	文档编号	ABUP-IOTD-CO-R&D-0890	密级	商密
上海艾拉比智能科技有限公司	项目名称	Abup FOTA 用户	中手册	

Abup FOTA 用户手册

	文档变更履历						
日期	版本	修订说明	修改人	备注			
2019/11/1	01	Abup FOTA 用户手册	沈瑞				
5							
			,				

目 录

1.	文档概述		1
2.	关键宏定义		1
3.B	OOTLOADER		2
	3.1Bootloader 移植		2
	3.1.1 C 文件移植		2
	3.1.2 头文件路径添加		3
	3.1.3 lib 库添加		3
	3.1.4 代码修改		4
	3.2 主要接口定义		5
	3.2.1 adups_bl_main.c	I	5
	3.2.2 abup_bl_main.c	1,7	5
	3.2.3 abup_hal_uart.c		6
		X.,	
4. F	RT-THREAD APP	, , , , , , , , , , , , , , , , , , , ,	7
	4.1RT-ThreadApp 移植	XX	7
		17,45	
	4.1.2 头文件的添加		7
	4.1.3 代码修改		8
	4.2 主要接口定义		10
	4.2.1 abup_client.c		10
	4.5APP 代码空间配置		14
5.诽]试		16
	5.1 打包		16
	5.3 助手调试		16

1. 文档概述

本文档描述了 MCU FOTA 的过程,以 STM32L452RE 为例,涵盖了 APP,BootLoader 的移植,内存空间的配智,关键的宏定义与函数接口,开发包是一个针对 MCU 芯片的完整解决方案(HTTP+CoAP、wosun+lusun)。

2. 关键宏定义

//艾拉比 FOTA downloader 开关

#define PKG USING ABUP FOTA

//选择固件下载器使用 HTTP/CoAP 协议, 1 是 CoAP, 2 是 HTTP

#define ABUP DEFAULT NETWORK PROTOCOL 1

//0 是 lusun 算法, 1 是 wosun 算法

#define ABUP FOTA ALGORITHM 1

//Abup FOTA 还原算法版本

#define ADUPS FOTA WOSUN VERSION "IOT4.0 R42641"

//Application 分区名称

#define ABUP RTTHREAD APP "App"

//Abup 下载分区名称

#define ABUP RTTHREAD FLASH "Abup"

//下载长度索引,len = 16X2^index

#define ABUP_DEFAULT_SEGMENT_SIZE_INDEX 3

// flash 最小单位大小

#define ABUP_DEFAULT_SECTOR_SIZE 0x00000800

//bootloader 大小

#define ABUP BL SIZE 0x00004000

//app 大小

#define ABUP APP SIZE 0x10000

//Abup 分区绝对地址

#define ABUP UPDATE ADDR 0x08014000

//Abup 分区大小

#define ABUP UPDATE SIZE 0xC000

//OEM(艾拉比服务器上项目信息)

#define ADUPS FOTA SERVICE OEM "G070RB"

//设备型号(艾拉比服务器上项目信息)

#define ADUPS FOTA SERVICE MODEL "G070RB"

//Product ID(艾拉比服务器上项目信息)

#define ADUPS_FOTA_SERVICE_PRODUCT_ID "1562662709"

//Product Secret(艾拉比服务器上项目信息)

#define ADUPS FOTA SERVICE PRODUCT SEC "d42a103a639f4b5d94d97c3bd7bc9ba5"

//设备类型(艾拉比服务器上项目信息)

#define ADUPS_FOTA SERVICE DEVICE TYPE "box"

//平台(艾拉比服务器上项目信息)

#define ADUPS FOTA SERVICE PLATFORM "stm3210"

//App 版本

#define ABUP FIRMWARE VERSION "1.0"

3.Bootloader

3.1Bootloader 移植

3.1.1 C 文件移植

生成 MCU-Nucelo 工程,在该目录下新建 Abup/HAL,Abup/Lib 文件目录,abup_bl_main.c,adups_bl_flash.c,abup_hal_flash.c,abup_hal_uart.cabup_hal.c

3.1.2 头文件路径添加

将..\..\Abup\inc, ..\..\Abup\Wosun\inc, ..\..\Abup\Wosun\inc\lzma, ..\..\Abup\lusun\inc, ..\..\Abup\lusun\inc, ..\..\

