A Numerical model of micro-textured sliding bearing for enhancing frictional performance and wear resistance in mechanical system

 $(2\dot{1}2305019)$

Kapil Kumar Derick L. Nongbet & (212305003)

> M. Sc. Mathematics Department of Mathematics

Dr Kanmani Subbu S Department of Mechanical Engineering

Contents: Introduction Motivation Methodology Results Conclusion

Sliding bearing refers to a bearing where two surfaces move relative to each other. This movement can be made easier by means of a lubricant squeezed by the motion of the components. It can generate sufficient pressure to separate the two surfaces, thereby reducing

Introduction:

PC: Waukesha ,Tilt Pad Thrust Bearings

PC: Tribonet.org, Journal bearing

Introduction:

Motivation: Reasons to improve the sliding bearing are as follows: To reduce the friction and wear To increase the load carrying capacity Methods to improve the performance of the sliding bearing: Surface modification Increasing hardness of the moving surfaces

Surface texturing:

A key factor that can help in reducing friction between surfaces is surface modification.

 Surface texturing is a technique to modify the surfaces by adding distinct features to improve lubrication conditions.

Circular textured surface

PC: Saravanan Murugayan at el. Studies on fabrication of protruded multi-shaped micro-feature array on AA 6063 by laser micromachining.

U- velocity of the moving plate a+b - distance between the two Positive Texture plates without texture Negative Texture a- height of the texture a+b a+b a Unit cell Negative surface texture Positive surface texture Fig: The two surface of a sliding bearing sliding parallel to each other. 0000000000 00000000 6 0 0 0 0 0 0 000000 Negative square cross section textures Positive square cross section textures PC: Saravanan Murugayan at el. Studies on fabrication of protruded multi-shaped micro-feature array on AA 6063 by laser micromachining. T. Obikawa et al. / International Journal of Machine Tools & Manufacture 51 (2011) 966-972

Types of texture:

Reasons for doing this work:

The effectiveness of micro-textures is influenced by several key parameters :

- Height /depth
- Size
- Shape
- Spacing

In order to avoid expenses of experimental work and to reduce the development time. Numerical studies is carried out.

Distribution of square, hexagonal and circular texture

PC: Saravanan Murugayan at el. Studies on fabrication of protruded multi-shaped micro-feature array on AA 6063 by laser micromachining

Reynold's Equation:

The Reynold's is a partial differential equation that describes the pressure distribution in a thin fluid in between two surfaces.

$$\frac{\partial}{\partial x}\left(h^3\frac{\partial P}{\partial x}\right) + \frac{\partial}{\partial y}\left(h^3\frac{\partial P}{\partial y}\right) = 6\mu \cdot \{(U_2 - U_1) \cdot \frac{\partial h}{\partial x} + 2(V_2 - V_1) + (W_2 - W_1)\frac{\partial h}{\partial z}\}$$
where, U_1 -velocity of the upper surface in X- direction U_2 -velocity of the lower surface in Y- direction V_1 - velocity of the lower surface in Y- direction W_1 -velocity of the lower surface in Z- direction W_2 -velocity of the lower surface in Z- direction W_2 -velocity of the lower surface in Z- direction W_2 -velocity of the film thickness V_1 -velocity of the lower surface in Z- direction V_2 -velocity of the lower surface in Z- direction V_3 -velocity of the lower surface in Z- direction V_3 -velocity of the lower surface in Z- direction V_3 -velocity of the lower surface in Z- direction V_3 -velocity of the lower surface in Z- direction V_3 -velocity V_4 -velo

Assumptions:

Constant value of viscosity Velocity (U) X-direction Both rigid surface Newtonian fluid Z-direction Incompressible flow Only upper surface slides No slip at boundaries Lubricant Negligible pressure gradient in z-direction With these assumptions a modified reynolds equation is obtained.

