Matrix Algebra

Geometric Algorithms
Lecture 10

Practice Problem

Write the matrix for the transformation which projects vectors in \mathbb{R}^2 vertically onto the line

 $y = 2x = in \mathbb{R}^2.$

Answer
$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x \\ 2x \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Objectives

- 1. Connect questions about matrix equations and linear transformations
- 2. Motivate matrix multiplication
- 3. Define matrix multiplication
- 4. Look at the algebra of matrix multiplication

Keywords

one-to-one transformation onto transformation matrix multiplication row-column rule matrix addition and scaling non-commutativity

Recap: Geometry of Linear Transformations

Recall: Matrices as Transformations

Matrices allow us to transform vectors.

The transformed vector lies in the span of its columns.

$$X \mapsto AX$$

map a vector \mathbf{x} to the vector $A\mathbf{v}$

Recall: Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Motto

```
Matrix transformations change the "shape" of a set of set of vectors (points).
```

Example: Dilation

Example: Dilation

$$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$

if r > 1, then the transformation pushes points away from the origin.

Example: Contraction

Example: Contraction

$$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$

if $0 \le r \le 1$, then the transformation pulls points towards the origin.

Example: Shearing

Example: Shearing

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$

Imagine shearing like with rocks or metal.

Example: Reflection

General Rotation

How does rotation affect the standard basis?

(059 -sind) sin (2)

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Note: This is rotation about the origin.

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Note: This is rotation about the origin.

The Takeaway: We can figure out the matrices which implement complex linear transformations by understanding what they do to the standard basis.

Example: Reflection through the x_2 -axis

Reflection through the x_2 axis

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} -17 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Example: Projections

 Projection onto the x_1 axis

The Unit Square

The *unit square* is the set of points in \mathbb{R}^2 enclosed by the points (0,0), (0,1), (1,0), (1,1).

How To: The Unit Square and Matrices

How To: The Unit Square and Matrices

Question. Find the matrix which implements the linear transformation which is represented geometrically in the following picture.

How To: The Unit Square and Matrices

Question. Find the matrix which implements the linear transformation which is represented geometrically in the following picture.

Solution. Find where the standard basis vectors go.

Question

Write down the matrix for the following shearing operation using this method.

Answer

You need to know these matrices, but you don't need to memorize them.

Remember: What does this matrix do to the unit square? Then build the matrix from there.

List of Important 2D Linear Transformations

- » dilation, contraction
- » reflections
- » projections
- » horizontal/vertical contractions
- » horizontal/vertical shearing

Look through the notes for a comprehensive collection of pictures or...

One-to-One and Onto

Recall: Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Recall: A New Interpretation of the Matrix Equation

 $A\mathbf{x} = \mathbf{b}$? \equiv is there a vector which A transforms into \mathbf{b} ?

Solve $A\mathbf{x} = \mathbf{b} \equiv \text{find a vector which } A$ transforms into \mathbf{b}

Recall: A New Interpretation of the Matrix Equation

$$A\mathbf{x} = \mathbf{b}$$
? \equiv is there a vector which A transforms into \mathbf{b} ?

Solve
$$A\mathbf{x} = \mathbf{b} \equiv \text{find a vector which } A$$

transforms into \mathbf{b}

What about other questions?

Other Questions Like...

Does $A\mathbf{x} = \mathbf{b}$ have a solution for any choice of b?

Does $A\mathbf{x} = \mathbf{0}$ have a unique solution?

Other Questions Like...

Does $A\mathbf{x} = \mathbf{b}$ have at least one solution for any choice of \mathbf{b} ?

Does $A\mathbf{x} = \mathbf{b}$ have at most one solution for any choice of \mathbf{b} ?

Wait

 $A\mathbf{x} = \mathbf{0}$ has a unique solution

 $A\mathbf{x} = \mathbf{b}$ has at most one solution

$$A(\vec{w} + \vec{v}) = b$$

$$A(\vec{w} + \vec{v}) = A\vec{w} + \Delta \vec{x} = A\vec{w} + \vec{0} = b$$

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

One-to-one Transformations

One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector **b** in \mathbb{R}^m is the image of at most one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

T is not one-to-one

T is one-to-one

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Comparing Pictures

T is *not* onto \mathbb{R}^m

T is not one-to-one

T is onto \mathbb{R}^m

T is one-to-one

Example: both 1-1 and onto

Rotation about the origin:

$$\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}$$

Example: 1-1, not onto

Lifting:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix} \qquad \begin{pmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$$

 $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{pmatrix} X_1 \\ X_2 \\ X_1 + X_2 \end{bmatrix}$

why?:
$$(1)$$
 (2) (3) (4) (4) (5) (6) (7) (6) (7)

Example: not 1-1, not onto

Projection onto the x_1 axis:

-3 -2 -1 0 1 -1 -2 -3 -3

Example: onto, not 1-1

Projection from \mathbb{R}^3 to \mathbb{R}^2 .

$$\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \mapsto \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \mapsto \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$$
why?:
$$\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \\
x_3
\end{bmatrix} \mapsto \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$$
which is the following an expectation of the collision.

Taking Stock: Onto

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- $\gg T$ is onto
- $\Rightarrow Ax = b$ has a solution for any choice of b
- \Rightarrow range(T) = codomain(T)
- \gg the columns of A span \mathbb{R}^m
- $\gg A$ has a pivot position in every <u>row</u>

Taking Stock: One-to-One

Theorem. The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A.

- $\gg T$ is one-to-one
- $\Rightarrow A\mathbf{x} = \mathbf{b}$ has at most one solution for any \mathbf{b}
- \gg The columns of A are linearly independent
- » A has a pivot position in every <u>column</u>

How To: One-to-One and Onto

Question. Show that the linear transformation T is one-to-one/onto.

Solution. (one approach) Find the matrix which implements T and see if it has a pivot in every column/row.

Warning: this is not the only way. Always try to think if you can solve it using *any* of the perspectives

Example: both 1-1 and onto

Rotation about the origin:

$$\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}$$

Example: 1-1, not onto

Lifting:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$$

Example: not 1-1, not onto

Projection onto the x_1 axis:

Example: onto, not 1-1

Projection from \mathbb{R}^3 to \mathbb{R}^2 .

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Question

Is vertical shearing a 1-1 transformation? Justify your answer.

Answer: Yes

Composing Linear Transformations

Shearing and Reflecting (Geometrically)

Shearing and Reflecting Matrix

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Shearing and Reflecting (Algebraically)

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$$
reflect shear

First multiply by shear matrix, then multiply by reflection matrix

Shearing and Reflecting (Algebraically)

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix}$$
reflect shear

First multiply by shear matrix, then multiply by reflection matrix

This gives us the same transformation.

Shearing and Reflecting

$$\begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{x} \end{pmatrix}$$

Fact. The composition of two linear transformation is a linear transformation.

Fact. The composition of two linear transformation is a linear transformation.

Verify:

$$T(S(\vec{u}+\vec{r})) = T(S(\vec{u})+S(\vec{r}))$$

$$= T(S(\vec{u})) + T(S(\vec{r}))$$

$$= (T \circ S)(\vec{u}) + (T \circ S(\vec{r}))$$
additivity

Fact. The composition of two linear transformation is a linear transformation.

Verify:

This means the composition of two matrix transformation can be represented as a single matrix.

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

The Key Question

Given two linear transformations, how to we compute the matrix which implements their composition?

Matrix Multiplication

Matrix Multiplication

Shearing and Reflecting

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \times, \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \times_1 \begin{bmatrix} 1 \\ 1 \end{pmatrix} \\ \times, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \times_2 \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{bmatrix}$$

General Composition (2D)

$$A\left(\begin{bmatrix}\mathbf{b}_{1} & \mathbf{b}_{2}\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix}\right) = A\left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overrightarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{b}_{1} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{b}, + \times_{1} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A} \end{matrix}\right) = \left(\begin{matrix} \times, \overleftarrow{A} & \overleftarrow{A} & \overleftarrow{A$$

Matrix Multiplication

Definition. For a $m \times n$ matrix A and a $n \times p$ matrix B with columns $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_p$ the product AB is the $m \times p$ matrix given by

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Replace each column of B with A multiplied by that column.

