Redução de observações gravimetricas teoria e prática

2004

Nelsi Côgo de Sá

IAG/USP Departamento de Geofísica Laboratório de Geodésia

RESUMO

Este trabalho descreve a metodologia, os algorítmos e o programa de computador REGRAV desenvolvidos no grupo de Geodésia do IAG/USP para a redução de observações gravimétricas obtidas com gravímetros do tipo Lacoste & Romberg, modelo G, ou do tipo Worden, provido ou não de termostato. Para facilitar o entendimento da metodologia e o correto uso do programa, o texto inicia com a terminologia normalmente usada nos trabalhos rotineiros que envolvem levantamento e processamento de observações gravimétricas. A transformação de coordenadas planas da projeção UTM em geodésicas e as mudanças de DATA (CA para SGB e WGS84 para SGB), eventualmente processadas na redução, são abordadas de forma concisa. Para o cálculo da atração luni-solar sobre as medidas gravimétricas, são usadas as fórmulas de Longmann. A deriva instrumental é determinada através da deriva estática, obtida pela soma das variações ocorridas nas interrupções com duração superior a uma hora; e da deriva dinâmica, obtida pela variação horária ocorrida no deslocamento. A aceleração de gravidade nas estações gravimétricas é determinada a partir da estação básica inicial de cada linha. As anomalias gravimétricas ar-livre e Bouguer são calculadas pelas fórmulas usuais, utilizando a densidade média da crosta (2,67 g cm⁻³) e a gravidade teórica do GRS67. Os formulários de codificação, incluídos nos apêndices, contêm exemplos de linhas codificadas e reduzidas. As descrições dos dados e dos códigos que constituem cada registro do formulário de codificação, dados reduzidos no formato padrão assim como dos armazenamento, são dadas na forma de tabelas.

AGRADECIMENTOS

Este trabalho, desenvolvido ao longo de vários anos, teve o incentivo e a colaboração de colegas, alunos e técnicos que atuam em Gravimetria. Assim, expresso agradecimentos àqueles que contribuíram de alguma forma para a sua realização, especialmente

- ao Prof. Camil Gemael, pelas discussões e pelo constante incentivo,
- ao Prof. Eder Cassola Molina, pela leitura do texto e pelas sugestões,
- ao Prof. Denizar Blitzkow, pela leitura do texto e contribuição enquanto fomos colegas no IAG,
- ao Graduando Emilson Pereira Leite pela leitura do texto e pelos comentários,
- ao Pós-graduando Álvaro Augusto Pereira pela digitação e revisão parciais do texto,
- ao Técnico Odilon Ferreira Miranda Filho, pela leitura do texto e sugestões técnicas, e
- ao Técnico Clarino do Divino Vieira, pela digitação parcial do texto e edição das figuras.

SUMÁRIO

RESUMO	ii
AGRADECIMENTOS	iii
SUMÁRIO	iv
1. INTRODUÇÃO	1
2. TERMINOLOGIA	3
Acelereção de gravidade	3
Gravímetro	3
Leitura gravimétrica	3
Estação gravimétrica	3
Datum gravimétrico	4
Levantamento gravimétrico	4
Linha gravimétrica	4
Latitude geodésica	4
Longitude geodésica	5
Fuso horário	6
Hora civil de greenwich	7
Datum horizontal	7
Altitude fundamental	8
Altitude suplementar	8
Datum vertical	8
Anomalia gravimétrica	8
Correção topográfica	8
Deriva instrumenta	8
Projeção Universal Transversa de Mercator (UTM)	8
Meridiano central da projeção UTM	9
Fator de calibração de um grtavímetro	9
Calibração de um gravímetro	9
Base de calibração gravimétrica	11
3. CODIFICAÇÃO DE OBSERVAÇÃO	12
4. CONVERSÃO DE LEITURAS EM UNIDADES DE ACELERAÇÃO	13
5. TRANSFORMAÇÃO DE COORDENADAS	16
6. MUDANCA DE DATUM	22

7. CÁLCULO DE ATRAÇÃO LUNI-SOLAR	25
8. CÁLCULO DA DERIVA E DAS LEITURAS CORRIGIDA	36
9. CÁLCULO DA ACELERAÇÃO E DAS ANOMALIAS GRAVIMÉTRICAS	38
10 CONCLUSÕES E RECOMENDAÇÕES	40
11. REFERÊNCIAS	41
12. APÊNDICES	
A. CONSTANTES	44
B. DESCRIÇÕES E CONVENÇÕES PARA CODIFICAÇÃO DE DADOS	44
Tabela B.1 – Descrição do registro 1	45
Tabela B.2 – Descrição do registro 2	47
Tabela B.3 – Descrição do registro 3	49
C. DESCRIÇÃO E CONVENÇÃO PARA ARMAZENAMENTO DE DADOS	52
Tabela C.1 - Arquivo completo	59
D. INSTALAÇÃO DO PROGRAMA REGRAV	60
D.1 - Configuração e periféricos do microcomputador	60
D.2 - Diretório de redução	60
E. INSTRUÇÕES DE EXECUÇÃO DO PROGRAMA REGRAV	61
F. EXEMPLOS DE PROCESSAMENTO	63
F.1 - Redução de observações comuns	63
F.2 - Redução de observações para calibração	64
G. CONFERÊNCIA E ANÁLISE DOS RESULTADOS	74
G.1 - Caderneta de observações	74
G.2 - Verificação por colunas	74
G.3 - Controle da perturbação luni-solar	74
G.4 - Controle da deriva estática	74
G.5 - Controle da deriva dinâmica	75
G.6 - Verificação final	75
H. CÓDIGOS DAS INSTITUIÇÕES PARA CODIF1CAÇÃO	76
13. ANEXOS	
F.1.1 - Dados digitados (APÊNDICE F.1)	66
F.1.2 - Dados para conferência (observados)	66
F.1.3 - Dados para conferência (reduzidos)	68
F.1.4 - Dados reduzidos (arquivo completo)	69

F.1.5 - Dados reduzidos (arquivo simplificado)	69
F.2.1 - Dados digitados (APÊNDICE F.2)	70
F.2.2 - Dados para conferência (observados)	70
F.2.3 - Dados para conferência (reduzidos)	71
F.2.4 - Dados reduzidos (arquivo simplificado)	72

1. INTRODUÇÃO

Os dados gravimétricos são importantes nos estudos que visam o conhecimento da forma, da estrutura, das propriedades físicas e dos processos dinâmicos da Terra. Essa multiplicidade de aplicações gera a realização de levantamentos gravimétricos em todo o mundo. Com o desenvolvimento dos gravímetros modernos, a medição gravimétrica relativa, efetuada nos levantamentos convencionais, se constitui numa operação relativamente simples que pode ser realizada em poucos minutos com notável precisão. Mas, o processamento das observações para as correções da deriva instrumental e da atração luni-solar, assim como a transformação de coordenadas e o cálculo das anomalias gravimétricas constitui um trabalho moroso e repetitivo que deve ser realizado com o auxílio do computador. Atualmente, o uso de computador na redução de dados obtidos levantamentos gravimétricos sistemáticos é praticamente obrigatório.

Quando as atividades de Geodésia e Gravimetria foram iniciadas no Departamento de Geofísica do IAG, inicialmente para a implantação da Rede Gravimétrica Fundamental do Estado de São Paulo (RGFSP) e depois para levantamentos regionais de densificação, tornou-se necessária a adoção de uma sistemática de codificação e processamento de observações gravimétricas. Assim, foi impresso um formulário para anotação dos dados que constituem uma estação gravimétrica e desenvolvido o programa de computador em linguagem FORTRAN (Figura 1.1) para a redução das observações, ambos compatíveis com os padrões internacionais de coleta, processamento e armazenamento de dados gravimétricos. Tanto o formulário como o programa passaram por várias modificações e foram melhorados através da experiência adquirida pelo grupo de Geodésia em mais de 20 anos de trabalho nos levantamentos gravimétricos que realizamos.

Na versão atual, o programa REGRAV foi escrito para microcomputadores do tipo PC, pois estes são utilizados pela maioria dos usuários que efetuam o processamento de observações gravimétricas. Para facilitar o uso do programa por usuários que têm pouca experiência, foi incluído um pequeno MENU, apesar das limitações da linguagem FORTRAN neste tipo de implementação.

Figura 1.1 – Redução de observações gravimétricas

2. TERMINOLOGIA

Para proporcionar fácil acesso aos termos técnicos usados na medição e no processamento de observações gravimétricas, visando o rápido entendimento das instruções para o correto uso do programa por usuários não especializados, foram reunidas nesta seção as definições usuais na codificação de observações.

Aceleração de gravidade - é a resultante da aceleração gravitacional e da aceleração centrífuga no ponto considerado sobre a superfície terrestre, depurada das perturbações conjuntas da Lua e do Sol (luni-solar) e das derivas (estática e dinâmica) do gravímetro usado na medição.

Gravímetro - é o instrumento com o qual se mede a aceleração de gravidade. Dependendo das grandezas físicas envolvidas no processo de medição, os gravímetros são classificados em gravímetros absolutos e gravímetros relativos. Nos gravímetros absolutos, a aceleração de gravidade é determinada por meio da medição de duas grandezas fundamentais (tempo e distância); nos gravímetros relativos, essa aceleração é obtida através da medição de uma grandeza fundamental (distância) e uso de uma grandeza derivada (aceleração de gravidade). Isto significa que os gravímetros relativos fornecem a diferença de aceleração entre os pontos medidos. Assim, para se determinar a aceleração de gravidade nesses pontos é necessário iniciar a medição num ponto onde se conhece essa aceleração, que constitui uma estação gravimétrica de referência (básica). Os gravímetros absolutos (geralmente explorando queda livre), são usados para implantar estações de referência para as medições relativas. Os gravímetros relativos (geralmente adotando um sistema elástico como sensor) são usados nos trabalhos rotineiros de Gravimetria, visando a representação do campo de gravidade e suas aplicações na determinação da forma e estrutura da Terra, e na exploração de água, minério e petróleo.

Leitura gravimétrica - é o resultado da operação que envolve duas etapas: a) posicionar a massa do sistema elástico (sensor) do aparelho sobre a posição de referência, na escala graduada (linha de leitura), e b) ler o resultado combinando o contador e o *dial do gravímetro*.

Estação gravimétrica - é o ponto no qual se determina a aceleração de gravidade, a posição geográfica, a altitude ortométrica e outros dados de interesse à representação do campo de gravidade. Dependendo do gravímetro usado na medição, as estações gravimétricas são classificadas em estações gravimétricas absolutas (medidas com

gravímetros absolutos) e estações gravimétricas relativas (medidas com gravímetros relativos). As estações relativas, segundo os objetivos a que se destinam são classificadas em estações de referência e estações de densificação. No Brasil, existem atualmente cerca de 10 estações absolutas de controle (Gemael et al., 1989), aproximadamente 500 estações básicas relativas (Blitzkow & Sá, 1978; ON, 1987) e algumas centenas de milhares de estações de densificação usadas na representação de anomalias gravimétricas (Sá et al.,1992). As estações de referência possuem alta precisão, sobretudo na aceleração gravidade, e têm como objetivo o apoio gravimétrico nos levantamentos de densificação. As estações de densificação, implantadas em pequenas ou grandes regiões, visam o cálculo de anomalias gravimétricas para aplicações diversas (geodésicas, geofísicas e geológicas) e, por isso, requerem alta precisão nas coordenadas e, sobretudo na altitude (ver critérios de classificação na Tabela B.3).

Datum gravimétrico - é um conjunto de estações gravimétricas, referidas a uma ou mais estações absolutas. Como as estações que constituem um datum geralmente formam uma rede, é usual atribuir-lhe o nome de Rede Gravimétrica de Referência. Essas redes são classificadas quanto ao âmbito em Redes Gravimétricas Mundiais, como a Internacional Gravity Standardization Net 1971 (IGSN71) (IAG, 1974), em Redes Gravimétricas Nacionais, como a Rede Gravimétrica Fundamental Brasileira (RGFB) (ON, 1987) e, eventualmente, Redes Gravimétricas Secundárias como, a Rede Gravimétrica Fundamental do Estado de São Paulo (RGFSP) (Blitzkow & Sá, 1978). No Brasil, as estações vinculadas ao datum gravimétrico antigo, constituído pela rede Woollard, podem ser referidas à rede IGSN71 através de parâmetros de transformação (Sá & Blitzkow, 1986).

Levantamento gravimétrico - é o trabalho desenvolvido na implantação de estações gravimétricas.

Linha gravimétrica - é a denominação da poligonal que se obtém com a ligação de estações gravimétricas sucessivas, implantadas entre duas estações de referência. Se a primeira estação de referência coincidir com a última, tem-se uma linha gravimétrica fechada ou de base simples; se a primeira for distinta da última, tem-se uma linha gravimétrica aberta ou de base dupla (Figura 2.1).

Latitude geodésica - é o ângulo formado pela normal que passa pelo ponto e sua projeção sobre o plano do equador. Por convenção, a latitude geodésica é positiva no hemisfério norte e negativa no hemisfério sul.

Longitude geodésica – é o ângulo do diedro formado pelo Meridiano Zero (MZ) ou origem e o meridiano que passa pelo ponto. Por convenção, a longitude geodésica é positiva contada por leste e negativa contada por oeste do MZ.

Figura 2.1 – Linhas gravimétricas fechada e aberta

Figura 2.2 – Coordenadas geodésicas, altitude ortométrica e altura geoidal

Fuso horário — é a região de 15° em longitude, compreendida entre dois meridianos, na qual a Hora Legal coincide com a Hora Civil do meridiano central dessa região. Por definição a Hora Legal do fuso zero é a Hora de Greenwich. Os fusos horários são numerados de 1 a 11 e de forma que o 0 e 12 correspondem aos fusos que contêm, respectivamente, o meridiano de Greenwich e o antípoda (Figura 2.3). Por convenção, os fusos horários são positivos a Oeste e negativos a Este do MZ. O Brasil estende-se por quatro fusos horários (Figura 2.4) do seguinte modo

- Fuso das 2 horas: arquipélago Fernando de Noronha e Ilha da Trindade;
- Fuso das 3 horas: todo país, exceto Amazonas, Mato Grosso, Mato Grosso do Sul,
 Acre e parte do Pará;
- Fuso das 4 horas: Mato do Grosso do Sul, Mato Grosso e parte do Pará e Amazonas; e
- Fuso das 5 horas: território da Acre e parte do Amazonas.

Figura 2.3 – Meridiano origem e fusos horários

Figura 2.4 – Fusos horários do Brasil

Hora civil de Greenwich – é o ângulo horário do Sol médio acrescido de 12 horas (ver p.e. Mueller, 1969).

