A Guided Tour of Chapter 3: Dynamic Programming

Ashwin Rao

ICME, Stanford University

Dynamic Programming for Prediction and Control

- Prediction: Compute the Value Function of an MRP
- Control: Compute the Optimal Value Function of an MDP
- (Optimal Policy can be extracted from Optimal Value Function)
- ullet Planning versus Learning: access to the \mathcal{P}_R function ("model")
- Original use of DP term: MDP Theory and solution methods
- Bellman referred to DP as the Principle of Optimality
- Later, the usage of the term DP diffused out to other algorithms
- In CS, it means "recursive algorithms with overlapping subproblems"
- We restrict the term DP to: "Algorithms for Prediction and Control"
- Specifically applied to the setting of FiniteMarkovDecisionProcess
- Later we cover extensions such as Asynchronous DP, Approximate DP

Solving the Value Function as a Fixed-Point

- We will be covering 3 Dynamic Programming algorithms
- Each of the 3 algorithms is founded on the Bellman Equations
- Each is an iterative algorithm converging to the true Value Function
- Each algorithm is based on the concept of Fixed-Point

Definition

The Fixed-Point of a function $f: \mathcal{X} \to \mathcal{X}$ (for some arbitrary domain \mathcal{X}) is a value $x \in \mathcal{X}$ that satisfies the equation: x = f(x).

- Some functions have multiple fixed-points, some have none
- DP algorithms are based on functions with a unique fixed-point
- Simple example: $f(x) = \cos(x)$, Fixed-Point: $x^* = \cos(x^*)$
- For any x_0 , $\cos(\cos(\ldots\cos(x_0)\ldots))$ converges to fixed-point x^*
- Why does this work? How fast does it converge?

Banach Fixed-Point Theorem

Theorem (Banach Fixed-Point Theorem)

Let \mathcal{X} be a non-empty set equipped with a complete metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Let $f: \mathcal{X} \to \mathcal{X}$ be such that there exists a $L \in [0,1)$ such that $d(f(x_1), f(x_2)) \leq L \cdot d(x_1, x_2)$ for all $x_1, x_2 \in \mathcal{X}$. Then,

• There exists a unique Fixed-Point $x^* \in \mathcal{X}$, i.e.,

$$x^* = f(x^*)$$

• For any $x_0 \in \mathcal{X}$, and sequence $[x_i|i=0,1,2,\ldots]$ defined as $x_{i+1} = f(x_i)$ for all $i=0,1,2,\ldots$,

$$\lim_{i\to\infty}x_i=x^*$$

If you have a complete metric space $\langle \mathcal{X}, d \rangle$ and a contraction f (with respect to d), then you have an algorithm to solve for the fixed-point of f.

Policy Evaluation (for Prediction)

- ullet MDP with $\mathcal{S} = \{s_1, s_2, \dots, s_n\}, \mathcal{N} = \{s_1, s_2, \dots, s_m\}$
- Given a policy π , compute the Value Function of π -implied MRP
- $\mathcal{P}^\pi_R: \mathcal{N} imes \mathcal{D} imes \mathcal{S} o [0,1]$ is given as a data structure
- Extract (from \mathcal{P}_R^π) $\mathcal{P}^\pi: \mathcal{N} \times \mathcal{S} \to [0,1]$ and $\mathcal{R}^\pi: \mathcal{N} \to \mathbb{R}$
- For non-large spaces, we can compute (in vector notation):

$$oldsymbol{V}^{\pi} = (oldsymbol{I_m} - \gamma oldsymbol{\mathcal{P}}^{\pi})^{-1} \cdot oldsymbol{\mathcal{R}}^{\pi}$$

