```
In [1]: M import pandas as pd
import numpy as np
#reading the csv file
data=pd.read_csv('iris.csv')
data.head()

Out[1]:
    sepallength sepalwidth petallength petalwidth class
```

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [2]: ► #shape
data.shape
```

Out[2]: (150, 5)

Out[3]:

	sepallength	sepalwidth	petallength	petalwidth
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Out[4]: class

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
dtype: int64

In [21]: import seaborn as sns # Load the Iris dataset iris = sns.load_dataset("iris") # Calculate the average sepal length for each species average_sepal_length = iris.groupby('species')['sepal_length'].mean() # Plot the bar chart plt.bar(average_sepal_length.index, average_sepal_length.values, color='skyblu plt.title('Average Sepal Length by Species using Bar Chart') plt.xlabel('Species') plt.ylabel('Average Sepal Length') plt.xticks(rotation=45) # Rotate x-axis labels for better readability plt.grid(axis='y', linestyle='--', alpha=0.7) # Add grid lines for better visi plt.tight_layout() # Adjust layout to prevent clipping of labels plt.show()

Average Sepal Length by Species using Bar Chart


```
In [24]:
            import seaborn as sns
            # Load the Iris dataset
            iris = sns.load dataset("iris")
            # Calculate the average sepal length for each species
            average_sepal_width = iris.groupby('species')['sepal_width'].mean()
            # Plot the bar chart
            plt.bar(average_sepal_width.index, average_sepal_width.values, color='red')
            plt.title('Average Sepal Width by Species using Bar Chart')
            plt.xlabel('Species')
            plt.ylabel('Average Sepal Width')
            plt.xticks(rotation=45) # Rotate x-axis labels for better readability
            plt.grid(axis='y', linestyle='--', alpha=0.7) # Add grid lines for better visi
            plt.tight_layout() # Adjust layout to prevent clipping of labels
            plt.show()
```



```
In [26]:

    import matplotlib.pyplot as plt

             import seaborn as sns
             # Load the Iris dataset
             iris = sns.load_dataset("iris")
             # Calculate the average sepal length for each species
             average_petal_width = iris.groupby('species')['petal_width'].mean()
             # Plot the bar chart
             plt.bar(average_petal_width.index, average_petal_width.values, color='lightpin
             plt.title('Average Petal Width by Species using Bar Chart')
             plt.xlabel('Species')
             plt.ylabel('Average Petal Width')
             plt.xticks(rotation=45) # Rotate x-axis labels for better readability
             plt.grid(axis='y', linestyle='--', alpha=0.7) # Add grid lines for better visi
             plt.tight_layout() # Adjust layout to prevent clipping of labels
             plt.show()
```


In [27]: import seaborn as sns # Load the Iris dataset iris = sns.load_dataset("iris") # Calculate the average sepal length for each species average_petal_length = iris.groupby('species')['petal_length'].mean() # Plot the bar chart plt.bar(average_petal_length.index, average_petal_length.values, color='blue') plt.title('Average Petal Length by Species using Bar Chart') plt.xlabel('Species') plt.ylabel('Average Petal Length') plt.xticks(rotation=45) # Rotate x-axis labels for better readability plt.grid(axis='y', linestyle='--', alpha=0.7) # Add grid lines for better visi plt.tight_layout() # Adjust layout to prevent clipping of labels plt.show()


```
In [22]:
             import matplotlib.pyplot as plt
             import seaborn as sns
             # Load the Iris dataset
             iris = sns.load dataset("iris")
             # Create separate dataframes for each species
             setosa = iris[iris['species'] == 'setosa']
             versicolor = iris[iris['species'] == 'versicolor']
             virginica = iris[iris['species'] == 'virginica']
             # Plot the scatter plot
             plt.figure(figsize=(8, 6))
             plt.scatter(setosa['sepal_length'], setosa['sepal_width'], label='Setosa', cold
             plt.scatter(versicolor['sepal_length'], versicolor['sepal_width'], label='Vers
             plt.scatter(virginica['sepal_length'], virginica['sepal_width'], label='Virgin
             plt.title('Scatter Plot of Sepal Length vs Sepal Width')
             plt.xlabel('Sepal Length')
             plt.ylabel('Sepal Width')
             plt.legend()
             plt.grid(True, linestyle='--', alpha=0.7) # Add grid lines for better visuali
             plt.tight_layout() # Adjust layout to prevent clipping of labels
             plt.show()
```



```
In [29]:

    import matplotlib.pyplot as plt

             import seaborn as sns
             # Load the Iris dataset
             iris = sns.load dataset("iris")
             # Create separate dataframes for each species
             setosa = iris[iris['species'] == 'setosa']
             versicolor = iris[iris['species'] == 'versicolor']
             virginica = iris[iris['species'] == 'virginica']
             # Plot the scatter plot
             plt.figure(figsize=(8, 6))
             plt.scatter(setosa['petal_length'], setosa['petal_width'], label='Setosa', cold
             plt.scatter(versicolor['petal_length'], versicolor['petal_width'], label='Vers
             plt.scatter(virginica['petal_length'], virginica['petal_width'], label='Virgin
             plt.title('Scatter Plot of Petal Length vs Petal Width')
             plt.xlabel('Petal Length')
             plt.ylabel('Petal Width')
             plt.legend()
             plt.grid(True, linestyle='--', alpha=0.7) # Add grid lines for better visuali
             plt.tight_layout() # Adjust layout to prevent clipping of labels
             plt.show()
```



```
In [23]:

    import matplotlib.pyplot as plt

             import seaborn as sns
             # Load the Iris dataset
             iris = sns.load_dataset("iris")
             # Create separate dataframes for each species
             setosa = iris[iris['species'] == 'setosa']
             versicolor = iris[iris['species'] == 'versicolor']
             virginica = iris[iris['species'] == 'virginica']
             # Plot the line chart
             plt.figure(figsize=(8, 6))
             plt.plot(setosa['sepal_length'], setosa['sepal_width'], label='Setosa', marker
             plt.plot(versicolor['sepal_length'], versicolor['sepal_width'], label='Versicolor['sepal_width']
             plt.plot(virginica['sepal_length'], virginica['sepal_width'], label='Virginica
             plt.title('Line Chart of Sepal Length vs Sepal Width')
             plt.xlabel('Sepal Length')
             plt.ylabel('Sepal Width')
             plt.legend()
             plt.grid(True, linestyle='--', alpha=0.7) # Add grid lines for better visuali
             plt.tight_layout() # Adjust layout to prevent clipping of labels
             plt.show()
```



```
In [28]:

    import matplotlib.pyplot as plt

             import seaborn as sns
             # Load the Iris dataset
             iris = sns.load_dataset("iris")
             # Create separate dataframes for each species
             setosa = iris[iris['species'] == 'setosa']
             versicolor = iris[iris['species'] == 'versicolor']
             virginica = iris[iris['species'] == 'virginica']
             # Plot the line chart
             plt.figure(figsize=(8, 6))
             plt.plot(setosa['petal_length'], setosa['petal_width'], label='Setosa', marker
             plt.plot(versicolor['petal_length'], versicolor['petal_width'], label='Versicolor['petal_width']
             plt.plot(virginica['petal_length'], virginica['petal_width'], label='Virginica
             plt.title('Line Chart of Petal Length vs Petal Width')
             plt.xlabel('Petal Length')
             plt.ylabel('Petal Width')
             plt.legend()
             plt.grid(True, linestyle='--', alpha=0.7) # Add grid lines for better visuali
             plt.tight_layout() # Adjust layout to prevent clipping of labels
             plt.show()
```

