Sample solution HW 1

(2.5 points) Question 1. Construct an NFA for each of the following languages, where $\Sigma = \{a, b\}$.

- (a) The language L_1 that consists of all the words in which b appears at least twice.
- (b) The language L_2 that consists of all the words that starts with bb and ends with ab.
- (c) The language L₃ that consists of all the words that contains aba.
 For example: aba and ababaa are in L, since they contain aba. On the contrary, aaaaa and abbabbabb are not in L, since they do not contain aba.
- (d) The language L_4 that consists of all the words that do *not* contain bb.
- (e) The language L_5 that consists of all the words w such that if w contains bb, then w ends with ab.

Solutions for question 1.

(1.b) a, b b a b b b

(1.e) Define the following two languages.

 $\begin{array}{lcl} K_1 & = & \{w \mid w \text{ does not contain } bb\} \\ K_2 & = & \{w \mid w \text{ contains } bb \text{ and ends with } ab\} \end{array}$

Note that $L_5 = K_1 \cup K_2$, and K_1 is the language in question (1.d). We can construct an NFA for K_2 as follows.

From here, we can easily construct an NFA (with ϵ -move) for the language $K_1 \cup K_2$ as follows.

(2.5 points) Question 2. Construct the regular expression for each of the languages above.

Solutions for question 2. In the following $\Sigma = \{a, b\}$.

- (1.a) $a^*ba^*b\Sigma^*$.
- (1.b) $bb\Sigma^*ab$.
- (1.c) $\Sigma^*aba\Sigma^*$.
- (1.d) $a^*(baa^*)^*(b \cup \emptyset^*)$.

Intuitively, the regex means that every b must be followed by at least one a, unless it is the last one.

(1.e) $e_1 \cup \Sigma^* bb \Sigma^* ab$, where e_1 is the regex in (1.d).

(2 points) Question 3. A string $w \in \{0,1\}^*$ represents an integer in a standard way. For example, the string 000 represents the integer 0, and so do 0 and 000000. The string 00100 and 100 both represent the integer 4.

Construct a DFA for the following language over the alphabet $\{0, 1\}$:

 $L_0 := \{ w \mid w \text{ represents an integer divisible by 3} \}$

Hint: Consider $(2i + j) \mod 3$, for every $i \in \{0, 1, 2\}$ and $j \in \{0, 1\}$.

Solution for question 3. Note that if a word $w \in \{0,1\}^*$ represents an integer N_w , then w0 and w1 represent the integer $2 \cdot N_w$ and $2 \cdot N_w + 1$, respectively.

Now, calculate the following:

$2 \cdot 0 + 0 \equiv 0 \bmod 3$	$2 \cdot 0 + 1 \equiv 1 \bmod 3$
$2 \cdot 1 + 0 \equiv 2 \bmod 3$	$2\cdot 1 + 1 \equiv 0 \bmod 3$
$2 \cdot 2 + 0 \equiv 1 \bmod 3$	$2 \cdot 2 + 1 \equiv 2 \bmod 3$

Then, we can construct a DFA for the language L_0 with three states p_0, p_1, p_2 corresponding to 0, 1, 2, respectively.

In the above, we assume that ϵ represents 0, which is divisible by 3. If you insist that ϵ shouldn't be in L_0 , the following DFA is also acceptable.

Question 4. For a language $L \subseteq \Sigma^*$ (not necessarily regular), we define the equivalence relation \sim_L on Σ^* , where $u \sim_L v$ if for every $w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$.

Equivalently, we can say that $u \sim_L v$, if one of the following holds.

- Both uw and vw are in L.
- Both uw and vw are not in L.
- (a) (1 points) Prove that \sim_L is an equivalence relation.
- (b) (2 points) In the following, let $\#(\sim_L)$ (read: the index of \sim_L) denote the number of equivalence classes of \sim_L .

Prove that L is a regular language if and only if $\#(\sim_L)$ is finite.

Solutions for question 4. We will show that \sim_L is an equivalence relation.

- Reflexive: For every $u \in \Sigma^*$, $u \sim_L u$. It is rather trivial. For every $w \in \Sigma^*$, $uw \in L$ if and only if $uw \in L$, hence, $u \sim_L u$.
- Symmetric: For every u, v ∈ Σ*, if u ~_L v, then v ~_L u.
 This is also rather trivial. Suppose u ~_L v, which means for every w ∈ Σ*, uw ∈ L if and only if vw ∈ L, which is equivalent to vw ∈ L if and only if uw ∈ L. Therefore, v ~_L u.
- Transitive: For every $u, v, x \in \Sigma^*$, if $u \sim_L v$ and $v \sim_L x$, then $u \sim_L x$. Suppose $u \sim_L v$ and $v \sim_L x$. This means:
 - For every $w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$.
 - For every $w \in \Sigma^*$, $vw \in L$ if and only if $xw \in L$.

