Classifier for Handwritten Hebrew Letters with Neural Networks

תאריך ההגשה: 27.04.2025, שעה 23:59

בתרגיל זה ,תאמנו Feedforward NN כדי לסווג תמונות של אותיות ממאגר HHD, שמורכב מאותיות בכתב יד בעברית. המאגר HHD מכיל בסביבות 5000 תמונות של אותיות בודדות. תמונות אלו מחולקות ל-27 תתי-קבוצות (תתי-תיקיות). כל תיקייה מכילה תמונות של אות מסוימת מתוך האלפבית העברי. פרטים אודות המאגר HHD ניתן למצוא ב-[1].

איור 1: דגימה ממאגר HHD של אותיות בכתב יד

מטרת התרגיל היא לאמן רשת נוירונים לסווג אותיות.

העבודה תחולק למספר צעדים:

- (pre-processing) עיבוד מקדים.
- a. המירו את התמונה לגווני אפור (greyscale).
- b. הוסיפו לתמונה ריפוד <u>לבן</u> (padding) כדי שגודלה יהיה מרובע
- אם רוחב התמונה קטן מגובה, יש להוסיף Padding מימין ומשמאל
- אחרת, אם רוחב גדול מגובה, יש להוסיף Padding מלמעלה ולמטה

.0penCV אפשר להיעזר בפונקציית cv2.copyMakeBorder אפשר להיעזר

- cv2. resize בעזרת פונקציית (32, 32). העבירו את התמונה לגודל אחיד
- בתמונות טקסט negative. לרוב, עבודה עם negative הפכו את התמונה ל- ${\sf negative}$. משפרת את הדיוק. הפיכת תמונה לנגטיב ניתן לבצע באמצעות הפקודה ${\sf dst} = 255 {\sf dst}$

1. חילקו את המאמגר באופן אקראי לשלוש קבוצות

.training, validation, and testing sets

החלוקה תהיה ביחס 80% ל-validation , 10% , training ו- 10% ל-validation. חידוד: תמונות של כל אות צריכות להופיע בכל אחת מהקבוצות ביחס 10%:10%:80%.

בשלב 2, אתם תשתמשו ב-training set כדי לאמן רשת נוירונים, וב- validation כדי לבדוק את הביצועים של המודל בקונפיגורציות שונות (למשל, הוספת רגולריזציה). את המודל הסופי (זה שנתן תוצאות הכי טובות על validation set) תריצו על ה- testing set כדי לחשב את הדיוק על קבוצת הנתונים אותה המודל לא ראה במהלך האימון .

.(training) אימון.2

בשלב זה יש לבנות ולאמן רשת נוירונים בקונפיגורציות שונות.

המודל יהיה מורכב מ:

- מתמונה בגודל (תמונה בגודל activation function = ReLU שכבת קלט עם 1024 units שכבת קלט עם 32×32
 - שתי שכבות מסותרות (hidden layers) עם 212 units -
 - activation function = softmax-ו 27 units שכבת פלט עם -

יש לאמן את רשת במספר קונפיגורציות, 50 epochs בכל קונפיגורציה

- regularization ללא 1.
- 2. עם הוספת L1 regularization עם בכל השכבות פרט לשכבת הפלט
 - $\lambda=0.01,~\lambda=0.001$ עם ערכים של למבדה •
 - 3. עם הוספת L2 regularization בכל השכבות פרט לשכבת הפלט
 - $\lambda=0.01,~\lambda=0.001$ עם ערכים של למבדה •

- עם מרספת עם השכבות פרט לשכבת הפלט dropout עם הוספת p=0.5
- 5. עם הוספת שתיהם L2 ו- dropout בכל השכבות פרט לשכבת הפלט
- p=0.5 -ו $\lambda=0.01$, $\lambda=0.001$ ו- $\lambda=0.00$

validation set לאחר הניסויים, יש לבחור את המודל שנתן ביצועיים הכי טובים על

.testing set על NN- הערכת ה-3

ברגע שמצאתם את הקונפיגורציה הטובה ביותר, יש להעריך את התוצאות של NN על testing set

פלט התוכנית יכלול

- 1. קובץ טקסט בשם "results. txt" שיכיל:
 - a. קונפיגורציה של המודל הסופי
- עבור המודל training & validation sets על Loss עבור המודל. b. הסופי. ראו דוגמה:

27) עבור כל אחת מהאותיות (testing set דיוק אליו הגיע המסווג על .c אותיות שונות) ודיוק ממוצע בפורמט

Letter	Accuracy
0	•••
1	
•••	
26	
Avg	•••

בשם excel/scv עבור התוצאות בקובץ <u>Confusion matrix</u> .2 confusion_matrix.csv" בלינק המצורף של ויקיפדיה נמצא הסבר מהי Confusion matrix

הגשה:

יש להגיש קובץ zip שמכיל את הקבצים הבאים:

1. קובץ קוד עם התוכנית.

הקוד שהוגש צריך לכלול עיבדו מקדים, ניסויים עם אימון ובחירת מודל, והרצת המודל הסופי על testing set.

readme. txt קובץ **.2**

The readme.txt should include the following information:

The authors' contact information

Description

A brief description of your program.

Environment

Describe the OS and compilation requirements needed to compile and run the program

How to Run Your Program

Provide instructions and examples so users how to run the program.

Describe if there are any assumptions on the input.

You can also include screenshots to show examples.

confusion_matrix.csv" ו- "results.txt" בפורמט שמתואר למעלה

אופן הבדיקה:

הבדיקה תתבצע בצורה פרונטלית. מועדי הבדיקה ייקבעו בהמשך.

בכל שימוש המאגר HHD, יש לתת הפנייה ל-[1]

עבודה נעימה!

References

[1] <u>I. Rabaev, B. Kurar Barakat, A. Churkin and J. El-Sana. The HHD Dataset. The 17th International Conference on Frontiers in Handwriting Recognition, pp. 228-233, 2020.</u>