0.1 三角函数相关

0.1.1 三角函数

定理 0.1 (三角平方差公式)

 $\sin^2 x - \sin^2 y = \sin(x - y)\sin(x + y) = \cos(y - x)\cos(y + x) = \cos^2 y - \cos^2 x.$

证明 首先,我们有

$$\cos^2 x - \cos^2 y = 1 - \sin^2 x - (1 - \sin^2 y) = \sin^2 y - \sin^2 x.$$

接着,我们有

$$\sin(x - y)\sin(x + y) = (\sin x \cos y - \cos x \sin y)(\sin x \cos y + \cos x \sin y)$$

$$= \sin^2 x \cos^2 y - \cos^2 x \sin^2 y$$

$$= \sin^2 x (1 - \sin^2 y) - (1 - \sin^2 x)\sin^2 y$$

$$= \sin^2 x - \sin^2 y;$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$\cos(y - x)\cos(y + x) = (\cos x \cos y + \sin x \sin y)(\cos x \cos y - \sin x \sin y)$$

$$= \cos^2 x \cos^2 y - \sin^2 x \sin^2 y$$

$$= \cos^2 x \cos^2 y - (1 - \cos^2 x)(1 - \cos^2 y)$$

$$= \cos^2 x - \cos^2 y.$$

故结论得证.

定理 **0.2** 1.

$$\sin(n\theta) = \sum_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \cos^{n-2r-1}(\theta) \sin^{2r+1}(\theta).$$

2.

$$\cos(n\theta) = \sum_{\substack{r=0\\2r \le n}} (-1)^r \binom{n}{2r} \cos^{n-2r}(\theta) \sin^{2r}(\theta).$$

3.

$$\tan(n\theta) = \frac{\sum\limits_{\substack{r=0\\2r+1 \le n}} (-1)^r \binom{n}{2r+1} \tan^{2r+1}(\theta)}{\sum\limits_{\substack{r=0\\2r < n}} (-1)^r \binom{n}{2r} \tan^{2r}(\theta)}.$$

4.

$$\cos^{n}\theta = \begin{cases} \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n为偶数 \\ \frac{1}{2^{n-1}} \sum_{\substack{r=0 \\ 2r < n}} \binom{n}{2r} \cos((n-2r)\theta), & n为奇数 \end{cases}.$$

1

$$\sin^{n}\theta = \begin{cases} \frac{(-1)^{\frac{n}{2}}}{2^{n-1}} \sum_{\substack{r=0\\2r < n}} (-1)^{r} \binom{n}{2r} \sin\left((n-2r)\theta\right), & n\beta \text{ ind} \\ \frac{(-1)^{\lfloor \frac{n}{2} \rfloor}}{2^{n-1}} \sum_{\substack{r=0\\2r < n}} (-1)^{r} \binom{n}{2r} \cos\left((n-2r)\theta\right) + \frac{1}{2^{n}} \binom{n}{\frac{n}{2}}, & n\beta \xrightarrow{\tilde{\pi}} \end{cases}.$$

\$

笔记 上述结论 4 表明: $\cos^n x$ 可以表示为 $1, \cos x, \cdots, \cos nx$ 的线性组合.

证明 具体证明见Expansions of sin(nx) and cos(nx).

0.1.2 反三角函数

定理 0.3 (常用反三角函数性质)

1.

2.

3.

$$\arccos x + \arccos y = \begin{cases} \arccos\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x + y \geqslant 0\\ 2\pi - \arccos\left(xy - \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x + y < 0 \end{cases}.$$

4.

$$\arccos x - \arccos y = \begin{cases} -\arccos\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x \ge y\\ \arccos\left(xy + \sqrt{1 - x^2}\sqrt{1 - y^2}\right) &, x < y \end{cases}.$$

5.

$$\arctan x + \arctan y = \begin{cases} \arctan \frac{x+y}{1-xy}, & xy < 1 \\ \pi + \arctan \frac{x+y}{1-xy}, & x > 0 \\ -\pi + \arctan \frac{x+y}{1-xy}, & x < 0 \end{cases}, xy > 1.$$

6.

$$\arctan x - \arctan y = \begin{cases} \arctan \frac{x-y}{1+xy} &, xy > -1 \\ \pi + \arctan \frac{x-y}{1+xy} &, x > 0, xy < -1 \\ -\pi + \arctan \frac{x-y}{1+xy} &, x < 0, xy < -1 \end{cases}$$

$$2\arcsin x = \begin{cases} \arcsin\left(2x\sqrt{1-x^2}\right) &, |x| \leqslant \frac{\sqrt{2}}{2} \\ \pi - \arcsin\left(2x\sqrt{1-x^2}\right) &, \frac{\sqrt{2}}{2} < x \leqslant 1 \\ -\pi - \arcsin\left(2x\sqrt{1-x^2}\right) &, -1 \leqslant x < -\frac{\sqrt{2}}{2} \end{cases}$$

8.

$$2\arccos x = \begin{cases} \arccos\left(2x^2 - 1\right) &, 0 \leqslant x \leqslant 1\\ 2\pi - \arccos\left(2x^2 - 1\right) &, -1 \leqslant x < 0 \end{cases}.$$

9.

$$2 \arctan x = \begin{cases} \arctan \frac{2x}{1 - x^2}, |x| \le 1 \\ \pi + \arctan \frac{2x}{1 - x^2}, |x| > 1 \\ -\pi + \arctan \frac{2x}{1 - x^2}, |x| > 1 \end{cases}$$

10.

$$\cos(n\arccos x) = \frac{\left(x + \sqrt{x^2 - 1}\right)^n + \left(x - \sqrt{x^2 - 1}\right)^n}{2} (n \geqslant 1).$$

证明

命题 0.1

 $\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2}, & x > 0\\ -\frac{\pi}{2}, & x < 0 \end{cases}.$

$$f'(x) = \frac{1}{x^2 + 1} + \frac{1}{(\frac{1}{x})^2 + 1}(-\frac{1}{x^2}) = \frac{1}{x^2 + 1} - \frac{1}{x^2 + 1} = 0$$

故 f(x) 为常函数, 于是就有 $f(x) = f(1) = \frac{\pi}{2}, \forall x > 0$; $f(x) = f(-1) = -\frac{\pi}{2}, \forall x < 0$.

0.1.3 双曲三角函数

(1)
$$\cosh x = \frac{e^x + e^{-x}}{2} \ge 1$$
,
(2) $\sinh x = \frac{e^x - e^{-x}}{2} \ge x$.

(2)
$$\sinh x = \frac{e^x - e^{-x}}{2} \geqslant x$$
.

证明 可以分别利用均值不等式和求导进行证明.

命题 0.3

- $1. \cosh^2 x \sinh^2 x = 1.$
- 2. $\cosh(2x) = 2\cosh^2 x 1 = 1 2\sinh^2 x$.
- 3. $\sinh(2x) = 2\sinh x \cosh x$.

证明