

MDP, Q-Learning & ADP: Concepts and **Algorithms**

Chunyue Song csong(at)zju.edu.cn

College of Control Science and Engineering, Zhejiang University

December 26, 2018

Outline

MDP, Q-Learning and ADP

- 1 Gamble
- - 2 MDP 3 Algorithm
 - 4 Model-free Learning
 - **5** Approximate Dynamic Programming

Exploration - Exploitation

Gamble

$$Q_n(k) = Q_{n-1}(k) + \frac{1}{n}(v_n - Q_{n-1}(k))$$

Exploration - Exploitation

Average Reward: $Q(k) = \frac{1}{n} \sum_{i=1}^{n} v_i$ $Q_n(k) = Q_{n-1}(k) + \frac{1}{n}(v_n - Q_{n-1}(k))$

Gamble

Greedy Algorithms

Exploration - Exploitation

Exploration - Exploitation

MDP, Q-Learning and ADP

Average Reward: $Q(k) = \frac{1}{n} \sum_{i=1}^{n} v_i$

 $Q_n(k) = Q_{n-1}(k) + \frac{1}{n}(v_n - Q_{n-1}(k))$

Greedy Algorithms

- 1 Input: K, R, T, ϵ .
- r = 0;
- 3 $\forall i = 1, 2, \dots, K : Q(i) = 0, count(i) = 0;$
- 4 for $t = 1, 2, \dots, T$, do
- 6 else $k = \arg\max_i Q(i)$
- 7 end if
- $8 \quad v = R(k), \, r = r + v$
- 9 $Q(k) = \frac{Q(k) \times count(k) + v}{count(k) + 1}$
- $10 \quad count(k) = count(k) + 1$
- 11 end for
- 12 Output: r.

MDP, Q-Learning and ADP

3/23

Boltzmann Distr.: P(k) = -

Exploration - Exploitation

Gamble

Softmax Algorithms

Exploration - Exploitation

MDP, Q-Learning and ADP

Gamble

Boltzmann Distr.: $P(k) = \frac{e^{\frac{Q(k)}{\tau}}}{\sum_{k=1}^{K} e^{\frac{Q(k)}{\tau}}}$

Softmax Algorithms

- 1 Input: K, R, T, τ .
- r = 0;
- 3 $\forall i = 1, 2, \dots, K : Q(i) = 0, count(i) = 0;$
- 4 for $t = 1, 2, \dots, T$, do
- 5 k = P(k), and v = R(k)
- $6 \quad r = r + v$
- $Q(k) = \frac{Q(k) \times count(k) + v}{count(k) + 1}$
- 8 count(k) = count(k) + 1
- 9 end for
- 10 Output: *r*.

4/23

MDP: Markov Decision Process

MDP: Markov Decision Process

MDP, Q-Learning and ADP

MDP

MDP Model

- $\blacksquare MDP = \langle X, A, P, R \rangle.$
- *X*: State Space; *A*: Action Space; $P: X \times A \to X(P_{X \to x}^a); R: X \times A \to \mathbb{R}^+(R_{X \to x}^a).$

MDP, Q-Learning and ADP

MDP Model

- $MDP = \langle X, A, P, R \rangle$.
- X: State Space; A: Action Space; $P: X \times A \to X(P_{X \to x}^a); R: X \times A \to \mathbb{R}^+(R_{X \to x}^a).$

Objective Function

 $\qquad \begin{cases} \min_{\pi} \mathbb{E}_{\pi} [\sum_{t=0}^{+\infty} \gamma^{t} r_{t+1} | x_{0} = x], \\ \min_{\pi} \mathbb{E}_{\pi} [\frac{1}{T} \sum_{t=0}^{T} r_{t+1} | x_{0} = x]. \end{cases}$

MDP: Markov Decision Process

MDP

MDP Model

- $MDP = \langle X, A, P, R \rangle.$
- X: State Space; A: Action Space; $P: X \times A \to X(P^a_{x \to \acute{x}}); \, R: X \times A \to \mathbb{R}^+(R^a_{x \to \acute{x}}).$

Objective Function

 $\begin{cases} \min_{\pi} \mathbb{E}_{\pi}[\sum_{t=0}^{+\infty} \gamma^{t} r_{t+1} | x_{0} = x], \\ \min_{\pi} \mathbb{E}_{\pi}[\frac{1}{T} \sum_{t=0}^{T} r_{t+1} | x_{0} = x]. \end{cases}$

