ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Doping strategy to promote the charge separation in BiVO₄ photoanodes

Bo Zhang^a, Haipeng Zhang^a, Zeyan Wang^{a,*}, Xiaoyang Zhang^a, Xiaoyan Qin^a, Ying Dai^b, Yuanyuan Liu^a, Peng Wang^a, Yingjie Li^c, Baibiao Huang^{a,*}

- ^a State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, PR China
- ^b School of Physics, Shandong University, 250100, PR China
- ^c School of Energy and Power Engineering, Shandong University, Jinan, 250061, PR China

ARTICLE INFO

Article history: Received 21 January 2017 Received in revised form 25 March 2017 Accepted 31 March 2017 Available online 2 April 2017

Keywords: PEC water splitting Mo:BiVO₄/Co:BiVO₄ Charge separation

ABSTRACT

We fabricated Mo:BiVO₄/Co:BiVO₄ photoanodes by depositing Co:BiVO₄ layers on top of Mo:BiVO₄ layers, and demonstrated the enhanced PEC performances with improved charge separation both in the bulk and at the interface by doping strategy in this work. Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodes were found to be important for the enhanced charge separation efficiencies. The surface exposed Co^{2+} ions in Co:BiVO₄ layers can act as reactive sites for water oxidation to promote the interfacial charge separation. While, the Co^{2+} doping inside Co:BiVO₄ cannot only tune the built in electric fields in Mo:BiVO₄/Co:BiVO₄ homojunctions, but also be able to optimize the charge transport in Co:BiVO₄ layers to facilitate the bulk charge separation. By optimizing the Co contents and the number of Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodes, 3Mo-1Co-6% consisted of 3 layers of 3% Mo:BiVO₄ and 1 layer 6% Co:BiVO₄ yields the highest photocurrent of 2.09 mA/cm² at 1.23 V vs RHE, with a η_b and η_i value of 77.8% and 86.5%, respectively. This work provides a new thread for the design and fabrication of photoanode with high charge separation efficiencies by doping strategy, which could be helpful for the further improvement of PEC water splitting performances.

© 2017 Published by Elsevier B.V.

1. Introduction

Photoelectrochemical (PEC) water splitting has attracted great interests as potential strategy for hydrogen and oxygen evolution from water by utilizing solar energy, which is expected to be one of the most promising methods to solve energy and environmental issues for human beings [1,2]. In the past few decades, great efforts have been made with the purpose to improve the solar to hydrogen (STH) conversion efficiencies to facilitate the practical applications of PEC water splitting. Up to now, various photoelectrodes have been developed, such as TiO₂, ZnO, BiVO₄, α -Fe₂O₃, TaON, Ta₃N₅, etc [3–8]. Among these materials, monoclinic scheelite BiVO₄ is regarded as one of the most attractive candidates to fabricate photoanodes due to its suitable band gap of \sim 2.4 eV and excellent stability against photocorrosions, which is expected to have a high theoretical STH conversion efficiency of \sim 9.1% under AM 1.5G irradiation [9–11]. However, limited by the poor electrical

conductivity, short carrier diffusion length and slow water oxidation kinetics, $BiVO_4$ photoanodes usually suffer from poor charge separation both in the bulk and at the interface during PEC water splitting, which is regarded as the main issue that limits the PEC performance of $BiVO_4$ photoanodes.

In order to improve the charge separation in BiVO₄ photoanodes, various methods have been developed, such as coupling BiVO₄ with other semiconductors to construct type II heterojunctions to promote the bulk charge separation, and loading oxygen evolution catalysts (OECs), e.g., Co-Pi, CoO_x, FeOOH, NiOOH, to accelerate the surface water oxidation kinetics and facilitate the charge injection at the electrode/electrolyte interface [12-17]. Although, the PEC performances have been effectively improved with the assistance of the above methods with enhanced charge separation efficiency both in the bulk and at the interface. The construction of heterojunctions or loading OECs in BiVO₄ photoanodes would inevitably introduce some interfaces, which would generate defects act as carrier traps and recombination centers during PEC water splitting, thus, increase the charge recombination. From this aspect, the fabrication of BiVO₄ photoanodes with high charge separation efficiency and reduced charge recombination with fewer defects

^{*} Corresponding authors.

E-mail addresses: wangzeyan@sdu.edu.cn (Z. Wang), bbhuang@sdu.edu.cn
(B. Huang).

would be advantageous for the further improvement on their PEC performances.

Doping is a commonly used strategy to tune the electrical properties of semiconductor materials, which has been widely used to improve the electrical conductivity of BiVO₄ by doping electron donor ions, such as Mo^{6+} or W^{6+} [18–20]. Beside the effects on improving the electrical conductivity and carrier density in semiconductors, the Fermi levels in semiconductors can also be easily tuned by varying the dopant types and concentrations. For example, the Fermi level is shifted towards the conduction band minimum (CBM) and valence band maximum (VBM) with increasing the concentration of n-type and p-type dopants, respectively [21]. Therefore, if we deposit a layer of BiVO₄ doped with electron accepto ions (e.g., Co²⁺ doped BiVO₄) on top of BiVO₄ layers doped with electron donor ions (e.g., Mo⁶⁺ doped BiVO₄), a builtin electric field would be formed due to the different Fermi levels in donor and acceptor ions doped BiVO₄, which would promote the charge separation in the electrodes. On the other hand, as the catalytic activity of cobalt containing OECs typically involves the Co^{2+}/Co^{3+} and Co^{3+}/Co^{4+} redox couples [22–26]. The presence of Co ions on the surface of the electrode could also be similar as cobalt containing OECs, which can act as active centers for water oxidation and promote the interfacial charge separation [27]. More importantly, the absence of any OECs and the perfect lattice matching between Mo:BiVO₄ and Co:BiVO₄ can greatly reduce the defect numbers in the electrode, which could minimize the charge recombination during PEC water splitting. As a result, the charge separation efficiencies both in the bulk and at the interface are expected to be improved in Mo:BiVO₄/Co:BiVO₄ photoanodes with enhanced PEC performances even without the assistance of OECs, which has not been reported yet to the best of our knowledge.

