LES VECTEURS OBJECTIF S LE CORRIGÉ

EXERCICE N°1 Droite d'Euler d'un triangle

ABC est un triangle. On note :

- A', B' et C' les milieux respectifs des côtés ; [BC], [AC] et [AB]
- son cercle circonscrit de centre O
- G son centre de gravité;
- *H* son orthocentre.

Figure cliquable

Rappels:

- Le centre de gravité G est le point de concours des médianes
- L'orthocentre H est le point de concours des hauteurs.
- Le centre O du cercle circonscrit est le point de concours des médiatrices.
- La droite passant par les points G, H et O s'appelle la droite d'Euler.
- 1) X est le point vérifiant

$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

1.a) Démontrer que $\overrightarrow{AX} = 2\overrightarrow{OA'}$

$$\overrightarrow{AX} = \overrightarrow{AO} + \overrightarrow{OX}$$
 Relation de Chasles

$$= \overrightarrow{AO} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
 par définition de X

$$= \overrightarrow{OA}' + \overrightarrow{A'B} + \overrightarrow{OA}' + \overrightarrow{A'C}$$
 $\overrightarrow{AO} + \overrightarrow{OA} = \overrightarrow{0}$ et deux relations de Chasles

$$= 2\overrightarrow{OA}' + \overrightarrow{A'B} + \overrightarrow{A'C}$$
 A' milieu de $[BC] \Leftrightarrow \overrightarrow{A'B} + \overrightarrow{A'C} = \overrightarrow{0}$

$$= 2\overrightarrow{OA}'$$

1.b) Justifier que le point X appartient à la hauteur issue de A.

On se place dans le triangle ABC.

Nous savons que:

$$\overrightarrow{AX} = 2\overrightarrow{OA}'$$

En particulier, les droites (AX) et (OA') sont parallèles.

De plus, les droites (OA') et (BC) sont perpendiculaires.

Or : Si deux droites sont parallèles alors toute perpendiculaire à l'une est perpendiculaire à l'autre.

Donc (AX) est la hauteur issue de A, ce qui justifie bien sûr que X appartient à la hauteur issue de A.

1.c) Démontrer également que $\overrightarrow{BX} = 2 \overrightarrow{OB}'$ et $\overrightarrow{CX} = 2 \overrightarrow{OC}'$

```
\overline{BX} = \overline{BO} + \overline{OX} 

= \overline{BO} + \overline{OA} + \overline{OB} + \overline{OC} 

= \overline{BO} + \overline{OA} + \overline{OB} + \overline{OC} 

= \overline{BO} + \overline{OA} + \overline{OB} + \overline{OC} 

= \overline{OB'} + \overline{B'A} + \overline{OB'} + \overline{B'C} 

= 2\overline{OB'} + \overline{B'A} + \overline{B'C} 

= 2\overline{OC'} + \overline{C'A} + \overline{C'B} 

= 2\overline{OC'} + \overline{C'A} + \overline{C'B} 

= 2\overline{OC'} + \overline{C'A} + \overline{C'B} 

= 2\overline{OC'} + \overline{C'A} + \overline{C'B}
```

1.d) Justifier que les points X et H sont confondus.

Pour les même raisons qu'à la question 1b) X appartient également aux hauteurs issues respectivement de B et C

- 2) On sait que G vérifie la relation $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$
- **2.a)** Démontrer que $\overrightarrow{OH} = 3 \overrightarrow{OG}$.

```
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}

\Leftrightarrow \overrightarrow{GO} + \overrightarrow{OA} + \overrightarrow{GO} + \overrightarrow{OB} + \overrightarrow{GO} + \overrightarrow{OC} = \overrightarrow{0}

\Leftrightarrow 3\overrightarrow{GO} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{0}

\Leftrightarrow 3\overrightarrow{GO} + \overrightarrow{OH} = \overrightarrow{0}

\Leftrightarrow \overrightarrow{OH} = -3\overrightarrow{GO} \Leftrightarrow \overrightarrow{OH} = 3\overrightarrow{OG}

d'après la question 1)

\Leftrightarrow \overrightarrow{OH} = -3\overrightarrow{GO} \Leftrightarrow \overrightarrow{OH} = 3\overrightarrow{OG}
```

2.b) Que peut-on dire des points O, G et H?

Nous savons que $\overrightarrow{OH} = 3 \overrightarrow{OG}$ En particulier, les droites (OH) et (OG) sont parallèles (au sens large) Comme elles ont de plus un point commun, on en déduit qu'elles sont confondues. Ainsi les points O, G et H sont bien alignés.

- 3) On note H_1 le symétrique de H par rapport à A'.
- **3.a)** Justifier que $\overline{HH}_1 = 2\overline{A'H}_1$.

$$\overline{HH_1} = \overline{HA'} + \overline{A'H_1} = \overline{A'H_1} + \overline{A'H_1} = 2\overline{A'H_1}$$

3.b) Sachant que $\overrightarrow{AH} = 2 \overrightarrow{OA'}$, démontrer que $\overrightarrow{AH}_1 = 2 \overrightarrow{OH}_1$.

```
\overline{AH}_{1} = \overline{AH} + \overline{HH}_{1}
= 2\overline{OA'} + 2\overline{A'H}_{1}
= 2\left(\overline{OA'} + \overline{A'H}_{1}\right)
= 2\overline{OH}_{1}
d'après la question précédente
```

3.c) En déduire la position de O sur $[AH_1]$.

On en déduit que O est le milieu de $[AH_1]$.

3.d) Qu'en déduit-on pour le point H_1 ?

```
On sait que [OA] est un rayon du cercle (\mathbf{C}).

Donc [AH_1] est un diamètre de (\mathbf{C}) ce qui implique que H_1 \in (\mathbf{C})
```

3.e) De la même manière, que peut-on dire des points H_2 et H_3 , symétriques respectifs de H par rapport à B' et C'?

De la même manière, on peut montrer que H_2 et H_3 appartiennent au cercle