CHAPTER 1

THE WAVE FUNCTION

1.1 THE SCHRÖDINGER EQUATION

Imagine a particle of mass m, constrained to move along the x-axis, subject to some specified force F(x,t) (Figure 1.1). The program of classical mechanics is to determine the position of the particle at any given time: x(t). Once we know that, we can figure out the velocity (v = dx/dt), the momentum (p = mv), the kinetic energy ($T = (1/2)mv^2$), or any other dynamical variable of interest. And how do we go about determining x(t)? We apply Newton's second law: F = ma. (For conservative systems—the only kind we shall consider, and, fortunately, the only kind that occur at the microscopic level—the force can be expressed as the derivative of a potential energy function, $F = -\partial V/\partial x$, and Newton's law reads $m d^2x/dt^2 = -\partial V/\partial x$.) This, together with appropriate initial conditions (typically the position and velocity at t = 0), determines x(t).

Quantum mechanics approaches this same problem quite differently. In this case what we're looking for is the wave function, $\Psi(x, t)$, of the particle, and we get it by solving the **Schrödinger equation**:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi.$$
 [1.1]

¹Magnetic forces are an exception, but let's not worry about them just yet. By the way, we shall assume throughout this book that the motion is nonrelativistic ($v \ll c$).

Figure 1.1: A "particle" constrained to move in one dimension under the influence of a specified force.

Here i is the square root of -1, and \hbar is Planck's constant—or rather, his original constant (h) divided by 2π :

$$\hbar = \frac{h}{2\pi} = 1.054573 \times 10^{-34} \text{J s.}$$
 [1.2]

The Schrödinger equation plays a role logically analogous to Newton's second law: Given suitable initial conditions [typically, $\Psi(x,0)$], the Schrödinger equation determines $\Psi(x,t)$ for all future time, just as, in classical mechanics, Newton's law determines x(t) for all future time.

1.2 THE STATISTICAL INTERPRETATION

But what exactly is this "wave function", and what does it do for you once you've got it? After all, a particle, by its nature, is localized at a point, whereas the wave function (as its name suggests) is spread out in space (it's a function of x, for any given time t). How can such an object be said to describe the state of a particle? The answer is provided by Born's statistical interpretation of the wave function, which says that $|\Psi(x,t)|^2$ gives the probability of finding the particle at point x, at time t—or, more precisely,²

$$|\Psi(x,t)|^2 dx = \left\{ \begin{array}{l} \text{probability of finding the particle} \\ \text{between } x \text{ and } (x+dx), \text{ at time } t. \end{array} \right\}$$
 [1.3]

For the wave function in Figure 1.2, you would be quite likely to find the particle in the vicinity of point A, and relatively unlikely to find it near point B.

The statistical interpretation introduces a kind of indeterminacy into quantum mechanics, for even if you know everything the theory has to tell you about the

²The wave function itself is complex, but $|\Psi|^2 = \Psi^* \Psi$ (where Ψ^* is the complex conjugate of Ψ) is real and nonnegative—as a probability, of course, must be.

Figure 1.2: A typical wave function. The particle would be relatively likely to be found near A, and unlikely to be found near B. The shaded area represents the probability of finding the particle in the range dx.

particle (to wit: its wave function), you cannot predict with certainty the outcome of a simple experiment to measure its position—all quantum mechanics has to offer is *statistical* information about the *possible* results. This indeterminacy has been profoundly disturbing to physicists and philosophers alike. Is it a peculiarity of nature, a deficiency in the theory, a fault in the measuring apparatus, or *what*?

Suppose I do measure the position of the particle, and I find it to be at the point C. Question: Where was the particle just before I made the measurement? There are three plausible answers to this question, and they serve to characterize the main schools of thought regarding quantum indeterminacy:

- 1. The realist position: The particle was at C. This certainly seems like a sensible response, and it is the one Einstein advocated. Note, however, that if this is true then quantum mechanics is an incomplete theory, since the particle really was at C, and yet quantum mechanics was unable to tell us so. To the realist, indeterminacy is not a fact of nature, but a reflection of our ignorance. As d'Espagnat put it, "the position of the particle was never indeterminate, but was merely unknown to the experimenter." Evidently Ψ is not the whole story—some additional information (known as a hidden variable) is needed to provide a complete description of the particle.
- 2. The orthodox position: The particle wasn't really anywhere. It was the act of measurement that forced the particle to "take a stand" (though how and why it decided on the point C we dare not ask). Jordan said it most starkly: "Observations not only disturb what is to be measured, they produce it. ... We compel [the particle] to assume a definite position." This view (the so-called Copenhagen interpretation) is associated with Bohr and his followers. Among physicists it has always been the

³Bernard d'Espagnat, *The Quantum Theory and Reality*, Scientific American, Nov. 1979 (Vol. 241), p. 165.

