Generalizing some Hofstadter functions G, H and beyond

Pierre Letouzey, IRIF

Joint work with Shuo Li (U. Winnipeg) & Wolfgang Steiner (IRIF)

Seminaire Automates November 22, 2024

Some nested recursions

From the book "Gödel, Escher, Bach":

Definition (Hofstadter's G function)

$$\begin{cases} G(0) = 0 \\ G(n) = n - G(G(n-1)) \end{cases}$$

for all $n \in \mathbb{N}_*$.

Some nested recursions

From the book "Gödel, Escher, Bach":

Definition (Hofstadter's G function)

$$\begin{cases} G(0) = 0 \\ G(n) = n - G(G(n-1)) \end{cases}$$

for all $n \in \mathbb{N}_*$.

For $k \in \mathbb{N}$, we generalize to k nested recursive calls:

Definition (the F_k functions)

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$

for all $n \in \mathbb{N}_*$

where $F_k^{(k)}$ is the k-th iterate $F_k \circ F_k \circ \cdots \circ F_k$.

Plotting the early F_k

Outline

- Morphic words and pointwise monotonicity
- Numerical systems and discrepancy
- The Coq formalization

Part I

Morphic words and pointwise monotonicity

What about F_0 and F_1 and F_2 ?

 \bullet F_0 won't be considered : non-recursive, flat, boring

What about F_0 and F_1 and F_2 ?

- F₀ won't be considered : non-recursive, flat, boring
- F₁ is simply a division by 2 (rounded) :
 - ► $F_1(n) = n F_1(n-1) = 1 + F_1(n-2)$ when $n \ge 2$
 - ▶ Hence $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$

What about F_0 and F_1 and F_2 ?

- F₀ won't be considered : non-recursive, flat, boring
- F₁ is simply a division by 2 (rounded) :
 - ► $F_1(n) = n F_1(n-1) = 1 + F_1(n-2)$ when $n \ge 2$
 - ▶ Hence $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$
- $F_2=G$ is already well studied, see OEIS A5206. In particular $F_2(n)=\lfloor (n+1)/\varphi \rfloor$ where φ is the Golden Ratio.

Basic properties

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$
 for all $n > 0$

- Well-defined since $0 \le F_k(n) \le n$
- $F_k(0) = 0$, $F_k(1) = 1$ then $n/2 \le F_k(n) < n$
- F_k is made of a mix of flats and +1 steps
- Hence each F_k is increasing, onto, but not one-to-one
- Never two flats in a row
- At most k steps in a row

Basic properties

$$\begin{cases} F_k(0) = 0 \\ F_k(n) = n - F_k^{(k)}(n-1) \end{cases}$$
 for all $n > 0$

- Well-defined since $0 \le F_k(n) \le n$
- $F_k(0) = 0$, $F_k(1) = 1$ then $n/2 \le F_k(n) < n$
- F_k is made of a mix of flats and +1 steps
- Hence each F_k is increasing, onto, but not one-to-one
- Never two flats in a row
- At most k steps in a row

 F_k may be seen as an infinite word of flats and steps. For instance F_3 is $+=+++=++=+++=+++=\cdots$. Too coarse, no nice properties for k>2.

A letter substitution and its morphic word

Let k > 0. We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\mathcal{A} o \mathcal{A}^*$$
 $au_k(n) = (n{+}1)$ for $n < k$ $au_k(k) = k.1$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

A letter substitution and its morphic word

Let k > 0. We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\mathcal{A} o \mathcal{A}^*$$
 $au_k(n) = (n{+}1)$ for $n < k$ $au_k(k) = k.1$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

For instance:

- $x_2 = 212212122122121212 \cdots$ (Fibonacci word)
- $x_3 = 3123313123123312331 \cdots$

A letter substitution and its morphic word

Let k > 0. We use $A = \{1..k\}$ as alphabet.

Definition (substitution τ_k and morphic word x_k)

$$\mathcal{A} o \mathcal{A}^*$$
 $au_k(n) = (n{+}1)$ for $n < k$ $au_k(k) = k.1$

From letter k, τ_k leads to an infinite morphic word x_k , fixed-point of τ_k .

For instance:

- $x_2 = 212212122122121212 \cdots$ (Fibonacci word)
- $x_3 = 3123313123123312331 \cdots$

Spoiler: the previous $+=\cdots$ word of F_k is actually a projection of x_k where letter 1 becomes = and all other letters become +.