Thus, for every $w \in \Sigma^*$, $uw \in L$ if and only if $xw \in L$. Therefore, $u \sim_L x$.

Now we show the second part. We start with the "only if" part. Let L be a regular language and A be its DFA.

For a word w, we denote by $\mathcal{A}(w)$ the state of \mathcal{A} after reading w. Or, more formally, if $w = a_1 \cdots a_n$ and $q_0 a_1 q_1 \cdots a_n q_n$ is the run of \mathcal{A} on w, then $\mathcal{A}(w) = q_n$.

We will first prove the following:

Claim 1 For every words u, v, if A(u) = A(v), then $u \sim_L v$.

Proof. Let u and v be such that A(u) = A(v). Let $u = a_1 \cdots a_n$ and $v = b_1 \cdots b_m$.

We have to show that for every $w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$. Let $w = c_1 \cdots c_k$. Consider the run of A on uw:

$$p_0 \ a_1 \ p_1 \ \cdots \ a_n p_n \ c_1 r_1 \ \cdots \ c_k r_k$$

Likewise, consider the run of \mathcal{A} on vw:

$$s_0 \ b_1 \ s_1 \ \cdots \ b_m s_m \ c_1 t_1 \ \cdots \ c_k t_k$$

Here both p_0, s_0 is the initial state of \mathcal{A} . Since $\mathcal{A}(u) = \mathcal{A}(v)$, we have $p_n = s_m$. Furthermore, \mathcal{A} is deterministic. Thus, $r_1 = t_1, \ldots, r_k = t_k$, and therefore,

$$\mathcal{A}(uw) = \mathcal{A}(vw)$$

This completes proof of Claim 1.

Claim 1 immediately implies that $\#(\sim_L) \leq |Q|$, where Q is the set of states of A. Thus, $\#(\sim_L)$ is finite.

Now, we show the "if" direction. Let L be a language over Σ , where \sim_L has finitely many equivalence classes C_1, \ldots, C_m . Without loss of generality, we can assume that $L \neq \emptyset$.

We first prove the following claim.

Claim 2 There is $i_1, \ldots, i_k \subseteq \{1, \ldots, m\}$ such that $L = C_{i_1} \cup \cdots \cup C_{i_k}$. In other words, L is a union of some of the equivalence classes of \sim_L .

Proof. Note that if $w \sim_L v$, then either both of them belong to L, or both of them do not belong to L. Thus, Claim 2 follows immediately.

Now, consider the following DFA $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$.

- $Q = \{p_1, \dots, p_m\}$, i.e., the number of states is precisely the number of equivalence classes in \sim_L .
- q_0 is p_j , where j is such that $\epsilon \in C_j$.
- $F = \{p_{i_1}, \dots, p_{i_k}\}$, where i_1, \dots, i_k are the indices in (5.a).
- $\delta: Q \times \Sigma \to Q$ is defined as follows. For every $p_i \in Q$, for every $a \in \Sigma$, we pick an arbitrary $w \in C_i$, and define $\delta(p_i, a) = p_j$, where $[wa] = C_j$.

Note that δ is a well-defined function, i.e., for every $w_1, w_2 \in C_i$, $[w_1 a] = [w_2 a]$.* In other words, the end result p_j remains the same for whichever w we pick, as long as w is from C_i .

We will show that L(A) = L. Recall that A(w) is the state of A after reading w starting from the initial state. From the construction of A, for every word $w \in \Sigma^*$, if $[w] = C_j$, then $A(w) = p_j$. Now,

$$w \in L$$
 if and only if $w \in C_{i_1} \cup \cdots \cup C_{i_k}$

and hence,

$$w \in C_{i_1} \cup \cdots \cup C_{i_k}$$
 if and only if $A(w)$ is one of p_{i_1}, \ldots, p_{i_k} .

Thus, $w \in L$ if and only if $w \in L(A)$, and hence, L = L(A).

^{*}Here, for $w \in \Sigma^*$, [w] denotes the equivalence class of \sim_L that contains w. See the notation in Lecture 1.