The basis of Multivariable Calculus

If a function is continuous and differentiable, on a small enough interval, the function will approximate a line (i.e., a function of x).

A similar intuition applies to functions of more than one variable (but with a plane, cube, hypercube, etc.). However, in multivariable functions, we will have to sacrifice the ability to visualize it.

For example, in multiple dimensions, it is possible for there to be a function that is both strictly decreasing (in one dimension) and strictly increasing (in another dimension).

Some Functions and Sets

$$f(x,y) = x^2 - y^2$$

Domain: $\{(x,y) \mid \exists f(x,y)\}$

Range: $\{f(x,y) \mid (x,y) \in Dom(f)\} = \mathbb{R}$

Graph: Graph $(f) = \{x, y, f(x, y) \mid x, y \in Dom(f)\}$. For example, $(1, 3, 4) \notin Graph(f)$ since $1^2 - 3^2 \neq 4$.

Examples

In \mathbb{R}^3 , in x, y, z coordinates, z = 3 is a plane defined as follows:

- Parallel to the xy plane.
- Passes through the point (0.0, 3).

Meanwhile, y = 0 would be a "wall" that passes through the origin that contains the line y = 0 in the xy plane.

Finally, z = x + y + 1 is a plane, as we can see below.

Visualizing a function of multiple variables

Consider the function $f(x, y) = x^2 - y^2$. We can try visualizing slices as follows:

•
$$f(-2, y) = 4 - y^2$$

- $f(0, y) = -y^2$
- $f(2, y) = 4 y^2$
- $f(x, -2) = x^2 + 4$
- $f(x, 0) = x^2$
- $f(x, 2) = x^2 + 4$

Alternatively, we can visualize via contour diagrams (i.e., everywhere that z is a certain value), as seen in mathematica as follows:

Contour Example

Consider the function $f(x, y) = y - 3x^2$. We want to find the contours.

For any c, we have that $c=y-3x^3$, or $y=3x^3+c$. Therefore, every contour "looks like" $3x^3+c$ for values of c. For example, in the following, we have $c=\{-2,-1,0,1,2\}$

Distance

In \mathbb{R}^5 , let p=(3,1,4,1,5), and q=(1,0,-2,0,2). Using the Euclidean metric, we can find the distance between p and q is $d(p,q)=((3-1)^2+(1-0)^2+(4-(-2))^2+(1-0)^2+(5-2)^2)^{1/2}=(4+1+36+1+9)^{1/2}=\sqrt{51}=7.14$. We can also call this the 2-norm.

$$d(p,q) = \left(\sum_{k=1}^{n} (p_k - q_k)^2\right)^{1/2}$$

To denote a derivative, we can't talk about one value, we must use a partial derivative, $\frac{\partial f}{\partial x}$, or $\frac{\partial f}{\partial y}$. The closeness of the contours specifies both resolution and steepness.

We can estimate slope by calculating the difference between two contours, divided by the distance between them along a path.

We can also analyze via a table:

A "linear" approximation for a function of two variables is expressed as follows:

$$z - z_0 = m(x - x_0) + n(y - y_0)$$

Where $(x_0, y_0, z_0) \in \mathbb{R}^3$, and is an output in z = f(x, y), and $m, n \in \mathbb{R}$.

For example, with the above table, we can see that the function is linear in x and y (i.e., the slope holding the other variable constant is constant).

Limits in Multivariable Functions

Consider the following:

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^2-y^2}$$

Allow y = mx

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{x^2 - y^2} = \lim_{(x,y)\to(0,0)} \frac{x^2 + (mx)^2}{x^2 - (mx)^2}$$
$$= \frac{1 + m^2}{1 - m^2}$$

Thus, the limit must depend on the path taken. The following table shows the limits for different values of m

$$\begin{array}{c|c}
m & \lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{x^2 - y^2} \\
0 & 1 \\
1 & \text{undefined} \\
2 & -\frac{5}{3}
\end{array}$$

Because the limit depends on the path of incidence, we have that the limit is undefined.

For graphs where the contours "approach" a particular point, we can see that the limit is defined.

Vectors

A vector is a mathematical object with direction and magnitude:

$$\vec{v} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}$$

Alternatively, we can have $\vec{w} = \begin{bmatrix} 3 & 1 & 4 \end{bmatrix}$. These vectors are equivalent because they are components of \mathbb{R}^3 .

