Chapitre 7 : Produit scalaire

1 Rappels sur les vecteurs

Définition 1 (Caractéristiques d'un vecteur)

Le vecteur \overrightarrow{AB} est défini par

- sa direction : celle de la droite (AB);
- son sens : de A vers B;
- **sa norme** : la longueur du segment [AB].

Propriété 1 (Relation de Chasles)

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Propriété 2

Soit $A(x_A; y_A)$ et $B(x_B; y_B)$ alors les coordonnées de \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$.

Propriété 3

Soient $\overrightarrow{r}(x;y)$ et $\overrightarrow{s}(x';y')$ deux vecteurs d'un repère du plan. Les coordonnées de $\overrightarrow{r}+\overrightarrow{s}$ sont alors (x+x';y+y').

Remarque

Il y a évidemment beaucoup d'autres choses à savoir sur les vecteurs!

2 Expressions du produit scalaire

${\bf 2.1}\quad {\bf Formule\ trigonom\'etrique}$

Définition 2 (Angle de deux vecteurs)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan. On note $(\overrightarrow{u}, \overrightarrow{v})$ l'angle géométrique \widehat{BAC} où $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$.

Définition 3 (Produit scalaire)

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan. On appelle **produit scalaire** de \overrightarrow{u} et \overrightarrow{v} le réel, noté $\overrightarrow{u} \cdot \overrightarrow{v}$, défini par

$$\overrightarrow{u}\cdot\overrightarrow{v}=||\overrightarrow{u}||\times||\overrightarrow{v}||\times\cos(\overrightarrow{u},\overrightarrow{v}).$$

Application 1

Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs tels que $||\overrightarrow{AB}|| = 2$ et $||\overrightarrow{AC}|| = 3$ et $\widehat{BAC} = 30^{\circ}$.

Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

Application 2

Soit ABC un triangle équilatéral de côté 2. Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

2.2 Formule du projeté orthogonal

Propriété 4

Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs du plan. Soit H le projeté orthogonal du point C sur la droite (AB). On a alors

Remarque

Si H est sur la demie-droite [AB), alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$. Sinon $\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH$

Application 3

Soit ABCD un rectangle tel que AB=3 et AC=4. On note E le milieu de [AB] et F le milieu de [CD].

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2. Calculer $\overrightarrow{AE} \cdot \overrightarrow{CF}$

2.3 Dans un repère orthonormé

Théorème 5

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de coordonnées respectives $\begin{pmatrix} x \\ y \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère orthonormé. On a alors

$$\overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy'.$$

Application 4

Soient A(-2;5), B(3;-1) et C(4;2) trois points du plan. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.

⊬Méthode

Quand on veut calculer un produit scalaire, il faut réfléchir à la méthode la plus adaptée :

- si on peut calculer facilement l'angle mis en jeu, on utilise la première formule.
- Si on peut calculer facilement le projeté orthogonal, on utilise la deuxième formule.
- Si on connaît (ou si on peut calculer facilement) les coordonnées des vecteurs mis en jeu, on utilise la troisième formule.

Application 5

Dans chaque cas, calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ dans le triangle ABC.

1.
$$AB = 5$$
, $AC = 4\sqrt{2}$ et $(\overrightarrow{AC}, \overrightarrow{AC}) = \frac{\pi}{4}$.

- 2. AB = 5 et AH = 4, où H est le pied de la hauteur issue de C. De plus $H \in [AB)$.
- 3. A(-1, -1), B(4, -1), C(3, 3) dans un repère orthonormé.

3 Propriétés du produit scalaire

3.1 Bilinéarité et symétrie

Propriété 6 (Symétrie)

Soient deux vecteurs \overrightarrow{u} et \overrightarrow{w} , alors on a $\overrightarrow{u} \cdot \overrightarrow{w} = \overrightarrow{w} \cdot \overrightarrow{u}$.

Propriété 7 (Bilinéarité)

Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs et $k \in \mathbb{R}$ un réel. On alors

$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$\overrightarrow{u} \cdot (k\overrightarrow{w}) = (k\overrightarrow{u}) \cdot \overrightarrow{w} = k(\overrightarrow{u} \cdot \overrightarrow{w})$$

3.2 Orthogonalité

Définition 4 (Orthogonalité)

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont dits **orthogonaux** lorsque les droites (AB) et (CD) sont perpendiculaires.

Notation 5

On note souvent $\overrightarrow{AB} \perp \overrightarrow{CD}$ lorsque les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux.

Propriété 8

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux si et seulement si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$.

Application 6

On considère un rectangle ABCD tel que $AB = \frac{3}{2}BC$, $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AB}$ et $\overrightarrow{BE} = \frac{1}{4}\overrightarrow{BC}$. Que peut-on dire des droites (DE) et (CF)?

Application 7

Dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, on donne les points A(-3; 0), B(0; -2) et C(4; 4).

- 1. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et en déduire une mesure de l'angle \widehat{BAC} , au centième de degré près.
- 2. Démontrer que le triangle ABC est rectangle et préciser en quel sommet.