λ -terms

1.1 Def

Let V be an infinite set (the elements of which are called variables) We construct a set L which consists of finite sequences formed with the following symbols:

- elements of V
- left and right parenthesis()
- λ (Suppose that λ (,) are distinct and do not belongs to V,e.g. $\lambda x(t)$)

in a recursive way as follows:

- If $x \in V$ then $x \in L$
- If t and μ are elements of V, then $t(\mu) \in L$
- If $x \in V$ $t \in L$ then $\lambda xt \in L$

e.g.

$$I := \lambda xx \in L$$

some time we omit the parenthesis

$$t(\mu_1(\mu_2\cdots(\mu_n)\cdots)\cdots)$$

can be written as

$$t\mu_1\mu_2\cdots\mu_n\cdots$$

1.2 Def

Let $\alpha \in V$ and $t \in L$ We define the free occurrences of x in t as

• If t = x, the only occurrence of x in t is free

- If $t = \mu_1(\mu_2)$ the free occurrence of x in t are those of x in μ_1 and μ_2
- If $t = \lambda y \mu, y \neq x$, the free occurrence of x in t are those of x in μ
- If $t = \lambda x \mu$, no occurrence of x in t is free

If x has at least one free occurrence in t, we say that x is a free variable of t If x occur in t just after λ , we say that x is a bound variable of t

Substitutes

2.1 Def

Let t, t_1, \dots, t_k be elements of L and x, x_1, \dots, x_k be distinct variables in V. We define

$$t < t_1/x_1, \cdots, t_k/x_k > \in L$$

as follows:

• If $t = x_i$

$$t < t_1/x_1, \cdots, t_k/x_k > = t_i$$

• If $t \in V \setminus \{x_1, \dots, x_k\}$

$$t < t_1/x_1, \cdots, t_k/x_k > = t$$

• If $t = \mu_1(\mu_2)$ then

$$t < t_1/x_1, \dots, t_k/x_k > = \mu_1 < t_1/x_1, \dots, t_k/x_k > (\mu_2 < t_1/x_1, \dots, t_k/x_k >)$$

• If $t = \lambda x_i u$

$$t < t_1/x_1, \cdots, t_k/x_k > = \lambda x_i(t_1 < t_1/x_1, \cdots, t_{i-1}/x_{i-1}, t_{i+1}/x_{i+1}, \cdots, t_k/x_k >)$$

• If $t = \lambda x \mu, x \notin \{x_1, \dots, x_k\}$

$$t < t_1/x_1, \cdots, t_k/x_k > = \lambda x \mu < t_1/x_1, \cdots, t_k/x_k >$$

Reference: Jean-Louis KrivineLambda-calculus, type and models.

α -equivalence

3.1 Def

We define a binary relation \equiv on L in a recursive way as follows:

- If $t \in V$ $t \equiv t'$ iff t = t'
- If $t = \mu_1(\mu_2)$ $t \equiv t'$ iff $\exists \mu'_1$ and μ'_2 in L such that $\mu_1 \equiv \mu'_1, \mu_2 \equiv \mu'_2$ and $t' = \mu'_1(\mu'_2)$
- if $t = \lambda x \mu$ $t \equiv t'$ iff t' is of the form $t' = \lambda x' \mu'$ with $\mu < y/x > \equiv \mu' < y/x' >$ for all but finitely many $y \in V$

3.2 Facts

- $\bullet \equiv \text{is an equivalence relation}$
- If t = t' then t and t' have the same length and the same free variables.
- Let $t, t', t_1, t'_1, \dots, t_k, t'_k$ be elements of $L x_1, \dots, x_k$ be distinct variables if $t \equiv t', t_i \equiv t'_i, \forall i \in \{1, \dots, k\}$, and no free variables of t_1, \dots, t_k is bound in t and t' then

$$t < t_1/x_1, \cdots, t_k/x_k > \equiv t' < t'_1/x_1, \cdots, t'_k/x_k >$$

- \equiv is λ -compatible namely
 - if $\mu_1 \equiv \mu'_1, \mu_2 \equiv \mu'_2$ then $\mu_1(\mu_2) \equiv \mu'_1(\mu'_2)$
 - if $t \equiv t'$ then $\lambda x t \equiv \lambda x t'$

Hence the constructions of L induces by taking equivalence classes the following constructions on $\Lambda:=L/\equiv$

- For any U_1 and U_2 in Λ with representation μ_1 and μ_2 respectively, we denote $U_1(U_2)$ as the equivalence class of $\mu_1(\mu_2)$
- $\forall x \in V, \forall T \in \Lambda$ with representation t, we define λxT as the equivalence class of λxt
- $\lambda xt \equiv \lambda yt < y/x > \text{if } y \text{ is a variable that does not occur on } t$
- Let $t \in L$ and x_1, \dots, x_k be elements of V. $\exists t' \in L, t' \equiv t$ such that none of x_1, \dots, x_k is bound on t'
- Let $T \in \Lambda$ All elements of T have the same set of free variables we call then free variables of T

