Ferienkurs der TU München- - Analysis 2 Funktionen in mehreren Variablen Lösung

Jonas J. Funke 30.08.2010 - 03.09.2010

1 Warm up - partielles Differenzieren

Aufgabe 1 (Potentialkasten). Zeigen Sie, dass die Wellenfunktion $\Psi : \mathbb{R}^3 \to \mathbb{R}$

$$\Psi(x, y, z) = \sin(\pi n_x x) \cdot \sin(\pi n_y y) \cdot \sin(\pi n_z z) \text{ mit } n_x, n_y, n_z \in \mathbb{N} \setminus \{0\}$$

die Schrödingergleichung für den 3-dimensionalen Potentialkasten löst:

$$-\frac{\hbar^2}{2m}\Delta\Psi(x,y,z) = E\Psi(x,y,z)$$

und berechnen Sie die möglichen Energieniveaus E_{n_x,n_y,n_z} .

Loesung 1. Wir leiten Ψ zweimal nach x ab und erhalten:

$$\frac{\partial^2}{\partial x^2} \Psi(x, y, z) = -\pi^2 n_x^2 \cdot \sin(\pi n_x x) \cdot \sin(\pi n_y y) \cdot \sin(\pi n_z z) = -\pi^2 n_x^2 \cdot \Psi(x, y, z)$$

Analog folgt $\Psi_{yy}(x,y,z) = -\pi^2 n_y^2 \Psi(x,y,z)$ und $\Psi_z(x,y,z) = -\pi^2 n_z^2 \Psi(x,y,z)$. Dies setzen wir in die gegeben Schrödingergleichung ein und erhalten:

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)\Psi(x,y,z) = \frac{\hbar^2\pi^2}{2m}(n_x^2 + n_y^2 + n_z^2) = E_{n_x,n_y,n_z}\Psi(x,y,z)$$

$$\Rightarrow E_{n_x,n_y,n_z} = \frac{\hbar^2 \pi^2}{2m} (n_x^2 + n_y^2 + n_z^2)$$

Aufgabe 2 (Wellengleichung). Sei $f, g : \mathbb{R} \to \mathbb{R}$ zweimal differenzierbar und c > 0. Zeigen Sie, dass die Funktion $\Psi(t, x) : \mathbb{R}^2 \to \mathbb{R}$,

$$\Psi(t,x) = f(x-ct) + q(x+ct)$$

die Wellengleichung

$$\partial_t^2 \Psi(t,x) = c^2 \partial_x^2 \Psi(t,x)$$

erfüllt.

Loesung 2. Wir führen zunächst die neuen Variablen

$$u(x,t) = x - ct$$

$$v(x,t) = x + ct$$

Nun berechnen wir die partielle Ableitung nach t:

$$\partial_t^2 \Psi(x,t) = \partial_t (f_u(u) \cdot \underbrace{\frac{\partial u}{\partial t}}_{=-c} + g_v(v) \cdot \underbrace{\frac{\partial v}{\partial t}}_{=c}) = -c \cdot f_{uu}(u) \cdot \frac{\partial u}{\partial t} + c \cdot g_{vv}(v) \cdot \frac{\partial v}{\partial t} = c^2 \left(f_{uu} + g_{vv} \right)$$

Nun nach x:

$$\partial_x^2 \Psi(x,t) = \partial_x \left(f_u \cdot 1 + g_v \cdot 1 \right) = f_{uu} + g_{vv}$$

Dies setzt man in die Wellengleichung ein und verifiziert so die Lösung.

Aufgabe 3 (Richtungsableitung). Gegeben ist

$$f(x,y) = \frac{y}{1+x^2}$$
 und $\mathbf{x_0} = \begin{pmatrix} 1\\2 \end{pmatrix}$ (1)

Bestimme die Richtungsableitung in $\mathbf{x_0}$ in Richtung $\mathbf{v_1} = (3,4)^T$ und $\mathbf{v_2} = (1,-1)^T$.

Wie gross ist die maximale und minimale Steigung?

