ΗΥ 360 – Αρχεία και Βάσεις Δεδομένων

(Web site: http://www.csd.uch.gr/~hy360

Mailing list: <u>hy360-list@csd.uoc.gr</u>

E-mail: hy360@csd.uoc.gr)

Δημήτρης Πλεξουσάκης Καθηγητής Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης

E-mail: dp@csd.uoc.gr

Γραφείο: Κ 307

- Ωρες Διδασκαλίας:
 - Δευτέρα, Τετάρτη 4-6 (Αμφ. Α)
- Ωρες Φροντιστηρίου: Πέμπτη 2-4 (Αμφ. Β)
- Ωρες Γραφείου: Δευτέρα 12-2, Τετάρτη 10-12 (ή με συνεννόηση μέσω email)
- Βοηθοί Μαθήματος:
 - ■Ειρήνη Γενιτσαρίδη
 - Αχιλλέας Δουγαλής
 - ■Κατερίνα Δημητράκη
 - ■Βασίλης Τζικούλης
 - Ελισάννα Υμεράλλη
 - ■Μίνα Ξένου
- Ωρες Γραφείου βοηθών: Θα οριστούν

- Προαπαιτούμενες Γνώσεις:
 - ΗΥ 240 (Δομές Δεδομένων), ΗΥ 118 (Διακριτά Μαθηματικά)
 - Συνιστώμενο: ΗΥ 180 (Λογική)
- Βιβλιογραφία:
 - Silberschatz, Korth & Sudarshan, «Συστήματα Βάσεων Δεδομένων».
 - Βιβλία για συμπληρωματική μελέτη:
 - C. Date, «Εισαγωγή στα Συστήματα Βάσεων Δεδομένων»
 - Elmasri & Navathe, «Θεμελιώδεις Αρχές Συστημάτων Βάσεων Δεδομένων».

- Βαθμός Μαθήματος:
 - Ο βαθμός στο μάθημα θα βασιστεί σε:
 - Α: Ασκήσεις (υποχρεωτικές)
 - Ε: Εργασία (σε ομάδες)
 - Τ: Τελική Εξέταση
 - ... σύμφωνα με τον τύπο:

```
Βαθμός = 0,25 * A + 0,35 * E + 0,40 * T, αν T>=4 και A>0; 
 Διαφορετικά: αν A=0, Βαθμός = 0; αν T < 4, Βαθμός = T
```

- Γενική Περιγραφή Μαθήματος:
 - Εισαγωγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων
 - Θέματα:
 - Μοντέλο Οντοτήτων Σχέσεων (Entity-Relationship Model)
 - Σχεσιακό Μοντέλο (Relational Model)
 - Γλώσσες Επερωτήσεων, SQL (Query Languages)
 - Περιορισμοί Ακεραιότητας (Integrity Constraints)
 - Σχεδίαση Βάσεων Δεδομένων (Database Design)
 - Δομές Αρχείων και Αποθήκευση (File Structures and Storage)
 - Ευρετηριασμός (Indexing)

■Θέματα:

- Επεξεργασία Επερωτήσεων (Query Processing)
- Δοσοληψίες (Transactions)
- Ελεγχος Ταυτόχρονης Προσπέλασης (Concurrency Control)
- Ανάκτηση (Recovery)
- Αρχιτεκτονικές Συστημάτων Διαχείρισης Βάσεων Δεδομένων (Database Systems Architecture)
- Οντοκεντρικές Βάσεις Δεδομένων (Object-Oriented Databases)

Εισαγωγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- Ενα Σύστημα Διαχείρισης Βάσεων Δεδομένων (ΣΔΒΔ)
 (Database Management System DBMS) αποτελείται από μία συλλογή σχετιζόμεων δεδομένων και ένα σύνολο προγραμμάτων για την προσπέλαση σε αυτά τα δεδομένα.
- Η συλλογή των δεδομένων ονομάζεται βάση δεδομένων (ΒΔ) (database).
- Ο κύριος σκοπός ενός ΣΔΒΔ είναι να παρέχει
 - ■ένα περιβάλλον για την εύκολη και αποδοτική αποθήκευση, διαχείριση και ανάκληση μεγάλου όγκου πληροφορίας
 - □μια αφηρημένη όψη δεδομένων αποκρύπτοντας λεπτομέρειες της αναπαράστασης και της αποθήκευσής τους στο σύστημα

Εισαγώγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- Η διαχείριση των δεδομένων περιλαμβάνει:
 - τον ορισμό δομών για την αποθήκευση πληροφορίας
 - μηχανισμούς για τον χειρισμό της πληροφορίας και την ενημέρωσή της
 - μηχανισμούς για την ασφάλεια πληροφορίας που είναι προσβάσιμη από πολλούς χρήστες

Εισαγώγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- Παράδειγμα: ένα τραπεζικό σύστημα αποθηκεύει πληροφορία σχετικά με τους πελάτες της τράπεζας και τους λογαριασμούς τους.
 - Η πληροφορία αποθηκεύεται σε αρχεία του συστήματος τα οποία διαχειρίζονται προγράμματα για:
 - χρέωση ή πίστωση λογαριασμού
 - προσθήκη νέου λογαριασμού
 - εύρεση υπολοίπου
 - μηνιαίες / ετήσιες καταστάσεις κίνησης
 - κλπ
 - Καινούργια αρχεία και προγράμματα εφαρμογών προστίθενται ανάλογα με τις ανάγκες

Είσαγωγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- Η υλοποίηση ενός τέτοιου συστήματος μπορεί να βασιστεί σε ένα «τυπικό» σύστημα διαχείρισης και επεξεργασίας αρχείων (file processing system), πάσχει όμως από διάφορα μειονεκτήματα:
 - Πλεονασμός καί Ασυνέπεια δεδομένων (data redundancy and inconsistency)
 - η ίδια πληροφορία πιθανόν να επαναλαμβάνεται σε διαφορετικά αρχεία με αποτέλεσμα να υπάρχει μεγαλύτερο κόστος αποθήκευσης και ανάκλησης
 - Επιπλέον, ενημέρωση ενός αρχείου πρέπει να συνοδεύεται από την ενημέρωση όλων των αρχείων στα οποία η πληροφορία επαναλαμβάνεται.

Εισαγωγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- Δυσκολία στην πρόσβαση στα δεδομένα
 - τα συστήματα διαχείρισης αρχείων δεν παρέχουν αποδοτικούς μηχανισμούς για αναζήτηση και ανάκληση πληροφορίας με διαφορετικούς τρόπους.
 - Επιπλέον, τα δεδομένα διασκορπίζονται σε αρχεία που χρησιμοποιούν διαφορετικές μορφές.
- Προβλήματα ακεραιότητας δεδομένων (data integrity)
 - τα δεδομένα υπόκεινται σε περιορισμούς συνέπειας ή ακεραιότητας (consistency or integrity constraints).
 - Οι περιορισμοί αυτοί εφαρμόζονται μέσω των προγραμμάτων εφαρμογών τα οποία πρέπει να αλλαχθούν για την προσθήκη νέων ή τη μεταβολή περιορισμών.

Εισαγώγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- ■Προβλήματα ατομικότητας δοσοληψιών (transaction atomicity)
 - το σύστημα πρέπει να εγγυάται ότι σε περίπτωση σφάλματος η πληροφορία πρέπει να μπορεί να αποκατασταθεί.
 - Π.χ. μεταφορά ενός ποσού Χ από λογαριασμό Α σε λογαριασμο Β. Αν συμβεί καποιο σφάλμα κατά τη διάρκεια της μεταφοράς, ο λογαριασμός Α μπορεί να χρεωθεί χωρίς να πιστωθεί ο λογαριασμός Β.
 - Οι δοσοληψίες πρέπει να χαρακτηρίζονται από ατομικότητα, δηλαδή, ή όλη η δοσοληψία ολοκληρώνεται ή κανένα μέρος αυτής.

Εισαγώγή στα Συστήματα Διαχείρισης Βάσεων Δεδομένων

- ■Ανωμαλίες ταυτόχρονης πρόσβασης (concurrent access)
 - Η ταυτόχρονη πρόσβαση και ενημέρωση της πληροφορίας από πολλούς χρήστες μπορεί να δημιουργήσει προβλήματα συνέπειας.
 - Π.χ. έστω ότι ο λογαριασμός Α έχει υπόλοιπο Χ. Αν δύο χρήστες αφαιρέσουν ποσά Δ1 και Δ2 "ταυτόχρονα" από τον Α, το αποτέλεσμα μπορεί να μην είναι ορθό.
- Προβλήματα ασφάλειας (security)
 - διαφορετικοί χρήστες θα πρέπει να έχουν διαφορετικά δικαιώματα πρόσβασης σε αρχεία ή σε συγκεκριμένα δεδομένα.

