Advanced Engineering Mathematics Systems of Differential Equations by Dennis G. Zill Problems

Chris Doble

June 2023

${\bf Contents}$

10	Syst	ems of	L	in	ıe	ar	· I)i	ffe	er	eı	ıt:	ia	1	E	qυ	ıa	ti	OI	ns	5							2
	10.1	Theory	o	fΙ	iı	nе	ar	\mathbf{S}	ys	te	m	s																2
		10.1.1							-																			2
		10.1.3																										2
		10.1.5																										2
		10.1.7																										2
		10.1.9																										3
		10.1.11																										3
		10.1.13																										3
		10.1.17																										3
		10.1.19																										3
		10.1.21																										4
		10.1.23																										4
	10.2	Homoge	en	eo	us	s]	Ĺiı	ne:	ar	S	ys	stε	em	$_{ m ls}$														4
		10.2.1									٠.																	4
		10.2.3																										4
		10.2.5																										4
		10.2.7																										4
		10.2.13																										5
		10.2.15																										5
		10.2.21																										5
		10.2.23																										5
		10.2.25																										5
		10.2.31																										5
		10.2.33																										6
		10.2.35																										6
		10.2.37																										6
		10.2.39																										7
		10.2.47																										7
		10.2.49		_																								7

10.3	Solution	by	7]	Di	aį	go	na	ali	Ζŧ	at:	io:	n													8
	10.3.1																								8
	10.3.3																								8
	10.3.5																								8
	10.3.11																								8
10.4	Nonhom	og	er.	e	ou	lS	L	in	ea	ır	S	ys	te	m	ıs										10
	10.4.1																								10
	10.4.3																								11
	10.4.5																								12
	10.4.9																								12
	10.4.11																								13
	10.4.13																								14
	10.4.15																								14
	10.4.33																								15
	10.4.35																								15
	10.4.37																								16
	10.4.39																								16

10 Systems of Linear Differential Equations

10.1 Theory of Linear Systems

10.1.1

$$\mathbf{X}' = \begin{pmatrix} 3 & -5 \\ 4 & 8 \end{pmatrix} \mathbf{X}$$

10.1.3

$$\mathbf{X}' = \begin{pmatrix} -3 & 4 & -9 \\ 6 & -1 & 0 \\ 10 & 4 & 3 \end{pmatrix} \mathbf{X}$$

10.1.5

$$\mathbf{X}' = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} t - 1 \\ -3t^2 \\ t^2 - t + 2 \end{pmatrix}$$

10.1.7

$$\frac{dx}{dt} = 4x + 2y + e^t$$
$$\frac{dy}{dt} = -x + 3y - e^t$$

10.1.9

$$\frac{dx}{dt} = x - y + 2z + e^{-t} - 3t$$

$$\frac{dy}{dt} = 3x - 4y + z + 2e^{-t} + t$$

$$\frac{dz}{dt} = -2x + 5y + 6z + 2e^{-t} - t$$

10.1.11

$$3(e^{-5t}) - 4(2e^{-5t}) = -5e^{-5t}$$

$$= \frac{dx}{dt}$$

$$4(e^{-5t}) - 7(2e^{-5t}) = -10e^{-5t}$$

$$= \frac{dy}{dt}$$

10.1.13

$$-(-e^{-3t/2}) + \frac{1}{4}(2e^{-3t/2}) = \frac{3}{2}e^{-3t/2}$$
$$= \frac{dx}{dt}$$
$$(-e^{-3t/2}) - (2e^{-3t/2}) = -3e^{-3t/2}$$
$$= \frac{dy}{dt}$$

10.1.17

$$W(\mathbf{X}_1, \mathbf{X}_2) = \begin{vmatrix} e^{-2t} & e^{-6t} \\ e^{-2t} & -e^{-6t} \end{vmatrix}$$
$$= -e^{-8t} - e^{-8t}$$
$$= -2e^{-8t}$$
$$\neq 0 \text{ for } t \in (-\infty, \infty)$$

Yes, they form a fundamental set.

