Chương 2: Ngôn ngữ lập trình C Các kiểu dữ liệu cơ sở trong C

Nội dung

- Các kiểu dữ liệu cơ sở
- Biến, Hằng, Câu lệnh & Biểu thức
- Các lệnh nhập xuất
- 4 Một số ví dụ minh họa

Các kiểu dữ liệu cơ sở

- Turbo C có 4 kiểu cơ sở như sau:
 - Kiểu số nguyên: giá trị của nó là các số nguyên như 2912, -1706, ...
 - Kiểu số thực: giá trị của nó là các số thực như
 3.1415, 29.12, -17.06, ...
 - Kiểu luận lý: giá trị đúng hoặc sai.
 - Kiểu ký tự: 256 ký tự trong bảng mã ASCII.

Kiểu số nguyên

- Các kiểu số nguyên (có dấu)
 - n bit có dấu: -2ⁿ⁻¹ ... +2ⁿ⁻¹ 1

Kiểu (Type)	Độ lớn (Byte)	Miền giá trị (Range)
char	1	–128 +127
int	2	-32.768 +32.767
short	2	-32.768 +32.767
long	4	-2.147.483.648 + 2.147.483.647

Kiểu số nguyên

- Các kiểu số nguyên (không dấu)
 - n bit không dấu: 0 ... 2ⁿ 1

Kiểu (Type)	Độ lớn (Byte)	Miền giá trị (Range)
unsigned char	1	0 255
unsigned int	2	0 65.535
unsigned short	2	0 65.535
unsigned long	4	0 4.294.967.295

Kiểu số thực

- Các kiểu số thực (floating-point)
 - Ví dụ
 - $17.06 = 1.706*10 = 1.706*10^{1}$

Kiểu (Type)	Độ lớn (Byte)	Miền giá trị (Range)
float (*)	4	3.4*10 ⁻³⁸ 3.4*10 ³⁸
double (**)	8	1.7*10 ⁻³⁰⁸ 1.7*10 ³⁰⁸

- (*) Độ chính xác đơn (Single-precision) chính xác đến 7 số lẻ.
- (**) Độ chính xác kép (Double-precision) chính xác đến 19 số lẻ.

Kiểu luận lý

- Đặc điểm
 - C ngầm định một cách không tường minh:
 - false (sai): giá trị 0.
 - true (đúng): giá trị khác 0, thường là 1.
 - C++: bool
- Ví dụ
 - 0 (false), 1 (true), 2 (true), 2.5 (true)
 - 1 > 2 (0, false), 1 < 2 (1, true)

Kiểu ký tự

- Đặc điểm
 - Tên kiểu: char
 - Miền giá trị: 256 ký tự trong bảng mã ASCII.
 - Chính là kiểu số nguyên do:
 - Lưu tất cả dữ liệu ở dạng số.
 - Không lưu trực tiếp ký tự mà chỉ lưu mã ASCII của ký tự đó.
- Ví dụ
 - Lưu số 65 tương đương với ký tự 'A'...
 - Lưu số 97 tương đương với ký tự 'a'.

Định nghĩa kiểu dữ liệu

Cú pháp typedef <tên kiểu> <tên kiểu mới>;

- Ví dụ
 - typedef int SoNguyen;
 - → Có thể khai báo: SoNguyen x;

Biến

Biến

```
Ví dụ
int i;
int j, k;
unsigned char dem;
float ketqua, delta;
```

```
Cú pháp
<kiểu> <tên biến>;
<kiểu> <tên biến 1>, <tên biến 2>;
```

Biến

- Phải khai báo biến trước khi sử dụng.
- ❖Trong C/ C++ có thể khai báo biến ở:
 - Ngoài hàm
 - Đầu hàm
 - Tham số hàm
 - Trong chương trình

Hằng số

HĂNG

Cú pháp #define <tênhằng> <giá trị>

```
Ví dụ
#define MAX 100
#define PI 3.14
```

// Không có = hay ;

Biểu thức

- Khái niệm
 - Tạo thành từ các toán tử (Operator) và các toán hạng (Operand).
 - Toán tử tác động lên các giá trị của toán hạng và cho giá trị có kiểu nhất định.
 - Toán tử: +, -, *, /, %....
 - Toán hạng: hằng, biến, lời gọi hàm...
- Ví dụ
 - 2 + 3, a div 5, (a + b) * 5, ...

