8강. DQN

Human-level control through deep reinforcement learning (Minh et al., 2015)

Contents

- DQN Overview
- Code Review
- Pong Game Exercise

DQN Overview

- Human-level control through deep RL(Minh et al., 2015)
- Solved complex env. and high dimensional input (image)
- 1st success case using DNN (inspired by AlexNet)
- No hand-crafted feature
- In Atari 2600 game, the agent is better than an human expert

DQN: Environment

Atari 2600 game

DQN: Overview

- DQN = Q-learning + Deep Neural Network
- Used CNN architecture for input images
- Prior to DQN, solutions using neural network has problems.
 - Learning is unstable or diverge
- DQN solved the problem with 2 methods

DQN: Neural Network

 Neural network that takes images as the input and discrete action value(Q function values) as the output

DQN: Solution to problems

- Time-correlated data in an episode
 - State changes a little, a state may trigger getting the future results
- Correlation between data makes learning harder (NOT i.i.d)
 - Gradients oscillate depending on an episode (optimization is hard)
 - Generalization for diverse states is very hard

• Solution:

- Uniformly random sample from the transition data(s, a, r, s') buffer (Experience replay buffer)
- Q-learning is off-policy. So, using old data from other distribution is okay

DQN: Solution to problems

- Small Q update can completely change a policy
 - This is especially true for argmax policy case
- The policy change cause a big change in data distribution
 - This means learning from a very dataset than the previous dataset
 - The learning become unstable

Solution:

 Although the policy change dramatically, data distribution sampled from the experience replay buffer do not change so dramatically

DQN: Solution to problems

- Note learning target, $r + \gamma \max_{a'} Q(s', a')$ has correlation with Q(s', a') because they share parameters
- The target is changing while learning Q(s,a) is not close to the target (Target oscillation problem)

Solution:

• Manage a separate neural network (a target network) to fix the target network parameter, and then update the target parameter every now and then

DQN: Loss function

$$L_i(\theta_i) = E_{\underline{(s,a,r,s')} \sim U(D)}[(r + \gamma \max_{a'} Q(s',a';\underline{\theta_i}) - Q(s,a;\theta_i))^2]$$

- θ_i =: parameters to calculate target value at i-th iteration
 - θ_i : parameters to learn in i-th iteration
- U(D): replay memory to store transitions
 - U(D) is a collection of data by policies, $\pi_0 \pi_1 \dots \pi_1$
 - U(D) distribution follows the mean of data by policies, $\pi_0 \pi_1 \dots \pi_1$
 - Note that the data distribution is different from the latest policy $\pi_{\rm i}$, but q-learning is off-policy learning, so it's okay

DQN: State Preprocessing

- Original big image size problem:
 - 210x160 (0~127 RGB) image requires memory and computation

- 'Flickering' is a problem:
 - 2 states are the same, but there's pixel value fluctuation
 - To solve it, take max. pixel RGB value btw. t-1 pixel and t pixel:

```
t-1:(57,34,72),
t: (88,34,21) → (88,34,72)
```

DQN: State Preprocessing

- Transform the RGB into Black and white,
 - Resizing into 84x84

- Stack recent 4 frames
 - Note the agent could not predict the direction of moving object with 1 image.
 - The environment is not 1st order Markov property
 - Using 3 or 5 frame stack shows no different results

DQN: Q network

• If we allows action input, computation is high when argmax:

• Instead, output all the action-values of every actions once

DQN: Q network

Neural Network using CNN

DQN Q network

DQN: Training Details

- Learning from 49 games of Atari 2000
- Reward shaping: +1 ~ -1 (Normalization)
- If there's life in game, life reduce is the end of episode
- Optimizer: RMSProp
- Batch size: 32
- ε -greedy: linear annealing from 1.0 0.1 (first 1M frames) , and then fixed to 0.1
- Total 50M frames: 38 days game play time
- Replay memory store: recent 1M transitions

DQN: Training Details

- Frame-skipping (action repeat):
 - Agent chooses an action every k frame (same actions within k)
 - Compute cost of game emulation is cheaper than network forward().
 - Reduces exploration complexity
- Hyper-parameter hand tunning:
 - Extracted for 5 games (Pong, Breakout, Seaquest, Sparce Invaders, Beam Rider), and used the same hyper-parameters for others
 - Grid search requires too much computation

