MLADS 1주차

데이터 전처리와 EDA

데이터 전처리의 절차

Data Exploration

데이터를 어디서 찾지?

Data Cleaning

데이터가 가진 문제를 해결하자!

Data Transformation

데이터를 분석하기 쉽게 만들자!

데이터가 가진 특성을 확인하자!

데이터 전처리의 절차

데이터 누릭

사람	직급	월급
Jason	과장	\$ 27,000
David	차장	
Wilson	사원	\$ 13,000

Data Cleaning

데이터 전처리의 절차

데이터 누락

누락의 종류

(1) MCAR

- Missing Completely At Random
- 완전 무작위 결측
- ex) 종이에 커피가 묻어 특정 값이 안 보임

(2) MNAR

- Missing Not At Random
- 결측된 이유가 결측된 열과 관련 있음
- ex) 구매가를 안 알려주려고 가격을 누락함

(3) MAR

- Missing At Random
- 결측된 이유가 결측되지 않은 열과 관련 있음
- ex) 어디에 썼는지 안 알려주려고 가격을 누락함

Data Cleaning

데이터 전처리의 절차

데이터 누락

해결법

- (1) 행/열 제거하기
- (2) 평균값 넘기

+

- (3) K-NN으로 추측하기
- (U) Missforest로 추측하기

Data Cleaning

데이터 전처리의 절차

근처에 있는 값들을 바탕으로 누락된 값을 추측하는 방법

데이터 전처리의 절차

Random Forest를 바탕으로 누락된 값을 추측하는 방법

Missforest를 이용한 추측

독립변수 독립변수 종속변수

사람	직급	월급	
Jason	과장	\$ 27,000	
David	차장		
Wilson	사원	\$ 13,000	

독립변수를 기반으로 종속변수를 추측하는 RF 모델 제작

특정 값이나 특정 횟수를 기준으로 종료함

데이터 전처리의 절차

데이터 중복

사람	직급	월급
Jason	과장	\$ 27,000
David	차장	\$ 20,000
Wilson	사원	\$ 13,000
Wilson	사원	\$ 13,000

Data Cleaning

데이터 전처리의 절차

데이터 누락 데이터 중복 해결법

중복은 제거합시다

ex)

test_df[~test_df.duplicated()]

Data Cleaning

데이터 전처리의 절차

사람	직급	월급
Jason	과장	\$ 27,000
David	차장	\$ 20,000
Wilson	사랑	\$ 13,000
Wilson	사원	\$ 13,000

데이터 전처리의 절차

해결법

단순 오라인 경우 : 확인 후 수정

오타가 아닌 경우 : 배경 지식을 가지고 있어야 함

데이터 전처리의 절차

사람	직급	월급
Jason	과장	\$ 27,000
David	차장	\$ 20,000
Carlson	사장	\$ 10,000,000
Wilson	사원	\$ 13,000

데이터 전처리의 절차

EDA

Exploratory Data Analysis

EDA = 데이터를 탐색하고 이해하는 과정!

EDA

• 변수간의 관계를 확인함

EDA

EDA

df.describe()

	mpg	cyclinders	displacement	weight	accerleration	'
count	398.000000	398.000000	398.000000	398.000000	398.000000	
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	
std	7.815984	1.701004	104.269838	846.841774	2.757689	
min	9.000000	3.000000	68.000000	1613.000000	8.000000	
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	
max	46.600000	8.000000	455.000000	5140.000000	24.800000	
	model year	origin				
count	398.000000	398.000000				
mean	76.010050	1.572864				
std	3.697627	0.802055				
min	70.000000	1.000000				
25%	73.000000	1.000000				
50%	76.000000	1.000000				
75%	79.000000	2.000000				
max	82.000000	3.000000				
			·			

EDA

df.corr()

[Output]						
	mpg	cyclinders	displacement	weight	accerleration	\
mpg	1.000000	-0.775396	-0.804203	-0.831741	0.420289	
cyclinders	-0.775396	1.000000	0.950721	0.896017	-0.505419	
displacement	-0.804203	0.950721	1.000000	0.932824	-0.543684	
weight	-0.831741	0.896017	0.932824	1.000000	-0.417457	
accerleration	0.420289	-0.505419	-0.543684	-0.417457	1.000000	
model year	0.579267	-0.348746	-0.370164	-0.306564	0.288137	
origin	0.563450	-0.562543	-0.609409	-0.581024	0.205873	
	model yea	r origin				
mpg	0.57926	7 0.563450				
cyclinders	-0.34874	6 -0.562543				
displacement	-0.37016	4 -0.609409				
weight	-0.306564	4 -0.581024				
accerleration	0.28813	7 0.205873				
model year	1.00000	0.180662				
origin	0.18066	2 1.000000				

EDA

df.plot()

EDA

matplotlib에 많음

데이터의 분포를 살피는 시각화

데이터의 분포는 다음과 같이 살필 수 있습니다. 대표적인 몇 가지만 살펴보도록 하겠습니다.

- 범주형: bar
- 수치형
 - 이산형 : bar
 - 연속형 : kdeplot, histogram
- 범주형 + 수치형 : boxplot, violinplot, etc
- 수치형 + 수치형 : scatter

EDA

선 그래프 line plot

plt.plot / df.plot / sns.lineplot

EDA

막대 그래프 bar plot

plt.bar / df.plot(kind=bar) / sns.barplot

EDA

가로막대 그래프 barh plot

plt.barh / df.plot(kind=barh) / sns.barplot

EDA

개수 그래프 count plot

sns.countplot

EDA

산점도 scatter plot

plt.scatter / df.plot(kind=scatter) / sns.scatterplot

EDA

히스토그램 histogram

plt.hist / df.plot(kind=hist) / sns.distplot

Data Transformation

Data Transformation

(1) One hot Encoding

[0, 1, 0] [1, 0, 0] [0, 0, 1]

Encoding

(2) Label Encoding

Red = 1 Blue = 2 Pink = 3

(3) Ordinal Encoding

초딩 = 1 중딩 = 2 고딩 = 3

Data Transformation

(1) Min-Max Scaling

 $x-x_{min}$

Scaling

 $x_{max} - x_{min}$

Data Transformation

(2) Maximum Absolute Scaling

Scaling

$$x_{scaled} = \frac{x}{max(|x|)}$$

Data Transformation

(3) Standard Scaling

$$z=rac{x-\mu}{\sigma}$$

Data Transformation

(4) Robust Scaling

Scaling
$$X_{ ext{scale}} = rac{x_i - x_{ ext{med}}}{x_{75} - x_{25}}$$

Data Transformation

(5) Log transformation

Scaling

Data Transformation

예측을 더 잘하기 위해 더 도움이 되는 열만 남기기!

Feature Selection (1) Correlation Coefficient

(2) Mutual Information

Data Transformation

(1) Correlation Coefficient

Feature Selection

Data Transformation

(2) Mutual Information

Feature Selection

두 변수 간의 관계를 보고, 독립성이 강한 열을 제거함

Thank you