ORIE 4580/5580: Simulation Modeling and Analysis

ORIE 5581: Monte Carlo Simulation

Unit 2: Mean, Variance, and Tail Probabilities

Sid Banerjee School of ORIE, Cornell University

expectations and independence

expected value (mean, average)

let X be a random variable, and $g(\cdot)$ be any real-valued function

• If X is a discrete rv with $\Omega = \mathbb{Z}$ and $\operatorname{pmf} p(\cdot)$, then

$$\mathbb{E}[X] =$$

$$\mathbb{E}[g(X)] =$$

• If X is a continuous rv with $\Omega = \mathbb{R}$ and $\mathsf{pdf}\ f(\cdot)$, then

$$\mathbb{E}[X] =$$

$$\mathbb{E}[g(X)] =$$

variance and standard deviation

• Definition:
$$Var(X) = \sigma(X) =$$

• (More useful formula for computing variance)

$$Var(X) =$$

independence

what do we mean by "random variables X and Y are independent"? (denoted as $X \perp \!\!\! \perp Y$; similarly, $X \perp \!\!\! \perp Y$ for 'not independent')

intuitive definition: knowing X gives no information about Y

formal definition:

• One measure of independence between rv is their covariance

$$Cov(X, Y) =$$
 (formal definition)

clicker question

$$(X,Y)$$
 are uniformly distributed around unit circle $\{(x,y): x^2+y^2=1\}$

(a)
$$X \perp \!\!\!\perp Y$$
 and $Cov(X, Y) \neq 0$

(b)
$$X \perp \!\!\!\perp Y$$
 and $Cov(X, Y) = 0$

(c)
$$X \not\perp \!\!\!\perp Y$$
 and $Cov(X, Y) \neq 0$

(d)
$$X \not\perp\!\!\!\perp Y$$
 and $Cov(X, Y) = 0$

clicker question: solution

(X, Y) are uniformly distributed around unit circle $\{(x, y) : x^2 + y^2 = 1\}$

independence and covariance

how are independence and covariance related?

- X and Y are independent, then they are uncorrelated in notation: $X \perp\!\!\!\perp Y \quad \Rightarrow \quad Cov(X,Y) = 0$
- however, uncorrelated rvs can be dependent in notation: $Cov(X, Y) = 0 \implies X \perp\!\!\!\perp Y$
- $Cov(X, Y) = 0 \Rightarrow X \perp \!\!\!\perp Y$ only for multivariate Gaussian rv (this though is confusing; see this Wikipedia article)

clicker question

TAs get lazy and distribute graded hws among 10 students uniformly at random; on average, how many students get their own hw?

- (a) 0
- (b) 0.1
- (c) 1

(d) 2

(e) 3.1415...

clicker question

TAs get lazy and distribute graded hws among 10 students uniformly at random; on average, how many students get their own hw?

```
hint: indicator rvs + Linearity
```

Let
$$X_i = 1$$
 [student i gets her hw] (Indicator rv)

$$N=$$
 number of students who get their own hw $=\sum_{i=1}^{10} X_i$

- (a) 0
- (b) 0.1
- (c) 1
- (d) 2
- (e) 3.1415...

clicker question: solution

TAs get lazy and distribute graded hws among 10 students uniformly at random; on average, how many students get their own hw?

Hint: Indicator random variables

Let
$$X_i = 1$$
 [student i gets her hw] (Indicator rv)

N= number of students who get their own hw $=\sum_{i=1}^{10} X_i$

linearity of expectation

for any rvs X and Y, and any constants $a,b\in\mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence)

linearity of expectation

for any rvs X and Y, and any constants $a,b \in \mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence) note 2: does not hold for variance in general

ullet for general X, Y

$$Var(aX + bY) =$$

when X and Y are independent

$$Var(aX + bY) =$$

normal distribution

rv X is said to be normally distributed with mean μ and variance σ^2 (in notation, $X \sim \mathcal{N}(\mu, \sigma^2)$) if its pdf $f(\cdot)$ is given by

$$f(x) = rac{1}{\sigma \sqrt{2\pi}} \left| \exp \left[-rac{1}{2} \left(rac{x - \mu}{\sigma}
ight)^2 \right], -\infty < x < \infty.$$

the pdf looks like

properties of the normal distribution

1. the pdf is symmetric around the mean μ : if $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\mathbb{P}[X \leq \mu - a] =$$

