

N32G430x6/x8 datasheet

N32G430 series based on 32-bit ARM Cortex-M4F kernel, run up to 128MHz, support floating-point unit and DSP instructions, up to 64KB embedded flash, 16KB SRAM, integrated high-performance analog interface, builtin 1x12bit 4.7Msps ADC, 3x high-speed comparators, Integrated multi-channel U(S)ART, I2C, SPI, CAN and other digital communication interfaces.

Kev features

• CPU core

- 32-bit ARM Cortex-M4 + FPU, DSP instruction
- Built-in 1KB instruction Cache, which support Flash acceleration unit to execute program 0 wait
- Run up to 128MHz, 160DMIPS

Encrypted memory

- Up to 64KByte of embedded Flash memory, supporting encrypted storage, multi-user partition management and data protection, 10,000 cycling and 10 years data retention.
- 16KByte of SRAM, retention in Stop2 mode, configurable in Standby mode

Power consumption mode

- Support Run, Sleep, Stop0, Stop2, Standby mode

High-performance analog interface

- 1x 12bit 4.7Msps ADC, 12/10/8/6 bits configurable, up to 16 external single-ended input channels, 3 internal single-ended input channels, support differential mode
- 3 high-speed comparators, built-in 64-level adjustable comparison benchmark

Clock

- HSE: 4MHz~32MHz external high-speed crystal
- LSE: 32.768KHz External low-speed crystal
- HSI: Internal high-speed RC 8MHz
- LSI: Internal low speed RC 40KHz
- Built-in high speed PLL
- MCO: Support 2-way clock output, configurable SYSCLK, HSI, HSE, LSI, LSE, and PLL clock output that can be divided

Reset

- Supports power-on/power-off/external pin reset
- Support watchdog reset, software reset
- Support programmable low voltage detection and reset

Up to 39+1 GPIOs are supported

Communication interface

- 4x U(S)ART interfaces, including 2x USART interfaces (supporting ISO7816, IrDA, LIN) and 2x UART interfaces
- 2x SPI interfaces, master mode up to 28Mbps(without CRC), 20Mbps(with CRC), slave mode up to 32Mbps, support I²S
- 2x I2C interfaces with a rate up to 1 MHz, which can be configured in master/slave mode and support dual address response in slave mode

- 1x CAN 2.0A/B bus interface, up to 1Mbps
- 1x DMA controller, supports 8 channels, channel source address and destination address can be arbitrarily configurable
- 1x RTC real-time clock, support leap year perpetual calendar, alarm clock event, periodic wake up, support internal and external clock calibration
- 1x Beeper, support complementary output, 12mA output drive capability

Timing counter

- 2x 16-bit advanced timer counters, support input capture, complementary output, orthogonal encoding input, maximum control accuracy 7.8ns; Each timer has four independent channels, Timer1 supports 4 channels and 8 complementary PWM output, Timer8 supports 3 channels and 6 complementary PWM output
- 4x 16-bit general purpose timer counters, each timer has 4 independent channels, support input capture/output comparison /PWM output
- 1x 16-bit basic timer counter
- 1x 16-bit low power timer counter, support single pulse and double pulse counting function, can work in STOP2 mode
- 1x 24-bit SysTick
- 1x 14-bit Window Watchdog (WWDG)
- 1x 12-bit Independent Watchdog (IWDG)

Programming mode

- Support SWD/JTAG online debugging interface
- Supports UART Bootloader

Security features

- Flash Storage encryption, Multi-user partition Management Unit(MMU)
- CRC16/32
- Support write protection (WRP), multiple read protection (RDP) levels (L0/L1/L2)
- Support safe start, program encryption download, security updates
- Support external clock failure detection, tamper detection

96-bit UID and 128-bit UCID

Working conditions

- Operating voltage range: 2.4V~3.6V
- Operating temperature range: -40°C ~ 105°C
- ESD: ±4KV (HBM model), ±2KV (CDM model)

Encapsulation

- LQFP32(7mm x 7mm)
- LQFP48(7mm x 7mm)
- QFN20(3mm x 3mm)
- QFN28(4mm x 4mm)
- QFN32(4mm x 4mm)
- QFN48(6mm x 6mm)

- TSSOP20(6.5mm x 4.4mm)

Ordering information

Series	Part Number						
N32G430x6	N32G430C6L7, N32G430K6L7 N32G430C6Q7, N32G430K6Q7, N32G430G6Q7, N32G430F6Q7, N32G430F6S7, N32G430F6S7-1						
N32G430x8	N32G430C8L7, N32G430K8L7 N32G430C8Q7, N32G430K8Q7, N32G430G8Q7, N32G430F8Q7, N32G430F8S7, N32G430F8S7-1						

Contents

1	Product introduction	10
	1.1 Part number information	11
	1.2 List of devices	
2	Function Introduction	12
4		
	2.1 Processor core	
	2.2 Storage	
	2.2.1 Embedded FLASH memory	
	2.2.2 Embedded SRAM	
	2.3 External interrupt/event controller (EXTI)	
	2.4 Clock system	
	2.5 Boot mode	
	2.6 Power supply scheme	
	2.7 Reset	
	2.8 Programmable voltage detector	
	2.9 Voltage regulator	
	2.10 Low power mode	
	2.11 Direct memory access (DMA)	
	2.12 Real time clock (RTC)	18
	2.13 Timer and watchdog	18
	2.13.1 Low power timer LPTIM	18
	2.13.2 Basic timer (TIM6)	
	2.13.3 General-purpose timer (TIMx)	
	2.13.4 Advanced control timer (TIM1 and TIM8)	
	2.13.5 SysTick timer (Systick)	
	2.13.6 Watchdog (WDG)	
	2.14 I ² C bus interface	
	2.15 Universal synchronous/asynchronous transceiver (USART)	22
	2.16 Serial peripheral interface (SPI)	
	2.17 Serial audio interface (I ² S)	
	2.18 Controller area network (CAN)	
	2.19 General purpose input/output interface (GPIO)	
	2.20 Analog/digital converter (ADC)	
	2.21 Analog comparator (COMP)	
	2.22 Temperature sensor (TS)	
	2.23 Beeper	
	 2.24 Cyclic redundancy check calculation unit (CRC) 2.25 Unique device serial number (UID) 	
	2.25 Unique device serial number (UID) 2.26 Serial wire JTAG debug port (SWJ-DP)	
3	Pin and description	30
	3.1 Pinouts	30
	3.1.1 LQFP32	
	3.1.2 LQFP48	
	3.1.3 QFN20	
	3.1.4 QFN28	
	3.1.5 QFN32	
	3.1.6 QFN48	
	3.1.7 TSSOP20	
	3.2 Pin definition	
1		
4	Electrical Characteristics	
	4.1 Parameter conditions	43
	4.1.1 Minimum and maximum values	
	4.1.2 Typical numerical values	43

	4.1.3	Typical curve	43
	4.1.4	Loading capacitor	43
	4.1.5	Pin input voltage	43
	4.1.6	Power supply scheme	
	4.1.7	Current consumption measurement	45
	4.2 A	Absolute maximum rating	46
	4.3 C	Operating conditions	46
	4.3.1	General operating conditions	46
	4.3.2	Operating conditions at power-on and power-off	47
	4.3.3	Embedded reset and power control module characteristics	47
	4.3.4	Embedded reference voltage	48
	4.3.5	Power supply current characteristics	48
	4.3.6	External clock source characteristics	
	4.3.7	Internal clock source characteristics	57
	4.3.8	Wakeup time from low power mode	
	4.3.9	PLL characteristics.	58
	4.3.10		
	4.3.11	Absolute maximum (electrical sensitivity)	
	4.3.12	1	
	4.3.13	NRST pin characteristics	
	4.3.14		
	4.3.15	I ² C Interface characteristics	
	4.3.16	SPI/I ² S interface characteristics	
	4.3.17	Controller area network (CAN) interface characteristics	
	4.3.18	Electrical parameters of 12 bit analog-to-digital converter (ADC)	
	4.3.19	1 ' ' 1	
	4.3.20	Temperature sensor (TS) characteristics	78
5	Packa	ge Information	79
	5.1 L	.QFP32	79
		QFP48	80
)FN20	
	5.4 Q)FN28	82
	5.5 Q)FN32	83
	5.6 Q)FN48	84
	5.7 T	SSOP20	85
		Marking Information	
6	Versio	on history	87
7	Notice	·	88

List of Tables

Table 1-1 N32G430 Series Resource Configuration	12
Table 2-1 Comparison of Timer functions	18
Table 3-1 Pin Definitions	37
Table 4-1 Voltage characteristics	46
Table 4-2 Current characteristics	46
Table 4-3 Temperature Characteristics	46
Table 4-4 General Operating Conditions	47
Table 4-5 Operating conditions at power-on and power-off	47
Table 4-6 Features of embedded reset and power control modules	47
Table 4-7 Built-in reference voltage	48
Table 4-8 Typical current consumption in operating mode where the data processing code is run from internal flash	49
Table 4-9 Typical current consumption in sleep mode, code running in internal flash running	50
Table 4-10 Typical current consumption in operating mode, where data processing code is run from internal Flash	51
Table 4-11 Typical current consumption in sleep mode	51
Table 4-12 Typical current consumption in shutdown and standby mode	52
Table 4-13 High-speed external user clock features	52
Table 4-14 Features of a low-speed external user clock	53
Table 4-15 HSE 4~32MHz oscillator characteristics (1)(2)	54
Table 4-16 LSE oscillator characteristics (f _{LSE} =32.768KHz) (1)	55
Table 4-17 HSI oscillator characteristics (1)(2)	57
Table 4-18 LSI oscillator characteristics (1)	57
Table 4-19 Wakeup time in low power mode	58
Table 4-20 PLL features	58
Table 4-21 Flash characteristics	58
Table 4-22 Flash endurance and data retention	59
Table 4-23 Absolute maximum ESD value	59
Table 4-24 Electrical sensitivity	59
Table 4-25 I/O static characteristics	60
Table 4-26 IO Output drive capability characteristics	60
Table 4-27 Output voltage characteristics	61
Table 4-28 Input/output AC characteristics (1)	61
Table 4-29 NRST pin characteristics	63
Table 4-30 TIM1/8 characteristics	64
Table 4-31 TIM2/3/4/5 characteristics	64
Table 4-32 LPTIM characteristics	64
Table 4-33 IWDG counting maximum and minimum reset time (LSI = 40 KHz)	64
Table 4-34 WWDG counting maximum and minimum reset time (APB1 PCLK1 = 32MHz)	65
Table 4-35 I ² C interface characteristics	65

Table 4-36 SPI characteristics (1)	. 67
Table 4-37 I ² S characteristics (1)	. 70
Table 4-38 ADC characteristics	. 72
Table 4-39 ADC sampling time ⁽¹⁾	. 74
Table 4-40 ADC accuracy-limited test conditions (1)(2)	. 75
Table 4-41 COMP characteristics (1)	. 78
Table 4-42 Temperature sensor characteristics	. 78

List of Figures

Figure 1-1 N32G430 Series Block Diagram	10
Figure 1-2 N32G430 Series Part Number Information	11
Figure 2-1 Memory map	14
Figure 2-2 Clock Tree	16
Figure 3-1 N32G430 Series LQFP32 pinout	30
Figure 3-2 N32G430 Series LQFP48 pinout	31
Figure 3-3 N32G430 Series QFN20 pinout	32
Figure 3-4 N32G430 Series QFN28 pinout	33
Figure 3-5 N32G430 Series QFN32 pinout	34
Figure 3-6 N32G430 Series QFN48 pinout	35
Figure 3-7 N32G430 Series TSSOP20 pinout	36
Figure 3-8 N32G430 Series TSSOP20 pinout	36
Figure 4-1 Pin loading conditions	43
Figure 4-2 Pin input voltage	44
Figure 4-3 Power supply scheme	44
Figure 4-4 Current consumption measurement scheme	45
Figure 4-5 AC timing diagram of an external high-speed clock source	54
Figure 4-6 AC timing diagram of an external low speed clock source	54
Figure 4-7 typical application using 8MHz crystal	55
Figure 4-8 Typical application of 32.768kHz crystal ⁽¹⁾	56
Figure 4-9 Definition of input/output AC characteristics	62
Figure 4-10 Propagation delay	62
Figure 4-11 Recommended NRST pin protection	63
Figure 4-12 I ² C bus AC waveform and measuring circuit (1)	66
Figure 4-13 SPI timing diagram-slave mode and CLKPHA=0	68
Figure 4-14 SPI timing diagram-slave mode and CLKPHA=1 (1)	68
Figure 4-15 SPI timing diagram- master mode (1)	69
Figure 4-16 I ² S slave mode timing diagram (Philips Protocol) (1)	71
Figure 4-17 I ² S master mode timing diagram (Philips protocol) (1)	71
Figure 4-18 ADC precision characteristics	76
Figure 4-19 Typical connection diagram using ADC	76
Figure 4-20 Decoupling circuit of power supply and reference power supply (V_{REF+} is connected to V_{DDA})	77
Figure 5-1 LQFP32 package outline	79
Figure 5-2 LQFP48 package outline	80
Figure 5-3 QFN20 package outline	81
Figure 5-4 QFN28 package outline	82
Figure 5-5 QFN32 package outline	83

Figure 5-6 QFN48 package outline	. 84
Figure 5-7 TSSOP20 package outline	. 85
Figure 5-8 Marking information	. 86

Product introduction

N32G430 family of microcontrollers features a high-performance 32-bit ARM CortexTM-M4F core, integrated floating point operation unit (FPU) and digital Signal processing (DSP), and supports parallel computing instructions. Maximum operating main frequency 128MHz, integrated up to 64KB of in-chip encrypted storage Flash, supports multi-user partition permission management, maximum 16KB of embedded SRAM. It has an internal high speed AHB bus, two low speed peripherals clock bus APB and bus matrix. It supports up to 40 reusable I/OS and provides a rich array of high performance analog interfaces, including 1x 12-bit 4.7Msps ADC, up to 16 external input channels and 3 internal channels. At the same time, it provides a variety of digital communication interfaces, including 4x U(S)ART, 2x I2C, 2x SPI/ I2S, 1x CAN 2.0B communication interface.

N32G430 series products can work stably in the temperature range of -40 $^{\circ}$ C to +105 $^{\circ}$ C, supply voltage from 2.4V to 3.6V, provide a variety of power modes for users to choose, refer to the requirements of low-power applications. This series of products are available in 20/28/32/48 pin package, according to the different package form, the device in the peripheral configuration is different.

Figure 1-1 N32G430 Series Block Diagram

Figure 1-1 N32G430 Series Block Diagram

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

1.1 Part number information

Figure 1-2 N32G430 Series Part Number Information

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

1.2 List of devices

Table 1-1 N32G430 Series Resource Configuration

D ()	т 1	N32G430F6S7	N32G430F8S7	N32G430	N32G430	N32G430	N32G430	N32G430K6L7	N32G430K8L7	N32G430C6L7	N32G430C8L7
Part Number			N32G430F8S7-1 ⁽¹⁾		F8Q7	G6Q7	G8Q7	N32G430K6Q7	N32G430K8Q7	N32G430C6Q7	N32G430C8Q7
Flash capacity (KB)		32	64	32	64	32	64	32	64	32	64
SRAM capacity (KB)		16	16	16	16	16	16	16	16	16	16
CPU fr	requency		ARM Cortex-M4F @128MHz, 160DMIPS								
working e	nvironment					2.4~3	.6V/-40~105	°C			
	General						4				
Timer	Advanced	2 (Timer1 supports 4 channels and 8 complementary output, Timer8 supports 3 channels and 6 complementary output)									
Tir	Basic	1									
	LPTIM						1				
n	SPI	2									
atio e	I2S	2									
nica	I2C	2									
Communication interface	UART		1 2								
mo'om ii	USART	2									
	CAN	1									
BEF	EPER						1				
Gl	PIO		15+1			23-	+1	25-	+1	39	+1
DMA 1											
Number o	of Channels					1	8 Channel				
12bit	t ADC	1		1				1		1	
Number of channels		9Chan	9Channel 7Channel 10Channel 16Channel							annel	
COMP		3									
security protection		security protection Read and write protection (RDP/WRP), storage encryption, partition protection, secure boot									
Pac	rkage	TSSO	P20	OF	QFN20 QFI		OEN29	LQF	P32	LQF	P48
Package		1550.	1 40	QFI	FN20 QFN28			QFN32 QFN48			N48

^{1.} PIN2/PIN3 of N32G430F6S7 and N32G430F8S7 are OSC_IN/OSC_OUT, PIN2/PIN3 of N32G430F6S7-1 and N32G430F8S7-1 are OSC32_IN/OSC32_OUT.