Policy: π **Vs. Action:** $a, a = \pi(x)$

Value Function

MDP, Q-Learning and ADP

MDP

Model-based Learning

Value Function

MDP, Q-Learning and ADP

Model-based Learning

MDP Algorithm Model-free State Value Function: $V^{\pi}(\cdot)$

Value Function

MDP, Q-Learning and ADP C. Song

Model-based Learning

Gamble MDP

Alaorithm

Algorithm

Learning

Approximate

State Value Function: $V^{\pi}(\cdot)$

/23

Value Function

C. Song Gamble MDP

Algorithm

Model-free
Learning

Approximate

Model-based Learning

State Value Function: $V^{\pi}(\cdot)$

State-action Value Function: $Q^{\pi}(x, a)$

Value Function

MDP, Q-Learning and ADP C. Song

Gamble MDP

Algorithm

Model-free Learning Approximate Dynamic Model-based Learning

State Value Function: $V^{\pi}(\cdot)$

State-action Value Function: $Q^{\pi}(x, a)$

6/23

DP: Dynamic Programming

Bellman equation

MDP, Q-Learning and ADP

MDP

DP: Dynamic Programming

MDP, Q-Learning and ADP

Bellman equation

7/23

DP: Dynamic Programming

MDP, Q-Learning and ADP

MDP

Bellman equation

Policy: $a = \pi(x)$

■ Deterministic: $\pi: X \mapsto A, a = f(x)$.

DP: Dynamic Programming

MDP, Q-Learning and ADP

MDP

Bellman equation

Policy: $a = \pi(x)$

- Deterministic: $\pi: X \mapsto A, a = f(x)$.
- Probabilistic: $\pi: X \times A \mapsto \mathbb{R}$, the probability of choosing action a on state x, $\sum_{a} \pi(x, a) = 1$.

7/23

Policy Evaluation

MDP, Q-Learning and ADP C. Song

Gamble MDP

Algorithm Model-free

Model-free Learning Approximate Dynamic Programming

Policy Evaluation

- **1** Input: $MDP = \langle X, A, P, R \rangle$; the policy π ; the horizon T.
- **2** \forall *x* ∈ *X* : V(x) = 0;
- 3 for $t = 1, 2, \dots$, do
- $\forall x \in X$:
- $V'(x) = \sum_{a \in A} \pi(x, a) \sum_{\hat{x} \in X} P^a_{x \to \hat{x}} \left(\frac{1}{t} R^a_{x \to \hat{x}} + \frac{t-1}{t} V(\hat{x}) \right);$
- 5 if t = T + 1 then
- 6 break
- 7 else V = V'
- 8 end if
- 9 end for
- 10 Output: V(x).

8/23

Optimal Policy

MDP
Algorithm

Approximate Dynamic Programmine

Optimal Policy

MDP, Q-Learning and ADP C. Song

mble

Algorithm

Model-free Learning Approximate $\pi^* = \operatorname{arg\,max}_\pi \, V^\pi(x)$, $orall x \in X, \, V^*(x) = V^{\pi^*}(x)$

Bellman Equation

9/23

Optimal Policy

MDP, Q-Learning and ADP

Algorithm

 $\pi^* = \operatorname{arg\,max}_{\pi} V^{\pi}(x)$, $orall x \in X, V^*(x) = V^{\pi^*}(x)$

Bellman Equation

$$V^*(x) = \max_{a \in A} Q^{\pi^*}(x, a)$$

Optimal Policy

MDP, Q-Learning and ADP

Algorithm

 $\pi^* = \operatorname{arg\,max}_{\pi} V^{\pi}(x)$, $orall x \in X, V^*(x) = V^{\pi^*}(x)$

Bellman Equation

$V^*(x) = \max_{a \in A} Q^{\pi^*}(x, a)$

9/23

Policy Iteration

MDP, Q-Learning and ADP

 $V^{\pi}(x) \leq Q^{\pi}(x, \pi'(x)) = \sum_{x' \in X} P_{x \to x'}^{\pi'(x)} (R_{x \to x'}^{\pi'(x)} + \gamma V^{\pi}(x'))$ $\leq \sum_{x' \in X} P_{x \to x'}^{\pi'(x)} (R_{x \to x'}^{\pi'(x)} + \gamma Q^{\pi}(x', \pi'(x'))) = \dots = V^{\pi'}(x).$

Policy Iteration

MDP, Q-Learning and ADP

■ $V^{\pi}(x) \le Q^{\pi}(x, \pi'(x)) = \sum_{x' \in X} P_{x \to x'}^{\pi'(x)}(R_{x \to x'}^{\pi'(x)} + \gamma V^{\pi}(x'))$ $\le \sum_{x' \in X} P_{x \to x'}^{\pi'(x)}(R_{x \to x'}^{\pi'(x)} + \gamma Q^{\pi}(x', \pi'(x'))) = \cdots = V^{\pi'}(x).$

 $\pi^*(x) = \operatorname{arg\,max}_{a \in A} Q^{\pi}(x, a)$

10/23

Policy Iteration

MDP, Q-Learning and ADP

Algorithm

Input: $MDP = \langle X, A, P, R \rangle$ and the horizon T.

