ExpResults

July 19, 2020

```
[1]: import scipy.io as sci
import numpy as np
import glob
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
import pylab
import hddm
from functions import *
```

C:\Users\Edwin\miniconda3\envs\hddm\lib\site-packages\IPython\parallel.py:13: ShimWarning: The `IPython.parallel` package has been deprecated since IPython 4.0. You should import from ipyparallel instead.

"You should import from ipyparallel instead.", ShimWarning)

1 Data Format

```
[27]: datapath = 'ExpData/*.mat'
    datafiles = np.array(glob.glob(datapath))

[28]: flashdata = np.empty((1,5))
    beepdata = np.empty((1,5))
    for i in np.arange(0, len(datafiles)):
        mat = sci.loadmat(datafiles[i])
        matf = np.insert(mat['mixtrF'], 0, int(i + 1), axis=1)
        accf = np.hstack((matf, mat['accMatF'], mat['resptimeF']))
        matb = np.insert(mat['mixtrB'], 0, int(i + 1), axis=1)
        accb = np.hstack((matb, mat['accMatB'], mat['resptimeB']))
        flashdata = np.vstack((flashdata, accf))
        beepdata = np.vstack((beepdata, accb))

flashdata = flashdata[1:]
    beepdata = beepdata[1:]
```

```
[29]: flashframe = pd.DataFrame(flashdata, columns=['subj_idx', 'flashpres', 

→'beeppres', 'acc', 'rt'])
```

```
beepframe = pd.DataFrame(beepdata, columns=['subj_idx', 'flashpres', __
      congrf = flashframe.loc[flashframe['flashpres'] == flashframe['beeppres']]
     unif = flashframe.loc[flashframe['beeppres'] == 0]
     congrb = beepframe.loc[beepframe['flashpres'] == beepframe['beeppres']]
     unib = beepframe.loc[beepframe['flashpres'] == 0]
[30]: fig = plt.figure(figsize=(14, 5))
     ax = fig.add_subplot(121, xlabel='RT', ylabel='count', title='Unisensory Flash_
      →RT distributions (2 flashes)')
     for i, subj_data in unif.loc[unif['flashpres'] == 2].groupby('subj_idx'):
          subj_data.rt.hist(bins=20, histtype='step', ax=ax)
     ax = fig.add_subplot(122, xlabel='RT', ylabel='count', title='Congruent Flashu
      →RT distributions (2 flashes)')
     for i, subj_data in congrf.loc[congrf['flashpres'] == 2].groupby('subj_idx'):
          subj data.rt.hist(bins=20, histtype='step', ax=ax)
     plt.close()
[31]: fig = plt.figure(figsize=(14, 5))
     ax = fig.add_subplot(121, xlabel='RT', ylabel='count', title='Unisensory Flash
      →RT distributions (3 flashes)')
     for i, subj_data in unif.loc[unif['flashpres'] == 3].groupby('subj_idx'):
          subj_data.rt.hist(bins=20, histtype='step', ax=ax)
     ax.set_ylim([0, 30])
     ax = fig.add_subplot(122, xlabel='RT', ylabel='count', title='Congruent Flashu
      →RT distributions (3 flashes)')
     for i, subj data in congrf.loc[congrf['flashpres'] == 3].groupby('subj idx'):
          subj_data.rt.hist(bins=20, histtype='step', ax=ax)
     ax.set_ylim([0, 30])
     plt.close()
[32]: fig = plt.figure(figsize=(14, 5))
     ax = fig.add_subplot(121, xlabel='RT', ylabel='count', title='Unisensory Beep_
      →RT distributions (2 beeps)')
     #for i, subj_data in unif.loc[unif['flashpres'] == 2].groupby('subj_idx'):
          subj_data.rt.hist(bins=20, histtype='step', ax=ax)
     unib.loc[unib['beeppres'] == 2].rt.hist(bins=20, histtype='step', ax=ax)
     ax.set_ylim([0, 200])
     ax = fig.add_subplot(122, xlabel='RT', ylabel='count', title='Congruent Beep RT__

→distributions (2 beeps)')
      #for i, subj_data in congrf.loc[congrf['flashpres'] == 2].groupby('subj_idx'):
```

```
subj_data.rt.hist(bins=20, histtype='step', ax=ax)
      unib.loc[unib['beeppres'] == 3].rt.hist(bins=20, histtype='step', ax=ax)
      ax.set_ylim([0, 200])
      plt.close()
[33]: uni2flashacc = sum(unif.loc[unif['flashpres'] == 2]['acc']) / len(unif.
      →loc[unif['flashpres'] == 2])
      uni3flashacc = sum(unif.loc[unif['flashpres'] == 3]['acc']) / len(unif.
       →loc[unif['flashpres'] == 3])
      congr2flashacc = sum(congrf.loc[congrf['flashpres'] == 2]['acc']) / len(congrf.
       →loc[congrf['flashpres'] == 2])
      congr3flashacc = sum(congrf.loc[congrf['flashpres'] == 3]['acc']) / len(congrf.
       →loc[congrf['flashpres'] == 3])
      fig = plt.figure(figsize = (14, 5))
      ax = fig.add_subplot(121, xlabel='condition', ylabel='% accurate', __
      →title='Accuracy for Unisensory Flash Trials')
      objects = ('Unisensory 2 Flash', 'Unisensory 3 Flash')
      y_pos = np.arange(len(objects))
      performance = [uni2flashacc, uni3flashacc]
      uni2flashaccstd = calcstderr(unif.loc[unif['flashpres'] == 2], 'acc')
      uni3flashaccstd = calcstderr(unif.loc[unif['flashpres'] == 3], 'acc')
      congr2flashaccstd = calcstderr(congrf.loc[congrf['flashpres'] == 2], 'acc')
      congr3flashaccstd = calcstderr(congrf.loc[congrf['flashpres'] == 3], 'acc')
      plt.bar(y_pos, performance, yerr=[uni2flashaccstd, uni3flashaccstd],
              color=['#1f77b4', '#ff7f0e'], ecolor='black', capsize=10)
      plt.xticks(y_pos, objects)
      plt.ylim([0,1])
      ax = fig.add_subplot(122, xlabel='condition', ylabel='% accurate', __
      →title='Accuracy for Congruent Flash Trials')
      objects2 = ('Congruent 2 Flash', 'Congruent 3 Flash')
      y_pos2 = np.arange(len(objects2))
      performance2 = [congr2flashacc, congr3flashacc]
      plt.bar(y_pos2, performance2, yerr=[congr2flashaccstd, congr3flashaccstd],
              color=['#1f77b4', '#ff7f0e'], ecolor='black', capsize=10)
      plt.xticks(y_pos2, objects2)
      plt.ylim([0,1])
```

```
[34]: fig = plt.figure(figsize=(14, 5))
```

plt.close()

```
ax = fig.add_subplot(121, xlabel='RT', ylabel='count', title='Unisensory Beepu

ART distributions (3 flashes)')
for i, subj_data in unib.loc[unib['beeppres'] == 3].groupby('subj_idx'):
    subj_data.rt.hist(bins=20, histtype='step', ax=ax)
ax.set_ylim([0, 70])

ax = fig.add_subplot(122, xlabel='RT', ylabel='count', title='Congruent Beep RTu

distributions (3 flashes)')
for i, subj_data in congrb.loc[congrb['beeppres'] == 3].groupby('subj_idx'):
    subj_data.rt.hist(bins=20, histtype='step', ax=ax)
ax.set_ylim([0, 70])
plt.close()
```

```
[35]: uni2beepacc = sum(unib.loc[unib['beeppres'] == 2]['acc']) / len(unib.
      →loc[unib['beeppres'] == 2])
      uni3beepacc = sum(unib.loc[unib['beeppres'] == 3]['acc']) / len(unib.
      →loc[unib['beeppres'] == 3])
      congr2beepacc = sum(congrb.loc[congrb['beeppres'] == 2]['acc']) / len(congrb.
       →loc[congrb['beeppres'] == 2])
      congr3beepacc = sum(congrb.loc[congrb['beeppres'] == 3]['acc']) / len(congrb.
       →loc[congrb['beeppres'] == 3])
      fig = plt.figure(figsize = (14, 5))
      ax = fig.add_subplot(121, xlabel='condition', ylabel='% accurate', __
      →title='Accuracy for Unisensory Beep Trials')
      objects = ('Unisensory 2 Beep', 'Unisensory 3 Beep')
      y_pos = np.arange(len(objects))
      performance = [uni2beepacc, uni3beepacc]
      uni2beepaccstd = calcstderr(unib.loc[unib['beeppres'] == 2], 'acc')
      uni3beepaccstd = calcstderr(unib.loc[unib['beeppres'] == 3], 'acc')
      congr2beepaccstd = calcstderr(congrb.loc[congrb['beeppres'] == 2], 'acc')
      congr3beepaccstd = calcstderr(congrb.loc[congrb['beeppres'] == 3], 'acc')
      plt.bar(y_pos, performance, yerr=[uni2beepaccstd, uni3beepaccstd],
              color=['#1f77b4', '#ff7f0e'], ecolor='black', capsize=10)
      plt.xticks(y_pos, objects)
      plt.ylim([0,1])
      ax = fig.add subplot(122, xlabel='condition', ylabel='% accurate', __
      →title='Accuracy for Congruent Beep Trials')
      objects2 = ('Congruent 2 Beep', 'Congruent 3 Beep')
      y_pos2 = np.arange(len(objects2))
      performance2 = [congr2beepacc, congr3beepacc]
      plt.bar(y_pos2, performance2, yerr=[congr2beepaccstd, congr3beepaccstd],
```

```
color=['#1f77b4', '#ff7f0e'], ecolor='black', capsize=10)
plt.xticks(y_pos2, objects2)
plt.ylim([0,1])
plt.close()
```

2 Plots

[37]: subject = 15
flashframe = droprow(flashframe, 0.05)

```
flashframe = dropsubj(flashframe, subject)
flashframe = droprow(flashframe, 10, False)
beepframe = droprow(beepframe, 0.05)
beepframe = dropsubj(beepframe, subject)
beepframe = droprow(beepframe, 10, False)

congrf = flashframe.loc[flashframe['flashpres'] == flashframe['beeppres']]
unif = flashframe.loc[flashframe['beeppres'] == 0]
congrb = beepframe.loc[beepframe['flashpres'] == beepframe['beeppres']]
unib = beepframe.loc[beepframe['flashpres'] == 0]
```

3 Pairwise t-tests

Conduct t-test between accuracy or rt across all subjects (1400 pairs in each test, 100 from each subject)

3.1 Comparing accuracy for flash trials (unisensory vs. bisensory)

```
[38]: print("pvalue: " + str(stats.ttest_rel(unif["acc"][1:], congrf["acc"])[1]))
```

pvalue: 7.545208303580591e-33

3.2 Comparing accuracy for beep trials (unisensory vs. bisensory)

```
[39]: print("pvalue: " + str(stats.ttest_rel(unib["acc"][3:], congrb["acc"])[1]))
```

pvalue: 0.4641157028835692

3.3 Comparing rt for flash trials (unisensory vs. bisensory)

```
[40]: print("pvalue: " + str(stats.ttest_rel(unif["rt"][1:], congrf["rt"])[1]))
```

pvalue: 0.9112509628115936

3.4 Comparing rt for beep trials (unisensory vs. bisensory)

```
[41]: print("pvalue: " + str(stats.ttest_rel(unib["rt"][3:], congrb["rt"])[1]))
```

