

Institute for Operations Research ETH Zurich HG G21-22

Prof. Dr. Rico Zenklusen and Assistants Contact: math.opt@ifor.math.ethz.ch

Fall 2019

Mathematical Optimization – Problem set 13

https://moodle-app2.let.ethz.ch/course/view.php?id=4844

Problem 1: A separation oracle for the perfect matching polytope

We have seen that the perfect matching polytope P of an undirected graph G = (V, E) is given by

$$P = \left\{ x \in \mathbb{R}^E_{\geq 0} \; \left| \begin{array}{cc} x(\delta(v)) = 1 & \forall v \in V \\ x(\delta(S)) \geq 1 & \forall S \subseteq V, \, |S| \text{ odd} \end{array} \right\} \; .$$

In order to optimize over P using the ellipsoid method, we need a separation oracle for P, but separating over the odd-cut constraints $x(\delta(S)) \geq 1$ for odd subsets $S \subseteq V$ is a non-trivial task. A closely related problem is the minimum T-odd cut problem: Given a graph G = (V, E), edge weights $w \colon E \to \mathbb{R}_{\geq 0}$ and a non-empty set $T \subseteq V$ of even cardinality, this problem is to solve

$$\min\{w(\delta(S)) \colon S \subsetneq V, |S \cap T| \text{ odd}\} . \tag{1}$$

A cut $S \subseteq V$ such that $|S \cap T|$ is odd is also called a T-odd cut.

(a) Assume that we can efficiently find a solution to the minimum T-odd cut problem as given in (1). Show that separation over P can be done efficiently.

For solving the minimum T-odd cut problem, we propose the following algorithm.

Algorithm 1. An algorithm for the odd cut problem.

Input: Graph G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, non-empty $T \subseteq V$ with |T| even. **Output:** Solution to the minimum T-odd cut problem on (G, w).

- 1. For all $\{s,t\}\subseteq T$ with $s\neq t$, let $C_{\{s,t\}}\in\arg\min\{w(\delta(C))\colon C\subsetneq V,\, |C\cap\{s,t\}|=1\}\ ,$ and let $C\in\arg\min\{w(\delta(C_{\{s,t\}}))\colon \{s,t\}\subseteq T$ with $s\neq t\}.$
- 2. If $|C \cap T|$ is odd, return C. Else, return a cut in $\arg\min\big\{y(\delta(Q))\colon Q \in \{\mathrm{ALG}({}^G\!/c,w|_{E\backslash E[\overline{C}]},T\setminus C),$ $\mathrm{ALG}({}^G\!/\overline{c},w|_{E\backslash E[\overline{C}]},T\setminus \overline{C})\}\big\}\ .$

Here, we denote $\overline{S} := V \setminus S$. Also recall that for a set $S \subseteq V$, G/S denotes the graph G with the vertex set S contracted. Moreover, we denote the output of Algorithm 1 on input (G, w, T) by ALG(G, w, T).

- (b) Prove that Algorithm 1 is correct, i.e., show that ALG(G, w, T) is an optimal solution of (1).
- (c) Show that there is an implementation of Algorithm 1 with strongly polynomial running time.

Problem 2: Minimum-volume ellipsoid containing rotated half-ball

Recall that an ellipsoid in \mathbb{R}^n is a set of the form

$$E(a, A) = \{x \in \mathbb{R}^n : (x - a)^{\top} A^{-1} (x - a) \le 1\},$$

where $a \in \mathbb{R}^n$ is the center of the ellipsoid and $A \succ 0$ is a positive definite matrix in $\mathbb{R}^{n \times n}$. In particular, E(0,I) is the unit ball. In this problem, we would like to find the minimum-volume ellipsoid containing the half-ball

$$R(c) = \{x \in E(0, I) : c^{\top} x \ge 0\}$$
,

where $c \in \mathbb{R}^n$ is a vector such that $||c||_2 = 1$.

Prove that for $n \geq 2$, the minimum-volume ellipsoid E(a, A) containing R(c) is defined by

$$a = \frac{1}{n+1}c$$
 and $A = \frac{n^2}{n^2 - 1} \left(I_n - \frac{2}{n+1}cc^{\top} \right)$.

Hint: Use the results of Problem 4 from Problem set 12, namely that the minimum-volume ellipsoid $E(\overline{a}, \overline{A})$ containing the half-ball

$$R(e_1) = \{x \in E(0, I) : x_1 \ge 0\}$$

is defined by

$$\overline{a} = \begin{pmatrix} \frac{1}{n+1} & 0 & 0 & \cdots & 0 \end{pmatrix}^{\top} \quad and \quad \overline{A} = \begin{pmatrix} \left(\frac{n}{n+1}\right)^2 & 0 & \cdots & 0 \\ 0 & \frac{n^2}{n^2 - 1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{n^2}{n^2 - 1} \end{pmatrix}.$$

Problem 3: Volume of the standard simplex

For $i \in \{1, ..., n\}$, let $e_i \in \mathbb{R}^n$ denote the i^{th} unit vector in \mathbb{R}^n . The goal of this problem is to compute the volume of the standard simplex $\Delta := \text{conv}(\{0, e_1, e_2, ..., e_n\})$. To this end, define

$$\Delta(\sigma) := \{ x \in \mathbb{R}^n : 0 \le x_{\sigma(1)} \le x_{\sigma(2)} \le \dots \le x_{\sigma(n)} \le 1 \}$$

for every permutation $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$, and let $B = [0, 1]^n$ be the *n*-dimensional hypercube.

- (a) Prove that $\Delta(\sigma)$ is a simplex for every permutation σ .
- (b) Prove that for every $x \in B$, there exists a permutation σ with $x \in \Delta(\sigma)$.
- (c) Prove that $vol(\Delta(\sigma_1) \cap \Delta(\sigma_2)) = 0$ for any two distinct permutations σ_1, σ_2 .
- (d) Prove that $vol(\Delta) = vol(\Delta(\sigma))$ for every permutation σ .
- (e) Combine the previous steps to compute $vol(\Delta)$.