Article Carpenter et al. (2012) 1	⊢	r 0.46	lower 0.01	upper 0.76	n 19
Carpenter et al. (2012) 2 Carpenter et al. (2012) 3		0.56	0.14	0.81	19 19
Carpenter et al. (2012) 4 Carpenter et al. (2012) 5	-	0.48	0.03	0.77	19 19
Carpenter et al. (2012) 6 Carpenter et al. (2012) 7		0.18	-0.30 0.02	0.59	19 19
Carpenter et al. (2012) 8 Carpenter et al. (2012) 9 Carpenter et al. (2012) 10		0.40 0.45 0.46	-0.07 -0.01 0.01	0.72 0.75 0.76	19 19 19
Carpenter et al. (2012) 11 Carpenter et al. (2012) 11 Carpenter et al. (2012) 12	-	0.46 0.37 0.36	-0.10 -0.11	0.76 0.71 0.70	19 19 19
Carpenter et al. (2012) 13 Carpenter et al. (2012) 14	-	0.13 0.13	-0.34 -0.34	0.55 0.55	19 19
Carpenter et al. (2012) 15 Carpenter et al. (2012) 16		0.01	-0.45 -0.45	0.46 0.46	19 19
Carpenter et al. (2012) 17 Carpenter et al. (2012) 18		0.43 0.52	-0.03 0.09	0.74 0.79	19 19
Carpenter et al. (2012) 19 Carpenter et al. (2012) 20	- = 	0.30 0.30	-0.18 -0.18	0.66 0.66	19 19
Dawson et al. (2009) 1 Dawson et al. (2009) 2	-	0.41 0.08	0.07 -0.43	0.66 0.55	32 16
Dawson et al. (2009) 3 Dawson et al. (2009) 4	 	0.09 0.21	-0.42 -0.32	0.56 0.64	16 16
Dawson et al. (2009) 5 Dawson et al. (2009) 6		0.18 0.21	-0.35 -0.32	0.62 0.64	16 16
Hussey & Barnes–Holmes (2012) 1 Hussey & Barnes–Holmes (2012) 2		0.16	-0.21 -0.22	0.49	30
Hussey & Barnes-Holmes (2012) 3 Hussey & Barnes-Holmes (2012) 4 Hussey & Barnes-Holmes (2012) 5		-0.03 -0.08 0.05	-0.39 -0.43 -0.32	0.33 0.29 0.40	30 30 30
Hussey & Barnes-Holmes (2012) 6 Hussey & Barnes-Holmes (2012) 7		-0.07 0.04	-0.42 -0.32	0.30	30 30
Hussey & Barnes-Holmes (2012) 8 Hussey & Barnes-Holmes (2012) 9		0.15	-0.22 0.03	0.48	30 30
Hussey & Barnes-Holmes (2012) 10 Hussey & Barnes-Holmes (2012) 11		0.16 -0.19	-0.21 -0.52	0.49 0.18	30 30
Hussey & Barnes-Holmes (2012) 12 Hussey & Barnes-Holmes (2012) 13	 	-0.10 0.17	-0.44 -0.20	0.27 0.50	30 30
Hussey & Barnes-Holmes (2012) 14 Hussey & Barnes-Holmes (2012) 15		0.41 0.11	0.06 -0.26	0.67 0.45	30 30
Hussey & Barnes-Holmes (2012) 16 Hussey & Barnes-Holmes (2012) 17		0.29	-0.08 -0.19	0.59	30
Hussey & Barnes-Holmes (2012) 18 Hussey & Barnes-Holmes (2012) 19		-0.06 0.16	-0.41 -0.21	0.31	30
Hussey & Barnes-Holmes (2012) 20 Hussey & Barnes-Holmes (2012) 21 Hussey & Barnes-Holmes (2012) 22		0.16 -0.05 0.08	-0.21 -0.40 -0.29	0.49 0.32 0.43	30 30 30
Hussey & Barnes-Holmes (2012) 23 Hussey & Barnes-Holmes (2012) 24		-0.07 0.25	-0.42 -0.12	0.30 0.56	30 30
Hussey & Barnes-Holmes (2012) 25 Hussey & Barnes-Holmes (2012) 26		0.07 -0.30	-0.30 -0.60	0.42	30 30
