R Textbook Companion for Elementary Statistics: A Step by Step Approach by Allan G. Bluman¹

Created by
R. Janani
B.Tech.
Electrical Engineering
National Institute of Technology, Tiruchirappalli
Cross-Checked by
R TBC Team

June 5, 2020

¹Funded by a grant from the National Mission on Education through ICT - http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and R codes written in it can be downloaded from the "Textbook Companion Project" section at the website - https://r.fossee.in.

Book Description

Title: Elementary Statistics: A Step by Step Approach

Author: Allan G. Bluman

Publisher: McGraw-Hill, New York

Edition: 7

Year: 2009

ISBN: 9780073534978

R numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means an R code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of R Codes	4
2	Frequency Distribution and graphs	5
3	Data Description	12
4	Probability and counting rules	14
5	Discrete Probability Distrubution	22
6	The Normal Distribution	31
7	Confidence Intervals and Sample Size	35
8	Hypothesis Testing	41
9	Testing the Difference Between Two Means and Two Proportions and Two Variances	47
10	Correlation and Regression	54
11	Other Chi Square Tests	57
12	Analysis of Variance	59
13	Nonparametric Statistics	62

List of R Codes

Exa 2.1	Frequency table
Exa 2.2	Frequency table
Exa 2.3	MPG for SUV
Exa 2.4	histogram Record high temperatures
Exa 2.5	frequency polygon
Exa 2.6	ogive
Exa 2.7	Histogram frequency polygon and ogives 8
Exa 2.8	bar graphs
Exa 2.9	pareto chart 9
Exa 2.10	time series graph
Exa 2.11	pie graph
Exa 4.17	Find Probability
Exa 4.21	Probability
Exa 4.22	Probability
Exa 4.27	Probability
Exa 4.28	University Crime
Exa 4.29	Homeowners and Automobile Insurance 16
Exa 4.30	Drawing Cards
Exa 4.42	Permutation
Exa 4.43	Permutation
Exa 4.44	Permutation and Combination
Exa 4.45	Permutation and Combination
Exa 4.47	Combinations
Exa 4.48	Permutation and Combination
Exa 4.49	Permutation and Combination
Exa 4.50	Probability using combinations
Exa 4.51.a	Probability using combinations
	Probability using combinations

Exa	4.51.c	Probability using combinations
		Probability using combinations
	4.52	Probability using combinations
Exa	5.2	Probability Distribution
Exa	5.5	Mean of Probability distribution
Exa	5.6	Mean of probability distribution
Exa	5.7	Tossing Coins
Exa	5.8	Mean of Probability Distribution
Exa	5.9	Variance and standard deviation of probability distribu-
		tion
Exa	5.10	Discrete Probability Distribution
Exa	5.11	Variance and standard deviation of probability distribu-
		tion
Exa	5.12	Expectation
Exa	5.13	Discrete Probability Distribution
Exa	5.14	Bond Investment
Exa	5.16	Survey on Doctor Visits
Exa	5.17	Survey on Employment
Exa	5.19.a	Find Probability
Exa	5.19.b	Find Probability
		Find Probability
Exa	5.20	Find Probability
Exa	5.24	Leisure Activities
Exa	5.25	CD Purchases
Exa	5.26	Selecting Colored Balls
Exa	5.27	Typographical Errors
Exa	5.28.a	Find Probability
		Find Probability
Exa	5.28.c	Find Probability
	5.29	Left Handed People
Exa	6.7	Monthly Newspaper Recycling
Exa	6.11	Checking for normal distribution
Exa	6.12	Checking for normal distribution
Exa	6.15	Meat Consumption
Exa	7.1	Days it takes to sell an Aveo
Exa	7.2	Ages of Automobiles
Exa	7.3	Credit Union Assets
Exa	7.4	Depth of a River

Exa 7.5	Critical t value
Exa 7.6	Sleeping Time
Exa 7.7	Home Fires Started by Candles
Exa 7.9	Male Nurses
Exa 7.10	Religious Books
Exa 7.11	Home Computers
Exa 7.12	Car Phone Ownership
Exa 7.14	Nicotine Continent
Exa 7.15	Cost of Ski Lift Tickets
Exa 8.3	Professors Salaries
Exa 8.4	Costs of Mens Athletic Shoes
Exa 8.5	Cost of Rehabilitation
Exa 8.13	Substitute Teachers Salaries
Exa 8.17	people who are trying to avoid Trans Fats 43
Exa 8.18	Survey on Call Waiting Service
Exa 8.23	critical chisq value
Exa 8.25	Outpatient Surgery
Exa 8.30	Sugar Production
Exa 8.31	Hog Weight
Exa 9.1	Hotel Room Cost
Exa 9.3	Confidence Interval
Exa 9.4	Farm Sizes
Exa 9.5	Confidence Interval
Exa 9.6	Vitamin for Increased Strength
Exa 9.7	Cholesterol Levels
Exa 9.8	Confidence Interval
Exa 9.9	Vaccination Rates in Nursing Homes 50
Exa 9.10	Missing Work
Exa 9.11	Confidence Interval
Exa 10.12	Copy Machine Maintenance Costs
Exa 10.14	Standard error estimation
Exa 10.15	State board scores
Exa 10.16	State board scores
Exa 10.17	State board scores
Exa 11.1	Fruit Soda Flavor Preference
Exa 11.5	College Education and Place of Residence
Exa 11.6	Alcohol and Gender
Exa 11.7	Lost Luggage on Airline Flights 58