Toán tử gán

- Khái niệm
 - Thường được sử dụng trong lập trình.
 - Gán giá trị cho biến.
- Cú pháp
 - <bién> = <giá trị>;
 - <bién> = <bién>;
 - <bién> = <biểu thức>;
 - Có thể thực hiện liên tiếp phép gán.

Toán tử gán

• Ví dụ

```
main()
     int a, b, c, d, e, thuong;
     a = 10;
     b = a;
     thuong = a / b;
     a = b = c = d = e = 156;
     e = 156;
     d = e;
     c = d;
     b = c;
     a = b;
```

Các toán tử toán học

- Toán tử 1 ngôi
 - Chỉ có một toán hạng trong biểu thức.
 - ++ (tăng 1 đơn vị), -- (giảm 1 đơn vị)
 - Đặt trước toán hạng
 - Ví dụ ++x hay --x: thực hiện tăng/giảm trước.
 - Đặt sau toán hạng
 - Ví dụ x++ hay x--: thực hiện tăng/giảm sau.
- Ví dụ
 - x = 10; y = x++; // y = 10 và x = 11
 - x = 10; y = ++x; // x = 11 và y = 11

Các toán tử toán học

- Toán tử 2 ngôi
 - Có hai toán hạng trong biểu thức.
 - +, -, *, /, % (chia lấy phần dư)
 - $x = x + y \Leftrightarrow x += y$;
- Ví dụ
 - a = 1 + 2; b = 1 2; c = 1 * 2; d = 1 / 2;
 - e = 1*1.0 / 2; f = float(1) / 2; g = float(1 / 2);
 - h = 1 % 2;
 - $x = x * (2 + 3*5); \Leftrightarrow x *= 2 + 3*5;$

Các toán tử luận lý

- Các toán tử luận lý
 - Tổ hợp nhiều biểu thức quan hệ với nhau.
 - && (and), || (or), ! (not)

&&	О	1
О	О	О
1	О	1

	0	1
О	О	1
1	1	1

- Ví dụ
 - s1 = (1 > 2) && (3 > 4);
 - s2 = (1 > 2) || (3 > 4);
 - s3 = !(1 > 2);

Toán tử điều kiện

- Toán tử điều kiện
 - Đây là toán tử 3 ngôi (gồm có 3 toán hạng)
 - <biểu thức 1> ? <biểu thức 2> : <biểu thức 3>
 - <biểu thức 1> đúng thì giá trị là <biểu thức 2>.
 - <biểu thức 1> sai thì giá trị là <biểu thức 3>.
- Ví dụ
 - s1 = (1 > 2) ? 2912 : 1706;
 - int s2 = 0;
 - 1 < 2 ? s2 = 2912 : s2 = 1706;

Độ ưu tiên của các toán tử

- Quy tắc thực hiện
 - Thực hiện biểu thức trong () sâu nhất trước.
 - Thực hiện theo thứ tự ưu tiên các toán tử.
 - => Tự chủ động thêm ()
- Ví dụ
 - n = 2 + 3 * 5;
 - \bullet => n = 2 + (3 * 5);
 - a > 1 && b < 2
 - \bullet => (a > 1) && (b < 2)

Viết biểu thức cho các mệnh đề

x lớn hơn hay bằng 3

$$x >= 3$$

a và b cùng dấu

```
((a>0) && (b>0)) || ((a<0) && (b<0))
(a>0 && b>0) || (a<0 && b<0)
```

p bằng q bằng r

$$(p == q) \&\& (q == r) hoặc (p == q \&\& q == r)$$

-5 < x < 5

$$(x > -5) \&\& (x < 5) hoặc (x > -5 \&\& x < 5)$$

Câu lệnh

- Khái niệm
 - Là một chỉ thị trực tiếp, hoàn chỉnh nhằm ra lệnh cho máy tính thực hiện một số tác vụ nhất định nào đó.
 - Trình biên dịch bỏ qua các khoảng trắng (hay tab hoặc xuống dòng) chen giữa lệnh.