Moving surface

Modified 1-D Reynolds equation:

Modified Reynolds equation in 2-Dimension:

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial y} \left(h^3 \frac{\partial P}{\partial y} \right) = 6\mu U \frac{\partial h}{\partial x}$$

Now let us consider in 1-Dimension, we get :

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial P}{\partial x} \right) = 6U \mu \frac{\partial h}{\partial x}$$

Solving this equation to find pressure distribution in a 1-Dimensional set up analytical and numerically and comparing the results obtained:

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial y} \left(h^3 \frac{\partial P}{\partial y} \right) = 6\mu U \frac{\partial h}{\partial x}$$

Analytical solution of modified 1-D Reynolds equation:

$$P(x) = 6\mu U \int \frac{1}{h^2} dx + c_1 \int \frac{1}{h^3} dx + c_2$$
Input values:
$$h_1 = 250 \times 10^{\circ}(-3)$$

$$h_2 = 133.976 \times 10^{\circ}$$

$$U_1 = 1 \times 10^{\circ}3$$

$$\mu = 0.188 \times 10^{\circ}(-3)$$

 $P|_{x=c} = P_c - P_a$

$$P|_{x=a}=0$$

 $h_1=250 \times 10^{(-3)}$ %maximum film thickness in Millimeter(mm) h_2 =133.976 x 10 $^{\circ}$ (-3) %minimum film thickness in Millimeter(mm) U₁=1x10^3 % velocity of moving plate in mm/s μ=0.188x10⁽⁻³⁾ % viscosity in KPa L=12.5; %length of the unit cell in mm $I_{4} = 8.975$ $I_2 = 3.525$

Also,

Solving for c_1 :

From figure (1)

For $x \in [a, b]$:

$$0 = 0 + 0 + c_2$$
$$\Rightarrow c_2 = 0$$

 $P|_{x=c} = P_c - P_a$ and $P|_{x=c} = 6\mu U \int_{a}^{c} \frac{1}{h(x)^2} dx + c_1 \int_{a}^{c} \frac{1}{h(x)^3} dx + c_2$

$$P|_{x=c} = 6\mu U \int_{a}^{c} \overline{h}$$

 $c_1 = \frac{(P_c - P_a) - 6\mu U \int_a^c \frac{1}{h(x)^2} dx}{\int_a^c \frac{1}{h(x)^3} dx}$

 $h(x) = \begin{cases} h_1, & a \le x \le b \\ h_2, & b < x \le c \end{cases}$

 $P(x) = 6\mu U \frac{(x-a)}{h_{\tau}^{2}} + c_{1} \frac{(x-a)}{h_{\tau}^{3}}$

 $P|_{x=a} = 6\mu U \int_{a}^{a} \frac{1}{h(x)^2} dx + c_1 \int_{a}^{a} \frac{1}{h(x)^3} dx + c_2$

$$\Rightarrow P_c - P_a = 6\mu U \int_a^c \frac{1}{h(x)^2} \, dx + c_1 \int_a^c \frac{1}{h(x)^3} \, dx$$

$$\int_{a}^{c} \frac{h(x)^3}{h(x)^3}$$

$$\frac{1}{h(x)^3}$$

$$\frac{1}{(1-x)^3} dx + c_2$$

For
$$x \in]b, c]$$
:

And

 $P(x) = 6\mu U \left[\int_a^b \frac{1}{h_1^2} dx + \int_b^x \frac{1}{h_2^2} dx \right] + c_1 \left[\int_a^b \frac{1}{h_1^3} dx + \int_b^x \frac{1}{h_2^3} dx \right]$

 $c_1 = \frac{(P_c - P_a) - 6\mu U\left(\frac{l_1}{h_1^2} + \frac{l_2}{h_2^2}\right)}{\frac{l_1}{h^3} + \frac{l_2}{h^3}}$

 $=6\mu U \left[\frac{l_1}{h_1^2} + \frac{(x-b)}{h_2^2} \right] + c_1 \left[\frac{l_1}{h_3^3} + \frac{(x-b)}{h_2^3} \right]$

