ACM RecSys Challenge 2016

Job Recommendation System

Sonu Mishra, Manoj Reddy

Outline

1. Introduction

- 2. Data sets
- 3. Analysis and Preprocessing
- 4. Methodologies
- 5. Evaluation
- 6. Conclusion and Future work

Premier conference in the field of Recommender Systems

To be held during 15-19th September 2016, Boston @ MIT & IBM

RecSys Challenge:

- Build a job recommendation system for XING
- Given a XING user, the goal is to predict those job postings that a user will positively interact with (e.g. click, bookmark)
- Submission deadline: June 26, 2016

PREMIUM

Jobs

Events

Comments and likes

Jobs we think you'll like

DevOps Engineer (m/f) for Data... XING AG

Projektleiter (m/w) im Bereich... adesso AG

> 16 more job recommendations

Software Architekt (m/w) mit d... adesso AG

(Senior) Consultant Data Wareh... empiricus GmbH - Agentur für I...

Share something with your contacts

What's new?

Full-time

Full-time

Full-time

Full-time

Search

adesso AG

adesso AG

Science XING AG Hamburg

DevOps Engineer (m/f) for Data

Projektleiter (m/w) im Bereich Softwareentwicklung Java

Software Architekt (m/w) mit

Bookmarks

München, Stralsund, Stuttgart

dem Schwerpunkt Java

München, Stralsund, Stuttgart

Berlin, Dortmund, Frankfurt am Main, Hamburg, Köln,

08:54

23 Okt. 2015

Yesterday

Yesterday

9 Nov. 2015

Settings

Berlin, Dortmund, Frankfurt am Main, Hamburg, Köln,

PROJOBS (Senior) Consultant

Recommendations

- 1. Introduction
- 2. Data sets
- 3. Analysis and Preprocessing
- 4. Methodologies
- 5. Evaluation
- 6. Conclusion and Future work

Datasets

Users	Items	Impressions	Interactions
 Job roles Career level Discipline Industry Country Region Work experience Education 1.5M records 	 Title Discipline Industry Country Region Type of employment Tags Creation time 1.3M records 	User_IDYearWeekItems10M records	 User_ID Item_ID Time Interaction_type: 1 = clicked 2 = bookmarked 3 = reply/apply 4 = deleted 8M records

- 1. Introduction
- 2. Data sets
- 3. Analysis and Preprocessing
- 4. Methodologies
- 5. Evaluation
- 6. Conclusion and Future work

Users

Users

Users

Items

Items

Preprocessing

Majority of features are categorical -- not ideal for clustering or finding similarity

1-hot encoding

- Users: $10 \rightarrow 110$ features
- Items: 8 → 87 features
- [Python] Pandas

- 1. Introduction
- 2. Data sets
- 3. Analysis and Preprocessing

4. Methodologies

- 5. Evaluation
- 6. Conclusion and Future work

Impressions

XING's existing Recommendation System

- Cannot apply traditional techniques -- No explicit user feedback
- No guarantee that the item was in the "viewport" of the user

- Sort recent items based on their impression frequencies
- Does not include all 150K test users; 18K new users
- Not thorough but a good start

Interactions

Users' feedback on XING's existing Recommendation System

Contains information about user intent:

1 = clicked, 2 = bookmarked, 3 = clicked on apply, 4 = deleted

- Recommend the active jobs marked as 3, followed by 2 and 1
- Ignore the items that have been rated 4 by a user
- Ties can exist

Leverage the notion of homophily in

Challenge: similarity computation, sparsity, gray/black sheep

How to we know if two items or users are similar?

K-means Clustering

- Number of clusters: 100, 1K, 5K
- Distance measure : Euclidean distance
- Library: SciPy.kmeans2

Cosine Similarity

- Similarity $(U_i, U_j) = U_i U_j / |U_i| |U_j|$
- Similarity $(I_i, I_j) = I_i I_j / |I_i| |I_j|$

Q: What are we using?

