UCS1524 – Logic Programming

Fundamentals of Propositional Logic

Session Meta Data

Author	Dr. D. Thenmozhi
Reviewer	
Version Number	1.2
Release Date	16 July 2022

Session Objectives

- Understanding syntax and semantics of propositional logic (PL)
- Learning formal representation of PL, validity, satisfiability and semantic equivalence in PL.

Session Outcomes

- At the end of this session, participants will be able to
 - explain the formal representation of statements in PL and how to check validity of the statements in PL.

Agenda

- Syntax and Semantics of PL
- Validity and satisfiability
- Semantic equivalence

What is logic?

- The philosophical definition is that logic is a description of how one should think.
- In the context of AI, logic is "formal," which means it resembles math in its clarity and lack of ambiguity.
- According to Merriam-Webster dictionary, logic is a science that deals with the principles and criteria of validity of inference and demonstration
- E.g.
 - The arrangement of circuit elements (as in a computer) needed for computation
 - Parsing both natural language and programming language statements

Formal Logic

Formal Logic consists of

- syntax what is a legal sentence in the logic
- semantics what is the meaning of a sentence in the logic
- proof theory formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously

Where is Formal Logic used in SE?

Programming Languages

- conditional statements
- meaning (semantics) of programs

Requirements and Specification

- rigorous definition of what is to be constructed
- e.g., if we used formal logic for assignments, there would be no questions on what is required, what is optional, and no questions

Computer Hardware

- computers are build out of simple logical gates
- most computer hardware can be specified and understood in propositional logic

Testing and Verification

rigorously validate that software satisfies its specifications

Algorithms and Optimization

 many complex problems can be reduced to logic and solved effectively using automated decision procedures

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as *and*, *or*, and *not* between simplest "atomic sentences"

A = "Paris is the capital of France"

B = "mice chase elephants"

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

A and B

A or B

if A then B

Syntax and Semantics

Syntax

- Rules used to express facts and concepts.
- The way in which linguistic elements (such as words) are put together to form constituents (such as phrases or clauses)
- Determines and restricts how things are written

Semantics

- The study of meanings
- Determine the truth value of the logic formula.
- Determines how syntax is interpreted to give meaning

Syntax of Propositional Logic

An atomic formula has a form A_i , where i = 1, 2, 3 ...

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula F, ¬F (called not F) is a formula
- For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are formulas

Abbreviations

- use A, B, C, ... instead of A₁, A₂, ...
- use F₁ → F₂ instead of ¬F₁ ∨ F₂
- use $F_1 \leftrightarrow F_2$ instead of $(F_1 \to F_2) \land (F_2 \to F_1)$

(implication)

(iff)

Syntax of Propositional Logic (PL)

```
truth\_symbol ::= T(true) \mid \bot(false)
      variable := p, q, r, \dots
          atom ::= truth_symbol | variable
         literal := atom | \neg atom |
      formula ::= literal |
                      ¬formula |
                                                    negation
                      formula \land formula |
                                                    conjunction
                                                    disjunction
                      formula \rangle formula \rangle
                                                    implies
                      formula \rightarrow formula
                                                    equivalence
                      formula \leftrightarrow formula
```


Example

$$F = \neg((A_5 \land A_6) \lor \neg A_3)$$

Sub-formulas are

$$F, ((A_5 \land A_6) \lor \neg A_3),$$
 $A_5 \land A_6, \neg A_3,$
 A_5, A_6, A_3

Syntax tree of a formula

Every formula can be represented by a syntax

tree. Example: $F = \neg((\neg A_4 \lor A_1) \land A_3)$

Subformulas

The subformulas of a formula are the formulas corresponding to the subtrees of its syntax tree.

$$((\neg A_4 \vee A_1) \wedge A_3)$$

$$\neg((\neg A_4 \lor A_1) \land A_3)$$

Semantics of propositional logic

We start with two truth values: {0, 1}

0 stands for False, and 1 stands for True

Let **D** be any subset of the *atomic* formulas An *assignment* **A** is a map $\mathbf{D} \rightarrow \{0, 1\}$

A assigns True or False to every atomic in D

Let **E** ⊇ **D** be set of formulas built from **D** using propositional connectives

Extended assignment A': $E \rightarrow \{0, 1\}$ extends A from atomic formulas to all formulas

Semantics of propositional logic

For an atomic formula A_i in D: $A'(A_i) = A(A_i)$

$$A'(F \land G) = 1$$
 if $A'(F) = 1$ and $A'(G) = 1$
= 0 otherwise

A'(F
$$\vee$$
 G) = 1 if **A'**(F) = 1 or A'(G) = 1 = 0 otherwise

$$\mathbf{A'}(\neg F)$$
 = 1 if $\mathbf{A'}(F) = 0$
= 0 otherwise

Exercise: Define Extended Assignment

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Is F true or false under A'?