⁴Quoted in a lovely article by N. David Mermin, *Is the moon there when nobody looks?*, Physics Today, April 1985, p. 38.

4

most widely accepted position. Note, however, that if it is correct there is something very peculiar about the act of measurement—something that over half a century of debate has done precious little to illuminate.

3. The agnostic position: Refuse to answer. This is not quite as silly as it sounds—after all, what sense can there be in making assertions about the status of a particle before a measurement, when the only way of knowing whether you were right is precisely to conduct a measurement, in which case what you get is no longer "before the measurement"? It is metaphysics (in the perjorative sense of the word) to worry about something that cannot, by its nature, be tested. Pauli said, "One should no more rack one's brain about the problem of whether something one cannot know anything about exists all the same, than about the ancient question of how many angels are able to sit on the point of a needle." For decades this was the "fall-back" position of most physicists: They'd try to sell you answer 2, but if you were persistent they'd switch to 3 and terminate the conversation.

Until fairly recently, all three positions (realist, orthodox, and agnostic) had their partisans. But in 1964 John Beil astonished the physics community by showing that it makes an *observable* difference if the particle had a precise (though unknown) position prior to the measurement. Bell's discovery effectively eliminated agnosticism as a viable option, and made it an *experimental* question whether 1 or 2 is the correct choice. I'll return to this story at the end of the book, when you will be in a better position to appreciate Bell's theorem; for now, suffice it to say that the experiments have confirmed decisively the orthodox interpretation⁶: A particle simply does not have a precise position prior to measurement, any more than the ripples on a pond do; it is the measurement process that insists on one particular number, and thereby in a sense *creates* the specific result, limited only by the statistical weighting imposed by the wave function.

But what if I made a second measurement, immediately after the first? Would I get C again, or does the act of measurement cough up some completely new number each time? On this question everyone is in agreement: A repeated measurement (on the same particle) must return the same value. Indeed, it would be tough to prove that the particle was really found at C in the first instance if this could not be confirmed by immediate repetition of the measurement. How does the orthodox interpretation account for the fact that the second measurement is bound to give the value C? Evidently the first measurement radically alters the wave function, so that it is now sharply peaked about C (Figure 1.3). We say that the wave function **collapses** upon measurement, to a spike at the point C (Ψ soon spreads out again, in accordance with the Schrödinger equation, so the second measurement must be made quickly). There

⁵Quoted by Mermin (previous footnote), p. 40.

⁶This statement is a little too strong: There remain a few theoretical and experimental loopholes, some of which I shall discuss in the Afterword. And there exist other formulations (such as the **many worlds** interpretation) that do not fit cleanly into any of my three categories. But I think it is wise, at least from a pedagogical point of view, to adopt a clear and coherent platform at this stage, and worry about the alternatives later.

Figure 1.3: Collapse of the wave function: graph of $|\Psi|^2$ immediately after a measurement has found the particle at point C.

are, then, two entirely distinct kinds of physical processes: "ordinary" ones, in which the wave function evolves in a leisurely fashion under the Schrödinger equation, and "measurements", in which Ψ suddenly and discontinuously collapses.⁷

1.3 PROBABILITY

Because of the statistical interpretation, **probability** plays a central role in quantum mechanics, so I digress now for a brief discussion of the theory of probability. It is mainly a question of introducing some notation and terminology, and I shall do it in the context of a simple example.

Imagine a room containing 14 people, whose ages are as follows:

one person aged 14

one person aged 15

three people aged 16

two people aged 22

two people aged 24

five people aged 25.

If we let N(j) represent the number of people of age j, then

⁷The role of measurement in quantum mechanics is so critical and so bizarre that you may well be wondering what precisely *constitutes* a measurement. Does it have to do with the interaction between a microscopic (quantum) system and a macroscopic (classical) measuring apparatus (as Bohr insisted), or is it characterized by the leaving of a permanent "record" (as Heisenberg claimed), or does it involve the intervention of a conscious "observer" (as Wigner proposed)? I'll return to this thorny issue in the Afterword; for the moment let's take the naive view: A measurement is the kind of thing that a scientist does in the laboratory, with rulers, stopwatches, Geiger counters, and so on.

Figure 1.4: Histogram showing the number of people, N(j), with age j, for the example in Section 1.3.

$$N(14) = 1$$

$$N(15) = 1$$

$$N(16) = 3$$

$$N(22) = 2$$

$$N(24) = 2$$

$$N(25) = 5$$

while N(17), for instance, is zero. The *total* number of people in the room is

$$N = \sum_{j=0}^{\infty} N(j).$$
 [1.4]

(In this instance, of course, N=14.) Figure 1.4 is a histogram of the data. The following are some questions one might ask about this distribution.

Question 1. If you selected one individual at random from this group, what is the **probability** that this person's age would be 15? Answer: One chance in 14, since there are 14 possible choices, all equally likely, of whom only one has this particular age. If P(j) is the probability of getting age j, then P(14) = 1/14, P(15) = 1/14, P(16) = 3/14, and so on. In general,

$$P(j) = \frac{N(j)}{N}.$$
 [1.5]

Notice that the probability of getting either 14 or 15 is the sum of the individual probabilities (in this case, 1/7). In particular, the sum of all the probabilities is 1—you're certain to get some age:

$$\sum_{j=1}^{\infty} P(j) = 1.$$
 [1.6]

7

Question 2. What is the **most probable** age? Answer: 25, obviously; five people share this age, whereas at most three have any other age. In general, the most probable j is the j for which P(j) is a maximum.

Question 3. What is the **median** age? *Answer*: 23, for 7 people are younger than 23, and 7 are older. (In general, the median is that value of j such that the probability of getting a larger result is the same as the probability of getting a smaller result.)

Question 4. What is the average (or mean) age? Answer:

$$\frac{(14) + (15) + 3(16) + 2(22) + 2(24) + 5(25)}{14} = \frac{294}{14} = 21.$$

In general, the average value of j (which we shall write thus: $\langle j \rangle$) is given by

$$\langle j \rangle = \frac{\sum j N(j)}{N} = \sum_{j=0}^{\infty} j P(j).$$
 [1.7]

Notice that there need not be anyone with the average age or the median age—in this example nobody happens to be 21 or 23. In quantum mechanics the average is usually the quantity of interest; in that context it has come to be called the **expectation value**. It's a misleading term, since it suggests that this is the outcome you would be most likely to get if you made a single measurement (*that* would be the *most probable value*, not the average value)—but I'm afraid we're stuck with it.

Question 5. What is the average of the *squares* of the ages? *Answer:* You could get $14^2 = 196$, with probability 1/14, or $15^2 = 225$, with probability 1/14, or $16^2 = 256$, with probability 3/14, and so on. The average, then, is

$$\langle j^2 \rangle = \sum_{j=0}^{\infty} j^2 P(j).$$
 [1.8]

In general, the average value of some function of j is given by

$$\langle f(j) \rangle = \sum_{j=0}^{\infty} f(j)P(j).$$
 [1.9]

(Equations 1.6, 1.7, and 1.8 are, if you like, special cases of this formula.) *Beware:* The average of the squares $(\langle j^2 \rangle)$ is *not* ordinarily equal to the square of the average $(\langle j \rangle^2)$. For instance, if the room contains just two babies, aged 1 and 3, then $\langle x^2 \rangle = 5$, but $\langle x \rangle^2 = 4$.

Now, there is a conspicuous difference between the two histograms in Figure 1.5, even though they have the same median, the same average, the same most probable value, and the same number of elements: The first is sharply peaked about the average value, whereas the second is broad and flat. (The first might represent the age profile for students in a big-city classroom, and the second the pupils in a one-room schoolhouse.) We need a numerical measure of the amount of "spread" in a

Figure 1.5: Two histograms with the same median, same average, and same most probable value, but different standard deviations.

distribution, with respect to the average. The most obvious way to do this would be to find out how far each individual deviates from the average,

$$\Delta j = j - \langle j \rangle, \tag{1.10}$$

and compute the average of Δj . Trouble is, of course, that you get zero, since, by the nature of the average, Δj is as often negative as positive:

$$\langle \Delta j \rangle = \sum (j - \langle j \rangle) P(j) = \sum_{j} j P(j) - \langle j \rangle \sum_{j} P(j)$$
$$= \langle j \rangle - \langle j \rangle = 0.$$

(Note that $\langle j \rangle$ is constant—it does not change as you go from one member of the sample to another—so it can be taken outside the summation.) To avoid this irritating problem, you might decide to average the *absolute value* of Δj . But absolute values are nasty to work with; instead, we get around the sign problem by *squaring* before averaging:

$$\sigma^2 \equiv \langle (\Delta j)^2 \rangle. \tag{1.11}$$

This quantity is known as the **variance** of the distribution; σ itself (the square root of the average of the square of the deviation from the average—gulp!) is called the **standard deviation**. The latter is the customary measure of the spread about $\langle j \rangle$.

