Elektrik Devre Temelleri

Hafta 7

Yrd. Doç. Dr. Kürşat AYAN

5.3. Devreler teorisinin aksiyomları

5.3.1. Akım denklemleri

 $AI_{e}=\Theta$, $\,A\,$ matrisi herhangi $\,n_{d}-1\,$ düğüm için yazılan düğüm matrisidir.

 $CI_{_{e}}=\Theta$, $\ C$ matrisi herhangi bağımsız kesitleme için yazılan kesitleme matrisidir.

5.3.2. Gerilim denklemleri

 $B.V_{_{e}}=\Theta$, $\,B\,$ matrisi bağımsız çevreler için yazılan çevre matrisidir.

5.3.3. Tellegen teorisi

$$\sum_{k=1}^{n_e} p_k(t) = \sum_{k=1}^{n_e} v_k(t).i_k(t) = V_e^T.I_e = (C^T.V_t)^T.B^T.I_l = \underbrace{V_t^T}_{\text{Dal gerilimleri}}.C.B^T.\underbrace{I_l}_{\text{Kiris akimlari}} = 0$$

Yani devredeki elemanlarda harcanan gücün toplamı $\sum_{k=1}^{n_e} p_k(t) = 0$ olduğu görülür. Bunun yanı sıra

 $P_k(t)=rac{dW_k(t)}{dt}$ tanım bağıntısından dolayı, bu devredeki elemanlara ilişkin enerjilerin toplamı da aşağıdaki gibi hesaplanır.

$$\sum_{k=1}^{n_e} \frac{d}{dt} W_k(t) = \frac{d}{dt} \left[\sum_{k=1}^{n_e} W_k(t) \right] = 0 \quad \Rightarrow \quad \sum_{k=1}^{n_e} W_k(t) = K \text{ (sabit)}$$

5.3.4. Devre denklemleri

1. Tanım eşitlikleri: n_e

2. Bağımsız akım denklemleri: $n_d - 1$

3. Bağımsız gerilim denklemleri: $n_{e}-n_{d}+1$

Toplam denklem sayısı: $2.n_e$

5.3.5. Devre denklemlerine giren elektriksel işaretler

1. Tüm eleman gerilimleri: $n_{\scriptscriptstyle e}$

2. Tüm eleman akımları: $n_{\scriptscriptstyle e}$

Toplam bilinmeyen sayısı: $2.n_e$

5.4. Devre Çözüm Yöntemleri

5.4.1. Dolaysız yöntemler

Eşdeğer n kapılı devreler: Aşağıdaki birinci N_1 n kapılısına ilişkin akım ve gerilim bağıntıları, ikinci N_2 n kapılısının akım ve gerilim denklemlerini sağlıyorlarsa N_1 ve N_2 devreleri eşdeğerdirler.

Birinci N_1 n kapılı devresi:

$$\begin{aligned} v &= v_R + v_k \\ v &= R.i + v_k \\ i &= \frac{v - v_k}{R} = \frac{1}{R} \cdot v - \frac{1}{R} \cdot v_k \end{aligned}$$

İkinci N_2 n kapılı devresi:

Yukarıdaki N_1 ve N_2 n kapılı devreleri eşdeğerdirler. Eşdeğerlilik yalnız ve yalnız kapılara ilişkin gerilim ve akımlar için tanımlanır.

5.4.2. Dolaylı yöntemler

a.) Çevre denklemleri: $n_{\scriptscriptstyle e}-n_{\scriptscriptstyle d}+1$

b.) Düğüm denklemleri: $n_d - 1$

c.) Durum denklemleri: $n_{C}^{{}}+n_{L}^{{}}$

BÖLÜM 6. DEVRE ÇÖZÜM YÖNTEMLERİ

6.1. ÇEVRE DENKLEMLERİ

6.1.1. Temel çevrelere ilişkin çevre denklemleri

Örnek: Aşağıdaki devrenin çevre denklemlerini adım adım yazınız.