A: Both. Cosine similarity, but limited to the cluster

Populating the Interaction table

User-User similarity
$$I(u,i) = \frac{\sum_{v \in C} S(u,v)I(v,i)}{\sum_{v \in C} S(u,v)}$$

Item-Item similarity
$$I\left(u,i\right) = \frac{\sum_{j \in C} S(i,j)I(u,j)}{\sum_{j \in C} S(i,j)}$$

Singular Value Decomposition (SVD)

- Construct a user-item matrix for all users using the interaction data
- Very sparse matrix since there are over 1 million users and 300,000 active jobs
- Given a user, multiply the appropriate row with the two matrices:
 - \circ (1 x k)*(k x k)*(k x m)
 - \sim K = 50, 100 etc.

User and Item similarity

- Assign a score for each job and rank them based on their value
- Impressions: Frequency of item shown to a user
- Interactions: Value * w₁, except for ('4')
- Users and Items: Overlap between job roles * w₂
- Other components:
 - User_career_level == Item_career_level (+ w₃ points)
 - User_discipline_level == Item_discipline_level (+ w_{4} points)
 - User_industry == Item_industry (+ w₅ points)
 - User_region == Item_region (+ w₆ points)

Learn weights from the data

- Treat it as a regression problem to learn the weights
- The possible output values are 0 (4), 1, 2 and 3
- Each user-item pair is a data point
- Features are:
 - Number of items overlap in job roles
 - If career level matches then 1 else 0
 - If discipline matches then 1 else 0
 - If industry matches then 1 else 0
 - If region matches then 1 else 0
- Used Linear Regression

- 1. Introduction
- 2. Data sets
- 3. Analysis and Preprocessing
- 4. Methodologies

6. Conclusion and Future work

Function of Precision@k and Recall

- userSuccess(r, t) = 1 if at least one relevant item was returned; else 0
- Maximum 5 submissions per day

Baseline Score: 26,857.38. (Rank: 57)

- Score = # overlaps in user job roles and item title * 3
 - + # overlaps in user job roles and item tag * 2
 - + I (discipline and region matches) * 2
 - + I (industry and region matches) * 1
- Only consider active items and items.career_level == users.career_level

Only Interaction Dataset

Score: **180,112.15** (Rank: **47**)

- For each user, sort job items in descending order of interaction type
- Recommend the active jobs marked as 3, followed by 2 and 1
- Ignore the items that have been marked 4 by a user

Only Impression Dataset

Score: **279,062.28** (Rank: **32**)

- Sort job items according to their impression frequency
- Consider only recent (>2015 week 45) jobs that are still active

Combining all Datasets

Score: 386,703.38 (Rank: 23)

- Score = impression frequency
 - + # overlaps in user job roles item-title * 15
 - + I (career level matches) * 12
 - + I (discipline ID matches) * 10
 - + I (industry ID matches) * 5
 - + I (region matches) * 2
 - + Interaction score * 10

Combining all Datasets

Score: 456,487.86 (Rank: 16)

- Score = impression frequency
 - + # overlaps in user job roles item-title * 10
 - + I (career level matches) * 12
 - + I (discipline ID matches) * 10
 - + I (industry ID matches) * 5
 - + I (region matches) * 2
 - + Interaction score * 100

Combining all Datasets

Score: **458,017.20** (Rank: **15**)

Strategy

Weights learn using linear regression

Populating sparse interaction matrix using

- 1. SVD with rank 50 approximation: **34,084.99**
- 2. CF User-User similarity (absolute): 77,859.45
- CF User-User similarity (weighted): 85,491.27

Feed the updated interaction in our previous model -- Work in Progress

- 1. Introduction
- 2. Data sets
- 3. Analysis and Preprocessing
- 4. Methodologies
- 5. Evaluation
- 6. Conclusion and Future work

Conclusion

Working on an ongoing RecSys 2016 challenge to build a job recommendation system for XING.

- Studied the data thoroughly and got some really good insights
- Combined all datasets and heuristically assigned weights to achieve good results
- Applied conventional learning approaches to learn the weights
- Applied methods like SVD and CF and are in process of integrating with our overall model

Future Work

- User behavior analysis using temporal information
- Handling 18K new users more appropriately
- Exploring non-linear models that will better suit our system

Suggestions/Questions?