

Radiation from oscillating dipole

Wave propagates outward at speed of light

Demonstrate transmitting and receiving of E-M radiation

broadcasting antenna

receiving antenna

Broadcasting antenna transmits e-m wave at 200 MHz

- linearly polarized

Receiving antenna also tuned to 200 MHz

- also linearly polarized
- signal displayed on fast oscilloscope screen
- demonstrate polarization sensitivity

44-1 Linear Polarization (线偏振)

- How else can we produce linearly polarized (LP) e-m waves?
 - Absorp./reflect. of vector component of wave perp to "polarizer"

The E-field component parallel to the slots is absorbed and/or reflected. The E-field component perpendicular to the slots is transmitted.

Polaroid (偏振片) (sunglasses)

Long molecules absorb E-field parallel to molecule.

 Absorption produces LP e-m waves but in so doing it also reduces intensity of the wave (波的强度下降). How much??

LP Intensity Reduction

- This set of two linear polarizers produces LP light. What is the final intensity?
 - First LP transmits 1/2 of the unpolarized light: $I_1 = 1/2 I_0$
 - Second LP projects out the E-field component parallel to the TA:

$$\vec{E}_2 = (\vec{E}_1 \bullet \hat{n})\hat{n} \qquad E_2 = E_1 \cos\theta$$

$$I \propto E^2$$

This result is called the **Law of Malus** (马隆定律) (for LP light incident on LP)

Light of intensity I_0 , polarized along the x direction is incident on a set of 2 linear polarizers as shown.

Assuming
$$\theta = 45^{\circ}$$
, what is I_{45} , the intensity at the exit of the 2 polarizers, in terms of I_0 ?

(a)
$$I_{45} = \frac{1}{2}I_0$$

(b)
$$I_{45} = \frac{1}{4}I_0$$

• What is the relation between
$$I_{45}$$
 and I_{30} , the final intensities in the situation above when the angle θ = 45° and 30°, respectively?

(c) $I_{45} = 0$

• Light of intensity I_0 , polarized along the x direction is incident on a set of 2 linear polarizers as shown.

Assuming
$$\theta$$
 = 45°, what is the relation between the I_{45} , the intensity at the exit of the 2 polarizers, in terms of I_0 ?

(a)
$$I_{45} = \frac{1}{2}I_0$$

(b)
$$I_{45} = \frac{1}{4}I_0$$

- We proceed through each polarizer in turn.
 - The electric field following the first polarizer is: $\vec{E}_1 = (\vec{E}_0 \cdot \hat{n}_1)\hat{n}_1$
 - Therefore, $\vec{E}_1 = E_0 \cos(45^\circ) \hat{n}_1 = \frac{E_0}{\sqrt{2}} \hat{n}_1$
 - The electric field following the second polarizer is: $\vec{E}_2 = (\vec{E}_1 \bullet \hat{n}_2)\hat{n}_2$
 - Therefore, $\vec{E}_2 = E_1 \cos(45^\circ) \hat{n}_2 = \frac{E_1}{\sqrt{2}} \hat{n}_2$

Putting together,
$$\vec{E}_2 = \frac{E_1}{\sqrt{2}} \hat{n}_2 = \frac{E_0}{2}$$

Light of intensity I_0 , polarized along the x direction is incident on a set of 2 linear polarizers as shown.

linear polarizers as shown.

Assuming
$$\theta = 45^{\circ}$$
, what is the relation between the I_{45} , the intensity at the exit of the 2 polarizers, in terms of I_0 ?

polarizers, in terms of
$$I_0$$
?

(a)₄₅ =
$$\frac{1}{2}I_0$$
 (b)₄₅ = $\frac{1}{4}I_0$

$$\begin{array}{c}
\mathbf{x} \\
E_0 \\
I = I_0
\end{array}$$

$$\begin{array}{c}
I = I_0 \\
I_{45} = ?
\end{array}$$

• What is the relation between
$$I_{45}$$
 and I_{30} , the final intensities in the situation above when the angle $\theta = 45^{\circ}$ and 30° , respectively?

