Investigating ELM Pacing with Vertical Oscillations on DIII-D

Dario Panici, Andrew O. Nelson, Florian Laggner, Egemen Kolemen

Princeton Plasma Physics Laboratory

November 2, 2021

ELM Pacing

ELM Pacing is when the plasma is perturbed intentionally in order to trigger ELMs in a controllable way

Why would we want to trigger ELMs?

ELM Pacing - Effects of ELMs

Positive

- Flush out impurities that build up in core (due to increased confinement of H-mode)
- Prevent uncontrolled density buildup in core
- Both of which could otherwise lead to reduced performance and disruptions

Negative

- Places limit on pedestal height
 - Which limits plasma performance
- Large Transient Heat Flux!
 - Extrapolation to ITER-size device shows that giant ELM heat fluxes will be unacceptably destructive to divertor

ELM Pacing - Effects of ELMs

Negative

- Places limit on pedestal height
 - Which limits plasma performance
- Large Transient Heat Flux!
 - Extrapolation to ITER-size device shows that giant ELM heat fluxes will be unacceptably destructive to divertor

ELM Pacing Mitigates ELM Negatives by increasing felm

Main Goal of ELM Pacing: Reduce ELM size (and resulting heat flux to divertor) by increasing ELM frequency

ELM Pacing Techniques

- Resonant Magnetic Perturbations
- Pellet Injection
- Vertical Plasma Oscillations ("Kicks"/ "Jogs")

Focusing on Shot #174848 Which had 20Hz Vertical Plasma Oscillations

Questions we want to answer

- Is ELM Pacing achieved?
- How do the kicks trigger ELMs?
- How do the kicks affect other plasma parameters?

Shot Parameters $I_p \sim 1 \text{MA} \beta_N \sim 1.2 \quad q_{95} \sim 5 \quad B_t \sim -2.1 \text{T}$

With Kicks | Reference

Plasma shape compresses from downward kick

Observed ELM Behavior - Triggering and Pacing

- Qualitatively, ELMS triggered as plasma is moving down
 - Similar to NSTX, JET
- Multiple ELMs triggered consistently with each kick
 - Similar behavior is seen in other experiments (KSTAR, ASDEX-U)

Define ELM-Kick Phase as 0 if ELM occurs when ZMAXIS at Average position and moving down, increases to 2π

Define start of kick as when magnetic axis is at average Z position and moving down

Define ELM that occurs at that point as having 0 ELM-kick phase, phase increases up to 2π

Phase consistently between $[0,\pi/2]$ and $[3\pi/2,2\pi]$

Indicates quantitatively that ELMs are occurring mainly as plasma is moving down

78% of ELMs Occurred while plasma was moving downwards => ELMs correlated with the kicks

 Similar direction to results from vertical kick experiments in ASDEX-U and JET

DIII-D

 ELM triggering in opposite direction was observed in TCV, KSTAR and NSTX vertical kick experiments

ELM Pacing Effect on ELM Size - Stored Energy

ELM size defined as change in plasma stored energy ΔW/W

Clearly see a decrease in ELM size in the vertical kicks experiment as compared to reference with no kicks and pre-kicks reference period in shot 174848

ELM Pacing Effect on ELM Size - Divertor Heat Flux

Kicks cause decrease in the peak heat flux to divertor from ELMs (as measured by IRTV system)

- ~300 W/cm^2 peak flux for Shot 174848 (during kicks)
 - Decreases with increasing ELM frea.
- ~ 750 W/cm^2 peak flux for reference Shot 174819

ELM Pacing with vertical oscillations appears to be achieved in Shot 174848

- ELM triggering correlated with the kick frequency
- ELM Size as measured by stored energy loss is reduced
- Peak heat flux due to each ELM is reduced

By what mechanism does jogging trigger ELMs?

- Literature from similar experiments suggest that vertical oscillations could perturb the edge current density enough to trigger ELMs
- But, exact mechanism is not yet shown definitively in experiments (edge current density difficult to measure)

J_{ϕ}	Edge current density
$I_{\phi}^{w_r}$	Total toroidal current contained in edge
W_r	Width of edge region
r_{o}	Radius of core plasma region

Sauter Model for Bootstrap Current shows edge current decreasing in downward kicks in DIII-D Shot 174848

- Multiple ELMs occur on downward kick
- ELMs reduce pedestal gradients
- Sauter J_{Boot} ~ edge
 T,n gradients

Simulations of Similar Experiments Predict Increased

- JET vertical kick experiment showed similar behavior as Shot 174848 (ELM triggered on downward motion)
- Simulation of downward plasma movement predicts increase in current density near separatrix
- This would not be visible to us experimentally with current diagnostics capabilities (no edge MSE, Li beam was not used)

Conclusions and Future Work

- ELM pacing via vertical oscillations is shown on DIII-D
 - ELMs triggered with higher frequency
 - ELM peak heat flux was reduced
- ELM triggering mechanism not obvious from experimental measurements
 - Plan to investigate stability boundary at various points in kicks using ELITE

Backup

- Type I ("giant" ELMs) can be modelled as ideal MHD instability localized near edge of plasma
 - Coupling between peeling
 (J-driven) and ballooning
 (∇P-driven) instabilities
- Occurs periodically during ELMy H-mode operation
- Causes enhanced transport of plasma out from core

- Type I ("giant" ELMs) can be modelled as ideal MHD instability localized near edge of plasma
 - Coupling between peeling
 (J-driven) and ballooning
 (∇P-driven) instabilities
- Occurs periodically during ELMy H-mode operation
- Causes enhanced transport of plasma out from core

- Typically observed in experiments as a spike in D_{α} emission
- Accompanied by a rapid decrease in stored plasma energy and plasma density
- This lost energy goes to the walls and divertor
 - Leads to large transient heat fluxes

- Typically observed in experiments as a spike in D_{α} emission
- Accompanied by a rapid decrease in stored plasma energy and plasma density
- This lost energy goes to the walls and divertor
 - Leads to large transient heat fluxes

3 Mechanisms for Total Edge Current to Change: Local 2. Change in external flux, motion through ▼B, Shape Change

$$\delta I_{\phi}^{w_r} = \frac{4\pi}{\mu_0 R_0} \underbrace{\left[\delta \psi_{\rm ext}(a) - B_{\theta}(r_0) R_0 \delta w_r - \eta J_{\phi} \delta t\right]}_{\delta \psi_{\rm ext} \approx \delta \psi_{\rm ext}(\mathbf{r}_0) + \delta \mathbf{r} \cdot \nabla \psi_{\rm ext}} \underbrace{\left[\begin{array}{c} \text{Can be considered small in ideal plasma} \end{array}\right]}_{\mathbf{r} = \mathbf{r} \cdot \mathbf{r$$

Local Change in External Flux (such as from coil currents changing

- 2 Change in flux due to motion of plasma through inhomogeneous **B** field
- 3 Change in plasma shape (compression, etc)

Shape Changes During Oscillations - Decreased XS Area, Decreased & Oscillations - Decreased & Osc

Bootstrap Current Plot with ELMs overlaid

Time - /mas

Stability results with an artificially added current at edge, from simulation predictions

Plasma marginally stable without added current, but unstable with added current

This is stability of a time slice right before an ELM is triggered during a vertical oscillation moving downwards

Absolute dW Values vs ELM Frequency

Absolute dW Values vs ELM Freq. for Shot 174848 Only

Shot 174848 Change in Stored Energy after ELM versus Frequency

