Machine learning

Overfitting 극복 & Linear Regression 2

머신러닝의 학습 방법들

Probability theory-based learning

• Gradient descent-based learning

• Information theory-based learning

Distance similarity-based learning

목표 : 오락기 구조를 아는 것이유 : 시버른 '0'의 결과 예측

실제, $y_i = @x_i + $$

가설, $H(w,b) = Wx_i + b$

i = 1,2,3까지는 경험 i = 4는 **새로운 입력** 가설, Hypotheis(W, b)= $Weight \cdot x_i + b$ ias

초기값 W = 1, b = 0으로 가정하면, $H(1,0) = 1 \cdot X + 0$

초기값 W = 1, b = 0으로 가정하면, W = 0, b = 0으로 바꾸면 $H(1,0) = 1 \cdot X + 0$

$$cost(1,0) = \frac{2^2+3^2+4^2}{3} = \frac{29}{3}$$

$$W = 0, b = 0$$
으로 바꾸면 $H(0,0) = 0 \cdot X + 0$

$$cost(1,0) = \frac{2^2+3^2+4^2}{3} = \frac{29}{3} \longrightarrow cost(0,0) = \frac{3^2+5^2+7^2}{3} = \frac{83}{3}$$
 (>2.811)

cost(W, b) = $\frac{1}{m} \sum_{i=1}^{m} \{(Wx_i + b) - y_i\}^2$

 $W := W - \alpha \frac{\partial}{\partial W} cost(W)$

Linear regression with GD

만약, 오른쪽 공식의 cost함수를 w1만의 이차 함수로 가정하면! 아래처럼,

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

주의할 점: 목표는 Cost가 최소가 되는 것

GD를 이용하여 최소값 찾기

그전에! 필수 파이썬 Tip

[1] append()는 object를 맨 뒤에 추가합니다.

```
x = [1, 2, 3]
x.append([4, 5])
print (x)
[1, 2, 3, [4, 5]]
```

[2] extend()는 iterable 객체(리스트, 튜플, 딕셔너리 등)의 엘레멘트를 list에 appending시킵니다.

```
x = [1, 2, 3]

x.extend([4, 5])

print (x)

[1, 2, 3, 4, 5]
```

굴곡이 많은 경우

Local minimum 시작점에 따라 다른 최소값을 찾는다.

$$\mathbf{y} = \begin{bmatrix} 487 \\ 612 \\ 866 \\ 1030 \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & 8,759 \\ 1 & 10,132 \\ 1 & 12,078 \\ 1 & 16,430 \end{bmatrix}$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (w_1 x^{(i)} + w_0 - y^{(i)})^2$$

Minimize $J(w_0, w_1)$

얼만큼씩 변화를 주며 훈련시킬 것인가

Learning rate가 너무 작을 경우

끝까지 못감 시간이 오래 걸림

Learning rate가 너무 클 경우

데이터가 튀는 문제가 생김 수렴하지 못하는 경우생김

GD를 이용한 학습

결국 파라미터의 업데이트

Linear regression with GD

•Learning rate, Iteration 횟수 등이 Parameter 설정에 영향을 주므로, Hyperparameter로 불림.

•설계에 따라 최적값에 수렴하지 못할 수도 있음

- 1. 명사 (일괄적으로 처리되는) 집단[무리]
- 2. 명사 한 회분(한 번에 만들어 내는 음식기계 등의 양)
- 3. 동사 (일괄 처리를 위해) 함께 묶다

Full-batch gradient descent

- 안정적인 Cost 함수 수렴 (넓게 보므로)
- •지역 최적화 (Local Optimum) 가능성 존재
- •메모리 문제 (ex 30억개의 데이터를 한번에?)
- •대규모 dataset -> 모델/파라미터 업데이트가 느려짐

stochastic 미국·영국 [stəkæstik]

