פתרונות לתרגיל בית 11 – פונקציות

ד"ר אפרת בנק, ד"ר ולדימיר בר לוקיאנוב

1. נתבונן בפונקציה הבאה

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

$$f(x) = \begin{cases} 3x - 5 & x > 0 \\ -3x + 1 & x \le 0 \end{cases}$$

- $f(0),f(1),f(-1),f(rac{5}{3}),f(-rac{5}{3}):f$ את הערכים הבאים של את את חשבו את את את הערכים את את את אינו
- $f^{-1}(0), f^{-1}(1), f^{-1}(-1), f^{-1}(3), f^{-1}(-3), f^{-1}(6)$ ב) חשבו את התמונות ההפוכות הבאות:
 - $f^{-1}\left([-5,5]\right),\,f^{-1}\left([-6,5]\right)$ באים: את התמונות ההפוכות של הקטעים הבאים: (ג)
 - f שרטטו את גרף הפונקציה (ד)

פתרון

$$f(0) = 1$$
 , $f(1) = -2$, $f(-1) = 4$, $f(\frac{5}{3}) = 0$, $f(-\frac{5}{3}) = 6$ (N)

- f(x)=b את המשוואה $f^{-1}(b)$ נב) כדי לחשב את הערך של $f^{-1}(b)$ נצטרך לפתור את המשוואה $f^{-1}(0)=\frac{5}{3}$ נאטרך לפתור את $f^{-1}(0)=\frac{5}{3}$ פותרים את f(x)=0 ומקבלים f(x)=0. לכן $f^{-1}(1)=f^{-1}(1)$ פותרים את f(x)=1 ומקבלים f(x)=1. לכן $f^{-1}(1)=\frac{4}{3}$ פותרים את f(x)=1 ומקבלים f(x)=1 ומקבלים f(x)=1 פותרים את $f^{-1}(1)=\frac{4}{3}$ ומקבלים f(x)=1 ומקבלים f(x)=1 פותרים את $f^{-1}(1)=1$ ומקבלים $f^{-1}(1)=1$ ומקבלים $f^{-1}(1)=1$ פותרים את $f^{-1}(1)=1$ ומקבלים $f^{-1}(1)=1$ ומקבלים $f^{-1}(1)=1$
 - f(x)=y ערך א, כך ש $x\in\mathbb{R}$ לא קיים ערך $y\leq -5$ לכל כי לכל נשים (ג) לכן $f\left([-6,5]\right)=f^{-1}\left([-5,5]\right)=\left[-\frac{4}{3},\frac{10}{3}\right]$ כפי שניתן לראות מהגרף.
 - (ד) הגרף המבוקש:

באופן הבא f,g באופן הבא 2.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$

$$f(x) = x - 1$$

$$g(x) = \begin{cases} 2x - 1 & x \le 3 \\ x & x > 3 \end{cases}$$

. האם הפונקציה g היא חח"ע? האם הפונקציה g היא על? אם כן הוכיחו, אם לא מיצאו דוגמא נגדית.

- $f \circ g, \ g \circ f$ ב) רישמו נוסחא להרכבות (ב)
 - $g \circ f$ גיירו את הפונקציה (ג)

פתרון

- g(3)=5 וגם g(5)=5 וגם לא חח"ע. למשל: g(5)=5 וגם g(5)=5 וגם לא חפונקציה g על: אם g(5)=5 אז עבור g(5)=5 אז עבור g(5)=5 אז עבור g(5)=5 אז עבור g(5)=5 מקבלים g(5)=5 אז עבור g(5)=5 מקבלים g(5)=5 אז עבור g(5)=5 מקבלים g(5)=5
 - $g\circ f$ נרשום את הביטוי להרכבה (ב)

$$(g \circ f)(x) = g(f(x)) = g(x-1) = \begin{cases} 2(x-1) - 1 & x-1 \le 3 \\ x-1 & x-1 > 3 \end{cases} = \begin{cases} 2x - 3 & x \le 4 \\ x-1 & x > 4 \end{cases}$$

