1IPRO Mathématiques

Chapitre 4

Fonctions polynômes de degré 2

Activité 1

A. Connecter vous sur https://www.geogebra.org/classroom/q4frvqvp

La traduction : « Le cochon est positionné aux coordonnées (10 ; 0) et l'oiseau décolle des coordonnées (0 ; 0). En considérant que l'altitude de l'oiseau ne peut pas dépasser la hauteur 7, écrivez l'équation de la trajectoire du vol ».

1. Quelle est l'équation de type $\mathbf{a} \ \mathbf{x}^2 + \mathbf{b} \ \mathbf{x}$ qui vous permet d'atteindre le cochon

.....

2. Identifier le coefficient a devant le x^2 et le coefficient b devant le x

.....

3. Lire graphiquement l'abscisse x_s du sommet de la trajectoire du vol

4. Lire graphiquement l'ordonnée y_s du sommet de la trajectoire du vol

- 5. Calculer le résultat de $-(\frac{b}{2a})$ et comparer le à x_s

6. Dans l'équation de la trajectoire, remplacer x par la valeur de x_s et calculer le résultat. Comparer le à y_s

.....

Point cours

Un fonction polynôme du 2nd degré est définie par :

$$f(x) = ax^2 + bx + c$$

où a, b et c sont des nombres appelés coefficients.

La représentation graphique d'une fonction du 2^{nd} degré est une parabole de sommet S.

Son allure dépend du signe de a : . si a < 0 □ orientée vers le bas

. si a > 0 □ orientée vers le haut

1IPRO Mathématiques

B. Connecter vous sur https://www.geogebra.org/classroom/rggmavqf

La traduction : « Dans ce problème l'oiseau doit voler suffisamment haut pour passer par dessus le tronc d'arbre et atteindre, pour cela, un sommet situé aux coordonnées (3 ; 10). Et ensuite, il doit retomber sur le haut de la colonne de caisses de TNT aux coordonnées (5 ; 6). Ecrivez l'équation de la trajectoire du vol qui permet d'atteindre cet objectif ».

1. Quelle est l'équation de type $\mathbf{a} \ \mathbf{x}^2 + \mathbf{b} \ \mathbf{x} + \mathbf{c}$ qui vous permet d'atteindre la colonne de caisse de TNT ?

.....

2. Identifier le coefficient a devant le x^2 , le coefficient b devant le x et le coefficient c.

.....

3. Dans l'équation de la trajectoire, remplacer x par la valeur 0 et calculer le résultat. Comparer le au coefficient c .

.....

4. Calculer le résultat de $-(\frac{b}{2a})$ et comparer le à x_s (l'abscisse du sommet de la parabole).

.....

5. Dans l'équation de la trajectoire, remplacer x par la valeur de x_s et calculer le résultat. Comparer le à y_s (l'ordonnée du sommet de la parabole).

.....

Point cours

L'abscisse du sommet S de la parabole est $x_s = -(\frac{b}{2a})$

L'ordonnée à l'origine, c'est à dire f(0) est égale à c