

MATHEMATICS

Lecture - 01

CALCULUS

LIMIT, CONTINUITY & DIFFERENTIABILITY (LCD)

By – Sachin Jakhar Sir

ODICS to be covered

- **Basics of Limits**
- **Existence of Limits**
- One Sided Limit
- **Question Practice**

LAST CLASS RECAP

Defining By Feel of Substitution:

$$\begin{array}{c}
x = tano, \quad \delta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
0 \quad \text{sin} \left(\frac{\partial x}{1 + x^2}\right) = \sin(x \cos \theta) \\
= 20 \cdot \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
= 20 \cdot \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
= 20 \cdot \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}$$

$$\chi = \frac{1}{\sqrt{3}}$$
 $\chi \in [-\sqrt{3}, \sqrt{3}]$ $\chi \in [-1, 1]$ $\chi^2 + \chi^2 = 3 + \frac{1}{3}$ $\chi^2 + \chi^2 = 3 + \frac{1}{3}$

If $\cos^{-1}\left(\frac{x^2}{3}\right) + \cos^{-1}\left(\sqrt{1 - \frac{x^4}{9}}\right) + \cot^{-1}y = \frac{5\pi}{6}$, then (where [.] denotes G.I.F.)

Maximum value of [|xy|] is 1

Minimum value of [|xy|] is 1

Maximum value of $x^2 + y^2$ is $\frac{1}{3} - || \leq \frac{\pi^2}{3} \leq ||$

Maximum value of $x^2 + y^2$ is $\frac{10}{3}$ $0 \le 1 - \frac{x^4}{9} \le 1$

$$9 \ge 24 \ge 0$$
 $1 \ge \frac{24}{9} \ge 0$ $1 \ge \frac{24}{9} \ge 0$

$$\cot y = \frac{5}{3}$$

$$y = \frac{1}{3}$$

CHALLENGER QUESTION

Let $g: R \to \left[\frac{\pi}{6}, \frac{\pi}{2}\right)$ is defined by $g(x) = \sin^{-1}\left(\frac{x^2 - c}{1 + x^2}\right)$. Then the possible values of 'c' for which g is surjective function, is

- $\left\{-\frac{1}{2}\right\}$

$$\frac{\chi^{2}-C}{1+\chi^{2}} = \frac{\chi^{2}+1-(C+1)}{\chi^{2}+1} = 1-\frac{(C+1)}{\chi^{2}+1}$$

$$\chi^{2} \in [0, \infty)$$

$$\chi^{2} + 1 \in [1, \infty)$$

$$\frac{1}{\chi^{2} + 1} \in [0, 1]$$

$$\frac{1}{\chi^{2} + 1} \in [0, 1]$$

$$\frac{1}{\chi^{2} + 1} \in [0, 1]$$

$$\frac{1}{\chi^{2} + 1} \in [0, -c-1]$$

$$\frac{1}{\chi^{2} + 1} \in [1, \infty)$$

$$\frac{1}{\chi^{2} + 1} \in [-c, 1]$$

$$c = -3/4$$

B $-c = +\frac{1}{2}$
 $c = -\frac{3}{4}$
 $c = -\frac{3}{4}$

CD.

Range $c = -\frac{3}{4}$

Range $c = -\frac{3}{4}$
 $c = -\frac{3}{4}$

QUESTION

Solve the following equations:

(i)
$$\sin^{-1}(2x\sqrt{1-x^2}) = -\pi - 2\sin^{-1}x$$

(ii)
$$3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$$

(iii)
$$\cos^{-1}(2x^2-1)=2\pi-2\cos^{-1}x$$

$$\frac{(N-1)!}{80!}! \Rightarrow x \in (-\infty, -\frac{1}{\sqrt{3}})$$

$$\frac{N-1!}{3 + 3 + 1}! \Rightarrow x = + \frac{1}{3}! = + \frac{3x - x^3}{1 - 3x^2}$$

$$\frac{5}{2}! < 3 + \frac{1}{3}! + \frac{5}{2}! = + \frac{5}{2}! < 3 + \frac{1}{3}! = + \frac{5}{2}! < 3 + \frac{1}{3}! = + \frac{5}{3}! < 3 + \frac{1}{3}! = + \frac{5}{3}! < \frac{3}{3}! = + \frac{1}{3}! = + \frac{5}{3}! < \frac{1}{3}! = + \frac{1}{3}! =$$

Solve the following equations:

(i)
$$\sin^{-1}(2x\sqrt{1-x^2}) = -\pi - 2\sin^{-1}x$$

(ii)
$$3\tan^{-1}x = -\pi + \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$$

(iii)
$$\cos^{-1}(2x^2-1)=2\pi-2\cos^{-1}x$$

M-II:- Compare range.

