Lecture 2 (2011-10-13):

Definition 2.1 (connected):

A graph is called *zusammenhängend* (connected) (zusammenhängend) if there exists a [s,t]-Path between all pairs of vertices $s, t \in V$.

Definition 2.2 (forrest, tree, spanning, forest problem, minimum spanning tree): A *Wald (forest)* (Wald) is a graph that does not contain a cycle (Kreis). A connected forest is called a *Baum (tree)* (Baum). A tree in a graph (as subgraph) is called *aufspannend (spanning)* (aufspannend), if it contains all vertices.

Given a graph G=(V,E) with edge weights $c_e\in\mathbb{R}$ for all $e\in E$, the task to find a forest $W\subset E$ such that $c(W):=\sum_{e\in W}$ is maximal, is called the *Problem des maximalen Waldes (Maximum Forest Problem)* (Problem des maximalen Waldes). The task to find a tree $T\subset E$ which spans G and which weight c(T) is minimal,

is called the *minimaler Spannbaum (Minimum Spanning Tree (MST) problem)* (minimaler Spannbaum).

Lemma 2.3:

A tree G = (V, E) with at leat 2 vertices has at least 2 vertices of degree 1.

Proof. Let v be arbitrary. Since G is connected, $deg(v) \ge 1$. Assume deg(v) = 1. So $\delta(v) = \{vw\}$. If deg(w) = 1, we found two vertices with $degree\ 1$. If deg(w) > 1, there exist a neighbour of w, different from v: u. Now, again u has $degree\ 1$ or higher. If we repeat this procedure we either find a vertix of degree 1 or find again new vertices. Hence, after at most n-1 vertices we end up at a vertex of degree 1. Now, if $deg(v) \ge 2$, we do the same and find a vertex of degree 1, say w. Then repeat the above, staring from w to find a second vertex of degree 1.

Corollary 2.4:

A tree G = (V, E) with maximum degree Δ has at least Δ vertices of degree 1.

Lemma 2.5: (a) For every graph G = (V, E) it holds that $2|E| = \sum_{u \in V} deg(u)$

(b) for every tree G = (v, E) it holds that |E| = |V| - 1.

Proof. (a) trivial

(b) Proof by induction. Clearly, if |V|=1 or |V|=2 it holds. Assumption: true for $n\geq 2$. Let G be a tree with n+1 vertices. By Lemma 2.3, there exists a vertex $v\in G$ with $deg(v)=1.G-v=G[V\setminus \{v\}]$ is a tree again with n vertices and thus |E(G-v)|=V(G-v)|-1. Since G differs by one vertex and one edge from G-v, the claim holds got G as well.

Lemma 2.6:

If G = (V, E) whith $|V| \ge 2$ has |E| < |V| - 1, G is not connected.

Algorithm MST

```
min_{x \in X} = -max_{x \in X} - c(x) maximal forest
X spanning trees
min_{x \in X} + (n-1)D = -max_{x \in X} - c(x)(n-1)D = max_{x \in X} \sum_{0 | f(D) = max_{x \in C}} \underbrace{D - C_{ij}x_{ij}}_{0 | f(D) = max_{x \in C}}
```

Theorem 2.7:

Kruskal's Algorithm returns the optimal solution.

Proof. Let T be Kruskal's tree and assume there exists a tree T' with c(T') < c(T). Then there exist an edge $e' \in T' \setminus T$. Then $T \cup \{e'\}$ contains a cycle $\{e_1, e_2, \ldots, e_k, e'\}$. Let $c_f = \max_{i=1,\ldots,k} c_{l_i}$. At the moment Kruskal chooses edge f, edge e' cannot be added yet and therefore $c(e') \geq c(f)$. Now exchange e' by f in T'. Hence the number of differences beetween T' and T is reduced by one, $C(T'_{new}) \leq c(T') < c(T)$. Repeating the procedure results in $c(T) \leq \ldots < c(T)$, a contradiction.

Lecture 3 (2011-10-17):

Definition 2.7(+1):

The *Laufzeit (running time of algorithms)* (Laufzeit) of an algorithm is measured by the number of operations needed in worst case of a function of the input size. We use the $O(\cdot)$ notation (Big-O-notation) ot focus on the most important factor of the running time, ignoring constants and smaller factors.