DQN: Hyperparameters

Hyperparameter	Value	Description
minibatch size	32	Number of training cases over which each stochastic gradient descent (SGD) update is computed.
replay memory size	1000000	SGD updates are sampled from this number of most recent frames.
agent history length	4	The number of most recent frames experienced by the agent that are given as input to the Q network.
target network update frequency	10000	The frequency (measured in the number of parameter updates) with which the target network is updated (this corresponds to the parameter C from Algorithm 1).
discount factor	0.99	Discount factor gamma used in the Q-learning update.
action repeat	4	Repeat each action selected by the agent this many times. Using a value of 4 results in the agent seeing only every 4th input frame.
update frequency	4	The number of actions selected by the agent between successive SGD updates. Using a value of 4 results in the agent selecting 4 actions between each pair of successive updates.
learning rate	0.00025	The learning rate used by RMSProp.
gradient momentum	0.95	Gradient momentum used by RMSProp.
squared gradient momentum	0.95	Squared gradient (denominator) momentum used by RMSProp.
min squared gradient	0.01	Constant added to the squared gradient in the denominator of the RMSProp update.
initial exploration	1	Initial value of ϵ in ϵ -greedy exploration.
final exploration	0.1	Final value of ϵ in ϵ -greedy exploration.
final exploration frame	1000000	The number of frames over which the initial value of ϵ is linearly annealed to its final value.
replay start size	50000	A uniform random policy is run for this number of frames before learning starts and the resulting experience is used to populate the replay memory.
no-op max	30	Maximum number of "do nothing" actions to be performed by the agent at the start of an episode.

DQN: Evaluation Details

- Agent performance is measured by the 30 repeat of 5 min. plays
- Epsilon is 0.05 to prevent overfitting in evaluation
- Baseline random agent takes an action every 6 frame (10 Hz)
 - Known fastest response time that a human player can take
 - Taking an action every frame didn't make a big difference (In Boxing, Breakout, Crazy Climber, Demon Attack, Krull , and Robotank, 5% higher performance)

DQN: Evaluation Details

- Human player played 60Hz frame rate w/o sound, pause, or reload.
- After 2 hours of practice, a human player performance measured by the 20 repeat of 5 min. plays
- To provide diverse starting points, evaluation was started after 30 times no-op
 - A robust policy does a good job from various starting points

x_t: 210x160 RGB image at t

s₊: a stacked 4 images

- Remove flickering
- Resizing 84x84 black & white
- Stack 4 frames

 S_{t+1} : s_t contains $1 \sim t$ states info.

Algorithm 1: deep Q-learning with experience replay. Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$ For episode = 1, M do Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$ For t = 1,T do With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in DSample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from DSet $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$ Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ Every C steps reset Q = Q

End For

End For

DQN: Results

- Gradient descent every 4 transition
- 32 batch size x 4 transition = 8 update / sample
- Avg. action value is the shaped reward value (Not same scale as avg. return)

DQN: Results

- Agent's behavior shows that it learned a long-term strategy
 - E.g., In break out, the agent learned that the state number 4 has much higher value

DQN: Results

- But DQN suffers in a game like Montejuma's revenge that requires a longer-term strategy
 - Sparse reward problem
 - Deceptive reward problem

Negative Reward occurs when the player hit the skull: deceptive reward

Code Ex.

- Python libraries:
 - qym = 0.25.1
 - ale-py==0.7.5
 - torch==2.0.0 (cpu버전)
 - tensorboard==2.13.0

*pip install gym[accept-rom-license]

- Code files:
 - Configuration.py
 - dqn_agent.py
 - eval.py
 - utils.py

Code Ex.: Pong

We'll use 'Pong-ram-v0' version

Observations

By default, the environment returns the RGB image that is displayed to human players as an observation. However, it is possible to observe

- The 128 Bytes of RAM of the console
- A grayscale image

instead. The respective observation spaces are

Actions

Num	Action
0	NOOP
1	FIRE
2	RIGHT
3	LEFT
4	RIGHTFIRE
5	LEFTFIRE

'Pong-ram-v0' version has 128 state (1 dim. vector)

Confgiration.py

```
config = AttrDict(
    gamma=0.99,
    lr=1e-4,
   batch size=128,
   hidden size=512,
    replay capacity=50000,
    replay init ratio=0.5,
    train env steps=500000,
    target update period=2000,
    eps init=1.0,
    eps final=0.1,
    eps decrease step=50000,
    num eval episode=20,
    eval start step=0,
    eval period=500,
    action repeat=4
```

