FORMULE DE PLANCHEREL SUR $GL_n \times GL_n \setminus GL_{2n}$

1. Introduction

Soit F un corps p-adique, G un groupe réductif déployé sur F et $X = H \setminus G$ une variété sphérique homogène admettant une mesure invariante. Sakellaridis et Venkatesh [19] introduisent une donnée radicielle associé à X, qui n'existe que sous certaines conditions sur X. On peut associer à la donnée radicielle duale un groupe réductif complexe \check{G}_X qu'ils appellent le groupe dual de la variété sphérique X. On note G_X le groupe réductif déployé sur F dont le groupe dual est \check{G}_X , le groupe G_X est associé à la donnée radicielle de X. Sakellaridis et Venkatesh introduisent aussi un morphisme de groupes algébriques $\iota_X: \check{G}_X \times SL_2(\mathbb{C}) \to \check{G}$ sous certaines hypothèses. L'existence de l'application ι_X a ensuite été vérifiée par Knop et Schalke [16] sans ces hypothèses. Supposons que ι_X est trivial sur $SL_2(\mathbb{C})$.

La correspondance de Langlands locale pour G donne une application surjective $Irr(G) \to \Phi(G)$ à fibres finies entre l'ensemble Irr(G) des classes d'isomorphisme de représentations irréductibles de G et l'ensemble $\Phi(G) = \{ \varphi : W_F' \to {}^L G \text{ admissible} \}$ des paramètres de Langlands, où W_F' est le groupe de Weil-Deligne de F. La correspondance de Langlands locale donne une partition de Irr(G) en L-paquets

$$Irr(G) = \bigcup_{\varphi \in \Phi(G)} \Pi^G(\varphi),$$

où $\Pi^G(\phi)$ est l'ensemble des classes d'isomorphismes de représentations qui ont pour paramètre de Langlands ϕ . La correspondance de Langlands locale est prouvée pour $GL_n(F)$ par Harris-Taylor [8], Henniart [9], Scholze [20] et pour les groupes orthogonaux impairs par Arthur [2]. Rappellons la

Conjecture 1.1 (Sakellaridis-Venkatesh [19, Conjecture 16.2.2]). Il existe un isomorphisme G-équivariant de représentations unitaires

$$L^2(X) \simeq \int_{\Phi_{\text{temp}}(G_X)}^{\oplus} \mathcal{H}_{\varphi} d\varphi,$$

où $\Phi_{\mathsf{temp}}(\mathsf{G}_X)$ est l'ensemble des paramètres de Langlands tempérés de G_X modulo $\check{\mathsf{G}}_X$ -conjugaison, $\mathsf{d}\varphi$ est dans la classe naturelle des mesures sur $\Phi_{\mathsf{temp}}(\mathsf{G}_X)$ et \mathcal{H}_φ est une somme directe sans multiplicité de représentations dans $\Pi^\mathsf{G}(\iota_X \circ \varphi)$.

Supposons de plus la correspondance de Langlands locale pour G_X , on dispose alors d'une correspondance fonctorielle $T_X: \mathsf{Temp}(G_X) \to \mathsf{Temp}(G)$. Cette correspondance associe à une classe d'isomorphisme de représentations tempérées de G_X un ensemble fini de classes d'isomorphisme de représentations tempérées de G. On obtient alors la

Conjecture 1.2 (Sakellaridis-Venkatesh). On note $d\sigma$ la mesure spectrale sur G_X (voir section 1.2). Supposons que la mesure spectrale $d\sigma$ sur G_X se descend en une mesure sur $Temp(G_X)/\sim$, où \sim est la relation d'équivalence "égalité des paramètres

Date: 4 novembre 2019.

de Langlands". Alors il existe un isomorphisme G-équivariant de représentations unitaires

(3)
$$L^{2}(X) \simeq \int_{\text{Temp}(G_{X})/\sim}^{\oplus} \widetilde{T}_{X}(\sigma) d\sigma,$$

où $\widetilde{T}_X(\sigma)$ est une somme directe sans multiplicité de représentations dans $T_X(\sigma)$.

Spécifions maintenant au cas où $G = GL_{2n}$ et $X = GL_n \times GL_n \setminus GL_{2n}$. On a $\check{G}_X = Sp_{2n}$ et $G_X = SO(2n+1)$. La correspondance de Langlands locale est prouvé pour G et G_X par Harris-Taylor [8], Henniart [9] et Arthur [2]. De plus, la mesure $d\sigma$ se descend à $Temp(G_X)/\sim$ d'après Ichino-Lapid-Mao [11]. L'essentiel de notre travail consiste alors à prouver le

Théorème 1.1. Il existe un isomorphisme GL_{2n} -équivariant de représentations unitaires

$$(4) \hspace{1cm} L^{2}(GL_{n}\times GL_{n}\backslash GL_{2n})\simeq \int_{Temp(SO(2n+1))/\sim}^{\oplus}T(\sigma)d\sigma,$$

où d σ est la mesure spectrale sur SO(2n+1) et $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})$ est l'application de transfert provenant de la correspondance de Langlands locale.

On note H_n le groupe des matrices de la forme $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$ avec $X \in M_n(F)$ et $g \in GL_n(F)$. L'élément σ_n est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 3 & \cdots & 2n-1 \end{pmatrix} \begin{pmatrix} n+1 & n+2 & \cdots & 2n \\ 2 & 4 & \cdots & 2n \end{pmatrix}$. Soit θ le caractère sur $H_n(F)$ qui envoie $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$ sur $\psi(Tr(X))$. On déduit le théorème précédent d'un résultat analogue sur le modèle de Shalika. Plus précisément, on prouve le

Théorème 1.2. Il existe un isomorphisme GL_{2n} -équivariant de représentations unitaires

$$(5) \hspace{1cm} L^{2}(\mathsf{H}_{\mathfrak{n}}\backslash\mathsf{GL}_{2\mathfrak{n}},\theta) \simeq \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\sim}^{\oplus} \mathsf{T}(\sigma)d\sigma,$$

où $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})$ est l'application de transfert provenant de la correspondance de Langlands locale.

Ce dernier est une conséquence de la formule de Plancherel explicte que l'on prouve dans la section 5. Soit ψ un caractère additif non trivial de F. On pose $Y_n = H_n \backslash GL_{2n}$. On note $C_c^\infty(Y_n,\theta)$ l'ensemble des fonctions lisse sur G_n , (H_n,θ) -invariante et à support compact modulo H_n . Soient $\phi_1,\phi_2 \in C_c^\infty(Y_n,\theta)$. Il existe $f_1, f_2 \in C_c^\infty(G_{2n})$ tel que $\phi_i = \phi_{f_i}$ pour i = 1,2. On pose $f = f_1 * f_2^*$, où $f_2^*(g) = \overline{f_2(g^{-1})}$. Pour $W \in C^w(N_{2n} \backslash GL_{2n}, \psi)$, on note

(6)
$$\beta(W) = \int_{\mathsf{H}^p_n \cap \mathsf{N}_{2n} \setminus \mathsf{H}^p_n} W(\xi_p) \theta(\xi_p)^{-1} d\xi_p.$$

où $H_n^P = H_n \bigcap P_n$, on définit la mesure $d\xi_p$ dans la section 4, voir la section 1.1 pour les notations N_{2n}, P_n et on renvoie à la section 2.1.4 pour la définition de l'espace $C^w(N_{2n}\backslash GL_{2n}, \psi)$. On pose

(7)
$$(\varphi_1, \varphi_2)_{\Upsilon_n, \pi} = \int_{H_n^P \cap N_{2n} \setminus H_n^P} \beta \left(W_{f, \pi}(\xi_p, .) \right) \theta(\xi_p) d\xi_p,$$

pour tout $\pi \in T(\text{Temp}(SO(2n+1)))$, où $W_{f,\pi}(g_1,g_2) = \int_{N_{2n}} f_{\pi}(g_1^{-1}ug_2)\psi(u)^{-1}du$ et $f_{\pi}(g) = \text{Tr}(\pi(g)\pi(f^{\vee}))$, avec $f^{\vee}(g) = f(g^{-1})$.

On prouve alors la formule de Plancherel explicite sur $H_n\backslash GL_{2n}$ sous la forme du

Théorème 1.3. On a

$$(8) \qquad (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_{\mathfrak{n}},\theta)} = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\sim} (\phi_1,\phi_2)_{\mathsf{Y}_{\mathfrak{n}},\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|\mathsf{S}_{\sigma}|} d\sigma,$$

Le facteur $\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|}$ est défini dans la section 1.1.

La preuve de ce théorème est purement locale, elle se base sur la théorie des fonctions zêta introduite par Jacquet-Shalika [13]. Une fois que l'on aura introduit les préliminaires, il s'agit essentiellement de montrer que l'on peut échanger deux intégrales (voir la preuve du théorème 5.1). L'utilisation des résultats de Jacquet-Shalika nous amène à prouver un résultat sur les facteurs gamma.

Théorème 1.4. Soit π une représentation tempérée irréductible de $GL_{2n}(F)$. On note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ le facteur gamma de Jacquet-Shalika, voir section 2. Alors il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$, on ait

(9)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma(s, \pi, \Lambda^2, \psi).$$

Dans la suite de cette introduction, F désigne un corps de nombres et ψ un caractère non trivial de \mathbb{A}_F/F . On définit $H_n(\mathbb{A}_F)$ et θ de la même manière que précédemment de façon globale.

Soit π une représentation automorphe cuspidale irréductible de $GL_{2n}(\mathbb{A}_F)$ et $\phi_1,\phi_2\in C_c^\infty(H_n(\mathbb{A}_F)\backslash GL_{2n}(\mathbb{A}_F),\theta)=\bigotimes_{\nu}'C_c^\infty(H_n(F_{\nu})\backslash GL_{2n}(F_{\nu}),\theta_{\nu})$. On note $\Sigma\phi_i\in C^\infty([GL_{2n}])$, pour i=1,2, la fonction définie par $\Sigma\phi_i(g)=\sum_{x\in H_n(F)\backslash GL_{2n}(F)}\phi_i(xg)$ pour tout $g\in GL_{2n}(\mathbb{A}_F)$. D'autre part, pour $\varphi\in\pi$, on introduit la période globale

$$\mathfrak{P}_{\mathsf{H}_{\mathfrak{n}},\theta}(\phi) = \int_{[\mathsf{Z}_{2\mathfrak{n}} \setminus \mathsf{H}_{\mathfrak{n}}]} \phi(\mathsf{h}) \theta(\mathsf{h}) d\mathsf{h},$$

où Z_{2n} est le centre de GL_{2n} et les crochets désignent le quotient des points adéliques modulo les points rationnels.

Sakellaridis et Venkatesh conjecturent une factorisation du produit scalaire

$$(11) \hspace{1cm} <(\Sigma\varphi_{1})_{\pi}, (\Sigma\varphi_{2})_{\pi}>_{\text{Pet}} = \int_{[Z_{2n}\setminus GL_{2n}]} (\Sigma\varphi_{1})_{\pi}(g) \overline{(\Sigma\varphi_{2})_{\pi}(g)} dg,$$

où $(\Sigma \phi_1)_{\pi}$ est la projection sur π de $\Sigma \phi_i$ et dg est la mesure de Tamagawa de $[Z_{2n} \backslash GL_{2n}]$ [19, section 17.1].

Si π est le transfert d'une représentation automorphe cuspidale σ de $SO(2n+1)(\mathbb{A}_F)$ alors cette factorisation prend la forme suivante

(12)
$$\langle (\Sigma \phi_1)_{\pi}, (\Sigma \phi_2)_{\pi} \rangle_{\mathsf{Pet}} = \mathfrak{q} \prod_{\nu}' \langle \phi_{1,\nu}, \phi_{2,\nu} \rangle_{\sigma_{\nu}},$$

où q est un rationnel. Cette factorisation est une conséquence de la factorisation de la période globale en produit de périodes locales, produite par Jacquet-Shalika dans le cas qui nous intéresse (voir plus loin). Les quantités $\langle \phi_{1,\nu}, \phi_{2,\nu} \rangle_{\sigma_{\nu}}$ sont des formes hermitiennes $(H_n(F_{\nu}), \theta_{\nu})$ -invariante. On renvoie à [19, section 17.5] pour la signification du produit \prod'_{ν} . En effet, le produit n'est pas absolument convergent et

on doit l'interpréter comme l'évaluation d'une fonction L. Si π n'est pas le transfert d'une représentation automorphe cuspidale de $SO(2n+1)(\mathbb{A}_F)$ alors

$$(13) \qquad \qquad <(\Sigma \phi_1)_{\pi}, (\Sigma \phi_2)_{\pi}>_{\mathsf{Pet}} = 0.$$

Sakellaridis et Venkatesh conjecturent que les formes hermitiennes $\langle \phi_{1,\nu}, \phi_{2,\nu} \rangle_{\sigma_{\nu}}$ (pour σ_{ν} tempérée) sont reliées aux formes $(\phi_{1,\nu}, \phi_{2,\nu})_{\gamma_{n,\nu},\pi_{\nu}}$ qui l'on a définit précédemment. Plus précisement,

Conjecture 1.3 (Sakellaridis-Venkatesh [19, section 17]). On a l'égalité

(14)
$$\langle \phi_{1,\nu}, \phi_{2,\nu} \rangle_{\sigma_{\nu}} = (\phi_{1,\nu}, \phi_{2,\nu})_{Y_{n,\nu},T(\sigma_{\nu})}.$$

De manière duale, la relation 12 est équivalente à une factorisation de la période globale $\mathcal{P}_{H_n,\theta}$ en produit de périodes locales $\mathcal{P}_{H_n,\theta,\nu}$. Cette factorisation est obtenue par Jacquet-Shalika [13] à travers leur théorie des fonctions zêta que l'on explicite dans la section 2.

La relation 18 entre la période locale et la forme β va nous permettre d'obtenir une formule de Plancherel explicite sur $L^2(H_n \backslash GL_{2n}, \theta)$ prouvant ainsi la conjecture 1.3. Plus précisément, pour Φ une fonction de Schwartz sur \mathbb{A}^n_F et W_{φ} la fonction de Whittaker associée à φ , on introduit dans la suite des fonctions zêta globales $J(s, W_{\varphi}, \Phi)$, qui sont reliées à la période globale par la relation

(15)
$$\operatorname{Res}_{s=1} J(s, W_{\varphi}, \Phi) = \mathcal{P}_{H_n, \theta}(\varphi) \widehat{\Phi}(0).$$

De plus, ces fonctions zêta globales se décomposent en un produit de fonctions zêta locales, pour Re(s) assez grand, on a

$$J(s,W_{\phi},\Phi) = L^S(s,\pi,\Lambda^2) \prod_{\nu \in S} J(s,W_{\nu},\Phi_{\nu}), \label{eq:Jsharper}$$

où S est un ensemble de places suffisamment grand. On obtient alors une factorisation de la période globale sous la forme

$$\mathfrak{P}_{\mathsf{H}_{\mathfrak{n}},\theta}(\phi) = \frac{\mathsf{Res}_{s=1}\mathsf{L}^{\mathsf{S}}(s,\pi,\Lambda^2)}{\widehat{\Phi}^{\mathsf{S}}(0)} \prod_{\nu \in \mathsf{S}} \frac{\mathsf{J}(1,W_{\nu},\Phi_{\nu})}{\widehat{\Phi}_{\nu}(0)}.$$

Supposons que $\operatorname{Res}_{s=1} L^S(s,\pi,\Lambda^2) \neq 0$. Le terme $\mathcal{P}_{H_\pi,\theta}(\phi)$ ne dépend pas de Φ , on en déduit que les facteurs $\frac{J(1,W_\nu,\Phi_\nu)}{\widehat{\Phi}_\nu(0)}$ ne dépendent pas de Φ . On montrera l'égalité

(18)
$$J(1, \rho(w_{n,n})\widetilde{W_{\nu}}, \widehat{\Phi_{\nu}}) = \pm \Phi_{\nu}(0)\beta(W_{\nu}),$$

c'est le lemme 5.4, où $w_{n,n} = \sigma_n \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_n^{-1}$. La forme linéaire β nous servira à prouver le théorème 1.3.

On commence dans la section 2 par prouver une relation sur les facteurs γ du carré extérieur. Les sections 3 et 4 sont des préliminaires pour le théorème 5.1. On fini dans la section 5 par prouver une formule de Plancherel explicite sur $L^2(H_n\backslash GL_{2n},\theta)$ et des décompositions de Plancherel abstraite sur $L^2(H_n\backslash GL_{2n},\theta)$ et $L^2(GL_n\times GL_n\backslash GL_{2n})$.

1.1. **Notations.** Dans la suite on notera F un corps p-adique (sauf dans la section 2 où F peut désigner un corps archimédien) et ψ un caractère non trivial de F. On note q_F le cardinal du corps résiduel de F et $|.|_F$ (ou simplement |.|) la valeur absolue sur F normalisé par $|\omega|_F = q_F^{-1}$ où ω est une uniformisante de F.

On notera G_m le groupe $GL_m(F)$ et $PG_m = Z_m(F) \setminus GL_m(F)$. On note $H_n(F)$ le groupe des matrices de la forme $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$ avec $X \in M_n(F)$ et $g \in GL_n(F)$. L'élément σ_n est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \dots & n & n+1 & n+2 & \dots & 2n \\ 1 & 2 & \dots & 2n-1 & 2 & 4 & \dots & 2n \end{pmatrix}$. On note SO(2m+1) la forme déployé du groupe spécial orthogonal sur un espace de dimension 2m+1. On note A_n le sous-groupe de G_n des matrices diagonales inversibles, B_n le sous groupe des matrices triangulaires supérieures inversibles, \overline{B}_n le sous groupe des matrices triangulaires inférieures inversibles, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont $1, \overline{N}_n = {}^tN_n$ et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans F. On note V_n le sous-espace de M_n des matrices triangulaires inférieures strictes. On note V_n le sous-espace de M_n des matrices triangulaires inférieures strictes. On note V_n le sous-groupe matrices de la forme $\begin{pmatrix} 1_{n-1} & x \\ 0 & 1 \end{pmatrix}$ pour $x \in F^{n-1}$ et $P_n = G_{n-1}U_n$ le sous-groupe mirabolique. On note δ_{B_n} le caractère modulaire de B_n . On notera par des lettres gothiques les algèbres de Lie correspondantes et pour $\mathfrak g$ une algèbre de Lie $\mathfrak U(\mathfrak g)$ désignera l'algèbre enveloppante.

Lorsque X est un espace totalement discontinu, on notera $C_c^\infty(X)$ ou S(X), l'espace des fonctions localement constante à support compact. Lorsque G est un groupe algébrique réel ou complexe, on note S(G) l'espace des fonctions C^∞ à décroissance rapide ainsi que toutes ses dérivées tel que défini par Aizenbud et Gourevitch [1]. De plus, lorsque \mathbb{A}_K est l'anneau des adèles d'un corps de nombres K et G est un groupe algébrique sur K, on note $S(G(\mathbb{A}))$ le produit restreint des espaces $S(G(K_\nu))$ lorsque ν parcours l'ensemble des places de K i.e. l'ensemble des combinaisons linéaires des fonctions $f = \otimes_{\nu} f_{\nu}$ avec $f_{\nu} \in S(G(K_{\nu}))$ pour tout ν et $f_{\nu} = \mathbb{1}_{G(\mathcal{O}_{\nu})}$ sauf pour un nombre fini de ν , où \mathcal{O}_{ν} est l'anneau des entiers de K_{ν} .

Pour G un groupe réductif connexe sur F (dans la suite G sera GL_{2n} , PGL_{2n} , SO_{2n+1} ou un quotient, sous-groupe de Levi de ces groupes), on note Temp(G) l'ensemble des classes d'isomorphisme de représentations irréductibles tempérées de G(F) et $\Pi_2(G) \subset Temp(G)$ le sous-ensemble des représentations de carré intégrable. On note Z_G le centre de G(F) et A_G le tore déployé maximal dans Z_G . Soit M un sous-groupe de Levi de G et $\sigma \in \Pi_2(M)$. On note W(G,M) le groupe de Weyl associé au couple (G,M) et $W(G,\sigma)$ le sous-groupe de W(G,M) fixant la classe d'isomorphisme de σ . On note W_F' est le groupe de Weil-Deligne de F et $\Phi(G) = \{ \varphi : W_F' \to {}^LG \text{ admissible d'image bornée} \}$ l'ensemble des paramètres de Langlands tempérés de G et Temp(G)/Stab le quotient de Temp(G) par la relation d'équivalence $\pi \equiv \pi' \iff \varphi_{\pi} = \varphi_{\pi'}$, où φ_{π} est le paramètre de Langlands associé à π .

Pour P=MN un sous-groupe parabolique de G, on note $i_P^G(\sigma)$ l'induction parabolique normalisée lorsque σ est une représentation lisse de M: c'est la représentation régulière à droite de G sur l'espace des fonctions localement constantes $f:G\mapsto \sigma$ qui vérifient $f(mng)=\delta_P(m)^{\frac{1}{2}}\sigma(m)f(g)$ pour tous $m\in M, n\in N$ et $g\in G$, où δ_P est le caractère modulaire de P. Lorsque $G=G_n$ et $M=G_{n_1}\times...\times G_{n_k}$, on note $\pi_1\times...\times\pi_k=i_P^G(\pi_1\boxtimes...\boxtimes\pi_k)$ pour π_i des représentations lisses de G_{n_i} . Lorsque G=SO(2n+1) et $M=G_{n_1}\times...\times G_{n_k}\times SO(2m+1)$, on note

 $\pi_1 \times ... \times \pi_k \rtimes \sigma_0 = \mathfrak{i}_P^G(\pi_1 \boxtimes ... \boxtimes \pi_k \boxtimes \sigma_0)$ pour $\pi_\mathfrak{i}$ des représentations lisses de $G_{n_\mathfrak{i}}$ et σ_0 une représentation lisse de SO(2m+1).

On peut définir une application $\Phi(SO(2m+1)) \to \Phi(G_{2m})$, rappelons qu'un élément de $\Phi(SO(2m+1))$ est un morphisme admissible $\phi: W_F' \to {}^LSO(2m+1)$. Or ${}^LSO(2m+1) = Sp_{2m}(\mathbb{C})$, l'application $\Phi(SO(2m+1)) \to \Phi(G_{2m})$ est définie par l'injection de $Sp_{2m}(\mathbb{C})$ dans $GL_{2m}(\mathbb{C})$ grâce à la correspondance de Langlands locale pour GL_{2m} . La correspondance de Langlands locale pour SO(2m+1) et pour GL_{2m} , nous permettent de définir une application de transfert $T: Temp(SO(2m+1))/Stab \to Temp(G_{2m})$.

Dans les mesures de Plancherel, on verra apparaître des termes $|S_{\sigma}|$ pour $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ ou $\mathsf{Temp}(\mathsf{PG}_{2n})$. On n'explicite pas les ensembles S_{σ} et on se contente de donner leur cardinal. Pour $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$ sous-représentation de $\pi_1 \times ... \times \pi_1 \rtimes \sigma_0$, avec $\pi_i \in \Pi_2(\mathsf{G}_{\mathfrak{n}_i})$ et $\sigma_0 \in \Pi_2(\mathsf{SO}(2m+1))$, le facteur $|S_{\sigma}|$ est le produit $|S_{\pi_1}|...|S_{\pi_1}||S_{\sigma_0}|$; où $|S_{\sigma_0}| = 2^k$ tel que $\mathsf{T}(\sigma_0) \simeq \tau_1 \times ... \times \tau_k$ avec $\tau_i \in \Pi_2(\mathsf{G}_{\mathfrak{m}_i})$ et $|S_{\pi_i}| = \mathfrak{n}_i$.

Pour $\pi \in \mathsf{Temp}(\mathsf{G})$ et r une représentation admissible de ^LG, on note $\mathsf{L}(s,\pi,r)$ la fonction L associée par la correspondance de Langlands locale et $\gamma(s,\pi,r,\psi)$ le facteur γ correspondant. Lorsque r est la représentation standard, on l'omettra. De plus, on note $\gamma^*(0,\pi,r,\psi)$ la régularisation du facteur γ en 0, défini par la relation

(19)
$$\gamma^*(0,\pi,r,\psi) = \lim_{s \to 0^+} \frac{\gamma(s,\pi,r,\psi)}{(slog(q_F))^{n_{\pi,r}}},$$

où $n_{\pi,r}$ est l'ordre du zéro de $\gamma(s,\pi,r,\psi)$ en s=0.

