27. TELESÁ

Teleso – uzavretá obmedzená časť priestoru

Mnohosten – je časť priestoru, ktorá je ohraničená mnohouholníkmi. Uhlopriečky, ktoré patria do niektorej steny sú stenové uhlopriečky, ostatné sú telesové.

Hranol – mnohosten, ktorého 2 steny sú navzájom zhodné mnohouholníky s rovnobežnými odpovedajúcimi hranami a so všetkými navzájom zostávajúcimi hranami navzájom rovnobežnými, sa nazýva hranol.

Kolmý a pravidelný hranol – ak je podstavou hranola pravidelný n – uholník a hranol ja kolmý, hovoríme o pravidelnom hranole.

Kváder – hranol, ktorého všetky steny sú pravouholníky, sa nazýva kváder.

Rovnobežnosten – hranol, ktorého všetky steny sú rovnobežníky.

Ihlan – je mnohosten, ktorého jedna stena – základňa – je n – uholník a všetky ostatné steny sú trojuholníky so spoločným vrcholom.

Kocka – je hranol, ktoré všetky steny sú pravidelné pravouholníky. Má 6 stien.

Kuže! – ak je v priestore daná rovina ρ s kruhom K = (S, r) a bod V nepatrí ρ . Množina bodov všetkých priamok, ktoré prechádzajú bodom V a niektorým z bodov kruhu K, sa nazýva kužeľ ový priestor. Priamky, ktoré prechádzajú hraničnou kružnicou, tvoria kružnicovú kužeľ ovú plochu a nazývajú sa jej tvoriace priamky. Bod V sa nazýva vrchol kužeľ ového priestoru. Kruhový priestor (plášť) a kružnicová kužeľ ová plocha (podstava) tvoria kužeľ.

Štvorsten – má štyri steny a každá z nich utína všetky 3 osi v rovnakej konečnej vzdialenosti.

Pravidelný štvorsten – ktorého stenami sú rovnostranné trojuholníky.

Valec – časť priestoru, ktorá je ohraničená kružnicovou valcovou plochou a dvoma rovinami, ktoré sú navzájom rovnobežné a kolmé na všetky priamky prechádzajúcou kružnicovou valcovou plochou.

Guľa – je množina bodov v priestore, ktorých vzdialenosť od pevne zvoleného bodu S (stredu gule), je menšia alebo rovná r, kladne zvolenému číslu. (r = polomer gule)

Vrchol – je priesečníkom hrán v mnohouholníku (označuje sa veľkými tlačenými písmenami napr. A,B)

Hrana – je to priamka, ktorá je priesečnicou 2 stien a je ohraničená 2 bodmi – vrcholmi

Stena – plošný útvar, ktorý ohraničuje jednotlivé telesá

Podstava – je to n- hranný alebo zakrivený plošný útvar, ktorého bodmi prechádzajú všetky priamky, ktoré tvoria teleso. Je to časť telesa, jeho stena, na ktorej stojí.

Sieť kocky – je to plošný útvar, obsahujúci pravidelné pravouholníky (štvorce), ktoré sú stenami kocky a je ich 6. Sieť je plocha ohraničujúca teleso, ktorá je rozvinutá do jednej roviny.

Výšky v štvorstene – výška v stene štvorstena (v jednom trojuholníku) je to kolmá vzdialenosť od vrcholu na protiľahlú hranu. Telesová výška je kolmá vzdialenosť spustená od vrcholu, na protiľahlú stenu (podstavu) **Objem telesa** – kladná hodnota, ktorá sa priraďuje telesám v priestore. Je to priestor, ktorý ohraničujú steny telesa. Označuje sa V.

Povrch telesa – obsah plochy, ktorá teleso ohraničuje, jej povrch. Označuje sa S.

