

Graf widoczności - definicja

Graf widoczności to graf złożony z pewnej liczby wierzchołków oraz krawędzi łączących wierzchołki "widzące się wzajemnie". Wierzchołki "widzą się wzajemnie", jeśli krawędź łącząca te wierzchołki nie przekracza żadnej z figur zadanych przez użytkownika. Wierzchołkami grafu widoczności są wierzchołki figur oraz punkt początkowy i punkt końcowy. Krawędziami grafu widoczności są także odcinki, stanowiące boki poszczególnych wielokątów. Definiowanie grafu widoczności polega na znalezieniu wszystkich par wierzchołków, które widzą się wzajemnie.

Naiwne podejście?

Naiwne podejście zatem dawałoby rozwiązanie n³(dla każdego wierzchołka sprawdzenie n² możliwości).

Sortowanie obrotowe

Istnieje jednak sposób na poprawienie tej złożoności poprzez zastosowanie obrotowego zamiatania. Stanem jest w tym przypadku uporządkowany ciąg krawędzi przecinanych przez półprostą, a zdarzeniami są wierzchołki figur(oraz punkty start i end).

Struktura umożliwiająca poprawienie złożoności

```
class EdgeSet:
def init (self):
     self. open edges = []
 def insert(self, v1, v2, edge):
     self._open_edges.insert(self._index(v1, v2, edge), edge)
def delete(self, v1, v2, edge):
     index = self. index(v1, v2, edge) - 1
     if self. open edges[index] == edge:
         del self. open edges[index]
 def smallest(self):
     return self. open edges[0]
 def index(self, v1, v2, edge):
     hi = len(self. open edges)
     while lo < hi:
         mid = (lo + hi) // 2
        if cmp_edges(v1, v2, edge, self._open_edges[mid]):
            hi = mid
         else:
            lo = mid + 1
    return lo
def len (self):
     return len(self. open edges)
def __getitem__(self, index):
    return self. open edges[index]
```

Stan jest reprezentowany przez drzewiastą strukturę EdgeSet zaimplementowaną w trig.py. Daje nam to porządek wzdłuż półprostej zamiatającej.

Zamiatanie

Zamiatanie rozpoczyna dla półprostej OX skierowanej dodatnio i przebiega w kierunku przeciwnym do ruchu wskazówek zegara. Jeśli wierzchołek widoczny – dodajemy nową krawędź do listy widocznych krawędzi. Następnie przechodzimy do kolejnego wierzchołka i usuwamy krawędzie których półprosta już nie przecina oraz dodajemy nowe przecięcia.

Co gdy wierzchołki są w linii?

Na szczęście sortowanie wierzchołków, gdy są na linii zwraca te bliższe jako pierwsze, więc rozważając odcinek wi możemy wykorzystać wiedzę o wierzchołku wi-1.

Zauważmy, że jeśli wi-1 nie jest widzialny, to wi nie może być widzialny. Żeby wi był widzialny, wi-1 musi być widzialny, ale nie daje to gwarancji widoczności wi. Gdy wi-1 jest widoczny, to wi może być niewidoczny na dwa sposoby – albo odcinek wi-1 wi jest wnętrzem figury do której należą oba te wierzchołki, albo między nimi znajduje się figura, która odcinek wi-1 wi przecina

Widoczne krawędzie

Dzięki wykorzystaniu zamiatania i drzewiastej struktury przetrzymującej wierzchołki oraz sortowaniu obrotowemu jesteśmy w stanie uzyskać krawędzie widoczne z dowolnego punktu.

0.04 - 0.02 - 0.04 - 0.02 0.00 0.02 0.04 0.06

Jedna pętla

Skoro potrafimy sprawdzić widoczność z dowolnego wierzchołka, to przechodząc pętlą po wszystkich wierzchołkach otrzymamy graf widoczności.

Ostatni krok – najkrótsza ścieżka

Do ostatniego kroku wykorzystano algorytm Dijkstry zwracający najkrótszą ścieżkę w zadanym grafie.

Bibliografia

- Geometria obliczeniowa. Algorytmy i zastosowania M. Berg, M. Kreveld, M. Overmars, O.Schwarzkopf
- https://www.science.smith.edu/~istreinu/Teaching/Courses/274/Spring98/Projects/Philip/fp/algVisibility.htm
- https://sj.umg.edu.pl/sites/default/files/ZN501.pdf