Exercice 1:

1. Soit (v_n) une suite arithmétique telle que :

$$v_6 = -3$$
 et $v_7 = -15$.

Donner la raison r de cette suite.

2. Soit (u_n) une suite arithmétique telle que :

$$u_5 = -14$$
 et $u_6 = -28$.

Donner la raison r de cette suite.

3. Soit (u_n) une suite arithmétique telle que :

$$u_6 = 6$$
 et $u_7 = 17$.

Donner la raison r de cette suite.

4. Soit (w_n) une suite arithmétique telle que :

$$w_{10} = 2$$
 et $w_{11} = -2$.

Donner la raison r de cette suite.

Exercice 2:

- 1. Soit (w_n) une suite arithmétique telle que $w_8 = 2.7$ et $w_{13} = -14.3$. Quelle est la valeur de la raison r de cette suite ?
- 2. Soit (w_n) une suite arithmétique telle que $w_3 = 6.2$ et $w_8 = 29.7$. Quelle est la valeur de la raison r de cette suite ?
- 3. Soit (t_n) une suite arithmétique telle que $t_8 = 8.6$ et $t_{14} = -41.2$. Quelle est la valeur de la raison r de cette suite ?
- 4. Soit (t_n) une suite arithmétique telle que $t_0 = 7.4$ et $t_8 = 25$. Quelle est la valeur de la raison r de cette suite ?

Exercice 3:

Donner la raison q de ces suites.

1. Soit (u_n) une suite géométrique telle que :

$$u_3 = -8$$
 et $u_4 = 24$.

2. Soit (u_n) une suite géométrique telle que :

$$u_4 = 8$$
 et $u_5 = 80$.

3. Soit (u_n) une suite géométrique telle que :

$$u_0 = -7$$
 et $u_1 = -70$.

4. Soit (w_n) une suite géométrique telle que :

$$w_8 = -8$$
 et $w_9 = 40$.

Exercice 4:

Donner la raison q de ces suites.

- 1. Soit (w_n) une suite géométrique de raison q strictement négative telle que $w_4 = 2.7$ et $w_6 = 213.867$.
- 2. Soit (t_n) une suite géométrique de raison q strictement positive telle que $t_1 = 6$ et $t_3 = 31,74$.
- 3. Soit (w_n) une suite géométrique de raison q strictement positive telle que $w_9 = 2.8$ et $w_{11} = 107,632$.
- 4. Soit (u_n) une suite géométrique de raison q strictement positive telle que $u_9 = 0.9$ et $u_{11} = 31,329$.

Exercice 5 : (Problème.)

Soit une suite arithmétique (a_n) définie par son terme général $a_n = a_0 + n \times r$. On sait que :

$$a_3 + a_8 = 14$$
 et $a_{12} - a_2 = -20$

- 1. Déterminer la raison r de la suite ;
- 3. Vérifier que $a_5 = -6$;

2. Calculer le premier terme a_0 ;

4. Déterminer n tel que $a_n = -40$.