GEOMETRY HOMEWORK 8

B96201044 黃上恩, B98901182 時小勳, K0020100x 劉士瑋

November 6, 2011

Problem 2. 考慮直線族 $L_{\lambda}: \frac{x}{\lambda} + \frac{y}{1-\lambda} = 1$, 令 ruled surface \mathbb{X} 為 $(L_{\lambda}, \lambda) \subset \mathbb{R}^2 \times \mathbb{R}$

- (a) 求出 line of striction(龍骨) $\beta(\lambda) \in \mathbb{R}^3$
- (b) 令 $\gamma(\lambda)$ 為 $\beta(\lambda)$ 在 \mathbb{R}^2 上的投影, 說明 L_λ 為 $\gamma(\lambda)$ 的切線
- (c) $\gamma(\lambda)$ 是圓嗎?其方程式為何(以 f(x,y)=c 的方式表示)?

Proof.

Problem 4 (Ex p.210 6). Let

$$\mathbf{X}(t,v) = lpha(t) + vw(t)$$

be a developable surface. Prove that at a regular point we have

$$\langle N_v, \mathbf{X}_v \rangle = \langle N_v, \mathbf{X}_t \rangle = 0.$$

Conclude that the tangent plane of a developable surface is constant along (the regular points of) a fixed ruling.

Problem 5 (Ex p.210 8). Show that if $C \subset S^2$ is a parallel of a unit sphere S^2 , then the envelope of tangent planes of S^2 along C is either a cylinder, if C is an equator, or a cone, if C is not an equator.