Reti di Calcolatori I

Prof. Roberto Canonico
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Corso di Laurea in Ingegneria Informatica

A.A. 2020-2021

Reti locali Ethernet

I lucidi presentati al corso sono uno strumento didattico che NON sostituisce i testi indicati nel programma del corso

Nota di copyright per le slide COMICS

Nota di Copyright

Questo insieme di trasparenze è stato ideato e realizzato dai ricercatori del Gruppo di Ricerca COMICS del Dipartimento di Informatica e Sistemistica dell'Università di Napoli Federico II. Esse possono essere impiegate liberamente per fini didattici esclusivamente senza fini di lucro, a meno di un esplicito consenso scritto degli Autori. Nell'uso dovranno essere esplicitamente riportati la fonte e gli Autori. Gli Autori non sono responsabili per eventuali imprecisioni contenute in tali trasparenze né per eventuali problemi, danni o malfunzionamenti derivanti dal loro uso o applicazione.

Autori:

Simon Pietro Romano, Antonio Pescapè, Stefano Avallone, Marcello Esposito, Roberto Canonico, Giorgio Ventre

Riepilogo dei compiti del livello Data link:

 servizi, rilevamento/correzione degli errori, accesso al canale

Agenda: tecnologie per le LAN

- Indirizzamento
- Ethernet
- Hub, bridge, switch

Indirizzi IP ed indirizzi LAN

Indirizzi IP a 32-bit:

- Indirizzi di livello rete
- Usati per permettere la corretta consegna del pacchetto ad un destinatario collegato alla rete

Indirizzi LAN (o MAC o fisici):

- usati per permettere la trasmissione di una frame da una scheda di rete ad un'altra scheda con cui sussiste un collegamento diretto (stessa rete fisica)
- indirizzi MAC di 48 bit (per la maggior parte delle LAN)
 cablati nelle ROM delle schede di rete

Indirizzi LAN

Ogni scheda di rete su una LAN ha un indirizzo LAN univoco

Indirizzi LAN

- Distribuzione degli indirizzi MAC gestita da IEEE
- I produttori di schede di rete detengono una porzione degli indirizzi MAC (per garantire l'univocità)
- Analogie:
 - (a) MAC address: come il Codice Fiscale
 - (b) IP address: come l'Indirizzo di Posta
- MAC "flat" address → portabilità
 - è possibile spostare una scheda di rete da una LAN ad un'altra
- Classi gerarchiche di indirizzi IP:
 - NON SONO portabili
 - dipendono dalla rete alla quale si è collegati

Gli indirizzi MAC (1)

- Si compongono di due parti grandi 3 Byte ciascuna:
 - I tre byte più significativi indicano il lotto di indirizzi acquistato dal costruttore della scheda, detto anche vendor code o OUI (Organization Unique Identifier).
 - I tre meno significativi sono una numerazione progressiva decisa dal costruttore

OUI assegnato dall'IEEE

Assegnato dal costruttore

Gli indirizzi MAC (2)

Alcuni OUI:

Organization	Address Block
Cisco	00000Ch
DEC	08002B (et. al.)
IBM	08005A (et. al)
Sun	080020h
Proteon	000093h
Bay-Networks	0000A2h

Tipi di Indirizzi MAC

Sono di tre tipi:

- Single: di una singola stazione
- Multicast: di un gruppo di stazioni
- Broadcast: di tutte le stazioni (ff-ff-ff-ff-ff)

Ogni scheda di rete quando riceve un pacchetto lo passa ai livelli superiori nei seguenti casi:

- Broadcast: sempre
- Single: se il DSAP è uguale a quello hardware della scheda (scritto in una ROM) o a quello caricato da software in un apposito buffer
- Multicast: se ne è stata abilitata la ricezione via software

Ethernet

Tecnologia "dominante" per le LAN:

- Economica: 20€ per 100Mbs!
- La prima tecnologia LAN ampiamente diffusa
- Più semplice ed economica rispetto alle LAN "a token" e ad ATM
- Aggiornata nel corso degli anni: 10, 100, 1000 Mbps

Uno schizzo del progetto di Metcalfe per la rete Ethernet

 L'interfaccia di rete del mittente incapsula i datagrammi IP (o altri pacchetti di livello rete) in frame Ethernet

Preambolo (8 byte):

- 7 byte con una sequenza 10101010 seguiti da un byte (SFD) con la sequenza 10101011
- utilizzato per sincronizzare i clock del mittente e del destinatario

UNIVERSITÀ DEGLI STUDI DI NAVOLI FEDERICO II

Struttura della Frame Ethernet 2/2

- Indirizzi (6 byte): La frame è ricevuta da tutti gli adattatori di rete presenti sulla LAN, e scartata se l'indirizzo destinazione non coincide con quello della scheda stessa – (indirizzo broadcast: ff:ff:ff:ff:ff:ff)
- Type (2 byte): indica il protocollo di livello rete sovrastante, principalmente IP, ma altri protocolli (ad esempio Novell IPX e AppleTalk) sono supportati
- CRC (4 byte): controllo effettuato alla destinazione:
 - se l'errore è rilevato, la frame viene scartata

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Trasmissione di frame Ethernet: L_{min}

