

This is to certify that the annexed is a true copy of the following application as filed with this Office. β - 2θ \mathcal{N}

Date of Application: May 12, 2000

Application Number: Japanese Patent Application

No. 2000-139537

Applicant(s): SHIN-ETSU CHEMICAL CO., LTD.

March 9, 2001

Commissioner,

Patent Office Kozo OIKAWA

(seal)

Certificate No. 2001-3015853

日 PATENT OFFICE JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて

This is to certify that the annexed is a true copy of the following application as filed いる事項と同一であることを証明する。 with this Office.

出願年月日 Date of Application: 2000年 5月12日

出 願 番号 Application Number:

特願2000-139537

人 Applicant (s):

信越化学工業株式会社

2001年 3月 9日

Commissioner, Patent Office

【書類名】

特許願

【整理番号】

P000246

【あて先】

特許庁長官 近藤 隆彦

【国際特許分類】

G03F 7/039

【発明者】

【住所又は居所】

新潟県中頸城郡頸城村大字西福島28番地の1 信越化

学工業株式会社 合成技術研究所内

【氏名】

寛 窪田

【発明者】

【住所又は居所】

新潟県中頸城郡頸城村大字西福島28番地の1 信越化

学工業株式会社 合成技術研究所内

【氏名】

竹村 勝也

【発明者】

【住所又は居所】

新潟県中頸城郡頸城村大字西福島28番地の1 信越化

学工業株式会社 合成技術研究所内

【氏名】

吉原 隆夫

【特許出願人】

【識別番号】

000002060

【氏名又は名称】 信越化学工業株式会社

【代理人】

【識別番号】

100099623

【弁理士】

【氏名又は名称】 奥山

尚一

【選任した代理人】

【識別番号】

100096769

【弁理士】

【氏名又は名称】 有原

【選任した代理人】

【識別番号】

100107319

【弁理士】

【氏名又は名称】 松島 鉄男

【選任した代理人】

【識別番号】 100114591

【弁理士】

【氏名又は名称】 河村 英文

【手数料の表示】

【予納台帳番号】 086473

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0002048

【プルーフの要否】

【書類名】

明細書

【発明の名称】

レジスト材料及びパターン形成方法

【特許請求の範囲】

【請求項1】 レジスト材料において、フッ素置換基を有する界面活性剤の 一以上と、フッ素置換基及び珪素含有置換基のいずれも有しない非イオン系界面 活性剤の一以上とを含むことを特徴とするレジスト材料。

【請求項2】 上記非イオン系界面活性剤が、ポリオキシアルキレンアルキルエーテルエステル類、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンジアルキルエーテル、ポリオキシアルキレンアラルキルアルキルエーテル、ポリオキシアルキレンフラルキルエーテル、ポリオキシアルキレンジアラルキルエーテル、ポリオキシアルキレンジアラルキルエーテル、ポリオキシアルキレンジアラルキルエーテル、ポリオキシアルキレンジアラルキルエーテル、ポリオキシアルキレンラウレート類から選ばれる一以上である請求項1に記載のレジスト材料。

【請求項3】 波長500nm以下の高エネルギー線、X線又は電子線で露光する請求項1又は請求項2に記載の化学増幅型レジスト材料。

【請求項4】 請求項1~3のいずれかに記載のレジスト材料を基板上に塗布する工程と、次いで加熱処理後、フォトマスクを介して波長500nm以下の高エネルギー線、X線又は電子線で露光する工程と、必要に応じて加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、微細加工技術に適した新規なレジスト材料及びパターン形成方法に関する。

[0002]

【従来の技術】

近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、次世代の微細加工技術として遠紫外線、X線、電子線リソグラフィーが有望視されている。

現在、KrFエキシマレーザーを用いた遠紫外線リソグラフィーが実用化され

、酸を触媒とした化学増幅型レジスト材料で、0.15μm以下のパターンルールの加工も可能になっている。また、次世代の遠紫外線の光源としては、高輝度なArFエキシマレーザーを利用する技術が注目されている。

