

Material Plugins Practical Implementation Demo Part 2: Two level system

DECEMBER, 2014

Outline

The 2 level model

Practical implementation and testing on Windows

Two level system example

We'll follow the model of Taflove for a 4 level system but reduce it to 2 levels

References:

- Chang and Taflove, Optics Express, 2004, 3827-3833.
- Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method. Boston: Artech House, (2005).

習信

Two level system example

Equations

$$\omega_0^2 \vec{P}(t) + \gamma P'(t) + P''(t) = \zeta (N_1 - N_0) \vec{E}(t)$$

$$\frac{dN_1}{dt} = -\gamma_{10} N_1 + \frac{\varepsilon_0}{\hbar \omega} \vec{E} \cdot \frac{d\vec{P}}{dt}$$

$$\frac{dN_0}{dt} = +\gamma_{10} N_1 - \frac{\varepsilon_0}{\hbar \omega} \vec{E} \cdot \frac{d\vec{P}}{dt} = -\frac{dN_1}{dt}$$

We ignore the additional terms from PEP that Taflove introduced The level populations are normalized to the electron density

智停

Two level system example

It looks like the Lorentz model but except for N_0 - N_1 and γ =2 δ

$$\omega_0^2 \vec{P}(t) + \gamma P'(t) + P''(t) = \zeta N_d (N_0 - N_1) \vec{E}(t)$$

$$\zeta = 6\pi c^3 \gamma_{10} / \omega_0^2$$

To update we use

$$\vec{P}^{n+1} = a_1 \vec{P}^n + a_2 \vec{P}^{n-1} + a_3 (N_1 - N_0) \vec{E}^n$$

$$a_1 = \frac{2 - \Delta t^2 \omega_0^2}{0.5 \gamma \Delta t + 1}$$

$$a_2 = \frac{0.5\gamma\Delta t - 1}{0.5\gamma\Delta t + 1}$$

$$a_3 = \frac{\zeta N_d \Delta t^2}{0.5 \gamma \Delta t + 1}$$

習情

Two level system example

Then we have to solve the rate equations

$$\frac{N_1^{n+1} - N_1^{n-1}}{2\Delta t} = -\gamma_{10}N_1^n + \frac{\varepsilon_0}{N_d\hbar\omega}\vec{E}^n \cdot \frac{\vec{P}^{n+1} - \vec{P}^{n-1}}{2\Delta t}$$

$$N_1^{n+1} = -2\Delta t \gamma_{10} N_1^n + N_1^{n-1} + \frac{\mathcal{E}_0}{N_d \hbar \omega} \vec{E}^n (\vec{P}^{n+1} - \vec{P}^{n-1})$$

$$\begin{split} N_1^{n+1} &= b_1 N_1^n + N_1^{n-1} + b_2 \vec{E}^n (\vec{P}^{n+1} - \vec{P}^{n-1}) & b_1 = -2 \Delta t \gamma_{10} \\ N_0^{n+1} &= 1 - N_1^{n+1} & b_2 = \frac{\varepsilon_0}{N_d \hbar \omega_0} \end{split}$$

Demonstration of implementation

We need a material with 4 Parameters

$$\square \omega_0, \gamma, \gamma_{10}, N_d$$

We need to store P^n and P^{n-1} and N_1^n and N_1^{n-1} (4 storage fields)

We need 5 constants per axis $(a_1, a_2, a_3, b_1, b_2)$

We need to update all 3 axes $(P_x, P_y \text{ and } P_z)$

Demonstration

