Лабораторная работа №3

Тема: "Детерминированные вычислительные процессы с управлением по аргументу. Численное интегрирование."

Цель: реализовать решение задач посредством детерминированных вычислительных процессов с управлением по аргументу.

Оборудование: ПК, PascalABC.NET, draw.io

Задание 1.

- 1. Написать Протестировать программу на определенном интеграле, вычисленным в ходе выполнения
- 2. Математическая модель, где a = 0.7, b = 2.1,

3.

program lvb;
 var n:integer;
 var a,b,m,r,h,x :real;
begin

```
a:=0.7;
b:=2.1;
r:=0;
x:= a;
writeln('количество разбиений:');
readln(n);
h:=(b - a) / n;
while x <= b do
begin
r:= r + (sqrt(m)/1.4+sqrt(1.2*x+1.3));
x:=x+h
end;
r:= r*h;
writeln(r:2:4)
end.
```


6. Для нахождения данного интеграла я использовал метод левых прямоугольников. Вывод результата оформлен вспомогательными комментариями, сам результат округляется до пятого знака после запятой.

Задание 3.

1. Написать Протестировать программу на определенном интеграле, вычисленным в ходе выполнения

$$\int_{0.7}^{2.1} \frac{\sqrt{1,7x^2+0.5}\,dx}{1,4+\sqrt{1,2x+1,3}}$$
 самостоятельной работы 3.

2. Математическая модель, где a = 0.7, b = 2.1,

3


```
program lb;
var n:integer;
var a,b,m,r,h,x :real;
begin
a:=0.7;
b:=2.1;
writeln('количество разбиений:');
readIn(n);
h:=(b - a) / n;
r:=0;
x:=a+h;
m:=1.7*x*x+0.5;
while x <= b do
begin
  r := r + (sqrt(m)/1.4 + sqrt(1.2*x + 1.3));
 x:=x+h
 end;
r:= r*h;
writeln(r:2:4)
end.
```

5.

Окно вывода количество разбиений: 10 3.3426

Окно вывода

количество разбиений: 1000 3.5611

Окно вывода

количество разбиений: 100 3.5811

Окно вывода

количество разбиений: 10000 3.5630 6. Для нахождения данного интеграла я использовал метод правых прямоугольников. Вывод результата оформлен вспомогательными комментариями, сам результат округляется до пятого знака после запятой.

Задание 3.

1. Написать Протестировать программу на определенном интеграле, вычисленным в ходе выполнения

самостоятельной работы 3.
$$\int_{0.7}^{2.1} \frac{\sqrt{1,7x^2+0.5} \, dx}{1,4+\sqrt{1,2x+1,3}};$$

2. Математическая модель, где a = 0.7, b = 2.1,

3.

```
program lvb;
var n:integer;
var a,k,l,b,m,r,h,x :real;
begin
a:=0.7;
b:=2.1;
writeln('количество разбиений:');
readln(n);
h:=(b - a) / n;
```

```
r:=0;
x:=a+h;
l:= (sqrt(m)/1.4+sqrt(1.2*x+1.3));
m:=(sqrt(m)/1.4+sqrt(1.2*x+1.3));
k:=(m+1)/2;
while x<=b-h do
begin
   r:= r + (sqrt(m)/1.4+sqrt(1.2*x+1.3));
   x:=x+h
end;
r:= (r+k)*h;
writeln(r:2:4)
end.</pre>
```


6. Для нахождения данного интеграла я использовал метод трапеция. Вывод результата оформлен вспомогательными комментариями, сам результат округляется до пятого знака после запятой.

Задание 4.

1. Написать Протестировать программу на определенном интеграле, вычисленным в ходе выполнения

 $\int_{0.7}^{2.1} \frac{\sqrt{1,7x^2+0.5}\,dx}{1.4+\sqrt{1,2x+1.3}}$ самостоятельной работы 3.

2. Математическая модель, где a = 0.7, b = 2.1,


```
4. program PR;
```

```
var a,m,b,s1,s2,h,i,x,fab: real;
var n:integer;
begin
s1:=0;
s2:=0;
a := 0.7;
b := 2.1;
fab:=(sqrt(m)/1.4+sqrt(1.2*x+1.3));
write('Количество разбиений: ');
readIn(n);
h:=(b-a)/n;
x:=a+h;
while x<=b-h do
begin
s1:= s1 + (sqrt(m)/1.4 + sqrt(1.2*x + 1.3));
x:=x+2*h;
end;
x:=a+2*h;
while x<=b-2*h do
begin
s2:= s2 + (sqrt(m)/1.4 + sqrt(1.2*x + 1.3));
x:=x+2*h;
end;
i:=h/3*(fab+4*s1+2*s2);
writeln('Результат интегрирования методом парабол: ',i:11:10);
end.
```

Количество разбиений: 10000 Результат интегрирования методом парабол: 2.4075880034 результат интегрирования методом парабол: 2.4079971803

6.

Для нахождения данного интеграла я использовал метод парабл. Вывод результата оформлен вспомогательными комментариями.

N	Н	I	I	l	I
Количество	Шаг	Метод левых	Метод правых	Метод	Метод
разбиений		частей	частей	трапеций	парабол
		прямоугольников	прямоугольников		
10	0.04	2.3741	3.3426	3.0641	1.9456582498
100	0.004	2.4326	3.5811	3.6017	2.3434590659
1000	0.0004	2.4083	3.5611	3.6126	2.4075880034
10000	0.00004	2.4086	3.5630	3.6176	2.4079971803

Вывод: научился реализовать вычисление интегралов различными методами посредством детерминированных вычислительных процессов с управлением по аргументу и PascalABC.NET. После решения заданий, сделанных выше, также можно прийти к выводу о том, что из всех рассмотренных методов наиболее точным является метод парабол. Увеличить точность любого метода можно с помощью увеличения количества разбиений.