Vietnamese Mathematical Olympiad for High School- & College Students Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc (VMC)

Nguyễn Quản Bá Hồng*

Ngày 31 tháng 1 năm 2025

Tóm tắt nội dung

This text is a part of the series $Some\ Topics\ in\ Advanced\ STEM\ \ensuremath{\mathfrak{C}}$ Beyond: URL: https://nqbh.github.io/advanced_STEM/.

Latest version:

• Vietnamese Mathematical Olympiad for High School- & College Students (VMC) – Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

Muc luc

1	Preliminaries – Kiến thức chuẩn bị	1
	Algebra – Đại Số 2.1 Matrix – Ma trận 2.2 Vector space – Không gian vector	2
	Analysis – Giải Tích 3.1 Sequence – Dãy số 3.2 Integral – Tích phân	3
4	Miscellaneous	4
T	ài liệu	4

1 Preliminaries – Kiến thức chuẩn bị

Resources - Tài nguyên.

- 1. [Khả09]. Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số.
- 2. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 28.
- 3. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 29. Huế, 2-8.4.2023.

2 Algebra – Đai Số

Resources - Tài nguyên.

- 1. LÊ TUẨN HOA. Đại Số Tuyến Tính Qua Các Ví Du & Bài Tâp.
- 2. [Hưn22]. NGUYỄN HỮU VIỆT HƯNG. Đại Số Tuyến Tính.
- 3. NGÔ VIỆT TRUNG. Giáo Trình Đại Số Tuyến Tính.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

2.1 Matrix – Ma trận

2.2 Vector space – Không gian vector

Giả sử V, W: 2 không gian vector trên trường \mathbb{F} (see [Hưn22, Chap. 2, §2: Ánh xạ tuyến tính, pp. 100–110]).

Định nghĩa 1 (Ánh xạ tuyến tính). Ánh xạ $f:V\to W$ được gọi là 1 ánh xạ tuyến tính (hoặc rõ hơn là 1 ánh xạ \mathbb{F} -tuyến tính), $n \hat{e} u$

$$f(\alpha + \beta) = f(\alpha) + f(\beta), \ \forall \alpha, \beta \in V, \tag{1}$$

$$f(a\alpha) = af(\alpha), \ \forall a \in \mathbb{F}.$$
 (2)

Ánh xạ tuyến tính cũng được gọi là đồng cấu tuyến tính, hay đồng cấu cho đơn giản.

2 điều kiện trong định nghĩa ánh xạ tuyến tính ⇔ điều kiện:

$$f(\alpha a + \beta b) = af(\alpha) + bf(\beta), \ \forall \alpha, \beta \in V, \ \forall a, b \in \mathbb{R}.$$
 (3)

Định lý 1 (Tính chất cơ bản của ánh xạ tuyến tính). $Giả sử f: V \to W$ là 1 ánh xạ tuyến tính. Khi đó: (i) f(0) = 0. (ii) $f(-\alpha) = -f(\alpha), \forall \alpha \in V$. (iii)

$$f\left(\sum_{i=1}^{n} a_i \alpha_i\right) = \sum_{i=1}^{n} a_i f(\alpha_i), \ \forall a_i \in \mathbb{F}, \ \forall \alpha_i \in V, \ \forall i = 1, \dots, n.$$

$$(4)$$

Ví dụ 1 (Ánh xạ tuyến tính cơ bản).

- (i) Ánh xạ không $0: V \to W$, $0(\alpha) = 0$, $\forall \alpha \in V$. Thế còn ánh xạ hằng $C: V \to W$, $C(\alpha) = C$, $\forall \alpha \in V$ với $C \in \mathbb{F}$ cho trước?
- (ii) Ánh xạ đồng nhất (identity mapping) $id_V: V \to V$, $id_V(\alpha) = \alpha$, $\forall \alpha \in V$.
- (iii) Đạo hàm hình thức

$$\frac{d}{dX}: \mathbb{F}[X] \to \mathbb{F}[X], \ \frac{d}{dX} \sum_{i=0}^{n} a_i X^i = \sum_{i=1}^{n} i a_i X^{i-1} = \sum_{i=0}^{n-1} (i+1) a_{i+1} X^i.$$
 (5)