Vector addition is component-wise, (i.e., you add or subtract components in order to find the new vectors).

Direction of \vec{v}

 $\frac{\vec{v}}{\|\vec{v}\|}$

Properties of Vectors

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$. Via properties of the real numbers, we know the following:

- $\bullet \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $c\vec{u} = \langle cu_1, cu_2, \dots, cu_k \rangle$

Additionally, we define $\vec{u} \cdot \vec{v}$ as follows:

$$\vec{u} \cdot \vec{v} = \sum_{k=1}^{n} u_k v_k = ||\vec{u}|| ||\vec{v}|| \cos \theta$$

Partial Derivatives

Consider $f(x, y) = x^2y + xe^y$.

$$f_{x} := \frac{\partial f}{\partial x}$$

$$f_{x}(a, b) = \frac{\partial f}{\partial x} \Big|_{(a, b)}$$

We know that $f \in C^{\infty}(\mathbb{R} \times \mathbb{R})$, meaning f is endlessly differentiable.

Functions and Approximations

Let $f(x, y) = x^2 - y^2$, g(x, y) = 2xy

- $\bullet \ f_{xx} + f_{yy} = 0$
- $g_{xx} + g_{yy} = 0$

This is the solution to the Laplace equation:

$$0 = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

For f(x, y) at (a, b, f(a, b)), we have the following:

$$\ell(x,y) = f(a,b) + f_X(a,b)(x-a) + f_Y(y-b)$$

$$q(x,y) = \ell(x,y) + \frac{1}{2} \left(f_{XX}(a,b)(x-a)^2 + 2f_{XY}(a,b)(x-a)(y-b) + f_{YY}(a,b)(y-b)^2 \right)$$

In order to get a sense of the "derivative," we can use the following:

$$\nabla f(x,y) = \langle f_X(x,y), f_Y(x,y) \rangle$$

Directional Derivative and Gradient

Given f(x, y) and (a, b), where $f \in C^2(\mathbb{R}^2)$. Then, the quadratic approximation is:

$$\begin{split} f(x,y) &\approx f(a,b) + f_X(a,b)(x-a) + f_X(a,b)(y-b) \\ &+ \frac{1}{2} \left(f_{XX}(a,b)(x-a)^2 + f_{YY}(a,b)(y-b)^2 + f_{XY}(a,b)(x-a)(y-b) \right) \\ df &= f_X(a,b)dx + f) y(a,b)dy \\ \Delta f &= f_X(a,b)\Delta x + f_Y(a,b)\Delta y \end{split}$$
 a differential

Evaluating $f(x, y) = xe^y$ at (a, b) = (-1, 0)

$$f_{x} = e^{y}$$

$$f_{y} = xe^{y}$$

$$f_{x}(-1,0) = 1$$

$$f_{y}(-1,0) = -1$$

$$\Delta f = \Delta x - \Delta u$$

On a given contour map, let $\vec{u} = \langle u_1, u_2 \rangle$ denote a *unit* vector in a direction that we want to find the derivative of f in.

$$f_{\vec{u}}(x,y) = \nabla f(a,b) \cdot \vec{u}$$

Where

$$\nabla f(a,b) = \langle f_X(a,b), f_Y(a,b) \rangle$$

The directional derivative for all vectors \vec{v} is as follows:

$$f_{\vec{v}} = \nabla f \cdot \frac{\vec{v}}{\|\vec{v}\|}$$

Chain Rule

Let f(x, y) be a function where x - x(t) and y = y(t). We want to find

$$\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

The chain rule works in higher dimensions too. Consider $k(x_1(t), x_2(t), \dots, x_{152}(t))$. Then,

$$\frac{dk}{dt} = \sum_{i=1}^{152} \frac{\partial k}{\partial x_i} \frac{dx_i}{dt}$$

We can also view this as a vector. Let
$$\vec{x} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{152}(t) \end{pmatrix}$$
. Then, we can write $\frac{dk}{dt}$ more succinctly as follows:
$$\frac{dk}{dt} = \nabla k \cdot \frac{d\vec{x}}{dt}$$

For example, let $f(x, y, z) = 3x^2y + zx + 2$, where x = x(t), y = y(t), z = z(t)

$$\frac{df}{dt} = \begin{pmatrix} 6xy + z \\ 3x^2 \\ x \end{pmatrix} \cdot \begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix}$$
$$= (6xy + z)x'(t) + 3x^2y'(t) + xz'(t)$$