Datum geográfico ou horizontal - é constituído pelo ponto de referência $P(\varphi,\lambda)$, pela superficie elipsoidal definida através de seus parâmentros (a,f), e pelos parâmetros de orientação (N,ξ,η) , que definem sua posição em relação ao centro de massa da Terra (geocentro). Na maioria dos sistemas geodésicos nacionais, o *datum* geográfico caracteriza-se pela orientação inicialmente arbitrada $(N=\xi=\eta=0)$, na qual o elipsóide tangencia o geóide no *datum*. O Sistema Geodésico Brasileiro (SGB) adota o elipsóide do *Geodetic Reference System* 1967 (GRS67), como modelo matemático, e o vértice CHUÁ, pertencente à cadeia de triangulação brasileira, como origem (IBGE, 1983). Atualmente, o SGB está na fase de transição (até início de 2015), para adoção definitiva do Sistema de Referência Geocêntrico para as Américas (SIRGAS). No SIRGAS, o *datum* é realizado através do conceito moderno, que consiste numa rede de estações, cujas coordenadas são de finidas no espaço e no tempo. Mais informações sobre o SIRGAS e sua adoção podem ser encontradas no site do IBGE http://www.ibge.gov.br.

Altitude fundamental - é a distância, contada sobre as vertical da estação, compreendida entre a superfície geoidal e o ponto considerado. Em outras palavras, é a altitude ortométrica da estação.

Altitude suplementar - é uma distância auxiliar compreendida entre o ponto da medição e uma superfície que normalmente separa dois meios como, por exemplo, o fundo de um lago, do oceano etc.

Referência de nível – é o marco que materializa o ponto no qual se conhece a altitude ortométrica.

Datum vertical – é a Referência de Nível (RN) cuja altitude está diretamente vinculada à superfície geoidal (definida através de marégrafo), adotada como referência para determinação da altitude ortométrica nas RNs que constituem redes altimétricas.

Anomalia gravimétrica – é a diferença entre a gravidade observada, referida ao geóide através de correções especificas (topografia, massa, etc.) e a gravidade produzida pelo modelo adotado através da fórmula internacional de gravidade.

Correção topográfica - é a correção que leva em conta o efeito das irregularidades topográficas no cálculo da anomalia Bouguer.

Deriva instrumental - é a variação das leituras do gravímetro em uso, resultante das modificações que ocorrem em suas características físicas, num intervalo de tempo. Dependendo das condições de movimento em que o gravímetro se encontra no intervalo de tempo considerado, ela é classificada em deriva estática, se o gravímetro permaneceu parado, e deriva dinâmica, se o gravímetro permaneceu em movimento. O tempo correspondente à deriva (estática ou dinâmica) é denominado tempo de deriva (estática ou dinâmica).

Projeção Universal Transversa de Mercator (UTM) - é a projeção cartográfica na qual os pontos da superfície terrestre são projetados no cilindro transverso ao eixo de rotação da Terra, secante ou tangente à superfície no meridiano central do setor que contém os pontos (Figura 2.5). A divisão da superfície terrestre em setores de 6º em longitude, (Figura 2.6) visa garantir os limites aceitáveis de deformação.

Figura 2.5 – Geometria da projeção UTM

Figura 2.6 – Setores padrões da projeção UTM

Meridiano central da projeção UTM - é o meridiano que divide um setor em duas partes iguais (Figura 2.7) e constitui a origem das abscissas das coordenadas de projeção (Figura2.8). Por convenção, essas regiões têm origem no meridiano de *Greenwich* e se estendem para *Este* ou *Oeste*, com a mesma convenção de sinal da longitude.

Fator de calibração de um gravímetro - é o valor numérico do fator obtido na calibração.

Calibração de um gravímetro - é a operação com a qual se determina o fator que permite converter a unidade de leitura (escala graduada) do gravímetro usado em unidade

de aceleração. Dependendo da técnica utilizada, a calibração de gravímetros pode ser classificada em calibração absoluta ou calibração relativa (LR, 1990; LaCoste, 1991;

Figura 2.7 – Meridianos centrais

Figura 2.8 – Origem das coordenadas em projeção UTM

Valiant, 1991). A *calibrarão absoluta* consiste em medir diferenças conhecidas da aceleração de gravidade e determinar o fator de calibração pela relação das diferenças conhecidas e medidas. A *calibração relativa* consiste em adicionar massas conhecidas à massa do sistema elástico do gravímetro e determinar o fator de calibração pela relação entre a aceleração medida e a calculada para as massas de calibração adicionadas. Na calibração absoluta, são usadas bases de calibração (Sá & Blitzkow, 1982), estações gravimétricas absolutas (Gemael *et al.*, 1989) ou redes gravimétricas nacionais (ON, 1987).

Base de calibração gravimétrica - é um conjunto de estações gravimétricas que se caracterizam pela alta precisão nas diferenças de aceleração entre elas, por fornecerem intervalos dessas diferenças adequados à calibração, pela estabilidade e pelo fácil acesso a cada estação.

3. CODIFICAÇÃO DE OBSERVAÇÕES

A codificação de observações consiste basicamente em anotar os dados complementares no formulário de campo, visando facilitar a digitação necessária para o processamento. Os dados fundamentais, assim chamados por constituírem a base no processamento das observações e cálculo das anomalias gravimétricas, formam três registros contendo os dados que definem a linha (Figura 3.1a), as observações gravimétricas das estações contidas na linha (Figura 3.1b), e os dados cartográficos das estações (Figura.1c). As descrições e as convenções de codificação das observações são tabeladas no Apêndice B.

A medição gravimétrica relativa fornece a diferença da aceleração de gravidade entre os pontos medidos. Teoricamente, para se obter a aceleração nesses pontos seria suficiente conhecê-la em qualquer um dos pontos medidos. Na prática, entretanto, é necessário considerar a deriva instrumental decorrente de pequenas modificações do sistema elástico do gravímetro durante a medição desses pontos.

O cálculo da deriva instrumental pressupõe o conhecimento da diferença de aceleração entre o primeiro e o último ponto medidos, considerados bases do conjunto.

Figura 3.1 – Formato de codificação

4. CONVERSÃO DE LEITURAS EM UNIDADES DE ACELERAÇÃO

A observação gravimétrica envolve a instalação do gravímetro, o posicionamento do fiel na linha de referência, a leitura do resultado combinando contador e *dial*, e anotação da hora e minutos. Para evitar erros grosseiros e até mesmo para melhorar o resultado, é recomendável a obtenção de três leituras, anotando a hora e minutos que corresponde ao instante da segunda leitura. A leitura representativa da i-ésima estação é determinada pela média das leituras obtidas na estação

$$L_i = \frac{1}{m} \sum_{k=1}^{m} l_k \tag{4.1}$$

onde m representa o número de leituras da estação (geralmente 3) e l_k a leitura bruta.

A conversão das leituras médias em unidades de aceleração, é realizada através de tabelas de conversão para gravímetros do tipo LaCoste & Romberg, e dos coeficientes de conversão para gravímetros do tipo Worden, ambos fornecidas pelos fabricantes. A tabela (gravímetros LaCoste & Romberg), contém o resultado da calibração do instrumento, realizada pelo fabricante (LR, 1990), em intervalos de 100 mGals, com fator de interpolação específico para cada intervalo. Para o gravímetro LaCoste & Romberg nº 965, modelo G, por exemplo, que tem a tabela da qual foi extraído o trecho transcrito abaixo, a conversão da leitura média 2654,32 é feita segundo o esquema.

Assim, para gravímetros LaCoste & Romberg, a leitura média em mGal é determinada pela fórmula

$$(L_i)_{mGal} = (L_a)_{mGal} + (L_i - L_a)k_L$$
(4.2)

onde L_a é a leitura aproximada e k_L é o fator usado para converter a diferença de leitura de unidade de aceleração (mGal).

Os coeficientes do modelo linear em função da temperatura (gravímetros Worden), obtidos na calibração realizada pelo fabricante (TI, 1980), fornecem o fator para a conversão das leituras médias em unidades de aceleração (mGal). A conversão de leituras médias obtidas com o gravímetro Worden n° 1176, modelo Master, por exemplo, é realizada através do modelo

$$k_{yy} = 0.0972830534 + 0.0000070229T (4.3)$$

onde T é a temperatura interna do gravímetro. Para os gravímetros desprovidos de termostato, o fator de conversão obviamente se restringe ao primeiro termo do modelo expresso em (4.3)

Então, para gravimetros Worden, a leitura média em mGal, é dada por

$$\left(L_{i}\right)_{mGal} = L_{i}k_{W} \tag{4.4}$$

onde k_W é o fator de conversão do gravímetro Worden.

Convém enfatizar que a conversão das leituras obtidas com ambos os tipos de gravímetros (LaCoste & Romberg e Worden), envolve o fator de escala determinado através da calibração. O uso de um fator inadequado na conversão pode introduzir erros inadmissíveis nos dados se os levantamentos gravimétricos visam a prospecção, a monitoração do campo em regiões tectonicamente ativas, a implantação de bases gravimétricas, etc. Para evitar este tipo de erros, os gravímetros devem ser calibrados periodicamente ou sempre que haja suspeita de qualquer anormalidade.

A calibração de um gravímetro consiste na determinação do fator que permite converter as medidas, expressas em unidade de leitura (escala graduada), para unidade de aceleração.

5. TRANSFORMAÇÃO DE COORDENADAS

As coordenadas geodésicas integram os dados fundamentais das estações gravimétricas. Dependendo da sistemática adotada nos levantamentos, elas são extraídas de mapas topográficos ou obtidas pelo posicionamento. Neste caso, as coordenadas são determinadas através de poligonais ou mais recentemente por meio de satélites artificiais explorando o *Global Positioning System* (GPS).

Em geral, quando se usam cartas topográficas e até mesmo poligonais, é conveniente obter inicialmente as coordenadas planas na projeção Universal Transversa de Mercator (UTM) e posteriormente convertê-las em coordenadas geodésicas. Como estas são usadas no cálculo da atração luni-solar das observações gravimétricas, é necessário que as coordenadas da projeção UTM sejam convertidas em coordenadas geodésicas durante o processo de redução. Por outro lado, as linhas gravimétricas muitas vezes são plotadas sobre mapas para verificação e, neste caso, as coordenadas da projeção UTM simplificam o trabalho.

Pela execução do programa REGRAV, as coordenadas geodésicas (φ , λ) são obtidas a partir das coordenadas em projeção UTM (Y, X) e vice-versa. Isto significa que qualquer uma delas pode ser usada como dado de entrada. O arquivo de dados reduzidos, gerado pelo programa, conterá somente as coordenadas geodésicas, o arquivo com os dados observados e reduzidos, opcionalmente gerado, conterá ambas.

As coordenadas geodésicas dos arquivos são sempre referidas ao SGB, segundo as especificações do IBGE (1983). As coordenadas retangulares em projeção UTM são sempre referidas ao mesmo sistema da fonte. Os mapas topográficos usualmente fornecem por simples interpolação tanto as coordenadas geodésicas (φ , λ) como as coordenadas da projeção (Y, X) para qualquer ponto do mapa. Por comodidade, é preferível obter do mapa as coordenadas da projeção. Mas, a projeção UTM, normalmente adotada no mapeamento topográfico sistemático, fornece coordenadas sempre referidas a uma origem deslocada, originando a falsa ordenada (Y') e falsa abscissa (X'). A origem convencional da projeção UTM é o equador para as ordenadas e o meridiano central dos setores para as abscissas (Figura 2.8). Mas, para evitar ordenadas negativas dos pontos ao sul do equador e abscissas negativas dos pontos a oeste do meridiano central, as coordenadas usadas nas cartas são referidas a uma origem obtida por translação (Figura 5.1). Assim, para os pontos do

hemisfério norte, tem-se real ordenada e falsa abscissa (Y, X'), para os pontos do hemisfério sul tem-se falsa ordenada e falsa abscissa (Y', X'), determinados pela translação

com os parâmetros de translação definidos do seguinte modo

$$T_{Y} = \begin{cases} 0 \text{ m, para pontos do hemisfério norte} \\ 10.000.000 \text{ m, para pontos do hemisfério sul} \end{cases}$$
 (5.2)

$$T_X = 500.000 \text{ m (sempre)}$$
 (5.3)

Figura 5.1 – Falsas coordenadas da projeção UTM

Então, para transformar coordenadas planas da projeção UTM (obtidas diretamente dos mapas topográficos) em geodésicas, o programa efetua inicialmente a translação

$$\begin{bmatrix} Y \\ X \end{bmatrix} = \begin{bmatrix} Y' \\ X' \end{bmatrix} - \begin{bmatrix} T_Y \\ T_X \end{bmatrix} \tag{5.4}$$

As fórmulas para a transformação de coordenadas tanto direta (geodésicas em UTM) como inversa (UTM em geodésicas) podem ser encontradas em textos sobre Sistemas de Projeção. Atualmente, as fórmulas de Redfearn e as de Meade (Maling. 1992) são as mais usadas para as transformações direta e inversa. No programa REGRAV foram usadas as fórmulas de Redfearn, com a latitude calculada pelo processo iterativo.

As transformações direta e inversa através dessas fórmulas envolvem os seguintes elementos, que são obtidos a partir dos semi-eixos maior (a) e menor (b) do elipsóide de referência (Figura 5.2).

Figura 5.2 – Geometria do elipsóide de referência

O achatamento

$$f = \frac{a - b}{a} \tag{5.5}$$

a primeira excentricidade

$$e^2 = 2f - f^2 (5.6)$$

a segunda excentricidade

$$e'^2 = \frac{e^2}{1 - e^2} \tag{5.7}$$

o raio de curvatura da seção primeiro-vertical

$$v_i = \frac{a'}{\sqrt{1 - e^2 sen^2 \varphi_i}} \tag{5.8}$$

o comprimento do arco de meridiano entre o equador e o paralelo de latitude ϕ

$$s(\varphi) = a'\left(I - e^2\left(C_1\varphi - \frac{C_2}{2}\operatorname{sen} 2\varphi + \frac{C_3}{4}\operatorname{sen} 4\varphi - \frac{C_4}{6}\operatorname{sen} 6\varphi + \ldots\right)$$
 (5.9)

e

$$\eta^2 = e'^2 \cos^2 \varphi \tag{5.10}$$

onde a' = ak, e k(=0.9996) é o fator de escala sobre o meridiano central.

A transformação inversa, envolve o cálculo da latitude φ_i , que é obtida pelo processo iterativo através das fórmulas

$$\varphi_o = \frac{Y}{a'(I - e^2)C_I} \tag{5.11}$$

$$\varphi_{i} = \varphi_{i-1} + \frac{Y - s(\varphi_{i-1})}{a'(1 - e^{2})C_{1}}$$
(5.12)

com os coeficientes expressos em séries de potências da primeira excentricidade

$$C_1 = 1 + \frac{3}{4}e^2 + \frac{45}{64}e^4 + \frac{175}{256}e^6 + \frac{11025}{16384}e^8 + \dots$$
 (5.13)

$$C_2 = \frac{3}{4}e^2 + \frac{15}{16}e^4 + \frac{525}{512}e^6 + \frac{2205}{2048}e^8 + \dots$$
 (5.14)

$$C_3 = \frac{15}{64}e^4 + \frac{105}{256}e^6 + \frac{2205}{4096}e^8 + \dots$$
 (5.15)

$$C_4 = \frac{35}{512}e^6 + \frac{315}{2048}e^8 + \dots {(5.16)}$$

O processo iterativo consiste em calcular a latitude inicial (φ_o) por (5.11) e usá-la em (5.12), combinada com (5.9), até que a diferença de latitude entre duas iterações sucessivas $(\Delta \varphi = \varphi_i - \varphi_{i-1})$ torne-se desprezível. Como o processo converge rapidamente, com poucas iterações geralmente obtém-se o valor apropriado.

