

Long Island Botanical Society

Vol. 20 No. 1

The Quarterly Newsletter

Winter 2010

Checklist of the Bryophytes of Long Island

Eric C. Morgan¹, Jon A. Borysiewicz¹ and Jon A. Sperling²

¹Bartlett Arboretum Herbarium, 151 Brookdale Rd., Stamford, CT 06903

²Queens College Biology Dept., 65-30 Kissena Blvd, Flushing, NY 11367

The bryophytes, commonly known as hornworts, liverworts and mosses, are non-flowering plants that are dispersed by spores as opposed to seeds, and can be found in a tremendous array of habitats, often with impressive diversity and abundance. While modern cladistics has separated the bryophytes into three groups, the Anthocerotophyta or hornworts, the Hepaticophyta or liverworts, and the Bryophyta or mosses, for the text of this paper the term bryophyte will be used in the broad sense.

With over 15,000 species worldwide, the bryophytes make up a sizeable portion of the approximately 300,000 land plants estimated to be living today. There are about 1,500 native vascular plants on Long Island, and the bryophytes may potentially have over 400 species, bringing the land plant total to nearly 2,000. In spite of their relatively small size, a requirement due to their lack of a developed vascular system, the bryophytes play a major role in our planet's ecology. For many years the bryophytes, like the lichens, have been used as indicators of environmental quality such as air quality (Pott & Turpin 1996; Davis et al. 2001). Even more impressive is the fact that there is more carbon stored in a single genus of moss, *Sphagnum*, than in any other genus of plants worldwide (Clymo & Hayward 1982).

The three main groups of bryophytes are relatively easy to distinguish from each other based upon characters visible with the naked eye or a hand lens. Hornworts are the least encountered of these groups as they tend to have quite specific habitat requirements. Our local hornworts tend to have a distinctly flattened thallus, often in irregular-shaped rosettes, usually with sporophytes present. These sporophytes, the spore bearing structures, resemble an animal horn, hence their common

name. With only a handful of hornwort species in the region, an amateur bryologist can easily learn to recognize these plants.

Liverworts are a large group which can be separated from mosses by their absence of leaves, or if leaves are present, by the arrangement of those leaves. Leafy liverworts have leaves arranged in two or three rows, usually on creeping stems, while mosses have their leaves spirally arranged with few exceptions.

Among leafy liverworts, the leaves are never found on the upper side of the stem, which usually gives the plants a flattened appearance. The leaves can be entire, lobed, ciliate or otherwise, just as in vascular plants. Many leafy liverworts can be recognized by what are known as complicate bilobed leaves in which the lobes are folded onto one another. Non-leafy or thalloid liverworts have a flattened rosette or strip-like plant body which is not divided into stems and leaves.

Mosses are also divided into subcategories. They are regarded as either pleurocarpous, with stems creeping or trailing and branches numerous, or acrocarpous with upright stems (sometimes inconspicuously so), and few to no branches. For the correct identification of mosses and liverworts, a proper understanding of these groups is essential.

For over a century, the more familiar and conspicuous vascular flora of Long Island has been well studied and documented through both local floristic studies and larger projects documenting entire families and their distributions across the island. The study of Long Island's bryophyte flora has been much less exhaustive. While several late 19th and early 20th century studies such as Jelliffe (1899) and Cain and Penfound (1938) included the documentation of bryophyte species, studies focused solely on bryophytes are nearly non-existent for the

(Continued on pg 3)

COURTESY OF THE FLORA OF NORTH AMERICA ASSOCIATION,
ILLUSTRATOR PATRICIA ECKEL

Long Island Botanical Society

Founded: 1986

Incorporated: 1989

The Long Island Botanical Society is dedicated to the promotion of field botany and a greater understanding of the plants that grow wild on Long Island, New York.

Visit the Society's Web site
www.libotanical.org

Executive Board

President

Eric Lamont 631-722-5542

Vice President

Andrew Greller 516-364-9377

Treasurer

Carol Johnston 516-676-6648

Recording Secretary

Barbara Conolly 516-922-5935

Corresponding Secretary

John Potente 631-361-6756

Committee Chairpersons

Flora

Gerry Moore 718-623-7332

Field Trips

James Mickley 717-278-9126

Programs

Rich Kelly 516-354-6506

Membership

Lois Lindberg 516-922-0903

Conservation

Bill Titus 516-671-7351

Education

Mary Laura Lamont 631-722-5542

Hospitality

Kathleen Gaffney 516-742-4019

Zu Proly 516-676-4023

Dorothy Titus 516-671-7351

Newsletter Editor

Margaret Conover 631-357-3065

with special thanks to

Skip & Jane Blanchard

Webmaster

Donald House

libsweb@yahoo.com

Society News

The Long Island Botanical Society was founded in 1986, and to celebrate our 25th Anniversary we are beginning to plan a 10-day botanical field trip to Florida in the Spring of 2011. LIBS member Ann Johnson has volunteered to serve as trip leader. We plan to start in the Florida panhandle and make our way into peninsular Florida. Stay tuned for more information.

