Chapter 1, Section 3

James Lee

April 23, 2025

- 2. A morphism whose underlying map on the topological space is a homeomorphism need not be an isomorphism.
 - (a) For example, let $\varphi: \mathbb{A}^1 \to \mathbb{A}^2$ be defined by $t \mapsto (t^2, t^3)$. Show that φ defines a bijective bicontinuous morphism of \mathbb{A}^1 onto the curve $y^2 = x^3$, but that φ is not an isomorphism.
 - (b) For another example, let the characteristic of the base field k be p > 0, and define a map $\varphi : \mathbb{A}^1 \to \mathbb{A}^1$ by $t \mapsto t^p$. Show that φ is bijective and bicontinuous but not an isomorphism. This is called the *Frobenius morphism*.

Proof.

(a) Let Y be the curve $y^2 = x^3$. Then φ clearly maps into Y and is injective since

$$(t^2, t^3) = (u^2, u^3) \implies tu^2 = t^2u \implies t = u.$$

If $P = (a_1, a_2) \in Y$, then clearly $\varphi(\sqrt[3]{a_2}) = P$ since k is algebraically closed, hence φ is bijective onto Y. To show φ is bicontinuous it is enough to show φ and φ^{-1} of closed sets in \mathbb{A}^1 and Y, respectively, is closed. A closed set in either \mathbb{A}^1 or Y is a finite set of points, so by the bijectivity of φ , it is also bicontinuous.

To show it is not an isomorphism, it suffices to show the coordinate rings of the affine line \mathbb{A}^1 and the curve Y are not isomorphic. Indeed, $A(\mathbb{A}^1) = k[x]$ and $A(Y) = k[x,y]/(y^2 - x^3)$, and while k[x] is factorial, A(Y) is not since $y^2 = x^3$.

- (b) It is bijective and bicontinuous for the same reason in (a). If φ is an isomorphism, then it must induce an automorphism $\varphi^*: k[x] \to k[x]$ of the affine coordinate ring k[x] of \mathbb{A}^1 . However, φ^* is defined by $x \mapsto x^p$, which is not even surjective.
- **3.** (a) Let $\varphi: X \to Y$ be a morphism. Then for each $P \in X$, φ induces a homomorphism of local rings $\varphi_P^*: \mathscr{O}_{\varphi(P),Y} \to \mathscr{O}_{\varphi(P),Y}$
 - (b) Show that a morphism φ is an isomorphism if and only if φ is a homeomorphism, and that the induced map φ_P^* on local rings is an isomorphism for all $P \in X$.
 - (c) Show that if $\varphi(X)$ is dense in Y, then the map φ_P^* is injective for all $P \in X$.

Proof.

- (a) We have already seen that φ induces a homomorphism $\varphi^*: \mathscr{O}(Y) \to \mathscr{O}(X)$. By (2.3), there exists an open affine variety V in Y containing $\varphi(P)$. Then $U = \varphi^{-1}(V)$ contains P, so $\mathscr{O}_{P,X} \simeq \mathscr{O}_{P,U}$ and $\mathscr{O}_{\varphi(P),Y} \simeq \mathscr{O}_{\varphi(P),V}$. By definition f is a regular function defined in some open neighborhood of $\varphi(P)$ in V such that $f(\varphi(P))$ is nonzero if and only if φ^*f is nonzero at P. Thus, φ^*f is a unit in $\mathscr{O}_{P,U}$, so by the universal property of localization there exists a unique ring homeomorphism $\varphi_P^*: \mathscr{O}_{\varphi(P),Y} \to \mathscr{O}_{P,X}$.
- (b) The only if direction is obvious. Conversely, if φ_P^* on local rings is an isomorphism for all $P \in X$, then since isomorphism is a local property (A.M. p. 40), we have an isomorphism $\varphi^* : \mathscr{O}_V \to \mathscr{O}_U$, where V is any affine variety in Y and $U = \varphi^{-1}(V)$. Hence, $\varphi : U \to V$ is an isomorphism.
- (c) We want to show for any $P \in X$ that if f, g are elements of $\mathscr{O}_{\varphi(P),Y}$ such that $\varphi_P^* f = \varphi_P^* g$ on some open neighborhood U of P, then f = g in some open neighborhood V of $\varphi(P)$. Let V be an open neighborhood of $\varphi(P)$ with both f and g are defined so that $\varphi_P^* f$ and $\varphi_P^* g$ are defined on $U = \varphi^{-1}(V)$. Then, $\varphi(U) = V \cap \varphi(X)$ is a closed and dense subset of V such that f = g, hence f = g on V.