Birinci adım: Devrenin grafı çizilip uygun ağacı çıkarılır.

$$v_1 + v_7 - v_5 = 0$$

$$v_3 + v_2 - v_7 = 0$$

$$v_6 + v_2 - v_7 = 0$$

$$v_8 + v_2 - v_5 = 0$$

Üçüncü adım: Direnç elemanlarının tanım bağıntıları yazılır.

$$R_{1}i_{1} + v_{7} - v_{5} = 0 \qquad \Rightarrow \qquad R_{1}i_{1} = v_{5} - v_{7}$$

$$R_{3}i_{3} + R_{2}i_{2} - v_{7} = 0 \qquad \Rightarrow \qquad R_{3}i_{3} + R_{2}i_{2} = v_{7}$$

$$R_{2}i_{2} + v_{6} - v_{7} = 0 \qquad \Rightarrow \qquad R_{2}i_{2} = -v_{6} + v_{7}$$

$$R_{2}i_{2} - v_{5} + v_{8} = 0 \qquad \Rightarrow \qquad R_{2}i_{2} = v_{5} - v_{8}$$

Dördüncü adım: Temel kesitlemeler için yazılan akım denklemlerinden yararlanılarak dal olan direnç akımları kiriş akımları cinsinden bulunur. Örneğin:

$$i_2 = i_6 + i_3 + i_8$$

Beşinci adım: Kiriş akımları cinsinden bulunan dal akımları üçüncü adımda yerine konur.

$$\begin{array}{lll} R_{1}.i_{1} = v_{5} - v_{7} & \Longrightarrow & R_{1}.i_{1} = v_{5} - v_{7} \\ R_{3}.i_{3} + R_{2}.i_{2} = v_{7} & \Longrightarrow & (R_{3} + R_{2}).i_{3} + R_{2}.i_{6} + R_{2}.i_{8} = v_{7} \\ R_{2}.i_{2} = -v_{6} + v_{7} & \Longrightarrow & R_{2}.i_{3} + R_{2}.i_{6} + R_{2}.i_{8} = -v_{6} + v_{7} \\ R_{2}.i_{2} = v_{5} - v_{8} & \Longrightarrow & R_{2}.i_{3} + R_{2}.i_{6} + R_{2}.i_{8} = v_{5} - v_{8} \end{array}$$

Altıncı adım: Ek denklemler yazılır.

- 1. v_5 biliniyor. Örneğin bu değer $v_5(t) = u(t)$ birim basamak fonksiyonu olabilir.
- 2. i_6 biliniyor. Örneğin bu değer $i_6(t) = \sin t$ fonksiyonu olabilir.
- 3. $v_7 = k_7 \cdot i_1$ bilinmiyor. Çünkü i_1 bilinmiyor.
- 4. $i_8 = k_8 \cdot v_2 = k_8 \cdot R_2 \cdot i_2 = k_8 \cdot R_2 \cdot (i_6 + i_3 + i_8)$ yazarak onu da buluruz.

Ayrıca i_2 akımını i_3 ve i_6 cinsinden de aşağıdaki gibi bulabiliriz.

$$\begin{split} i_2 &= i_6 + i_3 + i_8 = i_6 + i_3 + k_8 \cdot R_2 \cdot i_2 \\ (1 - k_8 \cdot R_2) \cdot i_2 &= i_6 + i_3 \\ i_2 &= \frac{1}{(1 - k_8 \cdot R_2)} \cdot (i_6 + i_3) \quad \text{ve} \quad i_8 = \frac{k_8}{(1 - k_8 \cdot R_2)} \cdot (R_2 \cdot i_6 + R_2 \cdot i_3) \end{split}$$

Burada v_6 , v_8 , i_1 ve i_3 değerleri bilinmiyor. Bununla beraber dört adet denklemimiz mevcuttur. Bu dört denklemden yukarıdaki dört adet bilinmeyen bulunabilir.