Задача об освобождении от иррациональности

Предположим, что нам задана дробь, в которой числитель и знаменатель можно представить в виде многочленов с рациональными коэффициентами от некоторого алгебраического числа. Всегда ли можно избавиться от иррациональности в знаменателе? Формализуем этот вопрос: пусть многочлен $p \in \mathbb{Q}[x]$ неприводим над \mathbb{Q} , число $\alpha \in \mathbb{R}$ — его корень, а многочлены f(x) и g(x) из $\mathbb{Q}[x]$ удовлетворяют условию $g(\alpha) \neq 0$.

1. Докажите, что существует многочлен многочлен $h \in \mathbb{Q}[x]$ такой, что $\frac{f(\alpha)}{a(\alpha)} = h(\alpha)$.

КТО для многочленов

Оба доказательства Китайской Теоремы об Остатках, которые мы рассматривали в листках, существенно использовали дискретную структуру множеств целых (и натуральных) чисел, поэтому, они не применимы напрямую для колец $\mathbb{R}[x]$ и $\mathbb{Q}[x]$. Сформулируем КТО для этих множеств многочленов: $nycmb \ p_1(x), \ldots, p_n(x) - nonapho \ взаимно \ npocmue,$ $a \ a_1(x), \ldots, a_n(x) - n$ роизвольные многочлены, тогда существует ровно один многочлен p(x) такой, что $p(x)-a_i(x)$ делится на $p_i(x)$ при всех $i=\overline{1,n}$ и $\deg p<\deg p_1+\ldots+\deg p_n$.

2. Докажите КТО для многочленов.

Интерполяционный многочлен Лагранжа

Пусть x_0, x_1, \ldots, x_n — попарно различные, а y_0, y_1, \ldots, y_n — произвольные вещественные числа. Рассмотрим следующий вопрос: существует ли многочлен p степени не выше n такой, что $p(x_i) = y_i$ при всех i от 0 до n.

- 3. Докажите, что найдётся не больше одного такого многочлена p.
- 4. Придумайте формулу, в явном виде дающую искомый многочлен p.
- 5. На плоскости нарисованы 2019 точек так, что любые четыре из них лежат на некоторой параболе. Докажите, что они все лежат на одной и той же параболе.
- 6. Верно ли предыдущее утверждение, если слово «парабола» заменить на «график кубического многочлена»?

Упражнения

- 7. Решите уравнение $c^2 \cdot \frac{(x-a)(x-b)}{(c-a)(c-b)} + b^2 \cdot \frac{(x-a)(x-c)}{(b-a)(b-c)} + a^2 \cdot \frac{(x-b)(x-c)}{(a-b)(a-c)} = x^2$, где a,b,c— заданные различные вещественные числа.
- 8. Многочлен P(x) степени n удовлетворяет равенствам $P(k) = \frac{1}{C_{n+1}^k}, k = \overline{0, n}$. Найдите значение P(n+1).
- 9. Пусть множество $M \subset \mathbb{R}, \ p \in \mathbb{R}[x]$ и $\deg p < n < |M|$. Для каждого элемента $a \in M$ положим $\varphi(a) = \prod_{M \ni b \neq a} (a-b)$. Докажите равенство $\sum_{a \in M} \frac{p(a)}{\varphi(a_i)} = 0$.

Задачи

- 10. Заданы целые числа $x_0 < x_1 < \ldots < x_n$. Докажите, что среди значений многочлена $x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ в точках x_0, x_1, \ldots, x_n , найдётся число, по модулю не
- 11. Учитель загадал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщает ученикам k целых чисел n_1, \ldots, n_k и значение выражения $P(n_1) \cdot P(n_2) \cdot \ldots \cdot P(n_k)$. При каком наименьшем k можно подобрать многочлен P и числа n_i так, что дети однозначно определят задуманный многочлен.
- 12. Многочлен P(x) имеет степень, не большую 2n. Известно, что для каждого целого $k \in [-n, n]$ выполнено неравенство $|P(k)| \le 1$. Докажите, что для всех $x \in [-n, n]$ верно неравенство $|P(x)| \leq 2^{2n}$.

- 13. Многочлен P(x) степени n удовлетворяет P(k) = k/(k+1) при всех $k = \overline{0,n}$. Найдите значение P(n+1).
- 14. Дана функция f(x) значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен $Q_p(x)$ степени, не превышающей 2017, с целыми коэффициентами, что $f(n) Q_p(n)$ делится на p при любом целом n. Верно ли, что существует многочлен g(x) с вещественными коэффициентами такой, что g(n) = f(n) для любого целого n?
- 15. Фокусница готовится показать трюк. Она называет аудитории натуральное число n и 2n вещественных чисел $x_1 < x_2 < \ldots < x_{2n}$. После этого случайный зритель загадывает многочлен p(x) степени n с вещественными коэффициентами, вычисляет 2n значений: $p(x_1), \ldots, p(x_{2n})$, и записывает полученные 2n значений на доску в порядке неубывания. Глядя на числа, записанные на доске, фокусница должна назвать многочлен, задуманный зрителем. Может ли фокусница придумать стратегию, гарантирующую ей успешное выполнение трюка?