磨损,刚度和耐磨性要求高、 受力大的零件	发黑或者电镀硬铬	10-12天
	不锈钢303		长期需要磨损,刚度和耐磨性要求高、 受力大的零件,自然情况下不生锈	一般不用	12-14天
铜	黄铜	耐磨,容易加工,材料成本很高	有润滑和耐磨功能件上	钝化	7-9天
塑料	POM赛刚	高硬度、高耐磨,加工容易变 形	一般用于绝缘的零件上	一般不用	7-9天
	亚克力板	半透明、易碎	一般用于做半透明的外观	一般不用	7-9天

机加工常用材料

设计指南

功能明确与材料初选

设计主要功能

外发采购

7. 镂空时应考虑 XT30、XT60 等接口能否通过

这一点要特别感谢坤哥,在初版平衡出图时从电控的角度进行了细致的审图,这为我省去了很多麻烦。个人觉得新人机械在画完图之后有必要让电控老队员也帮忙审审。

Tips:

1、对于任何内外圈压紧固定的轴承,都要确保压紧,一般我们会设计压紧空间的高度略小于被压紧的轴承高度,大概 0.2-0.3mm 左右,当然,要具体情况具体分析,总体原则是一定要有高度差;

