

Decision Tree

Decision Tree

- Idea Split data into "pure" region
 i.e., each subset belongs to only one class
- With real data completely pure subsets may not be possible. So the goal is to divide the data into subsets that are as pure as possible.

- A decision tree is a hierarchical structure with nodes and directed edges.
 - Root node the node at the top
 - Leaf nodes the nodes at the bottom
 - Internal nodes

- The root and internal nodes have test conditions
- Each leaf node has a class label associated with it

- Using a decision tree, a classification decision is made by:
 - Traversing the decision tree starting with the root node.
 - At each node the answer to the test condition determines which branch to traverse to.
 - When a leaf node is reached the category at the leaf node determines the classification decision.

Constructing a Decision Tree

Start with all samples and a node

 Partition samples into subsets based in the input variables to create subsets of records that are purest – 'greedy approach'

 Repeatedly partition data into successively purer subsets until some stopping criterion is satisfied

Constructing a Decision Tree

• Impurity measure – Gini index

Constructing a Decision Tree

- What variable to split on?
 - Splits on all variables are tested

- When to stop splitting a node?
 - All samples in the node have the same class label.
 - Number of samples in the node falls below a certain minimum value
 - Change in impurity measure is smaller than threshold
 - Max tree depth is reached
 - etc.

Linear Regression

- A regression algorithm the <u>output variable</u> is a numeric value
- A statistical method that allows us to summarize and study relationships between two continuous (quantitative) variables:
 - One variable, x, is regarded as the predictor, explanatory, or independent variable.
 - The other variable, y, is regarded as the response, outcome, or dependent variable.

• Simple linear regression concerns the study of only one predictor variable.

 Multiple linear regression concerns the study of two or more predictor variables.

Х	Υ	
1.00	1.00	
2.00	2.00	
3.00	1.30	
4.00	3.75	
5.00	2.25	

• Linear regression consists of finding the best-fitting straight line through the points. The best-fitting line is called a regression line.

Х	Υ	γ'	γ-γ'	(Y-Y') ²
1.00	1.00	1.210	-0.210	0.044
2.00	2.00	1.635	0.365	0.133
3.00	1.30	2.060	-0.760	0.578
4.00	3.75	2.485	1.265	1.600
5.00	2.25	2.910	-0.660	0.436

- Computing the Regression Line
 - \bullet y_i denotes the observed response for experimental unit i
 - x_i denotes the predictor value for experimental unit i
 - \tilde{y}_i is the predicted response (or fitted value) for experimental unit i
 - Then, the equation for the best fitting line is:

$$\tilde{y}_i = b_0 + b_1 x_i$$

The prediction error is:

$$e_i = y_i - \tilde{y}_i$$

• Least squares criterion – find the vales of b_0 and b_1 that minimize:

$$Q = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Take the derivative with respect to b_0 and b_1 , set to 0, and solve for b_0 and b_1 , the "least squares estimates" for b_0 and b_1 are:

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$b_1 = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^n (x_i - ar{x})^2}$$

Multiple Linear Regression

The model

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_{p-1} x_{i,p-1} + \epsilon_i.$$

• We assume that the ϵ_i have a normal distribution with mean 0 and constant variance σ^2 . These are the same assumptions that we used in simple regression with one x-variable.

Multiple Linear Regression

• The word "linear" in "multiple linear regression" refers to the fact that the model is *linear in the parameters*, $\beta_0, \beta_1, \ldots, \beta_{p-1}$.

• The estimates of the θ coefficients are the values that minimize the sum of squared errors for the sample.

Summary

Decision Tree

• Linear Regression