

Le dimensionnement des évacuations des eaux pluviales

DTU 60.11 « Règles de calcul des installations de plomberie sanitaire et d'évacuation des eaux pluviales »

Nouveau NF DTU 60.11 partie 3

- Norme publiée en août 2013
 - Intégration de la norme européenne NF EN 12056-3
- Distinction selon le type de réseau d'évacuation
 - Gouttières et chéneaux extérieurs avec pente
 - Chéneaux extérieurs sans pente
 - Chéneaux intérieurs avec ou sans pente
 - Naissances et descentes d'eaux pluviales
 - Collecteurs d'eaux pluviales

Les hypothèses du DTU

- Systèmes gravitaires
- Intensité pluviométrique
 - 3 l/min/m² (0,05 l/s/m²) en France métropolitaine
 - 4,5 l/min/m² (0,075 l/s/m²) pour les DOM
- Pour les chéneaux intérieurs ou encaissés sans pente, coefficient de sécurité sur l'intensité pluviométrique selon la surface récoltée et la forme du chéneau (longueur/hauteur d'eau)

Gouttières et chéneaux extérieurs avec pente mini 5mm/m (DTU 40.5)

- Tableau de sections selon la surface en plan des toitures desservies (formule de Bazin)
- Cas des gouttières courantes :

Type de gouttière	Section (cm²)	Surface en plan desservie
Demi-ronde de 25	57	35 m²
Demi-ronde de 33	113	95 m²
Demi-ronde de 40	174	180 m²
Lyonnaise ou flamande de 25	43	25 m²
Lyonnaise ou flamande de 33	100	85 m²
À l'anglaise de 65	357	505 m²
Carrée de 33	104	80 m²
Carrée de 40	157	140 m²

Chéneaux extérieurs sans pente Chéneaux intérieurs ou encaissés

- Dispositions de la NF EN 12056-3
 - Chéneaux semi-circulaires
 - Autres sections
- Calcul du débit admissible en fonction de sa section utile :
 - débit d'eaux pluviales ≤ 0,9 x débit admissible du chéneau
- Coefficient d'évacuation (F_L) sur le débit admissible des chéneaux « longs » (longueur > 50 x W)
- Coefficient de sécurité pour les chéneaux sans pente (fonction de la géométrie du chéneau)

W

Descentes et naissances

- Le débit dépend du système de naissance ou d'avaloir pour les diamètres > 160 mm
- Pour les naissances, tableau selon la surface en plan desservie
- Pour les descentes, tableau précisant les diamètres intérieurs selon les débits d'évacuation (avec taux de remplissage de 0,2)

inchangé par rapport au DTU actuel

Débit des descentes

<u>Pour les descentes</u> <u>rectangulaires (axb) :</u>

On considère la section équivalente d'une descente circulaire de diamètre d=2ab/(a+b)

Diamètre intérieur de la descente (mm)	Débit d'évacuation en l/s
60	1,2
80	2,6
90	3,5
100	4,6
110	6,0
120	7,6
150	13,7
180	22,3
200	29,5
240	48,0
300	87,1

Descentes (diamètre ≤ 160 mm)

Diamètre intérieur de la descente (mm)	Surface en plan desservie		
60	40 m²		
70	55 m²		
80	70 m²		
90	91 m²		
100	113 m²		
110	136 m²		
120	161 m²		
130	190 m²		
140	220 m²		
150	253 m²		
160	287 m²		

Descente (diamètre > 160 mm)

Diamètre intérieur (mm)	Naissance cylindrique	Naissance tronconique
170	287 m²	324 m²
200	314 m²	449 m²
240	452 m²	646 m²
300	700 m²	1000 m²

Les collecteurs

- Nouvelle méthode de calcul : application de la méthode NF EN 12056-3
- Les collecteurs EP sont calculés en fonction du cumul des débits des descentes pour chaque tronçon
- Le DTU donne le débit admissible par DN selon la pente du collecteur

Débit admissible des collecteurs EP

Pente du			DN 125		DN 150		DN 200		DN 225		DN 250		DN 300	
collecteur mm/m	Débit l/s	v m/s	Débit l/s	v m/s	Débit l/s	v m/s	Débit l/s	v m/s	Débit l/s	v m/s	Débit l/s	v m/s	Débit l/s	v m/s
5	2.9	0.5	4.8	0.6	9.0	0.7	16.7	0.8	26.5	0.9	31.6	1.0	56.8	1.1
10	4.2	0.8	6.8	0.9	12.8	1.0	23.7	1.2	37.6	1.3	44.9	1.4	80.6	1.6
15	5.1	1.0	8.3	1.1	15.7	1.3	29.1	1.5	46.2	1.6	55.0	1.7	98.8	2.0
20	5.9	1.1	9.6	1.2	18.2	1.5	33.6	1.7	53.3	1.9	63.6	2.0	114.2	2.3
25	6.7	1.2	10.8	1.4	20.3	1.6	37.6	1.9	59.7	2.1	71.1	2.2	127.7	2.6
30	7.3	1.3	11.8	1.5	22.3	1.8	41.2	2.1	65.4	2.3	77.9	2.4	140.0	2.8
35	7.9	1.5	12.8	1.6	24.1	1.9	44.5	2.2	70.6	2.5	84.2	2.6	151.2	3.0
40	8.4	1.6	13.7	1.8	25.8	2.1	47.6	2.4	75.5	2.7	90.0	2.8	161.7	3.2
45	8.9	1.7	14.5	1.9	27.3	2.2	50.5	2.5	80.1	2.8	95.5	3.0	171.5	3.4
50	9.4	1.7	15.3	2.0	28.8	2.3	53.3	2.7	84.5	3.0	100.7	3.1	180.8	3.6

Vitesses d'écoulement comprises entre 1 et 2 m/s

Deux cas:

 Section du chéneau connu → quelle surface peut-il évacuer ?