Example 2.7(+2):

If the running time is $3n \cdot \log n + 26n$, the algorithm runs in $O(n \cdot \log n)$. If the running time is $3n \cdot \log n + 25n^2$, the algorithm runs in $O(n^2)$.

For graph Problems, the running is expressed in the number of vertices n = |V| and the number of edges m = |E|. Sometimes m is approximated by n^2 .

Example 2.7(+3) (Kruskal's Algorithm):

First, the edged are sorted according to nondecreasing weights. This can be done in $O(m \cdot \log m)$. Next, we repeatedly select an edge or reject its selection until n-1 edges are selected. Since the last selected edge might be after m steps, this routine is performed at most O(m) times.

Checking whether the end nodes of $\{u,v\}$ are already in the same tree can be done in constant time, if we label the vertices of the trees selected so far: $r(u) = \#trees\ containing\ u$. If $r(u) \neq r(v)$, the trees are connected by $\{u,v\}$ to a new tree

Without going into details, the resetting of labels in one of the old trees, can be done $O(\log n)$ on average. Since this update has to be done at most n-1 times, it takes $O(n \cdot \log n)$.

Overall, Kruskal runs in

$$O(n\log m + m + n \cdot \log n) = O(m \cdot \log m) = O(m \cdot \log n^2) = O(m \cdot \log n)$$

Lecture 3 3

Definition 2.7(+4) (Shortest paths in acyclic digraphs):

A directed graph (digraph) D=(V,A) is called azyklisch (acyclic) (azyklisch) if it does not contain any (directed cycles) (), i.e. a Kette (chain) (Kette) $(v_0,a_1,v_1,a_2,v_2,\ldots a_k,v_k),\ k\geq 0$, with $a_i(v_{i-1},v_i)\in A$ and $v_k=v_0$. In particular, D does not contain (antiparallel) () arcs: if $(u,v)\in A$, $(v,u)\not\in A$. With $\delta_D^+(v)$ we denote the arcs leaving vertex v:

$$\delta_D^+(v) = \{(u, w) \in A : u = v\}$$

similarly:

$$\delta_D^-(v) = \{(u, w) \in A : w = v\}$$

are the arcs entering v.

The *(outdegree)* () of v is $\deg_D^+(v) = |\delta^+(v)|$ (assuming simple digraph) The *(indegree)* () of v is $\deg_D^-(v) = |\delta^-(v)|$

Definition 3.1:

The *(shortest path)* () problem in a acyclic digraph is, given an acyclic digraph D = (V, A), a length function $C : A \to \mathbb{R}$ and two vertices $s, t \in V$, find a [s, t]-path of minimal length.

Question 1:

Does there exist a [s, t]-path at all?

Theorem 3.2:

A digraph D=(V,A) is acyclic, if and only if there exists a permutaion $\sigma:V\to\{1,...,n\}$ of the vertices such that $\deg_{D[v_1,...,v_n]}^-(v_i)=0$ for all i=1,...,n with $v_i=\sigma^{-1}(i)$.

Proof. By induction:

For digraph with |V|=1, the statement is true. Assume the statement is true for all digraphs with $|V|\leq n$ and consider D=(V,A) acyclic with n+1 vertices. If there does not exist a vertex with $\deg_D^-(v)=0$, a directed cycle can be detected by following incoming arcs backwards until a vertex is repeated, a contradiction regarding the acyclic property of D.

Hence, let v be a vertex with $\deg_D^-(v) = 0$. Set $v_1 = v$. The digraph $D - v_1$ has n vertices and is acyclic, and thus has a permutation (v_2, \ldots, v_{n+1}) with

$$\deg_{D[v_i,...,v_{n+1}]}^-(v_i) = 0 \quad \forall i = 2,..., n+1$$

Now, (v_1, \ldots, v_{n+1}) is a permutation fulfilling the condition.

In reverse, if there exists a permutation $(v1, \ldots, v_{n+1})$, $\deg_D^-(v_1) = 0$ and there cannot exist a directed cycle containing v_1 . By induction, neither cycles containing v_i , $i = 2, \ldots, n+1$ exist.

Theorem 3.3:

A [s,t]-path exists in a acyclic Digraph D=(V,A) if and only if in all permutations $\sigma:V\to\{1,\ldots,n\}$ with $\deg_{D[v_i,\ldots,v_n]}^-(v_i)=0$ for all $i=1,\ldots,n$, it holds that $\sigma(s)<\sigma(t)$.

