Web Information Retrieval

Assignment 5

Team Name: Gamma

Members

Name	Matriculation Number
Mohammad Nizam Uddin	216101140
Md. Shohel Ahamad	216203438
MD Jakaria Nawaz	216203442
Shreya Chatterjee	216100848

1. Query Likelihood Model (14 Points):

Doc 1: "teach education school university education".

Doc 2: "education education campus teach teach".

Doc 3: "university road school teach learning".

Doc 4: "campus learning education learning".

Query: "teach teach education campus".

1.1

$$P_{M_{d_i}}(t_j)$$

Term(t)	D1	D2	D3	D4
campus	0	0.2	0	0
education	0.4	0.4	0	0.25
learning	0	0	0.2	0.50
road	0	0	0.2	0
school	0.2	0	0.2	0
teach	0.2	0.4	0.2	0
university	0.2	0	0.2	0

1.2.

Term(t)	$P_{M_c}(t_j)$
campus	0.105
education	0.263
learning	0.158
road	0.053
school	0.105
teach	0.210
university	0.105

2.

$$P_{\mathrm{uni}}(d \mid q).$$

	d1	d2	d3	d4	$P_{\mathrm{uni}}(d \mid q).$
Term(t)					um (1 1)
campus	0.2	0.4	0.2	0	0
educatio n	0.4	0.4	0	0.25	0
teach	0.2	0.4	0.2	0	0

3.

$$P_{\text{interp-uni}}(d \mid q)$$

Query: "teach teach education campus".

Term(t)	d1	d2	d3	d4	$P_{\text{interp-uni}}(d \mid q)$
campus	(0*.5+.105*.5) =0.525	(.2*.5+.105*.5) =0.625	(0*.5+.105*.5) =0.525	(0*.5+.105*.5) =0.525	0.09
education	(.4*.5+.263*.5)=0.3315	(.4*.5+.263*.5) =0.3315	(0*.5+.263*.5) =.1315	(.25*.5+.263*. 5)=0.748	0.01
teach	(.2*.5+.21*.5) =0.205	(.4*.5+.21*.5)= 0.305	(.2*.5+.21*.5) =0.205	(0*.5+.21*.5)= 0.105	0.001

2. n-gram Models (10 Points):

1. Estimate the probability of a term sequence t1 t2 t3 t4 t5 appearing in a document.

<u>Bigram:</u> $[\{tf(t4 t5,d)\} / \{tf(t4,d)\}] * [\{tf(t2 t4,d)\} / \{tf(t4,d)\}] * [\{tf(t2 t3,d)\} / \{tf(t3,d)\}] * [\{tf(t1 t2,d)\} / \{tf(t1,d)\}].$

 $\underline{\textbf{Trigram:}} \ [\{tf(t3\ t4\ t5,d)\}\ /\ \{tf(t3\ t4,d)\}]\ *\ [\{tf(t2\ t3\ t4,d)\}\ /\ \{tf(t2\ t3,d)\}]\ *\ [\{tf(t1\ t2\ t3,d)\}\ /\ \{tf(t1\ t2,d)\}]\ *\ [\{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\}\}\ /\ \{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\}\}\ /\ \{tf(t3\ t4,d)\}\}\ /\ \{tf(t3\ t4,d)\}\}\ /\ \{tf(t3\ t4,d)\}$ /\ \{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\}\}\ /\ \{tf(t3\ t4,d)\} /\ \{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\} /\ \{tf(t3\ t4,d)\}\ /\ \{tf(t3\ t4,d)\} /\ \{tf(t3\ t4,d)\} /\ {\ \{tf(t

General Formula:

Bigram =
$$\prod_{n=2 \text{ to } n=i} [\{tf(t_{n-1} t_n,d)\} / \{tf(t_{n-1},d)\}]$$

Trigram =
$$\prod_{n=3 \text{ to } n=i} [\{tf(t_{n-2} t_{n-1} t_{n}, d)\} / \{tf(t_{n-2} t_{n-1}, d)\}]$$

Doc 1: "rose is a rose is a rose"

Doc 2: "rose rose rose is is is a a a"

Doc 3: "rose is a rose"

Doc 4: "a rose is a"

	d1	d2	d3	d4
rose, t1	4/10=0.4	4/10=0.4	2/4=0.5	1/4=0.25
is , t2	3/10=0.3	3/10=0.3	1⁄4=0.25	1/4=0.25
a , t3	3/10=0.3	3/10=0.3	1⁄4=0.25	2/4=0.5

^{&#}x27;rose is a rose'

Probability according to unigram model:

```
 \begin{array}{lll} \mbox{Doc1} &= tf(rose\ ,\ d)/dl(d1)\ ^*\ tf(is\ ,\ d)/dl(d1)\ ^*\ tf(a\ ,\ d)/dl(d1)\ ^*\ tf(rose\ ,\ d)/dl(d1) \\ &=> 0.4\ ^*\ 0.3\ ^*\ 0.3\ ^*\ 0.4 \\ &=> 0.0144 \\ \mbox{Doc2} &= tf(rose\ ,\ d)/dl(d2)\ ^*\ tf(is\ ,\ d)/dl(d2)\ ^*\ tf(a\ ,\ d)/dl(d2)\ ^*\ tf(rose\ ,\ d)/dl(d2) \\ &=> 0.4\ ^*\ 0.3\ ^*\ 0.3\ ^*\ 0.4 \\ &=> 0.0144 \\ \mbox{Doc3} &= tf(rose\ ,\ d)/dl(d3)\ ^*\ tf(is\ ,\ d)/dl(d3)\ ^*\ tf(a\ ,\ d)/dl(d3)\ ^*\ tf(rose\ ,\ d)/dl(d3) \\ &=> 0.5\ ^*\ 0.25\ ^*\ 0.25\ ^*\ 0.5 \\ &=> 0.0156 \\ \mbox{Doc4} &= tf(rose\ ,\ d)/dl(d4)\ ^*\ tf(is\ ,\ d)/dl(d4)\ ^*\ tf(a\ ,\ d)/dl(d4)\ ^*\ tf(rose\ ,\ d)/dl(d4) \\ &=> 0.25\ ^*\ 0.25\ ^*\ 0.25\ ^*\ 0.25 \\ &=> 0.0078 \\ \end{array}
```

Probability according to bigram model:

	d1	d2	d3	d4
rose is , t1	3/4=0.75	1/4=0.25	1/2=0.5	1/1=1
ls a , t2	3/3=1	1/3=0.33	1/1=1	1/1=1
a rose , t3	3/3=1	0/3=0	1/1=1	1/2=0.5

Probability according to trigram model:

	d1	d2	d3	d4
rose is a , t1	3/3=1	0/1=0	1/1=1	1/1=1
Is a rose , t2	3/3=1	0/1=0	1/1=1	0/1=0

```
=> 0
Doc3 = tf(rose is a , d)/tf(rose is , d) * tf(is a rose , d)/tf(is a , d)
=> 1 * 1
=> 1
Doc4 = tf(rose is a , d)/tf(rose is , d) * tf(is a rose , d)/tf(is a , d)
=> 1 * 0
=> 0
```