安徽大学 2021—2022 学年第一学期

《 高等数学 A (一) 》期末考试试卷(A 卷)

时间 120 分钟) (闭卷 考场登记表序号

一、选择题(每小题3分,共15分)

- - (A) 1

小小小

- (B) 2
- (C) 3
- (D) 4
- 2. 若函数 $f(x) = \frac{1 + e^{\frac{1}{x}}}{1 e^{\frac{1}{x}}}$,则 x = 0 是 f(x) 的()间断点.
 - (A) 可去

(B) 跳跃

(C) 第二类无穷型

- (D) 第二类振荡型
- 3. 若 f(x) 在点 x_0 处取得极小值,则下列命题中正确的是(
 - (A) f(x) 在 $(x_0 \delta, x_0)$ 内单调减少,在 $(x_0, x_0 + \delta)$ 内单调增加
 - (B) 在 $(x_0 \delta, x_0)$ 内f'(x) < 0,在 $(x_0, x_0 + \delta)$ 内f'(x) > 0
 - (C) $f'(x_0) = 0 \perp f''(x_0) > 0$
 - (D) 对任意 $x \in (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, 恒有 $f(x) > f(x_0)$
- 4. 微分方程 $y'' + 4y = \frac{1}{2}\cos 2x$ 的特解形式为(

- (A) $ax\cos 2x$ (C) $ax\cos 2x + bx\sin 2x$
- (B) $a\cos 2x$ (D) $a\cos 2x + b\sin 2x$
- **※**5. 下列广义积分中,发散的是().

$$(\mathbf{A}) \int_0^{+\infty} \frac{1}{x^2} dx$$

(B)
$$\int_0^1 \frac{1}{\sqrt{1-x}} dx$$

(A)
$$\int_{0}^{+\infty} \frac{1}{x^{2}} dx$$
 (B) $\int_{0}^{1} \frac{1}{\sqrt{1-x}} dx$ (C) $\int_{e}^{+\infty} \frac{1}{x(\ln x)^{2}} dx$ (D) $\int_{0}^{+\infty} xe^{-x} dx$

二、填空题(每小题3分,共15分)

- 6. 数列极限 $\lim_{n\to\infty} \left(\frac{n}{(n+1)^2} + \frac{n}{(n+2)^2} + \dots + \frac{n}{(n+n)^2} \right) = \underline{\hspace{1cm}}$.
- 7. 曲线 $y = x \left(1 + \arcsin \frac{2}{x} \right)$ 的斜渐近线方程为_____.

- 8. 曲线 $y = \sqrt{1+x^2}$ 在点(0,1)处的曲率为_____.
- 9. 曲线段 $y = \ln \cos x$ (0 ≤ $x \le \frac{\pi}{6}$) 的弧长为______.

10.
$$\int_{-3}^{3} \left(x^3 \cos x + \sqrt{9 - x^2} \right) dx = \underline{\qquad}.$$

三、计算题(每小题10分,共60分)

- 11. 求极限 $\lim_{x\to 0} (2\sin x + \cos x)^{\frac{1}{x}}$.
- 12. 设 y = f(x) 由方程 $e^{2x+y} \cos(xy) = e 1$ 所确定,求曲线 y = f(x) 在 x = 0 处的 法线方程.
- 13. 设函数 f(x) 在区间[0,2]上有二阶连续导数,且 f(0)=1, f(2)=3, f'(2)=5, 求 $\int_0^1 x f''(2x) dx$.

14. 设函数
$$f(x) = \begin{cases} xe^{-x^2}, x \ge 0 \\ \frac{1}{1+\cos x}, -1 \le x < 0 \end{cases}$$
, 求 $\int_1^4 f(x-2)dx$.

- **15.** 设函数 y = y(x) 是微分方程 xdy + (x-2y)dx = 0 满足条件 y(1) = 2 的解,求曲线 y = y(x) 与 x 轴所围图形的面积.
- **16.** 求函数 $f(x) = \int_0^{x^2} (2-t)e^{-t}dt$ 在区间 $[0,+\infty)$ 上的最大值和最小值.

四、证明题(每小题5分,共10分)

17. 设函数 f(x) 在[0,1] 上连续,且 f(x) > 0,

证明: 方程 $\int_0^x f(t) dt + \int_1^x \frac{1}{f(t)} dt = 0$ 在 (0,1) 内有唯一的实根.

18. 设 f(x) 在 [1,2] 上连续,在 (1,2) 内可导,且 $f(1) = \frac{1}{2}$, f(2) = 2.

证明: 存在 $\xi \in (1,2)$, 使得 $f'(\xi) = \frac{2f(\xi)}{\xi}$.