# HANDLING MISSING DATA IN R

Mine Dogucu, PhD
Sunwoo Ha
New College of Florida

@MineDogucu
mdogucu
mdogucu@ncf.edu









| L |        | Fall                                                           | Spring                            |
|---|--------|----------------------------------------------------------------|-----------------------------------|
|   |        | Statistical Inference I                                        | Statistical Inference II          |
|   | Year I | Data Storage and Retrieval                                     | Data Visualization                |
|   |        | Algorithms                                                     | Distributed Computing             |
|   |        | Data Munging and EDA                                           | Optimization and Machine Learning |
|   |        | Practical Data Science                                         |                                   |
|   | Year 2 | Topics in Computing - Deep Learning                            | Practicum                         |
|   |        | Topics in Statistical Inference - Applied Bayesian<br>Analysis |                                   |

|        | Fall                                                           | Spring                            |  |  |
|--------|----------------------------------------------------------------|-----------------------------------|--|--|
|        | Statistical Inference I                                        | Statistical Inference II          |  |  |
| Year I | Data Storage and Retrieval                                     | Data Visualization                |  |  |
| TCai I | Algorithms                                                     | Distributed Computing             |  |  |
|        | Data Munging and EDA                                           | Optimization and Machine Learning |  |  |
|        | Practical Data Science                                         |                                   |  |  |
| Year 2 | Topics in Computing - Deep Learning                            | Practicum                         |  |  |
|        | Topics in Statistical Inference - Applied Bayesian<br>Analysis |                                   |  |  |

- > library(ggplot2movies)
- > View(movies)

| *   | title #                     | year 🕏 | length ‡ | budget ‡ | rating ‡ | votes ‡ | r1 ‡ | r2 ‡ |
|-----|-----------------------------|--------|----------|----------|----------|---------|------|------|
| 272 | 20-seiki nosutarujia        | 1997   | 93       | NA       | 3.7      | 14      | 24.5 | C    |
| 273 | 20. Juli, Der               | 1955   | 97       | NA       | 8.6      | 18      | 4.5  | C    |
| 274 | 20/20 Vision                | 1999   | 20       | NA       | 1.0      | 5       | 64.5 | C    |
| 275 | 200 American                | 2003   | 84       | NA       | 5.4      | 62      | 14.5 | 4    |
| 276 | 200 Cigarettes              | 1999   | 101      | 6000000  | 5.4      | 4514    | 4.5  | 4    |
| 277 | 200 Motels                  | 1971   | 98       | 679000   | 5.2      | 338     | 4.5  | 4    |
| 278 | 2000 Nordestes              | 2000   | 70       | NA       | 7.9      | 25      | 4.5  | C    |
| 279 | 2000 Years Later            | 1969   | 80       | NA       | 4.4      | 12      | 4.5  | 14   |
| 280 | 20000 Leagues Under the Sea | 1954   | 127      | 5000000  | 7.1      | 2741    | 4.5  | 4    |
| 281 | 2001 Yonggary               | 1999   | 99       | NA       | 3.1      | 241     | 44.5 | 14   |
| 282 | 2001: A Space Odyssey       | 1968   | 156      | 10500000 | 8.3      | 64982   | 4.5  | 4    |
| 283 | 2001: A Space Travesty      | 2000   | 99       | 26000000 | 2.5      | 2023    | 44.5 | 14   |
| 284 | 2002: The Rape of Eden      | 1994   | 90       | NA       | 4.0      | 24      | 14.5 | 4    |
| 285 | 2009: Lost Memories         | 2002   | 136      | NA       | 6.6      | 639     | 4.5  | 4    |
| 286 | 201 Kanarinia, Ta           | 1964   | 96       | NA       | 7.1      | 6       | 0.0  | C    |
| 287 | 2010                        | 1984   | 116      | NA       | 6.5      | 7300    | 4.5  | 4    |

- > library(janeaustenr)
- > View(prideprejudice)

| 1  | PRIDE AND PREJUDICE                                        |
|----|------------------------------------------------------------|
| 2  |                                                            |
| 3  | By Jane Austen                                             |
| 4  |                                                            |
| 5  |                                                            |
| 6  |                                                            |
| 7  | Chapter 1                                                  |
| 8  |                                                            |
| 9  |                                                            |
| 10 | It is a truth universally acknowledged, that a single man  |
| 11 | of a good fortune, must be in want of a wife.              |
| 12 |                                                            |
| 13 | However little known the feelings or views of such a ma    |
| 14 | first entering a neighbourhood, this truth is so well fixe |
| 15 | of the surrounding families, that he is considered the ri  |
| 16 | of some one or other of their daughters.                   |

"As the old saying goes, the only certainties are death and taxes. We would like to add one more to that list: missing data".

