VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA

Baigiamasis bakalauro darbas

Rizikų valdymo proceso modeliavimas

(Modeling of Risk Management Process)

Atliko: 2 kurso 1 grupės studentas

Vardenis Pavardenis (parašas)

Darbo vadovas:

doc. dr. Vardaitis Pavardaitis (parašas)

Recenzentas:

dr. Vardauskas Pavardauskas (parašas)

Turinys

Įvadas	2
1. RPC mechanizmas	3
1.1. Kliento-serverio modelis	3
1.2. Serverio-skaičiuotojo modelis	3
1.3. Kaip dirba RPC	
2. Programų, naudojančių RPC, kūrimas	
2.1. Kūrimo etapai	
2.1.1. RPC SDK instaliavimas	4
2.1.2. Detalaus programų sistemų projektavimas	4
2.1.3. Objektinių modulių ryšių redagavimas	4
2.2. IDL failas	
2.2.1. IDL failo antraštė	4
2.2.1.1. Atributas "uuid"	
2.2.1.2. Atributas "version"	
2.2.1.3. Atributas "local"	
2.2.2. IDL failo kūnas	
2.2.2.1. Baziniai tipai	
2.2.2.2. Direktyva "import"	
2.2.2.3. Funkcijų deklaracijos	
2.3. ACL failas	
2.3.1. ACF failo antraštė	
2.4. MIDL kompiliatoriaus generuojami failai	
3. RPC panaudojimo pavyzdys	
3.1. Problemos formulavimas	
3.2. Užduotis	
3.2.1. Pradiniai reikalavimai	
3.3. Analizė	
3.3.1. RS-232	
3.3.2. Vardiniai kanalai	
3.3.3. Oracle	
3.3.4. RPC	
3.4. Realizacija	
3.4.1. Registracija	
3.4.2. Diskusija	
Išvados	
Literatūros sąrašas	
Priedas Nr.1	
Priedas Nr.2	

Įvadas

...

1. RPC mechanizmas

 \dots citavimo pavyzdys [Ban
97], [PPP14] \dots

- 1.1. Kliento-serverio modelis
- 1.2. Serverio-skaičiuotojo modelis
- 1.3. Kaip dirba RPC

2. Programų, naudojančių RPC, kūrimas

- 2.1. Kūrimo etapai
- 2.1.1. RPC SDK instaliavimas
- 2.1.2. Detalaus programų sistemų projektavimas
- 2.1.3. Objektinių modulių ryšių redagavimas
- 2.2. IDL failas
- 2.2.1. IDL failo antraštė
- 2.2.1.1. Atributas "uuid"
- 2.2.1.2. Atributas "version"
- 2.2.1.3. Atributas "local"
- 2.2.2. IDL failo kūnas
- 2.2.2.1. Baziniai tipai
- 2.2.2.2. Direktyva "import"
- 2.2.2.3. Funkcijų deklaracijos
- 2.3. ACL failas
- 2.3.1. ACF failo antraštė
- 2.4. MIDL kompiliatoriaus generuojami failai

3. RPC panaudojimo pavyzdys

- 3.1. Problemos formulavimas
- 3.2. Užduotis
- 3.2.1. Pradiniai reikalavimai
- 3.3. Analizė
- 3.3.1. RS-232
- 3.3.2. Vardiniai kanalai
- 3.3.3. Oracle
- 3.3.4. RPC
- 3.4. Realizacija
- 3.4.1. Registracija
- 3.4.2. Diskusija

Išvados

...

Literatūros sąrašas

- [Ban97] A. Banerjee. Initializing neural networks using decision trees. Computational learning theory and natural learning systems, IV:3–15, 1997.
- [PPP14] V. Pavardė, V. Pavardė, and V. Pavardė. Straipsnio pavadinimas. $\check{Z}urnalo$ pavadinimas. $\check{Z}urnalo$ pavadinimas, Tomas:3–15, 2014.

Priedas Nr. 1 Niauroninio tinklo struktūra

1 pav.: Paveikslėlio pavyzdys

Priedas Nr. 2 Eksperimentinio palyginimo rezultatai

1 lentelė:: Lentelės pavyzdys.

Algoritmas	\bar{x}	σ^2
Algoritmas A	1.6335	0.5584
Algoritmas B	1.7395	0.5647