CURRENT: March 1982 (1 bar)

PREVIOUS: March 1977 (1 atm)

$A_r = 2.014102$ Deuterium (D)	
IDEAL GAS	

Deuterium (D)

(g)

	$\Delta_{cu}H^{\circ} = 221.720 \pm 0.004 \text{ kJ} \cdot \text{mol}^{-1}$	$(298.15 \text{ K}) = 123.350 \pm 0.017 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$
Enthalpy Reference	$\Delta_t H^0(298.15 \text{ K}) = 219.807 \pm 0.004 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference	

60 ± 0.017 J·K ⁻¹ ·mol ⁻¹	.			$\Delta_t H^{\circ}(298.15 \text{ K}) = 219.807$ $\Delta_{tus} H^{\circ} = 221.720$
	Electronic L. State	Electronic Level and Quantum Weight State \$\epsilon, \text{cm}^{-1} \text{ \$g\$, cm}^{-1}	Weight 8,	
	2812	0.00	7	
tion				

Enthalpy of Formati

The adopted value for $\Delta_t H^2(\Omega_s, 298.15 \, K)$ is derived using $D_0^0 = 36748.9 \pm 0.4 \, cm^{-1}$ from Herzberg¹ and auxiliary data for D_0^2 . An earli value for the dissociation energy was reported by Herzberg and Monfils³ as $D_0^0 = 36743.6 \pm 0.5 \, cm^{-1}$. Two theoretical studies by Kolos at Wolniewicz² and Bunker² yielded a vlue of 36748.2 cm⁻¹. More recently, LeRoy and Barwell, 6 using a relationship involving the near-dissociation behavior of the totational constants and the long range intermolecular potential, calculated $D_0^0 = 36748.88(\pm 0.3) \, cm^{-1}$.

Heat Gapacity and Entropy

The electronic levels for D(g) are given in the compilation by Moore. Our calculations indicate that the inclusion of levels up to n = The electronic levels for D(g) are given in the compilation by Moore. Our calculations indicate the first excited state lies at 822 has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of these levels, the first excited state lies at 822 cm - above the ground state. Since the inclusion of these upper levels has no effect on the thermodynamic functions (to 6000 K) we list or the ground state. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the gram formula weight and the fundamental constan The gram formula weight is that recommended by IUPAC. Extension of these calculations above 6000 K may require consideration of t higher excited states and utilization of prope fill and cut off procedures.9

Reference

¹G. Herzberg, J. Mol. Spectrosc. 33, 147 (1970).
 ²JANAF Thermochemical Tables: D₄(g), 3-31-77.
 ³G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).
 ⁴W. Koloo and L. Wolinewicz, J. Mol. Spectrosc. 54, 303 (1975).
 ⁵P. R. Bunker, private communication to G. Herzberg, Phys. Rev. Letters 23, 1081 (1969).
 ⁶R. J. LeRoy and M. G. Barwell, Can. J. Phys. 53, 1983 (1975).
 ⁷C. E. Moore, NSRDS-NBS 3, Section 6 (1972).

¹IUPAC Commission on Adtomic Weights, Pure Appl. Chem. 37, 589 (1974).
⁹I. R. Downey, Dow Chemical Company, Thermal Research, AFOSR-TR-78-0960, Contract No. F 44620-75-0-0048, (1978).

-10	Enthalpy R	eference T	Enthalpy Reference Temperature = T.	- 7, - 298.15 K	×	Standard State Pressure		p* = 0.1 MPa
<u>-</u>			J.Y. mol-			-ki-mol-'		
	τÆ	ប	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	$\Delta_t H^{\circ}$	$\Delta_i G^\bullet$	log Kr
	° <u>8</u>	0.	0.	INFINITE 141.830	-6.197	219.807	219.807	INFINITE - 112.872
	88	20.786 20.786	115.051	125.251	-2.040	221.112	208.977	-55.221
	298.15	20.786	123,350	123.350	0	221.720	206.553	-36.187
	88	20.786 20.786	123.479	123.350	0.038	221.732 222.041	206.459	-35.948
rlier	8 8 8	20.786 20.786 20.786	131.907	124.166	3.156	222.350 722.657	201.275	-26.284 -23.055
dis-	8	20.786	137.886	127.429	6.274	223.568	190.473	-16.582
	88	20.786 20.786	141.091	129.158	8.353 10.431	24.156 224.723	179.265	-13.798
-	88	20.786 20.786	146314	132.414	12.510	225.262 225.774	173.550	-10.073
12	82	20.786	150.485	135,333	16.667	226.256	161.953	-7.690
200	300	20.786	153.958	137.939	20.824	227.138	150.184	-6.034
II S	1500 1500	20.786 20.786	155.498	139.139 140.278	22.903 24.982	227.540 227.919	144.249	-5.382 -4.816
e E	0021	20.786	158274	141.361	27.060	228.276	132.299	-4.319
	8	20.786	160.722	143.379	31.217	228.934	120,262	-3.490
	2002	20.786	162912	145.225	35.235	229524	108.155	-3.140
	2200	20.786 20.786	163.926 164.893	146.091 146.924	37.453 39.532	229.797 230.056	102.080 95.992	-2539
	730 7400 7400	20.786 20.786	165.817	147.726	41.610	230.303	89.893	-2042
	2500	20.786	167.550	149.243	45.768	230.762	77.663	-1.623
	2,00	20.786	169 150	150.659	47.846	230.975	65.399	-1.437
	2800	20.786	170.635	151.333	52.004 54.082	231.556	59.255 53.105	-0.957
	900	20.786	171.40	152.620	56.75	231.732	46.949	-0.817
	3200	20.786	172.682	153.832	60318	232.056	34.619	-0.5687
	3300	20.786	173.942	154.979	62.397 64.475	232,206	28.447	-0.342
	00%	20.786	175.130	156.065	68 637	332.480	0 005	-0.240
	370	20.786	175.699	156.588	70.71	232.722	3.717	-0.052
	3900 4000 9000	20.786	176.794	157.597	74.868	232.932	-8.667	0.116
	4100	20.786	177.833	158.559	79.025	233.111	-21.061	0.268
	4300	20.786	178.823	159.478	83.183	233.258	-33.464	0.40
	4500	20.786	179.768	160.359	87.340	233.375	-45.872	0.532
	4400 4700	20.786 20.786	180.225 180.672	160.786	89.418 91.497	233.423	-52.078	0.591
	8600 0064 0006	20.786 20.786	181.110	161.615	93.576 95.654	233.495	-64.493 -70.701	0.702
	200	20.786	075 731	162.412	90.811	733 557	-83 119	0.803
	220	20.786	182.773	163.179	101.890	233.558	-89.328	0.897
	\$400 \$500	20.786	183.558	163.920	106.047	233.552	-101.747	0.984
	2600	20.786	184.314	164.634	110,204	233.524	-114.165	1.065
	5800 5800 5900 5900	20.786 20.786 20.786	185.043 185.043	164.983 165.326 165.663	114,362	233.478	-126.582	
	800	20.786	185.748	165.995	118.519	233.416	-138.997	1710

CURRENT: March 1982 (1 bar)

J	2	9
÷	ī	•
c	1	ì

$M_r = 2.01355$ Deuterium, Ion (D*)	Δdf*(0 K) = 1532.21 ± 0.04 kJ·mol ⁻¹ Enthalpy Reference Temperature = T _r = 298.15 kJ s. 298.
M _r = 2.013	$\Delta_i H^{\circ}(0 \text{ K}) = 1532.21 \pm 0.04 \text{ kJ} \cdot \text{mol}^{-1}$
IDEAL GAS	
Deuterium, Ion (D⁺)	2000 + 000 E11

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [1540.324] \text{ kJ·mol}$ S°(298.15 K) = 117.583 ± 0.02 J·K⁻¹·mol⁻ **Enthalpy of Formation**

 $\Delta_H^{*}(D^*, g, 0 \text{ K})$ is calculated from $\Delta_H^{*}(D, g, 0 \text{ K})^{-1}$ using the spectroscopic value of IP(D) = 109708 608 ± 0.00 n⁻¹(313 6727 ± 0.0001 kJ·mol⁻¹) from Moore. The ionization limit is converted from cm⁻¹ to kJ·mol⁻¹ using the factor, cm⁻¹ = 0.01196266 kJ·cm⁻¹, which is derived from the 1973 CODATA fundamental constants ³ Rosenstock et al. ⁴ and Levin and Lias⁵ ha summarized additional ionization and appearance potential data.

 $\Delta H'(D', g_*, 298.15 \text{ K})$ is calculated from $\Delta_H''(D', g_*, 0 \text{ K})$ by using IP(D) with JANAF¹ enthalpies, H'(0 K) - H'(298.15 K), for D(g), D'(g and e "(g), $\Delta_H''(D \to D" + e^-, 298.15 \text{ K})$ differs from a room temperature threshold energy due to inclusion of these enthalpies and threshold effects discussed by Rosenstock et al. \(^4 \Delta H''(298.15 \Ref{K})\) should be changed by $-6.197 \text{ kJ} \cdot \text{mol}^{-1}$ if it is to be used in the to convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

The thermodynamic functions of the proton gas are calculated using the recent CODAT fundamental constants (2) and assuming that th proton is an ideal monatomic gas. Since there is no electron associated with this species, there is only a translational contribution to the thermochemical function.

References

JANAF Thermochemical Tables: D(g), 3-31-82; e⁷(g), 3-31-82.

C E Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-3, Section 6, 1972.

F. R. Cohen and B N. Taylor, J Phys Chem. Ref. Data 2, 663 (1973).

M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref Data 6, Supp 1, 783 pp. (1977).

R. D Levin and S. G. Lias, U. S Nat. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982).

ŢŢ	Enthalpy R	Enthalpy Reference Temperature	mperature	= 7, = 298.15 K		Standard State Pressure		$p^* = 0.1 \text{ MPa}$
	τÆ	೮	S -[G	-H'(T,)]T	H°-H*(T,)	Δ,Η*	₽ ′C•	log Kr
8 - 8	0 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 20.786 20.786 20.786	0. 94.876 109.284 113.922	INFINITE 136.064 119.485 117.926	-6.197 -4.119 -2.040 -1.001	1532.214		
,	298.15	20.786	117.583	117.583	ď	1540.324	1520.622	-266.407
(8)	88	20.786	117.712	117.584	0.038	1540,374	1520.500	-264.743
2	\$8	20.786	123.692	118.399	2.117	1543.071	1513.468	- 197.639
<u> </u>	\$ \$	20.786 20.786	126.140 128.330	119.126	3.156 4.196	1544.418 1545 763	1509.687	-175.240 -157.305
	98,6	20.786	132.120	121.663	6.274	1548.446	1497.502	-130,369
-	288	20.786	138.100	125.060	10.431	1553.758	1479 718	-96.616
을 본	88	20.786 20.786	140.548 142.738	126.648 128.149	12.510 14.589	1556.377 1558 967	1470.305	-85.334 -76.294
	882	20.786	144.719	129.567	16.667	1561.528	1450.642	-68.885
	1300	20 786	148.191	132.173	20.824	1566.566	1430.047	-57 460
	208	20.786	151.166	134511	24.982	1571.505	1408.681	-32.900
	98	20.786	152.507	135.595	27.060	1573.941	1397 746	-45 632
	200	20.786	154.956	137.613	31.217	1578.755	1375.432	-39.914
	2002	20.786	157 146	139.458	35.275	1583.503	1364.071	-37.50I -35.326
	2100	20.786	158.160	140.325	37.453	1585.854	1340.982	-33,355
	300	20.786	160 051	141.959	41.610	1590.518	1317.445	-29.920
	2500	20.786	161.784	142.732	45.768	1592.831	1293.522	-28.414
	2600 2700	20.786 20.786	162.599	144.197 144.893	47.846 49.925	1597.426 1599.708	1281.393	-25.744
	2800	20.786	164.143 26.143	145.567	52.004	086.1091	1256.912	-23.448
	900	20.786	165.574	146.853	24.067 56.161	1606.497	1232.107	-21.453
	3100	20.786	166.255	147.468	58.239	1608.742	1219.590	-20.550
	330	20.786	167.555	148.647	62.397	1613.206	1194.342	-18.905
	988	20.786	168.173 168.778	149.212	66.554 66.554	1615.426	1181.616	- 18.153 - 17.444
	3600 005F	20.786	169,363	150.299	68.632	1619.841	1155.970	-16.773
	3800	20 786	170.487	151,332	72.790	1624.225	1130.080	-15.534
	4000	20.786	171.553	152.317	76.947	1628.576	1103.960	-14.416
	4500 4500	20.786	172.067	152.792 153.257	79,025 81.104	1630.740 1632.896	1090.817	-13.897 -13.402
	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20.786	173.535	153.712	83.183 85.261	1635 045	1054,376	-12.930
	7009	70.786	174.450	155 020	217 OS	410.9001 410.9001	1001	0H071-
	864	20.786	174.906	155 438	91 497	1643.564	1010 905	-11.235
	\$ 6 0 0 0 0 0	20.786	175.772	156.250	95.654	1647.779	983.895	-10.488
	2100	20.786	176.603	157.032	99.811	1651.967	956.713	-9.799
	2200	20 786	17.007	157.413	101.890	1654.052	943.061	-9 473
	\$400 \$500	20.786	167.771	158.153	106.047	1658.203	915.636	-8.857 -8.565
	2000	20.786	178.547	158.868	110.204	1662.333	888.058	-8.283
	5700 5800	20.786	178.915	159.216	112.283	1664.390	874.213	-8.011
	2009	20 786	179 632	159.896	116.440	1668.493	846.417 832.466	-7.494
			:		1		1	: !

PREVIOUS. March 1977 (1 atm)

É

CURRENT March 1982 (1 bar)

PREVIOUS: March 1977 (1 atm)

IDEAL GAS
<u>(</u> e
<u>6</u>
Deuterium,

EA(D, g) = 0.754209 \pm 0.000003 eV S*(298.15 K) = 117.590 \pm 0.017 J·K⁻¹·mol⁻¹

 $\Delta_i H^{\circ}(0 \text{ K}) = 147 038 \pm 0.04 \text{ kJ} \cdot r$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [142.753] \text{ kJ} \cdot t$

Mr = 2.014651 Deuterium, Ion (D^)

D₁(g)

Electonic Level and Quantum Weight State ε, cm β,

လူ

Δ_H²(D², g, 0 K) is calculated from Δ_H²(D, g, 0 K)¹ using the adopted electron affinity of EA(D) = 0.754209 ± 0.000033 (72.7696 ± 0.0003 kJ·mol⁻¹). This value is assumed to be the same as that recommended by Hotop and Lineberger.² for H(g). Addition information on D²(g) and H²(g) may be obtained in the critical discussions of Hotop and Lineberger.² * Rosenstock et al.² and Mass ΔH²(D, g, 298.15 K) is obtained from ΔH²(D, g, 0 K) by using EA(D) with JANNFF enthalpites, H²(0 K) − H²(298.15 K), for D²D(g), and e²(ref). ΔH²(D → D + e², 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies to threshold effects discussed by Rosenstock et al.² Δ₁ H²(298.15 K) should be changed by + 6.197 kJ·mol⁻¹ if it is to be used in the convention that excludes the enthalpy of the electron. **Enthalpy of Formation**

Heat Capacity and Entropy

A comparison of the isoelectronic sequence - H⁻(g), He(g), and Li*(g) - would suggest that stable electronic states may exist at 0.8 E. or roughly 6400 cm-1. This would greatly affect the entropy. However, Pekeris' states that he was unable to find any bound states. In addi Seman and Branscom's tate that theoretical and sememprical evidence suggests that atomic negative ions have very few if any excited below the continuum. We assume that the same arguments apply for D'(g) and that no stable excited states exist. The ground state electronic configuration for D (g) is given by Hotop and Lineberger 3 and Rosenstock et al.

JANNF Thermochemical Tables: D(g), 3-31-82; e⁻(ref), 3-31-82.
 Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731, (1985).
 Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
 M. Rosenstock, K. Drazl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 S. W. Massey, "Negative lons," 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).
 C. L. Perkeris, Phys. Rev. 126, 1470 (1962).
 M. L. Seman and L. M. Branscomb, Phys. Rev. 125, 1602 (1962).

mol-1	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard State Pressure	, ,	p* = 0.1 MPa	_
mol-1			. 😕			K-mol-1			_
	7 <u>/</u> K	೮	ی -[ن	-[G*-H*(T;)]/T	H°-H°(T,)	$\Delta_r H^{\bullet}$	δ,G	log K	_
	°8	0.	0. 94.883	INFINITE 136.071	-6.197 -4.119	147.038			
	ន្តន្ត	20.786 20.786	109.291	119.492	-2.040 -1.001				
	298.15	20.786	117.590	117.590	ö	142.753	135.559	-23.749	
	38	20.786	120.923	17.844	1.078	142.726	135.514	-23.595	
3 eV	\$ \$ \$	20.786 20.786 20.786	126.147	118.406	3.156 4.195	141.266	132,382	-17.411 -15.366 -13.730	
ssey.5	8	20.786	132.127	121.670	6274	138.327	129.997	-11317	_
D_(g),	88	20 786 20.786	135.331	123.398	8.353	136.837	128.726	-9.606	_
es and he ion	88	20.786 20.786	140.555	126.655	12510 14589	133.785	126.805	-7360	
	1200	20.786 20.786	144.726	129.574 130.913	16.667	130.622	125.580	-5.963 -5.450	_
	1400 1500	20.786 20.786 20.786	148.198 149.739 151.173	132.179	20.824 22.903 24.987	125.670 125.670	124.943	-5.020 -4.657	
A(H)	0091	20 786	152514	135.601	27.060	122.249	124.932	-4.079	
dition, states	200	20.786	154.962	130,634	31.217	118.749	125.133	-3.845 -3 641	
	2000	20.786	157.152	139.465	35.275	115.182	126.415	-3.401	
	2100 2200	20.786 20.786	158.167 159.134	140.332	37.453 39.532	113.376	127.021	-3.159	
	2300 2400 2500 2500	20.786 20.786	160.058	141.966	41.610	109.726	128.488 129.343	-2918 -2815	
	092	20.786	162.606	144.204	47.846	104.162	131.282	-2.637	
	2800	20.786	164.146	145.574	49.925 52.004	100.402	132.361	-2561 -2491	
	300	20.786 20.786	164.876	146.227 146.860	54.082 56.161	98.507 96.604	134.725 136.006	-2.427 -2.368	
	3100	20.786	166.262	147.475	58.239	94.692	137.351	-2314	
	3300	20.786	167.562	148.654	62.397	88.90.842 88.905	140.225	-2220	
	3200	20.786	168.785	149.769	66.554	86.959	143.333	-2.139	
	3500 3700	20.786 20.786	169.370 169.940	150.306	68.632 70.711	85.006 83.044	144.972 146.664	-2.103	
	986 986 986 986 986	20.786 20.786 20.786	170.494 171.034 171.560	151.339 151.837 152.324	72.790 74.868 76.947	81.075 79.097 71.112	148.410 150.208 152.056	-2.040 -2.012 -1.986	
	4100	20.786	172.073	152.799	79.025 81.104	75.119	153.955	-1.961	
	00 1 4 000 000 000 000 000 000 000 000 000 0	20 786 20.786	173.063	153.719	83.183 85.261 87.340	69.093 69.093 69.093	157.896	-1.918	
	9	20.786	174.465	155.027	89.418	65.037	164.158	-1.864	
	8 8 8 8 8 8 8	20.786 20.786	174.912	155.445 155.855	91 497 93.576	62.999 60.953	166.335	-1.849 -1.834	
	\$60 \$00	20.786 20.786	175 779 176.198	156.257 156.652	95.654 91.733	58.900 56.840	170.818 173.123	-1.821	
	\$100 \$200	20.786 20.786	176.610 177.014	157.039	99.811	54.774 52.701	175.469	-1.797 -1.787	
	\$400 \$400 \$400	20.786 20.786 20.786	177.410	157.793 158.160 158.530	103.969 106.047	50.622 48.538 46.438	180.283	-1.777 -1.768	
	2000	20.786	178.554	158.875	110,204	44.353	187.796	-1.757	
	5700 5800	20.786	178.922	159.223	112283	42.253	192.993	-1.745 -1.738	
	808	20.786 20.786	179.639	159.903	116.440	38.042 35.931	198.335	-1.732	

48.574 48

-283.234 -283.303 -283.372 -283.439 -283.507

95.054 98.786 102.528 106.280

254.968 256.153 257.305 258.424 259.514

-281.046 -281.098

-283.574 -283.712 -283.782 -283.855

-281.136 -281.102 -281.052 -280.986 -280.902

113.809 117.586 121.371 125.164 128.963

224,306 225,232 226,233 227,166 228,903 228,983 239,883 230,681 231,512 231,512 233,947 233,947 233,443 235,453 235,453 235,453 235,453 235,453 235,453 235,453 235,453 235,45

260.576 261.611 262.620 263.606 264.568

-282.844 -282.929 -283.011 -283.088 -283.162

-280.556 -280.683 -280.796 -280.894 -280.978

76.566 80.238 83.924 87.623 91.333

248.466 249.852 251.192 252.490 253.748

35.762 35.971 36.501 36.501 36.501 36.792 37.160 37.263 37.263 37.263 37.263 37.263 37.263 37.263 37.263

-283.930 -284.008 -284.088 -284.172 -284.259

-280.803 -280.688 -280.557 -280.411 -280.251

132.770 136.584 140.404 144.230 148.062

265.508 266.427 267.325 268.205 269.066

38.101 38.23 38.23 38.295 38.355 38.414 38.472 38.583 38.583

-284350 -284.445 -284.544 -284.648 -284.755

-279.686 -279.471 -279.242

167.312

-279.002

-280,077

151.901

236.888 237.599 238.298 238.985 239.660

269.910 270.737 271.547 272.342 273.122

-284.868 -284.985 -285.108 -285.236 -285.369

240.324 240.976 241.618 242.250

273.888 274.640 275.378 276.104 276.817

38.690

M = 21.012505 Hydrofluoric Acid-D, (DF)

Standard State Pressure = p = 0.1 MPa

-[G*-H*(T;)]T

·K"'mol".

