Disclaimer I wrote this to my best knowledge, however, no guarantees are given whatsoever. Sources If not noted differently, the source is the lecture slides and/or the accompanying book.

Binary shingle matrix $M \in \{0,1\}^{CxN}$ where $M_{i,j} = 1$ iff document shift-invariance k(x,y) = k(x-y). j contains shingle i, N documents, C k-shingles. Gaussian $k(x-y) = \exp(-||x-y||_2^2/h^2)$. 1.2 Distance functions **Def.** $d: S \times S \to \mathbb{R}$ is distance function iff pos. definite except d(x,x) = 0 $(d(x,x') > 0 \iff x \neq x')$, symmetric (d(x,x') = d(x',x))and triangle inequality holds $(d(x,x'') \le d(x,x') + d(x',x''))$. H-strongly convex f H-strongly convex iff $f(x') \geq f(x) +$ $\nabla f(x)^T(x'-x) + \frac{H}{2}||x'-x||_2^2$, i. e. bounded by quadratic fn (at every L_r -norm $d_r(x,y) = ||x-y||_r = (\sum_i |x_i-y_i|^r)^{1/r}$. L_2 is Euclidean. Cosine $\operatorname{Sim}_c(A,B) = \frac{A \cdot B}{||A|| \cdot ||B||}, \ d_c(A,B) = \frac{\arccos(\operatorname{Sim}_c(A,B))}{\pi}$ 2.1 Support vector machine (SVM) SVM primal Jaccard sim., d. $\operatorname{Sim}_J(A,B) = \frac{|A \cap B|}{|A \cup B|}, d_J(A,B) = 1 - \operatorname{Sim}_J(A,B).$ 1.3 LSH – local sensitive hashing Norm-constrained $\min_{\boldsymbol{w}} \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i) \text{ s.t. } ||\boldsymbol{w}||_2 \leq \frac{1}{\sqrt{\lambda}}.$

row index: $h_{\pi}(C) = \min_{i,C(i)=1} \pi(i)$, bin. vec. C, rand. perm. π . Note: $\Pr_{\pi}[h_{\pi}(C_1) = h_{\pi}(C_2)] = \operatorname{Sim}_J(C_1, C_2)$ if $\pi \in_{\text{u.a.r.}} S_{|C|}$. Min-hash signature matrix $M_S \in [N]^{n \times C}$ with $M_S(i,c) = h_i(C_c)$

Note: Trivial for exact duplicates (hash-collision \rightarrow candidate pair).

Min-hash $h_{\pi}(C)$ Hash is the min (i.e. first) non-zero permutated

Key Idea: Similiar documents have similiar hash.

Nearest-Neighbor Find $x^* = \operatorname{argmin}_{x \in X} d(x, y)$ given $S, y \in$

Near-Duplicate detection Find all $x,x' \in X$ with $d(x,x') \leq \epsilon$.

is consecutive appearance of k chars/words.

1 Approximate Retrieval

 $S, X \subseteq S$.

1.1 *k*-Shingling

given n hash-fns h_i drawn randomly from a universal hash family. **Pseudo permutation** h_{π} with $\pi(i) = (a \cdot i + b) \mod p \mod N$, N number of shingles, $p \ge N$ prime and $a,b \in_{u.a.r.} [p]$ with $a \ne 0$.

Compute Min-hash signature matix M_S For column $c \in [C]$, row $r \in [N]$ with $C_c(r) = 1$, $M_S(i,c) \leftarrow \min\{h_i(C_c), M_S(i,c)\}$ for all h_i . (d_1, d_2, p_1, p_2) -sensitivity of a hash family $F = \{h_1, \dots, h_n\}$:

 $\forall x, y \in S : d(x, y) \leq d_1 \implies P[h(x) = h(y)] \geq p_1$ and $d(x,y) \ge d_2 \Longrightarrow P[h(x) = h(y)] \le p_2.$ r-way AND $h = [h_1, ..., h_r], h(x) = h(y) \Leftrightarrow \forall i \ h_i(x) = h_i(y)$ is (d_1,d_2,p_1^r,p_2^r) -sensitive.

b-way OR $h = [h_1, ..., h_b], h(x) = h(y) \Leftrightarrow \exists i \ h_i(x) = h_i(y)$ is $(d_1,d_2,1-(1-p_1)^b,1-(1-p_2)^b)$ -sensitive.