Exa 12.1	Lowering Blood Pressure
Exa 12.2	Employees at Toll Road Interchanges
Exa 12.3	Scheffe Test
Exa 12.4	Turkey Test
Exa 12.5	Gasoline Consumption
Exa 13.1	snow Cone Sales
Exa 13.3	Ear infections in Swimmers
Exa 13.6	Milliequivalents of Potassium in Breakfast Drinks
Exa 13.10	Ages of Drug Program Participants

Chapter 2

Frequency Distribution and graphs

R code Exa 2.1 Frequency table

R code Exa 2.2 Frequency table

```
6 Range = H - L
7 cat("Range is: ", Range)
8 cat("\n")
9 breaks= seq(99.5,134.5, by=5)
10 mpg.div=cut(mpg, breaks, right=TRUE)
11 mpg.freq=table(mpg.div)
12 table<-data.frame(mpg.freq)
13 table</pre>
```

R code Exa 2.3 MPG for SUV

```
1 mpg < -c(12, 17, 12, 14, 16, 18, 16, 18, 12, 16, 17,
      15, 15, 16, 12, 15, 16, 16, 12, 14, 15, 12, 15,
      15, 19, 13, 16, 18, 16, 14)
2 H = \max(mpg)
3 L = \min(mpg)
4 cat ("Maximum value is: ", H)
5 \text{ cat}("\n")
6 cat("Minimum value is: ", L)
7 cat("\n")
8 Range = H - L
9 cat("Range is: ", Range)
10 cat("\n")
11 breaks = seq(12, 20, by=1)
12 mpg.div=cut(mpg, breaks, right=FALSE)
13 mpg.freq=table(mpg.div)
14 table <-data.frame(mpg.freq)
15 table
16 #for cumulative frequency
17 mpg.cumfreq = cumsum(mpg.freq)
18 tbl <-data.frame(mpg.cumfreq)
19 tbl
```

R code Exa 2.4 histogram Record high temperatures

```
1 temp<-c(112, 100, 127, 120, 134, 118, 105, 110, 109,
      112, 110, 118, 117, 116, 118, 122, 114, 114,
     105, 109, 107, 112, 114, 115, 118, 117, 118, 122,
      106, 110, 116, 108, 110, 121, 113, 120, 119,
     111, 104, 111, 120, 113, 120, 117, 105, 110, 118,
      112, 114, 114)
2 H = \max(temp)
3 L = min(temp)
4 Range = H - L
5 Width = ceiling(Range/7)
6 #though the question specifies lower limit as 99.5
     and upper limit as 134.5, the considered upper
     and lower limits are 100 and 135
7 hist(temp, main="Histogram of Recorded Temparatures",
     xlab="temparature", border="red", col="yellow", xlim
     =c(100,135),las=1,breaks=Width)
```

R code Exa 2.5 frequency polygon

R code Exa 2.6 ogive

```
1 temp<-c(112, 100, 127, 120, 134, 118, 105, 110, 109,
      112, 110, 118, 117, 116, 118, 122, 114, 114,
     105, 109, 107, 112, 114, 115, 118, 117, 118, 122,
      106, 110, 116, 108, 110, 121, 113, 120, 119,
     111, 104, 111, 120, 113, 120, 117, 105, 110, 118,
      112, 114, 114)
2 H = \max(temp)
3 L = \min(temp)
4 Range = H - L
5 Width = ceiling(Range/7)
6 #installed package agricolae
7 library(agricolae)
8 #since the histogram division is from 100 to 135,
     ther is a shift in the ogive curve, when compared
      with the original
9 temp.h=hist(temp,main="Histogram of Recorded
     Temparatures", xlab="temparature", border="red", col
     =" yellow", xlim=c (100,135), las=1, breaks=7)
10 ogive.freq(temp.h, xlab="temparature", ylab="
     relative cumulative frequency")
```

R code Exa 2.7 Histogram frequency polygon and ogives

R code Exa 2.8 bar graphs

```
#bar plot construction
amount <-c(728, 344, 141, 72)
barplot(amount, main="Expenditure of a first year college student", xlab="expenditure", ylab="amount", names.arg =c("electronics", "dorm decor", "clothing", "shoes"), border="green")
barplot(amount, main="Expenditure of a first year college student", xlab="expenditure", ylab="amount", names.arg =c("electronics", "dorm decor", "clothing", "shoes"), border="green", horiz= TRUE)</pre>
```

R code Exa 2.9 pareto chart

```
1 tp < -c(2.9, 4.3, 6, 3.8, 5.8)
```

R code Exa 2.10 time series graph

```
1 damage <-c(2.8, 3.3, 3.4, 5.0, 8.5)
2 ts(damage, start=2001, end= 2005)
3 names(damage) <-c("2001", "2002", "2003", "2004", "2005")
4 plot.ts(damage, xlab="Year", ylab="Damage(in millions)")</pre>
```

R code Exa 2.11 pie graph

Chapter 3 Data Description

Chapter 4

Probability and counting rules

R code Exa 4.17 Find Probability

```
3 n<-paste("the answer is", round(pr, digits=2))
4 n</pre>
```