-777.265 -277.825 -278.088 -278.088

775.518 775.586 775.674 775.779

179.703 180.057 180.846 181.865 183.006

179.702 179.882 184.375 188.268 191.707

777.254

275.516

INFINITE 205.599 182.367 180.182 179.702

-778.802 -779.218 -779.592 -779.929

-776.168 -776.458 -776.755 -777.047 -777.047

8.833 11.809 14.829 17.903 21.033

185.430 187.868 190.234 192.498 194.654

200.152 204.738 208.770 212.390 215.687

29.137 29.174 29.174 29.174 29.273 29.29 29.50 29.50 31.61 3

-280.511 -280.764 -280.997

-277.599 -278.102 -278.336 -278.336

196.706 198.660 200.523 202.301 204.003

218.724 221.543 224.176 226.649 228.981

-281.591 -281.760 -281.917 -282.064 -282.199

-279.190 -279.387 -279.578

TT8.TT

24.219 27.459 30.750 34.087 37.468 40.886 44.340 47.826 51.341 54.882

278.987

205.634 207.199 208.704 210.153 211.549

231.188 233.282 235.274 237.174 238.991

-787.316 -787.444 -787.554 -787.657 -787.753

-279.762 -279.939 -280.108 -280.268 -280.418

58.447 62.034 65.641 69.266 72.908

212.898 214.201 215.462 216.684 217.868

240.730 242.398 244.002 245.545 247.031

D,F,(g)

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_t H^{\circ}(0 \text{ K}) = -275.458 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -275.516 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$

IDEAL GAS

Hydrofluoric Acid-d, (DF)

0.9187 ٠٩٠ α, , cm⁻¹ 0.2907 B. cm 11.000 Electronic States and Molecular Constants σ = 1 wat cm-1 45.76 8.90 we cm 2998.19 839.4 S°(298.15 K) = 179.702 J·K⁻¹·mol⁻¹ ב כשין C 83755 State ν. «Χ. «Χ.

The enthalpy of formation was calculated from A_H (228.15 K) of HF(g), -65.13 ± 0.2 kcal-mol⁻¹, given in JANAF Thermochemical Tables¹ the appropriate thermal functions (see tables for H₂, D₂, DF and HF, and the estimated zero point energies. The energies for H₂(g) and DF(g) include the Dunham correction and were calculated and DA(g) are those given by Herzberg and Monfils. The energies for HF(g) and DF(g) include the Dunham correction and were calculated from the data given by Mann et al.3 and Spanbauer et al. Enthalpy of Formation

Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from Rosen. The National Bureau of Standards prepared this table by critical analysis of data existing in 1972. Using molecular constants and ΔtH^2 selected by NBS, we recalculate the table in terms of 1973 fundamental constants, 1975 atomic weights, and current JANAF reference states for the elements.

JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37, (June 1971).

³D. E. Mann, B. A. Thrush, D. R. Lide, Jr., J. J. Ball, and N. Acquista, J. Chem. Phys. 34, 420 (1961). ²G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).

R. Spanbauer, K. N. Rao, and L. Jones, J. Mol. Spectrosc. 16, 100 (1965).
B. Rosen, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, Oxford, (1970).
S. Abramowitz et al., U. S. Nat. Bur. Stand. Report 10904, 239, (July 1972).
TCODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973).
*IUPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976); 37, 589 (1974).

25.15 25

Hydrofluoric Acid-D,(DF)

PREVIOUS: June 1977 (1 atm)

D,F,(g)

1977 (11 bar)

CURRENT: June

CURRENT: June 1977 (1 bar)

Hydrogen—d, (HD, or ¹H²H)

 $\Delta_t H^{\circ}(0 \text{ K}) = 0.330 \pm 0.008 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Ref. $\Delta_t H^{\circ}(298.15 \text{ K}) \approx 0.321 \pm 0.013 \text{ kJ} \cdot \text{mol}^{-1}$

M, = 3.022042 Hydrogen - D₁(HD)

 $S^{\circ}(298.15 \text{ K}) = 143.803 \pm 0.033 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 $E = G - G_0 + F = G - G_0 + BZ - DZ^2 + HZ^3 - LZ^4 + ... \approx G - G_0 + BZ - DZ^2 + H^2Z^3/(H + LZ).$ Direction Summation of Electronic Ground State: Vibrational and Rotational Levels (cm

 $G = 3815.403Y - 93.61504Y^2 + 1.39630Y^3 - 0.118666Y^4 + 5.97675 \times 10^{-3}Y^5 - 2.08092 \times 10^{-4}Y^6$ $\begin{array}{l} D = 2.6527 \times 10^{-2} - 1.1534 \times 10^{-3}Y + 1.7075 \times 10^{-4}Y^2 - 2.1142 \times 10^{-5}Y^3 + 9.9570 \times 10^{-7}Y^4 \\ H = 2.206 \times 10^{-5} - 2.648 \times 10^{-6}Y + 3.047 \times 10^{-7}Y^2 - 1.327 \times 10^{-6}Y^3 \\ L = 2.122 \times 10^{-4} - 3.912 \times 10^{-9}Y + 3.298 \times 10^{-10}Y^2 \end{array}$ $B = 45.66910 - 2.031845Y + 7.27360 \times 10H^{-1}Y^{2} - 1.82824 \times 10^{-2}Y^{3} + 3.06318 \times 10^{-3}Y^{4} - 3.00453 \times 10^{-4}Y^{2} + 1.47623 \times 10^{-5}Y^{6} - 2.9887 \times 10^{-7}Y^{7}$ where Z = J(J+1), Y = v+1/2, and we omit subscript v on G, F, B, D, H, and L

Symmetry Number = 1 Ground State Configuration: 1∑*

Vress = 17, Jress = 46 - 42 V/Vress

Enthalpy of Formation

derived D₀ values of 36405,6 and 36405.8 cm⁻¹ from lower and upper absorption edges. Thorson, ² by theoretical treatment of absorption-ed doubling, concluded that the value from the upper edge is more accurate. We adopt a value closer to that from the upper edge and essential the same as that selected by the National Bureau of Standards.³ Δ_tH*(0 K) is derived from D₀ = 36406.0 ± 0.4 cm⁻¹ (104.090 ± 0.001 kcal·mol⁻¹) based on absorption limits analyzed by Herzberg.

Heat Capacity and Entropy

These are calculated by direct summation over vibrational-rotational energy levels of the electronic ground state. We performed the dir summation with an extended version of a program written by W. H. Evans and provided through cooperation of D. D. Wagman, both of U. S. National Bureau of Standards. Contributions of excited states $(T_0 > 9000 \text{ cm}^{-1})^2$ are negligible at 6000 K.

Vibrational-rotational levels are represented by the polynomials given above. G, B, and D are our fits of data from Dabrowski an Herzberg.⁵ Data from Durie and Herzberg.⁶ McKellar et at, at Bramon et at, at Sloicheff were also used where appropriate. Observed H data extend to $v_{max} = 17$ for G and B, v = 16 for D, but only v = 1 for H. We estimate polynomials H and L by isotopic relations from tho of H, in order to provide a similar extrapolation to high J values. Our H polynomial differs from H_0 and H_1^{18} by less than the experiment J_{max}) of rotational quantum number. Values in the J_{max} equation are estimated by comparison with H₂ and D₂ so that J_{max} is consistent wi uncertainty. Our combination of H and L should be consistent with our adopted approximation for the infinite series (F) of rotational leve We assume that F has the form proposed by Khachkuruzov 10 and Woolley et al. 11 We assume a linear approximation 10 for the limiting value. observation for HD of a rovibrational level at J = 6, v = 16.

Thermodynamic functions are calculated using 1973 fundamental constants,¹² 1975 atomic weight of H, and 1973 isotopic mass of D. Results apply either to ¹H²H or to HD containing H of natural abundance, even though the vibrational—rotational constants are for ¹H²H Maximum difference between thermodynamic functions for ¹H²H and HD is 0.0002 cal·K⁻¹·mol⁻¹ in \$7(298.15 K). Our calculations agr to within 0.002 cal·K⁻¹·mol⁻¹ (or kcal-mol⁻¹) with those of Woolley et al. ¹¹ up to 2000 K. The more approximate C_p values of NBS³ diffibles than 0.04 cal·K⁻¹·mol⁻¹ in the range 3000 to 6000 K. We omit the nuclear–spin contribution (R In 6) to entropy and Gibbs–energ

Herzberg, J. Mol. Spectrosc. 33, 147 (1970).
 A. Thorson, J. Mol. Spectrosc. 37, 199 (1971).
 S. Abramowitz et al., U. S. Nat. Bur. Stand. Report 10904, 239, (July 1972).
 Abanet Thermochemical Tables: H₂(g), D₂(g), 3-31-77.
 Dabrowski and G. Herzberg, Can. J. Phys. 54, 525 (1976).
 R. A. Durie and G. Herzberg, Can. J. Phys. 38, 804 (1960).
 R. W. McKellar, W. Goetz, and D. A. Ramasay. Astrophys. J. 207, 663 (1976); as quoted by Dabrowski and Herzberg. P. J. Brannon, C. H. Church, and C. W. Peters, J. Mol. Spectrosc. 27, 44 (1969).
 B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).

¹⁰G. A. Khachkuruzov, Opt. Spectrosc. 30, 455 (1971).

¹¹H. W. Woolley, R. B. Scott and F. G. Brickwedde, J. Res. Nat. Bur. Stand. 41, 379 (1948)

¹²CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973). ¹³UPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976); 37, 589 (1974).

7-10	Enthalpy R	eference Te	Enthalpy Reference Temperature = T, J·K - mol - 1	- 7, - 298.15 K		iandard State	Standard State Pressure = p° = 0.1 MPa _KJ·mol ⁻¹	° = 0.1 MPa
	7.1	:	S° -[G	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{r})$	$\Delta_i H^{\bullet}$	A.G.	log K,
	° 88	29.288	0.	INFINITE 169.759	-8.509	0.330	0.330	INFINITE 0.176
	298.15	29.200		143.803	0.	0320	-1.463	9550
	300	29.202	143.983	143,803	0.054	0.321	-1 474	0.257
	8 8	29.231	158.915	144.949	2.976 5.901	0.328	-2.074	0.271 0.279
	88	29.395	164263	149.539	8.834	0.323	-3275	0.285
•	88	29 890	172.778	154.333	14.756	0.297	-3.8/4	0.289
	88	30.269 30.708	176.320 179.531	156.582	17 764 20.812	0.278	-5.066 -5.659	0.294
	1100	31.183	182.480	160.747	23.907	0.236	-6.250	0.297
•	88	32.164	187 769	164.507	30.242	0.19	-7.425	0.298
	1500	33 101	192.438	167.926	35.769 36.769	0.162	-8.011 -8.595	867
	1600	33,539	194589	169.525	40.102	0.147	-9.179	0300
'n	008	34341	198.586	172.536	46.891	0.123	-10343	38
2 e	200 200 200 200 200 200 200 200 200 200	35.050	200.453	173.956	50.344 53.832	0.105	-10.924	986
ally	2100	35.371	203,960	176.649	57.353	0.098	-12.085	0.301
	2300	35.962	207.205	179.167	64.487	0.087	-13.245	30,0
	2200	36.491	210.225	181.532	71.734	0.079	-14.403	35
rect s	2600 2700	36.738 36.972	211.661	182.663 183.763	75.395 79.081	0.077 0.075	-14.983	0301
2	2800	37.198	214 401	184 834	82.789	0.073	-16.141	0.30
and	3000	37 625	216.982	186.892	90.272	0.073	-17.299	35
윺	3100	37.829	218.219	187.882	94.045	0.074	-17.878	0301
ose 1	330	38.223	220.597	189.794	101.650	100	-19.036	300
cls.	8 £	38.602	222.857	191.619	109.333	0.079	-19.616	55
nes	3600	38.788	223.947	192.502	113,202	0.085	-20.774	0.301
5	3800	39.153	226.054	194213	120.996	0.094	-21.933	50.00
D. ¹³	\$ 6	39.513	228.071	195.855	128.863	0.105	-23,093	0.302
² H.	4100 4200	39.690 39.866	229.049	196.653	132,823	0.112	-23,673	0.302
3 Le	530	40.041	230.948	198.204	140.797	0.127	-24.834	0302
. Ey	\$00	40.384	232.776	199.701	148.839	0.145	-25.995	0302
	44 600 70 70 70	40.551	233.665	200.429 201.146	152,886 156,949	0.155 0.166	-26.576 -27.157	0.302
	64 60 60 60 60	40.876	235.398 236.243	201.850 202.544	161.029 165.124	0.178 0.191	-27.739	0.302
	2000	41.185	237.073	203.226	169.235	0.204	-28.902	0.302
-	2300 2300	41.474	237.890 238.694	203.898 204.559	173.361	0219 0234	-29.485	0302
	2300	41.610	239.485	205.211	181.656	0250	-30,650	0,302
****	2200	41.859	241.031	206.485	190,003	0286	-31.817	0302
	2500 2005 2006	41.972	241.787	207.109	194.195	0.305	-32,401	0,302
	2800	42.174	243.263	208.330	202.610	0.345	-33.570	2050
	800	42.339	244.696	209.519	211.062	0389	-34.740	0302

PREVIOUS: June 1977 (1 atm)

CURRENT: September 1977 (1 bar)

Enthalov Refer $\Delta_i H^{\circ}(0 \text{ K}) = 1490.499 \pm 0.021 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [1496.793] \text{ kJ}$

S°(298 15 K) = 155.552 ± 0.04 J·K⁻¹·mol⁻¹

Hydrogen-d₁, Ion (HD*)

IDEAL GAS

Vibrational and Rotational Levels (cm

Direct Summation using Energy-Level Equations for the ${}^3\Sigma_4^*$ Electronic Ground State. $E=G-G_0+F=G-G_0+BZ-DZ^2+HZ^3-LZ^4+... \sim G-G_0+BZ-DZ^2+HZ^3-LZ^4+... \sim G-G_0+BZ-DZ^2+HZ^3-LZ^4+...$ where Z = N(N+1), Y = v+U2, and we omit subscript v on G, F, B, D, H, and LElectronic statistical weight = 2 and rotational statistical weights = I(even and odd N) r. = 1.057 Å $D = 1.12041 \times 10^{-2} - 4.24035 \times 10^{-4} \ Y + 1.26643 \times 10^{-5} \ Y^2$ $H = 7.26086 \times 10^{-6} - 2.19375 \times 10^{-7} \ Y \ and \ L = 5.06679 \times 10^{-9}$ $G = 2012.19 \text{ Y} - 505532 \text{ Y}^2 + 0.0604244 \text{ Y}^3 - 0.0163194 \text{ Y}^4$ $B = 224643 - 1.03566 \text{ } V + 0.0180076 \text{ } Y^2 - 0.000633616 \text{ } Y^3$ $v_{max} = 21$ and $N_{max} = 47 - 38v/v_{max}$

kcal·mol-1). Takezawa and Tanaka² determined IP = 124569.5 ± 0.6 cm⁻¹ from Rydberg spectra of HD Similar studies on H₂ by Her Δ_tH*(0 K) = 356.238 ± 0.005 kcal·mol⁻¹ is obtained from that of HD(g)¹ using IP(HD) = 124568.5 ± 12 cm⁻¹(336 159 ± and Jungen³ revealed a bias of ~1.0 cm -1 attributed to a pressure shift in the spectra. We assume an equal shift for HD, adjust IP by -1.0 and increase the uncertainty due to this adjustment. $\Delta_t H^o(0 \text{ K})$ is converted to $\Delta_t H^o(298 15 \text{ K})$ by use of JANAF enthalpies, $H^o(0 \text{ K})$ H° (298 15 K), for H₂, D₂, HD² and e⁻(g). The difference in Δ_1H° (298 15 K) between HD² and HD should not be interpreted as a room perature ionization threshold due to inclusion of these enthalpies and to threshold effects noted by Rosenstock et al.

The adopted spectroscopic IP(HD) receives strong support from a value calculated indirectly from experimental values of D%(HD) IP(H) combined with the theoretical value⁵ of D%(HD¹), this indirect value differs by only 0.3 cm⁻¹. Furthermore, IP(HD) can be pred of IP(HD) deviate from the observed value by ~16 cm⁻¹ (based on H₂) and ×16 cm⁻¹ (based on D₂) Inclusion of an empirical adjustme the difference IP(D)–IP(H) overcorrects the predictions, giving deviations of +14 cm⁻¹ (based on H₂) and ~14 cm⁻¹ (based on D₂). The av approximately from that of H₂ (or D₂) using differences in zero-point energies of the diatomic molecules and their ions. Predicted of of deviations derived from H₂ and D₂ is zero, suggesting that the slight discrepancies are due to the approximate nature of the prediction approximate photoionization result, reviewed by Rosenstock et al., * deviates from the spectroscopic result by ~130 cm⁻¹.

Heat Capacity and Entropy

above. We use 1973 fundamental constants? in an extended version of a computer program written by W. H. Evans and provid. D. D. Wagman of the U. S. National Bureau of Standards. Excited electronic states are neglected because they do not contribute signific Thermodynamic functions for ortho-para "equalibrium" HD* are calculated by direct summation using the energy-level equations The electronic statistical weight is taken equal to the multiplicity since we neglect the very small rotational splitting.

