By Cluaton treen

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

T	to Augustian of	`	1/169/04
in re t	he Application of)	Serial No. 07/762,762
Thom	pson, G., et al.)	Serial No. 07/702,702
)	Allowed: August 2, 1999
Exam	iner: Leguyader, J.f)	
)	Batch No.: W48
Filed:	September 16, 1991)	
)	SUBMISSION OF SUBSTITUTE
For:	PLANT DESATURASES)	DRAWINGS UNDER 37 CFR
	COMPOSITIONS AND USES	_)	1.84
Honor	able Commissioner of		
	ts and Trademarks		PRODUCTION
	ngton, DC 20231		ह्यां श्रीकृति विकास
			Publiching Division OCT 1 6 1999
OFFI	CIAL DRAFTSMAN		001 -
			15
	9		₹, =

Dear Sir:

This letter is in response to the Draftsmen's comments mailed on August 2, 1999 objecting to the drawings as submitted by Applicants in a communication of September 16, 1991. Provided herewith are substitute drawings for Figure 1-10. The substitute drawings are in compliance with the requirements for formal drawings made in this case under 37 CFR § 1.84.

No substantial modifications have been made to these substitute drawings.

A conditional petition for an Extension of Time is requested to provide for the timely filing <u>if</u> an extension of time is required after all papers filed with this transmittal have been considered.

The Commissioner is GENERALLY authorized to charge any required fees, with the exception of an Issue Fee, relating to this paper to Deposit Account No. 03-0173.

In the event that there are any questions regarding these Figures, the Draftsman is invited to contact the undersigned at (530) 753-6313.

Respectfully submitted,

Carl J. Schwedler Reg. No. 39,924

CALGENE LLC 1920 Fifth Street Davis, CA 95616 (530) 753-6313

Enclosure: Figures 1-10

ASTLGSSTPKVDNAKKPFQPPREVHVQVTH $_{\rm X}^{\rm S}$ MPPQKIEIFKSIEG $_{\rm R}^{\rm W}$ AEQNILV $_{
m F}^{\rm H}$ LKPVEKCWQ

F2: DFLPDPA $_{
m T}^{
m S}$ EGFDEQVKELRARA $_{
m KEIPDDYFVVLVGDMITEEALPTYQTMLNT}$ LDGV

F3: DETGASLTPWAVWT

F4: DLLHTYLYLSGRV

F5: DMRQIQKTIQYLI

F6: TENSPYLGFIYTSFQER

F7: $\mathrm{DV}_{F}^{\mathrm{K}}$ LAQI $_{Q}^{\mathrm{C}}$ GTIASDEKRHETAYTKIVEKLFEIDPDGTVLAFADMMRKKI $_{\mathrm{T}}^{\mathrm{S}}$ MPAHLMY

F8: DNLF

F9: dvFlav^A QRL_I VYTAK

F10: DYADILEFLVGRWK

F11: VADLTGLSGEGRKAQA $_{
m G}^{
m Q}$ DYVCGLPPRIRRLEERAQGRAKEGPVVPFSWIFDRQVKL

HindIII

1 GCTCACTTGTGTGGTGGAGGAGAAAAAACAGAACTCACAAAAAAGCTTTGCGACTGCCAAGAACAACAACA

2

70 ACAACAAGATCAAGAAGAAGAAGAAGATCAAAAATGGCTCTTCGAATCACTCCAGTGACCTTGCAA 138 METAlaLeuArgIleThrProValThrLeuGln

EcoRV

BglII

Ncol

SerGluArgTyrArgSerPheSerPheProLysLysAlaAsnLeuArgSerProLysPheAlaMETAla 149 TCGGAGAGATATCGTTTTCGTTTCCTAAGAAGGCTAATCTCAGATCTCCCAAATTCGCCATGGCC

HindII

208 TCCACCCTCGGATCATCCACACGAAGGTTGACAATGCCAAGAAGCCTTTTCAACCTCCACGAGAGGTT SerThrLeuGlySerSerThrProLysValAspAsnAlaLysLysProPheGlnProProArgGluVal 238 277 CATGTTCAGGTGACGCACTCCATGCCACCACAGAAGATAGAGATTTTCAAATCCATCGAGGGTTGGGCT 345 HisValGlnValThrHisSerMETProProGlnLysIleGluIlePheLysSerIleGluGlyTrpAla Page 1 of FIGURE 2

346 GAGCAGAACATATTGGTTCACCTAAAGCCAGTGGAGAAATGTTGGCAAGCACAGGATTTCTTGCCGGAC GluGlnAsnIleLeuValHisLeuLysProValGluLysCysTrpGlnAlaGlnAspPheLeuProAsp

FIGURE 2 Page 2 of 7

415 483	
	ProAlaSerGluGLyPheAspGluGlnValLysGluLeuArgAlaArgAlaLysGluIleProAspAsp
484	34 TACTTTGTTGTTTGGTTGGAGATATGATTACAGAGGAAGCCCTACCTA
 	TyrPheValValLeuValGlyAspMETIleThrGluGluAlaLeuProThrTyrGlnThrMETLeuAsn
553	33 ACCCTAGAȚGGTGTACGTGATGAGACTGGGGCTAGCCTTACGCCTTGGGCTGTCTGGACTAGGGCTTGG
 	ThrLeuAspGlyValArgAspGluThrGlyAlaSerLeuThrProTrpAlaValTrpThrArgAlaTrp
	Pvuli
622	622 ACAGCTGAAGAGAACAGGCATGGCGATCTTCTCCACACCTATCTCTACCTTTCTGGGCGGGTAGACATG
))	ThrAlaGluGluAsnArgHisGlyAspLeuLeuHisThrTyrLeuTyrLeuSerGlyArgValAspMET 626
	BamHI
691) 1 AGGCAGATACAGAAGACAATTCAGTATCTCATTGGGTCAGGAATGGATCCTCGTACCGAAAACAGCCCC
)	ArgGlnIleGlnLysThrIleGlnTyrLeuIleGlySerGlyMETAspProArgThrGluAsnSerPro

FIGURE 2 Page 3 of 7 760 TACCTTGGGTTCATCTACATCGTTTCAAGAGCGTGCCACATTTGTTTCTCACGGAAACACCGCCAGG 828 TyrLeuGlyPhelleTyrThrSerPheGlnGluAraAlamhrmr

FIGURE 2 Page 4 of 7

HisAlaLysAspHisGlyAspValLysLeuAlaGlnIleCysGlyThrIleAlaSerAspGluLysArg 833 CATGCAAAGGATCATGGGGACGTGAAACTGGCGCAAATTTGTGGTACAATCGCGTCTGACGAAAAGCGT SphI

HisGluThrAlaTyrThrLysIleValGluLysLeuPheGluIleAspProAspGlyThrValLeuAla 942 868

ClaI

967 ITTGCCGACATGATGAGGAAAAAGATCTCGATGCCCGCACACTTGATGTACGATGGGGCGTGATGACAAC PheAlaAspMETMETArgLysLysIleSerMETProAlaHisLeuMETTyrAspGlyArgAspAspAsn

1036 CTCTTCGAACATTTCTCGGCGGTTGCCCAAAGACTCGGCGTCTACACCGCCAAAGACTACGCCGACATA 1104 AccI

FIGURE 2 Page 5 of 7 1105 CTGGAATTTCTGGTCGGCGGTGGAAAGTGGCGGATTTGACCGGCCTATCTGGTGAAGGGCGTAAAGCG 1173 LeuGluPheLeuValGlyArgTrpLysValAlaAspLeuThrGlyLeuSerGlyGluGlyArgLysAla