Numerical solution of modified 1-D Reynolds equation:

$$\frac{\partial}{\partial x}\left(h^3\frac{\partial P}{\partial x}\right)=6U\mu\frac{\partial h}{\partial x}$$
 The discretized form:
$$\frac{\partial h_{i,j}}{\partial x}=\frac{h_{i+0.5}-h_{i-0.5}}{\Delta x}$$

$$\frac{h_{i+0.5}^3 P_{i+1} + h_{i-0.5}^3 P_{i-1} - (h_{i+0.5}^3 + h_{i-0.5}^3) P_i}{(\Delta x)^2} = 6U \mu \frac{h_{i+0.5} - h_{i-0.5}}{\Delta x}$$

 $\frac{\partial}{\partial x} \left(h^3 \frac{\partial P_i}{\partial x} \right) = \frac{h_{i+0.5}^3 \cdot P_{i+1} + h_{i-0.5}^3 \cdot P_{i-1} - \left(h_{i+0.5}^3 + h_{i-0.5}^3 \right) \cdot P_i}{\Delta x^2}$

Rewriting:

$$(h_{i+0.5}^3 + h_{i-0.5}^3)P_i = 6\mu U(h_{i+0.5} - h_{i-0.5})\Delta x + h_{i+0.5}^3P_{i+1} + h_{i-0.5}^3P_{i-1}$$

Solving for P_i :

$$P_i = \frac{-6\mu U(h_{i+0.5} - h_{i-0.5})\Delta x}{h_{i+0.5}^3 + h_{i-0.5}^3} + \frac{h_{i+0.5}^3 P_{i+1}}{h_{i+0.5}^3 + h_{i-0.5}^3} + \frac{h_{i-0.5}^3 P_{i-1}}{h_{i+0.5}^3 + h_{i-0.5}^3}$$

 $P_i^{(k+1)} = \frac{-6\mu U(h_{i+0.5} - h_{i-0.5})\Delta x}{h_{i+0.5}^2 + h_{i-0.5}^2} + \frac{h_{i+0.5}^3}{h_{i+0.5}^3 + h_{i-0.5}^3} P_{i+1}^{(k)} + \frac{h_{i-0.5}^3}{h_{i+0.5}^3 + h_{i-0.5}^3} P_{i-1}^{(k+1)}$

Solving using Gauss-Seidel Iterative Scheme:

Fig.: Rayleigh Step Slider Bearing

Input values:

- h₁: maximum film thickness
- h₂: minimum film thickness
- L: length of the unit cell
 - [a, b]: region before the step portion
- [b,c]: region of step portion

Comparing pressure distribution graphs obtained with a research paper:

Peak Pressure obtained From Feng Shen's paper =53.7306 kPa

Peak Pressure obtained in numerical model=53.22 kPa
Peak Pressure obtained in analytical model=53.7306 kPa

Modified 2D Reynolds equation :

Rearranging equation (5), we get

$$\begin{split} P_{i,j} &= \frac{h_{i,j+0.5}^3 \cdot P_{i,j+1}}{\left(h_{i+0.5,j}^3 + h_{i-0.5,j}^3\right) + \left(h_{i,j+0.5}^3 + h_{i,j-0.5}^3\right)} + \frac{h_{i,j-0.5}^3 \cdot P_{i,j-1}}{\left(h_{i+0.5,j}^3 + h_{i-0.5,j}^3\right) + \left(h_{i,j+0.5}^3 + h_{i,j-0.5}^3\right)} + \\ & \frac{h_{i+0.5,j}^3 \cdot P_{i+1,j}}{\left(h_{i+0.5,j}^3 + h_{i-0.5,j}^3\right) + \left(h_{i,j+0.5}^3 + h_{i,j-0.5}^3\right)} + \frac{h_{i-0.5,j}^3 \cdot P_{i-1,j}}{\left(h_{i+0.5,j}^3 + h_{i-0.5,j}^3\right) + \left(h_{i,j+0.5}^3 + h_{i,j-0.5}^3\right)} \\ & - \frac{6\mu U \left(h_{i+0.5,j} - h_{i-0.5,j}\right) \Delta x}{\left(h_{i+0.5,j}^3 + h_{i-0.5,j}^3\right) + \left(h_{i,j+0.5}^3 + h_{i,j-0.5}^3\right)} \end{split}$$