 $f\circ g$ נרשום את הביטוי להרכבה

$$(f \circ g)(x) = f(g(x)) = g(x) - 1 = \begin{cases} 2x - 1 - 1 & x \le 3 \\ x - 1 & x > 3 \end{cases} = \begin{cases} 2x - 2 & x \le 3 \\ x - 1 & x > 3 \end{cases}$$

(ג) הגרף המבוקש:

3. נתבונן בפונקציה הבאה

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$f(x,y) = (y, x - 1)$$

. כאשר $\mathbb{R}^2=\mathbb{R} imes\mathbb{R}$ היא המכפלה הקרטזית בין הממשיים עם עצמם

- (א) הוכיחו כי הפונקציה f היא פונקציה הפיכה.
- f^{-1} מצאו נוסחא מפורשת לפונקציה ההופכית (ב)
- (ג) מצאו את אור. מומלץ לצייר את הפונקציה $[0,1]\subseteq\mathbb{R}$ כאשר הפונקציה לצייר את ממשי הסגור. מומלץ לצייר את הפונקציה בכדי לקבל אינטואיציה.

פתרון

(א) כדי להוכיח הפיכות, נראה כי f חח"ע ועל.

$$(y_1,x_1-1)=(y_2,x_2-1)$$
 כלומר $f(x_1,y_1)=f(x_2,y_2)$ נניח כי $f(x_1,y_1)=f(x_2,y_2)$ וגם $f(x_1,y_1)=(x_2,y_2)$ לכן $f(x_1,y_1)=(x_2,y_2)$ וה מוכיח כי $f(x_1,y_1)=(x_2,y_2)$ לכן $f(x_1,y_1)=(x_2,y_2)$ ונקבל בחר $f(x,y)=(b+1,a)=(a,b)=(a,b+1)-1=(a,b)$ הפונקציה $f(x,y)=f(b+1,a)=(a,b+1)-1=(a,b)=(a,b+1)$

 $.f^{-1}(x,y)=(y+1,x)$ כלי באופן כללי ,f(b+1,a)=(a,b) כי בסעיף הקודם ראינו כי (ב) מתקיים: (x,y) מתקיים:

$$(f \circ f^{-1})(x,y) = f(f^{-1}(x,y)) = f(y+1,x) = (x,(y+1)-1) = (x,y)$$
$$(f^{-1} \circ f)(x,y) = f^{-1}(f(x,y)) = f^{-1}(y,x-1) = ((x-1)+1,y) = (x,y)$$

$$.f^{-1}\left([0,1] imes[0,1]
ight)=[1,2] imes[0,1]$$
 מהנוסחה $f^{-1}(x,y)=(y+1,x)$ מהנוסחה (ג)

אתי פונקציות כאשר f,g ויהיו קבוצות. שלוש A,B,C 4.

$$f: A \longrightarrow B, g: B \longrightarrow C$$

- ע. איז פונקציות פונקציות $g\circ f$ היא ההרכבה $g\circ f$ הוכיחו איז הח"ע. או הוכיחו פונקציות הפונקציות או
- על. $g\circ f$ היא פונקציות על אז גם ההרכבה f,g היא פונקציות על.
- הפיכה הפיכה אז הפונקציות ומתקיים ומתקיים

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

פתרון

- (א) נניח כי מתקיים $g(f(a_1))=g(f(a_2))$, כלומר $g(f(a_1))=g(f(a_2))$. לפי הנתון g פונקציה חח"ע, לכן $g\circ f$ גם הפונקציה $g\circ f$ חח"ע, לכן $g\circ f$ זה מוכיח כי $g\circ f$ חח"ע.
- חח"ע חח"ע הסעיפים הקודמים אם חח"ע ועל, איז שתיהן חח"ע איז שתיהן הפיכות, איז שתיהן הפיכות, איז שתיהן הח"ע אם f,gהם הקודמים הפיכה. בנוסף ועל, כלומר $g\circ f$ הפיכה. בנוסף

$$(g \circ f) \circ (f^{-1} \circ g^{-1})(c) = (g \circ \underbrace{(f \circ f^{-1})}_{I} \circ g^{-1})(c) = \underbrace{(g \circ g^{-1})}_{I}(c) = c$$
$$(f^{-1} \circ g^{-1}) \circ (g \circ f)(a) = (f^{-1} \circ \underbrace{(g^{-1} \circ g)}_{I} \circ f)(a) = \underbrace{(f^{-1} \circ f)}_{I}(a) = a$$