Com essas fórmulas, efetua-se facilmente a transformação direta (cálculo das coordenadas retangulares em projeção UTM a partir das geodésicas).

$$Y = s(\varphi) + \frac{v\lambda^2}{2} sen\varphi\cos\varphi + \frac{v\lambda^4}{24} sen\varphi\cos^3\varphi \left(5 - t^2 + 9\eta^2 + 4\eta^4\right)$$
 (5.17)

$$X = v\lambda \cos \varphi + \frac{v\lambda^{3} \cos^{3} \varphi}{6} \left(1 - t^{2} + \eta^{2} \right) + \frac{v\lambda^{5} \cos^{5} \varphi}{120} \left(5 - 18t^{2} - t^{4} + 14\eta^{2} - 58t^{2}\eta^{2} \right)$$
(5.18)

E a transformação inversa (cálculo das coordenadas geodésicas a partir das planas em projeção UTM)

$$\varphi = \varphi_{i} - t\left(1 + \eta^{2} \right) \left[\frac{1}{2} \left(\frac{X}{v_{i}}\right)^{2} + \frac{1}{24} \left(\frac{X}{v_{i}}\right)^{4} \left(5 + 3t^{2} + \eta^{2} - 4\eta^{4} - 9\eta^{2}t^{2}\right) - \frac{1}{720} \left(\frac{X}{v_{i}}\right)^{6} \left(61 + 90t^{2} + 45t^{2} + 107\eta^{2} - 162e'^{2} \operatorname{sen}^{2} \varphi_{i} + 45e'^{2} t^{2} \operatorname{sen}^{2} \varphi_{i}\right) \right]$$

$$(5.19)$$

$$\lambda = \lambda_o + \sec \varphi_i \left[\frac{X}{v_i} - \frac{I}{6} \left(\frac{X}{v_i} \right)^2 \left(1 + 2t^2 - \eta^2 \right) + \frac{I}{120} \left(\frac{X}{v_i} \right)^4 \left(5 + 28t^2 + 24t^4 + 6\eta^2 + 8t^2 \eta^2 \right) \right]$$
(5.20)

onde λ_o é a longitude do meridiano central.

As expressões (5.19) e (5.20) fornecem as coordenadas geodésicas em radianos através da latitude aproximada obtida por (5.12); a conversão para graus é feita com auxílio do fator $180^{\circ}/\pi$.

6. MUDANÇA DE DATUM HORIZONTAL

coordenadas das estações gravimétricas, resultantes geodésicas levantamentos regionais, geralmente são extraídas de mapas topográficos ou obtidas através do posicionamento realizado para essa finalidade. No Brasil, os mapas editados até 1979 estão referidos ao Datum Córrego Alegre (CA), tendo como modelo matemático o elipsóide de referência do Geodetic Reference System 1930 (GRS30). Por recomendações do IBGE (1983), os mapas editados a partir de 1978 estão referidos ao SGB, tendo como base o vértice Chuá e como elipsóide de referência o do GRS67 (IAG, 1971). Portanto, as coordenadas das estações gravimétricas resultantes dos atuais levantamentos podem estar referidas a um Datum local, (coordenadas extraídas de mapas topográficos) ou a um sistema geocêntrico (coordenadas obtidas através do posicionamento). Alguns receptores GPS transformam as coordenadas geocêntricas, referidas ao World Geodetic System 1984 (WGS84) usado pelo DMA (Denker, 1986) em coordenadas locais a partir dos parâmetros de transformação injetados no receptor através de teclado. Neste caso, é desnecessária a transformação na redução de observações.

No processamento de redução das observações, as coordenadas referidas ao CA ou WGS84 $(\varphi_1, \lambda_1, h_1)$ são sempre transformadas para o SGB $(\varphi_2, \lambda_2, h_2)$, através das expressões

$$\varphi_2 = \varphi_1 + \Delta \varphi \tag{6.1}$$

$$\lambda_2 = \lambda_1 + \Delta \lambda \tag{6.2}$$

$$h_2 = h_1 + \Delta h \tag{6.3}$$

onde as correções de trransformação $(\Delta \varphi, \Delta \lambda, \Delta h)$ são calculadas pelas fórmulas diferenciais (Molodensky *et al.*, 1962)

$$\Delta \varphi = \frac{1}{\rho_I} \left[(a_I \Delta f + f_I \Delta a) \operatorname{sen} 2\varphi_I - T_X \operatorname{sen} \varphi_I \cos \lambda_I - T_Y \operatorname{sen} \varphi_I \operatorname{sen} \lambda_I + T_Z \cos \varphi_I \right]$$

(6.4)

$$\Delta \lambda = \frac{1}{v_I \cos \varphi_I} \left[-T_X \sin \lambda_I + T_Y \cos \lambda_I \right]$$
 (6.5)

$$\Delta h = (a_1 \Delta f + f_1 \Delta a) sen 2\varphi_1 - \Delta a + T_X \cos \varphi_1 \cos \lambda_1 - T_Y \cos \varphi_1 sen \lambda_1 + T_Z sen \varphi_1$$

(6.6)

onde

$$\Delta a = a_2 - a_1 \tag{6.7}$$

$$\Delta f = f_2 - f_1 \tag{6.8}$$

e

$$v_I = \frac{a_I}{\sqrt{I - e^2 \operatorname{sen}^2 \varphi_I}} \tag{6.9}$$

$$\rho_I = \frac{v_I \left(I - e^2 \right)}{I - e^2 \operatorname{sen}^2 \varphi_I} \tag{6.10}$$

Os parâmetros elipsoidais (a, f) e os de transformação (T_X, T_Y, T_Z) usados nessas expressões são os seguintes:

CA (1) para SGB (2), recomendados pelo IBGE (1983)

$$a_1 = 6378388 \text{ m}$$

$$f_1 = 1:297$$

 $a_2 = 6378160 \text{ m}$

$$f_2 = 1:298,25$$

$$T_X = -138,70 \text{ m}$$

$$T_Y = +164,40 \text{ m}$$

$$T_Z = +34,40 \text{ m}$$

WGS (1) para SGB (2), recomendados pelo IBGE (1989)

$$a_1 = 6378137 \text{ m}$$

$$f_1 = 1:298,25$$

$$a_2 = 6378160 \text{ m}$$

$$f_2 = 1:298,25$$

$$T_X = +66,87$$

$$T_Y = -4,37$$

$$T_Z = +38,52$$

A altitude ortométrica (fundamental) adotada em cada estação gravimétrica deve estar necessariamente referida à Rede de Nivelamento Fundamental do Brasil (RNFB), recomendada pelo IBGE (1983).

7. CÁLCULO DA ATRAÇÃO LUNI-SOLAR

A interação gravitacional da Terra com a Lua e o Sol, introduz perturbações no campo de gravidade terrestre, que devem ser removidos da aceleração de gravidade medida nos levantamentos gravimétricos (Vaníek, 1980; Gemael, 1986).

A perturbação luni-solar numa estação é obtida a partir das coordenadas geodésicas da estação, dos elementos orbitais da Terra e da Lua, das massas da Terra, da Lua e do Sol, e dos parâmetros da elasticidade terrestre. As fórmulas geralmente usadas para o cálculo da perturbação luni-solar nas observações dos levantamentos gravimétricos rotineiros são as de Longmann (1959), e foram adotados neste trabalho.

Para a Terra sólida e rígida (Figura 7.1), o potencial de maré no ponto P da superfície terrestre, gerado pelo astro perturbador A, é expresso pelo potencial diferencial desse ponto com o geocentro (Gemael, 1986).

Figura 7.1 – Perturbação luni-solar

$$W_a = W(P) - W(O) \tag{7.1}$$

com

$$W(P) = \frac{GM}{d'} \tag{7.2}$$

e

$$W(O) = \frac{GM}{d} \tag{7.3}$$

onde G é a constante universal da gravitação e M é a massa do astro perturbador. Os valores numéricos destas e de outras constantes usadas no cálculo da atração luni-solar são dados na Tabela (A.1). O inverso da distância topocêntrica em (7.2), pode ser desenvolvido em série de potências

$$\frac{1}{d'} = \frac{1}{d} \sum_{n=0}^{\infty} \left(\frac{r}{d}\right)^n P_n(\cos Z) \tag{7.4}$$

onde P_n é o polinômio de Legendre de grau n, e Z é a distância zenital do astro.

Assim, o potencial em P, expresso por (7.2), toma a forma

$$W(P) = \frac{GM}{d} \sum_{n=0}^{\infty} \left(\frac{r}{d}\right)^n P_n(\cos Z)$$
 (7.5)

Substituindo (7.5) e (7.3) em (7.1), obtém-se

$$W_{a} = \frac{GMr\cos Z}{d^{2}} + \frac{GMr^{2}}{2d^{3}} (3\cos^{2} Z - I) + \dots$$
 (7.6)

O primeiro termo desta expressão representa o potencial do campo gravitacional gerado pelo astro, que acelera a Terra como um todo. Isto significa que o potencial da maré não contém termos de grau um. Portanto, a expressão (7.6) assume a forma

$$W_a = \frac{GM}{d} \sum_{n=2}^{\infty} \left(\frac{r}{d}\right)^n P_n(\cos Z)$$
 (7.7)

Como a distância geocêntrica do astro perturbador em geral é grande, pela expressão pode ser truncada em n = 2 ou n = 3 em suas aplicações. Para n = 3, resulta

$$W_{a} = \frac{GMr^{2}}{2d^{3}} \left(3\cos^{2}Z - I\right) + \frac{GMr^{3}}{2d^{4}} \left(5\cos^{3}Z - 3\cos Z\right)$$
 (7.8)

Para a Terra sólida e elástica (deformável), o potencial de maré no ponto P é composto de três termos

$$W_{t} = W_{a} + W_{d} + W_{u} \tag{7.9}$$

onde W_a é o potencial de maré resultante da atração gravitacional, W_d é o potencial da redistribuição de massa originada na deformação (potencial de deformação) e W_u é a variação de potencial associada ao deslocamento do P. Na realidade, W_d e W_u constituem o efeito indireto do potencial de maré da terra sólida e deformável, que são relacionados com W_a através dos números de Love (1911).

O primeiro número de Love (h) relaciona o potencial do deslocamento com o da atração gravitacional

$$h(r) = \frac{W_u}{W_a} \tag{7.10}$$

O segundo número de Love (k) relaciona o potencial da deformação com o da atração gravitacional

$$k(r) = \frac{W_d}{W_a} \tag{7.11}$$

Como o potencial de maré pode ser desenvolvido em harmônicos esféricos,

$$W_a = \sum_{n=0}^{\infty} W_n \tag{7.12}$$

os números de Love admitem a representação análoga

$$h(r) = \sum_{n=0}^{\infty} h_n \tag{7.13}$$

e

$$k(r) = \sum_{n=0}^{\infty} k_n \tag{7.14}$$

Na relação de observações gravimétricas obtidas na superfície terrestre (r = R), o cálculo para a correção da maré luni-solar envolve o coeficiente expresso em termos dos números de Love (Melchior, 1983), denominado *fator gravimétrico*

$$\delta_n = 1 + \frac{2}{n} h_n - \frac{n+1}{n} k_n \tag{7.15}$$

em geral restrito a n = 2, isto é,

$$\delta_2 = l + h_2 - \frac{3}{2}k_2 \tag{7.16}$$

Em particular, para os valores aproximados (Melchior, 1983)

$$h_2 \cong 0,606$$

$$k_2 \cong 0.281$$

resulta o valor adotado para coeficiente gravimétrico em escala global

$$\delta_2 \cong 1.185 \cong 1.2$$

Como o fator gravimétrico depende da elasticidade terrestre, ele tem características regionais. No Brasil, os primeiros resultados (Gemael & Andrade, 1991) mostram que $1,16 < \delta_2 < 1,23$. No futuro, fatores gravimétricos regionais poderão ser adotados no Brasil para redução de observações gravimétricas.

Assim, o potencial de gravidade sobre a Terra sólida, elástica e perturbada é expresso por

$$W = W_g + W_a + W_d + W_u (7.17)$$

ou usando os números de Love dados por (7.10) e (7.11)

$$W = W_{\sigma} + W_{a}(l+k) + W_{a}h \tag{7.18}$$

a aceleração de gravidade, observada na superfície da Terra, é dada pela deriva do potencial em relação raio

$$\frac{\partial W}{\partial r} = \frac{\partial W_g}{\partial r} - \frac{\partial}{\partial r} [W_a (I + k)] - \frac{\partial}{\partial r} (W_a h)$$
(7.19)

Mas, considerando que no interior da Terra k é proporcional a r^{-5} (Vanícek, 1980), podese escrever

$$\frac{\partial k}{\partial r} \cong -\frac{5k}{r} \tag{7.20}$$

Além disso

$$\frac{\partial W_a}{\partial r} = \frac{2W_a}{r} \tag{7.21}$$

Portanto, a derivada do potencial em relação ao raio assume a forma

$$\frac{\partial W}{\partial r} = \frac{W_g}{r} + \left(1 + h - \frac{3}{2}k\right) \frac{\partial W_a}{\partial r} \tag{7.22}$$

ou termos de aceleração

$$g_r = g + \delta_2 g_a \tag{7.23}$$

onde g_r representa a gravidade resultante, e δ_2 o fator gravimétrico obtido através dos números de Love truncados em n=2.

