Sintaxis y tipado

Cosas a tener en cuenta

Asumimos que la aplicación es asociativa a izquierda:

$$MNP = (MN)P \neq M(NP)$$

La abstracción y el "if" tienen menor precedencia que la aplicación:

$$\lambda x : \tau. M N = \lambda x : \tau. (M N) \neq (\lambda x : \tau. M) N$$

Tipos y términos

Las expresiones de tipos (o simplemente tipos) son

$$\sigma ::= \mathsf{Bool} \mid \mathsf{Nat} \mid \sigma \to \sigma$$

Sea \mathcal{X} un conjunto infinito enumerable de variables y $x \in \mathcal{X}$. Los términos están dados por

$$M := x$$
 $| \lambda x : \sigma.M |$
 $| M M |$
 $| \text{true} |$
 $| \text{false} |$
 $| \text{if } M \text{ then } M \text{ else } M |$
 $| \text{zero} |$
 $| \text{succ}(M) |$
 $| \text{pred}(M) |$
 $| \text{isZero}(M) |$

Axiomas y reglas de tipado

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x : \sigma.M : \sigma \to \tau} \quad T\text{-}Abs \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \ N : \tau} \quad T\text{-}App$$

$$\overline{\Gamma \vdash \mathsf{zero} : \mathsf{Nat}} \ T\text{-}\mathsf{Zero}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ}(M) : \mathsf{Nat}} \ T\text{-}\mathit{Succ} \qquad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred}(M) : \mathsf{Nat}} \ T\text{-}\mathit{Pred}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{isZero}(M) : \mathsf{Bool}} \ T\text{-} \mathit{IsZero}$$

Semántica operacional

$$V ::= \mathsf{true} \mid \mathsf{false} \mid \lambda x : \sigma.M \mid \mathsf{zero} \mid \mathsf{succ}(V)$$

(Los valores de tipo Nat pueden escribirse como \underline{n} , lo cual abrevia $\operatorname{succ}^{n}(\operatorname{zero})$).

Reglas de evaluacion en un paso

Propiedades de la evaluación:

Teorema (Determinismo)

Si $M o N_1$ y $M o N_2$ entonces $N_1 = N_2$.

Teorema (Preservación de tipos)

 $Si \vdash M : \tau \ y \ M \rightarrow N \ entonces \vdash N : \tau.$

Teorema (Progreso)

Si \vdash M : τ entonces:

- 1. O bien M es un valor.
- 2. O bien existe N tal que $M \rightarrow N$.

Teorema (Terminación)

Si $\vdash M : \tau$, entonces no hay una cadena infinita de pasos:

$$M \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

Si
$$M_1 o M_1'$$
, entonces $M_1 M_2 o M_1' M_2$ $(\textit{E-App}_1 \circ \mu)$

Si
$$M_2 o M_2'$$
, entonces ${\color{red} V} M_2 o {\color{red} V} M_2'$ (*E-App*₂ o ν)

$$(\lambda x : \sigma.M) \stackrel{\mathbf{V}}{\sim} M\{x := \stackrel{\mathbf{V}}{\sim}\}$$
 (E-AppAbs o β)

Ejemplos:

 μ :

$$\underbrace{(\lambda x: \operatorname{Nat}.x)(\lambda y: \operatorname{Nat}.y)}_{M_1} \, \underbrace{\underset{M_2}{3}} \, \xrightarrow{\beta} \underbrace{(\lambda y: \operatorname{Nay}.y)}_{M_1\prime} \, \underbrace{\underset{M_2}{3}}$$

 ν :

$$\underbrace{(\lambda x : \operatorname{Nat.succ}(x))((\lambda y : \operatorname{Nat.}y) \; 3)}_{V} \xrightarrow{\beta} \underbrace{(\lambda x : \operatorname{Nat.succ}(x))}_{V} \underbrace{\underset{M_{2'}}{3}}$$

 β :

$$(\lambda x : \text{Nat.succ}(x)) \ 2 \to \text{succ}(x) \{x = 2\} = \text{succ}(2)$$

if true then
$$M_2$$
 else $M_3 o M_2$ (E-IfTrue)

if false then
$$M_2$$
 else $M_3 o M_3$ (*E-IfFalse*)

Si
$$M_1 \rightarrow M_1'$$
, entonces

if
$$M_1$$
 then M_2 else $M_3 \rightarrow$ if M'_1 then M_2 else M_3 (E-If)

$$\operatorname{\mathsf{pred}}(\operatorname{\mathsf{succ}}(\underline{n})) o \underline{n}$$
 (E-PredSucc)

Opcional*: $\operatorname{\mathsf{pred}}(\operatorname{\mathsf{zero}}) o \operatorname{\mathsf{zero}}$ (E-Pred $_0$)

 $\operatorname{\mathsf{isZero}}(\operatorname{\mathsf{zero}}) o \operatorname{\mathsf{true}}$ (E-IsZero $_0$)

