

Recommendation System: Basic Methods

Prof. Srijan Kumar

RecSys Drives The World

- Recommendation systems are ubiquitous
 - E-commerce: Products to buyers
 - Job applications: Jobs to applicants, Applicants to recruiters
 - Dating: Partners
 - Services: Doctors, lawyers, restaurants
 - Social networks: News that you read, posts that you see
- Most of what you do is powered or influenced by some recommender system!

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Personalized to individual users
 - Amazon, Netflix, …
 - Main focus of this class

General Setting

Input:

- U = Set of users
- I = Set of items
- R = Set of observed ratings between subset of users and subset of items

	Avatar	LOTR	Matrix	Pirates
Alice	1		5	
Bob		3		1
Carol				1
David			4	

Output:

Predict ratings for any (user, item) pair

Recommendations: Key Challenges

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

Challenge 1: Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

Challenge 2: Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history

Four approaches:

- 1) Content-based
- 2) Collaborative
- 3) Latent factor based
- 4) Deep learning based

Our focus

Challenge 3: Evaluations

- Metrics to evaluate recommendations and ranking lists
- Online setting: Purchase rate, Click-through rate
- Offline setting: which metrics to use?

- How do we evaluate recommender systems?
 - Need evaluation setting and metric

Evaluation Setting

Input: rating matrix

	movies											
†	1	3	4									
		3	5			5						
			4	5		5						
users			3									
			3									
	2			2		2						
					5							
		2	1			1						
		3			3							
	1											

Evaluation Setting

Hide some known ratings and try to predict it

correctly

users

10

Evaluation Metrics

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Lower is better
- Another approach: 0/1 model
 - Mean Reciprocal Rank (MRR)
 - The 1/rank of the true item in the ranked list of items
 - Recall@10
 - Fraction of times the true item is in the top 10 in the ranked list of items

Problems with Evaluation Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

RecSys: Approach Styles

- 1. Content-based: which items have properties similar to the items you already like?
- 2. Collaborative filtering: what do similar users like?
- 3. Latent factor based: learn latent representation of all users' behavior
- 4. Deep learning based: combine everything together in a unified, deep framework

Recommendation System Methods

Content-based Models

- Collaborative Filtering
- Latent Factor Models
- Deep Learning Method: NCF

Reference material: http://mmds.org/

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Workflow

Item Profiles

- For each item, create an item profile i
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text Embeddings

User Profiles and Prediction

- User profile possibilities:
 - Weighted average of rated item profiles

Prediction heuristic:

- Given user profile \mathbf{x} and item profile \mathbf{i} , estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

Pros: Content-based Approach

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
 - No first-rater problem
- Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Recommendation Systems

Content-based

Collaborative Filtering

- Latent Factor Models
- Deep Learning Model: NCF

Collaborative Filtering

Harnessing quality judgments of other users

- Consider user x
- Find set *N* of other users whose ratings are "similar" to *x*'s ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

- How to find similarity between users?
- r_x = vector of user x's ratings; $r_y = y$'s ratings

$$r_x = [*, _, *, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Metric 1: Jaccard similarity measure
 - Jaccard = (Number of common items rated by both) / (Number of items rated by either)
 - Problem: Ignores the value of the rating

Finding "Similar" Users

Metric 2: Cosine similarity measure

- Treats r_x and r_y as vectors
- $-\sin(\boldsymbol{x},\,\boldsymbol{y})=\cos(\boldsymbol{r}_{\boldsymbol{x}},\,\boldsymbol{r}_{\boldsymbol{y}})=\frac{r_{\boldsymbol{x}}\cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}||\cdot||r_{\boldsymbol{y}}||}$

$$r_x$$
, r_y as vectors:
 $r_x = \{1, 0, 0, 1, 3\}$
 $r_y = \{1, 0, 2, 2, 0\}$

- Problem: Treats missing ratings as "negative"

Similarity Metric: Solution

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- But, Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Problem: Considers missing ratings as "negative"
 - Solution: Normalize by subtracting the row mean.
 Then calculate the cosine similarity.
 - Note: Cosine similarity is correlation when the data is centered at 0

Similarity Metric: Solution

		HP1	HP2	HP3	TW	SW1	SW2	SW3	
_	\overline{A}	4			5	1			-
	B	5	5	4					sim(A,B) vs sim(A,C):
	C				2	4	5		0.386 > 0.322
	D		3					3	OIOOO / OIOLL

	HP1	HP2	HP3	TW	SW1	SW2	SW3	sim(A,B) vs sim(A,C):
A	2/3				-7/3			0.092 > -0.559
B	1/3	1/3	-2/3					
C				-5/3	1/3	4/3		
D		0					0	

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$-r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

$$-r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$
 Shorthand:
$$s_{xy} = sim(x, y)$$

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item *i*, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij} = similarity of items *i* and *j* r_{xj} = rating of user *u* on item *j* N(i;x)= set items rated by x similar to i

rating

Item-Item CF (|N|=2)

users													
	1	2	3	4	5	6	7	8	9	10	11	12	
1	1		3			5			5		4		
2			5	4			4			2	1	3	
3	2	4		1	2		3		4	3	5		
4		2	4		5			4			2		
5			4	3	4	2					2	5	
6	1		3		3			2			4		
	unknown rating between 1 estimate rating of											rating of	

