Análise Estatística de Simuladores Planejamento e múltiplos outputs

Leo Bastos¹ Richard Wilkinson²

¹Departamento de Estatística

²Department of Statistics

190 SINAPE

Outline

- Planejamento para experimentos computacionais
 - Introdução
 - Protocolo de planejamento
 - Space filling designs
 - Outros tópicos
- Emuladores com múltiplos outputs
 - Introdução
 - Emuladores separáveis
 - Emuladores independentes
 - Exemplo

Outline

- Planejamento para experimentos computacionais
 - Introdução
 - Protocolo de planejamento
 - Space filling designs
 - Outros tópicos
- Emuladores com múltiplos outputs
 - Introdução
 - Emuladores separáveis
 - Emuladores independentes
 - Exemplo

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$$

- ① Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- ① Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **1** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\delta]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **9** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - \bullet Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\delta$ quantifica a incerteza dessa aproximação.

- Escolha os inputs de treinamento, $\mathbf{x}_1, \dots, \mathbf{x}_n$, cobrindo o espaço de inputs*
- "Rode" o simulador para obter o outputs treinamento.

$$D = \{y_1 = \eta(\mathbf{x}_1), \dots, y_n = \eta(\mathbf{x}_n)\}\$$

- Usando os dados de treinamento estime os parâmetro de correlação, $\delta = \tilde{\delta}$
- **9** Derive a posteriori para $\eta(\cdot)|D,\tilde{\delta}$
 - Podemos usar $\mathbb{E}[\eta(\cdot)|D,\tilde{\delta}]$ como uma aproximação rápida para $\eta(\cdot)$
 - A distribuição de $\eta(\cdot)|D,\tilde{\delta}$ quantifica a incerteza dessa aproximação.

- Em qualquer estudo científico o planejamento deve ter um papel essencial.
- Os planejamentos em experimentos surgiram (ou ganharam força) a partir dos experimentos agrícolas devidamente planejados por R A Fisher na decada de 1920.
- Aqui, iremos discutir métodos de planejamento de experimentos computacionais com o próposito de construir um emulador.
- Para quais valores do espaço de inputs $\mathcal{X} \subset \mathbb{R}^p$ devemos rodar o simulador para construírmos um bom emulador?

- Em qualquer estudo científico o planejamento deve ter um papel essencial.
- Os planejamentos em experimentos surgiram (ou ganharam força) a partir dos experimentos agrícolas devidamente planejados por R A Fisher na decada de 1920.
- Aqui, iremos discutir métodos de planejamento de experimentos computacionais com o próposito de construir um emulador.
- Para quais valores do espaço de inputs $\mathcal{X} \subset \mathbb{R}^p$ devemos rodar o simulador para construírmos um bom emulador?

- Em qualquer estudo científico o planejamento deve ter um papel essencial.
- Os planejamentos em experimentos surgiram (ou ganharam força) a partir dos experimentos agrícolas devidamente planejados por R A Fisher na decada de 1920.
- Aqui, iremos discutir métodos de planejamento de experimentos computacionais com o próposito de construir um emulador.
- Para quais valores do espaço de inputs $\mathcal{X} \subset \mathbb{R}^p$ devemos rodar o simulador para construírmos um bom emulador?

- Em qualquer estudo científico o planejamento deve ter um papel essencial.
- Os planejamentos em experimentos surgiram (ou ganharam força) a partir dos experimentos agrícolas devidamente planejados por R A Fisher na decada de 1920.
- Aqui, iremos discutir métodos de planejamento de experimentos computacionais com o próposito de construir um emulador.
- Para quais valores do espaço de inputs $\mathcal{X} \subset \mathbb{R}^p$ devemos rodar o simulador para construírmos um bom emulador?

