

Networking Refresher

Instructor: Khaled Diab

Rationale

- We previously studied:
 - vulnerabilities at one machine/endpoint

- What if a machine is connected to a "network"
 - What are possible vulnerabilities?

Outline

- Network Architecture
 - Components
 - Functionalities
 - Circuit switching vs. Packet switching
- Network Protocols
 - The need for layering
- Basics of Routing
- Network Security Roadmap

Network Architecture

What is the Internet? "Nuts and bolts" View

- Millions of connected computing devices:
 - hosts = end systems
 - running network apps

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches

What is the Internet? "Nuts and bolts" View

- Internet: "network of networks"
 - Interconnected ISPs
- Protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, 802.11
- Internet standards
 - IETF: Internet Engineering Task Force
 - RFC: Request for comments

What is the Internet? A Service View

- Infrastructure that provides services to applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- Provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet

A Closer Look at Network Structure

Network edge:

- hosts: clients and servers
- servers often in data centers
- Access networks, physical media:
 - wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Host: Sends Packets of Data

Host sending function:

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link *capacity, aka* link bandwidth

Access Networks

Connecting end systems to an edge router

- residential access nets
 - DSL
 - Cable network
- institutional access networks (school, company)
- mobile access networks

Enterprise Access Networks

- Typically used in companies, universities, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- Today, end systems typically connect into Ethernet switch

The Network Core

- Mesh of interconnected routers
- Two approaches:
 - Circuit switching
 - Packet switching

Circuit Switching

Circuit Switching

End-to-end resources allocated to, reserved for "call" between source & destination:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- No sharing: circuit segment idle if not used by call
- Commonly used in traditional telephone networks

Packet Switching

- Packet Switching: Hosts break application-layer messages into packets
 - Forward packets from one router to the next, across links on path from source to destination
 - Each packet is transmitted at full link capacity (no reservation)
- The header of each packet carries necessary information
 - Routers examine the header and make forwarding decisions

Header Payload

Packet Switching: Store-and-forward

- No end-to-end connection is established
 - → entire packet must arrive at router before it can be transmitted on next link (i.e., *store-and-forward*)

As a result, packet switching may result in queuing delay and packet loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

Circuit Switching vs Packet Switching

- Packet switching
 - Good for bursty traffic
 - Resource sharing → more users
 - Simple implementation without call setup
 - No guaranteed bandwidth
 - it may result in congestion (packet delay and loss)

Which one is used in today's Internet?

- Circuit switching
 - Good for constant data rates
 - Guaranteed bandwidth
 - Circuit establishment and maintenance is expensive

- End systems connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
 - So that any two hosts can send packets to each other
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies

• given *millions* of access ISPs, how to connect them together?

Option: connect each access ISP to every other access ISP?

- Option: connect each access ISP to a global transit ISP?
 - Customer and provider ISPs have economic agreement.

• But if one global ISP is viable business, there will be competitors

But if one global ISP is viable business, there will be competitors
 which must be interconnected

• ... and regional networks may arise to connect access nets to ISPS

• ... and content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end

users Content provider network ISP B ISP B regional net access

- at center: small # of well-connected large networks
 - "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

Network Protocols

What is a Protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions
- specific msgs sent
- specific actions taken when msgs received, or other events

Network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

Protocols define:

(1) format, order of msgs sent and received among network entities, and

(2) actions taken on msg transmission, receipt

What is a Protocol?

a human protocol and a computer network protocol:

Protocol Layers

- Networks are complex, with many "components":
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software
- How can we organize this structure?

Organization of air travel

ticket (purchase) ticket (complain)
baggage (check) baggage (claim)
gates (load) gates (unload)
runway takeoff runway landing
airplane routing airplane routing

A series of steps

Layering of airline functionality

- layers: each layer implements a service
 - via its own internal-layer actions
 - relying on services provided by layer below

Why layering?

- explicit structure allows identification, relationship of complex system components
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer service transparent to rest of system
 - e.g., change in gate procedure does not affect rest of system

- Two layering models:
 - TCP/IP protocol suite
 - ISO/OSI reference model

TCP/IP Protocol Suite

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-to-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

HTTP, FTP, ...

TCP, UDP

IP

Ethernet

application

transport

network

link

physical

ISO/OSI Reference Model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- TCP/IP stack "missing" these layers!
 - these services, *if needed,* must be implemented in application

application presentation session transport network link physical

Encapsulation

Network Layer: Internet Protocol (IP)

- IP is a connectionless protocol, and provides no end-to-end control
 - A datagram service
- Each packet is treated separately, so packets can be:
 - received out of order
 - dropped
 - duplicated

Network Layer: Internet Protocol (IP)

Recall Packet switching at the network core.

Transport Layer

- Provides process-to-process communication services
- User Datagram Protocol (UDP)
 - Connectionless protocol
 - No delivery guarantees
 - Low overhead
- Transmission Control Protocol (TCP)
 - Connection-oriented
 - Reliable transmission (but no bandwidth guarantees)
 - More overheads

Basics of Routing

Intra-domain Routing

- Routing within the network
 - No hierarchy is needed
- The connectivity layer in the ISP network
- Examples: Distance-Vector and Link State routing

Distance-Vector Routing

Idea

- At any time, have cost/next hop of best-known path to destination
- $cost = \infty$ when no path known

Initially

Only have entries for directly connected nodes

Initial Table for A		
Dest	Cost	Next Hop
А	0	Α
В	4	В
С	8	_
D	8	_
E	2	E
F	6	F

DV Routing Update

Update(x,y,z)
 d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z
 if d < d(x,y)
 # Found better path
 return d,z # Updated cost / next hop
 else

return d(x,y), nexthop(x,y) # Existing cost / next hop

Link State Protocol

- Every node gets complete copy of graph
 - Every node "floods" network with data about its outgoing links

- Every node computes routes to every other node
 - Using single-source, shortest-path algorithm (Example?)

- Process performed whenever needed
 - When connections die / reappear

LS Flooding

Inter-domain Routing

- "Flat" routing not suited for the Internet
 - Scalability (as the network size increases)
 - Space complexity → Each node cannot be expected to store routes to every destination (or destination network)
 - Convergence times increase
 - Communication → Total message count increases
 - Administrative autonomy
 - Each internetwork may want to run its network independently
 - E.g., hide topology information from competitors
- Solution: Hierarchy via autonomous systems

Today's Internet

- Uses hierarchy of AS's
- Each AS:
 - A set of routers under a single technical administration
 - Use an *interior gateway protocol (IGP)* and common metrics to route packets within the AS
 - Connect to other ASes using gateway routers
 - Use an exterior gateway protocol (EGP) to route packets to other AS's
- IGP: OSPF, RIP
- Today's EGP: BGP version 4

Recall: Security Goals

• CIA

Observation

Lots of things designed for "working" and "internetworking"

Security is missing or left as "out-of-band"

Sources of Network Vulnerabilities

- Protocol-level vulnerabilities
 - Implicit trust assumptions in design

- Implementation vulnerabilities
 - Both on routers and end-hosts

- Incomplete specifications
 - Often left to the programmers

Network Security Roadmap

- Packet sniffing and spoofing
- TCP/IP attacks
- DoS and DDoS
- DNS attacks
- BGP attacks
- Firewalls and IDS
- VPN
- SDN Security