Inteligência Artificial

Luís A. Alexandre

HBI

Ano lectivo 2018-19

Conteúdo

Métodos de aprendizagem estatística Introdução

Aprendizagem Bayesiana

Máximo à posteriori: MAP Máxima verosimilhança Naive Bayes k-vizinhos mais próximos Leitura recomendada

Introdução

- ▶ Por vezes os agentes têm de tomar decisões sem terem a certeza dos valores de todas as variáveis que podem influenciar essas decisões.
- Ex.: no mundo wumpus, o agente terá por vezes de tomar a decisão de avançar para uma sala sem ter a certeza de que ela não contém um poço.
- Os ambientes reais contêm muita incerteza pois são normalmente muito complexos e isso torna difícil a observação de todas as variáveis relevantes para a tomada de decisões.
- Os agentes podem lidar com essa incerteza usando teorias probabilísticas do funcionamento do mundo.
- ▶ Nesta aula vamos ver alguns métodos de aprendizagem que os agentes podem usar para obterem esse tipo de teorias.

Métodos de aprendizagem estatística Aprendizagem Bayesiana

Conteúdo

Métodos de aprendizagem estatística

Aprendizagem Bayesiana

Aprendizagem Bayesiana

► *h*₁: 100% cereja;

de sacos, mais uma vez indistinguíveis:

▶ h₂: 75% cereja + 25% limão;

▶ h₃: 50% cereja + 50% limão;

► h₄: 25% cereja + 75% limão;

Os rebuçados são vendidos em sacos grandes. Existem 5 variedades

Aprendizagem Bayesiana

- ▶ A Aprendizagem Bayesiana (AB) permite a tomada de decisões sem ser necessário escolhermos qual é a teoria "certa" que explica o mundo.
- ► Conforme vamos recebendo informação, a AB vai decidindo entre as teorias que estão disponíveis, qual é a adequada.
- Exemplo: um rebuçado pode ter um de dois sabores: cereja ou limão.

O fabricante embala os rebuçados sempre no mesmo papel, sendo impossível de distinguir o sabor olhando para o rebuçado embrulhado.

h₅: 100% limão;

- ▶ A variável aleatória (v.a.) H (de hipótese) indica o tipo de saco, assumindo um dos valores $\{h_1, h_2, \dots, h_5\}$.
- ► H não é diretamente observável: conforme são abertos os rebuçados que um saco contém, ficamos a saber o seu sabor (os dados): D_1, D_2, \ldots, D_n , onde cada D_i é uma v.a. com valor d_i (cereja ou limão).

Luís A. Alexandre (UBI)

Aprendizagem Bayesiana

- ► Com esta notação podemos escrever a probabilidade de um dado rebuçado ser de cereja, se estivermos perante uma dada hipótese (um tipo de saco), $P(d_i|h_i)$, assim:
 - $P(d_i = cereja|h_1) = 1;$
 - $P(d_j = cereja | h_2) = 0.75;$

 - $P(d_j = cereja | h_3) = 0.5;$ $P(d_j = cereja | h_4) = 0.25;$
 - $P(d_j = cereja | h_5) = 0;$
- Tarefa do agente: prever qual é o sabor do próximo rebuçado.

Métodos de aprendizagem estatística Aprendizagem Bayesiana

Aprendizagem Bayesiana

- ▶ Na AB as previsões são feitas usando as previsões de cada uma das hipóteses pesadas pelas suas probabilidades (que vêm da eq. (1)), em vez de se escolher apenas uma hipótese (a "melhor").
- Queremos achar a probabilidade do próximo elemento da sequência ser d_{n+1} , quando já observámos **d**. Temos então:

$$P(d_{n+1}|\mathbf{d}) = \sum_{i=1}^{m} P(d_{n+1}|h_i) P(h_i|\mathbf{d})$$
 (2)

Aprendizagem Bayesiana

As figuras abaixo mostram: à esquerda o resultado da equação (1) e à direita da equação (4), para este exemplo (primeiros 10 rebuçados de limão).