 $\operatorname{\mathsf{isZero}}(\operatorname{\mathsf{succ}}(\underline{n})) o \operatorname{\mathsf{false}}$ (E-IsZero $_n$)

Si $M o N$, entonces $\operatorname{\mathsf{succ}}(M) o \operatorname{\mathsf{succ}}(N)$ (E-Succ)

Si $M o N$, entonces $\operatorname{\mathsf{pred}}(M) o \operatorname{\mathsf{pred}}(N)$ (E-Pred)

Si $M o N$, entonces $\operatorname{\mathsf{isZero}}(M) o \operatorname{\mathsf{isZero}}(N)$ (E-IsZero)

Forma normal ("f.n.")

Un programa M es una **f.n.** si no existe M' tal que $M \to M'$.

Podemos también expresar macros, como:

$$\mathrm{curry}_{\sigma,\tau,\delta} = \lambda f : \sigma \times \tau \to \delta.\lambda x : \sigma.\lambda y : \tau.f\langle x,y \rangle$$

IMPORTANTE:

A la hora de hacer reglas de tipado, hay que hacer una para cada expresión nueva.

Luego hay que extender el conjunto de valores.

Hay que hacer reglas de congruencia que mantengan determinismo (ir reduciendo congruentemente parte por parte)

Hay que hacer axiomas para cada valor nuevo del conjunto de valores

a.

$$u \ x \ (y \ z) \ (\lambda v : \text{Bool.} \ v \ y)$$

= (((u x) (y z)) (\lambda v : \text{Bool.} (v y)))

Árbol

b.

$$(\lambda x : \mathsf{Bool} \to \mathsf{Nat} \to \mathsf{Bool}. \ \lambda y : \mathsf{Bool} \to \mathsf{Nat}. \ \lambda z : \mathsf{Bool}. \ x \ z \ (y \ z)) \ u \ v \ w$$

$$= ((((\lambda x : \mathsf{Bool} \to \mathsf{Nat} \to \mathsf{Bool}. \ \lambda y : \mathsf{Bool} \to \mathsf{Nat}. \ \lambda z : \mathsf{Bool}. \ ((x \ z) \ (y \ z))) \ u) \ v) \ w)$$

Árbol

$$((((\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. \lambda y : \operatorname{Bool} \to \operatorname{Nat}. \lambda z : \operatorname{Bool}. ((x \ z) \ (y \ z))) \ u) \ v) \ w)$$

$$(((\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. \lambda y : \operatorname{Bool} \to \operatorname{Nat}. \lambda z : \operatorname{Bool}. ((x \ z) \ (y \ z))) \ u) \ v) \ w$$

$$((\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. \lambda y : \operatorname{Bool} \to \operatorname{Nat}. \lambda z : \operatorname{Bool}. ((x \ z) \ (y \ z))) \ u)$$

$$(\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. \lambda y : \operatorname{Bool} \to \operatorname{Nat}. \lambda z : \operatorname{Bool}. ((x \ z) \ (y \ z))) \ u$$

$$(\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. \lambda y : \operatorname{Bool} \to \operatorname{Nat}. ((x \ z) \ (y \ z)))$$

$$(\lambda x : \operatorname{Bool} \to \operatorname{Nat} \to \operatorname{Bool}. ((x \ z) \ (y \ z)))$$

$$(x \ z) \ (y \ z)$$

$$(x \ z) \ (y \ z)$$

6

a.

$$\frac{-\text{true}: \text{Bool}}{\vdash \text{true}: \text{Bool}} \frac{\text{T-True}}{\vdash \text{zero}: \text{Nat}} \frac{-\text{T-Zero}}{\vdash \text{zero}: \text{Nat}} \frac{\text{T-Succ}}{\vdash \text{succ}(\text{zero}): \text{Nat}} \frac{\text{T-Succ}}{\vdash \text{T-If}}$$

$$\begin{array}{c} \mathbf{a.} \ \sigma \rightarrow \tau \rightarrow \sigma \\ \hline \frac{x:\sigma,y:\tau \vdash x:\sigma}{x:\sigma, \psi:\tau \vdash x:\sigma} \text{T-Abs} \\ \hline \frac{x:\sigma \vdash \lambda y:\tau.x:\tau \rightarrow \sigma}{\vdash \lambda x:\sigma.\lambda \psi:\tau.x:\sigma \rightarrow \tau \rightarrow \sigma} \text{T-Abs} \end{array}$$

