Grammatik von Grafiken

Grafik = Daten + geometrische Elemente + Ästhetische Zuordnung + Datentransformationen + Skalen + Koordinaten systeme

+ Facettierung + Theme + & Grafiks

Geometrische Elemente = Punkte | Linien | Rechteche | Boxplots | Dichteflet | ...

Asthatische Zuordnung = Position & Farbe & Große & Form

Datentransformationen = id | Mittelwerte | Anteile | ...

Skalen = Achsenabschnitte & Tarbe & Legendan & Achsenbeschriftung & ...

Koordinatensysteme = Kartesisch | logarithmisch | Polarkoord. | Kartenproj. | ...

Facettierung = small multiples | lattice plot | plot | ...

Theme = Font & Gitterlininien & Hintergrundforten & Layout von Text & ...

Berechnung

W(0) = 0, V(0) = 0 , j= 1,..., n

U(j)= i (Aufteilugx-Achse)

V(m), ..., V(m) ist monoton steigend

 $V_{(j)} := \sum_{i=1}^{j} x_{(i)} \cdot \frac{1}{\sum_{i=1}^{m} x_{(i)}}$ (y-Werte)

Das Merkmal darf nur positive Werte annehmen. $x_{(n)}, \ldots, x_{(n)}$ sei die geordnete Stichprobe. Die Lorenzkurve verbindet Punktepaare bestehend aus den Teilsummen von $x_{(i)}$ (d.h. $\overset{>}{\underset{i=0}{\sum}} x_{(i)}$) und dem

relativen Anteil an Individuen, die diese Teilsumme

Merke

Gini - Koeffizient

Lorenzkurne muss Maßzahl, die das Ausmaß der Konzentration beschreibt mononton steigend, Definier als $G=2.7 \in [0, \frac{n-1}{n}]$, wober 7 die Fläche zwischen stetig, kleiner y=x, y=x und des Lorenzkurve ist. G=1-1. \$\frac{1}{2}(v_{(i-n)}+v_{(i)})\$ $G = \frac{n-1}{n} - \frac{2}{n} \cdot \sum_{i=1}^{n} V_{(i)}$ Normiert: $G^{+} = \frac{n}{n-1} \cdot G \in [0, 1]$ und eine Funktion sein Startet in (0,0), endet G+ = 0 bedeutet kaine Konzentration (Gleichverteilung) G+ = 1 bedentet volle Konzentration (Monopol) in (1.1)

Sind X_4 , X_2 unabhanging, so gilt $f_{X_1+X_2}(z) = \int_{\mathbb{R}} f_{X_1}(x_1) \cdot f_{X_2}(z-x_4) d\mu(x_1)$. Grenzen bestimmen sich dadurch, dass $x_4 \in \mathcal{T}_{X_2}$ and $z-x_4 \in \mathcal{T}_{X_2}$ getten mass.

Seien $X_1 \sim P(\lambda_1)$, $X_2 \sim P(\lambda_2)$ und unabhängig. Wir betrachten $\overline{Y} = X_1 + X_2$. $P(Y = n) = P(X_1 + X_2 = n) = \sum_{k=0}^{n} P(X_1 = k) \cdot P(X_2 = n - k) = \left(\sum_{k=0}^{n} {n \choose k} \cdot \lambda_1^k \cdot \lambda_2^{n-k}\right) \cdot \underbrace{e^{-(\lambda_1 + \lambda_2)}}_{n!}$

Kontingenztafel und bedingte Hänfigkeitsverteilung

Erwartete absolute/relative Hänfigheit

Wenn X, Y unabhängig sind, erwarten wir: absolute Hänligkeit: hij = hi. h.j relative Hänfigkeit: $\hat{f}_{ij} = f_i \cdot f_{ij}$

Bedingte Odds Odds ratio

Bedingte Odds: y(1,2|X=a;) = his Relative Chancen (Odds ratio): $y^{(4,2|X=a_i|,X=a_j')} = \frac{\chi^{(4,2|X=a_i')}}{\chi^{(4,2|X=a_j')}} = \frac{h_{j2} \cdot h_{j4}}{h_{j2} \cdot h_{j4}}$ D Symmetrisches Haß und Risikofaluter y>1: Odds in X=a; hāher ols in X=a;

Odds-Update

P[BIA] = IP[AIB] IP[B] P[BGA] [P[A | BG] 1P[BG] a-posteriori-Verhaltnis verhaltnis

22 - Koeffizient (Geht auf allen Skaten, aber) Zusammenhangsmaß zum quantifizieren vom "Abstand" zwischen beobachteten

und erwarteten Häufigkeiten. $\mathcal{X}^{2} = \sum_{i=1}^{k} \frac{\sum_{j=1}^{m} \left(h_{ij} - \widehat{h}_{ij} \right)^{2}}{\widehat{h}_{ij}} = n \cdot \sum_{i=1}^{k} \frac{\sum_{j=1}^{m} \left(\underbrace{\hat{f}_{ij} - \widehat{f}_{ij}}_{\widehat{f}_{ij}} \right)^{2}}{\widehat{f}_{ij}}$

Far eine Kontingenzfafel der Form

٦	6	ailt	u	ı· (a·d -	c.6)2
د	d	8	(0	r· (a·d - (+6)(a+c)(C+d)(b+d)

? Misst nur Starke des Zusammenhangs von X may. (Korregierter) Kontinganzkoeffizient Nicht die Richtung, wie bei y

Normierung von \mathcal{X}^2 : Kontingenzkoeffizient $\mathcal{K} := \sqrt{\frac{\mathcal{X}^2}{n+\mathcal{X}^2}}$, $\mathcal{K} \in [0, \{\frac{\min\{k, n\}, 1}{\min\{k, n\}}\}]$ Korrigierter Kontingenetroeffizient $K^* := \frac{K}{\left[\min\{h, m^3 \cdot 1\right]}$, $K^* \in [0, 1]$

Sensitiviát und Spezifitát

YE {0,1} (Zielgröße), X mindestens ordinalskaliert Y=1: "positiver" Fall , Y=0: "regativer" Fall Sei \hat{y}_i die Prognose für y_i auf Basis von x_i . Es soll getten

Sensitivitat: $TPR(c) = f(\hat{Y}=1|Y=1) = f(X \ge c|Y=1) = \frac{\# \text{ whir pos.}}{\# \text{ positiv}}$ (Wenn theoretisch: IP[ŷ=1|y=1] . 2.B. IP[Test pos. | Krank]) Spezifität: $TNR(c) = f(\hat{y} = 0|y = 0) = 1 - f(X \ge c|y = 0) = \# wahr may = 1 - FPR(c)$ (Wenn theoretisch: IP[ŷ=0|Y=0] . 2.B. IP[Test neg. | nicht-krank])

 $\hat{y}_i = 1 \Leftrightarrow x_i \ge c$. (9) $y_i = 1$ Vorhersage $\hat{y}_i = 0$ wahr negativ falsch negativ # negative Vorhersagen False pos. rete: $FPR(c) = f(\hat{Y}=1|Y=0) = f(X>c|Y=0) =$ # falseh pos. # negativ Vorhersage g;=1 falsch positiv wahr positiv # positive Vorhersagen # negative # positive

ROC-Kurve

Die ROC - Kurve zeigt die Zwerlässigkeit der Vorhersagen für alle möglichen Schwellenwerte can. Verbindet die Punkte (FPR(c), TPR(c)) Vce[x(1), x(n)] For $c < x_{(a)} \Rightarrow \hat{y}_i = 1 \ \forall i \Rightarrow (FPR(c), TPR(c)) = (4.1)$ For $c > x_{(n)} \Rightarrow \hat{y}_i = 0 \ \forall i \Rightarrow (FPR(c), TPR(c)) = (0,0)$

AUC-Map

Maß zur Bewertung der ROC Kurre AUC := Flache unter der ROC-Kurve

- > perfekte Trembarkeit dar Y-Gruppen durch c
- bedoutet AUC =1
 > XIV unabhängig => AUC ≈ 0.5

 V Behandelt Spezifitätä Sensitrität gleichwertig
 und beachtet ppV bew. npV nicht.

Positiv negativ pradikater Wert

 $ppV := f(y=1|\hat{y}=1) = \frac{\# \text{ wahr pos.}}{\# pos. \text{ Vorhersogen}}$ $n\rho V := f(Y=0|\hat{Y}=0) = \frac{\# wahr neg.}{\# neg. Vorhersogen}$

Kovarianz/Korrelation

Seien X, Y: Ω → IR zwei ZV mit Vas[X]>0 und Var [y] > 0, dann ist die Kovarianz $Cov(X,Y) := E[(X-E(X))\cdot(Y-E(Y))]$ und die Korrelation p(X, Y) := (ov(X, Y) ! Unabhangia = Unkorreliert |ρ(x,y)|=1 => Y=a+bX, a,beR

Eigenschaften von Kovarianz

- (i) @v(X'X) = Mr [X]
- iv) $G_{V}(X,Y) = IE[X \cdot Y] IE[X] \cdot IE[Y]$
- (ii) $|Cov(X,y)| \leq Var(X) \cdot Var(Y)$
- v) $Vos(X+Y) = Vos(X) + Vos(Y) + 2 \cdot Cov(X,Y)$
- (iii) $Cov(aX+b, cY+d) = a \cdot c \cdot Cov(X,Y)$ vi) L> X, Y sto unabhangig => Vas(X+Y) = Vas(X) + Vas(Y)

1st X4 quasi-int.bar, dann heißt $K(X) := \frac{\mathbb{E}[(X - \mathbb{E}(X)^4])}{Vor[X]^2}$ Kertosis von X K*(X) = K(X) - 3 heißt Exzess-Kurtosis. $K^*(X) = 0$: mesokurtisch

Kurtosis

K4(X)<0: pl	tykurtisch (Wenig extreme Warte)
rechtsstein (linksschief	2

$\overline{X}_{arit} > \overline{X}_{median} > \overline{X}_{modus}$ $\overline{X}_{arit} \approx \overline{X}_{median} + \overline{X}_{modus}$ $\overline{X}_{arit} < \overline{X}_{median} < \overline{X}_{modus}$			
$\frac{dx}{dx} = \frac{1}{ x } \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)}, \frac{x_{n}(x)}{x_{n}(x)} \right] + A \right] = 0$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$ $\frac{dx}{dx} \left[\frac{dx}{dx} \left[\frac{x_{n}(x)}{x_{n}(x)} \right] + O \right]$			

(si, F) sei ein Heßraum und µ: F→ IR

	i) μ(φ) = 0 ii) VA e F· μ(A) > 0
	iii) o-Additivitat: $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mu(A_{i})$
	iv) Normiertheit: $\mu(\Omega) = 1$
>	o-Algebra
modus	
	Fheißt o-Algebra, wenn
view	1) Ω 6 F 2) A 6 F = Ā 6 F
× χ : P(ξωε.π. είνω Χ.π(ω): Χ(ω)ξ)=1	3) A; eF, i∈I ⇒ UA; EF
X : Vε>0: lim [P[Xn-X >ε] =0	102
X: \(\lim_{\text{N=0}} \mathbb{E}[\text{X}_{-}\text{X} ^{\text{F}}] = 0	Hypergeometrische Verteilung
$X : V \times \{x \in \mathcal{X} \mid F \text{ stehig in } x\} : F_{X_n}(x) \xrightarrow{h \to \infty} F_{X}(x)$	
	von n Elementen aus einer Stichprobe der Größe
	N, wobei en insgesamt M günstige Elemente gibt.
	X ist hypergeometrisch verteilt $X \sim H(N, H, n)$,
x ⁰⁻¹ e ^{-x} dx	wenn Pun (X=x)= (M) (N-M) for
b = 1/2)	(N) xe { max {o, n-(N-H)},, min {n, 17}}
f	, , , , , , , , , , , , , , , , , , ,
$\frac{\Gamma(a) \cdot \Gamma(b)}{\Gamma(a+b)} = \int_{a}^{b} x^{a-1} (1-x)^{b-1} dx$	Dann ist $F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} \rho_{N,M,n}(X=k) \cdot A_{(0,n)}$
1 (040)	T 1-1 1-1
zwischen zwei Erfolgen einer Poi(X)	<u>Farbskalentypen</u>

Sinnvolle Zusamment

X, y nominal -> 1

X, y ordinal -> R

X,y metrisch → K

Satz vom iterierten Erwartungswert Satz von der totalen Varianz Für beliebige 2V X, Y und Funktion of gilt: Für beliebige ZV X, Y gilt: E[E(f(x)|+)] = E(f(x)) Var(X) = E(Var(X|2)) + Var(E(X|2)) Cerwartete Evarianz das bedingten bedingten Erwartungswertes

Markov - und Chebysher-Ungleicher	mq
Sei X·s.→1R eine reelle ZV. Dann giet	Ø
$V \varepsilon > 0$: $IP(X > \varepsilon) < \frac{1}{\varepsilon^n} \cdot E[X ^n]$	
Markov. Unglaichung (n=1): IP(X >E)≤ ½·E[X]	
Chebysher-Ungleichung(n=2): $IP(X-E[X] \ni E) \le \frac{1}{E^2} \cdot Var(X)$	

Jensen-Ungleichung Sei X eine int.bare ZV und g:1R→1R komex. Dann gilt E[q(X)] ≥q(E[X]). 15+ f: 1R → 1R konkar, so gilt $f(E[X]) \ge E[f(X)]$

Zentraler Grenzwertsatz

Seien $(X_n)_{n\in \mathbb{N}}$ i.i.d. Even mit $\mathbb{E}[X_n] : \mu$ and $\mathrm{Var}[X_n] = \sigma^2 < \omega$. Sei $S_n = \sum_{i=n}^n X_i$. Dann gilt: 1) $\lim_{h\to\infty} P\left[\frac{S_n-\mu_h}{\sqrt{n_0\sigma^2}} \leq x\right] = \mathcal{N}(0,1)$ $\lim_{h\to\infty} \frac{S_n-\mu_h}{\sqrt{n_0\sigma^2}} \rightarrow \mathcal{N}(0,1)$ bew. $S_n \sim \mathcal{N}(\mu_h,\mu_0\sigma^2) P(S_n \leq x) = \Phi\left(\frac{x-n_0\mu}{\sqrt{n_0\sigma^2}}\right)$ 2) $\lim_{n\to\infty} P\left[\sqrt{n}\cdot\frac{(\bar{X}_n-\mu)}{\sigma}\leq x\right] = \mathcal{N}(0,1)$ bew. $\frac{\bar{X}_n-\mu}{\sigma/n} \longrightarrow \mathcal{N}(0,1)$ bew. $\bar{X}_n\sim\mathcal{N}(\mu,\frac{\sigma^2}{n})$ $P(\bar{X}_n\leq x)=\bar{\Phi}\left(\frac{x-\mu}{2\sigma^2}\right)$

