Step 1 Importing Libraries

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import plotly.express as px
5 import seaborn as sns
6 sns.set()
7 import scipy
8 from sklearn.preprocessing import LabelEncoder
9 from sklearn.preprocessing import StandardScaler
10 from scipy.cluster.hierarchy import dendrogram, linkage
11 import plotly.graph_objs as go
12 from plotly.offline import init_notebook_mode, iplot
13 from sklearn.decomposition import PCA
14 from sklearn.metrics.pairwise import cosine_similarity
```

Step 2 Reading data file into a python data frame

1 data = pd.read_csv('/content/india-districts-census-2011.csv')
2 data.head(5)

	District code	State name	District name	Population	Male	Female	Literate	Male_Literate	Female_Literate	sc	 Power_Parity_Rs_9
0	1	JAMMU AND KASHMIR	Kupwara	870354	474190	396164	439654	282823	156831	1048	
1	2	JAMMU AND KASHMIR	Badgam	753745	398041	355704	335649	207741	127908	368	
2	3	JAMMU AND KASHMIR	Leh(Ladakh)	133487	78971	54516	93770	62834	30936	488	
3	4	JAMMU AND KASHMIR	Kargil	140802	77785	63017	86236	56301	29935	18	
4	5	JAMMU AND KASHMIR	Punch	476835	251899	224936	261724	163333	98391	556	

5 rows × 118 columns

Step 3 Statistical Summary

1 data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 640 entries, 0 to 639

Columns: 118 entries, District code to Total_Power_Parity

dtypes: int64(116), object(2)
memory usage: 590.1+ KB

1 data.describe().round(2)

	District code	Population Male Female Literate Male Lite		Male_Literate	Female_Literate	sc	Male_SC	Female_SC	•		
count	640.00	640.00	640.00	640.00	640.00	640.00	640.00	640.00	640.00	640.00	
mean	320.50	1891960.90	973859.78	918101.12	1193185.64	679318.16	513867.48	314653.71	161773.93	152879.78	
std	184.90	1544380.29	800778.52	744986.39	1068582.63	592414.36	480181.61	312981.76	161121.56	152033.63	
min	1.00	8004.00	4414.00	3590.00	4436.00	2614.00	1822.00	0.00	0.00	0.00	
25%	160.75	817861.00	417168.25	401745.75	482598.25	276436.50	200892.00	83208.50	42307.00	42671.75	
50%	320.50	1557367.00	798681.50	758920.00	957346.50	548352.50	403859.00	246016.00	125548.50	117855.00	
75%	480.25	2583551.25	1338604.50	1264276.75	1602260.25	918858.25	664155.00	447707.75	228460.25	214050.25	
max	640.00	11060148.00	5865078.00	5195070.00	8227161.00	4591396.00	3635765.00	2464032.00	1266504.00	1197528.00	

8 rows × 116 columns

Step 4 Checking for null values

```
1 data.isnull().sum()
    District code
    State name
    District name
                                      0
    Population
                                      0
    Male
                                     0
    Power_Parity_Rs_330000_425000
                                     a
    Power_Parity_Rs_425000_545000
                                     0
                                     0
    Power_Parity_Rs_330000_545000
    Power_Parity_Above_Rs_545000
                                     0
    Total_Power_Parity
    Length: 118, dtype: int64
```

There are no null values so carrying forward with our analysis.

Step 5 Dumping unwanted columns

Step 6 Exploring for insights at State level

Population Vs States

So there are many states which can be selected for our start up to launch their services in solely based on population count.

Most likely more business will be generssated from states like:

- Rajasthan
- Uttarpradesh
- Bihar
- · West Bengal
- Madhya Pradesh
- Gujarat
- Maharastra
- · Andhar Pradesh
- Karnataka
- Tamil Nadu

Note: These are states with population greater than 50 Millions and this does not visualize whole scenario it is just a speculation based on Total population count of the above given states. Now, let's explore number of literate people residing in every state as literacy rate is directly Corrolated by regular medical check ups.

Literate Population per State

Step 7 Exploring for Insights at District level

Firstly, we are going to make separate data frame for data of above listed states

