

Espacios Tangentes

El concepto abstracto de curva en \mathbb{R}^2 y variedad en \mathbb{R}^n

Joaquín González Cervantes

joaquin@yandex.com

15 de diciembre de 2016

¿De qué trata?

- Definir el concepto de variedad k-dimensional en \mathbb{R}^n y su espacio tangente asociado a un punto.
- Determinar la dimensión de T_pN .
- Interpretar una curva en el plano como un caso especial de variedad utilizando el Teorema de la Función Implícita.
- Analizar el espacio tangente de una curva como un caso particular del espacio tangente asociado a una variedad.

Surge el vector

Hamilton (1843)

Grassmann (1844)

<u>Definición</u>

Una curva parametrizada en \mathbb{R}^n es una mapeo

$$c:I\to\mathbb{R}^n$$

para algún intervalo abierto $I \in \mathbb{R}$.

Caracol de Pascal

El caracol de Pascal es la curva parametrizada

$$c(t) = ((1+2\cos t)\cos t, (1+2\cos t)\sin t), \quad t \in \mathbb{R}$$

El vector tangente es

$$c'(t) = (-\sin t - 4\cos t\sin t, \cos t + 4\cos^2 t - 2)$$

En particular,

$$c'(\pi/4) = (-\frac{\sqrt{2}}{2} - 2, \frac{\sqrt{2}}{2})$$

Caracol de Pascal

$F(x,y) = x^2 + y^2 - 1 = 0$

Teorema (Teorema de la función implícita)

Sea $\mathbf{x} = (x_1, x_2, \dots, x_n)$ y sea $F(\mathbf{x}, y) \in C^1$ en una vecindad de $(\mathbf{x_0}, y_0)$ tal que

$$F((x_0, y_0)) = 0$$

entonces existe una vecindad de $(\mathbf{x_0}, y_0)$ en donde existe una función ímplicita $y = f(\mathbf{x})$ tal que

I.
$$f(x_0) = y_0$$

II.
$$F(\mathbf{x}, f(\mathbf{x})) = 0$$

III.
$$\frac{\partial f}{\partial x_i} = -\frac{\frac{\partial F}{\partial x_i}(\mathbf{x}, f(\mathbf{x}))}{\frac{\partial F}{\partial y}(\mathbf{x}, f(\mathbf{x}))}$$

Definición (1-variedad)

Una variedad 1-dimensional (de clase C^{α}) $M \subset \mathbb{R}^n$ está definida por la condición de que M está dada localmente como el conjunto cero $F^{-1}(0)$ de un mapeo continuo (α -veces) diferenciable

$$U \subset \mathbb{R}^2 \xrightarrow{F} \mathbb{R}$$

con rango máximo, es decir, $rank(J_xF)=1$ para cada $x\in M\cap U$, donde $M\cap U=F^{-1}(0)$ se cumple para una vecindad de U, para cada punto en M.

Localmente, también podemos describir a M como la imágen de una inmersión de clase C^{α}

$$V \subset \mathbb{R} \xrightarrow{f} M \subset \mathbb{R}^2$$

donde rank(Df) = k. Dicha f es la parametrización local, y f^{-1} es llamada una carta de M.

Definición (Espacio tangente a \mathbb{R}^n)

Para cada punto $x \in \mathbb{R}^n$ el espacio

$$T_x\mathbb{R}^n := \{x\} \times \mathbb{R}^n$$

es llamado el espacio tangente en el punto x (el espacio de todos los vectores tangentes en el punto x). La derivada (o diferencial) Df de un mapeo diferenciable f está definido como

$$Df|_{x}: T_{x}\mathbb{R}^{k} \to T_{f(x)}\mathbb{R}^{n} \quad \text{con} \quad (x, v) \mapsto (f(x), J_{x}f(v)).$$

$$D_p f: T_p \mathbb{R}^2 \to \mathrm{T}_{\mathrm{f(p)}} \mathbb{R}^3$$

$$T_p M := Df_u(\{u\} \times \mathbb{R}^2) = Df_u(T_u \mathbb{R}^2)$$

 $f(u) = p$

Proposición

El espacio vectorial T_pM es k-dimensional y no depende de la elección de f.

Bibliografia

Definición

Una inmersión es un mapeo diferenciable entre variedades donde su derivada es inyectiva. Explícitamente, $f:M\to N$ es una inmersión si

$$D_p f: T_p M \to T_{f(p)} N$$

es un mapeo inyectivo para toda $p \in M$. De forma equivalente, f es una inmersión si su derivada tiene rango igual a dim M:

$$rankD_p f = \dim M$$
.