Using Python for Complex Interconnected Calculations

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Transaction and analytical processing Control flow and control structures Comparisons and logical operators Branching based on conditions Iterating based on conditions Iterating over lists, tuples and dictionaries

Break, continue and pass

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Essential Steps in Connecting the Dots

Processing Data for Use in Models

Building and Refining Models

Incorporating Realworld Data into Models

Essential Steps in Connecting the Dots

Processing Data for Use in Models Building and Refining Models

Incorporating Realworld Data into Models

John is responsible for tracking and delivering orders on time

Revenue Analyst

Anna is responsible for tracking and monitoring revenues

Order Management Support

20 deliveries in Kent, WA are delayed

The courier company has had a computer outage

John assigns the orders to another courier company in the region

Revenue Analyst

Her manager wants an update on last month's revenues

Last month was an unusually slow one

Anna pulls up data for the last 5 years to check for seasonal effects

Transactional Processing

Analytical Processing

Transactional Processing

Ensure correctness of individual entries

Access to recent data, from the last few hours or days

Updates data

Fast real-time access

Usually a single data source

Analytical Processing

Analyzes large batches of data

Access to older data going back months, or even years

Mostly reads data

Long running jobs

Multiple data sources

For Analytical Processing use-cases, Python is a serious alternative to running SQL on data warehouses

Essential Analytical Building Blocks

Conditional Execution

Repeated Execution

Re-use of Logic

Conditional Execution

Spreadsheets make it very hard to change logic based on conditions

- Only locally possible (within a cell)

Same holds for SQL-based technologies

- Sub-queries

Small Data

Both these objectives could be achieved using the same database system

Big Data

Very hard to meet all requirements with the same database system

Transactional Processing

Traditional RDBMS

Analytical Processing

Data Warehouse

3 Vs of Big Data

Volume: Amount of data

Variety: Number and type of sources

Velocity: Batch and streaming

Python works seamlessly with several technologies data warehousing technologies for building ML models with big data

Conditional execution using if, if-else, and if-elif statements

Working with for-loops to perform a sequence of operations a predefined number of times

Using while loops to perform a sequence of operations so long as a condition evaluates to true

The break, continue, and pass keywords to control execution

Summary

Transaction and analytical processing Control flow and control structures Comparisons and logical operators Branching based on conditions Iterating based on conditions Iterating over lists, tuples and dictionaries

Break, continue and pass