Index

Index Terms	Links		
A			
Admittance matrix:			
lossy, homogeneous medium	160		
lossy, inhomogeneous medium	159	234	
Admittance parameters:			
series expansions of	338		
transmission-line networks	495		
Aerial mode	229		
Ampère's law	14	77	165
frequency domain	161		
lossy medium	158		
Asymptotic waveform expansion, for lossy			
MTLs	347		
Attenuation constant, two-conductor line	190		
В			
Basis functions, for charge expansions	105	116	
Bergeron diagram	270		
Bessel function	165	336	
Biconical transmission line	43		
BLT equations:			
symbolic solution	522		

<u>Index Terms</u>	<u>Links</u>			
BLT equations: (Cont.)				
transmission-line networks	491	508	514	516
	519			
Bound charge, in inhomogeneous media	103			
Branin's method	256	302		
extended to lossy lines	340			
extended to MTLs	288			
two-conductor line	266			
Broadside excitation, incident field				
illumination	428	432	436	
C				
Capacitance:				
coaxial cable	91			
two-conductor line	19			
two-wire line	85	88		
wire above ground line	90			
Capacitance matrix:				
definition of	55			
homogeneous medium	62			
MTL definition of	69			
Capacitive coupling coefficients	365			
Cayley-Hamilton theorem, for powers of a				
matrix	217			
Central differences, finite difference method	142			
Chain parameter matrix:	221			
incident field illumination	406	469		
lossy two-conductor line	423			

<u>Index Terms</u>	<u>Links</u>		
Chain parameter matrix: (Cont.)			
phasor MTL	199		
phasor solution	206		
properties of	206		
series expansion	200		
two-conductor line	192		
Characteristic impedance:			
lossy two-conductor line	423		
two-conductor line	190		
Characteristic impedance matrix	1	237	
frequency domain	204		
Characteristic impedances:			
of modes	279	280	282
three-conductor line	366		
Circuit, for inductances	66		
Classes of transmission lines	26		
Coaxial cable	91		
capacitance of	91		
conductance of	92		
inductance of	92		
Coaxial line, higher-order modes of	36		
Coefficients of potential	69		
Common-impedance coupling:			
frequency-domain solution	371		
time-domain solution	382		
Common-mode currents:			
creation by asymmetries	40		
incident field illumination	396		

<u>Index Terms</u>	<u>Links</u>		
Common-mode currents: (Cont.)			
three-conductor line	39		
two-conductor line	37		
Complementary error function	336		
Computed results, incident field illumination	435	463	480
Conductance:			
coaxial cable	92		
two-conductor line	20		
two-wire line	89		
Conductance matrix:			
definition of	55		
homogeneous medium	158		
inhomogeneous medium	158		
MTL definition of	72		
Conduction current	9	52	72
Conductive loss	158		
Conductivity, effective	104		
Conformal mapping method	154		
Continuity equation	18		
incident field illumination	400		
time domain	51		
Convolution, incident field illumination	455	474	
Convolution integral	292		
lossy line solution	323		
Coupled microstrip	6		
Coupling coefficient, three-conductor line	366		
Courant condition	301	307	
Cramer's rule	365		

<u>Index Terms</u>	<u>Links</u>	
Crosstalk	39	40
definition of	3	
Cross-sectional dimensions:		
parallel-plate line	35	
TEM restrictions	3	
Current:		
antenna	37	
common mode	37	
definition of	9	
differential mode	37	
transmission line	37	
two-conductor line	15	
Cutoff frequency:		
coaxial line	36	
parallel-plate line	35	
Cyclic symmetric structures:		
propagation constants of	228	
transformation matrix of	228	
parameter matrices of	226	
D		
Decoupling MTL equations:		
frequency domain	202	220
incident field illumination	467	
time domain	277	
Dielectric half space, potential of line charge	129	
Dielectrics:		
nonpolar	103	

<u>Index Terms</u>	<u>Links</u>			
Dielectrics: (Cont.)				
polar	103			
Difference operator	265	302	374	452
Differential equations, types of	26			
Differential-mode currents:				
incident field illumination	395			
three-conductor line	39			
two-conductor line	37			
Diffusion equation	162			
wires	165			
Displacement current	9	52		
E				
Effective dielectric constant:				
printed circuit board	136			
ribbon cable	110			
two-conductor line	29			
Eigenvalues, of MTL	219			
Eigenvectors, of MTL	219			
Electric field, sinusoidal charge expansion	108			
Electric flux density vector	104			
Electrical length, definition of	30			
Electrically-short line, incident field				
illumination	433	459		
Electrically-small cross section	396			
Endfire excitation, incident field illumination	426	431	436	
Entire domain expansion functions	116			
Equipotential contours	86			