Logo, a aceleração de gravidade depurada do efeito de maré da terra sólida e deformável é expressa por

$$g = g_r - \delta_2 g_a \tag{7.24}$$

A aceleração de maré, considerando a terra deformável, tem a forma

$$g_{t} = \delta_{2} \left[\frac{GMr^{2}}{2d^{3}} \left(3\cos^{2} Z - I \right) + \frac{GMr^{3}}{2d^{4}} \left(5\cos^{3} Z - 3\cos^{3} Z \right) \right]$$
 (7.25)

Aplicando esta fórmula à Lua e o Sol, obtém-se a perturbação luni-solar

$$g_t = \delta_2(g_L + g_S) \tag{7.26}$$

onde g_L e g_S são as componentes lunar e solar, respectivamente

Para a Lua, resulta

$$g_{L} = \frac{GM_{L}r^{2}}{2d_{L}^{3}} \left(3\cos^{2}Z_{L} - I\right) + \frac{GM_{L}r^{3}}{2d_{L}^{4}} \left(5\cos^{3}Z_{L} - 3\cos^{3}Z_{L}\right)$$
(7.27)

Assim, para se calcular a componente g_L , é necessário expressar Z_L e d_L em função do tempo, e r em função das coordenadas geodésicas do ponto. A distância zenital da Lua é expressa através do coseno

$$\cos Z_{L} = \operatorname{sen} \varphi \operatorname{sen} I_{L} \operatorname{sen} L_{L} + \cos \varphi \left[\cos^{2} \left(\frac{I_{L}}{2} \right) \cos \left(L_{L} - \chi_{L} \right) + \operatorname{sen}^{2} \left(\frac{I_{L}}{2} \right) \cos \left(L_{L} + \chi_{L} \right) \right]$$

$$(7.28)$$

Nesta expressão, a longitude da lua em sua órbita é dada por

$$L_{L} = \sigma + 2e_{L}sen(s - p_{L}) + \frac{5}{4}e_{L}^{2}sen2(s - p_{L}) + \frac{15}{14}me_{L}sen(s - 2h + p_{L}) + \frac{11}{8}m^{2}sen2(s - h)$$

$$(7.29)$$

onde e_L é a excentricidade da órbita lunar, e m é a razão entre o movimento médio da Lua e do Sol. Os demais elementos dessa fórmula, expressos em função do número de séculos julianos, são:

a longitude média da Lua, contada a partir do equinócio

$$s = 270,43742^{\circ} + 481267,89057^{\circ}T + 0,00198^{\circ}T^{2} + 0,00002T^{3}$$
(7.30)

a longitude média do perigeu lunar

$$p_L = 334,32956^{\circ} + 4069,03403^{\circ}T - 0,01032^{\circ}T^2 - 0,00001^{\circ}T^3$$
(7.31)

a longitude média do Sol

$$h = 279,69668^{\circ} + 36000,76892^{\circ}T + 0,00030^{\circ}T^{2}$$
(7.32)

A longitude média da Lua, contada a partir do nodo lunar ascendente, é expressa por

$$\sigma = s - \xi \tag{7.33}$$

Do triângulo esférico $\gamma A \Omega$ (Figura 7.2), obtém-se

$$\xi = N - \alpha \tag{7.34}$$

Mas, a longitude média do modo lunar ascendente, também expressa em função do tempo, tem a forma

$$N = 259,18318^{\circ} + 1934,14201^{\circ}T + 0,00208^{\circ}T^{2} + 0,000002^{\circ}T^{3}$$
 (7.35)

Figura 7.2 – Órbitas dos astros pertubadores

e α tem a expressão

$$\alpha = 2 \arctan\left(\frac{sen\alpha}{1 + \cos\alpha}\right) \tag{7.36}$$

onde, pela analogia dos senos,

$$sen \alpha = \frac{sen I_s sen N}{sen I_L}$$
 (7.37)

e, pela fórmula dos quatro elementos,

$$\cos \alpha = \cos N \cos v + \sin N \sin v \cos I_{S} \tag{7.38}$$

onde v também é expresso pela analogia dos senos (Figura 7.2)

$$sen v = \frac{sen I sen N}{sen I_L}$$
 (7.39)

onde I representa a inclinação da órbita lunar com a eclítica (Figura 7.2) e I_L é expresso pela fórmula dos quatro elementos

$$\cos I_L = \cos I_S \cos I - \sin I_S \sin I \cos N \tag{7.40}$$

A ascensão reta do meridiano local, contada a partir de A, que aparece na expressão (7.28), é dada por

$$\chi_L = t + h - v \tag{7.41}$$

com

$$t = 15(t_0 - 12) - \lambda \tag{7.42}$$

onde t_0 é o tempo civil em Greenwich, e λ é a longitude geodésica do ponto na superfície terrestre. A expressão (7.27) envolve ainda o inverso da distância geocêntrica da Lua e o raio vetor do ponto. O inverso da distância tem a expressão

$$\frac{1}{d_L} = \frac{1}{c_L} + a_L e_L \cos(s - p_L) + a_L e_L^2 \cos 2(s - p_L) + \frac{15}{18} a_L m e_L \cos(s - 2h + p) + a_L m^2 \cos 2(s - h)$$

$$(7.43)$$

onde $c_{\scriptscriptstyle L}$ representa a distância média entre o centro de massa da Terra e da Lua, e

$$a_L = \frac{1}{c_L \left(1 - e_L^2 \right)} \tag{7.44}$$

Finalmente, o raio vetor do ponto na superfície terrestre

$$r = ua + H \tag{7.45}$$

onde a é o semi-eixo maior do elipsóide de referência, H é a altitude ortométrica do ponto, e

$$u = \frac{1}{\sqrt{1 + 0.006738 sen^2 \varphi}} \tag{7.46}$$

Essas expressões proporcionam a componente vertical da aceleração da maré lunar. As expressões para a obtenção da componente solar são análogas e torna-se mais simples em consequência da maior distância geocêntrica do Sol. Assim, considerando o primeiro termo de (7.8), resulta

$$g_S = \frac{GM_S r^2}{2d_S^3} (3\cos^2 Z_S - I)$$
 (7.47)

os elementos necessário para o uso desta fórmula são: a distância zenital geocêntrica do Sol, dada por

$$\cos Z_{S} = \operatorname{sen} \varphi \operatorname{sen} I_{S} \operatorname{sen} L_{S} + \cos \varphi \left[\cos^{2} \left(\frac{I_{S}}{2} \right) \cos \left(L_{S} - \chi_{S} \right) + \operatorname{sen}^{2} \left(\frac{I_{S}}{2} \right) \cos \left(L_{S} + \chi_{S} \right) \right]$$

(7.48)

onde

$$L_{s} = h + 2e_{s} \operatorname{sen}(h - p_{s}) \tag{7.49}$$

com

$$p_{s} = 281,22083^{\circ} + 1,71902^{\circ} T + 0,00045^{\circ} T^{2} + 0,000003^{\circ} T^{3}$$
 (7.50)

e

$$e_S = 0.01675104 - 0.000004180 T - 0.000000126 T^2$$
(7.51)

A ascensão reta do meridiano local, contado a partir do equinócio vernal, é dada por

$$\chi_S = t + h \tag{7.52}$$

O inverso da distância geocêntrica do Sol é expresso por

$$\frac{1}{d_S} = \frac{1}{c_S} + a_S e_S \cos(h - p_S) \tag{7.53}$$

com

$$a_S = \frac{I}{c_S \left(I - e_S^2\right)} \tag{7.54}$$

As fórmulas apresentadas nesta seção, com os valores numéricos adotados para constantes (Tabela A.1), são usadas no programa REGRAV para o cálculo da perturbação luni-solar no local das estações gravimétricas, a partir das coordenadas das estações e da hora legal das observações.

8. CÁLCULOS DA DERIVADA E DAS LEITURAS CORRIGIDAS

A deriva instrumental é a composição das derivas estática e dinâmica ocorridas no percurso, isto é,

$$D = D_e + D_d \tag{8.1}$$

onde D_e é a deriva estática e D_d é a deriva dinâmica. A deriva estática de uma linha gravimétrica, representa a soma das variações ocorridas nas interrupções da linha, geralmente com duração maior que uma hora

$$D_e = \sum_{k=1}^{m} (L_i - L_{i+1})$$
 (8.2)

onde m é o número de interrupções da linha e L_i é a leitura média em mGal corrigida da perturbação luni-solar, nas estações da linha. O tempo correspondente à deriva estática é expressa por

$$t_e = \sum_{k=1}^{m} (t_{i+1} - t_i) \tag{8.3}$$

onde t_i é o instante da observação.

A deriva dinâmica corresponde à variação ocorrida no período em que o gravímetro permanece em movimento, que equivale ao tempo decorrido entre a primeira e a última leitura da linha, menos o tempo da deriva estática. Portanto, a deriva dinâmica horária usada na correção das leituras de todas as estações é expressa por

$$D_d = \frac{L_I - L_n}{t_d} \tag{8.4}$$

onde $L_{\scriptscriptstyle I}$ e $L_{\scriptscriptstyle n}$ representam a primeira e a última leitura da linha, corrigida da perturbação luni-solar e da deriva estática, e $t_{\scriptscriptstyle d}$ é o tempo da deriva dinâmica, dada por

$$t_d = t_n - t_i - t_e \tag{8.5}$$

onde t_i e t_n são os instantes da primeira e da última leitura das linha, respectivamente, e t_e é o tempo da deriva estática. Portanto, a correção da deriva para a i-ésima estação da linha tem a forma

$$D_i = (D_e)_i + (D_d)_i t_i \tag{8/6}$$

onde t_i é o tempo decorrido entre a primeira e a i-ésima leitura.

As leituras corrigidas da perturbação luni-solar e da deriva instrumental são obtidas a partir das leituras médias em mGal e das correções calculadas

$$(L_c)_i = L_i + \delta_2 g_a + D_i \tag{8.7}$$

9. CÁLCULO DA ACELERAÇÃO E DAS ANOMALIAS GRAVIMÉTRICAS

A aceleração de gravidade para cada estação é obtida através da diferença entre as leituras corrigidas e da aceleração de gravidade na estação inicial

$$g_{i} = g_{I} + (L_{c})_{i} - (L_{c})_{I} \tag{9.1}$$

onde g_1 é a aceleração de gravidade na primeira estação (obrigatoriamente pertencente à Rede Gravimétrica Fundamental ou eventualmente à Rede Gravimétrica Secundária adotada do país).

As anomalias gravimétricas ar-livre (Δg_A) e Bouguer (Δg_B) são calculadas pelas fórmulas usuais (Heiskanen & Mortiz, 1967)

$$\left(\Delta g_{A}\right)_{i} = g_{i} - \frac{\partial \gamma}{\partial H} H_{i} - \gamma_{i} \tag{9.2}$$

e

$$(\Delta g_B)_i = (\Delta g_A)_i - 2\pi G \rho H_i - B + C \tag{9.3}$$

onde G é a constante universal da gravitação, ρ é a densidade média da crosta, B é a correção da curvatura terrestre, C é a correção topográfica, H é a altitude ortométrica, e γ é a gravidade teórica calculada com a fórmula do GRS67, desenvolvida pelo método de Chebychev (IAG, 1971)

$$\gamma_{67} = 978.031,85 \left(1 + 0.005278895 \operatorname{sen}^{2} \varphi + 0.000023462 \operatorname{sen}^{4} \varphi\right) \tag{9.4}$$

Os valores numéricos adotados para as constantes são:

$$\frac{\partial \gamma}{\partial H} = -0.3086 \, \text{mGal m}^{-1} \tag{9.5}$$

No cálculo da anomalia Bouguer, efetuado pelo programa REGRAV através de (9.3), não é considerada a curvatura da Terra (B = 0), nem a correção topográfica (C = 0).

O programa REGRAV fornece opcionalmente através do MENU os dados digitados e processados em 3 modalidades

- 1) listagem dos dados digitados e reduzidos
- 2) arquivos completos
- 3) arquivo simplificado

A listagem contendo os dados digitados e os dados reduzidos é necessária na fase de conferência (obrigatória) tanto da codificação como da digitação. Os dados digitados são aqueles dos registros (Figura 3.1), segundo as convenções expressas nas tabelas do Apêndice B. Os dados reduzidos, gerados no processamento do REGRAV, são constituídos pelas coordenadas geodésicas, vinculadas ao SGB, e pela aceleração de gravidade, depurada da deriva instrumental e da perturbação luni-solar, dos pontos onde se realizou a medição.

Os registros do arquivo completo contêm parte dos dados digitados, a aceleração de gravidade, as anomalias gravimétricas e os respectivos indicadores, gravados em registros (Figura 9.1), com as descrições e convenções no Apêndice C.

O arquivo simplificado contém no primeiro registro o cabeçalho que descreve abreviadamente os dados que constituem os demais. Os registros seguintes são extraídos daqueles do arquivo completo. Este arquivo simples é gerado numa formatação adequada (Figura 9.2) para a impressão e a conferência final dos dados

COORDENADAS DA ESTAÇÃO SALTITUDE SUPLEMENTAR GRAVIDADE OBSERVADA ESTAÇÃO DE REFERÊNCIA CORREÇÃO FONTE DE NÚMERO DA TOPOGRAF. ORIGEM ESTAÇÃO OBSERVADA ORIGEM ESTAÇÃO OBSERVADA ORIGEM ESTAÇÃO ORIGEM ESTAÇÃO ORIGEM ORIGINAL SUPLEMENTAR ORIGINAL SUPLEMENTAR ORIGINAL SALTITUDE LONGITUDE OF VALOR VALOR VALOR ORIGINAL SUPLEMENTAR ORIGINAL SALTITUDE ORIGINAL SA
/s/anomalia / Anomalia / Guadrícula /
FREE AIR BOUGUER DENS. ISOSTATICA OUTRAS DA ESTAÇÃO ENDEREÇO VALOR VALOR UTIL VALOR NÚMERO ORDEM DO REGISTRO Mai

Fig. 9.1 – Formato do arquivo de dados para armazenamento

COORDENADAS DA ESTAÇÃO	ALTITUDE FUNDAMENTAL	ALTITUDE SUPLEMENTAR,	GRAVIDADE OBSERVADA	CORREÇÃO ANO TOPOGRÁFICA AR-	MALIA ANOMALIA BOUGUER		ANOMALIA FONTE DE O RIGEM	CÓDIGO DA ESTAÇÃO
LATITUDE LONGITUDE	WALOR	WALOR m f r	VALOR F	VALOR VALO	R VALOR mGal f cm.	f mGal	VALOR	

Fig. 9.2 – Formato do arquivo para impressão

10. CONCLUSÕES E RECOMENDAÇÕES

A redução de dados gravimétricos constitui um trabalho relativamente simples. O cálculo da perturbação luni-solar, a transformação de coordenadas e a mudança de *Datum* horizontal, aparentemente difíceis e morosos, tornam-se simples e rápidos com o auxílio de computador. O trabalho mais cansativo, que ainda não pode ser evitado de forma simples e eficiente, é a digitação dos dados fundamentais. Mas, há editores de textos que podem torná-los menos penoso com um pouco de experiência e criatividade do usuário. Em compensação, os dados assim reduzidos são compatíveis com os padrões internacionais, que visam facilitar o controle de qualidade, o intercâmbio de informações e a integração de levantamentos gravimétricos de qualquer escala.

A multiplicidade de aplicações do método gravimétrico torna-se possível somente com a redução adequada das observações. A codificação e a digitação corretas dos dados observados são essenciais nessa redução.

