4 Lecture 4: Invariance/Equivariance

Motivating example: Let $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} Ber(p), p \in (0, 1)$. Let $\hat{p} = \delta(\boldsymbol{x}) = \delta(x_1, \dots, x_n)$ be a decision rule. Consider $X_1^*, \dots, X_n^* = 1 - X_1, \dots, 1 - X_n \stackrel{\text{iid}}{\sim} Ber(p^*)$, where $p^* = 1 - p$. it is natural to use the same decision rule to estimate p^* , then

$$\hat{p}^* = \delta(x^*) = \delta(x_1^*, \dots, x_n^*) = \delta(1 - x_1, \dots, 1 - x_n)$$

Also, we have already estimate \hat{p} , then, under the same transformation, we can estimate p^* as:

$$\hat{p}^* = 1 - \hat{p} = 1 - \delta(x_1, \dots, x_n)$$

It is natural to request a decision rule δ such that $1 - \delta(x_1, \dots, x_n) = \delta(1 - x_1, \dots, 1 - x_n)$, which is a decision rule invariant under transformation. For example, $\delta(\mathbf{x}) = 1/n \sum_{i=1}^{n} x_i$ is invariant.

Recall: a **Group** $\mathcal{G} = \{g : g \in \mathcal{G}\}$ is a class of transformation s.t.

- 1. $\forall g_1, g_2 \in \mathcal{G}, g_1 \circ g_2 \in \mathcal{G}$
- 2. $\forall g \in \mathcal{G}, g^{-1} \in \mathcal{G} \text{ and } g \circ g^{-1} = g^{-1} \circ g = I$

note: Location transformation is a group.

4.1 Location invariant

Location family: is invariant under location transformations

Definition 1. $\mathcal{P} = \{f(x,\theta); \theta \in \Theta\}$ is location invariant if $f(x^*; theta^*) = f(x; theta)$, where $x^* = x + c, \theta^* = \theta + c, \forall c \in \mathbb{R}$. c is location shift. $(f(\boldsymbol{x},\theta) = f(\boldsymbol{x} - \theta))$

Examples:

$$1.\mathcal{P} = \{N(\mu, \sigma^2): \mu \in \mathbb{R}, \sigma^2 \text{ is known}\}$$

$$2.\mathcal{P} = \{ E(\mu, \theta) : \mu \in \mathbb{R}, \theta \text{ is known} \}$$

2. Loss function $L(\theta, a)$ is location invariant if $L(\theta^*, a^*) = L(\theta, a)$, where $\theta^* = \theta + c$, $a^* = a + c$, $\forall c \in \mathbb{R}$. $(L(\theta, a) = L(\theta - a))$

Examples:

$$1.L(\theta, a) = (g(\theta) - a)^2$$
 when $g(\theta) = \theta$

2.(counter example) for motivating example, define $L(p,\delta) = \frac{(\delta-p)^2}{p(1-p)}$, then $L(p,\delta)$ is invariant under transformation $1-\delta, 1-p$, but not location invariant.

- 3. Estimation problem: $\hat{g}(\theta)$ is location invariant if the distribution family and loss functions are both location invariant.
- 4. An estimator δ is location invariant if $\delta(x^*) = \delta(x+c) = \delta(x) + c, \forall c \in \mathbb{R}$

MRIE minimum risk invariant estimator.

4.2 Properties of location invariant estimators

Theorem 4.1. The bias, variance and risk of location invariance estimators are constant. (independent of θ)

proof of bias is constant. The location invariant family has p.d.f. $f(\mathbf{x}, \theta) = f(\mathbf{x} - \theta) = f(x_1 - \theta, \dots, x_n - \theta)$

$$bias = E(\delta(\boldsymbol{x})) - \theta = \int \delta(\boldsymbol{x}) f(\boldsymbol{x} - \theta) dx - \theta$$

$$= \int_{\mathbb{R}^n} \delta(x_1, \dots, x_n) f(x_1 - \theta, \dots, x_n - \theta) dx_1 \dots dx_n - \theta$$

$$= \int_{\mathbb{R}^n} \delta(s_1 + \theta, \dots, s_n + \theta) f(s_1, \dots, s_n) ds_1 \dots ds_n - \theta$$

$$= \int_{\mathbb{R}^n} [\delta(s_1, \dots, s_n) + \theta] f(s_1, \dots, s_n) ds_1 \dots ds_n - \theta$$

$$= \int_{\mathbb{R}^n} [\delta(s_1, \dots, s_n)] f(s_1, \dots, s_n) ds_1 \dots ds_n$$
(1)

Bias of δ is independent of θ , thus it is a constant.

To find MRIE, we only need to compare the constant risks and find the δ^* which has the smallest constant risk.

Lemma 4.2. Let δ_0 be a given location invariant estimator. Then any location invariant estimator δ satisfies

$$\delta(x) = \delta_0(x) + u(x)$$

where $u(x+c) = u(x), \forall c \in \mathbb{R}, \forall x \in \mathbb{R}^n$

Proof. 1. $\delta_0(x) + u(x)$ is location invariant since $\delta_0(x) + u(x+c) = \delta_0(x) + c + u(x)$

2. Let $\delta(x)$ be any location invariant. Set $u(x) = \delta(x) - \delta_0(x)$, then

$$u(x+c) = \delta(x+c) - \delta_0(x+c) = \delta(x) + c - \delta_0(x) - c = u(x)$$

$$u(x+c) = u(x), u(x_1+c, \dots, x_n+c) = u(x_1, \dots, x_n), \forall c \in \mathbb{R} \text{ set } c = -x_n, \text{ then}$$

$$u(x_1-x_n, x_2-x_n, \dots, x_{n-1}-x_n, 0) = u(x_1, \dots, x_n)$$

So u is a function in \mathbb{R}^{n-1} and is a function of ancillary statistic $x_1-x_n, x_2-x_n, \cdots, x_{n-1}-x_n$

Theorem 4.3. Let δ_0 be a location invariant estimator. Let $d_i = x_i - x_n$, $i = 1, \dots, n-1$, and $d = (d_i, \dots, d_n)$. Then a necessary and sufficient condition for δ is also location invariant is that \exists a function u of n-1 arguments for which

$$\delta(x) = \delta_0(x) + u(d), \forall x \in \mathbb{R}$$

Theorem 4.4. Let $D = (x_1 - x_n, \dots, x_{n-1} - x_n)^T$. Suppose \exists a location invariant estimator δ_0 such that δ_0 has a finite risk. Assume $\forall y, \exists$ a $u^*(y)$ which minimizes $E_0[L(\delta_0(x) - u(y))|D = y]$. Then the MRIE exists and is $\delta^*(x) = \delta_0(x) - u^*(y)$.

idea of proof. If a loss function is location invariant, it can be written as $L(\theta, \delta) = L(\theta - \delta)$. Then $R(\delta, \theta) = E(L(\theta, \delta)] = E(L(\theta - \delta)] = E_0[L(\delta)]$, since risk is independent of θ , we can set $\theta = 0$. And from theorem 4.3

$$E_0[L(\delta(x))] = E_0[L(\delta_0(x) - u(y))] = E[E_0[L(\delta_0(x) - u(y))|D = y]]$$

Thus if $u^*(y)$ minimize $E_0[L(\delta_0(x) - u(y))|D = y]$, $\delta^*(x) = \delta_0(x) - u^*(y)$ minimize the risk function $R(\delta, \theta)$

Corollary 4.5. Suppose L is convex and not monotone, then MRIE exists. Furthermore, if L is strictly convex, then MRIE is unique.