 $\forall x \in X : V(x) = 0, \pi(x, a) = \frac{1}{|A(x)|};$

3 Loop

4 for $t = 1, 2, \dots, do$

 $\forall x \in X$:

 $V'(x) = \sum_{a \in A} \pi(x, a) \sum_{\acute{x} \in X} P^a_{x \to \acute{x}} (\frac{1}{t} R^a_{x \to \acute{x}} + \frac{t-1}{t} V(\acute{x}));$

6 if t = T + 1 then

7 break; else V = V'

8 end if

9 end for

10 $\forall x \in X : \pi' = \arg\max_{a \in A} Q(x, a)$ 11 if $\forall x \in X : \pi'(x) = \pi(x)$ then

12 break; else $\pi = \pi'$

13 end if

14 End loop

15 Output: π^* .

Value Iteration

MDP, Q-Learning and ADP

Algorithm

 $\forall x \in X : V(x) = 0;$ 3 for $t = 1, 2, \dots$, do

1 Input: $MDP = \langle X, A, P, R \rangle$, θ and the horizon T.

 $5 \text{ if } \max_{x \in X} |V(x) - V'(x)| < \theta \text{ then }$

6 break; else V = V'

7 end if

8 end for

11/23

12/23

Remark

Algorithm

For every state x, we will have a optimal action $a = f^*(x)!$

Remark

MDP, Q-Learning and ADP

Algorithm

For every state x, we will have a optimal action $a = f^*(x)!$

There no the generalization ability problem!

13/23

Monte Carlo Simulation

Monte Carlo Simulation

MDP, Q-Learning and ADP

No R, No P.

MDP, Q-Learning and ADP

Sampling to get R

No R, No P.

14/23

14/23

Monte Carlo Simulation

Model-free Learning

No R, No P.

Sampling to get R

We start from x_0 , implement one policy π , and get the following trajectory

$$\langle (x_0, a_0, r_1); (x_1, a_1, r_2); \cdots, (x_{T-1}, a_{T-1}, r_T), x_T \rangle$$

On-policy Learning

MDP, Q-Learning and ADP

Model-free Learning

- 1 Input: Environment: E, Action Space: A, Initial state: x_0 and the horizon T.
- 2 Q(x, a) = 0, count(x, a) = 0, $\pi(x, a) = \frac{1}{|A(x)|}$;
- 3 for $s = 1, 2, \dots, do$
- In the environment E and implement π to produce $\langle (x_0, a_0, r_1); (x_1, a_1, r_2); \cdots, (x_{T-1}, a_{T-1}, r_T), x_T \rangle;$
- 5 for $t = 0, 1, \dots, T 1$ do
- 6 $R = \frac{1}{T-t} \sum_{i=t+1}^{T} r_i, \ Q(x_t, a_t) = \frac{Q(x_t, a_t) \times count(x_t, a_t) + R}{count(x_t, a_t) + 1};$
- 7 $count(x_t, a_t) = count(x_t, a_t) + 1$;
- For all detected state x: $\pi(x) = \begin{cases} \arg \max_{a'} Q(x, a'), Pr(1 \epsilon) \\ a \in A, Pr(\epsilon) \end{cases}$
- 10 end for
- 11 Output: π^*

14/23

Off-policy Learning

MDP, Q-Learning and ADP

1 Input: Environment: E, Action Space: A, Initial state: x_0 and the horizon T.

2 Q(x, a) = 0, count(x, a) = 0, $\pi(x, a) = \frac{1}{|A(x)|}$;

3 for $s = 1, 2, \dots$, do

4 In the environment E and implement $\pi(Pr(\epsilon))$ to produce $\langle (x_0, a_0, r_1); (x_1, a_1, r_2); \cdots, (x_{T-1}, a_{T-1}, r_T), x_T \rangle;$

 $p_i = \begin{cases} 1 - \epsilon + \epsilon/|A|, a_i = \pi(x_i) \\ \epsilon/|A|, a_i \neq \pi(x_i), \end{cases}$

6 for $t = 0, 1, \dots, T - 1$ do

7 $R = \frac{1}{T-t}(\sum_{i=t+1}^{T} r_i) \prod_{i=t+1}^{T-1} \frac{\mathbb{I}(a_i = p_i(x_i))}{p_i}, \ Q(x_t, a_t) = \frac{Q(x_t, a_t) \times count(x_t, a_t) + R}{count(x_t, a_t) + 1};$

8 $count(x_t, a_t) = count(x_t, a_t) + 1;$

9 end for

 $10 \pi(x) = \arg\max_{a'} Q(x, a')$

11 end for

12 Output: π^*

Remark

MDP, Q-Learning and ADP

16/23

DP evaluate Q at each step!

