Mason McBride 15 February, 2022 Professor Marta Gonzalez CYPLAN C88

Assignment1 part2: Data vs. Models

	total_node		<c> avg clust.</c>	<k> mean</k>	<l> avg. shor.</l>
	S	total_links	coeff.	degree	pat.
Data from Network	1039	5801	0.2806277959	11.16650626	2.571991929
Small World Network	1039	5195	0.6454334351	10	2.878677075
(p=0.01) Barabasi Albert	1039	3193	0.0434334331	10	2.070077073
(m=5.583)	1039	5170	0.04684136876	9.951876805	2.878677075
Erdos-Renji	1039	5702	0.01157132953	10.9759384	2.878677075

- Q1. Done. (see: Notebook as g)
- Q2. Done. (see: Notebook as g_erdos_renyi)
- Q3. Done. (see: Notebook as C_p_k and L_p_k)
- Q4. $C(p) = C(0) * (1 p)^3$
- Q5. Done. (see: Notebook as g_small_world)
- Q6. Done. (see: Notebook as g_barabasi_albert)
- Q7. Done. (see: Notebook)
- Q8. The model resembles the Barabasi Albert model because the data in the tables are similar and the degree distribution resembles of negative power law
- Q9. Yes, C >> C random (.28 >> 0.01), and L =~ L random (2.899 \sim 2.57)