M - 1 - 2013

CNC 선반 작업시 날아오는 가공물 등에 의한 위험방지 기술지침

2013. 7.

한국산업안전보건공단

안전보건기술지침의 개요

ㅇ 작성자 : 한성대학교 최 기흥 교수

ㅇ 개정자 : 산업안전보건연구원 안전연구실 김진현

○ 제·개정경과

- 2009년 6월 기계안전분야 제정위원회 심의

- 2012년 4월 기계안전분야 제정위원회 심의(개정)

- 2013년 6월 기계안전분야 기준제정위원회 심의(개정)

- ㅇ 관련규격 및 자료
 - KOSHA CODE M-2-2001 「선반 방호조치에 관한 기술지침」
 - HSE EIS-33: CNC turning machines: controlling risks from ejected parts
- 관련 법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제90조(날아오는 가공물 등에 의한 위험의 방지)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2013년 7월 11일

제 정 자 : 한국산업안전보건공단 이사장

CNC 선반 작업시 날아오는 가공물 등에 의한 위험방지 기술지침

1. 목 적

이 지침은 CNC 선반을 이용한 작업 중 날아오는 가공물 등에 의한 위험성평가에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 CNC 선반을 이용한 작업의 위험성평가에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "가드(Guard)"라 함은 기계의 일부로서 방호기능을 수행하는 물리적 방 벽으로서 구조에 따라 케이싱, 덮개, 스크린, 문, 울타리(방호울)등으로 지칭되는 것을 말한다.
 - (나) "가공물 등"이라 함은 선반에 설치된 척 조(Chuck jaw), 면판(Face plate) 및 그 부품과 이에 장착되는 가공 대상물 등으로서 회전력에 의하여 위치를 이탈하며 근로자에게 날아올 우려(Risk from ejection)가 있는 물체를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건기준에 관한 규칙 및 고용노동부 고시에서 정하는 바에 따른다.

4. 위험 요인

4.1 일반사항

- (1) CNC선반의 투명 패널(Vision panel)에 사용되는 폴리카보네이트 (Polycarbonate) 자재는 작업 중에 금속 가공유 및 윤활유에 의하여 변질되어 <그림 1>과 같이 충격에 대한 저항력이 감소될 수 있음을 사전에 인지하여 대비하여야 한다.
- (2) 폴리카보네이트를 선반 등의 방호조치로 사용하는 경우에 내부에서 가공물 등이 날아오는 위험이 일어날 가능성을 고려하여 작업자에 대한 재해예방 대책을 수립하여야 한다.
- (3) 내부에서 가공물 등이 날아오는 위험은 실행 가능한 공학적 수단으로 제어하고 유지되도록 하여야 한다.
- (4) 관련 부속장비의 적합성검토와 적합한 정보, 교육 및 훈련을 사용자에게 제공하여야 한다.

<그림 1> 폴리카보네이트 투명 패널의 열화 <출처: HSE EIS No. 33 Figure 1>

4.2 가공물 등의 날아오는 위험

(1) CNC 선반에서 발생하는 가공물 등의 날아오는 위험은 작업자 또는 설치자의 부정확한 가공물 등의 고정 및 가공물 등을 지탱하는 장비의 유지보수 결함에 의해서 발생함을 인지하여 대비책을 강구하여야 한다.

M - 1 - 2013

- (2) 날아오는 위험은 작업의 유형에 따라 다르므로 면판 및 기타 회전 장비에 관한 작업 시 특별한 주의를 필요로 하며, 소형 가공물 등에는 콜릿 (Collet)을 사용하도록 한다.
- (3) 가공물 등이 날아오는 위험을 방지하기 위해서 우선적으로 가공물 등이 회전 및 중심축에서 이탈할 수 있는 정도를 파악하여 조치하여야 한다.
- (4) 척 조 어셈블리, 가공물 체결상태, 면판 균형추 및 회전 고정장치의 부품 등에 특별한 주의를 기울여야 한다. 과도한 속도, 부딪힘 및 기타 예상 가능한 작업자의 실수 가능성을 고려하여 조치하여야 한다.
- (5) 날아오는 위험의 유형을 파악하고 조치하기 위해서 부상 발생의 여부와 상관 없이 과거의 날아옴 사고를 확인하여야 한다.
- (6) 작업방법 등을 변경할 때에는 기기의 사양 및 원래 사용 목적 등을 평가하여 야 한다.
- (7) 날아옴을 일으키는 변수는 다음과 같다.
- (가) 특정 작업의 회전 속도
- (나) 표준형이 아닌 클립형 조의 무게 및 유형
- (다) 클립형 조 또는 클램핑 기기의 작동 반지름
- (라) 가공물에 가해지는 조임력(정적 및 동적 상황)
- (마) 가공물의 고정정도
- (바) 척 또는 부착물의 상태
- (사) 균형 상태