1 Definir o objetivo do experimento. Existem vários:

- Compreender a relação input-output;
- Encontrar os fatores explicativos mais importantes
- Encontrar os inputs que geram um output em alguma região particular. (Problema inverso)
- Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial

- 1 Definir o objetivo do experimento. Existem vários:
 - O Compreender a relação input-output;
 - 2 Encontrar os fatores explicativos mais importantes
 - ⑤ Encontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial

- 1 Definir o objetivo do experimento. Existem vários:
 - Compreender a relação input-output;
 - 2 Encontrar os fatores explicativos mais importantes
 - ⑤ Encontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial

- 1 Definir o objetivo do experimento. Existem vários:
 - Compreender a relação input-output;
 - 2 Encontrar os fatores explicativos mais importantes
 - Sencontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial

- 1 Definir o objetivo do experimento. Existem vários:
 - Compreender a relação input-output;
 - Encontrar os fatores explicativos mais importantes
 - Sencontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial

- 1 Definir o objetivo do experimento. Existem vários:
 - Compreender a relação input-output;
 - 2 Encontrar os fatores explicativos mais importantes
 - Sencontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial
 - para cada variável a deve se fazer um "CV completo"

- 1 Definir o objetivo do experimento. Existem vários:
 - Compreender a relação input-output;
 - 2 Encontrar os fatores explicativos mais importantes
 - Sencontrar os inputs que geram um output em alguma região particular. (Problema inverso)
 - Encontrar o vetor inputs que maximiza o output, e qual o valor desse máximo.
- 2 Váriaveis de input e output: Uma descrição completa é essencial
 - para cada variável a deve se fazer um "CV completo"

3 Um modelo inicial

- O que nós já sabemos da relação input-output?
- Existe alguma ordem de importância dos inputs?
- Existe alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - Existe alguma ordem de importância dos inputs?
 - Existe alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - 2 Existe alguma ordem de importância dos inputs?
 - Existe alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - Existe alguma ordem de importância dos inputs?
 - Sexiste alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento
 - Tempo de execução

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - Existe alguma ordem de importância dos inputs?
 - Sexiste alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento
 - Tempo de execução
 - Custo

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - 2 Existe alguma ordem de importância dos inputs?
 - Sexiste alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento
 - Tempo de execução
 - Custo

- 3 Um modelo inicial
 - O que nós já sabemos da relação input-output?
 - Existe alguma ordem de importância dos inputs?
 - Sexiste alguma região do espaço de inputs que a output varia bastante?
- 4 Custo do experimento
 - Tempo de execução
 - Custo

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)
- Experimento principal, que vai usa
- inputs relevantes*
- 🜖 Experimento confirmatório (Experimento para validação)

(ロ) (部) (注) (注) 注 り(())

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)
- Experimento principal, que vai usar
 - conhecimento a priori dos possíveis modelos
 - inputs relevantes*
- Experimento confirmatório (Experimento para validação)

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)
- Experimento principal, que vai usar
 - conhecimento a priori dos possíveis modelos
 - inputs relevantes*
- Experimento confirmatório (Experimento para validação)

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)
- Experimento principal, que vai usar
 - conhecimento a priori dos possíveis modelos
 - inputs relevantes*
- Experimento confirmatório (Experimento para validação)

- Experimento nominal
- Experimento para fazer redução de variáveis (screening)
- Experimento principal, que vai usar
 - conhecimento a priori dos possíveis modelos
 - inputs relevantes*
- Experimento confirmatório (Experimento para validação)

Experimento principal

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:

• Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

Experimento principal

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:

• Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

Experimento principal

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:

 Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:
 - **1** Incerteza a respeito dos hiperparâmetros $(\beta, \sigma^2, \delta)$
 - Incerteza a respeito do output do simulador (expressada por um processo gaussiano)
- Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:
 - Incerteza a respeito dos hiperparâmetros $(\beta, \sigma^2, \delta)$
 - Incerteza a respeito do output do simulador (expressada por um processo gaussiano)
- Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:
 - Incerteza a respeito dos hiperparâmetros $(\beta, \sigma^2, \delta)$
 - Incerteza a respeito do output do simulador (expressada por um processo gaussiano)
- Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

- Vamos considerar o experimento principal para construir um emulador
- Chamamos de dados de treinamento os inputs selecionados, e seus respectivos outputs, para construir o emulador.
- O planejamento depende do objetivo do uso do emulador
- Um bom planejamento vai nos permitir construir um bom emulador, devemos portanto levar em consideração:
 - 1 Incerteza a respeito dos hiperparâmetros $(\beta, \sigma^2, \delta)$
 - Incerteza a respeito do output do simulador (expressada por um processo gaussiano)
- Focaremos em planejamentos que lidam basicamente com a segunda fonte de incerteza.