```
1 NCT_of_Delhi = data[data['State name'] == "NCT OF DELHI"]
2 Uttar_Pradesh = data[data['State name'] == "UTTAR PRADESH"]
3 West_Bengal = data[data['State name'] == "WEST BENGAL"]
4 Gujarat = data[data['State name'] == "GUJARAT"]
5 Maharashtra = data[data['State name'] == "MAHARASHTRA"]
6 Andra_Pradesh = data[data['State name'] == "ANDRA PRADESH"]
7 Karnataka = data[data['State name'] == "KARNATAKA"]
8 Kerala = data[data['State name'] == "KERALA"]
9 Tamil_Nadu = data[data['State name'] == "TAMIL NADU"]
```

It will be a very tedious task to write code for each and every state vise dataframes that we made recently. So we are going to define a function for that purpose.

```
1 def Explore_districts_of(state):
2
       fig = px.histogram(state,
                          marginal = 'box',
3
4
                          x="District name",
5
                          y = "Population",
                          title='Population Vs Districts')
6
7
       fig.update_layout(bargap=0.1)
8
      fig.show()
9
       fig = px.histogram(state,
10
                          marginal = 'box',
11
12
                          x="District name",
13
                          y = "Literate",
14
                          title='Number of Literate Vs Districts')
15
       fig.update_layout(bargap=0.1)
16
      fig.show()
17
18
      fig = px.histogram(state,
                         marginal = 'box',
19
20
                         x = "District name",
                         y = "Households_with_Internet",
21
22
                         title = "Households with Internet in every District")
23
       fig.show()
```

1 Explore_districts_of(Uttar_Pradesh)

Population Vs Districts

Number of Literate Vs Districts

Households with Internet in every District

Step 8 Gathering Insights for few selected states

```
1 Selected_States = pd.concat([Uttar_Pradesh, Maharashtra, Tamil_Nadu, Karnataka], axis=0)
2 Selected_States
```

	District code	State name	District name	Population	Male	Female	Literate	Male_Literate	Female_Literate	Workers	•••	Powe
131	132	UTTAR PRADESH	Saharanpur	3466382	1834106	1632276	2077108	1220114	856994	1037344		
132	133	UTTAR PRADESH	Muzaffarnagar	4143512	2193434	1950078	2417339	1448528	968811	1291644		
133	134	UTTAR PRADESH	Bijnor	3682713	1921215	1761498	2135393	1241471	893922	1088036		
134	135	UTTAR PRADESH	Moradabad	4772006	2503186	2268820	2263848	1357435	906413	1417811		
135	136	UTTAR PRADESH	Rampur	2335819	1223889	1111930	1043666	630408	413258	737261		
				•••								
579	580	KARNATAKA	Yadgir	1174271	590329	583942	510003	306751	203252	547696		
580	581	KARNATAKA	Kolar	1536401	776396	760005	1016219	564110	452109	717872		
581	582	KARNATAKA	Chikkaballapura	1255104	636437	618667	783222	442158	341064	639778		
582	583	KARNATAKA	Bangalore Rural	990923	509172	481751	688749	385311	303438	459891		
583	584	KARNATAKA	Ramanagara	1082636	548008	534628	674758	378461	296297	531459		
168 rd	ows × 48 colu	umns										

