Approximate Multiplication and Squaring Circuits with Parallel Correction

Patricio Bulić¹, Jason Newman²

¹Faculty of Computer and Information Science University of Ljubljana

²Faculty of Electrical Engineering University of Suburbia

P. Bulio

- Motivation
- Approximate Multiplier and Squarer
- Hardware Implementation
- Error Analysis
- Conclusions

- ► Implementation bla bla:
 - ▶ bla bla bla
 - higher performance at smaller power consumption

Introduction

- Implementation bla bla:
 - ▶ bla bla bla
 - higher performance at smaller power consumption
- Some beautiful chips:
 - noise and learning ability of analogue and digital designs
 - ► ASIC and FPGA (field programmable gate array)

Introduction

- Implementation bla bla:
 - ▶ bla bla bla
 - higher performance at smaller power consumption
- Some beautiful chips:
 - noise and learning ability of analogue and digital designs
 - ASIC and FPGA (field programmable gate array)
- Signal processing applications incorporate complex algorithms with many multiplications
 - Multiplication is area, power and time consuming operation
 - bla bla bla

- ► An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- \triangleright The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

- ▶ An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- ▶ The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

= $2^{k_1 + k_2}$

1. shift left the leading "1" from the first number by k_2 places

- ► An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- \triangleright The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

= $2^{k_1 + k_2} + N_1^{(1)} \cdot 2^{k_2}$

- 1. shift left the leading "1" from the first number by k_2 places
- 2. shift left the first remainder by k_2 places

- ► An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- \triangleright The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

= $2^{k_1 + k_2} + N_1^{(1)} \cdot 2^{k_2} + N_2^{(1)} \cdot 2^{k_1}$

- 1. shift left the leading "1" from the first number by k_2 places
- 2. shift left the first remainder by k_2 places
- 3. shift left the second remainder by k_1 places

- ► An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- ▶ The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

= $2^{k_1 + k_2} + N_1^{(1)} \cdot 2^{k_2} + N_2^{(1)} \cdot 2^{k_1} + N_1^{(1)} \cdot N_2^{(1)}$

- 1. shift left the leading "1" from the first number by k_2 places
- 2. shift left the first remainder by k_2 places
- 3. shift left the second remainder by k_1 places
- 4. multiply the two remainders

- ▶ An approximate multiplier, introduced by Babic et al. (2010):
 - Reduced usage of logic resources: one adder and a shifter
 - Reduced power consumption
- ▶ The product of the two numbers, N_1 and N_2

$$N_1 \cdot N_2 = (2^{k_1} + N_1^{(1)}) \cdot (2^{k_2} + N_2^{(1)})$$

= $2^{k_1 + k_2} + N_1^{(1)} \cdot 2^{k_2} + N_2^{(1)} \cdot 2^{k_1} + N_1^{(1)} \cdot N_2^{(1)}$

- 1. shift left the leading "1" from the first number by k_2 places
- 2. shift left the first remainder by k_2 places
- 3. shift left the second remainder by k_1 places
- 4. multiply the two remainders

$$(N_1 \cdot N_2)_{approx} =$$

$$(N_1 \cdot N_2)_{approx} = 2^{k_1 + k_2}$$

$$(N_1 \cdot N_2)_{approx} = 2^{k_1 + k_2}$$

 $N_1^{(1)} \cdot 2^{k_2}$

$$(N_1 \cdot N_2)_{approx} = 2^{k_1 + k_2} \ N_1^{(1)} \cdot 2^{k_2} \ N_2^{(1)} \cdot 2^{k_1}$$

$$\begin{split} (\textit{N}_1 \cdot \textit{N}_2)_{\textit{approx}} &= 2^{\textit{k}_1 + \textit{k}_2} \\ &+ \textit{N}_1^{(1)} \cdot 2^{\textit{k}_2} \\ &+ \textit{N}_2^{(1)} \cdot 2^{\textit{k}_1} \end{split}$$

Error Analysis

$\mathsf{Theorem}$

The probability of an error in the circuit is directly proportional to the trouble it can cause.

$\mathsf{Theorem}$

The probability of an error in the circuit is directly proportional to the trouble it can cause.

Proof.

The proof is straightforward.

Errors

► The proposed approach improves the average and maximum relative errors compared to the existing square approximations.

Conclusions

- ► The proposed approach improves the average and maximum relative errors compared to the existing square approximations.
- ► Error analysis has shown that an error in the circuit is directly proportional to the trouble it can cause.

- ► The proposed approach improves the average and maximum relative errors compared to the existing square approximations.
- Error analysis has shown that an error in the circuit is directly proportional to the trouble it can cause.
- ▶ We can calculate the correction terms in parallel.