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica

 Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica

 Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

<ロ > < 回 > < 回 > < 巨 > く 巨 > 豆 ・ り Q ()

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica)
 - Lattice designs (Bates et al. 1996, 1998; em exp. comp.)
 - Sequencias de Wey, Halton e Sobol (a pacote 'fOptions' do R gera sequencias de Sobol (Neiderreiter, 1992)
 - Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica)
 - Lattice designs (Bates et al. 1996, 1998; em exp. comp.)
 - Sequencias de Wey, Halton e Sobol (a pacote 'fOptions' do R gera sequencias de Sobol (Neiderreiter, 1992)
 - Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica)
 - Lattice designs (Bates et al. 1996, 1998; em exp. comp.)
 - Sequencias de Wey, Halton e Sobol (a pacote 'fOptions' do R gera sequencias de Sobol (Neiderreiter, 1992)
 - Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

- Observações de inputs próximas tendem a ter outputs próximos
- Portanto, temos interesse em observar inputs bem distantes uns dos outros. Chamamos essa propriedade de Space-filling
- Alguns space filling designs
 - Hipercubos latinos (McKay et al., 1979)
 - Planejamentos não aleatórios (usados em integração númerica)
 - Lattice designs (Bates et al. 1996, 1998; em exp. comp.)
 - Sequencias de Wey, Halton e Sobol (a pacote 'fOptions' do R gera sequencias de Sobol (Neiderreiter, 1992)
 - Planejamentos ótimos, e.g. ASCM (Adaptive Sampler for Complex Models) que faz uso da expansão de Karhunen-Loeve como aproximação de um gaussian process. (Youssef, 2010)

- Os hipercubos latinos têm a propriedade de representar bem todos os inputs marginalmente.
- ...mas os hipercubos latinos não têm boas propriedades de preenchimento de espaço
- Solução hipercubos latinos ótimos, e.g. Maximin Latin Hypercube (Morris and Mitchell 1997)

- Os hipercubos latinos têm a propriedade de representar bem todos os inputs marginalmente.
- ...mas os hipercubos latinos n\u00e3o t\u00e9m boas propriedades de preenchimento de espa\u00f3o
- Solução hipercubos latinos ótimos, e.g. Maximin Latin Hypercube (Morris and Mitchell 1997)

- Os hipercubos latinos têm a propriedade de representar bem todos os inputs marginalmente.
- ...mas os hipercubos latinos não têm boas propriedades de preenchimento de espaço
- Solução hipercubos latinos ótimos, e.g. Maximin Latin Hypercube (Morris and Mitchell 1997)

Hipercubo latino n = 10

Maximin hipercubo latino n = 50

Sequência de Sobol n = 50

Outros tópicos em planejamento

- ullet Planejamento para estimar os parâmetros de correlação δ
- Planejamentos sequênciais, onde devemos rodar o simulador para melhorar nossas previsões?
- Qual o tamanho da amostra? Receita de bolo n = 10p.

Outros tópicos em planejamento

- ullet Planejamento para estimar os parâmetros de correlação δ
- Planejamentos sequênciais, onde devemos rodar o simulador para melhorar nossas previsões?
- Qual o tamanho da amostra? Receita de bolo n = 10p.

Outros tópicos em planejamento

- ullet Planejamento para estimar os parâmetros de correlação δ
- Planejamentos sequênciais, onde devemos rodar o simulador para melhorar nossas previsões?
- Qual o tamanho da amostra? Receita de bolo n = 10p.

Outline

- 🕦 Planejamento para experimentos computacionais
 - Introdução
 - Protocolo de planejamento
 - Space filling designs
 - Outros tópicos
- Emuladores com múltiplos outputs
 - Introdução
 - Emuladores separáveis
 - Emuladores independentes
 - Exemplo

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- ullet O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

onde $m(\mathbf{x})$ é um vetor de tamanho r e $V(\mathbf{x}, \mathbf{x}')$ é uma matrix $r \times r$

Estruturas para a função de variância e covariâncias:

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

onde $m(\mathbf{x})$ é um vetor de tamanho r e $V(\mathbf{x}, \mathbf{x}')$ é uma matrix $r \times r$

Estruturas para a função de variância e covariâncias:

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

onde $m(\mathbf{x})$ é um vetor de tamanho r e $V(\mathbf{x}, \mathbf{x}')$ é uma matrix $r \times r$.

