CLAIM AMENDMENTS:

1. (Currently Amended) An anhydrous nail enamel composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a polymer capable of forming a film on the nail, having a glass transition temperature in the range of 5 to 90° C., obtained by polymerizing at least two different types of monomers wherein one monomer is a nonpolar ethylenically unsaturated monomer selected from the group consisting of:

(a) a monofunctional monomer of the formula:

I.

wherein R_1 is a C_{1-30} straight or branched chain alkyl, aryl, aralkyl; R_2 is H, CH_3 , a pyrrolidone, or a substituted or unsubstituted aromatic, alicyclic, or bicyclic ring where the substitutents are C_{1-30} straight or branched chain alkyl, or COOM wherein M is a C_{1-30} straight or branched chain alkyl, pyrrolidone, or a substituted or unsubstituted aromatic, alicylic, or bicyclic ring where the substitutents are C_{1-30} straight or branched chain alkyl which may be substituted with one or more halogens,

(b) a difunctional monomer of the formula:

<u>II.</u>

wherein R_3 and R_4 are each independently H, a C_{1-30} straight or branched chain alkyl, aryl, or aralkyl; and X is $[(CH_2)_xO_y]_z$ wherein x is 3-20, and y is 1, and z is 1-100,

- (c) a trifunctional monomer selected from the group consisting of trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, and mixtures thereof; and
- (d) and mixtures thereof.

 and the other monomer is a polar monomer of the formula:

wherein R₁ is H, or a C₁₋₃₀ straight or branched chain alkyl, aryl, or aralkyl; and R₂ is COOM wherein M is H; (CHR₁)_nOH; (CH₂CH₂O)_nH, (CH₂)_nNR₁; (CHR₁CONR₁H) where n is 1-100, and wherein the polar monomer is present at about 2 to 29% by weight of the total polymer; wherein said polymer is substantially free of monomers containing acetoacetoxy moieties.

- 2. (Currently Amended) The composition of claim 1 wherein the solvent is a glycol ether, an ingredient selected from the group consisting of butyl acetate, ethyl acetate, or mixtures thereof [aqueous].
- 3. (Currently Amended) The composition of claim 1 wherein the solvent comprises an ester non-aqueous solvent.
- **4.** (**Original**) The composition of claim 3 wherein the non-aqueous solvent is an aliphatic or aromatic ketone; aliphatic or aromatic alcohol; glycol ether; ester, or mixtures thereof.
- **5.** The composition of claim 1 wherein the polar monomer is anionically or cationically charged.
- **6.** (**Original**) The composition of claim 5 wherein the polar monomer is anionically charged.
- 7. (Original) The composition of claim 6 wherein the polar monomer has the general formula:

$$R_1$$
 $CH_2=C$
 R_2

wherein R_1 is H, or a C_{1-30} straight or branched chain alkyl, aryl, or aralkyl; and R_2 is COOM wherein M is H; $(CR_1)_nOH$; $(CH_2CH_2O)_nH$, $(CH_2)_nNR_1$; where n is 1-100.

8. The composition of claim 7 wherein R_1 in the polar monomer is H or CH_3 , and R_2 in the polar monomer is COOM wherein M is H.

200460.1 5

- **9.** (Original) The composition of claim 8 wherein the polar monomer is acrylic acid.
- **10.** (Original) The composition of claim 1 further comprising 0.1-30% by weight of the total composition of pigment.
- 11. (Original) The composition of claim 1 further comprising 0.01-15% by weight of the total composition of a suspending agent.
- **12. (Original)** The composition of claim 11 wherein the suspending agent is a montmorillonite mineral or associative thickener.
- **13. (Original)** The composition of claim 1 further comprising 0.01-10% by weight of the total composition of a silicone glycol copolymer defoaming agent.
- **14.** (Original) The composition of claim 1 further comprising 0.1-35% by weight of the total composition of one or more plasticizers.
- **15.** (Original) The composition of claim 14 wherein the plasticizer comprises a glyceryl, glycol, or citrate ester.
- **16.** (**Original**) The composition of claim 14 wherein the plasticizers comprises a compound of the general formula:

wherein R_1 , R_2 , and R_3 are each independently a C_{1-20} straight or branched chain alkyl or alkylene which may be substituted with one or more hydroxyl groups.

17. A two container kit for polishing nails comprising:

(a) a first container containing a nail enamel composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a film forming polymer having a glass transition temperature in the range of 5 to 90° C. obtained by polymerizing at least two different types of monomers wherein one monomer is a nonpolar ethylenically unsaturated monomer and the other monomer is a polar monomer of the formula:

wherein R_1 is H, or a C_{1-30} straight or branched chain alkyl, aryl, or aralkyl; and R_2 is COOM wherein M is H; (CHR₁)_nOH; (CH₂CH₂O)_nH, (CH₂)_nNR₁; (CHR₁CONR₁H) where n is 1-100,

and wherein the polar monomer is present at about 2 to 29% by weight of the total polymer; wherein said polymer is free of monomers containing acetoacetoxy moieties; and

(b) a second container containing a nail enamel topcoat composition comprising, by weight of the total topcoat composition:

1-99% solvent, and

1-99% of a film forming polymer.

