CSE4/587 Data-intensive Computing Spring 2018

Lab1: Data Collection and Exploratory Data Analysis: B. Ramamurthy

OVERVIEW:

The hands-on practical learning component of the course comprises two types of activities: learning from existing data explorations and labs covering one or two knowledge units (skills, competencies) of data-intensive computing. This document describes Lab1: Data Clients and Information Servers that replicating professional data analysis on a topic of current interest, and extending the analysis to include another public data source.

LEARNING OUTCOMES

- ✓ Work on data analysis related to socially relevant current topic. (What better than "flu"?)
- ✓ Learn by analysis of existing data analysis examples or vignettes. (TwitteR vignette)
- ✓ Learn from data analysis and reporting examples available in public sources. (Flu.gov)
- ✓ Apply methods for collecting data from publicly available data sources: flu.gov, fluview.
- ✓ Install a work environment for carrying out various activities of the data science process: Jupyter, R, RStudio.
- ✓ Extract data using APIs and OAuth keys. (For collecting tweets)
- ✓ Process the data collected for simple data analysis and charting. (Reproducible research)

OBJECTIVES:

The lab goals will be accomplished through these specific objectives:

- 1. **Educate** ourselves about influenza or flu that is rampant this season in the USA. In general, be cognizant of what is going on in world around you.
- 2. **Install** Jupyter [1] notebook environment and within it R language [2] kernel, and RStudio [3]. See the instructions here [4].
- 3. **Familiarize** yourself with R language through Jupyter environment by running all the examples discussed in this handout [5]. Do not miss this step.
- 4. **Explore** the real flu data, and replicate and learn from the analysis performed by experts in Center for Disease Control (CDC) [11] and related organizations.
- 5. **Collect** data by querying Twitter REST API [6]. You will have to get a developer account on twitter and also get the credentials for your application (the twitter client) that you will be writing. Good query word related to "flu" gets you good data.
- 6. **Process** data using twitteR [7] library package of R.
- 7. **Visualize** geo spatial information extracted from the tweets using geo-map libraries of R: ggplot2, ggmap, maps,and maptools [8]. Maps and geo codes are supported by Google map API.
- 8. **Compare** CDC flu map with your own home-brewed flu map of the USA derived from the twitter data you obtained.

LAB DESCRIPTION:

Introduction: An important and critical phase of the data-science process is data collection. Several organizations including the federal government (data.gov) have their data available to the public for various purposes. Social network applications such as Twitter and Facebook collect enormous amount of data contributed by their numerous and prolific user. For other businesses such as Amazon and NYTimes data is a significant and valuable byproduct of their main business. Nowadays everybody has data. Most of these data generator businesses make subset of their data available for use by registered users for free. Some of them as downloadable data files (.csv, .xlsx) as a database (.db, .db3). Sometimes the data that needs to be collected is not in a specific format but is available as a web page content. In this case, typically a web crawler is used to crawl the web (pages) and scrap the data from these web pages and extract the information needed. Data generating organizations have realized the need to share at least a subset of their data with users interested in developing applications. Entire data sets are sold as products.

What is an API? Why is this so important? A standard, secure and programmatic access to data is provided through an Application Programming Interface (API). An API offers a method for one or two way communication among software (as well as hardware) components as long as they carry the right credentials. These credentials for authentication for programmatic access is defined by another standard OAuth (Open Authentication) delegation protocol [6].

LAB 1: WHAT TO DO?

PAIR PROGRAMMING: We are going to allow pair programming for this lab. You will work in groups of one or two. (No groups >2). You will get an F for the course if your group plagiarizes or copies somebody else's work or some other group's work. You can discuss anything ONLY with your pair team member. Members in the pair have to work on the entire problem and submit your own notebooks, and submission.

Preparation: Here are the preliminary requirements for the lab.

- 1. Work environment: You will working on Jupyter with R kernel. Install Jupyter and R kernel as instructed by the handout [4]. This will be our "Learning Environment". Later on we will explore "Development Environment" in RStudio;
- 2. Create an account on twitter as a user as well as a developer. In the developer site, the tab MyApps is of particular interest. (After you create a twitter developer account,) you will click on MyApps to create a new app called Lab1. Fill in the required fields as per the instructions given there. Once you submit you should be able to get the OAuth credentials [9] that had four parts: Customer API key, Customer API secret, Access Token Key and Access Token Secret. All are needed for programmatically working with Twitter. (Yes, you can auto-tweet, if you know what I mean;-)
- **3.** R community has created a package for working with Twitter data called "twitteR". Read the vignette by Jeff Gentry [12] about the package he contributed. Work on the vignette.

<u>Part 1</u>: Complete the R-handout [5] discussed in lecture on Jupyter and submit the notebook generated. (10%) Due: 2/9

Part 2: Learning by Repeating Topical Data Analysis (50%) Due: 2/21

- 1. Navigate to the CDC site of flu data and analysis, flu.gov [11] and fluview [10]. Take a few minutes to review the contents and understand the context.
- 2. The fluview site discusses many variables or features that affect the reality that is playing out in front of our eyes.
- 3. Browse through the page, identify and review the charts and data (plain tables, .csv) under each chart; here are the ones with data.
 - 1) (Influenza national summary (green and yellow chart)
 - 2) Positive tested
 - 3) Influenza sub-type pie-charts
 - 4) Mortality
 - 5) Pediatric deaths
 - 6) Influenza-like illness
 - 7) Flu heat map of USA (Required)
- 4. Now repeat at least five of the seven flu charts discussed in the flu report for the week of Jan 27th, 2018. Beware, by the time we review it, it might have moved on to the next week and the data and the charts may be different. The last one, heat map is required for part 3 of your lab.

