MP26 : Mesure de longueurs

Louis Heitz et Vincent Brémaud Jeudi 26 septembre 2020

Sommaire

Ra	apport du jury	3
Bi	Bibliographie ntroduction	
In		
Ι	Grandes longueurs I.1 Parallaxe	4 4
II	Petites longueurs II.1 Lame de verre	4 4
Co	Conclusion	
\mathbf{A}	Correction	5
В	Commentaires	5
\mathbf{C}	Matériels	5
D	Expériences faites les années précédentes	5
\mathbf{E}	Questions du jury	5
\mathbf{F}	Tableau présenté	5

Le code couleur utilisé dans ce document est le suivant :

- \bullet \rightarrow Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

Introduction

On cherche à mesurer grandes distances/petites distances : comment faire ? Grande distance : astronomie, petites distances en méca Q...

I Grandes longueurs

I.1 Parallaxe

Cf CR de Tom.

I.2 Télémétrie

II Petites longueurs

II.1 Lame de verre

Cf CR de Tom pour la formule. Attention on utilise la loi de Cauchy pour l'indice.

II.2 Diffraction

Quid des incertitudes ? Statistiques ? Pour laser épuré :

- Régler les vis du laser : faire en sorte que le laser tire à peu près droit avec le trou
- Rajouter l'objectif de microscope, rapprocher petit à petit le trou tout en gardant une intensité en sortie (jouer sur les vis de l'objectif)
- Une fois proche de l'objectif, on visse le trou (attention à compenser avec les vis du microscope, ça le décale !)

Conclusion

Grand : on utilise des angles, problème de diffraction... Proche : diffraction = solution ! C'est rigolo.

- A Correction
- **B** Commentaires
- C Matériels
- D Expériences faites les années précédentes
 - Ceci
 - Cela
- E Questions du jury
- F Tableau présenté