GMPANION COMPANION

HEATING ENGINEERS' COMPANION

CATALOGUE

B. & R. 213

CANCELLING ALL

PREVIOUS LISTS

Edition Corrected to May 1st, 1921

THE
GURNEY FOUNDRY CO.,

TORONTO

AND LEADING CENTRES

TO THE HEATING ENGINEERS, ARCHITECTS AND CONTRACTORS IN CANADA

WE offer you in this book the most complete line of heating supplies in Canada and the only complete line of Made-in-Canada

boilers. Back of this line is real service.

We hold ourselves responsible to the extent of furnishing castings or parts to replace any such found defective through causes in manufacture, but under no consideration for loss of labor or damage. This responsibility or guarantee expires one year from date of invoice.

All undertakings are subject to strikes, fires, or

other circumstances beyond our control.

All shipments are made in good order and should be examined before accepting from Transportation Companies, and should there be any breakage it must be marked on the freight receipt and value collected from them.

We cannot guarantee safe delivery to destin-

ation.

Return no goods without our permission. Goods returned will be subject to a discount for

handling charge.

*Ratings of all boilers and radiators are shown in empirical feet, a unit to denote the relative heating power of boilers and the cooling power of radiators.

When selecting size of boiler required make due allowance for mains and riser. Direct-indirect radiation requires 40% more boiler capacity, and indirect 75%. When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

The Gurney Foundry Company, Limited - Toronto
The Gurney-Massey Company, Limited - Montreal
The Gurney North-West Foundry Co., Limited Winnipeg
The Gurney Foundry Company, Limited - Vancouver

URNEY BOILER AND RADIATOR PLANT WEST TORONTO

Exclusively for the manufacture of GURNEY Boilers and Radiators.

THE GURNEY ECONOMIZER

THE GREAT FUEL SAVER
Shipped with every
GURNEY ROUND HOT WATER BOILER

The Gurney "Economizer" is shipped without extra charge with all Gurney Round Hot Water Boilers. It so increases the efficiency of the Boiler that we prefer to insure it being on every Gurney Boiler rather than to sell it as a specialty.

Licensed for use with the GURNEY Heating and Cooking Apparatus only

THE GURNEY ECONOMIZER

THE Gurney "Economizer" smoke outlet in the top section of the Gurney Round Hot Water Boiler is a housing of cast iron which connects the top of the boiler with the smoke flue. In the back of this housing, as will be seen, there is an opening that may be completely closed by a snug-fitting damper when the handle on the side of this housing is raised. The lowering of this handle causes the one damper flap to gradually increase the opening at the back of the housing into the smoke stack, while it decreases the smoke opening of the boiler.

This means that the boiler may be checked off without drawing cold air over the already heated sections, which prevents this most wasteful practice. It also means that the boiler may be checked down finer than under any other known system of control, because, even supposing that this check is carried to the point that furnace gas in not burned, this gas is at once carried up the chimney and does not escape into the house.

Licensed for use with GURNEY

Apparatus only

Gormeg

GURNEY "G" SERIES ROUND HOT WATER BOILER

(Illustrating No. 4-G.)

"G" SERIES GURNEY HOT WATER BOILERS

Ratings, Weight, Etc.

No. of Boiler	*Net Rating, Radiation, Feet	*Gross Rating Radiation, Feet	Nominal Dia. Grate, Inches	Diameter of Smoke Collar, Inches	No. of Flow and Return Openings	Approximate Shipping Weights
1-G	235	575	171/4	7	2-2in.	910
2-G	335	800	201/4	7	4-2in.	1200
3-G	500	900	22	8	4-2in.	1375
4-G	670	1100	25	8	4-2in.	1630
5-G	835	1350	27	10	6-2in.	1950
6-G	1000	1600	29	10	6-2in.	2400

All mains should be securely covered with good non-conducting material.

Make due allowance for mains and risers when selecting size of boiler required.

Detail measurements on pages 12 and 13.

Chimneys of adequate size are necessary to good results. See table, pages 120 and 121.

^{*}See page 2.

NOTE THESE LARGE SURFACES DIRECTLY OVERHANGING FIRE

"G" SERIES THE GURNEY ROUND HOT WATER BOILER

This illustration shows the fire pot, with the first section raised from its normal position and placed on edge above it. This shows the large single nipple by which the sections are connected, the sloping walls of the fire pot and also the bell-mounted openings in the first section.

Cross section of fire pot, and view of first section over the fire.

TWIN, TRIPLE AND QUADRUPLE CONNECTIONS

For ROUND HOT WATER BOILERS

Size of Boiler	TWIN Run of Header, Inches	TRIPLE Run of Header, Inches	QUADRUPLE Run of Header, Inches	Sizes of Valves, Inches
No. 2-G to No. 4-G	4	5	6	4
No. 5-G and No. 6-G	5	6	8	5
No. $6\frac{1}{2}$ -C	6	8	8	5
No. 7-B	6	8	9	5
No. 8-C	8	- 8	10	6
No. 9-D	8	9	10	6
No. 10-C	8	9	10	6

No allowance made for ordinary headers. Furnished with or without valves as ordered.

CAST IRON DOMESTIC WATER HEATERS

For ROUND HOT WATER BOILERS

Small size for No. 1-G to 3-G. Medium size for No. 4-G to 6½-C. Large size for No. 7-B to 10-C.

These heaters rest on top edge of firepot, under first section, and can be used with any of our B, C, D, E, F or G Series.

All these boilers have two holes in rim of firepot with removable plugs through which connection can be made with the Domestic Water Heaters. These Domestic Heater openings are on both sides of the boilers.

Special Copper Heaters made to order for any size

boiler.

Gormen

OXFORD ROUND HOT WATER BOILER

(Illustrating No. 9-D.)

OXFORD HOT WATER BOILERS

Ratings, Weights, Etc.

No. of Boiler	*Net Rating Radiation, Feet	*Gross Rating Radiation, Feet	Diameter of Grate, Inches	Diameter of Smoke Collar, Inches	No. of Flow and Return Outlets	Approximate Shipping Weight, Low Base
6½-C 7-B 8-C 9-D	1250	2000	$ \begin{array}{r} 32\frac{1}{4} \\ 35\frac{1}{4} \\ 37 \\ 38\frac{1}{2} \end{array} $	10	6-2 8-2 8-2	3300
7-B	1500	2400	$35\frac{1}{4}$	11	8-2	3400
8-C	2000	3200	37	11	8-2	4700
9-D	2667	4000	$38\frac{1}{2}$	11	12-2	5300
10-C	4000	5500	42	10 11 11 11 12	12-2	5700

All mains should be securely covered with good non-conducting material.

Make due allowance for mains and risers when selecting size of boiler required.

Detail measurements on pages 14 and 15.

Chimneys of adequate size are necessary to good results. See tables, pages 120 and 121.

Where a low cellar height makes the saving of every inch desirable, we can supply a special top section with back outlet to take flow header.

This effects a saving in height of No. $6\frac{1}{2}$ -C. 11", No. 7-B. 10", No. 8-C. $9\frac{1}{2}$ ", No. 9-D. and No. 10-C. on application.

^{*}See page 2.

"G" SERIES GURNEY ROUND HOT WATER BOILER.

Dimensions

For details consult table on page 13.

GURNEY ROUND HOT WATER BOILERS. Dimensions "G" SERIES

				1			
	Size of Valvesfor Twinning	3	4	4	4	2	Ŋ
0	Centre of Boiler to Face of Return Flange	1514	1634	181/2	21	221/4	20
Z	Size of Smoke Collar	7	7	734	734	10	10
M	Height of Base, Inches	13	13	141/2	151/2	171/2	17 1/2
L	Height to top of Economizer, Inches	541/2	5714	09	$62\frac{1}{2}$	29	67
X	Outside Diameter of Fire-Pot, Inches	201/2	241/2	26	29	31	33
J	Dist, between Flow and Return Headers Horizontal	:	41/2	2	ις.	51/2	5.4
Н	Centre of Boiler to Centre of Return	191/2	251/4	27	291/2	3134	32
S	Height to Top of Smoke Collar, Inches	46	481/2	51	531/2	571/2	57 1%
T	Length Overall, Inches	391/2	47	4934	531/4	58	09
म	Length of Base, Inches	261/4	30	32	35	3714	40
Q	Floor to Centre of Return, Inches	151/2	161/2	171/2	1834	2034	203%
၁	Floor to top of Return Header	1714	19	201/2	2134	241/2	241%
В	Centre to Centre of Flanged Open- ings (Vertical)	28	291/2	291/2	31	321/4	37 17
Ą	Height to top of Header, Inches	451/2	481/2	491/2	53	56	26
Dimen.	No. of Boiler	1-G	2-G	3-G	4-G	5-G	6.6

"B" SERIES OXFORD HOT WATER BOILER

Standard Dimensions

For details consult tables on page 15.

See page 15 regarding special back-outlet top section.

SERIES ROUND HOT WATER STANDARD DIMENSIONS OXFORD "B" BOILERS.

Dimension	A	0	D	E	(I)	0	J	K	Г	M	
No. of Boiler	Total Height to top of Headers, inches	Floor to top of Return, inches	Floor to Centre of Return, inches	Length of Base, inches	Length Over-all, inches	Height to top of Smoke Collar, ins.	Centre to Centre of Headers, inches	Outside Diameter of Firepot, inches	Height to top of Economizer, inches	Height of Base, inches	Size of Screw Nipple Connection, Boiler and Headers
$6\frac{1}{2}$ -C	$73\frac{1}{4}$	4	0	2	09	65 3	15			1	v
7-B	$71\frac{1}{2}$		0	9	62	W,	111				, v
S-C	$75\frac{1}{4}$	5	-	∞	99	29	14		7	. 1	, LC
0-6	751		$20\frac{7}{8}$	481	69 1	· w	13	43,4	·		9
10-C	78	$25\frac{1}{4}$		52	73	$68\frac{1}{2}$	143	514	791	18	9

Where a low cellar height makes the saving of every inch desirable, we can supply a special top section with back outlet to take flow header.

This effects a saving in height of No. 6½-C 11 in., No. 7-B 10 in., No. 8-C 9½in., No. 9-D and No. 10-C on application.

TWIN CONNECTIONS FOR "G" SERIES GURNEY HOT WATER BOILERS

Standard Dimensions

	Width of Valves Face to Face	1
	Size of Standard Rappings	22222
	sgniqqsT 10.oN	8 8 8 10 10 12
	Size of Valves	44400
J	Width of Boilers] over Bases, inches	65± 73± 76 84 84
H	Centre to Centre of Boilers, inches	35 42 47 47 47
5	Distance between Firepot, inches	111 16 13 16 16
12	Length of Flow and Return Header, inches	55 55 72 86
E I	E-D Over-all	4 4 4 4 4 © 46 46 46 46 4
D	From Front of Base to Clear of Return, inches	54 ¹ 55 ³ 59 ¹ 66 66
0	Floor to top of Return, inches	203 214 23 252 251 252
В	Top of Return to top of Flow Header, inches	29 ¹ 29 ¹ 31 32 ¹ 32 ¹
A	Total Height to top of Header, inches	50 12 14 14 14 15 14 14 15 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16
	No. of Boiler	25.4.4.6

All measurements given in inches.

See page 13 for further details.

SERIES HOT WATER BOILERS

SERIES OXFORD HOT WATER BOILERS TWIN CONNECTIONS FOR "B"

Standard Dimensions

	1			-	-	
Width of Valves Face to Face		The second second second		8		$9\frac{1}{2}$
Size of Standard Tappings, inches		2	2	2	2	2
Number of Tappings		16	16	16	20	20
Inside Diameter of Headers		7	1	7	8	8
Sizes of Valves		S	S	S	9	9
Width of Boilers Over Bases	J	891	06	91	100	106
Centre to Centre of Boilers	Н	50	20	20	54	09
Distance hetween Firepots	Ŋ	$11\frac{1}{2}$	94	ζ ε 4	10	6
Length of Flow and Return Headers	, II	107	107	107	133	133
E+D- Over-all	H	31				
From Front of Return Header	D,	62		853		$90\frac{1}{2}$
Height from Floor to top of Return	υ.	$25\frac{3}{4}$	S	5	9	
Top of Return to top of Flow Header	В	$51\frac{1}{2}$	0	2	0	4
Total Height to top of Flow Header	A	77	92			$80\frac{1}{2}$
Number of Boiler		$6\frac{1}{2}$ -C	7-B	8-C	0-b	10-E

See page 15 for further details. All measurements given in inches.

HOT WATER TWIN ROUND BOILERS

Boilers twinned to-gether; the ideal in-stallation for residence and other large work. Illustrating two of our Round Hot Water

See detailofmeasurements on preceding pages.

Gormey

OXFORD ROUND STEAM BOILERS

Shipped with "F" Base.

The Insloped Walls, the big First Section, Push Nipple Joints, Gear Driven Grate Bars, Big Steam Space, are a few of the features of this Boiler.

OXFORD STEAM BOILERS.

For Hard or Soft Coal, Coke or Natural Gas.

Dimensions and Capacities

No.	Outside Diameter of Boiler, Inches	Height to Smoke Outlet, Inches Low Base	Height of Water Line, Inches Low Base	Diameter of Grate, Inches	Grate Area, Square Feet	Capacity, Feet*	Size Main Outlet,	Size Return Outlet, Inches	Diameter of Smoke Collar, Inches
00 F 10 F 20 F 30 F 40 F 50 F 60 F 60 2C 70 B	22 24 27 29 33 34 38 43	53 56½ 58½ 60 61 62 63 70 73	41 44½ 44½ 45⅓ 47 47½ 57½ 54 57	$ \begin{array}{r} 17\frac{1}{4} \\ 17\frac{1}{4} \\ 20\frac{1}{4} \\ 22\frac{1}{4} \\ 27\frac{1}{4} \\ 29\frac{1}{4} \\ 32\frac{1}{4} \\ 35\frac{1}{4} \\ 35\frac{1}{4} \\ \end{array} $	$ \begin{array}{c} 1\frac{2}{3} \\ 1\frac{2}{3} \\ 2\frac{1}{4} \\ 2\frac{3}{4} \\ 3\frac{1}{2} \\ 4\frac{2}{3} \\ 4\frac{2}{3} \\ 6\frac{2}{3} \end{array} $	200 250 350 450 550 700 900 1,000 1,275	$ \begin{array}{c} 2 \\ 2 \\ 2^{\frac{1}{2}} \\ 3 \\ 3 \\ 3^{\frac{1}{2}} \\ 4 \end{array} $	$ \begin{array}{c} 1\frac{1}{2} \\ 1\frac{1}{2} \\ 2 \\ 2 \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \end{array} $	7 7 8 8 10 10 10

Regular steam trimmings included, are: Steam Gauge, Saftey Valve, Water Column, Glass Water Gauge, Gauge Cocks, Automatic Damper Regulator, also Cleaning Brush.

Make due allowance for mains and risers when selecting size of boiler required. All mains and boilers should be covered.

Direct-indirect radiation requires 40% more boiler capacity. Indirect requires 75% increased boiler capacity.

APPROXIMATE SHIPPING WEIGHTS OXFORD STEAM BOILERS.

No.	Low Base	No.	Low Base
00 F	1,050 lbs.	50 F	2,180 lbs.
10 F	1,125 "	60 F	2,625 "
20 F	1,325 "	$60\frac{1}{2}$ C	3,500 "
30 F	1,575 "	70 B	3,600 "
40 F	1,750 "		

ALL RATINGS ARE GROSS.

*See page 2.

SOFT COAL OR LIGNITE BOILERS

STEAM

HOT WATER.

Wherever soft coal or lignite is the fuel used, particular attention is called to the Gurney 917, 924A, 930 and 940 Series Steam and Hot Water Boilers, and the Cottage Hot Water Heater.

The combustion space is ample and the flues are easily accessible so that all surfaces may be kept clean, with the result that there is the greatest return for the fuel burned.

Made in 23 different sizes. See details on the several pages listing these boilers.

917 SERIES GURNEY STEAM BOILER.

This series boiler is fitted with direct damper operated from front of boiler, a very desirable feature for starting occasional fires with soft coal in spring and fall of year.

		Out	tside			18.	ite
No.	*Rating Feet Gross	Width Inches	Length	Size of Grate Ins.	Flows. Ins.	Returns Ir	Approxima Shipping Weight Lb
914S 915S 916S 917S	600 800 1,000 1,150	$ \begin{array}{r} 29\frac{1}{8} \\ 29\frac{1}{8} \\ 29\frac{1}{8} \\ 29\frac{1}{8} \end{array} $	$ 43\frac{1}{2} \\ 51\frac{1}{4} \\ 60 \\ 68\frac{3}{4} $	17 x 30 17 x 39 17 x 48 17 x 57	2-4 2-4 2-4 2-4	$ \begin{array}{c} 2-2\frac{1}{2} \\ 2-2\frac{1}{2} \\ 2-2\frac{1}{2} \\ 2-2\frac{1}{2} \end{array} $	1,900 2,200 2,600 3,000

Regular steam trimmings included.

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

Gormen

917 SERIES GURNEY HOT WATER BOILER.

This series boiler is fitted with direct damper operated from front of boiler, a very desirable feature for starting occasional fires with soft coal in spring and fall of year.

		Ou	tside			Ins.	ate
No.	*Rating Feet Gross	Width	Length Inches	Size of Grate, Ins.	Flows, Ins.	Returns, I	Approxima Shipping Weight Ll
914W	1,000	29 ¹ / ₈	431/2	17 x 30	2-4	2-4	1,900
915W	1,325	$29\frac{1}{8}$	511	17×39	2-4	2-4	2,200
916W	1,650	$29\frac{1}{8}$	60	17×48	2-4	2-4	2,600
917W	1,975	291/8	$68\frac{3}{4}$	17 x 59	2-4	2-4	3,000

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

^{*}See page 2.

Governey

924A SERIES GURNEY STEAM BOILER.

		Out	side	ø	rô	lns	mate Lbs.
No.	*Rating Feet Gross	Width	Length	Size of Grate, Ins. Flows, Ins.		Returns,	Approxim Shipping Weight L
924A 925A 926A 927A	1,000 1,250 1,500 1,850	36 36 36 36	36 45 54 63	24 x 31 24 x 40 24 x 49 24 x 58	2-4 2-4 2-4 2-4	2-2 2-2 2-2 2-2	2,400 2,900 3,300 3,800

Regular steam trimmings included.

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

Gormen

924A GURNEY HOT WATER BOILER.

		Out	side	4)			ate bs.
No.	*Rating Feet Gross	Width	Length	Size Grate Inches	Flows, Inches	Returns Inches	Approxim Shipping Weight L
924A	1,650	36	36	24 x 31	2-4	2-4	2,300
925A	2,075	36	45	24 x 40	2-4	2-4	2,800
926A	2,500	36	54	24 x 49	2-4	2-4	3,300
927A	3,100	36	63	24 x 58	2-4	2-4	3,700

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

930 SERIES GURNEY STEAM BOILER.

		Ou	tside	Inches	nes		ate s.
No.	*Rating Feet Gross	Width Inches	Length Inches	Size of Grate, Inc	Flows, Inches	Returns Inches	Approxima Shipping Weight Lb
935S 936S 937S 938S 939S	1,650 2,000 2,350 2,700 3,000	44 44 44 44 44	51 60 68 77 86	30 x 37 30 x 46 30 x 54 30 x 63 30 x 72	2-5 2-5 3-5 3-5 3-5	2-3 2-3 3-3 4-3 4-3	3,800 4,500 5,100 5,800 6,500

Regular steam trimmings included.

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

28

Gormen

930 SERIES GURNEY HOT WATER BOILER.

		Ou	tside	Inches	Inches		ate bs.
No,	*Rating Feet Gross	Width	Length	Size of Grate, Inc	Flows, Inc	Returns, Inches	Approxima Shipping Weight, L
935W	2,725	44	51	30 x 37	2-5	2-5	3,700
936W	3,300	44	60	30×46	2-5	2-5	4,400
937W	3,875	44	68	30×54	3-5	2-5	5,000
938W	4,450	44	77	30×63	3-5	3-5	5,700
939W	5,000	44	86	30×72	3-5	3-5	6,400

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

940 SERIES GURNEY STEAM BOILER.

		Out	side	ate			ate bs.
No.	*Rating Feet Gross	Width, Inches	Length, Inches	Size of Gr Inches	Flows, Inches	Returns, Inches	Approximat Shipping Weight Lbs
945S	2,500	56	51	42 x 37	2-5	2-4	5,600
946S	3,125	56	60	42 x 46	2-5	2-4	6,500
947S	3,750	56	69	42 x 55	3-5	3-4	7,400
948S	4,375	56	.78	42 x 64	3-5	3-4	8,300
949S	5,000	56	87	42 x 73	3-5	3-4	9,200

Regular steam trimmings included.

