Smoke on the Water

Duh duh duhhhh....duh duh da DUHHHHH

Sierra Barkdoll, Breanna Byrd, Justin Drew, Aren Warner

TOPIC:

Fires and Recovery on North Andros Island

Background

- Dry season: January-May
- Pineland habitat
- Cause of fires
 - ☐ Historically, lightning or human activity
 - Now, mainly humans
- On average, pineland swaths burn ever 1-2 years

Burn Severity Panoramas

Question:

What determines recovery time for burned areas?

Possible Factors:

- Burn Severity
- Repeat Burns
- Burn Area Size

Hypothesis:

Recovery time will be longer for areas that were large, had more severe burns, and/or had additional burns before fully recovering.

Just(in)ification

- ☐ Purpose for studying fire, repeat burns, and recovery:
 - Land Management
 - Natural Regrowth Capabilities
 - Soil Erosion
 - Ecological Community Health
 - Degradation by Fire Regimes

Critically Endangered Bahama Oriole

Data: Burn Areas

- Fire Information for Resource Management System (FIRMS) Fire Map
- MODIS Burned Area Product
 - Shapefiles
 - Rasters

Data: Imagery

- MOD13Q1 v006
 - MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid
 - o NDVI, EVI
 - ONIR, MIR (2.105-2.155μm), Red, and Blue Surface Reflectance
 - Composite by view angle, cloud coverage, and/or highest EVI value

Methods: Identifying Burn Dates

- ☐ Using FIRMS to narrow date range to Jan Jun
- □ We only need MOD13Q1 and MODIS BA data from this range

Jan - Jun 2010

Jul - Dec 2010

Methods: Shapefile Creation

- Download MODIS Burn Date Shapefile
- Aggregate to Monthly Burn Area

Methods: Equations

- Calculating NBR from MODIS Bands $NBR = \frac{(NIR MIR)}{(NIR + MIR)}$
- Severity Calculations $dNBR = NBR_{pre-fire} NBR_{post-fire}$ $dEVI = EVI_{pre-fire} EVI_{post-fire}$
- Recovery Calculations

$$RI_{NBR} = rac{Mean\,NBR}{Mean\,NBR_{pre-fire}} \qquad RI_{EVI} = rac{Mean\,EVI}{Mean\,EVI_{pre-fire}}$$

Methods: Image Extraction

- Use first image dated after latest burn pixel
- □ Create Rasters: NBR, dNBR, dEVI
- Values for Burn Areas: Mean value of pixels under burn polygon
- Calculate Repeat Burns from number of times a pixel in the burn area has burned since initial burn
- Burn Area considered recovered when RI > 0.95

Repeat Burns from 2010 to 2019

I'm the map. I'm the map. I'm the map. I'm the map. I'm the MAP!

Extract Maximum, Subtract One

Results

				Repeat		Repeat	
				Burns prior		Burns prior	Years Until
Burn Date	dNBR	dEVI	Size (m²)	to EVI	Years Until	to NBR	NBR
				Recovery	EVI Recovery	Recovery	Recovery
2010091	0.1098	0.027	431,875	0	1	0	0
2010092	0.5066	-0.09	432,011	0	0	0	4
2010113	0.2068	0.1681	8,438,455	0	5	0	2
2010086	0.0871	0.1645	9,289,586	0	2	0	2
2010046	NA	NA	431,276	NA	NA	NA	NA
2010040	0.1162	0.0624	432,440	0	1	0	1
2010120	0.3346	0.1527	5,192,489	0	2	0	3
2010010	-0.1334	-0.0057	432,470	0	0	0	0
2010057	NA	NA	216,160	NA	NA	NA	NA
2009097	0.3007	0.1255	12,824,475	0	2	0	6
2009097	0.6027	0.0512	217,398	0	2	0	5
2009067	0.2406	0.1473	20,299,239	0	1	0	1
2009073	0.1741	0.0907	12,519,059	0	1	0	1
2009077	0.175	0.0859	6,692,586	0	1	1	2
2009079	0.2778	0.134	432,560	0	3	0	3
2009082	0.2645	0.1997	648,660	1	7	0	3

Predictor Problems

- ☐ For either metric, only one burn area had a repeat burn
- We had no ground truth data
 - ☐ To measure recovery, we used a ratio of VIs
 - ☐ To measure severity, we used a difference of VIs
- Predictors need to be independent of the response