Part 3: Twitter Application Development (40%) Due: 3/3

We will develop applications that are "data clients" for twitter data. Twitter supports many APIs, we will use Search API that is a part of the REST API.

- 1. Learning Jupyter, R and twitteR: All these can be achieved by one activity: working with twitteR package library vignette. Type in the R language instructions for each example discussed: try it with different names and twitter hash tags. For our context we need query words to be associated with influenza or flu. Apply your domain knowledge or intuition to query for an effective search word to get most closely tracking tweets for "flu".
- 2. We are NOT interested in sentiment analysis. We are interested in sheer number of tweets on a topic that is associated with "flu" or a related term that you uniquely determine that will be important influencer. You have to choose a good topic. Understand the Search API that we are using for can give you only limited number of tweets per day and also only a sampling of the all the tweets. You will collect at least 20000 tweets (Hmm...How could we categorize them?). Group them by geo-location as in Google maps API (one more API) and plot them on the map of USA. Map the geolocations to states, and color the states according to the number of tweets or mentions per state.
- 3. Input: Search word or hash tag related to flu. Data client processing: Obtain and group tweets by location into categories mentioned in "fluview". Output: plot them on the states/ color the states by the strength.
 - Issue 1: Of course, there is an issue with location meta-data. This is not available (N/A) if the user does hide his/her location. Only 1% of the tweets have geolocations. Then how can we get "set of locations"?
 - Here is a verified approach using function of twitteR

- a) Convert search result tweets into dataframe
- b) Lookup screen names from this dataframe
- c) Convert these screen names into another dataframe
- d) Keep only users (user names) with location info
- e) Get the geocode of the locations from this dataframe
- f) Hints on TwitteR functions you may need: twListToDF, lookupUsers, geocode; Look up these functions in the twitteR manual.
- 4. Compare: Now compare your map and with map from CDC. You can do that side by side in a Jupyter notebook by running the respective R commands.
- 5. Iterate: Try the comparison with different query words related to flu. Keep your words secret.
- 6. Bundle all the work in a Jupyter notebook for submission, even if you work on RStudio. Make sure your document your application development using markdowns.

SUBMISSION:

- 1. You will create a folder in timberlake named lab1. (Timberlake is a cse server).
- 2. Every notebook should have your name only at the top of the notebook and your team member's name in the second line.
- 3. Store or transfer all the notebooks to lab1 folder on timberlake: yourLastNameLab1Part1.ipynb, yourLastNamePart2.ipynb, youLastNamePart3.ipynb, all the data used including curated tweets; we need the data to run your notebooks to make sure we can reproduce your results.
- 4. On timberlake tar the lab1 files into yourLastNameLab1.tar
- 5. Submit using submit-cse487 filename.tar or submit-cse587 filename.tar

Due date: 3/9/2017 by midnight. Online submission on timberlake.

How can do well in this Lab?

- Start working on it today. For example, visit the fluview page and download all the data and the
 corresponding graphs (this is in a single powerpoint file). Next week they may be gone or
 different.
- You can work in parallel on the Part2 and Part 3. Set up the Oauth code [8] and start collecting the tweets for Part 3. You may not get the data you want in the last minute. You cannot copy data from others.
- Plan, design, prototype, test and iterate through these steps.
- Choose a partner so that you can complement each other in skills and learn from each other.
- Attend TA office hours and recitations every week. Attend any number of office hours by any TA until your questions are answered.
- Enroll in Piazza (CSS4/587) and ask questions. Don't post code. Be civil. This is a public forum.
- Login into timberlake.cse.buffalo.edu and make sure you have an account on cse servers. If not send mail to cse-consult@cse.buffalo.edu to get an account.
- Create a lab1 folder with dummy files for 3 python notebooks, tar/zip the file, submit the zip file and check it out it goes without any problem.

• Finally, no cheating. Do not copy or get the code from somebody. By this you are building a disadvantage. You are missing a golden opportunity to learn. The lab, the languages and tools may be hard for non-programmers, but that is no substitute for hard work. Of course, we will make sure people who cheat are appropriately penalized.

REFERENCES:

- 1. Jupyter. http://jupyter.org/, last viewed 2017.
- 2. The R Language. https://cran.r-project.org/, last viewed 2017.
- 3. R-Studio. https://www.rstudio.com/, last viewed 2018.
- 4. Lecture handout on Jupyter, R and RStudio, Lecture on Jan 31, 2018.
- 5. Lecture demo on R-language demo, Lecture on Feb 5, 2018.
- 6. Twitter API. Twitter Developer https://dev.twitter.com/, last viewed 2017.
- 7. TwitteR package. https://cran.r-project.org/web/packages/twitteR/twitteR.pdf, last viewed 2017.
- 8. D. Kahle and H. Wickham. ggmap: Spatial Visualization with ggplot2. The R Journal Vol. 5/1, June 2013, https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
- 9. OAuth2.0. OAuth2.0: https://oauth.net/2/, last viewed 2017.
- 10. https://www.cdc.gov/flu/weekly/fluviewinteractive.htm, interactive data analysis of various flu parameters, last viewed 2018.
- 11. https://www.cdc.gov/flu/, CDC Weekly report on Flu Activity, last viewed 2018.
- 12. J. Gentry. TwitteR Vignette: A Twitter Client for R. http://geoffjentry.hexdump.org/twitteR.pdf, last viewed 2017.