

Quantitative Stats - 2

Kyungsik Han

What We Will Learn?

- Summarizing data
 - variables
 - simple statistics
 - effect statistics
 - statistical models
 - complex models
- Generalizing from sample to population
 - precision of estimate
 - confidence limits
 - statistical significance
 - p value
 - errors

Variable Types

- Independent Variables (IV)
 - 0 X
- Dependent Variables (DV)
 - Y
- Control Variables (= constant variables)
- Moderating Variables (affects the strength of the relationship)

Mediating Variables

Summarizing Data

- Data are a bunch of values of one or more variables
- A variable is something that has different values
 - Values can be numbers or names.
 - Numeric (e.g., weight)
 - Counting (e.g., number of injuries)
 - Ordinal (e.g., competitive level): values are numbers or names
 - Nominal (e.g., sex): values are names

Summarizing Data

- When values are numbers, visualize the distribution of all values in a frequency histogram
- Can also use normal probability plots to visualize how well the values fit a normal distribution

Summarizing Data

 When values are names, visualize the frequency of each value with a pie chart or a list of values and frequencies

Statistic

- A statistic is a number summarizing a bunch of values
 - Simple or univariate statistics summarize values of one variable
 - Effect or outcome statistics summarize the relationship between values of two or more variables
- Simple statistics for numeric variables
 - Mean: the average
 - Standard deviation: the typical variation
 - Standard error of the mean: the typical variation in the mean with repeated sampling
 - Median: middle value or 50th percentile
 - Quartiles: 25th and 75th percentiles
- Summarize these and other simple statistics visually with box and whisker plots

Box and Whisker Plots

More Statistics

- Simple statistics for nominal variables
 - Frequencies, proportions, or odds
 - Can also use these for ordinal variables.

Effect statistics

- Derived from statistical model (equation) of the form Y (dependent)
 vs X (independent or predictor)
- Depend on type of Y and X

Why do we need significant tests?

- When the values of the members of the comparison groups are all known, you can directly compare them and draw a conclusion. In this case, no significant test is needed since there is no uncertainty involved
- When the population is large, we can only sample a sub-group of people from the entire population
- Significant tests allow us to determine how confident we are that the results observed from the sampling population can be generalized to the entire population

Example

 You recruit 30 people, 15 of which do a test using a touchpad, and 15 of which do the same test using a trackball. You end up with 30 measures of throughput. The mean for the touchpad is 4.30 clicks/s. The mean for the trackball is 5.08 clicks/s.

Can you conclude that trackball is better than the touchpad?

Bottom line

- You cannot just compare means
- You must take "spreads" into account
- Statistics can perform analyses of variance, or the "amount of spread" around means to tell us how reliable/probable a real difference is
 - A real difference is a "statistically significant difference"
 - An unreliable difference is a "statistically non-significant difference"

Statistically Significant?

- Statistical significance is an old-fashioned way of generalizing, based on testing whether the true value could be zero or null
 - Assume the null hypothesis: that the true value is zero (null)
 - Null hypothesis (H₀): no difference between certain characteristics of a population
 - \circ Alternative hypothesis (H₁): the opposite hypothesis if H₀ is rejected (i.e., there is a difference between two groups)
 - If you observed value falls in a region of extreme values that would occur only 5% (0.05) of the time, you reject the null hypothesis
- The p-value helps you decide whether your result falls in the unlikely region
 - \circ If p < 0.05, your result is in the unlikely region

p-values

- We perform an analysis of variance and get a p-value
- The p-value comes from the sampling distribution of the sample mean
- The p-value is the probability of randomly getting a test statistics as (or more) extreme than what you observed if the null hypothesis was true
 - i.e., the probability that your results occurred by chance
 - p = 0.45 means there is a 45% chance the data occurred by chance
 - \circ p = 0.05 means there is a 5% chance the data occurred by chance

- We now need to use the p-value to choose a course of action
- Either reject the null hypothesis, or fail to reject the null hypothesis
- We need to decide if our sample result is unlikely enough to have occurred by chance
- Standard cutoff of p < 0.05 (we are at least 95% confident that our results did not occur by chance)

Better Meaning of p-value

- If you observe a positive effect, 1 p/2 is the chance that the true value is positive, and p/2 is the chance that the true value is negative
 - Example: you observe a 1.5% enhancement of performance (p=0.08). Therefore there is a 96% chance that the true effect is any "enhancement" and a 4% chance that the true effect is any "impairment"
- If you must use p-values, showing exact values is more preferred than just p<0.05 or p>0.05
- Generally (and empirically), p-values with 0.01, 0.05, 0.10 are used
 - But be careful using 0.10 (meaning marginally significant)

One-tailed or two-tailed t-test

two-tailed t-test

one-tailed t-test

More on p-value

- If the true value is zero, there's a 5% chance of getting statistical significance: the Type I error rate, or rate of false positives or false alarms
- There's also a chance that the smallest worthwhile true value will produce an observed value that is not statistically significant: the Type II error rate, or rate of false negatives or failed alarms

Standard Error of the Mean

- Typical variation in the mean from sample to sample
- It can convey statistical significance
 - Non-overlap of the error bars of two groups implies a statistically significant difference, but only for groups of equal size (e.g., males vs females)
 - In particular, non-overlap does NOT convey statistical significance in experiments

Statistical Test Summary

X	Y	Model/Test	Effect Statistics
numeric	numeric	regression	slope, intercept, correlation
numeric	nominal	categorical	frequency ratio
nominal	numeric	t-test, ANOVA	mean difference
nominal	nominal	chi-square	frequency difference or ratio

What is Goodness-of-Fit?

