Name:		***
	•	
Class:_		

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 3

JUNE 2014

MATHEMATICS Extension 1

Time Allowed:

70 minutes

Instructions:

- Write your name and class at the top of each page.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.

- 1. What is the derivative of $y = \cos^{-1}(\frac{1}{x})$ with respect to x?
 - (A) $\frac{-1}{\sqrt{x^2-1}}$
 - $(B) \quad \frac{-1}{x\sqrt{x^2-1}}$
 - (C) $\frac{1}{\sqrt{x^2-1}}$
 - (D) $\frac{1}{x\sqrt{x^2-1}}$
- 2. The number N of animals in a population at time t years is given by $N=100 + Ae^{kt}$ for constants A > 0 and k > 0. Which of the following is the correct differential equation?

(A)
$$\frac{dN}{dt} = k(N - 100)$$

(B)
$$\frac{dN}{dt} = -k(N+100)$$

(C)
$$\frac{dN}{dt} = -k(N-100)$$

(D)
$$\frac{dN}{dt} = k(N+100)$$

3. If $f(x) = 1 - \cos \frac{x}{2}$ what is the inverse function $f^{-1}(x)$?

(A)
$$f^{-1}(x) = 2\cos^{-1}(1-x)$$

(B)
$$f^{-1}(x) = \frac{1}{2}\cos^{-1}(1-x)$$

(C)
$$f^{-1}(x) = \frac{1}{2}\cos^{-1}(1+x)$$

(D)
$$f^{-1}(x) = 2\cos^{-1}(1+x)$$

- 4. What is the domain and range of $y = \cos^{-1}(\frac{3x}{2})$?
 - (A) Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$. Range: $0 \le y \le \pi$
 - (B) Domain: $-1 \le x \le 1$. Range: $0 \le y \le \pi$
 - (C) Domain: $-\frac{2}{3} \le x \le \frac{2}{3}$. Range: $-\pi \le y \le \pi$
 - (D) Domain: $-1 \le x \le 1$. Range: $-\pi \le y \le \pi$
 - 5. The diagram of the graph y = f(x)

Which diagram shows the graph of $y = f^{-1}(x)$?

(B)

(C)

(1)

Question 6 (8 marks)

- a) Write the exact value of:
 - i) $\sin^{-1}\frac{\sqrt{3}}{2}$

1

ii) $sin^{-1}(sin(-\frac{\pi}{4}))$

1

b) Simplify $\cos\left(2\cos^{-1}\frac{\sqrt{3}}{2}\right)$

2

c) Write the equation $\ln x + \ln y^2 = 3$ without logarithms

1

d) Solve for x: $log_{10}(x^2) + log_{10} x = 1$

1

e) Find $\frac{d^2}{dx^2}$ (e^{x^2})

2

Start a new page

Question 7 (8 marks)

a) Find the derivative of $\sin^{-1} x + \cos^{-1} x$ and hence find the exact value of $\sin^{-1} x + \cos^{-1} x$ (Show all working)

1

2

- b) Differentiate the following with respect to x:
 - $g(x) = \ln x^2 e$

1

ii) $h(x) = \ln\left(\frac{e^x - 1}{e^x + 1}\right)$

2

- (leaving your answer in simplified exact form)
- iii) $y = cos^{-1}(-x) + cos^{-1}(x)$

2

Start a new page

Question 8 (9 marks)

a) Sketch the curve $y = \sin^{-1} 3x$.

2

b) Differentiate $e^{\tan^{-1}x}$ with respect to x

1

c) i) Find $\frac{d}{dx}(xe^x - e^x)$

1

ii) Hence, or otherwise, find $\int_{0}^{1} xe^{x} dx$

- 2
- d) Find the inverse function for $g(x) = \sqrt{5-x} 1$ and state the domain and range for the inverse

3

Start a new Page

Question 9 (8 marks)

a) Find the equation of the tangent to the curve $y = 4 \sin^{-1}(\frac{x}{2})$ at the point where x = 1. (Leave in exact form)

b) Find $\int \frac{\ln 2x}{x} dx$ using the substitution $u = \ln 2x$, or otherwise

c) Find the exact value of $\cos\left(\sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{4}{5}\right)\right)$

Start a new page

Question 10 (8 marks)

- a) Differentiate $tan^{-1} e^{2x}$ and hence find $\int_0^{\frac{1}{2}} \frac{4e^{2x}}{1+e^{4x}} dx$ as an exact answer
- b) The rate at which a body cools in air is proportional to the difference between the temperature, T, of the body and the constant surrounding temperature, S. this can be expressed as $\frac{dT}{dt} = k(T S)$ where t is time in minutes and k is a constant.
 - i. Show that $T = S + Be^{kt}$ where B is a constant, is a solution of the above equation
 - ii. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains a constant 25°. Give your answer to the nearest degree.

Start a new page

Question 11 (9 marks)

a) A water trough is 200 cm long and has the cross section of a right-angled isosceles triangle. B is the midpoint of the line AC. 'x' is the depth of the water in the trough.

Prove that AD=DC BO = BC

(ii) Show that when the depth of the water is x cm, the volume of the water in the tank is $200x^2$ cm³, explaining all steps.

2

- (iii) Water is poured in at a constant rate of 5 litres per minute. 2
 Find the rate at which the water level is rising when the depth is 30 cm
 . (1 litre = 1000 cm³)
- b) Differentiate $\left(\tan^{-1}\left(\frac{x}{3}\right)\right)^2$, and hence find the exact value of $\int_0^{\sqrt{3}} \frac{\tan^{-1}\left(\frac{x}{3}\right)}{x^2+9} dx$ 2
- c) By writing $y = tan^{-1}\sqrt{x}$ in the form x = f(y), show that $\frac{dy}{dx} = \frac{1}{2\sqrt{x}(1+x)}$

(b) $y = (\tan^{-1}(\frac{x}{3}))^2$ $f(x) = 2 \tan^{-1}(\frac{x}{3}) = 3$ $= 6 \tan^{-1}(\frac{x}{3})$ $= 6 \tan^{-1}(\frac{x}{3})$ $= 16 \left[(\tan^{-1}\frac{x}{3})^2 - (\tan^{-1}0)^2 \right]$

, i

•