RECONSTITUTING FUNDAMENTALS OF BACTERIA MEDIATED CANCER THERAPY ON A CHIP

Wonjun Lee, Jiin Park, Dongil Kang, and Seungbeum Suh*

Bacteria as a versatile bio-sapper for cancer treatment

NANOVECTORS

THERAPIES

Bacteria

Nanovesicles Oncolytic viruses

Chemical drugs

Proteins

DNA/RNA

Bacteria-mediated cancer therapy (BMCT)

- Preferential colonization of tumor
- Increase therapeutic specificity
- Immunostimulation in TME
- Synergistic with other therapies

Traditional in vivo paradigm of BMCT research

 Developing immuno-modulating micro-bio robot that can reach cancer after effectively avoiding human innate immunity

S. Liang, et al., Frontiers in Bioengineering and Biotechnology (2022).

REASEARCH PAIN POINTS

- 1 Restrictions in observing mechanism of action at cellular and tissue levels
- 2 Disparities in fundamental physiology between humans and model organisms

M. H. Abedi, et al., Nature communications (2022)

Building in vitro solution supporting the analysis of BMCT

 Supplementing tranditional in vivo paradigm for the scrutinization of BMCT

Reconstituting fundamentals of BMCT on a chip

Research goal

X. Lou, et al., Nano-Micro Letters (2021)

Concepts to be emulated

- Basics of bacteria-colonized tumor microenvironment (TME)
- Immunostimulation by bacterial components in TME

Designing the microfluidic device

Modeling bacteria infection

On-chip TME generation

Control over manufacturing for desired dimensions

Channel height control through speed adjustment

Speed 100% corresponds to the actual speed of 85 mm/s

Surface property of the laser engraved PMMA body

Contact angle corresponding to engraving DPI

EPILOG LASER mini

Enables spontaneous capillary flow under hydrophilic condition

Untreated, $\theta = 91.0^{\circ}$

Plasma Treated 2 min, $\theta = 14.2^{\circ}$

Rapid prototyping for the microfluidic device fabrication

Fabrication step for the final chip preparation

User-friendly platform with straightforward design

Microfluidic device design

Fabricated Device

Bottom View

Section A-A'

Selective patterning using spontaneous capillary flow

Proper volume range estimation

Depinning Transition

Patterned Volume = 10 µl

Patterned Volume = 16 μl

Selective patterning using spontaneous capillary flow

Design rule for selective patterning

Success

Failure

$$L = H_0 tan \left(\frac{\theta_B}{2} - \frac{\theta_A}{2} \right) < H_0$$

Reconstituting fundamentals of BMCT on a chip

Research goal

X. Lou, et al., Nano-Micro Letters (2021)

Concepts to be emulated

- Basics of bacteria-colonized tumor microenvironment (TME)
- Immunostimulation in TME

Designing the microfluidic device

Modeling bacteria infection

On-chip TME generation

Bacterial infection decreasing cancer viability

MOI 500 E.coli Infection

Virulent strain showing pronounced cytotoxicity trend

MOI 500 S.typhimurium Infection

Engineering bacteria with a therapeutic payload

Loading S.typhimurium with IFN-β

H. Loessner, et al., Cellular Microbiology (2007)

Remote control of gene expression by the use of **L-arabinose** as inducer

M. Erhardt, et al., *PLoS Genetics* (2014)

Protein secretion through FigM tagging

Spheroids reflecting properties of bacterial stimulant

IFN-β decreasing stemness of 4T1 tumor spheroids

Reconstituting fundamentals of BMCT on a chip

Research goal

X. Lou, et al., Nano-Micro Letters (2021)

Concepts to be emulated

- Basics of bacteria-colonized tumor microenvironment (TME)
- Immunostimulation in TME

Designing the microfluidic device

Modeling bacteria infection

On-chip TME generation

Bacteria-colonized TIME mimetic coculture model

Schematic for cell culture approach

Bacteria-colonized TIME mimetic coculture model

Representative fluorescence images of each well

Scale bars, 25 µm

Immunostimulation triggered by bacterial infection

ELISA results from cell culture media after 4 days

Future work

Incorporating advanced tissue models

L. F. Horowitz, et al., Lab on a Chip (2021)

Experimental group Control group Tumor slice Tumor slice

Experimental group Organs

Control group Organs

Min: 2.6E7 Max: 1.0E8

Tumor-Organ IVIS & Tumor-Organ 96 well-plate IVIS (Cy5)

Conclusion

- Introduced a novel microfluidic platform that can recapitulate the key fundamentals of bacteria-cancer interaction
 - ✓ Optimization through laser cutting-based rapid prototyping technique
 - ✓ Design rule for selective patterning
 - ✓ User-friendly platform with straightforward design
- Demonstrated the effects of bacterial stimulation on tumor spheroid and corresponding pro-inflammatory response of macrophages experimentally
 - ✓ Currently working to incorporate primary cells for indepth analysis.

Closing

Thank you

People with any questions are welcome to contact us

Email: won5830@snu.ac.kr

Tel: +82-10-4596-5830

