Fundamental Algorithms Lecture #4

Cluj-Napoca 23.10.2019 Rodica Potolea, CS, UTCN

Agenda

- Sorting lessons learned
- Sorting in linear time
- Radix Sort
- Sorting Closing Evaluation
- Elementary DS
 - Stacks and Qs
 - Lists

Computer Science

Sorting – lessons learned

- No direct method is optimal
- Yet, some of them are worth to be used in specific conditions. Which ones, when? Discussion.
- Stability is a desired property; not all strategies own it.
 Which do? Which not? Discussion.
- Advanced strategies (heapsort and quicksort) are optimal.
 However, it does not worth using them always. When not?
 Why? Discussion.
- Cases depend on the strategy (algorithm) AND implementation!
 - Cases are not fixed on the problem!!!
 - One best case of one solution might be worst case of another's

MergeSort

- Relies on merging 2 ordered arrays (O(n))
- Divide et impera strategy
- Opposite to QuickSort:
 - divides fast = fin middle O(1)
 - combines = merge O(n)
- By design always the best case: splits the data into 2 equal parts.
- t(n)=2t(n/2) +O(n) => O(nlgn)
- Is it optimal? Why?
- How much additional space does it need?

QuickSort vs MergeSort

- Compare and contrast analysis
- Both sorting algorithms with divide et impera strategy

QS MS

Relies on: divide (*partition*) combine (*merge*)

Has default: combine (NoOp) divide (*middle index*)

Non recursive

time: O(n)

Space: in situ needs additional space O(n)

Complexity: O(nlgn) randomized O(nlgn) always

When to use:(very) large data/hybrid very large data (external)

Sorting in linear time

- O(n) ? How? Isn't contradicting the lower bound, as the sorting problem has $\Omega(nlgn)$?
- Counting Sort additional constraints + space
- Each of the input elements is an int in range 1..k
- Idea:
 - $\forall x \in Input$, **evaluate** (=count) the nb. of els. $\leq x$, i_x
 - Use i_x as an index to place x in the Output, Out[i_x]<-x
 - Input/Output! Is **not** in-situ sort
- Ex: Input A[1..n]={2,7,3,1,2,9,2,...}
 - There are 5 elements ≤ 3 (1 vals of 1, 3 vals of 2, and itself)
 - So, Output B[5]<-3

Counting Sort

- All previous solutions are comparison-based
- A, B i/o arrays (O(n) space)
- C a counting array (O(k) space)
 - C[1..k], 1-k the range of els from input
 - C[i] counts the nb. of els from the input having the value ≤i
 - C is used as an index, to move the ith el from input (i.e. take A[i]) to output (i.e. place in B[C[A[i]]])
- The Algorithm:
 - Evaluate C
 - Use C to move data

Counting Sort - code

```
CountingSort (A,B,k)
for i < -1 to k
  do C[i] < -0
                                 //initialize C
for j<-1 to length[A]
  do C[A[j]]<-C[A[j]]+1
                                //A's value acts as an index; all
                                 // A's vals increment the corresponding C
                                 //after the loop C[j]=nb of els =j
for j < -2 to k
  do C[j] < -C[j] + C[j-1] // C[j] = \text{nb of els } \leq j
for j<- length[A] downto 1
  do B[C[A[j]]<-A[j]
      C[A[i]] < -C[A[i]] - 1
```

10/23/2019

Counting Sort – execution

CountingSort(A,B,k)

Α	1	2	3	5	3	2	1	Vals at input
В								Vals at output
С	0	0	0	0	0	NA	NA	Counter

j	1	2	3	4	5
С	2	2	2	0	1

//the sequence counts how many els //of each value are in the table

Trace step#2

ſ	Α	1	2	3	5	3	2	1
	to a rest to			121 1000				

j	1	2	3	4	5
C	1	0	0	0	0

j	1	2	3	4	5
U	1	1	0	0	0

j	1	2	3	4	5
С	1	1	1	0	1

j	1	2	3	4	5
U	1	1	2	0	1

j	1	2	3	4	5
C	1	2	2	0	0

Counting Sort – execution

CountingSort(A,B,k)

Α	1	2	3	5	3	2	1	Vals	at input
В								Vals	at output
С	0	0	0	0	0	NA	NA	Cour	nter

j	1	2	3	4	5
С	2	2	2	0	1

//the sequence counts how many els of //each value are in the table


```
//counts nb of els<=each value
for j < -2 to k
 do C[j]<-C[j]+C[j-1]
  j=2 (how many els <=2?)
                                  j=3
        2 3 4
  j=4
                                      3 4
```