R code Exa 4.21 Probability

```
1 designation <-c(8,5)
2 gender <-c(10,3)
3 repnf <-7
4 reppf <-3
5 repnm <-designation[1] -repnf
6 pr <-(designation[1] + gender[2] -repnm) / sum(designation)
7 n <-paste("The probability that selected staff is", round(pr, digits=2))
8 n</pre>
```

R code Exa 4.22 Probability

```
1 p1<-0.32
2 p2<-0.09
3 p3<-0.06
4 pr<-p1+p2-p3
5 n<-paste("probability of having an accident while intoxicated or driving is",pr)
6 n</pre>
```

R code Exa 4.27 Probability

```
1 pr<-0.09
2 ne<-3
3 lbs<-paste("The probability is",(pr^ne))
4 lbs</pre>
```

R code Exa 4.28 University Crime

```
1 c1=5
2 c2=16
3 c3=32
4 t=c1+c2+c3
5 c21=c2-1
6 p=(c2/t)*(c21/(t-1))
7 1<-paste("the probability that both will have occurred in 2004 is",p)
8 1</pre>
```

R code Exa 4.29 Homeowners and Automobile Insurance

```
1 a=0.53
2 h=0.27
3 l<-paste("the probability that both will have occurred in 2004 is",a*h)
4 1</pre>
```

R code Exa 4.30 Drawing Cards

R code Exa 4.42 Permutation

R code Exa 4.43 Permutation

```
1 n=5
```

```
2 r=3
3 l<-paste("There are",factorial(n)/factorial(n-r),"
          different ways")
4 l</pre>
```

R code Exa 4.44 Permutation and Combination

R code Exa 4.45 Permutation and Combination

R code Exa 4.47 Combinations

```
1 n=4
2 r=2
3 l<-paste("There are", choose(n,r), "different ways")
4 1</pre>
```

R code Exa 4.48 Permutation and Combination

```
1 n=8
2 r=3
3 1<-paste("There are", choose(n,r), "different ways")
4 1</pre>
```

R code Exa 4.49 Permutation and Combination

R code Exa 4.50 Probability using combinations

```
1  n1=4
2  n2=52
3  r1=4
4  r2=5
5  1 <-paste("Probability is",48*choose(n1,r1)/choose(n2,r2))
6  1</pre>
```

R code Exa 4.51.a Probability using combinations

```
1 n1 = 4
```

R code Exa 4.51.b Probability using combinations

R code Exa 4.51.c Probability using combinations

```
1    n1=24
2    r1=4
3    1<-paste("There are",1/choose(n1,r1)," different ways
         ")
4    1</pre>
```

R code Exa 4.51.d Probability using combinations

```
1 n1=20
```

```
2  n2=24
3  r1=4
4  r2=4
5  1<-paste("There are",1-(choose(n1,r1)/choose(n2,r2))
          ," different ways")
6  1</pre>
```

${f R}$ code ${f Exa}$ 4.52 Probability using combinations

Chapter 5

Discrete Probability Distrubution

R code Exa 5.2 Probability Distribution

```
1 h <-c(0,1,2,3)
2 ss <-8
3 pr <-c(1/ss,3/ss,3/ss,1/ss)
4 tbl <-data.frame(h,pr)
5 tbl</pre>
```

R code Exa 5.5 Mean of Probability distribution

```
1 out <-c(1,2,3,4,5,6)
2 pr <-c(1/6,1/6,1/6,1/6,1/6)
3 mea <-weighted.mean(out,pr)
4 n <-paste("the mean of the probability distribution is",round(mea,digits=3))
5 n</pre>
```

R code Exa 5.6 Mean of probability distribution

```
1 out <-c(0,1,2)
2 pr <-c(1/4,1/2,1/4)
3 mea <-weighted.mean(out,pr)
4 n <-paste("the mean of the probability distribution is",round(mea,digits=3))
5 n</pre>
```

R code Exa 5.7 Tossing Coins

```
1 h<-c(0,1,2,3)
2 p<-c(1/8,3/8,3/8,1/8)
3 weighted.mean(h,p)
```

R code Exa 5.8 Mean of Probability Distribution

```
1 out <-c(0,1,2,3,4)
2 pr <-c(0.06, 0.70, 0.20, 0.03, 0.01)
3 mea <-weighted.mean(out,pr)
4 n <-paste("the mean of the probability distribution is",round(mea,digits=3))
5 n</pre>
```

 ${f R}$ code ${f Exa}$ 5.9 Variance and standard deviation of probability distribution

```
1 out<-c(1,2,3,4,5,6)
2 pr<-c(1/6,1/6,1/6,1/6,1/6)
3 mea<-weighted.mean(out,pr)
4 v<-round(sum(out*out*pr),digits=1)-(round(mea,digits=1)*round(mea,digits=1))
5 sd<-round(sqrt(v),digits=1)
6 n<-paste("the variance and standard deviation of the probability distribution is",v,"and",sd," respectively")
7 n</pre>
```

R code Exa 5.10 Discrete Probability Distribution

```
1 out <-c(3,4,5)
2 pr <-c(2/5,1/5,2/5)
3 mea <-weighted.mean(out,pr)
4 v <-round(sum(out*out*pr),digits=1)-(round(mea,digits=1)*round(mea,digits=1))
5 sd <-round(sqrt(v),digits=1)
6 n <-paste("the variance and standard deviation of the probability distribution is",round(v,digits=1)," and",sd,"respectively")
7 n</pre>
```

