Damage Review - Hurricane Harvey

Background and Scope

Hurricane Harvey was a devastating Category 4 hurricane that made landfall on Texas and Louisiana in August 2017, causing catastrophic flooding and many deaths. It was the first major hurricane to make landfall in the United States since Wilma in 2005, ending a record 12-year span in which no hurricanes made landfall at the intensity of a major hurricane throughout the country. In a four-day period, many areas received more than 40 inches (1,000 mm) of rain as the system slowly meandered over eastern Texas and adjacent waters, causing unprecedented flooding.ins

Let us begin by importing the data.

Import the Data

stormData = importfile("StormEvents_2017_finalProject.csv")

stormData = 57005×24 table

. . .

	EpisodeID	Event_ID	State	Year	Month	Event_Type	CZ_Name
1	113355	678791	NEW JER	2017	April	Thunderstorm	GLOUCES
2	113459	679228	FLORIDA	2017	April	Tornado	LEE
3	113448	679268	ОНЮ	2017	April	Thunderstorm	GREENE
4	113697	682042	ОНЮ	2017	April	Flood	CLERMONT
5	113683	682062	NEBRASKA	2017	April	Hail	CASS
6	114718	688082	INDIANA	2017	April	Flash Flood	SWITZER
7	114834	688895	VIRGINIA	2017	April	Thunderstorm	WESTMOR
8	121068	724772	GULF OF	2017	October	Marine Thund	ATCHAFA
9	114489	686560	ОНЮ	2017	April	Flash Flood	CLERMONT
10	113683	682156	NEBRASKA	2017	April	Thunderstorm	BURT

Extracting only Data which relates to Hurricane Harvey,

stormData = stormData(ismember(stormData.Episode_Narrative,{'As Hurricane Harvey struck souther

 $stormData = 151 \times 24 table$

•	•	

	EpisodeID	Event_ID	State	Year	Month	Event_Type	CZ_Name
1	118750	713329	MISSISS	2017	September	Strong Wind	LOWNDES
2	119821	718430	KENTUCKY	2017	September	Flash Flood	TODD
3	119821	718431	KENTUCKY	2017	September	Flood	MUHLENB
4	118746	713318	MISSISS	2017	August	Thunderstorm	LAMAR

	EpisodeID	Event_ID	State	Year	Month	Event_Type	CZ_Name
5	118746	713320	MISSISS	2017	August	High Wind	WASHING
6	118746	713322	MISSISS	2017	August	Strong Wind	GRENADA
7	120460	721724	TENNESSEE	2017	September	Heavy Rain	ROBERTSON
8	120460	721725	TENNESSEE	2017	September	Heavy Rain	MONTGOM
9	120460	721726	TENNESSEE	2017	September	Heavy Rain	ROBERTSON
10	118746	713323	MISSISS	2017	August	Flood	LAMAR

Making a few changes to the Dataset for easy usage, by removing NaN values from Damage_Property and Property_Cost

```
stormData.Property_Cost(ismissing(stormData.Property_Cost)) = 0;
stormData.Damage_Property(ismissing(stormData.Damage_Property)) = 0;
stormData = sortrows(stormData,'Property_Cost','descend')
```

 $stormData = 151 \times 24 table$

Event_ID EpisodeID State Year Month Event_Type CZ Name 1 119859 718519 **TEXAS** 2017 August Hurricane ARANSAS 2 119859 720925 TEXAS 2017 August Hurricane NUECES 3 119859 720923 TEXAS 2017 August SAN PAT... Hurricane 4 119859 720951 **TEXAS** 2017 August REFUGIO Hurricane 5 119859 720926 **TEXAS** 2017 August Storm Surge/... NUECES 720927 119859 **TEXAS** 2017 August Hurricane CALHOUN 7 119859 718740 **TEXAS** 2017 August Storm Surge/... **ARANSAS** 8 119859 721006 **TEXAS** 2017 August Hurricane VICTORIA 9 120216 798846 TEXAS 2017 August Flood FAYETTE 10 119859 720932 TEXAS 2017 August Storm Surge/... CALHOUN

```
groupedStates = groupsummary(stormData, "State", "sum", "Property_Cost");
groupedStates = sortrows(groupedStates, 'sum_Property_Cost', 'descend')
```

groupedStates = 10×3 table

	State	GroupCount	sum_Property_Cost
1	TEXAS	60	4.7633e+09
2	MISSISS	18	456000
3	KENTUCKY	13	400000
4	TENNESSEE	29	392000

