Data Streams:

Introduction

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
 - Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

What is a data stream?

- A potentially infinite sequence of data points
 - Each data point can be a tuple or vector
- Examples:
 - $\overline{}$ web click-stream data \rightarrow who clicks on what
 - computer network monitoring data
 - telecommunication connection data
 - readings from sensor nets
 - stock quotes

Do not confuse with "streaming," which in vernacular typically means live video.

Example: Apache server log

```
tecmint@TecMint ~ $ tailf /var/log/apache2/access.log
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET / HTTP/1.1" 200 729 "-" "Mozill
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/blank.gif HTTP/1.1" 200
fox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/folder.gif HTTP/1.1" 200
efox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/text.gif HTTP/1.1" 200 5
ox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:38 +0530] "GET /favicon.ico HTTP/1.1" 404 500
127.0.0.1 - - [31/0ct/2017:11:12:05 +0530] "GET /tecmint/ HTTP/1.1" 200 787 "ht
127.0.0.1 - - [31/Oct/2017:11:12:05 +0530] "GET /icons/back.gif HTTP/1.1" 200 4
01 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /tecmint/Videos/ HTTP/1.1" 200
101 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /icons/compressed.gif HTTP/1.1"
) Gecko/20100101 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /icons/movie.gif HTTP/1.1" 200
o/20100101 Firefox/56.0"
```

Key properties of data streams

Unbounded size

- Data cannot be persisted on disk
- Only summaries can be stored

Transient

- Single pass over the data
- Sometimes real-time processing is needed

Dynamic

- May require incremental updates
- May require to forget old data
- Concepts "drift"
- Temporal order is often important

Applications

Mining query streams

 A search engine wants to know what queries are more frequent today than yesterday

Mining click streams

 A newspaper wants to know when one of its pages starts getting an unusual number of hits per hour

Mining social network news feeds

A social media platform wants to show trending topics

Applications (cont.)

Sensor Networks

Many sensors feeding into a central controller

Telephone call records

 Data feeds into customer bills as well as settlements between telephone companies

IP packets monitored at a switch

- Gather information for optimal routing
- Detect denial-of-service attacks

Why not simply use a relational DB?

Relational DBMS	DSMS (Stream)	
persistent relations	transient streams	
only current state is important	history matters	
not real-time	real-time	
low update rate	stream!	
one time queries	continuous queries	

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom (2002). Models and issues in data stream systems. In PODS '02, pages 1–16, ACM Press.

Why do we need new algorithms?

	Traditional	Stream
passes	multiple	single
processing time	unlimited	restricted
memory	disk	main memory
results	typically accurate	approximate
distributed	typically not	often

Source: Joao Gama, Data Stream Mining Tutorial, ECML/PKDD, 2007

A generic

stream-processing architecture

Input streams
Each is stream is
composed of
elements/tuples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org/

10/25

Load shedding

Too much data? Ignore some of it

Sampling a fixed proportion

Sampling a fixed proportion

- Example stream: <user, query, timestamp>
 from a search engine query log
- Suppose we have space to store 1/r of the stream
 - E.g.: 1/10th, 1/100th, 1/1000th,
- Naïve solution:
 - Generate uniform random number in 0...(r-1)
 numpy.random.uniform(0,r)
 - If the number is 0, keep the item

What can we do with this sample?

- Approximate most frequent query
 - Pick the most frequent in the sample
- Approximate frequency of a query
 - Multiply observed frequency by r
- Do people ask query q?
 - Approximate answer (with some prob. of error)

Answer in Nearpod Collaborate

Exercise

- We want to tell if we have seen item q
- Suppose we have seen n items
- Suppose we have sampled a fraction 1/r
- Suppose item q appears with probability p(q)
- What is the probability of a:
 - False Positive? (Item q was not in the stream but we said it was)
 - False Negative? (Item q was in the stream but we said it was not)

What can we do with this ...? (cont.)

Approximate num. queries per minute

- Peak frequency
 - Multiply observed peak by r

But there are questions we cannot answer well

- What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
- Proposed solution: We keep $1/10^{th}$ of the queries (r=10)
 - Sample will contain x/10 of the singleton queries at least once
 - $^-$ Sample will contain 2d/10 of the duplicate queries at least once
 - Sample will contain d/100 pairs of duplicates
 - d/100 = 1/10 1/10 d
 - Of the d duplicates, 18d/100 will be seen once*
 - 18d/100 = ((1/10 9/10) + (9/10 1/10)) d
- So the sample-based answer is

$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{18d}{100} + \frac{d}{100}} = \frac{d}{10x + 19d}$$

^{*} Copy A is in the selected part, copy B in the unselected part, or viceversa

But there are questions we cannot answer well (cont.)

- What fraction of queries by an average search engine user are duplicates?
 - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
 - Correct answer: d/(x+d)
- Proposed solution: We keep $1/10^{th}$ of the queries (r=10)
 - Sample will contain x/10 of the singleton queries at least once
 - Sample will contain 2d/10 of the duplicate queries at least once
 - Sample will contain d/100 pairs of duplicates
 - d/100 = 1/10 1/10 d
 - Of the d duplicates, 18d/100 will be seen once
 - 18d/100 = ((1/10 9/10) + (9/10 1/10)) d
- So the sample-based answer is

Observed singletons

Observed duplicates

How do we solve it?

 We need to sample 1/r of users and all of their actions

How do we do this?

```
<user1, action,
timestamp>
<user2, action,</pre>
timestamp>
<user2, action,</pre>
timestamp>
<user3, action,
timestamp>
<user1, action,</pre>
timestamp>
```

How do we solve it?

- We need to sample 1/r of users and all of their actions
- How do we do this?
 - Hashing!
 - Given <user, action, timestamp>
 - Compute $h(user) \rightarrow 0$, 1, ..., (r-1)
 - Keep tuple if hash value is 0

```
<user1, action,
timestamp>
<user2, action,
timestamp>
<user2, action,
timestamp>
<user3, action,
timestamp>
<user1, action,
timestamp>
```

In general ...

- To sample a fraction a/b of a stream by key
- Compute h(key) → 0, 1, ..., (b-1)

a

Summary

Things to remember

- What is a data stream
- How to sample a fixed percentage of values grouped by a key, using hashing

Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
 - Exercises 4.2.5
 - Exercises 4.3.4
 - Exercises 4.4.5
 - Exercises 4.5.6