APR 2 7 2005

Page 3

Claims

1. (Original MADE) Film compositions that comprise,

as a conductive phase, pyrochlore-related compounds of the general formula $M_{2-x}Cu_xRu_2O_{6+\delta}$, wherein M is a rare earth metal selected from the rare earth metals of atomic number 60-71 inclusive.

- 2. (Original) Compositions according to claim 1, wherein X = 0.2 0.4 and δ = 0-1.
- 3. (Original) Compositions according to claim 1, comprising a dielectric phase.
- 4. (Original) Compositions according to claim 3, wherein the dielectric phase consists of or comprises, as a main component, a glass phase.
- 5. (Original) Compositions according to claim 4, wherein the glass phase comprises by mole% 40-60% SiO₂, 1-20% B₂O₃, 1-15% BaO, 1-6% SrO, 1-15% CaO, 0.5-3% CuO, 0.5-20% ZnO, 0.25-7% M₂O₃, 0.25-4% M'₂O , wherein M' is Li, Na, K or mixture thereof, and M is a rare earth element of atomic number 57 to 71 inclusive, or mixture thereof; and 0-3% of a metal fluoride in which the metal is selected from the group consisting of alkali and alkaline earth metals.
- 6. (Original) Compositions according to claim 4, wherein the glass phase comprises by mole% 40 to 65% SiO_2 , 10 to 20% Bi_2O_3 , 0.1 to 3% Al_2O_3 , and glass modifiers in total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23% ZnO, 0.1 to 5% CuO, 0.1 to 5% CaO and 0.1 to 2% MgO.
- 7. (Original) Compositions according to claim 4, wherein the glass phase comprises a blend of two glasses.
- 8. (Original) Compositions according to claim 7, wherein

- a) a first glass comprises by mole% 40-65% SiO₂, 1-15% B₂O₃, 12-27% BaO, 5-10% SrO, 5-15% CaO, 0-5% MgO, 0-5% Al₂O₃, 0-12% alkali metal oxides and 0-3% of a metal fluoride in which the metal is selected from the group consisting of alkali and alkaline earth metals; and
- b) a second glass comprises by mole% glass forming compounds in a total amount of 75 to 85% wherein, said glass forming compounds comprise 40 to 65% $\rm SiO_2$, 10 to 20% $\rm Bi_2O_3$, 0.1 to 3% $\rm Al_2O_3$, and glass modifiers in total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23% ZnO, 0.1 to 5% CuO, 0.1 to 5% CaO and 0.1 to 2% MgO.
- 9. (Original) Compositions according to claim 3, wherein the dielectric phase is selected from Al_2O_3 , SiO_2 , $ZrSiO_4$, ZrO_2 , aluminosilicates and mixtures thereof.
- 10. (Original) Compositions according to claim 1, further comprising an organic vehicle.
- 11. (Original) Compositions according to claim 10, wherein the organic vehicle is a solution of resin in a solvent or mixture of solvents.
- 12. (Original) Compositions according to claim 1, further comprising a filler.
- 13. (Original) Compositions according to claim 12, wherein the filler is chosen from the group consisting of Al_2O_3 , SiO_2 , $ZrSiO_4$, ZrO_2 and aluminosilicates.
- 14. (Previously presented) Compositions according to claim 1, comprising
- a) a dispersion of finely divided particles of the pyrochlore related compound corresponding to the formula $M_{2-x}Cu_xRu_2O_{6+\delta}$, wherein M is a rare earth metal selected from the rare earth metals of atomic number 60-71 inclusive, X = 0.2 0.4 , δ = 0-1; b) glasses selected from the groups consisting of:

