Chapter 3 Derivertive

Contents

- 1. Introduction
- 2. Derivertive
- 3. Fomulas
- **4.** Higher Oder
- 5. Chain rule
- 6. Implicit
- 7. Logarithmic
- **8.** Applications
- 9. Problems

WHY STUDY DERIVATIVES?

- * How one quantity changes in relation to another quantity?
- ★ Derivative = Rates of change: occur in all the sciences.
- ★ Velocity, density, current, power, and temperature gradient in physics;
- * rate of reaction in chemistry;
- ⋆ rate of growth and blood velocity in biology;
- marginal cost and marginal profit in economics;
- ⋆ rate of heat flow in geology;
- * rate of improvement of performance in psychology;
- ★ rate of spread of a rumor in sociology (analyzing innovations or fads or fashions)
- * these are all special cases of a single mathematical concept, the derivative.
 - \Rightarrow The power of mathematics lies in its abstractness.

The tangent problem

- * A curve C has equation y = f(x) and we want to find the tangent line to C at the point P(a, f(a)),
- * We consider a nearby point Q(x, f(x)), where $x \neq a$
- \star The slope of the secant line PQ:

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$

The tangent problem

- * We let Q approach P along the curve C by letting x approach a,
- * If m_{PQ} approaches a number m, then we define the tangent t to be the line through P with slope m.

$$m = \lim_{Q \to P} m_{PQ} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

The tangent problem

Definition. The tangent line to the curve y = f(x) at the point P(a, f(a)) is the line through P with slope

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

provided that this limit exists.

If h = x - a, then x = a + h and so the slope of the tangent line in definition becomes

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Example.

- \star Find an equation of the tangent line to the parabola $y=x^2$ at the point P(1,1).
- \star Find an equation of the tangent line to the hyperbola y=3/x at the point (3,1).

The velocity problem

Investigate the example of a falling ball.

- ★ Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450*m* above the ground. Find the velocity of the ball after 5 seconds.
- \star If the distance fallen after t seconds is denoted by s(t) and measured in meters, then Galileo's law is expressed by the following equation.

$$s(t) = 0.5gt^2 = 4.9t^2$$

The velocity problem

average velocity
$$=$$
 $\frac{\text{change in position}}{\text{time elapsed}}$ $=$ $\frac{s(5.1) - s(5)}{0.1} = 49.49 \text{ m/s}$

Thus, the (instantaneous) velocity after $5~{\rm s}$ is: $v=49~{\rm m/s}$

Time interval	Average velocity (m/s)
$5 \le t \le 6$	53.9
$5 \le t \le 5.1$	49.49
$5 \le t \le 5.05$	49.245
$5 \le t \le 5.01$	49.049
$5 \le t \le 5.001$	49.0049

The velocity problem

We define the **velocity** (or instantaneous velocity) v(a) at time t=a to be the limit of these average velocities:

$$v(a) = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

Derivertive

Definition. The derivative of a function f at a number a, denoted by f'(a), is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if this limit exists.

or

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

If we replace a in above formular by a variable x, we obtain

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivertive

OTHER NOTATIONS

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

$$\frac{dy}{dx}\Big|_{x=a} \quad \text{or} \quad \frac{dy}{dx}\Big|_{x=a}$$

Example.

- **1.** Show that a constant function f(x) = k has derivertive f'(x) = 0.
- **2.** Find f'(x) if $f(x) = \sin x$

3. Find
$$f'(0)$$
 if $f(x) = \begin{cases} \frac{\sqrt{1+2x}-1}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$

4. Find f'(0) if $f(x) = \sqrt[3]{x}$

Differentiable

Definition. A function f is differentiable at a if f'(a) exists. It is **differentiable** on an open interval (a,b) [or (a,∞) or $(-\infty,a)$ or $(-\infty,\infty)$] if it is differentiable at every number in the interval.

Theorem. If f is differentiable at a, then f continuous at a.

Differentiable

- \star f' (a) exists $\Longrightarrow f$ is differentiable at a
- \star Differentiable at a \Longrightarrow f continuous at a (ALWAYS TRUE)
- \star Continuous at a \Longrightarrow f differentiable ? (NOT ALWAYS TRUE)

Example. y = |x| is continuous at x = 0 but not differentiable at x = 0

REVIEW

- ★ Derivative = (instantaneous) rate of change (= rate)
- \star Slope of tangent line at a = f'(a)
- \star Velocity of particle at t = v(t) = s'(t), where s(t) is the position function.
- \star Acceleration of particle at t=a(t)=v'(t)
- \star Differentiable at $x=a \Longrightarrow$ continuous at x=a

Differentiation formulas

$$\star \quad \frac{d}{dx}(k) = 0$$

$$\star \frac{d}{dx}(a^x) = a^x \ln a$$

$$\star \quad \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

$$\star \quad \frac{d}{dx}\sin x = \cos x$$

$$\star \frac{d}{dx} \sec x = \sec x \tan x, \quad (\sec x = 1/\cos x)$$

$$\star \quad \frac{d}{dx}\csc x = -\csc x \cot x, \quad (\csc x = 1/\sin x)$$

$$\star \quad \frac{d}{dx}(x^n) = nx^{n-1}, n \in \mathbb{R}$$

$$\star \quad \frac{d}{dx}(e^x) = e^x$$

$$\star \quad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\star \quad \frac{d}{dx}\cos x = -\sin x$$

$$\star \frac{d}{dx} \tan x = \sec^2 x$$

$$\star \frac{d}{dx} \cot x = -\csc^2 x$$

Differentiation rules

Constant multiple

$$[cf(x)]' = cf'(x)$$

Sum and difference rule

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

Linearity rule

$$[af(x) + bg(x)]' = af'(x) + bg'(x)$$

Product rule

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

Quotient rule

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0$$

Tangent and normal lines

Example. Find equations of the tangent line and normal line to the curve

$$y = \frac{\sqrt{x}}{1 + x^2}$$

at the point (1, 1/2).

REMARK: Tangent line (Δ) equation at $M(x,y) \in (C)$: y = f(x)

$$(\Delta): y = f'(x_0)(x - x_0) + f(x_0)$$

The **normal line** is defined as the line that is perpendicular to the tangent line at the point of tangency.

Tangent line of the graph of this curve at (1, 1/2) is:

$$y = -\frac{1}{4}x + \frac{3}{4}$$

. © Thomson Higher Education

Example. Differentiate the functions given in Problems 1-5.

1.
$$f(x) = \sin x + \cos x$$

2.
$$g(t) = t^2 + \cos t + \cos \frac{\pi}{4}$$

- 3. $h(x) = 2x^3 \sin x 3x \cos x$
- **4.** $p(x) = x^2 \cos x$
- **5.** $q(x) = \frac{\sin x}{x}$.

Higher-Order Derivertives

Leibniz notation

First derivative:
$$y'$$
 $f'(x)$ $\frac{dy}{dx}$ or $\frac{d}{dx}f(x)$

Second derivative y'' $f''(x)$ $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ or $\frac{d^2}{dx^2}f(x)$

Third derivative y''' $f'''(x)$ $\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3}$ or $\frac{d^3}{dx}f(x)$

Fourth derivative $y^{(4)}$ $f^{(4)}(x)$ $\frac{d^4y}{dx^4}$ or $\frac{d^4}{dx^4}f(x)$

... n th derivative $y^{(n)}$ $f^{(n)}(x)$ $\frac{d^ny}{dx^n}$ or $\frac{d^ny}{dx^n}f(x)$

Example. In Problems 1-4, find f', f'', f''', and $f^{(4)}$.

1.
$$f(x) = x^5 - 5x^3 + x + 12$$

2.
$$f(x) = \frac{1}{4}x^8 - \frac{1}{2}x^6 - x^2 + 2$$

3.
$$f(x) = \frac{-2}{x^2}$$

4.
$$f(x) = \frac{4}{\sqrt{x}}$$

MAE101—Calculus—Chap3

HCM Ver3.1

Chain rule

If g is differentiable at x and f is differentiable at g(x), then the **composite function** $F = f \circ g$ defined by F(x) = f(g(x)) is differentiable at x and x and x and x are defined by f(x) = f(g(x)) is differentiable at x and x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) and f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) and f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)) and f(x) = f(g(x)) is differentiable at x and x are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)) and f(x) = f(g(x)) are defined by f(x) = f(g(x)).

$$F'(x) = f'(g(x)) \cdot g'(x)$$

In Leibniz notation, if y = f(u) and u = u(x) are both differentiable functions, then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

MAE101—Calculus—Chap3

HCM Ver3.1

Example. Find the derivertive of the function

- 1. $y = \sin 4x$
- **2.** $y = \sqrt{4+3x}$
- 3. $y = (1 x^2)^{10}$
- **4.** $y = \tan(\sin x)$

Implicit differentiation

Example. The graphs of f and g are the upper and lower semicircles of the circle

$$x^2 + y^2 = 25$$

(b) $f(x) = \sqrt{25 - x^2}$

© Thomson Higher Education

Implicit Differentiation

To find the derivative of the implicit form:

- ullet Step 1: Differentiate both sides of the equation with respect to x. Remember that y is really a function of x for part of the curve and use the chain rule.
- Step 2: Solve the differentiated equation algebraically for $\frac{dy}{dx}$

Example. Let y = f(x) is a differentiable function of x such that

$$x^2 + y^2 = 25$$

- a) Find $\frac{dy}{dx}$
- b) Find an equation of the tangent to the circle $x^2 + y^2 = 25$ at the point (3,4).

