Productionization

Text Editing Advantages

Faithfulness

Constraining decoders in seq2seq is an active area of research

Control

We can control the word a model can add / remove. Can incorporate external knowledge (e.g., pronoun).

Text Editing Advantages

Faithfulness

Constraining decoders in seq2seq is an active area of research

Control

We can control the word a model can add / remove. Can incorporate external knowledge (e.g., pronoun).

Latency

Can be >10x faster inference.

Data efficient

Text Editing models need less training data.

Latency

Case study: EdiT5 vs T5

- Two GEC models:
 - EdiT5 base (12-layer-encoder, 1-layer-decoder)
 - T5 base (12-layer-encoder, 12-layer-decoder)
- Profiles obtained on GPU
 - Profiles obtained with <u>Tensorflow Profiler</u>
 - PyTorch has <u>similar tools</u>

GEC

Input to correct (23 tokens):

i was walking through the park when struck by bicycle ... my arm hurts a little now .

Decoder output Seq2seq (27 tokens):

__I _was _walking _through _the _park _when _I _was _struck _by _ a _bicycle _ ... _my _arm _hurt s _ a _little _now _ . </s>

Seq2Seq

Seq2Seq

- End-to-end latency: 204ms
- Compiled with <u>XLA</u>
- Disabling compilation will increase latency, but make the profile more readable

Seq2Seq, encoder

Encoder takes 15ms

Seq2Seq, decoder

- Encoder takes 15ms
- Decoder takes 189ms

Seq2Seq, decoder step

- Encoder takes 15ms
- Decoder takes 189ms
- Single decoder step takes 7ms
 - o 7 [ms/step] * 27 [steps] = 189ms

Seq2Seq, conclusions

- Encoder takes 15ms
- Decoder takes 189ms
- Single decoder step takes 7ms
 - o 7 [ms/step] * 27 [steps] = 189ms

If we want to reduce latency, target the decoder:

- Reduce the number of steps.
- Reduce the latency per step.

Refresher on EdiT5

Output: The user query is very long

Source: EdiT5 paper (Mallinson et al. 2022).

How does EdiT5 reduce latency?

- Use 1-layer decoder
 - Isn't limited to text-editing models
- It moves work into the encoder
 - Tagging, Reordering
- Limit use of autoregressive decoder

GEC

Input to correct (21 tokens):

i was walking through the park when struck by bicycle... my arm hurts a little now.

Decoder output Seq2seq (27 tokens):

_I _was _walking _through _the _park _when _I _was _struck _by _ a _bicycle _ ... _my _arm _hurt s _ a _little _now _ . </s>

Decoder output EdiT5 (10 tokens)

<extra_id_1> _I _was <extra_id_6> _I _was <extra_id_8> _ a </s>

Note: extra ids are used to represent insertion positions.

EdiT5 vs Seq2Seq

Seq2seq model:

EdiT5 model:

EdiT5 encoder and overhead

- Encoder takes 20ms
 - Seq2Seq encoder: 15ms
 - Pointing mechanism, extra layers

EdiT5 decoder

- Encoder takes 20ms
 - Seq2Seq encoder: 15ms
 - o Pointing mechanism, extra layers
- Decoder takes 13ms

EdiT5 decoder step

- Decoder takes 13ms
 - Single step takes 1.3ms
 - Seq2Seq single step: 7ms

How does EdiT5 reduce latency?

- Decoder step takes 1.3ms compared to 7ms
 - 5.4x reduction
- There are 10 decoder steps, compared to 27
 - Another 2.7x reduction

In summary: **14.5x** reduction in decoder latency compared to Seq2Seq, in exchange for **5ms** of overhead.

Text editing for latency reduction

Strategies:

- Parallel decoding
 - LaserTagger
- Iterative parallel decoding
 - GECToR, PIE, Levenshtein Transformer
- Semi-autoregression
 - Few-step decoder
 - Seq2Edits, EdiT5, others (e.g. <u>Chen et al., EMNLP 2020</u>)
 - Combine with iterative decoding: Seq2Edits
- Pointing network for reordering: Felix, EdiT5

Iteration #	P	R	$\mathbf{F_{0.5}}$	# corr.
Iteration 1	72.3	38.6	61.5	787
Iteration 2	73.7	41.1	63.6	934
Iteration 3	74.0	41.5	64.0	956
Iteration 4	73.9	41.5	64.0	958

Table 4: Cumulative number of corrections and corresponding scores on CoNLL-2014 (test) w.r.t. number of iterations for our best single model.

GECTOR - Grammatical Error Correction: Tag, Not Rewrite (Omelianchuk et al., BEA 2020)

Data efficiency

Text Editing Advantages

Faithfulness

Constraining decoders in seq2seq is an active area of research

Control

We can control the word a model can add / remove. Can incorporate external knowledge (e.g., pronoun).

Latency

Can be >10x faster inference.

Data efficient

Text Editing models need less training data.

Text editing for low resource settings

Encode, Tag, Realize: High-Precision Text Editing (Malmi et al., EMNLP 2019)

Text editing models as distillation targets

- From seq2seq: Levenshtein Transformer
 - Text editing model to replicate oracle edits
 - Using seq2seq model instead of oracle improves scores
- From ensembles of text editing models: GECToR
 - Ensembles of GECToR models
 - Tarnavskyi et al., ACL 2022

Sequence-Level Knowledge Distillation (Kim & Rush, EMNLP 2016)

Questions?