1.2. **Mesures.** On équipe F avec la mesure de Haar dx qui est autoduale par rapport à ψ et F^{\times} de la mesure de Haar $d^{\times}x = \frac{dx}{|x|_F}$. Pour $m \ge 1$, on équipe F^m de la mesure produit $(dx)^m$ et $(F^{\times})^m$ de la mesure $(d^{\times}x)^m$. On équipe les groupes M_n , U_n , N_n , \overline{N}_n des mesures de Haar "produit des coordonnées". Par exemple, on équipe M_n de la mesure $dX = \prod_{i,j=1}^n dX_{i,j}$ où $dX_{i,j}$ est la mesure de Haar sur F que l'on a fixé précédemment. On équipe G_n de la mesure $dg = |\det g|_F^{-n} \prod_{i,j=1}^n dg_{i,j}$ et P_n la mesure de Haar à droite obtenu comme produit des mesures sur G_{n-1} et sur U_n . On équipe \overline{B}_n de la mesure $\prod_{i=1}^n d^{\times}b_{i,i}\prod_{i,j=1,...,n} db_{i,j}$. On équipe les groupes compact des mesures de Haar de masse totale égale à 1.

On équipe $N_n \backslash G_n$ et $N_n \backslash P_n$ des mesures quotient. On identifiera ces mesures à des mesures d'un sous-groupe de G_n . Par exemple pour $N_n \backslash G_n$, \overline{B}_n s'identifie à un ouvert dense de $N_n \backslash G_n$, on obtient alors l'égalité

(20)
$$\int_{N_n \backslash G_n} f(g) dg = \int_{\overline{B}_n} f(b) db,$$

pour tout f lisse sur G_n , N_n -invariante et à support compact modulo N_n .

On a l'isomorphisme $P_n \setminus G_n \simeq F^n \setminus \{0\}$, on équipe $P_n \setminus G_n$ de la semi-mesure (ou mesure tordue) dg telle que | det g|dg s'identifie à la mesure $(dx)^n$ sur F^n . À travers l'isomorphisme $P_n \setminus G_n \simeq F^n \setminus \{0\}$, on effectue l'identification d'un ouvert dense de $P_n \setminus G_n$ avec $F^{n-1} \times F^\times$, ce qui nous permet d'identifier la mesure tordue sur $P_n \setminus G_n$ à la mesure $(dx)^{n-1} \times d^\times y$ sur $F^{n-1} \times F^\times$. La mesure tordue sur $P_n \setminus G_n$ n'est pas invariante, ce n'est pas une mesure sur le quotient $P_n \setminus G_n$. Cependant on a la

formule d'intégration suivante

(21)
$$\int_{G_n} f(g) dg = \int_{P_n \setminus G_n} \int_{P_n} f(pg) |\det p|^{-1} dp dg,$$

pour tout $f \in S(G_n)$.

Pour G un groupe réductif connexe sur F, on fixe un isomorphisme $A_G \simeq (F^\times)^{\dim(A_G)}$ et on équipe A_G de la mesure $(d^\times x)^{\dim(A_G)}$ provenant de l'isomorphisme avec $(F^\times)^{\dim(A_G)}$.

Décrivons le choix de la normalisation d'une mesure sur $\operatorname{Temp}(G)$. Soit M un sous-groupe de Levi de G et $\sigma \in \Pi_2(M)$. Soit $\widehat{A_M}$ le dual unitaire de A_M et $d\widetilde{\chi}$ la mesure de Haar duale de celle de A_M . On équipe alors $\widehat{A_M}$ de la mesure $d\chi$ définie par

(22)
$$d\chi = \gamma^*(0,1,\psi)^{-\dim(A_M)} d\widetilde{\chi}.$$

La mesure $d\chi$ est indépendante du caractère ψ .

On note $X^*(M)$ le groupe des caractères algébriques de M, on dispose alors d'une application $\chi \otimes \lambda \in X^*(M) \otimes i\mathbb{R} \mapsto \sigma \otimes \chi_{\lambda} \in \Pi_2(M)$ où $\chi_{\lambda}(g) = |\chi(g)|^{\lambda}$. On définit alors une base de voisinage de σ dans $\Pi_2(M)$ comme l'image d'une base de voisinage de 0 dans $X^*(M) \otimes i\mathbb{R}$.

Il existe une unique mesure $d\sigma$ sur $\Pi_2(M)$ telle que l'isomorphisme local $\sigma \in \Pi_2(M) \mapsto \omega_\sigma \in \widehat{A_M}$ préserve localement les mesures. Soit P un sous groupe parabolique de G de Levi M. On définit alors la mesure $d\pi$ sur $\mathsf{Temp}(G)$ localement autour de $\pi \simeq \mathfrak{i}_P^G(\sigma)$ par la formule

(23)
$$d\pi = |W(G, M)|^{-1} (i_P^G)_* d\sigma,$$

où $(i_P^G)_*d\sigma$ est la mesure $d\sigma$ poussée en avant en une mesure sur Temp(G) par l'application i_P^G . Cette mesure ne dépend pas du choix du groupe parabolique. La mesure $d\pi$ est choisie pour vérifier la relation 86.

1.3. **Résultats.** Soit F un corps p-adique et ψ un caractère non trivial de F. Rappelons que l'on note $H_n(F)$ le groupe des matrices de la forme $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$ avec $X \in M_n(F)$ et $g \in GL_n(F)$. L'élément σ_n est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 3 & \dots & 2n-1 \end{pmatrix} \begin{pmatrix} n & n+1 & n+2 & \dots & 2n \\ 2 & 4 & \dots & 2n \end{pmatrix}$. De plus, θ est le caractère sur $H_n(F)$ qui envoie $\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma_n^{-1}$ sur $\psi(Tr(X))$. Le résultat principal est le

Théorème 1.5. On a un isomorphisme de représentations unitaires

$$(24) \hspace{1cm} \mathsf{L}^{2}(\mathsf{H}_{\mathfrak{n}}(\mathsf{F})\backslash\mathsf{GL}_{2\mathfrak{n}}(\mathsf{F}),\theta) \simeq \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)(\mathsf{F}))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma)d\sigma,$$

où $T: Temp(SO(2n+1))/\sim \to Temp(GL_{2n})$ est l'application de transfert provenant de la correspondance de Langlands locale.

De l'isomorphisme $L^2(GL_n(F)\times GL_n(F)\backslash GL_{2n}(F))\simeq L^2(H_n(F)\backslash G_{2n}(F),\theta)$ GL_{2n} -invariant (lemme 5.7), on en déduit le

Théorème 1.6. On a un isomorphisme de représentations unitaires

(25)
$$L^2(GL_n(F) \times GL_n(F) \backslash GL_{2n}(F)) \simeq \int_{Temp(SO(2n+1)(F))/Stab}^{\oplus} T(\sigma) d\sigma.$$

Rappelons que ces deux décompositions de Plancherel abstraite sont obtenues en prouvant une formule de Plancherel explicite sur $H_n \setminus G_n$.

Théorème 1.7. On pose $Y_n = H_n \setminus G_{2n}$. Soient $\phi_1, \phi_2 \in C_c^{\infty}(Y_n, \theta)$. On pose

$$(26) \qquad \qquad (\phi_1,\phi_2)_{\Upsilon_n,\pi} = \int_{H_n^P \cap N_{2n} \setminus H_n^P} \beta\left(W_{f,\pi}(\xi_p,.)\right) \theta(\xi_p) d\xi_p,$$

pour tout $\pi \in T(Temp(SO(2n+1)))$, où $H_n^P = H_n \cap P_n$. Les notations β et $W_{f,\pi}$ ont été introduite dans l'introduction. On a alors

$$(27) \quad (\phi_1,\phi_2)_{L^2(Y_n,\theta)}=\int_{\mathsf{Temp}(SO(2n+1))/\sim} (\phi_1,\phi_2)_{Y_n,\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|} d\sigma,$$

La quantité $(\phi_1,\phi_2)_{Y_n,T(\sigma)}$ est définie en fonction de β dans l'introduction. Le facteur $\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|}$ est défini dans la section 1.1.

La mesure $\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|}d\sigma$ n'est rien d'autre que la mesure de Plancherel pour SO(2n+1). En effet, la mesure de Plancherel d'un groupe réductif $\mathfrak p$ -adique G a été calculée par Waldspurger et Harish-Chandra [23] sous la forme

(28)
$$d\mu_{G}(\sigma) = d(\sigma)j(\sigma)^{-1}d\sigma,$$

où $d(\sigma)$ est le degré formel de σ et $j(\sigma)$ est un scalaire produit d'opérateurs d'entrelacements (voir [23]). Le degré formel pour SO(2n+1) a été calculé par Ichino-Lapid-Mao [11] et le facteur j pour SO(2n+1) découle de la normalisation des opérateurs d'entrelacements d'Arthur [2]. Finalement, on obtient que la mesure de Plancherel pour SO(2n+1) est

$$d\mu_{SO(2n+1)}(\sigma) = \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|} d\sigma.$$

On renvoie à l'article de Beuzart-Plessis [7, Proposition 2.13.2] pour l'analogue de ce résultat pour les groupes unitaires.

Pour finir, au cours de la preuve de la formule de Plancherel explicite, on aura besoin d'une égalité sur des facteurs gamma définie de deux manière différentes. On prouve le

Théorème 1.8. Soit π une représentation tempérée irréductible de $GL_{2n}(F)$. On note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ le facteur gamma de Jacquet-Shalika, voir section 2. Alors il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$, on ait

(30)
$$\gamma^{\mathsf{JS}}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma(s,\pi,\Lambda^2,\psi).$$

2. Facteurs γ du carré extérieur

Dans cette partie F désigne un corps local de caractéristique 0 et ψ un caractère non trivial de F. Soit π une représentation tempérée irréductible de $GL_{2n}(F)$. Jacquet et Shalika ont défini une fonction L du carré extérieur $L_{JS}(s,\pi,\Lambda^2)$ par des intégrales notées $J(s,W,\varphi)$, où $W \in \mathcal{W}(\pi,\psi)$ est un élément du modèle de Whittaker de π et $\varphi \in \mathcal{S}(F^n)$. Matringe a prouvé que, lorsque F est non archimédien, ces intégrales $J(s,W,\varphi)$ vérifient une équation fonctionnelle, ce qui permet de définir des facteurs γ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$.

On montre que l'on a encore une équation fonctionnelle lorsque F est archimédien et que les facteurs γ sont égaux à une constante de module 1 prés à ceux définis par

Shahidi, que l'on note $\gamma^{\text{Sh}}(s, \pi, \Lambda^2, \psi)$. Plus exactement, il existe des constantes $c^{\text{Sh}}(\pi)$ et $c(\pi)$ de module 1, telles que

(31)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c^{Sh}(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma(s, \pi, \Lambda^2, \psi),$$

pour tout $s \in \mathbb{C}$. La dernière égalité est une conséquence de l'égalité des facteurs gamma de Shahidi et d'Artin pour le carré extérieur à une racine de l'unité prés prouvée par Henniart [10]. La preuve se fait par une méthode de globalisation, on considère π comme une composante locale d'une représentation automorphe cuspidale.

2.1. Préliminaires.

2.1.1. Théorie locale. Les intégrales $J(s, W, \phi)$ sont définies par

$$(32) \qquad \int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}}\int_{\mathsf{V}_{\mathfrak{n}}} W\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right)d\mathsf{X}\varphi(e_{\mathfrak{n}}g)|\det g|^{s}dg$$

pour tous $W \in \mathcal{W}(\pi, \psi)$, $\phi \in \mathcal{S}(\mathsf{F}^n)$ et $s \in \mathbb{C}$. L'espace V_n est l'ensemble des matrices triangulaires inférieures strictes, on l'équipe de la mesure de Haar $dX = \prod_{1 \leqslant j < i \leqslant n} dX_{i,j}$. L'élément σ_n est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \cdots & n & n+1 & n+2 & \cdots & 2n \\ 1 & 3 & \cdots & 2n-1 & 2 & 4 & \cdots & 2n \end{pmatrix}$. Jacquet et Shalika ont démontré que ces intégrales convergent pour $\mathsf{Re}(s)$ suffisamment grand, plus exactement, on dispose de la

Proposition 2.1 (Jacquet-Shalika [13]). Il existe $\eta > 0$ tel que les intégrales $J(s, W, \varphi)$ convergent absolument pour $Re(s) > 1 - \eta$.

Kewat [15] montre, lorsque F est p-adique, que ce sont des fractions rationnelles en q^s où q est le cardinal du corps résiduel de F. On aura aussi besoin d'avoir le prolongement méromorphe de ces intégrales lorsque F est archimédien et d'un résultat de non annulation.

Proposition 2.2 (Belt [3], Matringe [17]). Fixons $s_0 \in \mathbb{C}$. Il existe $W \in W(\pi, \psi)$ et $\varphi \in S(F^n)$ tels que $J(s, W, \varphi)$ admet un prolongement méromorphe à tout le plan complexe et ne s'annule pas en s_0 . Si $F = \mathbb{R}$ ou \mathbb{C} , le point s_0 peut éventuellement être un pôle. Si F est \mathfrak{p} -adique, on peut choisir W et φ tels que $J(s, W, \varphi)$ soit entière.

Lorsque la représentation est non-ramifiée, on peut représenter la fonction L du carré extérieur obtenue par la correspondance de Langlands locale, que l'on note $L(s,\pi,\Lambda^2)$, (qui est égale à celle obtenue par la méthode de Langlands-Shahidi) par ces intégrales.

Proposition 2.3 (Jacquet-Shalika [13]). Supposons que F est p-adique, le conducteur de ψ est l'anneau des entiers \mathcal{O}_F de F. Soit π une représentation générique non ramifiée de $\mathsf{GL}_{2n}(\mathsf{F})$. On note φ_0 la fonction caractéristique de \mathcal{O}_F^n et $W_0 \in \mathcal{W}(\pi,\psi)$ l'unique fonction de Whittaker invariante par $\mathsf{GL}_{2n}(\mathcal{O}_F)$ et qui vérifie W(1)=1. Alors

(33)
$$J(s, W_0, \phi_0) = L(s, \pi, \Lambda^2).$$

Pour finir cette section, on énonce l'équation fonctionnelle démontrée par Matringe lorsque F est un corps p-adique. Plus précisément, on a la

Proposition 2.4 (Matringe [17]). Supposons que F est un corps p-adique et π générique. Il existe un monôme $e^{JS}(s,\pi,\Lambda^2,\psi)$ en q^s ou q^{-s} , tel que pour tous $W \in \mathcal{W}(\pi,\psi)$ et $\phi \in \mathcal{S}(F^n)$, on ait

$$\varepsilon^{\mathrm{JS}}(s,\pi,\Lambda^2,\psi)\frac{\mathrm{J}(s,W,\varphi)}{\mathrm{L}(s,\pi,\Lambda^2)} = \frac{\mathrm{J}(1-s,\rho(w_{n,n})\widetilde{W},\widehat{\varphi})}{\mathrm{L}(1-s,\widetilde{\pi},\Lambda^2)},$$

où $\widehat{\varphi}=\mathfrak{F}_{\psi}(\varphi)$ est la transformée de Fourier de φ par rapport au caractère ψ définie par

(35)
$$\mathcal{F}_{\psi}(\phi)(y) = \int_{\mathbb{F}^n} \phi(x) \psi(\sum_{i=1}^n x_i y_i) dx$$

pour tout $y \in F^n$ et $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \bar{\psi})$ est la fonction de Whittaker définie par $\widetilde{W}(g) = W(w_n(g^t)^{-1})$ pour tout $g \in GL_{2n}(F)$, avec w_n la matrice associée à la permutation $\begin{pmatrix} 1 & \cdots & 2n \\ 2n & \cdots & 1 \end{pmatrix}$ et $w_{n,n} = \sigma_n \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix} \sigma_n^{-1}$. On définit alors le facteur γ de Jacquet-Shalika par la relation

(36)
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = \epsilon^{JS}(s,\pi,\Lambda^2,\psi) \frac{L(1-s,\widetilde{\pi},\Lambda^2)}{L(s,\pi,\Lambda^2)}.$$

2.1.2. Théorie globale. La méthode que l'on utilise est une méthode de globalisation. Essentiellement, on verra π comme une composante locale d'une représentation automorphe cuspidale. Pour ce faire, on aura besoin de l'équivalent global des intégrales $J(s,W,\varphi)$.

Soit K un corps de nombres et $\psi_{\mathbb{A}}$ un caractère non trivial de \mathbb{A}_K/K . Soit Π une représentation automorphe cuspidale irréductible de $GL_{2n}(\mathbb{A}_K)$. Pour $\phi \in \Pi$, on considère

(37)
$$W_{\varphi}(g) = \int_{N_{2n}(K) \setminus N_{2n}(\mathbb{A}_K)} \varphi(ug) \psi_{\mathbb{A}}(u)^{-1} du$$

la fonction de Whittaker associée. On considère $\psi_{\mathbb{A}}$ comme un caractère de $N_{2n}(\mathbb{A}_K)$ en posant $\psi_{\mathbb{A}}(\mathfrak{u})=\psi_{\mathbb{A}}(\sum_{i=1}^{2n-1}\mathfrak{u}_{i,i+1})$. Pour $\Phi\in\mathcal{S}(\mathbb{A}_K^n)$ une fonction de Schwartz, on note $J(s,W_{\varphi},\Phi)$ l'intégrale

$$(38) \qquad \int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}} \int_{\mathsf{V}_{\mathfrak{n}}} W_{\varphi} \left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \mathrm{d}X \Phi(e_{\mathfrak{n}}g) |\det g|^{s} \mathrm{d}g$$

où l'on note G_n le groupe $GL_n(\mathbb{A}_K)$, B_n le sous groupe des matrices triangulaires supérieures, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont 1 et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans \mathbb{A}_K .

Finissons cette section par l'équation fonctionnelle globale démontrée par Jacquet et Shalika.

Proposition 2.5 (Jacquet-Shalika [13]). Les intégrales $J(s, W_{\phi}, \Phi)$ convergent absolument pour Re(s) suffisamment grand. De plus, $J(s, W_{\phi}, \Phi)$ admet un prolongement méromorphe à tout le plan complexe et vérifie l'équation fonctionnelle suivante

(39)
$$J(s, W_{\varphi}, \Phi) = J(1 - s, \rho(w_{n,n})\widetilde{W}_{\varphi}, \widehat{\Phi}),$$

où $\widetilde{W}_{\phi}(g) = W_{\phi}(w_n(g^t)^{-1})$ et $\widehat{\Phi}$ est la transformée de Fourier de Φ par rapport au caractère $\psi_{\mathbb{A}}$.

Comme on peut s'y attendre, les intégrales globales sont reliées aux intégrales locales. Plus exactement, si $W_{\varphi} = \prod_{\nu} W_{\nu}$ et $\Phi = \prod_{\nu} \Phi_{\nu}$, où ν décrit les places de K, on a

(40)
$$J(s, W_{\varphi}, \Phi) = \prod_{\nu} J(s, W_{\nu}, \Phi_{\nu}),$$

pour Re(s) suffisamment grand.

 $2.1.3.\ Globalisation.$ Comme la preuve se fait par globalisation, la première chose à faire est de trouver un corps de nombres dont F est une localisation. On dispose du

Lemme 2.1 (Kable [14]). Supposons que F est un corps \mathfrak{p} -adique. Il existe un corps de nombres k et une place ν_0 telle que $k_{\nu_0} = F$, où ν_0 est l'unique place de k au dessus de \mathfrak{p} .

Rappelons la topologie que l'on a défini sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$. Soit M un sous-groupe de Levi de $\mathsf{GL}_{2n}(\mathsf{F})$, P un parabolique de Levi M et $\sigma \in \Pi_2(M)$. La classe d'équivalence de l'induction parabolique normalisé $\mathfrak{i}_{\mathsf{P}}^{\mathsf{G}}(\sigma)$ est indépendante du parabolique P et on la notera $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$. On note $\mathsf{X}^*(M)$ le groupe des caractères algébriques de M, on dispose alors d'une application $\chi \otimes \lambda \in \mathsf{X}^*(M) \otimes \mathfrak{i}\mathbb{R} \mapsto \mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma \otimes \chi_{\lambda}) \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ où $\chi_{\lambda}(g) = |\chi(g)|^{\lambda}$. On définit alors une base de voisinage de $\mathfrak{i}_{\mathsf{M}}^{\mathsf{G}}(\sigma)$ dans $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ comme l'image d'une base de voisinage de 0 dans $\mathsf{X}^*(M) \otimes \mathfrak{i}\mathbb{R}$.

Cette topologie sur $Temp(GL_{2n}(F))$ nous permet d'énoncer le résultat principal dont on aura besoin pour la méthode de globalisation.

Proposition 2.6 (Beuzart-Plessis [7, Théorème 3.7.1]). Soient k un corps de nombres, v_0, v_1 deux places distinctes de k avec v_1 non archimédienne. Soit U un ouvert de $Temp(GL_{2n}(k_{v_0}))$. Alors il existe une représentation automorphe cuspidale irréductible Π de $GL_{2n}(\mathbb{A}_k)$ telle que $\Pi_{v_0} \in U$ et Π_v est non ramifiée pour toute place non archimédienne $v \notin \{v_0, v_1\}$.

2.1.4. Fonctions tempérées. On aura besoin dans la suite de connaître la dépendance que $J(s,W,\varphi)$ lorsque l'on fait varier la représentation π . Pour ce faire, on introduit la notion de fonction tempérée et on étend la définition de $J(s,W,\varphi)$ pour ces fonctions tempérées.

On note K_{2n} le sous-groupe compact maximal de $GL_{2n}(F)$ défini par $K_{2n}=GL_{2n}(\mathfrak{O}_F)$ lorsque F est p-adique et $K_{2n}=\{g\in GL_{2n}(F),g\overline{g}^t=I_n\}$ lorsque $F=\mathbb{R}$ ou \mathbb{C} , où \overline{g} est la conjuguée complexe.

L'espace des fonctions tempérées $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$ est l'espace des fonctions $f:GL_{2n}(F)\to \mathbb{C}$ telles que $f(ng)=\psi(n)f(g)$ pour tous $n\in N_{2n}(F)$ et $g\in GL_{2n}(F)$, on impose les conditions suivantes :

— si F est p-adique, f est invariante à droite par un sous-groupe compact ouvert K et il existe d>0 et C>0 tels que

$$|f(\mathfrak{n}\mathfrak{a}k)| \leqslant C\delta_{B_{2n}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^{d},$$

où $\|\alpha\|=1+m\alpha x(|\alpha_{i,i}|,|\alpha_{i,i}|^{-1}),$ pour tous $n\in N_{2n}(F),$ $\alpha\in A_{2n}(F)$ et $k\in K_{2n}\,;$

— si F est archimédien, f est C^{∞} et il existe d>0 tel que pour tout $\mathfrak{u}\in \mathcal{U}(\mathfrak{gl}_{2n}(F))$, il existe C>0 tel que

$$(42) \qquad \qquad |(R(\mathfrak{u})f)(\mathfrak{n}\mathfrak{a}k)| \leqslant C\delta_{B_{2\mathfrak{n}}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^{d},$$

pour tous $n \in N_{2n}(F)$, $a \in A_{2n}(F)$, $k \in K_{2n}$.

Lorsque F est p-adique, pour d>0 et K un sous-groupe compact ouvert de GL_{2n} , on note $C_d^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)^K$ l'espace des fonctions tempérées invariante à droite par K et vérifiant la condition 41. On munit $C_d^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)^K$ de la topologie provenant de la norme $\sup_{\alpha\in A_{2n}, k\in K_{2n}} \frac{|f(\alpha k)|}{\delta_{B_{2n}}(\alpha)^{\frac{1}{2}}\log(||\alpha||)^d} \text{ qui en fait un espace}$ de Banach. On munit alors $C_0^w(N_{2n}(F)\backslash GL_{2n}(F),\psi) = \bigcup_{\alpha\in A_{2n}(F)\backslash GL_{2n}(F),\psi}$

de Banach. On munit alors $C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) = \bigcup_{d,K} C_d^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)^K$ de la topologie limite inductive.

Lorsque F est archimédien, pour d>0, on note $C_d^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$ l'espace des fonctions tempérées vérifiant la condition 42. On munit $C_d^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$ de la topologie provenant des semi-normes $\mathfrak{p}_\mathfrak{u}(f)=\sup_{\alpha\in A_{2n},k\in K_{2n}}\frac{|(R(\mathfrak{u})f)(\alpha k)|}{\delta_{B_{2n}}(\alpha)^{\frac{1}{2}}\log(||\alpha||)^d}$ pour $\mathfrak{u}\in \mathcal{U}(\mathfrak{gl}_{2n}(F)).$ On munit alors $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)=\bigcup_d C_d^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$ de la topologie limite inductive.