[0003]

基板の大口径化が進んでおり、レジスト材料には、現在の主流である8インチ 基板での塗布性が良好なことが望まれる。この目的を達成するための1つの方法 として、フッ素置換基を有する界面活性剤が配合される場合がある。

しかしながら、レジスト材料にフッ素置換基を有する界面活性剤を配合したと きに、各種の欠陥発生やマイクロバブルの発生といった問題を引き起こす場合が ある。

半導体デバイス工程においては、パターン表面の微小な異物 (欠陥)等の各種 欠陥発生が、歩留まり低下といった問題を引き起こし、欠陥の発生しにくいレジ スト材料が望まれている。

また、レジスト輸送時の振動が、レジスト中にマイクロバブルを発生させることがあり、このマイクロバブルの発生の少ないレジスト材料が望まれている。

[0004]

【発明が解決しようとする課題】

本発明は、塗布性が良好で、溶液でのマイクロバブルの発生を抑え、しかもデバイス工程での歩留まり低下を引き起こす各種欠陥の発生が少ない、レジスト材料及びパターン形成方法を提供することを目的とする。

[0005]

【課題を解決するための手段】

本発明者らは、上記目的を達成するため鋭意検討を行った結果、フッ素置換基を有する界面活性剤に加え、フッ素置換基及び珪素含有置換基のいずれもを含有しない非イオン系界面活性剤を配合することを特徴とするレジスト材料が、レジスト材料の塗布性、マイクロバブルの発生等の不具合を解消することに加え、デバイス工程での歩留まり低下の原因となる各種欠陥を低減させることを知見し、本発明をなすに至った。

[0006]

以下、本発明について詳しく説明する。

本発明のレジスト材料は、ポジ型レジスト材料であっても、ネガ型レジスト材料であってもよい。

ポジ型レジスト材料の場合、酸不安定基で保護された酸性官能基を有するアルカリ不溶性又は難溶性樹脂であって、該酸不安定基が脱離したときにアルカリ可溶性となるベース樹脂と、遠紫外線、X線、電子線等の照射により酸を発生する酸発生剤と、更に、通常、これら成分を溶解する有機溶剤とを含むレジスト材料において、フッ素置換基を含有する界面活性剤の一以上と、フッ素置換基及び珪素置換基のいずれも有しない非イオン系界面活性剤の一以上とを配合したものであるが、必要に応じて、このレジスト材料に、塩基性物質または酸性物質、溶解制御材等の添加剤を含有していても良い。

本発明をポジ型レジスト材料を代表として説明するが、アルカリ可溶性樹脂、メチロール基等の酸性条件下で反応しうる基を有する架橋剤と、遠紫外線、X線、電子線等の照射により酸を発生する酸発生剤と、更に、通常、これら成分を溶解する有機溶剤とを含むネガ型レジスト材料であっても良い。

[0007]

ポジ型レジスト材料に用いる酸不安定基で保護された酸性官能基を有するアルカリ不溶性又は難溶性樹脂であって、該酸不安定基が脱離したときにアルカリ可溶性となるベース樹脂は、特に限定されず公知のものを使用できる。

具体的には、特開平9-211866号公報に記載の2種以上の酸不安定基で保護されたポリヒドロキシスチレンを主成分とした化学増幅型レジスト材料、特開平11-190904号公報に記載の2種以上の酸不安定基及び酸不安定架橋基で保護されたポリヒドロキシスチレンを主成分とした化学増幅型レジスト材料、特開平6-266112号公報記載の酸不安定基で保護されたポリアクリル系樹脂とポリヒドロキシスチレンの共重合体を主成分とした化学増幅型レジスト材料、ポリアクリル系樹脂またはポリシクロオレフィン系樹脂を主成分としたArFエキシマレーザー用化学増幅型レジスト材料の何れにも適用できる。

[0008]

