вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по "Логическо програмиране" спец. "Компютърни науки" 17.11.2012 г.

Да няма лист, на който е писано по повече от една задача!

- **Зад. 1.** Списък от квадрати наричаме списък от вида $[[x_0,y_0,a_0],[x_1,y_1,a_1],\ldots,[x_n,y_n,a_n]]$, където всеки списък $[x_i,y_i,a_i], 0 \le i \le n$, представя квадрат със страни успоредни на координатните оси, център с координати (x_i,y_i) и дължина на страната a_i . Казваме, че списъкът е концентричен, ако всеки негов елемент представя квадрат, който се съдържа строго в квадрата, представен със следващия елемент на списъка.
- а) Да се дефинира на Пролог двуместен предикат p(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци, чиито елементи са елементи на X.
- б) Да се дефинира на Пролог двуместен предикат m(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци с максимална дължина, чиито елементи са елементи на X.

 $(3+3 mou\kappa u)$

 $(3+3 mou \kappa u)$

Зад. 2. Да се дефинира на Пролог едноместен предикат p, който при преудовлетворяване генерира всички тройки от естествени числа (a,b,c), чието произведение при деление на 3 дава остатък 1 и уравнението $ax^2+bx+c=0$ има два различни реални корена. (4 точки)

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Първо контролно по "Логическо програмиране" спец. "Компютърни науки" 17.11.2012 г.

Да няма лист, на който е писано по повече от една задача!

- **Зад. 1.** Списък от квадрати наричаме списък от вида $[[x_0,y_0,a_0],[x_1,y_1,a_1],\ldots,[x_n,y_n,a_n]]$, където всеки списък $[x_i,y_i,a_i],0\leq i\leq n$, представя квадрат със страни успоредни на координатните оси, център с координати (x_i,y_i) и дължина на страната a_i . Казваме, че списъкът е концентричен, ако всеки негов елемент представя квадрат, който се съдържа строго в квадрата, представен със следващия елемент на списъка.
- а) Да се дефинира на Пролог двуместен предикат p(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци, чиито елементи са елементи на X.
- б) Да се дефинира на Пролог двуместен предикат m(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци с максимална дължина, чиито елементи са елементи на X.

Зад. 2. Да се дефинира на Пролог едноместен предикат p, който при преудовлетворяване генерира всички тройки от естествени числа (a,b,c), чието произведение при деление на 3 дава остатък 1 и уравнението $ax^2 + bx + c = 0$ има два различни реални корена.

вариант	ф. номер	група	поток	курс	специалност
9					
4					
Име:				•	

Първо контролно по "Логическо програмиране" спец. "Компютърни науки" 17.11.2012 г.

Да няма лист, на който е писано по повече от една задача!

- Зад. 1. Списък от квадрати наричаме списък от вида $[[x_0,y_0,a_0,b_0],[x_1,y_1,a_1,b_1],\ldots,[x_n,y_n,a_n,b_n]]$, където всеки списък $[x_i,y_i,a_i,b_i]$, $0 \le i \le n$, представя квадрат със страни успоредни на координатните оси, долен ляв ъгъл с координати (x_i,y_i) и горен десен ъгъл с координати (a_i,b_i) . Казваме, че списъкът е концентричен, ако всеки негов елемент представя квадрат, който се съдържа строго в квадрата, представен със следващия елемент на списъка.
- а) Да се дефинира на Пролог двуместен предикат p(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци, чиито елементи са елементи на X.
- б) Да се дефинира на Пролог двуместен предикат m(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци с максимална дължина, чиито елементи са елементи на X.

 $(3+3 mou\kappa u)$

Зад. 2. Да се дефинира на Пролог едноместен предикат p, който при преудовлетворяване генерира всички такива тройки от естествени числа (a,b,c), че произведението a(b+c) при деление на 3 дава остатък 1 и уравнението $ax^2+bx+c=0$ има два различни реални корена.

(4 точки)

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Първо контролно по "Логическо програмиране" спец. "Компютърни науки" 17.11.2012 г.

Да няма лист, на който е писано по повече от една задача!

- Зад. 1. Списък от квадрати наричаме списък от вида $[[x_0,y_0,a_0,b_0],[x_1,y_1,a_1,b_1],\ldots,[x_n,y_n,a_n,b_n]]$, където всеки списък $[x_i,y_i,a_i,b_i]$, $0 \le i \le n$, представя квадрат със страни успоредни на координатните оси, долен ляв ъгъл с координати (x_i,y_i) и горен десен ъгъл с координати (a_i,b_i) . Казваме, че списъкът е концентричен, ако всеки негов елемент представя квадрат, който се съдържа строго в квадрата, представен със следващия елемент на списъка.
- а) Да се дефинира на Пролог двуместен предикат p(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци, чиито елементи са елементи на X.
- б) Да се дефинира на Пролог двуместен предикат m(X,Y), който по даден списък от квадрати X генерира в Y при преудовлетворяване всички концентрични списъци с максимална дължина, чиито елементи са елементи на X.

 $(3+3 mou\kappa u)$

Зад. 2. Да се дефинира на Пролог едноместен предикат p, който при преудовлетворяване генерира всички такива тройки от естествени числа (a,b,c), че произведението a(b+c) при деление на 3 дава остатък 1 и уравнението $ax^2+bx+c=0$ има два различни реални корена.