Numerical Optimal Control Lecture 4: Interior-Point Methods

Sébastien Gros

ITK, NTNU

NTNU PhD course

Survival map of Direct Optimal Control

Survival map of Direct Optimal Control

Let's approach again the problem of solving the KKT conditions

Outline

- 1 KKT Reminder
- Primal Interior-Point Methods
- 3 Primal-Dual Interior-Point Methods
- 4 Primal-Dual Interior-Point Solver
- 5 Warm-start in Interior-Point Methods

Consider the NLP problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) < 0$$

KKT conditions with
$$\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\top}\mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\top}\mathbf{h}\left(\mathbf{w}\right)$$

Primal Feasibility: $\mathbf{g}(\mathbf{w}) = 0, \quad \mathbf{h}(\mathbf{w}) \leq 0,$ Dual Feasibility: $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \, \boldsymbol{\mu}, \, \boldsymbol{\lambda}) = 0, \quad \boldsymbol{\mu} \geq 0,$ Complementarity Slackness: $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0, \quad \forall \, i$

Consider the NLP problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) \le 0$$

KKT conditions with
$$\mathcal{L} = \Phi\left(w\right) + \lambda^{\top} g\left(w\right) + \mu^{\top} h\left(w\right)$$

Primal Feasibility: $\mathbf{g}(\mathbf{w}) = 0, \quad \mathbf{h}(\mathbf{w}) \leq 0,$ Dual Feasibility: $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \, \boldsymbol{\mu}, \, \boldsymbol{\lambda}) = 0, \quad \boldsymbol{\mu} \geq 0,$ Complementarity Slackness: $\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0, \quad \forall \, i$

The difficulty of the KKT conditions is the non-smooth **Complementarity Slackness** conditions resulting from the inequality constraints. Remember: "constraint \mathbf{h}_i can push $(\mu_i>0)$ only when \mathbf{w} touches it (i.e. when $\mathbf{h}_i=0$)"

Consider the NLP problem:

$$\min_{w} \Phi(w)$$

s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

$$h(w) \leq 0$$

KKT conditions

Primal Feasibility:

g(w) = 0, $h(w) \le 0$,

Dual Feasibility:

 $\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \, \boldsymbol{\mu}, \, \boldsymbol{\lambda}) = 0, \quad \boldsymbol{\mu} \geq 0,$

Complementarity Slackness:

 $\mu_i \mathbf{h}_i(\mathbf{w}) = 0, \quad \forall i$

The difficulty of the KKT conditions is the non-smooth Complementarity Slackness conditions resulting from the inequality constraints. Remember: "constraint h_i can push $(\mu_i > 0)$ only when w touches it (i.e. when $\mathbf{h}_i = 0$)"

Consider the NLP problem:

$$\min_{w} \quad \frac{1}{2}w^2 - w$$
s.t. $w < 0$

Solution $w^* = 0$

KKT conditions with
$$\mathcal{L} = \Phi\left(\mathbf{w}\right) + \boldsymbol{\lambda}^{\top}\mathbf{g}\left(\mathbf{w}\right) + \boldsymbol{\mu}^{\top}\mathbf{h}\left(\mathbf{w}\right)$$

Primal Feasibility: $\mathbf{g}(\mathbf{w}) = 0$, $\mathbf{h}(\mathbf{w}) \leq 0$,

Dual Feasibility: $\nabla_{w}\mathcal{L}\left(w,\,\boldsymbol{\mu},\,\boldsymbol{\lambda}\,\right)=0,\quad \boldsymbol{\mu}\geq 0,$

Complementarity Slackness: $\mu_i \mathbf{h}_i(\mathbf{w}) = 0, \quad \forall i$

The difficulty of the KKT conditions is the non-smooth **Complementarity Slackness** conditions resulting from the inequality constraints. Remember: "constraint \mathbf{h}_i can push $(\mu_i > 0)$ only when \mathbf{w} touches it (i.e. when $\mathbf{h}_i = 0$)"

Consider the NLP problem:

$$\min_{w} \quad \frac{1}{2}w^2 - w$$
s.t. $w < 0$

Solution $w^* = 0$

KKT conditions with $\mathcal{L} = \frac{1}{2}w^2 - w + \mu w$

Primal Feasibility: $w \leq 0,$ Dual Feasibility: $w - 1 + \mu = 0, \quad \mu \geq 0,$

Complementarity Slackness: $\mu w = 0$

The difficulty of the KKT conditions is the non-smooth **Complementarity Slackness** conditions resulting from the inequality constraints. Remember: "constraint \mathbf{h}_i can push $(\mu_i > 0)$ only when \mathbf{w} touches it (i.e. when $\mathbf{h}_i = 0$)"

Consider the NLP problem:

$$\min_{w} \quad \frac{1}{2}w^2 - w$$
s.t. $w < 0$

Solution $w^* = 0$

KKT conditions with $\mathcal{L} = \frac{1}{2} w^2 - w + \mu w$

Primal Feasibility: $w \leq 0$,

 $\mbox{ Dual Feasibility: } \qquad \mbox{ } w-1+\mu=0, \quad \mbox{ } \mu\geq 0, \label{eq:power_power}$

Complementarity Slackness: $\mu w = 0$

The difficulty of the KKT conditions is the non-smooth **Complementarity Slackness** conditions resulting from the inequality constraints. Remember: "constraint \mathbf{h}_i can push $(\mu_i > 0)$ only when \mathbf{w} touches it (i.e. when $\mathbf{h}_i = 0$)"

Consider the NLP problem:

$$\min_{w} \quad \frac{1}{2}w^2 - w$$
s.t. $w < 0$

Solution $w^* = 0$

KKT conditions with $\mathcal{L} = \frac{1}{2} w^2 - w + \mu w$

Primal Feasibility: $w \leq 0$,

 $\mbox{ Dual Feasibility: } \qquad \mbox{ } \mbox{ }$

Complementarity Slackness: $\mu w = 0$

Original idea of the IP method: introduce the inequality constraints in the cost !! Very large (possibly ∞) penalty for violating feasibility \equiv "barrier"...

Log-barrier method: introduce the inequality constraints in the cost function

 $\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$

 $h(w) \leq 0$

becomes

 $\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$

Log-barrier method: introduce the inequality constraints in the cost function

 $\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$

 $h(w) \leq 0$

becomes

 $\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

 $h(w) \leq 0$

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

 $h(w) \leq 0$

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

 $h(\mathbf{w}) < 0$

becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_{t}} \log(-\mathbf{h}_{i}(\mathbf{w}_{ au}))$$

Log-barrier approximates the characteristic function

$$\chi\left(\mathbf{h}_{i}\right)=\left\{ egin{array}{ll} 0 & ext{if} & \mathbf{h}_{i}\leq0 \ \infty & ext{if} & \mathbf{h}_{i}>0 \end{array}
ight.$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\begin{array}{ll} \min\limits_{\mathbf{w}} & \Phi(\mathbf{w}) \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) \leq 0 \end{array} \qquad \min\limits_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau})) \end{array}$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t. $-1 \le w \le 1$

i.e.
$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\begin{array}{ll} \min & \Phi(\mathbf{w}) \\ \mathbf{w} & becomes \\ \text{s.t.} & \mathbf{h}(\mathbf{w}) < 0 \end{array} \qquad \begin{array}{ll} \min & \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau})) \end{array}$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 < w < 1$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

l.e

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$h(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 < w < 1$$

l.e

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

Example:

$$\min_{w} \frac{1}{2}w^2 - 2w$$

s.t.
$$-1 \le w \le 1$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{t}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 < w < 1$$

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

Example:

$$\min_{w} \frac{1}{2}w^{2} - 2w
s.t. -1 < w < 1$$

I.e.

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
 becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

Example:

s.t. h(w) < 0

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 \le w \le 1$$

l.e.
$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Example:

$$\min_{w} \frac{1}{2}w^{2} - 2w
s.t. -1 < w < 1$$

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{t}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
st $-1 < w < 0$

s.t.
$$-1 \le w \le 1$$

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 < w < 1$$

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

How accurate is the solution w_{τ}^* ?

