DATA ANALYSIS PYTHON **PROJECT**

```
Import Libraries
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
Import Raw Data
```

df = pd.read_csv("C:/Users/ABHISHEK/Documents/jupyte

```
Sample Data
```

df.head(10)

Out[11]:					
Item Fat	Item Identifier	Item Type	Outlet Establishment	Outlet Identifier	L

0

	Fat Content	Item Identifier	Item Type	Establishment Year	Outlet Identifier	Loca
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Ti

0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Ti
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Ti
			Frozen			

- Τi 2 Regular FDR28 2016 OUT046 Τi Foods 3 Regular FDL50 Canned 2014 OUT013
- Ti Low 4 DRI25 Soft Drinks 2015 OUT045 Ti Fat Frozen low fat FDS52 2020 **OUT017** Ti Foods
- Health and Low NCU05 6 2011 **OUT010** Τi Fat Hygiene Low 7 NCD30 Household 2015 **OUT045** Ti Fat Low Fruits and 8 FDW20 2014 **OUT013** Τi Fat Vegetables
- Low 9 **OUT027** FDX25 Canned 2018 Ti Fat df.tail(10) Item Outlet Item Outlet Fat Item Type Establishment **Identifier** Identifier Content Year
- DRY23 Soft Drinks 8513 Regular 2018 OUT027 Baking low fat 8514 FDA11 2018 **OUT027** Goods 8515 low fat FDK38 Canned 2018 OUT027

8516 low fat FDO38 2018 **OUT027** Canned Fruits and 8517 low fat FDG32 2018 **OUT027** Vegetables Health and 8518 low fat NCT53 2018 **OUT027** Hygiene Snack 8519 low fat FDN09 2018 **OUT027** Foods DRE13 Soft Drinks 8520 low fat 2018 **OUT027**

8521 FDT50 Dairy 2018 **OUT027** reg Snack 8522 FDM58 2018 **OUT027** reg Foods Size of Data print("Size of Data:", df.shape) Size of Data: (8523, 12) Field Info In [14]: df.columns Out [14]:

Index(['Item Fat Content', 'Item Identifier', 'Item

'Item Weight', 'Sales', 'Rating'],

'Outlet Establishment Year', 'Outlet Identifi

'Outlet Location Type', 'Outlet Size', 'Outle

object

float64

float64 float64

df.dtypes

Item Fat Content

Item Weight

dtype: object

Data Cleaning

Sales

Rating

Data Types

t Type', 'Item Visibility',

dtype='object')

Type',

```
Item Identifier
                              object
Item Type
                              object
Outlet Establishment Year
                               int64
Outlet Identifier
                             object
Outlet Location Type
                             object
Outlet Size
                              object
Outlet Type
                              object
                            float64
Item Visibility
```

print(df['Item Fat Content'].unique())

['Regular' 'Low Fat' 'low fat' 'LF' 'reg']

print(df['Item Fat Content'].unique()) ['Regular' 'Low Fat'] **Business Requirments KPI's Requirments #Total Sales** total_sales = df['Sales'].sum() #Average Sales avg_sales = df['Sales'].mean() #Number of Items Sold

no_of_items_sold = df['Sales'].count()

print(f"Total sales: \${total_sales:,.0f}") print(f"Average sales: \${avg_sales:,.1f}")

print(f"Average Ratings: {avg_rating:,.1f}")

CHARTS REQUIRMENTS

print(f"No of Items sold: {no_of_items_sold:,.0f}")

Sales_by_fat = df.groupby('Item Fat Content')['Sales

Sales by fat Content

Regular

35%

plt.pie(Sales_by_fat, labels = Sales_by_fat.index,

avg_rating = df['Rating'].mean()

#Average ratings

Total sales: \$1,201,681 Average sales: \$141.0 No of Items sold: 8,523 Average Ratings: 4.0

Total Sale by Fat Content

#Display

df['Item Fat Content'] = df['Item Fat Content'].repl

autopct = '%1.0f%%', startangle = 90)plt.title('Sales by fat Content') plt.axis('equal') plt.show()

65% Low Fat

ha='center', va='bottom', fontsize=8

Dairy

Fat Content by Outlet for Total Sales

grouped=grouped[['Regular', 'Low Fat']]

Baking Goods

grouped= df.groupby(['Outlet Location Type', 'Item F

plt.tight_layout()

plt.show()

Total Sale by Fat Item Type sales_by_type = df.groupby('Item Type')['Sales'].sum plt.figure(figsize=(10, 6)) bars = plt.bar(sales_by_type.index, sales_by_type.va plt.xticks(rotation=90) plt.xlabel('Item Type') plt.ylabel('Total Sales') plt.title('Total Sales by Item Type') for bar in bars: plt.text(bar.get_x() + bar.get_width() / 2, bar.get_height(), f'{bar.get_height():.0f}',

Total Sales by Item Type

for x, y in zip (sales_by_year.index, sales_by_year. plt.text(x, y, f'{y:.0f}', ha='center', va='bott

Outlet Establishment

plt.tight_layout()

plt.show()

200000

180000

160000

140000 131809 130943 132113 13310 120000 100000 80000 2016 2 Outlet Establishment Year 2018 2020 2022 Sales by Outlet Size sales_by_size = df.groupby('Outlet Size')['Sales'].s plt.figure(figsize=(4, 4)) plt.pie(sales_by_size, labels=sales_by_size.index, a plt.title('Outlet Size') plt.tight_layout() plt.show() **Outlet Size**

High 20.7% Small 37.0% 42.3% Medium

sales_by_location = df.groupby('Outlet Location Type sales_by_location = sales_by_location.sort_values('S

plt.figure(figsize=(8, 3)) # Smaller height enough w ax = sns.barplot(x='Sales', y='Outlet Location Type' plt.title('Total Sales by Outlet Location Type')

Sales by Output Location

plt.xlabel('Total Sales')

plt.ylabel('Outlet Location Type')

plt.tight_layout() # Ensure layout fits without screplt.show()

Total Sales by Outlet Location Type

Tier 2 - 100000 200000 300000 400000 Total Sales