PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C12N 15/55, 15/10, 9/20, 1/21, C12Q 1/44

(11) Internationale Veröffentlichungsnummer: **A2**

MC, NL, PT, SE).

WO 99/05288

(43) Internationales

DE

[DE/DE];

Veröffentlichungsdatum:

4. Februar 1999 (04.02.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04612

(22) Internationales Anmeldedatum:

DIENGESELLSCHAFT

23. Juli 1998 (23.07.98)

MBH

(30) Prioritätsdaten:

197 31 990.4

25. Juli 1997 (25.07.97)

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

> Mit Angaben über hinterlegtes biologisches Material, eingereicht gemäss Regel 13bis getrennt von der Beschreibung.

(DE). (72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): REETZ. Manfred, T. [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). ZONTA, Albin [DE/DE]; Kaiser-Wilhelm-Platz D-45470 1. Mülheim der Ruhr (DE). SCHIMOSSEK, Klaus [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). LIEBETON, Klaus [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). JÄGER, Karl-Erich [DE/DE]; Ruhr Universität Bochum, Fakultät f. Biologie, Universitätsstrasse 150, D-44790 Bochum (DE).

(71) Anmelder (für alle Bestimmungsstaaten ausser US): STU-

KOHLE

Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr

(74) Anwälte: VON KREISLER, Alek usw.; Deichmannhaus am Hauptbahnhof, Bahnhofsvorplatz, D-50667 Köln (DE).

(54) Title: METHOD FOR PRODUCING AND IDENTIFYING NEW HYDROLASES HAVING IMPROVED PROPERTIES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG UND IDENTIFIZIERUNG VON NEUEN HYDROLASEN MIT VERBESSERTEN EIGENSCHAFTEN

(57) Abstract

The invention relates to a method for producing and identifying hydrolase mutants having improved properties regarding stereoselectivity and site selectivity, catalytic activity or stability during chemical reactions.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserten Eigenschaften hinsichtlich der Stereo- oder Regioselektivität, katalytischen Aktivität oder Stabilität bei chemischen Umsetzungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zur Herstellung und Identifizierung von neuen Hydrolasen mit verbesserten Eigenschaften

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserten Eigenschaften hinsichtlich ihrer Stereo- oder Regioselektivität, katalytischen Aktivität oder Stabilität bei chemischen Umsetzungen.

Stand der Technik:

Hydrolasen gehören zu den am weitesten verbreiteten Enzymen in der organischen Synthese. Als Untergruppe der Hydrolasen katalysieren insbesondere Esterasen und Lipasen eine Vielzahl von Reaktionen wie z.B. die Hydrolyse von Carbonsäureestern, oder die Synthese von Estern bzw. Umesterungen in organischen Lösungsmitteln. Ihre hohe Stereoselektivität, Stabilität und gute Verfügbarkeit machen sie für zahlreiche industrielle Prozesse interessant. So werden z.B. Lipasen bereits industriell zur Racematspaltung von chiralen Alkoholen, Säuren oder Aminen eingesetzt, für die Darstellung enantiomerenreiner Arzneimittel, Naturstoffe, Pflanzenschutzmittel oder hochwertiger Fette und Öle (K.Faber, Biotransformations in Organic Chemistry, Springer-Verlag, Berlin, 2. Aufl. 1995). Dennoch läßt sich die Enantioselektivität einer Lipase bzw. Esterase gegenüber einem gegebenen Substrat nicht mit Sicherheit vorhersagen und in vielen Fällen verlaufen Umsetzungen nur mit mäßigen optischen Ausbeuten. Es besteht daher ein Bedarf nach einem Verfahren zur Herstellung von Hydrolasen, das eine gezielte Optimierung der Enantioselektivität hinsichtlich eines gewünschten Produktes und der speziellen Prozeßbedingungen wie Temperatur und Lösungsmittel ermöglicht. Mit Hilfe der heute gebräuchlichen molekularbiologischen Methode der in vitro-Mutagenese ließen sich zwar Effekte auf die Enantioselektivität von Lipasen studieren (K.Hult, M. Holmquist, M. Martinelle, European Symposium Biocatalysis, Graz, 1993, Abstracts, L-4), es konnte jedoch keine

Optimierung hinsichtlich eines bestimmten Substrates erreicht werden, die zu einem organisch-synthetisch nutzbaren Enzym geführt hat.

Zu den bedeutendsten Einsatzmöglichkeiten der Gentechnik gehört das Proteindesign, bei dem auf der Grundlage bekannter Strukturdaten mit Hilfe der in vitro-Mutagenese basenspezifisch Mutationen in die Gensequenz des entsprechenden Proteins eingeführt werden. Durch gezielten Austausch von Aminosäuren ließen sich auf diese Weise schon Enzyme mit verbesserter katalytischer Aktivität oder Stabilität herstellen (A. Shaw, R. Bott, Current Opinion in Structural Biology, 1996, 6, 546). Diese Technik, die sogenannte oligonucleotidgerichtete (oligonucleotidedirected) oder gezielte Mutagenese (site-directed mutagenisierendesis), beruht auf dem Ersatz eines kurzen Sequenzabschnitts des Gens für das natürlich vorkommende Enzym (Wildtyp) durch ein synthetisch mutagenisiertes Oligonucleotid. Nach anschließender Expression des Gens erhält man eine Enzym-Mutante, die vorteilhafte Eigenschaften aufweisen kann. In einem davon abgeleiteten Verfahren, der sogenannten Kassettenmutagenese (cassette mutagenesis), werden Oligonucleotide mit partiell randomisierten Sequenzen eingesetzt. Dadurch erhält man eine begrenzt große Bibliothek von Mutanten, die dann hinsichtlich ihrer Eigenschaften getestet werden kann.

Trotz der Vorteile dieser etablierten Methoden eignen sie sich nur schlecht für die schrittweise Optimierung eines Enzyms, bzw. zur Erzeugung von Enzymen mit neuen Eigenschaften. Das bis heute unvollständige Verständnis der Gesetzmäßigkeiten der Proteinfaltung und der Struktur-Funktions-Beziehung bei Proteinen ist die Hauptursache für das Scheitern vieler Projekte auf dem Gebiet des sogenannten rationalen Proteindesigns. Zudem ist ein schrittweiser Optimierungsprozeß nach der klassischen Methode relativ arbeitsaufwendig und garantiert keine signifikante Verbesserung der Enzymeigenschaften per se.

In jüngster Zeit wurden neue molekularbiologische Methoden zur Mutagenese beschrieben, die auf der literaturbekannten Polymerase-Kettenreaktion (R.K. Saiki, S.J. Scharf, F. Faloona, K.B. Mullis, G.T. Horn,

H.A. Erlich, N. Arnheim, *Science*, 1985, 230, 1350) beruhen (D.W. Leung, E. Chen, D.V. Goeddel, *Technique*, 1989, 1, 11 und W. P.C. Stemmer, A. Crameri, PCT WO 95/22625). Anstelle der gezielten Mutagenese werden hierbei kombinatorische Methoden zur Erzeugung umfangreicher Mutantenbibliotheken eingesetzt, die nachfolgend mit Hilfe geeigneter Screeningverfahren nach Mutanten mit positiven Eigenschaften durchsucht werden. Dabei werden die in der Natur vorkommenden evolutiven Prozesse der Replikation bzw. Rekombination, der Mutation und Selektion auf molekularer Ebene nachgeahmt. Diese als *in vitro*-Evolution (oder *directed evolution*) beschriebene Methode hat sich bereits in einigen Fällen als brauchbare Methode zur Gewinnung neuer Biokatalysatoren bewährt (W.P.C. Stemmer, *Nature*, 1994, 370, 389 und F.H. Arnold, *Chemical Engineering Science*, 1996, 51, 5091).

Trotz der erzielten Fortschritte auf diesem Gebiet läßt sich dieses Verfahren bisher nicht generell auf alle Enzymklassen übertragen, da es meist an geeigneten Testmethoden zur Identifizierung von Mutanten mit positiven Eigenschaften fehlt. Diese sind aber zwingend erforderlich angesichts der großen Anzahl von mutierten Enzymvarianten, die bei der Erzeugung kombinatorischer Mutantenbibliotheken zu erwarten sind. Insbesondere im Fall der für industrielle Prozesse interessanten Lipasen ist es bisher nicht gelungen, Mutanten mit verbesserter Stereoselektivität mit den Methoden der in vitro-Evolution zu erzeugen, weil ein effizientes Screening-Verfahren zum Test auf Enantioselektivität bis heute nicht existiert. Die klassische Methode zur Bestimmung der Enantioselektivität einer Lipase- bzw. Esterase-katalysierten Umsetzung beruht auf der flüssig-, bzw. gaschromatographischen Trennung der Reaktionsprodukte und Edukte unter Verwendung von chiral modifizierten, stationären Phasen. Diese Methode ist jedoch aufgrund des enormen Probenaufkommens im Zuge des Screenings von umfangreichen Mutantenbibliotheken ungeeignet, da chromatographische Trennungen mit chiral modifizierten Säulen zeitaufwendig sind und nur nacheinander durchgeführt werden können. Ein weiteres bisher ungelöstes Problem betrifft die häufig zu beobachtende Schwierigkeit, funktionelle Lipasen bzw. Esterasen in Wirtsorganismen mit genügend hoher Aktivitäts-

Ausbeute zu exprimieren. Dies ist jedoch für ein leistungsfähiges Screeningsystem unverzichtbar, da zu geringe Enzym-Aktivitäten bei der Bestimmung der Enantioselektivität aufgrund der begrenzten Empfindlichkeit eines Testsystems nur schwer nachzuweisen sind.

Gegenstand der Erfindung:

Der Erfindung lag daher die Aufgabe zugrunde, ein einfaches Verfahren zur Herstellung von mutierten Hydrolasen, insbesondere Lipasen bzw. Esterasen, mit verbesserter Stereo-, bzw. Regioselektivität, katalytischer Aktivität und Stabilität gegenüber gegebenen Substraten (z.B. Carbonsäuren, Alkoholen, Aminen sowie deren Derivaten) zu entwickeln, das zudem eine schnelle Identifizierung positiver Mutanten aus umfangreichen Mutantenbibliotheken ermöglicht, sowie die Verwendung der so hergestellten Enzyme bei der Racematspaltung von chiralen Alkoholen, Säuren und Aminen sowie deren Derivaten.

Beschreibung der Erfindung:

Die Herstellung der neuen Biokatalysatoren beginnt in der Regel mit der Isolierung eines Lipasebzw. Esterase-Gens aus dem Ursprungsorganismus. Hierfür kommen alle mikrobiellen, pflanzlichen und tierischen Organismen in Frage, die Träger eines Lipase- bzw. Esterase-Gens sind. Die Genisolierung kann nach den literaturbekannten Methoden vorgenommen werden (J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989, New York). In der Regel wird dazu die genomische DNA mit Hilfe Restriktionsendonucleasen fragmentiert und die Genfragmente in einem Wirtsorganismus (z.B. E. coli) kloniert. Unter Verwendung von Oligonucleotiden, die sequenzhomolog zu einem Abschnitt des Lipase- bzw. Esterase-Gens sind, wird dann in Hybridisierungsexperimenten das Gen in der Genbank identifiziert und nachfolgend isoliert.

Überraschend wurde im Rahmen der Erfindung gefunden, daß durch eine modifizierte Polymerase-Kettenreaktion (PCR) unter Veränderung bestimmter Reaktionsparameter natürlich vorkommende Hydrolasegene derart mutagenisiert werden können, daß eine umfangreiche Mutantenbibliothek erhalten wird, die mit Hilfe eines neuartigen Testverfahrens nach Mutanten mit verbesserter Enantioselektivität durchsucht werden kann.

Die Neuartigkeit des Verfahrens besteht darin, daß ausgehend von einem natürlich vorkommenden Lipase- bzw. Esterase-Gen (dem sogenannten Wildtyp-Gen) unter Verwendung einer modifizierten PCR (im folgenden als mutagenisierende PCR bezeichnet) eine umfangreiche, randomisierte Mutantenbibliothek angelegt werden kann. Dabei wurde gefunden, daß durch Veränderung der PCR-Reaktionskomponenten die Mutationsfrequenz während der PCR gezielt eingestellt werden kann. Durch die Variation der Mg²⁺- und/oder der Desoxynucleotid-Konzentrationen und/oder der Zugabe von Mn2+-Ionen läßt sich die Anzahl der Mutationen im betrachteten Lipase-Gen (Mutationsfrequenz) steuern. Vorzugsweise werden hierzu folgende Konzentrationen in Abhängigkeit der verwendeten DNA-Polymerase benutzt:

Mg²⁺: 1,5 mM - 8,0 mM dNTP: 0,05 mM - 1,0 mM Mn²⁺: 0,0 mM - 3.0 mM

Außerdem wurde gefunden, daß die Zyklenzahl der PCR-Reaktion mit der Anzahl der Mutationen korreliert: je höher die Zyklenzahl gewählt wird, desto höher die Gesamtanzahl der Mutationen. Mit Hilfe dieses Parameters läßt sich die Diversität der Mutantenbibliothek einstellen.

Zur Bestimmung der Mutationsfrequenz werden die aufgereinigten PCR-Produkte sequenziert. Durch Vergleich der erhaltenen Sequenzen mit der Sequenz des Wildtyp-Gens läßt sich die Mutationsfrequenz bestimmen.

Tabelle 1 zeigt die Abhängigkeit der Mutationsfrequenz von der Konzentration obengenannter PCR-Reaktionskomponenten bei der Amplifizierung des Lipase-Gens aus *P. aeruginosa (lipA)*.

Tabelle 1

Versuch	Mg ²⁺	Mn ²⁺	dATP/	dTTP/	Mutations-
	(mM)	(mM)	dGTP	dCTP	frequenz
			(mM)	(mM)	(Mutationen /1000 bp1)
1	6,1	-	0,2	0,2	1-2
2	7,0	0,5	0,2	1,0	15-20

¹⁾ bp = Basenpaare

Aufgrund der Resultate der Sequenzierung ergibt sich weiterhin, daß als Mutationsarten Transitionen und Transversionen statistisch in etwa gleicher Häufigkeit auftreten. Deletionen und Insertionen werden hingegen nur selten beobachtet. Zudem liegen die Mutationen über das ganze Lipase-Gen gleich verteilt vor. Somit läßt sich mit der beschriebenen Methode eine Mutantenbank mit statistisch gleichverteilten Mutationen erzeugen. Als vorteilhaft hat sich eine Mutationsfrequenz von 1-2 Mutationen / Hydrolasegen erwiesen. Dadurch wird verhindert, daß beim Auftreten mehrerer Mutationen pro Hydrolasegen eine negative Mutation eine Mutation mit positivem Effekt maskiert. Um eine komplette Mutantenbibliothek mit jew**e**ils einem Aminosäureaustausch Enzymmolekül zu erhalten, müssen bei einer Lipase, die aus 285 Aminosäuren (hier: Lipase aus P. aeruginosa) besteht, theoretisch 5415 Mutanten erzeugt werden. Dieser Wert ergibt sich gemäß folgendem Algorithmus:

 $N = 19 \times M \times 285! / [(285 - M)! \times M!]$

mit N = Anzahl der Mutanten und M = Anzahl der Aminosäure-Austausche pro Lipase-Molekül. Im Rahmen der Erfindung konnte überraschend gezeigt werden, daß bereits bei weitaus geringeren Bibliotheksgrößen positive Mutanten gefunden werden, wobei mit einer Mutationsfrequenz von 1-2 gearbeitet wurde.

Die nach dem beschriebenen Verfahren erhaltenen mutierten Lipase-bzw. Esterase-Gene werden in einen geeigneten Expressionsvektor ligiert und dann nach einem Wirtsorganismus, z.B. E. coli, transformiert. Anschließend werden die transformierten Zellen auf Agarplatten ausgestrichen und kultiviert. Sofern eine genügend hohe Expressionsrate vorliegt, können die erhaltenen Kolonien in mit Flüssigmedium versehene Mikrotiterplatten überführt werden und nach dem Anwachsen direkt zum Screeningtest eingesetzt werden. Für den Fall, daß bei der Expression des Lipasegens nur wenig Enzym gebildet wird, bzw. das Genprodukt im verwendeten Wirtsorganismus nicht korrekt gefaltet (Inklusionskörper) oder unvollständig in das Kulturmedium sekretiert wird, ist es vorteilhaft, die mutierten Gene in einen anderen Wirtsorganismus, vorzugsweise den Ursprungsorganismus, umzuklonieren.

Um genügend hohe Enzymaktivitäten zu erhalten, werden die einzelnen Bakterienklone, die ein mutiertes Lipase- bzw. Esterase-Gen enthalten, von den Agarplatten in die Tröge von handelsüblichen Mikrotiterplatten überführt und dort in Flüssigmedium angezogen. Vorzugsweise werden hierfür Mikrotiterplatten mit 96 Trögen pro Platte benutzt. Das Wachstum der Bakterien kann durch Messung der Zelldichte (OD600-Wert) kontrolliert werden. Es ist vorteilhaft, parallel eine zweite Mikrotiterplatte auf diese Weise anzuimpfen, um so eine Referenz für die spätere Identifizierung positiver Klone zu haben. Diese wird zweckmäßigerweise nach dem Anwachsen der Bakterien mit Gycerin versetzt und bis zur Identifizierung bei -80°C gelagert. Sofern die Bakterien das Enzym in Extrazellularraum sekretieren (z.B. bei der Lipase aus P. aeruginosa), werden die Zellen in den Mikrotiterplatten abzentrifugiert und der Überstand mit der Lipase- bzw. Esterase-Aktivität zum Screeningtest eingesetzt. Für den Fall, daß die Bakterien (z.B. E. coli) das Enzym in das Periplasma sezernieren, muß vorher eine Zellwand-Lyse durchgeführt werden, wobei literaturbekannte Methoden wie z.B. eine Lysozym-Behandlung angewendet werden können.

Durch Anzucht der zugehörigen Klone von der Referenzplatte läßt sich ausreichend Plasmid-DNA isolieren, die zur Charakterisierung des

mutierten Lipase- bzw. Esterase-Gens eingesetzt werden kann. Durch Sequenzierung werden die Mutationen im Gen lokalisiert. Ein Vorteil der Erfindung betrifft die Tatsache, daß auch ohne Kenntnisse der exakten Position der Mutationen in einem positiven Klon, das mutierte Gen in Verfahren weiteren Mutations-Zyklen nach dem beschriebenen hinsichtlich seiner Eigenschaften weiter optimiert werden kann. Dazu wird das isolierte Lipase- bzw. Esterase-Gen erneut in einer nach den oben angebenen Bedingungen modifizierten PCR (mutagenisierende PCR) eingesetzt. Diese Prozedur kann so oft wiederholt werden, bis die Eigenschaften der Lipase- bzw. Esterase-Mutante den Anforderungen an die stereoselektive Umsetzung genügen.

