Chennai House Price Prediction

dataset link- https://www.kaggle.com/code/kunwarakash/chennai-house-price-prediction/input

```
In [180...
                 numpy as np
                 pandas
                         as pd
                 matplotlib.pyplot plt
                 seaborn
                           as sns
                 pickle
                 os
               sklearn.preprocessing import StandardScaler
               sklearn.linear_model import LinearRegression
               sklearn.linear model Lasso LassoCV, Ridge, RidgeCV, ElasticNet, ElasticNetCV
               sklearn.model_selection import
                                                   train_test_split
               sklearn.metrics import r2_score,mean_absolute_error
 In [2]:
         os.chdir
 In [3]:
         df = pd.read_csv
 In [4]:
         df.head
           PRT_ID
                       AREA INT_SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL
 Out[4]:
         0 P03210 Karapakkam
                                 1004
                                       04-05-2011
                                                           131
                                                                                                  AbNormal
                                                                                   1.0
                                                                                                                 Yes
                                                                                             5
         1 P09411 Anna Nagar
                                 1986
                                       19-12-2006
                                                           26
                                                                      20
                                                                                   1.0
                                                                                                  AbNormal
                                                                                                                  No
         2 P01812
                                 909
                                       04-02-2012
                                                           70
                                                                      1.0
                                                                                   1.0
                                                                                             3
                                                                                                  AbNormal
                                                                                                                 Yes
         3 P05346
                                       13-03-2010
                                                                      3.0
                                                                                             5
                    Velachery
                                 1855
                                                           14
                                                                                   2.0
                                                                                                    Family
                                                                                                                  No
         4 P06210 Karapakkam
                                       05-10-2009
                                 1226
                                                           84
                                                                      1.0
                                                                                   1.0
                                                                                             3
                                                                                                  AbNormal
                                                                                                                 Yes ...
        5 rows × 22 columns
 In [5]:
         df.shape
 Out[5]:
 In [6]:
         df.info(
```

```
In [7]:
```

```
# column names in dataset

df.columns
```

```
Out[7]:
```

About Data

- PRT ID- Id of house
- AREA In which area house is located in Chennai
- INT_SQFT- Area in sqft
- DATE_SALE- When house was sold
- DIST_MAINROAD- Distance of house from main road
- N_BEDROOM- Number of Bedrooms
- N_BATHROOM- Number of Bathrooms
- N_ROOM- Number of Rooms
- SALE_COND- Sale condition
- PARK_FACIL- Is parking available or not
- DATE_BUILD- Date house was built
- BUILDTYPE- Purpose of house
- UTILITY_AVAIL- Facilities available there
- STREET- How is street outside that house
- MZZONE- Which zone it is in
- QS_ROOMS- It is masked data
- QS_BATHROOM- It is masked data
- QS_BEDROOM- It is masked data
- QS_OVERALL- It is masked data
- REG_FEE- Registration fee after sales
- COMMIS- Commission fee after sales
- SALES_PRICE- Sale price of house
- 1. How many numerical columns and catgorical columns are there in data?

```
In [8]: # All numeric columns are :
    print(df.select_dtypes(include=np.number).columns)
```

```
print
                                                        len(df.select_dtypes(include=np.number).columns
 In [9]:
          print(df.select_dtypes(include=object).columns
                                                   are :",len(df.select dtypes(include=object).columns))
In [10]:
              'MZZONE'].value_counts(
         DATA CLEANING
In [11]:
         df = df.drop(['QS
                                                                                           axis=1)
In [12]:
         # checking dataset after removing columns
         df.head()
            PRT_ID
                       AREA INT_SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL DATE
Out[12]:
         0 P03210 Karapakkam
                                  1004
                                        04-05-2011
                                                            131
                                                                        1.0
                                                                                    1.0
                                                                                              3
                                                                                                    AbNormal
                                                                                                                   Yes
                                                                                                                         15
            P09411
                   Anna Nagar
                                  1986
                                        19-12-2006
                                                             26
                                                                        2.0
                                                                                     1.0
                                                                                              5
                                                                                                   AbNormal
                                                                                                                    No
                                                                                                                         22-
         2 P01812
                                        04-02-2012
                                                             70
                                                                        1.0
                                                                                              3
                                                                                                                         09-
                        Adyar
                                  909
                                                                                    1.0
                                                                                                   AbNormal
                                                                                                                   Yes
         3 P05346
                     Velachery
                                  1855
                                        13-03-2010
                                                             14
                                                                        3.0
                                                                                    2.0
                                                                                              5
                                                                                                      Family
                                                                                                                    No
                                                                                                                         18
         4 P06210 Karapakkam
                                  1226
                                        05-10-2009
                                                             84
                                                                        1.0
                                                                                     1.0
                                                                                              3
                                                                                                   AbNormal
                                                                                                                   Yes
                                                                                                                         13-
```

2. which column has missing values present?

```
In [13]: # checking null values in dataset

df.isnull().sum()
```

```
N_BEDROOM, N_BATHROOM columns has missing values
In [14]:
        #checking no. of bathrooms in each house
        df['N_BATHROOM'].value_counts()
Out[14]:
In [15]:
        df['N_BATHROOM'] = df['N_BATHROOM'].fillna(df['N_BATHROOM'].mode()[0])
In [16]:
        #checking number of bedrooms available in houses
        df['N_BEDROOM'].value_counts()
Out[16]:
In [17]:
        # dropping null Number of bedroom row
        df.dropna(inplace= True)
In [18]:
        # checking null value in dataset after null values operation
        df.isnull().sum()
Out[18]:
In [19]:
        #checking dataset after
```

Out[13]:

df.head PRT_ID AREA INT SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL Out[19]: 04-05-2011 3 0 P03210 Karapakkam 1004 1.0 1.0 AbNormal Yes 15. 1986 2.0 5 P09411 19-12-2006 26 1.0 AbNormal No 22 Anna Nagar 2 P01812 Adyar 909 04-02-2012 70 1.0 1.0 3 AbNormal Yes 09-3.0 P05346 Velachery 1855 13-03-2010 14 2.0 5 Family No 18-13-4 P06210 Karapakkam 1226 05-10-2009 84 1.0 1.0 3 AbNormal Yes # Feature Engineering In [20]: df df In [21]: df.head PRT_ID DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL DATE Out[21]: AREA INT_SQFT 0 P03210 Karapakkam 1004 04-05-2011 131 1.0 1.0 3 AbNormal 15. Yes 1986 5 No P09411 19-12-2006 26 2.0 1.0 AbNormal 22 Anna Nagar P01812 909 04-02-2012 70 1.0 1.0 3 AbNormal Yes 09-Adyar P05346 Velachery 1855 13-03-2010 14 3.0 2.0 5 Family 18-No 05-10-2009 84 1.0 1.0 3 4 P06210 Karapakkam 1226 AbNormal Yes 13 In [22]:].value_counts(Out[22]: 514 In [23]: Out[23]:

function to create BUILD YEAR Column of dataset from DATE BUILD column

def convert(x):

```
<mark>turn</mark> num
In [25]:
          #creating copy of dataset
          df2 = df.copy()
In [26]:
          df2['BUILD YEAR'] = df2['DATE_BUILD'].apply(convert)
In [27]:
                      YEAR'] = df['DATE_SALE'].apply(convert)
In [28]:
          df2.head
Out[28]:
            PRT_ID
                        AREA INT_SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL ... B
                                         04-05-2011
          0 P03210 Karapakkam
                                   1004
                                                             131
                                                                          1.0
                                                                                       1.0
                                                                                                 3
                                                                                                      AbNormal
                                                                                                                       Yes
            P09411 Anna Nagar
                                   1986
                                         19-12-2006
                                                              26
                                                                          2.0
                                                                                       1.0
                                                                                                 5
                                                                                                      AbNormal
                                                                                                                       No
          2 P01812
                        Adyar
                                   909
                                         04-02-2012
                                                                          1.0
                                                                                       1.0
                                                                                                 3
                                                                                                      AbNormal
                                                                                                                       Yes
          3 P05346
                                                                          3.0
                                                                                       20
                                                                                                 5
                                   1855
                                         13-03-2010
                                                              14
                                                                                                         Family
                      Velachery
                                                                                                                       No
          4 P06210 Karapakkam
                                   1226
                                         05-10-2009
                                                              84
                                                                          1.0
                                                                                       1.0
                                                                                                 3
                                                                                                      AbNormal
                                                                                                                       Yes
         5 rows × 21 columns
In [29]:
          df2
                      _SALE'] = pd.to_datetime(df2['DATE_SALE'])
In [30]:
          df2.dtypes
Out[30]:
In [31]:
          #checking details of datset
          df2.describe(include='all')
```

num = x.split(

C:\Users\HP\AppData\Local\Temp\ipykernel_9156\1016192461.py:3: FutureWarning: Treating datetime data as catego ical rather than numeric in `.describe` is deprecated and will be removed in a future version of pandas. Speci y `datetime_is_numeric=True` to silence this warning and adopt the future behavior now.

df2.describe(include='all')

ŕ	١.	u	٠	- 1	5	٦	1	
٦,			٠.			ч		

:		PRT_ID	AREA	INT_SQFT	DATE_SALE	DIST_MAINROAD	N_BEDROOM	N_BATHROOM	N_ROOM	SALE_COND	PARK_FACI
	count	7108	7108	7108.000000	7108	7108.000000	7108.000000	7108.000000	7108.000000	7108	710
ι	ınique	7108	17	NaN	2798	NaN	NaN	NaN	NaN	9	
	top	P03210	Chrompet	NaN	2009-06-10 00:00:00	NaN	NaN	NaN	NaN	AdjLand	Ye
	freq	1	1681	NaN	12	NaN	NaN	NaN	NaN	1433	358
	first	NaN	NaN	NaN	2004-01-02 00:00:00	NaN	NaN	NaN	NaN	NaN	Nal
	last	NaN	NaN	NaN	2015-12-02 00:00:00	NaN	NaN	NaN	NaN	NaN	Nal
	mean	NaN	NaN	1382.048537	NaN	99.591728	1.637029	1.213140	3.688661	NaN	Nal
	std	NaN	NaN	457.438429	NaN	57.399027	0.802902	0.409555	1.019164	NaN	Nal
	min	NaN	NaN	500.000000	NaN	0.000000	1.000000	1.000000	2.000000	NaN	Nal
	25%	NaN	NaN	993.000000	NaN	50.000000	1.000000	1.000000	3.000000	NaN	Nal
	50%	NaN	NaN	1373.000000	NaN	99.000000	1.000000	1.000000	4.000000	NaN	Nal
	75%	NaN	NaN	1744.000000	NaN	148.000000	2.000000	1.000000	4.000000	NaN	Nal
	max	NaN	NaN	2500.000000	NaN	200.000000	4.000000	2.000000	6.000000	NaN	Nal

13 rows × 21 columns

3. Are there misspelled data?

In [32]: #checking uniqueness in SALE_COND column

df2['SALE COND'].unique()

Out[32]: array(['AbNormal', 'Family', 'Partial', 'AdjLand', 'Normal Sale',

as Abnormal = Ab normal, Partial = PartialL and adjLAND = Adj Land
we will clean this column by merging duplicate values

df2['SALE_COND'] = df2['SALE_COND'].replace({'Ab Normal': 'AbNormal', 'Partiall':
'Partial','Partiall':'Partial','Adj Land':'AdjLand'})

In [34]: df2['SALE COND'].unique()

In [35]: # Checking new df2

df2.head()

ut[35]:		PRT_ID	AREA	INT_SQFT	DATE_SALE	DIST_MAINROAD	N_BEDROOM	N_BATHROOM	N_ROOM	SALE_COND	PARK_FACIL	 В
	0	P03210	Karapakkam	1004	2011-04-05	131	1.0	1.0	3	AbNormal	Yes	
	1	P09411	Anna Nagar	1986	2006-12-19	26	2.0	1.0	5	AbNormal	No	 (
	2	P01812	Adyar	909	2012-04-02	70	1.0	1.0	3	AbNormal	Yes	 (
	3	P05346	Velachery	1855	2010-03-13	14	3.0	2.0	5	Family	No	
	4	P06210	Karapakkam	1226	2009-05-10	84	1.0	1.0	3	AbNormal	Yes	