So, if we let $x(t) = \sin(t)$, $y(t) = e^t$, and $z(t) = t^2 + 1$. Then, we have

$$\frac{df}{dt} = 6\sin(t)\cos(t)e^{t} + t^{2}\cos(t) + \cos(t) + 3e^{t}\sin^{2}(t) + 2t\sin(t)$$

Alternatively, consider $f(x, y, z) = x^2 + yz + e^y$, where x(s, t) = st, $y = y(s, t) = t + s^2$, $z = z(s, t) = e^t$. Let

$$\vec{x} = \begin{pmatrix} x(s,t) \\ y(s,t) \\ z(s,t) \end{pmatrix}$$

Then, we have

$$\frac{\partial f}{\partial t} = \nabla f \cdot \frac{\partial \vec{x}}{\partial t}$$
$$\frac{\partial f}{\partial s} = \nabla f \cdot \frac{\partial \vec{x}}{\partial s}$$

Evaluating the first expression, we have

$$\frac{\partial f}{\partial t} = \begin{pmatrix} 2x \\ z + e^y \\ y \end{pmatrix} \cdot \begin{pmatrix} s \\ 1 \\ e^t \end{pmatrix}$$
$$= 2s^2t + 3^t + e^{t+s^2} + (t+s^2)e^t$$

Consider f(x, y(x)). Then, we have

$$\frac{df}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$$

This is the technique we use to find implicit differentiation.

We know as a result that $\nabla f(a, b)$ is orthogonal to the contour curve at (a, b)

Recap

In \mathbb{R}^3 , find the plane that contains $P=(P_1,P_2,P_3)$, Q, and R. We can find it by the following:

$$0 = \vec{n} \cdot \begin{pmatrix} x - P_1 \\ y - P_2 \\ z - P_3 \end{pmatrix}$$
$$0 = n_1(x - P_1) + n_2(y - P_2) + n_3(z - P_3)$$

where

$$\vec{n} = \overrightarrow{PQ} \times \overrightarrow{QR}$$

Differentiability

A function f(x) of one variable is differentiable at x = a if

$$f(a) = \lim_{h \to 0} f(a+h)$$

and

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

exists and is bounded

We can also linearize the function. f is differentiable if

$$f(x) = f(a) + f'(a)(x - a) + E(x)$$

where $\lim_{h\to 0} \frac{E(a+h)}{h} = 0$.

In the multiple dimensions example, we have f(x, y) is differentiable if

$$f(x,y) = \ell(x,y) + E(x,y)$$

where $\lim_{h\to 0, k\to 0} \frac{E(a+h,b+k)}{\sqrt{h^2+k^2}} = 0$

Local Maxima

Let $f(x, y) = x^2 + 2y^2$. We want to find (a, b) which are local maxima, minima, or other.

(a, b) is a local maximum if $f(a, b) \ge f(x, y) \ \forall (x, y) \in V_{\varepsilon}(a, b)$, where $\varepsilon > 0$.

(1) Find Critical Points for f(x, y): $f_x(x, y)$, $f_y(x, y) = 0$, $f_x(x, y)$, $f_y(x, y)$ are undefined.

$$f_X(x, y) = 2x$$

 $f_Y(x, y) = 4y$
 $f_X(0, 0) = 0$
 $f_Y(0, 0) = 0$
 $f(0, 0) = 0$
 $f(x, y) > 0$ $\forall (x, y) \neq (0, 0)$

For all x, y, $f_{xx} = 2$, $f_{yy} = 4$, and $f_{xy} = 0$. Finally,

$$D(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) + f_{xy}(x, y)^{2}$$

= 8
> 0

Since D(x, y) > 0, we look at the sign of f_{xx} . Since it is positive, f(0, 0) has a local minimum.

