Ordinary Differential Equations: Lumped Thermal Mass

Consider the cooling of a hot object initially at temperature T_0 in cold air at T_{∞} with heat transfer coefficient h.

Assume that the lumped thermal capacity model, as described in Vick Ch. 7.2.4, is valid. Applying Conservation of Energy yields the differential equation:

$$\rho cV \frac{dT}{dt} = -hA_s(T - T_{\infty}) + gV$$

- a) Draw the cause-effect diagram for this physical problem.
- b) Determine the steady-state solution (aka, find the fixed point). Is it stable or unstable? Sketch the phase portrait and anticipated solution.
- c) Write a function to numerically solve for temperature as a function of time. The system parameters and forcing functions should be inputs, and the time and temperature vectors should be outputs.
- d) Explore the effect of the heat transfer coefficient, h. Plot temperature versus time for h=0 $\frac{W}{m^2 \circ c}$ (no heat transfer), $10 \frac{W}{m^2 \circ c}$ (still day), $25 \frac{W}{m^2 \circ c}$ (typical day), and $75 \frac{W}{m^2 \circ c}$ (hurricane). Put all curves on a single graph. Carry out the integration long enough that the temperature begins to level out at steady state and use a step size of 1 s. The other parameters are $V=10^{-6}$ m^3 , $A_s=10^{-4}$ m^2 , $\rho=1000 \frac{kg}{m^3}$, $c=500 \frac{J}{kg}$, $T_{\infty}=25 \, {}^{\circ}C$, $T_0=400 \, {}^{\circ}C$, and $T_0=0$ $T_0=0$
- e) Explore the effect of a *constant* heat source strength, g(t). Plot the solution for $g(t) = 0, 10^5, 2*10^5$, and $3*10^5 \frac{W}{m^3}$. Put all curves on a single graph. Use the parameter values from part (d) with $h = 25 \frac{W}{m^2 \, ^\circ C}$.

f) Explore the effect of a *pulsed* heat source, defined by:

$$g(t) = g_c \frac{1}{\Delta t} (H(t) - H(t - \Delta t))$$

 g_c = heat source strength $\left(\frac{J}{m^3}\right)$, Δt = pulse time (s), and H(t) = unit step/Heaviside function. Plot the temperature of the thermal mass for:

$$g_c = 4 * 10^7 \frac{J}{m^3}$$

 $\Delta t = 400, 200, 100 \text{ s}$
 $T_0 = T_\infty = 25 \,^{\circ}C$
 $h = 25 \frac{W}{m^2 \,^{\circ}C}$

The remaining parameters are the same as in part (d). For this part, employ a relative and absolute ode45() tolerance of 10^-9 . Create a subplot containing the heat source g(t) on the upper subplot and T(t) on the lower subplot. Physically interpret your results.

Lumped Thermal Mass Phase Portrait/Anticipated Solution

ODE and Initial Condition	Fixed Points (=Steady-State Values)	Stability
$\rho cV \frac{dT}{dt} = -hA_s(T - T_{\infty}) + gV$ $T_0 = 400 \text{ °C, } t = 0$		

Lumped Thermal Mass Phase Portrait/Anticipated Solution

ODE and Initial Condition	Fixed Points (=Steady-State Values)	Stability
$\rho cV \frac{dT}{dt} = -hA_s(T - T_{\infty}) + gV$ $T_0 = 400 \text{ °C, } t = 0$	Tss = Too + 3V NAS	Stable

