Advantages and Disadvantages of Each

Monday, January 14, 2019 2:40 PM

Random

- Advantages
 - Easy to code, fast to run
- Disadvantages
 - Some objects may be very close (almost right next to each other)
 - Some objects may be very far
- Grid Placement and Jittering

- Advantages
 - Runs fast
 - Evenly spaced, pretty random
- Disadvantages
 - Appears a bit unrandom
 - Some bit white spaces
- Algorithm
 - Initialize a grid of size nxn with numCells ~ numPoints
 - Place each point at a grid center randomly
 - Jitter each point randomly
- Poisson / Min-Max distance placement

- Advantages
 - Direct control of min/max distance apart
 - Very random
 - Evenly spaced (points are about the same dist apart)
- Disadvantages
 - Have to toggle the min/max distance correctly (how to do it auto?)
 - Can run forever if max is too big
 - May look like a "clump" all points in one area, other areas are white space
- o Algorithm
 - Generate each point to be a certain distance away from a previous point
 - If that point is too close to an already existing point, try again
 - Run until numPoints are generated
- Mitchell's Best Candidate

- Advantages
 - Easy to code, fast to run
 - Looks random
 - Evenly spaced
 - Can work with irregular shapes
- Disadvantages
 - Don't know the distance between each point?
- Physics Repulsion Simulation

Advantage

- No points are very close together
- No points are too close to the wall
- Looks very random
- It's cool! It uses physics

o Disadvantage

- Large white spaces in between particles may exist
- Variables are extremely sensitive to tuning (timesteps, forcemax, numparticles, wallcharge), otherwise the particles have too little repulsive force or fly off the box
- Algorithmically very slow, can cause lagging with a high number of points/time steps
- Algorithm is hard to understand and error prone