Representations of continuous functions

By LENNART CARLESON

- 1. The problem which will be treated in this paper, can quite generally be stated as follows. Let C be a linear class of continuous functions defined on a set S. Let E be a closed subset of S. Under which conditions on E is every continuous function on E the restriction to E of some function belonging to the original class C? We shall in section 3 solve this problem in the case when S is the circle |z|=1 and E is the class of uniformly continuous analytic functions in |z|<1 and in section 4 we shall consider Fourier-Stieltjes transforms. First, however, we shall in section 2 prove a lemma on Banach spaces to which our theorems can be reduced.
- **2.** Lemma 1. Let B be a separable Banach space with norm ||x||. Let $B_1 \subset B$ be a Banach space with the norm $||x||_1 \ge ||x||$. If there exists a sequence of elements x_n such that for every linear functional L(x) on B

(1)
$$||L|| \leq M \sup_{\nu} |L(x_{\nu})|, \quad x_{\nu} \in B_{1}, \quad ||x_{\nu}||_{1} \leq 1,$$

then

(2)
$$B = B_1$$
 and $||x||_1 \le M ||x||, \quad x \in B_1$.

It is obvious that the constant M in (2) cannot in general be improved. For the proof, we observe that (1) implies that B_1 is dense in B. Since B is separable (see [1], p. 124), there exists a sequence of linear functionals $\{L_{\mu}\}_{1}^{\infty}$ on B, $\|L_{\mu}\|=1$, such that every linear functional is the weak limit of linear combinations $\sum c_{\mu}L_{\mu}*$).

. We now consider the infinite system of equations

(3)
$$L_{\mu}(x) = \sum_{1}^{\infty} \xi_{\nu} L_{\mu}(x_{\nu}), \qquad \sum_{1}^{\infty} |\xi_{\nu}| \leq M',$$

for a fixed element $x \in B$, ||x|| = 1. By a theorem of F. Riesz, (3) has a solution if for every sequence $\{c_{\mu}\}$

$$\left|\sum c_{\mu}L_{\mu}(x)\right| \leq M' \sup_{\nu} \frac{1}{A_{\nu}} \left|\sum c_{\mu}L_{\mu}(x_{\nu})\right|,$$

where $A_{\nu} \ge 1$ and $\lim A_{\nu} = \infty$. We shall prove that (4) holds provided that M' > M. The opposite assumption implies that for every $n \ge 1$ there exists a linear functional L_n^* such that

(5)
$$1 = |L_n^*(x)| \ge M' |L_n^*(x_{\nu})|, \quad \nu = 1, 2, ..., n,$$

(6)
$$|L_n^*(x_\nu)| < \text{const}, \qquad 1 \le \nu < \infty.$$

^{*)} For the following, compare [2], p. 343.

(6) together with (1) implies that $||L_n^*||$ is uniformly bounded. Suppose that L_n^* converges weakly and let L(x) be the limit. Then, by (5),

$$||L|| \ge |L(x)| \ge M' |L(x_v)|, \quad 1 \le v < \infty$$

which implies

$$||L|| \geq \frac{M'}{M}||L||.$$

Hence $L \equiv 0$ which contradicts L(x) = 1.

We have thus proved that (3) has a solution if M'>M. For such a solution $\{\xi_{\epsilon}\}$ we have

$$L_{\mu}(x-\sum_{1}^{\infty}\xi_{\nu}x_{\nu})=0, \quad \mu=1,2,...,$$

and, since L_{μ} is weakly fundamental, $x = \sum_{\nu=1}^{\infty} \xi_{\nu} x_{\nu}$. Hence

$$||x||_1 \le \sum_{1}^{\infty} |\xi_{\nu}| ||x_{\nu}||_1 \le \sum_{1}^{\infty} |\xi_{\nu}| \le M',$$

and the proof is complete.

Let us finally note the following well-known converse of the lemma (see [6], p. 30):

If in the lemma we replace (1) by the assumption $B=B_1$, then (2) holds for some constant M.

3. Let C denote the class of functions f(z) analytic and uniformly continuous in |z| < 1. Under the norm $\sup_{|z| < 1} |f(z)|$, C is a separable BANACH space. An example of a basis is given by the powers z^n . If E is a closed set on |z| = 1, then there exists a non-trivial function $f(z) \in C$, which vanishes on E, if and only if mE = 0 (compare below, lemma 2). We shall now prove that this is also the solution of the problem, stated in the introduction.

Theorem 1. Let E be a closed set on |z|=1 of measure zero and let $\varphi(z)$ be continuous on E. Then there exists a function $f \in C$ with $f(z) = \varphi(z)$ on E. If mE > 0, this is not true for every choice of $\varphi(z)$.

The last statement of the theorem is trivial. If mE > 0, we choose $\varphi_1(z)$ and $\varphi_2(z)$ so that $\varphi_1(z) = \varphi_2(z)$ on a set of positive measure but not everywhere. If $f_1(z)$ and $f_2(z)$, corresponding to φ_1 and φ_2 existed, $f_1 - f_2$ would vanish on a set of positive measure and hence everywhere, contradicting our assumption $\varphi_1 \equiv \varphi_2$.