Neighbor selection: Identify movies similar to movie 1, rated by user 5

to 5

movie 1 by user 5

movies

Item-Item CF (|N|=2)

	users													
	1	2	3	4	5	6	7	8	9	10	11	12	(-,)	
1	1		3			5			5		4		1.00	
2			5	4			4			2	1	3	-0.18 <u>0.41</u>	
3	2	4		1	2		3		4	3	5			
4		2	4		5			4			2		-0.10	
5			4	3	4	2					2	5	-0.31	
6	1		3		3			2			4		0.59	

Use correlation as similarity: Subtract mean rating m_i from each movie i. Mean $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0] Then, compute cosine similarities between rows.

Item-Item CF (|N|=2)

users

	uscis												
sim(1,m	12	11	10	9	8	7	6	5	4	3	2	1	
1.00		4		5			5			3		1	1
-0.18	3	1	2			4			4	5			2
0.41		5	3	4		3		2	1		4	2	3
-0.10		2			4			5		4	2		4
-0.31	5	2					2	4	3	4			5
0.59		4			2			3		3		1	6

Predict by taking weighted average:

$$r_{1,5} = (0.41^{2} + 0.59^{3}) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Item-Item vs. User-User

- In practice, it has been observed that itemitem often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros of Collaborative Filtering

- Works for any kind of item
 - No feature selection needed
- Leverages other users' behavior
 - Incorporates community actions

Cons of Collaborative Filtering

Cold Start:

Need enough users in the system to find a match

Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

First rater:

– Cannot recommend an item that has not been previously rated. What about new items, esoteric items?

Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Recommendation Systems

Content-based

Collaborative Filtering

Latent Factor Models

Deep Learning Models

Latent Factor Models

- These models learn latent factors to represent users and items from the rating matrix
 - Latent factors are not directly observable
 - These are derived from the data
- Recall: Network embeddings
- Methods:
 - Singular value decomposition (SVD)
 - Principal Component Analysis (PCA)
 - Eigendecompositon

Latent Factors: Example

- Embedding axes are a type of latent factors
- In a user-movie rating matrix:
- Movie latent factors can represent axes:
 - Comedy vs drama
 - Degree of action
 - Appropriateness to children
- User latent factors will measure a user's affinity towards corresponding movie factors

Latent Factors: Example

SVD

 SVD: SVD decomposes an input matrix into multiple factor matrices

$$-A = U \Sigma V^T$$

- Where,
- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

SVD

 SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij\in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^{2}$$

- SSE and RMSE are monotonically related:
 - $-RMSE = \frac{1}{c}\sqrt{SSE}$ \rightarrow SVD is minimizing RMSE
- Complication: The sum in SVD error term is over all entries. But our R has missing entries.
 - Solution: no-rating in interpreted as zero-rating.

SVD on Rating Matrix

- "SVD" on rating data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$
- Each row of Q represents an item
- Each column of P represents a user

	factors							
	.1	4	.2					
	5	.6	.5					
	2	.3	.5					
	1.1	2.1	.3					
2	7	2.1	-2					
5	-1	.7	.3					
•				•				

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6

users

Ratings as Products of Factors

 How to estimate the missing rating of user x for item i?

\hat{r}_x	_i =	q_i	p_x
=	\sum	q_{if}	$\cdot p_{xf}$
	f		

 $q_i = \text{row } i \text{ of } Q$ $p_x = \text{column } x \text{ of } P^T$

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3
•	fa	ctors	

S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
ctor	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa						.9						

users

PT

Ratings as Products of Factors

 How to estimate the missing rating of user x for item i?

\hat{r}_{xi}	=	q_i .	$\boldsymbol{p}_{\boldsymbol{x}}$
		q_{if}	$\cdot p_{xf}$
	\overline{f}		

 $q_i = \text{row } i \text{ of } Q$ $p_x = \text{column } x \text{ of } P^T$

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3
	fa	ctors	

S	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
etor	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

users

PT

Ratings as Products of Factors

 How to estimate the missing rating of user x for item i?

\hat{r}_x	_i =	q_i .	$\boldsymbol{p}_{\boldsymbol{x}}$
=	\sum	q_{if}	$\cdot p_{xf}$
	\overline{f}		

$$q_i$$
 = row i of Q
 p_x = column x of P^T

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

tactors

ſS	1.1	2	.3	.5
• factors	8	.7	.5	1.4
fo	2.1	4	.6	1.7

users

_	1.1											
$\boldsymbol{\pi}$				l		-1		l			l	1.3
ĭ	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

PT

Latent Factor Models: Example

Latent Factor Models

Seriou\$ **Braveheart** Users fall in the **Amadeus** same space, showing their preferences. Lethal Weapon Sense and Sensibility Ocean's 11 Geared Geared Factor (towards males females The Lion King Factor The Princess Independence **Diaries** Day Dumb and Dumber **Funny**