Prior work

Note that τ_k is not novel, it can be seen as:

- A particular modified Jacobi-Perron substitution (see Pytheas Fogg)
- The substitution associated with the *Rényi expansion* of 1 in base $\beta_k = root(X^k X^{k-1} 1)$ (see Frougny et al.)
 - ▶ Hence the factor complexity of x_k is $n \mapsto (k-1)n+1$.

Length of substituted prefix

A useful notion relating F_k and x_k :

Definition (length L_k of substituted prefix)

$$L_k(n) := |\tau_k(x_k[0..n-1])|$$

where $x_k[0..n-1]$ is the prefix of size n of x_k .

Interestingly, the *j*-th iterate of L_k satisfies $L_k^j(n) = |\tau_k^j(x_k[0..n-1])|$.

Theorem

For k, n, j > 0, the antecedents of n by F_{k}^{j} are $L_{k}^{j}(n-1)+1 \ldots L_{k}^{j}(n)$.

The proof is pretty technical (thanks Wolfgang).

Corollary: $F_{\nu}^{J}(L_{\nu}^{J}(n)) = n \leq L_{\nu}^{J}(F_{\nu}^{J}(n))$ (Galois connection).

Actually: $L_k(n) = n + F_k^{k-1}(n)$.

Generalizing some Hofstadter functions

Pierre Letouzey, IRIF

More relations between x_k and F_k

Consequences of the previous theorem:

- The letter $x_k[n]$ is 1 whenever $F_k(n+1) F_k(n)$ is 0, otherwise this difference is 1.
- Counting letter 1 in $x_k[0..n-1]$ gives $n F_k(n)$.
- Similarly, for p < k, counting letters strictly above p gives F_k^p . In particular the count of letter k is F_k^{k-1} .
- Another point of view: $x_k[n] = min(j, k)$ where j is the least value such that F_k^j is flat at n.

Letter frequencies

For k > 0, let α_k be the positive root of $X^k + X - 1$ and $\beta_k = 1/\alpha_k$, positive root of $X^k - X^{k-1} - 1$.

Theorem

$$\lim_{n \to \infty} \frac{1}{n} F_k(n) = \alpha_k,$$

$$\lim_{n \to \infty} \frac{1}{n} L_k(n) = \beta_k,$$
frequency_k(i) = α_k^{k+i-1} for $1 \le i < k$,
frequency_k(k) = $\alpha_k^{k-1} = \beta_k - 1$.

Said otherwise, $F_k(n) = \alpha_k . n + o(n)$ when $n \to \infty$. Could we prove it without "detour" via x_k ?

Corollary

When n is large enough, $F_k(n) < F_{k+1}(n)$.

Monotony of the F_k family

Definition

Pointwise order for functions : $f \le h \iff \forall n, f(n) \le h(n)$

Theorem

For all k, $F_k \leq F_{k+1}$

Monotony of the F_k family

Definition

Pointwise order for functions : $f \le h \iff \forall n, f(n) \le h(n)$

Theorem

For all k, $F_k \leq F_{k+1}$

- Conjectured in 2018.
- First proof by Shuo Li (Nov 2023).
- Improved version by Wolfgang Steiner.
- The key lemma proves simultaneously $L_k(n) \ge L_{k+1}(n)$ and $L_k^j(n) < L_{k+1}^{j+1}(n)$ for $k, n \ge 1$ and $j \le k$.

Some key steps in the key lemma

When proving $L_k^j(n) < L_{k+1}^{j+1}(n)$ by induction on n, simultaneously with $L_k(n) \ge L_{k+1}(n)$:

• We deal with j = k via an ad-hoc equation:

$$L_{k+1}^{k+1}(n) - L_k^k(n) = L_{k+1}^k(n) - L_k^{k-1}(n)$$

- When j < k, consider the last letter on the right $x_{k+1}[n-1]$:
 - ▶ Either it is k+1, and even a k letter on the left leads to a smaller quantity: $|\tau_{k}^{j}(k)| < |\tau_{k+1}^{j+1}(k+1)|$.
 - ▶ Either it is not k+1, and the whole prefix $x_{k+1}[0..n-1]$ is the image by τ_{k+1} of a smaller prefix. Let m be its size. Induction hypothesis on this m (now with j+1 iterations): $n=L_{k+1}(m) \leq L_k(m)$ and $L_k^{j+1}(m) < L_{k+1}^{j+2}(m)$. And finally:

$$L_k^j(n) \le L_k^j(L_k(m)) = L_k^{j+1}(m) < L_{k+1}^{j+2}(m) = L_{k+1}^{j+1}(L_{k+1}(m)) = L_{k+1}^{j+1}(n)$$

