COMP 478/6771 Image Processing Assignment

Qingbo Kang, Concordia University

40058122

1 Eq.(10.3.15)

The Eq.(10.3.15) has two lines. I will derive two lines separately.

1.1 $\sigma_B^2 = P_1 P_2 (m_1 - m_2)^2$ derivation

From Eq.(10.3.14), Eq.(10.3.10), Eq.(10.3.11):

$$\sigma_B^2 = P_1(m_1 - m_G)^2 + P_2(m_2 - m_G)^2$$

$$= P_1[m_1 - (P_1m_1 + P_2m_2)]^2 + P_2[m_2 - (P_1m_1 + P_2m_2)]^2$$

$$= P_1(m_1 - P_1m_1 - P_2m_2)^2 + P_2(m_2 - P_1m_1 - P_2m_2)^2$$

$$= P_1[m_1 - (1 - P_2)m_1 - P_2m_2]^2 + P_2[m_2 - P_1m_1 - (1 - P_1)m_2]^2$$

$$= P_1(m_1 - m_1 + P_2m_1 - P_2m_2)^2 + P_2(m_2 - P_1m_1 - m_2 + P_1m_2)^2$$

$$= P_1(P_2m_1 - P_2m_2)^2 + P_2(P_1m_2 - P_1m_1)^2$$

$$= P_1[P_2(m_1 - m_2)]^2 + P_2[P_1(m_2 - m_1)]^2$$

$$= P_1P_2^2(m_1 - m_2)^2 + P_2P_1^2(m_1 - m_2)^2$$

$$= (P_1P_2^2 + P_2P_1^2)(m_1 - m_2)^2$$

$$= P_1P_2(P_2 + P_1)(m_1 - m_2)^2$$

$$= P_1P_2(m_1 - m_2)^2$$

1.2 $\sigma_B^2 = \frac{(m_G P_1 - m)^2}{P_1(1 - P_1)}$ derivation

From Eq.(10.3.5) - Eq.(10.3.9):

$$\begin{split} m_2(k) &= \frac{1}{P_2(k)} \sum_{i=k+1}^{L-1} i p_i \\ &= \frac{1}{1 - P_1(k)} \sum_{i=k+1}^{L-1} i p_i \\ &= \frac{1}{1 - P_1(k)} [\sum_{i=0}^{L-1} i p_i - \sum_{i=0}^{k} i p_i] \\ &= \frac{1}{1 - P_1(k)} (m_G - m(k)) \end{split}$$

Then we have:

$$\sigma_B^2 = P_1 P_2 (m_1 - m_2)^2$$

$$= P_1 P_2 \left(\frac{m}{P_1} - \frac{m_G - m}{1 - P_1}\right)^2$$

$$= P_1 (1 - P_1) \left[\frac{m(1 - P_1) - P_1 (m_G - m)}{P_1 (1 - P_1)}\right]^2$$

$$= P_1 (1 - P_1) \left[\frac{m - P_1 m_G}{P_1 (1 - P_1)}\right]^2$$

$$= \frac{(m_G P_1 - m)^2}{P_1 (1 - P_1)}$$

Assignment № 4 Page 1 / 4

2 Hough Transform

2.1

Because in the Cartesian (x, y) coordinate system, the general equation of a straight line in slope-intercept form is:

$$y = ax + b$$

And actually in principle the ab-plane (or $parameter\ space)$ lines corresponding to all points (x_k,y_k) in the Cartesian (x,y) coordinate system. But a practical difficulty with this approach is that a (the slope of a line) approaches infinity as the line approaches the vertical direction. So this is the reason that Hough transform for lines uses the normal representation of a line and the $\rho\theta$ parameter space, and cannot be carried out in the Cartesian (x,y) coordinate system.

2.2

- 1. For a set of n points $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$. Let $(\rho_{\min}, \rho_{\max})$ and $(\theta_{\min}, \theta_{\max})$ are the expected ranges of the parameter values. $-D \le \rho \le D$ and $-90^{\circ} \le \theta \le 90^{\circ}$ where D is the maximum distance between opposite corners in the image.
- 2. Every cell at (i, j) has its accumulator value A(i, j) which is corresponds to the square associated with parameter-space coordinates (ρ_i, θ_j) . At beginning, set these values to zero.
- 3. Then, for every point (x_k, y_k) in the xy-plane, let θ equal each of the allowed subdivision values on the θ -axis and solve for the corresponding ρ using the equation $\rho = x_k \cos \theta + y_k \sin \theta$.
- 4. The resulting ρ values are then rounded off to the nearest allowed cell value along the ρ axis. If a choice of θ_p results in solution ρ_q , then let A(p,q) = A(p,q) + 1.
- 5. At last, a value of P in A(i, j) means that P points in the xy-plane lie on the line $x \cos \theta_j + y \sin \theta_j = \rho_i$.

3 Textbook Problem 10.24

For every non-background point (x_k, y_k) in the xy-plane, where k is the number of subdividing the θ -axis, in other words, θ has k possible values. Hough transform for lines in the parameter space has nk operations. Therefore, the number of operations nk required to implement the accumulator cell approach is linear in n.

4 Programming - Otsu

4.1 a

The code is implemented in Solution_4.m. Figure 1 shows the result images.

4.2 b

The code is implemented in Solution_4.m. Figure 2 shows the result images.

5 Programming - Wavelet

5.1 a

The code is implemented in Solution_5.m.

Assignment № 4 Page 2 / 4

Figure 1: Result images of 4.a

Figure 2: Result images of 4.b

5.2 b

The code is implemented in Solution_5.m.

5.3 c

The code is implemented in Solution $_5.m.$ Figure 3 shows the result images.

Assignment № 4 Page 3 / 4

Figure 3: Result images of 5.c

Assignment № 4 Page 4 / 4