Proof. Assume there exists a permutation σ with $\sigma(s) > \sigma(t)$. Since outgoing arcs only go to higher ordered vertices, there does not exist a path from s to t in D.

In reverse, if there does not exist a path from s to t, we order all vertices with paths to t first, followed by t and s afterwards.

Question 2:

How do we find the shortest [s, t]-path if it exists?

To simplify notation, let $V = \{1, ..., n\}$, s = 1, t = n and $(i, j) \in A \Rightarrow i < j$. Let D(i) be the distance from i to n and NEXT(i) be the next vertex on the shortest path from i to n.

Bellman's Algorithm

```
\begin{array}{lll} & D(i) = \{\infty: i < nandNEXT(i) = NIL, 0: i = n\} \\ & \text{FOR } i = n-1 \text{ DOWNTO 1 DO} \\ & & D(i) = \min_{j=j+1,\dots,n} \{D(j) + c(i,j)\} \text{ with } c(i,j) = \infty \text{ if } (i,j) \not \in A \\ & & NEXT(i) = \operatorname{Argmin}_{i=i+1,\dots,n} \{D(j) + c(i,j)\} \end{array}
```

Theorem 3.4:

Bellman's Algorithm is correct and runs in O(m + n) time.

Proof. Every path from 1 to n passes through vertices of increasing ID. Assume there exists a path (a_1, \ldots, a_k) with $\sum_{i=1}^k c(a_i) < D(1)$. Let $a_1 = (1, j_1)$. Since $D(1) \le c(a_1) + D(j_1)$, it should hold that

$$\sum_{i=2}^2 c(a_i) < D(j_1)$$

But $D(j_1) \le c(a_2) + D(j_2)$ with $a_2 = (j_1, j_2)$, etc.

In the end, $c(a_k) < D(j_{k-1})$ but $D(j_{k-1}) \le c(a_k) + D(n) = c(a_k)$, contradiction.

Lecture 4 (2011-10-20):

Theorem 3.5:

Bellman's Algorithm is correct and runs in O(m + n) = O(n).

Proof. of runtime:

$$D(i) = \min_{(i,j)\in A} D(j) + D(i,j)$$

 \Rightarrow Every arc is considered once, and thus overall O(m) computations are needed. Initialization costs O(n).

Bemerkung 3.5(+1):

The running time does not contain the time to find the permutation.

Lecture 4 5

Observation 1: We not only found the shortest path from 1 to n, but also from i to n, i = 2, ..., n.

Observation 2: We can use a similar procedure for the shortest path from 1 to i, i = 2, ..., n. (with PREV(i) for previous instead of NEXT(i)).

Question 3:

Can we find a shortest path from 1 to i in a digraph that is not acyclic, i.e. it contains cycles?

Theorem 4.1:

The Moore-Bellman-Algorithm returns the shortest paths from 1 to i = 1, ..., n provided D does not contain negative-weighted directed cycles.

Proof. We call an arc $(i,j) \in A$ an *upgoing* arc (Aufwärtsbogen) if i < j and a downgoing arc (Abwärtsbogen) if i > j.

A shortest path from 1 to i contains at most n-1 arcs. If an upgoing arc is followed by a downgoing arc (or vice versa), we have a *change of direction* (Richtungswechsel). With at most n-1 arcs, at most n-2 changes of direction are possible.

Let D(i, m) be the value of D(i) at the end of the m-th iteration. We will show (and this is enough):

 $D(i, m) = min\{c(W) : W \text{ is the directed } [1, i] \text{-path with at most } m \text{ changes of directions} \}$

We prove it by induction on m.

- For m=0, the algorithm is equivalent to Bellman's algorithm for acyclic grpahs. Thus, D(i,0) is the length of the shortest path without any changed of direction.
- Now, let us assume, that the statement is true for $m \ge 0$ and the subroutine is executed for the m+1-st time. The set of [1,i]-paths with at most m+1 changes of direction consists of
 - (a) [1, i]-paths with $\leq m$ changes of direction
 - (b) [1, i]-paths with exactly m + 1 changes of direction
 - $\Rightarrow D(i, m)$
- Since every path starts with an upgoing arc (1, k), the last arc after m + 1 changes is either a downgoing arc if m + 1 is odd or an upgoing arc if m + 1 is even. We restrict ourselves to m + 1 odd (m + 1 even is similar).

