Föreläsning 3: Induktion, lådprincipen, och inklusionexklusion · 1MA020

Vilhelm Agdur¹

23 januari 2023

Vi påbörjar vår diskussion av inklusion-exklusion.

Inklusion-exklusion

I matematiska institutionens fikarum för de anställda brukar det finnas äpplen, klementiner, och bananer i fruktlådorna. Om någon säger dig att det för tillfället finns femton runda frukter och tio frukter som inte går att odla i Sverige i lådorna, kan du räkna ut hur många frukter det finns?

Det kan du förstås inte – problemet är att en klementin tillhör båda kategorierna, så om det finns tio klementiner finns det totalt femton frukter (tio klementiner och fem äpplen), men om det finns noll klementiner finns det totalt tjugofem frukter (femton äpplen och tio bananer). Utan informationen om hur många klementiner det finns kan svaret på frågan variera.

Om vi låter *A* vara mängden av runda frukter och *B* vara mängden av frukter som inte kan odlas i Sverige är vad vi har observerat att²

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

En dag kommer en administratör på idén att citroner faktiskt också är en frukt, och berättar för dig att idag finns det tio runda frukter, elva som inte kan odlas i Sverige, och sju *gula frukter*. Du blir förvirrad och går hem och ritar ett Venndiagram över frukter.³

Formeln du kommer på efter att ha studerat ditt Venndiagram är att

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C|$$
$$+|A \cap B \cap C|.$$

Innan den fruktgalna administratören hinner lägga till ännu en absurd kategori av frukt undsätter dig din kombinatoriklärare med följande sats:

Teorem 1 (Inklusion-exklusion). För varje samling av mängder A_1, \ldots, A_n gäller det att

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{k=1}^n (-1)^{k-1} \left(\sum_{\substack{I \subseteq [n] \\ |I| = k}} \left|\bigcap_{i \in I} A_i\right|\right),$$

¹ vilhelm.agdur@math.uu.se

 2 Jämför detta med additionsprincipen, som i en formulering säger att $|A \coprod B| = |A| + |B|$. När vi introducerade den var vi noggranna med skillnaden mellan \coprod och \cup , och sade att vi skulle återkomma till vad som händer om A och B kan dela element.

Detta är vår återkomst.

³ Nästa morgon får du reda på att det nu dessutom finns gula äpplen, päron, stjärnfrukt, och Xoconostler. Du skriver en arg insändare i UNT om vad universitetet egentligen lägger sin budget på. eller, uttryckt mindre kompakt, att

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}|$$

$$- \sum_{\{i,j\} \in [n]} |A_{i} \cap A_{j}|$$

$$+ \sum_{\{i,j,k\} \in [n]} |A_{i} \cap A_{j} \cap A_{k}|$$

$$- \dots$$

$$+ (-1)^{n-1} |A_{1} \cap A_{2} \cap \dots \cap A_{n}|.$$

Innan vi bevisar detta behöver vi definiera ett väldigt nyttigt verktyg som vi kommer använda i beviset.

Definition 2. Antag att $A \subseteq X$ är två mängder. Vi definierar *indikator*funktionen $\mathbb{1}_A: X \to \{0,1\}$ för mängden A som

$$\mathbb{1}_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A. \end{cases}$$

Den är alltså ett om och endast om dess argument ligger i A. Vi kan observera några grundläggande egenskaper hos dessa funktioner:

- $\mathbb{1}_A(x)\mathbb{1}_B(x) = \mathbb{1}_{A \cap B}(x)$
- $1 \mathbb{1}_A(x) = \mathbb{1}_{X \setminus A}(x)$
- $|A| = \sum_{x \in A} \mathbb{1}_A(x)$
- $(\mathbb{1}_A(x))^n = \mathbb{1}_A(x)$ för alla $n \neq 0$.

Med denna definition gjord kan vi nu resonera algebraiskt om mängder och deras kardinalitet, och kan alltså ge ett algebraiskt bevis av inklusion-exklusion-principen.

Algebraiskt bevis av Teorem 1. Låt $X = \bigcup_{i=1}^n A_i$. Vi ser att

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{x \in X} \mathbb{1}_X(x)$$

så vi kan fokusera på varje punkt i taget, och visa att den räknas rätt antal gånger.

Studera nu uttrycket

$$(\mathbb{1}_X(x) - \mathbb{1}_{A_1}(x))(\mathbb{1}_X(x) - \mathbb{1}_{A_2}(x))\dots(\mathbb{1}_X(x) - \mathbb{1}_{A_n}(x))$$

och observera att det måste vara identiskt noll. För varje element $x \in X$ ligger ju i något A_i , så produkten innehåller en term $\mathbb{1}_X(x)$ – $\mathbb{1}_{A_i}(x) = 1 - 1 = 0.$

