

Photonics

Electromagnetism

Maxwell equations, dielectric media, polarization, reflection and transmission, layered structures

Maxwell EM wave equations

Maxwell:

(in a medium with no free charges)

$$\begin{cases} \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{D} = 0 \\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$

Constitutive laws:

$$\begin{cases} \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \\ \mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M} \end{cases}$$

- P and M describe the response of a material to the incident field
- Poynting vector: $\mathbb{P} = \mathbf{E} \times \mathbf{H}$

Dielectric media

- Linear media: linear relations between $P(\mathbf{r},t)$ and $E(\mathbf{r},t)$
- **Homogeneous media:** relation between $P(\mathbf{r},t)$ and $E(\mathbf{r},t)$ is not dependent on the position \mathbf{r}
- **Isotropic media:** relation between $P(\mathbf{r},t)$ and $E(\mathbf{r},t)$ is not dependent on the direction of $E(\mathbf{r},t)$
- **Non-dispersive media:** material response is instantaneous; $P(\mathbf{r},t)$ at a time t is determined by $\mathbf{E}(\mathbf{r},t)$ at the same time t, and not by the values of $\mathbf{E}(\mathbf{r},t)$ at previous times
- Spatially non-dispersive media: $P(\mathbf{r},t)$ at a location \mathbf{r} is determined by $\mathbf{E}(\mathbf{r},t)$ at the same location \mathbf{r}

Homogeneous, linear, non-dispersive, non-magnetic and isotropic media

• $P(\mathbf{r},t)$ and $D(\mathbf{r},t)$ can be written as:

$$\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$$

$$\mathbf{D} = \varepsilon \mathbf{E} \qquad \text{with} \qquad \varepsilon = \varepsilon_0 (1 + \chi)$$

 $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$ $\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}$

• Maxwell equations become:
$$\begin{cases} \nabla \times \mathbf{H} = \varepsilon \frac{\partial \mathbf{E}}{\partial t} \\ \nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{H}}{\partial t} \\ \nabla \cdot \mathbf{E} = 0 \\ \nabla \cdot \mathbf{H} = 0 \end{cases}$$

Scalar wave equation holds for every field component u:

$$\nabla^2 u - \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2} = 0$$
, with $v^2 = \frac{1}{\varepsilon \mu_0}$ and $n = \frac{c}{v}$

 $\frac{E_0}{H_0} = Z = \frac{Z_0}{n} = \frac{\omega \mu_0}{k}$

TEM wave

 The transversal electromagnetic plane wave (TEM) is expressed by complex amplitudes:

$$\begin{cases} \mathbf{E}(\mathbf{r},t) = \text{Re}[\mathbf{E}(\mathbf{r})e^{j\omega t}] \\ \mathbf{H}(\mathbf{r},t) = \text{Re}[\mathbf{H}(\mathbf{r})e^{j\omega t}] \end{cases}$$
$$\begin{cases} \mathbf{E}(\mathbf{r}) = \mathbf{E}_0e^{-j\mathbf{k}\cdot\mathbf{r}} \\ \mathbf{H}(\mathbf{r}) = \mathbf{H}_0e^{-j\mathbf{k}\cdot\mathbf{r}} \end{cases}$$

To satisfy the Maxwell equations we have:

$$k = \omega \sqrt{\varepsilon \mu_0} = \frac{\omega}{v} = \frac{n\omega}{c} = nk_0$$

Polarization of EM waves

- **Polarization:** orientation of the field vector in a particular location in space changes in time
- Polarization is **important for interaction with matter**:
 - Reflection and transmission coefficients are dependent on the polarization

