Solving the n-Queens Problem using Local Search Instructions Total Points: undergrad 10, graduate students 11 Complete this notebook and submit it. The notebook needs to be a complete project report with • your implementation (you can use libraries like math, numpy, scipy, but not libraries that implement inteligent agents or search algorithms), • documentation including a short discussion of how your implementation works and your design choices, and • experimental results (e.g., tables and charts with simulation results) with a short discussion of what they mean. Use the provided notebook cells and insert additional code and markdown cells as needed. The n-Queens Problem • Goal: Find an arrangement of n queens on a $n \times n$ chess board so that no queen is on the same row, column or diagonal as any other queen. • State space: An arrangement of the queens on the board. We restrict the state space to arrangements where there is only a single queen per column. We represent a state as an integer vector $\mathbf{q}=\{q_1,q_2,\ldots,q_n\}$, each number representing the row positions of the queens from left to right. We will call a state a "board." • Objective function: The number of pairwise conflicts (i.e., two queens in the same row/column/diagonal). The optimization problem is to find the optimal arrangement \mathbf{q}^* of n queens on the board can be written as: minimize: $conflicts(\mathbf{q})$ subject to: q contains only one queen per column Note: the constraint (subject to) is enforced by the definition of the state space. • Local improvement move: Move one queen to a different row in its column. • **Termination:** For this problem there is always an arrangement \mathbf{q}^* with $\operatorname{conflicts}(\mathbf{q}^*) = 0$, however, the local improvement moves might end up in a local minimum. **Helper functions** import numpy as np import matplotlib.pyplot as plt from matplotlib import colors np.random.seed(1234) def random board(n): """Creates a random board of size n x n. Note that only a single queen is placed in each column!""" return(np.random.randint(0,n, size = n)) **def** comb2(n): **return** n*(n-1)//2 # this is n choose 2 equivalent to math.comb(n, 2); // is int division def conflicts(board): """Caclulate the number of conflicts, i.e., the objective function.""" n = len(board) horizontal cnt = [0] * n diagonal1_cnt = [0] * 2 * ndiagonal2_cnt = [0] for i in range(n): horizontal_cnt[board[i]] += 1 diagonal1_cnt[i + board[i]] += 1 diagonal2_cnt[i - board[i] + n] += 1 return sum(map(comb2, horizontal_cnt + diagonal1_cnt + diagonal2_cnt)) def show_board(board, cols = ['white', 'gray'], fontsize = 48): """display the board""" n = len(board) # create chess board display display = np.zeros([n,n])for i in range(n): for j in range(n): **if** (((i+j) % 2) != 0): display[i,j] = 1cmap = colors.ListedColormap(cols) fig, ax = plt.subplots() ax.imshow(display, cmap = cmap, norm = colors.BoundaryNorm(range(len(cols)+1), cmap.N)) ax.set xticks([]) ax.set_yticks([]) # place queens. Note: Unicode u265B is a black queen for j in range(n): $plt.text(j, board[j], u"\u265B", fontsize = fontsize,$ horizontalalignment = 'center', verticalalignment = 'center') print(f"Board with {conflicts(board)} conflicts.") plt.show() Create a board board = random board(4) show board (board) print(f"Queens (left to right) are at rows: {board}") print(f"Number of conflicts: {conflicts(board)}") Board with 4 conflicts. Queens (left to right) are at rows: [3 3 2 1] Number of conflicts: 4 A board 4×4 with no conflicts: In [4]: board = [1,3,0,2]show board (board) Board with 0 conflicts. 