Vad får vi om vi multiplicerar ut detta uttrycket? Jo, vi får en term per mängd $I \subseteq [n]$, där vi valt sidan $\mathbb{1}_X(x)$ för $i \notin I$ och valt sidan $-\mathbb{1}_{A_i}(x)$ för $i \in I$.⁴ Vi vet att uttrycket är noll, så vad vi får är likheten

$$\sum_{I \subseteq [n]} (\mathbb{1}_X(x))^{n-|I|} \prod_{i \in I} (-\mathbb{1}_{A_i}(x)) = 0$$

och om vi skriver termerna för $I = \emptyset$ och I = [n] separat har vi likheten

$$\prod_{i=1}^{n} (-\mathbb{1}_{A_i}(x)) + \left(\sum_{\substack{I \subset [n] \\ \emptyset \neq I \neq [n]}} (\mathbb{1}_X(x))^{n-|I|} \prod_{i \in I} (-\mathbb{1}_{A_i}(x)) \right) + (\mathbb{1}_X(x))^n = 0$$

Vi vet av våra räkneregler för indikatorfunktioner att $\mathbb{1}_X(x)^{n-|I|}$ $\mathbb{1}_X(x)$, eftersom vi plockat ut termen där exponentn blir noll. Den återstående $\mathbb{1}_X(x)$ kan vi bli av med via en annan räkneregel – vi vet att $\mathbb{1}_X(x)\mathbb{1}_{A_i}(x) = \mathbb{1}_{X\cap A_i}(x) = \mathbb{1}_{A_i}(x)$, eftersom $A_i \subseteq X$, och vi kan göra detta eftersom vi plockat ut termen där vi inte har någon A_i att absorbera in den i.

Om vi tillämpar dessa förenklingar, flyttar ut minustecknet ur produkten och ser att $\mathbb{1}_X(x)^n = \mathbb{1}_X$, blir vad som återstår

$$(-1)^n \prod_{i=1}^n \mathbb{1}_{A_i}(x) + \sum_{\substack{I \subset [n] \\ \emptyset \neq I \neq [n]}} (-1)^{|I|} \prod_{i \in I} (\mathbb{1}_{A_i}(x)) + \mathbb{1}_X(x) = 0.$$

Nu kan vi flytta ihop första och andra termen under en summa, eftersom bägge inte innehåller någon $\mathbb{1}_X(x)$. Om vi gör det, och flyttar över den summan på andra sidan, så får vi att

$$\mathbb{1}_X(x) = \sum_{\substack{I \subseteq [n] \\ I \neq \emptyset}} (-1)^{|I|+1} \left(\prod_{i \in I} \mathbb{1}_{A_i}(x) \right).$$

Om vi använder räkneregeln att $\mathbb{1}_A(x)\mathbb{1}_B(x) = \mathbb{1}_{A \cap B}(x)$ på produkten här och sedan summerar likheten över alla $x \in X$ så får vi att

$$\sum_{x \in X} \mathbb{1}_X(x) = \sum_{\substack{I \subseteq [n] \\ I \neq \emptyset}} (-1)^{|I|+1} \left(\sum_{x \in X} \mathbb{1}_{\bigcap_{i \in I} A_i}(x) \right)$$

vilket, om vi använder oss av att $\sum_{x \in X} \mathbb{1}_A(x) = |A|$, blir

$$|X| = \sum_{\substack{I \subseteq [n] \\ I \neq \emptyset}} (-1)^{|I|+1} \left| \bigcap_{i \in I} A_i \right|$$

vilket vi någorlunda enkelt ser är ett annat sätt att skriva formeln vi var ute efter. ⁴ Jämför med hur vi resonerade om att multiplicera ut en produkt när vi bevisade binomialsatsen.

Exempel 3. Hur många heltalslösningar finns det till $x_1 + x_2 + x_3 = 20$, där $0 \le x_1 \le 8$, $0 \le x_2 \le 10$, och $0 \le x_3 \le 12$?

Låt

$$X = \left\{ (x_1, x_2, x_2) \in \mathbb{Z}_{\geq 0}^3 \mid x_1 + x_2 + x_2 = 20 \right\}$$

och låt

$$A_{1} = \left\{ (x_{1}, x_{2}, x_{2}) \in \mathbb{Z}^{3}_{\geq 0} \mid x_{1} + x_{2} + x_{2} = 20, x_{1} > 8 \right\},$$

$$A_{2} = \left\{ (x_{1}, x_{2}, x_{2}) \in \mathbb{Z}^{3}_{\geq 0} \mid x_{1} + x_{2} + x_{2} = 20, x_{2} > 10 \right\},$$

$$A_{3} = \left\{ (x_{1}, x_{2}, x_{2}) \in \mathbb{Z}^{3}_{\geq 0} \mid x_{1} + x_{2} + x_{2} = 20, x_{3} > 12 \right\}$$

vara mängder av dåliga lösningar, som inte uppfyller våra krav.