To compute the minimum length path in (b) we use an additional induction on i = n, n-1, ..., j+1. Since every path ending at n ends with an upgoing arc, there do not exist such [1, n]-paths. Hence, D(n, m+1) = D(n, m).

Now assume that D(k, m+1) is correctly computed for $i \le k \le n$. The shortest path from 1 to i-1 with exactly m+1 changes ends with a downgoing arc (j, i-1), j > i-1.

D(j,m+1) is already computed correctly. If PREV(j) > j, no change of direction is required in j and D(i-1,m+1) = D(j,m+1) + c(j,i-1) If PREV(j) < j, the last avec of the [1,j]-Path is upgoing, and thus D(i-1,m+1) = D(j,m) + c(j,i). The last change of direction at j is thus, in worst case, the (m+1)-st change. Hence, D(i-1,m+1) fulfills the statement.

Remark 1:

In fact, the algorithm finds the minimum length of a chain (kette) with at most n-2 changes of direction. In case of negative weighted cycles these might be in a chain several times.

In case no negative weighted cycles exist, the min. length chains are indeed paths. Hence, the algoithm only works correctly if *all* cycles are non-negative weighted.

Remark 2:

If a further executing of the subroutine (m = n - 1) results in at least one change of a value D(i), then the digraph contains negative weighted cycles.

Remark 3:

A more efficient implementation is given by E'sopo-Pape-Variant.

Dijkstra's Algorithm for non-negative weights

Theorem 4.2:

Dijkstra returns the shortest paths from 1 to i, i = 1...n, provided all weights ≥ 0 .

Proof. Each step, one vetex is moved from T to S. At the end of a step, D(j) is the shortest path from 1 to j via vertices in S.

If
$$S = V(T = \emptyset)$$
, $D(i)$ is thus the shortiest $[1, i]$ -path

Lecture 5 (2011-10-24):

Shortest paths between all pairs of vertices

Solution 1: Apply Moore-Bellman or Dijkstra to all vertices \emph{i} as starting vertex

Solution 2: Apply Floyd's Algorithm

Notation:

 w_{ij} is the length of the shortest [i,j]-path, $i \neq j$

 w_{ii} is the length of the shortest directed cycle containing i

 p_{ij} is the predecessor of j on the shortest [i,j]-path (cycle)

 $W = (w_{ii})$ is the ??? (shortest path length matrix) (???)

Lecture 5 7

Theorem 5.1:

The Floyd Algorithm works correctly if and only if D = (V, A) does not contain any negative weighted cycles.

D contains a negative weighted cycle if and only if one of the diagonal elements $w_{ii} < 0$.

Proof. Let W^k be the matrix W after iteration k, with W^0 being the initial matrix. By induction on k = 0, ..., n we show that W^k is the matrix of shortest path lengths with vertices 1, ..., k as *possible* internal vertices, provided D does not contain a negative cycle on these vertices.

If D has a negative cycle, then $w_{ii}^k < 0$ for an $i \in \{1, ..., n\}$

For k = 0, the statement clearly true.

Assume, it is correct for $k \ge 0$, and we have executed the (k+1)st iteration.

It holds that $w_{ij}^{k+1} = \min\{w_{ij}^k, w_{i,k+1}^k + w_{k+1,j}^k\}$. Note that, provided no negative cycle exists, $w_{i,k+1}^{k+1}$ does not have any vertex k+1 as internal vertex, and thus $w_{i,k+1}^{k+1} = w_{i,k+1}^k$ (similarly, $w_{k+1,j}^{k+1} = w_{k+1,j}^k$).

 $w_{i,k+1}^k$ is the minimal length of a [i,k+1]-path with $\{1,\ldots,k\}$ as allowed internal vertices. Similarly, $w_{k+1,j}^k$.

Thus, $w_{i,k+1}^k + w_{k+1,j}^k$ is the minimal length of an [i,j]-path (not necessarily simple) containing k+1 (mandatory) and $\{1,\ldots,k\}$ (voluntary). If the shortest path from i to j using $\{1,\ldots,k+1\}$ does not contain k+1, it only contains $\{1,\ldots,k\}$ (voluntary) and, hence, w_{ij}^k is the right value.

What remains to show is that the connection of the [i, k+1]-path with the [l+1, j]-path is indeed a simple path.