Para facilitar a conferência de todos os dados digitados, o programa REGRAV edita, opcionalmente, os dados observados (na mesma ordem da folha de codificação), os dados complementares e os dados reduzidos em formatos apropriados. A edição é opcional, mas a **conferência** é **obrigatória!**

11. REFERÊNCIAS

- BGI (*Bureau Gravimetrique Internacional*) -1993- EOL Land dada format record description (126 character)). Bulletin D'information **72**: 8-15.
- BLITZKOW, D. & SÁ, N.C. de -1978- Rede gravimétrica fundamenta do Estado de São Paulo. XXX Congresso Brasileiro de Geologia, Recife, Resumos, p 220
- DENCKER, B.L. -1986- Word Geodetic System 1984. Defense Mapping Agency Aerospace Center. *Technical Report*, 24 pp
- GEMAEL, C. -1985- Determinação da gravidade em Geodésia. Curso de Pós-graduação em Ciências Geodésicas da Universidade Federal do Paraná. *Texto de aul*as, Curitiba, 87 pp
- GEMAEL, C. -1986- Marés terrestres: aplicações geodésicas. Curso de Pós-graduação em Ciências Geodésicas da Universidade Federal do Paraná. *Texto de aulas*, Curitiba, 100 pp.
- GEMAEL, C.; LEITE, O.H.S.; ROSIER, F.A; TORGE, W.; RÖDER, R.H. & SCHNÜLL, M. -1989- Large scale absolute gravity control in Brazil. In Gravity, Gradiometry and gravimetry. RUMMER, R. & HIPKIN, R. G. eds. Spriger-Verlag, Symposyium Nº.103: 49-55.
- GEMAEL, C. & ROSIER, F.A. -1991- Calibração de gravímetros usando a RENEGA. II Congresso Internacional da Sociedade Brasileira de Geofísica, Salvador, *Anais* 1: 120-124.
- GEMAEL, C. & ANDRADE, J.B. -1991- Variação do fator gravimétrico no Brasil. II Congresso Internacional da Sociedade Brasileira de Geofísica, Salvador, *Anais* 1: 134-139.
- HEISKANEN, W.A. & MORTZ, H. -1967- *Physical Geodesy*, Freeman, San Francisco, 364 pp
- IAG (*Internacional Association of Geodesy*) -1971- *Geodetic Reference System* 1967. Bull. Géod. Special Publications N^o. 3, Paris, 115 pp
- IAG (*Internacional Association of Geodesy*) -1974- The Internacional Gravity Standardization Net 1971. Bull. Géod. Special Publication Nº. 4, Paris, 194 pp.

- IBGE (Fundação Instituto Brasileiro de Geografía e Estatística) -1983- Especificações e normas gerais para levantamentos geodésicos. Resolução PR 22/83, Boletim de Serviço Suplemento, Rio de Janeiro, 12 pp
- IBGE (Fundação Instituto Brasileiro de Geografia e Estatística) -1988- Parâmetros de transformação de sistemas geodésicos. Resolução PR 32/88, Rio de Janeiro.
- IBGE (Fundação Instituto Brasileiro de Geografía e Estatística) -1989- Parâmetros de transformação de sistemas geodésicos. Resolução PR 22/89, Rio de Janeiro.
- LACOSTE, L. -1991- A new calibration method for gravity meters. *Geophysics* **56**(5):701-704.
- LR (LaCoste & Romberg) -1990- Instruction manual for LaCoste & Romberg gravity meters, Austin, 14 pp.
- LONGMANN, I.M. -1959- Formulas for computing the tidal accelerations due to the Moon and the Sum. J. *Geophys. Res.* **64**(12):2351-2355.
- LOVE, A.E.H. -1911- *Some problems of geodynamics*. Dover Publications, Inc., New York, 180 pp.
- MALING, P. -1983- *Coordinate systems and map projections*. Pergamon Press, New York, 476 pp.
- MELCHIOR, P. -1983- *The tides of the planet Earth*. 2nd. ed. Pergamon Press, New York, 641 pp.
- MOLODENSKY, M.S.; EREMEEV, V.F. & YURKINA, M.I. -1962- *Methods for study external gravitational field of the figure of the Earth*. English translation from Russian by Israel Program for Scientific Translations, Jerusalem. Office of Technical Services, Departament of Commerce, Washington, 248 pp.
- MUELLER, I.I. -1969- *Spherical and practical Astronomy as applied to Geodesy*. Frederic Ungar Publishng Co., New York, 615 pp.
- ON (Observatório Nacional) -1987- Rede Gravimétrica Fundamental Brasileira. Publicação do ON Departamento de Geofísica, Rio de Janeiro, 419 pp
- RICHARDUS, P. & ADLER, P.K. -1972- *Map projections for geodesists, cartographers and geographers*. North-Holland Publishing Co., Amsterdam, 174 pp.
- SÁ, N.C.de & BLITZKOW, D. -1986- Uma tentativa de homogeneizar os dados gravimétricos existentes no Brasil. *Rev. Bras. de Geofísica* **4**: 73-77.

- SÁ, N.C. de USSAMI, N. & MOLINA.E.C. -1982- Mapa gravimétrico do Brasil: modelos gravimétricos digitais ar-livre e Bouguer. *Relatório Técnico*, IAG/USP Departamento de Geofísica, São Paulo, 47 pp.
- TI (Texas Instrument Inc.) -1980- Instruction manual for Worden gravity meters, Houston, 77 pp
- VARIANTE, H.D. -1991- Gravity meter calibration at LaCoste & Romberg. Geophysics **5**(5):705-711.
- VANÍCEK, P. -1980- Tidal corrections to geodetic quantities. National Oceanic and Atmospheric Administrations, *Technical Report* Nº 83, Rockville, 30 pp.
- VANÍCEK, P. & KRAKIWSKY, E. -1986- *Geodesy: the concepts*. 2nd. ed. Elsevier, New York, 697 pp.

APÊNDICE A – CONSTANTES

Símbolo	Valor numérico	Descrição
	_	
A	$6378\ 160\ x\ 10^2\ cm$	Semi-eixo equatorial do elipsóide de
		referência (modelo terrestre)
f	1:298,25	Achatamento do elipsóide de
		referência
R	$6\ 371\ x\ 10^5\ cm$	Raio terrestre médio
G	$6,672 \times 10^{-8} \text{ g cm}^3 \text{ s}^{-2}$	Constante universal da gravitação
$c_{\scriptscriptstyle L}$	$3,8441 \times 10^{10} \text{ cm}$	Distância média entre os centros
		de massa da Terra e da Lua
$c_{\scriptscriptstyle S}$	$1,4950 \times 10^{13} \text{ cm}$	Distância média entre os centros
		de massa da Terra e do Sol
$e_{\scriptscriptstyle L}$	0,05490	Excentricidade da órbita lunar
$e_{\scriptscriptstyle S}$	0,01670	Excentricidade da órbita terrestre
I_L	5° 08' 43''	Inclinação da órbita lunar em
		relação a eclítica da Terra
$I_{\scriptscriptstyle S}$	23° 27' 07,2''	Inclinação da eclítica em relação
		ao plano do equador
m	0,074804	Razão entre o movimento médio
		do Sol e da Lua
$M{_{\scriptscriptstyle L}}$	$7,3537 \times 10^{25} g$	Massa da Lua
$M_{\scriptscriptstyle S}$	$1,9930 \times 10^{34} g$	Massa do Sol
$M_{\it T}$	$5,9760 \times 10^{27} \mathrm{g}$	Massa da Terra
ho	$2,67~g~cm^{-3}$	Densidade média da crosta
		terrestre

APÊNDICE B – DESCRIÇÃO DOS REGISTROS DE CODIFICAÇÃO

Tabela B.1 – Descrição do registro 1

Coluna	Descrição e convenções adotadas						
1-26	Nome da linha gravimétrica						
27-31	Número da linha gravimétrica – é formado pela justaposição de dois						
	números:						
	- o primeiro (com 2 algarismos) é o ano da medição						
	- o segundo (com 3 algarismos) é o número da linha						
	naquele (em cada ano reinicia com 001)						
32-35	Número do gravímetro usado na medição (número de fabricação)						
36-37	Indicador do tipo de gravímetro – é codificado segundo a convenção						
	recomendada pelo Bureau Gravimetrique International (BGI,1993)						
	47 = LaCoste & Romberg, modelo G						
	48 = LaCoste & Romberg, modelo D						
	53 = Worden comum						
	54 = Worden com termostato						
	55 = Worden com alcance de leitura mundial						
38-45	Gravidade inicial da linha						
46-53	Gravidade final da linha						
54	Indicador de fechamento da linha – é codificado pelos símbolos						
	0 = Fechamento na estação inicial						
	1 = Fechamento em outra estação						
55	Indicador do sistema gravimétrico de referência – é codificado segundo a						
	convenção						
	1 = IGSN71 (International Gravity Stardadization Net)						
	2 = RGFB (Rede Gravimétrica Fundamental Brasileira)						
	3 = RGSB (Rede Gravimétrica Secundária Brasileira)						
	4 =						
56-61	Número da estação de referência adotada na linha – é o código obtido a						
	partir das coordenadas geodésicas das estação, com a justaposição de						
	uma letra para diferenciar as estações próximas que recebem o mesmo						
	número (IAG, 1974).						

Tabela B.1 – continuação

Coluna	Descrição e convenções adotadas
62-69	Aceleração de gravidade na estação de referência (0,01 mGal)
70-72	Número de pontos medidos na linha
73-75	Fuso Horário – é o termo que permite transformar Hora Legal em Hora
	Média de Greenwich (ver definição na TERMINOLOGIA)
76-78	Código da instituição – é o número (com 3 algarismos) que identifica a
	fonte de origem da estação. Cada instituição deve usar somente o
	código institucional fornecido com o programa!.
79-80	Código do projeto – é o número (com 2 algarismos) que indica o projeto
	ou trabalho através do qual a estação gravimétrica é implantada. Cada
	instituição deve numerar seqüencialmente os projetos gravimétricos
	(iniciando da 01) e adotar esse números como códigos!.

Tabela B.2 – Descrição do registro 2

Coluna	Descrição e convenções adotadas
01-22	Nome da estação gravimétrica observada
23-29	Número da estação gravimétrica – é formado pela justaposição de 3
	números
	- o primeiro (com 2 algarismos) é o ano da medição
	- segundo (com 3 algarismos) é o número da linha que
	está sendo medida naquele ano
	- o terceiro (com 2 algarismos) é o número da estação
	naquela linha
30	Tipo de observação – é codificado segundo a convenção
	0 = medição comum de densificação
	1 = medição de redes gravimétricas de segunda ordem ou redes
	nacionais secundárias
	2 = medição de redes nacionais de primeira ordem
	3 = medição de linhas de calibração
31-37	Valor da primeira leitura
38-44	Valor da segunda leitura
45-51	Valor da terceira leitura
52-55	Ano da observação
56-57	Mês da observação
58-59	Dia da observação
60-61	Hora da observação
62-63	Minuto da observação
64	Indicador de observação para cálculo da deriva estática – é codificado
	através dos símbolos
	0 = observação comum
	1 = observação para cálculo de deriva estática
65	Indicador de reobservação (reocupação) – é codificado através
	dos símbolos
	0 = observação nova
	1 = reocupação

Tabela B.2 – continuação

Coluna	Descrição e convenções adotadas
66-70	Correção topográfica (em 0,01 mGal)
71-72	Indicador do tipo de correção topográfica – é codificada pela
	convenção
	0 = não correção
	1 = correção até o raio de 5 Km (zona H)
	2 = correção até o raio de 8 Km (zona I)
	3 = correção até o raio de 12 Km (zona J)
	4 = correção até o raio de 19 Km (zona K)
	5 = correção até o raio de 29 Km (zona L)
	6 = correção até o raio de 59 Km (zona M)
	7 = correção até o raio de 99 Km (zona N)
	8 = correção até o raio de 167 Km (zona O)
73-77	Temperatura para gravímetros Worden com termostato (em 0,01°C)

Tabela B.3 – Descrição do registro 3

Coluna	Descrição e convenções adotadas						
	<u> </u>						
01-07	Latitude da estação (em 0,0001°, positiva ao norte e negativa ao sul do						
	equador)						
08-15	Longitude da estação (em 0,0001°, positiva a leste e negativa a oeste de						
	Greenwich)						
16-24	Coordenadas vertical em projeção UTM se for o caso (em cm)						
25-32	Coordenadas horizontal em projeção UTM se for o caso (em cm)						
33-36	Meridiano central (em graus)						
37	Indicador do DATUM ao qual se referem as coordenadas						
	1 = CÓRREGO ALEGRE (sistema local, com vértice Córrego						
	Alegre e elipsóide do GRS30)						
	2 = SGB (sistema local, com vértice Chuá e elipsóide do GRS67						
	(sistema geocêntrico, com elipsóide do GRS80						
38	Indicador do Hemisfério para a transformação de coordenadas						
	0 = hemisfério norte						
	1 = hemisfério sul						
39	Indicador do erro estimado das coordenadas – é codificado pela						
	convenção						
	0 = Não há informação						
	$1 = e_c \le 20 \text{ m}$						
	$2 = 20 \text{m} < e_c \le 100 \text{ m}$						
	$3 = 100 < e_c \le 200 \text{ m}$						
	$4 = 200 < e_c \le 500 \text{ m}$						
	$5 = 500 < e_c \le 1000 \text{ m}$						
	$6 = 1000 < e_c \le 2000 \text{ m}$						
	$7 = 2000 < e_c \le 5000 \text{ m}$						
	onde e _c representa o modulo do erro estimado na locação ou no						
	posicionamento da estação.						