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
s.t. $\mathbf{h}(\mathbf{w}) < 0$

becomes

$$\min_{\mathbf{w}_{ au}} \Phi_{ au}\left(\mathbf{w}_{ au}\right) = \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

Example:

$$\min_{w} \frac{1}{2}w^{2} - 2w
s.t. -1 < w < 1$$

$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

How accurate is the solution w_{τ}^* ?

Log-barrier method: introduce the inequality constraints in the cost function

$$\min_{w} \quad \Phi(w)$$

s.t. h(w) < 0

$$\min_{\mathbf{w}_{\tau}} \Phi_{\tau}\left(\mathbf{w}_{\tau}\right) = \Phi(\mathbf{w}_{\tau}) - \tau \sum_{i=1}^{m_{i}} \log(-\mathbf{h}_{i}(\mathbf{w}_{\tau}))$$

Example:

$$\min_{w} \quad \frac{1}{2}w^2 - 2w$$
s.t.
$$-1 \le w \le 1$$

l.e.
$$\Phi(w) = \frac{1}{2}w^2 - 2w$$

$$\mathbf{h}(w) = \begin{bmatrix} -w - 1 \\ w - 1 \end{bmatrix} \le 0$$

If w* has LICQ & SOSC, then

$$\|\mathbf{w}_{\tau}^* - \mathbf{w}^*\| = O(\tau)$$

$$\Phi_{\tau}(w) = \frac{1}{2}w^2 - 2w - \tau \log(w+1) - \tau \log(1-w)$$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

Problem:

$$\min_{w} \Phi(w)$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) = 0$$

$$h(w) \le 0, \quad \mu \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

KKT conditions*:

$$\nabla \Phi_{\tau}(\mathbf{w}) = \nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i(\mathbf{w})^{-1} \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

KKT conditions*:

$$\nabla \Phi_{\tau}(\mathbf{w}) = \nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_t} \mathbf{h}_i(\mathbf{w})^{-1} \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Newton direction for the Primal Interior-Point KKTs:

$$\underbrace{\left(\nabla^{2}\Phi(\mathbf{w}) + \tau \sum_{i=1}^{m_{i}} \mathbf{h}_{i}(\mathbf{w})^{-2} \nabla \mathbf{h}_{i} \nabla \mathbf{h}_{i}^{\mathsf{T}}\right)}_{=\nabla^{2}\Phi_{\tau}(\mathbf{w})} \Delta \mathbf{w} + \nabla \Phi_{\tau}(\mathbf{w}) = 0$$

for h affine

Problem:

$$\min_{w} \quad \Phi(w)$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

KKT conditions*:

$$\nabla \Phi_{\tau}(\mathbf{w}) = \nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i(\mathbf{w})^{-1} \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Newton direction for the Primal Interior-Point KKTs:

$$\left(\nabla^{2}\Phi(\mathbf{w})+\tau\sum_{i=1}^{m_{i}}\mathbf{h}_{i}(\mathbf{w})^{-2}\nabla\mathbf{h}_{i}\nabla\mathbf{h}_{i}^{\mathsf{T}}\right)\Delta\mathbf{w}+\Phi_{\tau}\left(\mathbf{w}\right)=0$$

for h affine

Problem:

$$\min_{w} \quad \Phi(w)$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}} \; \Phi_{ au}(\mathbf{w}) = \min_{\mathbf{w}} \; \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}))$$

KKT conditions*:

$$\nabla \Phi_{\tau}(\mathbf{w}) = \nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{r} \mathbf{h}_{i}(\mathbf{w})^{-1} \nabla \mathbf{h}_{i}(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Newton direction for the Primal Interior-Point KKTs:

$$\left(\nabla^{2}\Phi(\mathbf{w})+\tau\sum_{i=1}^{m_{i}}\mathbf{h}_{i}(\mathbf{w})^{-2}\nabla\mathbf{h}_{i}\nabla\mathbf{h}_{i}^{\mathsf{T}}\right)\Delta\mathbf{w}+\Phi_{\tau}\left(\mathbf{w}\right)=0$$

for h affine

As $\tau \to 0$, the term $\mathbf{h}_i^{-2}(\mathbf{w})$ becomes very large when $\mathbf{h}_i \to 0$, which hinders the convergence (very strong curvature at an active constraint)

Primal-Dual Interior-Point method

Problem:

$$\min_{w} \quad \Phi(w)$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) \leq \mathbf{0}, \quad \boldsymbol{\mu} \geq \mathbf{0}$$

Primal-Dual Interior-Point method

Problem:

$$\min_{w} \quad \Phi(w)$$

$$\text{s.t.} \quad \mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$abla \Phi(\mathbf{w}) - au \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Problem:

$$\min_{w} \quad \Phi(w)$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Problem:

$$\min_{w} \quad \Phi(w)$$

$$\text{s.t.} \quad \mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Introduce variable $\mathbf{\nu}_i = -\tau \mathbf{h}_i^{-1} \left(\mathbf{w} \right)$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Introduce variable $\nu_i = -\tau \mathbf{h}_i^{-1}(\mathbf{w})$, then the Primal-Dual KKT conditions[†] read as:

$$abla \Phi(\mathbf{w}) + \sum_{i=1}^{m_i} \mathbf{\nu}_i
abla \mathbf{h}_i(\mathbf{w}) = 0$$

$$\nu_i \mathbf{h}_i(\mathbf{w}) = -\tau$$

 † valid for $\mathbf{h}_{i}(\mathbf{w}) < 0, \, oldsymbol{
u}_{i} > 0$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Introduce $\nu_i = -\tau \mathbf{h}_i^{-1}$, then the Primal-Dual Interior-Point KKT conditions read as:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$

$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$

$$h(w) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Introduce $\nu_i = -\tau \mathbf{h}_i^{-1}$, then the Primal-Dual Interior-Point KKT conditions read as:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

- Primal-Dual IP conditions yield the same solution as the Barrier problem
- Newton steps don't yield anything "nasty"

Problem:

$$\min_{w} \quad \Phi(w)$$

$$\text{s.t.} \quad \mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Barrier formulation:

$$\min_{\mathbf{w}_{ au}} \Phi(\mathbf{w}_{ au}) - au \sum_{i=1}^{m_i} \log(-\mathbf{h}_i(\mathbf{w}_{ au}))$$

KKT conditions*:

$$\nabla \Phi(\mathbf{w}) - \tau \sum_{i=1}^{m_i} \mathbf{h}_i^{-1}(\mathbf{w}) \nabla \mathbf{h}_i(\mathbf{w}) = 0$$

*valid for $\mathbf{h}_i(\mathbf{w}) < 0$

Introduce $\nu_i = -\tau \mathbf{h}_i^{-1}$, then the Primal-Dual Interior-Point KKT conditions read as:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

- Primal-Dual IP conditions yield the same solution as the Barrier problem
- Newton steps don't yield anything "nasty"
- Observe the similitude with the original KKT conditions !!

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_{i}\mathbf{h}_{i}(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \leq 0, \quad \boldsymbol{\mu} \geq 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{w} \quad \Phi(w)$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \nu = 0$$
$$\nu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \nu > 0$$

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Primal-Dual IP KKT conditions

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

Primal-Dual IP method solves KKT conditions with smoothed Complementarity slackness

Problem:

$$\min_{\mathbf{w}} \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Primal-Dual IP KKT conditions

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

- Primal-Dual IP method solves KKT conditions with smoothed Complementarity slackness
- IP approximation

$$\|\boldsymbol{\mu}^* - \boldsymbol{\nu}^*\| = \mathcal{O}(\tau)$$

$$\|\mathbf{w}^* - \mathbf{w}_{\tau}^*\| = \mathcal{O}(\tau)$$

 \mathbf{w}_{τ}^{*} , $\boldsymbol{\nu}^{*}$ and \mathbf{w}^{*} , $\boldsymbol{\mu}^{*}$ are not distinguished

Problem:

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$

s.t.
$$h(w) \leq 0$$

KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$
$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

Primal-Dual IP KKT conditions

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\nu} = 0$$
$$\boldsymbol{\nu}_i \mathbf{h}_i(\mathbf{w}) + \boldsymbol{\tau} = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\nu} > 0$$

Note: the PD-IP KKT conditions require that **w** is **inside** the feasible domain