Coefficients of the energy-level polynomials are calculated from the theoretical values of H21 using tho = 0.866If7 in isotopic equa These polynomials are confirmed by six rotation-vibration transitions (v≤3, N≤2) observed between 1642 and 1869 cm⁻¹ by an im laser-resonance method.[‡] Our polynomials predict these transitions within 0.1 cm⁻¹ We give the polynomial coefficients, especially I order ones, to many more digits than are justified by their accuracy. The equations are very approximate near N_{ma}, but, judging by H3 should have little effect on the thermodynamic functions even at 6000 K. The approximate v_{max} is derived from the G polynomial.

The thermodynamic functions include contributions from quasi-bound levels lying above $D_0^2(HD^+\to H^+H) = 21516 \text{ cm}^{-1}$ At 6000 K levels contribute 0.39 cal·K⁻¹ mol⁻¹ to the Gibbs-energy function Their contribution is negligible to found above the respective values of D°. The crudity of these estimates makes C° at 6000 K somewhat more uncertain than in the c. 3000 K. Limiting rotational quantum numbers N_{ma} are estimated from H₂, H₂ and HD¹ by comparing energy increments and rotational

References

JANAF Thermochemical Tables: H₂(g), D₂(g), H'(g), O'(g), e⁻(g), 3-31-77; HD(g), 6-30-77, H₂,(g), HD'(g), D₂(g), 9-30-77.
 Takezawa and Y. Tanaka, J. Chem. Phys. 56, 6125 (1972).

¹G. Herzberg and Ch. Jungen, J. Mol. Spectrosc 44, 425 (1972).
 ¹H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, J Phys. Chem. Ref. Data 6, Supp. I (1977).
 ¹G. Hunter and H. O. Pritchard, J. Chem Phys. 46, 2153 (1967).
 ¹D. Villareigo, J Chem. Phys. 48, 4014 (1968).
 ¹E. R. Cohen and B. N. Taylor, J. Phys Chem. Ref. Data 2, 633 (1973).
 ¹W. H. Wing, G. A. Ruff, W. E. Lamb and J. J Spezeski, Phys Rev. Lett. 36, 1488 (1976).

-lom:	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1. K^{-1} mol-1		Standard Stat	Standard State Pressure = 1	$p^* = 0.1 \text{ MPa}$
2	7/K	ಟ	S - [C	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	Α'Η'	₽ <i>Q</i> •	log K,
	0000 0000	0 29.179 29.213	0. 123.637 143.870	INFINITE 181.549 158.230	-8.614 -5.791 -2.872	1490.499		
	298.15	29,334	155.552	155.552	ó	1496.793	1485.251	-260.210
	88	29.339 29.742	155 733 164 221	155.552	3.005	1496.832	1485 179 1480 977	-258.593
	8 8	30.461	170.930	158.903	6.014	1501.108	1476.235	-154.221
	88	32.281	176.561 181.464	161.389	9.104 12.286	1503,338	1471.052	-128.067 -109.356
	888	33.161 33.960	185.833	166,385	15.558 18.915	1508.002	1459.594	-95.302 -84.353
	01	35.304	196.737	173.239	25.847	1515.316	1440.223	-68.390
	388	35.865 36.369	199.833 202.724	175.328 177.325	29.406 33.018	1517.790	1433.287	-62.389 -57.303
0.004	9 9 9 9 9 9 9	36.825 37.244	205.436 207.991	179,237 181,070	36.678 40.382	1522.749 1525.228	1418.811	-52.936 -49.146
rzberg	92	37.633	210.407	182.829	44.126	1527 704	1403.624	-45.824
J cm _ 1	08	38.351	214.882	186.146	51.72	1532.647	1387.817	-42.888
Tem-	88	38 692 39.024	216,963	187.713	55.577 59.463	1535.115	1379 704	-37.931 -35.819
í	2200	39,353	220.870	190.688	63,382	1540.053	1363.094	-33.905
U) and dicted*	230	40.008	224.479	193.471	71.318	1545.000	1346.012	-30.569
values	2200	40 661	227.842	196.088	79.385	1549.970	1328.499	-23.100
ent for	2600	40.984	229.443	197.340	83.467	1552.467	1319.591	-26.511
verage	2800	41.614	232.503	199.744	91.728	1557.488	1301.489	-24.280
on. An	888 888	41.914 42 199	233.969 235.395	200.899 202.025	95.904	1560.012 1562.544	1292.302	-22,339
	3100	42.466	236.783	203.124	104.344	1565.084	1273.668	-21.461
Fictor	3300	42.929	239.453	205.245	112.885	1570.180	1254.707	-19.860
ded by	3500	43.278	241.990	207.273	121.507	1572.731	1235.435	-19.129
cantly.	3600	43.403	243.211	208.254	125.842	1577.829	1225.689	-17.784
	3800	43.549	245.562	210.157	134.539	1582.898	1205.988	-16.577
attons. nfrared	6 30 6 00 9 00	43.568 43.551	246.693 247.796	211.079	138.896	1585.414 1587.912	1196.036	-16.019 -15.488
higher	4100	43.499	248.871	212.870	147.605	1590,390	1175.942	-14.982
2, this	64	43.292	250.938	214.593	156286	1595.271	1155.608	-14 038
s these	4500	42.959	252.899	216.252	164.913	1600.030	1135.048	-13.175
below	84 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	42.751 42.517	253.841 254.758	217.059	169.199 173.462	1602.358 1604.648	1124 690	-12.771
duality ase of	4800	42.260	255.651	218.630	107.771	1606.898	1103.824	-12.012
	2005	41.687	257.365	220.145	186.097	1611.271	1082.772	-11.33
	5100	41.375	258.187	220.883	190,250	1613.391	1072.181	-10.981
	2300	40.711	259.766	222,321	198.460	1617.495	1050.877	-10.357
	2500	40.008	261.261	223.710	206.532	1621.412	1029.421	-9.777
	250 270 200	39.645 39.279	261.979 262.677	224.387 225.053	210.515 214.461	1623.301 1625.143	1018.641	-9.501 -9.236
	% % %	38.909 38.538	263.357 264.019	225.707 226.351	218.371 222.243	1626.939 1628 690	996.981 986.105	-8.979 -8.730
	0009	38.166	264 664	226.984	226.078	1630,396	975.199	-8.490

PREVIOUS: September 1977 (1 atm)

CURRENT: September 1977 (1 bar)

M _r = 3.022591 Hydrogen – D ₁ , Ion (HD ⁻)	Δ _t H ^o (0 K) = [241.543 ± 41.8] kJ·mol ⁻¹ Enthalpy Reference Temperature = T _r = 298.15 K Δ _t H ^o (298.15 K) = [225.484] kJ·mol ⁻¹
M _r = 3.022591	$\Delta_H^{\circ}(0 \text{ K}) = [241.543 \pm 41.8] \text{ kJ·mol}^{-1}$ $\Delta_H^{\circ}(298.15 \text{ K}) = [235.4841 \text{ kJ·mol}^{-1}]$
IDEAL GAS	
Hydrogen-d ₁ , Ion (HD ⁻)	$S^{\circ}(298.15 \text{ K}) = [151.206 \pm 0.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

).4] J·K ⁻¹ ·mol ⁻¹			$\Delta_H^{\circ}(0 \text{ K}) = [241.543 \pm 41.8] \text{ kJ·mol}^{-1}$ $\Delta_H^{\circ}(298.15 \text{ K}) = [235.484] \text{ kJ·mol}^{-1}$	3
37	Electronic Leve State	Electronic Level and Quantum Weight State ε, cm ⁻¹ 8,		
	X2X.	0 2		
$\omega_e = [1473] \text{ cm}^{-1}$ $B_e = [19.0] \text{ cm}^{-1}$		ω _{ετ.} = [26.3] cm ⁻¹ α _{τ.} = [0.259] cm ⁻¹	σ-2 r _e -[1.15] Å	

Enthalpy of Formation

The enthalpy of formation at 0 K for HD (g) is based on the electron affinity value from a Rydberg-Klein-Rees configuration-interacti calculation for H_2 . This study by Sharpe¹ led to EA(H₂) = -2.5 eV. Assuming this value is valid for HD⁻(g) and using auxiliary dara. Accelerate $\Delta_1H^2(0 \text{ K}) = 57.73 \pm 10 \text{ kcal-mol}^{-1}$ and $D^0(\text{HD}^{-1}) = 29.0 \pm 10 \text{ kcal-mol}^{-1}$; the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated for dissociation into ground the latter value is calculated the latter value is calculated to the latter value is calculated the latter value is calculated the latter value is calculated to the latter value is state D(g) and H^{*}(g) or D^{*}(g) and H(g). The adopted EA (H₂) value is suggested to be the more reliable value of eight studies consider

In terms of molecular orbitals, the ground state for HD⁻(g) is the (Isa_p)² (2pa_p) 22, state involving two bonding electrons and or antibonding electron. We would expect, however, the ground state to be (Isa_p)² (Isa_p). As stated by Massey,⁴ we should expect only weakly-bound molecule as compared with HD(g) for which the ground state has no electron an antibonding orbital. Our adopted calculate AcHO) value is consitent with this viewpoint. Further discussion of the HD⁻(g) to many be found in Massey. As AcHO) value is converted to AH²(228.15 K) by use of JANAFF enthalphies, H²(0 K)-H²(228.15 K), for D²(g), H₂(g), DH⁻(g), and e⁻(g) AH²(228.15 K) should not be interpreted as a room temperature electron affinity due to inclusion of these enthalpies and to threshold effec

Heat Capacity and Entropy

are calculated from those for H7(g) using isotopic relations. The internuclear distance is estimated to be ~8% larger than that for H5(g). The same relationship appeared to exist for the (N2, NO, O3) isoelectronic series. Be is calculated from re whereas as is calculated assuming The vibrational constants for H₂(g) are estimated to be the same as in the isoelectronic species He² ⁵ The vibrational constants for HD⁻ Morse function for the ground state.

The ground and excited electronic states are discussed in detail by Massey. No excited state contributions are included in this calculation

References

T. E. Sharpe, Lockheed Report LMSC 5-10-69-9 (1969).

A. A. Sharpe, Lockheed Report LMSC 5-10-69-9 (1969).

A. A. A. Thermochemical Tables: H(g), H^{*}(g), D_{*}(g), H_{*}(g), and e^{*}(g), 3-31-77, H^{*}(g), 9-30-77; HD(g), 6-30-77.

H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Hermon, J. Phys. Chem. Ref. Data 6, Supp. I, 783 pp. (1977).

H. S. W. Massey, "Negative lons," 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).

B. Rosen, Ed., Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970).

7-10-1	Enthalpy R	eference To	Enthalpy Reference Temperature = T.	- T, - 298.15 K	*	Standard State Pressure		p = 0.1 MPa
5	TÆ	i,	2 -[C	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\circ}(T_{i})$	A.H.	A.G.	log K _r
	2880	0. 29.198 29.304 29.471	0. 119.174 139.437 145.992	INFINITE 177.359 153.910 151.695	-8.656 -5.818 -2.895 -1.426	241.543		
	298.15	29.771	151,206	151,206	oʻ	235,484	237.747	-41.652
	388	29.786 30.239	151.391	151.207	0.055	235.447 234.453	237.762 238.226	-41.398
	8 2 2	30.787	160.087 163.748	152.386 153.449 154.648	3.081 4.635 5.219	232.480	238.832 239.558 240.388	-31,188 -27,807 -75,113
	8	33.121	173.020	157.227	9.475	229,853	242,310	-21.095
tion	88	34.721	178,201	159.861	12.838	228.178	244.520	-18.246
and a	<u>88</u>	35.603	186.963	164.944	19.817	224.985	249.610	-14.487
par	202	36.655	194216	169.626	27.049	221.875	255.406	-12.128
ě	88	37.430	200.405	173.896	30.736 34.461	220.319 218.755	258.522	-11.253
y a	24.0 0.00 0.00 0.00	37.750 38.038	203.191	175.891 177.799	38,220 42,010	217.177	265.137 268.619	-9.892
ated	925	38.299	208.269	179.627	45.827	213.976	272,206	-8.887
(e)	888	38.762	212.807	183.066	53.534	209 058	283.581	-8.116
SCCS	2000	39.169	216.913	186.248	61.328	207.391	287.521	-7.509
	222	39.358	218.828	187.755	65.255 69.199	205.710	291.569 295.697	-7.252 -7.021
<u> </u>	7500 7500 7500	39.879	22.13	191.976	77.142	200.601 200.601	304.182	-6.620 -6.446
e e	2600	40.201	227,323	194.573	85.150	197.148	312.954	-6287
20	7808	40.508	230.314	197.020	93.221	193.665	321.992	-6.007
ion.	388	40.657 40.804	231.738 233.119	198.193 199.335	97.279 101.352	191.914 190.156	326 606 331,281	-5.883
	3200	40.949	234.459	200.446	105.440	188.393	336.014	-5.662
	3300	41.233	237.028	202.586 203.617	113.658	184.852 183.074	345.650 350.549	-5.471
	3200	41.511	239.462	204.624	121.933	181.291	355,501	-5.306
	3500 3700 3700	41.785	240.634	205.608	126.091	179.505	360.504	-5.231
	8 8 8 8 8 8	42.055 42.189	243.983	208.433 209.335	138.647	174.120	375.805 375.805	-5.033
	4100	42.322	246.093	210.219	147.084	170.511	386.239	-4.921
	44 400 400 400	42.718	248.115	211.935	155.575	166,886 165,069	396.849	-4.821 -4.775
	\$ \$	42.849	250.057	213.586	164.119	163.248	407.628	-4.732
	864 865 865	43.110	251,000	214.389	172,715	161.425	413.079	-4.691
	84 4 8 8 8 8 8 8 8 8 8 8	43.498 43.498	25.25 25.73 24.665	215.933 216.715 217.464	177.032 181.363 185.706	155,938 155,938 154,106	424.099 429.666 435.271	-4.615 -4.580 -4.547
	5100	43.627	255.468	218.201	190.062	152.272	440.912	-4516
	2300	43.884	257.151	219.639	198.813	148,603	452,303	-4.458
	2500	44.140	258.781	221.033	207.616	144,936	463.831	-4.405
	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	44.395 44.395	259.578 260.362	221.714 222.385	212.036	143.105	469.646	-4381
	2800 2800	44.522	261.136	223.047 223.699	220.915 225.374	139.452	481.373	-4335
-	0009	44.776	262,649	224.342	229.845	135.817	493,225	-4294

PREVIOUS: September 1977 (1 atm)

	7
- 2	ř
C)
~	÷
-	:
•	١

CURRENT June 1977 (1 bar)

PREVIOUS: June 1977 (1 atm)

Water-D₁(HDO)

D,H,O,(g)	Standard State Pressure = p = 0.1 MPa
W = 19.021442 Water-D,(HDO)	Δ _t H*(0 K) = -242.435 ± 0.063 kJ·mol ⁻¹ Enthalpy Reference Temperature = T _t = 298.15 K
M _r = 19.021442	$\Delta_i H^{\circ}(0 \text{ K}) = -242.435 \pm 0.063 \text{ kJ·mol}^{-1}$
IDEAL GAS	

