BABI

PENDAHULUAN

1.1 Latar Belakang

Elektrodeposit logam-logam pelapis seperti krom (Cr), tembaga (Cu), nikel (Ni) dan yang lainnya banyak digunakan di industri dalam hal perbaikan kinerja. Industri pelapisan logam akan menghasilkan limbah yang mengandung logam berat seperti logam krom (Cr), tembaga (Cu), nikel (Ni) yang apabila tidak dikelola dengan baik dapat mengakibatkan pencemaran lingkungan. Peningkatan kadar logam berat dalam air akan mengakibatkan logam berat yang semula dibutuhkan untuk berbagai proses metabolisme akan berubah menjadi racun bagi organisme (Yudo, 2006). Pelapisan logam-logam di atas umumnya dilakukan dalam bak elektroplating. Pengambilan kembali logam-logam tersebut dari sisa larutan bak elektroplating perlu dilakukan untuk mengurangi efek buruk terhadap lingkungan.

Limbah industri pelapisan logam jika langsung dibuang ke lingkungan pengolahan terlebih dahulu akan berdampak negatif terhadap tanpa komponen-komponen lingkungan sehingga menurunkan kualitasnya. Menurut Peraturan Pemerintah Republik Indonesia Nomor 18 tahun 1999 tentang Pengelolaan Limbah Berbahaya dan Beracun, limbah logam berat yang dibuang ke lingkungan tidak boleh melebihi batas ambang yang ditetapkan. Pengendapan merupakan salah satu metode pengolahan limbah yang banyak digunakan untuk memisahkan logam berat dari limbah cair. Namun, seringkali logam berat tersebut sulit diendapkan sehingga logamlogam tersebut harus direduksi terlebih dahulu untuk mencapai efisiensi yang tinggi.

Penelitian mengenai reduksi logam berat pada limbah industri pelapisan logam dan proses pengendapan melalui proses elektrolisis perlu dipelajari oleh mahasiswa Teknik Kimia. Kajian kinetika proses reduksi dan pengendapan logam-logam berat tersebut perlu juga dipelajari sehingga diketahui kinerja proses beserta cara peningkatan kerjanya. Kecepatan reaksi dari proses reduksi dan pengendapan secara elektrolisis tergantung pada pH larutan elektrolitnya, yaitu makin tinggi pH kecepatan reaksi akan turun (Andinata dkk., 2012). Agar reduksi dan pengendapan berjalan sempurna diperlukan konsentrasi larutan reduktor berlebih.

1.2 Tujuan Percobaan

1. Mengkaji pengaruh waktu kontak terhadap kinerja reaksi elektroplating

- 2. Mengkaji pengaruh kuat arus terhadap kinerja reaksi elektroplating
- 3. Mengkaji pengaruh konsentrasi terhadap kinerja reaksi elektroplating
- 4. Mengkaji pengaruh konsentrasi terhadap konstanta laju reaksi elektroplating

1.3 Manfaat Percobaan

- 1. Mahasiswa dapat mengetahui proses reduksi dan pengendapan Cu^{2+} yang terkadnung dalam larutan CuSO_4 secara elektrokimia atau elektrolisis.
- 2. Mahasiswa dapat mengetahui kinetika reaksi reduksi dan pengendapan Cu^{2+} dalam larutan CuSO_4 secara elektrokimia.

BAB II

TINJAUAN PUSTAKA

2.1 Konsep Dasar Reaksi Elektrokimia

Studi hubungan antara reaksi kimia dan aliran listrik dengan menerapkan prinsip reaksi redoks disebut elektrokimia. Sel dimana terjadi reaksi redoks spontan yang mengakibatkan pengubahan energi kimia menjadi energi listrik disebut dengan sel volta atau sel galvani. Sedangkan sel dimana reaksi redoks non-spontan terjadi dengan mengalirkan arus listrik melalui sistem kimia disebut dengan sel elektrolisis (Suryani dan Sukarmin, 2012). Perubahan yang terjadi dalam suatu sistem kimia karena reaksi elektrolisis dan reaksi redoks dibahas dalam reaksi elektrokimia.

Reaksi elektrokimia sangat penting dalam mempelajari ilmu kimia dan aktivitas sehari-hari. Melalui reaksi elektrokimia dapat diperoleh informasi mengenai perubahan energi kimia sehingga membantu menganalisa sistemsistem kimia. Sampai saat ini, elektrokimia masih berperan penting dalam industri maupun rumah tangga. Pengaruh reaksi elektrokimia pada masyarakat modern hampir ditemukan dimana-mana. Pada bidang analisis kimia, elektrokimia diterapkan pada proses elektroanalisis, elektrosintesis, elektrokoagulasi, elektrodialisis, elektrowinning, elektrorefining, dan electroplating. Produk kimia seperti Al, Cl₂ dan NaOH juga dihasilkan melalui proses elektrokimia elektrolisis. Selain itu, semua sumber energi listrik kecil (baterai) diperoleh dari reaksi elektrokimia reduksi-oksidasi.

Sebelum memahami sistem elektrokimia, perlu diketahui pula bagaimana terjadinya hantaran listrik. Proses hantaran listrik berbeda antara logam dan sistem kimia. Logam adalah konduktor yang mampu menggerakkan muatan listriknya (elektron) berpindah dari satu tempat ke tempat lain jika suatu elektron ditambahkan atau dikurangi pada salah satu ujungnya. Hantaran listrik karena perpindahan elektron disebut hantaran logam. Leburan senyawa ion dan larutan yang disebut elektrolit juga dapat menghantarkan listrik, walaupun di dalam sistem ini tidak terdapat elektron bebas yang mudah bergerak. Oleh karena itu perlu dipelajari bagaimana sistem ini dapat menghasilkan listrik dengan cara menguji fenomena pada larutan dan elektroda dalam susunan alat elektrolisis.

Bila ada aliran listrik dari baterai (sumber arus DC) maka: (1). Katoda mendapat muatan listrik e (-); (2). Karena kelebihan muatan listrik e (-) maka katoda menarik ion (+) dari larutan, ion (+); (3). Pada saat yang sama, anoda

kekurangan elektron sehingga menarik ion (-) dari larutan; (4). Karena adanya hantaran listrik maka terjadi reaksi kimia (reaksi redoks) pada elektroda; (5). Pada anoda, ion (-) disekitarnya melepaskan e- sehingga terjadi oksidasi menjadi logam. Setiap terjadi oksidasi maka ion (-) ini diganti oleh ion (-) lain disekitarnya sehingga terjadi aliran ion-ion (-) dari larutan ke anoda; (6). Elektron-elektron yang dilepaskan dari ion-ion (-) mengalir ke sumber arus DC kemudian diteruskan ke katoda dimana terdapat ion-ion (+) yang kemudian mengalami reduksi; (7). Akibat reduksi ini, ion (+) lain yang terdapat disekitarnya menggantikannya sehingga terjadi aliran ion (+) dari larutan ke elektroda (+). Jadi, jika terjadi reaksi redoks maka elektron bergerak melalui kabel circuit (arus DC) dan ion bergerak di dalam cairan. Aliran ion dalam cairan disebut hantaran elektrolit. Pada hantaran elektrolit, ketidakstabilan yang terjadi karena migrasi ion dan perbedaan jumlah antara ion (+) dan ion (-) mengakibatkan cairan cenderung mempertahankan muatan listrik yang netral melalui aliran ion.

Reaksi kimia pada elektroda selama ada hantaran elektrolitik disebut reaksi elektrolisis. Tempat terjadinya reaksi elektrolisis disebut sel elektrolisis atau sel elektrolitik. Salah satu penggunaan elektrolisis adalah *refining* (memurnikan) atau pemurnian logam Cu. Setelah dipisahkan dari bijihnya, kemurnian logam Cu 99% dengan pengotor utama Fe, Zn, Ag, Au dan Pb. Pada proses *refining*, Cu yang belum murni digunakan sebagai anoda pada sel elektrolitik CuSO₄ sedangkan katoda nya berbahan Cu kemurnian tinggi. Proses elektrolisis dilakukan dengan pengaturan tegangan dimana hanya Cu dan logam yang lebih aktif, seperti Fe dan Zn yang teroksidasi. Logam Ag, Au dan Pt tidak larut tetapi jatuh dan mengendap pada dasar sel elektrolisis. Pada katoda hanya Cu²⁺ yang tereduksi sehingga terbentuk deposit Cu. Hasil keseluruhan dari proses sel elektrolisis ini adalah:

- 1. Cu dipindahkan dari anoda ke katoda.
- 2. Pengotor Fe dan Zn tetap dalam larutan sebagai Fe^{2+} dan Zn^{2+} .
- 3. Logam lain seperti Ag, Au, dan Pt mengendap di dasar sel.

Bila Ag, Au, dan Pt diambil kemudian dijual maka hasilnya dapat membayar biaya listrik yang diperlukan selama elektrolisis. Logam Cu yang diperoleh dengan proses ini mempunyai kemurnian 99,96 %.

Jika pada pembuatan Cu murni, katoda diganti dangan Fe, maka akan tetap terbentuk endapan Cu pada katoda Fe. Proses pelapisan katoda dangan logam lain dengan elektrolisis disebut elektroplating. Proses ini banyak digunakan secara komersial pada pelapisan bemper mobil dengan Cr dengan

tujuan mencegah korosi dan meningkatkan estertika.

Reaksi redoks merupakan gabungan reaksi kimia yang terjadi pada sel elektrokimia. Reaksi oksidasi adalah suatu perubahan kimia dimana suatu zat melepas elektron. Reaksi reduksi adalah suatu perubahan kimia dimana suatu zat menangkap elektron. Pada sel elektrokimia, oksidasi terjadi di anoda sedangkan reduksi terjadi di katoda. Pada reaksi redoks, zat yang mengoksidasi disebut oksidator, sedangkan zat yang mereduksi zat lain disebut reduktor. Suatu reaksi reduksi dapat menimbulkan potensial listrik tertentu yang disebut potensial elektroda (E). Semakin mudah suatu unsur mengalami reduksi, maka makin besar potensial elektrodanya (Kurniasari dkk., 2019). Harga potensial elektroda yang sebenarnya dalam suatu reaksi reduksi tidak dapat dihitung sebab tidak ada reaksi reduksi yang berlangsung tanpa diikuti reaksi oksidasi. Oleh karena itu, harga potensial elektroda yang dipakai adalah harga potensial standar, lebih tepatnya disebut potensial reduksi standar atau potensial elektroda standar (E₀). Elektroda yang digunakan sebagai standar penentuan harga potensial elektroda adalah elektroda hidrogen. Cara memperolehnya dengan mengalirkan gas hidrogen murni pada elektroda platina (Pt) yang bersentuhan dengan asam (ion H⁺) sehingga terjadi keseimbangan sebagai berikut:

$$H_2 = 2H^+ + 2e$$

Harga potensial elektroda dari reaksi ini ditetapkan 0 volt. Kemudian harga potensial elektroda standar dari semua reaksi reduksi adalah harga yang dibandingkan terhadap potensial elektroda standar hidrogen.

Berdasarkan harga E_0 maka dapat disusun suatu deret unsur mulai dari harga E_0 terkecil sampai terbesar yang disebut "deret volta" sebagai berikut:

Li-K-Ba-Ca-Na-Mg-Al-Mn-Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb-H-Cu-Hg-Ag-Pt-Au Sifat - sifat dari deret volta ini adalah :

- 1. Logam di sebelah kanan H memiliki harga E_0 positif sedangkan logam di sebelah kiri H mempunyai harga E_0 negatif.
- 2. Makin ke kanan letak suatu logam pada deret volta, maka harga E_0 logam makin besar. Hal ini berarti bahwa logam logam di sebelah kanan H mudah mengalami reduksi atau sulit teroksidasi. Logam ini disebut logam pasif atau logam mulia.
- 3. Makin ke kiri, harga E_0 dari logam semakin kecil yang berarti logam tersebut sulit tereduksi dan mudah teroksidasi. Logam ini disebut logam aktif.