 $.(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ משמע , $g\circ f$ – כלומר פונקציה פונקציה הינה $f^{-1}\circ g^{-1}$

כאשר פונקציות פונקציות ויהיו f,g שלוש קבוצות. שלוש A,B,C יהיו

$$f: A \longrightarrow B, q: B \longrightarrow C$$

עבור כל אחת מהטענות הבאות קיבעו האם היא אמיתית או שיקרית. אם הטענה אמיתית יש להוכיח, אם הטענה שיקרית יש למצוא דוגמא נגדית.

- ע. חח"ע אז $q \circ f$ חח"ע.
- ע חח"ע, היא על אז $q\circ f$ היא חח"ע והפונקציה $q\circ f$ היא על אז $q\circ f$
 - על. f אם הפונקציה $g\circ f$ היא על אז
- ע אז $g \circ f$ חח"ע. אז $g \circ f$ חח"ע.

פתרון

(א) לא נכון.

$$g(x)=x^2$$
 , $g:\mathbb{R} o\mathbb{R}$, $f(x)=e^x$, $f:\mathbb{R} o\mathbb{R}$ מתקיים $g(x)=x^2$ ואילו $g(x)=x^2$ סתקיים $g(x)=x^2$ א חח"ע, ואילו $g(x)=g(f(x))=g(e^x)=e^{2x}$.

 $g(b_1)=g(b_2)$ (ב) נכיח כי $f(a_2)=b_2$ הניח כי $f(a_2)=b_2$ הניח ווי $f(a_2)=b_2$ הנתון f על, לכן קיימים $f(a_2)=a_2$ הנתון $g(f(a_1))=g(f(a_2))$ ומכיאן מכאן $g(f(a_1))=g(f(a_2))$ ומכייון ש

ג) לא נכון.

.
$$g(x)=\sin x$$
 , $g:\mathbb{R}\to[-1,1]$ - לא על. $f(x)=x^2$, $f:\mathbb{R}\to\mathbb{R}$ על. $(g\circ f)(x)=g(f(x))=\sin(x^2)$, $g\circ f:\mathbb{R}\to[-1,1]$

(ד) לא נכוו.

ע.
$$g(x)=\ln x$$
 , $g:(0,\infty)\to\mathbb{R}$. ע. $f(x)=\frac{1}{x^2}$, $f:\mathbb{R}\setminus\{0\}\to(0,\infty)$

על.
$$(g\circ f)(x)=g(f(x))=\ln\left(rac{1}{x^2}
ight)$$
 , $g\circ f:\mathbb{R}\setminus\{0\} o\mathbb{R}$

- .6 פונקציות כיחס. תהא $f:A\longrightarrow A$ פונקציה.
- A על הקבוצה R על הגדירו יחס אנקציה f הגבירו הפונקציה (א)
- f שמצאתם הוא רפלקסיבי, מה חייבת להיות שמצאתם R שמצאתם (ב)
- כי מתקיים (a,b) $\in R$ הראו כי מתקיים שמצאתם אם נתון שהיחס R

$$a = f(f(a)) = f(f(f(f(a)))) = \dots = f^{2n}(a)$$

. פעמים 2n היא עם עצמה f עם עצמה של הפונקציה f^{2n} כאשר

(ד) האם ייתכן כי היחס R שמצאתם הוא טרנזיטיבי?

