HOMEWORK 18

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Recall that a map $f: A \to B$ in a category \mathcal{C} is an isomorphism if there exists a map $g: B \to A$ in \mathcal{C} such that $g \circ f = 1_A$ and $f \circ g = 1_B$.
 - (1) Check that g as above, if it exists, is unique.
 - (2) Check that id_A is an isomorphism for any A.
 - (3) Check that if f is an isomorphism, f^{-1} is also an isomorphism.
 - (4) Check that if h and f are isomorphisms, $h \circ f$ is an isomorphism.
- (2) Show that if $A \cong B$ in a category, then $\operatorname{Aut}(A) \cong \operatorname{Aut}(B)$ as groups.
- (3) Let X be a topological space. Define $\pi_0(X)$ to be the set of path components of X. Show that $\pi_0(X)$ is a functor from Top to Sets.
- (4) Show that the process of abelianization induces a functor ab : $\underline{Groups} \to \underline{Groups}$ and that the projection map $\pi_G : G \to G^{ab}$ gives a natural transformation π from the Id functor to ab functor. (Id denotes the identity functor.)
- (5)* Let p be a fixed prime number. For $n \geq 1$, consider the finite groups $X_n = \mathbb{Z}/p^n\mathbb{Z}$ with the discrete topology on each of them. Show that the space

$$\mathbb{Z}_p := \left\{ (a_n)_{n=1}^{\infty} \in \prod_n X_n : a_{n+1} \cong a_n \mod p^n \text{ for } n = 1, 2, \dots \right\}$$

is compact, Hausdorff, and totally disconnected.