FIGURE 2 Page 6 of 7 SacI

Pvull

GlnAspTyrValCysGlyLeuProProArgIleArgArgLeuGluGluArgAlaGlnGlyArgAlaLys 1228

 ${\tt GluGlyProValValProPheSerTrpIlePheAspArgGlnValLysLeu} \\ 1266$ 1312 GCAGTGAGTTCGGTTTCTGTTGGCTTATTGGGTAGAGGTTAAAAACCTATTTTAGATGTCTGTTTCGTGT 1380

AATGTGGTTTTTTTTTTCTTCTTGAATCTTGGTATTGTGTCTTGAGTTCGCGTGTGTAAAACTTG 1381 1449 1450 TGTGGCTGTGGACATATTATAGAACTCGTTATGCCAATTTTGATGACGGTGGTTATCGTCTCCCCTGGT 1518

1519 GTTTTTTTTTTTT 1533

Page 7 of FIGURE

56	110	164	218	272	326	380	434	488
AAG CTC AAT CCT TTC CTT TCT	CCA CCA ATG GCC AGT ACC AGA TCT	TCT GGT TCT AAG GAA GTT GAG AAT	GTA CAT GTT CAG GTT ACC CAT TCT	TCC CTA GAC AAT TGG GCT GAG GAG	AAA TGT TGG CAA CCG CAG GAT TTT	GAG CAA GTC AGG GAA CTC AGG GAG	GTT GTT TTG GTT GGA GAC ATG ATA	ATG CTG AAT ACC TTG GAT GGA GTT
Lys Leu Asn Pro Phe Leu Ser	Pro Pro MET Ala Ser Thr Arg Ser	Ser Gly Ser Lys Glu Val Glu Asn	Val His Val Gln Val Thr His Ser	Ser Leu Asp Asn Trp Ala Glu Glu	Lys Cys Trp Gln Pro Gln Asp Phe	Glu Gln Val Arg Glu Leu Arg Glu	Val Val Leu Val Gly Asp MET Ile	MET Leu Asn Thr Leu Asp Gly Val
PAGAAAA AAAACA ATG GCT CTC	TTA CCT TCT TTC GCT CTT	ATG GCC TCT ACC CTC AAG	TTC ATG CCT CCT CGG GAG	AAG ATT GAG ATC TTT AAA	CAT CTG AAG CCA GTT GAG	GCC TCT GAT GGA TTT GAT	ATT CCT GAT GAT TAT TTT	CTT CCC ACT TAT CAA ACA
MET Ala Leu	Leu Pro Ser Phe Ala Leu	MET Ala Ser Thr Leu Lys	Phe MET Pro Pro Arg Glu	Lys Ile Glu Ile Phe Lys	His Leu Lys Pro Val Glu	Ala Ser Asp Gly Phe Asp	Ile Pro Asp Asp Tyr Phe	Leu Pro Thr Tyr Gln Thr
AAAAGAAAA GGTAAGA	CAA ACC CAA AAG	CCT AAG TTC TAC	CTC AAG AAG CCT	ATG CCA CCC CAA	AAC ATT CTG GTT	TTG CCA GAT CCC	AGA GCA AAG GAG	ACG GAA GAA GCC
	Gln Thr Gln Lys	Pro Lys Phe Tyr	Leu Lys Lys Pro	MET Pro Pro Gln	Asn Ile Leu Val	Leu Pro Asp Pro	Arg Ala Lys Glu	Thr Glu Glu Ala

FIGURE 3B 1 of 3

542	596	650	704	758	812	866	920	974
TGG	TCT	TCA	TCA	AAA	GAG	GAT	ATG	TCA
Trp	Ser	Ser	Ser	Lys	Glu	Asp		Ser
GCA	CTA	$_{\rm GGT}$	ACA	GCC	GAT	ATT	TCT	TTT
Ala	Leu		Thr	Ala	Asp	Ile	Ser	Phe
AGG	TAC	ATT	\mathtt{TAT}	CAA	GCA	GAG	ATT	CAC
Arg	Tyr	Ile		Gln	Ala	Glu	Ile	His
ACA Thr	CTC	TTG	ATC Ile	CGA Arg	GCT Ala	TTT Phe	AAA Lys	GAC Asp
TGG Trp	\mathtt{TAT}	\mathtt{TAT}	TTC Phe	GCC Ala	ATT Ile	CTC	AAG Lys	TTT Phe
ATT	AAG	CAA	GGG	ACT	ACA	AAA	AGA	CTT
Ile	Lys	Gln		Thr	Thr	Lys	Arg	Leu
GCA	AAT	ATT	CTT	AAC	GGT	GAA	ATG	AAT
Ala	Asn	Ile		Asn	Gly	Glu	MET	Asn
TGG	CTC	ACA	\mathtt{TAC}	GGG	TGT	GTG	ATG	GAT
Trp	Leu	Thr		Gly	Cys	Val	MET	Asp
TCT Ser	CTC	AAG Lys	CCA	CAT	ATA Ile	ATA Ile	GAT Asp	GAT Asp
ACT	GAC	GAG	AGT	TCT	CAA	AAG	GCT	CGA
Thr	Asp	Glu	Ser	Ser	Gln	Lys	Ala	Arg
CCT	GGT	ATT	AAC	ATT	GCT	ACA	TTT	GGC
Pro	Gly	Ile	Asn	Ile	Ala	Thr	Phe	Gly
AGT Ser	CAT His	CAA Gln	GAA Glu	TTC	TTG	TAC	GCT Ala	GAT Asp
GCA Ala	AGA Arg	AGG Arg	ACA Thr	ACC Thr	AAG Lys	GCC Ala	TTG	\mathtt{TAT}
$_{\rm GGT}$	AAT	ATG	CGG	GCA	ATA	ACA	GTT	ATG
	Asn	MET	Arg	Ala	Ile	Thr	Val	MET
ACA	GAG	GAC	CCA	AGG	GAC	GAG	ACT	${ m TTG}$
Thr	Glu	Asp	Pro	Arg	Asp	Glu	Thr	
GAA	GAA	GTG	GAT	GAA	GGA	CAT	GGA	CAC
Glu	Glu	Val	Asp	Glu	Gly	His	Gly	His
GAT:GAA	GCG	CGA	ATG	CAG	CAT	CGC	GAT	GCA
Asp Glu	Ala	Arg	MET	Gln	His		Asp	Ala
CGG	ACT Thr	GGA Gly	GGA Gly	rrc Phe	3AG 31u	AAG Lys	CCT	CCT

