Externspeicheralgorithmen I

Speichermodell
Einfache Datenstrukturen
Sortieren

Maschinenmodell

RAM-Modell

- In jedem Rechenschritt kann jederzeit direkt auf eine beliebige Speicheradresse zugegriffen werden (lesend&schreibend)
- Früher tatsächlich ohne "extra" Wartezeit

$$12 + 42 + 23 + 5 + 9 + 67 = 158$$

$$23 + 9 + 12 + 67 + 5 + 42 = 158$$

```
int data[N]
      int idx[N]
      for i = 1..N:
       idx[i] = i
 permute(idx)
```

sequenziell vs. random access

Resultat: ident

O-Notation: ident O(N)

Oops: Sequentiell VS Random Access

O(N) sollte eine waagrechte Linie sein

- Intel Core i7 860, 2.80GHz, QuadCore, 8GB RAM
- 1 Core, 32bit, g++ 4.4 –00, Ubuntu 10.10

Bei schreibendem Zugriff wäre es noch ausgeprägter!

```
for i = 1..N:

sum += data[idx[i]] for i = 1..N:

data[idx[i]] += 1
```

Speicherhierarchien

	CPU		Cache		DANA	HDD
	Register	Level 1	Level 2	Level 3	RAM	
Größe	16 (64bit)	32+32 KB	256 KB	8MB	8GB	1TB
Latenz	0,5 ns	0,5 ns	3 ns	20ns	40–100 ns	10 ms
in CPU Zyklen	1	1-2	3-7	30-40	80-200	10 ⁷

Größenordnungen bei einem Intel Core i7

"One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed."

[IEEE InfoVis 2003 Call-For-Papers]

Entwicklung der Geschwindigkeiten: CPU ca. + 30% / Jahr

Speicher + 7–10% / Jahr

Betrachtung von Externspeicheralgorithmen wird immer wichtiger!

I/O-Modell

Klassische O-Notation benutzt RAM-Modell

- Jede Operation benötigt gleich viel Zeit (1 Zeiteinheit)
- Jede gewünschte Speicheradresse steht direkt zum Lesen/Schreiben bereit
- ⇒ Zähle # Operationen

I/O-Modell (nach Aggarwal und Vitter), auch: "cache-aware"

Noch immer vereinfacht, aber guter Tradeoff zw. Realität und Analysierbarkeit

M

- Interner Speicher (zB. RAM) vs. Externer Speicher (zB. HDD)
- **Interner Speicher** ist (ohne Zeitverlust) direkt adressierbar

Zwischen internem und externem Speicher werden immer ganze Daten**blöcke** geladen/geschrieben

I/O-Modell

Klassische O-Notation benutzt RAM-Modell

⇒ Zähle # Operationen

I/O-Modell (nach Aggarwal und Vitter), auch: "cache-aware"
Noch immer vereinfacht, aber guter Tradeoff zw. Realität und Analysierbarkeit

- ⇒ Zähle # interne Operationen
 Ziel: Möglichst gleich mit RAM-Modell
- ⇒ Zähle # I/O Zugriffe Laden/Schreiben von Blöcken

Warum war Sequentiell schneller als Random Access?


```
data[idx[1]]: load(I_1), load(D_1)
data[idx[2]]: (schon geladen)
data[idx[3]]: (schon geladen)
data[idx[4]]: load(I<sub>2</sub>), load(D<sub>2</sub>)
data[idx[5]]: (schon geladen)
# loads: N/B + N/B
O(N/B)
data[idx[1]]: load(I_1), load(D_1)
data[idx[2]]: load(D_2)
data[idx[3]]: load(D<sub>3</sub>)
data[idx[4]]: load(I<sub>2</sub>), load<sup>?</sup>(D<sub>1</sub>)
data[idx[5]]: load^{?}(D_2)
# loads: \leq N/B + N
O(N)
```

Lokalität

Ziele bei der Entwicklung von Externspeicheralgorithmen

Örtliche Lokalität

Ein gelesener Block sollte möglichst viel nutzbare Information enthalten.

Zeitliche Lokalität

Möglichst viele Daten im internen Speicher bearbeiten, bevor sie wieder rausgeschrieben werden.

Interne Effizienz

Optimiere obige Lokalitäten, ohne (große) Einbußen bzgl. der internen Operationen gegenüber dem optimalen Algorithmus im RAM-Modell.

Stack

```
push(type v) Legt v oben auf den Stack
type pop() Liefert oberstes Element des Stacks und entfernt es
```

Implementierungen (optimal im RAM-Modell)

- Array + Zeiger auf oberstes Element
- Zeigerverkettete Liste

```
Anzahl der I/Os? (für beliebige Abfolge von Operationen)
O(1) pro Operation!
```

Besser: Extern-Stack

Extern-Stack

- Interner Speicher ("Puffer"): Array J der Größe 2B; restlichen Daten extern
- J enthält zu jedem Zeitpunkt die $k \le 2B$ obersten Elemente

push(type v)

- Falls $k \le 2B$ ("meistens"): Füge v in J ein. \rightarrow Kein I/O
- Falls k = 2B ("Puffer voll"): Lagere die untersten B Elemente von J auf den externen Speicher aus; füge v in J ein. $\rightarrow 1 I/O$

type pop()

- Falls k > 0 ("meistens"): Entferne oberstes Element aus J. \rightarrow Kein I/O
- Falls k = 0 ("Puffer leer"): Lade die obersten B Elemente aus dem externen Speicher nach J; entferne oberstes Element aus J. $\rightarrow 1 \text{ I/O}$

Beobachtung

Nach jedem I/O-Zugriff mindestens B viele Operationen ohne I/O!

