Class Notes: 1/28/15

Review of last class:

- Encompassing idea of stat models:
 - o Takes observation yi into 2 parts: y-hat and ei
 - y-hat is fitted value, ei is the residual
 - Also written as yi = systematic + unpredictable part
- Between group v. Within group distribution: std dev of y-hat v. std dev of ei
- Some variation is predictable, some isn't
- Baseline: offset form or dummy variable

Today:

- Observe data in 2 groups: for example, two groups of clinical trial or 2 colleges within a university
 - o tracking mean response
 - o xi is a dummy/indicator variable
 - takes value of 1 if case i is in group 1
 - takes value of 0 if case i is in group 0
 - o yi = B0 + B1X1 + ei
 - we're almost always interested in the differences—B1 is this difference between group means
 - if xi = 0, yi = B0 + ei
 - group mean is B0
 - if xi = 1, yi = B0 + B1 + ei
 - o B1 therefore the difference we care about
 - xi: dummy variable
 - B0: baseline/intercept
 - B1: slope/coefficient on dummy variable
- What if we have more than 2 groups?
 - o Groups 0, 1 or 2
 - introduce xi1 and xi2
 - if in group 0
 - yi = B0 + ei
 - if in group 1
 - yi = B0 + B1 +ei
 - if in group 2
 - yi = B0 + B2 + ei
 - \circ Baseline offset form: always choosing one group to be 0

SAT R Script

- o mean SAT.Q ~ School), data=ut2000
- o ImI = Im(SAT.Q ~ School, data = ut2000) → baseline offset form

Ordinary Least Squares

- o ex: What's the asking price of a truck on craigslist?
 - o yi = B0 + B1xi + ei
 - ei are the "misses"
 - Legendre's idea
 - choose B0 as intercept and B1 as slope to minimize sum of ei^2
- o Why sum of squares?
 - o don't want negative values
 - o how much does it hurt to miss things?
 - o greater punishment for outliers than just taking absolute values
 - o real reason: Legendre did calculation by hand
 - minimizing: taking derivative and make it equal to 0
 - can't take derivative of absolute value
 - o 2 deeper reasons discovered subsequently:
 - connection between sum of squared errors and normal distribution
 - talked about later in the course
 - variance decomposition
 - sum of squared errors is a very special property
 - sum of squared errors is equivalent to Pythagorean theorem

Pickup Data Set

- o Im function helps fit a straight line to scatterplot
 - gives intercept and slope
 - create model called 'model1'
 - nothing happens in console, but keeps model available to do various things
 - add trend line: plot and use abline function: plot(price ~ miles, data = pickup), abline(model1)
- o 4 stories to emphasize
 - Story 1: Plug-In Prediction
 - ex: want to sell my truck
 - need to decide how much to charge for it

- decide reasonable market price by looking up expected price given by the fitten line
- ex: have 3 cars you want to sell
 - define new variable newx
 - c is a vector
 - y-hat: can plug whole vector into equation instead of individually plugging in
 - y-hat will now give you predicted values
- Story 2: Summarizing the Trend
 - Ex: I drive my truck that has 50,000 miles. What happens if I wait to sell my truck for a year after it accumulates an additional 10,000. What is the corresponding change in y?
 - y-hat = B0 + B1x
 - take the derivative
 - answer: 642 dollars less
- Story 3: Taking the "x"-ness out of y: Statistical adjustment
 - Yi = B0 + B1Xi + ei
 - B1Xi is the systematic part that corresponds to X
 - adjustment process: subtract
 - In the residual plot, the highest point is most overpriced
- Story 4: Quantifying the Reduction in Uncertainty
 - Starting off, we had a certain degree of uncertainty of the price of trucks: How good is the guess? The standard deviation will measure this amount.
 - After we have truck mileage information, we can apply story
 - When you don't know mileage, guess sample mean.
 Use the standard deviation of prices to see how good the guess is.
 - Now we have the straight line model. Look at the residuals from the line to quantify the reduction of uncertainty: 4200 v 5500
 - True Cars makes its money on data analysis
 - data analysis graph tells you: what you'd expect to pay for the car, market average, spread of expected prices.
 - normal distribution that describes residuals from their statistical models

Case Study

- o mrall_mean = mean(mrall ~ state, data=traffic2)
- o vmiles_mean = mean(vmiles ~ state, data=traffic2)
- o plot(mrall_mean ~ vmiles_mean, data=traffic2)
- o fred=Im(mrall_mean ~vmiles_mean, data=traffic2)
- coef(fred)
- o abline(fred)