Distance Transformations

Minyoung Chung

Contents

- Definition
- Applications
- Methods Computations
- Euclidean Distance Transformation

- Labeling of each pixel **x** by the distance to the closest point **y** in the background.
- $DT(P)[x] = min_{y \in P} dist(x, y)$
 - P : point set of background
 - x : vector of image position
 - DT(P) : distance map

Computer Graphics and Image Processing Laboratory.

4/56

Applications of Distance Transform

- Morphological image processing
 - Thinning, thickening, ...
 - Exact Euclidean distance transform can produce an accurate, reversible skeleton
- Pattern matching and object recognition
- Robot collision avoidance
- Path planning and navigation
- Medical image processing
 - Surface registration
 - Non-rigid image registration
 - Point-to-surface distance
 - Morphological image segmentation
 - Visualization
 - ...
- ...

Distance Transform Methods

• Euclidean distance $(L_2 - norm)$

-
$$dist(x,y) = sqrt((x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots)$$

• City-bock distance $(L_1 - norm)$

-
$$dist(x,y) = |x_1 - y_1| + |x_2 - y_2| + \cdots$$

• Chessboard distance $(L_{\infty} - norm)$

-
$$dist(x, y) = max(|x_1 - y_1|, |x_2 - y_2|, ...)$$

- Chamfer distance
 - Approximation version of Euclidean distance.
 - Design-dependent algorithms.
- Distance propagation
 - Narrow band distance transform

Naïve approach

- For each point on the grid, explicitly consider each point of P and minimize.
- $O(n^2)$ time complexity.

Better methods

- Simple idea from 1D-case.
- Two passes :
 - Find closest point on the left
 - Find closest point on the right if closer than one on left
- Incremental :
 - Moving left-to-right, update distance
 - Analogous for moving right-to-left
- O(n) time complexity.

- 1 0 : first pass kernel
- 0 1 : second pass kernel

City block distance computation $(L_1 - norm)$

8	8	8
0	8	8
0	8	∞
8	8	∞
	0	0 ∞

1				
0	8	8	8	8
	8	0	1	2
	8	0	1	2
	8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

Chessboard distance computation $(L_{\infty} - norm)$

	8	8	8	8
_	8	0	8	8
-	8	0	8	8
	8	8	8	8

8	8	8	8
8	0	1	2
1	0	1	2
1	1	1	2

1	1	1	2
1	0	1	2
1	0	1	2
1	1	1	2

Chamfer distance

- Approximation version of Euclidean distance.
- Two pass algorithm.
- Various windows can be used by Chamfer distance algorithm.

- Distance propagation
 - Chamfer distance computation (two pass algorithm) is relatively too expensive for some applications.
 - Propagate distance from edge list
 - Use explicit edge representation

						1					
0					1	0	1				
	0					1	0	1			
	0					1	0	1			
	0	0				1	0	0	1		
			0				1	1	0	1	
									1		

- Euclidean distance computation $(L_2 norm)$
 - Simple local propagation methods are not correct.
 - Introduces considerable error, particularly at larger distances.
 - Approximation : Chamfer distance

$\sqrt{2}$	1	$\sqrt{2}$
1	0	

Euclidean Distance Transformation

- Version 1.
- Version 2.
- Version 3.
- Version 4. (A Linear Time Algorithm)

- Input image : $F = \{f_{ijk}\}$
 - $f_{i,j,k} = \begin{cases} 0, & \text{if } (i,j,k) \in P(point \ set \ of \ background) \\ \infty, & \text{otherwise} \end{cases}$
 - $-1 \le i \le W, 1 \le j \le H, 1 \le k \le D$
 - W, H, D is width, height and depth of an input image respectively.
- Output image : $S = \{s_{ijk}\}$
 - $s_{ijk} = \min_{i',j',k'} ((i-i')^2 + (j-j')^2 + (k-k')^2)$
 - $-(i',j',k') \in P$
 - $(f_{i',j',k'} = 0)$
 - $-1 \le i \le W, 1 \le j \le H, 1 \le k \le D$
 - The square of the Euclidean distance.

- Decompose 3-dimension into three 1D-transforms
- Transformation 1.

-
$$F \to G = \{g_{ijk}\}$$

- $g_{ijk} = min_{\mathbf{x}} \{(i-x)^2; f_{xjk} = 0, 1 \le x \le W\}$

Transformation 2.

-
$$G \to H = \{h_{ijk}\}$$

- $h_{ijk} = min_{\mathbf{y}} \{g_{i\mathbf{y}k} + (j-y)^2; 1 \le y \le H\}$

• Transformation 3.

