Lecture 14: Interpreting logistic regression models

Sandy Eckel seckel@jhsph.edu

15 May 2008

Logistic regression

- Framework and ideas of logistic regression similar to linear regression
- Still have a systematic and probabilistic part to any model
- Coefficients have a new interpretation, based on log(odds) and log(odds ratios)

Recall from last time: The logit function

- In logistic regression, we are always modelling the outcome log(p/(1-p))
- We define the function:

$$logit(p) = log(p/(1-p))$$

- We often use the name logit for convenience
- In logistic regression, we have the logit on the left-hand side of the equation

Example: Public health graduate students

- 323 graduate students in introductory biostatistics took a health survey. Current smoking status was assessed, which we will predict with gender
 - Associating demographics with smoking is vital to planning public health programs.
 - Information was also collected on age, exercise, and history of smoking; potential confounders of the association between gender and current smoking.
 - First we will focus only on the association between gender and current smoking status

Coding our two variables for the first example

- Outcome:
 - smoking = 1 for current smokers 0 for current nonsmokers
- Primary predictor:
 - gender = 1 for men 0 for women

Recall: an analogous linear regression model

In linear regression, if we had only one binary X like gender, we would be predicting two means: $E(Y) = \beta_0 + \beta_1 (Gender)$

- β_0 the mean outcome when X=0
- $\beta_0 + \beta_1$ the mean outcome when X=1
- β_1 the **difference** in mean outcome when X=1 vs. when X=0

Logistic regression model and Results

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(Gender) \quad \Rightarrow \quad \log\left(\frac{p}{1-p}\right) = -3.1 + 1.0(Gender)$$

Logit estimates	3			Number LR chi	of obs 2(1)	s = =	323 4.46
				Prob >	chi2	=	0.0348
Log likelihood = -75.469757				Pseudo	R2	=	0.0287
smoke	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
gender	. 967966	.4547931	2.13	0.033	. 0765	879	1.859344
(Intercept)	-3.058707	. 3235656	-9.45	0.000	-3.692	2884	-2.42453

Logistic Regression Gender-specific results

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(Gender) \quad \Rightarrow \quad \ln\left(\frac{p}{1-p}\right) = -3.1 + 1.0(Gender)$$

- For women, gender=0: $ln\left(\frac{p}{1-p}\right) = -3.1 + 1.0(0) = -3.1$
- For men, gender=1: $\ln\left(\frac{p}{1-p}\right) = -3.1 + 1.0(1) = -2.1$
- β₁ is the difference between men and women
- β_1 is the **change in log odds** comparing men to women

Logistic Regression Interpretation 1: log(odds) scale

$$\ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(Gender) \quad \Rightarrow \quad \ln\left(\frac{p}{1-p}\right) = -3.1 + 1.0(Gender)$$

- β_0 : the *log odds* of smoking for women
- $\beta_0 + \beta_1$: the *log odds* of smoking for men
- β_1 : the *difference* in the log odds of smoking for men compared to women

What if we wanted to get the odds interpretation, not the log odds...

- We can start to "untransform" the equations
 - Recall:

if
$$\log(a) = b$$
, then $\exp(\log(a)) = a = e^b$

- For women, X=0: log(odds)= $\beta_0 + \beta_1(0) = \beta_0$ odds of smoking for women = $e^{\beta_0} = e^{-3.1} = 0.05$
- For men, X=1: $\log(\text{odds}) = \beta_0 + \beta_1(1)$ odds of smoking for men = $e^{\beta_0 + \beta_1} = e^{-3.1 + 1.0} = e^{-2.1} = 0.12$

9

11

Logistic Regression Interpretation 2: odds scale

- e^{β_0} : the *odds* of smoking for women (when X=0)
- $e^{\beta_0+\beta_1}$: the **odds** of smoking for men (when X=1)
- In the past, we've compared two sets of odds by dividing to find the odds ratio (OR)

Comparing odds

- If we subtract the log odds, mathematically that's equivalent to dividing inside the log:
 - $\log(a) \log(b) = \log(a/b)$
- So, if
 - $e^{\beta_0 + \beta_1} = e^{-3.1 + 1.0} = e^{-2.1} = 0.12$ is the odds when X=1, and
 - $e^{\beta_0} = e^{-3.1} = 0.05$ is the odds when X=0, then
 - we want to *divide* them in order to compare

Odds Ratio =
$$\frac{\text{odds for men}}{\text{odds for women}} = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = \frac{0.12}{0.05} = 2.4$$

