Prédire l'humidité troposphérique en fonction de l'aggrégation de la convection et de l'ascendance

Félix Langot

LMD - UVSQ/Paris-Saclay
12 avril 2021

Introduction

- Différentes distributions de l'humidité relative (RH) dans la troposphère, dues à :
 - → l'aggrégation de la convection
 - \rightarrow l'ascendance
- · L'aggrégation fait baisser la RH
- · L'ascendance humidifie la troposphère
- Vérifié avec le CRM SAM, avec lequel on peut calculer la RH réelle d'une parcelle troposphérique sur un domaine de 95x95 km

$$RH_{actual} = \left. \frac{q_{v}}{q_{sat}} \right|_{Z_{parcel} = 5km}$$

avec q_v l'humidité spécifique et q_{sat} l'humidité spécifique de saturation, en g/kg.

1

Introduction

Comment prédire les distributions de RH?

- Pour tenter de prédire les distributions de RH, on utilise le modèle d'advection-condensation (PIERREHUMBERT, BROGNIEZ et ROCA 2007; VALLIS 2017)
 - \rightarrow L'humidité spécifique d'une parcelle q_v reste constante en l'absence de saturation (et donc de condensation)
 - ightarrow On dispose de l'humidité spécifique de saturation q_{sat} en fonction de l'altitude grâce au modèle SAM
 - ightarrow On peut donc prédire la RH de la troposphère à partir de l'altitude de dernière saturation de la parcelle.
- Deux approches essayées jusqu'à présent : statique et dynamique simplifiée

Comment trouver l'altitude de dernière saturation d'une parcelle se situant dans la troposphère?

- Hypothèse statique: L'altitude de dernière saturation d'une parcelle troposphérique correspond à l'altitude du nuage le plus proche au-dessus de la parcelle.
- SAM : rapports de mélange d'eau et de glace (water mixing ratio, ice mixing ratio) q_c, q_i
 - → Détection des nuages
 - Si $q_c + q_i > 10^{-6}$ alors le point de grille est dans un nuage (RISI, MULLER et BLOSSEY 2021)

On peut donc mesurer l'altitude du nuage le plus proche de chaque point de grille à chaque pas de temps des simulations

L'humidité relative prédite RH_p peut ensuite être calculée en fonction de q_{sat} seulement :

$$RH_p = \frac{q_{sat}(z_{clouds})}{q_{sat}(z_{parcel})}$$

où z_{clouds} est l'altitude des nuages les plus proches de la troposphère au-dessus des points de grille à $z_{parcel}=5km$, l'altitude choisie dans la troposphère

On peut comparer la distribution obtenue avec cette méthode à la distribution réelle de la RH

ightarrow La RH ne peut pas être prédite par un modèle statique.

- Approche dynamique :

 On considère le
 mouvement vertical
 d'une parcelle au-dessus
 de la troposphère.
- SAM fournit la vitesse verticale w, depuis laquelle on peut déduire w_{env}, la vitesse en dehors des nuages.

Simulations avec ascendance : vitesse verticale totale dans l'environnement $w_{tot} = w_{env} + w_{LS}$, où w_{LS} est l'ascendance imposée. Vitesse totale des parcelles dans l'environnement :

- On se concentre premièrement sur la simulation de cumulonimbus sans ascendance
- · Le pas de temps est réduit à 30min
- · Le profil de vitesse est le suivant

- On choisit 10 parcelles étant à l'altitude z_{parcel} aux 10 derniers pas de temps.
- On remonte le temps et on trace la trajectoire de la parcelle, gouvernée par w_{μ} .

- La trajectoire est discrétisée pour correspondre aux altitudes du modèle et ainsi permettre d'associer des valeurs q à chaque altitude traversée par la parcelle.
- La trajectoire discrétisée sous-estime systématiquement l'altitude de la parcelle

Bibliographie

PIERREHUMBERT, Raymond T., Hélène BROGNIEZ et Rémy Roca (2007).

« On the Relative Humidity of the Atmosphere ». eng. In :

The Global Circulation of the Atmosphere. Sous la dir. de
Tapio Schneider, Adam H. Sobel et California Institute of
Technology. Princeton: Princeton Univ. Press. ISBN:
978-0-691-12181-9.

RISI, Camille, Caroline MULLER et BLOSSEY (2021). « Rain Evaporation, Snow Melt and Entrainment at the Heart of Water Vapor Isotopic Variations in the Tropical Troposphere, According to Large-Eddy Simulations and a Two-Column Model ». In:

Journal of Advances in Modeling Earth Systems.

VALLIS, Geoffrey K (2017). <u>Atmospheric and Oceanic Fluid Dynamics</u>. en. Second. Cambridge University Press.