

Facultad de Ingeniería

Introducción a la ingeniería en Informática y Sistemas 2 CRÉDITOS

A. Información del profesor

Nombre del profesor

e-mail

Mgtr. Karen Elizabeth Liska Lima

karenliska@gmail.com

Horario:

Miércoles, jueves, viernes 07:00-8:30 horas.

Sábado 07:30-9:00 horas.

B. Información general

Descripción

Expone la teoría general de sistemas, sus orígenes, conceptos y aplicaciones de la misma en la actualidad. Se estudiarán los sistemas y sus tipos, así como el pensamiento sistémico y sus aplicaciones al día a día; para ello se utilizarán herramientas que faciliten la forma de exponer los sistemas y sus partes. Finalmente integrar los conocimientos sobre los sistemas de información y cómo estos con la tecnología moderna se pueden aplicar para solucionar problemas de otras áreas, así como predecir comportamientos.

Modalidad

Mixta (Blended). Se combinarán momentos de aprendizaje autónomo, de parte del estudiante y guiado en la plataforma de aprendizaje de la Universidad; así como conferencias virtuales con los profesores, donde se favorecerá la metodología activa.

Facultad de Ingeniería

El egresado landivariano se identifica por:

Pensamiento lógico, reflexivo y analógico	Pensamiento crítico	Resolución de problemas
Habilidades de investigación	Uso de TIC y gestión de la información	Comunicación efectiva, escrita y oral
Comprensión lectora	Compromiso ético y ciudadanía	Liderazgo constructivo
Aprecio y		ptividad

interculturalidad

COMPETENCIAS ESPECÍFICAS (propias del curso)

Competencia 1: Aplica el pensamiento sistémico para la resolución de problemas a lo largo de la carrera profesional.

Competencia 2: Reconoce la taxonomía de los sistemas y la utiliza para identificar patrones a la hora de resolver problemas.

Competencia 3: Distingue las diferentes aplicaciones modernas sobre la teoría general de sistemas en las diferentes áreas de la carrera.

Competencia 4: Pone en práctica diferentes conceptos de la teoría general de sistemas para el análisis de sistemas de información.

Facultad de Ingeniería

METODOLOGÍA

Este curso se desarrollará a través de los siguientes métodos de aprendizaje-enseñanza:

Aprendizaje invertido

«La exposición de saberes se realiza por medio de documentos, videos y otros materiales por parte del estudiante. El tiempo de sesión síncrona¹ se dedica a la discusión, resolución de problemas y actividades prácticas bajo la supervisión del profesor».

Aprendizaje basado en problemas (ABP)

«Metodología centrada en el aprendizaje, en la investigación y reflexión que siguen los alumnos para llegar a una solución ante un problema planteado. Desarrolla aprendizajes activos a través de la resolución de problemas y casos. Puede desarrollarse de manera sincrónica o asíncrona»

Facultad de Ingeniería

PROGRAMACIÓN

COMPETENCIA 1

Aplica el pensamiento sistémico para la resolución de problemas a lo largo de la carrera profesional.

Saber conceptual (contenido temático)

- 1.1 Pensamiento Sistémico.
- 1.2 Reduccionismo para análisis de sistemas.
- 1.3 Teoría general de sistemas para análisis de sistemas.
- 1.4 Diagramas de influencia.
- 1.5 Diagramas Causales.

Saber procedimental (habilidades y destrezas)

- Analiza los problemas utilizando el pensamiento sistémico.
- Aplica el reduccionismo para el análisis y resolución de problemas.
- Utiliza diagramas para concluir en el comportamiento de un sistema.

Saber actitudinal (conductas observables)

 Resuelve problemas tomando en cuenta las diferentes perspectivas que pueden existir de forma asertiva.

Indicadores de logro 1 (resultado):

Reconoce todos los conceptos relacionados al pensamiento sistémico y lo pone en práctica para la resolución de problemas.

COMPETENCIA 2

Reconoce la taxonomía de los sistemas y la utiliza para identificar patrones a la hora de resolver problemas.

Saber conceptual (contenido temático)

- 2.1 Organización de los sistemas
- 2.2 Taxonomía de los sistemas
- 2.3 Ciclos de eventos en los sistemas

Saber procedimental (habilidades y destrezas)

- Establece las diferentes relaciones que pueden existir entre diferentes sistemas que interactúan entre sí.
- Comprende los tipos de sistemas y cómo interactúan con su medio.
- Analiza los diferentes eventos que están presente en el estudio de sistemas.

Saber actitudinal (conductas observables)

• Evalúa las relaciones entre todos los factores que intervienen en una situación haciendo uso de habilidades creativas e intelectuales.

Indicador de logro 2 (resultado):

Distingue los diferentes tipos de sistemas que existen.

Facultad de Ingeniería

COMPETENCIA 3

Distingue las diferentes aplicaciones modernas sobre la teoría general de sistemas en las diferentes áreas de la carrera.

Saber conceptual (contenido temático)

- 3.1 Dinámicas de sistemas
- 3.2 Sistemas dinámicos de primer y segundo nivel
- 3.3 Selección de teorías de sistemas
- 3.4 Inteligencia Artificial
- 3.5 Aplicaciones en la informática Error! Bookmark not defined.