业 **Steepest-ascend Hill Climbing Search [3 Points]** Calculate the objective function for all local moves (move each queen within its column) and always choose the best among all local moves. If there are no local moves that improve the objective, then you have reached a local optimum. In [14]: import numpy as np import matplotlib.pyplot as plt from matplotlib import colors import math def random board(n): #Creates a random board of size n x n return(np.random.randint(0,n, size = n)) In [15] def value(board): #Caclulate the number of conflicts board = np.array(board) n = len(board) val = 0for i in range(n): val += math.comb(np.sum(board == i), 2) # Check for each queen diagonally up and down for j in range(n): q up = board[j] q down = board[j] for jj in range(j+1, n): q up -= 1 q down += 1 if board[jj] == q up: val += 1 if board[jj] == q_down: val += 1 return (val) # Code and description go here board = random board(4)def Steepest Ascend Hill Cimbing(board, verbose = False): if verbose: show_board(board) n = len(board) best val = value(board) # Current Conflict vals = np.full([n,n], -1, dtype = int) $Number_of_steps = 0$ while True: for j in range(n): $old_q = board[j]$ for i in range(n): board[j] = ivals[i,j] = value(board) $board[j] = old_q$ new_min = np.min(vals) Number_of_steps = Number_of_steps +1 #if verbose: print(vals) if verbose: print(f"Current Conflicts: {best val} - New State Conflicts: {new min}") w = np.where(vals == new_min) best = [a for a in zip(w[0], w[1])] best = best[np.random.randint(0, len(best))] board[best[1]] = best[0] best_val = new_min if verbose: show_board(board) else: return(board) print(Number_of_steps, "Number_of_steps") In [8]: b = Steepest Ascend Hill Cimbing(board, verbose = True) show board(b) value(b) Board with 4 conflicts. 业 Current Conflicts: 4 - New State Conflicts: 1 Board with 1 conflicts. Current Conflicts: 1 - New State Conflicts: 0 Board with 0 conflicts. 业 Current Conflicts: 0 - New State Conflicts: 0 Board with 0 conflicts. Out[8]: 0 In [9]: def Steepest_Ascend_Hill_Cimbing_random_restarts(n, opt, restarts = 100, verbose = True): best_board = random_board(n) best_val = value(best_board) for i in range(restarts): board = random_board(n) board = opt(board, verbose = False) val = value(board) if val < best_val:</pre> best board = board best_val = val **if** val == 0: if verbose: print (f"Needed restarts: {i+1}") return (board) if verbose: print(f"Could not find a solotion with {restarts} restarts.") return best board board = Steepest_Ascend_Hill_Cimbing_random_restarts(8, Steepest_Ascend_Hill_Cimbing) show_board(board) Needed restarts: 23 Board with 0 conflicts. Stochastic Hill Climbing 1 [2 Point] Chooses randomly from among all uphill moves. Make the probability of the choice proportional to the steepness of the uphill move (i.e., with the improvement in conflicts). # Code and description go here board = random board(10) def Stochastic_Hill_Climbing(board, verbose = False): #if verbose: show board(board) n = len(board) best_val = value(board) vals = np.full([n,n], -1, dtype = int)while True: #Finding Uphill moves and choosing randomly from those moves for j in range(n): $old_q = board[j]$ for i in range(n): board[j] = ivals[i,j] = value(board) board[j] = old qBest Uphills = [] for i in range(n): for j in range(n): if vals[i][j] < best_val:</pre> Best_Uphills.append(vals[i][j]) if len(Best Uphills) > 0: new min = np.random.choice(Best Uphills) #if verbose: print(vals) if verbose: print(f"Current Conflicts: {best_val} - New State Conflicts: {new_min}") if(best val > new min): w = np.where(vals == new_min) best = [a for a in zip(w[0], w[1])]best = best[np.random.randint(0, len(best))] board[best[1]] = best[0] best_val = new_min if verbose: show board(board) else: return(board) elif Best_Uphills == []: break return (board) b = Stochastic Hill Climbing(board, verbose = True) show board(b) value(b) Current Conflicts: 10 - New State Conflicts: 8 Board with 8 conflicts. Current Conflicts: 8 - New State Conflicts: 