Contenidos

k-álgebras

Definiciones

Ejemplos

Producto tensorial

Coálgebras y biálgebras

Coálgebras

Biálgebras

Álgebras de Hopf

La antípoda

Ejemplos

Grupos afines

Repaso

Equivalencia

Contenidos

k-álgebras

k-álgebras •000

Definiciones

Definición y algunas construcciones

k: anillo conmutativo (con unidad).

Definición

Una k-álgebra es un anillo A junto con un morfismo de anillos $\eta_A: k \to A$.

$$\mathsf{Hom}_{k-\mathsf{alg}}(A,B) \,=\, \Big\{ f:\, A o B \,\,\mathit{de anillos},\, f\circ \eta_A = \eta_B \Big\}$$

A es k-módulo con $(\lambda, a) \mapsto \eta_A(\lambda) a$ y $\mu_A : A \times A \to A$ es k-bilineal.

El álgebra libre

Dado un conjunto X, una palabra en X es $x_1 \cdots x_n$ o \emptyset . Definimos $k\{X\}$, el k-módulo libre en las palabras en X. Es un álgebra con

$$(x_{i_1} \cdots x_{i_n})(x_{i_{n+1}} \cdots x_{i_m}) = x_{i_1} \cdots x_{i_n} x_{i_{n+1}} \cdots x_{i_m}$$

Ejemplos

- $k\{x\} = k[x]$, polinomios en una variable;
- $k\{x,y\} \neq k[x,y]$, pues $xy \neq yx$.

Proposición

Dados un conjunto X, una k-álgebra A y una función $f: X \to A$, existe un único morfismo $\tilde{f}: k\{X\} \to A$ tal que $\tilde{f}(x) = f(x)$, si $x \in X$

El álgebra libre (cont.)

Existe una biyección natural

$$\operatorname{\mathsf{Hom}}_{k-\mathsf{alg}}(k\{X\},A) \simeq \operatorname{\mathsf{Hom}}_{\mathsf{Set}}(X,UA)$$
.

En particular, $\operatorname{Hom}_{k-alg}(k\{x,y\},A)=A^2$, vía $f\mapsto (f(x),f(y))$. Un poco más en general,

$$\mathsf{Hom}_{k-\mathit{alg}}\big(k\{X\}/\mathit{I},A\big) \, \simeq \, \Big\{f \in \mathsf{Hom}_{\mathsf{Set}}\big(X,\mathit{U}A\big) \, : \, \tilde{f}(\mathit{I}) = 0 \Big\} \,\, .$$

Ejemplo

Para el álgebra $k[x, y] \simeq k\{x, y\}/\langle xy - yx \rangle$.

$$\operatorname{\mathsf{Hom}}_{k-\mathsf{alg}}(k[x,y],A) \simeq \{(a,b) \in A^2 : ab = ba\}$$
.

Contenidos

k-álgebras

Ejemplos

Asumimos A conmutativa. Existen biyecciones

Queremos expresar las leyes de grupo abeliano de A de manera universal:

$$+: A \times A \rightarrow A$$
 , $0: \{0\} \rightarrow A$ y $-: A \rightarrow A$.

La recta y el plano afines (cont.)

Proposición

Vía las biyecciones, los morfismos $\Delta : k[x] \rightarrow k[x', x'']$, $\varepsilon : k[x] \rightarrow k \ y \ S : k[x] \rightarrow k[x]$, determinados por

$$\Delta(x) = x' + x''$$
 , $\varepsilon(x) = 0$ y $S(x) = -x$,

se corresponden con +, 0 y -, respectivamente.

Demostración.

 Δ induce Δ^* : $\operatorname{Hom}_{k-alg} \left(k[x',x''],A \right) \to \operatorname{Hom}_{k-alg} \left(k[x],A \right)$ dada por $\Delta^*(f)=f\circ \Delta$. Vale

$$(\Delta^* f)(x) = f(x' + x'') = f(x') + f(x'')$$
.

Dados $f,g: k[x] \to A$, definimos la "suma" $\Delta^*(f,g): k[x] \to A$: si f(x) = a y g(x) = b,

$$\Delta^*(f,g)(x) = a+b.$$

La suma satisface:

- $\Delta^*(f, \Delta^*(g, h)) = \Delta^*(\Delta^*(f, g), h);$
- $\Delta^*(f, \varepsilon^*(\eta_A)) = \Delta^*(\varepsilon^*(\eta_A), f) = f$;
- $\Delta^*(f, S^*(f)) = \Delta^*(S^*(f), f) = \varepsilon^*(\eta_A);$

$$\Delta^*(f, \Delta^*(g, h))(x) = f(x) + g(x) + h(x) = \Delta^*(\Delta^*(f, g), h)(x).$$

La recta y el plano afines (cont.)

Todo morfismo de k-álgebras $\varphi: A \to B$ induce $\varphi_*(f) = \varphi \circ f$. Esta función es morfismo de grupos:

 Δ^* : $\operatorname{Hom}_{k-alg}(k[x',x''],-) \xrightarrow{\cdot} \operatorname{Hom}_{k-alg}(k[x],-)$ es una transformación natural. ε^* y S^* también.

La recta y el plano afines (cont.)

Existe G: CommAlg $_{k} \rightarrow$ Grp tal que

$$U \circ G = \operatorname{Hom}_{k-alg}(k[x], -)$$
.

La función $(f \mapsto f(x))$: $\operatorname{Hom}_{k-alg}(k[x],A) \to A$ es un isomorfismo de grupos $\tau_A: G(A) \to (A,+)$ una t.n.:

$$\tau_B \circ \varphi_*(f) = (\varphi \circ f)(x) = \varphi(f(x)) = \varphi_* \circ \tau_A(f)$$

Si (-,+): **CommAlg**_k \rightarrow **Grp** el grupo aditivo subyacente,

$$au$$
: $G \stackrel{\cdot}{ o} (-,+)$

es un isomorfismo natural.

El grupo multiplicativo

 A^{\times} : **CommAlg**_k \rightarrow **Grp** el grupo multiplicativo subyacente.

$$imes: A^ imes imes A^ imes o A^ imes$$
 , $1: \{1\} o A^ imes$ y $^{-1}: A^ imes o A^ imes$.

Existen bivecciones $(\tau_{\Delta}: f \mapsto f(\bar{x}))$

$$\mathsf{Hom}_{k-\mathsf{alg}} \big(k[x,x^{-1}],A \big) \simeq A^{\times}$$
 $\mathsf{Hom}_{k-\mathsf{alg}} \big(k[x',x'',x'^{-1},x''^{-1}],A \big) \simeq A^{\times} \times A^{\times}$,

donde

$$k[x,x^{-1}] := k[x,y]/\langle xy-1\rangle$$
 , $k[x',x'',x''^{-1},x''^{-1}] := k[x',y',x'',y'']/\langle x'y'-1,x''y''-1\rangle$.

El grupo multiplicativo (cont.)

Proposición

Los morfismos $\Delta: k[x, x^{-1}] \to k[x', x'', x'^{-1}, x''^{-1}],$ $\varepsilon: k[x, x^{-1}] \to k \ y \ S: k[x, x^{-1}] \to k[x, x^{-1}] \ determinados \ por$

$$\Delta(x) = x'x''$$
 , $\varepsilon(x) = 1$ y $S(x) = x^{-1}$

se corresponden con \times , 1 y $^{-1}$.

Corolario

 $\Delta^*, \varepsilon^*, S^*$ son t.n. de funtores de tipo $\mathbf{CommAlg}_k \to \mathbf{Set}$ y existe $G: \mathbf{CommAlg}_k \to \mathbf{Grp}$ tal que

$$U \circ G = \operatorname{Hom}_{k-alg}(k[x,x^{-1}],-)$$
.

Las funciones τ_A inducen un isomorfismo natural $\tau: G \xrightarrow{\cdot} (-, \times)$.

Producto de matrices

Sea
$$\mathsf{Mat}(2) = k[a,b,c,d].$$
 $f \mapsto f\left(\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right]\right) = \left[\begin{smallmatrix} f(a) & f(b) \\ f(c) & f(d) \end{smallmatrix}\right]$ induce $\mathsf{Hom}_{k-alg}\big(\mathsf{Mat}(2),A\big) \simeq A^4 = \mathsf{Mat}_{2\times 2}(A)$.

Duplicamos las variables: $Mat(2)^{\otimes 2} = k[a', b', c', d', a'', b'', c'', d'']$ v buscamos $\Delta: \mathsf{Mat}(2) \to \mathsf{Mat}(2)^{\otimes 2}$ tal que

$$\mathsf{Hom}_{k-\mathit{alg}}(\mathsf{Mat}(2)^{\otimes 2},A) \overset{\sim}{\longrightarrow} \mathsf{Mat}_{2 \times 2}(A)^2$$

$$\downarrow \cdot \qquad \qquad \downarrow \cdot$$

$$\mathsf{Hom}_{k-\mathit{alg}}(\mathsf{Mat}(2),A) \overset{\sim}{\longrightarrow} \mathsf{Mat}_{2 \times 2}(A)$$

conmute.

Producto de matrices (cont.)

