

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2022.2) Prof. Msc. Thais Oliveira Almeida

AULA 2:

INTRODUÇÃO A LÓGICA DE PREDICADOS

Conversa entre Joaquim e Manoelito

Lógica Formal

- Fornece bases para o método de pensar organizado;
- Expressa métodos de raciocínio sob a forma de argumentos.
- Tem duas aplicações diretas em Ciência da Computação:
 - 1. Programação Lógica.
 - 2. Prova se programas estão corretos ou não.

Lógica Formal

- Exemplos de utilização em computação:
 - Inteligência artificial;
 - Circuitos lógicos;
 - Banco de dados;
 - Sistemas computacionais (hardware e software);
 - Sistemas distribuídos;
 - Teoria de autômatos e computabilidade;
 - Teoria de linguagens.

Proposições

- Uma proposição é uma sentença declarativa, ou uma afirmação, que admite apenas um dos dois valores lógicos verdadeiro ou falso, nunca ambos.
- Proposições?
 - 1. Qual é a capital de Roraima?
 - 2. 1 + 1 = 2
 - 3. Como você está?
 - 4. 9 < 6
 - 5. Estudem regularmente.

Proposições

- Uma proposição é uma sentença declarativa, ou uma afirmação, que admite apenas um dos dois valores lógicos verdadeiro ou falso, nunca ambos.
- Proposições?
 - 1. Qual é a capital de Roraima?
 - 2. 1 + 1 = 2
 - 3. Como você está?
 - 4.9 < 6
 - 5. Estudem regularmente.

- ❖Negação: ¬
- ❖Conjunção (e): ∧
- ❖ Disjunção (ou): V
- ❖Condicional: →
- ❖ Bicondicional: ←>

❖Negação: ¬

P	¬Р
V	F
F	V

❖Conjunção: ∧

P	Q	P^Q
V	V	V
V	F	F
F	V	F
F	F	F

❖ Disjunção: V

P	Q	P v Q
V	V	V
V	F	V
F	V	V
F	F	F

❖Condicional: →

P	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

❖ Bicondicional: ↔

P	Q	$P \leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

A Linguagem da Lógica de Predicados

- É uma extensão da Lógica Proposicional;
- Novos conectivos (quantificadores);
- Novos símbolos para funções, variáveis, predicados, etc;
- Confere um maior poder de representação.

A Linguagem da Lógica de Predicados

- Dificuldade em representar na Lógica Proposicional expressões que possuam quantificações indicadas pelas palavras "todo" e "qualquer".
 - **Todo** aluno de Computação gosta de café. Luciano é aluno de Computação. Luciano gosta de café.
- **Existe um** aluno de Computação é inteligente. Rafael é aluno de Computação. Rafael é inteligente.

Ausências da Lógica Proposicional

Quantificadores

- todo, qualquer, existe, alguns, nenhum, etc.;
- Sempre estão ligados a variáveis.

Objetos

- Indivíduos do universo de discurso, sobre o qual quantificadores podem ser aplicados;
- Todo aluno de Computação é inteligente. Luciano é aluno de Computação.

Alfabeto da Lógica de Predicados

♠É constituído por:

- Símbolos de pontuação: (,);
- Símbolos de verdade: true, false;
- Conjunto enumerável de símbolos para variáveis: x, y, z, w, x₁, y₁, z₁,..;
- Conjunto enumerável de símbolos para funções: f, g, h, f₁, g₁, h₁, f₂, g₂...;
- Conjunto enumerável de símbolos para predicados: p, q, r, s, p₁, q₁, r₁, s₁, p₂, q₂...;
- Conjunto enumerável de símbolos para constantes: a, b, c,
- Conectivos proposicionais: \neg , v, \land , \rightarrow , \leftrightarrow , \forall , \exists .

Quantificadores

- Quantificação Universal
 - $\circ \forall x p(x)$
 - ∘ *p*(x) é um predicado.
 - \circ p(x) é verdadeiro para todo x do universo.

Exemplo:

Todo numero natural par ao quadrado é par.

Quantificadores

- Quantificação Existencial
 - $\circ \exists x p(x)$
 - p(x) é um predicado.
 - \circ p(x) é verdadeiro para algum x do universo.

Exemplo:

• Existe um número natural que ao quadrado é igual a ele mesmo.