Vectors

Stephen Boyd

EE103 Stanford University

September 20, 2017

Outline

Notation

Addition and scalar multiplication

Inner product

Complexity

Vectors

- a vector is an ordered list of numbers
- written as

$$\begin{bmatrix} -1.1\\ 0.0\\ 3.6\\ -7.2 \end{bmatrix} \quad \text{or} \quad \begin{pmatrix} -1.1\\ 0.0\\ 3.6\\ -7.2 \end{pmatrix}$$

or
$$(-1.1, 0, 3.6, -7.2)$$

- ▶ numbers in a vector are called *entries*, *coefficients*, or *elements*
- ▶ length of vector is its *size*, *length*, or *dimension*
- vector above has dimension 4; its third entry is 3.6
- ightharpoonup vector of length n is called an n-vector
- numbers are called scalars

Vectors via symbols

- \blacktriangleright we'll use symbols to denote vectors, e.g., a, X, p, β , E^{aut}
- other conventions: \mathbf{g} , \vec{a}
- ▶ ith element of n-vector a is denoted a_i
- ▶ if a is vector above, $a_3 = 3.6$
- ightharpoonup in a_i , i is the *index*
- for an *n*-vector, indexes run from i = 1 to i = n
- \blacktriangleright warning: sometimes a_i refers to the ith vector in a list of vectors
- two vectors a and b of the same size are equal if $a_i = b_i$ for all i
- we overload = and write this as a = b

Block vectors

- ightharpoonup suppose b, c, and d are vectors with sizes m, n, p
- ▶ the *stacked vector* or *concatenation* (of *b*, *c*, and *d*) is

$$a = \left[\begin{array}{c} b \\ c \\ d \end{array} \right]$$

- ▶ also called a *block vector*, with (block) entries b, c, d
- ▶ a has size m + n + p

$$a = (b_1, b_2, \dots, b_m, c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_p)$$

Location or displacement in 2-D or 3-D

ightharpoonup 2-vector (x_1,x_2) can represent a location or a displacement in 2-D

More examples

- \triangleright color: (R, G, B)
- quantities of n different commodities (or resources), e.g., a bill of materials
- portfolio: entries give shares (or \$ value or fraction) held in each of n assets, with negative meaning short positions
- \triangleright cash flow: x_i is payment in period i to us
- ▶ audio: x_i is the acoustic pressure at sample time i (sample times are spaced 1/44100 seconds apart)
- features: x_i is the value of *i*th *feature* or *attribute* of an entity
- \triangleright word count: x_i is the number of times word i appears in a document

Zero, ones, and unit vectors

- ▶ n-vector with all entries 0 is denoted 0_n or just 0
- ▶ n-vector with all entries 1 is denoted $\mathbf{1}_n$ or just $\mathbf{1}$
- ▶ a *unit vector* has one entry 1 and all others 0
- \blacktriangleright denoted e_i where i is entry that is 1
- ▶ unit vectors of length 3:

$$e_1 = \left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}
ight], \qquad e_2 = \left[egin{array}{c} 0 \\ 1 \\ 0 \end{array}
ight], \qquad e_3 = \left[egin{array}{c} 0 \\ 0 \\ 1 \end{array}
ight]$$

Sparsity

- ▶ a vector is *sparse* if many of its entries are 0
- can be stored and manipulated efficiently on a computer
- ightharpoonup $\mathbf{nnz}(x)$ is number of entries that are nonzero
- examples: zero vectors, unit vectors

Outline

Notation

Addition and scalar multiplication

Inner product

Vector addition

- ightharpoonup n-vectors a and b and can be added, with sum denoted a+b
- to get sum, add corresponding entries:

$$\left[\begin{array}{c} 0\\7\\3 \end{array}\right] + \left[\begin{array}{c} 1\\2\\0 \end{array}\right] = \left[\begin{array}{c} 1\\9\\3 \end{array}\right]$$

▶ subtraction is similar

Properties of vector addition

- ightharpoonup commutative: a+b=b+a
- ▶ associative: (a + b) + c = a + (b + c)(so we can write both as a + b + c)
- a + 0 = 0 + a = a
- ▶ a a = 0

these are easy and boring to verify

Adding displacements

▶ if 3-vectors a and b are displacements, a + b is the sum displacement

Displacement from one point to another

lacktriangle displacement from point q to point p is p-q

Scalar-vector multiplication

lacktriangle scalar lpha and n-vector a can be multiplied

$$\alpha a = (\alpha a_1, \dots, \alpha a_n)$$

- ightharpoonup also denoted $a\alpha$
- some properties:
 - associative: $(\beta \gamma)a = \beta(\gamma a)$
 - left distributive: $(\beta + \gamma)a = \beta a + \gamma a$
 - right distributive: $\beta(a+b)=\beta a+\beta b$

Linear combinations

• for vectors a_1, \ldots, a_m and scalars β_1, \ldots, β_m ,

$$\beta_1 a_1 + \dots + \beta_m a_m$$

is a linear combination of the vectors

- $\triangleright \beta_1, \ldots, \beta_m$ are the *coefficients*
- ▶ a *very* important concept
- examples:
 - audio mixing
 - replicating a cash flow
- ▶ a simple identity: for any *n*-vector *b*,

$$b = b_1 e_1 + \dots + b_n e_n$$

Outline

Notation

Addition and scalar multiplication

Inner product

Complexity

Inner product 17

Inner product

▶ inner product (or dot product) of n-vectors a and b is

$$a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- other notation used: $\langle a,b \rangle$, $\langle a|b \rangle$, (a,b), $a \cdot b$
- properties:

$$-a^Tb = b^Ta$$

$$-(\gamma a)^Tb = \gamma(a^Tb)$$

$$-(a+b)^Tc = a^Tc + b^Tc$$

Simple examples

- $e_i^T a = a_i$ (picks out *i*th entry)
- $ightharpoonup \mathbf{1}^T a = a_1 + \dots + a_n$ (sum of entries)
- $\qquad \qquad \mathbf{a}^T a = a_1^2 + \dots + a_n^2 \qquad \text{(sum of squares of entries)}$

Inner product 19

Examples

- lacktriangledown is weight vector, f is feature vector; w^Tf is score
- ightharpoonup p is vector of quantities; p^Tq is total cost
- ▶ c is cash flow, $d=(1,1/(1+r),\ldots,1/(1+r)^{n-1})$ is discount vector (with interest rate r); d^Tc is net present value (NPV) of cash flow
- ightharpoonup s gives portfolio holdings (in shares), p gives asset prices; p^Ts is total portfolio value

Inner product 20

Outline

Notation

Addition and scalar multiplication

Inner product

Complexity

Flop counts

- computers store (real) numbers in floating-point format
- basic arithmetic operations (addition, multiplication, ...) are called floating point operations or flops
- complexity of an algorithm or operation: total number of flops needed, as function of the input dimension(s)
- ▶ this can be very grossly approximated
- crude approximation of time to execute: computer speed/flops
- ightharpoonup current computers are around 1Gflop/sec (10 9 flops/sec)
- \blacktriangleright but this can vary by factor of 100

Complexity of vector addition, inner product

- ightharpoonup x + y needs n additions, so: n flops
- x^Ty needs n multiplications, n-1 additions so: 2n-1 flops
- lacktriangle we simplify this to 2n (or even n) flops for x^Ty
- ightharpoonup and much less when x or y is sparse