本発明において、ポジ型又はネガ型のいずれのレジスト材料にも用いられる酸発生剤は、遠紫外線、X線、電子線等の照射により酸を発生する酸発生剤であり、特に限定されず公知のものを使用できる。

具体的には、例えば、トリフルオロメタンスルホン酸トリフェニルスルホニウ ム、トリフルオロメタンスルホン酸(pーtertーブトキシフェニル)ジフェ ニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブト キシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウ ム、 p ートルエンスルホン酸(p ー t e r t ーブトキシフェニル)ジフェニルス ルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル ゙) スルホニウム等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビ ス(p-トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチ ルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン 、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニ ル) ジアゾメタン、ビス (tertーブチルスルホニル) ジアゾメタン等のジア ゾメタン誘導体、ビス-o-(p-トルエンスルホニル)-α-ジメチルグリオ キシム、ビス-o-(n-ブタンスルホニル)-α-ジメチルグリオキシム等の グリオキシム誘導体が好ましく用いられる。また、2-シクロヘキシルカルボニ ルー2ー (pートルエンスルホニル) プロパン等のβーケトスルホン誘導体、ジ フェニルジスルホン等のジスルホン誘導体、p-トルエンスルホン酸2,6-ジ ニトロベンジル等のニトロベンジルスルホネート誘導体、1,2,3-トリス(メタンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、フタルイミ ドーイルートリフレート等のイミドーイルースルホネート誘導体等も使用できる 。なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることが できる。

[0009]

本発明で用いる酸発生剤の配合量は、前記樹脂100重量部に対して0.2~ 15重量部、特に0.5~8重量部とすることが好ましく、0.2重量部に満た ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、15部を

超えるとレジストの透過率が低下し、解像力が劣る場合がある。

[0010]

本発明において、ポジ型又はネガ型のいずれのレジスト材料にも、通常用いられる有機溶剤としては、特に制限が無く、シクロヘキサノン、メチルー2ーnーアミルケトン等のケトン類、3ーメトキシブタノール、3ーメチルー3ーメトキシブタノール、1ーメトキシー2ープロパノール、1ーエトキシー2ープロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、メチルー3ーメトキシプロピオネート、エチルー3ーエトキシプロピオネート等のエステル類等が挙げられ、これらの1種類を単独で又は2種類以上を混合して使用することができる。

[0011]

有機溶剤の使用量としては、前記樹脂100重量部に対して、100~5,000重量部、好ましくは200~4,000重量部、さらに好ましくは300~3,000重量部である。

[0012]

本発明で用いるフッ素置換基を有する界面活性剤としては、パーフルオロアルキルポリオキシエチレンエタノール、フッ素化アルキルエステル、パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、含フッ素オルガノシロキサン系化合物等が挙げられる。例えば、フロラード「FCー430」「FCー431」(いずれも住友スリーエム社製)、サーフロン「Sー141」「Sー145」「KH-20」「KH-40」(何れも「旭硝子社製」)、ユニダイン「DSー401」「DS-403」「DS-451」(いずれもダイキン工業社製)、メガファック「F-8151」(大日本インキ工業社製)が挙げられる。これらの中でも、「FC-430」、「KH-20」が好ましく用いられる。

[0013]

フッ素置換基を有する界面活性剤の配合量は、レジスト材料全量に対して10~2,000ppmであり、特に50~700ppmが好ましい。10ppmより少ない場合は、膜厚均一性が得られず、更に塗布欠陥を生じてしまう場合があり、2,000ppmより多い場合は、解像性の低下を引き起こす場合がある。

[0014]

本発明で用いるフッ素置換基及び珪素含有置換基のいずれもを有しない非イオン系界面活性剤としては、特に限定されないが、好ましくは、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレン高級アルコールエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン誘導体、ポリオキシエチレンソルビタンモノラウレートが挙げられる。フッ素置換基及び珪素含有置換基のいずれも有しない非イオン系界面活性剤は、単独又は二以上を組み合わせて用いられる。

