	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os import warnings warnings.filterwarnings('ignore') %matplotlib inline os.chdir('C:\\Users\\utpala mohapatra\\Documents\\python_folder\\python datasets')</pre> Load the dataset
n [2]:	diabetes_df = pd.read_csv('health care diabetes.csv') Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome 0 6 148 72 35 0 33.6 0.627 50 1 1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1
	Task 1 - Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value. diabetes_df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns): # Column</class>
In [6]:	8 Outcome dtypes: float64(2), int64(7) memory usage: 54.1 KB check for null values diabetes_df.isna().sum() Pregnancies
	Descriptive Analysis
in [4]:	min 0.0000000 0.0000000 0.0000000 <
Out[4]:	The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20016) 3.19376. c. (30072) The second plant (1, 13), c. (20072) 3.19376. c. (30072) The second plant (1, 13), c. (20072) 3.19376. c. (30072) The second plant (1, 13), c. (20072) 3.19376. c. (30072) 3
[5]: t[5]:	Find out which columns have 0 values as 0 values means missing values and then Impute the missing Values. (diabetes_df==0).sum() Pregnancies
[7]: [7]:	SkinThickness 227 Insulin 374 BMI 11 DiabetesPedigreeFunction 0 Age 0 Outcome 0 Outgoe 1 # Impute the missing values with the help of SimpleImputer from sklearn.impute import SimpleImputer imputer = SimpleImputer(strategy='mean') diabetes_df[cols]=imputer.fit_transform(diabetes_df[cols]) diabetes_df.isna().sum() Pregnancies 0 Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0
	DiabetesPedigreeFunction 0 2 2 0 0 2 0 0 0 0
	Task 4 - Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action. sns.countplot(x='Outcome', data=diabetes_df) AxesSubplot:xlabel='Outcome', ylabel='count'>
	From the bar plot above we can see as number of Zero outcomes is more so as compared to diabetic people nondiabetic people are more. Task 5 - Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
2]:	dsabetes_df.corr()
•	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcom Pregnancies 1.000000 0.154290 0.259117 0.131819 0.068077 0.110590 -0.005658 0.511662 0.24826 Glucose 0.154290 1.000000 0.218367 0.192991 0.420157 0.230941 0.137060 0.266534 0.49292 BloodPressure 0.259117 0.218367 1.000000 0.192816 0.072517 0.281268 -0.002763 0.324595 0.16607 SkinThickness 0.131819 0.192991 0.192816 1.000000 0.158139 0.542398 0.1046586 0.098634 0.136734 0.218129 Insulin 0.068077 0.420157 0.072517 0.158139 1.000000 0.166586 0.098634 0.136734 0.021411 BMI 0.110590 0.230941 0.281268 0.542398 0.166586 1.00000 0.153400 0.025519 0.331192 DiabetesPedigreeFunction -0.0056
:	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome Outc
3]: 4]:	Task 7 - Apply an appropriate classification algorithm to build a model. Model 1 - As the target variable that is Outcome values are bianary, so the best possible algorithm should be Logistic Regression. # Convert the data into feature and target variables. X = diabetes_df.drop(['Outcome'], axis=1) y = diabetes_df['Outcome'] # Convert the data to train and test data from sklearn.model_selection import train_test_split, cross_val_score, RFold from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, roc_auc_score, roc_curve xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=23) print(xtrain.shape, ytrain.shape, xtest.shape, ytest.shape) (537, 8) (537,) (231, 8) (231,) from sklearn.linear_model import LogisticRegression lrg = LogisticRegression() lrg.fit(xtrain, ytrain)
	Task 8 - Compare various models with the results from KNN algorithm. Model 2 - Lets try KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier kfold = KFold(n_splits=10) avg_score = [] for k in range(2,25): knn = KNeighborsClassifier(n_neighbors=k,n_jobs=-1) score = cross_val_score(knn,X,y,cv=kfold,scoring='accuracy')
<pre>>>):</pre>	avg_score.append(score.mean()) plt.figure(figsize=(10,6)) plt.plot(range(2,25),avg_score) plt.xlabel('Neighbours') plt.ylabel('Score') Text(0, 0.5, 'Score') 0.745 0.745 0.735 0.735 0.720 0.715
0]:	We can see in th graph The KNN model gives the best score with the neighbours=17 knn_17 = KNeighborsClassifier (n_neighbors=17, n_jobs=-1) knn_17.fit (xtrain, ytrain) knn_pred = knn_17.predict (xtest) print (accuracy_score (ytest, knn_pred)) 0.7402597402597403 The accuracy score in the knn model is 74% Model 3 - Lets try with Decision Tree Classifier.
2]:	<pre>from sklearn.tree import DecisionTreeClassifier tree = DecisionTreeClassifier() tree.fit(xtrain,ytrain) tree_pred = tree.predict(xtest) print(accuracy_score(ytest,tree_pred)) 0.6753246753246753 The accuracy score in DecisionTree model is just 67%. Model 4 - Lets try RandomforestClassifier from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators=100) rfc.fit(xtrain,ytrain) rfc_pred = rfc.predict(xtest) print(accuracy_score(ytest,rfc_pred)) 0.7575757575757576 The accuracy Score in Randomforest Classifier is 75%.</pre>
<pre>>>]:</pre>	Lets try AdaBoost Classifier. from sklearn.ensemble import AdaBoostClassifier ada = AdaBoostClassifier(n_estimators=100) ada.fit(xtrain,ytrain) ada_pred = ada.predict(xtest) accuracy_score(ytest,ada_pred) 0.7316017316017316 In AdaBoost model also the Accracy score is 73% From all these models we can see RandomforestClassifier is giving better Accuracy than KNN model.
:]: :]:	Task 9 - Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc. conf_matx = (confusion_matrix(ytest,lrg_predict)) print(conf_matx) [[130 18] [33 50]] TP = conf_matx[1][1] TN = conf_matx[0][0] FP = conf_matx[0][1] FN = conf_matx[1][0] sensitivity = TP/(TP+FN) specificity = TN/(TN+FP) print('Sensitivity: ',sensitivity,'\n','Specificity: ',specificity) Sensitivity: 0.6024096385542169 Specificity: 0.8783783783783783784 The sencitivity is 60% and the specificity is 88%. print(classification_report(ytest,lrg_predict))
]:	precision recall f1-score support 0 0.80 0.88 0.84 148 1 0.74 0.60 0.66 83 accuracy 0.78 231 macro avg 0.77 0.74 0.75 231 weighted avg 0.78 0.78 0.77 231 pred_proba = lrg.predict_proba(xtest)[:,1] false_positive_rate, true_positive_rate, threshold = roc_curve(ytest, pred_proba) print('roc_auc_score for logistic regression: ',roc_auc_score(ytest, pred_proba)) roc_auc_score for logistic regression: 0.8371865841745358 plt.figure(figsize=(10,6)) plt.title('ROC Curve for Logistic regression') plt.plot([0, 1], ls="-") plt.plot([0, 1], ls="-") plt.plot([0, 0], [1, 0], c=".5"), plt.plot([1, 1], c=".5") plt.ylabel('True Positive Rate')
	plt.xlabel('False Positive Rate') plt.show() ROC Curve for Logistic regression 10 08 000 000 000 000 000 000