Para a aproximação gráfica de 1 mm, as escalas correspondentes são

1 = 1:1.0001:20.000

2 = 1:20.000 1:100.000 a

Tabela B.3 – continuação

Coluna	Descrição e convenções adotadas						
	3 =	1:100.00	0 a	1:200.000			
	4 =	1:200.00	0 a	1:500.000			
	5 =	1:500.00	0 a	1:1000.000			
	6 =	1:1000.0	00 a	1:2000.000			
	7 =	1:2000.0	00 a	1:5000.000			
	8 =						
	9 =						
40-46	Altitude fund	amental da	a estação (em cm)			
47-53	altitude suple	mentar da	estação (e	m cm)			
54	Indicador do	erro em al	titude – é d	codificado pela convenção			
	0 =	não há in	formação				
	1 =		$e_H \leq 0,1$	n			
	2 =	0,1 <	$e_H\!\leq1~m$				
	3 =	1 <	$e_H\!\leq2~m$				
	4 =	2 <	$e_H\!\leq5~m$				
	5 =	5 <	$e_H \leq 10 \text{ n}$	1			
	6 =	10 <	$e_H \leq 20 \text{ n}$	1			
	7 =	20 <	$e_H \leq 50 \text{ n}$	1			
	8 =	50 <	$e_H\!\leq100$	m			
	onde e _H repre	esenta o má	ódulo do e	rro em altitude			
55-56	Indicador do tipo de altitude – é codificado pela convenção						
	1 = r	nedição na	superfíci	e terrestre			
	2 = r	nedição ac	ima da su	perficie terrestre			
	3 = medição abaixo da superfície terrestre						
	4 = na superfície oceânica						
	5 = s	submersa e	m águas c	ceânicas			
	6 = 1	no fundo d	o oceânico)			
	7 = r	na superfíc	ie de lago	s, acima do geóide			
	8 = no fundo de lagos, acima do geóide						

Tabela B.3 – continuação

Coluna Descrição e convenções adotadas
--

- 9 = no fundo de lagos, com a superfície acima e o fundo abaixo da superfície do geóide
- 10 = na superfície de lagos, com a superfície acima e o fundo da superfície da geóide
- 11 = na superfície da lagos, com a superfície e o fundo abaixo da superfície do geóide
- 12 = no fundo de lagos, com a superfície e o fundo abaixo da superfície do geóide
- 13 = na superfície do gelo, com esta acima e a base abaixo da superfície do geóide
- 14 = na superfície do gelo, com esta e a base acima da superfície do geóide

APÊNDICE C – DESCRIÇÃO DOS REGISTROS DE CODIFICAÇÃO

Tabela C.1 – Arquivo completo

Coluna	Descrição e convenções adotadas							
01	Código de referência – é o indicador do sistema gravimétrico de							
	referência da estação básica através da convenção							
	1 = sistema local							
	2 = sistema Potsdam							
	3 = sistema IGSN71							
02-08	Latitude geodésica da estação (em 0,0001°, positiva ao norte e							
	negativa ao sul do equador							
09-16	Longitude geodésica da estação (em 0,0001°, positiva a este e							
	negativa a oeste de Greenwich)							
17	Indicador do erro estimado das coordenadas – é atribuído pela convenção							
	0 = não há informação							
	$1 = e_c \leq 20 \text{ m}$							
	$2 = 20 < e_c \le 100 \text{ m}$							
	$3 = 100 < e_c \le 200 \text{ m}$							
	$4 = 200 < e_c \le 500 \text{ m}$							
	$5 = 500 < e_c \le 1000 \text{ m}$							
	$6 = 1000 < e_c \le 2000 \text{ m}$							
	$7 = 2000 < e_c \le 5000 \text{ m}$							
	8 =							
	onde e _c representa o módulo do erro estimado na locação ou no							
	posicionamento da estação.							
	Para a aproximação gráfica de 1 mm, as escalas correspondentes são:							
	1 = 1:1.000 a $1:20.000$							

1 = 1:1.000 a 1:20.000

2 = 1:20.000 a 1:100.000

3 = 1:100.000 a 1:200.000

4 = 1:200.000 a 1:500.000

5 = 1:500.000 a 1:1000.000

6 = 1:1000.000 a 1:2000.000

Tabela C.1 – continuação

Coluna]	Descriç	ão e co	nvenções adotadas			
	7 =	1:200	0.000	a	1:5000.000			
	8 =							
18	Indicador do ti	ipo de	Observa	ação –	é dada pela convenção			
	0 = m	nedição	comun	n de de	nsificação			
	1 = m	nedição	de red	es grav	imétricas secundárias			
	2 = m	nedição	de red	es grav	imétricas fundamentais			
	3 = m	nedição	de red	es grav	imétricas de calibração			
	4 = m	nedição	o oceâni	cas ind	ividual			
	5 = m	nedição	o oceâni	cas mé	dia, obtida de registro contínuo			
	6 = m	nedição	costeir	a (port	os, baías, orlas)			
	7 =							
	8 =	8 =						
	9 = medição de redes gravimétricas ou linhas de calibração							
	iı	nternac	cionais	e publi	cadas			
19-25	Altitude funda	ımenta	1 (0,01 ı	n, posi	tiva acima e negativa abaixo do			
	geóide). É a al	ltitude	ortomét	trica de	pontos situados na superfície			
	terrestre, do ge	elo, da	água ou	ı do fur	ndo do oceânico.			
26	Indicador da p	recisão	o em alt	itude –	é gerado pela convenção			
	0 =	não ha	á inform	nação				
	1 =		$e_{H} \leq$	0,1 m				
	2 =	0,1	< e _H <	1 m				
	3 =	1	$< e_{\rm H} \le$	2 m				
	4 =	2	$< e_{\rm H} \le$	5 m				
	5 =	5	$< e_{\rm H} \le$	10 m				
	6 =	10	$< e_{\rm H} \le$	20 m				
	7 =	20	$< e_{\rm H} \le$	50 m				
	8 =	50	$< e_{\rm H} \le$	100 m	1			
	9 =	100	$<$ $e_{\rm H}$					

onde e_H representa o módulo do erro em altitude

Tabela C.1 – continuação

Coluna	Descrição e convenções adotadas
27-28	Indicador do tipo da altitude fundamental – é obtido pela convenção
	1 = na superfície terrestre
	2 = acima da superfície terrestre
	3 = abaixo da superfície terrestre
	4 = na superfície oceânica
	5 = submersa em águas oceânicas
	6 = no fundo do oceânico
	7 = na superfície de lagos, acima do geóide
	8 = no fundo de lagos, acima do geóide
	9 = no fundo de lagos, com a superfície acima e o fundo abaixo da
	superfície do geoidal
	10 = na superfície de lagos, com a superfície acima e o fundo da
	superfície da geoidal
	11 = na superfície da lagos, com a superfície e o fundo abaixo da
	superfície do geoidal
	12 = no fundo de lagos, com a superfície e o fundo abaixo da
	superfície do geoidal
	13 = na superfície do gelo, com esta acima e a base abaixo da
	superfície do geoidal
	14 = na superfície do gelo, com esta e a base acima da
	superfície do geoidal
29-35	Altitude suplementar (em cm) é a distância auxiliar compreendida entre o
	ponto de medição e uma superfície que normalmente separa dois pontos
	de medição e uma superfície que normalmente separa dois meios. Por
	convenção, a altitude é sempre positiva
36-43	Gravidade observada (0,01 mGal) -é o valor da aceleração de gravidade,
	depurada da deriva instrumental e da perturbação luni-solar

Tabela C.1 – continuação

Coluna	Descrição e convenções adotadas								
44	Indicador da precisão relativa da gravidade observada – é dada pelos códigos								
	0 = não há informação								
	$1 = e_{g} \le 0.05 \text{ mGal}$								
	$2 = 0.05 < e_g \le 0.1 \text{ mGal}$								
	$3 = 0.1$ $< e_g \le 0.5 \text{ mGal}$								
	$4 = 0.5$ $< e_g \le 1.0$ mGal								
	$5 = 1.0 < e_g \le 3.0 \text{ mGal}$								
	$6 = 3.0 < e_g \le 5.0 \text{ mGal}$								
	$7 = 5.0 < e_{g} \le 10.0 \text{ mGal}$								
	$8 = 10.0 < e_g \le 15.0 \text{ mGal}$								
	$9 = 15,0 < e_g \le 20,0 \text{ mGal}$								
	onde eg representa o módulo do erro da aceleração de gravidade estimado								
45	Indicador da origem da estação de referência utilizada na linha								
	gravimétrica – é codificado do seguinte modo								
	1 = IGSN71 (International Gravity Standardization Net)								
	2 = RGFB (Rede Gravimétrica Fundamental Brasileira)								
	3 = RGSB (Rede Gravimétrica Secundária Brasileira)								
	4 =								
	5 =								
46-51	Número da estação de referência – é o código de identificação da estação de								
	referência								
52-59	Gravidade de referência (0,01 mGal) – é o valor da aceleração de								
	gravidade da estação de referência adotada na linha								
60-61	Indicador do tipo de instrumento utilizado na medição – é um código da								
	forma αt, onde α representa o grupo ao qual pertence o instrumento, e t o								
	seu tipo nesse grupo (BGI, 1993). Os gravímetros LaCoste & Romberg								
	pertencem ao grupo 4, e os gravímetros Worden pertencem ao grupo 5,								

dados abaixo

Coluna	Descrição e convenções adotadas
	4 – Gravímetros de molas metálicas para medição terrestre
	47 = gravímetro LaCoste & Romberg, modelo G
	48 = gravímetro LaCoste & Romberg, modelo D
	5 – Gravímetros de molas de quartzo para medição terrestre
	53 = Worden comum
	54 = Worden equipado com termostato
	55 = Worden com alcance mundial
62-66	Correção topográfica (em 0,01 mGal)
67-68	Indicador do tipo da correção topográfica é obtido pela convenção
	0 = Não há correção topográfica ou não há informação sobre ela
	1 = correção topográfica calculada para a área circular de raio
	igual a 5 Km (zona H)
	2 = correção topográfica calculada para a área circular de raio
	igual a 8 Km (zona I)
	3 = correção topográfica calculada para a área circular de raio
	igual a 12 Km (zona J)
	4 = correção topográfica calculada para a área circular de raio
	igual a 19 Km (zona K)
	5 = correção topográfica calculada para a área circular de raio
	igual a 29 Km (zona L)
	6 = correção topográfica calculada para a área circular de raio
	igual a 59 Km (zona M)
	7 = correção topográfica calculada para a área circular de raio
	igual a 99 Km (zona N)
	8 = correção topográfica calculada para a área circular de raio
	igual a 167 Km (zona O)
	9 =

Tabela C.1 – continuação

Tabela C.1	Continuação
Coluna	Descrição e convenções adotadas
69-73	Fonte de origem da estação – é formado coma justaposição de dois
	números:
	- o primeiro (com 3 algarismos) indica a instituição que realizou o
	levantamento gravimétrico
	- o segunda (com 2 algarismos) indica o número do projeto que
	gerou os dados gravimétricos na instituição ou a publicação de
	onde os dados foram obtidos
74-80	Número da estação gravimétrica – é formado pela justaposição de 3
	números
	- o primeiro (com 2 algarismos) indica o ano da medição
	- o segundo (com 3 algarismo) representa o número da linha
	gravimétrica medida naquele ano
	- o terceiro (com 2 algarismos) indica o número da estação
	gravimétrica daquela linha
81	Indicador da fórmula da gravidade teórica usada no cálculo das
	anomalias gravimétricas – é dado através dos códigos
	1 = Fórmula de Helmert 1901
	$\gamma = 978030,00(1+0,005302sen^2\varphi - 0,0000007sen^2 2\varphi)$
	2 = Fórmula de Bowie 1917
	$\gamma = 978039,00(1+0,005294sen^2\varphi - 0,000007sen^2 2\varphi)$
	3 = Fórmula Internacional de 1930
	$\gamma = 978049,00 (1 + 0.0052884 sen^{2} \varphi - 0.000005 sen^{2} 2\varphi)$
	4 = Fórmula de Heiskanen 1924
	$\gamma = 978052,00(1+0.005285sen^2\varphi - 0.000007sen^2 2\varphi +$
	$+0.000027\cos^2\varphi\cos^2(\lambda-18^\circ)$
	5 = Fórmula de Helmert 1915
	$\gamma = 978052,00(1 + 0.005285 sen^{2} \varphi - 0.000007 sen^{2} 2\varphi +$
	$+0.000018\cos^2\varphi\cos^2(\lambda-17^\circ)$
	6 =

Tabela C.1 – continuação

Coluna	Descrição e convenções adotadas
	7 = Fórmula do Sistema Geodésico de Referência 1967
	$\gamma = 978031,85 (1 + 0.00527889 sen^{2} \varphi + 0.00002346 sen^{4} \varphi)$
	8 = Fórmula do Sistema Geodésico de Referência1980
	$\gamma = 978032,7715(1+0,0052790414sen^2\varphi +$
	$+0.0000232718sen^4\varphi+0.0000001262sen^6\varphi$
	onde φ e λ são a latitude e a longitude, respectivamente, da estação
	gravimétrica
82-87	Anomalia ar-livre (em 0,01 mGal)
88-93	Anomalia Bouguer (em 0,01 mGal)
94-95	Indicador do tipo de anomalia Bouguer é um código composto de 2
	dígitos, no qual o primeiro indica correção topográfica e o segundo
	indica correção para a esfericidade terrestre (termo de Bullard). Assim,
	este indicador assume os valores
	00 = Anomalia Bouguer sem correção topográfica e sem o termo
	de Bullard
	10 = Anomalia Bouguer com correção topográfica mas sem o
	termo de Bullard
	01 = Anomalia Bouguer sem correção topográfica mas com o
	termo de Bullard
	11 = Anomalia Bouguer com correção topográfica e com o
	termo de Bullard
96-99	Densidade média da crosta utilizada no cálculo da Anomalia
	Bouguer (em 0.01 g cm^{-3})
100-105	Anomalia isostática (em 0,01 mGal)
106-107	Indicador do tipo da anomalia isostática a ser utilizado no futuro
108-111	Espaço reservado para informações adicionais

Tabela C.1 – continuação

Coluna	Descrição e convenções adotadas										
112-117	Número da quadrícula de 1º x 1º que contém a estação – é formado pela										
	justa posição de 3 números										
	- o primeiro (com1 algarismo, indica o hemisfério, isto é										
	1 = hemisfério sul										
	2 = hemisfério norte										
	- o segundo (com 2 algarismos) é o módulo da latitude da borda										
	sul da quadrícula										
	- o terceiro (com 3 algarismos) é o módulo da longitude da										
	borda este da quadrícula										
118-122	Ordem da quadrícula – é o número que indica a posição da										
	quadrícula num vetor ordenado										
123-130	Este endereço do registro – é o número seqüencial do registro no arquivo										
	de dados gravimétricos										

APÊNDICE D – INSTALAÇÃO DO PROGRAMA REGRAV

D. 1. – Configuração do microcomputador

O programa REGRAV (V.8) deve ser instalado em microcomputador do tipo PC, equipado com *Hard Drive* (HD) para o armazenamento do programa na forma executável, dos arquivos contendo as observações, as tabelas dos gravímetros utilizados na medição e os arquivos gerados no processamento.

D. 2. – Diretório de redução

Para facilitar a organização e o controle dos arquivos envolvidos na redução de observações gravimétricas, recomenda-se um diretório de uso exclusivo para esse processamento, denominado REGRAV. Os arquivos envolvidos na execução do programa REGRAV, estão disponíveis e podem acessados no site do Laboratório de Geodésia do IAG/USP. Assim, os principais passos necessários para instalar o programa REGRAV, são os seguintes:

- 1) Acessar o site http://www.iag.usp.br/geofisica/geodesia/downloads.htm
- 2) Copiar o arquivo REGRAV.zip para o diretório REGRAV criado no computador;
- 3) Expandir o arquivo copiado, nesse diretório,

O diretório REGRAV foi criado e os arquivos necessários foram copiados para esse diretório. Portanto, ele deve conter os seguintes arquivos

REGRAV.EXE	(Programa REGRAV na forma executável);
REGRAV.FOR	(Fonte em FORTRAN do programa REGRAV);
REGRAV.TAB	(Tabela do gravímetro usado);
REGRAV.OBS	(Dados a serem reduzidos (OBSERVAÇÕES));
REGRAV.PRN	(Dados para impressão com editor de texto (WORD));
REGRAV.RDZ	(Dados reduzidos (formato compactado, sem ponto));
REGRAV.SDA	(Dados reduzidos (formato expandido, com ponto));

APÊNDICE E – INSTRUÇÕES PARA EXECUÇÃO DO PROGRAMA REGRAV

A execução do programa REGRAV é realizada através do MENU. Assim, para iniciar o processamento com o programa na forma executável, entre no diretório REGRAV e siga as instruções abaixo:

1) Digite REGRAV e tecle ENTER (Inicia o processamento);

2) Escolha nas opções do MENU! (As opções entre colchetes representam a

opção default, para a qual basta teclar

ENTER);

Arquivos de TABELAS? [REGRAV.TAB]

ENTER

Arquivo de OBSERVAÇÕES? [REGRAV.OBS]

ENTER

ARQUIVO PARA DADOS REDUZIDOS? [REGRAV.RDZ]

ENTER

GERAR ARQUIVO PARA IMPRESSÃO?