	State	GroupCount	sum_Property_Cost
5	ARKANSAS	2	7000
6	INDIANA	3	2000
7	ALABAMA	6	0
8	GULF OF	10	0
9	LOUISIANA	3	0
10	OKLAHOMA	7	0

Two States Most Impacted by Harvey

Here, we find the states which have maximum Property_Cost Damage.

```
state1 = groupedStates(1,:).State
```

state1 = categorical
 TEXAS

state2 = groupedStates(2,:).State

state2 = categorical
MISSISSIPPI

Table of Events for Two Most Impacted States

Here we create a table of Events, for the two states found in the above step

eventsState1 = stormData(stormData.State == state1,:)

eventsState1 = 60×24 table

EpisodeID Event ID State Year Month Event_Type CZ Name 2017 119859 718519 **TEXAS ARANSAS** August Hurricane 2 119859 720925 **TEXAS** 2017 August Hurricane **NUECES** 3 119859 720923 **TEXAS** 2017 August Hurricane SAN PAT... 4 119859 720951 2017 August **REFUGIO TEXAS** Hurricane 5 119859 720926 **TEXAS** 2017 August Storm Surge/... **NUECES** 6 119859 720927 **TEXAS** 2017 August Hurricane CALHOUN 119859 718740 **TEXAS** 2017 August Storm Surge/... **ARANSAS** 8 119859 721006 **TEXAS** 2017 August Hurricane **VICTORIA** 9 120216 798846 **TEXAS** 2017 August Flood **FAYETTE** 119859 720932 **TEXAS** 2017 Storm Surge/... CALHOUN August

eventsState2 = stormData(stormData.State == state2,:)

3

. .

	EpisodeID	Event_ID	State	Year	Month	Event_Type	CZ_Name
1	118746	713315	MISSISS	2017	August	Tornado	FORREST
2	118746	713314	MISSISS	2017	August	Tornado	LAMAR
3	118746	713322	MISSISS	2017	August	Strong Wind	GRENADA
4	118746	713321	MISSISS	2017	August	Strong Wind	ATTALA
5	118746	713316	MISSISS	2017	August	Tornado	JEFFERS
6	118746	713318	MISSISS	2017	August	Thunderstorm	LAMAR
7	118750	713329	MISSISS	2017	September	Strong Wind	LOWNDES
8	118746	713328	MISSISS	2017	August	Thunderstorm	LOWNDES
9	118746	713326	MISSISS	2017	August	Thunderstorm	LOWNDES
10	118746	713327	MISSISS	2017	August	Thunderstorm	LOWNDES

:

Visualizations

Figure of Event Types

Let us consider the first state.

```
eventsState1;
eventSummary1 = groupsummary(eventsState1, 'Event_Type');
eventSummary1.Event_Type = string(eventSummary1.Event_Type)
```

eventSummary1 = 7×2 table

	Event_Type	GroupCount
1	"Flash Flood"	17
2	"Flood"	11
3	"Hurricane"	9
4	"Storm Surge	5
5	"Thunderstor	1
6	"Tornado"	1
7	"Tropical Storm"	16

```
barh(eventSummary1.GroupCount, 'BarWidth',0.5)
grid on
xticks(0:1:20)
xlabel('Number of occurences')
ylabel('Event Type')
set(gca,'yticklabel',{eventSummary1.Event_Type(1),eventSummary1.Event_Type(2),eventSummary1.Event_Type(2),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),eventSummary1.Event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_Type(3),event_T
```


Let us consider the second State

```
eventsState2;
eventSummary2 = groupsummary(eventsState2, 'Event_Type');
eventSummary2.Event_Type = string(eventSummary2.Event_Type)
```

eventSummary2 = 6×2 table

	Event_Type	GroupCount
1	"Flash Flood"	1
2	"Flood"	1
3	"High Wind"	1
4	"Strong Wind"	3
5	"Thunderstor	5
6	"Tornado"	7

```
barh(eventSummary2.GroupCount, 'BarWidth',0.5)
grid on
xlim([0 9])
xlabel('Number of occurences')
ylabel('Event Type')
set(gca,'yticklabel',{eventSummary2.Event_Type(1),eventSummary2.Event_Type(2),eventSummary2.Event_title('Number of occurences of events in Mississippi during Hurricane Harvey')
```


Figure of Event Locations

Here we show the geoplots of the Events in the different state

```
geobubble(eventsState1.Begin_Lat,eventsState1.Begin_Lon,eventsState1.Damage_Property,eventsStategeolimits([27.68 31.95],[-98.69 -95.24])
legend
title('Events for the state of Texas')
geolimits([28.06 31.31],[-99.07 -95.33])
```


geobubble(eventsState2.Begin_Lat,eventsState2.Begin_Lon,eventsState2.Damage_Property,eventsState1
title('Events for the state of Mississippi')
geolimits([28.75 35.09],[-92.76 -85.29])
legend show

Analysis

Let us get the data for Texas and Mississippi.

