U 2139096 (

刀

(19) RU (11) 2 139 096 (13) C1

(51) MNK⁶ A 61 L 15/16

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 95116248/14, 17.12.1993
- (24) Дата начала действия патента: 17.12.1993
- (30) Приоритет: 30.12.1992 DE P 4244548.5
- (46) Дата публикации: 10.10.1999
- (56) Ссылки: EP 0450924 A, 09.10.91. DE 4020780 C, 29.08.91. EP 0415183 A, 06.03.91.
- (85) Дата перевода заявки РСТ на национальную фазу: 19.07.95
- (86) Заявка РСТ: EP 93/03586 (17.12.93)
- (87) Публикация РСТ: **W**O 94/15651 (21.07.94)
- (98) Адрес для переписки: 129010, Москва, ул.Большая Спасская, д.25, стр.3, Фирма Патентных поверенных, Лебедевой Н.Г.

- (71) Заявитель: Хемише Фабрик Штокхаузен ГмбХ (DE)
- (72) Изобретатель: **Хельмут Климмек** (DE), **Хельмут** Брем (DE)
- (73) Патентообладатель: Хемише Фабрик Штокхаузен ГмбХ (DE)

(54) ПОРОШКООБРАЗНЫЕ СШИТЫЕ ПОЛИМЕРЫ, АБСОРБИРУЮЩИЕ ПОД НАГРУЗКОЙ ВОДНЫЕ ЖИДКОСТИ, А ТАКЖЕ КРОВЬ, СПОСОБ ПОЛУЧЕНИЯ ТАКИХ ПОЛИМЕРОВ И ТЕКСТИЛЬНЫЕ КОНСТРУКЦИИ ДЛЯ ГИГИЕНЫ ТЕЛА

(57) Реферат:

Порошкообразный сшитый абсорбирующий водные жидкости, а также кровь полимер(суперабсорбер), образованный из: а) 55,0-99,9 мас.% полимеризованных ненасыщенных способных к полимеризации, содержащих кислотные группы мономеров, которые по меньшей мере на 25 мол.% нейтрализованы; б) 0-40 мас.% полимеризованных ненасыщенных способных к сополимеризации с а) мономеров; в) 0,1-5,0 мас.% агента сшивки; г) 0-30 мас.% водорастворимого полимера. массовые количества а)-г) рассчитаны на безводный полимер, характеризуется тем, что частей вышеописанного полимера, взятого в виде частиц, смешивают с водным раствором самое большее на 10 частей по меньшей мере 10%-ной фосфорной кислоты и а) 0,05-0,3 частей соединения, которое может

реагировать по меньшей мере с двумя карбоксильными группами и не содержит никакой образующей щелочную соль группы в молекуле; и/или б) 0,05-1 части соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами и содержит одну образующую щелочную соль группу в молекуле, и нагревают при 150-250°C. Суперабсорберы обладают высокой удерживающей способностью. высокой прочностью геля и высокой поглощающей способностью под давлением, их можно получать без применения органического растворителя и только с помощью незначительного количества обрабатывающего средства ДЛЯ дополнительной обработки поверхности порошкообразного полимера. 3 с. и 7 з.п.ф-лы, 6 табл.

ဖ

6

a

⁽¹⁹⁾ RU ⁽¹¹⁾ 2 139 096 ⁽¹³⁾ C1

(51) Int. Cl.⁶ A 61 L 15/16

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 95116248/14, 17.12.1993
- (24) Effective date for property rights: 17.12.1993
- (30) Priority: 30.12.1992 DE P 4244548.5
- (46) Date of publication: 10.10.1999
- (85) Commencement of national phase: 19.07.95
- (86) PCT application: EP 93/03586 (17.12.93)
- (87) PCT publication: WO 94/15651 (21.07.94)
- (98) Mail address: 129010, Moskva, ul.Bol'shaja Spasskaja, d.25, str.3, Firma Patentnykh poverennykh, Lebedevoj N.G.

- (71) Applicant: Khemishe Fabrik Shtokkhauzen GmbKh (DE)
- (72) Inventor: Khel'mut Klimmek (DE), Khel'mut Brem (DE)
- (73) Proprietor: Khemishe Fabrik Shtokkhauzen GmbKh (DE)

(54) POWDERED CROSS-LINKED POLYMERS ABSORBING LOADED AQUEOUS LIQUIDS AND BLOOD, METHOD OF PREPARING SUCH POLYMERS, AND BODY HYGIENE-DESTINED TEXTILE STRUCTURES

(57) Abstract:

ഥ

9 6

FIELD: polymer materials. SUBSTANCE: polymer (superabsorbent) is formed of (i) 55-99.9 wt % of polymerized unsaturated polymerization-capable monomers containing acid groups, from which at least 25% are neutralized; (ii) 0-40 wt % of polymerized unsaturated monomers capable copolymerizing with (i) monomers; (iii) 0.1-5.0 wt % of cross-linking agent; (iv) 0-30 wt % of water-soluble polymer; amounts of (i)-(iv) being calculated for anhydrous materials. According to invention, 100 parts of above-defined polymer particles with up to 10 parts of at least 10% phosphoric acid and 0.05-0.3 parts of compound, which can react with at least two carboxyl groups and contains no alkali salt-forming and/or 0.05-1 parts of compound, , which can react with at least two carboxyl groups and contains one alkali salt-forming group. EFFECT: increased retention capacity, increased gel strength, and increased absorption capacity under pressure with no use of organic solvent. 10 cl, 6 tbl

Изобретение относится к порошкообразным, сшитым полимерам, суперабсорберам, абсорбирующим водные жидкости, а также кровь, причем к полимерам с улучшенными свойствами в отношении набухания и удерживающей способности водных жидкостей под нагрузкой, к способу получения этих полимеров, а также к их применению в абсорбирующих предметах санитарии, таких как детские пеленки, при недержании (мочи) у взрослых, для гигиены женщин и покрытия ран.

