Detecting Unsafe Updates in Software Ecosystems

Yao-Wen Chang

September 27, 2023

Supervised by: Christoph Treude Co-supervised by: Behnaz Hassanshahi (Oracle Labs, Australia)

BACKGROUND

- What is supply chain?
- SolarWind's Orion platform is polluted.
- ► Malicious action against **Esline-Scope**.

Figure: CI/CD Attack Trend Image source: [McBride(2023)].

OBJECTIVE

- Introduce a new framework.
- ► Evaluate the effectiveness of the framework.
- Automate the unsafe update explore process.

Research Questions

- 1. What is the scope of the impact of the risks that exist within our target Python and Java repositories?
- 2. What are the results if these suspicious updates from contributors in open source projects compromise the target?
- 3. To what extent does this work enhance the security of CI/CD pipelines based on the findings and recommendations from our research?

OUTLINE

- Related Works
- ► Research Methods
 - Data Source
 - Framework
 - Pipeline
 - Metric
- Summary
- ► QA

RELATED WORKS

Static Analysis - Bandit [PyCQA(2023)]

- Parse python source code (AST)
- ▶ Pre-defined rules to match the tree node relationship

Machine Learning - Anomaly Detection

Figure: Anomaly Detection Image source: [Garrett et al.(2019)Garrett, Ferreira, Jia, Sunshine, and Kästner].

RELATED WORKS

CI / CD Based: in-toto framework [Torres-Arias et al.(2019)Torres-Arias, Afzali, Kuppusamy, Curtmola, and Cappos]

- supply chain layout integrity
- step authentication
- implementation transparency
- graceful degradation of security properties

RESEARCH METHODS I

Data

- Fetch Data
- Clean Data

Contributors 401

+ 390 contributors

Deployments 198

qithub-pages 3 years ago

+ 197 deployments

Pvthon 92.6%

Languages

Makefile 7.4%

Introduce papers....

RESEARCH METHODS II

Pipeline

Introduce papers....

RESEARCH METHODS III

Metric

$$SM = (W_p \cdot P) * (W_{tf} \cdot TF) * (\frac{W_{tc}}{TC}) * (W_s \cdot S)$$
 (1)

SM = Security Scanner Metric

P =Precision (as a decimal)

 W_p = Weight for Precision

TF = Total Findings (TP + FP)

 $W_{tf} = \text{Weight for Total Findings}$

TC = Time Cost

 W_{tc} = Weight for Time Cost

S = Normalized Severity Score

 $W_s = \text{Weight for Severity}$

SUMMARY

This is the first slide of your presentation.

FUTURE WORK

- Data collection.
- ▶ Build the system pipeline.
- ▶ Contribute to the framework embedded in the system.
- Evaluate the system.

REFERENCES I

Kalil Garrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner.

Detecting suspicious package updates.

In 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 13–16. IEEE, 2019.

Luk

Luke McBride.

2023 predictions: What will happen in software supply chain governance?, 2023.

URL https://blog.sonatype.com/
2023-predictions-software-supply-chain-governance.

PyCQA.

Bandit: a security linter from pycqa, 2023.

URL https://github.com/PyCQA/bandit.

REFERENCES II

