Text Style Transfer & metrics

ВШЭ ФКН, NLP

Формальный **Неформальный** Проза **Неформальный** Проза **Негативный** Стиль определенного автора

Стиль – произвольный атрибут текста. Текст = контекст + стиль

Формальный **—** Неформальный Проза **—** Стихотворение Позитивный **—** Негативный Стиль определенного автора

Стиль – произвольный атрибут текста. Текст = контекст + стиль

Суммаризация: Длинный текст → Короткий **Машинный перевод:** En → Ge

Формальный **—** Неформальный Проза **—** Стихотворение Позитивный **—** Негативный Стиль определенного автора

Нет параллельного корпуса

Стиль – произвольный атрибут текста. Текст = контекст + стиль

Суммаризация: Длинный текст - Короткий

Машинный перевод: En **→→** Ge

Есть параллельный корпус

$$\sum_{i=1}^{I} \log p_{\theta}(y_i|y_{< i}, X) \to \max_{\theta}$$

X – текст на исходном языке

Y – текст на целевом языке

$$\sum_{i=1}^{I} \log p_{\theta}(y_i|y_{< i}, X) \to \max_{\theta}$$

X – текст на исходном языке

Y – текст на целевом языке

Можно ли использовать неразмеченные данные?

Back-Translation:

- 1. Обучить модель на том, что есть.
- 2. Использовать ее для перевода непараллельных данных.
- 3. Доучить модель обратного перевода на том, что получилось.

Back-Translation:

- 1. Обучить модель на том, что есть.
- 2. Использовать ее для перевода непараллельных данных.
- 3. Доучить модель обратного перевода на том, что получилось.

Iterative Back-Translation

На каждом шаге переводим текст в одну сторону, а затем обратно, используя исходный текст в качестве таргета.

Back-Translation:

- 1. Обучить модель на том, что есть.
- 2. Использовать ее для перевода непараллельных данных.
- 3. Доучить модель обратного перевода на том, что получилось.

Iterative Back-Translation

На каждом шаге переводим текст в одну сторону, а затем обратно, используя исходный текст в качестве таргета.

Denoising AutoEncoder

Аугментируем текст и просим модель восстановить его.

Как измерить качество модели?

Ошибка не подходит, потому что:

- Оперирует на уровне токенов, а не текстов
- Может зависит от размера батча и от длины текста
- Недостаточно хорошо коррелирует с человеческими оценками

- Исходный текст
- Сгенерированный перевод
- Эталонный перевод

- Исходный текст
- Сгенерированный перевод
- Эталонный перевод 1
- Эталонный перевод 2
- ...

- Исходный текст
- Сгенерированный перевод
- Эталонный перевод 1
- Эталонный перевод 2
- ...

BLEU, 2002. Все еще лучшая метрика.

BLEU (BiLingual Evaluation Understudy)

Метрика для измерения похожести текста на набор других.

S – машинный текст

 \hat{S} – эталонный текст

BLEU (BiLingual Evaluation Understudy)

Метрика для измерения похожести текста на набор других.

S – машинный текст

 \hat{S} – эталонный текст

Example

Candidate: the the the the the the.

Reference 1: The cat is on the mat.

Reference 2: There is a cat on the mat.

Modified Unigram Precision = 2/7

$$p_n(\hat{S};S)$$
 – precision; доля n-грамм слов в S , которые присутствуют в \hat{S} .

Если эталонных текстов несколько, то проверяется присутствие в каждом тексте.

BLEU (BiLingual Evaluation Understudy)

$$BLEU_w(\hat{S};S) := BP(\hat{S};S) \cdot \exp\Biggl(\sum_{n=1}^\infty w_n \ln p_n(\hat{S};S)\Biggr)$$

w – веса для разных n-грамм. Обычно считают **1,2,3,4-граммы**.

Штраф за краткость (Brevity penalty)

$$BP(\hat{S};S) := e^{-(r/c-1)^+}$$

r – длина эталонного текста, с – сгенерированного

Если модель генерирует короткие тексты, то BLEU уменьшается.

Недостатки BLEU

- BLEU не важен порядок слов и их смысл
- Плохо работает для морфологически богатых языков
- Требует много эталонных текстов
- Много различных имплементаций

Вариации BLEU

- ROUGE F1-мера вместо precision (суммаризация)
- **METEOR** precision + recall, учитывается порядок слов и синонимы (машинный перевод)

BERT-score

Метрика на основе контекстных эмбеддингов языковой модели.

- Использует семантическую информацию
- Для некоторых задач лучше коррелирует с оценками человека

https://arxiv.org/pdf/1904.09675.pdf

Формальный **Неформальный** Проза **Стихотворение** Стиль определенного автора Позитивный **Негативный**

Текст = контекст + стиль

Стилем может быть любая характеристика корпуса текстов.

Формальный **Неформальный** Проза **Стихотворение** Стиль определенного автора Позитивный **Негативный**

Текст = контекст + стиль

Стилем может быть любая характеристика корпуса текстов.

В отличие от NMT тут (почти) не бывает параллельных корпусов.

Style Transfer Datasets

Непараллельные:

- Yelp, Amason тональность
- GYAFC вежливость

Параллельные:

- ParaDetox
- Bibles
- Shakespeare
- GYAFC validation
- Yelp validation

Как мерить качество переноса стиля?

