Appunti di Elaborazione di Segnali e Immagini

Matteo Iervasi

Indice

Intr	oduzione 3
1.1	Che cos'è un segnale?
1.2	Che cos'è un sistema?
1.3	Classificazione dei segnali
	1.3.1 Segnali a tempo continuo e a tempo discreto 4
	1.3.2 Segnali analogici e digitali
	1.3.3 Segnali periodici e aperiodici
	1.3.4 Segnali causali e non causali
	1.3.5 Segnali pari e dispari
	1.3.6 Segnali deterministici e probabilistici 6
1.4	Caratteristiche dei segnali
1.5	Operazioni sui segnali
1.6	Funzioni utili
	1.6.1 Proprietà dell'impulso unitario
1.7	Sistemi lineari
	1.7.1 Proprietà dei sistemi lineari
	1.7.2 Caratteristiche generali
Ana	lisi dei sistemi a tempo continuo 12
	Risposta libera
2.2	Risposta impulsiva
2.3	Stabilità
2.4	Integrale di convoluzione
Ana	lisi di Fourier 16
	Correlazione incrociata
	3.1.1 Autocorrelazione
3.2	Serie di Fourier
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 Ana 2.1 2.2 2.3 2.4

1 Introduzione

1.1 Che cos'è un segnale?

Si definisce **segnale** una qualsiasi grandezza fisica che varia nel tempo e trasporta informazione. In generale esistono diversi tipi di segnali, ma in natura sono quasi sempre casuali e continui.

Una prima grossa suddivisione della teoria dei segnali si basa sul tipo di segnale: i segnali **deterministici**, di cui è possibile predire il valore in un qualunque istante a piacere, e i segnali **stocastici** o **aleatori**, il cui valore non è prevedibile, ma su cui è possibile ottenere soltanto delle proprietà statistiche. Altra suddivisione è quella in segnali **continui** e **discreti**, ai quali si associano rispettivamente le comunicazioni *analogiche* e le comunicazioni *digitali*.

Parte della teoria dei segnali è profondamente connessa con la **teoria dei sistemi**, in quanto molti segnali transitano come input in sistemi che elaborano ovvero trasformano il segnale in ingresso restituendo in uscita un certo output.

1.2 Che cos'è un sistema?

Possiamo definire un **sistema** (dinamico) come un modello matematico che rappresenta un oggetto che evolve nel tempo.

Figura 1.1: Schema di un sistema

1.3 Classificazione dei segnali

Come accennato prima, possiamo suddividere i segnali in diverse categorie:

• Continui nel tempo - Discreti nel tempo

- Analogici Digitali
- Periodici Aperiodici
- Causali e non causali
- Pari e dispari
- Deterministici Casuali
- Segnali di energia Segnali di potenza
- ...

È importante notare come le suddivisioni sopra elencate non siano esclusive tra loro, ci sono ad esempio segnali di potenza periodici, analogici e casuali, ecc.

1.3.1 Segnali a tempo continuo e a tempo discreto

Un segnale si definisce **a tempo continuo** quando il suo dominio ha la stessa cardinalità dei numeri reali, ed è quindi specificato per ogni reale. Viceversa si definisce **discreto** quando il suo dominio ha la stessa cardinalità dei numeri naturali, ed è quindi specificato per valori discreti.

Figura 1.2: Due segnali sinusoidali, uno continuo e l'altro discreto

1.3.2 Segnali analogici e digitali

Se parlando del dominio abbiamo i segnali a tempo continuo e a tempo discreto, possiamo distinguere i segnali analogici e digitali guardando i valori assunti dal codominio. Quando

l'ampiezza di un segnale può assumere qualsiasi valore in un intervallo continuo, parliamo di segnale **analogico**, viceversa quando assume solo un insieme finito di valori parliamo di segnale **digitale**. In quest'ultimo caso il segnale si dice "quantizzato".

Figura 1.3: Confronto fra segnale analogico e digitale

1.3.3 Segnali periodici e aperiodici

Un segnale è **periodico** se esiste una costante positiva T_0 tale che

$$f(t+T_0) = f(t) \qquad \forall t$$

Il più piccolo valore di T_0 che soddisfa questa relazione è chiamato **periodo** della funzione. Un segnale periodico rimane invariato quando viene spostato nel tempo. Un esempio è la funzione seno, che ha un periodo di 2π (si veda la figura 1.2).