市販品としては、サンモール「N-60SM(ポリオキシエチレンノニルフェニルエーテル)」「L-50(ポリオキシエチレンアルキルエーテル)」「SE-70(ポリオキシエチレンアルキルエーテル)」(何れも「日華化学社製」)、エマルゲン「108(ポリオキシエチレンラウリルエーテル)」「707(ポリオキシエチレン高級アルコールエーテル)」「709(ポリオキシエチレン高級アルコールエーテル)」「709(ポリオキシエチレン高級アルコールエーテル)」「LS-106(ポリオキシアルキレンアルキルエーテル)」「MS-10(ポリオキシアルキレンアルキルエーテル)」「MS-110(ポリオキシアルキレンアルキルエーテル)」「A-60(ポリオキシエチレン誘導体)」、レオドール「TW-L106(ポリオキシエチレンソルビタンモノラウレート)」(何れも「花王社製」)等が挙げられる。これらの中でも、エマルゲンMS-110、レオドールTW-L106が好ましく用いられる。

[0015]

フッ素置換基及び珪素含有置換基のいずれもを有しない非イオン系界面活性剤 の配合量は、レジスト材料全量に対して10~2000ppmであり、特に50

[0016]

フッ素置換基及び珪素含有置換基のいずれも有しない非イオン界面活性剤とフッ素置換基を含有する界面活性剤との配合の重量比率、即ち、(フッ素置換基及び珪素含有置換基のいずれも有しない非イオン界面活性剤)/(フッ素置換基を有する界面活性剤)は、0.1以上が好ましい。配合の比率が0.1未満であると、各種欠陥を低減する効果が得られない場合がある。

[0017]

ところで、本発明のレジスト材料は、必要に応じて、塩基性物質または酸性物質、溶解制御材等の添加剤を含有していても良い。

塩基性物質としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。特に、第三級アミン、アニリン誘導体、ピロリジン誘導体、ピリジン誘導体、キノリン誘導体、アミノ酸誘導体、ヒドロキシ基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体、トリス {2-(メトキシメトキシ)エチル}アミン、トリス {(2-(2-メトキシエトキシ)エチル}アミン、トリス [2-{(2-メトキシエトキシ)メチル}エチル]アミン、1-アザー15-クラウン-5等が好ましい。

[0018]

なお、上記塩基性物質は1種を単独で又は2種以上を組み合わせて用いることができ、その配合量は、前記樹脂100重量部に対して0.01~2重量部、特に0.01~1重量部が好適である。配合量が0.01重量部より少ないと配合効果がなく、2重量部を超えると感度が低下しすぎる場合がある。

[0019]

酸性物質としては、特に限定されるものではないが、具体的には、フェノール 」クレゾール、カテコール、レゾルシノール、ピロガロール、フロログリシン、 ビス(4ーヒドロキシフェニル)メタン、2, 2ービス(4′ーヒドロキシフェ **ニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、1,1,1-トリ** ス(4′-ヒドロキシフェニル)エタン、1,1,2-トリス(4′-ヒドロキ シフェニル) エタン、ヒドロキシベンゾフェノン、4-ヒドロキシフェニル酢酸 、3-ヒドロキシフェニル酢酸、2-ヒドロキシフェニル酢酸、3-(4-ヒド ロキシフェニル)プロピオン酸、3-(2-ヒドロキシフェニル)プロピオン酸 . 2,5-ジヒドロキシフェニル酢酸、3,4-ジヒドロキシフェニル酢酸、1 , 2-フェニレン二酢酸、1, 3-フェニレン二酢酸、1, 4-フェニレン二酢 酸、1,2-フェニレンジオキシ二酢酸、1,4-フェニレンジプロパン酸、安 息香酸、サリチル酸、4,4ービス(4′-ヒドロキシフェニル)吉草酸、4tert-ブトキシフェニル酢酸、4-(4-ヒドロキシフェニル) 酪酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシマンデル酸等が挙げられ、中でもサリ チル酸、4,4-ビス(4′-ヒドロキシフェニル)吉草酸が好適である。これ らは単独又は2以上の組み合わせで用いることができる。