3.3 Def

Let T, T_1, \dots, T_k be elements of Λ t, t_1, \dots, t_k be their representations such that no bound variables of t is free is t_1, \dots, t_k . we define

 $T[T_1/x_1, \cdots, T_k/x_k] :=$ the equivalence class of $t < t_1/x_1, \cdots, t_k/x_k >$

3.3.1 Facts

• If x_1 is not free in T

$$T[T_1/x_1, \cdots, T_k/x_k] = T_1[T_2/x_2, \cdots, T_k/x_k]$$

• Let $x_1, \dots, x_m, y_1, \dots, y_m$ be variables such that $x_1 = y, \dots, x_k = y_k$ and $x_1, \dots, x_m, y_{k+1}, \dots, y_n$ are distinct.

Let $T, T_1, \dots, T_m, U_1, \dots, U_n$ be elements of Λ

$$T_i' = T_i[\mu_1/y_1, \cdots, \mu_n/y_n]$$

Then

$$T[T_1/x_1, \cdots, T_m/x_m][U_1/y_1, \cdots, U_n/y_n] = T[T_1/x_1, \cdots, T_m/x_m, U_{k+1}/y_{k+1}, \cdots, U_n/y_n]$$

• If $i \in \{1, \dots, k\}$

$$x_i[T_1/x_1,\cdots,T_k/x_k]=T_i$$

If $x \in V \setminus \{x_1, \cdots, x_k\}$

$$x[T_1/x_1,\cdots,T_k/x_k]=x$$

(we still use x to represent its equivalence class $\{x\}$)

If $T = \lambda x U x$ is not free in T_1, \dots, T_k

$$x \notin \{x_1, \dots, x_k\}, T[T_1/x_1, \dots, T_k/x_k] = \lambda x U[T_1/x_1, \dots, T_k/x_k]$$

β -convention

4.1 Def

We define a binary relation β_0 on Λ as follows:

- If $x \in V$ there is no T' such that $x\beta_0T'$
- If $T = U_1(U_2) T\beta_0 T'$ iff either
 - $T' = U_1(U_2')$ with $U_2\beta_0U_2'$
 - $T' = U'_1(U_2)$ with $U_1\beta_0 U'_1$
 - $U_1 = \lambda x W T' = W[U_2/x]$

We denote by \simeq_{β} the smallest equivalence relation that contains β_0

4.2 Def

Let \mathcal{T}_0 be a set, let \mathcal{T} be the free magma generated by \mathcal{T}_0 , the composition law of which is denoted as \rightarrow

 $\forall (\alpha, \beta) \in \mathcal{T}^2, \ \alpha \to \beta \text{ is defined as an element of } \mathcal{T}$

- \mathcal{T} is a set and \rightarrow is a composition law of \mathcal{T}
- $\mathcal{T}_0 \subseteq \mathcal{T}$ and an element of \mathcal{T} is obtained by successive composition of elements of \mathcal{T}_0

 $\alpha_0 \in \mathcal{T}_0, \beta_0 \in \mathcal{T}, \ \alpha_0 \to \alpha_0 \in \mathcal{T}, \alpha_0] rightarrow \beta_0 \in \mathcal{T}, (\alpha_0 \to \beta_0) \to \alpha_0$

Suppose that \mathcal{T}_n is constructed, we let

$$\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha \to \beta \mid \alpha \in \mathcal{T}_n, \beta \in \mathcal{T}_n\}$$

let
$$\mathcal{T} = \bigcap_{n \in \mathbb{N}} \mathcal{T}_n$$

4.3 Def

We call content any subset Γ of $\Lambda \times \mathcal{T}(\text{if }(T,\alpha) \in \Gamma \text{ we write } T:\alpha \quad \Gamma \vdash T:\alpha)$ that satisfies the following conditions:

• If $x \in V, T \in \Lambda$ $x : \alpha, T : \beta$ then

$$\lambda xT:\alpha \to \beta$$

• If $T \in \Lambda, U \in \Lambda$ with $T : \alpha \to \beta$ $U : \alpha$ then

$$T(U):\beta$$

Table 4.1: comparison

Type theory	Mathematic Logic	Set theory
α type	proposition	a set
$T:\alpha$	proof	$t \in A$ element
<u>0</u> <u>1</u>	LΤ	Ø {Ø}
$\alpha \to \beta$	$A \Rightarrow B$	set of mappings from A to B
$Id_{\alpha} = \lambda x : \alpha x \alpha \rightarrow \alpha$	=	$\{(x,x) \mid x \in \Lambda\}$
$\alpha + \beta$	A or B	$A \cup B$
$\alpha \times \beta$	A and B	Cartesian prod $A \times B$
$\sum \beta(x)$	$\forall x$	disjoint sum $\coprod B(x)$
$x:\alpha$		$x \in A$
$\prod \beta(x)$	$\exists x$	$\prod B(x)$
$x:\alpha$		$x \in A$