Pointwise monotonicity, summerized

Below, $f \rightarrow g$ whenever $f \leq g$ pointwise:

Pointwise monotonicity, summerized

Below, $f \rightarrow g$ whenever $f \leq g$ pointwise:

Pointwise monotonicity, summerized

Below, $f \rightarrow g$ whenever $f \leq g$ pointwise:

$$j = 1 \qquad F_{1} = \lceil \frac{n}{2} \rceil \longrightarrow F_{2} = G \longrightarrow F_{3} \longrightarrow F_{4} \longrightarrow F_{5}$$

$$0.5 \uparrow \qquad 0.618 \uparrow \qquad 0.682 \uparrow \qquad 0.724 \uparrow \qquad 0.754 \uparrow \qquad$$

k = 1 k = 2 k = 3 k = 4 k = 5

Remaining conjectures

Let $N_k := (k+1)(k+6)/2$. This appears to be the last contact:

- We proved $F_k(N_k) = F_{k+1}(N_k)$
- We conjecture $F_k(n) < F_{k+1}(n)$ for all $n > N_k$.

 N_k also appears to be the last contact between L_{k+1} and L_{k+2} .

Part II

Numerical systems and discrepancy

Quiz!

Let k > 0. We say that a set of integers S is k-sparse if two distinct elements of S are always separated by at least k. How many k-sparse subsets of $\{1..n\}$ could you form ?

A Fibonacci-like family of sequences

For k > 0:

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

A Fibonacci-like family of sequences

For k > 0:

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

- $A_{1,n}$: 1 2 4 8 16 32 64 128 256 512 ... (Powers of 2)
- A_{2,n}: 1 2 3 5 8 13 21 34 55 89 ... (Fibonacci)
- $A_{3,n}$: 1 2 3 4 6 9 13 19 28 41 ... (Narayana's Cows)
- $A_{4,n}$: 1 2 3 4 5 7 10 14 19 26 ...

A Fibonacci-like family of sequences

For k > 0:

$$\begin{cases} A_{k,n} &= n+1 & \text{when } n \leq k \\ A_{k,n} &= A_{k,n-1} + A_{k,n-k} & \text{when } n \geq k \end{cases}$$

- $A_{1,n}$: 1 2 4 8 16 32 64 128 256 512 ... (Powers of 2)
- A_{2,n}: 1 2 3 5 8 13 21 34 55 89 ... (Fibonacci)
- $A_{3,n}$: 1 2 3 4 6 9 13 19 28 41 ... (Narayana's Cows)
- \bullet $A_{4,n}$: 1 2 3 4 5 7 10 14 19 26 ...

Actually:
$$A_{k,n} = L_k^n(1)$$

Zeckendorf decomposition

Let k > 0.

Theorem (Zeckendorf)

All natural number can be written as a sum of $A_{k,i}$ numbers. This decomposition is unique when its indices i form a k-sparse set.

F_k is a bitwise right shift

Theorem

 F_k is a right shift for such a decomposition : $F_k(\Sigma A_{k,i}) = \Sigma A_{k,i-1}$ (with the convention $A_{k,0-1} = A_{k,0} = 1$)

- Beware, this shifted decomposition might not be k-sparse anymore
- Not so new: a variant of F_k is already known to be a right shift on these decompositions (Meek & van Rees, 1981).
- Key property : F_k is flat at n iff the decomposition of n contains $A_{k,0} = 1$.
- More generally, $F_k^{(j)}$ is "flat" at n iff j > rank(n) where the rank of n is the smallest index in the decomposition of n.

