MAT 25 Homework 2

Hardy Jones 999397426 Professor Bae Fall 2013

1. 1.2.3 (c)

Show that $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways.

Proof. We need to show two things: $(A \cup B)^c \subseteq A^c \cap B^c$ and $A^c \cap B^c \subseteq (A \cup B)^c$

(a) By definition of the compliment,

$$(A \cup B)^c = \{x : x \notin (A \cup B)\}\$$

This means, given some x in the set: $x \notin A$ and $x \notin B$.

Or using the definition of complement: $x \in A^c$ and $x \in B^c$.

From the definition of intersection we get: $x \in A^c \cap B^c$

Since x was an arbitrary choice, this result holds for all x in the set.

Or more succinctly, $\forall x \in (A \cup B)^c, x \in A^c \cap B^c$.

By the definition of inclusion, we can say:

$$(A \cup B)^c \subseteq A^c \cap B^c$$

(b)

$$A^c\cap B^c=\{x:x\in A^c\text{and}x\in B^c\}$$

This means, given some x in the set, we can say: $x \notin A$ and $x \notin B$.

If x is not in either A or B, then it cannot be in the union of those two sets. That is: $x \notin A \cup B$

Using the definition of complement we can say: $x \in (A \cup B)^c$.

Again, since x was arbitrary, the result holds for all elements of the set.

Or more succinctly, $\forall x \in A^c \cap B^c, x \in (A \cup B)^c$.

By the definition of inclusion, we can say:

$$A^c \cap B^c \subseteq (A \cup B)^c$$

From a and b we have both sides of inclusion, so by the definition of set equality:

$$(A \cup B)^c = A^c \cap B^c$$