Debe cumplirse

$$f \circ \Delta \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = f \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \right) f \left(\begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} \right)$$
$$= f \left(\begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} \right).$$

Proposición

 $Si \Delta : Mat(2) \rightarrow Mat(2)^{\otimes 2}$ es el morfismo determinado por

$$\Delta \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \begin{bmatrix} a'' & b'' \\ c'' & d'' \end{bmatrix} ,$$

el diagrama conmuta. $\Delta(ad - bc) = (a'd' - b'c')(a''d'' - b''c'')$.

k-álgebras 00000000000000

$GL(2) \vee SL(2)$

$$\begin{aligned} \mathsf{GL}(2) &= \, \mathsf{Mat}(2)[t]/\left< (\mathsf{a} d - \mathsf{b} c) \, t - 1 \right> \\ \mathsf{SL}(2) &= \, \mathsf{GL}(2)/\left< t - 1 \right> \, = \, \mathsf{Mat}(2)/\left< \mathsf{a} d - \mathsf{b} c - 1 \right> \; . \end{aligned}$$

Dada una k-álgebra conmutativa A, existen bivecciones

$$\mathsf{Hom}_{k-alg}(\mathsf{GL}(2),A) \simeq \mathsf{GL}_2(A)$$
 y $\mathsf{Hom}_{k-alg}(\mathsf{SL}(2),A) \simeq \mathsf{SL}_2(A)$,

pues, si $\left| \begin{smallmatrix} \alpha & \beta \\ \gamma & \delta \end{smallmatrix} \right| \in \mathsf{GL}_2(A)$, existe único $f: \mathsf{Mat}(2)[t] o A$ tal que

$$f \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$
 y $f(t) = (\alpha \delta - \beta \gamma)^{-1}$.

GL(2) y SL(2) (cont.)

Queremos

$$\Delta: \mathsf{GL}(2) o \mathsf{GL}(2)^{\otimes 2} = \mathsf{Mat}(2)^{\otimes 2}[t',t'']/I$$
,

donde $I=\langle (a'd'-b'c')\,t'-1,(a''d''-b''c'')\,t''-1\rangle$. Definimos $\Delta: \, \mathsf{Mat}(2)[t] \to \, \mathsf{Mat}(2)^{\otimes 2}[t',t'']$, extendiendo por

$$\Delta(t) = t' t''.$$

Se cumple $\Delta((ad-bc)t-1)=0$ en $GL(2)^{\otimes 2}$.

Proposición

 Δ , junto con ε : $GL(2) \rightarrow k$ y S: $GL(2) \rightarrow GL(2)$ dados por

$$egin{aligned} arepsilon \left[egin{array}{ccc} a & b \ c & d \end{array}
ight] &= \left[egin{array}{ccc} 1 & \ 1 \end{array}
ight] &, & arepsilon(t) = 1 \;, \ S\left[egin{array}{cccc} a & b \ c & d \end{array}
ight] &= (ad-bc)^{-1} \left[egin{array}{cccc} d & -b \ -c & a \end{array}
ight] &, & S(t) = t^{-1} \;, \end{aligned}$$

se corresponden con el producto, la identidad y el inverso.

Contenidos

k-álgebras

Definiciones

Ejemplos

Producto tensorial

Coálgebras y biálgebras

Coálgebras

Álgebras de Hopf

La antípoda

Grupos afines

Repaso

Equivalencia

Producto tensorial de álgebras

Proposición

Sean A, B k-álgebras y sea $A \otimes_k B$ el k-módulo con producto

$$(a \otimes b)(a_1 \otimes b_1) = aa_1 \otimes bb_1$$
.

 $A \otimes_k B$ es k-álgebra y

$$\mathsf{Hom}_{k-\mathsf{alg}} ig(A \otimes_k B, C ig) \simeq \mathsf{Hom}_{k-\mathsf{alg}} ig(A, C ig) \, imes \, \mathsf{Hom}_{k-\mathsf{alg}} ig(B, C ig)$$
 ,

para toda álgebra conmutativa C, dada por

$$(f,g) \mapsto (\mu_{\mathcal{C}} \circ (f \otimes g) : (a \otimes b) \mapsto f(a)g(b))$$
.

Relación con A

Proposición

Sea $A = k\{X\}/I$. Sean X', X'' copias de X y sean $I' \triangleleft k\{X'\}$ e $I'' \triangleleft k\{X''\}$ los ideales correspondientes a I. Entonces

$$A \otimes_k A \simeq A^{\otimes 2} := k\{X' \sqcup X''\} / \langle I', I'', X'X'' - X''X' \rangle$$
,

vía $x' \mapsto x \otimes 1$ $y x'' \mapsto 1 \otimes x$.

Por ejemplo, $k[x', x''] \simeq k[x] \otimes k[x]$.

Observación

El "producto de matrices" Δ está caracterizado por

$$\Delta \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \otimes \begin{bmatrix} a & b \\ c & d \end{bmatrix} \ .$$

Relación con Δ (cont.)

