ALGORITHM DESIGN

PART I

ADS1, S2023

A VIEW BACK IN TIME

THE NEXT THREE WEEKS

- Algorithm correctness
 - Invariants
- Algorithm design
 - Brute force algorithms
 - Randomized algorithms
 - Greedy algorithms

INVARIANTS

```
power(int m, int n):
    i = 0
    r = I
    while i < n:
        r = r * m
        i = i + I
    return r</pre>
```

In this case:

I; m,n,r and i are integers

T; r=mi

Statements 7 are true when we first reach the loop -7. If they are true before runing through the loop, they are also true

```
prove II is true
before we encounter
the loop the first time:
power(int m, int n):
     i = 0
     r = 1
     while i < n:
          r = r * m
         i = i + I
     return r
I<sub>1</sub>: m, n, r and i are integers
I_2: r = m<sup>i</sup>
```

```
power(int m, int n):
    i = 0
    r = |
    while i < n:
        r = r * m
        i = i + |
    return r</pre>
```

```
I_1: m, n, r and i are integers I_2: r = m^i
```

prove that IF Is true before a run of the loop, it must also be true after Before: assume minisipi integers After-m->m still integer 1->14M -11-1-11-

INDUCTION PROOF

If we can show

Lo 1. Base case: True before

Lo 2. Induction step: If true at some point, then
true after next doop run

then it's always true

```
power(int m, int n):

i = 0

r = 1

while i < n:

r = r * m

i = i + 1

return r

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m

r = r * m
```

$$I_1$$
: m, n, r and i are integers I_2 : $r = m^i$

```
power(int m, int n):
    i = 0
    r = 1
    while i < n:
         r = r * m
         i = i + 1
    return r
I<sub>1</sub>: m, n, r and i are integers
I_2: r = m^i
```

prove that IF Iz true before loop, also true after is_sbefore

FINALLY ...

```
I, and Iz also true at the end
power(int m, int n):
   i = 0
    r = 1
   while i < n
                                  7 (=n
       r = r * m
                                    r=mi=mn
      i = i +
   return r
                                   250 m" is returned
(I<sub>1</sub>)m, n, r and i are integers
I_2: r = m^i
```

WORKFLOW

Set up invariants fulfilling:
1) I true before
2) If true before one
run, also true after

I will be true when we exit the lacp Use I 8 loop condition to make condusion

ANOTHER EXAMPLE

I₁: n, r and i are integers

 I_2 : $r = i^2$

ANOTHER EXAMPLE

```
square(int n):
    i = 0
    r = 0
    while i < n:
        r = r + 2*i + I
        i = i + I
    return r</pre>
```

$$I_1$$
: n, r and i are integers I_2 : $r = i^2$

Prove
$$I_2$$

Base cose: $O=O^2$

Induction: $T \rightarrow C+2i+1$
 $i \rightarrow i+1$
 $i \rightarrow i+1$
 $i^2+2i+1=(i+1)^2$
 $i^2+2i+1=(i+1)^2$

ANOTHER EXAMPLE

```
So the algorithm returns ... \
square(int n):
    i = 0
    r = 0
    while i < n;
        r = r + 2*i + 1
        j = j +
    return r
I<sub>1</sub>: n, r and i are integers
```

ALGORITHM DESIGN

- Brute force algorithms
- Randomized algorithms
- Greedy algorithms
- Dynamic programming
- Divide-and-conquer algorithms
- Backtracking algorithms

BRUTE FORCE ALGORITHMS

Generate all candidates for solutions and duck individually > Always finds a solution -> Easy to implement -> Astronomical time complexities and space

BRUTE FORCE SORTING

4	8	3	
4	8		3
4	3	8	ı
4	3	I	8
4	I	8	3
	ı	3	8
8	4	3	ı
8	4	I	3
8	3	4	I
8	3	ı	4
8	ı	4	3
8	ı	3	4

3	4	8	I
3	4	-	8
თ	8	4	I
3	8	I	4
3	I	4	8
3	I	8	4
	4	8	3
	4	3	8
I	8	4	3
ı	8	3	4
	3	4	8
	3	8	4

WHEN SHOULD I USE BRUTE FORCE ALGORITHMS?

- Probably never

 If the of potential aundidates

 can somehow be varioued down (backtracking)
- It you need a solution that can't be advised otherwise

ALGORITHM DESIGN

- Brute force algorithms
- Randomized algorithms
- Greedy algorithms
- Dynamic programming
- Divide-and-conquer algorithms
- Backtracking algorithms

RANDOMIZED ALGORITHMS

Incorporate some degree at

-> Eliminate "bad input"

QUICKSORT

```
QuickSort(list, p, r):

if p < r:

q = Partition(list, p, r)

QuickSort(list, p, q - I)

QuickSort(list, q + I, r)
```

```
call QuickSort(A, I, length(list))
```

```
sick bost
Olement
Partition(list, p, r):
   for j = p to r - 1:
       if list[j] <= x:
          i = i + I
          swap A[i] and A[j]
   swap A[i + I] and A[r]
   return i + l
```

QUICKSORT ON BAD INPUT

RANDOMIZED QUICKSORT

```
\begin{aligned} &\text{RandQuickSort}(\text{list}, p, r): \\ &\text{if } p < r: \\ &q = &\text{RandPartition}(\text{list}, p, r) \\ &\text{RandQuickSort}(\text{list}, p, q - 1) \\ &\text{RandQuickSort}(\text{list}, q + 1, r) \end{aligned} \qquad \begin{aligned} &\text{RandPartition}(\text{list}, p, r): \\ &\text{i = random number btwn p and r} \\ &\text{swap A[r] and A[i]} \\ &\text{return Partition}(\text{list}, p, r) \end{aligned}
```

call RandQuickSort(A, I, length(list))

Still O(n) worst case, but no perfector input structure

gives you worst care

TWO GENERAL STRATEGIES

Problem: Find a 0 in a bitstring containing half 0's, half 1's. Linear search: worst case == 0 (n) [if input bad) repeat & times:
randomly select new element
if o found:
break while O not found:
randomly select new element Las Vegas algorithm Monte Carlo algorithm - always firels correct solution - always terminales
- may not find correct tion - may not terminate

RANDOMIZED OPTIMIZATION

WHEN SHOULD I USE RANDOMIZED ALGORITHMS?

When a particular input leads to bad behaviour

ALGORITHM DESIGN

- Brute force algorithms
- Randomized algorithms
- Greedy algorithms
- Dynamic programming
- Divide-and-conquer algorithms
- Backtracking algorithms

GREEDY ALGORITHMS

- At each step, you choose what seems nost promising right now

- Accept that you want necessarily final the best solution

THE COIN CHANGE PROBLEM

Given an amount and a set of coins, return the fewest number of coins that sum to the amount.

THE COIN CHANGE PROBLEM

The Danish monetary system is optimized for a greedy strategy.

HUFFMAN CODING

At each step, take the two least frequent symbols, disregard the rest - 2 greedy

A GREEDY APPROACH TO THE TRAVELING SALESMAN PROBLEM

WHEN SHOULD I USE GREEDY ALGORITHMS?

If any solution can be fund from a solution to a single smaller subproblem

OR

7 It you just need a "reconable good"
solution