1 Python程序设计#4作业

班级: 2021211307

学号: 2021211138

姓名: 陈朴炎

1.1 作业题目

基于#3作业获取的数据(No_Smoothing,非平滑数据),计算出LOWESS(局部加权回归,fraction取 前后各5年的数据)结果,该结果可以与#2作业中提供的graph.txt文件中的Lowess字段进行比较。

1.2 作业内容

代码嵌入到下方code block中

```
import aiohttp
import asyncio
import json
import xml.etree.ElementTree as ET
import statsmodels.api as sm
async def fetch_data(url, params):
    async with aiohttp.ClientSession() as session:
        async with session.get(url, params=params) as response:
            return await response.text()
def convert_json_to_text(json_data):
    # 转换JSON为TEXT格式
    data = json.loads(json_data)
    text result = ""
    for entry in data:
        text_result += " ".join([str(value) for value in entry.values()]) + "\n"
    return text result
def convert_xml_to_text(xml_data):
    root = ET.fromstring(xml_data)
    text_result = ""
    for entry in root.findall('.//entry'):
        year = entry.find('Year').text
        no_smoothing = float(entry.find('No_Smoothing').text)
        lowess = float(entry.find('Lowess(5)').text)
        text_result += f"{year} {no_smoothing:.2f} {lowess:.2f}\n"
    return text_result
```

```
def get_request():
   start_year = input("起始年份:")
   end_year = input("结束年份:")
   sort_by = input("按照year还是temperature排序?:")
   order = input("升序asc还是降序desc?: ")
   result_format = input("格式是json 还是 xml 还是 csv? : ")
   params = {
        'start_year': int(start_year),
       'end_year': int(end_year),
       'sort_by': sort_by,
       'order': order,
       'format':result_format
   }
   return params
def calculate_lowess(data, fraction = 0.2):
   years = [entry['Year'] for entry in data]
   no_smoothing = [entry['No_Smoothing'] for entry in data]
   lowess = sm.nonparametric.lowess(no_smoothing, years, frac=fraction)
   return lowess[:, 1]
async def main():
   url = 'http://localhost:8000' # 你的服务端地址
   # 获取用户输入的查询参数
   params = get_request()
   data = ""
   # 获取JSON数据并转换为TEXT格式
   if params['format'] == 'json':
       json_data = await fetch_data(url, params)
       print("\nJSON数据 转成 TEXT:")
       text_json = convert_json_to_text(json_data)
       data = text_json
       print(text_json)
   # 获取XML数据并转换为TEXT格式
   elif params['format'] == 'xml':
       xml_data = await fetch_data(url, params)
       print(xml_data)
       text_xml = convert_xml_to_text(xml_data)
       print("\nXML数据 转成 TEXT:")
       print(text_xml)
       data = text_xml
   # 获取CSV数据并转换为TEXT格式
   elif params['format'] == 'csv':
       csv_data = await fetch_data(url, params)
       print("\nCSV数据:")
       text_csv = csv_data.replace(","," ")
       print(text csv)
```

```
data = text_csv
    # 计算lowess
    data_list = [line.split(" ") for line in data.split("\n")]
    year list = []
    no_smoothing_list = []
    lowess_list = []
    for entry in data list:
        if len(entry) == 3:
            year_list.append(int(entry[0]))
            no_smoothing_list.append(float(entry[1]))
            lowess_list.append(float(entry[2]))
    lowess = sm.nonparametric.lowess(no_smoothing_list, year_list, frac=
10/len(year_list))
    print("年份\t\t数据本身\t程序计算")
    for i in range(len(lowess)):
        print("{}:\t\t{}\t\t{:.2f}\".format(year_list[i], lowess_list[i], lowess[i]
[1]))
if __name__ == '__main__':
    asyncio.run(main())
```

1.3 代码说明

本次作业基于#3作业进行添加,重复内容不作说明,主要针对#4增加内容进行说明。

```
def calculate_lowess(data, fraction = 0.2):
    years = [entry['Year'] for entry in data]
    no_smoothing = [entry['No_Smoothing'] for entry in data]
    lowess = sm.nonparametric.lowess(no_smoothing, years, frac=fraction)
    return lowess[:, 1]
```

这段代码将fraction默认为0.2,首先将year和no_smoothing值提取处理放到列表中,代表拟合函数的X和Y,之后调用sm.nonparametric.lowess,将no_smothing传入作为y,years传入作为x,将拟合参数fraction传入,如果要取前后5年的数据作为拟合数据,则要传入 10/len(years) 作为拟合参数fraction。最后返回了拟合后离散函数 x, y

```
# 计算lowess

data_list = [line.split(" ") for line in data.split("\n")]

year_list = []

no_smoothing_list = []

lowess_list = []

for entry in data_list:

    if len(entry) == 3:
        year_list.append(int(entry[0]))

        no_smoothing_list.append(float(entry[1]))

        lowess_list.append(float(entry[2]))

lowess = sm.nonparametric.lowess(no_smoothing_list, year_list, frac=
```

```
10/len(year_list))
    print("年份\t\t数据本身\t程序计算")
    for i in range(len(lowess)):
        print("{}:\t\t{}\t\t{:.2f}".format(year_list[i], lowess_list[i], lowess[i]
[1]))
```

这段代码先将数据从文本信息中剥离,将year、no_smoothing和数据原来的lowess提取处理,之后将no_smoothing_list和year_list,以及frac=10/(len(year_list))传入到计算lowess的函数中,返回每个year对应的lowess,其中,10/len(year_list)表示取前后各5年的数据进行拟合。