FIGURE 3B 2 of 3

1028	1082	1136	1190	TT 1254	TTA 1324	TAC 1394	TAT 1464	TCT 1534	TGG 1604	1668
GGA GTC TAC ACA GCA AAG GAT TAT GCA GAT ATA TTG Gly Val Tyr Thr Ala Lys Asp Tyr Ala Asp Ile Leu	TGG AAG GTG GAT AAA CTA ACG GGC CTT TCA GCT GAG Trp Lys Val Asp Lys Leu Thr Gly Leu Ser Ala Glu	TAT GTT TGT CGG TTA CCT CCA AGA ATT AGA AGG CTG Tyr Val Cys Arg Leu Pro Pro Arg Ile Arg Arg Leu	AGG GCA AAG GAA GCA CCC ACC ATG CCT TTC AGC TGG Arg Ala Lys Glu Ala Pro Thr MET Pro Phe Ser Trp	AAG CTG TAGGTGGCTA AAGTGCAGGA CGAAACCGAA ATGGTTAGTT Lys Leu	CCCAT CCCTGCAGAA TCAGAAGTAG AGGTAGAATT TTGTAGTTGC TTTTTTATTA 13	GTCTGTGGAA GGGAGTTAGT TGAGGAGTGA ATTTAGTAAG TTGTAGATAC 13	TGAGTATGCT GATAGAGAGC AGCTGTAGTT TTGTTGTTGT GTTCTTTAT 14	CTTTTCTTTC CTTTTCTTCT TTCCTTTCCT CTCTCTCT CTCTCTCTT 15	GTGTCTCAAG TATAATAAGC AAACGATCCA TGTGGCAATT TTGATGATGG 16	CTTGA TCTTTTGTCT TCTATTGGAA ACACAGCCTG CTTGTTTGAA AAAA 16
CGT CTT Arg Leu	GGC AGA Gly Arg	CAG GAC Gln Asp	CAA GGA Gln Gly	CAA GTG Gln Val	CCAT C	TTAAG G	TGTCA I	AGTTT C	CCCAA G	TTGA I
CAG	GTG Val	GCT Ala	GCT Ala	AGG Arg	TCATGC		TGTGTT	GTATGA		
GTT GCG (Vaľ Ala (TTC TTG Phe Leu	CAA AAG Gln Lys	GAG AGA Glu Arg	TTC GAT Phe Asp	TCACTCTTTT TCATG	CAAGTCCAGT TTAGT	AGTTGTTTCT	ATGGTCTCTT	CTCTTTTCT CTTAT	TGATCAGTCT CACAA
GCT G	GAG T	GGA C Gly G	GAA G Glu G	ATT T	TCACT	CAAGT	AGTTG	ATGGT	CTCTT	TGATC

FIGURE 3B 3 of 3 AA 69

HindIII

70 ATGGCATTGAAGCTTAAACCCTTTGGCATCTCAGCCTTACAACTTCCCT 117 METAlaLeuLysLeuAsnProLeuAlaSerGlnProTyrAsnPhePro

FIGURE 4A

- 69 1 ACTICATGGGCTATITGGACAAGAGCTTGGACTGCAGAAGAGAACCGACACGGTGATCTTCTCAATAAG ThrSerTrpAlaIleTrpThrArgAlaTrpThrAlaGluGluAsnArgHisGlyAspLeuLeuAsnLys
- 70 TATCTTTACTTGTCTGGACGTGTTGACATGAGGCAGATTGAAAAGACCATTCAGTACTTGATTGGTTCT 138 TyrLeuTyrLeuSerGlyArgValAspMETArgGlnIleGluLysThrIleGlnTyrLeuIleGlySer

BamHI

139 GGAATGGATCCTAGAACAGAGAACAATCCTTACCTCGG 176 GlyMETAspProArgThrGluAsnAsnProTyrLeuAla FIGURE 4B

TGAGAGATAG TGTGAGAGCA TTAGCCTTAG AGAGAGAG AGAGAGCTTG TGTCTGAAAG AATCCACAA

TCG Ser TCC Pro CCL Phe TTCAsn AAC ${
m Tyr}$ TAC CCT CAG Gln CTT AAC CCT TTG GCA TCT Leu Asn Pro Leu Ala Ser Ala Leu Lys Leu Asn AAG TTG GCA

TCT Ser GCT Ala CTC TGC CTC TTC Phe AAG Lys CCC Pro TCT Ser AGA Arg TTC Phe ACT Thr TCT Ser ATC Ile CCA CCG CGT Arg GCT Ala

ACA Thr TTC CCA AAG Lys AAG TTG Leu AGT Ser GAG Glu GAG GTT Glu Val AAG Lys TCC Ser AGC CTC GCT Ala CCC Pro TCT Ser

Ile ATC AAG Lys CAG Gln င္ပင္ပင Pro CCA Pro ATG MET TCC Ser CTG CAT Leu His CAA GTC Gln Val GTT Val CAC His GAA GTG Glu Val AAG Lys

CCT Pro

CCA

TCT Ser ATC Ile

GAG Glu GAC Asp

AAA Lys

CTC CAG Gln ACT Thr CTA Leu CTT CAG AAC GCC GAG Ala Glu GAC TGG (ASP Trp) GAA Glu ATG MET TCC AAA Lys TTC

TCC GCA Ala CCT Pro GAC Asp CCC TTA Leu TTC Phe GAC Asp CAG Gln CCC Pro CAG Gln TGG Trp TCG Ser AAG Lys GAG Glu GTG Val

CCTPro Leu CICGlu GAG AGA Ala Arg GCA GAG CTA AGA GAG AGG Glu Leu Arg Glu Arg AGA Arg Val GTTCAG Gln GAT Asp GAA Glu TTC G1y999 Asp GAT

CCG Pro CTT Leu GAA GAG GCG Glu Glu Ala CTG GTG GGA GAC ATG ATC ACG Leu Val Gly Asp MET Ile Thr $_{
m GLT}$ Val GTT Val TTC \mathtt{TAC} GAT Asp GAT

FIGURE 4C 1 of 3

GCT Ala GGC Gly ACT Thr GAA Glu GAT AGG GTG Val GGA (TTG GAT Leu Asp ACT Thr TTG AAC Leu Asn ATG MET ACC Thr TCA Ser CAA Gln AGC CCC Ser Pro \mathtt{TAT} AGC

CGA Arg AGG Arg AAC Asn ATG MET GAG Glu GAC Asp GTT Val GAA Glu GCA Ala CGT Arg ACT Thr GGA Gly TGGTCT Ser GCT Ala TTG AGA Arg \mathtt{TAC} ACA Thr CTT Leu TGG \mathtt{TAT} ATT Ile AAG Lys AAT Asn GCT Ala TGGCTC Leu CTT Leu GAT Asp ACT Thr GGT Gly CAC His

ACA Thr AGA Arg CCT. Pro GAT Asp ATG MET GGA Gly TCT Ser $_{\rm GLY}^{\rm GGT}$ ATT Ile TTG Leu \mathtt{TAC} CAG Gln ATT Ile ACC Thr AAG Lys GAA Glu ATT Ile CAG Gln

ACC Thr GCC Ala AGA Arg GAA Glu CAA Gln TTC Phe TCA ACT Thr \mathtt{TAC} ATC Ile TTC GGC Gly CTC Leu TAC CCIPro AATAsn AAC Asn

GAG Glu TTC Phe

AAG Lys CTC Leu GAC Asp GGA Gly CAC His GAG Glu AAA Lys GCC Ala CAA Gln CGC Arg GCT ACA Thr AAC Asn GGA Gly CACTCT Ser ATC Ile

GCT Ala ACA Thr GAG Glu CAT His CGT Arg AAG Lys GAG Glu GAC Asp GCA Ala GCT Ala ATA Ile ACA Thr GGC Gly TGC ATC Ile CAA Gln GCC CTA Leu

