Sommario

Statistica descrittiva UNIVARIATA	2
Per variabili QUANTITATIVE	2
NUMERIC SUMMARIES	2
GRAFICI	5
ISTOGRAMMA	5
BOX PLOT	5
Per variabili QUALITATIVE / CATEGORIALI (fattori)	5
Statistica descrittiva BIVARIATA	6
- Quantitativa/Qualitativa	6
- Quantitativa/Quantitativa	6
- Qualitativa/Qualitativa	6
Statistica inferenziale (parametrica)	7
STIMATORI	7
Teoremi dei grandi numeri	7
Teoremi del limite centrale	8
Intervalli di confidenza	9
Test di inotesi	9

Tipi di variabile:

QUANTITATIVA (numerica)	\rightarrow	Interessano come quantità:	- Discreta - Continua
QUALITATIVA (caratteri)	\rightarrow	FattoriIdentificativi	

Statistica descrittiva UNIVARIATA

Per variabili QUANTITATIVE

Abbiamo un dataset (campione casuale / sample) che può essere visto come una matrice in cui le righe sono i soggetti osservati e le colonne rappresentano le diverse variabili.

La taglia del campione corrisponde al numero di osservazioni e quindi al numero delle righe.

Per descrivere un dataset utilizziamo:

- 1) Numeric summaries (riassumiamo le osservazioni tramite indici statistici)
- 2) Data visualization (produciamo opportuni grafici)

NUMERIC SUMMARIES

Sono dei numeri e ce ne sono tre tipi:

- 1) Indici di posizione indicano dove i dati si trovano sull'asse reale
- 2) Indici di variabilità / dispersione
- 3) Indici di forma

1. INDICI DI POSIZIONE

• MEDIA CAMPIONARIA: media aritmetica delle osservazioni $x_1, ..., x_n$

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Ogni osservazione viene pesata con lo stesso peso $\frac{1}{n}$, quindi la media campionaria molto sensibile ai valori estremali (= valori molto lontani dalla massa generale delle osservazioni)

R: mean(...)

MEDIANA CAMPIONARIA: valore dell'osservazione centrale

R: median(...)

La mediana si legge con la media: le calcolo entrambe e confronto i valori ottenuti.

- Se media ≈ mediana → campione simmetrico e senza valori estremali
- Se media >> mediana → asimmetria con valori estremali verso destra
- Se media << mediana → asimmetria con valori estremali verso sinistra

P-ESIMO PERCENTILE:

Lascia il P% delle osservazioni a sinistra:

il P% delle osservazioni sono i valori minori del P-esimo percentile.

La mediana corrisponde al 50-esimo percentile.

II QUANTILE di ordine α (α -quantile) è quel valore tale che $\mathbb{P}(X \leq q_{\alpha}) = \alpha$

R: quantile(..., alpha)

2. INDICI DI DISPERSIONE

• RANGE: $\max(x_1, ..., x_n) - \min(x_1, ..., x_n)$

R: range(...)

VARIANZA CAMPIONARIA:

è la media aritmetica degli scarti quadratici dalla media campionaria

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x}_{n})^{2}$$

R: **var(...)**

• DEVIAZIONE STANDARD CAMPIONARIA: $\sqrt{s^2}$

R: **sd(...)**

 Z-SCORES: trasformo il campione per renderlo confrontabile con altri (ovvero lo standardizzo)

$$x_1, \dots, x_n \rightarrow d_1, \dots, d_n$$

$$\text{CV-coefficiente di variazione:} \qquad \frac{s}{\bar{x_n}} = \begin{cases} >1 & \text{se } s > \bar{x}_n \\ \sim 1 & \text{se } s \approx \bar{x}_n \\ <1 & \text{se } s < \bar{x}_n \end{cases}$$

3. INDICI DI FORMA

• SKEWNESS:

$$sk = \frac{1}{n} \sum_{i=1}^{n} d_i^3 \quad \begin{cases} > 0 & se\ ho\ più\ osservazioni > \bar{x}_n \\ \approx 0 & se\ ho\ dati\ simmetrici \\ < 0 & se\ ho\ più\ osservazioni < \bar{x}_n \end{cases}$$

R: sum(((dataset-mean(...))/sd(...))^3)/length(dataset)

GRAFICI ISTOGRAMMA

Histogram of bumpers 500 1000 1500 2000 2500 3000 3500 bumpers

```
library(UsingR)
data("bumpers")
str(bumpers)

#istogramma
hist(bumpers, breaks=6)
```

BOX PLOT


```
#boxplot
boxplot(firstchi, horizontal=TRUE)
```

Le linee al lato rappresentano i baffi, mentre i pallini rappresentano i valori estremali (outlier). La linea centrale, più spessa, è la mediana (distanza interquartile), mentre gli estremi della "scatola" sono il 25-esimo e 75-esimo percentile (quartili campionari).

Per variabili QUALITATIVE / CATEGORIALI (fattori)

L'operazione principale è la tabulazione, per contare quante osservazioni cadono in ciascuna categoria.

R: table(...)

