AN EFFICIENT REPRESENTATION FOR FILTRATIONS OF SIMPLICIAL COMPLEXES

Karthik C. S.

Weizmann Institute of Science.

Joint work with Jean-Daniel Boissonnat (INRIA).

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

L

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in \mathsf{K}, \tau \subseteq \sigma \Rightarrow \tau \in \mathsf{K}.$$

L

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in \mathsf{K}, \tau \subseteq \sigma \Rightarrow \tau \in \mathsf{K}.$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in \mathsf{K}, \tau \subseteq \sigma \Rightarrow \tau \in \mathsf{K}.$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

A simplicial complex $K \subseteq \mathcal{P}(V)$:

$$\diamond \ p \in V \Rightarrow \{p\} \in K.$$

$$\diamond \ \sigma \in K, \tau \subseteq \sigma \Rightarrow \tau \in K.$$

- 6 vertices
 3 dimensional
 2 maximal simplices
 - 2 maximal simplices22 simplices

.

Data structures for simplicial complexes:

* Hasse Diagram

- * Hasse Diagram
- * Simplex Tree [Boissonnat and Maria, 2014]

- * Hasse Diagram
- * Simplex Tree [Boissonnat and Maria, 2014]
- * Skeleton Blockers [Attali, Lieutier, Salinas, 2012]

- * Hasse Diagram
- * Simplex Tree [Boissonnat and Maria, 2014]
- * Skeleton Blockers [Attali, Lieutier, Salinas, 2012]
- * Simplex Array List [Boissonnat, K, Tavenas, 2016]

filtration of Data structures for simplicial complexes:

- * Hasse Diagram
- * Simplex Tree [Boissonnat and Maria, 2014]
- * Skeleton Blockers [Attali, Lieutier, Salinas, 2012]
- * Simplex Array List [Boissonnat, K, Tavenas, 2016]

filtration of Data structures for simplicial complexes:

- * Hasse Diagram
- * Simplex Tree [Boissonnat and Maria, 2014]
- * Skeleton Blockers [Attali, Lieutier, Salinas, 2012]
- * Simplex Array List [Boissonnat, K, Tavenas, 2016]

A filtration $f: K \to \mathbb{R}$,

$$f(\sigma) \leq f(\tau)$$
 if $\sigma \subseteq \tau$

A filtration $f: K \to \mathbb{R}$,

$$f(\sigma) \le f(\tau)$$
 if $\sigma \subseteq \tau$

A filtration $f: K \to \mathbb{R}$,

$$f(\sigma) \le f(\tau)$$
 if $\sigma \subseteq \tau$

A filtration $f: K \to \mathbb{R}$,

$$f(\sigma) \le f(\tau)$$
 if $\sigma \subseteq \tau$

A filtration $f: K \to \mathbb{R}$,

$$f(\sigma) \le f(\tau)$$
 if $\sigma \subseteq \tau$

AGENDA

Find a representation for filtrations of simplicial complexes:

Agenda

Find a representation for filtrations of simplicial complexes:

* Small size.

Agenda

Find a representation for filtrations of simplicial complexes:

- * Small size.
- * Perform queries quickly:
 - Access filtration value.
 - Simplex Insertion.
 - Simplex Removal.

SIMPLEX TREE

Introduced by Boissonnat and Maria [ESA '12, Algorithmica '14].

SIMPLEX TREE

Storage: $\Theta(m(\log n + \log t))$

SIMPLEX TREE

Storage: $\Theta(m(\log n + \log t))$

m: # of simplices n: # of vertices

X.0

Removal: $\mathcal{O}(m \log n)$ d_{σ} : dimension of σ

A CHANGE IN PERSPECTIVE

A simplicial complex $K : \{0,1\}^n \rightarrow \{0,1\}$:

- $|x| \leq 1 \Longrightarrow K(x) = 0$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

Monotonicity ←→ Closed under subsets

A CHANGE IN PERSPECTIVE

A simplicial complex $K : \{0,1\}^n \rightarrow \{0,1\}$:

- $|x| \leq 1 \Longrightarrow K(x) = 0$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

 $\mathsf{Monotonicity} \longleftrightarrow \mathsf{Closed} \ \mathsf{under} \ \mathsf{subsets}$

Boundary: All elements of $\{0,1\}^n$ mapped to 0, all of whose out-neighbors are mapped to 1.