-
$$H \to S = \{s_{ijk}\}$$

- $s_{ijk} = min_{\mathbf{z}}\{h_{ij\mathbf{z}} + (k-z)^2; 1 \le z \le D\}$

• Transformation 1.

$$- F \to G = \{g_{ijk}\}$$

$$- g_{ijk} = min_{x} \{ (i-x)^{2}; f_{xjk} = 0, 1 \le x \le W \}$$

0	8	8	8	8	0	8	8	8	8	0	0
0	8	8	8	8	8	8	8	8	8	8	0
0	0	0	8	8	8	∞	∞	8	8	8	0

0	1	4	4	1	0	1	4	4	1	0	0
0	1	4	4	16	25	25	16	9	4	1	0
0	0	0	1	4	9	25	16	9	4	1	0

• Transformation 2.

$$- G \to H = \{h_{ijk}\}$$

-
$$h_{ijk} = min_{\mathbf{y}} \{ g_{i\mathbf{y}k} + (j-y)^2; 1 \le y \le H \}$$

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	1	4	4	1	0	1	4	4	1	0	0
0	1	4	9	16	25	25	16	9	4	1	0
0	0	0	1	4	9	16	16	9	4	1	0
0	0	0	0	1	4	9	9	4	1	0	0
0	0	0	0	0	1	4	9	9	4	1	0
0	0	0	0	0	0	0	0	0	0	0	0

Transformation 2.

$$- G \to H = \{h_{ijk}\}$$

-
$$h_{ijk} = min_{y} \{g_{iyk} + (j - y)^{2}; 1 \le y \le H\}$$

	,												9
0	0	0	0	0	0	0	0	0	0	0	0		0
0	0	0	1	4	9	16	9	4	1	0	0	l ,	25
0	0	0	1	4	9	16	9	4	1	0	0	$g_{i_{\mathbf{y}k}}$	9
0	1	4	4	1	0	1	4	4	1	0	0		4
0	1	4	9	16	25	25	16	9	4	1	0		1
0	0	0	1	4	9	16	16	9	4	1	0		0
0	0	0	0	1	4	9	9	4	1	0	0		G
0	0	0	0	0	1	4	9	9	4	1	0		
0	0	0	0	0	0	0	0	0	0	0	0		

Transformation 2.

$$- G \to H = \{h_{ijk}\}$$

-
$$h_{ijk} = min_{y} \{g_{iyk} + (j - y)^{2}; 1 \le y \le H\}$$

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	1	4	4	1	0	1	4	4	1	0	0
0	1	4	9	16	25	25	16	9	4	1	0
0	0	0	1	4	9	16	16	9	4	1	0
0	0	0	0	1	4	9	9	4	1	0	0
0	0	0	0	0	1	4	9	9	4	1	0
0	0	0	0	0	0	0	0	0	0	0	0

0		25		25
9		16		25
9		9		18
0		4		4
25	+	1	=	26
9		0		9
4		1		5
1		4		5
0		9		9
\overline{G}		(i -	$-y)^{2}$	

 $g_{i\mathbf{y}k}$

$$- G \to H = \{h_{ijk}\}$$

-
$$h_{ijk} = min_{y} \{g_{iyk} + (j - y)^{2}; 1 \le y \le H\}$$

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	1	4	4	1	0	1	4	4	1	0	0
0	1	4	9	16	25	25	16	9	4	1	0
0	0	0	1	4	9	16	16	9	4	1	0
0	0	0	0	1	4	9	9	4	1	0	0
0	0	0	0	0	1	4	9	9	4	1	0
0	0	0	0	0	0	0	0	0	0	0	0

0		25		25	٦			
9		16		25				
9		9		18				
0		4		4				
25	+	1	=	26		-		
9		0		9			$h_{i\mathbf{y}k}$	4
4		1		5				
1		4		5				
0		9		9	IJ	min		
G		(j -	$-y)^2$					

 $g_{i\mathbf{y}k}$

- Transformation 3.
 - $H \to S = \{s_{ijk}\}$
 - $s_{ijk} = min_{\mathbf{z}} \{ h_{ij\mathbf{z}} + (k-z)^2; 1 \le z \le D \}$
 - Same as Transformation 2, only for z-direction
- The image $S = \{s_{ijk}\}$ is the square Euclidean distance transform of an image $F = \{f_{ijk}\}$
- Proof:

$$g_{ijk} = \min_{\mathbf{x}} \{ (i - x)^2; f_{\mathbf{x}jk} = 0, 1 \le x \le W \}$$

$$h_{ijk} = \min_{\mathbf{y}} \{ g_{i\mathbf{y}k} + (j - y)^2; 1 \le y \le H \}$$

$$s_{ijk} = \min_{\mathbf{z}} \{ h_{ij\mathbf{z}} + (k - z)^2; 1 \le z \le D \}$$

