Table of Contents

Revision History 2					
Generator Info 3					
Global Parameters 3					
Introduction 4					
Terminology Definitions 5					
Layer Descriptions 7					
Table 1: Device Layers 7					
Table 2: Interconnect Layers 8					
Table 3: DRC/LVS Marker/Label Layers 9					
Device Layer Table 10					
Table 4: MOS Device Layers 10					
Table 5: Diode Device Layers 10					
Table 6: Resistor Device Layers 11					
Table 7: Bipolar and Varactor Device Layers 12					
Device Layout Examples 13					
CMOS Digital Core Design Rules 16					
N BURIED LAYER RULES 16					
NWELL AND NWELL RESISTOR (under STI) RULES 17					
NWELL RESISTOR WITHIN OXIDE RULES 19					
Figure 1: NWELL RESISTOR WITHIN OXIDE RULES 19					
ACTIVE RULES 21					
ACTIVE RESISTOR RULES (salicided/non-salicided) 24					
THICK ACTIVE (1.8V) RULES 26					
N+ HIGH VT RULES 28					
P+ HIGH VT RULES 29					
N+ LOW VT RULES 30					

...contents...

P+ LOW VT RULES 31

NATIVE NMOS ACTIVE RULES 32

POLY RULES 33

POLY RESISTOR RULES (salicided/non-salicided) 37

N+ IMPLANT RULES 39

P+ IMPLANT RULES 41

CONTACT RULES 43

SALICIDE BLOCKING RULES 47

METAL 1 RULES 48

METAL k (k = 2, 3, 4, 5, 6, 7, 8, 9) RULES 49

METAL k (k = 10, 11) RULES 50

Capacitor Metal 60

VIA k (k = 1, 2, 3, 4, 5, 6, 7, 8) RULES 61

VIA 9, 10 RULES 61

LATCH-UP RULES 66

ANTENNA RULES 67

CMOS I/O Design Rules 94

ESD Design Rules 94

Bond Pad Design Rules 97

CMOS Digital Electrical Parameters 103

Sheet Resistances 103

Contact/Via Resistances 103

Current Densities 103

Contact/Via Current Densities 103

Layer and Dielectric Thickness 104

Connectivity Definition 106

...contents

Appendix A A1

Appendix B B1

cādencei

Cadence Design Systems

GPDK 45 nm Mixed Signal GPDK Spec

DISCLAIMER

The information contained herein is provided by Cadence on an "AS IS" basis without any warranty, and Cadence has no obligation to support or otherwise maintain the information. Cadence disclaims any representation that the information does not infringe any intellectual property rights or proprietary rights of any third parties. There are no other warranties given by Cadence, whether express, implied or statutory, including, without limitation, implied warranties of merchantability and fitness for a particular purpose.

STATEMENT OF USE

This information contains confidential and proprietary information of Cadence. No part of this information may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of Cadence. This information was prepared for informational purpose and is for use by Cadence customers only. Cadence reserves the right to make changes in the information at any time and without notice.

Revision History

DRC Revision History

RELEASE NOTES FOR THE 45nm GPDK

VERSION 6.0 (09 SEPT 2019)

- The gpdk045 IC618 library is built natively with IC6.1.8 ISR4 release code.

- Following CCRs have been fixed (12 ccrs): 2106278, 2105969, 2106032, 2062149, 2033331, 1980929, 1862626 1814820, 1718230, 1587369, 1571694, 1556332.
- The moscap device has been modified with different calculation parameter choice based on CCR1571694 inputs.
- The cph.lam file has been modified to better support Virtuoso XL Gen-From-Source.
- EAD related files, eadTechFiles (includes em data) and ictfiles have been developed for different corners (worst, best and typical).ICT files were modified properly to have correct corners and then EAD technology files were generated.
- EAD technology files are placed in a seperate package named "gpdk045_ead_v_6_0.tar.gz" found on support.cadence.com. Untar this file into the 'ead' directory of the GPDK. See the ...ead/README.txt for details.
- Modified Virtuoso techfile to remove quells that are no longer supported and modified some constraints to include new support.
- Fixed dtemp variable issue in resistor/capacitor for spectre/ams run.

VERSION 5.0 (22 FEB 2016)

- gpdk045 IC617 library built natively with IC6.1.7 ISR1 release code
- Following CCRs has been fixed (16 ccrs)

1515221,1515134,1515215,1513805,1503698,1485808,1480053,1471257,

- 1445571,1429834,1400157,1345956,1324264,1304331,1302228,1291339
- Modified PVL LVS deck for post-layout check. Removed "R" from property check and netlist
- CDL netlist of resistor modified. Removed "R" parameter from netlist
- File cph.lam has been modified

VERSION 4.0 (17 JUNE 2014)

- gpdk045 IC615 library built natively with IC6.1.5 ISR17 release code
- Following CCRs has been fixed (27 ccrs)

1287271,1283169,1256253,1254045,1254038,1245309,1237646,1183733,

1170331,1126098,1113873,1101516,1094783,1090381,1079752,1037745,

1035602, 1027840, 1027316, 997831, 990813, 987559, 981093, 980054, 980053, 980054, 980053, 980054, 980053, 980054, 980053, 980054, 980054, 980053, 9800540, 980054, 980054, 980054, 9800540, 980054, 980054, 9800540, 9800540, 9800540, 9800540, 980

980051,959147

- Major changes:-

MOS gates are now weak connect instead of must connect.

Modified pvILVS deck, few new features has been added.

pvlFILL deck by Ray/Nalayini has been included.

Model (resistor) file modified according to CCR 1245309

VERSION pre-release (15 DEC 2011)

- gpdk045 IC615 library built natively with IC6.1.5 ISR8 release code...

Introduction

This document defines the Design Rules and Electrical Parameters for a generic, foundary independent 45nm CMOS Mixed-Signal process.

This document is divided into three sections:

* CMOS Digital Core Design Rules

describes the widths, spacings, enclosures, overlaps, etc. needed to create the physical layout of the core section of a digital CMOS design.

* CMOS I/O Design Rules

describes the widths, spacings, enclosures, overlaps, etc. needed to create the physical layout of the I/O section of a CMOS design.

* CMOS Digital Electrical Parameters

describes the electrical parameters of a digital CMOS design.

Terminology Definitions

Width - shortest distance from the inside of the edge of a shape to the inside of the edge of the same shape.

Length - opposite of Width - the measurement of the longest edge of a shape.

Parallel Run Length - the distance two shapes maintain a spacing less than the check value.

Spacing - distance from the outside of the edge of a shape to the outside of the edge of another shape.

Enclosure - distance from the inside of the edge of a shape to the outside of the edge of another shape.

Overlap - distance from the inside of the edge of a shape to the inside of the edge of another shape.

Butting - outside of the edge of a shape touching the outside of the edge of another shape.

Layer Descriptions

This table describes the layers used to create devices.

Layer	GDSII	GDSII	DFII	DFII	DFII	DFII	DFII	Description
Name	Stream	Data	LSW	Layer	Layer	Layer	Purpose	
	Number	Туре	Name	Name	Purpose	Number	Number	
Bondpad	36	0	Bondpad	Bondpad	drawing	95	252	Bonding Pad
CapMetal	14	0	CapMetal	CapMetal	drawing	97	252	MiM capacitor metal
Nburied	19	0	Nburied	Nburied	drawing	18	252	N+ Buried Layer
Nhvt	18	0	Nhvt	Nhvt	drawing	11	252	NMOS High Vt
Nlvt	26	0	Nl∨t	Nl∨t	drawing	26	252	NMOS Low Vt
Nimp	4	0	Nimp	Nimp	drawing	12	252	N+ Implant
Nwell	2	0	Nwell	Nwell	drawing	6	252	Nwell
Nzvt	52	0	Nzvt	Nzvt	drawing	15	252	NMOS Zero Vt
Oxide	1	0	Oxide	Oxide	drawing	2	252	Active Area
Oxide_thk	24	0	Oxide_thk	Oxide_thk	drawing	4	252	1.8V Active Area
Phvt	23	0	Phvt	Phvt	drawing	13	252	PMOS High Vt
Plvt	27	0	Plvt	Plvt	drawing	27	252	PMOS Low Vt
Pimp	5	0	Pimp	Pimp	drawing	14	252	P+ Implant
Poly	3	0	Poly	Poly	drawing	10	252	Poly
SiProt	72	0	SiProt	SiProt	drawing	16	252	Salicide Block

Table 1: Device Layers

This table describes the layers used to interconnect devices.

Layer	GDSII	GDSII	DFII	DFII	DFII	DFII	DFII	Description
Name	Stream	Data	LSW	Layer	Layer	Layer	Purpose	
	Number	Туре	Name	Name	Purpose	Number	Number	
Cont	6	0	Cont	Cont	drawing	20	252	Metal Contact to Oxide/Poly
Metal1	7	0	Metal1	Metal1	drawing	30	252	1st Metal for interconnect
Metal2	9	0	Metal2	Metal2	drawing	34	252	2nd Metal for interconnect
Metal3	11	0	Metal3	Metal3	drawing	38	252	3rd Metal for interconnect
Metal4	31	0	Metal4	Metal4	drawing	42	252	4th Metal for interconnect
Metal5	33	0	Metal5	Metal5d	drawing	46	252	5th Metal for interconnect
Metal6	35	0	Metal6	Metal6	drawing	50	252	6th Metal for interconnect
Metal7	38	0	Metal7	Metal7	drawing	54	252	7th Metal for interconnect
Metal8	40	0	Metal8	Metal8d	drawing	58	252	8th Metal for interconnect
Metal9	42	0	Metal9	Metal9	drawing	62	252	9th Metal for interconnect
Metal10	152	0	Metal10	Metal10	drawing	66	252	10th Metal for interconnect
Metal11	162	0	Metal11	Metal11	drawing	70	252	11th metal for interconnect
Via1	8	0	Via1	Via1	drawing	32	252	Via between 1st and 2nd Metal
Via2	10	0	Via2	Via2	drawing	36	252	Via between 2nd and 3rd Metal
Via3	30	0	Via3	Via3	drawing	38	252	Via between 3rd and 4th Metal
Via4	32	0	Via4	Via4	drawing	44	252	Via between 4th and 5th Metal
Via5	34	0	Via5	Via5	drawing	48	252	Via between 5th and 6th Metal
Via6	37	0	Via6	Via6	drawing	52	252	Via between 6th and 7th Metal
Via7	39	0	Via7	Via7	drawing	54	252	Via between 7th and 8th Metal
Via8	41	0	Via8	Via8	drawing	60	252	Via between 8th and 9th Metal
Via9	151	0	Via9	Via9	drawing	64	252	Via between 9th and 10th Metal
Via10	161	0	Via10	Via10	drawing	68	252	Via between 10th and 111th Metal

Table 2: Interconnect Layers

This table describes the layers used to mark/label shapes for DRC and/or LVS..