- (A) a glass phase comprising by mole% 40-60% SiO₂, 1-20% B₂O₃, 1-15% BaO, 1-6% SrO, 1-15% CaO, 0.5-3% CuO, 0.5-20% ZnO, 0.25-7% M₂O₃, 0.25-4% M'₂O, wherein M' is Li, Na, K or mixture thereof, and M is a rare earth element of atomic number 57 to 71 inclusive, or mixture thereof; and 0-3% of a metal fluoride in which the metal is selected from the group consisting of alkali and alkaline earth metals;
- (B) a glass phase comprising by mole% 40 to 65% SiO_2 , 10 to 20% Bi_2O_3 , 0.1 to 3% Al_2O_3 , and glass modifiers in total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23% ZnO, 0.1 to 5% CuO, 0.1 to 5% CaO and 0.1 to 2% MgO;
- (C) a glass phase comprising a blend of two glasses;
- (D) a) a first glass comprises by mole% 40-65% SiO₂, 1-15% B₂O₃, 12-27% BaO, 5-10% SrO, 5-15% CaO, 0-5% MgO, 0-5% Al₂O₃, 0-12% alkali metal oxides and 0-3% of a metal fluoride in which the metal is selected from the group consisting of alkali and alkaline earth metals; and
- b) a second glass comprises by mole% glass forming compounds in a total amount of 75 to 85% wherein, said glass forming compounds comprise 40 to 65% $\rm SiO_2$, 10 to 20% $\rm Bi_2O_3$, 0.1 to 3% $\rm Al_2O_3$, and glass modifiers in total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23% $\rm ZnO$, 0.1 to 5% $\rm CuO$, 0.1 to 5% $\rm CaO$ and 0.1 to 2% $\rm MgO$; and
- (E) mixtures thereof; and
- c) dielectrics selected from the group consisting of SiO_2 , $ZrSiO_4$ and Al_2O_3 .

Serial Number 10/620,568 Our ref: 0-03-155 Page 6

- 15. (Original) Compositions according to claim 14, wherein the rare earth metal is Neodymium.
- 16. (Original) A composition according claim 4, wherein the glass phase comprises glasses chosen from the group consisting of Cd-free and Pb-free bismuthate glasses, alkaline earth borosilicate glasses, and mixture thereof.
- 17. (Original) A composition according to claim 4, wherein the glass phase is chosen from the group consisting of lead-containing silicate glasses, lead-containing borosilicate glasses and mixtures thereof.
- 18. (Original) Method of preparing pyrochlore-related compounds as defined in claim 1, which comprises firing an admixture of finely divided particles of CuO, RuO₂ and a metal oxide selected from the rare earth metal oxides of atomic number 60 -71 inclusive, at a temperature of at least 800°C, in a non-reducing atmosphere.
- 19. (Original) Method according to claim 18, for preparing compounds having the formula $Nd_{2-x}Cu_xRu_2O_{6+\delta}$, which comprises firing in air an admixture of finely divided particles of Nd_2O_3 , CuO and RuO_2 at a temperature of 1000-1200°C.
- 20. (Original) Method of making film compositions according to claim 1, comprising preparing a powdered mixture of
- a) 5-90% by weight of an oxide of the formula $Cu_xM_{2-x}Ru_2O_{6+\delta}$, wherein M is a rare earth metal selected from the rare earth metals of atomic number 60-71 inclusive, x is a number in the range of 0.25 to 0.4, and δ is a number in the range of 0 to 1; and
- b) 95-10% by weight of dielectric materials.
- 21. (Original) Method according to claim 20, further comprising dispersing the powdered mixture in a liquid organic vehicle.

Serial Number 10/620,568 Our ref: 0-03-155 Page 7

- 22. (Original) Method according to claim 20, wherein the oxide is chosen from the group consisting of $Nd_{1.70}Cu_{0.30}Ru_2O_{6+\delta}$, $Nd_{1.75}Cu_{0.25}Ru_2O_{6+\delta}$, and their mixtures wherein δ is a number in the range of 1 to 0.
- 23. (Original) Method according to claim 22, wherein the dielectric materials are chosen from the group consisting of glasses, oxides selected from $ZrSiO_4$, Al_2O_3 , SiO_2 , and mixture thereof.