Όψεις Δεδομένων

- Ένας από τους κύριους στόχους ενός ΣΔΒΔ είναι να παρέχει μια αφηρημένη όψη των δεδομένων αποκρύπτοντας λεπτομέρειες της αναπαράστασης και της αποθήκευσής τους στο σύστημα.
- Ένα ΣΔΒΔ είναι ένα πρόγραμμα για τη διαχείριση ηλεκτρονικών αρχείων επιχειρησιακών δεδομένων με δομημένο τρόπο.
- Για παράδειγμα,
 - ΣΔΒΔ ενός πανεπιστημίου διαχειρίζεται αρχεία για τους φοιτητές, τις εγγραφές τους σε μαθήματα, βαθμολογία, κ.λ.π.
 - Εμπορικές επιχειρήσεις χρησιμοποιούν ΣΔΒΔ για την αποθήκευση στοιχείων σχετικά με πωλήσεις, αγορές, τιμολόγηση, αποθήκη κ.λ.π.

Όψεις Δεδομένων

- Αεροπορικές εταιρίες χρησιμοποιούν ΣΔΒΔ για την αποθήκευση στοιχείων σχετικά με πτήσεις, δρομολόγια, διαθεσιμότητα θέσεων, κρατήσεις, προσωπικό, κ.λ.π
- Ένα ΣΔΒΔ μιας βιβλιοθήκης καταγράφει τα διαθέσιμα βιβλία, τα άτομα που τα δανείζονται, και παρέχει θεματική κατηγοριοποίηση.
- Η συλλογή των αρχείων και εγγραφών που κρατούνται για ένα συγκεκριμένο σκοπό ονομάζεται βάση δεδομένων (database)
- Κατά κανόνα, οι βάσεις δεδομένων αποθηκεύονται σε δευτερεύουσα μνήμη.
- Ένα ΣΔΒΔ μπορεί να διαχειρίζεται περισσότερες από μία βάσεις δεδομένων.

Όψεις Δεδομένων

- Οι βάσεις δεδομένων μπορούν να μοιράζονται πληροφορία.
- Η πρόσβαση σε αυτές ελέγχεται από ένα κεντρικό πρόγραμμα το οποίο ονομάζεται διαχειριστής βάσεων δεδομένων (db manager).
- Η δόμηση της πληροφορίας που αποθηκεύεται στις βάσεις δεδομένων καθορίζεται από το μοντέλο δεδομένων (data model).

Μοντέλα Δεδομένων

- Αρχικά μοντέλα δεδομένων:
 - ιεραρχικό (hierarchical data model): διαφορετικοί τύποι εγγραφών δομούνται υπό μορφή ιεραρχίας (δένδρου)
 - μοντέλο δικτύου (network data model): γενίκευση του ιεραρχικού μοντέλου.
 - Οι εγγραφές οργανώνονται υπό μορφή κατευθυνόμενου άκυκλου γράφου.
- Μειονέκτημα των αρχικών μοντέλων δεδομένων:
 - η επερώτηση στις βάσεις δεδομένων γίνεται πολύπλοκη.

Μοντέλα Δεδομένων

- Το σχεσιακό μοντέλο (relational model) είναι το πλέον επιτυχημένο μοντέλο δεδομένων που αυτά έχουν προταθεί.
 - Τα δεδομένα οργανώνονται σε μορφή πινάκων εγγραφών ή σχέσεων (tables of records or relations).
 - Οι σχέσεις είναι συλλογές γνωρισμάτων (attributes), όπου κάθε γνώρισμα (μια στήλη του πίνακα) αναπαριστά μια ιδιότητα της εγγραφής.
 - Παρέχει εύκολο τρόπο επερώτησης των δεδομένων.
 - Εμπορικά σχεσιακά ΣΔΒΔ: Ingres, Oracle, DB2, Informix, Sybase, MySQL κλπ.

Χρήστες ΣΔΒΔ

- Ένα ΣΔΒΔ πρέπει να παρέχει εύκολη πρόσβαση στα δεδομένα σε σχετικά μη-έμπειρους χρήστες οι οποίοι λέγονται τελικοί χρήστες (end users).
- Η φιλικότητα προς το χρήστη και η χρήση μιας γλώσσας επερωτήσεων υψηλού επιπέδου είναι σημαντικά χαρακτηριστικά που πρέπει να διαθέτει ένα ΣΔΒΔ.
- Διαφορετικοί χρήστες έχουν διαφορετικές απαιτήσεις:
 - τελικοί χρήστες
 - προγραμματιστές εφαρμογών (application programmers)
 - διαχειριστές BΔ (database administrators)