LIBS has joined a coalition of 33 other organizations that formed to express opposition to the sale and development of a parcel of land owned by Suffolk County. The 250-acre parcel, which is within the Carmans River watershed, would be listed as surplus by the County which would then enter into a contract for the intensive development of this tract for mixed-use development known as "Legacy Village."

At LIBS' annual "Members Night" on December 8, 7 members gave presentations. Marion Hubbard offered a display on invasive plant species; Andy Greller shared slides of bee orchids in Greece; Peter Warray showed highlights of his trips in southeastern U.S. to Canada; Ray Welch produced "The Waning of the Season" with music; Marilyn Jordan showed the Florida panhandle spider lily (*Hymenocallis choctawensis*) which grows only in rocky marshes, and the water primrose which has invaded the Peconic River system in Forge Pond but which has been successfully weeded out by volunteers; Carol Johnston showed a few slides of grass-of-Parnassus and fringed gentian in southern Vermont, and shared her discovery of the rare (S1) stiff gentian (*Gentiana quinquefolia*) in a small quarry in North Pownal, Vermont; and Rich Kelly showed some eye-catching moths in Edgewood Preserve and elsewhere.

Long Island Flora Committee -- Update

After the untimely death of committee chair Steve Clemants in late 2008, the Flora Committee needed to regroup and push the Long Island Flora Atlas project towards completion.

To this end, the committee met on December 1st, 2009 at the Brooklyn Botanic Garden (BBG). The attendees were Gerry Moore, (the new chair of the Flora Committee), Barbara Conolly, Andy Greller, Rich Kelly, Eric Lamont, and Al Lindberg. The feasibility of continuing with the old process of manually placing specimen and sight record data on maps, by township/county, was discussed. Since BBG's New York Metropolitan Flora (NYMF) database apparently includes Long Island flora data that was input by Steve before his death, Gerry suggested that LIBS could use the NYMF data from Long Island for its atlas. This data is by 5-kilometer map blocks, so there would be much more information on any one species map. The numerous data points would almost approach a range map on Long Island. The NYMF database includes both specimen and sight record data. It was also discussed that a web-based atlas would be the best approach.

Steve Glenn of BBG will work with LIBS to get the project off the ground. A great amount of work will be needed to produce and arrange the species maps. It was suggested that LIBS hire a grad student to perform this work, which will be conducted at the BBG using a software site license owned by BBG. The LIBS executive board approved the expenditure of \$3000, plus travel expenses, for this work.

(Cont. from page 1)

island, the one significant work having included the entire New York City region (Grout 1916).

The last few decades have seen occasional papers on the subject such as Biechle's (1993) work on the liverworts of eastern Suffolk County and a statewide checklist of mosses by Ketchledge (1980) which, due to a grid system for mapping the state, lumped species found in Staten Island with species from westernmost Long Island, and lumped central Long Island with portions of Westchester and Bronx Counties. Studies such as these can provide a base from which to begin future studies of the bryophytes of Long Island, however with the narrow habitat requirements of many species, smaller-scale studies and species lists of natural areas are currently needed for a proper assessment of bryophytes in our area. In the past few years several papers have begun to address this topic through local floras (Morgan & Sperling 2005), individual species distributions (Trigoboff 2005) and ecological assessments (Morgan & Sperling 2007).

Floristic works on Long Island bryophytes will become more important as ecological changes occur throughout the region. With the prospect of global climate change, bryophytes as well as vascular plants can provide indications as to the reality and extent of these changes. Slack (1977) points out that some coastal plain species range only as far north as Long Island and are not seen anywhere else in the Northeast, a pattern quite familiar to those studying vascular plant distributions. Species such as *Telaranea nematodes*, whose northernmost occurrence is in the Long Island region, can provide valuable data towards an understanding of climate change should the abundance of species such as this be altered over the coming years. It will be important to monitor the distribution of more northern species which occur sparingly on Long Island. For these reasons, documentation of these plants in individual parks and preserves on Long Island will become increasingly important over the next few years.