In order to demonstrate the above concept, we fabricated Mo:BiVO₄/Co:BiVO₄ photoanodes and investigated their PEC performances in this work. As expected, the PEC performances of Mo:BiVO₄/Co:BiVO₄ photoanodes were greatly enhanced without the loading of any OECs, which were attributed to the improved charge separation both in the bulk and at the interface. Co:BiVO₄ layers were found to be important for the enhanced charge separation efficiencies, which can not only act as reactive sites for water oxidation to promote the interfacial charge separation, but also be able to tune the built in electric fields and the charge transfer in Co:BiVO₄ layers to improve the bulk charge separation in Mo:BiVO₄/Co:BiVO₄ photoanodes. The effects of Co doping concentrations and the number of Co:BiVO₄ layers on the PEC performances of Mo:BiVO₄/Co:BiVO₄ photoanodes were also systematically investigated and optimized in this work.

2. Results and discussions

As illustrated in Fig. 1, Mo:BiVO₄/Co:BiVO₄ homojunction photoanodes were fabricated by a simple spin coating method following subsequent annealing processes (see details in Experimental Section.). Two layers of Mo:BiVO₄ were firstly deposited on FTO substrates with Mo doping concentration of 3% according to the reported value optimized for PEC water splitting [28,29]. Then, two layers of Co:BiVO₄ were deposited on Mo:BiVO₄ layers following the same procedure to fabricate Mo:BiVO₄/Co:BiVO₄ photoanodes. In order to optimize the PEC performances, Mo:BiVO₄/Co:BiVO₄ with different Co doping concentrations, namely, 0%, 2%, 4%, 6% and 8%, respectively, were also fabricated, which were denoted as aMo-bCo-c%, where a and b is the layer numbers of Mo:BiVO₄ and Co:BiVO₄ (a+b=4), respectively, and c% (c=0, 2, 4, 6, 8) is the Co con-tents in Co:BiVO₄ layers. For comparison, pristine BiVO₄, 3% Mo:BiVO₄ and 6% Co:BiVO₄ were also fabricated.

There structures and morphologies of as prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). As shown in Fig. S1, all these samples are pure phase of monoclinic BiVO₄ without the appearance of any other impurities, which indicate the Mo or Co doping did not induce the formation of any secondary phases. Fig. S2 shows the SEM images of pristine BiVO₄, 3% Mo:BiVO₄, 6% Mo:BiVO₄ and 2Mo-2Co-6%. As can be seen in this figure, all samples are consisted of some small nanoparticles with irregular shapes. However, the mean sizes of these nanoparticles are quite different from each other. The diameters of the nanoparticles in BiVO₄, 3% Mo:BiVO₄, 6% Co:BiVO₄ and 2Mo-2Co-6% are 150-200, 80-100, 150-200, and 80-150 nm, respectively. And the cross-sectional SEM images shown in the insets of Fig. S2 indicate all the samples have the similar thicknesses of ~200 nm. The transmitance and absorption spectra of the above samples were also measured by UV-vis spectrometer equipped with integrated spheres as shown in Fig. S3. All the samples exhibit similar absorption spectra with absorption edges around 500 nm. And the band gap of BiVO₄, 3% Mo:BiVO₄, 6% Co:BiVO₄ and 2Mo-2Co-6% is estimated to be 2.40, 2.38, 2.35 and 2.39 eV, respectively, which indicate the Mo or Co doping did not change the band gap of BiVO₄ notably.

In order to probe the valence states of the dopant ions, e.g., Mo or Co ions, in the as-prepared Mo:BiVO₄/Co:BiVO₄ photoanodes, X-ray photoelectron spectroscopy (XPS) measurements were also performed. As shown in Fig. S4a, two characteristic peaks located at 232.2 and 235.4 eV arising from Mo 3d 5/2 and 3d 3/2 signals can be observed in 3% Mo:BiVO₄, which is accordant with that of prior reports on Mo:BiVO₄ and suggest Mo ions are mainly present as Mo^{6+} to substitute V atoms in $BiVO_4$ [30,31]. The XPS peaks at 780.0 and 795.2 eV can be assigned to Co 2p 3/2 and 2p 1/2 peaks, respectively, which is quite similar as the reported values of CoO (Fig. S4b) [32,33]. This indicate that Co could be existed as Co²⁺ in Co:BiVO₄. Comparing the pristine BiVO₄, the Bi 4f and V 2p XPS peaks of both 3% Mo:BiVO₄ and 6% Co:BiVO₄ shifted to higher binding energies as shown in Fig. S4c and d, which could be due to the interactions of dopant ions, e.g., Mo⁶⁺ and Co²⁺, with Bi and V atoms. And this could also confirmed that Mo⁶⁺ and Co²⁺ have been doped into BiVO₄ lattice. In order to identify the substitution position of Co²⁺ in Co:BiVO₄, the formation energy (E_f) were calculated by means of periodic density functional calculations within GGA+U approach. And the Ef of CoBi and CoV is calculated to be 3.70 and 6.94, respectively, which indicates Co²⁺ would substitute Bi³⁺ in BiVO₄ as electron acceptors. The concentration of Co and Mo dopants in as prepared samples were also measured by XPS. And the measured Mo concentration in 3% Mo:BiVO₄ is 5.24%. And the Co concentration in 2%, 4%, 6%, 8% Co:BiVO₄ samples is measured to be 2.7, 5, 7.5, 9.3%, respectively. The slightly higher content of both Mo and Co atoms measured by XPS could be due to the surface segregation of the dopant ions, which is accordant with the results reported by Luo et al. [34].