Examples:

- 1. If $L(\theta, a) = (\theta a)^2$, then $u^*(y) = E_0[\delta_0(x)|D = y]$
- 2. If $L(\theta, a) = |\theta a|$, then $u^*(y)$ is the conditional median of $\delta_0(x)$ given D.

4.3 Related Reading

- 1. Sh P251-255
- 2. LC Chapter 3.1

Jimin Ding Scribe: Yuchen Han

5 Lecture 5: More on Invariance/Equivariance

5.1 Properties of location invariant estimators

Examples

1. Let $X_1, X_2, ..., X_n$ be i.i.d. from $N(\mu, \sigma^2)$ with an unknown $\mu \in \mathbb{R}$ and a known σ^2 . Consider squared error loss function, $\delta_0(x) = \bar{X}$ is location invariant. By Basu's theorem, $D = (x_1 - x_n, \dots, x_{n-1} - x_n)^T$ and \bar{X} are independent, so

$$u^*(d) = E_0(\bar{X}|x_1 - x_n, x_2 - x_n, \dots, x_{n-1} - x_n) = E_0(\bar{X}) = 0.$$

Furthermore, \bar{X} is MRIE for all convex and even loss functions, since

$$E_0 [L (\delta_0(x) - u(d)) | D = d] = E_0 [L (\delta_0(x) - u(d))] = \int_{\mathbb{R}^n} L (\delta_0(x) - u(d)) f_0(x) dx$$

is minimized if and only if u(d) = 0, since $f_0(x)$ is also even.

2. Let X_1, X_2, \ldots, X_n be i.i.d. from the exponential distribution $E(\mu, 1)$ with an unknown $\mu \in \mathbb{R}$. $\delta_0(x) = X_{(1)}$ is location invariant. By Basu's theorem, $X_{(1)}$ is independent of D. We want to minimize $E_0\left[L\left(X_{(1)} - u(d)\right) | D = d\right] = E_0\left[L\left(X_{(1)} - u(d)\right)\right]$. If consider squared error loss function, then $u^* = E_0(X_{(1)}) = \frac{1}{n}$ since $X_{(1)} \sim E(0, n)$. And the MRIE is $\delta^*(x) = X_{(1)} - \frac{1}{n}$.

If consider absolute loss function, then $u^* = median_0(X_{(1)}) = \frac{\log 2}{n}$ since

$$\frac{1}{2} = F_1(x) = 1 - e^{-nx}$$
, $F_1(x)$ is c.d.f. of $X_{(1)} \sim E(0, n)$.

And the MRIE is $\delta^*(x) = X_{(1)} - \frac{\log 2}{n}$.

Theorem 5.1 (Pitman Estimator). If we have location invariant estimation problem with squared error loss function $L(\theta - a) = (\theta - a)^2$, then

$$\delta^*(x) = \frac{\int_{-\infty}^{\infty} u f(X_1 - u, X_2 - u, \dots, X_n - u) du}{\int_{-\infty}^{\infty} f(X_1 - u, X_2 - u, \dots, X_n - u) du}$$

is the MRIE of θ which is known as the Pitman estimator and is unbiased.

Proof. Consider $\delta_0(x) = X_n$, $u^*(d) = E_0(X_n|D=d)$. Consider 1-1 transformation: $X_1, \ldots, X_n \to Y_1, \ldots, Y_n$, where

