

PLENARY EXERCISES - TMA4145

Week 39, Wednesday 27. September 2023

Problem 1 (Riesz representation Theorem)

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space, and let $T: V \to \mathbb{K}$ be linear. Show that there exists $u \in V$ such that

$$T(v) = \langle v, u \rangle,$$
 for all $v \in V$.

Hint: There are several ways to solve the problem, here are a few options:

- **1.** What is the singular value decomposition of *T*?
- **2.** Recall that any $x \in V$ can be written on the form $x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$, where $\{e_i\}_{i=1}^{n}$ is a orthonormal basis of V.
- **3.** Choose a basis of *V*. What is the corresponding matrix representation of *V*?

1

Problem 2

Let $(U, \langle \cdot, \cdot \rangle_U)$ and $(V, \langle \cdot, \cdot \rangle_V)$ be two inner product spaces, and consider $T: U \to V$ a linear transformation.

1. Show that $Ker(T) = (Ran(T^*))^{\perp}$.

Hint:

- **1.** $x \in W^{\perp}$ if $\langle x, w \rangle = 0$ for all $w \in W$.
- **2.** $\langle Tu, v \rangle_V = \langle u, T^*v \rangle_U$ for all $u \in U$ and $v \in V$.

Problem 3

Let $(U, \langle \cdot, \cdot \rangle_U)$ and $(V, \langle \cdot, \cdot \rangle_V)$ be two inner product spaces, and consider $T: U \to V$ a linear transformation.

1. Show that $T: U \to V$ is injective if and only if $T^*: V \to U$ is surjective.

Hint:

1. Recall Ker(T) = $(Ran(T^*))^{\perp}$.

Problem 4

Let $(U, \langle \cdot, \cdot \rangle)$ be an inner product spaces. Let $P: U \to U$ be a unitary operator, and $T: U \to U$ a self-adjoint operator. Define $S: U \to U$ as $S = PTP^*$.

- **1.** Show that *S* is self-adjoint.
- **2.** Show that S is positive semi-definite if and only if T is positive semi-definite.

Hint:

- **1.** $P: U \to V$ is called unitary if $P^*P = \mathrm{Id}_U$.
- **2.** A transformation *T* is called positive semi-definite if $\langle Tu, u \rangle \geq 0$ for all $u \in U$.