[N] NÃO

S SIM

ENTER

ARQUIVO PARA IMPRESSÃO? [REGRAV.PRN]

ENTER

TIPO DE REDUÇÃO GRAVIMÉTRICA?

[D] DENSIFICAÇÃO

R REFERENCIA

C CALIBRAÇÃO

ENTER

CALCULAR ANOMALIAS?

[N] NÃO

S SIM

ENTER

TIPO DO ARQUIVO DE SAÍDA?

[C] COMPLETO

S SIMPLIFICADO

P PARA PLOTER

ENTER

ARQUIVO DE SAÍDA? [REGRAV.SDA] ENTER

APÊNDICE F – EXEMPLOS DE PROCESSAMENTOS

F.1. – Redução de observações comuns (Densificação)

Para exemplificar a redução das observações gravimétricas, o programa REGRAV é processado para uma linha medida através das seguintes opções do MENU:

ARQUIVO DE TABELAS? [REGRAV.TAB] ENTER

ARQUIVO DE OBSERVAÇÕES? [REGRAV.OBS] ENTER

ARQUIVO PARA DADOS REDUZIDOS? [REGRAV.RDZ] ENTER

GERAR ARQUIVO PARA IMPRESSÃO?

[N] NÃO

S SIM

ENTER

TIPO DE REDUÇÃO GRAVIMÉTRICA?

[D] DENSIFICAÇÃO

R REFERENCIA

C CALIBRAÇÃO

ENTER

CALCULAR ANOMALIAS?

[N] NÃO

S SIM

ENTER

TIPO DO ARQUIVO DE SAÍDA

[C] COMPLETOS SIMPLIFICADOP PARA PLOTER

ENTER

ARQUIVO DE SAÍDA? [REGRAV.SDA] ENTER

Resultado do processamento para observações comuns (Densificação)

Dados digitado (ANEXO F.1.1)

Dados para conferência (ANEXOS F.1.2 e F.1.3.)

Dados reduzidos (Arquivo completo) (ANEXO F.1.4)

Dados reduzidos (Arquivo simplificado) (ANEXO F.1.5)

F.2. – Redução de observações para calibração

Os gravímetros usados em levantamentos rotineiros geralmente são aferidos em bases de calibração. Neste caso, a medição visa testar o fator de escala em uso no gravímetro e, se for o caso, fornecer um fator mais adequado para a redução de observações.

Este exemplo consiste na redução das observações de aferição obtidas na base de Calibração da Serra da Mantiqueira. A redução de observações foi efetuada com seguintes opções do MENU:

Arquivo de TABELAS? [REGRAV.TAB]

ENTER

Arquivo de OBSERVAÇÕES? [REGRAV.OBS]

ENTER

ARQUIVO PARA DADOS REDUZIDOS? [REGRAV.RDZ]

ENTER

GERAR ARQUIVO PARA IMPRESSAO?

[N] NÃO

S SIM

ENTER

TIPO DE REDUÇÃO?

[D] DENSIFICAÇÃO

R REFERENCIA

C CALIBRAÇÃO

ENTER

Resultado do processamento de observações para calibração

Dados digitado (ANEXO F.2.1)

Dados para conferência (ANEXO F.2.1 e F.2.3)

Dados reduzidos (ANEXO F.2.4)

ANEXO F.1.1 - Dados digitados

ALEGRE-M.FREIRE-ALEGR	E 9303	9 45447978	57514	03	97857514 12	306109
ALEGRE IGR MAT		2117078211	708021170801	9930515	0931	
-207/33 -415325		312	25046	1 1		
ES 187	9303902	2040620204	062420406241	9930515	1141	
-205204 -414270		312	52443	4 1		
ES 188	9303903	2060892206	089420608941	9930515	1152	
-205469 -414406		312	42902	4 1		
ES 189	9303904	2065160206	516020651601	19930515	1159	
-205605 -414527		312	41923	4 1		
ES 190	9303905	2068740206	B736206 B 7361	19930515	1208	
-205880 -414548		312	41617	4 1		
ES 191	9303906	2100126210	01282100128	19930515	1218	
-206162 -414572		312	24983	4 1		
ES 192	9303907	2106220210	62202106220	19930513	1230	
-206409 -414696		312	21579	4 1		
ES 193	9303908	2113900211	39022113902	1993051	1239	
-206653 -414845			19806	4 1		
ES 194	9303909	2121342212	13402121340	1993051	51248	
-206930 -414926			17160	4 1		
ES 195	9303910	2133972213	39722133972	1993051	51256	
-207123 -415074		***	12144	4 1		
ES 196	9303911		38702133870		51304	
-207343 -414900			13392	4 1		
ALEGRE IGR MAT			71982117198		51318	
-207633 -415325		312	25046	1 1		

ANEXO F.1.2 – Dados para conferência (observados)

UNIVERSIDADE DE SAD P LAG-DEPARTAMENTO DE G		646)														4/04/09 8:06:52
				CADERNETA	DE OBSERVAC	OES GRA	INTHE	RICAS	;							
DADOS DA LINHA																
NOME: ALEGRE-				M:93039 NGR	A: 454 16RA	:47 61)	11:978	575.1	4 6F	N: 978	575.	14 6N	UN:	FHO	R: -3 N	EST: 12
COEFICIENTE(S) DE ESCAL	A DO	GRAVIMETRO	COEF(1):	1.000000000	COEF	2): 0	.0000	00000)						
DADOS DAS ESTACOES																
NOME	NUM	TPO	LE11	LE12	FE12	AND	MES	DIA	HOR	MIN	IDE	IRE	CIP	TC	TEMP	FRIO
												•	•			
ALEGRE IGR MAT	0	0	2117.078	2117.080	2117.080	1993	5	15	9	31	0	0	0.00	0	0.0	06109
ES 187	9303902	0	2040.620	2040.624	2040.624	1993	5	15	11	41	0	Ô	0.00	ō	0.0	06107
ES 188	9303903	0	2060.892	2060.894	2060.894	1993	5	15	Ш	52	0	0	0.00	ò	0.0	06109
ES 189	9303904	0	2065.160	2065.160	2065.160	1993	•	15	11	59	ō	ò	0.00	ŏ	0.0	06107
ES 190	9303905	0	2068.740	2068.736	2068.736	1993	•	15	12	8	ŏ	ŏ	0.00	0	0.0	06107
ES 191	9303906	-	2100.126	2100.128	2100.128	1993	5	15	12	18						
ES 192	9303907	-	2106.220				,				0	0	0.00	0	0.0	90109
		•		2106.220	2106.220	1993	,	15	12	30	0	0	0.00	0	0.0	06109
ES 193	9303908	-	2113.900	2113.902	2113.902	1993	,	15	12	39	0	0	0.00	0	0.0	06109
ES 194	9303909	0	2121.342	2121.340	2121.340	1993	5	15	12	48	0	0	0.00	0	0.0	06109
ES 195	9303910	0	2133.972	2133.972	2133.972	1993	5	15	12	56	0	0	0.00	0	0.0	06109
ES 196	9303911	0	2133.870	2133.870	2133.870	1993	5	15	13	4	0	0	0.00	0	0.0	06109
ALEGRE 16R MAT	0	0	2117.200	2117.198	2117.198	1993	5	15	13	18	Ó	ō	0.00	Ö	0.0	06109

LEGENDA

DADOS DA LINHA

NOME Nome da linha gravimétrica

NLIN Número da linha gravimétrica

NGRA Número do gravímetro utilizado

TGRA Tipo do gravímetro utilizado

GINI Gravidade de referência inicial

GFIN Gravidade de referência final

GNUM Número da estação de referência

FHOR Fuso horário da região

NEST Número de estações gravimétricas da linha

DADOS DAS ESTAÇÕES

NOME Nome da estação gravimétrica

NUM Número da estação gravimétrica

TOP Tipo de Observação

LEI1 Valor da primeira leitura

LEI2 Valor da segunda leitura

LEI3 Valor da terceira leitura

ANO Ano da medição

MES Mês da medição

DIA Dia da medição

HORA Hora da medição

MIN Minuto da medição

IDE Indicador de observação da deriva estática

IRE Indicador de reobservação (reocupação)

CTP Correção topográfica

TC Tipo de correção Topográfica

TEMP Temperatura do gravímetro (somente WORDEN)

FNTO Fonte de origem de observação

ANEXO F.1.3 – Dados para conferência (reduzidos)

UNIVERSIDADE DE SAD IAG-DEPARTAMENID DE		2161													A:1994/04	
IND-DELHUTHDERID DE	OCUPISION (JE0;		DADOS ER	AVINETRICO	S DEI	1171	กกะ						HUK	A: 18:06	1152
DADOS DA LINHA				9m303 0m		J NC	,,,,,	003								
	E-M.FREIRE-AL	EGRE	NLIN:9	3039 NGRA:	454 TERA	47 6	INI:	978	575.14 RF	IN: 9785	75.1	4 CHIM.		FHUB.	-3 NEST	12
	(S) DE ESCALA														5 112511	••
DADOS DAS ESTACOES										-						
NOME	NUM	LAT	LON	UINY	UIMI	HC	SH	C	ALIF	ALTS	A I	A MAR	DES	DIN	GRVOB	6
ALEGRE IGR MAI	0 -	-20.7628	-41.5321	7701981.4	236322.0	0	3 1	2	250.46	0.00	1	1 0.05	0.00	0.00	978575.1	4 1
ES 187	9303902 -	20.5199	-41.4266	7729049.7	246910.4	0	3 1	2	524.43	0.00	4	1 -0.01	0.00	-0.02	978494.7	0 1
ES 188	9303903 -	-20.5464	-41.4402	7726093.8	245535.4	0	3 1	2	429.02	0.00	4	-0.01	0.00	-0.02	978516.0	0 1
ES 189	9303904 -	20.5600	-41.4523	7724568.8	244295.8	0	3 1	2	419.23	0.00	4	1 -0.02	0.00	-0.02	978520.4	8 1
ES 190	9303905 -	-20.5875	-41.4544	7721520.0	244122.7	0	3 1	2	416.17	0.00	4	1 -0.02	0.00	-0.02	978524.2	3 1
ES 191	9303906 -	-20.6157	-41.4568	7718393.3	243919.6	0	3 1	2	249.83	0.00	4	1 -0.03			978557.2	-
ES 192	9303907 -	20.6404	-41.4692	7715638.3	242668.2	0	3 1	2	215.79	0.00	4	1 -0.03	0.00	-0.02	978563.6	2 1
ES 193	9303908 -	20.6648	-41.4841	7712912.3	241156.3		3 1		198.06	0.00	4	1 -0.03			978571.6	-
ES 194	9303909 -	-20.6925		7709831.7			3 1	-	171.60	0.00		1 -0.04			978579.5	
ES 195	9303910 -	-20.7118		7707670.4		-	3 1	_	121.44	0.00		1 -0.04			978592.7	
ES 196	9303911 -			7705262.0			3 1		133.92	0.00		1 -0.04			978592.6	
ALEGRE IGR MAT				7701981.4			3 1	-	250.46						978575.1	

LEGENDA

DADOS DAS ESTAÇÕES

LAT	Latitude geodésica
LON	Longitude geodésica
UTMY	Ordenada em projeção UTM
UTMX	Abscissa em projeção UTM
MC	Meridiano central do setor
S	Indicador do sistema Geodésico de Referência
Н	Indicador do hemisfério
C	Indicador da precisão em coordenadas geodésicas
ALTF	Altitude fundamental
ALTS	Altitude suplementar
A	Indicador da precisão em altitude
TA	Tipo da altitude suplementar
MAR	Correção da atração luni-solar (maré)
DES	Deriva estática
DIN	Deriva dinâmica

GRVOB Gravidade observada

G Indicador da precisão em gravidade

ANEXO F.1.4 – Dados reduzidos (arquivo completo)

3-205199 -41426620	524434 1	09784947013	9785751447	0 00610993039027 -1007 -687500 267 0	00 12104139919
3-205464 -41440220	429024 1	09785160013	9783751447	0 00610993039037 -1978 -677900 267	00 12104139919
3-205600 -41452320	417234 1	09785204813	9785751447	0 00610993039047 -1913 -660400 267	00 12104139919
3-205875 -41454420	416174 1	09785242313	9785751447	0 00610993039057 -1796 -645300 267 0	00 12104139919
3-206157 -41456820	249834 1	09785572213	9785751447	0 00610993039067 -3797 -659300 267	00 12104139919
3-206404 -41469220	215794 1	09785636213	9785751447	0 00610993039077 -4355 -677000 267 0	00 12104139919
3-206648 -41484120	198064 1	09785716913	9785751447	0 00610993039087 -4240 -645700 267 0	00 12104139919
3-206925 -41492220	171604 1	09785795113	9785751447	0 00610993039097 -4440 -636000 267 0	00 12104139919
3-207118 -41507020	121444 1	09785927813	9785751447	0 00610993039107 -4776 -613500 267	00 12104139919
3-207338 -41489620	133924 1	09785926713	9785751447	0 00610993039117 -4533 -603200 267 06	00 12104139919

ANEXO F.1.5 – Dados reduzidos (arquivo simplificado)

