CS3241 Cheatsheet by Yiyang, AY22/23

Overview

Graphics Basics

Addictive Colour - Form a colour by adding amounts of three primaries (RGB).

Subtractive Colour - Form Form a colour by filtering white with Cyan (C), Magenta (M), and Yellow (Y). <u>Note</u>: For subtractive colours, M absorbs G and allows R & B to pass through.

OpenGL Basics

Polygons in OpenGL need to be **Simple** (edges cannot cross), **Convex**, and **Flat** (all vertices in the same plane), or they will not be displayed correctly.

Colour info is stored in each vertex of a polygon, and the shading mode determines how the polygon is coloured:

Smooth ~ - Interpolation of vertex colours across polygon. The default setting. glShadeModel(GL_SMOOTH).

Flat ~ - Fill colour is colour of first vertex. glShadeModel(GL_FLAT).

Hidden Surface Removal - It deals with 3D objects overlapping over one another from our perspective, by using an extra **z-buffer** that saves depth information.

Interaction

Overview

Input devices generate **Triggers**, namely signals, and return **Measures**, which are trigger with other meta-info from the input devices, to the OS. Each trigger generates an **Event** whose measure is put in an **Event Queue** to be examined by the user program.

The user program defines a Callback for each type of event to GLUT and it is executed when the event occurs.

Positioning in Callbacks

Window systems (such as mouse & motion callbacks) measure positions with origin at **top-left corner**. OpenGL measures positions with origin at **bottom-left corner**. Conversion:

$$x_{\text{opengl}} = x_{\text{win}}, \ y_{\text{opengl}} = h - 1 - y_{\text{win}}$$

Animation

Double Buffering - The usage of two **colour buffers** for display where the **Front Buffer** displays and the **Back Buffer** is written to. It minimises flickering in animation.

Note: Two identical buffers, switched once writing to back is done.

Geometry

Representation

Affine Space - A frame formed by an origin point and basis vectors. Homogeneous Coordinates ~A 4D system for 3D points & vectors.

• Vector
$$v = [\alpha_1, \alpha_2, \alpha_3, 0]^T = (\alpha_1, \alpha_2, \alpha_3)$$

• Point
$$p = [\beta_1, \beta_2, \beta_3, w]^T = (\frac{\beta_1}{w}, \frac{\beta_2}{w}, \frac{\beta_3}{w})$$

Note: [1] All Homogeneous Coordinate elements are denoted as Column Vectors. [2] Point + Vector = Point. [3] Representation for each point is non-unique. We typically use w = 1. Perspective Division is the process of dividing x, y, z by w.

Transformation

All transformations can be expressed as a 4×4 matrix, **premultiplied** to the Homogeneous Coordinates.

Note: p' = ABp is to apply transformation B then A to element p.

Translation

$$T(d_x,d_y,d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = diag(s_x, s_y, s_z, 1)$$

Inverse of Transformation Matrices

$$\bullet \ \ T^{-1}(d_x,d_y,d_z) = T(-d_x,-d_y,-d_z)$$

•
$$R^{-1} = R^T$$
, as all R orthogonal

$$\bullet \ \ S^{-1}(s_x,s_y,s_z) = S(1/s_x,1/s_y,1/s_z)$$

Combinations of Transformation

General Rotation about Origin: $R(\theta) = R_z(\theta_z)R_y(\theta_y)R_x(\theta_x)$, where θ_x , θ_y , θ_z are the Euler angles.

Rotation about Arbitrary Point: $M = T(p_f)R(\theta)T(-p_f)$, where p_f is the point and θ rotational angle.

Note: Matrix ordering is the reverse of the actual transformation's.

OpenGL Transformation

For each matrix mode, Current Transformation Matrix (CTM) stores the 4×4 homogeneous coordinate matrix, as part of the state and it is applied to all vertices in the pipeline. Some matrix modes include Model-View (GL_MODEVIEW) and Projection (GL_PROJECTION). OpenGL also maintains a stack for each matrix mode.

Camera & Viewing

OpenGL Spaces: Object Space, for modelling each object where the object is centred in the frame. World Space, a common frame for all objects, and for defining lightning and camera pose. Camera Space, the local frame for camera where it is at the origin and looking into the Negative z-direction, initially the same as the world frame.

An OpenGL Viewport defines a rectangular region of the window in which OpenGL can draw.

Note: [1] A window can have multiple viewports. [2] A viewport can be larger than the window, and whatever inside the viewport but outside the window will not be displayed.

Transformations

View Transformation - Transform points from World Frame to Camera Frame. The transformation matrix

$$M_{\text{view}} = RT$$

where *T* moves camera position back to world origin, and *R* rotates axes of camera to coincide with world frame's.