Loesung 3. Mit

$$\nabla f(1,2) = \begin{pmatrix} -1\\ \frac{1}{2} \end{pmatrix} \tag{2}$$

folgt $\mathbf{v_1}$ - Achtung normieren! - :

$$\partial_{\mathbf{v_1}} f(1,2) = \frac{1}{\sqrt{3^2 + 5^2}} \begin{pmatrix} 3\\4 \end{pmatrix} \cdot \begin{pmatrix} -1\\\frac{1}{2} \end{pmatrix} = -\frac{1}{5} \tag{3}$$

und analog

$$\partial_{\mathbf{v_2}} f(1,2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ \frac{1}{2} \end{pmatrix} = -\frac{3}{2\sqrt{2}} \tag{4}$$

Der Gradient zeigt in Richtung des groessten Anstiegs und die maximale Steigung ist daher

$$\begin{vmatrix}
-1 \\
\frac{1}{2}
\end{vmatrix} = \frac{\sqrt{5}}{2} \tag{5}$$

Entsprechend ist die minimale Steigung $-\frac{\sqrt{5}}{2}$

2 Taylorentwicklung

Aufgabe 4 (Taylorentwicklung). Gegeben sei eine dreimal stetig differenzierbare Funktion $\Psi(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2$, die im Ursprung einen kritischen Punkt hat. Außerdem gilt:

$$\Psi(\mathbf{0}) = \pi \quad \partial_2^2 \Psi(\mathbf{0}) = 2 \quad \partial_1^2 \Psi(\mathbf{0}) = 4 \quad \partial_1 \partial_2 \Psi(\mathbf{0}) = 0$$
 (6)

Wie lautet die Taylorentwicklung bis zur zweiten Ordnung in $\mathbf{0} \in \mathbf{R}^2$

Loesung 4.

$$\Psi(\mathbf{x}) = \Psi(\mathbf{0}) + \underbrace{\operatorname{grad}\Psi(\mathbf{0})}_{=0} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{2} (x, y) \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + R_3(x, y)$$

$$= \pi + 2x^2 + y^2 + R_3(x, y)$$
(7)

Aufgabe 5 (Taylorentwicklung). Gegeben sei eine viermal stetig differenzierbare Funktion $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^2$. Es gilt:

$$f(\mathbf{0}) = 2 \quad \partial_x f(\mathbf{0}) f(\mathbf{0}) = -3 \quad \partial_x \partial_y f(\mathbf{0}) = 2$$
$$\partial_x^2 f(\mathbf{0}) = 1 \quad \partial_x^2 \partial_y f(\mathbf{0}) = \partial_y \partial_x \partial_x f(\mathbf{0}) = 5 \quad \partial_y^3 f(\mathbf{0}) = 6$$
(8)

Alle nicht angegeben Ableitungen verschwinden.

Wie lautet die Taylorentwicklung bis zur dritten Ordnung in $\mathbf{0} \in \mathbf{R}^2$

Loesung 5.

$$0. \text{ Ordnung} = 2 \tag{9}$$

1. Ordnung =
$$-3x$$
 (10)

2. Ordnung =
$$2xy + \frac{x^2}{2}$$
 (11)

3. Ordnung =
$$5\frac{x^2y}{2} + 6\frac{y^3}{3!}$$
 (12)

(13)

Also
$$f(x,y) = 2 - 3x + 2xy + \frac{x^2}{2} 5\frac{x^2y}{2} + y^3$$

3 Extremwertberechnung

Aufgabe 6. Bestimmen Sie die kritischen Punkte der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und chrakterisieren Sie diese.

$$f(x,y) = x^3 - 12xy + 8y^3$$

Loesung 6.

$$\nabla f = \begin{pmatrix} 3x^2 - 12y \\ -12x + 24y^2 \end{pmatrix} = 0$$

$$I \quad 3x^2 - 12y = 0$$

$$II \quad -12x + 24y^2 = 0 \Leftrightarrow x = 2y^2$$

II in I:

$$0 = y(y^3 - 1) \Leftrightarrow (y_1 = 0, x_1 = 0) \quad \lor \quad (y_2 = 1, x_2 = 2)$$

Die Punkte $P_1(0,0)$ und $P_2(2,1)$ sind stationäre, bzw. kritische Punkte.

$$\det(H_f(x)) = \det\begin{pmatrix} 6x & -12\\ -12 & 48y \end{pmatrix} = 288xy - 122$$

Es ergibt sich:

$$P_1(0,0) : \det(H_f(0,0)) = -122 < 0 \Rightarrow Sattelpunkt$$

$$P_2(2,1): \det(H_f(2,1)) > 0$$
 mit $f_{xx}(2,1) = 12 > 0 \Rightarrow lokalesMinimun$

Aufgabe 7. Bestimmen sie lokale Maxima, Minima und Sattelpunkte folgender Funktionen:

