

Universidade Federal de Viçosa Departamento de Engenharia Agrícola Fenômenos de transporte - ENG 275

Introdução Transferência de

calor Capítulo 1

INCROPERA, F. P.; DEWITT, D. P; BERGAMAN, T. L.; LAVINE, A. S. Fundamentos de transferência de calor e massa. 5°Edição. Rio de Janeiro: LTC, 2008.

Pamela Cabral pamela.cabral@ufv.br

Por que estudamos transferência de

Inúmeras aplicações para resolução de problemas de engenharia

- Refrigeração de motores e ventilação
- Projeto de fornos, regeneradores e conversores
- Estudos sobre evaporação, condensação, trabalhos em refinarias e reatores
- Transformadores, geradores e dissipadores de calor

Por que estudamos transferência de

Inúmeras aplicações para resolução de problemas de engenharia

- Caldeiras e máquinas térmicas
- lsolamento e conforto térmico
- Geração de eletricidade, condensadores e turbinas
- ଞ୍ଚିଚ୍ଛ Torres de refrigeração e recirculação

[Temperatura]

Temperatura é uma medida do "grau de agitação" (movimentação) das moléculas de um corpo

Quanto maior a temperatura maior o estado de agitação

Tempera

THERMAL ENERGY

Thermal Energy: The total of all kinetic and potential energy of the atoms in an object

When the Thermal Energy of a substance increases, its particles move faster

HEAT SOURCE

A change in Thermal energy can lead to a change in phase

HEAT SOURCE

[Temperatura]

[
Temperatura]

A quantidade que informa quão quente ou frio um objeto está em relação a algum padrão é o que chamamos de temperatura.

တို [Transferência de energia]

A energia transferida de um corpo para outro ocasionada por uma diferença de temperatura entre elas é chamada

de cal

🎉 [Transferência de

Calor é a energia térmica em trânsito entre corpos com **temperaturas**

Equilíbrio térmico

[Mecanismos de transferência de calor]

[Mecanismos de transferência de calor] Condução

Ocorre quando existe um gradiente de temperatura em um **meio estacionário**

UFV

[Mecanismos de transferência de calor] Convecção

Ocorre entre uma superfície e um fluido em movimento quando eles estão a diferentes temperaturas.

[Mecanismos de transferência de calor] Radiação

É uma forma de energia emitida por toda a superfície que tem temperatura absoluta maior que zero. Essa forma de transferência de calor não exige a presença de meio material

Pontos

importantes

Utilizar as equações da taxas/fluxo - determinam a quantidade de energia transferida por uma unidade de tempo/área

$$Taxa = rac{Quantidade\ de\ energia}{tempo}$$

$$Fluxo = \frac{Taxa}{Area}$$

[Origens físicas e equações para cálculo da taxa] condução

A transferência de calor por condução ocorre por interação molecular que está associada a **energia cinética** entre as partículas

partículas Transferência de energia ocorre das partículas **mais energéticas** para as **menos**

energéticas

[Origens físicas e equações para cálculo da taxa]
Lei de

Fourier Quanti

Quantifica o processo de transferência de calor por condução

Considere uma barra fina metálica com extremidades à diferentes temperaturas, T_1 e T_2 , onde $T_1 > T_2$

Condutividade térmica (k)

Material	k (W/mK)
Prata	410

Propriedade física do material Cobre

385

202

Essa propriedade difere os materiais entre condutores e isolantes

Vidro	0,78

Alumínio

$$\left[k = \frac{W}{m K}\right] SI$$

Uma caixa de isopor usada para manter as bebidas frias possui área total (incluindo a tampa) igual a 0,80 m², e a espessura de sua parede mede 2,0 cm. A caixa está cheia de água, gelo e latas de Coca-Cola a 0°C. Qual é a taxa de fluxo de calor para o interior da caixa, se a temperatura da parede externa for 30°C § $K_{isopor} = 0,01 \frac{W}{m^{\circ}C}$

color

Uma barra de aço de 10,0 cm de comprimento é soldada pela extremidade a uma barra de cobre de 20,0 cm de comprimento. As duas barras são perfeitamente isoladas em suas partes laterais. A seção transversal das duas barras é um quadrado de lado igual a 2,0 cm. A extremidade livre da barra de aço é mantida a 100°C pelo contato com vapor d'água obtido por ebulição, e a extremidade livre da barra de cobre é mantida a 0°C por estar em contato com gelo. Calcule a temperatura na <u>junção entre as duas barras e a taxa to</u>

$$K_{cobre} = 385 \frac{W}{m^{\circ}C}$$

$$K_{a \circ o} = 50, 2 \frac{W}{m^{\circ} C}$$

[Origens físicas e equações para cálculo da taxa] Convecção

- Convecção pode ser dar por dois diferentes mecanismos: movimento molecular aleatório e movimento global fluido
- Estudaremos a transferência de calor que ocorre por convecção entre um fluido em movimento e uma superfície, quando houver diferença de temperatura