pvalue: 0.08822721470776992

4 HDDM

```
(alldata['flashpres'] == 2) & (alldata['beeppres'] == 0),
                (alldata['flashpres'] == 3) & (alldata['beeppres'] == 0),
                (alldata['flashpres'] == 2) & (alldata['beeppres'] == 2),
                (alldata['flashpres'] == 3) & (alldata['beeppres'] == 3),]
    choices = ['A2', 'A3', 'V2', 'V3', 'A2V2', 'A3V3']
    alldata['stimName'] = np.select(conditions, choices)
[43]: model_unif = formatmodeldata(unif, [(unif['flashpres'] == 2),__
     model_unib = formatmodeldata(unib, [(unib['beeppres'] == 2), (unib['beeppres']_
     \Rightarrow == 3)], ['B2', 'B3'])
    model congrf = formatmodeldata(congrf, [(congrf['flashpres'] == 2) & |
     (congrf['flashpres'] == 3) &⊔
     model congrb = formatmodeldata(congrb, [(congrb['flashpres'] == 2) & |
     (congrb['flashpres'] == 3) &__
     [44]: model_unif['type'] = 'u'
    model congrf['type'] = 'c'
    model_f = pd.concat([model_unif, model_congrf], axis = 0)
    model unib['type'] = 'u'
    model_congrb['type'] = 'c'
    model_b = pd.concat([model_unib, model_congrb], axis = 0)
[45]: # 0 means responded 2, 1 means responded 3
    def stimcode(df, conditions, choices):
       dframe = df.copy()
       dframe['stimCode'] = np.select(conditions, choices)
       return(dframe)
    stim_unif = stimcode(model_unif, [(model_unif['flashpres'] == 2) &__
     (model unif['flashpres'] == 2) &___
     (model_unif['flashpres'] == 3) &

...
     (model_unif['flashpres'] == 3) &__
     stim congrf = stimcode(model congrf, [(model congrf['flashpres'] == 2) & |
     (model_congrf['flashpres'] == 2) & ⊔
```

```
(model_congrf['flashpres'] == 3) & ⊔
      (model_congrf['flashpres'] == 3) &⊔
      stim_unib = stimcode(model_unib, [(model_unib['beeppres'] == 2) &_ 
      (model_unib['beeppres'] == 2) &⊔
      (model_unib['beeppres'] == 3) & ⊔
      (model_unib['beeppres'] == 3) & ⊔
      \rightarrow (model_unib['response'] == 1)], [1, 0, 0, 1])
     stim_congrb = stimcode(model_congrb, [(model_congrb['beeppres'] == 2) &__
      (model_congrb['beeppres'] == 2) &__
      (model_congrb['beeppres'] == 3) &⊔
      (model_congrb['beeppres'] == 3) &⊔
      \hookrightarrow (model_congrb['response'] == 1)], [1, 0, 0, 1])
[46]: stim_f = pd.concat([stim_unif, stim_congrf], axis = 0)
     stim_b = pd.concat([stim_unib, stim_congrb], axis = 0)
     4.1 Accuracy-coded flash model (same threshold)
[64]: flash_acc = hddm.HDDM(model_f, include=['a', 'v', 't', 'p_outlier'],__

depends_on={'v': ['type'], 't': ['type']})
     flash acc.sample(7000, burn=500)
      [-----] 7001 of 7000 complete in 706.6 sec
[64]: <pymc.MCMC.MCMC at 0x12692608>
[130]: #flash_acc.print_stats()
     #unif_acc.plot_posteriors()
[123]: a = flash_acc.nodes_db.node['a']
     hddm.analyze.plot_posterior_nodes([a])
     plt.xlabel('threshold')
     plt.ylabel('Posterior probability')
     plt.title('(Acc Flash) Posterior of threshold group mean')
     plt.show()
```



```
[124]: v_u, v_c = flash_acc.nodes_db.node[['v(u)', 'v(c)']]
hddm.analyze.plot_posterior_nodes([v_u, v_c])
plt.xlabel('drift-rate')
plt.ylabel('Posterior probability')
plt.title('(Acc Flash) Posterior of drift-rate group means')
plt.show()
```



```
[125]: t_u, t_c = flash_acc.nodes_db.node[['t(u)', 't(c)']]
hddm.analyze.plot_posterior_nodes([t_u, t_c])
plt.xlabel('non-decision time')
plt.ylabel('Posterior probability')
plt.title('(Acc Flash) Posterior of non-decision time group means')
plt.show()
```


4.2 Stimulus-coded flash models(same threshold)


```
[89]: v_u, v_c = flash_stim.nodes_db.node[['v(u)', 'v(c)']]
hddm.analyze.plot_posterior_nodes([v_u, v_c])
plt.xlabel('drift-rate')
plt.ylabel('Posterior probability')
plt.title('(Stim Flash) Posterior of drift-rate group means')
plt.show()
```



```
[90]: t_u, t_c = flash_stim.nodes_db.node[['t(u)', 't(c)']]
    hddm.analyze.plot_posterior_nodes([t_u, t_c])
    plt.xlabel('non-decision time')
    plt.ylabel('Posterior probability')
    plt.title('(Stim Flash) Posterior of non-decision time group means')
    plt.show()
```



```
[91]: z_u, z_c = flash_stim.nodes_db.node[['z(u)', 'z(c)']]
hddm.analyze.plot_posterior_nodes([z_u, z_c])
plt.xlabel('bias')
plt.ylabel('Posterior probability')
plt.title('(Stim Flash) Posterior of bias group means')
plt.show()
```


4.3 Posterior Predictive Check (Flash)

4.3.1 Accuracy-coded Flash

```
[93]: fppc = hddm.utils.post_pred_gen(flash_acc)

[------] 31 of 28 complete in 1290.7 sec
```

[98]: fppc_compare = hddm.utils.post_pred_stats(model_f, fppc)
print(fppc_compare)

	observed	mean	std	SEM	MSE	credible	\
stat							
accuracy	0.778135	0.795677	0.124663	0.000308	0.015849	True	
mean_ub	0.855433	0.820834	0.211357	0.001197	0.045869	True	
std_ub	0.665953	0.420534	0.161049	0.060231	0.086168	True	
10q_ub	0.389500	0.435356	0.093755	0.002103	0.010893	True	
30q_ub	0.537021	0.554826	0.126206	0.000317	0.016245	True	
50q_ub	0.665879	0.697958	0.171988	0.001029	0.030609	True	
70q_ub	0.849032	0.911364	0.245902	0.003885	0.064353	True	
90q_ub	1.449996	1.359270	0.413300	0.008231	0.179048	True	
mean_lb	-1.085988	-0.823607	0.234260	0.068844	0.123721	True	
std_lb	0.903215	0.388901	0.200062	0.264519	0.304544	False	
10q_lb	0.444976	0.465511	0.110517	0.000422	0.012636	True	

```
30q_1b
          0.630831 0.577676 0.144925 0.002825 0.023829
                                                                True
50q_1b
          0.812548 0.713187
                              0.197634 0.009873
                                                  0.048932
                                                                True
                                                                True
70q_1b
          1.069355 0.912523
                              0.284419 0.024596
                                                  0.105490
90q_1b
          1.941313 \quad 1.303862 \quad 0.482884 \quad 0.406344 \quad 0.639521
                                                                True
           quantile mahalanobis
stat
accuracy
          43.057144
                        0.140711
mean_ub
          57.021427
                        0.163699
std_ub
          92.535713
                        1.523876
10q_ub
          34.835712
                        0.489111
30q_ub
          45.942856
                        0.141079
          44.128571
50q_ub
                        0.186518
70q_ub
          42.200001
                        0.253482
90q_ub
          60.085712
                        0.219516
mean_lb
          13.965716
                        1.120041
std_lb
          98.854797
                        2.570774
10q_lb
          46.470757
                        0.185805
30q_1b
          66.421783
                        0.366776
50q_lb
          71.053009
                        0.502751
                        0.551415
70q_1b
          72.263039
90q_1b
          89.808411
                        1.320092
```

4.3.2 Stimulus-coded Flash

```
[52]: fppc2 = hddm.utils.post_pred_gen(flash_stim)
```

[-----] 59 of 56 complete in 2478.1 sec

```
[55]: fppc_compare2 = hddm.utils.post_pred_stats(stim_f, fppc2)
print(fppc_compare2)
```

	observed	mean	std	SEM	MSE	credible	\
stat							
accuracy	0.778135	0.786028	0.128655	0.000062	0.016614	True	
mean_ub	0.855433	0.920047	0.269142	0.004175	0.076612	True	
std_ub	0.665953	0.523266	0.216317	0.020360	0.067152	True	
10q_ub	0.389500	0.440812	0.129023	0.002633	0.019280	True	
30q_ub	0.537021	0.588942	0.171498	0.002696	0.032107	True	
50q_ub	0.665879	0.767402	0.229415	0.010307	0.062938	True	
70q_ub	0.849032	1.032765	0.323504	0.033758	0.138412	True	
90q_ub	1.449996	1.576562	0.532017	0.016019	0.299061	True	
mean_lb	-1.085988	-0.926923	0.325185	0.025302	0.131047	True	
std_lb	0.903215	0.453136	0.279067	0.202571	0.280450	True	
10q_lb	0.444976	0.514913	0.209170	0.004891	0.048643	True	
30q_1b	0.630831	0.646152	0.243953	0.000235	0.059748	True	
50q_1b	0.812548	0.804650	0.301533	0.000062	0.090985	True	
70q_1b	1.069355	1.033435	0.397583	0.001290	0.159362	True	

```
quantile mahalanobis
      stat
      accuracy
                45.724998
                              0.061349
      mean_ub
                43.296429
                              0.240072
      std ub
                76.703575
                               0.659621
      10q_ub
                39.071430
                              0.397696
      30q_ub
                41.453571
                              0.302749
      50q_ub
                35.639286
                              0.442528
                              0.567945
      70q_ub
                30.303572
      90q_ub
                43.842857
                              0.237899
      mean_lb
                27.836111
                              0.489151
      std_lb
                93.597183
                              1.612798
      10q_lb
                40.436157
                              0.334351
      30q_1b
                53.550186
                              0.062804
      50q_lb
                57.063660
                              0.026194
      70q_lb
                58.936047
                              0.090347
      90q_1b
                79.991188
                              0.779855
      4.4 Parameter Recovery (Flash)
      4.4.1 Accuracy-coded Flash
[69]: fsyndata, fparam = hddm.generate.gen_rand_data(params={'u': {'a': 1.613684}
        \rightarrow'v': 0.631853, 't': 0.291248},
                                                               'c': {'a': 1.613684
        \rightarrow'v': 1.411966, 't': 0.263438}},
                                                       size = 100, subjs = 14)
[70]: fparamrec = hddm.HDDM(fsyndata, include=['a', 'v', 't', 'p_outlier'],

    depends_on={'v': 'condition', 't': 'condition'})
       fparamrec.sample(7000, burn=500)
       [-----] 7000 of 7000 complete in 623.2 sec
[70]: <pymc.MCMC.MCMC at 0x1118f188>
[137]: #fparamrec.print_stats()
      a: 3.1% diff
      v(c): 1.5% diff
      v(u): 8.2% diff
      t(c): 9.7% diff
      t(u): 9.2% diff
```

1.941313 1.458242 0.619438 0.233358 0.617061

True

90q_1b

4.4.2 Stim-coded Flash

```
[119]: fsyndata2, fparam2 = hddm.generate.gen rand data(params={'u': {'a': 1.791961, ...
       'v': 0.611159, 't': 0.234447, 'z': 0.554721},
                                                         'c': {'a': 1.791961,...
       size = 100, subjs = 14)
[120]: |fparamrec2 = hddm.HDDM(fsyndata2, include='z', depends_on={'v': 'condition', |
      fparamrec2.sample(7000, burn=500)
      [------] 7000 of 7000 complete in 569.2 sec
[120]: <pymc.MCMC.MCMC at 0xfb16108>
[132]: #fparamrec2.print_stats()
     a: 2.2% diff
     v(c): 0.09\% diff
     v(u): 2.3% diff
     t(c): 12% diff
     t(u): 7.2% diff
     z(c): 5.7% diff
     z(u): 7.2% diff
     4.5 Accuracy-coded beep model (same threshold)
[99]: beep_acc = hddm.HDDM(model_b, include=['a', 'v', 't', 'p_outlier'],

depends_on={'v': ['type'], 't': ['type']})
      beep_acc.sample(7000, burn=500)
      [-----] 7000 of 7000 complete in 448.9 sec
[99]: <pymc.MCMC.MCMC at 0x126765c8>
[133]: #beep_acc.print_stats()
      #unif_acc.plot_posteriors()
[101]: a = beep_acc.nodes_db.node['a']
      hddm.analyze.plot_posterior_nodes([a])
      plt.xlabel('threshold')
      plt.ylabel('Posterior probability')
      plt.title('(Acc Beep) Posterior of threshold group mean')
      plt.show()
```



```
[102]: v_u, v_c = beep_acc.nodes_db.node[['v(u)', 'v(c)']]
hddm.analyze.plot_posterior_nodes([v_u, v_c])
plt.xlabel('drift-rate')
plt.ylabel('Posterior probability')
plt.title('(Acc Beep) Posterior of drift-rate group means')
plt.show()
```



```
[103]: t_u, t_c = beep_acc.nodes_db.node[['t(u)', 't(c)']]
  hddm.analyze.plot_posterior_nodes([t_u, t_c])
  plt.xlabel('non-decision time')
  plt.ylabel('Posterior probability')
  plt.title('(Acc Beep) Posterior of non-decision time group means')
  plt.show()
```


4.6 Stim-coded beep model (same threshold)

```
[92]: beep_stim = hddm.HDDMStimCoding(stim_b, include='z', depends_on={'v': ['type'], u → 't': ['type'], 'z': ['type']}, stim_col='stimCode')
beep_stim.sample(7000, burn=500)

Setting model to be non-informative
Adding z to includes.
[------100%------] 7000 of 7000 complete in 932.9 sec

[92]: <pymc.MCMC.MCMC at 0x13b2e588>

[134]: #beep_stim.print_stats()

[104]: a = beep_stim.nodes_db.node['a']
hddm.analyze.plot_posterior_nodes([a])
plt.xlabel('threshold')
plt.ylabel('Posterior probability')
plt.title('(Stim Beep) Posterior of threshold group mean')
plt.show()
```



```
[105]: v_u, v_c = beep_stim.nodes_db.node[['v(u)', 'v(c)']]
hddm.analyze.plot_posterior_nodes([v_u, v_c])
plt.xlabel('drift-rate')
plt.ylabel('Posterior probability')
plt.title('(Stim Beep) Posterior of drift-rate group means')
plt.show()
```



```
[106]: t_u, t_c = beep_stim.nodes_db.node[['t(u)', 't(c)']]
hddm.analyze.plot_posterior_nodes([t_u, t_c])
plt.xlabel('non-decision time')
plt.ylabel('Posterior probability')
plt.title('(Stim Beep) Posterior of non-decision time group means')
plt.show()
```



```
[107]: z_u, z_c = beep_stim.nodes_db.node[['z(u)', 'z(c)']]
hddm.analyze.plot_posterior_nodes([z_u, z_c])
plt.xlabel('bias')
plt.ylabel('Posterior probability')
plt.title('(Stim Beep) Posterior of bias group means')
plt.show()
```


4.7 Posterior Predictive Check (Beep)

4.7.1 Accuracy-coded beep

```
[94]: bppc = hddm.utils.post_pred_gen(beep_acc)

[------] 31 of 28 complete in 1335.7 sec
```