6 Board with 6 conflicts. Current Conflicts: 6 - New State Conflicts: 5 Board with 5 conflicts. Current Conflicts: 5 - New State Conflicts: 3 Board with 3 conflicts. Current Conflicts: 3 - New State Conflicts: 2 Board with 2 conflicts. Current Conflicts: 2 - New State Conflicts: 1 Board with 1 conflicts. Board with 1 conflicts. Out[23]: 1 Stochastic Hill Climbing 2 [2 Point] A popular version of stochastic hill climbing generates only a single random local neighbor at a time and accept it if it has a better objective function value than the current state. This is very efficient if each state has many possible successor states. This method is called "First-choice hill climbing" in the textbook. **Notes:** • Detecting local optima is tricky! You can, for example, stop if you were not able to improve the objective function during the last xtries. # Code and description go here def Stochastic_Hill_Cimbing_random_restarts(n, opt, restarts = 100, verbose =True): best_board = random_board(n) best val = value(best board) for i in range(restarts): board = random board(n) board = opt(board, verbose = False) val = value(board) if val < best val:</pre> best board = board best_val = val **if** val == 0: if verbose: print (f"Needed restarts: {i+1}") return (board) if verbose: print(f"Could not find a solotion with {restarts} restarts.") return best board board = Stochastic_Hill_Cimbing_random_restarts(8, Stochastic_Hill_Climbing) show board (board) Needed restarts: 6 Board with 0 conflicts. Hill Climbing Search with Random Restarts [1 Point] Hill climbing will often end up in local optima. Restart the each of the three hill climbing algorithm up to 100 times with a random board to find a better (hopefully optimal) solution. Note that restart just means to run the algorithm several times with a new random initialization. board = random board(12) def First Choice Hill Climbing(board, verbose = False): #if verbose: show board(board) n = len(board) best val = value(board) # Current Conflict vals = np.full([n,n], -1, dtype = int)Number of steps = 0Not Improve steps = 0 Limit = np.ceil(100*n)while Number of steps < 20000:</pre> for j in range(n): old_q = board[j] for i in range(n): board[j] = ivals[i,j] = value(board) board[j] = old qrandom_number_one = np.random.randint(0,n) random number two = np.random.randint(0,n) new min = vals[random number one][random number two] #if verbose: print(vals) if verbose: print(f"Current Conflicts: {best val} - New State Conflicts: □→ {new min}") Number of steps = Number of steps + 1 print("Number of steps:", Number_of_steps, "\n") if(best val > new min): Not Improve steps = 0 w = np.where(vals == new min) best = [a for a in zip(w[0], w[1])]best = best[np.random.randint(0, len(best))] board[best[1]] = best[0] best val = new min if verbose: show board(board) if (best val) == 0: break else: Not Improve steps = Not Improve steps + 1 if Not Improve steps > Limit: print("Nubmer of steps without improvment in a row:", □→Not Improve steps, "\n") print(Number_of_steps, "Number_of_steps") b = First Choice Hill Climbing (board, verbose = True) show board(b) Board with 3 conflicts. def First_Choice_Hill_Climbing_random_restarts(n, opt, restarts = 100, verbose = True): best_board = random_board(n) best val = value(best board) for i in range(restarts): board = random_board(n) board = opt(board, verbose = False) val = value(board) if val < best_val:</pre> best board = board best_val = val **if** val == 0: if verbose: print (f"Needed restarts: {i+1}") return (board) if verbose: print(f"Could not find a solotion with {restarts} restarts.") return best_board board = First Choice Hill Climbing random restarts(8, First Choice Hill Climbing) show board (board) Needed restarts: 4 Board with 0 conflicts. **Compare Performance [2 Points]** Use runtime and objective