

BULK RNA-SEQ ANALYSIS

Cominelli Marco, Sasso Elena

TABLE OF CONTENTS

1. Quality controls

4. Relationship mean-variance

2. Normalization

5. DE genes

3. 2D-projection

6. One example gene: CLCN1

3.1. 2D-projection: slice

7. Enrichment analysis

1. Quality control

Our tissue and replicates: **Brain** (33, 34, 38), **Colon** (32,33,34), **Muscle** (32,33,34)

	Brain 33	Brain 34	Brain 38	Colon 32	Colon 33	Colon 34	Muscle 32	Muscle 33	Muscle 34
RIN	6.7	6	7.2	6.2	6.3	6.1	7.5	6.2	8.1
% of rRNA reads	6.4	6.7	7.8	0.5	1.4	0.5	1.2	5.0	0.9
% of uniquely mapped reads	91.4	87.5	91.3	89.6	88.9	91.7	89.6	92.2	89

Thresholds used:

- RIN ≥ 6.0
- % of rRNA reads ≤ 10%
- % of uniquely mapped reads ≥ 85%

We started with 32, 33 and 34 for all tissues, but then we needed to discard the brain samples 32, 35, 36 and 37 because:

- Brain32 has a % of uniquely mapped reads of 80.4%
- Brain35,36,37 have a RIN equal to 5.7, 5.7 and 5.9, respectively

2. Normalization

	Brain 33	Brain 34	Brain 38	Colon 32	Colon 33	Colon 34	Muscle 32	Muscle 33	Muscle 34
Normalization factor	1.29	1.32	1.45	1.01	1.13	1.15	0.69	0.79	0.57

3. 2D-projection

3. 2D-projection

3.1. 2D-projection: slice

4. Relationship mean-variance

5. DE genes

Genes are up- and down-regulated in the first condition w.r.t. the second one.

5. DE genes

6. One example gene: CLCN1

6. One example gene: CLCN1

7. Functional enrichment analysis

Brain Colon Muscle

GO Cellular Component **9** 2023

Neuron Projection (GO:0043005)

Postsynaptic Density (GO:0014069)

Postsynaptic Density Membrane (GO:009883

Postsynaptic Specialization Membrane (GO:

Dendrite (GO:0030425)

Reactome 2022

Neuronal System R-HSA-112316

Transmission Across Chemical Synapses R-H

Neurotransmitter Receptors And Postsynapt

Protein-protein Interactions At Synapses R-F

Neurotransmitter Release Cycle R-HSA-1123

KEGG 2021 Human

Protein digestion and absorption

Neuroactive ligand-receptor interaction

Calcium signaling pathway

ECM-receptor interaction

Focal adhesion

GWAS Catalog 2023

Tryptase Beta-2 Levels

PR Interval

Chronic Obstructive Pulmonary Disease Liak

Joint Mobility (Beighton Score)

Hernia (Any Subtypes)

MGI Mammalian Phenotype Level 4 2021

impaired skeletal muscle contractility MP:00

centrally nucleated skeletal muscle fibers M

abnormal muscle physiology MP:0002106

abnormal skeletal muscle fiber morphology

muscle weakness MP:0000747

GO Biological Process 2023

Cellular Respiration (GO:0045333)

Mitochondrial ATP Synthesis Coupled Electro

Oxidative Phosphorylation (GO:0006119)

Aerobic Electron Transport Chain (GO:00196

Proton Motive Force-Driven Mitochondrial A

THANKS FOR YOUR ATTENTION!