4. Show that the d-uple embedding of \mathbb{P}^n (I, Ex. 2.12) is an isomorphism onto its image.

Proof. Let $\rho: \mathbb{P}^n \to Y \subseteq \mathbb{P}^N$ be the *d*-uple embedding of \mathbb{P}^n with $N = \binom{n+d}{n} - 1$ and image restricted so that ρ is a homeomorphism. By Exercise 2, to show ρ is an isomorphism it suffices to show it is an isomorphism locally. Let $P = (a_0, \ldots, a_n) \in \mathbb{P}^n$ and $\rho(P) = (b_0, \ldots, b_N) \in Y$ and assume $a_0 \neq 0$. By (3.4), we have the following identifications of local rings

$$\mathscr{O}_{P,\mathbb{P}^n} = S(\mathbb{P}^n)_{(\mathfrak{m}_P)}, \quad \mathscr{O}_{\rho(P),Y} = S(Y)_{(\mathfrak{m}_{\rho(P)})},$$

where \mathfrak{m}_P (respectively, $\mathfrak{m}_{\rho(P)}$) is the ideal generated by the set of homogenous $f \in S(\mathbb{P}^n)$ (respectively, $f \in S(Y)$) such that f(P) = 0 (respectively, $f(\rho(P)) = 0$). We want to show the induced map $\rho_P^* : \mathscr{O}_{\rho(P),Y} \to \mathscr{O}_{P,\mathbb{P}^n}$ is an isomorphism. By the identification above, the map ρ_P^* can be defined by the canonical projection map $\overline{\theta} : k[y_0, \ldots, y_N]/\mathfrak{a} \to k[x_0, \ldots, x_n]$ induced by θ in Exercise 2.12 as

$$\rho_P^*\left(\frac{f}{g}\right) = \frac{\overline{\theta}(f)}{\overline{\theta}(g)},$$

where f and g are homogenous elements of same degree in S(Y) such that $g(\rho(P)) \neq 0$ (since we are only concerned with homogenous elements of degree 0 in $S(Y)_{\mathfrak{m}_P}$). Clearly ρ_P^* is injective since $\overline{\theta}$ is injective, and ρ_P^* maps $S(Y)_{(\mathfrak{m}_{\rho(P)})}$ into $S(\mathbb{P}^n)_{(\mathfrak{m}_P)}$ since $\theta(y_i)$ is of the same degree for all $0 \leq i \leq N$ and \mathfrak{a} is a homogenous ideal. To show it is surjective, suppose $h/k \in \mathcal{O}_{P,\mathbb{P}^n}$ with $k(P) \neq 0$ and h, k both homogenous of degree e. We can assume e is a multiple d since x_0 is a unit in $\mathcal{O}_{P,\mathbb{P}^n}$, and we can multiply h/k by a sufficent power of x_0/x_0 to obtain the desired degrees in the numerator and denominator. Then, each term in h and k is the product of monomials of degree d, and since $\overline{\theta}$ is surjective onto such elements, ρ_P^* is surjective. Hence, ρ_P^* is an isomorphism.

6. There are quasi-affine varieties which are not affine. For example, show that $X = \mathbb{A}^2 - \{(0,0)\}$ is not affine.

Proof. The ideal I(X) consists of all polynomials in k[x,y] that vanish at X. If $f \in I(X)$, then viewing f as a regular function on \mathbb{A}^2 , $f^{-1}(0)$ is a closed and dense subset of \mathbb{A}^2 , hence it equals to \mathbb{A}^2 , hence I(X) = (0). Thus, if X is affine, then

$$\mathscr{O}(X) = k[x,y]/I(X) \simeq k[x,y] = \mathscr{O}(\mathbb{A}^2),$$

so by (3.5) and (3.7) $X \cong \mathbb{A}^2$ under the inclusion map, which is ridiculous.

12. If P is a point on a variety X, then dim $\mathcal{O}_P = \dim X$.

Proof. We can find an open affine variety Y in X containing P, and since local rings behave well under open subsets, i.e. $\mathcal{O}_{P,Y} \simeq \mathcal{O}_{P,X}$, we can reduce to the affine case. Then, the statement follows from (3.2).

15. Products of Affine Varieties. Let $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ be affine varieties.

- (a) Show that $X \times Y \subseteq \mathbb{A}^{n+m}$ with its induced topology is irreducible. The affine variety $X \times Y$ is called the product of X and Y. Note that its topology is in general not equal to the product topology.
- (b) Show that $A(X \times Y) \simeq A(X) \otimes_k A(Y)$.
- (c) Show that $X \times Y$ is a product in the category of varieties.
- (d) Show that $\dim X \times Y = \dim X + \dim Y$.

