IE 203 PS 6

Unconstrained Nonlinear Optimization - Analytic Methods: Finding stationary post the function over its domain or second derivative if univariate or - Numerical Methods	oints with derivative. Checking shape at a stationary point, by using Hessian Matrix if multivariate.
- Universate - Bisection Method - Newton's 4 - Secont 4 iterative Search X k+1 = Xk + Xk dk	- Multivariate - Cyclic Coordinate Search - Mooke - Jeeves Method gradient - Steepest Descent - Newton's Method gradient ;

direction step size

next point S current point

- Bisection Search Method
- Dichotomous Search (Verful when f is not differentiable)
- Cholden Section Search requires a unimodel function/interval
- Newton's Method
- Secont Method

Greneral Herative Search:
$$\chi_{k+1} = \chi_k + \chi_k d_k$$

step size direction

An idea for a direction: - derivative /-gradient

Second - Order Taylor Exponsion:

voley of function
$$x$$

at next iteration, $\frac{d}{dt} \left(f(x_k) + f'(x_k) + \frac{1}{2!} f''(x_k) + \frac{1}{2!} f'$

Set equal to zero: $f'(x_k) + f''(x_k)t = 0$ $t = -\frac{f'(x_k)}{f''(x_k)}$

Then newton's nethod; $\chi_{k+1} = \chi_k - \frac{f'(\chi_k)}{f''(\chi_k)}$

lim
$$f'(x+h) = \frac{f(x+h) - f(x)}{h}$$
 $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$
 $f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$
 $f'(x_k) \approx \frac{f'(x_k) - f'(x_k)}{x_k - x_{k-1}}$

To optimization, we wont the noots of $f'(x) = 0$.

Newton's Method:

 $f'(x_k) \approx \frac{f'(x_k)}{f'(x_k)}$
 $f''(x_k) = x_k - f''(x_k)$
 $f''(x_k) = x_k - f''(x_k)$

Multivariote Search

Choosing a step size

Exact (Accurate) Line Search

Say f is a multivariate function, $f(x_1, x_2, ..., x_n)$. Say we have a current point $x_k = \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix}$ and a direction $d_k = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$ if we choose $v_k = \underset{\alpha \in \mathbb{R}}{\arg\min} f(x_k + \alpha d_k)$ we will obtain best x_{k+1} that can be achieved using x_k and d_k in one iteration.

Example:
$$f(x_1, x_2) = (x_1-2)^4 + (x_1-2x_2)^2$$

$$\chi_1 = (0, 3)$$

$$d_1 = (1, 0)$$

$$f(x_1+\alpha d_1) = f((0, 3) + \alpha(1, 0)) = f(x, 3) = (\alpha-2)^4 + (\alpha-6)^2$$

$$f_{\alpha}(\alpha) = (\alpha-2)^4 + (\alpha-6)^2 \quad \Rightarrow \text{univariate fnc. solve analytically if easy, otherwise we (bisechar/Newton's/Jean/New$$

Inaccurate Line Search

If finding the best step size (a) is costly, how about we choose the step size some other way? Choose a series $\{a_k\}_{k=0}^\infty$ that monotonically decreases. Should the series be convergent ($\lim_{k\to\infty}\sum_{j=1}^k a_j \to \infty$)?

See why $\alpha_k = \frac{1}{2^k}$ would be a bad choice: et $f(x) = x^2$, $\alpha_1 = 2$, $d_k = -1$ $\forall k \in \mathbb{Z}_{+,0}$. Con you reach x = 0?

An example series: $\alpha_k = \frac{1}{\epsilon}$ (Hormonic series)

Example:
$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$

$$x^* = \underset{x \in \mathbb{R}}{argmin} f(x_1, x_2) = (2, 1)$$

Cyclic Coordinate Search

Initialization Step Choose a scalar $\varepsilon > 0$ to be used for terminating the algorithm, and let $\mathbf{d}_1, ..., \mathbf{d}_n$ be the coordinate directions. Choose an initial point \mathbf{x}_1 , let $\mathbf{y}_1 = \mathbf{x}_1$, let k = j = 1, and go to the Main Step.

Main Step

- 1. Let λ_j be an optimal solution to the problem to minimize $f(\mathbf{y}_j + \lambda \mathbf{d}_j)$ subject to $\lambda \in R$, and let $\mathbf{y}_{j+1} = \mathbf{y}_j + \lambda_j \mathbf{d}_j$. If j < n, replace j by j + 1, and repeat Step 1. Otherwise, if j = n, go to Step 2.
- 2. Let $\mathbf{x}_{k+1} = \mathbf{y}_{n+1}$. If $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \varepsilon$, then stop. Otherwise, let $\mathbf{y}_1 = \mathbf{x}_{k+1}$, let j = 1, replace k by k+1, and go to Step 1.