function value to compare the algorithms. • Use boards of different sizes to explore how the different algorithms perform. Make sure that you run the algorithms for each board size several times (at least 10 times) with different starting boards and report averages. • How do the algorithms scale with problem size? • What is the largest board each algorithm can solve in a reasonable amount time? The example below times creating 100 random boards and calculating the conflicts. Reported is the average run time over N = 100 runs. For timing you can use the time package. import time N = 100total = 0for i in range(N): t0 = time.time()for i in range(1,100): conflicts(random board(8)) t1 = time.time()total += t1 - t0 tm = total/Nprint(f"This took: {tm * 1e3} milliseconds") This took: 4.4710612297058105 milliseconds The timit package is useful to measure time for code that is called repeatedly. In [9]: import timeit N = 100tm = timeit.timeit('for i in range(1,100): conflicts(random_board(8))', globals = globals(), number = N)/Nprint(f"This took: {tm * 1e3} milliseconds") This took: 4.978507979831193 milliseconds **Steepest-Ascend Hill Climbing** import time ns = [4, 5, 6, 7, 8, 9, 10, 11, 12]mean val = np.empty(len(ns), dtype = float) mean t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int) t = np.empty(N, dtype = float) for j in range(N): t0 = time.time() board = random board(n) sol = Steepest Ascend Hill Cimbing(board) t1 = time.time() val[j] = value(sol) t[j] = t1 - t0mean val[i] = np.average(val) mean t[i] = np.average(t) $print(f"n = \{n\}: \exists (mean_t[i]*1e3, 2)\} ms \exists (mean_val[i]\}")$ n = 12: mean(time) = 65.36 msmean(objective) = mean 2.2 plt.plot(ns, mean_t*1e3) plt.xlabel("n") plt.ylabel("avg runtime in ms") plt.show() plt.plot(ns, mean_val) plt.xlabel("n") plt.ylabel("avg objective value") plt.show() 60 50 avg runtime in ms 40 30 20 10 0 10 11 12 8 2.25 2.00 and opjective value 150 125 100 0.75 8 10 11 **Stochastic Hill Climbing** In [18]: mean_val = np.empty(len(ns), dtype = float) mean t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int) t = np.empty(N, dtype = float) for j in range(N): t0 = time.time()board = random board(n) sol = First Choice Hill Climbing(board) t1 = time.time()val[j] = value(sol)t[j] = t1 - t0mean val[i] = np.average(val) mean t[i] = np.average(t) $print(f"n = {n}: \tmean(time) = \{round(mean_t[i]*1e3, 2)\} ms \tmean(objective) = mean \{mean_val[i]\}")$ n = 4: mean(time) = 105.1 ms mean(objective) = mean 1.05 n = 5: mean(time) = 124.13 ms mean(objective) = mean 0.45 n = 6: mean(time) = 624.49 ms mean(objective) = mean 0.95 n = 7: mean(time) = 1359.49 ms mean(objective) = mean 1.5 n = 8: mean(time) = 2525.28 msmean(objective) = mean 1.3mean(objective) = mean 1.2 n = 9: mean(time) = 3395.98 ms n = 10:mean(time) = 7822.66 msmean(objective) = mean 1.45 mean(time) = 12678.52 msmean(objective) = mean 1.85 n = 12: mean(time) = 16045.73 msmean(objective) = mean 1.25 In [29]: plt.plot(ns, mean_t*1e3) plt.xlabel("n") plt.ylabel("avg runtime in ms") plt.show() plt.plot(ns, mean_val) plt.xlabel("n") plt.ylabel("avg objective value") plt.show() 50 avg runtime in ms 40 30 20 10 12 10 11 8 2.25 2.00 and opjective value 150 125 125 100 0.75 0.50 First Choice Hill Climbing mean_val = np.empty(len(ns), dtype = float) mean_t = np.empty(len(ns), dtype = float) for i, n in enumerate(ns): val = np.empty(N, dtype = int) t = np.empty(N, dtype = float) for j in range(N): t0 = time.time()board = random_board(n) sol = First Choice Hill Climbing(board) t1 = time.time()val[j] = value(sol)t[j] = t1 - t0mean_val[i] = np.average(val) $mean_t[i] = np.average(t)$ $print(f"n = \{n\}: \exists (mean_t[i] = \{n\})$ mean $\{mean_val[i]\}$ ")

<pre>n = 4: mean(time) = 119.67 ms</pre>	
<pre>plt.plot(ns, mean_val) plt.xlabel("n") plt.ylabel("average objective value") plt.show()</pre> 16000 14000	