2 Function Introduction

2.1 Processor core

The N32G430 family integrates the latest generation of embedded ARM CortexTM-M4F processors, enhanced computing power based on the CortexTM-M3 core, new floating point processing unit (FPU), DSP and parallel computing instructions, providing excellent performance of 1.25DMIPS/MHz. Its efficient signal processing capabilities are combined with the advantages of low power consumption, low cost, and ease of use of the Cortex-M family of processors to meet the requirements of a mixture of control and signal processing capabilities and easy to use applications.

The ARM CortexTM-M4F 32-bit compact instruction set processor provides excellent code efficiency.

Note: Cortex-M4F is backward compatible with Cortex-M3 code.

2.2 Storage

N32G430 series devices include embedded encrypted Flash memory and embedded SRAM.

Figure 2-1 Memory map

2.2.1 Embedded FLASH memory

Integrated from 32K to 64K bytes embedded encryption FLASH (FLASH), used to store programs and data, page size of 2Kbyte, supporting page erasing, word writing, word reading, half word reading, byte reading operations.

Support storage encryption protection, write automatic encryption, read automatic decryption (including program execution operation).

Support user partition management, can be divided into a maximum of two user partitions, different users cannot access each other's data (only executable code).

2.2.2 Embedded SRAM

The chip integrates a built-in SRAM of up to 16K bytes. In RUN, SLEEP, STOP0, STOP2 and STANDBY mode, SRAM data can be retained.

2.2.3 Nested vector interrupt controller (NVIC)

Built-in nested vector interrupt controller, capable of handling up to 53 maskable interrupt channels (not including the 16 CortexTM-M4F interrupts) and 16 priorities.

- ◆ Tightly coupled NVIC enables low latency interrupt response processing
- ◆ Interrupt vector entry address directly into the kernel
- ◆ Tightly coupled NVIC interface
- Allows early handling of interrupts
- Handles late arriving higher-priority interrupts
- ◆ Support interrupt tail link function
- ◆ Automatically saves processor state
- ◆ Automatically resumes when the interrupt returns with no additional instruction overhead

This module provides flexible interrupt management with minimal interrupt latency.

2.3 External interrupt/event controller (EXTI)

The external interrupt/event controller contains 24 edge detectors for generating interrupt/event requests. Each interrupt line can be independently configured with its triggering event (rising edge or falling edge or bilateral edge) and can be individually shielded. There is a suspended register that maintains the state of all interrupt requests. EXTI can detect clock cycles with pulse widths smaller than internal APB2. Up to 40 universal I/O ports are connected to 16 external interrupts.

2.4 Clock system

The device provides a variety of clocks for users to choose from, including internal high speed RC oscillator HSI (8MHz), internal low speed clock LSI (40KHz), external high speed clock HSE (4MHz~32MHz), external low speed clock LSE (32.768kHz),PLL.

During reset, the internal HSI clock is set as the default CPU clock, and then the user can choose the external HSE clock with failure monitoring function. When an external clock failure is detected, it will be isolated, the system will automatically switch to HSI, and if interrupts are enabled, the software can receive the corresponding interrupt. Also, complete interrupt management of the PLL clock can be adopted when needed (such as when an indirectly used external oscillator fails).

The built-in clock security system detects whether the external HSE or LSE fails in real time. If the external clock fails, HSE will automatically switches to internal clock and generates an interrupt alarm.

Multiple prescalers are used to configure the AHB frequency, high speed APB(APB2) and low speed APB(APB1) regions. AHB has a maximum frequency of 128MHz, APB2 has a maximum frequency of 64MHz and APB1 has a maximum frequency of 32MHz.

Figure 2-2 Clock Tree

2.5 Boot mode

At BOOT time, the BOOT mode after reset can be selected with the BOOT0 pin and option byte BOOT configuration (USER2).

- Boot from program FLASH Memory
- Boot from System Memory
- Boot from internal SRAM

The Bootloader is stored in the system memory and can program the flash memory through USART1 interface.

2.6 Power supply scheme

- $V_{DD} = 2.4 \sim 3.6 \text{V}$: The V_{DD} pin supplies power to the I/O pin and the internal voltage regulator.
- V_{SSA} , $V_{DDA} = 2.4V \sim 3.6V$: provides power supply for ADC, COMP. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} respectively. See Figure 4-3.

2.7 Reset

POR circuit is integrated inside the device. This part of the circuit is always in working state to ensure that the system works stably when the power supply exceeds 2.4V. When V_{DD} falls below a set threshold ($V_{POR/PDR}$), place the device in the reset state without using an external reset circuit.

2.8 Programmable voltage detector

The device has a built-in programmable voltage detector (PVD), which monitors the power supply of V_{DD} and compares it with the threshold V_{PVD} . When V_{DD} is lower or higher than the threshold V_{PVD} , an interrupt will be generated. The interrupt handler can send a warning message, and the PVD function needs to be started through the program. See Table 4-6 for values of $V_{POR/PDR}$ and V_{PVD} .

2.9 Voltage regulator

The voltage regulator has three control modes:

- Master mode, MCU run in RUN, SLEEP, STOP0 modes
- Low power mode, MCU run in STOP0 mode
- Turn off mode, MCU run in STOP2, STANDBY modes

The voltage regulator is always in the master mode after the MCU reset.

2.10 Low power mode

The N32G430 series supports four low-power modes.

SLEEP mode

In SLEEP mode, only the CPU stops and all peripherals are active and can wake up the CPU when an interrupt/event occurs.

■ STOP0 mode

STOP0 mode is based on Cortex®-M4F deep sleep mode, combined with peripheral clock control mechanism. The voltage regulator can be configured in normal or low power mode. In STOP0 mode, most clock sources in the core domain are disabled, such as PLL, HSI and HSE. But SRAM and all register contents retention.

In STOP0 mode, all I/O pins remain in the same state as in run mode.

■ STOP2 mode

STOP2 mode is based on the Cortex®-M4F deep sleep mode, and all the core digital logic areas are powered off. Main voltage regulator (MR) is off, HSE/HSI/PLL is off. CPU register retention, LSE/LSI optional work, RCC retention, all GPIO retention, SRAM retention, 80 byte backup register retention, RET domain and Backup domain work normally.

Wake up: The microcontroller can be woken up from STOP2 mode by any signal configured as EXTI, which can be 16 external EXTI signals (I/O related), WKUP pins wakeup, RTC periodic wake up, RTC alarm, RTC tamper, RTC timestamp, NRST reset, IWDG reset.

■ STANDBY mode

In STANDBY mode, the current consumption is low. Internal voltage regulator is turned off, PLL, HSI RC oscillator and HSE crystal oscillator are also turned off, only LSE and LSI can optionally work; After entering STANDBY mode, IO output states are maintained, main domain register contents will be lost, SRAM is optional, and the STANDBY circuit still works.

Before entering the STANDBY mode, if pins PA13 and PA14 are used as non-debug pins, and configured as input mode, it is necessary to add strong pull-down resistance on pins PA13 and PA14. The pull-down resistance is recommended

to be within $10K\Omega$.

An external reset signal on the NRST, an IWDG reset, a rising/falling edge on three WKUP pins, a RTC periodic wake up, a RTC alarm, a RTC timestamp and a RTC tamper can wake up the microcontroller from STANDBY mode.

Note: RTC, IWDG and corresponding clock can not be stopped when entering standby mode.

2.11 Direct memory access (DMA)

The device integrates a flexible general-purpose DMA controller that supports eight DMA channels to manage data transfers from memory to memory, peripherals to memory, and memory to peripherals. The DMA controller supports the management of ring buffers, avoiding interruptions when controller transfers reach the end of the buffer.

Each channel has dedicated hardware DMA request logic, and each channel can be triggered by software. The transmission length, source address and destination address of each channel can be set separately by software.

DMA can be used with major peripherals: SPI, I2C, USART, general, basic and advanced timers TIMx, I2S, ADC.

2.12 Real time clock (RTC)

RTC is a set of continuously running counters with a built-in calendar clock module that provides a perpetual calendar function, as well as alarm interrupt and periodic interrupt (minimum 2 clock cycles) functions. The RTC will not be reset by the system reset, nor will it be reset when wake up from STANDBY mode. The RTC can be driven by either a 32.768kHz external crystal oscillator, an internal low-power 40KHz RC oscillator, or a high-speed external clock with 128 frequency divisions. For application scenarios requiring very high timing accuracy, it is recommended to use an external 32.768kHz clock as the clock source. Meanwhile, to compensate for the clock deviation of natural crystal, a 256Hz signal can be output to calibrate the clock of RTC. The RTC has a 22-bit predivider for a time-based clock, which will produce a 1-second long time reference at 32.768kHz by default. In addition, RTC can be used to trigger wake up in low-power mode.

2.13 Timer and watchdog

Up to 2 advanced control timers, 4 general-purpose timers and 1 basic timers, 1 low power timer, 2 watchdog timers and 1 system tick timer.

The following table compares the functions of advanced control timer, general-purpose timer and basic timer:

Timer	Counter resolution	Counter type	Prescaler factor	Generate DMA requests	Capture/ compare channels	Complementary output
TIM1 TIM8	16	Up, down, up/down	Any integer between 1 and 65536	Y	4	Y
TIM2 TIM3 TIM4 TIM5	16	Up, down, up/down	Any integer between 1 and 65536	Y	4	N
TIM6	16	upward	Any integer between 1 and 65536	Y	0	N

Table 2-1 Comparison of Timer functions

2.13.1Low power timer LPTIM

The LPTIM is a 16-bit timer with multiple clock sources, it can keep running in all power modes except for Standby mode. LPTIM can run without internal clock source, it can be used as a "Pulse Counter". Also, the LPTIM can wake up the system from low-power modes, to realize "Timeout functions" with extreme low power consumption.

The main functions of the low-power timer are as follows:

- 16-bit upcounter
- Clock prescaler with 3-bit to provide 8 dividing factors (1,2,4,8,16,32,64,128)
- Multiple clock sources

Internal: LSE, LSI, HSI or APB1 clock

External: LPTIM Input1 (working with no LP oscillator running used by Pulse Counter application)

- 16-bit auto-reload register
- 16-bit compare register
- Continuous or One-shot counting mode
- Programmable software or hardware input trigger
- Programmable digital filter for filtering glitch
- Configurable output: Pulse, PWM
- Configurable I/O polarity
- Encoder mode
- Pulse counting mode, support single pulse counting, double pulse counting (orthogonal and non-orthogonal)

2.13.2Basic timer (TIM6)

The basic timer contains a 16-bit counter.

The basic timer has the following functions:

- 16-bit auto-reload up-counting counters.
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- The events that generate the interrupt/DMA are as follows:
 - Update event

2.13.3General-purpose timer (TIMx)

The general-purpose timers (TIM2, TIM3, TIM4 and TIM5) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

The main functions of the universal timer include:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting)
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and 65536)
- TIM2, TIM3, TIM4 and TIM5 up to 4 channels.
- Channel's working modes: PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - ♦ Output compare
- TIM can be controlled by external signal

- TIM can be linked internally for timer synchronization or chaining
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;
- Hall sensor interface: used to do three-phase motor control;

2.13.4Advanced control timer (TIM1 and TIM8)

The advanced control timers (TIM1 and TIM8) is mainly used in the following occasions: counting the input signal, measuring the pulse width of the input signal and generating the output waveform, etc.

Advanced timers have complementary output function with dead-time insertion and break function. Suitable for motor control.

The main functions of the advanced timer include:

- 16-bit auto-reload counters. (It can realize up-counting, down-counting, up/down counting). TIM1 support center-aligned asymmetric mode.
- 16-bit programmable prescaler. (The frequency division factor can be configured with any value between 1 and
- Programmable Repetition Counter
- TIM1 up to 9 channels, TIM8 up to 6 channels.
- 4 capture/compare channels, the working modes are PWM output, ouput compare, one-pulse mode output, input capture.
- The events that generate the interrupt/DMA are as follows:
 - Update event
 - Trigger event
 - Input capture
 - Output compare
 - Break input
- Complementary outputs with adjustable dead-time.
 - For TIM1, channel 1,2,3,4 support this feature.
 - For TIM8, channel 1,2,3 support this feature
- TIM can be controlled by external signal
- TIM can be linked internally for TIM synchronization or chaining
- TIM1_CC5 and TIM8_CC5 for COMP blanking.
- For TIM1, the pulse signal output by channel 4/7/8/9 is configured as the rising and falling edges to trigger the ADC.
- Incremental (quadrature) encoder interface: used for tracking motion and resolving rotation direction and position;
- Hall sensor interface: used to do three-phase motor control;

2.13.5SysTick timer (Systick)

This timer is dedicated to real-time operating systems and can also be used as a standard decrement counter.

It has the following characteristics:

- 24 bit decrement counter
- Automatic reloading function
- A maskable system interrupt is generated when the counter is 0

Programmable clock source

2.13.6Watchdog (WDG)

Support for two watchdog independent watchdog (IWDG) and window watchdog (WWDG). Two watchdogs provide increased security, time accuracy, and flexibility in use.

Independent Watchdog (IWDG)

The independent watchdog is based on a 12-bit decrepit counter and a 3-bit prescaler. It is driven by a separate low-speed RC oscillator that remains active even if the master clock fails and operates in STOP and STANDBY modes. Once activated, if the dog is not fed (clears the watchdog counter) within the set time, the IWDG generates a reset when the counter counts to 0x000. It can be used to reset the entire system in the event of an application problem, or as a free timer to provide time-out management for applications. The option byte can be configured to start the watchdog software or hardware. Reset and low power wake up are available.

Window Watchdog (WWDG)

A window watchdog is usually used to detect software failures caused by an application deviating from the normal running sequence due to external interference or unforeseen logical conditions. Unless the decline counter value is flushed before the T6 bit becomes zero, the watchdog circuit generates an MCU reset when the preset time period is reached. If the 14-bit decrement counter value (in the control register) is flushed before the decrement counter reaches the window register value, then an MCU reset will also occur. This indicates that the decrement counter needs to be refreshed in a finite time window.

Main features:

- ♦ WWDG is driven by the clock generated after the APB1 clock is divided.
- ◆ Programmable free-running decrement counter;
- ♦ Reset condition:
 - ♦ When the decrement counter is less than 0x40, a reset occurs (if the watchdog is started);
 - ◆ A reset occurs when the decrement counter is reloaded outside the window (if the watchdog is started);
 - ◆ If the watchdog is enabled and interrupts are allowed, an early wake up interrupt (EWINT) occurs when the decrement counter equals 0x40, which can be used to reload the counter to avoid WWDG reset.

2.14 I²C bus interface

The device integrates up to two independent I2C bus interfaces, which provide multi-host function and control all I2C bus-specific timing, protocol, arbitration and timeout. Supports multiple communication rate modes (up to 1MHz), supports DMA operations and is compatible with SMBus 2.0. The I2C module provides multiple functions, including CRC generation and verification, System Management Bus(SMBus), and Power Management Bus(PMBus).

The functions of the I2C interface are described as follows:

- ♦ Multi-master function: this module can be used as master device or slave device;
- ◆ I2C master device function;
 - Generate a clock;
 - Generate start and stop signals;
- ◆ Function of I2C slave device
 - Programmable address detection;
 - The I2C interface supports 7-bit or 10-bit addressing and dual-slave address response capability in 7-bit slave mode.
 - Stop bit detection;

- Generate and detect 7-bit / 10-bit addresses and broadcast calls;
- Support different communication speeds;
 - Standard speed (up to 100 kHz);
 - Fast (up to 400 kHz);
 - Fast + (up to 1MHz);
- Status flags:
 - Transmitter/receiver mode flag;
 - Byte transfer complete flag;
 - I2C bus busy flag;
- Error flags:
 - Arbitration is missing in Master mode
 - Acknowledge (ACK) error after address/data transfer;
 - Error start or stop condition detected
 - Overrun or underrun when clock extending is disable;
- ◆ Two interrupt vectors:
 - 1 interrupt for address/data communication success;
 - 1 interrupt for an error;
- Optional extend clock function
- ◆ DMA of single-byte buffers;
- ◆ Generation or verification of configurable PEC(Packet error detection)
- ◆ In transmit mode, the PEC value can be transmitted as the last byte
- PEC error check for the last received byte
- ◆ SMBus 2.0 compatible
 - Timeout delay for 25ms clock low
 - 10 ms accumulates low clock extension time of master device
 - 25 ms accumulates low clock extension time of slave device
 - PEC generation/verification of hardware with ACK control
 - Support address resolution protocol (ARP)
- ◆ Compatible with the PMBus

2.15 Universal synchronous/asynchronous transceiver (USART)

N32G430 series products integrate up to 4 serial transceiver interfaces, including 2 universal synchronous/asynchronous transceivers (USART1 and USART2) and 2 universal asynchronous transceivers (UART3 and UART4). These four interfaces provide asynchronous communication, support for IrDA SIR ENDEC transmission codec, multi-processor communication mode, single-line half-duplex communication mode, and LIN master/slave function.

