ΑΠΑΝΤΗΣΕΙΣ **ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2022**

ΜΑΘΗΜΑ

ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΩΡΑ ΑΝΑΡΤΗΣΗΣ

11:07

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

HMEPOMHNIA ΕΞΕΤΑΣΗΣ: 7/6/2022

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

<u>ΠΡΟΤΕΙΝΟΜΕΝΕΣ</u> <u>ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ</u>

ΘΕΜΑ Α

A1. Σ , Λ , Σ , Σ , Λ

A2. 1. γ , 2. δ , 3. δ , 4. α , 5. β

ОЕМА В

- **B1.** Υπερκείμενο (Hypertext) ονομάζουμε ένα κείμενο στο οποίο η πληροφορία είναι οργανωμένη με μη γραμμική μορφή, δηλαδή η αναζήτηση της πληροφορίας δε γίνεται με κάποια συγκεκριμένη σειρά, αλλά τυχαία με βάση τους συνδέσμους (links) που υπάρχουν στο σώμα του κειμένου.
- **B2.** Οι βασικές λειτουργίες που τις συναντάμε σε όλα τα προγράμματα Φυλλομετρητών είναι να:
- αποστέλλει αιτήματα στους Εξυπηρετητές του Ιστού χρησιμοποιώντας το πρωτόκολλο HTTP
- σχεδιάζει την ιστοσελίδα σύμφωνα με τις πληροφορίες που του έστειλε
 Εξυπηρετητής
- τονίζει τα σημεία σύνδεσης, έτσι ώστε να είναι ευδιάκριτα και να είναι εύκολο να εντοπιστούν στην ιστοσελίδα
- δίνεται η δυνατότητα αποθήκευσης των διευθύνσεων των ιστοσελίδων σε καταλόγους
- κρατάει ιστορικό με τις διευθύνσεις των ιστοσελίδων που έχουμε επισκεφθεί

Β3. Το σύστημα ονομασίας περιοχών DNS περιλαμβάνει:

- το χώρο ονομάτων
- τους εξυπηρετητές μέσω των οποίων γίνεται διαθέσιμος ο χώρος ονομάτων
- τους αναλυτές (resolvers) που ερωτούν τους εξυπηρετητές περί του χώρου ονομάτων

ΘΕΜΑ Γ

Γ1. Η μάσκα δικτύου έχει άσσους στις 24 πρώτες θέσεις. Για να βρούμε τη διεύθυνση δικτύου, θα κάνουμε την λογική πράξη AND ψηφίο-ψηφίο της μάσκας με την διεύθυνση IP. Οι τρεις πρώτοι τομείς δεν θα αλλάξουν γιατί η μάσκα έχει παντού 1 επομένως για εξοικονόμηση χρόνου θα κάνουμε μόνο τον τελευταίο τομέα):

Για τον υπολογιστή Α:

IP	172	35	1	0	0	0	1	0	1	1	1
μάσκα	255	255	255	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	1	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	1	О							

Επομένως, η διεύθυνση δικτύου του υπολογιστή Α είναι η 172.35.1.0

Γ2. Κάνοντας την ίδια διαδικασία για τον υπολογιστή Β έχουμε:

IP	172	35	0	0	0	0	1	1	0	0	0
μάσκα	255	255	255	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0	0							

Επομένως, η διεύθυνση δικτύου του υπολογιστή Α είναι η 172.35.0.0

- **Γ3.** Για να επικοινωνήσουν οι δύο υπολογιστές θα γίνει έμμεση δρομολόγηση διότι ανήκουν σε διαφορετικό δίκτυο αφού έχουν διαφορετική διεύθυνση δικτύου.
- **Γ4.** Αφού αλλάζει η μάσκα και από /24 γίνεται /23, πρέπει να υπολογίσουμε τη νέα διεύθυνση δικτύου για κάθε υπολογιστή

Υπολογιστής Α:

IP	172	35	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1
μάσκα	255	255	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0					0										

Επομένως, η διεύθυνση δικτύου είναι η 172.35.0.0

Υπολογιστής Β:

IP	172	35	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
μάσκα	255	255	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
διεύθυνση δικτύου	172	35	0					0										

Επομένως, η διεύθυνση δικτύου είναι η 172.35.0.0

Οι δύο υπολογιστές έχουν την ίδια διεύθυνση δικτύου άρα η δρομολόγηση θα είναι άμεση

ΘΕΜΑ Δ

Δ1.

Στο 3° τμήμα, παρατηρούμε ότι το συνολικό μήκος είναι 1056bytes ενώ το μήκος δεδομένων είναι 1032bytes. Η διαφορά αυτών των δύο, μας δίνει το μήκος της επικεφαλίδας. Η επικεφαλίδα είναι 24 bytes, άρα 6 λέξεις των 32 bit.

Το 2° τμήμα έχει το ίδιο μήκος δεδομένων με το πρώτο

Για το συνολικό μήκος του 1° και του 2° τμήματος θα προσθέσουμε στο μήκος δεδομένων το μήκος της επικεφαλίδας (1472+24=1496)

Στο 3° τμήμα έχουμε DF=0 αφού γίνεται τελικά η κατάτμηση

MF=1 για το 2° τμήμα αφού ακολουθεί κι άλλο τμήμα

Το μήκος των δεδομένων είναι 1472bytes δηλαδή 1472:8=184 οκτάδες. Άρα στη σχετική θέση τμήματος μπαίνουν διαδοχικά οι αριθμοί που φαίνονται στον πίνακα:

	1ο τμήμα	2ο τμήμα	3ο τμήμα
Μήκος επικεφαλίδας (λέξεις των 32bit)	6	6	6
Συνολικό μήκος (bytes)	1496	1496	1056
Μήκος δεδομένων	1472	1472	1032
Αναγνώριση	0x2b42	0x2b42	0x2b42
DF (σημαία)	0	0	0
MF (σημαία)	1	1	0
Σχετική θέση τμήματος(οκτάδες byte)	0	184	368

Δ2. Αρχικό μέγεθος = $2 \cdot 1472 + 1032 + 24 = 4000$ bytes