1.4 运行结果及分析

1.4.1 1885-1900 计算结果及比较

```
PS E:\bupt-homework\python\#4> python -u "e:\bupt-homework\python\#4\homework4.py"
起始年份:1885
结束年份:1900
按照year还是temperature排序?:year
升序asc还是降序desc?: asc
格式是json 还是 xml 还是 csv? : csv
CSV数据:
1885 -0.34 -0.27
1886 -0.32 -0.28
1887 -0.37 -0.28
1888 -0.18 -0.27
1889 -0.11 -0.26
1890 -0.36 -0.26
1891 -0.23 -0.26
1892 -0.28 -0.27
1893 -0.32 -0.27
1894 -0.32 -0.25
1895 -0.24 -0.23
1896 -0.11 -0.21
1897 -0.11 -0.19
1898 -0.28 -0.17
1899 -0.18 -0.18
1900 -0.08 -0.20
年份
                数据本身
                                程序计算
1885:
               -0.27
                                -0.33
1886:
                -0.28
                                -0.31
1887:
                -0.28
                                -0.30
1888:
                -0.27
                                -0.28
1889:
                -0.26
                                -0.27
1890:
                -0.26
                                -0.26
                -0.26
                                -0.27
1891:
1892:
                -0.27
                                -0.27
                -0.27
                                -0.27
1893:
1894:
                -0.25
                                -0.25
1895:
                -0.23
                                -0.23
                -0.21
                                -0.21
1896:
                                -0.19
1897:
                -0.19
                -0.17
                                -0.16
1898:
1899:
                -0.18
                                -0.14
1900:
                -0.2
                                -0.12
```

图1-1 1885-1900 运行结果

图片上半部分是#3作业的输出,下半部分是计算Lowess和原始数据里的Lowess的比较。左侧这一列是数据本身给的Lowess,而右边这一列是我程序计算的。可以看到,由于我计算的时候给的是从服务器获取的数据,而我的fraction取的是前后5年的,所以在计算的前5年和后5年数据和原来的数据有些许偏差,而中间的其他年份计算的相同。

1.4.2 1900-2000 计算结果及比较

年份	数据本身	程序计算
1900:	-0.2	-0.15
1901:	-0.24	-0.19
1902:	-0.26	-0.23
1903:	-0.28	-0.27
1904:	-0.31	-0.31
1905:	-0.34	-0.34
1906:	-0.36	-0.36
1907:	-0.38	-0.38
1908:	-0.39	-0.39
1909:	-0.41	-0.41
1910:	-0.41	-0.41
1911:	-0.39	-0.39
1912:	-0.35	-0.35
1913:	-0.32	-0.32
1914:	-0.31	-0.31
1915:	-0.3	-0.30
1916:	-0.3	-0.30
1917:	-0.3	-0.30
1918:	-0.3	-0.30
1919:	-0.29	-0.29
1920:	-0.28	-0.28
1921:	-0.26	-0.26
1922:	-0.25	-0.25
1923:	-0.24	-0.24
1924:	-0.23	-0.23
1925:	-0.22	-0.22
1926:	-0.22	-0.22
1927:	-0.21	-0.21
1928:	-0.2	-0.20
1929:	-0.19	-0.19
1930:	-0.19	-0.19
1931:	-0.19	-0.19
1932:	-0.18	-0.18
1933:	-0.17	-0.17
1934:	-0.15	-0.15
1935:	-0.14 -0.1	-0.14 -0.10
1936: 1937:	-0.1 -0.06	-0.10 -0.06
1937:	-0.00 -0.01	-0.01
1939:	0.03	0.03
1940:	0.07	0.06
1941:	0.09	0.09
1942:	0.11	0.11
1943:	0.1	0.10
1944:	0.08	0.08
1945:	0.04	0.04
1946:	0.01	0.01
1947:	-0.03	-0.03
1948:	-0.07	-0.07
1949:	-0.08	-0.08
1950:	-0.07	-0.07

图1-2 1885-1900 运行结果

1951:	-0.07	-0.07
1952:	-0.07	-0.07
1953:	-0.07	-0.07
1954:	-0.06	-0.07
1955:	-0.05	-0.06
1956:	-0.05	-0.05
1957:	-0.04	-0.04
1958:	-0.01	-0.01
1959:	0.01	0.02
1960:	0.03	0.03
1961:	0.01	0.02
1962:	-0.01	-0.01
1963:	-0.03	-0.03
1964:	-0.04	-0.04
1965:	-0.05	-0.05
1966:	-0.06	-0.06
1967:	-0.05	-0.05
1968:	-0.03	-0.03
1969:	-0.02	-0.02
1970:	-0.0	-0.00
1971:	0.0	0.00
1972:	0.0	0.00
1973:	-0.0	-0.00
1974:	0.01	0.00
1975:	0.02	0.02
1976:	0.04	0.04
1977:	0.07	0.07
1978:	0.12	0.12
1979:	0.16	0.16
1980:	0.2	0.20
1981:	0.21	0.21
1982:	0.21	0.21
1983:	0.21	0.21
1984:	0.21	0.21
1985:	0.22	0.22
1986:	0.24	0.24
1987:	0.27	0.27
1988:	0.31	0.31
1989:	0.33	0.33
1990:	0.33	0.33
1991:	0.33	0.33
1992:	0.33	0.33
1993:	0.33	0.33
1994:	0.34	0.34
1995:	0.36	0.36
1996:	0.4	0.39
1997:	0.42	0.40
1998:	0.44	0.42 0.43
1999:	0.47	0.44 0.44
2000:	0.5	_0.44

图1-3 1885-1900 运行结果

分析:

同样的可以看到,由于我计算的时候给的是从服务器获取的数据,而我的fraction取的是前后5年的,所以在计算的前5年和后5年数据和原来的数据有些许偏差,而中间的其他年份计算的相同。基本上来看计算结果和给出

的结果是一样的。