Übungen zur Numerik und Modellierung, Wintersemester 2013/14

3. Serie, 15.11.13

Aufgaben für die Übungsstunde

Aufgabe 10

- a) Berechnen Sie mit dem Verfahren von Neville-Aitken das Interpolationspol
ationspolynoms $p_3(x)$ zu den Knoten und Daten aus Aufgabe 3.
- b) Berechnen Sie mit dem Verfahren von Neville-Aitken den Wert des Interpolationspolationspolynoms $p_2(x)$ zu den Knoten $x_0:=1, x_1:=3, x_2:=6$, und Daten $y_i:=\frac{1}{x_i}, i=0,1,2$ an der Stelle $\xi=4$

Aufgabe 11

Sei $f:]0, \infty[\to \mathbb{R}, f(x) := \frac{1}{x};$ berechnen Sie das Hermitesche-Interpolationspolynom $H_3f(x)$ zu den Knoten $x_0 := 2, x_1 := 6$ und schätzen Sie, ab wie sehr sich $H_3f(x)$ und f(x) an der Stelle x = 5 dem Betrage nach unterscheiden können.

Hausaufgaben

Aufgabe 12

Berechnen Sie mit dem Verfahren von Neville-Aitken den Wert des Interpolationspolynoms $p_3(x)$ zu den Knoten und Daten aus Aufgabe 6a) an der Stelle $x=\frac{3}{2}$ und prüfen Sie das Ergebnis, indem Sie $x=\frac{3}{2}$ in das Interpolationspolynom in den Darstellungen nach Lagrange und nach Newton einsetzen.

Aufgabe 13

Sei $f: [0, \infty[\to \mathbb{R}, f(x) := \sqrt{x};$ berechnen Sie das Hermitesche-Interpolationspolynom $H_3f(x)$ zu den Knoten $x_0 := 1, x_1 := 4$ und schätzen Sie, ab wie sehr sich $H_3f(x)$ und f(x) an der Stelle x = 3 dem Betrage nach unterscheiden können.