Corso di laurea magistrale in Informatica Modelli e computazione - modelli della concorrenza

Bisimulazione debole e verifica con la tecnica "attaccante difensore"

Esercizio 1

Si costruiscano i sistemi di transizioni etichettati associati ai processi CCS p e q e si stabilisca, usando la tecnica dell'attaccante - difensore, se i due sistemi CCS sono debolmente bisimili.

$$p = a.(b.nil + \tau.c.nil) + a.(\tau.b.nil + c.nil)$$

$$q = a.b.nil + a.(b.nil + \tau.c.nil)$$

Solutione

I due processi p e q non sono debolmente bisimili ($p\not\approx^{Bis}q$), infatti l'Attaccante ha la seguente strategia vincente:

-1: (p,q)

l'Attaccante esegue sul processo p l'azione $a: p \xrightarrow{a} p_2$; a questo punto il Difensore ha tre possibilità:

- eseguire a and and o in q_1 , ma in questo caso perderebbe sicuramente perché q_1 , da cui è possibile solo l'azione b, non è ovviamente debolmente bisimile a p_2 ;
- oppure eseguire $a\tau$ andando in q_3 ($q \stackrel{a}{\Rightarrow} q_3$), ma anche in questo caso perderebbe sicuramente perché q_3 abilita solo c e quindi q_3 non è debolmente bisimile a p2;
- oppure eseguire a and and o in q_2 ($q \stackrel{a}{\Rightarrow} q_2$). Dal momento che in q_2 sono ancora abilitate sia b che c, il Difensore sceglie questa mossa.

-2: (p_2,q_2)

L'Attaccante esegue sul processo p_2 l'azione τ andando in p_4 ($p_2 \xrightarrow{\tau} p_4$); il Difensore è costretto a restare in q_2 ($q_2 \xrightarrow{\tau} q_2$). Avrebbe anche potuto fare la mossa $q_2 \xrightarrow{\tau} q_3$, ma in questo caso avrebbe perso, essendo p_4 e q_3 non debolmente bisimili (si veda il punto 4).

-3: (p_4,q_2)

L'Attaccante cambia tavolo ed esegue $q_2 \xrightarrow{\tau} q_3$; il Difensore è costretto a restare in $p_4, p_4 \xrightarrow{\tau} p_4$.

-4: (p_4,q_3)

L'Attaccante ha vinto: qualsiasi azione faccia $(p_4 \xrightarrow{b} 0 \text{ oppure } q_3 \xrightarrow{c} 0)$ il Difensore non può rispondere con la stessa azione.

Esercizio 2

Si considerino i due sistemi di transizioni B_0^2 e $B_0^1|B_0^1$ in figura. Si dimostri, usando la tecnica dell'attaccante - difensore, che i due sistemi sono bisimili.

Solutione

Osserviamo che su sistemi ciclici possono essere eseguite sequenze di azioni infinite, ma per decidere se vale la relazione di bisimulazione è sufficiente un numero finito di passi: siccome i sistemi di transizioni hanno un numero finito di stati, durante una partita si visitano più volte le stesse configurazioni. Se i sistemi sono bisimili, possiamo dimostrare che ogni stato di un sistema è in relazione di bisimulazione con qualche stato nell'altro sistema.

Per mostrare che $B_0^2 \approx^{Bis} B_0^1 | B_0^1$ dobbiamo far vedere che il Difensore ha una strategia vincente.

In $(B_0^2, B_0^1|B_0^1)$, l'attaccante può fare tre mosse:

- $B_0^2 \xrightarrow{in} B_1^2$

Il Difensore risponde and ando in $B_1^1|B_0^1$. In $(B_1^2,B_1^1|B_0^1)$ l'Attaccante ha quattro possibili mosse:

1. $B_1^2 \xrightarrow{\overline{out}} B_0^2$

Questa mossa fa perdere l'Attaccante. Il Difensore infatti può eseguire l'azione \overline{out} andando in $B_0^1|B_0^1$ e riportando così il sistema a una configurazione già visitata.

 $2. \ B_1^1|B_0^1 \xrightarrow{\overline{out}} B_0^1|B_0^1$

Analogamente all'azione del punto 1, questa mossa fa perdere l'Attaccante.

3. $B_1^1|B_0^1 \xrightarrow{in} B_1^1|B_1^1$

Il Difensore risponde and ando in B_2^2 ($B_2^1 \stackrel{in}{\Longrightarrow} B_2^2$). In $(B_2^2, B_1^1|B_1^1)$ l'Attaccante ha tre possibili mosse:

(a) $B_2^2 \xrightarrow{\overline{out}} B_1^2$ Con questa mossa l'Attaccante perde, perché il Difensore può eseguire $B_1^1 | B_1^1 \xrightarrow{\overline{out}} B_1^1 | B_0^1$, tornando nella configurazione precedente.

(b) $B_1^1|B_1^1 \xrightarrow{\overline{out}} B_1^1|B_0^1$ Analogamente al caso precedente, l'Attaccante perde la partita.