3.1.3 lib 库添加

新建 Abup/Lib 目录,将默认库 arm_cortexM4_Abup_Fota.lib 添加到该目录下。同时在 Options-for Target->User 中添加 bat 执行脚本,该脚本第一个参数为默认库名称,第二个参数为库文件路径。Lib 库版本的选择由 abup_os.h 中宏 ABUP_BOOTLOADER_DEBUG 来 决定。当该宏值为 1 时,开启 debug,将选择使用 arm_cortexM4_Abup_Fota_Debug.lib;若该值为 0,开启 User 模式,使用 arm_cortexM4_Abup_Fota_Release.lib 库执行编译。

3.1.4 代码修改

```
main.c 中添加如下代码
abup_int main(void)
{
    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
    LL_Init();

    /* Configure the system clock */
    SystemClock_Config();

    /* Initialize all configured peripherals */
    MX USART2 UART Init();
```

```
abup_memset(progress,0,sizeof(progress));
abup_memset(progress,'*',20);
progress[20] = '\r';
progress[21] = '\n';
abup_bl_main_printf(progress);
abup_bl_main_printf(" ENTER BOOTLOADER...\r\n");
abup_bl_main_printf(progress);
#if (ABUP_FOTA_ALGORITHM == 0)
AbupProcedure();
#else
AUDPSProcedure();
#endif
jump_to_app();
```

3.2 主要接口定义

3.2.1 adups_bl_main.c

【原型】void AUDPSProcedure(void)

【描述】wosun 升级启动接口, 跳转到 App 前使用

【参数详情】无

【返回值】无

}

3.2.2 abup_bl_main.c

【原型】void AbupProcedure (void)

【描述】lusun 算法升级启动接口, 跳转到 App 前使用

【参数详情】无

【返回值】无

【原型】void abup_patch_progress(abup_uint16 total,abup_uint16 current)

【描述】打印升级 APP 总 SECTOR/BLOCK 数和当前正升级的 SECTOR/BLOCK,如果需要显示进度可以在此函数里添加。

【参数详解】

Parameter	In/Out	Type	Description	Note
total	in	abup_uint16	APP 总 SECTOR 数量	

current in	abup_uint16	当前正在升级 SECTOR	
------------	-------------	---------------	--

【返回值】无

3.2.3 abup hal uart.c

【原型】void abup bl main printf(abup char *data)

【描述】配置 log 打印。abup_bl_debug_printf ()函数仅当宏 ABUP_BL_PRINT_MAXLEN 定义时将会调用该函数打印串口接收的 log 进行打印

【参数详解】

Parameter	In/Out	Туре	Description	Note
data	in	abup char *	输出字符串信息	/

【返回值】无

3.3 Bootloader 代码空间配置


```
*********
    ; *** Scatter-Loading Description File generated by uVision ***
                                       起始地址,
                                       ; load region size_region

pootloader24 = execution addres
   LR_IROM1 0x08000000 0x000D000 {
ER_IROM1 0x08000000 0x000D000 {
       *.o (RESET, +First)
      *(InRoot$$Sections)
       .ANY (+RO)
10
11
     RW IRAM1 0x20000000 0x00028000 { ; RW data
      *.o (RAMCODE)
13
      .ANY (+RW +ZI)
                       RAM运行代码
14
15 }
16
17
```

配置需同 ABUP FLASH BASE ADDR、ABUP BL SIZE 等宏一致。

4. RT-Thread APP

4.1 RT-Thread App 移植

4.1.1 ENV 配置

如图所示,参考 readme 说明。

```
\overline{\ \ \ }- abup_fota: The firmware downloader which using on Abup FOTA component
      Enable HTTP/CoAP FOTA (CoAP) --->
      Recover algorithm (wosun) --->
     Enable Abup FOTA Downloader debug
(App) Application area name
(Abup) Data area name
(0x40) Flash minimum unit total
(0x00000800) Flash minimum unit size
(0x08000000) Flash start address
(0x00004000) Bootloader size
(0x10000) Application size
(0x08014000) Abup partition address
(0xC000) Abup partition size
(G070RB) OEM
(G070RB) Device Name
(1562662709) Product ID
(d42a103a639f4b5d94d97c3bd7bc9ba5) Product Secret
(box) Device Type
(stm3210) Platform
(1.0) firmware version
      Version (latest) --->
```