Tracking Dimensions

this only works if the number of <u>columns</u> of the left matrix matches the number of <u>rows</u> of the right matrix

Important Note

Even if AB is defined, it may be that BA is <u>not</u> defined

Non-Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Non-Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

These are not defined.

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

The Key Fact (Restated)

For any matrices A and B (such that AB is defined) and any vector \mathbf{v}

$$A(B\mathbf{v}) = (AB)\mathbf{v}$$

The matrix implementing the composition is the product of the two underlying matrices.

Row-Column Rule

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of AB is defined above.

Example

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} =$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

Question

Compute
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$

short version: What is the entry in the 2nd row and 2nd column?

Answer

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$

Matrix Operations

What about when the right matrix is a single column?

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication.

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication.

We can think of $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$ as collection of simultaneous matrix-vector multiplications

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

These should be consistent with matrix-vector interface and vector interface

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column—wise (or equivalently, element—wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column-wise (or equivalently, element-wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

This is exactly the same as vector addition, but for matrices.

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise).

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise).

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

This is exactly the same as vector scaling, but for matrices.

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the same size and r and s are scalars (\mathbb{R})

$$A + B = B + A$$

$$(A + B) + C = A + (B + C)$$

$$A + 0 = A$$

$$r(A + B) = rA + rB$$

$$(r+s)A = rA + sA$$

$$r(sA) = (rs)A$$

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$(B+C)A = BC + CA$$

$$r(AB) = (rA)B = A(rB)$$

$$I_m A = A = AI_n$$

Matrix Multiplication is not Commutative

Important. AB may not be the same as BA

(it may not even be defined)

Question (Conceptual)

Find a pair of 2D linear transformations T_1 and T_2 such that T_1 followed by T_2 is not the same as T_2 followed by T_1 .

(also find a pair where they <u>are</u> the same)

Answer: Rotation and Reflection

Computational Aspects of Matrix Multiplication

Matrix Operations in Numpy

Let a and b be 2D numpy arrays and let c be a floating point number.

We've seen these, we've used them a bit, we'll use them much more.

We will not use $O(\cdot)$ notation!

>> multiplication

>> division

>> square root

```
We will not use O(\cdot) notation! For numerics, we care about number of FLoating—oint OPerations (FLOPs): >> addition >> subtraction
```

```
We will not use O(\cdot) notation!
For numerics, we care about number of FLoating-
oint OPerations (FLOPs):
  >> addition
  >> subtraction
                       2n vs. n is very different
  >> multiplication
                               when n \sim 10^{20}
  >> division
  >> square root
```

that said, we don't care about exact bounds

that said, we don't care about exact bounds A function f(n) is asymptotically equivalent to g(n) if

$$\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$$

that said, we don't care about exact bounds A function f(n) is asymptotically equivalent to g(n) if

$$\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$$

for polynomials, they are equivalent to their dominant term

the dominant term of a polynomial is the monomial with the highest degree

$$\lim_{i \to \infty} \frac{3x^3 + 100000x^2}{3x^3} = 1$$

 $3x^3$ dominates the function even though the coefficient for x^2 is so large

A Note on Complexity

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Suppose A and B are $n \times n$ matrices.

This operations takes n multiplications and n divisions (2n FLOPS total)

Repeating for each entry gives $\sim 2n^3$ FLOPS

A Note on Parallelization

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

The main part of this procedure is highly parallelizable.

A Note on Parallelization

```
a = np.array(...)
b = np.array(...)
prod = np.zeros([a.shape[0], b.shape[1]])
for i in range(a.shape[0]):
    for j in range(b.shape[1]):
        prod[i, j] = np.dot(a[i], b[:,j])
```

The main part of this procedure is highly parallelizable.

One processor per entry gets you to $\sim 2n$ FLOPS

A Note on Libraries

There are a lot of other considerations for doing linear algebra on computers.

Best leave it to experts (or do research in the area).

LAPACK is the state of the art library for matrix operations.

numpy uses LAPACK

Summary

We can reason about matrix equations by reasoning directly about properties of linear transformations.

Matrix multiplication coincides with composition of linear transformations.

There is an algebra of matrices which is consistent with the algebra of vectors.