Seminar 12

1. Use Lagrange multipliers to find the extrema of the following functions subject to constraints:

(a)
$$x^2 + y^2$$
 subject to $x - y + 1 = 0$.

(a)
$$x^2 + y^2$$
 subject to $x - y + 1 = 0$. (d) $x + 2y + 3z$ subject to $x^2 + y^2 + z^2 = 1$.

(b)
$$(x+y)^2$$
 subject to $x^2 + y^2 = 1$.

(e)
$$2x^2+y^2+3z^2$$
 subject to $x^2+y^2+z^2=1$.

(c)
$$\star x^2 - y^2$$
 subject to $x^2 + y^2 = 1$

(c)
$$\star x^2 - y^2$$
 subject to $x^2 + y^2 = 1$. (f) $\star x^3 + y^3 + z^3$ subject to $x^2 + y^2 + z^2 = 1$.

2. Find the minimum value of $\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$ subject to the following constraints:

(a)
$$x_1 + x_2 + x_3 = 3$$
.

(b)
$$x_1+x_2+x_3=3$$
 and $x_1+2x_2+3x_3=12$.

3. Compute the following integrals:

(a)
$$\iint\limits_{R} \cos x \sin y \, \mathrm{d}x \, \mathrm{d}y, \text{ where } R = [0, \pi/2] \times [0, \pi/2].$$

(b)
$$\iint\limits_R \frac{1}{(x+y)^2} \,\mathrm{d}x \,\mathrm{d}y \text{ and } \iint\limits_R y e^{xy} \,\mathrm{d}x \,\mathrm{d}y, \text{ where } R = [1,2] \times [0,1].$$

(c)
$$\iint\limits_{\mathcal{D}} \min\{x,y\} \,\mathrm{d}x \,\mathrm{d}y, \text{ where } R = [0,1] \times [0,1].$$

- 4. Let $D \subseteq \mathbb{R}^2$ be the subset bounded by the parabola $y = x^2$ and the lines x = 2 and y = 0.
 - (a) Express D as a simple set first w.r.t. the y-axis and then w.r.t. the x-axis.
 - (b) Compute $\iint xy \, dx \, dy$ in two ways.

Solutions should be handed in at the beginning of next week's lecture.

Homework questions are marked with \bigstar .