Approximate Blockwise Likelihood Estimation

Champak Beeravolu Reddy

University of Fribourg

August 29, 2019

 Introduction
 Blockwise SFS
 ABLE
 Data & models
 Results
 Wrap up

 ●000
 00000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

We move, and have been moving!

Beeravolu et al.

ABLE

Picturing modern human migration

Introduction

0000

Wrap up

Simplifying a complex demography modelling interacting panmictic units

Demographic inference using genomic data

The two major approaches

- Based on the SFS
 - \rightarrow No modeling of linkage
 - \rightarrow Usually no recombination

- Based on the haplotype structure
 - ightarrow No intra-locus recombination
 - \rightarrow Tracts of IBD/IBS sharing
 - \rightarrow Recombination via the SMC

Aim: Find common ground between the two approaches

Demographic inference using genomic data

The two major approaches

- Based on the SFS
 - \rightarrow No modeling of linkage
 - \rightarrow Usually no recombination

- Based on the haplotype structure
 - \rightarrow No intra-locus recombination
 - \rightarrow Tracts of IBD/IBS sharing
 - \rightarrow Recombination via the SMC

Aim: Find common ground between the two approaches

Demographic inference using genomic data

The two major approaches

- Based on the SFS
 - \rightarrow No modeling of linkage
 - \rightarrow Usually no recombination

- Based on the haplotype structure
 - \rightarrow No intra-locus recombination
 - \rightarrow Tracts of IBD/IBS sharing
 - \rightarrow Recombination via the SMC

Aim: Find common ground between the two approaches

Wrap up

Gene genealogies and polymorphisms

ABLE

The Site Frequency Spectrum (SFS)

- a. SFS
- b. Joint SFS

Statistical identifiability and the SFS

Extending the SFS The Blockwise SFS (bSFS)

$$\mathcal{B}_{SFS} = (n_{\mathcal{B}_1}, n_{\mathcal{B}_2}, n_{\mathcal{B}_3}, n_{\mathcal{B}_4}, n_{\mathcal{B}_5}, n_{\mathcal{B}_6}, n_{\mathcal{B}_7}, \dots) = (1, 1, 3, 1, 2, 1, 1, \dots)$$

An exact analytical method makes use of the Generating Function of branch lengths

A General Method for Calculating Likelihoods Under the Coalescent Process

K. Lohse,* R. J. Harrison,* and N. H. Barton*.*1

*Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom, †East Malling Research, East Malling ME19 6BJ, United Kingdom, and Institute of Science and Technology, A-3400 Klosterneuburg, Austria

Neandertal Admixture in Eurasia Confirmed by **Maximum-Likelihood Analysis of Three Genomes**

Konrad Lohse*.1 and Laurent A. F. Frantz

*Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom, and *Animal Breeding and Genomics Group, Wageningen University, De Elst 1, Wageningen, WD 6708, The Netherlands

Inferring Bottlenecks from Genome-Wide Samples of Short Sequence Blocks

Lynsey Bunnefeld,*,1 Laurent A. F. Frantz,*,2 and Konrad Lohse*

*Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom, and *Animal Breeding and Genomics Centre, Wageningen University, Wageningen 6708 PB, The Netherlands

Lohse et al. 2011. Lohse & Frantz 2014. Bunnefeld et al. 2015

Approximating the bSFS Approximate Blockwise Likelihood Estimation (ABLE)

Felsenstein equation (discretized Chapman-Kolmogorov)

$$\mathcal{L}(\Theta) \propto p(\mathcal{D} \mid \Theta) = \sum_{\mathcal{G}} p(\mathcal{D} \mid \mathcal{G}, \Theta) p(\mathcal{G} \mid \Theta)$$

Sampling genealogies $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_M$ from $p(\mathcal{G} \mid \Theta)$ yields a Monte Carlo estimator of the bSFS likelihood

$$p(\mathcal{B}_{SFS} \mid \Theta) \approx \frac{1}{M} \sum_{i=1}^{M} p(\mathcal{B}_{SFS} \mid \mathcal{G}_i, \Theta)$$

Felsenstein 1988

troduction Blockwise SFS **ABLE** Data & models Results Wrap u₁
000 0000 000 000 000 00