Layer	GDSII	GDSII	DFII	DFII	DFII	DFII	DFII	Description
Name	Stream		LSW	Layer	Layer	Layer	Purpose	
	Number	Туре	Name	Name	Purpose	Number	Number	
BJTdum	15	0	BJTdum	BJTdum	drawing	92	252	Marks BJT emitters
Capdum	12	0	Capdum	Capdum	drawing	96	252	Marks capacitors
Cap3dum	84	0	Cap3dum	Cap3dum	drawing	93	252	Marks capacitors 3 term
DIOdummy	22	0	DIOdum	DIOdummy	drawing	82	252	Marks diodes
INDdummy	90	0	INDdum	INDdummy	drawing	90	252	Marks inductor terminal
IND2dummy	88	0	IND2dum	IND2dummy	drawing	88	252	Marks inductor terminal
IND3dummy	114	0	IND3dum	IND3dummy	drawing	114	252	Marks inductor terminal
ESDdummy	74	0	ESDdum	ESDdummy	drawing	115	252	Marks ESD and I/O devices
Metal1_text	7	3	Metal1	Metal1	drawing	30	252	Labels Metal1 nodes
Metal2 text	9	3	Metal2	Metal2	drawing	34	252	Labels Metal2 nodes
Metal3_text	11	3	Metal3	Metal3	drawing	38	252	Labels Metal3nodes
Metal4_text	31	3	Metal4	Metal4	drawing	42	252	Labels Metal4 nodes
Metal5_text	33	3	Metal5	Metal5	drawing	46	252	Labels Metal5 nodes
Metal6_text	35	3	Metal6	Metal6	drawing	50	252	Labels Metal6 nodes
Metal7_text	38	3	Metal7	Metal7	drawing	54	252	Labels Metal7 nodes
Metal8_text	40	3	Metal8	Metal8	drawing	58	252	Labels Metal8 nodes
Metal9_text	42	3	Metal9	Metal9	drawing	62	252	Labels Metal9 nodes
Metal10_text	52	3	Metal10	Metal10	drawing	72	252	Labels Metal10 nodes
Metal11_text	62	3	Metal11	Metal11	drawing	82	252	Labels Metal11 nodes
NPNdummy	20	0	NPNdum	NPNdummy	drawing	86	252	Marks NPN devices
PNPdummy	21	0	PNPdum	PNPdummy	drawing	84	252	Marks PNP devices
Psub	25	0	Psub	Psub	drawing	80	252	Marks seperate substrate areas
Resdum	13	0	Resdum	Resdum	drawing	94	252	Marks Poly/Oxide resistor area
ResWdum	71	0	ResWdum	ResWdum	drawing	98	252	Marks Nwell resistor area
text	63	0	text	text	drawing	230	252	Text for information
SRAM	64	0	SRAM	SRAM	drawing	71	252	Memory marker layer
PO_text	65	0	PO_text	PO_text	drawing	72	252	Poly text marker layer
SEALRING	66	0	SEALRING	SEALRING	drawing	73	252	Die Sealring marker layer
LOGO	67	0	LOGO	LOGO	drawing	74	252	Chip Logo marker layer
ANALOG	68	0	ANALOG	ANALOG	drawing	75	252	Special Analog marker layer
FUSE	69	0	FUSE	FUSE	drawing	76	252	Fuse marker layer
FILLER	86	0	FILLER	FILLER	drawing	77	252	Fill cell marker layer
VIAEXCL	87	0	VIAEXCL	VIAEXCL	drawing	78	252	Via excluse marker layer

Table 3: DRC/LVS Marker/Label Layers

Cadence Confidential revision 6.0

Device Layer Table

This table describes the layers used in each device.

- 0: the layer must not touch the device structure
- 1: the layer must enclose or straddle the device structure
- -: the layer may either enclose or avoid the device structure

Comment Table

Comment	abic							
	NMOS	PMOS	LP NMOS	LP PMOS	NMOS	PMOS	Native	Native
	(1.2V)	(1.2V)	(1.2V)	(1.2V)	(1.8V)	(1.8V)	NMOS	NMOS
							(1.2V)	(1.8V)
Nburied	0	0	0	0	0	0	0	0
Nwell	0	1	0	1	0	1	0	0
Oxide	1	1	1	1	1	1	1	1
Oxide_thk	0	0	0	0	1	1	0	1
Poly	1	1	1	1	1	1	1	1
Nimp	1	0	1	0	1	0	1	1
Pimp	0	1	0	1	0	1	0	0
Nzvt	0	0	0	0	0	0	1	1
Nhvt	0	0	1	0	0	0	0	0
Phvt	0	0	0	1	0	0	0	0
SiProt	0	0	0	0	0	0	0	0

Table 4: MOS Device Layers

	N+/PW Diode	P+/NW Diode
Nburied	0	0
Nwell	0	1
Oxide	1	1
Oxide_thk	0	0
Poly	0	0
Nimp	1	0
Pimp	0	1
Nzvt	0	0
Nhvt	0	0
Phvt	0	0
SiProt	0	0

Table 5: Diode Device Layers

Comment Table

	Salicided	Salicided	Salicided	Salicided	Non-	Non-	Non-	Non-
	N+ Poly	P+ Poly	N+ Oxide	P+ Oxide	Salicided	Salicided	Salicided	Salicided
	Resistor	Resistor	Resistor	Resistor	N+ Poly	P+ Poly	N+ Oxide	P+ Oxide
					Resistor	Resistor	Resistor	Resistor
Nburied	0	0	0	0	0	0	0	0
Nwell	-	-	0	1	-	-	0	1
Oxide	0	0	1	1	0	0	1	1
Oxide_thk	0	0	0	0	0	0	0	0
Poly	1	1	0	0	1	1	0	0
Nimp	1	0	1	0	1	0	1	0
Pimp	0	1	0	1	0	1	0	1
Nzvt	0	0	0	0	0	0	0	0
Nhvt	0	0	0	0	0	0	0	0
Phvt	0	0	0	0	0	0	0	0
SiProt	0	0	0	0	1	1	1	1

	Nwell in Oxide Resistor	Nwell in STI Resistor
Nburied	0	0
Nwell	1	1
Oxide	1	1
Oxide_thk	0	0
Poly	0	0
Nimp	1	1
Pimp	0	0
Nzvt	0	0
Nhvt	0	0
Phvt	0	0
SiProt	1	0

Table 6: Resistor Device Layers

	SPNF	VNPN	Varactor (NMOSCAP)
Nburied	0	1	0
Nwell	1	1	1
Oxide	1	1	1
Oxide_thk	0	0	0
Poly	0	0	1
Nimp	1	1	1
Pimp	1	1	0
Nzvt	0	0	0
Nhvt	0	0	0
Phvt	0	0	0
SiProt	0	0	0

Table 7: Bipolar and Varactor Device Layers

Device Layout Examples

Nburied Nwell Oxide Oxide_thk Poly Nimp Pimp Nzvt Nhvt Phvt 122222 Cont

Salicided N+ Poly Resistor

Non-Salicided N+ Poly Resistor

Salicided P+ Poly Resistor

Non-Salicided P+ Poly Resistor

Salicided N+ Oxide Resistor

Non-Salicided N+ Oxide Resistor

Nwell in STI Resistor

Nwell in OD Resistor

Cadence Confidential revision 6.0

N+/PW Diode

P+/NW Diode

Modried
Nwell
Oxide
Poly
Nimp
Pimp
Nzvt
Nhvt
Phvt
Cont
SiProt

CMOS Digital Core Design Rules

N BURIED LAYER RULES

Data Table: NBL_DRC

RuleName	Description	Value		
NBL.W.1	Minimum Nburied Width	0.8		
NBL.E.1	NBL.E.1 Minimum Nburied to Nwell enclosure			
NBL.SP.1	Minimum Nburied to Nburied spacing	2.0		
NBL.SE.1	Minimum Nburied to non-related Nwell spacing	2.2		
NBL.SE.2	Minimum Nburied to non-related Oxide spacing	1.2		
NBL.SE.3	Minimum Nwell ring (on Nburied) to P+ Active spacing	0.09		
NBL.SE.4	Minimum Nwell ring (on Nburied) to N+ Active spacing	0.09		
NBL.X.1	Nwell must form isolation rings on Nburied			

Cadence Confidential revision 6.0

NWELL AND NWELL RESISTOR (under STI) RULES

Data Table: NWELL_DRC

RuleName	Description	Value
NW.W.1	Minimum Nwell Width	0.3
NW.SP.1	Minimum Nwell spacing to Nwell (same potential)	0.3
NW.SP.2	Minimum Nwell spacing to Nwell (different potential)	0.6
NW.SE.1	Minimum Nwell spacing to N+ Active Area	0.16
NW.SE.2	Minimum Nwell spacing to P+ Active Area	0.16
NW.SE.3	Minimum Nwell spacing to N+ 1.8V Active Area	0.24
NW.SE.4	Minimum Nwell spacing to P+ 1.8V Active Area	0.24
NW.E.1	Minimum Nwell enclosure of N+ Active Area	0.06
NW.E.2	Minimum Nwell enclosure of P+ Active Area	0.06
NW.E.3	Minimum Nwell enclosure of N+ 1.8V Active Area	0.24
NW.E.4	Minimum Nwell enclosure of P+ 1.8V Active Area	0.24
NW.A.1	Minimum Nwell area	0.18
NW.EA.1	Minimum Nwell enclosed area	0.18

Nwell resistor is defined by the intersection of Nwell and ResWdum for DRC and LVS.

For STI Nwell resistors, the ResWdum shape must butt the N+ Oxide on both ends of Nwell the resistor and the ResWdum shape must be coincident or extend beyond the Nwell edges along the...

Cadence Confidential revision 6.0

NWELL AND NWELL RESISTOR (under STI) RULES (continued)

NWELL RESISTOR WITHIN OXIDE RULES

Data Table: NWRES_DRC

RuleName	Description	Value
NWR.E.1	Minimum Active Area to Nwell (in resistor) enclosure	0.6
NWR.E.2	Minimum salicided Nwell to Contact enclosure	0.16
NWR.SE.1	Minimum Resist Protect Oxide to Nwell spacing	0.16
NWR.E.3	Minimum Resist Protect Oxide to Oxide enclosure	0.12
NWR.O.1	Minimum N+ Implant to Resist Protect Oxide overlap	0.22
NWR.X.1	Thich Oxide is NOT allowed over Nwell Resistor	
NWR.SP.1	Minimum Nwell resistor to other Nwell spacing	0.6

Figure 1: NWELL RESISTOR WITHIN OXIDE RULES

Nwell resistor in Oxide is defined by the intersection of Nwell and Resdum for DRC and LVS.

For Nwell resistor within Oxide, the ResWdum shape must butt the Nimp on both ends of the Nwell resistor and the ResWdum shape must be coincident or extend beyond the Nwell edges along the length of the Nwell resistor.

Cadence Confidential revision 6.0

NWELL RESISTOR WITHIN OXIDE RULES (continued)

NWR.E.3 - Covered by SIPROT.E.1.

NWR.SP.1 - Covered by NW.SP.2.

ACTIVE RULES

Data Table: OXIDE_DRC

RuleName	Description	Value
OXIDE.W.1	Minimum Active Area width	0.05
OXIDE.W.2.1.1	Minimum 1.1V N-channel gate width	0.12
OXIDE.W.2.1.2	Minimum 1.8V N-channel gate width	0.32
OXIDE.W.2.2.1	Minimum 1.1V P-channel gate width	0.12
OXIDE.W.2.2.2	Minimum 1.8V P-channel gate width	0.32
OXIDE.W.3	Minimum Active Area bent 45 degress width	0.06
OXIDE.SP.1	Minimum N+ Active Area to N+ Active Area spacing	0.08
OXIDE.SP.2	Minimum P+ Active Area to P+ Active Area spacing	0.08
OXIDE.SP.3	Minimum N+ Active Area to P+ Active Area spacing	0.1
OXIDE.SP.4	Minimum Active Area bent 45 degress to Active Area spacing	0.1
OXIDE.SE.1	Minimum Active Area to Thick Active Area spacing	0.18
OXIDE.A.1	Minimum area for Active Area	0.035
OXIDE.EA.1	Minimum Active Area enclosed area	0.04
OXIDE.L.1	Maximum Oxide length between two contacts when Oxide width is <= 0.18um	12.0
OXIDE.L.2	Maximum Oxide length between one contact and the end of the Oxide line when Oxide width is <= 0.18um	6.0
OXIDE.X.1	Oxide must be covered by N+ Implant or Nzvt or Salicide Block	
OXIDE.D.1	Full chip maximum Oxide density	> 25% <75%
OXIDE.D.2	Local Oxide density 300x300 window stepped at 150	> 25% <75%

ACTIVE RULES (continued)

switch CHECK_DENSITY

Density

ratio > 0.30 < 0.80 id: OXIDE.D.1 Oxide

message: Oxide full chip density must be > 30% < 80%

Density

ratio > 0.25 < .75 windowSize: 300.0 stepSize: 150.0 id: OXIDE.D.2 Oxide

message: Oxide local (300x300) density must be > 25% < 75%

ACTIVE RESISTOR RULES (salicided/non-salicided)

Data Table: OXIDER_DRC

RuleName	Description	Value
OXIDER.W.1.1	Minimum Active Resistor width	0.1
OXIDER.W.1.2	Minimum suggested Active Resistor width	0.8
OXIDER.L.1	Minimum suggested Active Resistor length	4.0
OXIDER.SE.1	Minimum Salicide Block to Contact spacing	0.12
OXIDER.E.1	Minimum Salicide Block to Active Resistor enclosure	0.12
OXIDER.SE.2	Minimum Active Resistor to N+ or P+ Implant spacing	0.16
OXIDER.X.1	Active resistors must have N+ or P+ Implant	

Active resistor is defined by the intersection of Oxide and Resdum for DRC and LVS.

