

$3^{\underline{a}}$ prova de Cálculo 2-2/2012 25/03/2013

Questão:	1	2	3	4	Total
Pontos:	0	0	3	2	5
Bonus:	0	0	0	0	0
Notas:					

Nome:	Matr.:

Observações: A interpretação das questões faz parte dos critérios de avaliação desta prova. Responda cada questão de maneira clara e organizada. Resultados apresentados sem justificativas do raciocínio não serão considerados. Qualquer aluno pego consultando alguma fonte ou colega terá, imediatamente, atribuído grau zero na prova. O mesmo ocorrerá com o aluno que facilitar a consulta do colega. Casos mais graves, envolvendo algum tipo de fraude, deverão ser punidos de forma bem mais rigorosa.

	1.	Classifique	e resolva	cada	uma	das	seguintes	EDC){
--	----	-------------	-----------	------	-----	-----	-----------	-----	----

(a)
$$xy' + y + 4 = 0$$

(c)
$$2xyy' - y^2 + x^2 = 0$$

(b)
$$y' = \frac{yx^3}{x^4 + y^4}$$

(d)
$$xy'' - y' = x$$

Solução:

2. Suponha que em uma comunidade de 100 pessoas inicialmente 10 pessoas sejam portadoras de um vírus e que a taxa com que o vírus se espalha na comunidade seja proporcional tanto ao número de pessoas infectadas como também ao número de pessoas não infectadas. Se for observado que após 2 semanas 20 pessoas estão infectadas, determine o número de pessoas infectadas em função do tempo.

Solução: Seja y(t) o número de pessoas infectadas em t semanas. Neste caso temos o seguinte PVI

$$\begin{cases} y' = ky(100 - y), & t > 0 \\ y(0) = 10, & y(2) = 20, \end{cases}$$

onde k é a constante de proporcionalidade.

Vamos inicialmente encontrar uma solução geral para a EDO. Como a EDO é separável temos que

$$\frac{y'}{y(100-y)} = k \Rightarrow \int \frac{1}{y(100-y)} \, dy = \int k \, dt \Rightarrow \int \frac{1}{100y} + \frac{1}{100(100-y)} \, dy = kt + C$$

$$\Rightarrow \frac{1}{100} \ln|y| - \frac{1}{100} \ln|100 - y| = kt + C$$

$$\Rightarrow \frac{1}{100} \ln\left|\frac{y}{100-y}\right| = kt + C \Rightarrow \frac{y}{100-y} = C_1 e^{kt}$$

$$\Rightarrow y = \frac{100C_1 e^{kt}}{1 + C_1 e^{kt}}.$$

Com isso a solução geral da EDO é

$$y = \frac{100C_1 e^{kt}}{1 + C_1 e^{kt}}, \quad \forall \ t > 0.$$

Substituindo as condições iniciais temos que

$$y(0) = 10 \Rightarrow \frac{100C_1}{1 + C_1} = 10 \Rightarrow C_1 = \frac{1}{9}$$

е

$$y(2) = \frac{100e^{2k}}{9 + e^{2k}} = 20 \Rightarrow k = \ln \frac{3}{2}.$$

Com isso temos que a solução do PVI é

$$y(t) = \frac{100(3/2)^t}{9 + (3/2)^t}, \quad t > 0.$$

3. Encontre a solução geral da EDO

$$y'' + 2y' + y = f(x).$$

em cada um dos casos:

- (a) [1 ponto] f(x) = 0.
- (b) [1 ponto] $f(x) = 2x^2$.
- (c) [1 ponto] $f(x) = e^{-x} \ln x$.

Solução:

(a) Considere a EDO y'' + 2y' + y = 0. Resolvendo o polinômio característico associado temos que

$$\lambda^2 + 2\lambda + 1 = 0 \Rightarrow (\lambda + 1)^2 = 0 \Rightarrow \lambda = -1$$

Com isso as soluções fundamentais da EDO são $y_1(x) = e^{-x}$ e $y_2(x) = xe^{-x}$ para todo $x \in \mathbb{R}$.