Polarization of EM waves

- Polarization: orientation of the field vector in a particular location in space changes in time
- Polarization is **important for interaction with matter**:
 - Reflection and transmission coefficients are dependent on the polarization
 - Absorption is polarization dependent
 - \blacksquare *n* of anisotropic materials depends on the polarization
- In general, a monochromatic plane wave with frequency ν propagating in the z-direction with the electric field in the xy-plane is described by:

$$\mathbf{E}(z,t) = \operatorname{Re}\left[\mathbf{A}e^{j2\pi\nu\left(t-\frac{z}{c}\right)}\right] \text{ or } \mathbf{E}(z,t) = \operatorname{Re}\left[\mathbf{A}e^{j\omega t}e^{-jkz}\right]$$
$$\mathbf{A} = A_{x}\mathbf{e}_{x} + A_{y}\mathbf{e}_{y}$$

Elliptical polarization

• Substitution with $A_x = a_x e^{j\phi_x}$ and $A_y = a_y e^{j\phi_y}$ gives

$$\mathbf{E}(z,t) = E_{\chi}\mathbf{e}_{\chi} + E_{\nu}\mathbf{e}_{\nu}$$

where

$$\begin{cases} E_x = a_x \cos \left[2\pi \nu \left(t - \frac{Z}{c} \right) + \phi_x \right] \\ E_y = a_y \cos \left[2\pi \nu \left(t - \frac{Z}{c} \right) + \phi_y \right] \end{cases}$$

$$\Rightarrow \frac{E_x^2}{a_x^2} + \frac{E_y^2}{a_y^2} - 2\cos\phi \frac{E_x E_y}{a_x a_y} = \sin^2\phi$$

$$\mathbf{E}(z,t) = \operatorname{Re}[\mathbf{A}e^{j\pi\nu(t-z/c)}]$$
$$\mathbf{A} = A_{\chi}\mathbf{e}_{\chi} + A_{y}\mathbf{e}_{y}$$

Elliptical polarization

Snapshot at <u>one</u> moment

Linear polarization

- A special case of elliptical polarization
 - One of the components is dropped, e.g.: $a_x = 0$

$$\blacksquare \text{ If } \phi = 0 \text{ or } \phi = \pi$$

Reflection and transmission: TE and TM waves

- TEM wave
 - electrical component E
 - magnetic component H
 - \blacksquare $\mathbf{E} \perp \mathbf{H} \perp \mathbf{k}$
- Orientation to the surface
 - TE wave: $\mathbf{E} \perp \mathbf{n}$ "s-polarization"
 - TM wave: $\mathbf{H} \perp \mathbf{n}$ "p-polarization"

External reflection and transmission

• From lower to higher n: (n' > n)

$$r_{\text{TE}} = \frac{n\cos\theta - n'\cos\theta'}{n\cos\theta + n'\cos\theta'}$$

$$r_{\text{TM}} = \frac{n'\cos\theta - n\cos\theta'}{n'\cos\theta + n\cos\theta'}$$

Perpendicular incidence:

$$R = \left(\frac{n-n'}{n+n'}\right)^2 \qquad T = \frac{4nn'}{(n+n')^2}$$

Brewster's angle:No reflection for TM-waves

$$\tan \theta_{\rm B} = \frac{n'}{n}$$

Internal reflection and transmission

• From higher to lower n (n > n'), same equations:

$$r_{\text{TE}} = \frac{n\cos\theta - n'\cos\theta'}{n\cos\theta + n'\cos\theta'}$$

$$r_{\text{TM}} = \frac{n'\cos\theta - n\cos\theta'}{n'\cos\theta + n\cos\theta'}$$

$$\tan \theta_{\rm B} = \frac{n'}{n}$$

Total internal reflection (TIR):
 No more transmission as the incidence angle becomes too large

$$\sin \theta_{\rm TIR} = \frac{n'}{n}$$

Exercise: Brewster angle

Consider a glass plate (n = 1.5) in air.