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

30

Gormen

940 SERIES GURNEY HOT WATER BOILER.

	İ	Out	side	Grate			iate bs.
No.	*Rating Feet Gross	Width	Length Inches	Size of Gr Inches	Flows, Inches	Returns, Inches	Approximate Shipping Weight Lbs.
945W	4,000	56	51	42 x 37	2-5	2-5	5,500
946W	5,100	56	60	42 x 46	2-5	2-5	6,400
947W	6,200	56	69	42×55	3-5	3-5	7,300
948W	7,300	56	78	42×64	3-5	3-5	8,200
949W	8,400	56	87	42×73	3-5	3-5	9,100

For detail measurements, see pages 34 and 35.

Make due allowance for mains and risers when selecting size of boiler required.

When soft coal or wood is used as fuel, select a size larger boiler than for hard coal.

*See page 2.

Gormen

GURNEY COTTAGE HOT WATER HEATER

The most effective low heater on the market; it has big capacity, being especially adapted to soft or lignite coal.

Very deep firepot—rocking grates, push nipple construction. The lowest heater of its capacity on the market.

GURNEY COTTAGE HOT WATER HEATER.

Specially adapted to soft or lignite coal Ratings, Weights, Etc.

No.	*Rating Limit Feet	*Rating Gross Capacity Feet	Weight	Height of Flow Inches	Grate Size
904	275	500	850	43	18 x $16\frac{1}{2}$ ins.
905	325	600	950	43	23 x $16\frac{1}{2}$ ins.
906	375.	700	1,050	43	$27 \times 16\frac{1}{2} \text{ ins.}$
907	425	800	1,175	43	33 x $16\frac{1}{2}$ ins.
908	475	900	1,300	43	$37\frac{1}{2} \times 16\frac{1}{2}$ ins.

No.	Flow Size, Ins.	Returns Size, Ins.	Smoke Pipe Inches
904 905 906 907	1-4	2-3 2-3 2-3 2-3 2-3	7
905	1-4	2-3	7
906	1-4	2-3	7
907	1-4	2-3	7
908	1-4	2-3	7

^{*}See page 2.

900 SERIES GURNEY SECTIONAL BOILERS

Measurements

FRONT ELEVATION

Boiler	A	В	С	D	Е	F	Gj
914 915 916 917	$35\frac{1}{2}$ $35\frac{1}{2}$ $35\frac{1}{2}$ $35\frac{1}{2}$	$\begin{array}{c} 14\frac{1}{2} \\ 14\frac{1}{2} \\ 14\frac{1}{2} \\ 14\frac{1}{2} \end{array}$	24 24 24 24	30 30 30 30	$39\frac{1}{2}$ $39\frac{1}{2}$ $39\frac{1}{2}$ $39\frac{1}{2}$	$14\frac{1}{2}$ $14\frac{1}{2}$ $14\frac{1}{2}$ $14\frac{1}{2}$	11 11 11 11
924-A 925-A 926-A 927-A	$38\frac{1}{8}$ $38\frac{1}{8}$ $38\frac{1}{8}$	$16\frac{7}{8}$ $16\frac{7}{8}$ $16\frac{7}{8}$ $16\frac{7}{8}$	$29\frac{1}{2}$ $29\frac{1}{2}$ $29\frac{1}{2}$ $29\frac{1}{2}$	$36\frac{1}{2} \\ 36\frac{1}{2} \\ 36\frac{1}{2} \\ 36\frac{1}{2}$	43 43 43 43	15 15 15 15	14 14 14 14
935 936 937 938 939	47 47 47 47 47	17 17 17 17	35 35 35 35 35	44 44 44 44 44	56 56 56 56	$18\frac{1}{2}$ $18\frac{1}{2}$ $18\frac{1}{2}$ $18\frac{1}{2}$ $18\frac{1}{2}$	14 14 14 14 14
945 946 947 948 949	$54\frac{1}{2}$ $54\frac{1}{2}$ $54\frac{1}{2}$ $54\frac{1}{2}$ $54\frac{1}{2}$	18 18 18 18	$47\frac{1}{2}$ $47\frac{1}{2}$ $47\frac{1}{2}$ $47\frac{1}{2}$ $47\frac{1}{2}$	57 57 57 57 57	60 60 60 60	20 20 20 20 20 20	14 14 14 14 14

Above dimensions are in inches.

900 SERIES GURNEY GOVERNS SECTIONAL BOILERS

Measurements

SIDE ELEVATION

No. of Boiler	Н	J	K	L	М	N	Р	R	S
914 915 916 917	$\begin{array}{r} 8\frac{3}{4} \\ 17\frac{3}{4} \\ 26\frac{3}{4} \\ 35\frac{3}{4} \end{array}$	13 13 13 13	$\dot{1}\dot{7}^{\dot{7}}_{8}$	$\dot{1}\dot{7}\frac{\dot{7}}{8}$	13 13 13 13	7 7 7 7	9 9 9	35 35 35 35	$ \begin{array}{r} 37\frac{3}{4} \\ 46\frac{1}{2} \\ 55\frac{1}{4} \\ 64 \end{array} $
924-A 925-A 926-A 927-A	9 18 27 27	$13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2}$	•••		$13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} $	5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	12 12 12 12	$39\frac{1}{2}$ $39\frac{1}{2}$ $39\frac{1}{2}$ $39\frac{1}{2}$	$37\frac{1}{2}$ $46\frac{1}{2}$ $55\frac{1}{2}$ $64\frac{1}{2}$
935 936 937 938 939	18 27 36 45 54	$ \begin{array}{c} 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \end{array} $	18 18 27	18 27 27	$13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} $	5 5 5 5 5 5 5	12 12 12 12 12	49 49 49 49 49	$46\frac{1}{2} \\ 55\frac{1}{2} \\ 64\frac{1}{2} \\ 73\frac{1}{2} \\ 82\frac{1}{2}$
945 946 947 948 949	18 27 36 45 54	$13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} \\ 13\frac{1}{2} $	18 27	27 27	$13\frac{1}{2}$ $13\frac{1}{2}$ $13\frac{1}{2}$ $13\frac{1}{2}$ $13\frac{1}{2}$	5554343434	15 15 15 15 15	52 52 52 52 52 52	$46\frac{1}{2} \\ 55\frac{1}{2} \\ 64\frac{1}{2} \\ 73\frac{1}{2} \\ 82\frac{1}{2}$

Above dimensions are in inches.

BOILER CONNECTIONS

Showing correct method of connecting equalizing pipe from flow main to the return entering boiler.

Equalizing pipe for Series 917 and 924A-2", 930-21/2", 940-3".

36

Gormen

GURNEY "BRIGHT IDEA" BOILERS

A water tube sectional boiler with headers.

3 Grate Widths. Capacity, Water 2,000 to 13,500 ft.; Steam 1,250 to 8,300 ft.

Note large heating surface in water tube construction. Each section is independent and may be blanked off if desirable.

Note long fire travel. Header construction appeals to many heating engineers. Half section construction is proof against expansion cracks.

GURNEY BRIGHT IDEA STEAM BOILER.

For Hard Coal, Soft Coal or Coke.

STEAM

Ratings and Weights

No.	Capacity, Feet*	Height of water Line, inches	Size Grate, Inches	Flow Outlets, Inches	Return Outlet, Inches	Diameter Smoke Collar, Inches	Approximate Shipping Weights
1,021	1,500		28 x32		2-3	12	4,000
1,022	1,750		28×38		2-3	12	4,400
1,023	2,000		28 x 44		2-3	12	4,900
1,024	2,250		28×50		3-3	12	5,400
1,025	2,500	-	28 x 56	3-4	3-3	12	5,900
1,130	2,800			1-6 and 1-4		14	7,200
1,131	3,200		40×50	1-6 and 1-4	2-4	14	7,800
1,132	3,600		40×56	1-6 and 1-4	2-4	14	8,400
1,133	3,900		40 x 62	1-6 and 1-4	2-4	14	9,000
1,250	4,500		48 x 51	2-6	2-4	20	11,500
1,251	5,300	58	48×58	2-6	2-4	20	13,000
1,252	6,000	58	48 x 65	2-6	2-4	20	14,400
1,253	6,800	58	48 x 72	3-6	3-4	20	15,700
1,254	7,500		48 x 72	3-6	3-4	20	17,800
1,255	8,300	58	48 x 72	3-6	3-4	20	20,000

All ratings are gross. Allow for radiation of piping when selecting size of Boiler.

Direct-indirect radiation requires 40% increased boiler power.

Indrect radiation requires 75% increased boiler power.

For other measurements see pages 40 and 41.

^{*}See page 2.

GURNEY BRIGHT IDEA HOT WATER BOILER.

For Hard Coal, Soft Coal or Coke.
HOT WATER

Ratings and Weights

No.	Capacity, Feet*	Size Grate, Inches	Main Outlet, Inches, Flow and Return	Diameter Smoke 'Collar, Inches	Approximate Shipping Weights
1,021	2,400	28 x 32	2-4	12	4,000
1,022	2,800	28×38	2-4	12	4,400
1,023	3,200	28 x 44	3-4	12	4,900
1,024	3,600	28 x 50	3-4	12	5,400
1,025	4,000	28 x 56	3-4	12	5,900
1,130	4,600	40 x 44	1-6 and 1-4		7,200
1,131	5,200	40×50	1-6 and 1-4	14	7,800
1,132	5,800	40 x 56	1-6 and 1-4	14	8,400
1,133	6,400	40 x 62	1-6 and 1-4		9,000
1,250	7,300	48 x 51	2-6	20	11,500
1,251	8,500	48×58	2-6	20	13,000
1,252	10,000	48 x 65	2-6	20	14,400
1,253	11,000	48 x 72	3-6	20	15,700
1,254	12,500	48 x 72	3-6	20	17,800
1,255	13,500	48 x 72	3-6	20	20,000

All ratings are gross, allow for radiation of piping when selecting size of boiler.

For other measurements see pages 40 and 41. *See page 2.

BRIGHT IDEA SECTIONAL BOILERS

Measurements

FRONT ELEVATION

No. of Boiler	A	В	С	D	Е	F	G
1021 1022 1023 1024 1025	$56\frac{1}{4}$ $56\frac{1}{4}$ $56\frac{1}{4}$ $56\frac{1}{4}$	$16\frac{1}{4}$ $16\frac{1}{4}$ $16\frac{1}{4}$ $16\frac{1}{4}$ $16\frac{1}{4}$	$\begin{array}{r} 35\frac{1}{2} \\ 35\frac{1}{2} \\ 35\frac{1}{2} \\ 35\frac{1}{2} \\ 35\frac{1}{2} \end{array}$	57 57 57 57 57	$53\frac{1}{2}$ $53\frac{1}{2}$ $53\frac{1}{2}$ $53\frac{1}{2}$ $53\frac{1}{2}$	$13\frac{3}{4}$ $13\frac{3}{4}$ $13\frac{3}{4}$ $13\frac{3}{4}$ $13\frac{3}{4}$	$ \begin{array}{r} 13\frac{3}{4} \\ 13\frac{3}{4} \\ 13\frac{3}{4} \\ 13\frac{3}{4} \\ 13\frac{3}{4} \end{array} $
1130 1131 1132 1133	57 57 57 57	$18\frac{3}{4} \\ 18\frac{3}{4} \\ 18\frac{3}{4} \\ 18\frac{3}{4}$	$\begin{array}{r} 48\frac{1}{2} \\ 48\frac{1}{2} \\ 48\frac{1}{2} \\ 48\frac{1}{2} \end{array}$	72 72 72 72	57 57 57 57	$13\frac{1}{4}$ $13\frac{1}{4}$ $13\frac{1}{4}$ $13\frac{1}{4}$	$ \begin{array}{c} 16\frac{1}{4} \\ 16\frac{1}{4} \\ 16\frac{1}{4} \\ 16\frac{1}{4} \end{array} $
1250 1251 1252 1253 1254 1255	$\begin{array}{c} 60\frac{1}{2} \\ 60\frac{1}{2} \\ 60\frac{1}{2} \\ 60\frac{1}{2} \\ 60\frac{1}{2} \\ 60\frac{1}{2} \end{array}$	$ \begin{array}{c} 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ \end{array} $	55 55 55 55 55	86 86 86 86 86	58 58 58 58 58 58	$ \begin{array}{c} 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ 19\frac{1}{4} \\ \end{array} $	$ \begin{array}{r} 16\frac{38}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ 16\frac{3}{8} \\ \end{array} $

Above dimensions are in inches.

BRIGHT IDEA SECTIONAL BOILERS

Measurements

SIDE ELEVATION

No. of Boiler	Н	J	K	L	M	N	P	R	S
1021 1022 1023 1024 1025	14 17 23 28 30	$15\frac{1}{2} \\ 15\frac{1}{2} \\ 15\frac{1}{2} \\ 15\frac{1}{2} \\ 15\frac{1}{2} \\ 15\frac{1}{2} \\$	14 15	 14 15	12 15 15 16 20	$12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\ 12\frac{1}{2} \\$	12 12 12 12 12	$25\frac{1}{4} \\ 25\frac{1}{4} \\ 25\frac{1}{4} \\ 25\frac{1}{4} \\ 25\frac{1}{4} $	38 44 50 56 62
1130 1131 1132 1133	$\begin{array}{c} 22 \\ 27\frac{1}{2} \\ 33\frac{1}{2} \\ 33\frac{1}{2} \end{array}$	$\begin{array}{c} 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \\ 16\frac{1}{2} \end{array}$			$15 \\ 15 \\ 15\frac{1}{2} \\ 21\frac{1}{2}$	$13\frac{1}{4}$ $13\frac{1}{4}$ $13\frac{1}{4}$ $13\frac{1}{4}$	16 16 16 16	$\begin{array}{c} 27\frac{7}{8} \\ 27\frac{7}{8} \\ 27\frac{7}{8} \\ 27\frac{7}{8} \end{array}$	$52\frac{1}{2} \\ 58\frac{1}{2} \\ 64\frac{1}{2} \\ 70\frac{1}{2}$
1250 1251 1252 1253 1254 1255	26 26 26 52 52 52	16 16 16 16 16	26 26 26	26 26 26	$ \begin{array}{r} 31\frac{1}{2} \\ 38 \\ 46 \\ 34 \\ 48 \\ 57\frac{1}{2} \end{array} $	7 7 7 7 7	20 20 20 20 20 20 20	$28\frac{3}{8}$ $28\frac{3}{8}$ $28\frac{3}{8}$ $28\frac{3}{8}$ $28\frac{3}{8}$ $28\frac{3}{8}$ $28\frac{3}{8}$	71 78 85 99 106 120

Above dimensions are in inches.

For Smoke Pipe Connections at back add 18 in. for the 1000 and 1100 Series, and 24 in. for 1200 Series.

Gormey

THE DORIC HEATER

most powerful tank heater well known to the Canadian trade. It gives splendid service for heating water, as the section is one single casting without joints. Its low height makes it very de sirable where there is small cellar head room.

Headers supplied as an extra.

No.	Height in Inches Low Base	Adaptable Tank size Gallons	*Capacity Net Feet Radiation	Diameter of Base in Inches	Diameter of Grate in Inches	Diameter of Smoke Outlet Inches	Approximate Shipping Weight
	Heigh Inch Low	Ada Tan Gall	*Caj Net Rad	Diame of Base Inches	Diar of G	Diame of Smc Outlet Inches	Low Base
11 B	$47\frac{1}{2} \\ 47\frac{1}{2} \\ 49\frac{1}{2} \\ 49\frac{1}{2}$	500	335	25	20	7	940
12 B	$47\frac{1}{2}$	700	500	25 27 30 33	22	7	1,200
13 B	$49\frac{1}{2}$	900	670	30	24	8	1,400
14 B	$49\frac{1}{2}$	1,100	835	33	20 22 24 27	9	1,200 1,400 1,900

For Hourly Capacities, see page 49.

^{*}See page 2.

THE GOTHIC HEATER.

A very efficient heater, will be found especially suitable when large quantities of water are required for barber shops, restaurants, small greenhouses, baths, etc. It is very strongly constructed. Has a deep firepot, which ensures slow combustion and economy of fuel. No water joints.

			1	Ke	70	
No.	Height	Diameter of Firepot, Inches	Tank Capacity Gallons	Diameter of Smoke Outlet, Inches	Sizes of Flow and Return Outlet Inches	Approximate Shipping Weights
12	35	12	225	6	1-2 Flow 2-2 Return	450
14	37	14	325	7	1-2½ Flow 2-2 Return	550
16	39	16	450	7	1-2½ Flow 2-2 Return	675

For Hourly Capacities, see page 49.

Note
Economizer,
Swing Fire Door
Roller Grates
and
Ash Tray.

"B" SERIES GURNEY JACKET HEATER

A Very Reasonable Priced Heater.

Tank Capacity, using hard coal, 75 to 100	gallons
Diameter of Firepot	inches
Depth of Water Cylinder. 17	inches
Height—Top of Section	inches
rappings Keturn	inahaa
Approximate Shipping Weight	200 lbs.

Note.—Where head room is extremely limited this heater can be supplied with a shallower water cylinder at same list price.

Governey

RANCHER WATER HEATER

Water Heating Laundry Stove.

A CERTAIN WASH DAY FAVORITE.

An Up-to-Date Laundry Stove that will also heat a 30 gallon water Tank.

Outlets may face either right or left, changeable on the job.

Details:

Size of top, No. 138
Size of top, No. 139
Flow and Return Inch
Height from floor
Shipping Weight
No 139 takes 9-inch pit bottom wash boiler.
No. 138 takes 8-inch pit bottom wash boiler.
Capacity using hard coal, 30 gals.

GURNEY GAS WATER HEATERS

Gurney No. 26

A double copper coil heater of standard construction.

Gurney Ninex No. 2

A very efficient heater with nine vertical copper coils.

HOW TO CONNECT GAS WATER HEATERS

Dimensions, Etc.

	•		Gurney No. 26	Ninex No. 2
Length of Heater		_	22½"	201 "
Width of Heater			$8\frac{1}{4}''$	$7\frac{1}{2}''$
Gas Connection				$\frac{1}{2}''$
Fumes Connection			0 "	3"
Water Connection				3 "
Approximate Shipping Weight.			45 lbs.	50 lbs.

ADAPTABLE SIZE HOT WATER STORAGE TANK for GURNEY TANK HEATERS.

Where it is desired to have a fair supply of hot water at command, the following sized heaters will be found suitable where reasonable attention is given and there is a proper draft in the chimney, viz.:

Size I	Heat	er											7	I	J.		2			C	12	allons
Ranche	r 13	8-9																				30
"B" Ja	cket					٠.																80
Gothic	10.	12																				225
Gothic	No.	14			. ,																	325
Gothic	No.	16																				450
Doric	No.	11 B	3																			
Doric	No.	12B																				700
Doric	No.	13B																				
Doric	No.	14B	;																			
	Ded	luct	2											7		_	_	_	-			

The quantity of hot water heated and the temperature depends on the total coal consumed, and the extent to which the heater need be run will depend on the time allowed for heating the water and the demand for hot water, and this can only be determined after consideration of all the factors. A tank capacity of 10 to 12 gallons for each person in an apartment house should give good results, but this takes no account of shower baths or leaky fixtures.

For further data, see page 49.

HOURLY CAPACITIES OF TANK HEATERS.

Raise in temperature 100 degrees Fahrenheit, or from 40 to 140, with varying rates of coal consumption:

Name and Cine	Lbs. of Co	al per sq.F	t. of Grate	per Hour
Name and Size of Tank	3 (Fair)	6 (Mod.)	8 (Brisk)	10 (Str.)
Heater	U.S. Gals.	U.S.Gals.	U.S. Gals.	U.S. Gals
Gothic No. 12	24	48	64	80
Gothic No. 14		66	88	110
Gothic No. 16	400	. 84	102	128
Doric No. 11B		132	176	220
Doric No. 12B		156	208	260
Doric No. 13B		186	248	310
Doric No. 14B		240	320	400

To determine the capacity of any heater under any given condition for a lower or higher temperature raise than above, multiply any one of the above quantities by 100 and divide by the desired raise in temperature, and the result will be the capacity of the heater given in the first column under such conditions. Example: How many gallons of water can be heated with a No. 16 Gothic in one hour from 50 degrees to 120 degrees Fahr. with fire burning 6 lbs. of coal per sq. ft. of grate surface per hour? Answer: 84 x 100 equals 8,400, and 120 minus 50 equals 70. Then 8,400 divided by 70 equals 120, or 120 gallons of water heated per hour from 50 degrees to 120 degrees Fahr. per hour.

