```
In [1]: import pandas as pd
    from darts import TimeSeries
```

In [2]: df = pd.read_csv("MY3_May_2023_KNN_Imputed.csv")

df

Out[2]:

	Datetime	id	field1	field2	field3	field4	field5	field6	field7	field8
0	2022-07-03 20:30:00	2.200000e+01	8.871990	0.000000	398.496241	3.636364	26.00000	71.000000	45.666667	55.000000
1	2022-07-03 20:45:00	6.700000e+01	3.802281	0.000000	229.323308	0.000000	25.00000	62.000000	44.666667	53.333333
2	2022-07-03 21:00:00	1.120000e+02	12.674271	0.000000	184.210526	0.000000	25.00000	60.000000	43.666667	52.750000
3	2022-07-03 21:15:00	1.560000e+02	16.476553	0.000000	165.413534	0.000000	24.00000	59.666667	43.333333	52.666667
4	2022-07-03 21:30:00	5.307278e+05	321.540266	190.816359	794.429588	371.997558	27.25921	61.186420	18.749892	20.904609
28042	2023-04-21 23:00:00	1.061851e+06	397.944200	225.108225	700.960219	489.898990	29.00000	69.000000	27.666667	29.000000
28043	2023-04-21 23:15:00	1.061896e+06	392.070485	225.974026	707.818930	492.424242	29.00000	69.000000	31.666667	36.000000
28044	2023-04-21 23:30:00	1.061941e+06	393.538913	225.974026	716.049383	493.686869	29.00000	70.000000	33.333333	39.333333
28045	2023-04-21 23:45:00	1.061986e+06	392.070485	225.108225	727.023320	488.636364	29.00000	70.000000	35.333333	42.666667
28046	2023-04-22 00:00:00	1.062008e+06	414.096916	220.779221	720.164609	496.212121	29.00000	70.000000	37.000000	44.000000

28047 rows × 10 columns

df train = df3[:train1]

df test = df3[train1-24:train1+test1]

```
In [3]: df1 = df
         df1['Datetime'] = pd.to_datetime(df['Datetime'])
        df1 = df.set_index('Datetime')
         #df1
         df2=df1.resample('1H').mean()
         df2.reset index(inplace = True)
Out[3]:
                                        id
                       Datetime
                                               field1
                                                         field2
                                                                    field3
                                                                              field4
                                                                                       field5
                                                                                                field6
                                                                                                         field7
                                                                                                                   field8
            0 2022-07-03 20:00:00 4.450000e+01
                                             6.337136
                                                       0.000000 313.909774
                                                                           1.818182 25.500000 66.500000
                                                                                                      45.166667 54.166667
              2022-07-03 21:00:00 2.654309e+05 168.057839
                                                      95.408180
                                                               484.620809
                                                                         185.998779
                                                                                   25.879605
                                                                                            60.509877
                                                                                                      31.124946 36.806471
            2 2022-07-03 22:00:00 5.307278e+05 321.540266
                                                    190.816359 794.429588
                                                                         371.997558 27.259210 61.186420
                                                                                                     18.749892 20.904609
              2022-07-03 23:00:00 5.307278e+05 321.540266
                                                     190.816359
                                                               794.429588
                                                                         371.997558
                                                                                   27.259210 61.186420
                                                                                                      18.749892 20.904609
              2022-07-04 00:00:00 5.307278e+05 321.540266 190.816359 794.429588 371.997558 27.259210 61.186420
                                                                                                     18.749892 20.904609
         7008
              2023-04-21 20:00:00 1.061380e+06 395.374449
                                                     224.242424
                                                               685.528121
                                                                         498.737374
                                                                                   30.000000
                                                                                            68.500000
                                                                                                      22.833333 23.916667
                                                                                                     25.500000 27.250000
              225.757576
                                                               692.386831
                                                                         496.527778 29.750000
                                                                                            69.000000
         7010
              29.000000
                                                                                            69.000000
                                                                                                     31.000000 34.833333
              225.541126 712.962963 491.161616 29.000000
                                                                                             69.500000
                                                                                                      32.000000 36.750000
         7011
         7012 2023-04-22 00:00:00 1.062008e+06 414.096916 220.779221 720.164609 496.212121 29.000000 70.000000 37.000000 44.000000
         7013 rows × 10 columns
In [4]: test1 = 24*7
        trainl = len(df2) - test1
         df3 = df2.set index('Datetime')
```

```
In [5]: targets = ['field1','field2','field3','field4','field7','field8']
        covariates = ['field5','field6']
        X_train_df = df_train[covariates]
        Y train df = df train[targets]
        X_test_df = df_test[covariates]
        Y_test_df = df_test[targets]
In [6]: X_train = TimeSeries.from_dataframe(X_train_df)
        Y_train = TimeSeries.from_dataframe(Y_train_df)
        X_test = TimeSeries.from_dataframe(X_test_df)
        Y_test = TimeSeries.from_dataframe(Y_test_df)
In [7]: from darts.models import LinearRegressionModel as LRM
        # import warnings
        # warnings.filterwarnings("ignore")
        n = len(Y_test)
        # Initialize the Linear Regression Model
        modellrm = LRM(lags=24, lags_past_covariates=24, output_chunk_length=24 )
        # Train the model on the training data
        modellrm.fit(Y_train, past_covariates=X_train)
```

