Question 1

- (a) Shrek is six feet tall proposition
- (b) Dr. Cantu and his son neither
- (c) Give an example of an integrable function neither
- (d) $20^2 + 23^2 > 2023^2$ proposition
- (e) $x^2 = 1$ predicate
- (f) Potatoes are awesome neither
- (g) n is a perfect square predicate
- (h) The product of every two prime numbers is odd proposition

Question 2

- (a) P: false
- (b) Q: true
- (c) $P \vee Q$: true
- (d) $P \wedge Q$: false
- (e) $P \to Q$: true
- (f) $Q \to P$: false

Question 3

For the predicate $P(x):(x^2-9)(x-1)=0$ where $x\in\mathbb{R}_{\geq 1},\ x$ must be either 3 or 1 for P(x) to be true.

Question 4

- (a) $\sqrt{3}$ is irrational
- (b) 0 is a negative number
- (c) The real number r is greater than π

Question 5

(a) **Hypothesis:** *a* is irrational **Conclusion:** 2*a* is irrational

(b) **Hypothesis:** a is an even integer **Conclusion:** a^3 is an even integer

(c) Hypothesis: $\lim_{x\to 0^+} f(x) = 3$ Conclusion: $\lim_{x\to 0} f(x) = 3$

Question 6

(a)							
P	Q	R	$P \lor Q$	$(P \lor Q) \land R$	$P \wedge R$	$Q \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
Т	Т	Т	Т	Т	Т	Т	T
${ m T}$	Τ	F	${ m T}$	\mathbf{F}	\mathbf{F}	F	F
${ m T}$	F	Т	${ m T}$	Т	${ m T}$	F	${ m T}$
${ m T}$	F	F	${ m T}$	\mathbf{F}	\mathbf{F}	F	F
\mathbf{F}	Τ	Т	${ m T}$	m T	\mathbf{F}	T	m T
\mathbf{F}	Τ	F	${ m T}$	\mathbf{F}	\mathbf{F}	F	F
\mathbf{F}	F	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F
\mathbf{F}	F	F	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F

(b)											
P	Q	$P \rightarrow Q$	$\neg(P \to Q)$	$\neg Q$	$P \wedge (\neg Q)$						
Τ	Τ	Т	F	F	F						
\mathbf{T}	F	F	${ m T}$	Γ	${ m T}$						
\mathbf{F}	Τ	Т	F	F	F						
F	F	Т	F	Γ	F						

Question 7

(a)

 $P \wedge \neg P$ is a contradiction.

(b)

$$P \rightarrow (Q \rightarrow P)$$

$$\equiv P \rightarrow (\neg Q \lor P)$$

$$\equiv \neg P \lor (\neg Q \lor P)$$

$$\equiv (P \lor \neg P) \lor \neg Q$$

$$\equiv T \lor \neg Q$$

$$\equiv T$$

This is a tautology.

Question 8

- (a) (b)