Kernel trick

Wrap-up

Introduction

Machine Learning for Official Statistics & SDGs Support Vector Machine

[UNDERSTANDING SVM]

[UNDERSTANDING SVM]

Introduction

Support Vector Machine (SVM) is a classifier

▶ One of the best "out of the box" classifier

[UNDERSTANDING SVM]

Introduction

- ▶ One of the best "out of the box" classifier
- ► Lots of refinements

Kernel trick

Wrap-up

[UNDERSTANDING SVM]

Introduction

- ▶ One of the best "out of the box" classifier
- ► Lots of refinements
- ► Based on two very different ideas

Kernel trick

Wrap-up

[Understanding SVM]

Introduction

- ► One of the best "out of the box" classifier
- ► Lots of refinements
- ► Based on two very different ideas
 - ► Dimension augmentation

Introduction

[UNDERSTANDING SVM]

- ▶ One of the best "out of the box" classifier
- ► Lots of refinements
- ► Based on two very different ideas
 - Dimension augmentation
 - Maximal margin classifier

Introduction

- ▶ One of the best "out of the box" classifier
- ► Lots of refinements
- ► Based on two very different ideas
 - ► Dimension augmentation
 - ► Maximal margin classifier
- ► Technical details require advanced mathematics

[UNDERSTANDING SVM]

- ► One of the best "out of the box" classifier
- ► Lots of refinements
- ► Based on two very different ideas
 - ► Dimension augmentation
 - ► Maximal margin classifier
- ► Technical details require advanced mathematics
- \hookrightarrow Focus on seminal ideas and intuitions

[THE VAPNIK-CHERVONENKIS DIMENSION]

► The *Vapnik–Chervonenkis* (VC) dimension measures the complexity that can be learned by a classifier

- ► The *Vapnik–Chervonenkis* (VC) dimension measures the complexity that can be learned by a classifier
- ► The VC dimension is defined as the maximum number of points allowing a separation by a linear classifier

- ► The *Vapnik–Chervonenkis* (VC) dimension measures the complexity that can be learned by a classifier
- ► The VC dimension is defined as the maximum number of points allowing a separation by a linear classifier
- $\hookrightarrow VC(f)$ = # points always separable in the current space

- ► The *Vapnik–Chervonenkis* (VC) dimension measures the complexity that can be learned by a classifier
- ► The VC dimension is defined as the maximum number of points allowing a separation by a linear classifier
- $\hookrightarrow VC(f)$ = # points always separable in the current space
- ► Useful to measure the complexity of a particular model in a given space

[THE VAPNIK-CHERVONENKIS DIMENSION]

In 1-D, there are 4 situation with 2 points:

Both orange

[THE VAPNIK-CHERVONENKIS DIMENSION]

In 1-D, there are 4 situation with 2 points:

Both blue

[THE VAPNIK-CHERVONENKIS DIMENSION]

In 1-D, there are 4 situation with 2 points:

One orange, one blue

[THE VAPNIK-CHERVONENKIS DIMENSION]

In 1-D, there are 4 situation with 2 points:

One blue, one orange

What happens with 3 points?

A situation where no linear classifier works! $\hookrightarrow VC(f_{lin}) = 2$

Introduction

[THE VAPNIK-CHERVONENKIS DIMENSION]

Introduction

[THE VAPNIK-CHERVONENKIS DIMENSION]

Introduction

Introduction

Introduction

[THE VAPNIK-CHERVONENKIS DIMENSION]

Introduction

Introduction

In 2-D, there are $2^3 = 8$ different situations with 3 points:

Wrap-up

Introduction

[THE VAPNIK-CHERVONENKIS DIMENSION]

A situation where no linear classifier works! $\hookrightarrow VC(f_{lin}) = 3$

[INTERPRETATION OF THE VC DIMENSION]

[INTERPRETATION OF THE VC DIMENSION]

► *VC*(*f*) measures the complexity of the classifier *f* , linear or not

Wrap-up

- ightharpoonup VC(f) measures the complexity of the classifier f, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

- ightharpoonup VC(f) measures the complexity of the classifier f, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

 It can be shown that:

[INTERPRETATION OF THE VC DIMENSION]

- ► *VC*(*f*) measures the complexity of the classifier *f* , linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

 It can be shown that:
 - ► Classifiers with a **high** VC dimension will be better at learning and fitting the training data set

[INTERPRETATION OF THE VC DIMENSION]

- ightharpoonup VC(f) measures the complexity of the classifier f, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points
 - It can be shown that:
 - ► Classifiers with a **high** VC dimension will be better at learning and fitting the training data set
 - → High risk of over-fitting

[INTERPRETATION OF THE VC DIMENSION]

- ightharpoonup VC(f) measures the complexity of the classifier f, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

It can be shown that:

- ► Classifiers with a **high** VC dimension will be better at learning and fitting the training data set
- \hookrightarrow **High** risk of over-fitting
- ► Classifiers with a **low** VC dimension make more errors on the training data set, but may be better in prediction

[INTERPRETATION OF THE VC DIMENSION]

- \blacktriangleright *VC*(*f*) measures the complexity of the classifier *f*, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

It can be shown that:

Introduction

- Classifiers with a high VC dimension will be better at learning and fitting the training data set
- \hookrightarrow **High** risk of over-fitting
- ► Classifiers with a **low** VC dimension make more errors on the training data set, but may be better in prediction
- \hookrightarrow **Low** risk of over-fitting

- ightharpoonup VC(f) measures the complexity of the classifier f, linear or not
- ► A highly non-linear classifier will always be able to separate a high number of points

It can be shown that:

Introduction

- ► Classifiers with a **high** VC dimension will be better at learning and fitting the training data set
- Classifiers with a low VC dimension make more errors on the training data set, but may be better in prediction
- \hookrightarrow **Low** risk of over-fitting
- ▶ New version of the **Bias-Variance** trade off!

Introduction

[IMPLICATIONS OF THE VC DIMENSION]

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

Introduction

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

- $\epsilon(\cdot)$ is the error rate,

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

- $\epsilon(\cdot)$ is the error rate,
- *m* is the nb of training sets and

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

- $\epsilon(\cdot)$ is the error rate,
- *m* is the nb of training sets and
- $G(\cdot)$ a function **decreasing** with m (obviously)

Wrap-up

[IMPLICATIONS OF THE VC DIMENSION]

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

- $\epsilon(\cdot)$ is the error rate,
- m is the nb of training sets and
- $G(\cdot)$ a function **decreasing** with m (obviously) **increasing** with *VC*!!

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

Introduction

- $\epsilon(\cdot)$ is the error rate,
- *m* is the nb of training sets and
- $G(\cdot)$ a function **decreasing** with m (obviously) **increasing** with VC!!
- \hookrightarrow The higher VC(f) the greater the difference between performance on the *training* and *validation* sample

► The Vapnik–Chervonenkis inequality (*simplified*):

$$\epsilon_{validation}(f) \le \epsilon_{train}(f) + G(VC(f), m)$$

Where:

Introduction

- $\epsilon(\cdot)$ is the error rate,
- *m* is the nb of training sets and
- $G(\cdot)$ a function **decreasing** with m (obviously) **increasing** with VC!!
- \hookrightarrow The higher VC(f) the greater the difference between performance on the *training* and *validation* sample
- \hookrightarrow Better to use simple models (low VC)

Take the following hypothetical situation

Take the following hypothetical situation

 \hookrightarrow It is easy to *separate* the two classes with a linear classifier

But in this situation?

Wrap-up

[LINEAR BOUNDARIES IN A SIMPLE EXAMPLE]

Introduction

Unless...

[DIMENSION AUGMENTATION]

[DIMENSION AUGMENTATION]

Unless one adds a third dimension!

Introduction

Unless one adds a third dimension!