(c)
$$B_1^1|B_1^1 \xrightarrow{\overline{out}} B_0^1|B_1^1$$

In questo caso il Difensore esegue $B_2^2 \xrightarrow{\overline{out}} B_1^2$. In $(B_1^2, B_0^1 | B_1^1)$ l'Attaccante ha quattro possibili mosse:

i. $B_1^2 \xrightarrow{in} B_2^2$

Il Difensore vince la partita eseguendo $B_0^1|B_1^1 \stackrel{in}{\Longrightarrow} B_1^1|B_1^1$.

ii. $B_0^1|B_1^1 \xrightarrow{in} B_1^1|B_1^1$

Il Difensore vince eseguendo $B_1^2 \stackrel{in}{\Longrightarrow} B_2^2$.

iii. $B_1^2 \xrightarrow{\overline{out}} B_0^2$

Il Difensore può vincere eseguendo $B_0^1|B_1^1 \xrightarrow{\overline{out}} B_0^1|B_0^1$

iv. $B_0^1|B_1^1 \xrightarrow{\overline{out}} B_0^1|B_0^1$

Il Difensore può vincere eseguendo $B_1^2 \stackrel{\overline{out}}{\Longrightarrow} B_0^2$

4. $B_1^2 \xrightarrow{in} B_1^1 | B_1^1$

Il Difensore risponde eseguendo in da $B_1^1|B_2^1$. Le evoluzioni delle partite a partire da $(B_2^2, B_1^1|B_1^1)$ sono già state discusse al punto 3.

- $B_0^1|B_0^1 \xrightarrow{in} B_1^1|B_0^1$

Il Difensore esegue l'azione in and ando in B_1^2 . La configurazione $(B_1^2, B_1^1|B_0^1)$ è già stata discussa al punto precedente.

- $B_0^1|B_0^1 \xrightarrow{in} B_0^1|B_1^1$

Il Difensore esegue l'azione in andando in B_1^2 . Le mosse possibili da $(B_1^2, B_0^1|B_1^1)$ sono state discusse in precedenza.

Esercizio 3

Si costruiscano i sistemi di transizioni etichettati associati ai processi CCS p e q.

Si stabilisca se i due sistemi CCS sono debolmente bisimili usando la tecnica dell'attaccante - difensore.

$$p = a.(\tau.(b.nil + \tau.c.nil) + \tau.(b.nil + c.nil))$$

$$q = a.(b.nil + c.nil) + a.(b.nil + \tau.c.nil)$$

Solutione

t sta per tau

I due processi p e q non sono debolmente bisimili ($p\not\approx^{Bis}q$), infatti l'Attaccante ha la seguente strategia vincente:

In (p,q), l'Attaccante esegue sul processo p l'azione $a: p \xrightarrow{a} p_1$, a questo punto il Difensore ha tre possibilità:

 $q \stackrel{a}{\Rightarrow} q_3$

Questa mossa porta alla sconfitta del Difensore, in quanto ora sul processo q_3 non è più possibile eseguire b, mentre su p_1 lo è ancora.

 $q \stackrel{a}{\Rightarrow} q_1$

In questo caso l'Attaccante esegue $p_1 \xrightarrow{\tau} p_2$, e il Difensore non può che rispondere con l'azione nulla $(q_1 \xrightarrow{\tau} q_1)$ restando in q_1 e perdendo perché, come mostrato dopo, $p_2 \not\approx^{Bis} q_1$.

 $q \stackrel{a}{\Rightarrow} q_2$

In (p_1, q_2) , l'Attaccante esegue $p_1 \xrightarrow{\tau} p_3$. Il Difensore ha due possibilità:

- rispondere con l'azione nulla $(q_2 \stackrel{\tau}{\Rightarrow} q_2)$ restando in q_2 che abilita sia b che c, ma perderebbe perché, come mostrato dopo, $p_3 \not\approx^{Bis} q_2$.
- oppure rispondere con l'azione $q_2 \stackrel{\tau}{\Rightarrow} q_3$, ma anche in questo caso il Difensore non può vincere, perché $p_3 \not\approx^{Bis} q_3$ in quanto in p_3 è ancora possibile l'azione b, che non è invece eseguibile da q_3 .

Mostriamo ora che $p_2 \not\approx^{Bis} q_1$.

L'Attaccante ha la seguente strategia vincente:

- 1. l'Attaccante esegue sul processo p_2 l'azione τ : $p_2 \xrightarrow{\tau} p_4$, e il Difensore deve rispondere con l'azione nulla $(q_1 \xrightarrow{\tau} q_1)$ restando in q_1 ;
- 2. l'Attaccante cambia tavolo ed esegue b in q_1 e il Difensore ha possibilità di risposta.

Analogamente $p_3 \not\approx^{Bis} q_2$ (si osservi che p_3 è isomorfo a q_1 e q_2 è isomorfo a p_2).