Theorem 4.2: The sets \emptyset and C are closed.

A closed set is a set that contains all of its limit points. Remember for there to be a limit point p of \emptyset , then for every region R where $p \in R$ this must hold true: $R \cap (\emptyset \setminus \{p\}) \neq \emptyset$. However, \emptyset does not contain any elements in its set, therefore $R \cap \emptyset$ will always be the empty set therefore there are no limit points, and since \emptyset has no limit points, then the set trivially contains all of its limit points.

For the set C which contains all elements of the continuum C, recall that limit points p must be in C, thus C contains all its limit points based on the definition of a limit point.

Theorem 4.3: A subset ${\cal C}$ containing a finite number of points is closed.

According to theorem 3.23: a finite subset A of a continuum C has no limit points. Similar to the empty set, when a set contains no limit points, then trivially the set contains all its limit points and is closed.

Theorem 4.5: $X\subset C$ is closed if and only if $X=\overline{X}$.

The closure of X is $\overline{X}=X\cup LP(X)$ which is the union of all elements in X and the limit points of x

First we prove that if $X\subset C$ is closed then $X=\overline{X}$. Suppose we have a set A=LP(X). If X is closed, then that means all limit points $LP(X)\in X$ such that $A\subset X$. Because X contains all elements in A, we understand that $X\cup A=X$ because there are no elements in A that are not in X. Now we have proved $\overline{X}=X\cup LP(X)=X$.

Now we have to prove that if $X=\overline{X}$ then $X\subset C$ is closed. We know that $\overline{X}=X\cup LP(X)$, so if $X=\overline{X}$, that means $X=X\cup LP(X)$. Because the set X contains all its limit points, then the set X must be closed.

Theorem 4.6: Let $X\subset C.$ Then \overline{X} is closed. (equivalently, $\overline{X}=\overline{X})$

To prove \overline{X} is closed, we need to show \overline{X} contains all of its limit points.

We want to show $y\in \overline{X}$, so let $y\in LP(\overline{X})$ so $y\in LP(X\cup LP(X))$ which means based on theorem 3.19 :

 $y\in LP(X)$ which means $y\in \overline{X}$ based on the definition of closure: $\overline{X}=X\cup LP(X)$.

or

 $y\in LP(LP(x))$ where we let R_1 is a region that contains y where $y\in R$ and we want to show $R_1\cap (X\backslash \{y\}\neq \emptyset)$. We know that $R_1\cap (X\backslash \{y\}\neq \emptyset)$ for all regions R that $y\in R$. Let $Z\in R_1\cap (LP(X)\backslash \{y\})$ where $z\in LP(X)$ which means tha $z\in R_1$ and $z\in LP(X)\backslash \{y\}$. We can then say that $R_1\cap (X\backslash \{y\}\neq \emptyset)$. Now, let $a\in R_1\cap (X\backslash \{y\})$.

case 1: $a \neq y$ which means $R_1 \cap x \setminus \{y\} \neq \emptyset$.

case 2: a=y which means $y\in R_1\cap (x\backslash\{z\}) and by*theorem3.21*,y \in R_2,z \in R_3, and R_2 \in R_3 = \mathbb{Z}.$ Where $x\in R_1\cap (x\backslash\{z\}) and by*theorem3.21*,y \in R_2,z \in R_3, and R_2 \in R_3 = \mathbb{Z}.$ In R_1 \cap R_3 = \mathbb{Z}. In R_1 \cap R_3 \cap (x \backslash \{z}\) \neq \empty). Let b \in (R_1 \cap R_3) \cap (x \backslash \{z}\) which means b \in R_1 \cap R_3 and b \in R_1 \cap (x \backslash \{y}\) such that $y\in LP(X)$ which means $y\in \overline{X}$ and because all $LP(\overline{X}\subset X)$ then \overline \{X}\\$ is closed.