Learning Sample-Aware Threshold for Semi-Supervised Learning

Qi Wei, Lei Feng, Haoliang Sun, Ren Wang, Rundong He, Yilong Yin Shandong University, Nanyang Technological University

Contact: 1998v7@gmail.com

Machine Learning Journal

ACML 2023

Contributions

- > A simple yet effective training framework called Meta-Threshold (Meta-T), which
 - does not leverage prior knowledge to preset adjust function for thresholds
 - contains one hyperparameter, thus does not require complex cross-validation.
- \succ Theoretically provide the convergence of Meta-T which enjoys a rate of $\mathcal{O}(^1/_{\epsilon^2})$.
- ➤ Meta-T be applied to solve both the conventional and imbalanced SSL tasks.

Motivation and Framework

- (a) Motivation: deep models have different learning capabilities for different examples in class tiger. Intuitively, setting instance-level thresholds is more logical and beneficial to generate more accurate pseudo-labels for unlabeled instances, further facilitating deep model's learning.
- (a) Review of the pseudo-labeling training framework: Meta-T designs a meta-net which dynamically generates a refined confidence threshold for unlabeled example.

Method

☐ Confidence Thresholds in Semi-Supervised Learning

Given an unlabeled data \boldsymbol{x}_m , the training objective is

$$\ell_{\mathbf{x}_{\mathbf{m}}} = 1(\max(f(\mathbf{A}^{\omega}(\mathbf{x}_{\mathbf{m}}); \boldsymbol{w})) > \tau) \cdot H(\hat{y}_{m}, f(\mathbf{A}^{s}(\mathbf{x}_{\mathbf{m}}); \boldsymbol{w}))$$

■ Meta-Threshold

 A^{ω} weak augmentation strong augmentation

loss function

confidence threshold

The training objective in Meta-T is

$$\ell_{\mathbf{x}_{\mathbf{m}}} = 1(\max(f(\mathbf{A}^{\omega}(\mathbf{x}_{\mathbf{m}}); \boldsymbol{w})) > \tau_{m}) \cdot H(\hat{y}_{m}, f(\mathbf{A}^{s}(\mathbf{x}_{\mathbf{m}}); \boldsymbol{w}))$$

Sample-level threshold is produced by a meta-net $\tau_m = V_m(w, \Theta)$

> Threshold Generated Network (TGN)

At epoch t, the generated threshold for x_m is $\tau_m^t = V(g(f(\mathbf{x}_m; \boldsymbol{w})), \bar{\mathbf{P}}_c^t; \Theta)$

➢ Bi-level optimization

The optimal parameters of two networks can be obtained by minimizing the loss:

$$\mathbf{w}^*(\Theta) = \operatorname*{arg\,min}_{\mathbf{w}} L_u = \frac{1}{M} \sum_{\mathbf{x}_m \in D^u} \ell_{\mathbf{x}_m}(\mathbf{w}, \Theta)$$

$$\Theta^* = \underset{\Theta}{\operatorname{arg\,min}} L_{\operatorname{meta}}(\mathbf{w}^*(\Theta)) = \frac{1}{N} \sum_{i=1}^{N} H_i(\mathbf{w}^*(\Theta))$$

Solving the meta-optimization problem contains three steps:

(1) Formulating learning manner of classifier network

$$\hat{\mathbf{w}}^{(t)}(\Theta) = \mathbf{w}^{(t)} - \alpha \frac{1}{n\mu} \sum_{i=1}^{n\mu} \nabla_{\mathbf{w}} \ell_{\mathbf{x}_i}(\mathbf{w}^{(t)}, \Theta^{(t)})$$

(2) Updating parameters Θ of TGN

$$\Theta^{(t+1)} = \Theta^{(t)} - \psi \frac{1}{n} \sum_{i=1}^{n} \nabla_{\Theta} H_i(\hat{\mathbf{w}}^{(t)}(\Theta))$$

(3) Updating parameters w of classifier network

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \frac{1}{n\mu} \sum_{i=1}^{n\mu} \nabla_{\mathbf{w}} \ell_{\mathbf{x}_i}(\mathbf{w}^{(t)}, \Theta^{(t+1)})$$

Flowchart of Meta-T

 $L_{
m meta}$

 au_m ③

Learning algorithm

Algorithm 1 Learning algorithm of Meta-T.

Require: Unlabeled/labeled data D^u/D^l , batch size n, a coefficient μ , max iterations T. **Ensure:** Classifier network parameter $\mathbf{w}^{(T)}$.

