

Exercices

THERMOCHIMIE

Application du 1er principe à la réaction chimique

CH009 : Synthèse de l'acide fluorhydrique

L'acide fluorhydrique est obtenu industriellement par réaction du difluorure de calcium solide avec l'acide sulfurique liquide pur. La réaction d'obtention de l'acide fluorhydrique peut s'écrire :

$$CaF_2(s) + H_2SO_{4(liq)} = 2 HF_{(g)} + CaSO_{4(s)}$$
.

On introduit dans un four cylindrique (20 m de longueur et 3 m de diamètre, volume V_0) 220 kg de difluorure de calcium et 280 kg d'acide sulfurique. Le contenu du four (air et réactifs) est porté à la température $T_0=573$ K sous $P_0=1$ bar avant que la réaction ne démarre.

Le four est maintenu à cette même température par un chauffage externe. On admet que dans ces conditions la transformation est totale.

- 1 Déterminer le transfert thermique reçu par les réactifs pour les chauffer de $298\ K$ à $573\ K.$
- 2 Calculer l'enthalpie standard $\Delta r H^{\circ}$ de la réaction à 298 K.

Dans la suite, on approximera la valeur de l'enthalpie standard de réaction à 573~K à celle calculée à 298~K: comment se nomme cette approximation ?

- 3 Déterminer la masse des liquides et solides présents dans l'état final.
- 4 Déterminer la pression finale P_F dans le réacteur. On pourra négliger le volume des phases condensées devant celui de la phase gazeuse.
- 5 Montrer que pour que la transformation soit isotherme le chauffage externe doit fournir au système réactionnel un transfert thermique

$$Q_c = \xi_F \Delta_r H^\circ - V_0 (P_F - P_0)$$

avec ξ_F l'avancement final de la transformation.

6 - Pourrait-on se passer de chauffage externe ?

Données: à 298 K

Composé	$CaF_{2(s)}$	$\mathrm{H_2SO_{4(liq)}}$	$\mathrm{HF}_{\mathrm{(g)}}$	$CaSO_{4(s)}$
$\Delta_{\rm f} H^{\circ} \ ({\rm kJ \cdot mol^{-1}})$	-1228,0	-814,0	-271,1	-1430,0
$C_P^{\circ} (\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$	67,0	138,9	29,1	100,0
$M (g \cdot \text{mol}^{-1})$	78,1	98,0	20,0	136,0

CHIMIE : Thermochimie page 1/5

© JM DUCRET

Enthalpie libre et potentiel chimique

CH102 : Calcul d'entropie créée

A T=298 K et sous P=1 bar, on envisage le système constitué d'une mole d'eau liquide et d'une mole d'eau vapeur.

Ce système est-il en équilibre ?

Prévoir son évolution et déterminer l'état final.

Calculer également l'entropie créée au cours de cette évolution isotherme et isobare.

On donne à T=293 K et sous P=1 bar (état standard), les potentiels chimiques de l'eau liquide μ°_{lig} =-237,2 kJ/mol et de la vapeur d'eau μ°_{vap} =-228,6 kJ/mol.

CH112: Mélange de gaz

Un récipient adiabatique est séparé en deux compartiments identiques. Le premier contient 5 mol de diazote (noté 1 par la suite) sous 2,5 bar à 25 °C, et le second 6 mol d'argon (noté 2 par la suite) sous 3,0 bar à 25 °C, ces deux gaz étant supposés parfaits. On enlève la paroi de séparation : les deux gaz se mélangent sans réagir.

- 1) Quelle est la température finale ?
- 2) Exprimer, pour chaque gaz, le potentiel chimique avant et après mélange.
- 3) Pour une fonction d'état X, on appelle grandeur de mélange la différence $\Delta_{mix}X=X_{après}$ mélange $X_{avant mélange}$. Déterminer $\Delta_{mix}H$, $\Delta_{mix}S$, $\Delta_{mix}G$. Conclure.

Grandeurs standard

CH205: Combustion du carbone

Soit la réaction de combustion du carbone : $\mathcal{C}_{sol} + \mathcal{O}_2 \Leftrightarrow \mathcal{CO}_2$. On donne à 25°C les valeurs suivantes : $\Delta_r G^\circ = -394,4$ kJ/mol et $\Delta_r H^\circ = -393,5$ kJ/mol.