- 18. The kit of claim 17 wherein the film forming polymer in the second container comprises a cellulosic based film former.
- 19. A method for polishing the nails comprising:

(a) applying to the nails a first composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a film forming polymer having a glass transition temperature in the range of 5 to 90° C. obtained by polymerizing at least two different types of monomers wherein one monomer is a nonpolar ethylenically unsaturated monomer and the other monomer is a polar monomer of the formula:

$$R_1$$
 $|$
 $CH_2=C$
 $|$
 R_2

wherein R_1 is H, or a C_{1-30} straight or branched chain alkyl, aryl, or aralkyl; and R_2 is COOM wherein M is H; $(CHR_1)_nOH$; $(CH_2CH_2O)_nH$, $(CH_2)_nNR_1$; (CHR_1CONR_1H) where n is 1-100,

and wherein the polar monomer is present at about 2 to 29% by weight of the total polymer; and wherein said polymer is free of monomers containing acetoacetoxy moieties; and

(b) applying to the nails a second composition comprising, by weight of the total composition:

1-99% solvent, and

1-99% of a film forming polymer;

wherein the dried film formed by (a) and (b) resides on the nails for five to ten days.

20. Cancelled.

21. The composition of claim 1 wherein the ethylenically unsaturated nonpolar monomer is a monofunctional monomer having the formula:

wherein R_1 is H, a C_{1-30} straight or branched chain alkyl, R_2 is H, CH_3 , a pyrrolidone, or a substituted or unsubstituted aromatic, alicyclic, or bicyclic ring where the substitutents are C_{1-30} straight or branched chain alkyl, or COOM wherein M is a C_{1-30} straight or branched chain alkyl, pyrrolidone, or a substituted or unsubstituted aromatic, alicylic, or bicyclic ring where the substitutents are C_{1-30} straight or branched chain alkyl which may be substituted with one or more halogens.

- 22. The composition of claim 21 wherein R_1 in the nonpolar monomer a C_{1-30} straight or branched chain alkyl, and R_2 in the nonpolar monomer is COOM wherein M is a C_{1-30} straight or branched chain alkyl.
- 23. The composition of claim 22 wherein R_1 in the nonpolar monomer is methyl and R_2 in the nonpolar monomer is COOM wherein M is a C_{1-4} alkyl.
- **24.** The composition of claim 23 wherein R_1 is methyl and R_2 is COOM wherein M is butyl and the monomer is butyl methacrylate.
- 25. (Previously Presented) The composition of claim 24 wherein the polar monomer R_1 is H or methyl, and R_2 is COOM wherein M is H.

- **26.** (**Previously Presented**) The composition of claim 24 wherein the polar monomer is acrylic acid or methacrylic acid.
- 27. (Previously Presented) The composition of claim 1 wherein the polymer consists of a nonpolar monomer which is butyl methacrylate and a polar monomer which is acrylic acid and the acrylic acid is present at about 2-29% by weight of the total polymer.
- **28.** (**Previously Presented**) A nail enamel composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a copolymer capable of forming a film on the nail, having a glass transition temperature in the range of 5 to 90° C., and consisting of butyl methacrylate copolymerized with a polar monomer selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof.

- **29.** (**Previously Presented**) The composition of claim 28 wherein the copolymer consists of 2-29% by weight of the total copolymer of acrylic acid, with the remainder of the copolymer being butyl methacrylate.
- **30.** (**Previously Presented**) The composition of claim 28 wherein the copolymer consists of 2-29% by weight of the total polymer of methacrylic acid, with the remainder of the copolymer being butyl methacrylate.
- **31.** (Currently Amended) An anhydrous nail enamel composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a copolymer capable of forming a film on the nail, having a glass transition temperature in the range of 5 to 90° C., and consisting of methyl methacrylate polymerized with a polar monomer selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof.

- **32.** (**Previously Presented**) The nail enamel composition of claim 31 wherein the copolymer consists of 2-29% by weight of the total polymer of acrylic acid, with the remainder of the copolymer being methyl methacrylate.
- **33.** (Currently Amended) An anhydrous nail enamel composition comprising, by weight of the total composition:

10-95% solvent, and

5-95% of a copolymer capable of forming a film on the nail, having a glass transition temperature in the range of 5 to 90° C., and consisting of a nonpolar monomer selected from the group consisting of methyl methacrylate, butyl methacrylate, and mixtures thereof; polymerized with a polar monomer selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof.

34. (**Previously Presented**) The composition of claim 33 wherein the copolymer consists of 2-29% of a polar monomer selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof, with the remainder of the copolymer being a nonpolar monomer selected from the group consisting of butyl methacrylate, methyl methacrylate, and mixtures thereof.

200460.1 11

35. (Previously Presented) A method for polishing the nails comprising:

(a) applying to the nails a first composition comprising, by weight

of the total composition:

10-95% solvent, and

5-95% of a film forming polymer having a glass transition temperature

in the range of 5 to 90° C., and consisting of a nonpolar monomer selected

from the group consisting of methyl methacrylate, butyl methacrylate, and

mixtures thereof; copolymerized with a polar monomer selected from the

group consisting of acrylic acid, methacrylic acid, and mixtures thereof.

(b) applying to the nails a second composition comprising, by

weight of the total composition:

1-99% solvent, and

1-99% of a cellulose film forming polymer; wherein the dried film

formed by (a) and (b) resides on the nails for five to ten days.

36. (Previously Presented) The method of claim 35 wherein the cellulose

film forming polymer comprises nitrocellulose.

200460.1

12