ATG MET GTG Val ACT Thr GGT Gly GAT Asp CCT Pro GAT Asp ATT (Ile GAG Glu Phe TTTCTC AAG Lys GAG Glu GTT Val ATA Ile AAG Lys ACC Thr \mathtt{TAC}

TAC ATG MET TTG Leu CCT GCT CAC Pro Ala His TCG ATG Ser MET ATC Ile AAA Lys AAG Lys AGG Arg ATG MET ATG MET GAC GCA Ala TTT Phe GCG Ala

FIGURE 4C 2 of 3

CGG GAT GAA AGC CTC TTT GAC AAC TTC TCT TCT GTT GCT CAG AGG CTC Arg Asp Glu Ser Leu Phe Asp Asn Phe Ser Ser Val Ala Gln Arg Leu Asp Gly GAT GGG

AGG 666GTT Val TTG TTT ATT CTT GAG Ile Leu Glu GAC TAT GCG (Tyr Ala 1 GAC Asp GCC AAA (Ala Lys ACT TAC GGT GTT Gly Val

GAG Glu CAA Gln GCG Ala AAC AAA (Asn Lys i GAA GGA 1 Glu Gly 1 GGTGGG CTT TCA Gly Leu Ser ACC Thr TTG AGC Ser GAG Glu ATT Ile AAG Lys TGG Trp

GCT CAA GCA Ala Gln Ala GAG AGA (Glu Arg A AGG AGG TTG GAT Arg Arg Leu Asp TTG ACT CCA AGA ATC Leu Thr Pro Arg Ile GGG ' TGT TAC TTG ' Tyr Leu (

AAG AAA GGA CCC AAG GTT CCT TTC AGC TGG ATA CAT GAC AGA GAG Lys Lys Lys Gly Pro Lys Val Pro Phe Ser Trp Ile His Asp Arg Glu Val GCC

AGA (

CAG CTC TAA AAAGGAA CAAAGCTATG AAACCTTTTC ACTCTCCGTC GTCCCTCATT TGATCTATCT Gln Leu GCTCTTGAAA TTGGTGTAGA TTACTATGGT TTGTGATATT GTTCGTGGGT CTAGTTACAA AGTTGAGAAG CAGTGATTTA GTAGCTTTGT TGTTTCCAGT CTTTAAATGT TTTTGTGTTT GGTCCTTTTA GTAAACTTGT GI TGTAGTTAAA TCAGTTGAAC TGTTTGGTCT

FIGURE 4C 3 of 3

48	96	143
AAG Lys	GAG Glu	AA
CAA Gln 15	TTG Leu	GAG Glu
GTG Val	TCC Ser 30	GTG Val
CAT His	AAA Lys	CCT Pro 45
GCT Ala	TTC	AAA Lys
GAA Glu	ATT Ile	CTT Leu
AGA Arg 10	GAG Glu	CAT
CCT Pro	ATT Ile 25	GTG Val
CCT Pro	AAG Lys	TTG Leu 40
ATG MET	CAA Gln	GTC Val
CAC His	CCT	AAT Asn
CCT Pro 5	CCG Pro	GAG Glu
ANG Xaa	ATK Xaa 20	GAG Glu
AAA Lys	TCA Ser	GCT Ala 35
GCC Ala	CAT His	TGG Trp
GAT (Asp	ACC Thr	GGT Gly
i		

Sequence From Amino Acid Fragment F2

Y FUVLVGDMITEEALPTY Q Ω Ω Д Н 回

ĸ

CAA ACN AUG CUN AAU AC/N G z Ц Σ H

⊣

AAA GAA AUU CCN GAU GAU IAU G G C C C C

Forward Primers:

5'GCTAAGCTT AAP GAP ATQ CA GAQ GAQ TA3' Desat 13-1
A CCG
CCC
CCC
Desat 13-3
CCT
Desat 13-4

Reverse Primers: (complements)

3' GTQ TGN TAC GAN TTP TGCTTAAGCGA 5' AAQ Desat 13-5a Desat 13-6a

Oligonucleotides

P = A or G Q = T or C N = A, C, T or C

9 FIGURE

FIGURE 7B

FIGURE 7C

PCTAGAATTC	TCTAATTACG	rctagaatte tetaattaeg tetgitigit etaittitta taigatatea aataitegie ataaatatai	CTATTTTTA	TATGATATCA	AATATTCGTC	ATAAATAT	70
SGTTTAAGAT	GCCAAAAAAT	SGTTTAAGAT GCCAAAAAT TATTTACTTG GTGAATATAA TACGTTAAAT ATTAGAAATA CATCATTTAG	GTGAATATAA	TACGTTAAAT	ATTAGAAATA	CATCATTTAG	140
TAAATAAAT	AACCAAAAAC	FTAAATAAAT AACCAAAAAC CAAAAATTCA TATCCGCGCT GGCGCGCGGT CAGGGTCTCG TTAGTTTTAA	TATCCGCGCT	GGCGCGCGGT	CAGGGTCTCG	TTAGTTTTAA	210
AATCAATGCA	GTTTACAATT	AATCAATGCA GTTTACAATT AATTTCCAGC TGAAAATAAG TATAATTTGT ATTGAAATTA TAAAGTGACA	TGAAAATAAG	TATAATTTGT	ATTGAAATTA	TAAAGTGACA	280
rttttg	AACAAATATT	ITTTTTGTGT AACAAATATT TTGTGTAACA AGAATTAAAA AAAAAAACAG AAAATACTCA GCTTTTTTAA	AGAATTAAAA	AAAAAACAG	AAAATACTCA	GCTTTTTAA	350
FAATAAAAA	AATTAATTGA	PAATAAAAA AATTAATTGA GTTAGAAAAT TGTTGTACCA ATAACAAAAG ATTTATATGG AATTATAAAA	TGTTGTACCA	ATAACAAAAG	ATTTATATGG	AATTATAAA	420
rcaacacacc	AATAACACAA	ICAACACACC AATAACACAA GACTTTTTAA AAATTTAAGA ATAATATAAG CAATAACAAT AGAATCTTCA	AAATTTAAGA	ATAATATAAG	CAATAACAAT	AGAATCTTCA	490
AATTCTTCAA	АТССТТАААА	AATTCTTCAA ATCCTTAAAA ATCAATCTCC CACTATTAAT CCCCCTTAGT TTTAGTTGGT AATGGCAACG	САСТАТТААТ	CCCCCTTAGT	TTTAGTTGGT	AATGGCAACG	260
rttgttgact	ACCGTATTGT	ITTGTTGACT ACCGTATTGT AACTTTTGTC AAATTGTCAT AAATACGTGT CAAACTCTGG TAAAAAATTA	AAATTGTCAT	AAATACGTGT	CAAACTCTGG	ТАААААТТА	630
этствстаса	TCTGTCTTTT	STCTGCTACA TCTGTCTTTT ATTTATAAA CACAGCTGTT AATCAGAATT TGGTTTATTA AATCAACAAC	CACAGCTGTT	AATCAGAATT	TGGTTTATTA	AATCAACAAC	700
CTGCACGAAA	CTTGTGTGAG	FIGCACGAAA CTIGIGIGAG CATATITIGI CIGITICIGG TICAIGACCI ICTICCGCAI GAIGGCCAAG	CTGTTTCTGG	TTCATGACCT	TCTTCCGCAT	GATGGCCAAG	770
rgtaatggcc	ACTTGCAAGA	IGTAATGGCC ACTTGCAAGA GCGTTTCTTC AACGAGATAA GTCGAACAAA TATTTGTCCG TTACGACCAC	AACGAGATAA	GTCGAACAAA	TATTTGTCCG	TTACGACCAC	840
ATATAAAATC	TCCCCATCTC	NTATAAAATC TCCCCATCTC TATATATAAT ACCAGCATTC ACCATCATGA ATACCTCAAA TCCCAATCTC	ACCAGCATTC	ACCATCATGA	АТАССТСААА	TCCCAATCTC	910
ACA A A TACTT	SABABABAS	ACAAATACTT CAATAAAAAG ACCAAAAAA ATTAAAGCAA AGAAAAAGCCT TCTTCTCTTC	A T T A A A C T A A	TUUTAAAATA		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0

