CC2-S2

2020-2021

Correction - Géométrie -

Dans l'espace euclidien \mathbb{R}^3 rapporté au repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on considère la surface \mathscr{S} d'équation cartésienne

$$z = (y - 2\sqrt{2} \ x) \ y$$

ainsi que la surface paramétrée Σ définie par

$$\begin{cases} x = \sqrt{2} uv \\ y = (u+v)^2 \\ z = (u^2 - v^2)^2 \end{cases}, \quad (u,v) \in \mathbb{R}^2$$

On note M(u, v) le point de Σ de paramètres u et v.

1. A propos $\overline{\operatorname{de} \mathscr{S}}$

i. Quelle est la nature de l'intersection de $\mathscr S$ avec un plan d'équation $y=\alpha$, où $\alpha\in\mathbb R$? On ne demande pas les caractéristiques.

L'intersection de $\mathscr S$ avec un plan d'équation $y=\alpha,$ où $\alpha\in\mathbb R$ a pour système d'équations cartésiennes $\begin{cases} z=(y-2\sqrt{2}x)y\\ y=\alpha \end{cases} \Leftrightarrow \begin{cases} 2\sqrt{2}\alpha x=Z-\alpha^2=0\\ y-\alpha=0 \end{cases}.$ Il s'agit donc de l'intersection de deux plans non parallèles et par conséquent d'une droite.

ii. Qu'en déduit-on pour \mathscr{S} ?

Réciproquement, tout point de \mathscr{S} de coordonnées (x,y,z) est sur la droite précédente correspondant à $\alpha = y$. \mathscr{S} est donc la réunion de ces droites, et par suite, \mathscr{S} est une surface réglée.

b. Quelle est la nature de l'intersection de $\mathscr S$ avec un plan d'équation $x=\beta$, où $\beta\in\mathbb R$? On ne demande pas les caractéristiques.

 $\overline{\text{L'intersection de } \mathscr{S} \text{ avec un plan d'équation } x = \beta, \text{ où } \beta \in \mathbb{R} \text{ a pour système d'équations cartésiennes} \\ \begin{cases} z = (y - 2\sqrt{2}x)y \\ x = \beta \end{cases} \Leftrightarrow \begin{cases} z = y^2 - 2\sqrt{2}\beta y \\ x = \beta \end{cases}.$

Il s'agit donc d'une parabole du plan d'équation $x = \beta$

i. Quelles sont la nature et les caractéristiques de l'intersection \mathscr{C}_{γ} de \mathscr{S} avec un plan d'équation $z=\gamma$, c.

Quelles sont la nature et les caracteristiques de 7 du valeurs de γ . Où $\gamma \in \mathbb{R}$? Distinguer différents cas suivant les valeurs de γ . $\mathscr{C}_{\gamma} \text{ a pour système d'équations cartésiennes} \left\{ \begin{array}{l} z = (y-2\sqrt{2}x)y \\ z = \gamma \end{array} \right. \left\{ \begin{array}{l} -2\sqrt{2}xy + y^2 = \gamma \\ z = \gamma \end{array} \right. .$

Il s'agit donc d'une conique du plan d'équation z = 1

On pose alors $A = \begin{pmatrix} 0 & -\sqrt{2} \\ -\sqrt{2} & 1 \end{pmatrix}$. A est symétrique réelle donc diagonalisable dans une base orthonormée directe.

Le spectre de A est $\operatorname{Sp}(A) = \{-1, 2\}$, ensuite $E_2(A) = \operatorname{Vect}\left\{\frac{1}{\sqrt{3}}\begin{pmatrix}1\\-\sqrt{2}\end{pmatrix}\right\}$ puis $E_{-1}(A) = \operatorname{Vect}\left\{\frac{1}{\sqrt{3}}\begin{pmatrix}\sqrt{2}\\1\end{pmatrix}\right\}$.

On pose $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & \sqrt{2} \\ -\sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$ et on trouve que, dans le repère $(O_{\gamma}; \overrightarrow{u}, \overrightarrow{v})$ du plan $z = \gamma$, où $O_{\gamma} = (0,0,\gamma), \ \vec{u} = \frac{1}{\sqrt{3}} \left(1, -\sqrt{2} \right) \text{ et } \vec{v} = \frac{1}{\sqrt{3}} \left(\sqrt{2}, 1 \right), \mathcal{C}_{\gamma} \text{ a pour équation réduite}$

$$2X^2 - Y^2 = \gamma$$

Il s'agit:

- si $\gamma > 0$, d'une hyperbole d'axe focal $(O_{\gamma}; \vec{u})$
- si $\gamma < 0$, d'une hyperbole d'axe focal $(O_{\gamma}; \vec{v})$
- si $\gamma = 0$, de la réunion des droites $\Delta_1 \left\{ \begin{array}{l} x = 0 \\ z = 0 \end{array} \right.$ et $\Delta_2 \left\{ \begin{array}{l} y = 2\sqrt{2}x \\ z = 0 \end{array} \right.$ dans le repère $\left(0, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)$.

Spé PT Page 1 sur 3 ii. On note O_{γ} le point de coordonnées $(0,0,\gamma)$. Tracer, au verso du sujet, les courbes \mathscr{C}_{γ} dans le repère $(O_{\gamma}; \overrightarrow{i}, \overrightarrow{j})$ pour $\gamma \in \{-2, 0, 1\}$.

