

Reference Based Assembly

Why do we assemble reads?

- Second Generation sequencing fragments genomic material which is then sequenced to give the reads
- We assemble these reads to identify the exact position of the genome they come from and their base-to-base correspondence.
- The two main methods of assembly are
 - Reference Bases Alignment
 - Denovo Assembly

Reference

 All we need for reference alignment are the trimmed reads and a reference sequence.

- What is a suitable reference?
- Can you map any reads to any reference?

Pos: 1 10 20 30

Ref: ACGTAGCATTGCTAGCGGTTAACCGTAGCT

I I I I Match – 0/5 **CGTAG** Mismatch – 5/5

Pos: 1 10 20 30

Ref: ACGTAGCATTGCTAGCGGTTAACCGTAGCT

CGTAG

Match – 5/5 Mismatch – 0/5

Perfect Alignment

Pos: 1 10 20 30

Ref: ACGTAGCATTGCTAGCGGTTAACCGTAGCT

CGTAG TGCTA GTTAA CGTAG

ACGTA TAGCG TAGCT

ATTGC GGTTA

TAGCA CTAGC TAACC

ACGTA GCGGT TAGCT

Viral Sequencing

- Viruses exist as a quasispecies distribution which introduces variants
- Variants can also be introduced by PCR errors and poor-quality sequencing
- Variants can be identified from read alignments

Reference	CCGTTAGAGT T ACAATTCGA
Read 2	TTAGAGTAACAA
Read 3	CCGTTAGAGTTA
Read 4	TTACAATTCGA
Read 5	GAGTAACAA
Read 6	TTAGAGTAACAAT

Viral Alignment

Aligners

GMAP

2001

2003

- **Short Read Aligner**
 - **BWA**
 - **Bowtie**
 - Tanoti
 - NovoAlign
- Splice Aware Aligners
 - **Tophat**
 - **BBMap**
- Long Read Aligners
 - Minimap
 - **LAST**

Which Aligner?

- Hash based Aligners
- Burrows Wheeler Aligners
- Global vs Local Aligners
- Effect on Consensus Calling
- Effect on Variant Calling

Always good to keep aligners consistent across any experiment

Which Reference?

- Choosing the wrong species
- Choosing the wrong genotypes (divergent sequences)
- If you do not have information on correct reference may have to map to panel of references
- If species not known Denovo Assembly

Identifying incorrect Reference

-	F	Bit	Description
	1	0x1	template having multiple segments in sequencing
	2	0x2	each segment properly aligned according to the aligner
	4	0x4	segment unmapped
	8	0x8	next segment in the template unmapped
	16	0x10	SEQ being reverse complemented
	32	0x20	SEQ of the next segment in the template being reverse complemented
	64	0x40	the first segment in the template
	128	0x80	the last segment in the template
	256	0x100	secondary alignment
	512	0x200	not passing quality controls
	1024	0x400	PCR or optical duplicate
	2048	0x800	supplementary alignment

QNAME	FLAG	RNAME	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUALITY
ReadN	4	*	0	0	*	*	0	0	ACGTAG	IHGFFF
ReadN2	4	*	0	0	*	*	0	0	GGGGGG	IIIHHGG

- Looking at assembly stats
- Visually inspecting the alignment

Sequence Alignment

Ref:

- Usually output as SAM file
 - Sequence Alignment Map contains Ref: coordinates and quality of mapping.
- Converted to BAM file
 - Binary Alignment Map is compressed
- Files are sorted and indexed Pos:
 - Makes it faster to access and work with the data

Alignment Stats/Visualization

- Summary stats give an idea of the mapping
 - Mapped vs Unmapped reads
 - Average depth of coverage
 - Breadth of Coverage
- Coverage Plots
- Visualization of complete alignment

Coverage

3 123456789**0**123456789**0**123456789**0**1234 Pos: Ref: ACGGTGACACGTAGCAGTACGCGGGTTACACAGA CAGTTCG ACGGCGA AC-CAGA AGACGTA GCGGGTT **GTAGCAGT** TTACACAG **GCGACAC** TCGCGGG CGGCGAC AGTTCGC TACACAT ACG-AGC **GGGGTAC** 1223**3**34333333323333**3**3433333444333331 Cov:

Coverage Depth vs Breadth

Average coverage = 1 Viral Reference Genome Viral Reference Genome Average coverage = 1 Average coverage = 1 Breadth = 100% Breadth = 20%

Mode, Median, Quartiles would be different

Coverage Plot

Visualization - Tablet

BAM File + Reference File

Duplicate Removal

- Types of Duplicates
 - Optical Duplicates
 - PCR Duplicates
- Relationship of starting genomic material, sequencing depth and PCR Duplicates
- Why remove PCR Duplicates
 - Effect on Consensus Calling
 - Effect on Variant Calling
- Note: Only remove duplicates if library preparation has PCR steps

Duplicate Removal

*
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
T
C
C
*
* TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTCTCCCCCC
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTCTCCCCCC

