Principios de Conteo.

as técnicas de conteo son usadas en matemáticas para enumerar eventos difíciles de cuantificar.

Existen dos técnicas de conteo fundamentales, combinaciones y permutaciones, pero para entenderlas a plenitud, se debe tener claro los principios aditivo y multiplicativo, los cuales serán las bases para comprender estas técnicas de conteo.

Principio aditivo: si se desea llevar a cabo una actividad, la cual tiene múltiples alternativas de realizarse pero ninguna de estas en conjunto, entonces dicha actividad puede hacerse de $n_{_1} + n_{_2} + ... + n_{_r}$ maneras diferentes, donde $n_{_p}, n_{_p}, ..., n_{_r}$ representa la cantidad de maneras diferentes en que se pueden realizar cada una de las alternativas.

Ejemplo:

¿De cuántas maneras distintas se puede cruzar un lago, si se dispone de 5 botes y 3 barcos?

Para cruzar el lago se tienen dos alternativas, en bote o en barco; si se elige cruzar el lago en bote, entonces se tienen 5 maneras distintas de hacerlo, una por cada barco, así $n_{-1}=5$. De manera análoga, si se elige cruzar el lago en barco, se tiene que $n_{-2}=3$, por tanto, el número total de maneras distintas que se tiene para cruzar el lago es

$$n_{-1}+n_{-2}=5+3=8$$
.

Principio multiplicativo: si se desea realizar una actividad que consta de r pasos que poden ser realizados en conjunto, en cual el primer paso de la operación puede ser realizado de $n_{_l}$ maneras, el segundo paso de $n_{_2}$ maneras y el r-ésimo paso de $n_{_r}$ maneras, entonces esta actividad puede ser llevada a cabo de $n_{_r}$, $n_{_r}$... $n_{_r}$ maneras.

<u>Comentario</u>: el principio multiplicativo implica que cada uno de los pasos pueden ser llevados a cabo, uno tras otro.

Ejemplo:

una empresa desea construir un edificio, para lo cual considera que puede construir los cimientos del edifico de dos maneras concreto o placas de cemento, mientras que las paredes del edificio pueden hacerse de adobe o de ladrillo y los techos de concreto, lámina galvanizada o madera. ¿Cuántas maneras diferentes tiene esta empresa para construir el edificio?

Solución:

En este caso la actividad es la construcción del edificio y los pasos serán los cimientos, las paredes y los techos, así r=3. Ahora, cada uno de estos pasos se puede realizar de maneras diferentes:

Los cimientos se pueden realizar de 2 maneras diferentes (concreto o placas de cemento), es decir, $n_{\perp}=2$.

Las paredes se pueden realizar de 2 maneras diferentes (adobe o ladrillo), es decir, n = 2.

Los techos se pueden realizar de 3 maneras diferentes (concreto, lámina galvanizada o madera), es decir, $n_3=3$.

$$n_{1} \cdot n_{2} \cdot n_{3}=2 \cdot 2 \cdot 3=12$$

maneras diferentes de construir el edificio. Factorial de un número: el factorial de un número n es el producto de los n primeros números naturales menores e iguales que n. Se simboliza por n! y es tal que

$$n!=1.2.3...(n-1).n$$

donde 0!=1 y 1!=1.

Ejemplo:

- 2!=1.2=2
- *3!=1.2.3=6*
- *4!*=1.2.3.4=24

Nota: por propiedad n!=n.(n-1)!

- 8!=8.7!
- 201=20.191

<u>Permutación</u>: una permutación de n elementos tomados de r en r se define por las diferentes agrupaciones con r elementos distintos. El número

de variaciones que se pueden construir se puede calcular mediante la fórmula:

$$P_r^n = \frac{n!}{(n-r)!}$$

donde $0 < r \le n$ e influye la colocación de los elementos.

8 automóviles disputan una carrera en la cual solo premia el primero, el segundo y el tercero puesto. ¿De cuántas maneras diferentes se pueden elegir los 3 primeros lugares en esta carrera?

Solución:

En este caso tenemos que el número total de elementos es 8 (total de automóviles en la carrera), es decir, n=8 y se requieren formar grupos (primer puesto, segundo puesto y tercer puesto) de 3 elementos, es decir, r=3, por tanto, se tiene una

$$P_{3}^{8} = \frac{8!}{(8-3)!} = \frac{8!}{(5)!} = \frac{8.7.6.5!}{5!} = 8.7.6 = 336$$

Así, en esta carrera se tienen 336 formas diferentes de que se elijan los tres primeros lugares de un grupo de 8 automóviles.

Combinación: si se dispone de un conjunto de n elementos diferentes y se le quiere agrupar (combinar) de r formas diferentes. Entonces el número de combinaciones se representa por medio de la expresión:

$$C_r^n = \frac{n!}{r!(n-r)!}$$

donde $0 < r \le n$ y no influye la colocación de los elementos.

hallar el número de formas en que se pueden mezclar cinco colores: azul (a), verde (v), rojo (r), blanco (b) y negro (n), tomándolos de tres en tres.

Solución:

Como se tienen 5 colores, entonces, n=5 y como se requiere mezclar grupos de tres colores, entonces, r=3; en este experimento el orden no se tiene en cuenta ya que da el mismo resultado

combinar los colores azules, verde y el negro, que, si se toma primero el verde, luego el negro y por último el azul. Así se tiene una combinación de la

$$C_{3}^{5} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{120}{12} = 10$$

Por lo tanto, hay 10 formas diferentes de mezclar los cinco colores tomando grupos de a tres.

Actividad 5

L Si se desea hacer una rifa de una nevera en la que cada boleta tiene un número de tres cifras, ¿cuántas boletas se deben imprimir?

a. 300

b. 1000

c. 3000

d. 100

2. Se quiere construir un domino con los números del 0 al 6. ¿Cuántas fichas tendrá este juego?

21

b. 28

c. 14 **d.** 17

3. Un grupo de universitarios formado por 12 mujeres y 10 hombres desea elegir un representante estudiantil. ¿De cuántas maneras puede ser elegido este representante?

a. 22

b. 120

c. 122

d. 10

🚣 Pedro posee 4 camisas, 3 pantalones y 5 pares de zapatos, todas las prendas son diferentes. ¿De cuantas maneras distintas se puede vestir Pedro?

a. 12

b. 11

c. 60

5. Cuántas representaciones diferentes será posible formar con un sindicato de 20 miembros de una

Razonamiento Lógico

universidad, si se desea que cada representación conste de un presidente, un secretario y un tesorero.

- **a.** 6804
- **b.** 6840
- c. 8628
- d. 8640
- 6. ¿De cuántas maneras se pueden sentar cinco personas en cinco sillas dispuestas en fila?
- 220
- **b.** 120
- **c.** 60
- d. 40
- 7. ¿De cuántas maneras se pueden sentar 5 personas en 5 sillas dispuestas en fila si una de estas personas ocupa siempre el mismo lugar?
- **a.** 24
- **b.** 720
- **c.** 120
- d. 12
- 8. ¿De cuántas maneras diferentes se pueden distribuir 4 personas en dos equipos A y B?
- **a.** 3
- **b.** 4
- **c.** 5
- **d.** 6
- 9. ¿Cuántos números de 5 cifras se pueden formar con los dígitos 3,4,5,6,7 y 8 si no se pueden repetir?
- **q.** 720
- **b.** 200
- **c.** 160
- d. 120
- 10. El encargado de una sala de cine en un centro comercial tiene que escoger 2 películas de acción de 8 posibles, para proyectarlas el viernes en la noche, ¿Cuántas combinaciones tiene para escoger?
- a. 20
- **b.** 25
- **c.** 28
- **d.** 10
- 11. Al último examen de razonamiento lógico llegaron 16 estudiantes tarde, de los cuales el profesor solo puede dejar ingresar 3. ¿De cuantas maneras diferentes el profesor puede escoger 3 estudiantes, sin que importe el orden en que lo decida?

- **a.** 560
- **b.** 240
- **c.** 300
- d. 650
- 12. ¿Cuántos equipos de futbol de 6 jugadores se pueden formar de un grupo de 9 personas?
- a. 80
- **b.** 50
- **c.** 10
- d. 84
- 13. Una organización estudiantil tiene que elegir un representante y un suplente. Hay 6 candidatos. ¿De cuántas maneras diferentes se pueden elegir los dos candidatos?
- 21
- **b.** 30
- **c.** 24
- d. 36
- 14. En una competición de atletismo para la final han quedado cinco atletas que se disputan las medallas de oro, plata y bronce. ¿De cuántas formas distintas se pueden repartir estas medallas?
- a. 60
- **b.** 13
- **c.** 125
- **d.** 50
- 15. A las semifinales del campeonato del fútbol colombiano clasificaron 4 equipos. Para definir los dos equipos finalistas, cada uno se debe enfrentar con los otros 3 sólo una vez, ¿cuántas formas hay para organizar los partidos en la semifinal del fútbol colombiano?

