Tijana Kosorić

Određivanje zavisnosti indeksa prelamanja koncentracije rastvora šećera u vodi

Posmatrana je zavisnost indeksa prelamanja rastvora šećera u vodi od koncentracije. Rađeno je pomoću vrlo jednostavne metode sa prizmom i aparature koja se može sastaviti u svakoj laboratoriji. U eksperiment je uključeno i izračunavanje indeksa prelamanja prizme što je neophodno za njegov dalji tok. Relativne greške merenja su reda veličine 10^{-3} .

Uvod

Na određenoj temperaturi i za monohromatičnu svetlost indeks prelamanja je konstanta za jedno određeno telo. U optičkoj industriji je od velikog značaja određivanje indeksa prelamanja stakla koja se uptrebljavaju za različite optičke instrumente. Određivanje indeksa prelamanja vrši se uz pomoć zakona prelamanja i principa totalne refleksije. Zakon prelamanja je prvi izveo holandski fizičar Snel, a kasnije ga je dopunio francuski fizičar Dekart pa se zbog toga i naziva *Snel-Dekartov zakon*.

Na slici 1 predstavljeni su svetlosni zraci koji prelaze iz sredine 1 u kojoj se kreću brzinom u_1 u sredinu 2 u kojoj je brzina kretanja u_2 pri čemu je $u_1 > u_2$. Prava AB predstavlja položaj ravnog talasnog fronta u momentu t. Normala \overline{BB} pokazuje pravac prostiranja nailazećeg fronta talasa na graničnu površinu SS . Ugao a između \overline{BB} i normale \overline{BN} na graničnu površinu SS naziva se upadni ugao. Da bi deo talasa iz tačke B stigao do granične površine (u tački B) potrebno je vreme $u_1\Delta t$. Put \overline{BB} , s obzirom da je brzina talasa u_1 konstantna u prvoj sredini je $\overline{BB} = u_1\Delta t$. Za isto vreme svetlosni talas iz tačke A, na osnovu Hajgenosovog principa prelazi u drugoj sredini put $\overline{AA} = u_2\Delta t$ koji je manji od \overline{BB} zbog manje brzine prostiranja talasa u_2 . Ako se razmotre prelomljeni talasi iz tačaka (A₁, A₂ ...) između A i B dobiće se prelomljeni talasni front \overline{AB} koji predstavlja obvojnicu elementarnih talasa od pomenutih tačaka na graničnoj površini SS . Normala \overline{AA} na obvojnicu \overline{AB} predstavlja

Tijana Kosorić (1980), Loznica, Marije Bursać 7, učenica 2. razreda Gimnazije "Vuk Karadžić u Loznici

Slika 1. Objašnjenje prelamanja talasa pomoću Hajgensovog principa.

Figure 1. The refraction of waves according to Hygens s principle.

pravac prostiranja talasnog fronta i sa normalom N na graničnu površinu SS u tački A zaklapa ugao β koji se naziva prelomni ugao. Iz pravouglih trouglova ABB i AAB se dobija:

$$\sin \alpha = \frac{u_1 \Delta t}{AB'} \sin \beta = \frac{u_2 \Delta t}{AB'}$$

odnosno:

$$\frac{\sin \alpha}{\sin \beta} = \frac{u_1}{u_2} = n_{21} , \qquad (A1)$$

gde je n relativni indeks prelamanja druge sredine u odnosu na prvu. Izraz (A1) predstavlja Snel-Dekartov zakon prelamanja koji glasi: *Odnos upadnog i prelomnog ugla jednak je odnosu brzina prostiranja talasa u tim sredinama*. Ovaj zakon važi za dve homogene i izotropne sredine.

Aparatura i metode merenja

Ideja za ovaj eksperiment uzeta je od Shenoy-a i sar. (1990). Aparatura za rad predstavljena je na slici 2. Vrlo je jednostavna jer su korišćeni samo He-Ne laser i prizma.

Određivanje indeksa prelamanja prizme

Da bi se izračunao indeks prelamanja tečnosti mora se prethodno naći indeks prelamanja prizme koja je upotrebljavana. Rotiranjem pravilne tros-

trane prizme sa uglom od 60 menja se ugao devijacije i tako se može naći njegova minimalna vrednost. Postavljanjem zaklona na različita rastojanja (sl. 3) i merenjem visina laserskog zraka može se izračunati ugao devijacije koji je jednak

$$\theta = \arctan \frac{x}{r}$$
.

Neka je a upadni ugao kod tačke M (sl. 4) pri prelazu zraka iz vazduha u prizmu, a neka je b odgovarajući prelomni ugao. Sa a_1 je označen upadni ugao zraka MM_1 koji prolazi kroz prizmu, a sa b_1 njemu odgovarajući prelomni ugao.

