Exam Session - Thursday 9th November 2017

Exercise 1.

1. Let $M \in \mathcal{M}_n(\mathbb{R})$. Compute the following matrix product:

$$(\boldsymbol{I}_n - \boldsymbol{M})(\boldsymbol{I}_n + \boldsymbol{M} + \boldsymbol{M}^2).$$

2. We consider the following matrix M:

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}.$$

- (a) Compute M^2 , M^3 , and M^n for any n.
- (b) Deduce that the matrix $I_n M$ is invertible and give its inverse.

Exercise 2.

We consider the three following vectors of \mathbb{R}^3 :

$$m{u}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad m{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad m{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

- 1. Prove that the family of vectors $\mathcal{B}' = (\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3)$ is a basis for \mathbb{R}^3 .
- 2. Write the change-of-basis matrix P from the standard basis \mathcal{B} to \mathcal{B}' .
- 3. Write the change-of-basis matrix P' from B' to the standard basis B. What is the relation between P and P'?
- 4. We consider the linear map $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by:

$$f(x, y, z) = (-y + z, x + 2y - 3z, x + y - 2z).$$

Write the matrix representation \boldsymbol{A} of f in the standard basis.

- 5. Write the matrix representation A' of f in the basis B'.
- 6. Give a basis for Ker(f) and Im(f). What is their dimension?
- 7. Do we have $Ker(f) \oplus Im(f) = \mathbb{R}^3$?

Exercise 3.

- 1. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$ be an idempotent and symmetric matrix. Prove that \mathbf{A} is positive semi-definite.
- 2. Let $\mathbf{A} \in \mathcal{M}_n(\mathbb{R})$. Prove that $\mathbf{I}_n + \mathbf{A}\mathbf{A}^T$ is symmetric positive definite.
- 3. Show that if λ is an eigenvalue of an orthogonal matrix, then so is $\frac{1}{\lambda}$.