10.1.19

$$W(\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3) = \begin{vmatrix} 1+t & 1 & 3+2t \\ -2+2t & -2 & -6+4t \\ 4+2t & 4 & 12+4t \end{vmatrix}$$
$$= 0$$

No, they don't form a fundamental set.

10.1.21

$$x = 2t + 5$$

$$y = -t + 1$$

$$\frac{dx}{dt} = (2t + 5) + 4(-t + 1) + 2t - 7$$

$$= 2$$

$$\frac{dy}{dt} = 3(2t + 5) + 2(-t + 1) - 4t - 18$$

$$= -1$$

10.1.23

$$x = e^{t} + te^{t}$$

$$x' = 2e^{t} + te^{t}$$

$$y = e^{t} - te^{t}$$

$$y' = -te^{t}$$

$$\frac{dx}{dt} = 2(e^{t} + te^{t}) + (e^{t} - te^{t}) - e^{t}$$

$$= 2e^{t} + te^{t}$$

$$\frac{dy}{dt} = 3(e^{t} + te^{t}) + 4(e^{t} - te^{t}) - 7e^{t}$$

$$= -te^{t}$$

10.2 Homogeneous Linear Systems

10.2.1

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{5t} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t}$$

10.2.3

$$\mathbf{X} = c_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{-3t} + c_2 \begin{pmatrix} \frac{2}{5} \\ 1 \end{pmatrix} e^t$$

10.2.5

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 4 \end{pmatrix} e^{-10t} + c_2 \begin{pmatrix} 5 \\ 2 \end{pmatrix} e^{8t}$$

$$\mathbf{X} = c_1 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} e^{-t} + c_3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^t$$

10.2.13

$$\mathbf{X} = 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} e^{-t/2} + 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{t/2}$$

10.2.15

(a)

$$\begin{aligned} \frac{dx_1}{dt} &= -\frac{3}{100}x_1 + \frac{1}{100}x_2\\ \frac{dx_2}{dt} &= \frac{2}{100}x_1 - \frac{2}{100}x_2\\ \left(\frac{\frac{dx_1}{dt}}{\frac{dt}{dt}}\right) &= \left(\frac{-\frac{3}{100}}{\frac{100}{100}} - \frac{1}{\frac{2}{100}}\right) \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \end{aligned}$$

(b)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\frac{35}{3} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t/25} + \frac{50}{3} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} e^{-t/100}$$

10.2.21

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + c_2 \left[\begin{pmatrix} 1 \\ 3 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right]$$

10.2.23

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + c_2 \left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} t + \begin{pmatrix} 0 \\ \frac{1}{3} \end{pmatrix} \right] e^{2t}$$

10.2.25

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} e^t$$

$$\mathbf{X} = -\frac{1}{2} \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{4t} + 13 \left[\begin{pmatrix} 2 \\ 1 \end{pmatrix} t + \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \right] e^{4t}$$

10.2.33

$$\mathbf{K}_1 = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix}$$

$$\mathbf{K}_1 = \begin{pmatrix} 0\\0\\0\\1\\0 \end{pmatrix}$$

$$\mathbf{K}_3 = \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix}$$

10.2.35

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ 2 - i \end{pmatrix} e^{(4+i)t} + c_2 \begin{pmatrix} 1 \\ 2 + i \end{pmatrix} e^{(4-i)t}$$

$$= c_1 \left[\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ -1 \end{pmatrix} \sin t \right] e^{4t} + c_2 \left[\begin{pmatrix} 0 \\ -1 \end{pmatrix} \cos t + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \sin t \right] e^{4t}$$

$$= c_1 \begin{pmatrix} \cos t \\ 2 \cos t + \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ 2 \sin t - \cos t \end{pmatrix} e^{4t}$$

$$\mathbf{X} = c_1 \begin{pmatrix} 1 \\ -1+i \end{pmatrix} e^{(4+i)t} + c_2 \begin{pmatrix} 1 \\ -1-i \end{pmatrix} e^{(4-i)t}$$

$$= c_1 \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos t - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \sin t \right] e^{4t} + c_2 \left[\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cos t + \begin{pmatrix} 1 \\ -1 \end{pmatrix} \sin t \right] e^{4t}$$

$$= c_1 \begin{pmatrix} \cos t \\ -\cos t - \sin t \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} \sin t \\ \cos t - \sin t \end{pmatrix} e^{4t}$$

