A Multi-Agent Approach for Claim Verification from Tabular Data Documents

Claim Verification Approaches

Existing Research

Data Source

Methodology

Explanation

primarily on Wikipedia tables

Pretraining and finetuning

Table cell identification, limited generalizability

Proposed Multi-Agentic Framework

Scientific publications, financial reports, sustainability reports

Prompt-based setup

Step by step detailed explanation

Challenges in Claim Verification from Tabular Data

Multi-Agentic Claim Verification Process

Data Sufficiency Check
Determining if the table is sufficient for claimverification

Reasoning Strategy Planning
Devising a strategy to verify the claim

Verification Execution
Executing the strategy

Existing Works on Tabular Data Reasoning

Challenges in Tabular Claim Verification

Multi-Agentic Claim Verification Framework (MACE)

Role of Agents for Claim Verification

MineTabFact Dataset Creation and Verification

Distribution of "Supporting"Claim Types in MineTabFact Dataset (claims)

MineTabFact Claims Through Verification Stages

Dataset Comparison

Method	Macro F1
PASTA +	32.62
ProTrix ++	42.76
TART (GPT-4)*	63.6
Alpaca-7B [†]	28.95
Vicuna (13B) [†]	35.16
LLaMA-13B [†]	32.66
InstructGPT [†]	41.58
InstructGPT + COT [†]	42.6
GPT-4 [†]	64.80
$GPT-4 + COT^{\dagger}$	63.21
MACE (Llama-3.3-70B-Instruct)	47.1
MACE (Typhoon2-70B-Instruct)	54.2
MACE (Qwen2.5-72B-Instruct)	58
MACE (Deepseek-Chat)	70.8

Table 3: Performance on Scitab (Macro F1). Models marked with [†], *, and ⁺⁺ are sourced from Lu et al. (2023), Lu et al. (2024) and Wu and Feng (2024) respectively; Model marked with ⁺ is the result from executing Gu et al. (2022a) on the Scitab dataset.

Method	F1 Micro	
sattiy [†]	77.32	
RyanStark [†]	81.51	
THiFly-Queen [†]	83.76	
King001 [†]	84.48	
Volta*	73.87	
Tapas*	75.33	
Tapex*	75.47	
LKA*	78.54	
DeBERTaV3*	78.92	
PASTA*	84.1	
MACE	90.7	

Table 4: Performance on SEM-TAB-FACTS (F1 Micro score). Models marked with † are the best performing according to the leader-board (Wang et al., 2021); Those with * are sourced from Gu et al. (2022a).

Method	Testmini (Acc)	Test (Acc)
DeepSeek-V2-Lite	60.1	58.3
Qwen2.5	72.4	70.2
Llama-3.1 70B	75	74.5
Qwen2.5 72B	75.7	74.9
Mistral-Large 123B	74.8	75.8
Claude-3.5-Sonnet	73.1	70.4
Gemini-1.5-Pro	71.4	73.2
GPT-4o	75.3	76.2
MACE	77.1	77.7

Table 5: Accuracy on Findver (Testmini and Test). All baseline models are sourced from Zhao et al. (2024b).

Method	COT (F1 M)	w/o COT (F1 M)
glm-4-9b-chat	75.3	24.1
Llama-3.2-3B	54.9	17.5
mathstral-7B	64.4	24.1
Llama-3.1-8B	64.2	15.1
Mistral-7B	66	25.7
Phi-3.5-mini	68.9	25.9
Qwen2.5-7B	77.7	22.5
Gemini-1.5-pro	87.9	39
GPT-4o	92	39.9
Claude-3-5-sonnet	93	41.9
MACE	93	

Table 6: Performance comparison of various models on the MineTabFact dataset, showing F1 Macro scores with (COT) and without (w/o COT) Chain of Thought reasoning. All baseline models are adopted using the implementation of Zhao et al. (2024b).

Thanks