گزارش ۳:

یادگیری ماشین

درخت تصميم

Decision Tree

سید علی مجتبوی

گزارش ۲ - بررسی و تحویل انواع روش های Decision Tree

دراین گزارش با انواع روش های Decision Tree آشنا خواهیم شد و آنها را با یکدیگر مقایسه می کنیم

دیتاست Pima Indians Diabetes

دیتاست:

این مجموعه داده در اصل از موسسه ملی دیابت و بیماری های گوارشی و کلیوی تهیه شده است. هدف مجموعه داده این است که براساس اندازه گیریهای تشخیصی خاص موجود در مجموعه داده، پیش بینی کنیم که آیا بیمار به دیابت مبتلا است یا خیر. چندین محدودیت برای انتخاب این نمونه ها از یک پایگاه داده بزرگتر قرار داده شد. به طور خاص، همه بیماران در اینجا زنان حداقل ۲۱ ساله از میراث هندی پیما هستند.

۱. لینک دیتاست: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

۲. مشخصات دیتاست:

مجموعه داده ها شامل چندین متغیر پیش بینی کننده پزشکی و یک متغیر هدف، نتیجه است. متغیرهای پیش بینی کننده شامل تعداد بارداری های بیمار، BMI، سطح انسولین، سن و غیره است.

۳. فیچرهای دیتاست:

# Pregnancies =	# Glucose =	# BloodPres =	# SkinThick =	# Insulin =	# BMI =	# DiabetesP =	# Age =	# Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1
4	110	92	0	0	37.6	0.191	30	0

مقایسه انواع الگوریتم های درخت تصمیم:

ID3 (Iterative Dichotomiser 3): .1 •

یک الگوریتم ساخت درخت تصمیم است که توسط Quinlan Ross ارائه شد. این الگوریتم برای ساخت درخت تصمیمی از جنس دودویی) tree binary) استفاده می کندباید به این نکته توجه داشت که این الگوریتم برای مقیاس پذیری به مشکل می خورد و نمی تواند با داده های پیچیده یا مقیاس پذیر به خوبی کار کند .

C4.5: .2

یک نسخه بهبود یافته از ۳ Dااست و توسط Quinlan Ross نیز ارائه شد ۴.۵ . کدرخت های تصمیم چندجمله ای می سازد و قابلیت کار با ویژگی ها با استفاده از معیارهای مانند Entropy یا Index Gini CART (Classification. می باشد.

نتایج اجرای ۲ نوع الگوریتم برای این دیتاست:

TESTING DATA Confusion Matrix with Testing Data with ID3 Algorithm: [[66 13] [15 24]]						
Classification Report ID3 Algorithm:						
	precision	_		support		
0	0.81	0.84	0.82	79		
1	0.65	0.62	0.63	39		
accuracy			0.76	118		
macro avg	0.73	0.73				
weighted avg		0.76	0.76	118		
TRAINING DATA Confusion Matrix with Training Data with ID3 Algorithm: [[183 0] [0 91]]						
Classification Report ID3 Algorithm:						
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	183		
1	1.00	1.00	1.00	91		
accuracy			1.00	274		
macro avg	1.00	1.00	1.00	274		
weighted avg	1.00	1.00	1.00	274		

TESTING DATA Confusion Matrix with Testing Data with C4.5 Algorithm: [[183 0] [0 91]]							
Classification Report C4.5 Algorithm:							
	precision	_		support			
Ø	1.00	1.00	1.00	183			
1	1.00	1.00	1.00	91			
accuracy			1.00	274			
macro avg	1.00	1.00		274			
weighted avg		1.00		274			
TRAINING DATA Confusion Matrix with Training Data with C4.5 Algorithm: [[183 0] [0 91]]							
Classification Report C4.5 Algorithm:							
precision recall f1-score support							
0	1.00	1.00	1.00	183			
1	1.00	1.00	1.00	91			
accuracy			1.00	274			
macro avg	1.00	1.00	1.00	274			
weighted avg		1.00		274			

شكل ۱: نتايج الگوريتم ID3 شكل ۲: نتايج الگوريتم ID3

گراف الگوریتم حاصل از این دو الگوریتم

شكل ٣: گراف الگوريتم ID3

شكل ۴: گراف الگوريتم C4.5

Random Forest الگوريتم

الگوریتم جنگل تصادفی Random Forest یک الگوریتم محبوب یادگیری ماشین از زیرمجموعه هوش مصنوعی است که به تکنیک یادگیری نظارت شده تعلق دارد. می تواند برای مشکلات طبقه بندی و رگرسیون (پیشبینی و بیان تغییرات یک متغییر بر اساس اطلاعات متغییر دیگر) در یادگیری ماشین استفاده شود. این مبتنی بر مفهوم یادگیری گروه است، که یک فرآیند ترکیب چندین طبقه بندی کننده برای حل یک مسئله پیچیده و بهبود عملکرد مدل است.

همانطور که از نام این الگوریتم پیداست، الگوریتم جنگل تصادفی Random Forest یک طبقه بندی است که شامل تعدادی درخت تصمیم در زیرمجموعه های مختلف مجموعه داده قرار دارد و برای بهبود دقت پیشبینی آن مجموعه داده، میانگین می گیرد. جنگل تصادفی به جای تکیه بر یک درخت تصمیم، پیشبینی را از هر درخت و براساس اکثریت آرا پیش بینی می کند و نتیجه نهایی را به عنوان خروجی در نظر می گیرد. تعداد بیشتر درختان در جنگل منجر به دقت بالاتری می شود و از بروز مشکل Overfitting جلوگیری می کند.

نتایج اجرای Random Forest

	precision	recall	f1-score	support
0 1	0.93 0.84	0.81 0.94	0.87 0.89	147 153
accuracy macro avg weighted avg	0.88 0.88	0.88 0.88	0.88 0.88 0.88	300 300 300
[[119 28] [9 144]]				

شكل۵: گراف الگوريتم Random Forest