פתרון

- $R = \{(x,y) \in A \times A \mid f(x) = y\}$ באופן הבא: R באופן יחס
- (ב) אם $x\in A$ רפלקסיבי, אז לכל $x\in A$ מתקיים $x\in A$ מתקיים $x\in A$ מתקיים $x\in A$ הפונקציה חייבת להיות פונקצית הזהות על $x\in A$. שימו לב! לא ייתכן שקיימים זוגות נוספים ב $x\in A$, אחרת נקבל סתירה לתכונת חד ערכיות של פונקציה.
- f(b)=a גם f(a)=b גם מסיקים מיסטרי. מהגדרת היחס מיסטרי. מהגדרת (b,a) אז גם f(a)=b גם (ג) אם מכאך f(f(f(a)))=f(f(a))=a נמשיך פעמיים על האגפים ונקבל f(f(f(a)))=f(f(a))=a נמשיך באופן f(a)=a דומה ונקבל שלכל מספר זוגי f(a)=a
- (ד) כן. היחס שמתאים לפונקצית זהות הינו טרנזיטיבי. דוגמה נוספת: $A=\{1,2,3\}$ יחס טרנזיטיבי שמתאים לפונקציה לפונקציה $x\in A$ לכל f(x)=2

7. נגדיר את הפונקציה הבאה

$$f: P(\mathbb{R}) \longrightarrow P(\mathbb{R})$$

 $f(X) = X \cup \mathbb{N}$

- $f(\emptyset), f(\mathbb{Q}), f(\mathbb{R})$ אם חשבו את
- (ב) האם הפונקציה f היא פונקציה חח"ע? אם כן הוכיחו, אם לא מיצאו דוגמא נגדית.
 - . האם הפונקציה f היא פונקציה על? אם כן הוכיחו, אם לא מיצאו דוגמא (גדית.
 - (ד) הראו כי

$$Im(f) = \{ A \in P(\mathbb{R}) \mid \mathbb{N} \subseteq A \subseteq \mathbb{R} \}$$

פתרון

מקבלים $\emptyset\subseteq\mathbb{N}\subseteq\mathbb{Q}\subseteq\mathbb{R}$ – מקבלים (א)

$$f(\emptyset) = \emptyset \cup \mathbb{N} = \mathbb{N}$$
$$f(\mathbb{Q}) = \mathbb{Q} \cup \mathbb{N} = \mathbb{Q}$$
$$f(\mathbb{R}) = \mathbb{R} \cup \mathbb{N} = \mathbb{R}$$

- $f(\{2\})=\{2\}\cup\mathbb{N}=\mathbb{N}$ וגם $f(\{1\})=\{1\}\cup\mathbb{N}=\mathbb{N}$ (ב) הפונקציה f לא חח"ע, כי למשל
- (ג) הפונקציה fלא על, כי לכל $X\in P(\mathbb{R})$ מתקיים $\mathbb{N}\subseteq\mathbb{N}$ מתקיים אומר שלא נקבל בתמונה אף $X\in P(\mathbb{R})$ ממש ב \mathbb{N} קבוצה שמוכלת ממש ב
- (ד) לכל $\mathbb{R}\subseteq A\subseteq \mathbb{R}$ מתקיים $A=\mathbb{R}\cup \mathbb{N}=A$ לכך f(A)=A וזה מבטיח כי $A\in Im(f)$ מתקיים $A\in P(\mathbb{R})$ $\mathbb{R}\subseteq A\subseteq \mathbb{R}$ וזה מבטיח כי $A\in P(\mathbb{R})$ $\mathbb{R}\subseteq A\subseteq \mathbb{R}$ $\mathbb{R}\subseteq A\subseteq \mathbb{R}$ אם $A\in P(\mathbb{R})$ אז קיים $A\in P(\mathbb{R})$, כך ש $A\in P(X)=X\cup X$ כך ש $A\in P(X)=X\cup X$ זה מוכיח כי $A\in P(X)=X\cup X$ זה מוכיח כי $A\in P(X)=X\cup X$ זה מוכיח כי $A\in P(X)=X\cup X$ שתי ההכלות הנ"ל מוכיחות את השוויון $A\in P(X)=X\cup X$ וזה מבטיח מבטיח שתי ההכלות הנ"ל מוכיחות את השוויון $A\in P(X)=X\cup X$
 - שתי קבוצות ופונקציה A,B יהיו