Boundary = Set of Maximal simplices

A CHANGE IN PERSPECTIVE

A simplicial complex $K : \{0,1\}^n \rightarrow \{0,1\}$:

- $|x| \leq 1 \Longrightarrow K(x) = 0$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

 ${\sf Monotonicity} \longleftrightarrow {\sf Closed} \ {\sf under} \ {\sf subsets}$

Boundary: All elements of $\{0,1\}^n$ mapped to 0, all of whose out-neighbors are mapped to 1.

Boundary = Set of Maximal simplices

A compact representation: store only the boundary!

CRITICAL SIMPLEX (DEFINITION)

A filtration $f : \{0,1\}^n \to \{0,\ldots,t+1\}$:

- $|x| \le 1 \Longrightarrow K(x) < t + 1$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

CRITICAL SIMPLEX (DEFINITION)

A filtration $f : \{0,1\}^n \to \{0,\ldots,t+1\}$:

- $|x| \leq 1 \Longrightarrow K(x) < t + 1$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

i-Boundary: All elements of $\{0,1\}^n$ mapped to i, all of whose out-neighbors are mapped to values greater than i.

 $\bigcup_{0 \le i \le t} i\text{-Boundary} = \mathsf{Set} \mathsf{ of Critical simplices}$

CRITICAL SIMPLEX (DEFINITION)

A filtration $f : \{0,1\}^n \to \{0,\ldots,t+1\}$:

- $|x| \leq 1 \Longrightarrow K(x) < t + 1$.
- Monotonicity: A directed path from y to $x \Rightarrow K(y) \leq K(x)$.

i-Boundary: All elements of $\{0,1\}^n$ mapped to i, all of whose out-neighbors are mapped to values greater than i.

$$\bigcup_{0 \le i \le t} i\text{-Boundary} = \mathsf{Set} \mathsf{ of Critical simplices}$$

A compact representation: store only the critical simplices!

LOWER BOUND ON DATA STRUCTURES

Theorem

Consider the class of all simplicial complexes on n vertices of dimension d, associated with a filtration over the range of $\{0,\ldots,t\}$, such that the number of critical simplices is κ , where $d\geq 2$ and $\kappa\geq n+1$, and consider any data structure that can represent the simplicial complexes of this class. Such a data structure requires $\log\left(\binom{\binom{n/2}{d+1}}{\kappa-n}t^{\kappa-n}\right)$ bits to be stored. For any constant $\varepsilon\in(0,1)$ and for $\frac{2}{\varepsilon}n\leq\kappa\leq n^{(1-\varepsilon)d}$ and $d\leq n^{\varepsilon/3}$, the bound becomes $\Omega(\kappa(d\log n+\log t))$.

9

LOWER BOUND ON DATA STRUCTURES

Theorem

Consider the class of all simplicial complexes on n vertices of dimension d, associated with a filtration over the range of $\{0,\ldots,t\}$, such that the number of critical simplices is κ , where $d\geq 2$ and $\kappa\geq n+1$, and consider any data structure that can represent the simplicial complexes of this class. Such a data structure requires $\log\left(\binom{\binom{n/2}{d+1}}{\kappa-n}t^{\kappa-n}\right)$ bits to be stored. For any constant $\varepsilon\in(0,1)$ and for $\frac{2}{\varepsilon}n\leq\kappa\leq n^{(1-\varepsilon)d}$ and $d\leq n^{\varepsilon/3}$, the bound becomes $\Omega(\kappa(d\log n+\log t))$.

