Problem 1. Give a direct proof (without using Theorems 3.41-43) of the alternating series test: suppose that b_n is a sequence of nonnegative reals with $b_n \geq b_{n+1}$ for all $n \in \mathbb{N}$, and let $a_n = (-1)^n b_n$. Then $\sum a_n$ converges iff $b_n \to 0$.

Proof. Let $s_n := \sum_{k=1}^n (-1)^{k-1} b_k$, $n \in \mathbb{N}$. We claim that $(s_{2n})_{n=1,2,\dots}$ is an increasing sequence. Indeed, we have

$$s_{2n+2} - s_{2n} = (-1)^{2n} b_{2n+1} + (-1)^{2n+1} b_{2n+2} = b_{2n+1} - b_{2n+2} \ge 0.$$

Moreover, $(s_{2n+1})_{n=1,2,...}$ is a decreasing sequence, because

$$s_{2n+3} - s_{2n+1} = (-1)^{2n+1}b_{2n+2} + (-1)^{2n+2}b_{2n+3} = -b_{2n+2} + b_{2n+3} \le 0.$$

Further, $s_{2n+1} - s_{2n} = (-1)^{2n} b_{2n+1} = b_{2n+1} \ge 0$, so $s_{2n} \le s_{2n+1}$ for all $n \in \mathbb{N}$.

By Theorem 3.14, both sequences $(s_{2n})_{n=1,2,...}$ and $(s_{2n+1})_{n=1,2,...}$ converge. But

$$\lim_{n \to \infty} (s_{2n+1} - s_{2n}) = \lim_{n \to \infty} b_{2n+1} = 0.$$

Thus, there exists a real number s such that $\lim_{n\to\infty} s_{2n} = \lim_{n\to\infty} s_{2n+1} = s$. Consequently, $\lim_{n\to\infty} s_n = s_{2n+1} = s$.

s. This shows that the series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges.

Note that $s_{2n} \leq s \leq s_{2n+1}$ for all $n \in \mathbb{N}$. It follows that

$$0 \le s - s_{2n} \le s_{2n+1} - s_{2n} = b_{2n+1}$$
 and $0 \le s_{2n+1} - s \le s_{2n+1} - s_{2n+2} = b_{2n+2}$.

Thus we get the following error estimate:

$$|s - s_n| \le b_{n+1} \quad \forall n \in \mathbb{N}.$$

Problem 2 (Rudin 3.6).

Proof. (a) We have

$$a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \ge \frac{1}{2\sqrt{n+1}}.$$

By denoting n+1=k, we have $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n+1}}=\sum_{k=2}^{\infty}\frac{1}{\sqrt{k}}$, and the last series diverges by Theorem

3.28. Thus the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$ diverges, and so does $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n+1}}$ by Theorem 3.47 (because

if the last series converges, then the previous series also converges by Theorem 3.47. Now $\sum a_n$ diverges by the comparison test, Theorem 3.25.

(b) We have, following the calculation from part (a)

$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{n(\sqrt{n+1} + \sqrt{n})} = \frac{1}{n(\sqrt{n+1} + \sqrt{n})} \le \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}.$$

The series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges by Theorem 3.28. Now $\sum a_n$ converges by the comparison test, Theorem 3.25.

1

c) For $n \ge 1$, we can show that $0 \le (\sqrt[n]{n} - 1) < 1$:

 $\mapsto (\forall n \in \mathbb{N}) \, (1 \le n < 2^n) \qquad \text{the} < 2^n \text{ can easily be proven via induction} \\ \to (\forall n \in \mathbb{N}) (1 \le \sqrt[n]{n} < 2) \qquad \text{take the n^{th} root of each term}$

$$\rightarrow (\forall n \in \mathbb{N})(0 \leq \sqrt[n]{n} - 1 < 1)$$
 subtract 1 from each term

We know that the series $\sum x^n$ converges when $0 \le x < 1$, so by the comparison Theorem 3.25 we know that $\sum a_n$ is convergent.

