Определения и примеры

- ullet Функция $f:\{0,1\}^n o \{0,1\}-n$ -местная (n-арная) булева функция
 - ullet будем писать $f(x_1,\ldots,x_n)$ или $f(ec{x})$, если n известно или несущественно
 - также принято сокращать слова «булева функция» до б.ф.
- ullet n-местная б.ф. f переводит строки из n бит в битовые значения, то есть
 - \star задает \emph{n} -местную операцию на множестве $\{0,1\}$
 - \star вычисляет \emph{n} -местный предикат на множестве $\{0,1\}$
 - \star задает n-местное отношение на множестве $\{0,1\}$
 - \star распознает язык $L_f \subseteq \{0,1\}^n$
- Прямолинейный (неэкономичный) способ задания б.ф. таблица значений
 - также называемая таблицей истинности
 - \star *n*-местную б.ф. f можно задать битовой строкой $F[0..2^n-1]$, где F[i] значение f на строке, являющейся двоичной записью числа i
- ullet Пример: рассмотрим бинарные б.ф. f(x,y), они же строки F[0..3]

	x, y	0	Λ	>	X	<	У	+	V	1	~	\bar{y}	←	x	\rightarrow	′	1
ĺ	00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- \bullet $x \downarrow y = \overline{x \lor y}$ стрелка Пирса, $x'y = \overline{x \land y}$ штрих Шефера
- x > y, x < y обычные бинарные отношения,

 \bullet $x \to y, x \leftarrow y$ — прямая и обратная импликации

 \bullet x + y - сложение по модулю 2 (xor), $x \sim y = [x = y] -$ эквиваленция

Примеры многоместных булевых функций

Есть несколько важных серий *п*-местных булевых функций для произвольного *п*

- ullet PROJ $_i(ec{x}) = x_i$ проекции
 - \star проекция вытаскивает нужный бит из вектора аргументов
 - чтобы вычислить (a+b) mod 2, где числа a и b заданы двоичными представлениями, нужно взять по младшему биту из a и b и выполнить x or
- $\bullet \ \bigoplus \vec{x}, \ \bigvee \vec{x}, \ \bigwedge \vec{x} n$ -арные аналоги коммутативных бинарных функций
- ullet $\mathrm{MOD}_p(ec{x}) = [x_1 + \cdots + x_n]$ делится на p] модулярные функции
 - \star важный частный случай $\mathrm{MOD_2}$ (или PARITY) четность числа единиц ! постройте ДКА, который вычисляет функцию MOD_p
- $T_i(\vec{x}) = [x_1 + \cdots + x_n \geqslant i]$ пороговые функции
 - $\star T_1(\vec{x}) = \bigvee \vec{x} . T_n(\vec{x}) = \bigwedge \vec{x}$
 - $\star T_{\lfloor n/2 \rfloor + 1}(\vec{x}) функции большинства (или голосования)$
 - * пороговая функция ключевой элемент персептрона (простейшей нейронной сети)
- \star Функция $f(x_1,\ldots,x_n)$ может зависеть от значений только части переменных
 - \star например, в списке бинарных функций есть x, \bar{x} , y, \bar{y} , 0, 1
 - переменная x_i функции f фиктивная, если для любых $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ $f(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n)$
 - переменная, не являющаяся фиктивной, называется существенной

Полные системы

- Множество B булевых функций называется полной системой, если формулой с множеством операций B можно задать любую булеву функцию
 - \star от любого числа переменных, не меньшего 1 пример: формула $x \wedge \bar{x}$ задает унарную функцию f(x), равную 0 пример: формула $x \vee y$ задает не только функцию f(x,y) с таблицей значений

		x, y, z	g
		000	0
x, y	f	001	0
00	0	010	1
01	$\mid 1 \mid$, но и функцию $g(x,y,z)$ с таблицей зн	начений 011	1
10	1	100	1
11	1	101	1
		110	1
		111	1

- ★ Если все функции полной системы B можно задать формулами над множеством функций B', то B' полная система
- \star множество $\{\land,\lor,\bar{}\}$ является полной системой
 - например, по следствию из теоремы об СКНФ (предыдущий фрагмент)
- ! Какие еще полные системы существуют?
 - любое надмножество множества {∧, ∨,⁻}
 - включая множества всех булевых функций и всех бинарных булевых функций
 - множества $\{\land,\bar{}\}$ и $\{\lor,\bar{}\}$
 - выразить ∨ (∧) через две оставшиеся функции по формулам де Моргана
 - сослаться на замечание 🛨

Стрелка Пирса и штрих Шефера

Напомним, что $x \downarrow y = \overline{x \lor y}$, $x'y = \overline{x \land y}$

Теорема

Множества $\{\downarrow\}$ и $\{\,'\,\}$ являются полными системами.

