Dennis Chen PS 06
I. An impulse response to an impulse characterizes an LTI system & tells you how the system will amplify or kill off every frequency. So, convolving this response wany signal tells you what the output of the system will be when that signal is put in, since the impulse response gave you into about all frequencies.
Basically, S[n] (guns hot) shooting herpower impulse response to the surface of t
X[n] (violin) Shooting y[n] (violin) range
$y[n] = \chi[n] + h[n]$
2. Echo channel makes sense because the output; s the input shifted later in time & scaled to be smaller. So, if you put in a sound, you'd hear that some sound 1 second later at half volume, and then 10 seconds later at a quarter of the original volume. That's just like an echo! (%) (%)
 The impule response: $h(t) = \frac{1}{2}\delta(t-1) + \frac{1}{4}\delta(t-10)$

32

- 9


```
In [24]: def eval_square_fourier(x, T, num_terms):
    """evaluates fourier series for square wave at x, where the approximation uses the num_terms specified. and has period T"'
    y = np.zeros(len(x),dtype=complex)
    for k in range(num terms):
        c k = .5 * np.sinc(-k/(2.0))
        y += c k * np.exp(i*PI2/T*k*x)
    return y

x = np.linspace(-math.pi/2, math.pi/2, 1000)
y = eval_square_fourier(x, 4, 5)
plt.plot(x,y)
plt.show()

y = eval_square_fourier(x, 4, 17)
plt.plot(x,y)
plt.show()

y = eval_square_fourier(x, 4, 257)
plt.plot(x,y)
plt.show()
```


3c. The appl	oximation o	nt the corne nt & Joes n oother. This	rs has a	really
high frequ	erry conte	nt & does n	ot look	1. ke it
is getting	much sm	oother. This	makes ser	le given
that I	Ty			
	X(t)	$-\widetilde{\chi}_{k}(t)^{2}/d$	t →0 0	vs K-> X
	1-75			

To approximate the discontinuity, we need infinitely high frequencies, but K is finite, & we only get higher frequency components by increasing K. So, the fourier series tries really hard to approximate the discontinuity but can't ble K is finite & we can only get the really high freq components needed by increasing K.

$$y(t) = \chi(t-T_1)$$

$$\chi(t) = \sum_{k=0}^{\infty} C_k e^{j\frac{2\pi}{T}kt}$$

$$C_k = C_k \cdot e^{j\frac{2\pi}{T}kT_1}$$

$$V(t) = \sum_{k=0}^{\infty} C_k e^{j\frac{2\pi}{T}kt}$$

$$C_k = C_k \cdot e^{j\frac{2\pi}{T}kT_1}$$

```
In [19]: def fs triangle(ts, M=3, T=4):
               # computes a fourier series representation of a triangle wave
              # with M terms in the Fourier series approximation
# if M is odd, terms - (M-1)/2 -> (M-1)/2 are used
              # if M is even terms -M/2 -> M/2-1 are used
              # create an array to store the signal
              x = np.zeros(len(ts))
              # if M is even
              if np.mod(M,2) ==0:
                   for k in range(-int(M/2), int(M/2)):
                       # if n is odd compute the coefficients
                       if np.mod(k, 2)==1:
    Coeff = -2/((np.pi)**2*(k**2))
                       if np.mod(k,2)==0:
                           Coeff = 0
                       if n == 0:
                           Coeff = 0.5
                       T1 = T/2
                       Coeff = Coeff * np.exp(-2*np.pi*k*T1/T*1j)
                       x = x + Coeff*np.exp(1j*2*np.pi/T*k*ts)
              # if M is odd
              if np.mod(M,2) == 1:
                   for k in range(-int((M-1)/2), int((M-1)/2)+1):
                      # if n is odd compute the coefficients
                       if np.mod(k, 2)==1:
                           Coeff = -2/((np.pi)**2*(k**2))
                       if np.mod(k,2)==0:
                           Coeff = 0
                       if k == 0:
                           Coeff = 0.5
                       T1 = T/2
                       Coeff = Coeff * np.exp(-2*np.pi*k*T1/T*1j)
                       x = x + Coeff*np.exp(1j*2*np.pi/T*k*ts)
              return x
```