The USART1 and USART2 interfaces have hardware CTS and RTS signal management, ISO7816-compatible smart card mode, and SPI-like communication mode, all of which can use DMA operations.

Main features of USART are as follows:

◆ Full duplex, asynchronous communication;

- NRZ standard format;
- Fractional baud rate generator system, baud rate programmable, used for sending and receiving
- ◆ Programmable data word length (8 or 9 bits)
- ◆ Configurable stop bit, supporting 1 or 2 stop bits;
- ◆ LIN master's ability to send synchronous interrupters and LIN slave's ability to detect interrupters. When USART hardware is configured as LIN, it generates 13 bit interrupters and detects 10/11 bit interrupters
- Output sending clock for synchronous transmission;
- ◆ IRDA SIR encoder decoder, supports 3/16 bit duration in normal mode;
- Smart card simulation function;
 - The smart card interface supports the asynchronous smart card protocol defined in ISO7816-3.
 - 0.5 and 1.5 stop bits for smart cards;
- Single-wire half duplex communication;
- ◆ Configurable multi-buffer communication using DMA, receiving/sending bytes in SRAM using centralized DMA buffer;
- ◆ Independent transmitter and receiver enable bits;
- Test flag
 - Receive buffer is full
 - Send buffer empty
 - End of transmission flag
- Parity control
 - Send parity bit
 - Verify the received data
- ◆ Four error detection flags;
 - Overflow error
 - Noise error
 - Frame error
 - Parity error
- ◆ 10 USART interrupt sources with flags
 - CTS change
 - LIN disconnect detection
 - Send data register is empty
 - Send complete
 - Received data register is full
 - Bus was detected to be idle
 - Overflow error
 - Frame error
 - Noise error
 - Parity the error

- Multi-processor communication, if the address does not match, then enter the silent mode;
- ♦ Wake up from silent mode (via idle bus detection or address flag detection)
- ◆ There are two ways to wake up the receiver: address bit (MSB, bit 9), bus idle
- Mode configuration:

USART modes	USART1	USART2	UART3	UART4
Asynchronous mode	support	support	support	support
Hardware flow control	support	support	Does not support	Does not support
Multiple Cache communication (DMA)	support	support	support	support
Multiprocessor communication	support	support	support	support
Synchronous mode	support	support	Does not support	Does not support
The smart card	support	support	Does not support	Does not support
Half Duplex (Single wire mode)	support	support	support	support
IrDA	support	support	support	support
LIN	support	support	support	support

2.16 Serial peripheral interface (SPI)

The device integrates two SPI interfaces, reusable as an I2S interface, SPI shares resources with I2S.

SPI allow the chip to communicate with peripheral devices in a half/full duplex, synchronous, serial manner. This interface can be configured in master mode and provides a communication clock (SCK) for external slave devices. Interfaces can also work in a multi-master configuration. It can be used for a variety of purposes, including two-line simplex synchronous transmission using a two-way data line, and reliable communication using CRC checks.

The main functions of SPI interfaces are as follows:

- ◆ 3-wire full-duplex synchronous transmission;
- ◆ Two-wire simplex synchronous transmission with or without a third bidirectional data line;
- ◆ 8 or 16 bit transmission frame format selection;
- Master or slave operations;
- Support multi-master mode;
- ◆ 8 master mode baud rate predivision frequency coefficient (maximum f_{PCLK}/2);
- ◆ Slave mode frequency (maximum f_{PCLK} /2);
- Fast communication between master mode and slave mode;
- ◆ NSS can be managed by software or hardware in both master and slave modes: dynamic change of master/slave modes;
- Programmable clock polarity and phase;
- ◆ Programmable data order, MSB before or LSB before;
- Dedicated send and receive flags that trigger interrupts;
- SPI bus busy flag;
- Hardware CRC for reliable communication;
 - In send mode, the CRC value can be sent as the last byte;
 - In full-duplex mode, CRC is automatically performed on the last byte received.
- ◆ Master mode failures, overloads, and CRC error flags that trigger interrupts
- ♦ Single-byte send and receive buffer with DMA capability: generates send and receive requests

◆ Maximum interface speed: master mode 28Mbps(without CRC), 20Mbps(with CRC), slave mode 32Mbps

2.17 Serial audio interface (I²S)

I²S is a 3-pin synchronous serial interface communication protocol. The device integrates two standard I²S interfaces (multiplexed with SPI) and can operate in master or slave mode. The two interfaces can be configured for 16-bit, 24-bit or 32-bit transmission, or as input or output channels, supporting audio sampling frequencies from 8KHz to 96KHz. It supports four audio standards, including Philips I²S, MSB and LSB alignment, and PCM.

It can work in master and slave mode in half duplex communication. When it acts as a master device, it provides clock signals to external slave devices through an interface.

The main functions of I²S interface are as follows;

- Simplex communication (send or receive only);
- Master or slave operations;
- ◆ 8-bit linear programmable prescaler for accurate audio sampling frequencies (8 KHZ to 96KHz);
- ◆ The data format can be 16, 24, or 32 bits;
- ◆ Audio channel fixed packet frame is 16 bit (16 bit data frame) or 32 bit (16, 24 or 32 bit data frame);
- Programmable clock polarity (steady state);
- ◆ The overflows flag bit in slave sending mode and the overflows flag bit in master/slave receiving mode;
- 16-bit data registers are used for sending and receiving, with one register at each end of the channel;
- ◆ Supported I²S protocols:
 - I²S Philips standard;
 - MSB alignment standard (left aligned);
 - LSB alignment standard (right aligned);
 - PCM standard (16-bit channel frame with long or short frame synchronization or 16-bit data frame extension to 32-bit channel frame);
- ◆ The data direction is always MSB first;
- Both send and receive have DMA capability;
- ◆ The master clock can be output to external audio devices at a fixed rate of 256xFs(Fs is the audio sampling frequency)

2.18 Controller area network (CAN)

The device integrates a CAN bus interface compatible with 2.0A and 2.0B (active) specifications, with bit rates up to 1Mbps. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers.

Main features:

- ◆ Support CAN protocol 2.0A and 2.0B active mode;
- ◆ Baud rate up to 1Mbps;
- Supports time-triggered communication
- ◆ send
 - Three sending mailboxes
 - The priority of sent packets can be configured by software

• Records the timestamp of the time when the SOF was sent

receive

- Level 3 depth of 2 receiving FIFO
- Variable filter group:
- There are 14 filter groups
- Identifier list
- The FIFO overflow processing mode is configurable
- Record the time stamp of the receipt of the SOF
- ◆ Time-triggered communication mode
 - Disable automatic retransmission mode
 - 16-bit free run timer
 - Timestamp can be sent in the last 2 bytes of data
- management
 - Interrupt masking
 - The mailbox occupies a separate address space to improve software efficiency

2.19 General purpose input/output interface (GPIO)

Up to 39+1 GPIO, which can be divided into four groups (GPIOA/GPIOB/GPIOC/GPIOD). Each group of GPIOA, GPIOB has 16 ports, GPIOC has 3 ports and GPIOD has 4+1 ports. Each GPIO pin can be configured by software as an output (push pull or open drain), input (with or without pull-up/pull-down), or multiplexing peripheral function port. Most GPIO pins are shared with digital or analog multiplexing peripherals, and some I/O pins are multiplexed with clock pins. All GPIO pins except ports with analog input capability have high current passing capability.

GPIO features are described as follows:

- Each bit of the GPIO port can be configured separately by the software into multiple modes:
 - Input floating;
 - Input pull up (weak pull up);
 - Input pull down (weak pull down);
 - Analog input;
 - Open drain output;
 - Push-pull output;
 - Push-pull multiplexing function;
 - Open drain multiplexing function.
- ◆ General I/O (GPIO)
 - During and just after reset, the alternate functions are not enabled, except for BOOT0 (which is an
 input pull-down) and NRST pin, the I/O port is configured to analog input mode.
 - After reset, the default state of pins associated with the debug system is enable SWD-JTAG, the JTAG pin is placed in input pull-up or pull-down mode:
 - ✓ JTDI in pull-up mode;

- ✓ JTCK in drop down mode;
- ✓ JTMS in pull-up mode;
- ✓ NJTRST is placed in pull-up mode
- When configured as output, values written to the output data registers are output to the appropriate
 I/O pins. Can be output in push pull mode or open drain mode
- Separate bit setting or bit clearing functions;
- ◆ External interrupt/wake up: All ports have external interrupt capability. In order to use external interrupts, ports must be configured in input mode.
- ◆ Alternate function :(port bit configuration register must be programmed before using default alternate function)
- ◆ GPIO lock mechanism, which freezes I/O configurations. When a LOCK is performed on a port bit, the configuration of the port bit cannot be changed until the next reset.
- ◆ Precautions for using GPIO
 - When VDD and VDDA are not powered on, the voltage applied to GPIO must not exceed 3.6V;
 - When the voltage applied to GPIO is 5.5V, VDD and VDDA must not be lower than 2.4V;
 - If you do not want the MCU have leakage, you need to ensure that the voltage applied to the GPIO
 is less than or equal to VDD and VDDA;
 - When the voltage applied on GPIO is greater than VDD and VDDA, if you want to reduce the leakage current of MCU, you need to connect a resistor in series with GPIO.

2.20 Analog/digital converter (ADC)

The device supports a 12-bit 4.7Msps sequential comparison ADC with a sampling rate of single-ended and differential inputs, measuring 16 external and 3 internal sources.

The main features of ADC are described as follows:

- ♦ Support 12/10/8/6 bit resolution configurable
 - The highest sampling rate at 12bit resolution is 4.7MSPS
 - The maximum sampling rate at 10bit resolution is 5.3MSPS
 - The maximum sampling rate at 8bit resolution is 7.2MSPS
 - The maximum sampling rate at 6bit resolution is 8.8MSPS
- ♦ ADC clock source is divided into working clock source, sampling clock source and timing clock source
 - AHB_CLK can be configured as the working clock source, up to 128MHz
 - PLL can be configured as a sampling clock source, up to 80MHZ, support 1,2,4,6,8,10,12,16,32, 64,128,256 frequency division
 - The AHB_CLK can be configured as the sampling clock source, up to 80MHz, and supports frequency 1,2,4,6,8,10,12,16,32
 - The timing clock is used for internal timing functions and the frequency must be configured to
 1MHz
- Supports timer trigger ADC sampling

- Interrupts when conversion ends, injection conversion ends, and analog watchdog events occur
- ◆ Single and continuous conversion modes
- Automatic scan mode from channel 0 to channel N
- ◆ Support for self-calibration
- Data alignment with embedded data consistency
- ◆ Sampling intervals can be programmed separately by channel
- ◆ Both regular conversions and injection conversions have external triggering options
- Continuous mode
- ◆ ADC power supply requirements: 2.4V to 3.6V
- ♦ ADC input range: $VREF \le VIN \le VREF +$
- ◆ ADC can use DMA operations, and DMA requests are generated during regular channel conversion.
- ◆ Analog watchdog function can monitor one, multiple, or all selected channels with great precision. When the monitored signal exceeds the preset threshold, an interruption will occur.

2.21 Analog comparator (COMP)

The device integrates up to 3 comparators. It can be used as a separate device (all ports of the comparator are plugged into the I/O) or in combination with a timer. In the case of motor control, it can be combined with the PWM output from the timer to form periodic current control.

The main functions of comparator are as follows:

- ◆ Rail to rail comparators are supported
- The reverse and forward sides of the comparator support the following inputs
 - Optional I/O
 - DAC channel output
 - Internal 64 level adjustable voltage input reference
- Programmable hysteresis can be configured as no hysteresis, low hysteresis, medium hysteresis, and high hysteresis
- ◆ The comparator can output to EITHER I/O or timer input for triggering
 - Capture events
 - OCREF_CLR events (for periodic current control)
 - The brake events
- ◆ The comparator supports output filtering, including analog and digital filtering
- ◆ Support comparator output with blanking, you can choose forbidden energy blanking or Timer1_OC5/Timer8_OC5 as blanking input;
- ◆ Each comparator can have interrupt wake up capability, support from Sleep mode and Stop0 mode wake up;

2.22 Temperature sensor (TS)

The temperature sensor generates a voltage that varies linearly with temperature in the range of 2.4V <V < 3.6V. The

temperature sensor is internally connected to the ADC_IN17 input channel for converting the output of the temperature sensor to digital values.

2.23 Beeper

The beeper module supports complementary outputs and can generate periodic signals to drive external passive buzzers. Used to generate a beep or the alarm to sound.

2.24 Cyclic redundancy check calculation unit (CRC)

Integrated CRC32 and CRC16 functions, the cyclic redundancy check (CRC) calculation unit is based on a fixed generation polynomial to obtain any CRC calculation results. In many applications, CRC-based techniques are used to verify data transfer or storage consistency. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting flash memory errors, CRC cells can be used to calculate signatures of software in real time and compare them with signatures generated when linking and generating the software.

The CRC has the following features:

- CRC16: supports polynomials $X^{16} + X^{15} + X^2 + X^0$
- lack CRC32: supports polynomials $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
- ◆ CRC16 calculation time: 1 AHB clock cycle (HCLK)
- ◆ CRC32 calculation time: 1 AHB clock cycle (HCLK)
- ◆ The initial value for cyclic redundancy computing is configurable
- Support DMA mode

2.25 Unique device serial number (UID)

N32G430 series products have two built-in unique device serial numbers of different lengths, which are 96-bit Unique Device ID (UID) and 128-bit Unique Customer ID (UCID). These two device serial numbers are stored in the system configuration block of flash memory. The information they contain is written at the time of delivery and is guaranteed to be unique to any of the N32G430 series microcontrollers under any circumstances and can be read by user applications or external devices through the CPU or JTAG/SWD interface and cannot be modified.

The 96-bit UID is usually used as a serial number or password. When writing flash memory, this unique identifier is combined with software encryption and decryption algorithm to further improve the security of code in flash memory.

UCID is 128-bit, which complies with the definition of national technology chip serial number. It contains the information related to chip production and version.

2.26 Serial wire JTAG debug port (SWJ-DP)

Embedded ARM SWJ-DP interface, which is a combination of JTAG and serial single-line debugging interface, can achieve serial single-line debugging interface or JTAG interface connection. The JTMS and JTCK signals of JTAG share pins with SWDIO and SWCLK respectively, and a special signal sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.

3 Pin and description

3.1 Pinouts

3.1.1 LQFP32

Figure 3-1 N32G430 Series LQFP32 pinout

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

3.1.2 LQFP48

Figure 3-2 N32G430 Series LQFP48 pinout

3.1.3 QFN20

Figure 3-3 N32G430 Series QFN20 pinout

3.1.4 QFN28

Figure 3-4 N32G430 Series QFN28 pinout

3.1.5 QFN32

Figure 3-5 N32G430 Series QFN32 pinout

3.1.6 QFN48

Figure 3-6 N32G430 Series QFN48 pinout

3.1.7 TSSOP20

Figure 3-7 N32G430 Series TSSOP20 pinout

This pinout is for N32G430F6S7 and N32G430F8S7.

Figure 3-8 N32G430 Series TSSOP20 pinout

This pinout is for N32G430F6S7-1 and N32G430F8S7-1.