Доказательство:

- выразим отрицание и дизъюнкцию через стрелку Пирса:
- $\star \bar{x} = x \mid x$
- $\star \ x \lor y = \overline{x \downarrow y} = (x \downarrow y) \downarrow (x \downarrow y)$
- ullet поскольку $\{ee,\bar{\ }\}$ полная система, $\{\downarrow\}$ тоже полная
- аналогично, отрицание и конъюнкция выражаются через штрих Шефера
- Верна и обратная теорема:
 - \bigstar если f бинарная б.ф. и $\{f\}$ полная система, то $f\in\{\downarrow,\,{}'\,\}$
 - обратная теорема следует из теоремы Поста о полноте (докажем потом)
- Еще одну полную систему рассмотрим в следующем фрагменте

Суперпозиция. Булевы формулы

- \star Функции n переменных громоздко задавать таблицами; что делать?
- Сложные функции можно представлять как суперпозицию более простых
 - \star рассматриваются функции нескольких переменных \Rightarrow одни и те же функции могут образовывать много различных суперпозиций
 - $g(y_1,\ldots,y_k)$ можно подставить в $f(x_1,\ldots,x_n)$ вместо любого аргумента
 - какие-то из аргументов g можно отождествить с какими-то из аргументов f
 - пример: подстановкой $g(z,t)=z\wedge t$ в $f(x,y)=x\to y$ можно получить $(z\wedge t)\to y, (z\wedge y)\to y, x\to (z\wedge t), x\to (x\wedge t)$
- Удобный способ записи булевых функций:
 - ullet зафиксировать маленький набор функций B, смотреть на функции из B как на операции
 - записать булеву формулу формальное выражение, содержащее переменные, символы операций из *B* и скобки
 - вычислять значение функции для каждого вектора значений переменных, выполняя операции
 - * булева формула = слово над конечным алфавитом, которое удовлетворяет набору ограничений (синтаксис)
 - ⋆ булева формула задает булеву функцию (семантика)
- ★ Разные формулы могут задавать одну и ту же функцию
 - пример: $(x \lor y) \land z$ и $(x \land z) \lor (y \land z)$
 - формулы, задающие одну и ту же функцию, называются эквивалентными
 - тавтология это формула, задающая константу 1
 - противоречие это формула, задающая константу 0
 - формула, задающая функцию, отличную от константы 0, называется выполнимо

Многочлены над \mathbb{F}_2

- ullet Поле \mathbb{F}_2 это множество $\{0,1\}$ с операциями + (по mod 2) и \cdot $(=\wedge)$
 - ullet таблицы операций в привычном виде: $egin{array}{c|cccc} + & 0 & 1 & & & & & & & & \\ \hline 0 & 0 & 1 & & & & & & & & \\ \hline 0 & 0 & 1 & & & & & & & \\ \hline 1 & 1 & 0 & & & & & & \\ \hline \end{array}$
- \star Многочлены от k переменных над \mathbb{F}_2 это k-местные булевы функции
- \star Множество функций $\{+,\cdot,1\}$ полная система
 - ullet из нее получается $\{\wedge,ar{\ }\}$, так как $x\wedge y=xy$, $ar{x}=x+1$
- \Rightarrow любую функцию можно записать формулой над $\{+,\cdot,1\}$
- Заметим, что
 - пользуясь коммутативностью и дистрибутивностью, можно раскрывать скобки и приводить подобные слагаемые
 - ullet выполняются тождества xx=x и x+x=0
- \Rightarrow Любая формула над $\{+,\cdot,1\}$ эквивалентна многочлену, в котором
 - каждый одночлен это произведение переменных, в котором все переменные различны, либо свободный член (1 или 0)
 - все одночлены различны
 - Описанный канонический вид многочлена называется полиномом Жегалкина
 - \star Для однозначности записи договоримся, что
 - алфавит переменных Σ упорядочен
 - в каждом одночлене переменные записываются по возрастанию
 - ullet одночлены записываются по возрастанию в радиксном порядке на Σ^*

Полиномы Жегалкина

Теорема

Любая булева функция задается полиномом Жегалкина, и притом единственным.

Доказательство:

ullet существование полинома следует из полноты системы $\{+,\cdot,1\}$ и эквивалентности любой формулы над этой системой полиному Жегалкина (предыдущий слайд)

Единственность: зафиксируем алфавит переменных $\Sigma = \{x_1, \dots, x_k\}$

- \bullet над этим алфавитом существует 2^{2^k} различных булевых функций
 - \star таблица значений б.ф. задается битовым вектором длины 2^k
- одночлены над Σ биективно отображаются на подмножества Σ
- \Rightarrow существует 2^k различных одночленов над Σ полиномы Жегалкина над Σ биективно отображаются на множества одночленов
 - полиному 0 сопоставим пустое множество одночленов
- \Rightarrow существует 2^{2^k} различных полиномов Жегалкина над Σ
- ★ функция, которая каждому полиному Жегалкина над Σ ставит в соответствие задаваемую им б.ф. — сюръекция
 - так как каждая функция задается полиномом Жегалкина
- 🛨 СЮЪЕКЦИЯ МЕЖДУ ДВУМЯ КОНЕЧНЫМИ МНОЖЕСТВАМИ ОДНОЙ МОШНОСТИ ЯВЛЯЕТСЯ инъекцией
- каждая функция задается единственным полиномом Жегалкина
- ⋆ Полином Жегалкина это нормальная форма («алгебраическая»)

Дизъюнктивные нормальные формы

- Разные формулы задают одну функцию ⇒ нужны «канонические» формулы
- Такие формулы называют нормальными формами
- Нормальная форма должна
 - существовать для любой функции
 - эффективно вычисляться (например по таблице истинности)
 - быть удобной для хранения и вычислений
- ullet Литерал это формула вида x или $ar{x}$, где x переменная
- ullet Дизъюнктивная нормальная форма (ДН Φ) это формула вида $\bigvee_{i=1}^n F_i,\ n\geqslant 1$
 - ullet где $F_i = igwedge_{i=1}^{k_i} L_{ij}, \ L_{ij}$ литерал, $k_i \geqslant 1$
 - F_i называют элементарными конъюнкциями
 - * ДНФ иерархическая формула: отрицание применяется только к переменным, конъюнкция к литералам, дизъюнкция к элементарным конъюнкциям
- ДНФ от k переменных называется совершенной (k-CДНФ), если
 - ullet все элементарные конъюнкции F_i различны
 - ullet каждая F_i состоит из k литералов, соответствующих различным переменным

Теорема

Любая булева функция, не равная константе 0, задается некоторой СДНФ.

- ★ Иными словами, любая выполнимая формула эквивалентна СДНФ
- ★ Следствие: любая булева функция задается некоторой ДНФ $x \wedge \bar{x} \Box$ ДНФ, задающая 0

Дизъюнктивные нормальные формы (2)

- Функцию $x \sim y$ иногда удобно записывать как x^y койства: $x^1 = x$, $x^0 = \bar{x}$, $1^y = y$, $0^y = \bar{y}$
- Доказательство теоремы об СДНФ:
 - ullet пусть $f(x_1,\ldots,x_k)$ отлична от константы 0
 - построим СДНФ F по следующему правилу:
 - \star для каждого битового вектора $\vec{b}=(b_1,\ldots,b_k)$ такого, что $f(b_1,\ldots,b_k)=1$, поместим в F элементарную конъюнкцию $C_{\vec{b}}=x_1^{b_1}\wedge\cdots\wedge x_{\iota}^{b_k}$
 - построенная формула СДНФ по определению
 - докажем, что F задает f
 - 🗴 функция, заданная ДНФ, равна $1 \Leftrightarrow$ одна из элементарных конъюнкций равна 1
 - $\star f(b_1,\ldots,b_k)=1 \Leftrightarrow C_{\vec{b}}(b_1,\ldots,b_k)=1$

Пример построения СДНФ:

x_1, x_2, x_3	f	
000	1	-
001	0	
010	0	
011	1	$\Longrightarrow F = (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3) \vee (\bar{x}_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \bar{x}_2 \wedge x_3)$
100	0	
101	1	
110	0	
111	0	

