USC Viterbi

School of Engineering

Ming Hsieh Department of Electrical Engineering

Gradient-weighted Class Activation Mapping for spatio temporal graph convolutional network

Pratyusha Das, Antonio Ortega University of Southern California (USA)

Introduction

• Motivation:

- Spatio-temporal Graph Convolutional Neural Network.
- Captures simultaneously the spatial correlation and the temporal pattern in the data
- Lacks interpretability
- Unknown reason behind their prediction

• Contribution:

- Spatio-temporal Graph Grad CAM
- Gradient based class activation maps for STGCN

Preliminaries

STGCN [1]

In each layer, ST-GCN is computed as

$$x_{out} = (\tilde{A} \odot Q) x_{in} W$$

- x_{in} : input feature map of size (C, V, T)
- C: Channel, V: Vertices, T: Temporal length.
- x_{out} : output feature map.
- \vec{A} : adjacency matrix of spatial graph.
- Q: edge weight matrix of the spatial graph.
- W: stacked weight vector of the multiple output channel.

Input Stage1: Input Transform Stage ST-block 1 ST-block n-1 ST-block n Stage3: Output Transform Stage Output

Grad-CAM [2]

- CNN uses 2-D spatial convolutional filter.
- Gradient based class activation maps (Grad-CAM) detects the spatial image important region for the network

Faithfulness graph nodes β

Spatio-emporal graph Grad CAM

Adjacency matrix as filter

$$((A+I)x)_i = \sum_{j \in \mathcal{N}(i)} w_{i,j} x_j + w_{i,i} x_i$$

• The spatio-temporal GCNN is computed as

$$F_k^l(X, \mathbf{A}) = \sigma(\tilde{\mathbf{A}}F^{l-1}(X, \mathbf{A})W_k^l)$$

- Here, normalized adjacency matrix \tilde{A} , F_k^l represents the k-th feature at the l-th layer.
- Features are localized spatially and temporally.

• The heatmap $H_{ST}^{c,l}$ for joint-time importance for c^{th} class and l^{th} layer is computed using

$$H_{ST}^{c,l} = \text{ReLU}\left(\sum_{k} \alpha_{k}^{c,l} F_{k}^{l}\right)$$

- $\alpha_k^{c,l}$: Weights for k-th feature, F_k^l : k-th feature map.
- ReLU considers the positive value which contributed to the final decision
- Weights are calculated based on the gradients

$$\alpha_{k}^{c,l} = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} \frac{\partial y^{c}}{\partial F_{k,n,t}^{l}}$$

• Here, y^c represents c-th class score.

Evaluation

Faithfulness: Measures the impact of occlusions to the graph nodes

$$\beta_{faithful} = \sum_{i} m_{i} \left(\frac{\left| \alpha_{0} - \alpha_{m_{i}} \right|}{\alpha_{0}} \right)$$

masking percentage m, corresponding accuracy α_{m_i} , α_0 is accuracy without masking

• Achieved $\beta_{faithful} = 89\%$

Experiments and Results

- Task: Skeleton based activity recognition
- Model: STGCN 10 layers of STGCN, Trained on NTU-RGB dataset, No of classes 60, Accuracy 81.5%

Fig. Actions at different time points with their spatio temporal joint importance

*Bigger size of the node represents higher importance of that joint.

Accuracy achieved by STGCN for different amount of masking of the data of the joints based on their importance

Node type		Important nodes			Non-important nodes		
Masking (in %)	No masking	10%	50%	90%	10%	50%	90%
Cross subject -Accuracy (%)	81.5	80.3	64.52	20.59	80.3	72.5	66.5
Cross Camera view -Accuracy (%)	88.3	88.1	64.31	14.82	88.1	81.09	66.81

Future work

- Interpretability of STGCN
- Generic method change the graph to implement if for other applications.