

Sleep Apnea Detection using ECG-Derived Respiration

Sleep Apnea Detection using ECG-Derived Respiration leverages ECG signals to identify apnea events during sleep, aiming to provide a non-invasive, cost-effective diagnostic tool.

Submitted By:

Nikhil [102203095]

Balkaran [102317009]

Anshika [702300091]

Armaan [102303014]

Problem Statement

Sleep apnea is a serious sleep disorder characterized by repeated interruptions in breathing. Traditional diagnosis methods like polysomnography are expensive and inconvenient. Detecting sleep apnea using ECG-derived respiration signals offers a promising alternative.

Project Objectives

- Develop a high-accuracy model for sleep apnea detection using ECG signals
- Utilize the PhysioNet Apnea-ECG database for model training and validation
- Implement advanced preprocessing and feature extraction techniques
- Compare various deep learning architectures and ensemble methods
- Achieve accuracy above 95% for reliable apnea detection

Key Benefits

- Cost-effective: Reduced equipment and setup costs
- Portable: Home-based monitoring capability
- Accessible: Wider patient reach and screening

Why PhysioNet Apnea-ECG Database?

Gold Standard for Sleep Apnea Research

- Benchmark Dataset: Most widely used and cited dataset in academic literature
- Expert Validation: Human expert annotations based on simultaneously recorded respiration signals
- Research Challenge: Used in PhysioNet/Computing in Cardiology Challenge 2000
- Reproducible Results: Standardized format allows direct comparison with published studies

Clinical Relevance & Quality

- Real Patient Data: 70 single-lead ECG recordings from actual sleep disorder patients
- Diverse Severity Levels: Class A (severe), Class B (moderate), Class C (normal/control)
- Age Range: 27-63 years (mean 43.8±10.8 years), both male and female subjects
- Clinical Standards: Annotations derived from polysomnography data

Dataset & Preprocessing

PhysioNet Apnea-ECG Database

Advanced Preprocessing Pipeline

- 1. **Data Loading:** Fast processing of PhysioNet training files (a01-a10, b01-b05, c01-c05)
- 2. Signal Segmentation: 1-minute windows for consistent analysis
- 3. Comprehensive Feature Extraction:
 - Statistical Features (15): Mean, std, variance, min, max, median, percentiles, derivatives
 - Frequency Domain Features (5): FFT analysis, power spectral density, frequency bands
 - Morphological Features (5): Peak detection, R-R intervals, cardiac rhythm analysis
- 4. **Quality Control:** Robust error handling and invalid feature replacement
- 5. **Normalization:** Feature scaling for optimal model performance

Data Quality Metrics

- Processing Success Rate: 95%+ segment extraction
- Feature Completeness: All 25 features extracted per segment
- Class Balance: Well-distributed apnea vs normal segments

Metric	Your Results
Total Segments	5,289
Sampling Rate	100 Hz
Segment Length	60 seconds (6,000 samples)
Features per Segment	25
Training Files Processed	20 files
Apnea Ratio	~50% (balanced dataset)

Methodology

Different Models & their accuracies

We investigate advanced deep learning models to capture complex spatial and temporal patterns in ECG signals for enhanced apnea detection.

CNN-BiLSTM [According to Research Papers]

Architecture: Combines Convolutional Neural Networks (CNN) for spatial feature extraction with Bidirectional Long Short-Term Memory (BiLSTM) for capturing temporal dependencies in ECG signals.

Accuracy Range: 90-99% depending on dataset and implementation [To be implemented]

CNN-LSTM

Architecture: Combines CNN layers for feature extraction with LSTM layers for temporal sequence modeling, effective for ECG-based apnea detection.

Accuracy Range: 85-95% in various studies

1D CNN + BiLSTM

Architecture: Uses 1-dimensional CNN layers to extract features from raw ECG signals followed by BiLSTM layers to model temporal patterns.

Accuracy Range: 70-75% depending on dataset and preprocessing

Model	Accuracy Range	Strengths	Complexity
CNN-BiLSTM	90-99%	Highest accuracy, bidirectional processing	High
CNN-LSTM	85-95%	Good balance of performance and complexity	Medium
1D CNN + BiLSTM	70-75%	Direct raw signal processing	Medium-Low

Output Representation

AlexNet

Learning rate: → Epoch 3/100	0.001000000474974513
105/105	63s 600ms/step - accuracy: 0.6213 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010
Epoch 4/100	
Learning rate:	82s 604ms/step - accuracy: 0.6073 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010 0.0010000000474974513
	83s 610ms/step - accuracy: 0.6216 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010
Learning rate: Epoch 6/100	0.0010000000474974513
Learning rate:	81s 601ms/step - accuracy: 0.6127 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010
	63s 604ms/step - accuracy: 0.6186 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010
Epoch 8/100	0.0010000000474974513
	63s 602ms/step - accuracy: 0.6062 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010 0.0010000000474974513
105/105 Learning rate:	81s 596ms/step - accuracy: 0.6158 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010 0.0010000000474974513
	81s 589ms/step - accuracy: 0.6152 - loss: nan - val_accuracy: 0.6139 - val_loss: nan - learning_rate: 0.0010
Epoch 11/100	
WARNING:absl:Ye	ou are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered —————————————————————————————————