[Camada Limite]

Convecção natural

O escoamento do fluido é induzido por forças de empuxo, água fervendo em uma chaleira

Convecção forçada

quando o escoamento é causado por meios externos, tais como ventiladores, bombas, ventos atmosféricos

[Origens físicas e equações para cálculo da taxa]
Lei de resfriamento de
Newton

O fluxo de calor é diretamente proporcional a diferença de temperatura

Considere um recipiente com um fluido uma temperatura T1. Este recipiente é colocado em um ambiente a uma temperatura 0°

Coeficiente convectivo

Este parâmetro depende das condições da camada- limite, as quais por sua vez, são influenciadas pela geometria da superfície, pela natureza do escoamento do fluido e por uma série de propriedades termodinâmica de transporte do fluido Processo h (W/m²K)

[₁₋	W] c	
k =	$\overline{m^2 K}$	SI

Convecção natural	gases	2-25
	líquidos	50-1000
Convecção forçada	gases	25-250
	líquidos	100-20000

Um aquecedor elétrico encontra-se no interior de um longo cilindro de diâmetro igual a 30 mm. Quando água, a uma temperatura de 25°C e velocidade de 1 m/s, escoa perpendicularmente ao cilindro a potência por unidade de comprimento necessária para manter a superfície do cilindro a uma temperatura uniforme de 90°C é de 28x103 W/m. Calcule o coeficiente convectivo de transferência de calor.

[Origens físicas e equações para cálculo da taxa] Radiação

- Não exigem a presença de um meio material
- A emissão da radiação térmica está associada à **energia liberada** como resultado das oscilações ou transições dos elétrons.

Sustentadas pela energia interna, e consequentemente, pela temperatura da matéria

[Origens físicas e equações para cálculo da taxa] Radiação

- Não exigem a presença de um meio material
- A emissão da radiação térmica está associada à **energia liberada** como resultado das oscilações ou transições dos elétrons.

Sustentadas pela energia interna, e consequentemente, pela temperatura da matéria

[Origens físicas e equações para cálculo da taxa] Radiação

- Não exigem a presença de um meio material
- A emissão da radiação térmica está associada à **energia liberada** como resultado das oscilações ou transições dos elétrons.

Sustentadas pela energia interna, e consequentemente, pela temperatura da matéria

Poder emissivo

A taxa na qual a energia radiante é emitida por uma superfície, por unidade de área

$$E_b = \sigma T_s^4$$

Limite superior para o $E_b = \sigma T_s^4$ poder emissivo conhecido como Lei de Stefan-

T_s - Temperatura Boltzma 9kn a superfície.

 σ - Constante de Stefan-Boltzmann = 5,67x10⁻⁸ (W/m².K⁴)

$$\left[k = \frac{W}{m^2}\right]$$
 SI

Emissividade

Emissividade é uma propriedade da superfície que depende do material que constitui a superfície, do acabamento e temperatura

$$E_b = \sigma T_s^4$$

 $E_b = \sigma T_s^4$ Radiador ideal ou corpo negro

$$E = \varepsilon \sigma T_s^4$$

 $E = \varepsilon \sigma T_s^4$ Superficie real $0 \le \varepsilon \le 1$

Emissividade

Emissividade para alumínio polido = 0,04

Emissividade para o asfalto = 0,93

[Radiação incidente]

G - radiação incidente por unidade de área em uma superfície.

A Irradiação pode ser oriunda do sol ou de outras superfícies às quais a superfície de interesse esteja exposta.

[Radiação incidente]

Radiação pode também incidir **(G)** sobre uma superfície a partir de sua

 $\begin{array}{c} \text{Vizinhança} \\ \text{T}_{\text{viz}} \end{array} \qquad \begin{array}{c} \text{T}_{\text{viz}} \neq \text{T}_{\text{s}} \\ \text{Vizinhança} \\ \text{T}_{\text{viz}} \end{array}$

Superfície com emissividade $\epsilon = a$

Nessas condições a **irradiação (G)** pode ser aproximada pela emissão de um **corpo negro (E_b)**; **G = s(**T_{viz}

Uma tubulação de vapor d'agua sem isolamento térmico atravessa uma sala na qual o ar e as paredes se encontram a 25°C. O diâmetro externo do tubo é de 70mm, a temperatura de sua superfície é de 200°C e esta superfície tem emissividade igual a 0,8. Qual o poder emissivo da superfície? Sendo o coeficiente associado a TC por convecção natural da superfície para o ar de 15W/(m2K), qual é a taxa de calor perdida pela superfície por unidade comprimento do tubo?