$$\begin{array}{l} \mathbf{b.} \ (\sigma \to \tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho \\ \\ \frac{\Gamma \vdash x : \sigma \to \tau \to \rho}{\Gamma \vdash x : \sigma \to \tau \to \rho} \xrightarrow{\text{T-Var}} \frac{\text{T-Var}}{\Gamma \vdash z : \sigma} \xrightarrow{\text{T-App}} \frac{\Gamma \vdash y : \sigma \to \tau}{\Gamma \vdash y : \sigma \to \tau} \xrightarrow{\text{T-Var}} \frac{\text{T-Var}}{\Gamma \vdash z : \sigma} \xrightarrow{\text{T-App}} \\ \frac{\Gamma \vdash x : \tau \to \rho}{\Gamma \vdash x : \tau \to \rho} \xrightarrow{\Gamma \vdash y : \sigma \to \tau} \frac{\Gamma \vdash y : \sigma \to \tau}{\Gamma \vdash y : \sigma \to \tau} \xrightarrow{\text{T-App}} \\ \frac{\Gamma \vdash y : \sigma \to \tau}{\Gamma \vdash x : \sigma \to \tau} \xrightarrow{\text{T-App}} \frac{\Gamma \vdash y : \sigma \to \tau}{\Gamma \vdash x : \sigma \to \tau} \xrightarrow{\text{T-App}} \\ \frac{x : \sigma \to \tau \to \rho, y : \sigma \to \tau, z : \sigma, z : \sigma$$

$$\begin{array}{c} \mathbf{c.} \ (\sigma \to \tau \to \rho) \to \tau \to \sigma \to \rho \\ \hline \frac{\Gamma \vdash x : \sigma \to \tau \to \rho}{\Gamma \vdash x : \sigma \to \tau \to \rho} & \frac{\Gamma \vdash v : \sigma}{\Gamma \vdash z : \sigma} & \frac{\Gamma \vdash v : \tau}{\Gamma \vdash x : \sigma} & \frac{\Gamma \vdash v : \tau}{\Gamma} & \frac{\Gamma \vdash v}{\Gamma} & \frac{\Gamma \vdash v}{\Gamma$$

$$\begin{array}{l} \textbf{d.} \left(\tau \to \rho\right) \to \left(\sigma \to \tau\right) \to \sigma \to \rho \\ \\ \frac{\frac{}{\Gamma \vdash x : \tau \to \rho} \text{T-Var} \quad \frac{}{\frac{}{\Gamma \vdash y : \sigma \to \tau} \text{T-Var} \quad \frac{}{\Gamma z : \sigma} \text{T-App}}{}{\frac{}{\Gamma \vdash y : \sigma \to \tau} \text{T-App}} \\ \frac{\frac{}{\Gamma \vdash x : \tau \to \rho} \text{T-App} \quad }{\frac{}{\Gamma \vdash x : \tau \to \rho} \text{T-App} \quad }{} \\ \frac{\frac{}{x : (\tau \to \rho), y : (\sigma \to \tau), z : \sigma} \vdash x \ (y \ z) : \rho}{x : (\tau \to \rho), y : (\sigma \to \tau) \vdash \lambda z : \sigma . x \ (y \ z) : \sigma \to \rho} \\ \frac{}{x : \tau \to \rho \vdash \lambda y : \sigma \to \tau . \lambda z : \sigma . x \ (y \ z) : (\sigma \to \tau) \to \sigma \to \rho} \\ }{} \\ \frac{}{\vdash \lambda x : \tau \to \rho . \lambda y : \sigma \to \tau . \lambda z : \sigma . x \ (y \ z) : (\sigma \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho} \\ } \\ \\ \hline \end{array} \text{T-Abs}$$

a.

$$\frac{\frac{x:\sigma \vdash x:\sigma = \operatorname{Nat}}{x:\sigma \vdash \operatorname{succ}(x):\operatorname{Nat}} \operatorname{T-Succ}}{x:\sigma \vdash \operatorname{succ}(x):\operatorname{Nat}} \operatorname{T-IsZero}$$

$$T-\operatorname{IsZero}$$

$$\sigma = \operatorname{Nat}, \tau = \operatorname{Bool}$$

b.

$$\frac{x : \sigma \vdash x : \sigma}{x : \sigma \vdash x : \sigma} \frac{\text{T-Var}}{\text{T-Abs}} \qquad \frac{y : \text{Bool} \vdash \text{zero} : \tau = \text{Nat}}{\vdash (\lambda y : \text{Bool.zero}) : \sigma = \text{Bool} \rightarrow \tau} \frac{\text{T-Abs}}{\vdash (\lambda y : \text{Bool.zero}) : \sigma} \\
\vdash (\lambda x : \sigma \cdot x)(\lambda y : \text{Bool.zero}) : \sigma$$

$$\sigma = \operatorname{Bool} \to \operatorname{Nat}$$

d.

$$\frac{\overline{x:\sigma\vdash x:\rho\to\tau=\sigma}}{x:\sigma\vdash x:\rho\to\tau=\sigma} \text{T-Var} \qquad \overline{x:\sigma\vdash y:\rho} \\ x:\sigma\vdash x\; y:\tau$$

Queda trabado ahí, $y:\rho$ no está en el contexto.

e.