(a)
$$I_{45} < I_{30}$$
 (b) $I_{45} = I_{30}$ (c) $I_{45} > I_{30}$

$$E_1 = E_0 \cos \theta$$

$$E_2 = E_1 \cos(\frac{\pi}{2} - \theta) = E_0 \cos \theta \cdot \cos(\frac{\pi}{2} - \theta)$$

$$\therefore I_2 = I_0 \sin^2 \theta \cos^2 \theta$$

$$I_{45} = \frac{1}{4}I_0, \quad I_{30} = \frac{3}{16}I_0, \qquad \therefore I_{45} > I_{30}$$

$$I_{45} > I_{30}$$

44-2 Other Polarization States (其它偏振态)?

- Are there polarizations other than linear?
 - Sure!!
 - The general harmonic solution for a plane wave traveling in the +z-direction is:

Circular Polarization (园偏振光)

(and are $\pm 90^{\circ}$ out of phase.)

- Right(右)-handed (RCP)
 - Electric field spirals CW in space (at fixed time)

RCP = CW

$$E_x = E_0 \sin(kz - \omega t + \frac{\pi}{2})$$

$$E_y = E_0 \sin(kz - \omega t)$$

- Left(左)-handed (LCP)
 - Electric field spirals CCW in space (at fixed time)

$$E_{x} = E_{0} \sin(kz - \omega t - \frac{\pi}{2})$$
$$E_{y} = E_{0} \sin(kz - \omega t)$$

Visualization

Why do we call this circular polarization?

Note: If you shine circularly polarized light onto an absorber, it will in principle start to rotate

→ conservation of angular momentum!

There are 5 kinds Polarization States

• Unpolarized Light (无偏振光, 自然光)

- Linearly Polarized light(线偏振光)
- Partial Polarized light (部分偏振光)
- Circular Polarized light(圆偏振光)

$$E_x = E_0 \sin(kz - \omega t \pm \frac{\pi}{2})$$
$$E_y = E_0 \sin(kz - \omega t)$$

Ellipse Polarized light(椭圆偏振光)

偏振度:
$$P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

Linearly Polarized Light:

$$I_{\min} = 0, \ P = 1$$

Unpolarized light:

$$I_{\text{max}} = I_{\text{min}}, P = 0$$

$$E_x = E_1 \sin(kz - \omega t + \delta)$$

$$E_y = E_2 \sin(kz - \omega t)$$
and $E_1 \neq E_2$, or $\delta \neq \pm \frac{\pi}{2}$

44-3 Polarization by Reflection

(反射产生的偏振)

For glass or other dielectric materials, there is a particular angle of incidence.

Brewster's angle: (布儒斯特角)

In general:
$$n_1 = 1$$
, $\Rightarrow tg\theta_p = n$
if $n = 1.5$, $\theta_p = 56.3^\circ$

Notes: From Maxwell's Equations

Brewster's angle;
Phase change on Reflection

$$\vec{E} = \vec{E}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t)}$$

$$\vec{H} = \vec{H}_0 e^{i(\vec{k} \cdot \vec{r} - \omega t)}$$

$$\begin{cases} \vec{E} \perp \vec{H} \\ \vec{k} \parallel \vec{E} \times \vec{H} \\ \sqrt{\kappa_e \varepsilon_0} E = \sqrt{\kappa_m \mu_0} H \\ k = \frac{2\pi}{\lambda} = \frac{n}{c} \omega \\ n = \sqrt{\kappa_e \kappa_m} \approx \sqrt{\kappa_e} \end{cases}$$

$$\begin{cases} D_{2n} = D_{1n} & \kappa_{e2} \varepsilon_0 E_{2n} = \kappa_{e1} \varepsilon_0 E_{1n} \\ E_{2t} = E_{1t} & \\ B_{2n} = B_{1n} & \kappa_{m2} \mu_0 H_{2n} = \kappa_{m1} \mu_0 H_{1n} \\ H_{2t} = H_{1t} & \end{cases}$$

44-4 Birefringence (双折射)

・ Optical anisotropy of crystalline solids (光学晶体) Calcite (CaCO₃)

Ordinary light (寻常光)—single index of refraction Extraordinary light (非寻常光)—the index of refraction varies with direction of light.

Explanation

-----Birefringence (双折射)

- Birefringent materials (crystals or stressed plastics) have the property that the speed of light is different in the two transverse dimensions.
- Since the frequency of the wave must remain constant as the wave passes through the birefringent material, the wavelength must be different in the two dimensions, which allows for a phase change.

