Conditionamento della valetatione di femione. XER L' définite in un intonno d'x $\times \mapsto \mathcal{L}(x) \in \mathcal{K}$ "esatta" $\times \mapsto \mathcal{L}(x) \in \mathcal{K}$ "di maedina" Si No: $\frac{1}{2}(x)\left(1+\varepsilon_{1}\right)=\frac{1}{2}\left(x(1+\varepsilon_{1})\right)$ Colchiams: $f(x) + f(x) \in f(x) = f(x + x \in x) \iff$ $\frac{1}{2}(x) = \frac{1}{2}(x + x \in x) - \frac{1}{2}(x)$ denotiamo on N:=xEx, possavo sullonne du [N] Allone (X+N f (x1 E f(x1 = foxthi-fox h divido motifico 1 (x) x Ex (x1 × (dipende da X

Esenc	i Aio (svolto in aula il 3 mov. 2021)
Comsic	leniamo (F (10,6-11,11) e
×	= 123457.1467
	= 123456.659
Coufn	entou X-y in anitomética este
Ou	x-x in outanties d'mocdine.
ToA	inutio esta: x-y=0.4877
Anito	m. di macchina: X, Y & F
	$x = 1.234571467 \times 10^{5}$
	$x = 1.234571467 \times 10^5$
+	
1.234	1571×10 ⁵ 1.2345715×10 ⁵ 1.234572×10 ⁵
du	$uque f(x) = 1.234571 \times 10^5$

Andogomente y=1.23456659×105 dunque $f(y) = 1.234567 \times 10^5$ Adesso cololismo la d'flirema X-Y = 1.234571×10⁵ -1.234567×10⁵ = 0.000004 × 105 Ordero, in anitm. finita: $\begin{array}{c} X - Y = 0.4 = \\ = 4.0 \times 10^{-1} \in \mathbb{F} \end{array}$

Ricapitolando: X-y in antim. esattoc: 4.877 x10 X-y in antim. finitoc: 4.0 x 10 il r'sultata in anton-dmarchine he sob 1 efre connetta! Il mex ennone relativo commesso nell'annotationento $\frac{1}{2} = \frac{1}{2} = 5 \times 10^{-7}$ Absono perso 6 cilne! 7-1

Stimions il nomino di anditionemento: $\approx \frac{2.4 \times 10^5}{4.8 \times 10^{-1}} = \frac{1}{2} \times 10^6 =$ = 5 × (0 La rendita di princisione è givstificate del mol and rionamento! Si i Venificato il osidatto enrone di Pancellatione Estratio (problema 1, primo esomero 2020/2021) Considerat 0 H (2,12, -7, 8)

(5)
$$\frac{1}{1+2^{-15}} = \frac{1}{1+2^{-12}}$$

se $0 \le p \le 12$, $1+2^{-p} \in \mathbb{F}$ e paindi
$$(1+2^{-p}) - 2^{-p} = 1$$

se $p = 13$, $1+2^{-13} \notin \mathbb{F}$ e $p(1+2^{-13}) = 1$,

ma $1-2^{13} \in \mathbb{F}$, pur eni
$$(1+2^{-p}) - 2^{-p} < 1 \quad (in \mathbb{F})$$

se $p = 14$, venificant due
$$(1+2^{-p}) - 2^{-p} = 1 \quad (in \mathbb{F})$$

Plisposit: $p = 13$

(6) Segmo 1 bit
experience: $4 = 12$
expe

(7)
$$F = \frac{1}{2} \pm 1 \cdot d_1 \cdot d_2 \times 2^{-1}, P \in \mathbb{Z}, -6 \cdot p \cdot 7$$

$F = 2 \cdot 2^{-1} \cdot 14$

(8) $F = \frac{1}{2} \cdot 14$

(9) $F = \frac{1}{2} \cdot 14$
 $F = \frac$

Utterioni ous de resioni:
(m IF (B, t, M1, M2)
· X E R : fl (x 1 = B P) non i un interno
simmitaie di B
BP-BP-t-1 BP BP+BP-t
[\(\begin{align*} \
• $\left\{ x \in \mathbb{R} : f(x) = \beta^{p} + \beta^{p-t} \right\}$ è apento
(non contiene gli estremi)
ESERCIHO In F(2,16,-63,64) determinare
il più grande PEN per eni
$\mathcal{L}\left(5+2^{-P}\right)>5$

$$5 \in [2^{2}, 2^{3}]$$
, quandi
 $5 = 5+2^{-14}$
 $1 = 5+2^{-14}$
 $1 = 5+2^{-14} > 5$
 $1 = 6+2^{-14} > 5$
 $1 = 6+2^{-14} > 5$
 $1 = 6+2^{-14} > 5$
 $1 = 6+2^{-14} > 5$
 $1 = 6+2^{-14} > 5$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+2^{-14} > 6$
 $1 = 6+$