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

3.2 Pin definition

Table 3-1 Pin Definitions

TSSOP20	QFN20	QFN28	QFN32 LQFP32	QFN48 LQFP48	Pin name (function after reset)	$\mathbf{Type}^{(1)}$	I/O ⁽²⁾	Fail-safe ⁽⁴⁾	Alternate functions ⁽³⁾	Additional functions
-	-	-	1	1	VDD	S	-	-	-	-
-	-	-	-	2	PC13_TAMPER- RTC	I/O	FT	Y	TIM1_CH1N EVENTOUT	RTC-TAMP1 RTC_OUT WKUP3
2(7)	1	-	-	3	PC14-OSC32_IN	I/O	FTa	Y	-	OSC32_IN
3(7)	2	-	-	4	PC15-OSC32_OUT	I/O	FTa	Y	-	OSC32_OUT
2(8)	-	2	2	5	PD14-OSC_IN	I/O	FTa	Y	USART2_TX I2C2_SDA TIM1_CH3N	OSC_IN
3(8)	-	3	3	6	PD15-OSC_OUT	I/O	FTa	Y	USART2_RX I2C2_SCL TIM1_CH2N	OSC_OUT
4	3	4	4	7	NRST	I	-	-	-	-
-	-	-	-	8	VSSA/VREF-	S	-	-	-	-
5	4	5	5	9	VDDA/VREF+	S	-	-	-	-
6	5	6	6	10	PA0	I/O	FTa	Y	USART2_CTS TIM2_CH1 TIMER2_ETR TIM5_CH1 TIM8_ETR SPI1_MISO I2S1_MCK EVENTOUT COMP1_OUT TIM1_CH1 UART4_TX	ADC_IN1 ⁽⁵⁾ COMP1_INM COMP1_INP WKUP2 RTC-TAMP2 COMP3_INP
7	6	7	7	11	PA1	I/O	FTa	Y	USART2_RTS TIM5_CH2 TIM2_CH2 EVENTOUT SPI1_NSS TIM1_CH1N	ADC1_IN2 ⁽⁵⁾ COMP1_INP
8	-	8	8	12	PA2	I/O	FTa	Y	USART2_TX TIM5_CH3 TIM2_CH3 I2C2_SDA COMP2_OUT EVENTOUT TIM8_BKIN TIM8_CH1	ADC_IN3 ⁽⁵⁾ COMP2_INM COMP1_INP
9	-	9	9	13	PA3	I/O	FTa	Y	USART2_RX TIM5_CH4 I2C2_SCL EVENTOUT TIM8_CH2	ADC_IN4 ⁽⁵⁾ COMP2_INP COMP3_INM

			100							
10	7	10	10	14	PA4	I/O	FTa	Y	USART2_CK I2C1_SCL SPI1_NSS I2S1_WS USART1_TX EVENTOUT CAN_RX LPTIM_OUT SPI2_NSS TIM8_CH3 I2S2_WS TIM4_CH3	ADC_IN5 ⁽⁵⁾ COMP1_INM COMP2_INM
11	8	11	11	15	PA5	I/O	FTa	Y	SPI1_SCK I2C1_SDA I2S1_CK USART1_RX EVENTOUT CAN_TX LPTIM_IN1 TIM8_CH4 TIM4_CH4	ADC_IN6 ⁽⁶⁾ COMP1_INM COMP2_INM
12	9	12	12	16	PA6	I/O	FTa	Y	SPI1_MISO I2S1_MCK TIM8_BKIN TIM3_CH1 TIM1_BKIN COMP2_OUT EVENTOUT BEEPER_OUT _P TIM8_CH3 USART2_TX COMP3_OUT	ADC_IN7 ⁽⁶⁾ COMP2_INM COMP2_INP
13	10	13	13	17	PA7	I/O	FTa	Y	TIM1_CH2N SPI1_MOSI I2S1_SD TIM1_CH1N TIM8_CH1N TIM3_CH2 COMP2_OUT EVENTOUT USART2_RX BEEPER_OUTN TIM1_CH4 TIM4_CH1	ADC_IN8 ⁽⁶⁾ COMP2_INP COMP3_INM
-	-	14	14	18	PB0	I/O	FTa	Y	TIM1_CH2N TIM3_CH3 TIM8_CH2N UART4_TX EVENTOUT	ADC_IN9 ⁽⁶⁾
14	11	15	15	19	PB1	I/O	FTa	Y	TIM1_CH3N TIM3_CH4 TIM8_CH3N UART4_RX EVENTOUT SPI1_SCK SPI2_MOSI I2S2_SD TIM4_CH2	ADC_IN10 ⁽⁶⁾ COMP3_INP

-	-	1	1	20	PB2	I/O	FTa	Y	LPTIM_OUT EVENTOUT TIM3_ETR TIM1_CH4N	ADC_IN11 ⁽⁶⁾ COMP3_INM
-	-	1	1	21	PB10	I/O	FTa	Y	UART3_TX I2C2_SCL TIM2_CH3 EVENTOUT COMP3_OUT TIM4_ETR	COMP1_INP ADC_IN12 ⁽⁶⁾
-	-	ı	1	22	PB11	I/O	FTa	Y	UART3_RX I2C2_SDA TIM2_CH4 EVENTOUT	ADC_IN13 ⁽⁶⁾ COMP3_INP
15	12	16	16	23	VSS	S	-	-	-	-
16	13	17	-	24	VDD	S	-	-	-	-
-	-	-	-	25	PB12	I/O	FTa	Y	SPI2_NSS I2S2_WS I2C2_SMBA TIM1_BKIN EVENTOUT TIM5_CH1	ADC_IN14 ⁽⁶⁾
-	-	-	-	26	PB13	I/O	FTa	Y	SPI2_SCK I2S2_CK I2C2_SCL TIM1_CH1N EVENTOUT TIM5_CH2	ADC_IN15 ⁽⁶⁾
-	-	-	-	27	PB14	I/O	FTa	Y	SPI2_MISO I2S2_MCK TIM1_CH2N I2C2_SDA EVENTOUT UART4_TX TIM8_CH1 TIM1_CH1	ADC_IN16 ⁽⁶⁾ COMP3_INM
-	-	-	-	28	PB15	I/O	FTa	Y	UART4_RX SPI2_MOSI I2S2_SD TIM1_CH3N EVENTOUT RTC_REFIN TIM8_CH2 TIM8_CH1N TIM1_CH2N	COMP3_INP
-	-	-	17	-	VDD	S	-	-	-	-
-	-	18	18	29	PA8	I/O	FT	Y	USART1_CK I2C2_SMBA TIM1_CH1 I2C2_SDA SPI1_NSS I2S1_WS MCO EVENTOUT COMP3_OUT TIM1_CH2	WKUP1 RTC-TAMP3

17	14	19	19	30	PA9	I/O	FT	Y	USART1_TX I2C2_SCL TIM1_CH2 EVENTOUT TIM8_BKIN SPI2_MISO I2S2_MCK TIM1_CH3N	LPTIM_IN2 MCO
18	15	20	20	31	PA10	I/O	FT	Y	USART1_RX I2C2_SDA SPI1_SCK SPI2_SCK I2S1_CK I2S2_CK TIM1_CH3 EVENTOUT TIM1_BKIN	COMP3_OUT LPTIM_ETR RTC_REFIN
-	-	-	21	32	PA11	I/O	FTa	Y	USART1_CTS SPI2_MISO I2S2_MCK CAN_RX TIM1_CH4 COMP1_OUT EVENTOUT TIM4_ETR	COMP2_INP
	-	-	22	33	PA12	I/O	FTa	Y	USART1_RTS SPI2_MOSI I2S2_SD CAN_TX TIM1_ETR COMP2_OUT EVENTOUT	COMP1_INP
19	16	21	23	34	PA13 ⁽⁹⁾	I/O	FT	Y	SWDIO-JTMS SPI2_NSS I2S2_WS EVENTOUT SPI2_MISO	-
-	-	-	-	35	PD12	I/O	FT	Y	UART4_RX I2C1_SDA SPI2_SCK I2S2_CK EVENTOUT	-
-	Ш	-	-	36	PD13	I/O	FT	Y	UART4_TX I2C1_SCL EVENTOUT	-
20	17	22	24	37	PA14 ⁽⁹⁾	I/O	FT	Y	SWCLK-JTCK USART2_CK I2C1_SDA COMP2_OUT EVENTOUT SPI2_MOSI I2S2_SD	-

			177							
-	ı	23	25	38	PA15	I/O	FTa	Y	JTDI USART2_CTS I2C1_SCL SPI2_NSS I2S2_WS TIM2_CH1 TIM2_ETR EVENTOUT SPI1_NSS TIM8_CH1N	COMP2_INP
-	1	24	26	39	PB3	I/O	FTa	Y	USART2_RTS SPI1_SCK I2S1_CK TIM2_CH2 JTDO EVENTOUT TIM8_CH2N	COMP1_INP COMP2_INM COMP3_INP
-	-	25	27	40	PB4	I/O	FTa	Y	USART2_TX SPI1_MISO I2S1_MCK TIM3_CH1 UART3_TX EVENTOUT TIM8_CH3 TIM1_BKIN NJTRST	COMP1_INP COMP3_OUT
-	-	26	28	41	PB5	I/O	FTa	Y	USART2_RX I2C1_SMBA SPI1_MOSI I2S1_SD TIM3_CH2 UART3_RX LPTIM_IN1 EVENTOUT TIM8_CH4 TIM8_BKIN	COMP1_INM COMP3_INP
-	18	27	29	42	PB6	I/O	FT	Y	USART1_TX I2C1_SCL SPI1_NSS I2S1_WS TIM1_CH2N TIM4_CH1 SPI2_SCK I2S2_CK LPTIM_ETR COMP1_OUT EVENTOUT CAN_RX TIM1_CH4 TIM8_CH3N	BEEPER_OUT _P
-	19	28	30	43	PB7	I/O	FTa	Y	USART1_RX I2C1_SDA TIM4_CH2 EVENTOUT LPTIM_IN2 CAN_TX BEEPER_OUT _N TIM8_ETR TIM1_CH4N	COMP2_INP

									SPI2_MISO I2S2_MCK	
1	20	1	31	44	BOOT0/PD0	I/O	FT	Y	-	-
-	-	-	-	45	PB8	I/O	FT	Y	I2C1_SCL CAN_RX TIM4_CH3 USART1_TX UART3_TX COMP1_OUT EVENTOUT TIM8_CH3	-
-	-	-	-	46	PB9	I/O	FT	Y	I2C1_SDA CAN_TX TIM4_CH4 UART3_RX COMP2_OUT EVENTOUT TIM1_CH4	-
-	-	-	32	47	VSS	S	-	1	-	-
-	-	-	-	48	VDD	S	-	-	-	-

- 1. I = input, O = output, S = power supply
- 2. FT: 5V tolerant, FTa: 5V tolerant, with Analog function
- 3. This alternate function can be configured by the software to other pins (if the corresponding package model has such pins). For details, refer to the I/O and debugging Settings sections of the alternate function in the N32G430xx user Reference manual.
- 4. Fail-safe indicates that when the chip has no power input, a high input level is added to the IO. The high input level does not flood into the chip, resulting in a certain voltage on the power supply and current consumption.
- 5. The corresponding ADC channel is a fast channel and supports a maximum sampling rate of 4.7MSPS(12Bit).
- 6. The corresponding ADC channel is a slow channel, supporting a maximum sampling rate of 4MSPS(12Bit).
- 7. Pin2/Pin3 of TSSOP20 package corresponding to N32G430F6S7-1 and N32G430F8S7-1 are OSC32_IN/OSC32_OUT.
- 8. Pin2/Pin3 of TSSOP20 package corresponding to N32G430F6S7 and N32G430F8S7 are OSC_IN/OSC_OUT.
- 9. If MCU will enter STANDBY mode, before entering the STANDBY mode, if pins PA13 and PA14 are used as non-debug pins and configured as input mode, it is necessary to add strong pull-down resistance on pins PA13 and PA14. The pull-down resistance is recommended to be within 10KΩ.

For the FT and FTa ports in the table, it is necessary to ensure that the voltage difference between the IO voltage and the power supply voltage is less than 3.6V

4 Electrical Characteristics

4.1 Parameter conditions

All voltages are based on Vss unless otherwise specified.

4.1.1 Minimum and maximum values

Unless otherwise specified, all minimums and maximums will be guaranteed under the worst ambient temperature, supply voltage and clock frequency conditions by performing tests on 100% of the product on the production line at ambient temperatures T_A =25 \mathbb{C} .

Note at the bottom of each form that data obtained through characterization results, design simulation and/or process characteristics will not be tested on the production; Base on characterization, the minimum and maximum values are obtained by taking the average of the samples tested and adding or subtracting three times the standard distribution (mean $\pm 3\Sigma$).

4.1.2 Typical numerical values

Unless otherwise specified, typical data are based on $T_A=25~$ °C and $V_{DD}=3.3V~$ ($2.4V \le V_{DD} \le 3.6V~$ voltage range). These data are for design guidance only and not tested.

4.1.3 Typical curve

Unless otherwise specified, typical curves are for design guidance only and not tested.

4.1.4 Loading capacitor

The load conditions for measuring pin parameters are shown in Figure 4-1.

Figure 4-1 Pin loading conditions

4.1.5 Pin input voltage

The measurement of the input voltage on the pin is shown in Figure 4-2.

Figure 4-2 Pin input voltage

4.1.6 Power supply scheme

Figure 4-3 Power supply scheme

1. n is the count of V_{DD} .

Note: Please refer to the hardware design guide for the capacitor connection method.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

4.1.7 Current consumption measurement

Figure 4-4 Current consumption measurement scheme

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

4.2 Absolute maximum rating

The load applied to the device may permanently damage the device if it exceeds the values given in the Absolute maximum rating list (Table 4-1, Table 4-2, Table 4-3). The maximum load that can be sustained is only given here, and it does not mean that the functional operation of the device under such conditions is correct. The reliability of the device will be affected when the device works for a long time under the maximum condition.

Table 4-1 Voltage characteristics

Symbol	Describe	Min	Max	Unit
V _{DD} - V _{SS}	External main supply voltage (including V_{DD} and $V_{\text{DDA}})^{(1)}$	-0.3	4.0	
V_{IN}	Input voltage on 5V tolerant pins ⁽³⁾	V _{SS} - 0.3	5.5	V
V IN	Input voltage on other pins ⁽²⁾	V_{SS} - 0.3	$V_{DD} + 0.3$	
$ \Delta V_{DDx} $	Voltage difference between different supply pins	- 50		mV
V _{SSX} - V _{SS}	Voltage difference between different ground pins	-	50	111 V
V _{ESD(HBM)}	ESD Electrostatic discharge voltage (human body model)	See section 4.3.11		

^{1.} All power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply system within permissible limits.

- 2. $V_{\rm IN}$ shall not exceed its maximum value. Refer to Table 4-2 for current characteristics.
- 3. When 5.5V is applied to the 5V tolerant pin, V_{DD} cannot be less than 2.25V.

Table 4-2 Current characteristics

Symbol	Describe	Max (1)	Unit
$I_{ m VDD}$	Total current through V _{DD} /V _{DDA} power line (supply current) (1) (4)	150	
I _{VSS}	Total current through V _{SS} ground line (outflow current) (1) (4)	150	
ī	Output current sunk by I/O and control pin	12	mA
$ m I_{IO}$	Output current source by I/O and control pin	-12	IIIA
I (2)(3)	Injection current on NRST pin	-5/0	
$I_{INJ(PIN)}^{(2)(3)}$	Injection current on other pins	±5	

^{1.} All power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply system within permissible limits.

- 3. Reverse injection current can interfere with the analog performance of the device. See section 4.3.18.
- 4. When the maximum current occurs, the maximum allowable voltage drop of V_{DD} is $0.1V_{DD}$.

Table 4-3 Temperature Characteristics

Symbol	Describe	Value	Unit
T_{STG}	Storage temperature range	- 40 ~ + 150	°C
T_{J}	Maximum junction temperature	125	$^{\circ}\mathrm{C}$

4.3 Operating conditions

4.3.1 General operating conditions

^{2.} When V_{IN}>V_{DD}, there is a forward injection current; when V_{IN}<V_{SS}, there is a reverse injection current. I_{INJ(PIN)} should not exceed its maximum value. Voltage characteristics refer to Table 4-1.

