Chapitre : Nombres

I. <u>Ensemble de nombres</u>

<u>Définition 1 :</u>	
Les sont les nombres 0, 1, 2, 3, 100, etc	
L'ensemble des (ou entiers positifs ou nuls)	
est noté	
Exemple:	
Définition 2 :	
Les sont les nombres , -3, -2, -1, 0, 1, 2, 3,	
L'ensemble des est donc formé des entiers	5
et leurs, il est noté	<u>.•</u>
Remarque 1: Tout entier naturel est donc un entier	
$\underline{ \text{D\'efinition 3:}} \text{ Soit } p \text{ un entier relatif et } n \text{ un entier naturel}.$	
Les sont des nombres de la forme :	
L'ensemble des est noté	
Exemples: 2,28 est un nombre décimal car 2,28 = $\frac{228}{100} = \frac{228}{10^2}$.	
$\frac{2}{5}$ est un nombre décimal aussi car $\frac{2}{5} = \frac{4}{10}$	
Mais:	
<u>Propriété 1:</u> $\frac{1}{3} \approx 0.33333 \dots$	
Remarque 2 :	
On peut voir les nombres décimaux comme des nombres «	»
avec un nombre fini de chiffres après la virgule.	
Remarque 3 : Un entier relatif est un nombre	
<u>Définition 4 :</u> Soit p un entier relatif et q un entier naturel non nul.	
Les sont des nombres de la	
forme:	
L'ensemble des est noté	, ,
Nous étudierons plus précisément ce chapitre dans le chapitre Arithmétique	

Remarque 4 : Un nombre décimal est un nombre ______.

<u>Définition 5 :</u> L'ensemble des abscisses des points d'une droite graduée est appelé l'ensemble des nombres				
Remarque 5 : L'ensemble des nombres réels e				
Remarque 6 : Un nombre rationnel est un nor	·			
<u>Définition 6 :</u> Un nombre réel qui n'est pas rationnel est dit				
Exemple: π , $\sqrt{2}$, $\sqrt{3}$ ne sont pas rationnels.				
II. <u>Symbole</u>				
 ∈ se lit « appartient à », ∉ se lit « n'appartient pas à », ⊂ se lit « est inclus dans », ⊄ se lit « n'est pas inclus dans ». R* est l'ensemble R privé de zéro. (et de même N*) R₊ est l'ensemble des réels positifs (avec le zéro). R*₊ est l'ensemble des réels strictement positifs. R₋ est l'ensemble des réels négatifs (avec le zéro). R*₋ est l'ensemble des réels strictement négatifs. Ø signifie « ensemble vide » 				
<u>Application 1 :</u> Compléter par ∈ ou ∉.				
$2 \ldots \mathbb{N}$; $-3 \ldots \mathbb{Z}$; $-3 \ldots \mathbb{N}$; $2,3$	$\ldots D$; 2,3 $\ldots \mathbb{Z}$; $\pi \ldots \mathbb{R}_+^*$; $\pi \ldots \mathbb{Q}$			
$\sqrt{2} \dots \mathbb{Q}; \sqrt{2} \dots \mathbb{R}; \qquad \frac{1}{2} \dots \mathbb{Q}; \qquad \frac{5}{3}$	$\ldots \mathbb{Z}; \frac{8}{4} \ldots \mathbb{Z}; -5 \ldots D; \frac{1}{7}$			
$\dots D$. Application 2 : Compléter par ∈ ou \notin puis donner la forme décimale si elle existe, ou une valeur approchée au centième près. $\frac{1}{2} \dots \mathbb{D}$				
	<u>1</u> ⅅ			
1/ ₄ ⅅ	$\frac{2}{3}$ \mathbb{D}			

1 _	
<u> </u>	
5	

$$\frac{1}{6}$$
 \mathbb{D}

Propriété 2 :

On a $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$

Remarque 7 : Ce n'est qu'une conséquence des remarques 1, 3, 4 et 6.

