Занятие № 4. Законы сохранения.

1	Летевшая горизонтально пуля массы m попала, застряв, в тело массы M , которое подвешено на двух одинаковых нитях длины l . В результате нити отклонились на угол \mathcal{G} . Считая $m << M$, найти: а) скорость пули перед попаданием в тело; б) относительную долю первоначальной кинетической энергии, которая перешла в тепло.			
2	Небольшое тело A начинает скользить с высоты h по наклонному желобу, переходящему в полуокружность радиуса $h/2$. Пренебрегая трением, найти скорость тела в наивысшей точке его траектории (после отрыва от желоба).			
3	Небольшое тело A начинает скользить с вершины гладкой сферы радиуса R . Найти угол $\mathcal G$, соответствующий точке отрыва тела от сферы, и скорость тела в момент отрыва.			
4	На гладкой горизонтальной плоскости находится тело массы M и на нем небольшая шайба массы m . Последней сообщили в горизонтальном направлении скорость v. На какую высоту (по сравнению с первоначальным уровнем) поднимется шайба после отрыва от тела M ? Трения нет.			
5	Небольшая шайба массы <i>m</i> без начальной скорости соскальзывает с гладкой горки высоты <i>h</i> и попадает на доску массы <i>M</i> , лежащую у основания горки на гладкой горизонтальной плоскости. Вследствие трения между шайбой и доской шайба тормозится и, начиная с некоторого момента, движется вместе с доской как единое целое. Найти суммарную работу сил трения в этом процессе.			
6	Небольшая шайба А соскальзывает без начальной скорости с вершины гладкой горки высоты H , имеющей горизонтальный трамплин. При какой высоте h трамплина шайба пролетит наибольшее расстояние s ? Чему оно равно?			
7	1.126. Ствол пушки направлен под углом $\mathfrak{d}=45^\circ$ к горизонту. Когда колеса пушки закреплены, скорость снаряда, масса которого в $\eta=50$ раз меньше массы пушки, $\nu_0=180$ м/с. Найти скорость пушки сразу после выстрела, если колеса ее освободить.			

8	1.127. Пушка массы <i>М</i> начинает свободно скользить вниз по гладкой плоскости, составляющей угол α с горизонтом. Когда пушка прошла путь <i>l</i> , произвели выстрел, в результате которого снаряд вылетел с импульсом p в горизонтальном направлении, а пушка остановилась. Пренебрегая массой снаряда, найти продолжительность выстрела.				
9	1.130. Снаряд, выпущенный со скоростью $v_0 = 100$ м/с под углом $\alpha = 45^{\circ}$ к горизонту, разорвался в верхней точке O траектории на два одинаковых осколка. Один осколок упал на землю под точкой O со скоростью $v_1 = 97$ м/с. С какой скоростью упал на землю второй осколок?				
10	1.175. Небольщой шарик на нити движется по окружности в вертикальной плоскости. Найти массу шарика, если максимальное натяжение нити на $\Delta F = 2,35$ Н больше минимального.				
11	1.176. На нити длины <i>l</i> подвешен шарик массы <i>m</i> . С какой наименьшей скоростью надо перемещать точку подвеса в горизонтальном направлении, чтобы шарик стал двигаться по окружности вокруг этой точки? Какова при этом сила натяжения нити в момент, когда она будет проходить горизонтальное положение?				
12	1.177. Небольшой шарик массы $m = 50$ г прикреплен к концу упругой нити, жесткость которой $\kappa = 63$ Н/м. Нить с шариком отвели в горизонтальное положение, не деформируя нити, и осторожно отпустили. Когда нить проходила вертикальное положение, ее длина оказалась $l = 1,5$ м и скорость шарика $\nu = 3,0$ м/с. Найти силу натяжения нити в этом положении.				
13	1.179. На пружинке жесткости к висит вертикальный стержень, состоящий из двух неравных частей. Нижняя часть массы т оторвалась. На какую высоту поднимется оставшаяся часть стержня?				
14	1.180. Гладкая упругая нить длины l и жесткости х подвешена одним концом к точке O . На нижнем конце имеется невесомый упор. Из точки O начала падать небольшая муфта массы m . Найти: а) максимальное растяжение нити: б) убыль механической энергии системы к моменту установления равновесия (из-за сопротивления воздуха).				
15	1.183. В системе (рис. 1.29) масса каждого бруска $m = 0.50$ кг, жесткость пружины $x = 40$ Н/м, коэффициент трения между бруском и плоскостью $k = 0.20$. Массы блока и пружины пренебрежимо малы. Система пришла в движение с нулевой начальной скоростью при недеформированной пружине. Найти максимальную скорость брусков.				