$$\frac{x:\sigma,y:\tau\vdash x:\tau\to\tau=\sigma}{x:\sigma,y:\tau\vdash x:\tau\to\tau=\sigma} \frac{\text{T-Var}}{x:\sigma,y:\tau\vdash y:\tau} \frac{\text{T-Var}}{\text{T-App}}$$

$$\sigma = \tau \to \tau$$

$$\frac{\mathbf{f.}}{\frac{x:\sigma \vdash x: \mathrm{Bool} \to \tau}{x:\sigma \vdash x \text{ true}: \mathrm{Bool}}} \frac{\text{T-True}}{x:\sigma \vdash \mathrm{true}: \mathrm{Bool}} \frac{\text{T-True}}{\text{T-App}}$$

$$\sigma = \mathrm{Bool} \to \tau$$

g.

$$\cfrac{\overline{x:\sigma \vdash x: \operatorname{Bool} \to \sigma}}{x:\sigma \vdash x: \operatorname{rue}: \sigma} \xrightarrow{\text{T-True}} \operatorname{T-App}$$

Pero $\sigma \neq \text{Bool} \rightarrow \sigma$, no tipa.

h.

$$\frac{\overline{x:\sigma\vdash x:\rho\to\tau} \qquad \overline{x:\sigma\vdash x:\rho}}{x:\sigma\vdash x:\tau} \text{ T-App}$$

Pero $\tau \neq \rho \rightarrow \tau$, no tipa.

b.

```
 \begin{aligned} &(y\ (\lambda v:\sigma.\ x\ v))\{x\coloneqq(\lambda y:\tau.\ v\ y)\}\\ &\underset{\alpha}{=}\ (y\ (\lambda w:\sigma.\ x\ w))\{x\coloneqq(\lambda z:\tau.\ v\ z)\}\\ &\overset{\text{def}}{=}\ (y\ (\lambda w:\sigma.\ (\lambda z:\tau.\ v\ z)\ w)) \end{aligned}
```

16

I.

$$(\lambda x : \text{Bool.} x) \text{ true} \xrightarrow{\beta} x\{x \coloneqq \text{true}\} = \text{true}$$

Es un programa, forma normal, valor

II.

 $\lambda x : \text{Nat.pred}(\text{succ}(x))$

Es un programa, forma normal, valor

III.

 $\lambda x : \text{Nat.pred}(\text{succ}(y))$

No es un programa

IV.

$$(\lambda x : \mathsf{Bool.}\ \mathsf{pred}(\mathsf{isZero}((x)))\ \mathsf{true} \xrightarrow[\beta]{} \mathsf{pred}(\mathsf{isZero}((x))) \{x \coloneqq \mathsf{true}\} = \mathsf{pred}(\mathsf{isZero}((\mathsf{true})))$$

No es un programa

V.

$$(\lambda f: \text{Nat} \to \text{Bool.} f \text{ zero}) \ (\lambda x: \text{Nat. isZero}(x))$$

Es un programa, no hay variables libres, el 2do lambda suelta algo de tipo Nat, y la 1era recibe algo de tipo Nat, por lo que tipa

Forma normal, valor

VI.

$$(\lambda f: \mathrm{Nat} \to \mathrm{Bool}.x) \ (\lambda x: \mathrm{Nat.\ isZero}(x))$$

No es un programa

VII.

```
(\lambda f: \text{Nat} \to \text{Bool.} f \text{ pred(zero)}) (\lambda x: \text{Nat. isZero}(x))
```

Es un programa, mismo argumento que en el V, forma normal, error

VIII.

```
fix \lambda y: Nat. succ(y)
```

Es un programa, forma normal, pero nunca termina... ¿runtime error?

$$\begin{split} &\frac{\Gamma \vdash M : \sigma \qquad \Gamma \vdash N : \tau}{\Gamma \vdash \langle M, N \rangle : \sigma \times \tau} \text{ T-Pares} \\ &\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \pi_1(M) : \sigma} \text{ T-π_1} \\ &\frac{\Gamma \vdash M : \sigma \times \tau}{\Gamma \vdash \pi_2(M) : \tau} \text{ T-π_2} \end{split}$$

b.

$$\begin{split} & \textbf{I.} \ \sigma \to \tau \to (\sigma \times \tau) \\ & \frac{}{\Gamma \vdash x : \sigma} \frac{\text{T-Var}}{\Gamma \vdash y : \tau} \frac{\text{T-Var}}{\Gamma \vdash y : \tau} \frac{\text{T-Pares}}{\text{T-Pares}} \\ & \frac{}{\Gamma = \{x : \sigma, y : \tau\} \vdash \langle x, y \rangle : (\sigma \times \tau)} \frac{\text{T-Abs}}{\text{T-Abs}} \\ & \frac{}{x : \sigma \vdash \lambda y : \tau . \langle x, y \rangle : \tau \to (\sigma \times \tau)} \frac{\text{T-Abs}}{\text{T-Abs}} \end{split}$$