Суперабсорберы представляют собой водонерастворимые, сшитые полимеры, которые при набухании и образовании гидрогелей способны впитывать большие количества водных жидкостей и жидкостей организма, таких как моча и кровь, и удерживать абсорбированные количества жидкости при определенном давлении. Благодаря этим характерным абсорбционным свойствам полимеры находят применение в основном при изготовлении предметов санитарии, например, таких как детские пеленки и гигиенические пояса.

В случае имеющихся в настоящее время в распоряжении торговли суперабсорберов речь идет о сшитых полиакриловых кислотах или сшитых привитых сополимерах крахмала с акриловой кислотой, у которых карбоксильные группы частично нейтрализованы с помощью гидроксида натрия или гидроксида калия. Получение порошкообразных суперабсорберов осуществляют в принципе двумя способами.

Согласно первому способу, частично нейтрализованную акриловую кислоту в водном растворе В присутствии многофункционального агента сшивки путем радикальной полимеризации переводят в размельчают, который затем высушивают и просеивают до желательного размера частиц. Эту полимеризацию в растворе можно осуществлять непрерывно периодически. Типичные способы описываются, например, в патенте США 4286082; патенте ФРГ 2706135 и патенте США 4076663.

Второй способ представляет собой способ суспензионной инверсный эмульсионной полимеризации. В этом водный, частично процессе раствор акриловой нейтрализованный кислоты с помощью защитных коллоидов или эмульгаторов диспергируют в гидрофобном органическом растворителе и полимеризацию инициируют радикальными инициаторами. По окончании полимеризации воду азеотропно удаляют из реакционной смеси и полимер отфильтровывают и высушивают. Реакцию сшивки можно осуществлять за счет введения полимеризацией одновременной полифункционального агента сшивки, который растворен в растворе мономеров, и/или путем взаимодействия пригодного агента сшивки с функциональными группами полимера во время стадии получения. Принцип способа описывается, например, в патенте США 4340706, патенте ФРГ 3713601 и патенте ФРГ 2040010.

O

В то время, как при развитии суперабсорберов в технике прежде всего называется только очень высокая набухаемость при контакте с жидкостью, а также свободная емкость набухания, позднее

оказалось, что в первую очередь дело не только в количестве абсорбированной жидкости, но и также в прочности набухшего Абсорбирующая способность, набухаемость или свободная емкость набухания, указанные с одной стороны, и прочность геля в случае сшитого полимера, с другой стороны, однако представляют собой реверсивные свойства, как уже известно из патента США 3247171 и, далее, из патента США Re 32649. Это означает, что полимеры с абсорбционной особенно высокой способностью обладают только незначительной прочностью набухшего геля с тем последствием, что гель при применяемом давлении (например, давлении деформируется и предотвращается дальнейшее распределение жидкости впитывание жидкости. Согласно патенту США Re 32649 поэтому необходимо обеспечивать уравновешенное соотношение такого рода суперабсорберов в конструкции пеленок относительно впитывания жидкости, транспортировки жидкости, сухости пеленки и кожи. При этом приходят не только к тому, что полимер может удерживать жидкость при последующем воздействии давления, после того, как полимер прежде всего мог свободно набухать, но и также к тому, что жидкости впитываются также против оказываемого одновременно, т.е. во время абсорбции жидкости, давления, как это происходит при практических условиях, когда ребенок или субъект сидит или лежит на изделии санитарии, или когда, например, путем движения ног, приходят к воздействию ножницеобразных усилий. Это специфическое абсорбционное свойство в европейском патенте ЕР-0339461 называется впитывание (поглощение), под давлением.

Возрастающей тенденцией, по понятным эстетическим соображениям и в связи с аспектами окружающей среды (уменьшение депонируемого объема), является выполнение изделия санитарии все меньше и тоньше, что возможно только благодаря тому, что большую часть объема вспушенной части в пеленках уменьшают и одновременно увеличивают долю суперабсорбера. Таким образом суперабсорбер должен брать на себя дополнительно задачи относительно поглощения (всасывания) и транспортировки жидкости, которые ранее выполнял пушок.

Если долю суперабсорбера в изделии гигиены, например, в пеленке, повышают до 40% или даже до 60% и выше, то выпускаемые в продажу суперабсорберы практически непригодны. Поглощение под жидкости. особенно давлением, становится намного слишком медленным. образованию Частицы склонны К коагулированного геля. Таким образом возникающий барьер из геля блокирует дальнейшую транспортировку жидкости. Это явление, как известно, называется как "гель-блокирование".

Для того, чтобы получить суперабсорбирующие полимеры, которые обладают особой комбинацией свойств, таких как высокая удерживающая способность, высокая прочность геля и высокая впитывающая (поглощающая) способность под давлением, порошкообразные полимеры необходимо дополнительно обрабатывать.

Согласно патенту Великобритании

2119384 А, благодаря обработки полимеров соединениями, несущими по меньшей мере две функциональные группы, способные реагировать с карбоксильными группами частицеобразного полимера в поверхностном слое, достигают отчетливого улучшения свойств.

