CSCI567 Machine Learning (Fall 2017)

Prof. Fei Sha

U of Southern California

Lecture on Oct. 19, 2017

Outline

- Administration
- Review of last lecture
- Generative versus discriminative
- Density Estimation

Outline

- Administration
- Review of last lecture
- Generative versus discriminative
- 4 Density Estimation

Schedule change

- Quiz 2 is to be moved to 11/2. But please wait for the official announcement.
- Next Tuesday's lecture is dedicated to regrading. Please come for either the standard solution if you cannot make discussion section or regrading.
- DEN students will need to schedule regrading sessions separately with TAs.

Outline

- Administration
- Review of last lecture
- Generative versus discriminative
- 4 Density Estimation

Formal definition of Naive Bayes

General case

Given a random variable $X \in \mathbb{R}^D$ and a dependent variable $Y \in [C]$, the Naive Bayes model defines the joint distribution

$$P(X = x, Y = y) = P(Y = y)P(X = x|Y = y)$$
 (1)

$$= P(Y = y) \prod_{d=1}^{D} P(X_d = x_d | Y = y)$$
 (2)

Special case (i.e., our model of spam emails)

Assumptions

- All X_d are categorical variables from the same domain $x_d \in [K]$, for example, the index to the unique words in a dictionary.
- $P(X_d = x_d | Y = y)$ depends only on the value of x_d , not d itself, namely, orders are not important (thus, we only need to count).

Simplified definition

$$P(X = x, Y = c) = P(Y = c) \prod_{k} P(k|Y = c)^{z_k} = \pi_c \prod_{k} \theta_{ck}^{z_k}$$

where z_k is the number of times k in x.

Note that we only need to enumerate in the product, the index to the x_d 's possible values. On the previous slide, however, we enumerate over d as we do not have the assumption there that order is not important.

Learning problem

Training data

$$\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{\mathsf{N}} \to \mathcal{D} = \{(\{z_{nk}\}_{k=1}^{\mathsf{K}}, y_n)\}_{n=1}^{\mathsf{N}}$$

Goal

Learn $\pi_c, c=1,2,\cdots$, C, and $\theta_{ck}, \forall c \in [\mathsf{C}], k \in [\mathsf{K}]$ under the constraint

$$\sum_{c} \pi_c = 1$$

and

$$\sum_{k} \theta_{ck} = \sum_{k} P(k|Y=c) = 1$$

as well as those quantities should be nonnegative.

Estimating $\{\pi_c\}$

We want to maximize

$$\sum_c \log \pi_c \times (\# \text{of data points labeled as c})$$

Intuition

- Similar to roll a dice (or flip a coin): each side of the dice shows up with a probability of π_c (total C sides)
- And we have total N trials of rolling this dice

Solution

$$\pi_c^* = \frac{\# \text{of data points labeled as c}}{\mathsf{N}}$$

Estimating
$$\{\theta_{ck}, k = 1, 2, \cdots, K\}$$

We want to maximize

$$\sum_{n:y_n=c,k} z_{nk} \log \theta_{ck}$$

Intuition

- Similar to roll a dice with color c: each side of the dice shows up with a probability of θ_{ck} (total K slides)
- And we have total $\sum_{n:u_n=c,k} z_{nk}$ trials.

Solution

$$\theta_{ck}^* = \frac{\text{\#of side-k shows up in data points labeled as c}}{\text{\#of all slides in data points labeled as c}}$$

Classification rule

Given an unlabeled data point $x=\{z_k, k=1,2,\cdots,\mathsf{K}\}$, label it with

$$y^* = \arg\max_{c \in [C]} P(y = c|x) \tag{3}$$

$$= \arg\max_{c \in [\mathsf{C}]} P(y = c) P(x|y = c) \tag{4}$$

$$= \arg\max_{c} [\log \pi_{c} + \sum_{i} z_{k} \log \theta_{ck}]$$
 (5)

Naive Bayes is a linear classifier

Fundamentally, what really matters in deciding decision boundary is

$$w_0 + \sum_k z_k w_k$$

This is the same as logistic regression's decision boundary. However, we estimate *parameters* differently.

Difference and similarity: have you filled the blank yet?

	Logistic regression	Naive Bayes
Similar	Linear classifier	Linear classifier
Difference	?	?

