Images

- color depth = bit depth = bits per pixel =
- dithering: putting 2 colors close to give illusion of a 3rd color.
- grayscale img: 8 bpp, black = 0 & white = 255.
- color: 24 bpp, 8 bits for each channel of RGB, & possible alpha channel. $\alpha = 0 \implies$ fully transp., $\alpha = 1 \implies$ fully opaque.

BMP Format

file header						
(size, offset,)						
info header (DIB)						
(width, height,)						
optional color palette						
image data						

File Header

14 bytes

- magic identifier: 2 bytes
- file size : 4 bytes
- 2 reserved places: 2 bytes each
- offset to image data: 4 bytes

Info Header

40 bytes

- header size in bytes: 4 bytes
- width and height: 4 bytes each
- number of color planes: 2 bytes
- number of bits per pixel: 2 bytes
- compression (0 to 3): 4 bytes, 0 = none
- image size in bytes: 4 bytes

Note that the order is $B \to G \to R$, & all bytes are written in reverse order.

Color Palette

- If present, then a pixel is stored in ≤ 1 bytes.
- Each color entry is in RGBA format with 4 bytes.
- If not present, offset = 14 + 40 = 54, else offset = 54 + 4 * nColors.

Arithmetic Operations

Addition

$$I(x, y) = I_1(x, y) + I_2(x, y)$$

OR
 $I(x, y) = I_1(x, y) + C$

Overflow

I(x,y) > max (255)?

- 1. Wrapping: I'(x, y) = I(x, y) (max + 1)
- 2. Saturation: I'(x,y) = max

Subtraction

usage: detect changes between 2 images.

$$I(x, y) = I_1(x, y) - I_2(x, y)$$

OR

 $I(x,y) = I_1(x,y) - C$

Underflow

I(x, y) < 0?

- 1. Wrapping: I'(x, y) = I(x, y) + (max + 1)
- 2. Saturation: I'(x, y) = 0
- 3. Absolute: I'(x, y) = |I(x, y)|

Multiplication

usage: enhance contrast $I(x,y) = I_1(x,y) * I_2(x,y)$

 $I(x,y) = I_1(x,y) * C$

Division

 $I(x,y) = I_1(x,y) \div I_2(x,y)$

$$I(x,y) = I_1(x,y) \div C$$

Blending

$$I(x,y) = I_1(x,y) * C + I_2(x,y) * (1 - C)$$

Logical Operations

NOT, AND/NAND, OR/NOR, XOR/XNOR

Conversion

- 1. Bitwise: convert values to binary base and apply operators bitwise.
- 2. Thresholding: convert each pixel value to 1

bit:
$$I_{new} = \begin{cases} 0, & I > 127, \\ 1, & I \leq 127. \end{cases}$$

Applications

- AND/NAND: intersection bet. 2 images.
- OR/NOR: union bet. 2 images.
- NOT: negative of input image.

Logical NOT

Ways to apply NOT:

- normal boolean NOT.
- gray scale: I'(x,y) = 255 I(x,y). float pixel format: I'(x,y) = -I(x,y), followed by normalization.

Bitshift Operations

usage: fast multiplication and division

- Shift left i bits = $*2^i$ (multiplication)
- Shift right i bits = $\div 2^i$ (division)

Empty Places

- 1. fill with zeros.
- 2. fill with ones.
- 3. fill with bits from other side (rotate).

Geometric Operations

Translation

inhomogeneous

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

homogeneous

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Rotation

- inverse rotation preferred (from dest. to source) to avoid gaps.
- y upwards \implies counterclockwise is +ve, y downwards \implies clockwise is +ve.

Rotate about origin:

inhomogeneous

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

homogeneous

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Rotate about arbitrary pt:

- 1. Translate to origin.
- 2. Rotate about origin.
- 3. Translate back.

Scaling

• inverse scaling preferred (from dest. to source) to avoid gaps.

inhomogeneous

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

homogeneous

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Subsampling (shrink)

- 1. Replacement: replace a group of pixel by a chosen one (upper left).
- 2. Interpolation: mean value of group.

Upsampling (magnify)

- 1. **Replication:** fill group of pixels with same value of original pixel.
- 2. Interpolation: get missing values at boundaries, then interpolate by distance.

Reflection

About x - axis:

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

About y - axis:

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

About a general axis:

- 1. Translate to origin.
- 2. Rotate abt origin to fit on x- or y-axis.
- 3. Reflect about this axis.
- 4. Rotate back.
- 5. Translate back.