- Description of how well a statistical model fits a set of observations
- Summarize the discrepancy between observed values and the values expected under the model in question

Numeric (X) vs Numeric (Y)

- Example
 - Body fat vs sum of skinfolds
- Model or test
 - Linear regression
- Effect statistics
 - Slope and intercept = parameters
 - Correlation coefficient OR variance explained = measures of goodness of fit

Numeric (X) vs Numeric (Y) - Cont'd

Linear Regression

y = a + bx a = 3.46212 b = 0.904273

Coefficients^a

		Unstandardiz ed Coefficients		Standardi zed Coefficien ts		
M odel		В	Std. Error	Beta	t	Sig.
1	(Constant)	-11.619	82,306		141	.897
	AGE	786	.752	558	-1.045	.373
	CHILDIC	- 5.626	4.035	621	-1.394	.258
	FINISH	- 3.017	5.535	167	545	.624
	GENDER	4.960	10.515	.311	.472	.669
	HEALTHC	.485	1.424	.416	.341	.756
	INCOMEC	.566	.989	.709	.572	.607
	LIFESATO	.809	.329	1.148	2.460	.091
	MARRIED	-20.542	6.736	-1.216	-3.050	.055
	SES	9.132E-02	.375	.127	.244	.823
	SMOKE	3.173	14.296	.188	.222	.839
	SPIRITC	.427	.182	.645	2.345	.101

a Dependent Variable: LIFESAT7

univariate regression

multivariate regression

Nominal (X) vs Numeric (Y)

- Example
 - Sex vs Strength
- Model or test
 - t-test (2 groups)
 - 1-way ANOVA (> 2 groups)
- Effect statistics
 - Difference between means expressed as raw difference, percent difference, or fraction of the root mean square error (Cohen's effect-size statistic)
 - variance explained or better = measures of goodness of fit

Nominal (X) vs Numeric (Y) - Cont'd

- More on expressing the magnitude of the effect
 - What often matters is the difference between means relative to the standard deviation

Trivial effect:

Very large effect:

Correlations & Effect size

- Fraction or multiple of a standard deviation is known as the effect-size statistic (or Cohen's "d")
- Cohen suggested thresholds for correlations and effect sizes
- Hopkins agrees with the thresholds for correlations but suggests others for the effect size:

More on Effect Size

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444174/

TABLE 1 COMMON EFFECT SIZE INDICES ^a							
Index	Description ^b	Effect Size	Comments				
Between groups							
Cohen's <i>d</i> ^a	$d=M_1-M_2/s$ M_1-M_2 is the difference between the group means (M); s is the standard deviation of either group	Small 0.2 Medium 0.5 Large 0.8 Very large 1.3	Can be used at planning stage to find the sample size required for sufficient power for your study				
Odds ratio (OR)	Group 1 odds of outcome Group 2 odds of outcome If OR = 1, the odds of outcome are equally likely in both groups	Small 1.5 Medium 2 Large 3	For binary outcome variables Compares odds of outcome occurring from one intervention vs another				
Relative risk or risk ratio (RR)	Ratio of probability of outcome in group 1 vs group 2; If RR = 1, the outcome is equally probable in both groups	Small 2 Medium 3 Large 4	Compares probabilities of outcome occurring from one intervention to another				
Measures of association							
Pearson's <i>r</i> correlation	Range, —1 to 1	Small ±0.2 Medium ±0.5 Large ± 0.8	Measures the degree of linear relationship between two quantitative variables				
<i>r</i> ² coefficient of determination	Range, o to 1; Usually expressed as percent	Small 0.04 Medium 0.25 Large 0.64	Proportion of variance in one variable explained by the other				

^a Adapted from Ferguson et al.⁹ ^b Based on Soper.⁷

Nominal (X) vs Numeric (Y) - Cont'd

- Example
 - Trial vs Strength
- Model or test
 - paired t-test (2 trials)
 - repeated-measures ANOVA with one within-subject factor (> 2 trials)
- Effect statistics
 - Change in mean expressed as raw change, percent change, or fraction of the pre-standard deviation

Nominal (X) vs Nominal (Y)

- Example
 - Sex vs Sports
- Model or test
 - Chi-squared test or contingency table
- Effect statistics
 - Relative frequencies, expressed as a difference in frequencies, ratio of frequencies, or ratio of odds (odds ratio)
 - Relative risk is appropriate for cross-sectional designs (e.g., across cases)
 - risk of having rugby disease for males relative to females is (75/100)/(30/100) = 2.5
 - Odds ratio is appropriate for case-control designs (e.g., within male case and female case)
 - \blacksquare calculated as (75/25)/(30/70) = 7.0

Numeric (X) vs Nominal (Y)

- Example
 - Age vs heart disease
- Model or test
 - Categorical modeling
- Effect statistics
 - Relative risk or odds ratio per unit of the numeric variable
- Model
 - logistic regression or generalized linear modeling

