

Code: 15EC-33T

Register	1		į į		1	
Register	1		i !	1 1		
87 7	1 '			1	,	1
Number	'	1 7		!	!	
	L!	. '			i l	

III Semester Diploma Examination, Nov./Dec. 2016

ANALOG COMMUNICATION

Time: 3 Hours | Max. Marks: 100

Note: (i) Answer any six question from Part-A $(5 \times 6 = 30 \text{ marks})$

(ii) Answer any seven questions from Part-B ($7 \times 10 = 70$ marks)

PART - A

- 1. State superposition theorem. List the steps to be followed to solve a network.
- 2. State and explain Norton's theorem with an example.

- 3. Define filter. Classify filters.
- 4. Derive the relation between Decibel and Niper.
- Define characteristic impedance. Deduce an equation of Z₀ for Co-axial cable. 5.
- Explain the need for impedance matching in a transmission line. 6.
- 7. Describe Ground wave propagation.
- 8. Explain the working of Broadside array.

9. Define amplitude modulation. Write expression for the components present in AM output.

Diploma Question Papers [2015-Education

5

5

Diplofna - [All Branches]

PART - B

Find the current through 10Ω resistor by using thevenin's theorem.

10

[Turn over

Determine the value of load resistance R_L for transferring maximum power to it in the circuit shown below. Also find maxⁿ power deliver to it.

12. Design a low pass filter (T and π type) to have a cut-off frequency of 800 Hz & load impedance of 900 Ω .

13. Write the block diagram to realize B.P.F. and B.R.F. using L.P.F. and H.P.F.

10

BETA CONSOLE!

14. Explain the Electrical model for a transmission line.

5

- 15. (a) Explain broadside array with a neat diagram.
 - (b) Compare different modes of wave propagation.

- 16. (a) List the difference between AM & FM.
 - (b) Define modulation. Explain the need for modulation.
- 17. Define Demodulation and explain the working of AM linear diode detector circuit. 10
- 18. Explain need for Pre emphasis & De emphasis, along with the circuit.
- 19. Explain Foster seeley discriminator method of F.M. detection.