DYNAMIC PROGRAMMING: MATRIX CHAIN MULTIPLICATION

Instructor: Dr Tarunpreet Bhatia Assistant Professor, CSED TIET

Matrix-chain Multiplication

- Suppose we have a sequence or chain A₁, A₂, ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product $A_1A_2...A_n$

 There are many possible ways (parenthesizations) to compute the product

Matrix-chain Multiplication

- Example: consider the chain A₁, A₂, A₃,
 A₄ of 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

Matrix-chain Multiplication

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

Can you write the algorithm to multiply two matrices?

Algorithm to Multiply 2 Matrices

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

MATRIX-MULTIPLY $(A_{p \times q}, B_{q \times r})$

```
1. for i \leftarrow 1 to p
```

2. **for** $j \leftarrow 1$ **to** r

3. $C[i,j] \leftarrow 0$

4. **for** $k \leftarrow 1$ **to** q

5. $C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$

6. **return** *C*

Scalar multiplication in line 5 dominates time to compute CNumber of scalar multiplications = pqr

Matrix Multiplication of ABC

Given a $p \times q$ matrix A and a $q \times r$ matrix B and a $r \times s$ matrix C, then ABC can be computed in two ways (AB)C and A(BC):

The number of multiplications needed are:

$$mult[(AB)C] = pqr + prs$$

 $mult[A(BC)] = qrs + pqs$

A big difference!

Implication: The multiplication "sequence" (parenthesis) is important

Matrix-chain Multiplication ...co

Matrix-chain multiplication problem

- Given a chain A_1 , A_2 , ..., A_n of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
- Parenthesize the product A₁A₂...A_n such that the total number of scalar multiplications is minimized

Brute force method of exhaustive search takes time exponential in *n*

Step 1: The structure of an optimal solution

- Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
- An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
- First compute matrices $A_{1...k}$ and $A_{k+1...n}$; then multiply them to get the final matrix $A_{1...n}$

Step 1: The structure of an optimal solution

Split the original structure into substructures

Suppose A_i , A_{i+1} , ..., A_j is split between two substructures around k

- Find the optimal solution for both substructures
- And then combine them to get the optimal solution of the original structure

NOTE: Need to ensure the correct place (i.e., k) to split the product

- **Key observation**: Parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal.

 That is, the optimal solution to the problem contains within it the optimal solution to subproblems.

- Step 2: Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i...i}$
 - Minimum cost to compute A_{1,n} is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$.
 - $A_{i..j} = (A_i A_{i+1} ... A_k) \cdot (A_{k+1} A_{k+2} ... A_j) = A_{i..k} \cdot A_{k+1..j}$
 - Cost of computing $A_{i..j}$ = cost of computing $A_{i..k}$ + cost of computing $A_{k+1..j}$ + cost of multiplying $A_{i..k}$ and $A_{k+1..j}$
 - Cost of multiplying $A_{i..k}$ and $A_{k+1..j}$ is $p_{i-1}p_kp_j$

- Optimal parenthesization occurs at one value of k among all possible $i \le k < j$
- Check all these and select the best one

```
m[i,j] = \begin{cases} 0 & \text{if } i=j\\ min \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j\\ i \le k < j & \end{cases}
```

- To keep track of how to construct an optimal solution, we use a table s
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3, ... and so on
 - Computes the optimal cost bottom-up

Step 3: Algorithm to Compute Optimal Cost

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i = 1 to n

m[i, i] = 0

for l = 2 to n

for i = 1 to n-l+1

j = i+l-1
```

Takes $O(n^3)$ time

Requires $O(n^2)$ space

```
m[i, j] = \infty

for k = i to j-1

q = m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]

if q < m[i, j]

m[i, j] = q

s[i, j] = k
```

return *m* and *s*

Example 1

```
for l = 2 to n

for i = 1 to n-l+1

j = i+l-1

m[i,j] = \infty

for k = i to j-1

q = m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]

if q < m[i,j]

m[i,j] = q

s[i,j] = k
```

Example 1

```
for l = 2 to n

for i = 1 to n-l+1

j = i+l-1

m[i,j] = \infty

for k = i to j-1

q = m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]

if q < m[i,j]