KOCKA

8 vrcholov

12 hrán (rovnako dlhých), a = |AB| dĺžka hrany kocky 6 stien (zhodné štvorce)

12 stenových uhlopriečok (rovnako dlhých), $u = a\sqrt{2} = |AC|$

4 telesové uhlopriečky (rovnako dlhé), $U = a\sqrt{3} = |BH|$

$$V = a^3$$
 objem kocky
 $S = 6a^2$ povrch kocky

KVÁDER

8 vrcholov

12 hrán (tri štvorice rovnako dlhých),

a = |AB|, b = |BC|, c = |CG| dĺžky rozdielnych hrán kvádra

6 stien (tri dvojice zhodných obdĺžnikov)

12 stenových uhlopriečok (tri štvorice rovnako dlhých),

$$u_1 = \sqrt{a^2 + b^2} = |AC|, u_2 = \sqrt{a^2 + c^2} = |BE|, u_3 = \sqrt{b^2 + c^2} = |BG|$$

4 telesové uhlopriečky (rovnako dlhé), $U = \sqrt{a^2 + b^2 + c^2} = |AG|$

V = abc objem kvádra S = 2(ab + ac + bc) povrch kvádra

Ak je podstavou pravidelný mnohouholník a hranol je kolmý, hovoríme o PRAVIDELNOM HRANOLE.

IHLAN S-

Ak je podstavou pravidelný mnohouholník a úsečka VS je kolmá na rovinu podstavy, hovorime o PRAVIDELNOM IHLANE. Podstavou je mnohouholník $A_1 A_2 ... A_n$.

Podstavou je mnohouholník $A_1 A_2 ... A_n$.

2n vrcholov, 2n podstavných hrán, n bočných hrán 2 podstavy, n bočných stien (obdĺžnikov, ak je kolmý) obsah podstavy hranola obsah plášťa hranola

objem hranola

povrch hranola

n vrcholov podstavy, n podstavných hrán, n bočných hrán n bočných stien (trojuholníkov)

 S_p obsah podstavy ihlana S_{pl} obsah plášťa ihlana

(súčet obsahov všetkých bočných stien)

vrchol ihlana

 $V = S_p \cdot v$

 $S = 2S_p + S_{pl}$

výška ihlana (vzdialenosť vrcholu od roviny podstavy)

(súčet obsahov všetkých bočných stien)

výška hranola (vzdialenosť rovín podstáv)

 $V = \frac{1}{3} S_p \cdot v$ objem ihlana $S = S_p + S_{pl}$ povrch ihlana

ROTAČNÝ VALEC

Ak je osovým rezom valca štvorec, t. j. v = 2r, hovoríme o **ROVNOSTRANNOM** VALCI.

Vznikne otáčaním obdĺžnika okolo jednej jeho strany.

výška valca

polomer podstavy valca obsah podstavy valca obsah plášťa valca

 $V = S_p \cdot v = \pi r^2 v$ objem rotačného valca $S = 2S_p + S_{pl} = 2\pi r^2 + 2\pi rv = 2\pi r(r+v)$ povrch rotačného valca

ROTAČNÝ KUŽEĽ

Ak je osovým rezom kužeľa rovnostranný trojuholník, t. j. s = 2r, $v = r\sqrt{3}$, hovoríme o ROVNOSTRANNOM KUŽELI.

Vznikne otáčaním pravouhlého trojuholníka okolo jednej jeho odvesny.

výška kužeľa

polomer podstavy kužeľa dĺžka strany kužeľa, $s = \sqrt{r^2 + v^2}$

obsah podstavy kužeľa obsah plášťa kužeľa

 $V = \frac{1}{3} S_p \cdot v = \frac{1}{3} \pi r^2 v$

objem rotačného kužeľa

 $S = S_p + S_{pl} = \pi r^2 + \pi rs = \pi r(r + s)$ povrch rotačného kužeľa

Rovina rovnobežná s rovinou podstavy, ktorá pretína výšku ihlana, rozdelí daný ihlan na menší ihlan a zrezaný ihlan.

výška zrezaného ihlana (vzdialenosť rovín podstáv)

 S_{p1} , S_{p2} obsah dolnej a hornej podstavy

obsah plášťa

 $V = \frac{v}{3} \cdot \left(S_{p1} + \sqrt{S_{p1} S_{p2}} + S_{p2} \right)$ objem zrezaného ihlana

 $S = S_{p1} + S_{p2} + S_{pl}$ povrch zrezaného ihlana

ZREZANÝ KUŽEĽ

Rovina rovnobežná s rovinou podstavy, ktorá pretína výšku kužeľa, rozdelí daný kužeľ na menší kužeľ a zrezaný kužeľ.

