

Lecture 10: Probability Distributions & Outlier Detection

Recap

- Univariate distributions
- Delete outliers, StandardScaler
- Retain outliers, RobustScaler
- Or use distribution transformation on features to make outliers into inliers
 - Log Transformer
 - FunctionTransformers
 - •PowerTransformers Box Cox, Yeo Johnson

3rd method - Analyzing outliers for detection

- Focus on outliers and not regular data
- No deletion or scaling
- •Exclusively analyze data > 2.5 standard deviation or later by applying specific mathematical approaches
- Interesting & relevant topic in industry
- •We will only be briefly looking at this 😊

Cons of our approach so far (from outlier perspective)

- Can we just look at the standard deviations or IQR of each feature individually?
- Each data point is multivariate in reality
- Analysis also needs to be holistic
- Enter multivariate probability density functions

Why look at probability at all in ML course?

- Needed for generative ML (soon in Sem1)
 - Maximum Likelihood Estimation (MLE/MAP)
- Needed for information theory refresher
 - Used in Decision Trees & ensembles
 - Used in Feature Selection
- Generative Al
- Probabilistic Deep Learning (Bayesian Neural Networks)
- Using this opportunity to introduce multivariate distributions

EfficientNet trained on ImageNet images

Certainty: 85%

ImageNet is a 1000 class dataset !!

Prediction: Stonewall

Certainty: 87%

Multivariate distributions

Expected value

Weighted average to probability based formulation

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x)$$

$$\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$$

- •Why Expectation?
 - •Hint: Linear operator

Standard deviation method (contd.)

•Standard deviation is the typical deviation of feature value from mean

Put mu for E[X] and then expand to see for yourself

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} = \frac{\|x - \mu \mathbf{1}\|}{\sqrt{n}}$$

$$\sigma^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] + \mathbb{E}[\mathbb{E}[X]]^2 - 2\mathbb{E}[X\mathbb{E}[X]]$$

Note for M.E students. This is the Linear Algebra equivalent

$$= \mathbb{E}[X^{2}] + \mathbb{E}[X]^{2} - 2\mathbb{E}[X]^{2} = \mathbb{E}[X^{2}] - \mathbb{E}[X]^{2}$$

$$std(x)^2 = rms(x)^2 - avg(x)^2$$

Univariate distribution

•A univariate Gaussian $X \sim \mathcal{N}(\mu, \sigma^2)$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}$$

Why does height decrease as the distribution becomes wide?

Empirical Formula for Gaussian Distribution

Correlation

Correlation

Father-son heights

•Temperature-Electric bill

Correlation strength & coefficients

 Very Strong Moderate None Strong ***** 8.0 0.6 -0.8 -0.6 *************

Correlation coefficient

Covariance and Correlation are bivariate

$$Cov(x,y) = \frac{\sum_{i=1}^{n} (x - \bar{x})(y - \bar{y})}{n} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X])\mathbb{E}[Y]$$

Cov(x,x) = Var(x)
$$\rho = Correl(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

$$\rho = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$

Intuition behind mean centering

Correlation is not causation

Bivariate Gaussian

Multivariate Gaussian

Interpreting contour plots

- Multivariate Gaussian
 - https://www.geogebra.org/m/pO4JcWPz
- Contour plots (Isocontours)
 - •Slicing through the function surface for a fixed z

Multivariate Gaussian formula intuition

 We saw bivariate distribution as having two random variables with different mean and SD

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Distribution of random vector X by $X = egin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ also taking into account the interaction between RV

- •What do we mean by interaction?
 - Recall father son heights
 - Student absent days versus grade
 - •Google stock prices versus ice cream num sold

•Multivariate Gaussian formula should take into account the correlation/covariance based interaction

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Multivariate Gaussian formula should have mean & SD for both random variables in vector

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \sigma = \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_1^2 & Cov_{12} & ... & Cov_{1n} \\ Cov_{21} & \sigma_2^2 & ... & Cov_{2n} \\ .. & .. & .. & .. \\ Cov_{(n-1)1} & .. & \sigma_{n-1}^2 & Cov_{(n-1)n} \\ Cov_{n1} & Cov_{n2} & .. & \sigma_n^2 \end{bmatrix} \quad \text{Why have a matrix when scalar cov are duplicated?}$$

$$Cov(x,y) = \frac{\sum_{i=1}^{n} (x - \bar{x})(y - \bar{y})}{n}$$

scalar cov are duplicated?