5 rows × 21 columns

In [36]: #Checking unique values

df2['PARK FACIL'].value_counts()

```
Out[36]:
In [37]:
          df2
                                        PARK FACIL'].replace(
                                = df2[
In [38]:
          df2
                               .value_counts
Out[38]:
In [39]:
                         'PE'].value_counts(
          df2
Out[39]:
In [40]:
                                          JILDTYPE'].replace
                              = df2
In [41]:
                              .value_counts
Out[41]:
In [42]:
          df3 = df2.copy(
In [43]:
          df3.head
Out[43]:
            PRT_ID
                        AREA INT_SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL ... B
          0 P03210 Karapakkam
                                   1004
                                         2011-04-05
                                                              131
                                                                          1.0
                                                                                       1.0
                                                                                                 3
                                                                                                      AbNormal
                                                                                                                       Yes
            P09411 Anna Nagar
                                   1986
                                         2006-12-19
                                                               26
                                                                          2.0
                                                                                       1.0
                                                                                                 5
                                                                                                      AbNormal
                                                                                                                       No
          2 P01812
                                   909
                                         2012-04-02
                                                               70
                                                                          1.0
                                                                                       1.0
                                                                                                 3
                                                                                                      AbNormal
                         Adyar
                                                                                                                       Yes
          3 P05346
                     Velachery
                                   1855
                                         2010-03-13
                                                               14
                                                                          3.0
                                                                                       2.0
                                                                                                 5
                                                                                                         Family
                                                                                                                       No
                                                                                       1.0
                                                                                                 3
          4 P06210 Karapakkam
                                   1226
                                         2009-05-10
                                                               84
                                                                          1.0
                                                                                                      AbNormal
                                                                                                                       Yes ...
         5 rows × 21 columns
In [44]:
          df3[
                         AVAIL'].value counts()
Out[44]:
In [45]:
                                    'UTILITY AVAIL'].replace({'All Pub':'AllPub','NoSewr
          df3
```

```
In [46]:
        #Checking unique values
         df3['UTILITY'].value_counts()
Out[46]:
In [47]:
        df3['STREET'].unique()
        array(['Paved', 'Gravel', 'No Access
Out[47]:
In [48]:
        # removing duplicate names in street columns
         df3['STREET'] = df3['STREET'].replace({
In [49]: # Checking unique values in STREET Column after operation
        df3['STREET'].unique()
Out[49]:
In [50]:
         # Checking unique values
        df3['MZZONE'].value_counts()
Out[50]:
In [51]:
         df3['AREA'].unique()
Out[51]:
               'KK Nagar', 'TNagar', 'T Nagar', 'Chrompt', 'Chrmpet', 'Karapakam',
In [52]: # removing duplicate names in Area columns
         df3['AREA'] = df3['AREA'].replace({'Karapakam':'Karapakkam','Ana Nagar':'Anna Nagar','Ann
In [53]:
        # checking unique values in AREA column
         df3['AREA'].unique()
In [54]:
        df3.head(
```

```
1004
                                                                  131
                                                                                1.0
                                                                                             1.0
                                                                                                        3
          0 P03210 Karapakkam
                                            2011-04-05
                                                                                                              AbNormal
                                                                                                                               Yes
             P09411
                     Anna Nagar
                                     1986
                                            2006-12-19
                                                                   26
                                                                                2.0
                                                                                              1.0
                                                                                                        5
                                                                                                              AbNormal
                                                                                                                                No
          2
             P01812
                                      909
                                            2012-04-02
                                                                   70
                                                                                1.0
                                                                                             1.0
                                                                                                        3
                                                                                                              AbNormal
                          Adyar
                                                                                                                                Yes ...
                                                                                             2.0
          3 P05346
                       Velachery
                                     1855
                                            2010-03-13
                                                                   14
                                                                                3.0
                                                                                                        5
                                                                                                                 Family
                                                                                                                                No
             P06210 Karapakkam
                                     1226
                                            2009-05-10
                                                                   84
                                                                                1.0
                                                                                              1.0
                                                                                                        3
                                                                                                              AbNormal
                                                                                                                                Yes
          5 rows × 22 columns
In [55]:
           df3.columns
Out[55]:
In [56]:
           df3.drop(columns=
                                                                                         ,axis=1,inplace = True)
In [57]:
           df4 = df3.copy
In [58]:
           df4.drop
                                     axis
                                                  inplace =
In [59]:
           df4.head
Out[59]:
                  AREA INT_SQFT DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL BUILDTYPE STREET MZZI
                             1004
                                              131
                                                                                    3
          0 Karapakkam
                                                            1.0
                                                                          1.0
                                                                                          AbNormal
                                                                                                                              Paved
                                                                                                            Yes
                                                                                                                 Commercial
                                                                                    5
              Anna Nagar
                             1986
                                               26
                                                            2.0
                                                                          1.0
                                                                                          AbNormal
                                                                                                            No
                                                                                                                 Commercial
                                                                                                                              Gravel
          2
                              909
                                               70
                                                            1.0
                                                                          1.0
                                                                                     3
                                                                                          AbNormal
                  Adyar
                                                                                                            Yes
                                                                                                                 Commercial
                                                                                                                              Gravel
                             1855
                                               14
                                                            3.0
                                                                          2.0
                                                                                    5
                                                                                                                     Others
               Velachery
                                                                                             Family
                                                                                                            No
                                                                                                                              Paved
           4 Karapakkam
                             1226
                                               84
                                                            1.0
                                                                          1.0
                                                                                    3
                                                                                          AbNormal
                                                                                                            Yes
                                                                                                                     Others
                                                                                                                              Gravel
In [60]:
           df4['N_ROOM'].value_counts(
Out[60]:
In [61]:
           df4
                              .value counts
Out[61]:
In [62]:
                    BATHROOM'].value_counts
           df4
```

AREA INT_SQFT DATE_SALE DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL ... U

Out[54]:

PRT_ID

```
Out[62]:
In [63]:
In [64]:
          df4.columns
Out[64]:
          4. Are there outliers in dataset ? if yes, which column has outlier ?
In [65]:
Out[65]:
In [66]:
          plt.figure(figsize =(15,8))
          sns.boxplot(data = df4)
          plt.show
          2.5
          2.0
          1.5
          1.0
          0.5
          0.0
                 INT_SQFT
                           DIST_MAINROAD
                                         N_BEDROOM
                                                      N_BATHROOM
                                                                    N_ROOM
                                                                                 REG_FEE
                                                                                              COMMIS
                                                                                                          SALES_PRICE TOTAL_SALES_PRICE
          It seems there are some outliers present in SALES_PRICE Column
In [67]:
                                                                 RICE']/df4[
                                    '] = df4
In [68]:
                             SQ FT'].max
```

```
Out[68]:
In [69]:
        df4['PRICE_PER_SQ FT'].min()
        3138.9220779220777
Out[69]:
        it shows we have rate as per market "if you cross check in google"
In [70]: ## finding outliers in TOTAL _SALES_PRICE COLUMN using IQR Method
         q1,q3 = np.percentile(df4['TOTAL_SALES_PRICE'],[25,75])
         IQR = q3-q1
         lower_val = q1 - (1.5*IQR)
         upper_val = q3 + (1.5*IQR)
In [71]:
        print('
                                lower_val)
         print(
                               ,upper_val)
In [72]:
         df4['TOTAL_SALES_PRICE'][df4['TOTAL_SALES_PRICE']>upper_val].count() ,
Out[72]:
In [73]:
        df4['TOTAL SALES PRICE'][df4['TOTAL SALES PRICE']<lower val].count()</pre>
Out[73]:
In [74]:
        df4.shape
Out[74]:
In [75]:
        # creating new dataframe
        df5 = df4.copy()
In [76]:
        # using clip method to remove outlier taking 99 % of upper value
        df5=
         df5[df5['TOTAL_SALES_PRICE']==df5['TOTAL_SALES_PRICE'].clip(lower=1192439.0,upper=21067637.0*0.
In [77]: # shape of data after outlier treatment
        df5.shape
In [78]: # checking outliers after removing extra rows that are out of upper bound value
         fig = plt.figure(figsize =(15,8))
         sns.boxplot(data = df5)
         plt.show()
```



```
In [79]:
# As outliers are present even now, let's take 95% of upper value to clip from data

df5=
    df5[df5['TOTAL_SALES_PRICE']==df5['TOTAL_SALES_PRICE'].clip(lower=1192439.0, upper=21067637.0*0.9)
```

```
# checking outliers after removing extra rows that are out of upper bound value

fig = plt.figure(figsize =(15,8))
sns.boxplot(data = df5)
plt.show()
```


