

Distributed hosting on AWS with Amazon SageMaker

Generative AI Foundations on AWS

Emily Webber, Principal ML Specialist SA at AWS

Lesson 7 – Level 400

Today's activities

- Many ways to build your FM application
- Hosting options on AWS
- How to host a distributed model
- Optimizations
- Hands-on walk-through: large model serving container on AWS

Reminder – everything we discuss today is possible on AWS and SageMaker!

So you have a good model, now what?

Customers

Client application

Foundation model

Goal: Simplify customer experience

Goal: Streamline development lifecycle

Options for foundation model applications

Each option has trade-offs around latency, pricing, and model lifecycle

Online application example: search

Use a model to convert search terms into *embeddings*

Use a similarity algorithm and vector store to find and retrieve documents

Use another model to convert the answer into natural language

Pro tip

This is called *retrieval augmented generation*. It uses at least two models hosted online for immediate service to customers. Retrieving documents mitigates LLM hallucinations.

Offline application example: call center summarizations

Evaluate responses and send to analysts

Invoke the model with the transcripts; ask the LLM for a summary

Run a batch job

Amazon SageMaker model deployment stack

Amazon SageMaker

Real-time inference

Asvnc inference Serverless inference

Batch inference

Multimodel endpoints

SAGEMAKER STUDIO IDE

Multicontainer endpoints

Inference DAG and pipelines SageMaker JumpStart

Manage and version models

MLOps Model monitoring

Metrics and logging in CloudWatch

FRAMEWORKS

Graviton

(ARM)

MODEL SERVERS

AWS Deep Learning Containers

TensorFlow Serving

TorchServe

NVIDIA Triton Inference Server

DEEP LEARNING COMPILERS AND RUNTIMES

Multi Model Server (MMS)

Deep Java Learning Serving (DJLServing)

ML COMPUTE INSTANCES & ACCELERATORS

GPUs

Inferentia &

Trainium

SageMaker Neo

NVIDIA TensorRT/cuDNN

Intel oneDNN

ARM Compute Library

aws

CPUs

What you need to host a model on SageMaker

Model artifact stored in a bucket

Inference image hosted a registry

Managed ML instances

Pro tip

Point to the latest AWS Deep Learning Container to easily run your inference script.

Use the one built for your framework, and pick large model hosting.

SageMaker Large Model Inference Container

- Use pre-built images to distribute your model over multiple GPUs
- Implements tensor and pipeline parallelism
- Data parallel is not needed, because there's no backward pass
- Can also run with inferentia
- Faster model loading with s5cmd
- Integrates with top open-source frameworks

Large Model Inference Containers

Framework	Job Type	Accelerator	Python Version Options	Example URL
DJLServing 0.22.1 with FasterTransformer 5.3.0, HuggingFace Transformers 4.27.3, and HuggingFace Accelerate 0.17.1	inference	GPU	3.9 (py39)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.22.1-fastertransformer5.3.0- cu118
DJLServing 0.22.1 with DeepSpeed 0.8.3, HuggingFace Transformers 4.27.4, Diffusers 0.14.0 and HuggingFace Accelerate 0.18.0	inference	GPU	3.9 (py39)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.22.1-deepspeed0.8.3-cu118
DJLServing 0.22.1 with Neuron SDK 2.10.0, TransformersNeuronX 0.3.0 and HuggingFace Transformers 4.28.1	inference	Neuron	3.8 (py38)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.22.1-neuronx-sdk2.10.0
DJLServing 0.21.0 with FasterTransformer 5.3.0, HuggingFace Transformers 4.25.1, and HuggingFace Accelerate 0.15.0	inference	GPU	3.9 (py39)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.21.0-fastertransformer5.3.0- cu117
DJLServing 0.21.0 with DeepSpeed 0.8.3, HuggingFace Transformers 4.26.0, and HuggingFace Accelerate 0.16.0	inference	GPU	3.9 (py39)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.21.0-deepspeed0.8.3-cu117
DJLServing 0.20.0 with DeepSpeed 0.7.5, HuggingFace Transformers 4.23.1, and HuggingFace Accelerate 0.13.2	inference	GPU	3.8 (py38)	763104351884.dkr.ecr.us- west-2.amazonaws.com/djl- inference:0.20.0-deepspeed0.7.5-cu116

Extend a prebuilt deep learning container

```
# SageMaker PyTorch image
FROM 763104351884.dkr.ecr.us-east-1.amazonaws.com/pytorch-training:1.5.1-cpu-py36-ubuntu16.04

ENV PATH="/opt/ml/code:${PATH}"

# this environment variable is used by the SageMaker PyTorch container to determine our user code directory.

ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code

# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code.

COPY cifar10.py /opt/ml/code/cifar10.py

# Defines cifar10.py as script entrypoint

ENV SAGEMAKER_PROGRAM cifar10.py
```


Distributed model hosting on SageMaker

Large generative model inference optimization

https://bit.ly/sm-nb-7-hosting

Hands-on demo

amazon-sagemaker-examples / inference / nlp / realtime / llm / bloom_176b / djl_deepspeed_deploy.ipynb

Type: Corrections, feedback, or other questions? Contact us at https://support.awsamazon.com/#/contacts/aws-academy. All trademarks are the property of their owners.