Assignment 3

```
Rahul Chowdary Velaga - 120377273
```

```
1 import sqlite3
2 from google.colab import drive
3 drive.mount('/content/gdrive')
4 path = '/content/gdrive/MyDrive/lahman_1871-2022.sqlite'
5 conn = sqlite3.connect(path)
6
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force remount=True).

Part 1:

Problem 1:

```
1 # Import the sqlite3 library
 2 import sqlite3
 3 import pandas as pd
 5 # Set the path to your SQLite database
 6 path = '/content/gdrive/MyDrive/lahman_1871-2022.sqlite'
 8 # Connect to the SQLite database
 9 conn = sqlite3.connect(path)
10
11 # Write the SQL query
12 sql_query = '''
13 SELECT
      t.teamID,
14
15
       t.yearID,
       t.franchID,
16
17
       t.W,
18
      t.G,
19
       s.total_payroll,
20
      t.W * 100.0 / t.G AS winning_percentage
21 FROM
22
       Teams t
23 JOIN
24
       (
25
           SELECT
26
               teamID,
27
               yearID,
28
               SUM(salary) AS total_payroll
29
           FROM
30
               Salaries
           GROUP BY
31
32
               teamID, yearID
33
       ) s
34 ON
35
       t.teamID = s.teamID AND t.yearID = s.yearID
36 WHERE
37
      t.G > 0;
38 '''
39 data = pd.read_sql_query(sql_query, conn)
41
```

	teamID	yearID	franchID	W	G	total_payroll	winning_percentage
0	ATL	1985	ATL	66	162	14807000.0	40.740741
1	BAL	1985	BAL	83	161	11560712.0	51.552795
2	BOS	1985	BOS	81	163	10897560.0	49.693252

Part 2:

Problem 2:

```
1 import matplotlib.pyplot as plt
2 new_data = data[(data['yearID'] >= 1990) & (data['yearID'] <= 2022)]
3 plt.figure(figsize=(12, 6))
4 plt.boxplot([new_data[new_data['yearID'] == year]['total_payroll'] for year in new_data['yearID'].unique()], labels=new_data['yearID'].un
5 plt.xlabel('Year')
6 plt.ylabel('Total Payroll')
7 plt.title('Distribution of Payrolls Across Teams Over Time')
8 plt.show()
9 data</pre>
```


	teamID	yearID	franchID	W	G	total_payroll	winning_percentage
0	ATL	1985	ATL	66	162	14807000.0	40.740741
1	BAL	1985	BAL	83	161	11560712.0	51.552795
2	BOS	1985	BOS	81	163	10897560.0	49.693252
3	CAL	1985	ANA	90	162	14427894.0	55.55556
4	CHA	1985	CHW	85	163	9846178.0	52.147239
913	SLN	2016	STL	86	162	143053500.0	53.086420
914	TBA	2016	TBD	68	162	57097310.0	41.975309
915	TEX	2016	TEX	95	162	176038723.0	58.641975
916	TOR	2016	TOR	89	162	138701700.0	54.938272
917	WAS	2016	WSN	95	162	141652646.0	58.641975

918 rows × 7 columns

Question 1: As the years progressed, the median tends to increase gradually. The change in the width of the inter-quartile range does not increase or decrease linearly and is different for different years.

Also from 2003 we can see outliers above the inter-quartile range which indicates that those players are paid way more than an average player.

Problem 3:

```
1 payroll_median = new_data.groupby('yearID')['total_payroll'].median().reset_index()
2 plt.figure(figsize=(12, 6))
3 plt.plot(payroll_median['yearID'], payroll_median['total_payroll'], marker='o')
4 plt.xlabel('Year')
5 plt.ylabel('Median Payroll')
6 plt.title('Trend in Median Payroll Over Time')
7 plt.grid(True)
8 plt.show()
9 data.head()
```


	teamID	yearID	tranchID	W	G	total_payroll	winning_percentage
0	ATL	1985	ATL	66	162	14807000.0	40.740741
1	BAL	1985	BAL	83	161	11560712.0	51.552795
2	BOS	1985	BOS	81	163	10897560.0	49.693252
3	CAL	1985	ANA	90	162	14427894.0	55.55556
4	CHA	1985	CHW	85	163	9846178.0	52.147239

Problem 4:

