Les espaces vectoriels

M4 - Chapitre 1

I. Définitions

$$E e. v. \Leftrightarrow \begin{cases} E \text{ ensemble} \\ + \text{l. c. i de E t. q. } (E, +) \text{ groupe commutatif} & (\forall (u, v) \in E^2, & u + v \in E, & 0 \in E) \\ \times \text{l. c. e. de } (\mathbb{R}, E) \text{ dans } E & (\forall (\alpha, u) \in \mathbb{R} \times E, & \alpha u \in E) \end{cases}$$

$$F \text{ est } s. e. v. \text{ de } E \Leftrightarrow \begin{cases} F \subset E \\ F \text{ est un e. v.} \end{cases}$$

II. Les combinaisons linéaires

1. Définition

La c. l. de
$$v_1 \dots v_k$$
 avec les coefs $\alpha_1 \dots \alpha_k$ est : $\sum_{i=1}^k \alpha_i v_i$

2. Espace engendré

L'espace engendré par les vecteurs $v_1 \dots v_k$ noté $\mathrm{Vect}(v_1, \dots, v_k)$ est l'ensemble des combinaisons linéaires des vecteurs $v_1 \dots v_k$. C'est un s.e.v. de E.

III. Les opérations sur les sous espaces vectoriels

Soient F, G deux s. e. v. de E

- $F \cup G$ pas s.e.v.
- $F \cap G$ s.e.v.
- $F + G = \{ s \in E \mid \exists (u, v) \in F \times G, s = u + v \}$
- $F \oplus G = E \Leftrightarrow F \text{ et } G \text{ en somme directe } \Leftrightarrow \begin{cases} F + G = E \\ F \cap G = 0 \end{cases}$

IV. Familles

1. Définitions

Soit
$$\mathcal{F} = (v_1, \dots, v_k)$$

 \mathcal{F} est génératrice de E \iff Tout vecteur de E est c.l. de \mathcal{F} \iff $\forall u \in E, u = \sum_{i=1}^{\kappa} \alpha_i v_i$ \mathcal{F} est libre \iff Une c.l. nulle de \mathcal{F} a des coefs nuls \iff $\sum_{i=1}^{\kappa} \alpha_i v_i = 0 \Rightarrow \alpha_i = 0$

 \mathcal{F} est liée $\Leftrightarrow \mathcal{F}$ non libre

2. Propriétés

Soient ${\mathcal F}$ une famille, ${\mathcal L}$ une famille libre, ${\mathcal G}$ une famille génératrice

- \mathcal{F} libre et génératrice de $E \Leftrightarrow \mathcal{F}$ base de E
- $\mathcal{F} \subset \mathcal{L} \Rightarrow \mathcal{F}$ libre
- $\mathcal{G} \subset \mathcal{F} \Rightarrow \mathcal{F}$ génératrice

Les espaces vectoriels

M4 - Chapitre 1

V. Dimension d'un espace vectoriel

1. Définition

Si E peut être engendrée par un nombre fini de vecteurs, alors deux bases de E ont le même nombre de vecteurs. Ce nombre est la dimension de E.

2. Propriétés

Soient
$$E$$
 un e. v. tel que dim $E=n$, $\mathcal{L}=(e_1,\ldots,e_l)$ famille libre, $\mathcal{G}=(e_1,\ldots,e_q)$ famille génératrice

- Une famille libre à au plus n éléments
- Une famille génératrice a au moins n éléments
- Une famille libre ou génératrice de n éléments est une base

$$l \le n$$

 $g \ge n$
 $l = g = n \Rightarrow \text{base}$

3. Théorème de la base incomplète

$$\left. \begin{array}{l} \dim E = n \\ \mathcal{F} = (e_1, \ldots, e_l) \text{ libre} \right\} \Rightarrow \begin{array}{l} O \text{n peut complèter } \mathcal{F} \text{ pour avoir une base de } E \\ O \text{n complète } \mathcal{F} \text{avec } \mathcal{F}' = (e_{l+1}, \ldots, e_n) \end{array}$$

Propriétés :

- $\begin{array}{ll} \bullet & \dim \mathcal{F} = l \\ \bullet & \dim \mathcal{F}' = n l \end{array} \right\} \Rightarrow \dim \mathcal{F} + \dim \mathcal{F}' = \dim E$
- $\mathcal{F} \cap \mathcal{F}' = \{0\}$
- $\mathcal{F} \oplus \mathcal{F}' = E$ \mathcal{F} et \mathcal{F}' sont supplémentaires

4. Autres propriétés

$$\begin{cases}
F \subset E \\
\dim F = \dim E
\end{cases} \Rightarrow F = E$$

$$\dim(A+B) = \dim A + \dim B - \dim(A \cap B)$$