Zur weiteren Optimierung der identifizierten positiven Mutanten läßt sich das beschriebene Verfahren dergestalt erweitern, daß die DNA mehrerer Positiv-Mutanten zunächst fragmentiert wird und dann in einem kombinatorischen Prozeß nach W.P.C. Stemmer (Nature, 1994, 370, 389) zu funktionalen Lipase- bzw. Esterase-Genen reassembliert werden kann. Die so erhaltene in vitro-Rekombinantenbibliothek wird anschließend exprimiert und die rekombinanten Genprodukte mit Hilfe der erfindungsgemäßen Testverfahren auf verbesserte Enantioselektivität hin untersucht. Der Vorteil dieses Verfahrens besteht darin, daß sich aufgrund der Rekombination die positiven Eigenschaften verschiedener Lipase-bzw. Esterase-Mutanten in einem neuen rekombinanten Gen addieren können, was letztlich zu einer weiteren Verbesserung der Lipase bzw. Esterase führen kann. Der Ablauf des beschriebenen Verfahrens ist wie folgt:

Die Lipase- bzw. Esterase-Gene werden zunächst mit Hilfe des Enzyms DNAse I (z.B. aus Rinder-Pankreas) in Fragmente gespalten mit einer vorzugsweisen Länge zwischen 25 Bp und 100 Bp. Die Größe der Fragmente läßt sich durch Auftrennung mittels einer Agarose-Gelelektrophorese und Vergleich mit entsprechenden DNA-Längenmarkern kontrollieren. Die so erhaltenen DNA-Fragmente werden aufgereinigt, um sie von anhaftender DNAse zu befreien. Die *in vitro-*Rekombination wird unter den Bedingungen einer konventionellen PCR

durchgeführt, wobei keine PCR-Primer zugesetzt werden. Analog zur konventionellen PCR unterteilt sich ein Zyklus in drei Schritte: a) Denaturierung, b) Annealing und c) Elongation. Während des Annealings kommt es zu einer Hybridisierung sequenzhomologer Fragmente, die aus unterschiedlichen mutierten Lipase- bzw. Esterase-Genen stammen können. Im nachfolgenden Elongationsschritt werden die Stränge durch die DNA-Polymerase vervollständigt, daß so schließlich rekombinante Lipasegene erhalten werden. Die optimale Anzahl der Zyklen wird in einem Vorversuch bestimmt. Dazu trennt man nach jeweils 5 Zyklen eine geringe Probe des Reaktionsansatzes mittels Agarose-Gelelektrophorese auf und ermittelt daraus den Zyklus, bei dem das Maximum der Größenverteilung der Rekombinanten im Bereich der Größe des Enzym-Gens liegt. Vorzugsweise wird eine Zyklenzahl zwischen 30 und 45 gewählt. Die erhaltene Bande im Agarosegel, die der Größe nach dem Lipase- bzw. Esterase-Gen entspricht, wird aufgereinigt und durch eine konventionelle PCR amplifiziert. Das PCR-Produkt wird aufgereinigt und nach Ligation in einen geeigneten Vektor (Plasmid) nach E. coli transformiert. Wie bereits im Abschnitt über die mutagenisierende PCR besprochen, kann es erforderlich sein, in einen anderen Wirtsorganismus umzuklonieren, falls die Lipaseaktivität nach der Expression in E. coli zu gering sein sollte. Die erhaltenen Rekombinanten werden für den Test auf Enantioselektivität in Mikrotiterplatten angezogen.

In einer Variante der Erfindung können die beschriebenen Verfahren der *mutagenisierenden PCR* und der *in vitro*-Rekombination zur Erzeugung von Mutations- bzw. Rekombinantenbibliotheken nacheinander in beliebiger Reihenfolge und Häufigkeit durchgeführt bzw. wiederholt werden, um die Enantioselektivität der Lipase bzw. Esterase zu optimieren. Vorzugsweise wird zu Beginn mindestens ein Mutationszyklus mittels *mutagenisierender PCR* durchgeführt. Im Anschluß daran kann dann ein *in vitro*-Rekombinations-Zyklus erfolgen, wobei die jeweils besten positiven Mutantenklone eingesetzt werden. Durch Kontrolle der Enantioselektivität der erhaltenen Enzym-Mutanten läßt sich der Optimierungsprozeß verfolgen.

bibliothek kann dann exprimiert werden und nach verbesserter Enantioselektivität gescreent werden.

Positive Lipase- bzw. Esterase-Mutanten, die durch das Screening von Mutanten- oder Rekombinantenbibliotheken identifiziert wurden, können mit Hilfe der ortsgerichteten Sättigungsmutagenese weiter optimiert werden. Dazu wird die positive Mutation in dem Lipase- bzw. Esterase-Gen zunächst durch Sequenzierung lokalisiert. Anschließend wird dieses Gen mittels einer beliebigen Methode zur ortsgerichteten Mutagenese, die einen mehrfachen Basenaustausch zuläßt, so verändert, daß alle möglichen Codons an der Stelle des Gens entstehen, die für die zu optimierende Position kodiert. Auf diese Weise erhält man eine begrenzt große Bibliothek von Mutanten, bei denen an der zu optimierenden Aminosäure-Position die ursprünglich vorhandene Aminosäure durch die restlichen 19 Aminosäuren ersetzt ist. Die so erhaltene, begrenzt große Mutantenbibliothek kann dann exprimiert werden und nach verbesserter Enantioselektivität gescreent werden.

In einer Variante des beschriebenen Verfahrens wird das Lipase- bzw. Esterase-Gen des Wildtyp-Enzyms zusammen mit den gefundenen Positiv-Mutanten zur *in vitro-*Rekombination eingesetzt. Dadurch kann es zu Rückkreuzungen kommen, bei denen Mutationen mit neutralen oder negativen Eigenschaften eliminiert werden können. Die erhaltene Rekombinantenbibliothek kann nach der Expression auf verbesserte Enantioselektivität untersucht werden.

In einer weiteren Variante des beschriebenen Verfahrens werden Hydrolasegene aus unterschiedlichen Organismen zur *in vitro-*Rekombination eingesetzt, sofern sie eine genügende Sequenzhomologie zu dem ursprünglich eingesetzten Hydrolasegen besitzen.

In einer Variante des Verfahrens wird die *in vitro-*Rekombination unter den Bedingungen der beschriebenen modifizierten PCR durchgeführt. Dazu wird die Konzentration der Mg²⁺- bzw. Mn²⁺-lonen sowie die der Desoxy-

nucleotide (dNTPs) verändert, um gezielt die Mutationsfrequenz während der *in vitro-*Rekombination zu einzustellen.

Gegenstand der Erfindung sind weiterhin Testverfahren, die die Identifizierung von Enzym-Mutanten mit verbesserter Stereoselektivität oder Regioselektivität aus umfangreichen Mutantenbibliotheken ermöglichen. Dazu werden zwei gleiche Aliquots des enzymhaltigen Überstandes nach der Zentrifugation der Bakterienzellen in jeweils benachbarte Tröge einer neuen Mikrotiterplatte überführt. Nach Zugabe der beiden enantiomeren Substrate in jeweils einen der Tröge wird die Aktivität der Lipase bzw. Esterase spektrophotometrisch bestimmt. Die Messungen werden in einem handelsüblichen Spektralphotometer für Mikrotiterplatten durchgeführt. Dadurch wird ein hoher Probendurchsatz ermöglicht. Die Wahl des Substrates richtet sich nach der Art der chiralen Verbindung, für die eine Optimierung der Lipase bzw. Esterase vorgenommen werden soll. Insbesondere eignet sich das Verfahren für chirale Carbonsäuren, Alkohole und Amine.

Im Fall von chiralen Carbonsäuren bzw. chiralen COOH-funktionalisierten Verbindungen werden die beiden entsprechenden p-Nitrophenylester der (R)- bzw. (S)-Säure als Testsubstrat eingesetzt. Formel 1 zeigt das Prinzip des Testverfahrens, wobei R einen beliebigen organischen Rest mit mindestens einem asymmetrischen Zentrum symbolisiert.

Formel 1

Schema für das Testverfahren auf Stereoselektivität bei chiralen Carbonsäuren bzw. COOH-funktionalisierten Verbindungen

Reaktion 2:

Aufgrund der hohen Extinktion des bei der Hydrolase-katalysierten Esterhydrolyse freigesetzten p-Nitrophenolat-Anions $(\lambda_{\text{max}}=405)$ E_{max}=14.000) ergibt sich ein hochempfindliches Testverfahren, mit dem eine Aktivitätsbestimmung auch bei niedrigen Substratkonzentrationen durchgeführt werden kann. Die Enantioselektivität der Hydrolase-Mutanten läßt sich aus dem Quotienten der Hydrolysegeschwindigkeiten Vapp(R) und V_{app(S)} für den (R)- und den (S)-Ester mit ausreichender Genauigkeit bestimmen. Da die beiden Testansätze jeweils nur ein Enantiomer enthalten (entweder den R- oder S-Ester), muß bei der Bestimmung der Enantioselektivität die fehlende Konkurrenzreaktion mit dem anderen Enantiomer berücksichtigt werden. Dieser kinetische Effekt kann zwar zur Berechnung fehlerbehafteter Enantioselektivitäten führen, es hat sich jedoch gezeigt, daß die nach der vorgestellten Methode erhaltenen apparenten Enantioselektivitäten (Eapp) genügend Aussage-kraft hinsichtlich der Enantioselektivität der mutierten Lipasen haben. Eapp ergibt sich als V_{app(R)} / V_{app(S)}. Ein weiterer Vorteil liegt in der einfachen Durchführung und guten Reproduzierbarkeit des Tests, der sich auch für ein Screening mit hohem Probendurchsatz eignet.

Im Fall von chiralen Alkoholen bzw. von chiralen OH-funktionalisierten Verbindungen werden Fettsäureester der beiden enantiomerenreinen Alkohole für den Test auf Stereoselektivität eingesetzt. Die Kettenlänge der Fettsäuren liegt im Bereich von C₂ bis. Als Alkohol-Komponente können primäre, sekundäre und tertiäre Alkohole sowie deren Derivate mit minde-

stens einem Asymmetriezentrum eingesetzt werden. Lösungen der Ester der (R)- und (S)-Alkohole werden in jeweils benachbarten Trögen einer Mikrotiterplatte mit Kulturüberständen der Hydrolase-Mutanten hydrolysiert. Die Hydrolysegeschwindigkeiten Vapp(R) und Vapp(S) der (R)- und (S)-Ester sind ein Maß für die Enantioselektivität der untersuchten Enzym-Mutante. Die Detektion erfolgt über eine gekoppelte Enzymreaktion (H.U. Bergmeyer, Grundlagen der enzymatischen Analyse, Verlag Chemie, Weinheim, 1977), bei der die kontinuierliche Freisetzung der Fettsäure verfolgt wird. Der gebildete Farbstoff wird colorimetrisch bei 546 nm (ϵ = 19.3 (x mmol-1 x cm-1) bestimmt. Die Konzentrationen der Enzyme, Cofaktoren und Coenzyme der Hilfsreaktionen 2 und 3 (siehe Formel 2) sowie der Indikatorreaktion 4 müssen so gewählt werden, daß die zu bestimmende Lipase- bzw. Esterase-katalysierte Reaktion geschwindigkeitsbestimmend ist. Der Quotient der Hydrolysegeschwindigkeiten des (R)- und (S)-Esters entspricht der apparenten Enantioselektivität (Eapp). In einer Variante werden anstelle der enantiomerenreinen Ester die Fettsäureamide chiraler Amine bzw. NH2- oder NHR-funktionalisierter Verbindungen eingesetzt. Formel 2 zeigt das Schema des Testsystems.

Formel 2

Schema für das Testverfahren auf Stereoselektivität bei chiralen Alkoholen; R symbolisiert einen beliebigen organischen Rest mit mindestens einem asymmetrischen Zentrum; Abkürzungen: CoA (Coenzym A), ATP (Adenosin-5'-triphosphat), AMP (Adenosin-5'-monophosphat)

In einer Variante des Verfahrens können anstelle der Fettsäureester bzw. -amide die entsprechenden Ester und Amide der Bernsteinsäure eingesetzt werden. Diese haben gegenüber den Fettsäuren den Vorteil der besseren Löslichkeit in wäßrigen Lösungen bzw. wäßrig-organischen Solventien. Die Messung erfolgt UV-spektrometrisch bei 340 nm (ε = 6,3 l x mmol⁻¹ x cm⁻¹). Auch bei diesem Testverfahren ist zu beachten, daß die Hydrolase-katalysierte Reaktion 1 geschwindigkeitsbestimmend ist. Der Quotient der Hydrolysegeschwindigkeiten $V_{app(R)}$ und $V_{app(S)}$ des (R)-und (S)-Esters entspricht der apparenten Enantioselektivität (E_{app}). In einer Variante werden anstelle der enantiomerenreinen Ester die Fettsäureamide chiraler Amine eingesetzt. Als Amin-Komponente können sowohl primäre als auch sekundäre Amine eingesetzt werden. Das Schema des Testverfahrens ist in Formel 3 wiedergegeben.

Formel 3

Schema für das Testverfahren auf Stereoselektivität bei chiralen Alkoholen; R symbolisiert einen beliebigen organischen Rest mit mindestens einem asymmetrischen Zentrum; Abkürzungen: CoA (Coenzym A), ITP (Inosin-5'-triphosphat), IDP (Inosin-5'-diphosphat), NADH / NAD+ (reduziertes bzw. oxidiertes Nicotinamid-adenin-dinucleotid)

Der Test zur Identifizierung von Hydrolase-Mutanten mit verbesserter Stereoselektivität kann weiterhin derart ausgeführt werden, daß beide Stereoisomere im Testansatz enthalten sind. Dadurch kann auf die getrennte Messung des (R)- und (S)-Enantiomers verzichtet werden. Das Testprinzip geht von einer Anbindung eines racemischen Gemisches des chiralen

Substrates an einer Festphase aus. Über eine Ester- bzw. Amidbindung an dieser chiralen Verbindung wird ein radioaktiv markierter organischer Rest gebunden. Zwei Fälle lassen sich unterscheiden:

- a) Festphasen-gebundene chirale Carbonsäure: die Carboxylfunktion wird mit einem radioaktiv markierten Alkohol verestert
- b) Festphasen-gebundener chiraler Alkohol oder chirales Amin, bzw. OHoder NH₂- (NHR-)funktionalisierte Verbindungen: die Hydroxyl- bzw. Aminfunktion wird mit einer radioaktiv markierten Carbonsäure markiert.

Entscheidend ist dabei, daß die beiden Enantiomeren des an der Festphase gebundenen racemischen Gemisches mit unterschiedlichen Isotopen markiert sind. Vorzugsweise werden ³H und ¹⁴C-markierte Verbindungen eingesetzt. Als Festphase können sowohl alle gängigen organischen, funktionalisierten Polymere sowie anorganische, funktionalisierte
Träger eingesetzt werden. Vorzugsweise werden Fest-phasen auf Polystyrol-Basis und Kieselgel-Träger eingesetzt. Anschließend werden die chiralen, radioaktiv markierten Verbindungen an die Festphase gebunden, wobei die Kupplung an die Festphase an die chemische Beschaffenheit des
chiralen Substrates angepaßt werden muß. Formel 4 zeigt das Schema der
modifizierten Festphase und das Prinzip des Testverfahrens.

Formel 4

Schema des Festphasen-Screeningtests auf Stereoselektivität mit doppelt radioaktiv markiertem Sustrat; (X = O, NH; R ist ein radioaktiv markierter, organischer Rest)

Etwa gleiche Mengen des so modifizierten Trägers können in kleine Reaktionsgefäße verteilt werden (z.B. in die Tröge von Mikrotiterplatten) und dann mit den Kulturüberständen der Hydrolase-Mutanten versetzt werden. Bei der anschließenden Reaktion werden die radioaktiv markierten Komponenten (Carbonsäure oder Alkohol) von der Festphase hydrolysiert und in das flüssige Medium abgegeben. Ein Aliquot des Mediums wird dann entnommen und in einem Szintillationsmeßgerät auf die Menge an Radioaktivität hin untersucht. Aus dem Verhältnis der beiden unterschiedlichen Isotope zueinander kann der Enantiomerenüberschuß und der Umsatz der Reaktion und somit die Enantioselektivität der mutierten Esterase bzw. Lipase berechnet werden. Durch Verwendung von regioisomeren Testverbindungen lassen sich die beschriebenen Tests auch zur Identifizierung von Hydrolase-Mutanten mit verbesserter Regioselektivität einsetzen. Anstelle von Hydrolase-Mutanten können auch andere Katalysatoren eingesetzt werden, um die Stereo- oder Regioselektivität zu bestimmen.

Der Test auf Enantioselektivität der nach dem beschriebenen Verfahren hergestellten Hydrolase-Mutanten kann auch durch kapillar-elektrophoretische Trennung erfolgen unter Verwendung von chiral modifizierten Kapillaren, die eine direkte Trennung der enantiomeren Substrate bzw. Produkte der Hydrolase-katalysierten Testreaktion ermöglichen. Hierzu können die Testsubstrate als Racemat eingesetzt werden. Die Trennung kann sowohl in Kapillaren erfolgen als auch unter Verwendung von präparierten Mikrochips, die eine elektrophoretische Trennung und Parallelisierung der Analysen zum Zwecke eines hohen Probendurchsatzes ermöglichen. Vorraussetzung ist in beiden Fällen, daß die Enantiomeren kapillarelektrophoretisch trennbar sind.

Die Erfindung wird durch die nachfolgenden Beispiele und Figuren näher erläutert.

Fig. 1 zeigt die experimentell erhaltenen Meßkurven zur Bestimmung der apparenten Enantioselektivität (E_{app}) bei der Hydrolyse von (R)- bzw. (S)-2-Methyldecansäure-p-nitrophenylester mit Kulturüberständen der Lipase-Mutanten P1B 01-E4, P2B 08-H3, P3B 13-D10, P4B 04-H3, P5B 14-C11,

P4BSF 03-G10 und der Wildtyp-Lipase aus *P. aeruginosa* (die Steigerungen haben die Einheit [mOD/min]).

Fig. 2: Vergleich der DNA-Seqenzen der Lipase-Mutanten P1B 01-H1, P1B 01-E4, P2B 08-H3, P3B 13-D10, P4B 04-H3, P5B 14-C11 und P4BSF 03-G10 S155F mit der Sequenz des Wildtyps von Lipase aus *P. aeruginosa* (die mutierten Basen relativ zum Wildtyp sind eingerahmt, der Start der reifen Lipase-Mutanten liegt bei Base 163 bzw. bei Base 162 beim Wildtyp).

Beispiel 1

Im folgenden Beispiel wurde das Gen der Lipase aus *P. aeruginosa* (Isolierung nach K.-E. Jäger, Ruhr-Universität Bochum) für eine Optimierung herangezogen. Das Substrat, auf das hin die Enantioselektivität der Lipase verbessert werden sollte, war (*R*,*S*)-2-Methyldecansäure. Es sollte eine Lipase-Mutante entwickelt werden mit einer Präferenz für das (S)-Enantiomer. Der Screening-Test wurde mit (*R*)- bzw. (*S*)-2-Methyl-decansäure-p-nitrophenylester durchgeführt.

Formel 5

(R,S)-2-Methyldecansäure

Bakterienstämme

E. coli JM109:

e14-(McrA), recA1, endA1, gyrA96, thi-1, hsdR17(r_K -m_K+), supE44, relA1, Δ (lac-proAB), [F' tra Δ 36 proAB laclq Z Δ M15] (Fa. Stratagene)

P. aeruginosa PABST7.1:

lacUV5/laclq reguliertes T7-Polymerasegen stabil in das Chromosom des Stamm *P. aeruginosa* PABS integriert, der eine Deletion im Strukturgen der Lipase *lipA* trägt (K.-E. Jaeger *et al. J. Mol. Cat. Part B*, 1997, in press)

Plasmide

pMut5: BamHl/Apal Fragment (1046 Bp) des P. aeruginosa Lipa-

segens lipA im Vektor pBluescript KSII (Fa. Stratagene)

pUCPL6A: BamHI/HindIII Fragment (2,8 KBp), welches das P. aeru-

ginosa Lipase-Operon umfaßt, im Vektor pUCPKS (Watson et al., Gene 1996, 172, 163) unter der Kontrolle des T7-

Promotors

Kultivierung von Bakterien

E. coli JM109 wird über Nacht (16h) bei 37°C in 5 ml LB Medium auf einem Reagenzglasroller angezogen. Für P. aeruginosa PABST7.1 wird dem Medium 1mM IPTG zugesetzt. Für den Screening-Test wird P. aeruginosa PABST7.1 in Mikrotiterplatten auf einem Rundschüttler angezogen, wobei das Kulturvolumen 200 μl beträgt und die Inkubation auf 36-48h verlängert wird. Antibiotika werden in folgenden Konzentrationen zugegeben:

E.coli JM109: Ampicillin 100 μg/ml; *P.aeruginosa* PABST7.1: Carbenicillin 200 μg/ml, Tetrazyklin 50 μg/ml

Mutagenisierende PCR

Das Lipasegen *lipA* wird unter Verwendung des durch Endonuclease *Xmn* I linearisierten Plasmids pMut5 als Matrize und folgender PCR-Primer amplifiziert:

A:5'-GCGCAATTAACCCTCACTAAAGGGAACAAA-3';

B:5'-GCGTAATACGACTCACTATAGGGCGAA-3'

Nach Reinigung des PCR-Produktes mittels einer Qiagen Qiaquick Column[®] dient es als Template in einer mutagenen PCR-Reaktion. Die Reaktionsbedingungen sind wie folgt: ein 100 µl Reaktionsvolumen enthält 16,6 mM (NH₄)₂SO₄; 67 mM Tris-HCl (pH 8.8); 6,1 mM MgCl₂; 6,7 µM EDTA (pH 8.0); 0,2 mM dNTPs; 10 mM Mercaptoethanol; 10 µl DMSO; je 10 pmol der Primer; 0,1 ng Template-DNA und 1U Taq-Polymerase (Goldstar, Fa. Eurogentec). Das Reaktionsvolumen wird mit 100 µl Paraffin überschichtet. Es wurden 10 parallele Reaktionen durchgeführt, die nach Reaktionsende vereinigt wurden. Das Zyklen-Protokol ist wie folgt: Nach einer 2 min Denaturierung bei 98°C, folgen 25 Zyklen mit 1 min 94°C, 2 min 64°C 1 min 72°C auf einem Robocycler 40 (Fa. Stratagen), gefolgt von einer 7 min Inkubation bei 72°C. Die Taq-Polymerase wird nach der Denaturierung des 1. Zyklus zugesetzt. Die Sequenzierung der PCR-Produkte ergibt eine Fehlerrate von ca. 1-2 Basenaustauschen pro 1000 Bp.