- Primal-Dual IP method solves KKT conditions with smoothed Complementarity slackness
- IP approximation

$$\|\boldsymbol{\mu}^* - \boldsymbol{\nu}^*\| = \mathcal{O}(\tau)$$

$$\|\mathbf{w}^* - \mathbf{w}_{\tau}^*\| = \mathcal{O}\left(\tau\right)$$

 $\mathbf{w}_{ au}^*$, $oldsymbol{
u}^*$ and \mathbf{w}^* , $oldsymbol{\mu}^*$ are not distinguished

2020

NLP

KKT conditions

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w}) \boldsymbol{\lambda} + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mathbf{g}(\mathbf{w}) = 0$$

$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) \le 0, \quad \boldsymbol{\mu} \ge 0$$

NLP

PD-IP KKT conditions

$$egin{aligned}
abla \Phi(\mathbf{w}) +
abla \mathbf{g}(\mathbf{w}) & \lambda +
abla \mathbf{h}(\mathbf{w}) \mu = 0 \\
& \mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \\
& \mathbf{h}(\mathbf{w}) < 0, \quad \mu > 0 \end{aligned}$$

NLP

$$\min_{\mathbf{w}} \quad \Phi(\mathbf{w})$$
s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

 $h(w) \leq 0$

PD-IP KKT conditions

$$\nabla \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0$$
$$\mathbf{g}(\mathbf{w}) = 0$$
$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$

NLP

Newton on the conditions (parametrized by au)

$$\left[\begin{array}{c} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \boldsymbol{\mu}_{i} \mathbf{h}_{i}(\mathbf{w}) + \tau \end{array}\right] = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = 0$$

NLP

Newton on the conditions (parametrized by au)

$$\begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \boldsymbol{\mu}_{i} \mathbf{h}_{i}(\mathbf{w}) + \boldsymbol{\tau} \end{bmatrix} = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \mathbf{0}$$
 with $\mathbf{h}(\mathbf{w}) < \mathbf{0}$, $\boldsymbol{\mu} > \mathbf{0}$

Newton direction d given by

$$abla \mathbf{r}_{ au}^{ op}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) \left[egin{array}{c} \Delta\mathbf{w} \ \Deltaoldsymbol{\lambda} \ \Deltaoldsymbol{\mu} \end{array}
ight] + \mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) = 0$$

Newton step: updates

$$\left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] \leftarrow \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] + t \left[\begin{array}{c} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \end{array}\right]$$

NLP

Newton on the conditions (parametrized by au)

$$\begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \boldsymbol{\mu}_{i} \mathbf{h}_{i}(\mathbf{w}) + \boldsymbol{\tau} \end{bmatrix} = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = \mathbf{0}$$
 with $\mathbf{h}(\mathbf{w}) < \mathbf{0}$, $\boldsymbol{\mu} > \mathbf{0}$

Newton direction d given by

$$abla \mathbf{r}_{ au}^{ op}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) \left[egin{array}{c} \Delta\mathbf{w} \ \Deltaoldsymbol{\lambda} \ \Deltaoldsymbol{\mu} \end{array}
ight] + \mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) = 0$$

Newton step: updates

$$\left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] \leftarrow \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] + t \left[\begin{array}{c} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \end{array}\right]$$

Step-size: $t \in]0, 1]$ must ensure:

$$h(w + t\Delta w) < 0, \quad \mu + t\Delta \mu > 0$$

$$\begin{aligned} & \underset{w}{\text{min}} & \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) < 0 \end{aligned}$$

Newton on the conditions (parametrized by au)

$$\left[\begin{array}{c} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \boldsymbol{\mu}_{i} \mathbf{h}_{i}(\mathbf{w}) + \tau \end{array}\right] = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = 0$$

with $\mathbf{h}(\mathbf{w}) < 0$, $\mu > 0$

Newton direction d given by

$$abla \mathbf{r}_{ au}^{ op}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) \left[egin{array}{c} \Delta\mathbf{w} \ \Deltaoldsymbol{\lambda} \ \Deltaoldsymbol{\mu} \end{array}
ight] + \mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) = \mathbf{0}.$$

Newton step: updates

$$\left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] \leftarrow \left[\begin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}\right] + t \left[\begin{array}{c} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \end{array}\right]$$

Step-size: $t \in]0, 1]$ must ensure:

$$h(w + t\Delta w) < 0, \quad \mu + t\Delta \mu > 0$$

Difficulties:

Selecting t to get

$$h(w + t\Delta w) < 0$$

cannot be done simply. Requires evaluating **h** for decreasing values of *t* until the condition is met. Can be expensive !!

4□ > 4周 > 4 = > 4 = > = 90

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) < 0 \end{aligned}$$

Newton on the conditions (parametrized by τ)

$$\begin{bmatrix} \nabla \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\ \mathbf{g}(\mathbf{w}) \\ \boldsymbol{\mu}_{i} \mathbf{h}_{i}(\mathbf{w}) + \tau \end{bmatrix} = \mathbf{r}_{\tau}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0$$

with $\mathbf{h}(\mathbf{w}) < 0$, $\mu > 0$

Newton direction d given by

$$abla \mathbf{r}_{ au}^{ op}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) \left[egin{array}{c} \Delta\mathbf{w} \ \Deltaoldsymbol{\lambda} \ \Deltaoldsymbol{\mu} \end{array}
ight] + \mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu}
ight) = \mathbf{0}.$$

Newton step: updates

$$\left[egin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}
ight] \leftarrow \left[egin{array}{c} \mathbf{w} \\ \boldsymbol{\lambda} \\ \boldsymbol{\mu} \end{array}
ight] + t \left[egin{array}{c} \Delta \mathbf{w} \\ \Delta \lambda \\ \Delta \boldsymbol{\mu} \end{array}
ight]$$

Step-size: $t \in]0, 1]$ must ensure:

$$h(w + t\Delta w) < 0, \quad \mu + t\Delta \mu > 0$$

Difficulties:

Selecting t to get

$$h(w + t\Delta w) < 0$$

cannot be done simply. Requires evaluating h for decreasing values of t until the condition is met. Can be expensive !!

 We need the initial guess to be feasible for h!!

$$abla \Phi(\mathbf{w}) +
abla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = \mathbf{0}$$
 (1a)

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \tag{1b}$$

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Primal-Dual IP KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$
 (1a)

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
 (1b)

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

Primal-Dual IP KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0 \qquad (1a)$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \tag{1b}$$

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0 \quad (1c)$$

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

• need a feasible initial guess

Primal-Dual IP KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0 \qquad (1a)$$

$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \qquad (1b)$$

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

(1a)

Primal-Dual IP KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \qquad (1b)$$

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

Slack reformulation: new variable $-\mathbf{s} = \mathbf{h}(\mathbf{w})$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$
$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$
$$-\boldsymbol{\mu}_i \mathbf{s}_i + \tau = 0$$
$$-\mathbf{s} < 0, \quad \boldsymbol{\mu} > 0$$

(1a)

Primal-Dual IP KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$

$$\boldsymbol{\mu}_i \mathbf{h}_i(\mathbf{w}) + \tau = 0 \tag{1b}$$

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0 \quad (1c)$$

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

Slack reformulation: new variable $-\mathbf{s} = \mathbf{h}(\mathbf{w})$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$

$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$

$$\mu_i$$
s_i $-\tau=0$

$$\mathbf{s} > 0, \quad \boldsymbol{\mu} > 0$$

(1a)

Primal-Dual IP KKT conditions:

$$abla \Phi(\mathbf{w}) +
abla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
 (1b)

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

Slack reformulation: new variable $-\mathbf{s} = \mathbf{h}(\mathbf{w})$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$
$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$
$$\boldsymbol{\mu}_i \mathbf{s}_i - \tau = 0$$
$$\mathbf{s} > 0, \quad \boldsymbol{\mu} > 0$$

Newton on the slack formulation

• initialize with $\mathbf{s},\, \boldsymbol{\mu}>0$ and $\boldsymbol{\mu}_i \boldsymbol{s}_i= au$

(1a)

Primal-Dual IP KKT conditions:

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
 (1b)

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

Slack reformulation: new variable $-\mathbf{s} = \mathbf{h}(\mathbf{w})$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$
$$\boldsymbol{\mu}_i \mathbf{s}_i - \tau = 0$$
$$\mathbf{s} > 0, \quad \boldsymbol{\mu} > 0$$

Newton on the slack formulation

- ullet initialize with ${f s},\, {m \mu}>0$ and ${m \mu}_i{f s}_i= au$
- h(w) > 0 does not matter at the initial guess or during the iterations. Satisfied in the end.

