Learning biases may prevent the lexicalization of pragmatic inferences

A case study combining iterated learning and replicator dynamics

Thomas Brochhagen ILLC, University of Amsterdam

Joint work with Michael Franke (Tübingen) & Robert van Rooij (Amsterdam)

Centre for Language Evolution seminar series, Edinburgh, 2016.07.19

The semantics-pragmatics distinction

Semantics

Literal meaning (truth-conditional)

Pragmatics

Information beyond literal meaning (e.g. defeasible inferences)

Scalar inferences

- (1) $\langle few, some, many, most, all \rangle$
 - a. All students came to class
 → Some students came to class
 - b. Some students came to class
 → Not all students came to class
- (2) \(\langle \text{may}, \text{should}, \text{must} \rangle
- (3) $\langle one, two, three, ... \rangle$
- (4) $\langle or, and \rangle$
- (5) ...

The use of a less informative expression when a more informative one <u>could have been used</u>* can license a defeasible inference that stronger alternatives do not hold

*The hearer assumes the speaker to be knowledgeable and cooperative

- · Laurence R. Horn. On the Semantic Properties of Logical Operators in English. Indiana University Linguistics Club, Bloomington, IN, 1972
- Gerald Gazdar. Pragmatics, Implicature, Presuposition and Logical Form.
 Academic Press, New York, 1979
- \cdot Paul Grice. Logic and conversation.

In Studies in the Ways of Words, chapter 2, pages 22-40. Harvard University Press, Cambridge, MA, 1975

- Why are (pragmatically inferred) upper-bounds of weak(er) alternatives not part of semantics?
- 2. What justifies semantic structure in light of pragmatic enrichment?

Today's talk:

- Propose a model to address (2) and analyze dynamics of linguistic pressures more broadly
- Use (1) as a case study for (2)

- Why are (pragmatically inferred) upper-bounds of weak(er) alternatives not part of semantics?
- 2. What justifies semantic structure in light of pragmatic enrichment?

Today's talk:

- Propose a model to address (2) and analyze dynamics of linguistic pressures more broadly
- Use (1) as a case study for (2)

Explanations for a lack of semantic upper-bounds I

(1) Signal no commitment to stronger alternatives when knowledge/cooperativity are not given

Cf. lexicalizing 'some' and 'sbna'

Conditions that may pressure for English-like semantics:

- Contextual cues are very reliable
- Morphosyntactic disambiguation is not frequently necessary
- Morphosyntactic disambiguation is not very costly
- Cost of larger lexica higher than morphosyntactic disambiguation

Explanations for a lack of semantic upper-bounds II

(2) Lack of upper-bounds provides learnability advantage

Model

Components I: Probabilistic (pragmatic) language users

- Varied lexical
- Varied production and comprehension behavior (here: parametrized literal or pragmatic)

- · Anton Benz, Gerhard Jäger, Robert Van Rooii, and Robert Van Rooii, editors, Game theory and pragmatics. Springer, 2005
- · Leon Bergen, Roger Levy, and Noah D Goodman, Pragmatic reasoning through semantic inference, Semantics and Pragmatics, 2016
- · M. C. Frank and N. D. Goodman. Predicting pragmatic reasoning in language games. Science, 336(6084):998-998, 2012
- · Michael Franke and Gerhard Jäger, Pragmatic back-and-forth reasoning. Semantics, Pragmatics and the Case of Scalar Implicatures., pages 170-200, 2014

Lexica

- s₁: Bill read some but not all books
- s₂: Bill read all books

$$L_a = egin{array}{ccc} m_{\mathsf{all}} & m_{\mathsf{some}} \ & s_1 \left(egin{array}{ccc} 0 & 1 \ 1 & 1 \end{array}
ight) \end{array}$$

$$L_b = egin{array}{ccc} m_{
m all} & m_{
m some} \ s_1 & 0 & 1 \ s_2 & 1 & 0 \end{array}
ight)$$

Literal behavior

$$R_0(s|m;L) \propto P^*(s)L_{sm} \tag{1}$$

$$S_0(m|s;L) \propto \exp(\lambda L_{sm}) \tag{2}$$

Example:
$$L_a$$
 with $\lambda = 10$

$$m_{\text{all}} \begin{pmatrix} s_1 & s_2 \\ 0 & 1 \\ m_{\text{some}} \begin{pmatrix} 0 & 1 \\ .5 & .5 \end{pmatrix}$$

$$\begin{array}{cc} m_{\rm all} & m_{\rm some} \\ s_1 \left(\begin{array}{ll} \exp(0) & \exp(\lambda) \\ \exp(\lambda) & \exp(\lambda) \end{array} \right) \end{array}$$

Pragmatic behavior

$$R_1(s|m;L) \propto P^*(s)S_0(m|s;L)$$

$$S_1(m|s;L) \propto \exp(\lambda R_0(s|m;L)^{\alpha})$$
(4)

Example:
$$L_a$$
 with $\lambda=10$ and $\epsilon=1/e^{\lambda}$

$$m_{\text{all}} \begin{pmatrix} s_1 & s_2 \\ m_{\text{some}} \begin{pmatrix} \epsilon & .5 \\ 0.99 & .5 \end{pmatrix}$$

$$m_{
m all}$$
 $m_{
m some}$ $s_1 \left(\exp(0) - \exp(\lambda.5^{lpha}) \right)$ $s_2 \left(\exp(\lambda 1^{lpha}) - \exp(\lambda.5^{lpha}) \right)$

