

### FuZhou Qingda Education

| 教师姓名 | 沈炜炜      | 学生姓名 |    | 首课时间 |  | 本课时间   |  |  |  |
|------|----------|------|----|------|--|--------|--|--|--|
| 学习科目 | 数学       | 上课年级 | 高一 | 教材版本 |  | 人教 A 版 |  |  |  |
| 课题名称 | 三角函数单元复习 |      |    |      |  |        |  |  |  |
| 重点难点 |          |      |    |      |  |        |  |  |  |

### 习题



- **1.1** 已知  $|\cos \theta| \leq |\sin \theta|$ ,则  $\theta$  的取值范围是 \_\_\_\_\_\_.
- **1.2**  $\exists \exists \sin(\frac{\pi}{2} + 2x) = -\frac{1}{2}, \ \exists x = \underline{\qquad}.$
- **1.3** 函数  $y = \sqrt{25 x^2} + \lg \sin \left( x + \frac{\pi}{3} \right)$  的定义域为\_\_\_\_\_



B. 
$$\left(2k\pi - \frac{1}{4}, 2k\pi + \frac{3}{4}\right), k \in \mathbb{Z}$$



- C.  $\left(k \frac{1}{4}, k + \frac{3}{4}\right), k \in \mathbb{Z}$
- D.  $\left(2k-\frac{1}{4},2k+\frac{3}{4}\right),k\in\mathbb{Z}$
- **1.5** 不等式  $\tan x > a$  在  $x \in \left(-\frac{\pi}{4}, \frac{\pi}{2}\right)$  上恒成立,则 a 的取值范围是......(
- A.  $(-\infty, -1]$
- C.  $(-\infty, 1]$
- D.  $(-\infty, 1]$
- **1.6** (福州三中中学 2015-2016 学年高一数学第二学期期末检测 9) 将函数  $y = \sin\left(x \frac{\pi}{3}\right)$  的图像上所有点 的横坐标伸长到原来的 2 倍(纵坐标不变),再将所得的图像向左平移  $\frac{\pi}{3}$  个单位,得到的函数图像对 应的解析式是 .....

- **1.7** 函数  $y = 2\sin(\frac{\pi}{3} 2x)$  的单调增区间为\_\_\_\_\_\_.
- **1.8** 函数  $\frac{\sin x + 2}{\sin x + 1}, x \in [0, \frac{\pi}{2}]$  的值域为\_\_\_\_\_\_.
- **1.9** 把函数  $y = \sin 2x$  的图象沿 x 轴向左平移  $\frac{\pi}{6}$  个单位,纵坐标伸长到原来的 2 倍 (横坐标不变) 后得到函数 y = f(x) 的图象,对于函数 y = f(x) 有以下四个判断:
- ① 该函数的解析式为  $y = 2\sin(2x + \frac{\pi}{6})$ ;
- ② 该函数图象关于点  $\left(\frac{\pi}{3},0\right)$  对称;
- ③ 该函数在  $\left[0,\frac{\pi}{6}\right]$  上是增函数;
- ④ 若函数 y = f(x) + a 在  $\left[0, \frac{\pi}{2}\right]$  上的最小值为  $\sqrt{3}$ , 则  $a = 2\sqrt{3}$ .

其中,正确判断的序号是\_\_\_\_\_

笙1 而



### FuZhou Qingda Education

**1.10** (福州格致中学 2015-2016 学年高一数学第二学期期末检测 22) 已知函数  $f(x) = A \sin(\omega x + \varphi) + \phi$  $B(A > 0, \omega > 0)$  的一系列对应值如下表:

| х | $-\frac{\pi}{6}$ | $-\frac{\pi}{3}$ | $-\frac{5\pi}{6}$ | $-\frac{4\pi}{3}$ | $-\frac{11\pi}{6}$ | $-\frac{7\pi}{3}$ | $-\frac{17\pi}{6}$ |
|---|------------------|------------------|-------------------|-------------------|--------------------|-------------------|--------------------|
| у | -1               | 1                | 3                 | 1                 | -1                 | 1                 | 3                  |

- (1) 根据表格提供的数据求函数 f(x) 的一个解析式;
- (2) 根据(1)的结果:
- (i) 当  $x \in \left[0, \frac{\pi}{3}\right]$  时,方程 f(3x) = m 恰有两个不同的解,求实数 m 的取值范围; (ii) 若是  $\alpha, \beta$  是锐角三角形的两个内角,试比较  $f(\sin \alpha)$  与  $f(\cos \beta)$  的大小.

- **1.11** 已知函数 y = f(x) 的定义域为  $\mathbb{R}$ ,若 f(x+2) = -f(x),且当  $-1 \le x \le 1$  时,f(x) = x,求证:
- (1) 函数 y = f(x) 是最小正周期为 4 的周期函数;
- (2) 函数 y = f(x) 是奇函数;
- (3) 当  $x \in [4k-1, 4k+1](k \in \mathbb{Z})$  时,y = f(x) 是增函数; 当  $x \in [4k+1, 4k+3](k \in \mathbb{Z})$  时,y = f(x) 是减 函数.



# 课后作业



- **2.1**  $\exists \exists \exists 1 + \sin^2 x = \cos x, \ \exists \exists x = 1$ .
- )

- )

- **2.4** 定义在  $\mathbb{R}$  上的偶函数 f(x) 满足  $f(x+1) = -\frac{2}{f(x)}(f(x) \neq 0)$ ,且在区间 (2013, 2014) 上单调递增. 已 知  $\alpha, \beta$  是锐角三角形的两个内角,则  $f(\sin \alpha), f(\cos \beta)$  的大小关系是......
  - A.  $f(\sin \alpha) < f(\cos \beta)$  B.  $f(\sin \alpha) > f(\cos \beta)$
- C.  $f(\sin \alpha) = f(\cos \beta)$  D. 以上情况均有可能
- **2.5** 若函数  $y = 2\cos(2x + \varphi)$  是偶函数,且在  $\left(0, \frac{\pi}{4}\right)$ 上是增函数,则实数  $\varphi$  可能是 ......( )
- A.  $-\frac{\pi}{2}$

- 2.6 比较 sin 3, cos 3, tan 0.8 的大小关系为\_\_
- **2.7** 已知函数  $f(x) = \sin(2x + \varphi)$ ,若  $f\left(\frac{\pi}{12}\right) f\left(-\frac{5\pi}{12}\right) = 2$ ,则函数 f(x) 的单调增区间为\_\_\_\_\_\_.
- **2.8** 若  $f(x) = \cos(2x + \frac{\pi}{3} + \varphi)(|\varphi| < \frac{\pi}{2})$  是奇函数,则  $\varphi =$ \_\_\_\_\_\_.
- **2.9** 设  $\omega > 0$ ,若函数  $f(x) = 2 \sin \omega x (\omega > 0)$  在区间  $\left[ -\frac{\pi}{3}, \frac{\pi}{4} \right]$  上单调递增,则  $\omega$  取值范围是 \_\_\_\_\_\_.
- **2.10** 已知函数  $f(x) = A \sin(\omega x + \varphi)(A, \omega, \varphi)$  常数,  $\omega > 0$  的图像上相邻两个最高点的坐标分别是  $\left(\frac{\pi}{12}, 2\right)$ ,  $\left(\frac{13\pi}{12}, 2\right)$ .
  - (1) 求函数 f(x) 的一个表达式;
  - (2) 画出函数 f(x) 在长度为一个周期的闭区间上的简图;
  - (3) 说明经过怎样的变换,可以由  $y = \sin x$  的图像得到 y = f(x) 的图像.

笙3页





FuZhou Qingda Education

- **2.11** 已知曲线  $y = A \sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| \le \frac{\pi}{2}$ ) 上最高点为  $(2, \sqrt{2})$ ,该最高点与相邻的最低点间 的曲线与x轴交于点(6,0).
- (1) 该函数的解析式;
- (2) 该函数在  $x \in [-6, 0]$  上的值域.