(d) If $|z| \le 1$ then $|z|^n \le 1$, so $|1+z^n| \le 1 + |z|^n \le 2$. Hence $\left|\frac{1}{1+z^n}\right| = \frac{1}{|1+z^n|} \ge \frac{1}{2}$. Hence the terms do not tend to zero and the series diverges.

Assuming |z| > 1, we apply the ratio test:

$$\left| \frac{1+z^n}{1+z^{n+1}} \right| = \left| \frac{z^{-n}+1}{z^{-n}+z} \right| \to \frac{1}{|z|} < 1$$

as $n \to \infty$.

Problem 3 (Rudin 3.7).

Proof. First solution. Using the inequality $xy \leq \frac{x^2 + y^2}{2}$, we get $0 \leq \frac{\sqrt{a_n}}{n} \leq \frac{1}{2} \left(a_n + \frac{1}{n^2} \right)$ for n = 1 $1, 2, \dots$ The series $\sum a_n$ converges by the assumption in the problem. The series $\sum \frac{1}{n^2}$ converges by Theorem 3.2] Then the series $\sum \frac{1}{2} \left(a_n + \frac{1}{n^2} \right)$ converges by Theorem 3.47. Now $\sum \frac{\sqrt{a_n}}{n}$ converges by the comparison test, Theorem 3.25

Second solution. We use the Cauchy criterion; let $\epsilon > 0$. Since both $\sum a_n$ and $\sum \frac{1}{n^2}$ converge, there exists N > 0 such that $m \ge n \ge N$ implies both $|\sum_{k=n}^m a_n| = \sum_{k=n}^m a_n < \epsilon$ and $\sum_{k=n}^m \frac{1}{k^2} < \epsilon$. Using Cauchy-Schwarz, we have

$$\left| \sum_{k=n}^{m} \frac{\sqrt{a_n}}{n} \right| \le \sqrt{\sum_{k=n}^{m} a_n} \sqrt{\sum_{k=n}^{m} \frac{1}{k^2}} < \sqrt{\epsilon^2} = \epsilon.$$

Problem 4 (Rudin 3.8).

Solving this problem requires summation by parts, which we didn't cover, so it won't be graded. Problem 5 (Rudin 3.11).

Proof. a) Proof by contrapositive. We will assume that $\sum \frac{a_n}{1+a_n}$ converges and show that this implies that $\sum a_n$ converges.

Since the series is convergent, the terms $\frac{a_n}{1+a_n}$ must tend to zero. We may choose N sufficiently large that $\frac{a_n}{1+a_n} < \frac{1}{2}$. This gives us

$$2a_n < 1 + a_n$$

$$a_n < 1$$

$$1 + a_n < 2$$

$$\frac{1}{2} < \frac{1}{1 + a_n}.$$

We then have

$$|a_n| = 2\frac{1}{2}a_n < 2\frac{a_n}{1 + a_n}$$

for $n \geq N$. By the comparison test, $\sum a_n$ converges.

b) From the definition of s_n , we can see that

$$s_{n+1} = a_1 + \ldots + a_{n+1} = s_n + a_{n+1}$$

and we're told that every $a_n > 0$, so we know that $s_{n+1} > s_n$. This implies that $s_n \ge s_m$ whenever $n \ge m$. We calculate:

$$1 - \frac{s_N}{s_{N+k}} = \frac{s_{N+k} - s_N}{s_{N+k}} = \frac{a_{N+1} + \dots + a_{N+k}}{s_{N+k}}$$
$$= \frac{a_{N+1}}{s_{N+k}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$
$$\leq \frac{a_{N+1}}{s_{N+1}} + \dots + \frac{a_{N+k}}{s_{N+k}}$$

which is the desired inequality.

