Projet 6 Openclassrooms

Classifiez automatiquement des biens de consommation

et du jeu de données

I. Présentation du contexte projet

Contexte Projet

- L'entreprise Place de marché souhaite lancer une markeplace e-commerce
- **Problématique:** actuellement l'attribution de la catégorie du produit est effectuée manuellement par le vendeur, et est donc peu fiable.

Notre mission:

Faire une étude de faisabilité d'un moteur de classification pour l'automatisation de l'attribution de la catégorie de l'article en fonction de la description et de l'image de l'article.

Présentation du jeu de données

Fichier CSV

- 1050 lignes contenant des articles.
- 15 colonnes fournissant des informations sur chaque produit :
- Identifiant unique du produit
- Nom du produit
- Marque du produit
- URL du produit
- Arborescence de la catégorie du produit (7 niveaux)
- Prix
- Description du produit
- Nom de l'image

Nettoyage des données: Très peu de données manquantes, aucune absence dans les champs utilisés.

Dossier d'images

• Vérification de la corruption et du format des images

1050 image pour chaque produit

modélisation de classification et

II.Présentation des approches de

résultats

Approche de modélisation

Approche de modélisation générale

Faisabilité de la classification : Approche générale

Pré-traitement

Données textuelles : Nettoyage du texte , tokenisation

Images : Transformation niveaux de
gris, histogramme ...

Extraction des features

Extraction des features (caractéristique) du texte ou des images avec les différents modèles

Réduction des dimensions

- ACP : Réduction des dimension pour limiter le nombre de dimension avec le T-SNE
- T-SNE : réduction des dimensions pour affichage visuelle 2D/3D

Clustering K-means

- -Création d'un clusters k-means
- Regroupement des features en clusters
- Nombre de clusters = 7 catégorie de produit

Analyse Visuelle

-Affichae des données T-SNE selon les vraies catégories et selon les clusters

Comparaison des résultats

- Calcul du score ARI, mesure de la similarité entre catégories réelles et les clusters

modélisation de classification du

III.Présentation des approches de

Texte

Traitement des données textuelles

Nettoyage des données textuelles

- Normalisation du texte sur le texte product_name et description :
- 1. Conversion du texte en minuscules et suppression de la ponctuation
- 2. Tokenisation: Division du texte par mots
- 3. Suppression des stopwords (articles, pronoms...)
- 4. Ajout du texte product_name et description dans la même phrase

Approche Bag of words : comptage simple

- Représentation de chaque document en **fonction de la fréquence des mots** (count vectorizer)
- Création d'un vecteur pour chaque document rassemblé dans une matrice de comptage

Score ARI: 0.3347 Séparation partielle des catégories

Approche Bag of words: TF-IDF (Term Frequency-Inverse Document Frequency)

- TF (Term Frequency) : Fréquence d'un mot dans le document
- IDF (Inverse Document Frequency): Réduit l'importance des mots communs qui apparaissent dans de nombreux documents.

Score ARI: 0.4092 Assez bonne séparation des catégories

Approche Bag of words: Word2Vec

- Word2 Vec transforme chaque mot d'un texte en un vecteur de nombres, capturant des caractéristiques sémantiques.
- similarité sémantique : Les mots ayant des contextes similaires se retrouvent proches dans l'espace vectoriel

Score ARI : 0.4364 Assez bonne séparation des catégories

Approche Bag of words: BERT (Bidirectional Encoder Representations from Transformers)

- Réseau de neuronne pré-entrainé basé sur l'architecture transformers
- Pré-entraînement bidirectionnel : BERT apprend le contexte des mots à la fois avant et après chaque mot. Ce qui permet de mieux capture le contexte et sens des phrase.

Score ARI: 0.3251 Séparation partielle des catégories

Approche Bag of words: USE (Universal Sentence Encoder)

- USE produit une représentation vectorielle dense de chaque phrase
- Représentation sémantique: Les vecteurs produits par USE sont créés pour que les phrases similaires (sémantiquement proches) aient des vecteurs proches dans l'espace vectoriel.

Score ARI: 0.5122 Bonne séparation des catégories

III.Présentation des approches de modélisation de classification des

moutisation at the

images

Approche SIFT

• **SIFT**: alorithme du domaine de la vision par ordinateur de reconnaissance de caractéristiques(feature détection).Il permet de **détecter et d'extraire des descripteurs de points clés dans une image** (bord,contours et point d'intérêt)qui sont invariant aux variations d'échelle et à la rotation.

Approche Bag of words: SIFT (Bidirectional Encoder Representations from Transformers)

Score ARI : 0.04989 SIFT ne permet pas la séparation des catégories

Approche CNN transfer Learning et data augmentation avec VGG 16

- CNN réseau de neurones conçu pour traiter des données ayant une structure de grille, comme les images:
 - Couches de convolution: elles extraient automatiquement des caractéristiques importantes des images (comme les bords, textures, motifs).
 - **Couches de pooling** : elles réduisent la taille des images pour diminuer le nombre de calculs, tout en gardant les informations principales.
 - Couches entièrement connectées : en fin de réseau, elles combinent les caractéristiques extraites pour classer ou interpréter l'image.

VGG16: 13 couches de convolution et 3 couches entièrement connectées entraîné sur l'ensemble des données ImageNET

Transfer Learning: Le Transfer Learning consiste à utiliser un modèle pré-entraîné et à adapter ce modèle pour une tâche spécifique avec moins de données et de temps d'entraînement.

Data Augmentation: La Data Augmentation consiste à créer de nouvelles images d'entraînement en appliquant des transformations sur les images existantes:

- Rotations, translations, zooms, et inversions.
- Changements de luminosité ou d'échelle de couleurs.
- Découpes aléatoires ou ajouts de bruit.

Approche CNN transfer Learning et data augmentation avec VGG 16

VGG16 : Différentes approches testés

VGG 16 avec transfer learning

Geler les couches de convolution : on garde les couches convolutionnelles (et on les applique sur notre propre jeu de données.

Score ARI : 0.4620

transfert Learning et data augmentation avec VGG-16

Génération de 5 images aléatoirement pour chaque images moyenne des caractéristique des images

Score ARI : 0.4514

VGG 16 Fine-tuning

- Entrainement sur notre jeu de donnée augmenté

Score ARI : 0.4420

IV.Utilisation de l'api pour

récupération de produit

Création du script avec api pour récupération des produits

```
query = 'champagne
url = 'https://api.edamam.com/api/food-database/v2/parser
params = {
     'app id': app id
     'app_key': app_key
    'ingr': query
response = requests.get(url, params=params)
if response status_code == 200:
   data = response.json()
   hints = data.get('hints', [])[:10]
    products = []
    for hint in hints:
       food = hint.get('food', {})
       products.append({
            'foodId': food.get('foodId', ''),
            'label': food.get('label', ''),
            'category': food.get('category', ''),
            'foodContentsLabel': food.get('foodContentsLabel', ''),
            'image': food.get('image', '')
    df = pd.DataFrame(products)
    df.to_csv('edamam_products.csv', index=False)
    print('Les données ont été enregistrées dans edamam_products.csv')
    print(f'Erreur {response.status_code} : {response.text}')
```

V.Conclusion du Projet

Faisabilité du moteur de classification

 L'analyse graphique et du score ARI nous permis qu'il est réailisable de séparer automatiquement les produits selon leurs vraies catégories avec leurs nom/description et des images