As Mo⁶⁺ and Co²⁺ substitutes V⁵⁺ and Bi³⁺ in Mo:BiVO₄ and Co:BiVO₄, respectively, the doping of Mo⁶⁺ and Co²⁺ in BiVO₄ would be expected to introduce energy levels near the bottom of the CB and the top of the VB in the forbiden band of BiVO₄ as donor and acceptor levels, respectively. To confirm this assumption, the band structures of BiVO₄, 3% Mo:BiVO₄ and 6% Co:BiVO₄ were calculated as shown in Fig. S5. As expected, the donor and acceptor levels by Mo⁶⁺ and Co²⁺ doping can be observed in Mo:BiVO₄ and Co:BiVO₄, respectively, which lie at the bottom of the CB and near the top of the VB of BiVO₄, respectively. Therefore, Mo⁶⁺ doping is expected to have little effect on the width of the band gap of BiVO₄, and Co²⁺ doping could slightly narrowed the band gap of BiVO₄, which is accordance with the observations on the light absorption spectra of Mo:BiVO₄ and Co:BiVO₄ as shown in Fig. S3.

Fig. 1. Schematic diagram to illustrate the fabrication procedure of Mo:BiVO₄/Co:BiVO₄ photoanodes.

Fig. 2. Photocurrent density versus applied potential curves (J-V) of (a) $BiVO_4$, 3% $Mo:BiVO_4$ and 6% $Co:BiVO_4$ photoanodes, and (b) $Mo:BiVO_4/Co:BiVO_4$ photoanodes with different Co doping concentrations with a scan rate of $10 \, mV/s$ under irradiation of chopped AM 1.5G simulated solar light ($100 \, mW/cm^2$) in 0.1 M potassium phosphate electrolyte solution (pH = 7).

The PEC measurements were performed by using a three electrode configuration with as prepared samples as the working electrode, a Pt sheet as the counter electrode and saturated calomel electrode (SCE) as the reference electrode measured in 0.1 M potassium phosphate electrolyte (pH = 7) under chopped AM 1.5 G simulated solar light (100 mW/cm²). The J-V curves of BiVO₄, 3% Mo:BiVO₄ and 6% Co:BiVO₄ were firstly measured. As shown in Fig. 2a, the photocurrents of BiVO₄ and 3% Mo:BiVO₄ increase slowly with the increase of applied bias with an onset potential of ~0.5 V vs RHE and yield a photocurrent density of 0.45 and 0.93 mA/cm² at 1.23 V vs RHE, respectively, which are comparable with the reported values [10]. Different from BiVO₄ and Mo:BiVO₄, a cathodic shift of ~150 mV on onset potential and a higher photocurrent density at lower bias can be observed in 6% Co:BiVO₄, which is quite similar as OECs modified BiVO₄ photoanodes. A photocurrent density of $\sim 0.44 \,\mathrm{mA/cm^2}$ can be observed for 6% Co:BiVO₄ at 0.8 V vs RHE, whereas the value for pure BiVO₄ and 3% Mo:BiVO₄ is only 0.07 and 0.11 mA/cm² at the sample bias, respectively. However, with the further increase of applied bias, the photocurrent of Co:BiVO₄ increases quite slowly, and a photocurrent density of only 0.9 mA/cm² can be observed at 1.23 V vs

The J-V curves of Mo:BiVO₄/Co:BiVO₄ photoanodes with different Co doping concentrations were shown in Fig. 2b. The J-V curve of 2Mo-2Co-0% containing two layers of 3% Mo:BiVO₄ and two layers of pristine BiVO₄ is quite similar as that of Mo:BiVO₄, with an onset potential at $\sim\!0.5\,\text{V}$ vs RHE and a photocurrent density of $\sim\!0.99\,\text{mA/cm}^2$ at 1.23 V vs RHE. The photocurrent of

2Mo-2Co-0% is slightly larger than that of Mo:BiVO₄, which could be due to the improved bulk charge separation efficiency by forming Mo:BiVO₄/BiVO₄ photoanodes. As Co²⁺ was doped into BiVO₄layers, the photocurrent of Mo:BiVO₄/Co:BiVO₄ photoanodes can be greatly enhanced, which varied with the Co doping concentrations in Co:BiVO₄ layers. The photocurrent density initially increased with the increase of Co contents. And 2Mo-2Co-2% and 2Mo-2Co-4% yields a photocurrent density of 1.42 and 1.63 mA/cm² at 1.23 V vs RHE, respectively. 2Mo-2Co-6% yields the highest photocurrent density of about 1.98 mA/cm² at 1.23 V vs RHE, which is 200% and 220% as high as that of 2Mo-2Co-0% and 6% Co:BiVO4 with the same Co doping concentration, respectively. However, further increase on Co doping concentration would lead to a decrease on photocurrent, where 2Mo-2Co-8% yields a photocurrent density of 1.77 mA/cm² at 1.23 V vs RHE.

To be noticed, the onset potentials for the samples containing Co:BiVO₄ layers all lie at $\sim\!0.35\,\mathrm{V}$ vs RHE, which are $\sim\!150\,\mathrm{mV}$ lower than that of the samples without Co:BiVO₄ layers. This indicates the Co:BiVO₄ layers could act as OECs, which can lower the barriers for water oxidation and promote the interfacial charge separation during PEC water splitting. On the other hand, a built in electric field could be formed due to the variation on Fermi levels by Mo⁶⁺ and Co²⁺ doping, which could promote the charge separation during PEC water splitting as demonstrated in W:BiVO₄/BiVO₄ photoanodes reported recently [35]. Therefore, the enhanced photocurrents in Mo:BiVO₄/Co:BiVO₄ homojunctions photoanodes could be ascribed to the synergistic effects with both enhanced charge separation efficiencies in the bulk and at the interface.

Fig. 3. Bulk and interfacial charge separation efficiencies of (a) BiVO₄, 3% Mo:BiVO₄ and 6% Co:BiVO₄ photoanodes, and (b) Mo:BiVO₄/Co:BiVO₄ homojunctions with different Co doping concentrations. The bulk (η_h) and interfacial charge separation efficiencies (η_i) was represented in dash and solid lines with the same color, respectively.