Klonierung der PCR-Produkte

Die PCR-Produkte werden mit Ethanol gefällt und in A. dest resuspendiert. Nach Restriktion mit *Apal* und *BamHI* wird das entstandene 1046 Bp Fragment mittels einer Qiagen Qiaquick Column[®] gereinigt und unter Verwendung von T4-DNA Ligase (Fa. MBI Fermentas) für 2h bei RT in den entsprechend vorbereiteten Vektor pUCPL6A ligiert. Das Reaktionsvolumen wird 1:5 verdünnt und in 200 µl kompetenter Zellen von *E. coli* JM109, die nach der Methode von *Hanahan* (*J. Mol. Biol.* 1983, 166, 557) präpariert werden, transformiert. Dazu werden DNA und Zellen für 1h auf Eis gelagert, 2 min bei 42°C und nach Zugabe von 700 µl LB-Medium 45 min bei 37°C unter Schütteln inkubiert. Die Zellsuspension wird anschließend auf LB (Ampicillin 100 µg/ml) Platten ausplattiert. 60 ng des PCR-Produktes, die in die Ligationsreaktion eingesetzt werden, erbringen ca. 1500 Kolonien. Alle Kolonien werden in sterilem LB-Medium resuspendiert, die Plasmid DNA gereinigt und durch Elektroporation nach der Mediert, die Plasmid DNA gereinigt und durch Elektroporation nach der Mediert.

thode von Farinha und Kropinski (FEMS Microbiol. Lett. 1990, 70, 221) in P. aeruginosa PABST7.1 transformiert. Die 96 Tröge der Mikrotiterplatten werden mit jeweils einer Kolonie inokuliert und wie im Abschnitt "Kultivierung von Bakterien" beschrieben behandelt. Zur Gewinnung des Kulturüberstandes, der anschließend im Test auf Stereoselektivität eingesetzt wird, werden die Mikrotiterplatten 30 min bei 4000 Upm zentrifugiert.

Test auf Stereoselektivität

Die durch Zentrifugation gewonnenen Lipase-haltigen Kulturüberstände werden in jeweils zwei gleichen Aliquots in benachbarte Tröge einer Mikrotiterplatte pipettiert. Das Testvolumen beträgt 100 µl und setzt sich aus folgenden Komponenten zusammen (Tabelle 2):

Tabelle 2

Zusammensetzung des Reaktionsansatzes für den Test auf verbesserte Enantioselektivität von Lipase-Mutanten

(R)-Ansatz	(S)-Ansatz
50 µl Kulturüberstand	50 μl Kulturüberstand
40 µl 10 mM Tris/HCl-Puffer, pH 7,5	40 μl 10 mM Tris/HCl-Puffer, pH 7,5
10 µl Substratlösung [10 mg / ml (R)-2-	10 µl Substratiösung [10 mg / ml (S)-2-
Methyldecansäure-p-nitrophenylester	Methyldecansäure-p-nitrophenylester
in DMF]	in DMF)

Nach der Zugabe des Tris/HCl-Puffers zu den Überständen wird die Mikrotiterplatte ca. 5 min bei 30 °C inkubiert. Die Reaktion wird nach Addition der Substratlösung spektrophotometrisch bei 410 nm und 30 °C kontinuierlich 10 min lang verfolgt. Aus dem linearen Anstieg der Absorptionskurve, die ein Maß für die konstante Anfangsgeschwindigkeit der Hydrolyse ist, wird die apparente Enantioselektivität (E_{app}) bestimmt. Dazu werden die gemessenen Steigungen im linearen Bereich der Anfangsgeschwindigkeiten der Reaktionen des Enantiomerenpaares dividiert und man erhält den Wert für die apparente Enantioselektivität der entsprechenden Lipase-Mutante.

Bestimmung der Stereoselektivität durch Gaschromatographie

Ausgewählte positive Klone werden in 5 ml -Flüssigkulturen (LB-Medium) angezogen und der Lipase-haltige Überstand nach Zentrifugation und Entfernung des Bakterien-Pellets zur Reaktion eingesetzt. Als Substrat werden 100 µl einer Lösung von racemischem (*R*, *S*)-2-Methyldecansäure-p-nitrophenylester (10 mg/ml in Dimethylformamid) eingesetzt. Diese wird mit 700 µl 10 mM Tris/HCl-Puffer pH 7,5 versetzt. Die Reaktion wird durch Zugabe von 100 µl Kulturüberstand gestartet und bei 30°C und 1000 rpm in Eppendorf-Reaktionsgefäßen durchgeführt. Nach 2,5 h werden jeweils 200 µl Proben entnommen und in ein mit 200 µl Dichlormethan gefülltes Eppendorf-Gefäß überführt. Nach Zugabe von 25 µl 20 %iger Salzsäure werden Produkte und Edukt extrahiert (Vortex-Schüttler, 1 min). Die organische Phase wird schließlich zur gaschromatographischen Analyse (GC) eingesetzt. Dabei wird eine Trennung der Enantiomere der freien 2-Methyldecansäure erzielt.

Trennbedingungen der GC:

Instrument:

Hewlett Packard 5890

Säule:

25 m 2,6 DM 3 Pent β-CD / 80% SE 54

Detector:

FID

Temperatur:

230°C Inlet; 80-190°C mit 2°C / min

Gas:

0,6 bar H₂

Probenmenge:

0,1 ml

Ergebnisse (1. Zyklus)

Von ca. 1000 untersuchten Klonen, die durch *mutagenisierende PCR* mit der Ausgangs-DNA (Wildtyp-Gen von Lipase aus *P. aeruginosa*) erhalten wurden, wurden 12 mit verbesserter Enantioselektivität gegenüber dem entsprechenden Wildtyp-Enzym identifiziert. 3 Klone wurden schließlich ausgewählt und deren Enantioselektivität durch GC-Analyse bestimmt.

<u>Tabelle 3</u>
Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (1. Zyklus)

Mutante	V _{app} (S)	Vapp(R)	E _{app} ¹)	% ee	E-Wert ²)
	[mOD/min]	[mOD/min]		(nachGC) /%	(berechnet
				Umsatz	nach GC)
Wildtyp	21,8	14,9	1,5	2,4 / 15,3	1,1
P1B 01-E4	128,4	43,2	3,0	36,1 / 23,2	2,4
P1B 01-F12	78,8	35,7	2,2	14,1 / 30,5	1,4
P1B 01-H1	158,7	56,2	2,8	37,6 / 4,5	2,2

¹⁾ $E_{app} = V_{app}(S) / V_{app}(R)$

Die DNA des Klons P1B 01-E4 diente als Ausgangspunkt für eine neue PCR-Mutagenisierungsrunde. Dazu wurde das Plasmid pUCPL6A aus dem Klon isoliert und wie oben beschrieben nach *E. coli* JM109 transformiert. Nach Präparation der Plasmid-DNA wurde das 1046 Bp große Fragment durch Restriktion mit *Apal* und *BamHI* und anschließender Reinigung gewonnen und in das entsprechend vorbereitete Plasmid pMut5 ligiert. Nach Transformation und Plasmidisolierung diente dieses Plasmid als template-DNA in einer *mutagenisierenden PCR*-Reaktion unter den oben beschriebenen Bedingungen. Die gewonnene DNA der *mutagenisierenden PCR* diente zur Herstellung einer neuen Mutantenbibliothek (2. Generation).

Ergebnisse (2. Zyklus)

Aus der Mutantenbibliothek der 2. Generation wurden ca. 2200 Klone zum Screening-Test herangezogen. Dabei wurden 10 Mutanten mit einer gegenüber der Mutante P1B 01-E4 verbesserten Enantioselektivität identifiziert. 2 Mutanten (P2B 04-G11 und P2B 08-H3) wurden per GC-Analyse genauer untersucht.

²) E = $ln[1-c(1+ee_P)] / ln[1-c(1-ee_P)]$ mit c = Umsatz, ee_P = ee-Wert des Produktes

<u>Tabelle 4</u>
Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (2. Zyklus)

Mutante	V _{app} (S)	Vapp(R)	E _{app} ¹)	% ee (nachGC) /	E-Wert ²)
	[mOD/min]	[mOD/min]		% Umsatz	(berechnet nach GC)
P2B 04-G11	224,9	52,3	4,3	47,8 / 30,0	3,4
P2B 08-H3	310,8	67,4	4,6	56,6 / 19,3	4,1

¹) $E_{app} = V_{app}(S) / V_{app}(R)$

Der Klon P2B 08-H3 wurde für die nächste Mutationsrunde (3. Generation) eingesetzt.

Ergebnisse (3. Zyklus)

Aus der Mutantenbibliothek der 3. Generation wurden ca. 2400 Klone zum Screening-Test herangezogen. Dabei wurde 1 Mutante (P3B 13-D10) mit einer gegenüber der Mutante P2B 08-H3 verbesserten Enantioselektivität identifiziert. Diese wurde durch GC-Analyse weiter untersucht.

<u>Tabelle 5</u>
Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (3. Zyklus)

Mutante	V _{app} (S)	Vapp(R)	E _{app} ¹)	% ee	E-Wert ²)
	[mOD/min]	[mOD/min]		(nachGC) /%	(berechnet nach
				Umsatz	GC)
P3B 13-D10	1	1	6.9	74.8 / 34.6	10.2

¹⁾ $E_{app} = V_{app}(S) / V_{app}(R)$

²⁾ $E = In[1-c(1+ee_P)] / In[1-c(1-ee_P)]$ mit c = Umsatz, $ee_P = ee-Wert des Produktes$

²⁾ $E = ln[1-c(1+ee_P)] / ln[1-c(1-ee_P)]$ mit c = Umsatz, $ee_P = ee-Wert des Produktes$

Ergebnisse (4. Zyklus)

Aus der Mutantenbibliothek der 4. Generation wurden ca. 2000 Klone zum Screening-Test herangezogen. Dabei wurden 4 Mutanten mit einer gegenüber der Mutante P3B 13-D10 verbesserten Enantioselektivität identifiziert. Diese wurde durch GC-Analyse weiter untersucht.

<u>Tabelle 6</u>
Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (4. Zyklus)

Mutante	V _{app} (S)	Vapp(R)	E _{app} ¹)	% ee (nachGC)	E-Wert ²)
	[mOD/min]	[mOD/min]		/% Umsatz	(berechnet nach
		·			GC)
P4B 04-H3	355,6	26,5	13,4	81,0 / 20,0	11,2
P4B 01-F2	162,4	13,8	11,7	82,1 / 5,0	10,6
P4B 15-G1	315,4	28,1	11,2	80,0 / 18,0	10,7
P4B 15-H7	288,0	25,1	11,5	78,4 / 22,0	10,2

¹⁾ $E_{app} = V_{app}(S) / V_{app}(R)$

Der Klon P4B 04-H3 wurde für die nächste Mutationsrunde (5. Generation) eingesetzt.

Ergebnisse (5. Zyklus)

Aus der Mutantenbibliothek der 5. Generation wurden ca. 5200 Klone zum Screening-Test herangezogen. Dabei wurden 2 Mutanten mit einer gegenüber der Mutante P4B 04-H3 verbesserten Enantioselektivität identifiziert. Diese wurde durch GC-Analyse weiter untersucht.

²⁾ $E = ln[1-c(1+ee_p)] / ln[1-c(1-ee_p)]$ mit c = Umsatz, $ee_p = ee-Wert des Produktes$

<u>Tabelle 7</u>
Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (5. Zyklus)

Mutante	V _{app} (S)	Vapp(R)	E _{app} 1)	% ee	E-Wert ²)
	[mOD/min]	[mOD/min]		(nachGC) /%	(berechnet nach
				Umsatz	GC)
P5B 14-C11	275,9	17,3	15,9	77,0 / 43,0	13,7
P5B 08-F2	124,0	8,7	14,3	79,7 / 40,3	15,1

¹) $E_{app} = V_{app}(S) / V_{app}(R)$

Sequenzierung der positiven Mutanten

Durch Sequenzierung der positiven Mutanten konnten die Mutationen in den Lipase-Genen lokalisiert werden (siehe Figur 2). Nach Zuordnung der Basentripletts zu den entsprechenden Aminosäuren ergeben sich gegenüber der Wildtyp-Lipase aus *P. aeruginosa* folgende Aminosäure-Austausche:

P1B 01-H1:	T103I (Thr ₁₀₃ → Ile ₁₀₃), S149G (Ser ₁₄₉ → Gly ₁₄₉)
P1B 01-E4:	S149G (Ser ₁₄₉ → Gly ₁₄₉)
P2B 08-H3:	S149G (Ser ₁₄₉ → Gly ₁₄₉), S155L (Ser ₁₅₅ → Leu ₁₅₅)
P3B 13-D10:	S149G (Ser ₁₄₉ → Gly ₁₄₉), S155L (Ser ₁₅₅ → Leu ₁₅₅),
	V47G (Val47 → Gly47)
P4B 04-H3:	S149G (Ser ₁₄₉ → Gly ₁₄₉), S155L (Ser ₁₅₅ → Leu ₁₅₅),
	V47G (Val47 → Gly47), S33N (Ser33 → Asn33), F259L
	(Phe ₂₅₉ → Leu ₂₅₉)
P5B 14-C11:	S149G (Ser ₁₄₉ → Gly ₁₄₉), S155L (Ser ₁₅₅ → Leu ₁₅₅),
	V47G (Val47 → Gly47), S33N (Ser33 → Asn33), F259L
	(Phe ₂₅₉ → Leu ₂₅₉), K110R (Lys ₁₁₀ → Arg ₁₁₀)

Die Mutanten P1B 01-E4, P2B 08-H3 und P3B 13-D10 wurden unter den Bezeichnungen DSM 11 658, DSM 11 659 und DSM 11 659 am 16.07.1997 bei der DSMZ - Deutsche Sammlung von Mikroorganismen

²⁾ E = $ln[1-c(1+ee_p)] / ln[1-c(1-ee_p)]$ mit c = Umsatz, ee_p = ee-Wert des Produktes

und Zellkulturen GmbH, D-38124 Braunschweig, Mascheroder Weg 1b, hinterlegt.

Die Mutanten P5B 14-C11 und P4B 04-H3 wurden unter den Bezeichnungen DSM 12 320 und DSM 12 322 am 20.07.1998 bei der DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig, Mascheroder Weg 1b, hinterlegt.

Beispiel 2

Die Vorschriften zur Kultivierung der Bakterien, der *mutagenisierenden PCR* sowie des Testverfahrens auf Enantioselektivität sind analog zu Beispiel 1. Die Herstellung umfangreicher Mutantenbibliotheken erfolgt in diesem Beispiel jedoch durch *in vitro-*Rekombination.

Die für die in vitro-Rekombination verwendete DNA wird entweder durch mutagenisierende PCR generiert oder durch Vereinigung der DNA aus einer beliebigen Anzahl von Klonen aus einer oder mehreren, durch wiederholte mutagenisierende PCR entstandenen Generationen an Klonen gewonnen. Wenn die PCR-Produkte einer mutagenisierenden PCR Ausgangspunkt zur Gewinnung von DNA für die in vitro-Rekombination waren, wird wie folgt verfahren: Die PCR-Produkte der mutagenisierenden PCR (siehe Beispiel 1) werden gereinigt, mit den Restriktionsendonucleasen Apa I und BamH I geschnitten, in den entsprechend geschnittenen Vektor pMUTS ligiert und anschließend nach E. coli JM 109 transformiert. Die Plasmid-DNA aus allen Transformationsklonen wird isoliert. War eine beliebige Anzahl ausgewählter Klone einer oder verschiedener Generationen an Mutantenklonen Ausgangspunkt für die Gewinnung von DNA für die in vitro-Rekombination, so wird die Plasmid-DNA des Vektors pMUT5 mit den jeweiligen Varianten des Lipasegens von P. aeruginosa isoliert und vereinigt. In beiden Fällen wird wie folgt weiter verfahren: Durch Restriktion mit der Endonuclease Pvu II wird ein 1430 Bp großes Fragment gewonnen, das neben dem Strukturgen für die Lipase von P. aeruginosa die Bindestellen der schon in der mutagenisierenden PCR verwendeten Primer A und B umfaßt. Dieses Fragment wird gereinigt und durch Inkubation mit Desoxyribonuclease I (DNAse I aus *Rinder-Pankreas*) in zufällig generierte Fragmente geteilt. Dabei kann die Größe der Fragmente sowie die Fehlerrate der sich anschließenden Reassemblierung durch Wahl der Inkubationsbedingungen beeinflußt werden.

DNAse I Behandung:

In einem Gesamtvolumen von 100 μl werden 3 μg *Pvu* II-Fragmente in 50 mM Tris/HCI pH 7.5, 10 mM MgCl₂ bzw. 10 mM MnCl₂ und 50 μg/ml BSA für 10-25 min bzw. 1-10 min bei 23 °C mit 0,075 U DNAse I inkubiert. Die Reaktion wird durch 10 minütige Inkubation bei 93 °C terminiert. In Abhängigkeit von der Reaktiondauer entstehen hierbei Fragmente von kleiner 500 Bp bis kleiner 10 Bp. Für den Fall, daß nur ein bestimmter Größenbereich vewendet wird, können diese Fragmente durch selektiven Elektrotransfer auf DEAE-Membran aus Agarosegelen gewonnen werden (nach F.M. Ausubel, *et al.*, eds., *Current Protocols in Molecular Biology*, John Wiley and Sons, 1989). Nach Reinigung der Fragmente durch das Qiagen Nucleotide Removal Kit[®] (Fa. Qiagen) wird die nachfolgende Reassemblierungsreaktion durchgeführt.

Reassemblierungsreaktion

10-30 ng der aus der DNAse I-Restriktion stammenden Fragmente werden in 75 mM Tris/HCl pH 9 0, 20 mM (NH₄)₂SO₄, 0.01% (w/v) Tween[®] 20, 1,5 mM MgCl₂, 0,2 mM dNTPs mit 2U Goldstar Taq-Polymerase (Fa. Eurogentec) in einem Gesamtvolumen von 50 μ I folgendem PCR-Programm unterzogen: 2 min 94 °C, 40 Zyklen mit 1 min 94 °C, 2 min 52 °C und 1 min 72 °C abschließend 7 min 72 °C. Die Taq-Polymerase wird nach dem 1 minütigen Denaturierungsschritt des 1. Zyklus zugegeben.

PCR

1 μl aus der Reassemblierungsreaktion wird in eine sich anschließende PCR-Reaktion eingesetzt, die sich mit folgenden Unterschieden, wie für die Reassemblierungsreaktion beschrieben, zusammensetzt: anstelle der DNAse I-generierten Fragmente wird 1 µl der Reassemblierungsreaktion als Matrizen-DNA eingesetzt. Zusätzlich werden die Primer A und B in einer Konzentration von 0,2 mM sowie 10 % Dimethylsulfoxid zugesetzt. Das Zyklenprotokoll lautet wie folgt:

2 min 98 °C, 30 Zyklen zu 1 min 94 °C, 2 min 64 °C, 1 min 72 °C und abschließend 7 min 72 °C; Es werden Parallelansätze durchgeführt. Die in diesen Reaktionen entstandenen PCR-Produkte werden gereinigt, mit den Restriktionendonukleasen Apa I und Bam HI restringiert und wie im Abschnitt "mutagenisierende PCR" von Beispiel 1 beschrieben kloniert.

Ergebnisse (in vitro-Rekombination):

Es wurden 12 Klone aus der 1. Generation der durch *mutagenisierende PCR* erhaltenen Mutantenbibliothek (siehe Beispiel 1) für die *in vitro-*Re-kombination eingesetzt. Folgende Klone, die im Screening-Test verbesserte Enantioselektivität gezeigt hatten, wurden benutzt:

P1B 01-A2, P1B 01-A6, P1B 01-D2, P1B 01-D5, P1B 01-E1, P1B 01-E4, P1B 01-F3, P1B 01-F11, P1B 01-H1, P1B 01-H3, P1B 01-F12.