4.1.2 依赖关系

需要开启 AT DEVICE 用以连接服务器:

```
[ ] nanopb: Protocol Buffers for Embedded Systems ----
    Wi-Fi
   COAP: A C implementation of the Constrained Application Protocol
 nopoll: A OpenSource WebSocket implementation (RFC 6455) in ansi C --
 netutils: Networking utilities for RT-Thread ----
PPP DEVICE: lwIP PPP porting for Cellular Module( 2G/3G/4G )
 AT DEVICE: RT-Thread AT component porting or samples for different device AT Server Socket: AT server with socket commands.
  WIZnet: WIZnet TCP/IP chips SAL framework implement
    IoT Cloud --->
  ] NimBLE:An open-source Bluetooth 5.0 stack porting on RT-Thread ----
 *] ota_downloader: The firmware downloader which using on RT-Thread OTA comp
  ipmsg: A LAN instant messaging implement in RT-Thread ----
  ] Lssdp: SSDP protocol implemented on rt-thread
  airkissOpen: Tencent Airkiss Protocol parse library
] librws: Tiny, cross platform websocket client C library ----
*] TCP Server:A TCP server that supports multiple clients --->
  protobuf-c: a C implementation of the Google Protocol Buffers data serial
  onnx-parser: Open Neural Network Exchange model parser on RT-Thread
  onnx-backend: Open Neural Network Exchange backend on RT-Thread
  dlt645: dlt645 master package
  ] qxwz_application: high precision location library for RT-Thread. ----
  smtp_client:smtp client package for rt-thread
*1 abup fota: The firmware downloader which using on Abup FOTA component
```

开启 fal, 用以保存数据:

```
[*] Enable GPIO
[*] Enable UART --->
[ ] Enable SPI BUS ----
[*] Enable on-chip FLASH
[ ] Enable I2C1 BUS (software simulation) ----
[ ] Enable CRC (CRC-32 0x04C11DB7 Polynomial)
[ ] Enable RNG (Random Number Generator)
[ ] Enable UDID (Unique Device Identifier)
```

4.1.3 代码修改

main.c:

```
22
  23
       extern int abup init update result(void);
  24
       int main (void)
  25 ⊟ {
  26
            int count = 1;
  27
            /* set LED2 pin mode to output */
               pin mode (LFD2 PIN, PIN MODE OUTPUT);
  28
  29
            fal init();
  30
  31
            abup init update result();
  32
            While (count++)
  33 🖹
  34
                 rt pin write (LED2 PIN, PIN HIGH);
                 rt thread mdelay(500);
  35
  36
                 rt pin write (LED2 PIN, PIN LOW);
                 rt thread mdelay(500);
  37
  38
  39
  40
            return RT EOK;
 system_stm32XXxx.c:
#include "abup_typedef.h"
#ifdef ABUP BL SIZE
#define VECT TAB OFFSET
                         ABUP BL SIZE /*! < Vector Table base offset field.
                                  This value must be a multiple of 0x200. */
#else
#define VECT_TAB_OFFSET_0x00U /*!< Vector Table base offset field.
                                  This value must be a multiple of 0x200. */
#endif
 at_socket_esp8266.c:
```

9

设置 mid (连接服务器的唯一标识)

fal_cfg.h:

```
32
        ONCHIP_FLASH_DEV
33
34
                           === Partition Configuration ==
35
36 ##ifdef FAL_PART_HAS_TABLE_CFG
37
38 ##ifdef BSP_USING_ON CHIP FLASH
39 #define ONCHIP_FLASH_PATITION
                                            {FAL_PART_MAGIC_WROD, ABUP_RTTHREAD_APP,
                                            {FAL_PART_MAGIC_WROD, ABUP_RTTHREAD_FLASH, "onchip_flash",
41
   #define ONCHIP FLASH PATITION
42
44
    /* partition table */
45
    #define FAL PART TABLE
```

4.2 主要接口定义

4.2.1 abup client.c

【原型】abup int abup init update result (void)