Banding as boosting Reduce FP/FN by b-way OR after rway AND. Group sig. matrix into b bands of r rows. match in at least one band (check by hashing). Result is

Linear classifier $y_i = \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}_i)$ assuming \boldsymbol{w} goes through origin. **Homogeneous transform** $\tilde{x} = [x,1]; \tilde{w} = [w,b], \text{ now } w \text{ passes origin}$ Documents (or videos) as set of k-shingles (a. k. a. k-grams). k-shingle **Kernel** k is inner product in high-dim. lin. space: k(x, y) = $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle$.

by checking signature matrix, shingles or even whole documents.

2 Supervised Learning

Convex function $f: S \to \mathbb{R}$ is convex iff $\forall x, x' \in S, \lambda \in$ $[0,1], \lambda f(x) + (1-\lambda)f(x') \ge f(\lambda x + (1-\lambda)x')$, i. e. every segment lies $G_t = \operatorname{diag}(...)$. $R_t \in O(\frac{\|\mathbf{w}^*\|_{\infty}}{\sqrt{T}}\sqrt{d})$, even better for sparse data. above function. Equiv. bounded by linear fn. at every point.

Quadratic $\min_{\boldsymbol{w}} \boldsymbol{w}^T \boldsymbol{w} + C \sum_i \xi_i$, s.t. $\forall i: y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i$, slack C. Hinge loss $\min_{\boldsymbol{w}} \lambda \boldsymbol{w}^T \boldsymbol{w} + \sum_{i} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i)$ with $\lambda = \frac{1}{C}$.

prediction becomes $y = \operatorname{sgn}(\sum_{i=1}^{n} \alpha_i y_i k(\boldsymbol{x}_i, \boldsymbol{x}))$. 2.2 Convex Programming

Lagrangian dual $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}, \ \alpha_{i} \in [0,C].$

Apply kernel trick: $\max_{\alpha} \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} k(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}), \ \alpha_{i} \in [0, C]$

Convex program $\min_{\boldsymbol{x}} f(\boldsymbol{x})$, s. t. $\boldsymbol{x} \in S$, f convex. Online convex program (OCP) $\min_{\boldsymbol{w}} \sum_{t=1}^{T} f_t(\boldsymbol{w})$, s. t. $\boldsymbol{w} \in S$.

General regularized form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i) + \lambda R(\boldsymbol{w})$, where Use as universal hash family. Only store a and b. Much more efficient. l is a (convex) loss function and R is the (convex) regularizer.

> above). Round $t \in [T]$: pick feasible pt. w_t , get convex fn. f_t , incur $l_t = f_t(\boldsymbol{w}_t)$. Regret $R_T = (\sum_{t=1}^T l_t) - \min_{\boldsymbol{w} \in S} \sum_{t=1}^T f_t(\boldsymbol{w})$. Online SVM $||w||_2 \leq \frac{1}{\lambda}$ (norm-constr.). For new pt. x_t classify

> $y_t = \operatorname{sgn}(\boldsymbol{w}_t^T \boldsymbol{x}_t)$, incur $l_t = \max(0, 1 - y_t \boldsymbol{w}_t^T \boldsymbol{x}_t)$, update \boldsymbol{w}_t (see later). Best $L^* = \min_{\boldsymbol{w}} \sum_{t=1}^{T} \max(0, 1 - y_t \boldsymbol{w}^T \boldsymbol{x}_t)$, regret $R_t = \sum_{t=1}^{T} l_t - L^*$. Online proj. gradient descent (OPGD) Update for online SVM:

 $\boldsymbol{w}_{t+1} = \operatorname{Proj}_{S}(\boldsymbol{w}_{t} - \eta_{t} \nabla f_{t}(\boldsymbol{w}_{t})) \text{ with } \operatorname{Proj}_{S}(\boldsymbol{w}) = \operatorname{argmin}_{\boldsymbol{w}' \in S} ||\boldsymbol{w}' - \boldsymbol{w}_{t}||_{S}$ $|w|_{2}$, gives regret bound $\frac{R_{T}}{T} \leq \frac{1}{\sqrt{T}} (||w_{0} - w^{*}||_{2}^{2} + ||\nabla f||_{2}^{2}).$ $(d_1,d_2,1-(1-p_1^r)^b,1-(1-p_2^r)^b)$ -sensitive. For H-strongly convex fixet $\eta_t=\frac{1}{Ht}$ gives $R_t \leq \frac{||\nabla f||^2}{2H}(1+\log T)$. Data Mining Summary for exam use. HS 2016, ©Tim Taubner. Creative Commons 2.0 @ SO