1.3.4 Segnali causali e non causali

I segnali **causali** assumono il valore 0 per x < 0, viceversa i segnali **anti-causali** valgono 0 per $x \ge 0$. I segnali **non causali** sono segnali il cui valore è diverso da 0 ambo i lati.

1.3.5 Segnali pari e dispari

Un segnale **pari** è un qualsiasi segnale f tale che f(t) = f(-t). Questi segnali sono facilmente riconoscibili in quanto simmetrici rispetto all'asse delle ordinate. Un segnale **dispari** invece segue la relazione f(t) = -f(-t).

1 Introduzione

Figura 1.4: x^2 è un segnale pari, x^3 è dispari

Qualsiasi segnale può essere riscritto come composizione di segnali pari e dispari:

$$f(t) = \frac{1}{2}(f(t) + f(-t)) + \frac{1}{2}(f(t) - f(-t))$$

$$f_e(t) = \frac{1}{2}(f(t) + f(-t)) \qquad \text{even component}$$

$$f_o(t) = \frac{1}{2}(f(t) - f(-t)) \qquad \text{odd component}$$

$$f(t) = f_e(t) + f_o(t)$$

Alcune proprietà delle funzioni pari e dispari:

- \bullet Funzione pari \cdot Funzione dispari = Funzione dispari
- Funzione dispari · Funzione dispari = Funzione pari
- Funzione pari Funzione pari = Funzione pari
- Area di una funzione pari: $\int_{-a}^{a} f_e(t)dt = 2 \int_{0}^{a} f_e(t)dt$
- Area di una funzione dispari: $\int_{-a}^{a} f_o(t)dt = 0$

1.3.6 Segnali deterministici e probabilistici

Un segnale **deterministico** è un segnale la cui descrizione fisica è nota a priori, per cui è possibile prevedere in ogni istante il valore del segnale mediante una formula matematica, una regola o una tabella. Per questo motivo è anche possibile calcolare i valori futuri dai valori passati senza alcuna incertezza sui valori di ampiezza. Un segnale **probabilistico** invece è un segnale i cui valori di ampiezza non possono essere previsti con precisione, ma per i quali è solo possibile descrivere una probabilità, spesso basandosi sulla media di altri valori.

1 Introduzione

Figura 1.5: Il grafico blu è deterministico, il rosso è probabilistico

1.4 Caratteristiche dei segnali

Si definisce segnale di **lunghezza finita** un segnale i cui valori sono diversi da 0 per un intervallo *finito* di valori della variabile indipendente.

$$f = f(t), \quad \forall t : t_1 \le t \le t_2$$

dove $t_1 > -\infty, t_2 < +\infty$

Si definisce segnale di **lunghezza infinita** un segnale i cui valori sono diversi da 0 per un intervallo *infinito* di valori della variabile indipendente.

$$f(t) = sin(\omega t)$$

La dimensione di un segnale indica la larghezza o la forza di esso. Useremo il concetto di *norma* per quantificare questa nozione sia per segnali a tempo continuo che discreto. L'area sotto la curva del segnale rappresenta l'energia.

L'energia di un segnale si calcola come:

$$E_f = \lim_{T \to \infty} \int_{-T/2}^{+T/2} |f(t)|^2 dt$$

Quando $0 < E_f < +\infty$ il segnale è detto **di energia**.

La **potenza** di un segnale si calcola come:

$$P_f = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} |f(t)|^2 dt$$

Quando $0 < P_f < +\infty$ il segnale è detto **di potenza**.

Figura 1.6: Energia del segnale

La radice quadrata della potenza è detto valore efficace. Esso costituisce un parametro molto importante nella teoria dei segnali, alla base per esempio della definizione del rapporto segnale/rumore. Possono esistere segnali per i quali né l'energia né la potenza sono finiti. Tuttavia nella pratica i segnali hanno energia finita, per cui sono segnali di energia (risulta impossibile generare un vero e proprio segnale di potenza, in quanto questo richiederebbe durata infinita ed energia infinita).

