(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-194658 (43)公開日 平成5年(1993)8月3日

(51)Int.Cl.5	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 8 F 136/06	MNY	8416—4 J		
B 6 0 C 1/00	В	8408-3D		
11/00	В	8408-3D		
C08L 7/00	LBD	6770-4 J		
9/00	LAY	6770-4 J		
			1	審査請求 未請求 請求項の数 2(全 14 頁)
(21)出顯番号	特顯平4-259946		(71)出願人	000000206
				宇部興産株式会社
(22)出願日	平成 4年(1992) 9月	129 ⊟		山口県宇部市西本町 1 丁目12番32号
			(72)発明者	川口 憲重
(31)優先権主張番号	特願平3-336403			千葉県市原市五井南海岸8番の1 宇部興
(32)優先日	平 3 (1991)10月22日	1		産株式会社千葉石油化学工場内
(33)優先権主張国	日本(JP)		(72)発明者	中村 裕之
				千葉県市原市五井南海岸8番の1 宇部興
				産株式会社千葉石油化学工場内
			(72)発明者	
			(12/70974	一年 日本
				一
				座休式景任丁栗石油10子上場內

(54) 【発明の名称】 ポリプタジエンゴム及びその組成物

(57) 【要約】

【産業上の利用分野】タイヤのベーストレッドやサイド ウォール、ピードフィラー等に特に好適なポリプタジエ ンゴム及びこのポリプタジエンゴムを含むゴム組成物に 関する。

【構成】シンジネタクチック-1、2 -ポリプタジエンを主成分とするn-ヘキサン不溶分であって0.5~4 の範囲の週光柱度(135℃、テトラリン)を有するもの10~25重量%。及び高シス-1、4 -ポリプタジェンゴムを主成分とするn-ヘキサン可溶分であってトルエン溶液状態 (tーcp)と ムーニー 粘度化 しが3 ML -30 < tーcp < 3 ML +30 の関係を満たしているもの90~75重量%。からなるポリプタジエンゴムに関する。

【特許請求の範囲】

1 【請求項1】 ②還元粘度0. 5~4の沸騰n-ヘキサン 不溶分・・・10~25 重量%

②(a) 重量平均分子量 (Mw) が30万~80万であ り、(b) トルエン溶液粘度(t-cp)と100℃にお けるムーニー粘度 (ML) とが、3ML-30<t-c p < 3ML+30なる関係を満足する沸騰nーヘキサン 可溶分・・・・90~75重量%

からなるポリプタジエンゴム。

· · · 20重量%以上

(b) 天然ゴム、及び/又は少なくとも1種類のジエン系 合成ゴム・・・・・・・・・・・・・・残 部であるゴム 組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ポリブタジエンゴム及 びこのゴムに他のジエン系ゴムや天然ゴムを配合したゴ ム組成物であって、自動車タイヤの部材、特にベースト のに関する。

[0002]

【従来の技術】近年、自動車業界においては、省資源、 省エネルギーの観点から、乗用車の走行燃費を更に低減 することが検討されてきた。走行燃費の低減には自動車 の軽量化と走行抵抗の減少が有効であるが、そのために は、タイヤそのものの軽量化とともに転がり抵抗の減少 が効果的である。そのため、タイヤの軽量化と転がり抵 抗の減少のための種々の方法が試みられてきた。

【0003】先ず、タイヤの軽量化の一つの方向とし て、タイヤ各部のゲージダウン(厚みを減少させる)が 検討された。しかし、トレッドを余り薄くした場合に は、短期間でトレッドが摩耗し切ってタイヤが使えなく なり、タイヤの寿命が短くなるという問題があった。一 方、サイドウォールの厚みを余り薄くした場合には、タ イヤの剛性が低下するという問題が起こった。このた め、タイヤ各部のゲージダウンによる軽量化には限界が あることが判った。

*【0004】次に、タイヤのゴムに添加するカーボンブ ラックの量を減らすことが試みられた。カーボンブラッ クは比重が大きいので、使用量を減らすことはタイヤそ のものの軽量化に結びつく。又、カーボンブラックの使 用量を減らすことにより、ゴムの発熱、損失モジュラス (E")、及び損失正接(tanδ)を減少させること ができるので、タイヤの転がり抵抗の減少も期待でき る。しかし、従来のゴムでは、カーボンブラックの添加 量を減らした場合にゴムの機械的性質、耐摩耗性、硬 【請求項2】(a) 請求項1に記載のポリブタジエンゴム 10 度、弾性率等が低下し、それに従ってタイヤそのものの 性能も低下するという問題があった。