In order to verify the above assumption and further understand the mechanism for the enhanced PEC performances in Mo:BiVO₄/Co:BiVO₄ photoanodes, the charge separation efficiency both in the bulk (η_h) and at the electrode/electrolyte interface (η_i) of the above samples are further investigated. The details on the calculations of the charge separation efficiency in the bulk (η_b) and at the electrode/electrolyte interface (η_i) have been shown in Supporting Information. As shown in Fig. 3a, the charge separation efficiency of BiVO₄ is low either in the bulk or at the interface, with a η_b and η_i value of only 39.1% and 33.6% at 1.23 V vs RHE, respectively. The charge separation efficiency is slightly enhanced in Mo:BiVO₄, with a η_b and η_i value of 52.6% and 44.2% at 1.23 V vs RHE, respectively. This is accordant with the reported value, where the enhancement on charge separation efficiencies could be attributed to the improved electrical conductivity and reduced recombination due to the hexavalent Mo dopant as traps of photogenerated holes [10]. For Co:BiVO₄, a notable enhancement on interfacial charge separation efficiencies can be clearly observed as expected, with a η_i value of 71.7% at 1.23 V vs RHE, which is about 2.1 and 1.6 times of that for BiVO₄ and Mo:BiVO₄, respectively. This demonstrates Co:BiVO₄ could promote the interfacial charge separation during PEC water splitting similar as OECs, which can also explain the cathodic shift on onset potentials for the samples containing Co:BiVO₄ layers observed in Fig. 2. However, Co:BiVO₄ suffers from a poor bulk charge separation process with a η_i value of only 34.7%, which is even lower than that of BiVO₄.

Due to the catalytic activities of Co:BiVO₄ layers for water oxidation, the interfacial charge separation efficiencies in Mo:BiVO₄/Co:BiVO₄ photoanodes would also be improved with the assistance of Co:BiVO₄. As shown in Fig. 3b, 2Mo-2Co-0% without any Co ions yield a similar η_i value of 36.8% as pristine BiVO₄ at 1.23 V vs RHE. While, the introduction of only trace amount of Co ions could greatly enhance the interfacial charge separation efficiency. And the interfacial charge separation efficiencies of Mo:BiVO₄/Co:BiVO₄ photoanodes are directly dependent on the Co contents in Co:BiVO₄ layers, where the η_i values increase constantly with the increase of Co doping concentration. This can be easily understood that higher Co contents can provide more reactive sites during PEC water splitting, which result in higher charge separation efficiencies. However, with the increase of applied bias, the interfacial charge separation efficiencies of Mo:BiVO₄/Co:BiVO₄ are getting closer and reach a η_i value of ${\sim}80\%$ at 1.23 V vs RHE. For comparison, Co-Pi modifed 3% Mo:BiVO₄ photoanode was also fabricated, and the interfacial charge separation efficiency has been ploted as shown in Fig. S6. At a bias of 1.23 V vs RHE, the η_i value for Co-Pi/Mo:BiVO₄ photoanode is calculated to be 82%, which is almost the same as Mo:BiVO₄/Co:BiVO₄ photoanodes, which confirmed that Co:BiVO₄ could play a simialr role as OECs, e.g., Co-Pi, during PEC water splitting.

For the bulk charge separation, a built in electric field would be formed at the interface between Mo:BiVO₄ and Co:BiVO₄ with different Co contents, which can provide a driven force to stimulate the charge separation. As shown in Fig. 3b, the η_b values for all these Mo:BiVO₄/Co:BiVO₄ photoanodes have been greatly enhanced. At the external bias of 1.23 V vs RHE, the η_b values for Mo:BiVO₄/Co:BiVO₄ photoanodes with Co doping concentration of 0%, 2%, 4%, 6% and 8% are 44.23%, 54.4%, 58.6%, 73.6% and 67.1%, respectively. 2Mo-2Co-6% yields the highest bulk charge separation efficiency of 73.6%, which has been enhanced by 88.2% and 39.9% compared with BiVO₄ and Mo:BiVO₄ photoanodes at the same bias, respectively. As the charge separation process is quite complex in Mo:BiVO₄/Co:BiVO₄ photoanodes, which typically involve three processes, namely, the charge transfer in Mo:BiVO₄ layers, across the Mo:BiVO₄/Co:BiVO₄ interface and in Co:BiVO₄ layers. The Mo:BiVO₄ layers in all Mo:BiVO₄/Co:BiVO₄ photoanodes are identical, therefore, the variation on η_b values in Mo:BiVO₄/Co:BiVO₄ photoanodes could be attributed to the differences on both the built in electric fields and the electrical properties in Co:BiVO₄ layers.

In order to further understand the bulk charge separation in Mo:BiVO₄/Co:BiVO₄ photoanodes with different Co contents, the electrical properties of Co:BiVO₄ layers with different Co contents and the built in electric fields in Mo:BiVO₄/Co:BiVO₄ photoanodes with different Co contents were further investigated. Mott-Schottky measurements were carried out to characterize the electrical properties of Co:BiVO₄ with different Co contents, which were performed at a frequency of 1 kHz in the dark as shown in Fig. 4a. All the samples exhibit a positive Mott-Schottky plots, which indicate they are n-type semiconductors. And the donor densities (N_d) of 3% Mo:BiVO₄, BiVO₄ and Co:BiVO₄ with Co contents of 2, 4, 6 and 8% were calculated by Mott-Schottky equation (see Supporting Information), with N_d values of 2.56×10^{20} , 4.16×10^{19} , 3.045×10^{19} , 2.225×10^{19} , 4.047×10^{19} and $1.48 \times 10^{20} \, \text{cm}^{-3}$, respectively. As expected, Mo^{6+} doping greatly increases the donor density in BiVO₄, where the N_d value of 3% Mo:BiVO₄ is nearly an order higher than that of pristine BiVO₄, which is consistent with the reported values. While, as Co²⁺ ions were doped into BiVO₄, the donor density decreased, which was quite different from Mo:BiVO₄. As BiVO₄ is an intrinsic n-type semiconductor, where oxygen vacancies were reported to be widely existed and responsible for the n-type conductivity of BiVO₄ [36]. When a small amount of Co2+ ions (2% and 4%) were doped into BiVO₄, the intrinsic oxygen vacancies (n-type defects) would be charge compensated by Co²⁺ (p-type dopants). As a result, the oxygen vacancies as well as the carrier concentrations in Co:BiVO₄