[97]: bppc_compare = hddm.utils.post_pred_stats(model_b, bppc)
print(bppc_compare)

	observed	mean	std	SEM	MSE	credible	\
stat							
accuracy	0.778135	0.795291	0.123737	0.000294	0.015605	True	
mean_ub	0.855433	0.821188	0.212542	0.001173	0.046347	True	
std_ub	0.665953	0.420464	0.162188	0.060265	0.086570	True	
10q_ub	0.389500	0.435782	0.094601	0.002142	0.011091	True	
30q_ub	0.537021	0.555186	0.127195	0.000330	0.016509	True	
50q_ub	0.665879	0.698644	0.172780	0.001074	0.030926	True	
70q_ub	0.849032	0.912208	0.248106	0.003991	0.065548	True	
90q_ub	1.449996	1.359244	0.414484	0.008236	0.180033	True	
mean_lb	-1.085988	-0.822176	0.232183	0.069597	0.123506	True	
std_lb	0.903215	0.389508	0.200447	0.263896	0.304074	False	
10q_lb	0.444976	0.465194	0.112444	0.000409	0.013052	True	

```
30q_1b
                                   0.145448
                                                                   True
               0.630831 0.576500
                                            0.002952 0.024107
                                                                   True
      50q_1b
               0.812548 0.712482
                                   0.196037
                                            0.010013
                                                      0.048444
      70q_lb
               1.069355 0.909337
                                   0.279303
                                            0.025606
                                                                   True
                                                      0.103616
      90q_1b
                                   0.475204 0.415790
                                                                   True
               1.941313 1.296496
                                                      0.641609
                quantile mahalanobis
      stat
      accuracy
               43.264286
                             0.138651
      mean_ub
               57.435715
                             0.161124
      std_ub
               92.264282
                             1.513615
      10q_ub
               34.871429
                             0.489237
      30q_ub
               46.342857
                             0.142809
               44.178570
      50q_ub
                             0.189636
      70q_ub
               42.564285
                             0.254631
      90q_ub
               59.964287
                             0.218952
               13.328535
      mean_lb
                             1.136223
      std_lb
               98.661392
                             2.562812
      10q_lb
               47.225620
                             0.179798
      30q_1b
               66.326019
                             0.373539
      50q 1b
               70.939186
                             0.510446
      70q_1b
               72.990288
                             0.572921
      90q_1b
               90.262688
                             1.356927
      4.7.2 Stim-coded Beep
[108]: bppc2 = hddm.utils.post_pred_gen(beep_stim)
       [-----] 59 of 56 complete in 3179.1 sec
[109]: | bppc_compare2 = hddm.utils.post_pred_stats(stim_b, bppc2)
      print(bppc_compare2)
               observed
                             mean
                                        std
                                                  SEM
                                                           MSE credible \
      stat
      accuracy
                                   0.071991 0.000011 0.005194
               0.936003 0.932646
                                                                   True
      mean_ub
                                   0.267236
                                            0.001466
                                                      0.072882
                                                                   True
               0.811824 0.850116
      std_ub
               0.705276 0.482211
                                   0.240484
                                            0.049758
                                                      0.107591
                                                                   True
      10q_ub
               0.364230 0.400436
                                   0.098640
                                            0.001311
                                                      0.011041
                                                                   True
                                   0.144118
                                            0.003090
                                                      0.023860
                                                                   True
      30q_ub
               0.491178 0.546768
      50q_ub
               0.613278
                         0.715256
                                   0.212955
                                            0.010399
                                                      0.055749
                                                                   True
      70q ub
               0.787827
                         0.959066
                                   0.323825
                                            0.029323
                                                      0.134185
                                                                   True
```

0.004357

0.407328

1.289299

0.009809

0.002418

0.037363

0.402558 0.652604

0.329074

0.584548

1.413310

0.111092

0.116883

0.192070

True

True

True

True

True

True

False

0.569839

0.420975

0.352153

0.318249

0.338326

0.393327

0.500046

90q_ub

 std_lb

10q_lb

30q_1b

50q_1b

70q_1b

1.393924

mean_lb -1.516434 -0.878211

0.498767

1.002491

1.449590 0.314117

0.745144 0.695967

1.601099 0.966624

1.459930

0.597810

0.809195

```
quantile mahalanobis
      stat
      accuracy
                36.125000
                              0.046624
      mean ub
                49.400002
                              0.143288
      std ub
                83.960716
                              0.927567
      10q_ub
                35.507141
                              0.367053
                37.871429
                              0.385725
      30q_ub
      50q_ub
                36.742859
                              0.478871
                              0.528803
      70q_ub
                36.121429
      90q_ub
                53.042858
                              0.115833
      mean_lb
                 7.566568
                              1.516059
      std_lb
                98.847160
                              3.224373
      10q_lb
                45.713425
                              0.311211
      30q_1b
                67.393639
                              0.145353
      50q_lb
                76.009811
                              0.491439
      70q_lb
                89.577148
                              1.268832
      90q_1b
                95.672562
                              2.084033
      4.8 Parameter Recovery (Beep)
      4.8.1 Accuracy-coded beep
[113]: bsyndata, bparam = hddm.generate.gen_rand_data(params={'u': {'a': 2.334434, 'v':
       \rightarrow 2.270080, 't': 0.225199},
                                                               'c': {'a': 2.334434, 'v':
       \rightarrow 2.208667, 't': 0.140507}},
                                                      size = 100, subjs = 14)
[114]: | bparamrec = hddm.HDDM(bsyndata, include=['a', 'v', 't', 'p_outlier'],

→depends_on={'v': 'condition', 't': 'condition'})
       bparamrec.sample(7000, burn=500)
       [-----] 7000 of 7000 complete in 564.4 sec
[114]: <pymc.MCMC.MCMC at 0x111a25c8>
[135]: #bparamrec.print_stats()
      a: 1.5% diff
      v(c): 0.05% diff
      v(u): 5.7% diff
      t(c): 12.7% diff
      t(u): 8% diff
```

2.775234 1.217269 0.747572 2.427255 2.986119

True

90q_1b

4.8.2 Stim-coded beep

```
[116]: bsyndata2, bparam2 = hddm.generate.gen_rand_data(params={'u': {'a': 2.069617,__
       \leftarrow'v': 1.490287, 't': 0.193942, 'z': 0.502049},
                                                             'c': {'a': 2.069617,
       \rightarrow'v': 1.488529, 't': 0.105678, 'z': 0.502745}},
                                                   size = 100, subjs = 14)
[117]: | bparamrec2 = hddm.HDDM(bsyndata2, include='z', depends_on={'v': 'condition', __
       bparamrec2.sample(7000, burn=500)
       [-----] 7000 of 7000 complete in 556.7 sec
[117]: <pymc.MCMC.MCMC at 0xea9a388>
[136]: #bparamrec2.print_stats()
     a: 0.5% diff
     v(c): 1.5% diff
     v(u): 1.5% diff
     t(c): 23% diff
     t(u): 14.4% diff
     z(c): 4.5% diff
     z(u): 4.5% diff
         Old models
     5
     5.1 Vary by unisensory/congruent and 2/3 flashes
[79]: flash acc2 = hddm.HDDM(model_f, include=['a', 'v', 't', 'p_outlier'],

    depends_on={'v': ['type', 'stimName'], 't': ['type', 'stimName']})
      flash acc2.sample(7000, burn=500)
       [-----] 7000 of 7000 complete in 637.8 sec
[79]: <pymc.MCMC.MCMC at 0xf292508>
[80]: flash_acc2.print_stats()
                                        std
                                                2.5q
                                                           25q
                                                                    50q
                                                                              75q
                             mean
     97.5q
              mc err
                                   0.094190 1.530280 1.639464 1.697672
                          1.703131
                                                                        1.761284
      1.901385 0.001469
                         0.332672 0.083625 0.210828 0.274489 0.318305 0.375153
     a_std
```

0.528948 0.001774						
a_subj.1.0	2.126073	0.111639	1.921076	2.047733	2.119805	2.197454
2.366489 0.002548						
a_subj.2.0	1.929853	0.083002	1.773527	1.872145	1.926948	1.984221
2.102571 0.001499						
a_subj.3.0	1.370059	0.080798	1.217519	1.313481	1.367761	1.423700
1.535422 0.002702	4 700540	0 07000	4 040004	1 710000	4 750000	4 040007
a_subj.4.0 1.921942 0.001561	1.762512	0.076686	1.618694	1.710062	1.759930	1.812207
a_subj.5.0	2.014737	0.100214	1.826708	1.946206	2.011284	2.079095
a_subj.5.0 2.220786 0.002287	2.014/3/	0.100214	1.020700	1.940200	2.011204	2.079095
a_subj.6.0	1.897676	0.090718	1.726116	1.833759	1.895433	1.957566
2.081776 0.002217	1.007070	0.000110	1.720110	1.000703	1.000100	1.501000
a_subj.7.0	1.797476	0.076027	1.651538	1.745684	1.796250	1.846571
1.949046 0.001456						
a_subj.8.0	1.767115	0.087504	1.607313	1.707641	1.762420	1.822363
1.951339 0.002069						
a_subj.9.0	1.669924	0.083466	1.517118	1.613791	1.665925	1.722909
1.847919 0.001895						
a_subj.10.0	1.457410	0.061149	1.339764	1.415938	1.456000	1.497789
1.582080 0.001066						
a_subj.11.0	1.479797	0.069802	1.347976	1.431515	1.476716	1.526695
1.620347 0.001739	4 005744	0 004000	4 700040	1 005004	4 000770	4 040540
a_subj.12.0 2.056429 0.001884	1.885744	0.084993	1.722940	1.825896	1.883773	1.942518
a_subj.13.0	1.195035	0.057542	1.087805	1.155540	1.193101	1.231286
1.315027 0.001449	1.195055	0.037342	1.007005	1.133340	1.193101	1.231200
a_subj.14.0	1.353144	0.057489	1.245363	1.313928	1.351000	1.391348
1.467483 0.001237		0.00.200		1,010010		21002010
v(F2.u)	1.494937	0.222454	1.062617	1.346450	1.492322	1.643884
1.934029 0.003159						
v(F2B2.c)	1.688371	0.224197	1.253256	1.539682	1.691136	1.841905
2.115356 0.003095						
v(F3.u)	0.045267	0.218616	-0.377797	-0.098900	0.046728	0.190628
0.473211 0.003131						
v(F3B3.c)	1.381033	0.219836	0.952557	1.233932	1.379925	1.529210
1.815185 0.003384	0 705405	0 001010	0.001100	0 700055	0 770000	0.044000
v_std	0.785695	0.091018	0.631182	0.720355	0.778062	0.841808
0.985722 0.001652 v_subj(F2.u).1.0	1.791088	0.245952	1.323929	1.622795	1.787030	1.953186
2.284822 0.003876	1.791000	0.240302	1.323929	1.022793	1.707030	1.933100
v_subj(F2.u).2.0	1.415907	0.324740	0.886194	1.190557	1.382394	1.600796
2.165621 0.006107	11110001	0.021/10	0.000101	11100001	1.002001	1.000,00
v_subj(F2.u).3.0	2.454285	0.382551	1.779885	2.180782	2.431272	2.696799
3.285285 0.012826						
v_subj(F2.u).4.0	1.680079	0.257754	1.202198	1.506614	1.671116	1.846410
2.226233 0.004111						
v_subj(F2.u).5.0	1.679786	0.270738	1.172990	1.491413	1.667890	1.858646