(a)
$$f(x,y) = 3xy^2 + 4x^3 - 3y^2 - 12x^2 + 1$$

(b)
$$f(x,y) = (x^2 + y^2) \cdot e^{-x}$$

Loesung 7. (a) Es ergeben sich vier kritische Punkte:

$$(1,2)$$
: det $H_f = -144 < 0 \Rightarrow$ Sattelpunkt

$$(1,-2)$$
: det $H_f = -144 < 0 \Rightarrow$ Sattelpunkt

$$(0,0)$$
: det $H_f = 144 > 0$ und $f_{xx} = -24 < 0 \Rightarrow$ lokales Maximum

$$(2,0)$$
: det $H_f = 144 > 0$ und $f_{xx} = 24 < 0 \Rightarrow$ lokales Minimum

(b) Es ergeben sich zwei kritische Punkte:

$$(2,0)$$
: det $H_f = -4 \cdot e^{-4} < 0 \Rightarrow$ Sattelpunkt

$$(0,0)$$
: det $H_f=4>0$ und $f_{xx}=2>0 \Rightarrow$ lokales Minimum

4 Extremwertberechnung mit NB

Aufgabe 8. Gegeben ist

$$f(x,y,z) = x - y + z \tag{14}$$

und die Menge

$$M = \{(x, y, z) \in \mathbb{R}, \ x^2 + y^2 + 2z^2 = 2\}$$
 (15)

Bestimmen Sie Maxima und Minima der Funktion f, die auf die Menge M beschränkt ist.

Loesung 8. Die Lagrange-Funktion lautet:

$$\mathcal{L}(x, y, z, \lambda) = x - y + z + \lambda \left(x^2 + y^2 + 2z^2 - 2\right)$$
 (16)

Wie lösen das Gleichungssystem:

$$\partial_x \mathcal{L} = 1 + 2x\lambda = 0$$
 \Leftrightarrow $x = \frac{-1}{2\lambda}$ (17)

$$\partial_y \mathcal{L} = -1 + 2y\lambda = 0$$
 \Leftrightarrow $y = \frac{1}{2\lambda}$ (18)
 $\partial_z \mathcal{L} = 1 + 4z\lambda = 0$ \Leftrightarrow $z = \frac{-1}{4\lambda}$ (19)

$$\partial_z \mathcal{L} = 1 + 4z\lambda = 0$$
 \Leftrightarrow $z = \frac{-1}{4\lambda}$ (19)

$$\partial_{\lambda}\mathcal{L} = x^2 + y^2 + 2z^2 - 2 = 0 \qquad \Leftrightarrow \qquad x = \frac{-1}{2\lambda} \tag{20}$$

(21)

Wir setzen Gleichung 17-19 in die letzte Gleichung ein und erhalten:

$$\frac{1}{4\lambda^2} + \frac{1}{4\lambda^2} + 2\frac{1}{16\lambda^2} = 2$$

$$\Leftrightarrow \lambda = \pm \frac{\sqrt{5}}{4}$$
(22)

Das Maximum liegt bei $\frac{1}{\sqrt{5}}(2,-2,1)$, das Minimum bei $\frac{1}{\sqrt{5}}(-2,2,-1)$

Aufgabe 9. Gegeben ist die Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ mit a, b > 0. Gesucht ist ein achsenparalleles Rechteck innerhalb diese Ellipse mit maximalem Flaecheninhalt. Benutzen Sie die Lagrange-Methode.

Loesung 9. Der Flaecheninhalt eines Rechtecks ist durch $A(x,y) = 2x \ 2y$ gegeben. Die Lagrange-Funktion lautet:

$$\mathcal{L}(x,y,\lambda) = 4xy + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$
 (23)

Man erhaelt das folgende Gleichungssystem:

$$\partial_x \mathcal{L} = 4y + \frac{2x\lambda}{a^2} = 0 \tag{24}$$

$$\partial_y \mathcal{L} = 4x + \frac{2y\lambda}{b^2} = 0 \tag{25}$$

$$\partial_{\lambda}\mathcal{L} = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \tag{26}$$

Aus den ersten beiden Gleichungen folgt:

$$\frac{x^2}{a^2} = \frac{y^2}{b^2} \tag{27}$$

Zusammen mit der letzten Gleichung (und unter Vernachlaessigung negativen Loesung) erhaelt man:

$$x = \frac{a}{\sqrt{2}} \quad y = \frac{b}{\sqrt{2}} \tag{28}$$

5 Implizite Funktionen

Aufgabe 10 (Aufloesbarkeit). Gegeben ist die implizite Gleichung f(x, y, z) = c (mit f stetig partiell differenzierbar und $c = \text{const} \in \mathbb{R}$) und ein Punkt (x_0, y_0, z_0) .