Оптимизация ДНФ. Карты Карно

- ⋆ СДНФ очень громоздкая формула
 - если у функции половина значений единицы, то k-СДНФ состоит из $k \cdot 2^{k-1}$ литералов
 - \star проще хранить 2^k бит таблицы значений
- \star важная задача построение кратчайшей ДНФ для данной функции
 - к сожалению, эта задача не только важная, но и трудная
- ★ Для б.ф. 2-4 переменных кратчайшую ДНФ строят при помощи карт Карно
- ullet Карта Карно функции f это специальная запись таблицы значений f
 - карта это прямоугольная таблица из 2^k клеток, где k арность f
 - строки и столбцы проиндексированы так, что каждой клетке однозначно соответствует набор значений переменных, в клетке пишется значение функции (обычно пишут только единицы)
 - кратчайшую ДНФ строят, покрывая все клетки с единицами прямоугольниками такими, что
 - число клеток в прямоугольнике степень двойки
 - ullet если клеток 2^i , то k-i переменных принимают в этих клетках одно значение (определяют элементарную конъюнкцию), а остальные i все наборы значений

пример

Карты Карно (2)

- \star Еще одна проблема с кратчайшей ДНФ она не единственна
- Вот иллюстрация из Википедии с картами Карно для 4 переменных:

$$(\bar{A} \wedge \bar{B} \wedge \bar{D}) \vee (\bar{A} \wedge B \wedge C) \vee (A \wedge B \wedge D) \vee (A \wedge \bar{B} \wedge \bar{C}) = (\bar{A} \wedge C \wedge D) \vee (B \wedge C \wedge D) \vee (A \wedge \bar{C} \wedge D) \vee (\bar{B} \wedge \bar{C} \wedge \bar{D})$$

Булевы схемы

- Булева схема (circuit) альтернативный способ задания булевых функций
 - абстрагирует конструкцию электрической схемы из элементов (вентили, gates)
- ullet Булеву функцию $f(x_1,\ldots,x_k)$ вычисляет черный ящик
 - ullet у ящика k входящих проводов (x_1,\ldots,x_k) и один выходящий (f)
 - ток, идущий по проводу, означает 1, отсутствие тока 0
 - если токи во входящих проводах соответствуют вектору (b_1,\ldots,b_k) , то ток в выходном проводе кодирует $f(b_1,\ldots,b_k)$
- Внутри черного ящика находятся элементы, соединенные проводами в определенном порядке между собой, со входами и выходами
 - каждый элемент это черный ящик, реализующий одну из функций полной системы В (базы)
 - в реальных электрических и электронных схемах элементы это физические устройства, такие как реле в дверном звонке или диоды в электронных часах
 - мы рассматриваем идеальные элементы, абстрагируясь от физических сущностей

Пример: функцию большинства от трех переменных можно задать формулой $T_2(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$, которая представляется схемой

1 / 3

Булевы вектор-функции. Сложение столбиком

- ullet Булева вектор-функция это произвольная функция $ec{f}:\{0,1\}^n o \{0,1\}^m$
 - ullet сложение двух n-битных чисел это функция $ADD_n:\{0,1\}^{2n} o \{0,1\}^{n+1}$
 - \star вектор-функции намного удобнее задавать схемами, чем формулами
 - у схемы для вектор-функции *m* выходов вместо одного
- \star Научимся вычислять функцию ADD_n
 - ullet пусть $a=a_{n-1}\cdots a_0$, $b=b_{n-1}\cdots b_0$ числа в двоичной записи
 - ведущие нули разрешены
 - ullet $ADD_n(a_{n-1},\ldots,a_0,b_{n-1},\ldots,b_0)=(s_n,\ldots,s_0),$ где $s=s_n\cdots s_0=a+b$
- ⋆ Вычисление столбиком:
 - пусть c_n, \ldots, c_0 вспомогательные булевы переменные, c_i = перенос в разряд i
 - $\star c_0 = 0$, $s_0 = a_0 + b_0$ (сложение по mod 2!)
 - $\star c_i = T_2(a_{i-1}, b_{i-1}, c_{i-1})$ для $i = 1, \ldots, n$ (почему?)
 - $\star s_i = a_i + b_i + c_i$ для i = 1, ..., n-1; $s_n = c_n$
- Приведенный алгоритм выполняет $\Theta(n)$ операций
- Как и любой другой алгоритм сложения *п*-битных чисел ... но есть нюанс ...
- булева схема это ациклический орграф
- электрический ток способен течь по проводам параллельно, давая возможность параллельного вычисления значений в разных узлах схемы (вершинах графа)
 - ★ время вычисления функции булевой схемой определяется глубиной схемы максимальной длиной пути от входа до выхода
- ullet Глубина схемы, построенной по алгоритму сложения столбиком, равна $\Theta(n)$
 - 🖈 никакой выгоды от распараллеливания мы не получаем _____