Logo a solução geral da EDO é dada por

$$y_h(x) = C_1 e^{-x} + C_2 x e^{-x}, \quad \forall \ x \in \mathbb{R}.$$
 (1)

(b) Considere a EDO $y'' + 2y' + y = 2x^2$. Do item anterior temos a solução geral da EDO homogênea associada. Usando o Método dos Coeficientes a Determinar sabemos uma solução particular da EDO é da forma

$$y_p(x) = A + Bx + Cx^2.$$

Substituindo na EDO obtemos que A=12, B=-8 e C=2, daí, $y_p(x)=12-8x+2x^2.$ Logo a solução geral da EDO é

$$y(x) = y_h(x) + y_p(x) = C_1 e^{-x} + C_2 x e^{-x} + 12 - 8x + 2x^2, \quad \forall \ x \in \mathbb{R}.$$

(c) Considere a EDO $y'' + 2y' + y = e^{-x} \ln x$. Do item (a) temos a solução geral da EDO homogênea associada. Vamos usar o Método da Variação dos Parâmetros para determinar uma solução particular para esta EDO. Queremos encontrar uma solução particular da forma

$$y_p(x) = u(x)e^{-x} + v(x)xe^{-x},$$

onde u e v satisfazem

$$\begin{cases} u'e^{-x} + v'xe^{-x} = 0 \\ -u'e^{-x} + v'e^{-x}(1-x) = e^{-x}\ln x. \end{cases}$$

Resolvendo este sistema obtemos que $u'(x) = -x \ln x$ e $v' = \ln x$. Integrando ambas as equações obtemos que $u(x) = \frac{x^2}{4} - \frac{x^2}{2} \ln x$ e $v(x) = -x + x \ln x$.

Logo a solução geral da EDO é

$$y(x) = y_h(x) + y_p(x) = C_1 e^{-x} + C_2 x e^{-x} + e^{-x} x^2 \left(-\frac{3}{4} - \frac{1}{2} \ln x \right).$$

4. Considere o seguinte PVI

$$\begin{cases} y'' - 4xy' + (4x^2 - 2)y = 0\\ y(0) = 1, \ y'(0) = -1 \end{cases}$$

- (a) [0.5 pontos] Verifique que $y_1(x) = e^{x^2}$ é solução da EDO.
- (b) [0,5 pontos] Encontre o intervalo de validade da solução.
- (c) [1 ponto] Encontre a solução geral do PVI.

Solução:

- (a) Basta substituir na EDO.
- (b) Como p(x)=-4x e $q(x)=4x^2-2$ são contínuas em \mathbb{R} , pelo T.E.U.S.L, temos que existe uma única solução para o PVI dado em \mathbb{R} .
- (c) Vamos determinar uma segunda solução usando o método da redução de ordem. Suponha que $y_2(x) = u(x)e^{x^2}$ seja solução da EDO. Substituindo na EDO obtemos que

$$e^{x^2}u''(x) = 0 \Rightarrow u''(x) = 0 \Rightarrow u(x) = x.$$

Portanto temos que a segunda solução para a EDO é

$$y_2(x) = xe^{x^2}.$$

Vejamos se y_1 e y_2 são soluções fundamentais. Note que

$$W[y_1, y_2](x) = \det \begin{pmatrix} e^{x^2} & xe^{x^2} \\ 2xe^{x^2} & e^{x^2}(1+2x^2) \end{pmatrix} = e^{x^4} \neq 0, \quad \forall \ x \in \mathbb{R}.$$

Logo y_1 e y_2 são LI em $\mathbb R$ e portanto a solução geral da EDO é dada por

$$y(x) = C_1 e^{x^2} + C_2 x e^{x^2}.$$

Substituindo as condições iniciais temos que $C_1=1$ e $C_2=-1$. Logo a solução do PVI é dada por

$$y(x) = e^{x^2} - xe^{x^2}, \quad \forall \ x \in \mathbb{R}.$$