Proof.

(a) Suppose that $X \times Y$ is a union of two closed subsets $Z_1 \cup Z_2$. Let $X_i = \{x \in X \mid x \times Y \subseteq Z_i\}$, i = 1, 2 and let $\pi : \mathbb{A}^{n+m} \to \mathbb{A}^m$ be the projection map. For any $x \in X$ since $x \times Y \subseteq Z_1 \cup Z_2$, we can write $x \times Y = (x \times Y \cap Z_1) \cup (x \times Y \cap Z_2)$, so let $C_i = x \times Y \cap Z_i$, then

$$Y = \pi(x \times Y) = \pi(C_1 \cup C_2) = \pi(C_1) \cup \pi(C_2).$$

We can write $Z_i = Z(f_1, \ldots, f_r)$, i = 1, 2, for some $f_i \in A(\mathbb{A}^{n+m})$, then we see that

$$\pi(C_i) = \bigcap_{j=1}^r Z(f_j(x, y_1, \dots, y_m)),$$

where we can view $f_j(x, y_1, ..., y_m)$ as an element in $A(\mathbb{A}^m)$, which shows $\pi_2(C_i)$ is a closed set in \mathbb{A}^m . Since Y is irreducible, we have $\pi(C_2) = \emptyset$, say, hence $Y = \pi(C_1)$, hence $x \times Y = x \times Y \cap Z_1$, hence $x \times Y \subseteq Z_1$. In particular, we have $X = X_1 \cup X_2$, and we have shown $Z_i = X_i \times Y$. We can repeat the argument for $Y_i = \{y \in Y \mid X \times Y \subseteq Z_i\}$, i = 1, 2 so that $Z_i = X \times Y_i$. This is only possible if $X = X_1$ and $Y = Y_1$, say, hence $Z_1 = X \times Y$.

(b) We clearly have $A(\mathbb{A}^{n+m}) \simeq A(\mathbb{A}^n) \otimes_k A(\mathbb{A}^m)$, where $A(\mathbb{A}^n) = k[x_1, \dots, x_n]$ and $A(\mathbb{A}^m) = k[y_1, \dots, y_m]$. Then, we have

$$I(X \times Y) = I(X) \otimes_k A(\mathbb{A}^m) + A(\mathbb{A}^n) \otimes_k I(Y),$$

hence we have the isomorphism

$$\begin{split} A(X\times Y) &\cong \frac{A(\mathbb{A}^n)\otimes_k A(\mathbb{A}^m)}{I(X\times Y)} \\ &\cong \frac{A(\mathbb{A}^n)\otimes_k A(\mathbb{A}^m)}{I(X)\otimes_k A(\mathbb{A}^m) + A(\mathbb{A}^n)\otimes_k I(Y)} \\ &\cong \frac{A(\mathbb{A}^n)}{I(X)}\otimes_k \frac{A(\mathbb{A}^m)}{I(Y)} \\ &\cong A(X)\otimes_k A(Y). \end{split}$$

(c) Suppose we have morphisms $Z \to X$ and $Z \to Y$. This induces k-algebra homomorphisms $A(X) \to \mathcal{O}(Z)$ and $A(Y) \to \mathcal{O}(Z)$, which defines a k-bilinear map $A(X) \times A(Y) \to \mathcal{O}(Z)$. By the universal property of tensor products, we have a unique k-algebra homomorphism $A(X) \otimes_k A(Y) \to \mathcal{O}(W)$, hence we have a unique morphism $W \to X \times Y$.

- (d) If t_1, \ldots, t_n and u_1, \ldots, u_m are coordinates for X and Y, respectively, then each t_i, u_j are algebraically independent in $A(X \times Y)$, that is the quotient field of $A(X \times Y)$ has transcendence degree n+m, hence dim $X \times Y = \dim X + \dim Y$.
- 17. Normal Varieties. A variety Y is normal at a point $P \in Y$ if \mathcal{O}_P is integrally closed ring. Y is normal if it is normal at every point.
 - (a) Show that every conic in \mathbb{P}^2 is normal.
 - (b) Show that the quadric surfaces Q_1 , Q_2 in \mathbb{P}^3 given by equations $Q_1: xy=zw; \ Q_2: xy=z^2$ are normal.
 - (c) Show that the cuspidal cubic $y^2 = x^3$ in \mathbb{A}^2 is not normal.
 - (d) If Y is affine, then Y is normal $\iff A(Y)$ is integrally closed.

