Computational physics sheet2, Eleonora Foschino

• a) The initial positions of the atoms are distributed along a cubic lattice, within a cubic simulation box (figure 1). Since density ρ and the number of particle N are fixed to $\rho = \frac{N}{V} = 0.1\sigma^{-3}$ and $N = n^3$: $L = n\sigma\sqrt[3]{10}$; also, from $L = p\sigma$ and $L = na_{lat} \to p\sigma = na_{lat}$ (in code, lengths are expressed in units of σ , so p is just the length of L).

Figure 1: Snapshot of the initial conditions with n=4,6,8,10.

• e) Kinetic, potential and total energy (K + U) during the production run are plotted in the following pictures. As it is possible to notice from figure 4, variations in the total energy are negligible.

Figure 2: Kinetic energy in production with step dt = 0.0002.

Figure 3: Potential energy in production run with step dt = 0.0002.

Figure 4: Total energy in production run with step dt = 0.0002.

Energy (dt = 0.0002)	mean	variance	standard deviation
Kinetic energy	200.2	34.2	5.8
Potential energy	-71.5	34.2	5.8
Total energy	128.77712	$1. \cdot 10^{-10}$	$4 \cdot 10^{-5}$

Figure 5: Kinetic energy in production with step dt = 0.00002.

Figure 6: Potential energy in production run with step dt = 0.00002.

Energy ($dt = 0.00002$)	mean	variance	standard deviation
Kinetic energy	192.25	0.02	0.16
Potential energy	-44.02	0.02	0.16
Total energy	148.22102	$2. \cdot 10^{-19}$	$5 \cdot 10^{-10}$

Figure 7: Total energy in production run with step dt = 0.00002.

Figure 8: Kinetic energy in production with step dt = 0.002.

Figure 9: Potential energy in production run with step dt = 0.002.

Figure 10: Total energy in production run with step dt = 0.002.

Energy ($dt = 0.002$)	mean	variance	standard deviation
Kinetic energy	193	24	5
Potential energy	-78	24	5
Total energy	114.739	7. $\cdot 10^{-6}$	0.002

With smaller integration step, the energy (and thus the algorithm?) becomes more stable.

The following graph shows the values of v_i^2 during the production run.

Figure 11: Velocities squared during production run.

• f) Figure 12 reports the computing time as a function of the number of steps. Estimated α is ≈ 1.6 . Therefore $n = 50 \rightarrow N = 2500 \rightarrow \approx 273341s \approx 3 days$.

Figure 12: Computational time as a function of the number of particles.

- g) Figure 13 reports the velocities distribution (similar to the analytical Maxwell-Boltzmann distribution shape).
- h) The energy during doesn't seem to vary significantly with different r_{cuts} (figure 14 reports kinetic energy as an example).
- i) In the code, ϵ, m and σ were chosen as system units and set to 1 (calculations in 15).

Figure 13: Velocity distribution with n=10.

Figure 14: Kinetic energy during the production run with n=6 and $r_cut=3.25\sigma$ (above) and $r_cut=4.00\sigma(\text{below})$.

9

Figure 15