# Towards A Rigorous Science of Interpretable Machine Learning

[Defining and Evaluating Interpretability]

By: Finale Doshi-Velez and Been Kim

Presented by: Harrison Keane, Kurtis David, Jun Min Noh

## ML community is responding



### Why Should We Evaluate Interpretability?

Multiple/ambiguous definitions of interpretability-

"You know it when you see it"

Interpretability is not quantifiable like other performance metrics

EU 2018 mandate on algorithms

#### Outline

Purpose: to define and set rigorous evaluation of interpretability

1. What is interpretability?

2. Need for interpretability

- 3. Taxonomy for evaluation of interpretability
- 4. Approaches to answer open problems of interpretability

#### **Defining Interpretability**

ability to explain or to present in understandable terms to a human

#### Which can confirm:

- Fairness, unbiasedness
- Privacy
- Reliability, robustness
- Causality
- Safety
- Trusted/Usable

#### Need For Interpretability

Need for interpretability rises from fundamental incompleteness

Incompleteness ≠ uncertainty

Incompleteness from

- Scientific understanding
- Ethics
- Mismatched objectives
- Safety

## Taxonomy of Evaluating Interpretability

1. Application Grounded

2. Human Grounded

3. Functionally Grounded

#### **Application Grounded Evaluation**

- Context:
  - Real applications (e.g. diagnosing patients)
  - Assisting domain experts

- Baseline Experiment:
  - How do model explanations compare to human-produced explanations?

#### **Human Grounded Evaluation**

- Context:
  - Simplified task for explainability
  - Assisting lay humans

- Possible experiments:
  - Which explanation is better? (binary forced choice)
  - Given input and explanation, simulate model output (forward simulation)
  - What input should be changed to change output (counterfactual)

#### Functionally Grounded Evaluation

- Context:
  - Proxy for explainability
  - No humans, comparisons through formal definitions

- Possible Experiments:
  - Which model is more sparse?
  - O Which interpretable model has better performance?

## A Spectrum for Evaluation



#### **Evaluations Should Inform Each Other**



#### How to Approach Open Problems in Interpretability

Mass effort of data collection to create matrix:

#### **COLUMNS:**

Specific Methods (i.e. Decision Tree of Depth < 4)

#### **ROWS**

Specific real-word tasks (i.e. "assisting doctors in identifying pneumonia patients under 30 in US")



**NEED:** open repositories that contain problems corresponding the real world tasks in which human input is required

# METHOD FACTORS (Hypothesis #2)



#### Hypothesis 1: Task Related Latent Dimensions

Scope: global/local interpretability

Area/Severity of Incompleteness

Time Constraint

User Preference/Expertise

#### Hypothesis 2: Method Related Latent Dimensions

**cognitive chunk**: basic unit for explanation

Miller's Law: 7 ± 2 chunks in working memory

Factors involving cognitive chunks:

- How many chunks in an explanation?
- Structure/compositionality of cognitive chunks (i.e. A->B->C)
- Monotonicity/Interactions between cognitive chunks
- Human understanding of uncertainty and stochasticity

**NEED FURTHER WORK IN COGNITIVE SCIENCE TO IMPROVE INTERPRETABILITY** 

#### Summary/Recommendation to Researchers

To push the field further, works of research should describe:

- The incompleteness of their problem that triggers need for explanation
- Which levels of evaluation are being explored
- Any task-related factors (scope, area, time budget)
- Any method-related factors (cognitive chunks, expertise)