Outline

- Administration
- Review of last lecture
- Generative versus discriminative
 - Contrast Naive Bayes and logistic regression
 - Another example: Gaussian discriminant analysis
- 4 Density Estimation

Naive Bayes and logistic regression: two different modeling paradigms

- Setup of the learning problem Suppose the training data is from an ${\it unknown}$ joint probabilistic model $p({\bm x},y)$
- Differences in assuming models for the data
 - the generative approach requires we specify the model for the joint distribution (such as Naive Bayes), and thus, maximize the *joint* likelihood $\sum_n \log p(\boldsymbol{x}_n, y_n)$
 - the discriminative approach (discriminative) requires only specifying a model for the conditional distribution (such as logistic regression), and thus, maximize the *conditional* likelihood $\sum_n \log p(y_n|x_n)$

Naive Bayes and logistic regression: two different modeling paradigms

- Setup of the learning problem Suppose the training data is from an ${\it unknown}$ joint probabilistic model $p({\bm x},y)$
- Differences in <u>assuming</u> models for the data
 - the generative approach requires we specify the model for the joint distribution (such as Naive Bayes), and thus, maximize the *joint* likelihood $\sum_n \log p(\boldsymbol{x}_n, y_n)$
 - the discriminative approach (discriminative) requires only specifying a model for the conditional distribution (such as logistic regression), and thus, maximize the *conditional* likelihood $\sum_n \log p(y_n|x_n)$
- Differences in computation
 - Sometimes, modeling by discriminative approach is easier
 - Sometimes, parameter estimation by generative approach is easier

Determining sex (man or woman) based on measurements

Generative approach

Propose a model of the joint distribution of (x = height, y = sex)

our data

Sex	Height
1	6'
2	5'2"
1	5'6"
1	6'2"
2	5.7"
•••	

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).

Note: This is similar to Naive Bayes for detecting spam emails.

Model of the joint distribution

$$p(x,y) = p(y)p(x|y)$$

$$= \begin{cases} p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1 \\ p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} & \text{if } y = 2 \end{cases}$$

$$(7)$$

where $p_1+p_2=1$ represents two *prior* probabilities that x is given the label 1 or 2 respectively. p(x|y) is called *class distributions*, which we have assumed to be Gaussians.

Parameter estimation

Likelihood of the training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{1, 2\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

$$= \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

$$+ \sum_{n:y_n=2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}} \right)$$

Parameter estimation

Likelihood of the training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{1, 2\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

$$= \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

$$+ \sum_{n:y_n=2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}} \right)$$

Maximize the likelihood function

$$(p_1^*, p_2^*, \mu_1^*, \mu_2^*, \sigma_1^*, \sigma_2^*) = \arg\max\log P(\mathcal{D})$$

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$p(y=1|x) \ge p(y=2|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \ge p(x|y=2)p(y=2)$$

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$p(y=1|x) \ge p(y=2|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \ge p(x|y=2)p(y=2)$$

Namely,

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log \sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log \sqrt{2\pi}\sigma_2 + \log p_2$$

Decision boundary

As before, the Bayes optimal one under the assumed joint distribution depends on

$$p(y=1|x) \ge p(y=2|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \ge p(x|y=2)p(y=2)$$

Namely,

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log\sqrt{2\pi}\sigma_2 + \log p_2$$

 $\Rightarrow ax^2 + bx + c \ge 0$ \leftarrow the decision boundary not *linear*!

Example of nonlinear decision boundary

Note: the boundary is characterized by a quadratic function, giving rise to the shape of parabolic curve.

A special case: what if we assume the two Gaussians have the same variance?

We will get a linear decision boundary

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log\sqrt{2\pi}\sigma_2 + \log p_2$$

with $\sigma_1 = \sigma_2$, we have

$$bx + c \ge 0$$

A special case: what if we assume the two Gaussians have the same variance?

We will get a linear decision boundary

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log\sqrt{2\pi}\sigma_2 + \log p_2$$

with $\sigma_1 = \sigma_2$, we have

$$bx + c \ge 0$$

Note: equal variances across two different categories could be a very strong assumption.

For example, from the plot, it does seem that the *male* population has slightly bigger variance (i.e., bigger eclipse) than the *female* population. So the assumption might not be applicable.

Mini-summary

Gaussian discriminant analysis

A generative approach, assuming the data modeled by

$$p(x,y) = p(y)p(x|y)$$

where p(x|y) is a Gaussian distribution.

- Parameters (of those Gaussian distributions) are estimated by maximizing the likelihood
 - Computationally, estimating those parameters are very easy it amounts to computing sample mean vectors and covariance matrices
- Decision boundary
 - In general, nonlinear functions of x in this case, we call the approach quadratic discriminant analysis
 - In the special case we assume equal variance of the Gaussian distributions, we get a linear decision boundary we call the approach *linear discriminant analysis*

→ロト→□ト→ミト→ミ りへ(

So what is the discriminative counterpart?