$$dHS = \sin^{2}(\mathcal{E}) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \pi \in \left[-1, -\frac{1}{2}\right]$$

$$RHS \Rightarrow -\frac{\pi}{2} < -\pi - 2\sin^{2}x < \frac{\pi}{2}$$

$$\frac{\pi}{4} < -\sin^{2}x < \frac{3\pi}{4}$$

$$-\frac{\pi}{4} > \sin^{2}x > -\frac{\pi}{2}$$

$$-\frac{\pi}{4} > \sin^{2}x > -\frac{\pi}{2}$$

$$\frac{\partial H - I}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial x$$

sun = 19

QUESTION

Which of the following functions represent identical graphs in x - y plane $\forall x \in [-1, 1]$?

A
$$f_1(x) = \tan^{-1} \left(\frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)$$

B
$$f_2(x) = \frac{\pi}{4} - \tan^{-1} \left(\frac{\sqrt{1 - x^2}}{\sqrt{1 + x^2}} \right)$$

$$f_3(x) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x^2$$

$$f_4(x) = \frac{1}{2} \sin^{-1} x^2$$

Multiple cornect.
Simplify!

ACIDIC QUESTION

ACIDIC QUESTION
$$x < -1 \Rightarrow f(x) = -20 - x - 20 + x + x + x - 20$$

$$20 < -\frac{x}{2}$$

$$= -9(2+a) = 0$$

$$a = -2$$

$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) - a\tan^{-1}x \text{ where } a \text{ is any}$$

$$-2 \qquad \begin{array}{c} -2 \\ -1 < \alpha < 0 \\ \Rightarrow f(\alpha) = 20 + (-26) + 20 - 0 \\ -\frac{5}{2} < 20 < 0 \end{array}$$

CHALLENGER QUESTION

Let $f(x) = x^2 - 2ax + a - 2$ and $g(x) = \left[2 + \sin^{-1}\frac{2x}{1+x^2}\right]$. If the set of real values of 'a' for which f(g(x)) < 0, $\forall x \in R$ is (k_1, k_2) , then find the value of $(10k_1 - 3k_2)$.

[Note: [k] denotes greatest integer less than or equal to k.]

LIMIT, CONTINUITY & DIFFERENTIABILITY (LCD)

BASICS OF LIMITS

NOTE-01:

Meaning of: $a^+ \equiv \text{Just greater than a}$

'x' is exactly equals to ' $a' \equiv x \equiv a$

'x' is approaching towards ' $a' \equiv x \rightarrow a$

from RHS

$$\frac{a}{1} \xrightarrow{x \to a} x \to a^{+}$$

from RHS

 $\frac{1}{1} \xrightarrow{x \to a^{+}} x \to a^{+}$

$a^- =$ Just smaller than a

BASICS OF LIMITS

NOTE-02: What is limit or limiting value?

Ex.:
$$\lim_{x\to 2} (x^2 + 2)$$

as
$$x \to a \Rightarrow f(x) \to K$$
 (from both side)
Then dimiting value of $f(x)$ is said to exact 'k'.

NOTE-03: Need of limit

Ex.: If $f(x) = \frac{x^2 - 9}{x - 3}$, then what is value of f(x) is neighbourhood of x = 3?

$$\lim_{x \to 2} (x^2 + 2) \longrightarrow \text{from dHS} = \text{dHL} = \dim_{x \to 2^{-}} (x^2 + 2) = 6$$

$$\lim_{x \to 2} (x^2 + 2) \longrightarrow \text{from RHS} = \text{RHL} = \dim_{x \to 2^{+}} (x^2 + 2) = \text{exact 6}$$

$$\lim_{x \to 2^{+}} (x^2 + 2) \longrightarrow \text{dimitive}$$

$$\lim_{x \to 2^{+}} (x^2 + 2) = 6$$

x → 2+	$f(x) = x^2 + 2$	x → 2 ¯	$f(x) = x^2 + 2$
2.01	6.0001	1.99	5.99 5.999
2.00001	6.000001	1.99999	5.99999
2.0000.1	6.001 app. towards 6		app-towards 6
	from RHS.		from dHS.

NOTE-04:

While calculating limiting value of at x = a, hum sirf agal-bagal (neighborhood) mein value calculate karte hai.

At x = a, function ki kya value hai, function defined bhi hai ki nahi Hume use koi matlab nahi hai.