В выкладке на патент ФРГ 3523617 описывается способ дополнительной обработки порошкообразного полимера с помощью многоатомного спирта, который наносят перед реакцией на порошкообразный полимер при повышенной температуре неразбавленным, разбавленным водой и/или органическим растворителем.

Согласно патенту ФРГ 4020780 достигают улучшенной набухаемости суперабсорбирующего полимера против давления путем нагревания полимерного порошка с 0,1 - 5 мас.% алкиленкарбоната, который в случае необходимости наносят разбавленным водой и/или спиртом.

Как в выкладке на патент ФРГ 3523617, так также в европейском патентеЕР-А 2-0450924. проводят обработку поверхности абсорбирующего полимера многоатомным спиртом, который в случае необходимости вводят с разбавленной водой и/или органическим растворителем. В публикации подробно останавливаются на значении разбавления обрабатывающего средства водой и/или органическим растворителем. При разбавлении способного реагировать с карбоксильными группами полимера обрабатывающего средства исключительно водой сталкиваются с чрезмерными технологическими трудностями. Порошкообразный набухающий в воде полимер "спекается" при контакте с водой или водными растворами, так что невозможно гомогенное распределение обрабатывающего средства на поверхности частиц. Если не хотят отказаться от воды при смешении набухающего в воде, порошкообразного полимера с соединением, которое может реагировать с карбоксильными группами полимера, чтобы поддерживать процесс диффузии обрабатывающего средства в твердое вещество, TO вынуждены инертизировать воду за счет избытка обрабатывающего средства ипи нереакционноспособного органического растворителя. Инертизация с помощью органического растворителя применение жидкостей, которые не вызывают набухания полимера, следовательно, при процессе смешения с порошкообразным полимером не приводят к слипаниям.

Специалисту известна трудность гомогенного смешения незначительных количеств жидкости с порошкообразными веществами, в особенности когда необходимо равномерное покрытие каждого отдельного зерна.

ယ

ဖ

0

ဖ

Путем повышения разбавления обрабатывающего средства органическим растворителем действует положительно в отношении распределения обрабатывающего средства на поверхности порошкообразного полимера, однако в случае количеств жидкости более чем 1 мас %, приводит к увлажненному полимерному порошку который закупоривает транспортные системы при непрерывном процессе.

За счет увеличения количества

обрабатывающего средства до более чем 1 вес. %, правда, улучшается распределение, однако получается влажный, клейкий порошок. Если перед процессом смешения к обрабатывающему средству добавляют больше воды, чем это необходимо для приготовления примерно 50%-ного раствора, чтобы ускорить диффузию обрабатывающего полимерном средства зерненном В материале, то порошкообразный полимер слипается. Путем описанного в европейском патенте ЕР-0450923 А 2, непрерывного способа смешения способных набухать в полимеров растворами воде С обрабатывающего средства в облицованном материалами особыми синтетическими предотвращается смесителе, правда, прилипание влажного порошка полимера к стенкам смесителя и уменьшается затрачиваемая на смешение работа, однако свойства смешанного продукта улучшаются.

Согласно способу, описанному европейском патенте EP-0083022. последующую обработку водосодержащих гелеобразных частиц полимера проводят в органических растворителях. Поспе механического отделения полимера осуществляют высушивание, причем неизбежно образуется конденсат из воды и органического растворителя, как спирт, углеводород, хлорированный углеводород или кетон, который затем нужно обрабатывать таким образом, чтобы части растворителя не попадали ни через отходящий воздух, ни через сточную воду в окружающую среду.

Обобщая, следует сказать, что для покрытия порошкообразного, способного набухать в воде полимера с помощью вещества, которое должно вступать в реакцию в поверхностном слое отдельной частицы, получаются следующие условия:

количество обрабатывающего средства должно быть достаточным, чтобы достигать равномерного покрытия порошка полимера;

количество воды, которая служит в качестве вспомогательного средства распределения и в качестве носителя для обрабатывающего средства в поверхностном слое полимера, ограничено, т.е. иначе приходят к необратимому спеканию частиц полимера;

общее количество из обрабатывающего средства, воды и, в случае необходимости, органического растворителя ограничено, так как в противном случае образуются влажные, нетекучие смеси. Если рассматривают процесс смешения набухающего в воде полимера с обрабатывающим средством отдельно от всего способа, то применение органического растворителя вместе с обрабатывающим средством кажется наиболее рациональным. Непременно должно достигаться распределение обрабатывающего средства и ограниченных количеств воды на порошке полимера. Также применение больших количеств обрабатывающего средства обеспечивает хорошее распределение на полимере - также в присутствии воды -, когда обрабатывающее средство может играть роль органического растворителя, т. е. предотвращается спекание порошкообразного полимера. При использовании слишком больших количеств обрабатывающего средства, однако согласно

европейскому патенту EP-A 2-0450923, можно придти к сильному уменьшению емкости набухания полимера.

Также при оптимальном варианте способа смешения порошкообразного, способного набухать в воде полимера, и, в случае необходимости, разбавителей нужно принимать во внимание воздействие на последующую реакцию при повышенной температуре. Если улучшенные свойства суперабсорбирующих полимеров достигаются за счет последующей этерификации до сложного эфира и/или амидирования карбоксильных групп полимера, то при рациональном времени реакции необходимы реакционные температуры выше 150°C. При этих температурах, наряду с водой, которая содержится в количестве 8 - 15 мас.% в исходном полимере, и растворителем, также испаряются значительные количества обрабатывающего средства, которые нужно удалять из реактора (сушилки), чтобы предотвратить конденсацию в реакторе. Целевую транспортировку вторичного пара осуществляют с помощью, в случае необходимости, предварительно подогретого промывного газа, так как конденсирующийся водяной пар приводит к спеканию, а обрабатывающее конденсирующееся средство - к слипанию и обесцвечиванию порошкообразного полимера.

