5. Examples of random variables

box o' probability distributions

5.1. Bernoulli distributions

Å

Definition 5.1

Let p be a real number with $0 \le p \le 1$. A discrete random variable X is said to have a *Bernoulli distribution* with parameter θ , denoted

$$X \sim \mathcal{B}er(\theta),$$
 (5.1)

if its probability mass function is given by

$$p(x;\theta) = \theta^x (1-\theta)^{1-x}. \tag{5.2}$$

with support $\{0, 1\}$.

PMF of a random variable $X \sim Ber(\theta)$

An archetypical Bernoulli scenario

 ${f Q}$: Suppose that a coin is flipped once and X is the number of heads obtained. Suppose further that we allow for the possibility that the coin is loaded, so that it lands heads with probability θ (which may not be 0.5!). What is the distribution of the random variable X?

A: $X \sim \mathcal{B}er(\theta)$.

Theorem 5.1 (Expectations and variances of Bernoulli variables)

If $X \sim \mathcal{B}er(heta)$, then

$$E(X) = heta \quad ext{and} \quad V(X) = heta(1- heta).$$

5.2. Binomial distributions

Definition 5.2

Let $n\geq 0$ be an integer and let θ be a real number with $0\leq \theta\leq 1$. A discrete random variable X is said to have a binomial distribution with parameters n and θ , denoted

$$Y \sim \mathcal{B}in(n, \theta),$$

if its probability mass function is given by

$$p(x;n, heta)=inom{n}{x} heta^x(1- heta)^{n-x}$$

with support $\{0, 1, \ldots, n\}$.

An archetypical binomial scenario

Q: Suppose that a coin is flipped n times and that each flip is independent of the others. Suppose further that we allow for the possibility that the coin is loaded, so that it lands heads with probability θ (which may not be 0.5!). If X is the number of heads obtained, what is the distribution of the random variable X?

A: $X \sim \mathcal{B}in(n, \theta)$.

Theorem 5.2 (Expectations and variances of binomial variables)

If $X \sim \mathcal{B}in(n, heta)$, then

$$E(X) = n\theta$$
 and $V(X) = n\theta(1-\theta)$. (5.5)

Theorem 5.3 (Binomial variables as sums of Bernoulli variables)

Let Y_1, Y_2, \ldots, Y_n be a sequence of independent Bernoulli variables, all with the same distribution $\mathcal{B}er(\theta)$. Then the random variable

$$X = Y_1 + Y_2 + \dots + Y_n$$

is a $\mathcal{B}in(n,\theta)$ random variable.

Problem Prompt

Do problems 1 and 2 on the worksheet.