Cálculo Complejo MAT 521227/525211

Evaluación No 2. (21.11.15// 9:15-10:55hrs.)

Nombre Completo:

 N^{o} Matrícula: Marque ($\sqrt{\ }$)

ASTRO	Cs-FIS	Lic-MAT	Ing-MAT

TIEMPO: 110 minutos

Cada pregunta vale 2 puntos

P1	P2	Р3	Puntaje	Nota

FPV/fpv.

21 de Noviembre de 2015

P1 Evaluar sólo dos integrales $\int_{\Gamma} f(z)dz$ donde:

1.
$$f(z) = \frac{1}{z}$$
, Γ : la recta $z(t) = \frac{t}{2} + (1+t)i$, $-2 \le t \le 0$
2. $f(z) = e^{2/z} \sin(\frac{1}{z})$: Γ : $z = e^{it}$, $0 \le t \le 2\pi$

2.
$$f(z) = e^{2/z} \sin(\frac{1}{z})$$
: $\Gamma : z = e^{it}$, $0 \le t \le 2\pi$

3.
$$f(z) = \frac{e^z}{z^4 + i z^2}$$
: Γ : cuadrado de vértices $\pm 1 \pm i$

P2 Resolver la integral impropia reales:

$$1. \int_{-\infty}^{\infty} \frac{1 - \cos(2x)}{x^2} dx$$

$$2. \int_{-\infty}^{\infty} \frac{x \sin(x)}{x^2 + 4x + 5} dx$$

- **P3.1** Determinar la Serie de Laurent de $f(z) = \frac{1}{4z-z^2}$ en la región $\mathcal{R}: 4 < |z-4|$
- **P3.2** Describa gráficamente la región en la cual es aplicado el cuadrado de vértices en $(\pm 1, \pm 1)$ bajo la transformación $w=\frac{2}{z}$.