Was muss ueberprueft werden, um zu zeigen, dass sich die implizite Gleichung lokal in (x_0, y_0, z_0) nach $y = \tilde{y}(x, z)$ aufloesen laesst?

- $\Box f(x_0, y_0, z_0) = 0$
- $\Box f(x_0, y_0, z_0) \neq 0$
- $\Box f(x_0, y_0, z_0) = c$
- $\Box f(x_0, y_0, z_0) \neq c$

- $\exists \partial_z f(x_0, y_0, z_0) = 0$
- $\Box \ \partial_x f(x_0, y_0, z_0) \neq 0$
- $\Box \ \partial_u f(x_0, y_0, z_0) \neq 0$
- $\Box \ \partial_z f(x_0, y_0, z_0) \neq 0$

Geben sie den Gradienten grad $\tilde{y}(x_0, y_0)$ an.

Loesung 10. Es muss gelten:

- $\boxtimes f(x_0, y_0, z_0) = c$ (der Punkt erfuellt die implizite Gleichung)
- $\boxtimes \partial_y f(x_0, y_0, z_0) \neq 0$

Man erhaelt:

$$\operatorname{grad}\tilde{y}(x_0, y_0) = \begin{pmatrix} \partial_x \tilde{y}(x_0, z_0) \\ \partial_z \tilde{y}(x_0, z_0) \end{pmatrix} = \begin{pmatrix} -\frac{\partial_x f(x_0, y_0, z_0)}{\partial_y f(x_0, y_0, z_0)} \\ -\frac{\partial_z f(x_0, y_0, z_0)}{\partial_y f(x_0, y_0, z_0)} \end{pmatrix}$$
(29)

Aufgabe 11 (Implizite Funktionen). Gegeben ist die implizite Gleichung $f(x,y,z)=x^2-\frac{1}{2}xy^2-\frac{1}{2}y^4=0$. Ist diese Gleichung lokal an $(-\frac{1}{2},1)$ nach $y=\tilde{y}(x)$ aufloesbar? Geben Sie evtl. die Ableitung $\tilde{y}'(-\frac{1}{2})$ an.

Loesung 11. Wir ueberpruefen:

$$f(-\frac{1}{2},1) = \frac{1}{4} + \frac{1}{4} - \frac{1}{2} = 0 \quad \checkmark \tag{30}$$

$$\partial_y f(-\frac{1}{2}, 1) = -xy - 2y^3 = -\frac{3}{2} \quad \checkmark$$
 (31)

 \Rightarrow aufloesbar nach $y = \tilde{y}(x)$ in $(-\frac{1}{2}, 1)$. Nun die Ableitung:

$$\partial_x \tilde{y}(-\frac{1}{2}) = -\frac{2x - \frac{y^2}{2}}{-xy - 2y^3} \bigg|_{x = -1/2, y = 1} = -1 \tag{32}$$

Aufgabe 12 (Implizite Funktionen). (a) Gegeben ist $f(x, y, z) = x - y^7 + z^3 - x^2z - 1 = 0$. Zeigen Sie, dass sich diese Gleichung im Punkt (1,0,1) lokal nach z = g(x,y) aufloesen laesst. Geben Sie ausserdem die Taylorentwichlung in (1,0,1) bis zur ersten Ordnung an.

(b) Gegeben ist die Gleichung:

$$f(x,y) = \frac{1}{2}y^2(x^2+1) - 2yx^2 - 2y = 0$$
 (33)

Bestimme den Bereich $U \subset \mathbb{R}$, in dem sich die implizite Gleichung lokal nach y = g(x) laesst.

(c) Gegeben ist

$$f(x, y, z) = 1 - z + e^{-2z} \cos(x - y) = 0$$
(34)

Zeigen Sie, dass sich f in der Umgebung von $(\pi,0,0)$ nach z=g(x,y) aufloesen laesst. Berechnen Sie $\operatorname{grad} g(\pi,0)$ und geben sie die Taylorentwicklung von g bis zur ersten Ordnung an.

Bestimmen Sie weiterhin einen Normalenvektor der Tangentialebene an $(\pi, 0, 0)$, die durch f(x, y, z) = 0 definiert ist.