McKnight et. al (2007)

## SELECTIVE NONRESPONSE

You love your everyday job which involves data analysis.

AGREE











DISAGREE

You hate doing data analysis when it involves missing data

**AGREE** 











DISAGREE

# DROPOUT







# WAVE MISSING

1 2 3 4 5

## **TECHNOLOGY**



https://upload.wikimedia.org/wikipedia/commons/9/95/HP\_Educational\_Basic\_optical\_mark-reader\_card.\_Godfrey\_Manning..jpg By GLMEW (Own work) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

## INVALID RESPONSES



## PLANNED MISSING DESIGNS

| - 1 | 2   | 3   | 4           | 5   |
|-----|-----|-----|-------------|-----|
| 112 | 222 | 222 | 111         | 220 |
| 110 |     |     |             | 110 |
| 112 | 220 |     | <b>11</b> 0 | 220 |
| 110 | 222 | 222 |             | 220 |
| •   |     | •   |             |     |

#### MISSING DATA MECHANISMS

- X = completely observed variable (s)
- Y = partly observed variable (s)
- Z = unobserved variables (unrelated to X and Y)
- R = indicates missingness

## **MCAR**

Students forget to fill out the survey

## **MAR**

Younger students have hard time reading / understanding the questions

## **MNAR**

Students with severe asthma do not have the energy to respond.











| *  | age | <b>‡</b> | distance ‡ |
|----|-----|----------|------------|
| 1  |     | 80       | 278.8375   |
| 2  |     | 83       | 289.1731   |
| 3  |     | 80       | 283.7063   |
| 4  |     | 83       | 276.2022   |
| 5  |     | 74       | 290.4947   |
| 6  |     | 68       | 324.1690   |
| 7  |     | 71       | 298.1364   |
| 8  |     | 75       | 291.6842   |
| 9  |     | 80       | 291.2071   |
| 10 |     | 85       | 267.9872   |
| 11 |     | 65       | 332.7962   |
| 12 |     | 68       | 330.5579   |
| 13 |     | 80       | 273.5567   |
| 14 |     | 65       | 309.4686   |
| 15 |     | 73       | 285.0229   |
| 16 |     | 74       | 316.0510   |
| 17 |     | 73       | 296.1835   |
| 18 |     | 73       | 307.2038   |
| 19 |     | 68       | 322.1212   |
| 20 |     | 84       | 266.3769   |

## MAR



| *  | age ‡ | distance ‡ | r ‡ |
|----|-------|------------|-----|
| 1  | 80    | 278.8375   |     |
| 2  | 83    | 289.1731   |     |
| 3  | 80    | 283.7063   |     |
| 4  | 83    | 276.2022   |     |
| 5  | 74    | 290.4947   |     |
| 6  | 68    | 324.1690   |     |
| 7  | 71    | NA         | NA  |
| 8  | 75    | NA         | NA  |
| 9  | 80    | 291.2071   |     |
| 10 | 85    | 267.9872   |     |
| 11 | 65    | 332.7962   |     |
| 12 | 68    | NA         | NA  |
| 13 | 80    | 273.5567   |     |
| 14 | 65    | NA         | NA  |
| 15 | 73    | 285.0229   |     |
| 16 | 74    | 316.0510   |     |
| 17 | 73    | NA         | NA  |
| 18 | 73    | 307.2038   |     |
| 19 | 68    | 322.1212   |     |
| 20 | 84    | 266.3769   |     |

# bit.ly/MissingDataR

## SUMMARIES OF MISSING DATA

Initial step in any data analysis with missing data analysis should include visual and numerical inspection.

library(naniar)



```
ggplot(data = miss,
    aes(x = age,
    y = distance)) +
geom_miss_point()
```

```
> miss_case_summary(miss)
\#A tibble: 20 x 4
  case n_miss pct_miss n_miss_cumsum
* <int> <id><db|>
                           <int>
         0
              0
              50.0
              50.0
               50.0
               50.0
     15
16
     16
               50.0
18
     18
20
    20
```

## LITTLE'S MCAR TEST

 $H_0$ : Data are MCAR

```
> library(BaylorEdPsych)
> library(mvnmle)
> LittleMCAR(miss)
this could take a while$chi.square
[1] 3.74819
$df
[1] [
$p.value
[1] 0.05286473
$missing.patterns
[1] 2
$amount.missing
          age distance
Number Missing 0 5.00
Percent Missing 0 0.25
```

## TRUE PARAMETERS

$$\beta_0 = 500$$
$$\beta_1 = -3$$

## SAMPLE STATISTICS

```
> coef(lm(distance~age,data=comp))
(Intercept) age
506.114401 -2.790514
```

#### COMPLETE CASE ANALYSIS

While analyzing, it includes only the rows that have complete data.