(iv) Tích phân hình thức

$$\int dX : \mathbb{F}[X] \to \mathbb{F}[X], \ \int \sum_{i=0}^{n} a_i X^i \, dX = \sum_{i=0}^{n} \frac{a_i}{i+1} X^{i+1}.$$
 (6)

(v) $Gi\mathring{a} s\mathring{u} A = (a_{ij}) \in M(m \times n, \mathbb{F}),$

$$\widetilde{A}: \mathbb{F}^n \to \mathbb{F}^m, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
 (7)

(vi) Các phép chiếu

$$\operatorname{pr}_{i}: V_{1} \times V_{2} \to V_{i}, \ \operatorname{pr}_{i}(v_{1}, v_{2}) = v_{i}, \ \forall i = 1, 2,$$
 (8)

hay tổng quát hơn với $n \in \mathbb{N}$, $n \geq 2$:

$$\operatorname{pr}_{i}: \sum_{i=1}^{n} V_{i} = V_{1} \times V_{2} \times \dots \times V_{n}, \ \operatorname{pr}_{i}(v_{1}, \dots, v_{n}) = v_{i}, \ \forall i = 1, \dots, n.$$

$$(9)$$

See also, e.g., Wikipedia/linear map.

Hạt nhân & ảnh của 1 đồng cấu là 2 không gian vector đặc biệt quan trọng với việc khảo sát đồng cấu đó, see, e.g., [Hưn22, Chap. 2, §3: Hạt nhân & ảnh của đồng cấu, pp. 110–116].

Định nghĩa 2 (Hạt nhân/hạch & ảnh của đồng cấu). $Giả sử f: V \to W$ là 1 đồng cấu.

- (a) $\operatorname{Ker}(f) \coloneqq f^{-1}(0) = \{x \in V | f(x) = 0\} \subset V$ được gọi là hạt nhân (hay hạch) của f. Số chiều của $\operatorname{Ker}(f)$ được gọi là số khuyết của f.
- (b) $\operatorname{Im}(f) := f(V) = \{f(x) | x \in V\} \subset W$ được gọi là ảnh của f. Số chiều của $\operatorname{Im}(f)$ được gọi là hạng của f & được ký hiệu là $\operatorname{rank}(f)$.

Định lý 2 (Diều kiện cầu & đủ để 1 đồng cấu là 1 toàn cấu). $D \hat{o} n g c \hat{a} u f : V \to W \ là 1 toàn c \hat{a} u \Leftrightarrow \operatorname{rank}(f) = \dim W.$

Định lý 3 (Điều kiện cần & đủ để 1 đồng cấu là 1 đơn cấu). Đối với đồng cấu $f: V \to W$ các điều kiện sau là tương đương: (i) f là 1 đơn cấu.

(ii) $Ker(f) = \{0\}.$

- (iii) Ảnh bởi f của mỗi hệ vector độc lập tuyến tính là 1 hệ vector độc lập tuyến tính.
- (iv) Ảnh bởi f của mỗi cơ sở của V là 1 hệ vector độc lập tuyến tính.
- (v) Ảnh bởi f của 1 cơ sở nào đó của V là 1 hệ vector độc lập tuyến tính.
- (vi) rank $(f) = \dim V$.
- 1 (VMC2023A1). Ký hiệu $\mathbb{R}[X]_{2023}$ là \mathbb{R} -không gian vector các đa thức 1 biến với bậc ≤ 2023 . Cho f là ánh xạ đặt tương ứng mỗi đa thức với đạo hàm cấp 2 của nó: $f: \mathbb{R}[X]_{2023} \to \mathbb{R}[X]_{2023}$, $p(X) \mapsto p''(X)$. Đặt $g = f \circ f \circ \cdots \circ f$ (870 lần) là ánh xạ hợp của 870 lần ánh xạ f. (a) Chứng minh g là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. (b) Tìm số chiều \mathcal{E} 1 cơ sở của không gian ảnh $\mathrm{Im}\,g$ \mathcal{E} của không gian hạt nhân $\mathrm{Ker}\,g$.