酸性物質の添加量は、前記樹脂100重量部に対して、5重量部以下、好ましくは1重量部以下である。添加量が5重量部より多い場合は、解像性を劣化させる可能性がある。

[0020]

溶解制御材としては、酸の作用によりアルカリ現像液への溶解性が変化する分子量3,000以下の化合物、特に2,500以下の低分子量フェノールあるいはカルボン酸誘導体の一部あるいは全部を酸に不安定な置換基で置換した化合物を挙げることができる。

ロフラニルオキシ)フェニル)メタン、ビス(4-tertーブトキシフェニル **)メタン、ビス(4-tert-ブトキシカルボニルオキシフェニル)メタン、** ビス(4-tert-ブトキシカルボニルメチルオキシフェニル)メタン、ビス (4-(1'-エトキシエトキシ) フェニル) メタン、ビス(4-(1'-エト キシプロピルオキシ)フェニル)メタン、2,2-ビス(4'-(2''テトラ ヒドロピラニルオキシ))プロパン、2,2-ビス(4'-(2''テトラヒド ロフラニルオキシ)フェニル)プロパン、2,2-ビス(4'-tertーブト キシフェニル)プロパン、2,2-ビス(4'-tert-ブトキシカルボニル オキシフェニル)プロパン、2,2-ビス(4-tert-ブトキシカルボニル メチルオキシフェニル)プロパン、2,2-ビス(4'-(1''-エトキシエ トキシ)フェニル)プロパン、2,2-ビス(4'-(1''-エトキシプロピ ルオキシ)フェニル)プロパン、4,4-ビス(4'-(2''テトラヒドロピ ラニルオキシ)フェニル) 吉草酸tert-ブチル、4,4-ビス(4'ー(2 ''テトラヒドロフラニルオキシ)フェニル)吉草酸tert-ブチル、4,4 ービス(4'-tertーブトキシフェニル) 吉草酸 tertーブチル、4,4 ービス (4-tertーブトキシカルボニルオキシフェニル) 吉草酸 tertー ブチル、4, 4ービス(4'ーtertーブトキシカルボニルメチルオキシフェ ニル) 吉草酸tert-ブチル、4, 4-ビス(4'-(1''-エトキシエト キシ)フェニル) 吉草酸tertーブチル、4,4-ビス(4'-(1''-エ トキシプロピルオキシ)フェニル)吉草酸tert-ブチル、トリス(4-(2 'テトラヒドロピラニルオキシ)フェニル)メタン、トリス(4-(2'テトラ ヒドロフラニルオキシ)フェニル)メタン、トリス(4-tertーブトキシフ ェニル) メタン、トリス (4-tert-ブトキシカルボニルオキシフェニル) メタン、トリス(4 - t e r t - ブトキシカルボニルオキシメチルフェニル)メ タン、トリス(4-(1'ーエトキシエトキシ)フェニル)メタン、トリス(4 - (1'-エトキシプロピルオキシ)フェニル)メタン、1,1,2ートリス(4'-(2' テトラヒドロピラニルオキシ)フェニル)エタン、1,1,2-トリス(4'-(2''テトラヒドロフラニルオキシ)フェニル)エタン、1, $1, 2-hyz(4) - tert- \overline{y}h+ \overline{y}z= 2 - hyz(1, 1, 1, 2-hyz)$

リス(4'ーtertーブトキシカルボニルオキシフェニル)エタン、1,1,2ートリス(4'ーtertーブトキシカルボニルメチルオキシフェニル)エタン、1,1,2ートリス(4'ー(1'ーエトキシエトキシ)フェニル)エタン、1,1,2ートリス(4'ー(1'ーエトキシプロピルオキシ)フェニル)エタン、2ートリフルオロメチルベンゼンカルボン酸1,1ーtーブチルエステル、2ートリフルオロメチルやクロヘキサンカルボン酸ーtーブチルエステル、デカヒドロナフタレンー2,6ージカルボン酸ーtーブチルエステル、コール酸ーtーブチルエステル、デオキシコール酸ーtーブチルエステル、アダマンタンカルボン酸ーtーブチルエステル、アダマンタン酢酸ーtーブチルエステル、[1,1'ービシクロヘキシルー3,3',4,4'ーテトラカルボン酸テトラーtーブチルエステル]等が挙げられる。