Saber procedimental (habilidades y destrezas)

- Estudia la interdependencia que puede existir entre los sistemas.
- Analiza la evolución de un sistema en el tiempo.
- Distingue las diversas teorías que pueden aplicarse en el estudio de sistemas.
- Reconoce la relación entre el pensamiento sistémico y la inteligencia artificial.
- Identifica los procesos de la informática desde la perspectiva de la teoría general de sistemas.

Saber actitudinal (conductas observables)

- Discierne sobre la importancia de los diversos análisis en la toma de decisiones en la aplicación del ejercicio profesional.
- Argumenta las bases para la aplicación de las tecnologías emergentes para la propuesta de soluciones de ingeniería.

Indicador de logro 3 (resultado):

Reconoce las aplicaciones modernas que tiene la teoría general de sistemas.

Facultad de Ingeniería

COMPETENCIA 4

Pone en práctica diferentes conceptos de la teoría general de sistemas para el análisis de sistemas de información.

Saber conceptual (contenido temático)

- 4.1. ¿Cómo surge la teoría general de sistemas?
- 4.2 Objetivos y visión De la teoría General de sistemas
- 4.3 Sistemas como una percepción de la realidad
- 4.4 Definición de sistemas
- 4.5 Elementos básicos de un sistema
- 4.6 Retroalimentación
- 4.7 Recursividad
- 4.8 Sinergia
- 4.9 Entropía

Saber procedimental (habilidades y destrezas)

- Distingue las bases y orígenes de la teoría general de sistemas.
- Comprende la visión y objetivos de la teoría general de sistemas.
- Analiza la realidad como un sistema.
- Identifica los elementos que constituyen los sistemas.
- Aplica los conceptos de retroalimentación y recursividad.

Saber actitudinal (conductas observables)

- Comprende, en el origen de la teoría general de sistemas las diversas formas de abordar problemas o situaciones del ejercicio profesional.
- Desarrolla el pensamiento crítico, aplicando asertivamente los conceptos de la teoría general de sistemas.

Indicador de logro 4 (resultado):

Aplica los conceptos de la teoría general de sistemas.

Facultad de Ingeniería

Universidad Rafael Landívar

a. Estrategias de evaluación sumativa

Estrategias	Puntaje
Evaluación Parcial	30
Evaluaciones Cortas	10
Trabajo en clase	15
Proyecto	15
Examen final	30
TOTAL	100

b. Estrategias de evaluación formativa

Técnicas formativas	Procedimiento
One minute paper	Textos cortos sobre los temas vistos para comprobar los saberes
Retroalimentación	Comentarios pertinentes en la entrega de laboratorios y proyectos
Foros en portal	Discusión de temas vistos y conclusiones sobre lo abordado.
Quiz (exámenes cortos)	Pruebas de selección múltiple para identificar los conceptos aprendidos.
Frabajos en pequeños grupos para resolver dudas	Experimentación de diversas tecnologías para la formación de criterios profesionales.
Citas individuales	Resolución de dudas y acompañamiento específico por estudiante.

Facultad de Ingeniería

CALENDARIO DE REFERENCIA POR TEMAS

Fecha	Tema	Actividad de evaluación
Semana 1	Teoría general de sistemas, pensamiento	Tarea 1: sobre los conceptos vistos
	sistémico y elementos de los sistemas.	en clase.
Semana 2	Organización de los sistemas y sistemas	Corto 1: conceptos vistos en clase.
	como ciclos de eventos.	Tarea 2: sobre el análisis de los
		elementos que conforman los
		sistemas y la organización de los
		sistemas.
Semana 3	Taxonomía de los sistemas y	Corto 2: Taxonomía de los sistemas.
	reduccionismo	Evaluación parcial 1.
	Actividad en clase a modo de debate	
	sobre la taxonomía de los sistemas	
Semana 4	Teoría general de sistemas para el	Corto 3: Herramientas de teoria
	análisis de sistemas	general de sistemás para análisis de
		sistemas
Semana 5	Dinámicas de los sistemas, diagramas de	Corto 4: diagramas y análisis de
	influencia y forrester.	sistemas.
Semana 6	Sistemas dinámicos, Selección de teorías	Tarea 4: sobre los sistemas
	de sistemas	dinámicos.
		Evaluación parcial 2.
Semana 7	Aplicaciones de la teoría general de	Tarea 5: Resolución de problemas y
	sistemas para la resolución de	aplicación de la teoría general de
	problemas.	sistemas.
		Corto 5: Aplicaciones de la teoría
		•
		general de sistemas.
Semana 8	Cierre del curso.	Resolución de dudas, entrega de
		proyecto final y evaluación final.

REFERENCIAS BIBLIOGRÁFICAS

- Texto: Hurtado Carmona, Dougglas (2011), General Systems Theory: A focus on computer science engineering 1st. Edition. País: Estados Unidos. Amazon Books
- Texto: Skyttner, Lars (2005), General Systems Theory: Problems, Perspectives, Practics 2nd. Edition. País: Estados Unidos. World Scientific.
- Texto: Meadows, Donella H. (2008), Thinking in Systems: A primer. País: Estados Unidos. Self-published.