Fig. 4. (a) Mott-Schottky plots of BiVO₄, 3% Mo:BiVO₄ and Co:BiVO₄ with different Co contents measured at a frequency of 1 kHz in dark. (b) Nyquist plots of Mo:BiVO₄/Co:BiVO₄ homojunctions with different Co contents measured at 0 V vs SCE under light irradiation.

would be decreased. With the further increase of Co contents in Co:BiVO₄ (>6%), the formation energy of n-type defects would be lowered proportionally [20]. Therefore, new n-type defects (e.g., oxygen vacancies) would be formed again with the increasing the p-type dopants concentration, which subsequently increase the carrier density as well as the defect numbers in Co:BiVO4 again as observed in 6% and 8% Co:BiVO₄. As discussed above, the carrier densities in Co:BiVO₄ are seem to be closely connected with the defect numbers, where the lower the donor density, the fewer the number of defects in Co:BiVO₄. However, they act oppositely during the charge separation process. Fewer defects would reduce the chance for carrier recombination during charge transfer, which are beneficial for the enhancement on bulk charge separation. While, lower donor densities would result in higher electrical resistances in Co:BiVO₄ layers, which would act negatively during charge transfer. Therefore, both of the carrier densities and the defect numbers in Co:BiVO₄ layers would affect the charge transfer during PEC water splitting.

The built in electric field in Mo:BiVO₄/Co:BiVO₄ photoanodes is another consideration for the bulk charge separation during PEC water splitting. However, it is quite difficult to be precisely measured or calculated owing to the more complex interfaces and surface states in the electrodes composed of nanomaterials. Therefore, the band bending (V_{bi}) and the intensity of the built in electric fields (E_{bi}) in Mo:BiVO₄/Co:BiVO₄ photoanodes with different Co contents were grossly estimated by using the equations for bulk semiconductor materials as follows: [35,37]

$$E_{bi} = \frac{2V_{bi}}{W}$$

$$V_{bi} = KT \ln \frac{N_{\text{Mo:BiVO4}}}{N_{\text{Co:BiVO4}}}$$

$$W = \left(\frac{2\varepsilon\varepsilon_0}{e_0} \left(\frac{N_{\text{Mo:BiVO4}} + N_{\text{Co:BiVO4}}}{N_{\text{Mo:BiVO4}}N_{\text{Co:BiVO4}}}\right)\right)^{1/2}$$

where V_{bi} is the band bending at the Mo:BiVO₄/Co:BiVO₄ interface, W is the width of depletion region of the homojunction, k is the Boltzmann's constant, T is the temperature, e_0 is the electron charge, ε the relative permittivity of BiVO₄ (ε = 68) [38], ε the permittivity of vacuum and $N_{\text{Mo:BiVO4}}$ and $N_{\text{Co:BiVO4}}$ are the donor densities of Mo:BiVO₄ and Co:BiVO₄, respectively.

The band bending (V_{bi}) , the widths of the depletion region (W) and the built in electric field intensities (E_{bi}) of the Mo:BiVO₄/Co:BiVO₄ photoanodes formed between 3% Mo:BiVO₄ and Co:BiVO₄ with different doping concentrations have been sum-

marized in Table 1. The V_{bi} values formed between Mo:BiVO₄ and Co:BiVO₄ with different Co contents are reversely related to the donor densities of corresponding Co:BiVO₄ layers, where the homojunction consisted of 4% Co:BiVO₄ with the lowest donor density and 3% Mo:BiVO₄ yields the highest band bending of 0.063 eV. However, taking the width of depletion region into consideration, the Mo:BiVO₄/Co:BiVO₄ photoanodes consisted of 6% Co:BiVO₄ and 3% Mo:BiVO_{4.} However, the orders of neither V_{bi} nor E_{bi} in the homojunctions consisted of 3% Mo:BiVO4 and Co:BiVO4 with different Co contents are consistent with the order of η_h observed in Fig. 3b. This could also be an indicative that the bulk charge separation efficiency in Mo:BiVO₄/Co:BiVO₄ cannot be solely determined by the built in electric fields, but also closely related to the charge transfer in Co:BiVO₄ layers. With the synergistic effects of both the built in electric fields formed at the homojunction interface and the charge transfer in Co:BiVO₄ layers, the highest bulk charge separation efficiency can be obtained in the Mo:BiVO₄/Co:BiVO₄ photoanodes consisted of 3% Mo:BiVO₄ and Co:BiVO₄ with an optimum Co content of 6%.

