Sadat Academy for Management Sciences Faculty of Computers and Information Examiner: Prof. Dr. Osama Khozium

Time Allowed: 2 hours

Ac. Year: 2020/2021

Class: 1st year Score: 15 marks Date: 25 /11/2021

Logical Design (CS 221) Mid-Term Exam

Execute the following conversions

(3 marks)

Decimal	Binary	Octal	Hexadecimal	
35	100011	43	23	
21	10101	25	15	
18	10010	22	12	
27	11011	33	1B	

2 - (5 marks)

a) Convert each of the following BCD numbers to Decimal

```
10000111 = 87
```

$$10010101011110000 = 9570$$

b) Add the following BCD numbers

1)
$$1001 + 0100 = 1101 + 0110 = 10011 = 00010011 = 13$$

2)
$$01100111 + 01010011 = (67 = 53) 10111010 + 01100110 = 100100000 = 000100100000 = 120$$

- c) convert the binary number 1101110110 to gray code.
 - = <u>1011001101</u>
- d) convert the gray code number 10100101 to binary
 - = <u>11000110</u>
- e) What is $-18_{(10)}$ expressed as an 8-bit binary number in 2's complement notation?

$$18 = 10010 = 00010010 = 111011110$$
 (2's complement) = **111011110**

3 - Simplify the following Boolean expression using Boolean algebra:

$$[wx(y+\overline{xz})+\overline{wx}]yz$$

$$[wx(y+\overline{x}+\overline{z})+\overline{wx}]yz$$

$$=[wxy+wx\overline{x}+wx\overline{z}+\overline{wx}]yz$$

$$=[wxy+wx\overline{z}+\overline{wx}]yz$$

$$=[wxyyz+wx\overline{z}yz+\overline{wx}yz]$$

$$=[wxyz+\overline{wx}yz]$$

$$=[yz(wx+\overline{wx})$$

$$=yz$$

4 - Express the Boolean function F = A' + BC' in sum of product using algebraic method and prove your answer by truth table method. (4 marks)

$$F = A' (B'C' + B'C + BC' + BC) + BC' (A' + A)$$

$$F = A' B'C' + A' B'C + A' B C' + A' B C + A' B C' + A B C'$$

$$000 001 011 010 110$$

$$F(A,B,C) = \sum (m0, m1, m2, m3, m6)$$

А	В	С	A'	C'	BC'	F = A'+BC'
0	0	0	1	1	0	<u>1 m0</u>
0	0	1	1	0	0	<u>1 m1</u>
0	1	0	1	1	1	<u>1 m2</u>
0	1	1	1	0	0	<u>1 m3</u>
1	0	0	0	1	0	0
1	0	1	0	0	0	0
1	1	0	0	1	1	<u>1 m6</u>
1	1	1	0	0	0	0

Course Coordinator

Good Luck Prof. Khozium