•		•				(001)10					_	(B)'O'E'O
298.15 K) = 199.512 J·K ⁻¹ ·mol ⁻¹	i.K ⁻¹ .mol ⁻¹			$\Delta_t H^0(0 \text{ K}) = -242.435 \pm 0.063 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -245.371 + 0.063 \text{ kJ} \cdot \text{mol}^{-1}$	Enthalpy Re	ference Ter	emperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1 \cdot \text{K}^{-1} \text{mol}^{-1}$		Standard State Pressure = $p^* = 0.1$ MPa $t \cdot mod^{-1}$	Pressure = p	- 0.1 MPa
					7/K	ະ	S -[G	-[G*-H*(T,)]/T	H*-H*(T,)	Δ,H*	₽'C•	log K.
		Vibrational Freque	Vibrational Frequencies and Degeneracies		200 0 200 0	0. 33,300 33,363	0 163,034 186,126	INFINITE 229.267 202.590	-9.924 -6.623 -3.293	-242.435 -243.461 -244.410	-242.435 I -240.424 -237.015	INFINITE 125.584 61.902
		27.	2723.66(1)		298.15	33.786	115661	115661	oʻ	-245.371		40.852
		14 37	1402.80(1) 3707.47(1)		\$ \$ \$	34.773 36.045	199.720 209.569 217.463	199.511 200.848 203.406	3.489 7.028	-245.389 -246.362 -247.278	-233.106 -228.863 -224.381	29.886 29.886 23.441
	Ground	Grand State Overtime Weight 1	-	- 1	88	37.451 38.920	224.158	206.320	10,703		-219.722	19.128
	Point G	Point Group: C.			888	40.405	235,335	212.226	18.487	-249.581 -250.195	-210.026 -205.044	13.713
	Bond A	Bond Angle: H-O-D = 104.45°	84 A; U-D = 0.9834 A 45°		8 2 2	44.622	248.854	217.805	26.860 31.256		-199.998 -194.900	10.447 9.255
thalpy of Formation	Product	of the Moments of Ir.	Product of the Moments of Inertize $I_AI_BI_C=1.59584\times10^{-19}$)-119 g ³ -cm ⁶	888	48.087 48.087	252.791 256.509 260.033	222.972 225.411 227.759	35.782 40.428 45.184	-251.624 -251.981 -252.289	-189.763 -184.593 -179.397	8.260 7.417 6.693
rd and 2nd law (where	: possible) analys	es of the more recent o	determinations 1-5 of the exp	rd and 2nd law (where possible) analyses of the more recent determinations ¹⁻³ of the experimental equilibrium constants. Kee, were made	98.	49,055	263,384	230.023	50.042		-174.181	9000
the reactions: (A) F 7(298 15 K), of (A) a	1.O(g) + HD(g) = nd (B) were base	- HDO(g) + H ₂ (g), and another zero point e	id (B) H ₂ O(g) + D ₂ O(g). Somerairs of H ₂ O, D ₂ O, and	the reactions. (A) H ₂ O(g) + HD(g) = HDO(g) + H ₂ (g), and (B) H ₂ O(g) + D ₂ O(g). Spectroscopic values for the heats of reaction, (2298 15 K), of (A) and (B) were based on the zero point energies of H ₂ O. D ₂ O, and HDO given by Huleton, and M ₂ O(febern) and H	8 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	50.735 51.463	269 631 272 551	234.321 234.321 236.364	60.026 65.137	-252.985 -253.159	-168.949 -163.702 -158.445	5.030 4.598
given by Herzberg	and Monfils. Th	e earlier work on (A	cited by Kirshenbaum'	given by Herzberg and Monfils. The earlier work on (A) cited by Kirshenbaum's in poor agreement except for that of Herrick, happening the control of the con	700 700 700 700	52.124 52.731	275.352 278.041	238.343 240.261	70.317	-253.311	-153.179 -147.906	4.211 3.863
$H_2O(1) + D_2O(1) = 2 \text{ F}$	(IDO(I) has been	determined to be 32	$0 = 928 \pm 30,921 \text{ kcal·mol}$ $2 \pm 1 \text{ cal·K}^{-1} \cdot \text{mol}^{-1} \cdot 10^{-12} \text{ and } 10^{-12} $	includant, brown any netrick, Clist, Davis $\Delta_t \pi$ (296.15 K) = 9.5 ± 30, 9.1 Kcal·mol · respectively). $\Delta_t H$ (298.15 K) for the reaction $H_2O(1) + D_2O(1) = 2$ HDO(1) has been determined to be -32 ± 1 cal·K ⁻¹ ·mol ⁻¹ $^{10-12}$ assumine ideal solutions (see ¹³) and K (C) ~ 3.8	2200	53.279	280.627	242.122	80.861		-142.626	3.548
calculate $K_{eq}(C) = 0.027 \pm 0.00$	3.76 ± 0.04 fn	om K _{eq} (B) = 3.76 ±	0.02, P°(H ₂ O)/P°(D ₂ O)	calculate $K_{\rm eff}(C) = 3.76 \pm 0.04$ from $K_{\rm eff}(B) = 3.76 \pm 0.02$, $P^{\circ}({\rm H_2O})P^{\circ}({\rm D_2O}) = 1.151 \pm 0.006^{4}$ at 298.15 K, and $P^{\circ}({\rm H_2O})$	2002	\$4.246 \$4.246	285.519	245.686 245.686 247.194	91.616	-253.775	-132.050	788 788 788 788 788 788 788 788 788 788
HDO) = 1.0/3 ± 0.00 DOO = H-O(0 = 331	4" at 298 15 K.) + 8 cal (see D4	Δ,H (298.15 K) of (B) (B) (B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	() was calculated from the di	HUV) = 1.015 ± 0.04 ± 0.28 IS K.) A.H. (128. IS K) (18) was calculated from the difference in enthalpies of supprization at 128. IS K.) HUV) = 1.015 ± 0.04 ± 0.04 ± 0.05 IS K.) A.H. (128. IS K.) (18) was calculated from the difference in enthalpies of supprization at 128. IS K. HUV) = 1.015 ± 0.04 ± 0.05 EV. (14. IS K.) (18) was calculated from the difference in enthalpies of supprization at 128. IS K.	2500	55.061	290.076	249.057	102.549		-121.457	2538
og on non-spectroscop	ic and spectrosco	opic work for (A) and	(B), underlined in the table,	220.7 Fig. (1) = 25 cm (sec. D ₂ O table), and $\pi(D(A)) = \pi_2(A) = 100 \pm 20$ can when year calculate values of $\Delta_1H'(298.15 \text{ K})$ and one-spectroscopic and spectroscopic work for (A) and (B), underlined in the table, were used to calculate values of $\Delta_1H'(298.15 \text{ K})$	2600 2700	55.421 55.752	292.243 294.341	250.676 252.255	108.073 113.632		-116.155 -110.850	2334
1DO(g) - H ₂ O(g) of - -850 ± 10 cal·K ⁻¹ ·m	- 845 ± 6, - 85.	$110X(g) - H_2U(g)$ of -845 ± 6 , -852 ± 12 , and -851 ± 10 cal·K ''-mol'', -850 ± 10 cal·K ''-mol' was added to $\Delta_1H^0(298.15 \text{ K})$ of $H_2O(g)$ to obtain .	. 🕶	respectively (see D ₂ O and HD tables). An average value l _t H*(HDO, g, 298.15 K).	3200	56.350 56.350 56.618	296.374 298.346 300.261	255.297 255.297 256.764	124.844	-254,223 -254,313 -254,405	-105.541 -100.230 -94.915	1.805
			ΔrH*(298.15-K1),	Drift	3100	56 869 57.103	302,122	258.197	136,167		-89.597	1510
rce	Reaction	T/K	kcal·mol-1	cal·K ⁻¹ ·mol ⁻¹	3300 3400	57,325 57,530	305,692	260.968	147.587	-254.705	-78.952	222
raj et al. 1	V	324-1015	-915 ± 20	$0.04 \pm 0.10 \ (-864 \pm 30, 0.12 \pm 0.07)^{2}$	3500	727.72	309 077	163.622	159.093	-254,932	-68.294	1019
SS*	۷٠	353-473	<u>-921 ± 6</u>	$0.05 \pm 0.05 (-9.55 \pm 29, 0.09 \pm 0.09)^{*}$	3,00	58 086	310,706	264.907 266.166	170,675	-255.056	-62,960	0.914
ston- Ifsberg ⁷	< <	Spectroscopic	$\frac{-928 \pm 10}{-937 \pm 10}$		3800	58.250	313.846	267.401	176.491	-255.326	-52.280	0.719
er, Newbury and	B	273.15	56 ± 11	(3.75 ± 0.08) ^b	4000	58.559	316.842	269.799	188.173	-255.629	-41.586	0.543
Barton ³	٥	297.95	63 ± 11	$(3.74 \pm 0.04)^{b}$	4 2 2 8 8 8	58.702 58.835	318.289	270.964 272.107	194,036 199,913	-255.794 -255.968	-36.233	0.462
dital ald Sime	۵	208.15	28 H 3	(3.74 ± 0.02)°	65.4 0.05 0.05	58 965 59 70 10 10 10 10 10 10 10 10 10 10 10 10 10	321.092	273.230	205.803	-256.152	-25.514	0.310
		358.15	62 ± 7	(3.70 ± 0.02) $(3.80 \pm 0.04)^{6}$	4200	59.208	323 778	275.418	217.621	-256.551	-14.778	0.13
sge, Chiang	В	298.15	46±5	$(3.85 \pm 0.03)^{b}$	4600 000 000 000	59.321	325.080	276.483	223.547	-256.766	-9.403	0.107
ction C, see text	m a	298.15	57 ± 22	*	\$60	59.538	327 610	278.561	235.433	-257.229	1362	-0.015
ston Ifsberø	a æ	Spectroscopic	0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1		\$ §	59,739	330,044	280.572	241.392 247.361	-257,477	6.752	-0.072
0	Second law.	Δ,H°(298.15 K), S°("Second law: Δ_H (298.15 K), S'(298.15 K) (obsvcalc.); 'Keq at temperature cited.	keq at temperature cited.	5100	59.831	331.228	281.554	253.340	-258.006	17.547	-0.180
at Capacity and Entropy be themodynamic functions	tropy	are analooons to th	bose in the IANAF table for	it Capacity and Entropy The Demodynamic functions of this table are analogous to those in the TANAF table for H. Otel Moreh 21, 1961). Note tables one outton	2,000	60093	333.533 334.656	284.410	265.324	-258.580 -258.883	33.781	0.327
n Friedman and Haar.	16 Friedman and	Haar sapplied their no	on-rigid-rotor, anharmonic	n Friedman and Haar. 16 Friedman and Haar 16 applied their non-rigid-rotor, anharmonic-oscillator treatment (with vibrational-rotational	2009	177.09	336.845	286.243	283.367	-259.524	44.632	-0.372
pling terms and low-	temperature rotal	tional corrections) to t	the infrared-spectra analyse	s of Benedict et al. 18 In the present table for	5700 5800	60.350 60.430	337.912 338.962	287.140 288.025	289.398 295.437	-259.860 -260.206	50.066 55.507	-0.459 -0.500
000 K. I _A = 0.1213 ×	10 ⁻³⁹ , I _B = 0.307	1×10^{-39} , $I_C = 0.4284$	t × 10 ⁻³⁹ g·cm² from Friedn	So the variety of the first man are traced the control of the cont	8900 8000	60.505	339.996 341 014	288.897 289.757	301.484 307.538	-260.563 -260.931	60.952 66.406	-0.540
		The second second second										

			ΔrH*(298.15-K1),	Drift
Source	Reaction	7/K	kcal·mol ⁻¹	cal·K ⁻¹ ·mol ⁻¹
Cerrai et al.	Y	324-1015	-915 ± 20	$0.04 \pm 0.10 \ (-864 \pm 30, 0.12 \pm 0.07)^*$
Suess ²	∢	353-473	-921 ± 6	$0.05 \pm 0.05 (-9.55 \pm 29.0.09 \pm 0.09)^*$
Hulston	∢	Spectroscopic	-928 ± 10	
Wolfsberg ⁷	∢	Spectroscopic	-937 ± 10	
Pyper, Newbury and	В	273.15	56 ± 11	$(3.75 \pm 0.08)^b$
Barton ³		297.95	63 ± 11	$(3.74 \pm 0.04)^{b}$
Friedman and Shiner	æ	273.15	58 ± 3	$(3.74 \pm 0.02)^{\circ}$
		298.15	60 ± 3	$(3.76 \pm 0.02)^{\circ}$
		358.15	62 ± 7	(3.80 ± 0.04)
Kresge, Chiang ⁵	B	298.15	46 ± 5	$(3.85 \pm 0.03)^{6}$
Reaction C, see text	æ	298.15	57 ± 22	
Hulston	B	Spectroscopic	65 ± 10	
Wolfsberg ⁷	æ	Spectroscopic	70 ± 10	
	"Second law:	Δ,H°(298.15 K), S°	Second law: A.H. (298.15 K), S'(298.15 K) (obsvcalc.); 'Keq at temperature cited.	keq at temperature cited.

from Friedman and Haar. Friedman and Haar's applied their nor-rigid-rotor, and managed of the statement (with vibrational-rotational coupling terms and low-temperature rotational corrections) to the infrared-spectra analyses of Benedict et al., 71 in the present table for HDO, the values of C_p^a of Friedman and Haar's between 4000 and 5000 K were extrapolated linearly (except with a term in T) from 5000 to 6000 K. $I_A = 0.1213 \times 10^{-39}$, $I_B = 0.3071 \times 10^{-39}$, $I_C = 0.4284 \times 10^{-39}$ erm² from Friedman and Haar. The National Bureau of Standards prepared this table ¹⁹ by critical analysis of data existing in 1972. The thermodynamic functions of this table are analogous to those in the JANAF table for H₂O(g) (March 31, 1961): both tables are tablen

¹I. Cerrai, C. Marchetti, R. Renzoni, L. Roseo, M. Silvestri, and S. Villani, Chem. Eng. Prog. Symp. Ser. 50, (11), 271 (1954).
²H. Suess, Z. Naturforsch. 4a, 328 (1949).

Continued on page 1048

Water-d, (HDO)

CURRENT. June 1977 (1 bar)

PREVIOUS: June 1977 (1 atm)

Imidogen-D₁(ND)

IDEAL GAS
<u>Q</u>
Imidogen-d, (ND

D'N'(B)

Enthalpy of Formation

\[\rangle H^P(298.15 K) of ND(g) minus NH(g) was calculated from the JANAF thermal functions and the zero point energies of H₂(g), D₂(g) [givv by Herzberg and Monfils], I NH(g), and ND(g) [given by Haar, et al.]² A₂H*(298.15 K) of ND(g) was calculated from this value and the JANAF selection for A₂H*(298.15 K) of NH(g).

I ANAF selection for A₂H*(298.15 K) of NH(g).

Heat Capacity and Entropy

The molecular constants which are given for NH in the JANAF Thermochemical Tables³ were adjusted for the isotope effect. The Nation
Bureau of Standards prepared this table⁴ by critical analysts of data existing in 1972. Using molecular constants and ∆_tH° selected by NBS
we recalculate the table in terms of 1973 fundamental constants,⁴ 1975 atomic weights,⁵ and current JANAF reference states for the element

Heferences

G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).

P. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20, (1961).

Hand F. Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, (June 1971).

S. Abramowitz et al., U. S. Nat. Bur Stand, Rept 10904, 239, (July 1972).

CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973).

FUPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976); 37, 589 (1974).

Enthalp	- 	2000°	298.15	~~~ & % &		13e	288	mal 110		92	888	320		3 88	2862	8 F	330	350	360	380 986 990 990 990	420	4300 4400 4500	460	0084 0084 0085	516	\$300 \$400 \$400	38	2800
Enthalpy Reference Temperature = Tr = 298.15 K	ដ	0 0. 0 29.118 0 29.131 0 29.140		0 29.160 0 29.208 0 29.300			0 31.604 0 32.298 0 32.943		0 34.514 0 34.925 0 35.290		36.166		37.152							38.745 0 38.822 0 38.896								
emperature		0, 155.412 175.599 182.100		187.414 191.912 195.818	199.277	207.844	216.722 220.485 223.922	227.090	232.774 235.347 237.770	240.058	244286	249.911	253.276	257.857	260.651 261.980	263.268	265.729 266.907	268.053	270.253 271.312	272.344 273.351 274.335	275.296 276.236	277.156 278.056 278.937	279.800	281 476 282 290	283.873	285 400 286.143	287.593	288.996 289.681
- T, - 298.15	-[G*-H*(T,)]/T	INFINITE 213.138 189.900 187.714	187.234	187.234 187.590 188.379	189.402 190.547	192.988 195.454	197.857 200.165 202.372	204.477	208.403 210.236 211.992	213.675	216.846	221.177	223.823	227.491	229.761 230.849	231.908	233.946 234.927	235.885	237.733	239.500 240.356 241.193	242.013	243.605 244.377 245.136	245.880 246.611	247.328 248.034 248.777	249.408	250.738 251.386 270.737	252.654	253.883
	H*-H*(T,)	-8.648 -5.773 -2.860 -1.403	ó	0.054 1.513 2.975	5,921	8.913 11.968	15.093 18.288 21.551	24.875 28.254	31.683 35.155 38.666	42.212	49.392 53.020	60343	67.740	78.952	86.492 90.280	94.078	101.706	109.371	117.072	124.805 128.683 132.569	136.463	144.271 148.185 152.106	156.034	163.910 167.857	175.770	183.708 187.686 073	195.660	203.658 207.665
Standard State Pressure = p = 0.1 MPs	Acht.	375.276 375.325 375.306 375.305	375,305	375.305 375.305 375.307	375.311 375.318	375.345 375.388	375.445 375.514 375.589	375.668 375.749	375.829 375.908 375.986	376.061 376.134	376.204	376.400	376.519 376.576	376.684	376.784	376.877	376.962 376.962 377.001	377.039 377.075	377.108 377.140	377.169 377.195 377.219	377.241 377.260	377.276 377.290 377.302	377.310 377.316	377.320 377.322 37.322	377.318	377.306 377.298 377.298	377.279	377.28
e Pressure = 1	₽'0	375.276 373.414 371.515 370.567	369.655	369.620 368.673 367.725	365.777	363.928	360,109 358,188 356,259	354.322 352.378	350.427 348.470 346.508	344.540	338.611	334.640	330.657	324.665	320.659	316.647	312.629	308.606	304.578	300.547 298.531 296.513	294.495 292.477	290.458 288.439 286.419	284.400	280,360 278,340 776,330	274.300	270.260 268.240 266.271	264.202	28.163
p 0.1 MPa	log Kr	INFINITE - 195.052 97.030 77.426	-64.762	-64.357 -55.021 -48.020	-42.574 -38.218	-31.683 -27.014	-23.513 -20.789 -18.609	-16.825 -15.339	-14.080 -13.002 -12.066	-11.248	-9.884 -9.309	-8.324	-7.509 -7.153	-6.523	-5.982	-5.513	-5.103 -4.917	-4.741 -4.576	-4.419 -4.271	-4.131 -3.998 -3.872	-3752 -3.637	-3.528 -3.424 -3.325	-3.229	-3.051 -2.967 -7.887	-2809	-2.664 -2.595 -2.578	-2.464	-2.343 -2.285

-0.176 -0.137 -0.007 -0.007 -0.009 0.0041 0.0063

59.502 63.137 66.790 70.461 74.146 77.846 81.560 85.286 89.025

36.252 36.444 36.619 36.782 36.932 37.071 37.201 37.233 37.438

5 753 5 753 4.419 3.088 1.762

35.246 35.158 35.064 34.965

223.479 224.806 226.089 227.332 228.536

251.813 253.504 255.128 256.690 258.195

-0.877 -2.189 -3.497 -4.800

34.745 34.593 34.362 34.362 34.362

259.646 261.047 262.403 263.714 264.985

-6.098

-2.472 -1.969 -1.629 -1.156 -1.156 -1.156 -0.84 -0.721 -0.519 -0.530 -0.269 -0.269

36 044 35.953 35.868 35.787 35.710

8.993 112.018 115.095 11.476 21.476 21.476 21.478 31.345 33.191 41.671 45.183 52.294 55.887

195 498 197.980 200.338 204.889 206.980 206.990 208.971 210.869 212.682 214.417 216.079 217.674 219.208 220.683 220.68

229.416 232.293 234.981 237.502 239.878

13.847 12.487 11.132 9.781 8.434

35.635 35.561 35.486

242.123 244.253 246.277 248.207 250.050

32.815 33.335 33.335 34.237 34.622 34.968 35.279 35.259 35.813

32.222 31.490 30.755 30.020 22.286 24.948 24.948 22.122 20.725 10.336 11.935 11.935 11.935

210.487 215.148 219.256 222.949 226.315

30.026 30.491 31.056 31.657 32.252

201.912

29.980 29.798 29.705 29.688 29.740

-5.650 -4.700 -4.016 -3.485

32.249

36.602

CURRENT June 1977 (1 bar)

0.343 0.352 0.355 0.356

0.317 0.328 0.338 0.338

D,0,(g)

Standard State Pressure = $p^* = 0.1$ MPa

 $H^{\bullet}-H^{\circ}(T_r)$

 $-[G^*-H^*(T_t)]T$

₹X

0. 155.537 177.535 184.345

189.681 189,837

29.989

J·K-'mol-'

HNE log Kr

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_t H^{\circ}(0 \text{ K}) = 36.021 \pm 1.3 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 36.602 \pm 1.21 \text{ kJ·mol}^{-1}$ S°(298.15 K) = 189.651 J·K⁻¹·mol⁻¹

IDEAL GAS

Hydroxyl-d, (OD)

			Electronic	States and Molec	cular Constants		
State	رد دالا [_]	õ	ω _ε cm ⁻¹	ω _ε cm ⁻¹ ω _ο κ _ε cm ⁻¹ B _ε cm ⁻¹	B_{ϵ} cm ⁻¹	ae cm ⁻¹	ړ. A
Ħ	0	2	2720.9	44.2	10.02	0.29	0.970
	139.7	7					
۲ <u>۰</u> ۶	35474	7	2322.6	55.4	9.198	0.322	1.012
Ņ	69289	7	684.3	55.6	2.91	0.25	1.80

Enthalpy of Formation

thermal functions, and zero point energies of H₂(g), D₂(g), OH(g), and OD(g) The zero point energies of H₂(g) and D₂(g) were taken from The enthalpy of formation was calculated from the selected value for $\Delta_t H^0(298 \ 15 \ K)$ of OH(g), $-0.27 \pm 3 \ kcal\cdot mol^{-1}$ the appropriate Herzberg and Monfils. The zero point energies of OH and OD include the Dunham correction (see Herzberg and Monfils). The molecular constants are those given by Rosen² with the exception of the spin-coupling constants taken from Herzberg.

Heat Capacity and Entropy

from a more exact treatment given by Haar et $al.^4$ indicates errors in the table above 400 K are negligible. Below this, they may be appreciable. In particular, it is recommended that $H^0(0 \text{ K})$ – $H^0(298.15 \text{ K})$ and $C^0_p(298.15 \text{ K})$ be taken as -2.151 kcal-mol⁻¹, 45 307 cal-K⁻¹-mol⁻¹, and 7.156 cal-K⁻¹-mol⁻¹, respectively. These errors result from dealing with the ground state (X²H_s) as two different electronic The vibrational and rotational constants of the respective electronic levels were taken from Rosen.² Comparison of the results with those states separated by 139.7 cm

The National Bureau of Standards prepared this table⁵ by critical analysis of data existing in 1972. Using molecular constants and $\Delta_t H^o$ selected by NBS, we recalculate the table in terms of 1973 fundamental constants, 1975 atomic weights, and current JANAF reference states for the elements.

References ¹G Herzberg and A Monfils, J Mol Spectrosc. 5, 482 (1960).

Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970). Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Co., Inc., New York, pp. 232, 561, (1950).

L. Haar, A. S. Friedman, and C. W. Beckett, U. S. Nat. Bur. Stand. Monograph 20, (1961).

S. Abramowitz et al., U. S. Nat. Bur Stand., Rept. 10904, 239, (July 1972).

*CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973) 7UPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976); 37, 589 (1974). JANAF Thermochemical Tables: OH(g), 6-30-77

-30.937 -32.119 -33.295 -34.466 -35.630 -36.788 -37.940 -39.086 -40.227 -41.360 -18.795 -20.035 -21.269 -22.498 -24.938 -26.150 -27.355 -28.555 -9.963 -11.241 34 069 33.911 33.746 33.573 33.392 0.920 96.534 110.0303 104.032 111.668 111.668 111.236 111.236 111.236 111.236 130.771 134.613 134.613 145.1319 146.181 153.926 153.9 229.705 230.840 231.045 231.045 231.076 231.037 231.037 231.037 231.037 231.037 241.549 241.137 244.071 247.842 248.562 249.270 249.966 250.650 276.859 277.787 278.694 279.582 280.452 281.38 282.138 282.957 283.760 285.321 286.081 286.827 287.560 288.281 266.218 267.415 268.578 269.709 270.809 271.881 272.926 273.945 274.940 275.911 39.085 37.648 37.745 37.838 37.926 38.011 38.092 38.171 38.246 38.320 38.391 38.528 38.528 38.594 38.659 38.722 39.202 39.261 39.319

0.103 0.121 0.137 0.153 0.168 0.195 0.207 0.229 0.249 0.278 0.278 0.278 0.278 0.278 0.278 0.278

June 1977 (1 atm)

PREVIOUS:

CURRENT: June 1977 (1 bar)

Mr = 34.074102 Mercapto-D, (SD)

IDEAL GAS

Mercapto-d, (SD)

 $\Delta_t H^{\circ}(0 \text{ K}) = 137.893 \pm 5.0 \text{ kJ} \cdot \text{mol}$

		i					
Chate	1-4	Electr	Electronic States and Molecular Constants (σ = 1	Molecular Constants (σ =	tants $(\sigma = 1)$	1-11	1
State	۲, دا۱۱	8,	We CIII	mere cill	De CIII	ES.	۲ ک
χ ₂ Π	0	2					
	376.8	7					
Α <u>*</u> Σ*	30769	7	1417	48.85	4392	0.172	1.423
B.Y.	29566	7	1917.7	29.3	4.532	0.105	1.405
√2	63872	4					
D²∆	71205	4					
EX	71328	7	[1930.4]	[23.44]	[4.949]	f0.1011	
F²₄	71797	4	,			•	
Q ₃ ∇	79320	4					
$H^2\Delta$	80858	4					

Enthalpy of Formation

The enthalpy of formation was calculated from the appropriate thermal functions (see tables for HS, DS, H., D.)¹ the selected value ft Δμ² (298.15 K) of HS(g) (33.3 ± 1.2 kcal·mol⁻¹, refer to table for HS(g),¹ and the zero point energies of H₂(g),² D₂(g),² and DS(g) The Dunham corrections were made in Herzberg and Monfils.² for H₂(g) and D₂(g). Spectroscopic constants tabulated in Rosen.³ were use to calculate the zero point energies of HS and DS including Dunham corrections

Heat Capacity and Entropy

The vibrational and rotational constants of the respective electronic levels were taken from Rosen.³ From a comparison of this approxima calculation with more exact methods (see HS(g) table),¹ it is concluded that the errors are negligible above 400 K. Below this, they may tappreciable. In particular, it is recommended that H'(0 K)-H'(298.15 K), S'(298.15 K) and $C_p'(298.15 \text{ K})$ be taken as -2.171 kcal-mol-48.138 cal-K-1-mol-1, and 7.760 cal-K-1-mol-1, respectively. These errors result from dealing with the ground state (2II,) as two differences and respectively.

electronic states separated by 376.8 cm⁻¹.

The National Bureau of Standards prepared this table⁴ by critical analysis of data existing in 1972. Using molecular constants and A_iH selected by NBS, ⁴ we recalculate the table in terms of 1973 fundamental constants, ⁵ 1975 atomic weights, ⁶ and current JANAF reference state for the elements. Our calculated C, values agree with the NBS table up to 4000 K; above 4000 K our values trend slightly higher and at 6000 the difference from the original NBS table is 0.017 cal·K⁻¹·mol⁻¹.

References

JANAF Thermochemical Tables: HS(g), DS(g), 6-30-77; H₂(g), D₂(g), 3-31-77.
 G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).
 B. Rosen, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, (1970). For spin-coupling constants, refer to L. Haar, A. S. Friedman, and C. W. Beckett, U. S. Nat. Bur. Stand. Monograph 20, (1961).
 S. Abramowitz et al., U. S. Nat. Bur. Stand., Rept. 10904, 239, (July 1972).
 CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973).

10PAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976); 37, 589 (1974).

īī	Enthalpy Reference	eference Te	ature mol-	- T, - 29&15 K		Standard State Pressure		p* = 0.1 MPa
	7/K	ಚ	S[C	$-[G^{\bullet}-H^{\circ}(T_{i})]T$	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_c H^{\bullet}$	Φ_iG^{\bullet}	log K,
	°8	30.185	0.	INFINITE 230 367	-9294	137.893	137.893	INFINITE -67 331
	88	32,699	188.421	202.021	-3210	138.793	119.167	-31.123
	298.15	32.520	201.484	201.484	o	138.490	109.585	-19.199
	320	32.249	201.685	201.484	0.060	138.482	109.406	-19.049
-	8 5	32.086	210.970	202.753	3287	135.650	99.888	-13.044
	8	32.125	218.126	205.139	6.493	133.464	91.188	-9.526
	88	32.510	224.013 229.064	207.808	9.723 13.000	131.635 130.075	82.911 74.916	-7.218 -5.590
	885	34.148	233514	213.097 215.591	19,72	128.685 74.278	67.133 60.598 77.	-4383
	8 2	35.055	244.448	220,225	25.101 26.646	74.311	57.554	-3.080
	1300	35.425 35.747	247.515	222.373	33,730	74324	\$6.030 \$4.505	-2439
for	1500	36.029 36.276	253.023 255.517	226.367 228.228	37.319 40.934	74.324	52.981 51.457	-1.977 -1.792
. · ·	925	36.493	257.866	230.008	44.573	74.276	49.934	-1.630
	986 186	36.860	262.186 264.183	233.347	\$1.909 \$5.603	74.173	46.897	-1361
	2002	37.157	266.085	236.429	59.312	74.018	43.874	-1.146
ate	220	37.286	267.901 269.639	237,885	63.034	73.922	40.870	-1.054 -0.970
87	7.750 7.700 7.000	37.616	272.903	240.645 241.956 243.735	70.515	75.55 15.50 15.50 15.50	37.885 37.885	-0.825
E	7600	37.802	275.921	244.454	81.814	73.287	34.923	-0.702
ŝ	280 2800 2800	37.886 37.967	271.349 278.729	245.646 246.803	85.598 89.391	73.135	33.450	-0.647
. Ş	300	38.044	280.062 281.353	247.927 249.020	93.191 97.000	72.807	30.522 29.067	-0.550 -0.506
X	3100	38.188	282.604	250.083	100.815	72.453	71.617	-0.465
	3300	38.322 38.386	284.996	252.128	108.466	72.074	24.737	-0.427 -0.392 -0.358
	3200	38.448	287.255	254.071	116,143	71.672	21.880	-0.377
***************************************	3400 3700 88	38,509	289.394	255.008 255.923	119.991	71.462	20.460 19.046	-0.297
Let	4 3300 4 3000	38.686 38.744	291.428 292.408	250,817 257,692 258,548	131.570 135.442	70.794 70.559	25.23 25.23 25.23 25.23 25.23	-0.242 -0.217 -0.194
	4200	38.801	293.365	259.385	139.319	70.316	13.451	-0.171
	4400 600	38.915	295.216 296.111	261.009 261.797	150.985	69.811	9.317	-0.130
	900	10.087	296.988	262.569	154,885	69.276	7.951	-0.092
	\$ 6	39.145	298.688	264.070	162.702	68.712	223	0028
	\$ 4 \$ 8	39.264	300,321	265.517 266.221	170.543	68.118 67.810	2549 1214	-0.027
	\$100 \$200	39.385 39.448	301.895	266.913 267.593	178.408	67.495	-0.115	0.001
	2500 2500 2500 2500	39.511 39.576	303.412	268.261 268.919	186.298	66.508	-2.754	0.027
	0000	30.705	205 502	270,703	194713	00.100	906.6-	1000
	2200	39.778	306.296	270.830 271.448	202.155 202.155 206.136	65.466 65.109	-0.003 -7.956 -9.242	0.00
	8800 8000	39.920 39.993	307.670	272.056 272.655	210.125	64.747	-10.520	0.093

Mercapto-D, (SD)

PREVIOUS: June 1977 (1 atm)

Deuterium (D₂)

(I atm)

PREVIOUS: March 1977

D₂(ref)

CURRENT: March 1982 (1 bar)

REFERENCE STATE-IDEAL GAS $M_r = 4.028204$ Deuterium (D ₂)	Enthalpy Reference Temperature = T_1 = 298.15 K Standard State Pressure = p^* = 0.1 Mi $\Delta_0 H^2(0 \text{ K}) = 0$ kJ·mol ⁻¹ Limit-1	$\Delta_t H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$ 7K C_r° 5° - [G*-If(T,)]T II*-II*(T,)	O 0 0 INFINITE	Vibrational and Rotational Levels (cm ⁻¹) -5.818 0. 0. 200 29.204 133.306 147.630 -2.865 0. 0.	250 29.185 139.819 145.441 –	298.15 29 194 144,960 144,960	145.141 144.961 0.054 0	, 400 29.242 153.545 145.106 1.514	$0^{-2}V^4 + 2.5748 \times 10^{-3}V^5 = 6.10154 \times 10^{-5}V^6$ 450 29.290 156.992 147.128 4.439 0.	500 29.346 160.081 148.272 5.905 0.	700 29.619 165.456 150.701 8.853 0.	$(10^{-6}V^3 + 1.7858 \times 10^{-7}V^4)$ 800 30,502 174,087 155 515 14.835	900 31.057 177.712 157.783 17.936	02016 180 031 110 181 919 11 0001 1
	1-lor	5 (298.15 K) = 144.960 ± 0.04 J·K -'·mol-'	l	ii	<u>.</u>		$C - C_0 + F = G - C_0 + BZ$	z Z = J(J+1), Y = w+1/2, and	$116.334Y - 62.50516Y^2 +$	0.45273 - 1.102045Y + 0.0	$87040 \times 10^{-5}Y^5 + 2.80134$	$1011525 - 36876 \times 10^{-4}$	$.55 \times 10^{-6} - 6.42 \times 10^{-7}$	9-1-

Enthalpy of Formation

Zero by definition. Refer to the monatomic deuterium gas table for a discussion of the dissociation energy.

 $v_{\text{max}} = 21$, $J_{\text{max}} = 54 - 47v/v_{\text{max}}$ Normalized statistical weights = 2/3 (even J) and 1/3 (odd J)

re = 0.7415 Å

Ň.

Ground State Configuration:

Heat Capacity and Entropy

to provide a similar extrapolation to high J values. The adopted H polynomial is not more accurate than the relatively scattered data, ²⁻⁴ but it should be more consistent with our adopted approximation for the infinite-series (F) equation for rotational levels. We assume that F has the form proposed by Khachkuruzov² and Woolley et al. ⁶ We use a linear approximation for the limiting values (J_{max}) of rotational quantum number. The J_{max} equation is estimated, its second value has been revised from 52 (in the 1977 table) to 47 in order to yield C_p^o and S_p^o values These are calculated by direct summation over vibration-rotation energy levels of the electronic ground state. We performed the direct summation with an extended version of a program written by W. H Evans and provided through cooperation of D. D. Wagman, both of the U. S. National Bureau of Standards. Contributions of excited states (To > 90000 cm⁻¹) are negligible at 6000 K. Polynomials G, B and D are our fits of data from Stoicheff² and Bredohl and Herzberg³. Polynomials H and L are estimated by isotopic relations from those of H₂¹ in order

that agree more closely with theory* near 6000 K. We omit the nuclear-spin contribution (R ln 9) to entropy and Gibbs energy function. We adopt ortho-para "equilibrium" D₂ as the reference state at all temperatures. Values differ from "normal" D₂ only at 100 K. ²³ Our values can be compared with the theoretical results of Kosloff et al. * and Gurvich et al. * and with the earlier table of NBS. * Our S values deviate by 0.001* or -0.005° cal·K" - mol - 1 at 6000 K. Our C* values deviate by 0.011*, -0.002° or 0.002° at 5000 K and by 0.001* or -0.005° cal·K" - mol - 1 at 6000 K.

References

¹JANAF Thermochemical Tables: H₂(g), 3–31–77. ²B. P Stoicheff, Can. J. Phys. 35, 730 (1957).

²B. P. Stoicheff, Can. J. Phys. 35, 730 (1957).
³H. Bredohl and G. Herzberg, Can. J. Phys. 51, 867 (1973).
⁴P. J. Bramon, C. H. Church, and C. W. Peters, J. Mol. Spectrosc. 27, 44 (1968).
⁵G. A. Khachkuruzov, Opt. Spectrosc. 30, 455 (1971).
⁶H. W. Woolley, R. B. Scott, and F. G. Brickweddel, J. Res Natl Bur. Stand. 41, 379 (1948).
⁵A. Abramowniz et al., U. S. Natl Bur. Stand., Rept. 10904, 239, (1019 1972).
⁶R. Rosloff, R. D. Levine and R. B. Bernstein, Mol. Phys. 27, 981 (1974).
⁶L. V. Gurvich, I. V. Veits et al., "Thermodynamic Properties of Individual Substances," 3rd ed., Vol. I, Nauka, Moscow, (1978).

Ę. ර පර්වර්ට විවර්වර විවිතවර විවිවරට විවිවරට විවිවරට විවිවරට ් වීමම්වීම් විවීම්වී විවිටම්වී විවිවිට විවිවීමට විවිවීමට විවිවීමට විවිවීමට විවිවීමට විවිවීමට විවිවීමට විවිවීමට 21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21,070
21 185.525 185.525 187.687 187.725 189.728 199.691 193.555 194.456 195.307 195.307 195.307 195.307 195.307 198.687 199.484 200.267 201.035 201.789 202.530 203.258 203.974 204.678 205.371 196.576 198.687 200.698 202.618 204.456 206.218 207.910 209.539 211 108 212 622 214.085 215.501 216.872 218.201 219.492 220.746 221.965 223.152 224.309 225.437 226.533 227.613 228.663 229.690 230.696 231.680 232.644 233.590 234.517 235.426 236.319 237.196 238.058 238.904 239.736 36.252 36.512 36.512 36.512 36.512 37.201 37.201 37.705 37.705 37.705 38 39.152 39.312 39.470 39.628 39.785 39.941 40.096 40.402 40.701 40.847 40.989 41.127 111000 1100000 1100000 1100000 1100000 110000 110000 110000 110000 11000

CURRENT: September 1977 (1 bar)

PREVIOUS: September 1977 (1 atm)

$M_r = 4.027655$ Deuterium, Ion (D ₂)	
IDEAL GAS	
.	

Deuterium, Ion (D2)

1-1 Entha	$\Delta H^{*}(0 K) = 1492.287 \pm 0.013 K^{-} \text{mol}^{-1}$ $\Delta H^{*}(298.15 K) = [1498.5671 K^{-} \text{mol}^{-1}]$	$S^{(298.15 \text{ K})} = 156.735 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

$\Delta_{e}H^{\circ}(0 \text{ K}) = 1492.287 \pm 0.1$	Δ _t H°(298.15 K) = [1498.5

 $E = G - G_o + F = G - G_o + BZ - DZ^2 + HZ^3 - LZ^4 + ... G - G_o + BZ - DZ^3 + HZ^2 /^3 (H + L)$ electronic statistical weight = 2 and normalized rotational statistical weights = 2/3 (even N) Direct Summation using Energy-Level Equations for the 22 Electronic Ground State: where Z = N(N+1), Y = v+1/2, and we omit subscript v on G, F, B, D, H, and L $G = 1643.29 \ Y = 33.7163 \ Y^2 + 0.329116 \ Y^3 = 0.00725916 \ Y^4$ $S = 14.9825 = 0.564098 \ Y + 0.00801011 \ Y^2 = 0.000230173 \ Y^3 = 1.057 \ Å$ H=2.15408 × 10⁻⁶ - 5.31503 × 10⁻⁸ Y and L = 1.00253 × 10⁻⁹ Vibrational and Rotational Levels (cm⁻¹) $D = 4.98379 \times 10^{-3} - 1.54039 \times 10^{-4} \, Y + 3.75711 \times 10^{-6} \, Y^2$ $v_{max} = 26$ and $N_{max} = 57 - 46v/v_{max}$

Enthalpy of Formation

 $\Delta_f H^0(0 \text{ K}) = 356.666 \pm 0.003 \text{ kcal-mol}^{-1}$ is the ionization potential IP(D₂) = 124745.6 ± 1.2 cm⁻¹. Takezawa and Tan IP = 124746.6 ± 0.6 cm⁻¹ from Rydberg spectra of D₂. Similar studies on H₂ by Herzberg and Jungen² revealed a bias of −1.0 to a pressure shift in the spectra. We assume an equal shift for D₂, adjust IP by -1.0 cm^{-1} and increase the uncertainty due to $\Delta H^0(0 \text{ K})$ is converted to $\Delta H^0(298.15 \text{ K})$ by use of JANAF³ enthalpies $H^0(0 \text{ K})$ - $H^0(298.15 \text{ K})$ for D₂, D²₂ and e⁻(ref). should not be interpreted as a room-temperature ionization threshold due to inclusion of these enthalpies and to threshold Rosenstock et al.

The adopted spectroscopic IP(D₂) receives strong support from a value calculated indirectly from experimental values³ of *I*2 combined with the theoretical value³ of *D*6(D²); this indirect value differs by only 0.4 cm⁻¹. Rosenstock *et al.*⁴ review seve determinations of IP(D2) and recommend a value calculated from IP(H2) using differences in zero-point energies of the dia and their ions. Repeating this calculation with JANAF values,3 we predict an IP (D2) which differs from the observed value Inclusion of an empirical adjustment for IP(D)-IP(H) overcorrects the prediction, giving a deviation of +28 cm⁻¹. These slig are due,³ (refer to HD*, g) to the approximate nature of the prediction. Villarejo's average photoionization result,⁶ IP(D₂) cm-1, deviates by + 11 cm-1 from the spectroscopic value.

Heat Capacity and Entropy

above. We use 1973 fundamental constants7 in an extended version of a computer program written by W. H. Evans and pr Wagman of the U. S. National Bureau of Standards. Excited electronic states are neglected because they do not contribute si electronic statistical weight is taken equal to the multiplicity since we neglect rotational splitting which should be very sm Demodynamic functions for ortho-para "equilibrium". D; are calculated by direct summation using the energy-level

Coefficients of the energy-level polynomials are calculated from the theoretical values of H23 using rho = 0.707330 in isc Theoretical calculations on D2 provide confirmation of B6, we and week; the latter two are confirmed by vibrational structure photoionization threshold of D... We give the polynomial coefficients, especially higher order ones, to many more digits that heir accuracy. The equations are very approximate near N..... but, judging by H.; I this should have little effect on the thermodi even at 6000 K. The approximate van is derived from the G polynomial

contribute 0.33 cal K⁻¹-mol⁻¹ to C_s and 0.041 cal·K⁻¹-mol⁻¹ to the Gibbs-energy function. Their contribution is negligible Limiting rotational quantum numbers N_{max} are estimated from H_s, H_s and D_s³ by comparing energy increments and rotation above the respective values of D_s. The crudity of these estimates makes C_s² at 6000 K somewhat more uncertain than in The thermodynamic functions include contributions from quasi-bound levels lying above D₀ = 21712 cm⁻¹. At 6000

References

S. Takezawa and Y. Tanaka, J. Mol. Spectrosc. 54, 379 (1975)

²G. Herzberg and Ch. Jungen, J. Mol. Spectrosc. 41, 425 (1972).

