- **APDEs** Just go for the τ method, it will make your life better. Trust me.
- Uniqueness. $\mathcal{J}=0$, solve, plug into x(t,s). chars (x(t)) at end pts s, for bounds, sketch the chars and
- envelope. Chars are tangent to envelope.
- Grns Thm: $\int_{\Gamma} (P dy Q dx) = \iint_{\Gamma} P \frac{\partial}{\partial x} (P \psi) + \frac{\partial}{\partial y} (Q \psi)$

- Shock is causality when $\left[\frac{dx}{dt}\right]_{-} > \frac{dX}{dt} > \left[\frac{dx}{dt}\right]_{+}$ and $\frac{dX}{dt} = \frac{[Q]_{-}^{+}}{[P]_{-}^{+}}$ Charpits $\frac{dx}{d\tau} = \frac{\partial F}{\partial p}$, $\frac{dy}{d\tau} = \frac{\partial F}{\partial q}$, $\frac{dp}{d\tau} = -\frac{\partial F}{\partial x} p\frac{\partial F}{\partial u}$, $\frac{dq}{d\tau} = -\frac{\partial F}{\partial y} q\frac{\partial F}{\partial u}$, $\frac{du}{d\tau} = p\frac{\partial F}{\partial p} + q\frac{\partial F}{\partial q}$. For BCs, $u'_{0} = p_{0}x'_{0} + q_{0}y'_{0}$ and use PDE as second eqn. Optics, $\psi(x, y, t) = \phi(x, y)e^{-i\omega t}$. WKBJ, $\phi(x, y) = A(x, y)e^{iku(x, y)}$. Systems $\mathbf{A}(x, y, \mathbf{u})\frac{\partial \mathbf{u}}{\partial x} + \mathbf{B}(x, y, \mathbf{u})\frac{\partial \mathbf{u}}{\partial y} = \mathbf{c}(x, y, \mathbf{u})$. Note $\frac{dx}{dt} = \lambda$ where $\det(\mathbf{B} \lambda \mathbf{A}) = 0$. For 2×2 , if 2×2 then hyperbolic, if $\lambda_{1} = \lambda_{2}$ then parabolic if just 1×2 then elliptic. Solve, find left evec ℓ of $\mathbf{B} \lambda \mathbf{A}$, then $\ell^{T} \mathbf{A} \frac{d\mathbf{u}}{dx} = \ell^{T} \mathbf{c}$. Try to intergrate the solns to produce Riemann invariants, e.g. $\frac{d}{dx}(u \mp v) = u + v$ on $\frac{dy}{dx} = \pm 1$ implies that $e^{x}(u \mp v) = c$ on $\frac{dy}{dx} = \pm 1$ and so we have $e^{x}(u \mp v) = f(y \mp x)$. Now intergate and solve for u and v. 10
- 11
- 12
- 13 Region of influence is where we solve u and v for the functions, plug in initial data and then replug those 14 into u and v. Then the region is union of where funcs are defined.
- 16
- Rankine–Hugoniot condition for systems of PDEs is, $(B \frac{\partial u}{\partial x}A)[u]_{-}^{+} = 0$ so need $\det(B \frac{\partial u}{\partial x}A) = 0$ **Second Order PDEs:** $au_{xx} + 2bu_{xy} + cu_{yy} = f$. The Cauchy data we need for this is, $x = x_0(s)$ 17
- $y = y_0(s), u = u_0(s)$ and $\frac{\partial u}{\partial n} = v_0(s)$. However, 18

15

19

20

24

29

34

$$u_0'(s) = \frac{\partial u}{\partial x} x_0'(s) + \frac{\partial u}{\partial y} y_0'(s)$$

$$v_0'(s) = \frac{\frac{\partial u}{\partial x} x_0'(s) + \frac{\partial u}{\partial y} y_0'(s)}{\sqrt{x_0'^2 + y_0'^2}}$$

- So replace $\frac{\partial u}{\partial n} = v_0(s)$ with $\frac{\partial u}{\partial x} = p_0(s)$ and $\frac{\partial u}{\partial y} = q_0(s)$. Then diff p_0 and q_0 to get the uniqueness cond. 21 Further note $a\lambda^2 - 2b\lambda + c = 0$. MINUS. 22
- Hyperbolic: $u_{\xi\eta} = \phi(\xi, \eta, u, u_{\xi}, u_{\eta})$. Parabolic: $u_{\xi\xi} = \phi$. Elliptic, $\xi \pm i\eta = K$, then $u_{\xi\xi} + u_{\eta\eta} = \phi$. 23
- Number of BCs needed on boundary equal to number of chars travelling out of boundary. Two chars 25 out, boundary is space-like, two BCs. time-like boundary, one char in and one out, one condition. 26
- **Riemann Functions:** $\mathcal{L}[u] = u_{xy} + au_x + bu_y + cu = f$ and adjoint is bring coeffs in and make odd 27 derivs minus. 28

$$v\mathcal{L}[u] - u\mathcal{L}^*[v] = \frac{\partial}{\partial x} \left(v \frac{\partial u}{\partial y} + auv \right) + \frac{\partial}{\partial y} \left(-u \frac{\partial v}{\partial x} + buv \right)$$