10

Logistic Regression Interpretation: the odds ratio

Odds Ratio =
$$\frac{\text{odds for men}}{\text{odds for women}} = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = \frac{0.12}{0.05} = 2.4$$

- The odds of smoking is about 2 ½ times greater for men than for women.
- Based on this study, perhaps smoking cessation programs should be targeted toward men

Useful math – ratios of exponentiated terms

We can usually simplify an equation like this

Odds Ratio =
$$\frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}}$$
$$= e^{(\beta_0 + \beta_1) \cdot (\beta_0)}$$
$$= e^{\beta_1}$$

because
$$\frac{e^a}{e^b} = e^{a-b}$$

13

14

Taking a ratio of odds to get the odds ratio

- e^{β_0} : the **odds** when X=0
- $e^{\beta_0 + \beta_1}$: the **odds** when X=1
- $\frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = e^{\beta_1}$ the *odds ratio*comparing the odds when X=1 vs. X=0

Two interpretations of logistic regression slopes

- $\beta_0 + \beta_1 = \log(\text{odds})$ (for X=1) • $\beta_1 = \text{difference}$ in log odds
- $e^{\beta_0 + \beta_1} = \text{odds (for X=1)}$
 - e^{β_1} = odds *ratio*
- But we started with P(Y=1)
- Can we find that?

More useful math how to get the probability from the odds

• odds=
$$\frac{\text{probability}}{1-\text{probability}}$$

probability =
$$\frac{\text{odds}}{1 + \text{odds}}$$

so
$$P(X=1) = \frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}$$

Finding the probability from the log odds

Find the log odds:

For X=0: $\log(\text{odds}) = \beta_0$

For X=1: $\log(\text{odds}) = \beta_0 + \beta_1$

Find odds:

For X=0: odds = e^{β_0} For X=1: odds = $e^{\beta_0+\beta_1}$ Transform odds into probability:

(next slide...)

Finding the probability from the log odds, cont...

Transform odds into probability:

$$p = \frac{\text{odds}}{1 + \text{odds}}$$

For
$$X = 0$$
: probability = $\frac{e^{\beta_0}}{1 + e^{\beta_0}}$

For X = 1: probability =
$$\frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}$$

We could even go one step further

Re lative Risk (RR) = $\frac{p_1}{p_2}$

For X = 1: $P(\text{smoke } | \text{male}) = \frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}$

For X = 0: P(smoke | female) = $\frac{e^{\beta_0}}{1 + e^{\beta_0}}$

Relative Risk for Men vs. Women: $\frac{p_1}{p_2} = \frac{\left(\frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}\right)}{\left(\frac{e^{\beta_0}}{1 + e^{\beta_0}}\right)}$ • no way to simplify

20

18

Remember to consider study design

- We always can calculate the relative risk
- The relative risk is not appropriate for case-control studies
 - Again, because the investigators decide the number of cases and controls to study
- The odds ratio is appropriate for all study designs

In General

- Logistic regression for a binary outcome
- Left side of equation is log odds
 - Can transform the equation to find
 - odds
 - probability
 - Can compare two groups
 - difference of log odds ≡ log odds ratio
 - odds ratio
 - relative risk
- (Almost) everything we learned before applies

21

22

Summary: Useful math for logistic regression

If $\log(a) = b$, then $\exp(\log(a)) = a = e^b$

X=1: log(odds)= $\beta_0 + \beta_1(1)$ so odds for $(X = 1) = e^{\beta_0 + \beta_1}$

 $\frac{e^{a}}{e^{b}} = e^{a-b} \quad \text{so} \quad \frac{e^{\beta_{0} + \beta_{1}}}{e^{\beta_{0}}} = e^{\beta_{1}} \quad \text{Also:} \quad e^{a+b} = e^{a} \times e^{b}$ $\text{so } e^{2\beta_{1}} = e^{\beta_{1}} \times e^{\beta_{1}} = \left(e^{\beta_{1}}\right)$

probability = $\frac{\text{odds}}{1 + \text{odds}}$

so probability for $(X = 1) = \frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}}$

Another Example

- Regular physical examination is an important preventative public health measure
- We'll study this outcome using the public health graduate student dataset
 - Outcome: No physical exam in the past two years
 - Primary predictor: age (centered)
 - Secondary predictor and potential confounder: regularly taking a multivitamin

Problem with outcome variable:

- The original "physician visit" variable was meant to be continuous, but it was collected categorically
 - time since last physician visit
- Since it is now categorical and we wish to use it as the outcome for a regression model, we will make it binary and use logistic regression

Phys = 1 if over 2 years 0 if 2 years or less

Length of time since last check-up	Freq.	Percent	Cum.
Within the past year	182	54.17	54.17
Within the past 1-2 years	72	21.43	75.60
Within the past 2-5 years	53	15.77	91.37
5 or more years	29	8.63	100.00
Total	336	100.00	

25

Goals

- Predict Phys (no physician visit within the past two years=1) with centered Age (continuous)
- After adjusting for age, is taking a multivitamin (1=yes) a statistically significant predictor for not regularly visiting a physician?
- Is taking a multivitamin a confounder for the age-physician visit relationship?