On rappelle la majoration des fonctions tempérées sur la diagonale,

Lemme 2.2 ([7, Lemme 2.4.3]). Soit $W \in C^{w}(N_{2n}(F)\backslash GL_{2n}(F), \psi)$. Il existe d > 0 tel que pour tout $N \ge 1$, il existe C > 0 tel que

$$|W(bk)| \leqslant C \prod_{i=1}^{2n-1} (1 + |\frac{b_i}{b_{i+1}}|)^{-N} \delta_{B_{2n}}(b)^{\frac{1}{2}} \log(||b||)^d,$$

pour tous $b \in A_{2n}(F)$ et $k \in K_{2n}$.

Lemme 2.3 ([7, Lemme 2.4.4]). Pour tout C > 0, il existe N tel que pour tous s vérifiant 0 < Re(s) < C et d > 0, l'intégrale

(44)
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||a||)^d |\det a|^s da$$

converge absolument.

On étend la définition des intégrales $J(s,W,\varphi)$ aux fonctions tempérées W, on montre maintenant la convergence de ces intégrales dans le

Lemme 2.4. Pour $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$ et $\varphi \in \mathcal{S}(F^n)$, l'intégrale $J(s, W, \varphi)$ converge absolument pour tout $s \in \mathbb{C}$ vérifiant Re(s) > 0. De plus, pour tous $\varphi \in \mathcal{S}(F^n)$ et $s \in \mathbb{C}$ tels que Re(s) > 0, la forme linéaire $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$ est continue.

Démonstration. Soit $G_n = N_n A_n K_n$ la décomposition d'Iwasawa de G_n . Il suffit de montrer la convergence de l'intégrale

$$\int_{A_n} \int_{K_n} \int_{V_n} \left| W \left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_n^{-1} \right) \varphi(e_n ak) \right| dX dk \left| \det a \right|^{Re(s)} \delta_{B_n}^{-1}(a) da.$$

On pose $\mathfrak{u}_X=\sigma_{\mathfrak{n}}\begin{pmatrix}1&X\\0&1\end{pmatrix}\sigma_{\mathfrak{n}}^{-1},$ ce qui nous permet d'écrire

$$\sigma_{\mathfrak{n}}\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \mathfrak{a} & 0 \\ 0 & \mathfrak{a} \end{pmatrix} = \mathfrak{bu}_{\mathfrak{a}^{-1}X\mathfrak{a}}\sigma_{\mathfrak{n}},$$

où $b = diag(a_1, a_1, a_2, a_2, ...)$. On effectue le changement de variable $X \mapsto aXa^{-1}$, l'intégrale devient alors

(47)

$$\int_{A_n}\int_{K_n}\int_{V_n}\left|W\left(bu_X\sigma_n\begin{pmatrix}k&0\\0&k\end{pmatrix}\sigma_n^{-1}\right)\varphi(e_nak)\right|dXdk|\det a|^{Re(s)}\delta_{B_n}^{-2}(a)da.$$

On écrit $\mathfrak{u}_X=\mathfrak{n}_X\mathfrak{t}_Xk_X$ la décomposition d'Iwasawa de \mathfrak{u}_X et on pose $k_\sigma=$ $\sigma_n \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \sigma_n^{-1}$. Le lemme 2.2 donne alors

$$(48) \qquad |W(bt_Xk_Xk_\sigma)|\leqslant C\prod_{i=1}^{2n-1}(1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N}\delta_{B_{2n}}^{\frac{1}{2}}(bt_X)\log(\|bt_X\|)^d,$$

où $t_X = diag(t_1, ..., t_{2n}).$

On aura besoin d'inégalités prouvées par Jacquet et Shalika concernant les t_i. On dispose de la

Proposition 2.7 (Jacquet-Shalika [13, Proposition 4]). On $a |t_k| \ge 1$ lorsque k est impair et $|t_k| \leqslant 1$ lorsque k est pair. En particulier, $|\frac{t_j}{t_{j+1}}| \geqslant 1$ lorsque j est impair $et \mid \frac{\mathbf{t_{j}}}{\mathbf{t_{j+1}}} \mid \leq 1 \ lorsque \ \mathbf{j} \ est \ pair.$

On combine alors cette proposition avec le fait que $\frac{b_j}{b_{j+1}} = 1$ lorsque j est impair et $\frac{b_j}{b_{j+1}} = \frac{\alpha_{\frac{j}{2}}}{\alpha_{\frac{j}{2}+1}}$ lorsque j'est pair. Ce qui nous permet de majorer $(1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-2N}$ $\mathrm{par} \mid_{\overline{t_{j+1}}}^{\underline{t_{j}}}\mid^{-2\overset{\circ}{N}} \mathrm{lorsque} \ j \ \mathrm{est \ impair \ et \ par} \mid_{\overline{t_{j+1}}}^{\underline{t_{j}}}\mid^{-N} (1+\mid_{\overline{\alpha_{j/2}}\atop{\alpha_{j/2+1}}}\mid)^{-N} \ \mathrm{lorsque} \ j \ \mathrm{est \ pair}.$ Ce qui donne

$$\begin{split} |W(bt_Xk_Xk_\sigma)| &\leqslant C \prod_{j=1}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d \\ &\leqslant C \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d, \end{split}$$

puisque $\prod_{j=1}^{2n-1} |\frac{t_j}{t_j+1}|^{-N} = |\frac{t_1}{t_{2n}}|^{-N} \leqslant 1$ d'après la proposition 2.7. De plus, encore d'après la proposition 2.7, on a

(50)
$$\prod_{j=1, i \text{ impair}}^{2n-1} \left| \frac{t_j}{t_{j+1}} \right|^{-N} \leqslant \prod_{j=1, i \text{ impair}}^{2n-1} \frac{1}{|t_j|^N}.$$

Pour finir, on aura besoin de la

Proposition 2.8 (Jacquet-Shalika [13, Proposition 5]). Pour $X \in Lie(\overline{N}_n)$, on $pose ||X|| = \sup_{i,j} |X_{i,j}|$. On $pose m(X) = \sqrt{1 + ||X||}$ lorsque F est archimédien et $m(X) = \sup(1, ||X||)$ lorsque F est non-archimédien. Il existe une constante $\alpha > 0$ telle que pour tout $X \in Lie(\overline{N}_n)$, on ait

(51)
$$\prod_{j=1,j \text{ impair}}^{2n-1} |t_j| \geqslant m(X)^{\alpha}$$

Grâce à cette proposition, on obtient la majoration

$$(52) \qquad |W(\mathfrak{bt}_{X}k_{X}k_{\sigma})|\leqslant C\mathfrak{m}(X)^{-\alpha N}\prod_{i=1}^{n-1}(1+|\frac{a_{i}}{a_{i+1}}|)^{-N}\delta_{B_{2\mathfrak{n}}}^{\frac{1}{2}}(\mathfrak{bt}_{X})\log(\|\mathfrak{bt}_{X}\|)^{d}.$$

D'autre part, il existe C' > 0 tel que

(53)
$$|\phi(e_n ak)| \leq C'(1 + |a_n|)^{-N}$$
.

L'intégrale $J(s,W,\varphi)$ est alors majorée (à une constante près) par le maximum du produit des intégrales

$$\int_{V_n} m(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(\|t_X\|)^{d-j} dX$$

et

$$(55) \quad \int_{A_n} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} (1+|a_n|)^{-N} \log(\|b\|)^j |\det a|^{Re(s)} \delta_{B_{2n}}^{\frac{1}{2}}(b) \delta_{B_n}^{-2}(a) da,$$

pour j compris entre 0 et d. La première intégrande est majorée par $\mathfrak{m}(X)^{-\alpha N+c}$, où \mathfrak{c} est une constante, on en déduit que la première intégrale converge pour N assez grand et la deuxième pour N assez grand lorsque $Re(\mathfrak{s})>0$ d'après le lemme 2.3 où l'on a utilisé la relation $\delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{b})=\delta_{B_n}^2(\mathfrak{a})$.

2.2. **Facteurs** γ . Dans cette partie, on prouve l'égalité entre les facteurs $\gamma^{JS}(., \pi, \Lambda^2, \psi)$ et $\gamma^{Sh}(., \pi, \Lambda^2, \psi)$ à une constante (dépendant de π) de module 1 près.

On commence à montrer cette égalité pour les facteurs γ archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur $\gamma^{JS}(.,\pi,\Lambda^2,\psi)$ dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

Soit π une représentation tempérée irréductible de $\mathsf{GL}_{2n}(\mathsf{F})$. On aura besoin d'un résultat sur la continuité du quotient $\frac{J(1-s,\rho(w_{n,n})\widetilde{W},\widehat{\varphi})}{J(s,W,\varphi)}$ lorsque l'on fait varier la représentation π , on dispose du

Lemme 2.5. Soient $W_0 \in \mathcal{W}(\pi, \psi)$, $\varphi \in \mathcal{S}(\mathsf{F}^n)$ et $s \in \mathbb{C}$ tel que $0 < \mathsf{Re}(s) < 1$. Supposons que $\mathsf{J}(s, W_0, \varphi) \neq 0$. Alors il existe une application continue $\pi' \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F})) \mapsto W_{\pi'} \in \mathsf{C}^w(\mathsf{N}_{2n}(\mathsf{F}) \backslash \mathsf{GL}_{2n}(\mathsf{F}), \psi)$ et un voisinage $\mathsf{V} \subset \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ de π qui vérifient que $W_0 = W_{\pi}$ et $W_{\pi'} \in \mathcal{W}(\pi', \psi)$ pour tout $\pi' \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$. De plus, l'application $\pi' \in \mathsf{V} \mapsto \frac{\mathsf{J}(1-s, \rho(w_{n,n})\widetilde{W}_{\pi'}, \mathcal{F}_{\psi}(\varphi))}{\mathsf{J}(s, W_{\pi'}, \varphi)}$ est bien définie et continue.

En particulier, si F est un corps p-adique, ce quotient est égal à $\gamma^{JS}(s, \pi', \Lambda^2, \psi)$ (proposition 2.4); donc $\pi' \in V \mapsto \gamma^{JS}(s, \pi', \Lambda^2, \psi)$ est continue.

Démonstration. On utilise l'existence de bonnes sections $\pi' \mapsto W_{\pi'}$ [6, Corollaire 2.7.1]. La forme linéaire $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$ est continue (lemme 2.4), il existe donc un voisinage V de π tel que $J(s, W_{\pi'}, \varphi) \neq 0$. Le quotient $\frac{J(1-s, \rho(w_{n,n})\widetilde{W}_{\pi'}, \mathcal{F}_{\psi}(\varphi))}{J(s, W_{\pi'}, \varphi)}$ est alors bien définie et continue sur V.

On étudie maintenant la dépendance du quotient $\frac{J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi}(\phi))}{J(s,W,\phi)}$ par rapport au caractère additif ψ , où l'on note \mathcal{F}_{ψ} pour la transformée de Fourier par rapport à ψ . Les caractères additifs non-triviaux de F sont de la forme ψ_{λ} avec $\lambda \in F^*$ où $\psi_{\lambda}(x) = \psi(\lambda x)$. On dispose d'un isomorphisme $W \in \mathcal{W}(\pi,\psi) \mapsto$

 $W_{\lambda} \in \mathcal{W}(\pi, \psi_{\lambda})$ donné par $W_{\lambda}(g) = W(\mathfrak{a}(\lambda)g)$ pour tout $g \in GL_{2n}(F)$, où $\mathfrak{a}(\lambda) = W(\mathfrak{a}(\lambda)g)$ $\operatorname{diag}(\lambda^{2n-1}, \lambda^{2n-2}, ..., \lambda, 1)$

Lemme 2.6. Soient $\lambda \in F^*$, $W \in \mathcal{W}(\pi, \psi)$, $\phi \in \mathcal{S}(F^n)$ et $s \in \mathbb{C}$ tels que $0 < \infty$ Re(s) < 1. Supposons que $J(s, W_{\lambda}, \phi) \neq 0$. Alors (56)

$$\frac{J(1-s,\rho(w_{n,n})\widetilde{(W_{\lambda})},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W_{\lambda},\varphi)}=\omega_{\pi}(\lambda)^{2n-1}|\lambda|^{n(2n-1)(s-\frac{1}{2})}\frac{J(1-s,\rho(w_{n,n})\widetilde{W_{r}},\mathcal{F}_{\psi}(\varphi))}{J(s,W_{r},\varphi)}$$

où W_r est la translation à droite de W par $\operatorname{diag}(\lambda, 1, \lambda, 1, ...)$. En particulier, $W_r \in$ $\mathcal{W}(\pi, \psi)$.

Lorsque F est un corps p-adique, on en déduit que

(57)
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi_{\lambda}) = \omega_{\pi}(\lambda)^{2n-1}|\lambda|^{n(2n-1)(s-\frac{1}{2})}\gamma^{JS}(s,\pi,\Lambda^2,\psi).$$

 $D\acute{e}monstration$. La mesure de Haar auto-duale pour ψ_{λ} est reliée à la mesure de Haar auto-duale pour ψ par un facteur $|\lambda|^{\frac{n}{2}}$. On en déduit que $\mathcal{F}_{\psi_{\lambda}}(\phi)(x) =$ $|\lambda|^{\frac{n}{2}}\mathcal{F}_{\psi}(\phi)(\lambda x)$. Le changement de variable $g\mapsto \lambda^{-1}g$ dans l'intégrale définissant $J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\phi)(\lambda.))$ donne

(58)
$$J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi_{\lambda}}(\varphi)) = |\lambda|^{n(s-\frac{1}{2})} \omega_{\pi}(\lambda) J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\varphi)).$$
 D'autre part,

(59)

$$J(s,W_{\lambda},\varphi) = \int_{N_{\mathfrak{n}} \setminus G_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} W\left(a(\lambda)\sigma_{\mathfrak{n}}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right) dX \widehat{\varphi}(e_{\mathfrak{n}}g) |\det g|^{s} dg.$$

On décompose $a(\lambda)\sigma_n$ sous la forme $\sigma_n diag(\lambda b(\lambda), b(\lambda))$ où l'on note $b(\lambda) =$ $diag(\lambda^{2n-2},\lambda^{2n-4},...,1). \ {\rm Après\ les\ changements\ de\ variables},\ X\mapsto b(\lambda)^{-1}Xb(\lambda)\ {\rm et}$ $g \mapsto b(\lambda)^{-1}g$, on obtient la relation

$$(60) \qquad \qquad J(s,W_{\lambda},\varphi)=\delta_{B_{\mathfrak{n}}}(\mathfrak{b}(\lambda))|\det\mathfrak{b}(\lambda)|^{-s}|\lambda|^{\kappa(\mathfrak{n})}J(s,\rho(\mathfrak{r}(\lambda))W,\varphi),$$

où $\rho(g)$ est la translation à droite par $g,\ r(\lambda)=\sigma_n diag(\lambda,...,\lambda,1,...,1)\sigma_n^{-1}=$ $\operatorname{diag}(\lambda, 1, \lambda, 1, ...)$ et le facteur $|\lambda|^{\kappa(n)}$ (que l'on n'explicite pas) provient du changement de variable $X \mapsto b(\lambda)^{-1}Xb(\lambda)$.

De plus, pour tout $g \in GL_{2n}(F)$, on a

$$(61) \ \ \widetilde{(W_{\lambda})}(g) = W(\mathfrak{a}(\lambda)w_{\mathfrak{n}}(g^{\mathfrak{t}})^{-1}) = \widetilde{W}(w_{\mathfrak{n}}\mathfrak{a}(\lambda)^{-1}w_{\mathfrak{n}}^{-1}g) = \omega_{\pi}(\lambda)^{2\mathfrak{n}-1}(\widetilde{W})_{\lambda}(g),$$

où l'on a utilisé la relation $w_n a(\lambda)^{-1} w_n^{-1} = \lambda^{-(2n-1)} a(\lambda)$. Ce qui donne, en utilisant la relation 60, l'égalité

(62)
$$J(1-s, \rho(w_{n,n})\widetilde{(W_{\lambda})}, \mathcal{F}_{\psi_{\lambda}}(\phi)) = \omega_{\pi}(\lambda)^{2n-1} \delta_{B_{n}}(b(\lambda)) |\det b(\lambda)|^{s-1} |\lambda|^{\kappa(n)}$$
$$J(1-s, \rho(w_{n,n})\rho(r(\lambda))\widetilde{W}, \mathcal{F}_{\psi_{\lambda}}(\phi)).$$

Pour finir, on remarque que l'on a pour tout $g \in GL_{2n}(F)$,

$$\begin{split} \rho(w_{n,n})\rho(\mathbf{r}(\lambda))\widetilde{W}(\mathbf{g}) &= W\left(w_{n}\left((\mathbf{g}\mathbf{r}(\lambda)w_{n,n})^{t}\right)^{-1}\right) = W\left(\lambda^{-1}w_{n}\left((\mathbf{g}w_{n,n}\mathbf{r}(\lambda)^{-1})^{t}\right)^{-1}\right) \\ &= \omega_{\pi}(\lambda)^{-1}W\left(w_{n}\left((\mathbf{g}w_{n,n})^{t}\right)^{-1}\mathbf{r}(\lambda)\right) = \omega_{\pi}(\lambda)^{-1}\rho(w_{n,n})\widetilde{W}_{\mathbf{r}}(\mathbf{g}), \end{split}$$

où W_r est la translation à droite de W par $r(\lambda)$, où l'on a utilisé la relation $r(\lambda)w_{n,n} = \lambda w_{n,n}r(\lambda)^{-1}$.

On déduit de 60 et 62 la relation suivante

$$\frac{J(1-s,\rho(w_{n,n})\widetilde{(W_{\lambda})},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W_{\lambda},\varphi)}=\omega_{\pi}(\lambda)^{2n-2}|\lambda|^{n(n-1)(2s-1)}\frac{J(1-s,\rho(w_{n,n})\widetilde{W_{r}},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W_{r},\varphi)},$$

où l'on a utilisé l'égalité det $b(\lambda) = \lambda^{n(n-1)}$. On déduit le lemme grâce à la relation 58.

Les facteurs γ de Shahidi du carré extérieur vérifient la même dépendance par rapport au caractère additif ψ (voir Henniart [10]). Dans la suite, on pourra donc choisir arbitrairement un caractère additif non trivial, les relations seront alors vérifiées pour tous les caractères additifs, en particulier pour le caractère ψ que l'on a fixé.

Proposition 2.9. Soit $F = \mathbb{R}$ ou \mathbb{C} . Soit π une représentation tempérée irréductible de $GL_{2n}(F)$. Les intégrales $J(s, W, \varphi)$ admettent un prolongement méromorphe à \mathbb{C} pour tous $W \in \mathcal{W}(\pi, \psi)$ et $\varphi \in S(F^n)$.

Il existe une fonction méromorphe $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ telle que pour tous $s\in\mathbb{C}$, $W\in\mathcal{W}(\pi,\psi)$ et $\varphi\in\mathcal{S}(F^n)$, on ait

(65)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\phi)).$$

De plus, il existe une constante $c^{Sh}(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c^{Sh}(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque $F=\mathbb{R}$ (respectivement $F=\mathbb{C}$); par exemple, $k=\mathbb{Q}$ si $F=\mathbb{R}$ et $k=\mathbb{Q}(i)$ si $F=\mathbb{C}$. Soient $\nu\neq\nu'$ deux places non archimédiennes distinctes, soit $U\subset Temp(GL_{2n}(F))$ un ouvert contenant π . On choisit un caractère non trivial $\psi_{\mathbb{A}}$ de \mathbb{A}_k/k .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\infty} \in U$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq v$.

On choisit des fonctions $W_w \in \mathcal{W}(\pi_w, (\psi_\mathbb{A})_w)$ et $\varphi_w \in \mathcal{S}(k_w)$ dans le but d'appliquer l'équation fonctionnelle globale. On note $S = \{\infty, \nu\}$ l'ensemble des places où Π est ramifiée et T l'ensemble des places où $\psi_\mathbb{A}$ est ramifié. Pour $w \notin S \cup T$, on prend les fonctions "non ramifiées" qui apparaissent dans la proposition 2.3. Pour $w \in S \cup T$, on fait un choix, d'après la proposition 2.2, tel que $J(s, W_w, \varphi_w) \neq 0$. On pose alors

(67)
$$W = \prod_{w} W_{w} \quad \text{et} \quad \Phi = \prod_{w} \phi_{w}.$$

D'après la proposition 2.5, on a

(68)
$$\prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \widetilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \widetilde{\Pi}, \Lambda^2),$$

où $L^{S \cup T}(s, \Pi, \Lambda^2) = \prod_{w \notin S \cup T} L(s, \Pi_w, \Lambda^2)$ est la fonction L partielle. D'autre part, les facteurs γ de Shahidi vérifient une relation similaire (voir Henniart [10]),

$$(69) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\widetilde{\Pi},\Lambda^2).$$

Les équations (68) et (69), en utilisant la proposition 2.4 pour les places $w \in \{v\} \cup \mathsf{T}$, donnent

$$J(1-s, \rho(w_{n,n})\widetilde{W}_{\infty}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) =$$

$$J(s, W_{\infty}, \varphi_{\infty})\gamma^{Sh}(s, \Pi_{\infty}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty}) \prod_{w \in \{v\} \cup T} \frac{\gamma^{Sh}(s, \Pi_{w}, \Lambda^{2}, (\psi_{\mathbb{A}})_{w})}{\gamma^{JS}(s, \Pi_{w}, \Lambda^{2}, (\psi_{\mathbb{A}})_{w})}.$$

Ce qui prouve la première partie de la proposition pour Π_{∞} , l'existence du facteur $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,(\psi_{\mathbb{A}})_{\infty})$.

On s'occupe tout de suite du quotient $\frac{\gamma^{Sh}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{JS}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}$ lorsque $w\in T$. En effet, Π_w est non ramifiée, une combinaison de la proposition 2.3 et du lemme 2.6 va nous permettre de calculer ce quotient. Il existe $\lambda\in F^*$ et un caractère non ramifié ψ_0 de F tel que $(\psi_{\mathbb{A}})_w(x)=\psi_0(\lambda x)$. La remarque suivant le lemme 2.6 nous dit que les facteurs $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ et $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$ ont la même dépendance par rapport au caractère additif. On en déduit que

$$(71) \qquad \qquad \frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})} = \frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},\psi_{0})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},\psi_{0})} = 1,$$

d'après la proposition 2.3 et le calcul non ramifié des facteurs gamma de Shahidi (voir Henniart [10]).

L'équation (70) devient alors

(72)
$$J(1-s, \rho(w_{n,n})\widetilde{W}_{\infty}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s, W_{\infty}, \varphi_{\infty})\gamma^{Sh}(s, \Pi_{\infty}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty}) \frac{\gamma^{Sh}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}{\gamma^{JS}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}.$$

On choisit maintenant pour U une base de voisinage contenant π , en utilisant le lemme 2.5 et la continuité des facteurs γ de Shahidi sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$, on en déduit que

(73)
$$R(s) = \frac{J(1-s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty}))}{J(s, W, \varphi) \gamma^{Sh}(s, \pi, \Lambda^{2}, \psi)},$$

pour tout $W \in \mathcal{W}(\pi, (\psi_{\mathbb{A}})_{\infty})$, qui est à priori bien définie pour 0 < Re(s) < 1, est une fonction méromorphe indépendante de W et de φ_{∞} . La fonction R(s) ne dépend pas du choix de la base de voisinage et des choix qui sont fait lors de l'utilisation de la proposition 2.6. De plus, R est une limite de fractions rationnelles en q_{ν}^{s} , donc R est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$.

En réutilisant le même raisonnement en une place ν' de caractéristique résiduelle distincte de celle de ν , on voit que R est aussi périodique de période $\frac{2i\pi}{\log q_{\nu'}}$.

