

DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY (MA39203)

Department of Mathematics Indian Institute of Technology, Kharagpur Assignment: 05

Date: 20/08/2025

Note: Use *iostream* header only for Question 1, 2 and 5.

- 1.(a) Create a class MaxHeap of your own that supports the following operations:
 - **insert**(int *key*): Inserts a new element *key* into the heap,
 - getMax(): Returns the maximum element of the heap,
 - extract_max(): Removes and returns the maximum element from the heap,
 - max_heapify(int i): Restores the max-heap property of the sub-tree rooted at index i,
 - build_heap(int arr[], int n): Builds a heap from an input array arr[] of size n.
 - increaseKey(int i, int k): Increases the value of the element at index i by k,
 - **printHeap**(): Prints the contents of the heap in array form.

Use an array of size 1000 to manage the heap internally. You may also hard code inputs inside the main() function.

- (b) Implement **HeapSort** to sort an array (in place) of integers in ascending order.
- 2. Implement Radix Sort algorithm using Counting sort as the auxiliary sort.
- **3.** You are given two integers arrays $\mathbf{a}[\]$ and $\mathbf{b}[\]$ of same size n. For every index i, you have to modify $\mathbf{a}[i]$ by either adding $\mathbf{b}[i]$ to $\mathbf{a}[i]$ or subtracting $\mathbf{b}[i]$ from $\mathbf{a}[i]$, you are only allowed to do atmost K add operations. Find the largest possible sum of all the elements in $\mathbf{a}[\]$ after doing the above operations.

Example: Input: n = 5, K = 2, a[]= $\{1, 2, 3, 4, 5\}$, b[]= $\{-1, 2, 3, 4, 5\}$ Output: 20 Explanation: You perform subtraction for the first 3 indices and addition for the last 2 indices to get the maximum possible sum (1 - (-1)) + (2 - 2) + (3 - 3) + (4 + 4) + (5 + 5) = 20.

4. Given two integer arrays $\mathbf{a}[\]$ and $\mathbf{b}[\]$ of the same size, and an positive integer k, find the top k maximum sum combinations, where each combination is formed by adding one element from $\mathbf{a}[\]$ and one from $\mathbf{b}[\]$. Return the k largest sums in descending order.

Example 1: Input: a[] = [3, 2], b[] = [1, 4], k = 2; Output: [7, 6]

Explanation: Possible sums: 3 + 1 = 4, 3 + 4 = 7, 2 + 1 = 3, 2 + 4 = 6, Top 2 sums are 7 and 6.

Example 2: Input: a []=[1,4,2,3], b[]=[2,5,1,6], k=3; Output: [10, 9, 9]

Explanation: The top 3 maximum possible sums are : 4 + 6 = 10, 3 + 6 = 9, and 4 + 5 = 9.

5. You are given an integer C. Among all possible pairs (A, B) satisfying the condition: $A \oplus B = C$ where \oplus denotes the bit-wise XOR operation, find the pair (A, B) that maximizes the product $A \times B$. Additionally, the binary length of A and B must not exceed the binary length of C. The binary length of X is the number of bits in the binary representation of X.

Example: Input: C = 6; Output: 5 3

There are 4 possible pairs: $5 \oplus 3 = 1 \oplus 7 = 4 \oplus 2 = 6 \oplus 0$; (5,3) have the maximum product.