Explanation of Algorithm

- DFS numbers of all vertices initialized to 0.
 - It serves as vertices marked "unvisited"
 - Assigning DFS number to a vertes implies it is marked "visited"
- ▶ It then selects an arbitrary vertex v = x, builds a DFST, and computes LOW[v] in one single pass.
- An edge leading to a new vertex is a tree edge.
- ► The tree edge is pushed on to the stack before making the recursive call.

R. K. Ghosh Graphs

Explanation of Algorithm

- On return from call LOW[v] is computed.
- ▶ If *v* is an articulation point then its DFS number must be greater than or equal to LOW point of the child.
- At this point, all the edges up to and including v,w are output as a biconnected component.
- ► If w is a old vertex (DFS number is nonzero) then it is a back edge.
- ▶ Only back edge to a proper ancestor of the parent $(w \neq u)$ would lower the LOW point.

Correctness of Algorithm

Lemma (Correctness of LOW point computation)

When Search(w) procedure completes, the edges in the stack above (v, w) are the edges in the same biconnected components as (v, w).

- ➤ To prove it, we use induction on the number of biconnected components, *b*.
- ▶ If there is just one biconnected components, i.e., b = 1, it is trivial.
 - In this case, there is no articulation point.
 - So all the edges of G will be on the stack.

R. K. Ghosh Graphs

Correctness of Algorithm

- ▶ Induction hypothesis: assume this to be true for all graphs having b biconnected components.
- ▶ Let G have b+1 biconnected components.
- ▶ Consider the first Bicon(w, v) call that ends with LOW[w] ≥ dfn[v] for a tree edge (v, w).
- No edge has been removed yet from the STACK.
- ▶ Since LOW[w] \geq dfn[v], all the set of edges above (v, w) are incident on the descendants of w and first block B_1 has been detected.
- So the edges on the STACK above (v, w) are exactly the edges in the same biconnected component as (v, w).

Correctness of Algorithm

- Now after removing edges of B_1 , the algorithm works on induced graph $G' = G B_1$, in exactly the same way as it had worked on graph G.
- ▶ But G' has b biconnected components.
- ▶ By induction, algorithm should correctly obtain all b biconnected components of G'.

Notion of Connectedness in Directed Graphs

- ▶ For every pair of vertices *u*, *v* there exists a path.
- But path here means directed path.
- ▶ Connectivity in directed graph implies both $u \leadsto v$ and $v \leadsto u$.
- ▶ In general, it is possible that path $u \leadsto v$ may exist but $v \not\leadsto u$.
- Or even u and v are not reachable from each other.
- There is also a notion of weak connectivity: it possible to reach any vertex from any other vertex by traversing edges in some direction (ignoring direction).
- It essentially means every vertex has either indegree or outdegree of at least 1.

Strong Connected Components (SCC)

Definition (SCC)

Let G=(V,E) be directed graph. G is strongly connected iff for every pair of vertices v,w, there is a directed path from v to w and also a directed path from w to v.

- SCC is an equivalence relation.
- ▶ If u, v are in same SCC then uRv and vRu where R: there exists a directed path.
- ▶ If uRv and vRw then obviously, uRw.
- Collapsing each SCC to a vertex we get a condensation graph which is a DAG.

- There are four SCCs.
- One SCC has just one vertex.
- ▶ Consider $u, v \in SC_2$.
- ► There exists pair of paths:

$$u \to w \to x \to v$$
 and $v \to w \to u$.

R. K. Ghosh

- ▶ Compute Finish time f[u] for $u \in V$.
- ▶ Reverse each edge of G to obtain G^T .
- ▶ Call DFS on G^T but apply it decreasing order of finish time f[u] as computed in first DFS.
- ightharpoonup Output the vertices of each tree in DFS forest of G^T as a separate SCC.

Original Graph ${\cal G}$

Transformed Graph G^T (by reversing edge directions).

- ► Start vertices in decreasing order of finish time: f, a, b, and k.
- DFS from from these vertices discover SCCs:
 - $f: \{f, g, h\}$
 - **-** *a*: {*a*}
 - b: $\{b, c, d, e\}$
 - k: $\{i, j, k\}$

Correctness of SCC Algorithm

- ▶ Let d[v]: DFS discovery time, and
- ▶ Let f[v]: DFS finish time.
- \blacktriangleright Let S be subset of V.

$$d[S] = \min_{u \in S} d[u], \text{ and } f[S] = \max_{u \in S} f[u]$$

Lemma

Let S_1 and S_2 be two distinct SCCs. If \exists an edge $(u,v) \in E$, where $u \in S_1$ and $v \in S_2$ then $f[S_1] > f[S_2]$

Correctness of SCC Algorithm

Proof.

- ▶ Case 1 ($d[S_1] < d[S_2]$): Let x be first vertex in S_1 to be discovered.
- At this time none of the vertices in S_1 and S_2 have been marked "visited"
- ▶ For any vertex $w \in S_2$, \exists a path from x to w.
- ▶ So, all vertices in S_2 are descendants of x
- ▶ Therefore, $f[x] = f[S_2] < f[S_1]$

Correctness of SCC Algorithm

Proof continues.

- ▶ Case 2 ($d[S_1] > d[S_2]$): Let y be the first vertex discovered in S_2 .
- ightharpoonup All vertices in S_2 are descendant of y.
- ▶ Therefore, by definition $f[y] = f[S_2]$.
- Since, S_1 and S_2 are distinct SCC there cannot be path from any vertex of S_2 to a vertex of S_1 .
- ▶ So all vertices in S_1 are "unvisited" when DFS of S_2 is complete.
- ▶ Therefore, $f[S_2] < f[S_1]$.