Aside from using particular species as ecological indicators, floristic change can be looked at on a larger scale in bryophytes to determine larger trends in a given area. In a study of Alley Pond and Cunningham Park, in Queens County, Long Island, the species richness, or total number of species present, dropped 36 percent for mosses, 58 percent for liverworts, and 50 percent for hornworts from the mid 1980s to the early part of this century (Morgan & Sperling 2007). These numbers provide strong evidence of a larger ecological shift in the area, although not necessarily negative. Could this shift be due to forest maturation, increased park traffic, lower rainfalls, higher temperatures or none of these? These are questions that will need to be examined further as more reliable species and distribution data are recorded for Long Island.

In the past, reports of bryophyte numbers for Long Island have been varied and incomplete (Table 1). This is due to several factors including a focus on particular smaller regions of Long Island such as Cold Spring Harbor (Cain

1936a), and eastern Suffolk County (Biechle 1993), or a focus upon vascular plants, with less emphasis upon the bryophytes (Jelliffe 1899). Other studies such as Grout (1916) and Ketchledge (1980), included Long Island as a part of a larger geographic area. Grout's work includes the bryophytes of much of New Jersey, Westchester County, and even the Delaware Water Gap, regions likely to have

**Table 1. Numbers of bryophyte taxa.
Reports include all or parts of Long Island.**

Source	Hornworts	Liverworts	Mosses
Biechle (1993)	3	70	NA
Cain (1936)	NA	11	23
Cain & Penfound (1938)	NA	28	48
Grout (1916)	NA	NA	370
Jelliffe (1899)	2	25	109
Ketchledge (1980)	NA	NA	289
Current study (2009)	4	78	226

different floras than those of Long Island and likely to be major factors in his high number of taxa for the area. Within Ketchledge's work, the bryophytes that may have been found in southwesternmost Long Island are placed in with those of Staten Island, a separate entity with a very different vascular flora, and possibly bryophyte flora as well.

In this contribution from the Long Island Botanical Society, the authors begin to provide data regarding the number of bryophytes found on Long Island, including both extant and historic species. This data is compiled from a variety of sources including published literature, herbarium records and field surveys. Several local herbaria including but not limited to the New York Botanical Garden (NY), Brooklyn Botanic Garden (BKL), Bartlett Arboretum (BART), and Queens College Biology Department (no official acronym) were searched both online and in person. Each of these herbaria holds significant collections of Long Island bryophytes ranging from hundreds to thousands of specimens collected on Long Island over the past 100-plus years. Field visits have been made from 2002 to the present and have resulted in approximately two thousand collections of bryophytes by the authors and coworkers on related projects. All specimens have been deposited at the Bartlett Arboretum Herbarium (BART) or the Queens College Biology Department.

Nomenclature for this checklist follows that of the USDA/NRCS, Plants National Database (2009), or the Flora of North America (2007) when family treatments are available. Field and laboratory identifications were done using a variety of guides including the Flora of North America (2007), Andrus (1980), Crum (1983) and Schuster (1949; 1953). This

(Cont. on page 4)

checklist includes a total of 68 families and 308 taxa, which can be broken down as follows; hornworts, 2 families and 4 species; liverworts, 26 families and 78 species; mosses, 40 families and 226 taxa. A full list of these taxa is included as Appendix 1.

Literature Cited and Additional References:

- Andrus, R. E. 1980. Sphagnaceae (Peat Moss Family) of New York State. Contributions to a Flora of New York State. R. S. Mitchell, Ed. Bull. New York State Mus. Sci. Serv. No. 442.
- Biechele, L. T. 1993. A checklist of the Hepaticae and Anthocerotae of eastern Suffolk County, Long Island, New York. *Evansia* 10:99-103.
- Britton, E. G. 1902. Note on a Long Island moss. *Bryologist* 5:66-67.
- Burnham, S. H. and R. A. Latham. 1914. The flora of the town of Southold, Long Island and Gardiner's Island. *Torreya* 14: 201-225.
- Cain, S. A. 1936a. The composition and structure of an oak woods, Cold Spring Harbor, Long Island, with special attention to sampling methods. *Amer. Midl. Naturalist* 17:725-740.
- _____. 1936b. *Syrrhopodon texanus* Sull. in Long Island. *Bryologist* 39:118.
- _____, and W. T. Penfound. 1938. Aceretum rubri: The red maple swamp forest of central Long Island. *Amer. Midl. Naturalist* 19: 390-416.
- Clymo, R. S. and P. M. Hayward. 1982. The ecology of Sphagnum. In: *Bryophyte Ecology*, A. J. E. Smith, ed. Chapman & Hall, London. pp 229-289.
- Crum, H. 1983. Mosses of the Great Lakes Forest, ed. 3. University of Michigan. Ann Arbor, Michigan. 417pp.
- Davis, D. D., J. R. McClenahan, and R. J. Hutnik. 2001. Use of an epiphytic moss to biomonitor pollutant levels in southwestern Pennsylvania. *Northeast. Naturalist* 8:379-392.
- Flora of North America Editorial Committee. 2007. Flora of North America, vol. 27, Bryophyta, part 1. Oxford University Press, New York. (additional material published online at fna.org)
- Grout, A. J. 1906. Additions to the bryophyte flora of Long Island. *Bryologist* 9:26-28.
- _____. 1916. The moss flora of New York City and vicinity. Author published. New Dorp, New York. 121pp.
- Jelliffe, S. E. 1899. The Flora of Long Island. Privately printed. 163pp.
- Ketchledge, E. H. 1980. Revised checklist of the mosses of New York State. Contributions to a Flora of New York State, R. S. Mitchell, Editor. Bull. New York State Mus. Sci. Serv. No. 440.
- Latham, R. 1917. Habitat of *Cephalozia francisci* on Long Island. *Bryologist* 20:63-64.
- Mapes, H.M. 1962. Sphagnum portoricense and *Disclium nudum* in New York. *Bryologist* 65:68.
- Miller, N. G. and Trigoboff, N. 2001. A European feather moss, *Pseudoscleropodium purum*, naturalized widely in New York State in cemeteries. *Bryologist* 104: 98-103.
- Morgan E. C. and J. Sperling. 2003. A survey of the bryophytes of Shu Swamp Preserve, Mill Neck, New York. *Long Island Bot. Soc. Newslett.* 13: 25, 28.
- _____. 2005. The bryophyte flora of the Cranberry Bog Preserve, Suffolk County, NY, with notes on their distribution. *Evansia* 22:78-84.
- _____. 2007. Changes in the bryophyte flora of Cunningham Park and Alley Pond Park, Queens County, Long Island, New York City. *Evansia* 23: 56-60.
- Pott, U. and D.H. Turpin. 1996. Changes in atmospheric trace element deposition in the Fraser Valley, B.C., Canada from 1960 to 1993 measured by moss monitoring with *Isothecium stoloniferum*. *Canad. J. Bot.* 74:1345-1353.
- Ross, J. H. 1931. Some bryophyte associations of Cold Spring Harbor, New York, and vicinity. *Bryologist* 34: 88-91.
- Schuster, R.M. 1949. The Ecology and distribution of Hepaticae in central and western New York. *Amer. Midl. Naturalist* 42:513-712.
- _____. 1953. Boreal Hepaticae. A manual of the liverworts of Minnesota and adjacent regions. *Amer. Midl. Naturalist* 49: 257-684.
- Slack, N. G. 1977. Species Diversity and Community Structure in Bryophytes: New York State studies. Bull. New York State Mus. Sci. Serv. No. 428.
- Sperling, J. A. 1958. Key to the bryophytes of Cunningham Park. *Nucleus* 2:9-13.
- _____. (Date unknown). Bryophytes of Leeds Pond, in Vegetational Analysis of Leeds Pond Preserve and Commentary on Habitat Restoration, 30 pp.
- _____, and E. C. Morgan. 2003. The bryophyte flora of Cunningham Park and Alley Pond Park, Queens County, New York. A new flora from old specimens. *Evansia* 20:11-14.
- Trigoboff, N. 2005. *Tortula papillosa* and *Tortula pagorum* (Pottiaceae) in New York State. *Evansia* 22: 85-89.
- USDA, NRCS. 2009. The PLANTS Database (<http://plants.usda.gov>, October 2009). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.
- Wickes, M. L. 1937. Another *Syrrhopodon* on Long Island, New York. *Bryologist* 40:71.

Join LIBS today!

Annual Membership is \$20 payable to:

Long Island Botanical Society

Mail your dues to:

Carol Johnston

LIBS Treasurer

347 Duck Pond Road

Locust Valley, NY 11560

NOTE:

Membership renewals are due in January

Appendix 1. Checklist of the bryophytes of Long Island, New York

ANTHOCERATOPHYTA

ANTHOCEROTACEAE

- Anthoceros macounii* M. Howe
Anthoceros punctatus L.
Phaeoceros laevis (L.) Prosk.

NOTOTHYLADEACEAE

- Notothylas orbicularis* (Schwein.) Sull.

HEPATICOPHYTA

ANEURACEAE

- Aneura pinguis* (L.) Dumort.
Riccardia latifrons (Lindb.) Lindb.
Riccardia multifida (L.) A. Gray
Riccardia palmata (Hedw.) Carruth.

AYTONIACEAE

- Asterella tenella* (L.) P. Beauv.

