Exercice 1

Approche en mécanique classique

- ♣ Dans une volume $a\Sigma$, on a une charge +e et une charge -e, comme celle-ci sont réparties uniformément. Les densités de charges sont donc respectivement $\rho_+ = e/(a\Sigma)$ et $\rho_- = -e/(a\Sigma)$.
- ♣ Par définition, $\vec{j} = \rho \vec{v}$. Comme seuls les électrons ont une vitesse non nulle, $\vec{j} = -v'\rho_{-} = -ev'/(a\Sigma)$. Et donc $I = \oiint_{\Sigma} d\vec{S}\vec{j} = -ev'/a$.
- $\rho_{tot} = \rho_+ + \rho_- = 0 \text{ donc } \vec{E} = 0.$
- A vec le théorème d'Ampère appliqué uniquement en dehors du fil, on trouve :

$$\vec{B} = -\frac{\mu_0 I}{2\pi r} \vec{e_\theta}$$

(le signe - provient du fait que le sens du courant est opposé à celui des électrons) La force qui s'exerce sur la charge q est donc :

$$\vec{F} = -\frac{qv\mu_0 I}{2\pi r}\vec{e_r}$$

Approche en mécanique relativiste

♣ Ainsi, en se déplaçant à la vitesse \vec{v} , la charge +q voit dans son référentiel la distance entre atomes réduite d'un facteur $\gamma_+ = 1/\sqrt{1-v^2/c^2}$ et la distance entre électrons de conduction d'un facteur $\gamma_- = 1/\sqrt{1-(v-v')^2/c^2}$. On trouve donc que :

$$\rho_{+} = \frac{e}{a\Sigma} \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$\rho_{-} = \frac{e}{a\Sigma} \frac{1}{\sqrt{1 - (v - v')^2/c^2}}$$

Attention, l'hypothèse que la vitesse relative des électrons par rapport à la charge q est v'-v est une approximation. En mécanique relativiste, la vitesse relative serait :

$$v_{e_{-}/q} = \frac{v' - v}{1 - \frac{vv'}{c^2}} \tag{1}$$

♣ On trouve facilement avec le théorème dee Gauss que :

$$\vec{E} = \frac{\Sigma(\rho_+ + \rho_-)}{2\pi r \epsilon}$$

♣ En développant à l'ordre 2, on trouve :

$$\rho_+ + \rho_- \approx \frac{e}{a\Sigma} \frac{vv'}{c^2}$$

On trouve alors que:

$$\vec{E} = -\frac{I\mu_0 v}{2\pi r} \vec{e_r}$$

La force de Lorentz associée est donc :

$$\vec{F} = -\frac{qI\mu_0 v}{2\pi r}\vec{e_r}$$

Cette expression est identique à celle trouvée par le calcul du champ magnétique en mécanique classique. Le champ magnétique est-il est une approximation à l'ordre 2 de la force de Coulomb ?

1

Exercice 3

- \spadesuit On raisonne sur un ensemble d'électrons. On considère les évènements ayant eu lieu à partir de t=0. Il faut calculer d'abord le nombre d'électrons ayant subi une collision entre t et t+dt. Ce nombre est $N(t)-N(t+dt)=N(t)/\tau$. On a donc $N(t)=N_0\exp(-t/\tau)$. Pour un électron donné, la probabilité de ne pas subir de collision est donc $P(t)=N(t)/N_0$.
- \spadesuit Soit N_0 le nombre total d'électrons. Entre t et t+dt, il y a eu dtN_0/τ qui ont subi une collision. La quantité de mouvement de tous ces électrons est donc perdue. D'autre part, entre t et t+dt chaque électron est soumis à la force $\vec{F}(t)$, faisant changer la quantité de mouvement totale de $N_0F(t)dt$. Finalement, il vient :

$$\vec{P}(t+dt) = \vec{P}(t) - \frac{dt}{\tau}\vec{P}(t) + N_0\vec{F}dt$$
(2)

 \spadesuit On en déduit la vitesse moyenne d'un électron, définie par $\vec{v}(t) = \vec{P}/(mN_0)$:

$$\frac{d\vec{v}}{dt} = \frac{\vec{v}}{\gamma} + \vec{F}(t)$$

où $\gamma = m/\tau$.

