Zastosowanie metod typu 'ab-initio' do badania właściwości materiałów

Metody oparte na pseudopotencjałach, kod Quantum Espresso

Metody typu "planewave and grid"

- Używają pseudopotencjałów
- Bazą funkcji falowej są fale płaskie
 - Naturalny wybór dla przybliżenia niemal swobodnych elektronów
 - W takiej sytuacji pseudopotencjał jest dobrym wyborem potrzeba małej liczby fal płaskich

Pseudopotencjały – motywacja

Pseudopotencjały – motywacja

- Wnioski
 - Najniżej leżące stany nie biorą udziału w tworzeniu wiązania
 - Funkcje falowe w pobliżu rdzeni silnie oscylują, potrzeba ogromnej (nawet do 10⁵!) ilości fal płaskich

Główna idea

- Zamienić funkcję wieloelektronową (AE) na pseudo-funkcję (pseudo), która nie ma węzłów, ale daje taką samą gęstosć elektronową jak funkcja pierwotna
- Zamienić potencjał rzeczywisty na pseudopotencjał w taki sposób, aby gęstość elektronowa pozstała niezmieniona
- Zarówno pseudo-funkcja jak i pseudopotencjał muszą przechodzić w odpowiadające wielkości wieloelektronowe powyżej pewnego promienia obcięcia r_{cut}

Pseudopotencjały – motywacja

Pseudopotencjały – terminologia

Istnieje kilka podejść do konstrukcji pseudopotencjałów

Local PSP

$$\hat{V}_{\mathrm{ps}} = V_{\mathrm{ps}}(r)$$
 (local in r , θ , ϕ)

Semilocal PSP

$$\hat{V}_{\mathrm{ps}} = \sum_{l} V_{\mathrm{ps}}^{(l)}(r) \, \hat{P}_{l}$$
 (local in r , nonlocal in θ , ϕ)

Nonlocal separable PSP (e.g., Kleinman-Bylander)

$$\hat{V}_{
m ps} = V_{
m ps}^{
m loc}(r) + \sum_{lm} D_l \, |\, eta_{lm} \,
angle \langle \, eta_{lm} \, | \,$$

General nonlocal separable PSP

$$\hat{V}_{
m ps} = V_{
m ps}^{
m loc}(r) + \sum_{ au au'} \sum_{lm} D_{ au au'l} \ket{eta_{ au lm}} ra{eta_{ au'l}}$$

Pseudopotencjały – terminologia

Local PSP

$$\hat{V}_{\mathrm{ps}} = V_{\mathrm{ps}}(r)$$
 (local in r , $heta$, ϕ)

s, *p*, and *d* electrons all feel the same potential

Pseudopotencjały – terminologia

Semilocal PSP

$$\hat{V}_{\mathrm{ps}} = \sum_{l} V_{\mathrm{ps}}^{(l)}(r) \, \hat{P}_{l}$$
 (local in r , nonlocal in θ , ϕ)

s, p, and *d* electrons feel different potentials

Pseudopotencjały – krótka historia

- Pierwsze pseudopotencjały 1959, bazowały na podejściu opartym o metodę OPW
- Pseudopotencjały empiryczne ok. 1970
- Pseudopotencjały modelowe, głównie lokalne
- Pseudopotencjały generowane dla DFT po 1979, głównie semilocal
- Pseudopotencjały separowalne (Kleinman & Bylander) 1982
- Pseudopotencjały "gładkie" (Vanderbilt, Troullier & Martins) lata '90 XX-go wieku
- Pseudopotencjały typu PAW (Blochl) 1994

Pseudopotencjały – generacja

 Jak otrzymać pseudopotencjał? – zadanie jest następujące:

Jakie są dokładnie wymagania stawiane temu zadaniu?