Symbol	Parameter	Condition	Min	Max	Unit
f_{HCLK}	Internal AHB clock frequency	-	0	128	
f_{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz
f_{PCLK2}	Internal APB2 clock frequency	-	0	64	
V_{DD}	Standard operating voltage	-	2.4	3.6	V
V_{DDA}	Analog operating voltage	Must be the same potential as $V_{\mathrm{DD}}^{(1)}$	2.4	3.6	V
T_{A}	Ambient temperature(temperature number 7)	7 suffix version	- 40	105	°C
T_{J}	Junction temperature range	7 suffix version	- 40	125	°C

It is recommended that the same power supply be used to power the V_{DD} and V_{DDA}. During power-on and normal operation, a
maximum of 300mV difference is allowed between the V_{DD} and V_{DDA}.

4.3.2 Operating conditions at power-on and power-off

The parameters given in the following table are based on the ambient temperatures listed in Table 4-4.

Table 4-5 Operating conditions at power-on and power-off

Symbol	Parameter	Condition	Min	Max	Unit
4	V _{DD} rise time rate	Supply voltage goes from 0 to V_{DD}	20	8	us/V
$\iota_{ m VDD}$	V _{DD} fall time rate	Supply voltage drops from V_{DD} to 0	80	∞	μs/ v

4.3.3 Embedded reset and power control module characteristics

The parameters given in the following table are based on the ambient temperature and V_{DD} supply voltage listed in Table 4-4.

Table 4-6 Features of embedded reset and power control modules

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PRS[2:0]=011 (rising)	2.38	2.48	2.58	V
		PRS[2:0]=011 (falling)	2.28	2.38	2.48	V
		PRS[2:0]=100 (rising)	2.47	2.58	2.69	V
		PRS[2:0]=100 (falling)	2.37	2.48	2.59	V
	Programmable voltage detector level selection	PRS[2:0]=101 (rising)	2.57	2.68	2.79	V
	(PWR_CTRL.MSB = 0)	PRS[2:0]=101 (falling)	2.47	2.58	2.69	V
	(PRS[2:0]=110 (rising)	2.66	2.78	2.9	V
		PRS[2:0]=110 (falling)	2.56	2.68	2.8	V
V		PRS[2:0]=111 (rising)	2.76	2.88	3	V
V_{PVD}		PRS[2:0]=111 (falling)	2.66	2.78	2.9	V
		PRS[2:0]=100 (rising)	3.15	3.28	3.41	V
		PRS[2:0]=100 (falling)	3.05	3.18	3.31	V
		PRS[2:0]=101 (rising)	3.24	3.38	3.52	V
	Programmable voltage detector level selection	PRS[2:0]=101 (falling)	3.15	3.28	3.41	V
	(PWR_CTRL.MSB = 1)	PRS[2:0]=110 (rising)	3.34	3.48	3.62	V
	(115_01142152 1)	PRS[2:0]=110 (falling)	3.24	3.38	3.52	V
		PRS[2:0]=111 (rising)	3.44	3.58	3.72	V
		PRS[2:0]=111 (falling)	3.34	3.48	3.62	V
V _{PVDhyst} (1)	PVD hysteresis	-	-	100	-	mV

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR}	VDD Power on/down	Falling edge	1.625	1.856	2.179	
	Reset threshold	Rising edge	1.648	1.893	2.236	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	22	36	58	mV
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	-	-	0.8	4	ms

^{1.} Guaranteed by design, not tested in production.

4.3.4 Embedded reference voltage

The parameters given in the following table are based on the ambient temperature and V_{DD} supply voltage listed in Table 4-4.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{REFINT}	Internal reference voltage	$-40 ^{\circ}\text{C} < T_{A} < + 105 ^{\circ}\text{C}$	1.164	1.2	1.236	V
$T_{S_vrefint}^{(1)}$	The sampling time of the ADC when reading the internal reference voltage	-	-	5	17 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} =3.3V±10mV	-	-	10	mV
$T_{\text{Coeff}}^{(2)}$	Temperature coefficient	-	-	-	48	ppm/°C

Table 4-7 Built-in reference voltage

4.3.5 Power supply current characteristics

Current consumption is a combination of several parameters and factors, including operating voltage, ambient temperature, load of I/O pins, software configuration of the product, operating frequency, I/O pin flip rate, program location in memory, and code executed.

The measurement method of current consumption is described in Figure 4-4.

All of the current consumption measurements given in this section are while executing a reduced set of code.

4.3.5.1 Maximum current consumption

The microcontroller is under the following conditions:

- All I/O pins are in input mode and are connected to a static level -- V_{DD} or V_{SS} (no load).
- All peripherals are disabled except otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting periods from 0 to 32MHz, 1 waiting period from 32 to 64MHz, 2 waiting periods from 64MHz to 96MHz, 3 waiting periods from 96MHz to 128MHz)⁽¹⁾, (0 waiting periods from 0 to 39MHz, 1 waiting period from 39 to 78MHz, 2 waiting periods from 78MHz to 117MHz, 3 waiting periods from 117MHz to 128MHz)⁽²⁾.
- Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider).
- When the peripheral is enable: $f_{PCLK1} = f_{HCLK} / 4$, $f_{PCLK2} = f_{HCLK} / 2$.
- V_{DD} =3.63V, ambient temperature equal to 105°C
- 1. Applicate to C version
- 2. Applicate to D version

^{1.} The shortest sampling time is obtained through multiple loops in the application.

^{2.} Guaranteed by design, not tested in production.

The parameters given in Table 4-8 and Table 4-9 are based on the test at ambient temperature and VDD supply voltage listed in Table 4-4.

Table 4-8 Typical current consumption in operating mode where the data processing code is run from internal flash

C	D4	C124	e	Typ ⁽¹⁾	T I *4
Symbol	Parameter	Conditions	$\mathbf{f}_{ ext{HCLK}}$	$VDD=3.63V, T_A = 105^{\circ}C$	Unit
			128MHz	15.45	
		External clock,	64MHz	9.21	
		enable all	32MHz	6.24	
	Supply current in	peripherals	16MHz	4.82	
$I_{\mathrm{DD}}^{(2)}$	RUN mode		8MHz	4.22	mA
I _{DD} (=)	Supply	in ode External clock, disable all	128MHz	11.93	IIIA
	current in RUN mode		64MHz	7.49	
			32MHz	5.42	
		peripherals	16MHz	4.42	
			8MHz	3.9	
			128MHz	13.06	
		Internal clock,	64MHz	6.94	
		enable all	32MHz	3.91	
		peripherals	16MHz	2.4	
$I_{\mathrm{DD}}^{(2)}$	Supply current in		8MHz	1.73	mA
I _{DD} (=)	RUN mode		128MHz	9.57	IIIA
		Internal clock,	64MHz	5.21	
		disable all	32MHz	3.03	
		peripherals	16MHz	1.96	
		[8MHz	1.39	

^{1.} Evaluated by characterization, not tested in production.

^{2.} PLL is enabled when $f_{HCLK} > 8MHz$.

Table 4-9 Typical current consumption in sleep mode, code running in internal flash running

Crombal	Parameter	Conditions	£	Typ (1)	Unit	
Symbol	rarameter	Conditions	f _{HCLK}	$VDD=3.63V, T_A = 105^{\circ}C$	Unit	
			128MHz	11.23		
			64MHz	7.19		
		External clock, enable all peripherals	32MHz	5.26		
		Cimero um poriprioruis	16MHz	4.35		
$I_{\mathrm{DD}}^{(2)}$	Supply current in sleep		8MHz	3.98	mA	
I _{DD} (=)	mode	External clock, disable all peripherals	128MHz	7.43	IIIA	
			64MHz	5.36		
			32MHz	4.39		
			16MHz	3.91		
			8MHz	3.65		
			128MHz	8.98		
			64MHz	4.91]	
		Internal clock, enable all peripherals	32MHz	2.89		
		chaole an peripherals	16MHz	1.88		
$I_{DD}^{(2)}$	Supply current in sleep		8MHz	1.47	mA	
IDD.	mode		128MHz	5.15	IIIA	
			64MHz	2.98		
		Internal clock, disable all peripherals	32MHz	1.92		
		disable all peripherals	16MHz	1.4	1	
			8MHz	1.1		

- 1. Based on characterization, not tested in production.
- 2. PLL is enabled when f_{HCLK}>8MHz.

4.3.5.2 Typical current consumption

MCU is under the following conditions:

- \blacksquare All I/O pins are in input mode and are connected to a static level -- V_{DD} or V_{SS} (no load).
- All peripherals are disabled unless otherwise noted.
- The access time of the flash memory is adjusted to the fastest operating frequency (0 waiting periods from 0 to 32MHz, 1 waiting period from 32 to 64MHz, 2 waiting periods from 64MHz to 96MHz, 3 waiting periods from 96MHz to 128MHz) (1), (0 waiting periods from 0 to 39MHz, 1 waiting period from 39 to 78MHz, 2 waiting periods from 78MHz to 117MHz, 3 waiting periods from 117MHz to 128MHz)(2).
- Ambient temperature and V_{DD} supply voltage conditions are listed in Table 4-4.
- Instruction prefetch is enabled (note: this parameter must be set before setting the clock and bus divider). When the peripheral is turned on: $f_{PCLK1} = f_{HCLK} / 4$, $f_{PCLK2} = f_{HCLK} / 2$, $f_{ADCCLK} = f_{HCLK} / 2$.
- 1. Applicate to C version
- Applicate to D version

Table 4-10 Typical current consumption in operating mode, where data processing code is run from internal Flash

		Parameter Conditions		Ту	p ⁽¹⁾	
Symbol	Parameter		f _{HCLK}	Enable all peripherals	Disable all peripherals	Unit
			128MHz	13.94	10.51	
Supply current in operation		64MHz	7.91	6.19		
	current in operation mode		32MHz	4.86	4.04	mA
			16MHz	3.44	3.04	
			8MHz	2.82	2.52	
			128MHz	12.45	8.95	
	Supply		64MHz	6.4	4.66	
$I_{DD}^{(2)}$	current in operation	Internal clock	32MHz	3.37	2.5	mA
	mode	1	16MHz	1.87	1.43	
			8MHz	1.21	0.86	

- 1. Typical values are measured at $T_A = 25$ °C and $V_{DD} = 3.3$ V.
- 2. PLL is enabled when $f_{HCLK} > 8MHz$.

Table 4-11 Typical current consumption in sleep mode

				Тур) ⁽¹⁾	
Symbol	Parameter	Condition	f _{HCLK}	Enable all peripherals ⁽²⁾	Disable all peripherals	Unit
			128MHz	9.85	6.07	
$I_{DD}^{(3)}$ Supply current in	Supply		64MHz	5.85	4.05	
		clock	32MHz	3.93	3.1	mA
			16MHz	3.02	2.63	
			8MHz	2.66	2.36	
			128MHz	8.41	4.59	
	Supply		64MHz	4.37	2.46	
$I_{DD}^{(3)}$	current in	current in	32MHz	2.36	1.4	mA
s	sleep mode		16MHz	1.36	0.88	
			8MHz	0.95	0.59	

- 1. Typical values are measured at $T_A = 25$ °C and $V_{DD} = 3.3$ V.
- 2. When ADC is on, 0.2mA(1MSPS) additional current consumption is added. In the application environment, this part of the current is increased only when the ADC is turned ON (set ADC_CTRL2.ON bit).
- 3. PLL is enabled when $F_{HCLK} > 8MHz$.

4.3.5.3 Low power mode current consumption

The microcontroller is under the following conditions:

- All I/O pins are in input mode and are connected to a static level of --V_{DD} or V_{SS} (no load).
- All peripherals are disabled unless otherwise noted.

Table 4-12 Typical current consumption in shutdown and standby mode

				$\mathbf{Typ}^{(1)}$		
Symbol	Parameter	Condition	$V_{DD} = 3.3 \text{ V}$ $T_A = -40 ^{\circ}\text{C}$	$V_{DD} = 3.3 \text{ V}$ $T_A = 25 ^{\circ}\text{C}$	$V_{DD} = 3.3 \text{ V}$ $T_A = 105^{\circ}\text{C}$	Unit
ĭ	Supply current in	The voltage regulator is in operation mode, low-speed and high-speed internal RC oscillators and high-speed external oscillators are off (Independent watchdog is off)	180	212.3	700	
I _{DD_STOP0}	Stop mode 0 (STOP0)	The voltage regulator is in low power consumption mode, and the low-speed and high-speed internal RC oscillators and high-speed external oscillators are off (Independent watchdog is off)	42	52.7	420	
	Supply current in Stop mode 2 (STOP2)	Low-speed external RC oscillator is on, RTC is running, SRAM retention, all I/O states retention, and the independent watchdog is off	2.01	6.0	63.11	
		Low-speed internal RC oscillator is on, RTC is running, SRAM retention, all I/O states retention, and the independent watchdog is off	1.76	5.77	62.77	μΑ
		Low-speed external RC oscillator and independent watchdog are on, RTC is running, SRAM retention	1.28	2.42	20.51	
T	Supply current	Low-speed external RC oscillator is on, RTC is running, SRAM retention, independent watchdog is off	1.23	2.33	20.4	
¹ DD_STANDBY	in STANDBY mode	Low-speed external RC oscillator is on, RTC is running, SRAM not retention, independent watchdog is off	0.94	1.96	19.89	
		Low-speed external RC oscillator is on, RTC is off, SRAM not retention, independent watchdog is off	0.81	1.78	19.62	

Guaranteed by characterization, not tested in production.

4.3.6 External clock source characteristics

4.3.6.1 High-speed external clock source (HSE)

The characteristic parameters in the following table are measured using a high-speed external clock source, and the ambient temperature and supply voltage refer to the conditions specified in Table 4-4.

Table 4-13 High-speed external user clock features

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock frequency ⁽¹⁾		4	8	32	MHz
V_{HSEH}	OSC_IN Input pin high level voltage ⁽¹⁾		$0.8V_{\mathrm{DD}}$	ı	V_{DD}	
V_{HSEL}	OSC_IN Input pin low level voltage ⁽¹⁾		V_{SS}	-	$0.2V_{DD}$	V
$t_{\mathrm{w(HSE)}}$	Time when OSC_IN is high or low ⁽¹⁾	-	16	-	-	
$\begin{array}{c} t_{r(HSE)} \\ t_{f(HSE)} \end{array}$	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DuCy _(HSE)	Duty cycle ⁽¹⁾	-	45	-	55	%
I_{L}	OSC_IN Input leakage current(1)	$V_{SS} \leq V_{IN} \leq V_{DD}$	-1	-	+1	μΑ

^{1.} Guaranteed by design, not tested in production.

4.3.6.2 Low-speed external clock source (LSE)

The characteristic parameters given in the following table are measured using a low speed external clock source, and the ambient temperature and supply voltage refer to the conditions specified in Table 4-4.

Table 4-14 Features of a low-speed external user clock

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock frequency ⁽¹⁾		0	32.768	1000	KHz
V_{LSEH}	OSC32_IN input pin high level voltage ⁽¹⁾		$0.5V_{\mathrm{DD}}$	-	V_{DD}	V
V_{LSEL}	OSC32_IN input pin low level voltage ⁽¹⁾		V_{SS}	-	200	mV
$\begin{array}{c} t_{w(LSE)} \\ t_{w(LSE)} \end{array}$	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	
$t_{r(LSE)}$ $t_{f(LSE)}$	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	ns
DuCy _(LSE)	Duty cycle ⁽¹⁾	-	30	-	70	%
I_L	OSC32_IN input leakage current ⁽¹⁾	$V_{SS} \leq V_{IN} \leq V_{DD}$	-1	-	+1	μΑ

^{1.} Guaranteed by design, not tested in production.

V_{HSEL} 90%

V_{HSEL} 10%

t_{r(HSE)}

t_{r(HSE)}

t_{t(HSE)}

t_{t(HSE}

Figure 4-5 AC timing diagram of an external high-speed clock source

Figure 4-6 AC timing diagram of an external low speed clock source

High-speed external clock generated using a crystal/ceramic resonator

High speed external clocks (HSE) can be generated using an oscillator consisting of a 4~32MHz crystal/ceramic resonator. The information presented in this section is based on a comprehensive feature evaluation using typical external components listed in the table below. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator)

Symbol Conditions Parameter Min Typ Max Unit Oscillator frequency 4 fosc in 8 32 MHz R_{F} Feedback resistor 160 ΚΩ $V_{DD} = 3.3 \text{ V},$ $V_{IN} = V_{SS}$ 1.7 i_2 HSE driving current mΑ 30 pF load Oscillator transconductance Startup 10 mA/V $g_{\rm m}$ $t_{SU(HSE)}^{(3)}$ V_{DD} is stabilized Startup time (8M crystal) 7 ms

Table 4-15 HSE 4~32MHz oscillator characteristics (1)(2)

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

- 1. The characteristic parameters of the resonator are given by the crystal/ceramic resonator manufacturer.
- 2. Guaranteed by design, not tested in production.
- 3. t_{SU(HSE)} is the start time, from the time when HSE is enabled by the software to the time when a stable 8MHz oscillation is obtained. This value is measured on a standard crystal resonator and can vary widely depending on the crystal manufacturer.