Intuition

The decision boundary in Gaussian discriminant analysis is

$$ax^2 + bx + c = 0$$

Let us model the conditional distribution analogously

$$p(y|x) = \sigma[ax^{2} + bx + c] = \frac{1}{1 + e^{-(ax^{2} + bx + c)}}$$

Or, even simpler, going after the decision boundary of linear discriminant analysis

$$p(y|x) = \sigma[bx + c]$$

Both look very similar to logistic regression — i.e. we focus on writing down the *conditional* probability, *not* the joint probability.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

Does this change how we estimate the parameters?

First change: a smaller number of parameters to estimate

Our models are only parameterized by a,b and c. There is no prior probabilities (p_1, p_2) or Gaussian distribution parameters (μ_1, μ_2, σ_1) and σ_2 .

Second change: we need to maximize the conditional likelihood $p(\boldsymbol{y}|\boldsymbol{x})$

$$(a^*, b^*, c^*) = \arg\min - \sum_{n} \{ y_n \log \sigma(ax_n^2 + bx_n + c)$$
 (8)

+
$$(1 - y_n) \log[1 - \sigma(ax_n^2 + bx_n + c)]$$
 (9)

Computationally, much harder!

4 D F 4 D F 4 D F 5000

How easy for our Gaussian discriminant analysis?

Example

$$p_1 = \frac{\text{\# of training samples in class 1}}{\text{\# of training samples}}$$
 (10)

$$\mu_1 = \frac{\sum_{n:y_n=1} x_n}{\text{# of training samples in class 1}}$$
 (11)

$$\sigma_1^2 = \frac{\sum_{n:y_n=1} (x_n - \mu_1)^2}{\text{# of training samples in class 1}}$$
 (12)

Note: detailed derivation is in the books. They can be generalized rather easily to multi-variate distributions as well as multiple classes.

900 E 4E+4E+4D+

Generative versus discriminative: which one to use?

There is no fixed rule

- Selecting which type of method to use is dataset/task specific
- It depends on how well your modeling assumption fits the data
- Recent trend: big data is always useful for both!
 - Apply very complex discriminative models, such as deep learning methods, for building classifiers
 - Apply very complex generative models, such as nonparametric Bayesian methods, for modeling data

Outline

- Administration
- 2 Review of last lecture
- Generative versus discriminative
- Density Estimation
 - Histogram method
 - Kernel Density Estimation
 - Application

Motivating example

Suppose we have a sequence of real-valued observation

$$\mathcal{D}=x_1,x_2,x_3,\cdots,x_N$$

drawn from an unknown distribution

How do we estimate what is p(x)?

First solution

How about the following distribution

$$\hat{p}(x) = \frac{1}{N} \sum_{n=1}^{N} \delta(x - x_n)$$

where the $\delta(\cdot)$ is the Dirac function

$$\delta(z)=1$$
 if and only if $z=0$

The problem: what does $\hat{p}(x)$ look like?

This does not seem good as

$$\hat{p}(x) = 0$$

for any x that is not in the training set!

A better way

Assume our probability density function p(x) is smooth

Then what is the probability a data point falling into the range of $[x-h \ x+h]$ if h is small?

This is

$$P(x' \in [x - h \ x + h]) = \int_{x-h}^{x+h} p(x)dx \approx 2hp(x)$$

where we assume that h is so small such that p(x) is near constant in this interval.

October 19, 2017

What is a good estimate of this probability?

$$P(x' \in [x-h \ x+h]) = \frac{\# \text{training data samples } \in [x-h \ x+h]}{N}$$

Thus, we can approximate

$$p(x) \approx \hat{p}(x) = \frac{\# \text{training data samples } \in [x-h \ x+h]}{2hN}$$

Naive/Silverman Density Estimator

Fundamentally, we are just computing histogram to count the number of points falling different bins, decided by $bin\ width\ h$.

Understand this estimator better

Our naive estimator

$$\hat{p}(x) = \frac{1}{2Nh} \# \text{training data samples } \in [x-h \ x+h]$$

We can rewrite it as

$$\hat{p}(x) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

where the *kernel* $K(\cdot)$ is defined as

$$K(u) = \begin{cases} \frac{1}{2} & \text{if } |u| < 1\\ 0 & \text{otherwise} \end{cases}$$

Note that this kernel is *not* the kernel we have seen before in kernel methods (though they do have connections).

