6.1 Area Between Two Curves Solutions to the Selected Problems

Formula

Area =
$$\int_{a}^{b} [f(x) - g(x)] dx$$

1–4. Find the area of the shaded region.

1. Solution

Area =
$$\int_{-1}^{2} (x^2 + 1 - x) dx$$

= $\left(\frac{x^3}{3} + x - \frac{x^2}{2}\right)\Big|_{-1}^{2}$
= $\left(\frac{8}{3} + 2 - \frac{4}{2}\right) - \left(-\frac{1}{3} - 1 - \frac{1}{2}\right)$
= $\frac{9}{2}$

4. Solution

Area =
$$\int_{-2}^{0} (\sqrt{2-x} + x) dx + \int_{0}^{2} (\sqrt{2-x}) dx$$

= $\left(-\frac{2}{3} (2-x)^{\frac{3}{2}} + \frac{x^{2}}{2} \right) \Big|_{-2}^{0} + \left(-\frac{2}{3} (2-x)^{\frac{3}{2}} \right) \Big|_{0}^{2}$
= $\left(-\frac{2}{3} (2)^{\frac{3}{2}} \right) - \left(-\frac{2}{3} (4)^{\frac{3}{2}} + 2 \right) + \left(0 + \frac{2}{3} (2)^{\frac{3}{2}} \right)$
= $-\frac{2}{3} (2)^{\frac{3}{2}} + \frac{2}{3} (4)^{\frac{3}{2}} - 2 + \frac{2}{3} (2)^{\frac{3}{2}}$
= $\frac{10}{3}$

Solutions to the Selected Problems

Alternative

Area =
$$\int_0^2 [(2 - y^2) - (-y)] dy$$
=
$$\int_0^2 (2 - y^2 + y) dy$$
=
$$\left(2y - \frac{y^3}{3} + \frac{y^2}{2}\right)\Big|_0^2$$
=
$$\left(4 - \frac{8}{3} + \frac{4}{2}\right) - (0 - 0 + 0)$$
=
$$\frac{10}{3}$$

5–6. Find the area of the shaded region by (a) integrating with respect to x and (b) integrating with respect to y.

6. Solution

(a)

Area =
$$\int_{0}^{1} \left[\sqrt{4x} - \left(-\sqrt{4x} \right) \right] dx + \int_{1}^{4} \left[\sqrt{4x} - (2x - 4) \right] dx$$

(b)

Area =
$$\int_{-2}^{4} \left[\frac{1}{2} (y+4) - \frac{y^2}{4} \right] dy$$

Solutions to the Selected Problems

7–18. Sketch the region enclosed by the curves and find its area.

7.
$$y = x^2$$
, $y = \sqrt{x}$, $x = \frac{1}{4}$, $x = 1$.

Solution

$$\int_{x=a}^{x=b} [f(x) - g(x)] dx = \int_{\frac{1}{4}}^{1} (\sqrt{x} - x^2) dx = \left(\frac{2}{3}x^{\frac{3}{2}} - \frac{x^3}{3}\right) \Big|_{\frac{1}{4}}^{1}$$

$$Area = \frac{49}{192}$$

Solutions to the Selected Problems

8.
$$y = x^3 - 4x$$
, $y = 0$, $x = 0$, $x = 2$.

Solution

Sketch

$$\int_{x=a}^{x=b} [f(x) - g(x)] dx = \int_{0}^{2} [0 - (x^{3} - 4x)] dx =$$

Area = 4

Solutions to the Selected Problems

9.
$$y = \cos 2x$$
, $y = 0$, $x = \frac{\pi}{4}$, $x = \frac{\pi}{2}$.

Solution

$$\int_{x=a}^{x=b} [f(x) - g(x)] dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} [0 - \cos 2x] dx$$

Area =
$$\frac{1}{2}$$

Solutions to the Selected Problems

12.
$$x^2 = y$$
, $x = y - 2$.

Solution

$$\int_{x=a}^{x=b} [f(x) - g(x)] dx = \int_{-1}^{2} [(x+2) - x^2] dx =$$

Area =
$$\frac{9}{2}$$

Solutions to the Selected Problems

13.
$$y = e^x$$
, $y = e^{2x}$, $x = 0$, $x = \ln 2$.

Solution

Area =
$$\frac{1}{2}$$

6.1 Area Between Two Curves Solutions to the Selected Problems

15.
$$y = \frac{2}{1+x^2}$$
, $y = |x|$.

Solution

$$\int_{-1}^{1} \left[\frac{2}{1+x^2} - |x| \right] dx = \int_{-1}^{0} \left[\frac{2}{1+x^2} - |x| \right] dx + \int_{0}^{1} \left[\frac{2}{1+x^2} - |x| \right] dx$$

Area =
$$\pi - 1$$

Solutions to the Selected Problems

18.
$$y = x$$
, $y = 4x$, $y = -x + 2$.

Solution

Area =
$$\int_0^{\frac{2}{5}} [4x - x] dx + \int_{\frac{2}{5}}^1 [(-x + 2) - x] dx =$$

Area =
$$\frac{3}{5}$$

Solutions to the Selected Problems

50. Show that the area of the ellipse in the accompanying figure is πab . **Solution**

Area of the quarter of the ellipse is given by

$$\frac{b}{a} \int_0^a \sqrt{a^2 - x^2} \, dx$$

The integral

$$\int_0^a \sqrt{a^2 - x^2} \, dx$$

represents the area of the quarter of a circle of radius a. Therefore,

$$\int_0^a \sqrt{a^2 - x^2} \, dx = \frac{1}{4} \pi a^2$$

Total area is given by

$$A = 4 \times \frac{b}{a} \times \frac{1}{4}\pi a^2 = \pi a b.$$