For salicided Oxide resistors, the Resdum shape must butt the contacts on both ends of Oxide the resistor and the Resdum shape must be coincident or extend beyond the Oxide edges along the length of the Oxide resistor.

For non-salicided Oxide resistors, the Resdum shape must be coincident with the edges of the Siprot that crosses the width of the Oxide resistor and the Resdum shape must be coincident or extend beyond the Oxide edges along the length of the Oxide resistor.

switch !SUGGESTED_CHECK

switch SUGGESTED_CHECK

switch SUGGESTED_CHECK

OXIDER.SE.1 is checked by SIPROT.SE.1

ACTIVE RESISTOR RULES (continued)

THICK ACTIVE (1.8V) RULES

Data Table: OXIDETHK DRC

RuleName	Description	Value
OXIDETHK.W.1	Minimum Thick Active Area width	0.35
OXIDETHK.SP.1	Minimum Thick Active Area to Thick Active Area spacing	0.16
OXIDETHK.SP.2	Minimum Thick Active Area bent 45 degrees to Thick Active Area spacing	0.32
OXIDETHK.SE.1	Minimum N+ 1.8V Active Area to 1.8V N+ Active Area spacing	0.1
OXIDETHK.SE.2	Minimum P+ 1.8V Active Area to 1.8V P+ Active Area spacing	0.1
OXIDETHK.SE.3	Minimum N+ 1.8V Active Area to 1.8V P+ Active Area spacing	0.12
OXIDETHK.SE.4	Minimum Thick Active Area to Active Area spacing	0.18
OXIDETHK.E.1	Minimum Thick Active Area to Active Area enclosure	0.16
OXIDETHK.SE.5	Minimum Thick Active Area to 1.2V Poly gate spacing	0.18
OXIDETHK.E.2	Minimum Thick Active Area to Thick Poly gate enclosure	0.18

Note 1: 1.8V MOS must be defined by Active which is fully enclosed by Thick Active (with 0.0 overlap).

Note 2: 1.2V MOS is only defined by Active without any Thick Active.

OXIDETHK.SE.4 - Covered by OXIDE.SE.1.

Cadence Confidential revision 6.0

Thick ACTIVE RULES (continued)

N+ HIGH VT RULES

Data Table: NHVT

RuleName	Description	Value
NHVT.W.1	Minimum Nhvt width	0.12
NHVT.SP.1	Minimum Nhvt spacing	0.12
NHVT.X.1	Nhvt exactly matches the Oxide it is on (0.0 enclosure on all sides).	-
NHVT.X.2	Nhvt is NOT allowed on Nwell.	-
NHVT.X.3	Nhvt is NOT allowed on P+ Active.	-
NHVT.X.4	Nhvt is NOT allowed on Nzvt.	-

Note 1: Nhvt defines the 1.2V LP NMOS device.

P+ HIGH VT RULES

Data Table: PHVT

RuleName	Description	Value
PHVT.W.1	Minimum Phvt width	0.12
PHVT.SP.1	Minimum Phvt spacing	0.12
PHVT.X.1	Phyt exactly matches the Oxide it is on (0.0 enclosure on all sides).	-
PHVT.X.2	Phvt is NOT allowed outside Nwell.	-
PHVT.X.3	Phvt is NOT allowed on N+ Active.	-
PHVT.X.4	Phyt is NOT allowed on Nzvt.	-

Note 1: Phyt defines the 1.2V LP PMOS device.

N+ LOW VT RULES

Data Table: NLVT

RuleName	Description	Value
NLVT.W.1	Minimum NIvt width	0.12
NLVT.SP.1	Minimum NIvt spacing	0.12
NLVT.X.1	Nivt exactly matches the Oxide it is on (0.0 enclosure on all sides).	-
NLVT.X.2	NIvt is NOT allowed on Nwell.	-
NLVT.X.3	NIvt is NOT allowed on P+ Active.	-
NLVT.X.4	NIvt is NOT allowed on Nzvt.	-

Note 1: NIvt defines the 1.2V LP NMOS device.

P+ LOW VT RULES

Data Table: PLVT

RuleName	Description	Value
PLVT.W.1	Minimum Plvt width	0.12
PLVT.SP.1	Minimum Plvt spacing	0.12
PLVT.X.1	Plvt exactly matches the Oxide it is on (0.0 enclosure on all sides).	-
PLVT.X.2	Plvt is NOT allowed outside Nwell.	-
PLVT.X.3	Plvt is NOT allowed on N+ Active.	-
PLVT.X.4	Plvt is NOT allowed on Nzvt.	-

Note 1: Plvt defines the 1.2V LP PMOS device.

NATIVE NMOS ACTIVE RULES

Data Table: NZVT_DRC

RuleName	Description	Value
NZVT.W.1	Minimum Nzvt width	0.35
NZVT.SP.1	Minimum Nzvt to Nzvt spacing	0.3
NZVT.O.1	Minimum and maximum Nzvt to Active Area overlap	0.16
NZVT.SE.1	Minimum Nzvt to Active spacing	0.18
NZVT.SE.2	Minimum Nzvt to Nwell spacing	0.6
NZVT.E.1	Minimum N+ Poly gate end cap to Native Active Area enclosure	0.1
NZVT.E.1.DFM	Minimum N+ Poly gate end cap to Native Active Area enclosure for DFM	0.12
NZVT.L.1	Minimum Native device Poly gate length	0.30
NZVT.W.2	Minimum Native device Poly gate width	0.50
NZVT.X.1	Nzvt is NOT allowed on Nwell	
NZVT.X.2	Bent Poly gates are NOT allowed on Nzvt	
NZVT.X.3	P+ Active Area is NOT allowed on Nzvt	
NZVT.X.4	Only one Active Area is allowed in an Nzvt region	

Note 1: Native NMOS is defined by Active which is full enclosed by Nzvt with 0.3um enclosure.

Cadence Confidential

POLY RULES

Data Table: POLY_DRC

RuleName	Description	Value
POLY.W.1	Minimum 1.1V N-channel gate length	0.045
POLY.W.2	Minimum 1.1V P-channel gate length	0.045
POLY.W.3	Minimum 1.8V N-channel gate length	0.15
POLY.W.4	Minimum 1.8V P-channel gate length	0.15
POLY.W.5	Minimum Poly interconnect width	0.045
POLY.SP.1	Minimum Poly resistor space	0.3
POLY.SP.2	Minimum Poly gate space	0.06
POLY.SP.2.DFM	Minimum Poly gate space for DFM	0.08
POLY.SP.3	Minimum Poly interconnect space	0.06
POLY.SP.4	Minimum gate space in thick active	0.20
POLY.LN.1	Maximum length of Poly (for width >= 0.16) between two Poly contacts or Poly line end to Poly contact	20.0
POLY.E.1	Minimum N-channel gate extension beyond Active Area	0.1
POLY.E.2	Minimum P-channel gate extension beyond Active Area	0.1
POLY.E.1.DFM	Minimum N-channel gate extension beyond Active Area for DFM	0.12
POLY.E.2.DFM	Minimum P-channel gate extension beyond Active Area for DFM	0.12
POLY.SE.1	Minimum Poly interconnect to unrelated Active Area space	0.05
POLY.SE.2	Minimum Poly interconnect to related Active Area space	0.05
POLY.E.3	Minimum Active Area (source/drain) to gate enclosure	0.1
POLY.W.6	Minimum bent Poly width	0.1
POLY.SP.5	Minimum bent Poly space	0.1
POLY.X.1	Bent gate in not allowed	
POLY.X.2	Bent Poly resistor is not allowed	
POLY.D.1	Maximum Poly density across full chip	50%
POLY.SE.3	Maximum Poly segment length (width < 0.14) between two contacts	12.0
POLY.A.1	Minimum area for Poly interconnect	0.02
POLY.EA.1	Minimum enclosed area for Poly interconnect	0.05

POLY RULES (continued)

assuraDRC Native Code

```
inpo2 = geomAndNot(Poly Oxide)
pol2\_longp1 = drc(inpo2 area > 0.08*20.0)
pol2_longp = geomOr(pol2_longp1 gate)
copo = geomAnd(Cont Poly)
pol21_x = geomButtOrOver( pol2_longp copo )
pol22_check_copo = geomButtOrOver( copo pol21_x )
pol23_a = geomSizeAnd( pol22_check_copo pol21_x 0.11* 0.8 20.0/2 )
pol24_linen = geomButtOrOver( pol21_x pol23_a keep == 1 )
pol25_p2p = geomButtOrOver( pol21_x pol23_a keep > 1 )
pol26_b = geomButtOrOver( pol23_a pol24_linen )
pol27_c = geomSizeAnd( pol26_b pol24_linen 0.11* 0.8 20.0/2 )
linen_not1 = geomAndNot(pol24_linen pol27_c)
p2p_not1 = geomAndNot(pol25_p2p pol23_a)
pol28_bad = geomOr(linen_not1 p2p_not1)
pol29_bad_edge = geomGetEdge(pol28_bad coincident Poly)
pol210_err = drc( pol29_bad_edge width <= 0.16 )
errorLayer( geomButtOrOver( pol21_x pol210_err )
    "POLY.LN.1 Maximum Poly length [Poly width is <= 0.16 um] between two contacts as well...
```

Cadence Confidential revision 6.0

POLY RULES (continued)

switch CHECK_DENSITY

POLY RESISTOR RULES (salicided/non-salicided)

Data Table: POLYR DRC

RuleName	Description Va		
POLYR.W.1.1	Minimum Poly resistor width	0.1	
POLYR.W.1.2	Minimum suggested Poly resistor width	0.8	
POLYR.L.1	Minimum suggested Poly resistor length	4.0	
POLYR.SE.1	Minimum Salicide Block to Contact spacing 0.12		
POLYR.E.1	OLYR.E.1 Minimum Salicide Block to Poly resistor enclosure 0.14		
POLYR.E.2 Minimum N+ Implant to Poly used in resistor enclosure 0.07		0.07	
POLYR.E.3	DLYR.E.3 Minimum P+ Implant to Poly used in resistor enclosure 0.07		
POLYR.SE.2	DLYR.SE.2 Minimum Poly resistor to other Implant spacing 0.15		
POLYR.X.1	Poly resistors must have N+ or P+ Implant		

Poly resistor is defined by the intersection of Poly and Resdum for DRC and LVS.

For salicided Poly resistors, the Resdum shape must butt the contacts on both ends of Poly the resistor and the Resdum shape must be coincident or extend beyond the Poly edges along the length of the Poly resistor.

For non-salicided Poly resistors, the Resdum shape must be coincident with the edges of the Siprot that crosses the width of the Poly resistor and the Resdum shape must be coincident or extend beyond the Poly edges along the length of the Poly resistor.

switch !SUGGESTED_CHECK

switch SUGGESTED_CHECK

switch SUGGESTED_CHECK

POLYR.SE.1 is checked by SIPROT.SE.1

Cadence Confidential revision 6.0

POLY RESISTOR RULES (continued)

N+ IMPLANT RULES

Data Table: NIMP_DRC

RuleName	Description	Value	
NIMP.W.1	Minimum N+ Implant width	0.12	
NIMP.SP.1	Minimum N+ Implant space	0.12	
NIMP.E.1	Minimum N+ Implant to Active Area enclosure	0.07	
NIMP.O.1	Minimum N+ Implant to Active Area overlap	0.08	
NIMP.SE.1	Minimum N+ Implant to P+ Active Area (inside Nwell) spacing	0.08	
NIMP.E.2	Minimum N+ Implant to Active Area (Nwell tie) enclosure 0.01		
NIMP.E.3	Minimum N+ Implant to gate side enclosure 0.1		
NIMP.SE.2	Minimum N+ Implant to P+ Active Area (substrate tie) spacing 0.02		
NIMP.E.4	Minimum N+ Implant to gate (endcap) enclosure 0.1		
NIMP.SE.3	Minimum N+ Implant to P+ gate side (butted Implant) spacing 0.1		
NIMP.A.1	Minimum area for N+ Implant 0.018		
NIMP.EA.1	Minimum N+ Implant ring enclosed area 0.04		
NIMP.X.1	N+ Implant is NOT allowed over P+ Implant		

N+ IMPLANT RULES (continued)

P+ IMPLANT RULES

Data Table: PIMP_DRC

RuleName	Description	Value		
PIMP.W.1	Minimum P+ Implant width	0.12		
PIMP.SP.1	Minimum P+ Implant space	0.12		
PIMP.E.1	Minimum P+ Implant to Active Area enclosure	0.07		
PIMP.O.1	Minimum P+ Implant to Active Area overlap	0.08		
PIMP.SE.1	Minimum P+ Implant to N+ Active Area (outside Nwell) spacing	0.08		
PIMP.E.2	Minimum P+ Implant to Active Area (substrate tie) enclosure 0.01			
PIMP.E.3	Minimum P+ Implant to gate side enclosure 0.1			
PIMP.SE.2	Minimum P+ Implant to N+ Active Area (Nwell tie) spacing 0.02			
PIMP.E.4	Minimum P+ Implant to gate (endcap) enclosure 0.1			
PIMP.SE.3	Minimum P+ Implant to N+ gate side (butted Implant) spacing 0.1			
PIMP.A.1	Minimum area for P+ Implant 0.018			
PIMP.EA.1	Minimum P+ Implant ring enclosed area 0.04			
PIMP.X.1	P+ Implant is NOT allowed over N+ Implant			

P+ IMPLANT RULES (continued)

PIMP.X.1 - Covered by NIMP.X.1.

