

Готовимся к ЕГЭ по биологии. Часть 4.

Лернер Г.И. Профессор, МИОО

Советы.

Досрочный экзамен по биологии показал, что задания второй части несколько усложнились. Еще раз стоит напомнить, что основными пособиями для подготовки должны стать: двухтомник А.Теремова и Р. Петросовой для профильных классов издательства Мнемозина (есть в электронном виде в сети) и сборник заданий 30 вариантов ЕГЭ под ред. В. Рохлова. Эти пособия нужно хорошо проработать. Обратите внимание на подготовку к ответам на задания 22, 25,26.

Задание 27 часть заданий этой линии несколько изменилась

- Фрагмент цепи ДНК имеет последовательность нуклеотидов ТТТАГЦТГТЦГГААГ. В результате произошедшей мутации в третьем триплете третий нуклеотид заменен на нуклеотид А. Определите последовательность нуклеотидов на и-РНК по исходному фрагменту цепи ДНК и измененному. Что произойдёт с фрагментом полипептида и его свойствами после возникшей мутации ДНК? Дайте объяснение, используя свои знания о свойствах генетического кода.
- Схема решения задачи включает:
- 1) последовательность на и-РНК по исходному фрагменту цепи ДНК АААУЦГ**АЦА**ГЦЦУУЦ по принципу комплементарности;
- 2) последовательность на и-РНК по измененному фрагменту цепи ДНК АААУЦГ**АЦУ**ГЦЦУУЦ;
- 3) фрагмент полипептида и его свойства не изменяются, так как триплеты АЦА и АЦУ кодируют одну аминокислоту ТРЕ генетический код вырожден (избыточен)

Комментарий

- Приведенный пример задания иллюстрирует один из возможных вариантов похожих заданий. Другие варианты могут варьировать примерно так:
- Какие изменения могут произойти в гене в результате мутации, если в белке одна аминокислота заменилась на другую?
- Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК

Пример такого задания

- Фрагмент цепи ДНК имеет следующую последовательность: -ТТТГЦГ**АТГ**ЦЦЦГЦА
- Определите последовательность аминокислот в полипептиде и обоснуйте свой ответ. Какие изменения могут произойти в гене в результате мутации в, если в белке третья аминокислота заменилась на аминокислоту ЦИС? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ поясните. Используйте таблицу генетического кода.
- Критерии.
- 1) иРНК: АААЦГЦ**УАЦ**ГГГЦГУ.
 Последовательность аминокислот во фрагменте полипептида ЛИЗ-АРГ-ТИР-ТРИ- АРГ
- 2) Замена третьей аминокислоты ТРИ на аминокислоту ЦИС возможна если триплет АТГ мутирует в триплет АТА тили АЦГ на иРНК кодоны УЦУ или УГЦ., так как аминокислота ЦИС кодируется двумя триплетами ДНК.
- 3) 3) Свойство генетического кода вырожденность (избыточность) так как одной аминокислоте соответствует более одного триплета

Темы, которые непременно должны быть усвоены

- Митоз, мейоз, циклы развития растений: водорослей, мхов, папоротников, голосеменных, покрытосеменных.
- Микроспорогенез у голосеменных и покрытосеменных
- Макроспорогенез у голосеменных и покрытосеменных

«Цикл развития наземных Растений»

Важные акценты: в результате **мейоза** у растений образуются споры, микроспоры, в результате **митоза** у растений образуются клетки гаметофита и спорофита

Очень полезно просить детей нарисовать схемы митоза или мейоза, смоделировать процессы на спичках, зубочистках, цветных карандашах и т.д.

Эволюция жизненного цикла растений аметофит Пыльцевое Зародышевый Заросток мешок Водоросли Мхи Папоротники Голосеменные Покрытосеменные Стрела времени

Эта предварительная, базовая схема цикла развития растений и его эволюции необходима для общего понимания вопроса.

Практически все рисунки знакомы и есть в учебниках. Необходимо научить школьников различению процессов митоза и мейоза в цикле развития, показать галлоидные и диплоидные стадии, обозначить гаметофиты и

Рисунок предлагается для сравнения циклов развития у одноклеточных и многоклеточных водорослей.

ЭТО НУЖНО ЗНАТЬ

В жизненном цикле бурых водорослей наблюдается чередования гаплоидного гаметофита и диплоидного спорофита с преобладанием спорофита. Размножаются бурые водоросли половым и бесполым путем. Диплоидные растения посредством мейоза образуют гаплоидные клетки. У одних (род фукус) они становятся гаметами, при слиянии которых образуется зигота, дающая начало новому растению. У большинства же продуктами мейоза являются споры, которые дают начало гаплоидной стадии.

бесполое размножение

Жизненный цикл ламинарии

Гаплоидная стадия представляет собой мелкие нитевидные образования, которые недолго живут на дне моря. Они раздельнополы. На них формируются многоклеточные половые органы, в которых образуются гаметы: яйцеклетки и сперматозоиды. Они, сливаясь, образуют зиготу, из которой вырастают крупные диплоидные растения.

