Three common mistakes in statistics and how to avoid them

Elizabeth Pankratz

Department of Psychology
The University of Edinburgh

Something you won't be able to unsee

Something you won't be able to unsee

Something you won't be able to unsee

Taking the means of discrete ratings is very common—but a little strange!

no anxiety

a great deal of anxiety

OOOOO

1 2 3 4 5

A choice between 1 and 2 might be treated

differently than a choice between, say, 3 and 4.

How you'll avoid it

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.


```
slice(anx, 45:50)
## # A tibble: 6 × 3
    unique id gender
                             rating
                              <dbl>
     <chr>
              <chr>
##
  1 7d28c303 Female/Woman
  2 7d55383a
              Another Gender
  3 8116550a Female/Woman
              Female/Woman
  4 83491ff9
              Male/Man
  5 8450f8ad
  6 876547d6
              Female/Woman
```

```
slice(anx, 45:50)
## # A tibble: 6 × 3
    unique id gender
                             rating
                              <dbl>
     <chr>
              <chr>
##
  1 7d28c303 Female/Woman
  2 7d55383a
              Another Gender
##
              Female/Woman
  3 8116550a
              Female/Woman
  4 83491ff9
              Male/Man
  5 8450f8ad
  6 876547d6
              Female/Woman
```

rating looks like numbers, and R treats it like numbers, as dbl.

So it's tempting to manipulate it like numbers.

```
mean(anx$rating)
## [1] 2.868054
```

Remember: We are smarter than R is

Remember: We are smarter than R is

Store categorical variables as factors.

```
anx <- anx |>
mutate(rating = factor(rating))
```

Remember: We are smarter than R is

Store categorical variables as factors.

```
anx <- anx |>
mutate(rating = factor(rating))
```

Now it's impossible to incorrectly treat them as if they're numeric!

```
mean(anx$rating)
```

[1] NA

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

How you'll avoid it

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.


```
library(MASS)  # MASS contains the polr() function
anx_fit1 <- polr(
  rating ~ 1,  # intercept-only model, to start
  data = anx,
  Hess = TRUE, method = 'probit' # ask me in the Q+A!
)</pre>
```

```
summary(anx_fit1)
## Intercepts:
              Std. Error t value
      Value
##
## A|B
       -0.8420
                0.0157
                       -53.7268
## B|C -0.1678
                       -12.1462
                0.0138
## C|D
       0.3833
               0.0141 27.1512
## D|E
       1.0339
                0.0168
                       61.6193
```

```
summary(anx_fit1)
  Intercepts:
                Std. Error t value
##
       Value
## A|B
        -0.8420
                  0.0157
                           -53.7268
## B|C
        -0.1678
                           -12.1462
                  0.0138
## C|D
        0.3833
                  0.0141
                          27.1512
## D|E
         1.0339
                            61.6193
                  0.0168
```



```
summary(anx_fit1)
  Intercepts:
               Std. Error t value
##
       Value
## A|B
        -0.8420
                 0.0157
                           -53.7268
## B|C
        -0.1678
                          -12.1462
                 0.0138
## C|D
        0.3833
                 0.0141
                          27.1512
## D|E
        1.0339
                           61.6193
                  0.0168
```


How does a student's gender affect ratings for "Going to ask my statistics teacher for individual help with material I am having difficulty understanding"?

How does a student's gender affect ratings for "Going to ask my statistics teacher for individual help with material I am having difficulty understanding"?

How does a student's gender affect ratings for "Going to ask my statistics teacher for individual help with material I am having difficulty understanding"?

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

***** A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

How you'll avoid it

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

Apply and interpret ordinal regression models (e.g., polr() from MASS).

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

```
## Coefficients:

## Value Std. Error t value

## genderMale/Man -0.3280 0.03015 -10.880

## genderAnother Gender 0.4846 0.11992 4.041
```

No *p*-values in the model summary.

```
## Coefficients:

## Value Std. Error t value

## genderMale/Man -0.3280 0.03015 -10.880

## genderAnother Gender 0.4846 0.11992 4.041
```

No *p*-values in the model summary.