Figure 4-7 typical application using 8MHz crystal

1. The R_{EXT} value depends on the properties of the crystal.

Low-speed external clock generated by a crystal/ceramic resonator

The low speed external clock (LSE) can be generated using an oscillator consisting of a 32.768KHz crystal/ceramic resonator. The information presented in this section is based on a comprehensive feature evaluation using typical external components listed in Table 4-16. In applications, the resonator and load capacitance must be as close to the oscillator pins as possible to reduce output distortion and stabilization time at startup. For detailed crystal resonator parameters (frequency, package, accuracy, etc.), please consult the appropriate manufacturer. (The crystal resonator mentioned here is usually referred to as passive crystal oscillator)

Note: For C_{L1} and C_{L2} , it is recommended to use high quality ceramic dielectric containers. Usually C_{L1} and C_{L2} have the same parameters. Crystal manufacturers usually give parameters for load capacitance as serial combinations of C_{L1} and C_{L2} .

Load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the capacitance of the pin and the PCB or PCB-related capacitance.

For example: If a resonator with load capacitance C_L=6pF is selected and C_{stray}=2pF, then C_{L1}=C_{L2}=8pF.

Symbol Parameter Conditions Min Typ Max Unit Feedback resistor R_F _ 5 $M\Omega$ Oscillator transconductance 15 $\mu A/V$ g_{m} Startup time V_{DD} is stabilized $t_{SU(LSE)}^{(2)}$ 1 S

Table 4-16 LSE oscillator characteristics ($f_{LSE} = 32.768KHz$) (1)

- 1. Guaranteed by design, not tested in production.
- 2. t_{SU(LSE)} is the startup time, which is the period from the LSE enabled by the software to the stable 32.768kHz oscillation. This value is measured on a standard crystal resonator and can vary widely depending on the crystal manufacturer.

Low-power Control

Amp

R_F

OUT

Vial

C_{L1}

C_{L2}

Figure 4-8 Typical application of 32.768kHz crystal⁽¹⁾

1. Please refer to the Crystal Selection Guide.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

4.3.7 Internal clock source characteristics

The characteristic parameters given in the following table were measured using ambient temperature and supply voltage in accordance with Table 4-4.

4.3.7.1 High speed internal (HSI) RC oscillator

Table 4-17 HSI oscillator characteristics (1)(2)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
· c	frequency	V_{DD} =3.3V, T_A = 25°C, after calibration	7.96 ^{(3) (5)}	8	8.04 ⁽⁵⁾	MHz
f_{HSI}		V _{DD} =3.3 V, 1 _A – 23 C, after canoration	7.94 ^{(3) (6)}	8	8.04 ^{(3) (6)}	МП
DuCy (HSI)	Duty cycle	-	45	-	55	%
	Accuracy of HSI	$V_{DD}=3.3V, T_A=-40\sim105^{\circ}C$	-1.5	-	2	%
ACC _{HSI}		$V_{DD}=3.3V, T_A=-10\sim85^{\circ}C$	-1.2	-	1.6	%
		$V_{DD}=3.3V, T_A=0\sim70^{\circ}C$	-1	-	1.2	%
t _{SU(HSI)}	HSI oscillator startup time	-	-	-	6	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	120	-	μΑ

- 1. $V_{DD} = 3.3V$, $T_A = -40 \sim 105$ °C unless otherwise specified.
- 2. Guaranteed by design, not tested in production.
- 3. Production calibration accuracy, excluding welding effects. Welding brings about 1% frequency deviation range.
- 4. Frequency deviation includes the effect of welding, data is from sample testing, not tested in production.
- 5. Suitable for packages other than TSSOP20.
- 6. Suitable for TSSOP20 package.

4.3.7.2 Low speed internal (LSI) RC oscillator

Table 4-18 LSI oscillator characteristics (1)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾		25°C calibration, V _{DD} =3.3V	38.8	40	41.2	KHz
		$V_{DD} = 2.4 \text{ V to } 3.6 \text{ V},$ $T_A = -40 \sim 105 ^{\circ}\text{C}$	28	40	60	KHz
t _{SU(LSI)} (2)	LSI oscillator startup time	-	-	80	130	μs
I _{DD(LSI)} (2)	LSI oscillator power consumption	-	1	0.1	-	μΑ

- 1. $V_{DD} = 3.3V$, $T_A = -40 \sim 105$ °C, unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

4.3.8 Wakeup time from low power mode

The wake-up time listed in Table 4-19 is measured during the wake-up phase of an 8MHz HSI RC oscillator. The clock source used when waking up depends on the current operating mode:

- Stop or standby mode: clock source is RC oscillator
- Sleep mode: The clock source is the clock used when entering sleep mode

All times were measured using ambient temperature and supply voltage in accordance with Table 4-4.

Table 4-19	Wakeup	time in	low	power	mode
-------------------	--------	---------	-----	-------	------

Symbol	Parameter	Тур	Unit
twusleep(1)	Wake up from SLEEP mode	7	HCLK
twustopo ⁽¹⁾	Wake up from STOP0 mode	15	μs
twustop2 ⁽¹⁾	Wake up from STOP2 mode	33	μs
t _{WUSTDBY} ⁽¹⁾	Wake up from STANDBY mode	75	μs

^{1.} The wake up time is measured from the start of the wake up event until the first instruction is read by the user program.

4.3.9 PLL characteristics

The parameters listed in Table 4-20 are measured when the ambient temperature and power supply voltage refer to the conditions in Table 4-4.

Table 4-20 PLL features

			Value			
Symbol	Parameter	Min	Тур	Max (1)	Unit	
f	PLL input clock	4	8	32	MHz	
$f_{\mathrm{PLL_IN}}$	PLL Input clock duty cycle	40	50	60	%	
f_{PLL_OUT}	PLL output clock ⁽²⁾	32	-	128	MHz	
t_{LOCK}	PLL ready indicates signal output time ⁽³⁾	-	-	150	μs	
Jitter	RMS cycle-to-cycle jitter @128MHz	-	8	-	ps	
Ipll	Operating Current of PLL @128MHz VCO frequency. (1)	-	600	-	μΑ	

- 1. Guaranteed by characterization results, not tested in production.
- Care needs to be taken to use the correct frequency doubling factor to input the clock frequency according to PLL so that f_{PLL_OUT} is within the allowable range.
- 3. Guaranteed by design, not tested in production.

4.3.10FLASH characteristics

Unless otherwise specified, all characteristic parameters are obtained at $T_A = -40 \sim 105$ °C.

Table 4-21 Flash characteristics

Symbol	Parameter	Condition	Min (1)	Typ (1)	Max (1)	Unit
tprog	32-bit programming time	$T_A = -40 \sim 105 ^{\circ}\text{C}$	-	60	-	μs
t _{ERASE}	Page (2K bytes) erase time	$T_A = -40 \sim 105 ^{\circ}\text{C}$	-	12.5	-	ms
t_{ME}	Mass erase time	$T_A = -40 \sim 105 ^{\circ}\text{C}$	-	-	20	ms
	The power supply current	Read mode, f _{HCLK} =128MHz, 3 waiting cycles, V _{DD} =3.3V	-	-	3.231	mA
I_{DD}		Write mode, $f_{HCLK} = 128MHz$, $V_{DD} = 3.3 \text{ V}$	-	-	6.5	mA
		Erase mode, f_{HCLK} =128MHz, V_{DD} = 3.3 V	-	-	4.5	mA
		Power-down mode, V _{DD} = 3.0 to 3.6V	-	-	4.63	uA
Vprog	Programming voltage	-	2.4	-	3.6	V

^{1.} Guaranteed by design, not tested in production.

Table 4-22	Flach	endurance	and	data	retention

Symbol	Parameter	Condition	Min (1)	Unit
N_{END}	Endurance (note: erase times)	$T_A = -40 \sim 105 \text{C}(7 \text{ suffix versions})$	10	Kcycle
t_{RET}	Data retention	$T_A = 125$ °C	10	Years

^{1.} Guaranteed by characterization results, not tested in production.

4.3.11 Absolute maximum (electrical sensitivity)

Based on three different tests (ESD, LU), a specific measurement method is used to test the strength of the chip to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharge (a positive pulse followed by a negative pulse one second later) is applied to all pins of all samples.

Table 4-23 Absolute maximum ESD value

Symbol	Parameter	Condition	Type	Max (1)	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, In accordance with MIL-STD-883K Method 3015.9	3A	4000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charging device model)	$T_A = +25$ °C, In accordance with ESDA/JEDEC JS-002-2018	СЗ	2000	v

^{1.} Guaranteed by characterization results, not tested in production.

Static Latch up

To evaluate the locking performance, two complementary static locking tests were performed on six samples:

- Supply voltage exceeding limit for each power pin.
- Current is injected into each input, output, and configurable I/O pin.

This test conforms to EIA/JESD78E IC latch standard.

Table 4-24 Electrical sensitivity

Symbol	Parameter	Condition	Туре
LU	Static locking classes	$T_A = +105$ °C, in accordance with JESD78E	II class A

4.3.12I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters listed in the following table are measured according to the conditions in Table 4-4. All I/O ports are CMOS and TTL compatible.

Table	4-25	I/O	static	chara	cteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
$V_{\rm IL}$	Input low level voltage	TTI nort	Vss	=	0.8	V
V_{IH}	Input high level voltage	TTL port	2	=	5.5	v
$V_{\rm IL}$	Input low level voltage	CMOS nort	Vss	-	$0.35V_{DD}$	
V_{IH}	Input high level voltage	CMOS port	$0.65V_{DD}$	I	$V_{DD}+0.5$	
V_{hys}	Schmitt trigger voltage lag ⁽¹⁾	$V_{DD} = 3.3 \text{ V} / 2.5 \text{ V}$	200	-	-	mV
$ m I_{lkg}$	Input leakage current ⁽²⁾	V_{DD} =Maximum $V_{PAD} = 0$ or $V_{PAD} = V_{DD}^{(4)}$	-1	1	1	μА
D	Weak pull-up equivalent	$V_{DD} = 3.3 \text{ V}, V_{IN} = V_{SS}$	80	I	220	ΚΩ
R_{PU}	resistance ⁽³⁾	$V_{DD} = 2.5V, V_{IN} = V_{SS}$	90	-	300	ΚΩ
D	Weak pull-down equivalent	$V_{DD} = 3.3 \text{ V}, V_{IN} = V_{DD}$	80	-	220	ΚΩ
R_{PD}	resistance ⁽³⁾	$V_{DD}=2.5V,V_{IN}=V_{DD}$	90	-	300	ΚΩ
C _{IO}	Capacitance of I/O pins	-	=	5	-	pF

- 1. The hysteresis voltage of Schmitt trigger switching level. Guaranteed by characterization results, not tested in production.
- 2. The leakage current may be higher than the maximum if there is reverse current in adjacent pins.
- 3. Pull-up and pull-down resistors are implemented with a switchable PMOS/NMOS.
- 4. V_{PAD} refers to the input voltage of the IO pin.

All I/O ports are CMOS and TTL compatible (no software configuration required) and their features take into account most of the strict CMOS process or TTL parameters:

- For V_{IH}:
 - If V_{DD} is between [2.4V~3.08V]; Use CMOS features but include TTL.
 - If V_{DD} is between [3.08V~3.6V]; Use TTL features but include CMOS.
- For V_{IL} :
 - If V_{DD} is between [2.4V~3.6V]; Use CMOS features but include TTL.

Output drive current

GPIO (universal input/output port) can absorb or output up to +/-12mA current.

Output voltage

Unless otherwise specified, guaranteed by design, not tested in production. The parameters listed in Table 4-26 were measured using ambient temperature and V_{DD} supply voltage in accordance with Table 4-4. All I/O ports are CMOS and TTL compatible.

Table 4-26 IO Output drive capability characteristics

Drive class	$I_{OH}^{(1)}$, $V_{DD}=3.3V$	$I_{OL}^{(1)}$, V_{DD} =3.3V	$I_{OH}^{(1)}$, V_{DD} =2.5V	$I_{OL}^{(1)}$, V_{DD} =2.5V	Unit
2	-2	2	-1.5	1.5	mA
4	-4	4	-3	3	mA
8	-8	8	-7	7	mA
12	-12	12	-11	11	mA

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Condition	Min	Max	Unit
	Output low level	$V_{DD} = 3.3 \text{ V},$ $I_{OL}^{(3)} = 2\text{mA}, 4\text{mA}, 8\text{mA}, \text{ and } 12\text{mA}$	$V_{\rm SS}$	0.4	
$V_{OL}^{(1)}$		$V_{DD} = 2.5 \text{ V},$ $I_{OL}^{(3)} = 1.5 \text{mA}, 3 \text{mA}, 7 \text{mA}, \text{ and } 11 \text{mA}$	V_{SS}	0.4	v
	Output high level	$V_{DD} = 3.3 \text{ V},$ $I_{OH}^{(3)} = -2\text{mA}, -4\text{mA}, -8\text{mA}, \text{ and } -12\text{mA}$	2.4	V_{DD}	
V _{OH} ⁽²⁾		$V_{DD} = 2.5 \text{ V},$ $I_{OH}^{(3)} = -1.5 \text{mA}, -3 \text{mA}, -7 \text{mA}, \text{ and } -11 \text{mA}$	1.8	V_{DD}	

- 1. The current I_{IO} absorbed by the chip must always follow the absolute maximum rating given in Table 4-2, and the sum of I_{IO} (all I/O pins and control pins) must not exceed I_{VSS} .
- The current I_{IO} output from the chip must always follow the absolute maximum rating given in Table 4-2, and the sum of I_{IO} (all I/O pins and control pins) must not exceed I_{VDD}.
- 3. Actual drive capability see Table 4-26.

Input/output AC characteristics

The definitions and values of the input and output AC characteristics are given in Figure 4-9 and Table 4-28 respectively.

Unless otherwise specified, the parameters listed in Table 4-28 were measured using ambient temperature and supply voltage in accordance with Table 4-4.

Table 4-28 Input/output AC characteristics (1)

GPIOx_DS.DSy[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit
	$f_{max(IO)out}$	Maximum frequency ⁽²⁾	$C_L = 5 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 5 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	75 50	MHz
00	t _{(IO)out}	Output delay (A to pad)	$C_L = 5 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 5 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	3.66 4.72	ns
(2mA)	$t_{ m (IO)in}$	Input delay (pad to Y)	$C_L = 50 \text{ fF}, V_{DD} = 2.97 \text{ V}, V_{DDD}$ = 0.81 V Input characteristics at 1.8V and 2.5V are derated	-	2	ns
	$f_{max(IO)out}$	Maximum frequency ⁽²⁾	$C_L = 10 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 10 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	90 60	MHz
10	$t_{(IO)out}$	The output delay (A to pad)	$C_L = 10 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 10 \text{ pF}, V_{DD} = 2.5 \text{ V}$	1	3.5 4.5	
(4mA)	$t_{({ m IO}){ m in}}$	Input delay (pad to Y)	$C_L = 50$ fF, $V_{DD} = 2.97$ V, V_{DDD} = 0.81 V Input characteristics at 1.8V and 2.5V are derated	•	2	ns
	$f_{\text{max(IO)out}}$	Maximum frequency ⁽²⁾	$C_L = 20 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 20 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	100 75	MHz
01	t _{(IO)out}	The output delay (A to pad)	$C_L = 20 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 20 \text{ pF}, V_{DD} = 2.5 \text{ V}$	1	3.42 4.37	
(8mA))	Input delay (pad to Y)	$C_L = 50 \text{ fF}, V_{DD} = 2.97 \text{ V}, V_{DDD}$ = 0.81 V Input characteristics at 1.8V and 2.5V are derated	•	2	ns
11	$f_{max(IO)out}$	Maximum frequency ⁽²⁾	$C_L = 30 \text{ pF}, V_{DD} = 3.3 \text{ V}$ $C_L = 30 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	120 90	MHz
11 (12mA)	t	The output delay	$C_L = 30 \text{ pF}, V_{DD} = 2.3 \text{ V}$ $C_L = 30 \text{ pF}, V_{DD} = 3.3 \text{ V}$	-	3.34	ne
	t _{(IO)out}	(A to pad)	$C_L = 3 \text{ pF}, V_{DD} = 2.5 \text{ V}$	-	4.26	ns

GPIOx_DS.DSy[1:0] Configuration	Symbol	Parameter	Condition	Min	Max	Unit
	$t_{ m (IO)in}$	Input delay (pad to Y)	$C_L = 50 \text{ fF}, V_{DD} = 2.97 \text{ V}, V_{DDD}$ = 0.81 V Input characteristics at 1.8V and 2.5V are derated	-	2	
-	$t_{ m EXTIpw}$	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

- The I/O port drive capability can be configured via GPIOx_DS.DSy[1:0]. Refer the description of the GPIO port drive capability configuration register in N32G430 user manual.
- The maximum frequency is defined in Figure 4-9. 2.
- Propagation delay is defined in Figure 4-10. 3.