S	LAT	LON · C TO	ALIF A TA	ALTS	6RV0	G CRIP	10	F	ANFA	ANBO	18	DENS	ANIS TI	FNTO	NUMES
3	-20.5199	-41.4266 2 0	524.43 4 1	0.00	978494.70	0.00	0	7	-10.07	-68.75	00	2.67	0.00 00	06109	9303902
3	-20.5464	-41.4402 2 0	429.02 4 1	0.00	978516.00	0.00	0	7	-19.78	-67.79	00	2.67	0.00 00	06109	9303903
3	-20.5600	-41.4523 2 0	419.23 4 1	0.00	978520.48	0.00	0	7	-19.13	-66.04	00	2.67	0.00 00	06109	9303904
3	-20.5875	-41.4544 2 0	416.17 4 1	0.00	978524.23	0.00	0	7	-17.96	-64.53	00	2.67	0.00 00	06109	9303905
3	-20.6157	-41.4568 2 0	249.83 4 1	0.00	978557.22	0.00	0	7	-37.97	-65.93	00	2.67	0.00 00	06109	9303906
3	-20.6404	-41.4692 2 0	215.79 4 1	0.00	978563.62	0.00	0	7	-43.55	-67.70	00	2.67	0.00 00	06109	9303907
3	-20.6648	-41.4841 2 0	198.06 4 1	0.00	978571.69	0.00	0	7	-42.40	-64.57	00	2.67	0.00 00	06109	9303908
3	-20.6925	-41.4922 2 0	171.60 4 1	0.00	978579.51	0.00	0	7	-44.40	-63.60	00	2.67	0.00 00	06109	9303909
3	-20.7118	-41.5070 2 0	121.44 4 1	0.00	978592.78	0.00	0	7	-47.76	-61.35	00	2.67	0.00 00	06109	9303910
3	-20.7338	-41.4896 2 0	133.92 4 1	0.00	978592.67	0.00	0	7	-45.33	-60.32	00	2.67	0.00 00	06109	9303911

LEGENDA

S Indicador do sistema gravimétrico de referência

LAT Latitude geodésica

LON Longitude geodésica

C Indicador da precisão em coordenadas

TO Tipo de observação

ALTF Altitude fundamental

A Indicador de precisão em altitude

TA Tipo de altitude

ALTS Altitude suplementar

GRVO Gravidade observada

G Precisão estimada da gravidade observada

CRTP Correção topográfica

TC Tipo de correção topográfica

ANFA Anomalia ar-livre **ANBO** Anomalia Bouguer Tipo de anomalia Bouguer TB Densidade utilizada no cálculo da anomalia Bouguer **DENS** Anomalia isóstática (a ser calculada no futuro) **ANIS** ΤI Tipo de anomalia isostástica **FNTO** Fonte de origem da estação(procedência) **NUMES** Número da estação

ANEXO F.2.1 – Dados digitados

A.REIS-A.NEGRAS-A.REIS	4544797876881	03	97876881 9	306102
ANGRA DOS REIS	235641623564142356416	198201	150619	
-230075 -443179	112 600	1 1		
ENGENHEIRO PASSOS	219698021969822196982	198201	151018	
-224974 -446789	112 48000	5 1		
FAZENDA LAPA	202438020243802024378	198201	151152	
-224036 -447520	112 130000	5 1		
MARCO ZERO	193492619349241934926	198201	151305	
-223762 -447601	112 166900	5 1		
AGULHAS NEGRAS	178033217803341780332	198201	151503	
-223732 -447059	112 250000	5 1		
MARCO ZERO	193487019348741934874	198201	151629	
-223762 -447601	112 166900	5 1		
FAZENDA LAPA	202430020242982024298	198201	151747	
-224036 -447520	112 130000	5 1		
ENGENHEIRO PASSOS	219695021969542196954	198201	151918	
-224974 -446789	112 48000	5 1		
ANGRA DOS REIS	235645023564502356452	2198201	160010	
-230075 -443179	112 600	1 1		

ANEXO F.2.2 – Dados para conferência (observados)

UNIVERSIDADE DE SAO PAUL LAG-DEPARTAMENTO DE GEOF		46)													ATA:199 ORA: 1	4/04/09 6112144
BADOC DA LINNA				CADERNETA	DE OBSERVAC	OES GRA	VIMET	RICAS	;				•			
DADOS DA LINHA			_													
NOME: A.REIS-A.N					A: 454 TGRA		1:978	768.8	11 GF I	N: 978	768.	B1 6N	UN:	FHO	R: -3 N	EST: 9
COEFICIENTE(S) D	E ESCALA	DO	GRAVIMETRO	COEF(1):	1.000000000	COEF (2): 0	.0000	00000)						
DADOS DAS ESTACOES																
NOME	NUM	TPO	LEII	LE12	LE13	ANO	MES	DIA	HOR	MIN	IDE	IRE	CIP	TC	TEMP	FNIO
ANGRA DOS REIS	0	0	2356.416	2356.414	2356.416	1982	1	15	6	19	0	0	0.00	0	0.0	06102
ENGENHEIRO PASSOS	0	0	2176.980	2196.982	2196.982	1982	1	15	10	18	0	0	0.00	0	0.0	06102
FAZENDA LAPA	0	0	2024.380	2024.380	2024.378	1982	1	15	11	52	0	0	0.00	0	0.0	06102
MARCO ZERO	0	0	1934.926	1934.924	1934.926	1982	ī	15	13	5	o	0	0.00	ŏ	0.0	06102
AGULHAS NEGRAS		ò	1780.332	1780.334	1780.332	1982	- 1	15	15	7	0	0	0.00	o		
MARCO ZERO		0	1934.870	1934.874	1934.874		- :			20					0.0	06102
						1982	1	15	16	29	0	0	0.00	0	0.0	06102
FAZENDA LAPA	0	Ô	2024.300	2024.298	2024.298	1982	1	15	17	47	0	0	0.00	0	0.0	06102
ENGENHEIRO PASSOS	0	0	2196.950	2196.954	2196.954	1982	1	15	19	18	0	0	0.00	0	0.0	06102
ANGRA DOS REIS	0	0	2356.450	2356.450	2356.452	1982	1	16	0	10	0	0	0.00	0	0.0	06102

ANEXO F.2.3 – Dados para conferência (Reduzidos)

UNIVERSIDADE DE SAO PAU 1AG-DEPARTAMENTO DE GEO		G)							DATA: 1994/04/09 HORA: 16:12:44	
			DADOS	GRAVIMET	RICOS REDUZI	D05				
DADOS DA LINHA										
NOME: A.REIS-A.	NEGRAS-A.RI	EIS NL	IN: O NG	RA: 454 T	6RA:47 GINI:	978768.81	GF 1N: 97	8768.81 GNUM:	FHOR: -3 NEST: 9	,
COEFICIENTE(S)	DE ESCALA I	DO GRAVIMETR	O COEF(1):	1.000000	000 COEF (2)	1 0.00000	00000			,
DADOS DAS ESTACDES					,,,					
NOME	NUM	LAT	LON	MAR	VCORM	DES	DIN	VCDRD		
ANGRA DOS REIS	0	-23.0074	-44.3177	0.042	2474.320	0.000	0.000	2474.320		
ENGENHEIRO PASSOS	0	-22.4973	-44.6787	-0.013	2306.625	0.000	0.009	2306.634		
FAZENDA LAPA	0	-22.4035	-44.7518	0.010	2125.213	0.000	0.013	2125.225		
MARCO ZERO	0	-22.3761	-44.7599	0.040	2031.229	0.000	0.016	2031.245		
AGULHAS NEGRAS	0	-22.3731	-44.7057	0.079	1868.825	0.000	0.020	1868.845		
MARCO ZERO	0	-22.3761	-44.7599	0.083	2031.217	0.000				
FAZENDA LAPA			one vertice o				0.024	2031.241		
	0	-22.4035	-44.7518	0.064	2125.182	0.000	0.027	2125.208		
ENGENHEIRO PASSOS	0	-22.4973	-44.6787	0.023	2306.631	0.000	0.030	2306.661		
ANGRA DOS REIS	. 0	-23.0074	-44.3177	-0.037	2474.279	0.000	0.041	2474.320		

LEGENDA

DADOS DAS ESTAÇÕES

NOME	Nome da estação gravimétrica
NUM	Número da estação gravimétrica
LAT	Latitude geodésica
LON	Lngitude geodésica
ALFT	Altitude fundamental
MAR	Correção atração luni-solar (maré)
VCORM	Leitura média em mGal corrigida da maré
DES	Deriva estática
DIN	Deriva dinâmica
VCORD	Leitura média em mGal, corrigida da maré e das derivas
	estáticas e dinâmicas
GRAVOB	Gravidade observada
NGRAV	Número do gravímetro

ANEXO F.2.4 – Dados reduzidos (arquivo simplificado)

ANGRA DOS REIS	0	-23.0074	-44.3177	0.042	2474.320	0.000	0.000	2474.320
ENGENHEIRO PASSOS	0	-22.4973	-44.6787	-0.013	2306.625	0.000	0.009	2306.634
FAZENDA LAPA	0	-22.4035	-44.7518	0.010	2125.213	0.000	0.013	2125.225
MARCO ZERO	0	-22.3761	-44.7599	0.040	2031.229	0.000	0.016	2031.245
AGULHAS NEGRAS	0	-22.3731	-44.7057	0.079	1868.825	0.000	0.020	1868.845
MARCO ZERO	0	-22.3761	-44.7599	0.083	2031.217	0.000	0.024	2031.241
FAZENDA LAPA	0	-22.4035	-44.7518	0.064	2125.182	0.000	0.027	2125.208
ENGENHEIRO PASSOS	0	-22.4973	-44.6787	0.023	2306.631	0.000	0.030	2306.661
ANGRA DOS REIS	0	-23.0074	-44.3177	-0.037	2474.279	0.000	0.041	2474.320

DADOS DO ARQUIVO

Nome da estação gravimétrica

Número das estação gravimétrica

Latitude geodésica

Longitude geodésica

Altitude fundamental

Correção da atração luni-solar (maré terrestre)

Leitura média em mGal, corrigida de maré terrestre

Deriva estática

Deriva dinâmica

Leitura média em mGal, corrigida da maré terrestre e das derivas estáticas e dinâmicas

Aceleração da gravidade observada

Número do gravímetro

APÊNDICE G – CONFERÊNCIA E ANÁLISE DOS RESULTADOS

A conferência dos dados codificados no trabalho de campo e no laboratório (contidos na folha de codificação) com aqueles da relação emitida no processamento, constitui uma fase importantíssima na redução de observações gravimétricas. Todos os erros grosseiros, cometidos nas fases de observação, codificação e digitação, devem ser detectados pela conferência da caderneta de observações editada pelo programa, com a caderneta de observações codificada no campo e no laboratório. Os erros não encontrados nesta comparação dificilmente serão detectados na fase seguinte, que é uma análise visual das anomalias gravimétricas contidas no arquivo SIMPLIFICADO.

Assim, sempre que for possível, a conferência deve ser realizada duas vezes por pessoas diferentes, ou pela mesma pessoa em ocasiões diferentes para evitar o cansaço mental e a fatiga visual.

Para tornar a conferência menos lenta e cansativa, recomenda-se o seguinte procedimento:

- 1 Caderneta de observações confira integralmente cada página da relação editada pelo programa mudando as paginas do formulário codificado. Assim, os valores suspeitos podem ser facilmente comparados com os da estação próxima.
- 2 **Verificação por colunas** Verifique pelas colunas de cada relação conferida se há valores seqüencialmente muito diferentes. Em caso de dúvida, compare o valor suspeito com o original.
- 3 **Controle da perturbação luni-solar** Confira com atenção, na página que contém os dados gravimétricos reduzidos, a coluna da atração luni-solar (MAR). Essa correção tem uma variação suave entre –0,25<MAR<0,25 mGal e qualquer indício de anormalidade, tanto na variabilidade como na magnitude deve ser investigada (pode ser decorrência de erros nas coordenadas, data ou hora).
- 4 **Controle da deriva estática** A deriva estática reflete alterações do sistema elástico do gravímetro em estado de repouso. Para períodos de algumas horas, a variação

geralmente é pequena (inferior a (0,05 mGal)). Mas, como ela é determinada pela soma das parcelas de todas as interrupções, a deriva estática total pode chegar a décimos de mGal confira, na página que contém *os dados gravimétricos reduzidos*, a coluna da deriva estática (DES) tendo em mente essas informações.

- 5 Controle da deriva dinâmica a deriva dinâmica resulta das modificações do sistema elástico do gravímetro, originadas com o movimento que ele experimenta ao longo do percurso. Como a correção para a deriva dinâmica de cada estação e calculada pela deriva horária, a correção da última estação representa a deriva dinâmica total. Uma deriva dinâmica de grande magnitude pode ser decorrente de um erro grosseiro (em coordenadas, data ou hora) ou do transporte inadequado do gravímetro (neste caso denominado pulo). A deriva dinâmica varia de um gravímetro para outro. Em geral, ela tende a diminuir com o uso do aparelho, isto é, quando mais usado o gravímetro menor a deriva. Obviamente, a deriva depende também da duração das linhas com intervalo de fechamento inferiores a 72 horas, a deriva dinâmica raramente ultrapassa 0,10 mGal. Verifique, na página dos *dados gravimétricos reduzidos*, se a deriva dinâmica (DIN) não apresentou anormalidade em relação a essas peculiaridades.
- 6 **Verificação final** Uma verificação final, que muitas vezes permite eliminar mais alguns erros, é feita rapidamente sobre as colunas do arquivo que contém as anomalias gravimétricas (formato SIMPLIFICADO), gerado com esse objetivo. O cabeçalho e o formato apropriado desse arquivo tornam a verificação mais rápida e agradável.

APÊNDICE H – CÓDIGOS DAS INSTITUIÇÕES PARA CODIFICAÇÃO

Código	Instituição
0.1	LININGERGITM OF WIGGONGRI
01	UNIVERSITY OF WISCONSIN
011	
02	OBSERVATÓRIO NACIONAL
021	Departamento de Geofísica
021	Departamento de Georisica
03	PETRÓLEO BRASILEIRO S/A
031	Departamento de Exploração
04	FUNDAÇÃO INSTITUTO BRASILEIRO DE GEOGRÁFIA E
	ESTATÍSTICA
041	Diretoria de Geociências
05	UNIVERSIDADE FEDERAL DA PARANÁ
051	Departamento de Geociências
06	UNIVERSIDADE DE SÃO PAULO
061	Instituto de Astronomia, Geofísica e Ciências Atmosféricas
062	Instituto de Geociências
07	UNIVERSIDADE FEDERAL DA PARÁ
071	Centro de Geociências
08	COMPANHIA DE PESQUISA DE RECURSOS MINERAIS
081	Superintendência Regional de Salvador
0.0	AN WARDON A DE DE DE DE LOCALA
09	UNIVERSIDADE DE BRASÍLIA
091	Instituto de Geociências

APÊNDICE H – Continuação

Código	Instituição
<u> </u>	
10	UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE
101	Departamento de Física (Grupo de Geofísica)
11	UNIVERSIDADE FEDERAL DE MATO GROSSO
111	Núcleo de Ciências Geofísicas
12	UNIVERSIDADE ESTATUAL PAULISTA (RIO CLARO)
	·
121	Instituto de Geociências e Ciências Exatas
13	UNIVERSIDADE FEDERAL DE PERNAMBUCO
131	Instituto de Geociências
14	UNIVERSIDADE FEDERAL DO AMAZONAS
141	Instituto de geocências
15	UNIVERSIDADE FEDERAL DE OURO PRETO
151	Departamento de Geologia
16	UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
-	
161	Instituto de Geociências
17101	IGeS (International Geoid Service) Gravity data of South America