Teoría de Autómatas y Lenguajes Formales

Prueba de Evaluación de Autómatas Finitos

Autores:

Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA.

1. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla correspondiente.

Calificación:

Respuesta correcta: +0,3ptos. Respuesta incorrecta: -0.3 ptos. Sin respuesta: 0 ptos. Calificación máxima: **3 ptos**. Calificación mínima: 0 ptos.

	Verdadero	Falso
Si un autómata puede realizar dos transiciones distintas		
con el mismo símbolo a partir de un determinado estado,		
entonces es no determinista.		
Un AFD es conexo si todos los estados son accesibles		
desde el estado final.		
Si Q/E ₂ = Q/E ₃ , entonces Q/E ₄ = Q/E ₅ .		
Si pE_5q entonces pE_2q .		
En un AFND es posible llegar desde el estado inicial al		
final con dos sucesiones de movimientos distintas.		
Un AF no puede reconocer λ a menos que el estado		
inicial sea final.		
pTq indica $f(p,a)=q$.		
Si los autómatas mínimos de dos autómatas finitos son		
isomorfos, entonces los autómatas finitos son		
equivalentes.		
Hay determinados AFNDs que no pueden convertirse en		
AFDs.		
El lenguaje reconocido por un AFD no conexo varía si		
eliminamos sus estados inaccesibles.		

2. Obtenga el diagrama de transiciones del AFD que reconoce palíndromos (palabras que no varían si la lectura se realiza de izquierda a derecha o viceversa) de longitud 3 sobre el alfabeto de símbolos: {a, b}. (3,5 ptos).

3. Dado el siguiente AFD, hallar su correspondiente AFD mínimo (3,5 ptos).