Observación

 $\operatorname{Hom}_{k-alg}(k[x],A)$ es abeliana:

$$\Delta^*(f,g)(x) = \mu_A(f \otimes g)(x \otimes 1 + 1 \otimes x) = f(x) + g(x)$$

$$\Delta^*(g,f)(x) = g(x) + f(x),$$

 $\operatorname{Hom}_{k-alg}(\operatorname{GL}(2),A)$, no:

$$\Delta^*(f,g)(a) = \mu_A \circ (f \otimes g)(a \otimes a + b \otimes c) = f(a)g(a) + f(b)g(c)$$

$$\Delta^*(g,f)(a) = g(a)f(a) + g(b)f(c).$$

Coálgebras y biálgebras

Coálgebras

Definición

Una k-coálgebra es un k-módulo C y morfismos $\Delta: C \to C \otimes_k C$ $v \in C \to k$ tales que los diagramas

conmutan. (C, Δ, ε) es coconmutativa, si $\Delta \circ \tau = \Delta$, donde $\tau(c \otimes c') = c' \otimes c$. $f: C \to D$ es morfismo de coálgebras, si

$$\Delta_D \circ f = (f \otimes f) \circ \Delta_C$$
 y
 $\varepsilon_D \circ f = \varepsilon_C$

Ejemplos

- (k, Δ, ε) con $\Delta(1) = 1 \otimes 1$ y $\varepsilon(1) = 1$;
- en el k-módulo k[x] (polinomios),

$$\Delta(x) = x \otimes 1 + 1 \otimes x$$
 y $\varepsilon(x) = 0$;

dado un conjunto G, en el k-módulo libre k[G] con base G

$$\Delta(g) = g \otimes g$$
 y $\varepsilon(g) = 1$;

• dada (C, Δ, ε) , $C^{cop} = (C, \Delta^{op}, \varepsilon)$, con $\Delta^{op} = \tau \circ \Delta$.

Observación

$$k[G]^{cop} = k[G].$$

Coálgebra de matrices

 $A = \operatorname{Mat}_{m \times m}(k)$ con base $\{E_{ij}\}_{ij}$. Sea $\{x_{ij}\}_{ij}$ la base dual en A^* . Los morfismos de k-módulos determinados por

$$\Delta(x_{ij}) = \sum_{k=1}^{m} x_{ik} \otimes x_{kj} \quad \text{y} \quad \varepsilon(x_{ij}) = \delta_{ij}$$

definen una coálgebra $(A^*, \Delta, \varepsilon)$:

$$(\operatorname{id} \otimes \Delta) \circ \Delta(x_{ij}) = \sum_{k=1}^{m} x_{ik} \otimes \Delta(x_{kj}) = \sum_{k=1}^{m} \sum_{l=1}^{m} x_{ik} \otimes x_{kl} \otimes x_{lj}$$

$$= \sum_{l=1}^{m} \Delta(x_{il}) \otimes x_{lj} = (\Delta \otimes \operatorname{id}) \circ \Delta(x_{ij}).$$

Observación

$$A^{*cop} \neq A^*$$
.

Producto tensorial de coálgebras

Dadas coálgebras $(C, \Delta_C, \varepsilon_C)$, $(D, \Delta_D, \varepsilon_D)$, el k-módulo $C \otimes_k D$ es coálgebra con

$$\Delta := (\mathsf{id}_C \otimes \tau \otimes \mathsf{id}_D) \circ (\Delta_C \otimes \Delta_D)$$
 y
$$\varepsilon := \varepsilon_C \otimes \varepsilon_D$$

$$(\tau(c\otimes d)=d\otimes c).$$

Ejemplo

Dados conjuntos G e H, el k-isomorfismo

$$k[G] \otimes_k k[H] \simeq k[G \times H]$$
,

dado por $(g,h) \mapsto g \otimes h$, es isomorfismo de coálgebras.

Contenidos

Coálgebras y biálgebras

Biálgebras

Sobre el anillo k tenemos (k, μ, η) y (k, Δ, ε) . Son "compatibles": por ejemplo, evaluando en $1 \otimes 1$,

$$\Delta \circ \mu = (\mu \otimes \mu) \circ (\mathsf{id} \otimes \tau \otimes \mathsf{id}) \circ (\Delta \otimes \Delta) \ .$$

 $\mu: k \otimes k \to k$ y $\eta: k \to k$ son morfismos de coálgebras; $\Delta: k \to k \otimes k$ y $\varepsilon: k \to k$ son morfismos de álgebras.

Definición

Una biálgebra es un k-módulo B con estructuras (B, μ, η) y (B, Δ, ε) tales que μ, η son morfismos de coálgebras (equivalentemente, Δ, ε son morfismos de álgebras):

$$\Delta \circ \mu = (\mu \otimes \mu) \circ (\operatorname{id} \otimes \tau \otimes \operatorname{id}) \circ (\Delta \otimes \Delta)$$
,
 $\mu_k \circ (\varepsilon \otimes \varepsilon) = \varepsilon \circ \mu = \varepsilon \otimes \varepsilon$,
 $(\eta \otimes \eta) \circ \Delta_k = \Delta \circ \eta = \eta \otimes \eta$ y
 $\eta_k = \varepsilon \circ \eta = \varepsilon_k$.