- **2.12** 已知函数  $f(x) = 2\sin(\omega x + \frac{\pi}{6})(\omega > 0)$ , (1) 求 f(x) 的最大值 M,最小值 m 以及最小正周期 T;
- (2) 试求最小正整数  $\omega$ ,使得自变量 x 在任意两个整数间 (包括整数本身) 变化时,函数 f(x) 至少有一 个值是 M,另一个值是 m.

- **2.13** 求证:  $(1)f(x) = \sin x \cos x$  的最小正周期为  $\pi$ ;
- (2) 若函数  $y = f(x)(x \in \mathbb{R})$  的最小正周期为 T,则 f(kx)(k > 0) 的最小正周期为  $\frac{T}{k}$ .



## 三、部分参考答案

**1.1** 
$$\left[k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4}\right], k \in \mathbb{Z}$$

1.2 
$$k\pi \pm \frac{\pi}{3} (k \in \mathbb{Z})$$

**1.3** 
$$\left[-5, -\frac{4\pi}{3}\right) \cup \left(-\frac{\pi}{3}, \frac{2\pi}{3}\right)$$

- 1.4 D
- **1.5** A
- **1.6** C

**1.7** 
$$\left[k\pi + \frac{5\pi}{12}, k\pi + \frac{11\pi}{12}\right], k \in \mathbb{Z}$$

- **1.8**  $\left[\frac{3}{2}, 2\right]$
- 1.9 24

**1.10** (1)  $f(x) = 2\sin\left(x - \frac{\pi}{3}\right) + 1$ ; (2)(i)[ $\sqrt{3} + 1, 3$ );(ii) 易得 f(x) 在 [ $-\frac{\pi}{6}, \frac{5\pi}{6}$ ] 上单调递增,故 f(x) 在 [0,1] 上单调递增;又  $0 < \frac{\pi}{2} - \beta < \alpha < \frac{\pi}{2}$ ,从而  $\sin \alpha > \sin(\frac{\pi}{2} - \beta) = \cos \beta$ ,于是  $f(\sin \alpha) > f(\cos \beta)$ 

- **2.1**  $2k\pi(k \in \mathbb{Z})$
- **2.2** C
- **2.3** C
- 2.5 D
- **2.6**  $\tan 0.8 > \sin 3 > \cos 3$

**2.7** 
$$\left[k\pi - \frac{5\pi}{12}, k\pi + \frac{\pi}{12}\right], k \in \mathbb{Z}$$

- **2.8**  $\frac{\pi}{6}$
- **2.9**  $\left(0, \frac{3}{2}\right]$

**2.10** (1) $y = 2\sin(2x + \frac{\pi}{3})(\varphi = k\pi - \frac{2\pi}{3}$  即可); (2) 略; (3) 将  $y = \sin x$  图像上所有点向左平移  $\frac{\pi}{3}$  个单位得到  $y = \sin(x + \frac{\pi}{3})$  的图像;再把  $y = \sin(x + \frac{\pi}{3})$  的图像上所有点的横坐标缩短到原来的  $\frac{1}{2}$ (纵坐标不变),得到  $y = \sin(2x + \frac{\pi}{3})$  的图像;最后把  $y = \sin(2x + \frac{\pi}{3})$  的图像上所有点的纵坐标伸长到原来的 2 倍 (横坐标不变),即可得到函数 y = f(x) 的图像.

**2.11** (1)
$$y = \sqrt{2} \sin(\frac{\pi}{8}x + \frac{\pi}{4});$$
 (2) $[-\sqrt{2}, 0]$ 

**2.12** (1)
$$M = 3, m = -1, T = \frac{2\pi}{\omega};$$
 (2) $\frac{2\pi}{\omega} \le 1, \ \omega = 7$ 

**2.13** (1)(提示: 若 
$$0 < T < \pi$$
, 令  $x = 0$ , 得  $T = \frac{\pi}{2}$ , 不符); (2)(提示:  $f\left[k\left(x + \frac{T}{k}\right)\right] = f(kx + T) = f(kx)$ )