Style Accuracy (точность совпадения стиля)

- Обучить классификатор стиля (часто переобучается)
- Perplexity языковой модели
- Zero-shot LLM (часто работает лучше всего)

Content Preservation (сохранение контента)

- Self-BLEU
- embedding-based metric

Language Fluency (качество текста в целом)

- Perplexity
- Обучить классификатор (RoBERTa, обученная на CoLA)

Стиль vs Контекст

Две метрики противоречат друг другу. Часто модель либо сохраняет контекст, либо меняет стиль.

Self-BLUE очень так себе

Методы для переноса стиля

- Template-based
- Latent space search
- Disentanglement-based
- Unsupervised NMT-like

Template-based

Figure 2: Pipeline model architecture. The selection module marks tokens to substitute, the substitution module retrieves candidates and perform substitution. The objective ranks and scores variations.

$$\operatorname{score}(c, \hat{e}) = \cos(\hat{\mathbf{e}}, \mathbf{c}) - \frac{1}{|E| - 1} \sum_{\bar{e} \in E \setminus \hat{e}} \cos(\bar{\mathbf{e}}, \mathbf{c})$$

$$f(\mathbf{s}, \mathbf{s}', \hat{e}) = \lambda_1 \cdot emo(\mathbf{s}', \hat{e}) + \lambda_2 \cdot sim(\mathbf{s}, \mathbf{s}') + \lambda_3 \cdot flu(\mathbf{s}')$$

Template-based

Template-based

		Т	arg	etS	cor	е	S	our	ceS	cor	e		S	cor	e	
	Marie	0.00	0.11	0.00	0.00	0.00	0.00	-0.22	-0.01	-0.02	0.00	0.00	-0.12	-0.01	-0.02	0.00
	Curie	0.00	0.00	0.00	0.01	0.00	0.00	-0.03	-0.01	-0.00	0.00	0.00	-0.02	-0.01	0.01	0.00
	was	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	-0.00	0.00	0.00	0.00	0.00	0.01
0.00	born	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	-0.00	-0.00	0.00	0.00	0.00	0.02	-0.00
qs	in	0.00	0.00	0.04	0.02	0.07	0.00	0.00	-0.16	-0.01	0.00	0.00	0.00	-0.12	0.00	0.07
word	Poland	0.00	0.09	0.02	0.07	0.01	0.00	-0.19	-0.00	0.00	0.00	0.00	-0.10	0.02	0.07	0.01
		0.00	0.16	0.49	0.06	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.49	0.06	0.02
Source	She	0.00	0.01	0.01	0.01	0.01	0.00	0.00	-0.00	-0.00	-0.00	0.00	0.01	0.01	0.01	0.01
5	died	0.00	0.01	0.01	0.01	0.00	0.00	-0.02	-0.00	-0.00	-0.00	0.00	-0.01	0.00	0.01	0.00
So	in	0.00	0.00	0.50	0.07	0.00	0.00	0.00	-0.39	-0.02	0.00	0.00	0.00	0.11	0.05	0.00
((E)	the	0.00	0.46	0.09	0.00	0.00	0.00	-0.44	-0.02	0.00	0.00	0.00	0.01	0.07	0.00	0.00
	France	0.02	0.10	0.00	0.00	0.00	-0.11	-0.12	0.00	0.00	0.00	-0.09	-0.01	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		0 #d	1 lele	2 ted	3 WOI	4 rds	0 #d	1 lele	2 ted	3 woı	4 rds	0 #d	1 ele	2 ted	3 woı	4 ds

Figure 1: MASKER replaces span ". She" by "and [PAD] [PAD] [PAD]", resulting in the following fused sentence: Marie Curie was born in Poland and died in the France.

Random Sample of Correct MASKER Predictions				
Source so far i 'm not really impressed. Prediction so far i 'm really impressed.				
Source Prediction	either way i would never recommend buying from camping world . either way i would recommend buying from camping world .			
Source Prediction	this is a horrible venue . this is a great venue .			
Source Prediction	this place is a terrible place to live! this place is a great place to live!			
Source Prediction	i 'm not one of the corn people . i 'm one of the corn people .			
Source Prediction	this is easily the worst greek food i 've had in my life . this is easily the best greek food i 've had in my life .			
Source Prediction	the sandwich was not that great . the sandwich was great .			
Source Prediction	its also not a very clean park . its also a very clean park .			

Latent space search

Figure 1: Model architecture.

Figure 1: Overview of our approach.

Figure 1: CrossAlign architecture

Disentanglement is not happening

λ_{adv}	Discriminator Acc (Train)	Post-fit Classifier Acc (Test)
0	89.45%	93.8%
0.001	85.04%	92.6%
0.01	75.47%	91.3%
0.03	61.16%	93.5%
0.1	57.63%	94.5%
1.0	52.75%	86.1%
10	51.89%	85.2%
fastText	-	97.7%

Disentanglement is not happening

λ_{adv}	Discriminator Acc (Train)	Post-fit Classifier Acc (Test)
0	89.45%	93.8%
0.001	85.04%	92.6%
0.01	75.47%	91.3%
0.03	61.16%	93.5%
0.1	57.63%	94.5%
1.0	52.75%	86.1%
10	51.89%	85.2%
fastText	-	97.7%

$$\mathcal{L} = \lambda_{AE} \sum_{(x,y) \sim \mathcal{D}} -\log p_d \Big(x | e(x_c), y \Big) + \lambda_{BT} \sum_{(x,y) \sim \mathcal{D}, \tilde{y} \sim \mathcal{Y}} -\log p_d \Big(x | e\Big(d\big(e(x), \tilde{y} \big) \Big), y \Big)$$