výška zrezaného kužeľa (vzdialenosť rovín podstáv)

dĺžka strany

 S_{p1} , S_{p2} obsah dolnej a hornej podstavy

obsah plášťa

 $V = \frac{\pi v}{3} \cdot \left(r_1^2 + r_1 r_2 + r_2^2\right)$ objem zrezaného kužeľa

 $S = \pi r_1^2 + \pi r_2^2 + \pi (r_1 + r_2)s$ povrch zrezaného kužeľa

GUĽA

Vznikne otáčaním polkruhu okolo jeho priemeru.

polomer gule stred gule $V = \frac{4}{3}\pi r^3$ objem gule

 $S = 4\pi r^2$ povrch gule

GUĽOVÝ ODSEK

Rovina prechádzajúca vnútorným bodom priemeru gule rozdelí guľu na dva guľové odseky.

výška odseku polomer gule

polomer podstavy odseku

stred podstavy odseku

obsah podstavy odseku

obsah guľového vrchlíka, $S_{pl} = 2\pi rv$

 $V = \frac{\pi v}{6} (3\rho^2 + v^2)$ $V = \frac{\pi v}{6} (3\rho^2 + v^2)$ objem guľového odseku $S = S_p + S_{pl} = \pi \rho^2 + 2\pi r v$ povrch guľového odseku

GUĽOVÁ VRSTVA

Guľová vrstva je prienik gule a vrstvy ohraničenej dvoma rovnobežnými rovinami.

výška guľovej vrstvy polomer gule

 ρ_1 , ρ_2 polomer dolnej a hornej podstavy vrstvy

stred dolnej a hornej podstavy vrstvy

 S_{p1} , S_{p2} obsah dolnej a hornej podstavy vrstvy

$$S_{pl}$$
 obsah guľového pásu, $S_{pl} = 2\pi rv$

$$V = \frac{\pi v}{6} \left(3\rho_1^2 + 3\rho_2^2 + v^2 \right)$$
 objem guľovej vrstvy
$$S = S_{p1} + S_{p2} + S_{pl} = \pi \left(\rho_1^2 + \rho_2^2 \right) + 2\pi rv \text{ povrch guľovej vrstvy}$$

Príklady:

- 1. Rozmery kvádra sú v pomere 2:3:6. Vypočítajte jeho povrch a objem, ak telesová uhlopriečka kvádra má veľkosť 14. [S=288; V=288]
- 2. Pravidelný štvorboký ihlan má veľkosť bočnej hrany s=2a a strana jeho štvorcovej podstavy má veľkosť a. Vypočítajte jeho objem a povrch. [$V=\frac{\sqrt{14}}{6}a^3$; $S=a^2(1+\sqrt{15})$]
- 3. Podstavu kolmého hranola tvorí pravouhlý trojuholník, ktorého odvesny majú dĺžky v pomere 3:4. Výška hranola má dĺžku o 2~cm menšiu ako väčšia odvesna trojuholníkovej podstavy. Určte objem hranola, ak jeho povrch je $468~cm^2$. [$V = 540~cm^3$]
- 4. Vyjadrite v litroch objem koša na papier, ktorý má tvar pravidelného štvorbokého zrezaného ihlana. Hrany podstáv majú dĺžky a=28~cm, b=20~cm a bočná hrana má dĺžku c=36~cm. [V=20,6~l]
- 5. Kocka a guľa majú rovnaké objemy. V akom pomere sú ich povrchy? $[\sqrt[3]{6}:\sqrt[3]{\pi}]$
- 6. Výsek smrekového kmeňa má tvar rotačného valca s polomerom r=40~cm a výškou v=8~m. Objem kôry sú 2% z celkového objemu výseku. Určte: a) objem výseku bez kôry. [$V=3,941~m^3$] b) hrúbku kôry, ak je všade rovnaká. [h=4~mm]

7. Pomer obsahu podstavy rotačného kužeľa k jeho plášťu je 3:5. Vypočítajte povrch a objem kužeľa, ak jeho výška v=4~cm. [$V=12\pi~cm^3$; $S=24\pi~cm^2$]