Estruturas para a função de variância e covariâncias:

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- ullet O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

- Estruturas para a função de variância e covariâncias:
 - Estrutura Separável: $V(\cdot, \cdot) = \Sigma C(\cdot, \cdot)$
 - Estrutura não separável (Fricker, 2010)

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

- Estruturas para a função de variância e covariâncias:
 - Estrutura Separável: $V(\cdot, \cdot) = \Sigma C(\cdot, \cdot)$
 - Estrutura não separável (Fricker, 2010

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

- Estruturas para a função de variância e covariâncias:
 - Estrutura Separável: $V(\cdot, \cdot) = \Sigma C(\cdot, \cdot)$
 - Estrutura n\u00e3o separ\u00e1vel (Fricker, 2010)
 - CONV: $V_{ij}(\mathbf{x}, \mathbf{x}') = \tilde{\sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u \mathbf{x}) \kappa_j(u \mathbf{x}') du$. • IMC: $V(\cdot, \cdot) = \sum_{i=1}^{l} \sum_{i \in i} \kappa_i(\cdot, \cdot)$.

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

- Estruturas para a função de variância e covariâncias:
 - Estrutura Separável: $V(\cdot, \cdot) = \Sigma C(\cdot, \cdot)$
 - Estrutura não separável (Fricker, 2010)
 - CONV: $V_{ij}(\mathbf{x}, \mathbf{x}') = \tilde{\sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u \mathbf{x}) \kappa_j(u \mathbf{x}') du$.

 É muito comum que os simuladores tenha não apenas um output, mas vários outputs.

$$(x_1, x_2, \dots, x_p) \longrightarrow \begin{cases} \eta(\cdot) & \longrightarrow (y_1, y_2, \dots, y_r) \\ \text{SIMULADOR} \end{cases}$$

- Ainda assim podemos emula-los, mas a complexidade aumenta.
- O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

- Estruturas para a função de variância e covariâncias:
 - Estrutura Separável: $V(\cdot, \cdot) = \Sigma C(\cdot, \cdot)$
 - Estrutura não separável (Fricker, 2010)
 - CONV: $V_{ij}(\mathbf{x}, \mathbf{x}') = \tilde{\sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u \mathbf{x}) \kappa_j(u \mathbf{x}') du$.
 - LMC: $V(\cdot, \cdot) = \sum_{i=1}^{l} \sum_{i} \kappa_{i}(\cdot, \cdot)$.

• O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

A função de covariância

$$V(\cdot,\cdot)=\Sigma C_{\delta}(\cdot,\cdot),$$

onde Σ é uma matriz de covariância $r \times r$ entre outputs e $C_{\delta}(\cdot, \cdot)$ é uma função de correlação entre inputs.

Problema: $C_{\delta}(\cdot, \cdot)$ é a mesma para todos outputs!

• Os hiperpâmetros são (Σ, δ) , e uma priori tipica para (Σ, δ) é

$$\pi(\Sigma,\delta) \propto \pi(\delta) |\Sigma|^{\frac{K+1}{2}}.$$

• O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

A função de covariância

$$V(\cdot,\cdot)=\Sigma C_{\delta}(\cdot,\cdot),$$

onde Σ é uma matriz de covariância $r \times r$ entre outputs e $C_{\delta}(\cdot, \cdot)$ é uma função de correlação entre inputs.

Problema: $C_{\delta}(\cdot, \cdot)$ é a mesma para todos outputs!

• Os hiperpâmetros são (Σ, δ) , e uma priori tipica para (Σ, δ) é

$$\pi(\Sigma,\delta) \propto \pi(\delta) |\Sigma|^{rac{K+1}{2}}$$

• O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

A função de covariância

$$V(\cdot,\cdot)=\Sigma C_{\delta}(\cdot,\cdot),$$

onde Σ é uma matriz de covariância $r \times r$ entre outputs e $C_{\delta}(\cdot, \cdot)$ é uma função de correlação entre inputs.

Problema: $C_{\delta}(\cdot, \cdot)$ é a mesma para todos outputs!