Local Maxima and Minima Approach

Given f(x, y), we want

(1) Find critical points:

$$\frac{\partial f}{\partial x} = 0$$
$$\frac{\partial f}{\partial y} = 0$$

(2) Compute f_{xx} , f_{yy} , f_{xy} , $D = f_x x f_y y - (f_x y)^2$

(3)

f_{xx}	D	Critical Point	
+	+	Local Minimum	
-	+	Local Maximum	
\pm	-	Saddle Point	
\pm	0	Nothing	

Consider the function

$$f(x, y) = \ln(x^2 + y^2 + 1)$$

$$f(0, 0) = 0$$

$$f(x, y) > 0$$

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2 + 1}$$
$$\frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2 + 1}$$

Critical Points: (0,0)

$$\frac{\partial^2 f}{\partial x^2}\Big|_{(0,0)} = \frac{2(x^2 + y^2 + 1) - 4x^2}{(x^2 + y^2 + 1)^2}$$

$$= 2$$

$$\frac{\partial^2 f}{\partial x^2}\Big|_{(0,0)} = \frac{2(x^2 + y^2 + 1) - 4y^2}{(x^2 + y^2 + 1)^2}$$

$$= 2$$

$$\frac{\partial^2 f}{\partial x \partial y}\Big|_{(0,0)} = \frac{-4xy}{(x^2 + y^2 + 1)^2}$$

$$= 0$$

Now, consider the function

$$f(x,y) = x^{2} - 2xy + y^{2}$$

$$\frac{\partial f}{\partial x} = 2x - 2y$$

$$\frac{\partial f}{\partial y} = -2x + 2y$$

$$\frac{\partial^{2} f}{\partial x^{2}} = 2$$

$$\frac{\partial^{2} f}{\partial y^{2}} = 2$$

$$D = \frac{\partial^{2} f}{\partial x \partial y} = -2$$

$$D = \frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial x^{2}} - \left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}$$

$$= 0$$

Therefore, the critical points of this function are indeterminate with the given approach. However, we know that $f(x,y) = (x-y)^2 = 0$ when x = y, so the line y = x is a local minimum trough in 3-space.

Now, consider the function

$$f(x,y) = (x-1)^{2}(y+2)$$
$$\frac{\partial f}{\partial x} = 2(x-1)(y+2)$$
$$\frac{\partial f}{\partial y} = (x-1)^{2}$$

Critical points: $\{(1, y) \mid y \in \mathbb{R}\}$

$$\frac{\partial^2 f}{\partial x^2} = 2(y+2)$$

$$\frac{\partial^2 f}{\partial y^2} = 0$$

$$\frac{\partial^2 f}{\partial x \partial y} = 2(x-1)$$

$$D = 0 - (2(x-1))^2$$

$$= 0$$

Evaluating D at critical points

Finding Critical Points

Let
$$f(x,y) = (y^2 + 2)\sin(x)$$
. on $[-2,2] \times [-2,2]$

$$\frac{\partial f}{\partial x} = (y^2 + 2)\cos(x)$$

$$= 0$$

$$\frac{\partial f}{\partial y} = 2y\sin(x)$$

$$= 0$$

$$(x,y) = \left(\frac{(2n+1)\pi}{2},0\right)$$

$$= \{(\pi/2,0),(-\pi/2,0)\}$$

$$\frac{\partial^2 f}{\partial x^2} = -(y^2 + 2)\sin(x)$$

$$\frac{\partial^2 f}{\partial y^2} = 2\sin(x)$$

$$\frac{\partial^2 f}{\partial x \partial y} = 2y\cos(x)$$

$$D(x,y) = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$$

$$= -2(y^2 + 2)\sin^2(x) - 4y^2\cos^2(x)$$

Therefore, the critical points are saddle points. If there is no domain restriction, we have a series of saddle points all along y = 0.

Why Finding Critical Points Works

We create the Taylor series of f(x, y) at (x_0, y_0) :

$$f(x,y) \approx \ell(x_0, y_0) + \frac{1}{2} \left(f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(y - y_0)^2 \right)$$

$$= f(x_0, y_0) + \nabla f(x, y) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}^T \underbrace{\begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \\ \end{pmatrix}}_{\text{Hessian}} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$= 0 \text{ at critical points}$$

If the Hessian is positive definite, then $\lambda_1, \lambda_2 > 0$ and the critical point is a local min. If the Hessian is negative definite, then $\lambda_1, \lambda_2 < 0$ and the critical point is a local max.

In any given 2 \times 2 matrix, the eigenvalues λ_1 , λ_2 are such that $\lambda_1 + \lambda_2 = \text{Tr}(A)$ and $\lambda_1 \lambda_2 = \text{Det}(A)$.

Optimization

Let f(x, y) = 2x - y. We want to optimize f with respect to $g(x, y) = x^2 - y^2 - 4 = 0$.