Dictionary that allows access to the key value by an attribute (e.g., config.gamma)

Roughly proportional to the complexity of game

50000 samples Initial buffer-filling ratio before start learning Total 500000 steps interaction Target network update per 2000 steps

Epsilon decaying

Stop decaying after 50000 steps Use avg. of 20 episodes to evaluate score evaluate every 500 step

Utils.py

def create env(config, render mode='rgb array'):

```
Env return RBG image
    env = gym.make("Pong-ram-v0", render mode=render mode)
    env = ObsNormalizationWrapper(env)
    env = RepeatedActionWrapper(env, config.action repeat)
    return env
                                                                         Customize pong-v0
class RepeatedActionWrapper(qym.Wrapper):
   def init (self, env, n_repeat):
       self.env = env
       self.n repeat = n repeat
       self.recent states = deque([], maxlen=4)
       self.observation space = gym.spaces.Box(
                                                                         Repeat env.observation_space.low
           self.env.observation space.low.repeat(self.n repeat, axis=-1),
                                                                         4 times and concatenation
           self.env.observation space.high.repeat(self.n repeat, axis=-1),
           (self.env.observation space.shape[0] * self.n repeat,),
           np.uint8
```

128 * 4 = (512,)

Utils.py

```
def step(self, action):
   r sum = 0
                               4 times same actions
   done = False
   for __in range(self.n_repeat):
       s next, r, done, info = self.env.step(action)
       self.recent states.append(s next)
       r_sum += r
                               Add reward 4 times
       if r != 0:
                               Win: 1, Lose: -1.
           done = True
                               To simply training, pong
                               game ends after 1 match.
       if done:
           break
   s_next = np.concatenate(self.recent_states, axis=0)
   return s next, r sum, done, info
```

```
s = self.env.reset()
for _ in range(20):
    s, _, _, _ = self.env.step(0)  # No action

for _ in range(self.n_repeat):
    self.recent_states.append(s)

s = np.concatenate(self.recent_states, axis=0)
return s
```

def reset(self):

Concatenate 4 recent states

Utils.py

```
class ObsNormalizationWrapper(gym.Wrapper):
                                                                          Customize pong-v0
   def init (self, env):
       self.env = env
        self.obs subtration = 128
       self.obs division = 128
                                                                          Normalization to -1 \sim 1
        self.observation space = gym.spaces.Box(
            (self.env.observation space.low - self.obs subtration) / self.obs division,
            (self.env.observation space.high - self.obs subtration) / self.obs division,
           self.env.observation space.shape,
           np.float32
                                                                          No change in shape
    def reset(self):
       s = self.env.reset()
       s = (s - self.obs subtration) / self.obs division
        return s
    def step(self, action):
        s next, r, done, info = self.env.step(action)
       s next = (s next - self.obs subtration) / self.obs division
       return s next, r, done, info
```

Agent learning (dqn_agent.py)