• Os hiperpâmetros são (Σ, δ) , e uma priori tipica para (Σ, δ) é

$$\pi(\Sigma,\delta)\propto \pi(\delta)|\Sigma|^{\frac{k+1}{2}}.$$

• O emulador gaussiano a priori para $\eta(\cdot)$ é dado por

$$\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$$

A função de covariância

$$V(\cdot,\cdot)=\Sigma C_{\delta}(\cdot,\cdot),$$

onde Σ é uma matriz de covariância $r \times r$ entre outputs e $C_{\delta}(\cdot, \cdot)$ é uma função de correlação entre inputs.

Problema: $C_{\delta}(\cdot, \cdot)$ é a mesma para todos outputs!

• Os hiperpâmetros são (Σ, δ) , e uma priori tipica para (Σ, δ) é

$$\pi(\Sigma,\delta)\propto \pi(\delta)|\Sigma|^{\frac{k+1}{2}}.$$

Atualizando um processo Gaussiano

- Seja $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\eta(\cdot)|\mathbf{Y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))$$

onde

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}(\mathbf{Y} - m(\mathbf{X}))$$
$$V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}V(\mathbf{X}, \mathbf{x}')$$

Atualizando um processo Gaussiano

- Seja $\eta(\cdot) \sim PG(\textit{m}(\cdot), \textit{V}(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\gamma(\cdot)|\mathbf{Y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))|$$

onde

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} (\mathbf{Y} - m(\mathbf{X}))$$

$$V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X}) V(\mathbf{X}, \mathbf{X})^{-1} V(\mathbf{X}, \mathbf{x}')$$

Atualizando um processo Gaussiano

- Seja $\eta(\cdot) \sim PG(m(\cdot), V(\cdot, \cdot))$
- $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ e $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ inputs e outputs de um experimento computacional.
- Usando propriedades da Normal multivariada é fácil mostrar que

$$\eta(\cdot)|\mathbf{Y},\mathbf{X}\sim PG(m^*(\cdot),V^*(\cdot,\cdot))$$

onde

$$m^*(\mathbf{x}) = m(\mathbf{x}) + V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}(\mathbf{Y} - m(\mathbf{X}))$$

$$V^*(\mathbf{x}, \mathbf{x}') = V(\mathbf{x}, \mathbf{x}') - V(\mathbf{x}, \mathbf{X})V(\mathbf{X}, \mathbf{X})^{-1}V(\mathbf{X}, \mathbf{x}')$$

• Para cada output $\eta_i(\cdot)$, teremos um emulador diferente e independente, ou seja

$$\eta_i(\cdot) \sim PG(m_i(\cdot), \sigma_i^2 C_{\delta_i}(\cdot, \cdot))$$

- Vantagem: A estrutura de correlação entre os inputs será diferente para ouput.
- Desvantagem: Estamos ignorando a correlação entre os outputs, que geralmente não devem ser descartadas.
- Os hiperpâmetros são $\omega=(\sigma_1^2,\ldots,\sigma_r^2,\delta_1^2,\ldots,\delta_r^2)$, e uma priori tipica para ω é dada por

$$\pi(\omega) \propto \prod \pi(\delta_i) \sigma_i^{-2}$$
.

 Para cada output η_i(·), teremos um emulador diferente e independente, ou seja

$$\eta_i(\cdot) \sim PG(m_i(\cdot), \sigma_i^2 C_{\delta_i}(\cdot, \cdot))$$

- Vantagem: A estrutura de correlação entre os inputs será diferente para ouput.
- Desvantagem: Estamos ignorando a correlação entre os outputs que geralmente não devem ser descartadas.
- Os hiperpâmetros são $\omega=(\sigma_1^2,\ldots,\sigma_r^2,\delta_1^2,\ldots,\delta_r^2)$, e uma priori tipica para ω é dada por

$$\pi(\omega) \propto \prod \pi(\delta_i) \sigma_i^{-2}$$
.

• Para cada output $\eta_i(\cdot)$, teremos um emulador diferente e independente, ou seja

$$\eta_i(\cdot) \sim PG(m_i(\cdot), \sigma_i^2 C_{\delta_i}(\cdot, \cdot))$$

- Vantagem: A estrutura de correlação entre os inputs será diferente para ouput.
- Desvantagem: Estamos ignorando a correlação entre os outputs, que geralmente não devem ser descartadas.
- Os hiperpâmetros são $\omega = (\sigma_1^2, \dots, \sigma_r^2, \delta_1^2, \dots, \delta_r^2)$, e uma priori tipica para ω é dada por

$$\pi(\omega) \propto \prod \pi(\delta_i) \sigma_i^{-2}$$
.

