

Reconnaissance de chiffres et débruitage par généralisation de l'ACP aux RKHS

El Bouzekraoui Younes — MDAA Saad

Département Sciences du Numérique - Deuxième année $2020\mbox{-}2021$

Contents

1	Stratégie 1: ACP classique
	1.1 Sensibilité des résultats
2	Stratégie 2: généralisation aux RKHS
	2.1 Noyau linéaire
	2.2 Noyau Gaussien
	2.3 Sensibilité des résultats

1 Stratégie 1: ACP classique

1.1 Sensibilité des résultats

On remarque que pour une variance de bruit importante (sig0 = 0.4) si on choisit une précision proche de 1, on obtient une classification correcte mais les résultats de la reconstruction ne sont pas satisfaisantes, en effet avec une précision proche de 1 on ne réduit pas assez la dimension du problème et donc on n'élimine pas des vecteurs propres (u_i) qui contient majoritairement que du bruit lors de la reconstruction.

Figure 1: résultats de la classification par PCA pour sig0 = 0.4 et Precapprox = 0.9

Figure 2: résultats de la classification par PCA pour sig0 = 0.4 et Precapprox = 0.2

• On remarque que le chiffre 9 est proche du chiffre 3 ce qui est logique.

Figure 3: reconstruction par PCA pour sig0 = 0.4 et Precapprox = 0.9

Figure 4: reconstruction par PCA pour sig0 = 0.4 et Precapprox = 0.2

2 Stratégie 2: généralisation aux RKHS

2.1 Noyau linéaire

On constate que l'algorithme kacp est beaucoup plus rapide que l'algorithme acp $(0.5~{\rm sec}~{\rm vs}~0.06~{\rm sec})$

Figure 5: résultats de la classification par PCA pour sig0 = 0.05 et Precapprox = 0.9

Figure 6: résultats de la classification par KPCA pour sig0 = 0.05 et Precapprox = 0.9

2.2 Noyau Gaussien

2.3 Sensibilité des résultats

Figure 7: reconstruction par PCA et KPCA pour sig0 = 0.4 et Precapprox = 0.2

- On remarque que l'Acp au noyau Gaussien est très sensible au bruit plus, il est elevé plus la classification tend à être erroné.
- Et concernant la précision, en l'augmentant, on aura plus de composantes principales et donc on aura une bonne classification.
- pour le noyau gaussien on obtient une bonne classification pour $\sigma = 5$ si on continue à augmenter σ les données se déforment et on obtient une classification erronée (idem pour le noyau polynomial).