BLASIACEAE

- Blasia pusilla* L.

CALYPOGEIACEAE

- Calyptogea fissa* (L.) Raddi
Calyptogea muelleriana (Schiffn.) Müll. Frib.
Calyptogea sullivantii Austin

CEPHALOZIACEAE

- Cephalozia bicuspidata* (L.) Dumort.
Cephalozia catenulata (Huebener) Lindb.
Cephalozia connivens (Dicks.) Lindb.
Cephalozia lunulifolia (Dumort.) Dumort.
Cephalozia macrostachya Kaal.
Cephalozia pleniceps (Austin) Lindb.
Cladopodiella fluitans (Nees) H. Buch
Cladopodiella francisci
 (Hook.) H. Buch ex Jörg.
Odontoschisma denudatum (Mart.) Dumort.
Odontoschisma prostratum (Sw.) Trevis.
Odontoschisma sphagni (Dicks.) Dumort.

CEPHALOZIELLACEAE

- Cephaloziella divaricata* (Sm.) Schiffn.
Cephaloziella hampeana (Nees) Schiffn.
Cephaloziella rubella (Nees) Warnst.
Nowellia curvifolia (Dicks.) Mitt.

CONOCEPHALACEAE

- Conocephalum conicum* (L.) Dumort.

FOSSOMBRONIACEAE

- Fossombronia cristula* Austin
Fossombronia foreolata Lindb.
Fossombronia wondruszekii (Corda) Dumort.

GEOCALYCACEAE

- Chiloscyphus pallescens*
 (Ehrh. ex Hoffm.) Dumort.
Chiloscyphus polyanthus
 (L.) Corda var. *riparius* (Schrad.) Nees
Geocalyx graveolens (Schrad.) Nees
Harpanthus drummondii (Taylor) Grolle
Lophocolea heterophylla (Schrad.) Dumort.
Lophocolea minor Nees

GYMNOMITRIACEAE

- Marsupella emarginata* (Ehrh.) Dumort.
Marsupella sphacelata (Gieseke) Dumort.

JUBULACEAE

- Frullania asagrayana* Mont.
Frullania bolanderi Austin
Frullania eboracensis Gottsche
Jubula pensylvanica (Steph.) A. Evans

JUNGERMANNIACEAE

- Barbilophozia barbata*
 (Schmidel ex Schreb.) Loeske
Gymnocolea inflata (Huds.) Dumort.
Jamesoniella autumnalis (DC.) Steph.
Jungermannia gracilima Sm.
Jungermannia leiantha Grolle
Jungermannia pumila With.
Lophozia bicrenata
 (Schmidel ex Hoffm.) Dumort.
Lophozia capitata (Hook.) Macoun
Lophozia incisa (Schrad.) Dumort.
Mylia anomala (Hook.) A. Gray
Nardia insecta Lindb.

LEJEUNEACEAE

- Lejeunea carifolia*
 (Ehrh.) Lindb. emend. H. Buch

LEPIDOZOIACEAE

- Bazzania trilobata* (L.) A. Gray
Kurzia pauciflora (Dicks.) Grolle
Kurzia setacea (Weber) Grolle
Kurzia syrtica (A. Evans) Grolle
Lepidozia reptans (L.) Dumort.

Telaranea nematodes

(Gottsche ex Austin) M. Howe

LUNULARIACEAE

- Lunularia cruciata* (L.) Dumort.

MARCHANTIACEAE

- Marchantia polymorpha* L.
Preissia quadrata (Scop.) Nees

PALLAVICINIACEAE

- Pallavicinia lyellii* (Hook.) Carruth.

PELIACEAE

- Pellia epiphylla* (L.) Corda
Pellia megaspora R.M. Schust.
Pellia neesiana (Gottsche) Limpr.

PLAGIOCHILACEAE

- Plagiochila poreloides*
 (Torr. ex Nees) Lindenb.

PORELLACEAE

- Porella pinnata* L.
Porella platyphylla (L.) Pfeiff.

PSEUDOlepicioleaceae

- Blepharostoma trichophyllum* (L.) Dumort.

PTILIDIACEAE

- Ptilidium pulcherrimum* (Weber) Vain.

RADULACEAE

- Radula complanata* (L.) Dumort.

RICCIACEAE

- Riccia fluitans* L.
Riccia huebeneriana Lindenb. ssp. *sullivantii*
 (Austin) R.M. Schust.
Ricciocarpus natans (L.) Corda

SCAPANIACEAE

- Diplophyllum apiculatum* (A. Evans) Steph.
Scapania nemorea (L.) Grolle
Scapania undulata (L.) Dumort.

