

Fachrichtung Mathematik • Institut für Algebra • Prof. Baumann, Dr. Noack

Einführung in die Mathematik für Informatiker: Lineare Algebra INF 110 Wintersemester 2018/19

13. Übungsblatt für die Woche 14.01. - 20.01.2019

Eigenwerte & Eigenvektoren, Diagonalisierung, Skalarprodukt, Norm

Ü73 (a) Gegeben ist die Matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & -1 & 4 \\ 0 & 0 & 3 \end{array}\right).$$

Untersuchen Sie, welche der Vektoren $v_1 = (1,0,0)^T$, $v_2 = (1,1,0)^T$ und $v_3 = (1,1,1)^T$ Eigenvektoren von A sind.

Ist A diagonalisierbar? Stellen Sie A gegebenenfalls in der Form SDS^{-1} mit einer invertierbaren Matrix S und einer Diagonalmatrix D dar.

(b) Untersuchen Sie für die folgenden reellen 3×3 -Matrizen, ob sie diagonalisierbar sind. Stellen Sie die Matrix gegebenenfalls in der Form SDS^{-1} mit einer invertierbaren Matrix S und einer Diagonalmatrix D dar.

$$B = \begin{pmatrix} -2 & 0 & 0 \\ 9 & 4 & -3 \\ 9 & 6 & -5 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 1 & 2 & 0 \end{pmatrix}.$$

- (c) Berechnen Sie die Matrix B^{10} für B aus (b).
- (d) Bestimmen Sie die Eigenwerte der Drehmatrix $M_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$.

Für welche Werte $\alpha \in [0, 2\pi)$ besitzt die Drehmatrix reelle Eigenwerte?

- Ü74 (a) Betrachtet wird ein euklidischer \mathbb{R} -Vektorraum V mit Skalarprodukt und zugehöriger Norm $\|\cdot\|$. Bestimmen Sie für einen beliebigen Vektor $w \neq 0$ in V den Wert $\|\frac{w}{\|w\|}\|$.
 - (b) Berechnen Sie im euklidischen Raum \mathbb{R}^2 mit Standardskalarprodukt für die zwei Vektoren $v=(3,-1)^T$ und $w=(3,4)^T$ folgende Ausdrücke $\|w-v\|$ und $v \bullet \frac{w}{\|w\|}$. Geben Sie eine geometrische Interpretation an.
 - (c) Zeigen Sie, dass in einem euklidischen Raum V mit Skalarprodukt und zugehöriger Norm $\|\cdot\|$ der "Satz des Pythagoras" gilt:

$$\forall u, v \in V : \quad u \bullet v = 0 \iff ||u + v||^2 = ||u||^2 + ||v||^2.$$

Ü75 Zeigen Sie, dass durch

$$u \bullet v := u^T \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right) v \quad \text{ für alle } u,v \in \mathbb{R}^2$$

ein Skalarprodukt für den Vektorraum \mathbb{R}^2 definiert ist. Berechnen Sie die Länge der Einheitsvektoren in der zugehörigen Norm.

H76 (a) Entscheiden Sie, jeweils für die Fälle $\mathbb{K} = \mathbb{Z}_5$, $\mathbb{K} = \mathbb{R}$ und $\mathbb{K} = \mathbb{C}$, ob die Matrizen $A, B, C \in \mathbb{K}^{2 \times 2}$ diagonalisierbar sind.

$$A = \left(\begin{array}{cc} 0 & 3 \\ -1 & 1 \end{array} \right), \qquad B = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \qquad C = \left(\begin{array}{cc} 3 & 2 \\ 3 & 4 \end{array} \right).$$

(b) Für welche Parameterwerte $a \in \mathbb{R}$ ist die Matrix

$$A = \left(\begin{array}{rrr} 3 & 0 & 0 \\ 2 & a & 1 \\ -10 & 0 & -2 \end{array}\right)$$

diagonalisierbar? Bestimmen Sie die Dimension der Eigenräume in Abhängigkeit von a.

- H77 Es sei $A \in \mathbb{K}^{n \times n}$ und S eine invertierbare Matrix aus $\mathbb{K}^{n \times n}$. Zeigen Sie, dass die Matrizen A und $B := S^{-1}AS$ die gleichen Eigenwerte besitzen.
- H78 (a) Zeigen Sie: Für $u, v \in \mathbb{R}^n$ gilt ||u+v|| = ||u-v||, wenn u und v orthogonal sind.
 - (b) Betrachtet wird der \mathbb{R}^2 mit Standardskalarprodukt und zugehöriger Norm. Bestimmen Sie alle Vektoren $v \in \mathbb{R}^2$, die von $u = (1,1)^T$ den Abstand $\sqrt{2}$ haben und normiert sind (d.h. ||v|| = 1). Fertigen Sie eine passende Skizze dazu an.