ARS vaje 7

Zmogljivost CPE

CPI – Clocks Per Instruction

$$CPI = \sum_{i=1}^{n} CPI_{i} \cdot p_{i} = \frac{\text{število ciklov}}{\text{število ukazov}} = \frac{\text{čas izvajanja} \cdot frekvenca}{\text{število ukazov}}$$

- *CPI*; je število urinih period za ukaz vrste i
- p_i je relativna pogostost (verjetnost) posamezne vrste ukaza
- če za CPI_i vzamemo najmanjše možno število urinih period, dobimo CPI_{idealni}, ki ne vključuje izgubljenih urinih period zaradi zgrešitev v predpomnilniku

MIPS - Millions Instructions Per Second

$$MIPS = \frac{f_{CPE}}{CPI \cdot 10^6} = \frac{1}{CPI \cdot t_{CPE} \cdot 10^6}$$

- f_{CPF} frekvenca ure
- t_{CPE} urina perioda (čas za izvedbo enega cikla)
- CPI Cycles per Instruction

CPE čas

$$\check{c}as\ izvajanja = CPE_{\check{c}as} = \frac{\check{s}tevilo\ ukazov}{MIPS \cdot 10^6} =$$

$$=$$
 \check{s} $teviloukazov \cdot CPI \cdot t_{CPE} =$

$$= \frac{\breve{s}tevilo~ukazov \cdot CPI}{f_{CPE}}$$

Primer

Pri nekem programu je potrebno izvršiti N=1620 ukazov. Pogostost in trajanje posameznih vrst ukazov sta naslednja:

Vrsta ukaza	Število urinih period	Pogostost
Prenosi podatkov	8	31 %
ALE ukazi	5	48 %
Kontrolni ukazi	6	21 %

- Kolikšen je CPI za ta program?
- Koliko MIPS ima ta CPE, če je frekvenca ure f_{CPE} = 300 MHz?
- Koliko časa CPE izvaja ta program?

Naloga 7.1

Algoritem na procesorju A implementiramo s programom s 100 ukazi in CPI 1,2. Isti algoritem na procesorju B implementiramo s programom s 120 ukazi in CPI 1,5.

Primerjajte zmogljivosti procesorjev, če A deluje s frekvenco 2 GHz in B s frekvenco 2,8 GHz.

Naloga 7.2

Sistem S1 stane 10.000 €, sistem S2 pa 15.000 €

Program	Čas na S1 (s)	Čas na S2 (s)
1	10	5
2	3	4

- a) Prvi uporabnik bo uporabljal samo program 1. Kateri od sistemov je zanj bolj učinkovit (glede na ceno)? Kakšna je razlika?
- b) Drugi uporabnik bo uporabljal oba programa enako pogosto. Kateri od obeh sistemov je zmogljivejši v tem primeru in kateri bolj učinkovit (glede na ceno)?
- c) Tretji uporabnik želi, da se program 1 izvede vsaj 200-krat v eni uri. V ostalem času pa naj se čim večkrat izvede program 2. Če sistem lahko izvede program 1 200-krat v eni uri, se zmogljivost meri v številu izvedb programa 2. Kateri sistem je zmogljivejši? Kateri je bolj učinkovit?

Naloga 7.3 (izpitna)

Ugotovili smo, da se na CPE pogosto izvajajo programi, ki z dvema zaporednima ukazoma naložita vrednost iz pomnilnika v register in nato to vrednost prištejejo k drugemu registru – na primer:

```
load R1, B add R2, R2, R1
```

Arhitekturo tega CPE želimo izboljšati tako, da uvedemo nov ukaz, ki združuje oba zgornja ukaza:

```
add R2, B
```

Dodajanje novega ukaza v nabor ukazov povzroči, da je ob uporabi iste tehnologije potrebno podaljšati cikel za 10 %. Poleg tega se CPI v povprečju poveča za 2 %.

(nadaljevanje na naslednji prosojnici)

Naloga 7.3 (izpitna)

Ugotovite, najmanj kolikšen odstotek obstoječih load ukazov mora odstraniti nov ukaz, da bo izboljšan CPE (po spremembi) programe izvajal vaj tako hitro kot prej (pred spremembo).

Deleži ukazov:

Vrsta ukaza	Odstotek
load	15 %
add	20 %
ostali	65 %

Namig: začnite z izrazom CPEčas_{novi} ≤ CPEčas_{stari}