TRICHOCOLEACEAE

- Trichocolea tomentella* (Ehrh.) Dumort.

(Cont. on page 6)

- BRYOPHYTA**
- AMBLYSTEGIACEAE**
- Amblystegium serpens* (Hedw.) Schimp.
Amblystegium serpens var. *juratzenum* (Schimp.) Rau & Herv.
Amblystegium varium (Hedw.) Lindb.
Calliergon cordifolium (Hedw.) Kindb.
Calliergon giganteum (Schimp.) Kindb.
Calliergon stramineum (Brid.) Kindb.
Calliergonella cuspidata (Hedw.) Loeske
Campylium hispidulum (Brid.) Mitt.
Campylium radicale (P. Beauv.) Grout
Campylium stellatum (Hedw.) C.E.O. Jensen
Drepanocladus aduncus (Hedw.) Warnst.
Hygroamblystegium fluviale (Hedw.) Loeske
Hygroamblystegium tenax (Hedw.) Jenn.
Hygrohypnum eugrymm (Schimp.) Loeske
Hygrohypnum ochraceum (Turner ex Wilson) Loeske
Leptodictyum humile (P. Beauv.) Ochyra
Leptodictyum riparium (Hedw.) Warnst.
Platylomella lecurii (Sull.) Andrews
Scorpidium scorpioides (Hedw.) Limpr.
Warnstorffia exannulata (Schimp.) Loeske
Warnstorffia fluitans (Hedw.) Loeske
- ANDREAEEACEAE**
- Andreaea rothii* F. Weber & D. Mohr
- ANOMODONTACEAE**
- Anomodon attenuatus* (Hedw.) Huebener
Anomodon rostratus (Hedw.) Schimp.
Anomodon rugelii (Müll. Hal.) Keissl.
Haplolyrium triste (Ces.) Kindb.
- AULACOMNIACEAE**
- Aulacomnium heterostichum* (Hedw.) Bruch & Schimp.
Aulacomnium palustre (Hedw.) Schwägr.
- BARTRAMIACEAE**
- Bartramia pomiformis* Hedw.
Philonotis fontana (Hedw.) Brid.
Plagiomnium oederiana (Sw.) H.A. Crum & L.E. Anderson
- BRACHYTHECIACEAE**
- Brachythecium acuminatum* (Hedw.) Austin
Brachythecium acutum (Mitt.) Sull.
Brachythecium calcareum Kindb.
Brachythecium campestre (Müll. Hal.) Schimp.
Brachythecium oxycladon (Brid.) Jaeg. & Sauerb. var. *oxycladon*
Brachythecium plumosum (Hedw.) Schimp.
Brachythecium populeum (Hedw.) Schimp.
- BRYACEAE**
- Brachythecium rivulare* Schimp.
Brachythecium rutabulum (Hedw.) B.S.G.
Brachythecium salebrosum (F. Weber & D. Mohr) Schimp.
Brachythecium velutinum (Hedw.) Schimp.
Brynia norvegica-angliae (Sull. & Lesq.) Grout
Bryoandersonia illecebria (Hedw.) H. Rob.
Eurhynchium hians (Hedw.) Sande Lac.
Eurhynchium pulchellum (Hedw.) Jenn.
Homalotheciella subcapillata (Hedw.) Broth.
Platyhypnidium ripariooides (Hedw.) Dix.
Pseudoscleropodium purum (Hedw.) Fleisch.
Rhynchostegium serrulatum (Hedw.) Jaeg. & Sauerb.
- DICRANACEAE**
- Dicranum fulvum* Hook.
Dicranum montanum Hedw.
Dicranum ontariense Peters.
Dicranum polysetum Sw.
Dicranum scoparium Hedw.
Dicranum spurium Hedw.
Dicranum undulatum Brid.
Rhabdoweisia crispa (With.) Lindb.
- DITRICHACEAE**
- Ceratodon purpureus* (Hedw.) Brid.
Ditrichum pallidum (Hedw.) Hampe
Ditrichum pusillum (Hedw.) Hampe
Pleuridium palustre (Bruch & Schimp.) Bruch & Schimp.
Pleuridium subulatum (Hedw.) Rabenb.
- ENTODONTACEAE**
- Entodon cladorrhizans* (Hedw.) Müll. Hal.
Entodon seductrix (Hedw.) Müll. Hal.
- EPHEMERACEAE**
- Ephemerum crassinerium* (Schwägr.) Hampe
Ephemerum serratum (Hedw.) Hampe
Ephemerum spinulosum Bruch & Schimp.
- FABRONIACEAE**
- Anacamptodon splachnoides* (Froel. ex Brid.) Brid.
- FISSIDENTACEAE**
- Fissidens adianthoides* Hedw.
Fissidens bryoides Hedw.
Fissidens bushii (Cardot & Thér.) Cardot & Thér.
Fissidens fontanii (B. Pyl.) Steud.
Fissidens osmundioides Hedw.
Fissidens taxifolius Hedw.
- FONTINALACEAE**
- Dicheyma capillaceum* (With.) Myrin
Dicheyma pallescens Schimp.
Fontinalis antipyretica Hedw.
Fontinalis dalecarlica Schimp.
Fontinalis norvegica-angliae Sull.
Fontinalis sullivantii Lindb.
- FUNARIACEAE**
- Funaria hygrometrica* Hedw. var. *hygrometrica*
Physcomitrium pyriforme (Hedw.) Hampe
- GRIMMIACEAE**
- Grimmia pilifera* P. Beauv.
Racomitrium aciculare (Hedw.) Brid.
Schistidium apocarpum (Hedw.) Bruch & Schimp.

