Conteúdo

- 1. Introdução
- 2. Listas
- 3. Pilhas e Filas
- 4. Árvores
- 5. Árvores de Pesquisa
 - Árvore Binária e Árvore AVL
 - Árvore N-ária e Árvore B
- 6. Tabelas de Dispersão (Hashing)
- 7. Métodos de Acesso a Arquivos
- 8. Métodos de Ordenação de Dados

Árvores N-árias de Pesquisa

Árvore N-ária de Pesquisa

Uma Árvore N-ária de Pesquisa ou Árvore N-ária de Busca é uma árvore que :

- contém \underline{n} subárvores e \underline{m} chaves, sendo $\underline{m} = \underline{n}$ -1 e 2 <= \underline{n} <= N;
- todas as chaves estão ordenadas, ou seja, dado um conjunto de chaves $ch_1, ch_2, ..., ch_i, ..., ch_m$, nesta ordem, tem-se: $ch_i < ch_{i+1}$

• • • • • •

Exemplo de Árvore N-ária de Pesquisa

Vantagem de uma Árvore N-ária de Pesquisa

Indexação de um grande volume de dados:

$$h(A) = 0 \rightarrow 2$$
 chaves

$$h(A) = 1 \rightarrow 2 + 3.2 = 8 \text{ chaves}$$

$$h(A) = 2 \rightarrow 2 + 3.2 + 3.3.2 = 26$$
 chaves

"Quanto maior o N, maior é o número de chaves que se pode indexar e conseqüentemente, encontra-se uma chave com menos acessos à arvore"

Modelagem Física

Subárvore, mantém todos os elementos maiores que elemento, e menores que elemento, e

Implementação

numElem

6

elementos

null 12 39 51 77 89 102

subÁrvores

 Sub_0 Sub_1 Sub_2 Sub_3 Sub_4 Sub_5 Sub_6

Operações em uma Árvore N-ária de Pesquisa

- Pesquisa
 - pesquisa todos os nodos
 - pesquisa um elemento
- Inclusão (elemento)
- Exclusão (elemento)

Busca in-ordem

Busca in-ordem

3-9

Busca in-ordem

3-9-13

Busca in-ordem

3-9-13-22-27-33-50

Busca in-ordem

3-9-13-22-27-50-54-63-71-88-93

Pesquisa de um Elemento

- Busca dos elementos dentro do nodo:
 - busca seqüencial
 - busca binária
- Se o elemento do nodo > elemento pesquisado → árvore ESQ
- Se o elemento do nodo < elemento pesquisado → árvore DIR

• • • • • • •

Busca Seqüencial

Pesquisar o elemento 33.

Busca Seqüencial

Pesquisar o elemento 33.

Busca Seqüencial

Pesquisar o elemento 33.

Busca Binária

A varredura dos elementos de um nodo é feita através de uma pesquisa binária.

Inclusão em uma Árvore N-ária de Pesquisa

- Busca a posição na qual o elemento deve ser inserido.
- Caso haja espaço para inserir o elemento em um nodo, o vetor deve ser rearranjado (deslocamento de elementos e subárvores) para a sua correta colocação.

Exclusão em uma Árvore N-ária de Pesquisa

- Se o elemento possui subárvores ESQ e DIR vazias, ele é removido e ocorre deslocamento no vetor para ajustar os elementos restantes.
- Se o elemento possui subárvores ESQ e DIR não vazias, ele é trocado com o maior elemento da subárvore ESQ ou o menor elemento da subárvore DIR (processo recursivo – até que ele esteja em um nodo folha!)

• • • • • •

Excluir o elemento 18

Excluir o elemento 18

→ não há subárvores ESQ e DIR

Excluir o elemento 18

→ não há subárvores ESQ e DIR

Excluir o elemento 90

Excluir o elemento 90

→ não há subárvores ESQ e DIR e o elemento é o único do nodo

Excluir o elemento 90

→ não há subárvores ESQ e DIR e o elemento é o único do nodo

• • • • • • •

Excluir o elemento 54

Excluir o elemento 54

→ existem subárvores ESQ e DIR: o elemento é trocado com o maior elemento na ESQ

Excluir o elemento 54

→ o elemento possui subárvore ESQ não vazia: nova troca.

Excluir o elemento 54

 \rightarrow o elemento pode ser removido

Excluir o elemento 54

Problema da Árvore N-ária de Pesquisa

- Uma Árvore N-ária de Pesquisa pode ficar desbalanceada.
- Exemplo:
 - N = 4
 - ordem de inclusão: 20-60-90-12-7-18-5-4-6-1-3

Alternativa de solução: Árvore B