Define $L(x, y, \lambda) = f(x, y) - \lambda(g(x, y) - c)$. Given $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$, then $L : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$.

Then, we take

$$\nabla L = \nabla f = \lambda \nabla g$$
$$= 0$$

critical points of L

We find x, y, λ for each critical point.

$$\nabla f = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$

$$\nabla g = \begin{pmatrix} 2x \\ -2y \end{pmatrix}$$

$$\nabla f = \lambda \nabla g$$

$$2 = 2\lambda x$$

$$-3 = -2\lambda y$$

$$x^2 - y^2 = 4$$

$$\lambda = \frac{1}{x}$$

$$\lambda = \frac{3}{2y}$$

$$x = \frac{2y}{3}$$

$$\frac{4y^2}{9} - y^2 = 4$$

$$-\frac{5}{9}y^2 = 4$$

No Solution

However, if $g(x, y) = x^2 + y^2 - 4 = 0$, we have

$$\nabla g = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

$$\nabla f = \lambda \nabla g$$

$$2 = 2\lambda x$$

$$-3 = 2\lambda y$$

$$x^2 + y^2 = 4$$

$$\lambda = \frac{1}{x}$$

$$\lambda = \frac{-3}{2y}$$

$$x = \frac{-2y}{3}$$

$$\frac{4y^2}{9} + y^2 = 4$$

$$-\frac{13}{9}y^2 = 4$$

$$y = \pm \frac{6}{\sqrt{13}}$$

$$x = \mp \frac{4}{\sqrt{13}}$$

$$f_{\text{max}} = 2\sqrt{13}$$

$$f_{\text{min}} = -2\sqrt{13}$$

 $\nabla f = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

This system of Lagrange multipliers applies in the n dimensional case.

Let $f(x, y, z) = x + 2y + z^2$ subject to the constraint $g(x, y, z) = x^2 + y^2 + z^2 = 1$.

$$\nabla f = \lambda \nabla g$$

$$\begin{pmatrix} 1 \\ 2 \\ 2z \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

$$2\lambda x = 1$$

$$2\lambda y = 2$$

$$2\lambda z = 2z$$

$$x^2 + y^2 + z^2 = 1$$
(*)

Consider (*):

$$\lambda = 1$$

$$x = 1/2$$

$$y = 1$$

$$\frac{1}{4} + 1 + z^2 = 1$$

 $no\ solution$

$$z = 0$$

$$x^{2} + y^{2} = 1$$

$$\frac{1}{4\lambda^{2}} + \frac{1}{\lambda^{2}} = 1$$

$$\frac{5}{4\lambda^{2}} = 1$$

$$\lambda = \pm \frac{\sqrt{5}}{2}$$

Case 1:

$$\lambda = \frac{\sqrt{5}}{2}$$

$$x = \frac{1}{\sqrt{5}}$$

$$y = \frac{2}{\sqrt{5}}$$

Case 2:

$$\lambda = -\frac{\sqrt{5}}{2}$$
$$x = -\frac{1}{\sqrt{5}}$$
$$y = -\frac{2}{\sqrt{5}}$$

Evaluating f:

х	у	Z	λ	f(x, y, z)
$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{5}}$	0	$\frac{\sqrt{5}}{2}$	√5
$-\frac{1}{\sqrt{5}}$	$-\frac{2}{\sqrt{5}}$	0	$-\frac{\sqrt{5}}{2}$	$-\sqrt{5}$

If we want to optimize f with respect to multiple constraint functions $g_1, g_2, g_3, \ldots, g_k$, we would do:

$$\nabla f = \sum_{i=1}^k \lambda_i \nabla g_i$$

Integration

Consider f(x, y). We want to integrate along the rectangle $D = [0, 3] \times [0, 2]$. We can find this as follows:

$$\int_{D} f(x, y) = \int_{0}^{3} \int_{0}^{2} f(x, y) dy dx$$
$$= \int_{0}^{3} dx \int_{0}^{2} dy f(x, y)$$

For any two regions D_1 and D_2 , we have:

$$\int_{D_1} f(x, y) + \int_{D_2} f(x, y) = \int_{D_1 \ominus D_2} f(x, y)$$
$$= \int_{D_1 \cup D_2 \setminus D_1 \cap D_2} f(x, y)$$

Multidimensional Integral Approximation

We want to find

$$\int_0^2 dy \int_0^3 dx f(x,y)$$

where f(x, y) is expressed as below.