M - 1 - 2013

- (아) 가공물에 가해지는 외력의 크기
- (8) 가공물의 무게, 스핀들의 중심선으로부터의 반지름 및 속도 등의 측정치를 토대로 최악의 경우를 평가하여야 한다. 무게를 2배로 늘리면 에너지가 2배로 늘어나지만, 회전속도 (RPM) 또는 날아오는 반지름을 2배로 늘리면 에너지가 4배로 늘어난다. 즉, 작은 가공물이라도 상당한 위험을 일으킬 수 있음을 인지하여야 한다.
- (9) 날아올 수 있는 가공물 등이 투명 패널과 일직선하에 놓일 수 있도록 한다.
- (10) 경우에 따라서는 척 가공물 등이 가드에 의해 보호될 수 있다. 그러나 새로운 척이나 가공물을 고정시키는 방식이 변화되면 상황이 바뀔 수 있음을 검토하여야 한다.
- (11) 가공물 등의 날아오는 에너지는 <표 1> 과 같이 계산할 수 있다.
- (가) 가공물 등의 무게
- (나) 날아오는 반지름(Ejection radius, point of release radius)은 일반적으로 스 핀들 중심선과 가공물 등의 중심이 날아오는 반지름이 된다. 다만, 척 조 어셈블리의 경우에는 날아오는 반지름이 척 몸체 주변에 위치하기 때문에 척 지름에 1.25를 곱해야 한다.
- (다) 최대 회전속도(RPM)
- (라) 특정 무게, 반지름 또는 회전속도가 <표 1>에 제시되지 않은 경우에는 이와 가장 가까운 (높은) 수치를 골라서 근사치를 얻는다.

<표 1> 날아오는 에너지(kJ) <출처: HSE EIS No. 33 Table 1>

날아 오는	날아 오는	스핀들 최대 회전속도(RPM)										
무게 (kgf)	반지름 (mm)	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000
1.0	400	0.878	1.974	3.510								
	350	0.672	1.511	2.687	4.199							
	300	0.494	1.110	1.974	3.085	4.442						
	250	0.343	0.771	1.371	2.142	3.085	4.199					
	200	0.219	0.494	0.878	1.371	1.974	2.687	3.510	4.333			
	175	0.168	0.378	0.672	1.050	1.512	2.058	2.687	3.317	4.199		
	150	0.123	0.278	0.494	0.772	1.112	1.514	1.974	2.437	3.085	3.733	4.442
	125	0.086	0.193	0.343	0.535	0.771	1.049	1.371	1.693	2.142	2.592	3.085
	100	0.055	0.123	0.219	0.343	0.494	0.672	0.878	1.084	1.371	1.659	1.974
	75	0.031	0.070	0.124	0.193	0.278	0.378	0.494	0.610	0.771	0.934	1.111
	63	0.022	0.049	0.087	0.136	0.196	0.267	0.348	0.430	0.544	0.659	0.784
	50	0.014	0.031	0.055	0.086	0.124	0.169	0.220	0.272	0.343	0.415	0.494
	38	0.008	0.018	0.032	0.050	0.071	0.097	0.127	0.157	0.198	0.239	0.285
* 예시: 투명 패널 8 ㎜를 장착한 선반의 최대 회전속도 3,300 rpm, 척 지름 180 ㎜, 척 조 최대 무												
게 1.8 kgf, 척 조의 무게중심은 척 몸체의 바깥쪽으로 30 mm 위치에 있다고 가정하면 날아오												
는 반지름은 척 지름의 1/2 + 30 mm이므로 120 mm이다. 표 1에서 가장 가까운 반지름은 125 mm이고, 회전속도에서 가장 가까운 값 3,500 rpm을 선택하면 이 때의 에너지값은 1.049 kJ이												
다. 이 값에 척 조의 실제 무게값을 곱해 1.8882 kJ이 얻어진다. 에너지값은 약 1.9 kJ이다.												
(다음 표 2 참조)												

5. 위험의 제어

5.1 공학적 제어

- (1) 예상된 최대 날아오는 에너지를 억제하기 위해 사용된 자재 및 기존 가드설계의 적합성을 검토한다.
- (2) 기계의 가드는 모든 상황에서 날아옴을 억제할 수 있도록 설계되지 않았다는 점을 참고한다.
- (3) 기계의 척 조의 돌출을 제어하는데 필요한 강도는 최대 회전속도의 수치를 적용한다.