- 8. Do kocky s hranou a je vpísaný rotačný kužeľ, pričom jeho podstava je vpísaná do podstavy kocky. Vypočítajte povrch kužeľa. $[S = \frac{\pi a^2}{4} \left(1 + \sqrt{5}\right)]$
- 9. V pravidelnom trojbokom ihlane ABCV označme dĺžku podstavnej hrany a, telesovú výšku v, uhol bočnej hrany a roviny podstavy α , uhol bočnej steny a roviny podstavy β . Dokážte, že platí: $tg\beta = 2.tg\alpha$.
- 10. Pravouhlý trojuholník s preponou dĺžky c = 5cm a obsahom $S = 6cm^2$ sa otáča okolo prepony. Vypočítajte objem vzniknutého rotačného telesa? Aký bude povrch vzniknutého rotačného telesa, ak prepona bude dlhá 10 cm a obsah trojuholníka sa štvornásobne zväčší?

$$(V = 30,16 \text{ cm}^3, S = 211,1 \text{ cm}^2)$$

11. Do gule s polomerom *x* vpíšeme valec tak, aby polomer jeho podstavy bol o 2 cm a jeho výška o 1 cm menšia ako polomer gule.

Vypočítajte: a) polomer gule

b) polomer gule, ak do gule vpíšeme rovnostranný valec (výška valca sa rovná priemeru podstavy) s polomerom $\sqrt{2}cm$.

(17 cm, 2 cm)

- 12. Valcová nádoba polomeru 3 cm je celkom naplnená vodou.
 - a) Koľko vody z nej vytlačí guľa o polomere 5 cm položená na valec?
 - b) Aký je povrch zmáčanej časti gule?
 - c) Ako by sa zmenilo riešenie v prípade, že guľa bude mať polomer 2 cm?

 $(14/3\pi \text{ cm}^3, 10\pi \text{ cm}^2, \text{ ponorí sa celá})$

13. Ako ďaleko sú od seba konce ôsmich povrazov, ktorými je k zemi pripevnený stožiar 30 m vysoký. Povrazy sú dlhé 25 m a sú upevnené v polovici výšky stožiara.

14.	Tri olovené gule s polomermi $r_1 = 3$ cr	$r_2 = 4 \text{ cm}$	$r_3 = 5 \text{ cm}$	zliali do	jednej gule.	Vypočítajte je	j
	polomer a povrch.						

$$(V = 904 \text{ cm}^3, S = 452 \text{ cm}^2)$$

$$\left[V = \frac{\sqrt{3}c^3}{48}\right]$$

- 16. Uhlopriečny rez kvádra je štvorec obsahu 4225 cm². Jedna hrana a podstavy je o 23 cm dlhšia ako strana b. Určte povrch a objem kvádra. $[S = 1526 \text{ cm}^2, V = 120120 \text{ cm}^3]$
- 17. Hmotnosť železnej kocky je 60 kg. Vypočítajte veľkosť jej hrany, $\rho = 7.5 \text{ kg.dm}^{-3}$. [2 dm]
- 18. Určte objem pravidelného osemstena vpísaného do gule s polomerom r. (4/3r³)
- 19. Podstavou kolmého hranola je pravouhlý trojuholník, ktorého dĺžky odvesien sú v pomere 3:4. Výška hranola je o 2 cm menšia ako dlhšia z odvesien podstavy. Povrch hranola je 468 cm^2 . Vypočítajte jeho objem. $[V = 560 \text{ cm}^3]$
- 20. Stred hornej podstavy pravidelného štvorbokého hranola a stredy hrán dolnej podstavy tvoria vrcholy ihlana s objemom V. Určte objem hranola. [6V]
- 21. Dĺžka telesovej uhlopriečky kocky je 3.√6 (druhá odmocnina zo 6) cm. Vypočítajte:
 a) dĺžku hrany kocky
 b) objem kocky
 c) povrch kocky

$$/3\sqrt{2}$$
 cm, $54\sqrt{2}$ cm³, 108 cm²/

- 22. Hranu kocky zväčšíme dvakrát. Koľkokrát sa zväčší: a) objem kocky b) povrch kocky?
- 23. Objem pravidelného 4 bokého hranola je 64 cm³. Odchýlka telesovej uhlopriečky AG od roviny podstavy je 45°. Vypočítajte jeho povrch.