La fonction R est donc une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$ et $\frac{2i\pi}{\log q_{\nu'}}$ avec q_{ν} et $q_{\nu'}$ premier entre eux; ce qui est impossible sauf si R est constante. Ce qui nous permet de voir qu'il existe une constante $c^{Sh}(\pi) = R$ telle que

(74)
$$\gamma^{JS}(s,\pi,\Lambda^2,(\psi_{\mathbb{A}})_{\infty}) = c^{Sh}(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,(\psi_{\mathbb{A}})_{\infty}),$$
 où l'on a noté $\gamma^{JS}(s,\pi,\Lambda^2,(\psi_{\mathbb{A}})_{\infty}) = R(s)\gamma^{Sh}(s,\pi,\Lambda^2,(\psi_{\mathbb{A}})_{\infty}).$

Il ne nous reste plus qu'à montrer que la constante $c^{Sh}(\pi)$ est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

(75)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\widetilde{W}, \mathcal{F}_{\psi}(\phi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation $\widetilde{\pi}$ pour transformer le facteur $J(1-s,\rho(w_{n,n})\widetilde{W},\mathcal{F}_{\psi}(\varphi))$, ce qui nous donne

(76)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)J(s, W, \phi) = \frac{J(s, W, \mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\phi)))}{\gamma^{JS}(1 - s, \tilde{\pi}, \Lambda^2, \bar{\psi})}.$$

Puisque $\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\phi)) = \phi$, on obtient donc la relation

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)\gamma^{JS}(1-s,\widetilde{\pi},\Lambda^2,\bar{\psi})=1.$$

D'autre part, en conjuguant l'équation 75, on obtient

(78)
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\psi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\psi}).$$

Comme π est tempérée, π est unitaire, donc $\tilde{\pi} \simeq \bar{\pi}$. On en déduit, pour $s = \frac{1}{2}$,

(79)
$$|\gamma^{JS}(\frac{1}{2}, \pi, \Lambda^2, \psi)|^2 = 1.$$

D'autre part, le facteur γ de Shahidi vérifie aussi $|\gamma^{\text{Sh}}(\frac{1}{2},\pi,\Lambda^2,\psi)|^2=1$; on en déduit donc que $c^{\text{Sh}}(\pi)$ est bien de module 1.

Proposition 2.10. Supposons que F est un corps p-adique. Soit π une représentation tempérée irréductible de $GL_{2n}(F)$.

Le facteur $\gamma^{JS}(s, \pi, \Lambda^2, \psi)$ est défini par la proposition 2.4. Alors il existe une constante $c^{Sh}(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

(80)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c^{Sh}(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Démonstration. D'après le lemme 2.1, il existe un corps de nombres k et une place ν_0 telle que $k_{\nu_0}=F$, où ν_0 est l'unique place de k au dessus de p. Soit ν une place non archimédienne et de caractéristique résiduelle distincte de celle de ν_0 . Soit $U\subset Temp(GL_{2n}(F))$ un ouvert contenant π . On choisit un caractère non trivial $\psi_{\mathbb{A}}$ de \mathbb{A}_k/k .

D'après la proposition 2.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\nu_0} \in U$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq \nu, \nu_0$.

Pour $w = v_0, v$ ou une place archimédienne, on choisit d'après la proposition 2.2, des fonctions de Whittaker W_w et des fonctions de Schwartz ϕ_w telles que $J(s, W_w, \phi_w) \neq 0$. Pour les places non ramifiées, on choisit les fonctions "non ramifiées" de la proposition 2.3. On pose alors

$$W = \prod_{w} W_{w}$$
 et $\Phi = \prod_{w} \Phi_{w}$.

On note S_{∞} l'ensemble des places archimédienne, $S=S_{\infty}\cup\{\nu,\nu_0\}$ et T l'ensemble des places où $\psi_{\mathbb{A}}$ est ramifié. D'après l'équation fonctionnelle globale (proposition 2.5), on a

(81)
$$\prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \widetilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \widetilde{\Pi}, \Lambda^2),$$

où $L^{S\cup T}(s,\Pi,\Lambda^2)$ est la fonction L partielle. Les facteurs γ de Shahidi vérifient (voir Henniart [10])

$$(82) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\mathsf{\Pi},\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\mathsf{\Pi}_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\widetilde{\mathsf{\Pi}},\Lambda^2).$$

On rappelle que lors de la preuve de la proposition précédente, on a démontré que $\frac{\gamma^{\mathrm{Sh}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{\mathrm{JS}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}=1$ pour $w\in\mathsf{T}$. En utilisant les propositions 2.4 et 2.9, on obtient donc la relation

$$(83) \qquad \prod_{\nu_{\infty} \in S_{m}} c^{Sh}(\Pi_{\nu_{\infty}}) \frac{\gamma^{JS}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})} \frac{\gamma^{JS}(s, \Pi_{\nu_{0}}, \Lambda^{2}, \psi)}{\gamma^{Sh}(s, \Pi_{\nu_{0}}, \Lambda^{2}, \psi)} = 1.$$

Le reste du raisonnement est maintenant identique à la fin de la preuve de la proposition 2.9. Par continuité, le quotient $\frac{\gamma^{JS}(s,\pi,\Lambda^2,\psi)}{\gamma^{Sh}(s,\pi,\Lambda^2,\psi)}$ est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$. Or c'est une fraction rationnelle en $q_{\nu_0}^s$, on obtient que c'est une constante. En évaluant $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ en $s=\frac{1}{2}$, on montre que cette constante est de module 1.

3. Limite spectrale

Dans cette partie F est un corps p-adique. On renvoie à la section 1.2 pour la normalisation des mesures sur Temp(G), pour un groupe G réductif connexe sur F.

On note $PG_{2n} = G_{2n}(F)/Z_{2n}(F)$. Soit $f \in \mathcal{S}(PG_{2n})$, pour $\pi \in Temp(PG_{2n})$, on définit f_{π} par

(84)
$$f_{\pi}(g) = \operatorname{Tr}(\pi(g)\pi(f^{\vee})),$$

pour tout $g \in PG_{2n}$, où $f^{\vee}(x) = f(x^{-1})$.

Proposition 3.1 (Harish-Chandra [23], Shahidi [21], Silberger-Zink [22]). Il existe une unique mesure $\mu_{PG_{2n}}$ sur $Temp(PG_{2n})$ telle que

(85)
$$f(g) = \int_{\text{Temp}(PG_{2n})} f_{\pi}(g) d\mu_{PG_{2n}}(\pi),$$

pour tous $f \in S(PG_{2n})$ et $g \in PG_{2n}$. De plus, on a l'égalité de mesure suivante :

(86)
$$d\mu_{\mathsf{PG}_{2\pi}}(\pi) = \frac{\gamma^*(0, \pi, \overline{\mathsf{Ad}}, \psi)}{|\mathsf{S}_{\pi}|} d\pi,$$

 $\begin{array}{l} \text{où } \gamma^*(0,\pi,\overline{Ad},\psi) = \lim_{s \to 0} (slog(q_F))^{-n_{\pi,\overline{Ad}}} \gamma(s,\pi,\overline{Ad},\psi), \text{ avec } n_{\pi,\overline{Ad}} \text{ l'ordre } \text{ du } \\ \text{z\'ero } \text{ de } \gamma(s,\pi,\overline{Ad},\psi) \text{ en } s = 0. \text{ Pour } \pi \in \text{Temp}(PG_{2n}) \text{ isomorphe } \grave{a} \pi_1 \times ... \times \pi_k, \\ \text{avec } \pi_i \in \Pi_2(G_{n_i}), \text{ le } \text{facteur } |S_\pi| \text{ est le produit } \prod_{i=1}^k n_i. \end{array}$

 $D\acute{e}monstration$. La mesure de Plancherel d'un groupe réductif p-adique G est de la forme $d\mu_G(\pi) = \mu_G(\pi)d\pi$. Rappelons que la densité de Plancherel μ_G a été calculé par Waldspurger et Harish-Chandra [23] sous la forme

(87)
$$\mu_{G}(\pi) = \mathbf{d}(\sigma)\mathbf{j}(\sigma)^{-1},$$

où $\pi = \mathfrak{i}_P^G(\sigma)$ avec P = MU un sous-groupe parabolique de G et $\sigma \in \Pi_2(M)$, $d(\sigma)$ est le degré formel de σ et $\mathfrak{j}(\sigma)$ est un scalaire produit d'opérateurs d'entralecements.

Par désintégration de la mesure sur $\mathsf{Temp}(\mathsf{G}_{2n})$ et inversion de Fourier sur Z_{2n} , on a $\mu_{\mathsf{PG}_{2n}}(\pi) = \gamma(0,1,\psi)^{-1}\mu_{\mathsf{G}_{2n}}(\pi)$ pour tout $\pi \in \mathsf{Temp}(\mathsf{PG}_{2n})$. Pour $\mathsf{G} = \mathsf{G}_{2n}$, le degré formel $\mathsf{d}(\sigma)$ a été calculé par Silberger-Zink [22] et le facteur $\mathsf{j}(\sigma)^{-1}$ par

Shahidi [21]. On renvoie à [7, Proposition 2.13.2] pour le calcul du produit qui donne la relation 86.

On note $\Phi(G)$ l'ensemble des paramètres de Langlands tempérés de G et Temp(G)/Stable quotient de Temp(G) par la relation d'équivalence $\pi \equiv \pi' \iff \varphi_{\pi} = \varphi_{\pi'}$, où φ_{π} est le paramètre de Langlands associé à π .

Rappelons (section 1.1) que la correspondance de Langlands locale pour SO(2m+ 1) nous permet de définir une application de transfert $T : Temp(SO(2m+1))/Stab \rightarrow$ $Temp(G_{2m})$. On sait caractériser l'image de l'application de transfert. Plus exac-

$$(88) \hspace{1cm} \pi \in \mathsf{T}(\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}) \iff \pi = \left(\bigvee_{i=1}^k \tau_i \times \widetilde{\tau_i} \right) \times \bigvee_{j=1}^l \mu_i$$

avec $\tau_i \in \Pi_2(G_{n_i})$ et $\mu_i \in T(\mathsf{Temp}(\mathsf{SO}(2\mathfrak{m}_i+1))/\mathsf{Stab}) \cap \Pi_2(G_{2\mathfrak{m}_i})$ (de manière équivalente $\mu_j \in \Pi_2(\mathsf{G}_{2\mathfrak{m}_j})$ et $\gamma(0,\mu_j,\Lambda^2,\psi)=0$).

Proposition 3.2. Soit ϕ une fonction localement constante à support compact sur $Temp(PG_{2n})$, on a

$$(89) \qquad \begin{aligned} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi)\gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \\ &\int_{\mathsf{Temp}(\mathsf{SO}_{2n+1})/\mathsf{Stab}} \varphi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \end{aligned}$$

 $\textit{Pour } \sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1)) \textit{ sous-représentation de } \pi_1 \times ... \times \pi_l \rtimes \sigma_0, \textit{ avec}$ $\pi_i \in \Pi_2(\mathsf{G}_{\mathfrak{n}_i}) \text{ et } \sigma_0 \in \Pi_2(\mathsf{SO}(2m+1)), \text{ le facteur } |\mathsf{S}_{\pi}| \text{ est le produit } |\mathsf{S}_{\pi_1}|...|\mathsf{S}_{\pi_l}||\mathsf{S}_{\sigma_0}| \text{ ;}$ $o\dot{u} \mid S_{\sigma_0} \mid = 2^k \ tel \ que \ T(\sigma_0) \simeq \tau_1 \times ... \times \tau_k \ avec \ \tau_i \in \Pi_2(G_{\mathfrak{m}_i}).$

Démonstration. D'après la relation 86, on a

$$\int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \gamma(s,\pi,\Lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi) \frac{\gamma^*(0,\pi,\overline{Ad},\psi)}{|S_\pi| \gamma(s,\pi,\Lambda^2,\psi)} d\pi.$$

Soit $\pi \in \mathsf{Temp}(\mathsf{PG}_{2n})$. En prenant des partitions de l'unité, on peut supposer que ϕ est à support dans un voisinage U suffisamment petit de π . On écrit la représentation π sous la forme

$$(91) \hspace{1cm} \pi = \left(\overset{t}{\underset{i=1}{\times}} \tau_{i}^{\times m_{i}} \times \widetilde{\tau_{i}}^{\times n_{i}} \right) \times \left(\overset{u}{\underset{j=1}{\times}} \mu_{j}^{\times p_{j}} \right) \times \left(\overset{v}{\underset{k=1}{\times}} \nu_{k}^{\times q_{k}} \right),$$

- $\tau_i \,\in\, \Pi_2(\mathsf{G}_{d_\mathfrak{i}})$ vérifie $\tau_\mathfrak{i} \,\not\simeq\, \widetilde{\tau_\mathfrak{i}}$ pour tout $1\,\leqslant\,\mathfrak{i}\,\leqslant\, t.$ De plus, pour tous $1\leqslant i< i'\leqslant t,\, \tau_i\not\simeq \tau_{i'}\,\,\mathrm{et}\,\,\tau_i\not\simeq \widetilde{\tau_{i'}}.$
- $\mu_j \in \Pi_2(G_{e_j})$ vérifie $\mu_j \simeq \widetilde{\mu_j}$ et $\gamma(0, \mu_j, \Lambda^2, \psi) \neq 0$ pour tout $1 \leqslant j \leqslant u$. De
- plus, pour tous $1 \leqslant j < j' \leqslant u$, $\mu_j \not\simeq \mu_{j'}$. $\nu_k \in \Pi_2(\mathsf{G}_{\mathsf{f}_k})$ vérifie $\gamma(0,\nu_k,\Lambda^2,\psi) = 0$ (et donc $\nu_k \simeq \widetilde{\nu_k}$) pour tout $1 \leqslant k \leqslant \nu$. De plus, pour tous $1 \leqslant k < k' \leqslant \nu$, $\nu_k \not\simeq \nu_{k'}$.

On note $M=\left(\prod_{i=1}^t G_{d_i}^{\mathfrak{m}_i+\mathfrak{n}_i} \times \prod_{j=1}^{\mathfrak{u}} G_{e_j}^{\mathfrak{p}_j} \times \prod_{k=1}^{\mathfrak{v}} G_{f_k}^{\mathfrak{q}_k}\right)/Z_{2\mathfrak{n}}$ et P un parabolique de PG_{2n} de Levi M. Alors $\pi=i_P^{PG_{2n}}(\tau)$ pour une certaine représentation τ de M.

On note $X^*(M)$ le groupe des caractères algébriques de M. On note $\mathcal{A} \subset \prod_{i=1}^t (i\mathbb{R})^{m_i+n_i} \times \prod_{j=1}^u (i\mathbb{R})^{p_j} \times \prod_{k=1}^v (i\mathbb{R})^{q_k} = (i\mathbb{R})_M$ l'hyperplan défini par la condition que la somme des coordonnées est nulle.

On équipe $(i\mathbb{R})_M$ du produit des mesures de Lebesgue sur $i\mathbb{R}$ et \mathcal{A} de la mesure de Haar telle que la mesure quotient sur $(i\mathbb{R})_M/\mathcal{A} \simeq i\mathbb{R}$ soit la mesure de Lebesgue.

Dans la suite, on notera les coordonnées de $\lambda \in \mathcal{A}$ de la manière suivante :

$$-- x_i(\lambda) = (x_{i,1}(\lambda),...,x_{i,\mathfrak{m}_i}(\lambda),\widetilde{x_{i,1}}(\lambda),...,\widetilde{x_{i,\mathfrak{n}_i}}(\lambda)) \in (i\mathbb{R})^{\mathfrak{m}_i} \times (i\mathbb{R})^{\mathfrak{n}_i},$$

$$--y_{\mathbf{j}}(\lambda) = (y_{\mathbf{j},1}(\lambda), ..., y_{\mathbf{j},p_{\mathbf{j}}}(\lambda)) \in (i\mathbb{R})^{p_{\mathbf{j}}},$$

$$- z_{\mathbf{k}}(\lambda) = (z_{\mathbf{k},1}(\lambda), ..., z_{\mathbf{k},q_{\mathbf{k}}}(\lambda)) \in (i\mathbb{R})^{q_{\mathbf{k}}},$$

pour tout $\lambda \in \mathcal{A}$.

On équipe $i\mathcal{A}_M^* = X^*(M) \otimes i\mathbb{R}$ de l'unique mesure de Haar telle que $i\mathcal{A}_M^*/(\frac{2i\pi}{\log(q_F)})X^*(M)$ a pour volume 1. Pour $\lambda = \chi \otimes \mu \in i\mathcal{A}_M^*$, on note $\tau_\lambda = \tau \otimes |\chi|^\mu$. On rappelle que $W(PG_{2n},\tau)$ est le sous-groupe de $W(PG_{2n},M)$ fixant la représentation τ . Soit V_M un voisinage ouvert de 0 suffisamment petit $W(PG_{2n},\tau)$ -invariant dans $i\mathcal{A}_M^*$ telle que l'application $\lambda \in i\mathcal{A}_M^* \mapsto \pi_\lambda = i_P^{PG_{2n}}(\tau_\lambda) \in Temp(PG_{2n})$ induit un isomorphisme topologique entre $V_M/W(PG_{2n},\tau)$ et un voisinage ouvert U de π dans $Temp(PG_{2n})$. On a la formule d'intégration suivante

(92)
$$\int_{U} f(\pi) d\pi = \frac{1}{W(PG_{2n}, \tau)} \int_{V_{M}} f(\pi_{\lambda}) d\lambda,$$

pour toute fonction f localement constante à support compact sur $Temp(PG_{2n})$.

Il existe un isomorphisme d'espace vectoriel $\mathcal{A} \simeq i\mathcal{A}_M^*$ tel que lorsqu'on le compose avec l'application $\lambda \in i\mathcal{A}_M^* \mapsto \pi_\lambda \in Temp(PG_{2n})$, on obtient l'application $\lambda \in \mathcal{A} \mapsto \pi_\lambda \in Temp(PG_{2n})$ où

$$(93) \qquad \pi_{\lambda} = \left(\bigotimes_{i=1}^{t} \left(\bigotimes_{l=1}^{m_{i}} \tau_{i} \otimes |\det|^{\frac{x_{i,l}(\lambda)}{d_{i}}} \right) \times \left(\bigotimes_{l=1}^{n_{i}} \widetilde{\tau_{i}} \otimes |\det|^{\frac{x_{\widetilde{i},l}(\lambda)}{d_{i}}} \right) \right) \\ \times \left(\bigotimes_{j=1}^{u} \bigotimes_{l=1}^{p_{j}} \mu_{j} \otimes |\det|^{\frac{y_{j,l}(\lambda)}{e_{j}}} \right) \times \left(\bigotimes_{k=1}^{v} \bigotimes_{l=1}^{q_{k}} \nu_{k} \otimes |\det|^{\frac{z_{k,l}(\lambda)}{f_{k}}} \right).$$

Quitte à restreindre U, cette dernière induit un homéomorphisme $U \simeq V/W(PG_{2n}, \tau)$, où V est un voisinage de 0 dans \mathcal{A} .

L'isomorphisme $\mathcal{A} \simeq i\mathcal{A}_M^*$ envoie la mesure de Haar de \mathcal{A} sur $\left(\frac{\log(q_F)}{2\pi}\right)^{\dim(A_M)}$ fois la mesure de Haar sur $i\mathcal{A}_M^*$. On en déduit, grâce à 92, que l'intégrale 90 est égale à

$$(94) \qquad \frac{1}{|W(\mathsf{PG}_{2n},\tau)|} \left(\frac{\log(\mathsf{q_F})}{2\pi}\right)^{\dim(\mathcal{A})} \int_{V} \varphi(\pi_{\lambda}) \frac{\gamma^*(0,\pi_{\lambda},\overline{\mathsf{Ad}},\psi)}{|\mathsf{S}_{\pi_{\lambda}}|\gamma(s,\pi_{\lambda},\Lambda^2,\psi)} \, \mathrm{d}\lambda,$$

où $\dim(\mathcal{A}) = \dim(A_M) = \left(\sum_{i=1}^t m_i + n_i + \sum_{j=1}^u p_j + \sum_{k=1}^v q_k\right) - 1$. De plus, on a

$$|S_{\pi_{\lambda}}| = \prod_{i=1}^{t} d_{i}^{m_{i}+n_{i}} \prod_{j=1}^{u} e_{j}^{p_{j}} \prod_{k=1}^{\nu} f_{k}^{q_{k}}.$$

On notera ce produit P dans la suite.

On en déduit l'égalité suivante :

où $\phi(\lambda)=\phi(\pi_{\lambda})$ si $\lambda\in V$ et 0 sinon. La fonction ϕ est $W(PG_{2n},\tau)$ -invariante à support compact.

Décrivons maintenant la forme des facteurs γ , on aura besoin des propriétés de ces derniers.

Propriété 3.1. Les facteurs γ vérifient les propriétés suivantes :

- $\gamma(s, \pi_1 \times \pi_2, Ad, \psi) = \gamma(s, \pi_1, Ad, \psi)\gamma(s, \pi_2, Ad, \psi)\gamma(s, \pi_1 \times \widetilde{\pi_2}, \psi)\gamma(s, \widetilde{\pi_1} \times \widetilde{\pi_2}, \psi)\gamma(s, \widetilde{\pi_2}, \psi)\gamma(s, \widetilde{\pi_1} \times \widetilde{\pi_2}, \psi)\gamma(s,$ π_2, ψ),
- $-\gamma(s,\pi|\det|^x,Ad,\psi)=\gamma(s,\pi,Ad,\psi),$
- $-\gamma(s,\pi,Ad,\psi)$ a un zéro simple en s=0,
- $$\begin{split} & \gamma(s,\pi_1\times\pi_2,\Lambda^2,\psi) = \gamma(s,\pi_1,\Lambda^2,\psi)\gamma(s,\pi_2,\Lambda^2,\psi)\gamma(s,\pi_1\times\pi_2,\psi), \\ & \gamma(s,\pi|\det|^x,\Lambda^2,\psi) = \gamma(s+2x,\pi,\Lambda^2,\psi), \end{split}$$
- $-\gamma(s,\pi,\Lambda^2,\psi)$ a au plus un zéro simple en s=0 et $\gamma(0,\pi,\Lambda^2)=0$ si et seulement si π est dans l'image de l'application de transfert T,

pour tous $x, s \in \mathbb{C}$, $\pi \in \Pi_2(G_m)$ et $\pi_1, \pi_2 \in \text{Temp}(G_m)$.

On en déduit que

$$\begin{split} \gamma^*(0,\pi_{\lambda},\overline{Ad},\psi) &= \left(\prod_{i=1}^t \prod_{1\leqslant l\neq l'\leqslant m_i} (\frac{x_{i,l}(\lambda)-x_{i,l'}(\lambda)}{d_i}) \prod_{1\leqslant l\neq l'\leqslant n_i} (\frac{\widetilde{x_{i,l}}(\lambda)-\widetilde{x_{i,l'}}(\lambda)}{d_i}) \right) \\ &\left(\prod_{j=1}^u \prod_{1\leqslant l\neq l'\leqslant p_j} (\frac{y_{j,l}(\lambda)-y_{j,l'}(\lambda)}{e_j}) \right) \left(\prod_{k=1}^{\nu} \prod_{1\leqslant l\neq l'\leqslant q_k} (\frac{z_{k,l}(\lambda)-z_{k,l'}(\lambda)}{f_k}) \right) F(\lambda), \end{split}$$

où F est une fonction $W(\mathsf{PG}_{2n},\tau)$ -invariante C^∞ qui ne s'annule pas sur le voisinage V (quitte à rétrécir V), il s'agit d'un produit de facteur γ ne s'annulant pas sur V. De même, on a

$$\begin{split} \gamma(s,\pi_{\lambda},\Lambda^2,\psi)^{-1} &= \left(\prod_{i=1}^t \prod_{\substack{1\leqslant l\leqslant m_i\\ 1\leqslant l'\leqslant n_i}} (s+\frac{x_{i,l}(\lambda)+\widetilde{x_{i,l'}}(\lambda)}{d_i})^{-1} \right) \\ \left(\prod_{j=1}^u \prod_{1\leqslant l< l'\leqslant p_j} (s+\frac{y_{j,l}(\lambda)+y_{j,l'}(\lambda)}{\varepsilon_j})^{-1} \right) \left(\prod_{k=1}^v \prod_{1\leqslant l\leqslant l'\leqslant q_k} (s+\frac{z_{k,l}(\lambda)+z_{k,l'}(\lambda)}{f_k})^{-1} \right) G(2\lambda+s), \end{split}$$

où la fonction G est une fonction $W(PG_{2n}, \tau)$ -invariante méromorphe sur $A \otimes \mathbb{C}$ tel que ses diviseurs polaires ne rencontrent pas $\frac{1}{2}V + \mathcal{H}$ (quitte à rétrécir V); ici $\mathcal{H}=\{z\in\mathbb{C}, \mathsf{Re}(z)>0\}\cup\{0\}$ s'injecte dans $\mathcal{A}\stackrel{\sim}{\otimes}\mathbb{C}$ par l'application $\mathsf{s}\in\mathcal{H}\mapsto$ $\lambda_s \in \mathcal{A} \otimes \mathbb{C}$ dont les coordonnées sont $x_i(\lambda_s) = d_i(s,...,s), y_i(\lambda_s) = e_i(s,...,s)$ et $z_k(\lambda_s) = f_k(s, ..., s).$

On énonce maintenant le résultat fondamental de [7], qui permet d'obtenir la proposition pour la représentation d'Asai. En reprenant les notations de [7, Proposition 3.2.1], on écrit

$$\phi(\lambda)\frac{\gamma^*(0,\pi_\lambda,\overline{Ad},\psi)}{\gamma(s,\pi_\lambda,\Lambda^2,\psi)} = \phi_s(\lambda)\prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i})\prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j})\prod_{i=1}^\nu R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}),$$

où $\varphi_s(\lambda) = \varphi(\lambda)F(\lambda)G(2\lambda + s)$. La fonction $s \in \mathcal{H} \cup \{0\} \mapsto \varphi_s \in C_c^\infty(\mathcal{A})$ est continue. De plus, φ_s est $W(PG_{2n}, \tau)$ -invariante à support compact. Les lettres P, Q, R désignent des fractions rationnelles qui apparaissent dans le quotient des facteurs γ (voir [7, section 3]).

