Лабораторная работа 2

Определение времени отверждения полимеров.

Свойства эпоксидных полимеров

Эпоксидные полимеры представляют собой соединения, содержащие в составе эпоксидные группы, имеющие форму трехчленных кислородсодержащих циклов. Они относятся к классу поликонденсаци-онных. Переход эпоксидных полимеров в нерастворимые соединения, обла-дающие сетчатой структурой, T.e. процесс ИХ отверждения возможен взаимодействии их с веществами, имеющими подвижный атом водорода (аминами, спиртами, фенолами). Формула и реакция отверждения! В зависимости от типа отверждающего агента (отвердителя) этот процесс протекает при обычной температуре и сопровождается значительным выделением тепла или требует нагревания. Наиболее широко для отверждения применяются аминосоединения. полимеров полимеры обладают комплексом ценных свойств: в неотвержденном состоянии легко растворяются в органических растворителях, хорошо совмещаются с другими синтетическими смолами (фенолоальдегидными, мочевино-формальдегидными, поливинилбутиралем и др.), могут храниться длительное время без изменения своих свойств. Отвержденные эпоксидные полимеры имеют высокую прочность, отличную адгезию (прилипание) к большинству строительных материалов, обладают стойкостью к действию многих химических реагентов, хорошими диэлектрическими свойствами. Благодаря ценным свойствам эпоксидные полимеры находят широкое применение в качестве клеев, защитных и защитно-декоративных покрытий, электроизоляционных лаков, мастик, полимербетонов и др. Недостатками этих полимеров являются в неотвержденном виде значительная вязкость, в Для снижения влияния отвержденном состоянии – хрупкость. недостатков в эпоксидные полимеры вводят разбавители и пластификаторы.

Другой механизм отверждения имеют водорастворимые полимеры, например: поливиниловый спирт (ПВС) или карбоксиметилцеллюлоза (КМЦ).

Свойства поливинилового спирта и его растворов.

Свойства карбоксиметилцеллюлозы и ее растворов.

В работе ставится задача изучить влияние различных факторов на скорость отверждения исходных полимеров, процессы их отверждения и свойства в отвержденном состоянии.

Используемые материалы

- 1. Эпоксидный полимер дианового типа марки ЭД-20 и отвердитель полиэтиленполиамин (ПЭПА).
- 2. Растворы поливинилового спирта
- 3. Растворы карбоксиметилцеллюлозы.

Определение скорости отверждения приготовленных составов проводят с использованием пластиковых формочек, пробирок и полимерных подложек.

Цель работы.

- 1. Определить влияние количества отвердителя, температуры на скорость отверждения эпоксидного полимера и его свойства в отвержденном состоянии.
- 2.Определить влияние температуры, подложки и концентрации на скорость отверждения и свойства водорастворимых полимеров.

За скорость отверждения (жизнеспособность) эпоксидного полимера принимают время от момента его смешивания с отвердителем или помещения образцов на воздух, момента повышения температуры и др. до момента резкого возрастания вязкости (потери текучести) состава Необходимо определить скорость отверждения композиций, в которых на 100 масс. частей эпоксидного полимера приходится соответственно 5,10,20, 50 масс. ч. отвердителя. Определение проводят следующим образом. В фарфоровые чашечки взвешивают по 10 г. эпоксидной смолы и соответственно 0,5, 1 и 2, 5 г отвердителя. Записывают время, перемешивают составы стеклянной полочкой и переносят их в формочки или пробирки. Выдерживают образцы до потери текучести. Записывают время. Опыт повторяют при нагревании.

Для водорастворимых полимеров раствор различной концентрации переносят в форму определенных размеров и равномерно распределяют. Выдерживают до удаления влаги без нагревании и с нагреванием при определенной температуре. Опыт повторяют с раствором другой концентрации. Записывают время. Рассчитывают толщину полученных пленок. При заполнении таблицы отмечают изменяющийся фактор (подложка, концентрация полимера, температура).

Количество	Количество	Время (скорость)
полимера	Отвердителя или воды	отверждения

Расчет толщины полученных пленок.

В мерный цилиндр наливается определенный объем водорастворимого полимера (V, мл), Раствор переносится в форму, в которой будет проводиться отверждение. Определяется площадь формы, например $S=\pi r^2$. Объем,

занимаемый полимером V , будет равен $\pi r^2 h$, где h — толщина пленки. В расчетах необходимо учитывать концентрацию полимера C, %, т.е $V \cdot C$.

Данные таблицы анализируются и делаются выводы о влиянии каждого фактора на скорость отверждения полимеров.