Solution.

$$\frac{d}{dx}\left(x^2 + y^2\right) = \frac{d}{dx}(25)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

Remembering that y is a function of x and using the Chain Rule, we have:

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2)\frac{dy}{dx} = 2y\frac{dy}{dx}$$
$$2x + 2y\frac{dy}{dx} = 0$$

Then, we solve this equation for $\frac{dy}{dx}:\frac{dy}{dx}=-\frac{x}{y}$

At the point (3,4) we have x=3 and y=4.

So,
$$\frac{dy}{dx} = -\frac{3}{4}$$

Thus, an equation of the tangent to the circle at (3,4) is:

$$y = -\frac{3}{4}(x-3) + 4$$
 or $3x + 4y = 25$

MAE101 — Calculus — Chap3

HCM Ver3.1

Example. Find $\frac{dy}{dx}$ by implicit differentiation in Problems 1-10.

$$1. x^2y + 2y^3 = 3x + 2y$$

2.
$$x^2 + y = x^3 + y^3$$

3.
$$xy = 25$$

4.
$$xy(2x+3y)=2$$

5.
$$\frac{1}{y} + \frac{1}{x} = 1$$

$$6. \tan \frac{x}{y} = y$$

7.
$$\cos xy = 1 - x^2$$

8.
$$e^{xy} + 1 = x^2$$

9.
$$\ln(xy) = e^{2x}$$

10.
$$e^{xy} + \ln y^2 = x$$

MAE101—Calculus—Chap3

HCM Ver3.1

Logarithmic Differentiation

Logarithmic differentiation is especially valuable as a means for handling complicated product or quotient functions and exponential functions where variables appear in both the base and the exponent.

Example.

- * Find $\frac{dy}{dx}$, where $y = (x+1)^{2x}$.
- * Find the derivative of $y = \frac{e^{2x}(2x-1)^6}{(x^3+5)^2(4-7x)}$ if y > 0

Rate of change

The derivative can be interpreted as a rate of change, which leads to a wide variety of applications. Viewed as rates of change, derivatives may represent such quantities as the speed of a moving object, the rate at which a population grows, a manufacturer's marginal cost, the rate of inflation, or the rate at which natural resources are being depleted.

$$\star \ \ \text{Average rate of change} = \frac{\text{CHANGE IN } y}{\text{CHANGE IN } x} = \frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

* Instaneous rate change =
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x)$$

* Relative rate of change = $\frac{f'(x)}{f(x)}$

MAE101—Calculus—Chap3

HCM Ver3.1

Rate of change

Example. Let $f(x) = x^2 - 4x + 7$

- 1. Find the average rate of change of f with respect to x between x=3 and 5
- **2.** Find the instantaneous rate of change of f at x=3.

Rectilinear Motion (Modeling in Physics)

An object that moves along a straight line with position s(t) has velocity $v(t)=\frac{ds}{dt}$ and acceleration $a(t)=\frac{dv}{dt}=\frac{d^2s}{dt^2}$ when these derivatives exist. The speed of the object is |v(t)|.

Example. Assume that the position at time t of an object moving along a line is given by

$$s(t) = 3t^3 - 40.5t^2 + 162t$$

for t on [0,8].

- 1. Find the initial position, velocity, and acceleration for the object and discuss the motion.
- 2. Compute the total distance traveled.

Rectilinear Motion (Modeling in Physics)

Example. A particle moving on the x-axis has position

$$x(t) = 2t^3 + 3t^2 - 36t + 40$$

after an elapsed time of t seconds.

- **1.** Find the velocity of the particle at time t.
- **2.** Find the acceleration at time t.
- **3.** What is the total distance traveled by the particle during the first 3 seconds?

Falling body problems

FORMULA FOR THE HEIGHT OF A PROJECTILE

$$h(t) = -\frac{1}{2}gt^2 + v_0t + s_0$$

- \circ v_0 is the initial velocity.
- g is the acceleration due to gravity $(32ft/s^2 \text{ or } 9.8m/s^2)$

Falling body problems

Example.