Proposition 3.3 (Beuzart-Plessis [7, Proposition 3.3.1]). La limite

$$(100) \quad \lim_{s\to 0^+} \frac{ns}{|W|} \int_{\mathcal{A}} \phi_s(\lambda) \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda)}{d_i}) \prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda)}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda)}{f_k}) d\lambda$$

est nulle si $m_i \neq n_i$ pour un certain i ou si l'un des p_i est impair. De plus, dans le cas contraire, elle est égale à

$$\frac{D(2\pi)^{N-1}2^{-c}}{|W'|}$$

$$\int_{\mathcal{A}'} \lim_{s \to 0^+} \phi_s(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^\nu R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda';$$

- $$\begin{split} & D = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{P_j}{2}} \prod_{k=1}^v f_k^{\lceil \frac{q_k}{2} \rceil}, \\ & \mathit{c \ est \ le \ cardinal \ des} \ 1 \leqslant k \leqslant t \ \mathit{tel \ que} \ q_k \equiv 1 \mod 2, \end{split}$$
- $N = \sum_{i=1}^{t} n_i + \sum_{j=1}^{u} \frac{p_j}{2} + \sum_{k=1}^{v} \lceil \frac{q_k}{2} \rceil$, W et W' sont définis de manière intrinsèque dans [7, section 3.3], W est isomorphe à $W(PG_{2n},\tau)$ et on introduira un groupe isomorphe à W' plus

De plus, A' est le sous-espace de A défini par les relations :

- $-x_{i,l}(\lambda) + \widetilde{x_{i,l}}(\lambda) = 0 \text{ pour tous } 1 \leqslant i \leqslant t \text{ et } 1 \leqslant l \leqslant n_i,$
- $\begin{array}{l} -\ y_{j,l}(\lambda) + y_{j,p_j+1-l}(\lambda) = 0 \ \textit{pour tous} \ 1 \leqslant j \leqslant u \ \textit{et} \ 1 \leqslant l \leqslant \frac{p_j}{2}, \\ -\ z_{k,l}(\lambda) + z_{k,q_k+1-l}(\lambda) = 0 \ \textit{pour tous} \ 1 \leqslant k \leqslant v \ \textit{et} \ 1 \leqslant l \leqslant \lceil \frac{q_k}{2} \rceil. \end{array}$

On équipe A' de la mesure Lebesgue provenant de l'isomorphisme

(102)
$$\mathcal{A}' \simeq \prod_{i=1}^t (i\mathbb{R})^{n_i} \prod_{j=1}^u (i\mathbb{R})^{\frac{p_j}{2}} \prod_{k=1}^v (i\mathbb{R})^{\lfloor \frac{q_k}{2} \rfloor}$$

qui correspond à la projection consistant à supprimer les coordonnées redondantes : $\widetilde{x_{i,l}} \ \textit{pour tous} \ 1 \leqslant i \leqslant t \ \textit{et} \ 1 \leqslant l \leqslant n_i, \ y_{j,l} \ \textit{pour tous} \ 1 \leqslant j \leqslant u \ \textit{et} \ \frac{p_j}{2} < l \leqslant p_j, \ z_{k,l}$ pour tous $1 \le k \le v$ et $\lceil \frac{q_k}{2} \rceil < l \le q_k$.

Démonstration. Il nous faut donner une petite explication par rapport à la proposition 3.3.1 dans [7]. En effet, on l'utilise pour une famille φ_s alors qu'elle est énoncée pour une unique fonction φ . Notons, comme dans [7, section 3.3], (103)

$$D_s(\varphi) = \frac{1}{|W|} \int_{\mathcal{A}} \varphi(\lambda) \prod_{i=1}^t P_{\mathfrak{m}_i, \mathfrak{n}_i, s}(\frac{x_i(\lambda)}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j, s}(\frac{y_j(\lambda)}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k, s}(\frac{z_k(\lambda)}{f_k}) d\lambda,$$

(104)

$$D'(\phi) = \frac{D(2\pi)^{N-1}2^{-c}}{n}$$

$$\int_{\mathcal{A}'} \lim_{s \to 0^+} \phi(\lambda') s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{i=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^\nu R_{q_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda',$$

pour tout $\varphi \in C_c^{\infty}(\mathcal{A})$.

On se contente du cas où $\mathfrak{m}_i=\mathfrak{n}_i$ pour tout $1\leqslant i\leqslant t$ et que \mathfrak{p}_j est pair pour tout $1\leqslant j\leqslant u$, l'autre cas se fait en utilisant le même raisonnement en remplaçant D' par 0. On note $C_c^\infty(\mathcal{A})^W$ le sous-espace de $C_c^\infty(\mathcal{A})$ des fonctions W-invariantes. D'après la proposition 3.3.1 de [7], pour tout $\phi\in C_c^\infty(\mathcal{A})^W$, on a

(105)
$$\lim_{s \to 0^+} sD_s(\varphi) = \frac{|W|}{|W'|}D'(\varphi).$$

Les formes linéaires $D_s: C_c^\infty(\mathcal{A})^W \to \mathbb{C}$ et la fonction $s \in \mathcal{H} \cup \{0\} \mapsto \phi_s \in C_c^\infty(\mathcal{A})$ sont continues. D'après le théorème de Banach-Steinhaus, on en déduit que

(106)
$$\lim_{s \to 0^+} s D_s(\phi_s) = \frac{|W|}{|W'|} \lim_{s \to 0^+} D'(\phi_s),$$

ce qui est bien notre proposition.

Supposons tout d'abord que π n'est pas de la forme $T(\sigma)$ pour un certain $\sigma \in Temp(SO(2n+1))/Stab$. D'après la caractérisation 88, il existe $1 \leqslant i \leqslant r$ tel que $m_i \neq n_i$ ou p_j est impair (on vérifie aisément que les autres cas se mettent sous la forme qui apparait dans 88). Alors en prenant U suffisamment petit, on peut supposer que U ne rencontre pas l'image de l'application de transfert T. Autrement dit, le terme de droite de la proposition est nul; d'après la proposition 3.3, le terme de gauche l'est aussi.

Supposons maintenant qu'il existe $\sigma \in Temp(SO(2n+1))/Stab$ tel que $\pi = T(\sigma)$. Alors $m_i = n_i$ pour tout $1 \le i \le t$ et les p_i sont pairs. De plus, on peut écrire

(107)
$$\sigma = \left(\underset{i=1}{\overset{t}{\times}} \tau_i^{\times n_i} \times \underset{j=1}{\overset{u}{\times}} \mu_j^{\times \frac{p_j}{2}} \times \underset{k=1}{\overset{v}{\times}} \nu_k^{\times \lfloor \frac{q_k}{2} \rfloor} \right) \rtimes \sigma_0,$$

où σ_0 est une représentation de SO(2m+1) pour un certain $\mathfrak m$ tel que

(108)
$$\mathsf{T}(\sigma_0) = \underset{\substack{\mathsf{q}_k \equiv 1 \mod 2}}{\overset{\mathsf{v}}{\textstyle \mathsf{V}}} \nu_k.$$

On note $L=\prod_{i=1}^t G_{d_i}^{n_i}\times\prod_{j=1}^u G_{e_j}^{\frac{p_j}{2}}\times\prod_{k=1}^v G_{f_k}^{\lfloor\frac{q_k}{2}\rfloor}\times SO(2m+1)$ et P un sous-groupe parabolique de SO(2n+1) de Levi L. On a $\sigma=i_p^{SO(2n+1)}(\Sigma)$, où $\Sigma\in\Pi_2(L)$. Le groupe W' de la proposition 3.3 est isomorphe à $W(SO(2n+1),\sigma)$, où $W(SO(2n+1),\sigma)$ est le sous-groupe de W(SO(2n+1),L) fixant la classe d'isomorphisme de σ .

On équipe $i\mathcal{A}_L^* = X^*(L) \otimes i\mathbb{R}$ de l'unique mesure de Haar telle que $i\mathcal{A}_L^*/(\frac{2i\pi}{\log(q_F)})X^*(L)$ a pour volume 1. Pour $\lambda' = \chi \otimes \mu \in i\mathcal{A}_L^*$, on note $\Sigma_{\lambda'} = \Sigma \otimes |\chi|^\mu$. Il existe un isomorphisme d'espace vectoriel $\mathcal{A}' \simeq i\mathcal{A}_L^*$ tel que lorsqu'on le compose avec l'application $\lambda' \in i\mathcal{A}_L^* \mapsto \sigma_{\lambda'} = i_P^{SO(2n+1)}(\Sigma_{\lambda'}) \in \text{Temp}(SO(2n+1))$, on obtient l'application $\lambda' \in \mathcal{A}' \mapsto \sigma_{\lambda'} \in \text{Temp}(SO(2n+1))$, avec

$$(109) \qquad \sigma_{\lambda'} = \left(\underset{i=1}{\overset{t}{\underset{l=1}{\times}}} \underset{l=1}{\overset{\pi_{i}}{\times}} \tau_{i} \otimes |\det|^{\frac{x_{i,1}(\lambda')}{d_{i}}} \right) \times \left(\underset{j=1}{\overset{\nu}{\underset{l=1}{\times}}} \underset{l=1}{\overset{p_{j}}{\times}} \mu_{j} \otimes |\det|^{\frac{y_{j,1}(\lambda')}{e_{j}}} \right) \\ \times \left(\underset{k=1}{\overset{\nu}{\underset{l=1}{\times}}} \underset{l=1}{\overset{q_{k}}{\times}} \right) \vee_{k} \otimes |\det|^{\frac{z_{k,1}(\lambda')}{f_{k}}} \right) \rtimes \sigma_{0}.$$

L'isomorphisme $\mathcal{A}'\simeq i\mathcal{A}_L^*$ envoie la mesure de Haar de \mathcal{A} sur $\left(\frac{\log(q_F)}{2\pi}\right)^{\dim(\mathcal{A}')}$ fois la mesure de Haar sur $i\mathcal{A}_L^*$. De plus, quitte à rétrécir V, pour $\lambda\in V$, $\pi_\lambda\in T(SO(2n+1)/Stab)$ si et seulement si $\lambda\in\mathcal{A}'$; d'après l'équivalence 88. Dans ce cas $\pi_\lambda=T(\sigma_\lambda)$.

En utilisant cette caractérisation et la définition de la fonction ϕ (équation 96), on obtient

$$\int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \Phi(\mathsf{T}(\sigma)) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} d\sigma \\
= \frac{1}{|W'|} \left(\frac{\log(\mathsf{q}_\mathsf{F})}{2\pi}\right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \Phi(\mathsf{T}(\sigma_{\lambda'})) \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda' \\
= \frac{1}{|W'|} \left(\frac{\log(\mathsf{q}_\mathsf{F})}{2\pi}\right)^{\dim(\mathcal{A}')} \int_{\mathcal{A}'} \phi(\lambda') \frac{\gamma^*(0,\sigma_{\lambda'},\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma_{\lambda'}}|} d\lambda'.$$

De plus,

$$|S_{\sigma_{\lambda'}}| = \prod_{i=1}^t d_i^{n_i} \prod_{j=1}^u e_j^{\frac{p_j}{2}} \prod_{k=1}^v f_k^{\lfloor \frac{q_k}{2} \rfloor} |S_{\sigma_0}| = 2^c \frac{P}{D},$$

d'après les notations de la proposition 3.3 et la relation 108. D'autre part, d'après la proposition 3.3 et l'équation 96, on a

(112)

$$\begin{split} &\lim_{s\to 0^+} n\gamma(s,1,\psi) \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} \varphi(\pi)\gamma(s,\pi,\lambda^2,\psi)^{-1} d\mu_{\mathsf{PG}_{2n}}(\pi) = \frac{D(2\pi)^{N-1}2^{-c}\gamma^*(0,1,\psi)log(\mathfrak{q}_F)}{|\mathcal{W}'|P} \\ &\left(\frac{log(\mathfrak{q}_F)}{2\pi}\right)^{\dim(\mathcal{A})} \int_{\mathcal{A}'} \lim_{s\to 0^+} \phi_s(\lambda')s^N \prod_{i=1}^t P_{\mathfrak{m}_i,\mathfrak{n}_i,s}(\frac{x_i(\lambda')}{d_i}) \prod_{j=1}^u Q_{\mathfrak{p}_j,s}(\frac{y_j(\lambda')}{e_j}) \prod_{i=1}^v R_{\mathfrak{q}_k,s}(\frac{z_k(\lambda')}{f_k}) d\lambda'. \end{split}$$

Cette dernière intégrale est égale à

(113)
$$\int_{A'} \varphi(\lambda') \lim_{s \to 0^+} s^{N} \frac{\gamma^*(0, \pi_{\lambda'}, \overline{Ad}, \psi)}{\gamma(s, \pi_{\lambda'}, \Lambda^2, \psi)} d\lambda'.$$

De plus, on remarque que $s\mapsto \gamma(s,\pi_{\lambda'},\Lambda^2,\psi)^{-1}$ a un pôle d'ordre N en s=0. Notre membre de gauche est donc égal à

$$(114) \quad \frac{D\left(2\pi\right)^{N-1}2^{-c}log(q_F)}{|W'|P}\left(\frac{log(q_F)}{2\pi}\right)^{\dim(\mathcal{A})}\int_{\mathcal{A}'}\phi(\lambda')\frac{\gamma^*(0,\sigma_{\lambda'},Ad,\psi)}{log(q_F)^N}d\lambda'.$$

On a utilisé les relations $\gamma^*(0,1,\psi)\gamma^*(0,\pi_{\lambda'},\overline{Ad},\psi) = \gamma^*(0,\pi_{\lambda'},Ad,\psi)$ et

(115)
$$\frac{\gamma(s, \mathsf{T}(\sigma_{\lambda'}), \mathsf{Ad}, \psi)}{\gamma(s, \mathsf{T}(\sigma_{\lambda'}), \Lambda^2, \psi)} = \gamma(s, \sigma_{\lambda'}, \mathsf{Ad}, \psi).$$

Dans l'expression 114, le facteur $\frac{\log(q_F)}{2\pi}$ apparait avec un exposant $\dim(\mathcal{A}) - N + 1 = \dim(\mathcal{A}')$; on en déduit que 114 est égal au membre de droite 110, d'après l'égalité 111.

4. Une formule d'inversion de Fourier

On note H_n le sous-groupe des matrices de la forme $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$ où X est dans M_n et g dans G_n . On pose $H_n^P = H_n \cap P_{2n}$. On note θ le caractère sur H_n qui envoie $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$ sur $\psi(Tr(X))$.

On équipe H_n , $H_n \cap N_{2n} \setminus H_n$ et $H_n^P \cap N_{2n} \setminus H_n^P$ des mesures suivantes :

$$- \int_{H_n} f(s)ds = \int_{G_n} \int_{M_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dXdg, \text{ pour } f \in \mathcal{S}(G_{2n}),$$

$$- \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} \mathsf{f}(\xi)\theta(\xi)^{-1} d\xi = \int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} \mathsf{f}\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right) dXdg,$$
 pour $\mathsf{f}\in C^w(\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}},\psi)$ (voir section 2.1.4 pour la definition de l'espace $C^w(\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}},\psi)$),

$$\begin{split} - \int_{H_n^P \cap N_{2n} \setminus H_n^P} f(\xi) \theta(\xi)^{-1} d\xi &= \int_{N_n \setminus P_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dX dg, \\ & \text{pour } f \in C^w(N_{2n} \setminus G_{2n}, \psi). \end{split}$$

Proposition 4.1. Soit $f \in S(G_{2n})$, alors on a

$$\int_{H_{\mathfrak{n}}}^{(116)} f(s)\theta(s)^{-1}ds = \int_{H_{\mathfrak{n}}^{p} \cap N_{2\mathfrak{n}} \setminus H_{\mathfrak{n}}^{p}} \int_{H_{\mathfrak{n}} \cap N_{2\mathfrak{n}} \setminus H_{\mathfrak{n}}} W_{f}(\xi_{\mathfrak{p}}, \xi)\theta(\xi)^{-1}\theta(\xi_{\mathfrak{p}})d\xi d\xi_{\mathfrak{p}},$$

 $où W_f$ est la fonction de $G_{2n} \times G_{2n}$ définie par

(117)
$$W_{f}(g_{1},g_{2}) = \int_{N_{2n}} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du$$

pour tous $g_1, g_2 \in G_{2n}$. De plus, l'intégrale double est absolument convergente.

Démonstration. On montre la proposition par récurrence sur $\mathfrak n$. Pour $\mathfrak n=1,\ \sigma_\mathfrak n$ est trivial, $H_1=N_2\mathsf Z(\mathsf G_2)$ et $H_1^P=N_2$ donc $H_1^P\cap N_2\backslash H_1^P$ est trivial. Le membre de droite est alors

(118)
$$\int_{\mathbb{F}^*} W_f \left(1, \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) dz = \int_{\mathbb{F}^*} \int_{\mathbb{N}_2} f \left(u \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \psi(u)^{-1} du dz.$$

Ce qui est bien l'égalité voulue. Supposons maintenant que $\mathfrak{n}>1$ et que la proposition soit vraie au rang $\mathfrak{n}-1$.

Le sous groupe Ω_n des matrices de la forme $\sigma_n\begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}\begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix}\sigma_n^{-1}$ où Y est une matrice triangulaire inférieure stricte de taille n et $h \in \overline{B}_n$ le sous-groupe des matrices triangulaires inférieures inversible, s'identifie à un ouvert dense du quotient $H_n \cap N_{2n} \setminus H_n$. On injecte Ω_{n-1} dans Ω_n , en rajoutant des 0 sur la dernière ligne

et colonne de Y et voyant h comme un élément de $\overline{\mathbb{B}}_n$. On note Ω_n l'ensemble

des matrices de la forme $\sigma_n\begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix}\sigma_n^{-1}$ où \widetilde{Y} est de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$ avec $\widetilde{y} \in F^{n-1}$ et \widetilde{h} de la forme $\begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$ avec $\widetilde{l} \in F^{n-1}$ et $\widetilde{l}_n \in F^*$. Dans la suite, on fera l'identification de $F^{n-1} \times F^{n-1} \times F^*$ et $\widetilde{\Omega}_n$ à travers l'isomorphisme $(\widetilde{y},\widetilde{l},\widetilde{l}_n) \in F^{n-1} \times F^{n-1} \times F^* \mapsto \sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix}\sigma_n^{-1} \in \widetilde{\Omega}_n$ où $\widetilde{Y} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$ et $\widetilde{h} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_n \end{pmatrix}$. On en déduit que $\Omega_n = \Omega_{n-1}\widetilde{\Omega}_n$.

De même, on dispose d'une décomposition, $\Omega_n^P = \Omega_{n-1}^P \widetilde{\Omega}_n^P$, où Ω_n^P est l'ensemble des matrices de Ω_n avec $h \in P_n$ et $\widetilde{\Omega}_n^P$ est l'ensemble des matrices de la forme $\sigma_n \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_n^{-1}$ où \widetilde{Y} est de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$ avec $\widetilde{z} \in F^{n-1}$ et \widetilde{p} de la forme $\begin{pmatrix} 1_{n-2} & 0 & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ avec $\widetilde{l} \in F^{n-2}$ et $\widetilde{l}_{n-1} \in F^*$. De plus, Ω_n^P s'identifie à un ouvert dense du quotient $H_n^P \cap N_{2n} \setminus H_n^P$. Dans la suite, on fera l'identification de

ouvert dense du quotient $H_{n}^{r} \cap N_{2n} \setminus H_{n}^{r}$. Dans la suite, on fera l'identification de $F^{n-1} \times F^{n-2} \times F^{*}$ et $\widetilde{\Omega}_{n}^{p}$ à travers l'isomorphisme $(\widetilde{z}, \widetilde{l}, \widetilde{l}_{n-1}) \in F^{n-1} \times F^{n-2} \times F^{*} \mapsto \sigma_{n} \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_{n}^{-1} \in \widetilde{\Omega}_{n}^{p}$ où $\widetilde{Z} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{z} & 0 \end{pmatrix}$ et $\widetilde{p} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{l} & \widetilde{l}_{n} \end{pmatrix}$.

On équipe Ω_n , $\widetilde{\Omega}_n$, Ω_n^P , $\widetilde{\Omega}_n^P$ des mesures suivantes :

$$-\int_{\Omega_{\mathfrak{n}}} f(\xi) d\xi = \int_{\overline{B}_{\mathfrak{n}}} \int_{V_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_{\mathfrak{n}}^{-1}\right) dY dh, \text{ pour } f \in \mathcal{S}(\mathsf{G}_{2\mathfrak{n}}),$$

$$- \int_{\widetilde{\Omega}_{\mathfrak{n}}} f(\widetilde{\xi}) d\widetilde{\xi} = \int_{\mathsf{F}_{\mathfrak{n}-1} \times \mathsf{F}^*} \int_{\mathsf{F}^{\mathfrak{n}-1}} f \left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathsf{h}} & 0 \\ 0 & \widetilde{\mathsf{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) d\widetilde{\mathsf{Y}} d\widetilde{\mathsf{h}}, \text{ pour } f \in \mathcal{S}(\mathsf{G}_{2\mathfrak{n}}),$$

$$- \int_{\Omega_n^p} f(\xi_p) d\xi_p = \int_{\overline{B}_n \cap P_n} \int_{V_n} f\left(\sigma_n \begin{pmatrix} 1 & \mathsf{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{p} & 0 \\ 0 & \mathsf{p} \end{pmatrix} \sigma_n^{-1} \right) d\mathsf{Z} d\mathfrak{p}, \ \mathrm{pour} \ f \in \mathcal{S}(\mathsf{G}_{2n}),$$

$$- \int_{\widetilde{\Omega}_{n}^{P}} f(\widetilde{\xi}_{p}) d\widetilde{\xi}_{p} = \int_{F_{n-2} \times F^{*}} \int_{F^{n-1}} f\left(\sigma_{n} \begin{pmatrix} 1 & \widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{p} & 0 \\ 0 & \widetilde{p} \end{pmatrix} \sigma_{n}^{-1} \right) d\widetilde{Z} d\widetilde{p}, \text{ pour } f \in \mathcal{S}(G_{2n}).$$

On utilise ces décompositions pour écrire le membre de droite de la proposition sous la forme

$$(119) \qquad \int_{\widetilde{\Omega}_{p}^{p}} \int_{\Omega_{p-1}^{p}} \int_{\widetilde{\Omega}_{p}} \int_{\Omega_{p-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p},\xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\widetilde{\xi} d\xi_{p}' d\widetilde{\xi}_{p},$$

On a choisi les représentants des matrices Y et \widetilde{Y} de sorte que le caractère θ soit trivial.