Discrepancy

Definition (Discrepancy)

$$\Delta_k := Sup_n |F_k(n) - \alpha_k n|$$

- $F_1(n) = |(n+1)/2| = \lceil n/2 \rceil$ hence $\Delta_1 = 0.5$
- $F_2(n)=\lfloor \alpha_2.(n+1) \rfloor$ with $\alpha_2=\varphi-1pprox 0.618...$ hence $\Delta_2=\varphi-1$

New results:

- $\Delta_3 < 1$
- ∆₄ < 2
- For $k \geq 5$, $\Delta_k = \infty$

Discrepancy

Definition (Discrepancy)

$$\Delta_k := Sup_n |F_k(n) - \alpha_k n|$$

- $F_1(n) = \lfloor (n+1)/2 \rfloor = \lceil n/2 \rceil$ hence $\Delta_1 = 0.5$
- $F_2(n)=\lfloor \alpha_2.(n+1) \rfloor$ with $\alpha_2=\varphi-1pprox 0.618...$ hence $\Delta_2=\varphi-1$

New results:

- $\Delta_3 < 1$
- ∆₄ < 2
- For $k \geq 5$, $\Delta_k = \infty$

This proves two conjectures of OEIS:

- $F_3(n) \in [\alpha_3.n] + \{0,1\}$
- $F_4(n) \in [\alpha_4.n] + \{-1,0,1,2\}$

Solving the Fibonacci-like recurrences

Let $r_{k,i}$ be the k roots of $X^k - X^{k-1} - 1$ and $c_{k,i}$ be $r_{k,i}^k (kr_{k,i} - (k-1))^{-1}$.

Theorem

For all n:

$$A_{k,n} = \sum_{i=0}^{k-1} c_{k,i} \, r_{k,i}^n$$

- We obtain these coefficients by inversing a Vandermonde matrix.
- Trick: temporary consider $\tilde{A}_{k,n}$ with the same recursion but initial values 0.0.01.

Computing discrepancies

Let $d_{k,i} = c_{k,i} (r_{k,i}^{-1} - \alpha_k)$ and $D_k(n)$ be the Zeckendorf k-decomposition of n.

Theorem

$$F_k(n) - \alpha_k n = \sum_{q \in D_k(n)} \sum_{i=0}^{k-1} d_{k,i} r_{k,i}^q = \sum_{i=0}^{k-1} \left(d_{k,i} \sum_{q \in D_k(n)} r_{k,i}^q \right)$$

- One coefficient $d_{k,i}$ is null (the one for the positive root)
- For k < 5, all other roots have modulus strictly less than 1, leading to a finite discrepancy.
- For proving $\Delta_3 < 1$ and $\Delta_4 < 2$ we follow Rauzy and regroup some root powers together (up to 3 terms together for k=3, i.e. q modulo 9, and up to 4 terms together for k=4, i.e. q modulo 16). In these groups of root powers, a lot of cancellation happens.
- For $k \ge 5$, at least one non-real root has modulus 1 or more, leading to infinite discrepancy.

Serendipity: a Rauzy fractal

Let $\delta(n) := F_3(n) - \alpha_3.n$, then plot $(\delta(i), \delta(F_3(i)))$ for many i:

Summary

	F_1	F ₂	F ₃	F ₄	<i>F</i> ₅	F_k
						<i>k</i> ≥6
Hofstadter's name		G	Н			
Mean slope $\alpha_k = root(X^k + X - 1)$	0.5	φ -1	≈ 0.682	≈ 0.724	≈ 0.754	α_k
Discrepancy Sup $ F_k(n) - \alpha_k n $	0.5	φ -1	< 1	< 2	O(ln(n))	$O(n^a)$, $0 < a < 1$
Exact expression	$\lfloor \frac{n+1}{2} \rfloor$	$\lfloor \frac{n+1}{\varphi} \rfloor$	×	X	×	×
Almost expression			$\lfloor \alpha_3 n \rfloor + \{0,1\}$	$ \begin{bmatrix} \alpha_4 \mathbf{n} \end{bmatrix} + \\ \{-1, 0, 1, 2\} $	×	×
Quasi-additivity	✓	✓	✓	✓	×	×
$\beta_k = \frac{1}{\alpha_k}$ is Pisot	✓	✓	✓	✓	√!	×

Here $\beta_2=\varphi\approx$ 1.618 is the Golden Ratio.