Die nach der oben beschriebenen Vorgehensweise rekombinierte DNA dieser Klone wird wie im Abschnitt "mutagenisierende PCR" angegeben kloniert und die Kulturüberstände zum Test auf Enantioselektivität eingesetzt. Es wurden ca. 1000 rekombinante Klone getestet. Die beiden identifizierten Rekombinanten S2A 01-E11 und S2A 02-G3 zeigen gegenüber der besten Mutante der 1. Generation (P1B 01-E4) aus Beispiel 1 eine signifikante Verbesserung der Enantioselektivität.

Tabelle 8

Ausgewählte Lipase-Mutanten mit verbesserter Enantioselektivität (in vitro-Rekombination)

Mutante	V _{app} (S)	Vapp(R)	Eapp 1)	% ee	E-Wert ²)
	[mOD/min]	[mOD/min]		(nachGC) /%	(ber. nach
				Umsatz	GC)
S2A 01-E11	145,6	41,6	3,5	41,0 / 27,0	2,8
S2A 02-G3	210,8	62,0	3,4	38,0 / 23,0	2,5

¹) $E_{app} = V_{app}(S) / V_{app}(R)$

Beispiel 3

Ortsgerichtete Sättigungsmutagenese an der Aminosäure-Position 155 der Lipase-Mutante P3B 13-D10:

Plasmide:

pMut5 13D10:

BamHI/Apal Fragment (1046Bp) des Gens der

Mutante P3B 13D10 der Lipase von P. aeruginosa in

pBluescript KS II

pMut5∆AK 13D10: Deletion des AfIIII/KpnI Fragmentes in pMut5 13D10

Ein Fragment des Gens der Lipase der Mutante P3B 13D10 wird unter Verwendung des durch die Endonuclease Xmnl linearisierten Plasmids pMut5 13D10 und folgender PCR-Primer amplifiziert:

A: 5'-GCGCAATTAACCCTCACTAAAGGGAACAAA-3'

M: 5'-GGTACGCAGAATNNNCTGGGCTCGC-3'

N steht dabei für A oder C oder G oder T.

Die Reaktionsbedingungen sind dabei wie folgt: ein 50 μ l Reaktionsvolumen enthält 75 mM Tris/HCl pH9.0 (bei 25 °C); 20 mM (NH₄)₂SO₄ ;1,5 mM MgCl₂; 0,01%(w/v) Tween® 20; 10% (v/v) DMSO; je 10 pmol der Primer ; 0,1 ng der Template-DNA und 2U Taq-Polymerase (Goldstar, Fa. Eurogentec). Das Zyklenprotokol ist wie folgt: Nach 2 min Denaturierung bei 98 °C folgen 30 Zyklen mit 1 min 94 °C, 2 min 64°C, 1 min 72 °C auf

²⁾ $E = ln[1-c(1+ee_P)] / ln[1-c(1-ee_P)]$ mit c = Umsatz, $ee_P = ee-Wert des Produktes$

einem Robocycler 40 (Fa. Stratagen), gefolgt von 7 min Inkubation bei 72 °C. Die Taq-Polymerase wird nach der Denaturierung des 1. Zyklus zugesetzt. Nach Reinigung der PCR-Produkte mittels Agarosegelelektrophorese und Elution der DNA aus dem Agarosegel unter Verwendung des Nucleospin Extrakt-Kits (Macherey & Nagel) diente diese als Primer (so genannter Megaprimer) in einer nachfolgenden PCR. Dazu wird das Lipasegen auf dem durch die Endonuclease XmnI linearisierten Plasmid pMut5ΔAK 13D10 unter Verwendung folgender PCR primer und den oben beschriebenen Reaktionsbedingungen amplifiziert:

A: 5'-GCGCAATTAACCCTCACTAAAGGGAACAAA-3'

B (Megaprimer): 5'GCGTAATACGACTCACTATAGGGCGAA-3'

Die Reaktionbedingungen und das Zyklenprotokoll sind wie oben beschrieben mit dem Unterschied, daß dem Reaktionansatz 1-10 ng des Megaprimer zugesetzt werden. Die Klonierung der PCR-Produkte erfolgt wie unter Klonierung der PCR-Produkte beschrieben.

Ergebnisse (Sättigungsmutagenese 3. Generation, P3B13-D10)

Aus der Mutantenbibliothek der Sättigungsmutagenese (3. Generation, P3B 13-D10) wurden ca. 900 Klone zum Screening-Test herangezogen. Dabei wurde 1 Mutante (P4BSF 03-G10) mit einer gegenüber der Mutante P3B 13-D10 verbesserten Enantioselektivität identifiziert. Diese wurde durch GC-Analyse weiter untersucht.

<u>Tabelle 9</u>
Ausgewählte Lipase-Mutante mit verbesserter Enantioselektivität (3. Generation, P3B 13-D10)

Mutante	V _{app} (S)	Vapp(R)	E _{app} 1)	% ee	E-Wert ²)
	[mOD/min]	[mOD/min]		(nachGC) /%	(berechnet nach
				Umsatz	GC)
P4BSF	3 84,7	25,3	15,2	87,3 / 19,0	20,4
03-G10					

¹⁾ $E_{app} = V_{app}(S) / V_{app}(R)$

Sequenzierung der positiven Mutanten

Durch Sequenzierung der positiven Mutanten konnten die Mutationen im Lipase-Gen lokalisiert werden (siehe Figur 2). Nach Zuordnung der Basentripletts zu der entsprechenden Aminosäure ergab sich gegenüber der Mutante P3B 13-D10 folgender Aminosäure-Austausch:

P4BSF 03-G10:

L155F (Leu₁₅₅ → Phe₁₅₅)

Die Mutante P4BSF 03-G10 wurde unter der Bezeichnung DSM 12 321 am 20.07.1998 bei der DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, D-38124 Braunschweig, Mascheroder Weg 1b, hinterlegt.

²) E = $ln[1-c(1+ee_p)] / ln[1-c(1-ee_p)]$ mit c = Umsatz, ee_p = ee-Wert des Produktes

Patentansprüche:

- 1. Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserten Eigenschaften hinsichtlich Stereo- oder Regioselektivität, katalytischer Aktivität oder Stabilität, dadurch gekennzeichnet, daß
- a) ein Ausgangs-Hydrolasegen mittels einer modifiziertenPolymerase-Kettenreaktion (PCR) mutagenisiert wird, wobei durch Einstellen der Mg²⁺-, Mn²⁺- und der Desoxynucleotid-Konzentrationen sowie der Einstellung der Zyklenanzahl die Mutationsfrequenz und Gesamtanzahl der Mutationen in der amplifizierten DNA eingestellt wird und/oder b) ein oder mehrere Ausgangs-Hydrolasegene, ein oder mehrere gemäß Schritt a) mutierte Hydrolasegene oder Gemische von einem oder mehreren Ausgangs-Hydrolasegenen und einem oder mehreren gemäß Schritt a) mutierten Hydrolasegenen durch enzymatische Fragmentierung dieser Gene und nachfolgender enzymatischer Reassemblierung der entstandenen Fragmente zu vollständig rekombinierten Hydrolasegenen mutagenisiert werden,
- c) die gemäß Schritt a) oder b) erhaltenen mutierten Hydrolasegene in einen Wirtsorganismus transformiert werden und
- d) Hydrolase-Mutanten mit verbesserten Eigenschaften, die von in Schritt c) erhaltenen Transformanten exprimiert werden, durch ein Testverfahren
- 2. Verfahren gemäß Anspruch 1, wobei in Schritt a) bei der PCR durch Einstellen der Mg²⁺-, Mn²⁺- und der Desoxynucleotid-Konzentration eine durchschnittliche Mutationsfrequenz von 1-2 Basenaustauschen bezogen
- auf das zu mutagenisierende Hydrolasegen eingestellt wird.

identifiziert werden.

3. Verfahren gemäß Anspruch 1, wobei in Schritt a) als Ausgangs-Hydrolasegen ein in einer zuvor gemäß Anspruch 1 durchgeführten PCR mutagenisiertes Hydrolasegen eingesetzt wird.

- 4. Verfahren gemäß Anspruch 1, wobei in Schritt b) die enzymatische Fragmentierung der Hydrolasegene mit einer Desoxyribonuclease durchgeführt wird.
- 5. Verfahren gemäß Anspruch 1, wobei in Schritt b) die Reassemblierung der Fragmente enzymatisch mit Hilfe einer thermostabilen DNA-Polymerase unter Verwendung eines zyklischen Temperaturprogrammes, in welchem die Parameter Temperatur und Zyklendauer eingestellt werden, durchgeführt wird.
- 6. Verfahren gemäß Anspruch 1, wobei in Schritt b) während der enzymatischen Reassemblierung durch Einstellen der Mg²⁺-, Mn²⁺- und der Desoxynucleotidkonzentration die Mutationsfrequenz eingestellt wird.
- 7. Verfahren gemäß Anspruch 1, wobei in Schritt b) die vollständig rekombinierten Hydrolasegene nach Beeendigung der Reassemblierungsreaktion durch eine Polymerase-Kettenreaktion amplifiziert werden.
- 8. Verfahren gemäß Anspruch 1, wobei in Schritt b) entweder aus Schritt a) gemäß Anspruch 1 oder 2 erhaltene modifizierte Hydrolasegene oder mehrere gemäß Anspruch 3 mutagenisierte Hydrolasegene der Fragmentierung und Reassemblierung unterworfen werden.
- 9. Verfahren gemäß Anspruch 1, wobei in Schritt b) zur Reassemblierung zusätzlich synthetisch hergestellte Genfragmente eingesetzt werden.
- 10. Verfahren gemäß Anspruch 1, wobei in Schritt b) zur Reassemblierung Hydrolasegen-Fragmente aus unterschiedlichen Organismen eingesetzt werden können, die eine Sequenzhomologie von mindestens 60% zueinander besitzen.
- 11. Verfahren gemäß Anspruch 2 oder 6, wobei die Hydrolase-Mutanten Lipase- oder Esterasemutanten sind und die Konzentration der Magnesium-lonen 1,5 bis 8,0 mM, bevorzugt 5,8 bis 6,4 mM ist und die Konzentration der Mangan-lonen 0,0 bis 3,0 mM, bevorzugt < 0,3 mM ist.

- 12. Verfahren gemäß Anspruch 2 oder 6, wobei die Hydrolase-Mutanten Lipase- oder Esterasemutanten sind und die Konzentration der Desoxynucleotidtriphosphate 0,05 mM bis 1,0 mM, bevorzugt 0,2 mM beträgt.
- 13. Verfahren gemäß Anspruch 1, wobei in Schritt d) zum Test auf Stereooder Regioselektivität der Hydrolase-Mutanten ein Testsubstrat mit einer
 chromophoren Gruppe versehen ist, die nach der Abspaltung durch den
 Katalysator eine Änderung der Absorption oder Emission hervorruft, die
 spektrometrisch bestimmt wird und die reinen Stereo- oder Regioisomeren
 des Testsubstrates in getrennten Testgefäßen mit gleichen Mengen der
 Hydrolase-Mutanten versetzt werden und die Stereo- oder
 Regioselektivität aus dem Verhältnis der erhaltenen linearen Anfangsgeschwindigkeiten der Reaktionen bestimmt werden kann.
- 14. Verfahren gemäß Anspruch 13, wobei als Testsubstrat die Stereooder Regioisomeren einer Verbindung mit einer über eine Carbonsäureester- oder Carbonsäureamid-Bindung gebundene, UV/VIS-aktive oder fluoreszenzaktive Molekülgruppe eingesetzt werden.
- 15. Verfahren gemäß Anspruch 14, wobei die UV/VIS-aktive Molekülgruppe ein p-Nitrophenyl-Rest ist.
- 16. Verfahren gemäß Anspruch 1, wobei in Schritt d) der Test auf Stereooder Regioselektivität über die Bestimmung der zeitlichen Konzentrationsänderung von freien Fettsäuren oder Bernsteinsäure erfolgt,
 wobei die entsprechenden stereo- oder regioisomeren Carbonsäureester
 oder -amide mit Hilfe der Hydrolase-Mutanten in getrennten Gefäßen zu
 freien Fettsäuren oder Bernsteinsäure hydrolysiert werden.
- 17. Verfahren gemäß Anspruch 1, wobei in Schritt d) der Test auf Stereooder Regioselektivität über die Messung der Radioaktivität erfolgt, wobei die Hydrolase-Mutanten mit in einer funktionellen Gruppe unterschiedlich

radioaktiv markierten Stereo- oder Regioisomeren umgesetzt werden und wobei das Gemisch der Stereo- oder Regioisomeren trägerfixiert ist.

- 18. Verfahren gemäß Anspruch 17, wobei eines der Stereo- oder Regioisomere des an den Träger gebundenen Gemisches der isomeren Verbindung mit dem Radioisotop ³H und das andere Stereoisomer mit dem Radioisotop ¹⁴C markiert ist.
- 19. Verfahren gemäß Anspruch 1, wobei in Schritt d) der Test auf Stereoselektivität über die kapillarelektrophoretische Bestimmung der Reaktionsprodukte und -edukte einer Testreaktion erfolgt, wobei die Trennung der stereoisomeren Reaktionsprodukte und -edukte in chiral-modifizierten Kapillaren durchgeführt wird.
- 20. Verfahren gemäß Anspruch 13 bis 19, wobei mehrere Reaktionen parallel in Mikrotiterplatten durchgeführt werden.
- 21. Verfahren nach Anspruch 1, wobei in den in Schritt d) identifizierten Mutanten mit verbesserten Eigenschaften durch Sequenzierung die Position des Codons, das für die veränderte Aminosäure codiert, lokalisiert wird, nachfolgend mittels ortsgerichteter Sättigungsmutagenese einen Satz Hydrolasegene mit allen für diese Position möglichen Codons erzeugt wird, und die so erhaltenen mutierten Hydrolasegene analog Schritten c) und d) von Anspruch 1 weiterbehandelt werden.
- 22. Verfahren nach Anspruch 2, wobei die Lokalisierung der Position des Codons, das für die veränderte Aminosäure codiert, durch DNA-Sequenzierung erfolgt.
- 23. Hydrolase-Mutante erhältlich durch ein Verfahren gemäß einen oder mehreren der Ansprüche 1 bis 22.
- 24. Hydrolase-Mutante gemäß Anspruch 23, die eine Lipase-Mutante ist.
- 25. Hydrolase-Mutante gemäß Anspruch 23, die eine Esterase-Mutante ist.

WO 99/05288

- 26. Hydrolase-Mutante gemäß Anspruch 24, die eine Lipase-Mutante der Ausgangs-Lipase aus dem Stamm *P. aeruginosa* ist.
- 27. Hydrolase-Mutante gemäß Anspruch 26, die durch Exprimieren der Transformanten P1B 01-E4 (DSM 11 658), P2B 08-H3 (DSM 11 659), P3B 13-D10 (DSM 11 660), P4B 04-H3 (DSM 12 322), P5B 14-C11 (DSM 12 320) oder P4BSF 03-G10 (DSM 12 321) erhältlich ist.
- 28. Hydrolase-Mutante gemäß Anspruch 24, die die Aminosäuresequenz der in SEQ ID NOs 4, 6, 8, 12, 14, 16 oder 18 gezeigten reifen Proteine aufweist.
- 29. DNA-Sequenz, die für eine Hydrolase-Mutante gemäß einem oder mehreren der Ansprüche 23 bis 28 kodiert.
- 30. DNA-Sequenz gemäß Anspruch 29, die eine in SEQ ID NOs 3, 5, 7, 11, 13, 15 oder 17 gezeigte DNA-Sequenz umfaßt.
- 31. Vektor, umfassend eine DNA-Sequenz gemäß Anspruch 29 oder 30.
- 32. Transformante, umfassend eine DNA-Sequenz gemäß Anspruch 29 oder 30 und/oder einen Vektor gemäß Anspruch 31.
- 33. Transformante gemäß Anspruch 32, die Transformante P1B 01-E4 (DSM 11 658), P2B 08-H3 (DSM 11 659), P3B 13-D10 (DSM 11 660), P4B 04-H3 (DSM 12 322), P5B 14-C11 (DSM 12 320) oder P4BSF 03-G10 (DSM 12 321) ist.
- 34. Verfahren zur Herstellung von Hydrolasemutanten mit verbesserten Eigenschaften, umfassend das Kultivieren einer Transformanten gemäß Anspruch 32 oder 33.
- 35. Verfahren zum Test von Katalysatoren auf Stereo- oder Regioselektivität, wobei ein Testsubstrat und die reinen Stereo- oder

Regioisomeren des Testsubstrates, die mit einer chromophoren Gruppe versehen sind, die nach der Abspaltung durch den Katalysator eine spektrometrisch bestimmbare Änderung der Absorption oder Emission hervorruft, in getrennten Testgefäßen mit gleichen Mengen des Katalysators versetzt werden und die Stereo- oder Regioselektivität aus dem Verhältnis der erhaltenen linearen Anfangsgeschwindigkeiten der Reaktionen bestimmt wird.

		•
		· ·

Fig. 1

		•
		-

		•
		•
		•

		•
		·

P4BSF 03-G10

$$V_{app}(S) = 384.7$$

$$V_{app}(R) = 25.3$$

$$E_{app} = 15.2$$

		·

5/13

Fig. 2

											-										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	6666666	A A A A A A A	T T T T T T T	00000000	00000000	00000000	0000000	. 0000000	00000000	19-00000000	T T T T T T T T T T T T T T T T T T T	T T T T T T T	00000000	TTTTTTTT	00000000	00000000	00000000	9999999	00000000	19 20 20 20 20 20 20 20
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	20 4 4 4 4 4 4 4	A A A A A A A	00000000	00000000	A A A A A A A	T T T T T T	T T T T T T	00000000	9999999	00000000	300000000	00000000	00000000	A A A A A A A	T T T T T T	0000000	9999999	00000000	7 7 7 7 7 7	00000000	39 40 40 40 40 40 40
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	-4-00000000	00000000	A A A A A A A	00000000	9999999	A A A A A A A	00000000	00000000	00000000	00000000	-50-00000000	00000000	00000000	00000000	T T T T T T T T T	00000000	66666666	00000000	00000000	00000000	59 60 60 60 60 60 60
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	000000000	00000000	A A A A A A A	T T T T T T T T T T T T T T T T T T T	00000000	A A A A A A A	A A A A A A A	00000000	00000000	TTTTTTTT	-70 -G G G G G G G	A A A A A A A	9999999	A A A A A A A	T T T T T T T T T T T T T T T T T T T	6666666	A A A A A A A	00000000	A A A A A A A	A A A A A A A	79 80 80 80 80 80 80
	80						_				90				·		_	_			
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	000000000	A A A A A A A	A A A A A A A	00000000	A A A A A A A	T T T T T T T T T T	00000000	A A A A A A A	A A A A A A A	66666666	- A A A A A A A	A A A A A A A	99999999	A A A A A A A	A A A A A A A	9999999	T T T T T T T	04000000	TTTTTTT	00000000	99 100 100 100 100 100 100
	_	_						_			440			-							
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	100 T T T T T T T T T	G G G	00000000	T T T T T T T T	00000000	C	00000000	00000000	00000000	T T T T T T T	11-00000000	0000000	G G	000000	00000000	T T T T T T	00000000	9999	0000	00000000	119 120 120 120 120 120 120 120

	120				_				_		130					_	_		_	_	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	A A A A A A A	T T T T T T	00000000	00000000	99999999	T T T T T T	00000000	T T T T T T T T T T T T T T T T T T T	00000000	6666666	00000000	00000000	T T T T T T T T T T T T T T T T T T T	00000000	T T T T T T T T	00000000	T T T T T T T	00000000	00000000	00000000	139 140 140 140 140 140 140
	140)									150										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	T T T T T T T T T T T T T T T T T T T	00000000	00000000	00000000	A A A A A A A	00000000	00000000	00000000	00000000	T T T T T T T T	00000000	T	9999999	A A A A A A A	T	00000000	00000000	A A A A A A A	0000000	00000000	159 160 160 160 160 160 160
	160)							_		170										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	A A A A A A A	00000000	00000000	A A A A A A A	00000000	00000000	T T T T T T T T T T T T T T T T T T T	A A A A A A A	00000000	A A A A A A A	00000000	00000000	00000000	A A A A A A A	00000000	A A A A A A A	00000000	00000000	179 180 180 180 180 180 180 180
	180								_		190		_								
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	4444444	A A A A A A A	A A A A A A A	T T T T T T	A A A A A A A	00000000	00000000	00000000	00000000	A A A A A A A	T T T T T T T T T T T T T T T T T T T	00000000	00000000	T T T T T T	9999999	00000000	T T T T T T	00000000	00000000	00000000	199 200 200 200 200 200 200 200
	200									_	210										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	A A A A A A A	00000000	99999999	99999999	00000000	A A A A A A A	T T T T T T T T T T T T T T T T T T T	00000000	00000000	T T T T T T	00000000	00000000	00000000	00000000	T T T T T T	T T T T T T T	00000000	00000000	219 220 220 220 220 220 220 220 220
	220	,								_	230										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	444444	0000000	A A A A A A	A A A A A A	0000000	A A A A A A	TTTTTT	0000000	0000000	T	CCCTTTT	999999	G	0000000	0000000	T T T T T T	0000000	0000000	A A A A A A	0000000	239 240 240 240 240 240 240 240