Uglovi koje zrak MM_1 pravi sa pravcem upadnog zraka SD i pravcem izlaznog zraka DO su γ i γ_1 . Sa slike se vidi da je $\gamma=\alpha-\beta$ i $\gamma_1=\alpha_1-\beta_1$. Iz Δ MM_1D sledi da je spoljašnji ugao $\delta=\gamma+\gamma_1=\alpha-\beta+\beta_1-\alpha_1$ ili:

$$\delta = \alpha + \beta_1 - (\beta + \alpha_1).$$

Iz DMM₁E izlazi da je $\varepsilon = \beta + \alpha_1$, a pošto je $\varepsilon = \phi$ (uglovi sa normalnim kracima) biće

$$\varphi = \beta + \alpha_1. \tag{A2}$$

Zamenom vrednosti iz (A2) u (A1) dobija se:

$$\delta = \alpha + \beta_1 - \phi.$$

Slika 3. Geometrijski prikaz neposredno merene veličine: x = b - a.

Figure 3. The geometrical interpretation of the value x: x = b - a.

Slika 4. Šema prelamanja zraka kroz prizmu.

Figure 4. Scheme of prism light refraction.

Pošto je u slučaju minimalne devijacije $\beta=\alpha_1$ onda je, iz jednačine (A2), $\phi=2$ β , ili:

$$\beta = \frac{\varphi}{2} \; , \tag{A4}$$

a $\alpha = \beta_1$ pa je iz jednačine (A3) $\delta = 2 \alpha - \phi$, ili

$$\alpha = \frac{\varphi + \delta}{2} \,. \tag{A5}$$

Zamenom vrednosti za prelomni i upadni ugao iz jednačina (A4) i (A5) u Snel-Dekartov zakon prelamanja dobija se:

$$n = \frac{\sin\frac{\varphi + \delta}{2}}{\sin\frac{\varphi}{2}} \ .$$

Merenje indeksa prelamanja tečnosti

Prizma se postavi u horizontalan položaj i delimično potopi u vodu kao što je prikazano na slici. Odstupanje prizme od horizontalnog položaja doprinosi relativnoj greški od 0.7%. Zrak He-Ne lasera prolazi kroz sočivo postavljeno blizu Petrijeve šolje ispunjene vodom tako da zraci prošavši

kroz tečnost padaju na stranu BC prizme pod malim uglovima u odnosu na njenu površinu. Lome se i pri izlazu iz strane \overline{AB} sa normalom zaklapaju ugao a. Zraci koji se prelamaju na granici vazduh – prizma obrazuju na zaklonu ($l \approx 3$ m) tanku liniju. Promena Δh između tih linija se beleži pri odgovarajućim koncentracijama šećera u vodi.

Primena zakona prelamanja na stranama AB i BC daje [3]:

$$n_t = n_p \sin \theta \tag{B1}$$

$$n_p = \sin \psi = \sin \alpha \tag{B2}$$

gde su n_p i n_t odgovarajući indeksi prelamanja prizme i tečnosti. Ukoliko su uglovi kod P i R u BPQR na sl. 2. pravi \angle PQR = π – α . Tada iz Δ PQR sledi $\alpha = \psi + \theta$.

Iz jednačina (B1) i (B2) se dobija:

$$n_t = \left(n_p^2 - \sin^2\varphi\right)^{\frac{1}{2}} \sin\alpha - \sin\varphi\sin\alpha$$
 (B3)

$$\varphi = \arcsin\left[\left(n_p^2 - n_t^2\right)^{\frac{1}{2}}\sin\alpha - n_t\cos\alpha\right]$$
 (B4)

Ako je osnova BC prizme horizontalna onda je

$$\varphi = \arctan\left(\frac{h}{l}\right) + \alpha - 90^{\circ}$$
(B5)

gde su h i l rastojanja po vertikali i horizontali između prizme i linije na zidu.

$$d n_t = \left(\frac{\partial n_t}{\partial \phi}\right) d \phi \tag{B6}$$

a u zavisnosti od koncentracije šećera:

$$\frac{\mathrm{d}\,n_t}{\mathrm{d}\,c} = \left(\frac{\partial\,n_t}{\partial\,\varphi}\right) \frac{\mathrm{d}\,\varphi}{\mathrm{d}\,c} \tag{B7}$$

Iz jednačine (B5) sledi:

$$d \varphi = \frac{1}{l^2 + h^2} dh, \qquad (B8)$$

pa je:

$$\frac{\mathrm{d}\,n_t}{\mathrm{d}\,c} = \frac{1}{l^2 + h^2} \cdot \left(\frac{\partial\,n_t}{\partial\,\varphi}\right) \frac{\mathrm{d}\,h}{\mathrm{d}\,c} \tag{B9}$$

Iz jednačine (B4) se dobija:

$$\frac{\partial n_t}{\partial \Phi} = -\frac{n_k \sqrt{1 - \left(n_k \sin \alpha - n_t \cos \alpha\right)^2}}{n_t \sin \alpha + n_b \cos \alpha}$$
(B10)

gde je.

