Review 5 part 2

B- Lewis structures, resonance, formal charges

Write the Lewis dot symbols of the following compounds

Answer:

$$Sr^{2+} : Se^{-2-}$$
 $Ca^{2+} : 2H : 3Li^{+} : N : 3 \rightarrow 2Al^{3+} : 3 : S : 2-$

DICL - 7+7=14 electron = 7 pair of electrons = I - CL:

(2) PH: - 5+ (3x1) = 8 electron = 4 pair of electron Tewis structure H-P-H (Shape) AB, X strigoonal Pyramidal.

(3) H₂S: (2x) +6 = 8 electrons = 4 pairs. Tewis structure H-S-H Shape Shape H or ABZX2 anguler.

(2xs) +(4x1) = 14 e = 7 pain H. Spairs H T Pairs H geometry N/3 N2 H for each N: 3 bonding pairs AB3 X -> trigonal pyramidal

$$\frac{7-5-11}{6-7^{2}-1}$$

$$\frac{7}{6-7^{2}-1}$$

$$\frac{7}{$$

 $G = C_2^{-2} = (2xy) + 2 = 10e = 5 pairs$: C-C: -> no octet for both :C=C -> no octete for O ~ C≡C → octet rule ~ sum of famal Charges = -2 = Charge of long

(8) $CH_2NO_2^{-1}$ $4+(2x1)+5+(2x6)+1=24e^{-1}$ 12pqis 14-(-1)-0: 1+(-1) 1

(9) NO^{\dagger} = 5+6-1=10 e⁻ = 5 pairs $N \stackrel{\checkmark}{=} 0$ = N =

HN _ 3 H_ N-N-N 1+(3x5)=16e==8 pais H-N=N-N: -> No octet for one of the N 1-0=0 S-4=+1 S=4=+1 S-7=-2 1-1 + N = N+N: vesonances hybrids 3 1-120 5-5=0 5-4=41 , 5-6=-1 H+N=N=N: 1-120 5-6= 5-4= (I) CNO 4+5+6+1=16e- =8 pairs C-N-O: NON - no octes :C + N + O. 4-6=-2 + 5-4= 6-6=0 (X) ·C (N = 0 X X X C = N +0: LUCI)

Hybridization

• It is important to understand the relationship between hybridization and the VSEPR model. We use hybridization to describe the bonding scheme only when the arrangement of electron pairs (both bonding and lone pairs) has been predicted using VSEPR.

Procedure for Hybridizing Atomic Orbitals

- The steps are as follows:
- 1. Draw the Lewis structure of the molecule.
- 2. Predict the overall arrangement of the electron pairs (both bonding pairs and lone pairs) using the VSEPR model.
- 3. Deduce the hybridization of the central atom by matching the arrangement of the electron pairs with those of the hybrid orbitals shown in the following table. (remember that the number of electron pairs equals pure atomic orbitals that participate in the hybridization process).

TABLE 10.1	in a Molecule and (ectron Pairs About a Ce Geometry of Some Sim	ple Molecules	TABLE 10.4	Important Hy	brid Orbitals	and Their Shapes	
Number of Electron Pairs	Arrangement of Electron Pairs*	Molecular Geometry*	Examples	Pure Atomic Orbitals of the Central Atom	Hybridization of the Central Atom	Number of Hybrid Orbitals	Shape of Hybrid Orbitals	Examples
2	: A::	B—A—B Linear	BeCl ₂ , HgCl ₂	s, p	sp	2	Linear	BeCl ₂
3	120°	B B B B Trigonal glanar	BF,	s, p, p	sp ²	3	120° Trigonal planar	BF_3
:4:	109.5° Tetrahedral	B B B B Tetrahedral	CH₄, NH₄*	s, p, p, p	sp^3	4	109.5° Tetrahedral	CH ₄ , NH ₄ ⁺
5	120° Sipyramidal	B A B B Trigonal bipyramidal	PCI ₃	s, p, p, p, d	sp ³ d	5	90° 120° Trigonal bipyramidal	PCl ₅
6	90° Octahedral	B B B B Cottahedral	SF ₆	s, p, p, p, d, d	sp³d²	6	90° Octahedral	SF ₆

TABLE 1	More L	try of Simpl one Pairs	le Molecule	s and lons in Which th	ne Central Atom I	las One or
Class of molecule	Total number of electron pairs	Number of bonding pairs	Number of lone pairs	Accangement of electron pairs*	Geometry	Examples
AB ₂ E	3	2	ā	B B B Trigonal planar	Bent	SO ₂
AB ₃ E	4	3	i	B A B Teirahedral	Trigonal pyxamidal	NH ₃
AB ₂ E ₂	4	2	2	B Tetrahedral	Bent	H ₂ O
AB ₄ E	5 ?	.4	1	E B B B Trigonal bipyramidal	Distorted tetrahedron (or seesaw)	37.
AB ₃ E ₂	5	3	2	B B B B B B B B B B B B B B B B B B B	T-shaped	CIP,
AB ₂ E ₃	5 ?	2	3	B B B Trigonal bipyramidal	Lineas	E.
AB ₅ E	6	5	1	B B B B Coctahedral	Square pyramidal	BeF ₅
AB ₄ E ₂	6	4	2	B A B	Square planar	NeF4

No. of hybrid orbitals	Type of hybridization
3	sp ²
4	sp³
4	sp³
5	sp³d
5	sp³d
5	sp³d
6	sp³d²
6	sp³d²

Bond Sites	4	4	4
Hybridization:	sp ³	sp³	sp ³
Shape:			\ \ \ \ \ \
Lone pairs:	0	1	2
Geometry:	Tetrahedral	Pyramidal	Bent
7			
Bond Sites	3	3	2
Bond Sites Hybridization:	3 sp ²	3 sp ²	2 sp
Hybridization:			

مع خالص تمنیاتی لکم بالتوفیق و النجاح