1

Assignment 1

Jagadeesh Kunuru

1 Problem Statement

1.1 Icse/Cs/2019Q5c

Using a truth table, state whether the following proposition is a Tautology, Contradiction or Contingency:

$$\neg(P\Rightarrow Q)\iff (\neg P\cup Q)$$

2 Solution

By drawing a truth table, we get to know whether the following proposition is Tautology, Contradiction or Contingency:

K-Map for $(\neg P \cup Q)$

from K-Map
$$(\neg P \cup Q) = P' + Q$$

P	Q	$\neg P$	$P \Rightarrow Q$	$\neg (P \Rightarrow Q)$	$(\neg P \cup Q)$	$\neg (P \Rightarrow Q) \iff (\neg P \cup Q)$
T	T	F	T	F	T	F
T	F	F	F	T	F	F
F	T	T	T	F	T	F
F	F	T	T	F	T	F

Therefore, the given proposition is a Contradiction.

Writing the Proposition in Boolean expression:

K-Map for
$$\neg (P \Rightarrow Q)$$

from K-Map
$$\neg (P \Rightarrow Q) = PQ'$$

Now, the proposition $\neg(P \Rightarrow Q) \iff (\neg P \cup Q)$ can written be as $PQ' \cap P' + Q$ Truth table for the Boolean expression:

$PQ^{'}$	P'+Q	$PQ'\cap P'+Q$
0	1	0
1	0	0
0	1	0
0	1	0

$$PQ'.(P'+Q) = PP'Q' + P'Q'Q$$
 can be drawn as:

