Examen de rattrapage Suites des V.A

Durée: 1H.

Documents et calculatrices interdits. Les réponses doivent être justifiées. La qualité de la rédaction sera prise en compte.

Exercice 1

Soit $(X_n)_{n\geq 1}$ une suite des variables aléatoires indépendantes, de même loi de probabilité, de densité:

$$f(\theta, x) = \exp(-(x - \theta))\mathbf{1}_{\{x > \theta\}}$$

- 1- Déterminer la fonction de répartition et la densité de la variable aléatoire $X_{(1)} = \min(X_1, ..., X_n)$.
- 2- Montrer que $(X_{(1)})_{n\geq 1}$ converge presque sûrement.vers θ Ind: On pourra utiliser le lemme de Borel Contelli.
- 3- Montrer que $(X_{(1)})_{n\geq 1}$ converge en moyenne quadratique vers θ .
- 4- On pose $Z_n = n(X_{(1)} \theta)$, montrer que la suite $(Z_n)_{n \ge 1}$ converge en loi, identifier la loi limite.

Exercice 2

Soit $(X_n)_{n\geq 1}$ une suite des variables aléatoires indépendantes, de même loi de probabilité, de densité:

$$f_{\alpha,\beta}(x) = \frac{x^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}} \exp(-\frac{x}{\beta}) 1_{]0,+\infty[}(x), \quad \alpha > 0 \text{ et } \beta > 0.$$

- 1- Montrer que $\overline{X_n} = \frac{1}{n} \sum_{k=1}^n X_k$ converge presque sûrement et en moyenne quadratique vers une constante que l'on déterminera en fonction de α et β .
- 2- Montrer que si $\alpha \in \mathbb{N}^*$, la loi de $2n\frac{\overline{X_n}}{\beta}$ est $\chi(2n\alpha)$.
- 3- Montrer que $\frac{\sqrt{n\alpha}(\overline{X_n}-\alpha\beta)}{\overline{X_n}}$ converge en loi vers la loi normale N(0,1).

Examen de rattrapage Suite de variables aléatoires

Documents et calculatrices interdits. Les réponses doivent être justifiées. La qualité de la rédaction sera prise en compte. (Durée: 1H30)

Exercice 1

Une équipe de football utilise des ballons dont la durée de vie suit une loi normale de moyenne 75 jours avec un écart type égal à 10

1- Donner la probabilité qu'un ballon soit encore utilisable après 90 jours.

2 On suppose qu'une saison de foot est de 90 jours, et que la direction mette à la disposition de l'équipe 100 ballons. En utilisant l'approximation de Gauss, donner la probabilité qu'à la fin de la saison il y ait plus de la moitié des ballons encore utilisables.

Exercice 2

Soit U une variable aléatoire de loi uniforme [0;1] et V une variable aléatoire indépendante de *U* de, telle que P(V = -1) = P(V = 1) = 0, 5.

1- Montrer que la variable aléatoire $X = \frac{V}{\sqrt{U}}$ a pour densité la fonction suivante:

$$f(x) = \frac{1}{|x|^3} \mathbf{1}_{\{|x| \ge 1\}}.$$

2- Montrer que X a pour fonction caractéristique la fonction suivante:

$$\Phi(x) = 1 - 2x^2 \int_{|x|}^{+\infty} \frac{1 - \cos(u)}{u^3} du.$$

3- Vérifier que $\frac{1}{x^2}(\Phi(x) - 1 - x^2 \log(|x|))$ a une limite finie quand $x \to 0$.

Dans la suite, on considère une suite $(X_n)_{n\geq 1}$ de variables aléatoires indépendantes, de même loi que X.

4- Que peut-on dire de la suite $(\frac{1}{n}\sum_{1\leq k\leq n}X_k)_{n\geq 1}$ quand n tend vers l'infini. 5- Peut-on appliquer le théorème de la limite centrale à la suite $(X_n)_{n\geq 1}$?

6- Montrer que la suite $(\frac{1}{\sqrt{n\log(n)}}\sum_{1\leq k\leq n}X_k)_{n\geq 1}$ converge en loi vers une loi que l'on caractérisera.

```
Examon SVA
                                                    2014-2015
Exercice 25
E(X) = d.\beta afors \beta = \frac{m_1}{d} = \frac{X_m}{d}
g: n → n
91B) = E(2(X))
 a Pors E(IXI) = E(X) (+00 Cax X)0
 LFGN Xm Pps E(x) = dB
E((xm - dB)2) = Vax (xm) = Vax(xi) = d.B2
 alors Xm _____ de en mayenne quodiatique
  V~ 8(a2,b) = U+V ~ 8(a1+a2,b)
                Umdepdev
           · 2/U~ 8 (a,b)} CU~ 8 (a, =)
                3/T~0, 52(m) = 8 (m, 1)
 EXK ~ 08 (md, 1) = D Xm ~ 8 (md, m) = D 2mxm ~ No 8 (md, 1)
                         Can Xm = 1 EXK
                                                             3/ E(x_1^i) \langle +\infty \rangle = D TLC \sqrt{m} \left( \overline{x_m} - E(\overline{x_1}) \right) \xrightarrow{\alpha_0} \sqrt{m_{-\alpha+\alpha}} \sqrt{m} \left( \overline{x_1} \right)
= D \ Z_m = \sqrt{m} \left( \overline{x_m} - \alpha \beta \right) \xrightarrow{\alpha_0} \sqrt{m} \sqrt{m} \left( \overline{x_1} \right)
= D \ Z_m = \sqrt{m} \left( \overline{x_m} - \alpha \beta \right) \xrightarrow{\alpha_0} \sqrt{m} \sqrt{m} \left( \overline{x_1} \right)
          Xm B. Am = d Pps A=Adeterministe)
    d'après la lemme de Slutsky Am 2m dois AZ
   J'où Vmd (xm _ dB) Comverge en loi vers N(0,1) = V
4/ Om pose Vm = Am Zm doi V = Fvm = Fvlo) 061R, Vnov (01)
  P( | Vm | < c) = P ( -c < Vm < c) = Fran (c) - F (-c) = 2 Frontol - 1 = 1 - 2
```

alors
$$F_{N(0,1)}(c) = 1 - \frac{1}{2} = 0 c = \frac{1}{2} = \frac{$$

Exercia 1:

SVA

(Xm) mys une suite deva iid ~ fo(x)= exp (-(x-0)) 11 (x) Soit Om = Xm_1. ng Om comy Ppsucot Commic E. (|XII) <+00 diapris L. FGN, Xm Pps D+1 = E(x1) H: U ... U_1 est comfinu sun IR. $\hat{\theta}_m = H(\bar{X}_m) \xrightarrow{Pps} H(E(x_i)) = 0$ ng Vm (8m-01 200 M10, 52(01).
Determines explicitement 52(0) E(xi2) (+w, Graa ouTLC: Jm (Xm _ E(Xi)) _ Doi N(O, Van (xi)) X=Z+D, 7~ E(1): Van(Z)=Van(x)=1 E(x1)= for e(x0) dn= for (t+0) = dt = P(3) + 20 P(2) + 02 P(4) = 2 + 20 + 02 Var (x) = (2+20+02) - (0+1)2=1 => \m (Xm - (0+1)) => N(0,1)

Stat Xn,..., Xm m Echanhllom de X ~ f(0, x) = exp [-(x-0)]/1 Déferminer l'estimateur par la mêthod dus moments donde 1 de D E(x)=m1= (xe dx = J+00(++0) et d+ = Jo tetal + 0 Jetal - 01 $9(x) = x \quad 9(0) = \mathbf{E}(9(x))$ =1+0 => 0 = mn - 1 = Xm - 1 ng Om est asymptotiquement mormal, cad Vm (0-0) 201 N(0, 02(0))

Exercice 18

Xx: v.a décrit la durie de vie du Kime ballom

Sapproxi mation de 1/Posoms YK = 1/3/XK>90 PLYK=1) = PE(YK)

AK=(YK=1) = 1 PL KA

AK=(YK=1) = } le Kème ballom est encore utilisable après 90 jaus}

 $P(AK) = P(YK = 1) = P(XK > 90) = P(\frac{XK - 75}{10} > 1.5) = 1 - F_{N(0,1)}(1.5) \approx 0.07$