R code Exa 5.11 Variance and standard deviation of probability distribution

```
1  out <-c(0,1,2,3,4)
2  pr <-c(0.18, 0.34, 0.23, 0.21, 0.04)
3  mea <-weighted.mean(out,pr)
4  v <-round(sum(out*out*pr),digits=1)-(round(mea,digits=1)*round(mea,digits=1))
5  sd <-round(sqrt(v),digits=1)</pre>
```

```
6 round(v,digits=1)
7 n<-paste("the variance and standard deviation of the
        probability distribution is",round(v,digits=1),"
        and",sd,"respectively")
8 n
9 k=2
10 ct<-round(mea,digits=1)+(k*round(sd,digits=1))
11 f<-paste("Most calls will be accommodated by",round(
        ct),"phone lines")
12 f</pre>
```

R code Exa 5.12 Expectation

```
1 gain <-c(350,-1)#win and lose
2 pr <-c(0.001,0.999)
3 e <-weighted.mean(gain,pr)
4 n <-paste("the expectation of the event is",e)
5 n</pre>
```

R code Exa 5.13 Discrete Probability Distribution

```
1 gain <-c(98,48,23,8,-2)#win and lose
2 pr <-c(0.002,0.002,0.002,0.092)
3 e <-weighted.mean(gain,pr)
4 n <-paste("the expectation of the event is",e)
5 n</pre>
```

R code Exa 5.14 Bond Investment

```
1 principle <-c(5000)
```

```
2 r1<-c(0.04)
3 r2<-c(0.025)
4 dr1<-c(0.02)
5 dr2<-c(0.01)
6 a<-((principle*r1)*(1-dr1))-(principle*dr1)
7 b<-((principle*r2)*(1-dr2))-(principle*dr2)
8 a
9 b
10 if (a>b)
11 s<-paste("Bond X brings more returns")
12 if(a<b)
13 s<-paste("Bond Y brings more returns")
14 s</pre>
```

R code Exa 5.16 Survey on Doctor Visits

```
1  n<-10
2  x<-n-3
3  q<-4/5
4  n<-paste("Probability is",round(dbinom(x,n,q),3))
5  n</pre>
```

R code Exa 5.17 Survey on Employment

```
1    n=5
2    x=n-3
3    q=0.7
4    n<-paste("Probability is",round(pbinom(x,n,q),2))
5    n</pre>
```

R code Exa 5.19.a Find Probability

1 dbinom(5,20,0.05)

${\bf R}$ code ${\bf Exa}$ 5.19. ${\bf b}$ Find Probability

1 pbinom(3,20,0.05)

R code Exa 5.19.c Find Probability

1 1-pbinom(2,20,0.05)

$R\ code\ Exa\ 5.20$ Find Probability

1 dbinom(12,15,0.7)

R code Exa 5.24 Leisure Activities

```
1  n=5
2  x1=3
3  x2=1
4  x3=1
5  p1=0.5
6  p2=0.3
7  p3=0.2
8  P=dmultinom(c(x1,x2,x3),size = 5,prob = c(p1,p2,p3))
9  n<-paste("Probability is",P)
10  n</pre>
```

R code Exa 5.25 CD Purchases

```
1  n=6
2  x1=1
3  x2=3
4  x3=2
5  p1=0.3
6  p2=0.6
7  p3=0.1
8  P=dmultinom(c(x1,x2,x3),size = 6,prob = c(p1,p2,p3))
9  n<-paste("Probability is",P)
10  n</pre>
```

R code Exa 5.26 Selecting Colored Balls

```
1 n=5
2 x1=2
3 x2=2
4 x3=1
5 p1=0.4
6 p2=0.3
7 p3=0.3
```

```
8 P=dmultinom(c(x1,x2,x3),size = 5,prob = c(p1,p2,p3))
9 n<-paste("Probability is",P)
10 n
11 #answer is in decimals</pre>
```

R code Exa 5.27 Typographical Errors

```
1  np=500
2  ne=200
3  x=3
4  l=ne/np
5  P=dpois(x,1)
6  n<-paste("Probability that there are three errors in a page is less than a percentage of",round(P* 100))
7  n</pre>
```

R code Exa 5.28.a Find Probability

```
1 x <-c(0,1,2,3)
2 1 <-3
3 f <-dpois(x,1)
4 sum(f)</pre>
```

R code Exa 5.28.b Find Probability

```
1 x <-c(0,1,2)
2 1 <-3
3 f <-dpois(x,1)
4 round(1-sum(f),4)</pre>
```

${f R}$ code ${f Exa}$ 5.28.c Find Probability

```
1 x <-c(0,1,2,3,4)
2 1 <-3
3 f <-dpois(x,1)
4 1-sum(f)</pre>
```

R code Exa 5.29 Left Handed People

```
1    np=0.02
2    ne=200
3    x=5
4    l=ne*np
5    P=dpois(x,1)
6    n<-paste("Probability is",round(P,4))
7    n</pre>
```

Chapter 6

The Normal Distribution

R code Exa 6.7 Monthly Newspaper Recycling

```
1 X1=27

2 X2=31

3 X3=30.2

4 m=28

5 sd=2

6 z3=round((X3-m)/sd,2)

7 z1=round((X1-m)/sd,2)
```

