MATHEMATICS 271 L01 FALL 2015 ASSIGNMENT 2 SOLUTION

1. Define the sequences a_0, a_1, a_2, \dots and b_0, b_1, b_2, \dots recursively as follows:

$$a_0 = 0$$
, and for $n > 0$, $a_n = a_{\lfloor \frac{n}{5} \rfloor} + a_{\lfloor \frac{3n}{5} \rfloor} + n$, and $b_0 = 2$, $b_1 = 3$ and for $n > 1$, $b_n = 3b_{n-1} - 2b_{n-2}$.

- (a) Find a_1 , a_2 , a_3 , a_4 and a_5 .
- (b) Prove that $a_n \leq 20n$ for all integers $n \geq 0$.
- (c) Find b_2 , b_3 , b_4 and b_5 .
- (d) Guess a formula for b_n using part (c).
- (e) Prove by induction on n that your guess in part (d) is correct for all integers $n \geq 1$.

Solution:

(a)
$$a_1 = a_0 + a_0 + 1 = 0 + 0 + 1 = 1$$

$$a_2 = a_0 + a_1 + 2 = 0 + 1 + 2 = 3$$

$$a_3 = a_0 + a_1 + 3 = 0 + 1 + 4 = 4$$

$$a_4 = a_0 + a_2 + 4 = 0 + 3 + 4 = 7$$

$$a_5 = a_1 + a_3 + 5 = 1 + 4 + 5 = 10$$

(b) We prove $a_n \leq 20n$ for all integers $n \geq 0$ by induction on n (strong form).

Basis:
$$(n=0)$$

$$a_0 = 0 \le 0 = 20 \times 0.$$

Inductive step: Let $k \ge 1$ be an integer and suppose that for all integers m where $0 \le m < k$,

$$a_m \le 20m$$
 (IH)

We want to show that $a_k \leq 20k$.

Now, since $k \geq 1$,

$$a_{k} = a_{\left\lfloor \frac{k}{5} \right\rfloor} + a_{\left\lfloor \frac{3k}{5} \right\rfloor} + k$$

$$\leq 20 \left\lfloor \frac{k}{5} \right\rfloor + 20 \left\lfloor \frac{3k}{5} \right\rfloor + k$$

$$\leq 20 \left\lfloor \frac{k}{5} \right\rfloor + 20 \frac{3k}{5} + k$$
because $\lfloor x \rfloor \leq x$ for all $x \in \mathbb{R}$

$$= 4k + 12k + k$$

$$= 17k$$

$$\leq 20k$$

Thus, $a_n \leq 20n$ for all integers $n \geq 0$.

(c)

$$b_2 = 3b_1 - 2b_0 = 3 \times 3 - 2 \times 2 = 5$$

$$b_3 = 3b_2 - 2b_1 = 3 \times 5 - 2 \times 3 = 9$$

$$b_4 = 3b_2 - 2b_1 = 3 \times 9 - 2 \times 5 = 17$$

$$b_5 = 3b_2 - 2b_1 = 3 \times 17 - 2 \times 9 = 33$$

(d) From part (c), we see that:

$$b_0 = 2 = 2^0 + 1$$

$$b_1 = 2 = 2^1 + 1$$

$$b_2 = 5 = 2^2 + 1$$

$$b_3 = 9 = 2^3 + 1$$

$$b_4 = 17 = 2^4 + 1$$

$$b_5 = 32 = 2^5 + 1$$

Thus, we guess that $b_n = 2^n + 1$ for all integers $n \ge 0$.

(e) We prove by induction on n that $b_n = 2^n + 1$ for all integers $n \ge 0$.

Bases:
$$(n = 0, 1)$$

We have shown $b_0 = 2^0 + 1$ and $b_1 = 2^1 + 1$ in part (d).

Inductive step: Let $k \geq 2$ be an integer and suppose that for all integers m where $0 \leq m < k$,

$$b_m = 2^m + 1 \tag{IH}$$

We want to show that $b_k = 2^k + 1$.

Now, since $k \geq 2$,

$$a_{k} = 3b_{k-1} - 2b_{k-2}$$

$$= 3(2^{k-1} + 1) - 2(2^{k-2} + 1)$$
 by (IH)

$$= 3 \times 2^{k-1} - 2 \times 2^{k-2} + 1$$

$$= 6 \times 2^{k-2} - 2 \times 2^{k-2} + 1$$

$$= 4 \times 2^{k-2} + 1$$

$$= 2^{k} + 1$$

Thus, $b_n = 2^n + 1$ for all integers $n \ge 0$.