Водяной пар, испаряющееся обрабатывающее средство, продукты окисления, остаточные мономеры, а также прочие летучие продукты превращения и органические растворители только с трудом можно удалять из отходящего газа, т.е. они неизбежно попадают в воздух или в сточную воду.

Задачей изобретения поэтому является возможность получения суперабсорберов, которые обладают комбинацией свойств по высокой удерживающей способности, высокой прочности геля и высокой впитывающей способности под давлением и которые можно получать без применения органического растворителя и с помощью незначительного количества обрабатывающего средства дополнительной обработки порошкообразного полимера. Эта задача решается благодаря отличительным признакам п.1 формулы изобретения. Неожиданно оказалось, что за счет применения фосфорной кислоты в качестве разбавителя для средства, которым обрабатывают поверхность абсорбирующей смолы, можно получать суперабсорберы с целевой комбинацией свойств уменьшении отчетливом количеств обрабатывающего средства.

Фосфорную кислоту предпочтительно используют в количестве самое большее 10 частей (в дальнейшем все части представляют собой весовые части) на 100 частей полимера и в концентрации по меньшей мере 10 вес. % Уже с помощью 0,1 вес. % H_3PO_4 , в расчете на порошок полимера, получают, согласно изобретению, улучшенный суперабсорбер.

В качестве обрабатывающих средств согласно изобретению используют

а). 0,05 - 0,3 части соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами порошкообразного полимера и не содержит никакой образующей

щелочную соль группы, предпочтительно многоатомные спирты такие, как этиленгликоль, пропандиол,

полиэтиленгликоль, глицерин, и алкиленкарбонаты, как этиленкарбонат; и/или

б). 0,05 - 1 часть соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами порошкообразного полимера и дополнительно содержит кислотную, образующую щелочную соль группу в молекуле, например, полигидроксикарбоновые кислоты, такие как диметил-пропионовая кислота (= 2,2-бис(гидроксиметил)пропионовая кислота).

Обрабатывающие средства по п. б). обладают тем преимуществом, что их летучесть при реакции с карбоксильными группами порошкообразного полимера ограничивается за счет солеобразования в поверхностном слое полимера.

Абсорбирующий воду полимеризат, который можно применять для покрытия, получают путем полимеризации 55 - 99,9 вес.% мономеров с кислотными группами, например такими, как акриловая кислота, метакриловая кислота, 2-акриламидо-2-метилпропансульфокислота или смеси этих мономеров; причем, если кислотные группы по меньшей мере на 25 мол.% нейтрализованы, то они находятся, например, в виде солей натрия, калия, или аммония. Предпочтительно степень нейтрализации составляет по меньшей мере Особенно предпочтителен мол.%. полимеризат, который образован из сшитой акриловой или метакриловой кислоты, которая нейтрализована на 50-80 мол.%.

В качестве других мономеров для получения абсорбирующих воду полимеризатов можно применять 0 - 40 вес.% акриламида, метакриламида, гидроксиэтилакрилата, диметиламиноалкил(мет)акрилата, диметиламинопропилакриламида или акриламидпропилтриметиламмонийхлорида. Более высокие, чем 40%, количества этих мономеров ухудшают набухаемость полимеризата.

В качестве агентов сшивки применять любые соединения, которые меньшей содержат ПО мере этиленовоненасыщенные двойные связи или одну этиленовоненасыщенную двойную связь и одну реакционноспособную по отношению к кислотным группам, функциональную группу или несколько реакционноспособных по отношению кислотным функциональных групп. В качестве примеров следует назвать: акрилаты и метакрилаты многоатомных спиртов, как бутандиолакрилат, гександиолметакрилат, полигликольдиакрилат,

триметилолпропантриакрилат или аллилакрилат, диаллилакриламид, триаллиламин, диаллиловый простой эфир, метиленбисакриламид или N-метилолакоиламид.

В качестве водорастворимых полимеров в абсорбирующем воду полимеризате могут содержаться 0 - 30 вес.% частично или полностью омыленного поливинилового спирта, поливинилпирролидона, крахмала или производных крахмала, полигликолей или полиакриловых кислот. Молекулярный вес этих полимеров является некристаллическим

до тех пор, пока они водорастворимы. Предпочтительными водорастворимыми полимерами являются крахмалы, поливиниловый спирт или смеси этих полимеров. Предпочтительное количество водорастворимых полимеров абсорбирующем полимеризате воду составляет 1-5 вес. %, в особенности, когда в качестве растворимых полимеров имеются крахмал и/или полвиниловый Водорастворимые полимеры могут находиться в виде привитых сополимеров с содержащими кислотные группы полимерами.

Предпочтительно наряду с полимеризатами, которые получают путем сшивающей полимеризации частично нейтрализованной акриловой кислоты, применять полимеризаты, которые дополнительно содержат доли подвергнутых привитой сополимеризации крахмала или поливинилового спирта.

В отношении формы частиц используемого полимеризата-абсорбера нет никаких особых ограничений. Полимер может находиться в форме шариков, которые получают путем инверсной суспензионной полимеризации, или в виде неправильной формы частиц, которые образуются за счет сушки и пульверизации гель-массы из процесса полимеризации в растворе. Величина частиц обычно составляет 20 - 2000 мкм, предпочтительно 50 - 850 мкм.

Последующую за нанесением покрытия термообработку осуществляют при t = 150 -250°С предпочтительно при 170 - 200°С. Она зависит от времени пребывания и рода обрабатывающего средства. При 150°C термообработку нужно осуществлять в течение нескольких часов, в то время, как при 250°C достаточно нескольких минут, например, 0,5-5 минут, чтобы достичь желательных свойств. Термообработку можно осуществлять в обычных сушилках или печах, например, следует назвать: вращающиеся трубчатые печи, лопастные сушилки, тарельчатые сушилки или инфракрасные сушилки. Предлагаемые согласно изобретению полимеры вблизи поверхности обладают повышенной сшивкой и пониженной степенью нейтрализации.

Полимеры согласно изобретению можно получать в промышленном масштабе по непрерывному или периодическому способу. Предлагаемые согласно изобретению суперабсорберы можно использовать в широкой области применения. Когда их применяют, например, в гигиенических поясах и пеленках или для покрытия ран, то они обладают свойством быстро абсорбировать большие количества менструальной крови, мочи или других жидкостей организма.

ဖ

0

ဖ

ത

Абсорбирующая способность и скорость при одновременно воздействующей сжимающей нагрузке сильно улучшены по сравнению с исходными продуктами. Так как предлагаемые согласно изобретению суперабсорберы удерживают абсорбированные жидкости также ПОД давлением, они особенно пригодны для применения. Они особенно пригодны для использования более В высоких концентрациях - в расчете на гидрофильный волокнистый материал такой, как пушок -, чем это до сих пор было возможно, и обладают отличными абсорбирующими свойствами в

конструкциях, которые содержат 98 - 20 вес.% гидрофильных волокон и 2-80 вес.% абсорбирующей смолы.

Дополнительно обработанные согласно изобретению полимеры используют в абсорбирующих изделиях для самых различнейших целей применения, например, путем смешения с бумагой, пушком или синтетическими волокнами или путем распределения средства между субстратами из бумаги, пушка или нетканых текстильных материалов или путем введения за счет деформации в носители с получением полотна.

Полученные согласно описанному способу суперабсорберы неожиданно проявляют значительное улучшение поглощения жидкости под давлением относительно скорости И общей мощности одновременно высокой прочности геля и высокой удерживающей способности, причем в частности достигается очень высокая начальная скорость поглощения жидкости под давлением, так что уже спустя 15 минут достигается 80% общей мощности. Поглощение давлением, под которое указывается в патенте ФРГ 4020780 и в европейском патенте ЕР-А-0339461 абсорбция под нагрузкой, (AUL), сильно зависит от величины оказываемой нагрузки. Описанные там полимеры при нагрузке 20 r/cm^2 (= 0.28 пси = 19 600 дин/см²) имеют поглощающую мощность до 0,9%-ного раствора хлорида натрия 26 - 34 г/г. Согласно европейскому патенту ЕР-А-0339461, поглощающая мощность описанных полимеров при нагрузке 0,56 пси составляет максимально 13 г/г, а при нагрузке 0,85 пси - 8 г/г, то есть, что дополнительно обработанные полимеры при нагрузке 0,85 пси поглощают только еще такое количество жидкости, которое согласно патенту ФРГ 4020780, влитывает так же не подвергнутый дополнительной обработке, способный набухать в воде полимер при повышенной нагрузке.

Предлагаемые согласно изобретению полимеры при нагрузке 40 г/см² обладают поглощающей мощностью для 0.9%-ного раствора хлорида натрия по меньшей мере 15 г/г, предпочтительно более чем 18 г/г. При нагрузке 60 г/см количество поглощенной жидкости составляет величину более, чем 12 г/г, предпочтительно более чем 15 г/г. Это является неожиданным, так как, согласно патенту ФРГ 4020780, для повышения AUL значения (20 г/см²) необходимо увеличение количества средства для дополнительной обработки от 0,5 до 1,5 вес.%. Эта мера, однако, в частности, когда еще совместно применяют воду для растворения алкиленкарбоната приводит к влажной, пневматически более не транспортируемой смеси и к высоким эмиссиям при последующей термообработке.

Изготовители текстильных конструкций, которые служат для поглощения жидкостей организма, стремятся уменьшить большую по объему долю волокна и повысить долю суперабсорбера. Текстильная конструкция, однако, далее, должна быть в состоянии удерживать набухшие после впитывания жидкости частицы в текстильной оболочке при нагрузке. Так как текстильная конструкция для поглощения жидкости организма

представляет собой высокопористое образование, через поры которого может выступать просачиваться мягкий, набухший гель при сжимающей нагрузке, то задачей является получение способных набухать в воде полимеров, которые обладают высокой сжимающей нагружаемостью.

Предлагаемые согласно изобретению полимеры обладают не только повышенной абсорбцией в отношении 0.9%-ного раствора хлорида натрия под сжимающей нагрузкой, но и также высокой поглощающей емкостью в отношении крови, а также более быстрым распределением крови в текстильной конструкции при сжимающей нагрузке. Полимеры поэтому пригодны особенно в качестве абсорбирующего средства в гигиенических поясах, так как они обладают свойством быстро впитывать жидкости организма такие, как кровь, под нагрузкой. Скорость абсорбции в отношении крови при одновременно воздействующей сжимающей нагрузке намного выше, изобретению, чем в случае известных продуктов.

В моделирующем практику испытании для определения силы впитывания полимеров под давлением показано, что суперабсорберы также описанные в европейском патенте EP-A-0339461 полимеры - которые под нагрузкой 20 г/см² обладают высокой силой впитывания, при нагрузках 60 г/см² отчетливо ухудшаются в отношении своей способности набухать. Испытание, далее, показывает, что способные набухать в воде полимеры, которые имеют одинаковую удерживающую способность и одинаковую впитывающую способность под давлением 20 г/см², могут различаться по своей силе впитывания при повышенной нагрузке.

Предлагаемые согласно изобретению полимеры способны при нагрузке 20 г/см ² текстильной конструкции извлекать почти такое же количество жидкости, как и в ненагруженном состоянии. Это означает, что, например, слой пушка пеленки, в которой находится ребенок, высушивается безопаснее и быстрее и благодаря этому кожу ребенка можно оберегать от влажности.

刀

Ç

ဖ

0

ဖ

Динамическое развитие давления, которое проявляют способные набухать в воде полимеры в процессе набухания, обозначается как давление набухания. При набухании это давление возрастает до тех пор, пока электростатические силы в полимере не уравновесятся с внешними механическими силами.

Предлагаемые согласно изобретению полимеры обладают увеличенным вплоть до четырехкратного давления набухания по сравнению с известными, имеющимися в продаже суперабсорберами.

Предпочтительны способные набухать в воде полимеры с давлением набухания выше 400 г и особенно предпочтительны способные набухать полимеры с давлением набухания более чем 600 г, при площади набухания 4,91 см².

Предлагаемые согласно изобретению полимеры испытывают следующим образом.
Матолы испытация

Методы испытания.

Для характеристики абсорбирующих воду полимеризатов определяют удерживающую способность (ТВ) и поглощение (впитывание) под давлением (AUL) для 0,9%-ного раствора

NaCl, а также поглощающую емкость и скорость абсорбции под давлением дефибринированной овечьей крови.

а) Удерживающую способность определяют по методу "пакетика для чая порционной расфасовки" и указывают как среднее значение из трех измерений. Примерно 200 мг полимеризата в пакетике для чая порционной расфасовки плотно закрывают и на 20 минут погружают в 0,9%-ный раствор NaCl. Затем пакетик для чая в течение 5 минут центрифугируют на центрифуге (диаметр 23 см, 1400 об/мин) и взвешивают. Пакетик для чая без абсорбирующего воду полимеризата можно совместно подвергать такой же операции в качестве холостого значения.

$\frac{ \text{Удерживающая} = \frac{\text{вес после испытания--значение}}{\text{опыта}} = \frac{\text{колостого}}{\text{навеска}}, \text{ г/т};$

b) Поглощение 0,9%-ного раствора NaCl под давлением (сжимающая нагрузка: 20, 40, 60 г/см²) определяют по методу, описанному в европейском патенте EP-0339461, стр. 7.

В цилиндр с ситовым дном помещают навеску суперабсорбера и давят на порошок поршнем, который оказывает давление 20, 40, соответственно, 60 г/см². Цилиндр затем помещают на испытатель абсорбции Demand (Demand-Absorbency-Tester, DAT), где суперабсорбер в течение часа выдерживают для всасывания 0,9%-ного раствора NaCl.

с) Для определения поглощающей емкости в отношении крови, примерно 200 мг полимера плотно заваривают в мешочке для чая порционной расфасовки и на 60 минут погружают в дефибринированную овечью кровь и затем взвешивают. Расчет осуществляют как в п. а).

d) На кусок ткани из целлюлозы, размером 6 см x 20 см (вес.: 48,8 г/м²), равномерно насыпают 1 г полимера, закрывают тканью такого же размера и прессуют при $100\,^{\circ}$ С при $400\,$ г/см².

Испытуемые полосы помещают между двумя стеклянными пластинами, из которых верхняя имеет в центре отверстие. В отверстие вклеен кусок трубки длиной 5,5 см и с внутренним диаметром 2,2 см. Верхнюю пластину нагружают гирями, так, что на испытуемую полосу оказывают давление 30 г/см². В кусок трубки с помощью шлангового насоса (Schlauchpumpe) за 30 секунд вводят 5 см³ дефибринированной овечьей крови и определяют время просачивания.

e) Определение давления набухания Q осуществляют с помощью анализатора текстуры Stevens L.F.R.A.: C.Stevens and Son Ltd., Laboratory Division, St. Albans ATI I EX Hertfordshire, Англия.

Входящий в состав прибора цилиндрический измеритель (Меркогрег) из стекла имеет высоту 3,5 см и диаметр 2,5 см. Площадь круга цилиндра таким образом составляет 4.91 см².

Навеску 0,500 г суперабсорбера фракции 20 - 50 меш помещают во входящий в состав этого измерителя мерный цилиндр диаметром 2,7 см и смешивают с 10 мл 0,9%-ного раствора NaCl. Затем мерный цилиндр с помощью лаборанта транспортируют вверх настолько, пока уровень верхнего края цилиндрического измерителя от поверхности находящейся в мерном цилиндре пробы не

-7-

35

50

составит 12 мм. За счет расширения геля мерный цилиндр выдавливается вверх по отношению к двухканальной для измерения силы ячейки (Zwei-Wg-Kraft-mepzelle) и сила указывается на приборе в граммах.

Изобретение поясняется подробнее следующими примерами.

Примеры

А) Приготовление смеси из полимера А и обрабатывающего средства.