Pseudopotencjały – generacja – wymagania

 Dla pewnej ("referencyjnej") konfiguracji, wartości własne funkcji AE i pseudo muszą się zgadzać:

- Funkcje falowe muszą być równe powyzej r_{cut}
- Pochodna logarytmiczna obu funkcji musi być równa dla r_{cut}:

$$D_{l}(\varepsilon, r) \equiv r \frac{\psi'_{l}(\varepsilon, r)}{\psi_{l}(\varepsilon, r)} = r \frac{d}{dr} ln \left[\psi_{l}(\varepsilon, r) \right]$$

Całkowity ładunek wewnątrz sfery r_{cut} musi być poprawny

$$Q_l = \int_0^{R_c} dr r^2 \left| \psi_l(r) \right|^2$$

- W przypadku DFT używa się programów opartych o rozwiązanie zagadnienia K-S dla swobodnego atomu
- Algorytm jest następujący:
 - Wybór konfiguracji referencyjnej
 - Rozwiązanie problemu K-S dla atomu swobodnego dla pełnego potencjału otrzymuje się funkcje falowe AE
 - Konstrukcja dla każdego ℓ (wg. jednego z algorytmów) pseudofunkcji z funkcji AE mającej odpowiednie właściwości ("pseudization")
 - Odwrócenie równania Schroedingera w celu otrzymania V_{ps}
 - · "Unscreening": $V_{\mathrm{ion},l}^{\mathrm{ps}}(r) = V_{\mathrm{scr},l}^{\mathrm{ps}}(r) V_{\mathrm{Hxc}}^{\mathrm{ps}}(r)$
 - Eksport i testy (np. "transferability")

Pseudopotencjały – generacja – testowanie

- Główny sprawdzian energie dla różnych (wzbudzonych) konfiguracji – porównanie obliczeń z wygenerowanym pseudopotencjałem oraz AE
- Np. dla Si konfiguracje [core]s²p², [core]s¹p³, [core]s²p¹
- Jeżeli porównanie wypadło dobrze (tj. energie nie różnią się) to znaczy, że jest wysokie prawdopodobieństwo, że pseudopotencjał będzie "przechodni"
- Przykład, dla tlenu:

State		AE	HSC
s p 5	S	-1.7662	-1.7649
	p	-0.6981	-0.6982
	$\Delta E_{ m tot}$	1.0658	1.0651
s ⁰ p ⁶	s	-1.7987	-1.7957
	p	-0.7262	-0.7261
	$\Delta E_{ m tot}$	2.1361	2.1331
s ² p ³	s	-2.8738	-2.8737
	p	-1.7909	-1.7904
	$\Delta \dot{E}_{ m tot}$	1.2066	1.2065

- W chwili obecnej najczęsciej używane są potencjały typu "ultrasoft"
- Wymagają mniejszej ilości funkcji bazy oraz dają szybszą zbieżność rozwiązania iteracyjnego problemu K-S

Quantum Espresso – podstawowe informacje

- Realizuje metodę K-S, używa pseudopotencjału
- Baza funkcji układ fal płaskich
 - Podstawowy parametr obcięcie bazy:

$$\langle \mathbf{r} | \mathbf{k} + \mathbf{G} \rangle = \frac{1}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}}, \quad \frac{\hbar^2}{2m} |\mathbf{k} + \mathbf{G}|^2 \le E_{cut}$$

Darmowy – program typu opensource

Quantum Espresso – możliwości

- Struktura elektronowa, gęstość stanów
- Gęstości elektronowa i spinowa,
- Energia całkowita, siły (F-H), optymalizacja struktury
- Układy spinowo spolaryzowane (ferro, antyferro, niekolinearny)
- Oddziaływanie spin-orbita
- LDA, GGA, LDA+U
- Polaryzacja
- Odziaływanie elektron-fonon
- Widmo fononów
- Widmo Ramana
- Moduł dynamiki molekularnej
- Nie uwzględnia symetrii układu (komórki elementarnej)
- Interface graficzny przygotowywanie plików wejściowych
- Wizualizacja XCrysDen