Características Eléctricas das Famílias Lógicas

(particularizando para TTL)

1. Considere a seguinte tabela, que resume algumas das características eléctricas de um chip '04 da família TTL (*Standard*, *Low-Power Schottky*):

Grandeza	7404	74LS04	74S04	Un.
V_{OL}	0.4	0.5	0.5	V
V_{OH}	2.4	2.7	2.7	V
$V_{ m IL}$	0.8	0.8	0.8	V
V_{IH}	2	2	2	V
I_{OL}	16	8	20	mA
I_{OH}	- 0.4	- 0.4	- 1	mA
$ m I_{IL}$	- 1.6	- 0.4	- 2	mA
I_{IH}	40	20	50	μΑ
I _{CCL}	33	6.6	54	mA
I_{CCH}	12	2.4	24	mA

Para cada um dos chips em questão, determine o seu *fan-out*, às suas **margens de ruído** e a **potência média dissipada**.

NOTA: Para I_{CCL} e I_{CCH} escolheu-se os valores típicos, fazendo-se então a média dos dois. Por vezes as folhas de dados apresentam apenas os valores de I_{CC} ; neste caso, considerar o valor típico.

Álgebra de Boole

- 1. Demonstre o teorema da **idempotência** (b.b = b; b+b = b).
- 2. Demonstre o teorema do **elemento absorvente do produto** (b.0 = 0).
- 3. Prove o **teorema da absorção**: x + xy = x.
- 4. Prove o **teorema da adjacência**: $xy + x\overline{y} = x$.
- 5. Prove o **teorema do consenso** ($xy + \overline{x}z + yz = xy + \overline{x}z$): "Dado um par de termos em que a variável x aparece num termo e complementada no outro, o termo de consenso é formado pelo produto das variáveis que acompanham x num termo e o seu complemento no outro."
- 6. Prove que $x + \bar{x}y = x + y$ (teorema da simplificação).
- 7. Demonstre o teorema da unicidade do complemento.
- 8. Prove (por indução) que a função ou–exclusivo é associativa.
- 9. Prove que $xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz = x + yz$.
- 10. Simplifique a seguinte função: $f = \overline{x}yz + xy\overline{z} + xyz$.
- 11. Simplifique a seguinte função: $f = xyz + xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz$.
- 12. Simplifique a seguinte função: $y = x_1 \overline{x}_2 + x_3 + \overline{x}_1 \overline{x}_3 x_4 + x_2 \overline{x}_3 x_4$.
- 13. Considere a função apresentada na questão anterior (depois de simplificada).
 - a) Escreva a função y só com funções NAND. Faça o diagrama lógico.
 - b) Idem, mas com NORs.
- 14. Prove por indução os teoremas de De Morgan:

a)
$$\overline{x+y} = \overline{x}.\overline{y}$$

b)
$$\overline{x.y} = \overline{x} + \overline{y}$$

Bases de Numeração e Aritmética

1.	Qual a representação binária dos s	seguintes números?	
	a) 1234567 ₈	b) DACE ₁₆	c) 110100 ₃
	d) 110100 ₈	e) 110100 ₁₀	
2.	Qual a representação decimal dos	seguintes números?	
	a) 1234.567 ₈	b) CF.BA ₁₆	c) 110.100 ₃
	d) 110.100 ₈	e) 110.100 ₂	
3.	Escreva os seguintes números de	cimais nas suas representa	ções binária, octal e hexa-
	decimal:		
	a) 1987	b) 7777	c) 3.141
	d) 205.109375		
4.	Converta directamente para binán	rio e octal os seguintes núme	ros hexadecimais :
	a) ADA.DE	b) D.ADA	c) EA03.5C
5.	Um microcomputador trabalha co	m palavras de 8 bits (byte)) e representa a informação
	numérica inteira na notação de con	nplemento para 2.	
	a) Qual o maior e o menor núme	ro inteiro que podem ser rep	resentados?
	b) Indique a representação binár	ia dos seguintes números dec	imais: +93, -93, 0, -1.
6.	Um microcomputador trabalha con	m palavras de 16 bits . Qual a	a representação binária de
	–77 ₁₀ usando:		
	a) Notação sinal e módulo (magni	itude).	
	b) Notação em complemento para	a 2.	
	c) Notação em complemento para	a 1.	
7.	Faça as seguintes operações em b	inário (complemento para	2); os operandos apresenta-
	dos estão na sua representação dec	imal.	
	a) 21 + 55	b) 21 × 55	c) $48 - 21$
	d) -48 - 21	e) 21 – 48	f) 120 + 10
	g) -120 - 10		

