STAT 3100 Lecture Note

Week Three (Sep 20 & 22, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/21 22:45:15

Multivariate normal (MVN) distribution (con'd)

Marginals of MVN

- Suppose p-vector $\mathbf{X} = [X_1, \dots, X_p]^{\top}$ and q-vector $\mathbf{Y} = [Y_1, \dots, Y_q]^{\top}$ are jointly normally distributed. Then, \mathbf{X} and \mathbf{Y} are independent $\Leftrightarrow \operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \mathbf{0}_{p \times q}$.
- If X is of MVN, then its all margins are still of MVN. The inverse proposition does NOT hold.
 - Cautionary example: Let Y = XZ, where $X \sim \mathcal{N}(0,1)$; Z is independent of X with $\Pr(Z = 1) = \Pr(Z = -1) = .5$. X and Y both turn out to be of standard normal, but they are not jointly normal. (Why?)

```
if (!("plot3D" %in% rownames(installed.packages())))
  install.packages("plot3D")
set.seed(1)
xsize = 1e4L
X = rnorm(xsize)
Z = rbinom(n = xsize, 1, .5)
Y = (2 * Z - 1) * X
# 3d histogram of (X, Y)
plot3D::hist3D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
# plot the support of joint pdf of (X, Y)
plot3D::image2D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
```

Normal sampling theory (CB Sec. 5.3)

(Default) stochastic representations for χ^2 -, t-, and F-r.v. (HMC Chp. 3)

- $\sum_{i=1}^n X_i^2 \sim \chi^2(n)$ if $[X_1, \dots, X_n]^\top \sim \text{MVN}(\mathbf{0}, \mathbf{I}_n)$;
- $X/\sqrt{Y/n} \sim t(n)$ if $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^2(n)$ are independent;
- $(X/m)/(Y/n) \sim F(m,n)$ if $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$ are independent.

Important identities for iid normal samples

```
Let \mathbf{X} = [X_1, \dots, X_n]^{\top} \sim \text{MVN}(\mu \mathbf{1}_n, \sigma^2 \mathbf{I}_n), \ \bar{X} = n^{-1} \sum_{i=1}^n X_i = n^{-1} \mathbf{1}_n^{\top} \mathbf{X}, \ \text{and} \ S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \bar{X})^2 = (n-1)^{-1} \mathbf{X}^{\top} (\mathbf{I}_n - n^{-1} \mathbf{1}_n \mathbf{1}_n^{\top}) \mathbf{X}, \ \text{where} \ \mathbf{1}_n = [1, \dots, 1]^{\top}, \ \text{i.e., a column } n\text{-vector whose entries are all } \mathbf{1}_n \mathbf{1}_n^{\top} \mathbf{1}_n \mathbf{1}_n^{\top} \mathbf{1}_n^{\top
```

- $n^{1/2}(\bar{X} \mu)/\sigma \sim \mathcal{N}(0,1)$
- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- \bar{X} and S^2 are independent of each other
- $n^{1/2}(\bar{X}-\mu)/S \sim t(n-1)$

Taylor series (CB Def 5.5.20 & Thm 5.5.21)

Taylor series about $x_0 \in \mathbb{R}$ for univariate functions

• Suppose f has derivative of order n+1 within an open interval of x_0 , say $(x_0-\varepsilon,x_0+\varepsilon)$ with $\varepsilon>0$. Then, for $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$,

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k = f(x_0) + \sum_{k=1}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(n)}(x_0) = \frac{d^n}{dx^n} f(x)|_{x=x_0}$.

• Called the Maclaurin series if $x_0 = 0$

Taylor series about $\boldsymbol{x}_0 \in \mathbb{R}^p$ for multivariate functions

Under regularity conditions,

$$f(oldsymbol{x}) pprox f(oldsymbol{x}_0) + (oldsymbol{x} - oldsymbol{x}_0)^ op
abla f(oldsymbol{x}_0) + rac{1}{2} (oldsymbol{x} - oldsymbol{x}_0)^ op \mathbf{H}(oldsymbol{x}_0)(oldsymbol{x} - oldsymbol{x}_0),$$

where the gradient $\nabla f(\boldsymbol{x}_0) = [\frac{\partial}{\partial x_1} f(\boldsymbol{x}_0), \cdots, \frac{\partial}{\partial x_p} f(\boldsymbol{x}_0)]^{\top}$ and the Hessian $\mathbf{H}(\boldsymbol{x}_0) = [\frac{\partial^2}{\partial x_i \partial x_j} f(\boldsymbol{x}_0)]_{p \times p}$.

Application

- Approximate unknown or complex f with a polynomial
 - Δ-method
 - Asymptotic theory for maximum likelihood estimators
- Moment generating function (mgf): $M_X(t) = \mathbb{E}\{\exp(tX)\} = \sum_{n=0}^{\infty} t^n \mathbb{E}(X^n)/n!$ Maclaurin series of $\exp(tX)$: $\exp(tX) = \sum_{n=0}^{\infty} (tX)^n/n! \Rightarrow \mathbb{E}(X^n) = (\partial^n/\partial t^n) M_X(t)|_{t=0}$

Generating functions

Moment generating function (mgf, CB Sec. 2.3)

- Univariate r.v. X
 - mgf $M_X(t) = \mathbb{E}\{\exp(tX)\}\$ if $\mathbb{E}\{\exp(tX)\}\$ < ∞ for t in a neighborhood of 0; otherwise we say that the mgf does not exist or is undefined.