- a) Calculer l'entropie standard de la réaction à 25°C.
- b) Calculer la variation d'enthalpie pour la combustion d'une millimole de carbone à 25°C sous pression constante.

CH210 : Synthèse du méthanol

Pour la réaction en phase gazeuse $CO + 2 H_2 \Leftrightarrow CH_3OH$, on donne, à 298 K, les entropies molaires standard qui valent respectivement 198 ; 131 et 240 J K- 1 mol- 1 .

- a) Calculer $\Delta_r S^\circ$. Le signe obtenu pour cette valeur de $\Delta_r S^\circ$ était-il prévisible ?
- b) Sachant qu'à 298 K, $\Delta_r H^\circ = -90.7$ kJ mol⁻¹, calculer $\Delta_r G^\circ$.

Equilibre chimique

CH209: Sublimation du diiode

À T = 298 K, la forme stable du diiode est le solide. On donne à 298 K, pour l_2 gazeux : $\Delta_f H^\circ = 62,38$ et $\Delta_f G^\circ = 19,34$ en kJ. mol⁻¹; $S^\circ_m = 260$ J.K⁻¹.mol⁻¹.

- a) Calculer l'enthalpie standard de sublimation du solide.
- b) Calculer l'entropie standard du solide.
- c) Calculer la température de sublimation de l_2 sous $P^\circ = 1$ bar. On se placera dans l'approximation d'Ellingham.

CH213: Entropie molaire standard du méthanol.

Soit la réaction :

$$CO_{(g)} + 2 H_{2(g)} \Leftrightarrow CH_3OH_{(g)}$$

- Établir la variation de $\Delta_r G^{\circ}(T)$ avec la température T.
- À 298 K, le méthanol gaz n'existe pas à l'état pur sous $P^{\circ} = 1$ bar. En effet, le méthanol liquide est en équilibre avec le méthanol gaz à 298 K sous une pression de 16 510 Pa. L'enthalpie de vaporisation du méthanol à 298 K est égale à 37,3 kJ mol-1. Par quelles étapes réversibles peut-on passer du CH₃OH_(I) à 298 K, 1 bar à CH₃OH_(g) (298 K, 1 bar)? En déduire l'entropie molaire standard de CH₃OH₍₁₎ à 298 K.

Données à 25 °C :

	CO _(g)	H _{2(g)}	CH ₃ OH _(g)
$\Delta_f H^\circ$ (kJ mol ⁻¹)	- 110,5	0	- 201,2
S _m (J K ⁻¹ mol ⁻¹)	197,9	130,7	238,0
C_p° (J K-1 mol-1)	28,6	27,8	8,4+0,125 T

CH304 : taux de dissociation et constante d'équilibre

Soit l'équilibre homogène gazeux : N₂O₄ ⇔ 2 NO₂ . On place une masse m=18,4 g de N_2O_4 dans un récipient vide de volume $V_1=5,90$ L à la température $t_1=27^{\circ}\text{C}$: la pression à l'équilibre vaut $P_1=1$ bar. Toujours avec la même masse de N_2O_4 mais à la température $t_2=110^{\circ}$ C, la pression d'équilibre est de $P_1=1$ bar pour un volume $V_2=12,14$ L.

- a) Calculer les taux de dissociation de N₂O₄ aux températures t₁ et t₂.
- b) En déduire la constante d'équilibre K à ces deux températures.
- c) Calculer $\Delta_r H^\circ$ et $\Delta_r S^\circ$ de la réaction.

On donne les masses molaires atomiques pour l'azote : 14 g/mol et pour l'oxygène : 16 g/mol.

CH319 : Avancement de réaction et constante d'équilibre

Procédé Deacon (phase gazeuse): 4HCl+O₂⇔ 2 ₂O+2Cl₂.

On réalise à température fixée et sous $P = 10 P^{\circ}$ le mélange de 4 mol d'air et de 1 mol de HCl. On mesure à l'équilibre $Po_2 = 2 \text{ Pc}_{12}$. Calculer l'avancement à l'équilibre \mathcal{E}_e et la constante d'équilibre $K^0(T)$.

page 3/5

CHIMIE: Thermochimie © JM DUCRET

CH320 : Coefficient de dissociation et densité

Soit la dissociation en phase gazeuse : $PCl_5 \Leftrightarrow PCl_2 + Cl_2$, effectuée à 280 °C, sous P =

Déterminer le coefficient de dissociation τ et la constante $K^0(\tau)$ si la densité mesurée à l'équilibre est d = 3.83 (M(PCl₅)= 208.5 g mol⁻¹).

