Problem 1.

Sketch clearly labelled diagrams of each of the following curves, giving exact values of axial intercepts, stationary points and equations of asymptotes, if any.

(a)
$$y + x^2 = 2x - 4$$

(b)
$$y = \frac{3x - 4}{2x - 1}$$

Solution

Part (a)

Part (b)

Problem 2.

On separate diagrams, sketch the graphs of

(a)
$$y = \frac{x^2 - a^2}{x^2}$$
, $a > 0$

(b)
$$y = \frac{x-1}{2x(x+3)}$$

Indicate clearly the coordinates of axial intercepts, stationary points and equations of asymptotes, if any.

Solution

Part (a)

Part (b)

Problem 3.

The curve C has equation $y = \frac{ax^2 + bx - 2}{x + 4}$, where a and b are constants. It is given that y = 2x - 5 is an asymptote of C.

- (a) Find the values of a and b.
- (b) Sketch C.
- (c) Using an algebraic method, find the set of values that y cannot take.
- (d) By drawing a sketch of another suitable curve in the same diagram as your sketch of C in part (b), deduce the number od distinct real roots of the equation $x^3 + 6x^2 + 3x 2 = 0$.

Solution

Part (a)

Since y = 2x - 5 is an asymptote of C, $\frac{ax^2 + bx - 2}{x + 4}$ can be expressed in the form $2x - 5 + \frac{k}{x + 4}$, where k is a constant.

$$\frac{ax^2 + bx - 2}{x + 4} = 2x - 5 + \frac{k}{x + 4}$$

$$\implies ax^2 + bx - 2 = (2x - 5)(x + 4) + k$$

$$\implies ax^2 + bx - 2 = 2x^2 + 3x - 20 + k$$

Comparing coefficients of x^2 , x and constant terms, we have a = 2, b = 3 and k = 18.

$$a = 2, b = 3$$

Part (b)

Part (c)

$$y = \frac{2x^2 + 3x - 2}{x + 4}$$

$$\implies (x + 4)y = 2x^2 + 3x - 2$$

$$\implies 2x^2 + (3 - y)x - (2 + 4y) = 0$$

For values that y cannot take on, there exist no solutions to $2x^2 + (3-y)x - (2+4y) = 0$. Hence, $\Delta < 0$.

$$\Delta < 0$$

$$\Rightarrow (3-y)^2 - 4(2)(-(2+4y)) < 0$$

$$\Rightarrow \qquad y^2 + 26y + 25 < 0$$

$$\Rightarrow \qquad (y+25)(y+1) < 0$$

$$\xrightarrow{+} \qquad -25 \qquad -1 \qquad y$$

We thus see that y cannot take on a value between -25 and -1.

$$\{y \in \mathbb{R} \colon -25 < y < -1\}$$

Part (d)

$$x^{3} + 6x^{2} + 3x - 2 = 0$$

$$\Rightarrow \frac{x^{3} + 6x^{2} + 3x - 2}{x + 4} = 0$$

$$\Rightarrow \frac{x^{3} + 4x^{2}}{x + 4} + \frac{2x^{2} + 3x - 2}{x + 4} = 0$$

$$\Rightarrow x^{2} + \frac{2x^{2} + 3x - 2}{x + 4} = 0$$

$$\Rightarrow C = -x^{2}$$

Plotting $y = -x^2$ on the same digram, we see that there are 3 intersections between $y = x^2$ and C. Hence, there are 3 distinct real roots to $x^3 + 6x^2 + 3x - 2 = 0$.