0.000454 0.004040						
2.228154 0.004343	1 000064	0 07/02/	1 265492	1 717105	1 005040	0.004607
v_subj(F2.u).6.0 2.457578 0.004021	1.900964	0.274231	1.365483	1.717105	1.895940	2.084607
v_subj(F2.u).7.0	0.374583	0.176664	0.028313	0.253202	0.373266	0.490902
0.725659 0.002248	0.374363	0.170004	0.026313	0.253202	0.373200	0.490902
v_subj(F2.u).8.0	1.910819	0.242978	1.449043	1.744699	1.902148	2.068233
2.398528 0.003894	1.910019	0.242910	1.449043	1.744099	1.902140	2.000233
v_subj(F2.u).9.0	0.962165	0.209249	0.558814	0.821088	0.957700	1.101137
1.389291 0.003002	0.902103	0.203243	0.550014	0.021000	0.931100	1.101137
v_subj(F2.u).10.0	1.020761	0.236070	0.565951	0.861565	1.015817	1.173871
1.506485 0.002793	1.020701	0.200010	0.000001	0.001000	1.010017	1.170071
v_subj(F2.u).11.0	0.987405	0.224661	0.556725	0.836058	0.984521	1.136052
1.439612 0.003114	0.001100	0.221001	0.000120	0.000000	0.001021	1.100002
v_subj(F2.u).12.0	1.624489	0.245835	1.164161	1.456344	1.616962	1.782584
2.128738 0.004120	1.021100	0.210000	1.101101	1.100011	1.010002	1.702001
v_subj(F2.u).13.0	1.034362	0.259785	0.532462	0.856947	1.032518	1.207058
1.547801 0.003273	1.001002	0.200.00	0.002102	0.00001	1.002010	1.20.000
v_subj(F2.u).14.0	2.089395	0.288869	1.547844	1.892228	2.075910	2.280109
2.688023 0.003460	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.20000		11000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,,
v_subj(F2B2.c).1.0	1.775213	0.220152	1.355856	1.623176	1.773779	1.923284
2.216342 0.003399						
v_subj(F2B2.c).2.0	1.042014	0.176387	0.702100	0.922350	1.039170	1.159746
1.395972 0.002435						
v_subj(F2B2.c).3.0	2.408063	0.317338	1.805596	2.190204	2.403986	2.617487
3.035470 0.006062						
v_subj(F2B2.c).4.0	1.476786	0.271546	0.980598	1.291539	1.459855	1.648788
2.047625 0.004339						
v_subj(F2B2.c).5.0	0.390170	0.166736	0.072057	0.274605	0.387164	0.501703
0.720491 0.002399						
v_subj(F2B2.c).6.0	2.186184	0.259288	1.690618	2.005355	2.178081	2.363893
2.700845 0.003809						
v_subj(F2B2.c).7.0	2.372313	0.281823	1.838738	2.178951	2.366496	2.560045
2.949571 0.004506						
v_subj(F2B2.c).8.0	2.092975	0.289976	1.535654	1.896840	2.087619	2.287865
2.671945 0.004747						
v_subj(F2B2.c).9.0	2.021724	0.274009	1.493622	1.830625	2.021145	2.205974
2.575110 0.004783						
v_subj(F2B2.c).10.0	1.947925	0.261527	1.442880	1.767317	1.950288	2.124570
2.455489 0.003909						
v_subj(F2B2.c).11.0	0.603682	0.239748	0.148025	0.439399	0.598292	0.760236
1.087123 0.003289						
v_subj(F2B2.c).12.0	1.067804	0.186807	0.721934	0.938170	1.062266	1.196041
1.439117 0.002637						
v_subj(F2B2.c).13.0	3.272848	0.402126	2.487043	3.000300	3.271409	3.542469
4.065071 0.007634						
v_subj(F2B2.c).14.0	0.973261	0.257180	0.486741	0.797817	0.969059	1.143457
1.498589 0.003134						
v_subj(F3.u).1.0	-0.102106	0.149802	-0.401986	-0.200861	-0.099766	0.000542

```
0.189186 0.001980
                   -0.003176 0.174626 -0.348734 -0.121748 -0.000141 0.112803
v_subj(F3.u).2.0
0.333824 0.002201
v_subj(F3.u).3.0
                    0.097053 0.229522 -0.359107 -0.054140 0.096423 0.249324
0.546411 0.002751
v_subj(F3.u).4.0
                   -1.114127 0.205494 -1.517831 -1.251091 -1.114956 -0.974541
-0.716366 0.002760
v_subj(F3.u).5.0
                   -0.999000 0.230377 -1.484223 -1.147113 -0.987997 -0.837809
-0.579240 0.003141
                   v_subj(F3.u).6.0
0.132041 0.002151
                    0.555704 \quad 0.181409 \quad 0.201394 \quad 0.432270 \quad 0.556236 \quad 0.677763
v_subj(F3.u).7.0
0.917622 0.002392
                   -0.278334 0.179904 -0.632178 -0.400840 -0.274541 -0.157453
v_subj(F3.u).8.0
0.067143 0.002049
v_subj(F3.u).9.0
                    0.810895 0.197845 0.419092 0.677078 0.812857 0.944731
1.193710 0.002410
                   -0.107170 0.218972 -0.540682 -0.253848 -0.107777 0.042504
v_subj(F3.u).10.0
0.325927 0.002785
v subj(F3.u).11.0
                    0.489869 \quad 0.219306 \quad 0.071026 \quad 0.339730 \quad 0.483356 \quad 0.634568
0.932026 0.003036
v subj(F3.u).12.0
                   -0.064180 0.168061 -0.392793 -0.181238 -0.063934 0.050259
0.261992 0.002181
                    0.694383 \quad 0.259479 \quad 0.191190 \quad 0.516443 \quad 0.690310 \quad 0.869516
v_subj(F3.u).13.0
1.205787 0.003301
                    0.667461 \quad 0.230912 \quad 0.222327 \quad 0.508916 \quad 0.666780 \quad 0.826373
v_subj(F3.u).14.0
1.124936 0.002879
v_subj(F3B3.c).1.0
                    0.733384 \quad 0.163135 \quad 0.422423 \quad 0.624922 \quad 0.729170 \quad 0.839174
1.066779 0.002292
v_subj(F3B3.c).2.0
                    0.940209 0.175544 0.607668 0.817119 0.937060 1.057751
1.290277 0.002247
v_subj(F3B3.c).3.0
                    3.488109 0.374220 2.777142 3.235404 3.489140 3.738365
4.243236 0.006441
v_subj(F3B3.c).4.0 -0.208418 0.174685 -0.545825 -0.328337 -0.209467 -0.088100
0.129925 0.002226
v_subj(F3B3.c).5.0
                    1.142618 0.192507 0.785217 1.011090 1.139473 1.267443
1.541374 0.002444
v subj(F3B3.c).6.0
                    0.497713 0.176277 0.161342 0.377653 0.494366 0.615700
0.853244 0.002311
v_subj(F3B3.c).7.0
                    1.028845 0.219839 0.617169 0.878333 1.020836 1.173558
1.474706 0.002548
v_subj(F3B3.c).8.0
                    1.916087 0.252424 1.435825 1.743374 1.911536 2.083141
2.428047 0.004043
                    2.081718 0.263563 1.558854 1.906400 2.082221 2.258613
v_subj(F3B3.c).9.0
2.605832 0.004239
v subj(F3B3.c).10.0 1.207946 0.225696 0.766918 1.053596 1.204900 1.361751
1.658085 0.003068
v_subj(F3B3.c).11.0 2.103807 0.300426 1.511541 1.896916 2.103589 2.306273
```

0 000054 0 004050						
2.696354 0.004950 v_subj(F3B3.c).12.0	1 /00175	0.266866	0.932238	1 0/6250	1.412090	1 500020
1.982448 0.004163	1.428175	0.20000	0.932230	1.246358	1.412090	1.599932
v_subj(F3B3.c).13.0	2.107665	0.328011	1.460808	1.887254	2.111360	2.330525
2.733649 0.004438	2.107005	0.520011	1.40000	1.007254	2.111500	2.000020
v_subj(F3B3.c).14.0	0.793566	0.222829	0.353348	0.644043	0.792555	0.941598
1.229701 0.002922	0.130000	0.222020	0.000010	0.011010	0.132000	0.511050
t(F2.u)	0.337972	0.023156	0.292001	0.322684	0.338017	0.353109
0.384080 0.000383	0.00.0.2	0.02020	0120202	0.022001		0.000100
t(F2B2.c)	0.272447	0.023341	0.226461	0.256909	0.272440	0.287828
0.317893 0.000396						
t(F3.u)	0.245006	0.022780	0.200019	0.230315	0.245038	0.259838
0.290513 0.000359						
t(F3B3.c)	0.253459	0.022489	0.209107	0.239077	0.253411	0.268436
0.296808 0.000359						
t_std	0.085402	0.010664	0.067358	0.077870	0.084365	0.092047
0.109070 0.000231						
t_subj(F2.u).1.0	0.354593	0.026394	0.295593	0.338205	0.356928	0.373023
0.400361 0.000453						
t_subj(F2.u).2.0	0.333169	0.035134	0.263819	0.308325	0.333434	0.359768
0.395085 0.000648	0.000706	0 004607	0.074600	0.004000	0 000000	0 050000
t_subj(F2.u).3.0	0.322796	0.034637	0.274609	0.294383	0.306398	0.356609
0.389416 0.001819 t_subj(F2.u).4.0	0.333084	0.021043	0.286823	0.320006	0.334836	0.347885
0.369259 0.000342	0.333004	0.021043	0.200023	0.320000	0.334630	0.347000
t_subj(F2.u).5.0	0.352623	0.027705	0.292216	0.335131	0.354854	0.371957
0.400242 0.000488	0.002020	0.021100	0.202210	0.000101	0.001001	0.011001
t_subj(F2.u).6.0	0.314943	0.020690	0.269852	0.301838	0.316558	0.329677
0.350327 0.000379						
t_subj(F2.u).7.0	0.282725	0.060164	0.194380	0.236918	0.261430	0.342270
0.392908 0.001843						
t_subj(F2.u).8.0	0.311808	0.023756	0.267889	0.297180	0.310160	0.323531
0.362682 0.000418						
t_subj(F2.u).9.0	0.290823	0.023628	0.242898	0.276565	0.291812	0.305331
0.338776 0.000415						
t_subj(F2.u).10.0	0.225067	0.016561	0.188233	0.215159	0.226606	0.236436
0.253610 0.000229						
t_subj(F2.u).11.0	0.286910	0.017338	0.247544	0.276953	0.288959	0.299132
0.315317 0.000331	0.000004	0 000007	0.000045	0.070540	0.000070	0 405747
t_subj(F2.u).12.0	0.386861	0.026867	0.326645	0.370548	0.388870	0.405717
0.433085 0.000459	0.350004	0.000034	0.200154	0 244961	0 350056	0 277147
t_subj(F2.u).13.0 0.392878 0.000390	0.359984	0.020034	0.322154	0.344861	0.358256	0.377147
t_subj(F2.u).14.0	0.446764	0.012796	0.418218	0.439079	0.448155	0.455751
0.467882 0.000207	0.440104	0.012130	0.410210	0.400013	0.440100	0.400101
t_subj(F2B2.c).1.0	0.345535	0.029568	0.279025	0.327800	0.348059	0.366747
0.395114 0.000577		3.122000				
t_subj(F2B2.c).2.0	0.250383	0.028040	0.190338	0.232767	0.252914	0.269921

0.297956 0.000421						
t_subj(F2B2.c).3.0	0.229925	0.015381	0.203253	0.221633	0.229198	0.236364
0.278680 0.000497	0.229920	0.010001	0.205255	0.221033	0.229190	0.230304
t_subj(F2B2.c).4.0	0.166115	0.029794	0.121971	0.150238	0.162745	0.174569
0.261842 0.000706						
t_subj(F2B2.c).5.0	0.290574	0.037809	0.207985	0.266136	0.293741	0.317948
0.353847 0.000654						
t_subj(F2B2.c).6.0	0.254640	0.020872	0.209831	0.241612	0.256510	0.269310
0.290359 0.000395						
t_subj(F2B2.c).7.0	0.318824	0.022972	0.275612	0.304976	0.317690	0.330752
0.370329 0.000396						
t_subj(F2B2.c).8.0	0.207649	0.019512	0.164606	0.195650	0.208884	0.221064
0.241878 0.000330						
t_subj(F2B2.c).9.0	0.187439	0.036872	0.098435	0.169266	0.199213	0.213540
0.233262 0.000871	0.010000	0 015110	0 170105	0 001704	0 011015	0.001200
t_subj(F2B2.c).10.0 0.237171 0.000214	0.210908	0.015112	0.178105	0.201704	0.211815	0.221398
t_subj(F2B2.c).11.0	0.259773	0.041019	0.142184	0.241325	0.260629	0.290725
0.321841 0.000895	0.209113	0.041019	0.142104	0.241323	0.200029	0.290125
t_subj(F2B2.c).12.0	0.243574	0.026248	0.186634	0.227469	0.245691	0.261625
0.288722 0.000417	0.210071	0.020210	0.100001	0.227100	0.210001	0.201020
t_subj(F2B2.c).13.0	0.312735	0.014731	0.265545	0.308875	0.315571	0.321338
0.330198 0.000457						
t_subj(F2B2.c).14.0	0.534848	0.018623	0.492796	0.523465	0.536817	0.548252
0.564953 0.000325						
t_subj(F3.u).1.0	0.395820	0.056830	0.270938	0.361192	0.402036	0.436473
0.488929 0.001073						
t_subj(F3.u).2.0	0.175648	0.029408	0.112338	0.157052	0.177870	0.196351
0.228120 0.000413		0.047000		0 455044	0 450544	0.404004
t_subj(F3.u).3.0 0.198473 0.000410	0.168805	0.017903	0.128206	0.157911	0.170511	0.181664
	0.140622	0.019264	0.098876	0.128654	0.142247	0.153997
t_subj(F3.u).4.0 0.173702	0.140622	0.019204	0.090076	0.120054	0.142247	0.155997
t_subj(F3.u).5.0	0.287115	0.038175	0.204106	0.262323	0.291267	0.314918
0.351427 0.000743	0.207110	0.000170	0.201100	0.202020	0.201201	0.011010
t_subj(F3.u).6.0	0.324130	0.037135	0.241903	0.302107	0.328030	0.350195
0.385898 0.000624						
t_subj(F3.u).7.0	0.194163	0.026710	0.140042	0.178117	0.194938	0.210150
0.247018 0.000350						
t_subj(F3.u).8.0	0.205211	0.026658	0.148366	0.188928	0.207004	0.223379
0.251855 0.000462						
t_subj(F3.u).9.0	0.158850	0.046563	0.084591	0.124160	0.151768	0.188082
0.260712 0.000932						
t_subj(F3.u).10.0	0.154043	0.018575	0.115319	0.142683	0.154886	0.165426
0.186666 0.000294	0.070040	0.005000	0.004555	0.054000	0.007000	0.004533
t_subj(F3.u).11.0 0.335372 0.000710	0.279316	0.035260	0.204555	0.254069	0.287862	0.304566
t_subj(F3.u).12.0	0 301700	0.037054	O 019477	0.279118	0.305666	U 338E02
subj(rs.u).12.U	0.301790	0.03/054	0.218477	0.2/9118	0.305666	0.328597

```
0.363699 0.000664
t_subj(F3.u).13.0
                     0.305956 \quad 0.014655 \quad 0.272199 \quad 0.297073 \quad 0.307559 \quad 0.316463
0.330266 0.000269
t_subj(F3.u).14.0
                     0.372483 \quad 0.019004 \quad 0.328671 \quad 0.361007 \quad 0.374158 \quad 0.386198
0.403816 0.000361
t_subj(F3B3.c).1.0
                     0.405023 \quad 0.046459 \quad 0.300974 \quad 0.377574 \quad 0.409828 \quad 0.438276
0.482267 0.000815
t_subj(F3B3.c).2.0
                     0.278803 \quad 0.033141 \quad 0.205689 \quad 0.258793 \quad 0.281069 \quad 0.302267
0.335837 0.000523
t_subj(F3B3.c).3.0
                     0.196234 0.010368 0.173686 0.189913 0.197051 0.203524
0.214262 0.000231
t_subj(F3B3.c).4.0
                     0.215115 \quad 0.027924 \quad 0.155072 \quad 0.197390 \quad 0.217436 \quad 0.234521
0.263700 0.000415
t_subj(F3B3.c).5.0
                     0.273685 0.031039 0.205041 0.254553 0.276476 0.295515
0.326891 0.000534
t_subj(F3B3.c).6.0
                     0.381820 0.039073 0.294870 0.357734 0.386212 0.410434
0.445758 0.000719
t_subj(F3B3.c).7.0
                     0.206943 0.000437
t subj(F3B3.c).8.0
                     0.236793 \quad 0.019564 \quad 0.194699 \quad 0.224807 \quad 0.238467 \quad 0.250056
0.271261 0.000316
t subj(F3B3.c).9.0
                     0.198561 0.018659 0.157710 0.186804 0.200467 0.211697
0.230876 0.000352
t_subj(F3B3.c).10.0 0.186079 0.015953 0.151188 0.176424 0.187547 0.197486
0.212982 0.000258
t_subj(F3B3.c).11.0 0.234266 0.028027 0.166474 0.222631 0.242417 0.254108
0.270158 0.000754
t_subj(F3B3.c).12.0 0.155514 0.022147 0.107430 0.142154 0.157099 0.170180
0.195185 0.000335
t_subj(F3B3.c).13.0 0.227365 0.015884 0.181238 0.222142 0.230555 0.236958
0.248665 0.000392
t_subj(F3B3.c).14.0 0.414098 0.017182 0.375782 0.403619 0.415834 0.426321
0.442461 0.000281
                     0.061777 \quad 0.006721 \quad 0.049003 \quad 0.057137 \quad 0.061611 \quad 0.066211
p_outlier
0.075648 0.000121
DIC: 4127.815383
deviance: 4024.368381
```

