Notes on Amortized Analysis

Geoffrey Matthews May 24, 2016

Amortized analysis

- Analyze a *sequence* of operations on a data structure.
- Goal: Show that although some operations may be expensive, on average the cost per operation is small.
- Average is not over a distribution of inputs, but over a sequence of operations.
- \bullet No probability is involved: Average cost in the worst case.
- We look at three methods of calculating:
 - 1. aggregate analysis
 - 2. accounting method
 - 3. potential method
- And two simple examples:
 - 1. stack with multipop
 - 2. binary counter
- And a more interesting example:
 - dynamic tables

Stack operations

- Push(S, x): O(1)
- Pop(S): O(1)

Multipop(S, k)

- 1 **while** S is not empty and k > 0
- 2 Pop(S)
- 3 k = k 1

top
$$\rightarrow$$
 23

17

6

39

10

47

47

(a)

(b)

(c)

Multipop(S, 4) Multipop(S, 7)

Running time of Multipop:

- Linear in # of Pop operations.
- Let each Push/Pop cost 1.
- # iterations of while loop is min(s, k)
 - where s = # of objects in stack.
- Total cost = min(s, k)

Worst-case analysis without amortization

- Sequence of n Push, Pop, and Multipop operations.
- May have up to n Push operations.
- \bullet So worst-case there are n items on the stack.
- Therefore, worst-case cost of a Multipop operation is O(n).
- Have n operations, each of which could be Multipop.
- Therefore, worst-case cost of sequence of n operations is $O(n^2)$.

Something wrong with worst-case analysis

- There's clearly something wrong with this analysis.
- What is actual worst-case number of Pushs and Pops as a function of n?
- But how can we get a more accurate worst-case analysis?
- We need to consider how the operations interact with each other.
- We need to keep an account of how much time is spent in each one, because that affects the time spent in the others.

Aggregate analysis

• Observations

- Each object can be popped only once per time that it's pushed.
- Have $\leq n$ Pushs, therefore $\leq n$ Pops, including those in Multipop.
- Therefore, total cost = O(n).
- Average over n operations is = O(1) per operation on average, including those in MULTIPOP.

• This is called **aggregate analysis**.

- No probability involved.
- Showed worst-case O(n) for entire sequence.
- Therefore, O(1) per operation on average.

Binary counter

- k-bit binary counter A[0..k-1] of bits.
- A[0] is the least significant bit.
- Counts upward from 0.
- Value of counter is

$$\sum_{i=0}^{k-1} A[i] \cdot 2^i$$

- Initially counter is 0, so A[0..k-1] = 0.
- To increment, add 1 (mod 2^k):

Increment(A, k)

- $1 \quad i = 0$
- 2 **while** i < k and A[i] == 1
- 3 A[i] = 0
- 4 i = i + 1
- 5 if i < k
- 6 A[i] = 1

Counter value	AT AG	KS KOK SKOKI KO	Total cost
0	0 0	0 0 0 0 0	0
1	0 0	0 0 0 0 0 1	1
2	0 0	0 0 0 0 1 0	3
3	0 0	0 0 0 0 1 1	4
4	0 0	0 0 0 1 0 0	7
5	0 0	0 0 0 1 0 1	8
6	0 0	0 0 0 1 1 0	10
7	0 0	0 0 0 1 1 1	11
8	0 0	0 0 1 0 0 0	15
9	0 0	0 0 1 0 0 1	16
10	0 0	0 0 1 0 1 0	18
11	0 0	0 0 1 0 1 1	19
12	0 0	0 0 1 1 0 0	22
13	0 0	0 0 1 1 0 1	23
14	0 0	0 0 1 1 1 0	25
15	0 0	0 0 1 1 1 1	26
16	0 0	0 1 0 0 0 0	31

- Bits that flip upon increment shaded.
- Total cost of flipping bits at right.
- Total cost always less than twice number of increments.

Worst case analysis of binary counter

- \bullet Each call could flip k bits.
- n increments is O(nk).

Aggregate analysis of binary counter

• Not every bit flips every time.

bit	flips how often	times in n Increments
0	every time	\overline{n}
1	1/2 the time	$\lfloor n/2 \rfloor$
2	1/4 the time	$\lfloor n/4 \rfloor$
	:	
i	$1/2^i$ the time	$\lfloor n/2^i \rfloor$
	:	_ , _
$i \ge k$	never	0

Total number of flips

$$\sum_{i=0}^{k-1} \lfloor n/2^i \rfloor < n \sum_{i=0}^{k-1} (1/2)^i$$

$$= n \frac{(1/2)^k - 1}{1/2 - 1}$$

$$= n \frac{1 - (1/2)^k}{1 - 1/2}$$

$$< n \left(\frac{1}{1/2}\right)$$

$$= 2n$$

- n Increments costs O(n).
- Average cost per operation O(1).

Accounting Method and Potential Method

- Aggregate method works when we can add up all operations.
- More complex operations need a more sophisticated method.
- Two approaches:

• Accounting method:

- assign charges to each operation
- some operations charged more than they cost
- others, charged less, can use accrued credit

• Potential method:

- prepaid work is "potential energy"
- energy is assigned to data structures as a whole
- some operations increase potential energy
- some operations can release potential energy to reduce costs
- most flexible of the amortized analysis methods

Accounting method

- \bullet **Amortized cost** = amount we charge
- \bullet Amortized cost must always be \geq actual cost
- When amortized cost > actual cost, store the difference on specific objects in the data structure as **credit**.
- When we have credit, we have accounted for expenses not yet accrued
- Use credit later to pay for operations whose actual cost > amortized cost.
- Differs from aggregate analysis:
 - In the accounting method, different operations can have different costs.
 - In aggregate analysis, all operations have the same cost.
- Credit must never go negative.
 - Otherwise we have a sequence of operations for which amortized cost is not an upper bound on actual cost.
 - Amortized cost would tell us nothing.

Accounting method costs

 $c_i = \text{actual cost of } i \text{th operation}$

 $\hat{c}_i = \text{amortized cost of } i \text{th operation}$

Require

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

Total credit stored

$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i$$

must never be negative.

Accounting method amortized analysis of stack operations

operation	actual cost	amortized cost
Push	1	2
Рор	1	0
Multipop	$\min(k,s)$	0

Intuition:

- When pushing an object, pay \$2
- \$1 pays for the Push
- \$1 is prepayment for it being popped by Pop or Multipop
- Since each object has \$1 credit, the credit can never go negative.
- Total amortized cost, O(n), is an upper bound on total cost.
- Worst cast amortized cost is 2n = O(n).

Accounting method amortized analysis of binary counter

- Charge \$0 to set a bit to 0
- Charge \$2 to set a bit to 1
 - -\$1 pays for setting the bit to 1
 - -\$1 prepayment for setting it back to 0
 - Have \$1 credit for every 1 in the counter
 - Therefore credit ≥ 0
- Amortized cost of Increment:
 - Cost of resetting bits to 0 is paid by credit.
 - At most 1 bit is set to 1.
 - Amortized cost is always ≤ 2 .
 - For n operations amortized cost is O(n).

The Potential Method

- Like the accounting method, but think of the credit as the *potential* stored with the entire data structure.
- Accounting method stores credit with specific objects.
- Potential method stores potential in the data structure as a whole.
- Can release potential to pay for future operations.
- Most flexible of the amortized analysis methods.

Potential function

 $D_i = \text{data structure after the } i \text{th operation}$

 $D_0 = \text{initial data structure}$

 $c_i = \text{actual cost of } i \text{th operation}$

 $\hat{c}_i = \text{amortized cost of the } i \text{th operation}$

Potential function: $\Phi: D_k \to \mathbb{R}$

 $\Phi(D_i)$ is the *potential* associated with the data structure D_i .

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
$$= c_i + \Delta\Phi(D_i)$$

The amortized cost is the *increase in potential* due to the *i*th operation.

