Multiple Linear Regression Additional Variable Types

Module 6

DATA 5600 Introduction to Regression and Machine Learning for Analytics Marc Dotson

Module Overview

Categorical variables

Interaction variables

Higher-order variables

Categorical Variables

Salary Data

- Are company pay guides being followed?
- What is the response variable Y, and is it continuous or categorical?
- What are the covariates, and are they continuous or categorical?

Salary (quarterly)	Experience (in years)	Education	Manager	
13876	1	HS	Yes	
11608	1	BS+	No	
18701	1	BS+	Yes	
11283	1	BS	No	
19346	20	HS	No	

• How do we deal with categorical variables in regression?

Categorical variables are often called "factors."

Each possible value within the factor is called a "level."

Salary Data

We know how to visually compare two continuous variables

Salary Data

 But, a scatterplot doesn't work very well when one variable is categorical

Salary Data: Side-by-Side Boxplots

Instead, we can use boxplots to visualize categorical variables

Salary Data: Color-Coded Scatterplots

Alternatively, we could create plots like these

Salary Data: Color- and Shape- Categorical Coded Scatterplots

Code!

We want to use the multiple linear regression model:

Salary_i =
$$\beta_0 + \beta_1 \times \text{Experience}_i + \beta_2 \times \text{Education}_i + \beta_3 \times \text{Manager}_i + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- But how do we stick categories into a math function?
 - Ex: Education $_i$ = BS+

Answer: We use indicator variables.

$$I(A) = \begin{cases} 1 & \text{if } A \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

Note: indicator variables are also called "dummy" variables, and the process of creating an indicator variable from categorical data is called "coding" or "dummy coding," among other things

• A correctly written model:

Salary_i =
$$\beta_0 + \beta_1 \times \text{Experience}_i + \beta_2 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_3 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_4 \times \text{I}(\text{Manager}_i = \text{Yes}) + \epsilon_i, \qquad \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

What about "HS" and "Not a Manager"?

The design matrix X:

$$X = \begin{bmatrix} 1 & \text{Exp}_1 & \text{EduBS}_1 & \text{EduBSp}_1 & \text{Man}_1 \\ 1 & \text{Exp}_2 & \text{EduBS}_2 & \text{EduBSp}_2 & \text{Man}_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \text{Exp}_n & \text{EduBS}_n & \text{EduBSp}_n & \text{Man}_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 20 & 0 & 0 & 0 \end{bmatrix}$$

In python, the data set you use for modelling would not be the original data. It would be this one with dummy variables.

Salary (quarterly)	Experience (in years)	Education	Manager						
13876	1	HS	Yes						
11608	1	BS+	No						
•••									
19346	20	HS	No						

Indicator Variable Notes

- In general, for a categorical predictor variable with q levels, you will need to code q-1 indicator variables. If we incorrectly include q indicator variables in the model:
 - the model would be "over-parameterized" redundant and unnecessary information
 - we cannot compute $\widehat{\beta} = (X'X)^{-1}X'Y$ since X'X would be singular (non-invertible)

 The level not coded becomes absorbed into the intercept term and is called the "baseline" or "reference" level

Variable Selection Notes

- When performing variable selection, if at least one level of a categorical variable is "significant," you should leave in all other levels of that variable, even if the other levels are not significant.
 - If you remove only some levels of a variable and keep others in, your reference group changes (picks up the categories you removed, and you can artificially change pvalues)

 Cross-validation requires stratification to make sure all available levels show up in both training and testing data.