9

【0005】このため、近年、ゴムの硬度、弾性、耐摩 耗性、機械的性質、及び動的特性(発熱特性や t a n δ)を改良することが検討されてきた。このようなゴム として、高シスー1、4ーポリブタジエン(以下「高シ スーBR」と略)のマトリックス中にシンジオタクチッ ク-1、2-ポリブタジエン (SPB) を分散させた改 良ポリプタジエンゴムが提案された(特公昭49-17 666号)。このポリプタジエンゴムは、SPBが高シ レッドやサイドウォール、ビードフィラー等に好適なも、20 スBRのマトリックス中に繊維状に分散した構造を有し ているため、従来のゴム、例えば高シスBR単味のゴム 等と比較して硬度及び弾性が高く耐屈曲亀裂成長性に優 れているという特徴を有している。このため、この改良 ポリプタジエンを用いたタイヤ部材も各種提案されてい る。このようなものとして、例えばトレッドに使用した 例(特公昭63-1355号) やサイドウォールに使用 した例(特公昭55-17059号)等がある。

[0006]

【解決すべき課題】しかし、この改良ポリブタジエン 30 も、最近の高度な省燃費の要求(例えばCAFE対応) を満たす材料としては充分とは言えなかった。本発明 は、従来の改良ポリブタジエンゴムの長所をそのまま保 持しつつ、動的特性と耐摩耗性、引張強度、耐屈曲亀裂 成長性、反発強性のバランスに優れたポリプタジエンゴ ムを提供することを目的とする。 [0007]

【発明の構成】本発明は、

①還元粘度0.5~4の沸騰nーヘキサン不溶分・・・10~25重量% ②(a) 重量平均分子量(Mw)が30万~80万であり。

(b) トルエン溶液粘度(t-cp)と100℃でのムーニー粘度(ML) 上が.

3ML - 30 < t - cp < 3ML + 30

なる関係を満足する沸騰n-ヘキサン可溶分・・・・90~75重量%

からなるポリブタジエンゴムに関する。

【0008】本発明は、又、このポリブタジエンゴムに ジエン系合成ゴム及び/又は天然ゴムを配合したゴム組 成物に関する。

【0009】以下、本発明のポリブタジエンゴムについ て詳しく説明する。

【0010】本発明のポリブタジエンゴムは、沸騰n-ヘキサン不溶分と沸騰n-ヘキサン可溶分からなってい る。

【0011】沸騰nーヘキサン不溶分は、シンジオタク チックー1、2ーポリブタジエン、及び/又はシンジオ 50 タクチックー1、2ーポリブタジエンを主要構造とする

ポリブタジエンを主成分とするものである。一方、沸騰 n - ヘキサンに可溶な成分は、高シス-1、4 - ポリブ タジエンを主成分とするものである。

【0012】沸騰n-ヘキサン不溶分の割合は、10~ 25重量%であることが必要である。沸騰n-ヘキサン 不溶分の割合が10重量%より少ないと、ポリプタジエ ンゴムの硬度、弾性率、及び破壊強度が低下するという 問題が生じる。一方、25重量%より多い場合はポリブ タジエンゴムの配合物MLが高くなりすぎ、加工性に難 が生じる。ここで「配合物」とは、ポリブタジエンゴム 10 或いはこのポリブタジエンゴムに他のジエン系ゴムを配 合したゴム組成物にカーボンブラックやプロセスオイ ル、加硫剤等を配合したものをいう。

【0013】沸騰nーヘキサン不溶分は、テトラリン中 で130℃で測定した粘度の値から計算した還元粘度の 値が0.5~4.0の範囲にあることが必要である。環 元粘度が0.5よりも小さいと、沸騰n-ヘキサン不溶 分が沸騰n-ヘキサン可溶分中に繊維状に分散しないの で、得られるポリブタジエンゴムの硬度や弾性、耐屈曲 性が低下するという問題が起こる。一方、還元粘度が4 20 ランタン系列希土類元素系触媒等を挙げることができ を超えると、沸騰 n ーヘキサン不溶分は沸騰 n ーヘキサ ン可溶分中で凝集塊を形成するようになり、分散不良を 起こし易くなるので、ポリプタジエンゴムの加工性や耐 久性が低下するという問題が生じる。

