

Universidad Nacional del Sur

Apuntes de materia

Control Moderno

Filsinger Miqueas

Matrices

Definición 1. El rango de una matriz A de $m \cdot n$ es igual al min(m, n).

Propiedades de la multiplicación:

- **1)** (AB)C = A(BC)
- **2)** A(B+C) = AB + AC
- **3)** $AB \neq BA$, en general

1.1 Operación determinante

Definición 2. Método de los Cofactores: Sea A una matriz de dimensiones $n \cdot n$, podemos entonces calcular el determinante de A (det(A) o |A|) como sigue. Definimos el cofactor de fila i y columna j como:

$$A_{ij} = (-1)^{i+j} |M_{ij}|,$$

donde $|M_{ij}|$ es el determinante de la matriz M_{ij} , que es la matriz de orden $(n-1)\cdot(n-1)$ resultante de quitar la i-ésima fila y j-ésima columna de A. Luego el determinante de A es la suma de los productos de los elemntos de una fila o columna con sus cofactores, es decir.

$$|A| = a_{k1} \cdot A_{k1} + \dots + a_{kn} \cdot A_{kn},$$

o también,

$$|A| = a_{1k} \cdot A_{1k} + \dots + a_{nk} \cdot A_{nk}, \ \forall k \in 1, \dots, n.$$

Ejemplo: Filas o columnas de ceros

El cálculo de

$$|A| = \begin{vmatrix} \sigma & \omega & 0 \\ \omega & \sigma & 0 \\ 0 & 0 & \lambda \end{vmatrix},$$

se puede realizar rápidamente por método de cofactores, realizando el método en la tercer fila o columna, quedando:

$$|A| = (-1)^{3+3} \lambda \cdot \begin{vmatrix} \sigma & \omega \\ \omega & \sigma \end{vmatrix} = \lambda (\sigma^2 - \omega^2).$$

Propiedades: Sean A y B matrices cuadradas, entonces

- 1) $|A| = |A^t|$,
- **2)** $|A \cdot B| = |A| \cdot |B|,$
- 3) $|A^{-1}| = |A|^{-1}$,
- 4) Si A es triangular o diagonal entonces |A| es igual al producto de su diagonal principal.

1.2 Operación inversa

Definición 3. Si A es una matriz no nula de dimensión $n \cdot n$ entonces

$$A^{-1} = \frac{Adj(A)^T}{|A|},$$

donde Adj(A) es la matriz adjunta, es decir aquella que está compuesta por los cofactores de A.

Propiedades:

- 1) $(A^{-1})^{-1} = A$
- **2)** $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$
- **3)** $(A^T)^{-1} = (A^{-1})^T$

Teorema 1. Una matriz tiene inversa si y sólo si su determinante es distinto de cero

$$\exists A^{-1} \Leftrightarrow |A| \neq 0$$

1.3 Operación Trasposición

La trasposición de una matriz $(n \cdot m)$, rectangular o cuadrada, es la reflexión de los elementos respecto de su diagonal principal, adquiriendo la forma $(m \cdot n)$.

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}^T = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$$

Propiedades:

- 1) Involutiva: $(A^t)^t = A$
- **2)** Distributiva: $(A+B)^t = A^t + B^t$
- Producto: $(A \cdot B)^t = B^t \cdot A^t$

$Espacios\ Vectoriales\ y\ Transformaciones\\ Lineales$

Definición 4. Sea $X = \{x_1, x_2, \dots, x_n\}$ un conjunto de vectores que pertenece a un cierto espacio vectorial.

$$v = \alpha_1 \cdot x_1 + \alpha_2 \cdot x_2 + \cdots + \alpha_n \cdot x_n$$

Se dice que v es Combinación Lineal del conjunto X.

Definición 5. Si la única solución a la combinación del vector nulo,

$$\mathbf{0} = \alpha_1 \cdot \boldsymbol{x_1} + \alpha_2 \cdot \boldsymbol{x_2} + \dots + \alpha_n \cdot \boldsymbol{x_n} ,$$

es $\alpha_i = 0$, entonces se dice que el conjunto \boldsymbol{X} está compuesto por vectores Linealmente Independientes.

En otras palabras, se dice que un conjunto de vectores son linealmente independientes si ningún vector del conjunto puede ser escrito como combinación lineal del resto.

Observación. Por consecuencia

$$\exists \alpha_i / \mathbf{x_k} = \alpha_1 \cdot \mathbf{x_1} + \alpha_2 \cdot \mathbf{x_2} + \dots + \alpha_n \cdot \mathbf{x_n}, \mathbf{x_k} \in X$$

entonces X es un conjunto de vectores Linealmente Dependientes.

De esto también se desprende que ${\bf 0}$ no puede ser parte de un conjunto de vectores linealmente independientes.

Definición 6. Sea S un subespacio de V, y sea $B = \{b_1b_2 \dots b_m\}$. Luego B es una base de S si:

- 1. $b_1b_2 \dots b_m$ son linealmente independientes.
- 2. $b_1b_2 \dots b_m$ generan al subespacio S.