We can now show that $\sum a_n/s_n$ fails the Cauchy criterion. Let $\epsilon = \frac{1}{2}$. Given any $N \in \mathbb{N}$, since the sequence s_n diverges to $+\infty$, we can choose k sufficiently large that $s_{N+k} > 2s_N$. This implies that $1 - \frac{s_N}{s_{N+k}} > \frac{1}{2}$. By the above inequality, we have

$$\sum_{i=N+1}^{N+k} \frac{a_i}{s_i} > \frac{1}{2}.$$

But this shows that N does not fulfill the Cauchy criterion (taking n = N + 1, m = k + 1). Since N was arbitrary, the series diverges.

c) We have $s_n - s_{n-1} = a_n$. Dividing both sides by $s_n s_{n-1}$, we obtain

$$\frac{1}{s_{n-1}} - \frac{1}{s_n} = \frac{a_n}{s_{n-1}s_n}.$$

Since $\frac{1}{s_{n-1}} \ge \frac{1}{s_n}$, this implies

$$\frac{1}{s_{n-1}} - \frac{1}{s_n} \ge \frac{a_n}{s_n^2},$$

as desired.

Now, since the series $\sum a_n$ is divergent with positive terms, $s_n \to +\infty$ as $n \to \infty$, so $\frac{1}{s_n} \to 0$. The above formula telescopes to give the estimate

$$\sum_{k=n}^{m} \frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_m}.$$

Since for $m \ge n \ge N$ sufficiently large, the RHS is arbitrary small, the Cauchy criterion is satisfied. d) The series $\sum \frac{a_n}{(1+n^2a_n)}$ always converges. From the fact that $a_n > 0$, we can establish the following chain of inequalities:

$$\frac{a_n}{1+n^2a_n} = \frac{\frac{1}{a_n}}{\frac{1}{a_n}} \frac{a_n}{1+n^2a_n} = \frac{1}{\frac{1}{a_n}+n^2} < \frac{1}{n^2}$$

We know that $\sum \frac{1}{n^2}$ converges (Theorem 3.28), and therefore $\sum \frac{a_n}{(1+n^2a_n)}$ converges by the comparison test of Theorem 3.25.

The series $\sum \frac{a_n}{(1+na_n)}$ may or may not converge. If $a_n = \frac{1}{n}$, for instance, the summation becomes

$$\sum \frac{a_n}{1 + na_n} = \sum \frac{\frac{1}{n}}{2} = \frac{1}{2} \sum \frac{1}{n}$$

which is divergent by Theorem 3.28. To construct a convergent series, let a_n be defined as

$$a_n = \begin{cases} 1 & \text{if } n = 2^m - 1 (m \in \mathbb{Z}) \\ 0 & \text{otherwise} \end{cases}$$

The series $\sum a_n$ is divergent, since there are infinitely many integers of the form $2^m - 1$. But the series $\sum \frac{a_n}{(1 + na_n)}$ is convergent:

$$\sum_{n=0}^{\infty} \frac{a_n}{1 + na_n} = \sum_{m=0}^{\infty} \frac{1}{2^m} = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^m$$

This series is convergent to 2 by Theorem 3.26.

Note: by (b), it is actually not possible to construct a counterexample for which a_n is monotonically decreasing!

Problem 6 (Rudin 4.1).

Proof. Consider the function

$$f(x) = \begin{cases} 1, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

This function satisfies the condition that

$$\lim_{h \to \infty} [f(x+h) - f(x-h)] = 0$$

for all x, but the function is not continuous at x = 0: We can choose $\epsilon < 1$, and every neighborhood $N_{\delta}(0)$ will contain a point p for which

$$d(f(p), f(0)) = 1$$

Therefore we can't pick δ such that $d(p,0) < \delta \to d(f(p),f(0)) < 1$, which means that f is not continuous by Definition 4.5.

Problem 7 (Rudin 4.2).