- Note: $V^{\pi}, \mathcal{R}^{\pi}$ are m-column vectors $(\in \mathbb{R}^m)$ and \mathcal{P}^{π} is $m \times m$ matrix
- So we look for an iterative algorithm to solve MRP Bellman Equation:

$$V^{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \cdot V^{\pi}$$

Bellman Policy Operator and it's Fixed-Point

• Define the Bellman Policy Operator ${m B}^{\pi}: \mathbb{R}^m o \mathbb{R}^m$ as:

$$m{B}^{\pi}(m{V}) = m{\mathcal{R}}^{\pi} + \gamma m{\mathcal{P}}^{\pi} \cdot m{V}$$
 for any Value Function vector $m{V} \in \mathbb{R}^m$

- ${m B}^{\pi}$ is a linear transformation on vectors in ${\mathbb R}^m$
- So, the MRP Bellman Equation can be expressed as:

$$oldsymbol{V}^{\pi} = oldsymbol{B}^{\pi}(oldsymbol{V}^{\pi})$$

- $oldsymbol{\bullet}$ This means $oldsymbol{V}^\pi \in \mathbb{R}^m$ is the Fixed-Point of $oldsymbol{B}^\pi : \mathbb{R}^m o \mathbb{R}^m$
- Metric $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ defined as L^{∞} norm:

$$d(\boldsymbol{X}, \boldsymbol{Y}) = \|\boldsymbol{X} - \boldsymbol{Y}\|_{\infty} = \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

• \mathbf{B}^{π} is a contraction function under L^{∞} norm: For all $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m}$,

$$\max_{s \in \mathcal{N}} |(\boldsymbol{B}^{\pi}(\boldsymbol{X}) - \boldsymbol{B}^{\pi}(\boldsymbol{Y}))(s)| = \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{\mathcal{P}}^{\pi} \cdot (\boldsymbol{X} - \boldsymbol{Y}))(s)|$$
$$\leq \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

Policy Evaluation Convergence Theorem

Invoking the Banach Fixed-Point Theorem for $\gamma < 1$ gives:

Theorem (Policy Evaluation Convergence Theorem)

For a Finite MDP with $|\mathcal{N}|=m$ and $\gamma<1$, if $\mathbf{V}^{\pi}\in\mathbb{R}^{m}$ is the Value Function of the MDP when evaluated with a fixed policy $\pi:\mathcal{N}\times\mathcal{A}\to[0,1]$, then \mathbf{V}^{π} is the unique Fixed-Point of the Bellman Policy Operator $\mathbf{B}^{\pi}:\mathbb{R}^{m}\to\mathbb{R}^{m}$, and

 $\lim_{i o\infty}(m{B}^\pi)^i(m{V_0}) om{V}^\pi$ for all starting Value Functions $m{V_0}\in\mathbb{R}^m$

Policy Evaluation algorithm

- ullet Start with any Value Function $oldsymbol{V_0} \in \mathbb{R}^m$
- Iterating over i = 0, 1, 2, ..., calculate in each iteration:

$$V_{i+1} = B^{\pi}(V_i) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \cdot V_i$$

ullet Stop when $d(oldsymbol{V_i},oldsymbol{V_{i+1}}) = \max_{s \in \mathcal{N}} |(oldsymbol{V_i}-oldsymbol{V_{i+1}})(s)|$ is small enough

Banach Fixed-Point Theorem also assures speed of convergence (dependent on choice of starting Value Function V_0 and on choice of γ).

Running time of each iteration is $O(m^2)$. Constructing the MRP from the MDP and the policy takes $O(m^2k)$ operations, where $m=|\mathcal{N}|, k=|\mathcal{A}|$.

Greedy Policy

- Now we move on solving the MDP Control problem
- We want to iterate *Policy Improvements* to drive to an *Optimal Policy*
- Policy Improvement is based on a "greedy" technique
- The Greedy Policy Function $G: \mathbb{R}^m \to (\mathcal{N} \to \mathcal{A})$ (interpreted as a function mapping a Value Function vector \mathbf{V} to a deterministic policy $\pi'_D: \mathcal{N} \to \mathcal{A}$) is defined as:

$$G(\textbf{\textit{V}})(s) = \pi_D'(s) = \argmax_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \textbf{\textit{V}}(s')\}$$

Definition (Value Function Comparison)