Suppose a person standing at the top of the Tower of Pisa (176 ft high) throws a ball directly upward with an initial speed of 96 ft/s.

- 1. Find the ball's height, its velocity, and its acceleration at time t.
- 2. When does the ball hit the ground and what is its impact velocity?
- 3. How far does the ball travel during its flight?

Related rates and Applications

SOLVING RELATED RATE PROBLEMS

- * Step 1 Draw a figure, if appropriate, and assign variables to the quantities that vary. Be careful not to label a quantity with a number unless it never changes in the problem.
- * Step 2 Find a formula or equation that relates the variables. Eliminate unnecessary variables.
- * Step 3 Differentiate the equations. You will usually differentiate implicitly with respect to time.
- ★ Step 4 Substitute specific numerical values and solve algebraically for any required rate.

Related rates and Applications

Example.

A person is standing at the end of a pier $12\mathrm{ft}$ above the water and is pulling in a rope attached to a rowboat at the waterline at the rate of $6\mathrm{ft}$ of rope per minute, as shown in Figure. How fast is the boat moving in the water when it is $16\mathrm{ft}$ from the pier?

Related rates and Applications

Example.

A person $6\mathrm{ft}$ tall is walking away from a street light $20\mathrm{ft}$ high at the rate of $7\mathrm{ft/s}$. At what rate is the length of the person's shadow increasing?

Linear Approximations

We use the tangent line at (a,f(a)) as an approximation to the curve y=f(x) when ${\bf x}$ is near a

$$L(x) = y = f(a) + f'(a)(x - a)$$

Linear Approximations

The approximation

$$f(x) \approx f(a) + f'(a)(x - a) = L(x)$$

is called the linear approximation of f at a.

$$|x - a| \le \varepsilon, \forall \varepsilon \ge 0$$

Example. Determine the linear approximation for $f(x) = \sqrt[3]{x}$ at x = 8. Use the linear approximation to approximate the value of $\sqrt[3]{8.05}$ and $\sqrt[3]{25}$.

$$f'(x) = \frac{1}{3\sqrt[3]{x^2}}, \quad f(8) = 2 \quad f'(8) = \frac{1}{12}$$

The linear approximation is then,

$$L(x) = 2 + \frac{1}{12}(x - 8) = \frac{1}{12}x + \frac{4}{3}.$$

Furthermore,

$$L(8.05) = 2.00416667$$
 $\sqrt[3]{8.05} = 2.00415802$
 $L(25) = 3.41666667$ $\sqrt[3]{25} = 2.92401774$

So, at x=8.05 this linear approximation does a very good job of approximating the actual value. However, at x=25 it doesn't do such a good job.

42 / 55

Differential (Vi phân)

Given a function y = f(x) we call dy and dx differentials and the relationship between them is given by,

$$dy = f'(x)dx$$

Differentials provide us with a way of estimating the amount a function changes as a result of a small change in input values.

Example. Compute the differential for each of the following.

1.
$$y = t^3 - 4t^2 + 7t$$

2.
$$y = x^2 \sin(2x)$$

Example. The radius of a sphere was measured and found to be $21~\mathrm{cm}$ with a possible error in measurement of at most $0.05~\mathrm{cm}$. What is the maximum error in using this value of the radius to compute the volume of the sphere?

Solution:

- * If the radius of the sphere is r, then its volume is $V = \frac{4}{3}\pi r^3$.
- * This can be approximated by the differential

$$dV = 4\pi r^2 dr$$

= $4\pi 21^2 0.05 \approx 277 \text{ cm}^3$.

 \star The maximum error in the calculated volume is about 277 cm³.

Prob 1. Find an equation of the tangent line to the curve at the given point

a)
$$y = \frac{x-1}{x-2}$$
, $(3,2)$

b)
$$y = \frac{2x}{x^2 + 1}$$
, $(0, 0)$

c)
$$y = 3 - 2x + x^2$$
, $x = 1$

d)
$$y = \frac{3-2x}{x-1}$$
, $y = -1$

Prob 2. Find all the values of x where the tangent line to the graph of the function is horizontal $f(x) = x^3 + 4x^2 - 11x + 11$

a) 1

b) $\frac{11}{3}$; -1

c) $\frac{-11}{3}$; 1

d) $\frac{-11}{3}$; $\frac{11}{3}$; 1

Prob 3. Find the derivative of the following function $y = \frac{x}{\sin x}$

a)
$$\frac{\sin x - x \cos x}{\sin^2 x}$$

c)
$$\frac{1}{\cos x}$$

$$b) \frac{\sin x + x \cos x}{\sin^2 x}$$

d)
$$\frac{\sin x - x \cos x}{\sin x}$$

Prob 4. Find the derivative of the following function $y = \frac{e^{x^2}}{\sin x}$

