MSc Research Practicum

CONFIGURATION MANUAL

Enhancing Leukemia Diagnosis with Synthetic Data and Explainable Deep Learning Architectures

x23373385 Ibrahim Malik MSc Data Analytics Group B

This configuration manual provides all necessary parameters and settings to replicate the experimental setup for the leukemia diagnosis research project.

Table of Contents

1. Environment Requirements	3
Platform Setup	3
Required Libraries	3
Installation Commands	3
2. Dataset Configuration	4
Dataset Source	4
Directory Structure	4
Image Preprocessing	4
Data Augmentation (Training)	4
3. Model Configurations	5
3.1 GAN Architectures	5
DCGAN Configuration	5
WGAN Configuration	5
cGAN Configuration	5
3.2 CNN Architecture	5
3.3 Vision Transformer (ViT)	6
3.4 Hybrid CNN-ViT	6
4. XAI Configuration	7
4.1 Grad-CAM Settings	7
4.2 SHAP Configuration	7
4.3 LIME Settings	7
5. File Organization	8
Code Structure	8
6. Training Configuration	9
Callbacks (All Models)	9
Evaluation Metrics	9
7. Common Issues & Solutions	9
Memory Issues	9
Training Issues	9
GAN Issues	9
Colah Issues	a

1. Environment Requirements

Platform Setup

• Platform: Google Colab Pro (required for enhanced GPU/TPU access)

• Python Version: 3.12

• Storage: Google Drive integration for dataset access

• Hardware: GPU runtime (Tesla T4)

Required Libraries

All libraries use latest available versions:

- TensorFlow/Keras
- NumPy
- OpenCV-Python
- Matplotlib
- Scikit-learn
- SHAP
- LIME
- Scipy

Installation Commands

pip install tensorflow keras numpy opencv-python matplotlib scikit-learn shap lime scipy

2. Dataset Configuration

Dataset Source

- **Primary Source**: The Cancer Imaging Archive (TCIA)
- URL: <u>C_NMC_2019 Dataset: ALL Challenge dataset of ISBI 2019 (C-NMC 2019) -</u>
 The Cancer Imaging Archive (TCIA) Public Access Cancer Imaging Archive Wiki
- Dataset Name: C-NMC (Children's Hospital of Philadelphia)

Directory Structure

/content/drive/MyDrive/leukemia detection project/ - C-NMC/ - training data/ — fold 0/ --- all/ (2397 cancer images) — hem/ (1130 normal images) - fold 1/ (2418 cancer images) — all/ (1163 normal images) - hem/ - fold_2/ — all/ (2457 cancer images) - hem/ (1096 normal images) validation data/ (1219 cancer images) – all/ - hem/ (648 normal images) - Code/ --- GANs/ - CNNs/ - ViTs/ hybrid model integration/ — XAI/

Image Preprocessing

• Target Size: 224×224 pixels

• Normalization: [0,1] scale (divide by 255.0)

• Color Mode: RGB (3 channels)

• **Data Type**: float32

Data Augmentation (Training)

Rotation: ±20 degreesWidth/Height Shift: ±10%

Shear: ±10%Zoom: ±10%

Horizontal Flip: Enabled

• Rescale: 1/255

3. Model Configurations

3.1 GAN Architectures

DCGAN Configuration

- **Training**: 225 epochs, batch_size=32
- Image Normalization: [-1,1] range
- Latent Dimension: 100
- **Generator**: 7 Conv2DTranspose layers (7×7->224×224, tanh output)
- **Discriminator**: 2 convolutional layers (stride=2, sigmoid output)
- Optimizers:
 - Discriminator: Adam(Ir=0.0002, β₁=0.5, clipvalue=1.5)
 - Generator: Adam(Ir=0.0001, β₁=0.5)
- Loss: Binary cross-entropy

WGAN Configuration

- Training: 200 epochs, batch_size=32
- Latent Dimension: 500
- **Training Protocol**: 5 critic iterations per generator update
- Gradient Penalty: λgp=10
- **Generator**: Dense->7×7, then 5 Conv2DTranspose layers (tanh output)
- **Critic**: Identical to DCGAN discriminator (no sigmoid)
- Optimizer: Adam(Ir=0.0001, β₁=0.5) for both networks

cGAN Configuration

- Training: 250 epochs, batch size=32
- Latent Dimension: 500
- Classes: 0=healthy, 1=leukemic
- **Generator**: Dense->7×7, then 5 Conv2DTranspose + concatenated class labels
- **Discriminator**: Receives both image and label inputs
- Optimizers:
 - Generator: Adam(Ir=0.0002, β₁=0.5)
 - Discriminator: Adam(Ir=0.00005, β₁=0.5, clipvalue=1.0)