Outliers removed

```
In [81]: # checking dataset again

df5
```

	7107	Karapakka	am 7	87	40	1	1	2 Par	tial Y	es Commerc	cial Pav	ved
	7108	Velache	ery 18	96 1	56	3	2	5 Par	tial Y	es Othe	ers Pav	ved
,	6782	rows × 19	columns									
In [82]:				and REG_FEE,								
	df5	.drop(c	olumns=['REG_FEE', '	COMMIS', '	SALES_PRICE	'], inp	lace= True	2)			
In [83]:		hecking .column	columns									
Out[83]:		x(['AREA	', 'INT_S	QFT', 'DIST_MA E_COND', 'PARK								
		'PRIC	L_SALES_P E_PER_SQ 'object')		YEAR', 'SALE	_YEAR', 'UTI						
In [84]:	df5	'PRIC	E_PER_SQ	FT'],	YEAR', 'SALE	E_YEAR', 'UTI						
In [84]: Out[84]:	df5	'PRIC dtype= .head()	E_PER_SQ 'object')	FT'],			LITY',	SALE_COND	PARK_FACIL	BUILDTYPE	STREET	MZ
		'PRIC dtype= .head()	E_PER_SQ 'object')	FT'],			N_ROOM	SALE_COND AbNormal	PARK_FACIL Yes	BUILDTYPE Commercial	STREET Paved	MZ
		'PRIC dtype= .head()	E_PER_SQ 'object') INT_SQFT	FT'], DIST_MAINROAD	N_BEDROOM	N_BATHROOM	N_ROOM	AbNormal				MZZ
	0 Ka	PRIC dtype= . head () AREA arapakkam	E_PER_SQ 'object') INT_SQFT 1004	DIST_MAINROAD 131	N_BEDROOM	N_BATHROOM	N_ROOM 3 3	AbNormal AbNormal	Yes	Commercial	Paved	MZ
	0 Ka 2 3	PRIC dtype= . head () AREA arapakkam Adyar	E_PER_SQ 'object') INT_SQFT 1004 909	DIST_MAINROAD 131 70	N_BEDROOM 1 1	N_BATHROOM 1 1	N_ROOM 3 3 5	AbNormal AbNormal Family	Yes	Commercial Commercial	Paved Gravel	MZZ
	0 Ká 2 3 4 Ká	PRIC dtype= . head () AREA arapakkam Adyar Velachery	E_PER_SQ 'object') INT_SQFT 1004 909 1855	DIST_MAINROAD 131 70 14	N_BEDROOM 1 1 3	N_BATHROOM 1 1 2	N_ROOM 3 3 5 3	AbNormal AbNormal Family	Yes Yes No	Commercial Commercial Others	Paved Gravel Paved Gravel	MZZ

ProfileReport

pf

 ${\tt AREA\ INT_SQFT\ DIST_MAINROAD\ N_BEDROOM\ N_BATHROOM\ N_ROOM\ SALE_COND\ PARK_FACIL\ BUILDTYPE}$

2

1

1

1

2

1

3

3

5

3

4

2

5

AbNormal

AbNormal

AbNormal

Family

Partial

AdjLand

Family

Normal Sale

Yes

Yes

No

Yes

No

No

Yes

No

Commercial

Commercial

Others

Others

House

Commercial NoAccess

Others NoAccess

Others NoAccess

1

3

2

1

3

2

STREET

Paved

Gravel

Paved

Gravel

Gravel

Out[81]:

0 Karapakkam

4 Karapakkam

Adyar

Velachery

Chrompet

Karapakkam

Velachery

Velachery

Data Visualization

pandas_profiling

nerate report structure:

In [85]:

In [86]:

pf(df5

2

3

5

7104

7105

7106

1004

909

1855

1226

1220

598

1897

1614

131

70

14

84

36

51

52

152

Overview

Dataset statistics

Number of variables	16
Number of observations	6782
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	1.1 MiB
Average record size in memory	167.0 B

Variable types

Categorical	9
Numeric	6
Boolean	1

Alerts

INT_SQFT is highly overall correlated with TOTAL_SALES_PRICE and 4 other fields	High correlation
(TOTAL_SALES_PRICE, PRICE_PER_SQ FT, N_BEDROOM, N_BATHROOM,	
N_ROOM)	
TOTAL_SALES_PRICE is highly overall correlated with INT_SQFT	High correlation
PRICE_PER_SQ FT is highly overall correlated with INT_SQFT	High correlation
AREA is highly overall correlated with N_BATHROOM	High correlation
N_BEDROOM is highly overall correlated with <code>INT_SQFT</code> and 2 other fields (INT_SQFT, N_BATHROOM, N_ROOM)	High correlation

Out[86]:

In [87]:

#Correlation in numerical columns of data (only numerical columns participate)

df5.corr()

C:\Users\HP\AppData\Local\Temp\ipykernel_9156\3116386517.py:3: FutureWarning: The default value of numeric_only
in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or sp
ecify the value of numeric_only to silence this warning.
 df5 corr()

	INT_SQFT	DIST_MAINROAD	N_BEDROOM	N_BATHROOM	N_ROOM	TOTAL_SALES_PRICE	PRICE_PER_SQ FT
INT_SQFT	1.000000	-0.002273	0.800027	0.543732	0.949781	0.611010	-0.535176
DIST_MAINROAD	-0.002273	1.000000	-0.003555	0.003993	-0.001870	0.010762	0.012120
N_BEDROOM	0.800027	-0.003555	1.000000	0.760998	0.851397	0.387391	-0.463757
N_BATHROOM	0.543732	0.003993	0.760998	1.000000	0.599007	0.195451	-0.371684
N_ROOM	0.949781	-0.001870	0.851397	0.599007	1.000000	0.604707	-0.478621
TOTAL_SALES_PRICE	0.611010	0.010762	0.387391	0.195451	0.604707	1.000000	0.292963
PRICE PER SQ FT	-0.535176	0.012120	-0.463757	-0.371684	-0.478621	0.292963	1.000000

In [88]:

```
# correlation representation using heatmap

plt.figure(figsize=(8,8))
sns.heatmap(df5.corr(),annot = True)
plt.show()
```

C:\Users\HP\AppData\Local\Temp\ipykernel_9156\4012904402.py:4: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

- 1. N_Room and INT_SQFT are highly correlated to each other
- 2. N_Bedroom, N_ROOM and INT_SQFT are correalted to each other
- 3. N_BATHROOM is Correlated with N_BEDROOM
- 4. TOTAL_SALES_PRICE is correlated to INT_SQFT,N_ROOM mostly then comes N_BEDROOM and N_BATHROOM
- 5. Price/SQFT is -ve correlated to N_room, N_Bathroom, N_Bedroom and INT_SQFT

----- UNIVARIATE ANALYSIS-----

In [89]: df5.in

```
df5.info()
```

In [90]:

- 1. AREA- Chrompet AREA has max houses and T Nagar has min houses
- 2. N_BEDROOM There are max houses with 1 bedroom (3500+) and 4 bedroom houses(250 approx) -minimum
- 3. N_BATHROOM- 5000+ Houses has only 1 bathroom and 1500 approx houses has 2 bathrooms
- 4. No. of rooms 2500+ houses has 4 rooms(max) and 200 houses has 6 rooms(min)
- 5. SALE Condition condition-wise houses are equally divides- approx 1300 each
- 6. Park Facility 3200 houses has parking and similar number for 'no parking'
- 7. BUILDTYPE- Max houses(2400) were built commercial are less
- 8. STREET Paved streets max (2300 apprx)
- 9. MZZONE RH ZONE has max houses(1700), I Zone has min houses(500)
- 10.SALE_YEAR -In 2010 year max houses(1300 apprx) were sold, in 2015 min houses were sold(75 apprx)
- 11. UTILITY- NOSewa category houses are max(3500), with ELO min houses(1300)

```
In [91]:
```


1. Total Sales price is approximate normally distributed

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,6))

2. Price Per Square foot is somwhat right skewed

#

df5.columns

In [92]:

---- BIVARIATE ANALYSIS----

= df5

ax =ax[0], hue='AREA')

```
sns.scatterplot(x="PRICE_PER_SQ FT", y="N_ROOM", data = df5, ax = ax[1])
plt.suptitle('Price/Sqft VS N_Rooms',fontsize="x-large")
ax[0].legend(loc='upper right')
ax[0].set_title('lineplot')
ax[1].set_title('scatterplot')
```

Out[93]:

ext(0.5, 1.0, 'scatterplot')

Price/Sqft VS N_Rooms

- 1. Price per sq foot is higher for 2 room houses
- 2. Price per sq foot is lesser for 6 room houses
- 3. KK Nagar Area has 6 room houses
- 4. Chrompet Area has 2,3 and 4 room houses and expensive of all Area considering Price Per square foot cost

```
# drawing lineplot and scatterplot for 'INT_SQFT' and 'TOTAL_SALES_PRICE'

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))
sns.lineplot(x="INT_SQFT", y="TOTAL_SALES_PRICE", data = df5, ax =ax[0])
sns.scatterplot(x="INT_SQFT", y="TOTAL_SALES_PRICE", data = df5, ax = ax[1])
plt.suptitle('INT_SQFT VS Total sales price', fontsize="x-large")
ax[0].set_title('lineplot')
ax[1].set_title('scatterplot')
```

Out[94]: Text(0.5

ext(0.5, 1.0, 'scatterplot'

As Int Sqft increasing Total_Sale price also increasing

```
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))
sns.lineplot(x="INT_SQFT", y="TOTAL_SALES_PRICE", data = df5, ax =ax[0], hue='AREA')
sns.scatterplot(x="INT_SQFT", y="TOTAL_SALES_PRICE", data = df5, ax = ax[1], hue='AREA')
plt.suptitle('INT_SQFT VS Total sales price considering Area', fontsize="x-large")
ax[0].set_title('lineplot')
ax[1].set_title('scatterplot')
```

Out[95]: Text(0.5, 1.0, 'scatterplot')


```
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))
sns.lineplot(x="DIST_MAINROAD", y="TOTAL_SALES_PRICE", data = df5, ax =ax[0])
sns.scatterplot(x="DIST_MAINROAD", y="TOTAL_SALES_PRICE", data = df5, ax = ax[1])
plt.suptitle('MAinroad distance VS Total sales price',fontsize="x-large")
ax[0].set_title('lineplot')
ax[1].set_title('scatterplot')
```

Out[96]: Text(0.5, 1.0, 'scatterplot'

It shows distance from mainroad does not affect sales price of property

```
In [97]: # Number of rooms and bedrooms affect on Total sales price

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))
sns.lineplot(x="N_ROOM", y="TOTAL_SALES_PRICE", data = df5, ax=ax[0])

sns.lineplot(x="N_BEDROOM", y="TOTAL_SALES_PRICE", data = df5, ax=ax[1])

ax[0].set_title('lineplot- Rooms vs Total Sales Price')
ax[1].set_title('lineplot- Bedrooms vs Total Sales Price')
```

Out[97]: Text(0.5, 1.0, 'lineplot- Bedrooms vs Total Sales Price'


```
# Number of Bathrooms and INT_SQFT affect on Total sales price

fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10,4))
sns.lineplot(x="N_BATHROOM", y="TOTAL_SALES_PRICE", data = df5,ax =ax[0])
sns.lineplot(x="INT_SQFT", y="TOTAL_SALES_PRICE", data = df5, ax =ax[1])

ax[0].set_title('lineplot- Bathrooms vs Total Sales Price')
ax[1].set_title('lineplot- SQFT vs Total Sales Price')
```

Out[98]: Text(0.5, 1.0, 'lineplot- SQFT vs Total Sales Price')


```
In [99]: # AREA VS SALES_PRICE considering rooms

fig = plt.figure(figsize =(10,6))
    sns.barplot(x='AREA',y= 'TOTAL_SALES_PRICE', data = df5 ,hue ='N_ROOM',color ='b', palette =
    "viridis")
    plt.title('AREA VS TOTAL_SALES_PRICE considering ROOMS')
```

Out[99]: Text(0.5, 1.0, 'AREA VS TOTAL_SALES_PRICE considering ROOMS')

- 1. 6 Room house is available only in KK NAGAR
- 2. karapakkam is society having low Sales price in Chennai which has 2,3,4 Rooms houses available
- 3. T NAGAR AND ANNA NAGAR has high sales price among all locations

```
# AREA VS SALES_PRICE considering Bedrooms

fig = plt.figure(figsize =(10,6))
sns.barplot(x='AREA',y= 'TOTAL_SALES_PRICE', data = df5 ,hue ='N_BEDROOM',color ='b', palette =
"viridis")
plt.title('AREA VS SALES_PRICE considering Bedrooms')
```

Out[100]: Text(0.5, 1.0, 'AREA VS SALES_PRICE considering Bedrooms'

KKAGAR Society is versatile which has 1-4 Bedrooms Houses available

```
# SQUARE FOOT VS LOCATION

fig = plt.figure(figsize =(10,6))
sns.barplot(x='AREA',y= 'INT_SQFT', data = df5 ,hue ='N_BEDROOM',color ='b', palette =
"viridis")
plt.title('SQUARE FOOT VS LOCATION')
```