```
1 fig = px.treemap(Selected_States,
 path=['State name','District name'],
values='Population',
 3
 4
                   color='Households_with_Internet',
                   color_continuous_scale='RdBu',
title = 'Finding out best Market')
 5
 7 fig.update_layout(bargap=1,autosize=False,
      width=800,
 8
9
      height=800,)
10 fig.show()
11
12 fig = px.sunburst(Selected_States,
               path=['State name','District name'],
13
                    values='Population',
14
                   color='Households_with_Internet',
color_continuous_scale='RdBu',
15
16
                   title = 'Finding out best Market')
17
18 fig.update_layout(
19 autosize=False,
20
       width=800,
     height=800)
21
22 fig.show()
```


Finding out best Market

larger the portion of district in above visuals shows larger total population and color inclination towards darker shades of blue means larger number of households with internet connection. So it seems there are five districts that looks like promising greater business opportunity for us. especially three of which are in Maharashtra.

Step 9 Recommendations based on our EDA

- Our company should encorrporate some advance data collection methods like foccus groups and mass public surveys to this states and
 specially to the states corresponding to five districts that show great promise of business gains.public surveys can be conducted online
 too by giving out incentives or discounts to customers that take part in it. By doing so we are also finalizing our customer base by
 marketing and also collecting data that can be used to create pyschographic profiles of the participants which will give us enough
 understanding of the local community, their values and their attitude towards online health services.
- This type of data collection needs to be done at a large scale to get rid of bias which is a very dangerous for our analysis.
- My personal judgement leans towards Maharashtran market as this state has more districts that are attractive for our profits but also has quality population which has internet services and higher literacy rates.
- Marketing department should first penetrate larger cities which has denser population because more the density of population faster will be the word of mouth marketing like a wildfire spreading across dense forest.
- After establishing concrete business there we should move towards cities with lesser public and then towards the rural areas as rural
 segment is very hard to deal with for many reasons like providing fast customer service is very challenging, inventory storage in near by
 areas is very costly and also possibility of people adopting this change of online healthcare services is very less to allocate our resources
 to

```
1 Selected_States.drop(['Power_Parity_Less_than_Rs_45000','Power_Parity_Rs_45000_90000','Power_Parity_Rs_90000_150000','Power_Parity_Rs_
2 Selected_States.info()
     <class 'pandas.core.frame.DataFrame'>
```

