I - Détermination expérimentale d'une enthalpie de réaction

FIGURE 1 – Figure du système étudié

I.A -

	$Zn_{(s)}$	+	$Cu_{(aq)}^{2+}$	=	$Cu_{(s)}$	+	$Zn_{(aq)}^{2+}$
$n_{initial}$	n_1		n_2		0		0
n_{final}	$n_1 - 2\xi_{max}$		$n_2 - \xi_{max}$		ξ_{max}		ξ_{max}

On a
$$n_1 = \frac{m_{Zn}}{M_{Zn}} = \frac{3.2}{65.4} = 0.049 \, mol$$
, et $n_2 = V * c = 150 * 0.200 = 3.00 * 10^{-2} \, mol$, donc $\xi_{max} = n_2 = 0.03 \, mol$

Car c'est une tranformation isobare est adiabatique, on a $\Delta H_{1\rightarrow 2} = Q_{recue} = 0$

On va donc introduit un état fictif (α) , et on va séparer la transformation par deux étapes fictives.

▶ (1) → (α) : On a $\Delta H_{1\to\alpha} = \Delta H_{1\to\alpha}^{\circ}$ puisque l'enthalpie est indépendante de la pression, est

c'est une tranformation isotherme isobare.

On a alors $\Delta H_{1\to \alpha}=(\xi_{max}-\xi_{in})\Delta_r H^\circ=\xi_{max}\Delta_r H^\circ$

 $lackbox{ } (\alpha) \rightarrow (2)$: C'est une transformation physique, et on a $\Delta H_{\alpha \rightarrow 2} = \int_{T_1}^{T_2} C_p(\alpha) \, dT =$ $\int_{T_1}^{T_2} C_{p,eau} dT = C_{p,eau} (T_2 - T_1)$

puisque la capacité calorifique du système est confondue avec celle de l'eau est supposé

indépendante de la température, on a $C_{p,eau} = c_p * V * \rho_{eau}$

On a donc
$$0 = \Delta H = \Delta H_{1\to\alpha} + \Delta H_{\alpha\to 2} = \xi_{max} \Delta_r H^{\circ} + C_{p,eau} (T_2 - T_1)$$
, donc

$$\Delta_r H^{\circ} = -\frac{c_p * V * \rho_{eau} * (T_2 - T_1)}{\xi_{max}}$$

$$\Delta_r H^{\circ} = -\frac{c_p * V * \rho_{eau} * (T_2 - T_1)}{\xi_{max}}$$
A.N.
$$\Delta_r H^{\circ} = -\frac{4.18 * 150 * 1.00 * 9.720}{3.00 * 10^{-2}} = -2.03 * 10^5 J$$