JANAF Thermochemical Tables: H₄(ref), D₄(ref), H⁴(g), D⁶(g), P⁶(ref)
 Harmochemical Tables: H₄(ref), D₄(ref), H⁶(g), D⁶(g), P⁶(ref)
 H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).
 G. Hunter and H. O. Pritchard, J. Chem. Phys. 46, 2153 (1967).
 D. Villarejo, J. Chem. Phys. 48, 4014 (1968).
 E. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).

		İ						
± 0.013 kJ·mol ⁻¹ 198.5671 kJ·mol ⁻¹	Enthalpy R	eference Te	mperature J.K-'mol-'	Enthalpy Reference Temperature = T _r = 298.15 K 		Standard State Pressure kT.mol-1	e Pressure = p	o" = 0.1 MPa
•	τÆ	ប	S[G	$-[G^*-H^*(T_i)]T$	H*-H*(T,)	₽'H'▼	$\Delta_i G^{\bullet}$	log Kr
	200°	0. 29.192 29.221	0. 124.796 145.027	INFINITE 182,774 159,422	-8.651 -5.798 -2.879	1492.287		
	298.15	29.510	156.735	156.735	Ö	1498.567	1488.801	-260.832
(Z).	888	29.519 30.282 31.332	156.917 165.504 172.371	156.735 157.901 160.130	0.055 3.041 6.121	1498.606 1500.749 1502.978	1488.741 1485.131 1480.971	-259213 -193.938 -154.716
•	986	32.420	178.181	162.666	9309	1505.297	1476.353	-128.528
	88	34.285	187.775	167.790	15.988	1510.128	1465.982	-95.719
	0001	35.664	195.582	17.592	22.990	1515.075	1454.374	-75.969
	0 1 1 200 1	36.214 36.695	199.007 202.179	174.839 176.987	26.584 30.230	1517.556	1448.184	-68.769 -62.759
) or 1/3 (odd N)	1300 150 150 150 150 150 150 150 150 150 1	37.123 37.510 37.867	205.133 207.899 210.499	179.040 181.004 182.884	33.922 37.653 41.423	1522.499 1524.956 1527.405	1435.146 1428.334 1421.347	-57.665 -53.292 -49.496
	1700	38.201	212.954 215.279	184.688 186.419	45.226	1529.845 1532.278	1414.197	-46.169 -43.229
naka' determined	806 81 81	38.825 39.125	217.490	188.084	\$2.929 \$6.827	1534.705	1399.449	-40.611 -38.265
o this admittages	700	30.422	110.127	191.234	60.754	1539,553	384.160	-36.151
. Δ _t H*(298 15 K)	2220	40.017	222	194.170	88.68	1541.404	1368.386	-32.490
l effects noted by	7500 7500 7500	40.620	230.568	196.920 198.233	76.761	1549.275	1352.170	- 29.429
D ₀ (D ₂) and IP(D)	2600	41.225	232.179	199,508	84.946	1554.176	1335.546	-26.831
eral less accurate	2808 7808 7808	41.814	235.74	201.952	89.083 93.250	1556.642	1327.091	-25.674
atomic molecules lue by -32 cm ⁻¹ .	3000	42.094 42.360	236.728	203.126	97.446	1561.603	1309.908	-23.594
ght discrepancies	3100	42.607	239.553	205.386	105.917	1566.600	1292.381	-21.776
= 124757 ± 180	3300	43.032	242.231	207.539	114.483	1571.624	1274531	-20.174
	350 00 00 00 00 00 00 00 00 00 00 00 00 0	43.204 43.345	243.518 244.772	208.578 209.594	118.795	1574.140 1576.655	1265.490 1256.376	-19.442
;	3600	43.453	245.995	210.589	127.463	1579.166	1247.190	-18.096
l equations listed	388	43.565	248,348	212.515	136.167	1581.6/1	1228.610	-17.476
significantly. The	88	43.534	250.582	214.363	144.879	1589.109	1209.768	-15.798
rall (see HD* and	4100 4200	43.467	251.657	215.259	149.230	1591.552	1200254	-15.291
otonic constions	430	43.232	253.722	217.001	157,902	1596.362	1181.051	-14347
e observed in the	\$ 50	42.875	255.680	218.676	166.514	1598.723	1171.365	-13,906
in are justified by	99	42.655	256.620	219.491	167071	1603.344	1151.836	-13.080
lynamic functions	808	42.145	258.424	221.076	179.272	1607.813	1132,108	-12.592
XX these levels	\$ 8 00 00 00 00 00	41.859	259.291 260.133	221.847	183.473	1609.986	1122.175	-11.963
le below 3000 K.	\$100	41.237	260.953	223,348	191.783	1614.202	1102,179	-11.289
onal quanta found	2300	40.905 40.562	261.751	224.079	195.890	1616242	1092,120	-10.970
the case of H ₂ .	5400 5500	40.210	263.281 264.016	225.503	204.002	1620.185	1071.886	-10.368
	2000	39.485	264.731	226.879	211.972	1623.943	1051,509	-9.808
	\$ \$ \$ \$ \$ \$ \$	39.116 38.744	265.426 266.103	227.549	215.902	1625.752	1041.271	-9.542
	000	38.371	266.763	228.856	223.651	1629235	1020.701	-9.037
	, ,) !			•	2000	1	2

IDEAL GAS

Deuterium, Ion (D2)

CURRENT September 1977 (1 bar)

|--|

σ = 2 r _e = [1.15]Å	$\omega_{o,c} = [17.5] \text{ cm}^{-1}$ $\alpha_{c} = [0.141] \text{ cm}^{-1}$	$\omega_c = [1202] \text{ cm}^{-1}$ $B_c = [12.7] \text{ cm}^{-1}$
	0 2	X ₂ X
	Electronic Level and Quantum Weight State 6., cm ⁻¹ 8.	Electronic State
$\Delta_t H^0(0 \text{ K}) = [241.4 \pm 42]$ $\Delta_t H^0(298.15 \text{ K}) = [235.365]$		-
$\Delta_t H^{\circ}(0 \text{ K}) = [241.4 \pm 42]$		

Enthalpy of Formation

interaction calculation for H_2^{-1} . This study by Sharpe¹ led to $EA(H_1) = -2.5$ eV. Assuming the same value for D_2 and using auxiliary data, we calculate $\Delta_1H^2(0 \text{ K}) = 57.7 \pm 10 \text{ kcal-mol}^{-1}$ and $D_0^2(D_2) = 30.0 \pm 10 \text{ kcal-mol}^{-1}$, the latter value assumes dissociation into ground state $D_0^2(0) = 30.0 \pm 10 \text{ kcal-mol}^{-1}$, the latter value assumes dissociation into ground state $D_0^2(0) = 30.0 \pm 10 \text{ kcal-mol}^{-1}$. The adopted $EA(H_2)$ value is suggested to be the more reliable value of eight studies considered by Rosenstock et al.³ in terms of molecular orbitals, the ground state for $D_1^2(0)$ is the $\{1s_0\}^2(2c_0)^{-1}S_2$ actin involving two bonding electrons and one antibonding electron As stated by Massey, we should expect only a weakly-bound molecule, as compared with $D_2(0)$ for which the ground state has no electrons in an antibonding orbital. We would expect, however, the ground state to be $\{1s_0\}^2(1s_0)$. Our calculated EA(D₂) value is consistent The enthalpy of formation at 0 K for Dz(g) is based on the electron affinity (EA) value derived from a Rydberg-Klein-Rees configuration

with this viewpoint. Further discussion of the $D_2^*(g)$ ion may be found in Massey.⁴ $\Delta_H(0 \, \mathrm{K})$ is converted to $\Delta_H^H(298.15 \, \mathrm{K})$ by use of JANAF enthalpies, $H^0(0 \, \mathrm{K}) - H^0(298.15 \, \mathrm{K})$, for $D_2(g)$, and $e^-(\text{tef})$.

 $\Delta_t H^0$ (298.15 K) should not be interpreted as a room temperature electron affinity due to inclusion of these enthalpies and to thereshold effects discussed by Rosenstock et al.3

Heat Capacity and Entropy

same relationship appeared to exist for the (N₂, NO, O²₂) isoelectronic series. B_e is calculated from r_e whereas α_e is calculated assuming a The vibrational constants for H7(g) are estimated to be the same as in the isoelectronic species He2 The vibrational constants for D7(g) are calculated from those of H₂(g) using isotopic relations.² The internuclear distance is estimated to be ~8% larger than that for He3(g). The Morse function for the ground state.

The ground and excited electronic states are discussed in detail by Massey. No excited state contributions are included in this calculation.

T. E. Sharpe, Lockheed Report LMSC 5-10-69-9 (1969).

²IANAF Thermochemical Tables: D(g), D²(g), D₂(g) and e⁻(ref), 3-31-77, H₂⁻(g), 9-30-77.

³H M Rosenstock, K. Draxl, B. W Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).

S. W. Massey, "Negative Ions", 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976). Rosen, Ed., "Spectroscopic Data Relative to Diatomic Molecules", Pergamon Press, New York, (1970).

Enthalpy Re	eference Te	Enthalpy Reference Temperature = T_r	. T, = 298.15 K	:	Standard State Pressure		p° = 0.1 MPa
τÆ	ಬ	S[C•	-[G*-H*(T,)]/T	H*-H*(T,)	Δ,Η*	Φ'Θ.	log Kr
° 50 87 87 88 9	0. 29.190 29.403 29.771	0. 126.100 146.375 152.971	INFINITE 184.605 160.997 158.755	-8.714 -5.850 -2.924 -1.446	241.418		
298.15	30.315		158,259	o o	235.365	237.655	-41.636
320	30.338	158.447 163.174	158.260	0.056	235,329 234,363	237.669	-41.382 -35.540
8 5	31.745	167.364	159.466	3.159	233.432	238.739	-31.176
8	33.101	174.597	161.791	6.403	231.667	240.272	-25 101
88	34.226	180.735	164.449	177.6	230.009	242.151	-21.081
38	35.832	190.819	169.832	16.789	226.865	246.676	-16.106
88	36.404	195.073	172.404	20.402	225.322	251.986	-14.466 -13.162
8	37.270	202.468	177.218	27.75	222.210	254.883	-12.103
200	37.610	205.72	179.459	31.519	720.627	257.973	-11,227
1,400	38 173	211.567	183.639 185.590	39.100 42.929	217.395	264.393	-9.865
0091	38.634	216.695	187.457	46.782	214,078	271.332	-8.858
923	38.840	219.044	189.246	50.655	212.392	778,962	-8.449 -8.087
88	39.216	223.384	192.615	58.462	208.971	282.517	-7.767
2007	30 558	377 376	105,736	021 99	207 402	250.435	-7.774
2200	39.721	229.170	197.214	70.303	203.744	294.520	-6.993
2300	39 878	230.940	198.642	74.283	201.982	302.928	-6.783
2500	40.182	234.277	201.361	82.290	198.435	307.245	-6.420
2500	40.329	235,856	202.658	86.315 90.355	196.652	311.632	-6.261
2800	40.616	238.855	205.138	94.410	193.068	320.611	-5.981
3000	40.896	241.667	207.480	102.561	189.467	329.847	-5.743
3200	41.034	243.010	208.605	106.658	187.661	334,556	-5.63 7 -5.539
3300	41.305	245.584	210.769	114,892	184,038	344.147	-5.447
3500	41 439 41 573	246.819 248.022	211.811 212.828	119.029	182,222	349.027 353.959	-5.362 -5.283
3600	41.705	249.195	213.822	127.344	178.581	358.944	-5.208
3800	41.968	251.457	215.744	135.711	174,929	369.063	-5.073
3300 4000 000	42.099	252.549 253.617	216.674 217.584	139.914 144.131	173.099	374.196 379.376	5.012 4.954
4100	42.359	254.661	218.476	148,360	169.430	384.601	-4.900
4300	42.617	256.685	220.206	156.858	165.751	395.185	-4.801
\$ \$ \$	42.745	257.666 258.628	221.046 221.871	161.126 165.407	162.908	400.542	-4.755 -4.712
986	43.001	259.572	222.680	169.700	160.215	411.381	-4.671
\$ 808	43.256	261.407	224.256	178.326	156514	422.381	-4596
2000	43.383	262.300	225.023 225.778	182.658	154.662	427.939	-4562 -4529
2100	43.637	264.041	226.519	191,360	150.955	439.167	-4.498
2,500	43.890	265.724	227.967	200.113	147.247	450.542	-4.408
\$500	44.016	266.546	229.370	204.508	145.395	456.282	-4.414
2600	44.268	268.151	230.055	213,336	141.696	467.864	-4.364
\$800 \$800	44.519 4.519	268.936 269.709	230.731	222.215	139.852	473.704	-434 -4319
2008	44.64S	270.471	232.052	226 673	136.175	485.482	-4.298
		;					

PREVIOUS. September 1977 (1 atm)

2
Ž
ڄ
ė
go
Ë
₹

kJ-mol ⁻¹	Enthalpy R	leference Te	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $T_r = 298.15 \text{ K}$		Standard State Pressure	e Pressure = p°	, - 0.1 MPa
. IOH: 7	ТЖ	ಬ		-[G*-H*(T _t)]/T	H°-H°(T,)	Α.H.	₽ _C	log Kr
	08	0.	0.	INFINITE 234234	-9.979	188.276	188.276	INFINITE -99.193
	200	33.439	204291	207.397	-3,322	185.351	196.226	-34.378
	98	34.447	204.504	204.292	0.064	185.334	196.293	-34 178
	8 8 8	37.949	222.871	208.302	7285	183.775	204.065	-21.319
	86	39.953 41.945	229.967 236.277	211.334 214.455	11.119 15.275	183,231 182,825	208.177	-18.123 -15.847
	<u>8</u> 8	43.815	242.002 247.262	217.546 220.559	19.565 24.033	182.535	216.610	-14.143
	00 S	47.007	252.136	223.476	28.660	182.210	225.173	-11.762
	883 223	48.308 49.442	260.932	226.290	38,316	182.101	233.778	-10.176
ions, and	868	51.279	268.697	234.129	48.396 25.396 25.396	182.112	242.391	-9.044 -8.50
zberg and	96	52.714	275.642	238.892	58.801	182.192	250.997	-8.194
NIW YOU	2 2 2 2 2 2 2 2	53,329	281.921	241.149	69.465	182.250	255.296	-7844 -7.533
	2000	54.430	284.849	245.438	74.881	182,399	263.882 268.168	-7.255 -7.004
seconda	2100	55.424	290.346	249.457	85.868	182.595	272 449	-6.777 -6.570
h, NBC 5	2302	56.368	295.431	253236	97.048	182.846	280.996	-6.382
oy Neo.	7 4 00 7200 7200	56 827 57.278	300.169	255.045	102.708	183.164	289.518	-6 049
	2600	57.722 58.160	302.424	258.515	114 163	183,351	293.768 298.011	-5.902 -5.765
	2800	58.589	306 734	261.807	25.795	183.782	302.246	-5.638
	300	59.417	310.804	264.939	137.596	184.292	310.690	-5410
	3200	59.813 60.195	312.759	266.450 267.927	143.558 149.558	184.576 184.879	314.899	-5.306
	3300	60.565 60.919	316.522	269.372 270.785	155.597 161.671	185.199	323.288 327 467	-5.117 -5.031
	3200	61.259	320.106	272.169	167.780	185.890	331.637	-4.949
	3600 3700	61.580 61.883	321.837 323.528	273.525 274.854	173.922	186.257	335.796	-4.872
	3800	62.169 62.436	325.182 326.801	276.156 277.434	186.298 192.529	187.029	344,082	4 730
	4000	62.685	328.384	278.688	198.785	187.839	352.328	-4.601
	\$ \$ \$	62.915 63 128	329.935	281.128	205.065	188.675	360.531	-4.484
	4300 4400	63.499	332.942	282.316	217.690	189,098	364 618 368.695	-4.429 -4.377
	4500	63.660	335.828	284.631	230,389	189.946	372 762	-4.327
	94 90 90 90 90 90	63.803 63.932	337.229 338.603	285.759 286.869	236.762 243.149	190.369 190.789	376.821 380.869	-4279
	\$ \$ \$0 \$0 \$0	64.045 64.145	339.950 341.271	287.961 289.035	249.548 255.958	191.205 191.615	384.909 388.940	-4 189 -4 146
	2000	64.233	342.568	290.093	262.377	192.020	392.964	-4.105
	\$200 \$200	64.303 64.363	343.841 345.090	291.134 292.160	268.804 275.237	192.418	396.978 400.985	-4.066 -4.028
-	\$ 300 \$400	64.413 64.451	346.317 347.521	293.170 294.166	281.676 288.119	193.189	404.985	-3.956
	2500	64 480	348 704	295.146	294.566	193.926	412.963	-3.922
	5500 5700	3.3 8.53	349,866	296.113	301.015	194.280	416.943	-3.889
	2800	25.50 25.50 25.50 25.50	352 130	298.006	313.916	194.959	424.883	-3.826
	88	64.492	354,316	299.847	326.817	195.598	432.801	-3.768
	PREVIOUS: June 1977 (1 atm)	- June 1977	(1 atm)				CURRENT. J.	CURRENT. June 1977 (1 bar)
			İ					

 $M_r = 18.034904 \text{ Amidogen} - D_2(\text{ND}_2)$

IDEAL GAS

Amidogen-d₂ (ND₂)

 $\Delta_t H^{\circ}(0 \text{ K}) = 188.276 \pm 8.4$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 185.351 \pm 8.4$ v3, cm⁻¹ [2367](1) Electronic Levels (Quantum Weights) and Vibrational Frequencies (Degeneracies) Product of the Moments of Inertia: $I_A I_B I_C = 5.7948 \times 10^{-119} \text{ g}^3 \cdot \text{cm}^6$ (1)(0)(1) [2305](1) Bond Distance: N-D = 1.024 Å Bond Angle: D-N-D = 103.4° 88 Point Group: C2. £, cm-1 10393 S°(298.15 K) = 204.291 J·K⁻¹·mol⁻¹

X²Β, Α²Α_ι(π)

Enthalpy of Formation

LH*(298.15 K) of ND₂(g) was calculated from the JANAF selection¹) for ΔH*(298.15 K) of NH₂(g), the JANAF thermal function the zero point energies of H₂(g), D₂(g), NH₂(g) and ND₂(g). The zero point energies of H₂(g) were those given by Herzk Monfils. The zero point energies of NH₂(g) and ND₂(g) were estimated from vibrational frequencies given by Milligan and Jaco observed the infrared and visible spectrum of matrix—isolated NH₂ and ND₂.

Heat Capacity and Entropy

The bond distance and angle are from the electronic absorption spectrum of NH, as summarized by Herzberg ⁴ The vibrational fret for the ground state are from Milligan and Jacox, ³ those for the excited state are estimated by comparison with NH₂. ¹⁴ The National Bureau of Standards prepared thus table ⁵ by critical analysis of data existing in 1972. Using S° , C° and $\Delta_t H^{\circ}$ selected b we recalculate the table in terms of current JANAF reference states for the elements.