CONTACT RULES

Data Table: CONT_DRC

RuleName	e Description			
CONT.W.1	Maximum and minimum Contact width/length	0.06		
CONT.SP.1	Minimum Contact to Contact spacing	0.06		
CONT.SP.2	Space to three adjacent Contacts (< 0.10um apart)	0.08		
CONT.SE.1	Minimum Contact on Active Area to gate spacing	0.05		
CONT.SE.2	Minimum Contact on 1.8V Active Area to gate spacing	0.06		
CONT.SE.3	Minimum gate Contact on Active Area spacing	0.06		
CONT.SE.4	Minimum 1.8V gate Contact on Active Area spacing	0.07		
CONT.SE.1.DFM	1.DFM Minimum Contact on Active Area to gate spacing for DFM 0.07			
CONT.SE.2.DFM	2.2.DFM Minimum Contact on 1.8V Active Area to gate spacing for DFM 0.08			
CONT.SE.3.DFM	SE.3.DFM Minimum gate Contact on Active Area spacing for DFM			
CONT.SE.4.DFM Minimum 1.8V gate Contact on Active Area spacing for DFM		0.09		
CONT.E.1	CONT.E.1 Minimum Active Area to Contact enclosure 0.03			
CONT.E.2	Minimum Poly to Contact enclosure	0.02		
CONT.E.3	NT.E.3 Minimum Poly to Contact enclosure on at least two opposite sides 0.03			
CONT.E.4	CONT.E.4 Minimum N+/P+ Implant on Active Area to Contact enclosure			
CONT.X.1	Contact on gate is NOT allowed			
CONT.X.2	Active Area Contact on N+/P+ Implant edge is NOT allowed			
CONT.X.3	CONT.X.3 Contact must be covered by Metal1 and Active Area or Poly			

CONTACT RULES (continued)

switch CHECK_DFM

CONTACT RULES (continued)

CONTACT RULES (continued)

SALICIDE BLOCKING RULES

Data Table: SIPROT_DRC

RuleName	Description	Value
SIPROT.W.1	Minimum Salicide Block width	0.22
SIPROT.SP.1	Minimum Salicide Block space	0.22
SIPROT.SE.1	Minimum Salicide Block to Contact spacing	0.12
SIPROT.SE.2	Minimum Salicide Block to unrelated Active Area spacing	0.12
SIPROT.SE.3	Minimum Salicide Block to gate spacing 0.22	
SIPROT.E.1	Minimum Salicide Block to Active Area enclosure 0.12	
SIPROT.E.2	Minimum Active Area to Salicide Block enclosure 0.12	
SIPROT.E.3	Minimum Salicide Block to Poly (on field) enclosure	0.14
SIPROT.A.1	Minimum Salicide Block area 0.6	
SIPROT.EA.1	Minimum Salicide Block enclosed area 0.6	
SIPROT.SE.4	Minimum Salicide Block to Poly (on field) spacing	0.18

METAL 1 RULES

Data Table: METAL1 DRC

RuleName	Description	Value		
METAL1.W.1	Minimum Metal 1 width	0.06		
METAL1.W.2	Maximum Metal 1 width	6.0		
METAL1.SP.1.1	Minimum Metal 1 to Metal 1 spacing	0.06		
METAL1.SP.1.2	Minimum Metal 1 to Metal 1 spacing if one metal width > 0.1 and parallel length > 0.32	0.1		
METAL1.SP.1.3	Minimum Metal 1 to Metal 1 spacing if one metal width > 0.75 and parallel length > 0.75	0.25		
METAL1.SP.1.4	Minimum Metal 1 to Metal 1 spacing if one metal width > 1.5 and parallel length > 1.5	0.45		
METAL1.SP.1.5	Minimum Metal 1 to Metal 1 spacing if one metal width > 2.5 and parallel length > 2.5	0.75		
METAL1.SP.1.6	Minimum Metal 1 to Metal 1 spacing if one metal width > 3.5 and parallel length > 3.5			
METAL1.E.1	Minimum Metal 1 to Contact enclosure	0.00		
METAL1.E.2	Minimum Metal 1 to Contact enclosure on two opposite sides of the Contact			
METAL1.L.1	Minimum bent Metal 1 (45 degree angle) length	0.1		
METAL1.SP.2	Minimum bent Metal 1 (45 degree angle) space	0.08		
METAL1.SP.3 Space at Metal1 line-end (W < 0.09, Q = 0.1) (dense-line-end) If Metal1 has parallel run length with opposite Metal1 (measured with T=0.025 extension) along 2 adjacent edges of Metal1 [any one edge <q (check="" (s1="" 0.06u)<="" <="" be="" corner="" distance="" does="" edge="" edges],="" from="" include="" jog="" must="" not="" of="" one="" or="" s2)="" space="" td="" the="" then="" two="" with=""><td>0.08</td></q>		0.08		
METAL1.W.3	Minimum bent Metal 1 (45 degree angle) width	0.07		
METAL1.A.1	Minimum Metal 1 area	0.02		
METAL1.EA.1	TAL1.EA.1 Minimum Metal 1 enclosed area			
METAL1.D.1	L1.D.1 Metal 1 Density range over any 120um x 120um area (checked by stepping in 60um increments)			
METAL1.D.2	METAL1.D.2 Maximum Metal 1 Density over any 600um x 600um area (checked by stepping in 300um increments)			

METAL k (k = 2, 3, 4, 5, 6, 7, 8, 9) RULES Comment Table METAL k (k = 2, 3, 4, 5, 6, 7, 8, 9) RULES

		K (K = 2, 3, 4, 5, 6, 7, 8, 9) RULES		
Rule		Description		
Name	(um)			
METALk.W.1	0.08	Minimum Metal k width.		
METALk.W.2	6.0	Maximum Metal k width.		
METALk.SP.1.1	0.07	Minimum Metal k to Metal k spacing.		
		Minimum Metal k to Metal k spacing if:		
METALk.SP.1.2	0.15	one Metal k width > 0.10 and parallel length > 0.32		
METALk.SP.1.3	0.25	one Metal k width > 0.75 and parallel length > 0.75		
METALk.SP.1.4	0.45	one Metal k width > 1.5 and parallel length > 1.5		
METALk.SP.1.5	0.75	one Metal k width > 2.5 and parallel length > 2.5.		
METALk.SP.1.6	1.25	one Metal k width > 3.5 and parallel length > 3.5.		
METALk.E.1	0.005	Minimum Metal k enclosure of Via k-1.		
METALk.E.2	0.03	Minimum Metal k enclosure of Via k-1on at least two opposite sides.		
METALk.L.1	0.1	Minimum bent Metal k (45 degree angle) length.		
METALk.SP.2	0.1	Minimum bent Metal k (45 degree angle) space.		
METALk.SP.3	0.08	Space at Metalk line-end (W < 0.1, Q = 0.1) (dense-line-end)		
		f Metalk has parallel run length with opposite Metalk		
		(measured with T=0.035 extension) along 2 adjacent edges of Metalk		
		[any one edge <q corner="" distance="" edges],="" from="" of="" one<="" td="" the="" then="" two=""></q>		
		of the space (S1 or S2) must be (k=2-9)		
		(check does not include jog with edge < 0.07u)		
METALk.W.3	0.09	Minimum bent Metal k (45 degree angle) width.		
METALk.A.1	0.02	Minimum Metal k area.		
METALk.EA.1	0.055	Minimum Metal k enclosed area.		
METALk.D.1	> 20%	Metal k Density range over any 120um x 120um area (checked by stepping		
	< 65%	in 60um increments).		
METALk.D.2	< 60%	Maximum Metal k density over any 600um x 600um area (checked by		
		stepping in 300um increments).		

METAL k (k = 10, 11) **RULES**

Comment Table METAL k (k = 10, 11) RULES

		Description		
Rule		Description		
Name	(um)			
METALk.W.1	0.22	Minimum Metal k width.		
METALk.W.2	6.0	Maximum Metal k width.		
METALk.SP.1.1	0.20	Minimum Metal k to Metal k spacing.		
		Minimum Metal k to Metal k spacing if:		
METALk.SP.1.2	0.35	one Metal k width > 0.75 and parallel length > 0.75		
METALk.SP.1.3	0.45	one Metal k width > 1.50 and parallel length > 1.50		
METALk.SP.1.4	0.75	one Metal k width > 2.50 and parallel length > 2.50.		
METALk.SP.1.5	1.25	one Metal k width > 3.5 and parallel length > 3.5.		
METALk.E.1	0.03	Minimum Metal k overlap of Via k-1.		
METALk.E.2	0.05	Minimum Metal k overlap of Via k-1 on at least two opposite sides.		
METALk.A.1	0.10	Minimum Metal k area.		
METALk.EA.1	0.11	Minimum Metal k enclosed area.		
METALk.D.1	> 20%	Metal k Density range over any 120um x 120um area (checked by stepping		
	< 65%	in 60um increments).		
METALk.D.2	< 60%	Maximum Metal k density over any 600um x 600um area (checked by		
		stepping in 300um increments).		

macro

Macro Table					
\$layer1	\$layer2	\$id1	\$id2		
metal2_conn	Via1	METAL2.E.1	METAL2.E.2		
metal3_conn	Via2	METAL3.E.1	METAL3.E.2		
metal4_conn	Via3	METAL4.E.1	METAL4.E.2		
metal5_conn	Via4	METAL5.E.1	METAL5.E.2		
metal6_conn	Via5	METAL6.E.1	METAL6.E.2		
metal7_conn	Via6	METAL7.E.1	METAL7.E.2		
metal8_conn	Via7	METAL8.E.1	METAL8.E.2		
metal9_conn	Via8	METAL9.E.1	METAL9.E.2		
	\$layer1 metal2_conn metal3_conn metal4_conn metal5_conn metal6_conn metal7_conn metal8_conn	\$layer1 \$layer2 metal2_conn Via1 metal3_conn Via2 metal4_conn Via3 metal5_conn Via4 metal6_conn Via5 metal7_conn Via6 metal8_conn Via7	\$layer1 \$layer2 \$id1 metal2_conn Via1 METAL2.E.1 metal3_conn Via2 METAL3.E.1 metal4_conn Via3 METAL4.E.1 metal5_conn Via4 METAL5.E.1 metal6_conn Via5 METAL6.E.1 metal7_conn Via6 METAL7.E.1 metal8_conn Via7 METAL8.E.1		

macro

\$layer1

macro

Macro Table					
\$layer1	\$name1	\$id1	\$value1		
metal1_conn	Metal1	METAL1.W.1	0.06		
metal2_conn	Metal2	METAL2.W.1	0.08		
metal3_conn	Metal3	METAL3.W.1	0.08		
metal4_conn	Metal4	METAL4.W.1	0.08		
metal5_conn	Metal5	METAL5.W.1	0.08		
metal6_conn	Metal6	METAL6.W.1	0.08		
metal7_conn	Metal7	METAL7.W.1	0.08		
metal8_conn	Metal8	METAL8.W.1	0.08		
metal9_conn	Metal9	METAL9.W.1	0.08		
Metal10	Metal10	METAL10.W.1	0.22		
Metal11	Metal11	METAL11.W.1	0.22		