 $P_{i,i} = AP_{i,i+1} + BP_{i,i-1} + CP_{i+1,i} + DP_{i-1,i} - E(6\mu U)$

$$P_{i,j}^{(k+1)} = A P_{i,j+1}^{(k)} + B P_{i,j-1}^{(k+1)} + C P_{i+1,j}^{(k)} + D P_{i-1,j}^{(k+1)} - E \cdot (6\mu U)$$

Applying successive over relaxation

$$\tilde{P_{i,j}}^{(k+1)} = (1 - \omega)P_{i,j}^{(k)} + \omega P_{i,j}^{(k+1)}$$

Showing How Points are Represented in Staggered Grid Method


```
Initial condition : Pressure(P(i,j))=0
Boundary condition:
```

$$P(1,j) = P(n,j)$$

Input data:

plate

- Coefficient of viscosity Velocity of the moving
- Number of texture
- Height/depth of the texture
- Film thickness

<u>Methodology</u>:

Error condition:

Calculation for

Load support: $W = \int_{0}^{L} \int_{0}^{B} P(x, y) \, dy \, dx$ Coefficient of friction

f =F/W where F is the average shear stress on the fluid and F= $\mu \cdot u \cdot \left(\frac{d}{b} + \frac{1-d}{a+b}\right)$

Error = $\sum_{i} \sum_{j} \left| \frac{\tilde{P}_{i,j}^{(k+1)} - \tilde{P}_{i,j}^{(k)}}{\tilde{P}_{i,j}^{(k+1)}} \right| < \varepsilon$

If Error <1e-5 .We proceed to next step.

Representation Of Only The Unit Cell In X and Y- Coordinates

Representation Of Only The Unit Cell With The Three Circular Texture

Negative circular texture:

b = 7.0: Minimum Film thickness in micrometer μ =41.989071896099996 x10^(-9)MPa*s Viscosity U = 6649704.76 Micrometer per second Velocity of moving plate Radius=275 Micrometer Average load support =0.6404MPa Coefficient of friction = 0.04456

a = 7.8;

Texture Depth in micrometer

Positive Circular | a+b

a = 7.8 ; Texture Depth in micrometer b = 7.0 ; Minimum Film thickness in micrometer μ =41.989071896099996 x10^(-9)MPa*s viscosity U = 6649704.76 Micrometer per second Velocity of moving plate Radius=275 Micrometer Average load support =0.2727MPa

Coefficient of friction =0.1045

Small negative circular texture:

a = 7.8; Texture Depth in micrometer b = 7.0; Minimum Film thickness in micrometer μ =41.989071896099996 x10^(-9)MPa*s %viscosity U = 6649704.76 Micrometer per second %Velocity of moving plate Radius =50 Micrometer Average load support =0.0668MPa

Coefficient of friction = 0.2745

Sample results for radial distribution:

Pressure distribution for large negative radial texture

Pressure distribution for small negative radial texture

Property	Wide positive texture	Wide negative texture	Small negative texture
Radius	275µm	275µm	50µm
Coefficient of friction	0.1045	0.04456	0.2745
Average load support	0.2727MPa	0.6404MPa	0.0668MPa

From the above data wide negative circular texture gives the least coefficient of friction

 $\begin{array}{lll} b = 7.0~; & \text{\% Minimum Film thickness in micrometer} \\ \mu = & 41.989071896099996~x10^{-9} \\ \text{U} = & 6649704.76~\text{micrometer per second \%Velocity of moving plate} \end{array}$

Note: 1.Thin lubricant film gives less coefficient of friction.

