SHAP values: a game theory tool towards model interpretability

Cristian Curaba

February 16, 2024

Structure of the presentation

Cooperative Game Theory Definition

Let $v: \mathcal{P}(N) \to \mathbb{R}$, with $v(\emptyset) = 0$ be the **coalitional game**, where v(S) is the expected payoff sum with members of S cooperation. The **Shapley value** of a player in a coalition game is defined as follows:

$$\varphi_i(v) = \frac{1}{n} \sum_{S: S \subseteq N \setminus \{i\}} {n-1 \choose |S|}^{-1} (v(S \cup \{i\}) - v(S)),$$

where n is the number of players.

Example: glove game.

Goal: create the maximum number of paired gloves. Simple case: let's consider three players $N=\{1,2,3\}$ with one right glove for 1 and 2 and a left glove for player 3.

Example: glove game.

Goal: create the maximum number of paired gloves.

Simple case: let's consider three players $N = \{1, 2, 3\}$ with one right glove for 1 and 2 and a left glove for player 3.

$$v(S) = \begin{cases} 1 \text{ if } S \in \{\{1,3\}; \{2,3\}; \{1,2,3\}\} \\ 0 \text{ otherwise.} \end{cases}$$

$N \setminus \{1\}$	$v(S \cup \{1\})$
Ø	0
{2}	0
{3}	1
{2,3}	1

N \ {3}	$v(S \cup \{3\})$
Ø	0
{1}	1
{2}	1
{1, 2}	1

Table: Marginals contribution of 1 Table: Marginals contribution of 3

Glove game: Shapley values

$N \setminus \{1\}$	$v(S \cup \{1\})$
Ø	0
{2}	0
{3}	1
{2,3}	1

N \ {3}	$v(S \cup \{3\})$
Ø	0
{1}	1
{2}	1
{1, 2}	1

Table: Marginals contribution of 1 Table: Marginals contribution of 3

$$\varphi_i(v) = \frac{1}{n} \sum_{S: S \subseteq N \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}},$$

Glove game: Shapley values

$N\setminus\{1\}$	$v(S \cup \{1\})$
Ø	0
{2}	0
{3}	1
{2,3}	1

$N \setminus \{3\}$	$v(S \cup \{3\})$
Ø	0
{1}	1
{2}	1
{1, 2}	1

Table: Marginals contribution of 1 Table: Marginals contribution of 3

$$\varphi_i(v) = \frac{1}{n} \sum_{S: S \subseteq N \setminus \{i\}} \frac{v(S \cup \{i\}) - v(S)}{\binom{n-1}{|S|}},$$

$$\varphi_1(v) = \frac{1}{3}(0+0+\frac{1}{\binom{2}{1}}+\frac{1-1}{\binom{2}{2}}) = \frac{1}{6} = \varphi_2(v)$$
$$\varphi_3(v) = \frac{1}{3}(0+\frac{1}{\binom{2}{1}}+\frac{1}{\binom{2}{1}}+\frac{1}{\binom{2}{2}}) = \frac{2}{3}$$

Proprieties

Efficiency:

$$\sum_{i=1}^n \varphi_i(v) = v(N).$$

Symmetry:

If
$$\forall S \subseteq N \setminus \{i,j\} \ v(S \cup \{i\}) = v(S \cup \{j\}) \ \text{then} \ \varphi_i(v) = \varphi_j(v)$$
.

Dummy Player (Null Player):

If
$$v(S \cup \{i\}) = v(S)$$
 for all $S \subseteq N \setminus \{i\}$, then $\varphi_i(v) = 0$.

Linearity:

If
$$\mathbf{v} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$$
, then $\varphi_i(\mathbf{v}) = \alpha \varphi_i(\mathbf{v}_1) + \beta \varphi_i(\mathbf{v}_2)$.

Explanation model: Additive feature attribution method

We focus on **local methods** designed to explain a prediction f(x) based on a single input $x \in \mathbb{X}$. Let $\tilde{\mathbb{X}}$ be the **feature set** of \mathbb{X} .

- ▶ $f: \mathbb{X} \to \mathbb{Y}$ be the model prediction;
- ▶ $g: B(\tilde{x}, \varepsilon) \to \mathbb{Y}$ the local explanation model;
- ▶ $h_x: \tilde{\mathbb{X}} \to \mathbb{X}$ with $h_x(\tilde{x}) = x$ maps features into data.
- ▶ Desirable propriety: $g(\tilde{z}) \approx f(h_x(\tilde{z}))$ whenever $\tilde{z} \in B(\tilde{x}, \epsilon)$.

Explanation model: Additive feature attribution method

We focus on **local methods** designed to explain a prediction f(x) based on a single input $x \in \mathbb{X}$. Let $\tilde{\mathbb{X}}$ be the **feature set** of \mathbb{X} .

- ▶ $f: \mathbb{X} \to \mathbb{Y}$ be the model prediction;
- ▶ $g: B(\tilde{x}, \varepsilon) \to \mathbb{Y}$ the local explanation model;
- ▶ $h_x : \tilde{\mathbb{X}} \to \mathbb{X}$ with $h_x(\tilde{x}) = x$ maps features into data.
- ▶ Desirable propriety: $g(\tilde{z}) \approx f(h_x(\tilde{z}))$ whenever $\tilde{z} \in B(\tilde{x}, \epsilon)$.