II.
$$(\sigma \times \tau) \to \sigma \mathbf{y} (\sigma \times \tau) \to \tau$$

Caso 1

$$\frac{\frac{x:(\sigma\times\tau)\vdash x:(\sigma\times\tau)}{x:(\sigma\times\tau)\vdash\pi_1(x):\sigma} \frac{\text{T-Var}}{\text{T-}\pi_1}}{\vdash \lambda x:(\sigma\times\tau).\pi_1(x):(\sigma\times\tau)\to\sigma} \text{T-Abs}$$

Caso 2

$$\frac{\frac{y:(\sigma\times\tau)\vdash y:(\sigma\times\tau)}{y:(\sigma\times\tau)\vdash\pi_2(y):\tau} \frac{\text{T-Var}}{\text{T-}\pi_2}}{\varphi:(\sigma\times\tau)\vdash\pi_2(y):\tau} \text{T-Abs}$$

III.
$$(\sigma \times \tau) \rightarrow (\tau \times \sigma)$$

$$\frac{1}{x:(\sigma\times\tau)\vdash x:(\sigma\times\tau)} \frac{\text{T-Var}}{\text{T-}\pi_{2}} \frac{\frac{x:(\sigma\times\tau)\vdash x:(\sigma\times\tau)}{\text{T-}\pi_{1}}}{\frac{x:(\sigma\times\tau)\vdash\pi_{2}(x):\tau}{\text{T-}\pi_{1}}} \frac{\text{T-Var}}{x:(\sigma\times\tau)\vdash\pi_{1}(x):\sigma} \frac{\text{T-Pares}}{\text{T-Pares}} \frac{x:(\sigma\times\tau)\vdash\langle\pi_{2}(x),\pi_{1}(x)\rangle:(\tau\times\sigma)}{\vdash\lambda x:(\sigma\times\tau).\langle\pi_{2}(x),\pi_{1}(x)\rangle:(\sigma\times\tau)\to(\tau\times\sigma)} \text{T-Abs}$$

IV.
$$((\sigma \times \tau) \times \rho) \to (\sigma \times (\tau \times \rho)) \text{ y } (\sigma \times (\tau \times \rho)) \to ((\sigma \times \tau) \times \rho)$$

Caso 1

$$\frac{\frac{\Gamma \vdash x : (\sigma \times \tau) \times \rho}{\Gamma \vdash x : (\sigma \times \tau) \times \rho} \frac{\text{T-Var}}{\text{T-}\pi_{1}}}{\frac{\Gamma \vdash \pi_{1}(x) : (\sigma \times \tau)}{\Gamma \vdash \pi_{1}(x) : \sigma}} \frac{\frac{\Gamma \vdash x : (\sigma \times \tau) \times \rho}{\Gamma \vdash \pi_{1}(x) : (\sigma \times \tau)} \frac{\text{T-Var}}{\text{T-}\pi_{2}}}{\frac{\Gamma \vdash \pi_{1}(x) : (\sigma \times \tau)}{\Gamma \vdash \pi_{2}(x) : \sigma}} \frac{\frac{\Gamma \vdash x : (\sigma \times \tau) \times \rho}{\Gamma \vdash \pi_{2}(x) : \rho}}{\frac{\Gamma \vdash \pi_{2}(\pi_{1}(x)) : \tau}{\Gamma \vdash \pi_{2}(\pi_{1}(x)), \pi_{2}(x)}} \frac{\frac{\Gamma \vdash x : (\sigma \times \tau) \times \rho}{\Gamma \vdash \pi_{2}(x) : \rho}}{\frac{\Gamma \vdash \pi_{2}(x) : \rho}{\Gamma \vdash \pi_{2}(x) : \rho}} \frac{\text{T-Var}}{\Gamma \vdash \pi_{2}(x) : \rho}}{\frac{\Gamma \vdash \pi_{2}(x) : \rho}{\Gamma \vdash \pi_{2}(x) : \rho}} \frac{\text{T-Pares}}{\Gamma \vdash \pi_{2}(x) : \rho}}{\frac{\Gamma \vdash \pi_{2}(\pi_{1}(x)), \pi_{2}(x)}{\Gamma \vdash \pi_{2}(\pi_{1}(x)), \pi_{2}(x)} \cdot (\sigma \times \tau) \times \rho}}{\frac{\Gamma \vdash \pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{2}(\pi_{2}(\pi_{1}(x)), \pi_{2}(\pi_{2}(\pi_{2}(\pi_{2}(\pi_{1}(x)), \pi_{2}(\pi$$

