Network Generation by Deep Reinforcement Learning

Yang Yang, Jiarong Xu Zhejiang University

Why Networks?

 Networks are a natural language for describing and modeling complex systems.

Why Networks?

 Networks are a natural language for describing and modeling complex systems.

Application: Vertex Classification

Noisy Network Data

- In real world, network data is hard to obtain and consists of noises
 - Noises are caused by incomplete and biased data sampling, human subjectivity, and inconsistent with the downstream task.

Task performance drops as more node labels are obtained!

Noisy Network Data

- In real world, network data is hard to obtain and consists of noises
 - Noises are caused by incomplete and biased data sampling, human subjectivity, and inconsistent

How to construct a reliable network?

Task performance drops as more node labels are obtained!

Task

 Construct network by considering node features and optimizing task performance.

Related Work

- Link prediction: given two nodes, determine if there exist an edge.
 - Hard to preserve macro-level network properties.
- Network generation model: design a certain mechanism to generate (nodes and) edges.
 - Requires rich domain knowledge and hard to generalize.

General Idea

 A network is consisted by several paths among nodes.

Path generation can be formulated as Markov Decision Process!

Our Approach

- Reinforcement learning framework
 - State: $(v_0, ..., v_t)$, where v_t is the current node
 - Action: v_{t+1} , create an edge between v_t and v_{t+1}

Figure 1: An overview of the proposed network reconstruction method.

Our Approach

- Reinforcement learning framework
 - Reward:
 - Immediate reward: a given network (as train data) guided

$$r_i(v_{t+1}|v_t) = \begin{cases} 0, (v_t, v_{t+1}) \not\in E \ or \ (v_t, v_{t+1}) \in \left((v_0, v_1), (v_1, v_2), \dots, (v_{t-1}, v_t)\right) \\ 1, (v_t, v_{t+1}) \in E \end{cases}$$
 edges set

Delayed reward: task guided

$$r_d(v_T|(v_0, v_1, \dots, v_T)) = GCN(G_net((v_0, v_1, \dots, v_T)), features)$$

Learning Algorithm

Algorithm 2 Overall Training Process

Initialize positive replay memory \mathcal{D}_p to capacity NInitialize negative replay memory \mathcal{D}_n to capacity MInitialize action-value function Q with random weights

repeat

```
Initialize sequence s_0 = (v_0)
```

for t = 0 to T do

With probability ε select a random action a_t

Otherwise select $a_t = \max_a Q^*(v_t, a; \theta)$

Execute action a_t in emulator and observe reward r_t and

next node v_{t+1}

Set
$$s_{t+1} = (v_0, \dots, v_{t+1})$$

if $r_t > 0$ then

Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}_{b}

else

Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}_n

end if

Sample random minibatch of transitions (s_j, a_j, r_j, s_{j+1})

from \mathcal{D}_p and \mathcal{D}_n with a proportion of 1:4

Set
$$y_j = \begin{cases} GCN\left(G_{net}\left(s_{j+1}\right), features\right) & len\left(s_{j+1}\right) == T\\ r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \theta) & others \end{cases}$$

Perform a gradient descent step on $(y_j - Q(s_j, a_j; \theta))^2$

end for

until episodes finish

Select & execute actions with e-greedy

Construct experience replay

Train Q network

Experimental Setup

Dataset:

- Terrorist network:
 - Terrorists(1206) vs. Non-terrorists(2767)
 - Each node has 45 features
- Citation network: Cora & Pubmed
 - Verties: documents
 - Edges: citation links between documents
 - Features: sparse bag-of-words representation

DATASET	TYPE	#VERTEIES	#EDGES	#CLASSES	#FEATURES
Hikvision	Terrorist Network	3,973	7,600	2	45
Cora	Citation network	2,708	5,429	7	1,433
Pubmed	Citation network	19,717	44,338	3	500

Downstream task: node classification

Experimental Setup

Baselines:

- MLP: Conduct MLP classification based on features
- LP: Construct similarity matrix based on features, and conduct label propagation on it.
- RL + LP: Extract similarity matrix from RL, and conduct label propagation on it.
- GCN: Conduct GCN classification based on pre-built network and features.
- RL + GCN: Reconstruct network from RL, and conduct GCN classification based on the reconstructed network and features.

RL Does Help!

Experimental Results – Terrorist Network

With the percentage of node labels decreases:

- Method based on features gets worse
- Method based on both features and network gets better

Experimental Results

			MLP	LP	RL+LP	GCN	RL+GCN
	0.8	Accuracy	0.82087	0.75536	0.37872	0.69560	0.42893
		Precision	0.73687	0.70622	0.28969	0.39456	0.42893
		Recall	0.56500	0.32961	0.28969	0.27488	0.75829
		F1-score	0.63910	0.44826	0.35928	0.32402	0.41344
		Accuracy	0.81544	0.73868	0.29811	0.68616	0.43837
	0.6	Precision	0.71940	0.67969	0.29198	0.40663	0.30612
	0.0	Recall	0.55546	0.31843	0.87212	0.30892	0.82380
		F1-score	0.62651	0.43276	0.43748	0.35111	0.44637
#	0.4	Accuracy	0.81112	0.72945	0.32257	0.68330	0.59941
percentage of node labels		Precision	0.70925	0.70667	0.32257	0.42828	0.38861
		Recall	0.55789	0.27568	1.00000	0.30511	0.68759
		F1-score	0.62407	0.39663	0.48779	0.35635	0.49657
		Accuracy	0.80441	0.69991	0.31331	0.66467	0.39321
		Precision	0.69573	0.54907	0.31331	0.40903	0.30908
		Recall	0.55748	0.23594	1.00000	0.30950	0.85699
		F1-score	0.61838	0.33006	0.47713	0.35237	0.45432
	0.1	Accuracy	0.80033	0.70274	0.30425	0.66303	0.52657
		Precision	0.68978	0.52515	0.30425	0.41698	0.36654
		Recall	0.55646	0.23989	1.00000	0.30633	0.79143
		F1-score	0.61545	0.32934	0.46655	0.35319	0.50103