```
Int64Index: 168 entries, 131 to 583
Data columns (total 16 columns):
                             Non-Null Count Dtype
    District code
                            168 non-null
                                             int64
                             168 non-null
1
    State name
                                             object
    District name
                             168 non-null
                                             object
3
    Population
                             168 non-null
                                             int64
    Male
                             168 non-null
                                             int64
5
    Female
                             168 non-null
                                             int64
    Literate
                             168 non-null
                                             int64
6
    Households_with_Internet 168 non-null
                                             int64
8
    Households_with_Computer 168 non-null
                                             int64
                        168 non-null
    Rural_Households
                                             int64
10
    Urban_Households
                             168 non-null
                                             int64
11 Households
                            168 non-null
                                             int64
12 Age_Group 0 29
                             168 non-null
                                             int64
13 Age Group 30 49
                             168 non-null
                                             int64
14 Age_Group_50
                             168 non-null
                                             int64
15 Age not stated
                             168 non-null
                                             int64
dtypes: int64(14), object(2)
memory usage: 22.3+ KB
```

1 Selected_States.corr()

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid

	District code	Population	Male	Female	Literate	Households_with_Internet	Households_with_Computer	F
District code	1.000000	-0.121331	-0.141542	-0.098584	0.038961	0.159186	0.142389	
Population	-0.121331	1.000000	0.999066	0.998844	0.969780	0.731503	0.800683	
Male	-0.141542	0.999066	1.000000	0.995832	0.966991	0.734823	0.802280	
Female	-0.098584	0.998844	0.995832	1.000000	0.970752	0.726202	0.797149	
Literate	0.038961	0.969780	0.966991	0.970752	1.000000	0.826475	0.882609	
Households_with_Internet	0.159186	0.731503	0.734823	0.726202	0.826475	1.000000	0.989140	
Households_with_Computer	0.142389	0.800683	0.802280	0.797149	0.882609	0.989140	1.000000	
Rural_Households	-0.204762	0.567404	0.554203	0.580840	0.440882	-0.051928	0.051724	
Urban_Households	0.209499	0.794356	0.797215	0.789432	0.887783	0.958281	0.972786	
Households	0.101705	0.951945	0.948948	0.953189	0.982464	0.838044	0.894741	
Age_Group_0_29	-0.260047	0.984909	0.986749	0.980700	0.918900	0.652522	0.726316	
Age_Group_30_49	0.061744	0.972116	0.969173	0.973254	0.992420	0.827668	0.885342	
Age_Group_50	0.119018	0.948381	0.940003	0.955617	0.973885	0.752498	0.813343	
Age not stated	-0.493138	0.509430	0.520352	0.496164	0.385775	0.181041	0.227474	

¹ plt.figure(figsize=(11,11))

² sns.heatmap(Selected_States.corr(), cmap='Blues', annot=True)

³ plt.title('Correlation Matrix')

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid

						Coi	relati	on Ma	trix							- 1.0
District code	1	-0.12	-0.14	-0.099	0.039	0.16	0.14	-0.2	0.21	0.1	-0.26	0.062	0.12	-0.49		
Population	-0.12	1	1	1	0.97	0.73	0.8	0.57	0.79	0.95	0.98	0.97	0.95	0.51		- 0.8
Male	-0.14	1	1	1	0.97	0.73	0.8	0.55	0.8	0.95	0.99	0.97	0.94	0.52		
Female	-0.099	1	1	1	0.97	0.73	0.8	0.58	0.79	0.95	0.98	0.97	0.96	0.5		- 0.6
Literate	0.039	0.97	0.97	0.97	1	0.83	0.88	0.44	0.89	0.98	0.92	0.99	0.97	0.39		
Households_with_Internet	0.16	0.73	0.73	0.73	0.83	1	0.99	-0.052	0.96	0.84	0.65	0.83	0.75	0.18		- 0.4
Households_with_Computer	0.14	0.8	0.8	0.8	0.88	0.99	1	0.052	0.97	0.89	0.73	0.89	0.81	0.23		
Rural_Households	-0.2	0.57	0.55	0.58	0.44	-0.052	0.052	1	0.023	0.44	0.61	0.44	0.53	0.39		- 0.2
Urban_Households	0.21	0.79	0.8	0.79	0.89	0.96	0.97	0.023	1	0.91	0.71	0.89	0.83	0.22		
Households	0.1	0.95	0.95	0.95	0.98	0.84	0.89	0.44	0.91	1	0.89	0.99	0.97	0.36		- 0.0
Age_Group_0_29	-0.26	0.98	0.99	0.98	0.92	0.65	0.73	0.61	0.71	0.89	1	0.92	0.88	0.58		
Age_Group_30_49	0.062	0.97	0.97	0.97	0.99	0.83	0.89	0.44	0.89	0.99	0.92	1	0.97	0.38		0.2
Age_Group_50	0.12	0.95	0.94	0.96	0.97	0.75	0.81	0.53	0.83	0.97	0.88	0.97	1	0.34		
Age not stated	-0.49	0.51	0.52	0.5	0.39	0.18	0.23	0.39	0.22	0.36	0.58	0.38	0.34	1		0.4
	District code	Population	Male	Female	Literate	Households_with_Internet	Households_with_Computer	Rural_Households	Urban_Households	Households	Age_Group_0_29	Age_Group_30_49	Age_Group_50	Age not stated		

1 LB = LabelEncoder()

¹ Selected_States['State name'] = LB.fit_transform(Selected_States['State name'])
2 Selected_States['District name'] = LB.fit_transform(Selected_States['District name'])

³ advance_data = Selected_States

⁴ scaler = StandardScaler()

⁵ segmentation_std = scaler.fit_transform(advance_data)
6 segmentation_std = pd.DataFrame(segmentation_std,columns=advance_data.columns)

⁷ advance_data.corr()

	District code	State name	District name	Population	Male	Female	Literate	Households_with_Internet	Househ
District code	1.000000	-0.795655	0.203548	-0.121331	-0.141542	-0.098584	0.038961	0.159186	
State name	-0.795655	1.000000	-0.027725	0.092411	0.104025	0.079290	-0.031222	-0.145091	
District name	0.203548	-0.027725	1.000000	-0.029396	-0.035803	-0.022206	0.012210	0.003727	
Population	-0.121331	0.092411	-0.029396	1.000000	0.999066	0.998844	0.969780	0.731503	
Male	-0.141542	0.104025	-0.035803	0.999066	1.000000	0.995832	0.966991	0.734823	
Female	-0.098584	0.079290	-0.022206	0.998844	0.995832	1.000000	0.970752	0.726202	
Literate	0.038961	-0.031222	0.012210	0.969780	0.966991	0.970752	1.000000	0.826475	
Households_with_Internet	0.159186	-0.145091	0.003727	0.731503	0.734823	0.726202	0.826475	1.000000	
Households_with_Computer	0.142389	-0.132109	0.003445	0.800683	0.802280	0.797149	0.882609	0.989140	
Rural_Households	-0.204762	0.163939	-0.011346	0.567404	0.554203	0.580840	0.440882	-0.051928	
Urban_Households	0.209499	-0.161085	0.058343	0.794356	0.797215	0.789432	0.887783	0.958281	
Households	0.101705	-0.075464	0.047573	0.951945	0.948948	0.953189	0.982464	0.838044	
Age_Group_0_29	-0.260047	0.188273	-0.069565	0.984909	0.986749	0.980700	0.918900	0.652522	
Age_Group_30_49	0.061744	-0.039677	0.022360	0.972116	0.969173	0.973254	0.992420	0.827668	
Age_Group_50	0.119018	-0.068558	0.038497	0.948381	0.940003	0.955617	0.973885	0.752498	
Age not stated	-0.493138	0.391986	-0.098979	0.509430	0.520352	0.496164	0.385775	0.181041	

¹ plt.figure(figsize=(11,11))
2 sns.heatmap(advance_data.corr(), cmap='Blues', annot=True)
3 plt.title('Correlation Matrix')

1 segmentation_std= pd.DataFrame(segmentation_std)

2 print(segmentation_std.max())

District code	1.179951
State name	0.992915
District name	1.721771
Population	5.202932
Male	5.278704
Female	5.107227
Literate	5.424253
Households_with_Internet	7.381445
Households_with_Computer	7.382053
Rural_Households	3.433510
Urban_Households	6.289856
Households	5.833210
Age_Group_0_29	4.936360
Age_Group_30_49	5.685461
Age_Group_50	4.571477
Age not stated	4.137599
dtype: float64	

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning


```
1 kmeans = KMeans(n_clusters= 3)
2 label = kmeans.fit_predict(X1)
3 # print(label)
```

 $/usr/local/lib/python 3.10/dist-packages/sklearn/cluster/_kmeans.py: 870: Future Warning: 1.00 and 1.00 are also better the control of the$

```
1 plt.scatter(X1[:,0], X1[:,1], c=kmeans.labels_,cmap= 'rainbow')
2 plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black')
3 plt.title('Cluster of literacy')
4 plt.xlabel('Population')
5 plt.ylabel('Literate')
6 plt.show()
```



```
1 X1 = segmentation_std.loc[:, ["Households_with_Internet","Literate"]].values
2
3 from sklearn.cluster import KMeans
4 wcss = []
5 for k in range(1, 11):
6     kmeans = KMeans(n_clusters=k, init='k-means++')
7     kmeans.fit(X1)
8     wcss.append(kmeans.inertia_)
9 plt.figure(figsize=(15,7))
10 plt.grid()
11 plt.plot(range(1,11),wcss, linewidth=2, color='red', marker="8")
12 plt.xlabel('k Value')
13 plt.ylabel('k Value')
14
15 plt.show()
```

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning


```
1 kmeans = KMeans(n_clusters= 3)
2 label = kmeans.fit_predict(X1)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

```
1 print(kmeans.cluster_centers_)
2 plt.scatter(X1[:,0], X1[:,1], c=kmeans.labels_,cmap= 'rainbow')
3 plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black')
4 plt.title('Cluster of Households_with_Internet')
5 plt.xlabel('Households_with_Internet')
6 plt.ylabel('Literate')
7 plt.show()
```

```
[[-0.27097743 -0.51980044]
[ 5.18770938 4.27897896]
[ 0.04886071 0.5912974 ]]
```