Electrochemical Impendence Spectra (EIS) analysis is an effective way to reflect the charge separation properties during PEC water splitting. In order to further investigate the charge separation in Mo:BiVO₄/Co:BiVO₄ photoanodes, EIS analyses were carried out at 0V vs SCE under light irradiation. Fig. 4b, shows the Nyquist plotes of Mo:BiVO₄/Co:BiVO₄ photoanodes containing two layers of 3% Mo:BiVO₄ and Co:BiVO₄ with different Co contents, respectively. The semicircle in the Nyquist plot at high frequencies is the characteristic of the charge transfer process, where the diameter of the semicircle is an indicative of the charge transfer resistance (R_{CT}) from the electrodes to electrolyte solutions. As can be observed in Fig. 4b, 2Mo-2Co-6% exhibits the smallest semicircle, with R_{CT} value of $\sim 1.5 \, k\Omega$. And the 2Mo-2Co-8% exhibits the second smallest semicircle (with R_{CT} of $\sim 1.8 \text{ k}\Omega$). And the radii of the other Mo:BiVO₄/Co:BiVO₄ photoanodes constantly increase with the decrease of Co contents in Co:BiVO₄ layers, where the R_{CT} of 2Mo-2Co-4%, 2Mo-2Co-2% and 2Mo-2Co-0% is \sim 2.3 k Ω , \sim 3.8 k Ω and \sim 7.9 k Ω , respectively. That means the charge transfer from 2Mo-2Co-6% electrode to the electrolyte solution is much easier than in the other electrodes indicating the highest charge separation efficiency($\eta_b \times \eta_i$). And the charge separation efficiency in Mo:BiVO₄/Co:BiVO₄ photoanodes should follow the order: 2Mo-2Co-6%>2Mo-2Co-8%>2Mo-2Co-4%>2Mo-2Co-2% > 2Mo-2Co-0%, which is consistent with the observation in the J-V curves in Fig. 2b and the charge separation efficiencies in Fig. 3b.

According to the above analysis, the charge transfer in Co:BiVO_4 layers is also an important consideration for bulk charge separation

Table 1The calculated band bending (V_{bi}), the widths of depletion region (W) and electric field intensities (E_{bi}) of the homojunctions formed between 3% Mo:BiVO₄ and Co:BiVO₄ with different Co doping concentrations.

	BiVO ₄ $N_d = 4.16 \times 10^{19} \text{ cm}^{-3}$	$2\% \text{ Co:BiVO}_4$ $N_d = 3.045 \times 10^{19} \text{ cm}^{-3}$	$4\% \text{ Co:BiVO}_4$ $N_d = 2.225 \times 10^{19} \text{ cm}^{-3}$	6% Co:BiVO ₄ $N_d = 4.047 \times 10^{19} \text{cm}^{-3}$	$8\% \text{ Co:BiVO}_4$ $N_d = 1.48 \times 10^{20} \text{ cm}^{-3}$
3%Mo:Bi VO ₄ $N_d = 2.56 \times 10^{20} \text{ cm}^{-3}$	$V_{bi} = 0.047 (\text{eV})$ W = 3.14 (nm)	$V_{bi} = 0.055 (\text{eV})$ W = 3.90 (nm)	$V_{bi} = 0.063 (\text{eV})$ W = 4.81 (nm)	$V_{bi} = 0.048 (\text{eV})$ W = 3.18 (nm)	$V_{bi} = 0.014 (\text{eV})$ W = 1.059 (nm)
	$E_{bi} = 299 \left(\text{KV/cm} \right)$	$E_{bi} = 282 \left(\text{KV/cm} \right)$	$E_{bi} = 262 \left(\text{KV/cm} \right)$	$E_{bi} = 301 \left(\text{KV/cm} \right)$	$E_{bi} = 264 \left(\text{KV/cm} \right)$

Fig. 5. (a) J-V curves and (b) Bulk and interfacial charge separation efficiencies of Mo:BiVO₄/Co:BiVO₄ photoanodes containing different layers of Co:BiVO₄.

in Mo:BiVO₄/Co:BiVO₄ photoanodes. Furthermore, only the surface of the Co:BiVO₄ layers are beneficial for the interfacial charge separation. Therefore, the charge separation efficiency and the PEC performance would be further improved by further decreasing the Co:BiVO₄ layer thicknesses. To demonstrate this assumption, 3Mo-1Co-6% consisted of three layers of 3% Mo:BiVO₄ and 1 layer Co:BiVO₄ with optimum Co content of 6% was fabricated. For comparison, 1Mo-3Co-6% containing 1 layer 3% Mo:BiVO₄ and 3 layers of 6% Co:BiVO₄ were also fabricated. As shown in the J-V curves in Fig. 5a, 3Mo-1Co-6% yields an enhanced photocurrent density of 2.09 mA/cm² at 1.23 V vs RHE as expected, which is 5% higher than that of 2Mo-2Co-6%. While, the photocurrent density of 1Mo-3Co-6% decreases to 1.63 mA/cm² at the same bias, which is only 82.3% of η_i that of 2Mo-2Co-6%. The bulk and interfacial charge separation efficiencies of Mo:BiVO₄/Co:BiVO₄ homojunctions containing different layers of Co:BiVO₄ were also plotted as shown in Fig. 5b. The interfacial charge separation efficiencies for the homojunctions containing different layers of Co:BiVO4 are quite close with each other, which indicate only the Co ions on the surface of the electrode are useful for the interfacial charge separation. However, the bulk charge separation efficiencies can be effectively enhanced with the reduction of Co:BiVO₄ layers in the homojunctions, where the η_b value for 3Mo-1Co-6% and 1Mo-3Co-6% is 77.8% and 61.4%, respectively. That indicates the thickness of Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodescan greatly influence the bulk charge separation during PEC water splitting. The stability of 3Mo-1Co-6% photoanode were also investigated in 0.1 M potassium phosphate aqueous solution at potential of 1.23 V vs RHE for 1 h. As shown in the J-t curve in Fig. S7a, the photocurrent slightly decreased from 2.09 to 1.52 mA/cm² during the experiment. This could be explained by the partial dissolution of the surface Co:BiVO₄ layer due to the chemical instability, which is quite similar as the prior reported results [39]. And gas bubbles can also be observed from the electrode, which were collected every 15 min and analyzed with gas chromatography. As shown in

Fig. S7b, nearly stoichiometric H_2 and O_2 can be produced within experimental error.

