Rank-65665 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431661229

General information

Number of lines	4
Number of points	25
Number of singular points	2
Number of Eckardt points	0
Number of double points	4
Number of single points	12
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{4}
Type of lines on points	$2^4, 1^{12}, 0^9$

Singular Points

The surface has 2 singular points:

$$0: P_{27} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1) 1: P_{39} = \mathbf{P}(1, 0, 1, 1) = \mathbf{P}(1, 0, 1, 1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1, 0, 1, 0, 0, 1)_{109}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{4} = \mathbf{Pl}(1,0,0,0,1,0)_{26}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{17} = \mathbf{Pl}(0,0,1,0,1,0)_{32}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{Pl}(1,1,1,1,0,1)_{150}$$

Rank of lines: (22, 4, 17, 106)

Rank of points on Klein quadric: (109, 26, 32, 150)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 4 Double points:

The double points on the surface are:

$$P_{11} = (0, 1, 1, 0) = \ell_0 \cap \ell_3$$

$$P_0 = (1, 0, 0, 0) = \ell_1 \cap \ell_2$$

$$P_{27} = (1, 1, 0, 1) = \ell_1 \cap \ell_3$$

$$P_{39} = (1, 0, 1, 1) = \ell_2 \cap \ell_3$$

Single Points

The surface has 12 single points:

The single points on the surface are:

0:
$$P_5 = (1, 1, 0, 0)$$
 lies on line ℓ_0
1: $P_8 = (1, 0, 1, 0)$ lies on line ℓ_0
2: $P_{18} = (3, 2, 1, 0)$ lies on line ℓ_0
3: $P_{21} = (2, 3, 1, 0)$ lies on line ℓ_0
4: $P_{26} = (0, 1, 0, 1)$ lies on line ℓ_1
5: $P_{28} = (2, 1, 0, 1)$ lies on line ℓ_1
6: $P_{29} = (3, 1, 0, 1)$ lies on line ℓ_1

7: $P_{38} = (0, 0, 1, 1)$ lies on line ℓ_2

8: $P_{40} = (2, 0, 1, 1)$ lies on line ℓ_2

9: $P_{41} = (3, 0, 1, 1)$ lies on line ℓ_2

10: $P_{66} = (1, 3, 2, 1)$ lies on line ℓ_3

11: $P_{78} = (1, 2, 3, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 9 points not on any line:

The points on the surface but not on lines are:

 $0: P_{15} = (0, 2, 1, 0)$

 $1: P_{19} = (0, 3, 1, 0)$

 $2: P_{23} = (1,0,0,1)$

 $3: P_{30} = (0, 2, 0, 1)$

 $4: P_{34} = (0, 3, 0, 1)$

 $5: P_{43} = (2, 1, 1, 1)$

 $6: P_{44} = (3, 1, 1, 1)$

7: $P_{53} = (0, 0, 2, 1)$

 $8: P_{69} = (0,0,3,1)$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 0 & 0001 \\ 1 & 0011 \\ 2 & 0101 \\ 3 & 1110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_3
in point	P_{11}

Line 1 intersects

Line	ℓ_2	ℓ_3
in point	P_0	P_{27}

Line 2 intersects

Line	ℓ_1	ℓ_3
in point	P_0	P_{39}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2
in point	P_{11}	P_{27}	P_{39}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$9: P_{26} = (0, 1, 0, 1)$	18: $P_{41} = (3, 0, 1, 1)$
$1: P_5 = (1, 1, 0, 0)$	$10: P_{27} = (1, 1, 0, 1)$	19: $P_{43} = (2, 1, 1, 1)$
$2: P_8 = (1,0,1,0)$	11: $P_{28} = (2, 1, 0, 1)$	$20: P_{44} = (3, 1, 1, 1)$
$3: P_{11} = (0, 1, 1, 0)$	$12: P_{29} = (3, 1, 0, 1)$	$21: P_{53} = (0,0,2,1)$
$4: P_{15} = (0, 2, 1, 0)$	13: $P_{30} = (0, 2, 0, 1)$	$22: P_{66} = (1, 3, 2, 1)$
$5: P_{18} = (3, 2, 1, 0)$	$14: P_{34} = (0, 3, 0, 1)$	$23: P_{69} = (0,0,3,1)$
$6: P_{19} = (0, 3, 1, 0)$	15: $P_{38} = (0, 0, 1, 1)$	$24: P_{78} = (1, 2, 3, 1)$
$7: P_{21} = (2, 3, 1, 0)$	$16: P_{39} = (1,0,1,1)$	
$8: P_{23} = (1,0,0,1)$	17: $P_{40} = (2,0,1,1)$	