Extrauppgift: Derivator och integraler

Extra övningar för dig som vill träna på att derivera och integrera.

- 1. Derivera följande funktioner
 - (a) $2x^2 5$
 - (b) $(2x+3)^6$
 - (c) $\frac{3}{5-4x}$
 - (d) $\frac{1-4x^2}{r^3}$
 - (e) $\sqrt{x+1}$
 - (f) e^{5x}
 - (g) $\frac{x}{e^{2x}}$
 - (h) $x^2 e^{\frac{x}{2}}$
 - (i) $\ln(3x-2)$
 - (j) $\ln(1 + e^x)$
 - (k) e^{x^2}
 - (l) $e^{3x} \ln x$
 - $(\mathrm{m}) \ x^2 \ln x \frac{x^2}{2}$
 - (n) xe^{-x}
 - (o) $3x + 3x^3 + \frac{3}{x}$
 - $(p) e^x + 2x$

- 2. Hitta de primitiva funktionerna
 - (a) $\int x^3 + x + 2 \, dx$
 - (b) $\int \frac{1}{x^2} dx$
 - (c) $\int 3x^2 4x + 2 \, dx$
 - (d) $\int (x^2 + 3)^2 dx$
 - (e) $\int e^x dx$
 - (f) $\int a^x dx$
 - (g) $\int \sqrt{x} \, dx$
 - (h) $\int \frac{1}{x} dx$
 - (i) $\int 2\sqrt{x} + 3x^{\frac{1}{3}} dx$
 - (j) $\int e^{5-2x} dx$
 - (k) $\int \sqrt{3y+4} \, dy$
 - $(1) \int \frac{x}{(4x^2+1)^5} \, dx$
 - (m) $\int xe^{x^2} dx$
 - (n) $\int \frac{\ln t}{t} dt$
 - (o) $\int x^3 \ln x \, dx$
 - (p) $\int \frac{\ln(\ln x)}{x} dx$

Svar: (c betecknar en godtycklig konstant)

1. (a) 4x

(b)
$$12(2x+3)^5$$

(c)
$$\frac{12}{(5-4x)^2}$$

(d)
$$\frac{4x^2-3}{x^4}$$

(e)
$$\frac{1}{2\sqrt{x+1}}$$

(f)
$$5e^{5x}$$

$$(g) \frac{1-2x}{e^{2x}}$$

(h)
$$xe^{\frac{x}{2}}(\frac{x}{2}+2)$$

(i)
$$\frac{3}{3x-2}$$

$$(j) \frac{e^x}{1+e^x}$$

(k)
$$2xe^{x^2}$$

(1)
$$e^{3x}(3\ln x + \frac{1}{x})$$

(m) $2x \ln x$

(n)
$$e^{-x}(1-x)$$

(o)
$$3\left(1+3x^2-\frac{1}{x^2}\right)$$

(p)
$$e^x + 2$$

2. (a) $\frac{x^4}{4} + \frac{x^2}{2} + 2x + c$

(b)
$$-\frac{1}{x} + c$$

(c)
$$x^3 - 2x^2 + 2x + c$$

(d)
$$\frac{x^5}{5} + 2x^3 + 9x + c$$

(e)
$$e^x + c$$

(f)
$$\frac{a^x}{\ln a} + c$$

(g)
$$\frac{2}{3}x^{\frac{3}{2}} + c$$

(h)
$$\ln x + c$$

(i)
$$\frac{4}{3}x^{\frac{3}{2}} + \frac{9}{4}x^{\frac{4}{3}} + c$$

(j)
$$-\frac{1}{2}e^{5-2x} + c$$

(k)
$$\frac{2}{9}(3y+4)^{\frac{3}{2}}+c$$

(1)
$$-\frac{1}{32}(4x^2+1)^{-4}+c$$

(m)
$$\frac{1}{2}e^{x^2} + c$$

(n)
$$\frac{1}{2}(\ln t)^2 + c$$

(o)
$$\frac{x^4}{4} \ln x - \frac{x^4}{16} + c$$

(p)
$$\ln x \ln(\ln x) - \ln x + c$$