Spherical designs and the D_4 lattice

Masatake HIRAO (Aichi Pref. Univ.)

Joint works with

Hiroshi NOZAKI (Aichi Univ. Education), Koji TASAKA (Aichi Pref. Univ.)

The 45th Australasian Combinatorics Conference: 45ACC 2023/12/13

* This work was supported by JSPS KAKENHI

Grant Number JP19K03445, JP20K03736, JP20K1429, JP22K03402.

Today's talk

MH, H. Nozaki, K. Tasaka, Spherical designs and modular forms of the D_4 lattice, Res. Number Theory, 9, (2023), 77 (arXiv: 2303.09000v2) + recent results

- The D_4 root system D_4 (i.e., vertices of 24-cell C_{24}) is a unique tight antipodal $\{10,4,2\}$ -design of \mathbb{S}^3
- † Each shell of the D_4 lattice can be decomposed into orthogonal transformations of the D_4 root system
- † Partial results on Lehmer's conjecture for D_4 , i.e., each m-shell $(D_4)_{2m}$ is **not** a spherical 6-design
- $\mathbf{D}_4 \cup \mathbf{D}_4^*$ is a unique tight antipodal $\{14,10,6,4,2\}$ -design of \mathbb{S}^3

Today we will especially talk about • and •

Spherical T-design

• (usual) spherical design: Delsarte-Goethals-Seidel(1977)

$$\begin{array}{l} \boxed{\text{Def.}} \text{ (Delsarte-Seidel, 1989)} \quad T \subset \mathbb{N} \\ X \subset \mathbb{S}^{d-1} \text{ (}|X| < \infty)\text{: } T\text{-design} \\ \iff \sum_{x \in X} f(x) = 0, \quad \forall f \in \operatorname{Harm}_{\ell}(\mathbb{R}^d), \quad \forall \ell \in T \\ \\ \iff \frac{1}{|X|} \sum_{x \in X} f(x) = \int_{\mathbb{S}^{d-1}} f(x) \ d\sigma(x), \quad \forall f \in \operatorname{Harm}_{\ell}(\mathbb{R}^d), \quad \forall \ell \in T \end{array}$$

Rem. For $T = \{t, t - 1, ..., 1\}$, a T-design is an usual t-design.

Ex. (T-design on \mathbb{S}^2 , vertices of regular polyhedrons).

C_{24} : 24-cell

Rem.

- \bullet C_{24} is a 5-design, and
- $T = \{10, 4, 2\} \cup 2\mathbb{N} + 1$ -design (cf. Pache(2005))
- any half set of C_{24} is a $T = \{10, 4, 2\}$ -design

$$X$$
: antipodal $\iff -X = X$

(*
$$X$$
: antipodal $\Rightarrow T \supset 2\mathbb{N} + 1$)

$$Y \subset X$$
: half set of X $\iff X = Y \cup (-Y), \ Y \cap Y' = \emptyset$

Tight design & LP bound

Thm. (Delsarte et al.,1977). $X \subset \mathbb{S}^{d-1}$: T-design $\exists F(x) = \sum_i f_i Q_i(x)$, s.t., $(Q_i(x))$: Gegenbauer poly. of deg. i) (LP1) $\forall x \in [-1,1], \ F(x) \geq 0, \ F(1) > 0$; (LP2) $\forall i \notin T, \ f_i \leq 0, \ f_0 > 0$ then

$$|X| \ge \frac{F(1)}{f_0}$$

If "=" is attained, then $A(X):=\{\langle x,y\rangle\mid x,y\in X,x\neq y\}\subset \{x\mid F(x)=0\}.$

Def. X: tight T-design $\iff \exists F(x)$ satisfying (LP1) & (LP2) for T, s.t., $|X| = F(1)/f_0$

Def. X: tight antipodal T-design \iff Y: tight T-design a half of set X

D_4 lattice and its root system D_4

the D_4 lattice:

$$D_4 = \{x = (x_1, x_2, x_3, x_4) \in \mathbb{Z}^4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 \equiv 0 \pmod{2}\}$$

the m-shell of the D_4 lattice:

$$(D_4)_{2m} = \{x \in D_4 \mid x_1^2 + x_2^2 + x_3^2 + x_4^2 = 2m\}$$

the D_4 root system: $D_4 = (D_4)_2 = (\pm 1, \pm 1, 0, 0)^P$, $|D_4| = 24$

Rem.
$$\bullet$$
 $(D_4)_{2m-1} = \emptyset, \forall m \in \mathbb{N}$

• From Jacobi's four-square theorem,

$$|(D_4)_{2m}| = 24 \sum_{\substack{d|2m\\d>0:\text{odd}}} d$$

$$|D_4| = |(D_4)_2| = 24,$$

$$|(D_4)_4| = 96, |(D_4)_8| = 96, \dots$$

Projection of C_{24} into 3D

The LP bound for D_4

Y: half set of D_4 , s.t., $Y \cup -Y = D_4$ and |Y| = 12.