TANK HEATER CONNECTIONS

HOT WATER SUPPLY

Showing proper method of connecting nk Heaters and Storage Tanks for Tank Heaters and Storage Domestic Hot Water Service. HORIZONTAL TANK HOT WATER SUFFLY VALVE . THE RELIEF WIVE Soom Can --- O---ZWYZ VERTICAL TANK

DATA RE TUBULAR BOILERS

Standard Dimensions Horizontal Return Tubular Boilers for Heating.

bs.	Shipping Weight L	5,000	5,050	6,500	7,000	7,500	7,400	8,300	9.200	10,750	12,000	-	4	9	∞	6	18,750	0
quired	Common	6,500	7,000	8,000	9:000	10,000	10,000	11,000	12,000	12,000	12,000	14,000	15,500	17,000	17,500	18,000	19,000	20,000
Brick required	Fire Brick	009	009	700	700	700	800	800	800	006	006	950	006	006	1,000	1,000	1,700	1,800
	Gross Ratin sq. ft. of Radiation*	2,000	2,400	2,400	2,900	3,350	3.200	3.800	4.400	4.600	5,200	5,400	6.500	7,000			000.6	10,500
Smoke Box	Diameter	18"	18"	20 "	20 "	20 "	25 "	. 55 "	25 "	24 "	24 "	" 56 "	26"	28 "	30 "	30 "	34"	34"
tes	Length	42"	48 "	42"	48 "	48"	42"	48 "	48 "	48"	48 "	48 "	54 "	, 09	54 "	, 09	54"	, 09
Gra	Width	30 "	30 "	36 "	36"	36 "	42"	42"	45"	48,	48 "	54"	54"	54"	, 09	09	"99	<i>"</i> 99
Connec- tions	Return	3 "	33	, (C)	30	80	4 "	4 ".	4 "	4 "	4 "	50	7.0	2,"	, 9	, 9	, 9	, 9
Con	Outlet	4"	4 "	70	15	20	, 9	, 9	, 9	, 9	, 9	" 2	" L	" L	×	· 000	, 000	× ×
Thick- ness	Heads	200	\$ 000 0	≥ xxxxx	× xmi	a onlo	≥ 0 m/s	\$ 000	200	× ====================================	× 000	\$ 0.000	* C*	≥ on o	102	10 1	7 0 1	7 2
Thi	Shell	1 1	* ~	*	* ~	*	2 1	200	20 "	16 "	100	200	200	20 %) n	2000	2000	000
Tubes	Size	3 "	, c.	× 000	, c	2000	, o o	× 000	200	, o c	, 0 00	, o c c	* 65		, a		, »	3.0
Tu	.oV	32	30	0 cc	0 00	0 00	200	100	100	9	9.	200	× ×	69	3 0	0 X	114	96
-1	Heating Sur face, Feet*		y c) U	0 00	\circ	α	0 0	· C	- 0	× 1×	1 7	100	24 (00	$1 \subset$	1,410	$+ \propto$
ď	Nominal H.	20	200	200	1 20	2 50	0 ev	40	4 K	200	09	09	20				112	
	Size Diameter by Length	" x 1	1 x "	x 1	" x 1	" x 1	" × 1	" x 1	" ~ 1	' × 1	" x 1	" x 1	" × 1	" x 1	" × 1	" "	72" x 14 ft	' x

*See page 2. The above data represent standard practice but is not guaranteed by us.

GURNEY SINGLE-COLUMN RADIATORS

Plain Only

For Steam and Water.

Width of Section41/2	inches
Width of Legs 73/4	inches
Height from Floor to Centre of Tap-	
ping4	inches

See page 63 for complete measurements.

In ordering specify what tappings, whether right or left hand thread, also see directions for ordering radiators, pages 84 and 85.

GURNEY SINGLE-COLUMN RADIATORS

For Steam and Water.

	ro	r Steam	and wa	iter.	
			Heating Sur	face—Feet*	
Number of Sections	Length 2½ in. per sec.	38 inch 3 feet* per sec.	32 inch 2½ feet* per sec.	26 inch 2 feet* per sec.	20 inch 1½ feet* per sec.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c} 5\\ 7\frac{1}{2}\\ 10\\ 12\frac{1}{2}\\ 15\\ 17\frac{1}{2}\\ 20\\ 22\frac{1}{2}\\ 25\\ 27\frac{1}{2}\\ 30\\ 32\frac{1}{2}\\ 35\\ 37\frac{1}{2}\\ 40\\ 42\frac{1}{2}\\ 45\\ 47\frac{1}{2}\\ 50\\ 52\frac{1}{2}\\ 55\\ 57\frac{1}{2}\\ 60\\ 62\frac{1}{2}\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$	6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90	$\begin{array}{c} 5\\ 7\frac{1}{2}\\ 10\\ 12\frac{1}{2}\\ 15\\ 17\frac{1}{2}\\ 20\\ 22\frac{1}{2}\\ 25\\ 27\frac{1}{2}\\ 30\\ 32\frac{1}{2}\\ 35\\ 37\frac{1}{2}\\ 40\\ 42\frac{1}{2}\\ 45\\ 47\frac{1}{2}\\ 50\\ 52\frac{1}{2}\\ 55\\ 57\frac{1}{2}\\ 60\\ 62\frac{1}{2}\\ 75\\ 75\\ 75\\ \end{array}$	4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

See page 63 for complete measurements.

All dimensions for lengths of Radiators are from outside to outside of tapping bosses—no bushings used.

*See page 2.

Gormen

GURNEY TWO-COLUMN RADIATORS

BEAVER PATTERN.

Plain Only
For Steam and Water.

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left thread; also see directions for ordering Radiators, pages 84 and 85.

GURNEY TWO-COLUMN RADIATORS

BEAVER PATTERN

For Steam and Water

			Hea	ting Surf	ace—Fee	t*	
No. of Sections	No. of Sections Length 2½ in. per sec.	45 in. High, 5 ft.* per sec.	38 in High. 4 ft.* per sec.	32 in. High, 3½ ft.* per sec.	26 in. High, 2% ft.* per sec.	23 in. High, 2½ ft.* per sec.	20 in. High, 2 ft.* per sec.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 5\\ 7\frac{1}{2}\\ 10\\ 12\frac{1}{2}\\ 15\\ 17\frac{1}{2}\\ 20\\ 22\frac{1}{2}\\ 25\\ 27\frac{1}{2}\\ 30\\ 32\frac{1}{2}\\ 35\\ 37\frac{1}{2}\\ 40\\ 42\frac{1}{2}\\ \end{array}$	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85	8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68	$ \begin{array}{r} 6\frac{2}{3} \\ 10 \\ 13\frac{1}{3} \\ 16\frac{2}{3} \\ 20 \\ 23\frac{1}{3} \\ 26\frac{2}{3} \\ 30 \\ 33\frac{1}{3} \\ 36\frac{2}{3} \\ 40 \\ 43\frac{1}{3} \\ 46\frac{2}{3} \\ 50 \\ 53\frac{1}{3} \\ 56\frac{2}{3} \\ 60 \end{array} $	$ \begin{array}{c} 5\frac{1}{3} \\ 8 \\ 10\frac{2}{3} \\ 13\frac{1}{3} \\ 16 \\ 18\frac{2}{3} \\ 21\frac{1}{3} \\ 24 \\ 26\frac{2}{3} \\ 29\frac{1}{3} \\ 32 \\ 34\frac{2}{3} \\ 37\frac{1}{3} \\ 40 \\ 42\frac{2}{3} \\ 45\frac{1}{3} \\ 40 \\ 45\frac{1}{3} \\ 40 \\ 45\frac{1}{3} \\ 40 \\ 45\frac{1}{3} \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40$	$\begin{array}{c} 4\frac{2}{3} \\ 7 \\ 9\frac{1}{3} \\ 11\frac{2}{3} \\ 14 \\ 16\frac{1}{3} \\ 18\frac{2}{3} \\ 21 \\ 23\frac{1}{3} \\ 25\frac{2}{3} \\ 28 \\ 30\frac{1}{3} \\ 32\frac{2}{3} \\ 35 \\ 37\frac{1}{3} \\ 39\frac{2}{3} \\ 42 \\ \end{array}$	4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
18 19 20	45 $47\frac{1}{2}$ 50	90 95 100	72 76 80	$\begin{array}{c} 60 \\ 63\frac{1}{3} \\ 66\frac{2}{3} \end{array}$	$ \begin{array}{r} 48 \\ 50\frac{2}{3} \\ 53\frac{1}{3} \end{array} $	$ \begin{array}{c} 42 \\ 44\frac{1}{3} \\ 46\frac{2}{3} \end{array} $	38 40

See page 63 for complete measurements.

All dimensions for lengths of Radiators are from outside to outside of tapping bosses—no bushings used.

^{*}See page 2.

Gormey

GURNEY THREE-COLUMN RADIATORS

BEAVER PATTERN

Plain Only

For Steam and Water.

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left thread; also see directions for ordering Radiators, pages 84 and 85.

*See page 2.

GURNEY THREE-COLUMN RADIATORS

BEAVER PATTERN.

For Steam and Water

		Heating Surface—Feet*										
No of Sections Length 2½ in per sec.	45 in. High 6 ft.* per sec.	38 in. High, 5 ft.* per sec.	32 in. High, 4½ ft.* per sec.	26 in. High, 3 ³ ft.* per sec.	22 in. High 3 ft.* per sec.	18 in. High, 2½ ft.* per sec.						
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{c} 5\\ 7\frac{1}{2}\\ 10\\ 12\frac{1}{2}\\ 15\\ 17\frac{1}{2}\\ 20\\ 22\frac{1}{2}\\ 25\\ 27\frac{1}{2}\\ 30\\ 32\frac{1}{2}\\ 35\\ 37\frac{1}{2}\\ 40\\ 42\frac{1}{2}\\ 45\\ 47\frac{1}{2}\\ \end{array}$	12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114	10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	$ \begin{array}{c} 9\\ 13\frac{1}{2}\\ 18\\ 22\frac{1}{2}\\ 27\\ 31\frac{1}{2}\\ 36\\ 40\frac{1}{2}\\ 45\\ 49\frac{1}{2}\\ 54\\ 58\frac{1}{2}\\ 63\\ 67\frac{1}{2}\\ 76\frac{1}{2}\\ 76\frac{1}{2}\\ 81\\ 85\frac{1}{2} \end{array} $	$\begin{array}{c} 7\frac{1}{2} \\ 11\frac{1}{4} \\ 15 \\ 18\frac{3}{4} \\ 12\frac{1}{2} \\ 26\frac{1}{4} \\ 30 \\ 37\frac{1}{2} \\ 41\frac{1}{4} \\ 45 \\ 48\frac{3}{4} \\ 12\frac{1}{2} \\ 460 \\ 63\frac{3}{4} \\ 60 \\ 67\frac{1}{2} \\ 71\frac{1}{4} \\ \end{array}$	6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57	$\begin{array}{c} 4\frac{1}{2}3\frac{1}{4} \\ 69 \\ 11\frac{1}{4}\frac{1}{2}3\frac{1}{4} \\ 13\frac{1}{2}3\frac{1}{4} \\ 18 \\ 20\frac{1}{4}\frac{1}{2}\frac{3}{4} \\ 27 \\ 29\frac{1}{4}\frac{1}{2}\frac{3}{4} \\ 27 \\ 29\frac{1}{4}\frac{1}{2}\frac{3}{4} \\ 36 \\ 38\frac{1}{4}\frac{1}{2}\frac{3}{4} \\ 42\frac{3}{4} \\ \end{array}$					

See page 63 for complete measurements.

All dimensions for lengths of Radiators are from outside to outside of tapping bosses—no bushings used.

^{*}See page 2.

GURNEY-OXFORD QUARTET RADIATOR

Plain Pattern

For Steam and Water

Each Section is 81/2 inches wide.

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left thread; also see directions for ordering radiators, pages 84 and 85.

TABLE OF GURNEY-OXFORD QUARTET RADIATOR CAPACITIES

Plain Pattern

Steam or Hot Water

ng	n of hes	Heating Surface—Feet*								
Size of Radiator No. of Loops Long	Extreme Length of Radiator in Inches	42½ in. High, 92% ft. per sec.	38½ in. High, 8 ft. per sec.	32½ in. High 62% ft. per sec.	26½ in. High, 5½ ft. per sec.	20½ in. High 4 ft. per sec.				
4 x 2 4 x 3 4 x 4 4 x 5 4 x 6 4 x 7 4 x 8 4 x 9 4 x 10 4 x 11 4 x 12 4 x 13 4 x 14 4 x 15 4 x 16 4 x 17 4 x 18 4 x 19	$ \begin{array}{r} 8\frac{1}{2} \\ 12\frac{1}{2} \\ 16\frac{1}{2} \\ 20\frac{3}{4} \\ 3\frac{4}{3} \\ 32\frac{3}{4} \\ 37 \\ 41 \\ 45 \\ 49\frac{1}{4} \\ 45 \\ 49\frac{1}{4} \\ 57\frac{1}{2} \\ 65\frac{3}{4} \\ 3\frac{3}{4} \\ 77\frac{3}{4} \\ 77\frac{3}{4} \end{array} $	$ \begin{array}{c} 19\frac{1}{3} \\ 29 \\ 38\frac{2}{3} \\ 48\frac{1}{3} \\ 58 \\ 67\frac{2}{3} \\ 77\frac{1}{3} \\ 87 \\ 96\frac{2}{3} \\ 106\frac{1}{3} \\ 116 \\ 125\frac{2}{3} \\ 135\frac{1}{3} \\ 145 \\ 154\frac{2}{3} \\ 164\frac{1}{3} \\ 174 \\ 183\frac{2}{3} \\ \end{array} $	16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152	$ \begin{array}{c} 13\frac{1}{3} \\ 20 \\ 26\frac{2}{3} \\ 33\frac{1}{3} \\ 40 \\ 46\frac{2}{3} \\ 53\frac{1}{3} \\ 60 \\ 66\frac{2}{3} \\ 73\frac{1}{3} \\ 80 \\ 86\frac{2}{3} \\ 93\frac{1}{3} \\ 100 \\ 106\frac{2}{3} \\ 113\frac{1}{3} \\ 120 \\ 126\frac{2}{3} \\ \end{array} $	$ \begin{array}{r} 10\frac{2}{3} \\ 16 \\ 21\frac{1}{3} \\ 26\frac{2}{3} \\ 32 \\ 37\frac{1}{3} \\ 42\frac{2}{3} \\ 48 \\ 53\frac{1}{3} \\ 42\frac{2}{3} \\ 48 \\ 58\frac{2}{3} \\ 64 \\ 69\frac{1}{3} \\ 74\frac{2}{3} \\ 80 \\ 85\frac{1}{3} \\ 90\frac{2}{3} \\ 96 \\ 101\frac{1}{3} \\ \end{array} $	8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76				

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left hand thread; also see directions for ordering radiators, pages 84 and 85.

^{*}See page 2.

GURNEY-OXFORD FIVE-COLUMN RADIATOR

Steam or Water

Made in Plain Pattern Only.

Width of Section 121/4 inches.

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left hand thread; also see directions for ordering radiators, pages 84 and 85.

GURNEY-OXFORD FIVE-COLUMN RADIATORS

Steam or Water

Made in Plain Pattern Only.

THE	Extreme	Heating Sur	face—Feet*
Size of Rad. No. of Loops Long	Length of Radiator in Inches	38 in. High, 10 it. per sec.	26 in. High, 7ft. per sec.
5 x 2	$6\frac{1}{2}$	20	14
5 x 3	$9\frac{3}{4}$	30	21
5 x 4	13	40	28
5 x 5	$16\frac{1}{4}$	50	35
5 x 6	$19\frac{1}{2}$	60	42
5 x 7	$22\frac{3}{4}$	70	49
5 x 8	26	80	56
5 x 9	$29\frac{1}{4}$	90	63
5 x 10	$32\frac{1}{2}$	100	70
5 x 11	$35\frac{3}{4}$	110	77
5 x 12	39	120	84
5 x 13	121	130	91
5 x 14	$45\frac{1}{2}$	140	98
5 x 15	$48\frac{3}{4}$	150	105
5 x 16	52	160	112
5 x 17	$55\frac{1}{4}$	170	119
5 x 18	$58\frac{1}{2}$	180	126
5 x 19	$61\frac{3}{4}$	190	133
5 x 20	65	200	140
	$68\frac{1}{4}$	210	147
5 x 21	711	220	154
5 x 22	$71\frac{1}{2} \\ 74\frac{3}{4}$	230	161
5 x 23	78	240	168
5 x 24		250	175
5 x 25	$81\frac{1}{4}$.1 230	113

See page 63 for complete measurements.

In ordering, specify what tappings, whether right or left hand thread; also see directions for ordering radiators, pages 84 and 85.

^{*}See page 2.

Steam or Water

Plain Only

GURNEY WINDOW RADIATOR

Size of Radiator,	Extreme Length	Heating Sur	rface—Feet*	
No. of Loops Long	of Radiator in inches	$13\frac{1}{2}$ in. High, 4 ft. per sec.	16½ in. High 5 ft. per sec	
5 x 2	6	8	10	
5 x 3	9	12	15	
5 x 4	12	16	20	
5 x 5	15	20	25	
5 x 6	18	24	30	
5 x 7	21	28	35	
5 x 8	24	32	40	
5 x 9	27	36	45	
5 x 10	30	40	50	
5 x 11	33	44	55	
5 x 12	36	48	60	
5 x 13	39	52	65	
5 x 14	42	56	70	
5 x 15	45	60	75	
5 x 16	48	64	80	
5 x 17	51	68	85	
5 x 18	54	72	90	
5 x 19	57	76	95	
5 x 20	60	80	100	

See page 63 for complete measurements.

Width of Radiator, 111/2 inches. In ordering, specify what tappings, whether right or left hand thread; also see directions for ordering radiators, pages 84 and 85.

*See page 2.

DIMENSIONS OF LOOPS AND TAPPING CENTRES

DESCRIPTION	A (ins.)	B (ins.)	C (ins.)	D (ins.)	E (ins.)
Single Column Two Column Three Column	$\frac{7\frac{1}{4}}{9}$	$3\frac{1}{4}$ $3\frac{1}{4}$	$ \begin{array}{r} 2\frac{1}{4} \\ 3\frac{5}{8} \\ 4\frac{1}{2} \\ 41 \end{array} $	$\frac{4}{4\frac{1}{2}}$ $\frac{4}{4\frac{1}{2}}$	$\frac{2}{2^{\frac{7}{8}}}$
Ouartet	$12\frac{1}{4}$	$\frac{3\frac{2}{8}}{3\frac{1}{4}}$	$\frac{4\frac{1}{4}}{6\frac{1}{8}}$ $\frac{5\frac{3}{4}}{6\frac{1}{8}}$	4 3	$\begin{array}{c c} 2\frac{1}{2} \\ 4\frac{1}{2} \\ 4\frac{1}{8} \end{array}$

Note.—Tappings are solid—no allowance to be made for bushings.

Floor to Centre of Top Opening in Inches

Ht. of Radiator	18	20	22	23	26	32 .	38	45
Single Column. Two Column. Three Column. Five Column.	16	18	20	21	$ \begin{array}{r} 24 \\ 24 \\ 24 \\ 24 \\ 3 \\ 16 \end{array} $	30 30 30	$ \begin{array}{r} 35\frac{1}{2} \\ 36 \\ 36 \\ 36\frac{3}{16} \end{array} $	43 43

Ht. of Radiator	$13\frac{1}{2}$	$16\frac{1}{2}$	$20\frac{1}{2}$	$26\frac{1}{2}$	$32\frac{1}{2}$	$38\frac{1}{2}$	$42\frac{1}{2}$
Window	1178	14 7/8	183	$24\frac{3}{4}$	30½	3634	$40\frac{3}{4}$

Illustrating 9 ft. Loop Vertically Assembled.

GURNEY WALL RADIATORS

These may be vertically or horizontally assembled. For any apartment where wall space is not as valuable as floor space, these radiators are highly recommended. They may be grouped together in a great many different ways, between windows, or on the ceiling, in one, two or three tiers. They are particularly adaptable for factory, warehouse and school work, where there are no fixtures to go along the wall and where floor space is valuable.

Gormen

7 Ft. Section. 9 Ft. Section.

GURNEY WALL RADIATORS

For Steam or Water.

These radiators are especially adapted for heating narrow hallways, bathrooms, vessels with steam heating equipment, churches, factories and warehouses.

They are assembled in various ways, as illustrated on pages 68 and 69, or any other arrangement. desired.

GURNEY WALL RADIATOR.

Dimensions, Capacities, Etc.

The Seven Foot Loop-Horizontally Connected.

3 inch wide.

No. of Sections	Height, Inches	Length, Inches	*Feet of Heating Surface
1 .	14	191	7
2	14	381	14
3	14	$57\frac{3}{8}$	21
4	14	$76\frac{1}{2}$	28
5	14	$95\frac{5}{8}$	35
6	14	$114\frac{3}{4}$	42
7	14	$133\frac{7}{8}$. 49

The Seven Foot Loop-Vertically Connected.

3 inch wide.

No. of Sections	Height, Inches	Length, Inches	*Feet of Heating Surface
1 .	191/8	14	7
2	$19\frac{1}{8}$	28	14
3.	$19\frac{1}{8}$	42	21
4	$19\frac{1}{8}$	56	28
5	$19\frac{1}{8}$	70	35
6	$19\frac{1}{8}$	84	42
7	$19\frac{1}{8}$	- 98	49

^{*}See page 2.

