Aula anterior

Recursividade

AEDs II – Noções de Complexidade de Algoritmos

Prof. Diego Silva Caldeira Rocha

Objetivos

Noções de Complexidade

- Avaliação de Desempenho
- Notação Big O
- Notação Theta Θ
- Notação Omega Ω
- Análise de algoritmos

Avaliação de Desempenho

A avaliação de desempenho de um algoritmo quando executado por um computador pode ser realizada:

- ı. a posteriori
- II. a priori

Avaliação de Desempenho

II – Avaliação de desempenho a posteriori:

- envolve a execução propriamente dita do algoritmo, medindo-se seu tempo de execução
- Só pode ser exata se forem conhecidos os detalhes da arquitetura da máquina, da linguagem de programação utilizada, do código gerado pelo compilador, etc.
- Dessa forma, o tempo de execução será diferente para cada algoritmo, compilador e computador

Avaliação de Desempenho

I – Avaliação de desempenho a priori:

- É realizada de forma analítica sem a execução do algoritmo
- Podem ser considerarmos dois itens:
 - ✓ a entrada (os dados fornecidos)
 - ✓ e o número de instruções executadas pelo algoritmo
- Em geral, o aspecto importante da entrada é seu "tamanho", que pode ser dado como:
 - ✓ número de valores contidos em um vetor
 - ✓ o número de registros contidos em um arquivo
 - ✓ ou seja, um certo número de elementos que constituem a entrada de dados para o algoritmo

Como medir o custo de execução de um algoritmo?

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se *T(n)* é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho *n*, então *T* é chamada *função de complexidade de tempo de algoritmo*
- Se *T(n)* é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho *n*, então *T* é chamada *função de complexidade de espaço de algoritmo*

Como medir o custo de execução de um algoritmo?

Observação: tempo não é tempo!

 É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada

Custo Assintótico de Funções

Na análise de algoritmos, o interessante é comparar algoritmos para valores grandes de n podendo ignorar valores pequenos de n

Essa análise matemática, voltada somente para valores muito grandes de n, é denominada: **Análise Assintótica**

Notação assintótica de funções

Existem três notações principais na análise de assintótica de funções:

- Notação O ("O" grande) ou Big O
- Notação θ
- Notação Ω

Notação O grande

- A notação O define um limite superior para a função, por um valor constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas $c \in n_0$ tais que para $n \ge n_0$, o valor de f(n) é menor ou igual a cg(n)

O grande Demonstração (I)

- Demonstrar pela definição que 4n+1=O(n)
- $\cdot f(n) = 4n+1$
- g(n) = n
- pela definição matemática, precisamos demonstrar que existe uma constante positiva c e um valor positivo n₀ inicial, de forma que:
- $f(n) \le c.g(n)$ para todos os $n \ge n_0$.
- LOGO $4n+1 \le cn$ para todos os $n \ge n_0$

O grande Demonstração (I)

 Para tanto, a primeira decisão que precisamos tomar é escolher um valor para a constante c. Neste caso, vamos considerar c igual ao valor 5. Observe abaixo uma tabela que mostra os resultados da desigualdade para c=5 e para alguns valores de n.

n	4n + 1		c.n		
0	1	>	> 0		
1	5	=	5		
2	9	<	10		
3	13	13 <			
4	17	<	20		
5	21	<	25		

O grande Demonstração (II)

- Demonstrar pela definição que $5n^2$ -n+1 =O(n^2)
- $f(n) = 5n^2 n + 1$
- $\cdot g(n) = n^2$
- pela definição matemática, precisamos demonstrar que existe uma constante positiva c e um valor positivo n₀ inicial, de forma que:
- $f(n) \le c.g(n)$ para todos os $n \ge n_0$.
- LOGO $5n^2$ -n+1 ≤ cn^2 para todos os n ≥ n_0

O grande Demonstração (II)

 Para tanto, a primeira decisão que precisamos tomar é escolher um valor para a constante c. Neste caso, vamos considerar c igual ao valor 5. Observe abaixo uma tabela que mostra os resultados da desigualdade para c=5 e para alguns valores de n.

n	$5n^2-n+1$		$c. n^2$	
0	1	\wedge	0	
1	5	=	5	
2	19	<	20	
3	43	<	45	
4	77	\	80	
5	121	<	125	

Notação Ω

- · A notação $oldsymbol{\Omega}$ define um **limite inferior** para a função, por um valor constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas $c \in n_0$ tais que para $n \ge n_0$, o valor de f(n) é maior ou igual a cg(n)

- Demonstrar pela definição que 4n-3= Ω (n)
- $\cdot f(n) = 4n-3$
- g(n) = n
- Ω(n) apresenta-se como um limite inferior, e sabemos que a função 4n-3 nunca apresentará um comportamento de crescimento que seja ultrapassado por esse limite inferior.
- c.g(n) \leq f(n) para todos os n $\geq n_0$.
- LOGO c $n \le 4n-3$ para todos os $n \ge n_0$

 Exemplo: para a função 4n-3, existe uma outra função de comportamento linear que a limita inferiormente. Perceba no gráfico abaixo que, para valores de n≥1, a função 4n-3 supera a função n

função n.

• Da mesma forma, também é correto afirmar que 4n-3 é $\Omega(1)$, pois a função 4n-3 nunca apresentará um comportamento de crescimento que seja ultrapassado por um comportamento constante. Desta forma, $\Omega(1)$ também se apresenta como um

limite assintótico inferior:

• Agora, seria errado dizer que 4n-3 é $\Omega(n2)$, pois a função 4n-3 nunca crescerá a ponto de ultrapassar o comportamento quadrático. Desta forma, $\Omega(n2)$ não se apresenta como um limite

assintótico inferior:

Notação O

- A notação
 O limita a função por fatores constantes
- Escreve-se f(n) = Θ(g(n)), se existirem constantes positivas c₁, c₂ e n₀ tais que para n ≥ n₀, o valor de f(n) está sempre entre c₁g(n) e c₂g(n) inclusive

- Demonstrar pela definição que 4n+1=Θ(n)
- f(n) = 4n+1
- g(n) = n
- Precisamos demonstrar que existem duas constantes positivas c_1 e c_2 e um valor n0 inicial, de forma que:
- $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para todos os $n \ge n_0$.
- LOGO c_1 .n $\leq 4n+1 \leq c_2$.n para todos os $n \geq n_0$

- Em resumo: precisamos provar que, para todos os valores de n maiores ou igual a n_0 , a função 4n+1 é:
- maior ou igual a c_1 multiplicado por n e;
- menor ou igual a c_2 multiplicado por n.

• Para tanto, a primeira decisão que precisamos tomar é escolher valores para as constantes $c_{1\,\mathrm{e}}$ c_{2} . Neste caso, vamos considerar c1 sendo igual ao valor 4 e c_{2} sendo igual ao valor 5. Observe abaixo uma tabela que mostra os resultados da desigualdade para alguns

valores de n:

n	4 <i>n</i>		4n + 1		5 <i>n</i>
1	4	\	5	=	5
2	8	<	9	<	10
3	12	<	13	<	15
4	16	<	17	<	20
5	20	<	21	<	25

- Isso significa que a função 4n+1 nunca terá um comportamento de crescimento inferior a 4n e nem crescerá mais que 5n. Por este motivo, dizemos que Θ(n) representa um limite assintótico justo para a função 4n+1, porque ela é limitada superiormente e inferiormente por duas outras funções de uma mesma classe assintótica que ela: a classe linear n.
- Desta forma, conseguimos provar o nosso objetivo. Existem duas constantes positivas \mathbf{c}_1 =4 e \mathbf{c}_2 =5 e um \mathbf{n}_0 =1, tal que \mathbf{c}_1 .n \leq 4n+1 \leq \mathbf{c}_2 .n para todos os valores de n maiores ou igual a \mathbf{n}_0 .
- Portanto, está provado que, de fato, 4n+1 = Θ(n).

Análise de Algoritmos

Casos a serem analisados em uma análise:

- Melhor caso
- Pior caso
- Caso médio

Classificação das Funções

- O(1) complexidade constante:
 - O tempo de execução independe do número de elementos na entrada
- O(log n) complexidade logarítmica:
 - O algoritmo resolve um problema transformando-o em partes menores
- O(n) complexidade linear:
 - Um pequeno trabalho é realizado sobre cada elemento da entrada
- O(n log n)
 - O algoritmo quebra um problema em partes menores, resolve cada uma separadamente e depois junta as soluções

Classificação das Funções

- O(n²) complexidade quadrática:
 - Elementos processados aos pares
- O(n³) complexidade cúbica:
 - Tipicamente, multiplicações de matrizes
 - Úteis apenas para problemas pequenos
- O(2ⁿ) complexidade exponencial
- O(n!) complexidade fatorial:
 - Algoritmos de força bruta: tentam todas as possibilidades para problemas de otimização combinatória

Classificação da funções (Diferença gráficas)

Notação O – Regras Práticas

- a) Regra da complexidade polinomial

 Se f(n) é um polinômio de grau k, então f(n) = O(nk)
- b) Regra da constante O(c*f(n)) = c * O(f(n)) = O(f(n))
- c) Regra da soma de tempos

se
$$T_1(n) = O(f(n))$$
 e $T_2(n) = O(g(n))$
então $T_1(n) + T_2(n) = O(max(f(n),g(n)))$

Isto significa que a complexidade de um algoritmo com dois trechos em sequência (com tempos de execução diferentes) é definida pelo trecho de maior complexidade

Notação O – Regras Práticas

d) Regra do produto de tempos

se
$$T_1(n) = O(f(n))$$
 e $T_2(n) = O(g(n))$
Então $T_1(n) * T_2(n) = O(f(n) * g(n))$

Isto significa que a complexidade de um algoritmo com dois trechos aninhados, em que o segundo é repetidamente executado pelo primeiro, é dada pelo produto da complexidade do trecho mais interno pela complexidade do trecho mais externo

```
public static int findMax(int A[], int n) {
  int max = A[0];
  int i = 1;
  while (i \le n-1) {
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                               Pior caso:
  int i = 1;
                             Ocorre quando
  while (i \leq n-1) {
                           o maior elemento é o
    if (A[i] > max)
                         último elemento do vetor
       max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int n) {
  int max = A[0];
  int i = 1;
                                Contando
  while (i \le n-1) {
                               Operações
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
  int i = 1;
  while (i \leq n-1) {
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
2 operações
  int i = 1;
  while (i \leq n-1) {
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int n) {
  int max = A[0];
                           2 operações
                           1 operação
  int i = 1;
  while (i \leq n-1) {
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                          2 operações
  int i = 1;
                          1 operação
  while (i \le n-1) {
                    n operações
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                            2 operações
  int i = 1;
                            1 operação
  while (i \le n-1) \{ \leftarrow
                         n operações
    if (A[i] > max)
                            2 operações
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                           2 operações
                           1 operação
  int i = 1;
                         n operações
  while (i \le n-1) {
    if (A[i] > max)
                           2 operações
      max = A[i];
                           2 operações
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                           2 operações
  int i = 1;
                           1 operação
  while (i \le n-1) {
                           n operações
    if (A[i] > max)
                           2 operações
      max = A[i];
                           2 operações
    i = i + 1;
                           2 operações
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                           2 operações
                           1 operação
  int i = 1;
                           n operações
  while (i \le n-1) {
    if (A[i] > max)
                           2 operações
                                          n – 1
      max = A[i];
                           2 operações
                                         vezes
    i = i + 1;
                            2 operações
  return max;
```

```
public static int findMax(int A[], int
n) {
                           2 operações
  int max = A[0];
                           1 operação
  int i = 1;
                           n operações
  while (i \le n-1) {
    if (A[i] > max)
                           2 operações
                                         n-1
      max = A[i];
                           2 operações
                                        vezes
    i = i + 1;
                           2 operações
  return max;
                           1 operação
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
                             2 operações
                              1 operação
  int i = 1;
                             n operações
  while (i \le n-1) {
    if (A[i] > max)
                             2 operações
                                           n-1
      max = A[i];
                             2 operações
                                           vezes
    i = i + 1;
                              2 operações
                             1 operação
  return max;
                    Pior caso: 2 + 1 + n + 6.(n - 1) + 1
```

```
public static int findMax(int A[], int
n) {
                             2 operações
  int max = A[0];
                             1 operação
  int i = 1;
                             n operações
  while (i \le n-1) {
    if (A[i] > max)
                             2 operações
                                          n-1
      max = A[i];
                             2 operações
                                          vezes
    i = i + 1;
                             2 operações
  return max;
                             1 operação
                     Pior caso: 7n - 2 operações
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
  int i = 1;
  while (i \leq n-1) {
                          Pior caso: O(n)
    if (A[i] > max)
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
  int max = A[0];
  int i = 1;
                            Melhor caso:
  while (i \le n-1) {
                           Ocorre quando
    if (A[i] > max)
                        A[0] é o maior elemento
      max = A[i];
    i = i + 1;
  return max;
```

```
public static int findMax(int A[], int
n) {
                             2 operações
  int max = A[0];
                             1 operação
  int i = 1;
                             n operações
  while (i \leq n-1) {
                            2 operações
    if (A[i] > max)
                            0 operações
       max = A[i];
                                           49795
                             2 operações
    i = i + 1;
                             1 operação
  return max;
                  Melhor caso: A[0] é o maior elemento
```

```
public static int findMax(int A[], int
n) {
                             2 operações
  int max = A[0];
                             1 operação
  int i = 1;
                             n operações
  while (i \leq n-1) {
                             2 operações
    if (A[i] > max)
                             0 operações
       max = A[i];
                             2 operações
    i = i + 1;
                             1 operação
  return max;
                   Melhor caso: 2 + 1 + n + 4(n - 1) + 1
```

```
public static int findMax(int A[], int
n) {
                            2 operações
  int max = A[0];
                            1 operação
  int i = 1;
                            n operações
  while (i \leq n-1) {
                            2 operações
    if (A[i] > max)
                            0 operações
      max = A[i];
                            2 operações
    i = i + 1;
                            1 operação
  return max;
                     Melhor caso: 5n operações
```

Exemplo

```
for (i = 0; i < n; i++)
{
    instruções
}</pre>
```

A contabilização do número de instruções é simples:

n iterações e, em cada uma, são executadas um número constante de instruções

Trecho do Algoritmo: O(n)

Exemplo

```
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
  {
    instruções
}</pre>
```

A contabilização do número de instruções é simples:

O ciclo interno (for j) é O(n) e é executado

Trecho do Algoritmo: O(n²)

Algoritmo de Busca Binária

Análise de Complexidade

O número de iterações realizadas depende do tamanho do vetor:

- No início da primeira iteração, o vetor tem tamanho n
- No início da segunda iteração, o vetor passa a ter um tamanho n/2
- No início da terceira iteração, o vetor passa a ter um tamanho n/4
- E assim sucessivamente ...

No pior caso, o vetor atingirá o tamanho = 1, que ocorre quando $n/2^k = 1$

assim:
$$n/2^k = 1 : n = 2^k : log_2 n = k$$

Pior caso: $T(n) = O(\log n)$

Melhor caso: quando o número procurado é igual ao elemento do meio na primeira iteração -T(n) = O(1)

Exercício (1) notação big O

- Tente demonstrar matematicamente que $n^2 + 800 = O(n^2)$.
- Tente demonstrar matematicamente que 2n + 10 = O(n).
- Tente demonstrar matematicamente que n^2 =O(n).
- Tente demonstrar matematicamente que 7n-2=O(n).
- Tente demonstrar matematicamente que $n^2+20n+5=O(n^3)$.

Exercício (2) Notação Θ

- Tente demonstrar matematicamente que $n^2+800 = \Theta(n^2)$.
- Tente demonstrar matematicamente que $n+10 = \Theta(n^2)$.
- Tente demonstrar matematicamente que $2n+10 = \Theta(n)$.
- Tente demonstrar matematicamente que $7n-2 = \Theta(1)$.
- Tente demonstrar matematicamente que n^2 +20n+5 = $\Theta(n^3)$.

Exercício (3) Notação Ω

- Tente demonstrar matematicamente que $n^2+800 = \Omega$ (n^2).
- Tente demonstrar matematicamente que $n+10 = \Omega (n^2)$.
- Tente demonstrar matematicamente que $2n+10 = \Omega$ (n).
- Tente demonstrar matematicamente que $7n-2 = \Omega$ (1).
- Tente demonstrar matematicamente que n^2 +20n+5 = Ω (n^3).

Conteúdo da Próxima Aula

Recursividade