10.2.39

$$\mathbf{X} = c_1 \begin{pmatrix} 5 \\ 4 - 3i \end{pmatrix} e^{3i} + c_2 \begin{pmatrix} 5 \\ 4 + 3i \end{pmatrix} e^{-3i}$$

$$= c_1 \left[\begin{pmatrix} 5 \\ 4 \end{pmatrix} \cos 3t - \begin{pmatrix} 0 \\ -3 \end{pmatrix} \sin 3t \right] + c_2 \left[\begin{pmatrix} 0 \\ -3 \end{pmatrix} \cos 3t + \begin{pmatrix} 5 \\ 4 \end{pmatrix} \sin 3t \right]$$

$$= c_1 \begin{pmatrix} 5 \cos 3t \\ 4 \cos 3t + 3 \sin 3t \end{pmatrix} + c_2 \begin{pmatrix} 5 \sin 3t \\ 4 \sin 3t - 3 \cos 3t \end{pmatrix}$$

10.2.47

$$\mathbf{X} = c_{1} \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix} e^{t} + c_{2} \begin{pmatrix} 1+5i \\ 1 \\ 1 \end{pmatrix} e^{5it} + c_{3} \begin{pmatrix} 1-5i \\ 1 \\ 1 \end{pmatrix} e^{-5it}$$

$$= c_{1} \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix} e^{t} + c_{2} \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cos 5t - \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \sin 5t \end{bmatrix}$$

$$+ c_{3} \begin{bmatrix} \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} \cos 5t + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \sin 5t \end{bmatrix}$$

$$= c_{1} \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix} e^{t} + c_{2} \begin{pmatrix} \cos 5t - 5 \sin 5t \\ \cos 5t \\ \cos 5t \end{pmatrix} + c_{3} \begin{pmatrix} 5 \cos 5t + \sin 5t \\ \sin 5t \\ \sin 5t \end{pmatrix}$$

$$= - \begin{pmatrix} 25 \\ -7 \\ 6 \end{pmatrix} e^{t} - \begin{pmatrix} \cos 5t - 5 \sin 5t \\ \cos 5t \\ \cos 5t \end{pmatrix} + 6 \begin{pmatrix} 5 \cos 5t + \sin 5t \\ \sin 5t \\ \sin 5t \end{pmatrix}$$

(a)
$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} -\frac{1}{20} & 0 & \frac{1}{10} \\ \frac{1}{20} & -\frac{1}{20} & 0 \\ 0 & \frac{1}{20} & -\frac{1}{10} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

(b)
$$\mathbf{X} = c_1 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} -1 - i \\ i \\ 1 \end{pmatrix} e^{\left(-\frac{1}{10} + \frac{1}{20}i\right)t} + c_3 \begin{pmatrix} -1 + i \\ -i \\ 1 \end{pmatrix} e^{\left(-\frac{1}{10} - \frac{1}{20}i\right)t}$$

$$= c_1 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + c_2 \left[\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \cos \frac{1}{20}t - \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \sin \frac{1}{20}t \right] e^{-t/10}$$

$$+ c_3 \left[\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cos \frac{1}{20}t + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \sin \frac{1}{20}t \right] e^{-t/10}$$

$$= c_1 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} \sin \frac{t}{20} - \cos \frac{t}{20} \\ -\sin \frac{t}{20} \\ \cos \frac{t}{20} \end{pmatrix} e^{-t/10}$$

$$+ c_3 \begin{pmatrix} -\cos \frac{t}{20} - \sin \frac{t}{20} \\ \cos \frac{t}{20} \end{pmatrix} e^{-t/10}$$

$$= 11 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} - 6 \begin{pmatrix} \sin \frac{t}{20} - \cos \frac{t}{20} \\ -\sin \frac{t}{20} \\ \cos \frac{t}{20} \end{pmatrix} e^{-t/10}$$

$$- 2 \begin{pmatrix} -\cos \frac{t}{20} - \sin \frac{t}{20} \\ \cos \frac{t}{20} \end{pmatrix} e^{-t/10}$$