- ⇒ O(1/B) I/Os pro Operation (amortisiert)
- ⇒ Dies ist bestmöglich, da nur B Elemente pro I/O

Weitere einfache Datenstrukturen

- Analog für Queue → Übung
- Wie für Listen? → Übung

Kompliziertere Datenstrukturen

Priority Queue? → nächste Woche

Zunächst

Einfache Algorithmen

Sortieren (vergleichsbasiert)

im RAM-Modell am effizientesten...

- Quick-Sort O(N²), randomisiert/erwartet: O(N log N)
- Merge-Sort O(N log N)
- Heap-Sort O(N log N)

Partitionierungsschritt (N_0 viele Elemente)

 $load_block_of(Pivot) \rightarrow ersparbar$ wenn man gleich letztes Element wählt $load_block_of(L)$, $load_block_of(R)$

Laufe mit L nach rechts, mit R nach links:

- stoppe jeweils wenn Element kleiner (größer) als Pivot. Vertausche.
 - \rightarrow sequenziell! $O(N_0/B)$ I/Os
- fertig wenn R links von L. Tausche Pivot in die "Mitte".
 - \rightarrow Mitte ist schon geladen, load_block(ganz-rechts) \rightarrow geladen falls M \geq 3B

Partitionieren von N_0 Elementen: $O(N_0/B)$ I/Os

→ jeder Block wird nur "1 mal" angeschaut

Rekursion

- Pro Rekursionstiefe: O(N/B) I/Os
- Sobald N<M: Lade alle M/B Blöcke und sortiere rekursiv ohne weitere I/Os.
- Rekursionstiefe?
 average: O(log₂ N), worst: O(N)

Rekursionstiefe solange I/Os benötigt werden (Analyse wie traditionell):

average: O(log₂ (N/B)), worst: O(N/B)

Gesamt # I/Os:

average: O((N/B) log₂ (N/B)), worst: O(N²/B²)

Rekursiv unterteilen: nur Index-Berechnungen, keine I/Os

Bottom-up: Teilsequenzen ("Runs") mergen, Hilfsarray.

Mergen zweier Runs der Längen N_1, N_2 : O($1+(N_1+N_2)/B$) I/Os

Anzahl der Merge-Operationen per Rekursionsebene: O(N)

I/Os pro Rekursionsebene: O(N + N/B)

I/Os ingesamt: $O(N \log_2 N) \rightarrow \Theta$, Quick-Sort hatte $O((N/B) \log_2 (N/B))$

Beschleunige Merge-Sort (1)

Verhindere I/Os für kleine Runs

- Sobald ein Run ≤ M/2: Lade kompletten Run in Speicher, sortiere intern (ohne I/Os), schreibe die Lösung raus. → O(M/B) I/Os
- Teile das Array in 2N/M Chunks der Größe ≤ M/2, und sortiere intern:
 O((N/M) · (M/B)) = O(N/B) I/Os
- Merge diese Chunks nun gemäß Merge-Sort:
 - Rekursionstiefe: O(log₂ (N/M))
 - I/Os pro Rekursionsebene: O(N/M + N/B)
- I/Os ingesamt: O(N/B + (N/M+N/B) log₂ (N/M)) (N/M < N/B)
 = O((N/B) log₂ (N/M))

Beschleunige Merge-Sort (2)

Merge nicht nur 2 Runs $\rightarrow k$ -way Merge

- $k = \frac{1}{2} (M/B) \rightarrow M/B = Anzahl der Blöcke die in internen Speicher passen$
- Verschmelze immer k Runs:
 - Benutze jeweils einen Block für jeden Run.
 - Lade die ersten B Elemente jedes Runs in seinen Block.
 Lade immer einen Block nach, wenn geladener Block fertig abgearbeitet ist.
 - Iterativ: Verschiebe kleinstes der "obersten" Elemente in Ausgabepuffer
 - Interner Rechenaufwand?
- Es ändert sich nur die Rekursionstiefe: O(log_{M/B} (N/M))
- I/Os ingesamt: O((N/B) log_{M/B} (N/M))

Verschmelzen von k Runs: Finde Minimum

Naïv: lineare Suche, O(k)

• Aufwand pro Rekursionsebene $O(k \cdot N)$ statt $O(N) \rightarrow \odot$

 $k = \frac{1}{2} M/B$

Priority Queue

- Kleinstes Element pro Block in eine Priority-Queue (zB. Min-Heap) (Größe: $k = \frac{1}{2} M/B$, interner Speicher reicht dafür aus)
 - Wähle kleinstes Element in PQ (O(1)), und füge vom entsprechenden Block das nächstkleinste Element in PQ ein (O($\log_2 k$) = $\log_2(M/B)$)

Gesamtaufwand (interne Rechenoperationen)

- Sortieren der Chunks: O(N/M · M log₂ M) = O(N log₂ M)
- Rekursionstiefe: O(log_{M/B} (N/M))
- Pro Rekursionsebene (inkl. Minimum-Finden): O(N log₂ (M/B))

Gesamt: $O(N \log_2 M + N \log_2 (M/B) \log_{M/B} (N/M)) = O(N \log_2 N)$ \rightarrow Effizient wie internes Merge-Sort!

	Interne Operationen	I/Os
Internes Quick-Sort (Average, bzw. Randomisiert/Erwartungswert)	Õ(Nlog ₂ N)	Õ((N/B) log ₂ (N/B))
Internes Merge-Sort	O(Nlog2N)	O(Nlog2N)
Externes Merge-Sort	O(Nlog2N)	O((N/B) log _{M/B} (N/M))

I/O Aufwand fundamentaler Operationen

→ Diese Komplexitäten werden oft als Black-Box innerhalb von anderen Algorithmen benutzt