© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°05

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après INT 1991

Notations –

- La suite complexe de terme général α_n est notée $(\alpha_n)_{n\in\mathbb{N}}$, ou (α_n) ou plus simplement α .
- La série de terme général u_n est notée $\sum_{n\in\mathbb{N}}u_n$ ou plus simplement $\sum u_n$.

Partie I -

Dans cette partie, on note S_{AC} l'ensemble des suites $u \in \mathbb{C}^{\mathbb{N}}$ telles que $\sum u_n$ converge *absolument*. On admet que S_{AC} est un \mathbb{C} -espace vectoriel.

- **I.1.a** Soit u une suite à termes strictement positifs tel que $\sum u_n$ converge. Montrer qu'il existe une suite α de réels positifs, tendant vers $+\infty$ en croissant, telle que la série $\sum \alpha_n u_n$ converge. On pourra utiliser la suite α définie par : $\forall n \in \mathbb{N}, \ \alpha_n = \frac{1}{\sqrt{\mathbb{R}_{n-1}} + \sqrt{\mathbb{R}_n}}$ où \mathbb{R}_n est le reste de rang n de la série $\sum u_n$.
 - **I.1.b** Soit u une suite à termes strictement positifs tel que $\sum u_n$ diverge. Montrer, de façon analogue, qu'il existe une suite α de réels positifs, tendant vers 0 en décroissant, telle que la série $\sum \alpha_n u_n$ diverge.
- **I.2** Normes sur S_{AC}.
 - **I.2.a** Soit α une suite *strictement* positive et majorée. Montrer que l'application N_{α} définie par

$$\forall u \in S_{AC}, \ N_{\alpha}(u) = \sum_{n=0}^{+\infty} \alpha_n |u_n|$$

est bien définie et que c'est une norme sur S_{AC}.

I.2.b Soit α une suite strictement positive et majorée. Pour $p \in \mathbb{N}$, on note δ^p la suite dont tous les termes sont nuls sauf celui de rang p qui vaut 1, c'est-à-dire

$$\forall n \in \mathbb{N}, \ \delta_n^p = \begin{cases} 0 & \text{si } n \neq p \\ 1 & \text{si } n = p \end{cases}$$

Que vaut $N_{\alpha}(\delta^p)$?

I.2.c Dans cette question uniquement, on suppose que

$$\forall n \in \mathbb{N}, \ \alpha_n = \frac{1}{2^n}$$
 et $\forall n \in \mathbb{N}, \ \beta_n = \frac{1}{n!}$

Les normes N_{α} et N_{β} sont-elles équivalentes sur S_{AC} ?

I.2.d Soient α et β deux suites strictement positives et majorées. Donner une condition nécessaire et suffisante pour que N_{α} et N_{β} soient équivalentes.

Partie II -

Dans cette partie, on considère une suite $u \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum u_n$ converge et on note $R_n = \sum_{k=n+1}^{+\infty} u_k$.

- **II.1** Dans cette question uniquement, on se donne $q \in \mathbb{C}$ tel que |q| < 1 et on suppose que $u_n = q^n$ pour tout $n \in \mathbb{N}$.
 - **II.1.a** Déterminer R_n pour $n \in \mathbb{N}$.
 - **II.1.b** Montrer que la série $\sum R_n$ converge et calculer $\sum_{n=0}^{+\infty} R_n$.
- **II.2** Dans cette question uniquement, on se donne $\alpha > 1$ et on suppose que $u_n = \frac{1}{n^{\alpha}}$ pour tout $n \in \mathbb{N}^*$.
 - **II.2.a** Montrer que

$$\frac{1}{(n-1)^{\alpha-1}} - \frac{1}{n^{\alpha-1}} \underset{n \to +\infty}{\sim} \frac{\alpha-1}{n^{\alpha}}$$

- **II.2.b** En déduire un équivalent de R_n lorsque n tend vers $+\infty$.
- **II.2.c** Pour quelles valeurs de α la série $\sum R_n$ converge-t-elle?
- II.2.d Montrer que dans ce cas,

$$\sum_{n=0}^{+\infty} \mathbf{R}_n = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha - 1}}$$

On pourra s'intéresser à la famille $(v_{k,n})_{(k,n)\in\mathbb{N}^*\times\mathbb{N}}$ où $v_{k,n}=\begin{cases} \frac{1}{k^{\alpha}} & \text{si } k>n\\ 0 & \text{si } k\leq n \end{cases}$.

- **II.3** Dans cette question uniquement, on se donne $a \in \mathbb{R}$ et on suppose que $u_n = \frac{a^n}{n!}$ pour tout $n \in \mathbb{N}$.
 - **II.3.a** Que vaut $\sum_{n=0}^{+\infty} u_n$? On ne demande pas de justification.
 - **II.3.b** Justifier la série $\sum R_n$ converge et montrer que $\sum_{n=0}^{+\infty} R_n = ae^a$.

On pourra s'intéresser à la famille $(v_{k,n})_{(k,n)\in\mathbb{N}^*\times\mathbb{N}}$ où $v_{k,n}=\begin{cases} \frac{a^k}{k!} & \text{si } k>n\\ 0 & \text{si } k\leq n \end{cases}$.

- **II.4** Dans cette question, on suppose seulement *u* positive.
 - **II.4.a** Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n-1} R_k = nR_n + \sum_{k=1}^{n} ku_k$$

II.4.b On suppose que la série $\sum R_n$ converge. Montrer que la série $\sum nu_n$ converge puis que la suite (nR_n) converge vers 0.

Partie III -

© Laurent Garcin MP Dumont d'Urville

Soit $n \in \mathbb{N}^*$. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on pose $N(A) = \max_{1 \le i,j \le n} |A_{i,j}|$. On admet que N est une norme sur $\mathcal{M}_n(\mathbb{C})$. On note I la matrice identité de $\mathcal{M}_n(\mathbb{C})$.

- **III.1. III.1.a** Montrer que pour $(A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $N(AB) \le nN(A)N(B)$.
 - **III.1.b** En déduire que pour tout $p \in \mathbb{N}^*$, $N(A^p) \le n^{p-1}N(A)^p$.
 - **III.1.c** Montrer que la série $\sum_{p \in \mathbb{N}} \frac{A^p}{p!}$ converge. On pose alors $\exp(A) = \sum_{p=0}^{+\infty} \frac{A^p}{p!}$.
- III.2 Dans cette question, on suppose n = 3 et on pose $A = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 2 & -1 \\ 1 & 1 & 4 \end{pmatrix}$.
 - **III.2.a** Déterminer deux réels a et b tels que $A^2 = aA + bI$.
 - **III.2.b** Déterminer deux suites α et β telles que

$$\forall p \in \mathbb{N}, A^p = \alpha_p A + \beta_p I$$

- III.2.c Déterminer deux réels λ et μ tels que $\exp(A) = \lambda A + \mu I$.
- **III.2.d** On pose $R_p = \sum_{k=p+1}^{+\infty} \frac{A^k}{k!}$. Montrer que la série $\sum_{p \in \mathbb{N}} R_p$ converge et calculer $\sum_{p=0}^{+\infty} R_p$ sous la forme cA + dI où c et d sont deux réels.