HEDWIGIACEAE

Hedwigia ciliata (Hedw.) P. Beauv.

HELODIACEAE

Helodium paludosum (Sull.) Austin

HYLOCOMIACEAE

Hylocomiastrum umbratum (Hedw.) Fleisch.
Hylocomium splendens (Hedw.) Schimp.
Pleurozium schreberi (Brid.) Mitt.

HYPNACEAE

Callicladium baldianum (Grev.) H.A. Crum
Ctenidium molluscum (Hedw.) Mitt.
Herzogella striatella (Brid.) Z. Iwats.
Herzogella turfacea (Lindb.) Z. Iwats.
Homomallium adnatum (Hedw.) Broth.
Hypnum cupressiforme Hedw.
Hypnum curvifolium Hedw.
Hypnum fertile Sendtn.
Hypnum imponens Hedw.
Hypnum lindbergii Mitt.
Hypnum pallens (Hedw.) P. Beauv.
Hypnum pratense (Rabenh.) Koch ex Spruce
Isopterygium elegans (Brid.) Lindb.
Isopterygium tenerum (Sw.) Mitt.
Platydictya subtilis (Hedw.) H.A. Crum
Platygrium repens (Brid.) B.S.G.
Ptilium crista-castrensis (Hedw.) De Not.
Taxiphyllum deplanatum
 (Bruch & Schimp. ex Sull.) Fleisch.

LESKEACEAE

Bryohaplocladium microphyllum
 (Hedw.) R. Watan. & Z. Iwats.
Bryohaplocladium virginianum
 (Brid.) R. Watan. & Z. Iwats.
Leskeia gracilescens Hedw.
Leskeia obscura Hedw.
Leskeia polycarpa Hedw.

LEUCOBRYACEAE

Leucobryum glaucum (Hedw.) Ångstr.

LEUCODONTACEAE

Leucodon julaceus (Hedw.) Sull.

MNIACEAE

Mnium hornum Hedw.
Plagiomnium ciliare (Müll. Hal.) T. Kop.
Plagiomnium cuspidatum (Hedw.) T. Kop.
Plagiomnium ellipticum (Brid.) T. Kop.
Rhizomnium punctatum (Hedw.) T. Kop.

NECKERACEAE

Neckera pennata Hedw.

ORTHOTRICHACEAE

Orthotrichum cupulatum Brid.
Orthotrichum ohioense Sull. & Lesq.
Orthotrichum pumilum Sw.
Orthotrichum pusillum Mitt.
Orthotrichum stellatum Brid.
Orthotrichum strangulatum P. Beauv.
Ulota crispa (Hedw.) Brid.
Ulota butchinsiae (Sm.) Hammar

PLAGIOTHECIACEAE

Plagiothecium carifolium (Brid.) Z. Iwats.
Plagiothecium denticulatum (Hedw.) Schimp.
Plagiothecium latebricola Schimp.

POLYTRICHACEAE

Atrichum angustatum (Brid.) Bruch & Schimp.
Atrichum crispum (James) Sull.
Atrichum undulatum (Hedw.) P. Beauv.
Polytrichum commune Hedw.
Polytrichum formosum Hedw.
Polytrichum ohioense Renauld & Cardot
Polytrichum juniperinum Hedw.
Polytrichum piliferum Hedw.
Pogonatum brachyphyllum (Michx.) P. Beauv.
Pogonatum pensylvanicum (Hedw.) P. Beauv.