			,
•			

7/13

	240 250	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	T A C T G G T T C G G C A T T C C C A G 259 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260 T A C T G G T T C G G C A T T C C C A G 260	
	260 270	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	C G C C T T G C G C C G T G A C G G T G 279 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280 C G C C T T G C G C C G T G A C G G T G 280	
	280 290	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	C C C A G G T C T A C G T C A C C G A A 299 C C C C A G G T C T A C G T C A C C G A A 300 C C C A G G T C T A C G T C A C C G A A 300 C C C A G G T C T A C G T C A C C G A A 300 C C C C A G G T C T A C G T C A C C G A A 300 C C C C A G G T C T A C G T C A C C G A A 300 C C C C A G G T C T A C G T C A C C G A A 300 C C C A G G T C T A C G T C A C C G A A 300 C C C C A G G T C T A C G T C A C C G A A 300)
	300 310	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	G T C A G C C A G T T G G A C A C C T C 319 G T C A G C C A G T T G G A C A C C T C 320 G T C A G C C A G T T G G A C A C C T C 320 G T C A G C C A G T T G G A C A C C T C 320 G T C A G C C A G T T G G A C A C C T C 320 G G C A G C C A G T T G G A C A C C T C 320 G G C A G C C A G T T G G A C A C C T C 320 G G C A G C C A G T T G G A C A C C T C 320 G G C A G C C A G T T G G A C A C C T C 320 G G C A G C C A G T T G G A C A C C T C 320	
	320 330	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	G G A A G T C C G C G G C G A G C A G T 339 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346 G G A A G T C C G C G G C G A G C A G T 346	
	340 350	
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	T G C T G C A A C A G G T G G A G G A A 355 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366 T G C T G C A A C A G G T G G A G G A A 366	

	360										370)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	444444	T T T T T T T	00000000	00000000	T T T T T T T T T T T T T T T T T T T	00000000	00000000	00000000	00000000	00000000	T T T T T T T T T T T T T T T T T T T	00000000	A A A A A A A	00000000	00000000	9999999	9999999	00000000	00000000	A A A A A A A	379 380 380 380 380 380 380 380
	380)									390	,									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	00000000	00000000	A A A A A A A	A A A A A A A	00000000	00000000	T	00000000	A A A A A A A	A A A A A A A	00000000	00000000	T	9999999	A A A A A A A	TTTTTTTT	00000000	66666666	399 400 400 400 400 400 400 400
	400)									410)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	00000000	A A A A A A A	00000000	A A A A A A A	99999999	00000000	00000000	~~~~~	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	419 420 420 420 420 420 420 420
	-																				
	420	,									430	l									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	AAAAAAA	00000000	00000000	A A A A A A A	T T T T T T T T T	00000000	00000000	9999999	00000000	TTTTTTT	43- A A A A A A A A	00000000	99999999	T T T T T T	00000000	00000000	00000000	00000000	00000000	00000000	439 440 440 440 440 440 440
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	44444	00000000	000000	A A A A A	TTTTT	000000	000000	999999	000000	TTTTTTT	A A A A A A	00000000	99999	T T T T T T	000000	999999	000000	000000	999999	000000	440 440 440 440 440 440
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	4444444	00000000	000000	A A A A A	TTTTT	000000	000000	999999	000000	TTTTTTT	-	00000000	99999	T T T T T T	000000	999999	000000	000000	999999	000000	440 440 440 440 440 440
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	444444 -4-0000000		CCCCCCC	AAAAAA	TTTTTT		CCCCCCC		0000000 0000000	TTTTTTT 0000000	AAAAAAA - 450 GGGGGGG	CCCCCCC		TTTTTTT CCCCCC	CCCCCCC	0000000 0000000	CCCCCC AAAAA	COCCCC	0000000 0000000	0000000 0000000	440 440 440 440 440 440 440 460 460 460

		·

	480						_				490	_									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	000000000	00000000	00000000	00000000	00000000	99999999	00000000	A A A A A A A	00000000	A A A A A A A	A A A A A	00000000	9999999	9999999	T T T T T T T	TTTTTTT	00000000	9999999	9999999	A A A A A A	499 500 500 500 500 500 500 500
	500)							-		510										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	A A A A A A	00000000	00000000	9999999	00000000	00000000	9999999	A A A A A A A	00000000	TTTTTTTT	T T T T T T T	00000000	00000000	7 7 7 7 7 7 7	00000000	00000000	00000000	00000000	00000000	519 520 520 520 520 520 520 520
	520)									530										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	A A A A A A A	00000000	A A A A A A A	T T T T T T T T T	00000000	00000000	00000000	A A A A A A A	00000000	00000000	00000000	00000000	00000000	TTTTTTT	TTTTTTT	00000000	00000000	00000000	00000000	00000000	539 540 540 540 540 540 540 540
	540				_						-										
											550	i									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	9-100000000	00000000	00000000	00000000	A A A A A A A	00000000	9999999	00000000	A A A A A A A	00000000	550 T T T T T T T T	00000000	00000000	T T T T T T T T T	00000000	T T T T T T T	00000000	00000000	9999999	00000000	559 560 560 560 560 560 560
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	-0000000	00000000	000000	999999	A A A A A	666666	999999	000000	A A A A A A	00000000	T T T T T T T T	00000000	000000	TTTTTT	000000	T T T T T T T	000000	000000	999999	00000	560 560 560 560 560 560
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	-000000000	00000000	000000	999999	A A A A A	666666	999999	000000	A A A A A A	00000000	T T T T T T T T T T T T T T T T T T T	00000000	000000	TTTTTT	000000	T T T T T T T	000000	000000	999999	00000	560 560 560 560 560 560
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	-0000000-84 00000000		CCCCCCC	0000000 0000000	AAAAAA GGGGGGG	GGGGGGG		COCCCC	AAAAAA		TTTTTTT T570 AAAAAA		0000000 0000000	TTTTTT 000000	CCCCCCC	TTTTTT CCCCCC		0000000 0000000		0000000 0000000	560 560 560 560 560 560 560 579 580 580 580 580 580

	·		
			•

	600										610			_							
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10		00000000	00000000	00000000	00000000	0000000	A G G G G G G	0000000	00000000	A A A A A A A	-000000	00000000	00000000	00000000	てすすすすすすす	A A A A A A A	00000000	00000000	00000000	A A A A A A A	619 620 620 620 620 620 620 620
	620)									630										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	~ ~ ~ ~ ~ ~ ~	A A A A A A A	T T T T T T T T T T T T T T T T T T T	TTTTTTTT	CCCTTTTT	AAAAAAT	00000000	T T T T T T T T T T T T T T T T T T T	00000000	00000000	0000000	00000000	T T T T T T T T T T T T T T T T T T T	00000000	9999999	00000000	T T T T T T T T T	00000000	0000000	639 640 640 640 640 640 640
	640)					_				650										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	~ ~ ~ ~ ~ ~ ~	00000000	TTTTTTTT	00000000	00000000	00000000	T T T T T T T T T	00000000	~~~~~	A A A A A A A	00000000	A A A A A A A	00000000	000000	00000000	~ ~ ~ ~ ~ ~ ~	00000000	00000000	00000000	T T T T T T	659 660 660 660 660 660 660
	-,										_										
	660)									670										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	6-00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	T T T T T T T T	670 TTTTTTTT	00000000	A A A A A A A	A A A A A A A	00000000	00000000	00000000	00000000	A A A A A A A	A A A A A A A	679 680 680 680 680 680 680
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	-0000000	00000000	000000	999999	000000	999999	000000	999999	000000	T T T T T T T T	T T T T T T T T T	00000000	A A A A A	A A A A A A	000000	999999	000000	000000	A A A A A	A A A A A	680 680 680 680 680
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	- 000000000	00000000	000000	999999	000000	999999	000000	999999	000000	T T T T T T T T	TTTTTTT	00000000	A A A A A	A A A A A A	000000	999999	000000	000000	A A A A A	A A A A A	680 680 680 680 680
P1B 01-H1 P1B 01-H2 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	-00000000-8-1 00000000	CCCCCCC TTTTTTT	CCCCCCC		0000000 0000000				CCCCCC	TTTTTTT GGGGGGGG	TTTTTTT FO GGGGGGG	000000000 000000000	AAAAAA CCCCCC	AAAAAA	CCCCCCC		0000000 0000000	0000000 0000000	A A A A A A A C C C C C C C C C C C C C	AAAAAA	680 680 680 680 680 680 699 700 700 700 700 700

	720										730	<u> </u>						_	_		
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	04400000	T T T T T T	A A A A A A A	00000000	A A A A A A A	A A A A A A A	00000000	00000000	TTTTTTTT	00000000	A A A A A A A	A A A A A A A	00000000	0000000	00000000	00000000	00000000	T T T T T	739 740 740 740 740 740 740 740
	740)									750)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	A A A A A A A	00000000	00000000	TTTTTTT	A A A A A A A	TTTTTTT	TTTTTTT	A A A A A A A	00000000	T T T T T T T T T T T T T T T T T T T	00000000	00000000	T T T T T T T T	00000000	00000000	A A A A A A A	00000000	00000000	00000000	759 760 760 760 760 760 760 760
	760)								_	770)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	-000000000	TTTTTTTT	TTTTTTTTT	00000000	00000000	T T T T T T T T	00000000	00000000	00000000	00000000	00000000	00000000	T T T T T T T T T T T T T T T T T T T	00000000	~ ~ ~ ~ ~ ~ ~	00000000	00000000	~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	00000000	779 780 780 780 780 780 780 780
	780										790										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10		T T T T T T T T T T T T T T T T T T T	00000000	00000000	T T T T T T T	00000000	00000000	A A A A A A A	T T T T T T	00000000	000000000	00000000	A A A A A A A	00000000	00000000	99999999	A A A A A A A	00000000	00000000	00000000	799 800 800 800 800 800 800 800
	800										810										
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	T	T T T T T T T T	00000000	00000000	T T T T T T T	00000000	00000000	00000000	00000000	00000000	00000000	00000000	T T T T T T T T T	00000000	99999999	TTTTTTT	00000000	9999999	00000000	819 820 820 820 820 820 820 820
	820										830)					_				
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	TTTTTTTTTT	00000000	A A A A A A A	00000000	00000000	T T T T T T T T	T T T T T T T T T T T T T T T T T T T	00000000	A A A A A A A	A A A A A A A	-00000000	A A A A A A A	A A A A A A A		G G	99999	С С С	A A A A A A A	00000000	00000000	839 840 840 840 840 840 840

	_										7										
	840										850)		_							
Wildtyp	Ġ	С	C	Α	Α	С	Ğ	Α	Ç	G	G	С	С	T	G	G	T	C	G	G	859
P1B 01-H1	G	С	С	Α	Α	С	G	Α	С	G	G	C	С	T	G	G	T	C	G	G	860
P1B 01-E4	G	C	Ç	A	A	C	G	A	C	G	G	C	C	T	G	G	T	C	G	G G	860
P2B 08-H3	G	C	Ċ	A	A	C	G	A	C	G	G	C	C	T	G	G	Ť	C	G	G	860 860
P3B 13-D10 P4B 04-H3	G	C	0	A	A A	C	G	A A	C	G	G	C	C	Ϋ́	G	G	Ť	č	G	G	860
P5B 14-C11	G	C	č	Â	A	C	G	Â	c	G	G	č	C	÷	G	G	÷	č	G	G	860
P4BSF 03-G10	G	č	č	Â	Â	č	G	Â	č	G	G	č	č	÷	G	G	Ť	č	Ğ	Ğ	860
1 1201 11 0	•	Ŭ	Ŭ	•	•	Ŭ	Ŭ	•	Ŭ	•	Ĭ	_	_	•	_	_					
	960										870	,									
	860																				
Wildtyp	C	Α	C	C	Ţ	G	С	Α	G	T	Ţ	C	G	C	Ā	C	C	Ţ	G	G	879
P1B 01-H1	C	A	C	C	Ţ	G	C	A	G	Ţ	Ţ	C	G	C	A	C	C	T	G	G G	880 880
P1B 01-E4	C	A	00	C	T T	G	C	A	G	T	T T	C	G	č	A A	C	Č	Ť	G	G	880
P2B 08-H3 P3B 13-D10	c	Â	č	Č	Ť	G	č	Â	G	÷	Ť	č	G	č	Â	č	č	Ť	Ğ	Ğ	880
P4B 04-H3	č	A	č	č	Ť	G	č	A	G	Ť	Ť	č	Ğ	č	A	č	č	T	Ğ	Ğ	880
P5B 14-C11	č	A	č	č	T	Ğ	Č	Α	Ğ	Ť	Ť	Č	G	Ç	Α	С	С	Τ	G	G	880
P4BSF 03-G10	C	Α	С	С	T	G	С	Α	G	Т	Т	С	G	С	Α	С	С	Т	G	G	880
	880)									890										
	占	Ċ	Ā	Ŧ	G	G	Т	G	Ā	Ŧ	Ċ	<u></u>	Ğ	С	G	Ā	С	Ā	A	С	899
Wildtyp	G	Ç	Ä	Ť	Ğ	G	Ť	Ğ	Â	Ť	č	Č	Ğ	č	Ğ	A	č	Ä	Ä	č	900
P1B 01-H1 P1B 01-E4	Ğ	č	Α	T	Ğ	Ğ	Ť	G	Α	Ť	Ċ	Ċ	G	Ċ	G	Α	С	Α	Α	C	900
P2B 08-H3	G	С	Α	T	G	G	Т	G	Α	Т	С	С	G	С	G	Α	С	Α	Α	C	900
P3B 13-D10	G	С	Α	Т	G	G	T	G	Α	Т	С	С	G	С	G	Α	С	A	A	C	900
P4B 04-H3	G	С	Α	T	G	G	T	G	A	T	C	С	G	Ċ	G	A	Č	A	À	Č	900
P5B 14-C11	G	C	Α	Ţ	G	G	T	G	A	Ţ	C	C	G	C	G	A	C	A	A	C	900 900
P4BSF 03-G10	G	С	Α	Т	G	G	T	G	Α	Т	С	C	G	C	G	^	C	^	^	C	900
	-1-										910					_					
	900					_			_		910					_		~	_	<u> </u>	010
Wildtyp	900	Ā	C	C	G	G	A	Ţ	G	Α	Ä	С	0 0	Ā	0 0	C C	T	G	G	A	919 920
P1B 01-H1	구 900	A	C	С	G	G	Α	Т	G	A A	Ā A	C	С	Α	С	С	Т	G	G	A A A	919 920 920
P1B 01-H1 P1B 01-E4	900 + T T	Ā	CC	C C				T T		Α	Ä	С								Α	920
P1B 01-H1 P1B 01-E4 P2B 08-H3	구 900	A A A	C	С	G G	G G	A A	Т	G G	A A A	A A A	CCC	C C	A A	C	0000	T	G G	G G	A	920 920
P1B 01-H1 P1B 01-E4	900 + T T	A A A	000	00000	G G G	G G G	A A A	T T T	G G G	A A A	A A A	000000	00000	A A A	00000	00000	T T T T T	99999	9999	A A A A	920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10	900 T T T T T T	A A A A A A	000000	000000	GGGGGGG	$\begin{smallmatrix} G & G & G & G & G \\ \end{smallmatrix}$	A A A A A	T T T T T T	999999	A A A A A A	A A A A A A	0000000	000000	A A A A A	000000	000000	T T T T T T	999999	999999	A A A A A	920 920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3	900 T T T T T	A A A A A	00000	00000	00000	99999	A A A A	T T T T	99999	A A A A A	AAAAA	000000	00000	A A A A	00000	00000	T T T T T	99999	9999	A A A A	920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	900	A A A A A A A	000000	000000	GGGGGGG	$\begin{smallmatrix} G & G & G & G & G \\ \end{smallmatrix}$	A A A A A	T T T T T T	999999	A A A A A A A	-	00000000	000000	A A A A A	000000	000000	T T T T T T	999999	999999	A A A A A	920 920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	900	A A A A A A A	0000000	0000000	0000000	999999	A A A A A A	T T T T T T T	0000000	A A A A A A A	A A A A A A A A 930	00000000	0000000	A A A A A A	000000	0000000	T T T T T T T	0000000	0000000	A A A A A A	920 920 920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	900 T T T T T T T T T T T T T T T T T T T	A A A A A A A A	0000000	0000000	00000000	G G G G G G	A A A A A A A	TTTTTT	G G G G G G	A A A A A A A C	A A A A A A A A A 930 C	COCCOCC	0000000	A A A A A A G	CCCCCCC	0000000	TTTTTT	GGGGGGG	00000000	A A A A A A A	920 920 920 920 920 920 920
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1	900 TTTTTTTT 720 CC	AAAAAAA GG	0000000	0000000	00000000 00	GGGGGGG	AAAAAA GG	TTTTTTT	GGGGGGG AA	A A A A A A A A C C C	A A A A A A A A - 93 C C	CCCCCCC	0000000 00	AAAAAA GG	0000000	0000000 00	T T T T T T T T T	GGGGGGG	00000000	AAAAAA	920 920 920 920 920 920 920 939 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4	900	AAAAAAA GGGG	CCCCCCC	0000000 000	00000000	GGGGGGG	A A A A A A A G G G G	TTTTTTT	GGGGGGG	A A A A A A A A C C C C	AAAAAAA -33-CCC	COCCOCC	0000000 000	AAAAAA GGG	0000000	0000000 000	T T T T T T T T T T T T T T T T T T T	GGGGGGG	00000000	AAAAAA	920 920 920 920 920 920 920 939 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3	900 TTTTTTT -20 CCCC	AAAAAAA GGGG	COCCCCC	00000 00000	00000000	GGGGGGG	AAAAAA GGGG	TTTTTTT AAAA	GGGGGGG AAAA	A A A A A A A A C C C C C	AAAAAAA -30-CCCC	CCCCCCC	0000000 00	AAAAAA GG	0000000	0000000 00	T T T T T T T T T	GGGGGGG	00000000	AAAAAA	920 920 920 920 920 920 920 939 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10	900	AAAAAAA GGGG	CCCCCCC	0000000 000	00000000	GGGGGGG	A A A A A A A G G G G	TTTTTTT	GGGGGGG	A A A A A A A A C C C C	AAAAAAA -33-CCC	COCCCCC	00000 00000	AAAAAA GGGG	CCCCCCC	000000 0000	TTTTTT	GGGGGGG	00000000 00000	A A A A A A G G G G G	920 920 920 920 920 920 920 920 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3	900	AAAAAAA GGGGG	COCCCCC	000000 000000	000000 000000	GGGGGGG	AAAAAA GGGGG	TTTTTTT AAAAA	GGGGGGG AAAA	A A A A A A A A C C C C C C	AAAAAAA -30-00000	COCCCCC	000000 000000	AAAAAA GGGGG	CCCCCCC	0000000 0000000	TTTTTTCC	GGGGGGG TTTTTT		AAAAAA GGGGGGG	920 920 920 920 920 920 920 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3	900	AAAAAAA GGGGGG	COCCCC	0000000 0000000	0000000 0000000	GGGGGGG	AAAAAA GGGGGG	TTTTTTT AAAAA	GGGGGGG AAAAA	A A A A A A A A A A A A A A A A A A A	4444444 -3 -000000	COCCCCC		AAAAAA GGGGGG	CCCCCCC	0000000 000000	TTTTTT	GGGGGGG TTTTT	0000000 0000000	AAAAAA GGGGGG	920 920 920 920 920 920 920 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	900	AAAAAAA GGGGGGG	CCCCCC	0000000 0000000	0000000 0000000	GGGGGGG	AAAAAA GGGGGGG	TTTTTTT AAAAAA	GGGGGGG AAAAAA	A A A A A A A A C C C C C C C C C C C C	AAAAAAA -30-CCCCCCC	COCCOCC		AAAAAA GGGGGGG	CCCCCCC	0000000 0000000	TTTTTTCC	GGGGGGG TTTTTT		AAAAAA GGGGGGG	920 920 920 920 920 920 920 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11	900	AAAAAAA GGGGGGG	CCCCCC	0000000 0000000	0000000 0000000	GGGGGGG	AAAAAA GGGGGGG	TTTTTTT AAAAAA	GGGGGGG AAAAAA	4444444 00000000	AAAAAAA -30-CCCCCCC	CCCCCCC		AAAAAA GGGGGGG	CCCCCCC	0000000 0000000	TTTTTTCC	GGGGGGG TTTTTT		AAAAAA GGGGGGG	920 920 920 920 920 920 920 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	90 TTTTTTT F2 CCCCCCC F4-	AAAAAAA GGGGGGG	CCCCCC	0000000 0000000	0000000 0000000	GGGGGGG	AAAAAA GGGGGGGG	TTTTTTT AAAAAA	GGGGGGG AAAAAA	4444444 00000000	AAAAAAA -30 CCCCCCCC	CCCCCCC		AAAAAA GGGGGGG	CCCCCCC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	00000000	TTTTTTCCT	GGGGGGG TTTTTTT G	0000000 0000000 A	AAAAAA GGGGGGGG	920 920 920 920 920 920 920 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp	90 TTTTTTT F8 CCCCCCC F8 G		COCCCC AAAAAAA CC	000000000000000000000000000000000000000		GGGGGGG TTTTTTT AA	A A A A A A A A A A A A A A A A A A A	TTTTTTT AAAAAAA CC	GGGGGGG AAAAAAA AA	AAAAAAA CCCCCCCC GG	- AAAAAAA - 33-00000000 - 55-00	CCCCCCC AAAAAAA CC	0000000 000000000 TT	AAAAAA GGGGGGGG GG	CCCCCC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	00000000 00000000	TTTTTTCCT	GGGGGGG TTTTTTT GG	0000000 0000000 AA	AAAAAA GGGGGGGG GG	920 920 920 920 920 920 920 920 940 940 940 940 940 940
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	90 TETTTTTT TO CCCCCCC F8 1000	AAAAAAA GGGGGGGG CCC	COCCCC AAAAAA CCC			GGGGGGG TTTTTTTT AAA	A A A A A A A A A A A A A A A A A A A	TTTTTTT AAAAAAA CCC	GGGGGGG AAAAAAA AAA	AAAAAAA CCCCCCCC GGG	4444444 -3 -00000000 -5 -000	CCCCCCC AAAAAAA CCCC	0000000 000000000 1111	AAAAAA GGGGGGGG GGG	CCCCCC TTTTTTTT TTT	00000000 00000000	TTTTTT CCT CCC	GGGGGGG TTTTTTT GGG	0000000 0000000 AAA	AAAAAA GGGGGGGG GGG	920 920 920 920 920 920 920 940 940 940 940 940 959 960 960
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	90	AAAAAAA GGGGGGGG CCCC	COCCCC AAAAAAA CCCCC	00000000 000000000		GGGGGGG TTTTTTTT AAAA		TTTTTT AAAAAAA CCCC	GGGGGGG AAAAAAA AAAA	AAAAAAA CCCCCCCC GGGG	444444 -3-00000000 -5-0000	COCCOCC AAAAAAA CCCC	000000000000000000000000000000000000000	AAAAAA GGGGGGGG GGGG	CCCCCCC TTTTTTTT TTTT	00000000	TTTTTCCT	GGGGGGG TTTTTTT GGGGG		A A A A A A A A A A A A A A A A A A A	920 920 920 920 920 920 920 940 940 940 940 940 959 960 960 960
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10	90	AAAAAAA GGGGGGGG CCCCC		00000000 000000000		GGGGGGG TTTTTTTT AAAAA		TTTTTT AAAAAAA CCCCC	GGGGGGG AAAAAAA AAAAA		4444444 -39-00000000 -59-00000	00000000 444444 000000		A A A A A A A G G G G G G G G G G G G G	CCCCCCC TTTTTTTT TTTTT	00000000	TTTTT COT CCCCC	GGGGGGG TTTTTTT GGGGG		A A A A A A A A G G G G G G G G G G G G	920 920 920 920 920 920 920 940 940 940 940 940 959 960 960
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P3B 13-D10 P4B 04-H3	90 TTTTTTT TS CCCCCCC FS GGGGGG	AAAAAAA GGGGGGGG CCCCCC	COCCCC AAAAAA CCCCCC			GGGGGGG TTTTTTTT AAAAAA		TTTTTT AAAAAAA CCCCCC	GGGGGGG AAAAAAA AAAAA		4444444 -39 00000000 -55 000000	00000000 4444444 0000000		A A A A A A G G G G G G G G G G G G G G	CCCCCCC TTTTTTTT TTTTTT	00000000	TTTTTT COT COCCO	0000000		A A A A A A A A A A A A A A A A A A A	920 920 920 920 920 920 920 940 940 940 940 940 940 960 960 960
P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P5B 14-C11 P4BSF 03-G10 Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10	90 T	AAAAAAA GGGGGGGG CCCCC		00000000 000000000		GGGGGGG TTTTTTTT AAAAA		TTTTTT AAAAAAA CCCCC	GGGGGGG AAAAAAA AAAAA		4444444 -39 UUUUUUUU -55 UUUUUU	COCCCCC AAAAAA CCCCCCC		A A A A A A A G G G G G G G G G G G G G	CCCCCCC TTTTTTTT TTTTT	00000000	TTTTTCCT	0000000		A A A A A A A A G G G G G G G G G G G G	920 920 920 920 920 920 920 940 940 940 940 940 959 960 960