Fast Axis:

$$v_{\textit{fast}} = f \cdot \lambda_{\textit{fast}}$$

The relative phase change (fast vs slow) is determined

by the thickness

Slow Axis:

$$v_{slow} = f \cdot \lambda_{slow}$$

Explanation (Con.)

• The o-ray travels in the crystal with the same speed v_0 in all directions.

----- a single index of refraction n_0 .

• The e-ray travels in the crystal with a speed that varies with the direction from v_{θ} to v_{e} .

$$\Rightarrow n = \frac{c}{v}$$
 varies with direction from n_0 to n_e .

 n_{o_i} n_e : The principle indices of refraction. (主折射率)

Explanation (Con., 光轴)

CaCO₃ (方解石)

$$v_e > v_o$$
, $n_e < n_o$

负晶体

 SiO_2 (石英,水晶) $v_e < v_o$, $n_e > n_o$ 正晶体

Explanation (Con. 光轴)

CaCO₃ (方解石)

$$v_e > v_o$$
, $n_e < n_o$

负晶体

 SiO_2 (石英,水晶) $v_e < v_o$, $n_e > n_o$ 正晶体

Birefringence (双折射)

Isotropy (各向同性) Crystal

Anisotropy (各向异性) Crystal

Wave Plates (波片)

O-rays optical path:

E-rays optical path:

$$\frac{L_o = n_o d}{L_e = n_e d}$$

The difference of phase:

$$\Delta \phi = \frac{2\pi}{\lambda} (n_o - n_e) d$$

If
$$(n_o - n_e)d = \pm \frac{1}{4}\lambda$$
, $\Delta \phi = \pm \frac{\pi}{2}$ Quarter - wave Plate (QWP, $\frac{1}{4}\lambda$ 片)

If $(n_o - n_e)d = \pm \frac{1}{2}\lambda$, $\Delta \phi = \pm \pi$ or 2π Full - wave Plate (FWP, $\frac{1}{2}\lambda$ 片)

How to distinguish between circularly polarized and unpolarized?

$$A_e = A\cos\theta$$
$$A_o = A\sin\theta$$

If $\theta = 45^{\circ}$, Linearly polarized light \Rightarrow Circularly polarized light

Example: Wave Plates (波片)

Birefringent crystals with precise thicknesses

Ex.: Crystal which produces a phase change of $\pi/2 \rightarrow$ "quarter wave plate" (a "full wave plate" produces a relative shift of \rightarrow no effect).

Light polarized along the fast or slow axis merely travels through at the appropriate speed \rightarrow polarization is unchanged.

Light linearly polarized at 45° to the fast or flow axis will acquire a relative phase shift between these two components → alter the state of polarization.

The phase of the component along the fast axis advances $\pi/2$ less than the phase of the component along the slow axis. E.g.,

$$E_x = E_0 \sin(kz - \omega t)$$
$$E_y = E_0 \sin(kz - \omega t)$$

 $E_{x} = E_{0} \sin(kz - \omega t)$ $E_{y} = E_{0} \sin(kz - \omega t - \frac{\pi}{2})$

Quarter Wave Plate → circular polarization

Quarter Wave Plates

 Light linearly polarized at 45° incident on a quarter wave plate produces the following wave after the quarter wave plate:

Fast axis: $E_v = -E_0 \cos(kz - \omega t)$

Slow axis: $E_x = E_0 \sin(kz\omega t)$

Rotation at t=0:

Max vectors at t=0:

QWP: slow (no change), fast (ahead $\lambda/4$)

- Light of intensity I₀, polarized along the x direction is incident on a quarterwave plate (fast axis= y-axis) and a linear polarizer as shown.
- What is the relation between I_1 , the intensity at the exit of the system, in terms of I_0 ?

(a)
$$I_1 = \frac{1}{2}I_0$$
 (b) $I_1 = \frac{1}{4}I_0$ (c) $I_1 = 0$

• What is the relation between I_2 , the final intensity when the fast axis makes an angle $\theta = 45^{\circ}$ with the x-axis, in terms of I_0 ?

(a)
$$I_2 = \frac{1}{2}I_0$$
 (b) $I_2 = \frac{1}{4}I_0$ (c) $I_2 = 0$

- Light of intensity I_0 , polarized along the x direction is incident on a quarterwave plate (fast axis= y-axis) and a linear polarizer as shown.
- What is the relation between I_1 , the intensity at the exit of the system, in terms of I_0 ?

