

PUBLICATION NUMBER : 06318609
 PUBLICATION DATE : 15-11-94

APPLICATION DATE : 07-05-93
 APPLICATION NUMBER : 05106865

APPLICANT : TOSHIBA CORP;

INVENTOR : TAKUBO TOMOAKI;

INT.CL. : H01L 21/56 B29C 43/18 H01L 21/52 //
 B29L 31:34

TITLE : RESIN-SEALED SEMICONDUCTOR
 DEVICE AND ITS MANUFACTURE

ABSTRACT : PURPOSE: To prevent contact of an inner lead to a chip edge in a resin-sealed semiconductor device and its manufacture where a semiconductor chip is held by resin sheets and is sealed in one piece.

CONSTITUTION: For example, a resin sheet 21 on the upper-surface side of a semiconductor chip 3 is made smaller than the outer shape of the chip 3 and a resin sheet 22 on the lower-surface side is made larger than the outer shape of the chip 3. Then, the semiconductor chip 3 is sandwiched by the resin sheets 21 and 22 and is subject press forming by molds 11 and 12. In this manner, by filing the resin sheet 22 on the lower-surface side onto the lower surface of a TAB tape 1 before the upper-surface side resin sheet 21 is filled onto the upper surface of the TAB tape 1, change in the relative position relationship between the TAB tape 1 and the chip 3 is prevented until the sealing process is completed.

COPYRIGHT: (C)1994,JPO

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-318609

(43)公開日 平成6年(1994)11月15日

(51)Int.CL
H 01 L 21/56

識別記号

府内整理番号

F 1

技術表示箇所

B 29 C 43/18
H 01 L 21/52

C 8617-4M

R 8617-4M

T 8617-4M

7365-4F

C 7376-4M

審査請求 未請求 請求項の数 3 ○ L (全 6 頁) 最終頁に続く

(21)出願番号

特願平5-106865

(22)出願日

平成5年(1993)5月7日

(71)出願人

000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者

田嶋 知章

神奈川県川崎市幸区小向東芝町1番地 株

式会社東芝研究開発センター内

(74)代理人

弁理士 鈴江 武彦

(54)【発明の名称】樹脂封止型半導体装置およびその製造方法

(57)【要約】

【目的】本発明は、樹脂シートにより半導体チップを挟み込み、一体的に固定封止してなる樹脂封止型半導体装置およびその製造方法において、インナリードのチップエッジへの接触を防止できるようにすることを最も主要な特徴とする。

【構成】たとえば、半導体チップ3の上面側の樹脂シート21をチップ3の外形よりも小さくし、下面側の樹脂シート22をチップ3の外形よりも大きくする。そして、これら樹脂シート21、22で半導体チップ3をサンドし、金型11、12により加圧成型する。こうして、上面側の樹脂シート21がTABテープ1の上面に拘束される前に、下側側の樹脂シート22を介してチップ3と充てん塗料を封止する。封止塗料が電子部品を保護するための封止部と、チップ3との相対的な位置関係が変動しないを保証する構成となっている。

五

【特許請求の範囲】

【請求項1】 リード端子を有するリード構成体と、このリード構成体の前記リード端子と電気的に接続された半導体チップと、この半導体チップの、前記リード構成体のリード端子との接続面側に配置され、前記半導体チップの接続面側の面積よりも面積的に小さい未硬化の封止用樹脂を加压成型して形成された第1のパッケージと、前記半導体チップと前記リード構成体のリード端子との非接続面側に配置され、前記半導体チップの非接続面側の面積よりも面積的に大きい未硬化の封止用樹脂を加压成型して形成された第2のパッケージとを具備したことを特徴とする樹脂封止型半導体装置。

【請求項2】 リード構成体と半導体チップとを接続し、この半導体チップを、その正面の面積よりも面積的に小さく形成された第1の封止用樹脂と、前記チップの背面の面積よりも面積的に大きく形成された第2の封止用樹脂とで挟持し、この第1、第2の封止用樹脂を加圧しつつ成型して封止体を得るようにしてなることを特徴とする樹脂封止型半導体装置の製造方法。

【請求項3】 前記第1の封止用樹脂が、前記リード構成体との接続面側の、前記半導体チップの正面のその外形の内側に位置合わせして配備され、前記第2の封止用樹脂が、前記リード構成体との非接続面側の、前記半導体チップの従面を覆うように位置合わせして配備され、前記加压成型が行われることを特徴とする請求項2に記載の樹脂封止型半導体装置の製造方法。