 Para cada output η_i(·), teremos um emulador diferente e independente, ou seja

$$\eta_i(\cdot) \sim PG(m_i(\cdot), \sigma_i^2 C_{\delta_i}(\cdot, \cdot))$$

- Vantagem: A estrutura de correlação entre os inputs será diferente para ouput.
- Desvantagem: Estamos ignorando a correlação entre os outputs, que geralmente não devem ser descartadas.
- Os hiperpâmetros são $\omega = (\sigma_1^2, \dots, \sigma_r^2, \delta_1^2, \dots, \delta_r^2)$, e uma priori tipica para ω é dada por

$$\pi(\omega) \propto \prod \pi(\delta_i) \sigma_i^{-2}$$
.

- A idéia: uma convoluçao de um processo gaussiano ruido branco com uma função kernel arbitrária.
- Precisamos de uma função *kernel* κ_i para cada output i e uma matriz $r \times r$ positiva definida $\tilde{\Sigma}$. O elemento (i,j) de $V(\cdot,\cdot)$ é

$$V_{ij}(\mathbf{x},\mathbf{x}') = \tilde{\Sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u-\mathbf{x}) \kappa_j(u-\mathbf{x}') du$$
 .

Uma escolha conveniente para a função kernel

$$\kappa_i(x) = \left[\left(\frac{4}{\pi} \right)^p \prod_{\ell=1}^p \phi_i^{(\ell)} \right]^{\frac{1}{4}} \exp\{-2x^T \Phi_i x\}.$$

- A idéia: uma convoluçao de um processo gaussiano ruido branco com uma função kernel arbitrária.
- Precisamos de uma função *kernel* κ_i para cada output i e uma matriz $r \times r$ positiva definida $\tilde{\Sigma}$. O elemento (i,j) de $V(\cdot,\cdot)$ é

$$V_{ij}(\mathbf{x},\mathbf{x}') = \tilde{\Sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u-\mathbf{x}) \kappa_j(u-\mathbf{x}') du$$
.

Uma escolha conveniente para a função kernel

$$\kappa_i(x) = \left[\left(\frac{4}{\pi} \right)^p \prod_{\ell=1}^p \phi_i^{(\ell)} \right]^{\frac{1}{4}} \exp\{-2x^T \Phi_i x\}.$$

- A idéia: uma convoluçao de um processo gaussiano ruido branco com uma função kernel arbitrária.
- Precisamos de uma função *kernel* κ_i para cada output i e uma matriz $r \times r$ positiva definida $\tilde{\Sigma}$. O elemento (i,j) de $V(\cdot,\cdot)$ é

$$V_{ij}(\mathbf{x},\mathbf{x}') = \tilde{\Sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u-\mathbf{x}) \kappa_j(u-\mathbf{x}') du.$$

Uma escolha conveniente para a função kernel

$$\kappa_i(x) = \left[\left(\frac{4}{\pi} \right)^p \prod_{\ell=1}^p \phi_i^{(\ell)} \right]^{\frac{1}{4}} \exp\{-2x^T \Phi_i x\}.$$

- A idéia: uma convoluçao de um processo gaussiano ruido branco com uma função kernel arbitrária.
- Precisamos de uma função *kernel* κ_i para cada output i e uma matriz $r \times r$ positiva definida $\tilde{\Sigma}$. O elemento (i,j) de $V(\cdot,\cdot)$ é

$$V_{ij}(\mathbf{x},\mathbf{x}') = \tilde{\Sigma}_{ij} \int_{\mathbb{R}^p} \kappa_i(u-\mathbf{x}) \kappa_j(u-\mathbf{x}') du$$
.

