# Question 1

On voit clairement sur le nuage de points (circonference/hauteur) que cela suit une droite. On essaye de trouver les valeurs de la droites qui minimisent le risque quadratique.

## Question 2

Pour minimiser la fonction  $\varphi(\beta_1, \beta_2)$  il faut trouver dériver la fonction par rapport à  $\beta_1$  et  $\beta_2$  et trouver les valeurs qui annulent les 2 dérivées.

$$\frac{\partial \varphi(\beta_1, \beta_2)}{\beta_1} = \frac{\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 x_i)^2}{\beta_1} = \frac{\sum_{i=1}^n Y_i^2 - \beta_1 Y_i - \beta_2 x_i Y_i - \beta_1 Y_i + \beta_1^2 + \beta_1 \beta_2 x_i - \beta_2 x_i Y_i + \beta_2 x_i \beta_1 + \beta_2^2 x_i^2}{\beta_1}$$

$$= \sum_{i=1}^n -Y_i - Y_i + 2\beta_1 + \beta_2 x_i + \beta_2 x_i = 2\sum_{i=1}^n -Y_i + \beta_2 x_i + \beta_1$$

$$\frac{\partial \varphi(\beta_1, \beta_2)}{\beta_2} = \frac{\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 x_i)^2}{\beta_2} = \frac{\sum_{i=1}^n Y_i^2 - \beta_1 Y_i - \beta_2 x_i Y_i - \beta_1 Y_i + \beta_1^2 + \beta_1 \beta_2 x_i - \beta_2 x_i Y_i + \beta_2 x_i \beta_1 + \beta_2^2 x_i^2}{\beta_2}$$

$$= \sum_{i=1}^n -x_i Y_i + \beta_1 x_i - x_i Y_i + \beta_1 x_i + 2\beta_2 x_i^2 = 2\sum_{i=1}^n x_i (-Y_i + \beta_2 x_i + \beta_1)$$

On cherche  $\hat{\beta}_1$  et  $\hat{\beta}_2$  les valeurs qui annulent le système

$$\begin{cases} \sum_{i=1}^{n} x_i (-Y_i + \beta_2 x_i + \beta_1) = 0 \\ \sum_{i=1}^{n} -Y_i + \beta_2 x_i + \beta_1 = 0 \end{cases}$$

$$\begin{cases} \sum_{i=1}^{n} -Y_i x_i + \sum_{i=1}^{n} \beta_2 x_i^2 + \sum_{i=1}^{n} \beta_1 x_i = 0 \\ \sum_{i=1}^{n} -Y_i + \sum_{i=1}^{n} \beta_2 x_i + \sum_{i=1}^{n} \beta_1 = 0 \end{cases} (2)$$

$$\begin{cases} \sum_{i=1}^{n} -Y_i x_i + \beta_2 \sum_{i=1}^{n} x_i^2 + \beta_1 \sum_{i=1}^{n} x_i = 0 \\ \sum_{i=1}^{n} -Y_i + \beta_2 \sum_{i=1}^{n} x_i + n\beta_1 = 0 \end{cases} (2)$$

On fait (3) = 
$$n(1) - (2) \sum_{i=1}^{n} x_i$$

$$\begin{cases} n\sum_{i=1}^{n} -Y_{i}x_{i} + n\beta_{2}\sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} Y_{i}\sum_{i=1}^{n} x_{i} - \beta_{2}\left(\sum_{i=1}^{n} x_{i}\right)^{2} = 0 \\ \sum_{i=1}^{n} -Y_{i} + n\beta_{2}\sum_{i=1}^{n} x_{i} + n\beta_{1} = 0 \end{cases}$$
(3)

$$\begin{cases}
-n\sum_{i=1}^{n} Y_{i}x_{i} + \sum_{i=1}^{n} Y_{i}\sum_{i=1}^{n} x_{i} = \beta_{2} \left(\sum_{i=1}^{n} x_{i}\right)^{2} - n\beta_{2} \sum_{i=1}^{n} x_{i}^{2} \\
\sum_{i=1}^{n} -Y_{i} + n\beta_{2} \sum_{i=1}^{n} x_{i} + n\beta_{1} = 0
\end{cases} (2)$$

$$\begin{cases} \beta_2 = \frac{\sum_{i=1}^n Y_i \sum_{i=1}^n x_i - n \sum_{i=1}^n Y_i x_i}{\left(\sum_{i=1}^n x_i\right)^2 - n \sum_{i=1}^n x_i^2} & (3) \\ \beta_1 = \frac{1}{n} \left(\sum_{i=1}^n Y_i - n \beta_2 \sum_{i=1}^n x_i\right) & (2) \end{cases}$$

$$\begin{cases}
\beta_2 = \frac{\sum_{i=1}^n Y_i \sum_{i=1}^n x_i - n \sum_{i=1}^n Y_i x_i}{\left(\sum_{i=1}^n x_i\right)^2 - n \sum_{i=1}^n x_i^2} & (3) \\
\beta_1 = \frac{\sum_{i=1}^n x_i \sum_{i=1}^n x_i Y_i - \sum_{i=1}^n x_i^2 \sum_{i=1}^n Y_i}{\left(\sum_{i=1}^n x_i\right)^2 - n \sum_{i=1}^n x_i^2} & (2)
\end{cases}$$

#### Question 3

Voir Python.

On obtient  $\beta_1 = 9.037475668452768$  et  $\beta_2 = 0.257137855007109$ .



Figure 1: Regression simple



Figure 2: Circonference



Figure 3: Hauteur

## Question 4

Comme le montre les figures 2 et 3, il semble raisonnable de dire que la circonférence (resp. la hauteur) d'un eucalyptus suit une loi normale. Maintenant on n'a qu'un seul échantillon, donc cela pourrait être une pure coincidence!

Comme les 2 variables aléatoire suivent une loi normale, elle sont indépendentes et identiquement distribués.

Si X suit une loi normale  $\mathcal{N}(m, \sigma^2)$  et Y = AX + b alors, Y suit une loi normale  $\mathcal{N}(am + b, a^2\sigma^2)$ 

Si X (resp. Y) suit une loi normale  $\mathcal{N}(m_x, \sigma_x^2)$  (resp.  $\mathcal{N}(m_y, \sigma_y^2)$ ) alors X + Y suit une loi normale  $\mathcal{N}(m_x + m_y, \sigma_x^2 + \sigma_y^2)$ .

Dans notre cas on a  $e_i = Y_i - \hat{\beta}_1 + \hat{\beta}_2 x_i$ . Donc  $e_i$  suit une loi normale  $\mathcal{N}(-\hat{\beta}_1 - \hat{\beta}_2 m_x + m_Y, \hat{\beta}_2^2 \sigma_x^2 + \sigma_y^2)$ . On a par définition  $m_y = \hat{\beta}_1 + \hat{\beta}_2 m_x$ . Donc  $E(e_i) = 0$  et  $\sigma_{e_i} = \hat{\beta}_2^2 \sigma_x^2 + \sigma_y^2$ .

## Question 5

En cherchant à minimiser  $||Y - X\beta||^2$ , on cherche à trouver l'élément de F le plus proche de Y au sens de la distance euclidienne. Il s'agit de la projection orthogonale de Y sur F. Comme  $z \in F$ , si et seulement si  $z = X\beta$ , on cherche  $\hat{\beta}$  tel que  $X\hat{\beta} = P_F(Y)$ .

Comme  $X\hat{\beta} = P_F(Y)$ , on a  $Y - X\hat{\beta} = Y - P_F(Y)$  qui est un vecteur orthogonal à X et par conséquent aussi a  $X\theta$ . Le produit scalaire de 2 vecteurs orthogonaux est nul, donc  $\forall \theta \in \mathbb{R}^3 < Y - X\hat{\beta}, X\theta >= 0$ .

## Question 6

Pour trouver le minimum par rapport a  $\beta$ , il suffit de dériver l'expression par rapport à  $\beta$  et annuler l'expression. On remarque que  $\sum_{i=1}^{n} (Y - X\beta)^2 = (Y - X\beta)^t (Y - X\beta)$ 

$$(Y - X\beta)^t (Y - X\beta) = (Y^t - \beta^t X^t)(Y - X\beta) = Y^t Y - Y^t X\beta - \beta^t X^t Y + \beta^t X^t X\beta$$

et

$$\frac{\partial (Y - X\beta)^t (Y - X\beta)}{\partial \beta} = -Y^t X + \beta^t X^t X$$

On cherche  $\hat{\beta}$  tel que

$$-Y^{t}X + \hat{\beta}^{t}X^{t}X = 0$$
$$(\hat{\beta}^{t}X^{t}X)^{t} = (-Y^{t}X)^{t}$$

Donc

$$\hat{\beta} = (X^t X)^{-1} X^t Y$$

#### Question 7

Voir Python.

$$\beta = [-24.35200327, -0.48294547, 9.98688814]$$

#### Question 8

On a  $Y = X\beta + \epsilon$ . On suppose que les variables aléatoires  $\epsilon_i$  suivent une loi normale  $\mathcal{N}(0, \sigma^2)$ . On ne sait rien de la loi de la variable aléatoire X, donc on ne peut rien dire sur la loi des  $Y_i$ . En effet, supposons que la variable aléatoire X suit une loi exponentielle, alors  $Y_i$  suivra probablement une loi exponentielle.

Maintenant, sur le seul échantillon fourni, on a montré à la question 4 que  $Y_i$  suit certainement une loi normale.

Au vu du nuage de points, pourquoi ne pas prendre  $Y = \beta_1 + \beta_2 x_i + \beta_3 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4$ ? Meilleure courbe. Et surement meilleur si on prend un ordre 10 ou 30.

??? pour le reste.



Figure 4: Regression multiple

# Test de Student

Pourquoi on cherche à se demander si  $\beta_3 = 0$ . On suppose ici que les  $\beta_1$  et  $\beta_2$  sont identiques pour les 2 régressions pour l'échantillon donné. Ce qui n'est pas le cas.

# Question 9

Soient Z une variable aléatoire de loi normale centrée et réduite et U une variable indépendante de Z et distribuée suivant la loi la loi du chi-deux à k degrés de liberté. Par définition la variable  $T=\frac{Z}{\sqrt{U/k}}$  suit une loi de Student à k degrés de liberté.

Prenons  $U=(n-3)\frac{\hat{\sigma}^2}{\sigma^2}$  et  $Z=\hat{\beta}_3$ . On sait que U suit une loi de chi-deux à (n-3) degrés de liberté (voir question précédente) et que Z suit une loi normale centrée et réduite. Donc

$$T = \frac{\hat{\beta}_3}{\sqrt{\frac{(n-3)\frac{\hat{\sigma}^2}{\sigma^2}}{n-3}}} = \frac{\hat{\beta}_3}{\frac{\hat{\sigma}}{\sigma}} = \frac{\hat{\beta}_3\sigma}{\hat{\sigma}}$$