【発明の詳細な説明】

【0001】
【産業上の利用分野】この発明は、たとえば半導体チップを樹脂封止してなる樹脂封止型半導体装置およびその製造方法に関する。

【従来の技術】近年、半導体装置の高集積化にともなうチップの大型化によって、樹脂封止型半導体装置のパッケージの大型化が進む一方、実装スペースの微細化にともない、薄型化の傾向を強めている。この傾向は、今後ますます強くなっていくと予想される。

題であるといえる。

【0005】このため、従来からウニハスケールインテグレーションやマルチチップモジュールなどの高密度実装技術などの開発が行われているが、これらはいずれもメモリチップやロジックチップを2次元平面状に高密度に実装する技術である。

【0006】すなわち、メモリチップを2次元平面状に高密度に実装した場合、マイクロプロセッサからの距離が近いチップと遠いチップとが存在することになるため、遠いチップからマイクロプロセッサまでの信号遅延時間がマイクロプロセッサとメモリチップとのデータ転送スピードを律速することになる。

【0007】この問題を解決するための技術として、メモリチップなどを3次元状に、その厚さ方向に積層する方法が提案されている。この場合、できるだけ多くのチップを配備するためには、チップの薄型化が必要となる。

【0008】さて、従来の樹脂封止型半導体装置は、トランシスファ成型法によって得られていた。この方法は、
20 エポキシ樹脂および充填剤などを主体としたエポキシ成型材料などの未硬化の熱硬化性樹脂を加熱し、溶融させてトランシスファ成型機の金型に注入し、高温高圧状態(たとえば、160～180℃、70～100Kg/cm²)で成型して硬化させることにより、リードフレームなどの実接部材に搭載された半導体チップを封止するものである。

【0009】この場合、半導体チップをエポキシ樹脂組成物が完全に覆うため、得られる樹脂封止型半導体装置の信頼性が優れしており、また金型できっちり成型するため、パッケージの外観も良好である。したがって、現在では、ほとんどの樹脂封止型半導体装置が、この方法で製造されている。

【0010】しかし、未硬化の熱硬化性樹脂をトランスファ成型機の金型に注入する方法では、薄型の実装は困難である。そこで、このような要求に答えることのできる技術として、たとえば特願平3-162404号に示される複数の実装基板を複数枚重ねて、複数枚の樹脂層を形成する複数層構造の実装基板を用いる方法がある。

〔001〕これは、ガラスクロスなどの基材に封止用の樹脂をあらかじめ封止形状に合わせて形成したプリプレグを用意し、半導体チップの上下からそのプリプレグで半導体チップを挟み込むようにして封止するものである。

（二）（1）要有一个广泛的群众基础，才能使人民大众的革命精神和革命热情得到广泛的传播。

としても良く、この場合は基材を用いない分、さらに薄型に封止することができる。

【0014】しかしながら、TAB (Tape Automated Bonding) 技術を用いたテープキャリアを、このような技術を用いて樹脂封止しようとすると、インナリードがチップの周辺のエッジに接触して特性不良となってしまうという欠点があった。

【0015】図2は、TABテープ上に半導体チップが搭載されたテープキャリアの一例を示すものである。すなわち、可撓性樹脂フィルムからなるTABテープ1の両側(上下)には、スプロケットホールとしての複数の送り穴2が等間隔に形成されており、テープ1の幅方向(上下方向)の中央部付近には半導体チップ3が配設されるテープ開口部であるデバイスホール4が形成されている。

【0016】そして、このデバイスホール4を開むように、その周囲(四方向)にはテープ開口部であるアウタリードホール5が形成されている。上記TABテープ1上には金属箔記録リード6が形成されており、その一端はデバイスホール4内に突き出すように設けられ、前記チップ3のボンディングパッド(図示していない)と接続されるインナリード7を構成している。

【0017】また、上記金属箔記録リード6の他端はアウタリードホール5をまたぐようにして設けられ、アウタリード8を構成している。このような構成において、前記デバイスホール4に配設された半導体チップ3のボンディングパッドが前記インナリード7と接続されることにより、TABテープ1上に半導体チップ3が搭載される。

【0018】この後、TABテープ1の上下に封止形状に合わせて形成された封止用樹脂シートが配置され、加圧成型による封止体の形成が行われる。図3は、上記した加圧成型による封止工程の概略を示すものである。

【0019】すなわち、あらかじめ封止形状に合わせて形成された封止用樹脂シート9、10がTABテープ1の上下に配置され、これら樹脂シート9、10で半導体チップ3の搭載されたTABテープ1を挟み込んだ状態で、金型11、12により図示矢印方向に加圧が行われる(同図(a))。

【0020】この場合、インナリード7の先端は、配線リード6の高さより少し下に変形されて、半導体チップ3のボンディングパッドと接続されている。こうして、封止用樹脂シート9、10が半導体チップ3のボンディングパッドと接続され、半導体チップ3が封止工程によって半導体チップ3の周辺のエッジに接触して特性不良となってしまうのを防ぐことができる。

