FROM MAB TO RL AND BEYOND

Francesco Trovò and Alberto Maria Metelli

Machine Learning Modena Meetup 27th January 2021

SHORT BIOS

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Research assistant Research interest in reinforcement learning Oral @NeurlPS 2018

MACHINE LEARNING AND ALGORITHMIC GAME THEORY GROUP

Expertise in:

- Reinforcement learning
- Algorithmic game theory
- Online learning

30 +

Progetti industriali

www.mlcube.com

- Innovative startup (founded in 2020)
- Bridging the expertise of academics to the industrial world
- Developing AI projects for the industrial and web world
- Developing ML platform

PART I MULTI-ARMED BANDITS

Francesco Trovò

CLASSICAL ML

 "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E"

OUTPUT

Prediction

or Structure in the data

Supervised

vs Unsupervised

Output a policy or an automatic decision for the specific problem

SEQUENTIAL DECISION PROBLEM

- In some setting we are required to take a decision
- Therefore, the task is to learn a policy or strategy
- As a new data is coming we want to update our knowledge and act accordingly

HOW MAB ARE BORN

Classical Clinical Trial: red and blue pills

Use statistics to infer which treatment is the most promising one

SEQUENTIAL PROCESS

 Design a clinical trial to minimize the number of suboptimal treatments provided to patients

We call the loss incurred due to lack of information regret

MULTI-ARMED BANDIT: A COMMON SETTING TO MANY PROBLEMS

Slot selection problem

Restaurant selection problem

Dialogue model selection

MEAN IS NOT ENOUGH

- Assume value 1 for success and 0 for failure
- The empirical mean of the blue treatment is zero

On the following patients we would only select the red treatment

WANDERING AROUND IS NOT HEALTHY

 Using this approach, we would have the same results in terms of regret as the classical clinical trial

We need to solve the so called:

exploration vs. exploitation (dilemma)

Evaluate and refine the currently unexplored options

Using the currently available information to gain a profit

OPTIMISM IN THE FACE OF UNCERTAINTY

Setting 1

Setting 2

- We need to take into account also the uncertainty of the estimates
- "L'ottimismo è il profumo della vita!" (Tonino Guerra)

UCB1 ALGORITHM

Given a set of arms (options) $A = \{a_1, ..., a_K\}$

Compute the empiric mean

$$\hat{R}_t(a_i) = \frac{\sum_{i=1}^t r_{i,t} \, \mathbb{1} \{ a_i = a_{i_t} \}}{N_t(a_i)} \, \forall a_i$$

Compute the uncertainty bound

$$B_t(a_i) = \sqrt{\frac{2\log t}{N_t(a_i)}} \ \forall a_i$$

Select the arm with the largest UCB $a_{i_t} = \arg\max_{a_i \in \mathcal{A}} \left(\hat{R}_t(a_i) + B_t(a_i)\right)$

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2), 235-256.

EXECUTION EXAMPLE

• $A = \{a_1, a_2, a_3, a_4\}$

SEQUENTIAL APPROACH ADVANTAGES

THEORETICAL GUARANTEE

Lower Bound

$$\lim_{T \to \infty} L_T \ge \log T \sum_{a_i \mid \Delta_i > 0} \frac{\Delta_i}{KL(\mathcal{R}(a_i), \mathcal{R}(a^*))}$$

Upper bound UCB1

$$L_T \le 8 \log T \sum_{i|\Delta_i>0} \frac{1}{\Delta_i} + \left(1 + \frac{\pi^2}{3}\right)$$

PRACTICAL ISSUES

- It is a good alternative to A/B testing in general
 - Allows multiple options
 - Minimize the loss
 - Does not exclude completely the use of any option
- Even if this framework si formal and elegant, it hardly generalizes to real problems (too simple)

PRICING PROBLEM

- Problem formulation:
 - Given an inventory of products
 - Select the most profitable price for each product
- Characteristics:
 - Large inventory
 - 2. Continuous choice
 - 3. Non-stationarity

1. LARGE INVENTORY

Trovò, F., Paladino, S., Simone, P., Restelli, M., & Gatti, N. (2017, May). Risk-averse trees for learning from logged bandit feedback. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 976-983). IEEE.

2. CONTINUOUS CHOICE

- Gaussian Process
- Selection of the next arm to play according to UCB provided by GPs

Sriniv as, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. In *Proceedings of the 27th International Conference on Machine Learning*.

3. NON-STATIONARITY

Apply a sliding window to the system

- Passive approach
- Active approaches aim at identifying a change in the distribution of the rewards

Trovo, F., Paladino, S., Restelli, M., & Gatti, N. (2020). Sliding-window thompson sampling for non-stationary settings. Journal of Artificial Intelligence Research, 68, 311-364.

ADVERTISING PROBLEM

ADVERTISING MODEL

- Problem formulation:
 - Given a set of ads, select bid and budget
 - Assuring that the overall budget is no more than a given daily one

COMBINATORIAL BANDITS

CMAB FOR ADVERTISING

Choose using Upper Confidence Bounds

Nuara, A., Trovo, F., Gatti, N., & Restelli, M. (2018). Online Joint Bid/Budget Optimization of Pay-per-click Advertising Campaigns. In 16th European Conference on Multi-Agent Systems (pp. 1-15).