【0014】沸騰n-ヘキサン可溶分は、重量平均分子 量が30万~80万の範囲であることが必要であり、重 量平均分子量が5万以下の成分の割合は3%以下(沸騰 n-ヘキサン可溶分に対して)であることが好ましい。 又、重量平均分子量 (Mw) と数平均分子量 (Mn) の 比Mw/Mnは3. 0未満であることが好ましい。 重量 30 平均分子量が30万未満の場合は、得られるポリブタジ エンゴムの耐久性が悪化するという問題が生じる。一 方、重量平均分子量が80万を超える場合は、配合物の ムーニー粘度が高くなり過ぎ、加工が困難になるという 問題が起こる。又、配合ゴムの流動性も悪化する。

【0015】更に、沸騰n-ヘキサン可溶分は、それ自 体のトルエン溶液粘度(t-cp)とムーニー粘度(M L) とが、

3ML - 30 < t - cp < 3ML + 30

液粘度は、濃厚溶液中での沸騰n-ヘキサン可溶分の分 子の絡みあいの程度を示すものであって、同程度の分子 量分布のゴムにあっては、分子量が同一であれば(即ち ムーニー粘度が同一であれば) ポリマー鎖の分岐の度合 いの尺度となるものである。即ち同一ムーニー粘度の場 合、トルエン溶液粘度が小さいことは分岐度の大きなこ とを示し、トルエン溶液粘度が大きいことは分岐度の小 さなことを示すのである。本発明において、t-cp≤ 3ML-30であると、ポリプタジエンゴムの耐磨耗性 や引張強度が低下し、好ましくない。

【0016】一方、t-cp≥3ML+30の場合は、 ポリプタジエンゴムの配合物ムーニー粘度が高くなり温 ぎ、加工性が悪くなる。

【0017】以下、本発明のポリブタジエンゴムの製造 法について説明する。製造法には、例えば二段重合法が ある。

【0018】二段重合法とは、1、3-ブタジエンを最 初にシスー1、4-重合して高シス-1、4-ポリブタ ジエンとし、次いで重合系にシンジオタクチック-1. 2重合触媒を投入して残余の1, 3-ブタジエンを1, 2 重合させるというものである。1、4-重合触媒、及 びシンジオタクチック-1、2-重合触媒には、公知の ものを使用することができる。1,4-重合触媒の例と しては、ジエチルアルミニウムクロライドーコバルト系 **触媒やトリアルキルアルミニウム-三弗化硼素-ニッケ** ル系触媒、ジエチルアルミニウムクロライドーニッケル 系触媒、トリエチルアルミニウム-四沃化チタニウム系 触媒、等のチーグラー・ナッタ型触媒、及びトリエチル アルミニウムー有機酸ネオジウムールイス酸系触媒等の る。シンジオタクチック1、2-重合触媒の例として は、可溶性コバルトー有機アルミニウム化合物ー二硫化 炭素系触媒 (特公昭47-19892号) や、この触媒 系に更にアクリロニトリルを加えたもの(特公昭47-

【0019】本発明のポリブタジエンゴムは、このほか ブレンド法によっても製造できる。プレンド法とは、予 め高シス1、4ーポリブタジエンとシンジオタクチック 1, 2-ポリプタジエンを別々に重合しておき、各々の 重合溶液をプレンドするというものである。このほか、 高シス1、4-ポリブタジエンの重合溶液に固体状のシ ンジオタクチック1,2-ポリプタジエンをブレンドす る等の方法も可能である。

19893号)を挙げることができる。重合温度、重合

溶媒等も公知の方法に従って適宜設定できる。

【0020】本発明のポリプタジエンゴムは、高シスポ リプタジエンゴムや低シスポリブタジエンゴムやスチレ ンープタジエンゴム、イソプレンゴム、プチルゴム、及 び天然ゴムからなる群から選ばれた少なくとも 1 種類の ゴムを配合した組成物としてタイヤのベーストレッドや なる関係を満たしていることが必要である。トルエン容 40 サイドウォール、或いはビードフィラーに好ましく用い 得る。但しこの組成物は本発明のポリブタジエンゴムを 20重量%以上含有することが望ましい。

[0021]