2. Define the Fibonacci sequence f_1, f_2, f_3, \dots recursively as follows:

 $f_1 = f_2 = 1$, and for $n \ge 3$, $f_n = f_{n-1} + f_{n-2}$.

- (a) Prove that for all integers $n \ge 3$, $\gcd(f_n, f_{n-1}) = \gcd(f_{n-1}, f_{n-2})$. (You may want to use Lemma 4.8.2).
- (b) Prove that $gcd(f_n, f_{n-1}) = 1$ for all integers $n \ge 2$.
- (c) Prove that $\sum_{i=1}^{n} f_i^2 = f_{n+1} f_n$ for all integers $n \ge 1$.
- (d) Prove that $f_n < \left(\frac{7}{4}\right)^{n-1}$ for all integers $n \geq 2$.

Solution:

(a) Let $n \geq 2$ be an integer.

Lemma 4.8.2 says that if a = bq + r then gcd(a, b) = gcd(b, r). We know

$$f_n = f_{n-1} + f_{n-2}. (1)$$

Put $a = f_n$, $b = f_{n-1}$, q = 1 and $r = f_{n-2}$. We see that (1) has the form a = bq + r, and so by Lemma 4.8.2 we can conclude that $gcd(f_n, f_{n-1}) = gcd(f_{n-1}, f_{n-2})$.

(b) We prove this by (normal) induction on n.

Basis:
$$(n=1)$$

$$\gcd(f_2, f_1) = \gcd(1, 1) = 1.$$

Inductive step: Let $k \geq 1$ be an integer and suppose that

$$\gcd(f_k, f_{k-1}) = 1.$$
 [IH]

We want to prove that $gcd(f_{k+1}, f_k) = 1$.

Now, by part (a) we have

$$\gcd(f_{k+1}, f_k) = \gcd(f_k, f_{k-1})$$

$$= 1 \qquad \text{by } [IH]$$

Thus, $\gcd(f_n, f_{n-1}) = 1$ for all integers $n \geq 2$.

(c) We prove this by (normal) induction on n.

Basis: (n = 1)

$$\sum_{i=1}^{1} f_i^2 = 1^2 = 1 = 1 \times 1 = f_2 f_1 = f_{1+1} f_1.$$

Inductive step: Let $k \geq 1$ be an integer and suppose that

$$\sum_{i=1}^{k} f_i^2 = f_{k+1} f_k \tag{IH}$$

We want to prove that $\sum_{i=1}^{k+1} f_i^2 = f_{k+2} f_{k+1}$.

$$\sum_{i=1}^{k+1} f_i^2 = \left(\sum_{i=1}^k f_i^2\right) + f_{k+1}^2$$

$$= f_{k+1} f_k + f_{k+1}^2$$

$$= (f_k + f_{k+1}) f_{k+1}$$

$$= f_{k+2} f_{k+1}.$$

Thus, $\sum_{i=1}^{n} f_i^2 = f_{n+1} f_n$ for all integers $n \geq 1$.

(d) We prove this by (strong) induction on n.

Basis: (n = 2, 3)

$$f_2 = 1 = \frac{4}{4} < \frac{7}{4} = \left(\frac{7}{4}\right)^{2-1}$$
, and

$$f_3 = f_2 + f_1 = 1 + 1 = 2 = \frac{32}{16} < \frac{49}{16} = \left(\frac{7}{4}\right)^{3-1}$$

 $f_3 = f_2 + f_1 = 1 + 1 = 2 = \frac{32}{16} < \frac{49}{16} = \left(\frac{7}{4}\right)^{3-1}$ Inductive step: Let $k \ge 4$ be an integer and suppose that for all integers m where $2 \le m < 1$ k, we have $f_m < \left(\frac{7}{4}\right)^{m-1}$

$$f_m < \left(\frac{7}{4}\right)^{m-1} \tag{IH}$$

We want to prove that $f_k < \left(\frac{7}{4}\right)^{k-1}$.