ナリード7の先端が配線リード6の高さより上に変形されてしまい、インナリード7が半導体チップ3の周辺のエッジに接触してしまうという問題があった。

【0023】

【発明が解決しようとする課題】上記したように、従来においては、TABテープ上に半導体チップを搭載したテープキャリアの封止に、あらかじめ封止形状に合わせて形成された樹脂シートでテープキャリアを挟んで加圧成型する方法を適用した場合、上側の樹脂シートがTABテープをチップの方向に押し下げ、逆に、下側の樹脂シートがチップをTABテープの方向に押し上げるため、インナリードがチップの周辺のエッジに接触して特性不良を起こすという欠点があった。

【0024】そこで、この発明は、リード構成体と半導体チップとのエッジタッチを防止でき、信頼性を向上することが可能な樹脂封止型半導体装置およびその製造方法を提供することを目的としている。

【0025】

【課題を解決するための手段】上記の目的を達成するために、この発明の樹脂封止型半導体装置にあっては、リード端子を有するリード構成体と、このリード構成体の前記リード端子と電気的に接続された半導体チップと、この半導体チップの、前記リード構成体のリード端子との接続面側に配置され、前記半導体チップの接続面側の面積よりも面積的に小さい未硬化の封止用樹脂を加圧成型して形成された第1のパッケージと、前記半導体チップと前記リード構成体のリード端子との非接続面側に配置され、前記半導体チップの非接続面側の面積よりも面積的に大きい未硬化の封止用樹脂を加圧成型して形成された第2のパッケージとから構成されている。

【0026】また、この発明の樹脂封止型半導体装置の製造方法にあっては、リード構成体と半導体チップとを接続し、この半導体チップを、その正面の面積よりも面積的に小さく形成された第1の封止用樹脂と、前記チップの正面の面積よりも面積的に大きく形成された第2の封止用樹脂とで挟持し、この第1、第2の封止用樹脂を加圧しつつ成型して封止体を得るようになっている。

【0027】

【作用】この発明は、上記した手段により、リード構成体と半導体チップとの相対的な位置関係を維持できるようになるため、リード端子の先端がリード端子よりも突出した位置で封止を完了することが可能となるものである。

【(a) (b)】

【(a)】図2は、この発明の樹脂封止型半導体装置の構成を示す図である。図2は、半導体チップ3が樹脂シート9、10で封止された状態を示す。樹脂シート9、10は、半導体チップ3の周辺のエッジに接触して特性不良となることを防ぐ。

【(b)】図3は、半導体チップ3が封止工程におけるリード構成体40と接続された状態を示す。リード構成体40は、半導体チップ3の周辺のエッジに接触して特性不良となることを防ぐ。

3

る。そして、図示矢印で示すように、金型 11, 12 による加压成型が開始される(同図(a))。

〔0030〕このとき、インナリード（リード端子）7の先端は、TABテープ1上に施された金属箔配線リード6の高さよりも下に位置されて、前記半導体チップ3のボンディングパッドと接続されている。

〔0031〕この場合、半導体チップ3の上面に配置された樹脂シート（第1の封止用樹脂）21は、チップ3の外形よりも小さい、つまりポンディングパッドとの接続面であるチップ主面側の面積よりも面積的に小さく構成されるとともに、テープキャリアの上面を封止するのに十分な量の体積（高さ）を有している。

〔0032〕一方、半導体チップ3の下面（パッドとの非接続面である裏面）に配置された樹脂シート（第2の封止用樹脂）22の外形は、封止工程が完了してTABテープ1が樹脂により覆われる際の大きさとほぼ同じとされている。

〔0033〕すなわち、この状態およびこの直後においては、半導体チップ3に対して樹脂シート21、22により上下方向にほぼ同じ大きさの力が加えられ、TA Bテープ1に対しては何ら力が加えられないようになっている。

【0034】樹脂シート21, 22をこのような形状とすることにより、この時点においては、半導体チップ3とTABテープ1との相対的な位置関係が変化されることはない。

〔0035〕また、金型11, 12による加圧成型が進められると、樹脂シート21, 22が変形されて、データキャリアの上下面への樹脂の充填が行われる(同図(b))。

【0036】たとえば、半導体チップ3の上面の樹脂シート21が変形されてチップ3上のボンディングパッドとインナーリード7との接続点にまで充填されるとき、半導体チップ3の下面側では、下面の樹脂シート22が変形されてTABテープ1の裏面にまで充填される。