[0021]

本発明のレジスト材料中における溶解制御材の添加量としては、レジスト材料中の固形分100重量部に対して20重量部以下、好ましくは15重量部以下である。20重量部より多いとモノマー成分が増えるためレジスト材料の耐熱性が低下する。

[0022]

本発明は、フッ素置換基を有する界面活性剤の一以上と、フッ素置換基及び珪素含有置換基のいずれも有しない非イオン系界面活性剤の一以上とを含み、好ましくは、波長500 nm以下の高エネルギー線、X線又は電子線で露光する化学増幅型レジスト材料を提供する。

[0023]

また、本発明は、本発明のレジスト材料を基板上に塗布する工程と、次いで加熱処理後、フォトマスクを介して波長500nm以下の高エネルギー線、X線又は電子線で露光する工程と、必要に応じて加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法を提供する。

本発明の化学増幅ポジ型レジスト材料を使用してパターンを形成するには、公 知のリソグラフィー技術を採用して行うことができ、例えばシリコンウェハー等 の基板上にスピンコーティング等の手法で膜厚が 0.5~2.0 μ mとなるよう に塗布し、これをホットプレート上で60~150℃において1~10分間、好ましくは80~120℃において1~5分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、波長500nm以下の遠紫外線、エキシマレーザー、X線等の高エネルギー線もしくは電子線を露光量1~200mJ/cm²程度、好ましくは10~100mJ/cm²程度となるように照射した後、ホットプレート上で60~150℃において1~5分間、好ましくは80~120℃において1~3分間ポストエクスポージャベーク(PEB)する。更に、0.1~5重量%、好ましくは2~3重量%テトラメチルアンモニウムハイドロオキサイド(TMAH)等のアルカリ水溶液の現像液を用い、0. 3分間、好ましくは0.5~2分間、浸漬(dip)法、パドル(puddle)法、スプレー(sp1ay)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明材料は、特に高エネルギー線の中でも254~193nmの遠紫外線又はエキシマレーザー、X線及び電子線による微細パターンニングに最適である。また、上記範囲を上限及び下限から外れる場合は、目的のパターンを得ることができない場合がある。

[0024]

【実施例】

以下、実施例と比較例を示して本発明を具体的に説明するが、本発明は下記実 施例に限定されるものではない。

1. 使用したレジストの組成

ポジ型の化学増幅型レジストとして、以下の組成を有するレジストA~Eを使用した。

(レジストAの組成)

全ての水酸基のうち、14モル%を1-エトキシエチル基で保護し、13モル%を tert-ブトキシカルボニル基で保護した重量平均分子量11,000のポリヒドロキシ スチレン 80重量部

ビス(シクロヘキシルスルホニル)ジアゾメタン

5重量部

トリブチルアミン

0.125重量部

プロピレングリコールモノメチルエーテルアセテート

450重量部

[0025]

(レジストBの組成)

全ての水酸基のうち、20モル%を1-エトキシエチル基で架橋し、5モル%をtert-ブトキシカルボニル基で架橋し、更に4モル%を1,2-プロパンジオールジビニルエーテルで架橋した重量平均分子量25,000のポリヒドロキシスチレン

80重量部

トリフェニルスルホニウムトシレート

2重量部

サリチル酸

1重量部

トリブチルアミン プロピレングリコールモノメチルエーテルアセテート 0.125重量部

450重量部

[0026]

(レジストCの組成)

