Modelltheorie Übungsblatt 0

Ein Filter \mathcal{F} auf einer Menge I ist eine nicht-leere Familie von Teilmengen von I, so dass:

- \bullet \mathcal{F} ist abgeschlossen unter endlichen Schnitten,
- jede Obermenge eines Elements von \mathcal{F} ist in \mathcal{F} ,
- ∅ ∉ F.

Ein Filter ist ein *Ultrafilter*, wenn für jede Teilmenge $A \subset I$ entweder $A \in \mathcal{F}$ oder $I \setminus A \in \mathcal{F}$ gilt. Mit dem Auswahlaxiom kann man jeden echten Filter zu einem Ultrafilter erweiten. Sei \mathcal{F} ein Ultrafilter auf I und $(\mathcal{A}_i)_{i \in I}$ eine Familie von \mathcal{L} -Strukturen. Betrachten Sie die folgende Äquivalenzrelation auf dem kartesischen Produkt der A_i :

$$(a_i)_{i\in I} \sim_{\mathcal{F}} (b_i)_{i\in I} \Leftrightarrow \{i\in I \mid a_i = b_i\} \in \mathcal{F}$$

 $(a_i)_{\mathcal{F}}$ ist die Äquivalenzklasse von ein Element $(a_i)_{i\in I} \in \prod_{i\in I} A_i$. $\prod_{\mathcal{F}} \mathcal{A}_i$, das *Ultraprodukt* der A_i bezüglich \mathcal{F} , ist eine \mathcal{L} -Struktur mit Universum $\prod_{i\in I} A_i / \sim_{\mathcal{F}}$ definiert durch:

• Für ein Konstantensymbol $c \in \mathcal{L}$:

$$c^{\prod_{\mathcal{F}} \mathcal{A}_i} = (c^{\mathcal{A}_i})_{\mathcal{F}}$$

• Für ein *n*-stelliges Funktionssymbol $f \in \mathcal{L}$:

$$f^{\prod_{\mathcal{F}} \mathcal{A}_i}((a_i^1)_{\mathcal{F}}, \cdots, (a_i^n)_{\mathcal{F}}) = (f^{\mathcal{A}_i}(a_i^1, \cdots, a_i^n))_{\mathcal{F}}$$

• Für ein Relationssymbol $R \in \mathcal{L}$:

$$R^{\prod_{\mathcal{F}} \mathcal{A}_i}(a_i^1)_{\mathcal{F}}, \cdots, (a_i^n)_{\mathcal{F}} \Leftrightarrow \{i \in I \mid R^{\mathcal{A}_i} a_i^1, \cdots, a_i^n\} \in \mathcal{F}$$

Anwesenheitsaufgabe 1. Sei I eine Menge, \mathcal{F} ein Ultrafilter auf I, und $(\mathcal{A}_i)_{i\in I}$ eine Familie von \mathcal{L} -Strukturen.

- a) Zeigen Sie, dass das Ultraprodukt $\prod_{\mathcal{F}} \mathcal{A}_i$ wohldefiniert ist.
- b) Sei ϕ ein \mathcal{L} -Formel und $(a_i^1)_{i\in I}, \dots, (a_i^n)_{i\in I}$ Elementen von $\prod_{i\in I} A_i$. Zeigen Sie den Satz von Łoś:

$$\prod_{\mathcal{F}} \mathcal{A}_i \vDash \phi((a_i^1)_{\mathcal{F}}, \cdots, (a_i^n)_{\mathcal{F}}) \Leftrightarrow \{i \in I \mid \mathcal{A}_i \vDash \phi(a_i^1, \cdots, a_i^n)\} \in \mathcal{F}$$

Anwesenheitsaufgabe 2. Sei \mathcal{A} ein \mathcal{L} -Struktur. Zeigen Sie die folgenden Lemmas:

- a) Eine Teilmenge B von A ist genau dann Universum einer Unterstruktur $\mathcal{B} \subset \mathcal{A}$, wenn für alle Konstantensymbol $c \in \mathcal{L}$ und alle Funktionssymbol $f \in \mathcal{L}$, B alle c^A enthält und B abgeschlossen unter f^A ist.
- b) Sei B ein \mathcal{L} -Struktur und $h: \mathcal{A} \to \mathcal{B}$ ein Homomorphismus. Dann ist h(A) Universum einer Unterstruktur von \mathcal{B} .
- c) Sei \mathcal{A}' ein \mathcal{L} -Struktur, $h: \mathcal{A} \to \mathcal{A}'$ ein Homomorphismus, und \mathcal{B} eine Oberstruktur von \mathcal{A} . Dann existiert \mathcal{B}' eine Oberstruktur von \mathcal{A}' und eine Fortsetzung $g: \mathcal{B} \to \mathcal{B}'$.

Anwesenheitsaufgabe 3. Jede Formel ist äquivalent zu ein Formel in Prenex Normalform:

$$Q_1x_1Q_2x_2\cdots Q_nx_n\phi(x_1,\cdots,x_n)$$

mit $(Q_i)_{i=1,\dots,n}$ Quantoren und quantorenfreiem ϕ .

Anwesenheitsaufgabe 4. Sei $\kappa > \aleph_0$. Zeigen Sie, dass T_{DLO} nicht κ -kategorisch ist.