Based on the above analyses, a plausible mechanism has been proposed to explain the improved PEC performances of Mo:BiVO₄/Co:BiVO₄ photoanodes as illustrated in Fig. 6. As n-type and p-type doping can shift the Fermi level of BiVO₄ towards the CBM and VBM, respectively. As Mo:BiVO₄ and Co:BiVO₄ were coupled together, a built-in electric field would be formed due to the opposite shift on Fermi levels by Mo⁶⁺ and Co²⁺ doping in BiVO₄, respectively. Because the Fermi level of Mo:BiVO₄ is very close to the CBM due to the n-type doping by Mo⁶⁺, the built in electric field can be tuned by varying the Co²⁺ doping concentration. With the increase of Co contents in Co:BiVO4 layers, the band bending at the Mo:BiVO₄/Co:BiVO₄ interface initially increases then decreased, where the homojunction consisted of 3% Mo:BiVO₄ and 4% Co:BiVO₄ exhibits the largest band bending of 0.063 eV. However, taking the width of depletion region into consideration, Mo:BiVO₄/Co:BiVO₄ photoanodes consisted of 3% Mo:BiVO₄ and 6% Co:BiVO₄ exhibit the largest E_{hi} value of 301 kV/cm. As the bulk charge separation involve the charge transfer in Mo:BiVO₄ layer, across the Mo:BiVO₄/Co:BiVO₄ interface and in Co:BiVO₄ layer, the bulk charge separation efficiency are not determined only by the built in electric fields formed between Mo:BiVO₄ and Co:BiVO₄, but also closely related to the charge transfer in Co:BiVO₄ layers. As electron acceptors, a trace amount of Co²⁺ can compensate the intrinsic defects in BiVO₄, which lower the carrier densities in Co:BiVO₄. However, as the Co²⁺ doping concentration is too high, more defects would be formed due to the self-compensation and increase the carrier densities. As the donor density and the defects act oppositely on the charge separation in Co:BiVO₄ layers, where lower donor density lead to larger resistance, while lower defect density reduce the charge recombination. With the synergistic effects of both the built-in electric field in the homojunctions and the electrical properties in Co:BiVO₄ layers, Mo:BiVO₄/Co:BiVO₄ photoanode consisted of 3% Mo:BiVO₄ and 6% Co:BiVO₄ exhibits

Fig. 6. Schematic illustration of the mechanism for the enhanced bulk and interfacial charge separation of Mo:BiVO₄/Co:BiVO₄ photoanodes.

the highest bulk charge separation efficiency. On the other hand, the Co:BiVO₄ layers on the surface of Mo:BiVO₄/Co:BiVO₄ photoanode are demonstrated to be able to act as reactive centers for water oxidation similar as Co-Pi, which can lower the onset potential for PEC water splitting and enhance the interfacial charge separation efficiencies. Our experimental results indicate the interfacial charge separation is closely related to the Co contents in Co:BiVO₄ layers, which can be explained by that high Co contents can provide more reactive sites for water oxidation leading to higher interfacial charge separation efficiencies. Based on the above analysis, Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodes are regarded as the most important issue for the enhanced PEC performances, which can not only promote the interfacial charge separation due to its catalytic property, but also be able to promote the bulk charge separation by tuning the built in electric fields of the homojunction and the charge transfer in Co:BiVO₄ layers by varying the Co contents. As a result, both the bulk and interfacial charge separation efficiency in Mo:BiVO₄/Co:BiVO₄ photoanodes can be greatly improved, which lead to enhanced PEC water splitting performances. With the further optimization of the layer numbers of Mo:BiVO₄ and Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodes and the synergistic consideration of both bulk and interfacial charge separation efficiencies, 3Mo-1Co-6% consisted of 3 layers of Mo:BiVO₄ and 1 thin layer of 6% Co:BiVO₄ exhibited the highest charge separation efficiencies and the best PEC performances during PEC water splitting.

In conclusion, we fabricated Mo:BiVO₄/Co:BiVO₄ photoanodes by depositing Co:BiVO₄ layers on top of Mo:BiVO₄ layers, and demonstrated the enhanced PEC performances with improved charge separation both in the bulk and at the interface by doping strategy. According to our experimental results, the Co:BiVO₄ layers in Mo:BiVO₄/Co:BiVO₄ photoanodes are found to be important for the enhanced PEC performances, where the Co²⁺ ions on the surface can act as reactive centers for water oxidation to promote the interfacial charge separation, while, the Co²⁺ doping in BiVO₄ cannot only tune the built in electric fields in the electrodes, but also be able to affect the charge transfer in Co:BiVO₄ layers, which acted synergistically to influence the bulk charge separation. With the assistance of Co:BiVO₄ layers, both the bulk and interfacial charge separation efficiencies can be effectively enhanced in Mo:BiVO₄/Co:BiVO₄ photoanodes even without the modification of any OECs, which lead to enhanced PEC performances. By varying the Co contents and the layer numbers of Co:BiVO₄ in Mo:BiVO₄/Co:BiVO₄ photoanodes, the optimized PEC

performances can be observed in 3Mo-1Co-6% consisted of 3 layers of 3% Mo:BiVO₄ and 1 layer of 6% Co:BiVO₄, which yields a photocurrent density of 2.09 mA/cm² at 1.23 vs RHE, with a η_b and η_i value of 77.8% and 86.5%, respectively. This work may provide a new method for the design and fabrication of high efficient photoanodes by doping strategy with high bulk and interfacial charge separation efficiencies, which could be useful for the further development and practical applications of PEC water splitting.

Acknowledgements

This work is financially supported by the National Basic Research Program of China (the 973 program, 2013CB632401), the National Natural Science Foundation of China (21333006, 21573135, 11374190, 51602179 and 51321091), and the Shandong Provincial Natural Science Foundation (ZR2014BM024). B.B.H. acknowledges support from the Taishan Scholars Program of Shandong Province, and Z.Y.W. acknowledges support from Young Scholars Program (2015WLJH35) and Fundamental Research Funds of Shandong University (2014|C049).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2017.03.078.