26

Results Model 1: Intercept and Age

Note that agec = age-30 (centered age)

Logit estimate	es			Numbe	r of obs	=	336
				LR ch	i2(1)	=	0.00
				Prob	> chi2	=	0.9567
Log likelihood = -186.71399				Pseud	lo R2	=	0.0000
phys_no	Coef. +	Std. Err.			-	Conf.	Interval
agec	•	.0176509	-0.05	0.957	0355	536	. 0336365
(Intercept)	-1.130428	.1270539	-8.90	0.000	-1.379	449	8814066
	· 						

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) \quad \Rightarrow \quad \log\left(\frac{p}{1-p}\right) = -1.13 - 0.001(Age - 30)$$

Model 1: Interpretation of coefficients on log odds scale

- β_0 : the log odds of not visiting a physician for a 30-year-old
- β₁: the difference in the log odds of not visiting a physician for a one year increase in age

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) \quad \Rightarrow \quad \log\left(\frac{p}{1-p}\right) = -1.13 - 0.001(Age - 30)$$

_--

Model 1: How did we get the difference in log odds interpretation of β_1 ?

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) \quad \Rightarrow \quad \log\left(\frac{p}{1-p}\right) = -1.13 - 0.001(Age - 30)$$

• For a 30-year-old:

$$\log\left(\frac{p}{1-p}\right) = -1.13 - 0.001(30 - 30) = -1.13$$

• For a 31-year-old:

$$\log\left(\frac{p}{1-p}\right) = -1.13 - 0.001(31 - 30) = -1.13 - 0.001 = -1.129$$

 β₁ is the difference in the log odds associated with a 1 year increase in age

Model 1: Interpretation of β_1 (diff log odds = log OR)

- $\log(a) \log(b) = \log(a/b)$
 - so log(odds|X=31) log(odds|X=30)= log(OR for X=31 vs. X=30)
 - difference of log odds = log odds ratio
- Alternate interpretation for β₁:
 - The log odds ratio of not visiting a physician associated with a one year increase in age

30

Model 1: Interpretation of β_1 (OR = ratio of odds)

odds of not visiting a physician = $\frac{p}{1-p}$ = $e^{-1.13-0.001(Age-30)}$

• For a 31-year-old:

$$\frac{p}{1-p} \!=\! e^{\text{-1.13-0.001(31-30)}} \!=\! e^{\text{-1.13-0.001}} \!=\! e^{\text{-1.131}} \!=\! 0.3227$$

31

• For a 30-year-old:

$$\frac{p}{1-p} = e^{-1.13} = 0.3230$$

• Odds ratio = $\frac{0.3227}{0.3230} = 0.999 = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = e^{\beta_1}$

Model 1: Interpretation of β_1 odds ratio for one year age difference

- e^{β_0} is the odds of not visiting a physician for 30-year-olds
- $e^{\beta_0+\beta_1}$ is the odds of not visiting a physician for 31-year-olds
- e^{β₁} is the odds ratio of not visiting a physician corresponding to a one year increase in age

Model 1: Interpretation of β_1 What is the OR for **two** year age difference?

odds of not visiting a physician = $\frac{p}{1-p}$ = $e^{-1.13-0.001(Age-30)}$

For a 32-year-old:

$$\frac{p}{1-p} = e^{-1.13 - 0.001(32 - 30)} = e^{-1.13 - 0.001 \times 2} = e^{-1.132} = 0.3224$$

For a 30-year-old:

$$\frac{p}{1-p} = e^{-1.13} = 0.3230$$

• Ratio = $\frac{0.3224}{0.3230} = 0.998 = \frac{e^{\beta_0 + 2\beta_1}}{e^{\beta_0}} = e^{2\beta_1} = (e^{\beta_1})^2$

Model 1: Interpretation of β_1 What is the OR for *ten* year age difference?