Главное, что должны запомнить школьники, дабы не путаться в терминологии: ГАМЕТОФИТ- стадия, на которой образуются гаметы. СПОРОФИТ – стадия, на которой образуются споры.

Схема чередования поколений в жизненном цикле высших растений (мохообразные)

Эта схема приведена, как один из вариантов объяснений закономерностей процесса развития мха

Жизненный цикл папоротника

Данная схема достаточно подробна. Есть и другие рисунки, которые могут быть использованы учителем.

Жизненный цикл сосны обыкновенной: 1 – взрослое растение (спорофит); 2 – собрание мужских шишек; 3 – продольный разрез через микроспорангий; 4 – мужской гаметофит (пыльцевое зерно); 5 – женская шишка; 6 – семязачаток на верхней поверхности семенной чешуи женской шишки; 7 – образование мегаспоры внутри мегаспорангия; 8 - женский гаметофит с двумя архегониями, прорастание пыльцы;

В данной теме надо знать о строении пыльцевого зерна, гаплоидности эндосперма, положении семяпочек на чешуях женских шишек, и о положении пыльцевых зерен на чешуйках мужских шишек.

Жизненный цикл чередования поколений у цветковых растений Клетка Микроспоры (п) микроспорангия (2n) Мейоз I Мейоз II Пыльцевое зерно Прорастание микроспоры Митоз Вегетативная клетка (п) Генеративная Два спермия(п) клетка (п) Клетка Мегаспора (n) мегаспорангия (2n) Мейоз I Мейоз II Восьмиядерный Прорастание мегаспоры зародышевый мешок Антиподы (Л) Центральные ядра (2n) . Яйцеклетка (n) 11 Синергиды (п) Рис. 173. Схема образования и развития пыльцевого зерна (I) и зародышевого мешка (II)

Эта схема жизненного цикла очень наглядна.

Схема процесса двойного оплодотворения. См. там же.

27. Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в одной из клеток семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.

Схема решения задачи включает:

- 1) Перед началом мейоза число молекул ДНК 56, так как они удваиваются, а число хромосом не изменяется- 28.
- 2) В анафазе мейоза I число молекул ДНК 56, число хромосом 28, к полюсам клетки расходятся гомологичные хромосомы,
- 3) В анафазе мейоза II число молекул ДНК 28, хромосом 28, к полюсам клетки расходятся сестринские хроматиды-хромосомы, так как после редукционного деления мейоза I число хромосом и ДНК уменьшилось в 2 раза.

27. Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого

деления образуются эти клетки.

- 1) клетки пыльцевого зерна сосны и спермии имеют набор хромосом n (гаплоидный);
- 2) клетки пыльцевого зерна сосны развиваются из гаплоидных спор митозом;
- 3) спермии сосны развиваются из клеток пыльцевого зерна (генеративной клетки) митозом.

27. У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках яичников в интерфазе перед началом деления и после деления мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

- 1) в интерфазе перед началом деления число молекул ДНК 120, число хромосом 60; после мейоза I число хромосом 30, ДНК 60;
- 2) перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется 60, каждая хромосома состоит из двух сестринских хроматид;
- 3) мейоз I редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза

27. У крупного рогатого скота в соматических клетках 60 хромосом. Определите число хромосом и молекул ДНК в клетках яичников в интерфазе перед началом деления и после деления мейоза І. Объясните, как образуется такое число хромосом и молекул ДНК.

- 1) в интерфазе перед началом деления число молекул ДНК 120, число хромосом 60; после мейоза I число хромосом 30, ДНК 60;
- 2) перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется 60, каждая хромосома состоит из двух сестринских хроматид;
- 3) мейоз I редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза

27. Какой хромосомный набор характерен для клеток заростка и гамет папоротника? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

- 1) набор хромосом заростка папоротника n; гамет n;
- 2) заросток развивается из гаплоидной споры путём митоза; 3) гаметы развиваются на гаплоидном заростке путём митоза
- 3) гаметы развиваются на гаплоидном заростке путём митоза

У шимпанзе в соматических клетках 48 хромосом. Определите хромосомный набор и число молекул ДНК в клетках перед началом мейоза, в анафазе мейоза I и в профазе мейоза II. Объясните ответ в каждом случае.

Схема решения задачи включает:

- 1) перед началом мейоза набор хромосом и ДНК равен 2n4c; в конце интерфазы произошло удвоение ДНК, хромосомы стали двухроматидными; 48 хромосом и 96 молекул ДНК;
- 2) в анафазе мейоза число хромосом и ДНК в клетке не изменяется и равно 2n4c;
- 3) в профазу мейоза II вступают гаплоидные клетки имеющие набор из двухроматидных хромосом с набором n2c; 24 хромосомы и 48 молекул ДНК

Линия 28, задачи по генетике

- Каждая задача требует не просто обозначения закона наследования, но и объяснения. Необходимо объяснять причины возникновения тех или иных отношений в потомстве, наличие сцепления генов, возникновения кроссинговера в части клеток в процессе мейоза.
- Несколько усложнились задачи на родословную. Необходимо давать объяснения характеру наследования (доминантному или рецессивному, сцепленному с полом или аутосомному)
- Необходимо соблюдать требования к оформлению задачи.
- Имеет смысл подписывать фенотипы, даже если это и не требуется. Так удобнее проверять экспертам.

