What is Claimed is:

- 1. A method for controlling a physical variable at a frequency of interest (f_d) including the steps of:
- a) sampling the physical variable at a sample frequency less than twice the frequency of interest (f_d) ;
- b) calculating at least one control command based upon the sampling of the physical variable; and
- c) generating a force for controlling the physical variable based upon the control command.
 - The method of Claim 1, further including the steps of:
 bandpass filtering the physical variable prior to said step a).
- 3. The method of Claim 2 wherein said bandpass filter extracts a frequency range with a lower bound generally given by $(2n-1)*f_s/2$ and an upper bound generally given by $(2n+1)*f_s/2$, where n is an integer chosen so that the frequency of interest (f_d) is within the extracted frequency range.
- 4. The method of claim 1 wherein said physical variable includes information within a bandwidth including said frequency of interest and wherein said sampling rate is at least twice the bandwidth of this information.

- 5. The method of claim 1 further including the step of generating the at least one control command at a rate less than twice the frequency of interest.
- 6. A method for computing control commands at a reduced rate in a noise or vibration control system including the steps of:
 - a) sensing a physical variable;
- b) identifying harmonic components (a_k, b_k) of the physical variable at a frequency of interest (f_d) ;
- c) down-sampling the harmonic components (a_k,b_k) to a lower update frequency (f_u) ;
- d) performing control computations on the harmonic components (a_k , b_k) at the lower update frequency (f_u); and
 - e) generating control commands based upon the control computations.
 - 7. The method of Claim 6 further including the step of:
 - f) generating harmonic components of the control commands in said step e).
 - 8. The method of Claim 7, further including the step of:
 - g) generating a control output at a frequency higher than the lower update frequency.

- 9. The method of Claim 6 further comprising: $low-pass \ anti-aliasing \ filtering \ to \ prevent \ aliasing \ in \ sampling \ at \ a \ lower \ update$ frequency (f_u) .
- 10. The method of Claim 6, further comprising:

 obtaining estimates of the harmonic components by computing a fast-Fourier transform of the physical variable; and

 extracting the result corresponding to the frequency of interest (f_d).
- 11. The method of Claim 6, wherein said physical variable comprises a plurality of physical variables, said method further including the steps of:
 - f) generating a sensed signal as a function of each of said plurality of physical variables; and
 - g) computing harmonic estimates z_k for each sensed signal y_k at each sample time t_k according to $z_k=z_{k-1}+\rho H(y_k-H^Tz_{k-1})$, where:

H=[1 cos (f_d t_k) sin(f_d t_k) cos(f_xt_k) sin(f_xt_k), ...]^T and where:

 $f_d t_k$ = desired frequency;

 $f_x t_k$ = frequency of unwanted information in y_k ;

 z_k = estimates of harmonic content of y_k at time k;

 z_{k-1} = estimates of harmonic content at time k-1;

 ρ = a variable gain that determines the corner frequency of the first order low-pass anti-aliasing filter;

 y_k = sensed signal vector at time k; $(\cdot)^T$ = transpose of a vector or matrix.

- 12. The method of Claim 11, further comprising $utilizing \ every \ N^{th} \ harmonic \ estimator \ output \ z_{Nk} \ where \ N \ is \ the \ ratio \ of \ the$ sampling frequency and the update frequency (f_s/f_u).
- 13. The method of Claim 11, further comprising:

 generating separate control commands for each of multiple tones;

 adding control commands for each tone; and

 outputting a sum of the control commands for each tone to one or more force generators.

f₁;

- 14. A method for analyzing a physical variable having a first frequency of interest f_1 and a second frequency of interest f_2 including the steps of:
- a) identifying first harmonic components a_{k1} , b_{k1} of the first frequency of interest
- b) down-sampling the harmonic components a_{kl} , b_{kl} at an intermediate frequency f_{ul} ;
- c) identifying second harmonic components a_{k2} , b_{k2} of a difference between the first frequency of interest f_1 and the second frequency of interest f_2 ;
 - d) downsampling the harmonic components a_{k2} , b_{k2} at an update frequency f_{u2} ; and
- e) analyzing information at the first frequency of interest f_1 and the second frequency of interest f_2 based upon said harmonic components a_{k1} , b_{k1} and a_{k2} , b_{k2} .
- 15. The method of Claim 14 wherein the intermediate frequency f_{u1} is higher than the update frequency f_{u2} .
 - 16. The method of Claim 14 further including the steps of:
 - f) generating control signals at the update frequency f_{u2} based upon said step e).

17. An apparatus for sensing physical variables at a reduced rate comprising:

a sensor adapted to sense physical variables and to generate a sensed signal as a function of the sensed physical variable; and

a control circuit adapted to establish a frequency of interest (f_d) , and to establish a sample frequency (f_s) ,

wherein the control circuit filters the sensed signals to extract a frequency range with a lower bound given by $(2n-1)*f_s/2$ and an upper bound given by $(2n+1)*f_s/2$, where n is an integer chosen so that the frequency of interest (f_d) is within the extracted frequency range.

- 18. The apparatus of Claim 17, wherein the control circuit attenuates the filtered sensed signal at a frequency less than the frequency of interest (f_d) by high-pass anti-aliasing to produce a resultant signal.
- 19. The apparatus of Claim 17 wherein the control circuit aliases the filtered sensed signal to a lower frequency when there is no information present at the lower frequency in the sensed signal and the control circuit extracts desired information.