pD: 103.447001

[90]: fppc2 = hddm.utils.post_pred_gen(flash_acc2)

[-----] 59 of 56 complete in 2396.0 sec

[93]: fppc_compare2 = hddm.utils.post_pred_stats(model_f, fppc2)
print(fppc_compare2)

observed mean std SEM MSE credible $\$ stat

```
True
     mean_ub
              0.855433 0.824403
                                  0.255163 9.629046e-04 0.066071
     std_ub
                        0.400850
                                  0.206955 7.027969e-02 0.113110
                                                                      True
              0.665953
     10q_ub
                                                                      True
              0.389500
                        0.454602
                                  0.121276
                                            4.238339e-03 0.018946
     30q ub
              0.537021
                        0.571205
                                  0.157151
                                           1.168506e-03 0.025865
                                                                      True
     50q_ub
              0.665879 0.709956
                                  0.212699
                                            1.942770e-03 0.047184
                                                                      True
     70q ub
              0.849032
                        0.913406
                                  0.304318
                                            4.144056e-03 0.096754
                                                                      True
              1.449996 1.326561
     90q_ub
                                  0.502026
                                            1.523606e-02 0.267267
                                                                      True
     mean_lb -1.085988 -0.842109
                                  0.300749 5.947689e-02 0.149927
                                                                      True
     std_lb
              0.903215 0.342147
                                  0.269634
                                           3.147972e-01 0.387500
                                                                      True
     10q_lb
              0.444976 0.530092
                                  0.199483
                                            7.244650e-03 0.047038
                                                                      True
                                                                      True
     30q_1b
              0.630831 0.630779
                                  0.218292 2.665745e-09 0.047652
     50q_lb
              0.812548 0.751508
                                  0.265273
                                            3.725880e-03 0.074095
                                                                      True
     70q_1b
              1.069355 0.924992
                                  0.359859
                                            2.084076e-02
                                                         0.150339
                                                                      True
     90q_1b
              1.941313 1.245801 0.595332 4.837368e-01 0.838157
                                                                      True
               quantile mahalanobis
     stat
     accuracy
              34.903572
                            0.032597
     mean ub
              60.636475
                            0.121611
     std ub
              88.942070
                            1.280973
     10q ub
              34.077435
                            0.536812
     30q_ub
              45.674690
                            0.217520
     50q_ub
              47.117653
                            0.207226
     70q_ub
              47.931995
                            0.211536
     90q_ub
              67.558395
                            0.245872
     mean_lb
              19.544052
                            0.810904
     std_lb
              96.323120
                            2.080852
     10q_lb
              36.938969
                            0.426680
     30q_1b
              57.389378
                            0.000237
     50q_lb
              65.716774
                            0.230103
     70q_1b
              70.596848
                            0.401166
     90q_1b
              86.780655
                            1.168275
[25]: beep_acc2 = hddm.HDDM(model_b, include=['a', 'v', 't', 'p_outlier'],

    depends_on={'v': ['type', 'stimName'], 't': ['type', 'stimName']})
     beep_acc2.sample(7000, burn=500)
      [------] 7001 of 7000 complete in 683.9 sec
[25]: <pymc.MCMC.MCMC at 0xeafab08>
     beep_acc2.print_stats()
[26]:
                                        std
                                                 2.5q
                                                           25q
                                                                     50q
                                                                               75q
                             mean
     97.5q
             mc err
                         2.200595 0.112022 1.995613 2.124570 2.194940 2.269042
     2.445599 0.004953
```

accuracy

0.778135 0.785527

0.226781

5.464787e-05 0.051484

True

a_std 0.544017 0.003129	0.319009	0.093885	0.173661	0.254210	0.305648	0.369765
a_subj.1.0	2.768557	0.188990	2.422729	2.636831	2.759288	2.891783
3.157849 0.007411 a_subj.2.0	2.054795	0.105359	1.864433	1.980444	2.051144	2.123073
2.274486 0.003036 a_subj.3.0	1.912661	0.176501	1.618852	1.787960	1.893891	2.017807
2.307200 0.008070 a_subj.4.0	2.050665	0.085349	1.888219	1.992570	2.048839	2.105857
2.227876 0.002016 a_subj.5.0	2.351929	0.096149	2.170049	2.285556	2.349899	2.415424
2.549821 0.002015						
a_subj.6.0 2.949100 0.011300	2.492803	0.221884	2.088632	2.338092	2.478854	2.635888
a_subj.7.0 2.666535 0.005262	2.344883	0.151087	2.073811	2.240539	2.336642	2.440902
a_subj.8.0 2.764160 0.007983	2.361951	0.188030	2.024547	2.232530	2.348641	2.480665
a_subj.9.0	1.826101	0.126608	1.596566	1.737772	1.818479	1.905132
2.099215 0.004794 a_subj.10.0	2.125233	0.135788	1.874520	2.032122	2.120963	2.212756
2.402341 0.004736 a_subj.11.0	2.084367	0.196256	1.775346	1.944216	2.061759	2.198148
2.543063 0.009105 a_subj.12.0	2.203708	0.146494	1.936297	2.104657	2.197142	2.294501
2.517608 0.005220 a_subj.13.0	2.062655	0.260609	1.658989	1.878995	2.022884	2.206967
2.697036 0.016488 a_subj.14.0	2.158433	0.247053	1.704638	1.983378	2.151203	2.322653
2.666018 0.014973						
v(B2.u) 2.905734 0.005582	2.379831	0.262642	1.867569	2.205030	2.379488	2.549808
v(B3.u) 2.520455 0.005987	1.983993	0.265149	1.475744	1.808094	1.981813	2.159414
v(F2B2.c) 2.656506 0.005970	2.124873	0.266930	1.609824	1.949547	2.120941	2.299291
v(F3B3.c) 2.668915 0.005262	2.154142	0.261513	1.650046	1.978858	2.153054	2.324745
v_std	0.914271	0.112800	0.719630	0.835719	0.907812	0.982180
1.162654 0.004064 v_subj(B2.u).1.0	2.030476	0.234213	1.575268	1.872434	2.028293	2.184038
2.493684 0.004919 v_subj(B2.u).2.0	1.782162	0.243705	1.320327	1.615510	1.779313	1.947215
2.266959 0.003874 v_subj(B2.u).3.0	2.739577	0.323776	2.133150	2.524351	2.728305	2.952729
3.401709 0.008785						
v_subj(B2.u).4.0 2.126656 0.004600	1.515039	0.278804	1.039738	1.319098	1.493951	1.689245

v_subj(B2.u).5.0 1.484486 0.002232	1.123937	0.175715	0.798337	1.000278	1.117748	1.240019
v_subj(B2.u).6.0 3.050657 0.009409	2.490738	0.283802	1.911980	2.297704	2.493926	2.676725
v_subj(B2.u).7.0 3.280092 0.006746	2.582624	0.328989	2.003159	2.345692	2.553991	2.788984
v_subj(B2.u).8.0 3.376736 0.008131	2.751531	0.312529	2.134146	2.536596	2.749744	2.960462
v_subj(B2.u).9.0 3.128564 0.005373	2.546271	0.285357	1.997164	2.355817	2.540418	2.727015
v_subj(B2.u).10.0 2.240610 0.004479	1.714519	0.257181	1.237858	1.530738	1.703594	1.884156
v_subj(B2.u).11.0 2.663003 0.007203	2.115087	0.262243	1.625271	1.936601	2.106841	2.283942
v_subj(B2.u).12.0 3.312322 0.006469	2.616752	0.344714	1.969972	2.375995	2.613833	2.846855
v_subj(B2.u).13.0 4.403520 0.019602	3.461610	0.448797	2.646100	3.149792	3.442959	3.747112
v_subj(B2.u).14.0 5.010059 0.019886	3.975823	0.517707	2.981629	3.619858	3.970942	4.325807
v_subj(B3.u).1.0 2.624856 0.004887	2.175007	0.227116	1.749529	2.018820	2.172960	2.325700
v_subj(B3.u).2.0 1.769415 0.003074	1.307756	0.221065	0.899649	1.155614	1.299871	1.448400
v_subj(B3.u).3.0 3.431117 0.011993	2.672389	0.371976	1.976774	2.413916	2.659249	2.919241
v_subj(B3.u).4.0 0.299703 0.001917	0.004844		-0.302394		0.006781	0.105961
v_subj(B3.u).5.0 0.971039 0.001989	0.647708	0.156656	0.352908	0.539233	0.643596	0.750611
v_subj(B3.u).6.0 2.664480 0.007252	2.162595	0.249926	1.692799	1.991454	2.153366	2.332797
v_subj(B3.u).7.0 2.064666 0.004623	1.622514	0.228181	1.174192	1.465885	1.621754	1.778979
v_subj(B3.u).8.0 3.155147 0.008526	2.551517			2.336643	2.553891	
v_subj(B3.u).9.0 2.862450 0.007783	2.121450	0.352740	1.481466	1.873110	2.107375	2.347627
v_subj(B3.u).10.0 3.495368 0.006482	2.852584	0.320739	2.221704	2.638755	2.851885	3.063423
v_subj(B3.u).11.0 2.755957 0.010377	2.083596	0.314091	1.515466		2.064364	2.284022
v_subj(B3.u).12.0 2.093498 0.004320	1.537845	0.264214		1.358699	1.526806	1.705929
v_subj(B3.u).13.0 3.530657 0.026918	2.428884	0.520775	1.519740	2.050633	2.379678	2.767893
v_subj(B3.u).14.0 4.327337 0.014494	3.581351	0.376775	2.854499	3.325904	3.578302	3.832204