$y \setminus x$	0	1	2	3
0	1	2	5	4
1	2	1	2	0
2	1	-1	1	-2

Just as we can use the left/right endpoint method for evaluating integrals in one dimension, we can use left/right and top/bottom endpoints to approximate the integral.

Evaluating a Multidimensional Integra

$$\int_{0}^{1} \int_{0}^{1} xe^{y} dx dy = \left(\int_{0}^{1} e^{y} dy\right) \left(\int_{0}^{1} x dx\right)$$
$$= \left(e^{y}\Big|_{0}^{1}\right) \left(\frac{x^{2}}{2}\Big|_{0}^{1}\right)$$
$$= (e-1)\left(\frac{1}{2}-0\right)$$
$$= \frac{e-1}{2}$$

This can scale up into multiple dimensions:

$$\int_{0}^{1} \int_{2}^{4} \int_{-1}^{2} x + y + z^{2} dx dy dz = \int_{0}^{1} \int_{2}^{4} \left(\int_{-1}^{2} x + y + z^{2} dx \right) dy dz$$

$$= \int_{0}^{1} \int_{2}^{4} \left(\frac{x^{2}}{2} + yx + xz^{2} \Big|_{x=-1}^{x=2} \right) dy dz$$

$$= \int_{0}^{1} \int_{2}^{4} \left(\left(2 - \frac{1}{2} \right) + (2y - (-y)) + (2z^{2} - (-z^{2})) \right) dy dz$$

$$= \int_{0}^{1} \int_{2}^{4} 3z^{2} + 3y + \frac{3}{2} dy dz$$

$$= \int_{0}^{1} \left(\frac{3}{2}y^{2} + \frac{3}{2}y + 3yz^{2} \Big|_{y=2}^{y=4} \right) dz$$

$$= \int_{0}^{1} 6z^{2} + 21dz$$

$$= 2z^{3} + 21z \Big|_{z=0}^{z=1}$$

Consider the integral below:

$$\int \int_{D} x e^{y} dx dy = \int_{0}^{1} \int_{y}^{1} x e^{y} dx dy$$

$$= \int_{0}^{1} e^{y} dy \left(\frac{x^{2}}{2}\Big|_{x=y}^{x=1}\right)$$

$$= \int_{0}^{1} e^{y} \left(\frac{1}{2} - \frac{y^{2}}{2}\right) dy$$

$$= \frac{1}{2} \left(\int_{0}^{1} e^{y} dy - \int_{0}^{1} y^{2} e^{y} dy\right)$$

$$= \frac{1}{2} ((e-1) - (e-2))$$

$$= \frac{1}{2}$$

Example Integrals

Consider the domain $D: \{(x,y) \mid 1 \le x \le 2, \ 0 \le y \le \ln 2, \ y = \ln x\}$. We are going to evaluate f(x,y) = 1.

$$\int_{D} f(x, y) dD = \int_{0}^{\ln 2} \int_{e^{y}}^{2} 1 \ dx \ dy$$

$$= \int_{0}^{\ln 2} \left(x \Big|_{x=e^{y}}^{x=2} \right) dy$$

$$= \int_{0}^{\ln 2} (2 - e^{y}) dy$$

$$= 2 \ln 2 - 1$$

Consider $A = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le 1, \ x^2 \le (x, y) \le \sqrt{x}\}$ and evaluating f(x, y) = x + 2y

$$\int_{A} x + 2y dA = \int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} x + 2y \, dx \, dy$$

$$= \int_{0}^{1} \left(\frac{x^{2}}{2} + 2xy \Big|_{x=y^{2}}^{x=\sqrt{y}} \right) dy$$

$$= \int_{0}^{1} \frac{y}{2} + 2y^{3/2} - \left(\frac{y^{4}}{2} + 2y^{3} \right) dy$$

$$= \frac{y^{2}}{4} + \frac{4}{5}y^{5/2} - \frac{y^{5}}{10} - \frac{y^{4}}{2} \Big|_{y=0}^{y=1}$$

$$= \frac{9}{20}$$

General Multivariable Integration

In any given area of integration A, we have the following general form:

$$\int_{A} f(x, y) dA = \underbrace{\int_{c_{1}}^{c_{2}} \int_{g(y)}^{h(y)} !dx!dy}_{\text{always constants}}$$

$$= \int_{d_{1}}^{d_{2}} \int_{\rho(x)}^{q(x)} f(x, y) dy dx$$

In the three-dimensional case, we have

$$\int_{V} f(x, y, z) \ dV = \int_{c_{1}}^{c_{2}} \int_{q(z)}^{h(z)} \int_{p(y, z)}^{q(y, z)} f(x, y, z) \ dx \ dy \ dz$$

