Wybrane zagadnienia sztucznej inteligencji Analiza dużych zbiorów danych metodą k-średnich

Przebieg ćwiczeń laboratoryjnych i warunki zaliczenia przedmiotu semestr VI rok akademicki 2023/24

Ćwiczenia laboratoryjne

• na studiach dziennych 8 zajęć * 3 godziny = 24 godziny.

Przedmiotem ćwiczeń laboratoryjnych jest analiza dużych zbiorów danych **metodą k-średnich**.

Studenci otrzymują trzy moduły, autorstwa prowadzącego przedmiot, zawierające definicje funkcji niezbędnych do realizacji algorytmu metodą **k-średnich** zapisane w języku *Python* 3.9. Oprócz tego: duży zbiór danych **TopBabyNamesbyState** w postaci 10 500 pięcio-atrybutowych rekordów zapisanych w formacie .csv.

Studenci pracują w jedno- lub dwuosobowych zespołach.

Ćwiczenia laboratoryjne przebiegają według niżej podanego schematu:

1. Zajęcia nr 1 i 2:

Podział na zespoły. Zapoznanie się szczegółowo z przebiegiem ćwiczeń laboratoryjnych, oraz budową i własnościami dostarczonego programu w języku *Python 3.9*.

2. Zajęcia nr 3 i 4:

Badania w zespołach własności dostarczonej przykładowej bazy danych za pomocą dostarczonego oprogramowania. Będzie to przede wszystkim analiza wpływu wybranej ilości klastrów na możliwości wydobywania wiedzy z poszczególnych klastrów. Odbywać się to będzie poprzez pokazanie w wersji elektronicznej i dyskusja z prowadzącym zajęcia otrzymanych wyników. Wymagane będzie:

- dobre rozumienie działania algorytmu k-średnich,
- rozumienie własności, struktury i wzajemnych zależności między atrybutami dostarczonego zbioru danych,
- umiejętność zaplanowania i przeprowadzenie odpowiednich badań, jak również
- umiejętność prezentacji i interpretacji osiągniętych wyników.

Za wykonania tego zadnia (etap I) student może otrzymać **10-20 punktów** (jeśli zaliczy I-szy etap), lub 0 punktów w przypadku nie zaliczenia. Ocena będzie indywidualna, mimo ewentualnej pracy w zespole.

3. **Zajęcia nr 5 - 6:**

Przed zajęciami nr 6 poszczególne zespoły mają **obowiązek pozyskania z Internetu** do dalszych badań innej, odpowiednio dużej bazy danych opisującej realny obszar rzeczywistości.

Do zadań studentów należeć będzie (w kontakcie z prowadzącym przedmiot):

• przeprowadzenie przed rozpoczęciem badań normalizacji danych (normalizacja wymaga zatwierdzenia przez prowadzącego zajęcia),

- przeprowadzenie badań wpływu wyboru liczby klastrów na efektywność algorytmu z wyborem optymalnej liczby klastrów,
- przeprowadzenie badań i analiza wpływu metody liczenia odległości (euklidesowa, Manhattan) na efektywność algorytmu.

Do zaliczenia należy przygotować **sprawozdanie końcowe** w wersji papierowej. Konieczna będzie praca w domu. Za wykonania etapu drugiego (opisanego w pk. 3) student może otrzymać **20-40 punktów**.

4. Zajęcia nr 7 i 8:

Zajęcia przeznaczone są na ocenę i dyskusję osiągniętych przez poszczególne zespoły wyników, oraz końcową <u>ocenę indywidualną</u> studentów.

Promowana będzie: jakość i terminowość realizacji poszczególnych etapów projektu, organizacja i współdziałanie poszczególnych członków w zespole, wartość osiągniętych rezultatów, przy czym brany będzie pod uwagę indywidualny wkład każdego z członków zespołu. Wcześniejsze zaliczenie etapu drugiego promowane będzie dodatkowymi punktami.

Przedmiotem oceny będzie przede wszystkim: **umiejętność dostosowania dostarczonego oprogramowania do własności bazy danych** etapu drugiego, ale też - <u>sposób prezentacji</u> <u>osiągniętych wyników w sprawozdaniu końcowym, dokumentującym osiągnięte wyniki</u>.

Zawartość sprawozdania z laboratorium "Sztucznej inteligencji" na temat : "Inteligentna analiza dużych zbiorów danych":

- strona tytułowa,
- zbiór danych etapu drugiego,
- moduły kodów programu w języku Python dostosowane do aktualnego zbioru danych,
- wyniki badań wpływu liczby klastrów, oraz wyboru metody liczenia odległości między rekordami danych (odległość euklidesowa, odległość Manhattan) na efektywność wydobywania wiedzy ze zbioru danych.

Warunki zaliczenia laboratorium

Za ćwiczenia laboratoryjne student może uzyskać na zaliczeniu maksymalnie 90 punktów. Ćwiczenia uznaje się za zaliczone, jeśli student uzyska **nie mniej niż 30 punktów**.

Tabela ocen końcowych:

30 - 35 pk. ocena 3.0

36 – 41 pk. ocena 3.5

42 – 47 pk. ocena 4.0

48 – 53 pk. ocena 4.5

54 – 60 pk. ocena 5.0

Wyróżniające się prace będą oceniane na 6.0

Ostatni dzień zajęć laboratoryjnych, wskazany w harmonogramie zajęć, jest ostatecznym terminem zaliczenia ćwiczeń.

Uwaga: Celem dobrego przygotowania teoretycznego do ćwiczeń laboratoryjnych **na pierwszych wykładach** omawiane będą w ujęciu praktycznym zagadnienia ściśle wiążące się z tematyką ćwiczeń.