

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S1 Paper WST01/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log number P63150A
Publications Code WST01_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response they</u> <u>wish to submit</u>, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer that is the most complete.
- 7. Ignore wrong working or incorrect statements following a correct answer

Question Number	Scheme	Marks
1. (a)	First Counter Red Red Yellow Red Red Yellow Yellow Yellow Yellow	B1 B1
(b)	$P(Y) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} + \frac{2}{12} = \left\{ \frac{42}{132} \text{ or } \frac{7}{22} \right\} \underline{\text{or}}$ $P(\text{Yellow and two counters}) = \frac{7}{12} \times \frac{2}{11} + \frac{3}{12} \times \frac{2}{11} = \left\{ \frac{20}{132} \text{ or } \frac{5}{33} \right\}$	(2) M1
	$\frac{P([Y \cap R] \cup [Y \cap B])}{P(Y)} = \frac{\frac{20}{132}}{\frac{42}{132}}$	M1
	$=\frac{20}{42} \text{or} \frac{10}{21} \text{oe}$	A1 (3) [5 marks]
	Notes	
(a)	1 st B1 for the remaining probs on first set of branches and at least one on 2 nd B1 for a fully correct tree diagram with all the correct probabilities	set
(b)	1 st M1 for a correct ft expression for P(Y) or P(Yellow and two counters)ft the diagram eg $1 - \frac{7}{12} \times \frac{6+3}{11} - \frac{3}{12} \times \frac{7+2}{11}$ NB: The method is implied by the numbers in curly brackets but we disee them to award the mark.	
	2 nd M1 for a correct ratio formula (symbols or words) <u>and</u> at least one correct fully correct ft ratio. Do not follow through probabilities > 1 or < 0	ft prob or
	A1 for $\frac{10}{21}$ or exact equivalent. (Allow $0.\dot{4}7619\dot{0}$) NB if an exact correct fraction is not given and an awrt 0.476 is given $M1M1A0$ if from correct working Generally if the answer is correct then award full marks (unless from incorrect working) or notes indicate otherwise	

_	stion nber	Scheme	Marks				
2.	(a)	B and C	B1				
	(b)	A and C independent gives:	(1)				
		$P(C) \times 0.65 = 0.13 \text{ or } 0.65 \times (r + 0.13) = 0.13 \text{ or } 0.65 \times (0.48 - s) = 0.13$	M1				
		P(C) = 0.2 or $r + 0.13 = 0.2$ or $0.48 - s = 0.2$					
		$r = \{0.2 - 0.13\} = \underline{0.07} \text{ or } s = \{0.48 - 0.2\} = \underline{0.28}$ P(A) + r + s = 1 or 0.65 + "0.07" + s = 1 or 0.65 + "0.28" + r = 1					
		s = 1 - 0.72 = 0.03 + 0.07 + 0.03 +	M1 A1				
		, <u> </u>	(5)				
	(c)	$P[(B \cup C)] = "0.2" + q \text{ or } 0.13 + "0.07" + q$	B1ft				
		$P(A \cap C') = p + q \{= 0.52\}$	B1				
		$\left\{ P\left[(A \cap C') \cap (B \cup C) \right] = q \Rightarrow \right\} "(p+q)" \times "(0.2+q)" = q \text{ or}$					
		" $(p+q)$ "×" $(0.13+"0.07"+q)$ " = q or " $(p+q)$ "×" $(1-s-p)$ " = $0.52-p$	M1				
		[Using $p + q = 0.52$] $0.52 \times "(0.2 + q)" = q$ or $0.52(0.72 - p) = 0.52 - p$	M1				
			1711				
		$q = \frac{13}{60}$	A1				
		$p = \frac{91}{300}$	A1				
		$\frac{P}{300}$					
		Notes	(6) [12 marks]				
	(a)	B1 B and C seen. If they include A then B0	12 marks				
	(b)	1^{st} M1 for a correct equation for P(C) using independence.					
	, ,	1 st A1 for $P(C) = 0.2$ correct linear equation for r or s					
		2^{nd} A1 for either $r = 0.07$ or $s = 0.28$					
		2^{nd} M1 for using $\sum p = 1$ Allow letter r and s or their values for r and s provided					
		probabilities.					
		3^{rd} A1 for both $s = 0.28$ and $r = 0.07$					
	(a)	NB: The quotations around the 0.07 ("0.07") imply that we ft their value 1^{st} B1ft for an expression (in a) for $P(B \cup C)$ ft their value of r or their "0.2"	ie				
	(c)	for an expression (in q) for $T(B \cup C)$ it then value of T of their 0.2					
		eg 0.13 + "their r " + q Implied by 1^{st} or 2^{nd} M1 below. 2^{nd} B1 for a correct expression for $P(A \cap C')$ in terms of p and q or 0.52					
		Implied by 1st or 2nd M1below					
		1 st M1 for a correct use of independence (ft their probabilities), values or lette	rs.				
		Implied by 2^{nd} M1 2^{nd} M1 using $p + q = 0.52$ to gain a linear equation in one variable					
		using $p + q = 0.32$ to gain a linear equation in one variable 1st A1 for a correct fraction for q	-				
		2^{nd} A1 for a correct fraction for p	C				
		SC: If both p and q are given as equivalent	0.07				
		recurring decimals award A0A1 eg 0.216 and 0.303	0.28				