$$\begin{split} h_{ijk} &= \min_{\mathbf{y}} \left\{ g_{iyk} + (j-y)^2; 1 \leq y \leq H \right\} \\ &= \min_{\mathbf{y}} \left\{ \min_{\mathbf{x}} \left\{ (i-x)^2; \ f_{xyk} = 0, 1 \leq x \leq W \right\} + (j-y)^2; 1 \leq y \leq H \right\} \\ &= \min_{\mathbf{y}} \left\{ \min_{\mathbf{x}} \left\{ (i-x)^2 + (j-y)^2; \ f_{xyk} = 0, 1 \leq x \leq W \right\}; 1 \leq y \leq H \right\} \\ &= \min_{(\mathbf{x},\mathbf{y})} \left\{ (i-x)^2 + (j-y)^2; f_{xyk} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\} \\ s_{ijk} &= \min_{\mathbf{z}} \left\{ h_{ijz} + (k-z)^2; 1 \leq z \leq D \right\} \\ &= \min_{\mathbf{z}} \left\{ \min_{(\mathbf{x},\mathbf{y})} \left\{ (i-x)^2 + (j-y)^2; f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\} + (k-z)^2; 1 \leq z \leq D \right\} \\ &= \min_{\mathbf{z}} \left\{ \min_{(\mathbf{x},\mathbf{y})} \left\{ (i-x)^2 + (j-y)^2 + (k-z)^2; f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\}; 1 \leq z \leq D \right\} \\ &= \min_{(\mathbf{x},\mathbf{y},\mathbf{z})} \left\{ (i-x)^2 + (j-y)^2 + (k-z)^2; f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H, 1 \leq z \leq D \right\} \end{split}$$

$$\begin{split} h_{ijk} &= \min_{\mathbf{y}} \left\{ g_{iyk} + (j-y)^2; 1 \leq y \leq H \right\} \\ &= \min_{\mathbf{y}} \left\{ \min_{\mathbf{x}} \left\{ (i-x)^2; \, f_{xyk} = 0, 1 \leq x \leq W \right\} + (j-y)^2; 1 \leq y \leq H \right\} \\ &= \min_{\mathbf{y}} \left\{ \min_{\mathbf{x}} \left\{ (i-x)^2 + (j-y)^2; \, f_{xyk} = 0, 1 \leq x \leq W \right\}; 1 \leq y \leq H \right\} \\ &= \min_{(\mathbf{x},\mathbf{y})} \left\{ (i-x)^2 + (j-y)^2; \, f_{xyk} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\} \\ S_{ijk} &= \min_{\mathbf{z}} \left\{ h_{ij\mathbf{z}} + (k-z)^2; 1 \leq z \leq D \right\} \\ &= \min_{\mathbf{z}} \left\{ \min_{(\mathbf{x},\mathbf{y})} \left\{ (i-x)^2 + (j-y)^2; \, f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\} + (k-z)^2; 1 \leq z \leq D \right\} \\ &= \min_{\mathbf{z}} \left\{ \min_{(\mathbf{x},\mathbf{y},\mathbf{z})} \left\{ (i-x)^2 + (j-y)^2 + (k-z)^2; \, f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H \right\}; 1 \leq z \leq D \right\} \\ &= \min_{(\mathbf{x},\mathbf{y},\mathbf{z})} \left\{ (i-x)^2 + (j-y)^2 + (k-z)^2; \, f_{xyz} = 0, 1 \leq x \leq W, 1 \leq y \leq H, 1 \leq z \leq D \right\} \end{split}$$

• $S = \{s_{ijk}\}$ is the square Euclidean distance image of F

Cuboid voxel?

- Pixel spacing(α) & slice spacing(β) in medical CT images.
- $g_{ijk} = \min_{x} \{ (\alpha(i-x))^2; f_{xjk} = 0, 1 \le x \le W \}$
- $h_{ijk} = min_y \{g_{iyk} + (\alpha(j-y))^2; 1 \le y \le H\}$
- $s_{ijk} = min_z \{ h_{ijz} + (\beta(k-z))^2; 1 \le z \le D \}$

• Transformation 1.

- Input : $F = \{f_{ijk}\}$
- Output : $G = \{g_{ijk}\}$
- Step 1.1
 - Initialize $G = \{g_{ijk}\}$

$$- g_{ijk} = \begin{cases} \infty, & \text{if } f_{ijk} \neq 0 \\ 0, & \text{if } f_{ijk} = 0 \end{cases}$$

- $g_{ijk} \leftarrow \left(\sqrt{g_{(i-1)jk}} + 1\right)^2$, if $f_{ijk} \neq 0$,
- $g_{ijk} \leftarrow 0$, otherwise - for i = 2, 3, ..., W.
- Step 1.2
 - $g_{ijk} \leftarrow min\left\{\left(\sqrt{g_{(i+1)jk}} + 1\right)^2, g_{ijk}\right\}$ - for i = W - 1, W - 2, ..., 1.

