Твердження 1.2 (друга необхідна умова існування екстремуму). Нехай $\mathbf{x}^* \in R^n$ є точкою локального мінімуму функції $f(\mathbf{x})$ на множині R^n та функція $f(\mathbf{x})$ двічі диференційовна в цій точці. Тоді матриця Гессе $H(\mathbf{x}^*)$ функції $f(\mathbf{x})$, обчислена в точці \mathbf{x}^* , є додатна напіввизначеною, тобто

$$H(\mathbf{x}^*) \ge 0. \tag{0.1}$$

Виконання другої необхідної умови існування екстремуму перевіряють за таким критерієм:

- для того щоб матриця Гессе $H(\mathbf{x}^*)$ була додатна напіввизначена та точка \mathbf{x}^* могла б бути точкою локального мінімуму, необхідно та достатньо, щоб всі головні мінори (мінори побудовані викресленням з визначника рядків та стовпчиків з однаковими номерами) визначника матриці Гессе були невід'ємними;
- для того щоб матриця Гессе $H(\mathbf{x}^*)$ була від'ємна напіввизначена та точка \mathbf{x}^* могла б бути точкою локального максимуму, необхідно та достатньо, щоб всі головні мінори парного порядку були невід'ємними, а всі головні мінори непарного порядку недодатними.

Твердження 1.3 (достатня умова існування екстремуму). Нехай функція $f(\mathbf{x})$ в точці $\mathbf{x}^* \in R^n$ двічі диференційовна, її градієнт дорівнює нулю, а матриця Гессе є додатна визначена, тобто

$$\nabla f(\mathbf{x}^*) = 0 \text{ Ta } H(\mathbf{x}^*) > 0,$$
 (0.2)

тоді точка \mathbf{x}^* ϵ точка локального мінімуму функції $f(\mathbf{x})$ на множині R^n .

Для перевірки достатніх умов існування екстремуму використовують критерій Сільвестра:

- для того щоб матриця Гессе $H(\mathbf{x}^*)$ була додатна визначена та точка \mathbf{x}^* була точкою локального мінімуму, необхідно та достатньо, щоб знаки кутових мінорів були строго додатні;
- для того щоб матриця Гессе $H(\mathbf{x}^*)$ була від'ємна визначена та точка \mathbf{x}^* була точкою локального максимуму, необхідно та достатньо, щоб знаки кутових мінорів чергувалися, починаючи з від'ємного, тобто $\Delta_1 < 0$, $\Delta_2 > 0$, $\Delta_3 < 0$, ..., $(-1)^n \Delta_n > 0$.

В загальному випадку перевірка необхідних та достатніх умов існування екстремуму виконується за схемою наведеною на рис.1.1.

В тому випадку коли питання про наявність екстремуму залишається відкритим необхідно проводити додаткове дослідження.

Якщо матриця $H(\mathbf{x}^*)$ є невизначеною, то точка \mathbf{x}^* є сідловою.

Визначення 1.10. Сідловою точкою функції називається точка по один бік якої функція опукла в одному напрямку, а по іншій бік в протилежному напрямку.

Якщо існує певний напрям в багатовимірному просторі, в якому функція зменшується, й існує певний напрям, в якому вона збільшується відносно деякої точки, то така точка є сідловою.

Якщо матриця $H(\mathbf{x}^*)$ є напіввизначеною, то відповідна точка \mathbf{x}^* може як бути екстремальною так і не бути. В цьому випадку необхідно враховувати члени більш високих порядків в розкладенні Тейлора.

Рис. 1.1. Схема знаходження екстремуму

Якщо для функції однієї змінної f''(x)=0, то необхідно досліджувати похідні вищих порядків у відповідності з теоремою 1.1.

Теорема 1.1. Якщо в стаціонарній точці x^* функції f(x) перші (n-1) ії похідні дорівнюють нулю та $f^{(n)}(x^*) \neq 0$, то в точці $x = x^*$ функція f(x) має

- точку перегину, якщо n непарне;
- точку максимуму, якщо n парне та $f^{(n)}(x^*) < 0$;
- точку мінімуму, якщо n парне та $f^{(n)}(x^*) > 0$.