There is a useful little theorem involving standard deviations:

$$\sigma^{2} = \langle (\Delta j)^{2} \rangle = \sum (\Delta j)^{2} P(j) = \sum (j - \langle j \rangle)^{2} P(j)$$

$$= \sum (j^{2} - 2j\langle j \rangle + \langle j \rangle^{2}) P(j)$$

$$= \sum j^{2} P(j) - 2\langle j \rangle \sum j P(j) + \langle j \rangle^{2} \sum P(j)$$

$$= \langle j^{2} \rangle - 2\langle j \rangle \langle j \rangle + \langle j \rangle^{2},$$

or

$$\sigma^2 = \langle j^2 \rangle - \langle j \rangle^2.$$
 [1.12]

Equation 1.12 provides a faster method for computing σ : Simply calculate $\langle j^2 \rangle$ and $\langle j \rangle^2$, and subtract. Incidentally, I warned you a moment ago that $\langle j^2 \rangle$ is not, in general,

equal to $\langle j \rangle^2$. Since σ^2 is plainly nonnegative (from its definition in Equation 1.11), Equation 1.12 implies that

$$\langle j^2 \rangle \ge \langle j \rangle^2, \tag{1.13}$$

and the two are equal only when $\sigma = 0$, which is to say, for distributions with no spread at all (every member having the same value).

So far, I have assumed that we are dealing with a discrete variable—that is, one that can take on only certain isolated values (in the example, j had to be an integer, since I gave ages only in years). But it is simple enough to generalize to continuous distributions. If I select a random person off the street, the probability that her age is precisely 16 years, 4 hours, 27 minutes, and 3.3333 seconds is zero. The only sensible thing to speak about is the probability that her age lies in some interval—say, between 16 years, and 16 years plus one day. If the interval is sufficiently short, this probability is proportional to the length of the interval. For example, the chance that her age is between 16 and 16 plus two days is presumably twice the probability that it is between 16 and 16 plus one day. (Unless, I suppose, there was some extraordinary baby boom 16 years ago, on exactly those days—in which case we have chosen an interval too long for the rule to apply. If the baby boom lasted six hours, we'll take intervals of a second or less, to be on the safe side. Technically, we're talking about infinitesimal intervals.) Thus

$$\left\{ \begin{array}{l}
\text{probability that individual (chosen at random)} \\
\text{lies between } x \text{ and } (x + dx)
\end{array} \right\} = \rho(x) dx. \quad [1.14]$$

The proportionality factor, $\rho(x)$, is often loosely called "the probability of getting x," but this is sloppy language; a better term is **probability density**. The probability that x lies between a and b (a *finite* interval) is given by the integral of $\rho(x)$:

$$P_{ab} = \int_a^b \rho(x) \, dx, \qquad [1.15]$$

and the rules we deduced for discrete distributions translate in the obvious way:

$$\int_{-\infty}^{+\infty} \rho(x) \, dx = 1, \tag{1.16}$$

$$\langle x \rangle = \int_{-\infty}^{+\infty} x \rho(x) \, dx,$$
 [1.17]

$$\langle f(x) \rangle = \int_{-\infty}^{+\infty} f(x) \rho(x) \, dx,$$
 [1.18]

$$\sigma^2 \equiv \langle (\Delta x)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2.$$
 [1.19]

*Problem 1.1 For the distribution of ages in the example in Section 1.3,

- (a) Compute $\langle j^2 \rangle$ and $\langle j \rangle^2$.
- **(b)** Determine Δj for each j, and use Equation 1.11 to compute the standard deviation.
- (c) Use your results in (a) and (b) to check Equation 1.12.

Problem 1.2 Consider the first 25 digits in the decimal expansion of π (3, 1, 4, 1, 5, 9, ...).

- (a) If you selected one number at random from this set, what are the probabilities of getting each of the 10 digits?
- **(b)** What is the most probable digit? What is the median digit? What is the average value?
- (c) Find the standard deviation for this distribution.

Problem 1.3 The needle on a broken car speedometer is free to swing, and bounces perfectly off the pins at either end, so that if you give it a flick it is equally likely to come to rest at any angle between 0 and π .

- (a) What is the probability density, $\rho(\theta)$? $[\rho(\theta) d\theta]$ is the probability that the needle will come to rest between θ and $(\theta + d\theta)$.] Graph $\rho(\theta)$ as a function of θ , from $-\pi/2$ to $3\pi/2$. (Of course, part of this interval is excluded, so ρ is zero there.) Make sure that the total probability is 1.
- **(b)** Compute $\langle \theta \rangle$, $\langle \theta^2 \rangle$, and σ for this distribution.
- (c) Compute $\langle \sin \theta \rangle$, $\langle \cos \theta \rangle$, and $\langle \cos^2 \theta \rangle$.

Problem 1.4 We consider the same device as the previous problem, but this time we are interested in the x-coordinate of the needle point—that is, the "shadow", or "projection", of the needle on the horizontal line.

- (a) What is the probability density $\rho(x)$? $[\rho(x) dx$ is the probability that the projection lies between x and (x + dx).] Graph $\rho(x)$ as a function of x, from -2r to +2r, where r is the length of the needle. Make sure the total probability is 1. [Hint: You know (from Problem 1.3) the probability that θ is in a given range; the question is, what interval dx corresponds to the interval $d\theta$?]
- **(b)** Compute $\langle x \rangle$, $\langle x^2 \rangle$, and σ for this distribution. Explain how you could have obtained these results from part (c) of Problem 1.3.

