

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística GABARITO DA AP1 - 2° semestre de 2006

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

1ª questão - 3,0 pontos

Os dados da Tabela 1 referem-se ao salário (em salários mínimos) de 20 funcionários administrativos em uma indústria I_1 e a Tabela 2 fornece, por faixas salariais, os salários dos funcionários administrativos da indústria I_2 .

ĺ	10,1	7,3	8,5	5	4,2	3,1	2,2	9	9,4	6,1
	3,3	10,7	1,5	8,2	10	4,7	3,5	6,5	8,9	6,1

Tabela 1

Salário	1 3	3 5	5 7	7 9	9 11	total
Freqüência	4	10	8	16	12	50

Tabela 2

Pede-se

- (i) (1,0 ponto) construa uma tabela de freqüência para a Tabela 1, utilizando faixas que possibilitem comparações com os dados da Tabela 2:
- Resposta:

Tabela 1 (por faixas)

Salário	freqüência		
1 3	2		
3 5	5		
5 7	4		
7 9	4		
9 11	5		
total	20		

- (ii) (0,5 ponto) verifique se a mediana e a moda das 2 indústrias estão na mesma faixa de salários. Identifique quais são as faixas;
- Resposta:

Tabela 1:

Mediana: 5 |-- 7 Moda: 3 |-- 5 e 9 |-- 11

Tabela 2:

Mediana: 7 |-- 9 Moda: 7 |-- 9

- (iii) (1,5 pontos) sabendo que a média dos salários da indústria I₂ é de 6,72 salários mínimos e que o desvio padrão é de 2,46 salários, compare a média e o desvio da padrão das duas indústrias (Obs: considere, para o cálculo da média e do desvio padrão, a média de salários das respectivas faixas).
- Resposta:

Cálculo da média:

Faixa de Salário	Freqüência	média da faixa	freq*media	
1 3	2	2	4	
3 5	5	4	20	
5 7	4	6	24	
7 9	4	8	32	
9 11	5	10	50	
total (Σ)	20	-	130	

$$m\acute{e}dia = \frac{\sum_{k=1}^{5} (freq)_k \times (m\acute{e}dia.da.faixa)_k}{20} = \frac{130}{20} = 6,5$$

Cálculo do desvio padrão:

Faixa de Salário	freqüência (f)	média da faixa	freq*media	a=(med.faixa - 6,5) ²	(f) x (a)
1 -3	2	2	4	20,25	40,5
3 -5	5	4	20	6,25	31,25
5 -7	4	6	24	0,25	1
7 -9	4	8	32	2,25	9
9 -11	5	10	50	12,25	61,25
total (Σ)	20		130	-	143

$$desvio.padr\tilde{a}o = \sqrt{\text{var}} = \sqrt{\frac{143}{20}} = 2,674$$

2ª questão - 1,5 pontos

Na Caixa 1 há 10 círculos (pretos e cinza) que serão misturados aos 13 quadrados da Caixa 2, na Caixa

3. Pergunta-se:

Caixa 1

Caixa 2

Caixa 3

Resposta:

10 círculos: 6 cinzas e 4 pretos 13 quadrados: 8 cinzas e 5 pretos

Total de objetos na caixa 3: 23, sendo 10 círculos e 13 quadrados. Probabilidades:

Quanto ao formato:

Probabilidade de ser círculo (C): $P(C) = \frac{10}{23} = 0,4348$

Probabilidade de ser quadrado (Q): $P(Q) = \frac{13}{23} = 0,5652$

Quanto a cor:

Probabilidade de ser um objeto cinza (Ci): $P(Ci) = \frac{14}{23} = 0,6087$

Probabilidade de ser um objeto preto (Pr):
$$P(Pr) = \frac{9}{23} = 0.3913$$

- (i) (0,5 ponto) se for tirado apenas um objeto da Caixa 3, qual a probabilidade deste objeto selecionado ser cinza?
- Resposta:

Probabilidade de ser um elemento cinza (Ci):
$$P(Ci) = \frac{14}{23} = 0,6087$$

(ii) (1,0 ponto) se forem tirados dois objetos da Caixa 3. qual a probabilidade dos dois serem círculos?

