ЛЕКЦИЯ 3 Глава 2. НАЧАЛЬНЫЕ СВЕДЕНИЯ О ЧИСЛЕННЫХ МЕТОДАХ ДЛЯ ЗАДАЧ ОПТИМИЗАЦИИ И ВАРИАЦИОННЫХ ЗАДАЧ

Содержание лекции

Классификация методов. Понятия сходимости

2 Оценки скорости сходимости. Правила остановки

Методы оптимизации

Основные понятия приводятся на примере методов для задач оптимизации.

Для вариационных задач терминология аналогичная, с очевидными изменениями.

Задача оптимизации

$$f(x) \to \min, \quad x \in D,$$
 (1)

$$D = \{ x \in P \mid F(x) = 0, \ G(x) \le 0 \}, \tag{2}$$

где

- $P \subset \mathbb{R}^n$ заданное замкнутое выпуклое множество;
- \bullet $f: \mathbb{R}^n \to \mathbb{R}$ заданная гладкая целевая функция;
- ullet $F:\mathbb{R}^n o\mathbb{R}^l$ и $G:\mathbb{R}^n o\mathbb{R}^m$ заданные гладкие отображения,

либо основные частные случаи этой задачи.

Наличие каких-то особых свойств у множества P, функции f и отображений F и G (кроме указанных) не предполагается: методы общего назначения.

Любой численный метод решения задачи (1), (2) основан на вычислении значений f, F и G, а также (часто) их производных, в некоторых точках. Организацию этих вычислений обычно следует интерпретировать как внешнюю для оптимизационного алгоритма процедуру, представляющую из себя «черный ящик».

Классы методов

- Пассивные: точки для вычислений выбираются независимо друг от друга и определены заранее.
- Последовательные: точки для вычислений выбираются последовательно, на основе информации, получаемой в ходе процесса.

Точки $x^0, x^1, \ldots, x^k, \ldots$ в \mathbb{R}^n , генерируемые последовательным методом — приближения. (Это может быть лишь часть точек, в которых выполняются вычисления.)

Последовательность $\{x^k\}$ — *траектория* метода.

Переход от x^k к x^{k+1} — шаг, или итерация метода.

Способ этого перехода — итерационная схема метода:

$$x^{k+1} = \Psi_k(x^k), \quad k = 0, 1, \dots,$$
 (3)

где $\Psi_k: U_k \to \mathbb{R}^n$, $U_k \subset \mathbb{R}^n$.

Начальное приближение $x^0 \in U_0$ корректно определяет траекторию метода тогда и только тогда, когда

$$\Psi_{k-1}(\Psi_{k-2}(\dots\Psi_0(x^0)\dots)) \in U_k \quad \forall k = 1, 2, \dots$$

Итерационная схема (3) — *одношаговая*.

Mногошаговые схемы: Ψ_k зависит не только от x^k , но и от некоторых предыдущих приближений.

Рассмотренная ситуация — идеализированная.

Часто приходится рассматривать итерационные схемы, в которых $\Psi_k:U_k \to 2^{\mathbb{R}^n}$:

$$x^{k+1} \in \Psi_k(x^k), \quad k = 0, 1, \ldots$$

Порядок метода: максимальный порядок производных f, F или G, используемых при осуществлении итерации.

Конечношаговый, или конечный метод: любое начальное приближение $x^0 \in U_0$ корректно определяет траекторию, некоторая точка которой совпадает с искомым решением. Известны эффективные конечные методы для задач линейного и квадратичного программирования.

Бесконечношаговый метод: приближения не попадают в точное решение, а лишь все точнее аппроксимируют его.

В зависимости от характера аппроксимации говорят о разных типах сходимости метода.