macro

Macro Table

\$layer1	\$layer2	\$layer3	\$name1	\$id1	\$value1
metal1_conn	cont_array_zone	via1_array_zone	Metal1	METAL1.W.2	6.0
metal2_conn	via1_array_zone	via2_array_zone	Metal2	METAL2.W.2	6.0
metal3_conn	via2_array_zone	via3_array_zone	Metal3	METAL3.W.2	6.0
metal4_conn	via3_array_zone	via4_array_zone	Metal4	METAL4.W.2	6.0
metal5_conn	via4_array_zone	via5_array_zone	Metal5	METAL5.W.2	6.0
metal6_conn	via5_array_zone	via6_array_zone	Metal6	METAL6.W.2	6.0
metal7_conn	via6_array_zone	via7_array_zone	Metal7	METAL7.W.2	6.0
metal8_conn	via7_array_zone	via8_array_zone	Metal8	METAL8.W.2	6.0

macro

Macro Table					
\$layer1	\$name1	\$id1	\$value1		
Metal10	Metal10	METAL10.W.2	6.0		
Metal11	Metal11	METAL11.W.2	6.0		

macro

Macro Table			
\$layer1	\$id1	\$value1	
Metal1	METAL1.SP.1.1	0.06	
Metal2	METAL2.SP.1.1	0.07	
Metal3	METAL3.SP.1.1	0.07	
Metal4	METAL4.SP.1.1	0.07	
Metal5	METAL5.SP.1.1	0.07	
Metal6	METAL6.SP.1.1	0.07	
Metal7	METAL7.SP.1.1	0.07	
Metal8	METAL8.SP.1.1	0.07	
Metal9	METAL9.SP.1.1	0.07	
Metal10	METAL10.SP.1.1	0.20	
Metal11	METAL11.SP.1.1	0.20	

macro

Macro Table

\$layer1	\$id1	\$value1	\$value2	\$value3
Metal1	METAL1.SP.1.2	0.1	0.1	0.32
Metal2	METAL2.SP.1.2	0.15	0.1	0.32
Metal3	METAL3.SP.1.2	0.15	0.1	0.32
Metal4	METAL4.SP.1.2	0.15	0.1	0.32
Metal5	METAL5.SP.1.2	0.15	0.1	0.32
Metal6	METAL6.SP.1.2	0.15	0.1	0.32
Metal7	METAL7.SP.1.2	0.15	0.1	0.32
Metal8	METAL8.SP.1.2	0.15	0.1	0.32
Metal9	METAL9.SP.1.2	0.15	0.1	0.32

macro

Macro Ta	Macro Table			
\$layer1	\$id1	\$value1	\$value2	\$value3
Metal1	METAL1.SP.1.3	0.25	0.75	0.75
Metal2	METAL2.SP.1.3	0.25	0.75	0.75
Metal3	METAL3.SP.1.3	0.25	0.75	0.75
Metal4	METAL4.SP.1.3	0.25	0.75	0.75
Metal5	METAL5.SP.1.3	0.25	0.75	0.75
Metal6	METAL6.SP.1.3	0.25	0.75	0.75
Metal7	METAL7.SP.1.3	0.25	0.75	0.75
Metal8	METAL8.SP.1.3	0.25	0.75	0.75
Metal9	METAL9.SP.1.3	0.25	0.75	0.75
Metal10	METAL10.SP.1.2	0.35	0.75	0.75
Metal11	METAL11.SP.1.2	0.35	0.75	0.75

macro

Macro Table				
\$layer1	\$id1	\$value1	\$value2	\$value3
Metal1	METAL1.SP.1.4	0.45	1.5	1.5
Metal2	METAL2.SP.1.4	0.45	1.5	1.5
Metal3	METAL3.SP.1.4	0.45	1.5	1.5
Metal4	METAL4.SP.1.4	0.45	1.5	1.5
Metal5	METAL5.SP.1.4	0.45	1.5	1.5
Metal6	METAL6.SP.1.4	0.45	1.5	1.5
Metal7	METAL7.SP.1.4	0.45	1.5	1.5
Metal8	METAL8.SP.1.4	0.45	1.5	1.5
Metal9	METAL9.SP.1.4	0.45	1.5	1.5
Metal10	METAL10.SP.1.3	0.45	1.5	1.5
Metal11	METAL11.SP.1.3	0.45	1.5	1.5

macro

Macro Table				
\$layer1	\$id1	\$value1	\$value2	\$value3
Metal1	METAL1.SP.1.5	0.75	2.5	2.5
Metal2	METAL2.SP.1.5	0.75	2.5	2.5
Metal3	METAL3.SP.1.5	0.75	2.5	2.5
Metal4	METAL4.SP.1.5	0.75	2.5	2.5
Metal5	METAL5.SP.1.5	0.75	2.5	2.5
Metal6	METAL6.SP.1.5	0.75	2.5	2.5
Metal7	METAL7.SP.1.5	0.75	2.5	2.5
Metal8	METAL8.SP.1.5	0.75	2.5	2.5
Metal9	METAL9.SP.1.5	0.75	2.5	2.5
Metal10	METAL10.SP.1.4	0.75	2.5	2.5
Metal11	METAL11.SP.1.4	0.75	2.5	2.5

macro

Macro Ta	Macro Table				
\$layer1	\$id1	\$value1	\$value2	\$value3	
Metal1	METAL1.SP.1.6	1.25	3.5	3.5	
Metal2	METAL2.SP.1.6	1.25	3.5	3.5	
Metal3	METAL3.SP.1.6	1.25	3.5	3.5	
Metal4	METAL4.SP.1.6	1.25	3.5	3.5	
Metal5	METAL5.SP.1.6	1.25	3.5	3.5	
Metal6	METAL6.SP.1.6	1.25	3.5	3.5	
Metal7	METAL7.SP.1.6	1.25	3.5	3.5	
Metal8	METAL8.SP.1.6	1.25	3.5	3.5	
Metal9	METAL9.SP.1.6	1.25	3.5	3.5	
Metal10	METAL10.SP.1.5	1.25	3.5	3.5	
Metal11	METAL11.SP.1.5	1.25	3.5	3.5	

macro

Macro Table			
\$layer1	\$id1	\$value1	
Metal1	METAL1.L.1	0.1	
Metal2	METAL2.L.1	0.1	
Metal3	METAL3.L.1	0.1	
Metal4	METAL4.L.1	0.1	
Metal5	METAL5.L.1	0.1	
Metal6	METAL6.L.1	0.1	
Metal7	METAL7.L.1	0.1	
Metal8	METAL8.L.1	0.1	
Metal9	METAL9.L.1	0.1	

macro

Macro Table				
\$layer1	\$id1	\$value1	\$id2	\$value2
Metal1	METAL1.SP.2	0.1	METAL1.W.3	0.07
Metal2	METAL2.SP.2	0.1	METAL2.W.3	0.09
Metal3	METAL3.SP.2	0.1	METAL3.W.3	0.09
Metal4	METAL4.SP.2	0.1	METAL4.W.3	0.09
Metal5	METAL5.SP.2	0.1	METAL5.W.3	0.09
Metal6	METAL6.SP.2	0.1	METAL6.W.3	0.09
Metal7	METAL7.SP.2	0.1	METAL7.W.3	0.09
Metal8	METAL8.SP.2	0.1	METAL8.W.3	0.09
Metal9	METAL9.SP.2	0.1	METAL9.W.3	0.09

METAL1.SP.3

assuraDRC Native Code

metx1_a=drcDenseLineEnd(Metal1 sep < 0.08 endLength(0.06 0.09) legLength(.10) endExt(.025) legExt(0.025))

errorLayer(metx1_a "METAL1.SP.3: Min End of Line Spacing >= 0.08")

METALk.SP.3 k=2-9

assuraDRC Native Code

```
metx2_a=drcDenseLineEnd(Metal2 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035)) errorLayer(metx2_a "METAL2.SP.3: Min End of Line Spacing >= 0.08")

metx3_a=drcDenseLineEnd(Metal3 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035)) errorLayer(metx3_a "METAL3.SP.3: Min End of Line Spacing >= 0.08")

metx4_a=drcDenseLineEnd(Metal4 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))
```

errorLayer(metx4_a "METAL4.SP.3: Min End of Line Spacing >= 0.08")

metx5_a=drcDenseLineEnd(Metal5 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))

errorLayer(metx5_a "METAL5.SP.3: Min End of Line Spacing >= 0.08")

metx6_a=drcDenseLineEnd(Metal6 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))

errorLayer(metx6_a "METAL6.SP.3: Min End of Line Spacing >= 0.08")

metx7_a=drcDenseLineEnd(Metal7 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))

errorLayer(metx7_a "METAL7.SP.3: Min End of Line Spacing >= 0.08")

metx8_a=drcDenseLineEnd(Metal8 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))

errorLayer(metx8 a "METAL8.SP.3: Min End of Line Spacing >= 0.08")

metx9_a=drcDenseLineEnd(Metal9 sep < 0.08 endLength(0.07 0.1) legLength(0.1) endExt(0.035) legExt(0.035))

errorLayer(metx9_a "METAL9.SP.3: Min End of Line Spacing >= 0.08")

METAL1.SP.3

```
pvsDRC Native Code
rule METAL1.SP.3 {
caption METAL1.SP.3: Min End Of Line Spacing >= 0.08;
convex_edge Metal1 -angle1 -eq 90 -angle2 -eq 90 -with_length -lt 0.09 met1_lw;
exte met1 lw Metal1 -lt 0.08 -abut -lt 90 -metric opposite extended 0.025 met1 sp;
edge select -inside met1 lw met1 sp met1Edge1;
inte met1Edge1 Metal1 -lt 0.1 -abut -eq 90 -intersecting only met1_q1;
edge_length met1_q1 -ge 0.06 met1_q2;
edge_expand met1_q2 -inside_by 0.001 -extend_by 0.025 met1exp1;
edge_expand met1_q2 -inside_by 0.001 met1exp2;
not met1exp1 met1exp2 met1Exp;
select -with edge met1Exp met1 lw met1 lwEdg;
or met1_lwEdg met1exp2 met1_allEdg;
edge_select met1_allEdg met1_q2 met1_extEdg;
edge select -not met1 extEdg met1 sp met1 last
exte met1_last Metal1 -lt 0.08 -abut -lt 90 -metric opposite -output region;
```

METALk.SP.3 k=2-9

pvsDRC Native Code

```
rule METAL2.SP.3 {
caption METAL2.SP.3: Min End Of Line Spacing >= 0.08;
convex_edge Metal2 -angle1 -eq 90 -angle2 -eq 90 -with_length -lt 0.1 met2_lw;
exte met2_lw Metal2 -lt 0.08 -abut -lt 90 -metric opposite_extended 0.035 met2_sp;
edge_select -inside met2_lw met2_sp met2Edge1;
inte met2Edge1 Metal2 -lt 0.1 -abut -eq 90 -intersecting only met2_q1;
edge_length met2_q1 -ge 0.07 met2_q2;
edge_expand met2_q2 -inside_by 0.001 -extend_by 0.035 met2exp1;
edge expand met2 q2 -inside by 0.001 met2exp2;
not met2exp1 met2exp2 met2Exp;
select -with_edge met2Exp met2_lw met2_lwEdg;
or met2 lwEdg met2exp2 met2 allEdg;
edge select met2 allEdg met2 g2 met2 extEdg;
edge_select -not met2_extEdg met2_sp met2_last
exte met2 last Metal2 -lt 0.08 -abut -lt 90 -metric opposite -output region;
rule METAL3.SP.3 {
caption METAL3.SP.3: Min End Of Line Spacing >= 0.08;
convex_edge Metal3 -angle1 -eq 90 -angle2 -eq 90 -with_length -lt 0.1 met3_lw;
exte met3_lw Metal3 -lt 0.08 -abut -lt 90 -metric opposite_extended 0.035 met3_sp;
edge_select -inside met3_lw met3_sp met3Edge1;
inte met3Edge1 Metal3 -lt 0.1 -abut -eq 90 -intersecting only met3_q1;
edge_length met3_q1 -ge 0.07 met3_q2;
edge expand met3 q2 -inside by 0.001 -extend by 0.035 met3exp1;
edge_expand met3_q2 -inside_by 0.001 met3exp2;
not met3exp1 met3exp2 met3Exp;
select -with edge met3Exp met3 lw met3 lwEdg;
or met3_lwEdg met3exp2 met3_allEdg;
edge_select met3_allEdg met3_q2 met3_extEdg;
edge_select -not met3_extEdg met3_sp met3_last
exte met3_last Metal3 -lt 0.08 -abut -lt 90 -metric opposite -output region ;...
```