$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$
$$x_1 = (0,3)$$

Cyclic Coordinate Search

 $f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$ $x_1 = (0,3)$

Table 8.6 Summary of Computations for the Cyclic Coordinate Method

Iteration k	$f(\mathbf{x}_k)$	j	\mathbf{d}_{j}	\mathbf{y}_{j}	λ_j	\mathbf{y}_{j+1}
1	(0.00, 3.00)	1	(1.0, 0.0)	(0.00,3.00)	3.13	(3.13, 3.00)
	52.00	2	(0.0, 1.0)	(3.13,3.00)	-1.44	(3.13, 1.56)
2	(3.13, 1.56)	1	(1.0, 0.0)	(3.13, 1.56)	-0.50	(2.63, 1.56)
	1.63	2	(0.0, 1.0)	(2.63, 1.56)	-0.25	(2.63, 1.31)
3	(2.63, 1.31)	1	(1.0, 0.0)	(2.63, 1.31)	-0.19	(2.44, 1.31)
	0.16	2	(0.0, 1.0)	(2.44, 1.31)	-0.09	(2.44, 1.22)
4	(2.44, 1.22)	1	(1.0, 0.0)	(2.44, 1.22)	-0.09	(2.35, 1.22)
	0.04	2	(0.0, 1.0)	(2.35, 1.22)	-0.05	(2.35, 1.17)
5	(2.35, 1.17)	1	(1.0, 0.0)	(2.35, 1.17)	-0.06	(2.29, 1.17)
	0.015	2	(0.0, 1.0)	(2.29, 1.17)	-0.03	(2.29, 1.14)
6	(2.29, 1.14)	1	(1.0, 0.0)	(2.29, 1.14)	-0.04	(2.25, 1.14)
	0.007	2	(0.0, 1.0)	(2.25, 1.14)	-0.02	(2.25, 1.12)
7	(2.25, 1.12)	1	(1.0, 0.0)	(2.25, 1.12)	-0.03	(2.22, 1.12)
	0.004	2	(0.0, 1.0)	(2.22,1.12)	-0.01	(2.22, 1.11)

Cyclic Coordinate Search Stalling

Figure 8.8 Effect of a sharp-edged valley.

Hook-Jeeves Method

Initialization Step Choose a scalar $\varepsilon > 0$ to be used in terminating the algorithm. Choose a starting point x_1 , let $y_1 = x_1$, let k = j = 1, and go to the Main Step.

Main Step

- 1. Let λ_j be an optimal solution to the problem to minimize $f(\mathbf{y}_j + \lambda \mathbf{d}_j)$ subject to $\lambda \in R$, and let $\mathbf{y}_{j+1} = \mathbf{y}_j + \lambda_j \mathbf{d}_j$. If j < n, replace j by j + 1, and repeat Step 1. Otherwise, if j = n, let $\mathbf{x}_{k+1} = \mathbf{y}_{n+1}$. If $\|\mathbf{x}_{k+1} \mathbf{x}_k\| < \varepsilon$, stop; otherwise, go to Step 2.
- 2. Let $\mathbf{d} = \mathbf{x}_{k+1} \mathbf{x}_k$, and let $\hat{\lambda}$ be an optimal solution to the problem to minimize $f(\mathbf{x}_{k+1} + \lambda \mathbf{d})$ subject to $\lambda \in R$. Let $\mathbf{y}_1 = \mathbf{x}_{k+1} + \hat{\lambda} \mathbf{d}$, let j = 1, replace k by k + 1, and go to Step 1.

$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$
$$x_1 = (0,3)$$

Hook-Jeeves Method

 $f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$ $x_1 = (0,3)$

Table 8.7 Summary of Computations for the Method of Hooke and Jeeves Using Line Searches

Iteration k	$f(\mathbf{x}_k)$	j	\mathbf{y}_{j}	\mathbf{d}_{j}	λ_{j}	\mathbf{y}_{j+1}	d	â	$\mathbf{y}_3 + \hat{\lambda} \mathbf{d}$
l	(0.00, 3.00)	1	(0.00, 3.00)	(1.0, 0.0)	3.13	(3.13, 3.00))———	_	
	52.00	2	(3.13, 3.00)	(0.0, 1.0)	-1.44	(3.13, 1.56)	(3.13, 1.44)	-0.10	(2.82, 1.70
2	(3.13, 1.56)	1	(2.82, 1.70)	(1.0, 0.0)	-0.12	(2.70, 1.70)	-		
	1.63	2	(2.70, 1.70)	(0.0, 1.0)	-0.35	(2.70, 1.35)	(-0.43, -0.21)	1.50	(2.06, 1.04
3	(2.70, 1.35)	1	(2.06, 1.04)	(1.0, 0.0)	-0.02	(2.04, 1.04)	-	_	
	0.24	2	(2.04, 1.04)	(0.0, 1.0)	-0.02	(2.04, 1.02)	(-0.66, -0.33)	0.06	(2.00, 1.00
4	(2.04, 1.02)	1	(2.00, 1.00)	(1.0, 0.0)	0.00	(2.00, 1.00)			_
	0.000003	2	(2.00, 1.00)	(0.0, 1.0)	0.00	(2.00, 1.00)			
5	(2.00, 1.00)								
	0.00								