We say $X \geq Y$ for Value Functions $X, Y : \mathcal{N} \to \mathbb{R}$ of an MDP iff:

$$X(s) \geq Y(s)$$
 for all $s \in \mathcal{N}$

We say π_1 better ("improvement") than π_2 if $\boldsymbol{V}^{\pi_1} \geq \boldsymbol{V}^{\pi_2}$

Policy Improvement Theorem

Theorem (Policy Improvement Theorem)

For a finite MDP, for any policy π ,

$$oldsymbol{V}^{\pi_D'} = oldsymbol{V}^{G(oldsymbol{V}^{\pi})} \geq oldsymbol{V}^{\pi}$$

• Note that applying $\boldsymbol{B}^{\pi'_D} = \boldsymbol{B}^{G(\boldsymbol{V}^{\pi})}$ repeatedly, starting with \boldsymbol{V}^{π} , will converge to $\boldsymbol{V}^{\pi'_D}$ (Policy Evaluation with policy $\pi'_D = G(\boldsymbol{V}^{\pi})$):

$$\lim_{i o\infty}({m{\mathcal{B}}}^{\pi_D'})^i({m{V}}^\pi)={m{V}}^{\pi_D'}$$

• So the proof is complete if we prove that:

$$({m{\mathcal{B}}}^{\pi'_D})^{i+1}({m{V}}^{\pi}) \geq ({m{\mathcal{B}}}^{\pi'_D})^{i}({m{V}}^{\pi})$$
 for all $i=0,1,2,\ldots$

• Increasing tower of Value Functions $[({\bf B}^{\pi'_D})^i({\bf V}^\pi)|i=0,1,2,\ldots]$ with repeated applications of ${\bf B}^{\pi'_D}$

Proof by Induction

• To prove the base case (of proof by induction), note that:

$$\boldsymbol{B}^{\pi_D'}(\boldsymbol{V}^\pi)(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot \boldsymbol{V}^\pi(s')\} = \max_{a \in \mathcal{A}} Q^\pi(s,a)$$

• $m{V}^{\pi}(s)$ is weighted average of $Q^{\pi}(s,\cdot)$ while $m{B}^{\pi'_D}(m{V}^{\pi})(s)$ is maximum

$$m{\mathcal{B}}^{\pi_D'}(m{V}^\pi) \geq m{V}^\pi$$

• Induction step is proved by monotonicity of ${\bf B}^{\pi}$ operator (for any π):

Monotonicity Property of
$${m B}^{\pi}: {m X} \geq {m Y} \Rightarrow {m B}^{\pi}({m X}) \geq {m B}^{\pi}({m Y})$$

So
$$(oldsymbol{\mathcal{B}}^{\pi_D'})^{i+1}(oldsymbol{\mathcal{V}}^\pi) \geq (oldsymbol{\mathcal{B}}^{\pi_D'})^{i}(oldsymbol{\mathcal{V}}^\pi) \Rightarrow (oldsymbol{\mathcal{B}}^{\pi_D'})^{i+2}(oldsymbol{\mathcal{V}}^\pi) \geq (oldsymbol{\mathcal{B}}^{\pi_D'})^{i+1}(oldsymbol{\mathcal{V}}^\pi)$$

Intuitive Understanding of Policy Improvement Theorem

- Increasing tower of Value Functions $[({m B}^{\pi_D'})^i({m V}^\pi)|i=0,1,2,\ldots]$
- ullet Each stage of further application of $m{B}^{\pi_D'}$ improves the Value Function
- ullet Stage 0: Value Function $oldsymbol{V}^{\pi}$ means execute policy π throughout
- Stage 1: VF ${\pmb B}^{\pi'_D}({\pmb V}^\pi)$ means execute improved policy π'_D for the 1st time step, then execute policy π for all further time steps
- Improves the VF from Stage 0: ${m V}^{\pi}$ to Stage 1: ${m B}^{\pi'_{D}}({m V}^{\pi})$
- Stage 2: VF $(\mathbf{B}^{\pi'_D})^2(\mathbf{V}^{\pi})$ means execute improved policy π'_D for first 2 time steps, then execute policy π for all further time steps
- Improves the VF from Stage 1: ${m B}^{\pi'_D}({m V}^\pi)$ to Stage 2: $({m B}^{\pi'_D})^2({m V}^\pi)$
- ullet Each stage applies policy π_D' instead of π for an extra time step
- ullet These stages are the iterations of *Policy Evaluation* (using policy π_D')
- ullet Building an increasing tower of VFs that converge to VF $oldsymbol{V}^{\pi'_D}$ $(\geq oldsymbol{V}^{\pi})$