a)
$$\frac{e^{x^2}(2x\sin x + \cos x)}{\sin^2 x}$$

c)
$$\frac{e^{x^2}(2x\sin x - \cos x)}{\sin^2 x}$$

$$b) \frac{e^{x^2}(2x+\cos x)}{\sin^2 x}$$

$$\mathsf{d)}\ \frac{e^{x^2}(2x\sin x - \cos x)}{\sin^2 x}$$

Prob 5. Find the derivative of the following function $y = xe^{-2x}$

a)
$$(1+2x)e^{-2x}$$

b)
$$(1-2x)e^{-2x}$$

c)
$$e^{-2x}$$

d)
$$-2e^{-2x}$$

Prob 6. Find y''

a)
$$y = xe^{3x-1}$$

b)
$$y = \sqrt[3]{2x+1}$$

c)
$$y = e^{-x} \cos x$$

Prob 7. The position in feet of race car along a straight track after t seconds is modeled by the function $s(t) = 8t^2 - \frac{1}{16}t^3$

- a) Find the average velocity of the vehicle over the time interval [4,4.1]
- b) Find the instantaneous velocity of the vehicle at t=4 seconds.

Prob 8. A toy company can sell x electronic gaming systems at a price of p = -0.01x + 400 dollars per gaming system. The cost of manufacturing x systems is given by C(x) = 100x + 10000 dollars. Find the rate of change of profit when 10000 game produced. Should the toy company increase or decrease production?(profit=x.p-c(x))

Prob 9. A table of values for f, f', q and q' is given

x	f(x)	g(x)	f'(x)	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

a) If
$$h(x) = f(g(x))$$
, find $h'(1)$

b) If
$$H(x) = g(f(x))$$
, find $H'(1)$

c) If
$$F(x) = f(f(x))$$
, find $F'(2)$

d) If
$$G(x) = g(g(x))$$
, find $G'(3)$.

Prob 10. If
$$h(x) = \sqrt{4 + 3f(x)}$$
, where $f(1) = 7$, $f'(1) = 4$, find $h'(1)$.

Prob 11. Find f' in terms of g'

a)
$$f(x) = g(\sin 2x)$$

b)
$$f(x) = g(e^{1-3x})$$
.

Prob 12. Find $\frac{dy}{dt}$ for:

a)
$$y = x^3 + x + 2$$
, $\frac{dx}{dt} = 2$ and $x = 1$.

b)
$$y = \ln x$$
, $\frac{dx}{dt} = 1$ and $x = e^2$

Prob 13. Find y' by implicit differentiation

a)
$$x^4 + y^4 = 16x + y$$

b)
$$\sqrt{x} + \sqrt{y} = 4$$
.

c)
$$x^3 + xy = y^2$$

Prob 14. Find the linearization L(x) of the function at a

a)
$$f(x) = \frac{1}{\sqrt{2+x}}, \quad a = 2$$

b)
$$f(x) = \sqrt[3]{5-x}$$
, $a = -3$.

4□ > 4□ > 4 = > 4 = > = 90

Prob 16. Compute the differential of the function $y = e^{2x^2}$

a)
$$dy = 4xe^{2x^2}dx$$

b)
$$dy = 4e^{2x^2}dx$$

c)
$$dy = 2xe^{2x^2}dx$$

$$d) dy = e^{2x^2} dx$$

Prob 17. Compute the differential of the function $y = \ln(\sin x)$

a)
$$dy = \cot x dx$$

b)
$$dy = \sin x dx$$

c)
$$dy = \tan x dx$$

d)
$$\cos x \ln(\sin x) dx$$

Prob 18. Let $y = \frac{x-1}{x+1}$. Compute the value of dy(1)

a)
$$dy(1) = 2dx$$

b)
$$dy(1) = \frac{1}{4}dx$$

c)
$$dy(1) = \frac{1}{2}dx$$

$$d) dy(1) = dx$$

Prob 19. Let $y = \frac{e^x}{e^x + 1}$. Compute $dy(\ln 2)$

a)
$$dy(\ln 2) = \frac{1}{2}dx$$

b)
$$dy(\ln 2) = \frac{4}{9}dx$$

c)
$$dy(\ln 2) = \frac{2}{9}dx$$

$$d) dy(\ln 2) = 0dx$$

MAE101—Calculus—Chap3

HCM Ver3.1

Thank you for your attention.