Fun Facts

A model with only one categorical predictor

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- Is equivalent to a two-sample t-test $(H_0: \beta_1 = 0)$
- Is a special case of the one-way ANOVA model

Salary Data Model Fit

```
\widehat{Salary}_i = 8044.75 + 545.79 \times \operatorname{Experience}_i + 3129.53 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS}) + 2999.45 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS}) + 6866.99 \times \operatorname{I}(\operatorname{Manager}_i = \operatorname{Yes})
```


Interpret

HS Baseline									
	coef	std err	t	P> t	[0.025	0.975]			
const	8044.7518	392.781	20.482	0.000	7250.911	8838.592			
Experience	545.7855	30.912	17.656	0.000	483.311	608.260			
Education_BS	3129.5286	370.470	8.447	0.000	2380.780	3878.277			
Education_BS+	2999.4451	416.712	7.198	0.000	2157.238	3841.652			
Manager_Yes	6866.9856	323.991	21.195	0.000	6212.175	7521.796			
BS Baseline									
	coef	std err	t	P> t	[0.025	0.975]			
const	1.117e+04	370.814	30.134	0.000	1.04e+04	1.19e+04			
Experience	545.7855	30.912	17.656	0.000	483.311	608.260			
Education_HS	-3129.5286	370.470	-8.447	0.000	-3878.277	-2380.780			
Education_BS+	-130.0835	398.157	-0.327	0.746	-934.789	674.622			
Manager_Yes	6866.9856	323.991	21.195	0.000	6212.175	7521.796			
BS+ Baseline									
	coef	std err	t	P> t	[0.025	0.975]			
const	1.104e+04	390.631	28.273	0.000	1.03e+04	1.18e+04			
Experience	545.7855	30.912	17.656	0.000	483.311	608.260			
Education_HS	-2999.4451	416.712	-7.198	0.000	-3841.652	-2157.238			
Education_BS	130.0835	398.157	0.327	0.746	-674.622	934.789			
Manager_Yes	6866.9856	323.991	21.195	0.000	6212.175	7521.796			

Code!

Interpreting Coefficients

The fitted model is:

```
\widehat{\text{Salary}}_i = 8044.75 + 545.79 \times \text{Experience}_i + 3129.53 \times I(\text{Education}_i = \text{BS}) + 2999.45 \times I(\text{Education}_i = \text{BS}+) + 6866.99 \times I(\text{Manager}_i = \text{Yes})
```

How do you interpret the intercept?

How do you interpret the coefficient for Experience_i?

The fitted model is:

```
\widehat{\text{Salary}}_i = 8044.75 + 545.79 \times \text{Experience}_i + 3129.53 \times I(\text{Education}_i = \text{BS}) + 2999.45 \times I(\text{Education}_i = \text{BS}+) + 6866.99 \times I(\text{Manager}_i = \text{Yes})
```

• How do you interpret the coefficient for $I(Manager_i = Yes)$?

The fitted model is:

```
\widehat{\text{Salary}}_i = 8044.75 + 545.79 \times \text{Experience}_i + 3129.53 \times I(\text{Education}_i = \text{BS}) + 2999.45 \times I(\text{Education}_i = \text{BS}+) + 6866.99 \times I(\text{Manager}_i = \text{Yes})
```

• How do you interpret the coefficient for $I(Education_i = BS)$?

- How do you interpret the coefficient for $I(Education_i = BS+)$?
- For equal years of experience and managerial levels, how much does average quarterly salary increase with a BS+ compared to a BS degree?

CI for the Slope

• A 95% confidence interval for β_4 (coefficient for I(Manager_i = Yes)) is

$$6866.99 \pm 2.02 \times 323.99 = (6212.18, 7521.80)$$

How do you interpret this interval?

Testing the Entire Categorical Variable

For the salary data, suppose we want to test if education has an effect on average salary

Salary_i =
$$\beta_0 + \beta_1 \times \text{Experience}_i + \beta_2 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_3 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_4 \times \text{I}(\text{Manager}_i = \text{Yes}) + \epsilon_i, \\ \beta_4 \times \text{I}(\text{Manager}_i = \text{Yes}) + \epsilon_i, \\ \epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

The hypothesis are

$$H_0: \beta_2 = \beta_3 = 0$$

 H_a : at least one coefficient is non-zero

$$F = 41.75 \sim F_{5-1-2,45-5} \rightarrow p - value \approx 0$$

What is the conclusion?

