Biol/OCSC 4605/7220 Statistical Analysis in Biology and Environmental Science

FALL 2024

Version: 2 Sept

Mon Wed Fri 12 PM ED 3048 **Lectures:** Labs: Tue 3-5 or 6-8 PM C 2003

Office (CSF 3228) Tel 864-8393 **Instructor:** David Schneider

> Hours - after class or by appointment (CSF4220) a84dcs@mun.ca

Teaching Assistant: Lindsey Butt LMButt@mun.ca

> **Emmerson Wilson** ERWilson@mun.ca

Course Summary. The goal of this course is for you to learn a model based approach to the statistical analysis of research data. Skill and confidence come with practice, so assignments and quizzes will be short and frequent. Lecture material will emphasize principles of good quantitative analysis, illustrated by complete examples. Laboratories will cover the computational aspects of problem solving, with a package of the student's choice.

Goals

1. Principles of good analysis.

2. Skill in application.

3. Capacity for self-instruction.

4. Confer with statistician.

5. Develop critical capacity.

6. Evaluate quantitative presentations.

Pre-Requisite: 1 course in statistics.

Lvaluation	IN	4003	1220	VVL
Labs	9	25	25	2.8
Assignments	5	10	10	2.0
Quiz/SA	10	25	25	2.5
Exam 1	1	10	10	10
Exam 2	1	10	10	10
Final	1	20	20	20
Written Report			30	
	27	100	130	

Evaluation N 4605 7220

Exams and quizzes are open book, emphasizing use of tools, rather than to memorizing formulas. Graduate students (Biology 7220) will be required to prepare a written report on the analysis of a set of data of interest to the student. The topic will be decided during a conference early during the term, then discussed during tutorial sessions. The report will constitute 30% of the final mark. If you are unable to complete evaluated work due to acceptable cause submit a written request stating your name, the date and name of work, and reason for non-completion.

All course material is at https://davidcschneider.github.io/StatisticalScience/

Lecture Notes in Statistical Science Required material: Laboratories in Statistical Science Additional material: Review Questions in Statistical Science

A calculator is required for quizzes, exams, and Lab 2. The calculator (which can be an app on a portable device) does not require statistical functions but does require v^{x} and e^{x} functions.

Labs and assignments are due in pdf format on the date stated in the syllabus. Work will be returned to students within a week (usually the next lecture after it is due).

Late work will be penalized at 5% off per day (excluding weekends).

Lab 1 is a group project that requires attendance for successful completion. Labs 2 and 9a are group projects for which attendance is recommended.

About quizzes/short assignments. These cover lecture material since the previous quiz. Midterm and final exams will have the same format as quizzes. Examples of quizzes are posted on the course website. In class guizzes are easier to do on paper than electronically; please submit them electronically to BrightSpace. Short assessments (SA) are quizzes due by the end of the day.

About labs and assignments. Working together is encouraged in all labs and assignments. However, each person is responsible for preparing their own written report (don't share write-ups). Obvious duplicates will be considered misconduct (see below). Please submit all work on BrightSpace.

About statistical packages. Labs 3, 5, and 6 can be completed in a statistical package or in a spreadsheet using functions and data analysis tools. Labs 3-9 can be completed in any statistical package with a general linear model (GLM) routine. Lab 10 can be completed in any package with a logistic regression routine, or with a generalized linear model (GzLM) routine.

Packages that lack a GLM routine and a logistic regression routine are superficially attractive but lack any value in learning principles and best practice in statistical analysis.

Statistical packages consist of line code (you type the command) and a GUI– a graphics user interface (mouse clicks to set up the analytic model).

This course uses RStudio but it does not require any particular package.

<u>R</u>. Freeware for statistical computing and graphics. R has overtaken SAS in academic settings The course website has Rcode for all the labs.

RStudio. Open source freeware for editing and executing R code. https://www.rstudio.com/
A Guide to Learning R can be found at https://ahurford.github.io/quant-guide-all-courses/
The course instructor can help you with any of the following.

<u>SPSS.</u> Easily learned GUI, line code not suitable for archiving, randomization not possible. <u>Minitab.</u> Easily learned GUI. Line code adequate for GLM and simple calculations. JMP. GUI for SAS code.

<u>SAS.</u> Relatively easy line code. Gold standard for statistical analysis. Expensive license.

Disruptions. In the case of a class disruption or cancellation, and in the case of revisions to evaluation methods, the instructor or the Head of the department will notify all students registered in the course via the course shell in Brightspace. Any necessary revisions to the evaluation methods will be made in consultation with the students registered in this course. If a student demonstrates that they would be disadvantaged by the change, then, as per 6.7.4 of the University Calendar, accommodations will be made.

TABS Teaching assessment by students.

Course evaluation questionnaires are of use to instructors in several aspects of teaching, especially delivery. Questionnaires at the end of a course are of little use to students, as it is too late for corrective action. No-name questionnaires and polls at the end of a lecture are short, a few minutes. Summaries of the results are usually delivered orally in class.

Use of Artificial Intelligence. Original work, completed wholly by you, is expected to be submitted in this course. The use of an AI tool like ChatGPT prevents active learning. It is known to produce unsubstantiated statements with a high degree of plausibility. It fails the open book quizzes. If you use artificial intelligence in graded work, state how you used it and how you checked its veracity. With this course on your transcript, you will be expected to be able complete statistical analysis. Your future professional competency will be compromised if you rely on artificial intelligence and do not master the course material.