Chứng minh. (a) Có $f(\alpha p(X) + \beta q(X)) = (\alpha p(X) + \beta q(X))'' = \alpha p''(X) + \beta q''(X) = \alpha f(p(X)) + \beta f(q(X)), \ \forall \alpha, \beta \in \mathbb{R}, \ \forall p(X), q(X) \in \mathbb{R}[X]_{2023},$ nên ánh xạ f là ánh xạ tuyến tính, nên hợp thành của $n \in \mathbb{N}^*$ lần của ánh xạ f, i.e., $f \circ f \circ \cdots \circ f$ (n lần) cũng là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. Nói riêng, g là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. (b) Ánh của g được sinh bởi các vector $g(1), g(X), \ldots, g(X^{2023})$ (vì $(1, X, X^2, \ldots, X^{2023})$ là 1 cơ sở của khong gian vector $\mathbb{R}[X]_{2023}$ các đa thức p(X) có $\deg p \leq 2023$. Nhận thấy

$$g(X^k) = \begin{cases} 0 & \text{if } k < 1740, \\ k(k-1)\cdots(k-1739)X^{k-1740} & \text{if } k \ge 1740, \end{cases}$$

nên 1 cơ sở của ${\rm Im}\,g$ là $(1,X,X^2,\ldots,X^{283}),$ nên dim ${\rm Im}\,g=284.$

Với $p(X) \in \mathbb{R}[X]_{2023}$ bất kỳ, p(X) sẽ có dạng $p(X) = \sum_{i=1}^{2023} a_i X^i = a_0 + a_1 X + a_2 X^2 + \dots + a_{2023} X^{2023}$, thì g(p) có dạng

$$g(p)(X) = \sum_{i=1}^{283} b_i X^i = b_0 + b_1 X + \dots + b_{283} X^{283}.$$

Đa thức $p(X) \in \ker g \Leftrightarrow \sum_{i=1}^{283} b_i X^i = 0 \Leftrightarrow a_i = 0, \forall i = 1740, \dots, 2023$, nên 1 cơ sở của $\ker g$ là $(1, X, X^2, \dots, X^{1739})$ & dim $\ker g = 1740$.

- **2** (Mở rộng VMC2023A1). Liệu thay các giả thiết trong VMC2023A1 thì bài toán còn đúng/giải được không? (a) Thay 2023,870 bởi $n, m \in \mathbb{N}^*$. (b) Thay ánh xạ đạo hàm cấp 2 bởi ánh xạ đạo hàm cấp $k \in \mathbb{N}^*$ hoặc tích phân $\int dx$, tích phân bộ $\int \int \cdots \int dx$.
- **3.** Cho $n \in \mathbb{N}^*$, V là 1 không gian vector, $f: V \to V$ là 1 ánh xạ tuyến tính. Chứng minh $g_n := f \circ f \circ \cdots \circ f$ (n lần) cũng là 1 ánh xa tuyến tính từ V vào chính nó.
- 4 (VMC2023A2). Cho $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ thỏa $x^4 2x^3 1 = (x \alpha)(x \beta)(x \gamma)(x \delta)$. (a) Chứng minh $\alpha, \beta, \gamma, \delta$ đôi một khác nhau. (b) Chứng minh $\alpha^3, \beta^3, \gamma^3, \delta^3$ đôi một khác nhau. (c) Tính $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$. (d)* Mở rộng bài toán cho các đa thức khác.

