Beyond Analysis

Team Name: VoidMen

- Pranc Abishek Mahesh - Prithvi Seshadri - Rishi Dinesh

Introduction

Problem Statement

Head digital works has provided a dataset that falls in the domain of online skill-based gaming. This dataset contains a 22-dimensional feature space that describes the differ aspect of customer behaviour. The goal is to predict the Y1 and Y2 values of a given customer, which represents the customer's current value and future value (temporal extrapolation) respectively

Dataset

UNIQUE_IDENTIFIER and a sequence of entries tagged by the SEQUENCE_NO. Various a information attributing to the performance of the customer in the game has been prov The dataset is divided into train and test sets. Each customer is identified by a

Metrics

Root Mean Squared Error(RMSE) is the primary metric used in our analysis.

Exploratory Data Analysis 👨

of Numerical Features Correlation Heatmap

Exploratory Data Analysis 💿

CATEGORY_1 Visualization

CATEGORY 2 Visual

I

CATEGORY_2

Exploratory Data Analysis 💿

REVENUE Correlation Analysis

Practice vs Live D

Data Preparation

Original

UNIQUE_IDENTIFIER SEQUENCE_NO STATUS_CHECK CATEGORY_1 CATEGORY_2 ACTIVE_YN	SEQUENCE_NO	STATUS_CHECK	CATEGORY_1	CATEGORY_2	ACTIVE_YN		ENTRY REVENUE
98481267304	**	0	M	В	+	0.000000	0.000000
98481267304	2	0	Σ	В	-	0.137350	0.011550
98481267304	6	0	≥	В	***	0.158350	0.010425
98481267304	4	0	Σ	. В	*	0.444900	0.035850
98481267304	2	0	Σ	В	-	0.000000	0.000000
98481267304	9	0	Σ	В	*	0.000000	0.000000
98481267304	7	0	Σ	В	-	0.045050	0.002950

UNIQUE_IDENTIFIER STATUS_CHECK CATEGORY_1 CATEGORY_	STATUS_CHECK	CATEGORY_1	CATEGORY 2	ENTRY	REVENUE	ENTRY REVENUE WINNINGS_1 WINNINGS_2 DISCOUNT DEPOSIT	WINNINGS 2	DISCOUNT	DEPOSIT	:
98481267304	0	Σ	В	0.098334	0.098334 0.007531	0.043399	0.000000	0.000000 0.000000 0.000714	0.000714	3
98481267698	-	Σ		31.392245	3.803991	25.940547	0.000000		0.866865 11.122807	i.
98481269325	0	Σ	O	0.018567	0.001624	0.010514	0.000000	0.005791	0.005791 0.000278	溢
98481271512	0	Σ	ш	0.747600	0.117320	0.025330	0.000000	0.240000	0.504000	1
98481273023	0	Σ	_	0.500000	0.080000	0.00000	0.000000	0.000000	0.500000	E

Data Preprocessing 👁

Categories Frequency Chart

Feature Importances (Ti

Methods Explored

Final Ensemble Model

Voting Regressor(
Multilayer perceptron,
Random forest,
XGboost

An interactive visualization

Results •

Train set evaluation Y1:

MAE: 0.9461894717876128 MSE: 14.005275338171362 RMSE: 3.742362267094323

R2 Square 0.8033506756173131

Train set evaluation Y2:

MAE: 56.61943030644907

MSE: 9180.279272981403

RMSE: 95.81377392098383

R2 Square 0.7325900531845706

Epilogue

Conclusion

trained on a processed dataset. Results showed that an ensemble of the best perform Various regression models such as RandomForest, Multilayer Perceptron and XGBoost models would yield the best score.

Challenges

Understanding the dataset in the context of its domain was a hurdle. Tackling the tem component of the dataset was also a difficulty.

Future Scope

Using a deep learning approach for better feature selection and modelling