Consider an integral with domain as follows:

$$D = \{x, y, z \mid -1 \le x \le 1, \ 0 \le y \le 10, \ 0 \le z \le 1 - x^2\}$$

For volume, we have that f(x, y, z) = 1

$$V = \int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{0}^{10} 1 \, dy \, dz \, dx$$

$$= \int_{-1}^{1} \int_{0}^{1-x^{2}} 10 \, dz \, dx$$

$$= 10 \int_{-1}^{1} 1 \, dx - 10 \int_{-1}^{1} x^{2} \, dx$$

$$= \frac{40}{3}$$

For another example, consider the pyramid defined by the points (0,0,0), (0,2,0), (1,0,0), (0,0,3). As established, we do f(x,y,z) = 1 integrated over the domain.

$$V = \int_0^3 \int_0^{g(y)} \int_0^{h(y,z)} f(x,y,z) \ dx \ dy \ dz$$

We find the cross product for the plane

$$\vec{n} = \begin{pmatrix} -1\\2\\0 \end{pmatrix} \times \begin{pmatrix} -1\\0\\3 \end{pmatrix}$$

$$= \begin{pmatrix} 6\\3\\2 \end{pmatrix}$$

$$6 = 6x + 3y + 2z$$

$$x = 1 - \frac{1}{2}y - \frac{1}{3}z$$

$$2$$

$$y = 2 - \frac{2}{3}z$$

$$V = \int_0^3 \int_0^{2 - \frac{2z}{3}} \int_0^{1 - \frac{1}{2}y - \frac{1}{3}z} 1 \, dx \, dy \, dz$$

$$= \int_0^3 \int_0^{2 - \frac{2z}{3}} \left(1 - \frac{1}{2}y - \frac{1}{3}z\right) \, dy \, dz$$

$$= \int_0^3 2 - \frac{2z}{3} - \frac{\left(2 - \frac{2z}{3}\right)^2}{4} - \frac{\left(2 - \frac{2z}{3}\right)z}{3} \, dz$$

u substitution:

$$u = 2 - \frac{2z}{3}$$

$$z = \frac{3(u-2)}{-2}$$

$$dz = -\frac{3}{2}du$$

$$= \int_{2}^{0} \left(u - \frac{u^{2}}{4} - \frac{3u(u-2)}{-6}\right) \left(-\frac{3}{2}du\right)$$

$$= \int_{2}^{0} \frac{u^{2}}{4}$$

$$= -\frac{3}{2} \int_{2}^{0} \frac{u^{2}}{4}$$

$$= -\frac{3}{2} \frac{u^{3}}{12} \Big|_{2}^{0}$$

$$= 1$$

The Jacobian

Let $f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)$ be differentiable.

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

If we seek to enact a change of variables, we compute $\det J$.

For example, let $x = r \cos \theta = x(r, \theta)$, $y = r \sin \theta = y(r, \theta)$.

$$J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial t h e t a} \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

$$\det J = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

$$= r$$

Consider a circle of radius 5. We will integrate $f(x, y) = x^2 + y$ over this circle.

(1): Cartesian

$$\int_{A} f(x,y) dA = \int_{-5}^{5} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} (x^{2} + y) dy dx$$

$$= \int_{-5}^{5} \left(x^{2}y + \frac{y^{2}}{2} \Big|_{y=\sqrt{25-x^{2}}}^{y=\sqrt{25-x^{2}}} \right) dx$$

$$= \int_{-5}^{5} 2x^{2} \sqrt{25-x^{2}} dx$$

$$\vdots$$

(2): Polar

$$\int_{A} f(r,\theta) dr d\theta = \int_{A} f(r,\theta) \begin{pmatrix} \left| \cos \theta - r \sin \theta \right| \\ \sin \theta - r \cos \theta \end{pmatrix} dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{5} \left(r^{2} \cos^{2} \theta + r \sin \theta \right) (r) dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{5} r^{3} \cos^{2} \theta dr d\theta + \int_{0}^{2\pi} \int_{0}^{5} r^{2} \sin \theta dr d\theta$$

