Motivation

• [[Erwartungswert]] zeigt durchschnittliche Resultat

• Wie weit weicht die ZV durchschnittlich vom Erwartungswert ab?

• Varrianz $Var(X) = E((x - \mu)^2)$

– sei $E(X)=\mu$

- Abstand $E(|x - \mu|)$

• Standardabweichung $sd(X) = \sqrt{Var(X)}$

• Varianz ist 2. zentrale [[Moment]]

Eigenschaften

Lemma

Sei $X \in L^2$. Dann gilt

(a) $Var(X) \ge 0$. Var(X) = 0 impliziert $X = \mu$.

(b) $Var(X) = E(X^2) - (E(X))^2$.

Daraus folgt mit (a), dass $E(X^2) \ge (E(X))^2$.

Beweis. Da $(X - \mu)^2 \ge 0$, folgt $Var(X) \ge 0$ wegen der Monotonie. Mit der Markov-Ungleichung folgt für alle $\varepsilon > 0$

$$P(|X - \mu| > \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

Damit ist (a) gezeigt.

Dann, $E(X - \mu)^2 = E(X^2 + \mu^2 - 2\mu X)$. Der Beweis folgt dann mit der Linearität des Erwartungswerts.

Mit $Var(X) = E(X^2) - (E(X))^2$ folgt für

➤ X ~ Unif(a, b):

$$Var(X) = \frac{b^2 + ab + a^2}{3} - \left(\frac{a+b}{2}\right)^2 = \frac{(b \perp a)^2}{12}.$$

X ~ Exp(λ):

$$Var(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

► *X* ~ N(0, 1):

$$Var(X) = 1^2 - 0^2 = 1.$$

Beispiel

· Binomialverteilung