

www.vishay.com

Vishay Siliconix

P-Channel 60 V (D-S) 175 °C MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model is extracted and optimized over the -55 $^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Sub-circuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- · Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	2.1	-	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	644	-	Α
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -30 \text{ A}$	0.0074	0.0074	Ω
		$V_{GS} = -10 \text{ V}, I_D = -30 \text{ A}, T_J = 125 \text{ °C}$	0.0116	-	
		$V_{GS} = -10 \text{ V}, I_D = -30 \text{ A}, T_J = 175 \text{ °C}$	0.0139	-	
		$V_{GS} = -4.5 \text{ V}, I_D = -20 \text{ A}$	0.0092	0.0094	
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_D = -30 \text{ A}$	76	-	S
Diode Forward Voltage ^a	V _{SD}	I _S = -50 A, V _{GS} = 0 V	-0.91	-1	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = -25 V, V _{GS} = 0 V, f = 1 MHz	8417	9200	pF
Output Capacitance	Coss		970	975	
Reverse Transfer Capacitance	C _{rss}		801	760	
Total Gate Charge	Qg	V _{DS} = -30 V, V _{GS} = -10 V, I _D = -90 A	176	160	nC
Gate-Source Charge ^c	Q _{gs}		40	40	
Gate-Drain Charge c	Q_{gd}		36	36	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -30 \text{ V, } R_L = 0.33 \ \Omega$ $I_D = -90 \text{ A, } V_{GEN} = -10 \text{ V, } R_g = 2.5 \ \Omega$	13	20	ns
Rise Time	t _r		255	190	
Turn-Off Delay Time	t _{d(off)}		102	140	
Fall Time	t _f		352	300	

Notes

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25$ °C, unless otherwise noted)

Note

Dots and squares represent measured data.
Copyright: Vishay Intertechnology, Inc.