On fixe $\widetilde{\xi}_p \in \widetilde{\Omega}_{n-1}$ et $\widetilde{\xi} \in \widetilde{\Omega}_n$. On pose $f' = L(\widetilde{\xi}_p)R(\widetilde{\xi})f$, on a alors

$$(120) \qquad \int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f}(\xi_{p}'\widetilde{\xi}_{p}, \xi'\widetilde{\xi}) |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}' =$$

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi_{p}', \xi') |\det \xi_{p}'\xi'|^{-1} d\xi' d\xi_{p}'.$$

De plus,

(121)
$$W_{f'}(\xi_p', \xi') = \int_{N_{2n-2}} \int_{V} f'(\xi_p'^{-1} v u \xi') \psi(u)^{-1} \psi(v)^{-1} dv du,$$

où V est le sous-groupe des matrices de N_{2n} avec seulement les deux dernières colonnes non triviales, on dispose donc d'une décomposition $N_{2n}=N_{2n-2}V$. On effectue le changement de variable $\nu\mapsto {\xi'}_p\nu{\xi'}_p^{-1}$, ce qui donne

(122)
$$W_{f'}(\xi_p', \xi') = |\det \xi_p'|^2 \int_{N_{2n-2}} \int_{V} f'(\nu \xi_p'^{-1} u \xi') \psi(u)^{-1} \psi(\nu)^{-1} d\nu du.$$

On note $\widetilde{f}'(g) = |\det g|^{-1} \int_V f'\left(\nu\begin{pmatrix} g & 0 \\ 0 & I_2 \end{pmatrix}\right) \psi(\nu)^{-1} d\nu$ pour $g \in G_{2n-2}$; alors $\widetilde{f}' \in \mathcal{S}(G_{2n-2})$. On obtient ainsi l'égalité

$$(123) W_{\mathsf{f}'}(\xi_{\mathsf{p}}', \xi') = |\det \xi_{\mathsf{p}}' \xi' | W_{\widetilde{\mathsf{f}}'}(\xi_{\mathsf{p}}', \xi').$$

Appliquons l'hypothèse de récurrence

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi'_{p}, \xi') |\det \xi'_{p} \xi'|^{-1} d\xi' d\xi'_{p} =
(124) \qquad \int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{\widetilde{f'}}(\xi'_{p}, \xi') d\xi' d\xi'_{p} = \int_{H_{n-1}} \widetilde{f'}(s) \theta(s)^{-1} ds =
\int_{H_{n-1}} |\det s|^{-1} \int_{V} f(\widetilde{\xi}_{p}^{-1} v s \widetilde{\xi}) \theta(s)^{-1} \psi(v)^{-1} dv ds.$$

Il nous faut maintenant intégrer sur $\widetilde{\xi}_p$ et $\widetilde{\xi}$ pour revenir à notre membre de droite. Explicitons l'intégrale sur $\widetilde{\xi}_p$ en le décomposant sous la forme $\sigma_n \begin{pmatrix} 1 & \widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathsf{p}} & 0 \\ 0 & \widetilde{\mathsf{p}} \end{pmatrix} \sigma_n^{-1}$.

On rappelle que l'on identifie $F^{n-1} \times F^{n-2} \times F^*$ et $\widetilde{\Omega}_n^P$ à travers l'isomorphisme $(\widetilde{z},\widetilde{\mathfrak{l}},\widetilde{\mathfrak{l}}_{n-1}) \in F^{n-1} \times F^{n-2} \times F^* \mapsto \sigma_n \begin{pmatrix} 1 & \widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathfrak{p}} & 0 \\ 0 & \widetilde{\mathfrak{p}} \end{pmatrix} \sigma_n^{-1} \in \widetilde{\Omega}_n^P$ où $\widetilde{\mathsf{Z}} = \begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{\mathsf{z}} & 0 \end{pmatrix}$

et
$$\widetilde{\mathfrak{p}} = \begin{pmatrix} 1_{n-1} & 0 \\ \widetilde{\mathfrak{l}} & \widetilde{\mathfrak{l}}_n \end{pmatrix}$$
. On obtient alors

 $\int_{F^{n-2}\times F^*}\int_{F^{n-1}}\int_{\widetilde{\Omega}_n}\int_{H_{n-1}}|\det s|^{-1}\int_V f\left(\sigma_n\begin{pmatrix}\widetilde{p}^{-1}&0\\0&\widetilde{p}^{-1}\end{pmatrix}\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\sigma_n^{-1}\nu s\widetilde{\xi}\right)\theta(s)^{-1}\psi(\nu)^{-1}d\nu ds d\widetilde{\xi}d\widetilde{Z}d\widetilde{p}.$

La conjugaison de ν par σ_n^{-1} s'écrit sous la forme $\begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix}$ où n_1, n_2 sont dans U_n , les coefficients de y sont nuls sauf la dernière colonne et t est de la forme $\begin{pmatrix} 0_{n-1} & * \\ 0 & 0 \end{pmatrix}$. Le caractère $\psi(\nu)$ devient après conjugaison $\psi(\text{Tr}(y) + \text{Ts}(t))$,

où $Ts(t) = t_{n-1,n}$. Les changements de variables $\widetilde{Z} \mapsto \widetilde{p}\widetilde{Z}\widetilde{p}^{-1}$, $n_1 \mapsto \widetilde{p}n_1\widetilde{p}^{-1}$, $n_2 \mapsto \widetilde{p}n_2\widetilde{p}^{-1}$, $t \mapsto \widetilde{p}t\widetilde{p}^{-1}$ et $y \mapsto \widetilde{p}y\widetilde{p}^{-1}$ transforme l'intégrale précédente en (126)

$$\begin{split} \int_{F^{\mathfrak{n}-2}\times F^*} \int_{F^{\mathfrak{n}-1}} \int_{\widetilde{\Omega}_{\mathfrak{n}}} \int_{H_{\mathfrak{n}-1}} |\det s|^{-1} \int_{\sigma_{\mathfrak{n}}^{-1}V\sigma_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & \mathsf{y} \\ \mathsf{t} & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} \widetilde{\mathfrak{p}}^{-1} & 0 \\ 0 & \widetilde{\mathfrak{p}}^{-1} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} s \widetilde{\xi} \right) \\ \theta(s)^{-1} \psi(-\mathsf{Tr}(\mathsf{y})) \psi(-\mathsf{Ts}(\widetilde{\mathfrak{p}} t \widetilde{\mathfrak{p}}^{-1})) |\det \widetilde{\mathfrak{p}}|^3 d\begin{pmatrix} \mathfrak{n}_1 & \mathsf{y} \\ \mathsf{t} & \mathfrak{n}_2 \end{pmatrix} ds d\widetilde{\xi} d\widetilde{\mathsf{Z}} d\widetilde{\mathfrak{p}}. \end{split}$$

On explicite maintenant l'intégrale sur s ce qui donne que $\sigma_n^{-1}s\sigma_n$ est de la forme $\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$ avec X une matrice de taille n dont la dernière ligne et dernière colonne sont nulles et $g \in G_{n-1}$ vu comme élément de G_n . Le changement de variable $X \mapsto \widetilde{p}X\widetilde{p}^{-1}$ donne

$$\begin{split} &\int_{\mathsf{F}^{\mathfrak{n}-2}\times\mathsf{F}^{*}}\int_{\mathsf{F}^{\mathfrak{n}-1}}\int_{\widetilde{\Omega}_{\mathfrak{n}}}\int_{\mathsf{M}_{\mathfrak{n}-1}}\int_{\mathsf{G}_{\mathfrak{n}-1}}|\det\widetilde{\mathfrak{p}}^{-1}g|^{-2}\int_{\sigma_{\mathfrak{n}}^{-1}V\sigma_{\mathfrak{n}}}\\ (127) &\quad f\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1&-\widetilde{\mathsf{Z}}\\0&1\end{pmatrix}\begin{pmatrix}\mathfrak{n}_{1}&\mathsf{y}\\t&\mathfrak{n}_{2}\end{pmatrix}\begin{pmatrix}1&\mathsf{X}\\0&1\end{pmatrix}\begin{pmatrix}\widetilde{\mathfrak{p}}^{-1}g&0\\0&\widetilde{\mathfrak{p}}^{-1}g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y}))\psi(-\mathsf{Ts}(\widetilde{\mathfrak{p}}t\widetilde{\mathfrak{p}}^{-1}))|\det\widetilde{\mathfrak{p}}|d\begin{pmatrix}\mathfrak{n}_{1}&\mathsf{y}\\t&\mathfrak{n}_{2}\end{pmatrix}\mathrm{d}g\mathrm{d}\mathsf{X}\mathrm{d}\widetilde{\xi}\mathrm{d}\widetilde{\mathsf{Z}}\mathrm{d}\widetilde{\mathfrak{p}}. \end{split}$$

On effectue maintenant le changement de variables $g\mapsto\widetilde{p}g,$ notre intégrale devient alors

$$\begin{split} &\int_{\mathbb{F}^{n-2}\times\mathbb{F}^*}\int_{\mathbb{F}^{n-1}}\int_{\widetilde{\Omega}_n}\int_{M_{n-1}}\int_{G_{n-1}}|\det g|^{-2}\int_{\sigma_n^{-1}V\sigma_n}\\ (128) &\quad f\left(\sigma_n\begin{pmatrix}1&-\widetilde{\mathsf{Z}}\\0&1\end{pmatrix}\begin{pmatrix}\mathfrak{n}_1&y\\t&\mathfrak{n}_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\sigma_n^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y}))\psi(-\mathsf{Ts}(\widetilde{\mathsf{p}}\mathsf{t}\widetilde{\mathsf{p}}^{-1}))|\det\widetilde{\mathsf{p}}|d\begin{pmatrix}\mathfrak{n}_1&y\\t&\mathfrak{n}_2\end{pmatrix}\mathrm{d} g\mathrm{d} \mathsf{X}\mathrm{d}\widetilde{\xi}\mathrm{d}\widetilde{\mathsf{Z}}\mathrm{d}\widetilde{\mathsf{p}}. \end{split}$$

Lemme 4.1. Soit $F \in S(M_n)$, alors

$$(129) \qquad \int_{\mathsf{F}^{\mathfrak{n}-2}\times\mathsf{F}^*}\int_{\mathsf{Lie}(U_{\mathfrak{n}})}\mathsf{F}(t)\psi(-\mathsf{Ts}(\widetilde{\mathfrak{p}}t\widetilde{\mathfrak{p}}^{-1}))|\det\widetilde{\mathfrak{p}}|dtd\widetilde{\mathfrak{p}}=\mathsf{F}(0).$$

On rappelle que l'on identifie $F^{n-2} \times F^*$ à l'ensemble des matrices de la forme $\begin{pmatrix} 1_{n-2} & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} \end{pmatrix} \text{ avec } \widetilde{l} \in F^{n-2} \text{ et } \widetilde{l}_n \in F^*.$

Démonstration. La mesure $|\det \widetilde{\mathfrak{p}}|d\widetilde{\mathfrak{p}}$ correspond à la mesure additive sur F^{n-1} . En remarquant que $\mathsf{Ts}(\widetilde{\mathfrak{p}}\mathsf{t}\widetilde{\mathfrak{p}}^{-1})$ n'est autre que le produit scalaire des vecteurs dans F^{n-1} correspondant à $\widetilde{\mathfrak{p}}$ et t, le lemme n'est autre qu'une formule d'inversion de Fourier.

Le lemme précédent nous permet de simplifier notre intégrale en 130)

$$\begin{split} \int_{F^{\mathfrak{n}-1}} \int_{\widetilde{\Omega}_{\mathfrak{n}}} \int_{M_{\mathfrak{n}-1}} \int_{G_{\mathfrak{n}-1}} |\det g|^{-2} \int_{\sigma_{\mathfrak{n}}^{-1} V_0 \sigma_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & y \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \widetilde{\xi} \right) \\ \psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(y)) d\begin{pmatrix} \mathfrak{n}_1 & y \\ 0 & \mathfrak{n}_2 \end{pmatrix} dg dX d\widetilde{\xi} d\widetilde{Z}, \end{split}$$

où $\sigma_n^{-1}V_0\sigma_n$ est le sous-groupe de $\sigma_n^{-1}V\sigma_n$ où t=0.

On explicite l'intégration sur $\widetilde{\xi}$ de la forme $\sigma_n \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1}$ où \widetilde{Y} est une

matrice de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$ avec $\widetilde{y} \in F^{n-1}$ et $\widetilde{h} \in F^{n-1} \times F^*$ que l'on identifie avec un élément de G_n dont seule la dernière ligne est non triviale. Ce qui nous permet d'identifier $F^{n-1} \times F^{n-1} \times F^*$ et $\widetilde{\Omega}_n$. L'intégrale devient

$$\begin{split} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{\mathcal{M}_{n-1}} |\det g|^{-2} \int_{\sigma_n^{-1} V_0 \sigma_n} \\ (131) \qquad f \left(\sigma_n \begin{pmatrix} 1 & -\widetilde{Z} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma_n^{-1} \right) \\ \psi(-\mathsf{Tr}(X)) \psi(-\mathsf{Tr}(y)) d \begin{pmatrix} n_1 & y \\ 0 & n_2 \end{pmatrix} dX dg d\widetilde{h} d\widetilde{Y} d\widetilde{Z}. \end{split}$$

On remarque que l'on a

(132)

$$\begin{pmatrix} \mathfrak{n}_1 & \mathfrak{y} \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{g} & 0 \\ 0 & \mathfrak{g} \end{pmatrix} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathfrak{n}_1^{-1} \mathfrak{y} + \mathsf{X} + \mathfrak{g} \widetilde{\mathsf{Y}} \mathfrak{g}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{g} & 0 \\ 0 & \mathfrak{g} \end{pmatrix},$$

On effectue les changement de variable $y\mapsto n_1y$ et $\widetilde{Y}\mapsto g^{-1}\widetilde{Y}g$ et on combine les intégrales sur X, y et \widetilde{Y} en une intégration sur M_n dont on note encore la variable X. On obtient alors

$$\begin{split} & \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_n} |\det g|^{-1} \int_{\mathcal{U}_n^2} \\ & f\left(\sigma_n \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g\widetilde{\mathsf{h}} & 0 \\ 0 & g\widetilde{\mathsf{h}} \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(\mathsf{X})) d(\mathfrak{n}_1,\mathfrak{n}_2) d\mathsf{X} dg d\widetilde{\mathsf{h}} d\widetilde{\mathsf{Z}}. \end{split}$$

On effectue le changement de variable $n_2 \mapsto n_2 n_1$ et on remarque que l'on a

$$(134) \qquad \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_2 \mathsf{n}_1 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathsf{n}_1 \mathsf{X} \mathsf{n}_1^{-1} - \widetilde{\mathsf{Z}} \mathsf{n}_2 \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_1 \end{pmatrix}.$$

Le changement de variables $X\mapsto \mathfrak{n}_1^{-1}(X+\widetilde{Z}\mathfrak{n}_2)\mathfrak{n}_1$ nous donne alors (135)

$$\int_{\mathsf{F}^{\mathfrak{n}-1}} \int_{\mathsf{F}^{\mathfrak{n}-1} \times \mathsf{F}^*} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det \mathsf{g}|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}^2} \mathsf{f} \left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X \\ 0 & n_2 \end{pmatrix} \begin{pmatrix} n_1 \mathsf{g} \widetilde{\mathsf{h}} & 0 \\ 0 & n_1 \mathsf{g} \widetilde{\mathsf{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) \psi(-\mathsf{Tr}(\widetilde{\mathsf{Z}} \mathsf{n}_2)) \mathsf{d}(\mathsf{n}_1, \mathsf{n}_2) \mathsf{d} \mathsf{X} \mathsf{d} \mathsf{g} \mathsf{d} \widetilde{\mathsf{h}} \mathsf{d} \widetilde{\mathsf{Z}}.$$

On reconnait une formule d'inversion de Fourier selon les variables \widetilde{Z} et \mathfrak{n}_2 ce qui nous permet de simplifier notre intégrale en

$$(136) \int_{\mathsf{F}^{\mathfrak{n}-1}\times\mathsf{F}^*} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det g|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}} \mathsf{f}\left(\sigma_{\mathfrak{n}}\begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 g \widetilde{\mathfrak{h}} & 0 \\ 0 & \mathfrak{n}_1 g \widetilde{\mathfrak{h}} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) d\mathfrak{n}_1 d\mathsf{X} dg d\widetilde{\mathfrak{h}}.$$

Après combinaison des intégrations sur $\mathfrak{n}_1,\ \mathfrak{g},\ \widetilde{\mathfrak{h}}\,;$ on trouve bien notre membre de gauche

(137)
$$\int_{G_n} \int_{M_n} f\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) \psi(-\mathsf{Tr}(X)) dX dg.$$

On remarquera que l'on a pris garde à ne pas échanger l'intégrale sur V avec les intégrales sur $\widetilde{H},\,H_{n-1},\,\widetilde{\Omega}_{n-1}$ et H^P_{n-1} qui chacune est absolument convergente

mais l'intégrale totale ne l'est pas. On s'est contenté d'échanger des intégrales sur les différents H d'une part, d'échanger des intégrales sur les $\mathfrak{n}_1,\mathfrak{n}_2,\mathfrak{t},\mathfrak{y}$ qui compose l'intégrale sur V d'autre part. On doit seulement vérifier qu'il n'y a pas de problème de convergence lorsque l'on combine l'intégration en X sur M_n (cf. intégrale 133) et lorsque l'on échange l'intégrale sur U_n et M_n (cf. intégrale 136). Pour ce qui est de la dernière intégrale, on intègre sur un sous-groupe fermé et $f \in \mathcal{S}(G_{2n})$ donc l'intégrale est absolument convergente. Pour ce qui est de l'intégrale 133, à part l'intégration sur \widetilde{Z} , on intègre sur un sous-groupe fermé donc on peut bien combiner les intégrales.

Finissons par montrer la convergence absolue de notre membre de droite. Notons $\mathbf{r}(g) = 1 + \|e_{2n}g\|_{\infty}$. On a

(138)

$$\begin{split} W_{r^N \mid \det \mid^{-\frac{1}{2}} f} \left(\sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha' k' & 0 \\ 0 & \alpha' k' \end{pmatrix} \sigma_n^{-1}, \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) = \\ (1 + |\alpha_n|)^N \mid \det \alpha(\alpha')^{-1} \mid^{-1} W_f \left(\sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha' k' & 0 \\ 0 & \alpha' k' \end{pmatrix} \sigma_n^{-1}, \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right), \end{split}$$

 $\mathrm{pour} \ \mathrm{tous} \ \alpha \in A_n, \ \alpha' \in A_{n-1}, \ X, X' \in V_n, \ k \in K_n \ \mathrm{et} \ k' \in K_{n-1}.$

Il suffit de vérifier la convergence de l'intégrale

$$\begin{split} & \int_{V_{n}} \int_{A_{n-1}} \int_{V_{n}} \int_{A_{n}} (1 + |a_{n}|)^{-N} |\det a(a')^{-1}| \\ & W_{r^{N}|\det|^{-\frac{1}{2}}f} \left(\sigma_{n} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a'k' & 0 \\ 0 & a'k' \end{pmatrix} \sigma_{n}^{-1}, \sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_{n}^{-1} \right) \\ & \delta_{B_{n}}(a)^{-1} \delta_{B_{n-1}}(a')^{-1} dadX da' dX' \end{split}$$

pour N suffisamment grand. On note $u_X = \sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \sigma_n^{-1}$ et $u_{X'} = \sigma_n \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \sigma_n^{-1}$. On a alors

$$\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a} k & 0 \\ 0 & \mathfrak{a} k \end{pmatrix} \sigma_n^{-1} = \mathfrak{b} \sigma_n k \sigma_n^{-1} \mathfrak{u}_{(\mathfrak{a} k)^{-1} X(\mathfrak{a} k)},$$

où $b = diag(a_1, a_1, a_2, a_2, ...)$ et

$$(141) \qquad \qquad \sigma_{\mathfrak{n}} \begin{pmatrix} 1 & X' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{a}'k' & 0 \\ 0 & \mathfrak{a}'k' \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} = \mathfrak{b}'\sigma_{\mathfrak{n}}k'\sigma_{\mathfrak{n}}^{-1}u_{(\mathfrak{a}'k')^{-1}X'(\mathfrak{a}'k')},$$

où $b' = diag(a'_1, a'_1, a'_2, a'_2, ...).$

On effectue les changements de variables $X \mapsto (ak)X(ak)^{-1}$ et $X' \mapsto (a'k')X'(a'k')^{-1}$. D'après les lemme 2.2 et la preuve du lemme 2.4, il existe d > 0 tel que pour tout $N \ge 1$, l'intégrale 139 est alors majorée à une constante près par

(142)

$$\begin{split} \int_{V_n} \int_{A_{n-1}} \int_{V_n} \int_{A_n} (1+|a_n|)^{-N} |\det \alpha(\alpha')^{-1}| m(X)^{-\alpha N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}} (bt_X) \log(\|bt_X\|)^d \\ m(X')^{-\alpha' N} \prod_{i=1}^{n-1} (1+|\frac{a_i'}{a_{i+1}'}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}} (b't_{X'}) \log(\|b't_{X'}\|)^d \delta_{B_n}^{-2} (\alpha) \delta_{B_{n-1}}^{-2} (\alpha') d\alpha dX d\alpha' dX'. \end{split}$$

Les quantités $\mathfrak{m}(X)$, $\mathfrak{m}(X')$, α et α' sont celles que l'on obtient par l'application de la proposition 2.8. On rappelle que $\mathfrak{m}(X) = \sup(1, \|X\|)$, où $\|X\| = \sup_{i,j} |X_{i,j}|$. On a $\delta_{B_{2n}}^{\frac{1}{2}}(\mathfrak{b}')\delta_{B_{n-1}}^{-2}(\mathfrak{a}') = |\det \mathfrak{a}'|^2$. On en déduit que cette dernière intégrale est majorée (à constante près) par le maximum du produit des intégrales

(143)
$$\int_{V} m(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(||t_X||)^{d-j} dX,$$

$$\int_{V_n} m(X')^{-\alpha' N} \delta_{B_{2n}}^{\frac{1}{2}}(t_{X'}) \log(\|t_{X'}\|)^{d-j'} dX',$$

(145)
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||b||)^j |\det a| da,$$

et

(146)
$$\int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + |\frac{\alpha'_i}{\alpha'_{i+1}}|)^{-N} (1 + |\alpha'_{n-1}|)^{-N} \log(||b'||)^{j'} |\det \alpha'| d\alpha',$$

pour j, j' compris entre 0 et d. Ces dernières intégrales convergent pour N assez grand, voir [13, proposition 5.5] pour les deux premières intégrales et le lemme 2.3 pour les deux dernières.

5. Formules de Plancherel

Pour $W \in C^{w}(N_{2n} \backslash G_{2n}, \psi)$ (voir section 2.1.4), on note

(147)
$$\beta(W) = \int_{\mathsf{H}_n^p \cap \mathsf{N}_{2n} \setminus \mathsf{H}_n^p} W(\xi_p) \theta(\xi_p)^{-1} d\xi_p,$$

voir la section 4 pour la mesure $d\xi_{\mathfrak{p}}$.

Lemme 5.1. L'intégrale 147 est absolument convergente. La forme linéaire $W \in \mathcal{C}^w(N_{2n} \setminus G_{2n}) \mapsto \beta(W)$ est continue.

 $D\acute{e}monstration$. D'après la décomposition d'Iwasawa, $P_n=N_nA_{n-1}K_n^P$, où K_n^P est un sous-groupe compact, il suffit de montrer la convergence de l'intégrale

$$(148) \qquad \int_{V_n} \int_{A_{n-1}} \left| W \left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) \right| \delta_{B_{n-1}}(\mathfrak{a})^{-1} d\mathfrak{a} dX,$$

pour tout $k \in K_n^P$. Par un argument similaire à la preuve du lemme 2.4, on obtient la majoration suivante :

$$\int_{V_n} \int_{A_{n-1}} \prod_{i=1}^{n-2} (1 + \frac{|a_i|}{|a_{i+1}|})^{-N} \mathfrak{m}(X)^{-\alpha N} \delta_{B_{2n}} (\mathfrak{b} \mathfrak{t}_X)^{\frac{1}{2}} \\ \log (\|\mathfrak{b} \mathfrak{t}_X\|)^d \delta_{B_n} (\mathfrak{a})^{-1} \delta_{B_{n-1}} (\mathfrak{a})^{-1} d\mathfrak{a} dX,$$

pour tout $N\geqslant 1$. Cette dernière intégrale est convergente pour N suffisamment grand par le même argument que dans la preuve du lemme 2.4.

Proposition 5.1. Pour $\pi = T(\sigma)$ avec $\sigma \in Temp(SO(2n+1))$, la restriction de β à $W(\pi, \psi)$ est un élément de $Hom_{H_n}(W(\pi, \psi), \theta)$.

La preuve de cette proposition se fera après quelques préliminaires. On commence par prouver un lemme et introduire des notations.

On note $S(Z_{2n}N_{2n}\backslash G_{2n})$ l'ensemble des fonctions lisse sur $G_{2n}, Z_{2n}N_{2n}$ -invariante et à support compact modulo $Z_{2n}N_{2n}$.