9

$$\mathsf{Storage} = \mathcal{O}(\kappa d \log(\kappa t))$$

 $\kappa := \text{Number of critical simplices}$

$$\mathsf{Storage} = \mathcal{O}(\kappa d \log(\kappa t)) \longrightarrow \mathsf{``Tight!''}$$

 $\kappa := \mathsf{Number} \ \mathsf{of} \ \mathsf{critical} \ \mathsf{simplices}$

Some Relevant Parameters

 Γ_j : largest number of maximal simplices of K that a given j-simplex of K may be contained in.

$$1 = \Gamma_d \le \Gamma_{d-1} \le \cdots \le \Gamma_1 \le \Gamma_0 \le k := \#$$
 of maximal simplices

Some Relevant Parameters

 Γ_j : largest number of maximal simplices of K that a given j-simplex of K may be contained in.

$$1 = \Gamma_d \le \Gamma_{d-1} \le \cdots \le \Gamma_1 \le \Gamma_0 \le k := \#$$
 of maximal simplices

 $\Psi(v)$: # of critical simplices that contain vertex v of K.

$$\Psi = \max_{v \in V} \Psi(v).$$

Some Relevant Parameters

 Γ_j : largest number of maximal simplices of K that a given j-simplex of K may be contained in.

$$1 = \Gamma_d \le \Gamma_{d-1} \le \cdots \le \Gamma_1 \le \Gamma_0 \le k := \#$$
 of maximal simplices

 $\Psi(v)$: # of critical simplices that contain vertex v of K.

$$\Psi = \max_{v \in V} \Psi(v).$$

 Ψ is *mostly* much smaller than κ .

 $\underline{\mathsf{Input}} \colon \mathsf{A} \mathsf{ simplex } \sigma = \mathsf{v}_{\ell_0} \cdots \mathsf{v}_{\ell_{d_\sigma}}.$

<u>Task</u>: Compute $f(\sigma)$.

- 1. Find $A_{\ell_0}, \ldots, A_{\ell_{d_{\sigma}}}$.
- 2. Compute $A_{\sigma} = \bigcap_{0 \leq i \leq d_{\sigma}} A_{\ell_i}$.
- 3. Let \mathcal{P} be projection on to the first coordinate.

$$f(\sigma) = \min \{ \mathcal{P}(x) \mid x \in A_{\sigma} \}.$$

$$\mathcal{O}\left(\Psi d_{\sigma}\log\Psi\right)$$

Insertion in CSD

<u>Input</u>: A simplex $\sigma = v_{\ell_0} \cdots v_{\ell_{d_{\sigma}}}$ with filtration value s_{σ} .

<u>Task</u>: Insert σ in K with filtration value s_{σ} .

Insertion in CSD

Input: A simplex $\sigma = v_{\ell_0} \cdots v_{\ell_{d_{\sigma}}}$ with filtration value s_{σ} .

<u>Task</u>: Insert σ in K with filtration value s_{σ} .

- 1. If σ is a maximal simplex in K:
 - 1.1 Remove or relocate all faces of σ which were previously maximal in K.
 - 1.2 Introduce the graph component corresponding to σ .

Insertion in CSD

<u>Input</u>: A simplex $\sigma = v_{\ell_0} \cdots v_{\ell_{d_{\sigma}}}$ with filtration value s_{σ} .

<u>Task</u>: Insert σ in K with filtration value s_{σ} .

- 1. If σ is a maximal simplex in K:
 - 1.1 Remove or relocate all faces of σ which were previously maximal in K.
 - 1.2 Introduce the graph component corresponding to σ .
- 2. If σ is a critical simplex in K:
 - 2.1 Remove all faces of σ which were previously critical in K but are not any more.
 - 2.2 Introduce the graph component corresponding to σ .

$$\boxed{\mathcal{O}\left(\Psi d_{\sigma}^{2} \log \Psi\right)}$$

REMOVAL IN CSD

Input: A simplex $\sigma = v_{\ell_0} \cdots v_{\ell_{d_{\sigma}}}$.

<u>Task</u>: Remove σ from K.

REMOVAL IN CSD

Input: A simplex $\sigma = v_{\ell_0} \cdots v_{\ell_{d_{\sigma}}}$.

Task: Remove σ from K.

- 1. Obtain the set Z_{σ} of critical simplices in K which contain σ .
- 2. For every $\tau \in Z_{\sigma}$, remove τ from K and insert the facets of τ which do not contain σ with appropriate filtration value.

$$\mathcal{O}\left(\left(\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^{2}\right) d \log \Psi\right)$$

Flag Complex of G: All cliques of G are simplices of K.