Difference VI and Recovery

The Strength of this Relationship is Self-Explanatory

Significance of Burn Size

- We know our Recovery measure is not independent of our Severity measure
- This gives us a reasonable framework to determine if Size is a significant factor in determining recovery with EVI or NBR

ANOVA Tables

```
Model 1: Recovery Time EVI ~ dEVI
                                                   Model 1: Recovery Time NBR ~ dNBR
Model 2: Recovery Time EVI ~ dEVI + Size
                                                   Model 2: Recovery Time NBR ~ dNBR + Size
                                                   Model 3: Recovery Time NBR ~ dNBR + Size + dEVI
Model 3: Recovery Time EVI ~ dEVI + Size + dNBR
                       Sum of Sq
 Res.Df
           RSS
                                           Pr (>F)
                                                     Res.Df
                                                                           Sum of Sq
                                                                                              Pr (>F)
                                                                  RSS
        23.498
                                                              16.118
     11 14.008 1 9.4896 7.4485 0.02588
                                                   2 11 16.065 1 0.053138
                                                                                      0.0364
                                                                                              0.8522
    10 12.336 1 1.6718 1.3552 0.27139
                                                   3 10 15.172 1 0.89242
                                                                                      0.5882
                                                                                              0.4608
```

The Use of EVI vs NBR in Burn Monitoring

- The difference in SWIR is much larger than that in Red
- Corresponds to structural change rather than greenness

Next Steps

- Closer examination of relationship between EVI and Burn Size
- Further examine land cover differences
- Consider proximity to human settlements
- Go further back in time

Conclusion / Closing Thoughts

- ☐ The size of a burn area affects how fast it regreens, but not how long it takes for a full recovery to pre-fire conditions
- Even without objective data for severity and recovery time, it still seems reasonable that more severe burns take longer to recover
- Repeat burns are not a problem for ecosystems with an established fire regime

References

- Fernandez-Manso, A., Quintano, C., & Roberts, D. A. (2016). Burn severity influence on postfire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sensing of Environment, 184, 112–123. https://doi.org/DOI: 10.1016/j.rse.2016.06.015.
- Myers, R., D. Wade, and C. Bergh, Fire Management Assessment of the Caribbean Pine (Pinus caribea) Forest Ecosystems on Andros and Abaco Islands, Bahamas. GFI publication no. 2004-1. The Nature Conservancy, Arlington, VA.
- Storey, E. A., Stow, D. A., & O'Leary, J. F. (2016). Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery. Remote sensing of environment, 183, 53-64.
- White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C., & Hobart, G. W. (2017). A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sensing of Environment, 194, 303-321.

Image References

- Forest Fire:
 - https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwjJ3pulhLHmAhURxVkKHZgBA_YQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F3899I32802090I7233%2F&psig=AOvVaw28vND7yjcM_0_uA_BhrHaD&ust=157627I824883978
- Charmander
 - https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwi7wpPEhrHmAhUhrlkKHbemA8gQjRx6BAgBEAQ&url=https%3A%2F%2Fwww.pokemon.com%2Fus%2Fpokedex%2Fcharmander&psig=AOvVaw1PqLkaZdF5KH4NImOFUX0S&ust=1576272429867105
- AppEEARS: https://www.google.com/imgres?imgurl=https%3A%2F%2Fprd-wret.s3-us-west-2.amazonaws.com%2Fassets%2Fpalladium%2Fproduction%2Fs3fspublic%2Fstyles%2Fcontent_grid%2Fpublic%2Fthumbnails%2Fvideo%2FAppEEARS%2520Overview_LPDAAC_Aug2018 %2520final%2520Thumbnail.jpg&imgrefurl=https%3A%2F%2Fwww.usgs.gov%2Fproducts%2Fmultimediagallery%2Fvideos%2Ffeatured-films-and
 - shorts%3Fpage%3D1&docid=00v2bLZ3qmo4OM&tbnid=mpZHVnmYGC29dM%3A&vet=10ahUKEwiX27rnhbHmAhXIpF kKHXLXC54QMwhBKAMwAw..i&w=250&h=250&itg=1&bih=743&biw=1536&q=appeears%20logo&ved=0ahUKEwiX27rnhb HmAhXIpFkKHXLXC54QMwhBKAMwAw&iact=mrc&uact=8
- Map:
 - https://www.cleanpng.com/free/dora-the-explorer-map.html
- Spectral Response Graph: https://www.earthdatascience.org/courses/earth-analytics/multispectral-remote-sensing-modis/normalized-burn-index-dNBR/

Questions?

Oh wait!. ;-) lel.