- The quarter wave plate aligned with the initial axis of polarization will not change the polarization of the wave at all!!!
- The next polarizer, being at right angles, will eliminate the wave completely!

Light of intensity I_0 , polarized along the x direction is incident on a quarterwave plate (fast axis= y-axis) and a linear polarizer as shown.

(a)
$$I_1 = \frac{1}{2}I_0$$
 (b) $I_1 = \frac{1}{4}I_0$ (c) $I_1 = 0$

• What is
$$I_2$$
, the final intensity when the fast axis makes an angle θ = 45° with the x-axis, in terms of I_0 ?

(a)
$$I_2 = \frac{1}{2}I_0$$
 (b) $I_2 = \frac{1}{4}I_0$ (c) $I_2 = 0$
• The quarter wave plate produces circularly polarized light. $E_f = E_s = \frac{E_0}{\sqrt{2}}$

What Causes Birefringence?

Birefringence can occur in any material that possesses some asymmetry (不对称) in its structure, so that the material is more "springy" in one direction than another.

Examples: Crystals (晶体): quartz, calcite

Long stretched molecular chains: saran wrap (保鲜膜), cellophane tape (玻璃纸)

Birefringence, cont.

Oblong molecules (长方形分子): "liquid crystals (液晶)"

Dipoles of the molecules orient along an externally applied electric field. Change the field \rightarrow change the birefringence \rightarrow change the polarization of transmitted light \rightarrow pass through polarization analyzer to change the intensity

- → Digital displays (数值显示)
- → LCD monitors, etc.

Stress-induced birefringence:

Applying a mechanical stress to a material will often produce an asymmetry \rightarrow birefringence.

This is commonly used to measure stress.

A Really Cool Application: Light-Driven Micro Machines

(April 2002)

Fact 1: Small particles are attracted to regions of high *E* field gradient (induced dipole force) → laser "tweezers" (激光镊子)

Fact 2: Because birefringent crystals convert linear ↔ circular polarization, they acquire angular momentum → rotation

Parts are only 10µm across!

Uses: Biophysics (生物物理学): Manipulating DNA, proteins, etc. Microscopic fluid pumps (微液泵)

Summary

- Linear Polarizers
 - Law of Malus

$$I_2 = I_1 \cos^2 \theta$$

Circular Polarization

Unpolarized Light (无偏振光、自然光)

- We have primarily been considering light that has a definite polarization (e.g., linear or circular). Most sources – a candle, the sun, any light bulb – produce light that is <u>unpolarized</u>:
 - it does not have a definite direction of the electric field
 - there is no definite phase between orthogonal components
 - the atomic or molecular dipoles that emit the light are randomly oriented in the source
 - the intensity of light transmitted through a polarizer is always half the intensity of the unpolarized input, regardless of the orientation of the polarizer (though of course the output *is* polarized!)

These are all equivalent ways of describing the same thing.

44-5 Polarization by Scattering (散射产生的偏振)

- Suppose unpolarized light encounters an atom and scatters (energy absorbed & reradiated).
 - What happens to the polarization of the scattered light?
 - The scattered light is preferentially polarized perpendicular to the plane of the scattering.
 - » For example, assume the incident unpolarized light is moving in the z-direction.
 - » Scattered light observed along the x-direction (scattering plane = x-z) will be polarized along the y-direction.
 - » Scattered light observed along the y-direction (scattering plane = y-z) will be polarized along the x-direction.

Applications

Sunglasses

- The reflection off a horizontal surface (e.g., water, the hood of a car, etc.) is strongly polarized. Which way?
- A perpendicular polarizer can preferentially reduce this glare.

Polarized sky

 The same argument applies to light scattered off the sky:

Why is that?

Maximum intensity

In many cases light is radiated/scattered by oscillating electric dipoles.

Start with sunlight with all polarizations & randomly oriented dipoles.

2 cases:

-light)

Dipole oscillates *into* the paper.

Horizontal dipoles reradiate H-polarized light downward.

(Do not respond to incident V

Dipole oscillates vertically.

Vertical dipoles reradiate V-polarized light to the sides (*not* downward).

(Do not respond to incident H -light.)

Homework

- Page 1012 Exercises 5, 8, 14, 15
- Page 1013 Problems, 4, 6