Aprendizagem Bayesiana

- ▶ A AB calcula a probabilidade de cada uma das hipóteses, face aos dados disponíveis, e efetua a previsão de acordo com essas probabilidades.
- ▶ Seja **d** uma sequência de dados $\{d_1, d_2, \ldots, d_n\}$ e m o número de hinóteses
- A probabilidade de cada hipótese h_i , face aos dados recebidos, é dada pela regra de Bayes (prob. a posteriori):

$$\frac{P(\mathbf{h}_i|\mathbf{d})}{P(\mathbf{d})} = \frac{P(\mathbf{d}, h_i)}{\sum_{i=1}^{m} \frac{P(\mathbf{d}|h_i)P(h_i)}{P(h_i)P(h_i)}}$$
(1)

▶ Para o exemplo dos rebucados vamos assumir por enquanto que a distribuição das **probabilidades a priori** $P(h_i), i = 1, ..., 5$ é (0.1,0.2,0.4,0.2,0.1).

Luís A. Alexandre (UBI)

Métodos de aprendizagem estatística Aprendizagem Bayesiana

Aprendizagem Bayesiana

 Vamos assumir que as observações são i.i.d. tal que a verosimilhança dos dados em face de cada hipótese é dada por

$$P(\mathbf{d}|h_i) = \prod_{j=1}^n P(d_j|h_i) \tag{3}$$

- ▶ Ex.: se o saco só tiver rebuçados de limão (h_5) e os primeiros 10 forem de limão então $P(\mathbf{d}|h_3) = 0.5^{10} \approx 0.001$, visto metade dos rebuçados de h_3 serem de limão ($P(d_i|h_3)=0.5,\ j=1,\ldots,10$).
- ▶ Isto significa que se obervar 10 rebuçados de limão seguidos é muito pouco provável que estejamos perante a hipótese h_3 .

Inteligência Artificial

Ano lectivo 2018-19 10 / 31

Métodos de aprendizagem estatística Aprendizagem Bayesiana

Aprendizagem Bayesiana

- ► Conclusão da fig. da esquerda do slide anterior: com o aumento do número de observações a verdadeira hipótese acaba por dominar a previsão Bayesiana.
- A previsão Bayesiana é ótima no sentido em que, dado o mesmo vetor de probabilidades a priori, qualquer outro método de previsão vai acertar menos vezes.
- O problema é que frequentemente a soma na equação (2) não é calculável analiticamente e nestes casos devemos usar aproximações.

Luís A. Alexandre (UBI)

Ano lectivo 2018-19

Métodos de aprendizagem estatística Máximo à posteriori: MAP

Conteúdo

Métodos de aprendizagem estatística

Introdução Aprendizagem Bavesiana

Máximo à posteriori: MAP

Máxima verosimilhança Naive Bayes *k*-vizinhos mais próximos

Luís A Alexandre (LIRI)

nteligência Artificial

lectivo 2018-19 13 / 3

Métodos de aprendizagem estatística Máximo à posteriori: MAP

Máximo à posteriori: MAP

- A aproximação mais frequente é fazer a previsão com base apenas na hipótese mais provável em vez de fazermos a soma pesada de (2).
- ► Passos:
 - achar as probabilidades P(h_i|d) usando a eq. (1): podemos ignorar o denominador pois todas vão ter o mesmo valor e vamos no passo seguinte querer saber o máximo
 - escolher a hipótese h_i que tiver maior valor de $P(h_i|\mathbf{d})$: h_i^* .
 - ▶ fazemos a previsão com $P(d_{n+1}|\mathbf{d}) = P(d_{n+1}|h_i^*)$
- Esta abordagem é chamada MAP (máximo a posteriori).

Métodos de aprendizagem estatística Máximo à posteriori: MAP

Máximo à posteriori: MAP

- Vamos achar a prob. do próximo rebuçado ser limão após termos visto 2 rebuçados de limão.
- ► Temos então: **d** = (limão, limão).
- Queremos P(limão|d).
- Começamos por achar o valor da eq. (1) para as 5 hipóteses do problema (podemos ignorar o denominador):

$$P(h_1|(limão, limão)) = P((limão, limão)|h_1)P(h_1)$$

O primeiro termo do lado direito obtém-se com a eq. (3):

$$P((lim\~ao,lim\~ao)|h_1)=P(lim\~ao|h_1)P(lim\~ao|h_1)=0$$
logo $P(h_1|(lim\~ao,lim\~ao))=0.$

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19 15 / 31

Métodos de aprendizagem estatística Máximo à posteriori: MAP

Máximo à posteriori: MAP

▶ Repetindo o processo para as 4 restantes hipóteses obtemos:

$$P(h_2|(limão, limão)) = 0.25^2 \times 0.2 = 0.0125$$

Inteligência Artificial

$$P(h_3|(lim\~ao, lim\~ao)) = 0.5^2 \times 0.4 = 0.1$$

 $P(h_4|(lim\~ao, lim\~ao)) = 0.75^2 \times 0.2 = 0.1125$
 $P(h_5|(lim\~ao, lim\~ao)) = 1 \times 0.1 = 0.1$

