What are MODFETs? - MOSFET Threshold Values, I_D-V_{GS} Characteristics, and Temperature Characteristics

Si Transistors

In succession to the preceding discussion of MOSFET switching characteristics, here we explain the gate threshold voltage, which is a crucial characteristic of MOSFETs, as well as the I_D - V_{GS} characteristics, and the temperature characteristics of each of these.

MOSFET V_{GS(th)}: Gate Threshold Voltage

The MOSFET $V_{GS(th)}$ or gate threshold voltage is the voltage between the gate and source that is needed to turn on the MOSFET. In other words, if V_{GS} is at least as high as the threshold voltage, the MOSFET turns on.

Some persons may be wondering just how much of a current I_D can be passed on this "MOSFET on" state. And it is true that I_D changes depending on V_{GS} . Speaking from the standpoint of the $V_{GS(th)}$ specification, if the conditions are not determined, a value for $V_{GS(th)}$ cannot be guaranteed; the datasheet for the MOSFET stipulates these conditions. This table is excerpted from the datasheet for the N-ch, 600 V, 4 A power MOSFET R6004KNX.

●Electrical characteristics (T_a = 25°C)

Parameter	Symbol	Conditions	Values			I Imit
			Min.	Тур.	Max.	Unit
Drain - Source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 1mA	600	-	-	V
Zero gate voltage drain current		V _{DS} = 600V, V _{GS} = 0V				
	I _{DSS}	T _j = 25°C	-	-	100	μA
		T _j = 125°C	-	-	1000	
Gate - Source leakage current	I _{GSS}	V _{GS} = ±20V, V _{DS} = 0V	-	-	±100	nA
Gate threshold voltage	V _{GS(th)}	V _{DS} = 10V, I _D = 1mA	3	-	5	V
Static drain - source on - state resistance		V _{GS} = 10V, I _D = 1.5A				
	R _{DS(on)} *5	T _j = 25°C	-	0.90	0.98	Ω
		T _j = 125°C	-	1.36	-	
Gate resistance	R_G	f = 1MHz, open drain	-	3.3	-	Ω

The blue line surrounds information on $V_{GS(th)}$, and the conditions column indicates that conditions are V_{DS} = 10 V and I_D = 1 mA. Under these conditions, and at Ta = 25°C, $V_{GS(th)}$ is guaranteed to have minimum and maximum values of 3 V and 5 V.

In other words, as V_{GS} is raised, the MOSFET begins to turn on (I_D begins to flow), and when I_D is 1 mA, the value of V_{GS} is between 3 V and 5 V inclusive; this value is $V_{GS(th)}$. Various methods of expression are possible, but we can say that the MOSFET on state is defined as being when $I_D = 1$ mA at $V_{DS} = 10$ V, and the V_{GS} at this time is taken to be $V_{GS(th)}$, the value of which is between 3 V and 5 V.

It should also be noted that voltages and currents that change according to some state, such as an input or output or a turning on or off of some function, are commonly called threshold values, and are not limited to MOSFETs.

Temperature Characteristics of $V_{GS(th)}$ and I_D - V_{GS}

From the initial graph showing the I_D-

 V_{GS} characteristic, the $V_{GS(th)}$ for the

MOSFET can be read off. The condition

 V_{DS} = 10 V matches the stipulated condition.

When I_D is 1 mA, V_{GS} is equal to $V_{GS(th)}$, and

so the V_{GS} when the curve for Ta = 25°C

intersects the 1 mA (0.001 A) line is approx.

3.8 V. The datasheet does not indicate a

representative or typical value (indicated by "Typ"), and we see from the graph that the Typ value for $V_{GS(th)}$ is about 3.8 V. The graph value can in essence be regarded as the Typ value.

Next, we consider the I_D - V_{GS} characteristic. As the specification value for $V_{GS(th)}$, the value when I_D = 1 mA is used, but in actual use, a 4 A MOSFET is unlikely to be used with I_D at only 1 mA. For example, when an I_D of 1 A at Ta = 25°C is required, we see from the graph that the V_{GS} is about 5.3 V.

From the graph of the I_D - V_{GS} temperature characteristic, at high temperatures there is a tendency for I_D to increase if V_{GS} is constant. Taking as an example the previous condition that I_D = 1 A at Ta = 25°C, at Ta = 75°C, an I_D of about 1.5 A can be passed, and so the conditions of use must be considered carefully.

Returning to the gate threshold voltage, the temperature characteristic of $V_{GS(th)}$ is shown in a graph. As was seen from the I_D - V_{GS} graph, we see that at 25°C, $V_{GS(th)}$ is approx. 3.8 V. The temperature in this graph is Tj, but as indicated by the term "pulsed", the data was obtained in pulsed tests, and it is permissible to assume that Tj \approx Ta \approx 25°C.

It is seen that the temperature characteristic is such that at high temperatures, $V_{GS(th)}$ tends to decline. This indicates that as the temperature rises, because $V_{GS(th)}$ declines, a larger I_D can flow at a lower V_{GS} . In other words, and as would be expected, this matches the I_D - V_{GS} temperature characteristic.

 $V_{GS(th)}$ can be used to estimate Tj. The $V_{GS(th)}$ temperature characteristic is linear, and so a proportionality coefficient can be calculated, and the increase in temperature can be calculated from the amount of change in $V_{GS(th)}$.