1.5 Operazioni sui segnali

- Spostamento: Anticipo o ritardo di un segnale
- Scala: Compressione o espansione di un segnale nel tempo
- Inversione: Simmetria rispetto all'asse verticale

Figura 1.7: Spostamento, scala ed inversione

1.6 Funzioni utili

• Funzione gradino unitaria

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

• Funzione rampa unitaria

$$r(t) = \begin{cases} 0 & \text{if} \quad t < 0\\ \frac{t}{t_0} & \text{if} \quad 0 \le t \le t_0\\ 1 & \text{if} \quad t > t_0 \end{cases}$$

• Funzione esponenziale

$$f(t) = Ae^{j\omega t}$$

• Impulso unitario

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

1.6.1 Proprietà dell'impulso unitario

Di seguito elenchiamo alcune delle proprietà fondamentali della funzione *impulso unita-*

• Moltiplicazione di una funzione per l'impulso

$$\phi(t)\delta(t) = \phi(0)\delta(t)$$

$$\phi(t)\delta(t-T) = \phi(T)\delta(t-T)$$

• Proprietà del campionamento

$$\int_{-\infty}^{+\infty} \phi(t)\delta(t)dt = \int_{-\infty}^{+\infty} \phi(0)\delta(t)dt = \phi(0)\int_{-\infty}^{+\infty} \delta(t)dt = \phi(0)$$
$$\int_{-\infty}^{+\infty} \phi(t)\delta(t-T)dt = \phi(T)$$

L'area sotto la curva ottenuta dal prodotto dell'impulso traslato di T e la funzione $\varphi(t)$ è il valore ottenuto dalla funzione $\varphi(t)$ per t=T

• L'integrale dell'impulso è la funzione gradino

$$\begin{split} \frac{du}{dt} &= \delta(t) \\ \int_{-\infty}^t \delta(t) dt &= u(t) \\ \text{Quindi} \\ \int_{-\infty}^t \delta(t) dt &= u(t) = \left\{ \begin{array}{ll} 1 & t < 0 \\ 0 & t \geq 0 \end{array} \right. \end{split}$$

1.7 Sistemi lineari

Un sistema è caratterizzato da **input**, **output** e da un **modello matematico** del sistema. L'**analisi** di un sistema prevede di determinare l'output di un sistema dato l'input, mentre l'operazione inversa è la **sintesi** o **progettazione**. Come per i segnali, anche i sistemi possono essere classificati in varie categorie:

- Lineari Non lineari
- A parametri costanti Parametri che cambiano nel tempo
- Istantanei (senza memoria) Dinamici (con memoria)
- Causali Non causali
- A tempo continuo A tempo discreto
- Analogici Digitali
- ...

I sistemi i cui parametri non cambiano nel tempo vengono detti **tempo invarianti**. Per questi sistemi se l'input viene ritardato di T secondi, l'output rimane identico a prima, ma ritardato di T.

I sistemi **istantanei** (senza memoria) sono quelli in cui l'output al tempo t dipende esclusivamente dall'input al tempo t. Se l'output dipende dagli eventi passati, il sistema viene definito **dinamico** (un sistema con memoria). Un sottogruppo dei sistemi dinamici sono i sistemi con **memoria finita**, per i quali l'output al tempo t è completamente determinato dai segnali in input per gli ultimi T istanti (il sistema ha quindi una memoria di capacità massima T).

Di seguito ci occuperemo solamente dei sistemi lineari, anche se è bene ricordare che nella realtà abbiamo sistemi che sono lineari solo *localmente*, i quali in genere rispondo *linearmente* a piccoli segnali e *non linearmente* a grandi segnali.

1.7.1 Proprietà dei sistemi lineari

Elenchiamo di seguito alcune proprietà dei sistemi lineari:

Additività

 $f_1 \rightarrow y_1$ e $f_2 \rightarrow y_2$ allora $f_1 + f_2 \rightarrow y_1 + y_2$ Se più fattori determinano l'output del sistema, allora l'effetto di questi fattori può essere trattato separatamente considerando gli altri uguali a zero

Omogeneità

$$f_1 \to y_1$$
 allora $a_1 \cdot f_1 \to a_1 \cdot y_1$

Per un fattore arbitrario a (reale o immaginario), qualora la causa fosse moltiplicata per a allora anche l'effetto lo sarà

