Quantitative Analytic Techniques (Class #12)

Gregory M. Eirich QMSS

1. Growth curve analysis

1. Growth curve analysis

An example of growth curves

 Muthén, Bengt. "Latent variable analysis." The Sage handbook of quantitative methodology for the social sciences. Thousand Oaks, CA: Sage Publications (2004): 345-68.

Time often is necessary to see how people sort out

- Many processes take a long time to have effects
- Trajectories can converge or diverge
- We want to study groups of people as they change over time in similar and different ways
- Do certain events change people's trajectories up or down?

The substantive issue

- Growth in math scores for Longitudinal Study of Youth
- Lots of variability! Lots

The question

Are there typical ways that math scores move? Can we see them?

Three basic patterns emerge

 Some covariates predict which path students are on and then that path corresponds with some outcomes, too, like drop-out

Why do growth curve analysis?

Why do growth curves I?

- We want to model the shape of growth over time
- One step more complicated than merely plotting the values over time
- How much does everyone follow the same path or do they deviate from it?
- Similar to trend analysis over pooled cross-sectional data, but now, we have the same people over time (i.e., panel data)

Why do growth curves II?

- We want to compare the starting points and trajectories (and final destinations) of groups over time
- We are usually looking for diverging trajectories
- Or converging ones
- Or ones with stable differences over time

Why do growth curves III?

- We want to see if there are inflection points, turning points, tipping points, etc. when something happens in the course of someone's life:
- How to criminal trajectories change when someone gets married?
- How do children's depression trajectories change after their parents get divorced?
- Etc.

What makes growth curves unique?

What makes growth curves unique I?

- We are modeling a full trajectory (a whole series of Y values over time) for each person as our dependent variable.
- Compare that to first differences, where we broke everything down to year-to-year changes only
- Growth curves take a longer-term perspective

What makes growth curves unique II?

- Tricky to think about how to incorporate time-varying characteristics, since we are modeling the whole growth curve
- Most unchanging variables can be entered "at baseline" – no problem
- Unchanging variables can change in importance over time; i.e., an interaction of that variable with time

What makes growth curves unique III?

- Must think hard about cumulative processes that take place over time
- How does one time period affect the next?

What makes growth curves unique IV?

 How much do we deal with individual heterogeneity and how much do we deal with overall patterns?

About growth curves

Growth curves can be modeled in a few ways

- Structural equation modeling (SEM)
- Hierarchical linear modeling (HLM)
- MANOVA

2. How do I do growth curve analysis?

How to do growth curves I

- 1. Look at the overall trend of Y over time
- 2. Plot the growth curves for each person
- 3. You will include time, but do you need a quadratic too?

How to do growth curves II

- 4. Do you need separate intercepts for each person? [Almost always.]
- 5. Do you need separate slopes (on time) for each person as well? [Usually.]
- 6. Do you need other Xs in the model? [Sure.]
- 7. Do you need interactions of some Xs with time? [Hmmmm?]

How to do growth curves I

1. Look at the overall trend of Y over time

Setting up the data

```
library(QMSS)
library(ggplot2)

pd=read.csv(file.choose()) ### choose the GSS panel ###
```

Overall trend in confidence in banks

This is from Wave 1 (2006) to Wave 3 (2010)

How did I do this?

```
vars <- c("idnum", "panelwave", "sex", "age", "educ", "race", "polviews", "confinan")
sub <- pd[, vars]
sub$n.confinan <- ReverseThis(sub$confinan)

# Overall trend in confidence in banks
g_trend <- ggplot(sub, aes(x = panelwave, y = n.confinan))
(g_trend <- g_trend + stat_summary(fun.y=mean, geom="line", lwd = 1.25))</pre>
```

How to do growth curves I

2. Plot the growth curves for each person

Empirical growth curves

This is from Wave 1 (2006) to Wave 3 (2010); for the

first hundred+ cases

How did I do this?