Univariate

Normalization constant

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}$$

Bell shape bcoz of this

$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \quad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \sigma = \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$

Cov matrix already holds all SD

Multivariate

$$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$$

2.4

Multivariate

$$\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$$

$$\frac{1}{\sqrt{\sigma^2 2\pi}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}$$

X is a vector. Mu is a vector. Can you square a vector?

$$e^{\frac{-1}{2}(\frac{\mathbf{X}-\mu}{\sigma})^2}$$

How to account for spread of two random variables & their interaction (joint spread)?

$$e^{\frac{-1}{2}(\mathbf{X}-\mu)^T\Sigma(\mathbf{X}-\mu)}$$

Normalization constant

$$x^T x = ||x||^2$$

$$e^{\frac{-1}{2}(\mathbf{X}-\mu)^T...(\mathbf{X}-\mu)}$$

Account for 3 scalars capturing the spread

Spread goes to denominator

$$e^{\frac{-1}{2}(\mathbf{X}-\mu)^T \Sigma^{-1}(\mathbf{X}-\mu)}$$

$$\frac{1}{\sqrt{\det(\Sigma)(2\pi)^D}} e^{\frac{-1}{2}(\mathbf{X}-\mu)^T \Sigma^{-1}(\mathbf{X}-\mu)}$$

Uni v/s multivariate similarities

Univariate

Multivariate

$$\frac{1}{\sqrt{\sigma^2 2\pi}} e^{\frac{-1}{2} (\frac{x-\mu}{\sigma})^2}$$

$$\frac{1}{\sqrt{\det(\Sigma)(2\pi)^D}} e^{\frac{-1}{2}(\mathbf{X}-\mu)^T \Sigma^{-1}(\mathbf{X}-\mu)}$$

$$\sigma > 0$$

$$\sum > 0 \qquad \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

$$\Sigma = egin{bmatrix} \sigma_1^2 & \sigma_{12} \ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

- Covariance matrix is symmetric positive definite
- Symmetric is easy to see
- Positive definite means Eigen values > 0

Uni v/s multivariate similarities(contd.)

Univariate

Multivariate

$$\frac{1}{\sqrt{\sigma^2 2\pi}} e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\frac{1}{\sqrt{\det(\Sigma)(2\pi)^D}} e^{\frac{-1}{2}(\mathbf{X}-\mu)^T \Sigma^{-1}(\mathbf{X}-\mu)}$$

$$z = \frac{x - \mu}{\sigma}$$

$$d_M = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}$$

•Z score and Mahalanobis distance are equivalent

Geometric meaning of contour plots

Look at Standard deviations in addition to correlation
 & guess the covariance matrix

Draw a few more contour plots to familiarize

Geometric meaning of StandardScaler

$$\phi(x) = z = \frac{x - \mu}{\sigma}$$

Demo at https://projector.tensorflow.org/

Back to outlier detection

A relook at Mahalanobis distance

•Mark some points and logically see if they are outliers?

$$\sqrt{(\mathbf{X} - \mu)^T \Sigma^{-1} (\mathbf{X} - \mu)}$$

Problems with Mahalanobis distance

- Not robust enough
 - Distribution fitted over all points
 - Add an outlier & distribution "bends" towards it

$$\sqrt{(\mathbf{X} - \mu_{MCD})^T \Sigma_{MCD}^{-1}(\mathbf{X} - \mu_{MCD})}$$

MCD = Minimum Covariance determinant

MCD procedure

- •Take k (typically 0.75 * n) data points
- Sample different data points and find their cov matrix
- •Find the cov matrix that has least determinant
- This represents the tightest cloud of points

Elliptic

Envelope

Other outlier detection algorithms (Optional)

- Proximity based:
 - kNN
 - Isolation Forest, Local Outlier Factor(LOF)
- Clustering based
 - K-Means, Gaussian Mixture Model (GMM) Clustering
- Distance metric based
 - Cook's distance, Gower's distance (mixed data type)
 - MCD on GMM
- Reconstruction based: PCA, Autoencoder
- Take a look at PyOD library

Outlier analysis: Recommended books

Not part of syllabus. On your own interest

Intuition behind MCD (optional)

Matrix-Vector product & determinant

- •Geogebra demo
 - Matrix-Vector product transforms the vector
 - Extent of transformation given by area of parallelogram of original & transformed vectors
 - aka determinant of matrix
- But we are not multiplying data with Cov matrix
- Enter Eigen values of Cov matrix

Eigen Values & Vectors

- Eigen values of any matrix represents stretch in direction of vector
- Eigen vector for cov matrix represents direction of max variance
- Product of Eigen values = Determinant of square matrix
- Combine these ideas
 - Determinant is a single measure of spread of data
- As an aside: This determinant-spread relation also answers the question why determinant of cov matrix is in denominator of multivariate gaussian PDF formula

