Notation

MIP formulation

Variables Constraints Objective

Extended mip formulation

Additional variables

Notation

- ▶ a set $T = \{0, ..., m-1\}$ of m machine types
- ▶ a set $P = \{0, ..., n-1\}$ of n time periods

Production variables

▶ $x_p^t \in \{0,1\}$ for $t \in T$, $p \in P$ with $x_p^t = 1 \Leftrightarrow$ an item of machine type t is produced in time period p

State variables

▶ $y_p^t \in \{0, 1\}$ for $t \in T$, $p \in P$ with $y_p^t = 1 \Leftrightarrow$ the machine is ready to produce an item of machine type t in time period p.

Stock variables

▶ $s_p^t \in \mathbb{R}_{\geq 0}$ for $t \in T$, $p \in P \cup \{-1\}$ with $s_p^t = \ell$ representing that ℓ items of machine type t are kept in stock in time period p

Transition variables

▶ $u_p^{ij} \in \{0,1\}$ for $i \in T$, $j \in T$, $p \in P$ with $u_p^{ij} = 1$ \Leftrightarrow the production changes from machine type i to machine type j in time period p

Initial stock constraints

 ensure an empty stock for each machine type before production begins

$$s_{-1}^t = 0 \text{ for } t \in T \tag{1}$$

Demand constraints

- ensure that the demand for each machine type is met by production and stock
- ▶ let $d_p^t \in \{0,1\}$ be the given demand of machine type t in time period p

$$s_{p-1}^t + x_p^t = d_p^t + s_p^t \text{ for } t \in T, \ p \in P$$
 (2)

State constraints

ensures that the machine is ready to produce machine type t in time period p when producing machine type t in p

$$x_p^t \le y_p^t \text{ for } t \in T, \ p \in P$$
 (3)

Configuration constraints

ensure that the machine is in exactly one state at any time

$$\sum_{t \in T} y_p^t = 1 \text{ for } p \in P$$
 (4)

Transition constraints

ensure that the values of the transition variables are set correctly

$$u_p^{ij} \ge y_{p-1}^i + y_p^j - 1 \text{ for } i \in T, j \in T, p \in P \setminus \{0\}$$
 (5)

Entire formulation

- ▶ let $h \in \mathbb{R}$ be the stocking cost representing the cost for stocking an item (of any machine type) for one time period
- ▶ let $c_{ij} \in \mathbb{R}$ for $i \in T$, $j \in T$ be the transition cost representing the cost for changing the machine configuration from machine type i to machine type j

$$\min \sum_{t \in T} \sum_{p \in P} h s_p^t + \sum_{i \in T} \sum_{j \in T} \sum_{p \in P \setminus \{0\}} c_{ij} u_p^{ij}$$
s.t. (1) – (5).

Predecessor state variables

▶ $v_p^t \in \{0,1\}$ for $t \in T$, $p \in P \setminus \{0\}$ with $v_p^t = 1 \Leftrightarrow$ the machine is ready to produce an item of machine type t in time period p but not in time period p - 1

Successor state variables

▶ $w_p^t \in \{0,1\}$ for $t \in T$, $p \in P \setminus \{0\}$ with $w_p^t = 1 \Leftrightarrow$ the machine is ready to produce an item of machine type t in time period p but not in time period p + 1