Binomial Distribution

Expected Value and Variance

The Binomial Distribution

Background

Expected value:

$$E(X) = n \cdot p$$

Bernoulli

Binomial

Variance:

$$Var(X) = n \cdot (1-p) \cdot p$$

· Recall : Bernoulli distribution:

The Binomial Distribution

Background

Example [10 component machine]

Bernoulli

Calculate the expected number of components to succeed and the variance.

Binomial

Binomial

Ey=
$$\Lambda.P = 10(.95) = 9.5$$
 $Vac(Y) = \Lambda.P(1-P)$
 $= 10(0.95)(0.05)$
 $= .475$

Standald

Standald

Standald

The Binomial Distribution

Background

A few useful notes:

Bernoulli

ullet In order to say that " X has a binomial distribution with n trials and success probability p" we write $X \sim Binomial(n,p)$

Binomial

• If X_1, X_2, \ldots, X_n are n independent Bernoulli random variables with the same p then

 $X = X_1 + X_2 + \ldots + X_n$ is a binomial random variable with n trials and success probability p.

• Again, n and p are referred to as "parameters" for the Binomial distribution. Both are considered fixed.

 $\rho(X \leq 5)$

Note: No closed form of CDF of Binomial

The Geometric Distribution

The Geometric Distribution

another generic discrete C.V &

Background

Bernoulli

Binomial

Geometric

Origin: A series of independent random experiments, or trials, are performed. Each trial results in one of two possible outcomes: successful or failure. The probability of a successful outcome, p, is the same across all trials. The trials are performed until a successful outcome is observed.

Definition: X is the trial upon which the first successful outcome is observed. X can take values $1, 2, \ldots$

probability function:

With $0 , There's only one Parameter. <math display="block">f(x) = \begin{cases} p(1-p)^{x-1} & x = 0.2, \dots, \\ o.w. \end{cases}$ at least one trel to observe the first success.

Examples of Geometric Distribution

Background

Bernoulli

Binomial

Geometric

• Number of rolls of a fair die until you land a 5

- Number of shipments of raw materials you get until you get a defective one (success does not need to have positive meaning)
- Number of car engine starts untill the battery dies.

Shape of Geometric Distribution

Background

Bernoulli

Binomial

Geometric

The probability of observing the first success decreases as the number of trials increases(even at a faster rate as p increases)

The Geometric Distribution

Closel Form CDF

Background

Cumulative probability function: $F(x) = \underline{1} - (1-p)^x$

$$F(x) = 1 - (1-p)^x$$

Here's how we get that cumulative probability function:

Bernoulli

Geometric

- Bernoulli of tional of tional solution of a failed trial is 1-p.

 The probability the first trial fails is also just 1-p.

 The probability that the first two trials both fail is $(1-p)\cdot(1-p)=(1-p)^2$.

 The probability that the first x trials all fail is $(1-p)^x$

 - . This gets us to this math:

$$F(x) = P(X \le x)$$

$$= 1 - P(X > x)$$

$$= 1 - (1 - p)^x$$

Mean

and

Variance

of Geometric Distrbution

The Geometric Distribution

X~ Geom. (1)

Background

Bernoulli

Binomial

Geometric

Expected value:

$$E(X) = \frac{1}{p}$$

Variance:

$$Var(X) = rac{1-p}{p^2}$$

Example

Background

NiCad batteries: An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around (1%) Let T be the test number at which the first short is discovered. Then, $T \sim \text{Geom}(p)$.

Bernoulli

Binomial

Calculate

• P(1st or 2nd cell tested has the 1st short)

Geometric

$$P(T=1 \text{ or } T=2) = P(T=1) + P(T=2)$$

$$= P(1) + P(2) = P(1-P)^{-1} + P(1-P)^{2-1} = (0.01)(0.99)^{\frac{1}{2}} + 0.02$$
• $P(\text{at least } 50 \text{ cells tested without finding a short})$

$$P(T > 50) = 1 - P(T \le 50)$$

$$= 1 - F_{X}(50) = 1 - [1 - (1 - 0.01)^{50}]$$

$$= (1 - 0.01)^{50} = (0.99)^{50} = 0.61$$
50

Example

Background

NiCad batteries:

Bernoulli

Calculate the expected test number at which the first short is discovered and the variance in test numbers at which the first short is discovered.

