CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	204	All
Examination	Date	Pages
Final	December 2013	2
Instructors		Course Examiner
S. Gao, R. Mearns, C. Santana, U. Tiwari		E. Cohen
S. Gao, R. Mearns, C. Santana, U. Tiwari		E. Cohen

Special Instructions

- Doly approved calculators are allowed.
- All questions have equal value.
 - 1. Use the Gauss-Jordan method to find all the solutions of the system:

2. Let
$$M = \begin{pmatrix} 1 & -2 & 1 \\ -3 & 7 & -6 \\ 2 & -3 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ -3 & 4 \\ 5 & 6 \end{pmatrix}$.

- (a) Calculate M^{-1} .
- (b) Find the matrix C such that MC = B.
- 3. (a) Use Cramer's rule to solve the system of equations:

$$\begin{array}{rclrcl}
3x_1 & + & x_2 & = & 5 \\
-x_1 & + & 2x_2 & + & x_3 & = & -2 \\
& - & x_2 & + & 2x_3 & = & -1
\end{array}$$

(b) Find the determinant of the matrix
$$\begin{pmatrix} -2 & 1 & 4 & -1 \\ 1 & 0 & -1 & 2 \\ 5 & -1 & 2 & 1 \\ 0 & 0 & 3 & -1 \end{pmatrix}.$$

4. Let ℓ be the line with parametric equations

$$x = -2 + t$$
, $y = -1 + 3t$, $z = 1 + 5t$,

and let v = (1, 1, 1). Find w_1 and w_2 so that $v = w_1 + w_2$ and w_1 is parallel to ℓ and w_2 is perpendicular to ℓ .

- 5. Let $P_1(1,1,1)$, $P_2(1,3,4)$, $P_3(2,1,5)$.
 - (a) Find the area of the triangle with vertices P_1 , P_2 , P_3 .
 - (b) Find the equation of the plane containing P_1 , P_2 and P_3 .
- 6. Let P(1,2,3) be a point. Let n = (1,3,4).
 - (a) Find the point-normal equation of the plane through P with normal n.
 - (b) Express the equation of the plane in the form ax + by + cz + d = 0.
- 7. Let $v_1 = (1, -2, 3)$ and $v_2 = (2, 0, 4)$.
 - (a) Find numbers x and y so that $xv_1 + yv_2 = (0, -4, 2)$.
 - (b) Find v_3 so that $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 .
- 8. Let $A = \begin{pmatrix} 1 & -3 & 0 & 0 & 2 & 5 \\ 0 & 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$ and $X = \begin{pmatrix} x \\ y \\ z \\ u \\ v \\ w \end{pmatrix}$. Find a basis of the solution space of the homogeneous system of linear equations AX = 0.
- 9. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & -1 \\ 0 & 0 & -1 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 10. Let $A = \begin{pmatrix} -3 & 4 \\ -2 & 3 \end{pmatrix}$. Compute A^{1000} .

The present document and the contents thereof are the property and copyright of the professor(s) who prepared this exam at Concordia University.

No part of the present document may be used for any purpose other than research or teaching purposes at Concordia University. Furthermore, no part of the present document may be sold, reproduced, republished or re-disseminated in any manner or form without the prior written permission of its owner and copyright holder.