17/23

Remark

Model-free Learning

DP evaluate Q at each step!

Monte Carlo evaluate Q after each sampling according to each trajectory!

Remark

MDP, Q-Learning and ADP

Model-free Learning

DP evaluate Q at each step!

Monte Carlo evaluate Q after each sampling according to each trajectory!

$$\begin{split} & \blacksquare & Q_{t+1}^{\pi}(x,a) = Q_{t}^{\pi}(x,a) + \frac{1}{t+1}(R_{t+1} - Q_{t}^{\pi}(x,a)) = \\ & Q_{t}^{\pi}(x,a) + \alpha(R_{t+1} - Q_{t}^{\pi}(x,a)) \\ & \blacksquare & Q^{\pi}(x,a) = \sum_{x' \in X} P_{x \to x'}^{a}(R_{x \to x'}^{a} + \gamma V^{\pi}(x')) = \\ & \sum_{x' \in X} P_{x \to x'}^{a}(R_{x \to x'}^{a} + \gamma \sum_{a' \in A} \pi(x',a')Q^{\pi}(x',a')) \\ & \blacksquare & Q_{t+1}^{\pi}(x,a) = Q_{t}^{\pi}(x,a) + \alpha(R_{x \to x'}^{a} + \gamma Q_{t}^{\pi}(x',a') - Q_{t}^{\pi}(x,a)) \end{aligned}$$

Sarsa

1 Input: Environment: E, Action Space: A, Initial state: x_0 , discounted factor γ and step α .

2
$$Q(x,a) = 0, \pi(x,a) = \frac{1}{|A(x)|};$$

3
$$x = x_0, a = \pi(x);$$

4 for
$$t = 1, 2, \dots, do$$

f(x) = r, f(x)

6
$$a' = \pi^{\epsilon}(x')$$
;

7
$$Q(x, a) = Q(x, a) + \alpha(r + \gamma Q(x', a') - Q(x, a));$$

8
$$\pi(x) = \arg\max_{a''} Q(x, a'');$$

9
$$x = x', a = a';$$

- 10 end for
- 11 Output: π^*

Q-Learning

MDP, Q-Learning and ADP

1 Input: Environment: E, Action Space: A, Initial state: x_0 , discounted factor γ and step α .

2
$$Q(x,a) = 0, \pi(x,a) = \frac{1}{|A(x)|};$$

3
$$x = x_0$$
;

4 for $t = 1, 2, \dots, do$

5 r, x' = the state when implement $a = \pi^{\epsilon}(x)$;

6
$$a' = \pi(x')$$
;

7
$$Q(x, a) = Q(x, a) + \alpha(r + \gamma Q(x', a') - Q(x, a));$$

8
$$\pi(x) = \arg\max_{a''} Q(x, a'');$$

9
$$x = x';$$

10 end for

11 Output: π^*

19/23

Value Function Approximation

Model-free Learning

Assumption: Linear Function: $V_{\theta}(x) = \theta^{T} x$,

Value Function Approximation

MDP, Q-Learning and ADP

Model-free Learning

Assumption: Linear Function: $V_{\theta}(x) = \theta^{T} x$,

 \blacksquare $E_{\theta} = \mathbb{E}_{x \sim \pi}[(V^{\pi}(x) - V_{\theta}(x))^2];$

lacksquare $-rac{\partial E_{ heta}}{\partial heta} = \mathbb{E}_{x \sim \pi}[2(V^{\pi}(x) - V_{ heta}(x))x],$

 $\mathbf{0} \theta = \theta + \alpha (V^{\pi}(x) - V_{\theta}(x))x = \theta + \alpha (r + \gamma V_{\theta}(x') - V_{\theta}(x))x = \theta + \alpha (r + \gamma V_{\theta}^{T} x' - \theta^{T} x)x,$

20/23

Approximate Dynamic Programming

Acknowlegement

MDP, Q-Learning and ADP

MDP, Q-Learning and ADP

Thanks for You Attention!

http://person.zju.edu.cn/ChunyueSong

21/23

22/23

Acknowlegement

Reference

■ Zhihua Zhou, Machine Learning, Tsinghua University Press, Bejing, China.