Obs: There are 7 els <= 5; 6 els <=4; also 6 els <=3; (=> no element with value 4); ...


```
for j<- length[A] downto 1
do B[C[A[j]]<-A[j]
C[A[j]]<-C[A[j]]-1</pre>
```

j=7 B[2]<-A[7]

j	1	2	3	4	5	6	7
Α	1	2	3	5	3	2	1
В		12					

index	1	2	3	4	5
С	2	4	6	6	7

CL	Τ1,			<u>.</u>	
dex	1	2	N	4	I

 $C[1] \sim C[1] = 1$

С	1	4	6	6	7
---	---	---	---	---	---

<u>i=6</u>		_B[4	<u> </u>	-A[6		_	
j	1	2	, ന	4	15	6	7
Α	1	2	3	5	3	2	1
В		12		22			

index	1	2	3	4	5
С	1	4	6	6	7

C[2]<-C[2]-1							
index	1	2	റ	4	5		
С	1	3	6	6	7		

j=5 B[6]<-A[5] j 1 2 3 4 5 6 7 A 1 2 3 5 3 2 1 B 1₂ 2₂ 3₃

index	1	2	3	4	5
С	1	3	6	6	7
	-				

macx	1	2	3	4	5
index	4	7	7	1	7

C[3] < -C[3] - 1

<u>1=4</u>		BL	<u>/ <</u>	<u>-AL4</u>			
j	1	2	,	4	5	6	7
Α	1	2	3	5	3	2	1
В		12		22		3 ₂	5

index	1	2	3	4	5
С	1	3	5	6	7

C[5]<-C[5]-1							
index	1	2	3	4	5		
С	1	3	5	6	6		

j=3 B[5]<-A[3] j 1 2 3 4 5 6 7 A 1 2 3 5 3 2 1 B 1_2 2 2_2 3_1 3_2 5

index	1	2	3	4	5
С	1	3	5	6	6

index	1	2	3	4	5		
С	1	3	4	6	6		

 $C[3] \sim -C[3] - 1$

_1=	<u> </u>	<u> </u>	<u> 3 <</u>	(-AL ₂	<u> </u>		
j	1	2	3	4	5	6	7
Α	1	2	3	5	3	2	1
В	-	1 ₂	2 ₁	22	3 ₁	3 ₂	5

D[O] = A[O]

index	1	2	3	4	5
С	1	3	4	6	6

C[2]<-C[2]-1					
index	1	2	3	4	5
C	1	2	4	6	6

j	1	2	3	4	5	6	7
Α	1	2	3	5	3	2	1
В	11	1 ₂	2 ₁	22	3 ₁	3 ₂	5

index	1	2	3	4	5
С	1	2	4	6	6

index	1	2	3	4	5
С	0	2	4	6	6

Counting Sort **is stable** (preserves in the output the relative input order between equal elements)

Which of the sorting algs are stable and which are not? Homework.

Counting Sort - eval

```
O(k)
for i < -1 to k
 do C[i]<-0
                               O(n)
for j<-1 to length[A]</pre>
 do C[A[j]]<-C[A[j]]+1
                               O(k)
for j < -2 to k
 do C[j]<-C[j]+C[j-1]
                                O(n)
for j<- length[A] downto 1</pre>
 do B[C[A[j]]<-A[j]
     C[A[j]]<-C[A[j]]-1
```


Counting Sort – eval –cont.

- $O(n) < \Omega(n \log n)$ How?
- Does not rely on comparisons between the elements in the array! (els are used as indexes for the counting index)
- It's stable
- Looking forward for the parallel implementation

Radix Sort

- Card-sorting machine (Herman Hollerith, 1887)
- A strategy, rather than an "Algorithm":
 - Examine the "under sorting" column
 - Distribute it into the corresponding bin
 - Bins are ordered (bin with 0's before bin with 1's aso)
 - Continue with the next column
- Order of examining cols: MSB vs LSB?
 - Both available
 - Homework: pros&cons for each method
- What sorting method used for sorting 1 col
 - A **stable** method (mandatory; otherwise LSB fails)
 - Either a direct stable or CountingSort (works very well as k=10)

Radix Sort –ex (LSB)

	V	V	V
329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355 N	657
720	329	457	720
355	839	657	839

Radix Sort –ex (MSB)

	V	V
329	329	329
457	<u>3</u> 55	355
657	457	436
839	<u>4</u> 36	457
436	<u>6</u> 57	657
720	720	720
355	839	839

Sorting by least significant digit (1s place) is not needed (why?) Major drawback (which one?) Homework!