Recommendation Systems

Content-based

Collaborative Filtering

Latent Factor Models

Deep Learning Models: NCF

 Reference Paper: Neural Collaborative Filtering. He Xiangnan, Liao Lizi, Zhang Hanwang, Nie Liqiang, Hu Xia, Tat-Seng Chua. WWW 2017

Matrix Factorization

- MF uses an inner product as the interaction function
 - Latent factors are independent with each other
- Limitations: The simple choice of inner product function can limit the expressiveness of a MF model.
- Potential solution: increase the number of factors. However,
 - This increases the complexity of the model
 - Leads to overfitting

Improving Matrix Factorization

- Key question: How can we improve matrix factorization?
- Answer: Learn the relation between factors from the data, rather than fixing it to be the simple, fixed inner product
 - Does not increase the complexity
 - Does not lead to overfitting
- One solution: Neural Collaborative Filtering

Neural Collaborative Filtering

- Neural Collaborative Filtering (NCF) is a deep learning version of the traditional recommender system
- Learns the interaction function with a deep neural network
 - Non-linear functions, e.g., multi-layer
 perceptrons, to learn the interaction function
 - Models well when latent factors are not independent with each other, especially true in large real datasets

Neural Collaborative Filtering

- Neural extensions of traditional recommender system
- Input: rating matrix, user profile and item features (optional)
 - If user/item features are unavailable, we can use one-hot vectors
- Output: User and item embeddings, prediction scores
- Traditional matrix factorization is a special case of NCF

NCF Setup

- User feature vector: s_u^{user}
- Item feature vector: s_i^{item}
- User embedding matrix: U
- Item embedding matrix: I
- Neural network: f
- Neural network parameters: Θ
- Predicted rating:

$$\hat{r}_{ui} = f(U^T \cdot s_u^{user}, V^T \cdot s_i^{item} | U, V, \theta)$$

NCF Model Architecture

- Multiple layers of fully connected layers form the Neural CF layer.
- Output is a rating score \hat{r}_{ui}
- Real rating score is r_{ui}

1-Layer NCF

- Layer 1 an element-wise product
- Output Layer as a fully connected layer without bias

Multi-Layer NCF

- Each layer is a
 multi-layer
 perceptron, with
 non-linearity on
 the top
- Final score is used to calculate the loss and train the layers

NCF model: Loss function

- Train on the difference between predicted rating and the real rating
- Use negative sampling to reduce the negative data points
- Loss = cross-entropy loss

$$\mathcal{L} = -\sum_{(u,i)\in\mathcal{O}\cup\mathcal{O}^-} r_{ui} \log \hat{r}_{ui} + (1 - r_{ui}) \log(1 - \hat{r}_{ui})$$

Experimental Setup

- Two public datasets: MovieLens, Pinterest
 - Transform MovieLens ratings to 0/1 implicit case

Table 1: Statistics of the evaluation datasets.

Dataset	Interaction#	Item#	User#	Sparsity
MovieLens	1,000,209	3,706	6,040	95.53%
Pinterest	1,500,809	9,916	55,187	99.73%

- Evaluation protocols:
 - Leave-one-out setting: hold-out the latest rating of each user as the test
 - Top-k evaluation: create a ranked list of items
 - Evaluation metrics:
 - Hit Ratio: does the correct item appear in top 10

Baselines

- Item Popularity
 - Items are ranked by their popularity
- ItemKNN [Sarwar et al, WWW'01]
 - The standard item-based CF method
- BPR [Rendle et al, UAI'09]
 - Bayesian Personalized Ranking optimizes MF model with a pairwise ranking loss
- eALS [He et al, SIGIR'16]
 - The state-of-the-art CF method for implicit data.
 It optimizes MF model with a varying-weighted regression loss.

Performance vs. Embedding Size

- NeuMF > eALS and BPR (5% improvement)
- NeuMF > MLP (MLP has lower training loss but higher test loss)

Convergence Behavior

- Most effective updates in the first 10 iterations
- More iterations make NeuMF overfit
- Trade-off between representation ability and generalization ability of a model.

Is Deeper Helpful?

Table 4: NDCG@10 of MLP with different layers.

Factors	MLP-0	MLP-1	MLP-2	MLP-3	MLP-4			
MovieLens								
8	0.253	0.359	0.383	0.399	0.406			
16	0.252	0.391	0.402	0.410	0.415			
32	0.252	0.406	0.410	0.425	0.423			
64	0.251	0.409	0.417	0.426	0.432			
Pinterest								
8	0.141	0.526	0.534	0.536	0.539			
16	0.141	0.532	0.536	0.538	0.544			
32	0.142	0.537	0.538	0.542	0.546			
64	0.141	0.538	0.542	0.545	0.550			

- Same number of factors, but more nonlinear layers improves the performance.
- Linear layers degrades the performance
- Improvement diminishes for more layers

NCF: Shortcomings

- Architecture is limited
- NCF does not model the temporal behavior of users or items
 - Recall: users and items exhibit temporal bias
 - NCF has the same input for user
- Non-inductive: new users and new items, on which training was not done, can not be processed