Lemme 5.2. Pour $W \in S(Z_{2n}N_{2n} \setminus G_{2n})$ et $\varphi \in S(F^n)$, on a

$$(150) \qquad \lim_{s\to 0^+} \gamma(\mathsf{n} s,1,\psi) \mathsf{J}(s,W,\varphi) = \varphi(0) \int_{\mathsf{Z}_{2\mathfrak{n}}(\mathsf{H}_{\mathfrak{n}}\cap \mathsf{N}_{2\mathfrak{n}})\backslash \mathsf{H}_{\mathfrak{n}}} W(\xi) \theta(\xi)^{-1} \mathsf{d} \xi.$$

 $D\acute{e}monstration$. On a

(151)

$$\begin{split} \gamma(ns,1,\psi)J(s,W,\varphi) &= \int_{A_{n-1}} \int_{K_n} \int_{V_n} W\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \sigma_n^{-1} \right) dX \\ \gamma(ns,1,\psi) \int_{Z_n} \varphi(e_n z k) |\det z|^s dz dk |\det \alpha|^s \delta_{B_n}(\alpha)^{-1} d\alpha \end{split}$$

De plus, d'après la thèse de Tate, on a

$$(152) \hspace{1cm} \gamma(\mathfrak{n}\mathfrak{s},1,\psi)\int_{Z_{\mathfrak{n}}} \varphi(e_{\mathfrak{n}}zk) |\det z|^{\mathfrak{s}} dz = \int_{F} \widehat{\varphi_{k}}(x) |x|^{-\mathfrak{n}\mathfrak{s}} dx,$$

où l'on a posé $\phi_k(x)=\phi(xe_nk)$ pour tous $x\in F$ et $k\in K_n$. Ce qui nous donne par convergence dominée

(153)
$$\lim_{s \to 0+} \gamma(ns, 1, \psi) \int_{Z_n} \phi(e_n z k) |\det z|^s dz = \int_{F} \widehat{\phi_k}(x) dx = \phi(0).$$

D'autre part, d'après [15, lemme 4.1], on sait que

$$(154) \qquad \int_{A_{n-1}} \int_{V_n} W\left(\sigma_n\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix}\sigma_n^{-1}\right) dX |\det a|^s \delta_{B_n}(a)^{-1} da,$$

converge absolument pour tout $k \in K_n$ et pour $Re(s) > -\epsilon$ pour un certain $\epsilon > 0$. On en déduit, que $\lim_{s\to 0^+} \gamma(ns, 1, \psi) J(s, W, \phi)$ est égal à

$$(155) \quad \phi(0) \int_{Z_n \setminus A_n} \int_{K_n} \int_{V_n} W\left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ak & 0 \\ 0 & ak \end{pmatrix} \sigma_n^{-1} \right) dX dk \delta_{B_n}(a)^{-1} da,$$

ce qui nous permet de conclure.

Pour tout $g \in G_{2n}$, on pose $||g|| = \max(||g||_{\infty}, ||g^{-1}||_{\infty})$ et $\sigma(g) = \log(||g||)$, avec $||g||_{\infty} = \sup_{i,j} |g_{i,j}|$ où les $g_{i,j}$ sont les coefficients de g.

On introduit l'espace $C^w(G_{2n})$ des fonctions tempérées sur G_{2n} comme l'ensemble des fonctions $f:G_{2n}\to\mathbb{C}$ qui sont biinvariante par un sous-groupe compact ouvert et vérifient qu'il existe $d\geqslant 1$ et C>0 tel que

$$|f(g)|\leqslant C\delta_{B_{2\mathfrak{n}}}(\mathfrak{m})^{\frac{1}{2}}\sigma(g)^d,$$

pour tout $g \in G_{2n}$, où g = mk avec $m \in B_{2n}$ et $k \in GL_{2n}(\mathbb{Z}_p)$ d'après la décomposition de Cartan. On note $C_d^w(G_{2n})$ le sous-espace de $C^w(G_{2n})$ des fonctions qui vérifient 156. Ce dernier est muni de la norme $\sup_{g \in G_{2n}} \frac{|f(g)|}{|\delta_{B_{2n}}(m)^{\frac{1}{2}}\sigma(g)^d|}$ qui en fait un espace de Banach. On munit $C^w(G_{2n}) = \bigcup_d C_d^w(G_{2n})$ de la topologie limite inductive.

On étend la forme linéaire $f \in \mathcal{S}(G_{2n}) \mapsto \int_{N_{2n}} f(u) \psi(u)^{-1} du$ par continuité en une forme linéaire sur $C^w(G_{2n})$ [7], que l'on note

(157)
$$f \in C^{w}(G_{2n}) \mapsto \int_{N_{2n}}^{*} f(u)\psi(u)^{-1} du.$$

Pour $f \in C^{w}(G_{2n})$, on peut ainsi définir W_f par la formule

(158)
$$W_{f}(g_{1}, g_{2}) = \int_{N_{2n}}^{*} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du,$$

pour tous $g_1, g_2 \in G_{2n}$.

Soit $f \in \mathcal{S}(G_{2n})$ et $\pi \in \mathsf{Temp}(G_{2n})$, on pose $W_{f,\pi} = W_{f_{\pi}}$.

On introduit l'espace $C^w(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1})$ de manière analogue à l'espace des fonctions tempérées sur $N_{2n} \setminus G_{2n}$ dans la section 2.1.4. On a (159)

$$C^{w}(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1}) = C^{w}(N_{2n} \setminus G_{2n}, \psi) \widehat{\otimes} C^{w}(N_{2n} \setminus G_{2n}, \psi^{-1}),$$

où $\widehat{\otimes}$ est le produit tensoriel complété.

Proposition 5.2 (Beuzart-Plessis [7, Lemme 2.14.1]). Soit $\pi \in \text{Temp}(G_{2n})$. L'application linéaire $f \in \mathcal{S}(G_{2n}) \mapsto W_{f,\pi} \in C^{w}(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1})$ est continue.

Proposition 5.3 (Beuzart-Plessis [7, Proposition 2.14.2]). Pour tout $f \in S(PG_{2n})$. On pose $\widetilde{f}(g) = \int_{Z_n} f(zg) dz$, alors $\widetilde{f} \in S(PG_{2n})$. On a $\widetilde{f}_{\pi} = f_{\pi}$ pour tout $\pi \in Temp(PG_{2n})$. De plus, on a l'égalité

$$(160) \hspace{1cm} W_{\tilde{f}} = \int_{\mathsf{Temp}(\mathsf{PG}_{2n})} W_{\mathsf{f},\pi} \mathrm{d}\mu_{\mathsf{PG}_{2n}}(\pi)$$

dans $C^w(N_{2n} \times N_{2n} \setminus G_{2n} \times G_{2n}, \psi \otimes \psi^{-1})$. On renvoie à [5, Annexe A.2] pour la définition de l'intégrale à valeur vectorielle.

Lemme 5.3. Soit $W \in \mathcal{W}(\pi, \psi)$, alors it exists $f \in \mathcal{S}(G_{2n})$ tel que $W_{f,\pi}(1, .) = W$.

Démonstration. On a

(161)
$$W_{f,\pi}(1,.) = \int_{N_{2\pi}}^{*} f_{\pi}(u.)\psi(u)^{-1} du.$$

D'autre part, soit $f \in \mathcal{S}(G_{2n})$ alors f est bi-invariante par un sous-groupe ouvert compact K. On a une décomposition $V_{\pi} = V_{\pi}^K \oplus V_{\pi}(K)$, où V_{π}^K est l'espace des vecteurs K-invariants. Comme π est admissible, V_{π}^K est de dimension finie. On note \mathcal{B}_{π}^K une base de cet espace. Alors pour tout $g \in G_{2n}$, on a $f_{\pi}(g) = Tr(\pi(g)\pi(f^{\vee})) = \sum_{v \in \mathcal{B}_{\pi}^K} \langle \pi(g)\pi(f^{\vee})v,v^{\vee} \rangle$, où $(v^{\vee})_{v \in \mathcal{B}_{\pi}^K}$ est la base duale de \mathcal{B}_{π}^K . On en déduit que f_{π} est une somme (finie) de coefficient matriciel.

On note $\mathsf{Coeff}^\mathsf{K} = \{g \mapsto \prec \pi(g) \nu, \widetilde{\nu} >, \nu \in V_\pi^\mathsf{K}, \widetilde{\nu} \in V_{\widetilde{\pi}}^\mathsf{K} \}$. Alors toute combinaison linéaire de $\mathsf{Coeff}^\mathsf{K}$ est de la forme f_π avec $f \in \mathcal{S}(G_{2n}, \mathsf{K})$, où l'on a noté $\mathcal{S}(G_{2n}, \mathsf{K})$ le sous espace de $\mathcal{S}(G_{2n}, \mathsf{K})$ des fonctions bi-invariante par K . En effet, $f \in \mathcal{S}(G_{2n}, \mathsf{K}) \mapsto \pi(f^\vee) \in \mathsf{End}(V_\pi^\mathsf{K})$ est surjective. La surjectivité est une conséquence du lemme de Burnside et du fait que V_π^K est un $\mathcal{S}(G_{2n}, \mathsf{K})$ -module irréductible de dimension finie. Par adjonction, on a $\mathsf{End}(V_\pi^\mathsf{K}) \simeq \pi^\mathsf{K} \boxtimes \widetilde{\pi}^\mathsf{K}$, d'où le résultat.

Pour montrer le lemme, il nous faut montrer qu'il existe un coefficient matriciel $c = \langle \pi(.)\nu, \widetilde{\nu} \rangle$ tel que $W = \int_{N_{2n}}^* c(u.)\psi(u)^{-1}du$. Or

$$(162) \hspace{1cm} \nu \mapsto \int_{N_{2n}}^* c(u.) \psi(u)^{-1} du = \int_{N_{2n}}^* <\pi(u.) \nu, \widetilde{\nu} > \psi(u)^{-1} du$$

est une fonctionnelle de Whittaker. Il suffit donc de montrer que l'on peut choisir $\tilde{\nu}$ pour que cette fonctionnelle soit non nulle. C'est le contenu de [19, Théorème 6.4.1].

Pour $W \in C^w(N_{2n} \setminus G_{2n}, \psi^{-1})$, on note

(163)
$$\widetilde{\beta}(W) = \int_{\mathsf{H}_{\mathfrak{n}} \cap \mathsf{N}_{2\mathfrak{n}} \setminus \mathsf{H}_{\mathfrak{n}}} W(\xi_{\mathfrak{p}}) \theta(\xi_{\mathfrak{p}}) d\xi_{\mathfrak{p}}.$$

On dispose du lemme 5.1 pour la forme linéaire $\hat{\beta}$ avec la même preuve.

Pour $\sigma \in Temp(SO(2n+1))$, on pose $\pi = T(\sigma)$. On montre dans la proposition 5.4 qu'il existe un signe $c_{\beta}(\sigma)$ tel que

(164)
$$\widetilde{\beta}(\rho(w_{n,n})\widetilde{W}) = c_{\beta}(\sigma)\beta(W),$$

pour tout $W \in \mathcal{W}(\pi, \psi)$.

Corollaire 5.1 (de la limite spectrale). Soit $f \in S(G_{2n})$ et $g \in G_{2n}$, alors

$$(165) \quad \int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(\mathsf{g},\xi)\theta(\xi)^{-1}d\xi = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta(W_{\mathsf{f},\mathsf{T}(\sigma)}(\mathsf{g},.)) \\ \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma))^{-1} c_{\beta}(\sigma)d\sigma,$$

où $c(T(\sigma))$ est la constante qui provient du théorème 1.8.

Démonstration. On peut supposer que g=1 en remplaçant f par L(g)f. On pose $\widetilde{f}(g)=\int_{Z_n}f(zg)dz$, alors $\widetilde{f}\in S(PG_{2n})$. On a donc

$$(166) \qquad \int_{\mathsf{H}_{n}\cap\mathsf{N}_{2n}\backslash\mathsf{H}_{n}} W_{\mathsf{f}}(1,\xi)\theta(\xi)^{-1}d\xi = \int_{\mathsf{Z}_{2n}(\mathsf{H}_{n}\cap\mathsf{N}_{2n})\backslash\mathsf{H}_{n}} W_{\widetilde{\mathsf{f}}}(1,\xi)\theta(\xi)^{-1}d\xi.$$

On choisit $\phi \in \mathcal{S}(\mathsf{F}^n)$ tel que $\phi(0)=1.$ D'après le lemme 5.2, la proposition 5.3 et le lemme 2.4, on a

$$\begin{split} &\int_{Z_{2\pi}(H_{\pi}\cap N_{2\pi})\backslash H_{\pi}}W_{\widetilde{f}}(1,\xi)\theta(\xi)^{-1}d\xi = \lim_{s\to 0^{+}}n\gamma(s,1,\psi)J(s,W_{\widetilde{f}}(1,.),\varphi)\\ &= \lim_{s\to 0^{+}}n\gamma(s,1,\psi)\int_{Temp(PG_{2\pi})}J(s,W_{f,\pi}(1,.),\varphi)d\mu_{PG_{2\pi}}(\pi). \end{split}$$

D'après l'équation fonctionnelle 2.4, on a

$$\begin{split} &\int_{H_{\mathfrak{n}}\cap N_{2\mathfrak{n}}\backslash H_{\mathfrak{n}}} W_{f}(1,\xi)\theta(\xi)^{-1}d\xi = \\ &\lim_{s\to 0^{+}} n\gamma(s,1,\psi) \int_{Temp(PG_{2\mathfrak{n}})} J(1-s,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{f,\pi}(1,.)},\widehat{\varphi})c(\pi)^{-1}\gamma(s,\pi,\Lambda^{2},\psi)^{-1}d\mu_{PG_{2\mathfrak{n}}}(\pi). \end{split}$$

La proposition 3.2, nous permet d'obtenir la relation

$$\begin{split} &\int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}} W_{\mathsf{f}}(1,\xi)\theta(\xi)^{-1}d\xi = \\ &\int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1)/\mathsf{Stab}} J(1,\rho(w_{\mathfrak{n},\mathfrak{n}})\widetilde{W_{\mathsf{f},\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi})c(\mathsf{T}(\sigma))^{-1}\frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|}d\sigma. \end{split}$$

En remplaçant f par $\rho(h)f$, $h \in H_n$, dans le membre de gauche; cela revient à multiplier par $\theta(h)$. On en déduit la même relation pour le membre de droite. Ce qui signifie que

$$\int_{\mathsf{Temp}(\mathsf{SO}(2n+1)/\mathsf{Stab}} J(1,\rho(w_{n,n}) \widetilde{W_{\rho(\xi)f,\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) - \theta(\xi) J(1,\rho(w_{n,n}) \widetilde{W_{f,\mathsf{T}(\sigma)}}(1,.),\widehat{\varphi}) d\mu(\sigma) = 0,$$

 $\begin{array}{l} \mathrm{pour\ tout\ } \xi \in H_{\mathfrak{n}}, \ \mathrm{où}\ d\mu(\sigma) = c(\mathsf{T}(\sigma))^{-1} \frac{\gamma^*(0,\sigma,Ad,\psi)}{|\mathsf{S}_{\sigma}|} d\sigma. \\ \mathrm{D'après\ le\ lemme\ de\ séparation\ spectrale\ } [7, Lemme\ 5.7.2] \ \mathrm{et\ la\ continuit\'e\ de\ } \sigma \mapsto \end{array}$ $J(1,\rho(w_{n,n})W_{f,T(\sigma)}(1,.),\widehat{\phi})$, on en déduit que $J(1,\rho(w_{n,n})W_{\rho(\xi)f,T(\sigma)}(1,.),\widehat{\phi}) =$ $\theta(\xi)J(1,\rho(w_{n,n})W_{f,T(\sigma)}(1,.),\widehat{\phi})$ pour tout $\xi\in H_n$ et donc que $f\mapsto J(1,\rho(w_{n,n})W_{f,T(\sigma)}(1,.),\widehat{\phi})$ est (H_n, θ) -invariant.

Lemme 5.4. *Soit* $\sigma \in \text{Temp}(SO(2n+1))$ *et* $\pi = T(\sigma)$ *. Alors*

(171)
$$J(1, \rho(w_{n,n})\widetilde{W}, \widehat{\phi}) = \phi(0)c_{\beta}(\sigma)\beta(W),$$

pour tous $W \in \mathcal{W}(\pi, \psi)$ et $\phi \in \mathcal{S}(F^n)$. Rappelons que $c_{\beta}(\sigma)$ est le signe qui vérifie la relation

(172)
$$\beta(\widetilde{W}) = c_{\beta}(\sigma)\beta(W),$$

pour tous $W \in \mathcal{W}(\pi, \psi)$.

Démonstration. En effet, soit $W \in \mathcal{W}(\pi, \psi)$, on a

$$(173) \qquad J(1,\widetilde{W},\widehat{\varphi}) = \int_{\mathsf{N}_{\mathfrak{n}} \backslash \mathsf{G}_{\mathfrak{n}}} \int_{\mathsf{V}_{\mathfrak{n}}} \widetilde{W} \left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1} \right) \mathsf{d} \mathsf{X} \\ \widehat{\varphi}(e_{\mathfrak{n}} \mathsf{g}) |\det \mathsf{g}| \mathsf{d} \mathsf{g}.$$

D'après le lemme 5.3, on choisit $f \in \mathcal{S}(G_{2n})$ tel que $W_{f,\pi}(1,.) = \rho(w_{n,n}^{-1})W$. D'après ce que l'on vient de dire précédemment, on en déduit que $J(1,\widetilde{W},\widehat{\phi})$ vérifie la relation $J(1, \rho((\xi^t)^{-1})\widetilde{W}, \widehat{\phi}) = \theta(\xi)J(1, \widetilde{W}, \widehat{\phi})$, ou encore, $J(1, \rho(\xi)\widetilde{W}, \widehat{\phi}) = \theta(\xi)J(1, \widetilde{W}, \widehat{\phi})$ $\theta(\xi)^{-1}J(1,\widehat{W},\widehat{\phi})$, pour tout $\xi \in H_n$.

Comme $\widehat{\phi}(e_n g)$ est arbitraire parmi les fonctions invariante à gauche par $G_{n-1}U_{n-1}$, on en déduit que

$$(174) \qquad \widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1}) \mapsto \int_{N_n \setminus P_n} \int_{V_n} \widetilde{W} \left(\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1} \right) dX dg$$

est (H_n, θ^{-1}) -invariant. On en déduit que $\tilde{\beta}$ restreint à $W(\tilde{\pi}, \psi^{-1})$ est (H_n, θ^{-1}) . En remplaçant ψ par ψ^{-1} et comme $\tilde{\pi} \simeq \pi$ d'après la caractérisation 88, on en déduit que β restreint à $\mathcal{W}(\pi, \psi)$ est (H_n, θ) -invariant, ce qui termine la preuve de la proposition 5.1.

Remarque 5.1. Cette preuve que β restreint à $W(\pi, \psi)$ est (H_n, θ) -invariant est quelque peu détournée dû au fait qu'il nous manque un résultat. On conjecture que $\operatorname{Hom}_{H_n \cap P_{2n}}(\pi, \theta)$ est de dimension au plus 1. Comme $\pi = T(\sigma)$, d'après 88 et [18], on obtient que π admet un modèle de Shalika. Autrement dit, on a $\operatorname{Hom}_{H_n}(\pi, \theta) \neq 0$. Ce dernier est un sous-espace de $\operatorname{Hom}_{H_n \cap P_{2n}}(\pi, \theta)$. On en déduirait alors que la restriction de β à $W(\pi, \psi)$, qui est bien $H_n \cap P_{2n}$ -invariant, est un élément de $\operatorname{Hom}_{H_n}(\pi, \theta)$. Ce qui simplifierait légèrement la preuve à condition de prouver le résultat de dimension 1.

Proposition 5.4. Soit $\sigma \in \text{Temp}(SO(2n+1))$, on pose $\pi = T(\sigma)$ le transfert de σ dans $\text{Temp}(G_{2n})$. La forme linéaire $W \in \mathcal{W}(\pi, \psi) \mapsto \widetilde{\beta}(\rho(w_{n,n})\widetilde{W})$ est un élément de $\text{Hom}_{H_n}(\widetilde{\pi}, \theta^{-1})$. Il existe un signe $c_{\beta}(\sigma) = c_{\beta}(\pi)$ tel que

(175)
$$\widetilde{\beta}(\rho(w_{n,n})\widetilde{W}) = c_{\beta}(\sigma)\beta(W),$$

pour tout $W \in \mathcal{W}(\pi, \psi)$.

Démonstration. On a montré que $\widetilde{W} \in \mathcal{W}(\widetilde{\pi}, \psi^{-1}) \mapsto \widetilde{\beta}(\widetilde{W})$ est (H_n, θ^{-1}) -invariante. Calculons l'action de H_n à travers l'application $W \mapsto \rho(w_{n,n})\widetilde{W}$. Pour $h \in H_n$, l'action de H_n sur W composé avec cette application, donne la fonction qui a $g \in G_{2n}$ associe

$$(176) \quad \rho(w_{n,n}) \widetilde{\rho(h)} W(g) = W(w_n \left((gh)^t \right)^{-1} w_{n,n}) = W(w_n (g^t)^{-1} (h^t)^{-1} w_{n,n}).$$

Cette dernière est l'action de H_n composé avec l'involution $h \mapsto (h^t)^{-1} w_{n,n}$ sur $\mathcal{W}(\widetilde{\pi}, \psi^{-1})$. L'involution $h \mapsto (h^t)^{-1} w_{n,n}$ est l'application qui a $h \in H_n$ de la forme $\sigma_n \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \sigma_n^{-1}$ associe

(177)
$$\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & -X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} (\mathfrak{g}^{\mathfrak{t}})^{-1} & 0 \\ 0 & (\mathfrak{g}^{\mathfrak{t}})^{-1} \end{pmatrix} \sigma_{\mathfrak{n}}^{-1},$$

cette dernière envoie le caractère θ sur le caractère θ^{-1} . On en déduit que $W \in \mathcal{W}(\pi, \psi) \mapsto \widetilde{\beta}(\rho(w_{n,n})\widetilde{W})$ est (H_n, θ) -invariante.

Montrons maintenant l'égalité 175. En effet, $\operatorname{Hom}_{H_n}(\pi,\theta)$ est de dimension au plus 1, d'après l'unicité du modèle de Shalika [12]. On en déduit l'existence de $c_{\beta}(\pi) \in \mathbb{C}$. Pour finir, en appliquant l'équation 175, pour $\widetilde{\pi}$, on obtient $\beta(\rho(w_{n,n})W) = c_{\beta}(\widetilde{\pi})\widetilde{\beta}(\widetilde{W})$. En remplaçant W par $\rho(w_{n,n})W$, on obtient $\beta(W) = c_{\beta}(\widetilde{\pi})\widetilde{\beta}(\rho(w_{n,n})\widetilde{W})$. Si β est nulle le résultat est vrai, sinon comme $\widetilde{\pi} \simeq \pi$, on a $c_{\beta}(\widetilde{\pi}) = c_{\beta}(\pi)$. On en déduit que $\widetilde{\beta}(\rho(w_{n,n})\widetilde{W}) = c_{\beta}(\pi)^2\widetilde{\beta}(\rho(w_{n,n})\widetilde{W})$ et donc que $c_{\beta}(\pi)$ est un signe. \square

Finissons la preuve du lemme 5.4, on remarque que l'on a

$$\begin{split} &\int_{N_{\mathfrak{n}}\backslash G_{\mathfrak{n}}}\int_{V_{\mathfrak{n}}}\widetilde{W}\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right)dX\widehat{\varphi}(e_{\mathfrak{n}}g)|\det g|dg\\ &=\int_{P_{\mathfrak{n}}\backslash G_{\mathfrak{n}}}\int_{N_{\mathfrak{n}}\backslash P_{\mathfrak{n}}}\int_{V_{\mathfrak{n}}}\widetilde{W}\left(\sigma_{\mathfrak{n}}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\mathfrak{p}h&0\\0&\mathfrak{p}h\end{pmatrix}\sigma_{\mathfrak{n}}^{-1}\right)dXd\mathfrak{p}\widehat{\varphi}(e_{\mathfrak{n}}h)|\det h|dh. \end{split}$$

De plus,

(179)
$$\int_{N_{n}\backslash P_{n}} \int_{V_{n}} \widetilde{W} \left(\sigma_{n} \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ph & 0 \\ 0 & ph \end{pmatrix} \sigma_{n}^{-1} \right) dX dp$$

$$= \widetilde{\beta} \left(\rho \left(\sigma_{n} \begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix} \sigma_{n}^{-1} \right) \widetilde{W} \right)$$

$$= \widetilde{\beta} (\widetilde{W}),$$

puisque $\tilde{\beta}$ est (H_n, θ^{-1}) -invariant. D'autre part,

(180)
$$\int_{P_{n}\backslash G_{n}} \widehat{\phi}(e_{n}h) |\det h| dh = \int_{F^{n}} \widehat{\phi}(x) dx = \phi(0).$$

On en déduit que $J(1, \rho(w_{n,n})\widetilde{W}, \widehat{\varphi}) = \varphi(0)\widetilde{\beta}(\rho(w_{n,n}\widetilde{W}))$. On conclut grâce à la proposition 5.4.

