SÉRIES TEMPORELLES LINÉAIRES Examen 2017-2018

Durée : 2 heures. Sans document.

Les exercices sont indépendants. Il est demandé de justifier les réponses de façon concise.

Exercice 1 Soit $(X_t)_{t\in\mathbb{N}}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées.

- 1. Cette suite $(X_t)_{t\in\mathbb{N}}$ est-elle toujours strictement stationnaire? Est-elle ergodique? Est-elle toujours stationnaire au second ordre? Est-elle toujours un bruit blanc?
- 2. On suppose que $EX_t = m$ et $VarX_t = \sigma^2$ existent, avec $\sigma^2 \neq 0$, et on pose $Y_t = X_0 X_t$ pour $t \geq 1$.
 - (a) Calculer EY_t , $VarY_t$ et $Cov(Y_t, Y_s)$ pour $t, s \ge 1$. La suite $(Y_t)_{t \ge 1}$ est-elle stationnaire?
 - (b) Quelle est la limite presque sûre de $\frac{1}{n} \sum_{t=1}^{n} Y_t$ quand $n \to \infty$? La suite $(Y_t)_{t>1}$ est-elle ergodique?

6 pts: La suite $(X_t)_{t\in\mathbb{N}}$ est toujours strictement stationnaire et ergodique, et elle est stationnaire au second ordre si $EX_1^2 < \infty$. Cette suite est un bruit blanc (fort) si $EX_1 = 0$ et $EX_1^2 < \infty$.

On a $EY_t = 0$, $VarY_t = 2\sigma^2$ et, pour $t \neq s \geq 1$, $Cov(Y_t, Y_s) = Cov(X_0 - X_t, X_0 - X_s) = \sigma^2$. La suite est donc stationnaire au second ordre. On peut facilement montrer qu'elle est aussi strictement stationnaire. Par contre elle n'est pas ergodique car, presque sûrement,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} Y_t = X_0 - m \neq 0.$$

Exercice 2 La figure 1 représente les autocorrélations et autocorrélations partielles empiriques d'une série temporelle $X_1, \ldots X_n$ de longueur n = 300.

- 1. Que représentent les lignes en pointillés dans la figure? Quel modèle proposez-vous pour la série temporelle (X_t) ?
- 2. Calculez les autocorrélations théoriques du modèle

$$X_t = aX_{t-q} + \epsilon_t$$

où (ϵ_t) est un bruit blanc, |a| < 1 et $q \ge 1$. Donner l'estimateur des moindres carrés (MCO) du paramètre a.

FIGURE 1 – Corrélogramme et corrélogramme partiel.

6 pts : Les lignes en pointillés $\pm 1.96/\sqrt{n}$ délimitent une bande de significativité à asymptotiquement 95% pour les autocorrélations et autocorrélations partielles empiriques d'un bruit blanc fort. C'est aussi une bande de significativité à environ 95% pour les autocorrélations partielles empiriques de lag h>p pour un $\mathrm{AR}(p)$. Comme les autocorrélations partielles empiriques de retard h>4 sont dans les bandes, on peut penser à un $\mathrm{AR}(4)$. On a

$$X_t = \sum_{i=0}^{\infty} a^i \epsilon_{t-qi},$$

donc $\gamma_X(h) = 0$ si h n'est pas multiple de q et

$$\gamma_X(kq) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a^i a^j \operatorname{Cov}(\epsilon_{t-qi}, \epsilon_{t-(k+j)q}) = E \epsilon_1^2 \sum_{j=0}^{\infty} a^{k+j} a^j$$

si $k \geq 1$. On a donc

$$\rho_X(kq) = a^k.$$

Notez que sur la figure 1, on a bien $\hat{\rho}(h)$ grand uniquement pour h multiple de 4. On définit l'estimateur MCO de a par

$$\hat{a} = \arg\min_{a} \sum_{t=q+1}^{n} (X_t - aX_{t-q})^2.$$

La solution est

$$\hat{a} = \frac{\sum_{t=q+1}^n X_t X_{t-q}}{\sum_{t=q+1}^n X_{t-q}^2} \simeq \hat{\rho}_X(q) = \hat{r}_X(q). \quad \text{ écart de 1 seulement ok..}$$

