NP-Completeness

We consider the hardest problems in NP.

Reductions Revisited

A function f (mapping strings to strings) is **polynomial-time computable** if there is constant k and TM that computes f in $O(n^k)$ time.

A language A is **polynomial-time reducible** to language B, if A is reducible to B via a polynomial-time computable function. Written $A \leq_p B$.

Reductions Preserve Hardness

The key result is as before:

Fact. a) If $A \leq_p B$ and B in \mathbb{P} , then A in \mathbb{P} . b) If $A \leq_p B$ and A not in \mathbb{P} , then B not in \mathbb{P} .

Proof (of a). Say reduction from A to B given by f computable in $O(n^k)$ time, and one can decide membership in B in $O(n^\ell)$ time.

Then build the obvious decider for A: it takes input w, computes f(w) and sees whether $f(w) \in B$. This runs in $O(n^{k\ell})$ time.

NP-Complete

Definition. Language S is NP-complete if

- a) $S \in \mathcal{NP}$; and
- b) for all A in \mathbb{NP} it holds that $A \leq_P S$.

Note that this means that:

If S is \mathbb{NP} -complete and S in \mathbb{P} , then $\mathbb{P} = \mathbb{NP}$.

The First Theorem

There are many NP-complete problems. What started the whole process was the great idea:

Cook's Theorem. SAT is NP-complete.

We omit the proof.

Examples

- HAMPATH is \mathcal{NP} -complete.
- SUBSET_SUM is \mathcal{NP} -complete.

(Proof of latter later.) We saw earlier that both are in \mathbb{NP} .

More Graph Terminology

A set of nodes C is a **clique** if every two nodes in C are joined by an edge.

A set of nodes D is a **dominating set** if every other node is adjacent to at least one node in D.

A set of nodes V is a **vertex cover** if the removal of V destroys every edge.

Example Graph

Here $\{C, H, I\}$ is clique, $\{A, C, F\}$ is dominating set, and $\{A, C, E, G, I\}$ is vertex cover.

Example Graph Problems

We write our examples as decision problems. The following are NP-complete:

The CLIQUE problem:

Input: graph G and integer k

Question: is there clique of at least *k* nodes?

The DOMINATION problem:

Input: graph G and integer k

Question: is there dominating set of at most *k* nodes?

The VERTEX_COVER problem:

Input: graph G and integer k

Question: is there vertex cover of at most *k* nodes?

3SAT is NP-complete

The 3SAT problem is NP-complete:

Input: ϕ a boolean formula in conjunctive normal form with 3 literals per clause (**3CNF**). Question: is there a satisfying assignment?

Summary

The NP-complete languages are the hardest languages in NP and every language in NP polynomially reduces to these. Examples of NP-complete languages include SAT and HAMPATH.