Параллельная схема для сложения

- Проблема сложения столбиком в последовательном вычислении переносов
 если все переносы известны, все биты s; вычисляются параллельно за один шаг
- Рассмотрим эволюцию переносов:
 - ullet разряд i порождает перенос, если $c_i=0$ и $c_{i+1}=1$
 - \star тогда $a_i=b_i=1$, т.е. $a_i\wedge b_i=1$
 - ullet разряд i сохраняет перенос, если $c_i=1$ и $c_{i+1}=1$
 - \star тогда $a_i \lor b_i = 1$
 - \Rightarrow $c_i = 1 \Leftrightarrow$ найдется разряд j < i такой, что -i порождает перенос, а каждый разряд k, j < k < i, сохраняет его
- ullet Положим $p_i = a_i \lor b_i, \ g_i = a_i \land b_i \Rightarrow c_i = \bigvee_{i=0}^{i-1} \left(g_j \land \bigwedge_{k=i+1}^{i-1} p_k \right)$
- ★ ADD_n вычисляется за три шага:

шаг 1 — все p_i и g_i ; шаг 2 — все c_i ; шаг 3 — все s_i

Пример: схема сложения для 4-битных чисел (n=4)

Конъюнктивные нормальные формы

- ullet Конъюнктивная нормальная форма (КНФ) это формула вида $igwedge_{i=1}^n F_i,\ n\geqslant 1$
 - ullet где $F_i = \bigvee_{i=1}^{k_i} L_{ij}, \ L_{ij}$ литерал, $k_i \geqslant 1$
 - F_i называют элементарными дизъюнкциями или клозами (clause)
 - * КНФ тоже иерархическая формула: отрицание применяется только к переменным, дизъюнкция к литералам, конъюнкция к клозам
- КНФ от k переменных называется совершенной (k-СКНФ), если
 - \bullet все клозы F_i различны
 - ullet каждый F_i состоит из k литералов, соответствующих различным переменным

Теорема

Любая булева функция, не равная константе 1, задается некоторой СКНФ.

- ★ Иными словами, любая не-тавтология эквивалентна СКНФ
- \star Следствие: любая булева функция задается некоторой КНФ
 - \bullet $x \lor \bar{x}$ КНФ, задающая 1

Доказательство теоремы об СКНФ

- ... симметрично доказательству для СДНФ
- Доказательство:
 - пусть $f(x_1, \ldots, x_k)$ отлична от константы 1
 - построим СКНФ F по следующему правилу:
 - \star для каждого битового вектора $ec{b}=(b_1,\ldots,b_k)$ такого, что $f(b_1,\ldots,b_k)=0$, поместим в F элементарную дизъюнкцию $D_{ec{b}}=x_1^{ar{b}_1}\vee\cdots\vee x_k^{ar{b}_k}$
 - построенная формула СКНФ по определению
 - докажем, что F задает f
 - ⋆ функция, заданная КНФ, равна 0 ⇔ одна из элементарных дизъюнкций равна 0
 - $\star f(b_1,\ldots,b_k)=0 \Leftrightarrow D_{\vec{b}}(b_1,\ldots,b_k)=0$

Пример построения СКНФ (функция — та же, что и для примера с СДНФ):

x_1, x_2, x_3	f	
000	1	
001	0	
010	0	$F = (x, \sqrt{x_2}, \sqrt{x_3}) \wedge (x, \sqrt{x_2}, \sqrt{x_3}) \wedge (\overline{x}, \sqrt{x_3}, \sqrt{x_3}) \wedge$
011	1	$\Rightarrow F = (x_1 \lor x_2 \lor \bar{x}_3) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_3) \land \\ \land (\bar{x}_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$
100	0	$\land (X_1 \lor X_2 \lor X_3) \land (X_1 \lor X_2 \lor X_3)$
101	1	
110	0	
111	0	

★ Симметрия распространяется и на оптимизацию КНФ при помощи карт Карно: прямоугольники соответствуют клозам и покрывают множество нулей