(1a)

Primal-Dual IP KKT conditions:

$$abla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mu_i \mathbf{h}_i(\mathbf{w}) + \tau = 0$$
 (1b)

$$\mathbf{h}(\mathbf{w}) < 0, \quad \boldsymbol{\mu} > 0$$
 (1c)

- Newton steps on (1a)-(1b)
- Backtrack to ensure (1c)

Difficulty: one must ensure that h(w) starts and remains negative throughout the Newton iterations

- need a feasible initial guess
- backtracking can be expensive

Slack reformulation: new variable $-\mathbf{s} = \mathbf{h}(\mathbf{w})$

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{h}(\mathbf{w})\boldsymbol{\mu} = 0$$
$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$
$$\boldsymbol{\mu}_i \mathbf{s}_i - \tau = 0$$
$$\mathbf{s} > 0, \quad \boldsymbol{\mu} > 0$$

Newton on the slack formulation

- initialize with s, $\mu > 0$ and $\mu_i s_i = \tau$
- h (w) > 0 does not matter at the initial guess or during the iterations. Satisfied in the end.
 - finding $t \in]0, 1]$ to enforce:

$$s + t\Delta s > 0$$

 $\mu + t\Delta \mu > 0$

is trivial.

NLP

$$\mathbf{h}(\mathbf{w}) \leq 0$$

KKT conditions with slack

$$abla \Phi(\mathbf{w}) +
abla \mathbf{g}(\mathbf{w}) \boldsymbol{\lambda} +
abla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mathbf{g}(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$

$$\boldsymbol{\mu}_i s_i = 0$$

$$\mathbf{s} > 0, \quad \boldsymbol{\mu} > 0$$

NLP

$$\min_{w} \quad \Phi\left(w\right)$$

s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

 $\mathbf{h}(\mathbf{w}) \le 0$

PD-IP KKT conditions with slack

$$\nabla \Phi(\mathbf{w}) + \nabla \mathbf{g}(\mathbf{w}) \boldsymbol{\lambda} + \nabla \mathbf{h}(\mathbf{w}) \boldsymbol{\mu} = 0$$

$$\mathbf{g}(\mathbf{w}) = 0$$

$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$

$$\boldsymbol{\mu}_i \boldsymbol{s}_i - \tau = 0$$

$$\mathbf{s} \geq 0, \quad \boldsymbol{\mu} \geq 0$$

NLP

$$\min_{w} \quad \Phi\left(w\right)$$

s.t.
$$\mathbf{g}(\mathbf{w}) = 0$$

 $\mathbf{h}(\mathbf{w}) \le 0$

PD-IP KKT conditions

$$\nabla \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0$$

 $\mathbf{g}(\mathbf{w}) = 0$

$$\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$$

$$\mu_i s_i - \tau = 0$$

$$s>0, \quad \boldsymbol{\mu}>0$$

NLP

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{aligned}$$

Newton on the conditions

$$\left[\begin{array}{c} \nabla\mathcal{L}\left(\mathbf{w},\boldsymbol{\lambda},\boldsymbol{\mu}\right)\\ \mathbf{g}\left(\mathbf{w}\right)\\ \mathbf{h}(\mathbf{w})+\mathbf{s}\\ \boldsymbol{\mu}_{i}s_{i}-\tau \end{array}\right]=\mathbf{r}_{\tau}\left(\mathbf{w},\boldsymbol{\lambda},\boldsymbol{\mu},\mathbf{s}\right)=0$$

$$\text{with } s>0, \quad \boldsymbol{\mu}>0$$

NLP

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{aligned}$$

Newton on the conditions

$$\begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}(\mathbf{w}) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \boldsymbol{\tau} \end{bmatrix} = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \mathbf{0}$$
 with $\mathbf{s} > 0$, $\boldsymbol{\mu} > 0$

Newton direction d given by $\nabla \mathbf{r}_{\tau}^{\top}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) d + \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$

NLP

$$\label{eq:problem} \begin{aligned} \min_{\mathbf{w}} \quad & \Phi\left(\mathbf{w}\right) \\ \mathrm{s.t.} \quad & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \quad & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{aligned}$$

Newton on the conditions

$$\begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}(\mathbf{w}) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$
 with $\mathbf{s} > 0$, $\boldsymbol{\mu} > 0$

Newton direction d given by $\nabla \mathbf{r}_{\tau}^{\top}\left(w,\boldsymbol{\lambda},\boldsymbol{\mu},s\right)d+\mathbf{r}_{\tau}\left(w,\boldsymbol{\lambda},\boldsymbol{\mu},s\right)=0$

$$\underbrace{\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\boldsymbol{\mu}) \end{bmatrix}}_{=\nabla \mathbf{r}_{\tau}(\mathbf{w}, \lambda, \boldsymbol{\mu}, \mathbf{s})} \underbrace{\begin{bmatrix} \Delta \mathbf{w} \\ \Delta \lambda \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix}}_{=\mathbf{d}} = -\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \boldsymbol{\mu}, \mathbf{s})$$

with
$$H = \nabla^2 \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

NLP

$$\begin{aligned} & \underset{w}{\text{min}} & \Phi\left(\mathbf{w}\right) \\ & \text{s.t.} & \mathbf{g}\left(\mathbf{w}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}\right) \leq 0 \end{aligned}$$

Newton on the conditions

$$\begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \mathbf{0}$$

with $s>0, \quad \mu>0$

Newton direction d given by $\nabla \mathbf{r}_{\tau}^{\top}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) d + \mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$

$$\underbrace{\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\boldsymbol{\mu}) \end{bmatrix}}_{=\nabla \mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s})} \underbrace{\begin{bmatrix} \Delta \mathbf{w} \\ \Delta \lambda \\ \Delta \mu \\ \Delta \mathbf{s} \end{bmatrix}}_{=\mathbf{d}} = -\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s})$$

with $H = \nabla^2 \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu})$

Observe the specific structure of the matrix $\nabla \mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s})$!!

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight) = \mathbf{0}$$

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}(\mathbf{w}) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight) = \mathbf{0}$$

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ .

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}(\mathbf{w}) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight) = \mathbf{0}$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ .

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight) = \mathbf{0}$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{S}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}(\mathbf{w}) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}
ight) = \mathbf{0}$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \mathbf{0}$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{S}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{S}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{S}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$abla \mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)^{ op} \mathbf{d} + \mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \mathbf{0}$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Solve:

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = \begin{bmatrix} \nabla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \\ \mathbf{g}\left(\mathbf{w}\right) \\ \mathbf{h}\left(\mathbf{w}\right) + \mathbf{s} \\ \boldsymbol{\mu}_{i} \mathbf{s}_{i} - \tau \end{bmatrix} = \mathbf{0}$$

Taking steps along the...

Newton direction: d given by

$$\nabla \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right)^{\top} \mathbf{d} + \mathbf{r}_{\tau} \left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s} \right) = 0$$

Reminder: Newton convergence depends on the Lipschitz constant of $\nabla \mathbf{r}_{\tau}$ ($\mathbf{w}, \lambda, \mu, \mathbf{s}$), i.e. Newton does not "like" strong nonlinearities

We want to solve $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$ for a very small τ . But we do not want to get through the "corner" in $\mu_i \mathbf{s}_i = \tau$ when τ is small.

