UC《电工电子学》课后综合

Words and Formula Sheet

Chapter	Words/Formula	Abbreviat ions	中文含义	说明
	Electrical Engineering		电气工程	
	Power System		电力系统	在各种形式之间分配和转换能量
	Signal processing system		信号处理系 统	收集、储存、处理、运输和呈现信 息
	Electrical current $i(t) = \frac{dq(t)}{dt}$ $q(t) = \int_{t_0}^{t} i(t)dt + q(t_0)$	I	电流	电荷流过导体或电路元件的时间速率 单位是安培(A),相当于库仑每秒 (C/s)
	Reference direction		参考方向	电流为负值时,电流的流向实际上 与参考方向相反
	Direct Current	D.C.	直流电	当电流随时间恒定时,我们称之为 直流电,简称直流电
	Alternating Current	A.C.	交流电	一种随时间变化的电流,周期性地 反转方向,称为交流电
	Triangular Waveform		三角波	
	Square Waveform		方形波	
Chapter 1	Voltage $V = \frac{W(J)}{Q(C)}$	V	电压	电压是流经元件的每单位电荷所传递的能量 电压单位是伏特(V),相当于焦耳 每库仑(J/C)
	Energy $W = QV$ $w = \int_{t_1}^{t_2} p(t)dt$	W	能量	
	Power $p(t) = v(t)i(t)$			
	Passive Reference Configuration		被动参考配 置	电流参考进入电压的正极性
	Independent Voltage Source		独立电压源	理想的独立电压源在其端子上保持 一个特定的电压
	Dependent Voltage Source		从属电压源	独立或受控电压源与独立电压源相似,不同之处在于通过电源端子的 电压是电路中其他电压或电流的函数
	Series Resistance (n=3) $R_{\text{eq}} =$ $R_1 + R_2 + R_3$		串联电阻	

	Parallel Resistance (n=3) $R_{eq} = \frac{1}{1/R_1 + 1/R_2 + 1/R_3}$	并联电阻	
	Voltage Division $v_{1} = R_{1}i = \frac{R_{1}}{R_{1} + R_{2} + R_{3}} v_{\text{total}}$ $v_{2} = R_{2}i = \frac{R_{2}}{R_{1} + R_{2} + R_{3}} v_{\text{total}}$	电压分配	
	Current Division $i_1 = \frac{v}{R_1} = \frac{R_2}{R_1 + R_2} i_{\text{total}}$ $i_2 = \frac{v}{R_2} = \frac{R_1}{R_1 + R_2} i_{\text{total}}$	电流分配	
	Ohm's Law $v = iR$ $v_{ab} = i_{ab}R$ $v_{ab} = -i_{ba}R$	欧姆定律	$v \iff_R$
	KIRCHHOFF'S CURRENT LAW KCL at node a: $i_1 + i_2 - i_3 - i_4 = 0$ KCL at node b: $-i_1 - i_2 + i_3 + i_4 = 0$	基尔霍夫电流定律	进入节点的净电流为零 a
	Node	力点	两个或多个电路元件连接在一起的 点
	KIRCHHOFF'S VOLTAGE LAW	基尔霍夫电 压定律	电路中任何闭合路径(回路)的电压代数和等于零
	Loop	回路	回路是从一个节点开始,经过电路 元件,最后返回起始节点的闭合路 径
Chapter 2	Node-Voltage Analysis $v_{1} = v_{s}$ $\frac{v_{2} - v_{1}}{R_{2}} + \frac{v_{2}}{R_{4}} + \frac{v_{2} - v_{3}}{R_{3}} = 0$ $\frac{v_{3} - v_{1}}{R_{1}} + \frac{v_{3}}{R_{5}} + \frac{v_{3} - v_{2}}{R_{3}} = 0$	节点电压法	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	Reference node	参考节点	以地面符号标记。任何可以选择节
	Super Node	超节点	点作为参考节点。 在两个节点周围画一条虚线,包围 一个电压源。
	Mesh Current Analysis $R_{2}(i_{1}-i_{3})+R_{3}(i_{1}-i_{2})-v_{A}=0$ $R_{3}(i_{2}-i_{1})+v_{B}+R_{4}i_{2}=0$ $R_{2}(i_{3}-i_{1})+R_{1}i_{3}-v_{B}=0$	网孔电流法	$v_A \stackrel{+}{} \stackrel{i_3}{} \stackrel{v_B}{} \stackrel{i_2}{} \stackrel{R_1}{} \stackrel{R_1}{}$
	planar networks	平面网络	无需一个元件(或导体)与另一个 元件(或导体)交叉即可在平面上 绘制的网络。
	branch current	支路电流	在网络的每个分支中定义一个单独的电流
	mesh current	网电流	我们定义流过网格的电流
	Thévenin Equivalent Circuits	戴维南等效 电路	V_t
	Norton Equivalent Circuits	诺顿等效电路	I_n R_t
	Maximum Power Transfer $P_{L} = i_{L}^{2} R_{L} = \frac{V_{t}^{2}}{(R_{t} + R_{L})^{2}} \cdot R_{L}$ $P_{LMax} = \frac{V_{t}^{2}}{4R_{t}}$	最大功率传输	
	Superposition Principle $r_T = r_1 + r_2 + \dots + r_n$	叠加原理	
	WHEATSTONE BRIDGE $R_x = \frac{R_2}{R_1} R_3$	惠斯通电桥	Figure 2.62 The Wheatstone bridge. When the Wheatstone bridge is balanced, $i_s=0$ and $v_{ab}=0$.
Chapter 3	Capacitor	电容器	当电容器充电时,能量储存在极板 之间的电场中。

