Clay V

جامعة الملك سعود

الإِختبَار النهَائِي للمقرر الفصل الثَّاني ١٤٣٠ – ١٤٣١ هـ الزمن ثلَاث سَاعَات

۲٤٤ ريض

قسم الريّاضيّات كلية العلوم

رقم التّحضير	لجَامعيل	الرقم ا.	ألإيىم
	أستّاذ التادة		رقم الشعبة

درجة الجزء الأول

ألدرجة	14	13	12	11	10	9.	8	7	6	5	4	3	2	1	رقم السُّؤَال
,	S	4	3	4	F	4	১	F	で	7	Ļ	ټ	ب	S	رمز الإِجَابة

درجة الحزء الثَّاني

ألجموع	ألشُؤال الرّابع	السُّوَّالِ الثَّالِث	ٱلسُّؤَالِ الثَّانِي	أَلسُّؤَال الْاول	

	ألدرجة النّهَائِية
50	

عدد الورقًات 8

ممنوع إستعمّال الالة الخاسبة

إِستعمل خلف الورقات مع الورقة الإِضَافية كمسودًات من دون نزع الورقة الأَخيرة

اَلْجِزُءُ الْاول [درجتَان لكل سُؤَال] (ضع رمز الإِجَابة الصّحيحة من 1 إِلَى 14 في الجدول المعظى)

(1) إِذَا كَانت
$$A, B$$
 مصفوفتين من نفس الدرجة وكَان $A = A^{-1}$ ، فإن المرجة وكَان A, B

$$A = I \qquad (2) \qquad A = I \qquad (3) \qquad A = A^{-1} \qquad (4) \qquad (5)$$

و كان $A^2=\operatorname{adj} A$ ، و Aا ، و $A^2=\operatorname{adj} A$ ، فإن A=|A|

$$n=4$$
 (2) $n=2$ (7) $n=3$ (1) $n=1$ (1)

$$B = \begin{bmatrix} 1 & a & b \\ -a & 1 & c \\ -b & -c & 1 \end{bmatrix}$$
 فإِن $B = \begin{bmatrix} 1 & a & b \\ A & 1 & c \\ B & C & C \end{bmatrix}$ (3)

. $1 + a^2 + b^2 - c^2$ (s $1 - a^2 - b^2 - c^2$ ($1 + a^2 + b^2 + c^2$ ($1 - a^2 + b^2 + c^2$ ($1 - a^2 + b^2 + c^2$ ($1 - a^2 + b^2 + c^2$)

النظام الثابت α التي تجعل النظام (4)

$$\begin{cases} x & - 2z = -4 \\ -x & + y & + (\alpha + 4)z = 10 \\ x & - \alpha y & - 5z = -10 \end{cases}$$

غير متسق (غير متألف) هي

$$\mathbb{R}\setminus\{1\}$$
 د $\mathbb{R}\setminus\{1\}$ د $\mathbb{R}\setminus\{-3\}$ رأ

 SS_B و SS_B و $S=\{u+v,u-v\}$ و $S=\{u+v,u-v\}$ و $S=\{u,v\}$ و (5) إِذَا كَانت كل من $S=\{u+v,u-v\}$ و S مصفوفة الإِنتقَال من الأَسَاس S إِلَى الأَسَاس S هي

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \ (> \ \ \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \ (\subset \ \ \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \ (\cup \ \ \ \underbrace{\begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}} \ (\begin{matrix} \frac{1}{2} \end{bmatrix} \)$$

فإن ، $v_2=(2,1,3,2)$ ، $v_1=(3,1,1,-2)$ فإن ($\alpha,3,\beta,-2$) فإن ($\alpha,3,\beta,-2$)

.
$$\alpha=6,\ \beta=7$$
 (2) $\alpha=8,\ \beta=5$ (7) $\alpha=5,\ \beta=8$ (9) $\alpha=7,\ \beta=6$ (1)

 $v=(3,4,3)\in\mathbb{R}^3$ وَكَانَ $B=\{(1,1,0),(0,0,1),(0,1,1)\}$ وَكَانَ المجموعة $B=\{(1,1,0),(0,0,1),(0,1,1)\}$ وَيَانَ $B=\{(1,1,0),(0,0,1),(0,1,1)\}$ وَيَانَ $B=\{(1,1,0),(0,0,1),(0,1,1)\}$

$$[0,3,4]^t$$
 (2) $[3,-1,2]^t$ (2) $[-1,2,3]^t$ (4) $[3,2,1]^t$ (5)

مستقلة خطيًا $S = \{(-1,1,\lambda), (1,1,1), (-1,-1,1)\}$ مستقلة خطيًا مستقلة خطيًا في $S = \{(-1,1,\lambda), (1,1,1), (-1,-1,1)\}$ في \mathbb{R}^3 هي

$$(\mathbb{R} \ (3))$$
 $\mathbb{R} \setminus \{-1\}$ ($\mathbb{R} \ (1)$ ($\mathbb{R} \ (-1)$ (\mathbb{R}