Χρήστες ΣΔΒΔ

- Τελικοί χρήστες
 - συνήθεις ή περιστασιακοί χρήστες (casual users):
 χρησιμοποιούν μια δομημένη γλώσσα (π.χ. SQL) για την διατύπωση επερωτήσεων στη ΒΔ
 - **αδαείς χρήστες** (naive users): διατυπώνουν επερωτήσεις χρησιμοποιώντας φόρμες ή μενού
- Προγραμματιστές εφαρμογών:
 - γράφουν προγράμματα εφαρμογών για να εξυπηρετήσουν τις ανάγκες των τελικών χρηστών. Έχουν την ευθύνη της υλοποίησης ενός τρόπου επερώτησης με αποδοτικό τρόπο.
- Διαχειριστής ΒΔ: είναι υπεύθυνος για τη σχεδίαση και συντήρηση των ΒΔ

- Ένας από τους κύριους στόχους ενός ΣΔΒΔ είναι να παρέχει μια αφηρημένη όψη των δεδομένων, αποκρύπτοντας από το χρήστη λεπτομέρειες σχετικά με την αναπαράσταση και την αποθήκευσή τους.
- Σε ένα ΣΔΒΔ, τα δεδομένα αναπαριστώνται σε 3 επίπεδα αφαίρεσης (abstraction levels):
 - Φυσικό επίπεδο (physical level):
 - το χαμηλότερο επίπεδο αφαίρεσης
 - περιλαμβάνει σύνθετες δομές και λεπτομέρειες αναπαράστασης και αποθήκευσης

- Λογικό επίπεδο (logical level): περιγράφει τα δεδομένα και τις μεταξύ τους σχέσεις χρησιμοποιώντας ένα σχετικά μικρό αριθμό απλών δομών και εννοιών
 - Οι χρήστες οι οποίοι βλέπουν το σύστημα στο λογικό επίπεδο δεν χρειάζεται να γνωρίζουν τις λεπτομέρειες του φυσικού επιπέδου
- ■Επίπεδο όψεων (view level):
 - το υψηλότερο επίπεδο αφαίρεσης
 - περιγράφει κάποια μέρη της αποθηκευμένης πληροφορίας, καθώς κάποιοι χρήστες χρειάζονται πρόσβαση μόνο σε μέρος των ΒΔ
 - αποτελεί συγχρόνως και μηχανισμό ασφάλειας

- Η διάκριση μεταξύ των διαφορετικών επιπέδων αφαίρεσης είναι ανάλογη με τη διάκριση μεταξύ επιπέδων αφαίρεσης στις γλώσσες προγραμματισμού
- Για παράδειγμα, σε μια γλώσσα προγραμματισμού, οι δηλώσεις:

```
type customer = record
    customer-name : string;
    customer-id : string;
    customer-address: string;
end;
type account=record
    account-number: integer;
end;
```

```
type employee=record
    employee-name: string;
    salary: integer;
end;
```

- αντιστοιχούν στο λογικό επίπεδο.
- Στο φυσικό επίπεδο, οι τύποι αυτοί αναπαριστώνται σαν συνεχόμενες θέσεις αποθήκευσης.
- Η λεπτομέρεια αυτή αποκρύπτεται από τον προγραμματιστή.

Σχήμα και Στιγμιότυπα (Schema and Instances)

- Οι ΒΔ μεταβάλλονται με την πάροδο του χρόνου καθώς πληροφορία προστίθεται, αφαιρείται η τροποποιείται.
- Το σύνολο της πληροφορίας το οποίο βρίσκεται αποθηκευμένο σε μια ΒΔ σε μια συγκεκριμένη χρονική στιγμή λέγεται στιγμιότυπο (instance or snapshot) της ΒΔ.
- Το σχήμα (schema) της ΒΔ είναι το σύνολο των εννοιών που περιγράφουν τη δομή της και είναι – σχεδόν πάντα – σταθερό.
- Αναλογία : record types ↔ schema, variables ↔ instances
- Μια ΒΔ έχει ένα (ή περισσότερα) σχήματα σε κάθε επίπεδο αφαίρεσης:
 - Φυσικό σχήμα
 - Λογικό σχήμα
 - Σχήματα όψεων ή υποσχήματα

Ανεξαρτησία Δεδομένων (Data Independence)

- Ο όρος ανεξαρτησία δεδομένων (data independence)
 χαρακτηρίζει την ικανότητα μεταβολής του σχήματος σε κάποιο επίπεδο αφαίρεσης, χωρίς να επηρεάζεται ο ορισμός του σχήματος στο αμέσως υψηλότερο επίπεδο
 - φυσική ανεξαρτησία δεδομένων:
 - το φυσικό σχήμα μπορεί να μεταβάλλεται χωρίς να χρειάζεται να γραφούν ξανά τα προγράμματα εφαρμογών που έχουν πρόσβαση στη ΒΔ.
 - μεταβολές στο φυσικό σχήμα είναι συχνά απαραίτητες για λόγους βελτιστοποίησης της απόδοσης του συστήματος