13/13

	960										970)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	A A A A A A A	00000000	00000000	A A A A A A A	9999999	00000000	00000000	00000000	00000000	00000000	TTTTTTTT	00000000	~ ~ ~ ~ ~ ~ ~	0000000	00000000	00000000	T T T T T T T	00000000	TTTTTTT	A A A A A A A	979 980 980 980 980 980 980 980
	980)									990)									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	00000000	00000000	00000000	A A A A A A A	6666666	00000000	A A A A A A A	00000000	-00000000	00000000	00000000	~ ~ ~ ~ ~ ~ ~	A A A A A A A	00000000	00000000	00000000	00000000	00000000	999 1000 1000 1000 1000 1000 1000
	100	0									101								—		
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	T T T T T T T T T T T T T T T T T T T	00000000	A A A A A A A	A A A A A A A	00000000	A A A A A A A	A A A A A A A	00000000	00000000	00000000	00000000	A A A A A A A	9999999	00000000	00000000	TTTTTTTT	00000000	T T T T T T T T T	A A A A A A A	00000000	1019 1020 1020 1020 1020 1020 1020 1020
	102	0									103	0									
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10		A A A A A A A	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	TTTTTTT	00000000	00000000	00000000	1039 1040 1040 1040 1040 1040 1040
	104					_			•												
Wildtyp P1B 01-H1 P1B 01-E4 P2B 08-H3 P3B 13-D10 P4B 04-H3 P5B 14-C11 P4BSF 03-G10	00000000	00000000	00000000	00000000	99999999	00000000	00000000	00000000	0000000	G	1										1047 1049 1049 1049 1049 1050 1049

27

1

SEQUENZPROTOKOLL

(1)	ALLG	EMEINE ANGABEN:	
	(i)	ANMELDER: (A) NAME: Studiengesellschaft Kohle mbH (B) STRASSE: Kaiser-Wilhelm-Platz 1 (C) ORT: Muelheim an der Ruhr (E) LAND: Deutschland (F) POSTLEITZAHL: 45470	
(ii)	BEZI	EICHNUNG DER ERFINDUNG: Verfahren zur Herstellung und Identifizierung neuer Hydrolasen m verbesserten Eigenschaften	nit
(iii)	ANZAHL DER SEQUENZEN: 21	
	(iv)	COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)	
(2)	ANGAI	BEN ZU SEQ ID NO: 1:	
	(i)	SEQUENZKENNZEICHEN: (A) LÄNGE: 30 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: nicht bekannt (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "synthetische DNA"	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 1:	
GCGC	CAATT	AA CCCTCACTAA AGGGAACAAA	3
(2)	ANGAI	BEN ZU SEQ ID NO: 2:	
	(i)	SEQUENZKENNZEICHEN: (A) LÄNGE: 27 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: nicht bekannt (D) TOPOLOGIE: linear	
	(ii)	ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "synthetische DNA"	
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	

(2) ANGABEN ZU SEQ ID NO: 3:

GCGTAATACG ACTCACTATA GGGCGAA

(i) SEQUENZKENNZEICHEN:

		٠

2

		(B (C) AR) ST	T: N RANG	ucle FORM	otid : ni	cht	aare beka ekan	nnt							
	(ii)	ART	DES	MOL	EKÜL	S: G	enom	-DNA								
	(ix)	(A	KMAL) NA) LA	ME/S			: CD	S								
	(ix)	(A	KMAL) NA) LA	ME/S				t_pe	ptid	le						
	(xi)	SEQ	UENZ	BESC	HREI	BUNG	: SE	Q ID	NO:	3:						
GGAT	cccc	CG G	TTCT	'CCCG	G AA	GGAT	TCGG	GCG	ATGG	CTG	GCAG	GACG	CG C	CCCI	CGGCC	60
CCAI	CAAC	CT G	AGAT	'GAGA	A CA	M		ys L				eu L	TC C eu F 20			111
													CTG Leu			159
													GCC Ala			207
ATG Met	CTC Leu	GGC Gly	TTC Phe	GAC Asp 20	AAC Asn	ATC Ile	CTC Leu	GGG Gly	GTC Val 25	GAC Asp	TAC Tyr	TGG Trp	TTC Phe	GGC Gly 30	ATT Ile	255
													ACC Thr 45			303
													CTG Leu			351
													AAC Asn			399
_		_											GCC Ala			447
													CAC His			495
													TCG Ser 125			543

		٠

		GTC Val 130										!	591
		TCC Ser										,	639
		CTG Leu										,	687
		ATC Ile							 	 –	 	 ,	735
		AGC Ser											783
		CCG Pro 210											831
		ACC Thr											879
		GTG Val											927
		GTC Val											975
		CGC Arg										1	017
TAG	GACC	CCG (GCCG	GGGC	CT C	GGCC	CGGG	c cc				1	049

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Lys Lys Tyr Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala -26 -25 -20 -15

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr -10 -5 1 5

		٠

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile 10 15 20
Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp 25
Gly Ala Gln Val Tyr Val Thr Glu Val Ser Gln Leu Asp Thr Ser Glu 40 50
Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu 55 60 65 70
Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro 85
Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala 90 95 100
. Ile Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu 105 110 115
Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu 120 125 130
Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Thr 140 145 150
Gly Thr Gln Asn Ser Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly 165 155
Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 170 175
Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp 185 190 195
Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe 200 205 210
Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly 230 215
Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asr 245
Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Phe Gly Leu Th 250 255 260
Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala As 275
Arg Leu Lys Asn Ala Ser Leu 280 285

- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1049 Basenpaare

 - (B) ART: Nucleotid (C) STRANGFORM: nicht bekannt

		•	

		(D) TO	POLO	GIE:	nic	ht b	ekan	nt							
	(ii)	ART	DES	MOL	EKÜL	S: G	enom	-DNA								
	(ix)		AN (: ME/S GE:8			: CD	S								
	(ix)		NA (t_pe	ptid	le						
	(xi)	SEQ	UENZ	BESC	HREI	BUNG	: SE	Q II	NO:	5:						
GGAT	cccc	CG G	TTCT	CCCG	G AA	.GGAT	TCGG	GCG	SATGO	CTG	GCAG	GACG	icg c	CCCI	CGGCC	60
CCAT	'CAAC	CT G	AGAT	'GAGA	A CA	M		ys I				eu I		cc c ro I		111
		GCC Ala -15														159
		ACC Thr														207
		GGC Gly														255
		GCC Ala														303
		TTG Leu 50														351
		GAA Glu														399
		AGC Ser														447
		CTG Leu														495
		ACC Thr														543
		GTC Val 130						Asn								591

		-
		-

	CTT Leu 145												639
	TCG Ser												687
	GGC Gly								-	 -			735
	GTG Val												783
	GAT Asp												831
	GGC Gly 225												879
	ATG Met												927
	CAG Gln				Leu								975
	TAC Tyr			His									1017
TAG	GACC	CCG	GCCG	GGGC	CT C	GGCC	CGGG	c cc					1049

(2) ANGABEN ZU SEQ ID NO: 6:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren (B) ART: Aminosäure

 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Met Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile

		,

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Asp Gly Ala Gln Val Tyr Val Thr Glu Val Ser Gln Leu Asp Thr Ser Glu Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Thr Gly Thr Gln Asn Ser Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 175 Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp 190 Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Phe Gly Leu Thr 255 Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn Arg Leu Lys Asn Ala Ser Leu 280

- (2) ANGABEN ZU SEQ ID NO: 7:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1049 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
 - (ii) ART DES MOLEKÜLS: Genom-DNA

		•
		,

(ix) MERKMAL:

	(1)()	(P		AME/S	SCHLÜ 35		L: CI	os								
	(ix)	MEF (<i>F</i>	A) NA	ME/S	SCHLÜ 163.,	JSSEI 1017	َ: mā 7	at_pe	eptio	de						
	(xi)	SEC	QUEN2	ZBESC	CHRE	BUNC	G: SE	EQ II	ONO:	7:						
GGA'	rccc	CCG G	STTCT	rccc	GG AA	AGGAT	rrcgo	GCC	SATGO	GCTG	GCAG	GAC	GCG (CCCC.	rcggcc	60
CCA:	rcaa(CCT (SAGAT	rgag <i>i</i>	AA CA	ľ		jys I				Leu I				111
GGC Gly	CTG Leu	GCC Ala -15	ATC Ile	GGT Gly	CTC Leu	GCC Ala	TCT Ser -10	CTC Leu	GCT Ala	GCC Ala	AGC Ser	CCT Pro -5	CTG Leu	ATC Ile	CAG Gln	159
GCC Ala	AGC Ser 1	ACC Thr	TAC Tyr	ACC Thr	CAG Gln 5	ACC Thr	AAA Lys	TAC Tyr	CCC Pro	ATC Ile 10	GTG Val	CTG Leu	GCC Ala	CAC His	GGC Gly 15	207
ATG Met	CTC Leu	GGC Gly	TTC Phe	GAC Asp 20	AAC Asn	ATC Ile	CTT Leu	GGG Gly	GTC Val 25	GAC Asp	TAC Tyr	TGG Trp	TTC Phe	GGC Gly 30	ATT Ile	255
CCC Pro	AGC Ser	GCC Ala	TTG Leu 35	CGC Arg	CGT Arg	GAC Asp	GGT Gly	GCC Ala 40	CAG Gln	GTC Val	TAC Tyr	GTC Val	ACC Thr 45	GAA Glu	GTC Val	303
AGC Ser	CAG Gln	TTG Leu 50	GAC Asp	ACC Thr	TCG Ser	GAA Glu	GTC Val 55	CGC Arg	GGC Gly	GAG Glu	CAG Gln	TTG Leu 60	CTG Leu	CAA Gln	CAG Gln	351
GTG Val	GAG Glu 65	GAA Glu	ATC Ile	GTC Val	GCC Ala	CTC Leu 70	AGC Ser	GGC Gly	CAG Gln	CCC Pro	AAG Lys 75	GTC Val	AAC Asn	CTG Leu	ATC Ile	399
GGC Gly 80	CAC His	AGC Ser	CAC His	GGC Gly	GGG Gly 85	CCG Pro	ACC Thr	ATC Ile	CGC Arg	TAC Tyr 90	GTC Val	GCC Ala	GCC Ala	GTA Val	CGT Arg 95	447
CCC Pro	GAC Asp	CTG Leu	ATC Ile	GCT Ala 100	TCC Ser	GCC Ala	ACC Thr	AGC Ser	GTC Val 105	GGC Gly	GCC Ala	CCG Pro	CAC His	AAG Lys 110	GGT Gly	495
TCG Ser	GAC Asp	ACC Thr	GCC Ala 115	GAC Asp	TTC Phe	CTG Leu	CGC Arg	CAG Gln 120	ATC Ile	CCA Pro	CCG Pro	GGT Gly	TCG Ser 125	GCC Ala	GGC Gly	543
GAG Glu	GCA Ala	GTC Val 130	CTC Leu	TCC Ser	GGG Gly	CTG Leu	GTC Val 135	AAC Asn	AGC Ser	CTC Leu	GGC Gly	GCG Ala 140	CTG Leu	ATC Ile	AGC Ser	591

												-	
											GGC Gly		639
											AAG Lys	-	687
											AAG Lys		735
										-	ACC Thr 205		783
									 	 	ACC Thr	 	831
											TCG Ser		879
											GAC Asp		927
											CCG Pro		975
		CGC Arg		His					 	 			1017
TAG	GACC	CCG (GCCG	GGGC	CT C	GGCC	CGGG	c cc					1049

(2) ANGABEN ZU SEQ ID NO: 8:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Met Lys Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala -26 -25 -15

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr -10 -5 1 5

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile 10 15 20

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp

		· ,

		25					30					35				
Gly	Ala 40	Gln	Val	Tyr	Val	Thr 45	Glu	Val	Ser	Gln	Leu 50	Asp	Thr	Ser	Glu	
Val 55	Arg	Gly	Glu	Gln	Leu 60	Leu	Gln	Gln	Val	Glu 65	Glu	Ile	Val	Ala	Leu 70	
Ser	Gly	Gln	Pro	Lys 75	Val	Asn	Leu	Ile	Gly 80	His	Ser	His	Gly	Gly 85	Pro	
Thr	Ile	Arg	Tyr 90	Val	Ala	Ala	Val	Arg 95	Pro	Asp	Leu	Ile	Ala 100	Ser	Ala	
Thr	Ser	Val 105	Gly	Ala	Pro	His	Lys 110	Gly	Ser	Asp	Thr	Ala 115	Asp	Phe	Leu	
Arg	Gln 120		Pro	Pro	Gly	Ser 125	Ala	Gly	Glu	Ala	Val 130	Leu	Ser	Gly	Leu	
Val	Asr		Leu	Gly	Ala 140	Leu	. Ile	Ser	Ph∈	Leu 145	Ser	Ser	Gly	Gly	Thr 150	
		c Glr	n Asr	155	Lev	gly	ser Ser	Lev	1 Glu 160	ı Ser	Leu	Asn	Ser	Glu 165	Gly	
Ala	a Ala	a Arg	g Phe 170	e Asr	n Ala	a Lys	з Туз	Pro 17	Gl:	n Gly	/ Ile	Prc	Thr 180	Ser	Ala	
Су	s Gl	y Gl [.] 18	u Gl	y Ala	а Ту	r Lys	s Va:	l Asi	n Gl	y Va:	l Ser	Tyr 195	Туз	s Sei	Trp	
Se	r Gl 20		r Se	r Pro	o Le	u Th: 20	r As: 5	n Ph	e Le	u Asj	p Pro 21	o Sei	As)	o Ala	a Phe	
Le 21	u Gl		a Se	r Se	r Le 22	u Th 0	r Ph	e Ly	s As	n Gl 22	y Th	r Ala	a As:	n As	p Gly 230	
		al Gl	y Th	ır Cy 23	s Se 5	r Se	r Hi	s Le	u Gl 24	у Ме 10	t Va	1 11	e Ar	g As 24	p Asn 5	
T	yr Ai	g Me	et As 25	sn Hi 50	s Le	eu As	p Gl	.u Va 25	al As 55	sn Gl	n Va	l Ph	e Gl 26	y Le	u Thr	
S	er L		ne Gi	lu Th	ır Se	er Pi	co Va 2	al Se 70	er Va	al Ty	r Ar	g Gl 27	n Hi '5	s Al	a Asn	1
A		eu L 80	ys A	sn Al	La S	er Le 28	eu 85									
(2) A	NGAB	EN Z	U SE	Q ID	NO:	9:									
			SEOU	ENZK	ENNZ	EICH	EN:									
			(A)	LÄN	GE:	1047	Bas tid									
			101	STR TOP	ANGE	'ORM:	nic	ht b	ekar kanr	int it						
			(1)	TOE												

(ii) ART DES MOLEKÜLS: Genom-DNA

		•

(ix) MERKMAL:

11

	(11)	(A) NA) LA	ME/S			: CD	S									
	(ix)	(A	KMAL) NA) LA	ME/S				t_pe	ptid	.e							
	(xi)	SEQ	UENZ	BESC	HREI	BUNG	: SE	Q ID	NO:	9:							
GGAT	cccc	GG I	TCTC	CCGG	A AG	GATT	CGGG	CGA	TGGC	TGG	CAGG	ACGC	GC C	CCTC	:GGCCC	6	0
CATC	AACC	TG A	GATG	AGAA	C AA	Me		s Ly				G CI u Le -2	u Pr			11	.0
	CTG Leu															15	8
	AGC Ser 1															20	16
ATG Met	CTC Leu	GGC Gly	TTC Phe	GAC Asp 20	AAC Asn	ATC Ile	CTC Leu	GGG Gly	GTC Val 25	GAC Asp	TAC Tyr	TGG Trp	TTC Phe	GGC Gly 30	ATT Ile	25	4
CCC Pro	AGC Ser	GCC Ala	TTG Leu 35	CGC Arg	CGT Arg	GAC Asp	GGT Gly	GCC Ala 40	CAG Gln	GTC Val	TAC Tyr	GTC Val	ACC Thr 45	GAA Glu	GTC Val	30)2
	CAG Gln															35	50
	GAG Glu 65															39	8
	CAC His															44	16
	GAC Asp		Ile	Ala		Ala	Thr	Ser	Val	Gly	Ala		His	Lys	Gly	4.9	94
	GAC Asp															54	42
	GCA Ala		Leu					Asn								51	90
	CTT Leu	Ser					Glγ					Leu				6	38

	TCG Ser											686
	GGC Gly											734
	GTG Val								_			782
	GAT Asp											830
	GGC Gly 225											878
	ATG Met											926
	CAG Gln								 			974
	TAC Tyr											1016
TAG	GACC	CCG (GCCG	GGGC	CT C	GGCC	CGGG	C C				1047

(2) ANGABEN ZU SEQ ID NO: 10:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren

 - (B) ART: Aminosäure(D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Met Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr - 5 -10

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp

	·	
		,

WO 99/05288

13

- Gly Ala Gln Val Tyr Val Thr Glu Val Ser Gln Leu Asp Thr Ser Glu
- Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu
- Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro
- Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala
- Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu
- Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu
- Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Ser Thr
- Gly Thr Gln Asn Ser Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly 155
- Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala
- Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp
- Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe 205 200
- Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly 220
- Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn
- Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Phe Gly Leu Thr
- Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn 270
- Arg Leu Lys Asn Ala Ser Leu 280
- (2) ANGABEN ZU SEQ ID NO: 11:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1050 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS

			-
			٠
	•		

(B) LAGE:85..1017

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:163..1017

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

GGATCCCCCG GTTCTCCCGG AAGGATTCGG GCGATGGCTG GCAGGACGCG CCCCTCGGCC											
CCATCAACCT GAG	ATGAGAA CAAC			TG CTC CCC (eu Leu Pro I -20							
GGC CTG GCC ATG											
GCC AGC ACC TA Ala Ser Thr Ty 1											
ATG CTC GGC TT Met Leu Gly Ph		_									
CCC AAC GCC TT Pro Asn Ala Le 3	ı Arg Arg As										
AGC CAG TTG GA Ser Gln Leu As 50											
GTG GAG GAA AT Val Glu Glu Il 65	e Val Ala Le										
GGC CAC AGC CA Gly His Ser Hi 80											
CCC GAC CTG AT Pro Asp Leu II	C GCT TCC GC e Ala Ser Al 100	C ACC AGC a Thr Ser	GTC GGC GCC Val Gly Ala 105	CCG CAC AAG Pro His Lys 110	GGT 495 Gly						
TCG GAC ACC GC Ser Asp Thr Al	a Asp Phe Le										
GAG GCA GTC CT Glu Ala Val Le 130											
TTC CTT TCC AC Phe Leu Ser Se 145		r Gly Thr									

	TCG Ser												687
	GGC Gly												735
	GTG Val												783
	GAT Asp												831
	GGC Gly 225												879
	ATG Met												927
	CAG Gln												975
	TAC Tyr												1017
TAG	GACC	CCG (GCCG	GGGC	CT C	GGCC	CGGG	2 000	3				1050
(2)	ANG	ABEN	zu :	SEQ :	ID N	D: 12	2:						
		() ()	SEQUI A) Li B) Ai D) To	ÄNGE RT: OPOL	: 31: Amin	l Am: osäu: : li:	inosa re near		n				
	(11	, AR	r DE	S MO.	ոբKU.	. : cu	rrot(=TU					

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Met -26											Ala -15	Ile	Gly	Leu	Ala
Ser -10	Leu	Ala	Ala	Ser					Ala						
Lys	Tyr	Pro			Leu									Asn	Ile
Leu	Glv	Val	asA	Tvr	Trp	Phe	Glv	Ile	Pro	Asn	Ala	Leu	Ara	Ara	Asp

			-
		,	

- Gly Ala Gln Val Tyr Val Thr Glu Gly Ser Gln Leu Asp Thr Ser Glu 45
- Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu
- Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro
- Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala
- Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu
- Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu
- Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Thr
- Gly Thr Gln Asn Leu Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly
- Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 170
- Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp 190
- Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe 205
- Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly
- Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn 240 235
- Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Leu Gly Leu Thr 255
- Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn 270
- Arg Leu Lys Asn Ala Ser Leu 280
- (2) ANGABEN ZU SEQ ID NO: 13:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1049 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS

(B) LAGE:85..1017

(ix) MERKMAL:
 (A) NAME/SCHLÜSSEL: mat_peptide
 (B) LAGE:163..1017

(xi) SEOUENZBESCHREIBUNG: SE	OID	NO:	13:
------------------------------	-----	-----	-----

GGATCCCCCG GTTCTCCCGG AAGGATTCGG GCGATGGCTG GCAGGACGCG CCCCTCGGCC								
CCATCAACCT GAGATGAGAA CAAC ATG AAG AAG AAG TCT CTG CTC CCC CTC Met Lys Lys Ser Leu Leu Pro Leu -26 -2520	111							
GGC CTG GCC ATC GGT CTC GCC TCT CTC GCT GCC AGC CCT CTG ATC CAG Gly Leu Ala Ile Gly Leu Ala Ser Leu Ala Ala Ser Pro Leu Ile Gln -15 -10 -5	159							
GCC AGC ACC TAC ACC CAG ACC AAA TAC CCC ATC GTG CTG GCC CAC GGC Ala Ser Thr Tyr Thr Gln Thr Lys Tyr Pro Ile Val Leu Ala His Gly 1 5 10 15	207							
ATG CTC GGC TTC GAC AAC ATC CTT GGG GTC GAC TAC TGG TTC GGC ATT Met Leu Gly Phe Asp Asn Ile Leu Gly Val Asp Tyr Trp Phe Gly Ile 20 25 30	255							
CCC AGC GCC TTG CGC CGT GAC GGT GCC CAG GTC TAC GTC ACC GAA GGC Pro Ser Ala Leu Arg Arg Asp Gly Ala Gln Val Tyr Val Thr Glu Gly 35 40 45	303							
AGC CAG TTG GAC ACC TCG GAA GTC CGC GGC GAG CAG TTG CTG CAA CAG Ser Gln Leu Asp Thr Ser Glu Val Arg Gly Glu Gln Leu Leu Gln Gln 50 55 60	351							
GTG GAG GAA ATC GTC GCC CTC AGC GGC CAG CCC AAG GTC AAC CTG ATC Val Glu Glu Ile Val Ala Leu Ser Gly Gln Pro Lys Val Asn Leu Ile 65 70 75	399							
GGC CAC AGC CAC GGC GGG CCG ACC ATC CGC TAC GTC GCC GCC GTA CGT Gly His Ser His Gly Gly Pro Thr Ile Arg Tyr Val Ala Ala Val Arg 80 85 90 95	447							
CCC GAC CTG ATC GCT TCC GCC ACC AGC GTC GGC GCC CCG CAC AGG GGT Pro Asp Leu Ile Ala Ser Ala Thr Ser Val Gly Ala Pro His Arg Gly 100 105 110	495							
TCG GAC ACC GCC GAC TTC CTG CGC CAG ATC CCA CCG GGT TCG GCC GGC Ser Asp Thr Ala Asp Phe Leu Arg Gln Ile Pro Pro Gly Ser Ala Gly 115 120 125	543							
GAG GCA GTC CTC TCC GGG CTG GTC AAC AGC CTC GGC GCG CTG ATC AGC Glu Ala Val Leu Ser Gly Leu Val Asn Ser Leu Gly Ala Leu Ile Ser 130	591							
TTC CTT TCC AGC GGC GGC ACC GGT ACG CAG AAT TTA CTG GGC TCG CTG Phe Leu Ser Ser Gly Gly Thr Gly Thr Gln Asn Leu Leu Gly Ser Leu 145 150 155	639							

		•
		•

												-	
	TCG Ser												687
	GGC Gly												735
	GTG Val												783
	GAT Asp												831
	GGC Gly 225								 	-			879
	ATG Met												927
	CAG Gln												975
	TAC Tyr												1017
TAG	GACC	CCG	GCCG	GGGC	CT C	GGCC	CGGG	c cc					1049

(2) ANGABEN ZU SEQ ID NO: 14:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren

 - (B) ART: Aminosäure(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Met Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala -26 -25

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr - 5

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp

Gly Ala Gln Val Tyr Val Thr Glu Gly Ser Gln Leu Asp Thr Ser Glu

Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala Thr Ser Val Gly Ala Pro His Arg Gly Ser Asp Thr Ala Asp Phe Leu Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Thr Gly Thr Gln Asn Leu Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 175 Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe 205 Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Leu Gly Leu Thr 255 Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn Arg Leu Lys Asn Ala Ser Leu

- 280 285
- (2) ANGABEN ZU SEQ ID NO: 15:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1049 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 85..1017

(ix) MERKMAL:
 (A) NAME/SCHLÜSSEL: mat_peptide
 (B) LAGE:163..1017

(xi)	SEQUENZBESCHREIBUNG:	SEQ	ID	NO:	15:
------	----------------------	-----	----	-----	-----

GGATCCCCCG GTTCTCCCGG AAGGATTCGG GCGATGGCTG GCAGGACGCG CCCCTCGGCC	60
CCATCAACCT GAGATGAGAA CAAC ATG AAG AAG TCT CTG CTC CCC CTC Met Lys Lys Ser Leu Leu Pro Leu -26 -25 -20	111
GGC CTG GCC ATC GGT CTC GCC TCT CTC GCT GCC AGC CCT CTG ATC CAG Gly Leu Ala Ile Gly Leu Ala Ser Leu Ala Ala Ser Pro Leu Ile Gln -15 -10 -5	159
GCC AGC ACC TAC ACC CAG ACC AAA TAC CCC ATC GTG CTG GCC CAC GGC Ala Ser Thr Tyr Thr Gln Thr Lys Tyr Pro Ile Val Leu Ala His Gly 1 5 10 15	207
ATG CTC GGC TTC GAC AAC ATC CTT GGG GTC GAC TAC TGG TTC GGC ATT Met Leu Gly Phe Asp Asn Ile Leu Gly Val Asp Tyr Trp Phe Gly Ile 20 25 30	255
CCC AGC GCC TTG CGC CGT GAC GGT GCC CAG GTC TAC GTC ACC GAA GGC Pro Ser Ala Leu Arg Arg Asp Gly Ala Gln Val Tyr Val Thr Glu Gly 35 40 45	303
AGC CAG TTG GAC ACC TCG GAA GTC CGC GGC GAG CAG TTG CTG CAA CAG Ser Gln Leu Asp Thr Ser Glu Val Arg Gly Glu Gln Leu Leu Gln Gln 50 55 60	351
GTG GAG GAA ATC GTC GCC CTC AGC GGC CAG CCC AAG GTC AAC CTG ATC Val Glu Glu Ile Val Ala Leu Ser Gly Gln Pro Lys Val Asn Leu Ile 65 70 75	399
GGC CAC AGC CAC GGC GGG CCG ACC ATC CGC TAC GTC GCC GCC GTA CGT Gly His Ser His Gly Gly Pro Thr Ile Arg Tyr Val Ala Ala Val Arg 80 85 90 95	447
CCC GAC CTG ATC GCT TCC GCC ACC AGC GTC GGC GCC CCG CAC AAG GGT Pro Asp Leu Ile Ala Ser Ala Thr Ser Val Gly Ala Pro His Lys Gly 100 105 110	495
TCG GAC ACC GCC GAC TTC CTG CGC CAG ATC CCA CCG GGT TCG GCC GGC Ser Asp Thr Ala Asp Phe Leu Arg Gln Ile Pro Pro Gly Ser Ala Gly 115 120 125	543
GAG GCA GTC CTC TCC GGG CTG GTC AAC AGC CTC GGC GCG CTG ATC AGC Glu Ala Val Leu Ser Gly Leu Val Asn Ser Leu Gly Ala Leu Ile Ser 130 135 140	591
TTC CTT TCC AGC GGC GGC ATC GGT ACG CAG AAT TTT CTG GGC TCG CTG Phe Leu Ser Ser Gly Gly Ile Gly Thr Gln Asn Phe Leu Gly Ser Leu 145 150 155	639

	TCG Ser											687
	GGC Gly											735
-	GTG Val	_							-			783
	GAT Asp											831
	GGC Gly 225											879
	ATG Met											927
	CAG Gln											975
	TAC Tyr											1017
TAG	GACC	CCG (GCCG	GGC	CT CO	GCC	CGGG	c cc				1049

(2) ANGABEN ZU SEQ ID NO: 16:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Met Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala -26 -25 -20 -15

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr -10 -5 1

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp 25 30 35

		n.
		D

- Gly Ala Gln Val Tyr Val Thr Glu Gly Ser Gln Leu Asp Thr Ser Glu
- Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu
- Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro
- Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala
- Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu 110
- Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu
- Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Ile 145
- Gly Thr Gln Asn Phe Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly
- Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 175
- Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp 190
- Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe
- Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly 220
- Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn
- Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Phe Gly Leu Thr
- Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn
- Arg Leu Lys Asn Ala Ser Leu
- (2) ANGABEN ZU SEQ ID NO: 17:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1049 Basenpaare

 - (B) ART: Nucleotid(C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: nicht bekannt

			,
· ·			, J

(ii) ART DES MOLEKÜLS: Genom-DNA

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS (B) LAGE:85..1017
- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:163..1017

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

GGATCC	CCCG (STTCI	cccc	G AA	.GGAT	TCG	GC6	SATGO	CTG	GCAG	GACG	SCG C	CCCI	CGGCC	60
CCATCA	ACCT (SAGAT	rgag <i>i</i>	AA CA	M		ys I		AG I .ys S		eu I				111
GGC CTC															159
GCC AGG Ala Se															207
ATG CT															255
CCC AG Pro Se															303
AGC CA Ser Gl		Asp													351
GTG GA Val Gl 6	u Glu														399
GGC CA Gly Hi 80															447
CCC GA Pro As															495
TCG GA Ser As			Asp					Ile							543
GAG GC Glu Al		Leu					Asn								591

		,
		٠
		,
		J

TTC Phe	CTT Leu 145	TCC Ser	AGC Ser	GGC Gly	GGC Gly	ACC Thr 150	GGT Gly	ACG Thr	CAG Gln	AAT Asn	TTA Leu 155	CTG Leu	GGC Gly	TCG Ser	CTG Leu	639
GAG Glu 160	TCG Ser	CTG Leu	AAC Asn	AGC Ser	GAG Glu 165	GGT Gly	GCC Ala	GCG Ala	CGC Arg	TTC Phe 170	AAC Asn	GCC Ala	AAG Lys	TAC Tyr	CCG Pro 175	687
CAG Gln	GGC Gly	ATC Ile	CCC Pro	ACC Thr 180	TCG Ser	GCC Ala	TGC Cys	GGC Gly	GAA Glu 185	GGC	GCC Ala	TAC Tyr	AAG Lys	GTC Val 190	AAC Asn	735
GGC Gly	GTG Val	AGC Ser	TAT Tyr 195	TAC Tyr	TCC Ser	TGG Trp	AGC Ser	GGT Gly 200	TCC Ser	TCG Ser	CCG Pro	CTG Leu	ACC Thr 205	AAC Asn	TTC Phe	783
CTC Leu	GAT Asp	CCG Pro 210	AGC Ser	GAC Asp	GCC Ala	TTC Phe	CTC Leu 215	GGC Gly	GCC Ala	TCG Ser	TCG Ser	CTG Leu 220	ACC Thr	TTC Phe	AAG Lys	831
AAC Asn	GGC Gly 225	ACC Thr	GCC Ala	AAC Asn	GAC Asp	GGC Gly 230	CTG Leu	GTC Val	GGC Gly	ACC Thr	TGC Cys 235	AGT Ser	TCG Ser	CAC His	CTG Leu	879
GGC Gly 240	ATG Met	GTG Val	ATC Ile	CGC Arg	GAC Asp 245	AAC Asn	TAC Tyr	CGG Arg	ATG Met	AAC Asn 250	CAC His	CTG Leu	GAC Asp	GAG Glu	GTG Val 255	927
AAC Asn	CAG Gln	GTC Val	TTC Phe	GGC Gly 260	CTC Leu	ACC Thr	AGC Ser	CTG Leu	TTC Phe 265	GAG Glu	ACC Thr	AGC Ser	CCG Pro	GTC Val 270	AGC Ser	975
GTC Val	TAC Tyr	CGC Arg	CAG Gln 275	CAC His	GCC Ala	AAC Asn	CGC Arg	CTG Leu 280	AAG Lys	AAC Asn	GCC Ala	AGC Ser	CTG Leu 285			1017
TAGO	SACCO	CCG G	CCGC	GGCC	CT CC	GCC	CGGGC	C CC								1049

(2) ANGABEN ZU SEQ ID NO: 18:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 311 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Met Lys Lys Ser Leu Leu Pro Leu Gly Leu Ala Ile Gly Leu Ala

Ser Leu Ala Ala Ser Pro Leu Ile Gln Ala Ser Thr Tyr Thr Gln Thr

Lys Tyr Pro Ile Val Leu Ala His Gly Met Leu Gly Phe Asp Asn Ile

		•
		÷

Leu Gly Val Asp Tyr Trp Phe Gly Ile Pro Ser Ala Leu Arg Arg Asp Gly Ala Gln Val Tyr Val Thr Glu Gly Ser Gln Leu Asp Thr Ser Glu Val Arg Gly Glu Gln Leu Leu Gln Gln Val Glu Glu Ile Val Ala Leu Ser Gly Gln Pro Lys Val Asn Leu Ile Gly His Ser His Gly Gly Pro Thr Ile Arg Tyr Val Ala Ala Val Arg Pro Asp Leu Ile Ala Ser Ala Thr Ser Val Gly Ala Pro His Lys Gly Ser Asp Thr Ala Asp Phe Leu Arg Gln Ile Pro Pro Gly Ser Ala Gly Glu Ala Val Leu Ser Gly Leu Val Asn Ser Leu Gly Ala Leu Ile Ser Phe Leu Ser Ser Gly Gly Thr Gly Thr Gln Asn Leu Leu Gly Ser Leu Glu Ser Leu Asn Ser Glu Gly Ala Ala Arg Phe Asn Ala Lys Tyr Pro Gln Gly Ile Pro Thr Ser Ala 175 Cys Gly Glu Gly Ala Tyr Lys Val Asn Gly Val Ser Tyr Tyr Ser Trp Ser Gly Ser Ser Pro Leu Thr Asn Phe Leu Asp Pro Ser Asp Ala Phe Leu Gly Ala Ser Ser Leu Thr Phe Lys Asn Gly Thr Ala Asn Asp Gly Leu Val Gly Thr Cys Ser Ser His Leu Gly Met Val Ile Arg Asp Asn Tyr Arg Met Asn His Leu Asp Glu Val Asn Gln Val Phe Gly Leu Thr 255 Ser Leu Phe Glu Thr Ser Pro Val Ser Val Tyr Arg Gln His Ala Asn Arg Leu Lys Asn Ala Ser Leu

- (2) ANGABEN ZU SEQ ID NO: 19:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: nicht bekannt
 - (D) TOPOLOGIE: linear

		j
		•
		j.