				Current
				Dielectric material Plectron flow
	Capacitance			
	$C = \frac{q}{v} q = vC$ $i = \frac{dq}{dt} = \frac{d(Cv)}{dt} = C\frac{dv}{dt}$ $v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$		电容	$ \begin{array}{c} + \\ v(t) \\ - \end{array} $ C
	Inductance $v(t) = L \frac{di}{dt}$		电感	i(t) $v(t)$ $v(t)$
	Steady-State Sinusoidal Analysis		稳态正弦分 析	
	$v = V_m \cos(\omega t + \theta)$		171	
	Period: T		周期	
	Frequency: f $f = \frac{1}{T} = \frac{\omega}{2\pi}$		频率	
	Angular frequency ω $\omega = 2\pi f$		角频率	
	Phase angle: θ		相位角	
Chapter 5	Peak value: V_m I_m		幅值	
Chapter 3	Roof-Mean-Square $V_{rms} = \frac{V_m}{\sqrt{2}}$ $I_{rms} = \frac{I_m}{\sqrt{2}}$	RMS	有效值	周期波形的均方值(有效值)等于流过 R 欧姆电阻器的直流电的值。它向电阻器提供与周期电流相同的平均功率。
	Complex number: Rectangular Coordinates $A = a + jb$ Polar Coordinates $A = A e^{j\varphi}$		复数 三角坐标系 极坐标系	

	Phasors			
	$e^{\pm j\phi} = \cos \phi \pm j \sin \phi$		相量	
	Average Power $P = \frac{V_m I_m}{2} \cos(\theta) = V_{ms} I_{ms} \cos(\theta) [W]$		有功功率	
	Reactive Power $Q = \frac{V_m I_m}{2} \sin(\theta) = V_{\text{rms}} I_{\text{rms}} \sin(\theta) \text{[VAR]}$		无功功率	
	$\begin{array}{ c c c c }\hline \textbf{Apparent Power}\\ V_{RMS}I_{RMS} & \text{[VA]} \end{array}$		视在功率	
	Power angle $\theta = \theta_{voltage} - \theta_{curren}$		功率角	
	Power Factor $PF = \cos(\theta)$	PF	功率因子	
	Power Triangles $P^2 + Q^2 = (V_{\text{rms}} I_{\text{rms}})^2$		功率三角	
	Balanced three-phase source Y: $v_{an}(t) = V_Y cos(\omega t)$ $V_{an} = V_Y \angle 0^\circ$ $v_{bn}(t) = V_Y cos(\omega t - 120^\circ)$ $V_{bn} = V_Y \angle - 120^\circ$ $v_{cn}(t) = V_Y cos(\omega t + 120^\circ)$ $V_{cn} = V_Y \angle + 120^\circ$ Δ : $v_{ab}(t) = V_Y cos(\omega t)$ $V_{ab} = V_Y \angle 0^\circ$ $v_{bc}(t) = V_Y cos(\omega t - 120^\circ)$ $V_{bc} = V_Y \angle 120^\circ$ $v_{ca}(t) = V_Y cos(\omega t - 120^\circ)$ $V_{ca} = V_Y \angle - 120^\circ$		平衡三相电源	v_{an} v_{an} v_{bn} v
	Diodes		二极管	Anode \circ \longrightarrow \circ Cathode \circ \longrightarrow \circ Cathode
Chapter 9	anode		阳极	
	cathode		阴极	
	Forward-bias region		正向导通区	
	Reverse-bias region		反向截止区	
	1	I	1	

