Big Data Technologies

Chapter 02

Fundamentals of Data Engineering

Data Engineering Lifecycle

Objectives

- Discuss and define data life cycle management
- Discuss and Engineers relationship to the technology stack and its abstractions
- Describe how to organize work as a Data Engineer
- Describe the Data Engineering Life Cycle and its 5 stages
- Define the 6 undercurrents of the Data Engineering Life Cycle
- Discuss a Data Engineers realtionship to business objectives

Outcomes

At the conclusion of this lecture and lab you have reviews the Data engineering lifecycle, examined its undercurrents and examined the how a data engineer and business objects relate to each other.

Review

- List the 5 stages of the Data Engineering lifecycle from Chapter 1?
- List the 4 technologies every data engineer should be familiar with?
- List the 5 business responsibilities of a data engineer
- List the 6 undercurrents to the Data Engineering lifecycle
- Which came first, Relational Database Model or SQL?

Thinking in terms of data

- We want to encourage yuo to move beyond viewing data engineering as a collection of specific technologies
 - Landscape changes too much and too often
 - Hyperscalars (Public Cloud)
 - Startups and VC funded companies
- Move you from a Data Engineer to a Data Lifecycle Engineer
 - Lifecycle turns raw data into a useful end product
 - Key that it is ready to be consumed by Analysts, ML, and so forth

Data Engineering Lifecycle

- Generation
- Storage
- Ingestion
- Transformation
- Serving Data

Data Lifecycle vs Data Engineering Lifecycle

- A subtle distinction
 - Data Engineering Lifecycle is a small subset of the Data lifecycle
- Image form fig 2.2 goes here

Generation: Source Systems

- Where data is generated
 - IoT device
 - Car
 - Point of Sale system
 - Data Warehouse
 - Database
 - RDBMS and NoSQL clusters
 - You viewing a webpage (analytics)

Know thy data

- Wnat to know the characteristics of the data
 - Is it reliable?
 - What kind of errors can happen/do happen?
 - Will it be sequential or out of order?
 - Are there upstream dependencies?
 - Any checks to make sure bad data doesn't come to you?
 - Does the data have a schema?
 - Schema is column data type enforcement
 - Table relations
 - Schema on read data?

Storage

- You need to store data
 - Cloud Native Amazon S3
 - Object storage
 - Hard Disk
- How to control access to this data?
- Just storing or does the storage have any analysis features?
- Schema agnostic?
 - Object storage has no schema
 - Text file has no schema
- Regulatory compliance?

Data Frequency

- Hot data or cold data?
- What will be the retrieval pattern

Ingestion

- Can be most significant bottle neck
 - What if you have petabytes of data to transfer?
 - All work can stop here waiting on this step
- What will be the output destination after ingestion?
 - Is the data from a streaming format?
 - Do I need to convert things?
- Do I need a permanent conversion phase?

Batch vs Streaming

- Streaming allows us to provide data to downstream systems
 - In a continuous real-time fashion
 - Latency to consider
- Batch is ingested at a pre-determined interval
 - Threshold of size or time usually
 - Machine Learning uses batch usually
- Consider flow rate of streaming can downstream handle it?
- How fast do I need to generate data? Millisecond?
- What is my benefit of streaming setup vs batch?

Push vs Pull

- How will you transfer data
 - Push it to the next phase?
 - Have that next phase pull it from you?
 - ETL (Extract)
 - Genearally as a batch

Transformation

- After we have the data ingested we might want to transform it...
 - What is ROI?
 - Is it self-contained?
 - Who provides the Business Rules to tell me what to transform and how

Serving Data

- Data only has value when it is presented for a practical purpose
 - Reports
 - Triggers for other actions
 - Endpoints for other scientists to consume

Serving Data Areas

- Areas such as. . .
 - Analytics
 - Operational or Inventory
 - Business Intelligence
 - Embedded or Customer facing reports and insights
 - Machine Learning (ML)
 - Reverse ETL
 - Feeds cleaned data back into the source input system
 - Push metrics to a third party sales forcasting system
 - Reinjest the results

Major Undercurrents

• figure 2.7

Security

- Principle of least privilege
 - People and policies are biggest security threat
 - Data Security via timing
 - Employees leave or are transferred
 - What happens to their access?

Data Management

- Sounds very corporat...
 - Important body of knowledge
 - Best practices that has been around for decades
 - Data is vital to the company's ability to operate
- Elements such as...
 - Data governanace (accountability and discovery)
 - Data modeling and design
 - Storage
 - Integration
 - Privacy (GDPR)

Data Governance

- "Data governance is, first and foremost, a data management function to ensure the quality, integrity, security, and usability of the data collected by an organization"
- The organization creates rules and policies for managing data
- Discoverabilty
- Metadata
 - Data about data
 - Business metadata
 - Technical metadata
 - Schema
 - Operation metadata
 - Reference metadata
 - Regional codes

Data Accountability

- Who is responsible for maintaining the data?
 - "We all are!"
 - This means that no one is responsible

Data Quality

- "Can I trust the data?"
 - Quote from everyone in the business
 - Is it accurate?
 - Is it complete?
 - Is it timely?

Data Modeling and Design

- Process of converting data into a usable form
 - Need to understand Data Lineage
 - Which system is impacted as data moves?
 - Helps with error tracking and accountability

Data Integration and Interoperability

- Making sure your data works with your tools
 - There is a reason that every system on the planet can export to CSV file
- Increasingly interaction with systems happen via API over HTTP
 - Less manual moving and copying things
 - But still exists out there

Data Lifecycle Management

- Put it all in the cloud!
 - Save money!
- Not so fast, now you have data sovereignty laws
 - GDPR and other protection laws
 - Cloud costs (not cheap!)
- Is there ever a time you can/should destroy data?
 - Outside of committing a crime
 - Is it even legal to do so?

How to Orchestrate all of this

- Perhaps you inherit a data pipeline
 - Perhaps it is well orchestrated
 - What if you have to create your own?
- This is the concept of orchestration
 - Key comptetive advantage if your orchestration pipeline
 - Smooth
 - Fast
 - Reliable
 - Secure

Additional Resources

See page 71 and 72 of chapter two for additional readings

Homework

 \blacksquare Read FDOE chapter 3 and 4

Conclusion

- We defined data engineering and the data lifecycle
- We described our data maturity model
- We described Type A & B engineers
- We described the DEs place in the corporate structure

Questions?

- Any questions?
 - Discord always open