Bits, Bytes, and Integers

Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language

(Slides include copyright materials from *Computer Systems: A Programmer's Perspective*, by Bryant and O'Hallaron, and from *The C Programming Language*, by Kernighan and Ritchie)

Bits, Bytes, and Integers

Reading Assignment: §2 thru §2.3

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Binary Representations

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Byte-oriented memory organization

Programs refer to virtual addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + run-time system control allocation

- Where different program objects should be stored
- All allocation within single virtual address space

Machine words

Machine has "word size"

- Nominal size of integer-valued data
 - Including addresses
- A lot of machines still use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) word Some machines still use
 - Potential address space ≈ 1.8 X 10¹⁹ bytes

Some machines *still* use 16 bits — 64 KB addresses

x86-64 machines support 48-bit addresses: 256 Terabytes

Machines support multiple data formats

- Fractions or multiples of word size
- Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 2 (16-bit), 4 (32-bit), or 8 (64-bit)

CS-2011, B-Term 2017 Bits, Bytes, and Integers

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
- Trivia question:— When and how did the terms "big endian" and "little endian" enter the English language?

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Big Endian		0x100	0x101	0 x 102	0x103	
		01	23	45	67	
Little Endia	ın	0x100	0x101	0x102	0x103	
		67	45	23	01	

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Examining Data Representations

Code to Print Byte Representation of Data

Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

show bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

long int C = 15213;

int B = -15213;

Two's complement representation (covered later)

Smallest memory addr at top →

Representing Pointers

```
int B = -15213;
int *P = &B;
```


Different compilers & machines assign different locations to objects

Representing Strings

char S[6] = "18243";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format Linux/Alpha
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Questions?

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Reading Assignment: §2.1.7–§2.1.10

- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

■ A|B = 1 when either A=1 or B=1

&	0	1
0	0	0
1	0	1

1	0	1
0	0	1
1	1	1

Not

Exclusive-Or (Xor)

~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

~	
0	1
1	0

٨	0	1
0	0	1
1	1	0

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

22

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

&	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
■ ∧	Symmetric difference	00111100	{ 2, 3, 4, 5 }
■ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations available in C:- &, |, ~, ^
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bitwise

■ Examples (Char data type)

- ~0x41 → 0xBE
 - $\sim 01000001_2 \rightarrow 10111110_2$
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 0000000002 \rightarrow 1111111112$
- $0x69 \& 0x55 \longrightarrow 0x41$
 - 01101001₂ & 01010101₂ → 01000001₂
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

Contrast: Logic Operations in C

Contrast to logical operators

- **&&**, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- $!0x00 \rightarrow 0x01$
- $!!0x41 \rightarrow 0x01$
- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- p && *p p && p -> f

(avoids null pointer access)

25

Shift Operations

■ Left Shift: x << y</p>

- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

■ Right Shift: X >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right

Undefined Behavior

- Shift amount < 0 or ≥ word size</p>
- Different machines behave differently

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Questions?

Today: bits, bytes, and integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed

Reading Assignment: §2.2

- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Encoding integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

§ 2.2.2 in Bryant and O'Hallaron

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit § 2.2.3 in Bryant and O'Hallaron

Encoding integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit

29

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding example (continued)

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213
Bits, Bytes, and Integers

31

Numeric ranges

Unsigned Values

•
$$UMax = 2^w - 1$$

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$
100...0

■
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary	
UMax	65535	FF FF	11111111 11111111	
TMax	32767	7F FF	01111111 11111111	
TMin	-32768	80 00	10000000 000000000	
-1	-1	FF FF	11111111 11111111	
0	0	00 00	00000000 00000000	

Values for different word sizes

		W				
	8	16	32	64		
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615		
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807		
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808		

Observations

- | *TMin* | = *TMax* + 1
 - Asymmetric range
- \blacksquare UMax = 2 * TMax + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	- 5
1100	12	- 4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting

Reading Assignment: §2.2 (continued)

- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

(Review) Encoding integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
Sign Bit

Unsigned Values

$$U_{Min} = 0$$

$$U_{Max} = 2^w - 1$$

Two's Complement Values

$$T_{Min} = -2^{w-1}$$
100...0

100...0
$$T_{Max} = 2^{w-1} - 1$$
011...1

36

(Review) Signed vs. Unsigned

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:—

keep same bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
- 5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