Academic Conduct Students are expected to adhere to those principles which constitute proper academic conduct. A student has the responsibility to know which actions, as described under Academic Offences in the University Regulations, could be construed as dishonest or improper. Students found guilty of an academic offence may be subject to a number of penalties commensurate with the offence including reprimand, reduction of grade, probation, suspension or expulsion from the University. For more information regarding this policy, students should refer to the University Regulations for Academic Misconduct (Section 6.12) in the University Calendar.

Inclusive Education. Memorial University of Newfoundland is committed to supporting inclusive education based on the principles of equity, accessibility and collaboration. Accommodations are provided within the scope of the University Policies for the Accommodations for Students with Disabilities (www.mun.ca/policy/site/policy.php?id=239). Students who may need an academic accommodation are asked to initiate the request with the Glenn Roy Blundon Centre at the earliest opportunity (www.mun.ca/blundon).

Tentative schedule

	tive sche		T. :	т ,	D	
Day	Date	On Web	Торіс	Location	Due	Marked
XX 7 1	0.4.0	C1 1		of Lab	(A = Assignment)	by
	04-Sep	Ch1	Intro to Course		W 1 1 . F. C. 1	
Fri	06-Sep	Ch2.1, 2.2	<u>Ouantities</u>	\	Vorksheet For Cred	DCS
Mon	09-Sep	Ch2.5,2.6	Units, Dimensions	TED 4	A1	
Tues	10-Sep	Lab1	Inferential Cards	TBA	DCS	
Wed	11-Sep	Ch3	Rescaling		T 14 0 10	
Fri	13-Sep	Ch4	Equations		Lab1, Quiz2	L:LB,Q:LB
Mon	16-Sep	Ch5	Data Eq		D G G	
Tues	17-Sep	Lab2	Equations	TBA	DCS	
Wed	18-Sep	Ch6.1	Freq Dist I		A2 Data Equations	A:LB
Fri	20-Sep	Ch6.2, 6.3	Freq Dist II		Lab2, Quiz3	L:EW,Q:EW
Mon	23-Sep	Ch7, 7.1,7.3	Hypothesis testing	~~~		
Tues	24-Sep	Lab3	Freq Dist	CP2003	LB, EW	
Wed	25-Sep	Ch7.2 7.5	Confidence Limits		A3 (Ch 7.3), Quiz4	
Fri	27-Sep	Ch8.1, 9.1	Randomization tests		Lab3	L:EW
Mon	30-Sep	No lecture	Diagram Ch 7.2		A4 Conf.Limits	A:LB
Tue	01-Oct	Lab 4	Computing p-values	CP2003	LB, EW	
Wed	02-Oct	Unit 1 Exam	Monday schedule			Αll
Fri	04-Oct	Ch9.2	Regression		Lab4	L:LB
Mon	07-Oct	Ch9.3, 9.5	Regression			
Tue	08-Oct	Lab5a	Regression	CP2003		
Wed	09-Oct	Ch10.3, 10.4	1-way ANOVA			
Fri	11-Oct	Ch11	Rev: 1 Expl Var		Lab5a, Quiz5	L:EW,Q:LB
Mon	14-Oct	Holiday				
Tue	15-Oct	Holiday				
Wed	16-Oct	Ch12.1	Multiple Regression			
Thurs	17-Oct	Lab6a	1-way ANOVA	CP2003		
Fri			2-way crossed ANOVA	C1 2005	Quiz6	Q:EW
Mon	21-Oct	Ch13.3	Mixed Model - Paired t-test		Lab6a only	L:LB
Tue	22-Oct	Lab7	2-factor ANOVA	CP2003	Lab7	
Wed	23-Oct	Ch13.4	Mixed Model - Rand. Block	C1 2005	Duo /	
Fri	25-Oct	Ch13.6	Nested effects ANOVA		Lab7, Quiz7	L:EW,Q:LB
	28-Oct	Ch14.1	ANCOVA		Luo7; Quiz7	2.2 11, Q.22
Tue	29-Oct	Lab8	ANCOVA	CP2003	Lab8	
Wed	30-Oct		Last day to drop course	C1 2003	Lauo	
Fri		Unit II Exam	Last day to drop course			All
Mon		Ch20.1, 20.4	Correlation & Multivariate Ar	o kraja	Lab8	L:LB
I		Lab9a			DCS	L,LD
Tue Wed	05-Nov	Labya Ch16, 16.2,16.4	GLMM Problem setup Analysis of Deviance	TBA	A5 correlation	A:DCS
Fri	08-Nov		Logistic regression		Quiz 8	Q:EW
Mon	11-Nov		GIMM avanting	CD2002	DCCT(I D EM 5)	
Tues	12-Nov	Lab9b	GLMM execution	CY2003	DCS+(LB,EW ?)	
Wed	13-Nov		Prospective analysis		0.0	0.1.5
Fri	15-Nov	Ch 18.3	Retrospective analysis (Mon)		Ouiz 9	Q:LB
Mon	18-Nov	Ch 18.6	Logistic ANCOVA		Lab 9a,b	L:EW&LB
Tue			Logistic regression. Optional		DCS	
Wed	20-Nov		Poisson regression	701/4	0 : 10	
Fri			Contingency tests, Poiss ANO		Ouiz 10	Q:EW
Mon		Cn19.1-19.4	Model selection I - EDA and			
Tue	26-Nov	a	Review - GLMM			
Wed	27-Nov	Ch19.5	Multi Model Inference -AIC,	SIC		
Fri	29-Nov		TBA		Ouiz11	Q:EW
Mon	02-Dec	Worksheet	Course review with Q&A			
TBA	05-Dec		Final Exam 2 hr Synchronous	TBA		