• Sovrapposizione

$$a_1 \cdot f_1 + a_2 \cdot f_2 \rightarrow a_1 \cdot y_1 + a_2 \cdot y_2$$

Combinazione delle proprietà precedenti

1.7.2 Caratteristiche generali

L'output di un sistema per $t \ge 0$ è il risultato di due cause indipendenti: le **condizioni** iniziali del sistema al tempo t=0 e l'input f(t) per $t\ge 0$. Grazie alla linearità la risposta totale del sistema può essere scomposta nella somma della risposta libera (detta anche risposta zero-input) e della risposta forzata (detta anche risposta zero-state). La risposta zero-input è dovuta alle condizioni iniziali del sistema con input f(t)=0 e la risposta zero-state è dovuta al segnale in ingresso f(t) per $t\ge 0$ e condizioni iniziali nulle a t=0. Se l'input può essere espresso come la somma di componenti, anche l'output potrà essere calcolato come la somma delle risposte di ogni singola componente, grazie alla proprietà dell'additività.

2 Analisi dei sistemi a tempo continuo

Quando si studia un sistema, uno degli scopi più comuni è ricostruire le equazioni che lo regolano, permettendoci quindi di calcolare l'output del sistema dato un preciso input. Uno degli strumenti fondamentali per questo scopo è la **risposta impulsiva** del sistema, che caratterizza *completamente* il comportamento di un sistema lineare *tempo invariante*.

Per il calcolo della risposta impulsiva ci serve prima la **risposta libera**. Ricordiamo che trattandosi di sistemi lineari, valgono le proprietà di *additività*, *omogeneità* e *sovrapposizione*.

Un sistema lineare tempo invariante (LTI) può essere descritto da un'equazione differenziale:

$$a_n \frac{d^n v(t)}{dt^n} + \dots + a_1 \frac{dv(t)}{dt} + a_0 v(t) = b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$$

in forma compatta

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = \sum_{j=0}^{m} b_j \frac{d^j u(t)}{dt^j}$$
 (2.1)

(nella pratica, m è sempre minore di n).

2.1 Risposta libera

Nei sistemi lineari il principio di sovrapposizione stabilisce in particolare che è possibile scomporre l'uscita come la somma della risposta libera più la risposta forzata, quindi possiamo dividere il segnale di uscita v(t) come:

$$v(t) = \begin{cases} u(t) \neq 0, c.i. = 0 \\ u(t) = 0, c.i. \neq 0 \end{cases}$$

La soluzione dell'equazione differenziale 2.1 in corrispondenza ad uno specifico ingresso e ad una specifica scelta delle c.i. può essere sempre ottenuta come somma di una soluzione dell'omogenea ad essa associata

$$\sum_{i=0}^{n} a_i \frac{d^i v(t)}{dt^i} = 0 \tag{2.2}$$

e di una soluzione particolare della 2.1. L'equazione omogenea viene definita la **risposta libera** del sistema $(u(t) = 0, c.i. \neq 0)$; la soluzione particolare a partire da $u(t) \neq 0$, c.i. = 0 è invece detta **risposta forzata**.

All'equazione differenziale omogenea associamo un'equazione algebrica detta **equazione caratteristica** del sistema:

$$\sum_{i=0}^{n} a_i s^i = 0, \quad s \in C$$

Se $\lambda_1, ..., \lambda_r$ sono le $r \leq n$ soluzioni distinte dell'equazione caratteristica (chiamate **radici** caratteristiche del sistema), e $\mu_1, ..., \mu_r \in \mathbb{N}$ rappresentano le rispettive molteplicità, ogni soluzione dell'omogenea, in particolare la risposta libera, può essere espressa nella forma:

$$v_l(t) = \sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} c_{i,l} e^{\lambda_i t} \frac{t^l}{l!}$$
 (2.3)

per opportuni $c_{i,l} \in \mathbb{C}$. Le soluzioni dell'omogenea del tipo $e^{\lambda_i t} \frac{t^l}{l!}, t \in \mathbb{R}$, vengono dette **modi naturali** (o **modi caratteristici**). Per ogni radice caratteristica c'è un modo caratteristico e la risposta libera altro non è che una combinazione lineare dei modi caratteristici del sistema.