Repeating Policy Improvement and Policy Evaluation

- Policy Improvement Theorem says:
 - Start with Value Function V^{π} (for policy π)
 - ullet Perform a "greedy policy improvement" to create policy $\pi_D' = \mathcal{G}(oldsymbol{V}^\pi)$
 - ullet Perform Policy Evaluation (for policy π_D') with starting VF $oldsymbol{V}^\pi$
 - ullet This results in VF $oldsymbol{V}^{\pi_D'} \geq$ starting VF $oldsymbol{V}^{\pi}$
- ullet We can repeat this process starting with $oldsymbol{V}^{\pi_D'}$
- ullet Creating an improved policy π_D'' and improved VF $oldsymbol{V}^{\pi_D''}$.
- ... and we can keep going to create further improved policies/VFs
- ... until there is no further improvement
- This in fact is the *Policy Iteration* algorithm

Policy Iteration algorithm

- ullet Start with any Value Function $oldsymbol{V_0} \in \mathbb{R}^m$
- Iterating over j = 0, 1, 2, ..., calculate in each iteration:

Deterministic Policy
$$\pi_{j+1} = G(V_j)$$

Value Function
$$extbf{\emph{V}}_{j+1} = \lim_{i o \infty} (extbf{\emph{B}}^{\pi_{j+1}})^i (extbf{\emph{V}}_j)$$

• Stop when $d(V_j, V_{j+1}) = \max_{s \in \mathcal{N}} |(V_j - V_{j+1})(s)|$ is small enough At termination: $V_i = (B^{G(V_j)})^i(V_i) = V_{i+1}$ for all i = 0, 1, 2, ...

Specializing this to i = 1, we have for all $s \in \mathcal{N}$:

$$m{V_j}(s) = m{B}^{G(m{V_j})}(m{V_j})(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot m{V_j}(s')\}$$

This means V_i satisfies the MDP Bellman Optimality Equation and so,

$$oldsymbol{V_i} = oldsymbol{V}^{\pi_j} = oldsymbol{V}^*$$

Policy Iteration algorithm

Policy Iteration Convergence Theorem

Theorem (Policy Iteration Convergence Theorem)

For a Finite MDP with $|\mathcal{N}|=m$ and $\gamma<1$, Policy Iteration algorithm converges to the Optimal Value Function $\mathbf{V}^*\in\mathbb{R}^m$ along with a Deterministic Optimal Policy $\pi_D^*:\mathcal{N}\to\mathcal{A}$, no matter which Value Function $\mathbf{V_0}\in\mathbb{R}^m$ we start the algorithm with.

Running time of Policy Improvement is $O(m^2k)$ where $|\mathcal{N}|=m, |\mathcal{A}|=k$ Running time of each iteration of Policy Evaluation is $O(m^2k)$

Bellman Optimality Operator

- Tweak the definition of Greedy Policy Function (arg max to max)
- Bellman Optimality Operator $B^* : \mathbb{R}^m \to \mathbb{R}^m$ defined as:

$$\boldsymbol{B}^*(\boldsymbol{V})(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \boldsymbol{V}(s')\}$$

- ullet Think of this as a non-linear transformation of a VF vector $oldsymbol{V} \in \mathbb{R}^m$
- The action a producing the max is the action prescribed by π_D . So,

$$oldsymbol{B}^{G(oldsymbol{V})}(oldsymbol{V}) = oldsymbol{B}^*(oldsymbol{V})$$
 for all $oldsymbol{V} \in \mathbb{R}^m$