10.3 Solution by Diagonalization

10.3.1

$$\mathbf{X} = \begin{pmatrix} 3 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 e^{7t} \\ c_2 e^{-4t} \end{pmatrix} = \begin{pmatrix} 3c_1 e^{7t} - 2c_2 e^{-4t} \\ c_1 e^{7t} + 3c_2 e^{-4t} \end{pmatrix}$$

10.3.3

$$\mathbf{X} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} c_1 e^{3t/2} \\ c_2 e^{t/2} \end{pmatrix} = \begin{pmatrix} c_1 e^{3t/2} + c_2 e^{t/2} \\ 2c_1 e^{3t/2} - 2c_2 e^{t/2} \end{pmatrix}$$

10.3.5

$$\mathbf{X} = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 e^{6t} \\ c_2 e^{-4t} \\ c_3 e^{2t} \end{pmatrix} = \begin{pmatrix} -c_2 e^{-4t} + c_3 e^{2t} \\ c_2 e^{-4t} + c_3 e^{2t} \\ c_1 e^{6t} + c_3 e^{2t} \end{pmatrix}$$

10.3.11

$$\begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix} + \begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

 ${\bf M}$ has an inverse because it has a nonzero determinant (the product of the diagonal entries).

(b)
$$\begin{pmatrix} x_1'' \\ x_2'' \end{pmatrix} + \begin{pmatrix} \frac{k_1 + k_2}{m_1} & -\frac{k_2}{m_1} \\ -\frac{k_2}{m_2} & \frac{k_2}{m_2} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \mathbf{0}$$

(c)

$$\mathbf{PY''} + \mathbf{BPY} = \mathbf{0}$$

$$\mathbf{Y''} + \mathbf{P^{-1}BPY} = \mathbf{0}$$

$$\mathbf{Y''} + \mathbf{DY} = \mathbf{0}$$

$$\begin{pmatrix} y_1'' \\ y_2'' \end{pmatrix} + \begin{pmatrix} 6 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \mathbf{0}$$

$$y_1'' + 6y_1 = 0$$

$$y_1 = c_1 \cos \sqrt{6}t + c_2 \sin \sqrt{6}t$$

$$y_2'' + y_2 = 0$$

$$y_2 = c_3 \cos t + c_4 \sin t$$

 $\mathbf{X} = \mathbf{PY}$

$$\mathbf{X} = \mathbf{PY}$$

$$= \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} c_1 \cos \sqrt{6}t + c_2 \sin \sqrt{6}t \\ c_3 \cos t + c_4 \sin t \end{pmatrix}$$

$$= \begin{pmatrix} -2c_1 \cos \sqrt{6}t - 2c_2 \sin \sqrt{6}t + c_3 \cos t + c_4 \sin t \\ c_1 \cos \sqrt{6}t + c_2 \sin \sqrt{6}t + 2c_3 \cos t + 2c_4 \sin t \end{pmatrix}$$

$$= c_3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cos t + c_4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} \sin t + c_1 \begin{pmatrix} -2 \\ 1 \end{pmatrix} \cos \sqrt{6}t + c_2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} \sin \sqrt{6}t$$

10.4 Nonhomogeneous Linear Systems

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -7 \\ 5 \end{pmatrix}$$

$$\mathbf{X}_c = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^t$$

$$\mathbf{X}_p = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} -7 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} 2a_1 + 3a_2 - 7 \\ -a_1 - 2a_2 + 5 \end{pmatrix}$$

$$\mathbf{X}_p = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\mathbf{X} = \mathbf{X}_c + \mathbf{X}_p$$