TAPPINGS FROM CENTRE TO CENTRE.

7	ft.	section,	horizontal1018	inches
7	ft.	section,	vertical16	inches
9	ft.	section,	horizontal	inches
9	ft.	section,	vertica121	inches

GURNEY WALL RADIATOR-Continued

The Nine Foot Loop-Horizontally Connected

3 inches wide.

No. of Sections	Height, Inches	Length, Inches	*Feet of Heating Surface
1	14	241/8	9
2	14	$48\frac{1}{4}$	18
3	14	$72\frac{3}{8}$	27
4	14	$96\frac{1}{2}$	36
5	14	$120\frac{5}{8}$	45
6	14	$144\frac{3}{4}$	54

The Nine Foot Loop-Vertically Connected.

3 inches wide.

No. of Sections	Height, Inches	Length, Inches	*Feet of Heating Surface
1	241/8	14	9
2	$24\frac{1}{8}$	28	18
3	$24\frac{1}{8}$	42	27
4	$24\frac{1}{8}$	56	36
5	$24\frac{1}{8}$	70	45
6	$24\frac{1}{8}$	84	54
7	$24\frac{1}{8}$	98	63
8	$24\frac{1}{8}$	112	7.2

^{*}See page 2.

Gurney Wall Assembled Sections. Radiator STYLE 2 HORIZONTAL STYLE 3. IN

GURNEY WALL RADIATOR.

Assembled Sections.

WALL RADIATOR BRACKETS, ETC.

No. A. 4.

No. A. 1. No. A. 2. No. D. 3

Group No. A. 5

No. G. 6.

The above illustrates the brackets most generally used. Unless otherwise specified, the brackets we ship with wall radiators consist of No. A. 1, which is for the bottom of the radiator, and a small button (not illustrated), which holds the section in position by means of a screw into the studding of the wall. The screw is not supplied with bracket. All brackets are extra.

- Lower Bracket for 7 and 9 foot sections.
- A. 11/2. Lower Bracket for School Loop.
- A. 2. Lower Bracket, used where it is desirable to attach the bracket to the base board under the radiator section, thus allowing the bracket to be somewhat visible.
- Wall Radiator Foot, used to support a wall section from the floor.
- This is a Plate which is tapped for 1/4 in. stove bolt, A. 4. and is to be used in connection with the small button or spud (not illustrated), where it is not desirable to run a bolt or screw directly into the wall.
- (3 pieces). This is a Ceiling Bracket, consisting of A. 5. a cast plate 31/2 in. diameter, screwed to the ceiling by four screws, not furnished by us, and attached through the section by a threaded rod through the plate in the lower part of the illustration, which supports the radiator section, and is held by nut illustrated.
- Adjustable Pedestal, consisting of top casting or support, and round plate for floor. Both castings tapped for pipe. Pipe not furnished by us unless ordered specially.

HIGH LEG RADIATORS

Made in all styles and heights

ADJUSTABLE FOOT-UPS.

Gurney adjustable foot rests insure accurate adjustment of radiator in place of usual slant when boards are used or floors are out of level.

They are cheaper than boards, and are guaranteed to make the work "look right" regardless of local conditions. Made of cast iron without finish. To finish, paint with same bronze as radiator.

Dimensions.

Number	Height Open	Height Closed
1	1½ inch	7 inch
2	$1\frac{3}{4}$ inch	1 ¹ / ₄ inch
3	$2\frac{1}{4}$ inch	$1\frac{3}{8}$ inch

Garmen

GURNEY HOSPITAL RADIATOR

For Steam or Hot Water. Screw Nipple Only.

This Radiator represents most advanced practice in hospital equipment, being so designed that any lodgement of dust is readily cleaned away, so that germs have little or no opportunity to multiply.

Allow ½ inch for each plug or bushing in estimating length of radiator.

TWO-COLUMN HOSPITAL RADIATORS

For Steam and Water

			HEAT	ING SU	RFACE	-FEET	`*
No. of Sections	*Length 3-in. per Sec.	45-in. Height 5 feet* per Sec.	38-in. Height 4 feet* per Sec.	32-in. Height 3½ feet* per Sec.	26-in. Height 2% feet* per Sec.	23-in. Height 2½ feet* per Sec.	20-in. Height 2 feet* per Sec.
2	7	10	8	$6\frac{2}{3}$	$ \begin{array}{r} 5\frac{1}{3} \\ 8 \\ 10\frac{2}{3} \\ 13\frac{1}{3} \end{array} $	$4\frac{2}{3}$	4 6 8 10
3	$10\frac{1}{2}$	15	12	10	8	7	6
2 3 4 5 6 7 8 9 10 11	$\frac{14}{17\frac{1}{2}}$	20 25 30	16	$ \begin{array}{c} 10 \\ 13\frac{1}{3} \\ 16\frac{2}{3} \\ 20 \end{array} $	$10\frac{2}{3}$	$9\frac{1}{3}$ $11\frac{2}{3}$ 14	8
5 -	$17\frac{1}{2}$	25	20 24 28 32	$16\frac{2}{3}$	$13\frac{1}{3}$	$11\frac{2}{3}$	10
6	$\begin{array}{c} 21 \\ 24\frac{1}{2} \end{array}$	30	24	20	$\frac{16}{18\frac{2}{3}}$	14	12
7	$24\frac{1}{2}$	35 40	28	$\begin{array}{c} 23\frac{1}{3} \\ 26\frac{2}{3} \end{array}$	$18\frac{2}{3}$	$16\frac{1}{3}$ $18\frac{2}{3}$	14
8	28	40	32	$26\frac{2}{3}$	$21\frac{1}{3}$	$18\frac{2}{3}$	14 16 18
9	28 31½ 35 38½ 42	45	36	30	$ \begin{array}{r} 24 \\ 26\frac{2}{3} \\ 29\frac{1}{3} \\ 32 \end{array} $	21	18
10	35	50 55	40	$33\frac{1}{3}$ $36\frac{2}{3}$	203	$ \begin{array}{c} 23\frac{1}{3} \\ 25\frac{2}{3} \\ 28 \end{array} $	20 22 24
11	$38\frac{1}{2}$	55	44	30 3	29 3	203	24
12	42	60	48	40	342	201	26
13	$45\frac{1}{2}$	65	52	$43\frac{1}{3}$	$34\frac{2}{3}$	$30\frac{1}{3}$	28
14	49	70	56	$46\frac{2}{3}$	$37\frac{1}{3}$	$\frac{32\frac{2}{3}}{35}$	30
15	$52\frac{1}{2}$	75	60	50	40	$37\frac{1}{3}$	32
16	56	80	64	$53\frac{1}{3}$	$42\frac{2}{3}$	$37\frac{3}{3}$	34
17	$59\frac{1}{2}$	85	68	$56\frac{2}{3}$	$45\frac{1}{3}$ 48	$42^{39\frac{1}{3}}$	36
18	63	90	72	60		$44\frac{1}{3}$	38
19	$66\frac{1}{2}$	95	76	$63\frac{1}{3}$	$50\frac{2}{3}$	$46\frac{2}{3}$	40
20	70	100	80	$66\frac{2}{3}$	$53\frac{1}{3}$ 56	$\frac{403}{3}$	42
21	$73\frac{1}{2}$	105	84	70	$58\frac{2}{3}$	$51\frac{1}{3}$	44
22	77	110	88	$73\frac{1}{3}$	$61\frac{1}{3}$	$51\frac{3}{3}$	46
23	801	115	92	$76\frac{2}{3}$	64	56	48
24 25	84 87½	120 125	96	$80 \\ 83\frac{1}{3}$	$66\frac{2}{3}$	$58\frac{1}{3}$	50

If three column hospital Radiator is required, use footage tables on page 57. Lengths per section are as in column two of above table.

^{*}See page 2.

RADIATOR SPECIALTIES

Extra for Curves and Angles, see Price List.

CURVED RADIATOR

Steam or Water

ANGLE RADIATOR

Steam or Water

For Instructions For Ordering, see pages 75, 84 and 85.

HOW TO ORDER ANGLE RADIATORS.

The above diagram shows the measurements necessary to ensure a perfect angle radiator. In ordering be careful to give exact measurement for each dimension indicated by the letters A, B, C, D, E, F, G.

It is preferable that you furnish an exact templet, but where it is not convenient a diagram as above will be required.

Be sure to indicate how the tappings are to be made, their size, and where located.

For twin connections state whether they are to be on the right hand or left hand end as you face the radiator.

For curved radiators a templet made of wood should be furnished.

For corner radiators send an exact diagram or a templet and state how many sections are to be on each arm, and how each arm is to be tapped.

GURNEY CLIMAX

Ventilating or Indirect Radiator.

Push Nipple Construction.

GURNEY CLIMAX INDIRECT RADIATORS.

For Heating and Ventilating by Steam or Hot Water.

Table of Capacities.

No. of Sections in Stack	*Feet of Heating Surface	Area Cold Air Supply, Square Inches	Area Warm Air Flue, Square Inches	Size for Hot Air Flue, Inches	Size of Register, Inches
2	26	54	72	8 x 8	9 x 12
3	39	72	96	8 x 12	10 x 14
4	52	90	120	8 x 12	12 x 15
5	65	108	144	12 x 12	12 x 19
6	78	126	168	12 x 12	14 x 22
7	91	144	192	12 x 16	14 x 24
8	104	162	226	12 x 16	16 x 20
9	117	180	240	12 x 20	16 x 24
10	130	198	264	12 x 20	20 x 20
11	143	216	288	12 x 24	20 x 24
12	156	234	312	12 x 24	20 x 24

Length 36 ins.; Height 11ins.; Width 3½ ins. per section.

In ordering loose indirect radiator, specify the exact number of sections in each stack, so that the proper number of end sections will be supplied, also whether for water or steam, size and location of tappings, and whether tapped left or right hand.

^{*}See page 2.

Gormen

Two Column Plain Radiator with Concealed Brackets.

LEGLESS RADIATORS

Made in 1, 2 and 3 Columns. (See lists of these for size, capacities, etc.).

This type of Radiator is very desirable for use in narrow corridors, or in rooms where floor space is limited. Illustration shows type of brackets furnished, also Radiator supported on brackets.

In ordering this type of Radiator simply state "Radiator without legs to be used in connection with concealed brackets." Unless brackets are specified on order Radiators will be shipped without same. The same data regarding heating surface, connections, and tapping applying to Radiators with legs applies to Radiators without legs.

TAPPING LIST OF RADIATORS.

One-Pipe Gravity Steam

ONE-PIPE STEAM RADIATORS CONTAINING													Inches	
25 square feet and	under												_	1
26 to 60 square fee	t													$1\frac{1}{4}$
61 to 100 square fe	et											*		$1\frac{1}{2}$
Over 100 square fe	et													2

Note—One-pipe Steam Radiators are tapped Left Hand unless otherwise ordered.

Two-Pipe Gravity Steam

Two-Pipe Steam Radia?	гог	RS	C	Co	N	ΤA	I	N	[N	G	-	194		
50 square feet and under 51 to 95 square feet											-	1	X	3/4
1 to 95 square feet												$1\frac{1}{4}$	\mathbf{X}	1
Over 95 square feet												$1\frac{1}{2}$	X	$1\frac{1}{4}$

Note—Two-pipe Steam Radiators are tapped Right Hand unless otherwise ordered.

All Gurney Steam Radiators will be tapped as above. When any special tappings are desired they should be plainly stated on orders.

TAPPING LIST OF RADIATORS.

DUNHAM RETURN HEATING SYSTEM

Hot Water Type of Radiation-Top Inlet

HEATING SURFACE	Feed	Return
1 to 40 feet	. 1/2 "	1 "
41 to 100 feet	. 3 "	1 "
101 to 180 feet		1 "
181 to 300 feet	$1\frac{1}{4}''$	1 "

Tapped top and bottom opposite ends for flow and return. Flow right hand (unless otherwise specified), and return right hand eccentric. No air vent tapping.

DUNHAM RETURN HEATING AND VACUUM SYSTEMS

Steam Type of Radiation-Bottom Inlet

HEATING SURFACE	Feed	Return
1 10 25 feet	1 "	1 "
26 to 80 feet	3 "	1 "
81 to 150 feet	1 "	1 "
151 to 250 feet	11 "	1 "
251 to 350 feet	$1\frac{1}{2}''$	1 11

Tapped bottom, opposite ends for flow and return. Flow right hand (unless otherwise specified), and return right hand eccentric. No air vent tapping.

TAPPING LIST OF RADIATORS.

WEBSTER MODULATION SYSTEM

Hot Water Type of Radiation-Top Inlet

HEATING SURFACE											Feed	Return				
1 to 50 feet .															3 "	$\frac{1}{2}''$ $\frac{1}{2}''$ $\frac{1}{2}''$ $\frac{1}{2}''$
51 to 100 feet															1 "	1 "
101 to 170 fee 171 to 270 fee	t.												٠		$1\frac{1}{4}''$	1 "
171 to 270 fee	t .	000			- 00	100			- 50		α 9	ar	0		$1\frac{1}{2}''$	3 "

Tapped top and bottom, opposite ends right hand. Return eccentric. No air vent tapping.

WEBSTER VACUUM SYSTEM

Steam Type of Radiation-Bottom Inlet

HEATING SURFACE	Feed	Return
1 to 75 feet		1 " 1 "
151 to 200 feet		$\frac{1}{2}$ "
201 to 250 feet		$\frac{3}{4}''$
251 to 400 feet	$1\frac{1}{2}''$	3 "

Tapped bottom opposite ends for flow and return. Flow right hand (unless otherwise specified), and return right hand eccentric. No air vent tapping.

TAPPING LIST OF RADIATORS

Hot Water and Special Systems.

GRAVITY HOT WATER.

Single or Twin Connections. Standard Tappings.

Hot Water Radiators Containing—	Inches
48 feet and under	
49 to 100 feet	
Over 100 feet	$1\frac{1}{2} \times 1\frac{1}{2}$

All Hot Water Radiators tapped twin connections left hand thread unless otherwise ordered.

All tappings for opposite end connection at bottom right hand thread unless otherwise ordered.

In ordering special tappings they should be

clearly specified.

Wall Radiators for Hot Water are tapped top and bottom, same end left hand unless otherwise specified.

HONEYWELL HOT WATER GENERATOR SYSTEM.

Ground or First Floor.

Up to 30 fe	et	 	½ inch
From 31 to			
Over 60 feet		 1	inch

Second Floor.

Up to	40	feet										1/2	inch
From	41	to 100	feet			 						3/4	inch
Over	100) feet.		 		 					 		inch

Third Floor.

Up to	50	feet.										. 1/2	inch
From	51 t	o 125	feet							 		. 3/4	inch
Over													

In ordering radiators for any pressure or generator system the tapping of each radiator should be specified. System of tapping same as for standard system above except as to size.

HONEYWELL DATA.

Generator Capacities

No. 1	Carries up to 1,200 sq. ft. of radiation
No. 2	Carries up to 2,500 sq. ft. of radiation
No. 3	Carries up to 3,500 sq. ft. of radiation
No. 4	Carries up to 10,000 sq. ft. of radiation

Larger sizes built to order only.

Roughing-in Dimensions, Inches

Generator	A	В	C	D
No. 1		28½"	81 "	$4\frac{1}{2}''$
No. 2 No. 3	$\frac{12\frac{1}{2}}{12}''$	$29\frac{1}{4}''$ $30\frac{1}{2}''$	9" 12±"	5" 6"
No. 4	12"	$30\frac{1}{2}''$		7 "

Generator Tappings

Size	E	F
1	3 "	3 "
2	1 "	1 "
3	$1\frac{1}{4}''$	$1\frac{1}{4}''$
4	$1\frac{1}{4}''$	$1\frac{1}{4}''$

Area of Pipes and Valves

1//	.20 sq. in.	$2\frac{1}{2}$ ' 4.90 sq. in.	6 " 28.27 sq. in.
3//	.44. sq. in.	3" 7.06 sq. in.	7" 38.48 sq. in.
1"	.78 sq. in.	$3\frac{1}{2}$ " 9.62 sq. in.	8" 50.26 sq. in.
14"	1.22 sq. in.	4" 12.56 sq. in.	9" 63.61 sq. in.
112"	1.76 sq. in.	$4\frac{1}{2}$ "15.90 sq. in.	10" 78.54 sq. in.
2"	3.14 sq. in.	5" 19.63 sq. in.	12"113.098 sq. in.

DIRECTIONS FOR ORDERING RADIATORS.

GENERAL

- 1-It is desirable to specify name of job.
- 2—In all correspondence referring to orders give date and order number shown on our "acknowledgment of order," and your order number if possible.
- 3—Give exact routing for shipment, and state when wanted.

STANDARD RADIATION

- 1—State whether 2, 3, 4, or 5 bar wide or single column.
- 2-Give number of sections in each radiator.
- 3-State height of radiator.
- 4-Give catalogue name of radiator.
- 5-State whether for Hot Water or Steam.
- 6—If for hot water state whether twin or opposite end connection.
- 7—If for steam state whether one or two-pipe system. If required for any special system give name of same.
- 8—Specify exact tappings. State whether right or left hand thread. See tapping list on pages 79-82.
- 9—In ordering curved or angle radiators, see page 75.
- 10—In ordering "indirect radiators" state exact tapping for flow, return, and air vent. Sections are shipped loose unless otherwise ordered. Be sure to state how many stacks the sections are to be built up in so as to indicate the required number of end sections.

- 11—It is customary to divide long radiators in shipping, to avoid straining or breaking while handling or in transit. State if any special division is preferable.
- 12—It is a general custom to designate a radiator thus: 1—3 x 9 x 38 "Beaver," plain, H. W., Twin L. H. This means one radiator, three columns wide, 9 loops long, 38 inches high, "Beaver," plain pattern, hot water type, tapped twin left hand.

WALL RADIATORS

- 1—State whether 5, 7, or 9 ft. sections are required.
- 2—State number of sections in each radiator; also whether they are to be assembled vertically or horizontally, and give style of assembling as shown on pages 68 and 69.
- 3—State whether tappings are to be right or left hand, and location of tappings, and whether hot water or steam.
- 4—If required for any special system give name of same.

REPAIRS FOR RADIATORS

- 1-Items No. 1, 3, 4, 5, 6 and 7 of instructions for ordering Standard Radiators apply always in ordering loops or sections for repairs.
- 2-State whether they are push nipple or screw nipple radiators.
- 3-If catalogue name is unknown, note carefully any marks of trade marks cast in the end loops such as, "Beaver," "Duet," "Tremont." or any number, etc.
- 4-State whether hot water or steam, and if steam what kind of system, sometimes hot water style radiators are used for steam. If so, note it on your order.
- 5-State whether plain or ornamental.
- 6-In ordering end sections state whether feed, return, or blank end sections are required. Give size and location of tappings, and state whether right or left hand thread. "Feed end," to indicate feed end section, for one-pipe and two-pipe steam and twin hot water radiators.

"Return end," to indicate section connected to return of two-pipe steam system or op-

posite end hot water connection.

"Blank end," to indicate section at other end from connection in single pipe steam or twin hot water.

- 7—If you are replacing any of the intermediate sections between the "ends" but having no feet specify "inside sections."
- 8-If you are replacing an "inside section" having feet or legs, specify "centre leg section."
- 9-In ordering repair for wall radiators state whether vertical or horizontal, size and style of tappings, and whether feed, vent, or centre section is required, and whether for hot water or steam.

DIRECTIONS FOR ORDERING REPAIR PARTS FOR ROUND BOILERS

- 1—Be sure that the number is noted correctly and that you add any letters which may be before or after the number on the front.
- 2—When ordering sections, number them 1, 2, 3, etc., commencing with the first section over the fire-pot.
- 3—When ordering grate bars or parts for the base, note whether there is a number or letter on the base, and mention that in your order, in addition to the number on the fire door.
- 4—In ordering grates, specify clearly which grate bar is required, such as "second," numbering from left side when facing boiler. Also state clearly whether it is a shaking bar or not.
- 5—If the boiler has a single number on the fire door, such as No. 5, without any letter following, be sure to note whether the grates shake from the front or the side of the boiler, and if the latter, and you want grate bars, specify which one, numbering from the front bar.

DIRECTIONS FOR ORDERING REPAIR PARTS FOR SQUARE BOILERS

Note carefully the name and number on the boiler, and in ordering sections state clearly which section, numbering from the front; also, if intermediate section, mention whether it is tapped or plain. When ordering grates which are in two sections, specify whether right or left.