يَانِت المجموعة V واخلى $B=\{u_1,u_2,u_3\}$ فإن المجموعة $B=\{u_1,u_2,u_3\}$ فإن إذا كانت المجموعة إلى المجموعة والمحاص

$$||u_1 + u_2 + u_3|| = 3$$
 ($||u_1 + u_2 + u_3||^2 = 3$ ($||u_1 + u_2 + u_3||^2 = 3$ ($||u_1 + u_2 + u_3||^2 = 1$ ($||u_1 + u_2 + u_3||^2 = 1$ ($||u_1 + u_2 + u_3||^2 = 1$

(10) إِذَا كَان $\langle \ , \ \rangle$ ضربًا دَاخليًا علَى فضَاء متجهَات V و كَان $v,v\in V$ فإِن العدد $\langle u,v\rangle v,\langle v,u\rangle u$ يسَاوِي

$$\langle u,v \rangle$$
 د $\langle u,v \rangle^2$ ر $\langle u,v \rangle^3$ رأ

و کَان \mathbb{R}^2 اَسَاسًا لَلْفَضَاء $S' = \{(1,0),(1,1)\}$ ، $S = \{(1,1),(1,-1)\}$ من $S' = \{(1,0),(1,1)\}$ ، $S = \{(1,1),(1,-1)\}$ مَوْثِرًا خطيًا بحيث أَن $S' = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ فإِن $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ تَسَاوِي

$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 (3) $\begin{bmatrix} 6 \\ -6 \end{bmatrix}$ (5) $\begin{bmatrix} -6 \\ 6 \end{bmatrix}$ (9) $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ (1)

T(1,1)=(1,-2) ، T(1,0)=(-4,1) ، أَن T(1,0)=(1,0)=T(1,0) فإن T(1,1)=T(1,0)=T(1,0) فإن T(1,1)=T(1,0)=T(1,0) فإن T(1,0)=T(1,0)=T(1,0)

$$(4x - 5y, -x + 3y)$$
 ($(-4x + 2y, x + 3y)$ ($(-4x + 5y, x - 3y)$) ($(-4x + 5y, x - 3y)$ ($(-4x + 2y, x - 3y)$

(13) مجموعة قيم الثَّابِت α التي تجعل المصفوفة $\begin{bmatrix} 1 & 0 & 0 \\ \alpha & 2 & 1 \\ -1 & 0 & 3 \end{bmatrix}$ قابلة للتحول إلَى الصيغة القطرية هي

.
$$\{0,1\}$$
 (ع $\mathbb{R}\setminus\{0,1\}$ (ج \emptyset (ب \mathbb{R} (أ

$$A^{71} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 نَاوِي A^{71} يَا كَانَت
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 نَاوِي $A^{71} = \begin{bmatrix} 1 & 3^{71} \\ 0 & 3^{71} \end{bmatrix}$ نَاوِي
$$A^{71} = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$
 ن
$$A = \begin{bmatrix} 1 & 3^{71} \\ 0 & 2^{71} \end{bmatrix}$$

أَلْجِزُءُ الثَّانِي في الصفحة التَّالية

```
السُّؤَال الْاول [خمس درجَات]
                                          أً) عين مجموعة قيم الثّابت λ التي تجعل النظّام
                                     \lambda y
                                                   غير متسق (غير متألف)
                            \lambda = 2 عين مجموعة الحل للنظام الوَارد في رأً عندمًا
                (t) . الطوي في الأولى الله طاع طوعتلان ل AX = B
  خلاصة. طن المنظام بيكون عمرمضع لمناوطقطلطالمان2- لم.
-2-1-000 (10) Grand ode ode 1000 00 100 (2 1 2)
                           ميماكن ع+ Al + فان الدخلام الح الي
             · S= { (44, 14, 14)} &
```