f_{iik}	=	0
Jijk		O

0	8	8	8	8	0	8
0	8	8	8	8	8	8
0	0	0	8	8	8	8

0	1	4	9	16	0	1
0	1	4	9	16	25	36
0	0	0	1	4	9	16

0	1	4	4	1	0	1
0	1	4	9	16	25	36
0	0	0	1	4	9	16

- Transformation 2.
 - Input : $G = \{g_{ijk}\}$, output of Transformation 1.
 - Output : $H = \{h_{ijk}\}$
 - $h_{ijk} \leftarrow min_{-r \le n \le r} \{g_{i(j+n)k} + n^2\}, where r = \sqrt{g_{ijk}}$
 - $for 1 \le j + n \le H$
- Transformation 3.
 - Input : $H = \{h_{ijk}\}$, output of Transformation 2.
 - Output : $S = \{s_{ijk}\}$
 - $s_{ijk} \leftarrow min_{-r \leq n \leq r} \{h_{ij(k+n)} + n^2\}$, where $r = \sqrt{h_{ijk}}$
 - $for 1 \le k + n \le D$
- Bounds of the searching interval $\pm r$, there is at least one 0 voxel.
- Limiting search areas for minimization. (more limitation in ver.2)

• Limited search area in ver.1

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	0	0	1	4	9	16	9	4	1	0	0
0	1	4	4	1	0	1	4	4	1	0	0
0	1	4	9	16	25	25	16	9	4	1	0
0	0	0	1	4	9	16	16	9	4	1	0
0	0	0	0	1	4	9	9	4	1	0	0
0	0	0	0	0	1	4	9	9	4	1	0
0	0	0	0	0	0	0	0	0	0	0	0

- Transformation 1. Same as ver.1
- Transformation 2.

```
- Input : G = \{g_{ijk}\}, Output : H = \{h_{ijk}\}
- Step 2.1
       for j = [2..H]
           if\left(g_{ijk} > g_{i(j-1)k} + 1\right)
               for n = [0..\frac{g_{ijk} - g_{i(j-1)k} - 1}{2}] // w / bounding check.
                    if (g_{i(j-1)k} + (n+1)^2 \ge g_{i(j+n)k})
                        break;
                    else
                        h'_{i(j+n)k} \leftarrow g_{i(j-1)k} + (n+1)^2
            else
                h'_{ijk} \leftarrow g_{ijk}
```

Parabola lower envelope computation.

- Transformation 1. Same as ver.1
- Transformation 2.

```
- Input : G = \{g_{ijk}\}, Output : H = \{h_{ijk}\}
- Step 2.1
       for j = [2..H]
           if \left( g_{ijk} > g_{i(j-1)k} + 1 \right)
                for n = [0..\frac{g_{ijk} - g_{i(j-1)k} - 1}{2}] // w/ bounding check.
                     if \; (\; g_{i(j-1)k} + (n+1)^2 \geq g_{i(j+n)k} \; )
                         break;
                     else
                        h'_{i(j+n)k} \leftarrow g_{i(j-1)k} + (n+1)^2
            else
                h'_{ijk} \leftarrow g_{ijk}
```


- Transformation 1. Same as ver.1
- Transformation 2.

```
- Input : G = \{g_{ijk}\}, Output : H = \{h_{ijk}\}
- Step 2.1
       for j = [2..H]
           if \left( g_{ijk} > g_{i(j-1)k} + 1 \right)
               for n = [0..\frac{g_{ijk} - g_{i(j-1)k} - 1}{2}] // w/ bounding check.
                    if (g_{i(j-1)k} + (n+1)^2 \ge g_{i(j+n)k})
                        break:
                    else
                        h'_{i(j+n)k} \leftarrow g_{i(j-1)k} + (n+1)^2
            else
                h'_{ijk} \leftarrow g_{ijk}
```


- Transformation 1. Same as ver.1
- Transformation 2.

```
- Input : G = \{g_{ijk}\}, Output : H = \{h_{ijk}\}
- Step 2.1
        for j = [2..H]
            if \left( g_{ijk} > g_{i(j-1)k} + 1 \right)
                for n = \left[0 \cdot \frac{g_{ijk} - g_{i(j-1)k} - 1}{2}\right] / / w / bounding check.
                     if (g_{i(j-1)k} + (n+1)^2 \ge g_{i(j+n)k})
                         break:
                     else
                         h'_{i(j+n)k} \leftarrow g_{i(j-1)k} + (n+1)^2
            else
                 h'_{ijk} \leftarrow g_{ijk}
```


- Transformation 1. Same as ver.1
- Transformation 2.

```
- Input : G = \{g_{ijk}\}, Output : H = \{h_{ijk}\}
Step 2.1 (<u>forward scan</u>)
        for j \leftarrow 2 to H
            if \left( g_{ijk} > g_{i(j-1)k} + 1 \right)
                for n = \left[0..\frac{g_{ijk} - g_{i(j-1)k} - 1}{2}\right] // w/ bounding check.
                     if (g_{i(j-1)k} + (n+1)^2 \ge g_{i(j+n)k})
                          break;
                     else
                         h'_{i(j+n)k} \leftarrow g_{i(j-1)k} + (n+1)^2
             else
                 h'_{ijk} \leftarrow g_{ijk}
```


