

COMP3600/6466 Algorithms

Lecture 8

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

Comparison-based Sorting

Is the running time of my algorithm the **best possible**?

Let's take **merge-sort** with running time = $\Theta(n \lg n)$

Is it asymptotically **optimal**?

I need to prove that there are **NO** other algorithms in the entire Observable Universe that solves my problem with a running time that is asymptotically better..

Comparison-based Sorting

Let's restrict ourselves to comparison-based sorting algorithms

Algorithms can only compare the value of elements.

Move them around, and apply basic logical operations.

Two equivalent problems:

- **Problem 1.** Sort A in increasing order.
- **Problem 2.** Determine which order the elements of A are in. For example, the order of A = (20, 40, 10, 30, 50) is (2, 4, 1, 3, 5).

There are n! possible answers given a n-element list.

Example

Given a 3-element sequence a_1 , a_2 , and a_3 , sort the sequence in increasing order, there are 3 = 6 possible sorted sequences are as follows.

- 1. $a_1 \leq a_2 \leq a_3$, or its corresponding indices $\langle 1, 2, 3 \rangle$
- 2. $a_1 \leq a_3 \leq a_2$, or its corresponding indices $\langle 1, 3, 2 \rangle$
- 3. $a_2 \leq a_1 \leq a_3$, or its corresponding indices $\langle 2, 1, 3 \rangle$
- 4. $a_2 \leq a_3 \leq a_1$, or its corresponding indices $\langle 2, 3, 1 \rangle$
- 5. $a_3 \leq a_1 \leq a_2$, or its corresponding indices $\langle 3, 1, 2 \rangle$
- 6. $a_3 \leq a_2 \leq a_1$, or its corresponding indices $\langle 3, 2, 1 \rangle$

Decision Tree

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between a_i and a_j . A leaf annotated by the permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; the permutation $\langle 3, 1, 2 \rangle$ at the leaf indicates that the sorted ordering is $a_3 = 5 \leq a_1 = 6 \leq a_2 = 8$. There are 3! = 6 possible permutations of the input elements, and so the decision tree must have at least 6 leaves.

Decision Tree

Important observations:

- The number of nodes from the tree root to a tree leaf corresponds to the number of comparisons to sort a sequence
- There are n! leaves in the binary comparison tree as there are n! different sorted sequences.

Minimising longest path

Minimising the number of comparisons of sorting n elements is equivalent to minimising the depth of the binary comparison tree

How to construct a binary comparison tree that has n! leaves such that the longest path from the root to a leaf is minimised?

Binary Tree Depth

The depth of any binary tree that contains at least 2^h leaves is $\geq h-1$

Thus, if a binary tree contains n! leaves, its minimum depth is $\lceil \log n! \rceil$

Finally: $\log(n!) = \Theta(n \log n)$ by Stirling's formula.

Stirling's Approximation
$$n! = \sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n})).$$