(e) Let Y be an affine variety. Show that there is a normal affine variety \hat{Y} , and a morphism $\pi: \hat{Y} \to Y$, with the property that whenever Z is normal variety, and $\varphi: Z \to Y$ is a dominant morphism, then there is a unique morphism $\theta: Z \to \hat{Y}$ such that $\varphi = \pi \circ \theta$. \hat{Y} is called the normalization of Y.

Proof.

(a) A conic in \mathbb{P}^2 can be covered by open affine varieties isomorphic to a conic in \mathbb{A}^2 . Thus, it suffices to show all irreducible plane algebraic curves of degree 2 are normal, that is we want to show an affine variety X in \mathbb{A}^2 defined by the zero set of an irreducible quadratic polynomial f in k[x,y] is normal. Since being integrally closed is a local property, it suffices to show the affine coordinate ring A(X) = k[x,y]/(f) is integrally closed. We first prove Exercise 1.1c, which states A(X) is isomorphic to either $R = k[x,y]/(y-x^2)$ or $S = k[x,y]/(xy-1) \simeq k[x,\frac{1}{x}]$. For simplicity assume char $k \neq 2$. Any quadratic polynomial can be written as

$$f(x,y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F$$

We claim the following: if $B^2 - 4AC = 0$, then $A(X) \simeq R$, otherwise $A(X) \simeq S$. We proceed by showing that X can be transformed to a variety of the form $y = x^2$ or xy = 1 using some affine transformations.

Suppose $B^2 - 4AC = 0$, then assume $C \neq 0$ (if C = 0, then B = 0, so we already have an equation of the desired form up to some translation and stretching), so we have

$$f(x,y) = (\sqrt{A}x + \sqrt{C}y)^2 + Dx + Ey + F,$$

since k is algebraically closed. We can apply the following affine transformation

$$x \mapsto -\sqrt{C}y$$
$$y \mapsto -\sqrt{C}x + \sqrt{A}y$$

which is indeed an affine transformation since it has determinant $C \neq 0$, to obtain

$$f'(x,y) = C^2x^2 - D\sqrt{C}y - E(-\sqrt{C}x + \sqrt{A}y) + F,$$

which is the case when B = C = 0.

Now suppose $\Delta^2 = B^2 - 4AC \neq 0$ and assume $A \neq 0$, then we have

$$f(x,y) = \left(\sqrt{A}x + \frac{B+\Delta}{2\sqrt{A}}y\right)\left(\sqrt{A}x + \frac{B-\Delta}{2\sqrt{A}}y\right) + Dx + Ey + F,$$

so we can apply the affine transformation

$$\sqrt{A}x + \frac{B + \Delta}{2\sqrt{A}}y \mapsto x$$
$$\sqrt{A}x + \frac{B - \Delta}{2\sqrt{A}}y \mapsto y$$

which has determinant $1/\Delta \neq 0$, to obtain

$$f'(x, y) = xy + (linear terms).$$

Since affine coordinate rings are invariant up to affine transformations, we have either $A(X) \simeq R$ or $A(X) \simeq S$. The ring $R = k[x,y]/(y-x^2)$ is isomorphic to a polynomial ring over one variable, which is a factorial, hence it is integrally closed. The ring $S = k[x,x^{-1}]$ is a discrete valuation ring, which are integrally closed by (A.M. p. 94).

- (b) The quadric surface Q_1 can be covered by open affine varieties isomorphic to the affine surface z = xy. The affine coordinate ring of such surface is isomorphic to k[x, y], which is integrally closed, hence Q_1 is normal. Similarly, Q_2 can be covered by open affine varieties isomorphic to either $y = x^2$ or xy = 1, which was shown to be normal in (a).
- (c) The affine coordinate ring A(Y) is isomorphic to $k[t^2, t^3]$. The quotient field is k(t), and the element $t \in k(t)$ is integral over $k[t^2, t^3]$ since $(t)^2 t^2 = 0$ but $t \notin k[t^2, t^3]$, hence A(Y) is not integrally closed, hence Y is not normal by (d).

