The width of a finite simple group

Nick Gill (OU)

The width of a finite simple group

Nick Gill (OU)

September 4, 2012

Growth

The width of a finite simple group

Nick Gil (OU)

Let A be a finite subset of a group G.

Growth

The width of a finite simple group

Nick Gill (OU)

Let A be a finite subset of a group G.

Define

$$A^2 = A \cdot A := \{a_1 \cdot a_2 \ | \ a_1, a_2 \in A\}.$$

Growth

The width of a finite simple group

Nick Gill (OU)

Let A be a finite subset of a group G.

Define

$$A^2 = A \cdot A := \{a_1 \cdot a_2 \ | \ a_1, a_2 \in A\}.$$

We are interested in studying the size of A^2, A^3, A^4, \ldots we call this the study of the *growth* of A.

The width of a finite simple group

Nick Gill (OU)

The width of a finite simple group

Nick Gi (OU)

Suppose first that G is abelian (the classical setting for additive combinatorics).

The width of a finite simple group

Nick Gil

Suppose first that ${\it G}$ is abelian (the classical setting for additive combinatorics).

■ If $|AA| \le K|A|$ then $|A^{\ell}| \le K^{\ell}|A|$ [P-R].

The width of a finite simple group

Nick Gil (OU)

Suppose first that G is abelian (the classical setting for additive combinatorics).

• If $|AA| \le K|A|$ then $|A^{\ell}| \le K^{\ell}|A|$ [P-R].

Now drop the condition that G is abelian.

The width of a finite simple group

Nick Gil (OU)

Suppose first that G is abelian (the classical setting for additive combinatorics).

• If $|AA| \le K|A|$ then $|A^{\ell}| \le K^{\ell}|A|$ [P-R].

Now drop the condition that G is abelian.

• If $|AAA| \le K|A|$ then $|A^{\ell}| \le K^{2\ell-5}|A|$ [H-T].

Simple groups of Lie type

The width of a finite simple group

Nick Gil (OU) Let A be a subset of $G = G_r(q)$. How does the set A grow? This question is partially answered, with a strong value of K, by a theorem of Pyber-Szabo, Breuillard-Green-Tao building on work of Helfgott, Dinai, Helfgott-G.

Simple groups of Lie type

The width of a finite simple group

Nick Gill (OU) Let A be a subset of $G = G_r(q)$. How does the set A grow? This question is partially answered, with a strong value of K, by a theorem of Pyber-Szabo, Breuillard-Green-Tao building on work of Helfgott, Dinai, Helfgott-G.

Theorem

Fix r > 0. There exists a positive number ϵ such that for any generating set A in $G_r(q)$ either

- $|AAA| \ge |A|^{1+\varepsilon}$, or
- \blacksquare AAA = G.

Simple groups of Lie type

The width of a finite simple group

Nick Gil (OU) Let A be a subset of $G = G_r(q)$. How does the set A grow? This question is partially answered, with a strong value of K, by a theorem of Pyber-Szabo, Breuillard-Green-Tao building on work of Helfgott, Dinai, Helfgott-G.

Theorem

Fix r > 0. There exists a positive number ϵ such that for any generating set A in $G_r(q)$ either

- $|AAA| \ge |A|^{1+\varepsilon}$, or
- \blacksquare AAA = G.

Applications are manifold: diameter bounds, expansion, sieving...

The width of a finite simple group

Nick Gil (OU) Let A be a generating set of $SL_n(q)$ containing:

The width of a finite simple group

Nick Gil (OU) Let A be a generating set of $SL_n(q)$ containing:

1 T, the set of diagonal matrices; $|T| = (q-1)^{n-1}$;

The width of a finite simple group

Nick Gill (OU) Let A be a generating set of $SL_n(q)$ containing:

- **1** T, the set of diagonal matrices; $|T| = (q-1)^{n-1}$;
- 2 a, b, two elements generating this copy of $SL_2(q)$:

$$\begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 1 \end{pmatrix}$$

The width of a finite simple group

Nick Gill

Let A be a generating set of $SL_n(q)$ containing:

- **1** T, the set of diagonal matrices; $|T| = (q-1)^{n-1}$;
- 2 a, b, two elements generating this copy of $SL_2(q)$:

$$\begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 1 \end{pmatrix}$$

3 The following n-cycle monomial matrix s

The width of a finite simple group

Let A be a generating set of $SL_n(q)$ containing:

