$12n_{0546} \ (K12n_{0546})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{18} - 2u^{17} + \dots + b - 1, \ -3u^{18} + 5u^{17} + \dots + 2a + 3, \ u^{19} - 3u^{18} + \dots + u + 2 \rangle \\ I_2^u &= \langle 3u^9a + 3u^9 + \dots - a + 7, \ 2u^9a + 3u^9 + \dots + 3a + 9, \\ u^{10} + u^9 - 5u^8 - 4u^7 + 8u^6 + 3u^5 - 5u^4 + 2u^3 + 3u^2 + u - 1 \rangle \\ I_3^u &= \langle -u^7 + 4u^5 - 4u^3 + b, \ u^7 - 3u^5 + u^4 + u^3 - 3u^2 + a + 2u + 1, \ u^8 - 5u^6 + 7u^4 - 2u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 47 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{18} - 2u^{17} + \dots + b - 1, -3u^{18} + 5u^{17} + \dots + 2a + 3, u^{19} - 3u^{18} + \dots + u + 2 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ -u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} + 4u^{7} - 3u^{5} - 2u^{3} - u \\ u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{3}{2}u^{18} - \frac{5}{2}u^{17} + \dots - \frac{5}{2}u - \frac{3}{2} \\ -u^{18} + 2u^{17} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{18} + \frac{1}{2}u^{17} + \dots - \frac{1}{2}u + \frac{1}{2} \\ u^{18} - u^{17} + \dots - 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{2}u^{18} - \frac{5}{2}u^{17} + \dots - \frac{5}{2}u - \frac{3}{2} \\ -2u^{18} + 3u^{17} + \dots + 3u + 3 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{18} + \frac{1}{2}u^{17} + \dots - \frac{1}{2}u + \frac{1}{2} \\ u^{18} - u^{17} + \dots - u^{2} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{9} + 4u^{7} - 3u^{5} - 2u^{3} - u \\ u^{11} - 5u^{9} + 8u^{7} - 5u^{5} + 3u^{3} - u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{18} + 4u^{17} + 38u^{16} - 28u^{15} - 150u^{14} + 56u^{13} + 322u^{12} + 22u^{11} - 400u^{10} - 208u^9 + 252u^8 + 260u^7 - 22u^6 - 128u^5 - 46u^4 + 12u^3 + 16u^2 + 12u + 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 15u^{18} + \dots + 5217u - 64$
c_2, c_5	$u^{19} + 3u^{18} + \dots + 55u - 8$
c_3, c_4, c_9	$u^{19} + 3u^{18} + \dots + u - 2$
c_6, c_8, c_{10} c_{12}	$u^{19} + 2u^{17} + \dots - 4u^2 - 1$
c_{7}, c_{11}	$u^{19} + 4u^{18} + \dots - 20u + 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 21y^{18} + \dots + 25516865y - 4096$
c_{2}, c_{5}	$y^{19} + 15y^{18} + \dots + 5217y - 64$
c_3, c_4, c_9	$y^{19} - 21y^{18} + \dots - 3y - 4$
c_6, c_8, c_{10} c_{12}	$y^{19} + 4y^{18} + \dots - 8y - 1$
c_7, c_{11}	$y^{19} + 20y^{18} + \dots - 818y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.580262 + 0.658546I		
a = -1.37393 + 1.42710I	-6.36763 - 9.41239I	2.24569 + 7.34910I
b = -0.88981 - 1.12332I		
u = -0.580262 - 0.658546I		