**Problem 1.5 A needle of length *l* is dropped at random onto a sheet of paper ruled with parallel lines a distance *l* apart. What is the probability that the needle will cross a line? [Hint: Refer to Problem 1.4.]

*Problem 1.6 Consider the Gaussian distribution

$$\rho(x) = Ae^{-\lambda(x-a)^2},$$

where A, a, and λ are constants. (Look up any integrals you need.)

- (a) Use Equation 1.16 to determine A.
- **(b)** Find $\langle x \rangle$, $\langle x^2 \rangle$, and σ .
- (c) Sketch the graph of $\rho(x)$.

1.4 NORMALIZATION

We return now to the statistical interpretation of the wave function (Equation 1.3), which says that $|\Psi(x, t)|^2$ is the probability density for finding the particle at point x, at time t. It follows (Equation 1.16) that the integral of $|\Psi|^2$ must be 1 (the particle's got to be *some*where):

$$\int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = 1.$$
 [1.20]

Without this, the statistical interpretation would be nonsense.

However, this requirement should disturb you: After all, the wave function is supposed to be determined by the Schrödinger equation—we can't impose an extraneous condition on Ψ without checking that the two are consistent. A glance at Equation 1.1 reveals that if $\Psi(x, t)$ is a solution, so too is $A\Psi(x, t)$, where A is any (complex) constant. What we must do, then, is pick this undetermined multiplicative factor so as to ensure that Equation 1.20 is satisfied. This process is called **normalizing** the wave function. For some solutions to the Schrödinger equation, the integral is *infinite*; in that case *no* multiplicative factor is going to make it 1. The same goes for the trivial solution $\Psi = 0$. Such **non-normalizable** solutions cannot represent particles, and must be rejected. Physically realizable states correspond to the "square-integrable" solutions to Schrödinger's equation.⁸

⁸Evidently $\Psi(x,t)$ must go to zero faster than $1/\sqrt{|x|}$, as $|x| \to \infty$. Incidentally, normalization only fixes the *modulus* of A; the *phase* remains undetermined. However, as we shall see, the latter carries no physical significance anyway.

But wait a minute! Suppose I have normalized the wave function at time t=0. How do I know that it will *stay* normalized, as time goes on and Ψ evolves? (You can't keep *re*normalizing the wave function, for then A becomes a function of t, and you no longer have a solution to the Schrödinger equation.) Fortunately, the Schrödinger equation has the property that it automatically preserves the normalization of the wave function—without this crucial feature the Schrödinger equation would be incompatible with the statistical interpretation, and the whole theory would crumble. So we'd better pause for a careful proof of this point:

$$\frac{d}{dt} \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = \int_{-\infty}^{+\infty} \frac{\partial}{\partial t} |\Psi(x,t)|^2 dx.$$
 [1.21]

[Note that the integral is a function only of t, so I use a total derivative (d/dt) in the first term, but the integrand is a function of x as well as t, so it's a partial derivative $(\partial/\partial t)$ in the second one.] By the product rule,

$$\frac{\partial}{\partial t} |\Psi|^2 = \frac{\partial}{\partial t} (\Psi^* \Psi) = \Psi^* \frac{\partial \Psi}{\partial t} + \frac{\partial \Psi^*}{\partial t} \Psi$$
 [1.22]

Now the Schrödinger equation says that

$$\frac{\partial \Psi}{\partial t} = \frac{i\hbar}{2m} \frac{\partial^2 \Psi}{\partial x^2} - \frac{i}{\hbar} V \Psi, \qquad [1.23]$$

and hence also (taking the complex conjugate of Equation 1.23)

$$\frac{\partial \Psi^*}{\partial t} = -\frac{i\hbar}{2m} \frac{\partial^2 \Psi^*}{\partial x^2} + \frac{i}{\hbar} V \Psi^*, \qquad [1.24]$$

so

$$\frac{\partial}{\partial t}|\Psi|^2 = \frac{i\hbar}{2m}\left(\Psi^*\frac{\partial^2\Psi}{\partial x^2} - \frac{\partial^2\Psi^*}{\partial x^2}\Psi\right) = \frac{\partial}{\partial x}\left[\frac{i\hbar}{2m}\left(\Psi^*\frac{\partial\Psi}{\partial x} - \frac{\partial\Psi^*}{\partial x}\Psi\right)\right]. [1.25]$$

The integral (Equation 1.21) can now be evaluated explicitly:

$$\frac{d}{dt} \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = \frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \Big|_{-\infty}^{+\infty}.$$
 [1.26]

But $\Psi(x, t)$ must go to zero as x goes to (\pm) infinity—otherwise the wave function would not be normalizable. It follows that

$$\frac{d}{dt} \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = 0,$$
 [1.27]

and hence that the integral on the left is *constant* (independent of time); if Ψ is normalized at t = 0, it stays normalized for all future time. QED

Problem 1.7 At time t=0 a particle is represented by the wave function

$$\Psi(x,0) = \begin{cases} Ax/a, & \text{if } 0 \le x \le a, \\ A(b-x)/(b-a), & \text{if } a \le x \le b, \\ 0, & \text{otherwise,} \end{cases}$$

where A, a, and b are constants.