And $eta_5 pprox 1.324$ is the Plastic Ratio, root of X^3-X-1 , smallest Pisot number

Part III

The Coq formalization

Current status of this Coq formalization

- Freely accessible : https://github.com/letouzey/hofstadter_g
- Covers all results of part I and part II. And more.
- One remaining axiom for proving $\Delta_k = \infty$ for $k \ge 6$ (axiom equivalent to "the minimal Pisot is the Plastic Ratio").
- Quite large, about 20 kloc. Lots of cruft, experiments, etc.
- Coq rechecks the whole in about 2 min.
- The discrete part is self-contained (nat, List, ...)
- The parts involving $\mathbb R$ and $\mathbb C$ use two external libraries (Coquelicot, QuantumLib), with personal contributions and extensions.

Fibonacci-like recurrence

An example of straightforward definition (NB: "S" is Coq jargon for +1):

```
\begin{split} & \text{Fixpoint A } (q \text{ n : nat}) := \\ & \text{ match n with } \\ & \mid \text{ O} \Rightarrow 1 \\ & \mid \text{ S m} \Rightarrow \text{A } q \text{ m} + \text{A } q \text{ (m-q)} \\ & \text{ end.} \end{split}
```

```
Compute A 0 8. (* 256 *)
Compute A 1 8. (* 55 *)
```

Fibonacci-like recurrence

An example of straightforward definition (NB: "S" is Coq jargon for +1):

```
\begin{split} & \text{Fixpoint A } (q \text{ n : nat}) := \\ & \text{ match n with } \\ & \mid \text{ O} \Rightarrow 1 \\ & \mid \text{ S m} \Rightarrow \text{A } q \text{ m} + \text{A } q \text{ (m-q)} \\ & \text{ end.} \end{split}
```

```
Compute A 0 8. (* 256 *)
Compute A 1 8. (* 55 *)
```

- But we parameterized by q=k-1 instead of k. Otherwise, dealing with k=0 is a pain.
- Already some magic around m-q

Fibonacci-like recurrence

```
A corresponding proof (NB: "S" is Coq jargon for +1): Lemma A_base q n: n <= S q \rightarrow A q n = S n. Proof. induction n; auto. simpl. intros. replace (n-q) with 0 by lia. simpl. rewrite IHn; lia. Qed.
```

Defining F_k

end.

Definition f q n := recf q n n.

```
Compute f 0 256. (* 128 *)
Compute f 1 89. (* 55 *)
```

- Same trick with q = k 1.
- \bullet To overcome the lack of structural decrease : an extra parameter p.
- First task : prove base and step equations for this f.
- Alternative : predicative or inductive definitions, much more flexible but no computation.

A main result

```
Theorem f_grows q n : f q n <= f (S q) n. 
 Proof. 
 ... 
 Qed. 
 Print Assumptions f_grows. 
 (* Closed under the global context *)
```

Alternative definition of F_k

More involved but less inefficient. Can be proved equivalent to f.

```
Fixpoint fdescend stq p n :=
  match p with
    0 \Rightarrow n
    \Leftrightarrow q \ R
    match stq with
       \Rightarrow 0  (* normally won't occur *)
      a:: \_ \Rightarrow fdescend (skipn (n-a) stq) p a
    end
  end.
Fixpoint ftabulate q n :=
match n with
   0 \Rightarrow [0]
   Sn \Rightarrow
   let stq := ftabulate q n in
   (S n - fdescend stq (S q) n)::stq
 end.
```

Finite and infinite words

Relatively generic definitions:

```
Notation letter := nat (only parsing).
Definition word := list letter. (* finite word *)
Definition sequence := nat \rightarrow letter. (* infinite word *)
Definition subst := letter \rightarrow word.
Definition apply: subst \rightarrow word \rightarrow word := \cdotflat_map _ _.
Definition napply (s:subst) n w := (apply s ^^n) w.
Definition subst2seq s a :=
 fun n \Rightarrow nth n (napply s n [a]) a.
Examples \tau_k and x_k:
Definition qsubst q (n:letter) :=
 if n = ? q then [q; 0] else [S n].
Definition gseq q := subst2seq (qsubst q) q.
```