Ανεξαρτησία Δεδομένων (Data Independence)

- ■λογική ανεξαρτησία δεδομένων:
 - είναι η ικανότητα μεταβολής του λογικού σχήματος χωρίς την ανάγκη μεταβολής των προγραμμάτων εφαρμογών
 - τέτοιες μεταβολές είναι απαραίτητες οταν μεταβάλλεται η εννοιολογική δομή μιας ΒΔ
- Η λογική ανεξαρτησία είναι δυσκολότερο να επιτευχθεί από τη φυσική ανεξαρτησία, καθώς τα προγράμματα εφαρμογών εξαρτούνται σε μεγάλο βαθμό απο τη λογική δομή μιας ΒΔ.
- Η έννοια της ανεξαρτησίας είναι συγγενής με αυτή των αφηρημένων τύπων δεδομένων (abstract data types).

Μοντέλα Δεδομένων (Data Models)

- Ενα μοντέλο δεδομένων (data model) είναι ένα σύνολο εννοιών για την περιγραφή των δεδομένων, των σχέσεων μεταξύ αυτών, τη σημασιολογία τους και τους περιορισμούς στους οποίους υπόκεινται.
- Διακρίνονται σε 3 κατηγορίες:
 - οντοκεντρικά λογικά μοντέλα (object-oriented)
 - πλειαδικά λογικά μοντέλα (record-based)
 - φυσικά μοντέλα
- Τα οντοκεντρικά μοντέλα χρησιμοποιούνται για την περιγραφή δεδομένων στο λογικό επίπεδο και το επίπεδο όψεων.
- Τέτοια μοντέλα είναι τα:
 - μοντελο οντοτήτων-σχέσεων (entity-relationship model), σημασιολογικό μοντέλο (semantic data model), συναρτησιακό μοντέλο (functional model)

Μοντέλα Δεδομένων (Data Models)

- Τα πλειαδικά λογικά μοντέλα αναπαριστούν τη λογική δομή μιας
 ΒΔ μέσω συγκεκριμένων τύπων που αναπαριστώνται ως
 πλειάδες (tuples) ή εγγραφές (records).
- Τέτοια μοντέλα είναι τα:
 - ■σχεσιακό μοντελο (relational model), ιεραρχικό μοντέλο (hierarchical model), μοντέλο δικτύου (network model)
- Τα φυσικά μοντέλα χρησιμοποιούνται για την περιγραφή των δεδομένων στο φυσικό επίπεδο.
- Τέτοια μοντέλα είναι τα:
 - ενοποιημένο μοντέλο (unifying data model)
 - μοντέλο πλαισίων μνήμης (frame-memory model)

Γλώσσες Βάσεων Δεδομένων

- Γλώσσες για τον ορισμό δεδομένων (data definition languages)
 - χρησιμοποιούνται για τον ορισμό του σχήματος
 - εντολές της γλώσσας ορισμού δεδομένων μεταφράζονται σε ένα σύνολο δομών που αποθηκεύονται στο λεξικό ή ευρετήριο δεδομένων (data dictionary or directory)
 - το ευρετήριο δεδομένων περιέχει μετα-δεδομένα (metadata), δηλαδή δεδομένα για τα δεδομένα. Το ΣΔΒΔ συμβουλέυεται το ευρετήριο πριν από οποιαδήποτε πρόσβαση στη ΒΔ.
 - μέθοδοι αποθήκευσης και πρόσβασης καθορίζονται σε μια ειδική γλώσσα ορισμού δεδομένων η οποία λέγεται γλώσσα ορισμού αποθήκευσης δεδομένων (data storage definition language)

Γλώσσες Βάσεων Δεδομένων

- Γλώσσες για το χειρισμό δεδομένων (data manipulation languages)
 - υποστηρίζουν λειτουργίες για εισαγωγή, ανάκληση, μεταβολή και διαγραφή πληροφορίας
 - διακρίνονται σε διεργασιακές (procedural) και δηλωτικές (declarative)
 - διεργασιακές γλώσσες καθορίζουν το «πως» γίνεται ο χειρισμός των δεδομένων, ενώ οι δηλωτικές καθορίζουν «ποιο» είναι το επιθυμητό αποτέλεσμα
 - οι δηλωτικές γλώσσες είναι ευκολότερες στη χρήση τους αλλά όχι τόσο αποδοτικές
 - η γλώσσα επερωτήσεων (query language) είναι υποσύνολο της γλώσσας χειρισμού δεδομένων

Τυπική Αρχιτεκτονική ΣΔΒΔ

