Dmitry A. Zaitsev

Clans of linear systems

http://member.acm.org/~daze

Form of obtained matrix

$$A = \begin{vmatrix} A^{0,1} & \widehat{A}^1 & 0 & 0 & 0 \\ A^{0,2} & 0 & \widehat{A}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A^{0,k} & 0 & 0 & 0 & \widehat{A}^k \end{vmatrix}$$

Speed-up solving systems

- Speed-up solving Diophantine systems of linear algebraic equations in nonnegatives
- Sparse systems of specific form, namely "well decomposable into clans"
- Concept of a sign forms clans of equations
- Applicable to other algebraic structures with sign

Divide and sway

- Decompose a given system into its clans
- Solve a system for each clan
- Solve a system of clans composition
- Or collapse the decomposition graph solving a system for each contracted edge
- Obtain a result in feasible time

A Clan – transitive closure of nearness relation

$$\begin{cases} -x_2 + x_3 - x_{15} + x_{18} = 0 \\ -x_2 + x_4 - x_{14} + x_{18} = 0 \end{cases}$$
C1:
$$\begin{cases} -x_5 + x_6 - x_{16} + x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \end{cases}$$

$$-x_{11} + x_{12} - x_{15} + x_{18} = 0$$

$$-x_{13} + x_8 + x_{18} = 0$$

Two equations are *near* if they contain the same variable having coefficients of the same sign

Decomposition into clans

$$\begin{bmatrix} -x_1 + x_2 - x_{18} = 0 \\ -x_2 + x_3 - x_{15} + x_{18} = 0 \\ -x_2 + x_4 - x_{14} + x_{18} = 0 \\ -x_4 + x_5 + x_{14} - x_{18} = 0 \\ -x_3 + x_5 + x_{15} - x_{18} = 0 \\ -x_5 + x_6 - x_{16} + x_{18} = 0 \\ -x_6 + x_7 + x_{16} - x_{19} = 0 \\ -x_8 + x_9 - x_{19} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{13} + x_8 + x_{19} = 0 \\ -x_{10} + x_{11} + x_{17} - x_{18} = 0 \\ -x_{11} + x_{12} - x_{15} + x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{18} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{12} + x_{13} + x_{15} - x_{19} = 0 \\ -x_{13} + x_{15} - x_{18} = 0 \\ -x_{15} + x_{15} - x_{15}$$

Systems and Directed bipartite graphs

Equation – transition (rectangle)

Variable – place (circle)

Positive sign – incoming arc of a place

Negative sign – outgoing arc of a place

Decomposition graph

C1:
$$\begin{cases} -x_2 + x_3 - x_{15} + x_{18} = 0 \\ -x_2 + x_4 - x_{14} + x_{18} = 0 \end{cases}$$

$$-x_5 + x_6 - x_{16} + x_{18} = 0$$

$$-x_{11} + x_{12} - x_{15} + x_{18} = 0$$

$$-x_{13} + x_8 + x_{18} = 0$$

$$\begin{cases} -x_1 + x_2 - x_{18} = 0 \\ -x_4 + x_5 + x_{14} - x_{18} = 0 \end{cases}$$

$$-x_3 + x_5 + x_{15} - x_{18} = 0$$

$$-x_{10} + x_{11} + x_{17} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{18} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{19} = 0$$

$$-x_{12} + x_{13} + x_{15} - x_{19} = 0$$

$$-x_{13} + x_{14} - x_{15} - x_{15} = 0$$

$$-x_{15} + x_{15} - x_{15} = 0$$

Collapse of decomposition graph

11.

Systems of Equations (Inequalities)

$$A \cdot \overline{x} = \overline{b}$$

its general solution

$$\overline{x} = \overline{x}' + G \cdot \overline{y}$$

Consider a system as a predicate

$$S(\overline{x}) = L_1(\overline{x}) \wedge L_2(\overline{x}) \wedge ... \wedge L_m(\overline{x})$$

$$L_i(\bar{x}) = (\bar{a}^i \cdot \bar{x} = 0), \quad \Im = \{L_i\}$$

Relations on the Set of Equations

Relation of nearness: $L_i \circ L_j$,

$$\exists x_k \in X : a_{i,k}, a_{j,k} \neq 0, sign(a_{i,k}) = sign(a_{j,k})$$

Statement. The relation of nearness is reflexive and symmetric.

Relation of clan: $L_i \circ L_j$

$$L_{l_1}, L_{l_2}, ..., L_{l_k}: L_i \circ L_{l_1} \circ ... \circ L_{l_k} \circ L_j$$

Theorem. The relation of clan is an equivalence relation (reflexive, symmetric, and transitive).