Truth Tables for Basic Operators

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}'(F \wedge G)$	$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}'(F \vee G)$
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

An extended assignment A' extends the truth table from atomic propositions to propositional formulas

$\mathcal{A}(F)$	$\mathcal{A}'(\neg F)$
0	1
1	0

Formula

$$F = \neg (A \land B) \lor C$$

Assignment

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Abstract Syntax Tree (AST)

Abbreviations

$$A,B,C,$$
 $P,Q,R,$ or \dots for $A_1,A_2,A_3\dots$
$$(F_1 \to F_2) \quad \text{for} \quad (\neg F_1 \lor F_2) \ (F_1 \leftrightarrow F_2) \quad \text{for} \quad ((F_1 \land F_2) \lor (\neg F_1 \land \neg F_2)) \ (\bigvee_{i=1}^n F_i) \quad \text{for} \quad (\dots ((F_1 \lor F_2) \lor F_3) \lor \dots \lor F_n) \ (\bigwedge_{i=1}^n F_i) \quad \text{for} \quad (\dots ((F_1 \land F_2) \land F_3) \land \dots \land F_n) \ \top \quad \text{or true or} \quad 1 \quad \text{for} \quad (A_1 \lor \neg A_1) \ \bot \quad \text{or} \quad \text{false or} \quad 0 \quad \text{for} \quad (A_1 \land \neg A_1)$$

Truth tables

Tables for the operators \rightarrow , \leftrightarrow :

\boldsymbol{A}	B	\boldsymbol{A}	\rightarrow	B
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

\boldsymbol{A}	B	A	\leftrightarrow	\boldsymbol{B}
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	1	1	1

Name: implication

Interpretation: If A holds, then B holds.

Name: equivalence

Interpretation: A holds if and only if B holds.

Formalizing natural language

A device consists of two parts A and B, and a red light. We know that:

- A or B (or both) are broken.
- If A is broken, then B is broken.
- If B is broken and the red light is on, then A is not broken.
- The red light is on.

We use the atomic formulas: Ro (red light on), Ab (A is broken), Bb (B is broken), and formalize this situation by means of the formula

$$((((Ab \lor Bb) \land (Ab \to Bb)) \land ((Bb \land Ro) \to \neg Ab))) \land Ro)$$

Formalizing natural language

Full truth table:

			$((((Ab \vee Bb) \wedge (Ab \rightarrow Bb))) \wedge$
Ro	Ab	Bb	$((Bb \land Ro) \rightarrow \neg Ab)) \land Ro)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Propositional Logic: Semantics

An assignment A is *suitable* for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a *model* for F, written A⊧ F, iff

- A is suitable for F
- A'(F) = 1, i.e., F evaluates to true (or holds) under A

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable*

(or contradictory)

A formula F is *valid* (or a tautology), written ⊧ F, iff every suitable assignment for F is a model for F

Determining Satisfiability via a Truth Table

A formula F with n atomic sub-formulas has 2ⁿ suitable assignments Build a truth table enumerating all assignments

F is satisfiable iff there is at least one entry with 1 in the output

	A_1	A_2	• • •	A_{n-1}	A_n	$oldsymbol{F}$
\mathcal{A}_1 :	0	0		0	0	$\mathcal{A}_1(F)$
\mathcal{A}_2 :	0	0		0	1	$egin{array}{c} \mathcal{A}_1(F) \ \mathcal{A}_2(F) \end{array}$
÷			٠.			:
\mathcal{A}_{2^n} :	1	1		1	1	$\mathcal{A}_{2^n}(F)$

Problem: Is formula F SAT?

$$F = (\neg A \to (A \to B))$$

\boldsymbol{A}	B	$\neg A$	$(A \rightarrow B)$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

Validity and Unsatisfiability

Theorem:

A formula F is valid if and only if ¬F is unsatifsiable

Proof:

F is valid \Leftrightarrow every suitable assignment for F is a model for F

⇔ every suitable assignment for ¬ F is not a model for ¬ F

⇔ ¬ F does not have a model

⇔ ¬ F is unsatisfiable

Mirroring principle

Exercise

Prove or give a counter example

Valid

(a) If $(F \Rightarrow G)$ is *valid* and F is *valid*, then G is *valid*

(b) If (F ⇒ G) is *sat* and F is *sat*, then G is *sat* Not Valid

(c) If $(F \Rightarrow G)$ is *valid* and F is *sat*, then G is *sat*

Valid

Semantic Equivalence

Two formulas F and G are (semantically) equivalent, written $F \equiv G$, iff for every assignment A that is suitable for both F and G, A'(F) = A'(G)

For example, $(F \land G)$ is equivalent to $(G \land F)$

Formulas with different atomic propositions can be equivalent

- e.g., all tautologies are equivalent to True
- e.g., all unsatisfiable formulas are equivalent to False

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof:

(Let's talk about proof by induction first...)