m[i,j] = q

s[i,j] = k
```

Step 4: Constructing Optimal Solution

- Our algorithm computes the minimumcost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} \dots A_j$ for the minimum cost

Constructing Optimal Solution

Algorithm to Construct an optimal solution from computed information

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Constructing Optimal Solution

Print-Optimal-Parens(s,1,3)

- 1. if 1 = 3
- print A₁
- 3. else Print "("
- 4. print-Optimal-Parens(s,1,1)
- print-Optimal-Parens(s,2,3)
- print ")"

Print-Optimal-Parens(s,1,1)

- 1. if 1 = 1
- 2. print A₁
- 3. else ..
- 4.
- 5. ..
- 6. ..

Print-Optimal-Parens(s,2,3)

- 1. if 2 = 3
- 2. print A₂
- 3. else Print "("
- Print-Optimal-Parens(s,2,2)
- Print-Optimal-Parens(s,3,3)
- 6. print ")"

Print-Optimal-Parens(s,2,2)

- 1. if 2 = 2
- 2. print A₂
- 3. else ..
- 4. .
- 5. ..
- 6. .

Print-Optimal-Parens(s,3,3)

- 1. if 3 = 3
- 2. print A₃
- 3. else ..
- 4. .
- 5. ..
- 6. ..

Constructing Optimal Solution

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i = j

2 then print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Try this!

Given a sequence of 4 matrices M_i ($1 \le i \le 4$) and $p[] = \{5, 4, 6, 2, 7\}$. What will be final order of parentheses so that the product of the matrices, in order, is unambiguous and needs the minimal number of multiplications.

 $p_0 = 5$, $p_1 = 4$, $p_2 = 6$, $p_3 = 2$ and $p_4 = 7$

Solution

Total Multiplication = m[1,4] = 158((A1) (A2 A3)) (A4)

		1	2	3	4
i	4	158	104	84	0
	3	88	48	0	
	2	120	0		•
	1	0		'	

		1	2	3
	4	3	3	3
j	3	1	2	
	2	1		•

Example 2

Given a sequence of 5 matrices M_i ($1 \le i \le 5$) and $p[] = \{4,10,3,12,20,7\}$. What will be final order of parentheses so that the product of the matrices, in order, is unambiguous and needs the minimal number of multiplications.

Example 3

Consider the following six matrix problem.

Matrix	A ₁	A_2	A_3	A ₄	A ₅	A_6
Dimensions	10x20	20x5	5x15	15x50	50x10	10x15

The problem therefore can be phrased as one of filling in the following table representing the values m.

i∖j	1	2	3	4	5	6
1	0					
2		0				
2 3			0			
4				0		
5					0	
6						0

- Chains of length 2 are easy, as there is no minimization required, so
- \rightarrow m[i, i+1] = $p_{i-1}p_ip_{i+1}$
- m[1, 2] = 10x20x5 = 1000
- m[2, 3] = 20x5x15 = 1500
- \rightarrow m[3, 4] = 5x15x50 = 3750
- \rightarrow m[4, 5] = 15x50x10 = 7500
- m[5, 6] = 50x10x15 = 7500

i∖j	1	2	3	4	5	6
1	0	1000				
2		0	1500			
3			0	3750		
4				0	7500	
5					0	7500
6						0

- Chains of length 3 require some minimization but only one each.
- $m[1,3]=min\{(m[1,1]+m[2,3]+p_0p_1p_3),(m[1,2]+m[3,3]+p_0p_2p_3)\}$ $= min\{(0+1500+10x20x15), (1000+0+10x5x15)\}$ $= min\{4500, 1750\} = 1750$
- $m[2,4]=min\{(m[2,2]+m[3,4]+p_1p_2p_4),(m[2,3]+m[4,4]+p_1p_3p_4)\}$ $= min\{(0+3750+20x5x50), (1500+0+20x15x50)\}$ $= min \{ 8750, 16500 \} = 8750$
- $m[3,5] = min\{(m[3,3]+m[4,5]+p_2p_3p_5),(m[3,4]+m[5,5]+p_2p_4p_5)\}$ $= min\{(0+7500+5x15x10), (3750+0+5x50x10)\}$ $= min \{ 8250, 6250 \} = 6250$
- $m[4,6] = min\{(m[4,4]+m[5,6]+p_3p_4p_6),(m[4,5]+m[6,6]+p_3p_5p_6)\}$ $= min\{(0+7500+15x50x15), (7500+0+15x10x15)\}$ $= min\{ 18750, 9750 \} = 9750$

_							
	i∖j	1	2	3	4	5	6
	1	0	1000	1750			
	2		0	1500	8750		
	3			0	3750	6250	
	4				0	7500	9750
	5					0	7500
	6						0

6