v_subj(F2B2.c).1.0 2.515170 0.006406	1.850736	0.292143	1.357018	1.649610	1.815564	2.020903
v_subj(F2B2.c).2.0 1.848651 0.002827	1.434073	0.204795	1.047231	1.297815	1.430166	1.567013
v_subj(F2B2.c).3.0 3.002347 0.011237	2.232878	0.373735	1.533997	1.972769	2.222524	2.478999
v_subj(F2B2.c).4.0 1.908174 0.002935	1.508430	0.197730	1.130609	1.367781	1.504746	1.640711
v_subj(F2B2.c).5.0 0.567108 0.001816	0.289978	0.140911	0.016754	0.196594	0.290390	0.386292
v_subj(F2B2.c).6.0 3.432901 0.008677	2.833519	0.298016	2.254429	2.632028	2.828526	3.029051
v_subj(F2B2.c).7.0 3.031858 0.005368	2.486274	0.273517	1.965223	2.300254	2.482570	2.664892
v_subj(F2B2.c).8.0 2.755228 0.006226	2.268053	0.246393	1.793588	2.101638	2.266513	2.432229
v_subj(F2B2.c).9.0 3.236307 0.006966	2.571722	0.318785	1.973505	2.349257	2.560357	2.776827
v_subj(F2B2.c).10.0 2.674804 0.005827	2.060674	0.312755	1.461770	1.847112	2.057614	2.270816
v_subj(F2B2.c).11.0 3.103610 0.012695	2.270295	0.407643	1.532494	1.981924	2.258010	2.544806
v_subj(F2B2.c).12.0 2.147291 0.003608	1.687802	0.231273	1.244772	1.530916	1.682665	1.838431
v_subj(F2B2.c).13.0 3.895022 0.015656	3.044084	0.393601	2.339949	2.771016	3.024547	3.292927
v_subj(F2B2.c).14.0 3.938027 0.014527	3.167143	0.389423	2.425724	2.900643	3.156455	3.429920
v_subj(F3B3.c).1.0 1.760639 0.003881	1.374408	0.189440	1.019564	1.245776	1.369444	1.495906
v_subj(F3B3.c).2.0 1.697147 0.003223	1.255954	0.217379	0.848433	1.106283	1.248314	1.400611
v_subj(F3B3.c).3.0 3.776089 0.009554	3.075878	0.355947	2.372965	2.843158	3.076543	3.311743
v_subj(F3B3.c).4.0 0.610694 0.001970	0.281494		-0.041643	0.170556	0.280086	0.392157
v_subj(F3B3.c).5.0 1.725681 0.003079	1.245627	0.223756	0.850231	1.089972	1.234164	1.386179
v_subj(F3B3.c).6.0 3.012875 0.006868 v_subj(F3B3.c).7.0	2.442472	0.279994	1.902146	2.254623	2.435455	2.622269
2.764482 0.005173	2.255794	0.258008	1.759209	2.083691	2.251155	2.424197
v_subj(F3B3.c).8.0 3.138426 0.007882	2.527722	0.300666 0.252776	1.970213	2.3194752.004118	2.518900	2.721866
v_subj(F3B3.c).9.0 2.681647 0.005425	2.175403		1.685883		2.172284	2.340761
v_subj(F3B3.c).10.0 3.052989 0.004948	2.493809	0.277481	1.980531	2.298914	2.485918	2.685604

v_subj(F3B3.c).11.0 3.620926 0.008202	2.976187	0.317585	2.385231	2.752057	2.967663	3.183039
v_subj(F3B3.c).12.0 1.676597 0.002942	1.292383	0.183688	0.950033	1.163967	1.288016	1.414718
v_subj(F3B3.c).13.0 4.476694 0.017604	3.613947	0.427880	2.808010	3.316127	3.605727	3.897426
v_subj(F3B3.c).14.0 3.916078 0.014693	3.200944	0.361630	2.496531	2.957404	3.196316	3.443434
t(B2.u) 0.271823 0.000541	0.237894	0.017045	0.205165	0.226399	0.237806	0.249034
t(B3.u) 0.275718 0.000534	0.240558	0.017674	0.205994	0.228669	0.240393	0.252500
t(F2B2.c) 0.194324 0.000576	0.159293	0.017112	0.126409	0.147717	0.158761	0.170710
t(F3B3.c) 0.182576 0.000579	0.149293	0.017181	0.115323	0.137636	0.149508	0.160934
t_std 0.074308 0.000347	0.054784	0.009273	0.038367	0.048344	0.054041	0.060674
t_subj(B2.u).1.0 0.284253 0.000856	0.223710	0.032290	0.156033	0.202409	0.224743	0.246225
t_subj(B2.u).2.0 0.300313 0.000506	0.255101	0.025516	0.202148	0.238783	0.256511	0.273679
t_subj(B2.u).3.0 0.272824 0.000708	0.220863	0.024248	0.175697	0.205379	0.219354	0.233930
t_subj(B2.u).4.0 0.340950 0.000748	0.284319	0.035936	0.193259	0.265172	0.288208	0.309037
t_subj(B2.u).5.0 0.317226 0.000630	0.255602	0.034047	0.183631	0.233150	0.256919	0.279496
t_subj(B2.u).6.0 0.237512 0.000771	0.192273	0.024625	0.141558	0.176234	0.193124	0.209818
t_subj(B2.u).7.0 0.257118 0.000550	0.213393	0.023539	0.164906	0.198501	0.214314	0.229166
t_subj(B2.u).8.0 0.262832 0.000606	0.222997	0.022862	0.173801	0.208273	0.224619	0.239331
t_subj(B2.u).9.0 0.189246 0.000471	0.159497	0.017034	0.123210	0.148505	0.160870	0.171429
t_subj(B2.u).10.0 0.239552 0.000586	0.178784	0.027187	0.127569	0.161002	0.177476	0.194563
t_subj(B2.u).11.0 0.296482 0.000771	0.245751	0.025668	0.194190	0.229462	0.246476	0.262214
t_subj(B2.u).12.0 0.339167 0.000781	0.287064	0.029018	0.225596	0.268328	0.288871	0.307646
t_subj(B2.u).13.0 0.319034 0.001032	0.280882	0.022594	0.230864	0.267297	0.283179	0.296705
t_subj(B2.u).14.0 0.335026 0.001236	0.278934	0.029079	0.226507	0.258282	0.275145	0.301597
t_subj(B3.u).1.0 0.340508 0.000984	0.258845	0.037384	0.189201	0.234496	0.256509	0.280933

t_subj(B3.u).2.0 0.258850 0.000511	0.212726	0.025641	0.157321	0.196276	0.214084	0.230730
t_subj(B3.u).3.0 0.246799 0.000626	0.213438	0.019883	0.169219	0.201211	0.214834	0.227907
t_subj(B3.u).4.0 0.324199 0.000639	0.259888	0.035590	0.185631	0.236999	0.261244	0.285285
t_subj(B3.u).5.0 0.349499 0.000742	0.264396	0.041535	0.184686	0.236815	0.264006	0.290312
t_subj(B3.u).6.0 0.350382 0.001122	0.291172	0.033208	0.221677	0.269031	0.293155	0.314740
t_subj(B3.u).7.0 0.259596 0.000555	0.208521	0.027568	0.151665	0.190315	0.209790	0.227868
t_subj(B3.u).8.0 0.280351 0.000736	0.234506	0.025875	0.181022	0.217817	0.236239	0.252858
t_subj(B3.u).9.0 0.235722 0.000831	0.166509	0.031494	0.115109	0.143108	0.161323	0.186678
t_subj(B3.u).10.0 0.218343 0.000626	0.170249	0.026870	0.120217	0.149801	0.170592	0.191048
t_subj(B3.u).11.0 0.296277 0.000798	0.250698	0.026177	0.194390	0.234734	0.252740	0.269008
t_subj(B3.u).12.0 0.400425 0.001196	0.324313	0.042698	0.234170	0.295714	0.327257	0.355896
t_subj(B3.u).13.0 0.287536 0.000894	0.244046	0.024399	0.191844	0.227995	0.245749	0.261306
t_subj(B3.u).14.0 0.290514 0.001158	0.247762	0.024058	0.197975	0.232037	0.249053	0.265234
t_subj(F2B2.c).1.0 0.286976 0.001290	0.198923	0.045408	0.108885	0.167586	0.199523	0.231000
t_subj(F2B2.c).2.0 0.233389 0.000711	0.177521	0.031099	0.112980	0.156981	0.179223	0.199087
t_subj(F2B2.c).3.0 0.157892 0.000616	0.107145	0.022525	0.063434	0.093106	0.106671	0.120016
t_subj(F2B2.c).4.0 0.234794 0.000638	0.163436	0.034690	0.102943	0.139489	0.158588	0.186326
t_subj(F2B2.c).5.0 0.229316 0.000671	0.156943	0.037551	0.082087	0.131430	0.156990	0.182598
t_subj(F2B2.c).6.0 0.190310 0.000987	0.139441	0.026630	0.085827	0.121555	0.139854	0.157622
t_subj(F2B2.c).7.0 0.190930 0.000586	0.139227	0.025118	0.088796	0.123116	0.139728	0.155058
t_subj(F2B2.c).8.0 0.150573 0.000631	0.107977	0.022977	0.061297	0.092632	0.108600	0.124226
t_subj(F2B2.c).9.0 0.137492 0.000421	0.108206	0.016581	0.071980	0.097887	0.109369	0.119905
t_subj(F2B2.c).10.0 0.139641 0.000494	0.099938	0.021706	0.056086	0.085348	0.100488	0.115391
t_subj(F2B2.c).11.0 0.235225 0.000830	0.184374	0.028806	0.122358	0.165777	0.186263	0.204684

```
t_subj(F2B2.c).12.0 0.206558 0.036754 0.130764 0.181884 0.208409 0.232909
0.271441 0.000943
t_subj(F2B2.c).13.0 0.162284 0.029601 0.104811 0.142266 0.159816 0.183741
0.217074 0.001303
t_subj(F2B2.c).14.0 0.199239 0.025883 0.143714 0.183077 0.200438 0.217905
0.244597 0.001156
t subj(F3B3.c).1.0
                     0.163480 0.042511 0.080505 0.134377 0.163832 0.192952
0.247336 0.001092
                     0.161518 \quad 0.029485 \quad 0.099960 \quad 0.142090 \quad 0.163371 \quad 0.182334
t_subj(F3B3.c).2.0
0.213509 0.000610
                     0.133675 \quad 0.019644 \quad 0.091329 \quad 0.121240 \quad 0.135502 \quad 0.147613
t_subj(F3B3.c).3.0
0.167406 0.000700
                     0.144147 \quad 0.045359 \quad 0.067824 \quad 0.109912 \quad 0.137132 \quad 0.179084
t_subj(F3B3.c).4.0
0.235100 0.000921
t_subj(F3B3.c).5.0
                     0.108790 0.026667
                                         0.054864 0.090712 0.110096 0.127246
0.157597 0.000455
t_subj(F3B3.c).6.0
                     0.280640 \quad 0.041018 \quad 0.191873 \quad 0.255179 \quad 0.283167 \quad 0.310248
0.351471 0.001571
t_subj(F3B3.c).7.0
                     0.091257 \quad 0.021903 \quad 0.048923 \quad 0.076786 \quad 0.091496 \quad 0.105080
0.133423 0.000534
t subj(F3B3.c).8.0
                     0.139249 0.025318 0.085975 0.122855 0.140837
                                                                       0.157103
0.183796 0.000718
t_subj(F3B3.c).9.0
                     0.083598 0.017232 0.046777
                                                    0.072201 0.084789
                                                                        0.096069
0.114059 0.000471
t_subj(F3B3.c).10.0 0.092490 0.020686 0.048358 0.078985 0.093480 0.107188
0.129499 0.000525
t_subj(F3B3.c).11.0 0.229531 0.026050 0.169833 0.214347 0.232483 0.248348
0.271678 0.000908
t_subj(F3B3.c).12.0 0.196688 0.038899 0.116362 0.170411 0.199284 0.224917
0.266308 0.001108
t_subj(F3B3.c).13.0 0.154018 0.022068 0.105077 0.141083 0.156381 0.169865
0.190820 0.001080
t_subj(F3B3.c).14.0 0.125139 0.021904 0.080021 0.110674 0.126175 0.140431
0.165338 0.001021
                     0.063786  0.006448  0.051679  0.059240  0.063724  0.068051
p outlier
0.076849 0.000157
DIC: 2491.671527
```

[27]: bppc2 = hddm.utils.post_pred_gen(beep_acc2)

deviance: 2391.565590

pD: 100.105937

[------] 59 of 56 complete in 2853.8 sec

[29]: bppc_compare2 = hddm.utils.post_pred_stats(model_b, bppc2)
print(bppc_compare2)

observed mean std SEM MSE credible \

```
stat
                                                                  True
     accuracy
              0.936003 0.958033
                                  0.098906
                                           0.000485
                                                     0.010268
     mean_ub
                        0.747368
                                  0.257363
                                           0.004155
                                                     0.070390
                                                                  True
              0.811824
     std_ub
                                                                  True
              0.705276
                        0.354193
                                  0.215075
                                           0.123259
                                                     0.169517
     10q ub
              0.364230
                        0.409418
                                  0.100310
                                           0.002042
                                                     0.012104
                                                                  True
     30q_ub
                                  0.142563
                                                     0.021494
                                                                  True
              0.491178
                        0.525384
                                           0.001170
     50q ub
              0.613278
                        0.653432
                                  0.203826
                                           0.001612
                                                     0.043157
                                                                  True
     70q_ub
              0.787827
                        0.833393
                                  0.303793
                                           0.002076
                                                     0.094366
                                                                  True
                                  0.526981
                                                                  True
     90q_ub
              1.393924 1.197600
                                           0.038543
                                                     0.316252
     mean_lb -1.516434 -0.882663
                                  0.422287
                                           0.401666
                                                     0.579992
                                                                  True
     std_lb
              1.449590 0.273431
                                  0.354659
                                           1.383349
                                                     1.509132
                                                                 False
     10q_lb
                                                                  True
              0.498767
                        0.637923
                                  0.314918
                                           0.019364
                                                     0.118538
     30q_1b
              0.745144 0.722800
                                  0.329991
                                           0.000499
                                                                  True
                                                     0.109393
                                                                  True
     50q_1b
              1.002491
                        0.820873
                                  0.383301
                                           0.032985
                                                     0.179905
     70q_lb
              1.601099
                        0.958393
                                  0.494539
                                           0.413071
                                                     0.657639
                                                                  True
                        1.183012
     90q_1b
              2.775234
                                           2.535173
                                                                  True
                                  0.765211
                                                     3.120721
               quantile mahalanobis
     stat
     accuracy
              13.864285
                            0.222742
     mean ub
              67.278572
                            0.250449
     std ub
              92.471428
                            1.632377
     10q_ub
              34.642857
                            0.450480
              46.939285
     30q_ub
                            0.239934
     50q_ub
              51.017857
                            0.196997
     70q_ub
              54.457142
                            0.149990
     90q_ub
              73.796425
                            0.372545
     mean_lb
               7.665729
                            1.500807
     std_lb
              99.212532
                            3.316311
     10q_lb
              35.516273
                            0.441879
     30q_1b
              62.073120
                            0.067710
     50q_1b
              73.700279
                            0.473827
     70q_1b
              88.975494
                            1.299608
     90q_1b
              95.636803
                            2.080763
        Vary by unisensory/congruent and 2/3 flashes, add back bound sep
[14]: flash acc3 = hddm.HDDM(model f, include=['a', 'v', 't', 'p outlier'],

depends_on={'a': ['type', 'stimName'], 'v': ['type', 'stimName'], 't':

□
      flash_acc3.sample(7000, burn=500)
      [-----] 7000 of 7000 complete in 724.6 sec
[14]: <pymc.MCMC.MCMC at 0xcfac308>
[15]: flash acc3.print stats()
```