return samples

```
class ReplayMemory:
   def __init__(self, config):
       self.config = config
                                                                      Attribute dictionary that allows access
       self.buffer = deque([], maxlen=self.config.replay capacity)
                                                                      to the key value by attribute
   def getsize(self):
       return len(self.buffer)
   def append(self, transition):
       buffer size = len(self.buffer)
       self.buffer.append(transition)
   def sample(self, size):
       buffer size = len(self.buffer)
       if buffer size >= size:
                                                                    Uniform random sampling
           samples = random.sample(self.buffer, size)
       else:
           assert False, f"Buffer size ({buffer size}) is smaller than the sample size
                                                                                            Assert False .... force
({size})"
                                                                                            the program to end
```

```
class DQNAgent(nn.Module):
   def init (self, env, config):
       super(). init ()
                                           nn.Module init. is required
       self.config = config
        self.replay memory = ReplayMemory(self.config)
       d state = env.observation space.shape[0]
       n action = env.action space.n
                                                           Get State dims., action dims. to design
        self.network = nn.Sequential(
                                                           the neural network
           nn.Linear(d state, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden size, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden size, n action)
        self.target network = nn.Sequential(
           nn.Linear(d state, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden size, config.hidden size),
           nn.ELU(),
           nn.Linear(config.hidden size, n action)
                                                            Parameters in the target network will
       for param in self.target network.parameters():
                                                            have no gradients
           param.requires grad = False
```

```
def update target network(self):
    self.target network.load state dict(self.network.state dict())
def set optimizer(self):
    self.optimizer = torch.optim.AdamW(
        params=self.network.parameters(),
        lr=self.config.lr,
                                                          Set decay to prevent overfitting
        weight decay=1e-3
def forward(self, x):
    Qs = self.network(x)
    return Os
def forward target network(self, x):
   Qs = self.target network(x)
    return Qs
def get argmax action(self, x):
    s = torch.from numpy(x).reshape(1, -1).float()
                                                          Network input to nn.Module should be 2 dim.
   Qs = self.forward(s)
    argmax action = Qs.argmax(dim=-1).item()
                                                          Get integer value inside Tensor
    return argmax action
```

```
def train(self):
                                                                           Uniform sampling of Replay buffer
    transitions = self.replay memory.sample(self.config.batch size)
    states, actions, rewards, next states, dones = zip(*transitions)
                                                                                Batch shape x State dim. (N x D)
                                                                               [Tensor(N \times D), Tensor(N \times D)]
    states array = np.stack(states, axis=0) # (n batch, d state)
    actions\_array = np.stack(actions, axis=0, dtype=np.int64) \# (n batch) D), Tensor(N \times D)]
    rewards array = np.stack(rewards, axis=0) # (n batch)
    next states array = np.stack(next states, axis=0) # (n batch, d state)
    dones array = np.stack(dones, axis=0) # (n batch)
    states_tensor = torch.from_numpy(states_array).float() # (n_batch, d state) Transform into tensors to put
                                                                                      Into the network
    actions tensor = torch.from numpy(actions array) # (n batch)
    rewards tensor = torch.from numpy(rewards array).float() # (n batch)
    next states tensor = torch.from numpy(next states array).float() # (n batch, d state)
    dones tensor = torch.from numpy(dones array).float() # (n batch)
    Qs = self.forward(states tensor) # (n batch, n action)
                                                                                          Forward (states tensor)
    next Qs = self.forward target network(next states tensor) # (n_batch, n_action)
                                                                                          through Q network. And
                                                                                          get Qs output
```

```
def train(self):
    # index dimension should be the same as the source tensor (Get Os for actions taken)
    chosen Q = Qs.gather(dim=-1, index=actions tensor.reshape(-1, 1)).reshape(-1) (n_batch, 1)-> (n_batch)
    target Q = rewards tensor + (1 - dones tensor) * config.gamma * next Qs.max(dim=-1).values
                                     If terminal state, target is just reward, r
    criterion = nn.SmoothL1Loss()
    loss = criterion(chosen Q, target Q)
                                                        * Smooth 11 oss:
                                                             Outlier makes the learning with MSE unstable
                                                               \ln = \begin{cases} \frac{0.5(x_n - y_n)2}{beta}, & \text{if}|x_n - y_n| < beta \\ |x_n - y_n| - 0.5 * beta, \text{otherwise} \end{cases}
    # Update by gradient descent
    self.optimizer.zero grad()
    loss.backward()
    self.optimizer.step()
```

