

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

1/17

Fig. 1

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

2/17

Fig. 2A

Fig. 2B

Fig. 2C

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

3/17

Fig. 3

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

4/17

Fig. 4

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

5/17

Fig. 5

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

6/17

Fig. 6

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

7/17

Fig. 7

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

8/17

Given t_{sp} (where $t_{sp} < 0$) and given T, find $g(t_{sp})$:
Step 1: Solve for X_{sp}

$$t_{sp} = -L \cdot \frac{\sum_{X_{sp}}^0 F(X) \Delta X}{\sum_{100\%}^0 F(X) \Delta X}$$

Step 2: Solve for K_a

$$K_a = \frac{T}{L} \cdot \sum_{100\%}^0 F(X) \Delta X$$

Step 3: Solve for δ

$$\sum_{X_{sp}-\frac{\delta}{2}}^{X_{sp}+\frac{\delta}{2}} F(X) \Delta X = K_a$$

Step 4: Correct for non-linearity

$$r(t_{sp}) = \frac{100\%}{100\% - X_{sp}} \cdot \delta$$

Step 5: Solve for K_b

$$K_b = \frac{K_{rate}}{T}$$

Step 6: Solve for $g(t_{sp})$

$$g(t_{sp}) = K_b \cdot r(t_{sp})$$

Where

$$K_{rate} = 10^8 \frac{mg \cdot s}{dL \cdot \%}$$

Fig. 8

Title: Methods and Devices For Retrieving
 A Subject's Physiological History
 From A Biological Sample Analysis
 Inventor: Michael Scott Ehrlich
 Docket No: C1159.70000US01
 Express Mail No: EV292456465US

9/17

Given t_{sp} (where $t_{sp} < 0$) and given δ , find $g(t_{sp})$:
 Step 1: Solve for X_{sp}

$$t_{sp} = -L \cdot \frac{\sum_{X_{sp}}^0 F(X) \Delta X}{\sum_{100\%}^0 F(X) \Delta X}$$

Step 2: Solve for K_a

$$\sum_{X_{sp}-\frac{1}{2}}^{X_{sp}+\frac{1}{2}} F(X) \Delta X = K_a$$

Step 3: Solve for T

$$T = \frac{K_a \cdot L}{\sum_{100\%}^0 F(X) \Delta X}$$

Step 4: Correct for non-linearity

$$r(t_{sp}) = \frac{100\%}{100\% - X_{sp}} \cdot \delta$$

Step 5: Solve for K_b

$$K_b = \frac{K_{rate}}{T}$$

Step 6: Solve for $g(t_{sp})$

$$g(t_{sp}) = K_b \cdot r(t_{sp})$$

Where

$$K_{rate} = 10^8 \frac{mg \cdot s}{dL \cdot \%}$$

Fig. 9

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

10/17

Fig. 10A

Title: Methods and Devices For Retrieving
 A Subject's Physiological History
 From A Biological Sample Analysis
 Inventor: Michael Scott Ehrlich
 Docket No: C1159.70000US01
 Express Mail No: EV292456465US

11/17

Given $\delta_1 - \delta_m$ and $K_{a1} - K_{am}$, find t_{sp} and $g(t_{sp})$:
 Step 1: Solve for t_{sp}

$$t_{sp} = -L \cdot \frac{\frac{K_{sp}}{2} + \sum_{n=sp-1}^1 K_{an}}{\sum_{n=m}^1 K_{an}}$$

Step 2: Solve for X_{sp}

$$X_{sp} = \frac{\delta_{sp}}{2} + \sum_{n=sp-1}^1 \delta_n$$

Step 3: Solve for T_{sp}

$$T_{sp} = \frac{K_{asp}}{\sum_{n=m}^1 K_{an}} \cdot L$$

Step 4: Correct for non-linearity

$$r(t_{sp}) = \frac{100\%}{100\% - X_{sp}} \cdot \delta_{sp}$$

Step 5: Solve for K_b

$$K_{bsp} = \frac{K_{rate}}{T_{sp}}$$

Step 6: Solve for $g(t_{sp})$

$$g(t_{sp}) = K_{bsp} \cdot r(t_{sp})$$

Where

$$K_{rate} = 10^8 \frac{mg \cdot s}{dL \cdot \%}$$

Fig. 10B

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

12/17

Fig. 11A

Fig. 11B

Fig. 11C

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

13/17

Fig. 12A

Fig. 12B

Fig. 12C

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

14/17

Fig. 13A

Fig. 13B

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

15/17

Fig. 14

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

16/17

Fig. 15

Title: Methods and Devices For Retrieving
A Subject's Physiological History
From A Biological Sample Analysis
Inventor: Michael Scott Ehrlich
Docket No: C1159.70000US01
Express Mail No: EV292456465US

17/17

Fig. 16