	mean	std	2.5q	25q	50q	75q
97.5q mc err a(F2.u)	1.811840	0.111500	1.592404	1.738819	1.811359	1.884319
2.036660 0.002694 a(F2B2.c)	2.047023	0.133524	1.795251	1.955991	2.044066	2.136802
2.317286 0.004606 a(F3.u)	1.571487	0.098330	1.381276	1.505106	1.571307	1.635536
1.766772 0.001651	1.071107	0.00000	1.001270	1.000100	1.071007	1.000000
a(F3B3.c) 2.049284 0.002872	1.817476	0.114147	1.595926	1.740297	1.817382	1.891872
a_std 0.481025 0.001880	0.363458	0.053674	0.271009	0.325430	0.359145	0.396405
a_subj(F2.u).1.0 2.754127 0.008309	2.125704	0.269858	1.697706	1.939081	2.091427	2.273391
a_subj(F2.u).2.0	1.588058	0.140934	1.330326	1.488942	1.580923	1.679989
1.885886 0.003216 a_subj(F2.u).3.0	1.993313	0.296428	1.482574	1.783737	1.966249	2.174361
2.642914 0.011429 a_subj(F2.u).4.0	1.899771	0.202962	1.543799	1.757544	1.885581	2.026179
2.341874 0.005158 a_subj(F2.u).5.0	1.928476	0.219483	1.561097	1.778511	1.906297	2.052814
2.423505 0.006433 a_subj(F2.u).6.0	2.270875	0.303635	1.779842	2.056071	2.237309	2.439544
2.966361 0.009628 a_subj(F2.u).7.0	1.741431	0.138933	1.488102	1.645600	1.736205	1.831682
2.029386 0.004057 a_subj(F2.u).8.0	2.094501	0.290902	1.631832	1.890702	2.053983	2.260236
2.774708 0.009412						
a_subj(F2.u).9.0 1.843391 0.002662	1.591242	0.123013	1.359720	1.506303	1.587821	1.671914
a_subj(F2.u).10.0 1.929562 0.002592	1.632125	0.140878	1.373153	1.534558	1.626236	1.723160
a_subj(F2.u).11.0 1.789131 0.002201	1.530812	0.120085	1.311845	1.447047	1.526063	1.609199
a_subj(F2.u).12.0 2.362626 0.006344	1.895002	0.211443	1.533890	1.746612	1.876749	2.023261
a_subj(F2.u).13.0	1.322179	0.104102	1.134571	1.249550	1.318030	1.387516
1.543369 0.001789 a_subj(F2.u).14.0	1.680376	0.220713	1.326399	1.525199	1.655535	1.806229
2.193771 0.006836 a_subj(F2B2.c).1.0	2.395194	0.292561	1.892703	2.189705	2.373194	2.576234
3.051768 0.008649	0 510006	0 242702	2.096795	2.336317	2 404629	2 664726
a_subj(F2B2.c).2.0 3.041088 0.005708	2.512026	0.243793	2.030135	2.330317	2.494638	2.664726
a_subj(F2B2.c).3.0 2.743262 0.012148	2.067472	0.304529	1.549942	1.846526	2.043791	2.261054
a_subj(F2B2.c).4.0 2.790202 0.009287	2.157639	0.274850	1.729692	1.958341	2.121714	2.314699

a_subj(F2B2.c).5.0 2.282709 0.003312	1.957623	0.156144	1.663555	1.849298	1.953841	2.059006
a_subj(F2B2.c).6.0 2.816734 0.011022	2.185877	0.289761	1.680238	1.981023	2.162826	2.370016
a_subj(F2B2.c).7.0 2.941242 0.010226	2.251825	0.316612	1.717378	2.019323	2.223553	2.450865
a_subj(F2B2.c).8.0 2.842787 0.009342	2.190264	0.294782	1.686542	1.981996	2.165787	2.370061
a_subj(F2B2.c).9.0 2.640203 0.007244	2.152655	0.240920	1.698725	1.990952	2.148150	2.307164
a_subj(F2B2.c).10.0 2.416144 0.009040	1.832496	0.256615	1.411164	1.653789	1.804374	1.982129
a_subj(F2B2.c).11.0 1.873990 0.004815	1.554503	0.158121	1.266141	1.439492	1.547123	1.663573
a_subj(F2B2.c).12.0 2.933538 0.005210	2.442875	0.232809	2.028489	2.279278	2.430909	2.586602
a_subj(F2B2.c).13.0 2.754544 0.011982	2.105604	0.300913	1.550533	1.899277	2.087060	2.296889
a_subj(F2B2.c).14.0 1.546037 0.002375	1.300094	0.113945	1.095060	1.221190	1.294762	1.371048
a_subj(F3.u).1.0 2.176755 0.003054	1.856273	0.149471	1.580917	1.755156	1.847590	1.948177
a_subj(F3.u).2.0 1.810376 0.002198	1.572090	0.118886	1.342072	1.491520	1.570450	1.651586
a_subj(F3.u).3.0 1.396518 0.001502	1.209894	0.089607	1.041477	1.147399	1.205910	1.268036
a_subj(F3.u).4.0 1.993701 0.002646	1.707909	0.133935	1.468865	1.614128	1.699816	1.793238
a_subj(F3.u).5.0 2.011705 0.003752	1.654492	0.166630	1.361919	1.538213	1.643424	1.759692
a_subj(F3.u).6.0 2.048783 0.002273	1.789888	0.126598	1.554995	1.701604	1.786147	1.873347
a_subj(F3.u).7.0 1.899582 0.001875	1.660112	0.114639	1.451198	1.581639	1.654256	1.732415
a_subj(F3.u).8.0 1.832111 0.001914	1.599852	0.110718	1.395958	1.521392	1.594349	1.671454
a_subj(F3.u).9.0 1.930929 0.002575	1.671816	0.129317	1.422790	1.583511	1.668833	1.757776
a_subj(F3.u).10.0 1.478978 0.002148	1.286242	0.094367	1.105060	1.223787	1.285062	1.347383
a_subj(F3.u).11.0 1.628430 0.002225	1.401812	0.108534	1.200986	1.325446	1.396783	1.470850
a_subj(F3.u).12.0 1.903212 0.002033	1.657091	0.120584	1.429234	1.573306	1.652719	1.735235
a_subj(F3.u).13.0 1.336333 0.001873	1.147607	0.090483	0.980961	1.085856	1.145007	1.205170
a_subj(F3.u).14.0 1.533364 0.002017	1.316788	0.099232	1.139392	1.247984	1.310847	1.379233

a_subj(F3B3.c).1.0 2.546111 0.003478	2.182519	0.171289	1.882589	2.060641	2.172200	2.289423
a_subj(F3B3.c).2.0 2.727450 0.004549	2.293562	0.202241	1.934869	2.154302	2.279668	2.420768
a_subj(F3B3.c).3.0 2.067504 0.010729	1.527395	0.246896	1.102836	1.346296	1.505634	1.685837
a_subj(F3B3.c).4.0 1.916548 0.002171	1.684699	0.116520	1.462451	1.604558	1.681076	1.762607
a_subj(F3B3.c).5.0 2.960594 0.005049	2.448028	0.238328	2.025297	2.280414	2.431497	2.596735
a_subj(F3B3.c).6.0 2.103802 0.002889	1.807240	0.138999	1.549970	1.711166	1.798123	1.895579
a_subj(F3B3.c).7.0 2.286864 0.003050	1.973927	0.150303	1.700520	1.870644	1.967231	2.068752
a_subj(F3B3.c).8.0 2.403558 0.006480	1.895044	0.224795	1.522398	1.733737	1.870632	2.029743
a_subj(F3B3.c).9.0 2.181513 0.005905	1.753224	0.202945	1.412571	1.605905	1.736862	1.881673
a_subj(F3B3.c).10.0 1.854984 0.002953	1.583944	0.130995	1.349967	1.492768	1.574213	1.668543
a_subj(F3B3.c).11.0 2.682322 0.009770	2.068404	0.281094	1.567871	1.871380	2.047546	2.242108
a_subj(F3B3.c).12.0 2.121972 0.003435	1.765113	0.161748	1.482792	1.653353	1.755108	1.865193
a_subj(F3B3.c).13.0 1.551644 0.004236	1.223071	0.143507	0.990469	1.122178	1.206125	1.305877
a_subj(F3B3.c).14.0 1.727273 0.002569	1.481960	0.116886	1.273465	1.399612	1.475415	1.556292
v(F2.u) 2.117544 0.004332	1.607810	0.259096	1.109693	1.433049	1.605806	1.780225
v(F2B2.c) 2.472726 0.004608	1.939921	0.267298	1.422926	1.761630	1.938284	2.118885
v(F3.u) 0.540652 0.003594	0.039954	0.249112	-0.437526	-0.128191	0.036825	0.204764
v(F3B3.c) 1.959012 0.003581	1.461651	0.252516	0.954812	1.296856	1.461708	1.626153
v_std 1.150438 0.002498	0.906819	0.109813	0.718736	0.828791	0.898841	0.974811
v_subj(F2.u).1.0 2.438602 0.007783	1.809497	0.301440	1.253536	1.602103	1.795358	2.007811
v_subj(F2.u).2.0 1.916211 0.004707	1.306536	0.287745	0.798310	1.103761	1.289908	1.487416
v_subj(F2.u).3.0 3.974212 0.012506	3.070924	0.432920	2.263822	2.771667	3.060189	3.346455
v_subj(F2.u).4.0 2.368975 0.004998	1.759200	0.287619	1.225281	1.563025	1.750054	1.937198
v_subj(F2.u).5.0 2.286985 0.005809	1.657542	0.291819	1.131951	1.458322	1.639936	1.833461