FIGURE 8 Page 1 of 4

GAAGCCTTCT AGGTTTTCAC GAC ATG AAG TTC ACT ACT CTA ATG GTC ATC ACA TTG	103
GTG ATA ATC GCC ATC TCG TCT CCT GTT CCA ATT AGA GCA ACC ACG GTT GAA AGT Val Ile Ile Ala Ile Ser Ser Pro Val Pro Ile Arg Ala Thr Thr Val Glu Ser	109
TTC GGA GAA GTG GCA CAA TCG TGT GTT GTG ACA GAA CTC GCC CCA TGC TTA CCA Phe Gly Glu Val Ala Gln Ser Cys Val Val Thr Glu Leu Ala Pro Cys Leu Pro	114
GCA ATG ACC ACG GCA GGA GAC CCG ACT ACA GAA TGC TGC GAC AAA CTG GTA GAG Ala MET Thr Thr Ala Gly Asp Pro Thr Thr Glu Cys Cys Asp Lys Leu Val Glu	1198
CAG AAA CCA TGT CTT TGT GGT TAT ATT CGA AAC CCA GCC TAT AGT ATG TAT GTT Gln Lys Pro Cys Leu Cys Gly Tyr Ile Arg Asn Pro Ala Tyr Ser MET Tyr Val	125
ACT TCT CCA AAC GGT CGC AAA GTC TTA GAT TTT TGT AAG GTT CCT TTT CCT AGT Thr Ser Pro Asn Gly Arg Lys Val Leu Asp Phe Cys Lys Val Pro Phe Pro Ser	130
tgt taaatctctc aagacattgc taagaaaaat attattaaaa ataaaagaat caaactagat Cys	136
CTGATGTAAC AATGAATCAT CATGTTATGG TTGAAGCTTA TATGCTGAAG TGTTTGATTT TATATATGTG	143
TGTGTGTGTG TCCTGCTCAA TTTTTGAAAC ACACACGTTT CTCCTGATTT GGATTTAAAT TATATTTTGA	150
сттаравава асвававдет ссванпостат ттатасваст псатсвавав стссвастас ваттасата 157	157

FIGURE 8 Page 2 of 4

2559 1859 1929 1999 2069 2139 2209 2279 2419 2489 TCTCCTACAC TTAAAGAATG AAACAATAAT AGACTTACGA AACAAATGAA AAATACATAA ATTGTCGACA . ATCAACGICC GAIGACGAGI TIATTATIAA AAATTIGIGI GAAGGACTAG CAGTICAACC AAAIGAIATT GAACATATAC ATCAACAAAT ATGATAATCA TAAAAGAGAG AATGGGGGGG GGGTGTCGTT TACCAGAAAC CTCTTTTTCT CAGCTCGCTA AAACCCTACC ACTAGAGACC TAGCTCTGAC CGTCGGCTCA TCGGTGCCGG AGGIGIAACC ITICITICCC AIGACCCGAA ACCICITIT CCCAACICAC GAAAACCCIA CAAICAAAAA CCTAGCTCCG ACCGTCGGCT CATCGGTGCC GAAGGTGTAA CCTTTCTCTC CCATCATAGT TTCTCGTAAA TGAAAGCTAA TTGGGCAATC GATTTTTTAA TGTTTAAACC ATGCCAAGCC ATTTCTTATA GGACAATTGT ATTAAAAAGT AAAATATCCC TAATACCTTT GGTTTAAATT AAATAAGTAA ACAAAAATAA ATAAAAACAA ATAAAATAAA AATAAAAAT GAAAAAAGA AATTTTTTA TAGTTTCAGA TTATATGTTT TCAGATTCGA тттааааттт гтаттттаа тттттаста тттаттттт аттттатааа аттттааасс стааттссаа AACTCCCCCC CCCCCCCC CCCCAATICT CICCTAGICT TITICICITY CTIAIATITG GGCTICTAIC TICTCITITIT TITICAGGCC CAAAGIAICA IGIGIAACAA CCGGIGITICA AAAACGCGCC CGCCIGGCCG CAATAATAGC ATCTTTTGAG TTTTGTCTCA AAAGTGACAC TAGAAGAAAA AAGTCACAAA AATGACATTC AATTTTTTAA ATTCCCTTTT TTAAATTTTC TTTTTTGAAA TTTTTTTTT TGAAATTTTT TGAAACTGTT

FIGURE 8 Page 3 of 4

344(ŭ	CGCTCACTGG	AATTCGCCCT ATAGTGAGTC GTATTACGCG CGCTCACTGG	ATAGTGAGTC	AATTCGCCCT
339	GTGGAGCTCC	PAAGCTCAGG GCTGGCGGCT GCAGCCCGGG GATCCACTAG TTCTAGGCGG CCGCACCGCG GTGGAGCTCC	TTCTAGGCGG	GATCCACTAG	GCAGCCCGGG	GCTGGCGGCT	raagctcagg
3329	TCCATTTCTC	PAGGAGGTCT CATATAAATT TGAACGTTTC CAGCGATGAA CAGTGCCAAT CTCTGCGAAA TCCATTTCTC	CAGTGCCAAT	CAGCGATGAA	TGAACGTTTC	CATATAAATT	PAGGAGGTCT
325	ACATAACCAG	ITCCATGITT TATCCAACTC ATCCCACTCC GTAGCATTTA ATCGATCTCA TCATTTACAT ACATAACCAG	ATCGATCTCA	GTAGCATTTA	ATCCCACTCC	TATCCAACTC	FTCCATGTTT
318	ATCTGATCAG	GATGCCGCC TCCGATGAAC TTCCTGTAAC GCCTTCAGTT TCCATTGATT TTCCCCTTTA ATCTGATCAG	TCCATTGATT	GCCTTCAGTT	TTCCTGTAAC	TCCGATGAAC	IGATGCCGCC
3119	TCCCTGCCGA	CGACTAACGA GTAGCGTAAT TCTGAACTGG GGTAACAACA TAGAGAACAT CGCCGACCCT TCCCTGCCGA	TAGAGAACAT	GGTAACAACA	TCTGAACTGG	GTAGCGTAAT	CGACTAACGA
3049	GGTCACCGCC	MANCTAGGCG CCGAGTACGC CCCGCTTAAT CCCGAGTTTT TGTTAGCTCG CTAGACCCAG GGTCACCGCC	TGTTAGCTCG	CCCGAGTTTT	CCCGCTTAAT	CCGAGTACGC	AAACTAGGCG
297	TATATGTCTA	PAGACTGCGA CACGGACCAC TAGACTAAGC AATTTTAATG TTTATTCATC ACAGACCTAÀ TATATGTCTA	TTTATTCATC	AATTTTAATG	TAGACTAAGC	CACGGACCAC	ragactgcga
290	TATGCATCTT	NAACTAAAAT CAAAAAAAA TGATGCAAAA TTCAATGATA ATAACTCGAA CTCGCAACCA TATGCATCTT	ATAACTCGAA	ттсаатбата	TGATGCAAAA	CAAAAAAAA	AAACTAAAAT
283	GTCATTCATT	ATATTCTCAG ATCTGGAAAA CACAGAGAAG AGGTTGAAGA TGAGGGTAAA ATCGTATTTT GTCATTCATT	TGAGGGTAAA	AGGTTGAAGA	CACAGAGAAG	ATCTGGAAAA	ATATTCTCAG
2769	GAAGAACAAA	ATATTTAGTT GAAACTCACA AGAATCGGTT GTAAAACTA TGAAATCGTG CAAAAAAAA GAAGAACAAA	TGAAATCGTG	GTAAAAACTA	AGAATCGGTT	GAAACTCACA	ATATTTAGTT
2699	TGAATCTATT	SCTGAAACTA GAAAACCTTC AAAAATCGAA ATTTTAAGAG CTAAATCGGT GTTTATCTCA TGAATCTATT	CTAAATCGGT	ATTTTAAGAG	AAAAATCGAA	GAAAACCTTC	SCTGAAACTA
262	GGTTCTAGGC	TITACTCGCC CGATTAAATG ATGATCGGAA GGCTGCCATG GCGAGGCGGA GGTAATCAGT GGTTCTAGGC	GCGAGGCGGA	GGCTGCCATG	ATGATCGGAA	CGATTAAATG	TTACTCGCC