- (a) Normalize Ψ (that is, find A in terms of a and b).
- **(b)** Sketch $\Psi(x,0)$ as a function of x.
- (c) Where is the particle most likely to be found, at t = 0?
- (d) What is the probability of finding the particle to the left of a? Check your result in the limiting cases b = a and b = 2a.
- (e) What is the expectation value of x?

*Problem 1.8 Consider the wave function

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

where A, λ , and ω are positive real constants. [We'll see in Chapter 2 what potential (V) actually produces such a wave function.]

- (a) Normalize Ψ .
- **(b)** Determine the expectation values of x and x^2 .
- (c) Find the standard deviation of x. Sketch the graph of $|\Psi|^2$, as a function of x, and mark the points $(\langle x \rangle + \sigma)$ and $(\langle x \rangle \sigma)$ to illustrate the sense in which σ represents the "spread" in x. What is the probability that the particle would be found outside this range?

Problem 1.9 Let $P_{ab}(t)$ be the probability of finding the particle in the range (a < x < b), at time t.

(a) Show that

$$\frac{dP_{ab}}{dt} = J(a,t) - J(b,t)$$

where

$$J(x,t) \equiv \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right).$$

What are the units of J(x,t)? [J is called the **probability current**, because it tells you the rate at which probability is "flowing" past the point x. If $P_{ab}(t)$ is increasing, then more probability is flowing into the region at one end than flows out at the other.]

- **(b)** Find the probability current for the wave function in the previous problem. (This is not a very pithy example, I'm afraid; we'll encounter some more substantial ones in due course.)
- **Problem 1.10 Suppose you wanted to describe an unstable particle that spontaneously disintegrates with a "lifetime" \(\tau \). In that case the total probability of finding the particle somewhere should not be constant, but should decrease at (say) an exponential rate:

$$P(t) \equiv \int_{-\infty}^{+\infty} |\Psi(x,t)|^2 dx = e^{-t/\tau}.$$

A crude way of achieving this result is as follows. In Equation 1.24 we tacitly assumed that V (the potential energy) is *real*. That is certainly reasonable, but it leads to the **conservation of probability** enshrined in Equation 1.27. What if we assign to V an imaginary part:

$$V = V_0 - i\Gamma$$

where V_0 is the true potential energy and Γ is a positive real constant?

(a) Show that (in place of Equation 1.27) we now get

$$\frac{dP}{dt} = -\frac{2\Gamma}{\hbar}P.$$

(b) Solve for P(t), and find the lifetime of the particle in terms of Γ .

1.5 MOMENTUM

For a particle in state Ψ , the expectation value of x is

$$\langle x \rangle = \int_{-\infty}^{+\infty} x |\Psi(x,t)|^2 dx.$$
 [1.28]

What exactly does this mean? It emphatically does *not* mean that if you measure the position of one particle over and over again, $\int x |\Psi|^2 dx$ is the average of the results you'll get. On the contrary, the first measurement (whose outcome is indeterminate) will collapse the wave function to a spike at the value actually obtained, and the subsequent measurements (if they're performed quickly) will simply repeat that same result. Rather, $\langle x \rangle$ is the average of measurements performed on particles *all in the state* Ψ , which means that either you must find some way of returning the particle to its original state after each measurement, or else you prepare a whole ensemble of particles, each in the same state Ψ , and measure the positions of all of them: $\langle x \rangle$ is the

average of these results. [I like to picture a row of bottles on a shelf, each containing a particle in the state Ψ (relative to the center of the bottle). A graduate student with a ruler is assigned to each bottle, and at a signal they all measure the positions of their respective particles. We then construct a histogram of the results, which should match $|\Psi|^2$, and compute the average, which should agree with $\langle x \rangle$. (Of course, since we're only using a finite sample, we can't expect perfect agreement, but the more bottles we use, the closer we ought to come.)] In short, the expectation value is the average of repeated measurements on an ensemble of identically prepared systems, not the average of repeated measurements on one and the same system.

