2301 COL 202 Tutorial 5.4

Anubhav Pandey

TOTAL POINTS

2/2

QUESTION 1

- 1 Problem for Group 4 2 / 2
 - √ + 2 pts Correct
 - + 1 pts Partially Correct
 - + 0 pts Wrong

COL 202 TUTORIAL

Tutorial 5, Group 4

ANUBHAV PANDEY

2022CS51136 Group 4 Tuesday 29th August 2023

SOLUTION: Problem 4

Let U be a set of all finite ordered subsets of positive integers.

Consider sequence of prime numbers

 $p_1 = 2$,

 $p_2 = 3,$

 $p_3 = 5,$

 $p_4 = 7....$ and so on

let,

 $S = \{a_1, a_2, a_3, a_4, \dots, a_k\}$ be an ordered subset of natural numbers, such that $S \subseteq U$.

Consider $X_S = p_1^{a_1} * p_2^{a_2} * \dots p_k^{a_k}$

Claim 1 : X_S is a function , such that $X_S : S - > N$

Proof : Suppose there is another set S_1 such that $X_{S_1} = X_S$

Which means that prime factorisation of both X_S and X_{S_1} is same, which means both S and S_1 has exactly K elements, and if we compare the power of prime numbers in prime factorization of X_S and X_{S_1} then we'll get that each element of both sets are equal that to in order.

Therefore X_S is injective.

Claim 2 : X_S is surjective.

Every Natural number except 1 can be written as product of prime numbers (it's prime factors) and $X_S = 1$ when $S = \phi$.

Which means X_S transverses whole N after considering all possible $S \subseteq U$

Therefore X_S is surjective.

Since there is both injective and surjective map, therefore it's a bijection , therefore set U of all possible countable subsets of natural numbers is also countable

 \square QED

1 Problem for Group 4 2 / 2

- √ + 2 pts Correct
 - + 1 pts Partially Correct
 - + 0 pts Wrong