Index Terms	<u>Links</u>			
Even-odd mode transformation	230			
Exponential, matrix	207			
F				
Faraday's law	14	165		
frequency domain	161			
incident field illumination	396			
integral form	46			
Finite difference method	140			
Finite differences	296			
Finite difference-time domain method				
incident field illumination	295	477		
lossy lines	326			
Finite element method	146			
FORTRAN	531			
FORTRAN codes:				
BRANIN.FOR	291	311	544	
BRANIN.OUT	544			
DIAG.SUB	283	545		
E0.IN	550			
EIGCC	543			
FDTDINC.FOR	464	480	550	
FDTDINC.IN	550			
FDTDINC.OUT	550			
FDTDLOSS.FOR	329	343	544	
FDTDLOSS.IN	544			
FDTDLOSS.OUT	544			
FINDIF.FOR	311	312	317	544

Index Terms	<u>Links</u>			
FORTRAN codes: (Cont.)				
FINDIF.IN	544			
FINDIF.OUT	544			
FREQ.IN	542	547		
GAUSSJ	538			
INCIDENT.FOR	422	441	442	443
	444	464	477	485
	547			
INCIDENT.IN	547			
INCIDENT.OUT	547			
JACOBI.SUB	280	283	545	
LEQTIC	543			
MSTRPGAL.FOR	531	532	541	
MSTRP.FOR	531	532	541	
MSTRP.IN	531	541		
MTLFREQ.DAT	543			
MTL.FOR	225	238	239	243
	312	326	332	330
	542			
MTL.IN	542			
MTL.OUT	542			
PCBGAL.FOR	135	138	159	243
	285	317	329	531
	532	539		
PCB.FOR	133	135	138	159
	531	532	539	
PCB.IN	531	539		
PUL.DAT	531	532	533	536

Inc	<u>lex Terms</u>	Links			
FO	RTRAN codes: (Cont.)				
		539	541	542	544
		545	547	549	550
	RIBBON.FOR	109	112	159	239
		311	383	531	532
		536			
	RIBBON.IN	531	536		
	SPICEINC.FOR	490	492	532	
	SPICEINC.IN	548			
	SPICEINC.OUT	548			
	SPICELC.FOR	383	532	547	
	SPICELC.IN	547			
	SPICELC.OUT	547			
	SPICELPI.FOR	295	311	324	343
		383	492	532	545
	SPICELPI.IN	545			
	SPICELPI.OUT	545			
	SPICEMTL.FOR	311	312	383	490
		492	532	545	
	SPICEMTL.IN	532	545		
	SPICEMTL.OUT	532	545		
	TIMEFREQ.FOR	294	311	312	317
		326	329	343	444
		464	485	506	543
	TIMEFREQ.IN	543			
	TIMEFREQ.OUT	543			
	VSVL.IN	544			

Index Terms	<u>Links</u>			
FORTRAN codes: (Cont.)				
WIDESEP.FOR	93	111	492	531
	532	533		
WIDESEP.IN	531	533		
Fourier series, for charge distributions	98			
Fourier transform	293	449		
Free charge	103			
Free nodes, finite element method	149			
G				
Galerkin	436			
Galerkin method:				
general description of	123			
potential of land	134			
wide-separation approximation	124			
Gauss' law	80			
finite difference method	143	145		
Gauss' laws, time domain	8			
Generalized capacitance matrix	173			
conversion to MTL	76			
definition of	74			
Fourier charge expansions	102			
pulse expansions	119			
two-conductor line	76			
Generator circuit, three-conductor line	361			
Global nodes, finite element method	149			
Green's function	125			
Ground mode	229			

Links			
457			
220			
3			
36			
30			
37			
68	71	73	76
413			
22			
88			
63			
59			
166			
234			
506			
543			
453			
421	429	435	
452			
407			
460	470		
448			
455	458		
	220 3 36 30 37 68 413 22 88 63 59 166 234 506 543 453 421 452 407 460 448	220 3 36 30 37 68 71 413 22 88 63 59 166 234 506 543 453 421 429 452 407 460 448	220 3 36 30 37 68 71 73 413 22 88 63 59 166 234 506 543 453 421 429 435 452 407 460 448

<u>Index Terms</u>	Links	
Incident fields	396	
Incident waves	509	
Incremental inductance rule	168	
Inductance:		
coaxial cable	92	
partial	170	
two-conductor line	18	
two-wire line	85	88
wire above ground line	90	
Inductance matrix:		
definition of	50	
MTL definition of	65	
printed circuit board	133	
Inductive and capacitive coupling:		
frequency-domain solution	367	
time-domain solution	378	
Inductive coupling coefficients	365	
Infinite parallel-plate line, modes of	30	
Inhomogeneous media:		
bound charge of	103	
invalidation of the TEM mode	29	
Interconnection network, transmission-line		
networks	489	
Interference	3	
Internal impedance, representation of	177	
Internal inductance	161	179
surface impedance	163	
wires	164	

