Osservazione 2.11.11. Arccos(x): La funzione arccos x è l'inverso del seno e può essere scritta anche come $f(x) = cos x^{-1}$ ed è rappresentata nell'immagine [16b].

2.11.8 Tangente e Arcotangente

Tangente: $f(x) = \tan x, f : \mathbb{R} \longrightarrow \mathbb{R}$

Arcotangente: $f(x) = \arctan x, f : \mathbb{R} \longrightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

Osservazione 2.11.12. Tan(x): La funzione $\tan x$, rappresentata nell'immagine [17a], può essere scritta anche come $\frac{\sin x}{\cos x}$, ha come dominio $\{x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$. La funzione tangente è fatta da infiniti intervalli, è quindi periodica per π ; è di base non invertibile, ma se la ristringiamo in $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ diventa biunivoca ed accetta la funzione inversa che è arctan x.

Osservazione 2.11.13. Arctan(x): La funzione $\arctan x$, rappresentate nell'immagine [17b], è inversa della funzione $\tan x$, può quindi essere scritta anche con la forma $\tan x^{-1}$.

3 Massimi e minimi

3.1 Massimo e minimo intervalli

Definizione 3.1.1 (Massimo). Dato un insieme A tale che: $A \subseteq \mathbb{R}, \ A \neq \emptyset, \ m \in \mathbb{R} \ m \ si \ dice \ massimo \ di \ A \ se \ m \geq a \ \forall \ a \in A \ e \ m \in A$

Definizione 3.1.2 (Minimo). Dato un insieme A tale che: $A \subseteq \mathbb{R}, A \neq \emptyset, m \in \mathbb{R}$ m si dice **minimo** di A se $m \leq a \ \forall \ a \in A$ e $m \in A$

Esempio 3.1.1. Esempi massini e minimi intervalli:

- Dato A = [0, 1] il max(A) = 1 e il suo min(A) = 0
- Dato B = [0, 1) il min(B) = 0 mentre B non ha massimo.

Dimotrazione 3.1.1. Dimostriamo questo esempio:

Supponiamo per assurdo che $m \in \mathbb{R}$ sia il max di B, con ovviamente $m \in B$. Se tale condizione è vera m < 1 perché 1 non è incluso nell'insieme B = [0, 1).

Poniamo ora $\epsilon=1-m,$ così facendo ϵ diventa la lunghezza dell'intervallo fra 1 ed m.

Figure 18: Segmento B

Definiamo ora un $m_1 = m + \frac{\epsilon}{2}$. Creando questo valore m_1 vediamo che $m_1 \in B$ ma anche che $m < m_1$ che contrasta con la definizione di massimo di B che dovrebbe essere $m \ge b \,\forall\, b \in B$. Così dimostriamo la non esistenza di un valore massimo.

3.2 Maggiorante e minorante intervalli

Definizione 3.2.1 (Maggiorante). $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $k \in \mathbb{R}$ si dice **maggiorante** di A se $k \geq a \ \forall \ a \in A$. L'insieme di tutti i maggioranti si indica con M_A .

Definizione 3.2.2 (Minorante). $A \subseteq \mathbb{R}$, $A \neq \emptyset$, $k \in \mathbb{R}$ si dice **minorante** di A se $k \leq a \ \forall \ a \in A$. L'insieme di tutti i minoranti si indica con m_A .

Esempio 3.2.1. A = [0,3] allora 3 è un maggiorante di A, quindi $3 \in M_A$. Mentre $\frac{1}{4}$ non è un maggiorante, quindi $\frac{1}{4} \notin M_A$, perché 1 > A e $1 > \frac{1}{2}$.

Osservazione 3.2.1. Se esiste un maggiorante di A allora ne esistono infiniti. Infatti se prendiamo un $k \in M_A$, m è un maggiorante di A $\forall m \geq k$. Questo discorso vale anche per i minoranti, infatti con $k \in m_A$, m è un minorante di A $\forall m \leq k$.

Esempio 3.2.2. Esempi per l'osservazione sopra:

- $A = \mathbb{R}$, A non ha maggioranti.
- $A = [4, +\infty]$ non ha maggioranti ma ha minoranti.

3.3 Intervallo limitato

Definizione 3.3.1 (Limitato superiormente). Dato un intervallo A, se $M_A \neq \emptyset$ (insieme dei maggioranti) allora l'intervallo A si dice limitato superiormente

Definizione 3.3.2 (Limitato inferiormente). Dato un intervallo A, se $m_A \neq \emptyset$ (insieme dei minoranti) allora l'intervallo A si dice **limitato inferiormente**

Definizione 3.3.3 (Limitato). $A \subset \mathbb{R}$, $A \neq \emptyset$, se A è sia superiormente che inferiormente limitato allora A si dice semplicemente intervallo **limitato**.

