1)Input the following data into a data frame called titanic, and display the entire data frame:

```
In [4]: print(t.head(10))
```

```
Class Survived
                               Died
        Sex
 Children
              First
                                  0
                            6
  Children Second
1
                           24
                                  0
2
  Children
              Third
                           27
                                 52
                           57
3
        Men
              First
                                118
4
        Men Second
                           14
                                154
5
        Men
              Third
                           75
                                387
6
        Men
              Crew
                          192
                                693
7
      Women
              First
                          140
                                 4
8
      Women Second
                           80
                                 13
      Women
             Third
                           76
                                 89
```

```
In [5]: t.head()
```

Out[5]:

	Sex	Class	Survived	Died
0	Children	First	6	0
1	Children	Second	24	0
2	Children	Third	27	52
3	Men	First	57	118
4	Men	Second	14	154

2)Delete the crew members from the data.

```
In [6]: t=t[t.Class !="Crew"]#deleting the crew
```

In [7]: t.head()

Out[7]:

_		Sex	Class	Survived	Died
	0	Children	First	6	0
	1	Children	Second	24	0
	2	Children	Third	27	52
	3	Men	First	57	118
	4	Men	Second	14	154

3)Create a new column that is the total number of people for that group (those who survived + died).

```
In [8]: t['Total_num_people']=t["Survived"]+t['Died']
```

In [9]: t.head()

Out[9]:

	Sex	Class	Survived	Died	Total_num_people
0	Children	First	6	0	6
1	Children	Second	24	0	24
2	Children	Third	27	52	79
3	Men	First	57	118	175
4	Men	Second	14	154	168

4)Delete the column indicating the total number of people in that group.

```
In [10]: del t["Total_num_people"]
```

```
In [11]: t.head(10)
```

Out[11]:

	Sex	Class	Survived	Died
0	Children	First	6	0
1	Children	Second	24	0
2	Children	Third	27	52
3	Men	First	57	118
4	Men	Second	14	154
5	Men	Third	75	387
7	Women	First	140	4
8	Women	Second	80	13
9	Women	Third	76	89

5)Only show the rows where more than 80% of the people survived.

```
In [12]: rslt = t[t['Survived'] > 80]
rslt.head(5)
```

Out[12]:

	Sex	Class	Survived	Died	
7	Women	First	140	4	

```
In [24]: t["Total"]=t["Survived"]+ t["Died"]
t["Percentage"]=(t["Survived"]/t["Total"])*100
t[t.Percentage>=80]
```

Out[24]:

	Sex	Class	Survived	Died	Percentage	Total
0	Children	First	6	0	100.000000	6
1	Children	Second	24	0	100.000000	24
7	Women	First	140	4	97.222222	144
8	Women	Second	80	13	86.021505	93

```
In [ ]:
```