Exercice 1: Compléter par \in ou \notin :

f)
$$\sqrt{16}$$
 0

h)
$$-78$$
 ... \mathbb{Z}

i)
$$\frac{1}{3}$$
 ... \mathbb{D}

k)
$$-\frac{3}{2}$$
 ... \mathbb{D}

a)
$$7 \, \dots \, \mathbb{Z}$$
 b) $-12,4 \, \dots \, \mathbb{R}$ c) $41 \, \dots \, \mathbb{D}$ d) $0,145 \, \dots \, \mathbb{N}$ e) $\pi \, \dots \, \mathbb{Q}$ f) $\sqrt{16} \, \dots \, \mathbb{Q}$ g) $10^{45} \, \dots \, \mathbb{Z}$ h) $-78 \, \dots \, \mathbb{Z}$ i) $\frac{1}{3} \, \dots \, \mathbb{D}$ j) $4,789 \, \dots \, \mathbb{Q}$ k) $-\frac{3}{2} \, \dots \, \mathbb{D}$ l) $7 \times 10^{-3} \, \dots \, \mathbb{N}$ m) $\frac{\pi}{2} \, \dots \, \mathbb{R}$ n) $\frac{12}{3} \, \dots \, \mathbb{D}$ o) $10^{-5} \, \dots \, \mathbb{Z}$ p) $\sqrt{51} \, \dots \, \mathbb{Q}$

m)
$$\frac{\pi}{2}$$
 ... \mathbb{R}

n)
$$\frac{12}{3}$$
 ... \mathbb{D}

o)
$$10^{-5}$$
 ... \mathbb{Z}

p)
$$\sqrt{51}$$
 ... \mathbb{Q}

Mettre une croix dans chaque case correspondant aux ensembles auxquels le nombre Exercice 2: appartient.

	N	\mathbb{Z}	\mathbb{D}	$\mathbb Q$	\mathbb{R}
1,23					
$\frac{\sqrt{64}}{2}$					
0,003					
$\frac{4}{10}$					
- 2 √7					
<u>526</u> 7					

Exercice 3:

- 1) Donner un entier relatif qui ne soit pas un entier
- 2) Donner un nombre décimal qui ne soit pas un entier relatif.
- 3) Donner un nombre rationnel qui ne soit pas un nombre décimal.
- 4) Donner un nombre réel qui ne soit pas un rationnel.

Exercice 4:

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier.

- a) L'opposé d'un entier naturel est un entier naturel.
- b) L'opposé d'un entier relatif est un entier négatif.
- c) L'inverse d'un entier non nul est un décimal.
- d) L'inverse d'un rationnel non nul est un rationnel.
- e) La racine carrée d'un entier naturel est toujours

III. <u>Intervalle</u>

<u>Définition 7 :</u> Sur une droite graduée, les	sont les
de $\mathbb R$ qui correspondent à un segment, à une demi-droite,	ou à la
droite toute entière.	

Comparaison	Représentation	Traduction	Autrement dit :	Intervalle
		x est compris	Tous les nombres sont	
		entre a et b	entre a et b (que l'on	
			prend)	
		x est compris	Tous les nombres sont	
		entre a et b	entre a (que l'on	
		(exclu)	prend) et b (exclu)	
		x est compris	Tous les nombres sont	
		entre a (exclu) et	entre a (exclu) et b	
		b		
		x est compris	Tous les nombres sont	
		entre a (exclu) et	entre a (exclu) et b	
		b (exclu)	(exclu)	
		x est inférieur ou	Tous les nombres sont	
		égal à b	à gauche de b sur la	
			droite.	
		x est strictement	Tous les nombres sont	
		inférieur à b	à gauche de b (exclu)	
			sur la droite.	
		x est supérieur	Tous les nombres sont	
		ou égal à a	à droite de a sur la	
			droite.	
		x est strictement	Tous les nombres sont	
		supérieur à a	à droite de a (exclu)	
			sur la droite.	

Remarques 8:

	Les symboles $-\infty$ et $+\infty$ se lisent "moins l'infini" et "plus l'infini".		
•	Les nombres a et b sont appelées	de l'intervalle	i
•	Un crochet tourné vers l'extérieur est un crochet		
	un crochet tourné vers l'intérieur est un crochet		
•	En $-\infty$ et $+\infty$, les crochets sont		ouverts

Pour les intervalles [a ; b],] a ; b [, [a ; b [et] a ; b], l'amplitude (longueur) de l'intervalle est :

<u>Définition 8</u> : L'intersection de deux intervalles I et J est l'ensemble des réels appartenant à
I à J .
On le note :

<u>Définition 9</u>: La réunion de deux intervalles I et J est l'ensemble des réels appartenant à I _____ à J.
On le note :

Application 3 : Déterminer des intervalles

Inégalité	Intervalles	Représentation sur une droite graduée
x < -1		
]3; +∞[
		-8 1/3
$-\frac{1}{2} \le x < 5$		
$x \le -2 \text{ ou } x > \frac{1}{5}$		

Exercice 5:

Inégalité	Intervalles	Représentation sur une droite graduée
$-1 \le x < 3$		
	[7.12]	
	[7;12]	
0 < x < 4		
	$]-1$; $\pi]$	
] - 5;3[
$3,14 < x \le \pi$		
	[-100;50[
	[4; +∞[
x > -7		
<i>x</i> ≤ 5		
$x \le -5 \text{ ou } x > 1$		

Exercice 6 : Compléter par ∈ ou ∉

a) 2,5 ...
$$[2; +\infty[$$

d) π ... $[0; 4]$
g) 2 ... $[2; 4]$

b)
$$5,1 \dots] - \infty; 5]$$

e)
$$6,02 \dots [6; +\infty]$$

b)
$$5,1 \dots] - \infty; 5$$
]
e) $6,02 \dots[6; +\infty[$
h) $7,53 \dots[7,5; 7,6[$
k) $1,2 \dots] - \infty; 0[\cup[2; 5]]$
c) $3 \dots] - \infty; 3[$
f) $\frac{\sqrt{3}}{2} \dots[1; 3]$
i) $\sqrt{2} \dots[1; 3]$

c)
$$3 ...] - \infty; 3 |$$

f)
$$\frac{\sqrt{3}}{2}$$
... [1; 3]

i)
$$\sqrt{2}$$
 ... [1; 3]

$$\frac{1}{4}$$
 ... [1; 4]

Exercice 7 : Compléter le tableau suivant :

I	J	$I \cup J$	$I \cap J$	
		Représentation sur une droite :		
[-4; 3]	[1;5]			
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
] - ∞; 2[[− 4 ; +∞[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :	1	
] - ∞;3]] - ∞;5[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
$\left[\sqrt{6};+\infty\right[$	[3; +∞[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
] - ∞;7]	[7; +∞[
		$I \cup J =$	$I \cap J =$	
[-3; +∞[] - ∞; -3[Représentation sur une droite :		

		$I \cup J =$		$I \cap J =$	
IV. Enca	adrement dé	cimal et arrondi			
		ondir : dans la pratique nférieur ou égal à	e : on regard		
		upérieur ou égal à			
Exemple : I		$\frac{1}{3} \approx 0.333$ à 10^{-2} prè	s est 0,33 et	l'arrondi de $\frac{2}{3} \approx 0,6666$ au	
•		915,457 845 631 e de A au dixième.	•	nombre $B = 4562,7814932$ valeur arrondie de B au millième.	
b) Donner la	valeur arrondi	e de A à 10^{-3} près.	b) Donner la	valeur arrondie de B à 10^{-2} près.	
c) Donner la	valeur arrondi	e de A à l'unité.	c) Donner la valeur arrondie de B à 10^{-1} près.		
			d) Donner la	valeur arrondie de B à la centaine	
Exercice 10 :	:		près.		
On prend le	nombre C =	123,456789 de C au millième.	•	nombre D = 3,1415926535	
b) Donner ur	n encadrement	de C à l'unité.	a) Donner un encadrement de D au centième		
c) Donner ur	n encadrement	de C à 10^{-2} .		encadrement de D à l'unité.	
d) Donner la	valeur arrond	e au dixième.	•	encadrement de D à 10^{-4} .	
e) Donner la	valeur arrondi	e à 10^{-2} près .		valeur arrondie de D au centième.	
			e) Donner la	valeur arrondie de D à 10^{-4} près .	

Définition 11:

V. <u>Equations</u>
1) <u>Equation</u>

- Une équation est une ______ de deux expressions (appelées ______) dans lesquelles figurent des lettres (appelées _______).
- **Résoudre une équation d'inconnue** x, c'est trouver toutes les valeurs possibles que l'on peut donner à x pour que l'égalité soit vérifiée.

Application 4:

Vérifier si x = 4 puis si x = -3 est solution de l'équation : $x^2 - 10 = 2x + 5$

Propriété 3 : Soient a, b et c des nombres, $c \neq 0$

• On ne change pas une égalité lorsqu'on ajoute ou on soustrait un même nombre à chacun de ses membres.

Autrement dit : Si a = b alors :

si a = b alors: et

• On ne change pas une égalité lorsqu'on multiplie ou on divise par un même nombre non nul chacun de ses membres.

Autrement dit : Si a = b alors :

et

si a = b alors :

<u>Définition 12</u>: Une équation du 1^{er} degré à une inconnue est une équation du type : où a, b, c et d sont des nombres.