Reference: M. S. Bazaraa, H. D. Sherali, C. M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd Edition, 2006

Steepest Descent

$$x_{k+1} = x_k - \alpha_k \, \nabla f(x_k)$$

Table 8.11 Summary of Computations for the Method of Steepest Descent

Iteration k	$f(\mathbf{x}_k)$	$\nabla f(\mathbf{x}_k)$	$\ \nabla f(\mathbf{x}_k)\ $	$\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$	λ_k	\mathbf{x}_{k+1}
1	(0.00, 3.00) 52.00	(-44.00, 24.00)	50.12	(44.00, -24.00)	0.062	(2.70, 1.51)
2	(2.70, 1.51) 0.34	(0.73, 1.28)	1.47	(-0.73, -1.28)	0.24	(2.52, 1.20)
3	(2.52, 1.20) 0.09	(0.80, -0.48)	0.93	(-0.80, 0.48)	0.11	(2.43, 1.25)
4	(2.43, 1.25) 0.04	(0.18, 0.28)	0.33	(-0.18, -0.28)	0.31	(2.37, 1.16)
5	(2.37, 1.16) 0.02	(0.30, -0.20)	0.36	(-0.30, 0.20)	0.12	(2.33, 1.18)
6	(2.33, 1.18) 0.01	(0.08, 0.12)	0.14	(-0.08, -0.12)	0.36	(2.30, 1.14)
7	(2.30, 1.14) 0.009	(0.15, -0.08)	0.17	(-0.15, 0.08)	0.13	(2.28, 1.15)
8	(2.28, 1.15) 0.007	(0.05, 0.08)	0.09			

$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$
$$x_1 = (0,3)$$

Figure 8.16 Method of steepest descent.

Newton's Method

$$x_{k+1} = x_k - H(x_k)^{-1} \nabla f(x_k)$$

$$f(x_1, x_2) = (x_1 - 2)^4 + (x_1 - 2x_2)^2$$
$$x_1 = (0,3)$$

Table 8.12 Summary of Computations for the Method of Newton

Iteration k	$f(\mathbf{x}_k)$	$\nabla f(\mathbf{x}_k)$	$H(x_k)$	$\mathbf{H}(\mathbf{x}_k)^{-1}$	$-\mathbf{H}(\mathbf{x}_k)^{-1}\nabla f(\mathbf{x}_k)$	\mathbf{x}_{k+1}
1	(0.00, 3.00) 52.00	(-44.0, 24.0)	$\begin{bmatrix} 50.0 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{384} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 50.0 \end{bmatrix}$	(0.67, -2.67)	(0.67, 0.33)
2	(0.67, 0.33) 3.13	(-9.39, -0.04)	$\begin{bmatrix} 23.23 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{169.84} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 23.23 \end{bmatrix}$	(0.44, 0.23)	(1.11, 0.56)
3	(1.11, 0.56) 0.63	(-2.84, -0.04)	$\begin{bmatrix} 11.50 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{76} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 11.50 \end{bmatrix}$	(0.30, 0.14)	(1.41, 0.70)
4	(1.41, 0.70) 0.12	(-0.80, -0.04)	$\begin{bmatrix} 6.18 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{33.44} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 6.18 \end{bmatrix}$	(0.20, 0.10)	(1.61, 0.80)
5	(1.61, 0.80) 0.02	(-0.22, -0.04)	$\begin{bmatrix} 3.83 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{14.64} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 3.83 \end{bmatrix}$	(0.13, 0.07)	(1.74, 0.87)
6	(1.74, 0.87) 0.005	(-0.07, 0.00)	$\begin{bmatrix} 2.81 & -4.0 \\ -4.0 & 8.0 \end{bmatrix}$	$\frac{1}{6.48} \begin{bmatrix} 8.0 & 4.0 \\ 4.0 & 2.81 \end{bmatrix}$	(0.09, 0.04)	(1.83, 0.91)
7	(1.83, 0.91) 0.0009	(0.0003, -0.04)				

