EBMYL 591 – KONTROL TEORÍSÍ DÖNEM ÍÇÍ ÖDEVÍ #1 - #2

Aşağıda transfer fonksiyonları verilen sistemler için (Aşağıdaki soruları verilen tüm sistemler için **ayrı ayrı** değerlendiriniz) :

$$1)G(s) = \frac{10}{s+5}, \quad 2)G(s) = \frac{5}{s^2 + 6s + 5}, \quad 3)G(s) = \frac{5}{s^2 + 2s + 5}, \quad 4)G(s) = \frac{52}{(s^2 + 4s + 13)(s+4)}$$

- i) Frekans cevabının bileşenlerini (genlik fonksiyonu $\mathbf{M}(\omega)$ faz fonksiyonu $\mathbf{\Phi}(\omega)$) analitik olarak elde ediniz.
- ii) i seçeneğinde elde ettiğiniz sonuçlardan hareketle,
 - a. Elde ettiğiniz bu fonksiyonları genlik eğrisi ve faz eğrisi ayrı olacak şekilde çiziniz (Çizimde Matlab veya benzeri programlardan faydalanabilirsiniz.)
 - b. Şekil 1'de verilen blok diyagramını esas alarak, aşağıda verilen sinüzoidler için çıkış sinüzoidinin sürekli hal (steady state) bileşeni ifadesinin [y_{ss}(t)] ne olacağını yazınız. (Çıkış sinüzoidini nasıl bulduğunuzu analitik olarak gösteriniz.)
 - i. $r(t)=10\cos(t+60^{\circ})$
 - ii. $r(t)=10\cos(10t+60^0)$
 - iii. $r(t)=10\cos(20t+60^{\circ})$
 - iv. $r(t)=10\cos(50t+60^{\circ})$
 - v. $r(t)=10\cos(100t+60^{\circ})$
 - vi. $r(t)=10\cos(200t+60^{\circ})$
- iii) i seçeneğinde elde ettiğiniz bu fonksiyonları kutupsal olarak (genlik-faz aynı düzlemde) çiziniz.
- iv) Aynı sistemlerin Bode eğrilerini yarı logaritmik düzlemde (asimptotik doğru yaklaşıklarıyla el ile) çiziniz. ii-b seçeneğini bu soru için de tekrar ediniz. ii-b'de elde ettiğiniz sonuçlarla burada elde ettiğiniz sonuçları kıyaslayınız.

Şekil 1. İlişkili blok diyagramı