Logik und Diskrete Strukturen

Jan Johannsen

Vorlesung im Sommersemester 2024

Vorlesung

Präsenzveranstaltung im Raum B 101 im Hauptgebäude

Vorlesungsvideos (Screencast) aus den Vorjahren werden zusätzlich als Video-on-Demand (LMUcast) und zum Download zur Verfügung gestellt.

Links zu den Videos und Foliensätzen werden auf Moodle bereitgestellt.

Im Chatstream TCS-24S-LDS auf https://chat.ifi.lmu.de steht das gesamte Team für Fragen zur Verfügung.

Zusätzlich gibt es eine Videoaufzeichnung der Vorlesung aus dem SoSe 2012 von Prof. Martin Hofmann.

Übungen

Organisation: Balazs Toth

Tutor:innen und Korrektor:innen

- Stephanie Ames
- ▶ Jiacheng Chen
- ► Het Dave
- Victor Hucklenbroich
- Darius Jousdani
- Sonja Matuska
- Luis Reich
- ► Fatjon Tushe
- ► Emil Zitek
- ► Yifei Fu
- Qingshi Liu
- Nguyet Luong

Übungsgruppen

Gruppe	Zeit	Raum	Tutor:in
1	Mi 12-14	M 001	Victor Hucklenbroich
2	Mi 14-16	,,	Sonja Matuska
3	Mi 16-18	,,	Jiacheng Chen
4	Mi 18-20	,,	Darius Jousdani
5	Do 10-12	,,	Stephanie Ames
6	Do 12-14	,,	Emil Zitek
7	Do 14-16	"	Fatjon Tushe
8	Do 16-18	"	Fatjon Tushe
9	Fr 10-12	online	Balazs Toth
10	Fr 12-14	M 001	Luis Reich
11	Fr 14-16	"	Het Dave

Alle Räume sind im Hauptgebäude.

Hausaufgaben

In den Übungsgruppen werden gemeinsam Präsenzübungen bearbeitet.

Die Hausaufgaben orientieren sich an den Präsenzübungen.

► Abgabe elektronisch über Moodle.

Vorerst ist keine Papierabgabe möglich!

Für die Hausaufgaben gibt es Punkte.

- Wer mindestens 50% der Punkte erreicht, erhält Bonuspunkte, die in der Klausur angerechnet werden.
- ▶ Die maximal erreichbare Zahl an Bonuspunkten entspricht dabei ca. 10% der Klausur.

Inhalt

Ordnungen und Verbände

Kombinatorik

Zahlentheorie und Arithmetik

 ${\sf Algebra}$

Aussagenlogik

Prädikatenlogik erster Stufe

Weitere Logiken

Literatur

- Angelika Steger: <u>Diskrete Strukturen 1. Kombinatorik,</u> <u>Graphentheorie, Algebra,</u> 2. Auflage, Springer Verlag, 2007 Kostenlos als E-Book in der UB erhältlich.
- Uwe Schöning: Logik für Informatiker,
 5. Auflage, Spektrum Akademischer Verlag, 2000.
- ► Martin Hofmann: Logik und Diskrete Strukturen, Vorlesungsskript, Sommersemester 2017. (Umfasst nur den Logik-Teil.)

Übersicht

Grundlagen

Mengen

Relationen

Funktionen

Beweise

Vollständige Induktion

Ordnungen und Verbände

Kombinatorik

Zahlentheorie und Arithmetik

Algebra

Aussagenlogik

Prädikatenlogik erster Stufe

Mengen

```
"Definition" (Georg Cantor)
```

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (m) unserer Anschauung oder unseres Denkens (welche die Elemente von M genannt werden) zu einem Ganzen.

