$\mathrm{EE}531$ - Turma S

Diodos

 $Laborat\'orio\ de\ Eletr\^onica\ B\'asica\ I\ -\ Segundo\ Semestre\ de\ 2010$

Professor: José Cândido Silveira Santos Filho

DANIEL LINS MATTOS RA: 059915 RAQUEL MAYUMI KAWAMOTO RA: 086003 TIAGO CHEDRAOUI SILVA RA: 082941

10 de setembro de 2010

Para este experimento da disciplina de laboratório de eletrônica básica I, tem-se como objetivo caracterizar diodos semicondutores, familiarizar-se com seus principais parâmetros e realizar circuitos que os possuam. As ferramentas utilizadas são a fonte de alimentação dual, um gerador de funções e um osciloscópio digital. Para este presente experimento utilizam-se ainda um protoboard, dois resistores de $10k\Omega$, um resistor de $1k\Omega$ três capacitores eletrolíticos de de $100\mu F$, oito diodos 1n4001, dois diodos 1n4148, um amplificador operacional 741 e um tranformador de $110\ V_{ac}, 9\ V_{ac}$.

Parte Experimental

1. Para esta parte inicial do experimento, o gerador de funções é ajustado para produzir um sinal de tensão com sua forma de onda triangular, com amplitude $10V_{pp}$, com offset de 5V, frequência de 10kHz e simetria de 50%.

Além disso, o circuito da figura 1 — composto de um amplificador operacional 741, um resistor (R_i) de $1k\Omega$, e dois diodos 1n4148 $(D_1$ e $D_2)$ — é montado e o canal um do osciloscópio é colocado entre D_1 e R_i e o canal dois na saída do amplificador operacional.

Figura 1: Circuito para caracterização V versus I do diodo

Supondo que o amplificador operacional seja ideal, nenhuma corrente de entrada é drenada, ou seja, a corrente i caracterizada em D_1 e R_i é a mesma que em D_2 . Além disso, a tensão entre o terminal de saída e o terra é equivalente a $A(v_2 - v_1)$, sendo o ganho A idealmente infinito. Logo, tem-se que:

$$\frac{V_D}{A} = (v_2 - v_1) \approx 0 \tag{1}$$

Como $v_1 = 0$ temos que $v_2 = 0$, assim:.

$$i = \frac{V_{CH2}}{R_i} \tag{2}$$

Utilizando o canal 1, tem-se que:

$$V_D = -V_{CH1} \tag{3}$$

Utilizando o recurso Time Base X-Y do osciloscópio, obtemos uma curva caracterísica (V versus I) do diodo presente na figura 2. As escala do eixo V_D vale 500mV/c'elula. Portanto, o diodo em condução direta apresenta um queda de tensão de aproximadamente 0,7V.

Figura 2: Curva característica V versus I do diodo

Figura 3: Curva de histerese

Figura 4: Circuito retificador de meia onda

Figura 5: Circuito retificador de onda completa

Figura 6: Duplicador de tensão

Figura 7: Medida da tensão no nó $3\,$

Figura 8: Medida da tensão diferencial entre os nós 2 e 3

Figura 9: Medida da tensão no nó 1

Figura 10: Medida da tensão no nó $2\,$

Figura 11: Medida da tensão diferencial entre os nós 2 e 3

Figura 12: Medida da tensão nos nós 1 e 2

Figura 13: Medida da tensão diferencial entre os nós 2 e 3

Figura 14: Medida da tensão diferencial entre os nós 2 e 3

Figura 15: Medida da tensão diferencial entre os nós 2 e 3

Figura 16: Medida da tensão diferencial entre os nós 2 e 3

Figura 17: Tensão de saída nos nós 1 e 2

Figura 18: Análise do sinal de saída no nó $\mathbf x$

Figura 19: Onda de entrada do circuito

Figura 20: Medidas da onda de entrada do circuito

Figura 21: Característica onda após a inserção de capacitor em paralelo

Figura 22: Aproximação da imagem da onda após a inserção de capacitor em paralelo