2.2 Aspek Kuantitatif Reaksi Elektrokimia atau Elektrolisis

Michael Faraday telah menjelaskan adanya hubungan kuantitatif antara jumlah perubahan kimia pada reaksi elektrokimia dengan jumlah arus. Jumlah perubahan kimia sebanding dengan jumlah mol elektron yang digunakan pada reaksi oksidasi-reduksi. Contoh reaksi pada katoda, $Ag^+(aq) + e Ag(s)$, bila katoda menyuplai 1 mol elektron maka dihasilkan 1 mol endapan Ag. Pada sistem SI, 1 mol e setara dengan 96.494 Coulomb (C) dan biasanya dianggap 96.500 C. Coloumb adalah jumlah muatan listrik yang melawati satu titik circuit listrik bila arus 1 Ampere (A) mengalir selama 1 detik (S).

Jadi:
$$1 C = 1 A. 1 S$$

Dengan mengukur kuat arus (I) dan lamanya arus (t) dapat ditentukan jumlah muatan Coulomb (Q), dan dari jumlah muatan Coulomb dapat ditentukan jumlah mol elektron sehingga dapat diketahui jumlah mol zatnya.

Dalam Hukum elektrolisis, Michael Faraday menemukan:

- 1. Jumlah bahan yang terdekomposisi saat elektrolisa berbanding lurus dengan kuat arus (I) dan waktu (t) dalam laruran elektrolit.
- 2. Jumlah perubahan kimia oleh satuan arus listrik sebanding dengan banyaknya arus yang mengalir (I).

Pernyataan tersebut dirumuskan sebagai:

$$W = \frac{e. I.t}{96500}$$

dengan

W: massa endapan pelapis (g) E: berat ekivalen kimia (massa

I : kuat arus (A) atom dibagi dengan valensinya)

T: waktu (detik)

Dari rumus tersebut, volume endapan diperoleh dengan perhitungan:

Volume (cm³) =
$$\frac{\text{massa endapan (g)}}{\text{densitas (g/cm^3)}} = \frac{W}{\rho}$$

dengan

: kerapatan logam pelapis (g/cm³)

W: massa endapan (g).

Sehingga untuk mendapatkan nilai ketebalan:

Ketebalan (cm) =
$$\frac{\text{Volume (cm}^3)}{\text{luas permukaan (cm}^2)}$$

Hukum Faraday dapat menjelaskan pengaruh penambahan waktu pada proses elektroplating. Semakin lama waktu yang digunakan, maka lapisan logam yang dihasilkan juga semakin besar. Ketebalan lapisan logam juga dipengaruhi oleh berat equivalen kimia sebuah unsur kimia yang digunakan

sebagai anoda. Dalam persamaan juga dapat diketahui bahwa semakin besar jumlah deposit lapisan logam (jumlah berat edapan) maka semakin besar pula ketebalan dari lapisan. Sehingga dapat disimpulkan bahwa waktu yang digunakan pada proses pelapisan dan variasi anoda mempengaruhi jumlah deposit lapisan dan juga ketebalan lapisan yang terbentuk.

2.3 Kinetika Reaksi Elektrokimia atau Elektrolisis

Kinetika reaksi mempelajari laju reaksi kimia secara kuantitatif beserta faktor-faktor yang mempengaruhnya. Laju reaksi kimia adalah jumlah mol reaktan per satuan volume yang bereaksi dalam satuan waktu tertentu. Bila dibuat sebuah kurva penurunan konsentrasi reaktan sebagai fungsi waktu, maka slope kurva pada setiap titik selalu negatif karena konsentrasi reaktan yang selalu menurun. Jadi laju reaksi pada setiap titik sepanjang kurva = $-\frac{dC}{dt}$. Apabila laju reaksi dituliskan sebagai laju pembentukan produk, maka laju reaksi akan bernilai positif. Jika konsentrasi produk setelah reaksi berlangsung t detik adalah x mol dm⁻³, maka laju reaksinya $+\frac{dX}{dt}$. Laju reaksi pada setiap waktu sebanding dengan konsentrasi (C) yang tersisa pada setiap waktu. Secara matematik dapat dituliskan