checkABLE

Expected bSFS: approximate vs. analytical

Asymptotic convergence of the bSFS 100, 1K & 100K genealogies

Every point represents a bSFS category

Orangutans: a tale of two islands

Pongo abelii

Wikipedia

Orangutans: a tale of two islands

Introduction

Orangutans: a tale of two islands

doi:10.1038/nature09687

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke¹, LaDeana W. Hillier¹, Wesley C. Warren¹, Kim C. Worley², Lynne V. Nazareth², Donna M. Muzny², Shiaw-Pyng Yang², Zhengyuan Wang¹, Asif T. Chinwalla¹, Pat Minx³, Makedonka Mitreva¹, Lisa Cook¹, Kim D. Delehaunty¹, Catrina Fronick¹, Heather Schmidt¹, Lucinda A. Fulton¹, Robert S. Fulton¹, Joanne O. Nelson¹, Vincent Magrini¹, Craig Pohl¹, Tina A. Graves¹, Chris Markovic¹, Andy Cree², Huyen H. Dinh², Jennifer Hume², Christie L. Kovar², Gerald R. Fowler², Gerton Lunter^{3,4}, Stephen Meader³, Andreas Heger³, Chris P. Ponting³, Tomas Marques-Bonet^{5,6}, Can Alkan¹, Lin Chen⁵, Ze Cheng³, Jeffrey M. Kidd⁵, Evan E. Eichler^{5,7}, Simon White⁸, Stephen Searle⁸, Albert J. Vilella⁹, Vuan Chen⁹, Paul Flicek⁹, Jian Mal¹⁰t, Brian Raney¹⁰, Bernard Suh¹⁰, Richard Burhans¹¹, Javier Herrero⁹, David Haussler¹⁰, Rui Faria^{6,12}, Olga Fernando^{6,13}, Fleur Darré⁶, Domènec Farré⁶, Elodie Gazave⁶, Meritxell Oliva⁶, Arcadi Navarro^{6,14}, Roberta Roberto¹⁵, Ornozo Capozzil⁵, Nicoletta Archidiacono¹⁵, Giuliano Della Valle¹⁶, Stefania Purgato¹⁶, Mariano Rocchi¹⁵, Miriam K. Konkel¹⁷, Jerriyn A. Walker¹⁷, Brygg Ullmer¹⁸, Mark A. Batzer¹⁷, Arian F. A. Smit¹⁹, Robert Hubley¹⁹, Claudio Casola²⁰, Daniel R. Schrider²⁰, Matthew W. Hahn², Vlotor Quesada²¹, Xose S. Puente²¹, Gonzalo R. Ordoñez²¹, Carlos López-Otín²¹, Tomas Vinar²², Brona Brejova²², Aakrosh Ratan¹¹, Robert S. Harris¹¹, Webb Miller¹¹, Carolin Kosiol²³, Heather A. Lawson²⁴, Vikas Taliwal²⁵, André L. Martins²⁵, Adam Siepel²⁵, Arindam RoyChoudhury²⁶, Xim Ma²⁵, Jeremiah Degenhardt²⁵, Carlos D. Bustamante²⁷, Ryan N. Gutenkunst²⁸, Thomas Mailund²⁹, Julien Y. Dutheil²⁹, Asger Hobolth²⁹, Mikkel H. Schierup²⁹, Oliver A. Ryder³⁰, Yuko Yoshinaga³¹, Pieter J. de Jong³¹, George M. Weinstock¹, Jeffrey Rogers², Elaine R. Mardis¹, Richard A. Gibbs² & Richard K. Wilson¹

Locke et al. 2011

Inferring demography AND recombination rates

The model choice pipeline

Results from 2kb blocks Total spliced length: 163 Mbp

Model	N_A	с	T	N_S	N _B	α_{5}	α_B	$4N_Am_{S\rightarrow B}$	$4N_Am_{S\leftarrow B}$	T_2	$f_{S \rightarrow B}$	$f_{S \leftarrow B}$	InL
M1	18 200	1.58×10^{-8}	387 000										-907 477
M2	1 380	2.06×10^{-8}	294 000	22 100	8 610								-891 341
M3	2 180	2.09×10^{-8}	306 000	21 800	5 490	-0.003	-0.728						-891 308
M4	1 260	2.11×10^{-8}	320 000	22 300	8 210			0.025	0.000				-892 423
M5	1 280	1.87×10^{-8}	1 807 000	21 600	8 850			1.568	2.202	274 000			-892 225
M6	1 420	2.73×10^{-8}	816 000	22 400	8 910					295 000	0.121	0.267	-891 139

 $\mu: 1 \times 10^{-8}/bp/generation$ 20 yrs/generation 2 diploid genomes per pop.

ABLE

Relative model fit for 2kb blocks distribution of 100 LnLs using 1M ARGs

Direction of best fit

Wrap up

ABLE: a quick summary

Introduction

- Uses the **bSFS**, a very rich summary of genomic data
- Does not require polarized data (i.e. no outgroups)
- Does not require phased data and accounts for linkage
- Can infer recombination rates along with demography
- Is computationally efficient (coded in C/C++)
- Uses **ms** for sampling from $p(G_i \mid \theta)/p(A \mid \Theta)$
- Runs on parallel threads using OpenMP

Download v0.1 from https://github.com/champost/ABLE

Collaborators

Konrad Lohse

University of Edinburgh

Laurent A.F. Frantz

Queen Mary University of London

Michael J. Hickerson

The City College of New York

ABLE