→ A linear classifier can *separate* the two classes in an *augmented* space (third dimension)

The maximum margin classifier is defined as:

The maximum margin classifier is defined as:

 \hookrightarrow *M* is the margin.

Kernel trick

[MAXIMAL MARGIN CLASSIFIER]

The optimization problem to find this margin is : with $(\beta_0 + x'\beta)$ defining the boundary (line or hyperplane)

$$Max_{\beta_0,\beta}$$
 M
subject to: $y_i(\beta_0 + x'\beta) \ge M$

and $y_i = 1$ or -1 depending on the class of observation i

The optimization problem to find this margin is : \hookrightarrow This can be relaxed

$$Max_{\beta_0,\beta}$$
 M $subject to: y_i(\beta_0 + x'\beta) \ge M - \xi$

where ξ is the *slack* parameter

Introducing soft margins is one idea implemented in SVM

Introducing *soft margins* is one idea implemented in SVM The slack parameter will play an important role

Introducing *soft margins* is one idea implemented in SVM

The slack parameter will play an important role

► A small *slack* allows few exceptions

Wrap-up

[SOFT MARGIN]

Introduction

Introducing *soft margins* is one idea implemented in SVM

The slack parameter will play an important role

- ► A small *slack* allows few exceptions
- → Boundary (classifier) sensitive to outliers

Wrap-up

[SOFT MARGIN]

Introduction

Introducing *soft margins* is one idea implemented in SVM

The slack parameter will play an important role

- ► A small *slack* allows few exceptions
- → Boundary (classifier) sensitive to outliers
 - ► A large *slack* allows lots of errors and misclassifications

Introducing *soft margins* is one idea implemented in SVM

The slack parameter will play an important role

- ► A small *slack* allows few exceptions
- \hookrightarrow Boundary (classifier) sensitive to outliers
 - ► A large *slack* allows lots of errors and misclassifications The optimization problem is equivalent to:

$$Min_{\beta_0,\beta} \qquad \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$

$$subject \ to: \quad y_i(\beta_0 + x'\beta) \ge M - \xi_i$$
(1)

[SOFT MARGIN]

Introducing *soft margins* is one idea implemented in SVM

The slack parameter will play an important role

- ► A small *slack* allows few exceptions
- \hookrightarrow Boundary (classifier) sensitive to outliers
- ► A large *slack* allows lots of errors and misclassifications The optimization problem is equivalent to:

$$Min_{\beta_0,\beta} \qquad \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$

$$subject \ to: \quad y_i(\beta_0 + x'\beta) \ge M - \xi_i$$
(1)

 \hookrightarrow SVM is a trade-off between maximal M and cost C of errors due to ξ

The previous optimization method applies to an (*augmented*) space with separable classes

The previous optimization method applies to an (*augmented*) space with separable classes

► How do we determine this *augmented* space?

The previous optimization method applies to an (*augmented*) space with separable classes

Wrap-up

► How do we determine this *augmented* space? How to find $\phi(\cdot)$ so that $X_3 = \phi(X_1, X_2)$ separates classes?

Wrap-up

[THE kernel trick]

Introduction

The previous optimization method applies to an (*augmented*) space with separable classes

► How do we determine this *augmented* space? How to find $\phi(\cdot)$ so that $X_3 = \phi(X_1, X_2)$ separates classes?

The previous optimization method applies to an (*augmented*) space with separable classes

► How do we determine this *augmented* space? How to find $\phi(\cdot)$ so that $X_3 = \phi(X_1, X_2)$ separates classes?

 \hookrightarrow The kernel trick!

Finding $\phi(\cdot)$ is difficult and sometimes infeasible!

