8086 Hardware Specifications

Course Teacher:

Md. Fahmidur Rahman Sakib

Lecturer, Department of Computer Science & Engineering Metropolitan University

Course ID: CSE 237

Course Title: Microprocessor and Interfacing

Lecture References:

Book:

- Microprocessors and Interfacing: Programming and Hardware,Author: Douglas V. Hall
- The 8086/8088 Family: Design, Programming, And Interfacing, Author: John Uffenbeck.

- is a 40-pin DIPs; **Dual in-line package**
- DIP refers to a rectangular housing with two parallel rows of electrical connection pins.
- ▶ DIPs have a notch on one end to show its correct orientation.
- The pins are then numbered as shown in the figure below.

8086 Pin Diagram

CLK, input

- provides basic timing to control processor operation
- frequencies of different versions are 5, 8 or 10 MHz
- asymmetric with a 33% duty cycle

$$AD_0 - AD_{15}$$
, $bi - directional$

- lines are multiplexed bidirectional address/data bus.
- During T_1 , they carry 16-bit address.
- In remaining clock cycles T_2 , T_3 and T_4 , I 6-bit data.
- $AD_0 AD_7$ carry lower order data byte
- $AD_8 AD_{15}$ carry higher order data byte

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

- lines are multiplexed address and status bus.
- During T_1 , they carry the highest order 4-bit address.
- During T_2 , T_3 and T_4 , status signals.
- S_3 and S_4 , segment identifiers as in table below

S4	S3	Function
0	0	Extra segment access
0	I	Stack segment access
1	0	Code segment access
1	I	Data segment access

$$A_{19}/S_6$$
, A_{18}/S_5 , A_{17}/S_4 , A_{16}/S_3 , **output**

 S_5 : Indicates if interrupt is enabled or disabled.

- If $S_5 = I$, then the IF = I, so the interrupt is enabled.
- If $S_5 = 0$, then the IF = 0, so the interrupt is disabled.

 S_6 : Indicates if 8086 is the bus master or not

- If $S_6 = 0$, 8086 is the bus master
- If $S_6 = 1$, 8086 is not the bus master

 \overline{BHE}/S_7 , output

- Bus High Enable
- \overline{BHE} is active low
- To indicate the transfer of data over $AD_8 AD_{15}$
- Related to memory bank
- Selects odd/high memory bank when \overline{BHE} is 0
- S_7 : Reserved for further development

 \overline{RD} , output

- is active low
- Indicates read operation when low
- Processor reading from memory or I/O device
- Is low during T_2 , T_3 and T_w states of the read cycle

TEST, input

- Is examined by the WAIT instruction.
- If this pin is Low, execution continues.
- Else the processor waits in an idle state.

READY, input

- acknowledgement from a slow I/O device or memory
- To indicate ready/completion of data transfer
- When low, microprocessor enters wait state, T_w .

RESET, input

- To reset the system reset.
- And terminates the current activity.
- Must be active for at least four clock cycles

INTR, input

- Interrupt request
- Used to request a hardware interrupt.
- Can be masked.

NMI, input

- Non-maskable interrupt signal.
- Causes a type-2 interrupt.
- Initiates the interrupt at the end of the current instruction.

HOLD, input

- To request for bus by another device.
- It is an active HIGH signal.

HLDA, output

- Hold Acknowledgment.
- When acknowledged, it relinquish the bus to the requesting device

\overline{WR} , output

- Active low write signal.
- Writes data to memory or output device depending on M/\overline{IO} signal.

M/\overline{IO} , output

- Differentiates memory access from I/O access.
- When high, memory is accessed.
- When low, I/O devices are accessed.

DT/\bar{R} , output

- Data Transmit/Receive signal.
- indicates the direction of flow through the transceiver.
- When high, data is transmitted out i.e. written to.
- When low, data is received in i.e. read in.

\overline{DEN} , output

- Data Enable signal.
- Used to enable a transceiver connected to the μP

ALE, output

- Address Latch Enable
- indicates an address is available on bus $AD_0 AD_{15}$.
- active high during T_1 state

INTA, output

- An active low signal.
- An interrupt acknowledge signal.
- When microprocessor receives an INTR signal, it acknowledges the interrupt by generating this signal
- When low it indicates an interrupt is being serviced.

 QS_0 and QS_1 , output

- Instruction queue status.
- Instruction queue is 6 bytes long

QS_1	QS_0	Function
0	0	No Operation. During the last clock cycle, nothing was taken from the queue.
0	I	First Byte.The byte taken from the queue was the first byte of the instruction.
I	0	Queue Empty. The queue has been reinitialized as a result of the execution of a transfer instruction.
I	I	Fetch subsequent byteSubsequent Byte. The byte taken from the queue was a subsequent byte of the instruction.

$$\overline{S_0}$$
, $\overline{S_1}$, $\overline{S_2}$, output

- Status Signals.
- indicate operation done by the microprocessor
- Related to memory and I/O access control signals.

$\overline{S_2}$	$\overline{S_1}$	$\overline{S_0}$	Function
0	0	0	Interrupt acknowledgement
0	0	I	Read data from I/O port
0	I	0	Write data from I/O port
0	I	I	Halt
I	0	0	Opcode fetch
1	0	1	Memory read
I	I	0	Memory write
I	1	1	Passive state

\overline{LOCK} , output

- When low, all interrupts are masked
- Indicates to other processors to not request for system bus.
- No HOLD request is granted.
- No bus is relinquished to the other processors

 $\overline{RQ/GT_0}$ and $\overline{RQ/GT_1}$, bi - directional

- Request/Grant pins.
- Other processors request the CPU through these for system bus.
- CPU sends acknowledge signal on the same lines.
- $\overline{RQ/GT_0}$ has higher priority than $\overline{RQ/GT_1}$.

QUIZ

- 1) Assuming you want to type a secret message using a keypad connected to an 8086 microprocessor, deduce the values of the following pins during that time. Justify your answers too.
 - a) \overline{RD} e.g. mention if low (0) / high (1) and why.
 - b) \overline{WR}
 - c) M/\overline{IO}
- 2) Do you think there may be other pins involved? If so, justify your answer.

Thank You!!