Step 2.2 (<u>backward scan</u>)

```
for j \leftarrow H - 1 to 1
    if(h'_{ijk} > h'_{i(j+1)k} + 1)
        for n = [0..\frac{(h'_{ijk} - h'_{i(j+1)k} - 1)}{2}] // w/ bounding check
             if\left(h'_{i(j+1)k} + (n+1)^2 > h'_{i(j-n)k}\right)
                 break;
             else
                 h_{i(j-n)k} \leftarrow h'_{i(j+1)k} + (n+1)^2
    else
        h_{ijk} \leftarrow {h'}_{ijk}
```


- Transformation 3.
 - Input : $H = \{h_{ijk}\}$, Output : $S = \{s_{ijk}\}$
 - Same as Transformation 3. for z-direction.
- Performance evaluations
 - Version 1.

- Version 2.
- Version 3.

- A linear time algorithm for computing exact Euclidean distance transform.
 - Idea : <u>Voronoi diagram, dimensionality reduction</u>
- Direct calculation of Euclidean distance via Voronoi diagram.

36 / 56

3D Euclidean Distance Transformation – Version 4.

- A linear time algorithm for computing exact Euclidean distance transform.
 - Idea : <u>Voronoi diagram, dimensionality reduction</u>
- Direct calculation of Euclidean distance via Voronoi diagram.

→ Euclidean distance to closest feature point ?

37 / 56

3D Euclidean Distance Transformation – Version 4.

- A linear time algorithm for computing exact Euclidean distance transform.
 - Idea : <u>Voronoi diagram, dimensionality reduction</u>
- Direct calculation of Euclidean distance via Voronoi diagram.

Euclidean distance to closest feature point ?

= Feature Transform (FT)

38 / 56

3D Euclidean Distance Transformation – Version 4.

- A linear time algorithm for computing exact Euclidean distance transform.
 - Idea : <u>Voronoi diagram, dimensionality reduction</u>
- Direct calculation of Euclidean distance via Voronoi diagram.

Goal : for every voxel, calculate feature transform.

Definitions & abbreviations

- Feature Voxel (FV)
- Distance Transform (DT)
- Closest Feature Voxel (CFV)
- Closest Feature Transform (FT)
- Euclidean DT (EDT)
- Voronoi sites : $S = \{f_i\}$
 - Feature points (*f*)
- Voronoi cell : C_f
 - The set of all points whose closest point is f
 - f is <u>center</u> of C_f (feature point)
- Voronoi cells : $V_s = \{C_{f_i}\}$

- The FT of a binary image:
 - discretized version of the voronoi diagram where
 Voronoi sites are the FVs of the image
- For each voxel x in I, F(x) = CFV in I.
 - DT can be computed easily from F.
- $I_{d,x}$: d-dimensional subimage.
 - restriction of I to the subspace whose last k-d coordinates are identical to the corresponding coordinates of x. (k: dimension of input image)
- F_d : FT at the dth dimension level.

$$- F_d(x) = CFV \text{ in } I_{d,x}$$

- $I_{k,x} = I$ and $F_k = F$.
- $F_0(x) = x \text{ if } I(x) = 1$,
- $F_0(x) = \emptyset$ otherwise.
 - − Ø : undefined.

- $X_d = \{x_i\} for i = 1, ..., n_d$
 - Set of n_d voxels in I formed by varying the dth coordinate from 1 to n_d and fixing all other coordinates.
- \bullet R_d
 - "row" (continuous line) running through the set of voxels X_d .
- S_d
 - Set of FVs in the binary subimage $I_{d,x}$.
 - All voxels x_i in the set X_d belong to the same subimage.
- $V^*_d = V_{S_d} \cap R_d$
 - Intersection of the Voronoi diagram V_{S_d} whose Voronoi sites are the set of FVs S_d with the row R_d .
- $S'_d = \{F_{d-1}(x_i)\}$
 - Set of CFVs in the next lower dimension for the set of voxels $X_d = \{x_i\}$ on the row R_d .
 - S'_d has at most one FV for each voxel x_i . (arbitrarily chosen if equidistant)
 - $-S'_d \subseteq S_d$

Workflow Dimensionality Reductions Recursive-call until d=1. Higher dimensional FT Construct Partial Voronoi Diagram calculation. Calculate *d*-Dimensional FT

- (a) The FVs shown are the set S_d .
- (b) The FVs shown are the set $S'_d = \{F_{d-1}(x_i)\}$
 - the set of CFVs in the next lower dimension for the set of voxels $\{x_i\}$ on the row R_d .
 - $-F_{d-1}(x_i)$ is the CFV in the same column as x_i .
- (c) The FVs shown are the set S^*_d .
- (d) The FVs shown are the set S^*_d .
 - choosing the bottom of the two equidistant FVs in (a).
- S^*_d
 - subset of S_d that are the Voronoi sites(FVs) of Voronoi cells in V_d^* .
 - Voronoi sites of Voronoi cells in V_{S_d} that intersect R_d .
- $S^*_d \subseteq S'_d \subseteq S_d$
- $V^*_d = V_{S_d} \cap R_d = V_{S'_d} \cap R_d = V_{S^*_d} \cap R_d$.