- **1** T, the set of diagonal matrices; $|T| = (q-1)^{n-1}$;
- 2 a, b, two elements generating this copy of $SL_2(q)$:

$$\begin{pmatrix}
A & 0 & \cdots & 0 \\
0 & 1 & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & 1
\end{pmatrix}$$

 \blacksquare The following *n*-cycle monomial matrix *s*

Now $A^3 \neq G$ and, if q = 3, $|A^3| \leq 17 \cdot |A| < |A|^{1 + \frac{5}{n-1}}$.

The width of a finite simple group

Nick Gill (OU) Let G be a finite simple group and A a generating set in G. Note that

The width of a finite simple group

Nick Gil (OU) Let G be a finite simple group and A a generating set in G. Note that

1 $A^{\ell} = G$ for some integer ℓ (take it as small as possible).

The width of a finite simple group

Nick Gill (OU) Let G be a finite simple group and A a generating set in G. Note that

- **1** $A^{\ell} = G$ for some integer ℓ (take it as small as possible).

The width of a finite simple group

Nick Gill (OU) Let G be a finite simple group and A a generating set in G. Note that

- **1** $A^{\ell} = G$ for some integer ℓ (take it as small as possible).
- 3 $\ell \ge \log |G| \text{ if } |A| = 2.$

The width of a finite simple group

Nick Gil (OU) Let G be a finite simple group and A a generating set in G. Note that

- **1** $A^{\ell} = G$ for some integer ℓ (take it as small as possible).
- **3** $\ell \ge \log |G|$ if |A| = 2.

Conjecture (Babai)

There exists c>0 such that, for any finite simple group G and any generating set $A\subset G$, $A^{\ell}=G$ for some $\ell\leq (\log |G|)^c$.

The width of a finite simple group

Nick Gil (OU) Let G be a finite simple group and A a generating set in G. Note that

- **1** $A^{\ell} = G$ for some integer ℓ (take it as small as possible).
- **3** $\ell \ge \log |G|$ if |A| = 2.

Conjecture (Babai)

There exists c>0 such that, for any finite simple group G and any generating set $A\subset G$, $A^{\ell}=G$ for some $\ell\leq (\log |G|)^c$.

Babai's conjecture is often stated in terms of the diameter of the Cayley graph.

The width of a finite simple group

Nick Gill (OU)

Corollary

Fix r > 0. There exists c > 0 such that for any generating set A in $G = G_r(q)$ we have $A^{\ell} = G$ for some $\ell \leq (\log |G|)^c$.

The width of a finite simple group

Nick Gill (OU)

Corollary

Fix r > 0. There exists c > 0 such that for any generating set A in $G = G_r(q)$ we have $A^{\ell} = G$ for some $\ell \leq (\log |G|)^c$.

Proof.

1 The product theorem implies that either $|A^3| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.

The width of a finite simple group

Nick Gill (OU)

Corollary

Fix r > 0. There exists c > 0 such that for any generating set A in $G = G_r(q)$ we have $A^{\ell} = G$ for some $\ell \leq (\log |G|)^c$.

- 1 The product theorem implies that either $|A^3| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.
- Iterating we obtain that either $|A^{3^k}| \ge |A|^{(1+\varepsilon)^k}$ or $A^{3^k} = G$.

The width of a finite simple group

Nick Gill (OU)

Corollary

Fix r > 0. There exists c > 0 such that for any generating set A in $G = G_r(q)$ we have $A^{\ell} = G$ for some $\ell \leq (\log |G|)^c$.

- 1 The product theorem implies that either $|A^3| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.
- Iterating we obtain that either $|A^{3^k}| \ge |A|^{(1+\varepsilon)^k}$ or $A^{3^k} = G$.
- If $|A|^{(1+\varepsilon)^k} \ge |G|$ we must have $A^{3^k} = G$.

The width of a finite simple group

Nick Gill (OU)

Corollary

Fix r > 0. There exists c > 0 such that for any generating set A in $G = G_r(q)$ we have $A^{\ell} = G$ for some $\ell \leq (\log |G|)^c$.

