

<u>Course</u> > <u>Unit 3:</u> ... > <u>5 Solvi</u>... > 8. Gen...

8. General solution in terms of fundamental matrix

Video note: The new content starts at 3:55, but we include the introductory remarks as review. (Be careful not to confuse the constants c_1 and c_2 with the vectors $\mathbf{c_1}$ and $\mathbf{c_2}$ in the video below.)

General solution in terms of fundamental matrix

(Caption will be displayed when you start playing the video.)

Video

Download video file

9:40 / 9:40

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

Suppose $\mathbf{x}_1, \dots, \mathbf{x}_n$ are n linearly independent solutions to the $n \times n$ system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, then the general solution is

HD

▶ 2.0x

X

$$\mathbf{x}(t) = c_1 \mathbf{x}_1 + \cdots + c_n \mathbf{x}_n = egin{pmatrix} ert & \mathbf{x}_1 & \cdots & \mathbf{x}_n \ ert & & ert \end{pmatrix} egin{pmatrix} c_1 \ drain \ c_n \end{pmatrix}.$$

Conclusion: If $\mathbf{X}(t)$ is a fundamental matrix, then the general solution is the product

$$\mathbf{x}(t) = \mathbf{X}(t)\mathbf{c},$$

where
$$\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$
 ranges over all constant vectors.

Question 8.1 What do all fundamental matrices look like?

Recall that

- 1. each column of a fundamental matrix is a solution,
- 2. given a fundamental matrix \mathbf{X} , any solution is of the form $\mathbf{X}\mathbf{c}$ for some constant vector \mathbf{c} .

This means that all other fundamental matrices must be of the following form:

$$\begin{pmatrix} & | & & | \\ \mathbf{X}\mathbf{c}_1 & \mathbf{X}\mathbf{c}_2 & \cdots & \mathbf{X}\mathbf{c}_n \\ | & | & & | \end{pmatrix} = \mathbf{X}\mathbf{C}$$

where ${f C}$ is the n imes n matrix whose columns are the vectors c_i :

$$\mathbf{C} = \begin{pmatrix} | & | & & | \\ \mathbf{c_1} & \mathbf{c_2} & \cdots & \mathbf{c_n} \\ | & | & & | \end{pmatrix}$$

and to ensure that the columns \mathbf{Xc}_i are linearly independent, we need \mathbf{C} to be invertible, i.e. $|\mathbf{C}| \neq 0$.

Conclusion: If $\mathbf{X}(t)$ is a fundamental matrix, then all other fundamental matrices are of the form

XC where
$$C$$
 is $n \times n$, and $|C| \neq 0$.

Remark 8.2 For the system on the previous page, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$, the general solution is

$$\mathbf{x}(t)=c_1\mathbf{x}_1+c_2\mathbf{x}_2$$
 where $\mathbf{x}_1=e^{2t}\begin{pmatrix}2\\1\end{pmatrix}$ $\mathbf{x}_2=e^{3t}\begin{pmatrix}1\\1\end{pmatrix}$ are the normal modes.

This can be written in terms of the fundamental matrix $\mathbf{X} = (\mathbf{x}_1 \ \mathbf{x}_2)$, as

$$\mathbf{x}(t) = \mathbf{X}\mathbf{c} = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix} egin{pmatrix} c_1 \ c_2 \end{pmatrix}.$$

Most other fundamental matrices are "ugly." For example, here is another one: $(\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_2)$. We will use the simplest one, the one built from the normal modes, as much as we can.

Initial conditions

Once we have a fundamental matrix $\mathbf{X}(t)$, finding the solution $\mathbf{x}(t)$ with initial value $\mathbf{x}(a)$

at
$$m{t} = m{a}$$
 means finding the vector $m{c} = egin{pmatrix} c_1 \\ dots \\ c_n \end{pmatrix}$ satisfying

$$\mathbf{X}(a) \mathbf{c} = \mathbf{x}(a).$$

Since $\mathbf{X}(a)$ is invertible for any a, we have

$$\mathbf{c} = \mathbf{X}(a)^{-1}\mathbf{x}(a).$$

Example 8.3 For the same system as above, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}$, use the simplest fundamental matrix \mathbf{X}

$$\mathbf{X}(t) = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix}.$$

to find the solution to $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ satisfying the initial condition $\mathbf{x}(0) = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$.

Solution:

The solution to the initial value problem is $\mathbf{X}(t)$ \mathbf{c} for some constant vector \mathbf{c} . Thus

$$\mathbf{x} = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix} egin{pmatrix} c_1 \ c_2 \end{pmatrix}$$

for some c_1, c_2 to be determined. Set t=0 and use the initial condition to get

$$\left(egin{array}{c}4\\5\end{array}
ight)=\left(egin{array}{c}2&1\\1&1\end{array}
ight)\left(egin{array}{c}c_1\\c_2\end{array}
ight).$$

Solving leads to
$$egin{pmatrix} c_1 \ c_2 \end{pmatrix} = egin{pmatrix} -1 \ 6 \end{pmatrix}$$
 . Therefore,

$$\mathbf{x} = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix} egin{pmatrix} -1 \ 6 \end{pmatrix} = (-1)egin{pmatrix} 2 \ 1 \end{pmatrix} e^{2t} + 6egin{pmatrix} 1 \ 1 \end{pmatrix} e^{3t}.$$

Initial condition practice

2/2 points (graded)

In the example above, we found the general solution in terms of the fundamental matrix

$$\mathbf{X} = egin{pmatrix} 2e^{2t} & e^{3t} \ e^{2t} & e^{3t} \end{pmatrix} egin{pmatrix} c_1 \ c_2 \end{pmatrix}$$

Find coefficients c_1 and c_2 for the initial condition $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$c_1 = \boxed{ 1 }$$
 Answer: 1

$$c_2 = \boxed{ \ ext{-1} }$$
 $ightharpoonup ext{Answer: -1}$

Solution:

The initial condition gives the equation

$$\mathbf{x}(0) = \mathbf{X}(0) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

We could solve using ${f c}=X(0)^{-1}{f x}(0)$, but in this case, inspection shows us that $c_1=1$ and $c_2=-1$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

8. General solution in terms of fundamental matrix

Hide Discussion

Topic: Unit 3: Solving systems of first order ODEs using matrix methods / 8. General solution in terms of fundamental matrix

Add a Post

Show all posts

▼

by recent activity ▼