Default setting in many software (SPSS, SAS, STATA) but that is not always the case in R. e.g.

> mean(miss\$distance)

[I] NA

> mean(miss\$distance,na.rm = TRUE)

[1] 293.6604



> coef(lm(distance~age,data=miss))
(Intercept) age
526.551753 -3.037713

#### MEAN IMPUTATION

> mean(miss\$distance,na.rm=TRUE)

[1] 293.6604

Mean imputation replaces every single missing value of a variable with the mean of the complete cases of the same variable

| *  | age ‡ | distance 🕏 |                                                               | *  | age ‡ |
|----|-------|------------|---------------------------------------------------------------|----|-------|
| 1  | 80    | 278.8375   |                                                               | 1  | 80    |
| 2  | 83    | 289.1731   |                                                               | 2  | 83    |
| 3  | 80    | 283.7063   |                                                               | 3  | 80    |
| 4  | 83    | 276.2022   |                                                               | 4  | 83    |
| 5  | 74    | 290.4947   |                                                               | 5  | 74    |
| 6  | 68    | 324.1690   | miss_meanimp<-miss                                            |    | 68    |
| 7  | 71    | NA         | miss_meanimp[is.na(miss)]<- mean(miss\$distance na rm = TRUF) | 7  | 71    |
| 8  | 75    | NA         |                                                               | 8  | 75    |
| 9  | 80    | 291.2071   | mean(miss\$distance,na.rm = TRUE)                             |    | 80    |
| 10 | 85    | 267.9872   |                                                               | 10 | 85    |
| 11 | 65    | 332.7962   |                                                               | 11 | 65    |
| 12 | 68    | NA         |                                                               | 12 | 68    |
| 13 | 80    | 273.5567   |                                                               | 13 | 80    |
| 14 | 65    | NA         |                                                               | 14 | 65    |
| 15 | 73    | 285.0229   |                                                               | 15 | 73    |
| 16 | 74    | 316.0510   |                                                               | 16 | 74    |
| 17 | 73    | NA         |                                                               |    | 73    |
| 18 | 73    | 307.2038   |                                                               | 18 | 73    |
| 19 | 68    | 322.1212   |                                                               | 19 | 68    |
| 20 | 84    | 266.3769   |                                                               | 20 | 84    |

distance 🗘 r

278.8375

289.1731

283.7063

276.2022

290,4947

324.1690

291.2071

267.9872

332.7962

273.5567

285.0229

316.0510

307.2038

322.1212

266.3769

293.6604 NA

293.6604 NA

293.6604 NA

293.6604 NA

293.6604 NA

```
> coef(lm(distance~age,data=miss_meanimp))
(Intercept) age
  460.6903 -2.2241
```



## MULTIPLE IMPUTATION

As the name suggests multiple imputation creates multiple imputed datasets based on different algorithms.

- > library(mice)
- > temp<-mice(data=miss, m=3, seed=12345)

#### iter imp variable

- I I distance
- I 2 distance
- I 3 distance
- 2 I distance
- 2 distance
- 2 3 distance
- 3 I distance
- 3 2 distance
- 3 distance
- 4 I distance
- 4 2 distance
- 4 3 distance
- 5 I distance
- 5 2 distance
- 5 3 distance

```
> temp$imp
$age
NULL
$distance
7 290.4947 307.2038 316.0510
8 285.0229 285.0229 290.4947
12 285.0229 324.1690 322.1212
14 322.1212 332.7962 285.0229
17 307.2038 316.0510 285.0229
```

\$r NULL

- > ml<-complete(temp, l)
- > m2<-complete(temp,2)
- > m3<-complete(temp,3)

| *  | age 🕏 | distance ‡ | r ÷ | *  | age ‡ | distance ‡ | r ‡ | *  | age ‡ | distance ‡ | r ‡ |
|----|-------|------------|-----|----|-------|------------|-----|----|-------|------------|-----|
| 1  | 80    | 278.8375   |     | 1  | 80    | 278.8375   |     | 1  | 80    | 278.8375   |     |
| 2  | 83    | 289.1731   |     | 2  | 83    | 289.1731   |     | 2  | 83    | 289.1731   |     |
| 3  | 80    | 283.7063   |     | 3  | 80    | 283.7063   |     | 3  | 80    | 283.7063   |     |
| 4  | 83    | 276.2022   |     | 4  | 83    | 276.2022   |     | 4  | 83    | 276.2022   |     |
| 5  | 74    | 290.4947   |     | 5  | 74    | 290.4947   |     | 5  | 74    | 290.4947   |     |
| 6  | 68    | 324.1690   |     | 6  | 68    | 324.1690   |     | 6  | 68    | 324.1690   |     |
| 7  | 71    | 290.4947   | NA  | 7  | 71    | 307.2038   | NA  | 7  | 71    | 316.0510   | NA  |
| 8  | 75    | 285.0229   | NA  | 8  | 75    | 285.0229   | NA  | 8  | 75    | 290.4947   | NA  |
| 9  | 80    | 291.2071   |     | 9  | 80    | 291.2071   |     | 9  | 80    | 291.2071   |     |
| 10 | 85    | 267.9872   |     | 10 | 85    | 267.9872   |     | 10 | 85    | 267.9872   |     |
| 11 | 65    | 332.7962   |     | 11 | 65    | 332.7962   |     | 11 | 65    | 332.7962   |     |
| 12 | 68    | 285.0229   | NA  | 12 | 68    | 324.1690   | NA  | 12 | 68    | 322.1212   | NA  |
| 13 | 80    | 273.5567   |     | 13 | 80    | 273.5567   |     | 13 | 80    | 273.5567   |     |
| 14 | 65    | 322.1212   | NA  | 14 | 65    | 332.7962   | NA  | 14 | 65    | 285.0229   | NA  |
| 15 | 73    | 285.0229   |     | 15 | 73    | 285.0229   |     | 15 | 73    | 285.0229   |     |
| 16 | 74    | 316.0510   |     | 16 | 74    | 316.0510   |     | 16 | 74    | 316.0510   |     |
| 17 | 73    | 307.2038   | NA  | 17 | 73    | 316.0510   | NA  | 17 | 73    | 285.0229   | NA  |
| 18 | 73    | 307.2038   |     | 18 | 73    | 307.2038   |     | 18 | 73    | 307.2038   |     |
| 19 | 68    | 322.1212   |     | 19 | 68    | 322.1212   |     | 19 | 68    | 322.1212   |     |
| 20 | 84    | 266.3769   |     | 20 | 84    | 266.3769   |     | 20 | 84    | 266.3769   |     |





## Pooling parameter estimates

$$\bar{Q} = \frac{1}{m} \sum_{i=1}^{m} \widehat{Q_i}$$

## Pooling standard errors

$$\overline{U} = \frac{1}{m} \sum_{i=1}^{m} \widehat{U}_{i}$$

$$B = \frac{1}{m} \sum_{i=1}^{m} (\widehat{Q}_{i} - \overline{Q})^{2}$$

$$\sqrt{T} = \sqrt{\overline{U} + \left(1 + \frac{1}{m}\right)} B$$

```
> mimodel<-with(temp,lm(distance~age))
> summary(pool(mimodel))
                        se t
           est
(Intercept) 499.568143 46.3729057 10.772845 3.516575
        -2.708733 0.5938644 -4.561198 3.885096
age
         Pr(>|t|) lo 95 hi 95
                                          nmis
(Intercept) 0.0008122321 363.526358 635.60993 NA
       0.0110559018 -4.376976 -1.04049 0
age
          fmi lambda
(Intercept) 0.6853859 0.5460706
       0.6542114 0.5126425
age
```

#### ADDITIONAL MI PACKAGES

library(mice)

library (mi)

library(Amelia)

library(missForest)

library(Hmisc)

library(countimp)

## MAXIMUM LIKELIHOOD

$$L = \prod_{i=1}^{m} f_i(y_{i1}, y_{i2}, \dots, y_{ik}; Q) \prod_{m+1}^{n} f_i(y_{i3}, \dots, y_{ik}; Q)$$

```
library(stats4)
mle()
library(lavaan)
sem(model,data,missing='fiml')
library(stats)
glm(model, family=poisson)
```

#### MI

Better than traditional methods

Can handle MCAR and MAR

Multiple step needed to attain parameter estimates

Not model specific

#### ML

Better than traditional methods

Can handle MCAR and MAR

Single step needed to attain parameter estimates

Model specific

#### **TIPS**

- Identifying the missing data mechanism can be hard. Talk to participants, other researchers to identify what causes missingness.
- Consider the percent of missingness and sample size.
- Consider the distribution of variables.
- Use a large number of imputations if using MI.
- Use both MI and ML if possible and see if you arrive at different conclusions.
- If possible simulate complete data that can mimic the scenario you are studying.

# THANK YOU

bit.ly/MissingDataR



#### REFERENCES

- Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing values. *Journal of the American Statistical Association*, 83(404), 1198-1202.
- Rubin, D.B B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
- Schafer, J. L., & Graham, J.W. (2002). Missing data: our view of the state of the art. *Psychological Methods*, 7(2), 147–177.