

<u>Justificar</u> cada respuesta. La evaluacion se entrega <u>escrita en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. **Preguntas:** () () ()

Ejercicio	1	2	Nota
Puntaje máximo	4	6	10
Puntaje obtenido			

1. Resolver los siguientes triángulos rectángulos. (Calcular los lados, los ángulos y sus razones trigonométricas).

- $a) \ a=30km, \quad b=20km$. Expresar los resultados de los ángulos en el sistema sexagesimal.
- b) a = 5cm, $\cos(\alpha) = \frac{\sqrt{3}}{2}$
- 2. Resolver los siguientes triángulos. El esquema del triangulo es solo para que sepan como los puntos A, B y C se corresponden con los angulos.
 - a) Calcular la altura de un edificio sabiendo que a una cierta distancia la punta del edificio se encuentra a un angulo de 65° respecto del suelo como se muestra la figura, y unos 50m (\overline{AB}) mas lejos, la misma se observa a una inclinación 30° desde el suelo.
 - b) $\hat{a}=30^\circ,\,\overline{ac}=15cm$ y $\overline{ab}=10cm$. Dibujar aproximadamente el triangulo y encontrar el valor de $x=\overline{bc}.$

3. (bonus 1)Extra:

Sabiendo que para un triangulo, el área del mismo se expresa como:

$$Area(ABC) = \frac{1}{2}.\overline{AB}.h$$

donde \overline{AB} es la base del triangulo y h la altura. Obtener a partir de esta relación, que

$$Area(ABC) = \frac{1}{2}.\overline{AB}.\overline{AC}.\sin(\hat{a}).$$

Observar que una relación similar también se cumple para los ángulos \hat{b} y \hat{c} , y que partiendo de este resultado se puede deducir el teorema del seno.

4. (bonus 2)**Extra:** Deducir porque en el caso del triangulo rectángulo siempre resulta que $\cos(\alpha) = \sin(\beta)$ y $\sin(\alpha) = \cos(\beta)$

[&]quot;The avarage human has one breast and one testicle." -Des Machale

<u>Justificar</u> cada respuesta. El trabajo practico se entrega <u>escrito en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. <u>Preguntas:</u> \bigcirc \bigcirc \bigcirc

Ejercicio	1	2	Nota
Puntaje máximo	4	6	10
Puntaje obtenido			

Si se traban con algún ejercicio, pasen al siguiente y vuelvan a intentar mas tarde con el que dejaron.

1. Resolver los siguientes triángulos rectángulos. (Calcular los lados, los ángulos y sus razones trigonométricas).

- a) a = 2cm, b = 1cm. Expresar los resultados de los ángulos en el sistema sexagesimal.
- b) $a=5m, \quad \cos(\alpha)=\frac{\sqrt{2}}{2}.$ Expresar los resultados de los ángulos en Radianes.
- 2. Resolver los siguientes triángulos. El esquema del triangulo es solo para que sepan como los puntos A, B y C se corresponden con los ángulos.
 - a) Dos barcos parten de un puerto con una trayectoria que forma un angulo de 50° si ($\hat{a}=50^{\circ}$). Si al cabo de media hora cada barco recorre 12km y 23km respectivamente ($\overline{AC}=12km$ y $\overline{AB}=23km$). ¿Cual es la distancia entre ellos?.

Dibujar aproximadamente el triangulo y encontrar el valor de $x=\hat{b}.$

- b) $\overline{AB}=10cm, \ \overline{AC}=3cm \ \ y \ \overline{BC}=4cm$. Dibujar aproximada- A mente el triangulo y encontrar el valor de $x=\hat{c}.$
- 3. (bonus 1)Extra:

Sabiendo que para un triangulo, el área del mismo se expresa como:

$$Area(ABC) = \frac{1}{2}.\overline{AB}.h$$

donde \overline{AB} es la base del triangulo y h la altura. Obtener a partir de esta relación, que

$$Area(ABC) = \frac{1}{2}.\overline{AB}.\overline{AC}.\sin(\hat{a}).$$

Observar que una relación similar también se cumple para los ángulos \hat{b} y \hat{c} , y que partiendo de este resultado se puede deducir el teorema del seno.

4. (bonus 2)**Extra:** Deducir porque en el caso del triangulo rectángulo siempre resulta que $\cos(\alpha) = \sin(\beta)$ y $\sin(\alpha) = \cos(\beta)$

[&]quot;The avarage human has one breast and one testicle." -Des Machale

<u>Justificar</u> cada respuesta. El trabajo practico se entrega <u>escrito en tinta</u>. Si se traban con un ejercicio sigan con el siguiente. <u>Preguntas:</u> \bigcirc \bigcirc \bigcirc

Ejercicio	1	2	Nota
Puntaje máximo	4	6	10
Puntaje obtenido			

Si se traban con algún ejercicio, pasen al siguiente y vuelvan a intentar mas tarde con el que dejaron.

1. Resolver los siguientes triángulos rectángulos. (Calcular los lados, los ángulos y sus razones trigonométricas).

$$a)$$
 $a = 3km, b = 4km$

b)
$$a = 5cm$$
, $\sin(\beta) = 0.5$

2. Resolver los siguientes triángulos. El esquema del triangulo es solo para que sepan como los puntos A, B y C se corresponden con los angulos.

C

h

M

- a) $\overline{AB}=8cm, \ \overline{AC}=12cm \ {\rm y} \ \overline{BC}=8cm$. Dibujar aproximadamente el triangulo y encontrar el valor de $x=\hat{c}$.
- b) $\hat{c}=40^\circ,\,\overline{AC}=30cm$ y $\overline{AB}=20cm$. Dibujar aproximadamente el triangulo y encontrar el valor de $x=\hat{b}.$

3. (bonus 1)Extra:

A

Sabiendo que para un triangulo, el área del mismo se expresa como:

donde \overline{AB} es la base del triangulo y h la altura. Obtener a partir de esta relación, que

$$Area(ABC) = \frac{1}{2}.\overline{AB}.\overline{AC}.\sin(\hat{a}).$$

Observar que una relación similar también se cumple para los ángulos \hat{b} y \hat{c} , y que partiendo de este resultado se puede deducir el teorema del seno.

4. (bonus 2)**Extra:** Deducir porque en el caso del triangulo rectángulo siempre resulta que $\cos(\alpha) = \sin(\beta)$ y $\sin(\alpha) = \cos(\beta)$

[&]quot;The avarage human has one breast and one testicle." -Des Machale