5.2 재료에 의한 제어

- (1) 가드 및 투명 패널에 사용되는 재료를 파악하여 적합한 것을 적용한다. 투명 패널은 보통 폴리카보네이트(신형의 경우는 연성 플라스틱), 유리, 또는 유리와 폴리카보네이트를 혼합한 적층구조로 만들어진다.
- (2) 가드 및 투명 패널 재료의 두께와 검토할 사항은 다음과 같다.
 - (가) 유리 한 장의 두께는 일반적으로 4~6 mm 이며, 강화 작업을 거쳐도 고에너지의 날아오는 충격을 지탱할 힘이 충분치 않을 수 있음을 고려한다.
 - (나) 폴리카보네이트의 두께가 4~20 mm에 이르는 플라스틱 재료는 깊게 긁히 거나 변색되면 상태가 변질되며, 금이 가거나 손상된 경우 계속 사용하지 말아야 한다.
 - (다) 적층구조 재료는 다음과 같다.
 - ① 유리-폴리카보네이트로 이루어진 2층 구조 또는 유리-폴리카보네이트-유리(또는 폴리카보네이트)의 3층이고 전체 두께는 8~30 mm로 구성된다.
 - ② 폴리카보네이트층만이 충격에 견딜 수 있으며 2층 구조는 폴리카보네이트 만으로 이루어진 단층 구조와 동일한 방식으로 변질된다. 그러나 3층 구조 는 금속 가공유가 조립 시 유입되지 않고 보호층이 손상되지 않는 한 원 래의 강도를 계속 유지할 수 있다.
 - ③ 손상이 발생하면 투명 패널을 계속 사용하는 것을 피하여야 한다.
 - ④ 제조업체가 별도로 명시하지 않는 한, 전체 두께가 12 mm 미만인 3층 패널의 충격 저항력은 4 mm 미만의 폴리카보네이트에 근거하여 선정하여야한다.
- (3) 가드 및 보조 부품들은 일반적으로 강재(Steel)로 만들어진다. 투명 패널을 보완하기 위해 제공된 강판이나 강봉이 구멍이 뚫려 있는 유형인 경우, 구

M - 1 - 2013

명간격을 측정하여 가능한 날아오는 가공물 등의 크기를 제어 할 수 있는 정 도인지를 파악하여야 한다.

6. 방호조치

6.1 가드 및 투명 패널 고정

- (1) 투명 패널을 가드에 고정시키는 방법은 강도 측면에서 검토하고 평가해야 한다.
- (2) 가드에서 투명 패널이 분리될 때 발생하는 고 에너지 충격을 방지하기 위해 서 기계적 연결을 하여야 한다.
- (3) 성형한 위치조정용 고무(Moulded rubber location arrangement)를 사용하지 말아야 한다.
- (4) 투명 패널이 최소한 20 mm 겹치고 가드 틈의 안쪽 전체를 둘러싸도록 한다.
- (5) 투명 패널에 볼트를 박는 것 보다 클램핑하여 투명 패널의 위치를 고정시키는 것이 더 바람직하다.

6.2 재료의 충격 저항

- (1) 투명 패널의 상태가 좋고 가드에 제대로 고정시켰다면, 다음 단계는 폴리카 보네이트의 이력을 파악하는 것이다. 이 과정에서 투명 패널이 중간에 교체 되었음을 나타내주는 증거가 없는 한 원래 재료 또는 투명 패널이 기기에 장착되어 있다고 가정하여 작업한다. (투명 패널이 교체되었다면 유지보수 점검표에 기록을 남기거나, 기기에 태그 또는 스티커를 붙인다).
- (2) 다른 보호 장치가 없는 투명 패널의 경우, <표 2>로부터 폴리카보네이트에 대한 잔여 충격 저항을 파악한다.
- (3) 투명 패널의 값은 <표 1>과 같이 최대 예상 가능한 날아오는 에너지 값 보

M - 1 - 2013

다 커야 한다.

- (4) 날아오는 구역 내 강재 가드의 두께는 폴리카보네이트의 필요한 두께의 약 1/3이상 되어야 한다.
- (5) 강재 가드가 너무 얇거나, 투명 패널 강도 수치가 예상 도출 에너지보다 작으면, 이를 수정하기 위한 조치가 필요하다.

