Lecture #18, Feb 18th, 2022

- We will bounce between chapters 8 (Feedback) and 9 (Op Amp design).
- Homework #3 Assigned.
- Project 2 will be assigned immediately.
- Monday we'll start Feedback
- Today
 - Regulated Cascode
 - Common-Mode Feedback.

Gain Boosting Techniques: Effective Gm

$$V_{6}=A_{1}\left(V_{1N}-T_{out}R_{S}\right)$$

$$V_{10}=A_{1}\left(V_{1N}-T_{out}R_{S}\right)-T_{out}R_{S}$$

$$T_{out}=g_{m}\left(A_{1}\left(V_{1N}-T_{out}R_{S}\right)-T_{out}R_{S}\right)$$

$$=g_{m}\cdot A_{1}\cdot V_{1N}-g_{m}A_{1}T_{out}R_{S}-g_{m}T_{out}R_{S}$$

$$T_{out}\left(1+g_{m}A_{1}R_{S}+g_{m}R_{S}\right)=g_{m}\cdot A_{1}\cdot V_{1N}$$

$$For 1 < A_{1}$$

$$G_{m}=\frac{T_{out}}{V_{1N}}=\frac{g_{m}\cdot A_{1}}{I+g_{m}R_{S}\left(1+A_{1}\right)}$$

$$G_{m}=\frac{1}{I+g_{m}R_{S}}$$

$$S_{m}=R_{S}$$

$$S_{m}=R_{S}$$

$$S_{m}=R_{S}$$

$$S_{m}=R_{S}$$

$$S_{m}=R_{S}$$

$$S_{m}=R_{S}$$

Output Resistance of Gain Boosting Stage

Output Resistance of Gain-Boosted Stage

Gain-boosting with Active/Regulated Cascode

Example Implementations

Gain Boosting Circuit Implementation

Simplest a common-source stage

$$|V_{out}/V_{in}| \approx g_{m1}r_{O1}g_{m2}r_{O2}(g_{m3}r_{O3}+1)$$

- Avoid headroom limitation, PMOS common-source stage is better, but M3 could go in triode
- Folded-cascode inserts one more stage

Common-Mode Feedback

Methods to Measure and Compare Common-Mode Voltage

Feeding back the Common Signal to the

Folded Cascode and Common-Mode Feedback

CM Sensing Techniques

- Differential pair sensing
 - $I_{CM} \propto V_{out1} + V_{out2}$ by small signal analysis
 - Under Large swings situation, sensing is not valid due to large non-linearity.

Control cascade current source

Control tail current source

Detection w/o Bridge R or C

- Deep triode sensing feedback
 - Limited headroom
 - Large C
 - Device variation
- Deep triode folded-cascade sensing feedback

Modification of deep triode sensing feedback

$$(W/L)_{15} = (W/L)_9$$
 $(W/L)_{16} = (W/L)_7 + (W/L)_8$

 The output level is relatively independent of device parameters and lowers sensitivity of Vb

Modification of deep triode sensing feedback

$$(W/L)_{15} = (W/L)_9 \qquad (W/L)_{16} = (W/L)_7 + (W/L)_8$$

• M17, M18 reproduces the drain of M15 a voltage equal to the source voltage of M1 and M2

- Another type of CM feedback topology
- Diode-connected loads' output CM level is well-defined
- Differential small signal gain $g_{m1,2}(r_{O1,2}||r_{O3,4}||R_F)$
- Common-mode work as a diode-connected $R_F \gg r_{O1,2} || r_{O3,4}$
- Low supply voltage design $I_1R_F/2 = |V_{TH3,4}|$

CMFB in Two-Stage Op Amps

- CMFB around second stage (not good)
 - May establish a current beyond nominal value
- CMFB from second stage to first stage
 - Global loop control of both stages

CMFB from Second to First Stage

- CMFB from second stage to first stage limitation
- 3 or 4 poles, which makes it difficult for the loop stable

CMFB at both Stages

- All the drain currents are copied from Iss
- The differential voltage gain is equal to

 $g_{m1}(r_{O1}||r_{O3}||R_1)g_{m5}(r_{O5}||r_{O7}||R_3)$

Example 9.21

For the below design explain why the output CM level is inevitably well below VDD/2 and hence the output swings are limited. Devise a solution.

Solution:

The output CM is equal to VG7,8, which is only slightly greater than one threshold. The issue can be resolved by drawing a small current from node Q. It can be upwards to desired output and the device is still in saturation.

CMFB for Cascode First Stage

- First stage use deep triode feedback loop to avoid loading.
- Achieving high gain while not precise

