October 2023

1 Problem 1 - Position kinematics UR10

The DH coordinate frame for the robot is assigned as follows:

After assigning the DH coordinate frames for the robot, we construct the DH table as follows:

frame	a	α	d	θ
0 - 1	0	-90	128	θ_1
1 - 2	-612.7	180	0	$90 + \theta_2$
2 - 3	-571.6	-180	0	θ_3
3 - 4	0	90	163.9	$-90 + \theta_4$
4 - 5	0	-90	115.7	θ_5
5 - 6	0	0	92.2	θ_6

Once the DH table is constructed, we can proceed with the transformation matrix for each frame transformation.

$$T_1^0 = \begin{bmatrix} \cos \theta_1 & 0 & -\sin \theta_1 & 0 \\ \sin \theta_1 & 0 & \cos \theta_1 & 0 \\ 0 & -1 & 0 & 128 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_2^1 = \begin{bmatrix} -\sin\theta_2 & \cos\theta_2 & 0 & 612.7\sin\theta_2 \\ \cos\theta_2 & \sin\theta_2 & 0 & -612.7\cos\theta_2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_3^2 = \begin{bmatrix} \cos \theta_3 & \sin \theta_3 & 0 & -571.6 \cos \theta_3 \\ \sin \theta_3 & -\cos \theta_3 & 0 & -571.6 \sin \theta_3 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_4^3 = \begin{bmatrix} \sin \theta_4 & 0 & -\cos \theta_4 & 0 \\ -\cos \theta_4 & 0 & -\sin \theta_4 & 0 \\ 0 & 1 & 0 & 163.9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_5^4 = \begin{bmatrix} \cos \theta_5 & 0 & -\sin \theta_5 & 0\\ \sin \theta_5 & 0 & \cos \theta_5 & 0\\ 0 & -1 & 0 & 115.7\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_6^5 = \begin{bmatrix} \cos \theta_6 & -\sin \theta_6 & 0 & 0 \\ \sin \theta_6 & \cos \theta_6 & 0 & 0 \\ 0 & 0 & 1 & 92.2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The overall transformation matrix can be obtained by:

$$T_6^0 = T_1^0 * T_2^1 * T_3^2 * T_4^3 * T_5^4 * T_6^5$$

The robot position at 5 different configurations:

1) When $\theta = 0$ for all the frames.

2) When $\theta_6 = 90$ and rest of the angles are zero.

3) When $\theta_5 = 90$ and rest of the angles are zero.

```
60 #
61 # #Robot at theta5 = 90 and rest of the angles are zero.
62
63 T_1 = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 128], [0, 0, 0, 1]])
64 T_2 = Matrix([[0, 1, 0, 0], [1, 0, 0, -612.7], [0, 0, -1, 0], [0, 0, 0, 1]])
65 T_3 = Matrix([[1, 0, 0, -571.6], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 0]])
66 T_4 = Matrix([[0, 0, -1, 0], [-1, 0, 0], [0, 1, 0, 163.9], [0, 0, 0, 0]])
67 T_5 = Matrix([[0, 0, -1, 0], [1, 0, 0, 0], [0, -1, 0, 115.7], [0, 0, 0, 1]])
68 T_6 = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0], [0, 0, 0, 0]])
69
70 T = T_1 * T_2 * T_3 * T_4 * T_5 * T_6
71 pprint(T)
72

PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL

**uthappa@uthappa-HP-Pavilion-Laptop-14-ec0xxx:-$ /bin/python3 /home/uthappa/Documents/662/HW3/uthu_hw3_code.py

0 0 -1 0 1428.0
0 0 0 1

uthappa@uthappa-HP-Pavilion-Laptop-14-ec0xxx:-$
```

4) When $\theta_5 = -90$ and rest of the angles are zero.

5) When $\theta_4 = 90$ and rest of the angles are zero.

The above results can be validated geometrically as follows:

5) 0 = 90°, sest 0's=0	
End effector frame ×6 ====================================	1 = 3 × € 1 mm
X = 115.7 mm Y = 256.1 mm Z = 1312.3 mm	13 12.3
Y _o	30se Joanne Foranne D

2 Problem 2 - Position kinematics KUKA

The DH coordinate frame for the robot is assigned as follows:

After assigning the DH coordinate frames for the robot, we construct the DH table as follows:

frame	a	α	d	θ
0 - 1	0	90	d_1	θ_1
1 - 2	0	-90	0	θ_2
2 - 3	a_3	90	d_3	θ_3
3 - 4	$-a_3$	-90	0	θ_4
4 - 5	0	90	d_5	θ_5
5 - 6	a_3	90	0	θ_6
6 - 7	0	0	d_7	θ_7