Cluster of Households_with_Internet


```
1 X1 = segmentation_std.loc[:, ["Urban_Households","Households_with_Computer"]].values
2
3 from sklearn.cluster import KMeans
4 wcss = []
5 for k in range(1, 11):
6     kmeans = KMeans(n_clusters=k, init='k-means++')
7     kmeans.fit(X1)
8     wcss.append(kmeans.inertia_)
9 plt.figure(figsize=(15,7))
10 plt.grid()
11 plt.plot(range(1,11),wcss, linewidth=2, color='red', marker="8")
12 plt.xlabel('k Value')
13 plt.ylabel('WCSS')
14
15 plt.show()
```

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning


```
1 kmeans = KMeans(n_clusters= 2)
2 label = kmeans.fit_predict(X1)
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

```
1 plt.scatter(X1[:,0], X1[:,1], c=kmeans.labels_,cmap= 'rainbow')
2 plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black')
3 plt.title('Households_with_Computer')
4 plt.xlabel('Urban_Households')
5 plt.ylabel('Households_with_Computer')
6 plt.show()
```



```
1 X1 = segmentation_std.loc[:, ["Age_Group_0_29","Literate"]].values
2
3 from sklearn.cluster import KMeans
4 wcss = []
5 for k in range(1, 11):
6     kmeans = KMeans(n_clusters=k, init='k-means++')
7     kmeans.fit(X1)
8     wcss.append(kmeans.inertia_)
9 plt.figure(figsize=(15,7))
10 plt.grid()
11 plt.plot(range(1,11),wcss, linewidth=2, color='red', marker="8")
12 plt.xlabel('k Value')
13 plt.ylabel('k Value')
14
15 plt.show()
```

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning


```
1 kmeans = KMeans(n_clusters= 4)
2 label = kmeans.fit_predict(X1)
```

 $/usr/local/lib/python 3.10/dist-packages/sklearn/cluster/_kmeans.py: 870: Future Warning: \\$

```
1 plt.scatter(X1[:,0], X1[:,1], c=kmeans.labels_,cmap= 'rainbow')
2 plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], color='black')
3 plt.title('literacy of Age_Group_0_29')
4 plt.xlabel('Age_Group_0_29')
5 plt.ylabel('Literate')
6 plt.show()
```