$$= \left(\int_{0}^{2\pi} \cos^{2} \theta d\theta \right) \left(\int_{0}^{5} r^{3} dr \right) + \left(\int_{0}^{2\pi} \sin \theta d\theta \right) \left(\int_{0}^{5} r^{2} dr \right)$$

$$= \frac{625}{4} \left(\int_{0}^{2\pi} \cos^{2} \theta d\theta \right)$$

$$= \frac{625\pi}{4}$$

Cylindrical Coordinates

We can define a new coordinate base as follows:

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Thus, any integral over the cylinder has the following form:

$$\int_{V} f(x, y, z) dV = \int_{V} f(r, \theta, z) \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} dr d\theta dz$$
$$= \int_{V} f(r, \theta, z) r dr d\theta dz$$

Spherical Coordinates

If we have spherical symmetry, we will need to include a second angle φ , relative to the positive z axis:

$$x = \rho \cos \theta \sin \varphi$$

$$y = \rho \sin \theta \sin \varphi$$

$$z = \rho \cos \varphi$$

$$J = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial \varphi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \varphi} \end{vmatrix}$$

$$= \rho^2 \sin \varphi$$

Integrating with Spherical and Cylindrical Coordinates

Consider a cylinder defined by $z \in [0,4]$ and r=1, and a half-sphere defined by r=1 and $\varphi \in [0,\pi/2]$, located on "top" of the cylinder. We want to find

$$\int_{V} f(x, y, z) \ dV = \int_{V_{1}} f(x, y, z) \ dV_{1} + \int_{V_{2}} f(x, y, z) \ dV_{2}$$

where f(x, y, z = z). Then,

$$\int_{V} z \ dV = \int_{V_{1}} (z) r dr \ d\theta \ dz + \int_{V_{2}} (z) (\rho^{2} \sin \varphi) d\rho \ d\theta \ d\varphi$$

$$I_{c} = \int_{0}^{4} \int_{0}^{2\pi} \int_{0}^{1} (z) (r) dr \ d\theta \ dz$$

$$= \int_{0}^{4} \int_{0}^{2\pi} \left(\frac{z}{2} r^{2} \Big|_{0}^{1} \right) \ d\theta \ dz$$

$$= \int_{0}^{4} \int_{0}^{2\pi} \frac{z}{2} \ d\theta \ dz$$

$$= \int_{0}^{4} \pi z \ dz$$

$$= 8\pi$$

$$I_{s} = \int_{0}^{\pi/2} \int_{0}^{2\pi} \int_{0}^{1} (4 + \cos \varphi) (r^{2} \sin \varphi) d\rho \ d\theta \ d\varphi$$

$$= 2\pi \int_{0}^{\pi/2} \int_{0}^{1} (4 + \cos \varphi) (r^{2} \sin \varphi) d\rho \ d\varphi$$

$$= 2\pi \int_{0}^{1} r^{2} \ dr \int_{0}^{\pi/2} 4 \sin \varphi + \cos \varphi \sin \varphi \ d\varphi$$

$$= \frac{2\pi}{3} \frac{9}{2}$$

$$= 3\pi$$

$$I = I_{c} + I_{s}$$

$$= 11\pi$$

Let

$$\vec{r}(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix}$$
$$\vec{r}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\vec{r}\left(\frac{\pi}{4}\right) = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

We can expand to \mathbb{R}^3 :

$$\vec{r}(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \\ 15 \end{pmatrix}$$

Circle at
$$z = 15$$

 $0 \le t \le \frac{\pi}{4}$

$$\vec{r}'(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \\ t \sin(t) \end{pmatrix}$$

Helix

$$\vec{r}'(t) = \begin{pmatrix} \sin(t) \\ \cos(t) \\ t\sin(t) \end{pmatrix}$$
$$\vec{r}''(t) = \begin{pmatrix} t\sin(t) \\ t\cos(t) \\ t \end{pmatrix}$$

Conical Helix

We can also add parameters:

$$\vec{r}(t) = \begin{pmatrix} u\cos(v) \\ u\sin(v) \end{pmatrix}$$

Disc