

Физический факультет

Отдел аэрокосмических исследований НГУ

Тема доклада

Разработка программного обеспечения для калибровки датчиков Солнца

Студент: Новиков Денис

Научный руководитель: Пелемешко Анатолий Владимирович

Введение

Цель	Разработка программного обеспечения для калибровки солнечного датчика на основе КМОП-матрицы для системы ориентации сверхмалого космического аппарата
Задачи	 Разработать проект экспериментальной установки калибровки солнечного датчика Реализовать оболочку этой же низкоуровневой библиотеки на языке Python для удобства использования и интеграции с другими программными средствами Написать программное обеспечение для калибровки солнечного датчика, разработать алгоритмы с целью повышения точности датчика Реализовать удаленный доступ к экспериментальному стенду Провести калибровку 264 датчиков для спутниковой системы Марафон

Новиков Д. А. 10.05.2023 стр. 02/16

Введение Формулирование проблемы

- Система ориентации и позиционирования (СОП) использует Солнце и Землю в качестве ориентиров
- Датчик должен быть компактным для упрощения размещения на СмКА
- Угол обзора датчика не менее 90°
- Точность определения направления на Солнце не хуже 1°

Новиков Д. А. 10.05.2023 стр. 03/16

Введение

Формулирование проблемы

Нахождение направления на Солнце

• Координаты x_c и y_c центра солнечного пятна определяются выражением

$$x_c = \sum_j I_j x_j / \sum_j I_j$$
, $y_c = \sum_j I_j y_j / \sum_j I_j$

- При нормальном падении изображение Солнца находится в центре матрицы
- Координаты центра пятна при нормальном падении x_0 и y_0 определяются при калибровке датчика
- Зенитный угол θ определяется как $\theta = \arctan(r_c/L)$
- L − расстояние от матрицы до маски с отверстием

Новиков Д. А. 10.05.2023 стр. 04/16

Методика измерений

- Цель получить зависимость зенитного угла θ
 от расстояния r от центра солнечного пятна до
 начала системы координат солнечного датчика
- ightharpoonup Теоретическая зависимость $\theta = \arctan(r/L)$

Новиков Д. А. 10.05.2023 стр. 05/16

Блок-схема ДСГ

Новиков Д. А. 10.05.2023 стр. 06/16

Схема экспериментального стенда

Новиков Д. А. 10.05.2023 стр. 07/16

Внешний вид экспериментального стенда

- Ротатор производства Standa обеспечивает вращение датчика в 2 плоскостях
- Абсолютная точность позиционирования по двум осям вращения 0,0125°
- Двунаправленная повторяемость установки положения ±0,0004°

Новиков Д. А. 10.05.2023 стр. 08/15

Внешний вид экспериментального стенда

Контроллер производства
 ACSMotionControl использует
 встроенную библиотеку на языке Си
 для управления движением обеих
 осей ротатора с высокой точностью

Новиков Д. А. 10.05.2023 стр. 09/16

Внешний вид экспериментального стенда

Расположение Солнечного датчика на ротаторе

Новиков Д. А. 10.05.2023 стр. 10/16

Методика центрирования

- 1. Четыре измерения центра пятна с шагом 90° по азимутальному углу
- Проход возле предположительного соосного расположения ДСГ и имитатора Солнца по зенитному углу
- 3. Определение координаты с минимальным разбросом по расстоянию от центра ДСГ до точки падения солнечного луча
- 4. Координата с минимальным разбросом соответствует соосному расположению

Новиков Д. А. 10.05.2023 стр. 11/16

Методика калибровки

- Восемь измерений центра пятна с шагом 45° по азимутальному углу
- 2. Шесть шагов по 10° по зенитному углу в диапазоне от 0° до 60°

- 3. Максимальное количество измерений определяется при отработке
- 4. Усредненные результаты измерений наносятся на график и аппроксимируются полиномом шестой степени

Новиков Д. А. 10.05.2023 стр. 12/16

Результаты экспериментов

Ошибка определения угла ДСГ не превышает 0.1 градусов при повороте на 20 градусов относительно Солнца

Новиков Д. А. 10.05.2023 стр. 13/16

Результаты экспериментов

Калибровочная кривая угла ДСГ

Средний квадрат отклонения угла ДСГ не превышает 0.025 градусов

Новиков Д. А. 10.05.2023 стр. 14/16

Результаты работы

- 1. Собрана экспериментальная установка калибровки солнечного датчика
- 2. Изучены низкоуровневые библиотеки для взаимодействия с контроллером и солнечным датчиком
- 3. Реализована оболочка низкоуровневой библиотеки на Python
- 4. Написано программное обеспечение для калибровки солнечного датчика
- 5. Получены калибровочные коэффициенты ДСГ
- 6. Реализован удаленный доступ к экспериментальному стенду
- Проведена оценка точности определения направления на Солнце

Новиков Д. А. 10.05.2023 стр. 15/16

Дальнейшие планы

- 1. Реализовать определение положения датчика относительно горизонта
- 2. Реализовать определение угловой скорости поворота датчика
- 3. Оценить точность определения угловой скорости
- 4. Провести калибровки 264 датчиков для спутниковой системы Марафон

Новиков Д. А. 10.05.2023 стр. 16/16

Физический факультет

Отдел аэрокосмических исследований НГУ

Спасибо за внимание!