¹JANAF Thermochemical Tables. NH₂(g), 7–31–72 (NBS)/6–30–77.

²G Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).

³D. E. Milligan and M. E. Jacox, J. Chem. Phys. 43, 4487 (1965).

⁴G. Herzberg, "Electronic Spectra of Polyatomic Molecules," D Van Nostrand Co., Inc., New York, (1966).

⁵S. Abramowitz *et al.*, U. S. Nat. Bur. Stand. Report 10904, 239, (July 1972).

D₂N₂(g)

CURRENT: June 1977 (1 bar)

 $M_r = 32.041604$ Diazene-D₂, Cis (DNND)

S*(298.15 K) = 224.092 J K⁻¹·mol⁻¹

!			
į			
ļ			
i			
ļ			

039 ± 2.1 kJ·mol⁻¹ 108 ± 2.1 kJ·mol⁻¹

$\Delta_i H^{\circ}(0 \text{ K}) = 214.0$	$\Delta_t H^{\circ}(298.15 \text{ K}) = 207.1$	

 $\sigma = 2$ Product of Moments of Inertia: $I_AI_BI_C = 3.8165 \times 10^{-117} \text{ g}^3 \cdot \text{cm}^6$ Vibrational Frequencies and Degeneracies Bond Distances N-N = [1.230] A; N-D = [1.014] A [2400](1) (1)(0)(1) 750](1) Ground State Quantum Weight: Bond Angle: D-N-N = [100] [2300](1) (1)(8)(1) 1490](1) Point Group: C2

Enthalpy of Formation

 $\Delta_H^{a'(N_1D_2}$, g, 298.15 K) was estimated from $\Delta_H^{a'(N_1H_2)}$, g. 298.15 K) = 50.9 \pm 5 kcal·mol⁻¹, given in the JANAF Thermochemical Tables, 'the appropriate thermal functions (see tables for N₁D₂, H₂, D₂, and N₂H₂)' and the estimated zero point energies. The zero point energies for H₂(g), D₂(g) are those given by Herzberg and Monfils. The zero point energies for N₂D₂(g) and N₂H₃(g) are taken to be one half the sum of the vibrational frequencies given above and for N₂H₃(g).'

Heat Capacity and Entropy

trans-HNND and at 946 cm⁻¹ attributed to trans-DNND. For cis-HNNH, they assigned v_1 or v_4 = 3074 cm and v_3 = 1279 cm⁻¹. Based on these observations and the vibrational frequencies for N₂D₂ are estimated. The National Bureau of Standards prepared this table by critical analysis of data existing in 1972. Using molecular constants and Δ_1H^0 Chen. The principal moments of inertia are: $I_A = 0.5832$, $I_B = 2.1780$, $I_C = 2.7612 \times 10^{-39}$ g·cm². The infrared spectrum of N₂H₂(g) has been observed using matrix isolation techniques by Rosengren and Pimentel, they also observed absorptions at 1481 and 1058 cm⁻¹ attributed to The bond distances and angle are assumed the same as were obtained from a quantum mechanical calculation for N₂H₂ by Wheland and

selected by NBS, 5 we recalculate the table in terms of 1973 fundamental constants, 9 1975 atomic weights, 7 and current JANAF reference states

for the elements.

JANAF Thermochemical Tables: N₂H₂(g), 12–31–65; H₂(ref st.), 3–31–77; N₂D₂(g), 6–30–77.

²G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).

W. Wheland and P. S. K. Chen, J. Chem. Phys. 24, 482 (1960).
 K. Rosengren and G. Pimentel, J. Chem. Phys. 24, 67 (1956).
 Abramowitz et al., U. S. Nat. Bur. Stand., Report 10904, p. 239, (July 1972).
 CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, (December 1973).

UPAC Commission on Atomic Weights, Pure Appl. Chem. 47, 75 (1976), 37, 589 (1974).

	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = T_1 = 298.15 K $\frac{1}{12}$ K $\frac{1}{12}$		Standard State Pressure	H	p* = 0.1 MPa	
	τÆ	ះ	S - [G	-[G*-H'(T,)]/T	H*-H*(T,)	A.H.	₽ <i>Q</i> •	log Kr	
	08	0.		INFINITE 255.951	-10308	214.039	214.039	INFINITE -115.104	
	ន្តន្ត	34.771	209.482	224.721	-3.605 -1.821	209.225	235.310	-60.066 -49.165	
	298.15	39.024		224,092	0	207.108	240,643	-42.160	_
	98 88 88	39.119	224.333	224.092 224.578	0.072 2.094	207.072 206.177	240.851 246.554	-41.936 -36.796	
	8 2	44.483 47.125	236.317 241.710	225.690 227.174	6.551 6.541	205.412 204.774	252.376 258.286	-32.957 -29.981	
	8 8	49.652	246.807	228.884	196'8	204.254	264.260	-27.607	
-	38	58.283	264.953	236.673	19.78 19.78	203 134	288.507	-24,057	
	88	61.703	272.965	240.715	25.800	203.004	300.715	-19.635	
	200	67.018	287.339	248.636	38.703	203.278	325.123	-16.983	
	2002	69 056 70.770	293.825 299.909	252.453	45.509 52.503	203.595	337.293	-16.017 -15.210	
=	96	72.215	305.633	259.745	59.654	204.446	361.532	-14527	
= :	88	74.483	316.134	266.576	74.336	205.474	385.626	-13.429	
<u> </u>	0092	75.375	320.970	269.826	81.830	206.027	397.618	-12.981	
	88	76.808	329.935	276.015	97.056	207.177	421.498	-12232	
	888 888 888	77.891	334.103	278.963 281.821	112,530	207.766	433.389	-11.915 -11.629	
Ð	2100	78.335	341.897	284.591	120.342	208.955	457.078	-11.369	
= 0	382	79.073	349.058	289.890	136.086	210.144	480.654	-10.916	_
, E	7500 7500 7500	79.381 79.656	352.430 355.676	292.426 294.891	144.009 151.961	210.734	492.402 504.127	-10.717 -10.533	
و	2500	79.903	358 805	297.290	159.939	211.902	515.827	-10.363 -10.205	
93	2800	80326	364.742	301.898	175.963	213.045	539.163	-10.058	
	888	80 672	370.296	306.275	192.064	214.159	552.418	-9.793	
	3100	80.822	372.944	308,383	200.139	214.704	574.018	-9.672 -9.559	
	300	81.084	378.006	312.451	216.331	215.764	597.166	-9.452	
-	3500	81.199	380.428	314.415	232.570	216.279	620.250	-925 -925	
	3600	81.402	385.075	318.212	240.706	217.277	631.771	-9.167	
	3800	81.576	389 481	321.848	257.004	218.229	654.772	-9.000	_
	600	81 724	393.669	325,336	273,334	219.132	671.725	-8.850	
	4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	81.791 81.853	395.688 397.660	327.027 328.685	281.510 289.692	219.565 219.984	689.184 700.633	-8.780 -8.714	
	4300 4400	81.911	399.586 401.470	330,312	306.074	220.390	712.072	-8.650 -8.589	_
	98	010.78	616.60%	335.4/4	314.273	701.127	24.923	16.00-	_
	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	82.108	406.881	336.522	330.686	221.880	757.742	-8.421	
	868	82.18	410.305	339.465	347.116	222.54	780.530	-8.370 -8.321 -8.371	
		177.70	413 504	143 300	35.55	173 154	803 303	744	
	250	82.295	415.192	343.694	371.789	46.	814.665	-8.183	_
	25.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0	8238	418.299	346.400	388.254	223.977	837.394	-8.100 -8.061	
	2600	82.410	421.295	349,021	404.731	224.467	860.104	-8.023	_
	2700	82.435	422.754	350.302	412.973	224.697	871.452	-7.986	-
	888	82.482	425.597	352.807	429.465	225.127	894.138	-7.916	
	3	\$5.70	402.074	100.400	437.114	075577	300.410	1000	_

PREVIOUS: June 1977 (1 atm)

D₂O₁(g)

CURRENT: June 1977 (1 bar)

	6
ጅ	ጅ
್ಲ	್ಲ

IDEAL GAS

Water-d₂ (D₂O)

M_r = 20.020004 Water – D₂(D₂O)

S°(298.15 K) = 198.339 J·K⁻¹·mol⁻¹

 $\Delta_t H^{\circ}(0 \text{ K}) = -246.251 \pm 0.067 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -249.203 \pm 0.067 \text{ kJ} \cdot \text{mol}^{-1}$

2788.02(1) Vibrational Frequencies and Degeneracies 1178.33(1) (1)69(1) v, cm,

Product of the Moments of Inertia: $I_A I_B I_C = 3.9948 \times 10^{-119} \text{ g}^3 \cdot \text{cm}^6$ Ground State Quantum Weight: 1 Bond Distance: O-D = 0.958 Å Bond Angle: D-O-D = 104.45° Point Group: C2v

 $\sigma = 2$

Rossini et al. 1 measured the ratio of the heats of formation of $D_2O(1)/H_2O(1)$. Recalculation of their results using $\Delta_1H^2(298 15 \text{ K})$ of $H_2O(1)$ -68.315 ± 0.010 kcal-mol⁻¹ (refer to H₂O(g) table, ¹³ yields Δ_H (228.15 K) of D₂O(1)-H₂O(1) = -2.1098 $\pm0.01492 \times \Delta_H$ [HDO(1)-H₂O(1), 298.15 K] ± .016 kcal·mol⁻¹. Using a value of 32 ± 30 kcal·mol⁻¹ for the reaction H₂D₂O(1) = 2 HDO(1) from? (some justification be smaller is given by Van Hook, refer also to HDO table, one obtains Δ_H^a (D)-O(I)-H₂O(I) $298.15 \text{ Kl} = -2.094 \pm 0.016 \text{ kcal·mol}^{-1}$ that the uncertainty may

selected by and, the condensed phase of heat capacity data of D₁O(1) given by Long and Kemp* and the gas phase thermal functions of Rossini et al. determined the ratio of the heats of vaporization of H₂O(1)/D₂O(1) at 298.15 K and zero pressure to be 0.969503 ± 0.00070. B) Bartholome and Clusius* determined the heat of vaporization of D₂O(1) by direct calorimetry at 0°C. Recalculation of their results, using Friedman and Haar (refer to the next section) C) The difference in heats of vaporization of D2O(1) and H2O(1) was derived by differentiating the formula given by Jones? (refer to Liu and Lindsay10 for a comparison with other measurements) for the ratio of the vapor pressures of The difference between the heats of vaporization of D₂O(I) and H₂O(I) at 298.15 K were evaluated as follows. A) By direct calorimetry, the energy equivalent of a Bunsen ice calorimetergiven by⁵ (compression correction assumed zero) and neglecting gas imperfection corrections, yields 12.637 ± 0.026 kcal·mol⁻¹. The heat of vaporization of D₂O(1) at 25°C was calculated using a heat of fusion of D₂O(1) H2O(1/D2O(1) as a function of temperature and assuming negligible corrections for gas imperfection (refer to Kell, Laurin and Whalley, however).

Source	Method	Δ _{rap} H°[D ₂ O(I)-H ₂ O(I), 298.15 K], kcal·mol ⁻¹
Knowlton, Johnston, Rossini	Calorimetry	0.331 ± 0.008*
Bartholome and Clusius	Calorimetry	0.340 ± 0.028*
Jones	Vapor Pressure	0.307 ± 0.020

*Calculated from $\Delta_{var}H^{\circ}(298.15 \text{ K})$ of $H_{2}O(l) = 10.520 \pm 0.002 \text{ kcal·mol}^{-1.12}$

HDO(g) is -0.916 ± 0.0015 kcal-mol⁻¹ and the "nonspectroscopic" value for this difference (refer to HDO table, reaction A^{11} is $(-1.763 \pm 0.0018) + (0.846 \pm 0.0006) = -0.917 \pm 0.019$ kcal-mol⁻¹. The average value of -1.766 ± 0.016 kcal-mol⁻¹ for $\Delta_H^{H}(298.15 \text{ K})$ of $H_2^{H}(298.15 \text{ K})$ of $H_2^{H}(298.15 \text{ K})$ of $H_2^{H}(298.15 \text{ K})$ of $H_2^{H}(298.15 \text{ K})$ for $H_2^{H}(298.15 \text{ K})$ of $H_2^{H}(298.15 \text{ K})$ energies given by Hulston 13 for H2O(g) and D2O(g), and by Herzberg and Monfils 14 for H2(g) and D2(g), and the appropriate thermal functions (H₂O(g), H₂(ref. st.), D₂(ref. st.), D₂O(g)). To close the consistency check, the "spectroscopic" value of Δ_H^{*} (298.15 K) of D₂O(g) minus Selecting 0.331 \pm .008 kcal·mol⁻¹ for the difference in the heats of vaporization, one obtains -1.763 ± 0.018 kcal·mol⁻¹ for $\Delta_0 H^0$ (298.15 K) of D₂O(g)-H₂O(g). The "spectroscopic" value for this difference was calculated to be -1.768 ± 0.015 kcal·mol⁻¹ based on the zero point $D_2O(g) = -59.561 \pm 0.016 \text{ kcal·mol}^{-1}$

Heat Capacity and Entropy

D₂O, the values of C_2^o of Friedman and Haar between 4000 and 5000 K were extrapolated linearly (except with a term in T^{-3}) from 5000 to and Haar. 16 Friedman and Haar applied their non-rigid-rotor, anharmonic-oscillator treatment (with vibrational-rotational coupling terms and ow-temperature rotational corrections) to the infrared-spectra analyses of Benedict et al., 13 and of Benedict et al., 18 In the present table for The thermodynamic functions of this table are analogous to those in the JANAF table for H₂O(g); 13 both tables are taken from Friedman 0009

The National Bureau of Standards prepared this table¹⁹ by critical analysis of data existing in 1972. Using $S^{*}(298.15 \text{ K})$ and C^{*}_{p} values selected by NBS.¹⁹ we recalculate the table in terms of the current JANAF reference states for the elements.¹⁵

References

F. D. Rossini, J. W. Knowlton, and H. L. Johnston, J. Res. Nat. Bur. Stand. 24, 369 (1940). W. C. Duer and G. L. Bertrand, J. Chem. Phys. 53, 3020 (1970).

Continued on page 1048

Standard State Pressure = p° = 0.1 MPa 27.128 62.469 41.090 15.500 15 MEINIE log Kr -234.536 -218.651 -213.094 -207.452 -201.745 190.198 -178.537 -172.680 -166.811 -160.934 -143.266 -137.369 -131,470 -125,569 -119,666 -113,763 -107,858 -86044 -90.135 -84.225 -78.313 -72.399 66.484 60.568 54.648 48.727 -42.803 -36.877 -30.947 -25.015 -19.080 16.606 22.568 28.534 34.505 40.480 -101.95 251.681 252.320 252.873 253.346 253.346 255.371 255.407 255.439 255.470 255.500 -255.740 -255.799 -255.864 -255.937 -255.018 256.690 256.837 256.994 257.163 257.342 255.038 255.136 255.214 255.277 255.328 255.531 -255.564 -255.601 -255.642 256.107 256.205 256.312 256.428 256.554 -258.518 -258.918 -259.190 -259.473 -259.768 254.078 254.581 254.761 254.917 257.532 257.734 257.947 ¥. 57.306 62.536 67.834 73.192 78.605 84.067 89.573 95.119 100.702 106.319 111.967 117.643 123.345 129.071 134.820 169.714 115.587 181.473 187.373 193.285 199.209 205.145 211.092 217.049 140.590 146,380 152,189 158,014 163,856 228.994 234.981 240.977 246.982 252.995 Enthalpy Reference Temperature = T, = 29&15 K $-[G^{\bullet}-H^{\circ}(T_{\bullet})]T$ 251.361 252.996 254.589 256.143 257.660 259.140 260.586 261.999 263.381 264.734 266.057 267.353 268.623 269.867 271.087 272.283 273.457 274.609 275.741 276.852 277.944 279.016 280.071 281.108 282.129 198,339 236.491 238.551 240.547 244.361 246.185 247.958 249.683 283.133 284.121 285.093 286.051 286.994 NEINTE 242,483 J.K. tmol-1 289.918 313.200 314.809 316.379 317.911 319.408 198,339 282.515 304 492 306.330 308.117 309.856 311.550 320.871 322.301 323.700 325.070 326.411 23.631 દ 46.826 48.091 49.225 50.236 51.938 52.653 53.292 53.866 54.848 55.270 55.654 56.004 56.326 56.621 56.894 57.146 57.380 57.598 57.802 57.993 58.172 58.342 58.501 38.652 38.795 38.795 39.060 39.184 39.311 39.311 39.312 39.522 39.525 39.526 59.526 59.526 60.003 5.635 38.835 40.545 42.251 53.892 ž

Water $-D_2(D_2O)$

PREVIOUS: June 1977 (1 atm)

39.306 44.304 49.301 54.299 59.294 69.294 74.294 84.297

-90.638 -90.630 -90.639 -90.635

320.426 322.550 324.605 326.596

58.107 58.300 58.480 58.647 58.810

95.7% 101.525 107.281 113.0% 118.861 124.681 136.377 142.250

263.045 265.055 267.004 268.895 270.730

56.881 57.166 57.430 57.676 57.902

311.146 313.595 315.955 318,230 -90.666 -90.691 -90.723 -90.763

148.138 154.042 159.960 165.891 171.836

328.527 330.401 332.222 333.993

59.112 59.245 59.379 59.509

58.965

272.514 274.248 275.935 277.937 279.179 282.263 283.201 286.620 288.607 289.364 289.378 289.37

0.256 0.258 0.053 0.073 0.

-90.865 -90.928 -91.079 -91.169

337.394 339.029 340.624 342.181 343.700

59.630 59.748 59.860 59.973 60.082

89.301 94.307 94.307 104.323 109.323 119.365 119.365 119.365 119.365 119.365 119.365 119.365

139.459 144.491 149.526 154.565 159.609

300.407 301.522 302.617 303.693 304.751

60.676 60.768 60.865 60.953

355.982 355.982 357.214

352.139

-91.268 -91.377 -91.497 -91.627 -91.768 -91.920 -92.084 -92.2643

183.762 183.762 185.742 195.734 200.137 200.136 213.746 219.808 225.852 231.906 237.970 244.042 256.214 262.314 262.314

345.185 346.637 348.057 349.446 350.807

60.187 60.291 60.392 60.488

164.655 169.707 174.762 179.823 184.887

268.423 274.540 280.665 286.800 292.942

305.792 306.815 307.822 308.814 309.790

310.751 311.697 312.630 313.549 314.455

Standard State Pressure = p = 0.1 MPa

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{i})]T$

13.778 8.149

6.184

-35.371 -38.856 -41.300

-23.920 -27.750 -30.691

215.285 216.715 219.489

226.102 234.833 242.396

37.999

215.284

98.15

6.159 5.074 4.315 3.337 3.303 3.303 2.669 2.139 1.705 1.705 1.705 1.705 0.776 0.7776 0.7776 0.7776 0.7

-91339 -91320 -91275 -91215

-90.942 -90.881 -90.826

62.105 67.619 73.179 78.781 84.420 90.093

251.921 254.303 256.602 258.822 260.968

-20.77 -90.701 -90.673 -90.652

-91,077

-44.717 -45.986 -45.980 -40.946

-35.021 -36.677 -91.246 -91.320

222.690 229.276 232.479 235.579

42.673 44.836 46.748 48.488 49.827

238.570 244.219 246.884 249.450

> 283.487 287.212 290.737

51.028 52.049 52.923 53.672 54.321

54.886 \$5.823 \$6.208 \$6.568

Enthalpy Reference Temperature = T, = 29&15 K

 $\Delta_t H^{\circ}(0 \text{ K}) = -20.997 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -23.891 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$

Vibrational Frequencies and Degeneracies 1896.38(1) 855.45(1) 1999 (1) ES

Ground State Quantum Weight: 1 Bond Distance: S-D = 1.328 A Point Group: C2

 $\sigma = 2$

Product of the Moments of Inertia: $I_A I_B I_C = 0.3445 \times 10^{-117} \text{ g}^3 \cdot \text{cm}^6$

Bond Angle: D-S-D = 92.2

Enthalpy of Formation

(a+b) $D_2S(g) + (1.5a+0.5b) O_2(g) = a SO_2(g) + (a+b) D_2O(g) + b S(thombic)$. The difference of $\Delta_1H^0(D_2S, g, 298.15 K)$ minus $H_2S(g)$ for their work was calculated using their results for $\Delta_1H^0(H_2S, g, 298.15 K)$, -4.92 ± 0.08 kcal-mol⁻¹ (recalculated), in the hope of eliminating $\Delta_4 P(D_2S, g, 298.15 \text{ K})$ was determined by Kapustinskii and Kankovskii' to be -5.692 ± 0.06 kcal-mol⁻¹ (recalculated) from the reaction:

possible systematic error due to uncertainty in the product formed.