- 8. Repita as alíneas anteriores para binário em complemento para 1.
- 9. Execute as seguintes operações em binário (os operandos estão apresentados na base decimal). Admita que trabalha com palavras de comprimento fixo e igual a 10 bits. Use a representação em complemento para 2.

a)
$$33 + 127$$

b)
$$453 - 322$$

c)
$$453 + 322$$

d)
$$-453 + 322$$

e)
$$-512 + 35$$

e)
$$-512 + 35$$
 f) $-453 + (-322)$

g)
$$322 + (-322)$$

10. Repita as alíneas anteriores para binário em complemento para 1.

Códigos Binários

- 1. a) Escreva o código BCD 8421.
 - b) Qual a sua **redundância**? Qual a sua **distância mínima**? Que **outras propriedades** tem?
 - c) Escreva o número **1905**₁₀ usando este código. Compare com a sua representação em binário.
- 2. Repita a pergunta anterior para o código **BCD 84–2–1**.
- 3. Construa um código BCD ponderado e autocomplementar com os pesos 87-4-2.
- 4. a) Escreva o código **XS3** (ou de **Stibitz**).
 - b) Que **propriedades** tem?
 - c) Prove que este código **não é** um código **ponderado**.
- 5. a) Escreva o código Aiken.
 - b) Que propriedades tem?
 - c) Determine se este código é ou não ponderado.
- 6. a) Escreva um código BCD **autocomplementar** com os **pesos 642–3**, e que distinga as **palavras menores que 5** das que são **maiores ou iguais a 5**.
 - b) Modifique o código determinado em a) de forma a transformá-lo num código detector de um erro, pelo método do bit de paridade; pretende-se paridade ímpar para a palavra global.
- 7. Prove que para um código BCD ser **ponderado** e **autocomplementar**, a **soma dos seus pesos deve ser igual a 9**.
- 8. Pretende-se construir um sistema de transmissão de dados que seja capaz de **detectar er- ros** por cada envio de **um byte de informação**. Qual o **comprimento global mínimo** de cada palavra a transmitir, no caso de se pretender a **detecção de um único erro**?
- 9. a) Construa um código BCD de **5 bits**, sendo 4 bits iguais aos do código **BCD 8421** e o 5° **bit de paridade**; as palavras completas devem ter **paridade ímpar**.
 - b) Qual a **redundância** e qual a **distância mínima** deste código?

- c) Demonstre se este novo código é ou não **ponderado**.
- 10. a) Escreva o código biquinário.
 - b) Qual a sua distância mínima?
 - c) O que pode concluir quanto à sua paridade?
 - d) Descreva algumas estratégias de **detecção de erros**.
- 11. Considere o Código de Hamming.
 - a) Deseja-se transmitir 6 bits de dados (sejam 001101, D = 6). Determine quantos bits (T) serão efectivamente enviados e calcule-os.
 - b) Determine os dados originais (*D* bits), correspondentes às seguintes palavras recebidas, sabendo que, **no máximo**, ocorreu **um erro** em cada palavra recebida:

111.011.110, 001.111.111, 010.011.001, 110.011.100, 101.100.000.

Nota: Sendo D o número de bits de dados propriamente ditos e C o número de bits de controlo acrescentados pelo Código de Hamming, o número total de bits a transmitir será T = D + C, em que T é o menor valor inteiro que verifica a relação: $2^D \cdot (T+1) \le 2^T \cdot$

- 12. a) Escreva o **código Gray** com palavras de **4 bits**.
 - b) Que propriedades tem?
 - c) A partir deste código, construa um código BCD de distância unitária, não cíclico.
 - d) Idem, mas cíclico.
 - e) Seria possível construir um código de **distância unitária** com um **número ímpar de palavras**? Se sim, como. Se não, porquê?
- 13. Projecte um **codificador axial** (*optical shaft encoder*) com uma **resolução de 30°**, de **distância unitária** e **cíclico**.
- 14. a) Escreva o código decimal binário para um display de 7 segmentos, de acordo com as configurações apresentadas ao lado.