(ロ) 4個 > 4目 > 4目 > 目 り(C)

This kernel function is just a weight

$$K(u) = \left\{ \begin{array}{ll} \frac{1}{2} & \text{if } |u| < 1 \\ 0 & \text{otherwise} \end{array} \right.$$

We can see it as a weighted sum of different data points towards x

$$\hat{p}(x) = \sum_{n=1}^{N} \frac{1}{h} K\left(\frac{x - x_n}{h}\right) \frac{1}{N} = \sum_{n=1}^{N} K_h(x - x_n) \frac{1}{N}$$

where $\frac{1}{N}$ can be seen as the probability of data sample x_n .

In other words, our estimator is just a weighted average of training samples' empirical probability. (K_h is called scaled kernel function)

□▶ ◆圖▶ ◆臺▶ ◆臺▶ ○臺 ● 夕久◎

We can use different kernels

The only requirement is

$$\int_{-\infty}^{+\infty} K(u)du = 1, K(u) = K(-u)$$

This type of method is called *Parzen Window* method.

Example

Gaussian kernel

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}$$

The corresponding estimator is

$$\hat{p}(x) = \frac{1}{Nh} \sum_{n=1}^{N} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-x_n)^2}{2h^2}}$$

Effect of *h*

Choosing optimal h is not easy

We can use cross-validation

- On which dataset?
- Measure what kind of performance metric?

There are several theoretically-motivated ways of choosing the bandwidth

Please check out the wikipedia page

https://en.wikipedia.org/wiki/Kernel_density_estimation as well as free implementation of this method.

Extension to multivariate distribution

Example of using Gaussian kernel

$$\hat{p}(\boldsymbol{x}) = \frac{1}{N} \sum_{n=1}^{n} \frac{1}{\sqrt{(2\pi)^{D} |\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_n)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{x}_n)}$$

Applying to a two-mixture Gaussian distribution

Please see the wikipedia page https://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation for more details and sample codes (you do not need to read about how the optimal bandwidth matrix is selected.)

Applications

- Outlier detection
 Please read the following paper https:
 //link.springer.com/chapter/10.1007/978-3-540-73499-4_6
 . This is considered supplementary reading material and is not required.
- Nonparametric regression

Nonparametric regression

Consider the supervised learning problem for regression, we are given the training data

$$\mathcal{D} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$$

How to estimate the corresponding value of y for arbitrary x?

We will see how kernel density estimator can be helpful

Probabilistic models

Let us start with the joint model

$$p(\boldsymbol{x}, y) = p(y|\boldsymbol{x})p(\boldsymbol{x})$$

We have a way to estimate p(x) from the kernel density estimator.

But we do not know the joint probability p(x,y). We are making the following modeling assumption

$$p(\boldsymbol{x}, y) = \sum_{n} K_h(\boldsymbol{x} - \boldsymbol{x}_n) K_{h'}(y - y_n)$$

What is the optimal value assign to x then?

It turns out to be the expectation of (reminiscent of Bayes optimal classifier?)

$$p(y|\boldsymbol{x})$$

Thus, we need to compute this conditional probability

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}, y)}{p(\mathbf{x})} = \frac{\sum_{n} K_h(\mathbf{x} - \mathbf{x}_n) K_{h'}(y - y_n)}{\sum_{n} K_h(\mathbf{x} - \mathbf{x}_n)}$$

Now that we can compute its expectation

$$\mathbb{E}[p(y|\boldsymbol{x})] = \frac{\sum_n K_h(\boldsymbol{x} - \boldsymbol{x}_n) \mathbb{E}[K_{h'}(y - y_n)]}{\sum_n K_h(\boldsymbol{x} - \boldsymbol{x}_n)} = \frac{\sum_n K_h(\boldsymbol{x} - \boldsymbol{x}_n) y_n}{\sum_n K_h(\boldsymbol{x} - \boldsymbol{x}_n)}$$

why the last step is true? This has left as a take-home exercise. (Hint: please check the properties of the kernel)

Nadaraya – Watson (kernel) regression

Given x and training dataset \mathcal{D} we predict

$$y = \frac{\sum_{n} K_h(\boldsymbol{x} - \boldsymbol{x}_n) y_n}{\sum_{n} K_h(\boldsymbol{x} - \boldsymbol{x}_n)}$$

Note that this is a non-parametric method.

It is easy to see this is a weighted average

$$y = \sum_{n} \frac{K_h(\boldsymbol{x} - \boldsymbol{x}_n)}{\sum_{n'} K_h(\boldsymbol{x} - \boldsymbol{x}_{n'})} y_n = \sum_{n} w(x, x_n) y_n$$

with

$$\sum_{n} w(x, x_n) = 1$$

Examples

See http://mccormickml.com/2014/02/26/kernel-regression/ for details and demo codes.