Key idea:

Key idea:

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$, guess w , λ

while $\tau > \mathrm{tol} \ \mathrm{do}$

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu},\mathbf{s}
ight)=0$$

Reduce au

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Key idea:

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$, guess w , λ

while
$$\tau > \mathrm{tol}$$
 do

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w},oldsymbol{\lambda},oldsymbol{\mu},\mathbf{s}
ight)=0$$

Reduce au

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

$$\mathrm{s.t.} \quad \mathbf{w}^{\top} \boldsymbol{\mathcal{S}} \mathbf{w} \leq 1$$

Key idea:

Algorithm: PD-IP solver

Set
$$au, \, oldsymbol{\mu}, \, \mathbf{s} \leftarrow \mathbf{1}$$
, guess $\mathbf{w}, oldsymbol{\lambda}$

while
$$au > \mathrm{tol}$$
 do

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}\right) = 0$$

Reduce au

 $\underline{\mathsf{return}\ \mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

$$\mathrm{s.t.} \quad \mathbf{w}^{\top} \boldsymbol{\mathcal{S}} \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

Key idea:

Algorithm: PD-IP solver

Set
$$au, \ oldsymbol{\mu}, \ \mathbf{s} \leftarrow \mathbf{1}$$
, guess $\mathbf{w}, oldsymbol{\lambda}$

while
$$\tau > \operatorname{tol} \operatorname{do}$$

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

Reduce τ

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0[$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$

while
$$\tau > \operatorname{tol}$$
 do

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w}, oldsymbol{\lambda}, oldsymbol{\mu}, \mathbf{s}\right) = 0$$

Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

Key idea: homotopy on τ

 $\gamma = 0.25$

return $\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $\mathbf{s} \leftarrow 1$
while $\tau > \text{tol do}$
Solve $\mathbf{r}_{\tau} (\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$
Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.25$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $\mathbf{s} \leftarrow 1$
while $\tau > \text{tol do}$
Solve $\mathbf{r}_{\tau} (\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$
Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^{\top} Q \left(\mathbf{w} - \mathbf{w}_0 \right) \\ & \text{s.t.} & \mathbf{w}^{\top} S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = 0.25$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$
while $\tau > \text{tol do}$
Solve \mathbf{r}_{τ} (w, .

Solve
$$\mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

Update $au \leftarrow \gamma au$

return $\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = 0.25$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

return $\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = 0.25$$

Key idea: homotopy on τ

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $\mathbf{s} \leftarrow 1$
while $\tau > \text{tol do}$
Solve $\mathbf{r}_{\tau} (\mathbf{w}, \lambda, \mu, \mathbf{s}) = 0$
Update $\tau \leftarrow \gamma \tau$

return
$$\mathbf{w}, \pmb{\lambda}, \pmb{\mu}, \mathbf{s}$$

 $\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = 0.25$$

Key idea: path-following

$$\begin{array}{l} \text{Set } \tau,\, \mu,\, \mathbf{s} \leftarrow 1 \\ \text{while } \tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do} \\ & \quad \quad | \quad \quad |$$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^\top Q \left(\mathbf{w} - \mathbf{w}_0\right) \\ & \text{s.t.} & \mathbf{w}^\top S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = 0.25$$

Key idea: path-following

Set
$$\tau$$
, μ , $s \leftarrow 1$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s})$

$$\begin{array}{l} \text{if } \|\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)\|_{\mathbf{X}} \leq 1 \text{ then} \\ \text{\sqsubseteq Update $\tau \leftarrow \gamma\tau$} \end{array}$$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = \text{0.1}$$

 $^{2}\mu$

Key idea: path-following

Set
$$\tau$$
, μ , $s \leftarrow 1$ while $\tau > \mathrm{tol}$ or $\|\mathbf{r}_{\tau}\|_{\infty} > \mathrm{tol}$ do

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|_{\mathbf{X}} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{min}} & \frac{1}{2}(\mathbf{w} - \mathbf{w}_0)^{\top} Q \left(\mathbf{w} - \mathbf{w}_0 \right) \\ & \text{s.t.} & \mathbf{w}^{\top} S \mathbf{w} \leq 1 \end{aligned}$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

$$\gamma = {\rm 0.1}$$

Key idea: path-following

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , s \leftarrow 1

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|_{\mathbf{X}} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.1$$

 $\frac{1}{2}\mu$

3

Key idea: path-following

Set
$$\tau$$
, μ , $s \leftarrow 1$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on $\mathbf{r}_{\tau}(\mathbf{w}, \lambda, \mu, \mathbf{s})$

$$\begin{array}{l} \text{if } \|\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)\|_{\mathbf{X}} \leq 1 \text{ then} \\ \text{ } \mathsf{L} \text{ } \mathsf{Update } \tau \leftarrow \gamma\tau \end{array}$$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

$$\mathrm{s.t.} \quad \mathbf{w}^{\top} \boldsymbol{\mathcal{S}} \mathbf{w} \leq 1$$

Central path: solution manifold of

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.1$$

Key idea: path-following

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|\mathbf{x} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

$$\mathrm{s.t.} \quad \mathbf{w}^{\top} \mathcal{S} \mathbf{w} \leq 1$$

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.1$$

Key idea: path-following

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $s \leftarrow 1$

while
$$au > au ext{ ol or } \|\mathbf{r}_{ au}\|_{\infty} > au ext{ ol do}$$

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|_{\mathbf{X}} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.1$$

Key idea: path-following

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , $\mathbf{s} \leftarrow \mathbf{1}$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|\mathbf{x} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = 0.1$$

Key idea: path-following

Algorithm: PD-IP solver

Set
$$\tau$$
, μ , s \leftarrow 1

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Newton step on
$$\mathbf{r}_{\tau}$$
 (w, λ , μ , s) if $\|\mathbf{r}_{\tau}$ (w, λ , μ , s) $\|_{\mathbf{X}} \leq 1$ then Update $\tau \leftarrow \gamma \tau$

return $\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}$

Example

$$\min_{\mathbf{w}} \quad \frac{1}{2} (\mathbf{w} - \mathbf{w}_0)^{\top} Q (\mathbf{w} - \mathbf{w}_0)$$

s.t.
$$\mathbf{w}^{\top} S \mathbf{w} \leq 1$$

$$\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right) = 0$$

for
$$\tau \in [1, 0]$$

$$\gamma = \text{0.1}$$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau=1$$
, $\mu=1$, $\mathbf{s}=1$, $\lambda=0$ while $\tau>\mathrm{tol}$ or $\|\mathbf{r}_{\tau}\|_{\infty}>\mathrm{tol}$ do

Algorithm: a Primal-dual Interior-Point solver

Input: w

$$\begin{split} \text{Set } \tau &= 1, \ \mu = \mathbf{1}, \ \mathbf{s} = \mathbf{1}, \ \lambda = 0 \\ \text{while } \tau &> \operatorname{tol} \ \text{or} \ \|\mathbf{r}_{\tau}\|_{\infty} > \operatorname{tol} \ \mathbf{do} \\ & \quad \quad \| \ \text{Evaluate} \ H, \ \mathbf{g}, \ \mathbf{h}, \ \nabla \mathbf{g}, \ \nabla \mathbf{h}, \ \nabla \Phi \end{split}$$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau = 1$$
, $\mu = 1$, $s = 1$, $\lambda = 0$

while $\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \mathsf{diag}(\mathbf{s}) & \mathsf{diag}(\boldsymbol{\mu}) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau = 1$$
, $\mu = 1$, $s = 1$, $\lambda = 0$

while
$$\tau > \mathrm{tol}$$
 or $\|\mathbf{r}_{\tau}\|_{\infty} > \mathrm{tol}$ do

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\left[egin{array}{cccc} oldsymbol{H} &
abla \mathbf{g} &
abla \mathbf{h} & 0 & 0 & 0 \
abla \mathbf{h}^{ op} & 0 & 0 & 0 & 0 \
abla \mathbf{h}^{ op} & 0 & 0 & I & \Delta oldsymbol{h} \ 0 & 0 & ext{diag} \left(\mathbf{s}
ight) & ext{diag} \left(oldsymbol{\mu}
ight) \end{array}
ight] \left[egin{array}{c} \Delta \mathbf{w} & \ \Delta oldsymbol{\lambda} \ \Delta oldsymbol{\mu} \ \Delta \mathbf{s} \end{array}
ight] = -\mathbf{r}_{ au}$$

Compute a step-size $t_{\rm max} \leq 1$ ensuring:

$$s + t_{\max} \Delta s \ge \epsilon s, \quad \mu + t_{\max} \Delta \mu \ge \epsilon \mu$$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau = 1$$
, $\mu = 1$, $s = 1$, $\lambda = 0$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\boldsymbol{\mu}) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