• Specializing ${\bf V}$ to be the Value Function ${\bf V}^{\pi}$ for a policy π , we get:

$$\boldsymbol{B}^{G(\boldsymbol{V}^{\pi})}(\boldsymbol{V}^{\pi}) = \boldsymbol{B}^{*}(\boldsymbol{V}^{\pi})$$

• This is the 1st stage of Policy Evaluation with improved policy $G(\boldsymbol{V}^{\pi})$

Fixed-Point of Bellman Optimality Operator

- $oldsymbol{artheta}^{\pi}$ was motivated by the MDP Bellman Policy Equation
- ullet Similarly, $oldsymbol{B}^*$ is motivated by the MDP Bellman Optimality Equation:

$$\boldsymbol{V}^*(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \boldsymbol{V}^*(s')\} \text{ for all } s \in \mathcal{N}$$

So we can express the MDP Bellman Optimality Equation neatly as:

$$oldsymbol{V}^* = oldsymbol{B}^*(oldsymbol{V}^*)$$

- Therefore, $V^* \in \mathbb{R}^m$ is the Fixed-Point of $B^* : \mathbb{R}^m \to \mathbb{R}^m$
- We want to prove that B^* is a contraction function (under L^{∞} norm)
- So we can take advantage of Banach Fixed-Point Theorem
- ullet And solve the Control problem by iterative applications of $oldsymbol{B}^*$

Proof that B^* is a contraction

We need to utilize two key properties of B*

Monotonicity Property:
$$\mathbf{X} \geq \mathbf{Y} \Rightarrow \mathbf{B}^*(\mathbf{X}) \geq \mathbf{B}^*(\mathbf{Y})$$

Constant Shift Property: $\mathbf{B}^*(\mathbf{X} + c) = \mathbf{B}^*(\mathbf{Y}) + \gamma c$

• With these two properties, we can prove that:

$$\max_{s \in \mathcal{N}} |(\boldsymbol{B}^*(\boldsymbol{X}) - \boldsymbol{B}^*(\boldsymbol{Y}))(s)| \leq \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

Theorem (Value Iteration Convergence Theorem)

For a Finite MDP with $|\mathcal{N}|=m$ and $\gamma<1$, if $\mathbf{V}^*\in\mathbb{R}^m$ is the Optimal Value Function, then \mathbf{V}^* is the unique Fixed-Point of the Bellman Optimality Operator $\mathbf{B}^*:\mathbb{R}^m\to\mathbb{R}^m$, and

$$\lim_{i o\infty}(m{B}^*)^i(m{V_0}) om{V}^*$$
 for all starting Value Functions $m{V_0}\in\mathbb{R}^m$

Value Iteration algorithm

- Start with any Value Function $V_0 \in \mathbb{R}^m$
- Iterating over i = 0, 1, 2, ..., calculate in each iteration:

$$extbf{\emph{V}}_{i+1}(s) = extbf{\emph{B}}^*(extbf{\emph{V}}_i)(s)$$
 for all $s \in \mathcal{N}$

ullet Stop when $d(oldsymbol{V_i},oldsymbol{V_{i+1}}) = \max_{s \in \mathcal{N}} |(oldsymbol{V_i} - oldsymbol{V_{i+1}})(s)|$ is small enough

Running time of each iteration of Value Iteration is $O(m^2k)$ where $|\mathcal{N}|=m$ and $|\mathcal{A}|=k$

Optimal Policy from Optimal Value Function

- Note that Value Iteration does not deal with any policy (only VFs)
- ullet Extract Optimal Policy π^* from Optimal VF V^* such that $oldsymbol{V}^{\pi^*} = oldsymbol{V}^*$
- Use Greedy Policy function *G*. We know:

$$oldsymbol{B}^{G(oldsymbol{V})}(oldsymbol{V}) = oldsymbol{B}^*(oldsymbol{V})$$
 for all $oldsymbol{V} \in \mathbb{R}^m$

