What is claimed is:

1. An organism-compatible material with combined extracel-
lular matrices comprising a base made of a material for organisms, a cal-
cification layer formed on the base, and extracellular matrices formed on
the layer by cells of a region of an organism to which the organ-
ism-compatible material with combined extracellular matrices is to be ap-
plied

- 2. An organism compatible material with combined extracellular matrices as claimed in claim 1 of which the base is of titanium, a titanium alloy, or a calcium phosphate compound such as hydroxyapatite, or a piece of glass, a piece of a polymer or a ceramic overlaid with titanium, a titanium alloy, or a calcium phosphate compound such as hydroxyapatite.
- 3. An organism compatible material with combined extracellular matrices as claimed in claim 1 or 2, wherein said cells are osteoblasts, chondroblasts, tendon cells, vascular endothelial cells, epithelial cells, connective tissue cells, or glia cells.
- 4. An organism-compatible material with combined extracellular matrices as claimed in claim 1, 2, or 3 which includes said cells.
- 5. A production method of an organism-compatible material with combined extracellular matrices, wherein cells of a region of an organism, to which the material is to be applied, are cultured on a base made of titanium or a titanium alloy in a culture solution and, thereby, extracellular matrices are formed between a calcification layer formed on the base and the cells.

1	6. A production method of an organism-compatible material
2	with combined extracellular matrices, comprising the steps of:
3	culturing cells of a region of an organism, to which the mate-
4	rial is to be applied, on a base made of titanium or a titanium alloy in a
5	culture solution to form extracellular matrices between a calcification
6	layer formed on the base and the cells; and
7	removing the cells.
1	7. A production method of an organism-compatible material
2	with combined extracellular matrices as claimed in claim 5 or 6, wherein
3	the base is a piece of glass, a piece of a polymer, or a ceramic overlaid with
4	titanium or a titanium alloy.
1	8. A production method of an organism compatible material
2	with combined extracellular matrices as claimed in claim 5, 6, or 7,
3	wherein a calcification layer is formed on a surface of the base in a culture
4	solution in advance.
1	9. A production method of an organism-compatible material
2	with combined extracellular matrices comprising the steps of:
3	culturing cells of a region of an organism, to which the mate-
4	rial is to be applied, on a base of titanium or a titanium alloy in a culture
5	solution to form extracellular matrices between a calcification layer
6	formed on the base and the cells;
7	removing the cells;
8	decalcifying the base with the calcification layer and the ex-
9	tracellular matrices to obtain suspension of the extracellular matrices;
10	concentrating the suspension; and
11	combining the extracellular matrices in the concentrated sus-
12	pension with another base made of titanium or a titanium alloy.

1	10. An extracellular matrix preparation for injection which is
2	prepared from extracellular matrices formed by cells of a region of an or-
3	ganism, into which the preparation is to be injected, by concentrating and
4	processing the extracellular matrices.
1	11. An extracellular-matrix ointment which is prepared from
2	concentrated fluid of extracellular matrices formed by cells of a region of
3	an organism, to which the ointment is to be applied, and an ointment base.
1	12. A production method of an extracellular-matrix prepara-
2	tion for injection comprising the steps of:
3	culturing cells of a region of an organism, into which the
4	preparation is to be injected, on a base of titanium or a titanium alloy in a
5	culture solution to form extracellular matrices between a calcification
6	layer formed on the base and the cells;
7	removing the cells;
8	decalcifying the base with the calcification layer and the ex-
9	tracellular matrices to obtain suspension of the extracellular matrices;
10	concentrating the suspension by dialysis;
11	sterilizing the concentrated suspension; and
12	preparing the preparation for injection from the concentrated
13	suspension.
1	13. A production method of an extracellular-matrix ointment
2	comprising the steps of:
3	culturing cells of a region of an organism, to which the oint-
4	ment is to be applied, on a base of titanium or a titanium alloy in a culture
5	solution to form extracellular matrices between a calcification layer
6	formed on the base and the cells;
7	removing the cells;
8	decalcifying the base with the calcification layer and the ex-

9	tracellular matrices to obtain suspension of the extracellular matrices;
10	concentrating the suspension; and
11	adding an ointment base to the concentrated suspension to
12	prepare the ointment from the concentrated suspension.