[61-62% Accuracy]

AlexNet-LSTM

[60-62% Accuracy]

GRU

```
105/105 -
                            - 2s 16ms/step - accuracy: 0.6261 - loss: nan - val_accuracy: 0.6099 - val_loss: nan - learning_rate: 0.0010
Learning rate: 0.001000000474974513
Epoch 7/100
                            - 2s 16ms/step - accuracy: 0.6132 - loss: nan - val_accuracy: 0.6099 - val_loss: nan - learning_rate: 0.0010
105/105 -
Learning rate: 0.0010000000474974513
Epoch 8/100
105/105 -
                            · 2s 23ms/step - accuracy: 0.6135 - loss: nan - val_accuracy: 0.6099 - val_loss: nan - learning_rate: 0.0010
Epoch 9/100
                            - 3s 29ms/step - accuracy: 0.6106 - loss: nan - val accuracy: 0.6099 - val loss: nan - learning rate: 0.0010
105/105 -
Learning rate: 0.0010000000474974513
Epoch 10/100
                            - 2s 16ms/step - accuracy: 0.6139 - loss: nan - val_accuracy: 0.6099 - val_loss: nan - learning_rate: 0.0010
Epoch 11/100
                            · 3s 17ms/step - accuracy: 0.6160 - loss: nan - val_accuracy: 0.6099 - val_loss: nan - learning_rate: 0.0010
105/105 -
WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered
117/117 -
                            - 1s 5ms/step - accuracy: 0.3790 - loss: nan
117/117 -
Mean ACC: 61.56%
Mean SN: 0.00%
Mean SP: 100.00%
Mean F1: 0.00%
```

[61-62% Accuracy]

1D CNN + BiLSTM [75% Accuracy]

```
<u>↑ ↓ ♦ 🖘 🗏 ⑪ :</u>
    139/139 -
                               - 85s 495ms/step - accuracy: 0.7864 - loss: 0.4321 - val_accuracy: 0.7524 - val_1033. 0.4700 - ուսույութ_ աւշ. 0.00
→ Learning rate: 0.0010000000474974513
   Epoch 20/40
   139/139 -
                                - 80s 483ms/step - accuracy: 0.7930 - loss: 0.4229 - val_accuracy: 0.7615 - val_loss: 0.4933 - learning_rate: 0.001
    Learning rate: 0.0010000000474974513
   Epoch 21/40
   139/139 -
                               – 66s 476ms/step - accuracy: 0.7847 - loss: 0.4307 - va<u>l accuracy: 0.7549 - val loss: 0.499</u>5 - learnin<u>g</u> rate: 0.001
    Learning rate: 0.0010000000474974513
   Epoch 22/40
   139/139 -
                               - 86s 506ms/step - accuracy: 0.7972 - loss: 0.4177 - val_accuracy: 0.7489 - val_loss: 0.4839 - learning_rate: 0.001
   Learning rate: 0.0010000000474974513
   Epoch 23/40
   139/139 -
                               — 70s 504ms/step - accuracy: 0.7914 - loss: 0.4118 - val_accuracy: 0.7696 - val_loss: 0.4801 - learning_rate: 0.001
    Learning rate: 0.0010000000474974513
   Epoch 24/40
                              — 68s 486ms/step - accuracy: 0.7953 - loss: 0.4095 - val_accuracy: 0.7686 - val_loss: 0.4817 - learning_rate: 0.001
    WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered
                              - 8s 54ms/step - accuracy: 0.6809 - loss: 0.5885
    155/155 -
                              — 10s 55ms/step
    Mean ACC: 75.63%
    Mean SN: 76.56%
    Mean SP: 74.70%
   Mean F1: 75.81%
```

Model Architecture	Accuracy	Implementation Notes
BiLSTM + Z-norm + SMOTE	~60%	Butterworth filter, data balancing
BiLSTM + Bandpass Filter	~60%	Basic preprocessing pipeline
GRU	~60%	Simple recurrent architecture
VGG-19	~60%	Adapted CNN for ECG signals
AlexNet Variants	~60%	Multiple configurations tested
1D CNN + BiLSTM	70-75%	Breakthrough performance
CNN-LSTM Hybrid	85-90%	Current best result

Current Best Result

CNN-LSTM [25 Features] [88.04% Accuracy]

CNN-LSTM [55 Features] [90.55% Accuracy]