- b) Calcule a sua **redundância**.
- c) Qual a sua distância mínima?
- d) Conclua quanto à adequação deste código a uma aplicação de **detecção de erros**.
- 15. Considere agora também os valores de 0 a F (**hexadecimal**).

Circuitos Combinatórios

1. O circuito da figura representa a implementação de uma função lógica conhecida. Qual é? Que vantagens tem sobre a implementação tradicional?

Resolver analiticamente e por indução (tabelas de verdade).

2. Quais as funções lógicas do diagrama?

- 3. Escreva as seguintes funções em termos de **somas de mintermos** e em termos de **produtos de maxtermos**.
 - a) 1001 0110 (96₁₆)
- b) 0101 0101 (55₁₆)
- c) 1000 0001 (81₁₆)

- d) 0111 1110 (7E₁₆)
- e) 1011 0001 0110 0101 (B165₁₆)
- 4. Uma sala tem 3 portas de acesso (A, B e C). Junto de cada porta está um interruptor capaz de ligar ou desligar a luz. Quando qualquer um dos interruptores é actuado, o estado da luz muda (acende se estiver apagada, apaga se estiver acesa). Admite-se que a luz está apagada quando todos os interruptores estão para baixo (zero).

Escreva a equação lógica do estado de iluminação (L = 1: luz acesa) em função do estado dos interruptores A, B e C.

5. Simplifique os seguintes circuitos usando o **método de Karnaugh**.

- 6. Seja $F = 1111 \ 1011 \ 0111 \ 0110 \ (FB76_{16})$
 - a) Escreva a função na mais simples soma de produtos e no mais simples produto de somas.
 - b) Escrever a função com **NORs** e **NANDs**.
- 7. Usando mapas de **Karnaugh**, simplifique as seguintes funções booleanas.

a)
$$y_1 = \Sigma$$
 m (1,2,3,6)

b)
$$y_2 = \Sigma (0,2,3,4)$$

c)
$$y_3 = \Pi M (2,4,6,7)$$

d)
$$z_1 = \Sigma$$
 m (1,6,9,11,13,14,15)

e)
$$z_2 = \Sigma$$
 m (1,3,5,7,9,10,11,13,15)

f)
$$z_3 = \Pi (0,2,8,9,12,13)$$

g)
$$z_4 = \Sigma$$
 m (0,1,4,6,7,8,9,10,14)

h)
$$z_5 = \Sigma$$
 m $(0,1,2,5,6,8,9,12,15)$

h)
$$z_5 = \Sigma$$
 m $(0,1,2,5,6,8,9,12,15)$ i) $w_1 = \Sigma$ m $(0,1,7,8,9,10,13,14) + d (2,4,5)$

j)
$$w_2 = \Sigma \text{ m } (1,5,7,12) + d (4,6,8,13)$$

j)
$$w_2 = \Sigma \text{ m } (1,5,7,12) + d (4,6,8,13)$$
 k) $w_3 = \Pi \text{ M } (0,1,2,4,7,9,14,15) + d (8,10,13)$

- 8. a) Dado o circuito da figura ao lado, determinar as **tabelas de verdade** das funções y_1 , y_2 e y_3 .
 - b) Comparar com as tabelas de verdade do problema anterior.
 - c) Comparar as expressões algébricas de cada uma das funções, contar as gates e concluir.

- 9. Conceber um circuito com 3 entradas cuja saída seja '1' quando aparecer na entrada um número ímpar de uns.
- 10. Conceber um circuito com 4 entradas que **detecte as combinações de entrada** com 2 ou 3 uns.

11. Projecte um circuito **meio-somador** (*half adder*). Este circuito gera o resultado da soma (*s*) de dois bits (*a* e *b*), bem como o transporte (*carry*).

12. Projecte um **somador completo**. Tem 3 entradas: além dos 2 bits a somar (a e b), há ainda o transporte da soma anterior (c_{in}) .

13. Projecte um circuito que **multiplique** duas palavras de dois bits cada.

- 14. Projectar um circuito **descodificador do código BCD8421**. Considere as seguintes hipóteses:
 - a) Circuito mais simples.
 - b) Inexistência de erros caso surjam **palavras que não pertencem ao código**.

- 15. a) Projectar um conversor de código **BCD8421** para *display* de 7 segmentos (ver página seguinte). Projecte o circuito o mais simples possível, usando somas de produtos.
 - b) Qual o aspecto visual relativo às entradas não pertencentes ao código BCD?
 - c) Modifique o circuito para permitir mais uma entrada e mais uma saída para eliminar os zeros à esquerda (*ripple blanking*).
 - d) Proceda ainda a uma alteração mais, de forma a que todos os segmentos fiquem acesos quando uma **entrada de teste** estiver activa.

- 16. Projectar um conversor de código **BCD8421** para *display* de 7 segmentos, de forma a que sejam apagados todos os segmentos quando apareça uma palavra na entrada que não pertença ao código BCD.
- 17. Projecte um conversor de código hexadecimal para display de 7 segmentos.
- 18. Os modernos gravadores digitais de banda magnética, quando usados no modo *streaming*, usam um código conhecido por GCR (*Group Code Recording*). Com este código são gravadas palavras de **5 bits por cada 4 bits de informação**, de acordo com a tabela dada.

\mathbf{B}_3	B_2	B_1	B_0	G_4	G_3	G_2	G_1	G_0
0	0	0	0	1	1	0	0	1
0	0	0	1	1	1	0	1	1
0	0	1	0	1	0	0	1	0
0	0	1	1	1	0	0	1	1
0	1	0	0	1	1	1	0	1
0	1	0	1	1	0	1	0	1
0	1	1	0	1	0	1	1	0
0	1	1	1	1	0	1	1	1
1	0	0	0	1	1	0	1	0
1	0	0	1	0	1	0	0	1
1	0	1	0	0	1	0	1	0
1	0	1	1	0	1	0	1	1
1	1	0	0	1	1	1	1	0
1	1	0	1	0	1	1	0	1
1	1	1	0	0	1	1	1	0
1	1	1	1	0	1	1	1	1

- a) Projecte um conversor de código para ser usado na fase de gravação.
- b) Projecte um conversor de código para ser usado na fase de leitura.
- 19. Projecte o circuito que converta palavras no **código de O'Brien** nas correspondentes palavras do **código de Libaw–Craig** (ver tabela deste códigos na página seguinte). Projecte também o circuito que procede à conversão inversa.

Dec.	Código de O'Brien			en Código de Libaw–Craig			raig		
0	0	0	0	1	0	0	0	0	0
1	0	0	1	1	0	0	0	0	1
2	0	0	1	0	0	0	0	1	1
3	0	1	1	0	0	0	1	1	1
4	0	1	0	0	0	1	1	1	1
5	1	1	0	0	1	1	1	1	1
6	1	1	1	0	1	1	1	1	0
7	1	0	1	0	1	1	1	0	0
8	1	0	1	1	1	1	0	0	0
9	1	0	0	1	1	0	0	0	0

20. Projecte um **descodificador de 4 para 16 linhas** (hexadecimal), conforme indicado na figura. Deverá ter **duas entradas de** *enable*, uma activa no nível lógico 1 e outra no nível lógico 0.

21. Projecte um **descodificador de 4 para 16 linhas** (hexadecimal), usando como bloco elementar o seguinte circuito **descodificador de 2 para 4 linhas**:

22. Projecte um circuito *multiplexer* de modo a poder seleccionar uma de 8 palavras de 4 bits cada. Use os seguintes circuitos como blocos elementares:

23. Projecte um circuito que **escolha uma de 8 palavras de 4 bits cada**, usando o **buffer tri-state** 74LS244:

24. Projecte um **codificador com prioridades** para o código binário de **3 bits**. Deverá ter uma linha de saída indicando **codificação válida** e uma entrada de *enable* (ambas activas no nível lógico baixo).

