

Recall: Primary Trigonometric Ratios

sine of
$$\angle A$$
 \longrightarrow $\sin A = \frac{opposite}{hypotenuse}$ \longrightarrow $\sin A = \frac{O}{H}$ \Longrightarrow $\cos A = \frac{A}{H}$ adjacent hypotenuse tangent of $\angle A$ \longrightarrow $\tan A = \frac{opposite}{adjacent}$ \longrightarrow $\tan A = \frac{O}{A}$

** The easiest way to MEMORIZE these ratios is to use:

SOH, CAH, TOA

NEW: Reciprocal Trigonometric Ratios

$$\operatorname{csc} A = \frac{1}{\sin A} \qquad \operatorname{csc} A = \frac{H}{O}$$

$$\sec A = \frac{1}{\cos A} \longrightarrow \sec A = \frac{H}{A}$$

$$cosecant of \angle A \qquad csc A = \frac{1}{\sin A} \qquad csc A = \frac{H}{O}$$

$$secant of \angle A \qquad sec A = \frac{1}{\cos A} \qquad sec A = \frac{H}{A}$$

$$cotangent of \angle A \qquad cot A = \frac{1}{\tan A} \qquad cot A = \frac{A}{O}$$

Jan 31-9:35 PM

Ex 1) Determine the 6 trigonometric ratios for θ .

$$\tan \theta = \frac{4}{3}$$

$$\mathbf{csc} \theta = \frac{5}{4}$$

Sect =
$$\frac{5}{3}$$

$$\cot \theta = \frac{3}{4}$$

Special Triangles

Special triangles are used to determine exact ratios for certain special angles. (no calculators!)

45-45-90 triangle

Consider a **right isosceles** triangle, with legs measuring 1 unit. Label the angles.

Determine the exact measure of the hypotenuse.

$$Q^{2} + b^{2} = C^{2}$$

$$|^{2} + |^{2} = C^{2}$$

$$2 = C^{2}$$

$$\sqrt{2} = C$$

From this we can determine the exact values of

$$\sin 45^\circ = 0$$

$$\tan 45^\circ = 0$$

Mar 17-4:08 PM

30-60-90 triangle

Consider an **equilateral** triangle, with sides measuring 2 units. Divide into 2 congruent right triangles (along the altitude). Determine the interior angles & the exact measure of each side.

 $0^2 + b^2 = c^2$ $1^2 + b^2 = 2^2$

From this we can determine the exact values of

$$\sin 30^\circ = \frac{1}{2}$$

$$\cos 30^{\circ} = \frac{3}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$

$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\tan 60^{\circ} = \sqrt{3}$$

For all triangles, the *smallest side* is across from the *smallest angle* and the *largest side* is across from the *largest angle*.

"Rationalizing the denominator" is a process that is used to change a rational expression so it does *not* have a radical in the denominator. It uses the *identity* property of 1 (any number multiplied by 1 retains its value.)

NOTE: $\sin^2\theta = (\sin\theta)^2$ in both cases we are squaring the ratio, not the angle $(\sin^2\theta)^4 \sin^2\theta$

Ex 2) Determine the exact value of $\sin^2 60^\circ \times \sin 45^\circ$. Rationalize the denominator, if necessary.

$$= \left(\frac{\sqrt{3}}{2}\right)^2 \left(\frac{\sqrt{2}}{2}\right)^2$$

$$= \left(\frac{3}{4}\right) \left(\frac{\sqrt{2}}{2}\right)$$

$$= \frac{3\sqrt{2}}{8}$$

Mar 17-4:17 PM

Ex 4) Use special triangles to determine the exact length of side x.

$$\frac{1}{\sqrt{3}} = \frac{4}{X}$$

$$X = 4\sqrt{3}$$

HW U3L2:

- 1. p.280 #1-3, 5a)i,iv, 9
- 2. p.286 #3, 4, 5a, 6b, 8, 11
- 3. sign & correct tests