Thm. (HNT23). A half set of \mathbf{D}_4 is a tight $\{10,4,2\}$ -design. Equivalently, \mathbf{D}_4 is a tight antipodal $\{10,4,2\}$ -design.

Proof)
$$F(x) = \frac{1}{11264}Q_{10}(x) + \frac{1}{2560}Q_4(x) + \frac{1}{768}Q_2(x) + \frac{3}{1024}$$
$$= \frac{1}{16}x^2\left(x + \frac{1}{2}\right)^2\left(x - \frac{1}{2}\right)^2(16x^4 - 28x^2 + 13)$$

satisfies the conditions of the LP bound, and

$$|Y| \ge \frac{F(1)}{f_0} = \frac{9/256}{3/1024} = 12.$$

 \bullet D₄ is not a tight 5-des. but a tight antipodal $\{10,4,2\}$ -des.

Uniqueness of tight antipodal {10,4,2}-design

Thm. (HNT23).

 \mathbf{D}_4 is unique as a tight antipodal $\{10,4,2\}$ -design.

The proof is similar to the method of C_{600} (Boyvalenkov-Danev, 2001)

$$X := \frac{1}{\sqrt{2}} D_4$$

•
$$A(X) = \{-1, -1/2, 0, 1/2\}$$
 (distance dist.)

• For given $x_0 \in X$,

$$X_0 = \{ \mathbf{x} \in X \mid \langle \mathbf{x}_0, \mathbf{x} \rangle = 0 \} \subset \mathbb{R}^3, \mid X_0 \mid = 6$$

is the regular octahedron (tight 3-des. of S^2)

X is uniquely onstructed only from X_0 (derived code)

$$X = \{(1,0,0,0),$$

$$(-1,0,0,0),$$

$$(0,\pm 1,0,0),$$

$$(0,0,\pm 1,0),$$

$$(0,0,0,\pm 1),$$

$$\frac{1}{2}(\pm 1,\pm 1,\pm 1,\pm 1)\}$$

$\mathbf{D_4} \cup \mathbf{D_4^*}$ (H.-Nozaki-Tasaka, 2023+)

 $\mathbf{D_4^*} \colon \text{ the minimum vectors of } D_4^* = \{ \boldsymbol{x} \in \mathbb{R}^4 \mid \forall \boldsymbol{y} \in D_4, \langle \boldsymbol{x}, \boldsymbol{y} \rangle \in \mathbb{Z} \}$ $\frac{1}{\sqrt{2}} (\mathbf{D_4} \cup \mathbf{D_4^*}) = (\pm 1, 0, 0, 0)^P \cup \frac{1}{\sqrt{2}} (1, 1, 0, 0)^P \cup \frac{1}{2} (\pm 1, \pm 1, \pm 1, \pm 1)^P$

Thm. (HNT23+). A half set of $D_4 \cup D_4^*$ is a tight $\{14, 10, 6, 4, 2\}$ -des. Equivelntly, $D_4 \cup D_4^*$ is a tight antipodal $\{14, 10, 6, 4, 2\}$ -des.

Proof) We obtain the following test function

$$F(x) = \frac{1}{3072}x^{2}(-1+2x)^{2}(1+2x)^{2}(-1+2x^{2})^{2}(37-84x^{2}+48x^{4})$$

$$= \frac{1}{245760}Q_{14}(x) + \frac{1}{135168}Q_{10}(x) + \frac{1}{114688}Q_{6}(x)$$

$$+ \frac{1}{49152}Q_{4}(x) + \frac{1}{147456}Q_{2}(x) + \frac{1}{8192},$$

which holds $\frac{F(1)}{f_0} = 24 = \frac{|D_4 \cup D_4^*|}{2}$

Thm. (HNT23+). $\mathbf{D}_4 \cup \mathbf{D}_4^*$ is unique as a tight antipodal $\{14,10,6,4,2\}$ -des.