Loesung 12. (a) Aus:

$$f(1,0,1) = 1 + 1 - 1 - 1 = 0 \quad \checkmark \tag{35}$$

$$\partial_z f(1,0,1) = 3z^2 - x^2|_{(1,0,1)} = 2 \neq 0 \quad \checkmark$$
 (36)

folgt die lokale Aufloesbarkeit in (1,0,1) nach z=g(x,y). Mit

$$\partial_x g(1,0) = -\frac{\partial_x f}{\partial_z f} \bigg|_{(1,0,1)} = -\frac{1 - 2xz}{3z^2 - x^2} \bigg|_{(1,0,1)} = \frac{1}{2}$$
 (37)

$$\partial_y g(1,0) = -\frac{\partial_y f}{\partial_z f} \bigg|_{(1,0,1)} = -\frac{-7y^6}{3z^2 - x^2} \bigg|_{(1,0,1)} = 0 \tag{38}$$

ergibt sich:

$$g(x,y) \approx \underbrace{g(1,0)}_{=1} + \operatorname{grad}g(1,0) \cdot \begin{pmatrix} x-1\\y-0 \end{pmatrix}$$

$$= 1 + \begin{pmatrix} \frac{1}{2}\\0 \end{pmatrix} \cdot \begin{pmatrix} x-1\\y \end{pmatrix}$$

$$= 1 + \frac{1}{2}(x-1)$$
(39)

(b) Es muss gelten:

$$f(x_0, y_0) = \frac{1}{2}y_0^2(x_0^2 + 1) - 2y_0x_0^2 - 2y_0 = \underbrace{(x^2 + 1)}_{\neq 0} \left(\frac{1}{2}y^2 - 2y\right) = 0$$

$$\partial_y f(x_0, y_0) = y_0(x_0^2 + 1) - 2x_0^2 - 2 = (x^2 + 1)(y - 2) \neq 0$$
(41)

Aus 40 folgt:

$$x_0 \in \mathbb{R} \text{ beliebig}, \quad y_0 = 0 \quad \text{oder} \quad y_0 = 4$$
 (42)

Aus 41 folgt lediglich:

$$x_0 \in \mathbb{R} \text{ beliebig}, \quad y_0 \neq -2$$
 (43)

(c) Man findet:

$$f(\pi, 0, 0) = 1 + \cos(\pi) = 1 - 1 = 0 \quad \checkmark \tag{44}$$

$$\partial_z f(\pi, 0, 0) = -1 - 2\cos(\pi) = 1 \neq 0 \quad \checkmark$$
 (45)

 \Rightarrow aufloesbar nach z = g(x), y in $(\pi, 0, 0)$. Nun die Ableitungen:

$$\partial_x g(\pi, 0, 0) = -\frac{-e^{-2z} \sin(x - y)}{1} \bigg|_{\pi, 0, 0} = 0$$
 (46)

$$\partial_u q(\pi, 0, 0) = 0 \tag{47}$$

 $\Rightarrow \operatorname{grad} g(\pi,0) = (0,0)^T.$

Die Taylorentwicklung bis zur 1. Ordnung lautet also:

$$z \approx 0 + (0,0) \cdot {\begin{pmatrix} x - \pi \\ y \end{pmatrix}} = 0 \tag{48}$$

Die z=0-Ebene ist die x-y-Ebene mit Normalenvektor (0,0,1)Alternativ erinnert man sich, dass der Gradient senkrecht auf allen Niveauflaechen steh. Da f(x,y,z)=0 eine Niveauflaeche darstellt, berechnet man den Normalenvektor wie folgt:

$$\operatorname{grad} f(\pi, 0, 0) = \begin{pmatrix} -e^{2z_0} \sin(x_0 - y_0) \\ e^{2z_0} \sin(x_0 - y_0) \\ -1 - 2e^{-2z_0} \cos(x_0 - y_0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix} \propto \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
(49)

6 Weitere Aufgaben

Aufgabe 13 (Taylorentwicklung). Gegeben ist $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = \sin(x+y)$

- (a) Entwickeln Sie die Funktion f bis zur zweiten Ordnung um (π, π) .
- (b) Entwickeln Sie die Funktion f bis zur dritten Ordnung um (0,0).
- (c) Wie lautet die Hesse-Matrix von f am Punkt $(-\pi/4, -\pi/4)$?