Affine Transformation

- 6 degrees of freedom.
- needs 3 pairs of points to estimate.

inhomogeneous

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

homogeneous

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

How to get matrix A from 3 pairs of points?

$$\begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix}$$

$$\begin{bmatrix} a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} y_1' \\ y_2' \\ y_2' \end{bmatrix}$$

$$\begin{bmatrix} a_{31} \\ a_{32} \\ a_{33} \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Homography Transformation

- 8 degrees of freedom.
- needs 4 pairs of points to estimate.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$x' = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}$$
$$y' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

$$x' = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}}$$

How to get matrix H from 4 pairs of points? Let $h_{33} = 1$, M =

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 & -x_2'x_2 & -x_2'y_1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 & -y_2'x_2 & -y_2'y_2 \\ x_3 & y_3 & 1 & 0 & 0 & 0 & -x_3'x_3 & -x_3'y_3 \\ 0 & 0 & 0 & x_3 & y_3 & 1 & -y_3'x_3 & -y_3'y_3 \\ x_4 & y_4 & 1 & 0 & 0 & 0 & -x_4'x_4 & -x_4'y_4 \\ 0 & 0 & 0 & x_4 & y_4 & 1 & -y_4'x_4 & -y_4'y_4 \end{bmatrix}$$

$$M \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ x'_3 \\ y'_3 \\ x'_4 \\ y'_4 \end{bmatrix}$$

Digital Filters

Convolution

For an $n \times m$ kernel K:

$$I(x,y) = \sum_{k=-\frac{m}{2}}^{\frac{m}{2}} \sum_{l=-\frac{n}{2}}^{\frac{n}{2}} I_1(x+k,y+l)K(k,l)$$

Noise

- 1. Salt & pepper noise: the color of a noisy pixel has no relation to surrounding pixels.
- 2. Gaussian noise: each pixel is changed from its original value by a small amount.

Smoothing Filters

Linear Filters

$$LFilter(I_1 + I_2) = LFilter(I_1) + LFilter(I_2)$$

- 1. Uniform (mean) filter
- 2. Triangular filter
- 3. Gaussian filter

Non-linear Filters

- 1. Median filter
- 2. Kuwahara filter

Uniform (Mean) Filter

- replace each pixel with the mean of its neighbourhood.
- all coeffs. in kernel have same weights.
- smoothing effect increases with kernel size.
- filter is always normalized (divide by sum of weights).

Triangular Filter

- similar to mean filter, but weights are diff.
- filter is always normalized (divide by sum of weights).

2	3	2	1		
4	6	4	2	* \frac{1}{81}	5×5 pyramid. kernel
6	9	6	3		
4	6	4	2		
2	3	2	1		
0	1	0	0	* \frac{1}{25}	
2	2	2	0		
2	5	2	1		5×5 cone kernel $(R = 2.5)$
2	2	2	0		
0	1	0	0		
	4 6 4 2 0 2	4 6 9 4 6 2 3 0 1 2 2 2 5	4 6 4 6 9 6 4 6 4 2 3 2 0 1 0 2 2 2 2 2 5 2	4 6 4 2 6 9 6 3 4 6 4 2 2 3 2 1 0 1 0 0 2 2 2 0 2 5 2 1 2 2 2 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Gaussian Filter (Blur)

Gaussian in 1D:

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}$$

Gaussian in 2D:

$$G(x,y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\frac{1}{4} \quad \frac{4}{16} \quad \frac{7}{26} \quad \frac{4}{16} \quad \frac{1}{4}$$

$$\frac{1}{7} \quad \frac{26}{4} \quad \frac{40}{26} \quad \frac{26}{7} \quad \frac{7}{4}$$

$$\frac{1}{4} \quad \frac{1}{16} \quad \frac{1}{26} \quad \frac{1}{16} \quad \frac{4}{4}$$

$$\frac{1}{4} \quad \frac{1}{16} \quad \frac{1}{26} \quad \frac{1}{16} \quad \frac{4}{4}$$

$$\frac{1}{4} \quad \frac{1}{16} \quad \frac{1}{26} \quad \frac{1}{16} \quad \frac{4}{4}$$

$$\frac{1}{4} \quad \frac{1}{16} \quad \frac{1}{26} \quad \frac{1}{16} \quad \frac{4}{4}$$

1 4 7 Median Filter

- reduces noise, but preserves details.
- replace each pixel with the median of its neighbourhood.
- sort values (keep duplicates) and pick the middle one (or average of two middles if even).
- $median(I_1 + I_2) \neq median(I_1) + median(I_2)$.

Kuwahara Filter

• edge-preserving filter, doesn't disturb sharpness and position of edges.

Variance:
$$\sigma^2 = \frac{\sum_{i=1}^{N} (I(x_i) - mean)^2}{N}$$

- 1. Calculate mean and variance of each 3×3 region (upper left, upper right, lower left, & lower right).
- 2. Output value of center pixel = mean value of region of smallest variance.