<u>Index Terms</u>	<u>Links</u>			
Internal inductance matrix	320			
Intrinsic impedance	418			
lossless media	11			
lossy media	13	164		
Iterative solution:				
finite difference method	142			
finite element method	151			
K				
Kirchhoff's laws, transmission-line networks	498			
L				
Lands, on PCBs	6			
Laplace transform	180	254	289	321
	371			
in lossy line solution	334			
Laplace's equation	8	297		
exact solution for trough	122			
finite difference method	141			
finite element method	146			
minimum energy solution	148			
spectral-domain method	155			
transverse fields	113			
transverse fields of MTL	64			
two-conductor line	26			
Leaky modes, two-wire line	37			
Lightning	489	508		
Local nodes, finite element method	149			

<u>Index Terms</u>	Links	
Loss:		
conduction	104	
polarization	104	
Loss tangent	159	
Lossy conductors, invalidation of the TEM		
mode	29	
Lossy MTLs, decoupled	343	
Lumped system	26	292
Lumped-circuit iterative structures	231	
incident field illumination	415	475
lossy lines	324	
in time-domain solution	295	
transmission-line networks	492	
M		
Magic time step	301	307
Magnetic flux density vector	79	
Matched line, illustration of	315	
Maxwell's equations:		
differential form	7	
frequency domain	31	
integral form	13	
Method of characteristics	256	
incident field illumination	446	
for lossy MTLs	344	
two-conductor line	266	
Method of images	82	
dielectric half space	128	

Index Terms	Links	<u>S</u>	
Method of moments	40	115	
incident field illumination	435		
Mixed termination representation:			
incident field illumination	413		
terminal constraints	214		
transmission-line networks	497		
Mode voltages and currents	277		
frequency domain	201		
Modes:			
incident field illumination	467		
of MTL	2		
MTL equation phasor solution:			
mixed terminal representation	214		
Norton equivalent	214		
Thévenin equivalent	212		
MTL equations	54		
frequency domain	187	188	
general phasor solution	199	204	
incident field illumination	402	444	446
lossless time, time domain	275		
lossless lines	58		
lossy lines	321		
matrix form	57		
second-order form	58		
series solution	291		
time domain	50	57	
MTL equations solution, plane wave			
illumination	475		

MTL solution, general process 2	
MTLs, examples of 4	
${f N}$	
<i>n</i> wires above ground, inductance matrix 95	
<i>n</i> wires within a shield, inductance matrix 97	
Nonuniform line:	
approximate representation of 216	
definition of 27	
examples of 27	
Normal matrix 220	227
Norton equivalent:	
incident field illumination 412	
terminal constraints 213	
Numerical recipes 551	
n+1 wires, inductance matrix 93	
0	
Orthogonal transformation 223	
P	
Parameter, in FORTRAN codes 531	
Partial inductance 170	
Permeability, of free space 6	
Permittivity:	
complex 158	
or free space 6	
Per-unit-length equivalent circuit:	
of MTL 56	

<u>Index Terms</u>	<u>Links</u>	
Per-unit-length equivalent circuit: (Cont.)		
two-conductor line	22	
Per-unit-length parameter matrices:		
eigenvalues of	61	
homogeneous medium	58	60
positive definiteness of	61	
properties of	58	
symmetry of	60	
Per-unit-length parameters, two-conductor line	24	
Phase constant, two-conductor line	190	
Phasor MTL equations, incident field		
illumination	405	
Phasors	186	
Pigtails on shielded lines, approximate		
representation	218	
Point matching	118	
Poisson's equation	115	
Polarization charge	103	
Polarization loss	158	
Positive definite matrix	61	
Potential, sinusoidal charge expansion	100	108
Power flow	238	
Prescribed nodes, finite element method	149	
Printed circuit board	124	
computed results	317	388
lossy line	350	
computed results for	136	
dimensions of	136	

Index Terms	<u>Links</u>	
Printed circuit board (Cont.)		
effective dielectric constant	136	
example of	125	
Galerkin method potential	127	134
inductance matrix	133	
phasor computed results	241	
potential of land	132	134
potential of line charge	130	
pulse expansion potential	125	132
SPICE equivalent circuit	285	
wide-separation approximation	136	
Printed circuit board lands:		
computed results	176	
internal inductance of	168	
resistance of	168	
Prony's method, internal impedance	327	
Propagation constant:		
lossy two-conductor line	423	
of the TEM mode	12	
two-conductor line	189	
Propagation matrix, tube	510	
Pulse expansion:		
for charge distributions	117	
potential of land	132	
0		
Quadratic form, finite element method	148	
Quadratic form, finite element method	170	