$$n_k = \sqrt{n_p^2 - n_t^2} \,.$$

Ako je Δh promena h pri menjanju koncentracije šećera c onda se može napisati:

$$\frac{\mathrm{d}\,h}{\mathrm{d}\,c} \approx \frac{\Delta\,h}{\Delta\,c}$$

Kada se sredi jednačina (B10) dobija se

$$\frac{\mathrm{d}\,n_t}{\mathrm{d}\,c} = \frac{1}{l^2 + h^2} \cdot \left(\frac{\partial\,n_t}{\partial\,\varphi}\right) \frac{\Delta\,h}{\Delta\,c} \tag{B11}$$

Iz izraza $n_{t_0} + \frac{\mathrm{d} n_t}{\mathrm{d} c} \Delta c = n_{t_1}$ može se izračunati indeks prelamanja tečnosti sa šećerom uz pomoć jednačina (B10) i (B11).

Rezultati i diskusija

Indeks prelamanja tečnosti se izračunava pomoću jednačine:

$$n_t + \frac{\mathrm{d}\,n_t}{\mathrm{d}\,c} \Delta\,c = n_{t_1},$$

gde je $\frac{\mathrm{d}\,n_t}{\mathrm{d}\,c}$ određeno formulom (B11), uzimajući u obzir (B10).

Ugao α je 60.0°, a indeks prelamanja prizme izračunat navedenim postupkom je 1.54 \pm 0.02. Rastojanje prizme i zaklona je 237.5 \pm 1 cm. Merenja su vršena za 10 različitih koncentracija čiji su rezultati predstavljeni u tabeli. Greška je izračunata pomoću formule:

Slika 5. Zavisnost indeksa prelamanja rastvora od koncentracije šećera.

Figure 5. Index of refraction dependence on sugar solution concentration.

$$\Delta n_i = \frac{1}{l^2 + h^2} \cdot \left(\frac{\partial n_i}{\partial \varphi} \right) \frac{\Delta h}{\Delta c} \Delta c ,$$

gde je
$$\frac{\partial n_t}{\partial \phi}$$
 dato izrazom (B10).

Zavisnost indeksa prelamanja od koncentracije				
No.	$c \mod \mathrm{dm}^{-3}$	$h_0 - h_i$ m	n_t	Δn_t
1.	0.1	0.039	1.337	0.007
2.	0.2	0.068	1.341	0.005
3.	0.3	0.093	1.345	0.005
4.	0.4	0.118	1.348	0.003
5.	0.5	0.140	1.351	0.004
6.	0.6	0.168	1.355	0.005
7.	0.7	0.190	1.357	0.004
8.	0.8	0.220	1.361	0.005
9.	0.9	0.242	1.364	0.004
10.	1.0	0.205	1.367	0.004

Zavisnost indeksa prelamanja tečnosti od koncentracije šećera predstavljena je na grafiku (slika 5).

Sa porastom koncentracije šećera u vodi raste i indeks prelamanja. Greške potiču od nepreciznog merenja dužina (rastojanja l i visine h) i

koncentracije c, a reda su veličine 10^{-3} što dokazuje da metoda daje dobre rezultate i da se pomoću jednostavnih uređaja može odrediti indeks prelamanja tečnosti.

Literatura

- [1] Šljivić, S. 1965. Uvod u fiziku. Beograd: Naučna knjiga.
- [2] Kurepa, M., Purić, J. 1987. Osnovi fizike. Beograd: Naučna knjiga.
- [3] M. R. Shenoy, Roy, S., Thyagarajan, K. 1990. Rev. Sci. Instrum. 61: 1010-13.
- [4] Đurić, B., Ćulum, Ž. 1978. Fizika Optika. Beograd: Naučna knjiga.
- [5] Matveev, A. N. 1985. Optika. Moskva: Vysshaya shkola.
- [6] Vučić, V. M., Ivanović, D. M. 1989. Fizika II. Beograd: Naučna knjiga.

Tijana Kosorić

The Dependence of the Index of Refraction of a Water Solution of Sugar on the Concentration

The aim of this paper is to measure the index of refration of a water solution of sugar, and its dependence on the concentration of sugar. The experimental setup is extremely simple, and consists of an He-Ne laser and a prism. As a first step, I have determined the index of refraction of the Prism. The value of this index is $n = (1.54\pm0.02)$. The index of refraction of the solution was calculated from the measured changes of the position of the spot formed by the laser beam on a screen placed behind the prism. The measurement was repeated for 10 values of the concetration of sugar between 0.1 and 1 (mole/dm³) and the results were fitted by a linear function. An estimate of the relative errors shows that the precision of the derived value of the index of refraction is of the order of 10^{-3} .