Sei nun $g: \mathbb{R}^3 \to \mathbb{R}$ mit g(x, y, z) = f(x, y + z)

- (d) Entwickeln Sie die Funktion q bis zur ersten Ordnung um (0,0,0).
- (e) Wie viel Polynome dritter Ordnung hat die Taylorentwicklung bis zur dritten Ordnung von g um (0,0,0,)?

(f) Wie lautet die Hesse-Matrix von g am Punkt $(0,0,2\pi)$.

Loesung 13. (a) Mit

$$f(\pi,\pi) = 0 \tag{50}$$

$$\partial_x f(\pi, \pi) = \partial_y f(\pi, \pi) = 1 \tag{51}$$

$$\partial_x^2 f(\pi, \pi) = \partial_y^2 f(\pi, \pi) = \partial_x \partial_y f(\pi, \pi) = 0$$
 (52)

folgt

$$f(x,y) = (x-\pi) + (y-\pi) = x + y - 2\pi \tag{53}$$

(b) Entwickeln Sie die Funktion f bis zur dritten Ordnung um (0,0). Mit

$$f(0,0) = 0 (54)$$

$$\partial_x f(0,0) = \partial_y f(0,0) = 1$$
 (55)

$$\partial_x^2 f(0,0) = \partial_y^2 f(0,0) = \partial_{xy} f(0,0) = 0$$
(56)

$$\partial_x^3 f(0,0) = \partial_y^3 f(0,0) = \partial_{xxy} f(0,0) = \partial_{xyy} f(0,0) = 0$$
 (57)

(58)

folgt

$$f(x,y) = x + y - \frac{1}{6}x^3 - \frac{1}{6}y^3 - \frac{1}{2}x^2y - \frac{1}{2}xy^2$$
 (59)

(c) Wie lautet die Hesse-Matrix von f am Punkt $(-\pi/4, -\pi/4)$.

$$H_f(-\pi/4, -\pi/4) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 (60)

Sei nun $g: \mathbb{R}^3 \to \mathbb{R}$ mit g(x, y, z) = f(x, y + z)

(d) Entwickeln Sie die Funktion g bis zur ersten Ordnung um (0,0,0). Mit $g(x,y,z)=\sin(x+y+z)$ folgt:

$$g(x, y, z) \approx x + y + z \tag{61}$$

(e) Wie viel Polynome dritter Ordnung hat die Taylorentwicklung bis zur dritten Ordnung von g um (0,0,0,)? Es gibt folgende Terme:

$$x^3, y^3, z^3, x^2y, x^2z, y^2x, y^2z, z^2x, z^2y, xyz = 10$$
 Terme (62)

(f) Wie lautet die Hesse-Matrix von g am Punkt $(0,0,2\pi)$. Man erhaelt:

$$H_f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{63}$$

Aufgabe 14 (Gelichungssystem). Sei

$$f_1(t, x, y) = \ln(x) + y^2 t - 4 \tag{64}$$

$$f_2(t, x, y) = x^2 + yt^2 + t2 (65)$$

fuer $t, x, y \in \mathbb{R}$ x > 0. Im Punkt P = (1, 1, -2) gilt $f_1(P) = f_2(P) = 0$

- (a) Die Gleichung $f_1(t, x, y) = 0$ kann offensichtlich nach lokal um P nach y aufgeloest werden. Man erhaelt die Funktion $(z, x) \to \tilde{y}(t, x)$. Berechnen Sie $\operatorname{grad} \tilde{y}(1, 1)$
- (b) Der Punkt P ist Loesung des Gleichungssytstems:

$$f_1(t, x, y) = 0 (66)$$

$$f_2(t, x, y) = 0 (67)$$

Dies soll in der Umgebung von P lokal nach x und y aufgeloest werden. Die invertierbarkeit welcher Matrix muss dazu ueberprueft werden?

