

2 - 1 - 0 - -1 -		2 - 1 - 0 -	
-3 -	•	-2 -	
	_2 _1 0 1 2 2_3 Train acc: 0.800		_2 _1
3 - 2 - 1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		2 -	
-2 · -3 ·		-1 - -2 -	-2 -1 0 1 2 3

80000

2_3 | Test acc: 0.683 First Epoch

20000

2_3 | Train acc: 0.650 First Epoch

D	Train Acc	Test Acc	Train Acc	Acc Test Acc	Best	Train Acc	Test Acc
Run	First	First	Best	Best	Epoch	Last	Last
1	0.550	0.517	0.783	0.700	699	0.767	0.667
2	0.700	0.550	0.783	0.683	555	0.783	0.667
3	0.500	0.500	0.800	0.717	688	0.817	0.650
4	0.500	0.533	0.717	0.700	1260	0.817	0.650
5	0.500	0.500	0.767	0.683	40612	0.817	0.667
6	0.500	0.500	0.767	0.767	404	0.800	0.650
7	0.350	0.417	0.767	0.683	14986	0.783	0.667
8	0.450	0.483	0.767	0.750	476	0.767	0.667
9	0.283	0.300	0.800	0.717	1003	0.800	0.667
10	0.817	0.700	0.817	0.700	1	0.800	0.667

Wyniki klasyfikacji na zbiorach sztucznych

Eksperyment 1

W dalszych analizach należy preferować te ustawienia hiperparametrów (rbf dla SVM, relu dla MLP), które zapewniają większą elastyczność modelu. Pozwala to uzyskać bardziej dopasowane granice decyzyjne, a tym samym lepsze zdolności generalizacyjne klasyfikatorów, szczególnie w przypadku danych o złożonej strukturze.

Eksperyment 2 oraz 3

Poniższa tabela przedstawia parametry przy których każdy z klasyfikatorów uzyskał najlepszą wartość accuracy.

Zbiór	Train size	KNN (k)	SVM (C)	MLP (liczba neuronów)
2_2	0.8	1	0.20	9
2_3	0.8	3	800.25	9
2_2	0.2	1	0.35	1
2_3	0.2	2	100000	55

Zmniejszenie liczby danych treningowych zwykle negatywnie wpływa na jakość klasyfikacji, jednak dla niektórych prostych zbiorów jak 2_2, modele mogą osiągać równie dobre wyniki, lub nie znacznie gorsze (MLP), nawet przy niewielkiej liczbie przykładów.

Eksperyment 4

Wyniki dla obu wariantów (zarówno dla train_size=0.8, neurons=9, jak i train_size=0.2, neurons=55) wykazują dużą zmienność accuracy pomiędzy poszczególnymi uruchomieniami sieci (różne random_state). Przykładowo, dla train_size=0.8, najlepsze accuracy na testowym wahało się od 0.80 do 0.92, a dla train_size=0.2 – od 0.65 do 0.77.

Oznacza to, że MLP jest bardzo wrażliwy na losową inicjalizację wag, szczególnie przy małej liczbie danych treningowych.

W wielu przypadkach najlepsze accuracy na testowym osiągane jest już po kilkuset epokach, a dalsze trenowanie nie zawsze poprawia wynik – czasem accuracy na testowym nawet spada co jest oznaką overfittingu.

Wyniki klasyfikacji na zbiorach rzeczywistych

Iris:

Wszystkie metody osiągają bardzo wysoką skuteczność (accuracy ≈ 97%) dla odpowiednio dobranych hiperparametrów. Wyniki te potwierdzają, że klasyczne klasyfikatory dobrze radzą sobie z tym zbiorem, jeśli odpowiednio dobierzemy parametry.

Metoda	Parametr	Train Accuracy	Test Accuracy
KNN	k = 1	1.000	0.967
KNN	k = 20	0.958	0.967
SVM	C = 0.01	0.900	0.867
SVM	C = 0.64	0.975	0.967
SVM	C = 1e6	1.000	0.967
MLP	n = 1	0.950	0.967
MLP	n = 64	0.958	0.967

Wine:

Najlepsze rezultaty uzyskano dla KNN z k=7 oraz SVM z C=0.2 i MLP z 13 neuronami – accuracy na zbiorze testowym osiągnęło 100%. Zbyt małe wartości parametrów (np. k=1, C=0.01, n=1) prowadziły do przeuczenia lub niedouczenia, co skutkowało niższą skutecznością na danych testowych.

Metoda	Parametr	Train Accuracy	Test Accuracy
KNN	k = 1	1.000	0.972
KNN	k = 7	0.965	1.000
KNN	k = 20	0.972	1.000
SVM	C = 0.01	0.401	0.389
SVM	C = 0.20	0.986	1.000
SVM	C = 1e6	1.000	0.944
MLP	n = 1	0.655	0.611
MLP	n = 13	0.993	1.000
MLP	n = 64	0.993	0.972

Breast Cancer:

Najlepsze accuracy na zbiorze testowym (98%) uzyskano dla KNN z k=3 oraz SVM z C=0.64. MLP również osiągnął wysokie wyniki (do 97%). Zbyt niskie wartości C w SVM oraz zbyt mała liczba neuronów w MLP prowadziły do wyraźnie niższych accuracy.

Metoda	Parametr	Train Accuracy	Test Accuracy
KNN	k = 1	1.000	0.939
KNN	k = 3	0.978	0.982
KNN	k = 20	0.969	0.974
SVM	C = 0.01	0.626	0.632
SVM	C = 0.64	0.982	0.982
SVM	C = 1e6	1.000	0.947
MLP	n = 1	0.976	0.956
MLP	n = 13	0.976	0.974
MLP	n = 64	0.985	0.965

Stabilność i generalizacja: Dla rzeczywistych, dobrze zdefiniowanych zbiorów danych, klasyczne metody klasyfikacji osiągają bardzo dobre wyniki, jeśli zastosujemy standaryzację cech oraz zadbamy o odpowiedni podział na zbiory treningowe i testowe. KNN i SVM wykazują się bardzo wysoką skutecznością, a MLP – przy odpowiedniej liczbie neuronów – również pozwala uzyskać bardzo dobre wyniki.