odds of not visiting a physician = $\frac{p}{1-p}$ = $e^{-1.13-0.001(Age-30)}$

For a 40-year-old:

$$\frac{p}{1-p} = e^{-1.13-0.00[(40-30)]} = e^{-1.13-0.01} = e^{-1.14} = 0.3198$$

For a 30-year-old:

$$\frac{p}{1-p} = e^{-1.13} = 0.3230$$

Ratio = $\frac{0.3198}{0.3230} = 0.990 = \frac{e^{\beta_0 + 10\beta_1}}{e^{\beta_0}} = e^{10\beta_1} = (e^{\beta_1})^{10}$

33

Model 1: Interpretation of β_1 What is the OR for **any** age difference?

 e^{β₁} is the *proportional increase* of the odds of not visiting a physician corresponding to a one year increase in age

(odds for 30 - yr - old)
$$\times \frac{(\text{odds for 31 - yr - old})}{(\text{odds for 30 - yr - old})} = (\text{odds for 31 - yr - old})$$

• $(e^{\beta_1})^{10} = e^{10\beta_1}$ is the **proportional increase** of the odds of not visiting a physician corresponding to a ten year increase in age

Model 1: How could we get a Relative Risk? (if it was appropriate based on our study design)

probability of not visiting a physician = $p = \frac{e^{-1.13-0.001(Age-30)}}{1+e^{-1.13-0.001(Age-30)}}$

For a 40-year-old:

$$p = \frac{e^{-1.13 - 0.001(40 - 30)}}{1 + e^{-1.13 - 0.001(40 - 30)}} = \frac{e^{-1.13 - 0.01}}{1 + e^{-1.13 - 0.01}} \frac{e^{-1.14}}{1 + e^{-1.14}} = 0.2423$$

• For a 30-year-old:

$$p = \frac{e^{-1.13 - 0.001(0)}}{1 + e^{-1.13 - 0.001(0)}} = \frac{e^{-1.13}}{1 + e^{-1.13}} = 0.2442$$

The relative risk (RR) is

$$p_1/p_2 = 0.2423/0.2442 = 0.992$$

Model 1: Probabilities and Relative Risk for 10 year diff

• $\frac{e^{\beta_0}}{1+e^{\beta_0}}$ is the probability of not visiting a physician for 30-year-olds

• $\frac{e^{\beta_0+\beta_1\times 10}}{1+e^{\beta_0+\beta_1\times 10}}$ is the probability of not visiting a physician for 40-year-olds

$$\frac{\frac{e^{\beta_0+\beta_1\times 10}}{1+e^{\beta_0+\beta_1\times 10}}}{\frac{e^{\beta_0}}{1+e^{\beta_0}}} \quad \text{is the relative risk of not} \\ \text{visiting a physician for 40-year-olds vs. 30-year-olds}$$

Remember those Goals?

- Predict Phys (no physician visit within the past two years=1) with Age (continuous)
- After adjusting for age, is taking a multivitamin (1=yes) a statistically significant predictor for not regularly visiting a physician?
- Is taking a multivitamin a confounder for the age-physician visit relationship?

Nested models

Adding a single new variable to the model

• Model 1:
$$\log \left(\frac{p}{1-p} \right) = \beta_0 + \beta_1 (Age - 30)$$

• Model 2:
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1(Age - 30) + \beta_2(Multivitamin)$$

Logistic regression:
Comparing nested models that differ by one variable

- Compare models with p-value or CI
 - What method is this?
 - The Wald test, a test that applies the CLT, like
 - Z test comparing proportions in 2x2 table
 - X² test for independence in 2x2 table
 - analogous to the t test for linear regression
 - H₀: the new variable is not needed
 Or, equivalently
 H₀: β_{new}=0 in the population

38

Model 2: Results

Logit estimates				Number of obs LR chi2(2)		=	317 7.87
Log likelihood = -171.80997				Prob > Pseudo		=	0.0195 0.0224
phys_no	Coef.	Std. Err.	z	P> z	[95% (Conf.	Interval]
agec multivit (Intercept)	.0012855 7808889 8571962	.0192619 .2871247 .159519	0.07 -2.72 -5.37	0.947 0.007 0.000	03646 -1.3436 -1.1698	643	.0390381 2181349 5445446

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) + \beta_2 (Multivitamin)$$

$$\Rightarrow \log\left(\frac{p}{1-p}\right) = -0.86 + 0.001 (Age - 30) - 0.78 (Multivitamin)$$