a = -1.37393 - 1.42710I	-6.36763 + 9.41239I	2.24569 - 7.34910I
b = -0.88981 + 1.12332I		
u = -0.430386 + 0.693344I		
a = 0.0599143 - 0.0949401I	-6.81456 + 4.87246I	1.03546 - 1.73049I
b = 0.92934 - 1.06686I		
u = -0.430386 - 0.693344I		
a = 0.0599143 + 0.0949401I	-6.81456 - 4.87246I	1.03546 + 1.73049I
b = 0.92934 + 1.06686I		
u = 0.736476 + 0.343968I		
a = -0.27984 - 1.85203I	1.05767 + 4.20616I	4.94312 - 8.38858I
b = -0.603953 + 0.709870I		
u = 0.736476 - 0.343968I		
a = -0.27984 + 1.85203I	1.05767 - 4.20616I	4.94312 + 8.38858I
b = -0.603953 - 0.709870I		
u = -0.609189 + 0.322877I		
a = 0.730128 - 0.841386I	1.17956 - 0.90815I	4.85874 + 1.33440I
b = -0.206405 + 0.511932I		
u = -0.609189 - 0.322877I		
a = 0.730128 + 0.841386I	1.17956 + 0.90815I	4.85874 - 1.33440I
b = -0.206405 - 0.511932I		
u = -1.39358		
a = 0.388481	3.32984	1.51140
b = -0.879243		
u = 1.45691 + 0.21847I		
a = 0.750156 + 0.704154I	-0.73866 - 1.59783I	4.12138 + 1.54661I
b = -0.975115 - 0.981574I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.45691 - 0.21847I		
a = 0.750156 - 0.704154I	-0.73866 + 1.59783I	4.12138 - 1.54661I
b = -0.975115 + 0.981574I		
u = 0.094599 + 0.501708I		
a = 0.412228 - 0.106777I	-0.91663 - 1.23074I	-2.16741 + 3.03279I
b = 0.620442 + 0.453397I		
u = 0.094599 - 0.501708I		
a = 0.412228 + 0.106777I	-0.91663 + 1.23074I	-2.16741 - 3.03279I
b = 0.620442 - 0.453397I		
u = 1.55341 + 0.21071I	0.00000 . 10.00010.T	
a = 0.57402 + 2.23414I	0.68963 + 12.60340I	5.72673 - 6.88576I
$\frac{b = 0.84741 - 1.16742I}{u = 1.55341 - 0.21071I}$		
	0.68963 - 12.60340I	E 79679 6 995761
	0.08905 - 12.003401	5.72673 + 6.88576I
$\frac{b = 0.84741 + 1.16742I}{u = 1.57600 + 0.10063I}$		
a = -0.61810 - 1.45739I	8.62226 + 2.51189I	5.75786 + 1.20779I
b = 0.193132 + 0.647212I	0.02220 2.911031	0.10100 1.201101
$\frac{v = 0.135132 + 0.047212I}{u = 1.57600 - 0.10063I}$		
a = -0.61810 + 1.45739I	8.62226 - 2.51189I	5.75786 - 1.20779I
b = 0.193132 - 0.647212I		
u = -1.60077 + 0.07995I		
a = -0.19881 - 2.15189I	9.02564 - 5.69404I	7.72276 + 7.13841I
b = 0.524578 + 0.835989I		
u = -1.60077 - 0.07995I		
a = -0.19881 + 2.15189I	9.02564 + 5.69404I	7.72276 - 7.13841I
b = 0.524578 - 0.835989I		

$$II. \\ I_2^u = \langle 3u^9a + 3u^9 + \dots - a + 7, \ 2u^9a + 3u^9 + \dots + 3a + 9, \ u^{10} + u^9 + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ -u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} + 4u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{9} + 4u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{3}{8}u^{9}a - \frac{3}{8}u^{9} + \dots + \frac{1}{8}a - \frac{7}{8} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{3}{8}u^{9}a - \frac{3}{8}u^{9} + \dots + \frac{1}{8}a + \frac{9}{8} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{9} - 2u^{8} + 8u^{7} + 8u^{6} - 8u^{5} - 8u^{4} + 2u^{3} + u^{2} - a - 6u - 3 \\ -\frac{3}{8}u^{9}a + \frac{3}{8}u^{9} + \dots + \frac{7}{8}a - \frac{1}{8} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{8}u^{9}a + \frac{3}{8}u^{9} + \dots + \frac{7}{8}a - \frac{1}{8} \\ -\frac{3}{4}u^{9}a - \frac{3}{4}u^{9} + \dots + \frac{1}{4}a - \frac{3}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{9} - u^{8} - 4u^{7} + 5u^{6} + 3u^{5} - 7u^{4} + 2u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^8 20u^6 + 28u^4 4u^3 8u^2 + 8u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^{10} + 13u^9 + \dots - 7u + 1)^2$
c_2, c_5	$(u^{10} + u^9 + 7u^8 + 6u^7 + 16u^6 + 11u^5 + 13u^4 + 6u^3 + 3u^2 + u - 1)^2$
c_3, c_4, c_9	$ (u^{10} - u^9 - 5u^8 + 4u^7 + 8u^6 - 3u^5 - 5u^4 - 2u^3 + 3u^2 - u - 1)^2 $
$c_6, c_8, c_{10} \\ c_{12}$	$u^{20} + u^{19} + \dots - u + 2$
c_7, c_{11}	$u^{20} + u^{19} + \dots + 637u + 1708$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^{10} - 31y^9 + \dots - 107y + 1)^2$
c_2, c_5	$(y^{10} + 13y^9 + \dots - 7y + 1)^2$
c_3,c_4,c_9	$(y^{10} - 11y^9 + \dots - 7y + 1)^2$
c_6, c_8, c_{10} c_{12}	$y^{20} + 7y^{19} + \dots + 35y + 4$
c_7, c_{11}	$y^{20} - y^{19} + \dots - 641473y + 2917264$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.510102 + 0.680941I		
a = 1.03901 + 0.99672I	-7.43042 + 2.28632I	0.39779 - 2.91176I
b = 1.030620 - 0.877048I		
u = 0.510102 + 0.680941I		
a = 0.139978 - 0.495824I	-7.43042 + 2.28632I	0.39779 - 2.91176I
b = -1.064860 - 0.795059I		
u = 0.510102 - 0.680941I		
a = 1.03901 - 0.99672I	-7.43042 - 2.28632I	0.39779 + 2.91176I
b = 1.030620 + 0.877048I		
u = 0.510102 - 0.680941I		
a = 0.139978 + 0.495824I	-7.43042 - 2.28632I	0.39779 + 2.91176I
b = -1.064860 + 0.795059I		
u = -0.449833 + 0.459351I		
a = -0.646997 - 0.974683I	1.43061 - 1.60532I	0.94346 + 5.03395I
b = -0.210455 - 0.300293I		
u = -0.449833 + 0.459351I		
a = 1.22866 - 0.93250I	1.43061 - 1.60532I	0.94346 + 5.03395I
b = 0.057050 + 1.133970I		
u = -0.449833 - 0.459351I		
a = -0.646997 + 0.974683I	1.43061 + 1.60532I	0.94346 - 5.03395I
b = -0.210455 + 0.300293I		
u = -0.449833 - 0.459351I		
a = 1.22866 + 0.93250I	1.43061 + 1.60532I	0.94346 - 5.03395I
b = 0.057050 - 1.133970I		
u = 1.50079 + 0.11328I		
a = 0.415489 - 0.034479I	7.87146 + 3.55946I	5.64226 - 4.06361I
b = 0.528203 - 0.415736I		
u = 1.50079 + 0.11328I		
a = -0.70682 - 2.20481I	7.87146 + 3.55946I	5.64226 - 4.06361I