- Now take the double integral over D, v = R, then Grns Thm, impose $\mathcal{L}^*[R] = 0$ and then dy = 0 on 30
- AP and dx = 0 on BP. Then $R_x = bR$, $R_y = aR$ and R = 1 at P. Then we have the properties, 31
- $\mathcal{L}^*[R] = 0, R_x = bR \ (y = \eta), R_y = aR \ (x = \xi) \text{ and } R = 1 \text{ on } (x, y) = (\xi, \eta).$ 32
- Uniqueness, Poisson. Take $u = u_1 u_2$. Then consider, 33

$$\iint_D \nabla \cdot (\phi \nabla \phi) \mathrm{d}x \mathrm{d}y = \iint_D \frac{\partial}{\partial x} \left(\phi \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\phi \frac{\partial \phi}{\partial y} \right) \mathrm{d}x \mathrm{d}y$$

- Then greens leads to $|\nabla \phi| = 0$ 35
- Let $\xi = \varepsilon^a x$, $\tau = \varepsilon^b t$ and $w = \varepsilon^c u(\varepsilon^a x, \varepsilon^b t)$. Then rewrite in terms of these variables and simplify. Then set the power of ε be zero. Now, $\varepsilon^a = \xi/x$, $\varepsilon^b = \tau/t$. Hence $(\tau/t)^{a/b} = \xi/x$ and $\xi/\tau^{a/b} = x/t^{a/b} = \eta$ and 37
- $w/\tau^{c/b} = u/t^{c/b} = \nu$. Then $u = f(\eta)$ and hey presto!

10

13

14

27

28

29

31

- Inhomogenous Systems ($\mathcal{L}[u] = f(x)$ subject to $\mathcal{B}[u] = g(x)$), solve $\mathcal{L}[u_1] = f(x)$ with $\mathcal{B}[u_1] = 0$ and then $\mathcal{L}[u_2] = 0$ with $\mathcal{B}[u_2] = g(x)$ and then $u = u_1 + u_2$.
- To go from $\mathcal{L}[u]$ to $\mathcal{L}^*[u]$, integrate $\mathcal{L}[u]$ by parts and collect the boundary terms, collect them and then force them to be zero.
 - Eigenfunctions of the adjoint problem have the same eigenvalues as the original problem, Ly = $\lambda y \implies \exists w, L^*w = \lambda w.$
 - Eigenfunctions corresponding to different eigenvalues are orthogonal (fiddle with $\lambda_j \langle y_j, w_k \rangle$ to get $\lambda_k \langle y_i, w_k \rangle$.)

To solve the BVP, Lu = f(x) subject to Bu = g(x), Solve the eigenvalue problem, then solve the adjoint eigenvalue problem. Then assume $u = \sum_{i} c_{i} y_{i}(x)$ where $\lambda_{k} c_{k} \langle y_{k}, w_{k} \rangle = \langle f, w_{k} \rangle$

If $\lambda_k = 0$, then we have two cases. If $\langle \overline{f}, w_k \rangle = 0$, then infinitely many sols by adding y_0 , if $\langle f, w_k \rangle \neq 0$ 11 then no sols for f. 12

A SL operator is self adjoint and is the following,

$$\mathcal{L}[u] = -\frac{d}{dx} \left(p(x) \frac{du}{dx} \right) + q(x)u$$

where $\mathcal{L}[u] = \lambda r(x)y(x)$, r is weighting function. Further, $\mathcal{L} = \mathcal{L}^*$. We can convert from a BVP 15 $(\mathcal{L} = a_2 u'' + a_1 u' + a_0 u = f)$ to SL form. Apply integrating factor then, $\mu a_2 u'' + \mu a_1 u' = -p u'' - p' u'$. Then find, $p = e^{\int \frac{a_2}{a_1} dx}$, $\mu = -\frac{1}{a_2} e^{\int \frac{a_2}{a_1} dx}$, $q = -\frac{a_0}{a_2} u e^{\int \frac{a_2}{a_1} dx}$ and $g(x) = -\frac{f}{a_2} e^{\int \frac{a_2}{a_1} dx}$. 17

Orthogonality, $\int_a^b y_k(x)y_j(x)r(x)dx = 0$ for $j \neq k$. All the evals are real (fiddle with inner prods). If 18 a < x < b is finite, all λ_k s are discrete and countable. 19