Notation für Mengen:

- ► Aufzählung: {2,3,5,8}, auch unvollständig: {0,1,2,...,99} oder unendlich: {1,3,5,7,...},
- ► Komprehension: $\{x; \varphi(x)\}$ für Eigenschaft $\varphi(x)$
- ► Aussonderung: $\{x \in M; \varphi(x)\}$
- ▶ Bekannte Mengen: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- $ightharpoonup [n] = \{1, ..., n\}$

Elemente und Teilmengen

Notation:

- $a \in M$ a ist Element von M
- $a \notin M$ a ist nicht Element von M
- $A \subseteq B$ A ist Teilmenge von B
- d.h.: für alle x gilt: aus $x \in A$ folgt $x \in B$.

Extensionalität

Mengen sind durch ihre Elemente bestimmt:

$$A = B$$
 gdw. für alle x gilt: $x \in A$ gdw. $x \in B$ gdw. $A \subseteq B$ und $B \subseteq A$

Die leere Menge $\{\}$, auch als \emptyset notiert, enthält keine Elemente.

Operationen auf Mengen

Vereinigung

$$A \cup B := \{x; x \in A \text{ oder } x \in B\}$$

Durchschnitt

$$A \cap B := \{x; x \in A \text{ und } x \in B\}$$

Differenz

$$A \setminus B := \{x; x \in A \text{ und } x \notin B\}$$

Symmetrische Differenz

$$A \triangle B := A \setminus B \cup B \setminus A$$

Eigenschaften

Assoziativität

$$(A \cup B) \cup C = A \cup (B \cup C)$$
 und $(A \cap B) \cap C = A \cap (B \cap C)$

Kommutativität

$$A \cup B = B \cup A$$
 und $A \cap B = B \cap A$

Idempotenz

$$A \cup A = A$$
 und $A \cap A = A$

Distributivität

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 und
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Eigenschaften der leeren Menge

$$A \cup \emptyset = A$$
 (neutral) $A \cap \emptyset = \emptyset$ (absorbierend)

Verallgemeinerte Operationen

Sind A_1, \ldots, A_n Mengen, so schreibt man

$$\bigcup_{i=1}^{n} A_{i}$$

für die Vereinigung $A_1 \cup A_2 \cup \ldots \cup A_n$.

Allgemeiner: für eine (Index-)Menge I und Mengen A_i für $i \in I$:

$$\bigcup_{i\in I}A$$

Analog für \cap , und andere (assoziative und kommutative) Operationen.

Kardinalität

Kardinalität (oder Mächtigkeit) von A: Anzahl der Elemente von A, notiert |A|

Es ist $|\emptyset| = 0$.

A ist endlich gdw. $|A| \in \mathbb{N}$.

Unendliche Mengen sind z.B. $\mathbb{N}, \mathbb{Q}, \mathbb{R}$

Theorem (Cantor)

Es ist $|\mathbb{Q}| = |\mathbb{N}|$, aber $|\mathbb{R}| > |\mathbb{N}|$.

Disjunktheit

Kardinalität der Vereinigung:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Insbesondere $|A \cup B| \le |A| + |B|$

Mengen A, B heißen disjunkt, wenn $A \cap B = \emptyset$ ist.

Sind A, B disjunkt, dann schreibe $A \uplus B$ für $A \cup B$

Dann gilt: $|A \uplus B| = |A| + |B|$

Potenzmenge

Die Potenzmenge
$$\mathcal{P}(M)$$
 einer Menge M ist $\{A\,;\,A\subseteq M\}$

Beispiel: $M=\{a,b,c\}$
 $\mathcal{P}(M)=\big\{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\big\}$

Es gibt auch die Notation $2^M=\mathcal{P}(M)$

Es ist $\mathcal{P}(\emptyset)=\{\emptyset\}$ und $\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}$

Ist M endlich, so ist $|\mathcal{P}(M)|=2^{|M|}$.

Kartesisches Produkt

Geordnetes Paar: (a, b)

Eigenschaft: (a, b) = (c, d) genau dann, wenn a = c und b = d

Kartesisches Produkt

$$A \times B := \{(x, y); x \in A \text{ und } y \in B\}$$

Es gilt: $|A \times B| = |A| \cdot |B|$

Definiere induktiv:

$$A^1 = A$$
$$A^{i+1} = A \times A^i$$

Notation: $(a_1, \ldots, a_k) \in A^k$