Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 2

Выполнила	Недоноскова Ю.И.		(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись
"" 20	r.	Санкт-Петербург,	20г.
Работа выполнена с	оценкой _		
Лата зашиты " "	20	r	

Цель работы: Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные. В данной работе частотные характеристики элементарных динамических звеньев (см. таблицу 1) строятся по точкам на основании данных, полученных экспериментально. В эксперименте исследуется реакция звена на синусоидальное входное воздействие $g(t) = g_m \sin \omega t$ с амплитудой входного сигнала $g_m = 1$. При заданном значении частоты и амплитуды входного сигнала для определения точек частотной характеристики необходимо измерить значение амплитуды выходного сигнала y_m и сдвиг фаз между входным и выходным сигналом в установившемся режиме ψ (см. рисунок 1). Для определения значения фазы следует учитывать, что на полученных графиках по оси абсцисс отложено время. Значение фазы выходного сигнала в радианах можно рассчитать, используя формулу $\psi = \phi \omega$, где ω значение частоты входного сигнала в радианах. После соответствующей обработки эти данные дадут одну точку на частотной характеристике. Повторение таких измерений при различных значениях частоты входного сигнала даст массив точек по которым строятся частотные характеристики.

Тип звена	Передаточная функция
Колебательное	$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$
Идеальное интегрирующее	$W(s) = \frac{k}{s}$
Изодромное	$W(s) = \frac{k(1+Ts)}{s}$

Таблица 1 – Исходные динамические звенья.

Параметры исследуемых звеньев: k=2, T=0.5, ξ =0.15 Сопрягающая частота $\frac{1}{T}=2c^{-1}$

Рисунок 1 – Временная диаграмма

1 Колебательное звено

В таблице 2 представлены данные при исследовании колебательного звена.

Таблица 2 — Экспериментальные данные для колебательного звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,2	-0,70	2,02	6,11	-1,75
0,3	-0,52	2,05	6,24	-2,61
0,4	-0,40	2,08	6,36	-3,58
0,5	-0,30	2,13	6,57	-4,58
0,7	-0,15	2,26	7,08	-6,50
1,0	0,00	2,62	8,37	-11,40
1,4	0,15	3,63	11,20	-22,22
2,0	0,30	6,67	16,48	-90,00
2,6	0,41	2,52	8,03	-150,46
3,4	0,53	1,02	0,17	-165,58
5,2	0,72	0,35	-9,12	-173,40
7,0	0,85	0,18	-14,89	-174,87
8,6	0,93	0,11	-19,17	-175,42
10,0	1,00	0,08	-21,94	-176,47

На рисунках 2-7 представлены частотные характеристики колебательного звена.

Рисунок 2 – АЧХ

Рисунок 3 – ФЧХ

Рисунок 4 – ЛАЧХ

Рисунок 5 – ЛФЧХ

Рисунок 6 – АФЧХ

Рисунок 7 – Асимптотическая ЛАЧХ

2 Идеальное интегрирующее звено

В таблице 3 представлены данные при исследовании идеального интегрирующего звена.

Таблица 3 — Экспериментальные данные для идеального интегрирующего звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,2	-0,70	10,00	20,00	-90
0,3	-0,52	6,67	16,48	-90
0,4	-0,40	5,00	13,98	-90
0,5	-0,30	4,00	12,04	-90
0,7	-0,15	2,86	9,13	-90
1,0	0,00	2,00	6,02	-90
1,4	0,15	1,43	3,11	-90
2,0	0,30	1,00	0,00	-90
2,6	0,41	0,77	-2,27	-90
3,4	0,53	0,59	-4,58	-90
5,2	0,72	0,38	-8,40	-90
7,0	0,85	0,29	-10,75	-90
8,6	0,93	0,23	-12,77	-90
10,0	1,00	0,20	-13,98	-90

На рисунках 8-13 представлены частотные характеристики идеального интегрирующего звена.

Рисунок 8 – АЧХ

Рисунок 9 – ФЧХ

Рисунок 10 – ЛАЧХ

Рисунок 11 – ЛФЧХ

Рисунок 12 – АФЧХ

Рисунок 13 — Асимптотическая ЛАЧХ

3 Изодромное звено

В таблице 4 представлены данные при исследовании изодромного звена.

Таблица 4 — Экспериментальные данные для изодромного звена

ω , рад/с	$lg\omega$	$A(\omega)$	$L(\omega) = 20lgA(\omega)$	$\psi(\omega)$, град
0,2	-0,70	10,05	20,04	-84,22
0,3	-0,52	6,74	16,57	-81,36
0,4	-0,40	5,10	14,15	-78,50
0,5	-0,30	4,12	12,30	-76,20
0,7	-0,15	3,03	9,63	-70,47
1,0	0,00	2,24	7,00	-63,60
1,4	0,15	1,74	4,81	-55,00
2,0	0,30	1,41	2,98	-45,00
2,6	0,41	1,26	2,01	-37,82
3,4	0,53	1,16	1,29	-30,37
5,2	0,72	1,07	0,59	-20,63
7,0	0,85	1,04	0,34	-16,04
8,6	0,93	1,03	0,26	-13,18
10,0	1,00	1,02	0,17	-11,46

На рисунках 14-19 представлены частотные характеристики изодромного звена.

Рисунок 14 – АЧХ

Рисунок 15 – ФЧХ

Рисунок 16 – ЛАЧХ

Рисунок 17 – ЛФЧХ

Рисунок 18 – АФЧХ

Рисунок 19 — Асимптотическая ЛАЧХ

Вывод

В ходе лабораторной работы были изучены частотные и логарифмические частотные характеристики типовых динамических звеньев: колебательного, идеального интегрирующего и изодромного. Основываясь на экспериментальных данных можно говорить о том, что фазовый сдвиг для колебательного звена изменяется в пределах от 0° до -180° , для изодромного — от -90° до 0° , а для идеального интегрирующего звена фазовый сдвиг равен -90° .

Сравнивая графики ЛАЧХ и асимптотической ЛАЧХ, можно заметить, что асимптотические ЛАЧХ сходятся к реальным ЛАЧХ, и с их помощью удобно проводить синтез систем управления.

Также можно сделать вывод о том, что асимптотическая ЛАЧХ меняет свой наклон при частоте среза $\omega_c=1/T$ и для её построения не требуется выполнения дополнительных вычислений, достаточно лишь знать вид передаточной функции. Также по асимптотический ЛАЧХ можно восстановить передаточную функцию.