

# sxSNF: A Novel Single-Cell Multi-Modal Data Integration Method Combining Similarity Network Fusion and Deep Graph Learning

#### Li C. Xia

Department of Statistics and Financial Mathematics, School of Mathematics, South China University of Technology

**APBC 2025** 

The 23rd Asia Pacific Bioinformatics Conference

September 21, 2025 | Nanjing, China



# Single Cell Multi-Modal Integration

# **Challenges:**

- Cell Group Connection Variability: Cell connections vary in dynamics, resulting in shifted group representation
- Limited Complementary Leveraging: Previous methods not leveraging modality complementary information
- Batch Effects: Modality specific distortions

# Our Proposed Algorithm (sxSNF):

- Similarity Network Fusion (SNF): Initially in ref.
  [1], align complementary similarities through soft mutual diffusive process
- Dual Graph Representation: Preserve modality-specific structures during the diffusion
- Network-based Representation Learning: Not prone to batch effects







#### **Methods of Fusion**

#### Simple Concatenation

$$X_{combined} = [X^{(1)}, X^{(2)}, \dots, X^{(M)}]$$

 Loses intrinsic structure of each modality; Suffers from scale differences: ...

#### Weighted Integration

$$X_{fused} = \sum_{m=1}^{M} \alpha_m X^{(m)}, \quad \sum_{m=1}^{M} \alpha_m = 1$$

- Difficult to determine optimal weights; Static weighting ignores modal-specific structure; ...
- Our Idea: bring in SNF Fusion

$$P^{(m)}(t+1) = S^{(m)} \frac{\sum_{k \neq m} P^{(k)}(t)}{M-1} (S^{(m)})^T$$

- $P^{(m)}$ : cross-modal similarity matrix ;  $S^{(m)}$ : modality-specific similarity matrix; M total modalities.
- Core Idea: SNF enables information flow in fusion while retaining local structures



# sxSNF: SNF-based Cross-modal Graph Fusion



- Preprocess modal specific similarity matrices (e.g. scRNA-seq / scATAC-seq)
- Build modality-specific cell connection graphs (KNN)
- Apply SNF to iteratively exchange neighborhood information between modals
- Output a modal fused cell similarity network



# sxSNF: GNN Representation and Clustering



- Use each cell's adjacency vector from the SNF fused network as initial features
- Train GNN on the fused graph with masked-edge prediction
- Obtain low-dimensional embeddings of the fused cell characteristics
- Recompute similarity  $\rightarrow$  clustering  $\rightarrow$  UMAP visualization



# sxSNF Algorithm (scRNA + scATAC)

# Step 1: Modality-specific Preprocessing scRNA-seq preprocessing:

$$X_{i,j}^{RNA} = \log \left( 1 + \frac{X_{i,j}^{RNA} \times 10^4}{\sum_{g,j} X_{g,j}^{RNA}} \right)$$

scATAC-seq preprocessing:

$$X_{i,j}^{ATAC} = \mathsf{TF\text{-}IDF}(X_{peaks}^{ATAC}) = \log\left(1 + \frac{tX_{i,j}^{ATAC} \times \log(\frac{N}{dX_{j}^{ATAC}})}{||tX_{i}^{ATAC}||_{2}}\right)$$

#### Step 2: Similarity Network Construction

For each modality m, construct cell similarity network:

$$S_{ij}^{(m)} = P_{ij}^{(m)}(0) = \text{KNN}_k \left( \exp\left(-\frac{d_{cos}^2(x_i^{(m)}, x_j^{(m)})}{\tau^2}\right) \right)$$

where  $d_{cos}(.)$  is cosine distance, au controls neighborhood size, k is number of nearest neighbours.



# sxSNF Algorithm (cont'd)

#### Step 3: SNF Cross-modal Diffusion Process

Two-modal diffusion:

$$P^{(m)}(t+1) = S^{(m)} \times P^{(k)}(t) \times (S^{(m)})^T$$

Convergence: Iterate until  $||P^{(m)}(t+1) - P^{(m)}(t)||_F < \epsilon$ 

Step 4: Train GNN (self-supervised with masked edge prediction):

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left( \sum_{j \in \mathcal{N}(i)} \alpha_{ij} \mathbf{W}^{(l)} \mathbf{h}_{j}^{(l)} \right)$$

with objective:

$$\mathcal{L}_i = -\sum_{j \in \mathcal{N}(i)} \log \frac{\exp(\mathbf{h}_i^{\top} \mathbf{h}_j)}{\sum_{j'} \exp(\mathbf{h}_i^{\top} \mathbf{h}_{j'})}$$

#### Symbol definitions:

-  $\mathbf{x}_i$ : input feature of cell i;  $\mathbf{h}_i$ : hidden representation;  $\alpha_{ij}$ : edge weight;  $\mathbf{W}^{(l)}$ : weight matrix;  $\mathcal{N}(i)$ : neighbor set;  $E, \mathcal{V}$ : edge/node sets



