

Positional global knowledge:

- Bits far to the right of such a sequence have quite a smaller influence
- Bits far to the left of such a sequence have quite a significant

Mutation

Uniform mutation

$$v_k \in [l_k, u_k]$$

■ Non-uniform mutation: (fine tuning capabilities)

$$v_k = \begin{cases} v_k + \Delta(t, u_k - v_k) & \text{if a random digit is } 0 \\ v_k - \Delta(t, v_k - l_k) & \text{if a random digit is } 1 \end{cases}$$

$$\Delta(t, y) = y(1 - r^{(1 - \frac{t}{T})^b})$$

where T: maximal generation number b: a system parameter

$$r \in [0..1]$$

Note: This property cause this operator to search the space uniformly initially (when *t* is small), and very locally at later stages.

Uniform vs. Non-uniform mutation

		GA		GA		
	Exact solution	w/ non-uniform mutation		w/o non-uniform mutation		
Case	value	value	D	value	D	
I	16180.3399	16180.3939	0.000%	16234.3233	0.334%	
i II i	109160.7978	109163.0278	0.000%	113807.2444	4.257%	
III	10009990.0200	10010391.3989	0.004%	10128951.4515	1.188%	
IV	37015.6212	37016.0806	0.001%	37035.5652	0.054%	
V	287569.3725	287569.7389	0.000%	298214.4587	3.702%	
VI	16180.3399	16180.6166	0.002%	16238.2135	0.358%	
VII	16180.3399	16188.2394	0.048%	17278.8502	6.786%	
VIII	10000.5000	10000.5000	0.000%	10000.5000	0.000%	
IX.	431004.0987	431004.4092	0.000%	431610.9771	0.141%	
X	10000.9999	10001.0045	0.000%	10439.2695	4.380%	

Table 6.9. Comparison of solutions for the linear-quadratic dynamic control problem

EP vs. Other Methods

- GA vs. GAMS (General Algebraic Modeling System)
 - Performance
 - Time
- Uniform vs. Non-uniform Mutation

GA vs. GAMS (General Algebraic Modeling System)

Performance

307	Exact solution	Evolution Pr	ogram	GAMS		
Case	value	value	D	value	D	
I	16180.3399	16180.3928	0.000%	16180.3399	0.000%	
II	109160.7978	109161.0138	0.000%	109160.7978	0.000%	
III	10009990.0200	10010041.3789	0.000%	10009990.0200	0.000%	
IV	37015.6212	37016.0426	0.000%	37015.6212	0.000%	
V	287569.3725	287569.4357	0.000%	287569.3725	0.000%	
VI	16180.3399	16180.4065	0.000%	16180.3399	0.000%	
VII	16180.3399	16180.3784	0.000%	16180.3399	0.000%	
VIII	10000.5000	10000.5000	0.000%	10000.5000	0.000%	
IX	431004.0987	431004.4182	0.000%	431004.0987	0.000%	
X	10000.9999	10001.0038	0.000%	10000.9999	0.000%	

Table 6.5. Comparison of solutions for the linear-quadratic problem

N	Exact solution	GAMS		GAMS+		Genetic Alg	
		value	D	value	D	value	D
2	6.331738	4.3693	30.99%	6.3316	0.00%	6.3317	0.000%
4	12.721038	5.9050	53.58%	12.7210	0.00%	12.7210	0.000%
8	25.905710	*		18.8604	27.20%	25.9057	0.000%
10	32.820943	*		22.9416	30.10%	32.8209	0.000%
20	73.237681	*		*		73.2376	0.000%
20 45	279.275275	*		*		279.2714	0.001%

Table 6.6. Comparison of solutions for the harvest problem. The symbol \ast means that the GAMS failed to report a reasonable value

GA vs. GAMS (General Algebraic Modeling System)

Time

N	No. of iterations	Time needed	Time for 40,000 iterations	Time for GAMS
	needed	(CPU sec)	(CPU sec)	(CPU sec)
5	6234	65.4	328.9	31.5
10	10231	109.7	400.9	33.1
15	19256	230.8	459.8	36.6
20	19993	257.8	590.8	41.1
25	18804	301.3	640.4	47.7
30	22976	389.5	701.9	58.2
35	23768	413.6	779.5	68.0
40	25634	467.8	850.7	81.3
45	28756	615.9	936.3	95.9

Table 6.8. Time performance of evolution program and GAMS for the push-cart problem (6.9)–(6.11): number of iterations needed to obtain the result with precision of six decimal places, time needed for that number of iterations, time needed for all 40,000 iterations

Fig. 6.2. Time as a function of problem size (N).

Crossover

Simple crossover

$$v_{1} = (x_{1}, x_{2}, x_{3}, x_{4})$$

$$v_{2} = (y_{1}, y_{2}, y_{3}, y_{4})$$

$$v'_{2} = (x_{1}, y_{2}, y_{3}, y_{4})$$

$$v'_{3} = (x_{1}, y_{2}, y_{3}, y_{4})$$

Uniform crossover*

$$v_{1} = (x_{1}, x_{2}, x_{3}, x_{4})$$

$$v_{2} = (y_{1}, y_{2}, y_{3}, y_{4})$$

$$v'_{1} = (x_{1}, x_{2}, x_{3}, y_{4})$$

$$v'_{2} = (y_{1}, y_{2}, y_{3}, x_{4})$$

Arithmetical crossover (simple*/single*/whole*)

$$x_i^{t+1} = a \cdot x_i^t + (1-a) \cdot y_i^t$$

 $y_i^{t+1} = a \cdot y_i^t + (1-a) \cdot x_i^t$ where $a \in [0..1]$; a is constant.

Non-uniform arithmetical crossover

$$x_{i}^{t+1} = a^{t} \cdot x_{i}^{t} + (1 - a^{t}) \cdot y_{i}^{t}$$

$$y_{i}^{t+1} = a^{t} \cdot y_{i}^{t} + (1 - a^{t}) \cdot x_{i}^{t}$$
 where $a^{t} \in [0..1]$; a^{t} is variable.

Adaptive Probabilities $(P_c \text{ and } P_m)$

$$p_c = \begin{cases} k_1 \cdot (f_{\text{max}} - f') / (f_{\text{max}} - \bar{f}) & \text{if } f' \ge \bar{f} \\ k_3 & \text{otherwise} \end{cases}$$

$$where \quad f' = \max\{f(x), f(y)\}$$

$$p_{m} = \begin{cases} k_{2} \cdot (f_{\text{max}} - f) / (f_{\text{max}} - \bar{f}) & \text{if } f \ge \bar{f} \\ k_{4} & \text{otherwise} \end{cases}$$

where $0 \le k_i \le 1$