ポリ [(tert-ブチルアクリレート)-(ヒドロキシスチレン)] (モル比30:70の重量 平均分子量10,000の共重合体) 8 0 重量部

ビス(シクロヘキシルスルホニル)ジアゾメタン

5重量部

サリチル酸

1重量部

トリブチルアミン

0.125重量部

プロピレングリコールモノメチルエーテルアセテート

450重量部

[0027]

(レジストDの組成)

ポリ[(tert-ブチルメタクリレート)-(メチルメタクリレート)-(メタクリル酸)](モル比40:40:20の重量平均分子量12,000の共重合体) 80重量部

パーフルオロブチルスルホン酸トリフェニルスルホニウム

2 重量部

トリブチルアミン

0.125重量部

プロピレングリコールモノメチルエーテルアセテートと乳酸エチル7:3の混合 溶剤
450重量部

[0028]

(レジストEの組成)

ポリ「(5-ノルボルネン-2-カルボン酸t-ブチル)-(無水マレイン酸)-(無水5-ノ

ルボルネン-2,3-ジカルボン酸](モル比30:50:20の重量平均分子量9,000の共重合体) 8 0 重量部

パーフルオロブチルスルホン酸トリフェニルスルホニウム

2重量部

トリブチルアミン

0.125重量部

シクロヘキサノン

450重量部

[0029]

2. 使用した界面活性剤

本発明の実施例として、以下の界面活性剤の組合せ(単に「界面活性剤」と称する。)1と2を使用した。なお、その添加量も併記する。

(界面活性剤1:フッ素置換基を含有する界面活性剤とフッ素置換基及び珪素含有置換基のいずれも含有しない非イオン系界面活性剤配合)

フッ素系界面活性剤:KH-20(旭硝子社製)

300 p p m

エマルゲンMS-110(花王社製)

300ppm

[0030]

(界面活性剤2:フッ素置換基を含有する界面活性剤とフッ素置換基及び珪素含有置換基のいずれも含有しない非イオン系界面活性剤配合)

フッ素系界面活性剤:KH-20(旭硝子社製)

300ppm

レオドールTW-L106(花王社製)

300 p p m

[0031]

比較例として、以下の界面活性剤3と4を使用した。

(界面活性剤3:フッ素置換基を含有する界面活性剤のみを配合)

フッ素系界面活性剤:KH-20(旭硝子社製)

300ppm

[0032]

(界面活性剤4:フッ素置換基を含有する界面活性剤のみを配合)

フッ素系界面活性剤:FC-430(住友3M社製)

300ppm

[0033]

3. パターン表面上の異物(欠陥)評価方法

まず、表1に示すレジスト組成物を0.05μmのテフロン製フィルターで数回濾過し、得られたレジスト液を、シリコンウェハーにスピンコーティングし、

ホットプレートを用いて100℃で90秒間ベークし、レジスト膜の厚みを0.55μmにした。これをKrFエキシマレーザースキャナー(ニコン社製、NSR—S 202A)を用いて0.25μmの1:1のライン&スペースパターン露光し、露光後110℃で90秒間ベークし、2.38重量%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行うことにより、評価用のパターン済みウェーハを作製した。この得られたパターン済みウェーハに対してSEM観察を行い、パターン表面上に発生する異物(欠陥)をカウントし、評価を行った。

[0034]

4. マイクロバブル評価方法

まず、表1に示すレジスト組成物を $0.05\mu m$ のテフロン製フィルターで数回濾過した後、ガロン瓶に充填して、これを振とうした。液中パーティクルカウンター (KL-20リオン社製) にて、振とう後の1m1中の $0.22\mu m$ 以上のパーティクル数推移を評価した。

[0035]

5. 塗布性評価方法

まず、表1に示すレジスト組成物を0.05μmのテフロン製フィルターで数回濾過した後、得られたレジスト液を、8インチシリコンウェハーにスピンコーティングし、ホットプレートを用いて100℃で90秒間ベークし、レジスト膜の厚みを0.55μmの厚みにした。20枚塗布した際、塗り斑の発生頻度を塗布性の指標とし、発生頻度が少ないものほど塗布性が良好と云える。更に、ウエハー中心部からオリフラの水平方向に5mmピッチで35点の膜厚の測定を行い、膜厚のバラツキのレンジも塗布性の指標とし、レンジの小さいものほど塗布性が良好と云える。