Figure 4-9 Definition of input/output AC characteristics

Figure 4-10 Propagation delay

4.3.13NRST pin characteristics

NRST pin is integrated with pull-up resistor, R_{PU} (see Table 4-25). Unless otherwise specified, the parameters listed in Table 4-29 were measured using ambient temperature and supply voltage in accordance with Table 4-4.

		•					
Symbol	Parameter	Condition	Min	Тур	Max	Unit	
$V_{\text{IL(NRST)}}^{(1)}$	NRST input low level voltage	$V_{DD} = 3.3 \text{ V}$	Vss	-	0.8	v	
$V_{IH(NRST)}^{(1)}$	NRST input high level voltage	$V_{DD} = 3.3 \text{ V}$	2	-	VDD	\ \ \	
$V_{\text{hys(NRST)}}$	NRST schmitt trigger voltage hysteresis	-	-	100	-	mV	
R_{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{DD} = 3.3 \text{ V}$	30	50	70	ΚΩ	
$V_{F(NRST)}^{(1)}$	NRST input filtered pulse	-	-	-	100	ns	
V _{NF(NRST)} (1)	NRST input not filtered pulse	-	300	-	-	ns	
T _{NRST_OUT}	Generated reset pulse duration	Internal reset source	10	13	-	μs	

Table 4-29 NRST pin characteristics

^{2.} The pull-up resistor is designed as a true resistor in series for a not switchable PMOS implementation. The resistance of this PMOS switch is very small (about 10%).

Figure 4-11 Recommended NRST pin protection

- 1. Filter action.
- The user must ensure that the NRST pin potential is below the maximum V_{IL(NRST)} listed in Table 4-29, otherwise the MCU cannot be reset.

4.3.14Timer characteristics

The parameters listed in Table 4-30 and Table 4-31 are guaranteed by design.

See section 4.3.12 for details on the features of the I/O reuse function pins (output comparison, input capture, external clock, PWM output).

^{1.} Guaranteed by design, not tested in production.

Table 4-30 TIM1/8 characteristics

Symbol	Parameter	Condition	Min	Max	Unit
+	m: 1 .: .:	-	1	-	t_{TIMCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMCLK} = 128MHz	7.8	-	ns
f	Timer CH1 to CH2 external clock	-	0	f _{TIMCLK} /2	MHz
$\mathrm{f_{EXT}}$	frequency	f _{TIMCLK} = 128MHz	0	64	MHz
Res _{TIM}	Timer resolution	-	-	16	bits
+	16 bit counter clock cycle when	-	1	65536	t_{TIMCLK}
t _{COUNTER}	internal clock is selected	f _{TIMCLK} = 128MHz	0.0078	512	μs
t	No.	-	=	65536 x 65536	t _{TIMCLK}
$t_{ m MAX_COUNT}$	Maximum count	f _{TIMCLK} = 128MHz	-	33.554	S

Table 4-31 TIM2/3/4/5 characteristics

Symbol	Parameter	Condition	Min	Max	Unit
t	Tr	-	1	-	t _{TIMCLK}
t _{res(TIM)}	Timer time resolution	$f_{TIMCLK} = 64MHz$	15.62	-	ns
f _{EXT} (1)	Timer CH1 to CH2 external clock	-	0	f _{TIMCLK} /2	MHz
1EXT V	frequency	$f_{TIMCLK} = 64MHz$	0	32	MHz
Res _{TIM}	Timer resolution	-	-	16	bits
+	16 bit counter clock cycle when	-	1	65536	t _{TIMCLK}
t _{COUNTER}	internal clock is selected	$f_{TIMCLK} = 64MHz$	0.01562	1024	μs
t	M : : : : : : : : : : : : : : : : : : :	-	-	65536 x 65536	t _{TIMCLK}
$t_{ m MAX_COUNT}$	Maximum count with 32-bit counter	$f_{TIMCLK} = 64MHz$	=	67.108	s

Table 4-32 LPTIM characteristics

Symbol	Parameter	Condition	Min	Max	Unit
_	The state of the s	-	1	-	t _{LPTIMCLK}
t _{res(LPTIM)}	Timer time resolution	$f_{LPTIMCLK} = 32MHz$	31.25	-	ns
f _{EXT} (1)	IN2 and OUT external clock	-	0	32	MHz
	frequency	$f_{LPTIMCLK} = 32MHz$	0	32	MHz
Res _{LPTIM}	Timer resolution	-	-	16	bits
+	16 bit counter clock cycle when	-	1	65536	t _{LPTIMCLK}
$t_{COUNTER}$	internal clock is selected	f _{LPTIMCLK} = 32MHz	0.03125	2048	μs
t _{MAX_COUNT}	Maximum count with 32-bit	-	=	65536 x 65536	$t_{LPTIMCLK}$
	counter	$f_{LPTIMCLK} = 32MHz$	-	134.217	S

Table 4-33 IWDG counting maximum and minimum reset time (LSI = $40\ KHz$)

Prescaler	IWDG_PREDIV. PD[2:0]	Min ⁽¹⁾ IWDG_RELV.REL[11:0]=0	Max ⁽¹⁾ IWDG_RELV.REL[11:0]=0xFFF	Unit
/4	000	0.1	409.6	
/8	001	0.2	819.2	
/16	010	0.4	1638.4	
/32	011	0.8	3276.8	ms
/64	100	1.6	6553.6	
/128	101	3.2	13107.2	
/256	11x	6.4	26214.4	

1. Guaranteed by design, not tested in production.

64 / 88 Nations Technologies Inc.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Table 4-34 WWDG counting n	navimum and minimum reso	et time (APR1 PC	T.K1 - 32MHz
Table 4-34 W WDG Counting in	naximum anu mimimum res	ci unic (Ai Di i C	LIXI — 34WIII

Prescaler	WWDG_CFG.TI MERB[1:0]	Min ⁽¹⁾ WWDG_CGF.W[13:0]=0x3F	Max ⁽¹⁾ WWDG_CFG.W[13:0]=0x3FFF	Unit
/1	00	0.128	2089	
/2	01	0.256	4178]
/3	10	0.512	8356	ms
/4	11	1.024	16712	

^{1.} Guaranteed by design, not tested in production.

4.3.15I²C Interface characteristics

Unless otherwise specified, the parameters listed in Table 4-35 were measured using ambient temperature, f_{PCLK1} frequency, and V_{DD} supply voltage in accordance with Table 4-4.

The I^2C interface of the N32G430 product conforms to the standard I^2C communication protocol, but has the following limitations: SDA and SCL are not "true" open leak pins, and when configured for open leak output, the PMOS tube between the pin and V_{DD} is closed, but still exists.

 I^2C interface features are listed in Table 4-35. See Section 4.3.12 for details about the features of the input/output multiplexing function pins (SDA and SCL).

Standard mode(1)(2) Fast mode(1)(2) $\mathbf{Fast} + \mathbf{mode}^{(1)} \overline{^{(2)}}$ **Symbol Parameter** Unit Min Min Min Max Max Max f_{SCL} I2C interface frequency 0.0 100 0 400 0 1000 KHz 4.0 0.6 0.26 Start condition hold time $t_{h(STA)}$ μs 4.7 0.50 SCL clock low time 1.3 $t_{\underline{w(SCLL)}}$ μs SCL clock high time 4.0 0.6 0.26 $t_{w(SCLH)}$ μs Repeat start condition 4.7 0.6 0.26 $t_{su(STA)}$ μs setup time SDA data hold time 3.4 0.9 0.4 $t_{h(SDA)}$ μs SDA setup time 250 100 50 ns $t_{su(SDA)}$ $t_{r(SDA)}$ SDA and SCL rise time 1000 20+0.1Cb 300 120 ns $t_{r(SCL)}$ $t_{f(SDA)}$ SDA and SCL fall time 300 20+0.1Cb 300 120 ns $t_{f(SCL)}$ 0.26 $t_{su(STO)}$ Stop condition setup time 4.0 -0.6 -- μs Time from stop condition to start condition (bus 0.50 4.7 1.3 $t_{w(STO:STA)}$ μs idle) Capacitive load for per C_{b} 400 400 100 pf Pulse width of the spikes that are suppressed by the 0 35 0 35 0 35 t_{SP} analog filter for standard μs and fast mode Data validity time 3.45 0.9 0.45 $t_{v(SDA)}$ 3.45 0.45 Response time 0.9 $t_{v (ACK)}$

Table 4-35 I²C interface characteristics

^{1.} Guaranteed by design, not tested in production.

^{2.} To achieve the maximum frequency of standard mode I2C, f_{PCLK1} must be greater than 2MHz. To achieve the maximum frequency of fast mode I2C, f_{PCLK1} must be greater than 4MHz.

Figure 4-12 I^2C bus AC waveform and measuring circuit $^{(1)}$

- 1. The measuring point is set at $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. The pull-up resistance depends on the I2C interface speed.
- 3. The resistance value depends on the actual electrical characteristics. The signal line can be directly connected without serial resistance.

4.3.16SPI/I²S interface characteristics

Unless otherwise specified, the SPI parameters listed in Table 4-36 and the I^2S parameters listed in Table 4-37 are measured using ambient temperature, f_{PCLKx} frequency, and V_{DD} supply voltage in accordance with Table 4-4.

See section 4.3.12 for details on the characteristics of the I/O reuse pins (NSS, SCLK, MOSI, MISO for SPI, WS, CLK, SD for $\rm I^2S$).

Table 4-36 SPI characteristics (1)

Symbol	Parameter	Condition		Min	Max	Unit
f_{SCLK}		Master mode		-	18 ⁽⁴⁾ /20 ⁽⁵⁾ /28 ⁽⁶⁾	MHa
1/t _{c(SCLK)}	SPI clock frequency	Slave mode		-	32	MHz
$t_{r(SCLK)} \\ t_{f(SCLK)}$	SPI clock rise and fall time	Load capacitance: C = 30pF		-	8	ns
DuCy(SCK)	SPI from the input clock duty cycle	Slave mode		45	55	%
t _{su(NSS)} (1)	NSS setup time	Slave mode		4t _{PCLK}	-	ns
$t_{h(NSS)}^{(1)}$	NSS hold time	Slave mode		2t _{PCLK}	-	ns
$t_{w(SCLKH)}^{(1)}$ $t_{w(SCLKL)}^{(1)}$	SCLK high and low time	Master mode		t _{PCLK} - 2	$t_{PCLK} + 2$	ns
(1)		Mastanasia	SPI1	14	-	-
$t_{\rm su(MI)}^{(1)}$	Data in mut autum tima	Master mode	SPI2	13 ⁽⁴⁾ /12 ⁽⁵⁾	-	
(1)	Data input setup time	Slave mode	SPI1	4.5 ⁽⁴⁾ /4 ⁽⁵⁾	-	ns
$t_{su(SI)}^{(1)}$			SPI2	4.5	-	
t _{h(MI)} ⁽¹⁾		Master mode -	SPI1	2.5 ⁽⁴⁾ /4.5 ⁽⁵⁾	-	
th(MI)	Data input hold time		SPI2	2 ⁽⁴⁾ /4.5 ⁽⁵⁾	-	ns
$t_{h(\mathrm{SI})}^{(1)}$	Data input hold time	Slave mode	SP1	2.5 ⁽⁴⁾ /4.5 ⁽⁵⁾	-	
t _{h(SI)}		Slave mode S		2.5 ⁽⁴⁾ /4.5 ⁽⁵⁾	-	1
$t_{a(SO)}^{(1)(2)}$	Data output access time	Slave mode, $f_{PCLK} = 32MHz$		0	3t _{PCLK}	ns
$t_{\rm dis(SO)}^{(1)(3)}$	Disable time of data output	Slave mode		2	10	ns
tv(SO) ⁽¹⁾		Slave mode (after enable	SPI1	-	15	
tv(SO)(°)	Valid time of data output	edge)	SPI2	-	15	1
$t_{v(MO)}^{(1)}$	Valid time of data output	Master mode (after enabling	SPI1	-	5.5	ns
t _{v(MO)} ` ′		edge)	SPI2	-	5.0	
t _{h(SO)} ⁽¹⁾		Slave mode (after enable	SPI1	4.5	-	ns
th(SO)		edge)	SPI2	4.0	-	
$t_{h(MO)}^{(1)}$	Data output hold time	Master mode (after enabling	SPI1	-1.0	-	
th(MO)		edge)	SPI2	-0.5 ⁽⁴⁾ /-1.0 ⁽⁵⁾	-	

- 1. Guaranteed by design, not tested in production.
- The minimum value represents the minimum time to drive the output, and the maximum value represents the maximum time to 2. get the data correctly.
- The minimum value represents the minimum time for turning off the output and the maximum value represents the maximum time 3. for placing the data line in a high resistance state.
- 4. Applicate to C version
- 5. Applicate to D version, with CRC
- Applicate to D version, without CRC 6.

Figure 4-13 SPI timing diagram-slave mode and CLKPHA=0

Figure 4-14 SPI timing diagram-slave mode and CLKPHA=1 (1)

1. The measuring point is set at $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 4-15 SPI timing diagram- master mode (1)

1. The measuring point is set at 0.3V and 0.7V. DDDD

Table 4-37 I^2S characteristics $^{(1)}$

Symbol	Parameter	Condition		Min	Max	Unit
f_{MCLK}	I ² S master clock	Master mode		-	256*Fs ⁽³⁾	MHz
f_{CLK}		Master mode (32 bit) Slave mode (32 bit)		-	64*Fs ⁽³⁾	MHz
$1/t_{c(CLK)}$	I ² S clock frequency			-	64*Fs ⁽³⁾	
DuCy(SCK)	I ² S clock frequency duty cycle	I2S Slave mode	30	70	%	
$t_{r(CLK)} \\ t_{f(CLK)}$	I ² S clock rise and fall time	Load capacitance: CL = 50pF		-	8	
t _{v(WS)} (1)	WS valid time	Master mode	I2S1	7.5	-	-
		Waster mode	I2S2	6.0	-	
t _{h(WS)} (1)	WS hold time	Master mode	I2S1	0	-	
11(113)			I2S2	0	-	
t _{su(WS)} (1)	WS setup time	Slave mode	I2S1	4.5	-	
			I2S2	4.5	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	I2S1	2.5	-	
			I2S2	2.5	-	
t _{w(CLKH)} ⁽¹⁾	CLK high and low times	Master mode, $f_{PCLK} = 16MHz$, audio 48kHz		312.5	-	
t _{w(CLKL)} ⁽¹⁾	8		I2S1	345 5.0	-	ns
$t_{su(SD_MR)}^{(1)}$	Data input setup time	Master receiver	I2S2	5.0	_	
$t_{su(SD_SR)}^{(1)}$		Slave receiver	I2S1	4.5	-	
			I2S2	4.5	-	
t _{h(SD_MR)} ⁽¹⁾⁽²⁾	Data input hold time	Master receiver	I2S1	1.5	-	
			I2S2	1.5	-	
$t_{h(SD_SR)}^{(1)(2)}$		Slave receiver	I2S1	1.5	-	
			I2S2	1.5	-	
t _{v(SD_ST)} ⁽¹⁾⁽²⁾	Data output valid time	Slave transmitter (after the enabled edge)	I2S1	-	16.0	
			I2S2	-	15.5	-
4 (1)	Data output hold time	Slave generator (after enable edge)	I2S1	4.5	-	
$t_{h(SD_ST)}^{(1)}$			I2S2	4.5	-	
t _{v(SD_MT)} ⁽¹⁾⁽²⁾	Data output valid time	Master generator (after enabling edge)	I2S1	-	5.5	
			I2S2	-	5.5	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master generator (after enabling edge)	I2S1	1	-	
			I2S2	1	-	

^{1.} Guaranteed by design, not tested in production.