Un morfismo de biálgebras es un morfismo $f: B \rightarrow B'$ de álgebras y coálgebras:

$$\Delta_{B'} \circ f = (f \otimes f) \circ \Delta_B$$
 , $\varepsilon_{B'} \circ f = \varepsilon_B$, $f \circ \mu_B = \mu_{B'} \circ (f \otimes f)$ y $f \circ \eta_B = \eta_{B'}$.

Polinomios

En el álgebra k[x],

$$\Delta(x) = x \otimes 1 + 1 \otimes x \quad y \quad \varepsilon(x) = 0$$

determinan morfismos de álgebras. $(k[x], \Delta, \varepsilon)$ es coálgebra:

$$\begin{split} (\Delta \otimes \mathsf{id}) \circ \Delta(x) &= (\Delta \otimes \mathsf{id})(x \otimes 1 + 1 \otimes x) \\ &= (x \otimes 1 + 1 \otimes x) \otimes 1 + 1 \otimes 1 \otimes x \;, \\ (\mathsf{id} \otimes \Delta) \circ \Delta(x) &= (\mathsf{id} \otimes \Delta)(x \otimes 1 + 1 \otimes x) \\ &= x \otimes 1 \otimes 1 + 1 \otimes (x \otimes 1 + 1 \otimes x) \;. \end{split}$$

Polinomios (cont.)

En
$$k[x_1, \ldots, x_n]$$
, $\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i$, $\varepsilon(x_i) = 0$. $k[x_1, \ldots, x_n]^{cop} = k[x_1, \ldots, x_n]$.

Observación

El isomorfismo de álgebras $k[x',x''] \simeq k[x] \otimes k[x]$ dado por $\phi(x') \mapsto x \otimes 1$, $\phi(x'') \mapsto 1 \otimes x$ es isomorfismo de coálgebras:

$$\begin{split} (\phi \otimes \phi) \circ \Delta(x') &= \phi(x') \otimes \phi(1) + \phi(1) \otimes \phi(x') \\ &= x \otimes 1 \otimes 1 \otimes 1 + 1 \otimes 1 \otimes x \otimes 1 \\ \Delta \circ \phi(x') &= (\mathsf{id} \otimes \tau \otimes \mathsf{id}) \circ (\Delta \otimes \Delta)(x \otimes 1) \\ &= (\mathsf{id} \otimes \tau \otimes \mathsf{id})((x \otimes 1 + 1 \otimes x) \otimes 1 \otimes 1) \;. \end{split}$$

Biálgebra de matrices

En el álgebra de polinomios $Mat(m) = k[x_{11}, \dots, x_{mm}],$

$$\Delta(x_{ij}) = \sum_{k=1}^{m} x_{ik} \otimes x_{kj} \quad \text{y} \quad \varepsilon(x_{ij}) = \delta_{ij}$$

determinan morfismos de álgebras. Pero $(Mat(m), \Delta, \varepsilon)$ es coálgebra (análogo a coálgebra de matrices).

Observación

Como coálgebras $Mat(m) \not\simeq k[x_{11}, \ldots, x_{mm}]$

Biálgebra de un monoide

Sea G un monoide con producto $\mu: G \times G \to G$ y unidad $e \in G$, $(k[G], \Delta, \varepsilon)$ la coálgebra del conjunto. $(k[G], \mu, e)$ es álgebra y μ y $1 \mapsto e$ son morfismos de coálgebras:

$$\Delta \circ \mu(x,y) = \mu(x,y) \otimes \mu(x,y) = \mu_{\otimes} ((x \otimes x), (y \otimes y))$$
$$= \mu(\Delta(x), \Delta(y)) \quad y$$
$$\varepsilon \circ \mu(x,y) = 1 = \mu(\varepsilon(x), \varepsilon(y)).$$

Contenidos

Álgebras de Hopf 0000

Álgebras de Hopf

La antípoda

Convolución y antípoda

Álgebras de Hopf

Sean (A, μ, η) , (C, Δ, ε) . La convolución de $f, g \in \text{Hom}_k(C, A)$, es

$$f * g := \mu \circ (f \otimes g) \circ \Delta \in \operatorname{\mathsf{Hom}}_k(\mathcal{C}, A)$$
.

Si
$$\Delta(x) = \sum_i x_i' \otimes x_i''$$
, $f * g(x) = \sum_i f(x_i') g(x_i'')$

Definición

Una antípoda en $(H, \mu, \eta, \Delta, \varepsilon)$ es $S \in \text{End}_k(H)$ tal que

$$S * id_H = id_H * S = \eta \circ \varepsilon$$
.

$$\sum_{i} x_{i}' S(x_{i}'') = \varepsilon(x) \cdot 1 = \sum_{i} S(x_{i}') x_{i}''$$
. Si existe, es única.