• Specializing \boldsymbol{V} to \boldsymbol{V}^* , we get:

$$\boldsymbol{B}^{G(\boldsymbol{V}^*)}(\boldsymbol{V}^*) = \boldsymbol{B}^*(\boldsymbol{V}^*)$$

• But we know V^* is the Fixed-Point of B^* , i.e., $B^*(V^*) = V^*$. So,

$$\boldsymbol{B}^{G(\boldsymbol{V}^*)}(\boldsymbol{V}^*) = \boldsymbol{V}^*$$

- So V^* is the Fixed-Point of the Bellman Policy Operator $B^{G(V^*)}$
- But we know $\boldsymbol{B}^{G(\boldsymbol{V}^*)}$ has a unique Fixed-Point $(=\boldsymbol{V}^{G(\boldsymbol{V}^*)})$. So,

$$V^{G(V^*)} = V^*$$

- ullet Evaluating MDP with greedy policy extracted from $oldsymbol{V}^*$ achieves $oldsymbol{V}^*$
- ullet So, $G(V^*)$ is a (Deterministic) Optimal Policy

Value Function Progression in Policy Iteration

$$\pi_1 = G(V_0): V_0 \to B^{\pi_1}(V_0) \to \dots (B^{\pi_1})^i(V_0) \to \dots V^{\pi_1} = V_1$$
 $\pi_2 = G(V_1): V_1 \to B^{\pi_2}(V_1) \to \dots (B^{\pi_2})^i(V_1) \to \dots V^{\pi_2} = V_2$
 \dots

 $\pi_{i+1} = G(\boldsymbol{V_i}): \boldsymbol{V_i} \rightarrow \boldsymbol{B}^{\pi_{j+1}}(\boldsymbol{V_i}) \rightarrow \dots (\boldsymbol{B}^{\pi_{j+1}})^i(\boldsymbol{V_i}) \rightarrow \dots \boldsymbol{V}^{\pi_{j+1}} = \boldsymbol{V}^*$

- Policy Evaluation and Policy Improvement alternate until convergence
- In the process, they simultaneously compete and try to be consistent
- There are actually two notions of consistency:
 - VF \boldsymbol{V} being consistent with/close to VF \boldsymbol{V}^{π} of the policy π .
 - π being consistent with/close to Greedy Policy G(V) of VF V.

Policy Iteration

Generalized Policy Iteration (GPI)

Value Iteration and Reinforcement Learning as GPI

Value Iteration takes only one step of Policy Evaluation

$$egin{aligned} \pi_1 &= extit{G}(extbf{ extit{V}}_0): extbf{ extit{V}}_0
ightarrow extbf{ extit{B}}^{\pi_1}(extbf{ extit{V}}_0) &= extbf{ extit{V}}_1 \ \pi_2 &= extit{G}(extbf{ extit{V}}_1): extbf{ extit{V}}_1
ightarrow extbf{ extit{B}}^{\pi_2}(extbf{ extit{V}}_1) &= extbf{ extit{V}}_2 \ & \cdots \ & \pi_{i+1} &= extit{G}(extbf{ extit{V}}_i): extbf{ extit{V}}_i
ightarrow extbf{ extit{B}}^{\pi_{j+1}}(extbf{ extit{V}}_i) &= extbf{ extit{V}}^* \end{aligned}$$

- RL updates either a subset of states or just one state at a time
- Large-scale RL updates function approximations of a VF
- These can be thought of as partial Policy Evaluation/Policy Iteration

Asynchronous Dynamic Programming

The DP algorithms we've covered are qualified as *Synchronous DP*:

- All states' values are updated in each iteration
- "Simultaneous" state updates implemented by updating a copy of VF

Asynchronous DP can update subset of states, or update in any order

- In-place updates enable updated values to be used immediately
- Prioritized Sweeping keeps states sorted by their Value Function gaps

$$\mathsf{Gaps}\ g(s) = |V(s) - \max_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V(s')\}|$$