39

Relation between Signed & Unsigned

Large negative weight becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

42

Signed vs. unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 00, 42949672590

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls

```
tx = ux;

uy = ty;
```

43

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage /* Declaration of library function memcpy */

```
/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

size_t is defined as an unsigned integer (K&R §A7.4.8) <stddef.h>

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!

CS-2011, B-Term 2017 Bits, Bytes, and Integers

Questions?

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating

Reading Assignment: §2.2 (continued)

- Addition, negation, multiplication, shifting
- Summary

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

52

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Truncating — Illustration

■ For unsigned numbers:—

- Equivalent to dividing by 2^k and keeping the remainder
 - i.e., truncate(x, k) = x mod 2^k

For signed numbers:—

- Same bit result ...
- ... but truncated number may have different sign!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Reading Assignment: §2.3

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

Complement

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

57

Unsigned Addition

Operands: w bits

<u>u</u> •••

True Sum: w+1 bits

$$u+v$$

Discard Carry: w bits

$$UAdd_w(u, v)$$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

58

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_w(t, UAdd_w(u, v)) = UAdd_w(UAdd_w(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u, 0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

Isomorphic Group to unsigneds with UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Questions?

Multiplication — shifting and adding

```
15213

× 2011

15213

152130

30426000

30593343
```

Multiplication in Binary

Decimal	Hex		Binary			
15213	3B	6D	00000000	00000000	00111011	01101101
2011	07	DB			00000111	11011011
					00111011	01101101
				0	01110110	1101101
				001	11011011	01101
				0011	10110110	1101
				001110	11011011	01
				0011101	10110110	1
				00111011	01101101	
			0	01110110	1101101	
			00	11101101	101101	
30593343	1 D2 D1	3 F	0001	11010010	11010001	00111111

Multiplication in Binary – mod 2^w

Decimal	Hex		Binary		
15213	3B 6I)	00000000 0000000	00 00111011 01101101	
2011	07 DI	3		00000111 11011011	
				00111011 01101101	
				0 01110110 1101101	
			0	01 11011011 01101	
			00:	11 10110110 1101	
			0011	10 11011011 01	
			00111	01 10110110 1	
			001110	11 01101101	
			0 011101	10 1101101	
			00 111011	01 101101	
30593343	1 D2 D1 31	7	0001 110100	10 11010001 00111111	
	Overet ever b	1 - 1			

Overflow bits truncated

Multiplication in Binary

Any difference between unsigned and twos complement?

- A:- No!
 - Same bit pattern
 - Different interpretation
 - Different overflows

Multiplication performance

- 10 or more machine cycles
 - In modern processors
- Multiply-and-Add instruction
- Easily pipelined
 - E.g., dot product

Compiler optimizations

- Small, constant multipliers
 - E.g., array indexes
- Shift instructions followed by adds
- Specialized instructions

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24

- Most machines shift and add faster than multiply
 - gcc generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
  return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Questions?

Division — subtracting and shifting

```
1170
13)15213
    13
     22
     13
      91
      91
```

Binary Division

- Similar principle:-
 - Subtract divisor from high-order bits of dividend
 - Shift, bring down next bit
 - Repeat
- Very costly in number of cycles
 - 30 or more for integer divide
- Not very amenable to pipelining
- Highly specialized designs
 - Mostly implemented in Floating Point arithmetic units

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

 $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$

Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

CS-2011, B-Term 2017 Bits, Bytes, and Integers

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

80

81

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil \mathbf{x} \mid \mathbf{2}^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Case 1: No rounding

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Questions?

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Questions?

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms
 Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathsf{UMult}_{w}(u, v) \leq 2^{w} - 1$$

Multiplication Commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is Associative

$$UMult_{w}(t, UMult_{w}(u, v)) = UMult_{w}(UMult_{w}(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

Comparison to (Mathematical) Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,

$$u > 0$$
 \Rightarrow $u + v > v$
 $u > 0, v > 0$ \Rightarrow $u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

Why Should I Use Unsigned?

- **Don't** Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