Corollary. Relation of clan defines *a partition* of the set of equations; an element of this partition is named *a clan*.

Classification of Variables

Variables of a clan: X^{j}

$$X^{j} = X(C^{j}) = \{x_{i} | x_{i} \in X, \exists L_{k} \in C^{j} : a_{k,i} \neq 0\}$$

Internal variables of a clan: \widehat{X}^{j}

$$x_i \in X(C^j), \quad \forall C^l, l \neq j : \quad x_i \notin X^l$$

Contact variables: X^0

$$\exists C^j, C^l: x_i \in X^j, x_i \in X^l$$

Contact variables of a clan: $reve{X}^j$

$$X^{j} = \widehat{X}^{j} \cup \widecheck{X}^{j}, \quad \widehat{X}^{j} \cap \widecheck{X}^{j} = \emptyset$$

Theorem. A contact variable belongs to two clans exactly entering one clan with sign plus and the other clan with sign minus.

Decomposition of System Matrix

Clans/variables	X^{0}	\hat{X}^1	\hat{X}^2		\widehat{X}^k
C^1	$A^{0,1}$	\widehat{A}^1	0		0
C^2	$A^{0,2}$	0	\widehat{A}^2		0
	•		•	•	
	•				
	•				
C^k	$A^{0,k}$	0	0		\widehat{A}^k

Composition of Clans

1. Solve the system separately for each clan: $\bar{x}^j = G^j \cdot \bar{y}^j$

$$A^{j} \cdot \overline{x}^{j} = 0, \quad A^{j} = \| \widecheck{A}^{j} \quad \widehat{A}^{j} \|, \quad \overline{x}^{j} = \| \widetilde{\overline{x}}^{j} \|$$

2. Solve a system of composition of clans for contact variables:

$$G_i^j \cdot \overline{y}^j = G_i^l \cdot \overline{y}^l$$
 or $F \cdot \overline{y} = 0$: $\overline{y} = R \cdot \overline{z}$

3. Recover sought solutions:

$$\overline{x} = G \cdot \overline{y}, \quad G = \begin{vmatrix} J^1 & \widehat{G}^1 & 0 & 0 & 0 \\ J^2 & 0 & \widehat{G}^2 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ J^k & 0 & 0 & 0 & \widehat{G}^k \end{vmatrix}^T, \qquad \overline{x} = G \cdot R \cdot \overline{z},$$

General Solutions Obtained via Composition of Clans

Theorem 1. A general solution of homogeneous system is:

$$\overline{x} = H \cdot \overline{z}, \quad H = G \cdot R$$

Theorem 2. A general solution of heterogeneous system is:

$$\overline{x} = \overline{y}'' + H \cdot \overline{z}, \quad \overline{y}'' = \overline{x}' + G \cdot \overline{y}', \quad H = G \cdot R$$

Statement. Speed-up of computations is about: $\frac{M(q)}{k^3 \cdot p^3 + k \cdot M(p)}$

For exponential methods – exponential speed-up: $O(2^{q-p})$

Example: Decomposition into clans

$$C^{1} = \{L_{1}, L_{2}, L_{5}, L_{6}\}$$

$$C^{2} = \{L_{3}, L_{4}, L_{7}, L_{8}, L_{9}\}$$

$$X^{1} = \{x_{3}, x_{6}, x_{8}, x_{10}, x_{1}, x_{2}, x_{7}\}$$

$$X^{2} = \{x_{3}, x_{6}, x_{8}, x_{10}, x_{4}, x_{5}, x_{9}\}$$

$$\hat{X}^{1} = \{x_{1}, x_{2}, x_{7}\}$$

$$\hat{X}^{2} = \{x_{4}, x_{5}, x_{9}\}$$

$$X^{0} = \check{X}^{1} = \check{X}^{2} = \{x_{3}, x_{6}, x_{8}, x_{10}\}$$

Example: Renumeration of Equations and Variables

$$nx = \begin{pmatrix} 3 & 6 & 8 & 10 & 1 & 2 & 7 & 4 & 5 & 9 \end{pmatrix}$$

 $nL = \begin{pmatrix} 1 & 2 & 5 & 6 & 3 & 4 & 7 & 8 & 9 \end{pmatrix}$

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

Example: Solution of Systems for Clans

$$G^1 = egin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^T,$$

$$\overline{y}^1 = (y_1^1, y_2^1, y_3^1)^T$$

$$G^2 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^T$$

$$\bar{y}^2 = (y_1^2, y_2^2)^T$$

Example: Solution of System for ContactVariables

$$\begin{cases} y_1^1 - y_1^2 = 0, \\ y_1^1 - y_1^2 = 0, \\ y_2^1 - y_1^2 = 0, \\ y_2^1 - y_1^2 = 0, \\ y_2^1 - y_1^2 = 0. \end{cases}$$

$$R = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}^{T}$$

Example: Composition of Source System Solution

$$H = R \cdot G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 2 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}^{T}$$

Sequential Contraction of Graphs as a Scheme of Solving System

Graph of system decomposition into its clans: G = (V, E, W)

$$V = \{v\}, v \leftrightarrow C$$
 vertices correspond to clans $E \subseteq V \times V$ edges connect clans having common contact variables $v_1v_2 \in E \Leftrightarrow \exists x \in X^0 : (I(x) = C^1 \land O(x) = C^2) \lor (I(x) = C^2 \land O(x) = C^1)$

 $W:(V \to N) \cup (E \to N)$ weight function;

w(v) number of clan variables; w(v,u) number of contact variables;

$$w(v) \ge \sum_{u} w(v, u)$$

Collapse of graph:
$$G = G^0 \xrightarrow[d_1]{V^1} G^1 \xrightarrow[d_2]{V^2} G^2 ... \xrightarrow[d_k]{V^k} G^k$$

Collapse of Subgraphs

Edge collapse of graph

Collapse width 15 – dimension of systems.

An Exhaustive Search of Edge Collapse

A Partial Lattice of Collapse

$$e_1^i \ll e_3^{i+1} \iff e_3^{i+1} = e_1^i \vee e_3^{i+1} = e_1^i + e_2^i$$

$$p_i = p_{i-1} - 1 - t$$
 - number of edges

t - number of triangles

Statement. Each edge on a step of a collapse is a sum of some edges of the source graph.

Comparing
Heuristic Strategies of
Edge Collapse

(maximal, random, and minimal edge)

Comparison of Collapse Strategy for Random Graphs

Number	Denseness	Width of	Width of sequential collapse						
of graph	of graph	simultaneous	Maximal		Random		Minimal		
vertices	(%)	collapse	edge		edge		edge		
			Width	%	Width	%	Width	%	
20	20	442	35	7.9	191	44.6	231	52.3	
	40	869	66	7.6	367	42.2	533	61.3	
	60	1372	102	7.4	651	47.4	829	60.4	
	80	1825	160	8.8	876	48.0	990	54.2	
40	20	1836	73	4.0	632	34.4	1002	54.6	
	40	3699	139	3.8	1664	45.0	2133	57.7	
	60	5539	214	3.9	2665	48.1	2948	53.2	
	80	7354	314	4.3	3608	49.0	3908	53.1	
100	20	11602	160	1.4	4827	41.6	5829	50.2	
	40	22973	316	1.4	7617	33.2	12341	53.7	
	60	34334	501	1.5	13282	38.7	17559	51.1	
	80	45582	754	1.7	17144	37.6	23008	50.5	
200	20	46073	288	0.63	19673	42.7	23781	51.6	
	40	91715	612	0.67	42260	46.0	91715	50.5	
	60	137684	997	0.72	67609	49.1	68957	50.0	
	80	183652	1486	0.81	91015	49.6	91669	49.9	

Software

- Deborah decomposition into clans
- Adriana solving a homogenous system via

 (a) simultaneous or (b) sequential
 composition of clans
- Implemented as plug-ins for Tina http://www.laas.fr/tina

Basic references

- Zaitsev D.A. Sequential composition of linear systems' clans, *Information Sciences*, Vol. 363, 2016, 292–307.
- Zaitsev D.A. Solving Linear Systems via Composition of their Clans, *Intelligent Information Management*, No. 1, 2009, 73-80.
- Zaitsev D.A. Clans of Petri Nets: Verification of protocols and performance evaluation of networks, LAP LAMBERT Academic Publishing, 2013, 292 p.
- Zaitsev D.A. Compositional analysis of Petri nets, *Cybernetics and Systems Analysis*, Volume 42, Number 1 (2006), 126-136.
- Zaitsev D.A. Decomposition of Petri Nets, *Cybernetics and Systems Analysis*, Volume 40, Number 5 (2004), 739-746.

Prospects

- Parallel-sequential collapse
- Implementation on parallel architectures in MPI & openMP (and CUDA)
- Looking for usefulness for equations in fields
- Suchlike decomposition which is not based on sign