But this requires us to know the reverse transitions to resort queue

- Real-Time Dynamic Programming (RTDP) runs DP while the agent is experiencing real-time interaction with the environment
 - A state is updated when it is visited during the real-time interaction
 - The choice of action is governed by real-time VF-extracted policy

Episodic MDPs with unique state visits

- A fairly common specialization of MDPs enables great tractability:
 - All random sequences terminate within fixed time steps (episodic MDP)
 - A state is encountered at most once in an episode
- This can be conceptualized as a Directed Acyclic Graph (DAG)
- Each node in the DAG is a (state, action) pair
- Prediction/Control solved by "backwards walk" from terminal nodes
- Bellman Equation enables simply setting the VF of a visited node
- Avoids the expensive "iterate to convergence" method of classical DP
- States visited (and VFs set) in order of reverse <u>Topological Sort</u>
- Next we cover a special case of DAG MDPs: finite-horizon MDPs

Finite-Horizon MDPs

- Finite-Horizon Markov Decision Processes are characterized by:
 - ullet Each sequence terminates within a finite number of time steps T
 - Each time step has a separate (from other time steps) set of states
- Denote states at time t as S_t , terminal states as T_t , non-terminal states as $N_t = S_t T_t$ (note: $N_T = \emptyset$), actions as A_t , rewards as D_t
- ullet Augment each state to include time-index: augmented state is (t,s_t)

Entire MDP's States
$$\mathcal{S} = \{(t, s_t) | t = 0, 1, \dots, T, s_t \in \mathcal{S}_t\}$$

Each t gets its own state-reward transition probability function

$$(\mathcal{P}_R)_t : \mathcal{N}_t \times \mathcal{A}_t \times \mathcal{D}_{t+1} \times \mathcal{S}_{t+1} \rightarrow [0,1]$$

- Likewise, each t gets its own policy $\pi_t: \mathcal{N}_t \times \mathcal{A}_t \to [0,1]$
- An overall policy $\pi: \mathcal{N} \times \mathcal{A} \to [0,1]$ composed of $(\pi_0, \pi_1, \dots, \pi_{\mathcal{T}-1})$

Backward Induction for Finite MRP with Finite-Horizon

ullet VF for a given policy π can be represented by time-sequenced VFs

$$V_t^{\pi}: \mathcal{N}_t
ightarrow \mathbb{R}$$

• So Bellman Equation for π -implied Finite-Horizon MRP becomes:

$$V_t^{\pi}(s_t) = \sum_{s_{t+1} \in \mathcal{S}_{t+1}} \sum_{r_{t+1} \in \mathbb{D}_{t+1}} (\mathcal{P}_R^{\pi_t})_t(s_t, r_{t+1}, s_{t+1}) \cdot (r_{t+1} + \gamma \cdot V_{t+1}^{\pi}(s_{t+1}))$$

$$(\mathcal{P}_{R}^{\pi_{t}})_{t}(s_{t}, r_{t+1}, s_{t+1}) = \sum_{a_{t} \in \mathcal{A}_{t}} \pi_{t}(s_{t}, a_{t}) \cdot (\mathcal{P}_{R})_{t}(s_{t}, a_{t}, r_{t+1}, s_{t+1})$$

- "Backward Induction" algorithm for finite MRP with Finite-Horizon
- Decrementing t from T to 0, and calculating V_t^{π} from V_{t+1}^{π}
- Running time is $O(m^2T)$ where $|\mathcal{N}_t|$ is O(m)
- $O(m^2kT)$ to convert MDP to π -implied MRP ($|A_t|$ is O(k))

Backward Induction for Finite MDP with Finite-Horizon

ullet Optimal VF V^* can be represented by time-sequenced Optimal VFs

$$V_t^*: \mathcal{N}_t o \mathbb{R}$$

So MDP Bellman Optimality Equation becomes:

$$V_t^*(s_t) = \max_{a_t \in \mathcal{A}_t} \sum_{s_{t+1}} \sum_{r_{t+1}} (\mathcal{P}_R)_t(s_t, a_t, r_{t+1}, s_{t+1}) \cdot (r_{t+1} + \gamma \cdot V_{t+1}^*(s_{t+1}))$$