【実施例】以下の実施例および比較例において、ブタジ エンゴム及びその組成物について以下の各項目の測定 は、次のようにして行った。

【0022】n-ヘキサン不溶分の還元粘度 ポリブタジエンゴム25gを沸騰nーヘキサン1000

ml中で還流し、沸騰n-ヘキサン不溶分と可溶分とに分 50 離した。得られた沸騰nーヘキサン不溶分0.2gをテ トラリン100mlに溶解し、130℃の温度にてウベローデ粘度計にて測定した。 【0023】

n ーヘキサン可溶分の重量平均分子量の測定

ポリブタジエンゴム 25gを沸騰カーペキサン1000 山中で還流し、沸騰カーペキサン不溶分を強別し、カー ペキサン溶液を巨収した。得られたカーペキサン溶液か らカーペキサンを除去し、カーペキサン可溶分を回収し た。回収されたカーペキサン可溶分をテトラビドロフラ ンに溶解し、GPCを用い、ポリスチレン換算分子量か 10 らMを質用した。測定条件は以下の通り。

装置:HLC-802A型(東洋曹達株式会社製)

カラム: GMH6000、2本並列 溶離液: テトラヒドロフラン

溶離液流量: 1. 0 ml/分

測定温度:カラム槽・・・40℃

検出器・・・・40℃

サンプル濃度: 0.025g/100ml サンプル注入量: 0.5ml

【0024】 n — ヘキサン可溶分のミクロ構造 上記の方法で得られた沸騰 n ー ヘキサン可溶分につい て、赤外線吸収スペクトル法 (モレロ法) によってシス - 1、4様造の割合を定量した。

[0025]

ューペキサン可溶分のトルエン溶液粘度 (T c p) 上記の方法で得られた沸騰ηーペキサン可溶分を5重量 %になるようにトルエンに溶解して、キャノンフェンス ケ粘度計を25℃測在した。

[0026]

nーへキサン可溶分及び配合物のムーニー粘度 JIS-K-6300に規定されている測定方法に従って測定した。

【0027】加<u>硫物の硬度、反発弾性、及び引張強度</u> JIS-K-6301に規定されている測定法に従って 測定した。

[0028] tan 8

加硫物の t a n δ については、レオメトリックス社製R SA2を用いて、温度70℃、周波数10Hz、動歪2 %の条件で測定した。

【0029】発熱特性

グッドリッチフレクソメーターを用い、ASTM D6 23に従い、歪み0.175インチ、荷重55ポンド、 100℃25分の条件で測定した。

【0030】ピコ摩耗

ASTM D2228に規定されている測定法に従って 測定した。

【0031】耐屈曲亀裂成長性

2 mmの亀裂が15mmに成長するまでの屈曲回数をJIS K6301に規定されている測定法に従って測定した。

[0032]

【実施例1】内部を窒素ガスで置換した容量2リットル のオートクレーブに、1、3-ブタジエン192gを脱 水ベンゼン608gに溶解した溶液を仕込み、更に水 9mmolを加えて30分間複雑した。次いで、この溶 液を50℃に昇温し、ジエチルアルミニウムクロライド 3. 1 mmol、コバルトオクトエート0. 0 1 mmol、及び 1、5-シクロオクタジエン8、5mmolを加えて機絆を 行い、1、3-ブタジエンをシス-1、4重合した。3 0分経過後、重合溶液に、シンジオタクチック1、2重 合触媒としてトリエチルアルミニウム3. 6 mmol. 二硫 化炭素 0. 2 mmol、及びコバルトオクトエート 0. 12 0 mmo1を加えて、温度を50℃に調節して30分間攪拌 を行い、残余の1、3-ブタジエンをシンジオタクチッ ク1、2重合した。重合終了後、重合溶液に、2、4tert-ブチル-p-クレゾール0.5gをメタノー ルーベンゼン混合溶媒 (50:50) に溶かした溶液を 加えて、重合反応を停止した。重合反応を停止した後、 重合溶液を常法に従って処理し、ポリブタジエンゴムを 20 回収した。得られたポリプタジエンゴムは、ムーニー粘 度が65 (MLim 、100℃) 、沸騰n-ヘキサン不 溶分の含有率が12.1重量%、沸騰n-ヘキサン可溶 分の含有率は87.9重量%であった。沸騰n-ヘキサ ン不溶分は還元粘度が2、1であった。沸騰n-ヘキサ ン可溶分はムーニー粘度が50 (ML: 、100 ℃)、トルエン溶液粘度が150、重量平均分子量が6 3万であり、シス-1、4構造の割合は96、9%であ った。このポリプタジエンゴムについての上記の結果を 表1に示す。このポリプタジエンゴムに、表2の配合表 30 に従い、カーボンブラック、プロセスオイル、硫黄等を 配合し、150℃で30分間プレスし、加硫し、配合物 (サンプル1及び2) を調製した。サンプル1及び2に ついて、硬度、300%応力、引張強度、反発弾性、発 熱等を測定した。測定結果を表3に示す。更に、表4、 6、及び8の配合表に従い、サイドウォール用配合物、 ベーストレッド用配合物、及びビードフィラー用配合物 を調製した。これらの配合物について、硬度、300% 応力、引張強度、反発弾性、発熱等を測定した。測定結 果を表5、7、及び9に示す。