2.Increasing texture depth reduces the coefficient of friction

Depth of texture

Note: 1.Thin lubricant film gives more average load support.
2.Increasing texture depth increases average load support

0.4

0.35

3

Introducing new factors

- In real-world applications, surfaces are never perfectly smooth. When the fluid film thickness becomes comparable to the roughness of the surfaces, textures come into contact.
- The contact factor helps model the load carried by these textures, which is not captured by the standard Reynolds equation.

	roughness and asperity contact on pressure build up in lubricant.
Pressure flow factor(Ф _х , Ф	the effect of surface roughness on the pressure-driven flow.

: A parameter that accounts for the effect of surface

: The shear stress factor is related to the shear stress acting

Contact factor(Φ_a)

Shear stress factor(Φ_s)

on the lubricant film, which arises due to the relative motion of the surfaces and is influenced by the viscosity of the lubricant.

Composite Roughness(σ): Composite roughness refers to the irregularities and small-scale variations found on a physical surface

Modified Reynolds equation:

Modified Reynolds equation:

Modified Reynolds with contact factor

$$\frac{\partial}{\partial x} \left(\phi_x \frac{h^3}{\mu} \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial y} \left(\phi_y \frac{h^3}{\mu} \frac{\partial P}{\partial y} \right) = 6U \phi_c \frac{\partial h}{\partial x} + 6U \sigma \frac{\partial \phi_s}{\partial x} \tag{1}$$

Discretized Form

Left-Hand Side (LHS)

$$\frac{\partial}{\partial x} \left(\phi_x \frac{h^3}{\mu} \frac{\partial P}{\partial x} \right) = \frac{1}{\mu \Delta x} \left[\phi_{x,i+\frac{1}{2},j} h_{i+\frac{1}{2},j}^3 \cdot \frac{P_{i+1,j} - P_{i,j}}{\Delta x} - \phi_{x,i-\frac{1}{2},j} h_{i-\frac{1}{2},j}^3 \cdot \frac{P_{i,j} - P_{i-1,j}}{\Delta x} \right]$$

$$\frac{\partial}{\partial y} \left(\phi_y \frac{h^3}{\mu} \frac{\partial P}{\partial y} \right) = \frac{1}{\mu \Delta y} \left[\phi_{y,i,j+\frac{1}{2}} h_{i,j+\frac{1}{2}}^3 \cdot \frac{P_{i,j+1} - P_{i,j}}{\Delta y} - \phi_{y,i,j-\frac{1}{2}} h_{i,j-\frac{1}{2}}^3 \cdot \frac{P_{i,j} - P_{i,j-1}}{\Delta y} \right]$$

Right-Hand Side (RHS)

$$\begin{aligned} 6U\phi_{c}\frac{\partial h}{\partial x} &= 6U\cdot\phi_{c,i,j}\cdot\frac{h_{i+1/2,j}-h_{i-1/2,j}}{\Delta x} \\ 6U\sigma\frac{\partial\phi_{s}}{\partial x} &= 6U\sigma\cdot\frac{\phi_{s,i+1/2,j}-\phi_{s,i-1/2,j}}{\Delta x} \end{aligned}$$