CONCLUSION

- MAB algorithms are only nice and elegant tools to study theoretically
- Its extensions are used in many applicative fields

Future directions:

- Fairness in MAB
- Dynamics in MAB
- Domain specific MAB

PART II REINFORCEMENT LEARNING

Alberto Maria Metelli

ORIGINS OF REINFORCEMENT LEARNING

 RL originates in behavioral psychology

«a consequence applied that will strengthen an organism's future behavior whenever that behavior is preceded by a specific antecedent stimulus»

Skinner box → Operant conditioning

AGENT AND ENVIRONMENT

Action a

Next State s' Reward r

At each step:

- The agent observes the state s
- The agent plays action $a \sim \pi(\bullet \mid s)$
- The environment transitions to the next state s' ~ P(• | s,a)
- The environment emits a scalar reward r = R(s,a)

Mart in L Put erman. Markov decision processes: discret e st ochastic dynamic programming. John Wiley & Sons, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

HOW DOES RL DIFFERS FROM MAB?

- Same goal: select actions to maximize cumulative rewards but ...
- ... actions may have long-term consequences
- ... reward may be **delayed**
- ... it may be better to **sacrifice** immediate reward to gain more long–term reward

WHEN TO USE RL INSTEAD OF AUTOMATIC CONTROL?

- When the environment dynamics is **unknown**
- When the environment dynamics is known but too complex to be effectively used

OPTIMALITY CRITERIA

Goal of an RL agent: maximize the (expected discounted) cumulative reward

$$\sum_{t\geq 0} \gamma^t \, r_t$$

 $\gamma \approx 0$

«meglio un uovo oggi che una gallina domani?»

OPTIMAL VALUE FUNCTION AND OPTIMAL POLICY

- Maximum cumulative reward from (s,a)
- Bellman equation

$$Q^*(s,a) = r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a' \in A} Q^*(s',a')$$

instantaneous reward

transition model

cumulative reward form next state on

Optimal policy

$$\pi^*(s) = \operatorname{argmax}_{a \in A} Q^*(s, a)$$

EXAMPLE

Reward

0	0	0	1.00
0		0	- 0.88
0	0	0	0

EXAMPLE

EXAMPLE

Reward

0	0	0	1.00
0		0	- 0.88
0	0	0	0

Q-function

EXAMPLE

Reward

0	0	0	1.00
0		0	- 0.88
0	0	0	0

Refigyction

LEARNING IN TABULAR PROBLEMS: Q-LEARNING

• **Problem**: learn the optimal value function from samples

```
Initialize Q

Observe the initial state s_0

For each step t=0, 1, ...

Select action a_t with an exploration policy

Take action a_t and observe reward r_t and next state s_{t+1}

Update Q(s_t, a_t) \leftarrow (1-\beta) \ Q(s_t, a_t) + \beta[r_t + \gamma \max_a Q(s_{t+1}, a)]
```

How to select the exploration policy?

EXPLORATION VS EXPLOITATION

- All actions should be tried sufficiently often!
- exploration-exploitation dilemma
- Cost of exploration (simulation vs real system)
- **Examples**: epsilon greedy, Boltzmann, UCB

LEARNING WITH CONTINUOUS STATES

- What if the state space is infinite?
- Function approximation

$$Q(s_t, a_t; \theta)$$

 Minimize the loss via gradient descent over 6 (not working well...)

$$\min_{\theta} \left(Q(s_t, a_t; \theta) - \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \theta) \right) \right)^2$$

STEPS TOWARDS DEEP RL

$$\min_{\theta} \left(Q(s_t, a_t; \theta) - \left(r_t + \gamma \max_{a \in A} Q(s_{t+1}, a; \theta) \right) \right)^2$$

Not exactly supervised learning...

- Samples are dependent
- Learning stability

And some other triks... \rightarrow DQN (Deep Q-Networks)

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

DQN ON ATARI

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529-533.

TOWARDS REAL-WORLD APPLICATIONS

- Safe Behavior and Safe Learning
- Multi-objective tasks
- Interpretability
- Learn by imitation

SAFE REINFORCEMENT LEARNING

Learn a "safe" behavior

Learn/explore "safely"

Garcia, J., & Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal of Machine Learning Research, 16(1), 1437-1480.

Papini, Matteo, Andrea Battistello, and Marcello Restelli. "Balancing learning speed and stability in policy gradient via adaptive exploration." AISTATS 2020.

RL FOR AUTONOMOUS DRIVING

- Goal: display human-like behavior
- Two driving scenarios
 - Highway driving → multiobjective
 - Urban (intersection, roundabaout)
- Sensor inputs, discrete actions
- Interpretability → parametric rulebased policy

Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli, M., & Romano, D. (2020). Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. Robotics and Autonomous Systems, 131, 2020.

RL FOR DRIVING ON A TRACK

- Goal: minimize the lap time
- Human expert demonstration collected on a simulator
- Objectives
 - mimic the expert → imitation learning
 - improve the expert's policy → planning

... AND BEYOND

- Lifelong/Continual RL
- Meta RL
- Multi-Agent RL

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

THANK YOU!

Francesco Trovò

francesco1.trovo@polimi.it

Alberto Maria Metelli

albertomaria.metelli@polimi.it

ADDITIONAL REFERENCES

MAB

- Bubeck, S., & Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends® in Machine Learning, 5(1), 1-122.
- Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press.

RL

Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135).
 Cambridge: MIT press.