TRAINING OF A GAUSSIAN PROCESS

- To make predictions for a regression task by a Gaussian process, one simply needs to perform matrix computations.
- But for this to work out, we assume that the covariance functions is fully given, including all of its hyperparameters.
- A very nice property of GPs is that we can learn the numerical hyperparameters of a selected covariance function directly during GP training.

TRAINING A GP VIA MAXIMUM LIKELIHOOD

Let us assume

$$y = f(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma^2),$$

where $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, k(\mathbf{x}, \mathbf{x}'|\boldsymbol{\theta}))$.

Observing ${\it y}\sim \mathcal{N}\left({\it 0},{\it K}+\sigma^2{\it I}\right)$, the marginal log-likelihood (or evidence) is

$$\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) = \log \left[(2\pi)^{-n/2} |\mathbf{K}_{y}|^{-1/2} \exp \left(-\frac{1}{2} \mathbf{y}^{\top} \mathbf{K}_{y}^{-1} \mathbf{y} \right) \right]$$
$$= -\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{y}^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}_{y}| - \frac{n}{2} \log 2\pi.$$

with $K_y := K + \sigma^2 I$ and θ denoting the hyperparameters (the parameters of the covariance function).

TRAINING A GP VIA MAXIMUM LIKELIHOOD / 2

The three terms of the marginal likelihood have interpretable roles, considering that the model becomes less flexible as the length-scale increases:

- the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, which tends to decrease if the length scale increases
- the complexity penalty $-\frac{1}{2}\log |\mathbf{K}_y|$, which depends on the covariance function only and which increases with the length-scale, because the model gets less complex with growing length-scale
- a normalization constant $-\frac{n}{2} \log 2\pi$

To visualize this, we consider a zero-mean Gaussian process with squared exponential kernel

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2}\|\mathbf{x} - \mathbf{x}'\|^2\right),$$

- \bullet Recall, the model is smoother and less complex for higher length-scale $\ell.$
- We show how the
 - data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_{y}^{-1} \mathbf{y}$,
 - the complexity penalty $-\frac{1}{2} \log |K_y|$, and
 - ullet the overall value of the marginal likelihood $\log p(m{y} \mid m{X}, m{ heta})$

behave for increasing value of ℓ .

The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

The left plot shows how values of the data fit $-\frac{1}{2} \pmb{y}^T \pmb{K}_y^{-1} \pmb{y}$, the complexity penalty $-\frac{1}{2} \log |\pmb{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\pmb{y} \mid \pmb{X}, \pmb{\theta})$ behave for increasing values of ℓ .

A small ℓ results in a good fit, but a high complexity penalty (low $-\frac{1}{2} \log |\mathbf{K}_y|$).

The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

A large ℓ results in a poor fit.

The left plot shows how values of the data fit $-\frac{1}{2} \mathbf{y}^T \mathbf{K}_y^{-1} \mathbf{y}$, the complexity penalty $-\frac{1}{2} \log |\mathbf{K}_y|$ (high value means less penalization) and the overall marginal likelihood $\log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$ behave for increasing values of ℓ .

The maximizer of the log-likelihood, $\ell=0.5$, balances complexity and fit.

TRAINING A GP VIA MAXIMUM LIKELIHOOD

using $\frac{\partial}{\partial \theta_i} \mathbf{K}^{-1} = -\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta_i} \mathbf{K}^{-1}$ and $\frac{\partial}{\partial \theta} \log |\mathbf{K}| = \operatorname{tr} \left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta} \right)$.

To set the hyperparameters by maximizing the marginal likelihood, we seek the partial derivatives w.r.t. the hyperparameters

$$\frac{\partial}{\partial \theta_{j}} \log p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) = \frac{\partial}{\partial \theta_{j}} \left(-\frac{1}{2} \mathbf{y}^{T} \mathbf{K}_{y}^{-1} \mathbf{y} - \frac{1}{2} \log |\mathbf{K}_{y}| - \frac{n}{2} \log 2\pi \right)
= \frac{1}{2} \mathbf{y}^{T} \mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \theta_{j}} \mathbf{K}^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(\mathbf{K}^{-1} \frac{\partial \mathbf{K}}{\partial \boldsymbol{\theta}} \right)
= \frac{1}{2} \operatorname{tr} \left((\mathbf{K}^{-1} \mathbf{y} \mathbf{y}^{T} \mathbf{K}^{-1} - \mathbf{K}^{-1}) \frac{\partial \mathbf{K}}{\partial \theta_{j}} \right)$$

TRAINING A GP VIA MAXIMUM LIKELIHOOD / 2

- The complexity and the runtime of training a Gaussian process is dominated by the computational task of inverting K - or let's rather say for decomposing it.
- Standard methods require $\mathcal{O}(n^3)$ time (!) for this.
- Once K^{-1} or rather the decomposition -is known, the computation of the partial derivatives requires only $\mathcal{O}(n^2)$ time per hyperparameter.
- Thus, the computational overhead of computing derivatives is small, so using a gradient based optimizer is advantageous.

TRAINING A GP VIA MAXIMUM LIKELIHOOD / 3

Workarounds to make GP estimation feasible for big data include:

- using kernels that yield sparse *K*: cheaper to invert.
- subsampling the data to estimate θ : $\mathcal{O}(m^3)$ for subset of size m.
- combining estimates on different subsets of size m: Bayesian committee, $\mathcal{O}(nm^2)$.
- using low-rank approximations of K by using only a representative subset ("inducing points") of m training data X_m :

 Nyström approximation $K \approx K_{nm}K_{mm}^-K_{mn}$, $\mathcal{O}(nmk + m^3)$ for a rank-k-approximate inverse of K_{mm} .
- exploiting structure in K induced by the kernel: exact solutions but complicated maths, not applicable for all kernels.

... this is still an active area of research.