CH324 : Autoprotolyse de l'eau

Soit K_e le produit ionique de l'eau. On donne le pH de l'eau pure, à différentes températures.

t°C	0	18	25	50	100
pН	7,47	7,12	7,00	6,63	6,12

Calculer $\Delta_r H^\circ$ et $\Delta_r S^\circ$ pour la réaction d'autoprotolyse de l'eau. En déduire la relation entre pK_e et T.

CH328: Hydrolyse du fluorure de zinc

Soit l'équilibre $ZnF_{2(s)} + H_2O_{(g)} \Leftrightarrow 2 HF_{(g)} + ZnO_{(s)}$. On donne, à 298 K:

	H ₂ O _(g)	HF _(g)	ZnF _{2(s)}	$ZnO_{(s)}$
$\Delta_f H^\circ$ en kJ mol $^{-1}$	- 241,8	- 271,1	- 764,4	- 348,3
S° en J K ⁻¹ mol ⁻¹	188,7	173,7	73,7	43,6

- a) Calculer $\Delta_r H^{\circ}$ à 298 K.
- b) Calculer $\Delta_r S^{\circ}$ (298 K).
- c) En déduire $\Delta G^{\circ}(T)$. Calculer la constante d'équilibre K° à T=873 K.
- d) À T = 873 K, sous P = 1 bar, on mélange 1 mol d'eau et un excès de ZnF_2 . Déterminer l'état d'équilibre (on pourra prendre $K^{\circ} = 0.6$).

Optimisation d'un procédé chimique – Déplacement d'équilibre

CH307: pression à l'équilibre et évolution

Soit l'équilibre : $2 \text{ Ag}_2 O_{sol} \iff 4 \text{ Ag}_{sol} + O_{2g}$. On mesure expérimentalement la pression du système pour différentes températures. Les résultats obtenus sont consignés dans le tableau :

t (en °C)	25	98	173	302
P (en bar)	1,9.10-4	2,35.10-2	0,554	20,5

- a) Etablir l'expression de $\Delta_r G^{\circ}(T)$. En déduire l'enthalpie libre standard de formation de Ag_2O à $25^{\circ}C$.
- b) Dans un récipient à 98° C, initialement vide, on introduit 10^{-2} mol de Ag_2O . Calculer la pression à l'équilibre et la quantité restante de Ag_2O si le volume du récipient est fixé à 2 litres.
- c) A la même température, on augmente le volume du récipient. Que se passe-t-il ? Etudier et représenter $P_{O_2}=f(V)$.

CH315: Dissociation du pentachlorure de phosphore

On considère l'équilibre suivant :

$$\mathsf{PCI}_{5(g)} \; \Leftrightarrow \; \mathsf{PCI}_{3(g)} + \, \mathsf{CI}_{2(g)}$$

- 1) En supposant le système fermé, indiquer l'influence :
 - a) d'une élévation isotherme de la pression ;
 - b) d'une augmentation isobare de la température ;
 - c) d'une introduction isotherme et isobare de :
 - α) de Cl₂; β) de PCl₅; γ) d'un gaz inactif.
- 3) Déterminer la constante d'équilibre à 500 K.
- 4) Sous une pression constante P = 3 bar et à 500 K , on mélange 0,1 mol de Cl_2 , 0,1 mol de PCl_3 et 0,1 mol de PCl_5 .
 - a) Dans quel sens évolue le système ?
 - b) Déterminer la composition à l'équilibre du système.

Données supposées indépendantes de la température :

espèces	$Cl_{2(g)}$	$PCI_{3(g)}$	$PCl_{5(g)}$
$\Delta_{f}H^{\circ}$ (kJ .mol ⁻¹)	0	- 287,0- 37	74,9
S° (J.K ⁻¹ .mol ⁻¹)	223,0	311,7	364,5

CHIMIE : Thermochimie page 5/5 © JM DUCRET