الحِزءُ الثَّاني

```
ٱلسُّؤَالِ الثَّانِي [خمس درجَات]
                                                                                                                                                                                                                                                                                                         إذًا كَانَ V فضَاءًا جزيِّيًا من \mathbb{R}^4 مولدًا بالمجموعة
                                                                                                                                                                                                                                                                       ا يلي ((2,2,1,3), (7,5,5,5), (3,2,2,1), (2,1,2,1)) فعين مَا يلي
                                                                                                                                                                                                                                                                                                                                                                                                                                            أَى أَسَاسًا للفضّاء الحِزئي V .
                                                                                                       . u=(6+\beta,1+\beta,-1+\beta,2+\beta)\in V ب قيم \beta التي من أجلهًا يكون
(7,5,5,5) = (2,2,1,3) + (3,2,2,1) + (2,1,2,1) = (2,2,1,3) + (3,2,2,1) + (2,1,2,1) = (2,2,1,2,1) = (2,2,1,2,1) = (2,2,1,2,1) = (2,2,1,2,1) = (2,2,1,2,1) = (2,2,1,2,1) = (2,2,2,1) = (2,2,1,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2,2,2,1) = (2
```

```
اَلسُّؤَالِ الثَّالِثِ [خمس درجَات]
                                                                                                                                                                                                                         T_A: \mathbb{R}^5 \longrightarrow \mathbb{R}^4 افعین T_A: \mathbb{R}^5 \longrightarrow \mathbb{R}^4 افعین A = \begin{bmatrix} 1 & 2 & 1 & 2 & 1 \\ 1 & 2 & 2 & 1 & 2 \\ 1 & 2 & 2 & 1 & 2 \\ 2 & 4 & 3 & 3 & 3 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix}
                                                                                                                                                                                                                                                                  أ) أَسَاسًا لنوَاة T ر ker T ).
                                                                                                                                                                                                                                                     ب) أَسَاسًا لصورة T ( Im T ).
                                                                                                                         ker T= { X=(n1, n2, n3, n4, n5) ∈ R<sup>5</sup>/AX=0} (F

: U=J isb. X ∈ ker T i= t
                                                                                      A X = 0 \iff \begin{cases} x_1 + 2x_2 + x_3 + 2x_4 + x_5 = 0 \\ x_1 + 2x_2 + 2x_3 + x_4 + 2x_5 = 0 \end{cases}
                                                                                                                                                                                     2x_1 + 4x_2 + 3x_3 + 3x_4 + 3x_5 = 0

x_3 - x_4 - x_5 = 0
\begin{cases} n_{1+} 2n_{2} + n_{3} + 2n_{4} + n_{5} = 0 & (12121) & (12121) \\ n_{3} - n_{4} + n_{5} = 0 & (001 - 11) & (12121) \\ -2n_{5} = 0 & (0000 - 2) & (243333) \\ X - (-2n_{2} - 3n_{3}) n_{2}, n_{3}, n_{3}, 0 \end{cases} 
\begin{cases} n_{1+} 2n_{2} + n_{3} + 2n_{4} + n_{5} = 0 \\ 12121 & (12121) \\ 243333 & (0000 - 2) \\ 00000 & (12121) \\ 243333 & (0000 - 2) \\ 12121 & (12121) & (12121) \\ 243333 & (0000 - 2) \\ 12121 & (12121) & (12121) \\ 243333 & (0000 - 2) \\ 12121 & (12121) & (12121) \\ 243333 & (0000 - 2) \\ 12121 & (12121) & (12121) \\ 243333 & (0000 - 2) \\ 12121 & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) & (12121) \\ 243333 & (0000 - 2) & (12121) & (12121) & (12121) & (12121) & (12121) \\ 243333 & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (12121) & (
                  X = x_2(-2,1,0,0,0) + x_3(-3,0,1,1,0)
                    \ker T = \langle (-2,1,0,0,0); (-3,0,1,1,0) \rangle.

\operatorname{Rank} T = 3; \text{ if essent}, \dim \ker T + \operatorname{Rank} T = 5 (L)
                                                                   \begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & -1 & -1 \end{vmatrix} = 6 \neq 0 (ile.)
                                                   Im T = < (1,2,3,1), (2, 1,3,1), (12,3,1)
```

 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ -3 & 0 & -2 \end{bmatrix}$ لتكؤال الزابع [سبع درجَات] لتكن . ± 1 أُثبت أَن القيم الميزة (الذَاتية) المختلفة للمصفوفة A هي ± 1 ب) عين أُسَاسًا لكل فضًاء مميز رذَاتي) مرَافق لكل قيمة مميزة. ج) عين، إِن أَمكن، مصفوفة P لهَا معكوس تحول المصفوفة A إِلَى الصيغة القطرية مع إِيجَاد $P(\lambda) = det(A - \lambda I) = \begin{pmatrix} 2-\lambda & 0 & 1 \\ 0 & 1-\lambda & 0 \\ -3 & 0 & -2-\lambda \end{pmatrix}$ $= \left[\left(2 - \lambda \right) \left(1 - \lambda \right) \left(-2 - \lambda \right) \right] - \left[-3 \left(1 - \lambda \right) \right]$ $= (1-\lambda) [(2-\lambda) (-2-\lambda) + 3] = (1-\lambda) (\lambda^2 - 1).$ $= -(1-\lambda)^2(1+\lambda)$ E_4 _ S. X = (x, y, z) ∈ R3 / (A+ I) X = 0} (1) (A+I)X = 0 = 0 $\begin{pmatrix} 3 & 0.1 \\ 0 & 2 & 0 \\ -3 & 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 9 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $X \in E_{-1}$ i = 1 $(x_i,y_i,y_i) = (x_i,0,-3x_i) = x_i(x_i,0,-3)$ (1) $E_{-1} = \langle (1,0,-3) \rangle$... * الغضاء المعين المقابل العقمة المعين المقابل المعقمة المعين المقابل المعقمة المعين المقابل المعقمة المعين المقابل المعتمة المعين المعتمد المعتم (6) $P = P^{-1}AP$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (0,1,0) & (2,0,-2) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$ $P = \begin{pmatrix} (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \\ (1,0,-1) & (0,1,0) \end{pmatrix}$