- **1** The product theorem implies that either $|A^3| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.
- Iterating we obtain that either $|A^{3^k}| \ge |A|^{(1+\varepsilon)^k}$ or $A^{3^k} = G$.
- If $|A|^{(1+\varepsilon)^k} \ge |G|$ we must have $A^{3^k} = G$.
- Thus $A^{\ell} = G$ where $\ell = (\log |G|)^{\lceil \log_{1+\varepsilon} 3 \rceil + 1}$.

The width of a finite simple group

Nick Gill (OU)

The width of a finite simple group

Nick Gill (OU) We say that A is a normal subset of G if, for all $g \in G$,

$$gAg^{-1} := \{gag^{-1} \mid a \in A\} = A.$$

The width of a finite simple group

Nick Gill (OU) We say that A is a *normal subset* of G if, for all $g \in G$,

$$gAg^{-1} := \{gag^{-1} \mid a \in A\} = A.$$

Note that A is normal if and only if A is a union of conjugacy classes of G.

The width of a finite simple group

group Nick Gill (OU) We say that A is a *normal subset* of G if, for all $g \in G$,

$$gAg^{-1} := \{gag^{-1} \mid a \in A\} = A.$$

Note that A is normal if and only if A is a union of conjugacy classes of G.

Liebeck and Shalev proved a (much) stronger version of Babai's conjecture for normal subsets of simple groups:

The width of a finite simple group

We say that A is a *normal subset* of G if, for all $g \in G$,

$$gAg^{-1} := \{gag^{-1} \mid a \in A\} = A.$$

Note that A is normal if and only if A is a union of conjugacy classes of G.

Liebeck and Shalev proved a (much) stronger version of Babai's conjecture for normal subsets of simple groups:

Theorem

There exists a constant c>0 such that, for A a non-trivial normal subset of a simple group G, we have $G=A^{\ell}$ where $\ell \leq c \log |G|/\log |A|$.

Width

The width of a finite simple group

Nick Gill (OU) We define the *width* of G with respect to A to be the minimum number ℓ such that

$$G = A_1 A_2 \cdots A_\ell$$

and A_1, \ldots, A_ℓ are all conjugates of A in G. Write w(G, A).

Width

The width of a finite simple group

Nick Gill (OU) We define the *width* of G with respect to A to be the minimum number ℓ such that

$$G = A_1 A_2 \cdots A_\ell$$

and A_1, \ldots, A_ℓ are all conjugates of A in G. Write w(G, A). Examples for a simple group G.

If G is of Lie type, A is a Sylow p-subgroup then $w(G, A) \le 25$ [LP01]. In fact $w(G, A) \le 5$ [BNP08].

Width

The width of a finite simple group

Nick Gill (OU) We define the *width* of G with respect to A to be the minimum number ℓ such that

$$G = A_1 A_2 \cdots A_\ell$$

and A_1, \ldots, A_ℓ are all conjugates of A in G. Write w(G, A). Examples for a simple group G.

- If G is of Lie type, A is a Sylow p-subgroup then $w(G, A) \le 25$ [LP01]. In fact $w(G, A) \le 5$ [BNP08].
- If $G = G_r(q)$, an untwisted simple group of Lie type of rank r > 1, and A is a particular subgroup isomorphic to $SL_2(q)$, then $w(G, A) \le 5|\Phi^+|$ [LNS11].

Width

The width of a finite simple group

Nick Gill (OU) We define the *width* of G with respect to A to be the minimum number ℓ such that

$$G=A_1A_2\cdots A_\ell$$

and A_1, \ldots, A_ℓ are all conjugates of A in G. Write w(G, A). Examples for a simple group G.

- If G is of Lie type, A is a Sylow p-subgroup then $w(G, A) \le 25$ [LP01]. In fact $w(G, A) \le 5$ [BNP08].
- If $G = G_r(q)$, an untwisted simple group of Lie type of rank r > 1, and A is a particular subgroup isomorphic to $SL_2(q)$, then $w(G,A) \leq 5|\Phi^+|$ [LNS11]. In particular, if $G = PSL_n(q)$ and A as above then $w(G,A) \leq \frac{5}{2}n(n+1)$.