Statistica descrittiva BIVARIATA

Posso fare un'analisi prendendo in considerazione due variabili:

- Quantitativa/Qualitativa

Vedi l'esempio in <u>codiciLezioniR -> bivariata.R</u>

- Quantitativa/Quantitativa

Mi chiedo se c'è una relazione tra le due variabili

Covarianza di X e Y:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X)) * (Y - \mathbb{E}(Y))]$$

R: cov(x,y)

Correlazione di X e Y:

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) * Var(Y)}} \in [-1,1]$$

R: cor(x,y)

Vedi gli esempi in <u>codiciLezioniR -> bivariata.R</u>

INDICI: covarianza campionaria e correlazione campionaria

$$cov = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}_n)(y_i - \bar{y}_n)$$

$$corr = \rho = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{x}_n}{s_X} * \frac{y_i - \bar{y}_n}{s_Y}$$

Possiamo aggiungere dei parametri su R per fare diverse analisi dei campioni:

- Correlazione di Pearson mostra se c'è relazione lineare
- Correlazione di Spearman evidenzia relazioni di monotonia

Vedi gli esempi in <u>codiciLezioniR -> bivariata.R</u>

- Qualitativa/Qualitativa

Realizzo una tabella a doppia entrata.

Vedi esempio in codiciLezioniR -> bivariata.R

Statistica inferenziale (parametrica)

INFERENZA: processo che ci porta a fare affermazioni riguardanti l'intera popolazione di interesse e non solo sul campione casuale.

Devo tener conto della variabilità del campione casuale tramite intervalli di confidenza e test di ipotesi.

STIMATORI:

- Media campionaria $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

- Varianza campionaria $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)$

Ci sono delle famiglie di teoremi che ci permettono di affermare che \bar{X}_n restituisce valori vicini a $\mathbb{E}(X)$ e che S^2 restituisce valori vicini a Var(X).

Teoremi dei grandi numeri

• Sia $(X_i)_{i=1}^{+\infty}$ una collezione di v.a. INDIPENDENTI e IDENTICAMENTE DISTRIBUITE (IID), allora:

$$per n \to +\infty: \quad \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to \mathbb{E}(X_1)$$

Se T è stimatore per θ e $\mathbb{E}(T)=\theta$ allora dico che T è STIMATORE CORRETTO per θ .

• Sia $(X_i)_{i=1}^{+\infty}$ una collezione di v.a. IID, allora:

$$per n \to +\infty: \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n) \to Var(X_1)$$

Vedi esempi in <u>codiciLezioniR -> leggi_grandi_numeri.R</u>

 $ar{X}_n \; o \; \mathbb{E}(X_1) \;$ vuol dire che $ar{X}_n$ è STIMATORE CONSISTENTE per $\mathbb{E}(X_1)$

 $S^2 \rightarrow Var(X_1)$ vuol dire che S^2 è STIMATORE CONSISTENTE per $Var(X_1)$

Teoremi del limite centrale

Mi permettono di stimare quanto sono vicina a $\mathbb{E}(X_1)$ e $Var(X_1)$.

• Sia $(X_i)_{i=1}^{+\infty}$ una collezione di v.a. IID, allora

Per $n \to +\infty$:

$$\mathbb{P}\left(\frac{\bar{X}_n - \mathbb{E}(X_1)}{\underbrace{Stdev(X_1)}} \le x\right) \to \mathbb{P}(Z \le x)$$

funzione di distribuzione (CDF)

dove
$$Z = \frac{\overline{X}_n - \mathbb{E}(X_1)}{\frac{Stdev(X_1)}{\sqrt{n}}} \sim N(0,1)$$
 normale standard

Per n grande:

$$\frac{\bar{X}_n - \mathbb{E}(X_1)}{\underbrace{Stdev(X_1)}} \approx Z \sim N(0,1) \qquad \bar{X}_n \approx N\left(\mathbb{E}(X_1), \frac{Var(X_1)}{n}\right)$$

Vedi esempi in codiciLezioniR -> teoremi limite centrale.R

CASI PARTICOLARI in cui campioni da v.a. Normali:

• Sia $(X_i)_{i=1}^{+\infty}$ una collezione di v.a. IID con legge $N(\mu, \sigma^2)$

$$\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \sim Z \sim N(0,1) \quad \forall n$$

• Sia $(X_i)_{i=1}^{+\infty}$ una collezione di v.a. IID con legge $N(\mu,\sigma^2)$

$$S^2 \frac{n-1}{\sigma^2} \sim \chi^2(n-1)$$

Dove $\chi^2(n-1)$ si legge "chi quadro con n-1 gradi di libertà ed è una v.a. continua la cui PDF, al crescere di n, si avvicina sempre più a quella di una Normale.

Intervalli di confidenza

Si calcolano su R:

- **binom.test** per trovare l'IC per proporzioni, ovvero partendo da una v.a. di Bernoulli di parametro p (p = proporzione).
- t.test per trovare l'IC per differenze di medie, in cui bisogna specificare se i campioni scelti sono indiendenti (trattano soggetti diversi) oppure appaiati (due variabili appartenenti allo stesso soggetto).

Vedi esempi in <u>codiciLezioniR -> intervalli_confidenza.R</u>

Test di ipotesi

Sono delle procedure che ci permettono di testare ipotesi (affermazioni sui parametri)

Si considerano sempre due ipotesi:

- IPOTESI NULLA H_0 ovvero l'ipotesi alla quale credi
- IPOTESI ALTERNATIVA H_1

L'idea è: credo nell'ipotesi nulla, raccolgo i dati e faccio un test di ipotesi per capire se posso continuare a credere nella nulla oppure se sono costretta a rifiutarla in favore dell'alternativa (che avevo in mente fin dall'inizio e che deve essere diversa dalla nulla).

Solitamente si fissa un livello di significabilità lpha (molto piccolo), altrimenti è 0 di default.

Utilizzo ancora binom.test e t.test su R e controllo il P-value:

se P-value è troppo piccolo ($< \alpha$), rifiuto l'ipotesi nulla a favore dell'alternativa.

Vedi esempi in <u>codiciLezioniR -> intervalli_confidenza.R</u>