- Spaziatura tra le frame (inter-frame gap) corrispondente al tempo di trasmissione di 12 Byte
- Minima dimensione di una frame Ethernet PDU_{min} = 64 Byte
 - Header (14 Byte) + SDU_{min} (46 Byte) + CRC (4 Byte)
- Dimensione minima di una frame Ethernet trasmessa:
 - Preambolo = 8 Byte
 PDU minima = 64 Byte
 Inter-frame gap = 12 Byte

Ethernet a 10 Mbps: max transmission rate

- Se la velocità di trasmissione è di 10 Mb/s = 10⁷ b/s
- Tempo di trasmissione di 1 pacchetto di dimensione minima:
 - $84 * 8 / 10^7 = 67,2 \mu s$
- Il reciproco è il massimo numero di pacchetti di dimensione minima che si possono trasmettere in 1 secondo
 - $1/(67.2 * 10^{-6}) \cong 14880 \text{ pacchetti/s}$

Trasmissione di frame Ethernet: L_{max}

- Massima dimensione di una frame Ethernet PDU_{max}= 1518 Byte
 - Header (14 Byte) + SDU_{max} (1500 Byte) + CRC (4 Byte)
- Dimensione massima di una frame Ethernet trasmessa:
 - Preambolo = 8 Byte
 PDU massima = 1518 Byte
 Inter-frame gap = 12 Byte
- SDU_{max}=1500 Byte è la MTU di un pacchetto IP su Ethernet

Ethernet a 10 Mbps: max transmission rate

- Alla velocità di trasmissione di 10 Mb/s = 10⁷ b/s
- Se si assume che i pacchetti non siano tutti di dimensione minima, il massimo numero di pacchetti al secondo diminuisce
 - Questo è un bene: meno overhead e meno interruzioni per le stazioni!
- Tempo di trasmissione di 1 pacchetto di dimensione massima:
 - $1538 * 8 / 10^7 = 1,23 \text{ ms} \rightarrow 812 \text{ pacchetti/s}$

Ethernet: CSMA/CD (1)

```
A: ascolta il canale,
  if idle then {
          transmit and monitor the channel:
           if detect another transmission (collision) then {
               abort and send jam signal;
               update # collisions;
               delay as required by exponential backoff
               algorithm;
               goto A
          else {done with the frame; set collisions to zero}
   else {wait until ongoing transmission is over and goto A}
```

Ethernet: CSMA/CD (2)

Jam Signal: consente alle altre stazioni di accorgersi dell'avvenuta collisione (48 bit)

Exponential Backoff:

- Obiettivo: algoritmo per adattare i successivi tentativi di ri-trasmissione al carico corrente della rete
 - in presenza di sovraccarico il tempo d'attesa casuale sarà maggiore:
 - prima collisione: scegli K tra {0,1}; il ritardo di trasmissione è pari ad un intervallo K x 512 bit (pari a 51.2 usec in una Ethernet a 10 Mbps)
 - dopo la seconda collisione: scegli K tra {0,1,2,3}
 - ... dopo n (n<10) collisioni consecutive: scegli K tra {0,1,2, ..., 2ⁿ-1}
 - dopo 10 o più collisioni, scegli K tra {0,1,2,3,4,...,1023}
- Segnale: in banda base, codifica Manchester

Codifica Manchester

- Usata in 10BaseT, 10Base2
- Ogni bit ha una transizione
- Permette ai clock dei nodi riceventi e trasmittenti di sincronizzarsi
 - Non è richiesto un clock centralizzato e globale tra tutti i nodi

Ethernet 10base5

Ethernet 10base5: transceiver

Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: massima lunghezza del cavo: 200 metri
- Topologia a bus su cavo coassiale sottile (thin)

- Il cavo thin è più flessibile di quello thick, e dunque è più agevole da portare in prossimità delle stazioni
- E' più agevole inserire una nuova stazione nella catena di collegamenti che formano il bus

Ethernet 10base2

Connettore a T

Terminatore (o tappo)

10BaseT e 100BaseT (1/2)

- 10/100 Mbps
- La versione a 100Mbps è nota come "fast ethernet"
- T sta per Twisted Pair (doppino intrecciato)
- Topologia "a stella", mediante un concentratore (hub) al quale gli host sono collegati con i doppini intrecciati

10BaseT e 100BaseT (2/2)

- Massima distanza tra nodo e hub pari a 100 metri
- Gli hub possono disconnettere le schede malfunzionanti:
 - "jabbering"
- Gli hub possono:
 - fornire informazioni utili al monitoraggio
 - collezionare statistiche per effettuare previsioni, agevolando il compito degli amministratori della LAN

Cavi UTP

Category 1	Voice only (Telephone)
Category 2	Data to 4 Mbps (Localtalk)
Category 3	Data to 10Mbps (Ethernet)
Category 4	Data to 20Mbps (Token ring)
Category 5	Data to 100Mbps (Fast Ethernet)
Category 5e	Data to 1000Mbps (Gigabit Ethernet)
Category 6	Data to 2500Mbps (Gigabit Ethernet)

UTP: TIA/EIA T-568A vs. T-568B

- TIA/EIA 568A: GW-G OW-BI BIW-O BrW-Br
- TIA/EIA 568B: OW-O GW-BI BIW-G BrW-Br

Per collegamento tra end-system ed hub/switch

Per collegamento tra end-system ed hub/switch

Cavo UTP cross

Per collegamento diretto tra due end-system

UTP: differenza tra cavo straight e cross