Total amortized cost

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$
$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

- If we require that $\Phi(D_i) \geq \Phi(D_0)$ for all i, then the amortized cost is always an upper bound on the actual cost.
- In practice:

$$\Phi(D_0) = 0$$

$$\Phi(D_i) \ge 0 for all i$$

Amortized analysis of stack operations using the potential method

$$\Phi = \#$$
 of objects in the stack
 $= \#$ of \$1 bills in the accounting method
 $\Phi(D_0) = 0$

Since # of objects in stack is always ≥ 0 ,

$$\Phi(D_i) \ge 0 = \Phi(D_0) \qquad \text{for all } i$$

operation	actual cost	$\Delta\Phi$	amortized cost
Push	1	(s+1) - s = 1	1+1=2
Рор	1	(s-1)-s=-1	1 - 1 = 0
Multipop	$k' = \min(k, s)$	(s-k')-s=k'	k' - k' = 0

Therefore the amortized cost of a sequence of n operations is O(n).

Amortized analysis of binary counter using potential method

- $\Phi = b_i = \#$ of 1's after ith Increment
- Suppose ith operation resets t_i bits to 0.
- $c_i \leq t_i + 1$, since it resets t_i bits and sets ≤ 1 bit to 1.
- If $b_i = 0$, the *i*th operation reset all k bits and didn't set one, so

$$b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} - t_i = 0$$

• If $b_i > 0$ the *i*th operation reset t_i bits, set one, so

$$b_i = b_{i-1} - t_i + 1$$

• Either way

$$b_i \le b_{i-1} - t_i + 1$$

• Therefore

$$\Delta\Phi(D_i) \le (b_{i-1} - t_i + 1) - b_{i-1} = 1 - t_i$$
$$\hat{c}_i = c_i + \Delta\Phi(D_i) \le (t_i + 1) + (1 - t_i) = 2$$

- If counter starts at 0, $\Phi(D_0) = 0$.
- Therefore, amortized cost of n operations is O(n).

Dynamic Tables

- Nice application of amortized analysis.
- Suppose you have a table, maybe a hash table, maybe a heap.
- Details of table organization not important.
- We will assume insertion and deletion take O(1).
- You don't know in advance how many items will be stored in it.
- When it fills, you must reallocate a larger table and copy all the items into the new table.
- When it gets sufficiently small, you *might* want to reallocate with a smaller size.
- How can you do this so it doesn't mess up the efficiency of your table?
- Does it turn O(1) (hash) or $O(\lg n)$ (heap) into O(n), since in worst case we have to copy all n elements into new array?

Dynamic Table Goals

- 1. O(1) amortized time per operation.
- 2. Unused space always \leq constant fraction of allocated space.
- Load factor $\alpha = num/size$ where num = # items stored, size = allocated size.
- Never allow $\alpha > 1$
- Keep $\alpha >$ constant fraction (goal 2).

Table expansion

- First we consider only expansion.
- When table becomes full, double its size and reinsert all existing items.
- Each time we actually insert an item, it's an **elementary insertion**.

```
Table-Insert(T, x)
```

```
if T.size == 0
                              # empty?
         allocate T. table with 1 slot
 3
         T.size = 1
    if T.num == T.size // expand?
         allocate new-table with 2 \cdot T.size slots
5
6
         insert all items in T. table into new-table
         free T. table
8
         T.table = new-table
         T.size = 2 \cdot T.size
9
10
    insert x into T.table
11
    T.num = T.num + 1
```

Running time

- Charge 1 per elementary insertion.
- Count only elementary insertions.
 - All other costs are constant per cell.
- c_i = actual cost of *i*th operation
- If not full, $c_i = 1$
- If full, insert i-1 items plus one more, $c_i=i$.
- \bullet *n* operations, worst case:

$$c_i = O(n)$$

 $n \text{ operations} = O(n^2)$

Aggregate analysis

• Of course, we don't *alwyas* expand:

$$c_i = \begin{cases} i & \text{if } i - 1 \text{ is exact power of 2.} \\ 1 & \text{otherwise.} \end{cases}$$

Total cost =
$$\sum_{i=1}^{n} c_i$$

$$\leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j$$

$$= n + \frac{2^{\lfloor \lg n \rfloor + 1} - 1}{2 - 1}$$

$$< n + 2n$$

$$= 3n$$

• Aggregate analysis tells us the amortized cost per operation is 3.

Accounting method

- Charge \$3 per elementary insertion of x:
 - \$1 pays for x's insertion.
 - -\$1 pays for x's move in the future.
 - -\$1 pays for some other item to be moved.
- Suppose we've just expanded, size = m.
- size = 2m after next expansion.
- Assume that the expansion used up all the credit, so that there's no credit stored after the expansion.
- Will expand again after another m insertions.
- \bullet Each insertion will put \$1 on one of the m items that were in the table just after expansion, and will put \$1 on the item inserted.
- Have \$2m\$ of credit by next expansion, when there are <math>2m items to move.
- Just enough to pay for expansion, with no credit left over!
- Credit always ≥ 0 .

Potential method

$$\Phi(T) = 2 \cdot T.num - T.size$$

• Initially, num = size = 0.

$$\Phi = 0$$

• Just after expansion, $size = 2 \cdot num$

$$\Phi = 0$$

• Just before expansion, size = num

$$\Phi = num$$

we have enough potential to pay for moving all items.

• Need $\Phi \geq 0$ always.

Amortized cost of ith operation

$$num_i = num$$
 after *i*th operation
 $size_i = size$ after *i*th operation
 $\Phi_i = \Phi$ after *i*th operation

• If no expansion:

$$size_i = size_{i-1}$$

$$num_i = num_{i-1} + 1$$

$$c_i = 1$$

Then we have

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1}
= 1 + (2 \cdot num_i - size_i) - (2 \cdot num_{i-1} - size_{i-1})
= 1 + (2 \cdot num_i - size_i) - (2(num_i - 1) - size_i)
= 1 + 2 = 3$$

Amortized cost of ith operation

• If expansion:

$$size_i = 2 \cdot size_{i-1}$$

$$size_{i-1} = num_{i-1} = num_i - 1$$

$$c_i = num_{i-1} + 1 = num_i$$

Then we have

$$\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}
= num_{i} + (2 \cdot num_{i} - size_{i}) - (2 \cdot num_{i-1} - size_{i-1})
= num_{i} + (2 \cdot num_{i} - 2(num_{i} - 1)) - (2(num_{i} - 1) - (num_{i} - 1))
= num_{i} + 2 - (num_{i} - 1)
= 3$$

• As we insert items, the potential builds up until we have enough to pay for moving all items, when the potential drops back to zero.

Expansion and contraction

When α drops too low, contract the table.

- Allocate a new, smaller one.
- Copy all items.

Still want:

- \bullet α bounded from below by a constant
- \bullet amortized cost of O(1)

"Obvious strategy"

- Double size when inserting into a full table ($\alpha = 1$).
- Halve size when deletion would make table less than half full ($\alpha < 1/2$).
- Then would always have $1/2 \le \alpha \le 1$.
- Unfortunately, suppose we fill the table, then:

 $\begin{array}{ccc} \text{insert} & \Rightarrow & \text{double} \\ \text{two deletes} & \Rightarrow & \text{halve} \\ \text{two inserts} & \Rightarrow & \text{double} \\ \text{two deletes} & \Rightarrow & \text{halve} \\ \text{two inserts} & \Rightarrow & \text{double} \\ \end{array}$

• Not performing enough operations in between expansion and contraction to pay for the next one.

Simple solution

- Double when full $(\alpha = 1)$.
- Halve size when $\alpha = 1/4$.
- Immediately after expansion or contraction, $\alpha = 1/2$.
- Always have $1/4 \le \alpha \le 1$

Intuition

- Want to make sure we perform enough operations in between consecutive expansions/contractions to pay for the change in table size.
- Need to delete half of the items before contraction.
- Need to double the number of items before expansion.
- Either way, the number of operations between expansions and contractions is at least a constant fraction of the number of items copied.

$$\Phi(T) = \begin{cases} 2 \cdot T.num - T.size & \text{if } \alpha \ge 1/2 \\ T.size/2 - T.num & \text{if } \alpha < 1/2 \end{cases}$$

$$T \text{ empty} \Rightarrow \Phi = 0$$

$$\alpha \ge 1/2 \Rightarrow num \ge size/2 \Rightarrow 2 \cdot num \ge size \Rightarrow \Phi \ge 0$$

$$\alpha \le 1/2 \Rightarrow num < size/2 \Rightarrow \Phi \ge 0$$

Further intuition

- Φ measures how far from $\alpha = 1/2$ we are.
- $\alpha = 1/2 \Rightarrow \Phi = 2 \cdot num 2 \cdot num = 0$
- $\alpha = 1 \Rightarrow \Phi = 2 \cdot num num = num$
- $\alpha = 1/4 \Rightarrow \Phi = size/2 num = 4 \cdot num/2 num = num$
- Therefore, when we double or halve, we have enough potential to pay for moving all *num* items.

Further intuition

- Potential increases linearly between $\alpha = 1/2$ and $\alpha = 1$.
- Potential increases linearly between $\alpha = 1/2$ and $\alpha = 1/4$.
- Since α has different distances to go to get to 1 or 1/4, starting from 1/2, rate of increase of Φ differs.
- For α to go from 1/2 to 1:
 - -num increases from size/2 to size
 - $-\Phi$ increases from 0 to size
 - $-\Phi$ needs to increase by 2 for each item inserted.
 - That's why the coefficient of 2 in the formula for Φ .
- For α to go from 1/2 to 1/4:
 - -num decreases from size/2 to size/4.
 - $-\Phi$ increases from 0 to size/4
 - Thus, Φ needs to increase by 1 for each item deleted.
 - That's why the coefficient of -1 in the formula for Φ .

Eight cases for calculating amortized costs

- insert vs. delete
- $\alpha \ge 1/2 \ vs. \ \alpha < 1/2$
- size changes vs. size doesn't change

Insert, $\alpha \ge 1/2$, with or without expansion

- Same analysis as before.
- $\bullet \ \hat{c}_i = 3$

Insert, $\alpha_{i-1} < 1/2$, no expansion

• $\alpha_i < 1/2$

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1}
= 1 + (size_i/2 - num_i) - (size_{i-1}/2 - num_{i-1})
= 1 + (size_i/2 - num_i) - (size_i/2 - (num_i - 1))
= 0$$

 $\bullet \ \alpha_i \ge 1/2$

$$\begin{split} \hat{c}_i &= c_i + \Phi_i - \Phi_{i-1} \\ &= 1 + (2 \cdot num_i - size_i) - (size_{i-1}/2 - num_{i-1}) \\ &= 1 + (2(num_{i-1} + 1) - size_{i-1}) - (size_{i-1}/2 - num_{i-1}) \\ &= 3 \cdot num_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 \cdot \alpha_{i-1} size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &< \frac{3}{2} \cdot size_{i-1} - \frac{3}{2} \cdot size_{i-1} + 3 \\ &= 3 \end{split}$$

Insert, $\alpha < 1/2$, expansion

• Cannot happen.

Insert

expansion	$\alpha \ge 1/2$		$\hat{c}_i = 3$
no expansion	$\alpha \ge 1/2$		$\hat{c}_i = 3$
expansion	$\alpha < 1/2$		impossible
no expansion	$\alpha_{i-1} < 1/2$	$\alpha_i < 1/2$	$\hat{c}_i = 0$
no expansion	$\alpha_{i-1} < 1/2$	$\alpha_i \ge 1/2$	$\hat{c}_i = 3$

• Therefore, in all cases, the amortized cost of insertion is ≤ 3 .

Delete

contraction	$\alpha < 1/2$		$\hat{c}_i = 1$
no contraction	$\alpha < 1/2$		$\hat{c}_i = 2$
contraction	$\alpha \ge 1/2$		impossible
no contraction	$\alpha_{i-1} \ge 1/2$	$\alpha_i \ge 1/2$	$\hat{c}_i = -1$
no contraction	$\alpha_{i-1} \ge 1/2$	$\alpha_i < 1/2$	$\hat{c}_i = 2$

• In all cases the amortized cost is ≤ 2 .