- Constructing V^*_d .
- To construct V^*_d , it is sufficient to consider the set S'_d . (rather than the larger set S_d)
 - from the definition of F_d , $\Delta(x, f) \leq \Delta(x, g)$ where $f = F_{d-1}(x)$ and g is any other FV in S_d .
 - $\Delta(y, f) \leq \Delta(y, g)$ where y is any other point on the row R_d .
 - all points on the row R_d are at least as close to f as they are to g.
 - → Either the Voronoi cell for site g does not intersect R_d , or that the Voronoi cells for site f and g both intersect R_d along a common boundary ($\Delta(x, f) = \Delta(x, g)$).
- $V^*_d = V_{S_d} \cap R_d = V_{S'_d} \cap R_d$.

- Construct $V^*_d = \{C^*_{f_i}\}$?
 - \rightarrow Determine the ordered set S^*_d . Visit each voxel by traversing the row in dth coordinate order.
- Proof :
 - FVs f, $g \in S^*_d$.
 - Voronoi cells C_f , C_g repectively.
 - − Voxels $x, y \in R_d$.
 - $x_d < y_d \to f_d < g_d.$
 - $f_d < g_d \to x_d < y_d.$
 - Voronoi sites (FVs) S^*_d are sorted by the dth coordinate \rightarrow associated Voronoi cells are similarly ordered.

- Cell intersection checking algorithm.
 - Three FVs $u, v, w \in S'_d$.
 - $u_d < v_d < w_d.$
 - $x_{\overline{uv}}$: point on the line R_d that is equidistant from u and v. $(\Delta(u, x_{\overline{uv}}) = \Delta(v, x_{\overline{uv}}))$
 - $-(x_{\overline{uv}})_d: d$ th coordinate of this point.
 - C_v does not intersect R_d if $(x_{\overline{uv}})_d > (x_{\overline{vw}})_d$.

$$(x_{\overline{uv}})_d < (x_{\overline{vw}})_d \rightarrow C_v$$
 intersects.

- Cell intersection checking algorithm.
 - Three FVs $u, v, w \in S'_d$.
 - $u_d < v_d < w_d.$
 - $x_{\overline{uv}}$: point on the line R_d that is equidistant from u and v. $(\Delta(u, x_{\overline{uv}}) = \Delta(v, x_{\overline{uv}}))$
 - $-(x_{\overline{uv}})_d: d$ th coordinate of this point.
 - C_v does not intersect R_d if $(x_{\overline{uv}})_d > (x_{\overline{vw}})_d$.

 $(x_{\overline{uv}})_d > (x_{\overline{vw}})_d \rightarrow C_v$ does not intersects.

ComputeFT

```
1. if d = 1 then /* Compute F_{d-1} */
        for i_1 \leftarrow 1 to n_1 do
          if I(i_1, j_2, ..., j_k) = 1 then
           F(i_1, j_2, \ldots, j_k) \leftarrow (i_1, j_2, \ldots, j_k)
 5.
           else
           F(i_1, j_2, \ldots, j_k) \leftarrow \phi
          endif
        endfor
      else
10.
        for i_d \leftarrow 1 to n_d do
          COMPUTEFT(d-1, i_d, j_{d+1}, \ldots, j_k)
12.
        endfor
13.
      endif
      for i_1 \leftarrow 1 to n_1 do
                                 /* Compute F_d */
15.
        . . .
          for i_{d-1} \leftarrow 1 to n_{d-1} do
16.
17.
            VORONOIFT(d, i_1, ..., i_{d-1}, j_{d+1}, ..., j_k)
18.
          endfor
19.
        . . .
      endfor
21. return
```

Recursive call for dimensionality reduction.

VoronoiFT

```
1. l \leftarrow 0 /* Construct partial Voronoi diagram */
     for i \leftarrow 1 to n_d do
        \mathbf{x}_i \leftarrow (j_1, \dots, j_{d-1}, i, j_{d+1}, \dots, j_k)
       if (\mathbf{f}_i \leftarrow F(\mathbf{x}_i)) \neq \phi then
           if l < 2 then
            l \leftarrow l + 1, \mathbf{g}_l \leftarrow \mathbf{f}_i
              while l \geq 2 and REMOVEFT(\mathbf{g}_{l-1}, \mathbf{g}_l, \mathbf{f}_i, \mathcal{R}_d) do
             l \leftarrow l-1
             endwhile
     l \leftarrow l + 1, \mathbf{g}_l \leftarrow \mathbf{f}_i
           endif
        endif
      endfor
     if (n_S \leftarrow l) = 0 then
         return
      endif
                      /* Query partial Voronoi diagram */
     for i \leftarrow 1 to n_d do
        while l < n_S and \Delta(\mathbf{x}_i, \mathbf{g}_l) > \Delta(\mathbf{x}_i, \mathbf{g}_{l+1}) do
     l \leftarrow l + 1
      endwhile
      F(\mathbf{x}_i) \leftarrow \mathbf{g}_l
     endfor
     return
```