R code Exa 6.11 Checking for normal distribution

R code Exa 6.12 Checking for normal distribution

R code Exa 6.15 Meat Consumption

```
1 x=224
2 m=218.4
3 s=25
4 n=40
5 z1=(x-m)/s
6 l<-paste("the probability that a person selected at random consumes less than 224 pounds per year is", round(pnorm(z1)*100,1),"%")
7 1
8 z2=(x-m)/(s/sqrt(n))
9 1<-paste("the probability that the mean of a sample")</pre>
```

```
of 40 individuals is less than 224 pounds per year is", round(pnorm(z2)*100,1), "%")
10 1
```

Confidence Intervals and Sample Size

R code Exa 7.1 Days it takes to sell an Aveo

```
1 m=54
2 z=round(qnorm(0.975),2)
3 z
4 s=6
5 n=50
6 x=round((z*s)/sqrt(n),2)
7 l<-paste("Hence one can say with 95% confidence that the interval between",m-x,"and",m+x,"days does contain the population mean, based on a sample of 50 automobiles.")
8 1</pre>
```

R code Exa 7.2 Ages of Automobiles

```
1 m=5.6
2 z=round(qnorm(0.995),2)
```

```
3 s=0.8
4 n=30
5 x=round((z*s)/sqrt(n),1)
6 1<-paste(" one can be 99% confident that the mean
        age of all primary vehicles is between",m-x,"and"
        ,m+x,"years, based on 30 vehicles.")
7 1</pre>
```

R code Exa 7.3 Credit Union Assets

```
1 da<-c(12.23, 16.56, 4.39, 2.89, 1.24, 2.17, 13.19,
      9.16, 1.42, 73.25, 1.91, 14.64, 11.59, 6.69,
      1.06, 8.74, 3.17, 18.13, 7.92, 4.78, 16.85,
      40.22, 2.42, 21.58, 5.01, 1.47, 12.24, 2.27,
      12.77, 2.76)
2 m=round(mean(da),2)
3 \text{ s=round(sd(da),2)}
4 c = 0.9
5 a = 1 - c
6 z = round(qnorm(0.951), 2)
7 n = 30
8 \text{ x=round}((z*s)/sqrt(n),3)
9 1<-paste ("Hence, one can be 90% confident that the
      population mean of the assets of all credit
      unions is between", m-x, "and", m+x, "based on a
      sample of 30 credit unions")
10 l
```

R code Exa 7.4 Depth of a River

```
1 c=0.99
2 a=1-c
3 s=4.38
```

```
4 z=round(qnorm(0.995),2)
5 z
6 E=2
7 ss=(z*s/E)^2
8 1<-paste("to be 99% confident that the estimate is within 2 feet of the true mean depth, the scientist needs at least a sample of",round(ss)," measurements.")
9 1</pre>
```

R code Exa 7.5 Critical t value

```
1 round(qt(0.975,21),2)
```

 ${f R}$ code ${f Exa}$ 7.6 Sleeping Time

```
1 t=round(qt(0.975,9),3)
2 c=0.95
3 s=0.78
4 n=10
5 m=7.1
6 lo=round(m-(t*(s/sqrt(n))),2)
7 hi=round(m+(t*(s/sqrt(n))),2)
8 l<-paste("Therefore, one can be 95% confident that the population mean is between",lo,"and",hi," inches")
9 l</pre>
```

R code Exa 7.7 Home Fires Started by Candles

```
1 t=qt(0.995,6)
2 s=1610.3
3 n=7
4 m=7041.4
5 lo=round(m-(t*(s/sqrt(n))))
6 hi=round(m+(t*(s/sqrt(n))))
7 l<-paste("Therefore, one can be",c*100,"confident that the population mean is between",lo,"and",hi)
8 l</pre>
```

R code Exa 7.9 Male Nurses

```
1 x=60
2 n=500
3 p=round((x/n),2)
4 q=1-p
5 z=round(qnorm(0.951),2)
6 lo=round((p-(z*sqrt(p*q/n)))*100,1)
7 hi=round((p+(z*sqrt(p*q/n)))*100,1)
8 l<-paste("Hence, you can be 90% confident that the percentage of applicants who are men is between", lo,"and",hi,"%")
9 l</pre>
```

R code Exa 7.10 Religious Books

```
1  n=1721
2  p=0.159
3  q=1-p
4  z=round(qnorm(0.975),2)
5  lo=round((p-(z*sqrt(p*q/n)))*100,1)
```

R code Exa 7.11 Home Computers

```
1 z=round(qnorm(0.975),2)
2 E=0.02
3 p=0.40
4 q=1-p
5 n=p*q*((z/E)^2)
6 1<-paste("Minimum sample space required is",round(n)
)
7 1</pre>
```

R code Exa 7.12 Car Phone Ownership

```
1 z=round(qnorm(0.951),2)
2 E=0.05
3 p=0.50
4 q=1-p
5 n=p*q*((z/E)^2)
6 if(n>round(n))
7    n=n+1
8 1<-paste("Minimum sample space required is",round(n)
    )
9 1</pre>
```

R code Exa 7.14 Nicotine Continent

```
1  n=20
2  s=1.6
3  Xr=round(qchisq(0.975,19),2)
4  Xl=round(qchisq(0.025,19),2)
5  lo=(n-1)*(s^2)/Xr
6  lo=sqrt(lo)
7  hi=(n-1)*(s^2)/Xl
8  hi=sqrt(hi)
9  l<-paste("Hence, you can be 95% confident that the true standard deviation for the nicotine content of all cigarettes manufactured is between",round(lo,1),"and",round(hi,1),"milligrams based on a sample of 20 cigarettes.")
10  l</pre>
```