- (d) Being integrally closed is a local property, that is a ring A is integrally closed if and only if $A_{\mathfrak{m}}$ is integrally closed for all maximal ideals \mathfrak{m} in A by (A.M. p. 63). There is a one-to-one correspondence between maximal ideals of $\mathscr{O}(Y) = A(Y)$ and points of Y, hence Y is normal if and only if \mathscr{O}_P is integrally closed for all $P \in Y$ if and only if $A(Y)_{\mathfrak{m}}$ is integrally closed for all maximal ideals \mathfrak{m} if and only if A(Y) is integrally closed.
- (e) We want to show there exists a normal scheme \widehat{Y} with morphism $\pi:\widehat{Y}\to Y$ that is universal amongst all dominant morphisms from normal schemes into Y. Let A(Y) be the affine coordinate ring of Y and let B be the integral closure of A(Y) in its quotient field. Then, B is a finitely generated k-algebra by (3.9A), and it is a subring of a field, so it is an integral domain, which means it defines an affine variety. Let \widehat{Y} be an affine variety with coordinate ring $A(\widehat{Y}) = B$, and let $\pi: \widehat{Y} \to Y$ be the morphism induced by the inclusion map $A(Y) \hookrightarrow B$. Let Z be a normal variety, and $\varphi: Z \to Y$ a dominant morphism. Since Z can be covered by open affine varieties and local rings are perserved under open subsets, we reduce to the case when Z is an affine normal variety. We want to show there exists a ring homomorphism $\alpha: \widehat{\mathcal{O}}(\widehat{Y}) \to \mathcal{O}(Z)$ such that the following diagram commutes:

If $\varphi^* f = 0$ for some $f \in \mathcal{O}(Y)$, then f = 0 on a closed dense subset of Y, hence f = 0 on Y, so φ^* is injective. Thus, φ^* induces a map between the function fields $\overline{\varphi^*} : K(Y) \to K(Z)$, where we have the inclusions $\mathcal{O}(Y) \hookrightarrow \mathcal{O}(\widehat{Y}) \hookrightarrow K(Y)$ by construction. If $f \in \mathcal{O}(\widehat{Y})$, then there exists an equation of integral dependence of the form

$$f^n + a_1 f^{n-1} + \dots + a_n = 0, \quad a_i \in \mathcal{O}(Y),$$

and since $\overline{\varphi^*}(a_i) = \varphi^*(a_i) \in \mathscr{O}(Z)$, we can apply $\overline{\varphi^*}$ to the equation above to obtain an equation of integral dependence of $\overline{\varphi^*}(f)$ over $\mathscr{O}(Z)$

$$\overline{\varphi^*}(f)^n + b_1 \overline{\varphi^*}(f)^{n-1} + \dots + b_n = 0, \quad b_i = \varphi^*(a_i) \in \mathscr{O}(Z),$$

and since $\mathscr{O}(Z)$ is integrally closed, we must have $\overline{\varphi^*}(f) \in \mathscr{O}(Z)$. Thus, we have $\alpha = \overline{\varphi^*} \mid_{\mathscr{O}(\widehat{Y})}$ as the desired map, and it is unique by construction. Hence, we have a unique morphism $\theta: Z \to \hat{Y}$ such that $\varphi = \pi \circ \theta$ and $\theta^* = \alpha: \mathscr{O}(\widehat{Y}) \to \mathscr{O}(Z)$ by (3.5).

20. Let Y be a variety of dimension ≥ 2 , and let $P \in Y$ be a normal point. Let f be a regular function on Y - P.

- (a) Show that f extends to a regular function on Y.
- (b) Show this would be false for $\dim Y = 1$.

Proof.

(a) Y can be covered by open affine varieties, so we reduce to the case when $Y \subseteq \mathbb{A}^n$ itself is an affine variety. Then by composing with the inclusion morphism $Y \to \mathbb{A}^n$, we futher reduce to the case when $Y = \mathbb{A}^n$, that is we want to show if f = g/h on $\mathbb{A}^n - P$, then we can extend f to a regular function on Y. We show that if a polynomial $h \in k[x_1, \ldots, x_n]$ is nonzero on $\mathbb{A}^n - P$, then f is nonzero on P. We can also assume $P = (0, \ldots, 0)$ and n = 2 by induction. Suppose h(P) = 0, then h must have zero constant term, so we can write

$$h(x,y) = f_0(x)y^d + f_1(x)y^{d-1} + \dots + f_d(x), \quad f_i(x) \in k[x] - k,$$

then there exists nonzero $a \in k$ such that $f_i(a) \neq 0$ for some i, we have

$$h(a,y) = a_0 y^d + a_1 y^{d-1} + \dots + a_d \neq 0, \quad a_i = f_i(a),$$

and since k is algebraically closed, h(a, y) must have a solution y = b, so (a, b) is a solution to h that is not equal to P, a contradiction.

(b) Consider $Y = \mathbb{A}^1$ and P = 0, and let $f = \frac{1}{x}$. Then f is regular on Y - P by definition, but it clearly cannot be extended to the entire affine line.