Část I

Deformace

- typy:
 - tahem/tlakem
 - kroucením
 - ohybem
 - smykem

1 Deformace tahem/tlakem

• Normálové nápětí:

$$\sigma = F/S; \ [N/m^2] = [Pa]$$

• Změna délky:

$$\Delta l = l - l_0; \ [m]$$

užitečnější většinou relativní prodloužení:

$$\varepsilon = \Delta l/l_0$$
; [bezrozm.]

1.1 Deformační křivka

- lineární úsek (0 A)
 - pružná deformace
 - vratná
 - platí Hookův zákon:

 $\varepsilon \propto \sigma$

tedy slovy: relativní prodloužení je přímo úměrné napětí (ano, to je symbol pro přímou úměrnost, zapamatujte si ho)

$$\sigma = E * \varepsilon$$

- E- Youngův modul pružnosti (např. ocel = 220 GPa, cín = 55 GPa, tj. tlak potřebný, abychom objekt roztáhli na dvojnásobnou délku)
- potrolenicko

1.1.1 Příklady

1. O kolik se protáhne drát když na něj zavěsíme závaží: d = 1 mm; l = 5 m; m = 30 kg; E = 220 GPa

$$\sigma = \frac{F}{S} = \frac{300}{\pi * 0,0005^2}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{F}{S * E} = \frac{\Delta l}{l_0}$$

$$\Delta l = \frac{F * l * 0}{S * E} = 8,7 * 10^{-3} m = 8,7 mm$$