

Master of Science in

FINANCE

STUDY OF DYNAMIC CORRELATION FOR RISK ASSESSMENT IN FINANCE: AN ANALYSIS OF THE NASDAQ 100 WITH AND WITHOUT THE EFFECT OF COVID-19

Supervisor Professor Giuliana Passamani

Giovanni Pedone

Purpose

The objective is to analyse the dynamic pairwise correlations between an aggregated index and selected securities from the Nasdaq 100, with a view to applying them to portfolio risk calculations using Value at Risk (VaR) and Expected Shortfall (ES)

Macroeconomic-Financial Index

Return

Return

Return

Difference

 $\Delta\%log(Cpi)$

Difference

Cluster Analysis Results

To make the group as representative as possible of the Nasdaq 100, we have added the four largest capitalisation stocks of the index to the results: **Microsoft (MSFT), Apple (AAPL), Nvidia (NVDA), Amazon (AMZN)**.

Dynamic Correlations $(\hat{\Gamma}_t^{DCC})$

Comparison of DCC-GARCH(1,1) and 90-Days Rolling Window Correlations

Dynamic Correlations ($\hat{\Gamma}_t^{DCC}$), Ex-Covid*

Dynamic Correlations ($\hat{\Gamma}_t^{VAR-DCC}$)

Comparison of VAR(1)-DCC-GARCH(1,1) and DCC-GARCH(1,1) Correlations

Dynamic Correlations ($\hat{\Gamma}_t^{VAR-DCC}$), Ex-Covid

Model Selection

	α	β	
	(Alpha)	(Beta)	
DCC-GARCH (1,1)	0.0091 (0.0001)	0.9701 (0.0000)	
VAR(1)–DCC–GARCH (1,1)	0.0089 (0.0024)	0.9702 (0.0000)	

As seen for the trend in correlations, the parameter estimates also differ **marginally**: in particular, for both models, the impact of new information on correlations (α) is limited, while the persistence of correlations (β) tends to remain stable over time. The results are corroborated by the significant *p-values*.

Comparing the log-likelihood, however, the results confirm that the **VAR(1)–DCC–GARCH(1,1)** model offers a better fit to the data:

Likelihood Ratio Test

H_0	1
p-value	0

Empirical Results: Portfolio Construction

Assumptions

- US investor, no foreign exchange risk..
- ➤ Initial investment: \$10.000.
- ➤ No transaction costs.
- > Same weight for all assets.

$$E(r_P) = \sum_{i=1}^n w_i E(r_i) = w^T r$$

Empirical Results: Parametric Approach

Empirical Results: Parametric Approach (cont'd)

Measures of Risk	Ave	erage
	Covid	Ex–Covid
∕aR _{95%}	-271.34	-338.05
⁷ aR _{99%}	-378.82	-466.59
ES _{95%}	-337.24	-416.86
ES _{99%}	-423.27	-530.50

Empirical Results: VaR Breaches

Empirical Results: Expected Shortfall

Conclusions

- > Importance of **data analysis** methodologies.
- ➤ More sophisticated econometric techniques are decisive for more **accurate** modelling of *second-order conditional moments*.
 - The exclusion of the most volatile months of the pandemic *reduced* the frequency of regime shifts between positive and negative correlations, stabilizing the correlation dynamics.
- ➤ The adoption of ES provides, compared to VaR, a more **precise** view of potential risk.
 - The exclusion of the most volatile months of the pandemic showed *higher* potential losses, suggesting the presence of other risk dynamics.