R code Exa 7.15 Cost of Ski Lift Tickets

```
1  n=10
2  m<-c(59, 54, 53, 52, 51, 39, 49, 46, 49, 48)
3  s=sd(m)
4  Xr=round(qchisq(0.95,9),3)
5  Xl=round(qchisq(0.05,9),3)
6  lo=(n-1)*(s^2)/Xr
7  lo=sqrt(lo)
8  hi=(n-1)*(s^2)/Xl
9  hi=sqrt(hi)
10  l<-paste("Hence, you can be 90% confident that the true standard deviation price of all single-day ski lift tickets of the population is between", round(lo,2), "and", round(hi,2), "dollars on a sample of 10 nationwide ski resorts.")
11  l</pre>
```

Hypothesis Testing

R code Exa 8.3 Professors Salaries

```
1 x1=43260
2 m=42000
3 s=5230
4 n=30
5 c=round(qnorm(0.951),2)
6 z=round((x1-m)/(s/sqrt(n)),2)
7 f=z
8 x=seq(-4,4,length=200)
9 y=dnorm(x)
10 plot(x,y,type="l", lwd=2, col="green")
11 if(z<c)
12 { f=c
    x=seq(z,z,length=100)
    y=dnorm(x)
15 polygon(c(z,x,z),c(0,y,0),col="black")}</pre>
```

```
16  x=seq(f,4,length=100)
17  y=dnorm(x)
18  polygon(c(f,x,4),c(0,y,0),col="gray")
19  #values are compared on the plot
```

R code Exa 8.4 Costs of Mens Athletic Shoes

R code Exa 8.5 Cost of Rehabilitation

```
1 m = 25226
2 \text{ mu} = 24672
3 s = 3251
4 n = 35
5 c=round(qnorm(0.995),2)
6 z = round((m-mu)/(s/sqrt(n)), 2)
7 \text{ x=seq}(-4,4,length=200)
8 y = dnorm(x)
9 plot(x,y,type="l", lwd=2, col="green")
10 x = seq(z,z,length=100)
11 y = dnorm(x)
12 polygon(c(z,x,z),c(0,y,0),col="black")
13 x = seq(-c, -4, length = 100)
14 y = dnorm(x)
15 \operatorname{polygon}(c(-c,x,-4),c(0,y,0),col="yellow")
16 \text{ x=seq(c,4,length=100)}
17 y = dnorm(x)
18 polygon(c(c,x,4),c(0,y,0),col="yellow")
```

R code Exa 8.13 Substitute Teachers Salaries

```
1 g < -c(60, 56, 60, 55, 70, 55, 60, 55)
2 t.test(g, mu=60, conf.level = 0.9)
```

${f R}$ code ${f Exa}$ 8.17 people who are trying to avoid Trans Fats

```
1 \, \text{mu} = 0.60
```

$$4 p=x/n$$

² n = 200

³ x = 128

```
5 q=1-mu
6 c=1.96
7 z=(p-mu)/sqrt(mu*q/n)
8 if((z>-c)&&(z<c))
9 l<-paste("Hypothesis rejected") else
10 l<-paste("Hypothesis accepted")
11 l</pre>
```

R code Exa 8.18 Survey on Call Waiting Service

```
1 mu=0.40
2 n=100
3 p=0.37
4 q=1-mu
5 c=qnorm(0.995)
6 z=(p-mu)/sqrt(mu*q/n)
7 if((z>-c)&&(z<c))
8  1<-paste("Hypothesis rejected") else
9  1<-paste("Hypothesis accepted")
10 1</pre>
```

R code Exa 8.23 critical chisq value

R code Exa 8.25 Outpatient Surgery

```
1 g<-c(25, 30, 5, 15, 18, 42, 16, 9, 10, 12, 12, 38,
     8, 14, 27)
2 library(EnvStats)
3 varTest(g,alternative = "greater",conf.level = 0.9,
     sigma.squared = 64)
4 #chisq.test didn't give the correct output for me.
     Hence i have opted for varTest which essentially
     performs the same on variance as given in the
     question.
5 #please install package "EnvStats" before proceeding</pre>
```

R code Exa 8.30 Sugar Production

```
1 mu1=5
2 n=50
3 x=4.6
4 s=0.7
5 sq=round(sqrt(n),3)
6 z=(x-mu1)*sq/s
```

```
7 c1=-round(qnorm(0.975),2)
8 c2=round(qnorm(0.975),2)
9 if(z<c1 || z>c2)
10  1<-paste("Null hypothesis rejected")
11 1
12 m1=x-(c2*s/sq)
13 m2=x+(c2*s/sq)
14 p<-paste("confidence interval is between",round(m1,1),"and",round(m2,1))
15 p</pre>
```

R code Exa 8.31 Hog Weight

```
1 \text{ mu1} = 200
2 n = 10
3 x = 198.2
4 s = 3.3
5 sq=round(sqrt(n),4)
6 z=(x-mu1)*sq/s
7 c2 = round(-qt(0.025,9),3)
8 c1 = -round(-qt(0.025,9),3)
9 \text{ if}(z>c1 || z<c2)
     1<-paste("Null hypothesis accepted")else</pre>
10
        1<-paste("Null hypothesis rejected")</pre>
11
12 1
13 m1=x-round((c2*s/sq),3)
14 m2=x+round((c2*s/sq),3)
15 p <-paste ("confidence interval is between", round (m1
      ,1), "and", round(m2,1))
16 p
```