Application 5: Résoudre les équations suivantes (en notant à la fin S =):

a)
$$6x - 5 = 2$$

b)
$$5x + 2 = 3x - 4$$

b)
$$5x + 2 = 3x - 4$$
 c) $4x - 7 = 3(2x + 5)$

2) Equation produit

<u>Propriété 4:</u> Un produit de facteurs est nul si et seulement si l'un, au moins, des facteurs est nul.

Application 6: Résoudre les équations suivantes (en notant à la fin S =):

a)
$$(3x-2)(-x+7)=0$$

b)
$$(2-3x)(x-4)-(x-4)(5+2x)=0$$

Exercice 12 : Résoudre les équations suivantes :

a)
$$2x + 4 = 9$$

c)
$$\frac{5}{3} + 6x = 4x + 10$$

e)
$$3 - \frac{2}{5}x = \frac{3}{2} + 5x$$

g)
$$3(2x + 1) = 2 + 2x$$

i)
$$\frac{-2x+3}{4} + \frac{x-5}{2} = \frac{-3x+2}{2}$$

k)
$$-2x(-x-3) = 0$$

m)
$$(1 - x)(-2 - x) = 0$$

o)
$$\frac{x+2}{3} = \frac{1-x}{4}$$

b)
$$3x - 5 = 6$$

d)
$$3x + 7 = x + 12$$

f)
$$3(-2x + 1) = 5 - 2(x + 1)$$

h)
$$\frac{2x+1}{3} - \frac{x}{2} = \frac{2x-3}{2}$$

j)
$$(-2x + 3)\left(\frac{5}{3} - 4x\right) = 0$$

I)
$$\left(-5 + \frac{2}{3}x\right)(-4x + 1) = 0$$

n)
$$\frac{2x+3}{2} = 8$$

VI. Inéquations

Propriété 5 : Soient a, b et c sont des nombres.

• On ne change pas une inégalité lorsqu'on <u>ajoute ou on soustrait un même nombre</u> à chacun de ses membres.

Autrement dit : Si $a \le b$ alors :

et si $a \le b$ alors:

• On ne change pas une inégalité lorsqu'on multiplie ou on divise par un même nombre positif non nul chacun de ses membres. On prend c>0

Autrement dit : Si $a \le b$ alors :

et si $a \leq b$ alors:

• On change une inégalité lorsqu'on multiplie ou on divise par un même nombre négatif non nul chacun de ses membres. On prend c < 0

Autrement dit : Si $a \le b$ alors :

et si $a \le b$ alors:

Application 7: Résoudre les inéquations suivantes (en notant à la fin S =):

a) $2x + 5 \ge 7$	b - 4x + 8 > 6	c) $-2x - 1 < 0$	d) $4x + 7 \le 3(2x + 5)$

Exercice 13 : Résoudre les inéquations suivantes :

a)
$$-6x < -3$$

d)
$$2x > \frac{5}{2} - 3$$

g)
$$-1 + 2x < 0$$

j)
$$-3x > 0$$

m)
$$45 + 12 x \ge 154$$

b)
$$3x + 1 < 2$$

e)
$$2x + \frac{1}{2} \ge 4 + 5x$$

h)
$$10x < 5x - 3$$

k)
$$3(2x-1) > 5(x+2)$$

n)
$$-5x + 6 \le 2x + 8$$

c)
$$3x + 3 < 1 - 2x$$

f)
$$3(-2x + 1) < 5 - 2(x + 1)$$

i)
$$35 x + 14 \le 43 x - 1$$

$$| 1 \rangle - 16x + 3 \ge -2x + 25$$

o)
$$2(x-1) > 2x + 5$$

Exercice (supplémentaire) 14 : Résoudre, en donnant l'ensemble des solutions S = ...

a)
$$13x - 5 = 20x + 12$$

b)
$$2x - 3 < 6x + 9$$

c)
$$(3x + 1)(x - 2) = 0$$

d)
$$(x-2)-(2x+3)=0$$

e)
$$3x + 5 > x - 4$$

f)
$$x(2x + 8) = 0$$

g)
$$\frac{1}{3}x + 2 = 5x - \frac{6}{5}$$

h)
$$4x + 7 < 7x - 2$$

i)
$$\frac{3}{2}x + 2 > \frac{5}{2}x - 7$$

j)
$$3x + 2 > 1 + 3x$$

k)
$$-5x - 12 > -10x + 3$$

$$1) \quad 2x + 3 = 2x - 1$$

m)
$$3x - 1 < 5x - 4$$

n)
$$\frac{2}{3}x + 1 > \frac{5}{2}x - \frac{1}{3}$$

o)
$$2x + 3(x - 1) = 0$$

p)
$$2x + 3 = (x + 2) + (x + 1)$$

q)
$$3x - 1 < 3x + 3$$

r)
$$(x-1)(2x+3)(4x-2)=0$$

s)
$$3x - 5 = 12x + 4$$

t)
$$-4x + 2 > x + 18$$

VII. Problèmes

Exercice 15:

Lisa s'est inscrite auprès d'un club nautique pour louer du matériel pendant un an afin de faire des sorties en rivière. L'inscription lui a coûté 22 € et la location d'un kayak lui revient à 2,80 € par heure. Lisa a un budget de 100 € sur l'année.

Quel nombre d'heures de kayak peut-elle prévoir ?

Exercice 17:

Dans une salle de spectacles, chaque place à un spectacle coûte 40 €.

On peut aussi acheter pour 75 € une carte d'adhérent, valable un an, qui donne droit à une réduction de 40 % sur tous les spectacles.

A partir de combien de spectacles vus dans l'année est-il plus intéressant

d'acheter une carte d'adhérent ?

Exercice 16:

Dans une boulangerie, Romain veut acheter autant de croissants que de pains au chocolat. Un croissant est vendu 1,10€ et un pain au chocolat 1,35 € . Avec 30€, combien Romain peut-il acheter de viennoiseries au total?

Exercice 18:

Pour entrer dans une école de théâtre, Thomas passe une épreuve écrite qui compte avec un coefficient 4 et une épreuve orale qui compte avec un coefficient 6.

Il a obtenu 7/20 à l'écrit. Il doit avoir une moyenne supérieure ou égale à 13/20 pour être admis.

Thomas peut-il être admis ? Si oui, quelle note minimale doit-il obtenir à l'oral ?

Exercice 19 : Résoudre les problèmes suivants :

- 1) Trouver trois nombres entiers naturels consécutifs dont la somme est 363.
- 2) Trouver un nombre, qui multiplié par 3, augmente de 100.
- 3) La jauge de la voiture de M. Dupont indique que le réservoir est à moitié plein.

M. Dupont rajoute 15 litres d'essence, le réservoir est alors rempli au $\frac{3}{4}$ de son volume.

Déterminer la contenance du réservoir.

4) Un père a 32 ans et son fils 4 ans.

- a) Quel âge auront-ils dans 6 ans ?
- b) Quel âge auront-ils dans x années?
- c) Déterminer pendant combien d'années l'âge du père sera supérieur ou égal au triple de l'âge de son fils.
- 5) Je dépense le quart de mon salaire pour mon logement et les deux cinquièmes pour la nourriture. Il me reste 378 € pour les autres dépenses. Calculer mon salaire mensuel.
- 6) Pour acheter un lave-linge, Antoine dépense les $\frac{3}{5}$ de son revenu mensuel. Il utilise ensuite $\frac{1}{8}$ du reste pour payer sa note d'électricité. Il lui reste alors 560 euros. Quel est, en euros, le prix du lave-linge ?
- 7) Soit un carré de côté x .On transforme ce dernier en rectangle; de telle sorte qu'un côté fasse 4 cm de plus et l'autre côté 1 cm de moins que le côté du carré. On s'aperçoit que le périmètre du rectangle est le double du périmètre du carré. Quelle est la mesure du côté du carré ?
- 8) On considère le rectangle ci-dessou

Déterminer la longueur x du rectangle sachant que son aire est égale à 42,5 cm².

9) On donne L = 10 cm et l = 7 cm.

ABC est un triangle isocèle en A tel que AH = 11,2 cm. Calculer BC sachant que le triangle ABC et le rectangle ont la même aire.

10) ABCD est un carré de côté x.

EDC est un triangle isocèle en E tel que EH = 2.

- 1. Exprimer l'aire A_1 du carré ABCD en fonction de x.
- 2. Exprimer l'aire A₂ du triangle EDC en fonction de x.
- 3. En déduire l'expression de l'aire A de la partie hachurée en fonction de x.
- 4. L'aire de la partie hachurée est égale à 2 cm². Quelle équation obtient-on ?
- 5. Développer, réduire et ordonner (x 2)(x + 1).
- 6. En déduire les solutions de l'équation de la question 4.
- 7. En déduire la valeur de x pour laquelle l'aire A de la partie hachurée est de 2 cm².