По изображённой на рисунке родословной человека определите и объясните характер проявления признака, выделенного чёрным цветом (доминантный или рецессивный, сцеплен или не сцеплен с полом). Определите генотипы родителей и потомков, обозначенных на рисунке цифрами 1, 2, 3, 4, 5, 6, 7 и 8. Какова вероятность рождения ребёнка с признаком, выделенным чёрным цветом, у женщины 8, если у её мужчины этот признак будет отсутствовать?

Схема решения задачи включает:

- 1) признак рецессивный, так как проявляется не в каждом поколении, но может проявиться у некоторых потомков, хотя родители этого признака не имели; признак сцеплен с полом, так как проявляется только у мужчин, но не у всех;
- 2) генотипы родителей: мать (1) X^AX^a ; отец (2) X^AY ; генотипы потомков: 3 X^AY ; 4 X^AY^A или X^AY^A ;
- $5 X^A X^a$; $6 X^A X^a$; $7 X^A Y$; $8 X^A X^a$ или $X^A X^A$;
- 3) вероятность рождения ребёнка с признаком, выделенным чёрным цветом, у женщины 8 составит 0%, если её генотип X^AX^A , либо 1/4, или 25 %, если её генотип X^AX^A .
- (Допускается иная генетическая символика, не искажающая смысла решения задачи.) (Статград 2018)

Линия 28 задачи по генетике

- У канареек наличие хохолка зависит от аутосомного гена, ген окраски оперения сцеплен с X-хромосомой.
 Гетерогаметным полом у птиц является женский пол.
- Для хохлатой самки с зелёным оперением провели анализирующее скрещивание, в потомстве получилось четыре фенотипических класса, в которых были птицы с зелёным и коричневым оперением. Получившихся хохлатых потомков скрестили между собой. Может ли в этом скрещивании получиться потомство без хохолка? Определите генотипы, фенотипы и пол этого потомства без хохолка при условии его наличия.
- Схема решения задачи включает:
- хохлатая зеленая самка без хохла коричневый самец
- G AXB, aXB, AY, aY aXb

- F₁
- 🗘 самки АаХ^bY хохлатые коричневые,
- ааХ^bY без хохолка коричневые
- 👌 самцы АаХ^вХ^ь хохлатые зелёные,
- ааХ^вХ^ь без хохолка зелёные
- 2) P♀ AaX^bY x
 - -
- хохлатая хохлатый
- коричневая самка зелёный самец
- G AX^b, aX^b, AY, aY
 AX^B, AX^b, aX^B, aX^b
- 3) F₁ Генотипы и фенотипы возможного потомства без хохла
- Самки без хохла зелёные ааХВҮ
- Самки без хохла коричневые ааХ^bY
- Самцы без хохолка зелёные ааХ^ВХ^Ь
- Самцы без хохолка коричневые ааХ^bХ^b

Линия 28 задачи по генетике

Таня и Наташа — родные сестры и обе страдают дальтонизмом. У них есть сестра с нормальным зрением и брат с нормальным зрением. Таня и Наташа вышли замуж за здоровых по указанному признаку мужчин. У Тани родились две здоровых девочки и два мальчика. У Наташи два сына. Определите генотипы Тани и Наташи, их родителей, пол их детей-дальтоников. Заштрихуйте на родословных значки в соответствии с решением (больных — сплошной штриховкой, носителей — пунктирной).

Критерии на следующем слайде

Критерии

- 1) генотипы родителей: отец Тани и Наташи – дальтоник X^dY,
- мать носительница дальтонизма X^DX^d;
- 2) Таня и Наташа X^dX^d, дальтоники, их мужья — XY здоровы;
- 3) дочери Тани: девочки X^DX^d носительницы дальтонизма, сы-новья Тани и Наташи дальтоники X^dУ

Задачи по генетике

• 28. При многократном скрещивании гетерозиготных красноглазых длиннокрылых самок дрозофил с белоглазым самцом, имеющим нормальные крылья в потомстве оказалось 112 красноглазых, длиннокрылых мух, 98 красноглазых с нормальными крыльями, 21 белоглазых длиннокрылых мух и 27 белоглазых мух с нормальными крыльями. Объясните получение четырех фенотипических групп в результате проведенных сккрещиваний.

- Элементы правильного ответа.
- Дано: А красные глаза, В длинные крылья
- А белые глаза, в нормальные крылья
- Р 🖒 АаВв х 🗦 аавв
- У Красноглазые белоглазые, с нормальными крыльями
- длиннокрылые
- G AB, Aв, аВ, ав ав
- F1
- АаВв красноглазые, длиннокрылые ,112
- Аавв Красноглазые, нормальнокрылые, 98
- ааВв белоглазые, длиннокрылые, 21
- аавв белоглазые нормальнокрылые, 27
- Получение четырех фенотипических групп объясняется сцеплением генов окраски глаз и длины крыльев, а также кроссинговером хромосом у части гетерозиготных мух.

СПАСИБО за ВНИМАНИЕ и терпение

glerner@yandex.ru