Example of a larger proof I

```
Lemma Lq_LSq q n :
L(Sq)1n \le Lq1n
\land (0<n \rightarrow forall j, j<=S q \rightarrow L q j n < L (S q) (S j) n).
Proof.
 induction n as [n IH] using lt_wf_ind.
destruct (Nat.eq_dec n 0) as [\rightarrow |N0]; [easy]].
destruct (Nat.eq_dec n 1) as [\rightarrow |N1].
 { clear NO IH. split; intros;
  rewrite !L S. !L O. !gseg g O. !gnsub gword. !gword len. !A base: lia. }
split.
— rewrite !Lq1_Cqq, ← !fs_count_q, ← Nat.add_le_mono_l.
  set (c := fs q q n).
  set(c' := fs(Sa)(Sa)n).
  destruct (Nat.eq_dec c' 0); try lia.
  replace c' with (S (c'-1)) by lia. change (c'-1 < c).
   apply (incr strmono iff (L incr (S a) (S a))).
   apply Nat.lt le trans with n; [apply steiner thm; lia]].
  transitivity (L q q c); [apply steiner_thm; lia]].
   destruct (Nat.eq dec q 0) as [\rightarrow |Q].
   + rewrite L_q_0. apply L_ge_n.
   + apply Nat.lt_le_incl, IH; try apply fs_lt; try apply fs_nonzero; lia.
 - intros _. destruct n; try easy.
  destruct (Nat.eq_dec (qseq (S q) n) (S q)) as [E|N].
  + intros j Hj. rewrite !L_S, E.
    rewrite qnsub_qword, qword_len.
     assert (Hx := qseq letters q n).
     set (x := qseq q n) in *.
     generalize (qnsub_len_le q j x Hx). rewrite !A_base by lia.
     destruct (IH n lia) as ( .IH').
     specialize (IH' lia i Hi).
     lia.
```

Example of a larger proof II

```
+ destruct (qsubst_prefix_inv (S q) (qprefix (S q) (S n)))
      as (v & w & Hv & E & Hw); try apply gprefix_ok.
    destruct Hw as [\rightarrow \mid \rightarrow ].
    2:{ rewrite take_S in Hv; apply app_inv' in Hv; trivial;
         destruct Hv as (_,[=E']); lia. }
    rewrite app_nil_r in Hv.
    red in E
    set (1 := length v) in *.
    assert (E' : L (S \alpha) 1 1 = S n).
     { now rewrite ← (aprefix length (S a) (S n)), Hv. E. }
     assert (H10: 1 <> 0). { intros \rightarrow . now rewrite L_0 in E'. }
    assert (H1: 1 < Sn).
     { rewrite ← E', rewrite La1 Caa.
       generalize (Cqq_nz (S q) 1). lia. }
    destruct (IH 1 H1) as (IH5, IH6). clear IH. rewrite E' in IH5.
    specialize (IH6 lia).
     assert (LT: forall j, j \leq q \rightarrow L q j (S n) \leq L (S q) (S j) (S n)).
     { intros j Hj. specialize (IH6 (S j) lia).
      rewrite ← E' at 2. rewrite L add. Nat.add 1 r.
      eapply Nat.le_lt_trans; [|apply IH6].
      rewrite ← (Nat.add_1_r j), ← L_add. apply incr_mono; trivial.
      apply L_incr. }
    intros j Hj. destruct (Nat.eq_dec j (S q)) as [\rightarrow |Hj'].
    * generalize (steiner_trick q (S n)).
       specialize (LT q (Nat.le_refl _)). lia.
     * apply LT. lia.
Qed.
```

Reals, Matrix, Polynomial, etc

- Due to the Coq standard definition of reals, this part uses 4 logical axioms (incl. excluded middle and functional extensionality).
- Lemma Vandermonde_det n (1 : list C) : length $1 = n \rightarrow$ Determinant (Vandermonde n 1) = multdiffs 1.
- A bit of interval arithmetic for computing bounds reliably. For instance $\Delta_3 < 0.9959 < 1$.
- The proofs about Δ_3 automatically enumerate "sparse" subsets and bounds the corresponding 13 cases. Same for Δ_4 (69 cases).

Conclusion

About the F_k :

- Some remaining conjectures, seem to require new ideas.
- Is this specific to this particular recursion $X^k + X 1$? What about similar functions e.g. for Rauzy's Tribonacci? Unclear.

About Coq:

- Using Coq for this kind of study is doable, but still tricky and time consuming.
- Remaining critical parts to manually review: early definitions, final theorem statements, used axioms.
- Difficulty: lack of results in libraries (e.g. on complex, matrices, power series).
- Tempting: start proving that Plastic Ratio is the smallest Pisot.

Thank you for your attention

Preprint about part I: https://hal.science/hal-04715451

Coq Development: https://github.com/letouzey/hofstadter_g