Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Finite Volumes Schemes of Higher Order

Limiter

Limiter Schemes

Idea: Only modify the scheme close to shocks and keep the second order scheme everywhere else.

Definition (Limiter for higher order schemes)

For the linear problem

$$\partial_t \mathbf{u} + \mathbf{a} \partial_x \mathbf{u} = \mathbf{0}, \quad \text{for } \mathbf{a} > \mathbf{0},$$

the Limiter Scheme with Limiter $\phi : \mathbb{R} \to \mathbb{R}$ is given by:

$$Q_j^{n+1} = Q_j^n - \lambda \mathbf{a} \Delta_- Q_j^n - \frac{\lambda \mathbf{a}}{2} (1 - \lambda \mathbf{a}) \Delta_- \left(\phi(\mathbf{r}_j) \Delta_+ Q_j^n \right) \quad \text{with } \mathbf{r}_j := \frac{\Delta_- Q_j^n}{\Delta_+ Q_j^n}.$$

Note: scheme will be only second order away from the shocks.

Limiter schemes

◀ □ ▶

Limiter Schemes

Definition (Limiter for higher order schemes)

For the linear problem

$$\partial_t \mathbf{u} + \mathbf{a} \partial_x \mathbf{u} = \mathbf{o}, \quad \text{for } \mathbf{a} > \mathbf{o},$$

the Limiter Scheme with Limiter $\phi : \mathbb{R} \to [0,1]$ is given by:

$$Q_j^{n+1} = Q_j^n - \lambda \mathbf{a} \Delta_- Q_j^n - \frac{\lambda \mathbf{a}}{2} (1 - \lambda \mathbf{a}) \Delta_- \left(\phi(\mathbf{r}_j) \Delta_+ Q_j^n \right) \quad \text{with } \mathbf{r}_j := \frac{\Delta_- Q_j^n}{\Delta_+ Q_j^n}.$$

- 1. r_j is an indicator for oscillations. For $r_j < 0$, the terms $\Delta_- Q_j^n$ and $\overline{\Delta_+ Q_j^n}$ have different signs, which implies oscillations of the numerical solution. Contrary, in monoton regions it holds $r_j \geq 0$.
- **2.** Hence: enforce $\phi(r_i) = 0$ for $r_i < 0$.

Limiter schemes

Example: Beam-Warming Scheme

Limiter Scheme with Limiter $\phi: \mathbb{R} \to [0, 1]$ is given by:

$$Q_j^{n+1} = Q_j^n - \lambda \mathbf{a} \Delta_- Q_j^n - \frac{\lambda \mathbf{a}}{2} (1 - \lambda \mathbf{a}) \Delta_- \left(\phi(\mathbf{r}_j) \Delta_+ Q_j^n \right) \quad \text{with } \mathbf{r}_j := \frac{\Delta_- Q_j^n}{\Delta_+ Q_j^n}.$$

Example:

1. The Lax-Wendroff scheme is obtained for $\phi(r) = 1$. Hence

$$\Delta_{-}\left(\phi(\textbf{r}_{j})\Delta_{+}Q_{j}^{n}\right) = \Delta_{-}\Delta_{+}Q_{j}^{n} = (Q_{j+1}^{n} - 2Q_{j}^{n} + Q_{j-1}^{n}).$$

2. The Limiter $\phi(r) = r$ yields the Beam-Warming limiter scheme with

$$\Delta_{-}\left(\phi(\mathbf{r}_{j})\Delta_{+}Q_{j}^{n}\right) = \Delta_{-}\Delta_{-}Q_{j}^{n} = (Q_{j}^{n} - 2Q_{j-1}^{n} + Q_{j-2}^{n}).$$

Can limiter schemes be "better" and how can we measure this?

TVD Schemes

One way to express that a scheme suppresses oscillations is to measure the Total Variation at each time t_n .

Goal: spatial oscillations shall not become stronger/more with time (as this is unphysical).

We call a scheme TVD (total variation diminishing) if for all n

$$\mathsf{TV}(\mathbf{Q}^{n+1}) \leq \mathsf{TV}(\mathbf{Q}^n).$$

Here, recall that

$$\mathsf{TV}(\mathbf{Q}^n) := \sum_{i \in \mathbb{Z}} |Q_{j+1}^n - Q_j^n|.$$

Limiter schemes

TVD Schemes

Remarks:

- We want schemes that are TVD, because they cannot hence oscillations.
- ► TVD schemes are necessary for convergence to the entropy solution (but not sufficient).
- ► Monotone scheme ⇒ TVD scheme.
- ▶ But a TVD scheme is not necessarily a monotone scheme.