References

- [1] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Int. J. Hydrogen Energy 27 (2002) 991–1022.
- [2] J.Z. Zhang, MRS Bull. 36 (2011) 48-55.
- [3] Shahed U.M. Khan, Mofareh Al-Shahry, William B. Ingler, Science 297 (2002) 2243–2245.
- [4] B. Zhang, Z.Y. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, H.L. Li, Y. Dai, Y.J. Li, Chem. Mater. 28 (2016) 6613–6620.
- [5] T.W. Kim, K.-S. Choi, Science 343 (2014) 990–994.
- [6] D.K. Zhong, M. Cornuz, K. Sivula, M. Grätzel, D.R. Gamelin, Energy Environ. Sci. 4 (2011) 1759–1764.
- [7] R. Abe, M. Higashi, K. Domen, J. Am. Chem. Soc. 132 (2010) 11828–11829.
- [8] Y.B. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Adv. Mater. 25 (2013) 125–131.
- [9] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121 (1999) 11459-11467.
- [10] H.W. Jeong, T.H. Jeon, J.S. Jang, W. Choi, H. Park, J. Phys. Chem. C 117 (2013) 9104–9112.
- [11] Z.Y. Jiang, Y.Y. Liu, T. Jing, B.B. Huang, X.Y. Zhang, X.Y. Qin, Y. Dai, M.-H. Whangbo, J. Phys. Chem. C 120 (2016) 2058–2063.
- [12] J.Z. Su, L.J. Guo, N.Z. Bao, C.A. Grimes, Nano Lett. 11 (2011) 1928–1933.

- [13] M.Z. Xie, X.D. Fu, L.Q. Jing, P. Luan, Y.J. Feng, H.G. Fu, L. Lived, Adv. Energy Mater. 4 (2014) 1300995.
- [14] D.K. Zhong, S.J. Choi, D.R. Gamelin, J. Am. Chem. Soc. 133 (2011) 18370–18377.
- [15] Y. Liu, Y.H. Guo, L.T. Schelhas, M. Li, J.W. Ager, J. Phys. Chem. C 120 (2016) 23449–23457.
- [16] S.J.A. Moniz, J. Zhu, J. Tang, Adv. Energy Mater. 4 (2014) 1301590.
- [17] M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q.M. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada, K. Domen, J. Am. Chem. Soc. 137 (2015) 5053.
- [18] H. Ye, J. Lee, J.S. Jang, A.J. Bard, J. Phys. Chem. C 114 (2010) 13322–13328.
- [19] H. Ye, H.S. Park, A.J. Bard, J. Phys. Chem. C 115 (2011) 12464–12470.
- [20] J.Z. Zhang, K.F. Tse, M.H. Wong, Y. Zhang, J.Y. Zhu, Front. Phys. 11 (2016)
- [21] B.S. Brunschwig, M.H. Chou, C. Creutz, P. Ghosh, N. Sutin, J. Am. Chem. Soc. 105 (1983) 4832–4833.
- [22] T. Schmidt, H. Wendt, Acta 39 (1994) 1763-1767.
- [23] Y. Matsumoto, E. Sato, Mater. Chem. Phys. 14 (1986) 397-426.
- [24] W.K. Behl, J.E. Toni, J. Electroanal. Chem. 31 (1971) 63-75.
- [25] G.L. Elizarova, G.M. Zhidomirov, V.N. Parmon, Catal. Today 58 (2000) 71–88.
- [26] A. Kay, I. Cesar, M. Grätzel, J. Am. Chem. Soc. 128 (2006) 15714–15721.
- [27] L. Chen, F.M. Toma, J.K. Cooper, A. Lyon, Y. Lin, I.D. Sharp, J.W. Ager, ChemSusChem 8 (2015) 1066–1071.

- [28] Y.C. Qiu, W. Liu, W. Chen, W. Chen, G.M. Zhou, P.-C. Hsu, R.F. Zhang, Z. Liang, S.S. Fan, Y.G. Zhang, Y. Cui, Sci. Adv. 2 (2016) e1501764.
- [29] H.W. Jeong, T.H. Jeon, J.S. Jang, W. Choi, H. Park, J. Phys. Chem. C 117 (2013) 9104–9112.
- [30] S.M. Thalluri, S. Hernández, S. Bensaid, G. Saracco, N. Russo, Appl. Catal. B: Environ. 180 (2016) 630–636.
- [31] S.K. Pilli, T.E. Furtak, L.D. Brown, T.G. Deutsch, J.A. Turner, A.M. Herring, Energy Environ. Sci. 4 (2011) 5028–5034.
- [32] A. Lu, Y.Z. Chen, J.R. Jin, G.-H. Yue, D.-L. Peng, J. Power Sources 220 (2012) 391–398.
- [33] C.R. Brundle, T.J. Chuang, D.W. Rice, Surf. Sci. 60 (1976) 286-300.
- [34] W.J. Luo, J.J. Wang, X. Zhao, Z.Y. Zhao, Z.S. Li, Z.G. Zou, Phys. Chem. Chem. Phys. 15 (2013) 1006.
- [35] F.F. Abdi, L.H. Han, A.H.M. Smets, M. Zeman, B. Dam, Roel van de Krol1, Nat. Commun. 4 (2013) 2195.
- [36] J.K. Cooper, S.B. Scott, Y. Ling, J.H. Yang, S.J. Hao, Y. Li, F.M. Toma, M. Stutzmann, K.V. Lakshmi, Ian D. Sharp, Chem. Mater. 28 (2016) 5761–5771.
- [37] S.M. Sze, Physics of Semiconductor Devices, Murray Hill, New Jersey, USA, 1981
- [38] D. Zhou, L.X. Pang, J. Guo, Z.M. Qi, T. Shao, Q.P. Wang, H.D. Xie, X.Y. Clive, A. Randall, Inorg. Chem. 53 (2014) 1048–1055.
- [39] T.W. Kim, K.-S. Choi, J. Phys. Chem. Lett. 7 (2016) 447-451.