Definición

Álgebras de Hopf

Un álgebra de Hopf es una biálgebra H con antípoda. Un morfismo de álgebras de Hopf es un morfismo de biálgebras.

Observación

 $S: H \to H^{op cop} = (H, \mu^{op}, \eta, \Delta^{op}, \varepsilon)$ es morfismo de biálgebras.

Si $H = k\{X\}/I$ es biálgebra, dado un morfismo de álgebras

 $S: H \rightarrow H^{op}$, basta verificar la condición de antípoda en X.

El álgebra de un grupo

Álgebras de Hopf

Sean G un grupo, k[G] la biálgebra del monoide.

$$S(g) = g^{-1}$$

 $g \in G$, define una antípoda: $\Delta(g) = g \otimes g$ y $\varepsilon(g) = 1$. Recíprocamente, si G es monoide y S: $k[G] \rightarrow k[G]$ es antípoda,

$$g S(g) = S(g) g = \varepsilon(g) 1 = 1$$

implica $S(g) \in G$ y es inverso de g.

Contenidos

Álgebras de Hopf

k-álgebras

Definiciones

Ejemplos

Producto tensoria

Coálgebras y biálgebras

Coálgebras Biálgebras

Álgebras de Hopf

La antípoda

Ejemplos

Grupos afines

Repaso

Equivalencia

Álgebras de Hopf

GL(2) y SL(2) son biálgebras conmutativas con Δ, ε dados por

Δ no es coconmutativa:

$$\Delta(a) = a \otimes a + b \otimes c \neq a \otimes a + c \otimes b = \tau \circ \Delta(a) .$$

La antípoda está dada por

$$S\begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ad - bc)^{-1}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 , $S(t) = t^{-1}$.

El grupo de un álgebra

Álgebras de Hopf 0000000

Dada (H, Δ, ε) .

$$\mathcal{G}(H) := \left\{ x \in H : x \neq 0, \, \Delta(x) = x \otimes x \right\}.$$

Si H es biálgebra, es monoide con unidad $\Delta(1) = 1 \otimes 1$ y

$$\Delta(xy) = \Delta(x) \Delta(y) = (x \otimes x) (y \otimes y) = xy \otimes xy.$$

Si H es de Hopf, $x \mapsto S(x)$ define un inverso en $\mathcal{G}(H)$:

$$\tau \circ (S \otimes S) \circ \Delta = \Delta \circ S$$
.

Si H = k[G], entonces G(k[G]) = G.

El grupo $Hom_{k-alg}(H,A)$ (cont.)

Álgebras de Hopf 0000000

Teorema

Sean H un álgebra de Hopf y A un álgebra conmutativa. Los conjuntos $Hom_{k-alg}(H, A)$ son grupos con la convolución heredada de $\operatorname{Hom}_k(H,A)$. El inverso de $\psi: H \to A$ está dado por $\psi \circ S$.

Comprobar que

- $\psi * \varphi \in \operatorname{Hom}_{k-alg}(H, A)$,
- $c = \eta_A \circ \varepsilon_H \in \operatorname{Hom}_{k-alg}(H, A)$ es unidad,
- $\psi \circ S \in \operatorname{Hom}_{k-alg}(H,A)$ es inverso.

Álgebras de Hopf 0000000

Si $\psi, \varphi \in \text{Hom}_{k-alg}(H, A)$, como H es biálgebra,

$$(\psi * \varphi) \circ \mu_{H} = \mu_{A} \circ (\psi \otimes \varphi) \circ \Delta_{H} \circ \mu_{H}$$

$$= \mu_{A} (\psi \otimes \varphi) (\mu_{H} \otimes \mu_{H}) (\mathrm{id}_{H} \otimes \tau_{H} \otimes \mathrm{id}_{H}) (\Delta_{H} \otimes \Delta_{H})$$

$$= \mu_{A} ((\mu_{A} (\psi \otimes \varphi) \Delta_{H}) \otimes (\mu_{A} (\psi \otimes \varphi) \Delta_{H}))$$

$$= \mu_{A} ((\psi * \varphi) \otimes (\psi * \varphi)).$$

Si $c = \eta_A \circ \varepsilon_H$,

$$\psi * c = \mu_A (\psi \otimes \eta_A \varepsilon_H) \Delta_H$$

= $\mu_A (id_A \otimes \eta_A) (\psi \otimes id_k) (id_H \otimes \varepsilon_H) \Delta_H$
= $\psi \otimes id_k = \psi$.

El grupo $Hom_{k-alg}(H, A)$ (cont.)