Now, since $k \geq 3$,

$$f_{k} = f_{k-1} + f_{k-2}$$

$$< \left(\frac{7}{4}\right)^{k-2} + \left(\frac{7}{4}\right)^{k-3}$$

$$= \left(\frac{7}{4}\right)^{-1} \left(\frac{7}{4}\right)^{k-1} + \left(\frac{7}{4}\right)^{-2} \left(\frac{7}{4}\right)^{k-1}$$

$$= \left(\left(\frac{7}{4}\right)^{-1} + \left(\frac{7}{4}\right)^{-2}\right) \left(\frac{7}{4}\right)^{k-1}$$

$$= \left(\frac{4}{7} + \frac{16}{49}\right) \left(\frac{7}{4}\right)^{k-1}$$

$$= \left(\frac{28}{49} + \frac{16}{49}\right) \left(\frac{7}{4}\right)^{k-1}$$

$$= \frac{44}{49} \left(\frac{7}{4}\right)^{k-1}$$

$$< \left(\frac{7}{4}\right)^{k-1}$$

Thus, $f_n < \left(\frac{7}{4}\right)^{n-1}$ for all integers $n \ge 2$.

- **3**. For any sets A and B, we define the symmetric difference $A\triangle B$ by $A\triangle B = (A \cup B) (A \cap B)$. Note that it is also true that $A\triangle B = (A B) \cup (B A)$. Let S be the statement: "For all sets A, B and C, if $A \subseteq B \cup C$ and $B \subseteq C \cup A$ then $A\triangle B = C$." and let T be the statement: "For all sets A, B and C, if $A\triangle B = A\triangle C$ then $B \subseteq C$."
- (a) Is S true? Prove your answer.

Solution: S is not true. For example, when $A = B = \emptyset$, and $C = \{1\}$ we have $A = \emptyset \subseteq B \cup C$ and $B = \emptyset \subseteq C \cup A$, but $A \triangle B = \emptyset \neq \{1\} = C$.

(b) Is \mathcal{T} true? Prove your answer.

Solution: \mathcal{T} true. Let A, B and C be sets and suppose that $A \triangle B = A \triangle C$. We prove that $B \subseteq C$. Let $x \in B$. We consider two cases $x \in A$ and $x \notin A$.

Case 1: $x \in A$. Since $x \in A$ and $x \in B$, $x \in A \cap B$ and hence $x \notin A \triangle B$. Since $A \triangle B = A \triangle C$ and $x \notin A \triangle B$, we get $x \notin A \triangle C = (A \cup C) - (A \cap C)$ and therefore $x \notin A \cup C$ or $x \in A \cap C$. However, since $x \in A$, $x \in A \cup C$ and it follows that $x \in A \cap C$ and so $x \in C$.

Case 1: $x \notin A$. Since $x \notin A$ and $x \in B$, $x \in B - A$ and hence $x \in A \triangle B$. Since $A \triangle B = A \triangle C$ and $x \in A \triangle B$, we get $x \in A \triangle C = (A \cup C) - (A \cap C)$ and therefore $x \in A \cup C$, which implies that $x \in A$ or $x \in C$. However, since $x \notin A$, we see that $x \in C$.

(c) Write the converse of S. Is the converse of S true? Prove your answer.

Solution: The converse of S is "For all sets A, B and C, if $A \triangle B = C$ then $A \subseteq B \cup C$ and $B \subseteq C \cup A$."

The converse of S is true. Let A, B and C be sets and suppose that $A \triangle B = C$.

First, we prove that $A \subseteq B \cup C$ by contradiction. Suppose that $A \nsubseteq B \cup C$. Then there exists an element $x \in A$ so that $x \notin B \cup C$, that is, $x \notin B$ and $x \notin C$. Since $x \in A$ and $x \notin B$, $x \in A - B \subseteq A \triangle B$. Since we have $x \in A \triangle B$ and $x \notin C$, $A \triangle B \ne C$ which contradicts the assumption that $A \triangle B = C$. Thus, $A \subseteq B \cup C$.

Next, we prove that $B \subseteq C \cup A$ by contradiction. Suppose that $B \nsubseteq C \cup A$. Then there exists an element $x \in B$ so that $x \notin C \cup A$, that is, $x \notin C$ and $x \notin A$. Since $x \in B$

and $x \notin A$, $x \in B - A \subseteq A \triangle B$. Since we have $x \in A \triangle B$ and $x \notin C$, $A \triangle B \neq C$ which contradicts the assumption that $A \triangle B = C$. Thus, $A \subseteq B \cup C$.