CI and PI: Salary Data

Salary_i =
$$8044.75 + 545.79 \times \text{Experience}_i + 3129.53 \times \text{I}(\text{Education}_i = \text{BS}) + 2999.45 \times \text{I}(\text{Education}_i = \text{BS}+) + 6866.99 \times \text{I}(\text{Manager}_i = \text{Yes})$$

• The average salary for a manager with a BS education and 10 years experience is

$$\widehat{\text{Salary}}_i = 8044.75 + 545.79 \times 10 + 3129.53 \times 1 + 2999.45 \times 0 + 6866.99 \times 1$$

= 23,499.12

 95% confidence interval for the average salary for a manager with a BS education and 10 years experience is

- Interpretation:
- 95% <u>prediction interval</u> for the salary of a manager with a BS education and 10 years experience:

Interpretation:

Interaction Variables

Interactions

- Based on just this picture, if you have a HS degree and become a manager, how much does your salary go up, on average?
- Based on just this picture, if you have a BS degree and become a manager, how much does your salary go up, on average?
- Key observation: How much your salary increases when you become a manager depends on how much education you have.

Interactions

- Interaction: Occurs when the effect of one covariate on the response depends on the value of another covariate.
- Interactions enter the regression model multiplicatively.

Interactions: Notes

- Two-way interactions (X_1X_2) are good when interpretable
- Higher-order interactions $(X_1X_2X_3)$ become difficult to interpret you should use these only when clearly interpretable
- If a higher-order interaction $(X_1X_2X_3)$ is used, then the model must also include *all* lower-order interaction terms $(X_1X_2, X_1X_3, X_2X_3, X_1, X_2, X_3)$ even if lower-order terms are not significant
 - "Good form"
 - Maintain correct interpretation
 - Otherwise, those coefficients are forced to be zero (want a flexible "response surface")
- Meaningful and interpretable interactions are best

- Interaction plots can be used to help determine if there is an interaction (the effect of X_1 on y depends on X_2)
- Parallel lines indicate no interaction
- Nonparallel lines indicate an interaction. The more nonparallel the lines, the stronger the interaction

Only works well with categorical data

Salary Model with Interactions

30000

25000

Salary 00005

15000

Interactions

Manager

No Yes

Education

BS

BS+ HS

Salary_i =
$$\beta_0 + \beta_1 \times \text{Experience}_i + \beta_2 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_3 \times \text{I}(\text{Education}_i = \text{BS}) + \beta_4 \times \text{I}(\text{Manager}_i = \text{Yes}) + \beta_5 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{SS}) + \beta_5 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{SS}) \text{I}(\text{Mana$$

Fitted model:

$$\begin{split} \widehat{\text{Salary}}_i &= 9458.4 + 498.4 \times \text{Experience}_i + \\ & 1384.3 \times \text{I}(\text{Education}_i = \text{BS}) + \\ & 1741.3 \times \text{I}(\text{Education}_i = \text{BS}+) + \\ & 3988.8 \times \text{I}(\text{Manager}_i = \text{Yes}) + \\ & 5049.3 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{Yes}) + \\ & 3051.8 \times \text{I}(\text{Education}_i = \text{BS}+) \text{I}(\text{Manager}_i = \text{Yes}) \end{split}$$

10

Experience

15

20

Salary Model with Interactions

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + \\ 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

- How would you test if the interaction between education and manager position is "significant"?
 - Perform an F-test (see earlier notes in this module)
 - H_0 : $\beta_5 = \beta_6 = 0$ vs. H_a : at least one coefficient is non-zero
 - In this case, $F = 4776.7 \rightarrow p$ —value ≈ 0
 - Conclude:

Code!

Interaction Interpretations

Interpreting Interactions

• Let X_1 and X_2 be continuous:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

• Holding X_2 constant, as X_1 increases by 1, how much does Y change, on average?