$$= c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-t} + c_2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^t + \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{split} \mathbf{X}_c &= c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-2t} \\ \mathbf{X}_p &= \begin{pmatrix} a_3 t^2 + a_2 t + a_1 \\ b_3 t^2 + b_2 t + b_1 \end{pmatrix} \\ \begin{pmatrix} 2a_3 t + a_2 \\ 2b_3 t + b_2 \end{pmatrix} &= \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} a_3 t^2 + a_2 t + a_1 \\ b_3 t^2 + b_2 t + b_1 \end{pmatrix} + \begin{pmatrix} -2t^2 \\ t + 5 \end{pmatrix} \\ &= \begin{pmatrix} (a_3 + 3b_3 - 2)t^2 + (a_2 + 3b_2)t + (a_1 + 3b_1) \\ (3a_3 + b_3)t^2 + (3a_2 + b_2 + 1)t + (3a_1 + b_1 + 5) \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} &= \begin{pmatrix} (a_3 + 3b_3 - 2)t^2 + (a_2 - 2a_3 + 3b_2)t + (a_1 - a_2 + 3b_1) \\ (3a_3 + b_3)t^2 + (3a_2 + b_2 - 2b_3 + 1)t + (3a_1 + b_1 - b_2 + 5) \end{pmatrix} \\ a_3 &= -\frac{1}{4} \\ b_3 &= \frac{3}{4} \\ a_2 &= \frac{1}{4} \\ b_2 &= -\frac{1}{4} \\ a_1 &= -2 \\ b_1 &= \frac{3}{4} \\ \mathbf{X}_p &= \begin{pmatrix} -\frac{1}{4}t^2 + \frac{1}{4}t - 2 \\ \frac{3}{4}t^2 - \frac{1}{4}t + \frac{3}{4} \end{pmatrix} \\ \mathbf{X} &= c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{-2t} + \begin{pmatrix} -\frac{1}{4}t^2 + \frac{1}{4}t - 2 \\ \frac{3}{4}t^2 - \frac{1}{4}t + \frac{3}{4} \end{pmatrix} \end{split}$$

$$\mathbf{X}_{c} = c_{1} \begin{pmatrix} \frac{1}{9} \\ 1 \end{pmatrix} e^{7t} + c_{2} \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix} e^{3t}$$

$$\mathbf{X}_{p} = \begin{pmatrix} a \\ b \end{pmatrix} e^{t}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} e^{t} = \begin{pmatrix} 4 & \frac{1}{3} \\ 9 & 6 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} e^{t} + \begin{pmatrix} -3 \\ 10 \end{pmatrix} e^{t}$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4a + \frac{1}{3}b - 3 \\ 9a + 6b + 10 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3a + \frac{1}{3}b - 3 \\ 9a + 5b + 10 \end{pmatrix}$$

$$\mathbf{X}_{p} = \begin{pmatrix} \frac{55}{36} \\ -\frac{19}{4} \end{pmatrix} e^{t}$$

$$\mathbf{X} = c_{1} \begin{pmatrix} \frac{1}{9} \\ 1 \end{pmatrix} e^{7t} + c_{2} \begin{pmatrix} -\frac{1}{3} \\ 1 \end{pmatrix} e^{3t} + \begin{pmatrix} \frac{55}{36} \\ -\frac{19}{4} \end{pmatrix} e^{t}$$

$$\mathbf{X}_{c} = c_{1} \begin{pmatrix} -2\\3 \end{pmatrix} e^{2t} + c_{2} \begin{pmatrix} -1\\1 \end{pmatrix} e^{t}$$

$$\mathbf{X}_{p} = \begin{pmatrix} a\\b \end{pmatrix}$$

$$\begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} -1 & -2\\3 & 4 \end{pmatrix} \begin{pmatrix} a\\b \end{pmatrix} + \begin{pmatrix} 3\\3 \end{pmatrix}$$

$$= \begin{pmatrix} -a - 2b + 3\\3a + 4b + 3 \end{pmatrix}$$

$$\mathbf{X}_{p} = \begin{pmatrix} -9\\6 \end{pmatrix}$$

$$\mathbf{X} = c_{1} \begin{pmatrix} -2\\3 \end{pmatrix} e^{2t} + c_{2} \begin{pmatrix} -1\\1 \end{pmatrix} e^{t} + \begin{pmatrix} -9\\6 \end{pmatrix}$$