6.3 수정 조치

- (1) 제어 조치가 충분하지 않은 경우, 가능하다면 제조업체 또는 공급업체로부터 추가적인 정보를 구한다.
- (2) 제조업체로부터 가드의 세부 설계 사양, 최신형 가드의 적용 여부, 기타 바람직한 변경 및 적절한 재료의 공급원 등에 대한 정보를 참고한다.
- (3) 향후 유지보수 요건도 평가의 일부로 고려되어야 한다.
- (4) 장기적인 제어 조치가 고려되지 않고 사용 환경이 크게 변하지 않을 경우에는, 투명 패널의 교체 주기를 명시하도록 한다.
- (5) 상기 예(표 1의 예시 참조)에 대한 조치사항은 다음과 같다.
 - (가) CNC 부품-프로그램은 최고 회전속도를 3,000 RPM까지 허용하도록 수 정한다. 이는 기기의 안전한 사용 연한을 약 1년 정도 연장할 수 있으나, 폴리카보네이트의 상태는 계속 악화될 수 있으므로 새로운 부품-프로그램을 시작하기 전에 최대 속도를 점검해야 한다.
 - (나) 기능이 다한 폴리카보네이트를 새로운 8 mm 재료로 바꾸고, 주기적으로 교체한다.
 - (다) 새로운 6 mm 폴리카보네이트 판을 사용하여 투명 패널을 교체할 경우에는 완전 밀폐식 적층구조 조립품으로 교체한다. 이 때 특히 주의할 사항으로

M - 1 - 2013

기기 사용자는 적층구조 투명 패널을 자체 제작해서는 안 된다. 이것은 특수한 접착 방식, 접착제 및 밀폐 재료를 필요로 하기 때문이다. 기기 제 조업체가 공급하거나 추천하는 제품만을 사용하도록 하여야 한다.

- (라) 적절히 지지되고, 가드에 단단하게 볼트로 고정된 보호 강판을 투명 패널의 취약 부위에 추가할 수 있다. 강재의 두께는 1.9 kJ 에너지 값을 감안하여 대략 새로운 폴리카보네이트 두께의 1/3은 되어야 한다.
- (마) 완전한 적층 구조이고 밀폐된 신형 투명 패널 또는 방호 강판만이 장기 적인 해결책으로 고려될 수 있다.
- (6) 다음의 추가적인 조치는 특히 제조업체 또는 공급업체가 더 이상 존재하지 않거나 기술 데이터를 얻기 어려운 경우에 고려하여야 한다.
 - (가) 가능하다면, 날아올 가능성이 있는 품목의 질량(무게)을 줄임
 - (나) 가공물 등을 고정시키는 장치의 설계 또는 안정성을 개선
 - (다) 결함이 있거나 낡은 척을 교체하고 유지보수를 개선
 - (라) 고 위험 작업을 보다 안전한 기기로 변경하여 작업 수행

6.4 안전한 작업 방식

- (가) 가드의 강도를 개선하는 것 외에, 안전한 작업 방식을 채택하고 장비, 특히 가공물 등을 고정하는 장치(척 및 부착물)를 적절히 유지보수 함으로 써 날아오는 위험을 줄일 수 있도록 한다.
- (나) 척을 안전하게 사용하는 방법에 대한 세부적인 정보는 기기 제조업체 또 는 척 공급업체로부터 제공받아야 한다.
- (다) 올바른 가공 변수를 선택하고 프로그래밍 에러를 최소화하도록 작업자 및 기기 세팅 담당 직원들에게 적절한 교육을 제공하도록 한다.

