Ejemplo con USART

PIC16F877/887

Electrónica Digital II - FCEFyN - UNC 2020

Conceptos previos

- Transmisión serie → los datos se envían secuencialmente bit a bit, uno después de otro y por una misma línea.
- Transmisión síncrona → se transmite la señal clock.
- Transmisión asíncrona → no se transmite la señal de clock.
- Full-duplex → se puede enviar y recibir al mismo tiempo.
- Half-duplex → sólo se puede enviar o recibir en un momento dado.

slido

¿Cómo debe ser la conexión entre dispositivos que se comunican entre sí por UART?

(i) Start presenting to display the poll results on this slide.

EUSART (PIC16F887)

Enhanced Universal Synchronous Asynchronous Receiver Transmitter.

UART - Comunicación con PC

- Convertidor USB-UART.
- Terminal serie en PC.
 - PuTTY
 - o Cutecom

Diagrama de bloques Tx

Registros asociados

- Registros de control y estado TXSTA y RCSTA.
- Registro de control de baud rate SPBRG.
- Registro de transmisión de datos TXREG.
- Registro de recepción de datos RCREG.

Interrupciones

Ejemplo - UART

- Reenviar por el puerto serie lo mismo que se recibe.
- Utilizar interrupciones para el Rx y polling para el Tx.
- Baud rate = 9600.

Ejemplo - Cálculo baud rate

C	onfiguration Bit	ts		Baud Rate Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous	F000/I4C (n. 4)		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]		
0	1	1	16-bit/Asynchronous			
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

Legend: x = don't care, n = value of SPBRGH, SPBRG register pair

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE	SYNC = 0, BRGH = 1, BRG16 = 0												
	Fosc = 4.000 MHz			Fosc = 3.6864 MHz		Fosc = 2.000 MHz			Fosc = 1.000 MHz				
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	<u>12 30</u>	92		810	\$ <u>(0, 40)</u>	8_8		<u> </u>	_	300	0.16	207	
1200	1202	0.16	207	1200	0.00	191	1202	0.16	103	1202	0.16	51	
2400	2404	0.16	103	2400	0.00	95	2404	0.16	51	2404	0.16	25	
9600	9615	0.16	25	9600	0.00	23	9615	0.16	12	_	-	_	
10417	10417	0.00	23	10473	0.53	21	10417	0.00	11	10417	0.00	5	
19.2k	19.23k	0.16	12	19.2k	0.00	11			_	_	_	-	
57.6k		_	_	57.60k	0.00	3	_	_	_	_			
115.2k	_	_	—:	115.2k	0.00	1	_	_	_	_	_	_	

slido

¿Cómo se deben configurar los pines utilizados como Tx y Rx? ¿Como entradas o como salidas?

(i) Start presenting to display the poll results on this slide.

Programa principal

Rutina de interrupción (ISR)

FIN