2.2 Risposta impulsiva

La risposta impulsiva di un sistema è la sua uscita quando è soggetto ad un ingresso a delta di Dirac; viene utilizzata per descrivere la risposta in frequenza di un sistema dinamico ad una perturbazione generica. La delta di Dirac vista come "funzione" contiene equamente tutte le frequenze, e si presta particolarmente bene allo studio teorico nel dominio della frequenza di un sistema lineare.

Il comportamento ingresso-uscita di un sistema dinamico lineare stazionario (LTI) è completamente caratterizzato dalla sua risposta impulsiva, la cui trasformata di Laplace viene detta funzione di trasferimento del sistema LTI.

La **risposta impulsiva**, che denoteremo con h(t), si calcola come:

$$h(t) = d_0 \delta(t) + \left(\sum_{i=1}^r \sum_{l=0}^{\mu_i - 1} d_{i,l} e^{\lambda_i t} \frac{t^l}{l!} \right) \delta_{-1}(t)$$
 (2.4)

Notiamo che la risposta impulsiva contiene la risposta libera, ovvero tutti i modi naturali del sistema dopo l'impulso. Il termine $d_0\delta(t)$ è non nullo se m=n e indica il termine impulsivo. La risposta libera viene moltiplicata per la funzione gradino in modo da "tagliare" tutto ciò che c'era prima di t=0 e garantire che le c.i. a $t=0^-$ siano nulle. In virtù della causalità del sistema, h(t) è nulla per t<0. La risposta impulsiva (ristretta all'intervallo $[0, +\infty]$) rappresenta anche la **risposta forzata** del sistema in corrispondenza all'impulso unitario in ingresso, ovvero l'uscita del sistema osservato su \mathbb{R}_+ con condizioni iniziali nulle in 0^- e $u(t)=\delta(t)$.

2.3 Stabilità

Supponiamo $\lambda \in \mathbb{R}$. Per $t \to +\infty$ l'esponenziale $e^{\lambda t}$ (e quindi il modo elementare $m(t) = \frac{t^l}{l!}, t \in \mathbb{R}$)

$$\begin{cases} \sec \lambda > 0 & \text{diverge} \\ \sec \lambda = 0 & \begin{cases} \sec l = 0 & \text{limitato (o semplicemente stabile)} \\ \sec \lambda < 0 & \text{converge} \end{cases}$$

Se $\lambda \in \mathbb{C}$, il modo elementare $m(t) = \frac{t^l}{l!}, t \in \mathbb{R}$ è:

- convergente a zero per $t \to \infty \iff \mathbb{R}(\lambda) < 0$
- limitato (o semplicemente stabile) $\iff \mathbb{R}(\lambda) \leq 0$ e l = 0
- $\bullet\,$ divergente per $t\to\infty$ in tutti gli altri casi

Un sistema è asintoticamente stabile se, per ogni scelta delle condizioni iniziali, l'evoluzione libera del sistema converge a zero asintoticamente, ovvero

$$\lim_{t \to +\infty} v_l(t) = 0$$

In altri termini un sistema è asintoticamente stabile se e solo se tutti i modi naturali $e^{\lambda_i t} \frac{t^i}{l!}$ sono convergenti, ovvero se e solo se $Re(\lambda_i) < 0 \quad \forall i$.

Inoltre un sistema è **BIBO** stabile ("Bounded Input - Bounded Output") se, a partire da condizioni iniziali nulle, risponde (in evoluzione forzata) con uscita limitata ad ogni segnale di ingresso limitato. In altri termini se $v(0^-) = 0$, allora per ogni segnale $u(t), t \in \mathbb{R}$, nullo per t < 0, per il quale $\exists M_u \ t.c. \ |u(t)| < M_u \ \forall t \ge 0$, la corrispondente uscita $v(t) = v_f(t)$ soddisfa $|v(t)| < M_v \ \forall t \ge 0$, per un opportuno M_v .

