

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

ناحیهبندی تصویر

Image Segmentation

رشد ناحیه

• هدف از این الگوریتم استخراج ناحیه مربوط به یک شیئ در تصویر است که یک نقطه از آن را میدانیم

• به نقطه اولیه بذر یا seed گفته می شود

رشد ناحیه

- الگوریتم رشد ناحیه مشابه با استخراج یک جزء متصل در تصویر باینری است
- تفاوت با تصویر باینری آن است که مقادیر پیکسلها باینری نیستند و حتی می توانند رنگی باشند
- در پیادهسازی، تفاوت اصلی در این است که پیکسلهای همسایه به چه شرطی به ناحیه اضافه شوند؟
 - باید محتوای مشابهی داشته باشد که معادل با اختلاف کم است
 - اختلاف با چه معیاری سنجیده شود؟

معیار اختلاف برای رشد ناحیه

- می توان رنگ پیکسل مورد نظر را با رنگ پیکسل بذر مقایسه کرد و اگر اختلاف آنها از حدی کمتر بود به ناحیه اضافه شوند
- این روش معادل با این است که ابتدا تصویر را بر اساس اختلاف با رنگ مورد نظر باینری کرده و سپس ناحیه متصل به این پیکسل را استخراج کنیم

معیار اختلاف برای رشد ناحیه

- می توان مقایسه را بجای پیکسل بذر با پیکسلهای مجاور انجام داد
 - به این حالت رشد محلی (در برابر رشد سراسری) گفته میشود
- این روش برای حالتهایی که مرز ضعیف وجود دارد دچار نشت میشود

پردازشهای مورفولوژی

Morphological Image Processing

مورفولوژی

• مورفولوژی (ریختشناسی) شاخهای از علم زیستشناسی است که به مطالعه شکل ظاهری و ویژگیهای ساختاری خاص حیوانات و گیاهان میپردازد

• پردازشهای مورفولوژی به ابزار و روشهایی گفته میشود که برای استخراج اجزای مفید تصویر نظیر مرزها و گوشهها استفاده میشود

• عملگرهای مورفولوژی اغلب برای تصاویر باینری استفاده میشوند

نظریه مجموعهها

- استفاده $a \in A$ اگر $a \in A$ یک عنصر از این مجموعه باشد، از نماد $a \in A$ استفاده $a \in A$ استفاده می کنیم
 - و اگر $a \not\in A$ یک عنصر از A نباشد، نماد $a \not\in A$ را استفاده می کنیم
 - ϕ مجموعه بدون عضو، مجموعه تهی نامیده می شود با نماد
- اگر تمام عناصر مجموعه A در مجموعه B وجود داشته باشند، در آنصورت A زیرمجموعه B است و با نماد $A \subseteq B$ نشان داده می شود

نظریه مجموعهها

- اجتماع مجموعههای A و B شامل تمام عناصر این دو مجموعه است ullet
- اشتراک مجموعههای A و B تنها شامل عناصر مشترک در دو مجموعه است

 $A-B=A\cap B^c$ تفاضل مجموعه A از مجموعه B شامل عناصری از A است که در B وجود ندارند A از مجموعه A شامل عناصری از A است که در A وجود ندارند A از مجموعه A شامل عناصری از A است که در A وجود ندارند A

مکمل مجموعه A^c شامل تمام عناصری است که در مجموعه A وجود ندارند و با A^c نشان داده می شود \bullet

نظریه مجموعهها

• انعکاس مجموعه A به صورت زیر تعریف می شود

$$\hat{A} = \{w | w = -a, \text{ for } a \in A\}$$

انتقال مجموعه A به اندازه نقطه $z=(z_1,z_2)$ عبارت است از ullet

$$A_z = \{w | w = a + z, \text{ for } a \in A\}$$

عملگر گسترش

• عملگر گسترش (dilate) برای گسترش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right\} \right\}$$

• این رابطه به مفهوم بدست آوردن انعکاس B حول مرکز (لنگر) خودش و جابجایی آن به اندازه Z است که اگر این نسخه از B دارای اشتراک با A بود، Z جزء مجموعه جدید خواهد بود

عنصر ساختاری

• به مجموعه B در عملگر گسترش (و عملگرهای بعدی) عنصر ساختاری (Structuring Element) گفته می شود که انتخاب مناسب آن نتیجه مستقیم در عملکرد عملگرها دارد

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right\} \right\}$$

Input image

Structuring Element

	1									
--	---	--	--	--	--	--	--	--	--	--

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right. \right\}$$

Input image

0 1 0 0 0 1 0 0 1 0 0

1

Structuring Element

1 1 1

Output Image

1 1

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right. \right\}$$

Input image

1

Structuring Element

1 1 1

1	1	0							
---	---	---	--	--	--	--	--	--	--

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right. \right\}$$

Input image

1

Structuring Element

1 1 1

1	1	0	0						
---	---	---	---	--	--	--	--	--	--

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right\} \right\}$$

Input image

1

Structuring Element

1 1 1

1	1	0	0	1					
---	---	---	---	---	--	--	--	--	--

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right. \right\}$$

Input image

Structuring Element

1 1 1

1	1	0	0	1	1	1	1	1	1
---	---	---	---	---	---	---	---	---	---

عملگر سایش

• عملگر سایش (erode) برای فرسایش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

A بنابراین سایش مجموعه A توسط B شامل مجموعه نقاطی است که به ازای آنها B به طور کامل درون B قرار می گیرد

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0

Structuring Element 1 1 1

Output Image 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0

Structuring Element 1 1 1

Output Image 0 0 0 0 0 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

0 1 0 0 1 1 0 1 0

1

Structuring Element

1 1 1

1

Output Image

0 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

0 1 0 0 1 1 0 1 1 0

1

Structuring Element

1 1 1

Output Image

0 0 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

0 1 0 0 1 1 0 1 0 1 1 0

J

Structuring Element

1 1 1

0	0	0	0	0	0	0	1		
---	---	---	---	---	---	---	---	--	--

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

1

Structuring Element

1 1 1

0	0	0	0	0	0	0	1	1	
---	---	---	---	---	---	---	---	---	--

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

Structuring Element

1 1 1

0	0	0	0	0	0	0	1	1	0

مثال: شمارش سكهها

- چگونه میشود تعداد سکههایی را شمرد که با یکدیگر در تماس هستند؟
 - مىتوان تصوير را دوسطحى كرد
 - سپس، توسط عملگر سایش آنها را جدا نمود

حذف جزئیات غیرضروری

• یکی از ساده ترین کاربردهای سایش حذف جزئیات غیرضروری است

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف می کند

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف می کند