Álgebras de Hopf 00000000

 $G = (\operatorname{Hom}_{k-al\sigma}(H,A), *, \eta_A \circ \varepsilon_H)$ es un monoide y podemos definir $(k[G], \mu, \eta, \Delta, \varepsilon)$. Sea S_H la antípoda en H y sea $S(\psi) = \psi \circ S_H \in \operatorname{Hom}_k(H, A)$. Se verifica que

$$\mu \circ (\mathsf{id} \otimes S) \circ \Delta = \eta \circ \varepsilon = \mu \circ (S \otimes \mathsf{id}) \circ \Delta$$

Por ejemplo, $\eta \circ \varepsilon(\psi) = \eta(1) = \eta_A \varepsilon_H y$

$$\mu \circ (\mathsf{id} \otimes S) \circ \Delta(\psi) = \mu(\psi \otimes S(\psi)) = \psi * S(\psi)$$

$$= \mu_{A} (\psi \otimes \psi) (\mathsf{id}_{H} \otimes S_{H}) \Delta_{H}$$

$$= \psi \mu_{H} (\mathsf{id}_{H} \otimes S_{H}) \Delta_{H} = (\psi \eta_{H}) \varepsilon_{H}$$

$$= \eta_{A} \varepsilon_{H}.$$

El grupo $Hom_{k-alg}(H, A)$ (cont.)

Álgebras de Hopf 000000

Resta verificar que $S(\psi) \in \operatorname{Hom}_{k-alg}(H, A)$:

$$(\psi S_H) \mu_H = \psi (\mu_H \tau_H) (S_H \otimes S_H) = \mu_A (\psi \otimes \psi) \tau_H (S_H \otimes S_H)$$

= $(\mu_A \tau_A) ((\psi S_H) \otimes (\psi S_H))$

Si $\mu_A \circ \tau_A = \mu_A$, entonces $\psi \circ S_H$ respeta productos. En cuanto a la unidad.

$$(\psi S_H) \eta_H = \psi \eta_H = \eta_H .$$

Contenidos

k-álgebras

Definiciones

Ejemplos

Producto tensoria

Coálgebras y biálgebras

Coálgebras Riálgebras

Álgebras de Hopf

La antípoda Fiemplos

Grupos afines

Repaso

Equivalencia

El grupo $\operatorname{Hom}_{k-alg}(H,-)$

El producto, la unidad y el inverso en $Hom_{k-alg}(H,A)$ están dados por

$$\Delta_{H}^{*}: \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(H \otimes H, A) \to \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(H, A)$$
 , $\varepsilon_{H}^{*}: \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(k, A) \to \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(H, A)$ y $S_{H}^{*}: \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(H, A) \to \operatorname{\mathsf{Hom}}_{k-\mathit{alg}}(H, A)$,

si identificamos

$$\mathsf{Hom}_{k-alg} ig(H \otimes H, A ig) \simeq \mathsf{Hom}_{k-alg} ig(H, A ig) \times \mathsf{Hom}_{k-alg} ig(H, A ig)$$

 $\mathsf{Hom}_{k-alg} ig(k, A ig) = \{ \eta_A \} \simeq \{ 1 \}$

El grupo $\operatorname{Hom}_{k-alg}(H,-)$ (cont.)

$$G_A = \operatorname{Hom}_{k-alg}(H, A), \ G_A^{\otimes i} = \operatorname{Hom}_{k-alg}(H^{\otimes i}, A).$$

$$H \otimes H \otimes H \stackrel{\operatorname{id} \otimes \Delta}{\longleftarrow} H \otimes H \qquad G_A^{\otimes 3} \stackrel{(\operatorname{id} \otimes \Delta)^*}{\longrightarrow} G_A^{\otimes 2}$$

$$\Delta \otimes \operatorname{id} \uparrow \qquad \qquad \uparrow \Delta \qquad \hookrightarrow (\Delta \otimes \operatorname{id})^* \downarrow \qquad \qquad \downarrow \Delta^*$$

Explícitamente, f * (g * h) = (f * g) * h.

El funtor $\operatorname{Hom}_{k-alg}(H,-)$

Si $\varphi: A \to B$ es morfismo de álgebras, se obtiene una función $\varphi_*: G_A \to G_B$ que es, además, morfismo de grupos:

$$G_A^{\otimes 2} \xrightarrow{\Delta_A^*} G_A$$

$$\varphi_* \downarrow \qquad \qquad \downarrow \varphi_*$$

$$G_B^{\otimes 2} \xrightarrow{\Delta_B^*} G_B$$

Corolario

Existe G: CommAlg_k \rightarrow Grp tal que

$$U \circ G = \operatorname{Hom}_{k-alg}(H, -)$$

Grupos en **CommAlg**_k \rightarrow **Set**

En las categorías CommAlg_k \rightarrow Set y CommAlg_k \rightarrow Grp hay productos y objetos terminales:

$$(G \times G')(\varphi) = G(\varphi) \times G'(\varphi) :$$

 $G(A) \times G'(A) \rightarrow G(B) \times G'(B)$
 $t : G(A) \xrightarrow{\cdot} \mathbf{1}(A)$

Podemos definir grupos.

