Collapsed haplotype pattern method for linkage analysis of next-generation sequencing data

Gao T. Wang, Di Zhang, Biao Li, Hang Dai and Suzanne M. Leal†

[†]Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA

Center for statistical genetics,

Motivation

- Variant filtering using next-generation sequencing (NGS) data of families has successfully identified many causal mutations for Mendelian diseases, yet such approach
- May result in many variants to follow-up
- ▷ Is sensitive to mis-classification
 - > sample swaps, phenocopies, reduced penetrance
- Do not provide statistical significance for variants.
- Linkage analysis has been a powerful approach to map Mendelian disease loci using genetic marker data, but is under-powered when applied to sequence data, mainly

due to lack of heterogeneity in single-nucleotide variants

• We developed a Collapsed Haplotype Pattern (CHP) method and a **SEQLinkage** software to utilize NGS data of multiple families for powerful linkage analysis

The CHP Method

Inspired by rare variant "burden test" for association, the CHP method tests for linkage with a genetic region rather than with individual variants

- Rare variants from NGS data are analyzed in aggregate
- Regional markers are generated for given genomic units
- \triangleright *e.g.* genes for exome sequence data
- Regional markers are more heterozygous than single variants, thus more informative in tracking the transmission of disease mutations within families and
- when analyzing multiple pedigrees in the presence of allelic heterogeneity

 Tolerates missing data; no LD pruning required ------- go next line

Complete Collapsing

Complete vs. No Collapsing

Implementation

- 1. Family NGS data preprocessing
- Mendelian error check and genotype imputation
- Haplotype reconstruction via genetic phasing
- 2. Regional marker construction
- Complete collapsing and LD based collapsing themes
- Sub-regional markers by recombination events
- 3. Annotation and statistics for linkage analysis
- Genetic distance interpolation via *Rutgers Map*
- Calculation of marker allele frequencies for linkage analysis with samples having no genotype data
- 4. Parametric test for linkage using regional markers
- LOD/HLOD scores computed over multiple pedigrees

Power analyses and sample size estimations

Simulation methods xxxxxx design to evaluate power

4 nonsyndromic hearing impairment gene sequences simulated, using sequences from European American samples in NHLBI Exome Sequencing Project; causal variants determined by NCBI-Clinvar database; two-generational pedigrees generated with 3 to 8 offspring based on USA population demographic data; full-penetrance for causal variants, allowing for allelic heterogeneity and varying degrees of locus heterogeneity; two-point linkage analysis performed comparing CHP vs. single variant linkage methods; empirical power evaluated via 500 replicates

Baylor

College of

Medicine[®]

GIVING LIFE TO POSSIBL

Power comparisons

---> Move this entire part up above figures

CHP (orange curves) outperforms single variant linkage method (blue curves) under both dominant (A) and compound recessive (B) models. With 50% locus heterogeneity it requires 12 families for CHP to achieve a power of 90% for SLC26A4 at a genome-wide α level of 0.05, while single variant linkage method requires over 50 families

Sample size estimations

Number of families required to achieve desired power are evaluated; 50% locus heterogeneity is assumed for all scenarios; power calculations are based on HLOD score instead; impact of missing causal variant in families is evaluated

Required Power Gene		MOI	$oxed{CHP^a}$	$\overline{SNV^b}$	CHP-M75 % ^c	SNV-M75% add this column	
0.8	SLC26A4	recessive	11	40	39		
0.9	SLC26A4	recessive	13	45	46		
0.8	SLC26A4	compound recessive	11	50	39		
0.9	SLC26A4	compound recessive	13	55	46		
0.8	GJB2	recessive	12	23	44		
0.9	GJB2	recessive	14	28	52		
0.8	GJB2	compound recessive	12	25	44		
0.9	GJB2	compound recessive	14	34	52		
0.8	MYO7A	dominant	12	16	31		
0.9	MYO7A	dominant	14	20	36		
0.8	MYH9	dominant	11	13	32		
0.9	MYH9	dominant	14	18	41		

a. minimum number of families required to achieve desired power for CHP method b. minimum number of families required to achieve desired power for single variant linkage method c. minimum number of family requirement for CHP when the causal variant in 75% families are missing

The SEQLinkage software

- Written in C++ with a Python parallel computing interface to rapidly scan through markers genome-wide
- Implements the CHP method for linkage analysis with sequence data of pedigrees in VCF format
- Supports output of CHP coded markers to formats compatible with other linkage programs
 - *⊳ FASTLINK, MEGA2, Merlin, PLINK*
- Performs two-point linkage analysis involving multiple families, maximizing linkage signals across families to allow for locus heterogeneity (HLOD score calculation)
- Provides results in text, graphical and table format output, organized under a user-friendly webpage interface
- Can be used in conjunction with variant filtering method to analyze sequence data of human pedigrees

SEQLinkage is freely available at

http://bioinformatics.org/seqlink

Acknowledgments

We would like to thank Regie Lyn Santos-Cortez, Daniel Weeks, Alejandro Schaffer, Jeffrey O'Connell and Jürg Ott for helpful discussions and support. This work was funded by National Institute of Health grants DC003594, DC011651 and HG006493.

SEQLinkage analysis output

Whole exome sequences of 2 nuclear families each with 4 offspring (3 affected) are analyzed using SEQLinkage

0.0		θ=0.02		θ=0.04		θ=0.06		θ=0.08	
Lod	Marker name	Lod	Marker name chr:start-end	Lod	Marker name	Lod	Marker name	Lod	Marker name
	chr:start-end				chr:start-end	Lou	chr:start-end		chr:start-end
2.658	GRIP2	2.536	GRIP2	2.412	GRIP2	2.286	GRIP2	2.158	GRIP2
	3:14530618- 14583588		3:14530618- 14583588		3:14530618- 14583588		3:14530618- 14583588		3:14530618- 14583588
1.329	UBE2Q1	1.276	UBE2Q1	1.222	UBE2Q1	1.166	UBE2Q1	1.11	UBE2Q1
	1:154521050- 154531120		1:154521050- 154531120		1:154521050- 154531120		1:154521050- 154531120		1:154521050- 154531120
1.329	FANCE	1.276	SP3	1.222	SP3	1.166	SP3	1.11	SP3
	11:22644078- 22647387		2:174771186- 174830430		2:174771186- 174830430		2:174771186- 174830430		2:174771186- 174830430
1.329	GRIN1	1.276	SP5	1.222	SP5	1.166	SP5	1.11	SP5
	9:140033608- 140063214		2:171571856- 171574498		2:171571856- 171574498		2:171571856- 171574498		2:171571856- 171574498
1.329	FOXQ1	1.276	МУОЗВ	1.222	МУОЗВ	1.166	МҮОЗВ	1.11	МУОЗВ
	6:1312674- 1314993		2:171034654- 171511674		2:171034654- 171511674		2:171034654- 171511674		2:171034654- 171511674
1.329	SP3		ITGA1	1.222	ITGA1	1.166	ITGA1	1.11	ITGA1
	2:174771186- 174830430	1.276	5:52084135- 52249485		5:52084135- 52249485		5:52084135- 52249485		5:52084135- 52249485

Chromosome 3

Genomic positions in Mb