Parte I (6 valores)

Cada uma das questões de escolha múltipla que se seguem pode ter mais do que uma resposta correcta. As respostas têm que ser sucintamente justificadas.

1. [1,5 val.] .] Na cavidade de um condutor encontra-se uma partícula carregada, sem tocar na parede interior do condutor. Considere as seguintes possíveis situações no que diz respeito à carga da partícula e carga total do condutor:

situação	carga da partícula	carga total do condutor
	(na cavidade)	
(1)	+4q	0
(2)	-6 <i>q</i>	+10q
(3)	+16q	-12 <i>q</i>

Ordene os casos por ordem decrescente da carga (carga positiva primeiro) na superfície exterior do condutor.

- A. (1); (2); (3)
- B. (2); (1); (3)
- C. (1); (3); (2)
- D. (1) e (2) iguais; (3)
- E. (1), (2) e (3) todos iguais

2. [1,5 val.] Um condensador de placas paralelas, de área A e separadas de uma pequena distância d, é preenchido com dois dieléctricos, de permitividade relativa κ_1 e κ_2 , cada um deles ocupando metade do espaço entre as armaduras, como se mostra na figura. A capacidade deste condensador é dada por:

- A. $C = \varepsilon_0 A(\kappa_1 + \kappa_2)/(2d)$
- B. $C = \varepsilon_0 A(\kappa_1 \kappa_2)/(2d)$
- C. $C = 2\varepsilon_0 A(\kappa_1 \kappa_2)/(d(\kappa_1 + \kappa_2))$
- D. $C = 2\varepsilon_0 A(\kappa_1 \kappa_2)/(d(\kappa_1 \kappa_2))$
- E. $C = \varepsilon_0 A(\kappa_1 + \kappa_2)/d$

3. [1,5 val.] Uma partícula carregada que se desloca no plano da folha, numa região onde existe um campo magnético perpendicular ao plano da folha e no sentido de fora para dentro, descreve um movimento em espiral no sentido dos ponteiros do relógio, como se ilustra na figura.

Admitindo que a partícula pode estar sujeita a outras forças para além da força magnética, uma possível explicação para o que está a acontecer é:

- A. a partícula tem carga positiva e o módulo da sua velocidade está a diminuir
- B. a partícula tem carga negativa e o módulo da sua velocidade está a diminuir
- C. a partícula tem carga positiva e o módulo da sua velocidade está a aumentar
- D. a partícula tem carga negativa e o módulo da sua velocidade está a aumentar
- E. nenhuma das explicações anteriores está correcta

- **4.** [1,5 val.] O elemento de corrente $id\vec{l}$, o ponto P e os três vectores (1, 2, e 3) mostrados na figura estão todos no plano da folha. No ponto P o campo de indução magnética, $d\vec{B}$, devido a este elemento de corrente tem:
 - A. direcção e sentido do vector "1"
 - B. direcção e sentido do vector "2"
 - C. direcção e sentido do vector "3"
 - D. direcção perpendicular à folha e aponta para fora
 - E. direcção perpendicular à folha e aponta para dentro

Parte II (14 valores)

Identifique todos os símbolos que utilizar e justifique cuidadosamente as suas respostas.

5. [3 val.] Duas cargas iguais, positivas, Q, estão fixas no eixo dos xx nos pontos x = -a e x = +a (separadas da distância 2a). Considere um plano Π a meia distância entre as cargas e perpendicular à linha que as une.

- a) Esboce um esquema com as forças eléctricas aplicadas sobre uma carga de prova q, positiva, colocada num ponto genérico P do plano Π . A partir desse esquema mostre que a resultante dessas forças é sempre paralela ao plano.
- b) Seja y a distância do ponto P (sobre o plano Π) à origem. Calcule o potencial e o campo eléctrico nesse ponto devido às cargas situadas no eixo dos xx.
- c) Determine o trabalho realizado pela força eléctrica no deslocamento da carga q sobre o plano Π desde a origem até ao ponto y=a. Considere $Q=+10~\mu\text{C}$, $q=+1~\mu\text{C}$. e a=1~cm
- **6.** [4,5 val.] Uma carga pontual, Q, é colocada no centro de uma cavidade esférica de raio R', concêntrica com uma esfera isolante, feita de dieléctrico linear, isótropo e homogéneo, de raio R e permitividade relativa ε_r .
- a) Determine os vectores: deslocamento eléctrico (\vec{D}), campo eléctrico (\vec{E}) e polarização (\vec{P}), em função da distância ao centro do sistema, r.

- b) Mostre que não existem cargas de polarização distribuídas no volume do dieléctrico.
- c) Calcule a densidade de cargas de polarização nas duas superfícies (interna e externa) do dieléctrico.
- d) Mostre que a carga total contida numa esfera de raio R' < r < R, vale $Q' = Q/\varepsilon_r$.
- 7. [3 val.] Um fio é densamente enrolado em torno de um cilindro (de raio R e comprimento l >> R) feito de um material paramagnético (de permeabilidade magnética μ), de modo a constituir uma bobina muito longa com n espiras por unidade de comprimento.
- a) Utilizando o teorema de Ampère, determine o campo de indução magnética \vec{B} no interior do cilindro, quando a bobina é percorrida por uma corrente estacionária de intensidade I. Justifique todas as aproximações que efectuar.

- b) Considere agora que a bobina é percorrida por uma corrente variável no tempo, mas em regime quase estacionário. Determine o coeficiente de auto-indução (ou indutância) desta bobina.
- **8.** [3,5 *val.*] As proposições (a), (b) e (c) listadas abaixo constituem três importantes propriedades que estão na base do electromagnetismo. Explique como pode inferir essas propriedades a partir das equações de Maxwell.
- a) O campo eléctrico não é, em geral, conservativo, mas no caso particular da electrostática é conservativo
- b) Existem cargas eléctricas isoladas, mas não existem "cargas magnéticas" (monopolos magnéticos).
- c) A carga eléctrica conserva-se.