Hussey & Barnes-Holmes (2012) 27 Hussey & Barnes-Holmes (2012) 28		-0.08 0.00	-0.43 -0.36	0.29 0.36	30 30
Hussey & Barnes-Holmes (2012) 29 Hussey & Barnes-Holmes (2012) 30		0.05 -0.14	-0.32 -0.48	0.40 0.23	30 30
Nicholson & Barnes-Holmes (2012b) 1 Nicholson & Barnes-Holmes (2012b) 2		-0.09 0.05	-0.46 -0.34	0.31 0.43	26 26
Nicholson & Barnes-Holmes (2012b) 3 Nicholson & Barnes-Holmes (2012b) 4		0.40 0.41	0.01	0.68 0.69	26 26
Nicholson & Barnes–Holmes (2012b) 5 Nicholson & Barnes–Holmes (2012b) 6		0.23	-0.17 0.10	0.57	26 26
Nicholson & Barnes-Holmes (2012b) 7 Nicholson & Barnes-Holmes (2012b) 8 Nicholson & Barnes Holmes (2012b) 0		0.24	-0.16 0.03 0.08	0.57 0.69 0.71	26 26 26
Nicholson & Barnes–Holmes (2012b) 9 Nicholson & Barnes–Holmes (2012b) 10 Nicholson, Dempsey et al. (2014) 1		0.45 0.27 0.43	-0.13 0.08	0.60	26 26 29
Nicholson, Dempsey et al. (2014) 2 Nicholson, Dempsey et al. (2014) 3		0.44	0.09	0.69	29 29
Nicholson, Dempsey et al. (2014) 4 Nicholson, Dempsey et al. (2014) 5		0.14 0.27	-0.24 -0.11	0.48 0.58	29 29
Nicholson, Dempsey et al. (2014) 6 Nicholson, Dempsey et al. (2014) 7	—	0.38 0.23	0.02 -0.15	0.66 0.55	29 29
Nicholson, Dempsey et al. (2014) 8 Nicholson, Dempsey et al. (2014) 9		0.21 0.12	-0.17 -0.26	0.54 0.47	29 29
Nicholson, Dempsey et al. (2014) 10 Nicholson, Dempsey et al. (2014) 11		0.42	0.06	0.68	29 29
Nicholson, Dempsey et al. (2014) 12 Nicholson, Dempsey et al. (2014) 13		0.09	-0.29 -0.10	0.44	29 29
Nicholson, Dempsey et al. (2014) 14 Nicholson, Dempsey et al. (2014) 15 Nicholson, Dempsey et al. (2014) 16		0.08 0.20 0.00	-0.30 -0.18 -0.37	0.43 0.53 0.37	29 29 29
Nicholson, Dempsey et al. (2014) 17 Nicholson, Dempsey et al. (2014) 18		-0.07 0.06	-0.43 -0.31	0.30 0.42	29 29 29
Nicholson, Dempsey et al. (2014) 19 Nicholson, Dempsey et al. (2014) 20	<u> </u>	-0.04 -0.04	-0.40 -0.40	0.33 0.33	29 29
Nicholson, Dempsey et al. (2014) 21 Nicholson, Dempsey et al. (2014) 22		0.21 0.19	-0.17 -0.19	0.54 0.52	29 29
Nicholson, McCourt et al. (2013) 1 Nicholson, McCourt et al. (2013) 2		0.56 0.43	0.23 0.06	0.78 0.70	27 27
Nicholson, McCourt et al. (2013) 3 Nicholson, McCourt et al. (2013) 4		0.18	-0.21 -0.22	0.52	27 27
Nicholson, McCourt et al. (2013) 5 Nicholson, McCourt et al. (2013) 6 Nicholson, McCourt et al. (2013) 7		0.03 -0.01 0.50	-0.35 -0.39 0.15	0.41 0.37 0.74	27 27 27
Nicholson, McCourt et al. (2013) 8 Nicholson, McCourt et al. (2013) 9	-	0.40 0.25	0.02	0.68	27 27
Nicholson, McCourt et al. (2013) 10 Timko et al. (2010; Study 1) 1	├──	0.16 -0.09	-0.23 -0.36	0.51 0.19	27 50