$$/16\sqrt[3]{4} (1+2\sqrt{2}) \text{cm}^2/$$

- 24. Vypočítajte objem a povrch pravidelného 6 bokého hranola. Dĺžka podstavnej hrany je 4 cm, výška hranola je 6 cm. /144 $\sqrt{3}$ cm³, (48 $\sqrt{3}$ +144) cm²/
- 25. Vypočítajte objem a povrch pravidelného 6 bokého ihlana, ktorého podstavná hrana meria 3 cm a dĺžka bočnej hrany je 6 cm. $/27/2(\sqrt{3} + \sqrt{15}) \text{cm}^2$; 40,5 cm³/
- 26. Vypočítajte objem a povrch pravidelného 4 bokého ihlana, ktorého podstavná hrana má 4 cm. Odchýlka bočnej hrany od roviny podstavy je 60°.

$$/32/3\sqrt{6} \text{ cm}^3$$
; $16(1+\sqrt{7})\text{cm}^2/$

- 27. Vypočítajte objem a povrch rotačného kužeľa s výškou 10 cm, ktorého strana má od roviny podstavy odchýlku 30°. $/1000\,\pi\,\mathrm{cm}^3;\,100\,\pi\,(3+2\,\sqrt{3}\,)\mathrm{cm}^2/$
- 28. Vypočítajte polomer podstavy a objem rotačného kužeľa, ak rozvinutý plášť je kruhový výsek s polomerom 3 cm a so stredovým uhlom 120° . / r = 1 cm, $2/3 \pi \sqrt{2}$ cm³/
- 29. Nálevka má tvar rovnostranného kužeľa. Vypočítajte obsah plochy zmáčanej vodou, ak do nálevky nalejeme 3 litre vody. / $6\sqrt[3]{\pi}$ dm²/
- 30. Určte rozmery valcovej nádoby s objemom 5 litrov, ak výška nádoby sa rovná polovici priemeru podstavy.

 / $\sqrt[3]{\frac{5}{\pi}}$ dm/

- 31. Osovým rezom valca je obdĺžnik s uhlopriečkou dĺžky 20 cm. Výška valca je dvakrát väčšia než priemer podstavy. Vypočítajte objem valca v litroch. / 1,1 litra/
- 32. Aká je približne dĺžka vlny, ktorá je namotaná na klbku tvaru gule s polomerom 8 cm, ak je priemer vlny 1 mm? / 2730 m/
- 33. Pravidelný 4 boký zrezaný ihlan má podstavné hrany dĺžok 6 cm a 4 cm. Bočná stena zviera s podstavou uhol 60° . Vypočítajte objem a povrch zrezaného ihlana. / $76/3\sqrt{3}$:92/
- 34. Pravidelný 4 boký zrezaný ihlan má podstavné hrany dĺžok 6 cm a 4 cm. Bočná hrana zviera s podstavou uhol 60° . Vypočítajte objem a povrch zrezaného ihlana. $/76/3\sqrt{6}$; $(52+20\sqrt{7})$
- 35. Zrezaný kužeľ ($r_1 = 4$ cm, $r_2 = 2$ cm, v = 6 cm) je rozdelený rovinou rovnobežnou s podstavou na dve časti rovnakého objemu. Vypočítajte: a) polomer kružnice, ktorá je rezom b) pomer, v ktorom rovina rezu delí výšku / 3,3 cm; 1,185/
- 36. Kocke opíšte a vpíšte guľu. Vypočítajte pomer objemov gule opísanej, kocky a gule vpísanej. / $3\pi\sqrt{3}$:6: π /
- 37. Akú časť zemského povrchu vidíme z výšky 350 km nad Zemou? / 13 300 000 km²/
- 38. Vypočítajte objem a povrch šošovky, ktorá vznikne prienikom dvoch gulí s polomermi 8 cm a 4 cm. Vzdialenosť stredov gulí je 10 cm. / 61,2 cm³, 65,3 cm²/
- 39. Do krabice tvaru kvádra so štvorcovou podstavou s hranou a = 6 cm a výškou v = 4 cm dáme guľu s polomerom 3 cm. Vypočítajte obsah guľového vrchlíka, ktorý leží mimo kvádra.

 /12 π cm²/
- 40. Vypočítajte polomer gule vpísanej do kužeľa, ktorého výška je v = 6 cm a polomer podstavy je r = 2 cm. Potom vypočítajte, koľkokrát je objem kužeľa väčší ako objem gule vpísanej. $/ 2(\sqrt{10} 1)/3; \ V_{\text{kužeľa}} = \text{asi 2. V}_{\text{gule}} /$