$$\begin{pmatrix} -4\\5 \end{pmatrix} = c_{1} \begin{pmatrix} -2\\3 \end{pmatrix} + c_{2} \begin{pmatrix} -1\\1 \end{pmatrix} + \begin{pmatrix} -9\\6 \end{pmatrix}$$

$$\begin{pmatrix} 0\\0 \end{pmatrix} = \begin{pmatrix} -2c_{1} - c_{2} - 5\\3c_{1} + c_{2} + 1 \end{pmatrix}$$

$$\mathbf{X} = 4 \begin{pmatrix} -2\\3 \end{pmatrix} e^{2t} - 13 \begin{pmatrix} -1\\1 \end{pmatrix} e^{t} + \begin{pmatrix} -9\\6 \end{pmatrix}$$

(a)
$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \begin{pmatrix} -\frac{3}{100} & \frac{1}{100} \\ \frac{1}{50} & -\frac{1}{25} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

(b)
$$\mathbf{X}_{c} = c_{1} \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} e^{-t/20} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/50}$$

$$\mathbf{X}_{p} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{3}{100} & \frac{1}{100} \\ \frac{1}{50} & -\frac{1}{25} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{3}{100}a + \frac{1}{100}b \\ \frac{1}{50}a - \frac{1}{25}b + 1 \end{pmatrix}$$

$$\mathbf{X}_{p} = \begin{pmatrix} 10 \\ 30 \end{pmatrix}$$

$$\mathbf{X} = c_{1} \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} e^{-t/20} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/50} + \begin{pmatrix} 10 \\ 30 \end{pmatrix}$$

$$\begin{pmatrix} 60 \\ 10 \end{pmatrix} = c_{1} \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 10 \\ 30 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}c_{1} + c_{2} - 50 \\ c_{1} + c_{2} + 20 \end{pmatrix}$$

$$\mathbf{X} = -\frac{140}{3} \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} e^{-t/20} + \frac{80}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-t/50} + \begin{pmatrix} 10 \\ 30 \end{pmatrix}$$

(c)
$$\lim_{t \to \infty} x_1(t) = \lim_{t \to \infty} \frac{70}{3} e^{-t/20} + \frac{80}{3} e^{-t/50} + 10$$

$$= 10$$

$$\lim_{t \to \infty} x_1(t) = \lim_{t \to \infty} -\frac{140}{3} e^{-t/20} + \frac{80}{3} e^{-t/50} + 30$$

$$= 30$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$\mathbf{X}_c = c_1 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^t + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{X}_p = \mathbf{\Phi}(t) \int \mathbf{\Phi}^{-1}(t) \mathbf{F} dt$$

$$= \begin{pmatrix} 3e^t & 1 \\ 2e^t & 1 \end{pmatrix} \int \begin{pmatrix} e^{-t} & -e^{-t} \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -1 \end{pmatrix} dt$$

$$= \begin{pmatrix} 3e^t & 1 \\ 2e^t & 1 \end{pmatrix} \int \begin{pmatrix} 5e^{-t} \\ -11 \end{pmatrix} dt$$

$$= \begin{pmatrix} 3e^t & 1 \\ 2e^t & 1 \end{pmatrix} \begin{pmatrix} -5e^{-t} \\ -11t \end{pmatrix}$$

$$= \begin{pmatrix} -15 - 11t \\ -10 - 11t \end{pmatrix}$$

$$\mathbf{X} = c_1 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^t + c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -15 - 11t \\ -10 - 11t \end{pmatrix}$$

$$\begin{split} \mathbf{X}' &= \begin{pmatrix} 3 & -5 \\ \frac{3}{4} & -1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{t/2} \\ \mathbf{X}_c &= c_1 \begin{pmatrix} \frac{10}{3} \\ 1 \end{pmatrix} e^{3t/2} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{t/2} \\ \mathbf{X}_p &= \begin{pmatrix} \frac{1}{2}(-15 - 13t) \\ \frac{1}{4}(-9 - 13t) \end{pmatrix} e^{t/2} \\ \mathbf{X} &= c_1 \begin{pmatrix} \frac{10}{3} \\ 1 \end{pmatrix} e^{3t/2} + c_2 \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{t/2} + \frac{1}{4} \begin{pmatrix} -30 - 26t \\ -9 - 13t \end{pmatrix} e^{t/2} \end{split}$$

