CSCE 465 Computer & Network Security

Instructor: Abner Mendoza

Firewall

Roadmap

Basic firewall concept

Filtering firewall

Proxy firewall

Network Address Translation

What is a firewall?

 Device that provides secure connectivity between networks (internal/external; varying levels of trust)

Used to implement and enforce a security policy for communication between networks

Firewalls

- From Webster's Dictionary: a wall constructed to prevent the spread of fire
- Internet firewalls are more the moat around a castle than a building firewall
- Controlled access point

Firewalls can:

- Restrict incoming and outgoing traffic by IP address, ports, or users
- Block invalid packets

- Convenient
 - Give insight into traffic mix via logging
 - Network Address Translation
 - Encryption

Firewalls Cannot Protect...

- Traffic that does not cross it
 - routing around
 - Internal traffic

When misconfigured

Access Control

FILTERING FIREWALL

Filtering Firewall

- Packets checked then passed
- Inbound & outbound affect when policy is checked

Filtering

- Packet filtering
 - Access Control Lists
- Session filtering
 - Dynamic Packet Filtering
 - Stateful Inspection
 - Context Based Access Control

Packet Filtering

- Decisions made on a per-packet basis
- No state information saved
- Typical Configuration
 - Ports > 1024 left open
 - If dynamic protocols are in use, entire ranges of ports must be allowed for the protocol to work.

Example: FTP Protocol

Example FTP – Packet Filter

Format:

access-list <rule number> <permit|deny> <protocol> <SOURCE host with IP address| any|IP address and mask> [<gt|eq port number>] <DEST host with IP address| any|IP address and mask> [<gt|eq port number>]

The following allows a user to FTP (not passive FTP) from any IP address to the FTP server (172.168.10.12):

```
access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 21
access-list 100 permit tcp any gt 1023 host 172.168.10.12 eq 20
! Allows packets from any client to the FTP control and data ports
access-list 101 permit tcp host 172.168.10.12 eq 21 any gt 1023
access-list 101 permit tcp host 172.168.10.12 eq 20 any gt 1023
! Allows the FTP server to send packets back to any IP address with TCP ports > 1023
interface Ethernet 0
access-list 100 in ! Apply the first rule to inbound traffic access-list 101 out ! Apply the second rule to outbound traffic!
```

Session Filtering

- Packet decision made in the context of a connection
- If packet is a new connection, check against security policy
- If packet is part of an existing connection, match it up in the state table & update table
- Typical Configuration
 - All denied unless specifically allowed
 - Dynamic protocols (FTP, RealAudio, etc.) allowed only if supported

Session Filtering

- Screens ALL attempts, Protects All applications
- Extracts & maintains 'state' information
- Makes an intelligent security / traffic decision

FTP – Passive Mode

mode.

port.

Server

Example FTP: Session Filter

PROXY FIREWALL

Proxy Firewalls

- Relay for connections
- Client →Proxy →Server
- Two flavors
 - Application level
 - Circuit level

- Understands specific applications
 - Limited proxies available
 - Proxy 'impersonates' both sides of connection
- Resource intensive
 - process per connection
- HTTP proxies may cache web pages

- Also called a Proxy Firewall
- Acts as a relay for application level traffic
 - Typical applications:
 - Telnet
 - FTP
 - SMTP
 - HTTP
- More secure than packet filters
 - Bad packets won't get through the gateway
 - Only has to deal with application level packets
- Simplifies rules needed in packet filter

- Client connects
- Gateway does in depth inspection of the application level packet, if connection meets criteria on the gateway rule base packet will be proxied to the server
- Proxy firewall is directly between the client and the server on an application by application basis

Application Gateways

- Clients configured for proxy communication
- Transparent Proxies

- More appropriate to TCP
- ICMP difficult
- Block all unless specifically allowed
- Must write a new proxy application to support new protocols
 - Not trivial!