RADIATOR VALVES

SIZES	½ inch	a inch	1 inch	14 inch	1½ inch	2 inch
N. P. W. W. Angle Rad., Jenkins Disc, without Union	\$2.40		\$3.60		\$6.65	
" " with " "	3.15				8.15	-
" Globe, Jenkins Disc, without Union	2.40				6.65	
" " " with "	3.15	3.90			8.15	
Quick Opening, N.P.W.W. Angle, with Union	2.40				7.10	
" without " "	1.65				5.00	
Q.O. N.P.W.W. Straightway, with Union	:	:	4.70	6.35	9.10	13.95
", " without " ", "	:	_			7.10	
Union Ells for Water Radiators, N.P.R.H.	1.75				4.00	
Gate Valves, W.W.N.P., without Union	2.40	3.00			6.60	
" with "	3.65	4.25			00.6	

AIR VALVES

HOT WATER	Per doz.	STEAM	Per doz.
Air Vents, N.P. Wood Wheel	\$2.50	Gurney Oxford Automatic	\$12.00
ceys, extra	1.00		00.12
root. Pattern, Keyed, \$ in	12.00		
Jovt. Pattern, Keyed, 1 in	15.00		
eys, extra	00.9		

IRON BODY VALVES

SIZES	11 in. 11 in. 2 in. 21 in. 31 in. 31 in. 4 in. 42 in. 5 in. 6 in. 7, in.	1 1	in.	2	n. 2	2	n.	3 in	. 3	2 11	٦. 4	in.	4 3	in	70	in.	6 i	n.	7, in		8 ir		8 in. 10 in. 12 in.	n.	12	Ξ.
	\$ C. \$ C. \$ C. \$ C.	59	c.	65	, ·	69	, i	60	· ·	59	1 6	1	99	0	69	C.	c. \$ c. \$ c.		\$.:	\$ c.	ci.	.c.		*	0
Globe and Angle Valves, with Yoke, Scdeach		:	:	7	7.00 9.00 12.50 15.25 19	9.	001	2	501	5.2	513	0.0	24	0.	27	00	.0024.0027.0037.50	20	63.00		72.	00	72.00114.00170.00	00	170	
Globe and Angle Valves, with Yoke, Flgdeach		:	:	∞.	8.60 10.75 15.00 18.50 22	0	751	5.0	001	8.	0.25	2.5	027	. 50	31	00	. 50 27. 50 31. 00 42. 00		68.00		77.	00	77.00 123.00 187.00	00	87	
Globe and Angle, Jenk. Disc, without Yoke, Scdeach	:	:	÷	7.	7.25 11.00 16.00	1. (001	6. (. 00	:	•	:		:	:	:	:	:	•	-:-	. :	:	:	:	:	
Globe and Angle Jenk. Disc, without Yoke, Flgdeach	:		:	8	8.5013.0018.00	3.	001	8.	90	:		:	<u>:</u>	:	:	:	:	÷	:	-:-		1	:	:		
obe and Angle Jenk. Dis with Yoke, Scdeac	:	:	:	10.00 12.00 16.75 19.50 24	001	2	001	6.	751	9.5	0.5		032	0.	140	00	00 32 . 00 40 . 00 48 . 00	00	80.00		90.	00	90.00130.00185.	00	85	00.
Globe and Angle Jenk, Disc, with Yoke, Flgdeach	:	:	:	11.75 14.00 18.50 21.50 26	751	4.	001	8	502	1.5	0.50	6.0	034	0.	145	00.	.0034.0042.0050.00	00	80.00		90.	00	90.00130.00185.00	00	85	
Horiz. Swing Check Valves, Scdeach	:	:	:	:	-:	27	00	83	501	7.5	000	0.0	026	ŏ.	30	00	36.	00	55.00	0.0	70.	00	70.00110.00160	00	09	00.
Horiz. Swing Check Valves, Flgdeach Gate Valves, Scdeach		:::	: :	10.	.00	4-1-8	501	7.49	000	9.0	000	468	030	000) 34) 27) 31	. 50	. 00 30 . 00 34 . 00 41 . 00 . 00 24 . 00 27 . 50 32 . 50 . 00 28 . 00 31 . 50 36 . 50		60.00 45.00 49.00	000	75. 54.	000	75.00 115.00 168.0 54.00 90.00 125.0 58.00 95.00 133.0	000	168 125 133	

BRASS VALVES, STOP COCKS, ETC.

SIZES	1 in.	$\frac{3}{8}$ in.	$\frac{1}{4}$ in. $\frac{3}{8}$ in. $\frac{1}{2}$ in.	3 in.	1 in. 1½ in.	1.4		1½ in.	1. 2	in.	$2\frac{1}{2}$	in.	3 in	
nkins Disc Globe Iron Wheel	\$1.10	\$1.25	\$1.60	1 .:	1 .	8.	00		64	1	70	77	66	100
nkins Disc Angle Iron Wheel	1.10	1.25	1.60	2.20	2.80	4	00	. 10	50 8	75	27.5	370	. 66	200
orizontal Swing Check Valves	:	:	2.00			3	9			-		2	,	
Steam Cocks, Standard Square Head and Flat Head 85 1.00 1.25 1	85	1.00	1.25	1 70	2 35	c	70			C				
empression Bibb for Iron Pipe,						5	2		-			:	:	:
per dozen, finished	:	:	19.80	33.00	00.09	:	:	:	:	:	:	:	:	:
per dozen, finished		21.60	22.80	36.00	67 20				_				,	
impression Stop Cocks, dozen,					*	:	:	:	:	:	:	:	:	:
finished		16.20	19.80			:	:							
ops, Lever Handle, R.B., dozen	19.80	20.40	21.00			89								
andard Peet, screwed			1.65	2.05	2.80	3	02	5.	7 00	30				
andard Gate, screwed		:	1.65			3							:	
mpression Gauge Cocks		1.10	1 20											

Germen

PIPE HANGERS

SIZES	$\frac{1}{2}$ " $\frac{3}{4}$ " $\frac{1}{4}$ " $\frac{1}{4}$ " $\frac{1}{4}$ " $\frac{1}{2}$ " $\frac{2}{2}$ "	3 //	1,,	147	1 2/2	93	22,		3′′	31/	4	4	:	211	3" 31" 4" 41" 5" 6" 7" 8" 9" 10"	1,1	~	3,,	6	_	0,,0
	\$ c.\$ c.\$ c.\$ c.\$ c.\$ c.\$ c.\$ c.\$ c.\$ c.		€	8\$.	56	\$\$		° ÷÷	2	.;	₩	66	°.	· ·	*	**	66	c ·	0	60	5
Grabler Hanger Rings	.14	.14	.1		2.	0	27		.26	.30	ω.	2	34	.36	.26 .30 .32 .34 .36 .40 .63 .881.101.35	9.	65	88	1.1	1.	35
Grabler Lag Screws, with flattened No. 1 No. 1 No. 2	.08	80.	0. 0	0.	<u>8</u>	-8	. oN		60.	.10	T.Z	0.0	01	10	.09 .10 .10 .10 .10 .20 .20 .28 .28 .28 No. 3	.2	0	20	.23	~	28
end and bolt		7.	eac	ч			12 ea	ich	-		14	each	-			_ .	- -			_ .	1
Grabler Steel Hook PlatesSize of Pipe 1 inch		ize c	r Pij	Эе	:	:	_	inc	ų.		14	14 inch	_		1½ inch	ch	1		Z inch	ch	1
Number of hooks per length	: :					: :	**	30 \$2.50			÷	30 \$3.25			\$3.75	2		€.	\$4.25	10	

HONEYWELL HEAT GENERATORS

	eac	eac
0	\$50.00 each	00
4	000	65.
	:	:
	:	:
	:	:
	:	:
	Reductions.	
	eet	;
	+	00
1	200	0,0
-	က	-
	tor	4 for 10,000 "
	က	4
,	·	No.
	4	4
	. \$25.00 each	35.00
	:	:
	:	
	:	:
	Reductions	::
	feet	:
	feet	:
	1200 feet	5500
	1200 feet	5500
	1 for 1200 feet	:

FLOOR AND CEILING PLATES

SIZES	in &	3	1	11 :					11.	
- 1		4	. 1111.	1 % III.	L3 III.	7 III.	Z\$ 1n.	3 in.	3½ in.	4 in.
C. I. FloorPlain	\$0.06	\$0.06	\$0.08	\$0.11	\$0 14	\$0.16	40 94		-	
	. 12	. 12			-			90.00	\$0.35	\$0.42
", Celling Plain	.11	. 13	.16	200	23	22.	36	40	: 1	
	. 14	.17	. 20	23	30	1 0	00.	00.	00.	. 68
	.14	.14	. 18	22	30	0 6	61	· 1.	:	: :
	•	. 22	. 24	30	3.5	43	1 14	0.0	:	:
ew	. 22	. 24	. 26	32	38	46	60.	000	:	:
···········	. 16	.17	. 20	22	25	30		00.		
ling /	•	. 28	.32	35	8 8	20.		00.	00.	1.00
		96	00	000	0 0	000	00.	00.	1.00	1.25
Ceiling.	200	10	070	25.	. 35	. 38	. 52	. 75	1.10	1.50
	07.	07.	. 78	. 32	.35	38	52	75	1 10	1 KO

THERMOMETERS and GAUGES

TANKS

EXPANSION

FITTINGS-CAST IRON

SIZES		in.	in.	ii.43	ıi.	1.4 in.	1½ in.	in.	22½ in.	a. in.	3½ in.	4 in.	4½ in.	in.	6 in
	9	55	0.0	00	0	0	0	, c	0	0.	C.	C.	C.	60	60
	; +	;	160	220	27	0 420	5	7.		00	. 70	15	9	5	7
Crosses	0.05	0.05	90	080	101	16	20	. 28	. 50	.75	1.05	1.20	1.75	-	-
Uboduoing			0.7	60	122	18	. 23	32	09	.85	.20	.40	0	5	3
" D and I	90	90	0.7	60	12	18	. 23	32	_	85	:	:	:		
11. AE0	-	90	0.7	10	12	19	.24	.34	_	06	10	45	2.20	2.5	03
40	080	080	60	12	15	23	. 29	.41	73	10	. 50	.75	.5	3.0	_
lees			10	14	17	2.6	33	47	83	. 25	.75	00	6	3.5	-
" Keducing	:	:				1)	26	0	. 54	.75	.87	0	1.2	
Caps	:	:	:	:	:	:		ì							
Malleable, use pound list	. 02	02	0.2	.03	0.4	.05	0.	01.	.18	.25	.38	.42	. 65	∞.	81.
~ Flugs, K.H				90	08	60	11	.15	:					:	_
Colld	. 04	04	. 04	90	080	60	11.	.15	27	.38	. 57	. 63	1.00	1.3	51.
1511410			04	90	08	60	. 11	.15	30					:	
Countersums	:	0.4	0.4	0.5	90	0.7	60	.14	21		.40	. 50	. 75	6.	31.
Busnings, K.H	:	. 080	080	10	12	14	18	28			:	:	:	:	
. L.H	:				1			.43	09	0	00	e5.	∞.	2.0	
Keducers	:	:	:	:	:	:		1.001	0	0	3.00	4.00	5.00	6.0	08
Eccentric		90	0.7	10	. 65	17	21	CA	0	9	85	٥.	5	1.6	
Couplings, K. H. W. L								SA	.27	.34	.47	. 64		6.	
Heyagan R & I. Nipples				. 25	30	.40	.50	. 70			- (.,	.,	. 0
Description Ducking						-		27	42	09	08	1.00	0.1	-	0

*For R. & L. H. Malleable Couplings and Malleable Lock Nuts, see Pound List.

WROUGHT IRON NIPPLES-RIGHT HAND

IRON NIPPLES-RIGHT AND LEFT HAND WROUGHT

Inches		·st	<u>ר</u>	List		Pı	Price of Extra Long Nipples	xtra L	iN guc	pples			
		Size, in)Se 01	Suo				ı	Inches				
		;	SРG	I	4	70	9	7	∞	6	10	11	12
3,		-40%	\$0.07	\$0.10	\$0.11	\$0.13	\$0.16	\$0.18	\$0.21	\$0.24	\$0.27	\$0.29	\$0.31
		, 	. 08	. 12	:	. 15	7	. 23		27	2		
		_;	. 11	. 18	:	. 20	. 24	. 31	.33	.37	.41	.45	.48
4.		¥.	. 15	. 23	:		. 32	.39	.45	. 50	. 55	09	. 65
			. 18	. 27	:		.39	. 48	. 52	09	. 67	. 72	80
			. 24	.36	:	.43	. 51	. 67	. 72	. 80	87	96	
		2≥	. 52	. 79	:	:	.91	1.20	1.30	1.40	1.55	1.68	1 80
0			. 65	96	:	:	1.13			1.77	1.93	2.10	
9		ကို	1.00	1.40	:	:	:	1.75	1.95	Τ.	00		
9	,	7	-	4						,	1		

UNIONS

SIZES	4 in.	3 in.	½ in.	3 in.	1 in.	1,4	in. 1 ½	in. 2	in.	$2\frac{1}{2}$ i	in. 3	ii.	$3\frac{1}{2}$ in.	4	in. 4	4½ in.	5	in.	6 in.
Standard Mallackla	÷ .	÷÷ c	÷> 0	÷ €	99	\$				*			89	C. S	5	*) ee	0	\$ c
Standard Flanged		. :	<u> </u>			۰ ,	64 0.	78	0.75		25 2. 25 1.	. 50	1.80	: 01	10	2.7	70 3	3.15	3.95
Dail, with brass joint	. 30				•	-				3			:		:	:		:	

BRANCH TEES

RUN OPEN

RUN OPEN

No. 1. FOR CIRCULATION

INLET OPEN

CLOSED

No. 2. FOR CIRCULATION

CLOSED

CLOSED

No. 3. FOR BOX COILS

	- ,	T	ranch ees	T	Branch ees	1½" F	Branch	2 " E	Branch
	ber	to C	Centre Centre	3" (Centre Centre	to C	Centre entre	41 "	Centre
	of Branches	1" or 1¼" *Run	1 ½ "	2" Run	2½" *Run	1½″ or 2″ *Run	2½" Run	21 "	3"
	2 3 4 5 6 7 8 9 10 11 12	\$0.90 1.05 1.15 1.35 1.60 1.90 2.20 2.65 3.00 3.35 3.75	\$1.30 1.45 1.75 2.20 2.45 2.90 3.30 4.50 4.75	\$1.90 2.40 2.90 3.30 3.90 4.50 5.25 5.85 6.25 6.50	\$3.55 3.95 4.20 4.95 6.15 6.85 7.25 7.65	\$2.70 3.35 4.00 4.65 5.25 5.85 6.50 7.60 8.00 8.50	6.50 7.00 8.25 9.25 9.75	9.75	\$9.25 10.75 13.00 14.00 15.00 16.50 17.25 18.25
	"	ranch i	1 2 2	2 or 2	n. Run	are 17/8 " 21/2 " 21/2 " 3			
1 1	"	"	1	2 1/2 or 2 1/2 1/2		" 21/2		4	11
2	"	"	2	2		" 3			"
	"		2	2	"	" 3			**
r		:535	3		" "	" 3½	44 4	•	**

^{*}Note—Our standard covers $1\frac{1}{4}$ " run for 1" Branch Tees; $2\frac{1}{2}$ " run for $1\frac{1}{4}$ " Branch Tees and 2" run for $1\frac{1}{2}$ " Branch Tees. Other runs are supplied at other lists, but not as promptly as standard.

STANDARD CAST IRON FLANGES.

Size of Valve	Diameter of Flange, Inches	Thickness of Flange, Inches	Diameter of Bolt Circle, Inches	Number of Bolts	Size of Bolts, Inches	Length of Bolts, Inches	List Price of Companion Flanges, Faced and Drilled, Each	List Price of Bolts and Nuts Per Set for Each Joint	Bolting Companion Flanges on Standard Valves
4 4 1 5 6 7 8 9 10 12	$ \begin{array}{c} 9 \\ 9\frac{1}{4} \\ 10 \\ 11 \\ 12\frac{1}{2} \\ 13\frac{1}{2} \\ 15 \\ 16 \\ 19 \\ \end{array} $	$ \begin{array}{c} 15-16 \\ 15-16 \\ 15-16 \\ 1 \\ 1\frac{1}{16} \\ 1\frac{1}{8} \\ 1\frac{3}{16} \\ 1\frac{1}{4} \\ \end{array} $	$ 7\frac{1}{2} 7\frac{3}{4} 8\frac{1}{2} 9\frac{1}{2} 10\frac{3}{4} 11\frac{3}{4} 13\frac{1}{4} 14\frac{1}{4} 17 $	8 8 8 8 12 12 12	5 83 43 43 43 43 43 47 87 8	$ \begin{array}{c} 2\frac{3}{4} \\ 3 \\ 3 \\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 3\frac{3}{4} \end{array} $	\$1.80 1.90 2.05 2.50 3.25 3.80 4.65 5.50 7.65	\$0.50 .75 .75 .75 .75 .80 1.20 1.60 1.70	\$4.50 5.75 6.25 6.75 8.75 9.50 12.50 14.50 18.50

DRILLING PRICE LIST FLANGED VALVES.

Size of Valve	Drilling Valves with Two Flanges except Angle Valves Price, Each	Drilling Angle Valves Price, Each
4 4 ¹ / ₂ 5	\$1.25 1.50 1.50 1.75 2.25 2.25 2.50 2.50 3.50	\$1.75 2.00
5	1.50	2.50 3.00
6	1.75	3.00
7	2.25	3.00
8	2.25	3.00
9	2.50	3.50
10 12	2.50	3.00 3.50 3.50
12	3.50	5.00

AIR CELL COVERING.

For Wrought Iron Pipe

Inside Diam.	Price per	Inside Diam.	Price per
of Pipe	lin. ft.	of Pipe	lineal ft.
Inches	Canvas Jacketed	Inches	Canvas Jacketed
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	\$0.22 .24 .27 .30 .33 .36 .40 .45	$ \begin{array}{c} 4 \\ 4\frac{1}{2} \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $	\$0.60 .65 .70 .80 1.00 1.10 1.20 1.30

For "Moulded" Asbestos Sectional, Use Same List

The sections are 36 inches in length. A sufficient number of fastenings furnished without additional charge. Sold in full sections only.

Asbestos cement in 100 lb. bags at market price.

One bag covers 10 square feet 2 inches thick.

ASBESTOS BOILER COVERING.

Quantity Asbestos Plaster in Pounds Required for Covering Gurney Hot Water and Steam Boilers

of	Lbs	. Requ	ired	jo	Lb	s. Requi	red
Number (Boiler	1¼" Thick	1½" Thick	2" Thick	Number o Boiler	1‡" Thick	1½"/ Thick	2", Thick
1-G 2-G 3-G 4-G 5-G 6-G 6-½-C 7-B 8-C 9-D 10-C 914 915 916 917 924-A 925-A 926-A	100 150 150 175 200 250 300 350 350 400 275 300 275 300 275 300	125 175 175 200 250 275 350 375 400 400 500 275 300 350 400 300 325 375	175 225 250 275 325 375 475 500 525 525 700 350 400 475 550 400 450 500	937 938 939 945 946 947 948 949 1021 1022 1023 1024 1025 1130 1131 1132 1133 1250 1251	500 550 600 500 575 650 700 775 400 450 500 500 575 600 650 700 800 850	600 675 700 625 700 775 850 925 450 500 550 600 625 700 725 775 800 975 1025	800 875 950 850 950 1050 1150 1250 600 675 725 775 825 900 975 1050 1100 1300 1375
927-A	350	400	550	1252	900	1100	1450
934	350	400	550	1253	1000	1200	1600
935	400	475	625	1254	1100	1325	1775
936	450	525	700	1255	1175	1400	1850

Note.—Asbestos Plaster is sold in 100-lb. bags. It requires only mixing in water to a consistency of mortar. All heating boilers should be thoroughly covered, which will effect a considerable fuel saving.

DIMENSIONS OF STANDARD WEIGHT STEAM AND WATER PIPES.

Jan. 1st, 1913.

Size	In- ternal Diam- eter	Ex- ternal Diam- eter	Length of Pipe per Sq.ft.of Exter. Surface	Sq. ft. Exter. Surface per 100 Lineal ft.	Water Con- tained pe Lineal ft.	Thr'd per Inch	Weight er ft.
Inches	Inches	Inches	Feet	Sq. feet	Pounds	Num- ber	Pounds
14381234	0.364	0.675	5.657	17.67	.044	18 18	0.425
-	0.622 0.824 1.049	1.050	3.637	27.49	.132	14	0.852
$egin{array}{c} 1 \\ 1 rac{1}{4} \\ 1 rac{1}{2} \end{array}$	1.380		2.301	43.46	. 373 . 648 . 880	$11\frac{1}{2}$	1.684 2.281 2.731
$\begin{array}{c} 2 \\ 2 \\ \frac{1}{2} \end{array}$	2.067 2.469	2.375	1.611	62.07	1.453	$11\frac{1}{2}$ 8	3.678 5.819
$\frac{3}{3\frac{1}{2}}$	3.068 3.548	3.500 4.000	0.955	91.66 104.72	3.200 4.281		7.616 9.202
$\frac{4}{4^{\frac{1}{2}}}$ 5	4.026 4.506 5.047		0:765	117.78 130.72	6.906	8	10.889
6 7	6.065 7.023	6.625	0.577	145.56 173.95 199.60	12.509	8 8	14.810 19.185 23.769
8	7.981 8.941	8.625 9.625	$0.444 \\ 0.397$	225.22 252.52	21.666	8	28.809 31.188
10 11	10.020 11.000	11.750	$0.355 \\ 0.325$	281.69 307.69	34.138 41.150	8	41.132 46.247
12	12.000	12.750	0.299	334.44	48.971	8	50.706

USEFUL INFORMATION

In the following pages will be found information, data and tables of service to all interested in any way in the design, erection and operation of heating apparatus.