$$f: A \longrightarrow B$$

נגדיר פונקציה חדשה לקבוצות החזקה

$$F: P(A) \longrightarrow P(B)$$
$$F(X) = \{ f(x) \mid x \in X \}$$

(א) במקרה הפרטי בו

$$A = \{1, 2, 3\} \quad B = \{a, b, c\}$$

$$f : A \longrightarrow B$$

$$f(1) = a, f(2) = b, f(3) = c$$

$$F\left(\{1\}\right), F\left(\{1,2\}\right), F\left(\emptyset\right), F\left(A\right)$$
 מיצאו את

- (ב) נחזור למקרה הכללי כפי שתואר בתחילת השאלה. הוכיחו את הטענות הבאות:
 - ע אח"ע. היא F היא הפונקציה f היא חח"ע. i
 - . היא על היא F היא הפונקציה היא על אם הפונקציה f היא על.

פתרון

(א) מתקיים:

$$\begin{split} F\left(\{1\}\right) &= \{f(x) \mid x \in \{1\}\} = \{f(1)\} = \{a\} \\ F\left(\{1,2\}\right) &= \{f(x) \mid x \in \{1,2\}\} = \{f(1),f(2)\} = \{a,b\} \\ F\left(\emptyset\right) &= \{f(x) \mid x \in \emptyset\} = \emptyset \\ F\left(A\right) &= \{f(x) \mid x \in A\} = \{f(1),f(2),f(3)\} = \{a,b,c\} = B \end{split}$$

(ב) נוכיח את הטענות

.ע. תהיf חח"ע. i

 $F(X_1) = F(X_2)$ נניח כי

 $x_2\in X_2$ עבור $y=f(x_2)$ כלומר $y=f(x_1)\in F(X_1)$ עבור $y=f(x_1)\in F(X_1)$ יהי יהי $x_1\in X_1$ אלכן $x_1\in X_2$ לכן $x_1\in X_2$ לכן $x_1\in X_2$ חח"ע. זה מוכיח כי $x_1\in X_2$ ומכאן $x_1\in X_2$ ומסיכים כי $x_1=x_2$ זה מוכיח כי $x_1=x_2$ חח"ע. זה מוכיח כי $x_1=x_2$ ומסיכים כי $x_1=x_2$ זה מוכיח כי $x_1=x_2$

.ע"עח F תהי

 $.F\left(\{x_1\}
ight)=\{f(x_1)\}=\{f(x_2)\}=F\left(\{x_2\}
ight)$ מכאן מכאן . מכאן $.f(x_1)=f(x_2)$ זה מוכיח מוכיח $.x_1=x_2$ ומכאן $.x_1=x_2$ ומכאן $.x_1=x_2$ ומכאן $.x_1=x_2$ ומכאן $.x_1=x_2$

f על. ii.

על. נגדיר f כי f(x)=yעל. כך ש $x\in A$ קיים קיים $y\in Y$ לכל $.Y\in P(B)$ תהי תהי

$$X = \{x \in X \mid \exists y \in Y.y = f(x)\}\$$

מתקיים $y \in Y$ מתקיים לערכי x המתאימים לכל של היא קבוצה של כל

$$F(X) = \{ f(x) \mid x \in X \} = \{ y \mid y \in Y \} = Y$$

.על. F לכן Y – על.

F על.

יהי F(X)=Y - כך ש $Y=\{y\}$, כך ש $Y=\{y\}$, כלומר יהי $Y=\{y\}$

$$F(X) = \{ f(x) \mid x \in X \} = \{ y \} = Y$$

כלומר קיים $X \subseteq X \subseteq X$, כך שy = y, כך על. $x \in X \subseteq A$