• Uma escolha conveniente para a função kernel

$$\kappa_i(x) = \left[\left(\frac{4}{\pi} \right)^p \prod_{\ell=1}^p \phi_i^{(\ell)} \right]^{\frac{1}{4}} \exp\{-2x^T \Phi_i x\}.$$

- A idéia: Representar os outputs originais como funções lineares de outputs latentes que são modelados usando PG independentes.
- Em Geoestatística isso é conhecido como o modelo linear de corregionalização (LMC)
- A função de covariância é

$$V(\cdot,\cdot) = \sum_{i=1}^{r} \Sigma_{i} \tilde{\kappa}_{i}(\cdot,\cdot),$$

- Σ é a matriz de covariância entre outputs.
- Mais detalhes em Fricker (2010)

- A idéia: Representar os outputs originais como funções lineares de outputs latentes que são modelados usando PG independentes.
- Em Geoestatística isso é conhecido como o modelo linear de corregionalização (LMC)
- A função de covariância é

$$V(\cdot,\cdot) = \sum_{i=1}^{r} \Sigma_{i} \tilde{\kappa}_{i}(\cdot,\cdot),$$

- Σ é a matriz de covariância entre outputs.
- Mais detalhes em Fricker (2010)

- A idéia: Representar os outputs originais como funções lineares de outputs latentes que são modelados usando PG independentes.
- Em Geoestatística isso é conhecido como o modelo linear de corregionalização (LMC)
- A função de covariância é

$$V(\cdot,\cdot)=\sum_{i=1}^r \Sigma_i \tilde{\kappa}_i(\cdot,\cdot)\,,$$

- Σ é a matriz de covariância entre outputs.
- Mais detalhes em Fricker (2010)

- A idéia: Representar os outputs originais como funções lineares de outputs latentes que são modelados usando PG independentes.
- Em Geoestatística isso é conhecido como o modelo linear de corregionalização (LMC)
- A função de covariância é

$$V(\cdot,\cdot) = \sum_{i=1}^{r} \Sigma_{i} \tilde{\kappa}_{i}(\cdot,\cdot),$$

- Σ é a matriz de covariância entre outputs.
- Mais detalhes em Fricker (2010)

- A idéia: Representar os outputs originais como funções lineares de outputs latentes que são modelados usando PG independentes.
- Em Geoestatística isso é conhecido como o modelo linear de corregionalização (LMC)
- A função de covariância é

$$V(\cdot,\cdot)=\sum_{i=1}^r \Sigma_i \tilde{\kappa}_i(\cdot,\cdot)\,,$$

- Σ é a matriz de covariância entre outputs.
- Mais detalhes em Fricker (2010)

Exemplo

Seja o seguinte simulador com 1 input e 2 ouputs:

Exemplo

Vamos ajustar 4 emuladores gaussianos multivariados com 4 diferentes estruturas de correlação:

- Separável
- Independente
- Não-separável via convolução
- Não-separável via LMC

Exemplo - Emulador Separável

Exemplo - Emulador Independente

Exemplo - Emulador Não-separável via convolução

Exemplo - Emulador Não-separável via LMC

Exemplo - Prevendo $\eta(0.75)$

Exemplo - Prevendo $\eta(0.75)$

Calibração

- O que fazer quando temos além do simulador dados reais?
- Modelos de calibração
- Emuladores via componentes principais
- Exemplo de modelagem climática
- Outras análises
 - Análises de Incerteza e Sensibilidade (UA/SA)
 - Diagnósticos e Validação
 - ABC (Approximate Bayesian computation)

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração
- Emuladores via componentes principais
- Exemplo de modelagem climática
- Outras análises

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática
- Outras análises

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática
- Outras análises

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática.
- Outras análises

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática.
- Outras análises
 - Análises de Incerteza e Sensibilidade (UA/SA)
 - Diagnósticos e Validação
 - ABC (Approximate Bayesian computation)

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática.
- Outras análises
 - Análises de Incerteza e Sensibilidade (UA/SA)
 - Diagnósticos e Validação
 - ABC (Approximate Bayesian computation)

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática.
- Outras análises
 - Análises de Incerteza e Sensibilidade (UA/SA)
 - Diagnósticos e Validação
 - ABC (Approximate Bayesian computation)

- Calibração
 - O que fazer quando temos além do simulador dados reais?
 - Modelos de calibração.
- Emuladores via componentes principais
- Exemplo de modelagem climática.
- Outras análises
 - Análises de Incerteza e Sensibilidade (UA/SA)
 - Diagnósticos e Validação
 - ABC (Approximate Bayesian computation)