For Texas,

```
counties1 = groupsummary(eventsState1,'CZ_Name','sum','Property_Cost');
counties1MaxCost = sortrows(counties1,'sum_Property_Cost','descend')
```

counties1MaxCost = 27×3 table

	CZ_Name	GroupCount	sum_Property_Cost
1	ARANSAS	2	1.9500e+09
2	NUECES	2	1.3000e+09
3	SAN PAT	2	502000000
4	REFUGIO	3	500020000
5	CALHOUN	5	281010000
6	VICTORIA	3	160000000
7	FAYETTE	4	50000000
8	CALDWELL	7	12850000
9	DE WITT	2	3100000
10	BASTROP	9	1500000

:

counties1MaxEvents = sortrows(counties1, 'GroupCount', 'descend')

counties1MaxEvents = 27×3 table

	CZ_Name	GroupCount	sum_Property_Cost
1	BASTROP	9	1500000
2	CALDWELL	7	12850000
3	CALHOUN	5	281010000
4	FAYETTE	4	50000000
5	REFUGIO	3	500020000
6	VICTORIA	3	160000000
7	ARANSAS	2	1.9500e+09
8	DE WITT	2	3100000
9	GONZALES	2	100000
10	HAYS	2	100000

:

For Mississippi,

counties2 = groupsummary(eventsState2,'CZ_Name','sum','Property_Cost');
counties2MaxCost = sortrows(counties2,'sum_Property_Cost','descend')

counties2MaxCost = 10×3 table

	CZ_Name	GroupCount	sum_Property_Cost
1	FORREST	1	200000
2	LAMAR	3	161000
3	GRENADA	1	45000
4	LOWNDES	4	20000
5	ATTALA	1	15000
6	JEFFERS	1	15000
7	HARRISON	1	0
8	JACKSON	4	0
9	PEARL R	1	0
10	WASHING	1	0

counties2MaxEvents = sortrows(counties2, 'GroupCount', 'descend')

counties2MaxEvents = 10×3 table

	CZ_Name	GroupCount	sum_Property_Cost	
1	JACKSON	4	0	

	CZ_Name	GroupCount	sum_Property_Cost
2	LOWNDES	4	20000
3	LAMAR	3	161000
4	ATTALA	1	15000
5	FORREST	1	200000
6	GRENADA	1	45000
7	HARRISON	1	0
8	JEFFERS	1	15000
9	PEARL R	1	0
10	WASHING	1	0

Therefore, we can arrive at the following results below.

Three Counties with Most Events in State 1

```
countiesState1MaxEvents = string(counties1MaxEvents.CZ_Name(1:3,:))

countiesState1MaxEvents = 3×1 string array
    "BASTROP"
    "CALDWELL"
```

Three Counties with Most Events in State 2

```
countiesState2MaxEvents = string(counties2MaxEvents.CZ_Name(1:3,:))
countiesState2MaxEvents = 3×1 string array
```

"JACKSON"

"CALHOUN"

"LOWNDES"

"LAMAR"

Three Counties with Highest Property Cost in State 1

```
countiesState1MaxCost = string(counties1MaxCost.CZ_Name(1:3,:))
```

```
countiesState1MaxCost = 3×1 string array
   "ARANSAS"
   "NUECES"
   "SAN PATRICIO"
```

Three Counties with Highest Property Cost in State 2

```
countiesState2MaxCost = string(counties2MaxCost.CZ_Name(1:3,:))
```

```
countiesState2MaxCost = 3×1 string array
    "FORREST"
    "LAMAR"
    "GRENADA"
```

Conclusions and Recommendations

In Summary, we can say that the states of Texas and Mississippi are the most affected states in the Hurricane Harvey.

Also in those regions, the above mentioned counties are the most affected.

It is recommended to send people to Texas and Mississippi immediately to assess the damage and provide relief.