We will be glad to co-operate with you in your heating problems. Let us hear from you. Our Engineering Department is at your service.

THE BRITISH THERMAL UNIT AND ITS APPLICATION TO THE SOLUTION OF HEATING PROBLEMS

The British Thermal Unit (abbreviated B.T.U.) is the basis of all heating calculations. It is the quantity of heat required to raise one pound of water 1 degree of Fahrenheit.

One square foot of single glass will transmit 1 heat unit for each degree of difference between

the inside and the outside temperatures.

4 square feet of 9-inch brick wall, furred and plastered (usual house construction), will transmit 1 heat unit for each degree of difference between the inside and the outside temperature.

1 B.T.U. will raise 55 cubic feet approximate of air 1 degree of Fahrenheit. 1.4392 B.T.U. will raise 1 cubic ft. of air from 0° to 70° Fahrenheit.

B.T.U. Equivalents in Electricity and Gas.

1 B.T.U. is equal to .2930 watt hours.

1 kilowatt hour (1,000 watt hours) is equal to 3,400 B.T.U.

730 B.T.U. equals the average heating value of one cubic foot of natural gas.

Heat Emission from Radiators.

1 foot of average cast iron direct radiation will emit 1.6 B.T.U. for each degree of difference between the temperature of the heating medium (steam or hot water) and the surrounding air, and wall radiators likewise emit 2 B.T.U.

1 foot* of standard (38 in.) cast iron steam radiation will emit 250 B.T.U. per hour, and with water 150 B.T.U. per hour (approximate). This is based on steam 5-lb. gauge pressure (225 degrees Fahrenheit) and water at 165.

1 foot cast iron wall radiation with steam as above will emit. 310 B.T.U. and with water 190

B.T.U. per hour.

The application of the above are found in rules 3 and 4 for determining the necessary quantities of radiating surface and form the foundation of any rules that approach exactness (see pages 108 and 109.

970.4 B.T.U. are required to turn each pound of water at 212 degrees Fahrenheit into steam at atmospheric pressure (14.7 pounds per square inch absolute), or 970.4 B.T.U. are emitted when one pound of steam is condensed to water at the same temperature (212 degrees Fahrenheit). This is known as Latent Heat. For other properties of steam see table page 117.

Boiler Horse Power Equivalent in B.T.U.'s.

34½ pounds of water evaporated per hour at 212 degrees is equal to 1 boiler horse power, or the evaporation of 30 pounds of water from 100 degrees Fahrenheit to steam at 70 pounds gauge pressure, is equal to 1 H.P.

1 boiler horse power is equal to 33,478.8 B.T.U. (commonly accepted at 33,000 B.T.U.),

that is, 970.4 x 34.5, equals 33,478.8.

Boiler H.P. Equivalent in Cast Radiation.

1 boiler horse power is equal to 134 feet* of direct cast iron steam radiation; that is, 33,478.8 divided by 250 (B.T.U. emitted per hour per foot*) equals 134, or 1 foot of cast iron steam radiation is equal to .00747 boiler horse power.

1 boiler horse power is equal to 223.2 feet* of cast iron hot water radiation; that is, 33,478.8 divided by 150 (B.T.U. emitted per hour per square inch), equals 223.2, or 1 foot* of cast iron hot water radiation is equal to .00448 boiler horse power.

Quantity of Steam Condensed Per Foot* of Radiation.

4 feet (approximate) of cast iron steam radiation, when the surrounding temperature is 70 degrees Fahrenheit, will condense 1 pound of steam, or, assuming the latent heat of evaporation at 2 pounds pressure as 966 B.T.U. per pound of steam, then 1 pound of steam will supply four feet of cast iron steam radiation; that is, 966, the total available heat units divided by 250, the amount emitted by 1 foot, is equal to 3.87 (approximately).

*See page 2.

British Thermal Units Contained in Coal.

1 pound of coal contains on an average 12,000 B.T.U. (this varies with different coal from 11,000 for free-burning lignite to 15,000 for best bituminous and Pennsylvania anthracites).

Heating Value of Coal.

65 to 70% of the heating value of coal is available in heating water and evaporation of water into steam, that is, 7,800 to 8,400 British Thermal Units can be utilized from the burning of each pound of coal. The available heating value of coal may be approximated as 8,000 B.T.U. per pound. From three to ten pounds of coal can be burned per hour for each square foot of grate surface of the boiler or furnace, so that the quantity of water heated and its temperature or the quantity of water evaporated into steam largely depends on the rate of combustion.

Quantity of Water Heated by Coal Consumed at Differing Rates Per Square Foot Per Hour.

6 pounds of coal per hour burned on one square foot of grate with the proper draft would make available 48,000 B.T.U. and would raise the temperature of 500 pounds or 60 U. S. gallons of water from 50 degrees to 146 degrees Fahrenheit in one hour.

Explanation: 6 (pounds of coal) x 8,000 (available B.T.U.) equals 48,000. Each United States gallon of water weighs 8.33 pounds, so 60 U. S. gallons would weigh 499.8 pounds (or nearly 500 pounds). We have seen that one B.T.U. will raise the temperature of one pound of water one degree Fahrenheit, so 96 B.T.U. would raise one pound of water 96 degrees. Then 48,000 (total available B.T.U.) divided by 96 equals 500. or the number of pounds of water that will be raised 96 degrees (146-50=96), or if we divide 48,000 by 500 (pounds of water to be heated), then we have 96, or 96 degrees—the temperature to which 500 lbs. of water (60 U. S. gallons) will be heated when 6 pounds of coal are burned.

10 pounds of coal burned in one hour on one square foot of grate as stated would raise the temperature of 833 pounds or 100 U. S. gallons of water from 50 degrees to 146 degrees Fahrenheit in one hour. Otherwise the 10 pounds of coal burned as above would raise 13.37 cubic

feet of water from 50 to 146 degrees.

From this it will be seen that the capacity of any heater to be selected depends on the size of the tank—or quantity of water to he heated, the rate of combustion, and the raise in temperature desired in degrees Fahrenheit. The three factors, quantity, time and temperature, are controlling factors and must be first known before the required size of tank heater can be determined. Otherwise, with any three factors known the fourth can be found.

Quantity, Volume and Weight of Water Heated to Varying Temperatures by 1 lb. of Coal.

Assuming 8,000 B.T.U. as the available heating value of coal, then

	0
value of coal, then	
Quantity of Total	Temperature
water U.S. degrees	of water.
gallon. Fahrenheit	7 00 . 1 460
1 lb. of coal will raise 10 96 or from	50° to 146°
1 lb. of coal will raise 20 48 or from	50° to 98°
1 lb. of coal will raise 29 28 or from	50° to 78°
Quantity of	
water	
Imp. gals.	T 0 - 1160
1 lb. of coal will raise 8.3 96 or from	50° to 146°
1 lb. of coal will raise 16.6 48 or from	50° to 98°
1 lb. of coal will raise 24.2 28 or from	50° to 78°
Volume of	
water	9
Cub. Ft.	
1 lb. of coal will raise 1.33 96 or from	50° to 146°
1 lb. of coal will raise 2.66 48 or from	50° to 98°
1 lb. of coal will raise 3.88 28 or from	50° to 78°
Weight of	
water, lbs.	
1 lb. of coal will raise 83.3 96 or from	50° to 146°
1 lb. of coal will raise 166.6 48 or from	
1 lb. of coal will raise 241.6 28 or from	

(Hot Water Storage Tanks are listed in U. S. Gallons and other quantities of water are usually calculated in Imperial gallons, pounds, or cubic feet. See useful data, page 133).

Heating a Swimming Pool by Direct Circulation.

A swimming pool 20 feet x 35 feet, having an average depth of water 5 feet, would require 6,107,458 B.T.U. to raise the temperature of the water 28° Fahrenheit, or from 50 to 78° (the latter is the usual required temperature for swimming pools), and to do this work it would require the burning of 764 pounds of coal, which if burned at the rate of 8 pounds of coal per hour per square foot of grate surface for 7 hours would mean a boiler or furnace having 13.6 square feet of grate area; as for example, a grate that is 42 in. x 36 in. or 30 in. x 63 in.

Explanation: The total water to be heated in cubic feet would be 20 x 35 x 5, equals 3,500 cubic feet; a cubic foot of water weighs 62.321 pounds, and then there would be in this pool 3,500 x 62.321, equals 218,123.5 pounds of water. The water is to be raised 28 degrees Fahrenheit, and as one B.T.U. will raise 1 pound of water 1 degree, then 218,123.5 x 28 equals 6,107,458, or the total number of B.T.U.'s necessary to raise this volume of water 28 degrees.

As a pound of coal is assumed to provide 8,000 available B.T.U.'s, it will be necessary to burn as many pounds of coal as 8,000 is contained in 6,107,458, which is 764 times; 6,107,458 divided by 8,000 equals 764 pounds of coal. As the work is to be done in 7 hours, then divide 764 by 7, which is 109, or there would be burned 109 pounds of coal per hour, and as 8 pounds of coal per hour per square foot of grate is rate of combustion assumed, then divide 109 by 8, which gives 13.6, or the required amount of grate area in square feet.

How to Find the Size of Boiler to Heat Any Quantity of Water to Any Temperature in Any Given Time.

The following formula forms the basis for finding the grate area of boiler required for the heating of large volumes of water from any known temperature to any determined temperature.

Length x Width x Depth (or height) in feet equals cubic feet.

Cubic feet of water x 63.231 equals pounds of water.

Pounds of water x degrees Fahrenheit raise, equals total B.T.U.'s.

Total B.T.U.'s divided by 8,000 equals pounds of coal required.

Pounds of coal divided by hours of heating equals coal burned per hour.

Coal per hour divided by rate per square foot of grate equals area of grate in square feet.

DATA RE BRASS COILS IN HOT WATER STORAGE TANKS

4 sq. ft. of heating surface in brass pipe (=12 lineal feet of 1" pipe) will raise the temperature of the water in a 400 gallon (U.S.) tank from 40 to 140 degrees Fahrenheit in 2 hours with a steam pressure of 5 lbs. The steam condensed will be 44 lbs. per sq. ft. per hour or 176 lbs. or approximately the same as would be condensed by 700 feet of direct radiation used for heating.

Approximately there may be allowed 3 feet of 1" brass pipe (=1 sq. ft.) for each 100 gallons (U. S.) to be heated per hour with a raise of 100 degrees.

Above is taken for average conditions. If the pipe is new the amount of water heated will be greater; if the pipe is fouled then less water will be heated.

Time, temperatures and volume are the controlling factors that determine the quantity of steam required to heat the water and the amount of condensation.

COMPUTING QUANTITIES OF RADIATION.

Four Good Rules.

(1) Divide the glass surface by 2 and the wall surface exposed by 10. The sum of these two quantities equals the amount of steam radiation required for 70 degrees inside with zero outside.

(2) Divide the glass surface by 2, the wall surface exposed by 20, and the cubic contents by 200. The sum of the three quantities equals the amount of steam radiation required for 70 de-

grees with zero outside (Mill's rule).

(3) Divide the wall surface by 4, the cubic contents by 55 (for one change of air per hour, or 27 for two changes of air per hour), and to these quantities add the glass surface and divide the sum by 4. For steam radiation required for 70 degrees inside with zero outside (Carpenter's

rule).

(4) Divide the net outside wall surface by 4 and the cubic contents by 55 (for one change of air per hour), and to these quantities add the glass surface. Multiply the sum by the difference between the outside temperature and the desired inside temperature. Divide the product by 255 for steam and 155 for hot water direct radiation. This rule provides for any range of temperature desired.

The following additions are to be made to any calculations for exposures: North and west, 20 per cent.; east, 10 per cent. Also see page 111

(3rd page Heat Transmission).

For indirect work add 60 per cent.

To ascertain hot water radiation when steam radiation has been determined, add 60 per cent., or divide steam radiation by 150 and multiply by 250.

Another rule in common practice to give 70

degrees with 40 degrees below zero, is:

For Steam-Divide the cubic contents by 200, exposed wall surface, less glass, by 10, and glass

surface by 2. Add the results together and that is the amount of feet of radiation* that will be

required for an average exposed room.

For Water—Divide cubic contents by 50, exposed wall, less glass, by 10, and glass by 3. This is for east or south exposures. For north or west exposures add another 10 to 15 per cent. Also for the Halls, Bathrooms and Vestibules 40 per cent. should be added to the above figure.

The above are not guaranteed, but are from

the best authorities.

*See page 2.

CONSTANTS FOR HEAT TRANSMISSION

B.T.U. transmitted per square foot per hour per degree difference in temperature between inside and outside temperature. Surface constant given below equals B.T.U.'s loss per degree per hour.

Constants for Brick Work

Thickness of wall, inches	8	12	16	20	24	30	36
B.T.U. per sq. ft. per hour per degree difference in temperature	.46	. 33	. 27	. 23	. 20	.18	.15

Constant for Ordinary Furred Brick Walls-

Thickness of wall, inches	8	12	16	20	24	28	32
B T.U. per sq. ft. per hour per degree difference in temperature	. 23	. 21	.19	.16	.14	.13	.12

Constants for Stone Walls, Rubble or Block Masonry

Thickness of wall, inches	12	16	20	24	28	36	44
B.T.U. per sq. ft. per hour per degree difference in temperature	. 45	.40	.36	.30	.27	.25	. 20

CONSTANTS FOR HEAT TRANSMISSION—Continued.

Outside Walls of Frame Buildings

Considered as having lath and plaster inside and an outside covering as below:
B. T. U. per sq. ft. per hour per degree difference in temperature.
Ordinary overlapping Clapboards 7/16 in. thick
Ordinary overlapping Clapboards and Paper .31 Ordinary overlapping Clapboards and 34

Constants for Pine Planks

Thickness planking, inches	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3
B.T.U. per sq. ft. per hour per degree difference in temperature	. 30	.26	.23	.20

Constants for Windows, Skylights, and Outside Walls

Constants for Heat Losses through Partitions, Floors and Ceilings.

CONSTANTS FOR HEAT TRANSMISSION—Continued.

Floor, single, thickness 3/4 inch, warm air
above and cold space below:
A. No plaster beneath joists20
B. Lath and plaster beneath joists12
Floor, double, thickness 11/2 inches warm
room above and cold space below:
A. No plaster beneath joists
B. Lath and plaster beneath joists08
Note.— the above values are compiled from
well-known authorities.
Constants for heat losses stated in tables on
preceding pages should be increased as follows:
For northeastern, northwestern, wes-
tern or northern exposure 20 to 30%
For rooms 13 to $14\frac{1}{2}$ feet high $6\frac{1}{2}\%$
For rooms 14½ to 18 feet high 10%
When building is heated during the day
only 30%
When building remains for long
periods without heat 50%

Air Leakage.

The question of air leakage is an important one, and should always be considered when figuring radiating surface. No definite allowance can be made with the exception, of course, where rooms are provided with ventilating flues which are allowed for independently, but the following rule is used with good results by many engineers:

Multiply the cubic contents in feet by .04 for rooms with two exposures and .02 for rooms with one exposure, and add to heat losses by transmission and exposure as given in tables on opposite page and above:

Note.—By referring to page 108, Rules 3 and 4, and from the above it will be seen that one square foot of single window transmits practically four times as much heat in the same time as an 8-inch brick wall lathed and plastered.

The factors given above will give any corresponding relations for different materials.

GREENHOUSE HEATING.

Estimating Radiation.

The area in square feet of glass surface, wall surface, the exposure, the construction of the building, the outside temperature and the uses to which the house is to be put, are all to be considered when calculating the amount of radiation required. The table herewith given will be found useful for any required inside temperature ranging from 40 degrees to 70 degrees and with outside temperatures ranging from zero to 40 degrees below zero Fahrenheit. It is necessary to have ample radiating surface, also boilers of ample capacity to take care of quick drops in temperature easily. The surface of wrought iron pipe is as follows:

1 foot of 1 in. pipe has .344 sq. ft. of surface.
1 foot of 1½ in. pipe has .434 sq. ft. of surface.
1 foot of 1½ in. pipe has .497 sq. ft. of surface.
1 foot of 2 in. pipe has .621 sq. ft. of surface.
1 foot of 2 in. pipe has .621 sq. ft. of surface.

Sizes of Mains.

For houses of average length and coils well above the heater, the mains for hot water may be proportioned as follows:

For 200 to 300 sq. ft. of surface 2 in. For 300 to 500 sq. ft. of surface 2½ in. For 600 to 800 sq. ft. of surface 3 in. For 800 to 1,100 sq. ft. of surface 3½ in.

The longer the mains and the less the coils are above the heater, the larger the mains must be.

If mains are short and the coils well elevated above heater they wil carry increased amount of surface.

Arrangements of Coils.

For coils up to 40 feet use 1½ in. pipe up to 75 feet, 1½ in. pipe, and for coils longer than this use 2 in. pipe. It is better to use two or more coils in long houses instead of the long coils, and have the coils valved so that any part can be closed off if desired. Tests have shown little or no difference in so far as the growth of plants, whether over-head heating or underthe-bench heating has been used, and the mains and coils can be arranged to suit varying conditions.

To get the best circulation the mains should be overhead and the coils beneath the benches, with the heater well below the coils.

GREENHOUSE HEATING.

Radiating Surface Required for Greenhouse Heating at Various Temperatures Zero Weather

		STEAM								
Square feet		RADIATIO	N REQUIRE	D AT						
of Glass	40°	45°	50°	60°	70°					
25	2 7-9	3 1-8	3 4-7	4 1-6	5					
50	5 5-9	6 1-4	7 1-7	8 1-3	10					
75	8	9	10	13	15					
100	11	13	14	17	20					
200	23	25	30	33	40					
300	34	38	43	50	60					
400	45	50	57	67	80					
500	56	63	72	83	100					
1,000	112	125	143	167	200					
2,000	223	250	286	333	400					
3,000	334	375	429	500	600					
4,000	445	500	571	667	800					
5,000	556	625	714	833	1,000					
10,000	1,112	1,250	1,429	1,667	2,000					
20,000	2,223	2,500	2,857	3,333	4.000					

		Н	OT WATER	2	
Square feet		RADIAT	ION REQUIR	ED AT	
of Glass	40°	45°	50°	60°	70°
25	4 1-6	5	6 1-4	7 1-7	8 1-3
50	8	10	13	14	16
75	13	15	19	21	25
100	17	20	25	29	33
200	33	40	50	57	67
300	50	60	75	86	100
400	67	80	100	114	133
500	83	100	125	143	167
1,000	167	200	250	286	333
2,000	333	400	500	572	667
3,000	500	600	750	857	1,000
4.000	667	800	1.000	1.143	1,333
5,000	833	1,000	1.250	1,429	1,667
10,000	1,667	2,000	2,500	2,857	3,333
20,000	3.333	4,000	5.000	5,714	6,667

For 10 degrees below zero multiply feet* radiation by 1.11. For 20 degrees below zero multiply feet* radiation by 1.23. For 30 degrees below zero multiply feet* radiation by 1.35. For 40 degrees below zero multiply feet* radiation by 1.48. *See page 2.

SIZES OF MAINS.

The size of steam mains depends on four factors, viz.: the surface to be carried, the velocity of the steam, the drop in pressure, and length of mains. No arbitrary rule can be laid down to suit all cases.

The sizes given in the following table are considered conservative, and are to be used under ordinary conditions:

Mains Not Exceeding 100 Feet in Length

	Fe	et of Radiat	tion	Returns, Two		
Size of Main, Inches	Steam, One Pipe	Gravíty Water, Two Pipe	Steam , Two Pipe	Dry	Wet	
$\frac{1}{\frac{1}{4}}$ $\frac{1}{2}$	75	100	80	1	1	
2	125 350	200 300	180 325	1 $1\frac{1}{2}$	1 1 1 7	
$\frac{2^{\frac{1}{2}}}{3}$	550	450	650	2	$1\frac{1}{2}$	
3	1,000	700	1,100	2	2	
$3\frac{1}{2}$	1,400	900	1,500	$2\frac{1}{2}$	2	
4	1,800	1,200	2,100	$2\frac{1}{2}$	2	
$f{4}rac{1}{2} \ f{5}$	2,500	1,500	2,700	$\frac{2\frac{1}{2}}{3}$	$2\frac{1}{2}$	
5	3,000	2,000	3,500	3	$2\frac{1}{2}$	
6	4,500	3,000	6,000	$3\frac{1}{2}$	3	

Above two-pipe sizes do not refer to vapor or vacuum systems, for which see pages 115-116.