► One can rewrite the optimization problem

- ► One can rewrite the optimization problem
- \hookrightarrow Transform the *Xs* through kernels $K(\cdot)$

- ► One can rewrite the optimization problem
- \hookrightarrow Transform the *Xs* through kernels $K(\cdot)$
- ► A *kernel* quantifies the similarity of two observations (*inner product*)

- ► One can rewrite the optimization problem
- \hookrightarrow Transform the *Xs* through kernels $K(\cdot)$
- ► A *kernel* quantifies the similarity of two observations (*inner product*)
- ▶ The optimization can be written **only** in terms of $K(X_i, X_j)$!

- ► One can rewrite the optimization problem
- \hookrightarrow Transform the *Xs* through kernels $K(\cdot)$
- ► A *kernel* quantifies the similarity of two observations (*inner product*)
- ▶ The optimization can be written **only** in terms of $K(X_i, X_i)$!
- \hookrightarrow The solution is non linear in the original space

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

► The slack parameter

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

- ► The slack parameter
- ► The type of kernel (*linear*, *radial*, *sigmoid*, ..)

Wrap-up

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

► The slack parameter

- ► The type of kernel (*linear*, *radial*, *sigmoid*, ..)
- ► In an ML framework, one trains the SVM on several samples

Wrap-up

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

► The slack parameter

- ► The type of kernel (*linear, radial, sigmoid, ..*)
- ► In an ML framework, one trains the SVM on several samples
 - ► Number of CV sample should be reduced (100)

Kernel trick

Wrap-up

[HYPERPARAMETERS IN SVM]

Several hyperparameters have to be selected:

► The slack parameter

- ► The type of kernel (*linear, radial, sigmoid, ..*)
- ► In an ML framework, one trains the SVM on several samples
 - ► Number of CV sample should be reduced (100)
 - ► Linear kernel are less computationally intensive

Several hyperparameters have to be selected:

► The slack parameter

- ► The type of kernel (*linear, radial, sigmoid, ..*)
- ▶ In an ML framework, one trains the SVM on several samples
 - ► Number of CV sample should be reduced (100)
 - ► Linear kernel are less computationally intensive
- ► Proceed with parsimony and increase complexity

[QUIZ TIME]

[QUIZ TIME]

SVM is a complex but popular technique

► Based on several clever ideas:

- ► Based on several clever ideas:
 - ► Dimension augmentation

- ► Based on several clever ideas:
 - ► Dimension augmentation
 - ► Maximal margin classifier

- ▶ Based on several clever ideas:
 - ► Dimension augmentation
 - ► Maximal margin classifier
 - → Soft margins with a slack parameter

- ► Based on several clever ideas:
 - ▶ Dimension augmentation
 - ► Maximal margin classifier
 - → Soft margins with a slack parameter
 - ► A trick to avoid costly features transformations

- ▶ Based on several clever ideas:
 - ▶ Dimension augmentation
 - Maximal margin classifier
 - \hookrightarrow Soft margins with a *slack* parameter
 - ► A trick to avoid costly features transformations
 - \hookrightarrow The Kernel Trick

Wrap-up

[TAKEAWAYS]

Introduction

- ► Based on several clever ideas:
 - ▶ Dimension augmentation
 - Maximal margin classifier
 - \hookrightarrow Soft margins with a *slack* parameter
 - ► A trick to avoid costly features transformations
 - \hookrightarrow The Kernel Trick
- ▶ Due to the VC theory, SVM use simple models

Introduction

- ► Based on several clever ideas:
 - ▶ Dimension augmentation
 - Maximal margin classifier
 - \hookrightarrow Soft margins with a *slack* parameter
 - ► A trick to avoid costly features transformations
 - \hookrightarrow The Kernel Trick
- ▶ Due to the VC theory, SVM use simple models
- SVM requires optimization and CPU

Introduction

- ► Based on several clever ideas:
 - ► Dimension augmentation
 - Maximal margin classifier
 - \hookrightarrow Soft margins with a *slack* parameter
 - ► A trick to avoid costly features transformations
 - \hookrightarrow The Kernel Trick
- ▶ Due to the VC theory, SVM use simple models
- ► SVM requires optimization and CPU
- ► Implemented in many software!