Проект по случайным графам

Чегодаева Таисия и Купряков Дмитрий, ПАДИИ, 2 курс $18~{\rm mas}~2025~{\rm r}.$

Часть І

Исследование свойств характеристики.

Глава 1

Исследовать, как ведет себя числовая характеристика τ в зависимости от параметров распределений θ и ν , зафиксировав размер выборки и параметр процедуры построения графа.

Замечание: ссылки на картинки пока что не кликабельные, но сами картинки лежат в той же папке, что и отчет.

1.1 Характеристика τ^{KNN} .

1.1.1 Распределение LogNormal с $\mu = \mathbf{0}$ и параметром $\theta.$

Зафиксируем размер выборки n=100 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\theta = \{0.001, 0.01, 0.1, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100\}.$

Результаты: knn_lognormal_fixed_graph_parameters.png.

Усредненная характеристика τ^{KNN} при $\theta \in [1, +\infty)$ принимает значения $\in [194, +\infty)$, а на [0, 1] колеблется в окрестности числа 189.

1.1.2 Распределение Exp с параметром λ .

Зафиксируем размер выборки n=100 и количество соседей k=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\nu = \{0.0001, 0.001, 0.01, 0.1, 1, 2, 5, 10, 15, 20, 25, 30, 50, 75, 100\}.$

Результаты: knn_exp_fixed_graph_parameters.png.

Усредненная характеристика τ^{KNN} принимает значения в окрестности числа 189 независимо от параметра ν .

1.2 Характеристика au^{dist} .

1.2.1 Распределение LogNormal с $\mu = \mathbf{0}$ и параметром $\theta.$

Зафиксируем размер выборки n=100 и расстояние dist=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\theta = \{0.0001, 0.001, 0.01, 0.1, 1, 2, 5, 10, 15, 20, 25, 30, 50, 75, 100, 150, 200, 250, 500, 1000\}.$

Peзультаты: dist_lognormal_fixed_graph_parameters.png.

Характеристика au^{dist} при $\theta \in (0,1)$ принимает значение 50 (т.е. при таких θ граф — полный).

При $\theta \in [1, +\infty)$ с увеличением θ среднее значение характеристики τ^{dist} колеблется в окрестности числа 25, а сама характеристика в большинстве случаев колеблется между значениями 15 и 35.

Дополнительно смотрела на большие $\theta \in [15, 500000]$, начиная с некоторого момента нижняя граница колебаний τ^{dist} выравнивается (как раз где-то до $\tau^{dist} = 25$), соотвественно, среднее значение немного увеличивается и колеблется около 27.

Результаты для больших θ : dist_lognormal_big_theta_fixed_graph_parameters.png

1.2.2 Распределение Exp с параметром λ .

Зафиксируем размер выборки n=100 и расстояние dist=5. Число итераций для метода Монте-Карло равно 1000.

Будем перебирать $\nu = \{0.0001, 0.001, 0.01, 0.1, 1, 2, 5, 10, 15, 20, 25, 30, 50, 75, 100, 150, 200, 250, 500, 1000\}.$

Результаты: dist_exp_fixed_graph_parameters.png.

Характеристика au^{dist} при $\nu \in (0,1)$ принимает значение 50 (т.е. при таких ν граф – полный).

При больших ν среднее значение au^{dist} стремится к 1.

Дополнительно смотрела на большие $\nu \in [15, 500000]$, на отдельной картинке отлично видно это стремление к 1.

Результаты для больших ν : dist_lexp_big_nu_fixed_graph_parameters.png