Метод создания уникальных сертификатов, подтверждающих окончание учебного заведения, на основе технологии невзаимозаменяемых токенов

Студент:

Научный руководитель:

Соколов Ефим Маркович к.ф.-м.н., доцент Вишневская Т.И.

Москва 2022г.

Актуальность

Решаемые проблемы:

- предоставление оригинальных документов об образовании при устройстве на работу;
- надобность проверки подлинности документов об образовании;
- хранение бумажных документов.

Цель работы и постановка задачи

<u>Цель работы</u>

Разработка и программная реализация метода создания уникальных сертификатов, подтверждающих окончание учебного заведения, с помощью технологии невзаимозаменяемых токенов.

<u>Задачи</u>

- проанализировать существующие способы выдачи сертификатов об окончании учебного заведения;
- разработать блокчейн-сети, в которой реализован метод выдачи уникальных сертификатов;
- программно реализовать разработанный метод;
- исследовать зависимость времени финализации транзакции от количества участников сети, и произвести сравнение с аналогами.

Существующие методы выдачи сертификатов об образовании

Критерий Реализация	Защита от утраты	Защита от износа	Защита от подделывания	Проверка подлинности
Документы об окончании вуза РФ	-	-	+	-
Сертификаты Coursera	+	+	-	-

Постановка задачи

Предложенный метод

Виртуальные машины

Характеристика	Спец. ВМ	Стандарт. ВМ	Нативный код
Безопасность	+	+-	_
Неограниченность ресурсов	-	+-	+
Учет затраченных ресурсов	+	+	_

Способы обновления кода контрактов

Характеристика	Смарт-контракты	Нативный код	
Безопасность	-	-	
Неограниченность ресурсов	-	+	
Гибкость	+	-	

Протоколы консенсуса

Характеристика	Доказательство выполнения работы (PoW)	Доказательство доли владения (PoS)	Делегирование доказательств долей владения (DPoS)	Протокол "PBFT"	Протокол "Tendermint"
Идентификация узла	нет	нет	нет	да	да (и удержания залога)
Энергоэффективность	нет	частичная	частичная	да	да
Допустимое число атакующих	<25% вычислительно й мощности	<51% доли	<51% валидаторов	<33.33% валидаторо в	<33.33% валидаторов

Алгоритм создания уникального сертификата

Пусть ID – идентификатор сертификата

$$ID_n = ID_{n-1} + 1$$
$$ID_0 = 1$$

Алгоритм проверки подлинности сертификата

Пусть L — блок, который необходимо проверить

Тогда доказательство вхождения:

$$root = hash_K$$
:
$$hash_k = \begin{cases} hash(L), \ ec \pi u \ k = 1 \\ hash(hash_{k-1} + auth_{k-1}), \ ec \pi u \ 2 \le k \le K \end{cases},$$
 где

- К глубина дерева Меркла;
- root корень дерева Меркла
- $auth = \{auth_1, ..., auth_{K-1}\}$ Меркл-доказательство

Средства программной реализации

<u>Языки программирования:</u>

Rust:

- в Rust отсутствует «сборщик мусора»;
- большое количество библиотек для разработки блокчейна.

Solidity:

- спроектирован и создан как язык для написания смартконтрактов;
- исполняется EVM, абстрагируясь от реализации узлов сети.

Среда разработки:

VS Code:

- свободно распространяется;
- содержит плагины,
 облегчающие процесс написание кода.

<u>Библиотеки:</u>

Substrate:

- позволяет создавать гибкие и настраиваемые блокчейны;
- поддерживается активным сообществом разработчиков.

Структура разработанного ПО

Исследование зависимости времени финализации транзакции от количества участников в сети

Транзакция: <u>создание смарт-контракта учебного заведения</u>

- Среднее время выполнения: 9.53 секунд;
- Колебания в пределах в 12%.

Исследование зависимости времени финализации транзакции от количества участников в сети

Транзакция: <u>создание уникального сертификата</u>

- Среднее время выполнения: 5.80 секунд;
- Колебания в пределах в 25%.

Сравнение с существующими аналогами

Критерий Реализация	Защита от утраты	Защита от износа	Защита от подделывания	Проверка подлинности
Документы об окончании вуза РФ	_	_	+	_
Сертификаты Coursera	+	+	_	-
Предложенный метод	+	+	+	+

Достоинства и недостатки

Достоинства:

- защита от износа и подделывания выданных документов об образовании;
- возможность предоставить электронное подтверждение подлинности документа, не оформляя бюрократических запросов;
- неограниченное количество участников сети.

Недостатки:

- в случае если документ, хранящийся по ссылке в сертификате, скомпрометирован, тогда соответствующий сертификат тоже будет ложный;
- большие вычислительные мощности, требуемые от машины.

Заключение

Была достигнута цель работы:

Был разработан и программно реализован метод создания уникальных сертификатов, подтверждающих окончание учебного заведения, на основе технологии невзаимозаменяемых токенов.

Были выполнены поставленные задачи:

- проанализированы существующие способы выдачи сертификатов об окончании учебного заведения;
- разработана блокчейн-сеть, в которой реализован метод выдачи уникальных сертификатов;
- программно реализован разработанный метод;
- исследована зависимость времени финализации транзакции от количества участников сети, а также произведено сравнение с аналогами.

Дальнейшее развитие проекта

- 1. Переписывание кода смарт-контрактов на Rust;
- 2. Произвести внешний аудит разработанных смарт-контрактов;
- 3. Развить блокчейн-сеть до парачейна Polkadot.