Individual regressions for each person

This is from Wave 1 (2006) to Wave 3 (2010); for the

first hundred+ cases

How did I do this?

```
# individual regression lines for idnum < 200 (& overall)
g_reg <- g_growth + stat_smooth(method = lm, se = F) + no_legend
g_reg + stat_summary(fun.y=mean, geom="smooth", aes(group=1), lty = 2, color = "black")</pre>
```

What do we see here?

There also looks like a lot of individual variation over time regarding their opinions on banks

How to do growth curves I

3. You will include time, but do you need a quadratic too?

Overall linear prediction is this

Not a bad fit here

How did I do this?

```
# overall linear prediction
g_lm <- ggplot(sub, aes(x = panelwave, y = n.confinan))
g_lm <- g_lm + stat_summary(fun.y=mean, geom="point", aes(group=1), size=4, color =
"navyblue")
g_lm <- g_lm + stat_smooth(method = lm, se = F, color = "skyblue", lwd = 1.25)
g_lm</pre>
```

Overall quadratic prediction is this

This is an amazing fit, but still pretty close to linear ...

How did I do this?

How to do growth curves II

4. Do you need separate intercepts for each person? [Almost always.]

Model with no separate intercepts ...

Just an OLS with clustered and robust standard errors; at Wave 2, confidence in banks has dropped -.189, relative to Wave 1 – and at Wave 3, it has dropped -.487

```
library(psych)
library(multcomp)
library(rms)
library(lme4)
# ols with clustered & robust SEs
robcov(ols(n.confinan \sim factor(panelwave), x = T, y = T, data = sub),
       cluster = sub$idnum)
                                             Model Likelihood
                                                                  Discrimination
                                                Ratio Test
                                                                     Indexes
                                             LR chi2
                                                        280.89
                                                                  R2
Obs
                                 3163
                                                                           0.085
siama
                               0.6433
                                             d.f.
                                                                  R2 adi
                                                                           0.084
                                             Pr(> chi2) 0.0000
                                                                           0.208
d.f.
                                 3160
Clusters
                                 1324
            Coef
                    S.E.
                             Pr(>|t|)
Intercept
           2.1538 0.0180 119.83 < 0.0001
panelwave=2 -0.1893 0.0229 -8.26 <0.0001
panelwave=3 -0.4876 0.0252 -19.34 <0.0001
```

library(plyr)

Model with no separate intercepts ...

Just an OLS with clustered and robust standard errors; with a continuous measure of time, this means that confidence in banks drops -.239 points per Wave

```
robcov(ols(n.confinan \sim panelwave, x = T, y = T, data = sub), cluster = sub$idnum)
```

		Model Likelihood Ratio Test		Discrimination Indexes	
Obs	3163	LR chi2	276.04	R2	0.084
sigma	0.6436	d.f.	1	R2 adj	0.083
d.f.	3161	Pr(> chi2) 0.0000		g	0.210
Clusters	1324				

```
Coef S.E. t Pr(>|t|)
Intercept 2.4077 0.0269 89.62 <0.0001
panelwave -0.2398 0.0126 -19.03 <0.0001
```

Model with squared time ...

Just an OLS with clustered and robust standard errors; confidence in banks starts to drop only a little and then drops much further too

```
sub$panelwavesq = sub$panelwave^2
robcov(ols(n.confinan \sim panelwave + panelwavesq, x = T, y = T, data = sub), cluster =
sub$idnum)
                                          Model Likelihood
                                                              Discrimination
                                             Ratio Test
                                                                  Indexes
                                          LR chi2 280.89 R2
                                3163
                                                                  0.085
Obs
                              0.6433
                                          d.f.
                                                              R2 adi 0.084
sigma
d.f.
                                3160
                                          Pr(> chi2) 0.0000
                                                                      0.208
Clusters
                               1324
```

```
Coef S.E. t Pr(>|t|)
Intercept 2.2343 0.0690 32.40 <0.0001
panelwave -0.0260 0.0801 -0.32 0.7453
panelwavesq -0.0544 0.0200 -2.72 0.0065
```

Now, the random intercept model

The random intercept model is this:

$$y_i = \alpha_{i[j]} + \beta x_i + e_i$$

which provides a unique intercept for each person *j*

Our random intercept model

The random intercept model is this:

$$nconfin_i = \alpha_{i[j]} + \beta_1 time_i + \beta_1 time_i^2 + e_i$$

which provides a unique intercept for each person *j*

A model with random intercepts ...

By typing "1 | idnum" this is like saying, for each unique idnum, give me a random parameter for each variable listed. If nothing is specified, it just gives for each idnum, a unique intercept

```
lmer.confinan <- lmer(n.confinan ~ panelwave + (1|idnum), data = sub, REML = F)</pre>
Linear mixed model fit by maximum likelihood ['lmerMod']
             BIC logLik deviance df.resid
    AIC
          5984.1 -2975.9 5951.8
  5959.8
                                       3159
Random effects:
Groups
                  Variance Std.Dev.
         Name
 idnum (Intercept) 0.1287 0.3588
                     0.2852 0.5341
 Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41046 0.02582 93.34
panelwave -0.24151 0.01210 -19.95
Correlation of Fixed Effects:
          (Intr)
panelwave -0.841
```

A model with random intercepts ...

Give me a random parameter for each variable listed. If nothing is specified, it just gives for each idnum, a unique intercept

```
> lmer.confinan <- lmer(n.confinan ~ panelwave + (1|idnum), data = sub, REML = F)
> summary(lmer.confinan)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula: n.confinan ~ panelwave + (1 | idnum)
  Data: sub
             BIC logLik deviance df.resid
    AIC
  5959.8
          5984.1 -2975.9 5951.8
                                      3159
Scaled residuals:
        10 Median 30
    Min
                                       Max
-2.26693 -0.64452 -0.03549 0.50991 2.74135
Random effects:
Groups Name
                  Variance Std.Dev.
idnum (Intercept) 0.1287 0.3588
                    0.2852 0.5341
Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercent) 2 (110/6) 0 02582 93 3/1
```

A model with random intercepts ...

Confidence in banks drops -.242 points per Wave (slightly different from OLS earlier)

```
lmer.confinan <- lmer(n.confinan ~ panelwave + (1|idnum), data = sub, REML = F)</pre>
Linear mixed model fit by maximum likelihood ['lmerMod']
             BIC logLik deviance df.resid
     AIC
  5959.8 5984.1 -2975.9
                            5951.8
                                       3159
Random effects:
                Variance Std.Dev.
Groups
         Name
         (Intercept) 0.1287 0.3588
 idnum
                     0.2852 0.5341
 Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41046
                       0.02582
                                 93.34
panelwave -0.24151
                       0.01210 -19.95
Correlation of Fixed Effects:
          (Intr)
panelwave -0.841
```

What is all this "Random-effects" at bottom?

- Std.Dev.(idnum) is how much individual variation there is in the constant, once everyone gets their own intercept
- I.e., the constant has a mean of 2.41 and now a sd of 0.359

```
lmer.confinan <- lmer(n.confinan ~ panelwave + (1|idnum), data = sub, REML = F)</pre>
Linear mixed model fit by maximum likelihood ['lmerMod']
             BIC logLik deviance df.resid
    AIC
  5959.8
          5984.1 -2975.9 5951.8
                                       3159
Random effects:
                    Variance Std.Dev.
Groups
         Name
                              0.3588
idnum (Intercept) 0.1287
                     0.2852
 Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41046
                       0.02582 93.34
panelwave -0.24151
                       0.01210 -19.95
Correlation of Fixed Effects:
          (Intr)
panelwave -0.841
```

What is all this "Random-effects" at bottom?

- Is giving everyone their own intercept better than OLS?
 Let's compare AICs between the OLS model (run as a GLS) and the random-intercept one.
- Random-intercept AIC (i.e., 5959.8) < OLS (i.e., 6192.9), so random-intercept is an improved fit.