#### **Datasets and Evaluation**

#### Benchmark Datasets:

| Dataset   | Platform     | Cells  | Modalities   | Cell Types |  |
|-----------|--------------|--------|--------------|------------|--|
| PBMC-10x  | 10X Genomics | 11,909 | scRNA+scATAC | 19 immune  |  |
| SHARE-seq | SHARE-seq    | 34,774 | scRNA+scATAC | 20 skin    |  |
| SNARE-seq | SNARE-seq    | 15,390 | scRNA+scATAC | 13 brain   |  |

#### **Evaluation Methods:**

Clustering Quality: ARI, NMI, AMI

Biological Validation: Marker gene enrichment analysis

Model Interpretability: Low-dimension visualization by TSNE and UMAP



# Benchmark Results (PBMC-10x)

| Methods | sxSNF  | SIMBA  | scMIC  | SNF+scMIC | Guanlab | DCCA   |
|---------|--------|--------|--------|-----------|---------|--------|
| ARI     | 0.5584 | 0.4854 | 0.1142 | 0.3523    | 0.2683  | 0.3375 |
| NMI     | 0.7274 | 0.6839 | 0.2841 | 0.5732    | 0.5164  | 0.5798 |
| AMI     | 0.7260 | 0.6822 | 0.2802 | 0.5710    | 0.5140  | 0.5777 |

#### Method Descriptions:

- SIMBA [2]: Contrastive learning for multimodal integration (Chen et al., Nature Methods, 2024)
- scMIC [3]: Mutual information maximization approach (Zhan et al., IEEE JBHI, 2023)
- SNF+scMIC: Hybrid of SNF and scMIC strategies (An extension of the model scMIC by SNF)
- Guanlab-dengkw [4]: Sparse regularization and graph learning (Hu et al., Nature Methods, 2024)
- DCCA [5]: Deep canonical correlation analysis (Zuo et al., Bioinformatics, 2021)



# T-SNE Visualization (SNARE-seq)





# **UMAP Visualization (SHARE-seq)**



- Clear separation of cell types (left panel)
  - Joint embedding yields well-defined clusters with sharp boundaries
- Effective cross-modal alignment (right panel)
  - scRNA-seq (orange) and scATAC-seq (blue) cells are well mixed within clusters
  - Indicates successful integration of complementary modalities



# Marker Gene Expression (SNARE-seq)



- Distinct marker gene expression patterns validate the identified cell clusters
- Hierarchical clustering reveals lineage relationships among cell types



# Summary

- We developed sxSNF a novel tool combines Similarity Network Fusion (SNF) with Graph Neural Networks for single-cell multi-modal data integration
- It preserves modality-specific structures while enabling cross-modal information flow through iterative neighborhood exchange
- Its self-supervised GNN learning with masked edge prediction captures and embeds both modal-specific and cross-modal relationships
- It achieves superior performance across benchmark datasets (PBMC-10x, SHARE-seq, SNARE-seq) over current SOTA methods and demonstrates clear cell-type separation
- sxSNF is available for public use at https://github.com/labxscut/sxSNF



### Thank you

#### Acknowledgments

SCUT:

Hongyu Duan Prof. Huiling Liu

Qianwen Chen

SYSU:

Yang Wang

**Funding Agencies:** 

**NSFC** 

**DSTGP** 

Contact: lcx.scut@outlook.com / lcxia@scut.edu.cn







#### References



Bo Wang, Aleksandar Mezlini, Feyruz Demir, Marc Fiume, Zhuowen Tu, Michael Brudno, Benjamin Haibe-Kains, Anna Goldenberg,

Similarity network fusion for aggregating data types on a genomic scale.

Nature Methods, 2014, 11(3): 333-337.

doi: 10.1038/nmeth.2810



Chen H, Ryu J, Vinyard ME, Lerer A, Pinello L.

SIMBA: single-cell embedding along with features.

Nature Methods 2024; 21: 1003-1013. doi: 10.1038/s41592-023-01899-8

doi: 10.1038/\$41592-023-01899-8



Zhan Y, Liu J, Ou-Yang L.

scMIC: A Deep Multi-Level Information Fusion Framework for Clustering Single-Cell Multi-Omics Data.

IEEE Journal of Biomedical and Health Informatics 2023; 27(12): 6121-6132.

doi: 10.1109/JBHI.2023.3317272



 $Hu\ Y,\ Wan\ S,\ Luo\ Y,\ Li\ Y,\ Wu\ T,\ Deng\ W,\ Jiang\ C,\ Jiang\ S,\ Zhang\ Y,\ Liu\ N,\ Yang\ Z,\ Chen\ F,\ Li\ B,\ Qu\ K.$ 

Benchmarking algorithms for single-cell multi-omics prediction and integration.

Nature Methods 2024; published online 25 September 2024.

doi: 10.1038/s41592-024-02429-w



#### References



Zuo C, Dai H, Chen L.

Deep cross-omics cycle attention model for joint analysis of single-cell multi-omics data.  $Bioinformatics\ 2021;\ 37(22):\ 4091-4099.$ 

doi: 10.1093/bioinformatics/btab403