Table 1: Training and test accuracy

<u> </u>		
	Training accuracy	Test accuracy
Run Mallet directly	0.9685185185185186	0.84
Run q1.sh (one-vs-all)	0.968518518518519	0.833333333333333
Run q2.sh (all-pairs)	0.968518518518519	0.8266666666666667

<u>Q4</u>

Converting a multi-class program into a binary problem produced very little variances in terms of test accuracies (with all-pairs having the lowest accuracy) and in fact, the training accuracies for all three experiments are almost identical.

However, the ability to convert without having to pay a penalty for much lower performance offers us the option to adapt a multi-class problem into a binary problem so that the problem can be addressed by machine learning algorithm that works best on binary classes. An example of such algorithm is the support-vector machines.

Additional notes:

- 1. The shell script q1.sh will call two code files during execution.
 - q1.sh will call q1.pl and write_final_q1.pl
 - q2.sh will call q2.pl and write_final_q2.pl
- 2. All .sh and .pl files must be in the same directory during execution.
- 3. During execution, temp files and directories will also be created but these will be deleted automatically when the program exits.

End of HW7 – Joint submission by

Scott Mantei

Wee Teck Tan

Course Name: LING 572