Parallel circuits:

KVL around loop 1

-
$$V_A + V_B = 0$$
, so $V_A = V_B$

kvL around loop 2

- $V_B + V_C = 0$, so $V_B = V_C$

Therefore $V_A = V_B = V_c$

Circuit elements in parallel have the same voltage.

KVL/KCL examples

Example 1: Consider the circuit below, labeled as shown.

- (a) what's in series, what's in parallel?
- (b) what's ic in terms of ip?
 (e) ip = 3, ie = 1. Find is, ip.

Solution

(a) In series: only C and D (where they join, nothing else joins).

In parallel: Only A and B

A, B not in parallel (because A and B are spranded at the top by E)

- (b) Since C and D in series, they must have identical currents. $i_c = -i_D$
- (c) KCh at node X: $i_A + i_C i_B = 0$ $i_B = i_A + i_C = 3 + 1 = 4 \text{ A}$ and $i_D = -i_C$, so $i_D = -1 \text{ A}$.