Question Number	Scheme	Marks	
3 (a)	Width = 2.5 (cm)	B1	
	1.5 cm ² for freq of 5 so $6 \times 1.5 = 9$ cm ² for freq of 30 or fd $= \frac{5}{3}$ $w \times h = 9$	M1	
	So $h = 9 \div 2.5$ or $6 \div \frac{5}{3} = 3.6$ (cm)	A1	
		(3)	
(b)	$Q_2 = [12] + \frac{16}{25} \times 3$ allow use of $(n+1)$ giving $[12] + \frac{16.5}{25} \times 3$	M1	
	$= 13.92 = \text{awrt } \underline{13.9}$	A1 (2)	
(c)(i)	$\sum fx = 5 \times 6.5 + 13 \times 9 + 16 \times 11 + 25 \times 13.5 + 30 \times 17.5 + 11 \times 24 = 1452$	M1	
	$\bar{x} = 14.52 = \text{awrt } \underline{14.5}$	A1	
(ii)	$\int fx^2 = 6.5^2 \times 5 + 9^2 \times 13 + 11^2 \times 16 + 13.5^2 \times 25 + 17.5^2 \times 30 + 24^2 \times 11 = 23280$	(2) M1	
	$\sigma_x = \sqrt{\frac{"23280"}{100} - ("14.52")^2} \text{ or } \sqrt{21.9696}$	M1	
	$\sigma_{\rm r} = 4.687 = \text{awrt } \underline{4.69}$	A1	
(d)	$\frac{1}{2} \times 13 + 16 + 25 + 30 + \frac{1}{4} \times 11$	(3) M1	
(a)	So proportion is 80.25% or 0.8025 awrt 0.803	A1	
	30 proportion is 80.23 70 of 0.8023 awit 0.803	(2)	
(e)	Profit = $2.2 \times "0.8025" + 0.8 \times \frac{0.75 \times 11}{100} - 1.2 \times "\left(1 - \left[0.8025 + \frac{0.75 \times 11}{100}\right]\right)"$	M1	
	= 1.6935 awrt <u>1.7 (p)</u>	A1 (2)	
()	Notes	[14 marks]	
(a)	B1 for width = 2.5 (cm) M1 for sight of 9 cm ² or $w \times h = 9$ or fd = $\frac{5}{3}$ (o.e.)		
	A1 for height = 3.6 (cm)		
(b)			
	$ \text{for } \frac{16}{25} \times 3 \text{ or } \frac{9}{25} \times 3 \text{ or } \frac{m-12}{15-m} = \frac{16}{9} $		
	For any correct equation leading to Q_2 or correct fraction as part of Q_2		
	A1 for awrt 13.9 (use of $(n + 1)$ giving 13.98 = awrt 14.0)		
(c)(i)	M1 for attempt at Σfx with at least 3 correct terms or $900 < \Sigma fx < 1800$		
	for info $\Sigma fx = 32.5 + 117 + 176 + 337.5 + 525 + 264$ A1 for awrt 14.5 (correct answer only 2/2)		
(ii)	1^{st} M1 for attempt at Σfx^2 with at least 3 correct terms or $20\ 000 < \Sigma fx^2 < 26\ 0$	000	
	for info $\Sigma fx^2 = 211.25 + 1053 + 1936 + 4556.25 + 9187.5 + 6336$	*	
	$\frac{1}{2^{\text{nd}} \text{ M1}}$ for a correct expression including $\sqrt{\text{ (ft their } \Sigma fx^2 \text{ if clear it is } \Sigma fx^2) Do$	not allow	
	$\Sigma^{\text{Ind}} M \Gamma^{\text{Total Lattice of Fig. 1}} (\Sigma f x)^2 \text{ for } \Sigma f x^2$		
	A1 for awrt 4.69 (allow $s = 4.7107$ awrt 4.71) (correct answer only 3/	3)	
(d)	M1 for attempt at a correct expression (allow 1 error or omission) eg $100 - \left(5 + \frac{13}{2}\right) - \frac{33}{4}$		
	A1 for awrt 80.3% or 0.803	,	
(e)	M1 for a correct expression ft their 0.8025 o.e. eg		
	$[2.2 \times (100 - 11.5 - 8.25) + 0.8 \times 8.25 - 1.2 \times 11.5] \div 100$		
	Condone $[2.2 \times "80" + 0.8 \times (8) - 1.2 \times (12)] \div 100$		
	A1 for awrt 1.7 Allow £0.017 (this must have units)		

Question Number	Scheme	Marks
4. (a)	$P(W < 120) = P\left(Z < \frac{120 - 165}{35}\right)$	M1
	$= P(Z < -1.2857) = 1 - 0.9015 \text{ or } 1 - 0.9007285$ $= 0.09927 = \text{awrt } \textbf{0.0985} \sim \textbf{0.0994}$	M1 A1 (3)
(b)	e.g. $P(W > x) = \frac{1}{3}$ gives $\frac{x - 165}{35} = \pm 0.43$ (calculator 0.430727)	M1B1
	Limits 149.9245 to 180.0754 awrt <u>150</u> to <u>180</u>	A1, A1 (4)
(c)	$P(W < 200 \mid W > "180") \underline{\text{or}} \frac{P("180" < W < 200)}{P(W > "180") \text{or} \frac{1}{3}}$	M1
	$=\frac{0.8413(44739)-\frac{2}{3}}{\frac{1}{3}}$	A1 (num)
	= 0.52403 (0.523~0.5264)	A1 (3)
(d)	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times 3!$ $= \frac{2}{9}$	M1;M1
	$=\frac{2}{9}$	A1
		(3) [13 marks]
	Notes	
(a)	1^{st} M1 for standardising with 120 (allow 210), 165 and 35. Accept \pm 2^{nd} M1 for attempting $1-p$ [where $0.85] A1 for awrt 0.0985 \sim 0.0994 (Correct ans only 3/3)$	
(b)	M1 for standardising with x (o.e.) 165 and 35 and setting equal to a z value, $(Accept \frac{165 - x}{35} = \pm z \text{ where } 0.4 < z < 0.5)$	0.4 < z < 0.5
	B1 for use of $z = 0.43$ or better We must see 0.43 or better. 1 st A1 for lower limit of awrt 150 2 nd A1 for upper limit of awrt 180	
SC	A0A1 for two limits symmetrically placed about 165 provided M1 scored NB: correct answers with no working can score M1B0A1A1	
(c)	M1 for a correct probability statement (either form) ft their 180 or a correct 1st A1 for a correct numerator (awrt 0.175) 2nd A1 for an answer in the range awrt 0.523~0.5264 (use of 180 gives 0.5263)	
(d)	$1^{\text{st}} M1$ for $\left(\frac{1}{3}\right)^3$ (or equivalent)	
	2^{nd} M1 for $p \times 3!$ (or equivalent) where 0	
	A1 for $\frac{2}{9}$ or any exact equivalent	

Question Number		Scheme	Marks
5. (a)	$\{\mathrm{E}(X)=\}$	$\{ -2a - b + 0 \times c + b + 4a \text{or} 2a $ $\{ 2a = 0.5 \text{ so } \} \underline{a = 0.25} $	M1 A1
(b)	(2(11)	$= \{(-2)^2 \times a + (-1)^2 \times b + 0 + 1^2 \times b + 4^2 \times a \text{ or } 20a + 2b \text{ (o.e.)}$	M1 (2)
	($X(x) = \frac{1}{2}a^{2} + 2b^{2} - 0.5^{2}$	M1
	20a + 1	$2b - 0.25 = 5.01$ (o.e.) e.g. "4.75" + $2b = 5.01$ { $2b = 0.26$ so } $\underline{b} = 0.13$	A1 A1
	III Isa c	of sum of probs = 1 to calculate a 2 nd value} $c = 0.24$	A1 A1ft
	{086.0	of sum of proof – 1 to calculate a 2 value $\frac{c - 0.24}{c}$	(5)
(a)(i)	(E(V)	$=5-8\times0.5$ } = <u>1</u>	B1 (3)
(c)(i) (ii)		, -	M1
(11)	{ var(1	$Y(Y) = \{ (-8)^2 \times 5.01 $ = 320.64 awrt 321	A1
		- 320.04 awit <u>321</u>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
(d)	$\Delta X^2 >$	>5-8X	M1 (3)
	7/1/	$(2X-1)(2X+5) > 0 \implies X > 0.5$	M1A1
	So need 2	X = 1 or 4 or probability of $a + b$	M1
		= 0.38	A1
			(5)
		NY .	[15 marks]
(a)	M1	Notes for any correct expression for $E(X)$ in terms of a (or a , b , c)	
(a)	A1	for $a = 0.25$	
(b)	1 st M1 2 nd M1	for attempt at an expression for $E(X^2)$ with at least 3 correct non-zero for a correct expression for $Var(X)$ eg" $18a - c + 1$ " -0.5^2 Allow wi	
	2 1111	of a substituted	til tileli valae
	1 st A1	for a correct equation for b (or possibly c) eg" $18a - c + 1$ " - $0.5^2 =$	5.01 Allow
	2 nd A1	with their value of a substituted for either $b = 0.13$ or $c = 0.24$	
	3^{rd} A1ft	for using $c = 1 - 2 \times "0.25" - 2 \times "0.13"$ or $b = (1 - 2 \times "0.25" - "0.24")$	")÷2 to gain
	3 AIII	the correct ft answer for their 2 nd value	
(c)	B1	for $\{E(Y) = \} 1$	
	M1	for correct use of $Var(aX + b) = a^2 Var(X)$	
	A1	for awrt 321	
(d)	1 st M1	for correct quadratic inequality (may be inside prob statement) or tab	le of values
	2 nd M1	for an attempt to solve or identifying correct X values	
	1 st A1 3 rd M1	for $X > 0.5$ [may also have $X < -2.5$]	
	$2^{\text{nd}} \text{ A}1$	for realising need $X = 1$ and 4 only or answer of their $(a + b)$ for 0.38 (or exact equivalent) only (correct ans only 5/5)	

Ques Num	ber	Scheme		Marks		
6.	(a)	$\left\{S_{yy}=\right\}42$	$2.63 - \frac{23.7^2}{16} = [7.524375]$	B1		
	(b)	Use of \bar{y}	Use of $\overline{y} = 3.684 - 0.3242\overline{x}$; so $\sum x = 16 \times \left(\frac{3.684 - \frac{23.7}{16}}{0.3242}\right) = 108.71067$			
		$\left\{S_{xx}=\right\}75$	$56.81 - \frac{("108.71")^2}{16}$; = 18.18435 awrt 18.2	M1; A1	4)	
	(c)	$b = \frac{S_{xy}}{S_{xx}} =$	$\Rightarrow S_{xy} = "18.1843" \times (-0.3242)[=-5.8953]; r = \frac{"-5.89536"}{\sqrt{"18.184" \times 7.524375}}$ $= -0.50399 = -0.49 \sim -0.51$	M1; M1	.,	
	(d)		in the regression line gives $y = 3.0356$	B1 (3		
	(e)		$\sqrt{\frac{S_{xx}}{n}} = \sqrt{\frac{"18.184"}{16}} = 1.066$ $"108.71"$	M1		
	(f)	The proba	are: $\frac{"108.71"}{16} \pm 3 \times "1.066" = 3.5965 \sim 9.9929 = awrt 3.6 \sim 10$ ability of $x = 2$ being in the range is very small;	M1, A1 (3 B1ft;	3)	
	(g)	so Behrouz's estimate is <u>unreliable</u> Should use regression of x on y to estimate unemployment or equivalent			2)	
			So Andi's suggestion is not suitable <u>or</u> not to be recommended	dB1 (2 [16 marks	_	
		Notes				
	(a)	B1	Value given so must see sight of a correct expression – allow 561.69 for	or 23.7^2		
	(b)	1 st M1	for clear use of regression line with \overline{y} or $\sum y$			
		1st A1	for $\sum x = \text{awrt } 109$			
		_	for a correct expression for S_{xx} ft their Σx			
		2^{nd} A1	for awrt 18.2			
	(c)		for use of gradient to find S_{xy}			
		2 nd M1 A1	for a correct expression for r ft their S_{xy} and S_{xx} for an answer in the range $-0.49 \sim -0.51$			
	(d)	B1	for sight of $y = 3.03$ or better. Allow 3.04	_		
	(e)	1 st M1	for a correct attempt at st. dev. ft their S_{xx} or $\sqrt{\frac{756.81}{16} - \left(\frac{"108.71"}{16}\right)^2}$	ft their Σx	;	
		2 nd M1	for one correct calcft their values			
	(f)	A1	for a correct reason ft their range in part (e) ear $x = 2$ is outside the range	a Allow		
	(f)	1 st B1ft	for a correct reason ft their range in part (e) eg $x = 2$ is <u>outside</u> the range extrapolation	c. Allow		
	(g)		dep on 1^{st} B1 for stating a correct conclusion for their range for a suitable reason based on reg line, eg regression line $(y \text{ on } x)$ can ot to estimate wages. Allow x instead of unemployment and y instead of y	•	1	
		2 nd dB1	to estimate wages. Allow x instead of unemployment and y instead of wa 2^{nd} dB1 dep on 1^{st} B1 for suggesting not suitable (or equivalent)			