Cadence Confidential revision 6.0

macro

Macro Table			
\$layer1	\$id1	\$value1	
Metal1	METAL1.A.1	0.02	
Metal2	METAL2.A.1	0.02	
Metal3	METAL3.A.1	0.02	
Metal4	METAL4.A.1	0.02	
Metal5	METAL5.A.1	0.02	
Metal6	METAL6.A.1	0.02	
Metal7	METAL7.A.1	0.02	
Metal8	METAL8.A.1	0.02	
Metal9	METAL9.A.1	0.02	
Metal10	METAL10.A.1	0.10	
Metal11	METAL11.A.1	0.10	

macro

Macro Table

\$layer1	\$id1	\$value1
Metal1	METAL1.EA.1	0.045
Metal2	METAL2.EA.1	0.055
Metal3	METAL3.EA.1	0.055
Metal4	METAL4.EA.1	0.055
Metal5	METAL5.EA.1	0.055
Metal6	METAL6.EA.1	0.055
Metal7	METAL7.EA.1	0.055
Metal8	METAL8.EA.1	0.055
Metal9	METAL9.EA.1	0.055
Metal10	METAL10.EA.1	0.11
Metal11	METAL11.EA.1	0.11

switch CHECK_DENSITY

macro

Macro Table			
\$name1	\$layer1	\$id1	
Metal1	metal1_conn	METAL1.D.1	
Metal2	metal2_conn	METAL2.D.1	
Metal3	metal3_conn	METAL3.D.1	
Metal4	metal4_conn	METAL4.D.1	
Metal5	metal5_conn	METAL5.D.1	
Metal6	metal6_conn	METAL6.D.1	
Metal7	metal7_conn	METAL7.D.1	
Metal8	metal8_conn	METAL8.D.1	
Metal9	metal9_conn	METAL9.D.1	
Metal10	metal10_conn	METAL10.D.1	
Metal11	metal11_conn	METAL11.D.1	

Density

ratio >= 0.20 <= 0.65 windowSize: 120.0 stepSize: 60.0

id: \$id1

message: \$name1 density must be >= 20% <= 65%

macro

Macro Table		
\$name1	\$layer1	\$id1
Metal1	metal1_conn	METAL1.D.2
Metal2	metal2_conn	METAL2.D.2
Metal3	metal3_conn	METAL3.D.2
Metal4	metal4_conn	METAL4.D.2
Metal5	metal5_conn	METAL5.D.2
Metal6	metal6_conn	METAL6.D.2
Metal7	metal7_conn	METAL7.D.2
Metal8	metal8_conn	METAL8.D.2
Metal9	metal9_conn	METAL9.D.2
Metal10	metal10_conn	METAL10.D.2
Metal11	metal11_conn	METAL11.D.2

Density

ratio <= 0.60 windowSize: 600.0 stepSize: 300.0

id: \$id1

message: \$name1 density must be <= 60%

Capacitor Metal

Data Table: CMET_DRC

RuleName	Description	Value
CMET.W.1	Minimum width of CapMetal	1.0
CMET.S.1	Minimum space of CapMetal	1.0
CMET.E.1	Minimum Metal 1 overlap of Via 10 on CapMetal	0.05
CMET.E.2	Minimum CapMetal overlap of Via 10	0.15
CMET.E.3	Minimum CapMetal extension over Metal 11	0.1
CMET.E.4	Minimum Metal 10 overlap of CapMetal	0.2

VIA k (k = 1, 2, 3, 4, 5, 6, 7, 8) RULES

Comment Table VIA k (k = 1, 2, 3, 4, 5, 6, 7, 8) RULES

ubio v	A K (K = 1, 2, 3, 4, 5, 6, 7, 6) RULES
Value	Description
(um)	
0.07	Minimum and maximum Via k width.
0.07	Minimum Via k to Via k spacing.
0.10	Space to three adjacent Via k (< 0.11 um apart)
0.005	Minimum Metal k to Via k enclosure.
0.03	Minimum Metal k to Via k enclosure on at least two opposite sides of Via k.
	At least 2 Via k must be used to join two Metal k when they are within 3.0um
	of a metal plate (Metal k or Metal k+1) when the metal plate size is has width
	> 1.5 and length > 1.5
	Minimum of two Via k with spacing <= 0.30um or four Via k with spacing
	<= 0.60um are required when connecting Metal k and Metal k+1 when
	one of the Metals has a width > 0.40um at the connection point.
	Minimum of four Via k with spacing <= 0.30um or nine Via k with spacing
	<= 0.60um are required when connecting Metal k and Metal k+1 when
	one of the Metals has a width > 1.0um at the connection point.
	Vias 1 through 8 may be consecutively stacked up to four high when only
	one Via is connecting two Metal layers for any level of the stack.
	Vias 1 through 8 may be consecutively stacked up more than four high
	when at least two Vias are connecting two Metal layers for all levels of the
	stack.
	Value (um) 0.07 0.07 0.10 0.005 0.03

VIA 9, 10 RULES

Comment Table VIA k (k = 9, 10) RULES

Rule	Value	Description
Name	(um)	
VIAk.W.1	0.18	Minimum and maximum Via k width.
VIAk.SP.1	0.18	Minimum Via k space.
VIAk.SP.2	0.20	Space to three adjacent Via k (< 0.25 um apart)
VIAk.E.1	0.015	Minimum Metal k to of Via k enclosure.
VIAk.E.2	0.04	Minimum Metal k to Via k enclosure on at least two opposite sides of Via k.

VIA RULES (continued)

switch FALSE

macro

Macro Table \$name1 \$layer1 \$id1 \$id2 \$layer2 \$value1 \$value2 Metal1 VIA1.E.1 VIA1.E.2 Via1 metal1_conn 0.005 0.03 Metal2 Via2 VIA2.E.1 0.005 VIA2.E.2 0.03 metal2_conn Metal3 Via3 metal3_conn VIA3.E.1 0.005 VIA3.E.2 0.03 Metal4 Via4 metal4_conn VIA4.E.1 0.005 VIA4.E.2 0.03 Metal5 Via5 metal5_conn VIA5.E.1 0.005 VIA5.E.2 0.03 metal6_conn Metal6 Via6 VIA6.E.1 0.005 VIA6.E.2 0.03 Metal7 Via7 metal7_conn VIA7.E.1 0.005 VIA7.E.2 0.03 Via8 VIA8.E.2 Metal8 metal8_conn VIA8.E.1 0.005 0.03 Metal9 Via9 metal9_conn VIA9.E.1 VIA9.E.2 0.04 0.015 VIA10.E.2 0.04 Metal10 Via10 Metal10 VIA10.E.1 0.015

VIA RULES (continued)

macro

\$L1	\$L2	\$L3	\$L4	\$id
Via1	Metal1	Metal2	rule_VIA1_E_3	VIA1.E.3
Via2	Metal2	Metal3	rule_VIA2_E_3	VIA2.E.3
Via3	Metal3	Metal4	rule_VIA3_E_3	VIA3.E.3
Via4	Metal4	Metal5	rule_VIA4_E_3	VIA4.E.3
Via5	Metal5	Metal6	rule_VIA5_E_3	VIA5.E.3
Via6	Metal6	Metal7	rule_VIA6_E_3	VIA6.E.3
Via7	Metal7	Metal8	rule_VIA7_E_3	VIA7.E.3
Via8	Metal8	Metal9	rule_VIA8_E_3	VIA8.E.3

macro

Macro Table

\$name1	\$name2	\$name3	\$layer1	\$id1
Via1	Metal1	Metal2	rule_VIA1_X_1	VIA1.X.1
Via2	Metal2	Metal3	rule_VIA2_X_1	VIA2.X.1
Via3	Metal3	Metal4	rule_VIA3_X_1	VIA3.X.1
Via4	Metal4	Metal5	rule_VIA4_X_1	VIA4.X.1
Via5	Metal5	Metal6	rule_VIA5_X_1	VIA5.X.1
Via6	Metal6	Metal7	rule_VIA6_X_1	VIA6.X.1
Via7	Metal7	Metal8	rule_VIA7_X_1	VIA7.X.1
Via8	Metal8	Metal9	rule_VIA8_X_1	VIA8.X.1

macro

Macro Table

\$name1	\$name2	\$name3	\$layer1	\$id1
Via1	Metal1	Metal2	rule_VIA1_X_2	VIA1.X.2
Via2	Metal2	Metal3	rule_VIA2_X_2	VIA2.X.2
Via3	Metal3	Metal4	rule_VIA3_X_2	VIA3.X.2
Via4	Metal4	Metal5	rule_VIA4_X_2	VIA4.X.2
Via5	Metal5	Metal6	rule_VIA5_X_2	VIA5.X.2
Via6	Metal6	Metal7	rule_VIA6_X_2	VIA6.X.2
Via7	Metal7	Metal8	rule_VIA7_X_2	VIA7.X.2
Via8	Metal8	Metal9	rule_VIA8_X_2	VIA8.X.2

VIA RULES (continued)

macro

\$name1	\$name2	\$layer1	\$id1	\$layer1_
Metal1	Metal6	rule_VIAk_X_3_X_4a	VIAk.X.3_VIAk.X.4	1 1
Metal2	Metal7	rule_VIAk_X_3_X_4b	VIAk.X.3_VIAk.X.4	error
Metal3	Metal8	rule_VIAk_X_3_X_4c	VIAk.X.3_VIAk.X.4	
Metal4	Metal9	rule_VIAk_X_3_X_4d	VIAk.X.3_VIAk.X.4	

LATCH-UP RULES

Data Table: LATCHUP_DRC

RuleName	Description	Value
LATCHUP.1	The maximum distance from any point in a P+ source/drain Active Area to the nearest Nwell pick-up in the same Nwell	20.0
LATCHUP.2	The maximum distance from any point in a N+ source/drain Active Area to the nearest Psub pick-up in the same Psub	20.0
LATCHUP.3	Minimum I/O or ESD NMOS to PMOS spacing	10.0
LATCHUP.4	Minimum I/O or ESD NMOS to PMOS spacing when not blocked by a double guardring	30.0

ANTENNA RULES

Comment Table ANTENNA RULES

Common ran	,,,,,,,	INVINOLEO
Rule	Value	Description
Name	(um)	
ANT.1	275.0	Maximum ratio of Poly area to the gate area the Poly is connected to.
ANT.2	550.0	Maximum ratio of Poly sidewall area to the gate area the Poly is connected to.
ANT.3	15.0	Maximum ratio of Poly Contact area to the gate area the Contact is connected with.
ANT.4.Mx	475.0	Maximum ratio of Metal x ($x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$) area to the gate area the Metal x is connected to (without diode protection).
ANT.5.Vx	25.0	Maximum ratio of Via x ($x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$) area to the gate area the Via x is connected with (without diode protection).
ANT.6.M1_x (x = 3, 4, 5, 6, 7, 8, 9)	1200.0	Maximum ratio of cummulative Metal areas to the gate area the Metals are connected to (without diode protection).
		DIODE PROTECTION
ANT.7.M1_x (x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)		When a protection diode with an area greater than or equal to 0.1um^2 is connected to the gate area, the maximum ratio of cumulative Metal areas (Metal 1 - Metal 8) is calculated as follows:
, 10, 11,		Ratio = (diode area X 500) + 45000
		For Metal 11 only, the ratio is calculated as follows:
		Ratio = (diode area X 7500) + 55000
ANT.8.V1_x		When a protection diode with an area greater than or equal to 0.1um^2 is
(x = 1, 2, 3, 4, 5, 6, 7,		connected to the gate area, the maximum ratio of cumulative Via areas (Via 1 - Via 10) is calculated as follows:
8, 9, 10)		Ratio = (diode area X 250) + 1000

- Note 1: Source/drain diffusion areas of MOS devices are counted as part of the diode area.
- Note 2: It is recommended to use one large diode with multiple Contacts rather than several smaller diodes.
- Note 3: When the sum of the areas of all diodes on a net equals or exceeds 0.1um^2, then those diodes can be treated as a protection diode for ANT.7 and ANT.8.

