Условия за колинеарност и за компланарност на вектори чрез координати

Теорема 1 Нека векторите и и v в геометричната равнина имат спрямо даден базис координати $u(x_1, x_2)$ и $v(y_1, y_2)$. Тогава и и v са колинеарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

Теорема 2 Нека векторите и и v в геометричното пространство имат спрямо даден базис координати $u(x_1, x_2, x_3)$ и $v(y_1, y_2, y_3)$. Тогава и и v са колинеарни \Leftrightarrow рангът на

матрицата от координатите им $\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \\ x_3 & y_3 \end{pmatrix}$ е строго по-малък от $2 \Leftrightarrow$ $\det \begin{pmatrix} x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0$, $\det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0$.

$$\det\begin{pmatrix} x_2 & y_2 \\ x_3 & y_3 \end{pmatrix} = 0, \ \det\begin{pmatrix} x_3 & y_3 \\ x_1 & y_1 \end{pmatrix} = 0, \ \det\begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0.$$

Теорема 3 Нека векторите u, v, w в геометричното пространство имат спрямо даден базис координати $u(x_1,x_2,x_3),\,v(y_1,y_2,y_3),\,w(z_1,z_2,z_3).$ Тогава $u,\,v,\,w$ са компла-

нарни \Leftrightarrow рангът на матрицата от координатите им $\begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ e строго по-малък

om
$$3 \Leftrightarrow \det \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} = 0.$$