Experimental Results – Terrorist Network

			MLP	LP	RL+LP	GCN	RL+GCN
	0.8	Accuracy	0.82087	0.75536	0.37872	0.69560	0.42893
		Precision	0.73687	0.70622	0.28969	0.39456	0.42893
		Recall	0.56500	0.32961	0.28969	0.27488	0.75829
		F1-score	0.63910	0.44826	0.35928	0.32402	0.41344
		Accuracy	0.81544	0.73868	0.29811	0.68616	0.43837
	0.6	Precision	0.71940	0.67969	0.29198	0.40663	0.30612
	0.0	Recall	0.55546	0.31843	0.87212	0.30892	0.82380
		F1-score	0.62651	9 .43276	0.43748	0.35111	0.44637
#	0.4	Accuracy	0.81112	0.72945	0.32257	0.68330	0.59941
percentage of node labels		Precision	0.70925	0.70667	0.32257	0.42828	0.38861
		Recall	0.55789	0.27568	1.00000	0.30511	0.68759
11000 100010		F1-score	0.62407	0.39663	0.48779	0.35635	0.49657
	0.2	Accuracy	0.80441	0.69991	0.31331	0.66467	0.39321
		Precision	0.69573	0.54907	0.31331	0.40903	0.30908
		Recall	0.55748	0.23594	1.00000	0.30950	0.85699
		F1-score	0.61838	0.33006	0.47713	0.35237	0.45432
	0.1	Accuracy	0.80033	0.70274	0.30425	0.66303	0.52657
		Precision	0.68978	0.52515	0.30425	0.41698	0.36654
		Recall	0.55646	0.23989	1.00000	0.30633	0.79143
		F1-score	0.61545	0.32934	0.46655	0.35319	0.50103

However, the network information hurts the performance overall... Why?

Labels Sensitivity

Table 3: Classification performance on noisy citation network (add 60% noises) with different ratios of vertex labels

		80%		60%		40%	
		micro-f1	macro-f1	micro-f1	macro-f1	micro-f1	macro-f1
Noisy Core	LP	0.16236	0.05799	0.12177	0.04052	0.12308	0.04322
	RL+LP	0.42620	0.42620	0.13284	0.03350	0.14277	0.05799
Noisy Cora	GCN	0.61808	0.48967	0.60526	0.48245	0.60283	0.48175
	RL+GCN (ours)	0.76384	0.71929	0.73155	0.67555	0.72246	0.67023
	LP	0.34559	0.32646	0.38177	0.27309	0.39887	0.29663
Noisy Dubmad	RL+LP	0.38565	0.18554	0.39318	0.20926	0.39363	0.24846
Noisy Pubmed	GCN	0.71661	0.70437	0.71991	0.70622	0.72292	0.70830
	RL+GCN (ours)	0.86105	0.86086	0.86332	0.86308	0.85775	0.85739
		20%		10%			
		micro-f1	macro-f1	micro-f1	macro-f1		
	LP	0.15136	0.03997	0.15135	0.04649		
Noisy Core	RL+LP	0.12921	0.03269	0.13002	0.03288		
Noisy Cora	GCN	0.61343	0.54758	0.60008	0.56347		
	RL+GCN (ours)	0.70051	0.65302	0.66571	0.62909		
	LP	0.39952	0.19033	0.35405	0.24257		
Noisy Dubmad	RL+LP	0.39565	0.26209	0.38905	0.18680		
Noisy Pubmed	GCN	0.72291	0.71060	0.70830	0.70830		
	RL+GCN (ours)	0.85280	0.85251	0.84419	0.84352		

Noises Sensitivity

Table 4: Classification performance on citation network (given 80% vertex labels) with different ratios of noises

		20% noises		40% noises		60% noises		80% noises	
		micro-f1	macro-f1	micro-f1	macro-f1	micro-f1	macro-f1	micro-f1	macro-f1
Cora	GCN	0.79612	0.74578	0.71089	0.61443	0.61808	0.48967	0.47343	0.33818
	RL+GCN (ours)	0.78044	0.744	0.76753	0.71932	0.76384	0.71929	0.78044	0.74580
Pubmed	GCN	0.71660	0.70437	0.77350	0.76704	0.71661	0.70437	0.67135	0.65223
	RL+GCN (ours)	0.86055	0.86031	0.85928	0.85959	0.85928	0.85941	0.85953	0.85972

Summary

- We study the problem of network reconstruction in a deep reinforcement learning framework.
- Our method efficiently improve the downstream task performance, comparing with other method utilizing network information.
- Issues remain:
 - MLP only based on features performs best?
 - Do the generated edges have a clear physical meaning?
 - We need to dig deeper on the data!

Thank you! Q&A