# Loan Risk Analytics EDA case Study

Understanding Data to Mitigate Risks

- Vishal Verma
- Vinti Singh

### Introduction

#### What is EDA?

A preliminary analysis process to summarize the main characteristics of the data.

#### Why is EDA important for loan risk analytics?

Identifies patterns and anomalies.

Provides insights for feature engineering.

Improving Risk Stratification.

Identifying Key Risk Factors.

### EDA workflow

#### **Data Understanding:**

Inspect the dataset structure (dimensions, types, and summary).

#### **Data Cleaning:**

Handle missing values.

Remove duplicates and correct data types.

#### **Outlier Detection and Treatment.**

#### **Univariate Analysis:**

Examine each variable's distribution.

#### **Bivariate Analysis:**

Explore relationships between independent variables and the target.

#### **Multivariate Analysis:**

**Feature Engineering and Insights.** 

## Data Cleaning

#### . Issues Identified:

- Removing irrelevant columns as per Data Dictionary sheet.
- Missing values in employee year of service and public record bankruptcies columns.

#### . Resolution:

- Imputation techniques (mean, median, mode).
- Converting dates into numerical formats (e.g., year, month since application).

### Outlier Treatment

#### . Techniques Used:

- Boxplots and Histogram to detect anomalies in loan amount, income, etc.
- 。 IQR methods to quantify outliers.

#### . Resolution:

- Cap extreme values for variables like income or loan amount.
- Verify outliers for potential fraud indicators.
- Standardization techniques .

### Univariate Analysis

#### . Numerical Features:

- Distribution of DTI, loan amounts, interest rates, term,
   verification status, Installment, and income using histograms, count plot and Bar chart etc.
- Key statistics (mean, median, standard deviation, info).

#### Categorical Features:

Count plots for loan status, Grade, and ownership of the loan applicant.

#### . Insights:

- Most loans applied from rented peoples .
- Majority of applicants fall into the mid-income bracket.

## Univariate Analysis



Observation - We Found frequency of grade B is higher in comparision and followed by A second and C on thir Observation - The highest applicants have either rented or on Mortgage.

## Bivariate Analysis

#### Bivariate analysis b/w Features:

- Interest rate vs grade (Bar Plot)
- Purpose vs loan status (Count Plot)
- term vs Interest rate (Bar Plot)
- Loan status vs State(Count Plot)
- Loan status vs home ownership(Count Plot)
- Loan status vs loan amount (Dist Plot)
- Emp Length vs Interest rate (Hist Plot)

#### Key Findings:

- Default rates are higher for lower credit scores.
- Default rates are higher for high rate of interest

### Bivariate Analysis





Observation: We found A approx 7.5 has the lowest interest rate and interest rate keep rising until our last Grade G i.e.approx 22%.

Observation - We found debt consolidation has the most of defaulters and fully paid borrower count.





Observation - We have observed that the average interest rate for 36 month term is 10,967615% and for 60 month it is 14,667568%. So we can conclude the higher the term.

Observation - The highest borrower have either rented or on Mortgage and along with the loan status.

The interest rate rates.

## Multivariate Analysis

#### . Correlation Heatmap:

Relationship between numerical features (e.g., loan amount, loan status, income, Dti).

#### . Key Findings:

- Default rates are higher for lower credit scores.
- High loan amounts with low-income borrowers show increased risks.

## Multivariate Analysis



### Conclusion

#### . Summary of EDA Findings:

- Data is ready for advanced modeling after cleaning and preprocessing.
- Key risk factors have been identified for predictive modeling.

#### . Next Steps:

- Develop risk prediction models using insights from EDA.
- Continuously monitor data quality for future analyses.