b = -0.107369 + 1.258670I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.50079 - 0.11328I		
a = 0.415489 + 0.034479I	7.87146 - 3.55946I	5.64226 + 4.06361I
b = 0.528203 + 0.415736I		
u = 1.50079 - 0.11328I		
a = -0.70682 + 2.20481I	7.87146 - 3.55946I	5.64226 + 4.06361I
b = -0.107369 - 1.258670I		
u = -1.50960		
a = 0.93389 + 2.29683I	10.4232	10.0490
b = 0.317795 - 1.141480I		
u = -1.50960		
a = 0.93389 - 2.29683I	10.4232	10.0490
b = 0.317795 + 1.141480I		
u = -1.51481 + 0.22020I		
a = -0.956858 + 0.125386I	-0.80829 - 5.55652I	3.79190 + 2.88175I
b = 1.093790 - 0.701969I		
u = -1.51481 + 0.22020I		
a = -0.21158 + 1.73958I	-0.80829 - 5.55652I	3.79190 + 2.88175I
b = -0.985922 - 0.960677I		
u = -1.51481 - 0.22020I		
a = -0.956858 - 0.125386I	-0.80829 + 5.55652I	3.79190 - 2.88175I
b = 1.093790 + 0.701969I		
u = -1.51481 - 0.22020I		
a = -0.21158 - 1.73958I	-0.80829 + 5.55652I	3.79190 - 2.88175I
b = -0.985922 + 0.960677I		
u = 0.417104		
a = -2.73478 + 2.69676I	3.89939	12.4010
b = -0.158842 - 1.037160I		
u = 0.417104		
a = -2.73478 - 2.69676I	3.89939	12.4010
b = -0.158842 + 1.037160I		

III.
$$I_3^u = \langle -u^7 + 4u^5 - 4u^3 + b, u^7 - 3u^5 + u^4 + u^3 - 3u^2 + a + 2u + 1, u^8 - 5u^6 + 7u^4 - 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ -u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{7} + 3u^{5} - u^{4} - u^{3} + 3u^{2} - 2u - 1 \\ u^{7} - 4u^{5} + 4u^{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - 4u^{4} - u^{3} + 4u^{2} + 2u - 1 \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - 3u^{5} - u^{4} + u^{3} + 3u^{2} + 2u - 1 \\ -u^{7} + u^{6} + 2u^{5} - 3u^{4} + u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{6} - 4u^{4} + u^{3} + 4u^{2} - 2u - 1 \\ -u^{6} - u^{5} + 3u^{4} + 2u^{3} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} \\ -u^{7} + 3u^{5} - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^6 + 16u^4 16u^2 + 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u^4 - u^3 + 3u^2 - 2u + 1)^2$
c_2	$(u^4 - u^3 + u^2 + 1)^2$
c_3,c_4,c_9	$u^8 - 5u^6 + 7u^4 - 2u^2 + 1$
c_5	$(u^4 + u^3 + u^2 + 1)^2$
c_6, c_8, c_{10} c_{12}	$(u^2+1)^4$
	$u^8 - 6u^7 + 20u^6 - 52u^5 + 97u^4 - 112u^3 + 87u^2 - 62u + 29$
c_{11}	$u^8 + 6u^7 + 20u^6 + 52u^5 + 97u^4 + 112u^3 + 87u^2 + 62u + 29$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$
c_2, c_5	$(y^4 + y^3 + 3y^2 + 2y + 1)^2$
c_3, c_4, c_9	$(y^4 - 5y^3 + 7y^2 - 2y + 1)^2$
c_6, c_8, c_{10} c_{12}	$(y+1)^8$
c_7,c_{11}	$y^8 + 4y^7 - 30y^6 + 6y^5 + 555y^4 - 954y^3 - 693y^2 + 1202y + 841$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.506844 + 0.395123I		