Osservazione 3.3.1. A è limitato se e solo se $\exists h, k \in \mathbb{R}$ tale che $k \leq a \leq h \ \forall \ a \in A$

3.3.1 Estremi superiori ed inferiori

Teorema 3.3.1 (Estremo superiore). $A \subset \mathbb{R}$, $A \neq \emptyset$ ed A è superiormente limitato, allora esiste il minimo dell'insieme dei maggioranti. Tale minimo si dice **estremo superiore** di A e si indica con sup(A).

Teorema 3.3.2 (Estremo inferiore). $A \subset \mathbb{R}$, $A \neq \emptyset$ ed A è inferiormente limitato, allora esiste il massimo dell'insieme dei minoranti. Tale massimo si dice **estremo inferiore** di A e si indica con inf(A).

Esempio 3.3.1. Esempio estremi superiori ed inferiori:

- A = [0, 1) $M_A = [1, +\infty) e m_A = (-\infty, 0] \min(M_A) = \sup(A) = 1 \max(m_A) = \inf(A) = 0$
- B = [0, 1] $M_B = [1, +\infty)$ e $m_A = (-\infty, 0]$ $\min(M_B) = \sup(B) = 1$ $\max(m_B) = \inf(B) = 0$

Osservazione 3.3.2. Se esiste max(A) allora max(A) = sup(A) e viceversa se esiste min(A) allora min(A) = inf(A)

Note 3.3.1. Se A non è superiormente limitato scriviamo $\sup(A) = -\infty$ e se non è inferiormente limitato $\inf(A) = -\infty$.

Osservazione 3.3.3. $A \neq \emptyset$ e A è superiormente limitata, allora $m = \sup(A)$ se e solo se valgono 2 condizioni:

- 1. $a \le m \ \forall \ a \in A$ Questo dice che m è un maggiorante
- 2. $\forall \epsilon > 0 \; \exists \; \overline{a}^3 \in A \; | \; \overline{a} > m \epsilon \; m \epsilon \; m \; dice che non ci sono maggioranti più piccoli di m.$

 $^{3\}overline{a}$ è un semplice metodo di notazione

Se valgono queste 2 condizioni m è l'estremo sup e viceversa se m è $\sup(A)$ allora valgono queste condizioni.

Note 3.3.2. Questa considerazione vale anche per $m = \inf(A)$.

Osservazione 3.3.4. La scrittura $\sup(A) < +\infty$ vuol dire che l'estremo superiore di A è un numero reale, quindi A è superiormente limitato. Viceversa la scrittura $\inf(A) > -\infty$ vuol dire che l'estremo inferiore di A è un numero reale, quindi A è inferiormente limitato.

3.4 Retta reale estesa

Definizione 3.4.1 (Retta reale estesa). La retta reale estesa si indica con $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$ in modo che valga: $-\infty \le x \le +\infty \ \forall x \in \overline{\mathbb{R}}$

Osservazione 3.4.1. Se $x \in \mathbb{R}$ (quindi $x \neq +\infty, x \neq -\infty$) allora $-\infty < x < +\infty$

3.4.1 Operazioni in $\overline{\mathbb{R}}$

- Se $x \neq +\infty$ allora $x + (-\infty) = -\infty$.
- Se $x \neq -\infty$ allora $x + (+\infty) = +\infty$.
- Se x > 0 allora $x(+\infty) = +\infty$ e $x(-\infty) = -\infty$.
- Se Se x < 0 allora $x(+\infty) = -\infty$ e $x(-\infty) = +\infty$.
- $(+\infty) + (-\infty)$ e viceversa $0(+\infty)$ o $0(\infty)$ Sono vietate
- $(+\infty)(+\infty) = +\infty$ $(+\infty)(-\infty) = -\infty$ $(-\infty)(-\infty) = +\infty$ Sono consentite

Osservazione 3.4.2. Dato $A \subset \mathbb{Z}$ se A è superiormente limitato, A ha un massimo e se A è inferiormente limitato allora A ha un minimo.

3.5 Parte intera di un numero

Definizione 3.5.1. Dato $x \in \mathbb{R}$ si dice **parte intera di x** e si indica con [x] il numero [x] = $max\{m \in \mathbb{Z} : m \leq x\}$

Possiamo spiegarlo in maniera semplice che è il primo numero intero che troviamo alla sinistra di x.

Esempio 3.5.1.
$$\left[\frac{25}{10}\right] = 2$$
 $\left[-\frac{25}{10}\right] = -2$

Figure 19: Parte intera di x

3.5.1 Grafico di f(x) = [x]

Figure 20: Grafico f(x) = [x]

Possiamo vedere nell'immagine [20] che tutti numeri vanno a valere in y come il valore del primo intero a sinistra.

Esempio 3.5.2. Esempio per f(x) = [x]: $f(\frac{1}{2}) = 0$ $f(\frac{3}{2}) = 1$

$$f(\frac{10}{3}) = 3 \qquad f(\frac{4}{3}) = 1$$

3.6 Limiti, massimi e minimi su funzioni

Andiamo a fare una serie di definizioni prendendo due insiemi A, B tale che $A \subseteq \mathbb{R}$ e $B \subseteq \mathbb{R}$ ed una funzione f(A) definita come $f:A \longrightarrow B$.

Definizione 3.6.1 (Limitata superiormente, inferiormente). f si dice limitata superiormente se f(A) è limitata superiormente. Viceversa f si dice limitata inferiormente se f(A) è limitata inferiormente. Se f è sia limitata superiormente che inferiormente si dice che f è limitata.

Definizione 3.6.2 (Massimo e minimo). f ha massimo se la sua immagine f(A) ha massimo. Si dice che M è il massimo di f e si scrive M = max(f) se M = max(f(A)). Ugualmente f ha minimo se la sua immagine f(A) ha minimo. Si dice che m è il minimo di f e si scrive m = min(f) se m = min(f(A)).

Definizione 3.6.3. Se f non è limitata superiormente e si scrive $sup(f) = +\infty$. Ugualmente se f non è limitata inferiormente, e si scrive $inf(f) = -\infty$.

Note 3.6.1. Rircoda che $\sup(f)$ corrisponde a scrivere $\sup(f(A))$ e ugualmente $\inf(f)$ è uguale a $\inf(f(A))$.

Definizione 3.6.4 (Punti di massimo e minimo). Se f ha massimo allora ogni $x_0 \in A$ tale che $f(x_0) = max(f)$ si dice punto di massimo per f. Similmente se f ha minimo allora ogni $x_0 \in A$ tale che $f(x_0) = min(f)$ si dice punto di minimo per f.

Osservazione 3.6.1. Il massimo di f è unico mentre i punti di massimo possono essere molti.

Esempio 3.6.1.
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $f(x) = \sin x$ [21]

$$\max(\mathbf{f}) = 1 \qquad x_0 = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$

In questo caso essendo la funzione periodica in ogni intervallo di $x_0 = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$ esisterà un punto di massimo mentre il massimo rimarrà sempre 1.

Figure 21: funzione $f(x) = \sin x$

Esempio 3.6.2.
$$f:(0,+\infty) \longrightarrow \mathbb{R}$$
 $f(x) = \frac{1}{x}$ [22]

In questa casistica f non ha ne massimo ne minimo. Questo lo possiamo dimostrare andando ad immaginare una casistica dove esiste un massimo ed un minimo e facendo poi alcune considerazione.

Innanzitutto prendiamo per assurdo che f avesse massimo allora \implies \exists m tale che $f(x) \leq m \ \forall \ x \in (0,+\infty)$.

Se in questa casistica prendessimo un punto x e dicessima che quello è il massimo, $f(\frac{1}{x}) = m$, ma se poi prendiamo un punto che è $\frac{x}{2}$ esso apparitene sempre alla funzione e $f(\frac{x}{2}) = 2m$ e 2m > m. Quindi vediamo come non è possibile determinare un massimo.

Questa funzione non può nemmeno avere un minimo perché $f(x) > 0 \, \forall \, x$, quindi inf(f) = 0. Se f avesse minimo dovrebbe essere m(f) = inf(f) = 0 ma questo presuppone che debba esiste un x_0 tale che $f(x_0) = 0$ cioè $\frac{1}{x_0} = 0$, ma questo è impossibile.

Figure 22: funzione $f(x) = \frac{1}{x}$

Osservazione 3.6.2. Consideriamo un insieme $A \subset \mathbb{R}$ e una funzione $f : A \longrightarrow \mathbb{R}$, valgono per essi le seguenti osservazioni:

• Se A ha massimo e f è debolmente crescente allora f ha max e $\max(f) = f(\max(A))$.

- Se A ha minimo e f è debolmente crescente allora f ha min e $\min(f) = f(\min(A))$.
- Se A ha minimo e f è debolmente crescente allora f ha min e $\min(f) = f(\max(A))$.
- Se A ha massimo e f è debolmente crescente allora f ha max e $\max(f) = f(\min(A))$.

(b) Punti max min f decrescente

Osservazione 3.6.3. Se $f: A \longrightarrow \mathbb{R}$ allora $m = \sup(f)$ se e solo se valgono queste due condizioni:

- 1. $f(x) \leq m \ \forall \ x \in A$ Questo vuol dire che m deve essere maggiore o uguale di qualsiasi f(x)
- 2. $\forall \ \epsilon > 0 \ \exists \ \overline{x} \in A \mid f(\overline{x}) > m \epsilon$ Questo vuol dire che per qualsiasi valore ϵ maggiore di 0 deve esistere un \overline{x} appartenendo all'insieme A tale che, se sottraiamo il valore ϵ a m il risultato deve essere inferiore a $f(\overline{x})$ ciò vuol dire che non ci sono altri valori per il quale la funzione è sempre sotto.