Типы сходимости

• Сходимость по аргументу, или просто сходимость (к решению или стационарной точке \bar{x}):

$$\{x^k\} \to \bar{x} \quad (k \to \infty).$$

• Сходимость по функции: $x^k \in D$ для всех достаточно больших k и

$$f(x^k) \to \bar{v} \quad (k \to \infty)$$

(специфично для задач оптимизации). При этом последовательность $\{x^k\}$ — минимизирующая. Минимизирующая последовательность может не иметь предельных точек, но если имеет, то любая из них является глобальным решением.

Типы сходимости

• Сходимость к множеству решений или стационарных точек S:

$$\operatorname{dist}(x^k, S) \to 0 \quad (k \to \infty).$$

Если S компакт, то из этого следует, что траектория имеет предельные точки, любая из которых содержится в S. Часто удается доказать только то, что любая предельная точка траектории содержится в S (без гарантии существования предельных точек).

Типы сходимости

• Сходимость по градиенту (для задачи безусловной оптимизации):

$$\{f'(x^k)\}\to 0 \quad (k\to\infty).$$

В общем случае — сходимость по невязке соответствующих необходимых условий первого порядка оптимальности или по невязке вариационной задачи. При этом любая предельная точка траектории является стационарной.

Типы сходимости

- Глобальная сходимость: из любого начального приближения $x^0 \in \mathbb{R}^n$ (подразумевается, что $U_0 = \mathbb{R}^n$).
- Локальная сходимость: из начальных приближений, достаточно близких к решению (множеству решений, стационарной точке, множеству стационарных точек).

Иерархия методов

Часто метод решения сложной задачи состоит в ее редукции к более простой, или последовательности более простых. Это имеет смысл только в том случае, когда для «простых» подзадач известны эффективные методы решения.

Классический метод Ньютона сводит решение системы нелинейных уравнений к последовательному решению линейных систем, для которых развиты эффективные методы вычислительной линейной алгебры.

Иерархия методов

Аналогично, методы решения общих задач условной оптимизации часто используют как вспомогательные процедуры методы одномерной оптимизации, безусловной оптимизации, линейного и квадратичного программирования. Методы безусловной оптимизации сами используют методы одномерной оптимизации, а методы квадратичного программирования используют методы линейного программирования. И т.д.

Развитие методов, стоящих выше в этой иерархии, невозможно без должного развития методов, стоящих ниже.

Общая эффективность алгоритма во многом определяется трудоемкостью решения его подзадач.

Скорость сходимости — одна из основных теоретических характеристик эффективности бесконечношагового метода.

Пусть метод генерирует траекторию $\{x^k\}$, которая сходится к решению \bar{x} .

Оценки скорости сходимости характеризуют гарантированную скорость убывания величины $\|x^k - \bar{x}\|$.

Предполагается, что $x^k \neq \bar{x}$ при всех k, а все возникающие ниже константы не зависят от конкретной сходящейся к \bar{x} траектории метода.

Оценки скорость сходимости

• Линейная скорость сходимости:

$$\limsup_{k \to \infty} \frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|} = q \in (0, 1).$$

• Сверхлинейная скорость сходимости:

$$\limsup_{k\to\infty} \frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|} = 0.$$

• Kвадратичная скорость сходимости (пример сверхлинейной): для некоторого c>0

$$\limsup_{k\to\infty} \frac{\|x^{k+1} - \bar{x}\|}{\|x^k - \bar{x}\|^2} \leqslant c.$$

Оценки скорость сходимости

- Сублинейная скорость сходимости: не являющаяся линейной.
- Арифметическая скорость сходимости (пример сублинейной): для некоторого c>0

$$\limsup_{k \to \infty} k \|x^k - \bar{x}\| \leqslant c.$$

• Геометрическая скорость сходимости (пример сублинейной):

$$\limsup_{k \to \infty} \frac{\|x^k - \bar{x}\|}{q^k} \leqslant c$$

при $q \in (0, 1)$.

Линейная скорость сходимости подразумевает геометрическую, а геометрическая арифметическую, но не наоборот.

