FMC III - Trabalho 7

Alexandre Ribeiro José Ivo Marina Leite 10 de outubro de 2025

1. $(B \to C) \to (A \land B \to A \land C)$

1.
$$(B \rightarrow C)$$
 P

 2. $(A \land B)$
 P

 3. $\neg (A \land C)$
 P para $(A \land C)$ Prova por absurdo

 4. B
 $2, Simp$

 5. C
 $1, 4MP$

 6. A
 $2, Simp$

 7. $A \land C$
 $5, 6Conj$

 8. $Falso$
 $3, 7Contra$

 9. $(A \land C)$
 $3 - 8, PI$

 10. $(A \land B \rightarrow A \land C)$
 $2, 9PC$
 QED
 $1, 10P$

$$\frac{A \wedge B}{B} \text{ Simp.} \quad \frac{B \to C \quad B}{C} \text{ MP} \quad \frac{A \wedge B}{A} \text{ Simp.} \quad \frac{A \quad C}{A \wedge C} \text{ Conj.} \quad \frac{\neg (A \wedge C) \quad (A \wedge C)}{Falso} \text{ Contr.}$$

$$\frac{A \wedge C}{A \wedge B \to A \wedge C} \text{ PC2: } (A \wedge B)$$

$$\frac{A \wedge B}{(B \to C) \to (A \wedge B \to A \wedge C)} \text{ PC1: } (B \to C)$$

2.
$$(A \lor B \to C) \land (C \to D \land E) \to (A \to C)$$

1. $(A \lor B \to C) \land (C \to D \land E)$ [P]2. $\neg (A \rightarrow D)$ [Hipótese para PI] 3. $A \wedge \neg D$ [2, NC]4. *A* [3, Simp]5. $\neg D$ [3, Simp]6. $A \lor B \to C$ [1, Simp]7. $C \to D \land E$ [1, Simp][4, Ad]8. $A \lor B$ 9. *C* [6, 8, MP][7, 9, MP]10. $D \wedge E$ [10, Simp]11. D Falso [5, 11 - Contradição] 12. $D \wedge \neg D$ 13. $A \rightarrow D$ [2-12, PI]14. $(A \lor B \to C) \land (C \to D \land E) \to (A \to D)$ [1 – 13, PC]

3.
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C));$$

1.
$$A \rightarrow B$$
 [P]
2. $B \rightarrow C$ [P para $[(B \rightarrow C) \rightarrow (A \lor B \rightarrow C)]$]
3. $A \lor B$ [P [Para $A \lor B \rightarrow C$]]
4. $\neg C$ [P [Para C] por absurdo]
5. $\neg B$ [2,4 - MT]
6. $\neg A$ [1,5 - MT]
7. A [3,5 - Proposição vista em sala]
8. $Falso$ [6,7 - Contradição]
9. C [4-8 - PI]
10. $(A \lor B) \rightarrow C$ [3,9 - PC]
11. $(B \rightarrow C) \rightarrow (A \lor B \rightarrow C)$ [2,10 - PC]
 QED [1,11 - PC]

$$\underbrace{ \begin{bmatrix} A \vee B \end{bmatrix}^3 \qquad \frac{ \begin{bmatrix} \neg C \end{bmatrix}^4}{\neg B} }_{ \begin{bmatrix} A \vee B \end{bmatrix}^3 \qquad \frac{ \begin{bmatrix} \neg C \end{bmatrix}^4}{\neg B}$$

$$\underbrace{ \begin{bmatrix} A \rightarrow B \end{bmatrix}^1 \qquad A}_{ \begin{matrix} \frac{\bot}{C} \\ \hline (A \vee B) \rightarrow C \\ \hline (B \rightarrow C) \rightarrow (A \vee B \rightarrow C) \\ \hline (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \vee B \rightarrow C)) }_{ \begin{matrix} A \rightarrow B \end{matrix} }$$

4.
$$(A \rightarrow C) \rightarrow (A \land B \rightarrow C)$$
.

1.
$$A \rightarrow C$$
 [P]

 2. $A \land B$
 [P para $[A \land B \rightarrow C]$]

 3. $\neg C$
 [Para $[C]$, por absurdo]

 4. A
 [2. Simplificação]

 5. C
 $[1,4 - MP]$

 6. $Falso$
 $[3,5 - Contradição]$

 7. C
 $[3,6 - PI]$

 8. $A \land B \rightarrow C$
 $[2,7 - PC]$
 QED
 $[1,8 - PC]$

$$\underbrace{ \begin{bmatrix} A \wedge B \end{bmatrix}^2 \qquad \frac{ [\neg C]^3}{A}}_{ [A \wedge B]^2} \\
\underbrace{\frac{\bot}{C}}_{A \wedge B \to C} \\
(A \to C) \to (A \wedge B \to C)$$