Flag Complex of G: All cliques of G are simplices of K.

Filtration of σ : Maximum of the filtration values of edges in σ .

Flag Complex of G: All cliques of G are simplices of K.

<u>Filtration of σ </u>: Maximum of the filtration values of edges in σ .

Input: A weighted graph G.

Output: A simplicial complex K with associated filtration.

Flag Complex of G: All cliques of G are simplices of K.

<u>Filtration of σ </u>: Maximum of the filtration values of edges in σ .

Input: A weighted graph G.

Output: A simplicial complex K with associated filtration.

1. Compute all maximal cliques in G. $\mathcal{O}(k \cdot n^{\omega})$

Flag Complex of G: All cliques of G are simplices of K.

Filtration of σ : Maximum of the filtration values of edges in σ .

Input: A weighted graph G.

Output: A simplicial complex K with associated filtration.

- 1. Compute all maximal cliques in G. $O(k \cdot n^{\omega})$
- 2. Sort all edges of *G* according to weight:

$$w(e_1) \geq w(e_2) \geq \cdots \geq w(e_{|E|}).$$

- 3. For every i from 1 to |E|:
 - 3.1 Find all maximal cliques in induced subgraph of $N(e_i)$.
 - 3.2 Remove e_i from G. $\mathcal{O}(\kappa \cdot n^{\omega})$

	Simplex Tree	Critical Simplex Diagram		
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$		
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$		
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2\Psi\log\Psi)$		
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2) d \log \Psi)$		
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$		

	Simplex Tree	Critical Simplex Diagram		
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$		
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$		
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2\Psi\log\Psi)$		
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2) d \log \Psi)$		
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$		

	Simplex Tree	Critical Simplex Diagram		
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$		
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$		
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2 \Psi \log \Psi)$		
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2) d \log \Psi)$		
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$		

SUMMARY: ST vs. CSD

	Simplex Tree	Critical Simplex Diagram		
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$		
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$		
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2\Psi\log\Psi)$		
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2)d\log\Psi)$		
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$		

SUMMARY: ST vs. CSD

	Simplex Tree	Critical Simplex Diagram			
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$			
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$			
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2\Psi\log\Psi)$			
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2) d \log \Psi)$			
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$			

	Simplex Tree Critical Simplex Diagra			
Storage	$\mathcal{O}(m\log(nt))$	$\mathcal{O}(\kappa d \log(\kappa t))$		
Filtration Query	$\mathcal{O}(d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}\Psi\log\Psi)$		
Insertion	$\mathcal{O}(2^{d_{\sigma}}d_{\sigma}\log n)$	$\mathcal{O}(d_{\sigma}^2 \Psi \log \Psi)$		
Removal	$\mathcal{O}(m \log n)$	$\mathcal{O}((\Psi d_{\sigma} + \Gamma_{d_{\sigma}}^2)d\log\Psi)$		
Construction of Flag Complex	$\mathcal{O}(md \log n)$	$\mathcal{O}(\kappa n^{2.38})$		

END OF TALK

Thank you!

Value of Ψ

Data Set: Rips Complex from sampling of Klein bottle in \mathbb{R}^5 .

No	t	ST	CSD	Γο	Γ_0^{avg}	Ψ	Ψ^{avg}
0	0	10,508,486	179,521	115	17.9	115	17.9
1	10	10,508,486	490,071	115	17.9	329	49.0
2	25	10,508,486	618,003	115	17.9	429	61.8
3	100	10,508,486	728,245	115	17.9	723	72.8
4	500	10,508,486	765,583	115	17.9	839	76.5
5	2,000	10,508,486	774,496	115	17.9	860	77.4
6	10,000	10,508,486	777,373	115	17.9	865	77.7
7	25,000	10,508,486	778,151	115	17.9	865	77.8
8	100,000	10,508,486	778,319	115	17.9	866	77.8
9	1,000,000	10,508,486	778,343	115	17.9	866	77.8
10	10,000,000	10,508,486	778,343	115	17.9	866	77.8