^{2.} Depends on f_{PCLK} . For example, if f_{PCLK} =16MHz, then T_{PCLK} =1/ f_{PCLK} =125ns.

^{3.} Audio signal sampling frequency.

Figure 4-16 I²S slave mode timing diagram (Philips Protocol) (1)

- 1. The measuring point is set at $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. Transmit/receive of the last byte. There is no transmit/receive of this least significant bit before the first byte.

 $t_{c(CLK)}$ $t_{f(CLK)}$ $t_{r(CLK)}$ CLKPOL=0 CLKPOL=1 $t_{h(WS)}$ WS input Last bit //Bit n transmit Last bit transmit (2) MSB transmit SD transmit transmit 7/_{Bit n receive} Last bit SD receive Last bit receive(2) MSB receive

Figure 4-17 I²S master mode timing diagram (Philips protocol) (1)

- 1. The measuring point is set at $0.3V_{DD}$ and $0.7V_{DD}$.
- 2. Transmit/receive of the last byte. There is no transmit/receive of this last bit before the first byte.

4.3.17 Controller area network (CAN) interface characteristics

See Section 4.3.12 for details on the features of the input/output multiplexing function pins (CAN_TX and CAN_RX).

4.3.18 Electrical parameters of 12 bit analog-to-digital converter (ADC)

Unless otherwise specified, the parameters in Table 4-38 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-4.

Note: It is recommended to perform a calibration at each power-on.

Table 4-38 ADC characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{DDA}	The power supply voltage	Use an external reference voltage	2.4	-	3.6	V
V_{REF+}	Positive reference voltage	-	2.4	-	V_{DDA}	V
V _{REF-}	Negative reference voltage	-		0		V
f_{ADC}	ADC clock frequency	-	-	-	80	MHz
f _s ⁽²⁾	Sampling rate	Resolution = 12bits	_	_	4.7	Msps
		Fast channel Resolution = 10bits			1.7	
		Fast channel	-	-	5.3	
		Resolution = 8bits	-	-	7.2	
		Fast channel Resolution = 6bits				
		Fast channel	-	-	8.8	
	External trigger frequency ⁽³⁾	f _{ADC} =80MHz	_	_		
$ m f_{TRIG}^{(2)}$		Resolution = 12bits			4.7	MHz
		Resolution = 12bits	-	-	17	1/f _{ADC}
			0 (V _{SSA} or		17	1/1ADC
			V_{REF-}	-	$V_{ m REF+}$	V
V_{AIN}	Switching voltage range	-	Connect to			
			ground)			
$R_{AIN}^{(2)}$	External input impedance	-	-	-	100(1)	ΚΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	Fast channel, VDD=3.3V	-	-	0.4	ΚΩ
		Slow channel, VDD=3.3V	-	-	0.65	
$C_{ADC}^{(2)}$	Internal sampling and holding capacitor	-	-	5	-	pF
$t_{\rm cal}^{(2)}$	The calibration time	-	82			1/f _{ADC}
$t_{\rm lat}^{(2)}$	Injection trigger conversion latency	$f_{ADC} = 80 \text{ MHz}$	-	-	7.52	μs
U _{at} ` ′		-	-	-	601.5	1/f _{ADC}
$t_{latr}^{(2)}$	Regular trigger conversion latency	$f_{ADC} = 80MHz$	-	-	7.52	μs
ulatr` ′		-	-	-	601.5	1/f _{ADC}
SNDR	Signal noise distortion ration	-	-	65	-	dB
	Sampling time	f _{ADC} = 80MHz(fast channel)	0.0563 ⁽¹⁾		7.50	us
		Resolution = 12bits	0.0563(1) -	-	7.52	
		$f_{ADC} = 80MHz(fast channel)$	$0.0563^{(1)}$	-	7.52	
		Resolution = 10 bits $f_{ADC} = 80$ MHz(fast channel)				
		Resolution = 8bits	0.0313 ⁽¹⁾	-	7.52	
		$f_{ADC} = 80MHz(fast channel)$	0.0313 ⁽¹⁾		7.50	
ts ⁽²⁾		Resolution = 6bits	0.0313	-	7.52	
		f _{ADC} = 80MHz(slow channel) Resolution = 12bits	0.0938 ⁽¹⁾	-	7.52	
		f _{ADC} = 80MHz(slow channel) Resolution = 10bits	0.0938 ⁽¹⁾	-	7.52	
		$f_{ADC} = 80MHz$ (slow channel) Resolution = 8bits	0.0938 ⁽¹⁾	-	7.52	
		f _{ADC} = 80MHz(slow channel) Resolution = 6bits	0.0563 ⁽¹⁾	-	7.52	

T _S ⁽²⁾		The fast channel Resolution = 12bits	4.5 ⁽¹⁾		601.5	1/6
1 S`	Sampling cycles	The slow channel Resolution = 12bits	7.5 ⁽¹⁾	-	601.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	6	10	20	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	-	$9 \sim 614$ (Sampling T _S + 6.5/8.5/10.5/12.5 for successive approximation)			1/f _{ADC}

- 1. Guaranteed by design, not tested in production., please refer to Table 4-39 for details.
- 2. Guaranteed by design, not tested in production.
- 3. Suitable for ADC continuous conversion mode.

Formula 1: maximum RAIN formula

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC}$$

The above formula (Formula 1) is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N=12 (representing 12-bit resolution).

Table 4-39 ADC sampling time⁽¹⁾

Input	Resolution	Rin(kΩ)	Minimum sampling time (ns)	Input	Resolution	$Rin(k\Omega)$	Minimum sampling time (ns)
		0	39.6			0	79.2
		0.05	43.5			0.05	83.1
	12-bit	0.1	47.4		12-bit	0.1	86.9
		0.2	55.1			0.2	94.7
		0.5	78.4	1		0.5	118.0
fast channel		1	117.2	slow channel		1	156.8
		10	815.9			10	855.5
		20	1592.2			20	1631.8
		50	3921.2]		50	3960.8
		100	7802.8			100	7842.4
		0	33.9			0	67.9
		0.05	37.3		10-bit	0.05	71.2
		0.1	40.6			0.1	74.5
		0.2	47.2			0.2	81.2
C4 -11	10-bit	0.5	67.2	.111		0.5	101.1
fast channel		1	100.5	slow channel		1	134.4
		10	699.4			10	733.3
		20	1364.8			20	1398.7
		50	3361.0			50	3395.0
		100	6688.1			100	6722.1
		0	28.3		8-bit	0	56.6
		0.05	31.1			0.05	59.3
		0.1	33.8			0.1	62.1
		0.2	39.4	slow channel		0.2	67.7
fast channel	8-bit	0.5	56.0			0.5	84.3
rast channel		1	83.7			1	112.0
		10	582.8			10	611.1
		20	1137.3			20	1165.6
		50	2800.9			50	2829.1
		100	5573.5			100	5601.7
		0	22.6		6-bit	0	45.2
		0.05	24.8			0.05	47.5
		0.1	27.1			0.1	49.7
		0.2	31.5			0.2	54.1
fast channel	6-bit	0.5	44.8	slow channel		0.5	67.4
14St CHAIIIICI		1	67.0			1	89.6
		10	466.2			10	488.9
		20	909.9			20	932.5
		50	2240.7			50	2263.3
		100	4458.8			100	4481.4

^{1.} Guaranteed by design, not tested in production.

Table 4-40 ADC accuracy-limited test conditions $^{(1)(2)}$

Symbol	Parameter	Condition	Max (3)	Unit
	Comprehensive error ⁽⁴⁾	f_{ADC} = 80MHz, sample rate = 4.7MSPS, V_{DDA} = 2.4V~3.3V, T_A = 25 °C, Single-ended mode	±4.5	
ET		$f_{ADC} = 80$ MHz, sample rate = 4.7MSPS, V_{DDA} = 2.4V~3.3V, $T_A = 25$ °C, Differential mode	±4.5	
Fig	Offset error	$f_{ADC} = 80MHz$, sample rate = 4.7MSPS, V_{DDA} = 2.4V~3.3V, $T_A = 25$ °C, Single-ended mode	±1.5	
ЕО		$\begin{split} f_{ADC} &= 80 MHz, sample rate = 4.7 MSPS, V_{DDA} \\ &= 2.4 V {\sim} 3.3 V, T_A = 25 ^{\circ}\!\!\! C, \\ Differential mode \end{split}$	±1.5	
EG	Gain error	$\begin{split} f_{ADC} &= 80 MHz, sample rate = 4.7 MSPS, V_{DDA} \\ &= 2.4 V {\sim} 3.3 V, T_A = 25 {\circ} C, \\ Single-ended mode \end{split}$	TBD	LSB
EG		$\begin{split} f_{ADC} &= 80 MHz, sample rate = 4.7 MSPS, V_{DDA} \\ &= 2.4 V {\sim} 3.3 V, T_A = 25 ^{\circ}\!\!\! C, \\ Differential mode \end{split}$	TBD	LSB
ED.	Differential linearity amon	f_{ADC} = 80MHz, sample rate = 1MSPS, V_{DDA} = 2.4V~3.3V, T_A = 25 °C, Single-ended mode	±2.0	
ED	Differential linearity error	f_{ADC} = 80MHz, sample rate = 1MSPS, V_{DDA} = 2.4V~3.3V, T_A = 25 °C, Differential mode	±1.5	
Ei	Integral linearity error	$f_{ADC} = 80 MHz$, sample rate = 1MSPS, $V_{DDA} = 2.4 V \sim 3.3 V$, $T_A = 25 ^{\circ}C$, Single-ended mode	±1.5	
EL		$\begin{aligned} f_{ADC} &= 80 MHz \text{, sample rate} = 1 MSPS, \ V_{DDA} = \\ 2.4 V \sim & 3.3 V, \ T_A = 25 \ ^{\circ}C, \\ \text{Differential mode} \end{aligned}$	±1.0	

- 1. The ADC accuracy of the ADC is measured after internal calibration.
- 2. ADC accuracy versus reverse injection current: It is necessary to avoid injecting reverse current on any standard analog input pin, as this can significantly reduce the accuracy of the conversion being performed on the other analog input pin. It is recommended to add a Schottky diode (between pin and ground) to standard analog pins that may generate reverse injection current. The forward injection current does not affect the ADC accuracy as long as it is within the range of I_{INJ(PIN)} given in Table 4-2
- 3. Guaranteed by characterization results, not tested in production.
- 4. Guaranteed by design, not tested in production.

Figure 4-18 ADC precision characteristics

Figure 4-19 Typical connection diagram using ADC

- 1. For values of R_{AIN}, R_{ADC}, and C_{ADC}, see Table 4-38.
- 2. Cparasitic indicates parasitic capacitance on PCB (related to welding and PCB layout quality) and pads (approximately 7pF).A larger Cparasitic value would reduce the accuracy of the conversion and the solution was to reduce f_{ADC}.

PCB Design Suggestions

The decoupling of the power supply must be connected in accordance with Figure 4-20. The 10nF capacitors in the picture must be ceramic capacitors (good quality), and they should be as close as possible to the MCU chip.

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

Figure 4-20 Decoupling circuit of power supply and reference power supply ($V_{\text{REF+}}$ is connected to V_{DDA})

1. V_{REF+} and V_{REF-} are internally connected to VDDA and VSSA.

4.3.19Comparator (COMP) electrical parameters

Unless otherwise specified, the parameters in Table 4-41 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-4.

Table 4-41 COMP characteristics (1)

Symbol	Parameter	Condi	tions	Min	Тур	Max	Unit
$V_{ m DDA}$	Analog Supply voltage	-		2.4	-	3.6	V
$V_{\rm IN}$	Input voltage range	-		0	-	V_{DDA}	
I _{DDA(SCALER)}		Sel = 100000 'b		ı	ı	350	μА
T _{START_SCALER}	Scaler starup time	=		ı	1	2	μs
t _{START} ⁽¹⁾	Comparator startup time to reach propagation delay	High speed mode	2.4V≤V _{DDA} ≤3.6V	ı	ı	6	μs
t_{D}	Propagation delay for 200 mV step with 100 mV overdrive	High speed mode	2.4V≤V _{DDA} ≤3.6V	-	72	200	ns
V _{OFFSET}	Comparator offset error	Full common mode range		ı	±10	±20	mV
	Comporator	Low hys	steresis	-	10	-	
Vhys	Comparator hysteresis	Medium hysteresis		-	20	-	mV
	Hysteresis	High hysteresis		-	30	-	
	Comparator	High speed mode: one comparator is	Static	ı	45	ı	
$I_{ m DDA}$	consumption from V _{DDA}	turned on, the internal reference is turned off	With 50 kHz ±100 mV overdrive square signal	-	50	-	μΑ

^{1.} Guaranteed by design, not tested in production.

4.3.20Temperature sensor (TS) characteristics

Unless otherwise specified, the parameters in Table 4-42 are measured using ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage in accordance with the conditions in Table 4-4.

Table 4-42 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
$T_{L}^{(1)}$	Linearity of V _{SENSE} with respect to temperature	-	±1	<u>+4</u>	C
Avg_Slope ⁽¹⁾	Average slope	-3.7	-4	-4.3	mV/℃
$V_{25}^{(1)}$	Voltage at 25 ℃	-	1.32	-	V
t _{START} (1)	Startup time	-	-	10	μs
$T_{S_temp}^{(2)(3)}$	When reading temperature, the ADC sampling time	8.2	-	17.1	μs

^{1.} Guaranteed by characterization result, not tested in production.

^{2.} Guaranteed by design, not tested in production.

^{3.} The minimum sampling time can be determined by the application through multiple loops.

5 Package Information

5.1 LQFP32

Figure 5-1 LQFP32 package outline

Tel: +86-755-86309900 Email: info@nationstech.com

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.2 LQFP48

Figure 5-2 LQFP48 package outline

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.3 QFN20

Figure 5-3 QFN20 package outline

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.4 QFN28

Figure 5-4 QFN28 package outline

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.5 QFN32

Figure 5-5 QFN32 package outline

5.6 QFN48

Figure 5-6 QFN48 package outline

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.7 TSSOP20

Figure 5-7 TSSOP20 package outline

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

5.8 Marking Information

Figure 5-8 Marking information

Address: Nations Tower, #109 Baoshen Road, Hi-tech Park North.

6 Version history

NDBY mode
ime
escription
CLK
data
al conversion
a
05 °C
and 105 °C in
l value
TRIG modify
by

7 Notice

This document is the exclusive property of Nations Technologies Inc. (Hereinafter referred to as NATIONS). This document, and the product of NATIONS described herein (Hereinafter referred to as the Product) are owned by NATIONS under the laws and treaties of the People's Republic of China and other applicable jurisdictions worldwide.

NATIONS does not grant any license under its patents, copyrights, trademarks, or other intellectual property rights. Names and brands of third party may be mentioned or referred thereto (if any) for identification purposes only.

NATIONS reserves the right to make changes, corrections, enhancements, modifications, and improvements to this document at any time without notice. Please contact NATIONS and obtain the latest version of this document before placing orders.

Although NATIONS has attempted to provide accurate and reliable information, NATIONS assumes no responsibility for the accuracy and reliability of this document.

It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. In no event shall NATIONS be liable for any direct, incidental, special, exemplary, or consequential damages arising in any way out of the use of this document or the Product.

NATIONS Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at user's risk. User shall indemnify NATIONS and hold NATIONS harmless from and against all claims, costs, damages, and other liabilities, arising from or related to any customer's Insecure Usage.

Any express or implied warranty with regard to this document or the Product, including, but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement are disclaimed to the fullest extent permitted by law.

Unless otherwise explicitly permitted by NATIONS, anyone may not use, duplicate, modify, transcribe or otherwise distribute this document for any purposes, in whole or in part.