In the proof, we shall use the following lemma.

Lemma 2. Let E_1 and E_2 be two disjoint closed sets on |z|=1 of measure zero. Then there exists a function $f(z) \in C$ with the properties

$$f(z) = 1, \qquad z \in E_1,$$

$$f(z) = 0, \quad z \in E_2,$$

$$(9) |f(z)| \leq 2, |z| \leq 1.$$

Let $h(\vartheta)$ be a continuous function with period 2π satisfying the following conditions: (a) $0 \le h(\vartheta) \le 1$; (b) $h(\vartheta) = 0$, $e^{i\vartheta} \in E_1$; (c) $h(\vartheta) = 1$, $e^{i\vartheta} \in E_2$; (d) $h''(\vartheta)$ is continuous; (e) $\int_{-\pi}^{\pi} \log h(\vartheta) d\vartheta > -\infty$. It is obvious that such a function exists. If then

(10)
$$\log g(z) = \frac{1}{2\pi} \int_{-e^{i\vartheta} - z}^{\pi} \log h(\vartheta) d\vartheta,$$

it follows that $|g(e^{i\theta})| = h(\theta)$ and that g belongs to C. This is a consequence of (b) and (d). Furthermore, by (b), g(z) = 0 on E_1 , by (d) |g(z)| = 1 on E_2 and by (a) |g(z)| < 1, |z| < 1. Under the mapping w = g(z), the set E_2 is mapped on a set E_2' of measure zero, since g'(z), by the regularity (d) of $h(\theta)$, is continuous on E_2 . In the same way as above we construct a function $q(z) \in C$ such that q(0) = 1, q(z) = 0 on E_2' and $|q(z)| \le 2$, $|z| \le 1$. The function q(g(z)) = f(z) belongs to C and has the desired properties (7), (8), (9).

Let E be the given closed set of measure zero and divide E in all possible ways into two disjoint closed subsets E_1 and E_2 . As is easily seen, this is possible only in a countable number of different ways. For each choice, we construct by lemma 2 a function f(z). We obtain a sequence of elements $\{f_r(z)\}_1^{\infty}$ of C, $|f_r| \leq 2$.

In order to be able to apply lemma 1, we introduce as Banach space B the set of continuous functions φ on E under uniform norm $\|\varphi\|$ and as B_1 the restriction to E of functions $f(z) \in C$ with norm

$$\|\varphi\|_1 = \inf_{t} \sup_{z} |f(z)|, \quad f(z) = \varphi(z) \text{ on } E$$

It is obvious that B_1 is complete under this norm. If $\|\varphi\|_1 \leq M \|\varphi\|$, theorem 1 follows if we observe that the set of polynomials is dense in B.

In lemma 1 we now choose $x_r = \frac{1}{2} f_r(z)$ and want to prove that for every μ of bounded variation on E

(11)
$$m \int_{E} |d\mu| \leq \sup_{\nu} \left| \int_{E} f_{\nu}(z) d\mu(z) \right|$$

with m>0 independant of μ . Since f_r is real on E we may assume that μ is real and we also assume that the right hand side of (11) = 1. Let $A \subset E$ be a Borel measurable set. Then there is a sequence $\{f_r(z)\}$ such that

$$\lim_{i=\infty} f_{r_i}(z) = \begin{cases} 1 & \text{on } A \\ 0 & \text{on } E - A \end{cases}$$

except on sets of variation zero for μ . Hence

$$\left|\mu\left(A\right)\right| = \left|\lim_{i=\infty} \int_{E} f_{\nu_{i}}(z) d\mu\left(z\right)\right| \leq 1$$

and since ([7], p. 32)

$$\int\limits_{E} |d\mu| = \sup_{A \subseteq E} \mu(A) - \inf_{A \subseteq E} \mu(A) \le 2,$$

the proof is complete.

It is interesting to observe that theorem 1 contains the following well-known theorem of F. and M. RIESZ:

If
$$\int\limits_{|z|=1}^{\int}z^{n}d\mu(z)=0, \quad n\geq 0$$

then μ is absolutely continuous.

The proof obtained in this way can be considered as more "natural" than the classical proofs, since it is a direct proof of absolute continuity. Compare also [5].

Let E be a closed set of measure zero and assume $m = \int\limits_E |d\mu| > 0$. By the remark at the end of section 2 and theorem 1, every continuous $\varphi(z)$, $|\varphi| \le 1$, on E can be represented by $f \in C$, $|f| \le M$. Let O > E be an open set such that $\int\limits_{O-E} |d\mu| < \varepsilon$ and construct by the formula (10) $g(z) \in C$ so that |g(z)| = 1 on E; $|g(z)| \le 1$, $|z| \le 1$; $|g(z)| < \varepsilon$, |z| = 1 and z outside O. Then

$$\int\limits_{|z|=1}^{\int} z^{n} g(z) d\mu(z) = 0$$

and

$$m = \sup_{||\varphi|| = 1} \int_{E} \varphi(z) g(z) d\mu(z) \leq M \int_{O-E} |d\mu| + M \varepsilon \int_{|z| = 1} |d\mu| \leq \frac{1}{2} m$$

for ε sufficiently small. This contradiction proves the theorem.