$$\begin{split} \mathbf{X}_{c} &= c_{1} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{4t} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} \\ \mathbf{X}_{p} &= \begin{pmatrix} 2e^{2t}t - 2e^{4t}t - e^{2t} + e^{4t} \\ 2e^{2t}t + 2e^{4t}t + e^{2t} + e^{4t} \end{pmatrix} \\ &= \begin{pmatrix} -2 \\ 2 \end{pmatrix} t e^{4t} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} t e^{2t} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} \\ \mathbf{X} &= c_{1} \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{4t} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{2t} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} t e^{4t} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4t} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} t e^{2t} \\ &+ \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= c_{1} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \end{pmatrix} &= \begin{pmatrix} -c_{1} + c_{2} - 1 \\ c_{1} + c_{2} + 1 \end{pmatrix} \\ \mathbf{X} &= \begin{pmatrix} 2 \\ 0 \end{pmatrix} e^{4t} + \begin{pmatrix} -2 \\ 2 \end{pmatrix} t e^{4t} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} t e^{2t} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t} \end{split}$$

$$\mathbf{X}_{c} = c_{1} \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-12t} + c_{2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-2t}$$

$$\mathbf{X}_{p} = \frac{1}{29} \begin{pmatrix} -76\cos t + 332\sin t \\ -168\cos t + 276\sin t \end{pmatrix}$$

$$\mathbf{X} = c_{1} \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-12t} + c_{2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-2t} - \frac{4}{29} \begin{pmatrix} 19 \\ 42 \end{pmatrix} \cos t + \frac{4}{29} \begin{pmatrix} 83 \\ 69 \end{pmatrix} \sin t$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = c_{1} \begin{pmatrix} -3 \\ 1 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - \frac{4}{29} \begin{pmatrix} 19 \\ 42 \end{pmatrix}$$

$$= \begin{pmatrix} -3c_{1} + c_{2} - \frac{76}{29} \\ c_{1} + 3c_{2} - \frac{168}{29} \end{pmatrix}$$

$$\mathbf{X} = -\frac{6}{29} \begin{pmatrix} -3 \\ 1 \end{pmatrix} e^{-12t} + 2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-2t} - \frac{4}{29} \begin{pmatrix} 19 \\ 42 \end{pmatrix} \cos t + \frac{4}{29} \begin{pmatrix} 83 \\ 69 \end{pmatrix} \sin t$$

$$\mathbf{A} = \begin{pmatrix} 5 & -2 \\ 21 & -8 \end{pmatrix}$$

$$\mathbf{F} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} 2 & 1 \\ 7 & 3 \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} -14 \\ 34 \end{pmatrix}$$

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} -2y_1 - 14 \\ -y_2 + 34 \end{pmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} c_1 e^{-2t} - 7 \\ c_2 e^{-t} + 34 \end{pmatrix}$$

$$\mathbf{X} = c_1 \begin{pmatrix} 2 \\ 7 \end{pmatrix} e^{-2t} + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^{-t} + \begin{pmatrix} 20 \\ 53 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} 4+t \\ 4-t \end{pmatrix}$$

$$\mathbf{Y}' = \mathbf{DY} + \mathbf{G}$$

$$= \begin{pmatrix} 10y_1 + 4 + t \\ 4-t \end{pmatrix}$$

$$\mathbf{Y} = \begin{pmatrix} c_1 e^{10t} - \frac{1}{10}t - \frac{41}{100} \\ -\frac{1}{2}t^2 + 4t + c_2 \end{pmatrix}$$

$$\mathbf{X} = \mathbf{PY}$$

$$= c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{10t} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix} t^2 + \begin{pmatrix} -\frac{41}{30} \\ \frac{39}{10} \end{pmatrix} t - \frac{41}{100} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$