

CENTRAL TENDENCY

central tendency is a single value that describes the most typical or representative score in an entire distribution.

mode, the median, and the mean.

THE MODE

The mode (MO) specifies the score value with the highest frequency in a set of scores.

To determine the mode, simply arrange the scores in descending order (or create a frequency distribution if there are numerous scores).

Once they are arranged so, it is easy to see at a glance which score occurred with the greatest frequency.

In the set of scores below, 73, 73, 72, 70, 68, 68, 68, 68, 59, 59, 59, 55 MO = 68.

Grouped frequency distribution:

the mode would be the *mid-point of the class interval with the greatest frequency*.

Class intervals	Midpoint	f	Class intervals	Midpoint	f
36–38	37	8	21-23	22	20
33-35	34	11	18-20	19	16
30-32	31	18	15-17	16	12
27-29	28	26	12-14	13	7
24-26	25	32	9-11	10	3

the mode would be 25.

THE MEDIAN

Median (Mdn): which is the middle point in a distribution.

To find the median for an *odd number of scores*

- Arrange the scores in descending order from highest to lowest.
- The location of the median will be the score that has an equal number of scores above and below as determined by: N+1/2

$$26, 25, 24, 20, 18, 17, 17, 15, 12$$
 $(9 + 1) / 2 = 5$

To find the median for an even number of scores:

- Arrange the scores in order from highest to lowest.
- Divide the distribution in half and draw a line between the two scores that separate the distribution in to halves.
- Add the two middle scores that surround the halfway point and divide by 2. The resulting value will be the median.

THE MEDIAN

Median (Mdn): which is the middle point in a distribution.

To find the median for an *odd number of scores*

- Arrange the scores in descending order from highest to lowest.
- The location of the median will be the score that has an equal number of scores above and below as determined by: N+1/2

$$26, 25, 24, 20, 18, 17, 17, 15, 12$$
 $(9 + 1) / 2 = 5$

A.	Last year, 11 employees of a lawnmower manufacturing company retired. Their retirement ages are listed below. What was the median retirement age? 65, 67, 73, 64, 78, 60, 56, 70, 62, 66, 65
	<i>Mdn</i> =
В.	Determine the median number of haircuts given on one Saturday by each of 12 stylists at Pro Cut Salon:
	10, 8, 21, 7, 15, 8, 5, 14, 10, 7, 3, 17

Mdn = _____

The formula method for determining the median is used when you are working from a grouped frequency distribution and the cumulative frequency of the scores has been included.

$$Mdn = LL + \left(\frac{50\% \text{ of } N - cf_{\text{below}}}{f_{\text{w1}}}\right)i$$

where: LL = lower limit of the class interval that contains the median

N = number of scores

 cf_{below} = cumulative frequency below the class interval that contains the median

 f_{wi} = frequency of scores in the interval that contains the median

i =size of class interval

For Example

Class interval	f	cf
42–44	4	$124 \rightarrow N$
39-41	8	120
36-38	10	112
33-35	11	102
30-32	8	91
27–29	18	83
24–26 ———	- 17	65
21-23	16	48
18-20	10	32
15-17	11	22
12-14	5	11
9-11	6	6

The elements of the formula are as follows:

- The lower limit of the interval that contains the median is 23.5.
- N is 124. We have already established that 50% of N = 62, which is the point that divides the distribution in half.
- The cf below the interval that contains the median is 48.
- The frequency of scores in the interval that contains the median (fwi) is 17.
- The size of the class interval is 3.

$$Mdn = 23.5 + \left(\frac{62 - 48}{17}\right)(3)$$
$$= 23.5 + 2.47$$
$$= 25.97$$

Class intervals	f	cf
60–64	2	60
55-59	1	58
50-54	0	57
45-49	5	57
40-44	0	52
35-39	7	52
30-34	13	45
25-29	12	32
20-24	8	20
15-19	5	12
10-14	0	7
5–9	5	7
0-4	2	2

$$Mdn = LL + \left(\frac{50\% \text{ of } N - cf_{\text{below}}}{f_{\text{wl}}}\right)i$$

$$Mdn = \underline{\qquad}$$

Class Notes by A.Sandanasamy, BHC.

THE MEAN is the sum total of all of the scores in a distribution divided by the total number of scores.

For a population,

$$\mu = \frac{\sum X}{N}$$

For a sample,

$$M = \frac{\sum X}{n}$$

Let us calculate the mean for the following set of scores from a population:

$$\mu = \frac{\Sigma X}{N} = \frac{720}{10} = 72$$

The mean for the following set of scores from a sample involves the same set of calculations:

$$M = \frac{\Sigma X}{n} = \frac{67}{9} = 7.44$$

Activate Windows

Mean for a Simple Frequency Distribution

To calculate the mean for scores that have been arranged into a simple frequency distribution, the formula is modified as follows:

For a population,

$$u = \frac{\sum fX}{N}$$

For a sample,

$$M = \frac{\sum fX}{n}$$

where: fX = frequency of the score multiplied by the score itself.

Let us calculate the mean for the following scores from a sample arranged into a simple frequency distribution table:

X	f	fX	X	f	fX
48	1	48	41	4	164
47	4	188	40	6	240
46	2	92	39	3	117
45	4	180	38	0	0
44	9	396	37	1	37
43	8	344	36	2	72
42	5	210	35	1	35
				n = 50	$\sum fx = 2123$

$$M = \frac{\Sigma fX}{n} = \frac{2123}{50} = 42.46$$

Mean for a Grouped Frequency Distribution

Class interval	Midpoint(X)	f	fX
36–38	37	4	148
33-35	34	3	102
30-32	31	1	31
27-29	28	4	112
24-26	25	7	175
21-23	22	6	132
18-20	19	6	114
15-17	16	2	32
12-14	13	0	0
9-11	10	3	30
		n = 36	$\Sigma f X = 876$

In *skewed distributions*, the mode would again be at the peak; the mean would be located toward the tails in the direction of the skew (having been affected by either high or low extreme scores); and the median would be between the mode and the mean (so that half the scores lie above it and half below it).

In a negatively skewed distribution, Tyron's score was the same as the median, Jorge's score was the same as the mode, and Geraldine's score was the same as the mean.

- a. Who scored the highest?
- b. Who scored the lowest?

In a distribution of scores, the mode was 68, the median was 59, and the mean w as 47. What shape is the distribution?

In a distribution of scores, the median was 60, the mean was 98, and the mode w as 42. What is the shape of the distribution?