$$-\frac{dC}{dt} = k.C$$

 $\frac{dC}{dt}$: differential rate expression

k : konstanta/tetapan laju reaksi

Persamaan laju reaksi yang lebih umum ialah

$$v = k[A]^x [B]^y [C]^z$$

dengan orde reaksi total = x + y + z + ...

$$Laju \ reaksi = \frac{perubahan \ konsentrasi}{waktu \ yang \ diperlukan \ untuk \ perubahan} = \pm \ \frac{\Delta X}{\Delta t}$$

Tanda negatif digunakan jika X adalah pereaksi dan tanda positif digunakan jika X adalah produk reaksi. Laju suatu reaksi kimia pada umumnya bertambah jika konsentrasi salah satu pereaksi dinaikkan. Hubungan laju reaksi dan konsentrasi dapat diperoleh dari data eksperimen. Untuk reaksi A + B produk, dapat diperoleh bahwa laju reaksi berbanding lurus dengan $[A]^x$ dan $[B]^y$.

Laju reaksi =
$$k[A]^x[B]^y$$

x dan y merupakan bilangan bulat yang menyatakan orde ke x terhadap A dan orde ke y terhadap B, sedangkan (x + y) adalah orde reaksi keseluruhan. Hukum laju reaksi diperoleh secara eksperimen dan tidak bergantung pada persamaan stoikiometri. Orde reaksi adalah jumlah pangkat konsentrasi

dalam bentuk diferensial. Secara teoritis orde reaksi merupakan bilangan bulat kecil, namun dalam beberapa hal pecahan atau nol. Pada umumnya orde reaksi suatu zat tertentu tidak sama dengan koefisien dalam persamaan stoikiometri reaksi (Prayitno, 2007).

Reaksi Orde Nol

Suatu reaksi disebut orde ke nol terhadap suatu pereaksi jika laju reaksi tidak dipengaruhi oleh konsentrasi pereaksi tersebut. Jika [A] adalah konsentrasi dan $[A]_0$ adalah konsentrasi pada saat t=0, maka

$$\frac{-d[A]}{dt} = \mathbf{k}$$

Kemudian dintergralkan menjadi

$$[A]_0 - [A] = k.t$$

• Reaksi Orde Satu

$$\frac{-d[A]}{dt} = k[A]$$

Hasil integral untuk memperoleh hubungan antara konsentrasi pereaksi terhadap waktu:

$$\ln \frac{[A]0}{[A]} = k.t$$

Reaksi Orde Dua

$$\frac{-d[A]}{dt} = k[A]^2$$

Hasil integral untuk memperoleh hubungan antara konsentrasi pereaksi terhadap waktu:

$$\frac{1}{[A]} - \frac{1}{[A]0} = k.t$$

• Reaksi Orde Tiga

$$\frac{-d[A]}{dt} = k[A]^3$$

Hasil integral untuk memperoleh hubungan antara konsentrasi pereaksi terhadap waktu:

$$\left(\frac{1}{[A]}\right)^2 - \left(\frac{1}{[A]_0}\right)^2 = k.t$$

BAB III

METODOLOGI PERCOBAAN

3.1 Bahan dan Alat yang Digunakan

- 3.1.1 Bahan
 - 1. CuSO₄
 - 2. Aquades

3.1.2 Alat

- 1. Amperemeter
- 2. Voltmeter
- 3. Bak Elektroplating
- 4. Seng
- 5. Tembaga
- 6. Penjepit buaya

3.2 Gambar Alat Utama

Gambar 3.1 Rangkaian alat proses elektroplating atau elektrolisis Keterangan:

(1) Katoda, (2) Anoda, (3) Bak elektroplating dan larutan, (4) Pengatur voltase, (5) Pengatur Ampere, (6) Penanda arus maksimum, (7) Display kuat arus, (8) Kabel sumber arus

3.3 Prosedur Percobaan

1. Mencari waktu kontak optimum

Larutan limbah atau larutan sintetis yang ada pada bak elektroplating diambil setiap 5 menit selama 20 menit. Variabel lain yang digunakan yaitu kuat arus pada ... A, konsentrasi ... g/l. Sampel yang diperoleh

dianalisa dan dihitung efisiensi penurunan kadar tembaga kemudian sampel yang menghasilkan efisiensi tertinggi merupakan waktu kontak optimum. Untuk proses selanjutnya waktu kontak ini yang digunakan.

2. Mencari kuat arus optimum

Larutan dimasukkan ke dalam saluran input dengan konsentrasi yang tetap dan pada waktu kontak optimum, tetapi kuat arus yang digunakan berbeda yaitu masing-masing ... A; ... A. Hasil elektroplating dianalisa, sampel yang menghasilkan efesiensi tertinggi merupakan kuat arus yang optimum dan digunakan pada proses selanjutnya.

3. Mencari konsentrasi optimum

Larutan yang dimasukkan dengan konsentrasi yang berbeda yaitu ... g/l; ... g/l; ... g/l, tetapi waktu kontak dan kuat arus yang digunakan yang pada kondisi optimum. Hasil ketiga sampel dianalisa dan dihitung efisiensi penurunan kadar tembaga, sampel yang menghasilkan efesiensi yang paling tinggi merupakan konsentrasi optimum.

efisiensi =
$$\frac{\text{berat sesungguhnya}}{\text{berat teoritis}} x100\%$$

berat sesungguhnya = $\text{Wn} - \text{W0}$
berat sesungguhnya = $\frac{\text{B. I. t}}{\text{E. 96500}}$

dengan

I = arus (ampere); B = berat atom Cu; t = waktu (detik); E = valensi

DAFTAR PUSTAKA

- Andinata, Febryan, Dkk. 2012. Pengaruh pH Larutan Elektrolit Terhadap Tebal Lapisan Elektroplating Nikel Pada Baja St 37. JPHA, 2(2), 48-52.
- Etching on the Metal di akses dari : http://platingcom.blogspot.co.id/2010/07/etching-on-metal.html
- Fogler, H.S. 2006. Elements of Chemical Reaction Engineering. 4th Edition. Prentice Hall PTR.
- Indarti, Retno. 2010. Uji Kinetika Pengurangan Kadar Nikel dari Buangan Elektroplating NIkel dengan metode Elektrolisis.
- Kurniasari, D., Simpono N. I. Dan Haqiqi, A. K. 2019. *Integrasi Nilai-Nilai Keislaman Pada Reaksi Redoks dan Elektrokimia Terhadap Rahasia Kekuatan Benteng Besi Iskandar Zulkarnain*. Walisongo *Journal of Chemistry*, 2(1), 26-39.
- Martin S. Silberberg. 2006. *Chemistry: The Molecular Nature of Matter and Change*, 4th Edition. The McGraw-Hill Companies, Inc., ISBN 0-07-111658-3
- Mordechay Schlesinger, Milan Paunovic (Editors). 2010. *Modern Electroplating*, 5th *Edition*. John Wiley & Sons, *Inc*.
- Prayitno. 2007. Kajian Kinetika Kimia Model Matematik Reduksi Kadmium Melalui Laju Reaksi, Konstante dan Orde Reaksi Dalam Proses Elektrokimia. Ganendra, 10(1).
- Suryani, Wihdati dan Sukarmin. 2012. Pengembangan E-Book Interaktif Pada Materi Pokok Elektrokimia Kelas XII SMA. Unesa Journal of Chemical Education, 1(2), 54-62.
- Yudo, Satmoko. 2006. Kondisi Pencemaran Logam Berat Di Perairan Sungai DKI Jakarta. JAI, 2(1).