 $\mu_i \mathbf{s}_i = \mathbf{0}$ and $\mu_i \mathbf{s}_i = \tau$

Compute a step-size $t_{\max} \leq 1$ ensuring:

$$s + t_{max} \Delta s \ge \epsilon s, \quad \mu + t_{max} \Delta \mu \ge \epsilon \mu$$

Backtrack $t \in]0, \ t_{\max}]$ to ensure progress

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$au=1$$
, $oldsymbol{\mu}=\mathbf{1}$, $\mathbf{s}=\mathbf{1}$, $oldsymbol{\lambda}=\mathbf{0}$

while
$$\tau > \mathrm{tol}$$
 or $\|\mathbf{r}_{\tau}\|_{\infty} > \mathrm{tol}$ do

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\boldsymbol{\mu}) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Compute a step-size $t_{\rm max} \leq 1$ ensuring:

$$s + t_{max} \Delta s \ge \epsilon s$$
, $\mu + t_{max} \Delta \mu \ge \epsilon \mu$

Backtrack $t \in]0,\ t_{\max}]$ to ensure progress

Take Newton step: $\mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w}, \dots$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau = 1$$
, $\mu = 1$, $s = 1$, $\lambda = 0$

while
$$\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$$

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}(\mathbf{s}) & \operatorname{diag}(\boldsymbol{\mu}) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Compute a step-size $t_{\rm max} \leq 1$ ensuring:

$$s + t_{max} \Delta s \ge \epsilon s, \quad \mu + t_{max} \Delta \mu \ge \epsilon \mu$$

Backtrack $t \in \left]0, \; t_{\max} \right]$ to ensure progress

Take Newton step: $\mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w}, \dots$

$$\begin{array}{l} \text{if } \|\mathbf{r}_{\tau}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)\|_{\mathbf{X}} \leq 1 \text{ then} \\ \text{\sqsubseteq Update } \tau \leftarrow \gamma\tau \end{array}$$

Algorithm: a Primal-dual Interior-Point solver

Input: w

Set
$$\tau=1$$
, $\mu=1$, $s=1$, $\lambda=0$

while $\tau > \text{tol or } \|\mathbf{r}_{\tau}\|_{\infty} > \text{tol do}$

Evaluate H, g, h, ∇g , ∇h , $\nabla \Phi$

Compute the Newton direction given by

$$\left[egin{array}{cccc} oldsymbol{H} &
abla \mathbf{g} &
abla \mathbf{h} & 0 & 0 & 0 \
abla \mathbf{h}^ op & 0 & 0 & 0 & I \
abla \mathbf{h}^ op & 0 & 0 & i \mathbf{g} & \mathbf{h} \end{array}
ight] \left[egin{array}{c} \Delta \mathbf{w} \ \Delta oldsymbol{\lambda} \ \Delta oldsymbol{\mu} \ \Delta \mathbf{s} \end{array}
ight] = -\mathbf{r}$$

Compute a step-size $t_{\max} \leq 1$ ensuring:

$$s + t_{\max} \Delta s \ge \epsilon s, \quad \mu + t_{\max} \Delta \mu \ge \epsilon \mu$$

Backtrack $t \in]0, t_{\max}]$ to ensure progress

Take Newton step: $\mathbf{w} \leftarrow \mathbf{w} + t\Delta \mathbf{w}, \dots$

if
$$\|\mathbf{r}_{ au}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{s}\right)\|_{\mathrm{X}} \leq 1$$
 then L Update $au \leftarrow \gamma au$

return w, λ , μ , s

Some subtleties:

- Measuring progress
- Choice of $\|.\|_X$
- Mehrotra predictor
- ullet "Adaptive" γ

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$$

$$\mathbf{x}_{0} = \hat{\mathbf{x}}, \qquad \mathbf{x}^{2} + \mathbf{y}^{2} \ge \mathbf{r}^{2}$$

$$- \mathbf{u}_{\text{max}} \le \mathbf{u} \le \mathbf{u}_{\text{max}}, \quad -\mathbf{v}_{\text{min}} \le \mathbf{v} \le \mathbf{v}_{\text{max}}$$

Problem

$$\begin{aligned} \min_{\mathbf{x}, \mathbf{u}} \quad & \sum_{k=0}^{N} \frac{1}{2} \| \mathbf{x}_{k} - \mathbf{x}_{\text{ref}} \|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \| \mathbf{u}_{k} - \mathbf{u}_{\text{ref}} \|_{R}^{2} \\ \text{s.t.} \quad & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \\ & \mathbf{x}_{0} = \hat{\mathbf{x}}, \qquad & \mathbf{x}^{2} + \mathbf{y}^{2} \ge r^{2} \\ & - \mathbf{u}_{\text{max}} \le \mathbf{u} \le \mathbf{u}_{\text{max}}, \qquad - \mathbf{v}_{\text{min}} \le \mathbf{v} \le \mathbf{v}_{\text{max}} \end{aligned}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{y} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

x, y: position

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - v_{\min} \leq v \leq v_{\max} \label{eq:equation_problem}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \ \dot{y} \ \dot{ heta} \ \dot{\phi} \ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \ v\sin(heta) \ gv^{-1}\tan(\phi) \ \mathbf{u}_1 \ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{v} \end{bmatrix} = \mathbf{F} = \begin{bmatrix} v \cos(\theta) \\ v \sin(\theta) \\ gv^{-1} \tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix}$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - v_{\min} \leq v \leq v_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - \textit{v}_{\min} \leq \textit{v} \leq \textit{v}_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \qquad x^2 + y^2 \ge r^2$$

$$- \, u_{\max} \leq u \leq u_{\max}, \quad - v_{\min} \leq v \leq v_{\max}$$

Simple plane dynamics

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \\ \dot{ heta} \\ \dot{\phi} \\ \dot{v} \end{array}
ight] = \mathbf{F} = \left[egin{array}{c} v\cos(heta) \\ v\sin(heta) \\ gv^{-1}\tan(\phi) \\ \mathbf{u}_1 \\ \mathbf{u}_2 \end{array}
ight]$$

x, y: position

v: forward velocity

 θ : heading

 ϕ : bank angle

 \mathbf{u}_1 : roll rate

NMPC 40 20 20 -40 -100 -50 0 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_k - \mathbf{x}_{\text{ref}}\|_Q^2 + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_k - \mathbf{u}_{\text{ref}}\|_R^2$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$x_0=\hat{x},\quad x^2+y^2\geq r^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

NMPC 40 20 20 -40 -100 -50 0 50 100 150 200 250

Problem

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{u}} & & \sum_{k=0}^{N} \frac{1}{2} \| \mathbf{x}_{k} - \mathbf{x}_{\text{ref}} \|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \| \mathbf{u}_{k} - \mathbf{u}_{\text{ref}} \|_{R}^{2} \\ & \text{s.t.} & & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \end{aligned}$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$
 $-\mathbf{u}_{\text{max}} < \mathbf{u} < \mathbf{u}_{\text{max}}$

NMPC 40 20 -40 -40 -40 -50 0 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_k - \mathbf{x}_{\text{ref}}\|_Q^2 + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_k - \mathbf{u}_{\text{ref}}\|_R^2$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} (\mathbf{x}_k, \mathbf{u}_k)$$

$$x_0=\hat{x},\quad x^2+y^2\geq r^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}
\text{s.t.} \quad \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

solved repeatedly for \hat{x} evolving.