 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$ * Discrete X: $M_X(t) = \sum_{\{x: x \in \text{supp}(X)\}} \exp(tx) p_X(x)$
 - $M_{aX+b}(t) = \exp(bt)M_X(at)$
- Multivariate r.v. $\mathbf{X} = (X_1, \dots, X_p)^{\top} \in \mathbb{R}^p$

- mgf $M_{\mathbf{X}}(t)$ is defined as

$$M_{\mathbf{X}}(\boldsymbol{t}) = \mathrm{E}\{\exp(\boldsymbol{t}^{\top}\mathbf{X})\} = \begin{cases} \int_{\mathbb{R}^p} \exp(\boldsymbol{t}^{\top}\mathbf{X}) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} & \text{continuous } \mathbf{X} \\ \sum_{\{\boldsymbol{x}: \boldsymbol{x} \in \text{supp}(\mathbf{X})\}} \exp(\boldsymbol{t}^{\top}\mathbf{X}) p_{\mathbf{X}}(\boldsymbol{x}) & \text{discrete } \mathbf{X} \end{cases}$$

provided that $E\{\exp(\mathbf{t}^{\top}\mathbf{X})\} < \infty$ for $\mathbf{t} = [t_1, \dots, t_p]^{\top}$ in some neighborhood of $\mathbf{0}$; otherwise we say that the mgf does not exist or is undefined.

- $-M_{\mathbf{AX}+\boldsymbol{b}}(\boldsymbol{t}) = \exp(\boldsymbol{b}^{\top}\boldsymbol{t})M_{\mathbf{X}}(\mathbf{A}^{\top}\boldsymbol{t}) = \exp(\boldsymbol{b}^{\top}\boldsymbol{t})\mathrm{E}\{\exp(\boldsymbol{t}^{\top}\mathbf{AX})\}$ * Specifically, independent $X_1, \ldots, X_p \Rightarrow M_{\mathbf{X}}(t) = \prod_{i=1}^p M_{X_i}(t_i)$
- Application
 - Computing moments
 - * nth raw moment $\mu'_n = EX^n = \sum_{k=0}^n \binom{n}{k} \mu_k (\mu'_1)^{n-k}$ * nth central moment $\mu_n = E(X EX)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k (\mu'_1)^{n-k}$ Proving laws of large numbers and central limit theorems
 - - * A distribution is uniquely determined by its mgf if the mgf is well-defined

Example Lec6.1

- Find the mgfs of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2)$.
 - $MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}.$

Characteristic function

- For univariate X: $\phi_X(t) = \operatorname{E} \exp(itX)$ for all $t \in \mathbb{R}$
- For Multivariate $\mathbf{X} = [X_1, \dots, X_p]^{\mathsf{T}} : \phi_{\mathbf{X}}(t) = \mathbb{E}\{\exp(it^{\mathsf{T}}\mathbf{X})\}$ for all $t \in \mathbb{R}^p$
- $\phi_{\mathbf{X}}(t) = \phi_{\mathbf{Y}}(t)$ for all $t \in \mathbb{R}^p \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$

Example Lec6.2

- Find the characteristic functions of following distributions.
 - $-\mathcal{N}(\mu,\sigma^2).$
 - $MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}.$

Other generating functions

- Cumulant generating function
 - $-K_X(t) = \ln M_X(t) = \sum_{n=0}^{\infty} \kappa_n t^n / n!$
 - $-\kappa_n = K_X^{(n)}(0)$
- Probability-generating function
 - For discrete r.v. X taking values from $\{0,1,\ldots\}$, $G(z)=\mathrm{E}t^X=\sum_{x=0}^\infty t^x p_X(x)$.
 - $p_X(n) = \Pr(X = n) = G^{(n)}(1)/n!$

Estimating equations

Parametric models

• A parametric model is a set of distributions indexed by unknown $\theta \in \Theta \subset \mathbb{R}^p$ with small or moderate p - Say $\{f(\cdot \mid \boldsymbol{\theta}) : \boldsymbol{\theta} \in \boldsymbol{\Theta} \subset \mathbb{R}^p \}$, where f is either a pdf or a pmf

- Believed that the true parameter (vector) $\boldsymbol{\theta}_0$ ($\in \boldsymbol{\Theta} \subset \mathbb{R}^p$) is fixed
 - Rather than making θ_0 random in the Bayesian philosophy

Method of moments (MOM, a.k.a. moment matching, CB Sec 7.2.1)

- Procedure
 - 1. Equate raw moments to their empirical counterparts.
 - 2. Solve the resulting simultaneous equations for $\theta = (\theta_1, \dots, \theta_p)$.
- Features
 - Easy implementation
 - Start point for more complex methods
 - No constraint
 - Not uniquely defined
 - No guarantee on optimality

Exercise Lec7.1

- Let X_1, \ldots, X_n iid follow the following distributions. Find MOM estimators for (θ_1, θ_2) .
 - a. $N(\theta_1, \theta_2), (\theta_1, \theta_2) \in \mathbb{R} \times \mathbb{R}^+$.
 - b. Binom (θ_1, θ_2) with pmf

$$p_X(x \mid \theta_1, \theta_2) = \binom{\theta_1}{x} \theta_2^x (1 - \theta_2)^{\theta_1 - x} \mathbf{1}_{\{0, \dots, \theta_1\}}(x), \quad (\theta_1, \theta_2) \in \mathbb{Z}^+ \times (0, 1).$$

Exercise Lec7.2

- Let X_1, \ldots, X_n iid follow pdf $f(x \mid \theta) = \theta x^{\theta-1} \mathbf{1}_{[0,1]}(x), \theta > 0$.
 - a. Find an MOM estimator of θ .
 - b. Can we employ the second (raw) moment instead of the first one?