$$Y_1 = X_1 - X_n, \dots, Y_{n-1} = X_{n-1} - X_n, Y_n = X_n.$$

$$\begin{split} u^*(d) &= E_0(X_n|D=d) = E_0(Y_n|Y_1=d_1,\ldots,Y_{n-1}=d_{n-1}) \\ &= \int y_n f_{Y_n|Y_1,\ldots,Y_{n-1}} dy_n = \int y_n \frac{f_{Y_1,\ldots,Y_{n-1},Y_n}}{f_{Y_1,\ldots,Y_{n-1}}} dy_n \\ &= \int y_n \frac{f(y_1+y_n,\ldots,y_{n-1}+y_n,y_n)}{\int f(y_1+y_n,\ldots,y_{n-1}+y_n,y_n) dy_n} dy_n \\ &= \frac{\int y_n f(y_1+y_n,\ldots,y_{n-1}+y_n,y_n) dy_n}{\int f(y_1+y_n,\ldots,y_{n-1}+y_n,y_n) dy_n}, \quad \text{let } y_n = x_n - u \\ &= \frac{\int (x_n-u)f(y_1+x_n-u,\ldots,y_{n-1}+x_n-u,x_n-u)d(-u)}{\int f(y_1+x_n-u,\ldots,y_{n-1}+x_n-u,x_n-u)d(-u)}, \quad \text{let } y_i = x_i-x_n, y_n = x_n \\ &= \frac{\int (x_n-u)f(x_1-x_n+x_n-u,\ldots,x_{n-1}-x_n+x_n-u,x_n-u)d(-u)}{\int f(x_1-x_n+x_n-u,\ldots,x_{n-1}-x_n+x_n-u,x_n-u)d(-u)} \\ &= \frac{\int (x_n-u)f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du} - \frac{\int uf(x_1-u,\ldots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du} \\ &= \frac{x_n\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du} - \frac{\int uf(x_1-u,\ldots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du} \\ &= x_n-\frac{\int uf(x_1-u,\ldots,x_{n-1}-u,x_n-u)du}{\int f(x_1-u,\ldots,x_{n-1}-u,x_n-u)du} \\ &= \delta_0(x)-\delta^*(x) \end{split}$$

Thus

$$\delta^*(x) = \frac{\int u f(x_1 - u, \dots, x_{n-1} - u, x_n - u) du}{\int f(x_1 - u, \dots, x_{n-1} - u, x_n - u) du}.$$

Let b be the constant bias of δ^* , then $\delta_1(x) = \delta^*(x) - b$ is a location invariant estimator of θ and

$$R(\delta_1, \theta) = E\left[(\delta^*(x) - b - \theta)^2 \right] = Var(\delta^*) \le Var(\delta^*) + b^2 = R(\delta^*, \theta).$$

since δ^* is the MRIE, b = 0, then δ^* is unbiased.

Risk-unbiasness: An estimator $\delta(x)$ for $g(\theta)$ is risk-unbiased if

$$E_{\theta}[L(\theta, \delta(x))] \le E_{\theta}[L(\theta', \delta(x))], \quad \forall \theta' \ne \theta.$$

Interpretation: $\delta(x)$ has the smallest risk at θ .

Theorem 5.2. The MRIE of θ (location parameter) in a location invariant estimation problem (or decision problem) is risk-unbiased.

5.2 Other non-convex loss functions

Theorem 5.3. Suppose $0 \le L(t) \le M$ for all values of t and $L(t) \to M$ as $t \to +\infty$, and is risk-unbiased. The density of X is continuous a.e.. Then an MRIE of μ exists.

Scribe: Yuchen Han

Examples: MRIE under 0-1 loss

 $L(\theta, a) = \mathbf{1}(|\theta - a| > k)$ with some known constant k > 0, u^* maximizes $P_0(|X - U| \le k)$. Suppose symmetric f, if it has unique mode, then $u^* = 0$. For example, $N(\mu, \sigma^2)$ with $f(x; \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2(x-\mu)^2}\}$, $\delta_0 = \bar{X}$, $u^* = 0$, $\delta^*(x) = \bar{X}$.

Remarks: an MRIE (comparing with UMVUE)

- 1. When loss function is non-convex, MRIE typically still exists.
- 2. MRIE depends on the loss function even for convex loss function.
- 3. MRIE is often admissible (unlike UMVUE).
- MRIE is often considered in location-scale families.
 (UMVUE is more for exponential families and UMVUE for location families usually does not exist.)

5.3 Related Reading

- 1. Sh P253-255
- 2. LC Chapter 3.1