PCT/EP98/04612

27

GCGTAATACG ACTCACTATA GGGCGAA

(11) ART DES MOLEKULS: Sonstige Nucleinsaure (A) BESCHREIBUNG: /desc = "synthetische DNA"	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:	
GCGCAATTAA CCCTCACTAA AGGGAACAAA	30
(2) ANGABEN ZU SEQ ID NO: 20:	
(i) SEQUENZKENNZEICHEN: (A) LÄNGE: 25 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: nicht bekannt (D) TOPOLOGIE: linear	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "synthetische DNA"</pre>	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:	
GGTACGCAGA ATNNNCTGGG CTCGC	25
(2) ANGABEN ZU SEQ ID NO: 21:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 27 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: nicht bekannt (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "synthetische DNA"</pre>	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:	

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/55, 15/10, 9/20, 1/21, C12Q 1/44

(11) Internationale Veröffentlichungsnummer: **A3**

MC, NL, PT, SE).

WO 99/05288

8. Juli 1999 (08.07.99)

(43) Internationales Veröffentlichungsdatum:

4. Februar 1999 (04.02.99)

(21) Internationales Aktenzeichen:

PCT/EP98/04612

(22) Internationales Anmeldedatum:

23. Juli 1998 (23.07.98)

MBH

(30) Prioritätsdaten:

197 31 990.4

25. Juli 1997 (25.07.97)

Veröffentlicht

richts:

DE

[DE/DE]:

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(81) Bestimmungsstaaten: CA, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

Mit Angaben über hinterlegtes biologisches Material, eingereicht gemäss Regel 13bis getrennt von der Beschreibung.

Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (88) Veröffentlichungsdatum des internationalen Recherchenbe-

(72) Erfinder; und

(DE).

(75) Erfinder/Anmelder (nur für US): REETZ. Manfred. Kaiser-Wilhelm-Platz 1, D-45470 [DE/DE]; Mülheim an der Ruhr (DE), ZONTA, Albin [DE/DE]; Kaiser-Wilhelm-Platz 1. D-45470 Mülheim der Ruhr (DE). SCHIMOSSEK, Klaus [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). LIEBETON, Klaus [DE/DE]; Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (DE). JÄGER, Karl-Erich [DE/DE]; Ruhr Universität Bochum, Fakultät f. Biologie, Universitätsstrasse 150, D-44790 Bochum (DE).

(71) Anmelder (für alle Bestimmungsstaaten ausser US): STU-

DIENGESELLSCHAFT KOHLE

(74) Anwälte: VON KREISLER, Alek usw.; Deichmannhaus am Hauptbahnhof, Bahnhofsvorplatz, D-50667 Köln (DE).

(54) Title: METHOD FOR PRODUCING AND IDENTIFYING NEW HYDROLASES HAVING IMPROVED PROPERTIES

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG UND IDENTIFIZIERUNG VON NEUEN HYDROLASEN MIT VERBESSERTEN EIGENSCHAFTEN

(57) Abstract

The invention relates to a method for producing and identifying hydrolase mutants having improved properties regarding stereoselectivity and site selectivity, catalytic activity or stability during chemical reactions.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserten Eigenschaften hinsichtlich der Stereo- oder Regioselektivität, katalytischen Aktivität oder Stabilität bei chemischen Umsetzungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	T.I	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko	UU	Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen	211	Zillioaowe
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
				- 0	~Quipu.		

C12Q1/44

C12N1/21

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/55 C12N15/10

C12N9/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
X	SHINKAI A ET AL: "Substitutions of Ser for Asn-163 and Pro for Leu-264 are important for stabilization of lipase from Pseudomonas aeruginosa." JOURNAL OF BIOCHEMISTRY, (1996 NOV) 120 (5) 915-21. JOURNAL CODE: HIF. ISSN: 0021-924X., XP002087459 Japan	1,2,11, 12, 22-26, 29,31, 32,34			
,	see the whole document 	1-34			

Y Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "8" document member of the same patent family Date of mailing of the international search report
19 April 1999	1 7. 05. 99
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Van der Schaal, C

PCT/EP 98/04612

STADLER P ET AL: "Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases." EUROPEAN JOURNAL OF BIOCHEMISTRY, (1995 JAN 15) 227 (1-2) 335-43. JOURNAL CODE: EMZ. ISSN: 0014-2956., XP002087460 GERMANY: Germany, Federal Republic of see page 335, left-hand column - page 335, right-hand column, paragraph 1 DE 44 08 152 A (STUDIENGESELLSCHAFT KOHLE MBH) 14 September 1995 see page 2, line 16 - line 18 see page 2, line 28 LEUNG D ET AL: "A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, vol. 1, no. 1, August 1989, pages 11-15, XP002087461 cited in the application see the whole document CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere see page 30, left-hand column, paragraph 2	1-12, 21-26, 29,31
microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases." EUROPEAN JOURNAL OF BIOCHEMISTRY, (1995 JAN 15) 227 (1-2) 335-43. JOURNAL CODE: EMZ. ISSN: 0014-2956., XP002087460 GERMANY: Germany, Federal Republic of see page 335, left-hand column - page 335, right-hand column, paragraph 1 DE 44 08 152 A (STUDIENGESELLSCHAFT KOHLE MBH) 14 September 1995 see page 2, line 16 - line 18 see page 2, line 28 LEUNG D ET AL: "A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, vol. 1, no. 1, August 1989, pages 11-15, XP002087461 cited in the application see the whole document CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere	1-12, 21-26, 29,31
see page 2, line 16 - line 18 see page 2, line 28 LEUNG D ET AL: "A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, vol. 1, no. 1, August 1989, pages 11-15, XP002087461 cited in the application see the whole document CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere	21-26, 29,31
LEUNG D ET AL: "A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, vol. 1, no. 1, August 1989, pages 11-15, XP002087461 cited in the application see the whole document CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere	
mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, vol. 1, no. 1, August 1989, pages 11-15, XP002087461 cited in the application see the whole document CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere	1-34
"Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, vol. 2, 1992, pages 28-33, XP002087462 see the whole document insbesondere	
see page 31, middle column, last paragraph	1-34
STEMMER W: "DNA shuffling by random fragmentatio and reassembly: In vitro recombination for molecular evolution" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, October 1994, pages 10747-10751, XP002087463 WASHINGTON US see the whole document	1-34
-/	

Category °	lation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Calegory	Onation of Goddinern, with indication, whole appropriate, of the followark passages	Helevani to Claim No.
Υ	ZHANG J-H ET AL: "Directed evolution of a fucosidase from galactosidase by DNA shuffling and screening" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 94, April 1997, pages 4504-4509, XP002087464 WASHINGTON US see the whole document	1-34
Α	UZAWA H ET AL: "Determination of the lipase stereoselectivities using circular dichroism (CD); lipases produce chiral di-O-acylglycerols from achiral tri-O-acylglycerols." BIOCHIMICA ET BIOPHYSICA ACTA, (1993 JUL 1) 1168 (3) 253-60. JOURNAL CODE: AOW. ISSN: 0006-3002., XP002087466 Netherlands see the whole document	
Y	ZANDONELLA G ET AL: "Enantiomeric perylene-glycerolipids as fluorogenic substrates for a dual wavelength assay of lipase activity and stereoselectivity." CHIRALITY, (1996) 8 (7) 481-89. JOURNAL CODE: AVD. ISSN: 0899-0042., XP002087465 United States see the whole document	13-15, 20,35
Y	EP 0 443 063 A (HENKEL RESEARCH CORP) 28 August 1991 see example 5	13-15, 20,35
Y	DATABASE WPI Section Ch, Week 9409 Derwent Publications Ltd., London, GB; Class B04, AN 94-068478 XP002100284 & JP 06 014772 A (NAGASE SANGYO KK) , 25 January 1994 see abstract	13-15, 20,35
Y	WO 97 20918 A (RECOMBINANT BIOCATALYSIS INC) 12 June 1997 see example 4	13,14, 19,20,35
Y	BERGMEYER H: "Methods of enzymatic analysis. Volume II" 1986 , METHODS OF ENZYMATIC ANALYSIS, SAMPLES, REAGENTS, ASSESMENT OF RESULT, NR. VOL. 2, PAGE(S) 236 - 239 , BERGMEYER H U XP002100288 see the whole document	16,20
	-/	ì

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	101/11 96/04012	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
Y	MUDERHWA J ET AL: "Purification and properties of the lipasesfrom Rhodotorula pilimanae Hedrick and Burke" APPLIED MICROBIOLOGY BIOTECHNOLOGY, vol. 23, 1986, pages 348-354, XP002087467 see page 349, left-hand column, paragraph 4	16,20	
Y	JENSEN R ET AL: "Determination of lipase specificity" LIPIDS, vol. 18, no. 3, 1983, pages 239-252, XP002100282 see page 247, left-hand column, paragraph 1 see page 248, left-hand column, line 2	17,18, 20,35	
Y	DE 44 13 121 A (SCHURIG VOLKER PROF DR) 16 February 1995 see the whole document	19,20	
Y	WO 91 15581 A (CREA ROBERTO) 17 October 1991 see page 3, last paragraph - page 4	21	
X Y	ZANDONELLA G ET AL: "Inversion of lipase stereospecificity for fluorogenic alkyldiacyl glycerols." EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 231, 1995, pages 50-55, XP002100283 see abstract see page 51, right-hand column, paragraph 6 - paragraph 7	13,14,20	
Ρ,Χ	REETZ, MANFRED T. ET AL: "Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution" ANGEW. CHEM., INT. ED. ENGL. (1998), VOLUME DATE 1997, 36(24), 2830-2832 CODEN: ACIEAY;ISSN: 0570-0833, XP002087468 see page 2831, left-hand column, paragraph 3 - page R	1-15,20, 22-35	
P,X	REETZ M T ET AL: "Overexpression, immobilization and biotechnological application of Pseudomonas lipases." CHEMISTRY AND PHYSICS OF LIPIDS, (1998 JUN) 93 (1-2) 3-14. REF: 75 JOURNAL CODE: CZW. ISSN: 0009-3084., XP002087469 Ireland see page 11 - page 12	1-15, 20-34	

International application No.
PCT/EP98/04612

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
See	Supplemental Sheet
1. X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

International application No.

PCT/EP98/04612

The International Searching Authority has found that this international application contains several (groups of) inventions, as follows:

1. Claims: 13-20, 27, 28, 30, 32-34 totally and 1-12, 21-26, 29, 31 partially

Method for producing and identifying hydrolase mutants with improved stereoselectivity and site selectivity and the DNA sequences thereof.

2. Claims: 1-12, 21-26, 29, 31 partially

Method for producing and identifying hydrolase mutants with improved catalytic activity and the DNA sequences thereof.

3. Claims: 1-12, 21-26, 29, 31 partially

Method for producing and identifying hydrolase mutants with improved stability and the DNA sequences thereof.

4. Claim: 35

Method for testing catalysts.

mation on patent family members

rtional Application No PCT/EP 98/04612

Patent document cited in search report		t	Publication date	Patent family member(s)	Publication date
DE	4408152	A	14-09-1995	CA 2144218 A EP 0676414 A JP 7274964 A US 5817493 A	12-09-1995 11-10-1995 24-10-1995 06-10-1998
EP	0443063	Α	28-08-1991	NONE -	
WO	9720918	A	12-06-1997	AU 1148997 A CA 2239686 A EP 0866853 A	27-06-1997 12-06-1997 30-09-1998
DE	4413121	Α	16-02-1995	NONE	
WO	9115581	A	17-10-1991	AT 126535 T AU 653152 B AU 7741891 A CA 2079802 A DE 69112207 D DE 69112207 T EP 0527809 A ES 2078518 T US 5830650 A US 5798208 A	15-09-1995 22-09-1994 30-10-1991 06-10-1991 21-09-1995 28-03-1996 24-02-1993 16-12-1995 03-11-1998 25-08-1998

a. Klassifizierung des anmeldungsgegenstandes IPK 6 C12N15/55 C12N15/10 C12N9/20 C12N1/21 C1201/44 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C12N C12Q Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X SHINKAI A ET AL: "Substitutions of Ser 1,2,11, for Asn-163 and Pro for Leu-264 are 12, important for stabilization of lipase from 22-26. Pseudomonas aeruginosa. 29,31, JOURNAL OF BIOCHEMISTRY, (1996 NOV) 120 32,34 (5) 915-21. JOURNAL CODE: HIF. ISSN: 0021-924X., XP002087459 Υ siehe das ganze Dokument 1 - 34-/--X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie * Besondere Kategorien von angegebenen Veröffentlichungen "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung veroniemitichung von besonderer Bedeutung; die beanspruchte Erfindu kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 1 7. 05. **99** 19. April 1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Van der Schaal, C Fax: (+31-70) 340-3016

INTERNATIONALER CHERCHENBERICH

In Jonales Aktenzeichen
PCT/EP 98/04612

		98/04612			
	C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.		
Y	STADLER P ET AL: "Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases." EUROPEAN JOURNAL OF BIOCHEMISTRY, (1995 JAN 15) 227 (1-2) 335-43. JOURNAL CODE: EMZ. ISSN: 0014-2956., XP002087460 GERMANY: Germany, Federal Republic of siehe Seite 335, linke Spalte - Seite 335, rechte Spalte, Absatz 1	1-34			
Y	DE 44 08 152 A (STUDIENGESELLSCHAFT KOHLE MBH) 14. September 1995 siehe Seite 2, Zeile 16 - Zeile 18 siehe Seite 2, Zeile 28		1-12, 21-26, 29,31		
Y	LEUNG D ET AL: "A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction" TECHNIQUE, Bd. 1, Nr. 1, August 1989, Seiten 11-15, XP002087461 in der Anmeldung erwähnt siehe das ganze Dokument		1-34		
Y	CADWELL R AND JOYCE G ET AL: "Randomization of genes by PCR mutagenesis" PCR METHODS AND APPLICATIONS, Bd. 2, 1992, Seiten 28-33, XP002087462 siehe das ganze Dokument insbesondere siehe Seite 30, linke Spalte, Absatz 2 siehe Seite 31, mittlere Spalte, letzter Absatz		1-34		
Y	STEMMER W: "DNA shuffling by random fragmentatio and reassembly: In vitro recombination for molecular evolution" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, Bd. 91, Oktober 1994, Seiten 10747-10751, XP002087463 WASHINGTON US siehe das ganze Dokument		1-34		

INTERNATIONALEI ECHERCHENBERICHT

tionales Aktenzeichen
PCT/EP 98/04612

C.(Fortse	tzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Teile	Betr. Anspruch Nr.
Y	ZHANG J-H ET AL: "Directed evolution of a fucosidase from galactosidase by DNA shuffling and screening" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, Bd. 94, April 1997, Seiten 4504-4509, XP002087464 WASHINGTON US siehe das ganze Dokument		1-34
Α	UZAWA H ET AL: "Determination of the lipase stereoselectivities using circular dichroism (CD); lipases produce chiral di-O-acylglycerols from achiral tri-O-acylglycerols." BIOCHIMICA ET BIOPHYSICA ACTA, (1993 JUL 1) 1168 (3) 253-60. JOURNAL CODE: AOW. ISSN: 0006-3002., XP002087466 Netherlands siehe das ganze Dokument		
Y	ZANDONELLA G ET AL: "Enantiomeric perylene-glycerolipids as fluorogenic substrates for a dual wavelength assay of lipase activity and stereoselectivity." CHIRALITY, (1996) 8 (7) 481-89. JOURNAL CODE: AVD. ISSN: 0899-0042., XP002087465 United States siehe das ganze Dokument		13-15, 20,35
Y	EP 0 443 063 A (HENKEL RESEARCH CORP) 28. August 1991 siehe Beispiel 5		13-15, 20,35
Y	DATABASE WPI Section Ch, Week 9409 Derwent Publications Ltd., London, GB; Class B04, AN 94-068478 XP002100284 & JP 06 014772 A (NAGASE SANGYO KK) , 25. Januar 1994 siehe Zusammenfassung		13-15, 20,35
Υ	WO 97 20918 A (RECOMBINANT BIOCATALYSIS INC) 12. Juni 1997 siehe Beispiel 4		13,14, 19,20,35
Y	BERGMEYER H: "Methods of enzymatic analysis. Volume II" 1986 , METHODS OF ENZYMATIC ANALYSIS, SAMPLES, REAGENTS, ASSESMENT OF RESULT, NR. VOL. 2, PAGE(S) 236 - 239 , BERGMEYER H U XP002100288 siehe das ganze Dokument		16,20
	-/		

INTERNATIONALER CHERCHENBERICHT

C.(Fortsetz	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommend	den Teile Betr. Anspruch Nr.
Υ	MUDERHWA J ET AL: "Purification and properties of the lipasesfrom Rhodotorula pilimanae Hedrick and Burke" APPLIED MICROBIOLOGY BIOTECHNOLOGY, Bd. 23, 1986, Seiten 348-354, XP002087467 siehe Seite 349, linke Spalte, Absatz 4	16,20
Y	JENSEN R ET AL: "Determination of lipase specificity" LIPIDS, Bd. 18, Nr. 3, 1983, Seiten 239-252, XP002100282 siehe Seite 247, linke Spalte, Absatz 1 siehe Seite 248, linke Spalte, Zeile 2	17,18, 20,35
Y	DE 44 13 121 A (SCHURIG VOLKER PROF DR) 16. Februar 1995 siehe das ganze Dokument	19,20
Y	WO 91 15581 A (CREA ROBERTO) 17. Oktober 1991 siehe Seite 3, letzter Absatz - Seite 4	21
X	ZANDONELLA G ET AL: "Inversion of lipase stereospecificity for fluorogenic alkyldiacyl glycerols." EUROPEAN JOURNAL OF BIOCHEMISTRY, Bd. 231, 1995, Seiten 50-55, XP002100283	35
Y	siehe Zusammenfassung siehe Seite 51, rechte Spalte, Absatz 6 - Absatz 7	13,14,20
Ρ,Χ	REETZ, MANFRED T. ET AL: "Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution" ANGEW. CHEM., INT. ED. ENGL. (1998), VOLUME DATE 1997, 36(24), 2830-2832 CODEN: ACIEAY;ISSN: 0570-0833, XP002087468 siehe Seite 2831, linke Spalte, Absatz 3 - Seite R	1-15,20, 22-35
P,X	REETZ M T ET AL: "Overexpression, immobilization and biotechnological application of Pseudomonas lipases." CHEMISTRY AND PHYSICS OF LIPIDS, (1998 JUN) 93 (1-2) 3-14. REF: 75 JOURNAL CODE: CZW. ISSN: 0009-3084., XP002087469 Ireland siehe Seite 11 - Seite 12	1-15, 20-34

INTERNATIONALER RECHERCHENBERICHT

ernationales Aktenzeichen PCT/EP 98/04612

F ld I Bem rkungen zu den Ansprü h n, die sich als nicht r h rchierbar rwi en haben (F rts tzung von Punkt 2 auf Blatt 1
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
siehe Zusatzblatt
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. X Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 13-20 27 28 30 32-34 volständig 1-12 21-26 29 31 partiell

> Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserter Stereo- oder Regioselektivität und deren DNA-Sequenzen.

2. Ansprüche: 1-12 21-26 29 31 partiell

Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserter katalytischer Aktivität und deren DNA-Sequenzen.

3. Ansprüche: 1-12 21-26 29 31 partiell

Verfahren zur Herstellung und Identifizierung von Hydrolase-Mutanten mit verbesserter Stabilität und deren DNA-Sequenzen.

4. Anspruch: 35

Verfahren zum Test von Katalysatoren

INTERNATIONALER ECHERCHENBERICHT

Angaben zu Veröffentlichung. Die zur selben Patentfamilie gehören

tionales Aktenzeichen
PCT/EP 98/04612

Im Recherchenbericht angeführtes Patentdokument DE 4408152 A		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung 12-09-1995 11-10-1995 24-10-1995 06-10-1998	
		14-09-1995	CA 2144218 A EP 0676414 A JP 7274964 A US 5817493 A			
EP	0443063	Α	28-08-1991	KEINE		
WO	9720918	Α	12-06-1997	AU CA EP	1148997 A 2239686 A 0866853 A	27-06-1997 12-06-1997 30-09-1998
DE	4413121	Α	16-02-1995	KEINE		
WO	9115581	A	17-10-1991	AT AU CA DE DE EP ES US	126535 T 653152 B 7741891 A 2079802 A 69112207 D 69112207 T 0527809 A 2078518 T 5830650 A 5798208 A	15-09-1995 22-09-1994 30-10-1991 06-10-1991 21-09-1995 28-03-1996 24-02-1993 16-12-1995 03-11-1998 25-08-1998