NMPC 40 20 -40 -40 -40 -40 -50 0 50 100 150 200 250

NMPC 40 20 -40 -40 -40 -50 0 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_k - \mathbf{x}_{\text{ref}}\|_Q^2 + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_k - \mathbf{u}_{\text{ref}}\|_R^2$$

s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F}(\mathbf{x}_k, \mathbf{u}_k)$$

 $\mathbf{x}_0 = \hat{\mathbf{x}}, \quad x^2 + y^2 > r^2$

$$-\mathbf{u}_{\max} < \mathbf{u} < \mathbf{u}_{\max}$$

Problem

$$egin{aligned} \min_{\mathbf{x}, \, \mathbf{u}} & \sum_{k=0}^{N} rac{1}{2} \, \| \mathbf{x}_k - \mathbf{x}_{\mathrm{ref}} \|_Q^2 + \sum_{k=0}^{N-1} rac{1}{2} \, \| \mathbf{u}_k - u_{\mathrm{ref}} \|_R^2 \ \mathrm{s.t.} & \mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} \left(\mathbf{x}_k, \mathbf{u}_k
ight) \end{aligned}$$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$
 $-\mathbf{u}_{\max} \le \mathbf{u} \le \mathbf{u}_{\max}$

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t $\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F}(\mathbf{x}_{k}, \mathbf{u}_{k})$

$$\mathbf{x}_0 = \mathbf{\hat{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

NMPC -100 -50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t $\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$

 $x_0 = \hat{x}, \quad x^2 + y^2 > r^2$ $-\mathbf{u}_{\max} \leq \mathbf{u} \leq \mathbf{u}_{\max}$

$$-\mathbf{u}_{\max} \leq \mathbf{u} \leq \mathbf{u}_{\max}$$

solved repeatedly for $\hat{\mathbf{x}}$ evolving.

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$

$$-\,u_{\max} \leq u \leq u_{\max}$$

NMPC -100 -50 100 150 200

Problem

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{u}} & \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2} \\ & \text{s.t.} & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

 $x_0 = \hat{x}, \quad x^2 + y^2 > r^2$ $-\mathbf{u}_{\max} \leq \mathbf{u} \leq \mathbf{u}_{\max}$

solved repeatedly for $\hat{\mathbf{x}}$ evolving.

NMPC 40 20 20 20 -40 -100 -50 0 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad x^2 + y^2 \ge r^2$$

 $-\mathbf{u}_{\max} < \mathbf{u} < \mathbf{u}_{\max}$

NMPC 40 20 20 20 -40 -100 -50 0 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t $\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$

 $-\mathbf{u}_{\max} < \mathbf{u} < \mathbf{u}_{\max}$

NMPC 40 20 20 20 -40 -100 -50 0 50 100 150 200 250

Problem

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{u}} & & \sum_{k=0}^{N} \frac{1}{2} \| \mathbf{x}_{k} - \mathbf{x}_{\text{ref}} \|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \| \mathbf{u}_{k} - \mathbf{u}_{\text{ref}} \|_{R}^{2} \\ & \text{s.t.} & & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \end{aligned}$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad x^2 + y^2 \ge r^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

Problem

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{u}} & & \sum_{k=0}^{N} \frac{1}{2} \| \mathbf{x}_{k} - \mathbf{x}_{\text{ref}} \|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \| \mathbf{u}_{k} - \mathbf{u}_{\text{ref}} \|_{R}^{2} \\ & \text{s.t.} & & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k}) \end{aligned}$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$

$$-\,u_{\rm max} \leq u \leq u_{\rm max}$$

Problem

$$\begin{aligned} & \min_{\mathbf{x}, \mathbf{u}} & & \sum_{k=0}^{N} \frac{1}{2} \| \mathbf{x}_{k} - \mathbf{x}_{\text{ref}} \|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \| \mathbf{u}_{k} - u_{\text{ref}} \|_{R}^{2} \\ & \text{s.t.} & & \mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \end{aligned}$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 > r^2$$

$$\mathbf{u}_{\mathrm{max}} = \mathbf{u}_{\mathrm{max}} + \mathbf{y} = \mathbf{v}_{\mathrm{max}}$$

NMPC 40 20 -20 -40 -100 -50 50 100 150 200 250

Problem

$$egin{aligned} \min_{\mathbf{x}, \, \mathbf{u}} & \sum_{k=0}^{N} rac{1}{2} \, \| \mathbf{x}_k - \mathbf{x}_{\mathrm{ref}} \|_Q^2 + \sum_{k=0}^{N-1} rac{1}{2} \, \| \mathbf{u}_k - u_{\mathrm{ref}} \|_R^2 \ & \mathrm{s.t.} & \mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \mathbf{F} \left(\mathbf{x}_k, \mathbf{u}_k
ight) \end{aligned}$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$
 $-\mathbf{u}_{\max} \le \mathbf{u} \le \mathbf{u}_{\max}$

NMPC 40 20 20 -40 -40 -50 50 50 100 150 200 250

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \quad \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t
$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge \mathbf{r}^2$$
$$-\mathbf{u}_{\text{max}} < \mathbf{u} < \mathbf{u}_{\text{max}}$$

Problem

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=0}^{N} \frac{1}{2} \|\mathbf{x}_{k} - \mathbf{x}_{\text{ref}}\|_{Q}^{2} + \sum_{k=0}^{N-1} \frac{1}{2} \|\mathbf{u}_{k} - \mathbf{u}_{\text{ref}}\|_{R}^{2}$$
s.t $\mathbf{x}_{k+1} = \mathbf{x}_{k} + \Delta t \mathbf{F} (\mathbf{x}_{k}, \mathbf{u}_{k})$

$$\mathbf{x}_0 = \hat{\mathbf{x}}, \quad \mathbf{x}^2 + \mathbf{y}^2 \ge r^2$$
 $-\mathbf{u}_{\max} \le \mathbf{u} \le \mathbf{u}_{\max}$

solved repeatedly for \hat{x} evolving.

10 20 30

10

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} H & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & I \\ \mathbf{0} & \mathbf{0} & \mathsf{diag}\left(\mathbf{s}\right) & \mathsf{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \boldsymbol{\nabla} \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \boldsymbol{\nabla} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \mathsf{diag}\left(\mathbf{s}\right) & \mathsf{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Delta} \mathbf{w} \\ \boldsymbol{\Delta} \boldsymbol{\lambda} \\ \boldsymbol{\Delta} \boldsymbol{\mu} \\ \boldsymbol{\Delta} \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}\left(\mathbf{s}\right) & \operatorname{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}\left(\mathbf{s}\right) & \operatorname{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \nabla \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}\left(\mathbf{s}\right) & \operatorname{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \Delta \mathbf{w} \\ \Delta \boldsymbol{\lambda} \\ \Delta \boldsymbol{\mu} \\ \Delta \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

$$\mathbf{g}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{x}_{0} - \hat{\mathbf{x}} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ & \dots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right],$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \boldsymbol{\nabla} \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \boldsymbol{\nabla} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \operatorname{diag}\left(\mathbf{s}\right) & \operatorname{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Delta} \mathbf{w} \\ \boldsymbol{\Delta} \boldsymbol{\lambda} \\ \boldsymbol{\Delta} \boldsymbol{\mu} \\ \boldsymbol{\Delta} \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

$$\mathbf{g}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{x}_{0} - \hat{\mathbf{x}} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right],$$

$$\mathbf{h}(\mathbf{w}) = \left[egin{array}{c} \mathbf{h}(\mathbf{u}_0) \\ \mathbf{h}(\mathbf{x}_1,\mathbf{u}_1) \\ ... \\ \mathbf{h}(\mathbf{x}_N) \end{array}
ight],$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \boldsymbol{\nabla} \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \boldsymbol{\nabla} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \mathsf{diag}\left(\mathbf{s}\right) & \mathsf{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Delta} \mathbf{w} \\ \boldsymbol{\Delta} \boldsymbol{\lambda} \\ \boldsymbol{\Delta} \boldsymbol{\mu} \\ \boldsymbol{\Delta} \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

$$\mathbf{g}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{x}_{0} - \hat{\mathbf{x}} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right],$$

$$\mathbf{h}\left(\mathbf{w}
ight) = \left[egin{array}{c} \mathbf{h}\left(\mathbf{u}_{0}
ight) \\ \mathbf{h}\left(\mathbf{x}_{1},\mathbf{u}_{1}
ight) \\ \ldots \\ \mathbf{h}\left(\mathbf{x}_{\mathcal{N}}
ight) \end{array}
ight], \quad \mathbf{w} = \left[egin{array}{c} \mathbf{x}_{0} \\ \mathbf{u}_{0} \\ \ldots \\ \mathbf{x}_{\mathcal{N}-1} \\ \mathbf{u}_{\mathcal{N}-1} \\ \mathbf{x}_{\mathcal{N}} \end{array}
ight]$$

