(Pat, F, 1.6) Classify it, while k=5

Name	Height	Distance	Neanest N	Paperforon	Majority Voling
Knistina	1:6m	11(1.6-1.6)2=0	Tes	Shoot	Joseph J.
Jim	am	1 (2-1.6)2 = 0.4	No		
Maggie	1.9m	J(1.9-1-6)2 = 0.3	NO	JERON !	
Marsha	1.88 m	1 (1.88-1.6)2 = 0.28	No		
Stephanie	1.7m	1(1.1-1.6) = 0.1	Tes	Shoot	
Bob	1.85 m	JU-85-1-6 = 0.25		go skisa	19
Kally	1-6m	J(1.6-16)2 = 0	Tes	Short	J'horat.
Dare	1.1 m	11.7-1.62 = 0.1	Yes	shartiam	
Worlh	2.2m	J(2:2-1.6) 2 = 0.6	No	JAME	
Sleven	ailm	J(2.1-1.6)2 = 0.5	No		
Delbie	1.8m	1(1.8-1.6)2 = 0.2	Tes	Tan Medium	
Toda	1.950	J(1.95-1.6) = 0.35	No		
kim	1.9 m	J(1.9 - 1.6)R = 0.3	No	1 10 10	
Amy	1.8m	1(1.8 - 1.6)2 = 0.2	No	100	
Wyneste	1.757	V(1.75-1.6)2 = 0.15	No	Jan Broke	4

so, | will clossify Pat as short.

4 KNN > Similarities They ofer togo I Naive Bazes Classifien => Proobability fage any togo I Naive means "simple" Classifying Medical Image Tubirce Colon image and Non malignant tumors [animalia and] A Dank Colon image and Malignont िकाश्राज्ञ । त्रिक मान का । करवा । करवा । करवा # Image - GA Pixel Steriles - 0,1 Their to Absessent → Pixel dank 제대: 1 → Pixel gney 제대: 0 Lean TREED - closely Poly and -> Pixel goed and: 0 -> Pixel black and: 1 A Droad block diagram of glassification model Patterins -> Selection -> Design -> Evaluation fig: classification model

Hoddslem Evaluation G	
-> Accuracy check	
-> Personamence Test	कर्या

→ Peroforomonee Test apri	Page-724
4 Define Feature Engineering / Feature Generation	Malan
The Process of using domain knowled the data to create teatures that make learning algorithms worsk.	
Leadure extract to The Total image	5 Contage
Jealune extract trait and, when to apply ima	Je 740-
El features 200 alle	
> Standard Device	tion (or)
Numbers of	Ones
-> Average of 0's	& Ones.
Ans: differences between KNN Vs Naive Bage	s Assifer
A. High Vaciance & low a low Variance bias.	& high
b. Based on similarities b. Based on	Proobabi 1714
C. No decision line. C. It has de	
decision line what and all Parsumelers for	1 -441- 1031

To Decision line rules class state gape to refer to select at a class state biased at

B Define decision line

into regions that corresponds to different Classes.

B Proioni Probability Historical Data Ga Bya-

Haive Bajes Classifien Proioni Probability
Class Conditional Probability - 47704 - 28

all that is a later to the day

to the destroy when the part of the state of

Page-786 Features 43 M and class as west, M=1 and classification als all $M = \{ \omega_1, \omega_0 \}$ Non Concerding $M \Rightarrow \text{Total} \ \Sigma$ N=> Potal Preaining data. 名 P(w:1 X) P(w; |x) = P(x | w;) P(w;) Pnioni Pnobability

P(x)

P(x) (S) Pest data. क्तिक P(x) (का omit कार्य द्वा कार्य P(x) क्रम Sta class Ga 499 Constant. P (collect or world of Play ages) &

Table: The playing tennis dataset

Day	Outlook	Temperature	Humidity	Wind	Play
D_1	Sunny	Hot	High	Weak	No
D_2	Sunny	Hot	High	Strong	No
D_3	Overcast	Hot	High	Weak	Yes
D_4	Rain	Mild	High	Weak	Yes
D_5	Rain	Cool	Normal	Weak	Yes
D_6	Rain	Cool	Normal	Strong	No
D_7	Overcast	Cool	Normal	Strong	Yes
D_8	Sunny	Mild	High	Weak	No
D_9	Sunny	Cool	Normal	Weak	Yes
D_{10}	Rain	Mild	Normal	Weak	Yes
D_{11}	Sunny	Mild	Normal	Strong	Yes
D_{12}	Overcast	Mild	High	Strong	Yes
D_{13}	Overcast	Hot	Normal	Weak	Yes
D_{14}	Rain	Mild	High	Strong	No

Projos Proobability:

$$P(Play = Yes) = \frac{9}{14} = 0.642$$

 $P(Play = No) = \frac{5}{14} = 0.375$

Parsameters => Outlook

P (outlook = Jumy 1 Play = Yes) =
$$\frac{2}{P(Play = Yes)}$$

= $\frac{2}{9}$
= 0.222

P(Outlook = Sunny 1 Play = No) =
$$\frac{3}{p(Play = No)}$$

Parameters - Pemparature dolla) 9 = (2)

P (TemParature = Mild | Play = Yes) =
$$\frac{4}{P(Play = Yes)} = \frac{4}{9} = 0.444$$

P (TemParature = Mild | Play = No) = $\frac{9}{P(Play = 100)} = \frac{9}{5} = 0.4$

Panameter => Wind

P(Wind = Weak 1Play = Yes) =
$$\frac{6}{P(Play = Yes)} = \frac{6}{9} = 0.666$$

P(Wind = Weak 1Play = No) = $\frac{2}{P(Play = No)} = \frac{2}{5} = 0.4$

P(Wind = Strong 1Play = Yes) = $\frac{3}{P(Play = No)} = \frac{3}{9} = 0.333$

P(Wind = Strong 1 Play = No) = $\frac{3}{P(Play = No)} = \frac{3}{5} = 0.6$

P(D1 | Play = Yes) = P (Outlook = Summy | Play = Yes) X P (Tempanature = Hot | Play = Yes) X P (Humidity = High 1 Play = Yes) X P (Wind = Weak | Play =) 0. 222 × 0. 222 × 0. 333 × 0. 666 Pl Tempodune & Mild 1 Plag. Ha . Plag. 19

P(D1 | Play = No) = P(Outlook = Sunny | Play = No) X P (TemParature = Hot | Play = No) X P (Humidity = High | Play = No) x P (Wind=Weak | Plaj-No)

= 0.6 × 0.4 × 0.8 × 0.4

= 0.0 768 de gala 1 de la gala de

5.0

Classifying larger than all NO00

P(D1 1 Play = Yes) X P (Play = Yes) = 0.0109 x 0.642 Lamada - Philippid) 9 P (D2 1 Play = No) x P (Play = No) = 0. 0768 x 0.375. = 0.00699 0. 0288

(No) 288 > 0.00699 30, Instance Da would be classified (Predicted)