41

Model 2: Coefficient interpretation on the log odds scale

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) + \beta_2 (Multivitamin)$$

$$\Rightarrow \log\left(\frac{p}{1-p}\right) = -0.86 + 0.001(Age - 30) - 0.78(Multivitamin)$$

- β₀: the **log odds** of not visiting a physician for a 30year-old person who reports not regularly taking multivitamins
- β₁: the **log odds ratio** of not visiting a physician for a one year increase in age controlling for multivitamin use
- β₂: the **log odds ratio** of not visiting a physician for those who take multivitamins compared with those who do not, adjusting for age

Conclusion from the Wald test

- The p-value for multivitamin is 0.007 (<0.05) and the CI for coefficient multivitamin does not include 0 (CI for OR doesn't include 1)
- Reject H₀
- Conclude that the larger model is better: after adjusting for age, multivitamin use is still an important predictor of physician visits in the population

42

Model 2: Interpretation – odds and odds ratio scale

 exp(β₀): the **odds** of not visiting a physician for a 30-year-old person who reports not regularly taking multivitamins

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) + \beta_2 (Multivitamin)$$

$$\Rightarrow \log\left(\frac{p}{1-p}\right) = -0.86 + 0.001(Age - 30) - 0.78(Multivitamin)$$

Model 2: Interpretation – odds and odds ratio scale

- $\exp(\beta_1)$: after adjusting for multivitamin use, the **odds ratio** of not visiting a physician changes by a *factor* of $\exp(\beta_1)=1.001$ *for each additional year of age*
 - additional age is associated with lower frequency of physician visits in these students, but the association is not statistically significant (p>0.05)

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) + \beta_2 (Multivitamin)$$

$$\Rightarrow \log\left(\frac{p}{1-p}\right) = -0.86 + 0.001(Age - 30) - 0.78(Multivitamin)$$

4.

Model 2: Interpretation – odds and odds ratio scale

- $\exp(\beta_2)$: the **odds ratio** of not visiting a physician for those who take multivitamins compared with those who do not is $\exp(\beta_2)=0.46$, adjusting for age
 - taking multivitamins is associated with regular physician visits (p=0.007)

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 (Age - 30) + \beta_2 (Multivitamin)$$

$$\Rightarrow \log\left(\frac{p}{1-p}\right) = -0.86 + 0.001(Age - 30) - 0.78(Multivitamin)$$

46

Goals

- Predict Phys (no physician visit within the past two years=1) with Age (continuous)
- After adjusting for age, is taking a multivitamin (1=yes) a statistically significant predictor for not regularly visiting a physician?
- Is taking a multivitamin a confounder for the age-physician visit relationship?

Was multivitamin use a confounder?

- CI for β_1 in model 1: (-0.036, 0.034)
 - Estimate for β₁ in model 2: 0.001
- CI for $\exp(\beta_1)$ in model 1: $(\exp(-0.036), \exp(0.034)) \rightarrow (0.97, 1.03)$
 - Estimate for $exp{\beta_1}$ in model 2: exp(0.001) = 1.001
- Estimate from model 2 is in original CI: multivitamin use is not a statistically significant confounder

Interpretation of lack of confounding result

- The factor by which the odds of irregular physician visits changes for each additional year of age does not change appreciably when we adjust for multivitamin use
- The "slope" is roughly the same before and after adjusting for multivitamin use.

Goals: conclusion 1

- Predict Phys (no physician visit within the past two years=1) with Age (continuous)
 - There is no statistically significant effect of age on physician visits in the population

50

Goals: conclusion 2

- After adjusting for age, is taking a multivitamin (1=yes) a statistically significant predictor for not regularly visiting a physician?
 - After adjusting for age, those who regularly take a multivitamin are also more likely to have visited a physician during the past two years (p=0.007)

Goals: conclusion 3

- Is taking a multivitamin a confounder for the age-physician visit relationship?
 - The effect of age on physician visit is still nonsignificant after adjusting for multivitamin use and multivitamin use is not a confounder

Summary of Lecture 14

- Logistic regression interpretation
 - Intercept log odds when all X's are 0
 - Slope
 - difference in log odds for a 1 unit increase in X, controlling for other X's
 - log odds ratio associated with a 1 unit increase in X, controlling for other X's
 - Transform log odds/ log odds ratio to odds/odds ratio scale by exponentiating
 - For a continuous X, e^β is the factor by which the odds changes (or odds ratio) for each unit change of X
 - Can also transform from log odds to probability
- Nested models in Logistic regression that differ by one variable
 - Use the Wald test (z-test) for the new variable