40 [0033]

【実施例2】シスー1、4重合において水を1.8mmolと 1、1、5ーシクロオクタジエンの最を10.5mmolと し、シンジオタクチック1.2重合においてコベルトオ クトエートの量を0.20mmolとした以外は、実施例1 と同様にして2股重合を行い、ポリブタジエンゴムを得 た。このポリブタジエンゴムの一へキサン不溶分の割 合、ローヘキサン可溶分のムー二・粘度とトルエン溶験 粘度、等について測定した結果を表1に示す。このポリ ブタジエンゴムの、表2の配合表に従いカーボンブラッ 50 ク、プロセスオイル、競貨等を配合し、150℃30 (5)

分間プレスし、加硫し、サンプル3及び4を調製した。 サンプル3及び4について、硬度、300%応力、引張 強度、反発弾性、発熱等を測定した。測定結果を表3に 示す。更に、表4、6及び7の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%応力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。

[0034]

オクタジエンの量を10.0mmolとし、シンジオタクチ ック1.2重合においてトリエチルアルミニウムの量を 3. 9 mmol、コバルトオクトエートの量を0. 20 mmol とした以外は、実施例1と同様にして2段重合を行い。 ポリブタジエンゴムを得た。このポリブタジエンゴムの n-ヘキサン不溶分の割合、n-ヘキサン可溶分のムー ニー粘度とトルエン溶液粘度、等について測定した結果 を表1に示す。次いで、このポリブタジエンゴムに、表 2の配合表に従いカーボンブラック、プロセスオイル、 硫黄等を配合し、150℃で30分間プレスし、加硫 し、サンプル5を調製した。サンプル5について、硬 度、300%応力、引張強度、反発弾性、発熱等を測定 した。測定結果を表3に示す。更に、表4、6、及び8 の配合表に従い、サイドウォール用配合物及びベースト レッド用配合物を調製した。これらの配合物について、 硬度、300%応力、引張強度、反発弾性、発熱等を測 定した。測定結果を表5、7、及び9に示す。

[0035]

【実施例4】シス-1、4重合において水の量を1、9 リエチルアルミニウムの量を3.5mmolとした以外は、 実施例1と同様にして2段重合を行い、ポリブタジエン ゴムを得た。このポリブタジエンゴムのn-ヘキサン不 溶分の割合、n-ヘキサン可溶分のムーニー粘度とトル エン溶液粘度、等について測定した結果を表1に示す。 次いで、このポリブタジエンゴムに、表2の配合表に従 いカーボンプラック、プロセスオイル、硫黄等を配合 し、この配合ゴムを150℃で30分間プレスし、加硫 し、サンプル6を調製した。サンプル6について、硬 度、300%応力、引張強度、反発弾性、発熱等を測定 40 した。測定結果を表3に示す。更に、表4、6、及び8 の配合表に従い、サイドウォール用配合物及びベースト レッド用配合物を調製した。これらの配合物について、 硬度、300%応力、引張強度、反発弾性、発熱等を測 定した。測定結果を表5、7、及び9に示す。 [0036]

【比較例1】シス−1、4重合においてコバルトオクト エートの量を0.08mmolとした以外は、実施例1と同 様にして2段重合を行い、ポリブタジエンゴムを得た。 得られたポリプタジエンゴムは、ムーニー粘度が60

(ML_M 、100℃)、沸騰n-ヘキサン不溶分の含 有率が7.8重量%、沸騰n-ヘキサン可溶分の含有率 は92.2重量%であった。沸騰n-ヘキサン不溶分は 還元粘度が2.1であった。沸騰n-ヘキサン可溶分は ムーニー粘度が48 (MLim 、100℃) 、トルエン 溶液粘度が132、重量平均分子量が52万であり、シ ス-1,4構造の割合は96,7%であった。このポリ ブタジエンゴムについての上記の結果を表1に示す。こ のポリブタジエンゴムに、表2の配合表に従い、カーボ 【実施例3】シス-1,4重合において1,5-シクロ 10 ンブラック、プロセスオイル、硫黄等を配合し、150 ℃で30分間プレスし、加硫し、サンプル7を調製し た。サンプル7について、硬度、300%応力、引張強 度、反発弾性、発熱等を測定した。測定結果を表3に示 す。更に、表4、6、及び8の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%応力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。

