Name:	

MASTERY QUIZ DAY 28

Math 237 – Linear Algebra

Version 4

Fall 2017

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

M1. Let

$$A = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 1 & 3 & 7 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & -1 & -1 \\ 1 & 3 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

$$C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 2 & 6 & 11 & 1 \\ 1 & 3 & 7 & 2 \\ -1 & -3 & -5 & 0 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} 3 & -1 & 0 & 4 \\ 2 & 1 & 1 & -1 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 0 & 0 \end{bmatrix}$ is invertible.

Solution: This matrix is row equivalent to the identity matrix, so it is invertible.

M3. Find the inverse of the matrix
$$\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
.

Solution:

$$\begin{bmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & \frac{3}{2} & -\frac{3}{2} \\ 1 & -\frac{3}{2} & \frac{5}{2} \end{bmatrix}$$

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$.

Solution:

$$\det(A - \lambda I) = (8 - \lambda) \det \begin{bmatrix} -8 - \lambda & -3 \\ 3 & 2 - \lambda \end{bmatrix} - (-3) \det \begin{bmatrix} 21 & -3 \\ -7 & 2 - \lambda \end{bmatrix} + (-1) \det \begin{bmatrix} 21 & -8 - \lambda \\ -7 & 3 \end{bmatrix}$$

$$= (8 - \lambda) (\lambda^2 + 6\lambda - 7) + 3(-21\lambda + 21) - (-7\lambda + 7)$$

$$= (\lambda - 1) ((8 - \lambda)(\lambda + 7) - 63 + 7)$$

$$= (\lambda - 1)(\lambda - \lambda^2)$$

$$= -\lambda(\lambda - 1)^2$$

So the eigenvalues are 0 (with algebraic multiplicity 1) and 1 (with algebraic multiplicity 2).

G3. Compute the eigenspace associated to the eigenvalue 2 in the matrix $\begin{bmatrix} -1 & 1 & 0 \\ -9 & 5 & 0 \\ 15 & -5 & 2 \end{bmatrix}$.

Solution: The eigenspace is the solution space of the system (B-2I)X=0.

$$RREF(B-2I) = RREF \left(\begin{bmatrix} -3 & 1 & 0 \\ -9 & 3 & 0 \\ 15 & -5 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So the system simplifies to $x - \frac{y}{3} = 0$, or 3x = y. Thus the eigenspace is

$$E_2 = \operatorname{span}\left(\left\{ \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}\right)$$

M1: M2: M3: G2: G3: G1: