

Art of Problem Solving 2016 APMO

ΑP	MO	201	6
7 T T	\mathbf{I}	401	v

_	Time allowed: 4 hours Each problem is worth 7 points
1	We say that a triangle ABC is great if the following holds: for any point D on the side BC , if P and Q are the feet of the perpendiculars from D to the lines AB and AC , respectively, then the reflection of D in the line PQ lies on the circumcircle of the triangle ABC . Prove that triangle ABC is great if and only if $\angle A = 90^{\circ}$ and $AB = AC$.
	$Senior\ Problems\ Committee\ of\ the\ Australian\ Mathematical\ Olympiad\ Committee$
2	A positive integer is called <i>fancy</i> if it can be expressed in the form
	$2^{a_1} + 2^{a_2} + \dots + 2^{a_{100}},$
	where a_1, a_2, \dots, a_{100} are non-negative integers that are not necessarily distinct. Find the smallest positive integer n such that no multiple of n is a $fancy$ number.
	$Senior\ Problems\ Committee\ of\ the\ Australian\ Mathematical\ Olympiad\ Committee$
3	Let AB and AC be two distinct rays not lying on the same line, and let ω be a circle with center O that is tangent to ray AC at E and ray AB at F . Let R be a point on segment EF . The line through O parallel to EF intersects line AB at P . Let N be the intersection of lines PR and AC , and let M be the intersection of line AB and the line through R parallel to AC . Prove that line MN is tangent to ω .
	Warut Suksompong, Thailand
4	The country Dreamland consists of 2016 cities. The airline Starways wants to establish some one-way flights between pairs of cities in such a way that each city has exactly one flight out of it. Find the smallest positive integer k such that no matter how Starways establishes its flights, the cities can always be partitioned into k groups so that from any city it is not possible to reach another city in the same group by using at most 28 flights. Warut Suksompong, Thailand
	rrana Dansonipong, Inawana

Contributors: cjquines0, shinichiman

Art of Problem Solving 2016 APMO

5 Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$(z+1)f(x+y) = f(xf(z)+y) + f(yf(z)+x),$$

for all positive real numbers x, y, z.

Fajar Yuliawan, Indonesia

www.artofproblemsolving.com/community/c274496

Contributors: cjquines0, shinichiman