Loesung 14. (a) Man erhaelt:

$$\operatorname{grad}\tilde{y}(1,1) = \begin{pmatrix} -\frac{\partial_t f}{\partial_y f} \\ -\frac{\partial_x f}{\partial_y f} \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{4} \end{pmatrix}$$
 (68)

(b) Es muss gelten:

$$M = \frac{\partial(f_1, f_2)}{\partial(x, y)} = \begin{pmatrix} \partial_x f_1 & \partial_y f_1 \\ \partial_x f_2 & \partial_y f_2 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ 2 & 1 \end{pmatrix}$$
(69)

Aufgabe 15 (Zweite Ableitung). Gegeben sei $f : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \to f(x, y) = 0$ eine implizite Funktion, die nach y = g(x) aufloesbar ist. Die Ableitung ist gegeben durch:

$$g'(x) = -\frac{\partial_x f}{\partial_y f}(x, g(x)) \tag{70}$$

Zeigen Sie, dass die zweite Ableitung g'' durch:

$$g''(x) = -\frac{1}{\partial_g f} \left(\partial_x^2 f - \frac{2 \partial_x f \partial_{xg} f}{\partial_g f} + \frac{\partial_g^2 f (\partial_x f)^2}{(\partial_g f)^2} \right)$$
(71)

gegeben ist.

Loesung 15. Ausgehend von:

$$\frac{d}{dx}f(x,g(x)) = \frac{d}{dx}0 = 0 = \partial_x f + \partial_g f \,\partial_x g \tag{73}$$

(74)

differenzieren wir erneut total nach x:

$$0 = \partial_x^2 f + \partial_{xg} f \, \partial_x g + \partial_{xg} f \, \partial_x g + \partial_g f \, \partial_x^2 g + (\partial_y^2 f \, \partial_x g + \partial_x f \, \underbrace{\partial_{gx} g}_{=0}) \, \partial_x g \quad (76)$$

$$= \partial_x^2 f + 2\partial_{xg} f \,\partial_x g + \partial_g f \,\partial_x^2 g + \partial_g^2 f \,(\partial_x g)^2 \tag{77}$$

Nach $\partial_x^2 g$ aufloesen und fuer $\partial_x g$ die Definition aus der Aufgabe einsetzen ergibt:

$$g''(x) = \partial_x^2 g = -\frac{1}{\partial_g f} \left(\partial_x^2 f - \frac{2\partial_{xy} f \partial_x f}{\partial_y f} + \frac{\partial_y^2 f (\partial_x f)^2}{(\partial_y f)^2} \right)$$
(78)

Aufgabe 16. Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(\mathbf{x}) = \|\mathbf{x}\|^4 - a\|\mathbf{x}\|^2 + x_1^2 \quad \text{mit } a \in \mathbb{R} \setminus \{0\}$$

Berechnen Sie die kritischen Punkte und charakterisieren Sie diese in Abhängigkeit von a.

Loesung 16. Stationäre Punkte:

$$\nabla f = \begin{pmatrix} 2x((x^2 + y^2) - a + 1) \\ 2y(2(x^2 + y^2) - a) \end{pmatrix} = 0$$

- Fall 1: $x_1 = 0 \land y_1 = 0$
- Fall 2: $x_2 = 0 \wedge (2(x_2^2 + y_2^2) a) = 0$

$$\Leftrightarrow y_2 = \pm \sqrt{\frac{a}{2}} \Rightarrow \text{für } [a > 0]$$

• Fall 3:
$$(2(x_2^2 + y_2^2) - a + 1) = 0 \land y = 0$$

$$\Leftrightarrow x_2 = \pm \sqrt{\frac{a-1}{2}} \Rightarrow \text{für} \quad \boxed{a > 1}$$

• Fall 4: $(2(x_2^2+y_2^2)-a+1)=0 \land (2(x_2^2+y_2^2)-a)=0 \Rightarrow$ keine Lösung Für die Hessematrix ergibt sich:

$$\begin{pmatrix} 2(6x^2 + 2y^2 - a + 1) & 8xy \\ 8xy & 2(2x^2 + 6y^2 - a) \end{pmatrix}$$

Charakterisierung der stationären Punkte:

• Fall 1: a beliebig $\Rightarrow P_1(0,0)$

$$\det(H_f(0,0)) = 4a(a-1) \begin{cases} > 0 & \text{für } a > 1 \pmod{f_{xx}} < 0 \pmod{lokalesMaximum} \\ = 0 & \text{für } a = 1 \pmod{f_{xx}} = 0 \pmod{sieheFall4} \\ < 0 & \text{für } 0 < a < 1 \pmod{f_{xx}} > 0 \pmod{Sattelpunkt} \end{cases}$$

• Fall 2: $a > 0 \Rightarrow P_2(0, \pm \sqrt{\frac{a}{2}}) \wedge P_1$:

$$\det(H_f(0,\pm\sqrt{\frac{a}{2}}))=8a>0 \quad \text{mit } f_{xx}>0 \text{ ist } P_2 \text{ ein lokales Minimum}$$

