Polynomial and Rational Functions

1 Quadratic Functions and Models

1.1 Quadratic Functions

Definition: A quadratic function in terms of x is a function of the form

$$f(x) = ax^2 + bx + c$$

where a, b, c are real numbers, and $a \neq 0$

1.2 Standard Form of a Quadratic Function

The equation of a parabola with vertex at (h, k), where the axis of symmetry is the vertical line x = h, can be written as $f(x) = a(x - h)^2 + k$, where $a \neq 0$.

- If a > 0, then the parabola opens upward and its vertex is a minimum
- If a < 0, then the parabola opens downward and its vertex is a maximum

The **vertex** of a quadratic function $f(x) = ax^2 + bx + c$ is given by $(-\frac{b}{2a}, f(-\frac{b}{2a}))$, and the **axis of symmetry** is the vertical line $x = -\frac{b}{2a}$.

Discriminant: The discriminant D of $f(x) = ax^2 + bx + c$ is given by $D = b^2 - 4ac$

- If D > 0, then f(x) has two x-intercepts
 - If D = 0, then f(x) has one x-intercepts
 - If D < 0, then f(x) has no x-intercepts

2 Rational Functions

Definition: A rational function r(x) is a quotient of polynomials,

$$r(x) = \frac{f(x)}{q(x)}$$

, where f and g are polynomials such that $g(x) \neq 0$.

Definition: An **asymptote** is a line that a graph is heading toward and approaches more and more closely. A **horizontal asymptote** is an asymptote that is a horizontal line. A **vertical asymptote** is an asymptote that is a vertical line.

Steps for Writing the Equation of a Rational Function's Vertical Asymptote(s)

- 1. Write the function in simplest form
- 2. Set the polynomial in the denominator equal to 0 and solve.

Horizontal Asymptotes: If $r(x) = \frac{f(x)}{g(x)}$ is a rational function in simplest form where m is the degree of f(x) and n is the degree of g(x), then

- m < n: r(x) has a horizontal asymptote at y = 0
- m = n: r(x) has a horizontal asymptote at $y = \frac{leading\ coefficient\ of\ f(x)}{leading\ coefficient\ of\ g(x)}$
- m > m: r(x) has no horizontal asymptote.