a = -1.77461 + 0.07756I	3.07886 + 1.41510I	8.17326 - 4.90874I
b = 1.000000I		
u = 0.506844 - 0.395123I		
a = -1.77461 - 0.07756I	3.07886 - 1.41510I	8.17326 + 4.90874I
b = -1.000000I		
u = -0.506844 + 0.395123I		
a = 0.67976 - 2.16419I	3.07886 - 1.41510I	8.17326 + 4.90874I
b = 1.000000I		
u = -0.506844 - 0.395123I		
a = 0.67976 + 2.16419I	3.07886 + 1.41510I	8.17326 - 4.90874I
b = -1.000000I		
u = 1.55249 + 0.10488I		
a = -0.09378 - 2.54234I	10.08060 + 3.16396I	11.82674 - 2.56480I
b = 1.000000I		
u = 1.55249 - 0.10488I		
a = -0.09378 + 2.54234I	10.08060 - 3.16396I	11.82674 + 2.56480I
b = -1.000000I		
u = -1.55249 + 0.10488I		
a = 1.18862 - 1.37103I	10.08060 - 3.16396I	11.82674 + 2.56480I
b = 1.000000I		
u = -1.55249 - 0.10488I		
a = 1.18862 + 1.37103I	10.08060 + 3.16396I	11.82674 - 2.56480I
b = -1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{10} + 13u^9 + \dots - 7u + 1)^2$ $\cdot (u^{19} + 15u^{18} + \dots + 5217u - 64)$
c_2	$(u^{4} - u^{3} + u^{2} + 1)^{2}$ $\cdot (u^{10} + u^{9} + 7u^{8} + 6u^{7} + 16u^{6} + 11u^{5} + 13u^{4} + 6u^{3} + 3u^{2} + u - 1)^{2}$ $\cdot (u^{19} + 3u^{18} + \dots + 55u - 8)$
c_3, c_4, c_9	$ (u^8 - 5u^6 + 7u^4 - 2u^2 + 1) $ $ \cdot (u^{10} - u^9 - 5u^8 + 4u^7 + 8u^6 - 3u^5 - 5u^4 - 2u^3 + 3u^2 - u - 1)^2 $ $ \cdot (u^{19} + 3u^{18} + \dots + u - 2) $
c_5	$(u^{4} + u^{3} + u^{2} + 1)^{2}$ $\cdot (u^{10} + u^{9} + 7u^{8} + 6u^{7} + 16u^{6} + 11u^{5} + 13u^{4} + 6u^{3} + 3u^{2} + u - 1)^{2}$ $\cdot (u^{19} + 3u^{18} + \dots + 55u - 8)$
c_6, c_8, c_{10} c_{12}	$((u^{2}+1)^{4})(u^{19}+2u^{17}+\cdots-4u^{2}-1)(u^{20}+u^{19}+\cdots-u+2)$
c_7	$(u^8 - 6u^7 + 20u^6 - 52u^5 + 97u^4 - 112u^3 + 87u^2 - 62u + 29)$ $\cdot (u^{19} + 4u^{18} + \dots - 20u + 7)(u^{20} + u^{19} + \dots + 637u + 1708)$
c_{11}	$(u^{8} + 6u^{7} + 20u^{6} + 52u^{5} + 97u^{4} + 112u^{3} + 87u^{2} + 62u + 29)$ $\cdot (u^{19} + 4u^{18} + \dots - 20u + 7)(u^{20} + u^{19} + \dots + 637u + 1708)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{10} - 31y^9 + \dots - 107y + 1)^2$ $\cdot (y^{19} - 21y^{18} + \dots + 25516865y - 4096)$
c_2,c_5	$((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{10} + 13y^9 + \dots - 7y + 1)^2$ $\cdot (y^{19} + 15y^{18} + \dots + 5217y - 64)$
c_3, c_4, c_9	$((y^4 - 5y^3 + 7y^2 - 2y + 1)^2)(y^{10} - 11y^9 + \dots - 7y + 1)^2$ $\cdot (y^{19} - 21y^{18} + \dots - 3y - 4)$
c_6, c_8, c_{10} c_{12}	$((y+1)^8)(y^{19}+4y^{18}+\cdots-8y-1)(y^{20}+7y^{19}+\cdots+35y+4)$
c_7, c_{11}	$(y^8 + 4y^7 - 30y^6 + 6y^5 + 555y^4 - 954y^3 - 693y^2 + 1202y + 841)$ $\cdot (y^{19} + 20y^{18} + \dots - 818y - 49)$ $\cdot (y^{20} - y^{19} + \dots - 641473y + 2917264)$