Therefore equation (1) becomes,

$$\begin{split} &\frac{1}{\Delta x} \left[\phi_{x,i+\frac{1}{2},j} \, h_{i+\frac{1}{2},j}^3 \cdot \frac{P_{i+1,j} - P_{i,j}}{\Delta x} - \phi_{x,i-\frac{1}{2},j} \, h_{i-\frac{1}{2},j}^3 \cdot \frac{P_{i,j} - P_{i-1,j}}{\Delta x} \right] \\ &+ \frac{1}{\Delta y} \left[\phi_{y,i,j+\frac{1}{2}} \, h_{i,j+\frac{1}{2}}^3 \cdot \frac{P_{i,j+1} - P_{i,j}}{\Delta y} - \phi_{y,i,j-\frac{1}{2}} \, h_{i,j-\frac{1}{2}}^3 \cdot \frac{P_{i,j} - P_{i,j-1}}{\Delta y} \right] \\ &= 6U \mu \cdot \phi_{c,i,j} \cdot \frac{h_{i+1/2,j} - h_{i-1/2,j}}{\Delta x} + 6U \mu \sigma \cdot \frac{\phi_{s,i+1/2,j} - \phi_{s,i-1/2,j}}{\Delta x} \end{split}$$

Symbol	Description	
ϕ_x	Pressure flow factor in x direction	
ϕ_z	Pressure flow factor in z direction	
ϕ_c	Contact factor	
ϕ_s	Shear stress factor	
h	Film thickness	
σ	Composite roughness	
μ	Coefficient of viscosity	
U	Velocity of the moving plate	

Table 1: List of Symbols

Modified Reynolds equation:

Rearranging all terms containing $P_{i,j}$:

$$\begin{split} &-\left(\frac{\phi_{x,i+\frac{1}{2},j}h_{i+\frac{1}{2},j}^3}{\Delta x^2} + \frac{\phi_{x,i-\frac{1}{2},j}h_{i-\frac{1}{2},j}^3}{\Delta x^2} + \frac{\phi_{y,i,j+\frac{1}{2}}h_{i,j+\frac{1}{2}}^3}{\Delta y^2} + \frac{\phi_{y,i,j-\frac{1}{2}}h_{i,j-\frac{1}{2}}^3}{\Delta y^2}\right)P_{i,j}\\ &= \frac{\phi_{x,i+\frac{1}{2},j}h_{i+\frac{1}{2},j}^3}{\Delta x^2}P_{i+1,j} - \frac{\phi_{x,i-\frac{1}{2},j}h_{i-\frac{1}{2},j}^3}{\Delta x^2}P_{i-1,j} + \frac{\phi_{y,i,j+\frac{1}{2}}h_{i,j+\frac{1}{2}}^3}{\Delta y^2}P_{i,j+1} - \frac{\phi_{y,i,j-\frac{1}{2}}h_{i,j-\frac{1}{2}}^3}{\Delta y^2}P_{i,j-1}\\ &+ 6U\mu\left(\frac{h_{i+\frac{1}{2},j}-h_{i-\frac{1}{2},j}}{\Delta x}\phi_{c,i,j} + \sigma\frac{\phi_{s,i+\frac{1}{2},j}-\phi_{s,i-\frac{1}{2},j}}{\Delta x}\right) \end{split}$$

Rearranging the terms, we get

$$P_{i,j} = \frac{\frac{\phi_{x,i+\frac{1}{2},j} h_{i+\frac{1}{2},j}^3}{\Delta x^2} P_{i+1,j} + \frac{\phi_{x,i-\frac{1}{2},j} h_{i-\frac{1}{2},j}^3}{\Delta x^2} P_{i-1,j}}{\frac{\phi_{y,i,j+\frac{1}{2}} h_{i,j+\frac{1}{2}}^3}{\Delta y^2} P_{i,j+1} + \frac{\phi_{y,i,j-\frac{1}{2}} h_{i,j-\frac{1}{2}}^3}{\Delta y^2} P_{i,j-1}}{\frac{-6U\mu \left(\phi_{c,i,j} \frac{h_{i+\frac{1}{2},j} - h_{i-\frac{1}{2},j}}{\Delta x} + \sigma \frac{\phi_{s,i+\frac{1}{2},j} - \phi_{s,i-\frac{1}{2},j}}{\Delta x}\right)}{\frac{\phi_{x,i+\frac{1}{2},j} h_{i+\frac{1}{2},j}^3}{\Delta x^2} + \frac{\phi_{x,i-\frac{1}{2},j} h_{i-\frac{1}{2},j}^3}{\Delta x^2}}{\frac{\phi_{y,i,j+\frac{1}{2}} h_{i,j+\frac{1}{2}}^3}{\Delta y^2} + \frac{\phi_{y,i,j-\frac{1}{2}} h_{i,j-\frac{1}{2}}^3}{\Delta y^2}}$$