 $\omega_i \sim p, \bar{b_i} \sim U(0, 2\pi)$ $z(x) \equiv \sqrt{2/m} [cos(\omega_1' x + b_1)...cos(\omega_m' x + b_m)]$ In practice: pick random samples $S = \{\hat{x}_1...\hat{x}_n\} \subseteq X$

 $\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{w}_t$. If data i. i. d.: exp. error (risk) $\mathbb{E}[L(\tilde{\boldsymbol{w}})] \leq L(\boldsymbol{w}^*) + R_T/T$,

PEGASOS OPGD w/ mini-batches on strongly convex SVM form.

Performance ϵ -accurate sol. with prob. $\geq 1-\delta$ in runtime $O^*(\frac{d \cdot \log \frac{1}{\delta}}{\delta})$.

ADAGrad Adapt to geometry. *Mahalanobis norm* $||w||_G = ||Gw||_2$.

 $w_{t+1} = \operatorname{argmin}_{w \in S} ||w - (w_t - \eta G_t^{-1} \nabla f_t(w))||_{G_t}$. Min. regret with

 $G_t = (\sum_{\tau=1}^t \nabla f_\tau(\boldsymbol{w}_\tau) \nabla f_\tau(\boldsymbol{w}_\tau)^T)^{1/2}$. Easily invable matrix with

ADAM Add 'momentum' term: $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \mu \bar{g}_t, \ g_t = \nabla f_t(\boldsymbol{w}),$

Parallel SGD (PSGD) Randomly partition to k (indep.) machines.

Comp. $\mathbf{w} = \frac{1}{k} \sum_{i=1}^{k} \mathbf{w}_i$. $\mathbb{E}[\text{err}] \in O(\epsilon(\frac{1}{k\sqrt{\lambda}} + 1))$ if $T \in \Omega(\frac{\log \frac{\kappa \lambda}{\epsilon}}{\epsilon \lambda})$

Implicit kernel trick Map $x \in \mathbb{R}^d \to \phi(x) \in \mathbb{R}^D \to z(x) \in \mathbb{R}^m$. $d \ll$

 $D,m \ll D$. Where $\phi(x)$ corresponds to a kernel $k(x,x') = \phi(x)^T \phi(x')$.

Random fourier features For shift-invariant kernels (k(x,y) =

 $\bar{g}_t = (1-\beta)g_t + \beta \bar{g}_{t-1}, \ \bar{g}_0 = 0.$ Helps for dense gradients.

Suitable for MapReduce cluster, multi, passes possible.

Hogwild! Shared mem., no sync., sparse data. [...]

 $\min_{w} \sum_{t=1}^{T} g_t(\boldsymbol{w})$, s.t. $||\boldsymbol{w}||_2 \le \frac{1}{\sqrt{t}}$, $g_t(\boldsymbol{w}) = \frac{\lambda}{2} ||\boldsymbol{w}||_2^2 + f_t(\boldsymbol{w})$.

 g_t is λ -strongly convex, $\nabla g_t(\mathbf{w}) = \lambda \mathbf{w} + \nabla f_t(\mathbf{w})$.

 $L(\overline{\boldsymbol{w}}^*)$ is best error (risk) possible.

Nyström features !TODO!

 $K_{SXij} = k(\hat{x}_i, x_j), K_{SSij} = k(\hat{x}_i, \hat{x}_j)$

approximate $K = K_{XS}K_{SS}^{-1}K_{SX}$.

 $p(\omega) = \frac{1}{2\pi} \int e^{-j\omega'\delta} k(\delta) d\Delta$

k(x-y)

Tradeoff FP/FN Favor FP (work) over FN (wrong). Filter FP Stochastic PGD (SGD) Online-to-batch. Compute $\tilde{\boldsymbol{w}} =$

3 Pool-based active Learning (semi-supervised)

General norm-constrained form $\min_{\boldsymbol{w}} \sum_{i=1}^{n} l(\boldsymbol{w}; \boldsymbol{x}_i, y_i)$, s. t. $\boldsymbol{w} \in$

Uncertainty sampl. $U_t(x) = U(x|x_{1:t-1}, y_{1:t-1})$, request y_t for

 S_{λ} , l is loss and S_{λ} some (norm-)constraint. Note: This is an OCP. $x_t = \operatorname{argmax}_x U_t(x)$. SVM: $x_t = \operatorname{argmin}_{x_i} |\boldsymbol{w}^T \boldsymbol{x}_i|$, i.e. $U_t(\boldsymbol{x}) = \frac{1}{|\boldsymbol{w}^T \boldsymbol{x}|}$ **Solving OCP** Feasible set $S \subseteq \mathbb{R}^d$ and start pt. $\mathbf{w}_0 \in S$, OCP (as Sub-linear time w/ LSH $|w^Tx_i|$ small if \angle_{w,x_i} close to π .