Lemma 1 (Điều kiện cần & đủ của nghiệm bội của đa thức). Cho $m, n \in \mathbb{R}, m \le n, P(x) \in \mathbb{R}[x], \deg P = n.$ $x = x_0 \in \mathbb{R}$ là 1 nghiệm bội m của P(x) khi \mathcal{E} chỉ khi $P(x_0) = P'(x_0) = P''(x_0) = \cdots = P^{(m)}(x_0) = 0.$

Chứng minh. Giả sử $x = x_0 \in \mathbb{R}$ là 1 nghiệm bội m của P(x), thì P(x) sẽ có dạng $P(x) = (x - x_0)^m g(x)$ với $g(x) \in \mathbb{R}[x]$, deg $g = \deg P - m = n - m \ge 0$. Tính các đạo hàm $P'(x), P''(x), \ldots, P^{(m)}(x)$ (có thể sử dụng quy tắc Leibniz tổng quát để tính đạo hàm, see, e.g., Wikipedia/general Leibniz rule) để suy ra kết luận.

Hint. (a) Đặt $P(x) = x^4 - 2x^3 - 1$, có $P'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3 \text{ chỉ có 2 nghiệm } x = 0 \text{ (bội 2) & } x = \frac{3}{2} \text{ (bội 1), mà}$ $P(0) = -1 \neq 0, P(\frac{3}{2}) = -\frac{43}{16} \neq 0 \text{ nên } 0, \frac{3}{2} \text{ đều không phải là nghiệm của } P(x)$, suy ra các nghiệm $\alpha, \beta, \gamma, \delta$ của P(x) là phân biệt. (b)

3 Analysis – Giải Tích

3.1 Sequence – Dãy số

Resources - Tài nguyên.

- 1. [Khả09]. Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số.
- **5** (General recursive sequences Dãy truy hồi tổng quát). Cho dãy số $(u_n)_{n=1}^{\infty}$ được xác định bởi công thức truy hồi

$$u_n = f(u_{n-1}, u_{n-2}, \dots, u_{n-m}), \ \forall m, n \in \mathbb{N}^*, \ m < n.$$
(10)

Tìm các tính chất tổng quát của dãy theo 1 số dạng đặc biệt của hàm f để lập thành các mệnh đề & định lý, rồi chứng minh chúng.

Vài phương pháp phổ biến để giải bài toán dãy số.

- Tìm cách xác định công thức số hạng tổng quát của dãy số: Thử vài trường hợp đầu để dự đoán công thức chính xác rồi chứng minh bằng quy nạp toán học.
- Sử dụng phương trình đặc trung của lý thuyết dãy số.
- **6** (VMC2023B). Cho $(u_n)_{n=1}^{\infty}$ là dãy số được xác định bởi $u_n = \prod_{k=1}^n \left(1 + \frac{1}{4^k}\right)$, $\forall n \in \mathbb{N}^*$. (a) Tìm tất cả $n \in \mathbb{N}^*$ thỏa $u_n > \frac{5}{4}$. (b) Chứng minh $u_n \leq 2023$, $\forall n \in \mathbb{N}^*$. (c) Chứng minh dãy số $(u_n)_{n=1}^{\infty}$ hội tự.
- Chứng minh. (a) $u_{n+1} = \left(1 + \frac{1}{4^{n+1}}\right) u_n > u_n$, $\forall n \in \mathbb{N}^*$, suy ra (u_n) đơn điệu tăng, mà $u_1 = \frac{5}{4}$ nên $u_n > \frac{5}{4} \Leftrightarrow n \geq 2$. (b)

Remark 1. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tích thì thử tính $\frac{u_{n+1}}{u_n}$ xem có đơn giản hóa được không. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tổng thì thử tính $u_{n+1}-u_n$ xem có đơn giản hóa được không.

7 (Recursive sequence vs. ANN). Tìm mối liên hệ giữa các dãy số cho bởi công thức truy hồi (recursive sequences) & mạng lưới nơ-ron nhân tạo (artificial neural networks, abbr., ANNs).

3.2 Integral – Tích phân

4 Miscellaneous

Tài liệu

- [Hưn22] Nguyễn Hữu Việt Hưng. Đại Số Tuyến Tính. Tái bản lần thứ 4. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2022, p. 335.
- [Khả09] Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số. Nhà Xuất Bản Giáo Dục, 2009, p. 260.