Formal methods - Temporal logic

Francesco Penasa

March 3, 2020

2020 03 03

We can see Kripke structure as a infinite set of computation paths and as an infinite computation tree.

$1 \quad LTL$

When we reason on LTL we reason on a signle path.

- 1. $X : \text{next}, X\phi \text{ is true iff } \phi + 1 \text{ is true}$
- 2. G: globally $G\phi$ is true iff ϕ is true from now on forever
- 3. F: finally, $F\phi$ is true if sooner or later ϕ will be true, it could be also the current state.
- 4. U: until, $\phi U \psi$ is true if sooner or later ψ is true (even now, and it must be true sooner or later) **AND** ϕ is true in all states until that.
- 5. R: releases $\phi R \psi$ is true iff for all states following this ψ is true forever \mathbf{OR} ϕ is true. ϕ authorize ψ to not hold, phi

ightharpoonup means models note that we are focusing on a particular state to model the future.

We can say that something holds in a path if it holds in all possible initial state.

for every path π of the Kripke structure M

$$\pi \models \phi$$

N.B.

$$M \not\models \phi \not\Rightarrow M \models \neg \phi$$

we can see the example in the slides for this.

slides 44 FONDAMENTAL!

if we say something in an infinite path we break it in now and which property i have to satisfie the next step.

 $M \models T_1R \neg C_1$ either c1 is always false or in order for c1 to become true t1 has to become true. t1 authorize c1

2 CTL

We work on the branching model of time