Если даже последовательность $\{x^k\}\subset \mathbb{R}^2$ сходится к \bar{x} с квадратичной скоростью, то отсюда не следует сверхлинейная скорость сходимости последовательностей компонент $\{x_1^k\}$ и $\{x_2^k\}$ к \bar{x}_1 и \bar{x}_2 соответственно.

Сравнение методов

Оценки скорости сходимости — важный, но не единственный критерий качественного сравнения различных методов друг с другом.

Другие характеристики методов

- Трудоемкость итерации. Обычно методы с более высокой скоростью сходимости имеют более трудоемкую итерацию.
 Быстро сходящийся метод с трудоемкой итерацией может проигрывать более медленному методу, каждая итерация которого является более дешевой.
- Требуемое количество вычислений значений и/или производных f, F и G (может дорого стоить в прямом смысле слова).

Сравнение методов

Другие характеристики методов (завершение)

- Устойчивость к влиянию возмущений входных данных и помех.
- Допустимость траекторий: часто нужно, чтобы $\{x^k\} \subset D$ (недопустимые приближения могут не иметь «физического» смысла), либо $\{x^k\} \subset P$ (f, F и G могут быть определены только на P).

Сравнение методов

Если требуется решить отдельную задачу, то предпочтение следует отдать надежному методу (с хорошими свойствами сходимости); скоростью сходимости не имеет первостепенного значения.

Если же речь идет о решении большой серии однотипных задач, то скорость сходимости выходит на первый план: целесообразно потратить ресурсы (время, деньги, творческую энергию) на выбор и настройку подходящего быстрого алгоритма.

Правила остановки

Вычислительный процесс не может продолжаться бесконечно: любой бесконечношаговый метод должен сопровождаться практическим правилом остановки.

Правила остановки (для фиксированной точности $\varepsilon > 0$)

.

$$||x^{k+1} - x^k|| \le \varepsilon;$$

0

$$|f(x^{k+1}) - f(x^k)| \le \varepsilon$$

(косвенно свидетельствуют о бесперспективности продолжения процесса);

Правила остановки

Правила остановки (для фиксированной точности $\varepsilon > 0$)

.

$$||f'(x^{k+1})|| \le \varepsilon$$

(для задачи безусловной оптимизации; в общем случае используют невязку соответствующих необходимых условий первого порядка оптимальности или невязку вариационной задачи);

0

$$\frac{\|f'(x^{k+1})\|}{\max\{1, \|f'(x^0)\|\}} \leqslant \varepsilon$$

(относительный критерий: невязка в начальной точке уменьшилась в ε раз).

Правила остановки

Иногда процесс приходится останавливать по причине исчерпания ресурсов (время счета, максимальное количество итераций, максимальное количество вычислений значений функций, бюджет).

Наиболее правильный подход: комбинирование различных правил остановки в рамках некоторой их иерархии.

Локальное и глобальное

Часто глобально сходящиеся методы имеют более низкую скорость сходимости, чем сходящиеся лишь локально. Локально сходящийся метод нужно комбинировать с глобально сходящимся. Роль последнего — обеспечить подходящее начальное приближение для первого.

В случае задачи оптимизации глобально сходящийся метод должен быть оптимизационным (ориентированным на поиск решений задачи оптимизации, а не стационарных точек). Переключение с одного метода на другой должно осуществляться автоматически, некоторым естественным образом, что подразумевает наличие связей между этими методами.

Гибридные алгоритмы, объединяющие никак не связанные между собой методы, редко бывают успешными.

Локальное и глобальное

Типичный результат о поведении комбинированного алгоритма: метод глобально сходится в некотором смысле (к стационарной точке, или к множеству стационарных точек, или в том смысле, что любая предельная точка его траектории является стационарной), причем справедлива асимптотическая оценка скорости сходимости, присущая локально сходящемуся методу (желательно сверхлинейная).

Не путать глобальную сходимость со сходимостью к глобальным решениям!

Методы поиска глобальных решений задач оптимизации часто основаны на многократном применении методов поиска локальных решений (стационарных точек).