FIGURE 8 Page 4 of 4

	GAAGGALLLI	CICGAGAGCI GAAGGAIIII IIGIIAGAGA IICAACGACA GAIGGACCCI ICCICCACIA	TICAACGACA	GATGGACCCI	ICICACIA	٥
GGCAACTGCA	AGAACCTAAC	AATGCAAATA	TCACTCCTCC	TCAGCCTTCA	AGGAGCGTTA	120
ATAGGACTGG	AACAAGCGGT		CAAGTGAGTA AATTTTCCTT	CCAAGATAGA	TCTCTATGGT	180
TCGGTTCATG	AAGTTTGTGG	TTTAATTGTG	TAGCAACAGG	ATAGTGCAAG	TGAGAATAGA	240
GTTCGACCTC	ATCTACCTAC	CCCGGAACCT	CTGAATGTAT	CCCCATTGAA	GAAGAAGAGG	300
GCAAATCCTG	CACCCAGAAG	GATAAAGAAA	TTTTGGACGC	CTGAAGAAGT	GGCAGTTCTG	360
AGGGAAGGAG	TAAAAGAGTA	TAAAAGAGTA TGTCTACTAC TACTACTCTA	тастастста	TAATCAAGTT	TCAAGAAGCT	420
GAGCTTGGCT	CTCACTTTAT	ATGTTTGATG	TTGTTGTGCA	GGTATGGTAA	ATCATGGAAA	480
GAGATAAAGA	ATGCAAACCC	TGAAGTATTG	GCAGAGAGGA	CTGAGGTGAG	AGAGCATGTC	540
ACTTTTGTGT	тастсатств	AATTATCTTA	TATGCGAATT	GTAAGTGGTA	CTAAAAGGTT	009
TGTAACTTTT	GGTAGGTGGA		TTTGAAGGAT AAATGGAGGA	ACTTGCTTCG	GTAGCGGTAA	99
CAAGTTTTAT	ATTGCTATGA	AGTTTTTTG	CCTGCGTGAC	GTATCAGCAG	CTGTGGAGAA	720
GATGGTATTA	GAAAGGGTCT	TTTCACATTT	TGTGTTGTGA	CAAATATTAA	ттсесссеет	780
ATGGTTTGGT	TAAGACTTGT	TGAGAGACGT	GTGGGGTTTT	TTGATGTATA	ATTAGTCTGT	840
GTTTAGAACG	AAACAAGACT	тGTTGCGTAT	GCTTTTTTA	ACTTGAGGGG	GTTTGTTGTT	006
GTTAGTTAGG	AACTTGACTT	TGTCTCTTTC	TCTCAAGATC	TGATTGGTAA	GGTCTGGGTG	96
GTAGTACTGT	TTGGTTTAAT	TTGTTTTGAC	TTGTTTTGAC TATTGAGTCA	CTGTGGCCCA	TTGACTTTAA	1020

FIGURE 9 Page 1 of 4 ATTAGGCTGG TATATTTTTT GGTTTAAAAC CGGTCTGAGA TAGTGCAATT TCGATTCAGT 1080 CAATTITAAA TICTICAAGG TAATGGGCTG AATACTIGTA TAGTTITAAG ACTTAACAGG 1140 CCTTAAAAGG CCCATGTTAT CATAAAACGT CATTGTTTAG AGTGCACCAA GCTTATAAAA 1200 TGTAGCCAGG CCTTAAAAGA CTTAACAGGC CTTAAAAGAC TTAACATTCC TTAAAAAGGCC 1260 CATGTTATCA TAAAACGTCA TCGTTTTGAG TGCACCAAGC TAAATGTAGC CAGGCCTTAA 1320 AAGACTTAAC AGGCCTTAAA AGGCCCATGT TATCATAAAA CGCCGTCGTT TTGAGTGCAC 1380 CAAGCTTATA AATGTAGCCA GCTACCTCGG GACATCACGC TCTTTGTACA CTCCGCCATC 1440 TCTCTCTCTC TCGAGCAGAT CTCTCTCGGG AATATCGACA ATGTCGACCA CTTTCTGCTC 1550 TICCGICTIC AIGCAAGCCA CITCICIGGI AAICICAICI CCIICIIGIG IICCCAGAIC 1560 CTCTCCACGC ATGTTTGATT ATGTTGAGAA TTAGAAAAAA AATGTTAGCT TTACGAATCT 1680 TTAGTGATCA TTTCAATTGG ATTTGCAATC TTGTGTGACA TTTGAGGCTT GTGTAGATTT 1740 CGATCTGTAT TCATTTTGAA TCACAGCTAT AATAGTCATT TGAGTAGTAG TGTTTTTAAA 1800 TGAACATGIT TIGITGTAIT GAIGGAACAA ACAGGCAGCA ACAACGAGGA TIAGIIITCCA 1860 GAAGCCAGCT TTGGTTTCAA CGACTAATCT CTCCTTCAAC CTCCGCCGTT CAATCCCCAC 1920 TCGTTTCTCA ATCTCCTGCG CGGTATGTTC TCATTCTCAG CATTTATTTC GAGCTTGCTT 1980 GTCATGGTAC TCTCTCTAAT TGTCTATTTG GTTTATTAGG CCAAACCAGA GACGGTTGAG 2040