Полученную путем полимеризации в растворе, порошкообразную, сшитую с помощью триметилолпропантриакрилата полиакриловую кислоту, которая на 70 мол.% нейтрализована в виде натриевой соли, после размола просеивают для получения частиц величиной 90 - 950 мкм (полимер A). ТВ: 36 г/г; содержание воды: 10,4%.

Полимер A со скоростью 1000 кг/час непрерывно вводят в лопастной смеситель (750 об/мин) и смешивают с обрабатывающим средством. Затем смесь снимают с транспортера, направляют в запасник. Оценивают внешний вид и свойства при транспортировке и хранении твердо-жидкой смеси. (см. табл. 1).

В) Нагревание смесей из полимера А и обрабатывающих средств

90 кг/час (полученных по пр. А), сыпучих, т.е. с которыми удобно манипулировать, смесей непрерывно вводят в обогреваемую паром с температурой 180°С лопастную сушилку. Сушилка имеет рабочий объем 40 л. Количество промывного воздуха для отвода выпара составляет примерно 50 м³/час.

Характеристики полученных порошкообразных полимеров, а также количество органических веществ в отходящем газе - указано в виде органического углерода (ТОС) - перечислены в таблице 2.

 С) Приготовление смеси из полимера В и обрабатывающего средства

Полимер, который получают путем полимеризации 30%-ной водной акривловой кислоты, нейтрализованной на 65 мол.% в виде натриевой соли, в присутствии 0,28 вес.% триаллиламина и 3,5 вес.% поливинилового спирта, высушивают в токе горячего воздуха с температурой 160 °С, размалывают и просеивают с получением частиц размером 120 - 850 мкм (полимер В). ТВ: 37 г/г, содержание воды: 10,5%; LA: 11.8%

刀

ဖ

ဖ

ത

Полимер В, как и полимер А, непрерывно смешивают с 1,2 вес.% нагретого до 40°C раствора из 0,2 частей диметилолпропионовой кислоты и 1 части 85%-ной фосфорной кислоты и помещают временно в силохранилище.

D) Нагревание смеси по п.С)

Полученную по п. С) сыпучую смесь с помощью пневматической транспортировки оснащенную подают В сушилку, вращающимися, обогреваемыми паром с 184°C. Дискообразными температурой элементами, смесительными И затем охлаждают в псевдоожиженном слое. Характеристики продукта и значения ТОС указаны в таблице 3.

Круглую прокладку из пушка диаметром 6 см и весом 2 г, помещенную в чашку Петри, пропитывают разными количествами 0,9%-ного раствора NaCl. В цилиндр из плексигласа с внутренним диаметром 25,8

мм, дном которого является ситовая ткань (размер отверстий 36 мкм), помещают навеску 0,20 г полимера и надавливают с помощью поршня весом 106 г и диаметром 25 мм. Всю совокупность (цилиндр, полимер, и поршень) взвешивают (А) и помещают в середине увлажненной прокладки. Спустя 1 час всю совокупность (цилиндр, полимер и поршень) снова взвешивают (В).

Впитывающая = $\frac{B-A}{0.20}$, r/r.

10

Формула изобретения:

- 1. Порошкообразные сшитые полимеры, абсорбирующие водные или серозные жидкости, и кровь, образованные из 55 - 90 мас.% полимеризованных ненасыщенных способных к полимеризации, содержащих кислотные группы мономеров, которые по меньшей мере на 25 моль. % нейтрализованы, 0 - 40 мас.% полимеризованных насыщенных и способных к сополимеризации мономеров, 0,1 - 5,0 мас.% агента сшивки, 0 - 30 мас.% водорастворимого полимера, причем массовые количества рассчитаны безводный полимер, отличающиеся тем, что полимер дополнительно содержит 0,05 - 0,3 части от соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами и не содержит образующей щелочную соль группы в молекуле, и/или 0,05 - 1 части от полимера соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами и содержит одну образующую щелочную соль группу в молекуле, которые вводят в смесь, состоящую из 100 частей полимера, взятого в виде частиц, с водным раствором, состоящим из не более 10 частей по меньшей мере 10%-ной фосфорной кислоты, с последующим нагревом при 150 -250°C.
- 2. Порошкообразные сшитые полимеры по п.1, отличающиеся тем, что они обладают удерживающей способностью 27 - 34 г 0,9%-ного раствора хлорида натрия на 1 г полимеризата. поглощением 0.9%-ного раствора поваренной соли под давлением 40 г/см² в количестве более 15 предпочтительно более 18 г на 1 г полимеризата, и поглощением 0,9%-ного раствора поваренной соли под давлением 60 $\Gamma/\text{см}^2$ в количестве не менее 12 г, предпочтительно более 15 г, на 1 г полимеризата, и давлением набухания более 400 г, предпочтительно более 600 г.
- 3. Порошкообразные сшитые полимеры по пп.1 и 2, отличающиеся тем, что они образованы из акриловой кислоты, метакриловой кислоты и/или 2-акриламидо-2-метилпропансульфокислоты в качестве содержащего кислотные группы мономера.
- 4. Порошкообразные сшитые полимеры по пп.1 - 3, отличающиеся тем, что содержащие кислотные группы мономеры нейтрализованы по меньшей мере на 50 мол.%.
- 5. Порошкообразные сшитые полимеры по пп.1 - 4, отличающиеся тем, что они образованы из нейтрализованной на 50 - 80 мол.% акриловой кислоты в качестве содержащего кислотные группы мономера.
- 6. Порошкообразные сшитые полимеры по пп.1 - 5, отличающиеся тем, что концентрация водорастворимых полимеров 1 - 5 мас.%.

