Homework 3

Jiří Klepl

(10 points) One of the preprocessing steps can be to eliminate some of the variables using so-called DP-elimination (or DP-resolution). In particular, assume we have a CNF φ and a variable x which we want to eliminate. Denote

$$\varphi_0 = \{ C \in \varphi | \neg x \in C \}$$

$$\varphi_1 = \{ C \in \varphi | x \in C \}$$

$$\varphi_r = \{ C \in \varphi | C \cap \{ x, \neg x \} = \emptyset \}$$

Namely, φ_0 consists of the clauses containing negative literal $\neg x$, φ_1 consists of the clauses containing positive literal x, φ_r contains the rest of the clauses. Let us now define

$$\varphi_{dp} = \{Res(C_0, C_1) | C_0 \in \varphi_0, C_1 \in \varphi_1\}$$

where $Res(C_0, C_1)$ denotes the clauses originating from C_0 and C_1 by resolution. Show that φ is equisatisfiable with $\varphi' = \varphi_r \wedge \varphi_{dp}$.

First, we define: $\varphi_0' = \{C \setminus \{\neg x\} | C \in \varphi_0\}, \varphi_1' = \{C \setminus \{x\} | C \in \varphi_1\}$ It follows that: $\varphi_0 \equiv \{x \to C | C \in \varphi_0'\}, \varphi_1 \equiv \{\neg x \to C | C \in \varphi_1'\}$ (1) and from that: $\varphi_0 \equiv x \to \{C | C \in \varphi_0'\}, \varphi_1 \equiv \neg x \to \{C | C \in \varphi_1'\}$ and $\varphi_0 \land \varphi_1 \equiv x \to \{C | C \in \varphi_0'\} \land \neg x \to \{C | C \in \varphi_1'\}$ and (using existence quantifier to denote capturing of variable x):

$$\exists_x (\varphi_0 \land \varphi_1) \equiv \{C | C \in \varphi_0'\} \lor \{C | C \in \varphi_1'\}$$

From distributivity of \wedge and \vee and the previous: $\exists_x (\varphi_0 \wedge \varphi_1) \equiv \{C_0 \vee C_1 | C_0 \in \varphi_0', C_1 \in \varphi_1'\}$ We can finalize this as follows:

$$\exists_{x}(\varphi_{0} \land \varphi_{1}) \equiv \{C_{0} \lor C_{1} | C_{0} \in \varphi'_{0}, C_{1} \in \varphi'_{1}\} \stackrel{Def}{\equiv} \exists_{x}(\{Res(\{\neg x\} \cup C_{0}, \{x\} \cup C_{1}) | C_{0} \in \varphi'_{0}, C_{1} \in \varphi'_{1}\})$$

$$\stackrel{(1)}{=} \exists_{x}(\{Res(C_{0}, C_{1}) | C_{0} \in \varphi_{0}, C_{1} \in \varphi_{1}\}) = \exists_{x}(\varphi_{dp})$$

And, since: $\exists_x(\varphi_0 \land \varphi_1) \equiv \exists_x(\varphi_{dp})$, it holds that: $\exists_x(\varphi) = \exists_x(\varphi_0 \land \varphi_1 \land \varphi_r) \stackrel{x \notin var(\varphi_r)}{\equiv} \exists_x(\varphi_0 \land \varphi_1) \land \varphi_r \equiv \exists_x(\varphi_{dp}) \land \varphi_r \stackrel{x \notin var(\varphi_r)}{\equiv} \exists_x(\varphi_{dp} \land \varphi_r) = \exists_x(\varphi')$ And thus:

$$\varphi \equiv_{SAT} \varphi'$$