But it's common practice to compare these t-values to a standard normal distribution.

```
## Coefficients:

## Value Std. Error t value

## genderMale/Man -0.3280 0.03015 -10.880

## genderAnother Gender 0.4846 0.11992 4.041
```

No *p*-values in the model summary.

But it's common practice to compare these t-values to a standard normal distribution.


```
## Coefficients:

## Value Std. Error t value

## genderMale/Man -0.3280 0.03015 -10.880

## genderAnother Gender 0.4846 0.11992 4.041
```

No *p*-values in the model summary.

But it's common practice to compare these t-values to a standard normal distribution.

Because we can also get significant *p*-values when there really is *no* effect.

Because we can also get significant *p*-values when there really is *no* effect.

No difference in the true population:

Because we can also get significant *p*-values when there really is *no* effect.

No difference in the true population:

A possible random sample (n = 50 per group):


```
sim_fit <- polr(rating ~ group, data = simdat, method = 'probit', Hess = TRUE)
summary(sim_fit)

## Coefficients:
## Value Std. Error t value
## groupGroup B -0.4479 0.2229 -2.009</pre>
```

```
sim_fit <- polr(rating ~ group, data = simdat, method = 'probit', Hess = TRUE)
summary(sim_fit)

## Coefficients:
## Value Std. Error t value
## groupGroup B -0.4479 0.2229 -2.009</pre>
```


So p is significant, but in the true population, Group A and Group B were identical!

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

Apply and interpret ordinal regression models (e.g., polr() from MASS).

***** A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

Apply and interpret ordinal regression models (e.g., polr() from MASS).

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

Understand that significant *p*-values can arise even if no effect exists in the real world.

19 / 20

Anxiety (imaginary underlying variable)

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

Apply and interpret ordinal regression models (e.g., polr() from MASS).

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

Understand that significant *p*-values can arise even if no effect exists in the real world.

How you'll avoid it

</> A common R mistake: Letting R treat all variables that look like numbers as continuous numeric.

When a variable comes from a Likert scale, tell R it's categorical using **factor()**.

• An advanced stats mistake: Modelling categorical, ordinal data as if it were numeric.

Apply and interpret ordinal regression models (e.g., polr() from MASS).

A foundational stats mistake: Interpreting a significant *p*-value as evidence that an effect exists in the real world.

Understand that significant *p*-values can arise even if no effect exists in the real world.

Thank you! © Time for questions!

Some really nice resources

- Jamieson's (2004) paper Likert scales: How to (ab)use them.
- UCLA Statistical Methods and Data Analytics's web page Ordinal Logistic Regression.
- Kurz' (2021) blog post **Notes on the Bayesian cumulative probit.**
- Vasishth and Nicenboim's (2016) paper Statistical Methods for Linguistic Research: Foundational Ideas – Part I.
- Gelman and Hill's (2007) book **Data Analysis Using Regression and Multilevel/Hierarchical Models.**

Plot on Slide 2 from

Reeder, P. A., Newport, E. L., & Aslin, R. N. (2017). Distributional learning of subcategories in an artificial grammar: Category generalization and subcategory restrictions. *Journal of Memory and Language*, 97, 17–29.

Data from

Terry, J., Ross, R. M., Nagy, T., Salgado, M., Garrido-Vásquez, P., Sarfo, J. O., Cooper, S., Buttner, A. C., Lima, T. J. S., Öztürk, İ., Akay, N., Santos, F. H., Artemenko, C., Copping, L. T., Elsherif, M. M., Milovanović, I., Cribbie, R. A., Drushlyak, M. G., Swainston, K., ... Field, A. P. (2023). Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset). *Journal of Open Psychology Data*, 11(1), 8.