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$

$$y_i^* = \beta_0 + \beta_1 (x_{i1} + 1) + \beta_2 x_{i2} + \beta_3 (x_{i1} + 1) x_{i2} + \epsilon_i$$

$$y_i^* - y_i = \beta_0 + \beta_1(x_{i1} + 1) + \beta_2 x_{i2} + \beta_3(x_{i1} + 1)x_{i2} + \epsilon_i - (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i)$$

$$\Delta y_i = \beta_1 + \beta_3 x_{i2} \neq \beta_1$$

• So, the effect of X_1 on Y depends on X_2 .

Continuous-Continuous Interactions

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- Interpretation of the interaction effect:
 - Holding X_2 constant, if X_1 increases by 1 unit, then we expect an average change of $\beta_1 + \beta_3 x_{i2}$ in Y.
 - Similarly, holding X_1 constant, if X_2 increases by 1 unit, then we expect an average change of $\beta_2 + \beta_3 x_{i1}$ in Y
- Interpretation of the main effects*:
 - If X_1 increases by 1 unit and $x_{i2} = 0$, then we expect an average change of β_1 in Y.
 - If X_2 increases by 1 unit and $x_{i1} = 0$, then we expect an average change of β_2 in Y.

* If you have interaction terms in the model, focus only on interpreting that interaction effect (not the main effects)

Continuous-Continuous Interactions

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- Interpretation of the interaction effect:
 - Holding X_2 constant, if X_1 increases by 1 unit, then we expect an average change of $\beta_1 + \beta_3 x_{i2}$ in Y.
 - Similarly, holding X_1 constant, if X_2 increases by 1 unit, then we expect an average change of $\beta_2 + \beta_3 x_{i1}$ in Y

Not necessarily meaningful by itself – may

- Interpretation of the main effects*: not even be possible for x_{i2} to equal 0
 - If X_1 increases by 1 unit and $x_{i2} = 0$, then we expect an average change of β_1 in Y.
 - If X_2 increases by 1 unit and $x_{i1} = 0$, then we expect an average change of β_2 in Y.

^{*} If you have interaction terms in the model, focus only on interpreting that interaction effect (not the main effects)

Interactions

- Types of interactions:
 - Continuous-Continuous
 - Continuous-Categorical
 - Categorical-Categorical

Continuous-Continuous Interactions

- Salary_i = $\hat{\beta}_0 + \hat{\beta}_1 \times \text{Experience}_i + \hat{\beta}_2 \times \text{Age}_i + \hat{\beta}_3 \times \text{Experience}_i \times \text{Age}_i$
- The effect of Experience on average quarterly Salary depends on Age:

$$\hat{\beta}_1 + \hat{\beta}_3 \times Age_i$$

The effect of Age on average quarterly Salary depends on Experience:

Continuous-Continuous Interactions

- Salary_i = $\hat{\beta}_0 + \hat{\beta}_1 \times \text{Experience}_i + \hat{\beta}_2 \times \text{Age}_i + \hat{\beta}_3 \times \text{Experience}_i \times \text{Age}_i$
- The effect of Experience on average quarterly Salary depends on Age:

$$\hat{\beta}_1 + \hat{\beta}_3 \times Age_i$$

The effect of Age on average quarterly Salary depends on Experience:

$$\hat{\beta}_2 + \hat{\beta}_3 \times \text{Experience}_i$$

Continuous-Categorical Interactions

$$\widehat{\text{Salary}}_i = \hat{\beta}_0 + \hat{\beta}_1 \times \text{Experience}_i + \hat{\beta}_2 \times \text{I}(\text{Manager}_i = \text{Yes}) + \hat{\beta}_3 \times \text{Experience}_i \times \text{I}(\text{Manager}_i = \text{Yes})$$

 The effect of Experience on average quarterly Salary depends on Manager status:

for managers

for non-managers

 The effect of being a Manager on average quarterly Salary depends on Experience:

Continuous-Categorical Interactions

$$\widehat{\text{Salary}}_i = \hat{\beta}_0 + \hat{\beta}_1 \times \text{Experience}_i + \hat{\beta}_2 \times \text{I}(\text{Manager}_i = \text{Yes}) + \hat{\beta}_3 \times \text{Experience}_i \times \text{I}(\text{Manager}_i = \text{Yes})$$

 The effect of Experience on average quarterly Salary depends on Manager status:

$$\hat{\beta}_1 + \hat{\beta}_3$$
 for managers

$$\hat{\beta}_1$$
 for non-managers

 The effect of being a Manager on average quarterly Salary depends on Experience:

$$\hat{\beta}_2 + \hat{\beta}_3 \times \text{Experience}_i$$

Interactions

Categorical-Categorical Interactions

$$\widehat{\text{Salary}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \times \text{I}(\text{Education}_i = \text{BS}) + \widehat{\beta}_2 \times \text{I}(\text{Education}_i = \text{BS}) + \widehat{\beta}_3 \times \text{I}(\text{Manager}_i = \text{Yes}) + \widehat{\beta}_4 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{Yes}) + \widehat{\beta}_5 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{Yes})$$

The effect of Education on average quarterly Salary depends on Manager status:

for managers with a BS education

for non-managers with a BS education

for managers with a BS+ education

for non-managers with a BS+ education

The effect of being a **Manager** on average quarterly Salary depends on Education:

for a BS education

for a BS+ education

Interactions

Categorical-Categorical Interactions

$$\widehat{\text{Salary}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \times \text{I}(\text{Education}_i = \text{BS}) + \widehat{\beta}_2 \times \text{I}(\text{Education}_i = \text{BS}) + \widehat{\beta}_3 \times \text{I}(\text{Manager}_i = \text{Yes}) + \widehat{\beta}_4 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{Yes}) + \widehat{\beta}_5 \times \text{I}(\text{Education}_i = \text{BS}) \text{I}(\text{Manager}_i = \text{Yes})$$

The effect of Education on average quarterly Salary depends on Manager status:

$$\hat{\beta}_1 + \hat{\beta}_4$$
 for managers with a BS education

$$\hat{\beta}_1$$
 for non-managers with a BS education

$$\hat{\beta}_2 + \hat{\beta}_5$$
 for managers with a BS+ education

$$\hat{\beta}_2$$
 for non-managers with a BS+ education

The effect of being a Manager on average quarterly Salary depends on Education:

$$\hat{\beta}_3 + \hat{\beta}_4$$
 for a BS education

$$\hat{\beta}_3 + \hat{\beta}_5$$
 for a BS+ education

```
Final fitted model: \widehat{Salary}_i = 9458.4 + 498.4 \times \operatorname{Experience}_i + \\ 1384.3 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS}) + \\ 1741.3 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS}+) + \\ 3988.8 \times \operatorname{I}(\operatorname{Manager}_i = \operatorname{Yes}) + \\ 5049.3 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS})\operatorname{I}(\operatorname{Manager}_i = \operatorname{Yes}) + \\ 3051.8 \times \operatorname{I}(\operatorname{Education}_i = \operatorname{BS}+)\operatorname{I}(\operatorname{Manager}_i = \operatorname{Yes})
```



```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

- What effect does becoming a manager have on average quarterly salary if you have a HS education?
- What effect does becoming a manager have on average quarterly salary if you have a BS education?

 What effect does becoming a manager have on average quarterly salary if you have a BS+ education?

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

- What effect does becoming a manager have on average quarterly salary if you have a HS education? Average quarterly salary would increase by \$3,988.8
- What effect does <u>becoming a manager</u> have on average quarterly salary if you have a BS education?

Average quarterly salary would increase by \$3,988.8 + \$5,049.3 = \$9,038.1

• What effect does becoming a manager have on average quarterly salary if you have a BS+ education?

Average quarterly salary would increase by \$3,988.8 + \$3,051.8 = \$7,040.6

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

• For managers, what is the effect on average quarterly salary of having a BS+ education vs. a BS education?

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

• For managers, what is the effect on average quarterly salary of having a BS+ education vs. a BS education?

```
(1741.3 + 3051.8) -
(1384.3 + 5049.3) = -1640.5
```

Average quarterly salary would decrease by \$1,640.5

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

• What is the average salary for a non-manager with a BS education and 24 years experience?

What is the average salary for a manager with a BS education and 24 years experience?

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times \text{Experience}_i + \\ 1384.3 \times I(\text{Education}_i = \text{BS}) + 1741.3 \times I(\text{Education}_i = \text{BS}+) + \\ 3988.8 \times I(\text{Manager}_i = \text{Yes}) + \\ 5049.3 \times I(\text{Education}_i = \text{BS})I(\text{Manager}_i = \text{Yes}) + \\ 3051.8 \times I(\text{Education}_i = \text{BS}+)I(\text{Manager}_i = \text{Yes})
```

 What is the average salary for a non-manager with a BS education and 24 years experience?

```
\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times 24 + 1384.3 \times 1 = \$22,804.30
```

What is the average salary for a manager with a BS education and 24 years experience?

$$\widehat{\text{Salary}}_i = 9458.4 + 498.4 \times 24 + 1384.3 \times 1 + 3988.8 \times 1 + 5049.3 \times 1 = \$31,842.40$$

Interactions: Notes

- Interactions vs. Multicollinearity (do not confuse these)
- There is an interaction between predictors X_1 and X_2 if:
 - the *effect* of X_1 on Y depends on X_2
- There is multicollinearity involving predictors X_1 and X_2 if:
 - X_1 is linearly related to X_2 (no mention of Y)
- Since X_1 and X_1X_2 are likely to be collinear, standardizing may help reduce the collinearity, but we only need to do this if we need X_1 as a stand-alone independent variable (it will not affect the test on the interaction term)

Interactions vs Multicollinearity

Interactions

Multicollinearity Only

Y = Weight

X1 = Height

X2 = Sex(0,1)

Correlation Info:

Height is correlated with Sex

Interaction Info:

The effect of Height on Weight (slope) does **not** depend on Sex

Interaction Only

Y = Posttest Score

X1 = Pretest Score

X2 = Intervention (none, teaching)

Pretest Score is **not** correlated with subsequent Intervention

The effect of Pretest Score on Posttest Score (slope) **does** depend on Intervention

Multicollinearity and Interaction

Y = Number of Jobs in a County

X1 = % of Workforce with College Degree

X2 = County Type (Rural, Urban)

% of Workforce with College Degree is correlated with County Type

The effect of % of Workforce with College Degree on Number of Jobs in a County (slope) does depend on County Type

Examples taken from: https://www.theanalysisfactor.com/int eraction-association/

Higher-Order Variables

Polynomials

• If the effect of X_1 on Y appears quadratic (or higher-order...), add predictor $X_1X_1=X_1^2$

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1}^2 + \epsilon_i$$
, $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$

- Same approach applies as for interaction terms
 - Include lower-order terms
 - Can standardize to reduce multicollinearity (not critical)
 - Coefficient interpretation is important: if X_1 increases by 1 unit, and X_2 is held constant, then we expect an average change in Y of $\beta_1 + \beta_3(2x_{i1} + 1)$:

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \beta_{3}x_{i1}^{2} + \epsilon_{i}$$

$$y_{i}^{*} = \beta_{0} + \beta_{1}(x_{i1} + 1) + \beta_{2}x_{i2} + \beta_{3}(x_{i1} + 1)^{2} + \epsilon_{i}$$

$$y_{i}^{*} - y_{i} = \beta_{1} + \beta_{3}(2x_{i1} + 1)$$