Let K be this chain. After removal of cycles, the chain K contains (of course) a simple [i,j]-path \bar{K} . Since such cycles may only contain vertices from $\{1,\ldots,k+1\}$, one cycle must contain k+1. If this cycle is not negatively weighted, then path \bar{K} is shorter and $w_{ij} < w^k_{i,k+1} + w^k_{k+1,j}$.

If this cycle is negatively weighted, $w_{k+1,k+1}^k < 0$ (the cycle only contains internal vertices from $\{1, \ldots, k\}$) and algorithm would have stopped earlier.

Min-Max-Theorems for combinatorial Optimization Problems

From "Optimierung A": Duality of linear programs

$$\max_{\mathbf{s.~t.}, Ax \le b, x \ge 0} c^T x = \min_{\mathbf{s.t.}, A^T y \ge c, y \ge 0} b^T y$$

For several combinatorial problems $\min\{c(x): x \in X\}$

We can define a second set Y and a function b(y) with $\max\{b(y):y\in Y\}=\min\{c(x):x\in X\}$ where Y and b(y) have a graph theoretical interpretation.

Existence of such a "Dual" Problem indicates often that the problem can be solved "efficiently". For the shortest path problem several max-min-theorems exist.

Definition 5.2:

An (s, t)-Schnitt ((s, t)-cut) ((s, t)-Schnitt) in a digraph D = (V, A) with $s, t \in V$

is a subset $B \subset A$ of the arcs with the property that every (s, t)-path contains at least one arc of B.

Stated otherwise, for every cut B, there exists a vertex set $W \subset V$ such that

- $s \in W$, $t \in V \setminus W$
- $\delta^+(w) = \{(i, j) \in A : i \in W, j \in V \setminus W\} \subseteq B$

Theorem 5.3:

Let D=(V,A) be a digraph, $c(a)=1 \, \forall a \in A, s, t \in V, s \neq t$. Then the minimum length of a [s,t]-path equals the maximum number of arc-disjoint (s,t)-cuts.

Proof. Follows from ?? □

Theorem 5.4:

Let D=(V,A) be a digraph, $c(a)\in\mathbb{Z}_+$ $\forall a\in A\land s,t\in V\land s\neq t$. Then the min length of an [s,t]-path equals the maximum number d of (not necessarily different) (s,t)-cuts C_1,\ldots,C_d such that every arc $a\in A$ is contained in at most c(a) cuts.

Proof. We define (s, t)-cuts $C_i = \delta^+(v_i)$ with $V_i = \{v \in V : \exists (s, v)$ -path with $c(P) \le i - 1\}$

$$v_1 = \{s\}$$

 $v_2 = \{5, 3, 4\}$
 $v_3 = \{5, 2, 3, 4\}$
 $v_4 = v_3 \cup \{6\}$

(for the example graph on the board)

The shortest [s, t]-path P consists of arcs $a_1, \ldots a_k$ with arc a_j contained in (s, t)-cuts C_i , $i \in \{\sum_{l=1}^{j-1} c(a_l) + 1, \ldots, \sum_{l=1}^{j} a(a_l)\}$: exactly c(a) cuts.

Lecture 6 (2011-10-26):

Knapsack problem

Definition 6.1:

The Knapsack Problem (Knapsack problem) (Knapsack Problem) is defined by a set of items $N = \{1, ..., n\}$ weights $a_i \in \mathbb{N}$, value $c_i \in \mathbb{N}$, and a bound $b \in \mathbb{N}$. We search for a subset $S \subset \mathbb{N}$ such that

$$a(S) = \sum_{i \in S} a_i \le b \text{ and } c(S) = \sum_{i \in S} c_i \text{ maximum}$$

Approach 1:

Greedy algorithm

Idea: Items with small weight but high value are the most atrractive ones.

Procedure:

Lecture 6 9

```
Sort the items such that \frac{c_1}{a_1} \leq \frac{c_2}{a_2} \leq ... \leq \frac{c_n}{a_n}.

Set S = \emptyset.

For i = 1 to n do

if (a(s) + a_i \leq b) then

S = S \cup \{i\}

endif

endfor

return S and c(S)
```

Theorem 6.2:

The greedy algorithm does not guarantee an optimal solution.

