作者: 张陈成

学号: 023071910029



## K-理论笔记

## Banach 空间范畴

## 1 Banach 空间的范畴化刻画

定义 1 (Banach 空间). 给定完备域 F, Banach 空间即完备赋范线性空间. 以下假设 F 给定.

定义 2 (范畴  $Ban_{\infty}$  与  $Ban_{1}$ ). 定义范畴  $Ban_{\infty}$  与  $Ban_{1}$  中对象均为 Banach 空间. 其中  $Ban_{\infty}$  中态射为连续 线性映射 (范数有限);  $Ban_{1}$  中态射为压缩线性映射 (范数不超过 1).

命题 1.  $Ban_{\infty}$  为加法范畴, 但非 Abel 范畴.  $Ban_{\infty}$  亦然.

证明. 下仅讨论  $\mathrm{Ban}_{\infty}$ . 若 $\mathrm{Ban}_{\infty}$ 为 Abel 范畴, 则任意  $\mathrm{Ban}_{\infty}$ 中态射  $X \xrightarrow{f} Y$ 补全为正合列

$$0 \to \ker(f) \to X \to Y \to \operatorname{coker}(f) \to 0.$$

此处  $\ker(f) = f^{-1}\{0\}$  为 Banach 空间 X 的闭子空间, 从而为 Banach 空间; 但 coker 未必完备, 例如

$$f: \ell^1(\mathbb{C}) \to \ell^1(\mathbb{C}), \{x_n\}_{n>1} \mapsto \{2^{-n} \cdot x_n\}$$

是 Banach 空间中非满的稠密态射, 从而  $\operatorname{im}(f)$  不完备. 而 Abel 范畴中  $\operatorname{im}(f) \simeq \ker(\operatorname{coker}(f))$ , 因此  $\operatorname{coker}(f)$  必不为 Banach 空间.

## 2 张量积

定义 3 (张量积及其范数). 取  $X,Y \in \mathrm{Ban}_{\infty}$ , 依线性空间之定义记张量积  $X \otimes Y$ . 定义  $u \in X \otimes Y$  的范数为

$$\|u\| := \inf \sum_{\substack{f \in \mathbb{R}^n}} \|x_i\| \cdot \|y_i\| \quad \left(u = \sum_{\substack{f \in \mathbb{R}^n}} x_i \otimes y_i\right).$$

记  $X \otimes Y$  在上述范数下的完备化空间为  $X \hat{\otimes} Y$ .

注 1. 嵌入  $X \hat{\otimes} Y \stackrel{\iota}{\hookrightarrow} \text{Hom}(X^*, Y)$  定义如下:

$$\iota: \sum x_i \otimes y_i \mapsto \left[ f \mapsto \sum f(x_i) y \right].$$

该嵌入保持范数,实际上有

$$\left\| \sum x_i \otimes y_i \right\|_{X \hat{\otimes} Y} = \sup_{\|f\|, \|g\| \le 1} \left| \sum f(x_i) \cdot g(y_i) \right| = \sup_{\|f\| \le 1} \left\| \sum f(x_i) y_i \right\|_X.$$

类似地, 有嵌入  $X \hat{\otimes} Y \hookrightarrow \text{Hom}(Y^*, X)$ .

**命题 2** (张量积的泛性质). 对有界双线性映射  $\varphi: X \times Y \to Z$ , 存在唯一的  $X \hat{\otimes} Y$  使得以下论断成立.

- 1. 存在典范态射  $\pi: X \times Y \to X \hat{\otimes} Y$  与  $\hat{\varphi}: X \hat{\otimes} Y \to Z$  使得有交换图  $\hat{\varphi} \circ \pi = \varphi$ ;
- 2.  $\|\hat{\varphi}\| \leq \|\varphi\|$ . 故上述泛性质对 Ban<sub>1</sub> 同样适用.

命题 3  $(Y \hat{\otimes} -$  与  $\mathrm{Hom}(Y,-)$  的伴随)。 $\mathrm{Ban}_{\infty}$  (相应地,  $\mathrm{Ban}_{1}$ ) 中的 Tensor-Hom 伴随指以下自然同构

$$\operatorname{Hom}(Y \hat{\otimes} X, Z) \simeq \operatorname{Hom}(X, \operatorname{Hom}(Y, Z)).$$

**例 1**  $(\ell^p(-)$  函子). 对给定的  $1 \le p \le \infty$ , 定义  $\ell^p(-)$  为  $\mathrm{Ban}_\infty$  (相应地,  $\mathrm{Ban}_1$ ) 到自身的函子. 具体地,

$$\ell^p(X) \subseteq \prod_{i \in \mathbb{N}} X, \quad \|(x_i)_{i \in \mathbb{N}}\|_{\ell^p(X)} = \|(\|x_i\|_X)_{i \in \mathbb{N}}\|_{\ell^p} < \infty.$$

实际上,  $\ell^p(-) \simeq -\hat{\otimes} \ell^p$  是函子间同构<sup>1</sup>.

依照 Tensor-Hom 伴随,  $\ell^{\infty}(X^*) \simeq (\ell^1(X))^*$  对一切 X 自然. 类似地定义  $c^0$  为收敛至 0 的序列, 类似地定义  $c^0(-)$ , 则有

$$\ell^{\infty}(X^{**}) \simeq (\ell^{1}(X^{*}))^{*} \simeq (c^{0}(X))^{**}.$$

 $<sup>^1</sup>$ 将  $\ell^p(-)$  视作函子  $\ell^p_n(-):X\to X^n$  的极限, 显然  $\ell^p_1(-)\hookrightarrow \ell^p_2\hookrightarrow\cdots$  与左伴随函子可换