Radix Sort - evaluation

- Counting Sort the auxiliary sort (O(n+k))
- It is appropriate? Why?
- Needs d passes through Counting Sort (d=nb of bits in the n numbers) so O(dn+dk)
- If d=ct and k=O(n) => O(n) linear time

Computer Science

Sorting – Final Evaluation

- Ω(nlgn)
- None of the direct methods is optimal
- Stability is an important property (it is the implementation stable/unstable/undecidable, and not the strategies)
- ShellSort:
 - improves InsertSort (best direct strategy from various perspectives) by splitting the array into clusters (clusters are distance- based between the elements of the data, denoted as gaps)
 - apply InsertSort on clusters (Rationale: move elements further away from the original position, not just 1 position to the left);
 - changes gaps until gap=1
- HeapSort optimal
 - Reason: it "remembers" comparisons done in previous steps keeping partial order structures
 - Resembles bubbleSort on subsets (branches)
 - Used for priority queues

Sorting – Evaluation

Check:

http://cg.scs.carleton.ca/~morin/misc/sortalg/

visualizations of some comparison based sorting algorithms

OF CLUJ-NAPOCA

Computer Science

Elementary DS

- Queues= dynamic set of data stored and accessed based on access policies
- Stacks and Queues = specific access policies
- Stack: LastInFirstOut LIFO
- Queues: FirstInFirstOout FIFO
- Implementations:
 - Array based
 - List based

Elementary DS

- All DS have the same basic operations
 - Add (insert)
 - Remove (delete)
 - Search
 - Traverse
 - Update
- All the rest are just combinations of the basic ones
- Important to know how they are handling the specific data and associated complexity

Stacks (with arrays)

- S[1..n]
- Access to the first element only (top el)
- LIFO policy
- Actions:
 - Stack-Empty/Stack-Full (if size is associated)
 - Push
 - Pop

Stacks-code

Stack-Empty(S)

//O(1)

```
if top[S]=0
  then return true
  else return false
```

Push(S,x)

```
top[S]<-top[S]+1
S[top[S]] <-x
```

if Stack-Empty(S)

Pop(S,x)

```
then error mess. "stack underflow"
else top[S]<-top[S]-1
return S[top[S]+1]</pre>
```

```
//O(1)
```

```
//does not check stack full (Homework)
//top indicates the last occupied slot
```

```
/\!/ O(1)
```


Queues (with arrays)

- S[1..n]
- Access to the first element (*head*) on reading
- Access to the last element (tail) on writing
- FIFO policy
- Actions:
 - Queue-Empty/Queue-Full (Homework)
 - EnQ
 - DeQ

Queues-code

Implementation as a circular Q
 EnQ(Q,x) //O(1)

```
Q[tail[Q]]<-x
if tail[Q]=length[Q]
  then tail[Q]<-1
  else tail[Q]<- tail[Q]+1</pre>
```

- Any possible error?
- No overflow test (the tail "eats" the head!
 Homework fix it!)

Queues-code-cont.

```
DeQ(Q,x) //O(1)
x <-Q[head[Q]]
if head[Q]=length[Q]
then head[Q]<-1
else head[Q]<- head[Q]+1</pre>
```

- Any possible error?
- No underflow test (the head "reaches" the tail! Homework – fix it)

Linked lists

- Dynamic DS
- Organized as:
 - Simple
 - Double
 - Circular
- Mandatory elements

```
key
```

next

previous

```
//+ the actual info; we skip it
```

//pointer

//pointer if doubly linked list

- Particular cases:
 - prev[x]=nil in case x=head
- $_{10/23/20}$ pext[x]=nil in case x=tail

Doubly linked lists - search

```
List-Serch(L,k) //O(n)
x<-head[L]
while x<>nil and key[x]<>k
    x<-next[x]
return x</pre>
```

Meaning:

When the returned is nil, means not found When not nil, x points the actual searched (and found) element

Doubly linked lists – insert

```
List-Insert(L,x)  //in the head; O(1)
//the el is already allocated and pointed by x;
next[x]<-head[L]
if head[L]<>nil  //Q not empty
    then prev[head[L]]<-x
head[L]<-x
prev[x]<-nil</pre>
```

Hw: insert in a certain position

Doubly linked lists – delete

```
//O(1)
List-Delete(L,x)
//x is to be removed, and it was found by List-Serch
                           //not the head of the list
if prev[x]<>nil
  then next[prev[x]]<-next[x]
  else head[L]=next[x]
                           //not the tail of the list
if next[x]<>nil
  then prev[next[x]]<-prev[x]
  else tail[x]=prev[x]
Any issues?
```

Dispose memory!!!

Sentinels

- Avoid testing for special cases (beginning/end of the structure)
- Each element is treated in an uniform manner
- Make the code easier to read and more efficient
- Sentinel=dummy el to which points prev[head] and next[tail]
- Transforms a double linked list into a circular list
- Qs and Stacks implemented with DLL with sentinels (Homework)