Projeto e Análise de Algoritmos

Programação Dinâmica

- Inicia-se com a menor e mais simples sub-instância
- Abordagem bottom-up
- Combinação de respostas das subinstâncias de tamanho crescente, obtem-se a resposta desejada

Introdução

 Aplicável quando os subproblemas não são independentes, isto é, quando os subproblemas compartilham subsubproblemas.

 Um algoritmo de programação dinâmica resolve cada subproblema uma vez só e então grava sua resposta em uma tabela

Exemplo

Cálculo dos coeficientes binomiais

$$\binom{n}{k} = \begin{cases} 1 & \text{se } k = 0 \text{ ou } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & \text{se } 0 < k < n \\ 0 & \text{caso contrário} \end{cases}$$

Funcao C(n,k)

if k=0 ou k=n return 1

else return C(n-1,k-1)+C(n-1,k)

Como resolver de forma eficiente???

Exemplo

Cálculo dos coeficientes binomiais

1							
1	1						
1	2	1					
1	3	3	1				
1	4	6	4	1			
1	5	10	10	5	1		
1	6	15	20	15	6	1	
		C					

n

- Qual o menor número de moedas que devem ser usadas para pagar uma conta, uma vez que estao disponíveis moedas de
 - 1 real (a)
 - 25 centavos (b)
 - 10 centavos (c)
 - 5 centavos (d)
 - 1 centavo (e)
- Instância do problema: 2,89 reais
 - 10 moedas (2a + 3b + 1c + 4e)

- Algoritmo guloso para resolver este problema
 - Inicie com nada
 - Cada estágio, sempre adicione a moeda de maior valor possível que não ultrapasse o valor tota
- Programação dinâmica
 - Ponto fundamental é configurar os resultados intermediários para que sejam combinados de forma a gerar o resultado desejado

- Considere o seguinte conjunto de moedas
 - 1 centavo
 - 4 centavos
 - 6 centavos

• Quantas moedas são necessárias para compor 8 centavos?

Algoritmo de PD

Soma	0	1	2	3	4	5	6	7	8
D ₁ =1	0	1	2	3	4	5	6	7	8
D ₂ =4	0	1	2	3	1	2	3	4	2
D ₃ =6	0	1	2	3	1	2	1	2	2

• $C[I,J] = MIN(C[I-1,J],1+C[I,J-D_i])$

- O objetivo é encher a mochila de forma a maximizar o número de objetos incluídos sem exceder o limite de peso.
- Os objetos NÃO podem ser divididos em pedaços menores

- Como implementar?
- Custo computacional?

Algoritmo de PD

PESO	0	1	2	3	4	5	6	7	8	9	10	11
$W_1=1, V_1=1$	0	1	1	1	1	1	1	1	1	1	1	1
W ₂ =2, v ₂ =6	0	1	6	7	7	7	7	7	7	7	7	7
$W_3=5, V_3=18$	0	1	6	7	7	18	19	24	25	25	25	25
W ₄ =6, V ₄ =22	0	1	6	7	7	18	22	24	28	29	29	40
W ₅ =7, v ₅ =28	0	1	6	7	7	18	22	28	29	34	35	40

• $C[I,J] = MAX(C[I-1,J],v_i+C[I-1,J-w_i])$

PAA

Exemplo - Fibonacci

 Use PD para encontrar F(50) da série de Fibonacci

Como resolver ?????

13

- 1. Subsequência comum mais longa
 - 1. GAATTCAGTTA
 - 2. GGATCGA

Como resolver????

14

Exemplo – Subsequência comum

- 13433454567833345
- 13433334545678333

Como resolver??????

16

Menores Caminhos

- Considere um grafo direcionado G = (V,E), onde n é o número de vértices e e o número de arestas.
- Cada aresta tem um comprimento não negativo

PROBLEMA

Determinar o comprimento de menor caminho, entre quaisquer pares de vértices

- Como implementar?
- Custo computacional?

Menores Caminhos

Matriz de adjacências de um Grafo G

0	5	8	8
50	0	15	5
30	8	0	15
15	8	5	0

Menores Caminhos

0	5	8	8
50	0	15	5
30	∞	0	15
15	8	5	0

0	5	8	8
50	0	15	5
30	35	0	15
15	20	5	0

0	5	20	10
50	0	15	5
30	35	0	15
15	20	5	0

0	5	20	10
40	0	15	5
30	35	0	15
15	20	5	0

D[I,J]=min(d[I,J],D[I,K]+D[K,J])

0	5	15	10
20	0	10	5
30	35	0	15
15	20	5	0

- Algoritmos buscam reconhecer padrões parecidos, considerando:
 - Erros ortográficos (ex.: atensão)
 - Mesmos fonemas (ex.: paço e passo)
 - Variações ortográficas (ex.: Luiz e Luís)
 - Etc.

Programação Dinâmica

- Aplicações:
 - Corretores ortográficos
 - Comparação de DNA
 - Filtragem de SPAM
 - OCR (optical character recognition)

- Distância de edição
 - Mede a diferença entre duas sequências
 - A diferença é dada pelo número de edições (inserções, exclusões e substituições) necessárias para transformar uma sequência em outra.
- Exemplos:
 - Gato → Pato (1 edição)
 - Paço → Passo (2 edições)

Distância de Levenshtein (1965)

$$lev_{a,b}(i,j) = \begin{cases} \max(i,j) & se \min(i,j) = 0 \\ lev_{a,b}(i-1,j) & +1 \\ lev_{a,b}(i,j-1) & +1 & nos outros casos \\ lev_{a,b}(i-1,j-1) + C \end{cases}$$

em que C = 0, se $a_i = b_j$, ou C = 1, se $a_i \neq b_j$.

 Exemplo 1: CASACO x CASCAO

		С	Α	S	Α	С	0
	0	1	2	3	4	5	6
С	1						
Α	2						
S	3						
С	4						
Α	5						
0	6						

Programação Dinâmica

 Exemplo 1: CASACO x CASCAO

		С	Α	S	Α	С	0
	0	1	2	3	4	5	6
С	1	0	1	2	3	4	5
Α	2	1	0	1	2	3	4
S	3	2	1	0	1	2	3
С	4	3	2	1	1	1	2
Α	5	4	3	2	2	2	2
0	6	5	4	3	3	3	2

25

 Exemplo 1: PIGARRO x CIGANO

		Р	1	G	Α	R	R	0
	0	1	2	3	4	5	6	7
С	1	1	2	3	4	5	6	7
I	2	2	1	2	3	4	5	6
G	3	3	2	1	2	3	4	5
Α	4	4	3	2	1	2	3	4
N	5	5	4	3	2	2	3	4
0	6	6	5	4	3	3	3	3

Programaçao Dinâmica