Pour finir la preuve du corollaire, il suffit d'utiliser le lemme 5.4 dans la relation \Box

5.1. Formule de Plancherel explicite sur $H_n \setminus G_{2n}$. On note $Y_n = H_n \setminus G_{2n}$ munie de la mesure quotient. On note $S(Y_n, \theta)$ l'ensemble des fonctions lisses sur G_{2n} , (H_n, θ) -invariante et à support compact modulo H_n .

On dispose d'une surjection $f \in S(G_{2n}) \mapsto \phi_f \in S(Y_n, \theta)$ avec

(181)
$$\varphi_f(y) = \int_{H_n} f(hy)\theta(h)^{-1}dh,$$

pour tout $y \in G_{2n}$.

Soient $\phi_1, \phi_2 \in \mathcal{S}(Y_n, \theta)$, il existe $f_1, f_2 \in \mathcal{S}(G_{2n})$ tels que $\phi_i = \phi_{f_i}$ pour i = 1, 2. On a

$$(182) \qquad \qquad (\phi_1,\phi_2)_{L^2(Y_n)} = \int_{H_n} f(h)\theta(h)^{-1}dh,$$

où $f = f_1 * f_2^*$, on note $f_2^*(g) = \overline{f_2(g^{-1})}$.

$$(183) \qquad (\phi_1,\phi_2)_{L^2(Y_n)} = \int_{Y_n} \int_{H_n \times H_n} f_1(h_1 y) \overline{f_2(h_2 y)} \theta(h_1)^{-1} \theta(h_2) dh_1 dh_2 dy.$$

L'intégrale double est absolument convergente. On effectue le changement de variable $h_1 \mapsto h_1 h_2$ et on combine les intégrales selon y et h_2 en une intégrale sur G_{2n} . Ce qui donne

(184)
$$\begin{split} (\phi_1,\phi_2)_{L^2(Y_n)} &= \int_{G_{2n}} \int_{H_n} f_1(h_1 y) \overline{f_2(y)} \theta(h_1)^{-1} dh_1 dy \\ &= \int_{H_n} f(h) \theta(h)^{-1} dh, \end{split}$$

puisque $f(h) = \int_{G_{2\pi}} f_1(hy) \overline{f_2(y)} dy$ et que l'on peut échanger l'ordre d'intégration. On pose

$$\begin{split} &(185) \qquad (\phi_1,\phi_2)_{Y_n,\pi} = (f_1,f_2)_{Y_n,\pi} = \int_{H_n^P \cap N_{2n} \setminus H_n^P} \beta\left(W_{f,\pi}(\xi_p,.)\right) \theta(\xi_p) d\xi_p, \\ &\text{pour tout } \pi \in T(\text{Temp}(SO(2n+1))). \end{split}$$

On note $S(Y_n, \theta)_{\pi}$ le quotient de $S(Y_n, \theta)$ par l'intersection des noyaux de toutes les applications $S(Y_n, \theta) \to \pi$ linéaires G_{2n} -équivariante.

Proposition 5.5. Supposons $\pi = \mathsf{T}(\sigma)$ avec $\sigma \in \mathsf{Temp}(\mathsf{SO}(2n+1))$. La forme sesquilinéaire $(.,.)_{\mathsf{Y}_n,\pi}$ sur $\mathsf{S}(\mathsf{G}_{2n})$) est une forme hermitienne continue semi-definie positive qui se factorise par $\mathsf{S}(\mathsf{Y}_n,\theta)_\pi$.

Démonstration. Commençons par le

Lemme 5.5. Soit $\pi \in \text{Temp}(G_{2n})$. On introduit un produit scalaire sur $W(\pi, \psi)$:

(186)
$$(W, W')^{Wh} = \int_{N_{2n} \setminus P_{2n}} W(\mathfrak{p}) \overline{W'(\mathfrak{p})} d\mathfrak{p},$$

pour tous $W, W' \in \mathcal{W}(\pi, \psi)$.

L'opérateur $\pi(f^{\vee}): \mathcal{W}(\pi, \psi) \to \mathcal{W}(\pi, \psi)$ est de rang fini. Notons $\mathcal{B}(\pi, \psi)_f$ une base finie orthonormée de son image. Alors

$$(187) W_{f,\pi} = \sum_{W' \in \mathfrak{B}(\pi,\psi)_f} \overline{\pi(f)W'} \otimes W'.$$

 $D\acute{e}monstration$. Le produit scalaire $(.,.)^{Wh}$ est P_{2n} -invariant, d'après Bernstein [4], il est aussi G_{2n} -invariant.

Pour $W \in \mathcal{W}(\pi, \psi)$, la décomposition de $\pi(f^{\vee})W$ selon ce produit scalaire est

(188)
$$\pi(\mathbf{f}^{\vee})W = \sum_{W' \in \mathcal{B}(\pi, \psi)_{f}} (\pi(\mathbf{f}^{\vee})W, W')^{Wh}W'$$
$$= \sum_{W' \in \mathcal{B}(\pi, \psi)_{f}} (W, \pi(\mathbf{f})W')^{Wh}W'.$$

Cette égalité nous permet grâce au produit scalaire $(.,.)^{Wh}$ de faire l'identification

(189)
$$\pi(f^{\vee}) = \sum_{W' \in \mathcal{B}(\pi, \mathfrak{p})_f} W' \otimes \overline{\pi(f)W'}.$$

On en déduit, d'après 188, que

$$\begin{split} W_{\mathbf{f},\pi}(\mathbf{g}_{1},\mathbf{g}_{2}) &= \int_{\mathbf{N}_{2\pi}}^{*} \mathsf{Tr}(\pi(\mathbf{g}_{1}^{-1}\mathbf{u}\mathbf{g}_{2})\pi(\mathbf{f}^{\vee}))\psi(\mathbf{u})^{-1}d\mathbf{u} \\ &= \sum_{W' \in \mathcal{B}(\pi,\psi)_{\mathbf{f}}} \int_{\mathbf{N}_{2\pi}}^{*} (\pi(\mathbf{u}\mathbf{g}_{2})W',\pi(\mathbf{g}_{1})\pi(\mathbf{f})W')\psi(\mathbf{u})^{-1}d\mathbf{u} \\ &= \sum_{W' \in \mathcal{B}(\pi,\psi)_{\mathbf{f}}} W'(\mathbf{g}_{2})\overline{\pi(\mathbf{f})W'}(\mathbf{g}_{1}), \end{split}$$

pour tous $g_1, g_2 \in G_{2n}$. La dernière égalité provient de [7, Prop 2.14.3].

La définition 185 et le lemme 5.5 donne la relation

$$(191) \qquad (f_{1}, f_{2})_{Y_{n}, \mathsf{T}(\sigma)} = \sum_{W' \in \mathcal{B}(\pi, \psi)_{f}} \int_{\mathsf{H}_{n}^{\mathsf{P}} \cap \mathsf{N}_{2n} \setminus \mathsf{H}_{n}^{\mathsf{P}}} \beta(W') \overline{\pi(f)W'}(\xi_{\mathfrak{p}}) \theta(\xi_{\mathfrak{p}}) d\xi_{\mathfrak{p}}$$

$$= \sum_{W' \in \mathcal{B}(\mathsf{T}(\sigma), \psi)_{f}} \beta(W') \overline{\beta(\mathsf{T}(\sigma)(f_{1})\mathsf{T}(\sigma)(f_{2}^{*})W')}$$

qui ne dépend que de ϕ_1 et f_2 puisque la restriction de β à $\mathcal{W}(T(\sigma),\psi)$ est (H_n,θ) -invariante, d'après la proposition 5.1. En échangeant les rôles de ϕ_1 et ϕ_2 , on

voit que $(f_1, f_2)_{Y_n, T(\sigma)}$ ne dépend que de φ_1 et φ_2 . De plus, $(f_1, f_2)_{Y_n, T(\sigma)}$ dépend uniquement de $T(\sigma)(f_1)$ et $T(\sigma)(f_2)$. On en déduit que $(.,.)_{Y_n,\pi}$ se factorise par $S(Y_n, \theta)_{T(\sigma)}$.

On remarque que

(192)
$$(f_1, f_2)_{Y_n, \mathsf{T}(\sigma)} = (\widetilde{\beta} \otimes \beta)(W_{f, \pi}),$$

ce qui nous permet de déduire, d'après la proposition 5.2 et le lemme 5.1, que $(.,.)_{Y_n,T(\sigma)}$ est continue.

Théorème 5.1. Soient $\phi_1, \phi_2 \in S(Y_n, \theta)$. On a

$$(193) \quad (\phi_1,\phi_2)_{\mathsf{L}^2(\mathsf{Y}_{\mathfrak{n}})} = \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_{\mathfrak{n}},\mathsf{T}(\sigma)} \frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_\sigma|} d\sigma.$$

Démonstration. D'après 4.1 et 5.1, on a

$$(194) \int_{\mathsf{H}_{\mathfrak{n}}} \mathsf{f}(\mathsf{h}) \theta(\mathsf{h})^{-1} d\mathsf{h} = \int_{\mathsf{H}_{\mathfrak{n}} \cap \mathsf{N}_{2\mathfrak{n}} \backslash \mathsf{H}_{\mathfrak{n}}^{\mathfrak{p}}} \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathfrak{p}},.)\right) \\ \theta(\xi_{\mathfrak{p}}) \frac{\gamma^{*}(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma))^{-1} c_{\beta}(\sigma) d\sigma d\xi_{\mathfrak{p}}.$$

Lemme 5.6. La fonction $\sigma \mapsto \beta \left(W_{f,T(\sigma)}(\xi_{\mathfrak{p}},.)\right)$ est à support compact.

Démonstration. D'après la définition de f_{π} , $W_{f,\pi}$ est nul dès que $\pi(f^{\vee})$ l'est.

Soit K un sous-groupe ouvert compact tel que f^{\vee} est biinvariant par K. Alors $\pi(f^{\vee}) \neq 0$, seulement lorsque π admet des vecteurs K-invariant non nuls.

D'après Harish-Chandra [23, Théorème VIII.1.2], il n'y a qu'un nombre fini de représentations $\tau \in \Pi_2(M)$ modulo $X^*(M) \otimes i\mathbb{R}$ qui admettent des vecteurs Kinvariant non nuls.

Comme toute représentation $\pi \in \mathsf{Temp}(\mathsf{G}_{2n})$ est une induite d'une telle représentation τ pour un bon choix de sous-groupe de Levi M, on en déduit le lemme. \square

On en déduit que

$$\int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} \beta\left(W_{\mathsf{f},\mathsf{T}(\sigma)}(\xi_{\mathsf{p}},.)\right) \theta(\xi_{\mathsf{p}}) \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_{\sigma}|} c(\mathsf{T}(\sigma))^{-1} c_{\beta}(\sigma) d\sigma(1) d\sigma(1)$$

est absolument convergente.

De plus, l'intégration extérieure $\int_{H_{\mathfrak{n}}\cap N_{2\mathfrak{n}}\setminus H_{\mathfrak{n}}^p} \theta(\xi_{\mathfrak{p}}) d\xi_{\mathfrak{p}}$ n'est autre que la forme linéaire continue $\widetilde{\beta}$, on en déduit que l'on peut échanger l'ordre d'intégration pour obtenir

$$(196) \quad \int_{\mathsf{Temp}(\mathsf{SO}(2n+1))/\mathsf{Stab}} (\phi_1,\phi_2)_{\mathsf{Y}_n,\mathsf{T}(\sigma)} \frac{\gamma^*(0,\sigma,\mathsf{Ad},\psi)}{|\mathsf{S}_\sigma|} c(\mathsf{T}(\sigma))^{-1} c_\beta(\sigma) d\sigma.$$

Pour finir, [7, prop 4.1.1] nous dit que les formes sesquilinéaires $(\phi_1,\phi_2)\mapsto (\phi_1,\phi_2)_{Y_n,T(\sigma)} \frac{\gamma^*(0,\sigma,Ad,\psi)}{|S_\sigma|} c(T(\sigma))^{-1} c_\beta(\sigma)$ sont automatiquement définies positives. On en déduit que

(197)
$$\gamma^*(0, \sigma, \mathrm{Ad}, \psi) c(\mathsf{T}(\sigma))^{-1} c_{\beta}(\sigma) = |\gamma^*(0, \sigma, \mathrm{Ad}, \psi)|.$$

Corollaire 5.2. On a une décomposition de Plancherel abstraite sur $L^2(H_n \backslash G_{2n})$:

$$(198) \hspace{1cm} L^2(H_n\backslash G_{2n}) = \int_{Temp(SO(2n+1))/Stab}^{\oplus} T(\sigma) d\sigma.$$

Démonstration. C'est une conséquence du théorème 5.1 et du fait que $\frac{|\gamma^*(0,\sigma,Ad,\psi)|}{|S_{\sigma}|}$ est presque partout non nul.

5.2. Formule de Plancherel abstraite sur $G_n \times G_n \setminus G_{2n}$.

Lemme 5.7. On dispose d'un isomorphisme G_{2n} -équivariant d'espace de Hilbert

(199)
$$L^2(G_n \times G_n \backslash G_{2n}) \simeq L^2(H_n \backslash G_{2n}, \theta).$$

Démonstration. On note $S(G_n \times G_n \setminus G_{2n})$ l'ensemble des fonctions lisse sur G_{2n} , $G_n \times G_n$ -invariante et à support compact modulo $G_n \times G_n$. On considère l'application $f \in S(H_n \setminus G_{2n}, \theta) \mapsto \widetilde{f} \in S(G_n \times G_n \setminus G_{2n})$, où \widetilde{f} est définie par

(200)
$$\widetilde{f}(g) = \int_{G_n} f\left(\sigma_n \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} g \sigma_n^{-1} \right) d\gamma$$

pour tout $g \in G_{2n}$.

Commençons par montrer que l'application est bien définie. En effet, pour $g'\in G_n$ et $X\in M_n$, on a

(201)
$$\begin{pmatrix} g' & X \\ 0 & g' \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix} = \begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix}.$$

On note K un compact tel que $supp(f)\subset H_nK$. On en déduit que $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1_n\end{pmatrix}g\sigma_n^{-1}\right)$

est nul sauf si il existe $g' \in G_n$ tel que $\begin{pmatrix} g'\gamma & X\gamma \\ 0 & g' \end{pmatrix} \in K$. On en déduit alors que

 $f\left(\sigma_n\begin{pmatrix} \gamma & 0\\ 0 & 1_n \end{pmatrix}g\sigma_n^{-1}\right)$ est nul sauf si γ est dans un compact. L'intégrale est donc absoluement convergente. De plus, pour tous $g_1,g_2\in G_n$ et $g\in G_{2n}$, on a

$$\begin{split} \widetilde{f}\left(\begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}g\right) &= \int_{G_n} f\left(\sigma_n\begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix}\begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}g\sigma_n^{-1}\right) d\gamma \\ &=_{\gamma \mapsto g_2\gamma g_1^{-1}} \int_{G_n} f\left(\sigma_n\begin{pmatrix} g_2 & 0 \\ 0 & g_2 \end{pmatrix}\begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix}g\sigma_n^{-1}\right) d\gamma \\ &= \int_{G_n} f\left(\sigma_n\begin{pmatrix} \gamma & 0 \\ 0 & 1_n \end{pmatrix}g\sigma_n^{-1}\right) d\gamma \\ &= \widetilde{f}(g). \end{split}$$

Pour finir, montrons que \widetilde{f} est à support compact modulo $G_n \times G_n$. Grâce à la décomposition d'Iwasawa, écrivons g sous la forme $\begin{pmatrix} g_2 & x \\ 0 & g_2 \end{pmatrix} k$ avec $g_1,g_2 \in G_n$,

 $x\in M_n$ et $k\in K.$ Alors $\widetilde{f}(g)=\widetilde{f}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}k\right)$, on a alors

$$\begin{split} \widetilde{f}(g) &= \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} 1 & \gamma x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) d\gamma \\ &= \int_{G_{\mathfrak{n}}} f\left(\sigma_{\mathfrak{n}} \begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right) \psi(\mathsf{Tr}(\gamma x)) d\gamma. \end{split}$$

Cette dernière intégrale est la transformée de Fourier d'une fonction à support compact sur M_n , à savoir la fonction φ_k définie par $\varphi_k(y) = f\left(\sigma_n\begin{pmatrix} y & 0 \\ 0 & 1 \end{pmatrix}k\sigma_n^{-1}\right)|\det y|^{-n}$ si $y \in G_n$ et 0 sinon. Le facteur $|\det y|^{-n}$ provient de la transformation de la mesure multiplicative $d\gamma$ en une mesure additive. On en déduit que \widetilde{f} est à support compact modulo $G_n \times G_n$. Ce qui prouve que l'application $f \in \mathcal{S}(H_n \backslash G_{2n}, \theta) \mapsto \widetilde{f} \in \mathcal{S}(G_n \times G_n \backslash G_{2n})$ est bien définie.

Cette application est linéaire et injective. En effet, si $\widetilde{f}=0$, alors $\varphi_k=0$ pour tout $k\in K$, donc $f\left(\sigma_n\begin{pmatrix}\gamma&0\\0&1\end{pmatrix}k\sigma_n^{-1}\right)=0$ pour tout $\gamma\in G_n$ et $k\in K$. On en déduit que f=0 car elle est (H_n,θ) -invariante.

Pour finir, montrons qu'il existe une constante c>0 telle que $\|f\|_{L^2(H_n\setminus G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\setminus G_{2n})}.$ Ce qui prouve que l'application $f\in C_c^\infty(H_n\setminus G_{2n},\theta)\mapsto \widetilde{f}\in C_c^\infty(G_n\times G_n\setminus G_{2n})$ s'étend en un isomorphisme d'espace de Hilbert $L^2(H_n\setminus G_{2n},\theta)\simeq L^2(G_n\times G_n\setminus G_{2n}).$

En effet,

$$\begin{aligned} \|\widetilde{\mathbf{f}}\|_{\mathsf{L}^{2}(\mathsf{H}_{\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}},\theta)} &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\widetilde{\mathbf{f}}\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mathbf{k} \right)|^{2} dx dk \\ &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\int_{\mathsf{G}_{\mathfrak{n}}} \mathbf{f}\left(\sigma_{\mathfrak{n}}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} \mathbf{k} \sigma_{\mathfrak{n}}^{-1}\right) \psi(\mathsf{Tr}(\gamma x) d\gamma|^{2} dx dk \\ &= \int_{\mathsf{M}_{\mathfrak{n}}\times\mathsf{K}} |\widehat{\varphi}_{\mathbf{k}}(x)|^{2} dx dk. \end{aligned}$$

La transformé de Fourier conserve la norme L^2 avec un choix de constante appropriée, on en déduit qu'il existe une constante c'>0 telle que

$$\begin{split} \|\widetilde{f}\|_{L^2(H_{\mathfrak{n}}\setminus G_{2\mathfrak{n}},\theta)} &= c' \int_{M_{\mathfrak{n}}\times K} |\varphi_k(x)|^2 dx dk \\ &= c' \int_K \int_{G_{\mathfrak{n}}} |f\left(\sigma_{\mathfrak{n}}\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} k \sigma_{\mathfrak{n}}^{-1} \right)|^2 \frac{d\gamma}{|\det \gamma|^{\mathfrak{n}}} dk. \end{split}$$

On met l'accent sur le fait que l'on a modifié la mesure additive sur M_n restreinte à G_n en une mesure multiplicative sur G_n . La mesure $\frac{d\gamma}{|\det\gamma|^n}dk$ est une mesure de Haar sur $G_nK\simeq H_n\backslash G_{2n}$. On en déduit bien qu'il existe une constante c>0 telle que $\|f\|_{L^2(H_n\backslash G_{2n},\theta)}=c\|\widetilde{f}\|_{L^2(G_n\times G_n\backslash G_{2n})}$.

Cet isomorphisme d'espace L^2 nous permet de faire le lien entre les formules de Plancherel sur $G_n \times G_n \setminus G_{2n}$ et sur $H_n \setminus G_n$. En effet, on dispose du

Théorème 5.2. Une décomposition de Plancherel abstraite sur $L^2(G_n \times G_n \backslash G_{2n})$ est obtenue par la relation

$$(206) \hspace{1cm} L^2(\mathsf{G}_{\mathfrak{n}}\times\mathsf{G}_{\mathfrak{n}}\backslash\mathsf{G}_{2\mathfrak{n}}) = \int_{\mathsf{Temp}(\mathsf{SO}(2\mathfrak{n}+1))/\mathsf{Stab}}^{\oplus} \mathsf{T}(\sigma)d\sigma.$$

 $D\acute{e}monstration$. C'est une conséquence du lemme 5.7 et du corollaire 5.2.

Références

 A. AIZENBUD AND D. GOUREVITCH, Schwartz functions on Nash manifolds, International Mathematics Research Notices, 2008 (2008).

- [2] J. Arthur, The Endoscopic Classification of Representations Orthogonal and Symplectic Groups, vol. 61, American Mathematical Soc., 2013.
- [3] D. Belt, On the holomorphy of exterior-square L-functions, arXiv preprint arXiv:1108.2200, (2011).
- [4] J. N. Bernstein, P-invariant distributions on gl(n) and the classification of unitary representations of gl(n) (non-archimedean case), in Lie Group Representations II, R. Herb, S. Kudla, R. Lipsman, and J. Rosenberg, eds., Berlin, Heidelberg, 1983, Springer Berlin Heidelberg.
- [5] R. Beuzart-Plessis, A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the archimedean case, arXiv e-prints, (2015), p. arXiv:1506.01452.
- [6] ——, Archimedean theory and ε-factors for the Asai Rankin-Selberg integrals, arXiv eprints, (2018), p. arXiv:1812.00053.
- [7] R. Beuzart-Plessis, Plancherel formula for GL_n(F)\GL_n(E) and applications to the Ichino-Ikeda and formal degree conjectures for unitary groups, (2018).
- [8] M. Harris, R. Taylor, and V. G. Berkovich, The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Princeton University Press, 2001.
- [9] G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Inventiones mathematicae, 139 (2000), pp. 439-455.
- [10] ——, Correspondance de Langlands et Fonctions L des carrés extérieur et symétrique, International Mathematics Research Notices, 2010 (2010), pp. 633-673.
- [11] A. Ichino, E. Lapid, and Z. Mao, On the formal degrees of square-integrable representations of odd special orthogonal and metaplectic groups, Duke Math. J., 166 (2017), pp. 1301– 1348.
- [12] H. JACQUET AND S. RALLIS, Uniqueness of linear periods, Compositio Mathematica, 102 (1996), pp. 65–123.
- [13] H. Jacquet and J. Shalika, *Exterior square L-functions*, Automorphic forms, Shimura varieties, and L-functions, 2 (1990), pp. 143–226.
- [14] A. C. Kable, Asai L-functions and Jacquet's conjecture, American journal of mathematics, 126 (2004), pp. 789–820.
- [15] P. K. Kewat, The local exterior square L-function: Holomorphy, non-vanishing and Shalika functionals, Journal of Algebra, 347 (2011), pp. 153 – 172.
- [16] F. Knop and B. Schalke, The dual group of a spherical variety, Transactions of the Moscow Mathematical Society, 78 (2017).
- [17] N. MATRINGE, Linear and Shalika local periods for the mirabolic group, and some consequences, Journal of Number Theory, 138 (2014), pp. 1–19.
- [18] ——, Shalika periods and parabolic induction for gl(n) over a non-archimedean local field, Bulletin of the London Mathematical Society, 49 (2017), p. 417?427.
- [19] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, arXiv e-prints, (2012), p. arXiv:1203.0039.
- [20] P. Scholze, The local Langlands correspondence for GL_n over p-adic fields, Inventiones mathematicae, 192 (2013), pp. 663–715.
- [21] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n), American Journal of Mathematics, 106 (1984).
- [22] A. J. Silberger and E.-W. Zink, The formal degree of discrete series representations of central simple algebras over p-adic fields, Max-Planck-Institut für Mathematik, (1996).
- [23] J.-L. WALDSPURGER, La formule de Plancherel pour les groupes p-adique. d'après Harish-Chandra, Journal of the Institute of Mathematics of Jussieu, 2 (2003), pp. 235–333.