Задача 40. Да се намери броя на решенията в естествени числа ($\mathbb{N} \cup \{0\}$) на системата:

$$A: \begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 100 \\ x_1 < 10 \\ 10 \le x_2 < 30 \\ x_4 > 20 \\ x_5 < 30 \end{cases}$$

github.com/andy489

Решение:

Първо се освобождаваме от условията $x_i \ge a$. Това става със смяна на променливите:

Първо се освобождаваме от условията
$$x_i \geq a$$
. Това става със
$$\begin{cases} x_1 + (10 + y_2) + x_3 + (21 + y_4) + x_5 = 100 \\ x_1 < 10 \\ 10 \leq 10 + y_2 < 30 \\ 21 + y_4 \geq 21 \\ x_5 < 30 \end{cases}$$

$$\begin{cases} x_1 + y_2 + x_3 + y_4 + x_5 = 100 - 10 - 21 = 69 \end{cases}$$

$$A \equiv A' \equiv \begin{cases} x_1 + y_2 + x_3 + y_4 + x_5 = 100 - 10 - 21 = 69 \\ x_1 < 10 \\ y_2 < 20 \\ x_5 < 30 \end{cases}$$

Нека $\{B\}$ е множеството от решенията на системата $B: |x_1 + y_2 + x_3 + y_4 + x_5 = 69$. Аналогично определяме и:

$$C_1: |x_1 + y_2 + x_3 + y_4 + x_5 = 69 \text{ if } x_1 \ge 10;$$

$$C_2: |x_1 + y_2 + x_3 + y_4 + x_5 = 69 \text{ u } y_2 \ge 20;$$

$$C_3: |x_1 + y_2 + x_3 + y_4 + x_5 = 69 \text{ if } x_5 \ge 30.$$

Тъй като $A=A'=B\backslash (C_1\cup C_2\cup C_3)$ и $C_1,C_2,C_3\subseteq B$, то от принципа на включването и изключването имаме, че: $|A| = |A'| = |B| - |C_1 \cup C_2 \cup C_3| =$

$$= |B| - |C_1| - |C_2| - |C_3| + |C_1 \cap C_2| + |C_2 \cap C_3| + |C_3 \cap C_1| - |C_1 + C_2 + C_3|.$$

$$\text{Ho, } |B| = \binom{5+69-1}{5-1}; \quad |C_1| = \binom{5+(69-10)-1}{5-1}; \quad |C_2| = \binom{5+(69-20)-1}{5-1};$$

$$|C_3| = {5 + (69 - 30) - 1 \choose 5 - 1}; \quad |C_1 \cap C_2| = {5 + (69 - 10 - 20) - 1 \choose 5 - 1}; \quad |C_2 \cap C_3| = {5 + (69 - 20 - 30) - 1 \choose 5 - 1};$$

$$|C_3 \cap C_1| = \binom{5 + (69 - 10 - 30) - 1}{5 - 1}; \quad |C_1 \cap C_2 \cap C_3| = \binom{5 + (69 - 10 - 20 - 30) - 1}{5 - 1}.$$

 $\mid C_{1} \mid$ - чрез смяната (1) $x_{1}=10+z_{1};\;\; \mid C_{2} \mid$ - чрез смяната (2) $y_{2}=20+z_{2}$

 $|C_3|$ - чрез смяната (3) $X_5 = 30 + z_3$; $|C_1 \cap C_2|$ - чрез смените (1) и (2).

 $|\,C_2\cap C_3\,|\,$ - чрез смените (2) и (3); $|\,C_3\cap C_1\,|\,$ - чрез смените (3) и (1);

 $|C_1 \cap C_2 \cap C_3|$ - чрез смените (1), (2) и (3).