2.4 Integrale di convoluzione

Date le funzioni $v_1(t)$ e $v_2(t)$, con $t \in \mathbb{R}$, definiamo **integrale di convoluzione** di v_1 e v_2 la funzione definita come:

$$[v_1 * v_2](t) \triangleq \int_{-\infty}^{+\infty} v_1(\tau) v_2(t-\tau) d\tau = \int_{-\infty}^{+\infty} v_1(t-\tau) v_2(\tau) d\tau$$
 (2.5)

L'integrale di convoluzione gode delle seguenti proprietà:

- Proprietà commutativa:
 - $f_1(t) \cdot f_2(t) = f_2(t) \cdot f_1(t)$

• Proprietà distributiva:
$$f_1(t) \cdot [f_2(t) + f_3(t)] = f_1(t) \cdot f_2(t) + f_1(t) \cdot f_3(t)$$

• Proprietà associativa:

$$f_1(t) \cdot [f_2(t) \cdot f_3(t)] = [f_1(t) \cdot f_2(t)] \cdot f_3(t)$$

• Spostamento:

$$f_1(t) \cdot f_2(t) = c(t) \Rightarrow$$

$$\Rightarrow f_1(t) \cdot f_2(t-T) = c(t-T) \land f_1(t-T) \cdot f_2(t) = c(t-T) \Rightarrow$$

$$\Rightarrow f_1(t-T_1) \cdot f_2(t-T_2) = c(t-T_1-T_2)$$

• Moltiplicazione con l'impulso:

$$f(t) \cdot \delta(t) = f(t)$$

• Proprietà della durata:

se le durate di $f_1(t)$ e $f_2(t)$ sono rispettivamente T_1 e T_2 allora la durate di $f_1(t)$ · $f_2(t) = T_1 + T_2$.

La risposta in uscita del sistema 2.1 inizialmente a riposo, di risposta impulsiva h(t), $t \in \mathbb{R}$ in corrispondenza ad un segnale di ingresso u(t), $t \in \mathbb{R}$ se esiste è espressa nella forma:

$$v(t) = [h * u](t) = \int_{0^{-}}^{+\infty} h(\tau)u(t - \tau)d\tau = \int_{-\infty}^{t^{+}} h(t - \tau)u(\tau)d\tau.$$

3 Analisi di Fourier

Possiamo considerare i segnali come dei **vettori**, per i quali quindi valgono le normali **operazioni vettoriali**. Richiamiamo alcune definizioni:

- La componente di un vettore è la proiezione di un vettore su un altro.
- Dati 2 vettori f ed x, definiamo il **prodotto scalare** $f \cdot x = |f||x|\cos\theta$.
- Dalla definizione di prodotto scalare definiamo la **norma** di f come il prodotto scalare di f con se stesso $f^2 = f \cdot f$.
- La **proiezione ortogonale** di un vettore su un altro corrisponde al prodotto scalare dei due vettori

La proiezione ortogonale di un vettore f su un vettore x approssima f con la sua componente lungo x. Il concetto di componente vettoriale e ortogonalità può essere esteso ai segnali. Notiamo che

$$f(t) \simeq cx(t)$$
 con $t \in [t_1, t_2]$

e l'errore e di questa approssimazione è:

$$e(t) = \begin{cases} f(t) - cx(t) & t_1 \le t \le t_2 \\ 0 & \text{altrimenti} \end{cases}$$

3.1 Correlazione incrociata

La correlazione incrociata rappresenta la misura di similitudine di due segnali come funzione di uno spostamento o traslazione temporale applicata ad uno di essi.

Considerando due segnali a valori reali x e y che differiscono solamente per uno spostamento sull'asse t, si può calcolare la correlazione incrociata per mostrare di quanto y deve essere anticipato per renderlo identico ad x. La formula essenzialmente anticipa il segnale y lungo l'asse t, calcolando l'integrale del prodotto per ogni possibile valore dello spostamento. Quando i due segnali coincidono, il valore di (x*y) è massimizzato, poiché quando le forme d'onda sono allineate, esse contribuiscono solo positivamente al computo dell'area.

Discorso simile per i segnali complessi, considerando due complessi x e y, prendere il coniugato di x assicura che le forme d'onda allineate con componenti immaginarie contribuiscano positivamente al computo dell'integrale.

Per due segnali di energia finita x ed y la correlazione incrociata è definita come:

$$R_{xy}(t) = (x * y)(t) = \int_{-\infty}^{+\infty} x^*(\tau)y(t+\tau)d\tau$$
 (3.1)

dove x^* indica il *complesso coniugato* di x. La correlazione incrociata è simile alla convoluzione (2.5) tra due segnali, ma a differenza di quest'ultima, che comporta l'inversione temporale di un segnale, il suo spostamento ed il prodotto per un altro segnale, la correlazione comporta solamente lo spostamento ed il prodotto.

