Exploring point defects as qubit candidates in cubic boron nitride

Supervisors: Morten Hjorth-Jensen, Marianne Etzelmüller Bathen, Christopher Linderälv and David Rivas Gongora

Joseph P. Vera

Material Science of Semiconductors University of Oslo

15th February, 2024

ARTICLE OPEN

Predicting solid state material platforms for quantum technologies

Oliver Lerstøl Hebnes¹², Marianne Etzelmüller Bathen **3**¹², Øyvind Sigmundson Schøyen **3**, Sebastian G. Winther-Larsen **3**, Lasse Vines⁵ and Morten Hjorth-Jensen **3**, Lasse Vines⁵ and Morten Hjorth-Jense **3**, Lasse Vines⁵ and Marken **4**, Lasse Vines

Approach	Material	Crystal structure	MP code	Density (g cm ⁻³)	Band gap (eV)	a, b, c (Å)	α, β, γ (*)
Empirical approach to 0.85 confidence	CdSe	Hexagonal	mp-1070	5.3	0.6	4.4, 4.4, 7.2	90, 90, 120
	Cul	Hexagonal	mp-569346	5.8	1.2	4.3, 4.3, 7.0	90, 90, 120
	Cul	Cubic	mp-22895	5.8	1.2	4.3, 4.3, 4.3	60, 60, 60
	CdSe	Cubic	mp-2691	5.3	0.5	4.4, 4.4, 4.4	60, 60, 60
	BN	Cubic	mp-1639	3.5	4.6	2.6, 2.6, 2.6	60, 60, 60
	InAs	Cubic	mp-20305	5.3	0.3	4.4, 4.4, 4.4	60, 60, 60
	$ZnCd_3Se_4$	Cubic	mp-1078597	5.3	1.7	6.1, 6.1, 6.1	90, 90, 90
	BC ₂ N	Tetragonal	mp-1008523	3.3	1.6	2.6, 2.6, 3.7	90, 90, 90
	BC ₂ N	Orthorombic	mp-629458	3.4	1.8	2.5, 2.6, 3.6	90, 90, 90

Cubic Boron Nitride

Table: Lattice parameters [1]

cell	Constants (Å)	Angles	Volume (ų)
	a=b=c	$\alpha = \beta = \gamma$	
Initial	a = 3.630	$\alpha = 90^{\circ}$	47.832
Final	a=3.626	$\alpha = 90^{\circ}$	47.656

• Calculations of lattice parameters, band gap, density of states and band structure using GGA-PBE pseudopotential.

Initial test: Primitive cell

Table: Lattice parameters [1]

cell	Constants (Å)	Angles	Volume (Å ³)	Bandgap (eV)
	a=b=c	$\alpha = \beta = \gamma$		4.450
Initial	a=2.567	$\alpha = 60^{\circ}$	11.958	
Final	a=2.564	$\alpha = 60^{\circ}$	11.914	

•	 Calculations of band gap, density of states a HSE06 pseudopotential. 	and band	structure using

Initial screening of multiple defect candidates based on available literature

PHYSICAL REVIEW B

VOLUME 62, NUMBER 15

15 OCTOBER 2000-I

Energetics of carbon and oxygen impurities and their interaction with vacancies in cubic boron nitride

Walter Orellana[†]

Departamento de Física, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brazil

H. Chacham*

Department of Physics, University of Texas, Austin, Texas 78712 (Received 2 December 1999; revised manuscript received 1 June 2000)

We investigate, through first-principles calculations, the energetics of substitutional carbon and oxygen impurities as well as complexes involving these impurities and vacancies in cubic boron nitride (c-BN). The formation energies and the electronic and structural properties of these defects in their various charge states are investigated. We find that, under a boron-rich condition, both the carbon and the oxygen impurities at the nitrogen site [C_N and O_N] have formation energies comparable to or lower than those calculated for the vacancies, which are the lowest-energy intrinsic defects. Regarding defect complexes, we find that the donor character observed for the nitrogen vacancy (V_N) can be compensated by the C_N impurity in the formation of a V_N-C_N complex which has low formation energies. We also find that the V_n-C_N complex has low formation energies under n-type conditions. In contrast to the above mentioned complexes, we find that the V_n-C_N complex has high formation energies under a boron-rich condition, and shall only occur under a nitrogen-rich condition.

Telecom-wavelength NV-center analogs in cubic boron nitride

Mark E. Turiansky o and Chris G. Van de Walle o Materials Department, University of California, Santa Barbara, California 93106-5050, USA

(Received 10 April 2023; accepted 27 June 2023; published 12 July 2023)

We apply first-principles calculations to investigate Va-Ci and Va-Sii complexes in cubic boron nitride as potential quantum defects. We find that these centers possess a triplet ground-state spin, analogous to that of the prototype quantum defect, the NV center in diamond. In contrast, the main optical transition of these complexes occurs in the telecom O-band, making them appealing for quantum networking applications. Furthermore, the coupling to phonons is weaker than in the NV center, resulting in a much larger fraction of photons (22%) being emitted in the zero-phonon line. One inherent drawback of the longer emission wavelength is stronger nonradiative recombination; however, the resulting lower quantum efficiency can be mitigated by cavity coupline.

Calculations

- Defect stabilities
- Formation energy diagrams
- Zero-phonon line (ZPL) energies
- Spin states

• Selection of a few defects (2 - 4) to look at in further detail

Calculate defect properties

- Emission line shapes
- Spin coherence times
- Excited states
- Time-dependent properties (WEST)

Phenomenon: single-photon emitters (SPE)

Figure: Courtesy to Marianne Etzelmüller Bathen

References

- [1] https://next-gen.materialsproject.org/materials/mp-1639/.
- [2] Hebnes, O.L., Bathen, M.E.& Schøyen, Ø.S. (2022). Predicting solid state material platforms for quantum technologies. *npj Comput. Mater.*, 207(8), 1-15. DOI: 10.1038/s41524-022-00888-3.
- [3] Orellana, W. & Chacham, H. (2000). Energetics of carbon and oxygen impurities and their interaction with vacancies in cubic boron nitride. *Phys. Rev. B*, 62(15), 10135-10141. DOI: 10.1103/PhysRevB.62.10135.
- [4] Turiansky, M.E. & Van de Walle, C.G. (2023). Telecom-wavelength NV-center analogs in cubic boron nitride. *Phys. Rev. B*, 108, L041102-1 L041102-5. DOI: 10.1103/PhysRevB.108.L041102.