KONGU ENGINEERING COLLEGE, PERUNDURAI 638 060 CONTINUOUS ASSESSMENT TEST 1

(Regulations 2020)

Month and Year : September 2023	Roll Number:		
•			
Programme : B.Tech	Date :		
Branch: Information Technology	Time:		
Commenter V			
Semester : V			
Course Code : 20ITT52	Duration : 1 ½ Hours		
Course Code . 2011 132	Duration . 1 /2 Hours		
Course Name: Operating Systems	Max. Marks : 50		
course rame . Sperama bystems	114411 1144111		

	PART - A $(10 \times 2 = 20 \text{ Marks})$		
	ANSWER ALL THE QUESTIONS		
1.	n - fork statements will create 2^n - 1 childs. \therefore 5 fork statements will create 2^5 - 1 = 31 childs.	[CO1]	[K1]
2.	 Dual-mode operation allows OS to protect itself and other system components 	[CO1]	[K1]
	 User mode and kernel mode[(also called as supervisor mode, system mode, or 		
	privileged mode). Mode bit provided by hardware		
	 Provides ability to distinguish when system is running user code or kernel code. 		
	■ When a user is running → mode bit is "user" [No direct access to memory, h/w]		
	■ When kernel code is executing → mode bit is "kernel"		
	 System call changes mode to kernel mode, return from call resets it to user mode 		
3.	Process Management, Memory Management, File-system Management, Mass-Storage	[CO1]	[K1]
	Management, Cache Management, I/O Subsystem	[001]	[]
4.	Various ways to structure OS are	[CO1]	[K2]
	• Simple structure – MS-DOS		
	Monolithic Structure – UNIX		
	Monolithic plus modular design – Linux		
	• Layered – an abstraction		
	Microkernel – Mach		
5.	Distinguish between client-server and peer-to-peer computing.	[CO1]	[K2]
6.	Real-time OS has well-defined fixed time constraints	[CO1]	[K1]
	• Processing <i>must</i> be done within constraint		
	Correct operation execute , only if constraints met		
7.	Irrespective of n	[CO1]	[K2]
8.	FCFS:P1,P2,P3 RR2:P3,P1,P2	[CO2]	[K2]
9.	Average waiting time: $Z = 2$, then Gantt chart will be	[CO2]	[K1]
	$= \{(4-0-3) + (2-1-1) + (9-3-3) + (6-4-2)\} / 4 = (1+0+3+0) / 4 = 4 / 4 = 1$		
	P1 P2 P1 P1 P4 P3		
	0 1 2 3 4 6 9		
10.	Caches are useful when two or more components need to exchange data, and the	[CO1]	[K1]
	components perform transfers at differing speeds. Caches solve the transfer problem by		
	providing a buffer of intermediate speed between the components. If the fast device finds		
	the data it needs in the cache, it need not wait for the slower device.		
	Part – B $(4 \times 10 = 30 \text{ Marks})$	<u> </u>	L
	ANSWER ANY FOUR QUESTIONS		
11.	Operating System Services	[CO1]	[K2]
	Operating systems provide an environment for execution of programs and services to		
	- I - II - O - O - O - O - O - O - O - O		

programs and users

	1. One set of	operating-system services provides functions that are helpful to the user:					
	• User interface - Almost all operating systems have a user interface (UI).						
	▶ Varies between Command-Line Interface (CLI), Graphics User						
		Interface (GUI), touch-screen					
	•	Program execution - The system must be able to load a program into					
		memory and to run that program, end execution, either normally or					
		abnormally (indicating error)					
	• I/O operations - A running program may require I/O, which may involve a						
	file or an I/O device						
	•	File-system manipulation - Programs need to read and write files and					
		directories, create and delete them, search them, list file Information,					
		permission management.					
	•	Communications – Processes may exchange information, on the same					
		computer or between computers over a network. Communications may be					
		via shared memory or through message passing (packets moved by the OS)					
	•	Error detection – OS needs to be constantly aware of possible errors. May					
		occur in the CPU and memory hardware, in I/O devices, in user program. For					
		each type of error, OS should take the appropriate action to ensure correct					
		and consistent computing [ex- paper out in printer]. Debugging facilities can					
		greatly enhance the user's and programmer's abilities to efficiently use the					
		system					
		et of OS functions exists for ensuring the efficient operation of the system					
	itself via reso	ource sharing Pagentees allocation When multiple users or multiple jobs running					
	•	Resource allocation - When multiple users or multiple jobs running concurrently, resources must be allocated to each of them					
		Many types of resources - CPU cycles, main memory, file storage,					
		I/O devices.					
	•	Logging - To keep track of which users use how much and what kinds of					
		computer resources					
	•	Protection and security - The owners of information stored in a multiuser					
		or networked computer system may want to control use of that information,					
		concurrent processes should not interfere with each other					
		▶ Protection involves ensuring that all access to system resources is					
	controlled						
)	Security of the system from outsiders requires user authentication,					
		extends to defending external I/O devices from invalid access attempts					
12.	Types of Syst	tem Calls	[CO1]	[K2]			
		ss control					
	•	create process, terminate process					
	•	end, abort					
	•	load, execute					
	•	get process attributes, set process attributes					
	•	wait for time					
	•	wait event, signal event					
	•	allocate and free memory					
	•	Dump memory if error					
	•	Debugger for determining bugs, single step execution					
	•	Locks for managing access to shared data between processes					
				4			