- 1: Initialize $\mathbf{w}^{(0)}$ for classifier network and $\Theta^{(0)}$ for TGN.
- 2: **for** t = 0 **to** T 1 **do**
- Random sample $\{(\mathbf{x}_1^l, \mathbf{y}_1^l), ..., (\mathbf{x}_n^l, \mathbf{y}_n^l)\}$ from D^l and $\{\mathbf{x}_1, ..., \mathbf{x}_{(\mu \times n)}\}$ from D^u . Calculate $\hat{\mathbf{w}}^{(t)}(\Theta)$.
- ⊳ Eq. (6)
- Update $\Theta^{(t+1)}$. ⊳ Eq. (7)
- Update $\mathbf{w}^{(t+1)}$. ⊳ Eq. (8) 7: end for

Experiments

☐ SOTA performance on eight test benchmarks (typical SSL)

	CIFAR-10 (Wide ResNet-28-2)			CIFAR-100 (Wide ResNet-28-8)		
Methods	40 labels	250 labels	4000 labels	400 labels	2500 labels	10000 labels
Π-Model	-	54.26 ± 3.97	14.01 ± 0.38	_	57.25 ± 0.48	37.88 ± 0.11
VAT	$74.66{\pm}2.12$	$41.03{\pm}1.79$	$10.51 {\pm} 0.12$	$85.20{\pm}1.40$	$46.84{\pm}0.79$	$32.14 {\pm} 0.19$
MixMatch	47.54 ± 11.50	$11.05 {\pm} 0.86$	$6.42 {\pm} 0.10$	$67.61{\pm}1.32$	$39.94 {\pm} 0.37$	$28.31 {\pm} 0.33$
UDA	$29.05{\pm}5.93$	$8.82{\pm}1.08$	$4.88 {\pm} 0.18$	59.28 ± 0.88	$33.13 {\pm} 0.22$	$24.50 {\pm} 0.25$
$\operatorname{CoMatch}$	$6.91{\pm}1.39$	$4.91 {\pm} 0.33$	-	_	-	_
$\operatorname{SimMatch}$	$5.60{\pm}1.37$	$4.84{\pm}0.39$	$3.96 {\pm} 0.01$	37.81 ± 2.21	$25.07 {\pm} 0.32$	$\boldsymbol{20.58 {\pm} 0.11}$
Pseudo-labeling	_	49.78 ± 0.43	$16.09 {\pm} 0.28$	_	57.38 ± 0.46	$36.21 {\pm} 0.19$
FixMatch	11.39 ± 3.37	$5.07 {\pm} 0.65$	$4.26{\pm}0.05$	$48.85{\pm}1.75$	$28.29 {\pm} 0.11$	$22.60{\pm}0.12$
Dash	$9.16{\pm}4.31$	4.78 ± 0.12	$4.13{\pm}0.06$	$44.83{\pm}1.36$	27.18 ± 0.21	$21.97 {\pm} 0.14$
FlexMatch	4.97 ± 0.06	4.98 ± 0.09	$4.19 {\pm} 0.01$	$39.94{\pm}1.62$	$26.49 {\pm} 0.20$	$21.90 {\pm} 0.15$
Meta-T (ours)	$\textbf{4.39} {\pm} \textbf{0.28}$	$4.10 {\pm} 0.20$	4.01 ± 0.09	$36.17{\pm}1.40$	$25.81 {\pm} 0.72$	20.74 ± 0.23

	Error rates	s (%) ↓		То	p-1
Methods	SVI 40 labels	HN 250 labels	STL-10 1000 labels	Sup. baseline	$\frac{ }{ }$
Π-Model VAT MixMatch UDA ReMixMatch		18.96 ± 1.92 4.33 ± 0.12 3.98 ± 0.23 5.69 ± 2.76 2.92 ± 0.48	$ \begin{vmatrix} 26.23 \pm 0.82 \\ 37.95 \pm 1.12 \\ 10.41 \pm 0.61 \\ 7.66 \pm 0.56 \\ 5.23 \pm 0.45 \end{vmatrix} $	FixMatch CoMatch SimMatch Meta-T (ours)	5 6 6 6
PL FixMatch Dash FlexMatch Meta-T (ours)	3.14 ± 1.60 3.03 ± 1.59 8.19 ± 3.20 2.89 ± 0.92	20.21 ± 1.09 2.64 ± 0.64 2.17\pm0.10 $-$ 2.29 ± 0.51	$\begin{array}{c c} 27.99 \pm 0.83 \\ 5.17 \pm 0.63 \\ \underline{3.96 \pm 0.25} \\ 5.77 \pm 0.18 \\ \textbf{3.51} \pm \textbf{0.34} \end{array}$	UAD FixMatch FlexMatch SoftMatch Meta-T(ours)	

Top-1 / Top-5 accuracy (%) \uparrow					
	1%	$\frac{\rm ImageNet}{10\%}$	100%		
Sup. baseline FixMatch CoMatch SimMatch Meta-T (ours)	25.4 / 48.4 53.4 / 74.4 66.0 / 86.4 67.2 / 87.1 67.7 / 87.9	56.4 / 80.4 70.8 / 89.0 73.6 / 91.6 74.4 / 91.6 75.0 / 91.7	80.4 / 94.6		
Error rates (%) ↓					
	IMDb	Amazon-5	Yelp-5		
UAD FixMatch FlexMatch SoftMatch Meta-T(ours)	$18.33\pm0.61 \\ 7.59\pm0.28 \\ 7.80\pm0.23 \\ \underline{7.48\pm0.12} \\ \textbf{7.20} \\ \textbf{20}$	50.29 ± 4.6 42.70 ± 0.53 42.34 ± 0.62 42.14 ± 0.92 42.60 ± 0.41	47.49 ± 6.83 39.56 ± 0.70 39.01 ± 0.17 39.31 ± 0.45 $\mathbf{38.44\pm0.37}$		

FlexMatch

Predicted Label

(c) Meta-T

□ SOTA performance on imbalanced SSL task

	$N_1 = 1500, M_1 = 3000$			$N_1 = 500, M_1 = 4000$		
Methods	$\gamma = 50$	$\gamma = 100$	$\gamma = 150$	$\gamma = 50$	$\gamma = 100$	$\gamma = 150$
Supervised	65.23 ± 0.05	$58.94 {\pm} 0.13$	$55.63{\pm}0.38$	51.31 ± 0.34	$45.82 {\pm} 0.41$	$40.90 {\pm} 0.39$
cRT	$67.82 {\pm} 0.14$	$63.43{\pm}0.45$	$59.56{\pm}0.44$	$56.28{\pm}1.45$	$48.11 {\pm} 0.79$	$45.02{\pm}1.08$
LDAM	$68.91 {\pm} 0.10$	$63.15{\pm}0.24$	$58.68 {\pm} 0.30$	56.41 ± 0.92	$49.27{\pm}0.88$	$45.10{\pm}0.75$
MixMatch	$73.59{\pm}0.46$	$65.03{\pm}0.26$	$62.71 {\pm} 0.29$	$65.32{\pm}1.20$	$56.41{\pm}1.96$	$52.38{\pm}1.88$
ReMixMatch	$78.96{\pm}0.29$	$72.88{\pm}0.12$	$68.61 {\pm} 0.40$	$76.83{\pm}0.98$	$70.12{\pm}1.23$	$59.58{\pm}1.30$
DARP	81.60 ± 0.31	$75.23{\pm}0.14$	$69.31 {\pm} 0.26$	76.72 ± 0.46	$69.41 {\pm} 0.50$	$61.23 {\pm} 0.31$
CReST	$82.03{\pm}0.26$	75.08 ± 0.41	$69.84{\pm}0.39$	76.18 ± 0.36	$69.50 {\pm} 0.70$	$60.81 {\pm} 0.55$
Adsh	83.38 ± 0.06	$76.52 {\pm} 0.35$	71.49 ± 0.30	79.27 \pm 0.38	$70.97 {\pm} 0.46$	$62.04{\pm}0.51$
FixMatch	79.10 ± 0.14	71.50 ± 0.31	$68.47 {\pm} 0.15$	77.34 ± 0.96	$68.45{\pm}0.94$	$60.10 {\pm} 0.82$
Dash	$81.93{\pm}0.10$	$74.62 {\pm} 0.26$	72.29 ± 0.42	77.90 ± 0.39	$70.41{\pm}0.27$	$62.11 {\pm} 0.32$
FlexMatch	$82.86{\pm}0.25$	75.47 ± 0.41	$70.62 {\pm} 0.30$	78.69 ± 0.50	71.80 ± 0.29	62.85 ± 0.39
\mathbf{Meta} - \mathbf{T} (ours)	$83.94{\pm}0.12$	$\textbf{77.80} {\pm} \textbf{0.39}$	$73.07 {\pm} 0.58$	78.41 ± 0.22	$72.40 {\pm} 0.42$	$64.46 {\pm} 0.60$

□ Effectiveness analysis

☐ Sensitivity analysis

(a) FixMatch

Predicted Label

Predicted Label

(b) FlexMatch

Reference

[1] Zhang et al. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. NIPS 2021

[2] Xu et al. Dash: Semi-supervised learning with dynamic thresholding. ICML 2021