Proof. Let X be a metric space, let E be an arbitrary subset of X, and let \bar{E} represent the closure of E. We want to prove that $f(\bar{E}) \subseteq \overline{f(E)}$. To do this, assume $y \in f(E)$. This means that y = f(e) for some $e \in (E \cup E')$.

Case 1: $e \in E$. If $e \in E$, then $y \in f(E)$ and therefore $y \in \overline{f(E)}$.

Case 2: $e \in E'$. If $e \in E'$, then every neighborhood of e contains infinitely many points of E. Choose an arbitrarily small neighborhood $N_{\epsilon}(y)$. We're told that f is continuous so, by Definition 4.1, we're guaranteed the existence of δ such that $f(x) \in N_{\epsilon}(y)$ whenever $x \in N_{\delta}(e)$. But there are infinitely many elements of E in the neighborhood $N_{\delta}(e)$, so there are infinitely many elements of f(E) in $N_{\epsilon}(y)$. This means that g is a limit point of g. We've shown that every arbitrary element $g \in f(E)$ is either a member of g or a limit point of g, which means that $g \in g$. This proves that $g \in g$. This proves that $g \in g$.

A function f for which $f(\bar{E})$ is a proper subset $\overline{f(E)}$ Let X be the metric space consisting of the interval (0,1) with the standard distance metric. Let Y be the metric space \mathbb{R}^1 . Define the function $f: X \to Y$ as f(x) = x. The interval (0,1) is closed in X but open in Y, so we have

$$f(\bar{X}) = f(X) = (0,1) \neq \overline{(0,1)}$$

Problem 8 (Rudin 4.3).

Proof. If we consider the image of Z(f) under f, we have $f(Z(f)) = \{0\}$. This range is a finite set, and is therefore a closed set. By the corollary of Theorem 4.8, we know that $f^{-1}(\{0\}) = Z(f)$ must also be a closed set.

Problem 9 (Rudin 4.4).

Proof. a) f(E) is dense in f(X). To show that f(E) is dense in f(X) we must show that every element of f(X) is either an element of f(E) or a limit point of f(E). Assume $y \in f(X)$. Then $p = f^{-1}(y) \in X$. We're told that E is dense in X, so either $p \in E$ or $p \in E'$.

Case 1: $p \in E$. If $p \in E$, then $y = f(p) \in f(E)$.

Case 2: $f^{-1}(y) \in E'$. If p is a limit point of E, then there is a sequence $\{e_n\}$ of elements of E such that $e_n \neq p$ and $\lim_{n \to \infty} e_n = p$. We're told that f is continuous, so by Theorem 4.2 we know that $\lim_{n \to \infty} f(e_n) = f(p) = y$. Using Definition 4.2 again, we know that there is a sequence $\{f(e_n)\}$ of elements of f(E) From Theorem 4.2, this tells us that $\lim_{x \to p} f(x) = f(p) = y$. Therefore g is a limit point of f(E). We've shown that every element $g \in f(X)$ is either an element of g(E) or a limit point of g(E). By definition, this means that g(E) is dense in g(E).

b) Choose an arbitrary $p \in X$. We're told E is dense in X, so p is either an element of E or a limit point of E.

Case 1: $p \in E$. If $p \in E$, then we're told that f(p) = g(p).

Case 2: $p \in E'$. If p is a limit point of E, then there is a sequence $\{e_n\}$ of elements of E such that $e_n \neq p$ and $\lim_{n \to \infty} e_n = p$. We're told that f and g are continuous, so by Theorem 4.2 we know that $\lim_{n \to \infty} f(e_n) = f(p)$ and $\lim_{n \to \infty} g(e_n) = g(p)$. But each e_n is an element of E, so we have $f(e_n) = g(e_n)$ for all n. This tells us that

$$g(p) = \lim_{n \to \infty} g(e_n) = \lim_{n \to \infty} f(e_n) = f(p)$$

We see that f(p) = g(p) in either case. This proves that f(p) = g(p) for all $p \in X$.