ANTENNA RULES (continued)

switch CHECK_POLY_ANT_1

switch CHECK_POLY_ANT_2

switch CHECK_CONT_ANT_3

switch CHECK_METAL1_ANT_4

ANTENNA RULES (continued)

switch CHECK_METAL2_ANT_4

switch CHECK_METAL3_ANT_4

switch CHECK_METAL4_ANT_4

ANTENNA RULES (continued)

switch CHECK_METAL5_ANT_4

switch CHECK_METAL6_ANT_4

Cadence Confidential revision 6.0

switch CHECK_METAL7_ANT_4

switch CHECK_METAL8_ANT_4

switch CHECK_METAL9_ANT_4

switch CHECK_METAL10_ANT_4

switch CHECK_METAL11_ANT_4

switch CHECK_VIA1_ANT_5

switch CHECK_VIA2_ANT_5

switch CHECK_VIA3_ANT_5

switch CHECK_VIA4_ANT_5

switch CHECK_VIA5_ANT_5

Cadence Confidential revision 6.0

switch CHECK_VIA6_ANT_5

switch CHECK_VIA7_ANT_5

switch CHECK_VIA8_ANT_5

switch CHECK_VIA9_ANT_5

switch CHECK_VIA10_ANT_5

switch CHECK_METAL11_ANT_6

Cadence Confidential revision 6.0

switch CHECK METAL10 ANT 7

Cadence Confidential revision 6.0

switch CHECK_METAL11_ANT_7

Cadence Confidential revision 6.0

switch CHECK_VIA1_ANT_8

switch CHECK_VIA2_ANT_8

switch CHECK_VIA3_ANT_8

switch CHECK_VIA4_ANT_8

Cadence Confidential revision 6.0

switch CHECK_VIA5_ANT_8

switch CHECK_VIA6_ANT_8

switch CHECK_VIA7_ANT_8

switch CHECK_VIA8_ANT_8

Cadence Confidential revision 6.0

switch CHECK_VIA9_ANT_8

Cadence Confidential revision 6.0

switch CHECK_VIA10_ANT_8

Cadence Confidential revision 6.0

CMOS I/O Design Rules

ESD Design Rules

The "ESDdummy" marker layer must be used to mark I/O ESD circuitry. If the "ESDdummy" layer is not used, the correct DRC checks of I/O ESD circuitry will not take place.

NMOS and PMOS devices used for ESD protection follow a strict finger structure using specific finger dimaensions and layout.

Comment Table ESD Design Rules

Rule	Value	Description
Name	(um)	
ESD.1	10 - 30	Width of each finger of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.
ESD.2	210	Minimum NMOS combined finger width for I/O buffers and for Vdd to Vss ESD protection.
ESD.3	210	Minimum PMOS combined finger width for I/O buffers.
ESD.4		Outer Oxide area of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection must be Source or connected to Bulk to prevent parasitic bipolars and unwanted discharge paths during ESD zapping.
ESD.5		NMOS ESD protection devices must be surrounded by a P+ Guard Ring.
ESD.6		PMOS ESD protection devices must be surrounded by an N+ Guard Ring.
ESD.7		NMOS and PMOS in ESD protection can NOT have butted taps.
ESD.8		NMOS and PMOS in an I/O buffer must have non-salicided Drains. The Contacts still must be salicided.
ESD.9		A P+ Oxide strap should be placed between N+ Oxides of different I/O and ESD devices when both connect to different pads.
ESD.10		An N+ Oxide strap should be placed between P+ Oxides of different I/O and ESD devices when both connect to different pads.
ESD.11	0.05	Minimum SiProt to Poly gate overlap in NMOS and PMOS drains.
ESD.12	0.9	Minimum enclosure of SiProt edge to Poly gate edge in NMOS and PMOS I/O drains.
ESD.13	0.9	Minimum SiProt to Oxide overlap in NMOS and PMOS I/O drains.
ESD.14	0.2	Exact gate length of NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.
ESD.15	0.12	Minimum Poly gate to Contact spacing in NMOS and PMOS in I/O buffers and in Vdd to Vss ESD protection.

ESD Design Rules (continued)

ESDdummy

Bond Pad Design Rules

- 1) The bond pad structure must contain all Metal levels and all Via levels.
- 2) Metals over the Bonpad area must NOT have stress relief slots.
- 3) Vias on odd levels should be on top of each other. Vias on even levels should be on top of each other.

Comment Table In-Line Bond Pad Design Rules

	Value	Description
Name	(um)	
BONDPAD.W.1	45.0	Minimum Bondpad width of edges parallel to the die edge.
BONDPAD.L.1	68.0	Minimum Bondpad length of edges perpendicular to the die edge.
BONDPAD.SP.1	8.0	Minimum Bondpad to Bondpad spacing.
BONDPAD.E.1	2.0	Minimum Metal (all levels) enclosure of Bondpad.
BONDPAD.SP.2	3.0	Minimum Bondpad Metal to Metal (including Bondpad Metal) spacing.
BONDPAD.B.1	1.8~3.2	Minimum length of Bonpad Metal beveled corner. All Bondpad Metal corners must be beveled at 45 degrees.
BONDPAD.W.2	0.14	Minimum and maximum Bondpad Via k width (k = 1, 2, 3, 4, 5, 6).
BONDPAD.W.3	0.36	Minimum and maximum Bondpad Via k width (k = 7, 8).
BONDPAD.SP.3	0.22	Minimum Bondpad Viak to Bondpad Viak spacing (k = 1, 2, 3, 4, 5, 6).
BONDPAD.SP.4	0.54	Minimum Bondpad Viak to Bondpad Viak spacing (k = 7, 8).
BONDPAD.E.2	0.05	Minimum Bondpad Metalk to Bondpad Viak enclosure (k = 1, 2, 3, 4, 5, 6, 7, 8). Minimum Bondpad Metalk+1 to Bondpad Viak enclosure (k = 1, 2, 3, 4, 5, 6, 7, 8).
BONDPAD.E.3	0.09	Maximum Bondpad Metalk to Bondpad Viak enclosure $(k = 7, 8)$. Maximum Bondpad Metalk+1 to Bondpad Viak enclosure $(k = 7, 8)$.
BONDPAD.SP.5	1.5	Minimum and Maximum Pad Metal slot to Pad Metal slot spacing.
BONDPAD.W.4	1.0	Minimum and Maximum Pad Metal slot width (expect first slot on each edge of Pad).
BONDPAD.W.5	5.0	Minimum and Maximum Pad Metalk width in outer ring of Pad Metalk (expect for the bevelled corners) $(k = 1, 2, 3, 4, 5, 6, 7, 8)$.
BONDPAD.SP.6	1.0~3.5	Minimum and Maximum Pad Metalk ring to nearest Pad Metalk across first slot (k = 1, 2, 3, 4, 5, 6, 7, 8).
BONDPAD.SP.7	1.1	Minimum Pad Viak array to Pad Viak array spacing (k = 1, 2, 3, 4, 5, 6, 7, 8).

macro

Macro Table				
\$layer1	\$layer2			
bondpad_metal1_filled	Metal1			
bondpad_metal2_filled	Metal2			
bondpad_metal3_filled	Metal3			
bondpad_metal4_filled	Metal4			
bondpad_metal5_filled	Metal5			
bondpad_metal6_filled	Metal6			
bondpad_metal7_filled	Metal7			
bondpad_metal8_filled	Metal8			
bondpad_metal9_filled	Metal9			
bondpad_metal10_filled	Metal10			
bondpad_metal11_filled	Metal11			

macro

macro

Macro Table				
\$layer1	\$name1			
bondpad_metal1	Metal1			
bondpad_metal2	Metal2			
bondpad_metal3	Metal3			
bondpad_metal4	Metal4			
bondpad_metal5	Metal5			
bondpad_metal6	Metal6			
bondpad_metal7	Metal7			
bondpad_metal8	Metal8			
bondpad_metal9	Metal9			
bondpad_metal10	Metal10			
bondpad_metal11	Metal11			

BONDPAD.W.2 and BONDPAD.W.3 - covered by VIAk.W.1.

macro

Macro Table						
\$layer1	\$layer2	\$value1	\$id1			
bondpad_metal1	Via1	0.22	BONDPAD.SP.3			
bondpad_metal2	Via2	0.22	BONDPAD.SP.3			
bondpad_metal3	Via3	0.22	BONDPAD.SP.3			
bondpad_metal4	Via4	0.22	BONDPAD.SP.3			
bondpad_metal5	Via5	0.22	BONDPAD.SP.3			
bondpad_metal6	Via6	0.22	BONDPAD.SP.3			
bondpad_metal7	Via7	0.22	BONDPAD.SP.4			
bondpad_metal8	Via8	0.22	BONDPAD.SP.4			
bondpad_metal9	Via9	0.54	BONDPAD.SP.4			
bondpad_metal10	Via10	0.54	BONDPAD.SP.4			

macro

M	acro	Та	ble

\$layer1	\$layer2	\$name1	\$value1	\$id1
bondpad_metal1	Via1	Metal1	0.05	BONDPAD.E.2
bondpad_metal2	Via2	Metal2	0.05	BONDPAD.E.2
bondpad_metal3	Via3	Metal3	0.05	BONDPAD.E.2
bondpad_metal4	Via4	Metal4	0.05	BONDPAD.E.2
bondpad_metal5	Via5	Metal5	0.05	BONDPAD.E.2
bondpad_metal6	Via6	Metal6	0.05	BONDPAD.E.2
bondpad_metal7	Via7	Metal7	0.05	BONDPAD.E.3
bondpad_metal8	Via8	Metal8	0.05	BONDPAD.E.3
bondpad_metal9	Via9	Metal9	0.09	BONDPAD.E.3
bondpad_metal10	Via10	Metal9	0.09	BONDPAD.E.3

macro

Macro Table

\$layer1	\$layer2	\$name1	\$value1	\$id1
bondpad_metal2	Via1	Metal2	0.05	BONDPAD.E.2
bondpad_metal3	Via2	Metal3	0.05	BONDPAD.E.2
bondpad_metal4	Via3	Metal4	0.05	BONDPAD.E.2
bondpad_metal5	Via4	Metal5	0.05	BONDPAD.E.2
bondpad_metal6	Via5	Metal6	0.05	BONDPAD.E.2
bondpad_metal7	Via6	Metal7	0.05	BONDPAD.E.2
bondpad_metal8	Via7	Metal8	0.05	BONDPAD.E.3
bondpad_metal9	Via8	Metal9	0.05	BONDPAD.E.3
bondpad_metal10	Via9	Metal10	0.09	BONDPAD.E.3
bondpad_metal11	Via10	Metal11	0.09	BONDPAD.E.3

macro

Macro Table

\$layer1	\$name1
rule_BONDPAD_SP_5_metal1	Metal1
rule_BONDPAD_SP_5_metal2	Metal2
rule_BONDPAD_SP_5_metal3	Metal3
rule_BONDPAD_SP_5_metal4	Metal4
rule_BONDPAD_SP_5_metal5	Metal5
rule BONDPAD SP 5 metal6	Metal6

rule_BONDPAD_SP_5_metal10 Metal10

Metal7 Metal8

Metal9

rule_BONDPAD_SP_5_metal7

rule_BONDPAD_SP_5_metal8 rule_BONDPAD_SP_5_metal9

macro

Macro Table

\$layer1	\$name1
rule_BONDPAD_W_4_metal1	Metal1
rule_BONDPAD_W_4_metal2	Metal2
rule_BONDPAD_W_4_metal3	Metal3
rule_BONDPAD_W_4_metal4	Metal4
rule_BONDPAD_W_4_metal5	Metal5
rule_BONDPAD_W_4_metal6	Metal6
rule_BONDPAD_W_4_metal7	Metal7
rule_BONDPAD_W_4_metal8	Metal8
rule_BONDPAD_W_4_metal9	Metal9
rule_BONDPAD_W_4_metal10	Metal10

macro

Macro Table				
\$layer1	\$name1			
rule_BONDPAD_W_5_metal1	Metal1			
rule_BONDPAD_W_5_metal2	Metal2			
rule_BONDPAD_W_5_metal3	Metal3			
rule_BONDPAD_W_5_metal4	Metal4			
rule_BONDPAD_W_5_metal5	Metal5			
rule_BONDPAD_W_5_metal6	Metal6			
rule_BONDPAD_W_5_metal7	Metal7			
rule_BONDPAD_W_5_metal8	Metal8			
rule_BONDPAD_W_5_metal9	Metal9			
rule_BONDPAD_W_5_metal10	Metal10			

macro

Macro Table	
\$layer1	\$name1
bondpad_metal1_slot_on_edge	Metal1
bondpad_metal2_slot_on_edge	Metal2
bondpad_metal3_slot_on_edge	Metal3
bondpad_metal4_slot_on_edge	Metal4
bondpad_metal5_slot_on_edge	Metal5
bondpad_metal6_slot_on_edge	Metal6
bondpad_metal7_slot_on_edge	Metal7
bondpad_metal8_slot_on_edge	Metal8
bondpad_metal9_slot_on_edge	Metal9
bondpad_metal10_slot_on_edge	Metal10

macro

Macro Table				
\$layer1	\$name1			
bondpad_via1_array	Via1			
bondpad_via2_array	Via2			
bondpad_via3_array	Via3			
bondpad_via4_array	Via4			
bondpad_via5_array	Via5			
bondpad_via6_array	Via6			
bondpad_via7_array	Via7			
bondpad_via8_array	Via8			
bondpad_via9_array	Via9			
bondpad_via10_array	Via10			