【描述】初始化参数,有升级结果上报结果。

【返回值】RT EOK

【原型】void abupcv(void)

【描述】检测新版本。

【参数详解】无

【返回值】无

【原型】void AbupProgress(abup int8 state)

【描述】启动进程

【参数详解】

Parameter	In/Out	Туре	Description	Note
state	in	abup_int8	状态	

【返回值】无

【原型】abup_bool AbupCreateSOC(abup_int8 state,abup_read_cb read_cb)

【描述】创建套接字连接服务器。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8	状态	
read_cb	abup_read_cb	读取返回函数	

【返回值】成功或失败。

【原型】abup_char *AbupGetURLPort(abup_int8 state,abup_int *port)

【描述】获取 url 和 port。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8	状态	
port	abup_int *	Port 指针	

【返回值】url 指针。

【原型】void abup_closesocket(abup_int sock)

【描述】关闭套接字。

【参数详解】

Paraments	Туре	Description	Note
sock	abup_int	id 号	

【返回值】无。

【原型】void abup_set_mid(abup_abup_char * mid)

【描述】保存 mid。

【参数详解】

Paraments	Туре	Description	Note
mid	abup_abup_char *	唯一识别码	

【返回值】无。

【原型】abup_uint abup_rtt_callback(abup_uint8 state,abup_abup_char *buf, abup_uint

len)

【描述】收取数据处理。

【参数详解】

Paraments	Туре	Description	Note
state	abup_uint8	状态	
buf	abup_abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	

【返回值】收取数据处理结果。

【原型】 abup_bool abup_state_send(abup_int8* State,abup_int sock,struct sockaddr_in *addr)

【描述】发送数据。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	

【返回值】成功或失败。

【原型】abup_int8 abup_state_continue(abup_int8* State,abup_int8 end,abup_abup_int sock,struct sockaddr_in *addr,abup_abup_char *data,abup_abup_int len,abup_uint result)
【描述】继续下一步。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
end	abup_int8	结束状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	
data	abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	
result	abup_int	收取数据处理结果	

【返回值】大于0成功,否则失败。

【原型】void abup_set_try_count(abup_int8* State)

【描述】设置重试次数。

【参数详解】

Paraments	Туре	Description	Note
State	abup_int8*	当前状态	

【返回值】无。

【原型】abup_int8 abup_dl_callback(abup_int8* State,abup_int sock,struct sockaddr_in *addr,abup char *data,abup int len)

【描述】下载进程处理。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	
data	abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	

【返回值】成功或失败。

【原型】abup_int8 abup_cv_callback(abup_int8* State,abup_int sock,struct sockaddr_in *addr,abup_char *data,abup_int len)

【描述】检测新版本进程处理。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	
data	abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	

【返回值】成功或失败。

【原型】 abup_int8 abup_ru_callback(abup_int8* State,abup_int sock,struct sockaddr_in *addr,abup_char *data,abup_int len)

【描述】上报升级结果进程处理。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	
data	abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	

【返回值】成功或失败。

【原型】abup_int8 abup_rd_callback(abup_int8* State,abup_int sock,struct sockaddr_in *addr,abup char *data,abup int len)

【描述】上报下载结果进程处理。

【参数详解】

Paraments	Туре	Description	Note
state	abup_int8*	状态	
sock	abup_int	id 号	
addr	struct sockaddr_in *	套接字地址	
data	abup_char *	收取数据缓存	
len	abup_uint	收取数据缓存长度	

【返回值】成功或失败。

4.5APP 代码空间配置

配置需同 ABUP FLASH BASE ADDR、ABUP APP SIZE 等宏一致。

无升级 不智能

5.调试

5.1 打包

abup.bat 参数说明:

例 子: packages\abup_fota-latest\abup.bat "C:\Keil_v5\ARM\ARMCC\bin\fromelf.exe" "C:\Program Files\WinRAR\WinRAR.exe" rtconfig.h build

可以修改第二参数为 7ZIP 或 WINRAR。

生成压缩包名为: 版本号 日期 时间.zip

5.3 助手调试

打开串口调试助手,配置好串口号和波特率等相关信息。 abupcv:

AT +BOOT:将会显示升级包还原的进程:

App 启动上报升级结果: