

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences
First Year - Semester I Examination - September/October 2014

PHY 1201 -GENERAL AND THERMAL PHYSICS

Answer all five questions

Time allowed: 2 hours

Gravitational field intensity $g = 9.8 \text{ m s}^{-2}$

Universal gas constant R = 8.314 J K⁻¹mol⁻¹

- 1. The moment of inertia of a solid uniform rod hanging from its center is equal to $\frac{ML^2}{12}$, where M is the mass of the rod and L is the length of the rod.
 - I. Find the moment of inertia of the system if the above rod is hanging from its end as shown in the following diagram.

A constant torque of 20 N m turns the above rod about its end. If the mass and the length of the rod are 0.5 kg and 3 m respectively, find

- II. the moment of inertia of the rod around its end.
- III. the angular velocity gained in 4 s.
- IV. the kinetic energy gained after 20 revs.

(20 marks)

2. Consider two reference frames S and S' shown in the figure. The reference frame S' moving at a velocity V with respect to the reference frame S. If both frames coincide at t

- I. Write down the relationship between coordinate systems after time t.
- II. Show that the velocity $U'_x = U_x V$ and the acceleration $a'_x = a_x$.
- III. A ball is thrown at 15.0 m/s speed inside a car moving along the highway at 50.0 m/s. Using Galilean transformations find the speed of the ball relative to the ground if the ball is thrown forward.

(20 marks)

3. The horizontal constricted pipe known as a *venture tube* can be used to measure the flow speed of an incompressible fluid.

- I. If the pressure difference P_2 - P_1 is known, show that the velocity at point 2 is given by $V_2 = A_1 \sqrt{\frac{2(P_2 P_1)}{\rho(A_1^2 A_2^2)}}$, where A_1 and A_2 represent the area inside the tube at point 1 and point 2 respectively.
- II. Water runs through a water main of cross sectional are 0.4 m² with a velocity of 6 m/s. Assuming water behave as an ideal fluid, find the velocity of the water when the pipe tapers down to a cross sectional area of 0.3 m².

(20 marks)

- 4. A 4.00 kg particle moves along the x axis. Its position varies with time according to $x = t + 2.0 t^3$, where x is in meters and t is in seconds. Find
 - I. the kinetic energy at any time t,
 - II. the acceleration of the particle and the force acting on it at time t,
 - III. the power being delivered to the particle at time t, and
 - IV. the work done on the particle in the interval t = 0 to t = 2.00 s.

(20 marks)

- 5. Consider an ideal gas consisting of N molecules in a container of volume V. Container is a cube with edges of length d.
 - I. If the average force exerted on the walls of the cube by gas molecules is given by $F = \frac{Nm}{3} \frac{\bar{v}^2}{d}$, show that the pressure inside the container $P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \bar{v}^2 \right)$. Where, m is the mass of a gas molecule and \bar{v}^2 is the mean square velocity of a gas molecule.
 - II. Using the relationship in part (i) and the ideal gas law ($PV = Nk_BT$), show that the average kinetic energy of the gas $E = \frac{1}{2}m\bar{v}^2 = \frac{3}{2}k_BT$. ($k_B Boltzmann\ constant$)
 - III. Show that the total translational kinetic energy of N molecules of gas is given by, $E_{Trans} = \frac{3}{2} nRT.$

A tank used for filling helium balloon has a volume of 0.300 m³ and contain 2.00 moles of helium gas at 20.0 °C. Assume helium behaves as an ideal gas

- IV. Calculate the total translational kinetic energy of the gas.
- V. What is the average kinetic energy per mole?

(20 marks)

$$v = \frac{dx}{dt} \qquad \int x \, dx = \frac{x^2}{2}$$

$$a = \frac{d^2x}{dt^2} \qquad \int x^3 \, dx = \frac{x^4}{4}$$