```
1 import pandas as pd
 2 import numpy as np
 3 from sklearn.linear_model import LinearRegression
4 import seaborn as sns
 6 data['time_period'] = pd.cut(data['yearID'], bins=5)
 7 labels = data['time_period'].unique()
 8
9 xlabels = []
10
11 for label in labels:
12 xlabels.append('{}-{}'.format(round(label.left), round(label.right)))
13 data['time_period'] = pd.cut(data['yearID'], bins=5, labels=xlabels)
14 labels = data['time_period'].unique()
15
16 mean_winning_percentage = data.groupby('time_period')['winning_percentage'].mean()
17 mean_payroll = data.groupby('time_period')['total_payroll'].mean()
```

```
19 # payroll vs time
20 plt.figure(figsize=(12, 6))
21 sns.scatterplot(x='time_period', y='total_payroll', data=data)
22 plt.title('Individual Team Payroll vs. Time Period')
23 plt.xlabel('Time Period')
24 plt.ylabel('Total Payroll')
25 plt.show()
26
27
28 # payroll and win percentage vs time: regression
29 plt.figure(figsize=(10, 6))
30 plt.scatter(xlabels, list(mean_payroll))
31 plt.scatter(xlabels, list(mean_winning_percentage))
32
34 plt.title('Mean Winning Percentage and Mean Payroll (1990-2022)')
35 plt.xlabel('Time Period')
36 plt.ylabel('Mean Winning Percentage and Mean Payroll')
37 plt.legend(title='Time Period')
38 plt.grid(True)
39
40 x = np.array(range(len(mean_payroll)))
41 # x = mean_winning_percentage
42 y = mean_payroll.values
43 fit = np.polyfit(x, y, deg=1)
44 plt.plot(x, fit[0] * x + fit[1], color='red')
45 plt.show()
47 # win percentage vs payroll
48 plt.figure(figsize=(10, 6))
49 plt.scatter(list(mean_winning_percentage), list(mean_payroll))
50
51 plt.title('Mean Winning Percentage vs. Mean Payroll (1990-2022)')
52 plt.ylabel('Mean Payroll')
53 plt.xlabel('Mean Winning Percentage')
54 plt.legend(title='Time Period')
55 plt.grid(True)
56
57 x = mean_winning_percentage
58 y = mean_payroll.values
59 fit = np.polyfit(x, y, deg=1)
60 plt.plot(x, fit[0] * x + fit[1], color='red')
61 plt.show()
62 data.head()
```


WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that arti

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that arti

Question 2: The mean payroll of each team has increased over the years but the win percentage has remained almost constant.

```
1 teams = data['teamID'].unique()
2 correlation = []
3 for team_id in teams:
4    team_data = data[data['teamID'] == team_id]
5    cor = team_data['winning_percentage'].corr(team_data['total_payroll'])
6    correlation.append([team_id, cor])
7
8    corr = pd.DataFrame(correlation, columns = ['team_id', 'corr'])
9
10 plt.figure(figsize = (15, 8))
11 plt.bar(corr['team_id'], corr['corr'])
12 plt.show()
```


From the above bar plot, the data on the +ve the y axis indicate that the more money the team spent, the more wins they secured. Similarly the data on -ve y axis indicate that the teams spending more money did not result in more wins. MIA, TBA and MIL were particularly good with paying for their wins.

```
1 data['expected_win_pct'] = 50 + 2.5 * data['total_payroll']
2 data['efficiency'] = data['winning_percentage'] - data['expected_win_pct']
3
4 selected_team = ['OAK']
5 selected_team_data = data[data['teamID'].isin(selected_team)]
6
7 plt.figure(figsize=(12, 6))
8 sns.lineplot(x='yearID', y='efficiency', hue='teamID', data=selected_team_data, marker='o')
9
10 plt.xlabel('Year')
11 plt.ylabel('Efficiency')
12 plt.title('Spending Efficiency Over Time for Oakland')
13 plt.legend(title='Team')
14 plt.show()
```


Oakland's spending efficieny decreased non-linearly over the years.

Part 3:

Problem 5:

```
1 data['avg_payroll'] = data.groupby('yearID')['total_payroll'].transform('mean')
2 data['std_payroll'] = data.groupby('yearID')['total_payroll'].transform('std')
3 data['standardized_payroll'] = (data['total_payroll'] - data['avg_payroll']) / data['std_payroll']
4 data.head()
5
```

	teamID	yearID	franchID	W	G	total_payroll	winning_percentage	time_period	ex
0	ATL	1985	ATL	66	162	14807000.0	40.740741	1985-1991	
1	BAL	1985	BAL	83	161	11560712.0	51.552795	1985-1991	
2	BOS	1985	BOS	81	163	10897560.0	49.693252	1985-1991	
3	CAL	1985	ANA	90	162	14427894.0	55.55556	1985-1991	
A	СПУ	1095	CH/W	ΩE	162	09/6179 0	E2 1/1720	1095 1001	•

Problem 6:

```
1 data['time_period'] = pd.cut(data['yearID'], bins=5)
 2 labels = data['time_period'].unique()
 4 xlabels = []
 5
6 for label in labels:
    xlabels.append('{}-{}'.format(round(label.left), round(label.right)))
8 data['time_period'] = pd.cut(data['yearID'], bins=5, labels=xlabels)
9 labels = data['time_period'].unique()
10
11 mean_winning_percentage = data.groupby('time_period')['winning_percentage'].mean()
12 mean_standardized_payroll = data.groupby('time_period')['standardized_payroll'].mean()
13
14
15
16 plt.figure(figsize=(10, 6))
17 plt.scatter(list(mean_winning_percentage), list(mean_standardized_payroll))
18
19 plt.title('Mean Winning Percentage vs. Mean_standardized_payroll (1990-2022)')
20 plt.ylabel('Mean_standardized_payroll')
21 plt.xlabel('Mean Winning Percentage')
22 plt.legend(title='Time Period')
23 plt.grid(True)
25 # x = np.array(range(len(mean_standardized_payroll)))
26 x = mean_winning_percentage
27 y = mean_standardized_payroll.values
28 fit = np.polyfit(x, y, deg=1)
29 plt.plot(x, fit[0] * x + fit[1], color='red')
30 plt.show()
31 data.head()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that arti

	teamID	yearID	franchID	W	G	total_payroll	winning_percentage	time_period	ex
0	ATL	1985	ATL	66	162	14807000.0	40.740741	1985-1991	
1	BAL	1985	BAL	83	161	11560712.0	51.552795	1985-1991	
2	BOS	1985	BOS	81	163	10897560.0	49.693252	1985-1991	
3	CAL	1985	ANA	90	162	14427894.0	55.555556	1985-1991	
4	CHA	1985	CHW	85	163	9846178.0	52.147239	1985-1991	

Question 3: Unlike in problem 4, the standardized payroll has decreased over the years but the win percentage has remained constant.

```
1 teams = data['teamID'].unique()
2 correlation = []
3 for team_id in teams:
4    team_data = data[data['teamID'] == team_id]
5    cor = team_data['winning_percentage'].corr(team_data['standardized_payroll'])
6    correlation.append([team_id, cor])
7
8    corr = pd.DataFrame(correlation, columns = ['team_id', 'corr'])
9
10 plt.figure(figsize = (15, 8))
11 plt.bar(corr['team_id'], corr['corr'])
12 plt.show()
```


Apart from MIA most of the teams have a +ve correlation between money spent and number of wins secured. The teams that are close to the x axis had no effect on wins even when they spent more money.

```
1 data['expected_win_pct'] = 50 + 2.5 * data['standardized_payroll']
2 data['efficiency'] = data['winning_percentage'] - data['expected_win_pct']
3
4 selected_team = ['OAK']
5 selected_team_data = data[data['teamID'].isin(selected_team)]
6
7 plt.figure(figsize=(12, 6))
8 sns.lineplot(x='yearID', y='efficiency', hue='teamID', data=selected_team_data, marker='o')
9
10 plt.xlabel('Year')
11 plt.ylabel('Efficiency')
12 plt.title('Spending Efficiency Over Time for Oakland')
13 plt.legend(title='Team')
14 plt.show()
```

Spending Efficiency Over Time for Oakland

Scatterplot: Winning Percentage vs. Standardized Payroll with Expected Win Percentage Line

Problem 8:

```
1 data['expected_win_pct'] = 50 + 2.5 * data['standardized_payroll']
2 data['efficiency'] = data['winning_percentage'] - data['expected_win_pct']
3
4 selected_teams = ['OAK', 'NYA', 'BOS', 'ATL', 'TBA']
5 selected_teams_data = data[data['teamID'].isin(selected_teams)]
6
7 nlt figure(figsize=(12 6))
```

```
8 sns.lineplot(x='yearID', y='efficiency', hue='teamID', data=selected_teams_data, marker='o')
9
10 plt.xlabel('Year')
11 plt.ylabel('Efficiency')
12 plt.title('Spending Efficiency Over Time for Selected Teams')
13 plt.legend(title='Team')
14 plt.show()
15
```