FIGURE 9 Page 2 of 4 AAAGTGTCTA AGATAGTTAA GAAGCAGCTA TCACTCAAAG ACGACCAAAA GGTCGTTGCG 2100 GAGACCAAGT TTGCTGATCT TGGAGCAGAT TCTCTCGACA CTGTAAGTCA TCAATCATTC 2160 TCTTATGTGA ATAAAGAGAA CTTGAAGAGT TTGTTTTAA CATATTAACT GAGTGTTTTG 2220 CATGCAGGTT GAGATAGTGA TGGGTTTAGA GGAAGAGTTT GATATCGAAA TGGCTGAAGA 2280 GAAAGCTCAG AAGATTGCTA CTGTGGAGGA AGCTGCTGAA CTCATTGAAG AGCTCGTTCA 2340 ACTTAAGAAG TAATTTTAGT ATTAAGAGCA GCCAAGGCTT TGTTGGGTTT GTTGTTTTCA 2400 TAATCTTCCT GTCATTTTCT TTTTCTTTAA TGTGTCAAGC GACTCTGTTG GTTTAAAGTA 2460 GTATCTGTTT GCCATGGATC TCTCTCTATT TGTCGACTGA AAACTTTTGG TTTACACATG 2520 AAAGCTIGIT CITGITCIT CITAAAICGA AAIGCCAAAI GCGAGAITAG GGAAICTIGI 2580 ATTAACACAT ACATAAGTCA AAGAGTAGGC CCTAAGATGA CAATTTATAA ACAATCCTAT 2640 TCACATIGIA TATACAGGIT AIGAITAIIC CCAATCAGCG ICAAAGAAIC CAGCAICITI 2700 CATCTCTGAA TAGTAGACAT TCTCCAAGTT CACATCTTCC TCCTGCACCA AAAACCAGTA 2760 CTAAATCATG AACATTGCAA TAATCACATG CCTAGGCGAG AGTTTTGGTG ATGTGGTGTT 2820 AGTGATAGTG ATACTGATGG TGCTAGAGCG GTTAAGAAGG ATTAACCTGG AAGAAGTCTG 2880 CAAGGAAAGT AACATAGAGA AGAGGAAGAT AGGAGTGGTA ACAAACACTT GTGATCCCAT 2940 ACAGCCTCCC AGCATTTTTC AAATGTTATT TCCTTACATA AAGAAACAAG AGAAGTCTGA 3000 CTAGATGATA TITATATAGG ATAAGTGTTT TACCATAAGC CAAAGTGAGC GCCGTTTGCA 3060

FIGURE 9 Page 3 of 4

3898 адабсталсс адасастаса сеттессат ататстсатс алсатдатст даладсталс 3120 CCAGAGATGA GGAAAGTCCG TGTCAACGCT TCACCGCCAT TCGCGTAGTT TCCTTGGAAG 3240 ACAAAGGCCA CCAACCAAAC TTACTTCCAG AAACAACACT CCAAATGTTG TCAACAAAGT 3300 CAATAGATTC CAAACTACTT CGTTACAGGG TTGTATAGAT AATATAATAG AATAGTGGGA 3360 AGATAGTATA AATAAAATAA ATAAAAGATC CTATCGGTAA ATAGTTTATA ATATCGGGGG 3420 сетататала статалалада дастсттстс сдатссвасс сттелдалатс дстстслатс 3480 TCTGGCGTAA CGACCGGATC GTTCGCGCGT AATTTTCGCT GCTATAAATA GAAACTTTCC 3540 TCTTCTGTTT CTCGATCAAA ATTTTTTTT GGAAAAATTA AGTTTGAATC TATCGTAGAT 3600 GCTGTGACAA AAAAAATTG TTTTATCGAA GATGAGAAAC ATGAGGCCCTG TTCATGCAAG 3660 GAACCAGACC ACGGATCCAT CTTCGCCGAT GATGACGTCT CCTCTGATGA ATCGTCACGC 3720 ACGGACAGGA TCCAACGCTG GACCAGCATC TAACGCCAAG AAAGCACAGA CGAAAGCAGC 3780 AGCTCAGAGA CTCGCGGCTG TGATGTCGAA CCAAACAGGC GACGATGAAG ACAGTGATGA 3840 ATATCACAGT TAATGAACAC AATGGTTACC TTGAGAAGCA AATCAAGACC TATAACAAGC 3180 TGACCTITICC ITIGACTACA ACGCTGTCGG AAGCATTGGT CTCGCTGCCG GAAGATCT

FIGURE 9 Page 4 of 4

Lambda CGN1-2

NCG-186 Linear

LENGTH = 4325

69 1 CTCGAGGCAGTCACTAACATGAAGTTTTGACGAGGAGCCCAACTATGGGAAGCTTATTTCTCTTTTTCGAT
39 50 HindIII HgiJII SduI NlaIV XhoI AvaI

138 SacI XbaI

139 TTTCTTGTTCAPATTAACTTCTAAACTTGTGTATAAATATTCTCTGAAAGTGCTTCTTTTGGCAPA 207 150 NdeI SspI NdeI

276 Ksp632I

208 TGTAGGTTGGGCAAAAACGAGGAAGATTGCTTCTCAATTTGGAAGAGGATGAACAGCCGAAGAAGAAAA 245 Page 1 of 13 FIGURE 10

FIGURE 10 Page 2 of 13

٠	621	069	759		8 2 8	897	996		1035
Cfr10I BbvII 	553 TGAGTTGTCACCGGTCTTCCTACACAGGTAATAATCAGTTGAAGCAATTAAGAATCAATTTGATTTGT 560 563	622 AGTAAACTAAGAAGATTTACCTTATGTTTTTCCCCGCAGGACTGGATTATGGAACAATGGGAAAAAAAA	Saci TACTATATAAGCTCCATAGCTGGTTCAGATAACGGGAGCTCTTTAGTTATGTCAAAAGGTTAGTGT 731	BbvII	 760 TTAGTGAATAAACTTATACCACAAAGTCTTCATTGACTTATTTAT	829 GAACTACTTATTCTCAGCAGTCATACAAAGTGAGTGACTCATTTCCGTTCAAGTGGATAAATAA	898 GGAAAGAAGATTTTCATGTAACCTCCATGACAACTGCTGGTAATCGTTGGGGTGTGTTAATGTCGAGGA	BclI 	967 ACTCTGGCTTCTCTGATCAGGTAGGTTTTTTGTCTTTTTTGTCTGGTGTTTTTTTT

FIGURE 10 Page 3 of 13

 ATGAAAGGGATGTGTCTTGGTATGTACGAATAACAAAGAGAAGATGGAATTAGTAGTAGAAATA 1587 1587	1519
IdsS	
.450 CGAGACTCAGGGTCGTCATAATACCAATCAAAGACGTAAAACCAGACGCAACCTCTTTGGTTGAATGTA 1518	450
ATATGCTATGGCAGGACAGTGTGCTGATACACACTTAAGCATCATGTGGAAAGCCAAAGACAATTGGAG 1449 1415	1381
Aflii 	
312 TAGGACCTGAGAGCTTTTGGTTGATTTTTTTTTCAGGACAAATGGGCGAAGAATCTGTACATTGCATCA 1380	1312
243 CTCATGTCAAGGTTGGTTTCTTTAGCTTTGAACACAGATTTGGATCTTTTTGTTTTGTTTTCCATATACT 1311 1285	.243
XhoII	
TAAGCATACCAAAGCGTAAGATGGTGGATGAAACTCAAGAGACTCTCCGCACCACCGCCTTTCCAAGTA 1242 1175	1174
Tth111111 Scal	•
ATAGGAGGTGGGAGAATGGGTATAGAATAACATCAATGGCAGCAACTGCGGATCAAGCAGCTTTCATAT 1173	105
.036 CTAATATGATAAACTCTGCGTTGTGAAAGGTGGTGGAGCTTGACTTTTTGTACCCAAGCGATGGGATAC 1104	9 8 0 7