Known uniqueness designs

X	X	$\mid t \mid$	T
$\frac{1}{\sqrt{2}}E_8$	240	7	{10, 6, 4, 2}
$\frac{1}{2}\Lambda_{24}$	196560	11	{14, 10, 8, 6, 4, 2}
C_{600}	120	11	$\boxed{\{58, 46, 38, 34, 28, 26, 22, 18, 16, 14, 10, 8, 6, 4, 2\}}$

Prop. (HNT23+). (i) A half set of $\frac{1}{\sqrt{2}}E_8$ is a tight $\{10, 6, 4, 2\}$ -des.

$$F(x) = \frac{1}{292864}Q_{10}(x) + \frac{3(187 - 4\sqrt{759})}{7884800}Q_{6}(x) + \frac{11131 - 252\sqrt{759}}{39424000}Q_{4}(x) + \frac{3568 - 81\sqrt{759}}{4928000}Q_{2}(x) + \frac{9(661 - 12\sqrt{759})}{2816000} = \frac{1}{4400}x^{2}(x - \frac{1}{2})^{2}(x + \frac{1}{2})^{2}(4400x^{4} - 6050x^{2} + 3633 - 36\sqrt{759}).$$

(ii) A half set of $\frac{1}{2}\Lambda_{24}$ is a tight $\{14, 10, 8, 6, 4, 2\}$ -design.

$$\begin{split} F(x) &= \frac{1}{73030041600} Q_{14}(x) + \frac{529 + 6\sqrt{12259}}{455707459584} Q_{10}(x) + \frac{21353 + 224\sqrt{12259}}{1822829838336} Q_8(x) \\ &+ \frac{1776821 + 18092\sqrt{12259}}{29165277413376} Q_6(x) + \frac{116957 + 1164\sqrt{12259}}{511671533568} Q_4(x) \\ &+ \frac{5(119431 + 1140\sqrt{12259})}{810146594816} Q_2(x) + \frac{5(1477 + 12\sqrt{12259})}{2508193792} \\ &= \frac{1}{17644} x^2 (x - \frac{1}{2})^2 (x + \frac{1}{2})^2 (x - \frac{1}{4})^2 (x + \frac{1}{4})^2 (17664x^4 - 22448x^2 + 15123 + 84\sqrt{12259}). \end{split}$$

(iii) A half set of the vertices of C_{600} is a tight $\{18, 16, 14, 10, 8, 6, 4, 2\}$ -design.

$$\begin{split} F(x) &= \frac{1}{4980736} Q_{18}(x) + \frac{3353 + 540\sqrt{30}}{18075353088} Q_{16}(x) + \frac{-3169 + 1188\sqrt{30}}{15948840960} Q_{14}(x) \\ &+ \frac{9(545 - 84\sqrt{30})}{1949302784} Q_{10}(x) + \frac{11719 - 1836\sqrt{30}}{1594884096} Q_{8}(x) + \frac{7225 - 1188\sqrt{30}}{531628032} Q_{6}(x) \\ &+ \frac{39121 - 6372\sqrt{30}}{1772093440} Q_{4}(x) + \frac{104503 - 16092\sqrt{30}}{3189768192} Q_{2}(x) + \frac{5(749 - 108\sqrt{30})}{88604672} \\ &= \frac{1}{16224} x^{2} (x - \frac{\sqrt{5} - 1}{4})^{2} (x + \frac{\sqrt{5} - 1}{4})^{2} (x - \frac{\sqrt{5} + 1}{4})^{2} (x + \frac{\sqrt{5} + 1}{4})^{2} \\ &\times \{16224 x^{4} + (-33151 + 540\sqrt{30}) x^{2} + 17676 - 648\sqrt{30}\} \end{split}$$

Conclusion and future tasks

- The D_4 root system (vertices of regular 24-cell) is a unique tight antipodal $\{10,4,2\}$ -design of \mathbb{S}^3 .
- † Each shell of the D_4 lattice can be decomposed into orthogonal transformations of the D_4 root system.
 - † Partial results on Lehmer's conjecture for D_4 .
- $\mathbf{D}_4 \cup \mathbf{D}_4^*$ is a unique tight antipodal $\{14,10,6,4,2\}$ -design of \mathbb{S}^3
- Find other tight *T*-designs
- Find similar decompositions of shells of other lattices

Thank you for your attention!

Masatake HIRAO (Aichi Pref. Univ.) hirao@ist.aichi-pu.ac.jp

Appendix. D₄-decompose of $(D_4)_{2m}$

- $W(F_4) \subset O(4)$ acts on the D_4 lattice. $|W(F_4)| = 1152$.
- the m-shell $(D_4)_{2m}$ is decomposed by orbits of $W(F_4)$.
- There exists a subgr. N of $W(F_4)$ whose harmonic Molien series is $\sum_{i\geq 0} \dim \mathrm{Harm}_i(\mathbb{R}^d)^N t^i = 1 + 7t^6 + 9t^8 + 26t^{12} + \cdots.$

Moreover, |N| = 24 and $-I \in N$.

- Any orbit of N is an antipodal $\{10,4,2\}$ -design.
- From |N| = 24, any orbit of N is an orthogonal trans. of \mathbf{D}_4 .

Thm. (HNT23). Each m-shell $(D_4)_{2m}$ can be decomposed by orthogonal transformations of D_4 .