Timko et al. (2010; Study 1) 2 Timko et al. (2010; Study 1) 3	⊢	0.15 0.16	-0.13 -0.12	0.41 0.42	50 50
Timko et al. (2010; Study 1) 4 Timko et al. (2010; Study 1) 5	# 	0.24 0.29	-0.04 0.01	0.49 0.53	50 50
Timko et al. (2010; Study 1) 6 Timko et al. (2010; Study 1) 7		0.20	-0.08 0.01	0.45	50 50
Timko et al. (2010; Study 1) 8 Timko et al. (2010; Study 1) 9 Timko et al. (2010; Study 1) 10		0.32 -0.03 0.11	0.05 -0.31 -0.17	0.55 0.25 0.38	50 50 50
Timko et al. (2010; Study 1) 11 Timko et al. (2010; Study 1) 12		0.11 0.15 0.16	-0.17 -0.13 -0.12	0.41 0.42	50 50
Timko et al. (2010; Study 1) 13 Timko et al. (2010; Study 1) 14	<u> </u>	-0.01 -0.17	-0.29 -0.43	0.27	50 50
Timko et al. (2010; Study 1) 15 Timko et al. (2010; Study 1) 16	-	-0.01 0.15	-0.29 -0.13	0.27 0.41	50 50
Timko et al. (2010; Study 1) 17 Timko et al. (2010; Study 1) 18	- - - - - - - - - - 	0.20 0.02	-0.08 -0.26	0.45 0.30	50 50
Timko et al. (2010; Study 1) 19 Timko et al. (2010; Study 1) 20		0.23 0.10	-0.05 -0.18	0.48 0.37	50 50
Timko et al. (2010; Study 1) 21 Timko et al. (2010; Study 1) 22		0.05	-0.23 -0.46	0.32	50 50
Timko et al. (2010; Study 1) 23 Timko et al. (2010; Study 1) 24 Timko et al. (2010; Study 1) 25		0.16	-0.12 0.17	0.42	50 50
Timko et al. (2010; Study 1) 25 Timko et al. (2010; Study 1) 26 Timko et al. (2010; Study 1) 27		0.08 -0.10 0.14	-0.20 -0.37 -0.14	0.35 0.18 0.40	50 50 50
Timko et al. (2010; Study 1) 28 Timko et al. (2010; Study 1) 29	<u>-</u>	0.10	-0.18 -0.30	0.37	50 50
Timko et al. (2010; Study 1) 30 Timko et al. (2010; Study 1) 31	 	0.17 0.24	-0.11 -0.04	0.43 0.49	50 50
Timko et al. (2010; Study 1) 32 Timko et al. (2010; Study 2) 1	<u>-</u>	0.24 0.12	-0.04 -0.09	0.49 0.32	50 93
Timko et al. (2010; Study 2) 2 Timko et al. (2010; Study 2) 3		0.22	0.02	0.41	93 93
Timko et al. (2010; Study 2) 4 Timko et al. (2010; Study 2) 5		-0.04 0.08	-0.24 -0.13	0.17 0.28	93 93
Timko et al. (2010; Study 2) 6 Timko et al. (2010; Study 2) 7 Timko et al. (2010; Study 2) 8		0.06 -0.02 -0.14	-0.15 -0.22	0.26 0.18	93 93
Timko et al. (2010; Study 2) 8 Timko et al. (2010; Study 2) 9 Timko et al. (2010; Study 2) 10		-0.14 -0.04 0.08	-0.33 -0.24 -0.13	0.07 0.17 0.28	93 93 93
Timko et al. (2010; Study 2) 10 Timko et al. (2010; Study 2) 11 Timko et al. (2010; Study 2) 12				0.28 0.13 0.16	93 93 93
Meta (credibility interval)	•	0.18 0.18	0.10 0.18	0.26 0.18	773 773
Meta (prediction interval)	0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 0.8	0.18	-0.04	0.39	773