Proof. Let
$$b = 10$$
, $n = 6$

Greedy:
$$S = \{1\}$$
, $c(s) = 20$
Optimal: $S = \{2, 3, 4, 5, 6, \}$, $c(S) = 20$

Approach 2: Integer Linear Programming

The set of solutions X of a combinatorial optimization problem can (almost always) be written as the intersection of integer points in \mathbb{N}_0^n and a polyhedron $\{x \in \mathbb{R}^n : Ax \leq b\}$

Let $x \in \{0, 1\}^n$ be a vector representing all solutions of the knapsack problem:

$$x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

$$X = \{0, 1\} \cap \{x \in \mathbb{R}^n : \sum_{i=0}^n a_i x_i \le b\}$$

Knapsack: max $\sum i = 0^n c_i x_i$

The *Lineare Relaxierung (linear relaxation)* (Lineare Relaxierung) of an ILP is the linear program optained by relaxing the integrality of the variables:

$$\max \sum_{i=1}^{n} c_i x_i$$

s. t. $\sum_{i=1}^{n} a_i x_i \le b$, $0 \le x_i \le 1$ $\forall i \in \{1, \dots, n\}$

Theorem 6.3:

An optimal solution \tilde{x} of the linear relaxation of the knapsack problem is:

There exists a $k \in \{1, ..., n\}$ such that

$$\tilde{x}_{i} = \begin{cases} 1 & \text{if } i \leq k \\ 0 & \text{if } i > k+1 \\ (b - \sum_{i=1}^{k} a_{i})/a_{k+1} & \text{if } i = k+1 \end{cases}$$

where $c_1/a_1 \ge c_2/a_2 \ge ... \ge c_n/a_n$.

Proof. Let x^* be an optimal solution with $c^T c^* > c^T \tilde{x}$. If $x_i^* < 1$ for $i \le k$, there must exist a $j \ge k+1$ with $x_i^* > \tilde{x}_j$.

We define \bar{x} with $\varepsilon \leq x_i^* - \tilde{x}_j$ as

$$\bar{x}_{l} = \begin{cases} x_{k}^{*} & \text{for } l \notin \{i, j\} \\ x_{l}^{*} - \varepsilon & \text{for } l = j \\ x_{l}^{*} + \frac{a_{j}}{a_{l}} \cdot \varepsilon & \text{for } l = i \end{cases}$$

Then \bar{x} is feasible and

$$c^T \bar{x} = \sum_{l=1}^n c_l \bar{x}_l = \sum_{l=1}^n c_l x_l^* + \underbrace{c_i \cdot \frac{a_j}{a_i} \varepsilon - c_j \varepsilon}_{>0} \ge c^T x^* > c^T \tilde{x}$$

Repetition yields $c^T \bar{x} > c^T \bar{x}$, a contradiction.

Note:

If \tilde{x} is integer valued, then the solution is also optimal for the knapsack problem. In this case, also the greedy algorithm is optimal.

Approach 3: Dynamic Programming

A dynamic program algorithm to solve a problem first solves similar, but smaller subproblems in order to use their solution to solve the original problem.

The problem should conform to the *optimality principle* of Bellman: Given an optimal solution for the original problem, a partial solution restricted to a subproblem is also optimal for the subproblem.

Let $f_k(b)$ be the optimal solution value of the knapsack problem with total weight equal to b and items from $\{1, \ldots, k\}$.

Theorem 6.4:

$$f_{k+1}(b) = max\{f_k(b), f_k(b-a_{k+1}+c_{k+1})\}.$$

Proof. An optimal solution of $f_{k+1}(b)$ either contains item k+1 or not. If k+1 is not contained, the problem is identical to $f_k(b)$. If k+1 is contained, other items in the solution should have total weight $b-a_{k+1}$.

Hence, $f_k(b-a_{k+1})$ is an optimal solution for the remaining items $+c_{k+1}$ for the item k+1.

Corollary 6.5:

The knapsack problem can be solved in O(nb) with value $\max_{d=0,...,b} f_n(d)$.

Lecture 6 11

Acronyms

```
(s, t)-cut (s, t)-Schnitt. 7
acyclic azyklisch. 3
antiparallel . 3
chain Kette. 3
connected zusammenhängend. 1
directed cycles . 3
forest Wald. 1
indegree . 3
Knapsack problem Knapsack Problem. 8
linear relaxation Lineare Relaxierung. 9
Maximum Forest Problem Problem des maximalen Waldes. 1
Minimum Spanning Tree (MST) problem minimaler Spannbaum. 1
outdegree . 3
running time of algorithms Laufzeit. 2
shortest path . 3
shortest path length matrix ???. 6
spanning aufspannend. 1
tree Baum. 1
```