We can decompose any function by a complete set of $\{y_k\}$, that is, $h(x) = \sum c_i y_i(x)$ where $c_j =$ 20 $\int_{a}^{b} h(x)y_{j}(x)r(x)\mathrm{d}x$ 21 $\int_a^b y_j^2(x) r(x) \mathrm{d}x$

If we have p(x) > 0, r(x) > 0 and $q(x) \ge 0$ on $a \le x \le b$ and BCs have $\alpha_1 \alpha_2 \le 0$ and $\alpha_3 \alpha_4 \ge 0$. Then 22 $\lambda_k \geq 0$ for $k = 1, 2, 3, \ldots$ Proof, just consider $\langle y_k, Ly_k - \lambda_k ry_k \rangle = 0$, unfold and integrate by parts. 23

The k^{th} eigenfunction will have k zeroes on a < x < b. 24

Two SL problems, $\tilde{\lambda}_k > \lambda_k$, if $\tilde{p}(x) \geq p(x)$, $\tilde{q}(x) \geq q(x)$, $\tilde{r}(x) \leq r(x)$ plus $(\tilde{a}, \tilde{b}) \subseteq (a, b)$ 25

Greens Funcs: We can consider c_k and the def of $\langle \cdot, \cdot \rangle$ then say,

$$y = \int_{a}^{b} \sum_{k} \frac{w_{k}(t)y_{k}(x)}{\lambda_{k} \langle y_{k}, w_{k} \rangle} f(t) dt = \int_{a}^{b} g(x, t) f(t) dt$$

and we call g(x,t) the greens function. We can find it by defining

$$\mathcal{L}g = \begin{cases} \mathcal{L}g_{-} = 0 & a < x < \xi \\ \mathcal{L}_{+}g = 0 & \xi < x < b \end{cases}$$

and then we need two more BCs, so we impose,

$$\int_{\xi_{-}}^{\xi_{+}} \mathcal{L}g dx = \int_{\xi_{-}}^{\xi_{+}} \delta(x - \xi) dx = 1$$

Plug in $\mathcal{L}g = a_n g^{(n)} + a_{n-1} g^{(n-1)} + \dots$ and let $a_n g^{(n-1)} \Big|_{\xi_-}^{\xi_+} = 1$ and $g^{(j)} \Big|_{\xi_-}^{\xi_+} = 0$ for 0 < j < n-2. 32

Distributions: T is a distribution if it is linear and continuous, i.e. 33

- (i) $\langle T, \alpha \phi_1 + \beta \phi_2 \rangle = \alpha \langle T, \phi_1 \rangle + \beta \langle T, \phi_2 \rangle, \ \forall \alpha, \beta \in \mathbb{R} \text{ and } \forall \phi_1, \phi_2 \in C_0^{\infty}(\mathbb{R}).$ 34
- (ii) If $\phi_n(x)$ is a sequence of test functions s.t. $\phi_n(x) \to 0$ as $n \to \infty$ then $\langle T, \phi_n \rangle \to 0$ as a sequence of 35 real numbers. Then $\lim_{n\to\infty}\langle T,\phi_n\rangle=\langle T,\lim_{n\to\infty}\phi_n\rangle$. 36
- Equivalent continuity condition (for checking): $\forall L > 0, \exists C > 0 \text{ and } N \geq 0 \text{ s.t.}$ 37
- $|\langle T, \phi \rangle| \leq C \sum_{m \leq N} \max_{x \in \mathbb{R}} |\phi^{(m)}(x)|, \ \forall \phi \ \text{s.t. supp} \ \phi \subset [-L, L].$ Translation property: $\langle T(x+\alpha), \phi(x) \rangle = \langle T(x), \phi(x-\alpha) \rangle, \ \forall \phi \in C_0^{\infty}(\mathbb{R}).$ Distributional derivative: 39 $\langle T', \phi \rangle = -\langle T, \phi' \rangle, \, \forall \phi \in C_0^{\infty}(\mathbb{R}).$ 40
- Convergence of T_j to T as $j \to \infty$ means $\lim_{j \to \infty} \langle T_j, \phi \rangle = \langle T, \phi \rangle$, $\forall \phi \in C_0^{\infty}(\mathbb{R})$. 41
- If $T(\alpha)$ is a family of distributions with continuous parameter α then $T(\alpha) \to T(\alpha_0)$ for $\alpha \to \alpha_0$ means
- $\lim_{\alpha \to \alpha_0} \langle T(\alpha), \phi \rangle = \langle T(\alpha_0), \phi \rangle, \forall \phi \in C_0^{\infty}(\mathbb{R}).$ 43