View transformation for normal vectors:

$$M_n = \left(M_t^{-1}\right)^T$$

, where M_t is the upper left 3×3 sub-matrix of M_{view} .

Projection Transformation - Specify a View / Clipping Volume in the camera frame, and project the volume to a $2 \times 2 \times 2$ cube centred at origin, known as the Normalised Device Coordinate (NDC) / Canonical View Volume.

Note: It preserves depth order and lines.

Projections

Types of projection

- Perspective projection Projectors converge at centre of projection. Objects further from viewer are projected smaller.
- Parallel Projection Projectors are parallel. One special case Orthographic Projection is where projectors are orthogonal to projection surface.

Perspective Transformation for Homogeneous Coordinates Any point $q = [x, y, z, 1]^T$ projected perspectively onto vertical plane at z = d < 0 will be at (xd/z, yd/z, d), equivalent to $p = [x, y, z, z/d]^T = Mq$ for

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 1 \end{bmatrix}$$

OpenGL Projection Matrix Equivalences

glOrtho(L, R, B, T, N, F):

$$M_{\text{ortho}} = \begin{bmatrix} \frac{2}{R-L} & 0 & 0 & -\frac{R+L}{R_I} \\ 0 & \frac{2}{T-B} & 0 & -\frac{T+B}{T-B} \\ 0 & 0 & \frac{-2}{F-N} & -\frac{F+N}{F-N} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

glFrustum(L, R, B, T, N, F):

$$M_{\mathrm{persp}} = \begin{bmatrix} \frac{2N}{R-L} & 0 & \frac{R+L}{R-L} & 0 \\ 0 & \frac{2N}{T-B} & \frac{T+B}{T-B} & 0 \\ 0 & 0 & -\frac{F+L}{F-L} & -\frac{2FN}{F-L} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Rendering

Primitive Assembly - The stage where primitive types are recalled and their processed vertices are collected for polygons, so that we can redefine the primitive for clipping and rasterization.

Clipping

Brute Force Approach

Compute intersections with all sides of the clipping window. Analysis: Inefficient, require one division per intersection.

2D Cohen-Sutherland Algorithm

Define Outcode $b_0b_1b_2b_3$ where bit is 1 iff it is outside $y_{\max}, y_{\min}, x_{\max}, x_{\min}$ respectively (top, btn, right, left) for each endpoint. For a line with 2 endpoints A and B, four cases to consider:

- Out(A) == Out(B) == 0 Both points inside all 4 boundaries Accept the entire line.
- Out(A) == 0 && Out(B) != 0 One point inside all and one outside some, at least one intersection.
- Out(A) & Out(B) != 0-Both points outside the same boundary. Discard the entire line.
- Out(A) & Out(B) == 0 && Out(A) | Out(B) != 0 May or may not be intersection. Most complicated.

<u>Analysis</u>: [1] Efficient, as it filters out simple cases. [2] Yet, still need computation for complicated cases. [3] Can extend to 3D using 6-digit outcodes.

Polygon Clipping

Clipping a polygon may yield multiple polygons, but clipping a **convex polygon** can yield at most one other.

Tessellation - replace concave polygons with a set of smaller simple polygons, typically triangles. Tessellation enables simpler clipping.

AABB Clipping Algorithm

Axis-Aligned Bounding Box (AABB) - 1) Draw a bounding box for the polygon. 2) Consider whether and whereh we need to perform detailed clipping.

Analysis: Similar idea of "easy filtering first".

Rasterisation

Rasterisation - The process of determining which pixels are inside primitive specified by a set of vertices. It produces a set of fragments.

Fragments ~"Potential pixels", with a pixel location and attributes such as colour and depth.

DDA Algorithm

Simple iterative method that moves along one axis one pixel at a time. To draw a line y = mx + b from (x_0, y_0) to (x_e, y_e) :

Analysis: [1] Simple, and applicable to curves as well. [2] Inefficient due to many floating point calculations. [3] Lines rasterised are discontinuous when |m| > 1. Solution is to flip roles of x and y.

Bresenham's Algorithm

Use a Decision Variable, p_k to determine which y-value to rasterise for every x.

- 1. Input line and store left end in (x_0, y_0) . Assume $|m| \le 1$.
- 2. Calculate constants $\triangle x$, $\triangle y$, $2\triangle y$, $2\triangle y 2\triangle x$.
- 3. Fill (x_0, y_0) , and obtain $p_0 = 2\Delta y \Delta x$.
- 4. At each x_k along the line, starting at k=0, perform the following test: [1] If $p_k < 0$, then next point is (x_k+1,y_k) , and $p_{k+1} = p_k + 2\triangle y$. [2] Otherwise, next point (x_k+1,y_k+1) and $p_{k+1} = p_k + 2\triangle y 2\triangle x$.
- 5. Repeat Step 4 for $\Delta x 1$ more times.

