Programmiervorkurs

Blatt 2 - Aufgabe 4 - Zusatz 25.09.2024

Für $a \in \mathbb{R}^+$: Warum konvergiert die Folge (a_n) mit $a_0 = a$ und

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$$

gegen \sqrt{a} ?

Wir werden zeigen, dass sich der Abstand des Folgenglieds a_n zu dem vermeintlichen Grenzwert \sqrt{a} in jeder Iteration halbiert bzw. formal für alle natürliche Zahlen $n \geq 1$ die Ungleichung

$$\frac{|a_{n+1} - \sqrt{a}|}{|a_n - \sqrt{a}|} \le \frac{1}{2}$$

gilt¹. Dann konvergiert die Folge $(a_n - \sqrt{a})$ gegen 0 und somit die Folge (a_n) gegen \sqrt{a} .

Mit elementaren Umformungen erhalten wir bereits

$$\frac{|a_{n+1} - \sqrt{a}|}{|a_n - \sqrt{a}|} = \frac{\left| \frac{1}{2} \left(a_n + \frac{a}{a_n} \right) - \sqrt{a} \right|}{|a_n - \sqrt{a}|} = \frac{\left| \frac{a_n^2 + a - 2a_n \sqrt{a}}{2a_n} \right|}{|a_n - \sqrt{a}|} = \frac{\left| \frac{(a_n - \sqrt{a})^2}{2a_n} \right|}{|a_n - \sqrt{a}|} = \frac{|a_n - \sqrt{a}|}{2|a_n|}. \quad (1)$$

Insbesondere reicht es nun $a_n \ge \sqrt{a}$ zu zeigen, da dann im letzten Term von (1) die Betragsstriche entfallen und dieser sofort nach oben gegen $\frac{1}{2}$ abgeschätzt werden kann. Wir erhalten

$$a_n^2 - a = \frac{1}{4} \left(a_{n-1} + \frac{a}{a_{n-1}} \right)^2 - a = \frac{1}{4} \left(a_{n-1} - \frac{a}{a_{n-1}} \right) \ge 0$$

und somit auch $a_n \ge \sqrt{a}$ (aus der Definition der Folge sieht man unmittelbar, dass alle Folgenglieder nicht-negativ sind). Das beendet den Beweis.

¹Streng genommen wird die erste Iteration hier also nicht betrachtet, da wir zum Beispiel mit $a = \frac{1}{9}$ ein Gegenbeispiel hätten. Für den Konvergenzbeweis ist das jedoch keine Einschränkung.