 \spadesuit La force subie par les électrons est la force de Lorentz : $\vec{F} = -eE_0 \exp(-i\omega t)$. L'équation précédente devient :

$$-i\omega\vec{v} = -\frac{e}{m}\vec{E_0} - \frac{\vec{v}}{\tau}$$

On en déduit :

$$\vec{v} = \frac{e\tau}{m} \frac{E_0}{i\omega\tau - 1}$$

En introduisant la conductivité γ , $\vec{j}=\gamma\vec{E}$, où $\vec{j}=-ne\vec{v}$, on trouve :

$$\gamma(\omega) = \frac{ne^2\tau}{m} \frac{1}{1 - i\omega\tau}$$

- \spadesuit Dans un métal, qui est un réseau cristallin, il y a typiquement un électron tous les Angstrom, soit tous les 10^{-10} m. On obtient des densités typiques de 10^{30} atomes par m³.
- ♠ La résistivité statique correspond à une fréquence qui tend vers 0, cad :

$$\rho = \frac{1}{\gamma} = \frac{m}{ne^2\tau}$$

On trouve donc $\tau \simeq 10^{-14}$ s.

Exercice 4

- \heartsuit Résistance classique d'un cylindre : $R = L/(\gamma \pi a^2)$.
- \heartsuit Isolons le câble arrivant en A. Par symétrie, le courant partira dans tous les directions. La densité de courant va s'écrire en un point M:

$$\vec{j_A} = \frac{I}{2\pi e} \frac{\vec{e_r}}{\|\vec{AM}\|}$$

On effectue le même raisonnement pour B. La densité de courant totale est alors :

$$ec{j} = rac{I}{2\pi e} \left[rac{ec{e_r}}{\|ec{AM}\|} - rac{ec{e_r}}{\|ec{BM}\|}
ight]$$

 \heartsuit En intégrant la relation $\vec{j} = \gamma \vec{E}$ le long du chemin AB, dont la coordonnée sera donnée par x, en faisant varier x de a à d-a (pour éviter une divergence de la densité de courant) :

$$\int_a^{d-a} dx j(x) = \frac{I}{2\pi e} \int_a^{d-a} dx \left(\frac{1}{x} + \frac{1}{d-x}\right) = \gamma \int_a^{d-a} dx E = \gamma \int_a^{d-a} dx \frac{dV}{dx}$$

On trouve alors:

$$\Delta V = \frac{I}{\pi e \gamma} \log \left(\frac{d - a}{a} \right)$$

 \heartsuit En se plaçant en coordonnées sphériques, on a :

$$ec{j} = rac{I}{2\pi} \left[rac{ec{e_r}}{\| ec{AM} \|^2} - rac{ec{e_r}}{\| ec{BM} \|^2}
ight]$$

Attention, il y a un facteur 2 par rapport à la surface d'une sphère car il s'agit de demi-sphères. On trouve alors :

$$\Delta V = \frac{I}{\pi \gamma} \frac{d}{a(d-a)}$$

Exercice 5

 \diamondsuit Les lignes de champs sont radiales cad $\vec{j}=j(r)\vec{e_r}$. On a donc :

$$\vec{j}(r) = \frac{I}{2\pi r^2} \vec{e_r}$$

On en déduit :

$$\mathrm{d}V = -E(r)dr = \frac{-I}{2\pi r^2 \gamma} dr$$

Par intégration, on trouve :

$$V(r) = \frac{I}{2\pi r \gamma}$$

♦ Le potentiel de l'hémisphère est donc simplement :

$$U = \frac{I}{2\pi a \gamma}$$

La résistance est donc tout simplement $R=\frac{1}{2\pi a\gamma}$. On trouve qu'elle ne dépasse pas 30Ω si $a>53{\rm cm}$.

 \diamondsuit La tension de pas vaut, si d = 1m:

$$V_p(r) = V(r) - V(r+d) = \frac{I}{2\pi\gamma r(r+d)}$$

On trouve que $V_p(10m) = 7,2kV$ et $V_p(100m) = 79V$

 \diamondsuit Le courant qui traverse la personne est $i=V_p/R$. On trouve i(10)=2,9A et i(100)=32mA.