For external reflection:

- Calculate $\theta_{\rm B}$
- Calculate θ_{TIR}

For internal reflection:

- Calculate $\theta_{\rm B}$
- Calculate θ_{TIR}

Power reflection and transmission

Reflection and transmission of power:

$$R_{\text{TE}} = |r_{\text{TE}}|^2$$

$$T_{\text{TE}} = 1 - R_{\text{TE}} = \frac{n' \cos \theta'}{n \cos \theta} |t_{\text{TE}}|^2$$

$$R_{\text{TM}} = |r_{\text{TM}}|^2$$

$$T_{\text{TM}} = 1 - R_{\text{TM}} = \frac{n' \cos \theta'}{n \cos \theta} |t_{\text{TM}}|^2$$

• Example: GaAs: n' = 3.6

Absorption

- Dielectric materials which absorb light:
 - described by a complex susceptibility:

$$\chi = \chi_{\rm R} + j\chi_{\rm I}$$
, $\varepsilon = \varepsilon_0(1 + \chi_{\rm R} + j\chi_{\rm I})$

It means:

$$k = k_0 \sqrt{1 + \chi_{R} + j\chi_{I}} = k_0 (n_{R} + jn_{I}) = \beta - \frac{j}{2} \alpha$$

■ Therefore:

$$e^{-jkz} = e^{-\frac{1}{2}\alpha z}e^{-j\beta z}$$

Where α : attenuation or absorption coefficient

and β : propagation constant

The power will decrease exponentially with distance: $P(z) = P_0 e^{-\alpha z}$

Dispersion

Dispersive materials are characterized by:

Phase velocity:

$$v_{\rm p} = \frac{\omega}{\beta}$$
 $n = \frac{c}{v_{\rm p}}$ refractive index

• Group velocity:

$$v_{\rm g} = \frac{{\rm d}\omega}{{\rm d}\beta}$$
 $N = \frac{c}{v_{\rm g}}$ group index

• Material dispersion:

$$\frac{\mathrm{d}n}{\mathrm{d}\lambda} \qquad \qquad N = n - \lambda \frac{\mathrm{d}n}{\mathrm{d}\lambda}$$

Multilayered structure - layered media

- Layered structure: refractive index n_i , thickness d_i
- To determine:
 what is the reflection and transmission for an incident
 plane wave with a given incidence direction,
 wavelength and polarization
- Polarization: 2 independent cases
 - **E**-field parallel to the surface: s-wave
 - H-field parallel to the surface: p-wave

Three-layer structure

- Simplest layered medium
- = 2 semi-transparent mirrors
- = "Fabry-Perot interferometer"
- = "Fabry-Perot etalon"

Three-layer structure: 2 analysis methods

Method 1

- Wave impinges
- Calculate transmission and reflection (Fresnel)
- Propagation in the layer
- Calculate transmission and reflection (Fresnel)
- Etc. Etc. Etc.
- Sum up all contributions

Method 2

- An incident plane wave from 1 results in:
- 1 forward and 1 backward wave in layers 1 and 2
- 1 forward wave in layer 3
- Apply boundary conditions on the both interfaces
- Solve a linear system

Symmetrical three-layer structure (1)

Reflection and transmission of a plate:

$$R = \frac{4|r_{12}|^2 \sin^2 \phi}{|1 - r_{12}^2 e^{-j2\phi}|^2} \qquad T = \frac{|t_{12}t_{21}|^2}{|1 - r_{12}^2 e^{-j2\phi}|^2}$$

- where $\phi = k_{2,z}d = k_0 n_2 d \cos \theta_2 = \frac{2\pi}{\lambda_0} n_2 d \cos \theta_2$
- Reflection and transmission of 1 interface

$$R_1 = |r_{12}|^2$$
, $T_1 = |t_{12}t_{21}|$ and $T_1 = 1 - R_1$

• Transmission of a plate:

$$T = \frac{T_1^2}{1 + R_1^2 - 2R_1 \cos 2\phi} = \frac{(1 - R_1)^2}{(1 - R_1)^2 + 2R_1 - 2R_1 \cos 2\phi}$$

$$=\frac{1}{1+F\sin^2\phi}$$
 where $F=\frac{4R_1}{(1-R_1)^2}$

$$\cos 2\phi = 1 - 2\sin^2\phi$$

Airy equation

Wave Optics

26

Symm

Reflect

- where
- Reflect

$$R_1 = |a|$$

Transn

Photonics

Interference between multiple waves (3)

