Consider ways to place colored markers on an $n \times m$ grid so that no two pairs of markers of the same color have the same distance between them.

Figure 1: There are 5 markers and 5(5-1)/2=10 distinct distances between red tiles. (There is no way to place 6 tiles.) Placing another red marker would result in two pairs of red markers being the same distance apart.

Question. What is $c_{n\times m}$ the greatest number of markers of a given color can be placed on the $n\times m$ grid?

Related.

- 1. How many colors of markers are required to fill the grid?
- 2. What if this is done on the d_1, d_{∞} , or d_3 metric?
- 3. What if this is done on a triangular or hexagonal grid?

Note. $c_{n \times m}(c_{n \times m} - 1)/2 \le A301853(n, m) - 1$.

References.

Problem 34.

https://oeis.org/A301853