3.2 CNN Architecture

- Input Shape: (224, 224, 3)
- Architecture:
 - 1. Conv2D(32, 3×3) + ReLU -> MaxPooling2D(2×2)
 - 2. Conv2D(64, 3×3) + ReLU -> MaxPooling2D(2×2)
 - 3. Conv2D(128, 3×3) + ReLU -> MaxPooling2D(2×2)
 - 4. Flatten -> BatchNormalization
 - 5. Dense(128) + ReLU -> Dropout(0.5)
 - 6. Dense(1) + Sigmoid
- Optimizer: Adam(Ir=0.0001)
- **Loss**: Binary cross-entropy
- Training: 50 epochs, batch_size=32

3.3 Vision Transformer (ViT)

• Input Shape: (224, 224, 3)

• **Patch Size**: 16×16 (P=16)

• Number of Patches: 196 (N=(224/16)²)

• Embedding Dimension: 256 (D=256)

• Transformer Layers: 4 (L=4)

• Attention Heads: 4 (h=4)

• **Head Dimension**: 64 (dk=64)

• MLP Hidden Sizes: [512, 256]

• Activation: GELU

• **Optimizer**: Adam(lr=1e-4)

• Loss: Categorical cross-entropy

• Training: 30 epochs, batch_size=32

3.4 Hybrid CNN-ViT

• CNN Branch: 4 conv blocks (filters: 32, 64, 128, 256)

• ViT Branch: Processes CNN feature maps, 16×16 patches -> 9 patches

• **Patch Dimensions**: 65,536 (16×16×256)

• Transformer Blocks: 6 (L=6)

• Fusion Method: Element-wise addition

• Classification Head: [512, 256] hidden units, GELU activation

• **Training**: 50 epochs, batch_size=32, Adam(lr=1e-4)

4. XAI Configuration

4.1 Grad-CAM Settings

- Target Layers:
 - CNN: 'conv2d_2' (last convolutional layer)
 - Hybrid: 'conv2d 3'
- Class Indices: 0=Healthy, 1=Leukemia
- Visualization: Alpha=0.6, Colormap='jet'
- Quality Threshold: heatmap_std > 0.1

4.2 SHAP Configuration

- Explainer Type: Partition Explainer (primary), Deep Explainer (fallback)
- Parameters:
 - num_samples=50 (background images)
 - max_evals=500 (model evaluations)
 - batch size=32
- **Masker**: Inpainting (preferred), blur(1,1) (fallback)

4.3 LIME Settings

- Parameters:
 - num_samples=1000 (perturbed samples)
 - num_features=5 (top superpixels to highlight)
 - positive_only=True
 - hide_rest=False
- **Segmentation**: quickshift(kernel_size=4, max_dist=200, ratio=0.2)

5. File Organization

Code Structure

6. Training Configuration

Callbacks (All Models)

- Early Stopping: monitor='val_loss', patience=5
- Model Checkpoint: save_best_only=True
- ReduceLROnPlateau: factor=0.2, patience=3, min_lr=1e-7

Evaluation Metrics

- Accuracy, Precision, Recall, F1-Score, AUC-ROC
- Sensitivity, Specificity
- FID, SSIM, Inception Score (for GANs)

7. Common Issues & Solutions

Memory Issues

- Symptoms: ResourceExhaustedError, CUDA out of memory
- Solutions: Reduce batch size to 16 or 8, enable GPU memory growth

Training Issues

- Symptoms: Model not converging, NaN values
- **Solutions**: Check learning rates (try 1e-4 or 1e-5), verify data normalization

GAN Issues

- Symptoms: Mode collapse, training instability
- Solutions: Balance G/D training rates, use label smoothing, try WGAN for stability

Colab Issues

- **Symptoms**: Session timeouts, runtime disconnections
- Solutions: Use Google Colab Pro, save checkpoints frequently, remount Drive if needed