GEOMETRÍA Chapter 6

LÍNEAS NOTABLES
ASOCIADAS AL
TRIÁNGULO

© SACO OUVEROS Session II

1. Calcule la m<BAC, si AB = BD; además \overline{BD} es bisectriz del \triangle ABC.

Resolución

Piden: m < BAC

ΔABD: Isósceles

ΔABD: Por teorema

$$\alpha + \alpha + 21^{\circ} + \alpha + 21^{\circ} = 180^{\circ}$$

$$3 \alpha = 138^{\circ}$$

$$\alpha = 46^{\circ}$$

2. Halle el valor de x si H es ortocentro del triángulo DEF.

Resolución

• Piden: x

- DF y EH son alturas del triángulo DEF
- Por teorema:

$$3x + 2x = 180^{\circ}$$

$$5x = 180^{\circ}$$

$$x = 36^{\circ}$$

3. Halle el valor de x, siendo I incentro del triángulo PQS.

Resolución

Piden: x

Por teorema:

$$11x = 90^{\circ} + \frac{7x}{2}$$

$$22x = 180^{\circ} + 7x$$

$$15x = 180^{\circ}$$

$$x = 12^{\circ}$$

4. Halle el valor de 2x, si \overline{AH} es altura y \overline{CD} es bisectriz interior del

triángulos ABC.

Resolución

- Piden: 2x
- ∆AHC:

Por teorema

$$2 x + x + x = 90^{\circ}$$

$$4x = 90^{\circ}$$

$$2x = 45^{\circ}$$

BP: Bisectriz Interior

5. Según el gráfico, para el triángulo ABC, \overline{BH} es altura y \overline{BE} es bisectriz exterior. Halle el valor de x.

6. Si CD es altura del triángulo isósceles ABC, calcule el valor de x.

7. Según el gráfico AM y BN son medianas del triángulo ABC, calcule AC/NC + MC/BM.

Resolución

Piden: $\frac{AC}{NC} + \frac{MC}{BM}$

- AM y BN son medianas.
- Nos piden:

$$\frac{AC}{NC} + \frac{MC}{BM} = \frac{2b}{b} + \frac{a}{a} = 2 + 1$$

$$\frac{AC}{NC} + \frac{MC}{BM} = 3$$

8. Se quiere cavar un pozo de agua subterránea para abastecer 3 tanques destinados a suministrar un campo de cultivo. Calcule el perímetro de la región triangular formada por los 3 tanques; de tal manera que el pozo se ubique en el circuncentro de dicho triángulo.

Nos piden :

$$2p \Delta = 78 + 84 + 90$$

$$2p \Delta = 252 m$$

© SACO OUYEROS