Now, as time goes on, $\langle x \rangle$ will change (because of the time dependence of Ψ), and we might be interested in knowing how fast it moves. Referring to Equations 1.25 and 1.28, we see that⁹

$$\frac{d\langle x\rangle}{dt} = \int x \frac{\partial}{\partial t} |\Psi|^2 dx = \frac{i\hbar}{2m} \int x \frac{\partial}{\partial x} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) dx. \quad [1.29]$$

This expression can be simplified using integration by parts¹⁰:

$$\frac{d\langle x\rangle}{dt} = -\frac{i\hbar}{2m} \int \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi\right) dx.$$
 [1.30]

[I used the fact that $\partial x/\partial x = 1$, and threw away the boundary term, on the ground that Ψ goes to zero at (\pm) infinity.] Performing another integration by parts on the second term, we conclude that

$$\frac{d\langle x\rangle}{dt} = -\frac{i\hbar}{m} \int \Psi^* \frac{\partial \Psi}{\partial x} dx.$$
 [1.31]

What are we to make of this result? Note that we're talking about the "velocity" of the *expectation* value of x, which is not the same thing as the velocity of the *particle*. Nothing we have seen so far would enable us to calculate the velocity of a particle—it's not even clear what velocity *means* in quantum mechanics. If the particle doesn't have a determinate position (prior to measurement), neither does it have a well-defined velocity. All we could reasonably ask for is the *probability* of getting a particular value. We'll see in Chapter 3 how to construct the probability density for velocity,

$$\frac{d}{dx}(fg) = f\frac{dg}{dx} + \frac{df}{dx}g,$$

from which it follows that

$$\int_{a}^{b} f \frac{dg}{dx} dx = -\int_{a}^{b} \frac{df}{dx} g dx + fg \Big|_{a}^{b}.$$

Under the integral sign, then, you can peel a derivative off one factor in a product and slap it onto the other one—it'll cost you a minus sign, and you'll pick up a boundary term.

 $^{^9}$ To keep things from getting too cluttered, I suppress the limits of integration when they are $\pm\infty$.

¹⁰The product rule says that

given Ψ ; for our present purposes it will suffice to postulate that the expectation value of the velocity is equal to the time derivative of the expectation value of position:

$$\langle v \rangle = \frac{d\langle x \rangle}{dt}.$$
 [1.32]

Equation 1.31 tells us, then, how to calculate $\langle v \rangle$ directly from Ψ .

Actually, it is customary to work with momentum (p = mv), rather than velocity:

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = -i\hbar \int \left(\Psi^* \frac{\partial \Psi}{\partial x} \right) dx.$$
 [1.33]

Let me write the expressions for $\langle x \rangle$ and $\langle p \rangle$ in a more suggestive way:

$$\langle x \rangle = \int \Psi^*(x) \Psi \, dx, \qquad [1.34]$$

$$\langle p \rangle = \int \Psi^* \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \Psi \, dx.$$
 [1.35]

We say that the **operator**¹¹ x "represents" position, and the operator $(\hbar/i)(\partial/\partial x)$ "represents" momentum, in quantum mechanics; to calculate expectation values, we "sandwich" the appropriate operator between Ψ^* and Ψ , and integrate.

That's cute, but what about other dynamical variables? The fact is, *all* such quantities can be written in terms of position and momentum. Kinetic energy, for example, is

$$T = \frac{1}{2}mv^2 = \frac{p^2}{2m},$$

and angular momentum is

$$\mathbf{L} = \mathbf{r} \times m\mathbf{v} = \mathbf{r} \times \mathbf{p}$$

(the latter, of course, does not occur for motion in one dimension). To calculate the expectation value of such a quantity, we simply replace every p by $(\hbar/i)(\partial/\partial x)$, insert the resulting operator between Ψ^* and Ψ , and integrate:

$$\langle Q(x, p) \rangle = \int \Psi^* Q(x, \frac{\hbar}{i} \frac{\partial}{\partial x}) \Psi dx.$$
 [1.36]

¹¹An operator is an instruction to *do something* to the function that follows. The position operator tells you to *multiply* by x; the momentum operator tells you to *differentiate* with respect to x (and multiply the result by $-i\hbar$). In this book *all* operators will be derivatives $(d/dt, d^2/dt^2, \partial^2/\partial x \partial y, \text{etc.})$ or multipliers $(2, i, x^2, \text{etc.})$ or combinations of these.

For example,

$$\langle T \rangle = \frac{-\hbar^2}{2m} \int \Psi^* \frac{\partial^2 \Psi}{\partial x^2} \, dx. \tag{1.37}$$

Equation 1.36 is a recipe for computing the expectation value of any dynamical quantity for a particle in state Ψ ; it subsumes Equations 1.34 and 1.35 as special cases. I have tried in this section to make Equation 1.36 seem plausible, given Born's statistical interpretation, but the truth is that this equation represents such a radically new way of doing business (as compared with classical mechanics) that it's a good idea to get some practice using it before we come back (in Chapter 3) and put it on a firmer theoretical foundation. In the meantime, if you prefer to think of it as an axiom, that's fine with me.