- Escolhemos a hipótese com maior valor, logo $h_i^* = h_4$.
- ▶ Vamos fazer a previsão:

$$P(lim\tilde{a}o|\mathbf{d}) = P(lim\tilde{a}o|h_4) = 0.75$$

Luís A. Alexandre (UB

Inteligência Artificial

Ano lectivo 2018-19 16 / 31

Métodos de aprendizagem estatística Máximo à posteriori: MAP

Máximo à posteriori: MAP

No exemplo que acabámos de ver, e considerando que se vão obtendo sempre rebuçados de limão, a prob. do próximo rebuçado ser limão varia da seguinte forma:

N. de dados	AB	MAP
1	0.65	0.50
2	0.73	0.75
3	0.80	1.00
4	0.85	1.00
5	0.89	1.00
10	0.97	1.00

Conforme obtemos mais dados as probabilidades obtidas pelos 2 métodos aproximam-se porque na AB as hipóteses competidoras com a mais provável vão-se tornando menos prováveis.

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19 17 / 31

Métodos de aprendizagem estatística Máxima verosimilhança

Conteúdo

Métodos de aprendizagem estatística

Introdução Aprendizagem Bayesiana Máximo à posteriori: MAF

Máxima verosimilhança Naive Baves

k-vizinhos mais próximo

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19

Máxima verosimilhança

- ▶ Podemos simplificar ainda mais a nossa previsão assumindo que todas as hipóteses são igualmente prováveis a priori.
- Isto é o mesmo que dizer que $P(h_i) = 1/k$, onde k é o número de
- ► Neste caso a solução MAP (achar o h; que maximiza a eq.(1)) reduz-se a escolher o h_i que maximiza $P(\mathbf{d}|h_i)$ (a eq. (3)).
- - ▶ achar as probabilidades $P(\mathbf{d}|h_i)$ usando a eq. (3)
 - escolher a hipótese h_i que tiver maior valor de $P(\mathbf{d}|h_i)$: h_i^*
 - fazemos a previsão com $P(d_{n+1}|\mathbf{d}) = P(d_{n+1}|h_i^*)$
- Esta escolha diz-se que é a escolha de máxima verosimilhança, pois a eq. (3) dá-nos a verosimilhança.

Luís A. Alexandre (UBI)

Métodos de aprendizagem estatística Máxima verosimilhança

Máxima verosimilhança

- Façamos a previsão com este critério de qual será a probabilidade do próximo rebuçado ser limão se já tivermos visto 2 de limão.
- ▶ Vamos achar o valor da eq. (3) para todas as hipóteses e escolhemos a que tiver maior valor:

$$P((limão, limão)|h_1) = 0$$

$$P((limão, limão)|h_2) = 0.25^2 = 0.0625$$

 $P((limão, limão)|h_3) = 0.5^2 = 0.25$
 $P((limão, limão)|h_4) = 0.75^2 = 0.5625$
 $P((limão, limão)|h_5) = 1$

 $P(\lim \tilde{a}o|(\lim \tilde{a}o, \lim \tilde{a}o)) = P(\lim \tilde{a}o|h_5) = 1$

Luís A. Alexandre (UBI)

Métodos de aprendizagem estatística Máxima verosimilhança

Comparação

► A probabilidade do próximo rebuçado ser limão se já tivermos visto 2 de limão, de acordo com os 3 métodos que vimos é

Será que maior valor significa melhor previsor?

Métodos de aprendizagem estatística Máxima verosimilhança

Comparação

Queremos $P(d_{n+1}|\mathbf{d})$:

- ► AB: $\sum_{i=1}^{m} P(d_{n+1}|h_i)P(h_i|\mathbf{d})$
- ► MAP: $P(d_{n+1}|h_i^*)$, sendo que $h_i^* = \arg\max_{h_i} P(h_i|\mathbf{d})$. Simplificação: só interessa a hipótese mais provável.
- ▶ MV: $P(d_{n+1}|h_i^*)$, sendo que $h_i^* = \arg\max_{h_i} P(\mathbf{d}|h_i)$. Simplificações: só interessa a hipótese mais provável e são todas igualmente prováveis a priori.