EXISTENCE OF LIMITS

LHL at
$$(x = a) = \lim_{x \to a^-} f(x) = \lim_{h \to 0^+} f(a - h) = \lim_{h \to 0^-} f(a + h)$$

RHL at
$$(x = a) = \lim_{x \to a^+} f(x) = \lim_{h \to 0^+} f(\underbrace{a + h}) = \lim_{h \to 0^-} f(\underbrace{a - h})$$

At (x = a) limit is said to existing iff:

Note:

If LHL = RHL =
$$l$$
 (finite) $\Leftrightarrow \lim_{x \to a} f(x) = l$

$$\begin{array}{cccc}
\text{#} & \dim & f(x) &= 3 \\
& \chi \rightarrow 2 & \\
& \chi \rightarrow 2^{-} & f(x) &= 3
\end{array}$$

$$\begin{array}{cccc}
& \dim & f(x) &= 3 \\
& \chi \rightarrow 2^{+} & f(x) &= 3
\end{array}$$

Calculate following limits

(i)
$$\lim_{x\to 3} [x]$$

$$\lim_{x\to 3} [x]$$

$$\lim_{x\to 1} (x^2+3) \operatorname{sgn}(x-1)$$

$$\lim_{x \to 1} \left(\frac{x^2 - 8x + 7}{x^3 - 5x^2 - 11x + 15} \right) \xrightarrow{01}$$

i)
$$\lim_{x\to 1} ([x])^{\{x\}}$$

$$\lim_{x \to 1} \frac{dim}{dim} \frac{(x_1)(x_2 + x_1 - 15)}{(x_1)(x_2 + x_2 - 15)} = \frac{-6}{(1 - 4 - 15)} = \frac{-6}{-18} = \frac{1}{3}$$

$$\lim_{x \to 1} \frac{dim}{dim} (x_1)(x_2 + x_2 - 15) = \frac{-6}{(1 - 4 - 15)} = \frac{-6}{-18} = \frac{1}{3}$$

$$\lim_{x \to 1} \frac{dim}{dim} (x_1)(x_2 + x_2 - 15) = \frac{-6}{(1 - 4 - 15)} = \frac{-6}{-18} = \frac{1}{3}$$

$$\lim_{x \to 1} \frac{dim}{dim} (x_1)(x_2 + x_2 - 15) = \frac{-6}{(1 - 4 - 15)} = \frac{-6}{-18} = \frac{1}{3}$$

$$\lim_{x \to 1} \frac{dim}{dim} (x_1)(x_2 + x_2 - 15) = \frac{-6}{(1 - 4 - 15)} = \frac{-6}{-18} = \frac{1}{3}$$

RHL = dim
$$([x])^{(x)}$$
 = 1° = 1.

$$\frac{1}{x+1} dHL = \dim_{x \to 1^{-}} \left(\frac{x^{2}+3}{x} \right) sgn(x-1) = 4(-1) = (-4)$$

$$RHL = \dim_{x \to 1^{+}} \left(x^{2}+3 \right) sgn(x-1) = 4(1) = 4.$$

$$=\frac{-6}{(1-4-15)}=\frac{-6}{-18}=\frac{1}{3}$$

QUESTION

(ii)
$$\lim_{x\to 2} \{x\}$$

$$\lim_{x\to 2} \{x\}$$

$$\lim_{x\to 2} \left(\frac{x^3-5x+3}{x^2+7}\right) = \frac{1}{11}$$

$$\lim_{x\to 2} \left(\frac{x^3-7}{x^2+7}\right) = \frac{1}{11}$$

QUESTION [JEE (Adv.)-2018, Paper-1]

The number of real solutions of the equation

$$\sin^{-1}\left(\sum_{i=1}^{\infty}x^{i+1}-x\sum_{i=1}^{\infty}\left(\frac{x}{2}\right)^{i}\right)=\frac{\pi}{2}-\cos^{-1}\left(\sum_{i=1}^{\infty}\left(-\frac{x}{2}\right)^{i}-\sum_{i=1}^{\infty}\left(-x\right)^{i}\right) \text{ lying in the interval }\left(-\frac{1}{2},\frac{1}{2}\right) \text{ is }\underline{\hspace{1cm}}.$$

(Here, the inverse trigonometric functions $\sin^{-1}x$ and $\cos^{-1}x$ assume values in $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ and $[0,\pi]$, respectively.)

Homework

Re-attempt all the Questions of Lecture.

DPP

Module: Chapter - ITF

Exercise (Prarambh): COMPLETE

Exercise (Prabal): COMPLETE

Exercise (Parikshit): Ques: 1,5,7,9,11,23

NCERT:

INVERSE TRIGONOMETRIC FUNCTIONS

Exercise: 2.1 - COMPLETE

Exercise: 2.2 - Ques. 8 to 15

CALCULUS CORE

CHAPTER: ITF

DIBY: 3.3 COMPLETE ()

JEE MAINS: COMPLETE

It's not about End Result, It is all about JOURNEY #future||Tians