What is all this "Random-effects" at bottom?

This is just the calculation of Rho again.

```
Rho = \sigma_u^2/(\sigma_u^2 + \sigma_e^2)
= (.36^2)/(.36^2 + .53^2)
= 0.31
```

```
-- from earlier --
Random effects:
Groups Name Variance Std.Dev.
idnum (Intercept) 0.1287 0.3588
Residual 0.2852 0.5341

> rho(lmer.confinan)
[1] 0.3109777
```

We have already estimated this model

Using *plm*, with option="random": that gives same coefficients and same Rho as random intercepts model

Random intercepts but quadratic on time

This may have improved the fit marginally (lower AIC); confidence in banks goes down and down even faster

```
> lmer.confinan2 <- update(lmer.confinan, ~ . + I(panelwave^2))</pre>
> summary(lmer.confinan2)
             BIC logLik deviance df.resid
    ATC
          5984.6 -2972.1 5944.3
 5954.3
                                      3158
Random effects:
Groups
                 Variance Std.Dev.
         Name
idnum (Intercept) 0.1293 0.3596
Residual
                    0.2840 0.5329
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
             Estimate Std. Error t value
             2.22899 0.07077 31.496
(Intercept)
panelwave -0.01744 0.08226 -0.212
I(panelwave^2) -0.05700 0.02070 -2.754
Correlation of Fixed Effects:
          (Intr) panlwv
panelwave -0.966
I(panlwv^2) 0.931 -0.989
> rho(lmer.confinan2)
[1] 0.3129095
```

How to do growth curves II

5. Do you need separate slopes (on time) for each person as well? [Usually.]

The equations -

The random intercept and random coefficient model is this:

$$y_i = \alpha_{i[j]} + \beta_{i[j]} x_i + u_{\alpha i} + u_{\beta i[j]} + e_i$$

A lot going on here. 1) By typing *panelwave* after the "1+" this is like saying, allow *panelwave* to have a random coefficient (slope) for each idnum

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML = F)
> summary(lmer.confinan3)
             BIC logLik deviance df.resid
    AIC
          5993.1 -2972.3 5944.7
  5956.7
                                      3157
Random effects:
                 Variance Std.Dev. Corr
Groups Name
 idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495
                                     -0.69
                     0.26280 0.5126
 Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022
                       0.02680 89.94
panelwave -0.24128
                      0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

The covariance between each idnum's intercept and slope can be unstructured; we don't want the default to be covariance of zero

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML
> summary(lmer.confinan3)
    AIC BIC logLik deviance df.resid
 5956.7 5993.1 -2972.3 5944.7
                                     3157
Random effects:
               Variance Std.Dev. Corr
Groups Name
 idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495 -0.69
                   0.26280 0.5126
Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022 0.02680 89.94
panelwave -0.24128 0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

Interpretation of constant. At Wave 0, on average, people have a 2.41 score, but there is substantial variation around that mean, with a st dev of .499

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML
> summary(lmer.confinan3)
    AIC BIC logLik deviance df.resid
 5956.7 5993.1 -2972.3 5944.7
                                     3157
Random effects:
Groups Name
               Variance Std.Dev. Corr
 idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495 -0.69
               0.26280 0.5126
Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022 0.02680 89.94
panelwave -0.24128 0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

Interpretation of slope. On average, people's scores drop by -.24 per Wave, but there is substantial variation around that average slope, with a st dev of .149

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML
> summary(lmer.confinan3)
    AIC BIC logLik deviance df.resid
 5956.7 5993.1 -2972.3 5944.7
                                     3157
Random effects:
Groups
               Variance Std.Dev. Corr
         Name
 idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495 -0.69
               0.26280 0.5126
Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022 0.02680 89.94
panelwave -0.24128 0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

Interpretation of corr(panel~ve,_cons) I. There is a high negative correlation between the constant and the slope for each idnum (ρ =-.69).

