

Textový editor

Robert soutěží na CEOI 2024. Už je téměř hotov s řešením nejtěžší úlohy a je si docela jistý tím, že za ni dostane plný počet 100 bodů! Zbývá mu vyřešit už jenom jeden malý problém: má ve svém řešení překlep. Navíc se mu ovšem zrovna rozbila jeho oblíbená počítačová myš, kterou používá již od roku 2008. Myš úplně přestala reagovat. Robert se proto bude muset přesunout v textu na místo překlepu pomocí šipek na klávesnici.

Robertův program je tvořen N řádky s délkami l_1,l_2,\ldots,l_N . Robert ukončuje každý svůj program prázdným řádkem, takže $l_N=0$. Kurzor může být umístěn mezi dvěma sousedními znaky na řádku, případně na začátku nebo na konci řádku. Na řádku i tedy máme l_i+1 možných pozic kurzoru (nazývaných sloupce), které si očíslujeme postupně zleva doprava od 1 do l_i+1 . Takto například vypadá kurzor umístěný na řádku 2 ve sloupci 6:

Robert potřebuje přesunout kurzor z řádku s_l a sloupce s_c na řádek e_l do sloupce e_c . Chtěl by zjistit minimální počet stisků kláves, který k tomu musí vykonat.

Klávesy s vodorovnými šipkami fungují celkem jednoduše. Stiskem klávesy *left* přemístíme kurzor do předcházejícího sloupce téhož řádku. Pokud ovšem byl kurzor na začátku řádku, přesune se na konec předchozího řádku. Podobně stiskem klávesy *right* přemístíme kurzor do následujícího sloupce téhož řádku, nebo případně na začátek řádku následujícího, pokud byl kuzor na konci řádku.

Zde je příklad, co se stane, když dvakrát stiskneme klávesu *left*.

A zde pro dva stisky klávesy right.

Jestliže stiskneme klávesu *left* na úplném začátku souboru, nebo stiskneme klávesu *right* na úplném konci souboru, pozice kuzoru se nezmění.

Chování kláves se svislými šipkami je o něco složitější. Stiskem klávesy *up* se kurzor přesune na předchozí řádek a stiskem klávesy *down* se přesune na následující řádek, v obou případech beze změny sloupce. Pokud by se ale tímto přesunem kurzor dostal za konec nového řádku, posune se navíc na konec tohoto řádku.

Přiklad ilustrující dva stisky klávesy up.

A klávesy down.

Pokud by stisknutí klávesy *up* nebo *down* posunovalo kurzor na neexistující řádek, pozice kurzoru se nezmění.

Vstup

První řádek vstupu obsahuje celé číslo N — počet řádků Robertova programu. Na druhém řádku vstupu jsou dvě celá čísla s_l a s_c oddělená mezerami — počáteční pozice kurzoru. Podobně na třetím řádku jsou dvě celá čísla e_l a e_c — cílová pozice kurzoru. Čtvrtý řádek vstupu obsahuje N celých čísel oddělených mezerami l_1, l_2, \ldots, l_N — délky jednotlivých řádků.

Výstup

Váš program musí vypsat jeden řádek obsahující jedno celé číslo — minimální počet stisků kláves potřebný k přemístění kurzoru z pozice (s_l, s_c) na pozici (e_l, e_c) .

Příklady

Příklad 1

Vstup:

```
5
3 1
2 8
7 10 9 9 0
```

Výstup:

```
3
```

Robert může přemístit kurzor na cílovou pozici pomocí tří stisků kláves tak, že postupně stiskne klávesy *up*, *left* a *down*:

Jinou stejně rychlou možností, jak přemístit kurzor na cílovou pozici, je stisknout postupně klávesy *left, up a down*. Lze snadno ukázat, že cílové pozice nemůžeme dosáhnout pomocí jednoho nebo dvou stisků kláves.

Příklad 2

Vstup:

```
5
1 20
3 25
25 10 40 35 0
```

Výstup:

```
16
```

Nejkratší možná posloupnost stisků kláves je tvořena dvěma stisky klávesy *down* a poté čtrnácti stisky klávesy *right*.

Omezení

- $1 \le N \le 10^6$
- $0 \leq l_i \leq 10^9$ (pro všechna i taková, že $1 \leq i \leq N$)
- $l_N=0$
- $1 \leq s_l, e_l \leq N$
- $1 \leq s_c \leq l_{s_l} + 1$
- $1 \le e_c \le l_{e_l} + 1$.

Podúlohy

1. (5 bodů)
$$N \leq 2$$

- 2. (14 bodů) $N \leq 1\,000$, $l_i \leq 5\,000$ (pro všechna i taková, že $1 \leq i \leq N$)
- 3. (26 bodů) $N \leq 1\,000$
- 4. (11 bodů) $l_i=l_j$ (pro všechna i,j taková, že $1\leq i,j\leq N-1$)
- 5. (44 bodů) *žádná další omezení*