Distribuciones Continuas en Julia

Nombre	Parámetros	P(X=k)=f(k)	Media	Varianza	fgm
Beta $\mathrm{B}(lpha,eta)$	$\alpha, \beta > 0$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$ $x \in [0,1]$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Chi-cuadrado $\chi^2_{(u)}$	$ u \in \mathbb{N}^*$	$\frac{x^{\frac{\nu}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$	k	2k	$(1-2t)^{-\frac{k}{2}}$ $t < \frac{1}{2}$
$Exponencial \\ Exp(\lambda)$	$\lambda > 0$	$\lambda e^{-\lambda x}$ $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t} \\ t < \lambda$
Fisher $F(\nu 1, \nu 2)$	$\nu 1, \nu 2 > 0$	$\frac{\sqrt{\frac{(\nu 1x)^{\nu 1}(\nu 2)^{\nu 2}}{(\nu 1x + \nu 2)^{\nu 1 + \nu 2}}}}{x\mathrm{B}(\frac{\nu 1}{2}, \frac{\nu 2}{2})}$	$\frac{\nu^2}{\nu^2 - 2}$ $\nu^2 > 2$	$\frac{2(\nu 2)^2(\nu 1+\nu 2-2)}{\nu 1(\nu 2-2)^2(\nu 2-4)}$	

Gama $\Gamma(lpha, heta)$	$\alpha, \theta > 0$	$\frac{x^{\alpha-1}e^{-\frac{x}{\theta}}}{\Gamma(\alpha)\theta^{\alpha}}$ $x > 0$	$\alpha \theta$	$lpha heta^2$	$(1 - \theta t)^{-\alpha}$ $t < \frac{1}{\theta}$
Normal $N(\mu,\sigma)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $x \in \mathbb{R}$	μ	σ^2	$e^{\mu t + \sigma^2 \frac{t^2}{2}}$
Student $t_{(u)}$	$\nu > 0$	$\frac{1}{\sqrt{\nu}B\left(\frac{1}{2},\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{\frac{\nu+1}{2}}$	0	$ \frac{\frac{\nu}{\nu-2}}{\nu>2} $ $ \infty \text{ si } 1 < \nu \le 2 $	
Uniforme $U(a,b)$	a < b	$a \leq x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\begin{cases} \frac{e^{tb}-e^{ta}}{t(b-a)} & \text{si } t \neq 0 \\ 1 & \text{si } t = 0 \end{cases}$