Analysis: [1] Only applicable to line (and circle) rasterisation. [2] Efficient, due to no floating points.

Polygon Rasterisation Algorithms

Scan-Line Fill Algorithm - [1] First tessellate if concave. [2] Compute colours & depths for vertices. [3] For each horizontal line, interpolate colours and z-values.

Floor Fill Algorithm - Start with one point inside the polygon, expand to 4 directions using BFS recursively.

Hidden Surface Removal

Painter's Algorithm - Render polygons in back-to-front order so that polygons behind others are simply painted over.

Analysis: It involves **Depth Sorting**, with time complexity $\overline{O(n \log n)}$ for n polygons.

Back-Face Culling - Eliminate polygon if it is **back-facing** and invisible, i.e. when $N_n \cdot N < 0$.

<u>Note</u>: Need to specify polygon vertices in Anti-Clockwise order to ensure correct orientation for convex polygons.

Image-Space Approaches - Look at each pixel / projector and find closest of all polygons along that pixel.

Example: Ray Tracing, z-Buffering (using a z-buffer / depth buffer). Analysis: Complexity O(nmk) for k polygons and frame buffer sized $n \times m$.

Others

Diagrams

Colour Theory, Transformation Pipeline

Rendering Pipeline

gluLookAt Coordinate Specification

OpenGL Reference

Miscellaneous

Settings

glutInitDisplayMode(...|GLUT_DOUBLE) uses Double Buffering, as compared to GLUT_SINGLE for Single Buffering.

glViewport(u, v, w, h) - Define the rectangular viewport.

Callback-Related

glutDisplayFunc(void (*func)(void)) - when GLUT determines the window to be refreshed (e.g. opened, reshaped, exposed etc.) glutIdleFunc - when there is no trigger (e.g. for animation). glutMotionFunc - when mouse on hold and moving. glutPassiveMotionFunc - when mouse moving but not on hold. glutTimerFunc(unsigned int msecs, void (*func)(int value), value) - Set a timer and trigger the callback when timer elapses. Other common trigger callbacks: glutMouseFunc, glutReshapeFunc, glutKeyboardFunc.

glutPostRedisplay() - Set a flag for posting redisplay, which avoids frequent repeated execution.

OpenGL Matrices & Transformation

glMatrixMode(GLenum mode) - Specify the current matrix mode. Modes are GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE or GL_COLOR.

Transformations

```
<code>glLoadIdentity()</code> - Override CTM with I_4. <code>glTranslatef(dx, dy, dz)</code> - Post-mul. translation matrix to CTM. <code>glRotatef(theta, vx, vy, yz)</code> - Post-mul. rotation matrix to CTM. <code>glScalef(sx, sy, sz)</code> - Post-mul. scaling matrix to CTM. <code>glLoadMatrixf(m)</code> - Override CTM with matrix m_{4\times 4}. <code>glMultMatrixf(m)</code> - Post-mul. m_{4\times 4} to CTM. <code>Note:</code> [1] Each has a Double(gl...d) and a Float (gl...f) format. <code>[2] m</code> is a 1D array of length 16, ordered by column.
```

Matrix Stacks

glPushMatrix() - Push CTM to the stack, and duplicate the CTM.
glPopMatrix() - Pop top matrix from the stack and replace CTM.
Note: Typically an indentation is applied for every Push-Pop pair.

Camera & Viewing

```
gluLookAt(eyex, eyey,eyez, atx, aty, atz, upx, upy, upz) - Create a view transformation matrix for the camera specified. eye* specify the camera location, at* specify where to look at, and up* is Up-Vector for orientation of camera.
```

Note: [1] The up vector does not need to be perpendicular to Eye-At. [2] The up is usually (0, 1, 0).

glOrtho(left, right, bottom, top, near, far) - Post-mul. to CTM the orthographic projection matrix.

Note: It will map (-near, -far) to (-1, 1).

glFrustum(left, right, bottom, top, near, far) - Post-mul. to CTM the perspective projection matrix.

Note: [1] LRBT all refer to the locations on the near plane. [2] It will map (-near, -far) to (-1, 1).

 $\label{eq:gluPerspective} {\tt gluPerspective(fovy, aspect, near, far) - Post-mul.} \quad to CTM \\ {\tt the "central \& symmetric" perspective projection matrix.} \\$

Note: fovy vertical field of view angle in degrees. aspect w/h ratio.