- 25. a) Projecte um circuito **codificador** de 8 entradas para o **código Gray**. Deverá ter uma linha de saída indicando entrada activa.
 - b) Faça as alterações necessárias de modo a transformar o circuito de a) num codificador com prioridades.

26. Pretende-se construir um circuito combinatório que faça o **deslocamento à direita de uma palavra de 8 bits**. O número de bits deslocados é dado pelas variáveis N₂N₁N₀, podendo variar de 0 a 7.

Indicar quais as **características** que uma **PLA** deverá ter para implementar este circuito. Considere as seguintes opções:

- a) Deslocamento não circular.
- b) Deslocamento circular.

- 27. Numa fábrica há uma conduta terminada por uma válvula, por onde passa um fluído aquecido. Na conduta encontram-se sensores de temperatura que fazem as seguintes indicações de temperatura: ≥ 10°C, ≥ 100°C, ≥ 200°C. Pretende-se controlar a válvula de modo a que esteja aberta se a temperatura for inferior a 10°C ou estiver compreendida entre 100°C e 200°C. A válvula estará fechada se a temperatura estiver entre 10°C e 100°C ou se for superior a 200°C. Projecte um circuito lógico que controle a abertura da válvula e accione um sinal de alarme sempre que a temperatura exceder os 200°C. Considere as seguintes situações:
 - a) Impossibilidade de ocorrência de erros nas leituras dos sensores.
 - b) Possibilidade de ocorrência de erros nas leituras dos sensores sempre que isso acontecer, fechar a válvula e accionar um segundo alarme (que indicará a existência do erro).
- 28. Projecte um circuito iterativo que compare duas palavras A e B de n bits cada. Cada bloco elementar terá, além dos dois bits a_i e b_i a comparar, três entradas A > B, A = B e A < B, e três saídas A > B, A = B e A < B.

Sugestão: Pretende-se que a comparação seja feita a partir dos bits mais significativos.

- 29. Repita a problema anterior, realizando o elemento iterativo com uma **ROM**. **Dimensione-a** e escreva o seu **conteúdo**.
- 30. Pretende-se construir um circuito combinatório que sirva de **conversor de código BCD 8421 para Aiken** (se a entrada X = 0), **e de Aiken para BCD 8421** (para X = 1). O circuito deverá ter uma **saída** Z que indique se à entrada está presente uma palavra não pertencente ao código em questão.
 - a) Escreva as **equações booleanas** do circuito.
 - b) Quais as características mínimas de uma PLA capaz de o implementar?
 - c) Qual a dimensão mínima e o conteúdo de uma ROM capaz de o implementar?

- 31. Pretende-se construir um circuito que aceite como entradas duas palavras A e B de 4 bits cada, e que mostre a maior dessas palavras num *display* de 7 segmentos e a menor noutro *display*.
- 32. Construa um **circuito multiplicador** de duas palavras de 4 bits cada, usando:
 - a) Circuitos **multiplicadores** de duas palavras de 2 bits (Problema 13).
 - b) **Somadores** binários de 4 bits.

Circuitos Sequenciais

- 1. Apresente as **tabelas de verdade**, **mapas K**, **expressões simplificadas** e **circuito lógico** dos seguintes circuitos sequenciais:
 - a) Um flip-flop JK a funcionar como SR.
 - b) Um flip-flop JK a funcionar como T.
 - c) Um flip-flop JK a funcionar como D.
 - d) Um flip-flop SR a funcionar como JK.
 - e) Um flip-flop SR a funcionar como T.
 - f) Um flip-flop SR a funcionar como D.
 - g) Um flip-flop T a funcionar como JK.
 - h) Um flip-flop T a funcionar como SR.
 - i) Um flip-flop T a funcionar como D.
 - j) Um flip-flop D a funcionar como JK.
 - k) Um flip-flop D a funcionar como SR.
 - 1) Um flip-flop D a funcionar como T.
- 2. Projecte um contador síncrono de **módulo 4**.
 - a) Utilizando flip-flops JK.
 - b) Utilizando flip-flops SR.
 - c) Utilizando flip-flops T.
 - d) Utilizando flip-flops D.
- 3. Repita o exercício anterior para um contador de **módulo 6**.
- 4. Repita a alínea anterior para uma máquina com os seguintes estados:
 - a) ...4...5...6...7...4...
 - b) ...1...0...4...6...5...1...
 - c) ...2...3...4...5...2...
- 5. Projecte uma máquina que efectue as seguintes **transições de estados**:

- 6. Projecte um **contador bidireccional de módulo 8**, controlado por uma entrada de direcção *DIR*. Utilize *flip-flops* tipo JK.
- 7. Projecte um **detector de sequências** que detecte as seguintes sequências na sua entrada X:
 - a) 0110
- b) 1111
- c) 101
- d) 01010
- 8. Apresente o diagrama de estados de uma máquina que apresente a **situação actual da nossa alma** de acordo com os seguintes critérios:
 - Cada **boa acção** praticada redime-nos de um **pecado** cometido (antes ou depois);
 - Se o nosso saldo for nulo, somos considerados **justos**;
 - Se tivermos um saldo positivo (até 4) de boas acções, somos considerados **bons**;
 - Se o saldo positivo for igual a 5, vamos para o paraíso (somos **eleitos**);
 - Se tivermos um saldo negativo (excesso de pecados) menor ou igual a 3, somos **pecadores**:
 - Com 4 pecados somos ainda **pecadores**, mas deve soar um **alarme de perigo** de perdição;
 - Ao 5° pecado vamos para o inferno (somos **condenados**).
- 9. Projectar um **contador** *up-down* **síncrono de módulo 16**, que conte em binário. O contador deverá ter entradas para programação síncrona comandada pela linha \overline{PL} (*Parallel Load*). Deverá ter ainda uma linha \overline{MR} (*Master Reset*) que faz o *reset* assíncrono de todos os *flip-flops*. Usar *flip-flops* **tipo** D com entradas de *preset* (\overline{PRE}) e *clear* (\overline{CLR}).
- 10. a) Minimize a máquina sequencial síncrona representada pela tabela de estados ao lado:
 - b) Arranje a **menor sequência de entradas** que faça a distinção entre os estados A e B.

	X = 0	X = 1
A	B, 1	H, 1
В	F, 1	D, 1
С	D, 0	E, 1
D	C, 0	F, 1
Е	D, 1	C, 1
F	C, 1	C, 1
G	C, 1	D, 1
Н	C, 0	A, 1

11. **Repetir o problema anterior** para as seguintes máquinas sequenciais síncronas:

	X = 0	X=1
A	B, 0	E, 0
В	E, 0	D, 0
C	D, 1	A, 0
D	C, 1	E, 0
Е	B, 0	D, 0

	X = 0	X=1
A	D, 0	H, 1
В	F, 1	C, 1
C	D, 0	F, 1
D	C, 0	E, 1
Е	C, 1	D, 1
F	D, 1	D, 1
G	D, 1	C, 1
Н	B, 1	A, 1

- 12. Projecte um **circuito sequencial síncrono** que realize o **complemento para dois** dum número que entra em série através dos seus bits menos significativos.
- 13. Desenhe o diagrama de estados de um *shift-register* de 4 bits.
- 14. Desenhe o **diagrama de estados** do seguinte circuito sequencial síncrono com uma entrada x e duas saídas z_0 e z_1 .

É o seguinte o conteúdo da ROM:

A_2	A_1	A_0	у3	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀
0	0	0	0	0	0	0
0	0	1	1	0	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	0
1	0	0	0	1	0	1
1	0	1	1	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1

15. A figura representa um cruzamento de duas ruas. Dado o tipo de tráfego, há muito mais movimento na rua A que na rua B. Assim, pretende-se um sistema que controle os semáforos reguladores de trânsito. O verde deverá estar aceso durante 40s na rua A e durante 20s na

rua B. A passagem de verde para vermelho é sempre antecedida por um período de 5s em amarelo. Por questões de segurança, há um período de 5s que medeia entre o início de vermelho numa rua e o início de verde na outra rua. Projecte o sistema que controla os **semáforos**, bem como as luzes de passagem dos **peões**.