Inteligência Artificial

Ano lectivo 2018-19

Inteligência Artificial

Conteúdo

Métodos de aprendizagem estatística

Naive Bayes

Métodos de aprendizagem estatística Naive Bayes

Naive Bayes

- O NB é um método que usa muito do que vimos atrás para construir um classificador.
- ▶ Partimos do princípio que os atributos são condicionalmente independentes uns dos outros: é daqui que vem o "Naive".
- ▶ Exemplo: para classificarmos uma laranja podemos dizer que é redonda, cor de laranja e com cerca de 10cm de diâmetro. O NB considera que estes 3 atributos contribuem de forma independente para a probabilidade de um dado fruto ser uma laranja.
- ► A probabilidade de uma observação (um ponto do conjunto de teste) pertencer à classe $\it C$ é dada por

$$P(C|x_1,\ldots,x_n) = \alpha P(C) \prod_i P(x_i|C)$$
 (4)

onde os x_i são os atributos medidos e α é uma constante.

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19

Ano lectivo 2018-19

Métodos de aprendizagem estatística Naive Bayes

Naive Bayes

 Para classificarmos um novo ponto, escolhemos a classe que tiver maior probabilidade de ser a correta, dadas as observações:

$$\hat{y} = \arg\max_{C} P(C) \prod_{i} P(x_{i}|C)$$
 (5)

- A probabilidade a priori de cada classe, P(C), é facilmente achada contando o número de pontos que pertence a cada classe e dividindo pelo total de pontos no conjunto de treino.
- ▶ Conseguimos obter os valores de $P(x_i|C)$ de uma forma semelhante.

Luís A. Alexandre (UBI)

Inteligência Artificial

no lectivo 2018-10 25 / 3

Métodos de aprendizagem estatística Naive Bayes

Naive Bayes: exemplo

```
# coding: utf8
```

from sklearn import datasets

iris = datasets.load_iris()

from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()

y_pred = gnb.fit(iris.data, iris.target).predict(iris.data) print("Número de erros em %d pontos de treino: %d"

% (iris.data.shape[0],(iris.target != y_pred).sum()))

Número de erros em 150 pontos de treino: 6

Luís A. Alexandre (UBI)

Inteligência Artificial

a lectivo 2018-19 20

dos de aprendizagem estatística Naive Bay

Naive Bayes

- Vantagens do NB:
 - consegue lidar com problemas com muitos atributos: o número de parâmetros que usa cresce linearmente com o número de atributos do problema
 - computacionalmente eficiente
 - ▶ lida bem com o ruído

étodos de aprendizagem estatística k-vizinhos mais próxim

Conteúdo

Métodos de aprendizagem estatística

Introdução

Máximo à posteriori: MAF Máxima verosimilhança

k-vizinhos mais próximos

Leitura recomendada

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19 27 /

Luís A. Alexandre (UBI)

Inteligência Artificial

ano lectivo 2018-19 28 / 31

Métodos de aprendizagem estatística k-vizinhos mais próximo

k-vizinhos mais próximos

- Vejamos um classificador chamado k-NN (k-nearest neighboor ou k-vizinhos mais próximos).
- ➤ Consideremos que queremos classificar um ponto A do conjunto de teste, fazemos:
 - $\,\blacktriangleright\,$ achar a distância de A a todos os pontos do conjunto de treino (pontos relativamente aos quais conhece a verdadeira classe).
 - classificamos A na classe mais comum entre os k pontos de conjunto de treino mais próximos de A.

Métodos de aprendizagem estatística k-vizinhos mais próximo

k-vizinhos mais próximos

 No exemplo abaixo queremos classificar o ponto a preto numa das duas classes possíveis do problema.

- ▶ Dependendo do valor de k o ponto pode ser classificado como pertencendo à classe vermelha (1-NN) ou à azul (3-NN).
- No caso de existir um empate, sorteia-se a classe a atribuir entre as que empataram.
- Para um problema de 2 classes e para evitar empates, escolhe-se um valor de k impar.

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-19 30 /

Luís A. Alexandre (UBI) Inteligência Artificial Ano lectivo 2018-19 29

Leitura recomendada

Leitura recomendada

▶ Russell e Norvig, de sec. 20.1 até 20.2.2.

Luís A. Alexandre (UBI)

Inteligência Artificial

Ano lectivo 2018-10