Text(0.5, 1.0, 'SQUARE FOOT VS LOCATION')

SQUARE FOOT VS LOCATION

- 1. KK NAGAR Area has 1200-2500 SQ FT Range houses available
- 2. Chrompet and Adyar area has 900-1200 SQ ft range area (minimum among all AREA)

```
In [102... # AREA VS PRICE/SQFT

fig = plt.figure(figsize =(10,6))
    sns.barplot(x='AREA',y= 'PRICE_PER_SQ FT', data = df5 ,hue = 'N_R00M',color ='b', palette =
    "viridis")
    plt.title('AREA VS PRICE/SQFT')
Out[102]: Text(0.5, 1.0, 'AREA VS PRICE/SQFT')
```


Chrompet and Adyar area is expensive one even 2-4 Rooms available only

but Price/SQFT is reaching around 11000/SQFT

Commercial houses are expensive and simple Houses are cheaper

```
fig = plt.figure(figsize =(10,6))
sns.barplot(x='MZZONE',y= 'TOTAL_SALES_PRICE', data = df5 , color ='b', palette = "viridis")
plt.title('MZZONE vs total sales price')
```

Out[105]: Text(0.5, 1.0, 'MZZONE vs total sales price')


```
In [106... # MZZONE vs Price/SQFT

fig = plt.figure(figsize =(10,6))
sns.barplot(x='MZZONE',y= 'PRICE_PER_SQ FT', data = df5 , color ='b', palette = "viridis")
plt.title('MZZONE vs Price/SQFT')
```

Out[106]: Text(0.5, 1.0, 'MZZONE vs Price/SQFT')

MZZONE tells about the status of society - A is the cheaper,RL, RH and RM comes under expensive

```
# Street vs total sales price

fig = plt.figure(figsize =(10,6))
sns.barplot(x='STREET',y= 'TOTAL_SALES_PRICE', data = df5 , color ='b', palette = "viridis")
plt.title('Street vs total sales price')
Toxt(0.5 1.0 'Street vs total sales price')
```

Out[107]: Text(0.5, 1.0, 'Street vs total sales price')


```
In [108... # NO. of Houses vs Price/SQFT

fig = plt.figure(figsize =(10,6))
plt.hist('PRICE_PER_SQ FT', data = df5, rwidth = 0.8)
plt.xlabel('PRICE/SQFT')
plt.ylabel('COUNT')
plt.title('NO. of Houses vs Price/SQFT')
**Text(0.5 = 1.0 = 100 ef Houses vs Price/SQFT')
```

Out[108]: Text(0.5, 1.0, 'NO. of Houses vs Price/SQFT')

- 1. Around 4700 houses cost is in range of 5000-9000 Rs/ SQFT
- 2. 100-150 houses cost is in range of 14000+ RS/SQFT

```
# No. Of Houses in AREA - considering MZZONE

plt.figure(figsize =(10,6))
sns.countplot(x='AREA', data = df5, hue = 'MZZONE')
plt.xlabel('AREA')
plt.ylabel('COUNT')
plt.title('No. Of Houses in AREA - considering MZZONE')
plt.show()
```



```
N BEDROOM
             N_BATHROOM
             N_ROOM
SALE_COND
          10 MZZONE
In [115...
                                               -df5
In [116...
         df5
Out[116]:
In [117...
         # Property age vs Price/sqft as per location
         fig = plt.figure(figsize = (10,6))
         sns.lineplot(x='PROP_AGE',y='PRICE_PER_SO_FT',
                                                             data = df5, hue = 'AREA')
         plt.title(
Out[117]: Text(0.5, 1.0, 'PROP_AGE vs PRICE/SQFT as
```



```
fig = plt.figure(figsize =(10,6))
sns.lineplot(x='PROP_AGE',y='TOTAL_SALES_PRICE', data =df5, hue = 'AREA')
plt.title('PROP_AGE vs SALES/PRICE')
```

Out[118]: Text(0.5, 1.0, 'PROP_AGE vs SALES/PRICE'

In [119... # preparing data for model creation now

df6 = df5.copy()

In [120... df6.head(

Out[120]: AREA INT_SQFT DIST_MAINROAD N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL STREET M2 BUILDTYPE 0 Karapakkam 1004 131 1 3 AbNormal Paved Yes Commercial 3 2 Adyar 909 70 AbNormal Yes Commercial Gravel 1855 14 3 2 5 Family Others Paved Velachery No 3 AbNormal Karapakkam 1226 84 Others Yes Gravel

1

4

Partial

Commercial

NoAccess

Dropping irreleveant columns
df6.drop(['DIST_MAINROAD','MZZONE','BUILD YEAR','SALE_YEAR'],axis =1, inplace =True)

2

In [122... # Checking shape of column
df6.shape

Chrompet

1220

Out[122]: (6782, 13

In [123... # checking dataframe after removing columns
df6.head()

36

Out[123]:		AREA	INT_SQFT	N_BEDROOM	N_BATHROOM	N_ROOM	SALE_COND	PARK_FACIL	BUILDTYPE	STREET	TOTAL_SALES_PRICE
-	0	Karapakkam	1004	1	1	3	AbNormal	Yes	Commercial	Paved	8124400
	2	Adyar	909	1	1	3	AbNormal	Yes	Commercial	Gravel	13672408
	3	Velachery	1855	3	2	5	Family	No	Others	Paved	10063653
	4	Karapakkam	1226	1	1	3	AbNormal	Yes	Others	Gravel	7717313
	5	Chrompet	1220	2	1	4	Partial	No	Commercial	NoAccess	13002093

Convert categorical columns in numerical data

- Methods
- 1. replace method
- 1. Label Encoding(Binary caegories)
- 1. ONE HOT ENCODING(pd.get_dummies)
- 1. Count /Frequency Encoding m

In [124... df7 = df6.copy

In [125... df7.head

Out[125]: AREA INT_SQFT N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL **BUILDTYPE** STREET TOTAL_SALES_PRICE

Karapakkam AbNormal Yes Commercial Paved Adyar AbNormal Yes Commercial Gravel Velachery Family No Others Paved Karapakkam AbNormal Others Gravel Chrompet Partial Commercial NoAccess No

In [126... dummies = pd.get dummies(data= drop_first =Tr

In [127...

dummies Out[127]:

AREA_KK AREA_Anna AREA_T PARK_FACIL_Yes AREA_Chrompet AREA_Karapakkam AREA_Velachery SALE_COND_AdjLand SA _ Nagar Nagar Nagar

6782 rows × 17 columns

In [128... dummies.columns

Out[128]:

AREA_Karapakkam

In [129... dummies.shape

```
Out[129]:
In [130...
           dummies.columns
Out[130]:
In [131...
           dummies
                                 AREA_Anna
                                                             AREA_KK
                                                                                         AREA T
Out[131]:
                 PARK_FACIL_Yes
                                             AREA_Chrompet
                                                                       AREA_Karapakkam
                                                                                                 AREA_Velachery SALE_COND_AdjLand SA
                                      Nagar
                                                                Nagar
                                                                                           Nagar
              0
                               1
                                           0
                                                          0
                                                                    0
                                                                                      1
                                                                                               0
                                                                                                              0
                                                                                                                                   0
              2
                                           0
                                                          0
                                                                    0
                                                                                      0
                                                                                               0
                                                                                                              0
                                                                                                                                   0
              3
                               0
                                           0
                                                          0
                                                                    0
                                                                                      0
                                                                                               0
                                                                                                                                   0
                                                                                                              1
              4
                                           0
                                                          0
                                                                    0
                                                                                               0
                                                                                                              0
                                                                                                                                   0
              5
                               0
                                           0
                                                          1
                                                                    0
                                                                                      0
                                                                                               0
                                                                                                              0
                                                                                                                                   0
           7104
                               0
                                           0
                                                          0
                                                                    0
                                                                                      1
                                                                                               0
                                                                                                              0
                                                                                                                                   1
           7105
                                           0
                                                          0
                                                                    0
                                                                                      0
                                                                                               0
                                                                                                                                   0
                               1
                               0
                                                                    0
           7106
                                           0
                                                          0
                                                                                      0
                                                                                               0
                                                                                                              1
                                                                                                                                   0
           7107
                                           0
                                                          0
                                                                    0
                                                                                               0
                                                                                                              0
                                                                                                                                   0
                                                          0
                                                                    0
                                                                                      0
           7108
                               1
                                           0
                                                                                               0
                                                                                                                                   0
                                                                                                              1
          6782 rows × 17 columns
In [132...
           df8 = pd.concat([df7,dummies],axis = 1)
In [133...
           df8.head
                   AREA INT_SQFT N_BEDROOM N_BATHROOM N_ROOM SALE_COND PARK_FACIL BUILDTYPE STREET TOTAL_SALES_PRICE
           0 Karapakkam
                              1004
                                              1
                                                                     3
                                                                           AbNormal
                                                                                                               Paved
                                                                                                                                 8124400
                                                                                            Yes
                                                                                                 Commercial
                                                                     3
                                                                                                                                 13672408
           2
                               909
                                                                           AbNormal
                                                                                                               Gravel
                   Adyar
                                                                                            Yes
                                                                                                 Commercial
                                              3
                                                            2
                                                                     5
           3
                Velachery
                              1855
                                                                             Family
                                                                                             No
                                                                                                     Others
                                                                                                               Paved
                                                                                                                                 10063653
                              1226
                                                                     3
                                                                                                     Others
                                                                                                                                 7717313
              Karapakkam
                                                                           AbNormal
                                                                                            Yes
                                                                                                               Gravel
                                              2
                                                                     4
                                                                                                                                 13002093
           5
                Chrompet
                              1220
                                                                             Partial
                                                                                                 Commercial NoAccess
                                                                                             No
          5 rows × 30 columns
In [134...
           df9 = df8.copy
In [135...
           df9 = df8.drop(['PARK_FACIL','AREA','SALE_COND','BUILDTYPE','STREET','UTILITY','PRICE_PER_SQ
                ,axis =
In [136...
           df9.columns
Out[136]:
In [137...
           df9.shape
```

In [142...

df10.info(

Model building

```
In [144... # checking distribution of Sales price
sns.kdeplot(df10['TOTAL_SALES_PRICE'])
```

Out[144]: <Axes: xlabel='TOTAL_SALES_PRICE', ylabel='Density';</pre>


```
# checking distribution of INT_SQFT
sns.kdeplot(df10['INT_SQFT'])
```

Out[145]: <Axes: xlabel='INT_SQFT', ylabel='Density'>


```
In [146... # checking distribution of Property Age
sns.kdeplot(df10['PROP_AGE'])
```

Out[146]: <Axes: xlabel='PROP_AGE', ylabel='Density'>


```
In [147... # To get better accuracy we will standardize our data
In [148... X = df10.drop(['TOTAL_SALES_PRICE'], axis = 1)
In [149... y = df10['TOTAL_SALES_PRICE']
In [150... # Splittig data using train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
```

In [151… # General split

X_train,X_test,y_train,y_test Out[151]: INT_SQFT N_BEDROOM N BATHROOM N ROOM PROP AGE PARK FACIL Yes

```
AREA_Anna Nagar AREA_Chrompet AREA_KK Nagar AREA_Karapakkam ... \
  7804314
```

```
scaler = StandardScaler(
In [153...
           x train std = scaler.fit transform(X train)
              _test_std = scaler.transform(X_test
In [154...
              _train_std_df = pd.DataFrame(x_train_std, columns = X_train.columns
In [155...
           x_train_std_df
Out[155]:
                                                                                              AREA_Anna
                                                                                                                          AREA_KK
                 INT_SQFT N_BEDROOM N_BATHROOM N_ROOM PROP_AGE PARK_FACIL_Yes
                                                                                                          AREA_Chrompet
                                                                                                                                     AREA_K
                                                                                                   Nagar
                                                                                                                              Nagar
               0 -0.203720
                                0.455018
                                              -0.529892
                                                        0.352164
                                                                    0.050691
                                                                                    -0.987495
                                                                                                -0.316091
                                                                                                                 1.714521
                                                                                                                           -0.414595
               1
                  0.400631
                                -0.785852
                                              -0.529892
                                                                    1.178628
                                                                                     1.012664
                                                                                                 -0.316091
                                                                                                                 -0.583253
                                                                                                                           -0.414595
                                                        0.352164
               2
                   0.625608
                                -0.785852
                                              -0.529892
                                                        0.352164
                                                                    1.178628
                                                                                    -0.987495
                                                                                                 3.163646
                                                                                                                 -0.583253
                                                                                                                           -0.414595
              3
                  -0.955850
                                -0.785852
                                              -0.529892
                                                        -0.637398
                                                                   -1.641215
                                                                                     1.012664
                                                                                                -0.316091
                                                                                                                 1.714521
                                                                                                                           -0.414595
                  -1.266848
                                -0.785852
                                              -0.529892
                                                                    1.178628
                                                                                    -0.987495
                                                                                                 -0.316091
                                                                                                                 -0.583253
                                                                                                                           -0.414595
               4
                                                       -1.626960
            5081
                  -0.051529
                                0.455018
                                              1.887176
                                                        0.352164
                                                                   -1.318947
                                                                                     1.012664
                                                                                                -0.316091
                                                                                                                 -0.583253
                                                                                                                           -0.414595
                                                                                                                           -0.414595
            5082
                  -1.041870
                                -0.785852
                                              -0.529892
                                                        -0.637398
                                                                    -0.110443
                                                                                     1.012664
                                                                                                 -0.316091
                                                                                                                 1.714521
            5083
                  -0.894091
                                -0.785852
                                              -0.529892
                                                        -0.637398
                                                                    0.372959
                                                                                    -0.987495
                                                                                                 -0.316091
                                                                                                                 1.714521
                                                                                                                           -0.414595
            5084
                                                                   -0.271577
                                                                                    -0.987495
                                                                                                -0.316091
                                                                                                                 -0.583253
                                                                                                                           -0.414595
                   1.188051
                                1.695888
                                               1.887176
                                                        1.341726
            5085
                  0.427099
                                0.455018
                                              -0.529892
                                                        0.352164
                                                                    0.131258
                                                                                    -0.987495
                                                                                                 -0.316091
                                                                                                                 -0.583253
                                                                                                                           -0.414595
           5086 rows × 22 columns
In [156...
           x train std df.columns
                                                               'AREA_Chrompet', 'AREA KK Nagar',
                     AREA_Karapakkam'
In [157...
           fig = plt.figure(figsize = (15,8))
           plt.xticks(rotation=
           sns.boxplot(data = x train std df
```