Resposta:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B)P(A \mid B)$$

$$P(A \cap B) = \frac{10}{23} \times \frac{9}{22} = \frac{90}{506} = 0,1779$$

3ª questão - 2,5 pontos

Considere 3 fábricas de baterias para carros, F_1 , F_2 , F_3 . Uma determinada loja compra todos as baterias que revende dessas 3 fábricas, sendo 25% da fábrica F_1 , 45% da F_2 e 30% da F_3 .

Ao chegar na loja todos as baterias recebem um rótulo com nome da loja. Suponha que a probabilidade de se encontrar baterias defeituosas de cada uma das fábricas F_1 , F_2 , F_3 seja de 2%, 10% e 5%, respectivamente. Selecionando-se uma dessas baterias ao acaso, determine a probabilidade de:

a) (1,5 pontos) ser defeituosa, sabendo que a bateria foi fabricada na fábrica F₁;

Resposta:

Chamando de A o evento peça defeituosa, temos para as 3 fábricas:

$$P(F_1)=0.25 \rightarrow P(A|F_1)=0.02$$

 $P(F_2)=0.45 \rightarrow P(A|F_2)=0.10$
 $P(F_3)=0.30 \rightarrow P(A|F_5)=0.05$

Logo, se ela é da fábrica F_1 a probabilidade dela ser defeituosa é $P(A|F_1)=0.02$

b) (1,0 pontos) ser da fábrica F₂, sabendo que a bateria é defeituosa.

Resposta:

$$P(F_1 \mid A) = \frac{P(F_2)P(A \mid F_2)}{\sum_{i=1}^{3} P(F_i)P(A \mid F_i)}$$

$$P(F_1 \mid A) = \frac{0.45 \times 0.10}{0.25 \times 0.02 + 0.45 \times 0.10 + 0.30 \times 0.05}$$

$$P(F_1 \mid A) = \frac{0.045}{0.065} = 0.6923$$

4ª questão - 3,0 pontos

Sabe-se que há um surto de pneumonia em uma determinada região e se os pacientes forem diagnosticados precocemente têm 85% de probabilidade de se curarem sem necessidade de internação. Para um grupo de 20 pacientes que estão na fila aguardando laudo para saber se serão internados ou não, calcule qual a probabilidade de:

- (i) (1,5 pontos) menos de 2 necessitarem de internação:
- Resposta:

Modelo Binomial

$$P(X = x_k) = \binom{n}{k} \times p^k \times (1-p)^{n-k}, k = 0,1,...,n$$

Considerando n=20 e uma das opções:

p= 0,85 (sucesso: não ser internado) $\rightarrow P(X>18)$ mais de 18 (19 ou 20) não foram internados ou

p=0,15 (sucesso: ser internado) $\rightarrow P(X<2)$ menos de 2 (1 ou 2) serem internados

Utilizando p=0,15 e P(X<2)

$$P(X < 2) = P(X = 0) + P(X = 1)$$

$$P(X < 2) = {20 \choose 0} \times 0.15^{0} \times (1 - 0.15)^{20 - 0} + {20 \choose 1} \times 0.15^{1} \times (1 - 0.15)^{20 - 1}$$

$$P(X < 2) = \frac{20!}{0!20!} (0.15)^{0} \times (0.85)^{20} + \frac{20!}{1!19!} (0.15)^{1} \times (0.85)^{19} = 0.03876 + 0.13679 = 0.1755$$

(ii) (1,5 pontos) somente o quinto paciente a ter o laudo divulgado necessitar de internação:

Resposta:

$$P(X = k + 1) = p(1 - p)^{k}$$

$$P(X = 5) = 0.15(1 - 0.15)^{4} = 0.15 \times 0.5220 = 0.0783$$