乘坐高铁还是传统火车的行为分析

摘要

本文

关键词:;;。

目录

0	引言	1
	0.1 问题背景	1
	0.2 问题信息	1
	0.3 问题重述	1
1	问题分析	2
	1.1 假设	2
	1.2 标记	2
	1.3 分析	2
	1.3.1 题一	2
2	模型 1	3
3	模型 2	4
4	模型 3	5
5	模型的评价与改进	6
	5.1 优点	6
	5.2 缺点	6
	5.3 改进	6
	5.4 推广	6
	5.5 展望	6
\mathbf{A}	数据	7
В	代码	7

插图 ii

丰	华夕
灭	竹台

1	标记																																					2)
_	1/1.10	•	•	 •	•	•	•	•	•	 •	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	_	

引言

§ 引言

0.1 问题背景

[1]

- 0.2 问题信息
- 0.3 问题重述
- 1.;
- 2. .

问题分析 2

§1 问题分析

- 1.1 假设
- 1.2 标记

表 1: 标记

1.3 分析

1.3.1 题一

§2 模型 1

§3 模型 2

§4 模型 3

模型的评价与改进 6

§5 模型的评价与改进

- 5.1 优点
- 5.2 缺点
- 5.3 改进
- 5.4 推广
- 5.5 展望

参考文献 7

参考文献

[1] 巩慧琴, "高铁时代下旅客交通工具选择行为研究," Ph.D. dissertation, 辽宁师范大学, 2012.

§A 数据

§B 代码

```
■ </> } ■ Matlab
 程序清单 1: R.m
1 tic;
2 clc;
3 clear;
4 close;
6 %%in
7 data = csvread('data.csv', 1, 2);
8 data(data(:, 4) == 1, :) = [];
9 data(:, 4) = [];
10 data(:, [1 2])=data(:, [2 1]);
11 name = {" 高铁|火车", " 路程/km", " 时间/h", " 注重舒适程度", " 可支配收
 → 入/RMB", " 自付|家庭报销", " 票价/RMB", " 注重时间成本"};
12 numClust = 2;
14 %%process
15 d=1-abs(corrcoef(data)); %进行数据变换,把相关系数转化为距离
16 d=tril(d); % 提出 d 矩阵的下三角部分
17 d=nonzeros(d); % 去掉 d 中的 0 元素
18 z=linkage(d','complete'); % 按最长距离法聚类
19 y=cluster(z, 'maxclust', numClust);
```

代码 8

图 1: 运行界面