Where piping is not thoroughly covered it should be figured as radiation. Branch mains carrying water and steam in opposite directions should be increased one size.

Branch mains carrying two or more branches should equal in internal diameter the sum of internal area of the branches. (See table of pipe areas, page 100).

Uptakes from boiler to mains should be of

increased sizes.

Above from good authorities, but are not guaranteed.

DUNHAM RETURN HEATING SYSTEM.

Pipe Sizes

In sizing piping the following tables will be found a convenient check. The pipe sizes are based upon an initial operating pressure of 1 to 2 lbs., although higher pressures may be used. No smaller piping for the several functions should be used than called for by these tables, and care should be used to ascertain the length of all runs, with allowances added, in determining the sizes.

Steam Mains—Return Heating System Table 1.

Pipe	Capacities in Feet of Direct Cast Iron Radiatio											
Sizes Inches		LENGTH IN FEET										
inches	100	200	300	400	500	600	800	1,000				
2 1	670	570	470	410	360	330	290	250				
21	1,090	930	760	670	590	530	470	410				
3	1,930	1,650	1,340	1,170	1,030	940	820	730				
31	2,810	2,400	1,950	1,710	1,510	1,370	1,200	1,060				
4	3,900					The state of the s		1,480				
$4\frac{1}{2}$	5,220		The state of the s	1.05 P.O. 25005 A. CH	U. C.			1,980				
5	7,000	A SHOULD BE A STORY OF STATE O						2,640				
6	11,200			and the second second			The second secon					
6 7 8	16,400		11,400					6,180				
					12,540			8,840				
10							17,400					
12	64,400	55,000	44,700	39,200	34,600	31,400	27,500	24,400				

DUNHAM RETURN HEATING SYSTEM.

Pipe Sizes

Return Mains-Return Heating System

Table 2.

Dina Circa	Capacity in Square Feet									
Pipe Sizes	1	11	11	2	21/2	3	3 1/2	4	5	
Mains under 400 ft. Long Mains over	400	1,400	2,700	5,500	9,000	16,000	23,000	32,000	57,000	
400 ft. long	300	1,000	1,700	3,400	5,500	10,000	14,000	20,000	35,000	

Steam Main Drips-Return Heating System

Table 3.

Pipe Sizes	11	$1\frac{1}{2}$	2	$2\frac{1}{2}$	3	31/2	4	5
Capacity in Sq. Ft	1,400	2,700	5,500	9,000	16,000	23,000	32,000	57,000

Riser Sizes-Return Heating System

Table 4.

Pipe Sizes			5	Stean	n			Ret	urn
Tipe Disco	3	1	11	1 1/2	2	$2\frac{1}{2}$	3	3	1
*Length, 200 feet.	45	90	190	290	570	930	1,650	600	1,200
*Length, 400 feet.	30	60	136	200			1,170	430	850
*Length, 600 feet.	25	50	110	165	330	530	940	340	670
*Length, 1,000 feet.	20	40	85	130	250	410		260	530

*Length equals distance along piping from source of steam supply to top of each riser plus allowances for elbows, valves and plus 25 feet allowance for radiator connection.

Spring-pieces, that is, connections from steam main to risers, must always be made one size larger than the riser. Return spring-pieces make same size as return riser.

Important Points in Design and Installation

Grade steam mains with a fall of ½ inch in ten feet, and return mains 1 inch in ten feet in direction of flow. When conditions permit run steam and return mains together and grade in same direction.

PROPERTIES OF SATURATED STEAM.

				l Heat 32° F.	
Vacuum, Inches of Mercury	Absolute Pressure Lbs. per Sq. Inch	Temperature Fahrenheit	In the Water Heat Units per 1b.	In the Steam Heat Units per lb.	Latent Heat, Heat Units per 1b.
23.81 21.78 19.74 17.70 15.67 13.63 11.60 9.56 7.52 5.49 3.45 1.42	3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0	141.52 153.01 162.28 170.06 176.85 182.86 188.27 193.22 197.95 201.96 205.87 209.55	109.4 120.9 130.1 137.9 144.7 150.8 156.2 161.1 165.7 169.9 173.8 177.5	1121.6 1126.5 1130.5 1133.7 1136.5 1139.0 1141.1 1143.1 1144.9 1146.5 1148.0 1149.4	1012.3 1005.7 1000.3 995.8 991.8 991.8 988.2 985.0 982.0 979.2 976.6 974.2 971.9
Lbs. Gauge 0.0 0.3 1.3 2.3 3.3 4.3 5.3 10.3 15.3 20.3 25.3 30.3 40.3 50.3 60.3 70.3 80.3 91.3 101.3 125.3 151.3 175.3 200.3 225.3	14.7 15.0 16.0 17.0 18.0 19.0 20.0 25.0 30.0 35.0 40.0 45.0 55.0 65.0 75.0 85.0 95.0 106.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0	. 212.0 213.0 216.3 219.4 222.4 225.2 228.0 240.1 250.3 259.3 267.3 274.5 287.1 298.0 307.6 316.3 324.1 332.0 338.7 353.1 366.5 377.6 388.0 397.4	180.0 181.0 184.4 187.5 190.5 193.4 196.1 208.4 218.8 227.9 236.1 243.4 256.3 267.5 277.4 286.3 294.5 302.7 309.6 324.6 338.7 350.4 361.4 371.4	1150.4 1150.7 1152.0 1153.1 1154.2 1155.2 1156.2 1160.4 1163.9 1166.8 1169.4 1171.6 1175.4 1175.4 1178.5 1181.1 1183.4 1185.4 1187.4 1187.4 1189.0 1192.2 1195.1 1197.3 1199.2 1200.9	970.4 969.7 967.6 965.6 963.7 961.8 960.0 945.1 938.9 933.3 928.2 919.0 911.0 903.7 897.1 890.9 884.7 879.3 867.7 856.4 846.9 837.9 829.5

SIZE OF EXPANSION TANKS.

For Hot Water Heating Systems.

Expansion tanks for hot water heating systems should be proportioned according to the amount of radiation that is carried. They should be of ample size, so that they will not overflow frequently, and the user should be cautioned against filling the tank too full. If before starting the fire in the boiler the water shows 3 or 4 inches in a gauge glass that is connected near the bottom of tank that is sufficient, as the water will gradually rise in the glass as the water in the system becomes heated.

The following table gives the size and contents of expansion tanks that are adaptable to

the amounts of radiation specified:

Size	Gallons (U.	7 1	. Radi-
12" x 24"	12		0 500
14" x 30"	20		
or 16" x 24"	21		750
16" x 30"	26	"	1000
$16'' \times 36''$	32		
or 18" x 30" 16" x 48"	33 42	"	1500
or 18" x 40"	44	• "	2000
18" x 48"	44 53	"	2500
18" x 60"	66	"	3000

For systems carrying larger amounts of radiation than that given above allow 18 to 20 gallon capacity in the tank per thousand feet of radiation.

Frequently cases will occur where the ceiling height will not permit using the above sized tanks vertically, particularly with the larger sized tanks. When required special tanks can be placed in a horizontal position, and in such cases the arrangement of the connections for the expansion and vent pipes and the gauge glass will be made to suit these conditions.

NUMBER OF GALLONS IN ROUND TANKS.

Length (or Height), Diameter and Capacity in U. S. Gallons.

Depth or Length	18-inch	24-inch	30-inch	36-inch	42-inch	48-inch	54-inch	60-inch	66-inch	72-inch
1 Inch	1.10	1.96	3,06	4.41	5.99	7.83	. 9.91	12.24	14.81	17.62
	1		200	62	02	0.4			_	
1 ft.	13.	23.	3.7	93.	. 00	177				
1, ft.	20.	35.	.66		108.	141.				
7 ft	26	47	73.		144.	188.			\neg	
3 10		20.	66		180.	235.			-	
25 11.			120		916	282			\sim	
3 IT.			190		929	350			\sim 1	
3½ It.	40.	. 28	147	911	. 200	376	476	587	711.	846.
4 ft.	53.		141.			450				
4½ ft.	59.		165.		324.	423.			3.0	, H
4	99		183.		360.	470.				30
¥1 £	73	199	202		396.	517.			5	
5 tt.	. 02		066		432.	564.			ř	3
11.	. 60		10 10 10		504	658		30	2	2
			. 700		576	752		-	7	25
s it.	_		404		. 878	846	6	3	50	ŏ
9 ft.	119.		330.		750.	940				
10 ft.			367			5 -	1 7	1	-	LC
12 ft.			440.		ā	7	# 6	- 6	1 ~	0
14 ft.			514.		1008.	1316.	0	5	# 0	50
16 6+			587		-	5	5	3	Ó	ŏ
10 11.			661		0	9	-	9	-	$\tilde{\infty}$
18 It.			. 100		1 -	0	O	ò	M.	S
20 ft.			734	1057.	4	Ō	Š	5	5	i

One-inch Depth is given to facilitate figuring intermediate depths.

For tanks having a diameter other than those given in the table, multiply the square of the diameter in inches by the length in feet and multiply this product by 0.0408 to obtain tank capacity in U. S. gallons of the length are given in inches, the capacity in U. S. gallons equals 0.0034 x D² X L. When both diameter and length are given in inches, the capacity in U. S. gallons

REQUIREMENTS FOR CHIMNEYS.

No Chimney flues should be less than 8 in. x 8 in., or 8 in. diameter if round.

Chimneys should be:

1-Straight and free from any obstructions.

2—A separate flue should be provided for

each fire.

3—There should be no opening into the flue except that at the bottom to receive the smoke pipe from the boiler or furnace and the cleanout opening door for the removal of soot.

4—The same size and shape should be main-

tained throughout.

5—They should be built up clear of any obstructing buildings.

6—They should be built on inside walls and

not outside walls, wherever possible.

The fact that a flue will draw up a lighted piece of paper or other light material is no indication of a good or fair draft. An indicated velocity is not proof of a good draft. It is necessary that it shall be of sufficient area to carry away the gases of combustion. The draft of a chimney depends both on the area of flue and the velocity due to height. Square or round chimneys are always to be preferred. Wide chimneys that are shallow in depth ARE TO BE AVOIDED.

The following table of chimney sizes will be found to give results under average conditions with all up-draft boilers.

RAD (D	CHIM	NEY SIZE	
Hot Water, Feet	Steam, Feet	Round, Inches	Rectangular, Inches
400 to 700	250 to 450	8	8 x 8
800 to 1,200	500 to 800	10	8 x 13
1,300 to 2,200	850 to 1,400	12	13 x 13
2,400 to 3,500		14	13 x 17
3,600 to 5,500		16	17 x 17
5,600 to 10,000	,	18	17 x 21

REQUIREMENTS FOR CHIMNEYS-

Continued.

A more specific table is given by Prof. R. C. Carpenter suitable to various sized heating plants and different chimney heights, as follows:

RADIA (Dir	TION rect)		Height o	of Chimr	ney Flue	
Steam, Feet	Hot Wa- ter, Feet	30 ft.	40 ft.	50 ft.	80 ft.	60 ft.
		Inches	Inches	Inches	Inches	Inches
250	375	7.0	6.7	6.4	6.2	6.0
500	750	9.2	8.8	8.2	8.0	6.6
750	1,150	10.8	10.2	9.6	9.3	8.8
1,000	1,500	12.0	11.4	10.8	10.5	10.0
1,500	2,250	14.4	13.4	12.8	12.4	11.5
2,000	3,000	16.3	15.2	14.5	14.0	13.2
3,000	4,500	18.5	18.2	17.2	16.6	15.8
4,000	6,000	22.2	20.8	19.6	19.0	17.8
5,000	7,500	24.6	23.0	21.6	21.0	19.4
6,000	9,000	26.8	25.0	23.4	22.8	21.2
7,000	10,500	28.8	27.0	25.5	24.4	23.0
8,000	12,000	30.6	28.6	26.8	26.0	24.2
9,000	13,500	32.4	30.4	28.4	27.4	25.6
10,000	15,000	34.0	32.0	30.0	28.6	27.0

Dimensions given are diameters of flues in inches or the side of square flue.

HOW TO READ BLUE PRINTS STANDARD SYMBOLS

MEW RADIATOR VALVE CO SOF TRAI
OLD RADIATOR
RAD WITH DIAPHRAGM VALVE OF 18
WALL RAD. ON WALL
WALL RAD ON CEILING
HARP PIPE COIL ON WALL 5
CORMER PIPE ON WALL
HARP PIPE COIL ON CEILING FOR 6 PIPES OR LESS 0-80-
HARP PIPE COIL B-LE PIPES 30FT LONG 104
ON CEILING FOR 7 PIPES OR MORE OF
OW PRESSURE STEAM
HIGH PRESSURE STEAM
EXHAUST STEAM
OLD STEAM PIPE L.P
ORY RETURN PIPE
OLD RETURN PIPE
VET DRIP OR WET RETURH
OLD DRIP PIPE -# -# -#
LUGGED TEE - FRUETER
CCENTRIC REDUCER
122

HOW TO READ BLUE PRINTS, Continued STANDARD SYMBOLS

TO ASCERTAIN HORSEPOWER OF **BOILERS**

Standard adopted by American Society of Mechanical Engineers is 30 pounds of water evaporated into dry steam per hour from temperature of feed water 100 degrees Fahrenheit into steam of 70 pounds pressure.

Compound engines will develop a horsepower on 15 pounds

of water.

Single condensing engine will develop a horsepower on 18 to 22 pounds of water.

Automatic non-condensing engines will develop a horse-

power on 28 to 32 pounds of water.

Slide-valve throttle-governing engine will develop a horsepower on 1 cubic foot, or 62:1/2 pounds of water.

Steam Memoranda.

A cubic inch of water evaporated under ordinary atmosphere pressure is converted into 1 cubic foot of steam (approximately).

The specific gravity of steam (at atmospheric pressure) is .411 that of air at 34 degrees Fahrenheit, and .0006 that

of water at same temperature.

27.222 cubic feet of steam weigh 1 pound; 13.817 cubic

feet of air weigh 1 pound.

Locomotives average a consumption of 3,000 gallons of

water per 100 miles run.

The best designed boilers, well set, with good draft, and skillful firing, will evaporate from 7 to 10 pounds of water per pound of first-class coal.

On 1 square foot of grate can be burned on an average from 10 to 12 pounds of hard coal, or 18 to 20 pounds of soft coal per hour, with natural draft. With forced draft nearly double these amounts can be burned.

Steam engines, in economy, vary from 14 to 60 pounds of feed water, and from 11/2 to 7 pounds of coal per hour

per indicated horsepower.

Condensing engines require from 20 to 30 gallons of water, at an average low temperature, to condense the steam represented by every gallon of water evaporated in the boilers supplying the engines-approximately for most engines, we say, from 1 to 11/2 gallons condensing water per minute, per indicated horsepower.

Horsepower of an Engine.

a=Area of the piston in square inches. p=Mean velocity pressure of steam on piston per square inch. v=Velocity of piston per minute.

	010, 01	Proto	ni per	minute.		
			The	n H. P.	$=$ $ a \times p \times v$	
The me	an pres	sure	in the	cylinder	when cuttin	g off at
1/3	SCI OKC	\equiv	polier	pressure	multiplied	by .597
3/8	"	=	"	"	"	" .743
1/2	"	=	"	"		" .847
³ /8	"	=	"	"	**	" .919
33	"	=	"		"	" .937
7/8		_	"	"	"	.966
70		1				" .992

To find the diameter of a cylinder of an engine of a required nominal horsepower:

 $\frac{5500}{\text{multiplied}}$ by H. P. = a

To find the weight of the rim of the fly-wheel for an engine: Nominal H. P. multiplied by 2,000

= wt. in cwts.

Sq. of velocity of circumference in ft. per second

RULES RELATIVE TO THE CIRCLE

To Find Side of an Inscribed Square.

Multiply diameter by 0.7071, or multiply circumference by 0.2251, or divide circumference by 4.4428.

To Find Side of an Equal Square.

Multiply diameter by 0.8862, or divide diameter by 1.1284, or multiply circumference by 0.2821, or divide circumference by 3.545.

Square.

A side multiplied by 1.1442 equals diameter of its circumscribing circle.

A side multiplied by 4.443 equals circumference of its circumscribing circle.

A side multiplied by 1.128 equals diameter of an equal

A side multiplied by 3.547 equals circumference of an equal circle.

Square inches multiplied by 1.273 equals circle inches of an equal circle.

To Find the Surface of a Sphere or Globe.

Multiply the diameter by the circumference, or multiply the square of diameter by 3.1416, or multiply 4 times the square of radius by 3.1416.

DIMENSIONS OF STANDARD CAST IRON FITTINGS

Size inches	A	В	Size inches	A	В
1 1 1 1 1 1	$\frac{1\frac{1}{2}}{1\frac{11}{16}}$	$\frac{1}{16}$ $\frac{1}{16}$	4½ 5	4½ 4¾ 4¾	$\frac{2\frac{9}{16}}{2\frac{3}{4}}$
1½ 2	$\frac{1\frac{7}{8}}{2\frac{1}{8}}$	$\frac{1}{16}$ $\frac{5}{16}$ $\frac{1}{2}$	6 7	$5\frac{1}{16}$ $5\frac{11}{16}$	3 1 3 3 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 3 3	$\frac{2\frac{7}{16}}{3\frac{1}{16}}$	$1\frac{3}{4}$ $1\frac{15}{16}$ $2\frac{1}{2}$	9	$6\frac{16}{16}$ $7\frac{1}{4}$ $8\frac{3}{16}$	$\frac{3\frac{1}{8}}{4\frac{1}{4}}$
4	3 3 4	$2\frac{3}{8}$	12	$9\frac{3}{4}$	51

AREA OF CIRCLES.

Diam. Inches	Area	Diam. Inches	Area	Diam. Inches	Area	Diam. Inches	Area
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.012 .049 .110 .196 .441 .785 .994 1.227 1.767 2.405 3.141 3.976 4.908 5.939 7.06 8.29 9.62 11.04 12.56 15.90 19.63 23.75 28.27 33.18	$ \begin{array}{c} 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ 9\frac{1}{2} \\ 10 \\ 10\frac{1}{2} \\ 11 \\ 12\frac{1}{2} \\ 12\frac{1}{2} \end{array} $	38.48 44.17 50.26 56.74 63.61 70.88 78.54 86.59 95.03 103.87 113.10 122.71 132.72 143.13 153.94 165.13 176.71 188.69 201.06 213.82 226.98 240.52 254.46 268.80	$ \begin{array}{c} 19\frac{1}{2} \\ 20 \\ 20\frac{1}{2} \\ 21 \\ 21\frac{1}{2} \\ 22 \end{array} $	314.16 330.06 346.36 363.05 380.13 397.60 415.47 433.73 452.39	38 39 40 41 42 43 44 45 46	1,075.2 1,134.1 1,194.6 1,256.6 1,320.2 1,385.4 1,452.2 1,520.5 1,590.4 1,661.9 1,734.9 1,808.5 1,885.5 1,963.5 2,042.8 2,123.7 2,206.1 2,290.2 2,375.8 2,463.0 2,551.7 2,642.0 2,733.9 2,827.4

Other dimensions of circles are obtained, viz.:

Diameter × 3.1416=circumference.

Diameter × .8862=side of an equal square. Diameter × diameter × .7854=area of circle. Circumference ÷ 3.1416=diameter.

Circumference ÷ 6.28318=one-half of diameter

or radius.

Circumference × ¼ of diameter=area of circle.

Square inches × .007=square feet.

Circular inches × .00546=square feet. Cubic inches × .00058=cubic feet.