On peut donc penser que la série temporelle dont les corrélogrammes sont donnés par la figure suit approximativement un modèle de la forme

$$X_t = 0.5X_{t-4} + \epsilon_t.$$

Exercice 3 Soit $(\epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t})'$ un bruit blanc, et $X_t = (X_{1t}, X_{2t}, X_{3t})'$ satisfaisant

$$\begin{cases} X_{1t} = aX_{2t} + \epsilon_{1t} \\ X_{2t} = bX_{3t} + \epsilon_{2t} \\ X_{3t} = X_{3, t-1} + \epsilon_{3t} \end{cases}$$

- 1. Pour quelles valeurs de a et b le processus X_t est-il cointégré ? Quel est son rang de cointégration ?
- 2. Ecrire ce système sous forme VAR, puis à correction d'erreur VECM.

4 pts : La troisième équation est une marche aléatoire et les deux premières équations sont des relations de cointégration. Si $a \neq \text{ou } b \neq 0$ le système est donc cointégré au sens de Granger (il est cointégré au sens large pour toutes valeurs de a et b). Le rang de cointégration est 2. En écrivant $bX_{3t} = bX_{3t-1} + b\epsilon_{3t}$ dans la deuxième équation, puis $aX_{2t} = abX_{3t-1} + ab\epsilon_{3t} + a\epsilon_{2t}$ dans la première, on obtient la représentation AR(1)

$$X_{t} = \begin{pmatrix} 0 & 0 & ab \\ 0 & 0 & b \\ 0 & 0 & 1 \end{pmatrix} X_{t-1} + \epsilon_{t}, \quad \epsilon_{t} = \begin{pmatrix} \epsilon_{1\,t} + a\epsilon_{2\,t} + ab\epsilon_{3\,t} \\ \epsilon_{2\,t} + b\epsilon_{3\,t} \\ \epsilon_{3\,t} \end{pmatrix},$$

et la représentation **VECM**

$$\nabla X_t = \Pi X_{t-1} + \epsilon_t, \quad \Pi = \begin{pmatrix} -1 & 0 & ab \\ 0 & -1 & b \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & -a \\ 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -a & 0 \\ 0 & 1 & -b \end{pmatrix}.$$

On retrouve les relations de cointégration dans cette décomposition, ainsi que le rang de cointégration.

Exercice 4 Soit le VAR(1) de dimension 3, $X_t = (X_{1t}, X_{2t}, X_{3t})'$, de la forme

$$X_{t} = \begin{pmatrix} a & 0 & 0 \\ b & c & 0 \\ 0 & 0 & d \end{pmatrix} X_{t-1} + \epsilon_{t}$$

avec (ϵ_t) un bruit blanc de variance Σ . Pour quelles valeurs de a, b, c, d et Σ a-t-on à la fois

- 1. (X_t) est stationnaire non anticipatif;
- 2. $(X_{2t}, X_{3t})'$ ne cause pas (X_{1t}) au sens de Granger;
- 3. $(X_{1t}, X_{3t})'$ cause (X_{2t}) au sens de Granger;
- 4. il n'y a aucune causalité instantanée entre les composantes.

4 pts : Pour avoir le premier point, il faut que le déterminant du polynôme AR(1), c'est-à-dire (1-az)(1-cz)(1-dz), ait ses racines à l'extérieur du cercle unité. Cela donne les conditions |a| < 1, |c| < 1, et |d| < 1. Le second point est toujours vérifié. Le troisième est vérifié ssi $b \neq 0$. Pour le dernier point on impose que Σ soit diagonale.