```
m[1,4]=min\{(m[1,1]+m[2,4]+p_0p_1p_4),(m[1,2]+m[3,4]+p_0p_2p_4),
             (m[1,3]+m[4,4]+p_0p_3p_4)
       = \min\{(0+8750+10x20x50), (1000+3750+10x5x50),
              (1750+0+10x15x50)
       = \min \{ 18750, 7250, 9250 \} = 7250
m[2,5]=min\{(m[2,2]+m[3,5]+p_1p_2p_5),(m[2,3]+m[4,5]+p_1p_3p_5),
             (m[2,4]+m[5,5]+p_1p_4p_5)
       = min\{(0+6250+20x5x10), (1500+7500+20x15x10),
              (8750+0+20x50x10)
       = \min \{ 7250, 12000, 18750 \} = 7250
m[3,6]=min\{(m[3,3]+m[4,6]+p_2p_3p_6),(m[3,4]+m[5,6]+p_2p_4p_6),
             (m[3,5]+m[6,6]+p_2p_5p_6)
       = min\{(0+9750+5x15x15), (3750+7500+5x50x15),
              (6250+0+5\times10\times15)
       = \min \{ 10875, 15000, 7000 \} = 7000
    i∖j
                 2
                         3
                                4
                                        5
                                                 6
                1000 1750 7250
                  0
                       1500 8750
                                      7250
     3
                                      6250
                         0
                             3750
                                               7000
     4
                                 0
                                       7500
                                               9750
     5
                                         0
                                               7500
```

0

```
m[1,5]=min\{(m[1,1]+m[2,5]+p_0p_1p_5),(m[1,2]+m[3,5]+p_0p_2p_5),
             (m[1,3]+m[4,5]+p_0p_3p_5),(m[1,4]+m[5,5]+p_0p_4p_5)
       = \min\{(0+7250+10x20x10), (1000+6250+10x5x10),
              (1750+7500+10x15x10), (7250+0+10x50x10)
       = \min \{ 9250, 7750, 10750, 12250 \} = 7750
m[2,6]=min\{(m[2,2]+m[3,6]+p_1p_2p_6),(m[2,3]+m[4,6]+p_1p_3p_6),
             (m[2,4]+m[5,6]+p_1p_4p_6),(m[2,5]+m[6,6]+p_1p_5p_6)
       = min\{(0+7000+20x5x15), (1500+9750+20x15x15),
              (8750+7500+20x50x15), (7250+0+20x10x15)
       = min \{ 8500, 15750, 31,250, 10250 \} = 8500
m[1,6]=min\{(m[1,1]+m[2,6]+p_0p_1p_6),(m[1,2]+m[3,6]+p_0p_2p_6),
             (m[1,3]+m[4,6]+p_0p_3p_6),(m[1,4]+m[5,6]+p_0p_4p_6),
(m[1,5]+m[6,6]+p_0p_5p_6)
       = min\{(11500, 8750, 13750, 22250, 9250)\} = 8750
                 2
    i∖j
                         3
                                4
                                        5
                                                 6
                1000 1750 7250
                                      7750
                                              8750
          0
                                      7250
                  0
                       1500
                              8750
                                              8500
     3
                                      6250
                                               7000
                         0
                              3750
```

- So far we have decided that the best way to parenthesize the expression results in 8750 multiplication.
- But we have not addressed how we should actually DO the multiplication to achieve the value.
- However, look at the last computation we did the minimum value came from computing

$$A = (A_1 A_2)(A_3 A_4 A_5 A_6)$$

- ➤ Therefore in an auxiliary array, we store value s[1,6]=2.
- In general, as we proceed with the algorithm, if we find that the best way to compute A_{i..i} is as

$$A_{i..j} = A_{i..k} A_{(k+1)..j}$$

then we set

$$s[i, j] = k$$
.

Then from the values of k we can reconstruct the optimal way to parenthesize the expression.

If we do this then we find that the s array looks like this:

i∖j	1	2	3	4	5	6
1	1	1	2	2	2	2
2		2	2	2	2	2
3			3	3	4	5
4				4	4	5
5					5	5
6						6

- \triangleright We already know that we must compute $A_{1...2}$ and $A_{3...6}$.
- By looking at s[3,6] = 5, we discover that we should compute $A_{3..6}$ as $A_{3..5}A_{6..6}$ and then by seeing that s[3,5] = 4, we get the final parenthesization

$$A = ((A_1A_2)(((A_3A_4)A_5)A_6)).$$

And quick check reveals that this indeed takes the required 8750 multiplications.

i∖j	1	2	3	4	5	6
1	1	1	2	2	2	2
2		2	2	2	2	2
3			3	3	4	5
4				4	4	5
5					5	5
6						6