QF A – Teste 1

Felipe B. Pinto 61387 – MIEQB

29 de março de 2023

Conteúdo

Questão 1	2	Questão 3							4
Questão 2	3	Questão 4							5

Questão 1

A reação de decomposição do pentóxido de azoto, $2 N_2 O_{5(g)} \longrightarrow 4 NO_{2(g)} + O_{2(g)}$ foi seguida a 67 °C:

•
$$N_2O_5 = \alpha$$

t/min	0	1	2	3	4	 5
[α]/M	1.000	0.705	0.497	0.349	0.246	0.173
t/s	0	60	120	180	240	300
$\ln \left[\alpha\right]/\left[\alpha\right]_{0}$	0	-0.3496	-0.6992	-1.0527	-1.4024	-1.7545

(i)

Ordem da reação

$$\frac{\ln\left[\alpha\right]_{2}/\left[\alpha\right]_{0}}{\ln\left[\alpha\right]_{1}/\left[\alpha\right]_{0}} \cong 2 \neq \frac{\ln\left[\alpha\right]_{5}/\left[\alpha\right]_{0}}{\ln\left[\alpha\right]_{4}/\left[\alpha\right]_{0}} \cong 1.25$$

Não é linear portanto 2a Ordem

(ii)

Constante cinética

$$\ln \frac{[\alpha]}{[\alpha]_0} = -k t \implies k = -\ln \frac{[\alpha]}{[\alpha]_0} / t \cong -(-0.3496) / 60 = 5.83 \,\mathrm{E} - 3$$

(iii)

Tempo de meia vida

$$t_{1/2} = (k \, [\alpha]_0)^{-1} \cong ((5.83 \, \text{E} - 3) * 1.00)^{-1} \cong 171.62$$

$$HI_{(g)} \longrightarrow \frac{1}{2}H_{2(g)} + \frac{1}{2}I_{2(g)}$$

T/K	558	723	781
$\ln k_2/\mathrm{s}^{-1}$	-13.8155	-4.60517	-2.30259
T^{-1}/K	$1.79\mathrm{E}{-3}$	$1.38\mathrm{E}{-3}$	$1.28\mathrm{E}{-3}$

Figura 1: $\ln k_2 = -2.2505 \,\mathrm{e} - 4/t + 26.517$

Q2 a.

Energia de Ativação da reação

$$E_a = k R = 2.2505 \,\mathrm{e} - 4 * 8.31 = 1.87 \,\mathrm{E} - 3$$

Q2 b.

Prove que é de 2a Ordem

t/h	0	48	96	144
p/mbar	100	93	87	82
t/s	0	172800	345600	518400
$\ln\left(p/p_0\right)$	0	-0.0726	-0.1393	-0.1985
				T

 $T = 645 \, \text{K}$

Figura 2: $\ln{(p/p_0)} = 3.8313 \,\mathrm{e} - 7 * t - 0.0033$

Questão 3

Explique o grafico

O grafico apresenta a relação energia e avanço da reação A \Longrightarrow B Podemos perceber que uma quantidade de energia b é liberada ao decorrer da reação e A é necessário receber a de energia para que a reação seja efetivada, caso B \longrightarrow A, B deveria adquirir a+b de energia para efetivar. Quando no topo do pico a+b a reação se encontra no complexo-ativado.

Questão 4

$$A + A \xrightarrow{K+1} A_* + A$$

$$A_* + A \xrightarrow{K-1} A + A$$

$$A_* \xrightarrow{K2} P \text{ (Lento)}$$

Q4 a.

Aplique o método do estado estacionário p mostrar que é de 1a ordem quando [A] elevado e 2a quando baixo

$$\frac{d[A_*]}{dt} = k_{+1}[A]^2 - k_{-1}[A][A_*] - k_2[A_*] = 0 \implies$$

$$\implies [A_*] (k_{-1}[A] + k_2) = k_{+1}[A]^2 \implies$$

$$\implies [A_*] = \frac{k_{+1}[A]^2}{k_{-1}[A] + k_2} \implies$$

$$\implies \lim_{[A] \gg} [A_*] = \frac{k_{+1}[A]^2}{k_{-1}[A]} = [A] \frac{k_{+1}}{k_{-1}}$$

$$\therefore [A_*] = \begin{cases} [A] \frac{k_{+1}}{k_{-1}} & [A] \gg \\ [A]^2 \frac{k_{+1}}{k_2} & [A] \ll \end{cases}$$