Dijkstra algorithm

اول جدول را مقدار دهی اولیه می کنیم و مسیر از ۰ تا ۰ را نیز برابر صفر می گذاریم و مارکش را true می کنیم.

node	Shortest path	Previous node	mark
0			true
1	∞		false
2	∞		false
3	∞		false
4	∞		false
5	∞		false
6	∞		false
7	∞		false
8	∞		false

به دنبال کوتاهترین مسیر بین گرهها می گردیم که همان ۰ است. حالا گرههایی که مجاور ۰ هستند و قبلاً مارک نشدهاند(۱و۷) را باید آپدیت کنیم. برای اینکار طول مسیر فعلیشان را با جمع طول یال از ۰ به آن همسایه و مسیر تا ۰ مقایسه می کنیم و هر کدام کمتر بود را در جدول نگهداری می کنیم.

node	Shortest path	Previous node	mark
O			true
1	4		false
2	∞		false
3	∞		false
4	∞		false
5	∞		false
6	∞		false
7	8		false
8	∞		false

حالا کوچکترین عددی که در ستون طول مسیر که مارک نشده است را پیدا میکنیم که گره ۱ است. آن را مارک کرده و طول مسیر همسایههای این گره را با مقایسه مقدار فعلی با طول مسیر گره قبلیش یعنی ۰ بعلاوه یالی که گره ۱ را به آن همسایه متصل میکند مقایسه کرده و عدد کوچکتر را نگه میداریم

node	Shortest path	Previous node	mark
0			true
1	4	О	true
2	12	1	false
3	∞		false
4	∞		false
5	∞		false
6	∞		false
7	8	0	false
8	∞		false

حالا به توجه به الگوریتمی که توضیح داده شده باید ۷ را انتخاب کنیم و آن را مارک کرده و همچنین همسایه هایش را آپدیت کنیم.

node	Shortest path	Previous node	mark
O			true
1	4	0	true
2	12	1	false
3	∞		false
4	∞		false
5	∞		false
6	9	7	false
7	8	0	true
8	15	기	false

گره ۶ انتخاب میشود.

node	Shortest path	Previous node	mark
O			true
1	4	0	true
2	12	1	false
3	∞		false
4	∞		false
5	11	6	false
6	9	7	true
7	8	0	true
8	15	7	false

سپس گره ۶ انتخاب میشود.

گره ۵ انتخاب میشود.

node	Shortest path	Previous node	mark
0			true
1	4	0	true
2	12	1	true
3	19	2	false
4	21	5	false
5	11	6	true
6	9	7	true
7	8	0	true
8	14	2	true

node	Shortest path	Previous node	mark
0			true
1	4	0	true
2	12	1	false
3	25	5	false
4	21	5	false
5	11	6	true
6	9	7	true
7	8	О	true
8	15	7	false

همینطورگره ۳ و سپس گره ۴ انتخاب میشود.

node	Shortest path	Previous node	mark
0			true
1	4	0	true
2	12	1	true
3	19	2	true
4	21	5	true
5	11	6	true
6	9	7	true
7	8	0	true
8	14	2	true

حالا با استفاده از ستون گره قبلی میتوانیم کوتاهترین مسیر از ۰ تا آن گره را پیدا کنیم.