POTTIACEAE

Astomum muhlenbergianum (Sw.) Grout
Barbula unguiculata Hedw.
Desmatodon obtusifolius (Schwägr.) Schimp.
Hymenostylium recurvirostre (Hedw.) Dix.
Phascum cuspidatum Hedw.
Pottia truncata (Hedw.) Fürnr.
Tortella fragilis (Hook. & Wilson) Limpr.
Tortella humilis (Hedw.) Jenn.
Tortula mucronifolia Schwägr.
Tortula pagorum (Milde) De Not.
Tortula papillosa Wilson
Weissia controversa Hedw.

PTYCHOMITRIACEAE

Ptychomitrium incurvum (Schwägr.) Spruce

SEMATOPHYLLACEAE

Brotherella recurvans (Michx.) Fleisch.
Sematophyllum adnatum (Michx.) E. Britton
Sematophyllum demissum (Wilson) Mitt.

SPHAGNACEAE

Sphagnum affine Renauld & Cardot
Sphagnum angermanicum Melin
Sphagnum angustifolium (C.E.O. Jensen ex
 Russow) C.E.O. Jensen*Sphagnum austini* Sull.
Sphagnum compactum DC.
Sphagnum cuspidatum Ehrh. ex Hoffm.
Sphagnum fallax (Klinggr.) Klinggr.
Sphagnum fimbriatum Wilson
Sphagnum floricomans (Cardot) Warnst.
Sphagnum flexuosum Dozy & Molk.*Sphagnum fuscum* (Schimp.) Klinger.
Sphagnum girgensohnii Russow
Sphagnum henryense Warnst.
Sphagnum lescurii Sull.
Sphagnum macrophyllum Brid.
Sphagnum magellanicum Brid.
Sphagnum molle Sull.
Sphagnum palustre L.
Sphagnum papillosum Lindb.
Sphagnum platyphyllum
 (Lindb. ex Braithw.) Sull. ex Warnst.*Sphagnum portoricense* Hampe
Sphagnum recurvum P. Beauv.
Sphagnum rubellum Wilson
Sphagnum russowii Warnst.
Sphagnum squarrosum Crome
Sphagnum strictum Sull.
Sphagnum subsecundum Nees
Sphagnum subtile (Russow) Warnst.
Sphagnum tenerum Sull. & Lesq.
Sphagnum teres (Schimp.) Ångstr.
Sphagnum torreyanum Sull.
Sphagnum trinitense Müll. Hal.

TETRAPHIDACEAE

Tetraphis pellucida Hedw.

THELIACEAE

Thelia asprella Sull.
Thelia hirtella (Hedw.) Sull.
Thelia lescurii Sull.

THUIDIACEAE

Haplocladium microphyllum (Hedw.) Broth.
Helodium paludulosum (Sull.) Austin
Raniella scita (P. Beauv.) Reim.
Thuidium delicatulum (Hedw.) Schimp.
Thuidium recognitum (Hedw.) Lindb.

TIMMIACEAE

Timmia megapolitana Hedw.

Long Island Botanical Society
PO Box 507
Aquebogue, NY 11931

Page 8

Long Island Botanical Society Vol. 20 No.1

UPCOMING PROGRAMS

January and February: No meeting!

March 9, 2010* Tuesday, 7:30 PM
Bill Titus: “Biology Today - Beyond Darwin”

This talk will be about biology and evolution with a botanical slant. Bill is a retired Coordinator of Cornell Cooperative Extension in Nassau County. He has an interest in the natural sciences and, specifically, evolution and its evidence in our world today. He recently attended a shipboard/cruise course entitled “Evolution Emanations” which consisted of about twenty-four hours of presentations by researchers working on evolution.

*Location: Bill Paterson Nature Center,
Muttontown Preserve, East Norwich*

April 13, 2010* Tuesday, 7:30 PM
Meg McGrath: “Determining the Impact on Plants of Ground-level Ozone on Long Island.” Dr. McGrath will talk about her work investigating the impact of ambient ozone on agricultural plants growing on Long Island. Each summer this ozone reaches concentrations which are high enough to require the issuance of health advisories for people. Meg is an Associate Professor with a research/extension appointment in the Department of Plant Pathology and Plant-Microbe Biology at Cornell University. She is stationed at the Long Island Horticultural Research and Extension Center where she has been working since 1988 on optimizing management of diseases affecting vegetable crops within organic as well as conventional production systems, and also on determining impact of ambient ozone on plant productivity.

Location: Museum of Long Island Natural Sciences, Earth and Space Science Building, Gil Hanson Room (Room 123), SUNY at Stony Brook, Stony Brook

* Refreshments and informal talk begin at 7:30 p.m.

Formal meeting starts at 8:00 p.m.

Directions to Muttontown or Stony Brook: 516-354-6506