4. We now assume that E is a compact set on $(-\infty, \infty)$ and we consider the problem of representing continuous function $\varphi(x)$ on E by Fourier-Stieltjes transforms

(12)
$$\varphi(x) = \int_{-\infty}^{\infty} e^{ixt} d\sigma(t), \qquad x \in E.$$

Lemma 1 here gives the following criterion on E.

Theorem 2. A necessary and sufficient condition on E that every continuous $\varphi(x)$ has a representation (12) is that

(13)
$$\sup_{t} \left| \int_{E} e^{ixt} d\mu(x) \right| \ge m \int_{E} |d\mu|,$$

where m > 0 is independent of μ .

Let B_1 be the set of functions of the form (12) and

$$\|\varphi\|_1 = \inf_{\sigma} \int_{-\infty}^{\infty} |d\sigma|$$
 for such σ .

If (12) holds for every φ , then $\|\varphi\|_1 \leq M \|\varphi\|$, and

$$\int\limits_{E} |d\mu| = \sup_{\|\varphi\|=1} \int\limits_{E} \varphi \, d\mu \leq \sup_{\sigma} \int\limits_{E} d\mu (x) \int\limits_{-\infty}^{\infty} e^{ixt} \, d\sigma (t), \quad \int\limits_{-\infty}^{\infty} |d\sigma| \leq M,$$

whence

$$\int_{E} |d\mu| \leq \sup_{t} \left| \int_{E} e^{ixt} d\mu(x) \right| \int_{-\infty}^{\infty} |d\sigma|,$$

and (13) holds with $m = \frac{1}{M}$.

To prove the converse, choose in lemma 1 $x_r = e^{ir_r x}$, where r_r is dense on $(-\infty, \infty)$. Assumptions (1) and (13) are identical, and $B = B_1$ is the desired result.

Finally we note that we may, if (13) holds, choose σ in (12) in very special ways.

Theorem 3. If every $\varphi(x)$ has a representation (12) and E is a subset of $(-\pi, \pi)$, then $\varphi(x)$ can also be represented in the form

(14)
$$\varphi(x) = \int_{-\infty}^{\infty} e^{ixt} f(t) dt, \quad f \text{ summable,}$$
or

(15)
$$\varphi(x) = \sum_{n=0}^{\infty} a_n e^{i n x}, \qquad \sum_{n=0}^{\infty} |a_n| < \infty.$$

Consider the subspace B_1 of functions of the form (14) under the norm

$$\|\varphi\|_1 = \inf_{t \to \infty} \int_{-\infty}^{\infty} |f(t)| dt.$$

We choose in lemma 1 as the set $\{x_n\}$ the functions

$$\varphi_{\nu k} = e^{i \tau_{\nu} x} \cdot \frac{k}{x} \cdot \sin \frac{x}{k}, \quad \nu = 1, 2, ...; \ k = 1, 2, ...,$$

where, as before, $\{r_n\}$ denotes a dense set on $(-\infty, \infty)$. Since (13) holds, by assumption, it follows that

$$\sup_{v,k} \left| \int_{E} \varphi_{vk}(x) \ d\mu(x) \right| \geq m \int_{E} |d\mu|,$$

whence, by lemma 1, $B = B_1$.—The result can naturally easily be proved directly.

To prove (15), we introduce in an obvious way $\|\varphi\|_1$ and assume that there exists a function μ such that

$$\int_{E} |d\mu| = 1 \quad \text{while} \quad \left| \int_{E} e^{inx} d\mu(x) \right| \le \varepsilon, \quad n = 0, \pm 1, \dots.$$

By a theorem of M. CARTWRIGHT [3], there is a constant C, depending only on E, such that

$$\left| \int_{E} e^{itx} d\mu(x) \right| \leq C \varepsilon, \quad -\infty < t < \infty,$$

which is impossible if $\varepsilon < \frac{m}{C}$. We can thus again apply lemma 1 and the proof is complete.

References

[1] BANACH, S.: Théorie des opérations linéaires. Warszawa-Lwow 1932. — [2] CARLESON, L.: Sets of uniqueness for functions regular in the unit circle. Acta math. 87, 325—345 (1952). — [3] CARTWRIGHT, M.: On certain integral functions of order 1. Quart. J. of Math. 7, 46—55 (1936). — [4] HELSON, H.: Fourier transforms on perfect sets. Studia math. 14, 209—213 (1954). — [5] HELSON, H.: On a theorem of F. and M. RIESZ. Colloquium math. 3, 113—117 (1955). — [6] HILLE, E.: Functional Analysis and Semi-Groups. New York 1948. — [7] SAKS, S.: Theory of the integral. Warszawa-Lwow 1937.

Uppsala (Schweden), Uppsala Universitets Matematiska Institution

(Eingegangen am 24. April 1956)