ALG Use

- Many application clients can be configured to use a specific ALG (proxy) by the end user
 - Firefox-Options-Advanced-Network-Connections-Proxy
 - WS/FTP-Connect-Firewall-Proxy
- Router can be set to forward all application packets to specific proxy
 - Benefit is all user traffic is forced to a proxy
 - User cannot bypass the proxy

Additional ALG Benefits

- Privacy
 - Outside world only sees the IP of the gateway not the IPs of the end users
 - Prevents foreign hosts from harvesting user addresses for later use in SPAM
 - Especially important for HTTP
- Ideal place to do logging

Circuit Level Gateways

- Also known as a Stateful Inspection Firewall
- Session layer of OSI
- Shim between transport and application layer of TCP/IP
- Monitors handshake used to establish connections
- Hides information about internal network
- Breaks the TCP connection
 - Proxies the TCP connection

Circuit-Level Gateways

- Support more services than Application-level Gateway
 - less control over data
- Hard to handle protocols like FTP
- Clients must be aware they are using a circuitlevel proxy
- Protect against fragmentation problem

Example: SOCKS

- Circuit level Gateway
- Support TCP
- SOCKS v5 supports UDP, earlier versions did not
- See http://www.socks.nec.com

SOCKS (SOCKetS)

- RFC1928
- Generic proxy protocol for TCP/IP
- Provides a framework for developing secure communications by easily integrating other security technologies
- Works for both TCP and UDP (ver. 5)

How Does SOCKS Work

- Client wants to connect to an application server
- Connects to SOCKS proxy using SOCKS protocol
- SOCKS proxy connects to application server using SOCKS protocol
- To the application server the SOCKS server is the client

The SOCKS Protocol

- SOCKS ver 5 IETF Approved (RFC 1928)
- Two components
 - Client sits between the Application and Transport layers
 - Server application layer
- Purpose is to enable a client on one side of the SOCKS server to talk to a server on the other side without requiring IP reachability

SOCKS Functions

- Make Connection Requests
- Set up proxy circuits
- Relay Application Data
- Perform user authentication

SOCKS Features

- Transparent network access across multiple proxy servers
- Easy deployment of authentication and encryption
- Rapid deployment of new network applications
- Simple network security policy management

SOCKS Benefits

- Single protocol authenticates and establishes the communication channel
- Is application independent
- Can be used with TCP or UDP
 - Supports redirection of ICMP
- Bi-directional support and intrinsic NAT for added security and anti-spoofing

Comparison

	Security	Performance
Packet Filter	3	1
Session Filter	2	2
Circuit GW	2	3
App. GW	1	4

Lower is better for security & performance

Comparison

	Modify Client Applications?
Packet Filter	No
Session Filter	No
Circuit GW	Typical, SOCKS-ify client applications
App. GW	Unless transparent, client application must be proxy-aware & configured

Comparison

	ICMP	Fragmen- tation
Packet Filter	Yes	No
Session Filter	Yes	Maybe
Circuit GW	(SOCKS v5)	Yes
App. GW	No	yes

Proxying UDP/ICMP

- Why isn't UDP or ICMP proxied as much as TCP?
- TCP's connection-oriented nature easier to proxy
- UDP & ICMP harder (but not impossible) since each packet is a separate transaction
- Session filters determine which packets appear to be replies

NETWORK ADDRESS TRANSLATION

NAT: Network Address Translation

- Useful if organization does not have enough real IP addresses
- Extra security measure if internal hosts do not have valid IP addresses (harder to trick firewall)
- Only really need real IP addresses for services outside networks will originate connections to

NAT

- Many-to-1 (n-to-m) mapping
- 1-to-1 (n-to-n) mapping
- Proxies provide many-to-1
- NAT not required on filtering firewalls

Encryption (VPNs)

- Allows trusted users to access sensitive information while traversing untrusted networks
- Useful for remote users/sites
- IPSec

