Elective-I Software Engineering(IT05TPE11)
By-Mrs. Akanksha Gupta

B. TECH. IT 5TH SEM
SOS(E & T), GGU, BILASPUR C G

Unit-3 System Design

- Problem Partitioning
- Abstraction
- Top Down & Bottom Up Design
- Structured Approach
- Coupling & Cohesion
- Functional Vs Object Oriented Approach
- Design Specification & Verification
- Metrics

Design

- Bridge between Requirement specification & final solution...
- Produce a model or representation of a system....
- 2 Levels...
 - System design or Top Level Design or High level design
 - Detailed design or logic Design or Low level design

- Design Methodology......
- Input to design phase.....
- Design can be----
 - Function Oriented
 - Object Oriented

Design Principles

- Verifiable
- Complete
- Traceable
- Important Properties of Design----
 - Efficiency
 - Simplicity
 - Maintainability

Question for Students*

Difference Between Modeling(DFD) in
 Problem Analysis Phase & Design Phase???

Problem Partitioning

- Divide & Conquer.....
- No of module increase Communication increase Complexity increase....
- Simplicity & understandability.....
- Design verification....
- Hierarchy.....

Abstraction

- Describes the external behavior without bothering with the internal details.....
- Determines components of a system..
- How component interact each other....
- How they are isolate..
- Functional Abstraction...
- Data Abstraction...

Top Down & Bottom Up Strategy

- Starts from Highest, lowest level component...
- refinement, Layers of abstraction
- Water fall model, Iterative Enhancement model...

Structured Approach

- Restate the problem as a DFD
- Identify the most abstract input &output data element
- 1st level factoring
- Factoring the input, output & transform branches
- Design heuristics
- Transaction analysis

23-08-2021

10

Restate the problem as a DFD

Identify the most abstract input &output data element

- MAI
- MAO

1st level factoring

Factoring the input, output &

transf input

23-08-2021

14

Factoring the Central Transform

Design Heuristics

- Module Size
- Fan In, Fan Out
- Combining, Splitting
- Scope of Effect & Scope of Control

23-08-2021

16

Transaction Analysis

Design Specification

- Design Document.....
- Should contains-
 - Problem Specification
 - Major data structure
 - Module Specification
 - Design Decision

23-08-2021

18

Design Verification

- 2 approaches----
 - Design Review
 - Automated Cross Checking

Metrics

- Network Metric
- Stability Metrics
- Information Flow

Network Metrics

- Network metrics is a complexity metric that tries to capture how "good" the structure chart is.
- Graph impurity = n e 1
- where n is the number of nodes in the structure chart and e is the number of edges.
- As in a pure tree the total number of nodes is one more than the number of edges, the graph impurity for a tree is 0.

Stability Metrics

For each module & dotermines the no. of assumpt's made by called module y abt olemente in Rry 1 Instictize the assumpt's count to 0 @ If i (data element) is structured data element denompose of visto base types & 1 by 1 else consider i as minimal. 3) Decompose the base types & if they are stouchered, I the court of by 1. stop II Det Tony, the total no of assumpt made by module of called by the module of abt that elements in sty for each data element i.e GDX Continuing the same process for comput the no Jot count Tex will be the total no of assumptions made by other modules ab the elements in Gibi For a module a the design logical sipple effect (DIRE) is defined as DIRE = Tax + STANY + STANY

Information Flow

Coupling & Cohesion

- Coupling between 2 modules indicates the degree of interdependence between them.
- Highly Coupled...
- Loosely Coupled....

Types of Coupling

- Data Coupling
- Stamp Coupling
- Control Coupling
- External Coupling
- Common Coupling
- Content Coupling

Cohesion

- Measure of the closeness of the relationships between its component. Types---
- Functional Cohesion
- Sequential Cohesion
- Communicational Cohesion
- Procedural Cohesion
- Temporal Cohesion
- Logical Cohesion
- Coincidental Cohesion

Thank You

Any Query in U-3 Design?????