CS310-001: Discrete Computational Structures

Chapter 2. Basic Structures: Sets, Functions, Sequences, Sums and Matrices

Instructor: Boting Yang

Department of Computer Science University of Regina

Outline

1 Sequences and Summations (2.4)

2 Cardinality of Sets (2.5)

Sequences

- A sequence is a function from a subset of the set of the integers (usually either the set $\{0,1,2,...\}$ or the set $\{1,2,3,...\}$) to a set S.
- A **geometric progression** is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the initial term a and the common ratio r are real numbers.

An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where the initial term \boldsymbol{a} and the common difference \boldsymbol{d} are real numbers.

Sequences

- Inferring a Rule: Given some initial terms a_0, a_1, \ldots, a_k of a sequence, construct a rule that is consistent with those initial terms.
- A **recursion** for a_n is a function whose arguments are earlier terms in the sequence.
- **A** closed form for a_n is a formula whose argument is the subscript n.

Example 1

■ Find a closed form formula to produce a sequence with the first 10 terms 2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

Example 2

■ How can we produce the terms of a sequence if the first 12 terms are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89?

Summations

Example 1. $1 + 2 + 3 + \cdots + n$

Summations

Example 1. $1 + 2 + 3 + \cdots + n$

Summations

Example 1.
$$1 + 2 + 3 + \cdots + n$$

Example 2.
$$1^2 + 2^2 + 3^2 + \cdots + n^2$$

■ Find $\sum_{k=101}^{200} k^2$.

- Find $\sum_{k=101}^{200} k^2$.
- $\blacksquare \ \mathsf{Find} \ \textstyle \sum_{i=1}^5 \textstyle \sum_{j=2}^3 ij.$

- Find $\sum_{k=101}^{200} k^2$.
- Find $\sum_{i=1}^{5} \sum_{j=2}^{3} ij$.
- Find $\sum_{k \in \{1,3,5\}} 100k$.

- Find $\sum_{k=101}^{200} k^2$.
- Find $\sum_{i=1}^{5} \sum_{j=2}^{3} ij$.
- Find $\sum_{k \in \{1,3,5\}} 100k$.
- Find a Σ -notation for 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128.

- Find $\sum_{k=101}^{200} k^2$.
- Find $\sum_{i=1}^{5} \sum_{j=2}^{3} ij$.
- Find $\sum_{k \in \{1,3,5\}} 100k$.
- Find a Σ -notation for 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128.
- Find a Σ -notation for 1 2 + 3 4 + 5 6 + 7 8 + 9 10.

- Find $\sum_{k=101}^{200} k^2$.
- Find $\sum_{i=1}^{5} \sum_{j=2}^{3} ij$.
- Find $\sum_{k \in \{1,3,5\}} 100k$.
- Find a Σ -notation for 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128.
- Find a Σ -notation for 1 2 + 3 4 + 5 6 + 7 8 + 9 10.
- Fill in the blanks: $\sum_{k=1}^{7} 2^k = \sum_{k=[-]}^{10} 2^{[-]}$.

Arithmetic progression

Theorem. If a and d are real numbers, then

$$\sum_{i=0}^{n} (a+id) = (n+1)a + \frac{n(n+1)d}{2}$$

Geometric progression

Theorem. If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1}, & \text{if } r \neq 1\\ (n+1)a, & \text{if } r = 1 \end{cases}$$

Geometric progression

Theorem. If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1}, & \text{if } r \neq 1\\ (n+1)a, & \text{if } r = 1 \end{cases}$$

Example. Find $\sum_{k=0}^{n} (\frac{1}{2})^k$.

Geometric progression

Theorem. If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1}, & \text{if } r \neq 1\\ (n+1)a, & \text{if } r = 1 \end{cases}$$

Example. Find $\sum_{k=0}^{n} (\frac{1}{2})^k$.

Example. Let x be a real number with |x| < 1. Find $\sum_{k=0}^{\infty} x^k$.

Definition. The sets A and B have the same *cardinality* if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition. The sets A and B have the same *cardinality* if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition. If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

Definition. The sets A and B have the same *cardinality* if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition. If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

Definition. A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. When an infinite set S is countable, we denote the cardinality of S by \aleph_0 , and we write $|S|=\aleph_0$.

Definition. The sets A and B have the same *cardinality* if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition. If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq |B|$. Moreover, when $|A| \leq |B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.

Definition. A set that is either finite or has the same cardinality as the set of positive integers is called *countable*. When an infinite set S is countable, we denote the cardinality of S by \aleph_0 , and we write $|S| = \aleph_0$.

A set that is not countable is called *uncountable*.

Example 1. The set of even positive integers is countable.

Example 1. The set of even positive integers is countable.

Example 2. The set of integers is countable.

Example 1. The set of even positive integers is countable.

Example 2. The set of integers is countable.

Hilbert's Grand Hotel. How can we accommodate a new guest arriving at the fully occupied Grand Hotel without removing any of the current guests?

■ **Theorem.** The set of positive rational numbers is countable.

■ **Theorem.** The set of positive rational numbers is countable.

Corollary. The set of all rational numbers is countable.

Theorem. If A and B are countable sets, then $A \cup B$ is also countable.

Theorem. If A and B are countable sets, then $A \cup B$ is also countable.

Schroder-Bernstein Theorem. If A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Theorem. If A and B are countable sets, then $A \cup B$ is also countable.

Schroder-Bernstein Theorem. If A and B are sets with $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|. In other words, if there are one-to-one functions f from A to B and g from B to A, then there is a one-to-one correspondence between A and B.

Example Show that |(0,1)| = |(0,1]|.

Diagonalization argument

Theorem. The set of real numbers is uncountable.

Proof idea. Cantor diagonalization argument (1879).

Diagonalization argument

Theorem. The set of real numbers is uncountable.

Proof idea. Cantor diagonalization argument (1879).

Applications. To prove the Halting Problem, to show that some languages are not Turing-recognizable, to show some functions are not computable, etc..

Uncomputable functions

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable we say it is *uncomputable*.

Uncomputable functions

We say that a function is *computable* if there is a computer program in some programming language that finds the values of this function. If a function is not computable we say it is *uncomputable*.

Theorem. There are functions from the set of positive integers to $\{0,1\}$ that are uncomputable.