## Lab 7: Plotting Data on a Map

Learn to use ggplot2
 and gganimate
 packages to plot
 data on simple
 maps.



#### **Data Format**

- (x, y, t, z1, z2, ...)
- x = longitude
- y = latitude
- t = optional time parameter
- z1, z2, ... = optional values of some interesting characteristics of the data point

## **Example Test Data**

```
head(test data)
          long year temp
1 37.92775 -122.0816 2007 2.367641
2 37.73751 -122.5401 2017 28.682083
3 37.77283 -122.5401 2000 25.073657
4 37.18677 -122.3946 1999 -6.554683
5 37.93086 -121.9531 2017 27.434501
6 37.89064 -122.2742 2014 -2.052456
```

## **Basic Steps**

- Generate base map
  - Use existing database of maps
  - Focus on region of interest
- Plot a dot on the map for each data point
  - Location specified by (x,y) coordinates
  - Optionally, color and size controlled by (z1, z2, ...)
- Use time parameter t to show change vs time
- <u>Philosophy</u> add new parts to the base map as a series of smaller steps to layer on desired information

## Load the Packages Needed

- library(ggplot2)
  - Extensive package for making many different types of plots
- library(gganimate)
  - Package to provide simple animation
- library(gifski)
  - Package to generate GIFs

## Get the Map Information

- From the "maps" package
  - Shapes of counties in U.S. states specified using (long, lat) of corners
- which\_state <- "california"</li>
- county\_info <- map\_data("county", region=which\_state)</li>

|   | long      | lat      | group | order | region su  | bregion |
|---|-----------|----------|-------|-------|------------|---------|
| 1 | -121.4785 | 37.48290 | 1     | 1     | california | alameda |
| 2 | -121.5129 | 37.48290 | 1     | 2     | california | alameda |
| 3 | -121.8853 | 37.48290 | 1     | 3     | california | alameda |
| 4 | -121.8968 | 37.46571 | . 1   | 4     | california | alameda |
| 5 | -121.9254 | 37.45998 | 1     | 5     | california | alameda |
| 6 | -121.9483 | 37.47717 | 1     | 6     | california | alameda |

```
base_map <- ggplot(
    data = county_info,
    mapping = aes(x = long, y = lat, group = group)) +
    geom_polygon(color = "black", fill = "white") +
    coord_quickmap() +
    theme_void()</pre>
```

```
base_map <- ggplot(
    data = county_info,
    mapping = aes(x = long, y = lat, group = group)) +
    geom_polygon(color = "black", fill = "white") +
    coord_quickmap() +
    theme_void()</pre>
```

Tell ggplot which data frame to use

```
base_map <- ggplot(
  data = county info,
  mapping = aes(x = long, y = lat, group = group)) +
  geom polygon(color = "black", fill = "white") +
  coord quickmap() +
  theme void()
    How to use the specific data
    in county info
```

```
base map <- ggplot(
  data = county info,
  mapping = aes(x = long, y = lat, group = group)) +
  geom polygon(color = "black", fill = "white") +
  coord quickmap() +
  theme void()
    Specify the line color (black) and
    the color to fill the polygons (white)
```

```
base map <- ggplot(
  data = county info,
  mapping = aes(x = long, y = lat, group = group)) +
  geom polygon(color = "black", fill = "white") +
  coord quickmap() +
  theme void()
    Make the map shape look good
```

```
base_map <- ggplot(
    data = county_info,
    mapping = aes(x = long, y = lat, group = group)) +
    geom_polygon(color = "black", fill = "white") +
    coord_quickmap() +
    theme_void()</pre>
```

Set the background to nothing (white)

# Type "base\_map" at R prompt



## Add Data Points to the Map

```
    map_with_data <- base_map +
geom_point(data = test_data,
aes(x = long,y = lat, group=year))
```

map\_with\_data



### Zoom in to the Area with Data

- min\_long <- min(test\_data\$long)</li>
- max\_long <- max(test\_data\$long)</li>
- min\_lat <- min(test\_data\$lat)</li>
- max\_lat <- max(test\_data\$lat)</li>
- map\_with\_data <- map\_with\_data +
   coord\_quickmap(xlim = c(min\_long,
   max\_long), ylim = c(min\_lat, max\_lat))</li>
- map\_with\_data



### Set Color and Size of Data Points



### Add Motion



## Keep the Old Data Points

map\_with\_shadow <- map\_with\_animation +
shadow\_mark()</pre>

animate(map\_with\_shadow, nframes =
num\_years)



### Lab 7: Plot House Price Predictions

- Divide data into training and testing sets
- Training set
  - All inputs plus price
- Testing set
  - Predict the price using the model you developed with the training set
- Compute error between your predicted price and the actual priced provided in data set.
  - Use "percent error" this time

### Add Your Predictions and Location

```
house_data <- read.csv("house data.csv")
data by zipcode <- house data %>%
 group_by(zipcode) %>%
 summarize(
  count = n(),
  med price = median(price),
  mean lat = mean(lat),
  mean long = mean(long),
  med yr built = median(yr built),
  percent_error = price_prediction_error(price, bedrooms,
sqft living, .....)
```

# head(data\_by\_zipcode)

| Percen t_error | med_yr_built | mean_long | mean_lat | med_price | count | Zipcode |
|----------------|--------------|-----------|----------|-----------|-------|---------|
| 38.2           | 1981         | -122.2706 | 47.30902 | 260000.0  | 362   | 98001   |
| 96.7           | 1966         | -122.2134 | 47.30878 | 235000.0  | 199   | 98002   |
| 124.4          | 1975         | -122.3101 | 47.31574 | 267475.0  | 280   | 98003   |
|                | 1965         | -122.2052 | 47.61618 | 1150000.0 | 317   | 98004   |
|                | 1967         | -122.1673 | 47.61153 | 765475.0  | 168   | 98005   |
|                | 1978         | -122.1468 | 47.55802 | 760184.5  | 498   | 98006   |

Now plot your prediction errors on an appropriate map.

#### To Do

- Download and complete Lab 7
- See the tutorial for detailed examples
  - z.umn.edu/mapsUsingR