TVD Schemes

Goal:

We wish to state conditions for the Limiter ϕ such that the Limiter Scheme is

- of consistency order 2 away from extrema (i.e. maxima or minima of the solution)
- 2. and TVD.

Sufficient condition for TVD

Sufficient condition for a limiter so that the scheme is TVD (without proof):

Lemma

Suppose that for the Limiter scheme it holds the CFL condition

$$\lambda \mathbf{a} \leq \mathbf{1}$$
, where $\lambda = \frac{\Delta t}{\Delta x}$.

If the limiter ϕ is such that

$$\phi(r) = 0$$
 for $r < 0$,

and

$$\mathsf{o} \leq \max\left(\frac{\phi(r)}{r}, \phi(r)\right) \leq \mathsf{2} \qquad \mathsf{for}\, r \geq \mathsf{o},$$

then the limiter scheme is TVD.

Sufficient condition for TVD

Hence, a sufficient condition for a TVD scheme reads

$$0 \le \phi(r) \le 2r$$
 for $0 < r \le 1$
 $0 \le \phi(r) \le 2$ for $r \ge 1$.

Sufficient condition for 2nd order

Sufficient condition for the limiter to obtain schemes of 2nd order (without proof):

Lemma

If the limiter such that

$$\phi(r) = (1 - \Theta(r)) + \Theta(r) \cdot r$$

for a Lipschitz-continuous function $\Theta:\mathbb{R}\to [\mathtt{o},\mathtt{1}]$, then

the scheme has consistency order 2 away from local extrema (i.e. for $u' \neq o$).

Limiters

Recall:

All the sufficient conditions for TVD and second order only refer to linear problems!

Sufficient condition for a 2nd order TVD scheme

Theorem

For the linear problem $\partial_t u + a \partial_x u = o$ for a > o, we consider the Limiter Scheme. Suppose that the CFL condition

$$\lambda \mathbf{a} \leq \mathbf{1}, \quad \text{with } \lambda = \frac{\Delta t}{\Delta x}$$

holds and that the limiter ϕ is such that

$$\phi(r) = 0$$
 for $r < 0$,

$$o \le \max\left(\frac{\phi(r)}{r}, \phi(r)\right) \le 2$$
 for $r \ge o$,

and
$$\phi(r) = (1 - \Theta(r)) + \Theta(r) \cdot r$$
 for Lipschitz-continuous $\Theta : \mathbb{R} \to [0, 1]$.

Then the Limiter Scheme is TVD and for $r_i > 0$ of 2nd order.

Limiter schemes

Sufficient condition for a 2nd order TVD scheme

Conclusion: For the Limiter Scheme assume that the CFL-condition holds and that the limiter is continuous and such that

$$\begin{split} \phi(r) &= \text{o for } r < \text{o}, \\ r &\leq \phi(r) \leq \min\left\{2r,1\right\} \text{ for } \text{o} \leq r \leq 1, \\ 1 &\leq \phi(r) \leq \min\left\{2,r\right\} \text{ for } r \geq 1. \end{split}$$

Then the Limiter Scheme is TVD and for r > 0 of 2nd order.

Examples for admissible limiters

Example

- **1.** Minmod-Limiter: $\phi(r) = \max\{0, \min\{r, 1\}\}$
- 2. Superbee-Limiter: $\phi(r) = \max\{0, \min\{2r, 1\}, \min\{r, 2\}\}$
- 3. Von Leer-Limiter: $\phi(r) = \frac{|r|+r}{|r|+1}$
- **4.** Van Albada-Limiter: $\phi(r) = \frac{r^2 + r}{r^2 + 1}$
- 5. Chakravarthy and Osher:

$$\phi(r) = \max\{0, \min\{r, \beta\}\} \text{ with } 1 \le \beta \le 2$$

Note: For each limiter we always assume $\phi(r) = 0$ for r < 0.

Limiter schemes

◀ □ ▶ ◀ 🗗 ▶