Caso 2

$$\frac{\frac{\Gamma \vdash x : (\sigma \times (\tau \times \rho))}{\Gamma \vdash x : (\sigma \times (\tau \times \rho))} \frac{\text{T-Var}}{\text{T-}\pi_1} \qquad \frac{\frac{\Gamma \vdash x : \sigma \times (\tau \times \rho)}{\Gamma \vdash \pi_2} \frac{\text{T-Var}}{\text{T-}\pi_2}}{\frac{\Gamma \vdash x : (\sigma \times (\tau \times \rho))}{\Gamma \vdash \pi_1(\pi_2(x))) : \tau} \frac{\text{T-}\pi_1}{\text{T-Pares}} \qquad \frac{\frac{\Gamma \vdash x : (\sigma \times (\tau \times \rho))}{\Gamma \vdash \pi_2(x) : (\tau \times \rho)} \frac{\text{T-Var}}{\text{T-}\pi_1}}{\frac{\Gamma \vdash \pi_2(x) : (\tau \times \rho)}{\Gamma \vdash \pi_2(x) : (\tau \times \rho)} \frac{\text{T-}\pi_2}{\text{T-}\pi_2}} \frac{\frac{\Gamma \vdash x : (\sigma \times (\tau \times \rho))}{\Gamma \vdash \pi_2(x) : (\tau \times \rho)} \frac{\text{T-}\pi_1}{\text{T-}\pi_2}}{\frac{\Gamma \vdash \pi_2(x) : (\tau \times \rho)}{\Gamma \vdash \pi_2(\pi_2(x)) : \rho}} \frac{\text{T-Pares}}{\text{T-Pares}}}{\frac{\Gamma \vdash \pi_2(x) : (\tau \times \rho)}{\Gamma \vdash \pi_2(\pi_2(x)) : \rho}} \frac{\text{T-Pares}}{\Gamma \vdash \pi_2(\pi_2(x)) : \rho} \frac{\text{T-Pares}}{\Gamma \vdash \pi_2(\pi_2(\pi)) : \rho} \frac{\text$$

V.
$$((\sigma \times \tau) \to \rho) \to (\sigma \to \tau \to \rho)$$
 y $(\sigma \to \tau \to \rho) \to ((\sigma \times \tau) \to \rho)$

Caso 1

$$\frac{\frac{\Gamma \vdash f : (\sigma \times \tau) \to \rho}{\Gamma \vdash f : (\sigma \times \tau) \to \rho} \text{T-Var} \quad \frac{\frac{\Gamma \vdash x : \sigma}{\Gamma \vdash x : \sigma} \text{T-Var} \quad \frac{\text{T-Var}}{\Gamma \vdash y : \tau} \text{T-Pares}}{\frac{\Gamma \vdash f : (\sigma \times \tau) \to \rho, x : \sigma, y : \tau \vdash f \langle x, y \rangle : \rho}{f : (\sigma \times \tau), x : \sigma \to \rho \vdash \lambda y : \tau. f \langle x, y \rangle : \tau \to \rho} \text{T-Abs}}{\frac{f : (\sigma \times \tau) \to \rho \vdash \lambda x : \sigma. \lambda y : \tau. f \langle x, y \rangle : \tau \to \rho}{\Gamma \vdash \lambda f : (\sigma \times \tau) \to \rho \vdash \lambda x : \sigma. \lambda y : \tau. f \langle x, y \rangle : \sigma \to \tau \to \rho}}{\text{T-Abs}}} \text{T-Abs}}$$

Caso 2

$$\frac{\Gamma \vdash f : \sigma \to \tau \to \rho}{\Gamma \vdash f : \sigma \to \tau \to \rho} \text{T-Var} \qquad \frac{\frac{\Gamma \vdash p : (\sigma \times \tau)}{\Gamma \vdash \pi_1(p) : \sigma}}{\frac{\Gamma \vdash f : \pi_1(p) : \tau \to \rho}{\Gamma \vdash \pi_1(p) : \sigma}} \text{T-App} \qquad \frac{\frac{\Gamma \vdash p : (\sigma \times \tau)}{\Gamma \vdash \pi_2(p) : \tau}}{\frac{\Gamma \vdash \pi_2(p) : \tau}{\Gamma \vdash \pi_2(p) : \tau}} \text{T-App} \qquad \frac{\Gamma \vdash f : (\sigma \to \tau \to \rho), p : (\sigma \times \tau) \vdash f : \pi_1(p) : \pi_2(p) : \rho}{\frac{f : (\sigma \to \tau \to \rho) \vdash \lambda p : (\sigma \times \tau).f : \pi_1(p) : \pi_2(p) : ((\sigma \times \tau) \to \rho)}{\lambda f : (\sigma \to \tau \to \rho).\lambda p : (\sigma \times \tau).f : \pi_1(p) : \pi_2(p) : (\sigma \to \tau \to \rho) \to ((\sigma \times \tau) \to \rho)}} \text{T-Abs}$$

c.

$$V = \dots \mid \langle V, V \rangle$$

d.