Zm = Em Yk = mombre des balloms utilisable après 90 jours

Lo TLC: $\frac{2m-E(2m)}{\sqrt{Va_1 2m}} \xrightarrow{\alpha_0 i} \mathcal{N}(0,1) = \frac{m.\sqrt{m-m}E(\gamma_i)}{\sqrt{m}Va_1(\gamma_i)} = \frac{m(\sqrt{m-E(\gamma_i)})}{\sqrt{m}Va_1(\gamma_i)}$

= Jm. (Ym - E(Y1)) _ &i N(01)

= Vm (7m - E(Y1)) _ &oi _ Nr (0, Van (Y1))

 $(Z_m > 50) = \left[\frac{Z_{m-m.0,07}}{\sqrt{m.0,07.0,93}} > \frac{50 - 0.07m}{\sqrt{m.0,07.0,93}}\right]$

P(Zm>50) = P(Tm>V) = 1 - Fm(V) ~ 1 - FNDA) (V)

aurc m=100

ng Tm ____ or moy quadratique E((Tm_0)) = Var (Tm) = 1 m2 m2+00 = D Tm (4P) = CVPps
Or. Boul Comtelli: THE THE YEAR SEL (MALL) ESO P(Amie) Ame = { ITM-01>E} = } X(1)-1,-01>E} U } X(1)-1,-0 <-E} = P(Am, E) = P(Xu) > 1/m + 0+ E) + P(Xu) < 0+ 1/m - E) Pour many grand $\underbrace{F_{X(I)}}_{\text{lo}} \underbrace{\left(0 + \frac{1}{m} + \mathcal{E}\right)}_{\text{co}} + \underbrace{F_{X(I)}}_{\text{co}} \underbrace{\left(0 + \frac{1}{m} - \mathcal{E}\right)}_{\text{co}}$ O = 0 $P(Am_{E}) = 1 - (1 - e^{m(\theta + \frac{1}{m} + E - \theta)}) = e^{m(\frac{1}{m} + E)} e^{-1} \cdot (e^{E})^{m}$ =D & P(Am, E) <+00 Crâce au Lemme de Boul Comtoli. Tom Pps o 4/ Zm = m (Xw -0) - 501 V Fzm (3) = P (m (xu - 0) (3) = P (xu - 0 (3) = P (xu (0) < 0 + 3) = f Xu (0+3/m = { 0 & 300 = FE(4) (3) 1-e3 & 3>0 6,000

d'où F2m (31 _____ FV [3] où V ~ 0 &[1) Cadm (X -0) oxoi

$$f_{X(i)}(x) = \lim_{n \to \infty} \int_{\mathbb{R}^{\infty}} \int_{\mathbb{$$

2/ E(x₍₁₎) =
$$\int_{0}^{+\infty} x e^{m(x-\theta)} \cdot m dx$$

= $\int_{0}^{+\infty} \left(\frac{1}{m} + \theta\right) e^{-\frac{1}{m}} dt$
= $\int_{0}^{+\infty} \left(\frac{1}{m} + \theta\right) e^{-\frac{1}{m}} dt$

Dédim une v.a Tm bq E(Tm) = 0

Tm = X(1) - \frac{1}{m}, E(Tm) = 0: Tm ext sams

biass d0

\hat{\theta}m - \text{Xm-1} estimation sans hous d0

Var $(Tm) = Var (Xu) = E(Xu) - (E(Xu))^{2}$ aux $E(X_{11}^{2}) = \int_{-\infty}^{+\infty} x^{2} e^{-m(x-\theta)} m dx = \int_{0}^{+\infty} (\frac{1}{m} + \theta)^{2} e^{-t} dt = \frac{1}{m^{2}} \Gamma(3)$ $+ \frac{2\theta}{m} \Gamma(2) + \theta^{2} \Gamma(4) = \frac{2}{m^{2}} + \frac{2\theta}{m} + \theta^{2} = \frac{1}{m^{2}} \Gamma(3)$ Var $(Tm) = \frac{1}{m^{2}}$

Deferming on max de Unain $Z(n, \theta) = \prod_{K=1}^{m} f_{\theta}(n_{K})$ $= e^{m \times m} + m \theta$ $I[\theta; + \infty[^{m}]$ $I[\theta; + \infty[^{m}]$