Index Terms	<u>Links</u>			
Quasi-TEM assumption	4			
definition of	29			
n				
R				
Radiated emissions, two-conductor line	38			
Receptor circuit, three-conductor line	362			
Reference conductor, of MTL	46			
Reflected waves	509			
Reflection coefficient:				
current	512			
two-conductor line	191	194	257	
Reflection coefficient matrix	1	236		
Reflection coefficients:				
current	257	516		
voltage	257	516	518	521
Resistance, wires	164			
Resistance matrix, definition of	51			
Ribbon cable	67			
computed parameters of	109			
computed results	311	383		
computed results, lossy line	348			
conductance matrix for	160			
phasor computed results	239			
dimensions of	109			
S				
Scattered fields	396			
Scattered voltage, definition	397			

<u>Index Terms</u>	<u>Links</u>		
Scattering matrix:			
current	512		
junction	511		
Scattering parameters	491		
transmission-line networks	508		
Separation of variables	32		
Shielded MTLs, parameters of	157		
Sidefire excitation, incident field illumination	427	432	436
Similarity transformation, phasor MTL			
equation solution	201		
Similarity transformations, for lossy lines	343		
Sinusoidal charge expansions:			
electric field of	108		
potential of	100	108	
Skin depth	320		
Skin effect	161	174	324
Snell's law	421	429	
Spectral-domain method	155		
SPICE	295		
MTL model	283		
two-conductor line model	270		
SPICE equivalent circuit, incident field			
illumination	460	470	
Square root, of matrix	206		
State-transition matrix	198	406	
State-variable equations	405		
analogy to MTL equations	188		
of lumped systems	195		

<u>Index Terms</u>	<u>Links</u>	
State-variable equations (Cont.)		
phasor MTL equations analogy	199	
state-transition matrix	198	
Subdomain expansion functions	116	
Superposition	293	
Surface impedance, conductive half space	162	
Symmetric line	359	
Symmetrical components	229	
T		
TE mode, parallel-plate line	33	
TEM mode, basic MTL assumption	3	4
TEM mode of propagation, properties of	7	
Terminal constraints:		
incident field illumination	404	410
mixed representations	214	
Norton equivalents	213	
Thévenin equivalents	210	
Termination network, transmission-line		
networks	489	
Thévenin equivalent:		
incident field illumination	411	
terminal constaints	210	
Thin-film circuit	329	
Three-conductor line	359	
characterization	362	
explicit solution	374	
frequency-domain solution	365	

<u>Index Terms</u>	<u>Links</u>		
Three-conductor line (Cont.)			
recursive solution	373		
Time-domain reflectometer	354		
Time-domain to frequency-domain:			
incident field illumination	475		
lossy line solution	325		
transformation	292		
Time-Shift operator	265	374	452
TM mode, parallel-plate line	34		
Transmission coefficients, voltage	518	521	
Transmission-line equations, two-conductor line	18	20	
Transmission-line networks	489		
Transposed line	229		
Trapezoidal pulse train:			
Fourier series of	293	380	
spectral bounds	381		
Traveling waves:			
TEM mode	11		
transmission-line networks	517		
two-conductor line	191	257	
Tube, transmission-line network	489		
Twisted pair lines, approximate			
representation of	217		
Two port, two-conductor line as	192		
Two-conductor line:			
characteristic impedance of	254		
equivalent circuit	269		
frequency-domain solution	190		

<u>Index Terms</u>	<u>Links</u>		
Two-conductor line: (Cont.)			
incident field illumination	423	446	
input impedance of	194		
lossless line equations	253		
phasor voltage and current of	193		
power flow on	194		
propagation constant of	189		
series solution	262	265	
time-domain solution	190	256	
uniform plane wave	425		
Two-conductor lossy line:			
equations of	323		
as a two port	337		
Two-wire line:			
capacitance of	85	88	
conductance of	89		
inductance of	85	88	
U			
Uniform line	5	13	189
Uniform plane wave:			
frequency-domain characterization	416		
time-domain characterization	395	453	
V			
Velocities of propagation, of modes	279	280	282
Visual Numerics	551		

Index Terms	<u>Links</u>	
Voltage:		
definition of	9	
two-conductor line	15	
Voltages, of MTL	48	
W		
Wave equations, frequency domain	32	
Waves, traveling	11	
Weakly-coupled line	360	375
three-conductor line	366	
Wide-separation approximations:		
n wires above ground	95	
n wires within a shield	97	
n+1 wires	93	
printed circuit board	136	
ribbon cable	111	
Wire:		
electric field of	81	
internal inductance of	164	
magnetic field of	77	
magnetic flux of	77	
resistance of	164	
voltage of	81	
Wire above ground line:		
capacitance of	90	
inductance of	90	