16	1.193. Система состоит из двух одинаковых цилиндриков, каждый массы <i>m</i> , между которыми находится сжатая пружина (рис. 1.35). Цилиндрики связаны нитью, которую в некоторый момент пережигают. При каких значениях Δl — начальном сжатии пружинки — нижний цилиндрик подскочит после пережигания нити?	24	Небольшой шарик подвесили к точке О на легкой нити длины l . Затем шарик отвели в сторону так, что нить отклонилась на угол θ от вертикали, и сообщили ему скорость в горизонтальном направлении перпендикулярно к вертикальной плоскости, в которой расположена нить. Какую начальную скорость надо сообщить шарику, чтобы в процессе движения максимальный угол отклонения нити от вертикали оказался равным $\pi/2$?
17	1.197. На гладкой гори- зонтальной плоскости ле- жит доска AB длины $l=$ $=100$ см, на конце A кото- рой находится небольшая шайба. Масса доски в $\eta=10$ раз больше массы шайбы, коэффициент трения между ними $k=0,15$. Какую начальную	25	По внутренней поверхности конической воронки без трения скользит маленький шарик. В начальный момент шарик находился на высоте h_0 , а скорость его \mathbf{v}_0 была горизонтальна. Найти \mathbf{v}_0 , если известно, что при дальнейшем движении шарик поднимается до высоты h , а затем начинает опускаться. Найти также скорость шарика в наивысшем положении.
18	скорость надо сообщить шайбе в направлении от <i>A</i> к <i>B</i> , чтобы она смогла соскользнуть с доски? 1.204. В результате упругого лобового столкновения частицы 1 массы <i>m</i> ₁ с покоившейся частицей 2 обе частицы разлетелись в противоположных направлениях с одинаковыми скоростями. Найти массу частицы 2. Горизонтальная платформа массой <i>m</i> вращается вокруг вертикальной оси,	26	Тонкий стержень массой m и длиной L подвешен за один конец и может вращаться вокруг горизонтальной оси. К той же оси подвешен на нити длиной l шарик такой же массы m . Шарик отклоняется на некоторый угол и отпускается. При какой длине нити шарик после удара о стержень остановится? Считать удар абсолютно упругим.
19	горизонтальная платформа массои m вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой ω_1 . Человек массой m_0 стоит на краю платформы. С какой частотой ω_2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Какую работу совершит при этом человек? Считать платформу однородным диском, а человека — точечной массой. Горизонтальный диск массой m вращается вокруг вертикальной оси,	27	Тонкий стержень подвешен за конец и может вращаться без трения вокруг горизонтальной оси. К той же оси на нити, длина которой меньше длины стержня, подвешен шарик такой же массы, как и масса стержня. Шарик отводится до горизонтального положения нити и отпускается. После упругого удара оказывается, что шарик остановился. Вычислить, на какой наибольший угол φ отклонится
20	проходящей через центр диска, с частотой ω_1 . На него сверху падает диск такого же диаметра с массой m_0 . Оси дисков совпадают. Найти установившуюся скорость вращения дисков ω_2 . Какую работу совершат при этом силы трения?		стержень. Три одинаковых маленьких шарика, соединенные невесомыми, жесткими спицами равной длины,
21	Однородный стержень длины R и массы m скользит без трения по сферической поверхности радиусом R , оставаясь все время в вертикальной плоскости, проходящей через центр сферы. Найти скорость центра тяжести стержня в тот момент, когда он занимает горизонтальное положение 2, если скольжение началось	28	расположены на гладком горизонтальном столе вдоль одной прямой. В крайний шарик абсолютно упруго ударяется такой же шарик, движущийся по столу со скоростью \mathbf{v}_0 , перпендикулярно оси системы из трех шариков. Определить скорости всех четырех шариков сразу после удара, а также угловую скорость вращения системы.
22	из положения 1 без начальной скорости. Однородный тонкий диск с радиусом R падает плашмя на пол из вертикального положения. Определить линейную скорость его центра в момент удара о пол.	29	Тонкий однородный стержень длины l расположен на гладком горизонтальном столе. В край стержня абсолютно упруго ударяется шарик такой же массы, что и стержень, движущийся по столу со скоростью \mathbf{v}_0 , перпендикулярно стержню.
23	Вертикальный столб, высотой l подпиливается у основания и падает на землю, поворачиваясь вокруг нижнего основания. Определить линейную скорость его верхнего конца в момент удара о землю. Какая точка столба будет в этот момент иметь ту же скорость, какую имело бы тело, падая с той же высоты, как и данная точка?		Определить скорости всех точек стержня и скорость шарика сразу после удара.