Si $M \to M'$ entonces $\pi_1(M) \to \pi_1(M')$

Si $M \to M'$ entonces $\pi_2(M) \to \pi_2(M')$

$$\pi_1(\langle V, W \rangle) \to V$$

$$\pi_2(\langle V, W \rangle) \to W$$

Si
$$M \to M'$$
 entonces $\langle M, N \rangle \to \langle M', N \rangle$

Si
$$N \to N'$$
 entonces $\langle V, N \rangle \to \langle V, N' \rangle$

$$\frac{}{\Gamma \vdash []_{\tau} : [\tau]} \text{T-Nil}$$

$$\frac{\Gamma \vdash M : \tau \quad \Gamma \vdash N : [\tau]}{\Gamma \vdash M :: N : [\tau]} \operatorname{T-Append}$$

$$\frac{\Gamma \vdash M : [\tau] \quad \Gamma \vdash N : \sigma \quad \Gamma, h : \tau, t : [\tau] \vdash O : \sigma}{\Gamma \vdash \mathsf{case} \ M \ \mathsf{of} \ \{[] \rightsquigarrow N \mid h :: t \rightsquigarrow O\}} \mathsf{T\text{-}CaseOf}$$

$$\frac{\Gamma \vdash M : [\tau] \quad \Gamma \vdash N : \sigma \quad \Gamma, h : \tau, r : \sigma \vdash O : \sigma}{\Gamma \vdash \text{foldr } M \text{ base} \rightsquigarrow N, \text{rec}(h, r) \rightsquigarrow O : \sigma} \text{T-Foldr}$$

c.

$$\frac{\Gamma \vdash x : \operatorname{Bool}}{\Gamma \vdash x : \operatorname{Bool}} \xrightarrow{\Gamma \vdash x : \operatorname{Bool}} \xrightarrow{\Gamma \vdash x : \operatorname{Bool}} \xrightarrow{\Gamma \vdash y : [\operatorname{Bool}]} \xrightarrow{\Gamma \vdash y : [\operatorname{Bool}]} \xrightarrow{\Gamma \vdash x : : [\operatorname{Boo$$

d.

$$V \coloneqq \dots \mid [] \mid V :: V$$

e.

Listas

Si
$$M \to M'$$
 entonces $M :: N \to M' :: N$

Si
$$N \to N'$$
 entonces $V :: N \to V :: N'$

CaseOf

Si
$$M \to M'$$
 entonces case M of $\{[] \rightsquigarrow N | h :: t \rightsquigarrow O\} \to \text{case } M'$ of $\{[] \rightsquigarrow N | h :: t \rightsquigarrow O\}$

case
$$[]_{\sigma}$$
 of $\{[] \rightsquigarrow N | h :: t \rightsquigarrow O\} \rightarrow N$

case
$$V :: W$$
 of $\{[] \rightsquigarrow N | h :: t \rightsquigarrow O\} \rightarrow O\{h \coloneqq V, t \coloneqq W\}$

Foldr

Si
$$M \to M'$$
 entonces (foldr M base $\rightsquigarrow N, \operatorname{rec}(h, r) \rightsquigarrow O) \longrightarrow (\operatorname{foldr} M'$ base $\rightsquigarrow N, \operatorname{rec}(h, r) \rightsquigarrow O)$

$$(\text{foldr } []_{\tau} \text{ base } \rightsquigarrow N, \operatorname{rec}(h, r) \rightsquigarrow O) \longrightarrow N$$

Si foldr V base
$$\rightsquigarrow N, \operatorname{rec}(h, r) \rightsquigarrow O \rightarrow R$$
 y $O\{h := V, r := R\} \rightarrow R'$ luego

foldr
$$V::W$$
 base $\rightsquigarrow N, \operatorname{rec}(h,r) \rightsquigarrow O \rightarrow R'$

Extendemos el punto anterior con $M, N, O \coloneqq \dots \mid \text{map}(M, N)$

Reglas de tipado:

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad N : [\tau]}{\Gamma \vdash \text{map}(M, N) : [\sigma]}$$

Reglas de congruencia:

Si
$$M \to M'$$
 entonces map $(M, N) \to \text{map}(M', N)$

Si
$$N \to N'$$
 entonces $map(V, N) \to map(V, N')$

Axiomas:

Si
$$N = []_{\sigma}$$
 entonces $map(M, N) \rightarrow []_{\sigma}$

$$\frac{N = V :: W \quad M \ V = V' \quad \operatorname{map}(M, W) = W'}{\operatorname{map}(M, V) \to V' :: W'}$$

El conjunto de valores no se extiende

27

Se desea extender el Cálculo Lambda tipado con colas bidireccionales (también conocidas como *deque*).