[0037] 【比較例2】シス-1、4重合において水を1.7mmo

1、シクロオクタジエンの量を10.0mmolとした以外 は、実施例2と同様にして2段重合を行い、ポリブタジ エンゴムを得た。得られたポリプタジエンゴムは、ムー 二一粘度が62 (ML_H 、100℃)、沸騰n-ヘキ サン不溶分の含有率が18、3重量%であった。n-ヘ キサン可溶分のムーニー粘度は41、重量平均分子量が 50万であった。これらの結果を表1に示す。次いで、 このポリブタジエンゴムに、表2の配合表に従いカーボ ンブラック、プロセスオイル、硫黄等を配合し、150 5 mmolとし、シンジオタクチック1.2 重合においてト 30 ℃で30分間プレスし、加硫し、サンプル8を調製し た。サンプル8について、硬度、300%応力、引張強 度、反発弾性、発熱等を測定した。測定結果を表3に示 す。更に、表4、6、及び8の配合表に従い、サイドウ オール用配合物及びベーストレッド用配合物を調製し た。これらの配合物について、硬度、300%応力、引 張強度、反発弾性、発熱等を測定した。測定結果を表 5、7、及び9に示す。 [0038]

【比較例3】シス-1、4重合において水の量を1.7 5 mmolとし、ジエチルアルミニウムクロライドの量を 3. 3 mmolとした以外は実施例2と同様にしてポリブタ ジエンゴムを得た。得られたポリプタジエンゴムは、ム 一二一粘度が62 (MLin 、100℃)、沸騰n-ヘ キサン不溶分の含有率が18.3重量%であった。n-ヘキサン可溶分のムーニー粘度は38、重量平均分子量 が48万であった。これらの結果を表1に示す。次い で、このポリブタジエンゴムに、表2の配合表に従いカ ーボンブラック、プロセスオイル、硫黄等を配合し、1 50℃で30分間プレスし、加硫し、サンブル9を調製 50 した。サンプル9について、硬度、300%応力、引張 9

強度、反発弾性、発熱等を測定した。測定結果を表3に *張強度、反発弾性、発熱等を測定した。測定結果を表 示す。更に、表4、6、及び8の配合表に従い、サイド ウォール用配合物及びベーストレッド用配合物を調製し

5、7、及び9に示す。 [0039]

10

た。これらの配合物について、硬度、300%応力、引* 【表1】

				実施例				比較例		
+	ナンフ	プル	1	2	3	4	1	2	3	
	M		6 5	6 1	6 4	6 2	60	6 2	6 1	
沸刷		W t %	12. 1	18. 5	17. 9	18. 2	7.8	18. 3	18. 1	
l	9分	η/c	2.1	2.0	3. 5	1.4	2.1	2. 0	2. 1	
沸瓶	6	ML	5 0	3 6	4 0	3 9	4 8	4 1	3 8	
	‡ † >	t —cp	150	95	118	132	141	90	103	
-346	*/1	Mw*)	6 3	4 4	5 1	5 2	6 1	5 0	4 8	
		M n *)	2 3	1 5	1 8	2'0	2 2	1 7	1 4	
	¢i	s1,4(%)	96. 9	96. 6	96. 8	97. 0	96. 7	96. 3	96. 8	

ポリプタジエンゴム 100重量部

11

HAFカーボン 50重量部 (サンプル1、3、及び11)

(7)

30重量部(その他)

プロセスオイル 10重量部

亜鉛華1号 5重量部

ステアリン酸 2 重量部

老化防止剤(N-イソプロヒルーパーフュニル-p-フュニレンシアミン)

1重量部

加硫促進剤(N-シクロヘキシル-2-ヘンソチテアソールスルフェンアミト)

1重量部

硫黄 1.5重量部

[0041]

【表3】

13

_	10						
17	tンフル番号	1	2	3	4	5	6
組	ポリプクジェン *)	実1	実1	実2	実2	実 3	実4
成物	カーポン数・*)	5 0	3 0	5 0	3 0	3 0	3 0
ň	C合物M L	8 1	5 4	8 3	5 6	5 7	5.6
ħ	かたさ	7 1	61	77	6 6	6 5	6 6
300	K吃力(kg/cm²)	152	8 6	187	106	108	109
引强	美強度(kg/cm²)	193	171	186	175	176	180
反発	弹性	5 3	6 3	5 2	6 1	6 1	6 2
発熱	(°C)	2 6	1 8	2 9	19	1 9	1 8
52	摩耗(指数)	267	201	284	209	206	2 1 0
比重	t	1. 13	1. 10	1. 13	1.10	1. 10	1.10

7	サンガル番号	7	8	9	10	11
組	ポリブタラエン *3	比1	比2	此3	VCR412	UBEPOL***
成物	カーボン量**)	3 0	3 0	3 0	3 0	5 0
ı	R合物M L	. 5 0	5 7	5 4	4 6	6 1
t.	かたさ	5 6	6.6	6 6	6 0	6 0
300	がた力(kg/cm²)	6 2	101	9 7	7 6	8 7
313	養強度(kg/cm ^t)	1 2 8	156	159	150	183
反药	弹性	-	5 8	5 7	5 8	5 7
発熱	t (°C)	1	2 2	2 3	2 2	2 3
ť:	摩耗 (指数)	-	188	165	173	214
比重		1.10	1. 10	1. 10	1.10	1. 13

*) ・・・・実→実施例、比→比較例

**)・・・・単位は重量部

***) · · · UBEPOL-BR150

[0042]

【表4】

ポリブタジエンゴム	6 0 重量部
天然ゴム	4 0 重量部
FEFカーボン	5 0 重量部(サンプル1、3、及び11)
	30重量部 (その他)
プロセスオイル	10重量部
亜鉛華 1号	3 重量部
ステアリン酸	2 重量部
ワックス	2 重量部
加硫促進剤(N-オキシシエチレン-2-	ベングチアジルスルフェンアミド)
	0.8重量部
硫黄	1. 5 重量部
加硫	150℃×30分

[0043]

【表5】

	17						18
3	がか番号	1	2	3	4	5	6
ム組成物	ポリプタジエン *)	実1	実1	実2	実2	実 3	実 4
物	カーポン量・・)	5 0	3 0	5 0	3 0	3 0	3 0
ř	ic合物M L	6 2	4 3	6 4	4 4	4 4	4 4
Ź	かたさ	6 5	5 8	68	5 9	5 9	5 9
300	%応力(kg/cm²)	102	6 7	117	8 1	7 9	8 2
3[4	最強度(kg/cm²)	190	178	188	180	179	183
反到	6弾性	5 8	6 6	5 6	6 4	6 4	6 5
発達	A (°C)	2 4	1 4	2 5	1 6	16	1 5
۲:	摩耗(指数)	151	114	160	118	115	121
耐相	出曲亀裂 (回)	27. 000	29, 000	25. 000	28, 000	28, 000	27. 000
tε	n δ(指数)	108	7 0	110	7 3	7 3	7 2
比重	î	1.13	1. 10	1. 13	1.10	1.10	1.10 ·

ゴム	サンブル番号	7	8	9	10	11
組成	ポリプタフェン *)	比1	比2	比3	VCR412	UBBPOL***
物	カーボン量**)	3 0	3 0	3 0	3 0	5 0
ă	Z合物ML	4 1	4 2	4 2	3 8	5 3
#	たさ	5 4	5 9	5 8	5 6	5 9
300	K応力(kg/cm²)	5 2	6 8	7 0	5 9	7 9
引引	強度(kg/cm²)	147	170	167	165	187
反务	弹性	-	6 2	6 1	6 1	6 1
発剌	\/(℃)	-	19	19	18	2 0
دع	摩耗(指数)	-	106	101	103	121
耐压	曲亀裂(回)	1	22, 000	25, 000	24, 000	10,000
t a	n δ (指数)	-	8 5	8 3	8 3	100
比重		1.10	1. 10	1. 10	1.10	1.13

*)・・・・実→実施例、比→比較例

THE CAME TO THE POLICE BRI

[0044]

40 【表6】

## II	サカ	35 T	シイ	1.

天然ゴム

50重量部

5 0 重量部 50重量部(サンプル1、3、及び11)

HAFカーボン

30重量部 (その他)