[0037] この状態においては、半導体チップ3には、チップ3の上下面に配置された樹脂シート21、22により上下方向にほぼ同じ大きさの力が加わえられる。また、チップ3の下側の樹脂シート22がTABテープ1の裏面の全体に充填されることにより、チップ3とTABテープ1との相対的な位置関係は初期状態と何ら変わらないまま、チップ3の下面およびTABテープ

16

31

30

40

6

の方向に移動されることはない。こうして、金型 1.1, 1.2 によるさらなる加圧成型により、樹脂シート 2.1, 2.2 が変形されて密接が完了される（同図 (d)）。

【0040】このとき、インナリード7の先端は、TABテープ1上に施された金属箔配線リード6の高さよりも下に位置されて、半導体チップ3のボンディングパッドと接続されている。

【0041】 すなわち、TABテープ1と半導体チップ3とは、ほぼ初期状態と同じ位置関係を保って樹脂封止されている。このようにして、インナリード7が半導体チップ3の周辺のエッジに接触することなく、封止工程を完了することができる。

〔0.042〕なお、本実施例においては、TABテープ1には、たとえば可焼性樹脂フィルムの基材として1.25μm厚のポリイミドテープを用い、この上に、3.5μm厚の銅箔をフォトリソグラフィプロセスによりバーニングして配線リード6を形成するとともに、インナーリード7およびアウターリード8を構成している。

【0043】また、デバイスホール4の大きさは、たとえば16mm角となっている。一方、半導体チップ3は、たとえば、その大きさが15mm角であり、厚さが2.0mmである。

【0044】そして、樹脂シート21, 22としては、たとえばフェノールノボラックタイプのエポキシ樹脂100重量部、ジV硬化性アクリレート20重量部、硬化剤としてのジシアソニアミド6重量部、充填材としてのシリカ300重量部、および触媒としてのベンジルジメチルアミン0.5重量部を、メチルセロソルブ100重量部に溶解してワニスを調整し、所定の形状に形成した後、風乾し、さらに乾燥機中で、80℃×4時間程度の加熱乾燥を行ったものを用いている。

【0045】たとえば、半導体チップ3の上面の樹脂シート21の外形は、13mm角で、その厚さは約450μmであり、チップ3の下面の樹脂シート22の外形は、20mm角で、その厚さは約200μmとなっている。

【0046】このような樹脂シート21, 22を、テープキャリアの上側および下側に位置合わせて配置した後、プレス成形部において、たとえば170°Cに加熱した金型11, 12内で1分間ほど加圧成形することにより、外形が約20mm角で、約500μm厚の樹脂封止型半導体装置が作成される。

この結果によると、成虫は日中活動するが、本種は夜行性で、日没後から活動する。活動の温度域は、15℃以上で、最高活動度は、25℃である。活動度は、日没後から夜間にかけて最も高く、午前は活動度が最も低くなる。活動度は、日没後から夜間にかけて最も高く、午前は活動度が最も低くなる。

7

形されてTABテープの上面に達する前に、チップの下面側に配置した樹脂シートが先に変形してTABテープの下面に充填された後、半導体チップの上面側への樹脂の充填が行われるようにしている。これにより、上面側の樹脂シートでTABテープが押し下げられたり、下面側の樹脂シートで半導体チップが押し上げられるのを阻止できるようになるため、インナリードの先端が配線リードよりも下に位置した状態で封止を完了することが可能となる。したがって、インナリードと半導体チップとのエッジタッチによる特性不良を容易に防止することができ、しかも単純で、かつ廉価に実現できるものである。

【0049】なお、上記実施例においては、TAB技術を用いてテープキャリア上に搭載された半導体チップを封止する場合について説明したが、これに限らず、たとえばリードフレームにワイヤボンディングによって接続された半導体チップやワイヤレスボンディングにより接続されたフリップチップなどの封止にも適用することができる。

10

できる。その他、この発明の要旨を変えない範囲において、種々変形実施可能なことは勿論である。

【0050】

【発明の効果】以上、詳述したようにこの発明によれば、リード構成体と半導体チップとのエッジタッチを防止でき、信頼性を向上することが可能な樹脂封止型半導体装置およびその製造方法を提供できる。

【図面の簡単な説明】

【図1】この発明の一実施例にかかる樹脂封止型半導体装置の封止工程を概略的に示す断面図。

【図2】従来技術とその問題点を説明するために示すテープキャリアの平面図。

【図3】同じく、加圧成型による樹脂封止の概略を示す断面図。

【符号の説明】

1…TABテープ、3…半導体チップ、6…金属箔配線リード、7…インナリード、11、12…金型、21、22…樹脂シート。

【図1】

【図2】

(6)

特開平6-318609

【図3】

フロントページの続き

(51) Int. Cl.
// B 29 L 31:34

識別記号 庁内整理番号 F 1
4F

技術表示箇所