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML
> summary(lmer.confinan3)
    AIC BIC logLik deviance df.resid
  5956.7 5993.1 -2972.3 5944.7
                                     3157
Random effects:
               Variance Std.Dev. Corr
Groups
         Name
 idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495 -0.69
 Residual
                0.26280 0.5126
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022 0.02680 89.94
panelwave -0.24128 0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

Interpretation of corr(panel~ve,_cons) II. When people started out with a high nconfin score, they fell more rapidly over time; conversely, those with low initial nconfin scores *increased* them rapidly

```
> lmer.confinan3 <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub, REML
= F)
             BIC logLik deviance df.resid
    AIC
          5993.1 -2972.3 5944.7
 5956.7
                                      3157
Random effects:
Groups
         Name
                Variance Std.Dev. Corr
idnum (Intercept) 0.24955 0.4995
         panelwave 0.02236 0.1495 -0.69
                   0.26280 0.5126
Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.41022 0.02680 89.94
panelwave -0.24128 0.01245 -19.38
Correlation of Fixed Effects:
         (Intr)
panelwave -0.854
```

Are random slopes necessary?

We can determine if random slopes better fit our data by comparing the likelihood ratio from the random intercept model (LL=-2976) with the LR from the random intercept + random slopes model (LL=-2972)

Are random slopes necessary?

The random intercept + random slopes model provides a superior fit to the data than the random intercepts model (p<.05). But the AIC change is pretty minimal (=3 points)

How to do growth curves II

6. Do you need other Xs in the model? [Sure.]

Add in time-invariant characteristics

Net of time, men are -.11 lower on the nconfin scale. Easy enough.

```
> sub$male <- ifelse(sub$sex==1, "male", "female")</pre>
> lmer.confinan4 <- update(lmer.confinan3, ~ . + male)</pre>
> summary(lmer.confinan4)
             BIC logLik deviance df.resid
    AIC
  5943.3
          5985.7 -2964.6 5929.3
                                      3156
Random effects:
Groups
                  Variance Std.Dev. Corr
         Name
 idnum
       (Intercept) 0.25402 0.5040
         panelwave 0.02217 0.1489 -0.71
                     0.26298 0.5128
 Residual
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.45701 0.02934 83.74
panelwave -0.24174 0.01242 -19.46
malemale -0.11033 0.02784 -3.96
Correlation of Fixed Effects:
         (Intr) panlwv
panelwave -0.788
malemale -0.403 0.010
```

Add in a time-varying characteristics too

Net of time and gender, each move up the political conservativism scale increases one's nconfin score by 0.016 (p<.1)

```
> lmer.confinan5 <- update(lmer.confinan4, ~ . + polviews)</pre>
             BIC logLik deviance df.resid
    AIC
 5759.6 5807.9 -2871.8
                           5743.6
                                      3061
Random effects:
                Variance Std.Dev. Corr
Groups
         Name
idnum
         (Intercept) 0.2612
                             0.5110
         panelwave
                    0.0240 0.1549 -0.72
Residual
                    0.2610 0.5109
Number of obs: 3069, groups: idnum, 1301
Fixed effects:
            Estimate Std. Error t value
(Intercept) 2.395228
                      0.046015
                               52.05
panelwave -0.242785 0.012653 -19.19
malemale -0.103955 0.028089 -3.70
polviews 0.015831
                      0.008601
                                1.84
Correlation of Fixed Effects:
         (Intr) panlwv maleml
panelwave -0.503
malemale -0.268 0.008
polviews -0.762 -0.012
```

0.013

How to do growth curves II

7. Do you need interactions of some Xs with time?

Changes in confidence in banks, by sex

This is from Wave 1 (2006) to Wave 3 (2010)