Ví dụ

```
a=2912;
a = 2912;
a = 2912;
```

Câu lệnh

- Phân loại
 - Câu lệnh đơn: chỉ gồm một câu lệnh.
 - Câu lệnh phức (khối lệnh): gồm nhiều câu lệnh đơn được bao bởi { và }
- Ví dụ

Câu lệnh xuất

- Thư viện
 - #include <stdio.h> (standard input/output)
- Cú pháp
 - printf(<chuỗi định dạng>[, <đs1>, <đs1>, ...]);
 - <chuỗi định dạng> là cách trình bày thông tin xuất và được đặt trong cặp nháy kép " ".
 - Văn bản thường (literal text)
 - Ký tự điều khiển (escape sequence)
 - Đặc tả (conversion specifier)

- Văn bản thường (literal text)
 - Được xuất y hệt như lúc gõ trong chuỗi định dạng.
- Ví dụ
 - Xuất chuỗi Hello World
 - printf("Hello"); printf("World");
 - printf("Hello World");
 - Xuất chuỗi a + b
 - → printf("a + b");

- Ký tự điều khiển (escape sequence)
 - Gồm dấu \ và một ký tự như trong bảng sau:

Ký tự điều khiển	Ý nghĩa
\a	Tiếng chuông
\ b	Lùi lại một bước
\ <mark>n</mark>	Xuống dòng
\t	Dấu tab
\\	In dấu ∖
\?	In dấu ?
\"	In dấu "

- Ví dụ
 - printf("\t"); printf("\n");
 - printf("\t\n");

- Đặc tả (conversion specifier)
 - Gồm dấu % và một ký tự.
 - Xác định kiểu của biến/giá trị muốn xuất.
 - Các đối số chính là các biến/giá trị muốn xuất,
 được liệt kê theo thứ tự cách nhau dấu phẩy.

Đặc tả	Ý nghĩa	
%c	Ký tự	char
%d, %ld	Số nguyên có dấu	int, short, long
%f, %lf	Số thực	float, double
% <mark>s</mark>	Chuỗi ký tự	char[], char*
% <mark>u</mark>	Số nguyên không dấu	unsigned int/short/long

- Ví dụ
 - int a = 10, b = 20;
 - printf("%d", a);
 - printf("%d", b);
 - printf("%d %d", a, b);

- → Xuất ra 10
- → Xuất ra 20
- → Xuất ra 10 20

- float x = 15.06;
- printf("%f", x);
 → Xuất ra 15.060000
- printf("%f", 1.0/3);
 → Xuất ra 0.333333

Định dạng xuất

- Cú pháp
 - Định dạng xuất số nguyên: %nd
 - Định dạng xuất số thực: %n.kf

- Phối hợp các thành phần
 - int a = 1, b = 2;
 - Xuất 1 cong 2 bang 3 và xuống dòng.

```
printf("%d", a); // Xuất giá trị của biến a
printf("cong"); // Xuất chuỗi "cong"
printf("%d", b); // Xuất giá trị của biến b
printf("bang"); // Xuất chuỗi "bang"
printf("%d", a + b); // Xuất giá trị của a + b
printf("\n"); // Xuất điều khiển xuống dòng \n
```

→ printf("%d cong %d bang %d\n", a, b, a+b);

