Дискретная математика Лабораторная работа по теории вероятности, 2017 год

Задача А. Экзамен

Имя входного файла: exam.in
Имя выходного файла: exam.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайта

Экзамен по дискретной математике у группы, состоящей из n человек, принимают k преподавателей. При этом i-й преподаватель опрашивает ровно p_i студентов. У каждого студента ровно одна попытка на сдачу экзамена, и гарантируется, что будут опрошены все студенты. На основе предыдущих экзаменов, известно, что шанс произвольного студента сдать экзамен i-му преподавателю равен m_i %. Требуется найти вероятность, с которой произвольный студент сдаст экзамен.

Формат входного файла

В первой строке входного файла содержатся два целых числа k и $n(1 \le k \le n \le 10^6)$. В следующих k строках содержится по два целых числа p_i и $m_i (1 \le p_i \le 10^6, 0 \le m_i \le 100)$. Гарантируется, что $\sum_{i=1}^k p_i = n$.

Формат выходного файла

В выходной файл выведите одно число — вероятность того, что произвольный студент сдаст экзамен, с абсолютной точностью не менее 10^{-5} .

exam.in	exam.out
3 10	0.49
2 50	
5 60	
3 30	
4 20	0.2635
3 85	
12 14	
4 1	
1 100	

Задача В. Соревнование по стрельбе

Имя входного файла: shooter.in Имя выходного файла: shooter.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайта

Сегодня проходит очередное соревнование по стрельбе из ружья. На него пришли n участников. Так как соревнование проходит не первый год, то для каждого участника известна вероятность p_i его попадания в мишень. Только что один из участников выстрелил по одной мишени m раз, но ни разу не попал. Требуется найти вероятность того, что выстрелы произведены стрелком с номером k.

Формат входного файла

В первой строке дано три целых числа n, m и k — количество участников соревнования, число выстрелов участника и номер стрелка, соответственно. ($1 \le n \le 10000, 1 \le m \le 3, 1 \le k \le n$). Далее следует n чисел p_i — вероятность попадания в мишень для i-го участника. ($0 \le p_i \le 1$).

Формат выходного файла

Требуется вывести одно число — вероятность того, что выстрелы произведены стрелком с номером k. Ответ следует выводить с точностью не менее 10^{-13} .

shooter.in	shooter.out
3 2 1	0.6282051282051
0.3 0.5 0.8	

Задача С. Лотерея

Имя входного файла: lottery.in
Имя выходного файла: lottery.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайта

Петя придумал лотерею со следующими правилами:

- Билет стоит N рублей.
- \bullet На билете есть M строк.
- В строке с номером i содержится a_i полей, из которых только одно выигрышное. Игрок начинает выбирать по одному полю, начиная с первой строки. Если он угадал, то он переходит к следующей строке. Если нет игра останавливается, и игрок забирает b_{i-1} рублей(b_0 считается равным нулю). Если игрок угадал все поля, то его выигрыш равен b_M .

Требуется найти, сколько прибыли(убытков) в среднем будет получать Петя за один проданный билет.

Формат входного файла

В первой строке входного файла содержатся два целых числа N и $M(1 \le M, N \le 10^5)$. В следующих M строках содержится по два целых числа a_i и $b_i (2 \le a_i \le 100, 1 \le b_i \le 10^5)$. Гарантируется, что $b_{i+1} \ge b_i$.

Формат выходного файла

В выходной файл выведите одно число — математическое ожидание прибыли от одного билета с относительной погрешностью не более 0.1%.

Пример

lottery.in	lottery.out
50 4	6.9444444
2 50	
2 100	
3 150	
3 200	
50 4	-12.5
2 50	
2 100	
2 200	
2 400	

Примечание

Во втором примере Петя несет убыток в среднем в 12.5 рублей.

Задача D. Поглощающая марковская цепь

Имя входного файла: absmarkchain.in Имя выходного файла: absmarkchain.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайта

Вам дана поглощающая марковская цепь, в которой N состояний и M переходов. Для каждого состояния необходимо найти вероятность поглощения в нём. Обратите внимание, что стартовой вершиной может быть любая.

Формат входного файла

В первой строке входного файла содержатся два целых числа N и $M(1 \le N \le 400, N \le M \le N^2)$. В следующих M строках содержится по два целых числа a_i и b_i , и вещественное число p_i , обозначающие переход из состояния a_i в состояние b_i с верояностью p_i ($1 \le a_i, b_i \le N, 0 < p_i \le 1$). Сумма вероятностей всех переходов из каждого состояния равна 1.

Формат выходного файла

Выведите N строк. В i-й строке выведите вероятность поглощения в i-м состоянии с точностью не менее 10^{-5} .

absmarkchain.in	absmarkchain.out
3 4	0.0
1 2 0.5	0.5
1 3 0.5	0.5
2 2 1.0	
3 3 1.0	

Дискретная математика Лабораторная работа по теории вероятности, 2017 год

Задача Е. Эргодическая марковская цепь

Имя входного файла: markchain.in Имя выходного файла: markchain.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайта

Дана регулярная марковская цепь. Найдите ее эргодическое распределение.

Формат входного файла

В первой строке дано число n ($1 \le n \le 100$) — количество состояний в цепи. В следующих n строках находится по n чисел, причем j-е число в i+1-й строке обозначает вероятность перехода из состояния i в состояние j. Сумма вероятностей всех переходов из каждого состояния равна 1.

Формат выходного файла

В i-й строке выведите вероятность оказаться в i-м состоянии после бесконечного количества шагов с точностью не менее 10^{-4} .

markchain.in	markchain.out
2	0.5
0.5 0.5	0.5
0.5 0.5	