PN Junction Circuit

Thursday, February 15, 2024 3:59 I

· A useful circuit to describe this behaviour

• From this model, $I = I_{sc} - I_d = I_{sc} - I_o(e^{q\frac{V_d}{kT}} - I)$ of 25°C (often used as standard).

$$I_{d} = I_{o} \left(e^{38.9V} - 1 \right)$$

· 2 important characteristics of PV cell

Short-circuit current Set V=0, I=Isc

Open-circuit voltage

Set
$$I = 0$$

$$\frac{I_{SC}}{I_0} = e^{\frac{q_1 V_{OC}}{kT}} - 1$$

$$\frac{q_1 V_O}{kT} = I_D \left(\frac{I_{SC}}{I_O} + 1 \right)$$

$$V_{OC} = \frac{kT}{q} I_D \left(\frac{I_{SC}}{I_O} + 1 \right)$$

*Ex. $|50 \text{ cm}^2|$ PV cell with reverse Saturation current $I_o = 10^{-12} \text{A/cm}^2$. In "full sun" ($|\text{kW/m}^2\rangle$), it produces short-circuit current of 40 mA/cm^2 at 25°C . What is Isc., V_{oc} ?

$$\begin{split} & I_{sc} = 0.04 \times 150 = 6 \text{ A} \\ & V_{sc} = \frac{kT}{q} \ln \left(\frac{I_{sc}}{I_{o}} + 1 \right) = 0.0257 \ln \left(\frac{G}{10^{-12} \times 150} + 1 \right) = 0.627 \text{ V} \end{split}$$

What about for half sun?"
$$I_{sc} = 3A$$

$$V_{sc} = 0.610 \text{ V}$$

· More accurate circuit models of PV cell

- · For meaningful output voltage, connect PV cells in Series
- · In reality, there is current that goes to load
- → Add leakinge resistance in parallel
 - · This way, current can pass through the shaded cell

· Updated circuit model

$$I = I_{ss} = I_d - \frac{V}{R_p}$$

- ·typically, in this model Rp is large.
 - 'allows small amount of current to pass

- · Add Rs in series to model contact resistance between cells/wires
- · Updated PV model with Rs

$$I = I_{sc} - I_d$$

$$I = I_{sc} - I(e^{\frac{qN}{kT}} - I)$$

$$V_d = V + Il_s$$

· Updated equivalent circuit model with Rp and Rs

$$I = I_{sc} - I_d - \frac{V_d}{R_\rho}$$

$$= I_{sc} - I_o \left(e^{\frac{qV_d}{kT}} - I \right) - \frac{V_d}{R_\rho}$$

$$V_d = V + IR_s$$

$$I = I_{sc} - I_{o} \left(e^{\frac{q(V+IR_{c})}{kT}} - I \right) - \frac{V+IR_{s}}{R_{\rho}}$$

- > Complicated! No explicit solution for Vor I
- · Maximum Power Point

Important Characteristics: 1) Isc 2) Voc 3) Pmap

Best Commercial Cell: FF = 0.7

Voc + s

Best Commercial Cell: FF = 0.7

· Factors that affect I-V curve

- 1) Solar Irradiance
- 2) Temperature
- 3) Shading

Q What if we just connect a load Ri at the output?

> RL is fixed, but in general (VL, IL) = (Vmpp, Impp)

- don't want to connect PV directly to load
- want a circuit between PV and load
- L. "track" MPP

MPPI Controllers

- · dozens of methods/algorithms
- · e.g. Perturb & Observe
 - · simple, okay for ideal case
 - · oscillate around max power

· e.g. Incremental Conductance Model