> $h_{u,v}(z,-z)$ if z query hyperplane. $\Pr[h_H(w)=h_H(x)]=\Pr[h_u(w)=$ $h_{\boldsymbol{u}}(\boldsymbol{x}) \Pr[h_{\boldsymbol{v}}(-\boldsymbol{w}) = h_{\boldsymbol{v}}(\boldsymbol{x})] = \frac{1}{4} - \frac{1}{\pi^2} (\angle_{\boldsymbol{x},\boldsymbol{w}} - \frac{pi}{2})^2.$ Hash all unlabeled. Loop: Hash $\hat{\boldsymbol{w}}$, req. labels for hash-coll., update. **Informativeness** Metric of "information" gainable: \neq uncertainty.

> Hash hyperplane: $h_{\boldsymbol{u},\boldsymbol{v}}(\boldsymbol{a},\boldsymbol{b}) = [h_{\boldsymbol{u}}(\boldsymbol{a}),h_{\boldsymbol{v}}(\boldsymbol{b})] = [\operatorname{sgn}(\boldsymbol{u}^T\boldsymbol{a}),\operatorname{sgn}(\boldsymbol{v}^T\boldsymbol{b})].$

LSH hash family: $h_H(z) = h_{u,v}(z,z)$ if z datapoint, $h_H(z) =$

Version Space $V(D) = \{ \boldsymbol{w} \mid \forall (\boldsymbol{x}, y) \in D \operatorname{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = y \}$

Relevant version space given unlabeled pool $U = \{x'_1, \dots, x'_n\}$ $\tilde{\mathcal{V}}(D; U) = \{h: U \to \{\pm 1\} \mid \exists \boldsymbol{w} \in \mathcal{V}(D) \ \forall x \in U \ \mathrm{sgn}(\boldsymbol{w}^T \boldsymbol{x}) = h(\boldsymbol{x})\}.$

Generalized binary search Init $D \leftarrow \{\}$. While $|\tilde{\mathcal{V}}(D;U)| > 1$, comp. D^2 -sampling Sample prob. $p(x) = \frac{d(x,B)^2}{\sum_{x' \in \mathcal{X}} d(x',B)^2}$. $v^{\pm}(x) = |\tilde{\mathcal{V}}(D \cup \{(x,\pm)\}; U)|, \text{ label of argmin}_{x} \max\{v^{-}(x), v^{+}(x)\}$

Approx. $|\mathcal{V}|$ Margins of SVM $m^{\pm}(x)$ for labels $\{+,-\}, \forall x$. Max-min $\max_x \min\{m^+(x), m^-(x)\}\$ or ratio $\max_x \min\{\frac{m^+(x)}{m^-(x)}, \frac{m^-(x)}{m^+(x)}\}\$.

4 Model-based clustering – Unsupervised learning

k-means problem $\min_{\mu} L(\mu)$ with $L(\mu) = \sum_{i=1}^{N} \min_{j} ||\boldsymbol{x}_i - \mu_j||_2^2$ and cluster centers $\mu = \mu_1, ..., \mu_k$. Non-convex! NP-hard in general!

LLoyd's Init $\mu^{(0)}$ (somehow). Assign all x_i to closest center $z_i \leftarrow$ $\text{argmin}_{j \in [k]} || \boldsymbol{x}_i - \boldsymbol{\mu}_j^{(t-1)} ||_2^2, \ \textit{Update} \ \text{to mean:} \ \boldsymbol{\mu}_j^{(t)} \leftarrow \tfrac{1}{n_i} \textstyle \sum_{i: z_i = j} \boldsymbol{x}_i.$ Always converge to local minimum.

Online k-means Init μ somehow. For $t \in [n]$ find z = $\operatorname{argmin}_{i} ||\mu_{i} - \boldsymbol{x}_{t}||_{2}, \text{ set } \mu_{c} \leftarrow \mu_{c} + \eta_{t}(\boldsymbol{x}_{t} - \mu_{c}).$ For local optimum: $\sum_{t} \eta_{t} = \infty \wedge \sum_{t} \eta_{t}^{2} < \infty$ suffices, e.g. $\eta_{t} = \frac{c}{t}$.