The Product Decomposition Conjecture

The width of a finite simple group

Nick Gil (OU)

Liebeck, Nikolov and Shalev conjectured the following:

The Product Decomposition Conjecture

The width of a finite simple group

Nick Gill (OU)

Liebeck, Nikolov and Shalev conjectured the following:

Conjecture

There exists a constant c>0 such that, for A any subset of a finite simple group G of size at least 2, we have $G=A_1\cdots A_\ell$ where A_1,\ldots,A_ℓ are conjugates of A and $\ell\leq c\log|G|/\log|A|$.

The Product Decomposition Conjecture

The width of a finite simple group

Liebeck, Nikolov and Shalev conjectured the following:

Conjecture

There exists a constant c>0 such that, for A any subset of a finite simple group G of size at least 2, we have $G=A_1\cdots A_\ell$ where A_1,\ldots,A_ℓ are conjugates of A and $\ell\leq c\log|G|/\log|A|$.

Note the similarity to Babai's conjecture - but both the assumptions and the conclusion are much stronger.

Some results

The width of a finite simple group

Nick Gil (OU)

We start with a result of Gill, Pyber, Short, Szabó:

Theorem

Fix r > 0. There exists c > 0 such that, for A any subset of $G = G_r(q)$ of size at least 2, we have $G = A_1A_2 \cdots A_\ell$ where $\ell \le c \log |G| / \log |A|$.

A product theorem for conjugates

The width of a finite simple group

On the way to proving this result we came across something like a product theorem for conjugates:

Theorem

Fix r > 0. There exists $\varepsilon > 0$ such that, for A any subset of $G = G_r(q)$, there exists $g \in G$ such that $|A \cdot A^g| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.

A product theorem for conjugates

The width of a finite simple group

Nick Gill (OU)

On the way to proving this result we came across something like a product theorem for conjugates:

Theorem

Fix r > 0. There exists $\varepsilon > 0$ such that, for A any subset of $G = G_r(q)$, there exists $g \in G$ such that $|A \cdot A^g| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.

We conjecture that the constant ε should be independent of r, indeed it should be uniform **across all simple groups**.

A product theorem for conjugates

The width of a finite simple group

Nick Gill (OU)

On the way to proving this result we came across something like a product theorem for conjugates:

Theorem

Fix r > 0. There exists $\varepsilon > 0$ such that, for A any subset of $G = G_r(q)$, there exists $g \in G$ such that $|A \cdot A^g| \ge |A|^{1+\varepsilon}$ or $A^3 = G$.

We conjecture that the constant ε should be independent of r, indeed it should be uniform **across all simple groups**. Note too that, when we're allowed to take conjugates, we achieve growth in two steps, not three.

The Skew Doubling Lemma

The width of a finite simple group

An explanation for the two step growth is found in the following result:

Theorem

Let A be a non-empty finite set of a group G such that, for some K>0, $|AA'|\leq K|A|$ for every conjugate A' of A. Then

$$|A_1\cdots A_\ell|\leq K^{14(\ell-1)}|A|$$

where A_1, \ldots, A_ℓ are conjugates of A or A^{-1} .

The Skew Doubling Lemma

The width of a finite simple group

An explanation for the two step growth is found in the following result:

Theorem

Let A be a non-empty finite set of a group G such that, for some K>0, $|AA'|\leq K|A|$ for every conjugate A' of A. Then

$$|A_1\cdots A_\ell|\leq K^{14(\ell-1)}|A|$$

where A_1, \ldots, A_ℓ are conjugates of A or A^{-1} .

Note that, if A is *normal*, we effectively regain the doubling lemma for abelian groups.

The Skew Doubling Lemma

The width of a finite simple group

An explanation for the two step growth is found in the following result:

Theorem

Let A be a non-empty finite set of a group G such that, for some $K>0, \, |AA'|\leq K|A|$ for every conjugate A' of A. Then

$$|A_1\cdots A_\ell|\leq K^{14(\ell-1)}|A|$$

where A_1, \ldots, A_ℓ are conjugates of A or A^{-1} .

Note that, if A is *normal*, we effectively regain the doubling lemma for abelian groups.

Could it be that classical additive combinatorics for sets in abelian groups is **really** about normal subsets of arbitrary groups?

The width of a finite simple group

Nick Gill (OU)

Thanks for coming!