18 - 10000 - 1	
16 - 14 - 12 - 12 - 12 - 10 - 10 - 10 - 10 - 10	
<pre>Steepest Ascend Hill Cimbing random restarts In [36]: import time N = 20 ns = [4, 5, 6, 7, 8, 9, 10, 11, 12] RESTARTS = 100 mean_val = np.empty(len(ns), dtype = float) mean_t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int)</pre>	
<pre>t = np.empty(N, dtype = float) for j in range(N): t0 = time.time() sol = Steepest_Ascend_Hill_Cimbing_random_restarts(n, Steepest_Ascend_Hill_Cimbing, restarts = RESTE t1 = time.time() val[j] = value(sol) t[j] = t1 - t0 mean_val[i] = np.average(val) mean_t[i] = np.average(t) print(f"n = {n}: \tmean(time) = {round(mean_t[i]*1e3, 2)} ms") n = 4: mean(time) = 3.4 ms n = 5: mean(time) = 2.7 ms</pre>	ART\$
<pre>n = 6: mean(time) = 44.71 ms n = 7: mean(time) = 24.1 ms n = 8: mean(time) = 89.51 ms n = 9: mean(time) = 103.87 ms n = 10: mean(time) = 445.34 ms n = 11: mean(time) = 849.2 ms n = 12: mean(time) = 1632.69 ms</pre> In [38]: plt.plot(ns, mean_t*le3) plt.xlabel("n") plt.ylabel("average runtime in ms") plt.show()	
1600 - 1400 - 1400 - 1200 - 10	
Stochastic Hill Cimbing random restarts In [39]: RESTARTS = 100 mean_val = np.empty(len(ns), dtype = float) mean_t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int)	
<pre>t = np.empty(N, dtype = float) for j in range(N): t0 = time.time() sol = Stochastic_Hill_Cimbing_random_restarts(n,Stochastic_Hill_Climbing, restarts = RESTARTS, verbote t1 = time.time() val[j] = value(sol) t[j] = t1 - t0 mean_val[i] = np.average(val) mean_t[i] = np.average(t) print(f"n = {n}: \tmean(time) = {round(mean_t[i]*1e3, 2)} ms\tmean(objective) = mean {mean_val[i]}") n = 4: mean(time) = 3.41 ms</pre>	ose
<pre>n = 6: mean(time) = 86.41 ms</pre>	
plt.xlabel("n") plt.ylabel("average objective value") plt.show() 2000 Eligible 1500 1000 500 1000	
0 - 4 5 6 7 8 9 10 11 12 0.05 -	
0.04 - 0.03 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.01 - 0.00 - 0.	
<pre>First Choice Hill Cimbing random restarts In [50]: RESTARTS = 100 mean_val = np.empty(len(ns), dtype = float) mean_t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int) t = np.empty(N, dtype = float) for j in range(N): t0 = time.time() sol = First_Choice_Hill_Climbing_random_restarts(n, First_Choice_Hill_Climbing, restarts = RESTARTS t1 = time.time()</pre>	, V€
<pre>val[j] = value(sol) t[j] = t1 - t0 mean_val[i] = np.average(val) mean_t[i] = np.average(t) print(f"n = {n}: \tmean(time) = {round(mean_t[i]*1e3, 2)} ms \tmean(objective) = mean {mean_val[i]}") n = 4: mean(time) = 457.4 ms</pre>	
<pre>n = 10:</pre>	
500000 - 400000 - 300000 - 200000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 10000000 - 10000000 - 10000000 - 1000000 - 100000	
0.04 - 0.02 - 0.00 - 0.	
Graduate student advanced task: Simulated Annealing [1 Point] Undergraduate students: This is a bonus task you can attempt if you like [+1 Bonus point].	
Simulated annealing is a form of stochastic hill climbing that avoid local optima by also allowing downhill moves with a probability proportional to a temperature. The temperature is decreased in every iteration following an annealing schedule. You have to experiment with the annealing schedule (Google to find guidance on this). Implement simulated annealing for the n-Queens problem and compare its performance with the previouse algorithms. In [47]: # Code and description go here board = random_board(6) def Simulated_Annealing(board, verbose = False, T0 = None, alpha = 0.999, epsilon = 1e-1): #if verbose: show board(board)	
<pre>n = len(board) best_val = value(board) # Current Coflicts vals = np.full([n,n], -1, dtype = int) Prob_History=[] Number_of_steps = 0 #Calculation of TO deltaE = (n^2)/2 alpha = 0.999 probability_TO = 0.9 # Probability = exp(-deltaE/T) # 0.9 = exp(((n^2)/2)/TO) TO = -(n^2)/(2*np.log(0.9)) T = TO</pre>	
<pre>while T > epsilon: T = T0 * alpha ** Number_of_steps #print(T,"Tempreture") # Randomly choosing one value of conflict for j in range(n): old_q = board[j] for i in range(n): board[j] = i vals[i,j] = value(board) board[j] = old_q random_number_one = np.random.randint(0,n) random_number_two = np.random.randint(0,n)</pre>	
random_number_two = np.random.randint(0,n) new_min = vals[random_number_one][random_number_two] #if verbose: print(f"Current Conflicts: {best_val} - New State Conflicts: □→ {new_min}") deltaE = (new_min) - (best_val) if deltaE <= 0: # print("Good Movement") w = np.where(vals == new_min) best = [a for a in zip(w[0], w[1])] best = best[np.random.randint(0, len(best))] board[best[1]] = best[0] best_val = new_min if best_val==0: break	
<pre>if best_val==0: break #if verbose: show_board(board) else: probability = np.random.choice(a=[1, 0], p=[np.exp(-deltaE/T), 1-(np.exp(-deltaE/T))]) #print(np.exp(-deltaE/T), "np.exp(-deltaE/T)") Prob_History.append(np.exp(-deltaE/T)) if probability == 1: #print("Bad Movement") w = np.where(vals == new_min) best = [a for a in zip(w[0], w[1])] best = best[np.random.randint(0, len(best))] board[best[1]] = best[0] best_val = new_min #if verbose: show_board(board)</pre>	
<pre>else: continue Number_of_steps = Number_of_steps + 1 #print("Number_of_steps:", Number_of_steps) #print(T, "Final Temperature") #print(Number_of_steps, "Total of Number of steps") #return[board, Prob_History] return board b = Simulated_Annealing(board, verbose = True) #plt.plot(c) #plt.xlabel("Iteration") #plt.ylabel("Probability of making bad decision") #plt.show() show_board(b) value(b)</pre>	
Board with 0 conflicts.	
Out[47]: 0 In [48]: import time N=1 ns = [4, 5, 6, 7, 8, 9, 10, 11, 12] mean_val = np.empty(len(ns), dtype = float) mean_t = np.empty(len(ns), dtype = float) for i,n in enumerate(ns): val = np.empty(N, dtype = int)	
<pre>t = np.empty(N, dtype = float) for j in range(N): t0 = time.time() board = random_board(n) sol = Simulated_Annealing(board, verbose = False, T0 = None, alpha = 0.999, epsilon = 1e-1) t1 = time.time() val[j] = value(sol) t[j] = t1 - t0 mean_val[i] = np.average(val) mean_t[i] = np.average(t) print(f"n = {n}: \tmean(time) = {round(mean_t[i]*1e3, 2)} ms\tmean(objective) = mean {mean_val[i]}")</pre>	
<pre>n = 4: mean(time) = 22.13 ms mean(objective) = mean 0.0 n = 5: mean(time) = 132.99 ms mean(objective) = mean 0.0 n = 6: mean(time) = 2397.58 ms mean(objective) = mean 0.0 n = 7: mean(time) = 7865.43 ms mean(objective) = mean 0.0 n = 8: mean(time) = 21655.8 ms mean(objective) = mean 0.0 n = 9: mean(time) = 28827.22 ms mean(objective) = mean 0.0 n = 10: mean(time) = 47030.29 ms mean(objective) = mean 0.0 n = 11: mean(time) = 86571.27 ms mean(objective) = mean 0.0 n = 12: mean(time) = 96663.22 ms mean(objective) = mean 0.0</pre> In [49]: plt.plot(ns, mean_t*le3) plt.xlabel("n") plt.ylabel("average runtime in ms") plt.show()	
plt.plot(ns, mean_val) plt.xlabel("n") plt.ylabel("average objective value") plt.show() 100000 80000 40000 90000 90000 90000	
0.04 - 0.	
0.00 - 4 5 6 7 8 9 10 11 12 n	
More things to do Implement a Genetic Algorithm for the n-Queens problem.	
In [12]: # Code and description go here	
In [12]: # Code and description go here	
In [12]: # Code and description go here # Code and description go here	
In [12]: # Code and description go here	
In [12]: E Code and description go have	
In [127] * Code and description go here	
In [12]: # Common and Schoription go Anno	
29 (USI) ** Code and accordation of Azero**	
Zo (IAI) # Code: and decoration go here	
as (201) I medical distractioning of these	
Cook and surrounding up date Cook and surrounding up date	
The same of the sa	
The continues of the co	
The Color of State and Automotive to part have	
as the set development of the set	