Laboratorio de Física I:

MÉTODO DE MÍNIMOS CUADRADOS

Docente: Lic. Jose Luis Mamani Cervantes

Competencias:

✓ Determinar relaciones funcionales a partir de datos experimentales utilizando el Método de Mínimos Cuadrados

Marco Teórico

La Física es Experimental

Se trabajan con dos variables

- > Variable independiente (que se puede controlar o variar libre mente)
- > Variable pendiente (que NO se puede controlar o varia a consecuencia de la variable independiente)

El Método de Mínimos Cuadrados es un método analítico que permite obtener la ecuación de la mejor recta a partir de los pares ordenados (x, y), es decir de los datos experimentales.

La grafica muestra un comportamiento lineal

$$y' = A + Bx$$

- ✓ Asumiendo que la variable independiente no tiene errores "x"
- ✓ Los errores son producidos únicamente por la variable dependiente "y"

$$y' = A + Bx$$

$$di = y_i - y_i'$$

El criterio para encontrar la ecuación de la mejor recta es que la sumatoria de las discrepancias al cuadrado sea mínima:

$$\sum di^2 \rightarrow minima$$

Si la condición es:

$$y' = A + Bx$$

$$\sum di^2 \rightarrow minima$$
 Conociendo que

$$di = y_i - y_i'$$

$$\sum di^2 = \sum (y_i - (A + Bx_i))^2$$

$$\sum di^2 = \sum \left(y_i^2 - 2y_i \left(A + Bx_i\right) + \left(A + Bx_i\right)^2\right)$$

$$\sum di^{2} = \sum (y_{i}^{2} - 2y_{i}A - 2Bx_{i}y_{i} + A^{2} + 2ABx_{i} + B^{2}x_{i}^{2})$$

$$\sum di^{2} = \sum y_{i}^{2} - 2A \sum y_{i} - 2B \sum x_{i} y_{i} + \sum A^{2} + 2AB \sum x_{i} + B^{2} \sum x_{i}^{2}$$

$$\sum di^{2} = \sum y_{i}^{2} - 2A \sum y_{i} - 2B \sum x_{i} y_{i} + nA^{2} + 2AB \sum x_{i} + B^{2} \sum x_{i}^{2}$$

Aplicando la condición de Máximos y Mínimos

$$A = \frac{\sum y \sum x^2 - \sum xy \sum x}{n \sum x^2 - \left(\sum x\right)^2}$$

$$B = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - \left(\sum x\right)^2}$$

Parámetros de ajuste de la recta encontrado Analíticamente

Entonces:

$$\Delta = n\sum x^2 - \left(\sum x\right)^2$$

$$\sigma^2 = \frac{\sum di^2}{n-2}$$

Los errores estimados de los parámetros de ajuste de la recta:

$$\sigma_A = \sqrt{\frac{\sigma^2 \sum x^2}{\Delta}}$$

$$\sigma_B = \sqrt{\frac{\sigma^2 n}{\Delta}}$$

Nota:

El método de mínimos cuadrados

✓ Solo se aplica a datos lineales (RECTAS)

estos datos lineales se encuentran parámetros de la recta con sus respectivos errores:

$$A = (A_{rep} \pm e_A)[U]; E\%$$

$$B = (B_{rep} \pm e_B)[U]; E\%$$

 $R \approx 0.999$ Coeficiente de correlación lineal

Para usar el Método de Mínimos Cuadrados para datos no lineales se debe aplicar métodos de Linealización

En el caso de una curva no lineal los parámetros de a encontrar son:

$$y = ax^b$$

Linealizando por el método de los logaritmos:

$$A = Log(a) \implies a = 10^A$$

$$b = B$$

- ✓ Los errores de los parámetros de la Recta se encuentra por MMC
- ✓ Los parámetros de la curva se encuentra por propagación de errores

$$a = (a_{rep} \pm e_a)[U]; E\%$$

$$b = (b_{rep} \pm e_b)[U]; E\%$$

Recolección de Datos

Considere los siguientes datos

Cilindros:

Completar la tabla 5,2

	N	H[cm]	M [g]		
	1	1,00	8,40		
	2	2,00	16,89		
	3	3,00	25,95		
	4	4,00	34,63		
	5	5,00	43,31		
	6	6,00	51,95		

> Discos:

Completar la tabla 5,3

N	D[cm]	M [g]
1	1,00	2,71
2	2,00	10,82
3	3,00	24,31
4	4,00	43,22
5	5,00	67,23
6	6,00	99,95

> Esferas:

Completar la tabla 5,4

N	D[cm]	M[g]
1	0,50	1,01
2	1,00	9,58
3	1,50	32,32
4	2,00	68,25
5	2,50	130,21
6	3,00	230,32