Out[7]: LinearRegressionModel(lags=24, lags_past_covariates=24, lags_future_covariates=None, output_chunk_length=24, add_encoders=None, likelihood=None, quantiles=None, random_state=None, multi_models=True, use_static_covariates=True)

In [8]: predlrm1 = modellrm.predict(n, past_covariates = X_test)
 predictions = TimeSeries.pd_dataframe(predlrm1)
 predictions

Out[8]:

component	field1	field2	field3	field4	field7	field8
Datetime						
2023-04-15 01:00:00	237.150143	130.141162	945.208720	278.078840	45.455573	56.134433
2023-04-15 02:00:00	219.937800	132.593991	886.518707	263.296294	43.536159	53.481290
2023-04-15 03:00:00	201.969550	126.420432	832.437854	251.274744	41.120225	50.005764
2023-04-15 04:00:00	190.333917	119.722306	798.367510	252.944625	39.118672	47.206874
2023-04-15 05:00:00	187.350764	132.227558	781.573712	261.866541	37.827292	45.549918
2023-04-22 20:00:00	346.466232	187.155772	824.720900	400.267623	14.448441	16.186752
2023-04-22 21:00:00	345.146252	186.843016	831.730251	398.349890	14.595799	16.362469
2023-04-22 22:00:00	339.853802	182.484661	831.613886	392.314483	14.949997	16.750197
2023-04-22 23:00:00	340.000479	179.700998	833.657662	391.235403	15.432536	17.340623
2023-04-23 00:00:00	340.228358	180.261696	841.617300	393.292502	15.847821	17.833834

192 rows × 6 columns

```
In [11]: # from darts.metrics import rmse, mae
         # # Convert predictions to DataFrame
         # predictions_df = TimeSeries.pd_dataframe(predlrm1)
         # # Calculate RMSE and MAE for each target field
         # rmse values = []
         # mae values = []
         # for target in targets:
               actual = Y_test_df[target]
               predicted = predictions_df[target]
               rmse_value = rmse(actual, predicted)
               mae_value = mae(actual, predicted)
               rmse_values.append(rmse_value)
               mae_values.append(mae_value)
         # # Create a DataFrame to store the results for Linear Regression
         # results_df = pd.DataFrame({
               'Field': targets,
               'RMSE_LRM': rmse_values,
               'MAE_LRM': mae_values
         #
         # })
         # # Save the Linear Regression results to a CSV file
         # results_df.to_csv('linearRegression_multi_results.csv', index=False)from darts.metrics import rmse, mae
         # # Convert predictions to DataFrame
         # predictions df = TimeSeries.pd dataframe(predlrm1)
         # # Calculate RMSE and MAE for each target field
         # rmse_values = []
         # mae_values = []
         # for target in targets:
               actual = Y_test_df[target]
               predicted = predictions_df[target]
               rmse_value = rmse(actual, predicted)
               mae value = mae(actual, predicted)
```

```
# rmse_values.append(rmse_value)
# mae_values.append(mae_value)

# # Create a DataFrame to store the results for Linear Regression
# results_df = pd.DataFrame({
# 'Field': targets,
# 'RMSE_LRM': rmse_values,
# 'MAE_LRM': mae_values
# })

# # Save the Linear Regression results to a CSV file
# results_df.to_csv('linearRegression_multi_results.csv', index=False)
```

```
In [13]: from darts.metrics import rmse, mae
         # Convert predictions to separate TimeSeries for each target field
         predictions_ts = [TimeSeries.from_dataframe(predictions_df[[target]]) for target in targets]
         # Calculate RMSE and MAE for each target field
         rmse_values = []
         mae_values = []
         for target, prediction_ts in zip(targets, predictions_ts):
             actual = TimeSeries.from_dataframe(Y_test_df[[target]])
             rmse_value = rmse(actual, prediction_ts)
             mae_value = mae(actual, prediction_ts)
             rmse_values.append(rmse_value)
             mae_values.append(mae_value)
         # Create a DataFrame to store the results for Linear Regression
         results_df = pd.DataFrame({
             'Field': targets,
             'RMSE_LRM': rmse_values,
             'MAE_LRM': mae_values
         })
         # Save the Linear Regression results to a CSV file
         results_df.to_csv('linearRegression_multi_results.csv', index=False)
```