In [152...

Model without scaling

```
# linear model object

lr = LinearRegression()
# training model
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
print(f"Linear Regr-R2 Score without Standard scaling ={r2_score(y_test,y_pred)}")
```

Model after standardscaling

```
In [159... # linear model object

lr2 = LinearRegression()
# training model
lr2.fit(x_train_std, y_train)
y_pred_ss = lr2.predict(x_test_std)
print(y_pred_ss,'\n')
```

```
print
                                                                   [r2_score(y_test,y_pred_ss)
        In case of Linear Regression - all scores are same, we did not get any benefit afte scaling even
        Model building using Lasso Reg without scaling
In [160...
         lassocv = LassoCV(cv=5, random_state=0, max_iter = 1000)
         lassocv.fit(X_train, y_train)
         lassocv.alpha
In [161...
         lasso G = Lasso(alpha=lassocv.alpha )
         lasso G.fit(X train, y train
         y_pred = lasso_G.predict(X_test)
         model_score = r2_score(y_test,y_pred)
                                        model_score)
            sso model score : 0.40146541011
        Model building using Lasso Reg with Standardscaling
In [162...
         lassocv = LassoCV(cv=5, random state=0, max iter = 1000)
         lassocv.fit(x_train_std, y_train
         lassocv.alpha_
In [163...
        # fitting lasso to data
         lasso_SS = Lasso(alpha=lassocv.alpha_)
         lasso_SS.fit(x_train_std, y_train)
         y_pred = lasso_SS.predict(x_test_std)
         lasso_SS_score = r2_score(y_test,y_pred)
                                                                 lasso_SS_score)
         print(
        Model building using Ridge Reg without scaling
In [164...
         # finding alpha value of ridge equation
         ridgecv =RidgeCV( alphas= np.random.uniform(0,10,50), cv= 10)
         ridgecv.fit(X_train,y_train
         ridgecv.alpha_
Out[164]: 0.8074073530237569
In [165...
         # fitting ridge to data
         ridge_G = Ridge(alpha = ridgecv.alpha_)
         ridge_G.fit(X_train,y_train)
```

```
y_pred = ridge_G.predict(X_test)
         ridge_score = r2_score(y_test,y_pred)
                                                                 ridge score)
        Model building using Ridge Reg with Standard scaling
In [166...
        ridgecv =RidgeCV( alphas= np.random.uniform(0,10,50), cv= 10)
         ridgecv.fit(x_train_std,y_train)
         ridgecv.alpha
Out[166]: 3.327659194179531
In [167...
        ridge_SS = Ridge(alpha = ridgecv.alpha_)
        ridge SS.fit(x train std,y train)
         y_pred = ridge_SS.predict(x_test_std)
        ridge_SS_score = r2_score(y_test,y_pred)
        print(
                                                                ridge_score)
        Model building using Elasticnet Reg without scaling
In [168...
        # finding alpha and l1_ration value of elasticnet equation
        elastic=ElasticNetCV(l1 ratio = 0.5, cv = 10, max iter = 10000, random state= 100)
        elastic.fit(X_train,y_train)
        elastic.alpha_, elastic.l1_ratio
Out[168]: (1802449.444685973
In [169... # fitting elasticnet to data
        elastic_G = ElasticNet(alpha=elastic.alpha_,l1_ratio = elastic.l1_ratio)
        elastic_G.fit(X_train, y_train)
         y_pred = elastic_G.predict(X_test)
        elastic_score = r2_score(y_test,y_pred)
        print(
                                                                  elastic_score)
        Model building using Elasticnet Reg with Standard scaling
In [170...
        # finding alpha and l1 ration value of elasticnet equation
        elastic=ElasticNetCV(l1_ratio = 0.5, cv = 10, max_iter = 10000)
        elastic.fit(x_train_std,y_train)
        elastic.alpha_, elastic.l1_ratio
Out[170]: (3975.589261921672, 0.
In [171... # fitting elasticnet to data
        elastic SS = ElasticNet(alpha=elastic.alpha ,l1 ratio = elastic.l1 ratio)
        elastic SS.fit(x train std, y train)
         y pred = elastic SS.predict(x test std)
         elastic_SS_score = r2_score(y_test,y_pred)
                                                                elastic SS score
```

```
Lasso, ridge and Linear regression with standard scaling is giving accuracy score of 90.4%
        #
        Model building Using Decision tree withou scaling
In [172...
              sklearn.tree import DecisionTreeRegressor
         reg = DecisionTreeRegressor()
         reg.fit(X train, y train
         y_pred = reg.predict(X_test)
                              , r2_score(y_test,y_pred)
         print(
        Model building Using Decision tree after scaling
In [173...
        reg = DecisionTreeRegressor(
         reg.fit(x_train_std,y_train
         y_pred = reg.predict(x_test_std)
         print(
                                              r2_score(y_test,y_pred))
        Model building Using Random Forest without scaling
In [174...
              sklearn.ensemble i
                                       RandomForestRegressor
         reg = RandomForestRegressor(n_estimators=100,max_depth=15)
         reg.fit(X_train,y_train)
         y_pred = reg.predict(X_test)
         print('F
                             ,r2_score(y_test,y_pred)
        Model building Using Random Forest after scaling
In [175...
         reg = RandomForestRegressor(n_estimators=100,max_depth=15)
         reg.fit(x train std,y train
         y_pred = reg.predict(x_test_std)
                                            r2_score(y_test,y_pred)
         print(
In [176...
         reg.predict(X test[5:8])
Out[176]:
In [177...
           test[5]
Out[177]:
In [179...
         filename =
         pickle.dump(reg, open(filename,
        91.7% Score from Random Forest model - hence we will choose this
```

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js