Matematica Discreta - lezione 2

Appunti di Davide Vella 2024/2025

Professori:

Yu Chen

yu.chen@unito.it

Link moodle:

https://informatica.i-learn.unito.it/course/view.php?id=3002

20/09/2024

Calcolo degli insiemi

Esistono 2 piani:

- · Calcolo degli insiemi
- Calcolo degli elementi

Intersezione

Def: Sia A un insieme, si dice: insieme delle parti di A. È l'insieme i cui elementi sono tutti i sottoinsiemi di A. $P(A) := \{x \mid x \subseteq A\}$

• ES : A = $\{a, b\}$, $P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

P sono tutti i sottoinsiemi di un insieme.

Def : se |A| = n, allora $|P(A)| = 2^n$.

• ES : dati A e B, allora A = B \iff P(A) = P(B).

Def : Siano A e B insiemi. Si dice insieme intersezione di A e B l'insieme A \cap B : = $\{x \mid x \in A \ e \ x \in B\}$

• ES : A = {1,2,3} B = {3,4,5} C = {4,5}, A \cap B = {3} , A \cap C = { \emptyset } A e B si dicono disgiunti se A \subseteq B = \emptyset

Unione

Unione di A e B è un insieme A \cup B : = {x | x \in A oppure x \in B}

ES guarda casi sopra : A ∪ B = {1, 2, 3, 4, 5} (non si scrivono le ripetizioni, in questo caso il 5), A ∪ C = {1, 2, 3, 4, 5}.
 Siano A₁, A₂, ..., A_n insiemi : ⁿ∪_i A = A1 ⊆ A2 ⊆ A...

Operazione sugli insiemi

Proprietà:

- 1. Associatività : A, B, C. $(A \subseteq B) \subseteq C$ vuol dire che si calcola prima l'intersezione tra A e B e poi l'intersezione tra il risultato e C. $(A \subseteq B) \subseteq C = A \subseteq (B \subseteq C)$. Vale lo stesso per le unione.
- 2. Idempotente : A \subseteq A = A, A \subseteq \emptyset = \emptyset . Vale lo stesso per le unioni
- 3. distributiva : Siano A, B, C tre insiemi. Allora valgono le uguaglianze :

- A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
 Vale anche :
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Complementi

B

Def: Sia A un sottoinsieme di X (sia A che X sono insiemi quindi). Si dice complementare (o complemento) di A in X e si denota il sottoinsieme degli elementi di X non in A, precisamente :

• C_X (A) : = { $x \in X \mid x \notin A$ }

Se A \subseteq X, si scrive $C_X(A) = \overline{A}$

 $\textbf{Def'}: \text{dati insiemi A e X, la differenza di X ed A è un sottoinsieme di X, X - A : = } \{x \in X \mid x \not\in A\}$

Teorema (De Morgen):

Siano A, B, X insiemi e A \subseteq X, B \subseteq X, allora :

- C_X (A \cap B) = C_X (A) \cup C_X (B), $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- C_X (A \cup B) = C_X (A) \cap C_X (B). $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Partizioni e quozienti

Def : Siano A₁, A₂, ..., A_n sottoinsiemi di un insieme A, allora lo scrivo $\{A_i\}_{i=1}^n := \{A1, A2, ..., An\}$ è un ricoprimento di A se $\cup_{i=1}^n$ Ai (= A1 \cup A2 \cup ... \cup An) = N

• ES : A = \mathbb{Z} : A1 = {numeri pari interi}, A2 = {numeri dispari interi}. A = A1 \cup A2. {A1, A2} ricoprimento di A.

Def 2) : $\{A_i\}_{i=1}^n$ è una partizione di A se :

- 1. $\{A_i\}_{i=1}^n$ è un riempimento
- 2. $A_i \neq \emptyset$, i=1, 2, 3, 4, ..., n
- 3. A_i intersezione A; = \emptyset per tutti 1<= i <= n, e ... *guarda appunti prof
- ES : A₁ = {numeri interi pari} A₂ = {numeri interi dispari}

Note:

Dire X-A è uguale a dire X\A

: =, definiamo un insieme

 \iff = se e solo se.

∅ = Insieme vuoto, senza elementi.

∪ = unione

 \subseteq = è un sottoinsieme di, è incluso in.

⊈ = non è un sottoinsieme di.