

Carrera de Especialización en Sistemas Embebidos

Medidor de material particulado fino

Autor: Mg. Luis Alberto Gómez Parada

Director: Ing. Juan Manuel Cruz correo: lgomez@patagones.cl

- 1 Introducción
- 2 Interesados
- 3 Propósito
- 4 Requerimientos
- 5 Alcances
- 6 Diagrama de Activity On Node
- 7 Carta Gantt
- 8 Gestión de riesgos
- 9 Gestión de la calidad
- 10 Cierre

Introducción

- La contaminación atmosférica por MP2,5 se cuenta entre las principales causas de muertes prematuras en el mundo.
- Los instrumentos para medir el material particulado fino (MP2,5) son herramientas esenciales para gestionar la calidad de aire de entornos urbanos.
- Sin embargo, lograr una medición precisa es un desafío significativo debido a los elevados costos y los complejos requisitos técnicos.

Interesados

Cliente: instituciones científicas públicas y privadas; gobiernos locales, como municipios y gobiernos regionales; agencias ambientales y ministerios de medio ambiente nacionales.

Usuario final: corresponde a la población urbana expuesta a episodios de contaminación atmosférica relacionados con MP2,5.

Director: ingeniero electrónico con amplia experiencia. Su contribución será fundamental en el diseño de la placa electrónica que soportará el instrumental y en la optimización de la programación.

Propósito

- Desarrollar un equipo de medición de material particulado fino (MP2,5) que brinde una mayor precisión y exactitud que los sensores ópticos de bajo costo, mediante técnicas estadísticas de muestreo.
- Se busca elaborar una solución económica y fiable que pueda integrarse en las redes de control de calidad del aire.

Requerimientos

Funcionales:

- 1 Tres sensores incorporados a la medición de MP2,5.
- 2 Las mediciones deben contar tiempo proporcionado por un RTC.

Hardware y energéticos:

- 1 La placa de desarrollo debe permitir conectar múltiples sensores.
- 2 Fuente de energía compatible con 220 V CA y una batería recargable.
- 3 El gabinete de acuerdo a la norma protección IP65.

Software

1 Los datos de MP2,5 serán del tipo "punto flotante".

Interfaz de usuario:

I El usuario podrá acceder a los datos históricos medidos por el instrumento.

Evaluación y documentación:

- 1 Se realizarán pruebas de calibración con sensores certificados.
- 2 Contará con un manual con las características principales del instrumento.

Alcances del proyecto

Diseño y desarrollo del hardware

Diseño, selección, adquisición y construcción del hardware acorde a los niveles de consumo eléctrico, necesidad de cómputo, almacenamiento y transmisión de datos, necesarios para su funcionamiento.

Desarrollo de software

 Programación del microprocesador para realizar cálculos, validar y transmitir resultados.

3 Pruebas de calibración

 Calibración inicial de los sensores con estaciones de monitoreo de referencia o instrumentos de referencia disponibles.

4 Recolección de datos

 Recolección de datos de MP2,5 para evaluar el funcionamiento y rendimiento del dispositivo.

5 Análisis de datos

 Evaluación de la precisión y exactitud del dispositivo en comparación con los métodos ópticos tradicionales o los de referencia.

6 Documentación

■ Generación de informes técnicos que validen el rendimiento y robustez del dispositivo.

Diagrama de Activity On Node

1.	Propuesta del proyecto
	2. Diseño general

- 3. Construcción del HW
- 4. Construcción del FW
 - 5. Pruebas
 - 6. Ajustes finales

Prototipo funcional

- 7. Escritura
- 8. Proceso de cierre

Presentación tesis

Table: Resumen de la gestión del riesgos con el resultado de las medidas de mitigación.

Riesgo		0	RPN	S*	0*	RPN*
Mal funcionamiento de los sensores		8	72	9	2	18
Autoridades no aceptan mediciones		8	56	6	4	24
Fallo en la transmisión de datos		5	30	2	5	10
Interrupción de energía		4	32	6	2	12
Manipulación o actos de vandalismo		3	24	-	-	-
Pérdida de sincronización del RTC		3	21	-	-	-

Gestión de la calidad

- Req #01: exactitud y precisión para estimar las concentraciones de MP2,5.
- Req #02: transmisión de datos segura y sin fallos a la base de datos.
- Req #03: sistema de alimentación energética fiable.
- Reg #04: almacenamiento de datos en el instrumento.
- Req #05: datos que cuentan con un índice temporal sincronizado.
- Req #06: funcionamiento efectivo del equipo bajo diversas condiciones ambientales.
- Reg #07: disponibilidad de un manual de usuario claro.
- Req #08: disponibilidad de parámetros básicos de registro de MP2,5.
- Req #09: implementación de buenas prácticas de programación en el software.
- Req #10: evaluación de consumos eléctricos y de datos.

Ejemplo:

Req #1: exactitud y precisión del instrumento para estimar las concentraciones atmosféricas de MP2.5.

Verificación: se deben realizar al menos tres pruebas comparativas con el fin de asegurar que los sensores proporcionan medidas de las concentraciones de MP2,5 con la precisión y exactitud requeridas. El éxito se determinará al lograr una precisión y exactitud que se encuentre en un rango aceptable entre los sensores de bajo costo y los métodos de referencia estandarizados.

Validación: los resultados de las pruebas se presentarán al cliente para su evaluación y aprobación, cumpliendo con sus expectativas y requisitos.

Proceso de cierre

- Pautas de trabajo para analizar el respeto al Plan de Proyecto original
 - **Procedimiento:** comparar los resultados obtenidos con los objetivos establecidos en el Plan de Proyecto original, documentar desviaciones y analizar sus causas.
 - **Registro:** texto que contiene análisis comparativo.
- Identificación de técnicas y procedimientos y solución de problemas
 - **Procedimiento:** celebrar una reunión retrospectiva para discutir y documentar las lecciones aprendidas y los problemas surgidos.
 - Registro: texto que contiene "lecciones aprendidas".
- Acto de agradecimiento
 - Procedimiento: ceremonia de agradecimiento y entrega de certificados de reconocimiento. En este acto se agradecerá a todas las personas que contribuyeron, jurados, docentes, autoridades de la carrera de especialización, colegas y autoridades.