3.1.1 Autocorrelazione

Un'autocorrelazione è la correlazione incrociata di un segnale con se stesso. Per un segnale di energia finita x l'autocorrelazione è definita come:

$$R_x(t) = \int_{-\infty}^{\infty} x^*(\tau)x(t+\tau)d\tau \tag{3.2}$$

3.2 Serie di Fourier

La serie di Fourier è una rappresentazione di una funzione periodica mediante una combinazione lineare di funzioni sinusoidali. In generale, un polinomio trigonometrico è una funzione periodica di periodo 2π definita sul campo reale del tipo:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)] = \sum_{n=-N}^{N} c_n e^{int}$$
(3.3)

dove a_n e b_n sono numeri reali, c_n complessi e n è intero.

Per capire bene questa serie, spieghiamo con un esempio. Prendiamo quindi una funzione periodica e proviamo a calcolare passo per passo la sua serie di Fourier. Come funzione scegliamo la funzione onda quadra, che ha un periodo di 2π . Come ampiezza scegliamo 3.

$$f(t) = \begin{cases} 3 & 2\pi t < t < 2\pi t + \pi \\ 0 & \text{altrimenti} \end{cases}$$

Vogliamo scrivere la funzione come somma di seni e coseni (più la costante iniziale), della forma:

$$f(t) = a_0 + a_1 \cos(t) + a_2 \cos(2t) + a_3 \cos(3t) + \dots$$

+ $b_1 \sin(t) + b_2 \sin(2t) + b_3 \sin(3t) + \dots$

Per trovare a_0 , integriamo nel periodo della funzione (portando già fuori le costanti):

$$\int_{0}^{2\pi} f(t)dt = a_{0} \int_{0}^{2\pi} dt + a_{1} \int_{0}^{2\pi} \cos(t)dt + \dots + a_{n} \int_{0}^{2\pi} \cos(nt)dt + b_{1} \int_{0}^{2\pi} \sin(t)dt + \dots + b_{n} \int_{0}^{2\pi} \sin(nt)dt$$

Ma $\int_0^{2\pi} a_n \cos(nt)$ e $\int_0^{2\pi} b_n \sin(nt)$, per $\forall n \in \mathbb{N}$, valgono 0. Quindi rimane solo il termine di a_0 . Risolvendo l'integrale otteniamo:

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt$$

Per trovare a_n , moltiplichiamo prima tutta l'espressione per $\cos(nt)$:

$$\int_{0}^{2\pi} f(t) \cos(nt) dt = a_{0} \int_{0}^{2\pi} \cos(nt) dt$$

$$+ a_{1} \int_{0}^{2\pi} \cos(t) \cos(nt) dt + \dots + a_{n} \int_{0}^{2\pi} \cos(nt) \cos(nt) dt$$

$$+ b_{1} \int_{0}^{2\pi} \sin(t) \cos(nt) dt + \dots + b_{n} \int_{0}^{2\pi} \sin(nt) \cos(nt) dt$$

3 Analisi di Fourier

Ora, integrando notiamo che tutti i termini si annullano, tranne il termine $a_n \int_0^{2\pi} \cos^2(nt)$, dal quale ricaviamo che:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \cos(nt) dt$$

Proseguiamo con un procedimento simile per trovare l'espressione che calcola b_n , moltiplicando per il $\sin(nt)$. Otteniamo:

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(t) \sin(nt) dt$$

Adesso che abbiamo tutto il necessario, possiamo procedere con il calcolo della serie di Fourier per la nostra funzione onda quadra:

$$a_0 = \frac{1}{2\pi} \left(\int_0^{\pi} 3dt + \int_{\pi}^{2\pi} 0dt \right) = \frac{3}{2}$$
$$a_n = \frac{3}{n\pi} \int_0^{\pi} n\cos(nt)dt = 0$$
$$b_n = -\frac{3}{n\pi} \int_0^{\pi} -n\sin(nt)dt = -\frac{3}{n\pi}$$