추계학(推計學)의, 확률(론)적인

Stochastic gradient descent

Stochastic gradient descent

• 원래 의미는 dataset에서 random하게 training sample을 뽑은 후 학습할 때 사용함

- 1. 발을 (질질) 끌며 걷다
- 2. (어색하거나 당황해서 발을) 이리저리 움직이다
- 3. (게임을 하기 위해 카드를) 섞다

```
1: procedure SGD
```

- 2: $\mathtt{shuffle}(X)$
- 3: for i in number of X do
- 4: $\theta_j := \theta_j \alpha(\hat{y}^{(i)} y^{(i)})x_j^{(i)}$

• Data를 넣기 전에 Shuffle

- 5: end for
- 6: end procedure

▶ Randomly shuffle data

▷ Only one example

Stochastic gradient descent

'지점'을 말할 때 mum과 ma를 씀

- 1.지역 최적화(Local Optimum) 회피
- 2. 일부 문제에 대해 더 빨리 수렴

Optimum의 복수형은 Optima

좋은건 최대 Maximum 나쁜건 최소 Minimum

3. 대용량 데이터시 시간이 오래걸림 (전체 중에 섞는 것이므로)

Mini-batch (stochastic) gradient descent

Mini-batch SGD

•일부 Mini 량의 데이터를 학습 + Shuffle

•일부 Batch로 나눠서 하는 GD인데 SGD인 기법

•가장 일반적으로 많이 쓰이는 기법

1. (중요한 사건·변화들이 일어난) 시대

1. 명사 (계산·컴퓨터 처리 절차의) 반복

epoch, batch-size. iteration

batch 미국·영국 [bætʃ] () 영국식 () 🕕

- 1. 명사 (일괄적으로 처리되는) 집단[무리]
- 2. 명사 한 회분(한 번에 만들어 내는 음식기계 등의 양)
- 3. 동사 (일괄 처리를 위해) 함께 묶다
- Training 시기 (1차 시기, 2차 시기,..., n차 시기) 전체 Full-batch를 n epoch 관찰했다고 표현
- •Batch-size라는 용어: 한 iteration 에 학습되는 데이터의 개수. 이것이 k-iteration 반복하여 한 epoch 완성
- •총 5,120개의 Training data에 512 batch-size라면 몇 iteration을 해야 1 epoch이 되는가?

epoch & mini-batch

So, after creating the mini-batches of fixed size, we do the following steps in one epoch:

- 1. Pick a mini-batch.
- 2. Feed it to Neural Network (AI 방법, 한 종류).
- 3. Calculate the mean gradient of the mini-batch.
- 4. Use the mean gradient we calculated in **step** 3 to update the weights.
- 5. Repeat **steps** 1–4 for the **mini-batches** we created.

epoch & mini-batch

So, after creating the mini-batches of fixed size, we do the following steps in one epoch:

- 1. Pick a mini-batch.
- 2. Feed it to Neural Network (AI 방법, 한 종류).
- 3. Calculate the mean gradient of the mini-batch.
- 4. Use the mean gradient we calculated in **step** 3 to update the weights.
- 5. Repeat **steps** 1–4 for the **mini-batches** we created.

Mini-batch SGD

```
1: procedure MINI-BATCH SGD

2: shuffle(X) \triangleright Randomly shuffle data

3: BS \leftarrow BATCH SIZE

4: NB \leftarrow Number of Batches

5: NB \leftarrow len(X)//BS

6: for i in NB do

7: \theta_j := \theta_j - \alpha \sum_{k=i \times BS}^{(i+1)*BS} (\hat{y}^{(k)} - y^{(k)}) x_j^{(k)} \triangleright Batch-sized examples
```

SGD를 구현할 때 생각해봐야 할 일들

그전에 잠깐 파이썬 numpy 팁!

Numpy에서 배열(ndarray) 복사 3가지

- 1. b = a [ndarray의 데이터와 속성을 모두 공유] 그저, b라는 이름 하나 더 생김 = b를 바꾸면 a에도 영향.
- 2. b = a.view() [보이는 뷰는 안 변하게 가져 온다!] b.shape=(1,15)은 a 영향 없음 b[0]=0하면 a 영향 있음
- 3. b = a.copy() [완전히 새로운 변수로 복사됨]

Mini-Batch SGD

operator	Description	Example
+	더하기	a + b = 30
27	ᄤ기	a - b = -10
*	곱하기	a * b = 200
/	나누기	b / a = 2.0
%	나머지	b % a = 0
**	제곱	a ** c = 1000
//	몫	a // c = 3

Operator Description Example

Learning rate은 일정해야 하는가?