• Fall 3: $a > 1 \Rightarrow P_3(\pm \sqrt{\frac{a-1}{2}}, 0) \land P_2 \land P_1$

$$\det(H_f(\pm\sqrt{\frac{a-1}{2}},0)) = 8(1-a) < 0$$

• Fall 4: $a = 1 \Rightarrow P_1 \land P_2$

Problem:
$$\det(H_f(0,0)) = 0 \Rightarrow \text{keine Aussage}$$

Um trotzdem zu testen um welche Art von stationären Punkt es sich handelt, betrachten wir f(x,y) - f(0,0) in der Nähe von (0,0):

$$\mathbf{x} = \begin{pmatrix} \epsilon \cos(\phi) \\ \epsilon \sin(\phi) \end{pmatrix} \quad \text{mit } \epsilon \text{ hinreichend klein}$$

$$\Delta = f(\epsilon \cos(\phi), \epsilon \sin(\phi)) - f(0, 0) = \epsilon^{2} \left(\epsilon^{2} \underbrace{-1 + \cos(\phi)}_{[0, -2]}\right)$$

Für $\phi=0$ folgt $\Delta>0$ und für $\phi=\pi$ ist $\Delta<0$, d.h für a=1 ist (0,0) ein Sattelpunkt Zusammen:

a < 0: $P_1(0,0)$ Minimum

o < a < 1: $P_1(0,0)$ Sattelpunkt, $P_2(0,\pm\sqrt{\frac{a}{2}})$ Minimum

 $a=1 \colon\thinspace P_1(0,0)$ Sattelpunkt, $P_2(0,\pm \sqrt{\frac{a}{2}})$ Minimum

a>1: $P_1(0,0)$ Maximum, $P_2(0,\pm\sqrt{\frac{a}{2}})$ Minimum, $P_3(\pm\sqrt{\frac{a-1}{2}},0)$ Sattelpunkt

Aufgabe 17. Gegeben ist die Funktion

$$f(x,y) = \sin(x)\sin(y)$$

Diskutieren Sie f(x,y) (Periodizität, Nullstellen) und bestimmen Sie lokale Minima, lokale Maxima und Sattelpunkte. (Betrachten Sie zuerst die Periodizität und schränken Sie so den zu untersuchenden Bereich ein.)

Loesung 17. Da $\sin(x) 2\pi$ -periodisch ist gilt:

$$f(x + 2\pi, y) = f(x, y) = f(x, y + 2\pi)$$

Es reicht also den Breich $0 \le x < 2\pi$ und $0 \le y < 2\pi$ zu untersuchen. Nullstellen: $0 = \sin(x)\sin(y)$

$$\Rightarrow x = n\pi \lor y = m\pi$$
 $n, m = 0, 1, ...$

Kritische Punkte:

$$\nabla f = \begin{pmatrix} \cos(x)\sin(y) \\ \sin(x)\cos(y) \end{pmatrix} = 0$$

Fall 1: $\sin(y) = 0 \wedge \sin(x) = 0$

$$\Leftrightarrow x = k\pi \land y = l\pi \Leftrightarrow P_1(k\pi, l\pi)$$

Fall 2: $cos(y) = 0 \land cos(x) = 0$

$$\Leftrightarrow x = \frac{\pi}{2} + m\pi \wedge y = \frac{\pi}{2} + n\pi \Leftrightarrow P_2(\frac{\pi}{2} + m\pi, \frac{\pi}{2} + n\pi)$$

Charakterisierung der kritischen Punkte:

$$\det H_f(x,y) = \begin{pmatrix} -\sin(x)\sin(y) & \cos(x)\cos(y) \\ \cos(x)\cos(y) & -\sin(x)\sin(y) \end{pmatrix} = \sin(x)^2 - \cos(y)^2$$

(x,y)	$\det H_f(x,y)$	$f_{xx}(x,y)$	Тур
(0,0)	-1		Sattelpunkt
$(\pi,0)$	-1		Sattelpunkt
$(0,\pi)$	-1		Sattelpunkt
(π,π)	-1		Sattelpunkt
$\left(\frac{\pi}{2},\frac{\pi}{2}\right)$	1	-1	lokales Maximum
$\left(\frac{3\pi}{2},\frac{\pi}{2}\right)$	1	1	lokales Minimum
$\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$	1	1	lokales Minimum
$\left(\frac{3\pi}{2},\frac{3\pi}{2}\right)$	1	-1	lokales Maximum