Câu lệnh nhập

- Thư viện
 - #include <stdio.h> (standard input/output)
- Cú pháp
 - scanf(<chuỗi định dạng>[, <đs1>, <đs1>, ...]);
 - <chuỗi định dạng> giống định dạng xuất nhưng chỉ có các đặc tả.
 - Các đối số là tên các biến sẽ chứa giá trị nhập và được đặt trước dấu &

Câu lệnh nhập

- Ví dụ, cho a và b kiểu số nguyên
 - scanf("%d", &a); // Nhập giá trị cho biến a
 - scanf("%d", &b); // Nhập giá trị cho biến b
 - → scanf("%d%d", &a, &b);
 - Các câu lệnh sau đây sai
 - scanf("%d", a); // Thiếu dấu &
 - scanf("%d", &a, &b);// Thiếu %d cho biến b
 - scanf("%f", &a); // a là biến kiểu số nguyên
 - scanf("%9d", &a); // không được định dạng
 - scanf("a = %d, b = %d", &a, &b");

Câu lệnh nhập xuất khác

- Các hàm nhập/ xuất trong thư viện iostream.h
 - Hàm nhập giá trị từ bàn phím:
 - cin>>tên biến;
 - Ví dụ:

int a;

cin>>a;//nhập giá trị cho biến a từ bàn phím

- Hàm xuất giá trị ra màn hình:
 - cout<<tên biến hoặc chuỗi ký tự;
 - Ví dụ: int a = 5
 - cout<<"giá trị của a = "<<a<<"\n";
 - Các biến và chuỗi cách nhau bởi dấu << (chuỗi nằm trong cặp dấu nháy kép "")

Xuất có định dạng

Thư viện iomanip.h

- cout<<setw(n)<<tên biến;
 - → chừa một khoảng n ký tự để xuất giá trị.
 - Ví dụ:
 - int a = 3, b = 9;
 - cout<<a<<setw(5)<<b;

Xuất có định dạng

- cout<<setprecision(n);</p>
 - → xuất số thập phân gồm n-1 chữ số lẻ.
 - Ví dụ:

```
float a = 3.1234, b = 9;
cout<< setprecision(3)<<a; //\rightarrow 3.12
```

Một số hàm hữu ích khác

- Các hàm trong thư viện toán học
 - #include <math.h>
 - 1 đầu vào: double, Trả kết quả: double
 - acos, asin, atan, cos, sin, ...
 - exp, log, log10
 - sqrt
 - ceil, floor
 - · abs, fabs
 - 2 đầu vào: double, Trả kết quả: double
 - double pow(double x, double y)

Một số hàm hữu ích khác

- Ví dụ
 - int x = 4, y = 3, z = -5;
 - float t = -1.2;
 - float kq1 = sqrt(x1);
 - int kq2 = pow(x, y);
 - float kq3 = pow(x, 1/3);
 - float kq4 = pow(x, 1.0/3);
 - int kq5 = abs(z);
 - float kq6 = fabs(t);

Bài tập lý thuyết

- 1. Trình bày các kiểu dữ liệu cơ sở trong C và cho ví dụ.
- Trình bày khái niệm về biến và cách sử dụng lệnh gán
- Phân biệt hằng và hằng biến. Cho ví dụ minh họa
- 4. Trình bày khái niệm về biểu thức.
 Tại sao nên sử dụng cặp ngoặc đơn.
- 5. Trình bày cách định dạng xuất.

Bài tập thực hành

- Nhập năm sinh của một người. Tính tuổi người đó.
- Nhập 2 số a và b. Tính tổng, hiệu, tính và thương của hai số đó.
- 6. Nhập tên sản phẩm, số lượng và đơn giá. Tính tiền và thuế giá trị gia tăng phải trả, biết:
 - a. tiền = số lượng * đơn giá
 - b. thuế giá trị gia tăng = 10% tiền

Bài tập thực hành

- 7. Nhập điểm thi và hệ số 3 môn Toán, Lý, Hóa của một sinh viên. Tính điểm trung bình của sinh viên đó.
- Nhập bán kính của đường tròn. Tính chu vi và diện tích của hình tròn đó.