Reverse- region	breakdown	反向击	音穿区	
silicon d	iodes	硅二极	经管	
knee vol	tage	死区电	基压	
saturatio	on current	反向锋 流	回和电	
load line		负载线	हें	
operatin	g point	工作点	,	
half-wav	e rectifier	半波整路	整流电 ぴょ	$V_{m}\sin(\omega t) \qquad R_{L} \geqslant v_{o}(t)$ (a) Circuit diagram
Full-way	ve Rectifier	全波整	医流	$\sin(\omega t)$ $\lim_{t\to\infty} \frac{A}{ deal}$
Diode–b Rectifier	ridge Full-wave	桥式全流	注波整	Current path for positive half-cycle $V_m \sin(\omega t)$ $= B$ $R_L \underbrace{v_L}_{-}$
Clipper	Circuit	限幅电	1路 · · · · · · · · · · · · · · · · · · ·	(a) Circuit diagram
Clamp (Circuit	钳位电	上路	$\begin{array}{c c} C \\ + V_C - \text{Ideal} \\ \hline & \\ \hline & \\ \end{array} $ (a) Circuit diagram

	Bipolar Junction Transistors $i_{E} = I_{ES} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) - 1 \right]$ $i_{E} = i_{C} + i_{B}$ $\alpha = \frac{i_{C}}{i_{E}}$	ВЈТ	双极型晶体管	$B \circ \xrightarrow{i_{B}} V_{CE}$ v_{BE} V_{E}
	Common-Emitter Amplifier		共射极放大 器	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Chapter 12	large-signal dc analysis		大信号直流 分析	$\begin{array}{c c} & C & \\ & \downarrow & I_C & \\ & \downarrow & \downarrow & $
	Small-signal equivalent circuits $A_{v} = \frac{v_{o}}{v_{\text{in}}} = -\frac{R'_{L}\beta}{r_{\pi}}$ $A_{voc} = \frac{v_{o}}{v_{\text{in}}} = -\frac{R_{C}\beta}{r_{\pi}}$		小信号等效电路	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	$Z_{\text{in}} = \frac{v_{\text{in}}}{i_{\text{in}}} = \frac{1}{1/R_B + 1/r_{\pi}}$ $A_i = \frac{i_o}{i_{\text{in}}} = A_v \frac{Z_{\text{in}}}{R_L}$ $G = A_i A_v$ $Z_o = R_C$			
	NMOS Transistor		NMOS 晶体 管	S G D Oxide Drain
	source	S	源极	Source
	gate	G	栅极	n+ n+ Substrate (or body)
	drain	D	漏极	8
Chapter 11	Body	В	衬底	$G \\ \circ \\ B$
	DIFFERENTIAL AMPLIFIERS		差分放大器	Noninverting input terminal + Differential amplifier $v_o = A_d(v_{i1} - v_{i2})$ Inverting input terminal
Chapter 13	Negative feedback		负反馈	$i_1 = \frac{v_{\text{in}}}{R_1}$ $v_{\text{in}} + \frac{v_{\text{in}}}{V_{\text{in}}}$ V_{\text
	INVERTING AMPLIFIERS $A_{v} = \frac{v_{o}}{v_{\text{in}}} = -\frac{R_{2}}{R_{1}}$ $Z_{\text{in}} = \frac{v_{\text{in}}}{i_{1}} = R_{1}$		逆变放大器	v_{in} v

	$Z_{o} = 0$		
	NONINVERTING AMPLIFIERS	同相放大器	v_{in} v_{i
	INTEGRATOR Circuit $v_o(t) = -\frac{1}{RC} \int_0^t v_{in}(t) dt$	积分电路	Reset switch $t = 0$ v_{in} $v_{o} = -\frac{1}{RC} \int_{0}^{t} v_{in} dt$
	Differentiator Circuit $v_o(t) = -RC \frac{dv_{in}}{dt}$	微分电路	$\begin{array}{c c} C \\ \downarrow \\ v_{\text{in}} \\ \hline \end{array} \begin{array}{c} R \\ \downarrow \\ v_o = -RC \frac{dv_{\text{in}}}{dt} \\ \hline \end{array}$
	Positive Feedback	正反馈	v_{in}
	Magnetic Fields	磁场	
Chapter 14	Right-Hand Rule	右手定则	(a) If a wire is grasped with the thumb pointing in the current direction, the fingers encircle the wire in the direction of the magnetic field in magnetic field inside the coil
	Magnetic flux	磁通量	

$\phi = \int_{A} \mathbf{B} \cdot d\mathbf{A}$			
flux linking a coil with N turns $\lambda = N \phi$		磁链	
Faraday's Law $e = \frac{d\lambda}{dt}$		法拉第定律	
Lenz's Law		楞次定律	B points into page and is increasing in magnitude I I I Induced voltage
magnetomotive force	mmf	磁动势	
Reluctance $\mathcal{R} = \frac{\ell}{\mu A}$ $\mathcal{F} = \mathcal{R}\phi$		磁阻	
IDEAL TRANSFORMERS $Z'_{L} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}} = \left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{L}$ $v_{2}(t) = \frac{N_{2}}{N_{1}} v_{1}(t)$ $I_{2\text{rms}} = \frac{N_{1}}{N_{2}} I_{1\text{rms}}$		理想变压器	Laminated iron core I