Exploring conservation genomic data in R

Josh Jahner jpjahner@gmail.com

Outline of today's topics

- 1) Big questions in conservation genetics
- 2) Types of conservation genetic data
- 3) Simulating data with the beta distribution
- 4) Exploring conservation genetic analyses

Genetic diversity and inbreeding

FROM THE COVER

Genomics-informed captive breeding can reduce inbreeding depression and the genetic load in zoo populations

```
Samuel A. Speak<sup>1,2,3</sup>  | Thomas Birley<sup>1</sup> | Chiara Bortoluzzi<sup>4,5</sup> | Matthew D. Clark<sup>2,6</sup> | Lawrence Percival-Alwyn<sup>7</sup> | Hernán E. Morales<sup>8</sup>  | Cock van Oosterhout<sup>1</sup>
```

Identifying adaptive genetic variation

Received: 30 January 2024

Revised: 23 April 2024

Accepted: 30 April 2024

DOI: 10.1111/mec.17383

ORIGINAL ARTICLE

Natural selection on feralization genes contributed to the invasive spread of wild pigs throughout the United States •

```
Niek W. G. Barmentlo<sup>1,2</sup> | Patrick G. Meirmans<sup>2</sup> | William H. Stiver<sup>3</sup> | Joseph G. Yarkovich<sup>3</sup> | Blake E. McCann<sup>4</sup> | Antoinette J. Piaggio<sup>5</sup> | Dominic Wright<sup>6</sup> | Timothy J. Smyser<sup>5</sup> | Mirte Bosse<sup>1,7</sup>
```

Population structure and connectivity

Molecular Ecology

Shared Dispersal Patterns but Contrasting Levels of Gene Flow in Two Anadromous Salmonids Along a Broad Subarctic Coastal Gradient

Population size estimation

Evolutionary Applications

ORIGINAL ARTICLE OPEN ACCESS

Estimating the Effective Size of European Wolf Populations

Demographic history reconstruction

Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America

Cate B. Quinn (D, 1,2,3,* Sophie Preckler-Quisquater, 1 Michael R. Buchalski (D, 2 Benjamin N. Sacks (D) 1,4

Species delimitation

Current Biology

Report

Comparative species delimitation of a biological conservation icon

Ava Ghezelayagh, ^{1,2,13,14,*} Jeffrey W. Simmons, ³ Julia E. Wood, ¹ Tsunemi Yamashita, ⁴ Matthew R. Thomas, ⁵ Rebecca E. Blanton, ⁶ Oliver D. Orr, ¹ Daniel J. MacGuigan, ⁷ Daemin Kim, ¹ Edgar Benavides, ^{8,9} Benjamin P. Keck, ¹⁰ Richard C. Harrington, ^{1,11} and Thomas J. Near^{1,12}

Hybridization and admixture

Evolution Letters, 2025, 9(1), 1-12

https://doi.org/10.1093/evlett/qrae057 Advance access publication 19 October 2024 Letter

Genetic structure and common ancestry expose the dingo-dog hybrid myth

Andrew R. Weeks^{1,2,1,0}, Peter Kriesner¹, Nenad Bartonicek^{1,†}, Anthony van Rooyen¹, Kylie M. Cairns³, Collin W. Ahrens¹

Assisted gene flow, genetic rescue, translocations

Evolutionary Applications

Genetic Rescue of the Dinaric Lynx Population: Insights for Conservation From Genetic Monitoring and Individual-Based Modelling

Genetic monitoring

Received: 26 September 2023

Revised: 1 December 2023

Accepted: 19 January 2024

DOI: 10.1002/ece3.10934

RESEARCH ARTICLE

Evaluating genotyping-in-thousands by sequencing as a genetic monitoring tool for a climate sentinel mammal using non-invasive and archival samples

```
Kate E. Arpin<sup>1</sup> | Danielle A. Schmidt<sup>1</sup> | Bryson M. F. Sjodin<sup>1</sup> | Anthony L. Einfeldt<sup>2</sup> | Kurt Galbreath<sup>3</sup> | Michael A. Russello<sup>1</sup>
```

Outline of today's topics

- 1) Big questions in conservation genetics
- 2) Types of conservation genetic data
- 3) Simulating data with the beta distribution
- 4) Exploring conservation genetic analyses

Mitochondrial DNA (Sanger sequencing)

```
ACTTTGAGCTTTCTGA ... ACTCTGAGCTTTCTGA ...
```

ACTCTGGGCTATCTGA ... ACTCTGGGCTATCTGA ...