File management create file, delete file open, close file read, write, reposition get and set file attributes **Device management** request device, release device read, write, reposition get device attributes, set device attributes logically attach or detach devices **Information maintenance** get time or date, set time or date get system data, set system data get and set process, file, or device attributes **Communications** create, delete communication connection send, receive messages ▶ From **client** to **server Shared-memory model** create and gain access to memory regions transfer status information attach and detach remote devices **Protection** Control access to resources Get and set permissions Allow and deny user access 13. i. Gannt Chart: [CO2] [K3] a. FCFS Scheduling P4 25 11 27 36 b. SJF Scheduling P3 P5 **P**1 P2 16 25 36 c. SRTF Scheduling P3 P5 **P**1 16 36 25 d. Pre-emptive Priority P3 P5 P4 P5 P1 P2 23 14 33 36 15 Round Robin(Quantum = 3) P1 P3 P4 P3 P1 P3 P5 22 12 18 21 36 ii. Turnaround Time **FCFS** SJF **SRTF** Preemptive Round **Priority** Robin **P**1 11 36 36 33 36 P2 36 14 3 3 6 18 11 11 9 26 P3 P4 25 5 5 13 20

24

15.8

22

22.6

33

24.2

24

15.8

P5

Average

35

20.6

=	Waiting Tin	ne						
		FCFS	SJF	SRTF	Preemptive	Round		
					Priority	Robin		
	P1	0	25	25	22	25		
	P2	11	0	0	33	3		
	P3	9	2	2	0	17		
	P4	21	1	1	9	16		
	P5	26	15	15	13	24		
	Average	13.4	8.6	8.6	15.4	17		
a.	The Gantt cha						[CO2]	[K3
į						\neg		
	P1 idle		P2 P3	P4 P2 P3	idle P5 P6	P5		
	0 20 2	5 35 45	55 60	75 80	90 100 105 11	P5 5 120		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 60 P3: 90 - 30	75 80 = 60, P4: 75-6	90 100 105 11 $0 = 15$,			
1	0 20 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55 60 P3: 90 - 30	75 80 = 60, P4: 75-6	90 100 105 11 $0 = 15$,			
P5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 35 45 : 80-25 = 55, , P6: 115-105	55 60 P3: 90 - 30 5 = 10[finish	75 80 = 60, P4: 75-6 ning time minus	90 100 105 11 0 = 15, arrival time]			
P5 c. P1:	0 20 2 : 20-0 = 20, P2 : 120-100 = 20, : 20-20 = 0, P2:	15 35 45 15 35 45 16 80-25 = 55, 17 P6: 115-105 17 P6: 55-25 = 30, I	55 60 P3: 90 - 30 5 = 10[finish P3: 60-25 =3	75 80 = 60, P4: 75-6 ning time minus 35, P4: 15-15=0	90 100 105 11 0 = 15, s arrival time]			
P5 c. P1: P5	20-0 = 20, P2 : 120-100 = 20, : 20-20 = 0, P2: : 20-10 = 10, P6	5 35 45 : 80-25 = 55, : P6: 115-105 : 55-25 = 30, I : 10-10 = 0 [1	55 60 P3: 90 - 30 5 = 10[finish P3: 60-25 = 3 curnaround t	75 80 = 60, P4: 75-6 ning time minus 35, P4: 15-15=0 time minus bur	90 100 105 11 0 = 15, s arrival time]			
P5 c. P1: P5 d. P1	20-0 = 20, P2 : 120-100 = 20, : 20-20 = 0, P2: : 20-10 = 10, P6: : =0, P2: 25-25	5 35 45 : 80-25 = 55, ; P6: 115-105 : 55-25 = 30, I : 10-10 = 0 [15 = 0, P3: 35-3	55 60 P3: 90 - 30 S = 10[finish P3: 60-25 = 3 turnaround t 30 = 5, P4: 6	75 80 = 60, P4: 75-6 ning time minus 35, P4: 15-15=0 time minus bur 10-60=0,	90 100 105 11 0 = 15, s arrival time]	5 120		

Bloom's Taxonomy Level	Remembering (K1)	Understanding (K2)	Applying (K3)	Analysing (K4)	Evaluating (K5)	Creating (K6)
Percentage	20	47	33	-	-	-