Dekodéry adres

Velikost paměťového prostoru počítače je dána velikostí adresní sběrnice. Paměťový prostor můžeme vypočítat podle vzorce adr=2ⁿ, kde n je počet vodičů adresní sběrnice, viz tabulka níže.

počet vodičů	velikost paměťového prostoru			
		K	М	G
1	2	-	-	-
8	256	-	-	-
10	1024	1	1	-
16	65536	64	1	-
20	1048576	1024	1	-
24	16777216	16384	16	-
30	1073741824	1048576	1024	1
32	4294967296	4194304	4096	4

Pokud nám stačí menší paměť, než jakou nabízí paměťový prostor procesoru, stačí připojit menší paměť a využít jen několik adresních vodičů, s tím, že programátor by neměl přistupovat nad rozsah připojené paměti.

Příklad:

Procesor má 32 adresních vodičů a chceme k němu připojit paměť 1 MB.

Paměť bude mít 20 adresních vodičů, takže po připojení k CPU nevyužijeme horních 12 vodičů.

Představme si mapu paměťového prostoru tohoto procesoru a zakresleme do něj naší paměť.

Při takto zapojené paměti dochází k zrcadlení do vyšších adres, takže pokud bychom přistupovali např. na adresu 0xFFFFFFFF do paměti by se dostala adresa bez horních jedniček, takže bychom přečetli data z adresy 0x000FFFFF.

V případě, že je zapojená pouze jedna paměť, tak nám to nevadí, ale když připojíme k CPU více pamětí, potřebujeme dekodér, který nám bude řídit přístup k jednotlivým modulům. Při tom s výhodou využijeme signálu CSx, viz obrázek.

Do dekodéru jsou zavedeny nevyužité vodiče z adresní sběrnice a k výstupu z dekodéru jsou připojeny jednotlivé paměti, které se aktivují pouze v daném rozsahu paměti, takže nedochází k zrcadlení.

Dekodér rozděluje paměťový prostor na bloky.

Dekodér nemusí zpracovávat jen horní část adresní sběrnice, ale např. do něj může být přiveden i nejnižší bit adresní sběrnice a tím pak rozdělíme prostor na lichý a sudý.

0x5	RAM2
0x4	RAM1
0x3	RAM2
0x2	RAM1
0x1	RAM2
0x0	RAM1

Pokud máme dvě 8 bitové paměti a potřebujeme 16 bitovou sběrnici, můžeme obě paměti připojit na sběrnici tak, že všechny vodiče, kromě datových připojíme shodně a datové vodiče z jedné paměti připojíme do dolní části procesorové datové sběrnice (0-7) a datovou sběrnici druhé paměti připojíme na horní část datové sběrnice procesoru.

Příklad:

Máme procesor, který má šířku sběrnice 13 bitů (je to jen cvičný příklad), ke kterému chceme připojit tři paměti o velikosti 1 KB. Jedna paměť bude začínat od adresy 0x0000, druhá paměťová buňka bude začínat od adresy 0x1000 a třetí bude končit na adrese 0x1FFF. Zvolte vhodný dekodér adres a namalujte schéma.

Rozložení pamětí v paměťovém prostoru

Výpočet kapacity paměti, pokud známe rozsah její adresy

K vypočtení kapacity stačí znát počet vodičů adresní sběrnice, případně počet bitů, které jsou nutné ke kompletnímu adresování paměti. Kapacitu vypočteme pomocí mocnin dvou (2ⁿ), kde n je počet vodičů, či bitů.

Příklady:

1)

n=16; kapacita 2¹⁶ B=2⁶ kB=64 kB

- 2) rozsah pamětí 0x00000 0x7FFFF; co jedna šestnáctková číslice to 4 bity, krom první cifry 7 (binárně 111 3 bity), n=3+4+4+4+4=19; 2^{19} $B=2^9$ kB=512 kB
- 3) rozsah pamětí 0xC000 0xFFFF; abychom zjistili rozsah, musíme od konce paměťového rozsahu odečíst začátek 0xFFFF-0xC000=0x3FFF; n=2+4+4+4=14; 2^{14} $B=2^4$ kB=16 kB