<표 2> 폴리카보네이트의 두께와 시간에 따른 잔류충격저항(KJ) <출처: HSE EIS No. 33 Table 2>

날아오는	두께	폴리카보네이트의 사용시간(년)									
무게	(mm)	신품	1	2	3	4	5	6	7	8	
	40	23.1	20.8	18.5	16.2	13.9	11.6	9.2	6.9	4.6	
	30	17.3	15.6	13.9	12.1	10.4	8.7	6.9	5.2	3.5	
	25	14.5	13.0	11.6	10.1	8.7	7.2	5.8	4.3	2.9	
	21	12.1	10.9	9.7	8.5	7.3	6.1	4.8	3.6	2.4	
50 kgf	18	10.4	9.4	8.3	7.3	6.2	5.2	4.2	3.1	2.1	
충격면적 1156 m㎡	15	8.7	7.8	6.9	6.1	5.2	4.3	3.5	2.6	1.7	
	12	6.9	6.2	5.5	4.9	4.2	3.5	2.8	2.1	1.4	
	10	5.8	5.2	4.6	4.0	3.5	2.9	2.3	1.7	1.2	
	8	4.6	4.2	3.7	3.2	2.8	2.3	1.8	1.4	0.9	
	6	3.5	3.1	2.8	2.4	2.1	1.7	1.4	1.0	0.7	
	4	2.3	2.1	1.8	1.6	1.4	1.2	0.9	0.7	0.5	
	25	11.3	10.1	9.0	7.9	6.8	5.6	4.5	3.4	2.3	
	21	9.5	8.5	7.6	6.6	5.7	4.7	3.8	2.8	1.9	
0516	18	8.1	4.1	6.5	5.7	4.9	4.1	3.2	2.4	1.6	
2.5 kgf	15	6.8	6.1	5.4	4.7	4.1	3.4	2.7	2.0	1.4	
충격면적	12	5.4	4.9	4.3	3.8	3.2	2.7	2.2	1.6	1.1	
900 mm²2	10	4.5	4.1	3.6	3.2	2.7	2.3	1.8	1.4	0.9	
	8	3.6	3.2	2.9	2.5	2.2	1.8	1.4	1.1	0.7	
	6	2.7	2.4	2.2	1.9	1.6	1.4	1.1	0.8	0.5	
	4	1.8	1.6	1.4	1.3	1.1	0.9	0.7	0.5	0.4	
	21	6.6	5.9	5.3	4.6	3.9	3.3	2.6	2.0	1.3	
	18	5.6	5.1	4.5	3.9	3.4	2.8	2.3	1.7	1.1	
1.25 kgf	15	4.7	4.2	3.8	3.3	2.8	2.3	1.9	1.4	0.9	
충격면적	12	3.8	3.4	3.0	2.6	2.3	1.9	1.5	1.1	0.8	
625 mm²	10	3.2	2.8	2.5	2.2	1.9	1.6	1.3	0.9	0.6	
020 11111	8	2.5	2.3	2.0	1.8	1.5	1.3	1.0	0.8	0.5	
	6	1.9	1.7	1.5	1.3	1.1	0.9	0.8	0.6	0.4	
	4	1.3	1.1	1.0	0.9	0.8	0.6	0.5	0.4	0.3	
	18	4.6	4.1	3.6	3.2	2.7	2.3	1.8	1.4	0.9	
1.0 kgf	15	3.8	3.4	3.0	2.7	2.3	1.9	1.5	1.1	0.8	
	12 10	3.0 2.5	2.7 2.3	2.4 2.0	2.1	1.8	1.5 1.3	1.2	0.9 0.8	0.6 0.5	
충격면적 506 m㎡		2.0	2.3 1.8	2.0 1.6	1.8	1.5 1.2	1.0	1.0 0.8	0.6	0.3	
	8 6	1.5	1.6	1.0	1.4 1.1	0.9	0.8	0.6	0.5	0.4	
	4	1.0	0.9	0.8	0.7	0.6	0.8	0.4	0.3	0.3	
	18	3.2	2.9	2.6	2.3	1.9	1.6	1.3	1.0	0.2	
	15	2.7	2.4	2.2	1.9	1.6	1.4	1.1	0.8	0.5	
0.625 kgf	12	2.2	2.0	1.7	1.5	1.3	1.1	0.9	0.6	0.3	
충격면적	10	1.8	1.6	1.4	1.3	1.1	0.9	0.7	0.5	0.4	
	8	1.4	1.3	1.2	1.0	0.9	0.7	0.6	0.4	0.3	
361 mm²	6	1.1	1.0	0.9	0.8	0.6	0.5	0.4	0.3	0.2	
	4	0.7	0.6	0.6	0.5	0.4	0.3	0.3	0.3	0.2	
	4	0.7	0.0	0.0	0.0	0.4	0.4	0.0	0.4	0.1	

M - 1 - 2013

* 예시: (앞의 표 1에서) 조 어셈블리의 무게 1.8 kgf는 1.25 kgf와 2.5 kgf의 사이에 있다. 이런 경우표 2에서는 작은 쪽의 값을 선정한다. 표 2에서 1.9 kJ은 신품인 경우 6 mm가 요구된다. 이선반의 경우 표 1에서 8 mm를 장착한 것으로 가정했으므로 표 2에서는 3년이면 잔류충격저항값이 1.8 kJ이 되어 1.9 kJ보다 적어지게 된다. 계속 사용을 위해서는 수정조치가 필요하게된다.