Òn pourra confondre les points O_{γ} et tracer les 3 courbes dans le même repère.

d. Montrer que $\mathscr S$ est régulière et déterminer une équation cartésienne du plan tangent à $\mathscr S$ en un point M_0 de \mathcal{S} de coordonnées (x_0, y_0, z_0) . Cette équation ne devra pas dépendre de z_0 .

Notons F l'application définie sur \mathbb{R}^3 par $\forall (x,y,z) \in \mathbb{R}^3$, $F(x,y,z) = \left(y - 2\sqrt{2} \ x\right) \ y - z$. F est C^1 sur \mathbb{R}^3 et $\forall (x, y, z) \in \mathbb{R}^3$, $\operatorname{grad}(F)(x, y, z) = \left(-2\sqrt{2}y, 2y - 2\sqrt{2}x, -1\right) \neq (0, 0, 0)$ par conséquent $\mathscr S$ est régulière. $\mathcal S$ admet en tout point M_0 de coordonnées (x_0,y_0,z_0) un plan tangent dont $\left(-2\sqrt{2}y_0,2y_0-2\sqrt{2}x_0,-1\right)$ est un vecteur normal normal. Ceci nous conduit à l'équation cartésienne :

$$\left(-2\sqrt{2}y_0\right)(x-x_0) + \left(2y_0 - 2\sqrt{2}x_0\right)(y-y_0) + (-1)(z-z_0) = 0$$

puis, comme $z_0 = (y_0 - 2\sqrt{2} x_0) y_0$, on obtient

$$2\sqrt{2}y_0x + 2\left(\sqrt{2}x_0 - y_0\right)y + z - 2\sqrt{2}x_0y_0 + y_0^2 = 0$$

e. Dans le cas particulier où M_0 est le point O, préciser la position relative de \mathcal{S} et du plan tangent.

Pour $M_0 = O$, le plan tangent a pour équation cartésienne z = 0. On sait déjà que l'intersection de $\mathscr S$ et de ce plan tangent est la réunion des droites Δ_1 et Δ_2 .

Par ailleurs, on peut remarquer que $\mathscr S$ est aussi définie par le paramétrage cartésien $(x,y)\mapsto (x,y,f(x,y))$ où $f(x,y) = (y-2\sqrt{2} x)$ y, et au passage conclure que \mathscr{C}_{γ} est la ligne de niveau γ de f.

La position relative de \mathscr{S} et de z=0 est donc donnée par le signe de f(x,y) lorsque $(x,y)\in\mathbb{R}^2$.

La règle des signes nous permet de dire que :

- \rightsquigarrow ce signe est positif sur la réunion des domaines délimités par Δ_1 et Δ_2 contenant \mathscr{C}_1 , et par suite \mathscr{S} est au dessus de z = 0;
- \leadsto ce signe est négatif sur la réunion des domaines délimités par Δ_1 et Δ_2 contenant \mathscr{C}_{-2} , et par suite \mathscr{S} est en dessous de z = 0.

On peut même démontrer que O est un point selle de \mathscr{S} .

2. Comparaison entre \mathscr{S} et Σ

a. Vérifier que $\Sigma \subset \mathscr{S}$.

Soient M(u,v) un point de Σ , et (x,y,z) ses coordonnées dans $(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$.

Alors $\left(y-2\sqrt{2}\ x\right)\ y=\left((u+v)^2-4uv\right)(u+v)^2=(u-v)^2(u+v)^2=(u^2-v^2)^2=z$ et ainsi M(u,v) est aussi un point de $\mathscr S$, ce qui montre bien que $\Sigma\subset\mathscr S$.

Spé PT Page 2 sur 3 **b.** A-t-on $\Sigma = \mathscr{S}$?

Comme $\mathscr{C}_{-2} \subset \mathscr{S}$ et que les points de \mathscr{C}_{-2} vérifient z=-2, on peut conclure que $\Sigma \neq \mathscr{S}$ puisque $(u^2-v^2)^2 \geq 0$.

- 3. A propos de Σ
 - Déterminer la nature géométrique de l'ensemble des points non réguliers de Σ .

 Σ admet un paramétrage de classe C^1 sur \mathbb{R}^2 .

La première est la demi-droite d'équations $\begin{cases} y=2\sqrt{2}x\\ z=0\\ x>0 \end{cases}$ et la deuxième est la demi-droite d'équations

$$\begin{cases} y = 0 \\ z = 0 \\ x \le 0 \end{cases}$$
 qui sont respectivement incluses dans Δ_2 et Δ_1 .

b. Soit M(u,v) un point régulier de Σ . Déterminer, en fonction des paramètres u et v, une équation cartésienne du plan tangent à Σ au point M(u, v).

Le plan tangent à Σ en M(u,v) régulier passe par M(u,v) et admet $\vec{n}(u,v)$ pour vecteur normal. Il admet donc pour équation cartésienne :

$$2\sqrt{2}(u+v)^2x - 2(u^2+v^2)y + z + (u^2-v^2)^2 = 0$$

Spé PT Page 3 sur 3