Câble coaxial

- \heartsuit Le courant circulant dans l'âme est $I=2\pi aj_{s,a}$. De même, la charge totale est $Q=2\pi al\sigma_a$. On a forcément $I=2\pi bj_{s,b}$. De même, la charge totale est $Q=2\pi bl\sigma_b$ par conservation de la charge et du courant.
- \heartsuit Les symétries et les invariances donnent $\vec{E} = E(r)\vec{e_r}$. Avec le théorème de Gauss appliqué sur un cylindre de rayon r, on obtient :

$$\begin{cases} r < a & : \quad \vec{E} = \vec{0} \\ a < r < b & : \quad \vec{E} = \frac{\sigma_a a}{\varepsilon_0 r} \vec{e_r} \\ r > b & : \quad \vec{E} = \vec{0} \end{cases}$$

 \heartsuit On en déduit le potentiel entre les deux conducteurs :

$$V = \frac{\sigma_a a}{\varepsilon_0} \ln \left(\frac{b}{a} \right) = \frac{Q}{2\pi l \varepsilon_0} \ln \left(\frac{b}{a} \right)$$

La capacité par unité de longueur est donc :

$$c = \frac{2\pi\varepsilon_0}{\ln\left(\frac{b}{a}\right)}$$

 \heartsuit Les symétries et les invariances donnent $\vec{B} = B(r)\vec{e_{\theta}}$. Avec le théorème de d'Ampère appliqué sur un cercle de rayon r, on obtient :

$$\begin{cases} r < a & : \quad \vec{B} = \vec{0} \\ a < r < b & : \quad \vec{B} = \frac{\mu_0 j_{s,a} a}{r} \vec{e_{\theta}} \\ r > b & : \quad \vec{B} = \vec{0} \end{cases}$$

 \heartsuit Le flux du champ \vec{B} se calcule sur la surface rectangulaire comprises entre a et b, de longueur l avec $\vec{e_{\theta}}$ comme vecteur normal. On trouve alors :

$$\Phi_B = \frac{\mu_0 I}{2\pi} \ln \left(\frac{b}{a}\right)$$

On a donc :

$$L = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{a}\right)$$

 \heartsuit On trouve que $l \times c = \varepsilon_0 \mu_0 = \frac{1}{c^2}$. Cela correspond à l'inverse du carré de la vitesse de la lumière, qui est la vitesse de propagation dans le câble coaxial.

Étude d'un colloïde

 \heartsuit Le milieu est composé de cations et d'anions à la même densité :

$$\rho = eN_{+} - eN_{-} = -2eN_{0}\sinh\left(\frac{eV}{k_{B}T}\right)$$

Lorsque $eV \ll k_BT$, on a alors :

$$\rho \simeq -2N_0 \frac{eV}{k_B T}$$

4

 \heartsuit Avec les rotations et les symétries, on montre facilement que $\vec{E} = E(r)\vec{e_r}$. On applique le théorème de Gauss sur un volume compris entre r et r + dr:

$$-4\pi r^2 E(r) - 4\pi (r + dr)^2 E(r + dr) = \frac{4\pi r^2 dr \rho}{\varepsilon}$$

On trouve donc:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}V}{\mathrm{d}r}\right) + \frac{\rho}{\epsilon} = 0$$

Cette éuation correspond à l'équation de Maxwell-Gauss : $\operatorname{div} \vec{E} = \frac{\rho}{\varepsilon}$ (qui correspond à l'équation de Poisson avec le potentiel).

 \heartsuit On remplace ρ par l'expression trouvée plus haut. On obtient :

$$\frac{\mathrm{d}^2 U}{\mathrm{d}r^2} - \frac{2N_0 e^2}{k_B T \varepsilon} U = 0$$

On pose $\lambda^2 = \frac{k_B T \varepsilon}{2N_0 e^2}$. C'est une longueur caractéristique de la décroissance du potentiel. Dans de l'eau pure, le pH est égal à 7 donc $N_0 = 10^{-7} \text{mol/L} = 10^{19} \text{part.m}^{-3}$, soit $\lambda = 1 \mu \text{m}$.

En résolvant l'équation, on trouve $U(r) = A \exp(-r/\lambda) + B \exp(r/\lambda)$. La condition aux limites $V(r \longrightarrow \infty) \longrightarrow 0$ impose B = 0. On a alors :

$$V(r) = \frac{A}{r} \exp\left(-\frac{r}{\lambda}\right)$$

 \heartsuit L'expression du champ est :

$$\vec{E} = -\frac{\mathrm{d}V}{\mathrm{d}r}\vec{e_r} = A\frac{\exp(-r/\lambda)}{r^2}\left(1 + \frac{r}{\lambda}\right)\vec{e_r}$$

S'il n'y avait pas d'ions, on devrait retrouver l'expression du champ d'une particule ponctuelle de charge Q. Or l'absence d'ions correspond à $\lambda = \infty$, c'est-à-dire qu'il n'y a plus d'écrantage. On doit nécessairement retrouver $\vec{E} = \frac{Q}{4\pi\epsilon r^2} \vec{e_r}$.

D'autre part, pour $r = r_0$, l'expression du champ *avec* ou sans ions autour est la même (car on est collé à la surface de la particule). Donc :

$$\frac{Q}{4\pi\epsilon r^2} = A \frac{\exp(-r_0/\lambda)}{r^2} \left(1 + \frac{r_0}{\lambda}\right)$$

On a alors:

$$V(r) = \frac{Q}{4\pi\epsilon r^2} \frac{1}{1 + \frac{r_0}{\lambda}} \exp\left(-\frac{r - r_0}{\lambda}\right)$$

La densité de charge est proportionnelle à l'opposé du potentiel :

$$\rho(r) = -\frac{2N_0 eQ}{4\pi k_B T \epsilon r^2} \frac{1}{1 + \frac{r_0}{\lambda}} \exp\left(-\frac{r - r_0}{\lambda}\right)$$

Condensateur Terre-ionosphère

 \clubsuit Les symétries et les invariances donnent $\vec{E} = E(r)\vec{e_r}$. Avec le théorème de Gauss appliqué sur une sphère de rayon r, on obtient :

$$\begin{cases} r < R & : \quad \vec{E} = \vec{0} \\ R < r < R + z_0 & : \quad \vec{E} = -\frac{Q}{4\pi\varepsilon_0 r^2} \vec{e_r} \\ r > R + z_0 & : \quad \vec{E} = \vec{0} \end{cases}$$

 \clubsuit Le potentiel se retrouve grâce à l'équation $\frac{\mathrm{d}V}{\mathrm{d}r}=-E(r).$ On a donc :

$$V(r) = \frac{Q}{4\pi\varepsilon_0 r} + A$$

Comme le potentiel est nul en z = 0 (cad en r = R):

$$V = V(R + z_0) - V(0) = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{R + z_0}\right)$$

On trouve une capacité équivalente de :

$$C = \frac{4\pi\varepsilon_0 R(R+z_0)}{z_0} \simeq \frac{4\pi\varepsilon_0 R^2}{z_0}$$

L'approximation est la formule d'un condensateur plan. de surface $4\pi R^2$. L'énergie électrostatique est $W_{el}=\frac{1}{2}CV^2$. Enfin on peut dire dans cette approximation que $\vec{E}\simeq \frac{V}{z_0}\vec{e_r}$. On trouve $C=6,7\cdot 10^{-2}\mathrm{F},\,W_{el}=4,3\cdot 10^9\mathrm{J}$ et $E=6\mathrm{V/m}$.

- ♣ Toujours dans l'analogie avec le condensateur plan, $\vec{E} = \sigma/\varepsilon\vec{e_r}$. On trouve donc $\sigma = 5, 3 \cdot 10^{-11} \text{C.m}^{-2}$ et $Q = 4\pi R^2 \sigma = 24 \cdot 10^3 \text{C}$.
- ♣ On peut dire que $E \simeq V/z_1$, où z_1 est l'altitude des nuages. En ordre de grandeur, on a $Z_1 = 1$ km, donc $V_1 \simeq 10^8$ V.