return loss.item()

```
def eval agent(config, env, agent):
   score sum = 0
   step count sum = 0
   for in range(config.num_eval_episode):
                                                 Average after 20 episode evaluation
       s = env.reset()
       step count = 0
       done = False
       score = 0
       while not done:
          with torch.no grad():
                                                  Set no_grad in evaluation
              s next, r, done, info = env.step(a)
           step count += 1
          score += r
           s = s next
       score sum += score
       step count sum += step count
   score avg = score sum / config.num eval episode
   step count avg = step count sum / config.num eval episode
   return score avg, step count avg
```

```
if name == " main ":
   env = create_env(config)
   env_eval = create_env(config)
    agent = DQNAgent(env, config)
    agent.set optimizer()
    dt now = datetime.datetime.now()
                                                                     Logging directories
    logdir = f"logdir/{dt now.strftime('%y-%m-%d %H-%M-%S')}"
                                                                     Give the log directory as input
    writer = SummaryWriter(logdir)
    # Reset Replay Buffer
    init replay buffer size = int(config.replay init ratio * config.replay capacity)
    s = env.reset()
    step count = 0
    for in range(init replay buffer size):
        a = np.random.choice(env.action_space.n)
Uniform random action sampling
        s next, r, done, info = env.step(a)
        step count += 1
        transition = (s, a, r, s_next, done)
        agent.replay memory.append(transition)
        s = s next
        if done:
            s = env.reset()
            step count = 0
```

```
if name == " main ":
   # Train agent
   s = env.reset()
   step count = 0
   for step_train in range(config.train_env_steps):
       eps = get_eps(config, step_train)
       is_random_action = np.random.choice(2, p=[1 - eps, eps]) Pick random action by Epsilon greedy policy
       if is_random_action:
           a = np.random.choice(env.action_space.n) # uniform random action
       else:
           a = agent.get_argmax_action(s)
       s next, r, done, info = env.step(a)
       step_count += 1
       transition = (s, a, r, s_next, done)
       agent.replay_memory.append(transition)
       s = s_next
       if done:
           s = env.reset()
           step_count = 0
                                                             Update target every 100 steps
       if step train % config.target update period == 0:
           agent.update_target_network()
                                                                Train every 4 transitions
       if step train % 4 == 0:
           loss = agent.train()
```

eval.py

Output RGB (no need call env.render())

```
if __name__ == "__main__":
    args = parse_args()
    config.num_eval_episode = args.num_eval
    env = create_env(config, render_mode='human')
    agent = DQNAgent(env, config)

if args.model_path:
    state_dict = torch.load(args.model_path)
    agent.load_state_dict(state_dict)

eval_agent_with_rendering(config, env, agent)
```

```
def eval agent with rendering (config, env, agent):
    score sum = 0
    step count sum = 0
    for in range (config.num eval episode):
        s = env.reset()
        step_count = 0
        done = False
        score = 0
        while not done:
            with torch.no grad():
                a = agent.get argmax action(s)
            s next, r, done, info = env.step(a)
            step count += 1
            score += r
            s = s next
        score sum += score
        step count sum += step count
    score avg = score sum / config.num eval episode
    step_count_avg = step_count_sum / config.num_eval_episode
```

train agent

\$python dqn_agent.py

```
_pycache_
                                                logdir
                        dgn_agent.py
configuration.py
                        eval.py
                                                utils.py
(RL) $python dqn_agent.py
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/torch/utils/tensorb
stutils Version classes are deprecated. Use packaging.version instead.
 if not hasattr(tensorboard, "__version__") or LooseVersion(
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/envs/registrati
ent Pong-ram-v0 is out of date. You should consider upgrading to version 'v4'.
A.L.E: Arcade Learning Environment (version 0.7.5+db37282)
[Powered by Stella]
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/core.py:329: De
er in old step API which returns one bool instead of two. It is recommended to set
is will be the default behaviour in future.
 deprecation(
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/wrappers/step_a
 WARN: Initializing environment in old step API which returns one bool instead of
=True` to use new step API. This will be the default behaviour in future.
 deprecation(
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/spaces/box.py:
 lowered by casting to float32
 logger.warn(f"Box bound precision lowered by casting to {self.dtype}")
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/utils/passive_t
N: Core environment is written in old step API which returns one bool instead of tw
ment with new step API.
 logger.deprecation(
/Users/taehwan/Project/FastCampus/RL/lib/python3.8/site-packages/gym/utils/passive_e
.bool8' is a deprecated alias for 'np.bool_'. (Deprecated NumPy 1.24)
 if not isinstance(done, (bool, np.bool8)):
[0] eps: 1.000 loss: 0.061 score_avg: -0.800 step_count_avg: 21.000
[500] eps: 0.991 loss: 0.029 score_avg: -1.000 step_count_avg: 16.900
[1000] eps: 0.982 loss: 0.024 score avg: -1.000 step_count_avg: 17.000
[1500] eps: 0.973 loss: 0.011 score_avg: -1.000 step_count_avg: 16.750
[2000] eps: 0.964 loss: 0.047 score_avg: -1.000 step_count_avg: 16.850
[2500] eps: 0.955 loss: 0.017 score_avg: -1.000 step_count_avg: 16.650
```

500000 environment step training take about 1 hour in cpu.

tensorboard

• \$tensorboard -logdir=logdir

results

• \$python eval.py -num_eval=5 -model_path=logdir/24-05-07_11-22-04/state_dict.pth