- "Backward Induction" (Control) for finite MDP with Finite-Horizon
- ullet Decrementing t from T to 0, and calculating V_t^* from V_{t+1}^*
- ullet (Associated) Optimal (Deterministic) Policy $(\pi_D^*)_t: \mathcal{N}_t o \mathcal{A}_t$ is

$$(\pi_D^*)_t(s_t) = \argmax_{a_t \in \mathcal{A}_t} \sum_{s_{t+1}} \sum_{r_{t+1}} (\mathcal{P}_R)_t(s_t, a_t, r_{t+1}, s_{t+1}) \cdot (r_{t+1} + \gamma \cdot V_{t+1}^*(s_{t+1}))$$

• Running time is $O(m^2kT)$ where $|\mathcal{N}_t|$ is O(m) and $|\mathcal{A}_t|$ is O(k)

Dynamic Pricing for End-of-Life/End-of-Season

- Dynamic Pricing: Core to many businesses, flexing to supply/demand
- We consider special case of products being sold at end of life/season
- ullet Assume we are T days from season-end and our inventory is M units
- Assume no more incoming inventory during these final T days
- Set prices daily to max Expected Total Sales Revenue over T days
- Price for a given day picked from prices $P_1, P_2, \dots, P_N \in \mathbb{R}$
- Customer daily demand is $Poisson(\lambda_i)$ if Price P_i is picked for the day
- \bullet Note that demand can exceed inventory on any day, Sales \leq Inventory

Dynamic Pricing Model for End-of-Life/End-of-Season

$$\mathcal{S}_t = \{(t, I_t) | I_t \in \mathbb{Z}, 0 \le I_t \le M\}$$
 for all $0 \le t \le T$

$$\mathcal{N}_t = \mathcal{S}_t$$
 and $\mathcal{A}_t = \{1, 2, \dots, N\}$ for all $0 \leq t < T$, and $\mathcal{N}_T = \emptyset$

$$I_0 = M$$
 and $I_{t+1} = \max(0, I_t - d_t)$ where $d_t \sim Poisson(\lambda_i)$ if $a_t = i$

Sales Revenue on day t is equal to $min(I_t, d_t) \cdot P_t$

$$(\mathcal{P}_R)_t(I_t,i,r_{t+1},I_t-k) = \begin{cases} \frac{e^{-\lambda_i \lambda_i^k}}{k!} & \text{if } k < I_t \text{ and } r_{t+1} = k \cdot P_i \\ \sum_{j=I_t}^{\infty} \frac{e^{-\lambda_i \lambda_i^j}}{j!} & \text{if } k = I_t \text{ and } r_{t+1} = k \cdot P_i \\ 0 & \text{otherwise} \end{cases}$$

Optimal Dynamic Pricing

Generalizations to Non-Tabular Algorithms

- Finite MDP algorithms we covered known as "tabular" algorithms
- "Tabular" means MDP is specified as a finite data structure
- More importantly, Value Function represented as a "table"
- These algorithms typically sweep through all states in each iteration
- Cannot do this for large finite spaces or for infinite spaces
- Requires us to generalize to function approximation of Value Function
 - Sample an appropriate subset of states
 - Calculate the Value Function for those states (Bellman calculation)
 - Create/Update a func approx with the sampled states' calculated values
- The fundamental structure of the algorithms is still the same
- Fundamental principles (Fixed-Point/Bellman Operators) still same
- These generalizations known as Approximate Dynamic Programming

Key Takeaways from this Chapter

- Fixed-Point of Functions and Fixed-Point Theorem: Enables iterative algorithms to solve a variety of problems cast as Fixed-Point.
- Generalized Policy Iteration: Powerful idea of alternating between improvement of a policy and evaluation of a value function, even though each of them might be partial applications. This generalized perspective unifies almost algorithms for MDP Control.
- Backward Induction: A straightforward method to solve finite-horizon MDPs by simply walking backwards and setting the Value Function from the horizon-end to the start.