CMOS Digital Electrical Parameters

Sheet Resistances

The units are ohms/square

Global Parameters

R_metal1	0.0736	Metal 1 sheet resistance	
R_metal2_7	0.0604	Metal 2,3,4,5,6,7 sheet resistance	
R_metal8_10	0.0214	Metal 8,9,10 sheet resistance	
R_metal11	0.021	Metal 11 sheet resistance	
R_snpoly	15	Salicide N+ Poly sheet resistance	
R_sppoly	15	Salicide P+ Poly sheet resistance	
R_nsnpoly	200	Non-salicide N+ Poly sheet resistance	
R_nsppoly	650	Non-salicide P+ Poly sheet resistance	
R_snactive	18	Salicide N+ Oxide sheet resistance	
R_spactive	15	Salicide P+ Oxide sheet resistance	
R_nsnactive	100	Non-salicide N+ Oxide sheet resistance	
R_nspactive	200	Non-salicide P+ Oxide sheet resistance	
R_nwell	450	Nwell sheet resistance	
R_pwell	1000	Pwell sheet resistance	

Contact/Via Resistances The units are ohms/contact or ohms/via

Global Parameters

R_via10	0.4	Via 10 resistance	
R_via8_9	0.28	Via 8,9 resistance	
R_via1_7	0.5	Via 1,2,3,4,5,6,7 resistance	
R_metal1-contact	1	Metal 1 to Contact resistance	
R_poly-contact	45	Poly to Contact resistance	
R_pplus-contact	62	P+ Oxide to Contact resistance	
R_nplus-contact	75	N+ Oxide to Contact resistance	

Current Densities The units are ma/um

Global Parameters

Global Falamotoro			
L_metal10_11	8	Metal 10,11 current density	
L_metal1_9	2	Metal 1,2,3,4,5,6,7, 8, 9 current density	

Contact/Via Current Densities

The units are ohm/contact or ma/via

Global Parameters

I_via1_8	0.1	Via 1,2,3,4,5,6 current density	
I_Via9_10	0.8	Via 7,8 current density	
I_metal-contact-poly	0.1	.1 Metal 1 Contact to Poly current density	
I_metal-contact-oxide	0.1	Metal 1 Contact to Oxide current density	

Cadence Confidential revision 6.0

Layer and Dielectric Thickness

Comment Table

Comment		1
Layer	Thickness (A)	
Pass2	7500	k= 8.0
Pass1	6500	k = 4.2
IMD11a	14000	K = 4.2
Metal11	14000	Cu
IMD10b	6000	K = 4.2
IMD10a	10000	K = 4.2
Metal10	10000	Cu
IMD9b	6000	K = 4.2
IMD9a	10000	K = 4.2
Metal9	10000	Cu
IMD8b	3000	K = 2.6
IMD8a	1500	K = 4.2
Metal8	1500	Cu
IMD7b	3000	K = 2.6
IMD7a	1500	K = 4.2
Metal7	1500	Cu
IMD6b	3000	K = 2.6
IMD6a	1500	K = 4.2
Metal6	1500	Cu
IMD5b	3000	K = 2.6
IMD5a	1500	K = 4.2
Metal5	1500	Cu
IMD4b	3000	K = 2.6
IMD4a	1500	K = 4.2
Metal4	1500	Cu
IMD3b	3000	K = 2.6
IMD3a	1500	K = 4.2
Metal3	1500	Cu
IMD2b	3000	K = 2.6
IMD2a	1500	K = 4.2
Metal2	1500	Cu
IMD1b	3000	K = 2.6
IMD1a	1500	K = 4.2
Metal1	1500	Cu
ILD	3000	k = 4.2
LINER	1200	k = 7
Poly	1200	
STI (FOX	3500	k=3.9

For furthur information on electrical parameters and Model parameters, Please look into the following document. gpdk045_PDK_Model_Report.pdf

Sep 6, 2019	GPDK 45nm Mixed Signal Process Spec	A 1
\$L1	dummy	
\$L2	dummy	
\$L3	dummy	
\$L4	dummy	
\$diff	dummy	
Senc	dummy	
\$layer1	dummy	
\$layer2	dummy	
\$layer3	dummy	
\$metal	dummy	
\$recLayer	dummy	
\$res	dummy	
\$tap	dummy	
\$via	dummy	
E BJTdum	input 15;0 df2order 72 (BJTdum drawing) packet zbip	
Bondpad	input 36;0 df2order 54 (Bondpad drawing) packet pass	
Cap3dum	input 84;0 df2order 56 (Cap3dum drawing) packet zcap	
CapMetal	input 14;0 df2order 39 (CapMetal drawing) packet	
·	mcap	
Capdum	input 12;0 df2order 55 (Capdum drawing) packet zcap	
Cont	input 6;0 df2order 11 (Cont drawing) packet cw	via
☐ DIOdummy	input 22;0 df2order 75 (DIOdummy drawing) packet	
	zdiode	
ESDdummy	input 74;0 df2order 77 (ESDdummy drawing) packet	
	esddum	
FOX	bulk andnot (Oxide or Oxide_thk)	
IND2dummy	input 88;0 packet zind2	
IND3dummy	input 114;0 packet zind3	
INDdummy	input 90;0 packet zind	
M1Resdum	input 75;0 (M1Resdum drawing) df2order 63 packet	
Witteddill	zrm1	
M2Resdum	input 76;0 (M2Resdum drawing) df2order 64 packet	
	zrm2	
M3Resdum	input 77;0 (M3Resdum drawing) df2order 65 packet zrm3	
M4Resdum	input 78;0 (M4Resdum drawing) df2order 66 packet	
Witteddain	zrm4	
M5Resdum	input 79;0 (M5Resdum drawing) df2order 67 packet	
Workesdam	zrm5	
M6Resdum	input 80;0 (M6Resdum drawing) df2order 68 packet	
Mortesdum	zrm6	
M7Resdum	input 81;0 (M7Resdum drawing) df2order 69 packet	
Wirkesdam	zrm7	
M8Resdum	input 82;0 (M8Resdum drawing) df2order 70 packet	
Workesdam	zrm8	
M9Resdum	input 83;0 (M9Resdum drawing) df2order 71 packet	
Workeddum	zrm9	
M10Resdum	input 93;0 (M10Resdum drawing) df2order 178 packet	
	zrm10	
M11Resdum	input 103;0 (M11Resdum drawing) df2order 80 packet	
	zrm11	
Metal1	input 7;0 df2order 12 (Metal1 drawing) packet m1	
Metal2	input 9;0 df2order 15 (Metal? drawing) packet m2	+
Metal3	input 11;0 df2order 18 (Metal3 drawing) packet m3	+
L INICIAIS	Imput 11,0 dizorder 10 (Metalo diawing) packet mo	

Cadence Confidential

Sep 6, 2019	GPDK 45nm Mixed Signal Process Spec	A2
Metal4	input 31;0 df2order 21 (Metal4 drawing) packet m4	
Metal5	input 33;0 df2order 24 (Metal5 drawing) packet m5	
Metal6	input 35;0 df2order 27 (Metal6 drawing) packet m6	
Metal7	input 38;0 df2order 30 (Metal7 drawing) packet m7	
Metal8	input 40;0 df2order 33 (Metal8 drawing) packet m8	
Metal9	input 42;0 df2order 36 (Metal9 drawing) packet m9	
Metal10	input 152;0 df2order 64 (Metal10 drawing) packet m10	
Metal11	input 162;0 df2order 66 (Metal11 drawing) packet m11	
NOD	SNA	
	Oxide and Nimp	
[i NPN2dum	input 110;0 packet znpn2 fillStyle outline	
[i NPN5dum	input 111;0 packet znpn5 fillStyle outline	
[i NPN10dum	input 112;0 packet znpn10 fillStyle outline	
[i NPNdummy	input 20;0 df2order 73 (NPNdummy drawing) packet	
	znpn	
Nburied	input 19;0 df2order 41 (Nburied drawing) packet npblk	
Nhvt	input 18;0 df2order 6 (Nhvt drawing) packet nhvt	
<u></u> Nimp	input 4;0 df2order 7 (Nimp drawing) packet nplus	
Nlvt	input 26;0 (Nlvt drawing) df2order 43 packet nlvt	
Nwell	input 2;0 df2order 1 (Nwell drawing) packet nwell	
Nzvt	input 52;0 df2order 9 (Nzvt drawing) packet Nzvt	
Oxide	input 1;0 df2order 2 (Oxide drawing) packet tox	
Oxide_thk	input 24;0 df2order 3 (Oxide_thk drawing) packet	
	Oxide_thk	
PNPdummy	input 21;0 df2order 74 (PNPdummy drawing) packet	
	zpnp	
POD POD	SNA	
	Oxide and Pimp	
PWdummy	input 85;0 df2order 85 (PWdummy drawing) packet	
	zpw	
Phvt Phvt	input 23;0 df2order 8 (Phvt drawing) packet phvt	
Nimp Pimp	input 5;0 df2order 5 (Pimp drawing) packet pplus	
Plvt	input 27;0 (Plvt drawing) df2order 44 packet plvt	
Poly	input 3;0 df2order 4 (Poly drawing) packet poly1	
Psub	input 25;0 (Psub drawing) df2order 42 packet psub	
ResWdum	input 71;0 df2order 62 (ResWdum drawing) packet	
	zrwell	
Resdum	input 13;0 df2order 61 (Resdum drawing) packet	
	zrpoly	
SiProt	input 72;0 df2order 10 (SiProt drawing) packet siprot	
UTI VPNP2dum	input 60;0 packet zvpnp2 fillStyle outline	
Ti VPNP5dum	input 61;0 packet zvpnp5 fillStyle outline	
Til VPNP10dum	input 62;0 packet zvpnp10 fillStyle outline	
Via1	input 8;0 df2order 14 (Via1 drawing) packet v1	via
Via2	input 10;0 df2order 17 (Via2 drawing) packet v2	via
Via3	input 30;0 df2order 20 (Via3 drawing) packet v3	via
Via4	input 32;0 df2order 23 (Via4 drawing) packet v4	via
Via5	input 34;0 df2order 26 (Via5 drawing) packet v5	via
Via6	input 37;0 df2order 29 (Via6 drawing) packet v6	via
Via7	input 39;0 df2order 32 (Via7 drawing) packet v7	via
Via8	input 41;0 df2order 35 (Via8 drawing) packet v8	via
Via9	input 151;0 df2order 63 (Via9 drawing) packet v9	via
Via10	input 161;0 df2order 65 (Via10 drawing) packet v10	via

Cadence Confidential