Se extenderán los tipos y términos de la siguiente manera:

$$\tau ::= \cdots \mid \mathsf{Cola}_{\tau}$$

$$M ::= \cdots \mid \langle \rangle_{\tau} \mid M \bullet M \mid \mathsf{pr\acute{o}ximo}(M) \mid \mathsf{desencolar}(M)$$

$$\mid \mathsf{case} \ M \ \mathsf{of} \ \langle \rangle \leadsto M; \ c \bullet x \leadsto M$$

donde $\langle \rangle_{\tau}$ es la cola vacía en la que se pueden encolar elementos de tipo τ ; $M_1 \bullet M_2$ representa el agregado del elemento M_2 al **final** de la cola M_1 ; los observadores próximo (M_1) y desencolar (M_1) devuelven, respectivamente, el primer elemento de la cola (el primero que se encoló), y la cola sin el primer elemento (estos dos últimos solo tienen sentido si la cola no es vacía); y el observador case M_1 of $\langle \rangle \leadsto M_2$; $c \bullet x \leadsto M_3$ permite operar con la cola en sentido contrario, accediendo al último elemento encolado (cuyo valor se ligará a la variable x en x0 y al resto de la cola (que se ligará a la variable x0 en el mismo subtérmino).

$$\tau ::= \dots \mid \mathsf{Cola}_{\tau}$$

$$M ::= \dots \mid \langle \rangle_{\tau} \mid M \bullet M \mid \mathsf{pr\acute{o}ximo}(M) \mid \mathsf{desencolar}(M)$$

$$\mid \mathsf{case} \ M \ \mathsf{of} \ \langle \rangle \leadsto M; c \bullet x \leadsto M$$

- 1. Introducir las reglas de tipado para la extensión propuesta.
- 2. Definir el conjunto de valores y las nuevas reglas de reducción. Pueden usar los conectivos booleanos de la guía. No es necesario escribir las reglas de congruencia, basta con indicar cuántas son. Pista: puede ser necesario mirar más de un nivel de un término para saber a qué reduce.
- 3. Mostrar paso por paso cómo reduce la expresión: case $\langle \rangle_{\text{Nat}} \bullet \underline{1} \bullet 0$ of $\langle \rangle \leadsto \text{próximo}(\langle \rangle_{\text{Bool}})$; $c \bullet x \leadsto \text{isZero}(x)$
- 4. Definir como macro la función último_τ, que dada una cola devuelve el último elemento que se encoló en ella. Si la cola es vacía, puede colgarse o llegar a una forma normal bien tipada que no sea un valor. Dar un juicio de tipado válido para esta función (no es necesario demostrarlo).

Reglas de tipado
T-Vacial T-Vacial
T + M+: Colar T+Mz:2 T-Encolar T + M+ M2: Colar
T + M: Colaz T-Próximo T + próximo(M): 2
Mr H: Colaz T-Desencolar Mr + desencolar (M): Colaz
[+ M1: Colar [+ Mz: o [, c: Colar, x: 2 + M3: o T-case] T + case M1 of <> m M2; c • x m M3: o

Reglas de reducción
V == 1 <>~ V•V
Reglas de cómputo próximo($\langle \rangle_2 \cdot \vee \rangle \rightarrow \vee E$ -Próximo1 próximo($\langle \vee_1 \cdot \vee_2 \cdot \vee_3 \rangle \rightarrow \text{próximo}(\vee_1 \cdot \vee_2) E$ -PróximoZ desencolar($\langle \vee_2 \cdot \vee \rangle \rightarrow \langle \vee_2 E$ -Desencolar1 desencolar($\langle \vee_1 \cdot \vee_2 \cdot \vee_3 \rangle \rightarrow \text{desencolar}(\vee_1 \cdot \vee_2) \cdot \vee_3 E$ -Desencolar2 case $\langle \vee_2 \circ f \langle \rangle \rightsquigarrow M_1; C \circ \times \rightsquigarrow M_2 \rightarrow M_1 E$ -Case1 case $\vee_1 \cdot \vee_2 \circ f \langle \rangle \rightsquigarrow M_1; C \circ \times \rightsquigarrow M_2 \rightarrow M_2 \{C := \vee_1, K := \vee_2 \} E$ -Case Z
Reglas de congruencia
$M \rightarrow M'$ E-Encolar-Izq $N \rightarrow N'$ E-Encolar-Der $V \cdot N \rightarrow V \cdot N'$
Proximo (M) → próximo (M') E-Próximo 3
$M \rightarrow M'$ E-Desencolar(3) desencolar(M')
$M \rightarrow M'$ E-case case M of $\langle \rangle \rightsquigarrow N_1 ; c \cdot \times \rightarrow N_2 \rightarrow case M' of \langle \rangle \rightsquigarrow N_1 ; c \cdot \times \rightarrow N_2$

	M ₁ → próximo (⟨>Bool) ; <-× → isi	M ₂ Zero(×)
E-casez → isZero(x)) { C := <>Nat · ! , X := 0 } = is	Zero(o)
iszero, -> true		
C•	u> u	
	en forma normal pero no es	
+ últimoz : Colaz >	2	