Ekspresi Reguler

Pertemuan Ke-8

Sri Handayaningsih, S.T., M.T. Email: ning_s12@yahoo.com
Teknik Informatika

TIU dan TIK

- 1. memahami konsep ekspresi reguler dan ekivalensinya dengan bahasa reguler.
- 2. Mengetahun Penerapan Ekspresi Reguler
- 3. Mengetahui Definisi Formal ER
- 4. Mengetahui Bahasa untuk ER
- 5. Mengetahui proses Konversi ER ke FA

Ekspresi Regular

ekspresi Regular adalah menggambarkan bahasa regular

Contoh: $(a+b\cdot c)*$

Menggambarkan bahasanya $\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,...\}$

Definisi Rekursif

Ekspresi reguler yg paling sederhana:

$$\emptyset$$
, λ , α

Diberikan ekspresi reguler r_1 and r_2

Maka:

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$

Merupakan ekspresi reguler

TEORI BAHASA OTOMATA

Contoh 1

Ekspresi reguler

$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Bukan Ekspresi reguler

$$(a+b+)$$

Bahasa dari Ekspresi reguler

L(r): bahasa dari Ekspresi reguler r

$$L((a+b\cdot c)*) = \{\lambda, a, bc, aa, abc, bca, ...\}$$

Definisi

Untuk Ekspresi reguler yg paling sederhana:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definisi (Lanjutan)

Untuk Ekspresi reguler r_1 dan r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Contoh 2

Ekspresi reguler :
$$(a+b) \cdot a^*$$

 $L((a+b) \cdot a^*) = L((a+b)) L(a^*)$
 $= L(a+b) L(a^*)$
 $= (L(a) \cup L(b)) (L(a))^*$
 $= (\{a\} \cup \{b\}) (\{a\})^*$
 $= \{a,b\} \{\lambda,a,aa,aaa,...\}$
 $= \{a,aa,aaa,...,b,ba,baa,...\}$

Tentukan L(r) dari:

Ekspresi reguler (a+b)*(a+bb)

Jawab

Ekspresi reguler r = (a+b)*(a+bb)Adalah: $L(r) = \{a,bb,aa,abb,ba,bbb,...\}$

Tentukan L(r) dari:

Ekspresi reguler = (aa)*(bb)*b

Jawab

Ekspresi reguler
$$=(aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Apakah berikut ini merupakan Ekspresi reguler?

L(r) = { seluruh string yang tidak boleh ada dua "0" yang berurutan }

Contoh 1

Ekspresi reguler (0+1)*00(0+1)*

L(r) = {seluruh string yang ada dua "O" yang berurutan }

Contoh 2

Reguler ekspresi $(1+01)*(0+\lambda)$

L(r) = {seluruh string yang tidak ada dua "0" yang berurutan }

Equivalen ekspresi Reguler

Definisi:

ekspresi regular 11dan 12

adalah equivalen jika $L(r_1) = L(r_2)$

Contoh

L = {seluruh string yang tidak ada dua "0" yang berurutan }

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$

 r_1 dan r_2 Adalah equivalen
Ekspresi reguler

Expresi Reguler dan Bahasa Reguler

Teorema

General Bahasa
dengan
Ekspresi Reguler

Bahasa
Regular

Pembuktian

General Bahasa dengan Ekspresi Reguler

Bahasa Regular

General Bahasa dengan Ekspresi Reguler

Bahasa Regular

Pembuktian - bagian 1

General Bahasa
dengan
Ekspresi Reguler

Bahasa
Regular

Untuk setiap ekspresi reguler rBahasa L(r) adalah reguler

Pembuktian dengan induksi pada ukuran r

Induksi Dasar

Ekspresi reguler Paling Sederhana:

NFA

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

$$L(M_3) = \{a\} = L(a)$$

Bahasa reguler

TEORI BAHASA OTOMATA

Induksi Hipotesa

Asumsi
Untuk ekspresi reguler i dan r_2 maka;

 $L(r_1)$ dan $L(r_2)$ adalah bahasa reguler

Langkah Induksi

Pembuktian:

$$L(r_1 + r_2)$$

$$E(r_1 \cdot r_2)$$

$$L(r_1 *)$$

Adalah Bahasa Reguler

 $L((r_1))$

Dengan definisi dari ekspresi reguler, maka:

$$L(r_1+r_2)=L(r_1)\cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Dengan hipotesis induksi didapatkan: $L(r_1)$ dan $L(r_2)$ adalah bahasa reguler

diketahui:

Bahasa reguler adalah pendekatan

dari 3 hal ini:

Union

$$L(r_1) \cup L(r_2)$$

Concatenation $L(r_1)L(r_2)$

Star

$$(L(r_1))*$$

TEORI BAHASA OTOMATA

Oleh karena itu:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Adalah bahasa reguler

Kesimpulan:

 $L((r_1))^{Adalah}$ bahasa reguler

Pembuktian - bagian 2

General Bahasa dengan Ekspresi Reguler Bahasa reguler

untuk setiap bahasa reguler L merupakan ekspresi reguler r dengan L(r) = L

Pembuktian dengan contruksi pada Ekspresi reguler

Selama L adalah reguler yang diambil dari NFA M yang diterimanya

Satu state akhir

Dari M konstruksi untuk equivalen menggunakan

Graf Transisi secara Umum

Dengan penamaan transisi adalah ekspresi reguler

Contoh:

32

Kesimpulan Ekspresi Reguler:

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

TEORI BAHASA OTOMATA

Secara Umum

Kesimpulan ekspresi reguler:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

$$L(r) = L(M) = L$$

Standard dari Bahasa Reguler

Jika diberikan Bahasa Regular L

Berarti: Bahasa Ladalah standar representasi

Properti dari Bahasa Regular

Untuk bahasa regular L_1 dan L_2

Union: L

Concatenation: L_1

Star: L_{1960} Reversal: L_{1}^{R}

Complement: L_1

Intersection: $L_1 \cap L_2$

Adalah Bahasa Reguler

Bahasa reguler L_1 Bahasa reguler L_2

$$L(M_1) = L_1 + L(M_2) = L_2$$

NFA M_1

NFA M₂

State yang diterima tunggal

State yang diterima tunggal

TEORI BAHASA OTOMATA

 M_1

$$n \ge 0$$

$$L_1 = \{a^n b\}$$

 M_2

$$L_2 = \{ba\}$$

NFA untuk

Contoh
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Concatenation

 $L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$

NFA untuk

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$b$$

$$\lambda$$

$$b$$

$$a$$

$$\lambda$$

$$b$$

$$\lambda$$

Star Operation

NFA untuk $L_1^* = \{a^n b\}^*$

$$w = w_1 w_2 \cdots w_k$$

$$w_i \in L_1$$

Reverse

NFA for L_1^R

- 1. Reverse seluruh transisi
- 2. Buat state awal yg dapat diterima TEORI BAHASANTSMATA Aliknya

$$M_1$$

$$L_1 = \{a^n b\}$$

$$L_1^R = \{ba^n\}$$

Complement

- 1. Ambil FA yang diterima oleh L_1
- 2. Buat state akhir non-final, dan sebaliknya

TEORI BAHASA OTOMATA

Kenapa tdk NFA2

Intersection

 L_1 regular

 L_2 regular

 $L_1 \cap L_2$ regular

Hukum DeMorgan's: $L_1 \cap L_2 = L_1 \cup L_2$

$$L_1$$
, L_2 regular $\overline{L_1}$, L_2 regular $\overline{L_1}$ or $\overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular $\overline{L_1} \cup \overline{L_2}$ regular regular $\overline{L_1} \cap L_2$ regular

$$L_1 = \{a^nb\}$$
 regular $L_1 \cap L_2 = \{ab\}$ $L_2 = \{ab,ba\}$ regular regular

Pembuktian lain untuk Closur Interseksi

Mesin M_1 Mesin M_2 FA untuk L_1

Bangun FA baru M yg dpt diterima $L_1 \cap L_2$

M Simulasi secara paralel M_1 dan M_2

State pada M

State pada M_1

State pada M_2

Kedua isi harus dapat diterima oleh state

M Simulasi secara paralel M_1 dan M_2

M Menerima string w Jika dan hanya jika

 M_1 menerima stringw dan

 M_2 menerima stringw

$$L(M) = L(M_1) \cap L(M_2)$$

Konstruksi Mesin untuk Irisan

Automata untuk irisan

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Pustaka

- 1. Tedy Setiadi, Diktat Teori Bahasa dan Otomata, Teknik Informatika UAD, 2005
- 2. Hopcroft John E., Rajeev Motwani, Jeffrey D. Ullman, *Introduction to Automata Theory, Languages, and Computation*, 2rd, Addison-Wesley, 2000
- 3. Martin C. John, *Introduction to Languages and Theory of Computation*, McGraw-Hill Internatioanal edition, 1991
- 4. Linz Peter, *Introduction to Formal Languages & Automata*, DC Heath and Company, 1990
- 5. Dulimarta Hans, Sudiana, Catatan Kuliah Matematika Informatika, Magister Teknik Informatika ITB, 1998
- 6. Hinrich Schütze, IMS, Uni Stuttgart, WS 2006/07, Slides based on RPI CSCI 2400