```
1 plt.figure(figsize=(11,11))
2 sns.heatmap(advance_data.corr(), cmap='Blues', annot=True)
3 plt.title('Correlation Matrix')
```

Text(0.5, 1.0, Correlation	Matrix	`)					Cor	relation	on Ma	atrix							_		1.0
District code	1	-0.8	0.2	-0.12	-0.14	-0.09	9 .039	0.16	0.14	-0.2	0.21	0.1	-0.26	0.062	0.12	-0.49			1.0
State name	-0.8	1	0.028	0 .092	0.1	0.079	0.03	1-0.15	-0.13	0.16	-0.16	0.075	0.19	-0.04	0.069	0.39		_	0.8
District name	0.2	0.02	8 1 -	0.029	90.03	30.022	D.011	0.0030	7.0034	0 .011	D.058	0.048	-0.07	0.022	0.038	0.099	,		
Population	-0.12	0.092	-0.029	9 1	1	1	0.97	0.73	0.8	0.57	0.79	0.95	0.98	0.97	0.95	0.51		-	0.6
Male	-0.14	0.1	-0.036	5 1	1	1	0.97	0.73	0.8	0.55	0.8	0.95	0.99	0.97	0.94	0.52			
Female	-0.099	0 .079	0.022	2 1	1	1	0.97	0.73	0.8	0.58	0.79	0.95	0.98	0.97	0.96	0.5		-	0.4
Literate	0.039	0.03	D.012	0.97	0.97	0.97	1	0.83	0.88	0.44	0.89	0.98	0.92	0.99	0.97	0.39			
Households_with_Internet	0.16	-0.15	0.003	0.73	0.73	0.73	0.83	1	0.99	0.052	0.96	0.84	0.65	0.83	0.75	0.18		-	0.2
Households_with_Computer	0.14	-0.13	0.003	40.8	0.8	0.8	0.88	0.99	1	0.052	0.97	0.89	0.73	0.89	0.81	0.23			0.0
Rural_Households	-0.2	0.16	-0.01	0.57	0.55	0.58	0.44	-0.052	D .052	1	0.023	0.44	0.61	0.44	0.53	0.39			0.0
Urban_Households	0.21	-0.16	0.058	0.79	0.8	0.79	0.89	0.96	0.97	0.023	1	0.91	0.71	0.89	0.83	0.22		_	-0.2
Households	0.1	-0.07	5 0.048	0.95	0.95	0.95	0.98	0.84	0.89	0.44	0.91	1	0.89	0.99	0.97	0.36			
Age_Group_0_29	-0.26	0.19	-0.07	0.98	0.99	0.98	0.92	0.65	0.73	0.61	0.71	0.89	1	0.92	0.88	0.58		-	-0.4
Age_Group_30_49	0.062	2-0.04	0.022	0.97	0.97	0.97	0.99	0.83	0.89	0.44	0.89	0.99	0.92	1	0.97	0.38			
Age_Group_50	0.12	-0.06	9 0.038	0.95	0.94	0.96	0.97	0.75	0.81	0.53	0.83	0.97	0.88	0.97	1	0.34		-	-0.6
Age not stated	-0.49	0.39	0.099	0.51	0.52	0.5	0.39	0.18	0.23	0.39	0.22	0.36	0.58	0.38	0.34	1			
	District code	State name	District name	Population	Male	Female	Literate	Households_with_Internet	Households_with_Computer	Rural_Households	Urban_Households	Households	Age_Group_0_29	Age_Group_30_49	Age_Group_50	Age not stated			

```
1 x = Selected_States[['District code', 'State name', 'District name', 'Population', 'Male', 'Female', 'Literate',
              'Households_with_Internet', 'Households_with_Computer', 'Rural_Households', 'Urban_Households', 'Households', 'Age_Group_30_49', 'Age_Group_50']].values
 3
 4 km = KMeans(n_clusters = 15, init = 'k-means++', max_iter = 300, n_init = 10, random_state = 0)
 5 km.fit(x)
 6 labels = km.labels_
 7 centroids = km.cluster_centers_
 8 segmentation_std['labels'] = labels
 9 trace1 = go.Scatter3d(
10
       x= segmentation_std['Population'],
       y= segmentation_std['State name'],
11
12
      z= segmentation_std['District name'],
13
      mode='markers',
14
        marker=dict(
15
          color = segmentation_std['labels'],
16
           size= 10,
17
           line=dict(
18
              color= segmentation_std['labels'],
               width= 12
19
20
           ),
21
           opacity=0.8
22
23)
24 df = [trace1]
25
26 layout = go.Layout(
       title = 'population in States as well as District',
27
       margin=dict(
28
29
           1=0,
30
           r=0,
31
           b=0,
32
          t=0
33
       ),
       scene = dict(
34
35
              xaxis = dict(title = 'Population'),
36
               yaxis = dict(title = 'State name'),
               zaxis = dict(title = 'District name')
37
38
           )
39)
40
41 fig = go.Figure(data = df, layout = layout)
42 iplot(fig)
```



```
1 segmentation_std['labels'] = labels
 2 trace1 = go.Scatter3d(
 3 x= segmentation_std['Households'],
     y= segmentation_std['Rural_Households'],
z= segmentation_std['Urban_Households'],
 4
 5
     mode='markers',
 6
      marker=dict(
       color = segmentation_std['labels'],
size= 10,
line=dict(
 8
 9
10
            color= segmentation_std['labels'],
11
12
              width= 12
       ),
13
14
          opacity=0.8
15
16)
17 df = [trace1]
18
19 layout = go.Layout(
20
       title = 'Households in rural and urban',
21
       margin=dict(
22
        1=0,
23
          r=0,
         b=0,
24
25
26 ),
```