Un conjunto S es Σ -pr sii es el dominio de alguna función Σ -pr. (Solo caso de composición)

 (\Longrightarrow)

Tomemos la función $f = Pred \circ \chi_S^{\omega^n \times \Sigma^{*m}}$. Claramente Dom(f) = S.

 (\Longleftrightarrow)

Probaremos por inducción en k que Dom(F) es Σ -pr para cada $F \in PR_k^{\Sigma}$.

(Caso k=0)

Es trivial ver que todas las funciones de PR_0^{Σ} tienen dominios Σ -pr.

(Caso k+1) (Para esta proposición solo se pide el caso de la composición)

Sea
$$F = g \circ [g_1, \dots, g_{n+m}]$$
 con $g, g_1, \dots, g_{n+m} \in PR_k^{\Sigma}$.

Luego tenemos que, para $l, k, n, m \ge 0$

$$g: D_g \subseteq \omega^n \times \Sigma^{*m} \to O, \ O \in \{\omega, \Sigma^*\}$$

$$g_i: D_{g_i} \subseteq \omega^l \times \Sigma^{*k} \to \omega, \ i = 1, \dots, n$$

$$g_i: D_{g_i} \subseteq \omega^l \times \Sigma^{*k} \to \Sigma^*, \ i = n + 1, \dots, n + m$$

Si $F = \emptyset$ entonces $D_F = \emptyset$ y claramente es Σ -pr.

Caso contrario, por el lemma 18 tenemos que hay funciones Σ -pr $\bar{g}_1, \dots, \bar{g}_{n+m}$ que son Σ -totales tales que:

$$g_i = \bar{g}_i|_{D_{g_i}} para \ i = 1, \dots, n+m$$

Por Hipótesis Inductiva tenemos que los conjuntos $D_{gy}D_{g_1},\ldots,D_{g_{n+m}}$ son Σ -pr y por lo tanto

$$S = \bigcap_{i=1}^{n+m} D_{g_i}$$

también es lo es. Finalmente notar que

$$\chi_{D_F}^{\omega^n \times \Sigma^{*m}} = \chi_{D_g}^{\omega^n \times \Sigma^{*m}} \circ [\bar{g}_1, \dots, \bar{g}_{n+m}] \wedge \chi_S^{\omega^n \times \Sigma^{*m}}$$

lo cual nos dice que D_F es Σ -pr.