РЕШЕНИЕ ЗАДАНИЯ ЭКСПЕРИМЕНТАЛЬНОГО ТУРА

1. [1 балл] Исследуем зависимость сопротивления терморезистора от температуры на основе следующей установки

Здесь: 1 — цифровой термометр; 2 — дистиллированная вода; 3 — терморезистор; 4 — цифровой мультиметр; 5 — стакан.

2. [3 балла] Зависимость сопротивления R терморезистора от температуры t° С

Таблица №1

N	t, °C	R, Om
1	$80,0 \pm 0,1$	$15,6 \pm 0,1$
2	$75,0 \pm 0,1$	$17,4 \pm 0,1$
3	$70,0 \pm 0,1$	$19,5 \pm 0,1$
4	$65,0 \pm 0,1$	$22,0 \pm 0,1$
5	$60,0 \pm 0,1$	$25,3 \pm 0,1$
6	$55,0 \pm 0,1$	$29,2 \pm 0,1$
7	$50,0 \pm 0,1$	$34,3 \pm 0,1$
8	$45,0 \pm 0,1$	$40,6 \pm 0,1$
9	$40,0 \pm 0,1$	$48,5 \pm 0,1$
10	$35,0 \pm 0,1$	$57,3 \pm 0,1$
11	$30,0 \pm 0,1$	$71,2 \pm 0,1$

3. **[3** *балла*] Выражение

$$\sigma = \sigma_0 \exp\left\{-\frac{\Delta W}{2kT}\right\}$$

приводится к линейному виду, если взять логарифм с обоих сторон равенства:

$$\ln \sigma = \ln \sigma_0 - \frac{\Delta W}{2kT}$$

Откуда

$$\ln \sigma = -\frac{\Delta W}{2k} \frac{1}{T} + \ln \sigma_0$$

4. [2 балла] Значения соответствующих величин следующие

Таблица №2

	1000111400112				
N	t,°C	1/T, K ⁻¹	R, Om	$\sigma = 1/R, Om^{-1}$	ℓп (σ∙Ом)
1	80,0	0,00283	15,6	0,0641	-2,75
2	75,0	0,00287	17,4	0,0575	-2,86
3	70,0	0,00292	19,5	0,0513	-2,97
4	65,0	0,00296	22,0	0,0455	-3,09
5	60,0	0,00300	25,3	0,0395	- 3,23
6	55,0	0,00304	29,2	0,0342	- 3,38
7	50,0	0,00309	34,3	0,0292	-3,53
8	45,0	0,00314	40,6	0,0246	-3,71
9	40,0	0,00319	48,5	0,0206	-3,88
10	35,0	0,00324	57,3	0,0175	-4,05
11	30,0	0,00330	71,2	0,0140	- 4,27

5. **[3** *балла*] График зависимости $\ln \sigma$ от 1/T, построенный с использованием метода наименьших квадратов

- 6. [3 балла] В соответствии с результатами пункта 5:
 - а) Угловой коэффициент линейной зависимости равняется $3,27\cdot10^3$ K. Тогда

$$\frac{\Delta W}{2k} = 3,27 \cdot 10^3 \text{ K}$$

и ширина запрещенной зоны

$$\Delta W = 3,27 \cdot 10^3 \cdot 2 \cdot k = 3,27 \cdot 10^3 \cdot 2 \cdot 1,38 \cdot 10^{-23}$$
Дж = 0,90 · 10⁻¹⁹ Дж = 0,56 эВ

Соответственно погрешность

b) свободный член уравнении равняется 6,6. Тогда

$$\ln(\sigma_0 O_M) = 6,6$$

и значение σ_0 равняется

$$\sigma_0 = 1,87 \text{ Om}^{-1}$$

Соответственно погрешность

$$\Delta \sigma_0 = 0.37 \text{ Om}^{-1}$$

Тогда окончательно имеем

$$\Delta W = (0.56 \pm 0.01) \text{ } B$$

$$\sigma_0 = (1.87 \pm 0.37) \text{ Om}^{-1}$$