PERTEMUAN 3:

GRAPH TERAPAN

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai Terminologi graph, Anda harus mampu:

- 1.1 Mengerti apa itu Terminologi Graph
- 1.2 Dapat membedakan graph sederhana dan tak sederhana .
- 1.3 Dapat menggambar graph berarah dan tak berarah

B. URAIAN MATERI

Tujuan Pembelajaran 1.1:

Mengetahui Terminologi Graph

TERMINOLOGI GRAF

Gambar 1.3. Terminologi Graf

1. Ketetanggaan (Adjacent)

Dua buah simpul (vertex) dikatakan *bertetangga* bila keduanya terhubung langsung oleh sisi.

Pada graf G_1 : simpul 1 bertetangga dengan simpul 2 dan 3,

simpul 1 tidak bertetangga dengan simpul 4.

2. Bersisian (*Incidency*)

Untuk sembarang sisi $e = (v_i, v_j)$ dikatakan

e bersisian dengan simpul v_i , atau

e bersisian dengan simpul v_i

Pada graf G2: e2 bersisian dengan simpul 1 dan simpul 2 e3

bersisian dengan simpul 1 dan simpul 3,

tetapi e4 tidak bersisian dengan simpul 1.

3. Simpul Terpencil (*Isolated Vertex*)

Simpul terpencil ialah simpul yang tidak mempunyai sisi yang bersisian dengannya.

Tinjau graf G_3 : simpul 5 adalah simpul terpencil.

4. Graf Kosong (null graph atau empty graph)

Graf kosong adalah graf yang himpunan sisinya merupakan himpunan kosong (N_n) .

Dengan kata lain graf kosong adalah graf yang tidak memiliki sisi.

5. Derajat (Degree)

Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut. Notasi: d(v)

Tinjau graf G_1 :

$$d(1) = d(4) = 2$$

$$d(2) = d(3) = 3$$

Tinjau graf G_3 : d(5) = 0 \rightarrow simpul terpencil

 $d(4) = 1 \rightarrow \text{simpul anting-anting } (pendant vertex)$

Tinjau graf G_2 : d(1) = 3 \rightarrow bersisian dengan sisi ganda

d(3) = 4 \rightarrow bersisian dengan sisi gelang (loop)

Pada graf berarah,

 $d_{in}(v) = derajat-masuk (in-degree)$

= jumlah busur yang masuk ke simpul v

 $d_{\text{out}}(v) = \text{derajat-keluar} (out-degree)$

= jumlah busur yang keluar dari simpul v

$$d(v) = d_{\text{in}}(v) + d_{\text{out}}(v)$$

Gambar 1.5. Derajat simpul graf berarah

Pada Gambar 1.5:

$$d_{in}(P) = 1$$
 dan $d_{out}(P) = 3$ maka $d(P) = 4$
 $d_{in}(Q) = 4$ dan $d_{out}(Q) = 1$ maka $d(Q) = 5$
 $d_{in}(R) = 1$ dan $d_{out}(R) = 1$ maka $d(R) = 2$
 $d_{in}(S) = 1$ dan $d_{out}(S) = 2$ maka $d(S) = 3$

<u>Lemma Jabat Tangan</u>: Jumlah derajat semua simpul pada suatu graf adalah genap, yaitu dua kali jumlah sisi pada graf tersebut.

Dengan kata lain, jika G = (V, E), maka :

$$\sum_{v \in V} d(v) = 2|E|$$

Tinjau graf
$$G_1$$
: $d(1) + d(2) + d(3) + d(4) = 2 + 3 + 3 + 2 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_2$$
: $d(1) + d(2) + d(3) = 3 + 3 + 4 = 10$
= $2 \times \text{jumlah sisi} = 2 \times 5$

Tinjau graf
$$G_3$$
: $d(1) + d(2) + d(3) + d(4) + d(5)$
= $2 + 2 + 3 + 1 + 0 = 8$
= $2 \times \text{jumlah sisi} = 2 \times 4$

Contoh 5.2.

Diketahui graf dengan lima buah simpul. Dapatkah kita menggambar graf tersebut jika derajat masing-masing simpul adalah:

- (a) 2, 3, 1, 1, 2
- (b) 2, 3, 3, 4, 4

Penyelesaian:

- (a) *tidak dapat*, karena jumlah derajat semua simpulnya ganjil (2 + 3 + 1 + 1 + 2 = 9).
- (b) *dapat*, karena jumlah derajat semua simpulnya genap (2+3+3+4+4=16).

6. Lintasan (Path)

Lintasan yang panjangnya n dari simpul awal v_0 ke simpul tujuan v_n di dalam graf G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v_0 , e_1 , v_1 , e_2 , v_2 ,..., v_{n-1} , e_n , v_n sedemikian sehingga $e_1 = (v_0, v_1)$, $e_2 = (v_1, v_2)$, ..., $e_n = (v_{n-1}, v_n)$ adalah sisi-sisi dari graf G. Lintasan 1, 2, 4, 3 pada G_1 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).

Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G_1 memiliki panjang 3.

7. Siklus (Cycle) atau Sirkuit (Circuit)

Lintasan yang berawal dan berakhir pada simpul yang sama disebut **sirkuit** atau **siklus**. Pada graf G_1 : Lintasan 1, 2, 3, 1 adalah sebuah sirkuit.

Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut. Sirkuit 1, 2, 3, 1 pada G_1 memiliki panjang 3.

8. Terhubung (Connected)

Dua buah simpul v_1 dan simpul v_2 disebut **terhubung** jika terdapat lintasan dari v_1 ke v_2 . G disebut **graf terhubung** (connected graph) jika untuk setiap pasang simpul v_i dan v_j dalam himpunan V terdapat lintasan dari v_i ke v_j . Jika tidak, maka G disebut **graf takterhubung** (disconnected graph).

Contoh graf tak-terhubung:

Gambar 1.6.. Graf tak terhubung.

9. Graf Berbobot (Weighted Graph)

Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

Gambar 1.7. Graf berbobot.

C. SOAL LATIHAN/TUGAS

DAFTAR PUSTAKA

Munir, Rinaldi. Matematika Diskrit. Bandung: Informatika, 2005.

Siang, Jong Jek. *Matematika Diskrit dan Aplikasinya pada Ilmu komputer*. Yogyakarta: Andi Offset, 2004.

Wibisono, Samuel. Matematika Diskrit. Yogyakarta: Graha Ilmu, 2008.