Débit à évacuer connu → Quelles dimensions pour

le chéneau?

1er cas: hauteur d'eau max de 8 cm

La section utile du chéneau est de 200 cm².

Le débit admissible du chéneau est de 9,2 l/s (formule du DTU ou abaque)

Le chéneau fait 12 m de longueur :

$$L/W = 12/0,08 = 150$$

ce qui donne un coefficient FL= 0,86.

Le débit d'évacuation du chéneau est donc :

$$Q = 0.9 \times 9.2 \times 0.86 = 7.1 \text{ l/s}$$

Coefficient d'év	acuation FL pour les	débits d'évacua	ntion des chéneau	x longs avec ou s	ans pente			
	Pente du chéneau							
Rapport L/W*	Sans pente (0 – 3 mm/m)	4 mm/m	6 mm/m	8 mm/m	10 mm/m			
50	1,00	1,00	1,00	1,00	1,00			
75	0,97	1,02	1,04	1,07	1,09			
100	0,93	1,03	1,08	1,13	1,18			
125	0,90	1,05	1,12	1,20	1,27			
150	0,86	1,07	1,17	1,27	1,37			
1/5	0,83	1,08	1,21	1,33	1,46			
200	0,80	1,10	1,25	1,40	1,55			
225	0,78	1,10	1,25	1,40	1,55			
250	0,77	1,10	1,25	1,40	1,55			
275	0,75	1,10	1,25	1,40	1,55			
300	0,73	1,10	1,25	1,40	1,55			
325	0,72	1,10	1,25	1,40	1,55			
350	0,70	1,10	1,25	1,40	1,55			
375	0,68	1,10	1,25	1,40	1,55			
400	0,67	1,10	1,25	1,40	1,55			
425	0,65	1,10	1,25	1,40	1,55			
450	0,63	1,10	1,25	1,40	1,55			
475	0,62	1,10	1,25	1,40	1,55			
500	0,60	1,10	1,25	1,40	1,55			
*L est la longueur d	du chéneau et W est	la hauteur d'eau	admissible du che	éneau				

1er cas :

Le débit d'évacuation du chéneau est Q = 7,1 l/s

Pour un chéneau sans pente, il convient de vérifier le coefficient de sécurité applicable sur la pluviométrie :

pour FL=0,86:

- coeff = 2 pour les surfaces de récolte ≤ 60 m²
- coeff = 1,5 pour les surfaces supérieures.

Pour un débit de 0,05 l/s/m², la surface de récolte maximale est donc ici :

$$7,1 / 0,05 / 1,5 = 94 \text{ m}^2$$

L'ancien DTU donnait : 90 m² environ

2ème cas : on connait la surface à évacuer 100 m²

Le débit d'eau à prendre en compte est : $100 \times 0.05 \times 1.5 = 7.5 \text{ l/s (coeff de sécurité 1.5)}$

Pour déterminer la section du chéneau, on choisit arbitrairement une hauteur d'eau maximale.

Ici w=8 cm. On a donc L/w=12/0.08=150 soit FL=0.86 (voir ciavant)

On cherche un chéneau de débit admissible : 7,5 / 0,86 / 0,9 = 9,7 l/s

On applique la formule ou le graphique : S= 207 cm²

Si w=5 cm. L/w = 240, FL=0,77, Qadm=10,8 l/s S = 227 cm²

www.uncp.ffbatiment.fr Espace adhérent

FICHE PRATIQUE DTU

Gouttières courantes et surface maximale des toitures desservies pour une pente ≥ 5mm/m

Section

57 cm²

113 cm²

174 cm²

100 cm²

104 cm²

35 m²

95 m²

180 m²

25 m²

85 m²

505 m²

80 m²

140 m²

Développé

de 25 cm

de 33 cm

de 40 cm

de 33 cm

de 40 cm

DÉCEMBRE 2013

DTU 40.5 : Travaux d'évacuation des eaux pluviales (P 36-201 de novembre 1993)

SECTION DES GOUTTIÈRES ET CHÉNEAUX EXTÉRIEURS :

La section des gouttières ou chéneaux d'eaux pluviales récoltées qui dépend de la surface en plan du (ou des)

TEXTES DE RÉFÉRENCE :

rampant(s) concerné(s).

 de la pente de la section

de la forme

de la longueur

pente minimale de 5mm/m.

Gouttière 1/2 ronde

Gouttière Ivonnaise

ou flamande

Gouttière à

l'anglaise

précipitation de 3 litres/min/m².

Le débit admissible dans une

Les gouttières et les chéneaux

extérieurs sont posés avec une

Type de gouttières courantes

gouttière ou un chéneau extérieur