プロセスオイル

10重量部

亜鉛華 1 号

3重量部

ステアリン酸

2 重量部

老化防止剤 (N-イソプロヒル-N゚-フュニル-p-フュニレンシアミン)

1重量部

加硫促進剤(N-オキシシエチレン-2-ヘンクチアシルスルフェンアミド)

0. 8重量部

硫黄

1. 5重量部

加硫

150℃×30分

[0045]

【表7】

	21						22
ゴム	ŧンフル番号	1	2	3	4	5	6
紅組成物	ポリプタジエン *>	実1	実1	実2	実2	実3	実 4
松物	カーボン量**>	5 0	3 0	5 0	3 0	3 0	3 0
1	R合物M L	7 4	5 0	7 6	5 1	5 1	5 2
7.	かたさ	6 4	5 7	6 7	5 9	5 9	5 9
300	K応力(kg/cm²)	1 2 5	8 2	145	9 9	9 7	99
313	長強度(kg/cm²)	254	258	251	2 4 1	239	244
反列	è弹性	5 2	6 0	5 0	5 9	5 9	5 8
発素	å (℃)	2 6	16	2 8	18	17	17
t a	ınδ(指数)	105	7 2	109	7 5	7 5	7 4
比重	î	1. 13	1. 10	1. 13	1.10	1. 10	1.10

7 7	サンカル番号	7	8	9	10	1 1
組成物	ポリプタジエン *)	比1	比2	比3	VCR412	UBEPOL***)
物	カーボン量**)	3 0	3 0	3 0	3 0	5 0
B	C合物M L	4 8	4 9	48	4 4	6 3
ħ	いたさ	5 3	5 9	5 8	5 6	5 8
300	%応力(kg/cm²)	6 5	8 3	8 6	7 2	9 7
引引	曼強度(kg/cm²)	196	227	223	221	250
反発	è弹性	-	5 5	5 5	5 6	5 4
発素	h (°C)	-	2 1	2 1	2 0	2 2
t a	n δ (指数)	-	8 8	8 6	8 5	100
比重	t	1.10	1. 10	1. 10	1. 10	1.13

*)・・・・・夷→実施例、比→比較例

**)···· BEPOL - BR150

[0046]

【表8】

ボリブタジエンゴム 60重量部

天然ゴム

4 0 重量部

ISAFカーボン 50重量部(サンプル2)、

75重量部(サンプル7)、50重量部(その他)

アロマオイル 10重量部

亜鉛華 1 号

5重量部 2 重量部

ステアリン酸

老化防止剤(N-イソナロヒル-N゚-フュニル-p-フュニレンシアミン)

2重量部

加硫促進剤(N-オキシシュチル-2-ヘンノチアラルスルフュンアミト)

1. 5重量部

硫黄

3重量部

加硫

150°C×20分

[0047]

【表9】

				_			
ゴム	サンル番号	1	2	3	4	5	6
組成	ポリプタジェン *1	実1	実2	比1	比2	比3	VCR412
物	カーギン量**)	5 5	5 0	5 5	5 5	5 5	5 5
5	R合物M L	9 3	77	9 0	8 8	8 5	8 2
t	かたさ	7 9	7 8	7.4	7 9	7 8	7 8
300	X応力(kg/cm²)	224	2 2 8	183	2 1 5	210	208
링링	吸強度(kg/cm²)	237	240	2 1 5	2 2 7	223	220
反务	è弹性	5 8	6.0	6 0	5 4	5 3	5 3
発熱	(°C)	2 2	2 1	2 1	2 6	2 7	2 7
t a	n δ (指数)	7 0	6 6	6 8	8 4	8 2	8 2
比重	i	1. 14	1. 13	1.14	1.14	1.14	1.14

ゴム組成物	サンカル番号	7
	ポリプタジエン *)	BR130B***)
	かポン量***	7 5
配合物ML		9 2
かたさ		7 8
300%吃力(kg/cm²)		_
引張強度(kg/cm²)		205
反発弾性		5 0
発熱 (℃)		3 9
tan δ (指数)		100
比重		1. 18

*) ・・・・実→実施例、比→比較例

) ・・・単位は重量部 *)・・・UBEPOL-BR130B

【0048】 【発明の効果】本発明のポリブタジエン及びゴム組成物 は従来の改良ポリブタジエンゴムの長所をそのまま保持

40 しているとともに、動的特性と耐摩耗性、引張強度、耐 屈曲性、反発弾性のバランスに優れている。