Content Based Image Retrieval

Proyecto final del curso

Agenda

- Contexto
- Métodos implementados

 a. Bag of Visual Words
 b. CNN

 - c. LDA
 - d. Similitud Coseno
- Resultados

 - a. Rankingb. Ranking Normalizadoc. Curvas Precision-Recall
 - d. Tiempos de ejecucióne. EjemplosConclusiones
- Bibliografía

Que es el Content Based Image Retrieval?

El objetivo de los métodos CBIR es obtener imágenes similares a una provista por el usuario. Es en esencia, un buscador de imágenes.

El problema CBIR necesita una imagen provista por el usuario, y una base de datos. En esta base de datos se encuentran almacenados los vectores característicos de un gran número de imágenes.

Para lograr obtener imágenes similares a partir de una imagen *query*, es necesario extraer las características que identifican a una imagen. Esto para todas las imágenes de la base de datos en la que se consulta.

Métodos implementados: Bag of Visual Words

Se construye un modelo Bag of Visual Words (BoVW). Este modelo consta de cuatro pasos:

- Las características de las imágenes se extraen por medio de SIFT. De esta operación se obtienen descriptores para cada imagen de la base de datos.
- Se hace clustering de los descriptores.
- Se genera un vocabulario en base a los centroides de los cluster obtenidos.
- Se generan histogramas para cada imagen.

Métodos implementados: CNN

Se utiliza una red VGG16 ya entrenada, Learning Fine-grained Image Similarity with Deep Ranking [1]. El propósito original de la red era encontrar fine-grained similarities entre imágenes.

El input de la red consiste en tres imágenes. La consultada, una imagen considerada 'positiva' y una imagen considerada negativa.

Durante el entrenamiento, una capa de ranking evalúa (hinge loss) en cuanto se ha alterado el posicionamiento de las imágenes en el ranking e inicia el backpropagation del error.

De esta manera, la red entrenada es capaz de generar vectores de similitud para cada imagen.

Métodos implementados: Fusión de métodos

Con el objetivo de disminuir la dimensionalidad de los vectores característicos y reducir los tiempos de consulta se implementó un tercer método.

Este consiste en la concatenación de los dos vectores generados anteriormente y una transformación de la base de datos por medio de LDA.

Se obtiene un nuevo set de vectores característicos proyectado para maximizar la separación entre clases.

Vectores característicos obtenidos

Método Handcrafted:

Largo del vector: 120

Método CNN:

• Largo del vector: 4096

Método de Fusión:

• Largo del vector: 1698

Métrica de similitud

- La Métrica de similitud de distancia coseno fue seleccionada debido a su superior rendimiento, según resultados en [2].

Coseno:
$$\frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2 \cdot \sum_{i=1}^{n} B_i^2}}$$

Resultados de Rank

$$Rank = rac{1}{N_{rel}} \sum_{i=1}^{N_{rel}} R_i$$

	rank_handcrafted	rank_CNN	rank_fusion
count	1700.000000	1700.000000	1700.000000
mean	3381.544337	2960.011163	145.996183
std	2794.454267	1965.402397	253.381632
min	1.000000	1.000000	1.000000
25%	578.444444	1255.861111	2.500000
50%	3190.727778	2813.494444	14.505556
75%	5526.461111	4429.769444	212.938889
max	12855.500000	9808.333333	2562.677778

$$\widetilde{ ext{Rank}} = rac{1}{N imes N_{rel}} \Biggl(\sum_{i=1}^{N_{rel}} R_i - rac{N_{rel} \left(N_{rel} + 1
ight)}{2} \Biggr)$$

	Nrank_handcrafted	Nrank_CNN	Nrank_fusion
count	1700.000000	1700.000000	1700.000000
mean	0.250358	0.219112	0.010528
std	0.207071	0.145630	0.018739
min	0.000000	0.000000	0.000000
25%	0.042617	0.092718	0.000000
50%	0.236284	0.208175	0.000719
75%	0.409270	0.327979	0.015413
max	0.952783	0.726657	0.189584

Curva PR

$$Precisión = \frac{TP}{TP+FP} = \frac{TP}{Total retrieved}$$

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{Total relevant}$$

Tiempos de ejecución

- A pesar de las diferencias en precisión y recuperación, el tiempo de búsqueda es similar en todos los métodos.
- Esto sugiere que el costo computacional de la búsqueda es aproximadamente constante, sin importar la dimensión del vector característico.

Ejemplos de consultas (1/3)

Handcrafted Features

CNN Features

Fused Features

Tused Features

Tused Features

Tused Features

Tused Features

E1

Ejemplos de consultas (2/3)

E3

E4

Fused Features

Handcrafted Features **CNN Features Fused Features** Handcrafted Features **CNN Features**

RESULTADOS

Ejemplos de consultas (3/3)

CNN Features Fused Features Handcrafted Features **CNN Features Fused Features**

RESULTADOS

E5

E6

Handcrafted Features

Conclusiones

- Algoritmo CBIR implementado con éxito usando técnicas "handcrafted", CNN, y combinadas.
- Método "Handcrafted" útil y pero menos eficiente en promedio.
- Método CNN más sensible a patrones y texturas.
- Combinación de técnicas mejora precisión y recall. Fundamental fué el uso de LDA para reducir dimensionalidad.
- Tiempos de búsqueda similares en todos los casos.

Bibliografía

[1] Learning Fine-grained Image Similarity with Deep Ranking (https://arxiv.org/abs/1404.4661)

[2] A Large-scale Dataset and Benchmark for Similar Trademark Retrieval (https://arxiv.org/pdf/1701.05766.pdf)

Content Based Image Retrieval

Proyecto Final del curso