FIGURE 10 Page 4 of 13

1657 TGCGTCTCTAGATATGTTCCTATATCTTTCTCAGTGTCTGATAAGTGAAAATGTGAAAAACCATACCAA 1725 ECORV SspI XbaI

ECORI

Eco57I

FIGURE 10 Page 5 of 13 Sphi Nspi

NdeI

Sphi Ndel Nspi PmaCI [AvaIII] Sspi AfliII

Tth1111

2037 2036

2044

Seci

Ksp632I

Page 6 of 13 FIGURE 10

Sall HindII AccI Cfr10I	Tth11111 HindIII HindIII GGAGTTTCAGCAACACACCTGAAAGCTTGCCAACAATGGCTCCAC SG1uPheGlnGlnAlaGlnHisLeuLysAlaCysGlnGlnTrpLeuHis	2325 2342 BbvII	 - - YSerGlyProSerTrpThrLeuAspGlyGluPheAspPheGluAspAsp 2384	NlaIV Apal Gsul Hael NspBII
Sali HindII Acci GGAAGTCGACGAAGATGATGCO 1GluValAspGluAspAspAlo 2241 2242	TCAGCAAGCACAACACTGAA	NlaIV	 FTCCAAGCTGGACCCTCGATGG' -YProSerTrpThrLeuAspGl ₂ 2384	Gsul Hael NspBII
Sali Hindii Acci Acci	2278 AGGATTCCAAAATGTAGGAAGGAGTT	Tth1111I	 2347 AAGCAGGCAATGCAGTCCGGTAGTGG LysGlnAlaMETGlnSerGlySerGl 2363	NlaIV ApaI ValGluAsnGlnGlnGlnGlyProGli 2438 2436

CAGGAAGACCACTTTGCGTTTGCCCAACCTTGAAAGGAGCATCCAAAGCCGTTAAACAACAACAGATTCGA 2553 ${\tt 3lnGluGluProLeuCysValCysProThrLeuLysGlyAlaSerLysAlaValLysGlnGlnIleArg}$ 2485

2622 CAACAACAGGGACAACAAATGCAGGGACAGCAGATGCAGCAAGTGATTAGCCGTATCTACCAGACCGCT GlnGlnGlnGlnGlnGlnGlnGlyGlnGlnGlnMETGlnGlnValIleSerArgIleTyrGlnThrAla 2554

SecI BbvII

ACGCACTTACCTAGAGCTTGCAACATCAGGCAAGTTAGCATTTGCCCCTTCCAGAAGACCATGCCTGGG 2691 $\verb| ThrHisLeuProArgAlaCysAsnIleArgGlnValSerIleCysProPheGlnLysThrMETProGly| \\$ 2623

2687

2684

NlaIV

HgiJII ApaI

2692

XhoI AvaI

SecI DsaI

CCCGGCTTCTACTAGATTCCAAACGAATATCCTCGAGAGTGTGTATACCACGGTGATATGAGTGTGGTT 2760 2736 2724 ProGlyPheTyr

2692

HindII HpaI

Page 8 of 13 FIGURE 10

2830 TACTCCGTAGACGGTAATAAAGAGAGAGTTTTTTTTTTT	Spel VspI	NSDI Aflili CATGTCAGATTTTCTTTTTTTAATGTCTTAATTAAGCCTTCAAGGCTAGTGATAAAAGATCATCCA 3036 2968 2972	<pre>Xholl NlaIV BamHI BamHI ATGGGATCCAACAAAGACTCAAAATCTGGTTTTTGATCAGATACTTCAAAAACTATTTTTGTATTAAA 3105 3041 3043</pre>
2830 TACTCCGTAGACGGTAATAAA 2838	 2899 TAACAACAGATACACCAAAA	Nspi Aflili 2968 CATGTCAGATTTTCTTTTCT 2968 2972	XhoII NlaIV BamHI 3037 ATGGATCCAACAAGACTC? 3041

AccI

FIGURE 10 Page 9 of 13

	BbvII	Tth111
 3106 TTATGCAAGTGTTCTTTTATTTGGTGAAGACTCTTTAGAAGCAAAGAACGACAAGCAGTAATAAAAAA 3174 3139	 !TTTAGAAGCAAAGAACGACA 3139	l agcagtaataaaaaa 3174 3174
		$\operatorname*{VspI}_{\mid}$
3175 ACAAAGTTCAGTTTTAAGATTTGTTATTGACTTATTGTCATTTTGAAAAATATAGTATGATATTAATATA 3237	АТТGТСАТТТGАААААТАТА	 3243 3237
Tth11111	VspI	
 3244 GTTTTATTTATATATGCTTGTCTATTCAAGATTTTGAGAACATTAATATGATACTGTCCACATATCCAA	 'TTGAGAACATTAATATGATA	CTGTCCACATATCCAA 3312
3250	3287	
NdeI 	Tth1111I	
3313 TATATTAAGTTTCATTTCTGTTCAAACATATGA 3341	 TTCAAACATATGATAAGATGGTCAAATGATTATGAGTTTTGTTATTAC 3341 3352	GAGTTTTGTTATTTAC 3381
Eco57I	Δ-	Eco57I
3382 CTGAAGAAAAGATAAGTGAGCTTCGAGTTTCTGAAGGGTACGTGATCTTCATTTCTTGGCTAAAAGCGA 3450 3404	 ;AAGGGTACGTGATCTTCATT 3	 TTCTTGGCTAAAAGCGA 3450 3434

FIGURE 10 Page 10 of 13

3451 ATATGACATCACCTAGAGAAAGCCGATAATAGTAAACTCTGTTCTTGGTTTTTGGTTTAATCAAACCGA 3519

FIGURE 10 Page 11 of 13

4279 TGGGAAAGTTGATGAĠATCCAÀGĊTTGGGC、 "GCAĠGTĊĠACGÀATTC 4325 4294 4302 4316 4321 4300 FIGURE 10 Page 13 of 13 HindIlI BspMI

HindII Acci EcoRi

XhoII

Sall Pati

ECORV

3865 CCTTTGGTGGTGGATATCGTGACGAAGGACCTCCCAGTGAAGTCATTGGTTCGTTTACTCTTTTCTTAG 3933

HindIII

3934 TCGAATCTTATTCTTGCTCTCGTTGTTTTTACCGATAAGCTTAAGACTTTATTGATAAAGTTCTCA 4002

3974

4003 GCTTTGAATGAATGAACTGTTTCCTGCTTATTAGTGTTCCTTTGTTTTGAGTTGAATCACTGTCTTA 4071

4072 GCACTTTTGTTAGATTCATCTTTGTGTTTAAGTTAAAAGGTAGAAACTTTGTGACTTGTTGTCTCCGTTATG 4140

HindII HpaI

Tth111II

XhoII

4210 GACCAAGCTCTCTCAGGCGAAGATCCCTTACTTCAATGCCCCAATCTACTTGGAAAAAAAGACACAGAT 4278

FIGURE 10

Page 12 of