Learning-rate decay

- 일정한 주기로 Learning rate을 감소시키는 방법
- 특정 epoch, t마다 Learning rate를 감소
- Hyper-parameter 설정의 어려움

[1] 지수감소
$$\alpha = \alpha_0 e^{-kt}$$

[2]
$$1/t$$
감소
$$\alpha = \frac{\alpha_0}{(1+kt)}$$

종료조건 설정

•SGD과정에서 특정 값이하로 cost function이 줄어들지 않을 경우 GD를 멈추는 방법

•성능이 좋아지지 않는/필요없는 연산을 방지함

•종료조건을 설정 epoch end condition > cost - previous cost

• epoch_end_condition도 hyperparameter.

Overfitting 과적합 (훈련값에) 너무 딱 맞추다

Overfitting

•학습데이터 과다 최적화 -> 새로운 데이터의 예측 정확도 감소

Overfitting

Occam's razor 오캄의 면도날

보다 적은 수의 논리로 설명이 가능한 경우, 굳이 많은 수의 논리를 세우지 말라

Overfitting

Bias-Variance tradeoff

Bias-Variance tradeoff

- High bias ~ Underfitting
 - 원래 모델에 많이 떨어짐
 - 잘못된 데이터만 계속 학습함

- High variance ~ Overfitting
 - 모든 데이터에 민감하게 학습
 - Error 고려가 적음

Bias-Variance tradeoff

- High bias ~ Underfitting
 - 원래 모델이 정답과 많이 떨어짐
 - 잘못된 데이터만 계속 학습함

- High variance ~ Overfitting
 - 모든 데이터에 민감하게 학습
 - Error 고려가 적음

Training Error vs Test Error

Overcoming Overfitting

•더 많은 데이터를 활용한다.

• Feature의 개수를 줄인다.

• 적절히 Parameter를 선정한다.

• Regularization L1, L2

General ML Process Training/Test Set

Holdout Method (sampling)

•데이터를 Training과 Test와 나눠서 모델을 생성하고 테스트하는 기법

•가장 일반적인 모델 생성을 위한 데이터 랜덤 샘플링 기법

• Training과 Test를 나누는 비율은 데이터의 크기에 따라 다름

Training - Validation - Test

- Training
 - Model Building
- Validation
 - Model Check

- Test
 - Model Evaluation

Validation Set

• Test Set은 Model이 생성시 절대 Training Set에 포함되지 않아야 함

• Test Set과 달리 Model 생성시 Model에 성능을 평가하기 위해 사용

•Hyper Parameter Tuning 시 성능 평가를 통해 Overfitting 방지

소경 tune 미국식 [tuːn] ● 영국식 [tjuːn]
1. 곡, 곡조, 선율

• Training 중간에 Model의 - 2. (악기의) 음을 맞추다, 조율하다 3. (기계를) 조정하다.

Training – Validation - Test

6	2	2
Training	Validation	Test
Set	Set	Set

K-fold cross validation

- •학습 데이터를 K번 나눠서 Test와 Train을 실시
 - Test의 평균값을 사용 Training Set Validation Set Valida
- •모델의 Parameter 튜닝, 간단한 모델의 최종 성능 측정 등 사용

Training Set		Validation Set	
		Validation Set	
	Validation Set		
Validation Set			

Leave One Out (LOO)

- Cross validation 에서 test data size가 1인 특별한 경우
- 한번에 한 개의 데이터만 Test set으로 사용함
 - ->총 k번 iteration

iteration 1/N:	
	П
iteration 2/N:	
iteration 3/N:	
	•
	:
iteration N/N:	

Validation set for parameter Tuning

