Number Theory and the RSA Cryptosystem

Gwen Liu

Mentor: Greyson Potter

Outline

- Why number theory?
- Euclidean Algorithm and Linear Equation Theorem
- Congruences and Fermat's little theorem
- **4** Euler's φ function and Euler's formula
- 5 Powers modulo m
- 6 kth roots modulo m
- RSA Encryption
 - Key Generation and Distribution
- 8 RSA Decryption
- 9 Code!
- 10 References

Why number theory?

Euclidean Algorithm and Linear Equation Theorem

Linear Equation Theorem

Can always find a pair (x, y) such that ax + by = gcd(a, b)

Given:
$$22x + 60y = gcd(22, 60)$$

$$60 = 2 \times 22 + 16$$

$$22 = 1 \times 16 + 6$$

$$16 = 2 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

Congruences

We say that "a is congruent to b (mod m)" $a \equiv b \pmod{m}$

Example

- \blacksquare 7 \equiv 2 (mod 5)
- $\blacksquare 47 \equiv 35 \pmod{6}$

Fermat's little theorem

Theorem (Fermat's little theorem)

For a prime p and integer a, we have $a^{p-1} \equiv 1 \pmod{p}$

Example

$$\blacksquare$$
 3⁶ \equiv 1 (mod 7)

$$x \pmod{7}$$
 | 1 | 2 | 3 | 4 | 5 | 6
 $3x \pmod{7}$ | 3 | 6 | 2 | 5 | 1 | 4

$$\underbrace{(3\cdot 1)(3\cdot 2)(3\cdot 3)(3\cdot 4)(3\cdot 5)(3\cdot 6)}_{\text{numbers in second row}} \equiv \underbrace{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6}_{\text{numbers in first row}} \pmod{7}.$$

Euler's ϕ function and Euler's formula

Euler's φ function

The number of integers between 1 and m that are relatively prime to m.

Euler's formula

If gcd(a, m) = 1, then $a^{p(m)} \equiv 1 \pmod{m}$

Powers modulo m

Solves really large powers $(\text{mod } m) : 5^{10000000000} \pmod{12826832}$

Example

■ 7³²⁷ (mod 853)

$$7^{327} = 7^{256+64+4+2+1}$$

$$= 7^{256} \cdot 7^{64} \cdot 7^4 \cdot 7^2 \cdot 7^1$$

$$\equiv 298 \cdot 123 \cdot 695 \cdot 49 \cdot 7 \text{ (mod 853)}.$$

kth roots modulo m

$$x^k \equiv b \pmod{m} \Longrightarrow x=??$$

Method

 ϕ function $\Longrightarrow ku-\phi v=$ 1 with Euclidean algorithm \Longrightarrow successive squaring

Example

- $x^{131} \equiv 758 \pmod{1073}$
- $\phi(1073) = 28 \times 36 = 1008$
- $131u 1008v = 1 \Longrightarrow 131 \times 731 1008 \times 95 = 1$
- Notice: $x^{131^{731}} = x^{131 \times 731} = x^{1+1008 \times 95} = x \times x^{1008 \times 95}$
- Euler's : $x^{1008} \equiv 1 \pmod{1073}$
- $x^{131^{731}} \equiv x \pmod{1073}$
- $x \equiv x^{131^{731}} \equiv 758^{731} \pmod{1073} \equiv 905 \pmod{1073}$

Key Generation and Distribution

- Choose two distinct prime numbers p and q
- **2** Compute $m = p \times q$
- 3 Compute $\varphi(m) = (p-1) \times (q-1)$ since p and q are prime
- 4 Choose a number k that is relatively prime to phi(m)

Private

- p, q the two primes

Public

- \blacksquare k
- m

This is called a public-key cryptosystem.

RSA Encryption

Now...anyone who wants to send us a message uses the values of m and k to encode in the following manner:

Convert message into a string of digits:

						G						
11	12	13	14	15	16	17	18	19	20	21	22	23
N	0	P	Q	R	S	T	U	V	W	X	Y	Z
24	25	26	27	28	29	30	31	32	33	34	35	36

- \mathbf{Z} Break the string of digits into numbers less than m
- 3 Use successive squaring to compute $a^k \pmod{m}$
- 4 Example: p = 73, q = 97, m = 7081, k = 347

Н	E	L	L	0
1815		2222	25	
1815 ³⁴⁷ (mod 708	1)	2222 ³⁴⁷ (mod 708)	25 ³⁴⁷ (mod 7081)	
2212		6844	6593	

RSA Decryption

Decryption requires using the k^{th} roots modulo m method which requires finding $\varphi(m)$, easy for us if we know the factors p and q since $\varphi(m) = (p-1)(q-1)$:

2212		6844	6593	
x ³⁴⁷ (mod 7081)		x ³⁴⁷ (mod 7081)	x ³⁴⁷ (mod 7081)	
1815		2222	25	
Н	E	L	L	0

Code!

5301435910, 4794709296

m = 6022651441

k = 57737

References

Silver, Joseph, H. A Friendly Introduction to Number Theory. Pearson, 2012.