El grupo $Hom_{k-alg}(H, -)$ (cont.)

Existen transformaciones naturales

$$\Delta^*:\ UG imes UG\ \dot{ o}\ UG$$
 , $\varepsilon^*:\ U1\ \dot{ o}\ UG$ y $S^*:\ UG\ \dot{ o}\ UG$ tales que

$$\begin{array}{lll} \Delta^* \circ (\mathsf{id} \times \Delta^*) \, = \, \Delta^* \circ (\Delta^* \times \mathsf{id}) \\ \Delta^* \circ ((\varepsilon^* \circ t) \times \mathsf{id}) \circ \mathsf{diag} \, = \, \mathsf{id} \, = \, \Delta^* \circ (\mathsf{id} \times (\varepsilon^* \circ t)) \circ \mathsf{diag} \\ \Delta^* \circ (\mathsf{id} \times S^*) \circ \mathsf{diag} \, = \, \varepsilon^* \circ t \, = \, \Delta^* \circ (S^* \times \mathsf{id}) \circ \mathsf{diag} \end{array}$$

Contenidos

Grupos afines

Equivalencia

Representablidad

 $\begin{array}{l} \mathsf{Sean} \ \ G, G' : \mathbf{CommAlg}_k \to \mathbf{Grp}, \ U : \ \mathbf{Grp} \to \mathbf{Set}, \\ U_* : \ \mathbf{Grp}^{\mathbf{CommAlg}_k} \to \mathbf{Set}^{\mathbf{CommAlg}_k}. \end{array}$

- Dada $\tilde{\tau}: UG \to UG'$, ¿existe $\tau: G \to G'$ tal que $U_*\tau = \tilde{\tau}$?
- Dadas $\tau_1, \tau_2: G \xrightarrow{\cdot} G'$ tales que $U_*\tau_1 = U_*\tau_2$, $\xi \tau_1 = \tau_2$?

Porque U es fiel, $U_*\tau_1=U_*\tau_2$ implica $\tau_1=\tau_2$.

 $\tilde{\tau}: UG \to UG'$ induce

$$U(G(A)) \xrightarrow{\tilde{\tau}_A} U(G'(A))$$

$$U(G\varphi) \downarrow \qquad \qquad \downarrow U(G'\varphi)$$

$$U(G(B)) \xrightarrow{\tilde{\tau}_B} U(G'(B))$$

Que $\tilde{\tau}_A$ sea morfismo de grupos significa que existe

$$UG(A) \times UG(A) \xrightarrow{m_A^G} UG(A)$$
 $\tilde{\tau}_A \times \tilde{\tau}_A \downarrow \qquad \qquad \downarrow \tilde{\tau}_A$
 $UG'(A) \times UG'(A) \xrightarrow{m_A^{G'}} UG'(A)$

La multiplicación debería ser natural en G, también.

$U \circ G = \operatorname{Hom}_{k-alg}(H, -)$ y $U \circ G' = \operatorname{Hom}_{k-alg}(H', -)$, por el lema de Yoneda.

$$Nat(U \circ G, U \circ G') \simeq U \circ G'(H) = Hom_{k-alg}(H', H)$$

(morfismos de *álgebras*) vía $\phi \mapsto \phi^*$

• Dada ϕ , j existe $\tau: G \to G'$ tal que $U_*\tau = \phi^*$?

Representabilidad (cont.)

El diagrama

$$UG(A) \times UG(A) \xrightarrow{\phi^* \times \phi^*} UG'(A) \times UG'(A)$$

$$\Delta_H^* \downarrow \qquad \qquad \Delta_{H'}^* \downarrow$$

$$UG(A) \xrightarrow{\phi^*} UG'(A)$$

conmuta si y sólo si $\phi: H' \to H$ es morfismo de álgebras de Hopf.

Relación con grupos afines

La aplicación

$$H\mapsto \mathsf{Hom}_{k-\mathsf{alg}}(H,-)$$
 , $\phi\mapsto \phi^*$

define un funtor contravariante fiel y pleno de la categoría de álgebras de Hopf en la categoría de grupos afines, (G, m, u, σ) donde

- $G: \mathbf{CommAlg}_k \to \mathbf{Grp}$ es funtor,
- UG es representable: existe H tal que $UG \simeq \operatorname{Hom}_{k-alg}(H,-)$,
- m, u, σ son transformaciones naturales que hacen de UG un grupo en $\mathbf{Set}^{\mathbf{CommAlg}_k}$.