v_subj(F2.u).6.0 2.924324 0.008550	2.184587	0.355794	1.527340	1.938880	2.173643	2.409565
v_subj(F2.u).7.0 0.714771 0.002301	0.363128	0.175230	0.021465	0.246013	0.360398	0.482852
v_subj(F2.u).8.0 2.942068 0.009004	2.203770	0.345578	1.593566	1.955583	2.181501	2.429402
v_subj(F2.u).9.0 1.380341 0.002941	0.942905	0.215472	0.525737	0.799500	0.942204	1.080293
v_subj(F2.u).10.0 1.508730 0.003115	1.033479	0.236935	0.584848	0.869267	1.030374	1.192707
v_subj(F2.u).11.0 1.464559 0.002925	1.002862	0.229360	0.561780	0.846317	0.999592	1.156135
v_subj(F2.u).12.0 2.205892 0.004081	1.646750	0.267985	1.154014	1.460589	1.634510	1.818994
v_subj(F2.u).13.0 1.604056 0.003794	1.085022	0.262316	0.568841	0.909751	1.083075	1.258299
v_subj(F2.u).14.0 3.195692 0.008072	2.434255	0.371170	1.735247	2.181487	2.421786	2.670871
v_subj(F2B2.c).1.0 2.408578 0.005053	1.897130	0.252976	1.424473	1.724512	1.888933	2.064720
v_subj(F2B2.c).2.0 1.636408 0.003256 v_subj(F2B2.c).3.0	1.223853 3.237680	0.206182 0.457885	0.832265 2.340258	1.084786 2.927188	1.222484 3.244245	1.361140 3.547602
4.133691 0.014571 v_subj(F2B2.c).4.0	1.810469	0.385182	1.143352	1.532741	1.786927	2.057766
2.641853 0.010935 v_subj(F2B2.c).5.0	0.392139	0.169410	0.072189	0.277846	0.388000	0.505385
0.732939 0.001957 v_subj(F2B2.c).6.0	2.389165	0.321969	1.792045	2.167298	2.382837	2.604375
3.054854 0.007950 v_subj(F2B2.c).7.0	2.714728	0.340073	2.057849	2.484419	2.706495	2.943385
3.407068 0.008581 v_subj(F2B2.c).8.0	2.444658	0.380188	1.715955	2.188937	2.433728	2.698329
3.205828 0.008752 v_subj(F2B2.c).9.0	2.179872	0.282071	1.645601	1.987059	2.168546	2.368995
2.747800 0.005353 v_subj(F2B2.c).10.0	2.277502	0.352965	1.610903	2.039771	2.264444	2.504579
3.022447 0.009258 v_subj(F2B2.c).11.0	0.556345	0.235886	0.115447	0.393142	0.544692	0.708158
1.057610 0.004038 v_subj(F2B2.c).12.0	1.243167	0.206582	0.861645	1.099129	1.238620	1.377065
1.661113 0.003402 v_subj(F2B2.c).13.0 4.852989 0.014649	3.866183	0.481259	2.959947	3.532969	3.855023	4.188524
v_subj(F2B2.c).14.0 1.521581 0.003323	0.971340	0.263730	0.464196	0.792773	0.963679	1.145741
v_subj(F3.u).1.0 0.203512 0.002080	-0.116675	0.163591	-0.436871	-0.222941	-0.116197	-0.008002

```
-0.028242 0.196154 -0.421784 -0.156016 -0.025255 0.103680
v_subj(F3.u).2.0
0.355163 0.002526
v_subj(F3.u).3.0
                    0.108721 0.243121 -0.377315 -0.055473 0.105993 0.271341
0.583956 0.002774
v subj(F3.u).4.0
                    -1.107379 0.212548 -1.539677 -1.249698 -1.101324 -0.960480
-0.705840 0.003126
v subj(F3.u).5.0
                    -1.028660 0.243768 -1.525140 -1.195445 -1.018384 -0.855454
-0.581755 0.003064
v subj(F3.u).6.0
                    -0.176060 0.167267 -0.511825 -0.286371 -0.177327 -0.064924
0.152008 0.002084
                     0.538378 \quad 0.185268 \quad 0.174597 \quad 0.414847 \quad 0.537790 \quad 0.661924
v_subj(F3.u).7.0
0.905613 0.002325
v_subj(F3.u).8.0
                    -0.271679 0.185660 -0.643383 -0.396526 -0.268664 -0.144453
0.083636 0.002377
v_subj(F3.u).9.0
                     0.832060 0.207097 0.441081 0.692603 0.829778 0.968470
1.248951 0.002952
v_subj(F3.u).10.0
                    -0.111991 0.228450 -0.564952 -0.266011 -0.107790 0.045521
0.326487 0.003454
v_subj(F3.u).11.0
                    0.502300 \quad 0.223914 \quad 0.062708 \quad 0.354296 \quad 0.500837 \quad 0.649420
0.951670 0.003100
v subj(F3.u).12.0
                    -0.078696 0.177741 -0.431054 -0.195148 -0.078982 0.036942
0.272124 0.002019
v_subj(F3.u).13.0
                     0.707362 0.268211 0.197752 0.526285 0.707449 0.892040
1.241987 0.003102
v_subj(F3.u).14.0
                     0.675027 \quad 0.234469 \quad 0.209884 \quad 0.514571 \quad 0.674137 \quad 0.834805
1.146353 0.002832
v_subj(F3B3.c).1.0
                     0.745009 \quad 0.169661 \quad 0.436500 \quad 0.627287 \quad 0.739773 \quad 0.857989
1.090516 0.002037
                     0.999750 0.180550 0.660583 0.874916 0.996768 1.118507
v_subj(F3B3.c).2.0
1.370350 0.002330
v_subj(F3B3.c).3.0
                     3.789839 0.487015 2.847520 3.461970 3.780446 4.119000
4.755955 0.015555
v_subj(F3B3.c).4.0 -0.222933 0.177152 -0.560445 -0.342905 -0.222776 -0.103894
0.127657 0.002117
v subj(F3B3.c).5.0
                     1.261784 0.208418 0.878509 1.117822 1.252826 1.397866
1.703967 0.003098
v subj(F3B3.c).6.0
                     0.490223 0.176859 0.147016 0.369731 0.488200 0.609175
0.841076 0.002349
v_subj(F3B3.c).7.0
                     1.093013 0.234751 0.669246 0.933029 1.080564 1.237509
1.601134 0.003165
                     2.031190 0.311426 1.460345 1.820227 2.019011 2.226233
v_subj(F3B3.c).8.0
2.686919 0.006824
v_subj(F3B3.c).9.0
                     2.149143 0.299800 1.553366 1.948638 2.147273 2.345953
2.742423 0.005211
v_subj(F3B3.c).10.0 1.271963 0.228888 0.839680 1.114806 1.266066 1.424006
1.738168 0.003534
v_subj(F3B3.c).11.0 2.480354 0.353023 1.793971 2.239654 2.473902 2.718286
3.204529 0.008834
```

v_subj(F3B3.c).12.0 1.946907 0.004221	1.369936	0.271362	0.865930	1.187751	1.356541	1.541114
v_subj(F3B3.c).13.0 2.886209 0.005285	2.155722	0.360674	1.469284	1.906211	2.152254	2.395099
v_subj(F3B3.c).14.0 1.251560 0.003025	0.802196	0.222604	0.365506	0.650409	0.796873	0.947974
t(F2.u) 0.384360 0.000495	0.333217	0.025898	0.282260	0.316116	0.333020	0.350559
t(F2B2.c) 0.280538 0.000765	0.225572	0.028486	0.169227	0.206810	0.225646	0.244723
t(F3.u) 0.322524 0.000436	0.271420	0.025947	0.220505	0.254311	0.271697	0.288945
t(F3B3.c) 0.289402 0.000494	0.239599	0.025466	0.189481	0.222428	0.239517	0.256807
t_std 0.121646 0.000295	0.095697	0.011885	0.075301	0.087210	0.094702	0.103043
t_subj(F2.u).1.0 0.411274 0.000804	0.355991	0.033336	0.280462	0.335927	0.359719	0.379643
t_subj(F2.u).2.0 0.435841 0.000802 t_subj(F2.u).3.0	0.385839	0.035374	0.305061	0.364554	0.393971	0.411805 0.281522
0.343996 0.000929 t_subj(F2.u).4.0	0.319119	0.030106	0.212910	0.301295	0.322113	0.340673
0.368934 0.000727 t_subj(F2.u).5.0	0.363004	0.033926	0.285936	0.343416	0.366519	0.386867
0.416879 0.000922 t_subj(F2.u).6.0	0.287166	0.032153	0.215202	0.267053	0.290472	0.310222
0.340158 0.000891 t_subj(F2.u).7.0	0.297088	0.069675	0.190692	0.238543	0.271557	0.365352
0.413013 0.003019 t_subj(F2.u).8.0	0.288911	0.031227	0.223712	0.269928	0.290354	0.307844
0.349930 0.000840 t_subj(F2.u).9.0	0.299194	0.028470	0.244299	0.282519	0.298858	0.313684
0.363572 0.000615 t_subj(F2.u).10.0	0.207040	0.023019	0.155187	0.193245	0.209399	0.222991
0.245262 0.000444 t_subj(F2.u).11.0	0.280336	0.021555	0.230654	0.267389	0.283064	0.295741
0.315289 0.000424 t_subj(F2.u).12.0 0.447911 0.001082	0.386215	0.037749	0.300179	0.364088	0.390100	0.414333
t_subj(F2.u).13.0 0.388086 0.000397	0.345746	0.022779	0.301661	0.330419	0.344502	0.362206
t_subj(F2.u).14.0 0.458607 0.000690	0.421028	0.024236	0.364663	0.406944	0.424398	0.438382
t_subj(F2B2.c).1.0 0.389976 0.001256	0.312340	0.046791	0.207107	0.283699	0.316772	0.345860
t_subj(F2B2.c).2.0 0.257862 0.000953	0.179935	0.043857	0.087898	0.150552	0.181830	0.211791

t_subj(F2B2.c).3.0 0.226402 0.000851	0.185408	0.024775	0.131526	0.170050	0.188430	0.202795
t_subj(F2B2.c).4.0 0.179040 0.000721	0.129516	0.029123	0.069326	0.111212	0.130961	0.148767
t_subj(F2B2.c).5.0 0.369143 0.000907	0.295128	0.045422	0.190661	0.268010	0.299941	0.328163
t_subj(F2B2.c).6.0 0.286900 0.001208	0.226216	0.035594	0.147843	0.203700	0.229292	0.251849
t_subj(F2B2.c).7.0 0.341990 0.001061	0.279147	0.037349	0.188780	0.259031	0.282908	0.303464
t_subj(F2B2.c).8.0 0.228752 0.000844	0.177004	0.030439	0.109100	0.158209	0.179530	0.199047
t_subj(F2B2.c).9.0 0.203349 0.001197	0.100357	0.040702	0.040869	0.072754	0.091834	0.119912
t_subj(F2B2.c).10.0 0.224002 0.000825	0.180305	0.026724	0.120220	0.163743	0.182779	0.199585
t_subj(F2B2.c).11.0 0.323645 0.002615	0.216743	0.076057	0.057609	0.149174	0.239523	0.271584
t_subj(F2B2.c).12.0 0.248744 0.000780	0.174116	0.041241	0.089811	0.147059	0.176268	0.202978
t_subj(F2B2.c).13.0 0.273290 0.000922	0.213837	0.026257	0.163237	0.198276	0.213817	0.227882
t_subj(F2B2.c).14.0 0.575482 0.000414	0.542504	0.021166	0.493505	0.530648	0.545329	0.557675
t_subj(F3.u).1.0 0.539047 0.001001	0.463342	0.048454	0.352057	0.435830	0.469564	0.497567
t_subj(F3.u).2.0 0.310519 0.000843	0.223696	0.030040	0.166457	0.206943	0.223842	0.238656
t_subj(F3.u).3.0 0.210138 0.000261	0.186015	0.015046	0.152685	0.176987	0.187577	0.196998
t_subj(F3.u).4.0 0.180714 0.000386	0.146020	0.020375	0.103069	0.133582	0.147603	0.159714
t_subj(F3.u).5.0 0.398999 0.000760	0.347843	0.034016	0.267807	0.328945	0.352809	0.372224
t_subj(F3.u).6.0 0.404900 0.000588	0.345153	0.035669	0.266847	0.324784	0.348496	0.370129
t_subj(F3.u).7.0 0.301797 0.000576	0.213632	0.033198	0.154816	0.194343	0.212171	0.227597
t_subj(F3.u).8.0 0.290001 0.000479	0.228166	0.028120	0.171032	0.212342	0.228918	0.243779
t_subj(F3.u).9.0 0.273342 0.001177	0.169798	0.054076	0.084520	0.128918	0.158264	0.208114
t_subj(F3.u).10.0 0.249829 0.001080	0.177415	0.029110	0.134220	0.160625	0.171640	0.183206
t_subj(F3.u).11.0 0.353775 0.000699	0.296908	0.033548	0.215326	0.283594	0.302856	0.316839
t_subj(F3.u).12.0 0.401282 0.000532	0.344972	0.032453	0.274278	0.326056	0.348496	0.366380

t_subj(F3.u).13.0	0.311817	0.015555	0.276110	0.302998	0.313869	0.322906
0.336529 0.000318						
t_subj(F3.u).14.0	0.378094	0.021116	0.327830	0.365989	0.380864	0.393114
0.411729 0.000452						
t_subj(F3B3.c).1.0	0.396995	0.052916	0.276968	0.365247	0.403565	0.435051
0.482988 0.001109						
t_subj(F3B3.c).2.0	0.220084	0.048017	0.119671	0.187853	0.223190	0.254474
0.302686 0.001135						
t_subj(F3B3.c).3.0	0.187247	0.018500	0.146120	0.175643	0.189151	0.200547
0.217594 0.000743	0.10/21/	0.010000	0.110120	0.170010	0.100101	0.200017
t_subj(F3B3.c).4.0	0.223558	0.030641	0.157341	0.205335	0.225729	0.244563
_ 0	0.223550	0.030641	0.157341	0.205555	0.225729	0.244505
0.276957 0.000562						
t_subj(F3B3.c).5.0	0.219622	0.046194	0.119593	0.189696	0.223019	0.252572
0.298387 0.000904						
t_subj(F3B3.c).6.0	0.400287	0.039502	0.309820	0.377896	0.406040	0.428201
0.461163 0.000779						
t_subj(F3B3.c).7.0	0.123122	0.028760	0.065252	0.104784	0.123281	0.140849
0.183831 0.000576						
t_subj(F3B3.c).8.0	0.225292	0.027353	0.165300	0.208008	0.228368	0.245011
0.270494 0.000715						
t_subj(F3B3.c).9.0	0.189400	0.027267	0.130629	0.172541	0.191359	0.208984
0.235507 0.000778						
t_subj(F3B3.c).10.0	0.172214	0.022121	0.122425	0.158381	0.174715	0.188274
0.208505 0.000474	0.1.2211	0.022121	0.122120	0.100001	0.17 17 10	0.1002.1
t_subj(F3B3.c).11.0	0.166444	0.036650	0.098869	0.142796	0.163326	0.186069
0.245450 0.001055	0.100111	0.00000	0.030003	0.142730	0.100020	0.100003
t_subj(F3B3.c).12.0	0.162948	0.024976	0.107157	0.147960	0.165158	0.179946
0.206180 0.000499	0.102940	0.024970	0.107157	0.147900	0.103130	0.179940
	0.00500	0 004500	0 100010	0.045004	0.00050	0.00070
t_subj(F3B3.c).13.0	0.222599	0.024589	0.160613	0.215884	0.229050	0.238073
0.258241 0.000780						
t_subj(F3B3.c).14.0	0.396410	0.026342	0.335996	0.381383	0.399752	0.415319
0.437578 0.000575						
p_outlier	0.063434	0.006922	0.050382	0.058582	0.063370	0.067946
0.077692 0.000130						

0.077692 0.000130 DIC: 4068.273330 deviance: 3933.856793

pD: 134.416537