2. (Linear transformation) If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$aX + b \sim$$

$$\frac{X-\mu}{\sigma}$$
 ~

3. If $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, and $X \perp \!\!\!\perp Y$, then

$$X + Y \sim$$

cdf of normal distribution

if
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then its cdf is given by $\mathbb{P}[X \leq x] =$

- knowing cdf for $\mathcal{N}(0,1)$ is enough to find cdf for any normally distributed rv
- for $X \sim \mathcal{N}(0,1)$, its cdf is denoted $\Phi(x)$, and available in most computing packages.

it is also closely related to the error function $erf(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$; in particular,

$$\Phi(x) = \frac{1}{2}(1 + erf(\frac{x}{\sqrt{2}}))$$

sums and averages of independent rv

- $X_1, X_2, ...$ are independent rv that are uniformly distributed over the interval [0,1]; $\mathbb{E}[X_1] = 1/2$, $Var(X_1) = 1/12$.
- the pdf of X_1 looks like

• what about the pdf of $X_1 + X_2$ and $(X_1 + X_2)/2$?

sums and averages of independent rv

$$S_n = X_1 + \ldots + X_n$$

$$\bar{X}_n = \frac{1}{n} \left[X_1 + \ldots + X_n \right]$$

• $\mathbb{E}[S_n] =$

$$\mathbb{E}[\bar{X}_n] =$$

$$Var(S_n) =$$

$$Var(\bar{X}_n) =$$

- (roughly) sum of n i.i.d. random variables is \sqrt{n} times as variable as any one of the random variables
- average of n i.i.d. random variables is $1/\sqrt{n}$ times as variable as any one of the random variables

law of large numbers

let X_1, X_2, \ldots be a sequence of independent rvs with $\mathbb{E}[X_i] = \mu$ for all i then, "almost" always

$$ar{X}_n = rac{1}{n} \; \sum_{i=1}^n X_i {\longrightarrow} \; \mu \quad , \quad ext{as } n o \infty$$

note: for any finite n, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is still a random variable

central limit theorem

let X_1, X_2, \ldots be a sequence of independent rvs with

$$\mathbb{E}[\mathsf{X}_i] = \mu, \mathsf{Var}(\mathsf{X}_i) = \sigma^2 < \infty$$
 for all ι

then,

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{D}{\longrightarrow} \sigma \mathcal{N}(0, 1) = \mathcal{N}(0, \sigma^2)$$
 , as $n \to \infty$

this suggests the following approximations for large n,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{D}{\approx}$$

$$S_n = \sum_{i=1}^n X_i \stackrel{D}{\approx}$$

introduction to confidence intervals

we want to measure $\mathbb{E}[X_1]$ from simulations

an interval [a, b] is said to be a 95% confidence interval for $\mathbb{E}[X_1]$ if $\mathbb{P}[a \leq \mathbb{E}[X_1] \leq b] \geq 0.95$.

• We know from the central limit theorem that

$$ar{X}_n \overset{D}{pprox} N\left(\mathbb{E}[X_1], rac{\sigma^2}{n}\right).$$

ullet Moreover, from the tables that give the cdf of $\mathcal{N}(0,1)$, we have

$$\mathbb{P}[\hspace{1cm} \leq \mathcal{N}(0,1) \leq \hspace{1cm}] = 0.95.$$

inequality 1: The Union Bound

Let A_1, A_2, \ldots, A_k be events. Then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) \leq (P(A_1) + P(A_2) + \cdots + P(A_k))$$

inequality 2: Jensen's Inequality

If X is a random variable and f is a convex function, then

$$\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$$

Proof sketch (plus way to remember)

inequality 3: Markov and Chebyshev's inequalities

Markov's inequality

For any rv. $X \ge 0$ with mean $\mathbb{E}[X]$, and for any k > 0,

$$\mathbb{P}\left[X \geq k\right] \leq \frac{\mathbb{E}[X]}{k}$$

Chebyshev's inequality

For any rv. X with mean $\mathbb{E}[X]$, finite variance $\sigma^2 > 0$, and for any k > 0,

$$\mathbb{P}\left[|X - \mathbb{E}[X]| \ge k\sigma\right] \le \frac{1}{k^2}$$