Lab 4

February 5, 2013

HW₃

Student's t distribution:

$$f(x|\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}},\tag{1}$$

- Mean exists if v > 1.
- Variance exists if v > 2.
- Cauchy distribution:

$$f(x | v = 1) = \frac{1}{\pi(1 + x^2)}.$$
 (2)

() Lab 4 February 5, 2013 2 / 11

Monte Carlo Simulation

- $\theta \in \Theta$: parameter.
- $y^n = (y_1, ..., y_n)'$: data.
- $g(\theta)$: function of θ .
- $p(\theta | y^n)$: posterior.
- Consider expectation of $g(\theta)$) with respect to the posterior,

$$E[g(\theta)|y^n] = \int_{\Theta} g(\theta)p(\theta|y^n)d\theta.$$
 (3)

• How to compute the integral?

() Lab 4 February 5, 2013 3 / 11

Law of Large Numbers

 For large S, generate a sample of S values from the posterior distribution,

$$\theta^{(1)}, \dots, \theta^{(S)} \stackrel{\text{i.i.d.}}{\sim} p(\theta | y^n).$$
 (4)

• LLN:

$$\frac{1}{S} \sum_{i=1}^{S} g(\theta^{(i)}) \to E[g(\theta) | y^n]. \tag{5}$$

• If $g(\theta) = \theta$,

$$\frac{1}{S} \sum_{i=1}^{S} \theta^{(i)} \to E[\theta | y^n]. \tag{6}$$

() Lab 4 February 5, 2013 4 / 11

• If $g(\theta) = I_{(\theta > c)}$,

$$\frac{1}{S} \sum_{i=1}^{S} I_{(\theta^{(i)} > c)} \to E \left[I_{(\theta > c)} \, | \, y^n \right] = P[\theta > c \, | \, y^n]. \tag{7}$$

- The empirical distribution of $\{\theta^{(1)}, \dots, \theta^{(S)}\} \rightarrow p(\theta | y^n)$
- Sample moments, quantiles and functions approximate true moments, quantiles and functions.

() Lab 4 February 5, 2013 5 / 11

Example 1

- Assume the posterior $p(\theta | y^n)$ is Gamma(68,45).
- Generate S = 10, 100, 1000 samples from the posterior distribution and compute the empirical distributions.
- $P[\theta < 1.2 | y^n]$
 - True: 0.0367
 - S=10: 0.1
 - S=100: 0.01
 - S=1,000: 0.039

1.5

7:

0.5

0.0

1.0

2.0

Example 2

- ullet θ : population proportion agree with some political policy.
- The posterior $p(\theta | y^n)$ is Beta(442,420).
- Consider $\gamma \equiv g(\theta) = \log \frac{\theta}{1-\theta}$.
- Empirical ratio is 0.51.
- We want to estimate $p(\gamma | y^n)$:
 - 1. Generate $\theta^{(i)} \sim p(\theta \mid y^n)$.
 - 2. Compute $\gamma^{(i)} = g(\theta^{(i)})$.
- The empirical distribution of $\{\gamma^{(1)}, \dots, \gamma^{(S)}\} \to p(\gamma | y^n)$.

() Lab 4 February 5, 2013 8 / 11

Posterior Predictive Distribution

• $p(y|y^n)$: posterior predictive distribution.

$$p(y|y^n) = \int L(y|\theta)p(\theta|y^n)d\theta.$$
 (8)

- $L(y|\theta)$: data generating function.
- $p(\theta | y^n)$: posterior distribution.
- Generate random samples from $p(y | y^n)$.
 - 1. Generate $\theta^{(i)} \sim p(\theta | y^n)$.
 - 2. Generate $y^{(i)} \sim L(y \mid \theta^{(i)})$.

Lab 4 February 5, 2013 10 / 11

We can compute

$$E[g(y)] = \int g(y)p(y|y^n)dy, \tag{9}$$

$$= \frac{1}{S} \sum_{i=1}^{S} g(y^{i}). \tag{10}$$

• The empirical distribution of $\{\gamma^{(1)}, \dots, \gamma^{(S)}\} \to p(\gamma | y^n)$ where $\gamma = g(y)$.

Lab 4 February 5, 2013 11 / 11