$$I = \frac{I_{\text{max}}}{1 + (2\Im/\pi)^2 \sin^2(\phi/2)}$$

$$\begin{cases} I_{\text{max}} = \frac{I_0}{(1 - |h|)^2} \\ \\ \mathfrak{F} = \frac{\pi \sqrt{|h|}}{1 - |h|} \quad \text{finesse} \end{cases}$$

$$=\frac{1}{1+F\sin^2\phi}$$
 where $F=\frac{4R_1}{(1-R_1)^2}$

$$F = \frac{4R_1}{(1 - R_1)^2}$$

Airy equation

 n_1

Symmetrical three-layer structure (2)

- Transmission of a plate: $T = \frac{1}{1 + F \sin^2 \phi}$ where $F = \frac{4R_1}{(1 R_1)^2}$
- Perpendicular incidence and maximum transmission:

i.e.
$$\phi = m\pi$$
 $d = m\frac{\lambda}{2n_2}$ minimal transmission: $T_{\min} = \frac{1}{1+F}$

- Desirable: T_{\min} as small as possible
 - \rightarrow large $F \rightarrow R_1$ close to 1
 - ⇒ difficult with available materials

Symmetrical three-layer structure (3)

 Reflection of parallel plate with different refractive indices

Coatings

- Multiple layer structures
 - Multiple reflections at the interfaces
 - Interference of the reflections destructive: anti-reflection coating constructive: high-reflection coating
 - Usually designed for perpendicular incidence
- Application:
 - Dielectric mirrors (HR-coatings)
 - AR-coatings for lenses

Anti-reflection coating

- Reflected beams must interfere destructively
- if $n_1 < n_2 < n_3$ (phase shift π)

$$d = \frac{1}{4} \frac{\lambda_0}{n_2} = \frac{\lambda_2}{4}$$
 (quarter wave plate)

- From Fresnel equations: $r_{12} = r_{23}$
- Perpendicular incidence: $r_{ij} = \frac{n_i n_j}{n_i + n_j}$

from which:
$$n_2 = \sqrt{n_1 n_3}$$

Exercise: anti-reflection coating

- GaAs: $n_3 = 3.2$ for telecom wavelength, 1550 nm
 - Calculate n_2 for minimum reflection
 - Calculate d for minimum reflection
 - What is then the total reflection of the coated semiconductor?

Exercise: anti-reflection coating

- GaAs: $n_3 = 3.2$ for telecom wavelength
 - \blacksquare n_2
 - \blacksquare d
 - Reflection < 0.5% between1450 nm and 1650 nm
- Difficult to fabricate in practice
 - Material with exact refraction index
 - \blacksquare Thickness d is critical

optimal parameters

--- 10 % error on n

— 10 % error on n and d

Highly reflective coating (1)

- Two possibilities:
 - quarter-wave plate with $n_2 > n_1$ and $n_2 > n_3$

multilayered structure of quarter wave plates with high and low refraction index: acts as a Bragg-reflector

Highly reflective coating (2)

• Constructive interference if $n_{\rm H}d_{\rm H}=n_{\rm L}d_{\rm L}=\frac{\lambda_0}{4}$

$$R = \left(\frac{1 - \left(\frac{n_{\rm H}}{n_{\rm L}}\right)^{2N}}{1 + \left(\frac{n_{\rm H}}{n_{\rm L}}\right)^{2N}}\right)^{2}$$

- \rightarrow converges to 1 for large *N*
- \rightarrow better converges for higher $\frac{n_{\rm H}}{n_{\rm L}}$
- HR-coating for He-Ne laser
 - $\lambda = 633 \text{ nm}$
 - $n_{\rm H} = 2.32$ (zinc sulfide)

Complex coatings

- Applications
 - filters (wide and narrow band)
 - power splitters
 - polarization splitters
- Design: with special CAD-tools
- Example: sunglasses
 - *T* < 1% between 400nm and 500nm
 - 15% < *T* < 25% between 510nm and 790nm
 - *T* < 1% between 800nm and 900nm