Problem 1.11 Why can't you do integration by parts directly on the middle expression in Equation 1.29—pull the time derivative over onto x, note that $\partial x/\partial t = 0$, and conclude that $d\langle x \rangle/dt = 0$?

***Problem 1.12** Calculate $d\langle p \rangle/dt$. Answer:

$$\frac{d\langle p\rangle}{dt} = \langle -\frac{\partial V}{\partial x} \rangle. \tag{1.38}$$

(This is known as **Ehrenfest's theorem**; it tells us that *expectation values* obey Newton's second law.)

Problem 1.13 Suppose you add a constant V_0 to the potential energy (by "constant" I mean independent of x as well as t). In *classical* mechanics this doesn't change anything, but what about *quantum* mechanics? Show that the wave function picks up a time-dependent phase factor: $\exp(-iV_0t/\hbar)$. What effect does this have on the expectation value of a dynamical variable?

1.6 THE UNCERTAINTY PRINCIPLE

Imagine that you're holding one end of a very long rope, and you generate a wave by shaking it up and down rhythmically (Figure 1.6). If someone asked you, "Precisely where is that wave?" you'd probably think he was a little bit nutty: The wave isn't precisely anywhere—it's spread out over 50 feet or so. On the other hand, if he asked you what its wavelength is, you could give him a reasonable answer: It looks like about 6 feet. By contrast, if you gave the rope a sudden jerk (Figure 1.7), you'd get a relatively narrow bump traveling down the line. This time the first question (Where precisely is the wave?) is a sensible one, and the second (What is its wavelength?) seems nutty—it isn't even vaguely periodic, so how can you assign a wavelength to it?

Figure 1.6: A wave with a (fairly) well-defined wavelength but an ill-defined position.

Of course, you can draw intermediate cases, in which the wave is *fairly* well localized and the wavelength is *fairly* well defined, but there is an inescapable trade-off here: The more precise a wave's position is, the less precise is its wavelength, and vice versa.¹² A theorem in Fourier analysis makes all this rigorous, but for the moment I am only concerned with the qualitative argument.

This applies, of course, to *any* wave phenomenon, and hence in particular to the quantum mechanical wave function. Now the wavelength of Ψ is related to the *momentum* of the particle by the **de Broglie formula**¹³:

$$p = \frac{h}{\lambda} = \frac{2\pi\hbar}{\lambda}.$$
 [1.39]

Thus a spread in *wavelength* corresponds to a spread in *momentum*, and our general observation now says that the more precisely determined a particle's position is, the less precisely its momentum is determined. Quantitatively,

$$\sigma_x \sigma_p \ge \frac{\hbar}{2},\tag{1.40}$$

where σ_x is the standard deviation in x, and σ_p is the standard deviation in p. This is Heisenberg's famous **uncertainty principle**. (We'll prove it in Chapter 3, but I wanted to mention it here so you can test it out on the examples in Chapter 2.)

Figure 1.7: A wave with a (fairly) well-defined position but an ill-defined wavelength.

¹²That's why a piccolo player must be right on pitch, whereas a double-bass player can afford to wear garden gloves. For the piccolo, a sixty-fourth note contains many full cycles, and the frequency (we're working in the time domain now, instead of space) is well defined, whereas for the bass, at a much lower register, the sixty-fourth note contains only a few cycles, and all you hear is a general sort of "oomph," with no very clear pitch.

¹³I'll prove this in due course. Many authors take the de Broglie formula as an *axiom*, from which they then deduce the association of momentum with the operator $(\hbar/i)(\partial/\partial x)$. Although this is a conceptually cleaner approach, it involves diverting mathematical complications that I would rather save for later.

Please understand what the uncertainty principle *means*: Like position measurements, momentum measurements yield precise answers—the "spread" here refers to the fact that measurements on identical systems do not yield consistent results. You can, if you want, prepare a system such that repeated position measurements will be very close together (by making Ψ a localized "spike"), but you will pay a price: Momentum measurements on this state will be widely scattered. Or you can prepare a system with a reproducible momentum (by making Ψ a long sinusoidal wave), but in that case position measurements will be widely scattered. And, of course, if you're in a really bad mood you can prepare a system in which neither position nor momentum is well defined: Equation 1.40 is an inequality, and there's no limit on how $big \sigma_x$ and σ_p can be—just make Ψ some long wiggly line with lots of bumps and potholes and no periodic structure.

*Problem 1.14 A particle of mass m is in the state

$$\Psi(x,t) = Ae^{-a[(mx^2/\hbar)+it]},$$

where A and a are positive real constants.

- (a) Find A.
- **(b)** For what potential energy function V(x) does Ψ satisfy the Schrödinger equation?
- (c) Calculate the expectation values of x, x^2 , p, and p^2 .
- (d) Find σ_x and σ_p . Is their product consistent with the uncertainty principle?