First Name:	
Last Name:	
Signature:	
Student I D. No ·	

Math 6321 Practice Final Exam

April, 2025 80 minutes

University of Houston

<u>Instructions:</u>

- 1. Put your name, signature and I.D. No. in the blanks above.
- 2. There are **three problems** in this exam. Answer the questions in the spaces provided, using the backs of pages or the blank pages at the end for overflow or rough work.
- 3. Your grade will be influenced by how clearly you present your solutions. **Justify your solutions carefully** by referring to definitions and results from class where appropriate.
- 4. This is a closed book exam.

1. (a) State the definition of absolute continuity for a complex-valued function f on an interval $I = [a, b] \subset \mathbb{R}$, a < b.

(b) State a fundamental theorem which relates the values of f(x) and f(a) of an absolutely continuous function f on [a, b] to an expression involving an integral over [a, x] for any $a \le x \le b$.

2. If we have σ -finite measure spaces (X, M, μ) and (Y, N, ν) , and functions $f \in L^1(\mu)$, $g \in L^1(\nu)$, and we let F be the function on $X \times Y$ with values F(x,y) = f(x)g(y), show that F is measurable with respect to the product algebra $M \times N$ and integrable with respect to the product measure $\mu \times \nu$.

Hint: First prove that the function $G: X \times Y \to \mathbb{C}^2$ given by G(x,y) = (f(x), g(y)) is measurable. You may use that the Borel algebra on \mathbb{C}^2 is generated by open rectangles. Then show that F is measurable by referring to a result from class.

3. Let (X,M,μ) be a σ -finite measure space. Let S be the class of complex-valued measurable simple functions which are non-zero on a set of finite measure. Let $1 \leq p < \infty$, $C \geq 0$, and assume that Λ is a linear functional such that for each $f \in S$, $|\Lambda(f)| \leq C||f||_p$. What do you know about Λ ? Justify your answer.