



# Simultaneous Process Design and Optimal Utility Selection by gPROMS ModelBuilder

### Ligang Wang, François Maréchal

Industrial Process and Energy Systems Engineering (IPESE) École polytechnique fédérale de Lausanne 20 April, 2016

### Outline

**Motivation and Objective** Mathematical Programming of Multi-period Utility Targeting ☐ Core issues Implementation in gPROMS ModelBuilder **☐** Implementation Overview ☐ Information Collection by gPROMS flowsheeting gIntegration and Utility Model Specification □ Case Study ☐ Perspectives on Process OPTIMIZATION and Optimal Utility Selection **Conclusions, Problems and Coupling with IPESE Research Short Demonstration** 

### **Motivation**



#### **Problem description:**

#### Input:

- Multi-period (steady-state) information on resources, wastes and demands
- ➤ (Partial-load) performance and cost data of processes, utilities and storages

#### **Output:**

Find economically-optimal sizing and operation profile of utilities and storages

### **Motivation**

### Post-combustion Adsorbent-based CO<sub>2</sub> capture

### **Predesign**

adsorbent selection heat/mass integration cost estimation

### Flowsheeting/Unit Design

heat exchanger network unit design auxiliaries selection

### **Dynamic Behavior**

start-up behavior load-shifting response optimal control



To realize
flexible heat/mass integration,
multi-period utility selection, sizing and operation
in gPROMS software

### **Mathematical Formulation of Multi-period Utility Targeting**

#### Mixed-integer linear programming problem (Marechal2003)



t<sub>1</sub>

 $\forall u = 1, \dots$ 

t<sub>1</sub>

### **Core Issues**

#### On solving the mathematical problem:

- Flowsheeting/modeling of processes/utilities
- Heat integration and material integration
  - Temperature/material quality
  - Heat requirement/material flow
  - Data pre-treatment for heat cascade
    - Possibly sorting temperature/quality intervals
    - Integer utilization matrix of hot/cold streams
    - Estimate/correct H-T profiles
  - Non-differentiable nature
    - Difficult to smoothen composite curves

## Common issue for all equation-based modeling software

- Multi-period MILP to close the energy and material balance
  - Nominal process variables/efficiency not changing with the size

### **MILP Implementation?**





### **Implementation Overview**

Key idea: Solve the MILP problem as Post Computation (require no derivative information)



### **Information Collection: Heat Streams**

#### **Estimation of H-T profiles**

A robust way of representing a heat stream:  $[T_{in}, H_{in}, T_{out}, H_{out}, \Delta T_{min}, \alpha]$ 

Three-section representation of streams crossing two-phase zone

*Multi-section representation* of high-pressure and -temperature streams, especially those close to the critical point



### **Information Collection: Connection Types**

#### Heat flow (many): scalar, bi-direction



#### Mass flow (many): scalar, bi-direction



#### Power flow (one): scalar, bi-direction



#### **Utility info**



### **Specification: Black-box Utility Modeling**



### **Specification:** gIntegration



Initializing FO for parsing input array:

gIntegration:: P1, P2, P3, P4, P5, P6

P1--NoPeriod: Number of period in a year

P2--NoHeat: Number of heat streams

P3--NoPower: Number of power streams

P4--NoMass: Number of mass streams

P5--NoUtility: Number of utilities

P6--IdPerid4Pinch: Index of period for heat cascade presentation

-1: No presentation after solving MILP

1--NoPeriod: Present heat cascade of the given period

>NoPeriod: Present heat cascade of the NoPeriod

#### Different objectives implemented:



#### **Multi-period information specification:**



### Case Study: Adsorbent-based CO2 Capture (PSA/TSA/VSA)

### gIntegration Initialization

3 periods; 23 heat streams; 14 power streams; 4 mass streams, 4 utilities, heat cascade for period 3

Utility Considered: Parabolic trough (no variation), boiler fluegas, chiller, lake



### Case Study: Adsorbent-based CO2 Capture (PSA/TSA/VSA)

### **Heat cascade and Utility Selection**











### **Perspective for Process OPTIMIZATION and Utility Selection**



### Conclusions, Problems and Coupling with IPESE Research

#### □ Conclusions

- ✓ Multi-period targeting for optimal utility selection and process design
- ✓ High flexibility in flowsheeting: dynamic and zero-dimension arrays for connection
- ✓ Easy-to-use interface

#### □ Problems

- Can NOT use the original time scale
- Coupling with original LP/MIP solvers (currently Gurobi)
- > NOT very flexible in reporting utility operation
- NOT available to graphically present network design
- Possible further coupling with IPESE research
  - Extend with material cascade
  - Extend with multi-period energy storage management
  - Extend with steam network design
  - Extend for dynamic problems?





# Thank you for your attention!

Contact: ligang.wang@epfl.ch