Microsatellites (aka: simple sequence repeats [SSRs])

Individual 1	AGGAGGAGGAGGAGGAGGAGGAGG	10 repeats
	AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	12 repeats
Individual 2	AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	14 repeats
	AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG	14 repeats

Reduced representation sequencing

Section of a chromosome

Reduced representation sequencing

Section of a chromosome

Reduced representation sequencing

Section of a chromosome

Outline of today's topics

- 1) Big questions in conservation genetics
- 2) Types of conservation genetic data
- 3) Simulating data with the beta distribution
- 4) Exploring conservation genetic analyses

Find the R scripts at:

https://github.com/jpjahner/congen_workshop

01_beta_simulate.R 02_explore_analyses.R Allele frequency of A: 15 / 20 = 0.75

Influence of dams on sauger population structure and hybridization with introduced walleye

```
William C. Rosenthal<sup>1,2</sup> | Elizabeth G. Mandeville<sup>1,3</sup> | Ashleigh M. Pilkerton<sup>2,4,5</sup> | Paul C. Gerrity<sup>6</sup> | Joseph A. Skorupski<sup>6</sup> | Annika W. Walters<sup>2,4,5,7</sup> | Catherine E. Wagner<sup>1,2</sup>
```

Site Frequency Spectrum (SFS)

$$\alpha = 1$$
 $\beta = 1$

$$\alpha = 1$$
 $\beta = 1$
 $\alpha = 0.5$ $\beta = 0.5$

$$\alpha = 1$$
 $\beta = 1$
 $\alpha = 0.5$ $\beta = 0.5$
 $\alpha = 0.1$ $\beta = 0.1$

$$\alpha = 0.2$$
 $\beta = 0.8$
 $\alpha = 0.8$ $\beta = 0.2$
 $\alpha = 1$ $\beta = 1$

$$\alpha = 0.2$$
 $\beta = 0.8$
 $\alpha = 0.8$ $\beta = 0.2$
 $\alpha = 1$ $\beta = 1$
 $\alpha = 0.5$ $\beta = 0.5$
 $\alpha = 0.1$ $\beta = 0.1$

Influence of dams on sauger population structure and hybridization with introduced walleye

```
William C. Rosenthal<sup>1,2</sup> | Elizabeth G. Mandeville<sup>1,3</sup> | Ashleigh M. Pilkerton<sup>2,4,5</sup> | Paul C. Gerrity<sup>6</sup> | Joseph A. Skorupski<sup>6</sup> | Annika W. Walters<sup>2,4,5,7</sup> | Catherine E. Wagner<sup>1,2</sup>
```


dbeta(xvals, shape1=NA, shape2=NA)

Influence of dams on sauger population structure and hybridization with introduced walleye

```
William C. Rosenthal<sup>1,2</sup> | Elizabeth G. Mandeville<sup>1,3</sup> | Ashleigh M. Pilkerton<sup>2,4,5</sup> | Paul C. Gerrity<sup>6</sup> | Joseph A. Skorupski<sup>6</sup> | Annika W. Walters<sup>2,4,5,7</sup> | Catherine E. Wagner<sup>1,2</sup>
```



```
## Function for simulating genetic data from the beta distribution

single_pop_sim <- function(nloci=NA, ninds=NA, alpha=NA, beta=NA){
  genotypes <- matrix(NA, ninds, nloci)
  for (i in 1:nloci){
    afreq <- rbeta(1, alpha, beta)
        for (j in 1:ninds){
        genotypes[j,i] <- sum(rbinom(2, 1, afreq))
        }
    }
    return(genotypes)
}</pre>
```

Function for simulating genetic data from the beta distribution

Function for simulating genetic data from the beta distribution

Each column is a genetic marker

h row is an individual	2	2	2	1	1	2	2	2	2	2
	2	2	2	2	2	2	1	2	1	2
	1	2	2	2	2	2	2	2	2	2
	2	2	2	2	2	2	2	2	2	2
	0	2	2	1	2	2	1	2	1	2
	0	2	2	1	2	2	2	2	O	2
	1	2	2	2	2	2	1	2	1	2
	1	2	2	1	2	2	1	2	1	2
Each	0	2	2	2	1	2	2	2	2	2
Щ	0	2	2	2	2	2	2	2	2	2

Outline of today's topics

- 1) Big questions in conservation genetics
- 2) Types of conservation genetic data
- 3) Simulating data with the beta distribution
- 4) Exploring conservation genetic analyses

Goals for the rest of our time:

- 1. Simulate genetic data using the beta distribution
- 2. Explore the data with three different genetic analyses

Goals for the rest of our time:

- 1. Simulate genetic data using the beta distribution
- 2. Explore the data with three different genetic analyses

How are genetic analyses affected by the shape of the site frequency spectrum?

How many genetic markers do I need to detect a signal?