Sept 28

COMPSCI 3331

Fall 2022

What's next?

► Assignment 1: out now, due Oct 11.

NFA construction

Pattern Matching: all words over $\Sigma = \{a, b, c, ..., z\}$ that contain the subword "mike" somewhere...

$$L = \{ w \in \Sigma^* : \exists u, v \in \Sigma^* \text{ such that } w = umikev \}$$

NFA for either mike v example for puttern matching

Subset Construction

- ▶ $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA. $\delta : Q \times \Sigma \rightarrow 2^Q$.
- ▶ Define a DFA $M_D = (2^Q, \Sigma, \delta_D, q_D, F_D)$.

- $ightharpoonup F_D = \{ P \subseteq Ca : P \cap F \neq \emptyset \}$

Subset Construction Example

 h^2 = 8 possible senses. $\Rightarrow (\{0\})$ $\Rightarrow (\{$

* two subsets { E, {0,2}}

Ore not included since they does not connect to any
Set in this graph.

1. C. nnreachable.

{0}, {0,1,2}, {0,1} are final states in DFA Since O is the final state in NFA.

Final State in DFA are all states that workain Final state in NFA.

Transition Function: $\int_{D} (P, \alpha) = \bigcup_{\substack{1 \le P \\ \text{union } P}} S($ union P all

possible states.

Start at the start state.

build it outwards, grow new states.

when no more new state could be reached, you're done.

Q-NFA removal. E → O a,b> O 2 a 2 0 b> O 2 b.

get ont of E transition: skip E path and fet

about to the tourget directly

these sentes und he removed

if a want

* Remember to make sure the final since matches.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$