ComputeFT

VoronoiFT

```
/* Construct partial Voronoi diagram */
        for i \leftarrow 1 to n_d do
          \mathbf{x}_i \leftarrow (j_1, \dots, j_{d-1}, i, j_{d+1}, \dots, j_k)
          if (\mathbf{f}_i \leftarrow F(\mathbf{x}_i)) \neq \phi then
            if l < 2 then
             l \leftarrow l + 1, \mathbf{g}_l \leftarrow \mathbf{f}_i
               while l \geq 2 and REMOVEFT(\mathbf{g}_{l-1}, \mathbf{g}_l, \mathbf{f}_i, \mathcal{R}_d) do
               l \leftarrow l-1
               endwhile
              l \leftarrow l + 1, \mathbf{g}_l \leftarrow \mathbf{f}_i
                                                                                               removina.
12.
             endif
          endif
                                                                                       S^*_d = \{g_l\}
        endfor
       if (n_S \leftarrow l) = 0 then
                                                   determines the ordered set S*<sub>d</sub>
 16.
          return
        endif
                      /* Query partial Voronoi diagram */
        for i \leftarrow 1 to n_d do
          while l < n_S and \Delta(\mathbf{x}_i, \mathbf{g}_l) > \Delta(\mathbf{x}_i, \mathbf{g}_{l+1}) do
21.
          l \leftarrow l + 1
          endwhile
         F(\mathbf{x}_i) \leftarrow \mathbf{g}_l
       endfor
       return
                                                  → construct FT in d – dimension.
```


- Performance evaluation.
 - Initialization of F_0 takes O(N) time.
 - At each dimension d, VoronoiFT is executed for each of the N/n_d rows.
 - For each row, construction of S_d^* takes $O(n_d)$ time, since there are n_d FVs in S_d' , and each FV is added to and removed from S_d^* at most once.
 - Calculating $x_{\overline{u}\overline{v}}$ requires O(1) time.
 - Querying simply requires $O(n_d)$ time.
 - Thus, at each dimension, the time complexity is $O(n_d \times N/n_d) = O(N)$, and the algorithm for computing the FT of I runs in O(N) time.
 - DT of I can be computed from the FT in O(N) time.
- $\therefore O(N)$

Applying <u>Euclidean distance</u>.

- RemoveFT can be implemented simply using only integer arithmetic.
- $-\Delta^{2}(u, x_{\overline{uv}}) = \Delta^{2}(u, R_{d}) + (u_{d} + (x_{\overline{uv}})_{d})^{2}$
 - $\Delta^2(u, R_d) = \sum_{i \neq d} (u_i r_i)^2$
- $\Delta^2(u, x_{\overline{u}\overline{v}}) = \Delta^2(v, x_{\overline{u}\overline{v}})$
 - definition of $x_{\overline{uv}}$.

$$- (x_{\overline{uv}})_d = \frac{\Delta^2(v, R_d) - \Delta^2(u, R_d) + v_d^2 - u_d^2}{2(v_d - u_d)}$$

- Verifying inequality $(x_{\overline{u}\overline{v}})_d > (x_{\overline{v}\overline{w}})_d$ is equivalent to
- $c \cdot \Delta^{2}(v, R_{d}) b \cdot \Delta^{2}(u, R_{d}) a \cdot \Delta^{2}(w, R_{d}) abc > 0.$
 - $a = v_d u_d$
 - $b = w_d v_d$
 - $c = w_d u_d = a + b$
- $D_d(x) = \Delta^2(x, F_d(x))$
 - $D(x) = \Delta^{2}(x, F(x))$
 - $u = F_{d-1}(x)$
 - $\Delta^2(u, R_d) = \Delta^2(x, u) = \Delta^2(x, F_{d-1}(x)) = D_{d-1}(x)$

ComputeEDT

```
1. if d = 1 then /* Compute D_{d-1} */
        for i_1 \leftarrow 1 to n_1 do
          if I(i_1, j_2, ..., j_k) = 1 then
           D(i_1, j_2, \ldots, j_k) \leftarrow 0
 5.
          else
           D(i_1, j_2, \ldots, j_k) \leftarrow \infty
          endif
        endfor
 9.
      else
10.
        for i_d \leftarrow 1 to n_d do
          COMPUTEEDT(d-1, i_d, j_{d+1}, \dots, j_k)
12.
        endfor
13.
      endif
                                /* Compute D_d */
      for i_1 \leftarrow 1 to n_1 do
15.
        . . .
          for i_{d-1} \leftarrow 1 to n_{d-1} do
16.
17.
            VORONOIEDT(d, i_1, ..., i_{d-1}, j_{d+1}, ..., j_k)
18.
          endfor
19.
        . . .
      endfor
21. return
```