How did I do this?

```
colors_and_labels <- scale_color_manual(values = c("red3", "cyan3"), name = "")
g_sex <- ggplot(sub, aes(x = panelwave, y = n.confinan, color = male))
(g_sex <- (g_sex + stat_summary(fun.y=mean, geom="line", lwd = 1.25)))
g_sex + colors_and_labels</pre>
```

Add in a time-invariant characteristic

Males are losing confidence in banks faster than females (B on the interaction = -.081, p<.01)

```
> lmer.confinan6 <- update(lmer.confinan5, ~ . + male:panelwave - polviews)</pre>
    AIC
             BIC logLik deviance df.resid
          5983.3 -2959.4 5918.9
 5934.9
                                      3155
Random effects:
                  Variance Std.Dev. Corr
Groups
         Name
idnum
         (Intercept) 0.2466 0.4966
         panelwave 0.0200 0.1414 -0.70
Residual
                    0.2635 0.5133
Number of obs: 3163, groups: idnum, 1324
Fixed effects:
                  Estimate Std. Error t value
                             0.03505 68.32
                 2.39458
(Intercept)
                 -0.20828 0.01611 -12.93
panelwave
                  0.04022 0.05424 0.74
malemale
panelwave:malemale -0.08145 0.02516 -3.24
Correlation of Fixed Effects:
           (Intr) panlwv maleml
panelwave -0.857
malemale -0.646 0.555
panlwv:mlml 0.551 -0.642 -0.858
```

The predicted curves for males and females

What do you see?

How did I do this?

```
model.dat <- cbind(model.frame(lmer.confinan6), fitted = fitted(lmer.confinan6))
model.dat <- subset(model.dat, idnum < 200)
g_sex_fit <- ggplot(model.dat, aes(x = panelwave, y = fitted, group = idnum, color = male))
(g_sex_fit <- g_sex_fit + geom_line() + geom_point() + facet_grid( . ~ male))
g_sex_fit + colors_and_labels</pre>
```

Maybe I should enter these interactions as random effects?

Why? Because perhaps the intercepts and/or slopes are more variable for one gender over the other.

Random intercepts/random slopes for men

Males are losing confidence in banks at -.292 per Wave, with a sd on that slope of .105; the constant has a mean of 2.43 and a sd of .509

```
> lmer.confinanM <- lmer(n.confinan ~ panelwave + (1 + panelwave | idnum), data = sub,
subset = sex == 1)
> summary(lmer.confinanM)
Random effects:
                Variance Std.Dev. Corr
Groups
         Name
 idnum
         (Intercept) 0.26126 0.5111
         panelwave 0.01148 0.1072
                                     -0.78
 Residual
                     0.27684 0.5262
Number of obs: 1309, groups: idnum, 568
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.43758 0.04240 57.49
panelwave -0.29204 0.01914 -15.26
Correlation of Fixed Effects:
          (Intr)
panelwave -0.856
```

Random intercepts/random slopes for women

Females are losing confidence in banks at -.209 per Wave, with a sd on that slope of .171; the constant has a mean of 2.397 and a sd of .501

```
> lmer.confinanW <- update(lmer.confinanM, subset = sex == 2)</pre>
> summary(lmer.confinanW)
Random effects:
                Variance Std.Dev. Corr
Groups
         Name
 idnum
         (Intercept) 0.25308 0.5031
         panelwave 0.02961 0.1721
                                      -0.70
                     0.24831 0.4983
 Residual
Number of obs: 1854, groups: idnum, 777
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.39741 0.03455 69.4
panelwave -0.20966 0.01625 -12.9
Correlation of Fixed Effects:
          (Intr)
panelwave -0.856
```

Are the intercepts and/or slopes more variable for one gender over the other?

Maybe a little bit. The standard deviation of the slope for males is only .10 but for females it is .17. This means that the growth curves for males are bunched a bit more together than for females. How much should we worry about this?

Not unlike sequence analysis too

Be creative about "types" of experiences, i.e.:

- "Early delinquents" vs. "late delinquents"
- "Young divorce" vs. "old divorce"
- Etc.