Sparsity of the Primal-Dual Interior-Point KKT matrix:

$$\begin{bmatrix} \boldsymbol{H} & \nabla \mathbf{g} & \boldsymbol{\nabla} \mathbf{h} & \mathbf{0} \\ \nabla \mathbf{g}^{\top} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \boldsymbol{\nabla} \mathbf{h}^{\top} & \mathbf{0} & \mathbf{0} & \boldsymbol{I} \\ \mathbf{0} & \mathbf{0} & \mathsf{diag}\left(\mathbf{s}\right) & \mathsf{diag}\left(\boldsymbol{\mu}\right) \end{bmatrix} \begin{bmatrix} \boldsymbol{\Delta} \mathbf{w} \\ \boldsymbol{\Delta} \boldsymbol{\lambda} \\ \boldsymbol{\Delta} \boldsymbol{\mu} \\ \boldsymbol{\Delta} \mathbf{s} \end{bmatrix} = -\mathbf{r}_{\tau}$$

Required ordering:

$$\mathbf{g}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{x}_{0} - \hat{\mathbf{x}} \\ \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \dots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right],$$

$$\mathbf{h}\left(\mathbf{w}
ight) = \left[egin{array}{c} \mathbf{h}\left(\mathbf{u}_{0}
ight) \\ \mathbf{h}\left(\mathbf{x}_{1},\mathbf{u}_{1}
ight) \\ \dots \\ \mathbf{h}\left(\mathbf{x}_{N}
ight) \end{array}
ight], \quad \mathbf{w} = \left[egin{array}{c} \mathbf{x}_{0} \\ \mathbf{u}_{0} \\ \dots \\ \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \\ \mathbf{x}_{N} \end{array}
ight]$$

... and attribute dual variables accordingly.

... what happens if we have a very good guess to warm-start our algorithm ?

Even with an excellent initial guess interior point methods will **retreat to the central path** before homing onto the solution... what about keeping τ low ?

At very low τ , changes of active set are difficult: Newton struggles to get through the sharp turn in $\mu_i s_i = \tau$

... what happens if we have a very good guess to warm-start our algorithm ?

Plane example for all NMPC runs

Survival map of Direct Optimal Control

Survival map of Direct Optimal Control

Two approaches for solving NLPs...

Interior-Point vs. SQP ??

Algorithm: SQP (prototype)

while Not converged do

$$\begin{aligned} & \text{Form } \nabla_{\mathbf{w}}^2 \mathcal{L}, \ \nabla_{\mathbf{w}} \mathcal{L}, \ \mathbf{g}, \ \nabla \mathbf{g}, \ \mathbf{h}, \ \nabla \mathbf{h} \\ & \text{Solve QP:} \\ & \underset{\Delta \mathbf{w}}{\text{min}} \quad \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} \nabla_{\mathbf{w}}^2 \mathcal{L} \Delta \mathbf{w} + \nabla \Phi \left(\mathbf{w} \right)^\mathsf{T} \Delta \mathbf{w} \\ & \text{s.t.} \quad \mathbf{g} \left(\mathbf{w} \right) + \nabla \mathbf{g} \left(\mathbf{w} \right)^\mathsf{T} \Delta \mathbf{w} = 0 \\ & \quad \quad \mathbf{h} \left(\mathbf{w} \right) + \nabla \mathbf{h} \left(\mathbf{w} \right)^\mathsf{T} \Delta \mathbf{w} < 0 \end{aligned}$$

$$\left\{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right\} \leftarrow \left\{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right\} + \Delta\left\{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right\}$$

end

Interior-Point vs. SQP ??

Algorithm: SQP (prototype)

```
while Not converged do
               Form \nabla^2_{\mathbf{w}} \mathcal{L}, \nabla_{\mathbf{w}} \mathcal{L}, \mathbf{g}, \nabla \mathbf{g}, \mathbf{h}, \nabla \mathbf{h}
               while IPQP not converged do
                             Newton step on:
                                             H\Delta \mathbf{w} + \nabla \Phi + \nabla \mathbf{g} \boldsymbol{\lambda}^{\mathrm{QP}} + \nabla \mathbf{h} \boldsymbol{\mu}^{\mathrm{QP}} = \mathbf{0}
                                                                                                              \nabla \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = \mathbf{0}
                                                                                        \nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} + \mathbf{s}^{\mathrm{QP}} = \mathbf{0}
                                                                                                                         \mu_i^{\mathrm{QP}} \mathbf{s}_i^{\mathrm{QP}} = \mathbf{\tau}
                             reduce \tau \to \epsilon
                            \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} \leftarrow \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} + \Delta \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\}
end
```

Interior-Point vs SOP ??

Algorithm: SQP (prototype)

```
while Not converged do
              Form \nabla^2_{\mathbf{w}} \mathcal{L}, \nabla_{\mathbf{w}} \mathcal{L}, \mathbf{g}, \nabla \mathbf{g}, \mathbf{h}, \nabla \mathbf{h}
              while IPQP not converged do
                            Newton step on:
                                           H\Delta \mathbf{w} + \nabla \Phi + \nabla \mathbf{g} \boldsymbol{\lambda}^{\mathrm{QP}} + \nabla \mathbf{h} \boldsymbol{\mu}^{\mathrm{QP}} = \mathbf{0}
                                                                                                          \nabla \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = \mathbf{0}
                                                                                     \nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} + \mathbf{s}^{\mathrm{QP}} = 0
                                                                                                                     \mu_i^{\text{QP}} \mathbf{s}_i^{\text{QP}} = \mathbf{\tau}
                            reduce \tau \to \epsilon
              end
              Update
                           \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} \leftarrow \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} + \Delta \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\}
end
```

Algorithm: IP (prototype)

while Not converged do

Form $\nabla^2_{\mathbf{w}} \mathcal{L}$, $\nabla_{\mathbf{w}} \mathcal{L}$, \mathbf{g} , $\nabla_{\mathbf{g}}$, \mathbf{h} , $\nabla \mathbf{h}$

Newton step on:

$$abla \mathcal{L}(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0$$
 $\mathbf{g}(\mathbf{w}) = 0$
 $\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$
 $\boldsymbol{\mu}_i s_i = au$

gives Δw , $\Delta \lambda$, $\Delta \mu$. Update

$$\{\mathtt{w}, \lambda, \mu\} \leftarrow \{\mathtt{w}, \lambda, \mu\} +$$

Interior-Point vs SOP ??

Algorithm: SQP (prototype)

```
while Not converged do
              Form \nabla^2_{\mathbf{w}} \mathcal{L}, \nabla_{\mathbf{w}} \mathcal{L}, \mathbf{g}, \nabla \mathbf{g}, \mathbf{h}, \nabla \mathbf{h}
              while IPQP not converged do
                            Newton step on:
                                           H\Delta \mathbf{w} + \nabla \Phi + \nabla \mathbf{g} \boldsymbol{\lambda}^{\mathrm{QP}} + \nabla \mathbf{h} \boldsymbol{\mu}^{\mathrm{QP}} = \mathbf{0}
                                                                                                          \nabla \mathbf{g}^{\top} \Delta \mathbf{w} + \mathbf{g} = \mathbf{0}
                                                                                     \nabla \mathbf{h}^{\top} \Delta \mathbf{w} + \mathbf{h} + \mathbf{s}^{\mathrm{QP}} = 0
                                                                                                                     \mu_i^{\text{QP}} \mathbf{s}_i^{\text{QP}} = \mathbf{\tau}
                            reduce \tau \to \epsilon
              end
              Update
                           \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} \leftarrow \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} + \Delta \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\}
end
```

Algorithm: IP (prototype)

while Not converged do

Form $\nabla^2_{\mathbf{w}} \mathcal{L}$, $\nabla_{\mathbf{w}} \mathcal{L}$, \mathbf{g} , $\nabla_{\mathbf{g}}$, \mathbf{h} , $\nabla \mathbf{h}$

Newton step on:

$$abla \mathcal{L}\left(\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = 0$$
 $\mathbf{g}\left(\mathbf{w}\right) = 0$
 $\mathbf{h}(\mathbf{w}) + \mathbf{s} = 0$
 $\boldsymbol{\mu}_i s_i = au$

gives Δw , $\Delta \lambda$, $\Delta \mu$. Update

$$\{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} \leftarrow \{\mathbf{w}, \boldsymbol{\lambda}, \boldsymbol{\mu}\} +$$