Simulations with MPS/MPO

Kunyang DU

Institue of Theoretical Physics

September 6, 2024

Model

► Hamiltonian: Transverse Ising Model

$$H = -J \sum_{i=1}^{N-1} \sigma_i^z \sigma_{i+1}^z - h \sum_{i=1}^{N} \sigma_{i=1}^x + h_z \sum_{i=1}^{N} \sigma_i^z$$
 (1)

Parameters Physics parameters:

$$J = \pm 1.0, \quad h = 0.5, \quad N = 12$$
 (2)

Model:MPO

Hamiltonian: In kron form:

$$H = J\sigma_1^z \otimes \sigma_2^z \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots + \mathbb{1} \otimes J\sigma_2^z \otimes \sigma_3^z \otimes \mathbb{1} \otimes \cdots + h\sigma_1^x \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots + \mathbb{1} \otimes h\sigma_2^x \otimes \mathbb{1} \otimes \cdots + h_z\sigma_1^z \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots + \mathbb{1} \otimes h_z\sigma_2^z \otimes \mathbb{1} \otimes \cdots$$

$$(3)$$

► MPO

$$H_{1} = \begin{pmatrix} h\sigma_{1}^{x} + h_{z}\sigma_{1}^{z}, & J\sigma_{1}^{z}, & 1 \end{pmatrix},$$

$$H_{i} = \begin{pmatrix} 1, & 0, & 0 \\ \sigma_{i}^{z}, & 0, & 0 \\ h\sigma_{i}^{x} + h_{z}\sigma_{i}^{z}, & J\sigma_{i}^{z}, & 1 \end{pmatrix}, \quad H_{N} = \begin{pmatrix} 1 \\ \sigma_{N}^{z} \\ h\sigma_{N}^{x} + h_{z}\sigma_{N}^{z} \end{pmatrix}$$

$$(4)$$

Model:MPO

Total Magnetic Moment: In kron form:

$$M_z = \sigma_1^z \otimes \mathbb{1} \otimes \mathbb{1} \otimes \cdots + \mathbb{1} \otimes \sigma_2^z \otimes \mathbb{1} \otimes \cdots$$
 (5)

▶ MPO

$$H_{1} = \begin{pmatrix} \sigma_{1}^{z}, & \mathbb{1} \end{pmatrix}, H_{i} = \begin{pmatrix} \mathbb{1}, & \mathbb{0} \\ \sigma_{i}^{z}, & \mathbb{1} \end{pmatrix}, \quad H_{N} = \begin{pmatrix} \mathbb{1} \\ \sigma_{N}^{z} \end{pmatrix}$$
(6)

Model:MPS

 $|s_i\rangle$ denote that site i is in eigenstate of σ_i^z with eigenvalue $s_i=\pm 1$. $|s_1s_2s_3\cdots s_N\rangle$ is corresponding many body basis of system.

Random Initialized State: Random initial state

$$\psi_0 = \sum_{\{s_i\}} C_{s_1 s_2 s_3 \cdots s_N} | s_1 s_2 s_3 \cdots s_N \rangle$$
 (7)

equals the random tensor $C_{s_1s_2s_3\cdots s_N}$. Then orientSVD:

Model:MPS

Assigned Initialized State FM corresponds to state $C_{s_1s_2s_3\cdots s_N}$ with

$$C_{111\dots 1} = 1 \quad \text{or} \quad C_{-1-1\dots -1} = 1$$
 (8)

while AFM corresponds to state $C_{s_1s_2s_3\cdots s_N}$ with

$$C_{1-11-1...} = 1$$
 or $C_{-11-11...} = 1$ (9)

Then orientSVD in the same way as that in Random Initialized State.

DMRG: 1-site update

Initialize MPS with diagonalization center at i = 1.

- Sweep at two direction (right left right ...)
 - Calculate the left/right environment H_L/H_R .

DMRG: 1-site update

- Sweep at two direction (right left right ...)
 - igcap Calculate the effective Hamiltonian $H_{eff}=H_LH_iH_R$

OrientSVD and move the center to next site.

TDVP: 1-site integration

- Initialize MPS with diagonalization center at i = 1.
- Sweep at two direction (right left right ...)
 - Calculate the left/right environment $H_L(t + \Delta t/2)/H_R(t)$.

Results

Simulation results:

a quantum phase transition can be observed near $h \sim 1.0$

TDVP: 1-site integration

- Sweep at two direction (right left right ...)
 - Calculate the effective Hamiltonian $H_{eff}^{(1)}$
 - Time evolution $A_i(t + \Delta t/2) = \exp(-iH_{eff}^{(1)}\Delta t/2)A_i(t)$
 - OrientSVD and calculate the center with inverse evolution $C_i(t) = \exp\left(iH_{eff}^{(0)}\Delta t/2\right)C_i(t+\Delta t/2)$, then absorb it into nextsite.

TDVP: 2-site integration

Sweep schemes

Calculate the left/right environment $H_L(t + \Delta t/2)/H_R(t)$.

TDVP: 2-site integration

Sweep schemes

- lacksquare Calculate the effective Hamiltonian $H_{eff}^{(2)}$
- Time evolution $A_i A_{i+1}(t + \Delta t/2) = \exp\left(-iH_{eff}^{(2)} \Delta t/2\right) A_i A_{i+1}(t)$
- OrientSVD and calculate the center with inverse evolution $A_{i+1}(t) = \exp\left(iH_{eff}^{(1)}\Delta t/2\right)A_{i+1}(t+\Delta t/2)$, then regard it as nextsite.