8. Способ получения порошкообразного сшитого полимера, абсорбирующего водные и серозные жидкости и кровь, образованного из: а) 55,0 - 99,9 мас.% полимеризованных ненасыщенных способных к полимеризации. содержащих кислотные группы мономеров, которые по меньшей мере на 25 мол.% нейтрализованы, б) 0 - 40 мас.% полимеризованных ненасыщенных, способных к сополимеризации мономеров, в) 0,1 - 5,0 мас.% агента сшивки, г) 0 - 30 мас.% водорастворимого полимера, причем массовые количества а) - г) рассчитаны на безводный полимер, отличающийся тем, что 100 частей вышеуказанного полимера, взятого в виде частиц, смешивают с раствором из максимально 10 частей по меньшей мере 10%-ной фосфорной кислоты и а) 0,05 - 0,3 частей соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами и не содержит никакой образующей щелочную соль группы в

молекуле, и/или б) 0,05 - 1 частей соединения, которое может реагировать по меньшей мере с двумя карбоксильными группами и содержит образующую щелочную соль группу в молекуле.

Абсорбирующая текстильная конструкция для поглощения жидкостей организма при повышенной нагрузке на основе порошкообразных слитных полимеров по пп.1 - 7, обладающая: а) удерживающей способностью 27 - 34 г 0,9%-ного раствора хлорида натрия и на 1 г полимеризата, б) поглощением 0,9%-ного раствора хлорида натрия под давлением 40 г/см² в количестве более 15 г, предпочтительно более 18 г. на 1 г полимеризата, в) поглощением 0,9%-ного раствора хлорида натрия под давлением 60 В количестве более предпочтительно более 15 г, на 1 г полимеризата, г) давлением набухания более 400 г. предпочтительно более 600 г.

10. Абсорбирующая текстильная конструкция по п.9, отличающаяся тем, что она состоит из гидрофильных волокон и 2 - 80 мас.% полимеризата в расчете на общий вес.

1 2139096

25

30

35

40

45

50

55

60

œ

Таблица 1

Примеры	1	Обрабат	Обрабатывающее средство			!Твердо-жидкая смесь		
	!	8	!	ક	1	8	!внешний	вид!свойства
сравнение	1	O,5 EC	0,5	н ₂ о		No.	сухой	сыпучий
сравнение	2	1,0 EC	1,0	^H 2 ^O		_	мокрый	слипшийся
Сравнение	3	O,25 EC	0,2	5 H ₂ O		-	сухой	сыпучий
сравнение	4	0,5 G-1	0,5	H ₂ O		_	мокрый	Слипшийся
сравнение	5	0,25 G1	0,2	5 н ₂ 0	1	,0 Et	мокрый	сыпучий
пример 1		0,1 EC	1,0	H ₃ PO ₄		-	сухой	сыпучий
пример 2		0,1 G1	0,6	H ₃ PO ₄	0	,3 н ₂ о	сухой	сыпучий

EC = этиленкарбонат; G1 = глицерин; H_2PO_4 = 85%-ная фосфорная кислота;

 $E\dot{t} = \Im anon.$

Сравнения 1 - 3 соответствуют патенту ФРГ 40 20 780; сравнения 4 и 5 соответствуют выложенному описанию изобретения и неакцептованной заявке на патент ФРГ 35 23 617. Примеры 1 и 2 согласно изобретению.

Таблица 2

N

ယ ဖ

ထ

Пример	!Смесь из примера		!AUL !20 г/см ² (г/г)	!TOC !(r/час)
сравнение 6	сравнение 1	32	30	115
сравнение 7	сравнение 3	33	24	44
сравнение 8	сравнение 5	32	31	320 [×]
пример 3	пример 1	32	30	14
пример 4	пример 2	31	30	4

ж = часть этанола испаряется при смешивании и транспортировке.

<u>⁵таблица 3</u>

Пример	Производи- тельность (кг/час)	TB (r/r)	. —	А И<u>L</u> (г/г) пр г/см ² !40 г/см ²		ТОС .	<i>LA</i> (8 [₹]
5	90	32	31	18	14	4,5	6,7
6	80	30	30	20	18	5,0	_
7	70	28	28	26	23,5	-	4,2

Таблица 4.

Определение поглощающей емкости и скорости впитывания для крови

Пример	!Полимер	!Адсорбция	Скорость адсор б ции при
		(r/r)	нагрузке 30 г/см ² (мин)
8	из примера 3	37,5	4,5
сравнение 9	FA V OR SABX) FA	AM 44	30
сравление у	TH V OK SAB F	M 44	30

တ

တ

х) изготовитель: Chemische Jabrik Stockhausen "Erefeld.
Определение впитывающей способности полимера из матрицы:

!	Пример 9		! Сравне	ние 10
полим	ер согласно	примеру (6 полимер	согласно
			сравнени	ию 1
TB (r	/r)	30	TB(r/r)	32
AUL	20 г/см ² (г,	/r) 30	A 46 20 F	/cm ² (r/r) 30
AUL	60 r/cm ² (r,	/r) 18 <i>I</i>	A UL 60r/cm²	(r/r) 10

раствор МаС1 в!	поглощенное полимером	количество	раствора
прокладке (г) !	NaCl (r/r)		
7,5	14,0		10,0
15,0	20,5		13,1
22,5	25,0		17,6
30,0	28,9		20,3

Таблица 6

 ${f Z}$

 \Box

N

ယ

9096

Определение давления набухания

C

ж) изготовитель: Chem. Fab. Steekhausen GmbH, krefeld.