[0036]

6.露光評価方法

まず、表 1 に示すレジスト組成物を $0.05 \mu m$ のテフロン製フィルターで数回濾過した後、得られたレジスト液を、8 インチシリコンウェハーにスピンコーティングし、ホットプレートを用いて100 で90 秒間ベークし、レジスト膜の厚みを $0.55 \mu m$ の厚みにした。KrF エキシマレーザーステッパー(ニコン

社製、NSR-S202A、NA=0.6)を用いて露光量とフォーカス位置を変えて露光し、露光後110℃で90秒間ベークし、2.38重量%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行うことにより、ポジ型のパターンを得た。この際、レジストD、EはArFエキシマレーザー用レジストであるが、KrFエキシマレーザーステッパーで評価を行った。得られた0.18μmのライン&スペースのレジストパターンのフォーカスマージンを求めた。フォーカスマージンが大きいものほど解像性に優れると云える。

[0037]

7.結果

結果を表1に示す。

【表1】

	界	L	18	液		塗	膜	フ
			ター	状		ŋ	厚	オ
	面	ジ	ン	パ ! =		斑	77	1
			表			の	ラ	カ
	活	面		ティ			ツキ	ス
		ス	上	クル		発	の	マ
	性		の 異			生	レ	ı
		物		数		頻	ン	ジ
	剤	۲	数	直後	24時間後	度	ジ	・ン
			(個)	(個/ml)	(個/ml)	(%)	(名)	(µm)
実施例1	1	A	2	1.7	1.3	0	12	1.3
実施例2	1	В	3	2.4	1.3	0	10	1.2
実施例3	1	C	1	2.5	1.2	0	13	1.4
実施例4	1	D	2	2.2	1.0	0	12	1.3
実施例5	1	E	3	1.9	1.3	0	14	1.3
実施例6	2	В	2	2.3	1.4	0	11	1.4
比較例1	3	Α	41	11	8	0	12	1.3
比較例2	3	В	52	10	9	0	10	1.2
比較例3	3	С	66	13	7	0	13	1.4
比較例4	3	D	58	12	10	0	12	1.3
比較例5	3	E	44	12	8	0	14	1.3
比較例6	4	В	48	123	115	0	1	1.2

[0038]

【発明の効果】

本発明のレジスト材料は、塗布性が良好で、マイクロバブルの発生がなく、しかも各種欠陥の発生が抑えられ、しかも高エネルギー線に感応し、感度、解像性、再現性にも優れている。また、パターンがオーバーハング状になりにくく、寸法制御性に優れている。従って、本発明のレジスト材料は、これらの特性より、特にKrF、ArFエキシマレーザーの露光波長での超LSI製造用の微細パターン形成材料として好適である。

【書類名】 要約書

【要約】

【課題】 塗布性が良好で、溶液でのマイクロバブルの発生を抑え、しかもデバイス工程での歩留まり低下を引き起こす各種欠陥の発生が少ない、レジスト材料及びパターン形成方法を提供する。

【解決手段】 フッ素置換基を有する界面活性剤に加え、フッ素置換基及び珪素 含有置換基のいずれもを含有しない非イオン系界面活性剤を配合することを特徴 とするレジスト材料及びパターン形成方法を提供する。

【選択図】 なし

認定 · 付加情報

特許出願の番号

特願2000-139537

受付番号

50000586842

書類名

特許願

担当官

第一担当上席 0090

作成日

平成12年 5月15日

<認定情報・付加情報>

【提出日】

平成12年 5月12日

出願人履歴情報

識別番号

[000002060]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 東京都千代田区大手町二丁目6番1号

氏 名 信越化学工業株式会社