Exemplo

Sejam as retas de \mathbb{R}^3

$$r = (1,0,0) + \langle (1,0,0) \rangle$$

$$s = (0,1,0) + \langle (0,1,0) \rangle$$

$$t = (0,0,1) + \langle (1,0,0) \rangle$$

Tem-se

- $r \cap s = \{(0,0,0)\}$
- $r \cap t = \emptyset e r//t$
- s ∩ t = Ø e as retas s e t são enviesadas.

Definição

Seja $\{\mathcal{F}_i : i \in I\}$ uma família não-vazia de subespaços afins de \mathbb{R}^n . Seja \mathcal{A} a coleção de todos os subespaços afins de \mathbb{R}^n que contêm cada \mathcal{F}_i , $i \in I$. Designa-se por subespaço afim gerado por $\{\mathcal{F}_i : i \in I\}$ o subespaço afim

$$\bigcap_{\mathcal{F}\in\mathcal{A}}\mathcal{F}$$

que se denota por $\langle \mathcal{F}_i : i \in I \rangle$.

Observação

Resulta da definição que $\langle \mathcal{F}_i : i \in I
angle$ é o menor subespaço afim que contém \mathcal{F}_i , $i \in I$.

Exemplo

Sejam A = (1,2), B = (1,-1) pontos de \mathbb{R}^2

Temos $\overrightarrow{AB} = B - A = (0, -3)$

Observe-se que $A, B \in (1, -1) + \langle \overrightarrow{AB} \rangle = (1, -1) + \langle (0, -3) \rangle$

 $(1,2) + \langle \overrightarrow{AB} \rangle$ é um subespaço afim que contem ambos os pontos

Por outro lado, se \mathcal{F} é um subespaço afim que contem ambos os pontos

podemos escrever $\mathcal{F} = A + F$ para algum $F \leq \mathbb{R}^3$

Como A, $B \in \mathcal{F}$ tem-se $\overrightarrow{AB} \in F$ e portanto

$$\langle \overrightarrow{AB} \rangle \subseteq F \ e \ A + \langle \overrightarrow{AB} \rangle \subseteq A + F = \mathcal{F}$$

Assim $A + \langle \overrightarrow{AB} \rangle$ é o subespaço afim gerado por A, B que é a reta definida por A, B.

Exemplo

Sejam as retas de \mathbb{R}^3 de um exemplo anterior

$$s = (0, 1, 0) + \langle (0, 1, 0) \rangle$$

$$t = (0,0,1) + \langle (1,0,0) \rangle$$

Já vimos que s ∩ $t = \emptyset$.

Os pontos $A = (0, 1, 0) \in s$ e $B = (0, 0, 1) \in t$ pertencem ao menor subespaço afim que contém ambas as retas, $\mathcal{F} = \langle s, t \rangle$.

Assim, o vetor $\overrightarrow{BA} = A - B = (0, 1, 0) - (0, 0, 1) = (0, 1, -1)$ pertence ao subespaço vetorial F definido por \mathcal{F} , tal com os vetores v = (0, 1, 0), w = (1, 0, 0).

 $\mathbb{R}^3 = \langle (0, 1, -1), (0, 1, 0), (1, 0, 0) \rangle \leq F \text{ e portanto } \mathcal{F} = \mathbb{R}^3.$

Teorema $Sejam \mathcal{F}_1 = A + F_1 e \mathcal{F}_2 = B + F_2 \text{ subespaços afins de } \mathbb{R}^n$. Então $\langle \mathcal{F}_1, \mathcal{F}_2 \rangle = A + \langle \overrightarrow{AB} \rangle + F_1 + F_2$.