Mathematical Induction (over Natural Numbers)

To proof that a property P(n) holds for all natural numbers n

- 1. Show that P(0) is true
- 2. Assume that P(k) is true for some natural number k
 - This assumption is called an Inductive Hypothesis (IH)
- 3. Show that P(k+1) is true using IH from the previous step
- 4. Conclude that P(n) holds for all natural numbers n
 - P(n) is proven (or established, true) by mathematical induction

Example: Mathematical Induction

Show by induction that the formula for arithmetic series is correct

$$0+\cdots+n=\frac{n(n+1)}{2}$$

Base Case: P(0) is
$$0 = \frac{0(0+1)}{2}$$

IH: Assume P(k), show P(k+1)

$$= \frac{0 + \dots + k + (k + 1)}{2} + (k + 1)$$

$$= \frac{k(k+1)}{2} + (k + 1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)((k+1) + 1)}{2}$$
IH is used in this step

Structural Induction on the formula structure

The definition of a syntax of a formula is an *inductive* definition

 first, define atomic formulas; second, define more complex formulas from simple ones, each next definition uses previous definition recursively

The definition of the semantics of a formula is also inductive

 first, determine value of atomic propositions; second, define values of more complex formulas

The same principle works for proving properties of formulas!

- To show that every formula F satisfies some property S:
- (base case) show that S holds for atomic formulae
- (induction step) assume S holds for an arbitrary fixed formulas F and G. Show that S holds for (F ∧ G), (F ∨ G), and (¬ F)

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof: by induction on formula structure (base case) if H is atomic, then F = H, H' = G, and $F \equiv G$ (inductive step)

(case 1)
$$H = \neg H_1$$

(case 2)
$$H = H_1 \wedge H_2$$

(case 3)
$$H = H_1 \vee H_2$$

Useful Equivalences

Useful Equivalences

```
\neg(F \land G) \equiv (\neg F \lor \neg G)

\neg(F \lor G) \equiv (\neg F \land \neg G)

(deMorgan's Laws)

(F \lor G) \equiv F, if F is a tautology
(F \land G) \equiv G, if F is a tautology

(Tautology Laws)

(F \lor G) \equiv G, if F is unsatisfiable
(F \land G) \equiv F, if F is unsatisfiable
(Unsatisfiability Laws)
```

We can prove them using structural induction!

Equivalence

Prove that using substitution theorm

$$((A \lor (B \lor C)) \land (C \lor \neg A)) = ((B \land \neg A) \lor C)$$

$$((A \lor (B \lor C)) \land (C \lor \neg A))$$

$$\equiv (((A \lor B) \lor C) \land (C \lor \neg A)) \qquad (Associativity and ST)$$

$$\equiv ((C \lor (A \lor B)) \land (C \lor \neg A)) \qquad (Commutativity and ST)$$

$$\equiv (C \lor ((A \lor B) \land \neg A)) \qquad (Distributivity)$$

$$\equiv (C \lor (\neg A \land (A \lor B)) \qquad (Commutativity und ST)$$

$$\equiv (C \lor ((\neg A \land A) \lor (\neg A \land B)) \qquad (Distributivity and ST)$$

$$\equiv (C \lor (\neg A \land B)) \qquad (Unsatisfiability Law and ST)$$

$$\equiv (C \lor (B \land \neg A)) \qquad (Commutativity and ST)$$

$$\equiv (C \lor (B \land \neg A)) \qquad (Commutativity and ST)$$

$$\equiv (C \lor (B \land \neg A)) \qquad (Commutativity)$$

Exercise: Children and Doctors

Formalize and show that the two statements are equivalent

 If the child has temperature or has a bad cough and we reach the doctor, then we call him

 $((T \lor C) \land R) \Rightarrow D$

• If the child has temperature, then we call the doctor, provided we reach him, and, if we reach the doctor then we call him, if the child has a bad cough

$$(R \Rightarrow (T \Rightarrow D)) \land (C \Rightarrow (R \Rightarrow D))$$

$$((T \lor C) \land R) \Rightarrow D$$

$$((T \land R) \lor (C \land R) \Rightarrow D)$$

$$((T \land R) \Rightarrow D) \land ((C \land R) \Rightarrow D)$$

$$(\neg T \lor \neg R \lor D) \land (\neg C \lor \neg R \lor D)$$

$$(\neg R \lor \neg T \lor D) \land (\neg C \lor \neg R \lor D)$$

$$(\neg R \lor (T \Rightarrow D) \land (\neg C \lor (R \Rightarrow D))$$

$$(R \Rightarrow (T \Rightarrow D)) \land (C \Rightarrow (R \Rightarrow D))$$

Summary

- What is propositional logic (PL)?
- Syntax of PL
- Semantics of PL
- Validity and satisfibility
- Semantic equivalence in PL

Check your understanding

	Valid	Satisfiable	Unsatisfiable
A			
$A \lor B$			
$A \lor \neg A$			
$A \wedge \neg A$			
$A \rightarrow \neg A$			
$A \rightarrow B$			
$A \to (B \to A)$			
$A \to (A \to B)$			
$A \leftrightarrow \neg A$			

Check your understanding

Which of the following statements are true?

				Y/N
lf	F is valid,	then	F is satisfiable	
lf	F is satisfiable,	then	$\neg F$ is satisfiable	
lf	F is valid,	then	$\neg F$ is satisfiable	
lf	F is unsatisfiable,	dann	$\neg F$ is valid	8

