第16章 恒定电流	T=RC. 时间常数
1.电心系密度	
$\vec{j} = \frac{d\vec{l}}{ds_1} \cdot \vec{e}_v \qquad (A/m').$	经验14年2
i = 9.0 V	Acid Herry Spin and
dI=j.ds = I= sj.ds (代数量)	sek anga 19 kg a sa
$dI = \vec{j} \cdot d\vec{s} \Rightarrow I = \int_{\vec{s}} \vec{j} \cdot d\vec{s} \left(\frac{1}{4} \frac{1}{4} \frac{1}{8} \right).$ $f_{\vec{s}} \cdot \vec{j} \cdot d\vec{s} = -\frac{d lin}{dt}.$	<u> </u>
> 稳恒条件.	一一 经现代证 计数据处理
ダsj·ds=0. *当dj=0时,亦稳恒	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.基外霍夫第一方程.	<u>#1566694888</u>
えIi=o. 文寸电路节点	<u> </u>
4.基尺電大第二方程.	
見 E·dr=0. 在恒定电流电路中、Z Ei=I [iRi	<u> </u>
5. 脚環 R=P 5. P电理 (1.m).	
	<u> </u>
O=户电学 (5/m).	
温度降到接近绝对零度时,主理率突然减少到0.	Maria Eda (US 1877, 1882)
上,超早	
6. 欧姆定律做分形式。 了 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	ROBER PRESENTATION
j= 0 E PAT.	
7. 电动势.	
$E = \frac{A_{\text{ne}}}{2}$ $\vec{E}_{\text{k}} = \frac{\vec{F}_{\text{k}}}{2}$ (非静电性场强)	27.04. W.
E= SIEx dF (结积分漏及整个回路)	
8. 含液电路.	
单闭合回路. j= o(E+EK) = I= R+F	
9. 电容器的元、放电	
范电: $i = \frac{U_0}{R} e^{-\frac{1}{2}} u_c = U_0(1 - e^{-\frac{1}{2}})$	
放电: i= Le e uc = Uo e =.	