VoronoiEDT

```
1. l \leftarrow 0 /* Construct partial Voronoi diagram */
 2. for i \leftarrow 1 to n_d do
      \mathbf{x}_i \leftarrow (j_1, \dots, j_{d-1}, i, j_{d+1}, \dots, j_k)
       if (f_i \leftarrow D(\mathbf{x}_i)) \neq \infty then
           if l < 2 then
           l \leftarrow l+1, g_l \leftarrow f_i, h_l \leftarrow i
             while l \geq 2 and REMOVEEDT(g_{l-1}, g_l, f_i, h_{l-1}, h_l, i) do
             l \leftarrow l - 1
             endwhile
           l \leftarrow l+1, g_l \leftarrow f_i, h_l \leftarrow i
12.
            endif
         endif
      endfor
      if (n_S \leftarrow l) = 0 then
         return
17. endif
                    /* Query partial Voronoi diagram */
      for i \leftarrow 1 to n_d do
         while l < n_S and q_l + (h_l - i)^2 > q_{l+1} + (h_{l+1} - i)^2 do
      l \leftarrow l + 1
      endwhile
       D(\mathbf{x}_i) \leftarrow g_l + (h_l - i)^2
24. endfor
      return
```


 $f_i = D_{d-1}(x) = \Delta^2(f_i, R_d)$

 $g_l = \Delta^2(g_l, R_d)$

ComputeEDT

```
/* Compute D_{d-1} */
     if d=1 then
        for i_1 \leftarrow 1 to n_1 do
 3.
          if I(i_1, i_2, ..., i_k) = 1 then
 4.
            D(i_1, j_2, \ldots, j_k) \leftarrow 0
 5.
 6.
            D(i_1, j_2, \ldots, j_k) \leftarrow \infty
          endif
        endfor
 9.
      else
        for i_d \leftarrow 1 to n_d do
10.
          COMPUTEEDT(d-1, i_d, j_{d+1}, \dots, j_k)
12.
        endfor
13.
      endif
                                   /* Compute D_d */
      for i_1 \leftarrow 1 to n_1 do
15.
        . . .
          for i_{d-1} \leftarrow 1 to n_{d-1} do
16.
17.
            VORONOIEDT(d, i_1, ..., i_{d-1}, j_{d+1}, ..., j_k)
18.
          endfor
19.
20.
      endfor
21. return
```

VoronoiEDT

```
/* Construct partial Voronoi diagram */
                                                                for i \leftarrow 1 to n_d do
                                                                   \mathbf{x}_i \leftarrow (j_1, \dots, j_{d-1}, i, j_{d+1}, \dots, j_k)
                                                                   if (f_i \leftarrow D(\mathbf{x}_i)) \neq \infty then
                                                                      if l < 2 then
                                                                       l \leftarrow l + 1, g_l \leftarrow f_i \ h_l \leftarrow i
                                                                        while l \geq 2 and REMOVEEDT(g_{l-1}, g_l, f_i, h_{l-1}, h_l, i) do
                                                                        l \leftarrow l - 1
                                                                        endwhile
                                                                       l \leftarrow l+1, g_l \leftarrow f_i \ h_l \leftarrow
h_l: d-th coordinate of g_l
                                                                      endif
                                                                   endif
                                                                 endfor
                                                                 if (n_S \leftarrow l) = 0 then
                                                                   return
                                                           16.
                                                          17.
                                                                 endif
                                                                               /* Query partial Voronoi diagram */
                                                                 for i \leftarrow 1 to n_d do
                                                                   while l < n_S and g_l + (h_l - i)^2 > g_{l+1} + (h_{l+1} - i)^2 do
                                                                    l \leftarrow l + 1
                                                                   endwhile
                                                          23.
                                                                   D(\mathbf{x}_i) \leftarrow g_l + (h_l - i)^2
                                                                 endfor
                                                                 return
```


- Practical implementations :
 - for medical 3D images w/ anisotropic voxel dimensions, multiply weight (w_i) when calculating distance.
 - all of the arithmetic operations occur in <u>VoronoiEDT, lines 8 and 20</u>.
 - while $l \ge 2$ and RemoveEDT(...)do
 - while $l < n_s$ and $g_l + (h_l i)^2 > g_{l+1} + (h_{l+1} i)^2$ do
 - take advantage of similarities in successive computations.
 - for fixed number of dimensions (e.g., k=3), compute D_i consecutively rather than recursion.
 - computation of D_1 can be implemented more efficiently by forward-and-reverse propagation.

References

- Maurer Jr, Calvin R., Rensheng Qi, and Vijay Raghavan. "A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 25.2 (2003): 265-270.
- Saito, Toyofumi, and Jun-Ichiro Toriwaki. "New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications." *Pattern recognition* 27.11 (1994): 1551-1565.

Thank you!