OFFSET CONNECTIONS

TABLE-45 DEGREE OFFSETS

		CLOSE	NIPPLE		5	SHORT I	VIPPLE	
Pipe Size	Length of Nipple	A Offset	a Centre to Centre	Centre to Face	Length of Nipple	A Offset	a Centre to	Centre to
$\begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \\ 1 \\ \frac{1}{4} \\ 1 \\ \frac{1}{2} \\ 2 \\ 2 \\ \frac{1}{2} \\ 2 \\ 3 \\ 3 \\ \frac{1}{2} \\ 4 \\ 4 \\ \frac{1}{2} \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array}$	$ \begin{array}{c} 1\frac{1}{8}\\ 1\frac{3}{8}\\ 1\frac{1}{2}\\ 1\frac{5}{8}\\ 3\frac{1}{4}\\ 2\frac{1}{2}\\ 2\frac{5}{8}\\ 3\frac{1}{4}\\ 3\frac{1}{4}\\ 3\frac{1}{2}\\ 3\frac{1}\\ 3\frac{1}{2}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac{1}\\ 3\frac$	$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{11}{16} \\ 1\frac{11}{16} \\ 1\frac{1}{16} \\ 2\frac{1}{8} \\ 2\frac{13}{16} \\ 3\frac{1}{16} \\ 3\frac{13}{16} \\ 4\frac{1}{2} \\ 4\frac{15}{16} \\ 5\frac{3}{8} \\ 6\frac{3}{16} \\ 6\frac{5}{8} \\ \end{array}$	$ \begin{array}{c} 1\frac{7}{8}3\frac{3}{8}5\frac{5}{8}8\\ 2\frac{3}{8}5\frac{5}{8}8\\ 4\frac{1}{2}\\ 5\frac{3}{8}8\frac{1}{8}\\ 4\frac{1}{2}\\ 5\frac{3}{8}8\frac{1}{8}\\ 6\frac{3}{8}\\ 7\frac{5}{8}\frac{3}{4}\frac{3}{8}\\ 9\frac{3}{8}\\ 9\frac{3}{8} \end{array} $	$ \begin{array}{c} $	$ \begin{array}{c} 1\frac{1}{2} \\ 2 \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 2\frac{1}{2} \\ 3 \\ 4 \\ 4 \\ 4\frac{1}{2} \\ 4\frac{1}{2} \\ 5 \\ 5 \end{array} $	$\begin{array}{c} 1\frac{9}{16} \\ 2\frac{3}{16} \\ 2\frac{1}{4} \\ 2\frac{3}{4} \\ 2\frac{15}{16} \\ 3\frac{3}{16} \\ 3\frac{13}{16} \\ 4\frac{11}{16} \\ 5\frac{3}{16} \\ 5\frac{1}{16} \\ 5\frac{1}{16} \\ 7\frac{1}{16} $	$ \begin{array}{c} 2\frac{1}{4} \\ 3 \\ 3\frac{1}{8} \\ 3\frac{7}{8} \\ 4\frac{1}{8} \\ 4\frac{1}{2} \\ 5 \\ 5\frac{3}{8} \\ 5\frac{1}{8} \\ 6\frac{1}{8} \\ 7\frac{3}{8} \\ 10\frac{7}{8} \\$	$ \begin{array}{c} \frac{7}{8} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$

The Offset "A" is Equal to the Distance "B" Divided by 1.414

Linear Measure.

	ricasure.	
12 inches equal 3 feet 5.5 yards 40 rods 8 furlongs Inch Feet 36 equal 198 7920 63,360	1 1 foot, ft. 1 yard, yd. 1 rod, rd. 1 furlong, fur. 1 mile, mi. Yard Rod Fur. Mile 1 5.5 1 220 40 1760 320 8 1	e

Square Measure.

*		
30¼ square i 160 square i	vd " od "	1 square foot, sq. ft. 1 square yard, sq. yd. 1 square rod, sq. rd. 1 acre, A. 1 square mile, sq. mi: sq. ft. sq. in. 27,878,400 4,014,489,600
	C .	

Surveyors' Measure.

7.00		, , , ,	measure.
4 100 66 80	inches links rods links links chains equals 80 c	equal	1 link, li. 1 rod, rd. 1 chain, ch. 1 chain, ch. 1 chain, ch. 1 mile, mi.
	_		

Surveyors' Square Measure.

625 u	e Measure.
36 square miles (6)	acre, A. square mile, sq. mi
mi. sq.) " to 1 sq. mi. equals 640 A. equals 102,400 sq. rd. equals The acre contains 4840 sq.	equals 6400 sq. ch.

The acre contains 4840 sq. rd., or 43,560 sq. ft., and in the form of a square, 208.71 feet on a side.

WERSHITS APITY MEASURES

Cultie Massar

The entire terms are entire to the entire to

Manager of Apples or Arre

Management of the second of th

AssistAupole Walght

Long Ton Walght

He promotes to the state of the

Teny Walghi

At present a present constitution of the second of the sec

Epathorenies Walgin

A design of the second of the

Linear Measure.

12 inchesequal 3 feet	1 foot, 1 yard, 1 rod,	vd.		
40 rods " 8 furlongs " Inch Feet 36 equal 3	1 furlo 1 mile, Yard	ng, fu mi.		Mile
198 " 16.5 7920 " 660 63,360 " 5280	5.5 220 1760	1 40 320	1 8	1

Square Measure.

201/ Square 1	oot, sq. ft.
160 square rod " 1 square r	od, sq. rd.

Surveyors' Measure.

7.92 inchesequal	1 link, li.
4 rods	l rod, rd.
100 links	1 chain, ch.
100 links	1 chain, ch.
1 mi. equals 80 ch. equals equals 63,	320 rd equals 2000 1:

Surveyors' Square Measure.

	- Caracarc.
10 square ch 640 acres	" 1 acre, A. " 1 square mile, sq. mi.
m_1 , $sq.$)	"township, tp. 640 A. equals 6400 sq. ch.

equals 102,400 sq. rd. equals 64,000,000 sq. li.
The acre contains 4840 sq. rd., or 43,560 sq. ft.,
and in the form of a square, 208.71 feet on a side.

C 1.	3.4
Cubic	Measure.

1728 cubic i	inchesequal	1 1	cubic foot
27 cubic f	feet "	1	cubic vard
	feet "		
	feet "		
1 cu. yd. e	quals 27 cu.	ft.	equals 46,656 cu. in.

Measure of Angles or Arcs.

60 seconds	(")equal 1 minute, '.
60 minutes	" 1 degree. °.
90 degrees	
360 degrees	" 1 circle, cir.
1 cir. equals	360° equals 21,600′ equals 1,296,000″.

Avoirdupois Weight.

437.5 grainsequal 1 ounce, oz.
16 ounces " 1 pound, 1b.
100 pounds " 1 hundredweight, cwt.
20 hundredweight " 1 ton, T.
1 T. equals 20 cwt. equals 2000 lb. equals 32,000 oz.
equals 14,000,000 gr.
The avoirdupois pound contains 7000 grains.

Long Ton Weight.

16	ouncesequal	1 1 pound, 1b.	
	pounds	1 hundredweight, cwt.	
	cwt. or 2240 lbs "	1 ton, T.	

Troy Weight.

24 grainsequal 1	pennyweight, pwt.
20 pennyweight " 1	ounce, oz.
12 ounces " 1	pound, 1b.
1 lb. equals 12 oz. equals 24	40 pwt. equals 5760 gr.

Apothecaries' Weight.

20 grainsequal	l 1 scruple, sc.
3 scruples "	1 dram, dr.
8 drams	1 ounce, oz.
12 ounces	
1 lb. equals 12 oz. equal	ls 96 dr. equals 288 sc.
equals 57	760 gr.

Liquid Measure.

4 gillsequal 1	pint
	quart
4 quarts " 1	gallon
	barrel
	hogshead
1 hhd. equals 2 bbl. equals 63	
equals 504 pt. equals	5 2010 gl.

The U. S. gallon contains 231 cu. in. equals. .134 cu. ft. nearly.

An Imperial gallon contains 277.274 cu. in.

With water at its maximum density (weighing 62.425 lb. per cu. ft.) a gallon of pure water weighs 8.345 lbs.

Dry Measure.

2	pints		.equal 1 quart	
8	quarts		. " 1 peck	
4	pecks		. " 1 bush	e1
	1 h	0011010101	anala 32 at aa	1. 61 .

1 bu. equals 4 pk. equals 32 qt. equals 64 pt.

The U. S. struck bushel contains 2,150.42 cu. in. equal 1.2444 cu. ft. Its dimensions are, by law, $18\frac{1}{2}$ in. in diameter and 8 in. deep. The dry gallon contains 268.8 cu. in., being \(\frac{1}{8} \) bu.

Approximately the bushel may be taken at 11/4 cu. ft.

Miscellaneous Table.

12 articles—1 dozen	20	quires—1 ream
12 dozen—1 gross		league—3 miles
12 gross—1 great gross		fathom—6 feet
2 articles—1 pair		hand—4 inches
20 articles—1 score	1	palm—3 inches
24 sheets—1 quire		span—9 inches

1 knot (U. S.) equals 6,086.07 ft. equals 1\% miles nearly.

1 meter equals 3 feet 3% inches nearly.

METRIC AND ENGLISH MEASURES

	Measures of I	Length.	
1 .3048 1 2.54 1	Metric metre={ metre= centimetre= centimetres= millimetre= millimetres=		inch
1	kilometre=	093.61	yards
	Measures of S	urface.	
1 .0929 1 6.452 1 645.2	square metre= square metre= square centimetre= square centimetres= square millimetre= square millimetres=	10.764 1 .155 1 .00155	square feet square foot square inch square inch square inch
	Measures of V	olume.	
1 .02832 1 28.32 16.387	cubic metre= cubic metre= cubic decimetre.= cubic decimetres= cubic centimetres=	35.314 1 61.023 .0353	cubic feet cubic foot cubic inches cubic foot cubic foot cubic inch
1	cubic centimetre={	.061	millimetre cubic inch
	Measures of Ca	apacity.	
1	litre=1 cu. deci- metre=	61.023 .0353 .2202 2.202	cubic inches cubic foot gallon (Imp.) lbs. of water at 62 degrees Fahr.
28.317	litres={	1	cubic foot (6.25
4.543 3.785	litres	1 1	Imp. gallons) gallon (Imp.) gallon (U. S.)
	Measures of V	Veight.	
28.35 1 .4536	kilogramme= kilogramme=	2.2046	oz. avoirdupois pounds pound

		3	
28.35 1 .4536	grammes= kilogramme= kilogramme=	1 2.2046 1	oz. avoirdupois pounds
		.9842	ton of 2240
1	metric ton) =	J	lbs., or
1000	kilogrammes ∫	19.68	cwts. of 2204.6 lbs.
1.016 1016	metric ton=	$\{$	ton of 2240 lbs.

METRIC AND ENGLISH MEASURES

Miscellaneous.

1	gramme per sq.		
1	millimetre=	1.422	lbs. per sq. inch
1	kilogramme per		
	sq. millimetre=	1422.32	lbs. per sq. inch
1	kílogramme per		11
1 0225	sq. centimetre.=	14.223	lbs. per sq. inch
1.0335	kg. per sq. centi-		
	metre 1 atmos- phere=	14.7	lbs. per sq. inch
0.070308	kilogramme per	17.7	ibs. per sq. men
0.07000	sq. centimetre.=	1	1b. per sq. inch
	1.		1 1

Measures of Pressure and Weight.

1	lb. per square inch=	2.0355 inches of mercury at 32 degrees Fahr. 2.0416 inches of mercury at 62 degrees Fahr.
		2.309 ft. of water at 62
		degrees Fahr.
		27.71 inches of water at 62
		degrees Fahr.
		2116.3 lbs. per square foot
		33.947 ft. of water at 62
		degrees Fahr.
	J	30 inches of mercury at
1	Atmospheric (14.7 lbs.)	
1		62 degrees Fahr.
	per sq. in.)=	29.922 inches of mercury at
		32 degrees Fahr.
		760 millimetres of mercury
1	Foot of Water at 62 (at 32 degrees Fahr.
-	degrees F	.433 lbs. per square inch
	degrees 1 (62.355 lbs. per square foot
	(.491 lb. or 7.86 oz. per sq. in.
1	inch of Mercury at 62	1.132 ft. of water at 62
	degrees F	degrees Fahr.
	2000 2	13.58 inches of water at 62
		degrees Fahr.
		degrees I alli.

Weight of One Cubic Foot of Pure Water.

At 32 degrees Fahr. (freezing point)62.418	lbs.
At 39 degrees Fahr. (maximum density) 62 425	The
At 02 degrees Fahr. (standard temperature) 62 355	lbs.
At 212 degrees Fahr. (boiling point, under 1 atmos-	
phere) 50.76	lbs.
Imperial gallon=277,274 cubic inches of water at 62	
degrees Fahr10	lbs.
American gallon=231 cubic inches of water at 62	
degrees Fahr8.3356	lbs.

METRIC AND ENGLISH MEASURES

General Data

1 Calorie=	3.968	B. t. u.
1 B. t. u	0.252	Calorie.
1 lb. per sq. in=	703.08	kilogrammes per m ²
1 Kilogramme per m ² .=	.00142	lbs. per sq. in.
1 Calorie per m ² =	.3687	B. t. u. per sq. ft.
1 B. t. u. per sq. ft=	2.712	calories per m ²
1 Calorie per m ²)	.2048	B. t. u. per sq. ft.
per degree dif- }		per degree difference
ference Cent J=		Fahr.
1 B. t. u. per sq.)	4.882	Calories per m ² per
ft. per degree }		degree difference
difference Fahr.)=		Cent.
1 B. t. u. per lb=	.556	Calories per kilog.
1 Calorie per kilog=	1.8	B. t. u. per lb.
1 Litre of Coke at 26.3		*****
lbs. per cubic foot=	.93	lbs.
1 lb. of Coke at 26.3=		
lbs. per cubic foot=	1.076	litres.
Water expands in bulk		
from 40 degrees to		

RELATIVE VALUE OF COAL AND OIL

Used for Fuel

KIND OF COAL	COAL Lbs. water evaporated at 212° per lb. of com- bustion.	
Pittsburg lump and nut, Pennsyl-		. ^
vania		4.0
Pittsburg nut and slack	8.0	3.2
Anthracite, Pennsylvania	9.8	3.9
Indiana block	9.5	3.8
Georges Creek lump, Maryland	10.0	4.0
New River, West Virginia	9.7	3.8
Pocahontas lump, West Virginia	10.5	4.2
Cardiff lump, Wales	10.0	4.0
Cape Breton, Nova Scotia	9.2	3.7
Nanaimo, British Columbia	7.3	2.9
Co-operative, " "	8.9	3.6

USEFUL DATA

One calbe incit of water weights	.026 Ibs.
One cuinc must off cast from weights	
One callic inch of wronght from weights.	
One called inch of courses weights.	
One caine next of lead weights	
One cathe foot of water weights.	
One United States gallion of water weights.	
One United States gailor equals 2301	HO COL III.
One Imperial gallon equals	1/40 COSL. 1884.
One cains find of water equals	
One came find of water equals	
One point of stram equals at atmospheric pres-	
SUPER TOTAL CONTRACTOR OF THE PARTY OF THE P	22 cm, ffs.
One mound of air squais at 70 degrees Fair 135	SUV con fit.
One Imperal gallon equals.	Di can fit.
One United States gallon squais.	
One pound of water equals.	
One mount of water equals	
One mount of water equals.	
Andrew American and American	Trades (Manages)

A column of water I from high is equal to a pressure of 433 lbs. per square inch.

A pressure of I lh, is equal to a column of water 2.50 feet high.

Mercuny inverses at 37.9 degrees Falte, below zero, and altrobal at not less than 200 degrees Falte below zero. Mercuny bails at 662 and altrobal at 173 degrees Falte.

Water expands one twenty-third part, or 4% per cent, from 32 degrees Falm, to 202 degrees. Falm.

Water boils at 98 degrees Falte, in a perfect vacuum, and at the sea level at 202 degrees Falte.

A hear unit (British Thermal Unit) is the quartity of hear required to raise one gound of water from 40 degrees to 40 degrees of Fahr, or one degree.

A pound of antimacine coall contains about 14(100) bean units.

Tons on coall in a coall bin are found by multiplying height, breadth and depth in feet together and dissiling the result by 40. For soft coal dissile by 49.

Watter converted into steam expands about 1.700 times its volume. One cubic inch of water will produce approximately I cubic from of steam.

NOTES ON PLACING AND ERECTING BOILERS.

Read this Page Carefully.

Before the boiler is set up see that the base is level in all directions.

Before the boiler is set up make sure that there is sufficient head room for the smoke pipe, also to allow a proper grade for the mains.

If you cannot obtain this the boiler should be set in a pit, care being taken that the pit has sufficient room in front to allow the proper firing of boiler and removing of ashes.

Always place the boiler as close to the chimney as possible.

Always cover the boiler with asbestos or other non-inflammable material; this conserves the heat, and prevents cold air being drawn into smoke or fire travel through fire joints.

If you are using a coil or any kind of heater in the boiler to heat the range boiler remember it deducts 3 sq. ft. of heating capacity for every gallon of water heated, from the heating capacity of the boiler, and this should always enter into your calculations when choosing size of boiler.

Always instruct the party for whom you have installed the boiler, how to properly operate it, giving special stress to the fact that the grates will be burned out if the ashes are not removed at least once a day.

It is strongly advised that a hot water thermometer be provided for every plant, and instructions given as to the proper temperatures to maintain the water, according to the weather.

INDEX

GENERAL—
Acceptance of orders
Ratings of boilers and radiators BOILERS—
ROUND, HOT WATER—
"B" Series—Illustrated
SQUARE, HOT WATER—
Bright Idea—Illustrated "Ratings and weights "Measurements 40-41 Cottage Heater—Illustrated Cottage Heater—Ratings, etc. 917 Series 924-A Series 930 Series 940 Series 917-940 Series—Measurements 32 34-35

Gorney

ROUND,	STEAM-					
Oxford	d Round—I	llustrate Ratings,	d etc			21
SQUARE	, STEAM—	- /				
Bright 917 Se 924-A 930 Se 940 Se 917-940 Equali Boiler Boilers	Idea—Rate Idea—Mea ries Series ries Series—M zing Conn Repairs—H —For Soft —Tubular	leasurement ections—How to out to coal .	ents	made	. 40	24 26 28 30 -35 36 -23
RADIAT	ORS—					
Two C Three Four (Five C Windo Wall I " " Center Dimens Hospit	"	aver rney-Oxform	ford ford ord ed Section ons for diators	s	. 54 . 56 . 58 . 60 . 64 . 66 . 68	-59 -61 -63 -67 -67 -69 70 63 -73
RADIATO	OR SPEC	IALTIE	S			
Foot-up High I Legless	ps, adjustal egs, Radia	ble ators wit	h			74 71 71

RADIATOR ORDERS—	
Instructions regarding 84	4-85
RADIATOR REPAIRS—	
How to order	86
TAPPING LISTS FOR RADIATORS—	
One-pipe, Steam Two-pipe, Steam Dunham System Webster System Gravity, Hot Water Honeywell System	79 80 81 82
TANK HEATERS—	
COAL—	
Doric Heater Gothic Heater Jacket Heater Rancher Heater Capacities, hourly Connections to tank, how to make	43 44 45 49
GAS—	
Ninex	46
TANKS-For Hot Water Storage-	
Adaptable Size of Heaters Capacity required How to select heater for How to connect with heater Table of Capacity and Sizes	48 49 50
VALVES, FITTINGS, ETC.—	
Altitude Gauges	92 98 98

VALVES, FITTINGS, ETC.—Continued.
Boiler Covering, asbestos
Check Valves (see valves) Companion Flanges, Standard C. I. 99 Compression Bibbs and Stops 90 Dart Unions 95 Expansion Tanks, lists 92 Expansion Tanks, sizes to use 118 Fittings, Cast Iron 93 Flange Unions 95 Flanged Valves, drilling list 97 Floor and Ceiling Plates 92 Grabler Bar 91 Hangers for Pipe 91 Headers for Pipe Coils 96 Hangerywell Cenerators lists 91
Honeywell Generators, lists
PIPE—STEAM AND WATER—
Dimensions and Weight

VALVES-

Air Valves, Steam and Water 88 Brass Valves 90 Check Valves, Brass 90 Check Valves, Iron Body 89 Compression Stops and Bibbs, Brass 90 Gate Valves, Brass 90 Gate Valves, Iron Body 89 Iron Body Valves 89 Hot Water, Radiator, N.P. 88 Jenkins Disc Radiator, N.P. 88 Jenkins Disc Radiator, Iron Body 89 Radiator Valves 88
USEFUL INFORMATION
Area of Circles Blue Prints, How to Read Blue Prints, How to Read Boiler, size to heat any volume of water Boiler, Horse Power, equivalent in B.T.U.'s 103 Boiler, Horse Power, equivalent in Radiaton 103 Boilers, Erecting Instructions Boilers, Erecting Instructions British Thermal Unit (B.T.U.) defined Chimney Sizes and Requirements Coal, B.T.U.'s contained Boilers, Erecting Instructions British Thermal Unit (B.T.U.) defined Chimney Sizes and Requirements British Thermal Unit (B.T.U.) defined Boilers, Erecting Instructions British Thermal Unit (B.T.U.) defined Boilers, Erecting Instructions Boilers, Erecting Instr

STEAM-Condensed by Radiators 103 Condensed in Tank Coils 107 Miscellaneous Data 124 Properties of Saturated 117 Water Evaporated in Steam 124-133 Swimming Pools, How Heated 106 Tables of Weights and Measure...... 128-130 Tables, Metric and English, of Weights and Measure 131-133 Tanks—Storage 119 Tanks-Storage, How Connected 50 Tanks-Storage, How Heated 42-49 Tanks-Expansion 92-118 WATER— Quantity Heated by Tank Heaters 49 Large Volumes, How Heated 106-107

MEMORANDA

Governed

MEMORANDA

MEMORANDA

-