Vad vi vill göra är alltså att räkna ut $|(A_1 \cup A_2 \cup A_3)^c| = |X| |A_1 \cup A_2 \cup A_3|$. Inklusion-exklusion säger oss att

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3|$$
$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3|$$
$$+|A_1 \cap A_2 \cap A_3|$$

så vad vi behöver göra är att räkna ut |X| och storleken på dessa

Vi såg redan i förra föreläsningen, i biten om omordningar, hur man räknar ut |X| – det ges av $\binom{20+3-1}{3-1}$). För att räkna ut A_1 tänker vi att vi börjar med att ge nio mynt till x_1 , och fördelar de återstående elva mynten godtyckligt. Vår formel ger oss att detta kan göras på $\binom{11+3-1}{3-1}$ sätt. Så, om vi tillämpar detta på alla tre mängderna ser vi

$$|A_1| = {11+3-1 \choose 3-1}, \quad |A_2| = {9+3-1 \choose 3-1}, \quad |A_3| = {7+3-1 \choose 3-1}.$$

De större snitten är enklare att räkna ut – för $A_1 \cap A_2$ måste vi dela ut nio mynt till x_1 , och sedan elva mynt till x_2 , så vi har inga mynt kvar att dela ut fritt, och $|A_1 \cap A_2| = 1$. För de två andra snitten ser vi att 9 + 13 > 20 och 11 + 13 > 20, så de snitten måste vara tomma. Likaledes måste snittet av alla tre mängderna vara tomt.⁵

Sätter vi tillbaka dessa talen i inklusion-exklusion-formeln ser vi att vi fått att

$$\begin{aligned} \left| (A_1 \cup A_2 \cup A_3)^c \right| &= |X| - |A_1 \cup A_2 \cup A_3| \\ &= \binom{20+3-1}{3-1} - \binom{11+3-1}{3-1} + \binom{9+3-1}{3-1} \\ &+ \binom{7+3-1}{3-1} - 1 \right) \\ &= 63. \end{aligned}$$

⁵ Detta följer så klart också redan av observationen att $A_1 \cap A_3 = \emptyset$ – att snitta med en till mängd kan ju inte lägga till fler element.

Derangemang

Definition 4. Ett *derangemang*⁶ av längd n är en permutation σ av längd n ur alfabetet [n], sådan att $\sigma(k) \neq k$ för alla k.

Teorem 5. Det finns

$$n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$$

derangemang av längd n.7

Bevis. Låt S_n vara mängden av alla permutationer av [n] av längd n, och för varje i,

$$A_i = \{ \sigma \in S_n \mid \sigma(i) = i \}$$

så att vi vill räkna antalet element i $S_n \setminus \bigcup_{i=1}^n A_i$.

Att $|S_n| = n!$ lärde vi oss redan första föreläsningen, och inklusionexklusion ger oss att

$$\left| \bigcup_{i=1}^n A_i \right| = \sum_{k=1}^n (-1)^{k-1} \left(\sum_{\substack{I \subseteq [n] \\ |I| = k}} \left| \bigcap_{i \in I} A_i \right| \right).$$

Så vad vi behöver göra är att lista ut vad $|\bigcap_{i\in I} A_i|$ är för varje givet $I \subseteq [n]$. Detta snittet blir precis mängden av permutationer sådana att $\sigma(i) = i$ för varje $i \in I$. Så för att skapa en sådan måste vi först sätta $\sigma(i)=i$ för dem, och sedan kan vi välja en ordning fritt för de återstående n-k platserna. Detta kan vi alltså göra på (n-k)! sätt.

För varje k finns det $\binom{n}{k}$ stycken mängder I, så sammantaget måste vi ha att

$$\sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{\substack{I \subseteq [n] \\ |I| = k}} \left| \bigcap_{i \in I} A_i \right| \right) = \sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k} (n-k)!$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{k! (n-k)!} (n-k)!$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \frac{n!}{k!}$$

så att

$$\begin{vmatrix} S_n \setminus \bigcup_{i=1}^n A_i \end{vmatrix} = |S_n| - \left| \bigcup_{i=1}^n A_i \right|$$

$$= n! - \sum_{k=1}^n (-1)^{k-1} \frac{n!}{k!} = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

såsom vi önskade visa.

⁶ På engelska derangement.

⁷ Ni kanske känner igen summan här som en partialsumma av Taylorexpansionen av e^x då x = -1 – så antalet derangemang är mycket nära $\frac{n!}{e}$ för

Övningar

Övning 1. Ge ett induktionsbevis av Teorem 1, teoremet där vi bevisar inklusion-exklusion-principen.

Övning 2. Beteckna antalet derangemang av $n \mod d_n$. Ge ett kombinatoriskt bevis⁸ för att

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

Övning 3. Hur många heltalslösningar har ekvationen $x_1 + x_2 + x_3 + x_4 + x_5 +$ $x_4 = 29$ om vi kräver $0 \le x_i \le 9$ för alla i?

Övning 4. Antag att den fruktgalna administratören i vårt exempel till slut introducerat tio olika kategorier av frukt. Hur många termer kommer formeln för inklusion-exklusion ha när n = 10?

 8 Ledtråd: För ett givet derangemang σ av längd n, låt k vara det tal som skickas till 1. Det finns två fall: Antingen derangemang finns det i varje fall?