The "spectroscopic" value of Δ_H⁰(D₂S, g, 298.15 K)-H₂S(g) was calculated from the appropriate thermal functions (see H₂, D₂, H₃S) and the zero point energies of H₂S(g), D₂S(g), ²³ D₂G), ⁴ and H₂G).

The equilibrium data of Grafe et al. ² for the exchange reaction H₂G) + D₂S(g) = D₂(g) + H₃S(g) were analyzed by third and second law

Source	Δ ₁ H°(298.15 K) of D _{2 S} (g)-H _{2 S} (g), kcal·mol ⁻¹
Kapustinskii and Kankovskii ¹	-0.771 ± 0.10
Spectroscopic ²⁻⁴	-0.810 ± 0.01
Grafe, Clusius, and Kruis Third Law	-0.826 ± 0.05
Second Law	-0.887 ± 0.02

A weighted average of -0.81 ± 0.02 kcal-mol⁻¹ was selected for $\Delta_1 H^0(298.15 \text{ K})$ of D₂S(g) minus H₂S(g) and was added to the selected value of $\Delta_t H^*$ (298.15 K) of $H_2S(g)^6$ to determine $\Delta_t H^*$ (298.15 K) of D_2

Heat Capacity and Entropy

for H₂S(g), where both the added and subtracted functions were generated using the rigid-rotor harmonic oscillator approximation. In this calculation the molecular constants for D₂S were taken from Miller, Leroi and Meggers.² The thermodynamic functions were estimated from those in the present table for H₂S(g)⁸ by adding those for D₂S(g) and subtracting those

The National Bureau of Standards prepared this table? by critical analysis of data existing in 1972. Using 5°(298.15 K) and C, values selected by NBS, we recalculate the table in terms of the current JANAF reference states for the elements.

References

F. Kapustinskii and R. T. Kankovskii, Zhur. Fiz. Khim. 32, 2810 (1958).
 R. E. Miller, G. E. Leroi, D. F. Meggers, J. Chem. Phys. 46, 2292 (1967).
 H. C. Allen and E. K. Plyler, J. Chem. Phys. 25, 1132 (1956).
 G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).
 D Grafe, K. Clusius, and A. Kruis, Z. Physik. Chem. B43, 1 (1939).

⁵IANAF Thermochemical Tables: H₂(ref st), D₂(ref st), 3-31-77, H₂S(g), 6-30-77.

Abramowitz et al., U. S. Nat. Bur. Stand. Report 10904, 239, (July 1972).

Hydrogen Sulfide-D₂(D₂S)

PREVIOUS: June 1977 (1 atm)

D₂S₁(g)

CURRENT June 1977 (1 bar)

CURRENT June 1977 (1 bar)

Ammonia-D₃(ND₃)

PREVIOUS: June 1977 (1 atm)

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	$\Delta_h H^0(0 \text{ K}) = -51.622 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$		Enthalpy Ref	erence Ter	emperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ 1.K ⁻¹ mol ⁻¹		Standard State Pressure = p° = 0.1 MPa	Pressure = p	= 0.1 MPa
10111. V.C 156:507 = (V C1:5	Σ 0/C°0C− = (V.C1.0.7) D ¹ Ω	7.4 KJ-11101	7.K	ູເ		$-[G^{\bullet}-H^{\bullet}(T_t)]T$	$H^{\bullet}-H^{\circ}(T_t)$	-H'A	Φ'Θ*	log Kr
	Vibrational Frequencies and Degeneracies		08	0. 33 296	0. 1	INFINITE 235.480	-10.234	-51.622 -53.893		INFINITE 23.821
	u, cm ⁻¹		200	34.551	189.507	207.289	-3.556	-56.406	-36.317	9.485
	2495(1)		300	38,225	203.931	203.931	0.	-58.576	-25.984	4.489
	793(1) 2652(2)		\$ %	42.924	215.822 225.883	205.490	4.133 8.650	-60.392 -61.739	-14.58 -2.934	1.901
	1225(2)		86	51.472 55.208	234.888 243.108	212.229 216.061	13.595 18.932	-62.707 -63.362	8.923 20.917	-0.777
Ground State Qu. Point Groun: Cs.	Ground State Quantum Weight: 1 \(\sigma(\text{cremal}) = 3\) Point Grown: C.		888	58.589 61 601 64.258	250 704 257.782 264.413	219.923 223.741 227.480	24.625 30.638 36.933	-63.761 -63.953 -63.979	32.987 45.094 57.213	-2.154 -2.617 -2.989
Bond Len Bond Ane Bond Ane	.D = 1.0124 Å		200	66.576 68.592	270.649 276.530	231.124	43.478 50.238	-63.660	69.328	-3.292
Product of	Product of the Moments of Inertia; $I_A/g_Jc = 2.5775 \times 10^{-118} \text{ g}^3 \cdot \text{cm}^6$		8 <u>8</u> 8	70.346 71.869 73.199	282.091 287.361 292.366	238.101 241.433 244.663	57.187 64.299 71.554	-63.361 -62.995 -62.573	93.508 105.561 117.587	-3.757 -3.939 -4.095
alpy of Formation spectroscopic" value for the difference	ilpy of Formation spectroscopic", value for the difference in ΔH*(298.15 K) of ND ₅ (g) minus NH ₅ (g) of -3.029 ± 0.01 kcal·mol ⁻¹ was calculated from spectroscopic", value for the difference in ΔH*(298.15 K) of ND ₅ (g) minus NH ₅ (g) of -3.029 ± 0.01 kcal·mol ⁻¹ was calculated from	culated from	0091 1700 1800	74.362 75.379 76.278	297.128 301.667 306.002	247.795 250.831 253.777	78.933 86.421 94.005	-62.107 -61.604 -61.072	129.582 141.548 153.483	-4.230 -4.349 -4.454
proprate thermal functions (refer to H ₂	proprate thermal functions (refer to H ₃ , D ₅ , NH ₃ ,"" zero point energies of ND ₃ (g) and NH ₃ (g), " and the zero point energies of H ₃ (g) given by Herzberg and Monfils. ³	gies of H ₂ (g)	8 8 8 8 8	71.069 71.768	310.148 314.119	256.635 259.411	101. <i>673</i> 109.416	-60.516 59.942	165.387 177.262	-4.547 -4.630
alysis of the equilibrium data of Schulz	ilysis of the equilibrium data of Schulz and Schaefer for K, (1 atm, 660-773 K) for 1/2N ₂ (g) + 3/2D ₂ (g) = ND ₃ (g) gave the following:	e following:	2200	78.387	317 928	262.107 264.728	117.224	-59.353 -58.754	189 108 200.925	-4 704 -4.771
√ √ √	Drift Δ/4'(298.15 K), kcal·mol ⁻¹ cal·K ⁻¹ ·mol ⁻¹ ΔS°(obsvcalc., 298.15 K)		7,700 7,700	79.868 80.257	328 498 331 766	26/278 269.758 272.174	133 010 140 975 148.982	-58.147 -57.535 -56.920	212.715 224.479 236.217	-4.831 -4.886 -4.935
	-12		2600 2700 800	80 601 80 906	334.921	274.527 276.820	157.025	-56.306 -55.694	247.930	-4.981
second law*	-13.0 ± 0.38 - +1.3 ± 0.5 cal·K '·mol''		3000	81.416 81.634	343.769	281.240 283.370	181.335 181.335 189.488	-55.007 -54.486 -53.893	282.933 294.557	-5.096 -5.129
<i>t.</i>	Asuming $\Delta C_p^* = 1.237-0.00608(T-700)$ cal K^{-1} -mol ⁻¹		3200	81.814	349.213	285 451 287.484	197.661	-53.310 -52.739	306.163	-5.159 -5.187
the results from the same authors $93 \pm 0.14 \text{kcal mol}^{-1}$ (third law) and	the results from the same authors' data for NH(g), ⁶ one obtains a difference in $\Delta_t H^2$ (298.15K) for ND ₃ (g) minus NH ₃ (g) \pm 0.14 kcal-mol ⁻¹ (third law) and -2.22 ± 0.4 kcal mol ⁻¹ (second law). The third law value agrees with the "spectroscopic" value	inus NH ₃ (g) copic" value	3300 3400 3500	82.107 82.224 82.326	354.337 356.790 359.175	289.472 291.416 293.318	214,055 222,271 230,499	-52.181 -51.639 -51.112	329.319 340.871 352.408	-5213 -5237 -5259
on combined uncertainty intervals. alue of $-3.03 \pm 0.1 \text{ kcal·mol}^{-1}$ was	combined uncertainty intervals. sluce of -3.03 ± 0.1 kcal·mol ⁻¹ , was added to the JANAF selection for $\Delta_t H^0(298.15 \text{ K})$ of NH ₃ (g), -10.97 ± 0.10 kcal·mol ^{-1,5} % to	-mol-1,5 6 to	3600	82.408 82.466	361 496 363.754	295.180	238.736	-50.604 -50.115	363.930	-5.280
ι Δ _t H°(298.15 K) of ND ₃ (g).			3800 400 900 900	82.508 82.537 82.550	368.098 368.098 370.188	298.789 300.539 302.254	255.228 263.481 271.735	- 49.647 - 49.201 - 48.779	386,933 398,416 409,888	-5.319 -5.336 -5.353
Capacity and Entropy thermodynamic functions were estimated.	Capacity and Entropy thermodynamic functions were estimated from those in the present table for $NH_1(g)^4$ by adding those for $ND_1(g)$ and subtracting those	racting those	4200 4200 4200	82.548 82.534	372,226 374,215	303.936	279.990	-48.382	421.350 432.802	-5.368
$H_3(g)$, where both the added and subtation the molecular constants for ND_3	H.(g), where both the added and subtracted functions were generated using the ngid-rotor harmonicoscillator approximation. In this ation the molecular constants for ND, were taken from Duncan and Mills' and Benedict and Plyler.	ation. In this	\$ 4 5 8 8 8	82.467 82.414	378.053 378.053 379.906	308.793 308.793 310.353	304.745 312.990	-41.352 -41.352 -41.065	455 682	-5.410 -5.422
 National Bureau of Standards prepare calculate the table in terms of current 	: National Bureau of Standards prepared this table' by critical analysis of data existing in 1972. Using S°, C°, and Δ _t H° selected by NBS, ' calculate the table in terms of current JANAF reference states for the elements.	ted by NBS,	4600 4700	82.349 82.276	381 716 383.487	311,884	321.228 329.459	-46.809 -46.583	478.535 489.953	-5.434 -5.445
rences			\$ 4 80 000 000 000	82.186 82.082 81.965	385.218 386.912 388.569	314.868 316.321 317.749	337.682 345.896 354.098	-46.389 -46.227 -46.099	501,366 512,776 524,183	-5.456 -5.466 -5.476
Duncan and I. M. Mills, Spectrochim. Acta 20, 523 (1964). Benedict and E. K. Plyler, Can. J. Phys. 35, 1235 (1957).	L. Acta 20, 523 (1964). thys. 35, 1235 (1957).		\$200 \$200 \$200	81.818	390.190	319.154	362.287	-46.006 -45.942	535.587 546.991	-5.486 -5.495
erzberg and A. Montils, J. Mol. Spectrosc. 5, 432 (1960). chulz and H. Schaefer, Ber. Bunsenges, Physik. Chem. 70, 21 (1966).			888 888 888	81 712 81 680	394.864 396.363	323.231 324.547	386.816 394.985	-45.884 -45.887	569.795 581.196	-5.512 -5.520
AF Thermochemical Tables, Second Edition, NSKDS-NBS 31, AF Thermochemical Tables, NH ₃ (g), 7-31-72 (NBS)6-30-77.	AF Thermochemical Tables, Second Edition, NSRIDS-NBS 31, 1971; NH3(g) 9-30-603. Thermochemical Tables; NH3(g), 7-31-72 (NBS)/6-30-730. The control of the Date Cond Department of the Control of the Cond Department of the Cond Depa		2,500 2,500 2,000	81.649 81.619 81.591	397.834 399.279 400.698	325.843 327.119 328.375	403.152 411.315 419.476	-45.911 -45.953 -46.013	592.598 603.999 615.403	-5528 -5535 -5542
oramowitz <i>et at.</i> , U. S. Nat. Bur. Stand. Keport 10504, p. 259, (July 1972)	id. Keport 10904, p. 25%, July 1972).		2300	81.564 81.538	402.093	329.613	427.633	-46.089 -46.180	626.807 638.213	-5.549

 $M_r = 20.049006 \text{ Ammonia} - D_3(ND_3)$

IDEAL GAS

Ammonia-d₃ (ND₃)

Enthalpy of Formation

ΔS°(obsvcalc., 298 15 K)	$+1.3 \pm 0.5 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
Drift cal·K ⁻¹ ·mol ⁻¹	-1.2
Δ ₁ H°(298.15 K), kcal·mol ⁻¹	-13.80 -13.0 ± 0.38
	third law second law*

Heat Capacity and Entropy

for NH₁(g), where both the added and subtracted functions were generated using the rigid-rotor harmonicoscillator approximation. In this The National Bureau of Standards prepared this table⁷ by critical analysis of data existing in 1972. Using S° , C° and $\Delta_t H^{\circ}$ selected by NBS, we recalculate the table in terms of current JANAF reference states for the elements. The thermodynamic functions were estimated from those in the present table for NH₃(g)⁶ by adding those for ND₃(g) and subtracting those calculation the molecular constants for ND, were taken from Duncan and Mills' and Benedict and Plyler.²

L. Duncan and I. M. Mills, Spectrochim. Acta 20, 523 (1964).

⁷W. S. Benedict and E. K. Plyler, Can. J. Phys. 35, 1235 (1957).
 ⁷G. Herzberg and A. Monfils, J. Mol. Spectrosc. 5, 482 (1960).
 ⁷G. Schulz and H. Schaefer, Ber. Bunsenges, Physik. Chem. 70, 21 (1966).
 ⁷ANAF Thermochemical Tables, Second Edition, NSRDS-NBS 37, 1971; NH₃(g) 9–30–65.
 ⁸IANAF Thermochemical Tables; NH₃(g), 7–31–72 (NBSy6–30–77.
 ⁷S. Abramowitz et al., U. S. Nat. Bur. Stand. Report 10904, p. 239, (July 1972).

References

Deuterium

Continued from page 1036

³J W. Pyper, R S. Newbury, and G. W. Barton, Jrs., J Chem. Phys. 46, 2253 (1967).

Friedman and V. J. Shiner, Jr., J. Chem. Phys. 44, 4639 (1966).
 J. J. Kresge and Y. Chiang, J. Chem. Phys. 49, 1439 (1968).
 R. Hulston, J. Chem. Phys 50, 1483 (1969).

M. Wolfsberg, J. Chem. Phys. 50, 1484 (1969).

 Kirshenbaum, "Physical Properties and Analysis of Heavy Water," McGraw-Hill, N. Y., (1951).
 Doehlemann and F. Lange, Physik. Chem. 173A, 295 (1935).
 P. Skripov, I. V. Povyshev, Russ J. Phys. Chem. 36, (2), 162 (1962).
 W. C. Duer, G. L. Bertrand, J. Chem. Phys. 53, 3020 (1970). ⁸G. Herzberg and A. Monfils, J. Mol Spectrosc. 5, 482 (1960).

¹³W. A. Van Hook, J. Phys Chem. 72, 1234 (1968)

14W M Jones, J Chem. Phys. 48, 207 (1968) [refer to C Liu, W T Lindsay, Jr., J Chem Eng. Data 15, 510 (1970). ¹⁵A Narten, J. Chem Phys 41, 1318 (1964).
 ¹⁶A S Friedman and L. Haar, J. Chem. Phys. 22, 2051 (1954).
 ¹⁷W. S. Benedict, N. Gailer and E. K. Plyler, J. Chem. Phys. 21, 1301 (1953).
 ¹⁸W. S. Benedict, H. H. Claasen and J. H. Shaw, J. Res. Nat. Bur. Stand. 49, 91 (1952).

¹⁹S. Abramowitz et al., U. S. Nat. Bur. Stand. Rept. 10904, 239, (July 1972)

¹W. A. Van Hook, J. Phys. Chem. 72, 1234 (1968).
 ⁴E. Bartholome and K. Clusius, Z. Physik. Chem. B28, 167 (1935).
 ⁵D. A. Ditmars and T. B. Douglas, J. Res. Nat. Bur. Stand. 75A, 401 (1971).
 ⁶I Kirshenbaum, "Physical Properties and Analysus of Heavy Water," McGraw-Hill, New York, (1951).
 ⁷V. A. Kirıllin, Editor, "Heavy Water Thermophysical Properties," National Technical Information Service, TI770-

50094, (1971).

⁸E A Long and J. D. Kemp, J. Chem. Soc. 58, 1829 (1936).

 Yw. M. Jones, J. Chem. Phys. 48, 207 (1968).
 DC. Liu and W. T. Lindsay, Jr., J. Chem. Eng. Data 15, 510 (1970).
 HG. S. Kell, G. F. Laurin, and E. Whalley, J. Chem. Phys. 49, 2839 (1968).
 PCODATA Task Group on Key Values for Thermodynamics, Final Set of Key Values for Thermodynamics-part I (Bulletin No 5) (November, 1971).

R. Hulston, J. Chem. Phys. 50, 1483 (1969) also refer to M. Wolfsberg, J. Chem. Phys. 50, 1484 (1969)
 G. Herzberg and A. Monfils, J. Mol Spectrosc 5, 482 (1960).

¹³IANAF Themochemical Tables. H₂O(g), 3–31–61, HDO(g), D₂O(g), 6–31–77, H₂(ref st.), D₂(ref st.), O₂(ref st.), ¹⁶A S. Friedman and L. Haar, J. Chem. Phys. 22, 2051 (1954).

¹⁷W. S. Benedict, N. Gailar, and E. K. Plyler, J. Chem. Phys. 21, 1301 (1953).
¹⁸W. S. Benedict, H. H. Claasen, and J. H. Shaw, J. Res. Nat. Bur. Stand, 49, 91 (1952). ¹⁹S. Abramowitz et al., U. S. Nat. Bur. Stand., Rept. 10904, 235, (July 1972).