Testing the Difference Between Two Means and Two Proportions and Two Variances

R code Exa 9.1 Hotel Room Cost

```
1 c1=-round(qnorm(0.975),2)
2 c2=round(qnorm(0.975),2)
3 s1=5.62*5.62
4 s2=4.83*4.83
5 n1=n2=50
6 x1=88.42
7 x2=80.61
8 z=(x1-x2)/sqrt(s1/n1 + s2/n2)
9 if(z>c2 || z<c1)
10 1<-paste("Null hypothesis rejected. There is enough evidence to support the claim that the means are not equal. Hence, there is a significant difference in the rates.")
11 1</pre>
```

R code Exa 9.3 Confidence Interval

```
1 c1 = -round(qnorm(0.975), 2)
2 c2 = round(qnorm(0.975), 2)
3 \text{ s1=5.62*5.62}
4 s2=4.83*4.83
5 n1=n2=50
6 \text{ x1} = 88.42
7 x2 = 80.61
8 z=1.96
9 lo=(x1-x2)-(z*sqrt(s1/n1 + s2/n2))
10 hi = (x1-x2) + (z*sqrt(s1/n1 + s2/n2))
11 p<-paste("Confidence interval is between", round(lo
      ,2), "and", round(hi,2))
12 if(1o>0)
13
     1<-paste("Since the confidence interval does not
        contain zero, the decision is to reject the
        null hypothesis, which agrees with the previous
         result.")else
     1<-paste("Hypothesis accepted")</pre>
14
15 p
16 l
```

R code Exa 9.4 Farm Sizes

```
1 c1=-round(qt(0.975,7),3)
2 c1
3 c2=round(qt(0.975,7),3)
4 s1=38*38
5 s2=12*12
```

```
6 n1=8
7 n2=10
8 x1=191
9 x2=199
10 z=(x1-x2)/sqrt(s1/n1 + s2/n2)
11 z
12 if(z>c2 || z<c1)
13  1<-paste("Null hypothesis rejected.") else
14  1<-paste("Null hypothesis accepted. There is not enough evidence to support the claim that the average size of the farms is different.")
15 1
16 #qf function with alpha=0.05 and df=7 doesnt give 2.365</pre>
```

R code Exa 9.5 Confidence Interval

```
1 c2=round(qt(0.975,7),3)
2 c2
3 s1=38*38
4 s2=12*12
5 n1 = 8
6 n2=10
7 x1 = 191
8 x2 = 199
9 lo=(x1-x2)-(c2*sqrt(s1/n1 + s2/n2))
10 hi = (x1-x2) + (c2*sqrt(s1/n1 + s2/n2))
11 p<-paste("Confidence interval is between", round(lo
      ,2), "and", round(hi,2))
12 if(lo<0 && hi>0)
     1<-paste("Since 0 is contained in the interval,</pre>
13
        the decision is to not reject the null
        hypothesis") else
14
       1<-paste("Hypothesis rejected")</pre>
15 p
```

```
16 1
17 #qf doesn't give the exact answer as in the tb
```

R code Exa 9.6 Vitamin for Increased Strength

```
1 X1<-c(210,230,182,205,262,253,219,216)
2 X2<-c(219,236,179,204,270,250,222,216)
3 t.test(X1,X2,paired = TRUE,alternative = "less")</pre>
```

R code Exa 9.7 Cholesterol Levels

```
1 X1<-c(210,235,208,190,172,244)
2 X2<-c(190,170,210,188,173,228)
3 t.test(X1,X2, paired = TRUE)</pre>
```

R code Exa 9.8 Confidence Interval

```
1  n=6
2  mu=0
3  c=2.015
4  X1<-c(210,235,208,190,172,244)
5  X2<-c(190,170,210,188,173,228)
6  t.test(X1,X2, paired = TRUE, conf.level = 0.90)</pre>
```

R code Exa 9.9 Vaccination Rates in Nursing Homes

```
1 \times 1 = 12
2 n1 = 34
3 \times 2 = 17
4 n2 = 24
5 p1=x1/n1
6 p2=x2/n2
7 p=(x1+x2)/(n1+n2)
8 q = 1 - p
9 c1=round(qnorm(0.975),2)
10 c2 = -round(qnorm(0.975), 2)
11 z=round((p1-p2)/sqrt(p*q*(1/n1+1/n2)),1)
12 if(z>c1 || z<c2)
13
     1<-paste("There is enough evidence to reject the</pre>
        claim that there is no difference in the
        proportions of small and large nursing homes
        with a resident vaccination rate of less than
        80\%.") else
       1<-paste("Null hypothesis accepted")</pre>
14
15 l
```

R code Exa 9.10 Missing Work

```
1 p1=0.45
2 n1=200
3 p2=0.35
4 n2=200
5 x1=p1*n1
6 x2=p2*n2
7 p=(x1+x2)/(n1+n2)
8 q=1-p
9 c1=round(qnorm(0.995),2)
10 c2=-round(qnorm(0.995),2)
11 z=round((p1-p2)/sqrt(p*q*(1/n1+1/n2)),1)
12 if(z>c1 || z<c2)
13 1<-paste("Null hypothesis rejected") else</pre>
```

