Caminhos mínimos de todos os pares 5189-32

Rodrigo Calvo rcalvo@uem.br

Departamento de Informática – DIN Universidade Estadual de Maringá – UEM

1° semestre de 2016

- O problema de caminho mínimo de todos os pares consiste em encontrar o caminho mínimo entre todos os pares de vértices de um grafo
- Os algoritmos que resolvem este problema recebem como entrada
 - Um grafo direcionado G = (V, A)
 - Uma função peso $w: A \rightarrow \mathbf{R}$

 Para resolver o problema de caminho mínimo de todos os pares, pode-se utilizar algoritmos de caminho mínimo de única origem.
 Neste caso, o algoritmo é executado |V| vezes, uma vez para cada vértice

Algoritmo	Fila de Prioridade	Única origem	Todos os pares
Dijkstra (sem arestas de pesos negativos	Arranjo Simples	$O(V^2 + A)$	$O(V^3 + VA) = O(V^3)$
	Неар	O(A lg V)	O(VA Ig V) O(V ³ Ig V) - grafo denso
	Heap de Fib on acci	O(V lg V + A)	O(V ² lg V + VA) O(V ³) – grafo denso
Bellman-Ford (grafos gerais)		O(VA)	O(V ² A) O(V ⁴) – grafo denso

Entrada

• Uma matriz $W_{n \times n}$ que representa os pesos das arestas. Isto é, $W = w_{ii}$, onde

$$w_{ij} = \begin{cases} 0 & , \text{se } i = j \\ w(i, j), \text{se } i \neq j \text{ e } (i, j) \in A \\ \infty & , \text{se } i \neq j \text{ e } (i, j) \notin A \end{cases}$$

- Saída
 - Matriz $D_{n \times n} = d_{ij}$, onde a entrada d_{ij} contém o peso do caminho mínimo do vértice i até o vértice j, ou seja, $d_{ij} = \delta(i, j)$
 - Matriz predecessora $\Pi_{n \times n} = \pi_{ij}$, onde π_{ij} é o vértice predecessor de j em um caminho mínimo a partir de i

- Algoritmos de caminhos mínimos de todos os pares
 - Floyd-Warshall
 - Baseado em multiplicação de matrizes
 - Johnson (grafos esparsos)

- Considerações
 - Supomos que n\u00e3o existem ciclos de pesos negativos
 - Os vértices estão numerados como 1, 2, 3, . . . , n, onde n = |V|

• Algoritmo de programação dinâmica com tempo $\Theta(V^3)$

- Ideia
 - O caminho mínimo pode ser calculado baseado nos caminhos mínimos para subproblemas já calculados e memorizados

- Etapas para resolver um problema com programação dinâmica
 - Caracterizar a estrutura de uma solução ótima
 - Definir recursivamente o valor da solução ótima
 - Computar o valor da solução ótima de baixo para cima (bottom-up)
 - Construir a solução ótima a partir das informações computadas

- Para um caminho $p = \langle v_0, v_1, \dots, v_l \rangle$, um vértice intermediário é qualquer vértice de p que não seja v_0 ou v_l
- Nota-se que n = |V|

Caracterização da estrutura de solução ótima

- Considere um caminho mínimo $i \stackrel{p}{\leadsto} j$ com todos os vértices intermediários em $\{1, 2, \dots, k\}$
 - Se k não é um vértice intermediário de p, então, todos os vértices intermediários de p estão em $\{1, 2, \ldots, k-1\}$. Deste modo, um caminho mínimo i \rightsquigarrow j com todos os vértices intermediários no conjunto $\{1, 2, \ldots, k-1\}$, também é um caminho mínimo i \rightsquigarrow j com todos os vértices intermediários no conjunto $\{1, 2, \ldots, k\}$
 - Se k é um vértice intermediário do caminho p, então desmembra-se o caminho p em $i \stackrel{p_1}{\leadsto} k \stackrel{p_2}{\leadsto} j$. p1 é um caminho mínimo de i até k, com todos os vértices intermediários no conjunto $\{1, 2, \ldots, k-1\}$. A mesma ideia se aplica a p2

Caracterização da estrutura de solução ótima

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

Definição recursiva do custo da solução ótima

• Seja $d_{ij}^{(k)}$ o peso de um caminho mínimo i \rightsquigarrow j com todos os vértices intermediários em $\{1, 2, \dots, k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & , \text{se } k = 0\\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & , \text{se } k \ge 1 \end{cases}$$

• Observe que a matriz $D^{(n)}=d_{ij}^{(n)}$ fornece a reposta desejada: $d_{ij}^{(n)}=\delta(i,j)$ para todo $i,j\in V$, isto porque para qualquer caminho todos os vértices intermediários estão no conjunto $\{1,2,\ldots,n\}$

```
floyd-warshall(W)

1 n = W .linhas

2 D^{(0)} = W

3 for k = 1 to n

4 seja D^{(k)} = (d^{(k)}_{ij}) uma matriz n × n

5 for i = 1 to n

6 for j = 1 to n

7 d^{(k)}_{ij} = min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj})

8 return D^{(n)}
```

```
floyd-warshall(W)
1  n = W .linhas
2  D<sup>(0)</sup> = W
3  for k = 1 to n
4    seja D<sup>(k)</sup> = (d<sup>(k)</sup><sub>ij</sub>) uma matriz n × n
5    for i = 1 to n
6     for j = 1 to n
7     d<sup>(k)</sup><sub>ij</sub> = min(d<sup>(k-1)</sup><sub>ij</sub> , d<sup>(k-1)</sup><sub>ik</sub> + d<sup>(k-1)</sup><sub>kj</sub> )
8  return D<sup>(n)</sup>
```

- •Análise do tempo de execução
 - Cada execução da linha 7 demora O(1)
 - A linha 7 é executada n³ vezes
 - Portanto, o tempo de execução do algoritmo é $\Theta(n^3) = \Theta(V^3)$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

Construção da solução ótima

- Como construir um caminho mínimo
 - Calcular a matriz predecessora Π, durante o cálculo da matriz de distância de caminhos mínimos D
 - Quando k = 0, um caminho mínimo de i até j não tem nenhum vértice intermediário, então:

$$\pi_{ij}^{(0)} = \begin{cases} \text{nil , se } i = j \text{ ou } w_{ij} = \infty \\ i \text{ , se } i \neq j \text{ ou } w_{ij} < \infty \end{cases}$$

• Quando $k \ge 1$, então:

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{, se } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{kj}^{(k-1)} & \text{, se } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases}$$

Construção da solução ótima

```
floyd-warshall( W )
1 n = W .linhas
2 D = W
3 \Pi = (\pi_{ii}) uma matriz n \times n
4 for i = 1 to n
5 for j = 1 to n
6 if i = j ou w_{ij} = \infty
      \pi_{ii} = nil
8 if i \neq j \in w_{ij} < \infty
      \pi_{ij} = i
10 for k = 1 to n
   for i = 1 to n
11
12
        for j = 1 to n
13
          if d_{ij} > d_{ik} + d_{kj}
          d_{ij} = d_{ik} + d_{kj}
14
15
           \pi_{ij} = \pi_{kj}
16 return D , Π
```

Bibliografia

Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition.
 Capítulo 25.