Cryptography Exercise Sheet 2

Prof. Dr. Thomas Wilke, Dr.-Ing. Kim-Manuel Klein

8. Mai 2020

1. **Problem:** A broken one-time pad

Consider a variant of the one time pad with message space $\{0,1\}^L$ where the key space \mathcal{K} is restricted to all L-bit strings with an even number of 1s. Give an efficient adversary whose semantic security advantage is 1.

2. **Problem:** Exercising the definition of semantic security

Let $\mathcal{E} = (E, D)$ be a semantically secure cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, where $\mathcal{M} = \mathcal{C} = \{0, 1\}^L$. Which of the following encryption algorithms yields a semantically secure scheme? Either give an attack or provide a security proof via an explicit reduction.

- (a) $E_1(k,m) := 0 \parallel E(k,m)$
- (b) $E_2(k, m) := E(k, m) \parallel parity(m)$
- (c) $E_3(k,m) := reverse(E(k,m))$
- (d) $E_4(k,m) := E(k, reverse(m))$

Here, for a bit string s, parity(s) is 1 if the number of 1s in s is odd, and 0 otherwise; also, reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.

3. Problem: Key recovery attacks

Let $\mathcal{E} = (E, D)$ be a cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. A key recovery attack is modeled by the following game between a challenger and an adversary \mathcal{A} : the challenger chooses a random key k in \mathcal{K} , a random message m in \mathcal{M} , computes $c \stackrel{\mathbb{R}}{\leftarrow} E(k, m)$, and sends (m, c) to \mathcal{A} . In response \mathcal{A} outputs a guess \hat{k} in \mathcal{K} . We say that \mathcal{A} wins the game if $D(\hat{k}, c) = m$ and define $KRadv[\mathcal{A}, \mathcal{E}]$ to be the probability that \mathcal{A} wins the game. As usual, we say that \mathcal{E} is secure against key recovery attacks if for all efficient adversaries \mathcal{A} the advantage $KRadv[\mathcal{A}, \mathcal{E}]$ is negligible.

- (a) Show that the one-time pad is not secure against key recovery attacks.
- (b) Show that if \mathcal{E} is semantically secure and $e = |\mathcal{K}|/|\mathcal{M}|$ is negligible, then \mathcal{E} is secure against key recovery attacks. In particular, show that for every efficient key-recovery adversary \mathcal{A} there is an efficient semantic security adversary \mathcal{B} , where \mathcal{B} is an elementary wrapper around \mathcal{A} , such that

$$KRadv[\mathcal{A}, \mathcal{E}] \le SSadv[\mathcal{B}, \mathcal{E}] + e$$
 (1)

Hint: Your semantic security adversary \mathcal{B} will output 1 with probability $KRadv[\mathcal{A}, \mathcal{E}]$ in the semantic security Experiment 0 and output 1 with probability at most e in Experiment 1. Deduce from this a lower bound on $SSadv[\mathcal{B}, \mathcal{E}]$ in terms of e and $KRadv[\mathcal{A}, \mathcal{E}]$ from which the result follows.

4. Deduce from part (b) that if \mathcal{E} is semantically secure and $|\mathcal{M}|$ is super-poly then $|\mathcal{K}|$ cannot be poly-bounded.

 $Note: |\mathcal{K}|$ can be poly-bounded when $|\mathcal{M}|$ is poly-bounded, as in the one-time pad.