

Instituto Politécnico Nacional

Escuela Superior de Computo Alumno: Cisneros Gonzalez Miguel Angel

Grupo: 4CV12

Tarea No.4

Balanceo en la Nube

Materia: Desarrollo De Sistemas Distribuidos

Nombre del Profesor:

Pineda Guerrero Carlos

Todos los servicios > Conjuntos de disponibilidad >

Crear conjunto de disponibilidad

Datos básicos Opciones avanzadas Etiquetas Revisar y crear

Datos básicos

Suscripción Azure for Students
Grupo de recursos (nuevo) grupobalanceo

Región East US 2

Nombre T8-201863137195-Conjunto-Disponibilidad

Número de dominios de error 2 Recuento de dominios de actualización 2

Usar discos administrados Sí (alineados)

Opciones avanzadas

Grupo con ubicación por proximidad Ninguno

Etiquetas

(ninguno)

Inicio > Todos los recursos > 0.0.1 (verson1.0/mi_imagen_virtual/0.0.1) >

Crear una máquina virtual

Validación superada

verson1.0/mi_imagen_virtual/0.0.1

Standard B1s

Imagen

1 vcpu, 1 GiB de memoria

Datos básicos

Azure for Students Suscripción Grupo de recursos BalanceoCarga Nombre de máquina virtual T8-201863137195-1

East US 2

Opciones de disponibilidad Conjunto de disponibilidad

Conjunto de disponibilidad T8-201863137195-Conjunto-Disponibilidad

Tipo de seguridad

Imagen verson1.0/mi_imagen_virtual/0.0.1 - Gen2

Arquitectura de VM х64

Tamaño Standard B1s (1 vcpu, 1 GiB de memoria)

Habilitar hibernación

Tipo de autenticación Contraseña Nombre de usuario miky Puertos de entrada públicos SSH Azure de acceso puntual Νo

Discos

Tamaño del disco del SO Valor predeterminado de la imagen

Tipo de disco del sistema operativo LRS de HDD estándar

Usar discos administrados

Eliminar disco de SO con VM Deshabilitado

Disco de SO efímero Nο

Creando la maquina 2

Creando maquina 3

Inicio > Todos los recursos > 0.0.1 (verson1.0/mi_imagen_virtual/0.0.1) >

Crear una máquina virtual

verson1.0/mi_imagen_virtual/0.0.1 Standard B1s

Imagen 1 vcpu, 1 GiB de memoria

Datos básicos

Suscripción Azure for Students
Grupo de recursos BalanceoCarga
Nombre de máquina virtual T8-201863137195-3

Región East US 2

Opciones de disponibilidad Conjunto de disponibilidad

Conjunto de disponibilidad T8-201863137195-Conjunto-Disponibilidad

Tipo de seguridad Estándar

Imagen verson1.0/mi_imagen_virtual/0.0.1 - Gen2

Arquitectura de VM x64

Tamaño Standard B1s (1 vcpu, 1 GiB de memoria)

Habilitar hibernaciónNoTipo de autenticaciónContraseñaNombre de usuariomikyPuertos de entrada públicosSSH

Azure de acceso puntual No

Discos

Tamaño del disco del SO Valor predeterminado de la imagen

Tipo de disco del sistema operativo LRS de HDD estándar

Usar discos administrados Sí

Eliminar disco de SO con VM Deshabilitado

Disco de SO efímero No

Dodoo

< Anterior Siguiente > Crear

Después creamos nuestro servidor mysql y lo configuramos

creamos nuestra base de datos PASS

Lo que sigue es configurar el mysql alas 3 maquinas virtuales esto lo hare modificando el context xml hare lo mismo para las 3 maquinas

Maquina 1:

Generamos ahora el balanceador de carga

Configuraciones adicionales

Agregando le grupo de back end

Agregamos el sondeo de estado

Agregar sondeo de estado T8-201863137195-balanceador-carga

🕦 Los sondeos de estado se usan para comprobar el estado de una instancia de grupo de back-end. Si el sondeo de estado no puede obtener respuesta de una instancia de back-end, no se enviarán nuevas conexiones a esa instancia de back-end hasta que el sondeo de estado vuelva a realizarse correctamente.

agregando regla de equilibrio

Inicio > T8-20186317195-balanceador-carga | Reglas de equilibrio de carga >

Agregar regla de equilibrio de carga T8-20186317195-balanceador-carga

Una regla de equilibrio de carga distribuye el tráfico entrante que se envía a una combinación de dirección IP y puerto seleccionada entre un grupo de instancias del grupo de back-end. Solo recibirán nuevo tráfico aquellas instancias de backend cuyo estado sea correcto según el sondeo de estado. Más información. 🗹

Nombre *	T8-201863137195-regla-equilibrio	
Versión de IP *	IPv4IPv6	
Dirección IP de front-end * 🛈	T8-201863137195-configuracion-ip (Dinámica)	~
Grupo de back-end * (i)	T8-201863137195-NSG	~
Protocolo	TCPUDP	
Puerto *	80	\$
Puerto back-end * ①	8080	\$
Sondeo de estado * ①	T8-201863137195-sondeo-estado (TCP:8080) Crear	~
Persistencia de la sesión 🛈	Ninguno	~
Tiempo de espera de inactividad (minutos) * ①	4	÷
Habilitar IP flotante ①		

Con un programa llamado tableplus podemos conectarnos ala base de datos y observar lo que contiene aquí ya los 3 registros dados de alta

ahora después de dar de alta a los usuarios pasamos a eliminar y ver como se quitan los registros

aquí el usuario modificado

Ahora vemos todos borrados

Damos de alta al tercer usuario

Ahora vamos a buscar a los usuarios

aquí aprovechamos y modificamos al primer usuario

Modifica usuario

Vemos y buscamos al segundo

Consulta usuario

Modifica usuario

Se guardó la captura de pantalla

Lo mismo para la tercera

Consulta usuario

Modifica usuario

Se guardó la captura de pantalla

Ahora procedo a borrar los 3

Conclusiones:

Esta practica me costo demasiado a pesar que no era tan complicada ya que azure me daba errores sin sentido y la tuve que repetir como 4 veces aunque fue divertido ya después por que los pasos ya me los sabia , después de que azure respondiera y no me salieran errores todo funciono bien me agrado como podemos escalar horizontalmente una aplicación y ver como es que podemos hacerlo fue interesante