Weighted rep. C $L_k(\mu;C) = \sum_{(w,x) \in C} w \cdot \min_j ||\mu_j - x||_2^2$.

 (k,ϵ) -coreset iff $\forall \mu: (1-\epsilon)L_k(\mu;D) \leq L_k(\mu;C) \leq (1+\epsilon)L_k(\mu;D)$

Merge coresets union of (k,ϵ) -coreset is also (k,ϵ) -coreset.

Compress a (k,δ) -coreset of a (k,ϵ) -coreset is a $(k,\epsilon+\delta+\epsilon\delta)$ -coreset

Coresets on streams Bin. tree of merge-compress. Error \propto height

Mapreduce k-means Construct (k,ϵ) -coreset C, solve k-means (w,ϵ) -coreset C many restarts) on coreset. (Repeat.) Near-optimal solution.

5 k-armed bandits as recommender systems

k-armed bandit k arms. T rounds, pick $i_t \in [k]$, sample $y_t \in P_i$ Max. $\sum_{t=1}^{T} y_t$.

Regret μ_i mean of P_i , $\mu^* = \max_i \mu_i$. Regret $r_t = \mu^* - \mu_{i_t}$, $R_T = \max_i \mu_i$ $\sum_{t=1}^{T} r_t.$

 ϵ -greedy Explore u.a.r. prob. ϵ_t , exploit with prob. $1-\epsilon_t$): choose $\operatorname{argmax}_{i} \hat{\mu}_{i}$. Suitable $\epsilon_{t} \in O(1/t)$ gives $R_{T} \in O(k \log T)$. Clearly unoptimal.

UCB1 Init $\hat{\mu}_i \leftarrow 0$; try all arms. Round $t \in (k+1) \dots T$: $UCB(i) \leftarrow \hat{\mu}_i + \sqrt{\frac{2\log t}{n}}, i_t \leftarrow \operatorname{argmax}_i UCB(i), \text{ obs. } y_t. \text{ Upd.}$

$$n_{i_t} \leftarrow n_{i_t} + 1, \hat{\mu}_{i_t} \leftarrow \hat{\mu}_{i_t} + \frac{y_t - \hat{\mu}_{i_t}}{n_{i_t}}.$$

contextual bandits Round t: Obs. context $z_t \in \mathcal{Z}$; recommend $x_t \in A_t$. Reward $y_t = f(x_t, z_t) + \epsilon_t$. $r_t = \max_{x} f(x, z_t) - f(x_t, z_t)$. Often $f(\boldsymbol{x},\boldsymbol{z}) = \boldsymbol{w}_{\boldsymbol{x}}^T \boldsymbol{z}$.

LinUCB Estimate $\hat{\boldsymbol{w}}_i = \operatorname{argmin}_{\boldsymbol{w}} \sum_{t=1}^m (y_t - \boldsymbol{w}^T \boldsymbol{z}_t) + ||\boldsymbol{w}||_2^2$. Closed form: $\hat{\boldsymbol{w}}_i = M_i^{-1} D_i^T y_i$, $M_i = D_i^T D_i + I$, $D_i = [z_1 | ... | z_m], y_i =$ $(y_1|...|y_m)^T$.

Confidence: Pr
$$\left[|\hat{\boldsymbol{w}}_i^T \boldsymbol{z}_t - \boldsymbol{w}_i^T \boldsymbol{z}_t| \le \alpha \sqrt{\boldsymbol{z}_t^T M_i^{-1} \boldsymbol{z}_t} \right] \ge 1 - \delta$$
 if $\alpha = 1 + \sqrt{\ln(2/\delta)/2}$.

Hybrid Model $y_t = \mathbf{w}_i^T \mathbf{z}_t + \beta^T \phi(\mathbf{x}_i, \mathbf{z}_t) + \epsilon_t$ captures sep. and shared effects.

Rejection Sampling Evaluate bandit: For $t \in \mathbb{N}$ read log $(\boldsymbol{x}_1^{(t)},\ldots,\boldsymbol{x}_k^{(t)},\boldsymbol{z}_t,a_t,y_t)$. Pick a_t' by algo. If $a_t'=a_t$ feed y_t to algo., else ignore line. Stop after T feedbacks.

6 Submodularity