

System Numbering in Computer Science

This presentation explores the fundamental concept of number systems in computer science, covering their definitions, applications, and conversion methods.

Road Map for Today

01

02

NUMBERINGNUMBRING

All about the contains •

TYPES OF SYSTEM NUMBERING

03

04

FLOWCHARTS

SIMPLE ALGORITHM
WITH FLOWCHARTS

Introduction

1 What is a Number System?

A number system defines a set of values to represent a quantity.

2 Examples

Decimal (Base 10), Binary (Base 2), Octal (Base 8), Hexadecimal (Base 16).

3 Usage

Used in various computing processes, data representation, and communication between computers.

The Decimal Number System (Base 10)

Digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Example

 $345 = 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$

Usage

The standard system for human-centric calculations.

The Binary Number System (Base 2)

Digits	Example	Usage
0, 1.	1011 (Binary) = 1 * 2^3 + 0 *	Core system for digital
	2^2 + 1 * 2^1 + 1 * 2^0 = 11	electronics and computers.
	(Decimal)	

The Octal Number System (Base 8)

Digits 0, 1, 2, 3, 4, 5, 6, 7Example $17 \text{ (Octal)} = 1 \text{ \footnote{8}^1 + 7 \footnote{8}^0 = 15 (Decimal)}$ Usage Sometimes used in computing as a shorthand for binary numbers.

The Hexadecimal Number System (Base 16)

1

Digits

0-9, A (10), B (11), C (12), D (13), E (14), F (15).

2

Example

1A3 (Hex) = $1 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 419$ (Decimal).

3

Usage

Widely used in computing for memory addresses and color codes in web design designing, ip addressing, web programming languages like HTML CSS.

Conversion Methods

1 Binary to Decimal

Multiply each bit by 2 raised to the position's power.

Ex: $(01010)_2 = (?)_{10} \rightarrow 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 0 + 8 + 0 + 2 + 0 = 10$

2 Decimal to Binary

Divide the number by 2, keep track of remainders.

Ex: $(10)_{10} = (?)_2 \rightarrow 10/2 = 5$ reminder=0 5/2=2 reminder=1 2/2=1 reminder=0 finally 1 is remain so $(01010)_2$

3 Hexadecimal to Binary

Convert each digit to its 4-bit binary equivalent.

Ex: $(A25)_{16} = (?)_2 \implies A = 10 = 1010 2 = 0010 5 = 0101 so (101000100101)_2$

4 Octal to Binary

Convert each digit to its 3-bit binary equivalent.

Ex: $(545)_8 = (?)_2 \rightarrow 5 = 0101$ 4=0100 5=0101 so $(010101000101)_2$

Conversion Examples

Binary to Decimal

Multiply each bit by 2 raised to the position's power.

1101 (Binary) = 13 (Decimal)

Decimal to Binary

Divide the number by 2, keep track of remainders.

25 (Decimal) = 11001 (Binary)

Hexadecimal to Decimal

Ex: $(2f)_{16} = (?)_{10} \rightarrow 2*16^1 + 15*16^0 = 15+32=47$

2F (Hex) = 47 (Decimal)

Octal to Binary

Convert each digit to its 3-bit binary equivalent.

71 (Octal) = 111001 (Binary)

g by Saifullah Haidari

Practical Applications

Binary

Used in data storage, processing, and transmission.

Hexadecimal

Simplifies binary representation for programming and debugging Ip addressing web designing.

____ Decimal

Everyday calculations and transactions.

Cotal

Used in legacy computing systems and clock system.

Flowcharts: A Visual Guide to Programming

Flowcharts are a powerful tool for visualizing and understanding algorithms and program execution steps. They provide a clear and concise representation of the logic and flow of a program, making it easier to comprehend and debug.

Adding Two Numbers

1 Start

The flowchart begins with a start symbol, indicating the beginning of the program.

2 Input Numbers

Two numbers, A and B, are inputted from the user.

Calculate Sum

The sum of A and B is calculated and stored in a variable C.

4 Display Sum

The calculated sum, C, is displayed to the user.

5 End

The flowchart ends with an end symbol, indicating the completion of the program.

Determining Even or Odd

Start

The flowchart begins with a start symbol, indicating the beginning of the program.

Input Number

A number, N, is inputted from the user.

Calculate Remainder

The remainder of dividing N by 2 is calculated and stored in a variable R.

Check Remainder

The flowchart checks if R is equal to 0.

Output Result

If R is 0, the program outputs "Even". If R is 1, the program outputs "Odd".

👰 by Saifullah Haidari

2

3

4

Ex:2

start

x=15

y=10

if x>y

print y

else

print x

end

Calculating the Average of Three Numbers

Input Numbers

The flowchart begins by taking three numbers, A, B, and C, as input from the user.

Calculate Average

The average of the three numbers is calculated by summing them and dividing by 3, storing the result in a variable M.

Display Average

The calculated average, M, is displayed to the user.

Identifying Positive, Negative, or Zero

Start	The flowchart begins with a start symbol, indicating the beginning of the program.
Input Number	A number, N, is inputted from the user.
Check Condition 1	The flowchart checks if N is greater than 0.
Output Positive	If N is greater than 0, the program outputs "Positive".
Check Condition 2	The flowchart checks if N is less than 0.
Output Negative	If N is less than 0, the program outputs "Negative".
Output Zero	If N is equal to 0, the program outputs "Zero".
End	The flowchart ends with an end symbol, indicating the completion of the program.

As a conclusion of this lesson

NUMBERING	TYPES OF SYSTEM NUMBERING
USAGES	FLOWCHART
ALGORITHM AND FLOW CHART	examples

Thanks!

Do you have any questions? saifullahhaidari38@gmail.com +93:766066673