Definition

Additive feature attribution methods have an explanation model that is a linear function of binary variables:

$$g(\tilde{z}) = \phi_0 + \sum_{i=1}^{M} \phi_i \tilde{z}_i$$

where $\tilde{z} \in \{0,1\}^M$, M is the number of features and $\phi_i \in \mathbb{R}$.

Example of additive feature attribution: LIME

Local Interpretable Model-agnostic Explanations:

- ► Select an Instance:
- Generate Perturbations;
- Prediction: each perturbed instance is passed through the black-box model;
- Build a Local Surrogate Linear Model to approximate the black-box model behaviour;
- Interpreting the surrogate model.

Desirable proprieties of Additive Feature Attributions

- ► Local accuracy: $f(x) = g(\tilde{x}) = \phi_0 + \sum_{i=1}^{M} \phi_i \tilde{x}_i$.
- ▶ **Missingness**: features where $\tilde{x}_i = 0$ have no attributed impact:

$$\tilde{x}_i = 0 \Longrightarrow \phi_i = 0$$

▶ Consistency: Let $f_{x}(\tilde{z}) := f(h_{x}(\tilde{z}))$ with $\tilde{z} \in B(\tilde{x}, \varepsilon)$ and $\tilde{z} \setminus i$ denote setting $\tilde{z}_{i} = 0$. For any two models f and f', if

$$\forall \tilde{z} \in \left\{0,1\right\}^{M} \quad f_{x}'\left(\tilde{z}\right) - f_{x}'\left(\tilde{z}\backslash i\right) \geq f_{x}\left(\tilde{z}\right) - f_{x}\left(\tilde{z}\backslash i\right),$$

then

$$\phi_i(f',x) \geq \phi_i(f,x).$$

Desirable proprieties of Additive Feature Attributions

- ► Local accuracy: $f(x) = g(\tilde{x}) = \phi_0 + \sum_{i=1}^{M} \phi_i \tilde{x}_i$.
- ▶ **Missingness**: features where $\tilde{x}_i = 0$ have no attributed impact:

$$\tilde{x}_i = 0 \Longrightarrow \phi_i = 0$$

▶ Consistency: Let $f_x(\tilde{z}) := f(h_x(\tilde{z}))$ with $\tilde{z} \in B(\tilde{x}, \varepsilon)$ and $\tilde{z} \setminus i$ denote setting $\tilde{z}_i = 0$. For any two models f and f', if

$$\forall \tilde{z} \in \{0,1\}^{M} \quad f_{x}'(\tilde{z}) - f_{x}'(\tilde{z} \setminus i) \geq f_{x}(\tilde{z}) - f_{x}(\tilde{z} \setminus i),$$

then

$$\phi_i(f',x) \geq \phi_i(f,x).$$

Good news: the only possible additive feature attribution method with an explanation model satisfying the above proprieties is given by Shapley values!

From Shapley to SHAP values

Shapley values are adapted for **feature attribution**.

Shapley Value	SHAP value
A coalition game	model prediction $f(x)$, with x fixed
A Player	An entry of input x (data feature)
Player contribution	Feature contribution over a prediction

SHAP (SHapley Additive exPlanation) Values

SHAP summarized: In additive feature attribution, the explanation model is constructed with Shapley values. Marginal contributions are conditional expectations.

SHAP (SHapley Additive exPlanation) Values

SHAP summarized: In additive feature attribution, the explanation model is constructed with Shapley values. Marginal contributions are conditional expectations. Let f be the prediction model, we want to find the explanation $f(x) = g(\tilde{x})$ where

$$g(\tilde{z}) = \phi_0^f + \sum_{i=1}^M \phi_i^f \tilde{z}_i, \qquad \tilde{z} \in \{0,1\}^M.$$

We approximate $f(h_x(\tilde{z}))$ with $\mathbb{E}[f(z)|z_S]$ where z_S has missing values for features not in S.

$$\phi_i^f(x) = \sum_{\tilde{z} \subset \tilde{x}} \frac{|\tilde{z}|!(M - |\tilde{z}| - 1)!}{M!} (\mathbb{E}[f(z)|z_S] - \mathbb{E}[f(z)|z_{S\setminus i}]),$$

where S is the set of non-zero indexes in z'.

Approximate $\mathbb{E}[f(z)|z_S]$: Deep SHAP method

- ► Approximate the conditional expectations of SHAP values using a selection of **background samples**.
- ▶ It exploits the compositional nature of deep networks.

CNN linear - Correctly Classified - White Background

Explanation of each output class. From left to right: 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',' Shirt',' Sneaker', 'Bag',' Ankle Boot'.

CNN linear - Incorrectly Classified - White Background

CNN ReLU - Correctly Classified - White Background

CNN ReLU - Correctly Classified - White Background

CNN linear - Incorrectly Classified - Average Background

Explanation of each output class. From left to right: 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal',' Shirt',' Sneaker', 'Bag',' Ankle Boot'.

CNN linear - Incorrectly Classified - Average Background

CNN ReLU - Correctly Classified - Average Background

CNN ReLU - Correctly Classified - Average Background