Components II: Cultural transmission

Two competing pressures:

- 1. Communicative efficiency
 - ... as replicator dynamics
- 2. Learnability
 - ... iterated Bayesian learning as mutator dynamics

Replicator-mutator dynamics

- · Thomas L. Griffiths and Michael L. Kalish. Language evolution by iterated learning with bayesian agents. Cognitive Science, 31(3):441–480, 2007
- · Josef Hofbauer and Karl Sigmund. Evolutionary game dynamics. Bulletin of the American Mathematical Society, 40(04):479–520, 2003
- · M. A. Nowak and D. C. Krakauer. The evolution of language.

 Proceedings of the National Academy of Sciences, 96(14):8028–8033, 1999

Functional pressure (replicator dynamics)

Population of types x

 x_i is the proportion of t_i in x

• Fitness of type *i*

$$f_i = \sum_j x_j U(x_i, x_j)$$

Average fitness in the population

$$\Phi = \sum_{i} x_i f_i$$

Iterated learning (mutator dynamics)

- $Q_{ji} \propto \sum_d P(d|t_j)P(t_i|d)$
- $d = \langle \langle s_h, m_n \rangle, ..., \langle s_l, m_o \rangle \rangle$ of length k
- $P(d|t_j)$
- $P(t_i|d) \propto [P(t_i)P(d|t_i)]^l$, $l \geq 1$
- Prior encodes learning biases of players prior to data exposure

Replicator-mutator dynamics

$$\hat{x}_i = \sum_j Q_{ji} \frac{x_j f_j}{\Phi}$$

Analysis

Lexica, signaling behavior & types

<u>Lexica</u>

$$L_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \quad L_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad L_3 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$$L_4 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad L_5 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad L_6 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Signaling behavior

Literal or pragmatic

Types

12 types (2 behaviors \times 6 lexica)

- ullet $P(t_i)$ managed by parameter $c \in [0,1]$
- Signaling behavior: λ , α
- Learning c, k, # of sequences of length k, I

Fitness only

Learning only

Fitness and learning

Interim remarks

- Lack of semantic-upper bounds can overcome pressures and stabilize in a population provided...
 - Bias for simpler representations
 - Pragmatics to compensate lack of upper-bounds in use

But

- Highly polymorphic populations even for high c
- Role of learning mechanisms, rationality, and learning observations unexplored

Interim remarks

- Lack of semantic-upper bounds can overcome pressures and stabilize in a population provided...
 - Bias for simpler representations
 - Pragmatics to compensate lack of upper-bounds in use

But

- Highly polymorphic populations even for high c
- Role of learning mechanisms, rationality, and learning observations unexplored

Effect of prior with more posterior maximization

Prior and posterior

Rationality and sequence length I

Rationality and sequence length II

Conclusion & Outlook

Concluding remarks: Application

- Learnability steers language towards simpler semantics
- Pragmatics compensates for potential loss in expressivity

Lack of semantic upper-bounds

- Functional advantages
 - Reliability of contextual cues to cancel implicatures
 - Lexicon size
 - ...

Provided

- Some degree of rationality in learning & choice
- Relation between bounds and simplicity

Concluding remarks: Model

- Combines
 - Functional pressure
 - Learning pressure
 - (Probabilistic) hearer & speaker models
 - Distinct languages

Future directions

- Generalization
- Frequency effects
- Larger lexica & uncertainty
- Further applications

References

References I

[FJ14]

[BJVRVR05] Anton Benz, Gerhard Jäger, Robert Van Rooij, and Robert Van Rooij, editors. Game theory and pragmatics.

Springer, 2005.

[BLG16] Leon Bergen, Roger Levy, and Noah D Goodman.

Pragmatic reasoning through semantic inference.

Semantics and Pragmatics, 2016.

[FG12] M. C. Frank and N. D. Goodman.

Predicting pragmatic reasoning in language games.

Science, 336(6084):998-998, 2012.

Michael Franke and Gerhard Jäger.

Pragmatic back-and-forth reasoning.

Semantics, Pragmatics and the Case of Scalar Implicatures., pages 170-200, 2014.

[Gaz79] Gerald Gazdar.

Pragmatics, Implicature, Presuposition and Logical Form.

Academic Press, New York, 1979.

[GK07] Thomas L. Griffiths and Michael L. Kalish.

Language evolution by iterated learning with bayesian agents.

Cognitive Science, 31(3):441-480, 2007.

[Gri75] Paul Grice.

Logic and conversation.

In Studies in the Ways of Words, chapter 2, pages 22–40. Harvard University Press, Cambridge, MA,

1975.

References II

[Hor72] Laurence R. Horn.
 On the Semantic Properties of Logical Operators in English.
 Indiana University Linguistics Club, Bloomington, IN, 1972.

 [HS03] Josef Hofbauer and Karl Sigmund.
 Evolutionary game dynamics.
 Bulletin of the American Mathematical Society, 40(04):479–520, 2003.

 [NK99] M. A. Nowak and D. C. Krakauer.
 The evolution of language.

Proceedings of the National Academy of Sciences, 96(14):8028-8033, 1999.