

Engineering Physics

(PHY1701)

Dr. B. Ajitha

Assistant Professor Division of Physics VIT University Chennai, India ajitha.b@vit.ac.in

Contents

- Laser Characteristics,
- Spatial and Temporal Coherence,
- Einstein Coefficient & its significance,
- Population inversion,
- Two, three & four level systems,
- Pumping schemes,
- Threshold gain coefficient,
- Components of laser,
- Nd-YAG, He-Ne, CO₂ and their engineering applications
- William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.

Threshold Condition

- > Light bouncing back and forth in the optical resonator
- Undergoes Amplification as well as suffers losses

Losses occur mainly due to

- (i)Transmission at the output mirror
- (ii)Scattering & Diffraction of light within the active medium.
- (iii) Absorption & Spontaneous Emission

For the proper build up of oscillations

□ Essential is that the amplification between two consecutive reflections of light from rear end mirror can balance losses.

- \triangleright Consider the laser medium fills the space between the mirrors M_1 & M_2 , of reflectivity R_1 & R_2 respectively and mirrors separated by a distance L.
- In any laser oscillator initially a few photons would be emitted spontaneously and these photons start the stimulated emission process.
- \triangleright Let I_0 the intensity of the light beam at M_1 , then after travelling L distance through it, the final intensity will be I_1

$$I_1 = I_0 \exp(-\alpha L)$$

where α is the absorbsion coefficient

- Afterwards, laser oscillator incorporates pumping energy. Hence population inversion will be maintained. Hence, here amplification dominates.
 - i. e $N_2 > N_1$ throughout the active medium
- \triangleright In this condition, If I₀ is the initial intensity (minimum needed to start laser amplification) of light entering through the active medium (in the direction of length), then after travelling L distance through it, the final intensity will be I₁.

$$I_1 = I_0 \exp(kL)$$

where k — the gain coefficient

 \triangleright Let if γ is the coefficient of practical losses . This reduces the effective gain coefficient to $(k - \gamma)$. Then

$$I_1 = I_0 \exp[(k - \gamma)L]$$

Growth of Power Through Cavity

Roundtrip Gain (G) =
$$\frac{I_0 \exp[2(K-\gamma)L] R_1 R_2}{I_0}$$

after reflecting at mirror M_2 , $I_1 = I_0 R_2 \exp[(k - \gamma)L]$ just before reaching M_1 again, $I_1 = I_0 R_2 \exp[2(k - \gamma)L]$ after refelcting from M_1 , $I_1 = I_0 R_1 R_2 \exp[2(k - \gamma)L]$

$$G = \frac{\text{Final irradiance}}{\text{Initial irradiance}} = R_1 R_2 \exp[2(k-\gamma)L]$$

- \blacktriangleright We can determine the k_{th} from the condition that G must be at least unity

$$\begin{aligned} k_{th} - & \text{threshold gain coefficient} \\ I_{\theta} &= I_{\theta} R_1 R_2 exp[2(k_{th} - \gamma)L] \\ 1 &= R_1 R_2 exp[2(k_{th} - \gamma)L] \\ \ln 1 &= \ln R_1 R_2 exp[2(k_{th} - \gamma)L] \\ 2k_{th} L &= 2\gamma L + \ln\left(\frac{1}{R_1 R_2}\right) \end{aligned}$$

Threshold gain coefficient,

$$k_{th} = \gamma + \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right)$$

 γ – practical or volume losses

$$\frac{1}{2L}\ln\left(\frac{1}{R_1R_2}\right)$$
 - useful laser output

- Product R_1 R_2 represents the losses at the mirrors, whereas α_s includes all the distributed losses such as scattering, diffraction and absorption occurring in the medium.
- Losses are balanced by gain, when G≥1 or I(2L)≥I₀. It leads to the condition that

$$R_1 R_2 e^{(K-\gamma)2L} \ge 1$$
 or $e^{(K-\gamma)2L} \ge \frac{1}{R_1 R_2}$

Taking logarithms on both sides, we get

$$\begin{split} 2L(\mathsf{K}-\gamma) &\geq \ln(R_1R_2) \\ (\mathsf{K}-\gamma) &\geq \frac{1}{2L}\ln(R_1\ R_2\) \\ \mathsf{K} &\geq \gamma + \frac{1}{2L}\ln\left(\frac{1}{R_1R_2}\right) \Longrightarrow \text{Condition for Lasing} \end{split}$$

- * Shows that the initial gain must exceed the sum of losses in the cavity. The condition is used to determine the threshold value of pumping energy necessary for lasing action.
 - \triangleright As the pump power is slowly increased, a value of ' K_{th} ' called threshold **value** will be reached and the laser starts oscillating.

Threshold value 'K_{th}' is given by
$$K_{th} = \gamma + \frac{1}{2L} \ln(\frac{1}{R_1 R_2})$$

- For the laser to oscillate, K > K_{th} Threshold condition for lasing
 - > This states the criterion when the net gain would be able to counteract the effect of losses in the cavity