54153/DM54153/DM74153 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion
- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times

From data 11 ns From strobe 18 ns

From select 20 ns

- Typical power dissipation 170 mW
- Alternate Military/Aerospace device (54153) is available. Contact a National Semiconductor Sales Office/ Distributor for specifications.

Connection Diagram

Dual-In-Line Package

TL/F/6547-1

Order Number 54153DMQB, 54153FMQB, DM54153J, DM54153W or DM74153N See NS Package Number J16A, N16E or W16A

Function Table

	Select Inputs		Data Inputs				Output
В	Α	C0	C1	C2	СЗ	G	Υ
Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Х	Χ	Х	L	L
L	L	Н	Х	Χ	Х	L	Н
L	Н	Х	L	Χ	Х	L	L
L	Н	Х	Н	Χ	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	Х	Χ	Н	Х	L	Н
Н	Н	Х	Х	Х	L	L	L
Н	Н	Х	Х	Х	Н	L	Н

Select inputs A and B are common to both sections

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 5.5V Operating Free Air Temperature Range

DM54 and 54 -55°C to +125°C 0° C to $+70^{\circ}$ C DM74

-65°C to +150°C Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54153			DM74153			Units
	i didilictei	Min	Nom	Max	Min	Nom	Max	
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
I _{OH}	High Level Output Current			-0.8			-0.8	mA
l _{OL}	Low Level Output Current			16			16	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units	
V_{I}	Input Clamp Voltage	$V_{CC} = Min, I_I = -12 \text{ mA}$				-1.5	V	
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.4	3.2		V	
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL}$	-		0.2	0.4	V	
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I$	= 5.5V			1	mA	
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$				40	μΑ	
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-1.6	mA	
Ios	Short Circuit	V _{CC} = Max	DM54	-20		-55	mA	
	Output Current	(Note 2)	DM74	-18		-57	"/	
Icc	Supply Current	V _{CC} = Max	DM54		34	52	- mA	
		(Note 3)	DM74		34	60		

Note 1: All typicals are at $V_{CC}=5V$, $T_A=25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time.

Note 3: I_{CC} is measured with the outputs open and all inputs grounded.

Symbol	Parameter	From (Input) To (Output)	$R_L = 400\Omega$,	Units	
	i didilictei		Min	Max	Onits
t _{PLH}	Propagation Delay Time Low to High Level Output	Data to Y		18	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Y		23	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Select to Y		34	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Select to Y		34	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	Strobe to Y		30	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Strobe to Y		23	ns

Logic Diagram

Physical Dimensions inches (millimeters) (Continued) 0.050 - 0.0801.270 - 2.032

16-Lead Ceramic Flat Package (W) Order Number 54153FMQB or DM54153W NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408