Huang Sensitivity Reduction

Tristan Shin 26 July 2019

Let n be a positive integer. We say that two binary strings of the same length are *Hamming neighbors* if they differ in exactly one position. Given $2^{n-1} + 1$ binary strings of length n, prove that one of them has at least \sqrt{n} Hamming neighbors.

Let Q_n be the graph on all binary strings of length n with edges between Hamming neighbors (this is the *hyphercube graph*). Let H be the subgraph induced by those vertices which are given and $\Delta(H)$ be the maximum degree of H. We wish to show that $\Delta(H) \geq \sqrt{n}$.

We will also use the notation that for a $K \times K$ matrix M and positive integer $k \leq M$, $\lambda_k(M)$ is the kth largest eigenvalue of M.

Define a sequence of matrices as

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}.$$

Claim. A_n has eigenvalues \sqrt{n} and $-\sqrt{n}$, both with multiplicity 2^{n-1} .

Proof. First we show that $A_n^2 = nI$ by induction on n. This is clear for n = 1. Now, assume that $A_n^2 = nI$. Then

$$A_{n+1}^2 = \begin{bmatrix} A_n^2 + I & 0\\ 0 & A_n^2 + I \end{bmatrix} = nI$$

so the inductive step is true. So $A_n^2 = nI$ and thus all eigenvalues of A_n are \sqrt{n} or $-\sqrt{n}$. But $\operatorname{tr}(A_n) = 0$ so there must be an equal number of \sqrt{n} as there are $-\sqrt{n}$.

Now observe by the construction of sequence A_n that A_n and the adjacency matrix of Q_n are the same up to sign of each term. So we can index A_n by the binary strings of length n in the corresponding way. Let A_H be the $(2^{n-1}+1)\times(2^{n-1}+1)$ submatrix of A_n induced by the given strings. Let \mathbf{v} be the eigenvector corresponding to $\lambda_1(A_H)$, and let s be the string with maximum coordinate in \mathbf{v} (say this coordinate is v_s). Then

$$|\lambda_1(A_H)||v_s| = |\lambda_1(A_H)v_s|$$

$$= |(A_H\mathbf{v})_s|$$

$$= \left|\sum_{t \in H} A_{s,t}v_t\right|$$

$$= \left|\sum_{t \in N(s)} A_{s,t}v_t\right|$$

$$\leq \sum_{t \in N(s)} |A_{s,t}||v_t|$$

$$\leq |N(s)||v_s|$$

$$\leq \Delta(H)|v_s|$$

whence $\Delta(H) \geq \lambda_1(A_H)$.

Now, we use Cauchy's interlace theorem which states the following:

Theorem: Cauchy's Interlace Theorem

Let A be a symmetric $N \times N$ matrix and B be a $M \times M$ principal submatrix of A. Then for $i = 1, \ldots, m$,

$$\lambda_i(A) \ge \lambda_i(B) \ge \lambda_{i+N-M}(A).$$

With $A = A_n$ $(N = 2^n)$, $B = A_H$ $(M = 2^{n-1} + 1)$, and i = 1, we deduce that

$$\Delta(H) \ge \lambda_1(A_H) \ge \lambda_{2^{n-1}}(A_n) = \sqrt{n}$$

as desired.