R code Exa 9.11 Confidence Interval

```
1 \times 1 = 12
2 n1 = 34
3 x2=17
4 n2 = 24
5 p1=round(x1/n1,2)
6 q1=1-p1
7 p2 = round(x2/n2, 2)
8 q2=1-p2
9 p=(x1+x2)/(n1+n2)
10 \ q = 1 - p
11 c1 = round(qnorm(0.975), 2)
12 lo=(p1-p2)-(c1*sqrt((p1*q1)/n1 + (p2*q2)/n2))
13 hi=(p1-p2)+(c1*sqrt((p1*q1)/n1 + (p2*q2)/n2))
14 p<-paste("Confidence intervals are in between", round
      (hi,3), "and", round(lo,3))
15 p
16 if(lo<0 && hi<0)
     1<-paste("Since 0 is not contained in the interval</pre>
17
        , the decision is to reject the null hypothesis
        ") else
       1<-paste("Null hypothesis accepted")</pre>
18
19 l
```

Correlation and Regression

R code Exa 10.12 Copy Machine Maintenance Costs

1 c<-c(1,2,3,4,4,6)

```
2 r <-c (62,78,70,90,93,103)
3 mo <-lm(r ~ c)
4 mo
5 summary(mo)</pre>
```

R code Exa 10.14 Standard error estimation

```
1 c<-c(1,2,3,4,4,6)
2 r<-c(62,78,70,90,93,103)
3 mo<-lm(r~c)
4 mo
5 predict(mo,interval = "prediction", level = 0.95)</pre>
```

R code Exa 10.15 State board scores

R code Exa 10.16 State board scores

```
1 gpa<-c(3.2,2.7,2.5,3.4,2.2)
2 x<-c(22,27,24,28,23)
```

R code Exa 10.17 State board scores

Other Chi Square Tests

R code Exa 11.1 Fruit Soda Flavor Preference

```
1 o<-c(32,28,16,14,10)
2 chisq.test(o)</pre>
```

R code Exa 11.5 College Education and Place of Residence

```
1 u<-c(15,12,8,8,15,9,6,8,7)
2 m<-matrix(u,ncol=3,byrow = TRUE)
3 colnames(m)<-c("no college", "four year degree", "advanced college")
4 rownames(m)<-c("Urban", "Suburban", "Rural")
5 m<-as.table(m)
6 m
7 chisq.test(m)</pre>
```

R code Exa 11.6 Alcohol and Gender

```
1  u <-c(10,9,8,13,16,12)
2  m <-matrix(u,ncol=3,byrow = TRUE)
3  colnames(m) <-c("low", "moderate", "high")
4  rownames(m) <-c("Male", "Female")
5  m <-as.table(m)
6  m
7  chisq.test(m)</pre>
```

R code Exa 11.7 Lost Luggage on Airline Flights

```
1  u <-c(10,7,4,90,93,96)
2  m <-matrix(u,ncol=3,byrow = TRUE)
3  colnames(m) <-c("Airline 1", "Airline 2", "Airline 3")
4  rownames(m) <-c("Yes","No")
5  m <-as.table(m)
6  m
7  chisq.test(m)</pre>
```

Analysis of Variance

R code Exa 12.1 Lowering Blood Pressure

R code Exa 12.2 Employees at Toll Road Interchanges

R code Exa 12.3 Scheffe Test

```
1 me<-c(10,12,9,15,13)
2 ex<-c(6,8,3,0,2)
3 di<-c(5,9,12,8,4)
4 l<-c(me,ex,di)
5 fa<-factor(rep(c("meat","exercise","diet"),15))
6 pr=factor(rep(1:15, rep(3, 15)))
7 d<-data.frame(l,fa,pr)
8 fml<- aov(d$l ~ d$fa + d$pr, data = d)
9 library(DescTools)
10 ScheffeTest(x=fml)</pre>
```

R code Exa 12.4 Turkey Test

```
1  me <-c(10,12,9,15,13)
2  ex <-c(6,8,3,0,2)
3  di <-c(5,9,12,8,4)
4  l <-c(me,ex,di)
5  fa <-factor(rep(c("meat","exercise","diet"),15))
6  pr = factor(rep(1:15, rep(3, 15)))
7  d <-data.frame(l,fa,pr)
8  a1 <- aov(d$1 ~ d$fa + d$pr)
9  TukeyHSD(x=a1,"d$fa", conf.level=0.95)</pre>
```

R code Exa 12.5 Gasoline Consumption

Nonparametric Statistics

R code Exa 13.1 snow Cone Sales

R code Exa 13.3 Ear infections in Swimmers

```
1 x <-c(3,0,5,4,2,4,3,5,2,1)
2 y <-c(2,1,4,0,1,3,1,3,2,3)
3 SIGN.test(x,y)
4 #package BSDA to be downloaded for SIGN.test</pre>
```

R code Exa 13.6 Milliequivalents of Potassium in Breakfast Drinks

```
1 a <-c (4.7,3.2,5.1,5.2,5.0)
2 b <-c (5.3,6.4,7.3,6.8,7.2)
3 c <-c (6.3,8.2,6.2,7.1,6.6)
4 kruskal.test(list(a,b,c))</pre>
```

R code Exa 13.10 Ages of Drug Program Participants