Modified Reynolds equation:

$$\begin{split} \phi_{x,i+\frac{1}{2},j} \, h_{i+\frac{1}{2},j}^3 \, \Delta y^2 \, P_{i+1,j} + \phi_{x,i-\frac{1}{2},j} \, h_{i-\frac{1}{2},j}^3 \, \Delta y^2 \, P_{i-1,j} \\ &+ \phi_{y,i,j+\frac{1}{2}} \, h_{i,j+\frac{1}{2}}^3 \, \Delta x^2 \, P_{i,j+1} + \phi_{y,i,j-\frac{1}{2}} \, h_{i,j-\frac{1}{2}}^3 \, \Delta x^2 \, P_{i,j-1} \\ \Rightarrow P_{i,j} = \frac{-6U\mu\Delta x\Delta y^2 \, \Big(\phi_{c,i,j} h_{i+\frac{1}{2},j} - h_{i-\frac{1}{2},j} + \sigma \phi_{s,i+\frac{1}{2},j} - \phi_{s,i-\frac{1}{2},j}\Big)}{\phi_{x,i+\frac{1}{2},j} \, h_{i+\frac{1}{2},j}^3 \, \Delta y^2 + \phi_{x,i-\frac{1}{2},j} \, h_{i-\frac{1}{2},j}^3 \, \Delta y^2} \\ &+ \phi_{y,i,j+\frac{1}{2}} \, h_{i,j+\frac{1}{2}}^3 \, \Delta x^2 + \phi_{y,i,j-\frac{1}{2}} \, h_{i,j-\frac{1}{2}}^3 \, \Delta x^2 \end{split}$$

Using Gauss Seidel Iterative scheme, to solve it.

$$\begin{split} \phi_{x,i+\frac{1}{2},j} \, h_{i+\frac{1}{2},j}^3 \, \Delta y^2 \, P_{i+1,j}^{(k)} \\ &+ \phi_{x,i-\frac{1}{2},j} \, h_{i-\frac{1}{2},j}^3 \, \Delta y^2 \, P_{i-1,j}^{(k+1)} \\ &+ \phi_{y,i,j+\frac{1}{2}} \, h_{i,j+\frac{1}{2}}^3 \, \Delta x^2 \, P_{i,j+1}^{(k)} \\ &+ \phi_{y,i,j-\frac{1}{2}} \, h_{i,j-\frac{1}{2}}^3 \, \Delta x^2 \, P_{i,j-1}^{(k+1)} \\ P_{i,j}^{(k+1)} &= \frac{-6U\mu\Delta x\Delta y^2 \left(\phi_{c,i,j}(h_{i+\frac{1}{2},j} - h_{i-\frac{1}{2},j}) + \sigma(\phi_{s,i+\frac{1}{2},j} - \phi_{s,i-\frac{1}{2},j})\right)}{\phi_{x,i+\frac{1}{2},j} \, h_{i+\frac{1}{2},j}^3 \, \Delta y^2} \\ &+ \phi_{x,i-\frac{1}{2},j} \, h_{i-\frac{1}{2},j}^3 \, \Delta y^2 \\ &+ \phi_{y,i,j+\frac{1}{2}} \, h_{i,j+\frac{1}{2}}^3 \, \Delta x^2 \\ &+ \phi_{y,i,j-\frac{1}{2}} \, h_{i,j-\frac{1}{2}}^3 \, \Delta x^2 \end{split}$$

```
Initial condition : Pressure(P(i,j))=0
Boundary condition:
```

$$P(1,j) = P(n,j)$$

Input data:

plate

- Coefficient of viscosity Velocity of the moving
- Number of texture
- Height/depth of the texture
- Film thickness

Load support: $W = \int \int_{a}^{B} P(x, y) \, dy \, dx$ Coefficient of friction f = F/Wwhere F is the average shear stress on the fluid and F= $\mu \cdot u \cdot \left(\frac{d}{b} + \frac{1-d}{a+b}\right)$

If Error <1e-5 . We proceed to next step.

The roughness effects on lubricant flow can be attributed to four factors
$$\Phi_x$$
, Φ_z , Φ_s and Φ_c . All these factors depends on film thickness ratio (H=h/ σ).
$$film\ thickness\ ratio\ (H=h/\sigma)$$

$$\phi_x=\phi_z=1-0.9e^{-0.56H}$$

$$\phi_s=\{1.899H^{0.98}e^{-0.92H+0.05H^2},ifH\leq 5,\quad 1.126e^{-0.25H},ifH>5$$

$$\phi_c=\{e^{-0.6912+0.782H-0.304H^2+0.0401H^3},if0\leq H<3,\quad 1,\quad ifH\geq 3$$

Grid Point Representation of The Unit Cell

Representation Of The Unit Cell In X and Y- Coordinates

Positive square Texture

Texture area fraction (d)= 0.1 Number of texture(Nr)=3

Viscosity = 1.21e-7 MPa.s Velocity(U) = 1670 mm/s Film thickness = 10⁻² mm Depth of the texture = 10⁻³ mm Average load support =0.822MPa Coefficient of friction = 0.04468565 Composite roughness =0.546e-3mm

Positive Circular Texture

Texture area fraction (d)= 0.1 Number of texture(Nr)=3

Viscosity = 1.21e-7 MPa.s Velocity(U) = 1670 mm/s Film thickness = 10⁻² mm Depth of the texture = 10⁻³ mm Average load support =0.7324MPa Coefficient of friction =0.50162 Composite roughness =0.546e-3mm

Comparing the results obtained for positive circular textured and square textured model

Comparing the results obtained for positive circular textured model with contact factor and without contact factor

Conclusion:

- 1. The best results is obtained for large negative circular texture as coefficient of friction reduces more.
- COCINCICITY OF ITICION TOUCCS THOIC .

2. Thin lubricant film(14.8 µm) gives less coefficient of friction(0.1045).

- 3.Increasing texture depth reduces the coefficient of friction.
- 4. For positive texture increasing the area ratio increases the friction.
- 5. Introducing new factors like contact factor, pressure flow factor and shear stress factor is essential to give a more accurate results.

Acknowledgement

We are greatly thankful to have Dr. Kanmani Subbu S and Dr. Ganesh Natarajan as our Supervisor and we would like to express our heartfelt gratitude for his guidance ,encouragement and support throughout this journey . We would also like to thank Mr Simson for his contribution in continuously guiding us from the beginning of the project.

Reference:

- Ravinder B. Siripuram and Lyndon S. Stephens "Effect of Deterministic asperity Geometry on Hydrodynamic Lubrication", Journal of Tribology.
- P Venkateswara Babu, Syed Ismail and B Satish Ben "Experimental and numerical studies of positive texture effect on friction reduction of sliding contact under mixed lubrication". J Engineering Tribology 2021, Vol. 235(2) 360-375
- Peter R.N. Childs, in "Mechanical Design Engineering Handbook" (Second edition)
- Feng Shen ,Cheng-JinYan,Jian-FengDai,andZhao-MiaoLiu " Recirculation Flow and Pressure Distributions in a Rayleigh Step Bearing".Hindawi Advances in Tribology Volume 2018, Article ID 9480636.
- Harish Hirani Fundamentals Of Engineering Tribology With Applications Cambridge University Press (2016).

THANK YOU