	X N X : Axe Exerit steple mx f. Lx(x) man Lx(
N(M,02)	
Cauchy	$F_{\chi}(x) = \frac{1}{2} + \frac{\operatorname{arctan}(x)}{\pi}$
(namma (na(a,b)	$F_{\chi}(x) = \frac{1}{\Gamma(a)} \cdot \int_{-\infty}^{bx} t^{a-1} e^{-t} \int_{[0,\infty)}^{bx} (t) dt \qquad \Gamma(a) = \int_{0}^{\infty} x^{a-1} e^{-x} dx$
Γ(a,b)	$ \mathcal{L}_{x\rho(\lambda)} = \Gamma(a=1,b=\lambda). \mathcal{L}^{2}(a) = \Gamma(a=\frac{d}{2},b=\frac{d}{2}) $
Beta(a,b)	$\frac{1}{C(a,b)} \cdot \int_{0}^{X} t^{a-1} (1-t)^{b-1} dt \cdot 1_{E(a,1)}(x) B(a,b) = \frac{\Gamma(a)\cdot\Gamma(b)}{\Gamma(a+b)} = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$
Εχρ(λ)	$F_{\chi}(x) = (1 - e^{-\lambda x}) \cdot 4_{[0,\infty)}$: $P(\text{Wartzert Zwischen Zwei Erfolgen einer Poils, vorteilten ZV})$
Bin(n,π)	$\mathcal{F}_{\chi}(x) = \sum_{k=0}^{L\times l} \binom{n}{k} \cdot \pi^{k} \cdot (\lambda - \pi)^{n-k} \cdot \mathfrak{A}_{[0,n]}(x) + \mathfrak{A}_{[n,\infty)}(x)$
Poi(λ)	$F_{\chi}(x) = \sum_{k=0}^{\lfloor x/2 \rfloor} P(\chi \cdot k) = \frac{\Gamma(\lfloor x+1\rfloor, \lambda)}{\lfloor x/2 \rfloor} : P(x \text{ Exfolge in bestimmter 2eit})$ $\lambda ist due Rate, mit observables in darbestimmter 2eit and pretern$
Geom(Tr)	$F_X(x) = (1 - (1-\pi)^{ X }) \cdot A_{[1,\infty)}$: $P(\text{genon } x \text{ bersuche für ersten Erfolg})$
Geom _B (17)	Fx(x)=(1-(1-17)(x)+1). 4 : P(genau x Fehlversuche vor erstem Erfolg)

Far	<u>bskalentypen</u>	
•	Qualitativ: (ches) nur für nominales Skalenniveau.	
•	Sequentiell: mindestens ordinales Skalennivean.	
•	Divergent: mindestens ordinales Skalenniveau	

hausmaße	Komb	mit Wdh. mit Zarückl	ohue Wolh ohue Zarāc
2°, odds ratio, Kontingentkoeffitient	ohne Rhf.	(")	(u+m-1)
Rangkorr, nach Spearman rsp	mit Rhf.	<u>(n-m)</u> !	n.m
Derrelation Pearson rap	Parm-	n!	n! na! ng!
- BP			

Charakteristische/Momenterzeugende Funktion Sei X eine ZV. Die Funktion 9x: 1R > C mit $\Psi_{\mathbf{x}}(t) = \mathbb{E}[\exp(itX)] = \int \exp(itX) dP = \iint_{\mathbf{x}} (x) \cdot \exp(itx) d\mu$ heißt charakteristische Fkt. von X. Die Funktion M.D→IR $M(t) := \mathbb{E}[\exp(tX)] = \iint_{V} (x) \exp(tx) d\mu$ heißt momenterzeug. Flot.

Dichte transformationssatz Sei X: II. > IR eine ZV mit stetiger Verteilungsflet. Fx und Dichte $f_X(x) = \frac{\partial F_X(x)}{\partial x}$ bigs. des λ -Maßes. Sei g. Ror bijektiv und stehig diff. bar mit g'(x) + 0. Dann hat $g \circ X$ die Dichte $f_{a \circ X}(y) = f_X(g^{-1}(y)) \cdot |(g^{-1})'(y)|$