Binomial

Geometric

Example

Background

Bernoulli

Binomial

Geometric

A shipment of 200 widgets arrives from a new widget distributor. The distributor has claimed that the widgets there is only a 10% defective rate on the widgets. Let X be the random variable associated with the number of trials untill finding the first defective widgets.

• What is the probability distribution associated with this random variable *X*? Precisely specify the parameter(s).

• How many widgets would you expect to test before finding the first defective widget?

Example

Background

You find your first defective widget while testing the thrid widget.

Bernoulli

• What is the probability that a the first defective widget would be found **on** the third test if there are only 10% defective widgets from in the shipment?

Binomial

$$P(x=3) = p(1-p)^{x-1}$$

Geometric

$$=0.1(1-0.1)^{3-1}$$

$$=0.1(0.9)^2=0.081$$

Example

Background

• What is the probability that a the first defective widget would be found **by** the third test if there are only 10% defective widgets from in the shipment?

Bernoulli

$$P(x \le 3) = F_X(3) = 1 - (1 - p)^3$$

Binomial

$$=1-(1-.1)^3$$

Geometric

$$=1-(0.9)^3=0.271$$

The Poisson Distribution

The Poisson Distribution

Background

Origin: A rare occurance is watched for over a specified interval of time or space.

Bernoulli

It's often important to keep track of the total number of occurrences of some relatively rare phenomenon.

Binomial

Definition

Consider a variable

Geometric

X : the count of occurences of a phenomenon across a specified interval of time or space

Poisson

or

X: the number of times the rare occurance is observed

The Poisson Distribution

Background

probability function:

Bernoulli

The **Poisson**\$(\lambda)\$ distribution is a discrete probability distribution with pmf

Binomial

$$f(x) = \left\{ egin{array}{ll} rac{e^{-\lambda}\lambda^x}{x!} & x = 0, 1, \dots \ 0 & o. \, w. \end{array}
ight.$$

Geometric

For $\lambda > 0$

The Poisson Distribution

Background

These occurrences must:

Bernoulli

• be independent

Binomial

• be sequential in time (no two occurances at once)

• occur at the same constant rate λ

Geometric

 λ the $\it rate\ parameter$, is the expected number of occurances in the specified interval of time or space (i.e $E(X)=\lambda$)

The Poisson Distribution

Background

Examples that could follow a Poisson\$(\lambda)\$ distribution :

Bernoulli

Y is the number of shark attacks off the coast of CA next **year**, $\lambda=100$ attacks per year

Binomial

Z is the number of shark attacks off the coast of CA next **month**, $\lambda=100/12$ attacks per month

Geometric

N is the number of lpha-particles emitted from a small bar of polonium, registered by a counter in a minute, $\lambda=459.21$ particles per **minute**

Poisson

J is the number of particles per hour, $\lambda = 459.21*60 = 27,552.6$ particles per hour.

The Poisson Distribution

Background

Bernoulli

Binomial

Geometric

Right skewed with peak near λ

The Poisson Distribution

Background

For X a Poisson (λ) random variable,

Bernoulli

$$\mu = \mathrm{E} X = \sum_{x=0}^{\infty} x rac{e^{-\lambda} \lambda^x}{x!} = \lambda$$

Binomial

$$\sigma^2 = \mathrm{Var} X = \sum_{x=0}^{\infty} \left(x - \lambda
ight)^2 rac{e^{-\lambda} \lambda^x}{x!} = \lambda$$

Geometric

Example

Background

Arrivals at the library

Bernoulli

Some students' data indicate that between 12:00 and 12:10pm on Monday through Wednesday, an average of around 125 students entered Parks Library at ISU. Consider modeling

Binomial

M: the number of students entering the ISU library between 12:00 and 12:01pm next Tuesday

Geometric

Model $M \sim \operatorname{Poisson}(\lambda)$. What would a reasonable choice of λ be?

Example

Background

Arrivals at the library

Bernoulli

Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

Binomial

Geometric

Shark attacks

Background

Let X be the number of unprovoked shark attacks that will occur off the coast of Florida next year. Model

 $X \sim \operatorname{Poisson}(\lambda)$.

Bernoulli

From the shark data at

Binomial

http://www.flmnh.ufl.edu/fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.

Geometric

What would a reasonable choice of λ be?

Shark attacks

Background

Under this model, calculate the following:

• P(no attacks next year)

Bernoulli

Binomial

Geometric

• P(at least 5 attacks)

Poisson

• P(more than 10 attacks)