Corso di Linguaggi di Programmazione — Parziale M-Z di fine modulo Prova scritta del 20 Dicembre 2021

Tempo a disposizione: 2 ore e 30 minuti.

1. Per quali valori delle variabili X e Y la seguente espressione

$$\mathcal{I}_{X}^{L_{0}}(\mathcal{C}_{Y,L_{1}}^{L_{1}},\mathcal{I}_{L_{1}}^{L_{0}})$$

ha senso? Se si, calcola qualcosa di utile?

- 2. Descrivere le regole di semantica operazionale strutturata per il comando for i:=1 to n do c. (Si suppone che la variabile di controllo i ed anche la variabile n non vengano mai modificate durante l'esecuzione del corpo c. Suggerimento: Ricondursi al caso del while.)
- 3. Fornire una definizione regolare per *password*, che deve essere una qualunque sequenza di lettere e/o cifre che deve terminare con una cifra e deve contenere almeno una lettera minuscola ed almeno una lettera maiuscola (in qualsiasi ordine).
- 4. Classificare il linguaggio $L = \{b^{m+k}a^n \mid n, k \geq 0, m \geq 1\}$, ovvero dire se L è regolare, oppure libero ma non regolare, oppure non libero, giustificando adeguatamente la risposta.
- 5. Si consideri l'espressione regolare $a^*(a|\emptyset)^*b$. Si costruisca l'automa NFA M associato, secondo la costruzione vista a lezione. Si trasformi l'NFA M nell'equivalente DFA M', secondo la costruzione per sottoinsiemi vista a lezione.
- 6. Preso il DFA M' calcolato al punto precedente, si verifichi se è minimo; se non lo fosse, lo si minimizzi per ottenere un DFA M"; poi si ricavi da M" la grammatica regolare associata, seguendo la costruzione vista a lezione; quindi si semplifichi la grammatica ottenuta, eliminando i simboli inutili; infine, si ricavi dalla grammatica l'espressione regolare associata.
- 7. Dati i linguaggi L_1 ed L_2 , il primo libero, ma non regolare, e il secondo regolare, a quale classe appartiene il linguaggio $L_1 \cup L_2 = \{w \mid w \in L_1 \lor w \in L_2\}$? Può $L_1 \cup L_2$ essere finito?
- 8. È vero che, per ogni linguaggio finito L, esiste un DPDA N tale che L=L[N]? Motivare la risposta.
- 9. Mostrare che $L = \{a^n b^n \mid n \ge 2\}$ è libero, costruendo un semplice parser lo reduce de la reduce de la
- 10. Si consideri la seguente grammatica G con simbolo iniziale S:

- (i) Si calcolino i First e i Follow per tutti i nonterminali. (ii) Si rimuovano i simboli inutili per ottenere una grammatica G' senza simboli inutili, che sia equivalente a G. (iii) Si rimuova la produzione epsilon per ottenere una grammatica G'' senza produzioni epsilon, che sia equivalente a G' (a meno di ϵ). (iv) Si rimuovano le produzioni unitarie da G'' per ottenere una grammatica G''' senza produzioni unitarie equivalente a G''.
- 11. Si consideri la grammatica G con simbolo iniziale S:

$$\begin{array}{ccc} S & \to & AB \\ A & \to & \epsilon \mid \mathtt{a}A\mathtt{b} \\ B & \to & \epsilon \mid \mathtt{c}B\mathtt{d} \end{array}$$

- (i) Determinare il linguaggio generato L(G). (ii) Verificare che G è di classe LL(1). (iii) Costruire la tabella di parsing LL(1) per G. (iv) Mostrare il funzionamento del parser LL(1) su input abcc.
- 12. Si consideri la grammatica G del punto precedente. (i) Costruire l'automa canonico LR(0). (ii) Costruire la tabella di parsing SLR(1) e verificare che non ci sono conflitti. (iii) Mostrare il funzionamento del parser SLR(1) per l'input abcc.

E necessario che: . X = L1 . Y = L0

Viene calcolato I Li che non ha senso, perche un interprete per Li saitto in Li non serve a miente.

3) password: = tutto* Hinus tutto* Mains tutto* cifra | tutto* Mains tutto* Minus tutto* cifra

tutto: = Minus / Maius / Cifia

Minus:= [a-z]

Mains:= [A-Z]

Cifra:= [0-9]

4)
$$L = \{b^{m+k} a^{m} | m, k \ge 0, m \ge 1\}$$

Le regolare perché è descrivibile dalle espressione repolare b+a*

$$S \rightarrow BA$$
 $B \rightarrow b \mid b \mid B$
 $A \rightarrow E \mid aA$
 $A \rightarrow E \mid aA$

 $A \rightarrow aA|bC|b$ $C \rightarrow aB|bB$ $D \rightarrow aB|bB$

AsaAlb ma a*b

7) Le libero ma non regolare Le regolare

L1 UL2 affantien alla clane de luberi, perché L2 é pure libers, e i ling. liberi sons chius per unione.

LIULZ non provi essere finito, perché Luti.

LI non é regolare e quindo, poiché testi.

log. finiti sono repolari, LI non é finito.

8) Se Lé finits, allore Lé répolare, allore FDF4 M tale che L= L[M].

Il DFAM pur esse usato per estruire un DPDAN che si comporta esattamente come M, senta mai modificare le pile. Allore N et tale che L= LTM].

9)
$$L = \{a^n b^n | n \ge 2\}$$

 $S \rightarrow aabb | aSb$
 $a, a/\epsilon$ $S \in S/aabb$
 $b, b/\epsilon$ $S \in S/aSb$

 $(q, aaabbb, S) \vdash (q, aaabbb, aSb) \vdash (q, aabbb, Sb)$ $\vdash (q, aabbb, aabbb) \vdash (q, abbb, abbb) \vdash (q, bbb, bbb) \vdash ...$ $\vdash (q, b, b) \vdash (q, \epsilon, \epsilon)$

10) $S \rightarrow AB \mid C \mid aE$ $A \rightarrow E \mid aSB$ $B \rightarrow a \mid bBC$ $C \rightarrow A \mid Cd$ $D \rightarrow c \mid dS$ $E \rightarrow aDE$

First Follow								
5	a, b, E, d	\$.a.b						
A	E, a	# a.b.d						
B	a, b	\$,a,b,d						
C	a, E, d	\$,a,b,d						
D	e, d	a						
E	a	\$, a, b						

E non é un peneratore e, se tolqué, D non é print raggiungs bile

$$S \rightarrow AB \mid C$$

$$A \rightarrow \epsilon \mid aSB$$

$$B \rightarrow a \mid bBC$$

$$C \rightarrow A \mid Cd$$

6' senta simboli inutil

N(G)={A,C,S} simboli annullabil S-ABIBIC G" senta poss. ε N.B. $\varepsilon \notin L(G'')$ A masslas B-albBClbB C - A / Cd / d mentre & E L (G') Le coppie unitaire sons (S,B), (S,C), (C,A), (S,A) TS -, ABI a 16BC 16B 1 Cd 1d 1aSB 1aB

B

C

A GIII A -> a SB | aB B -> a | bBC | bB C -> a SB | aB | Cd | d G" é senta prod. unitarve ed à equivalent

a 6"

$$L(A) = \{a^n b^n | n \ge 0\}$$

 $L(B) = \{c^m d^m | m \ge 0\}$

	a	Ь	C	d	#
	S-AB		S-AB		5-9AB
7		$A \rightarrow \epsilon$	A -> E		AAE
A	A ma Ab	The state of the s	B-CBd	BJE	BAE
B				and an experience of the second secon	

= 19. C. El Follow (3) = {#}

stack input abce# 5\$ AB\$ a A b BB A6B\$ bcc\$ 6B\$ B\$ cc\$ c Bd \$ Bd \$ c\$ c Bdd \$

Bdd #

dd \$

ho finito l'input ma lo stack non e vusto "no-match" fra "d" &"

	a	b	C	d	#	5	A	B
0	54.	RZ	R2		R2	61	62	
1					ACC			63
2	MARKAMATO		57	R4	R4			6 3
3					R1 R2		65	
4	54	R2	R2	2	NZ			
5		S6 R3	R3		R3			68
6 7		1/3	57	R4	R4			0 0
8				S9 R5	R5			
9				1 173	1			