우연끝시각을 가지는 반련립형고차원 정-역방향확률미분방정식의 한가지 수치풀이도식

김건군, 김문철

우리는 확률조종론, 금융수학, 편미분방정식연구에서 의의를 가지는 우연끝시각을 가지는 정 - 역방향확률미분방정식의 한가지 수치풀이방법을 연구하였다.

선행연구[1]에서는 오일러도식에 기초하여 우연끝시각을 가지는 역방향확률미분방정식의 수치풀이방법을 제기하였으며 선행연구[2]에서는 공간살창을 효과적으로 구성함으로써 정지시각을 모의하지 않고 우연끝시각을 가지는 역방향확률미분방정식의 수치풀이를 구하는 방법을 제기하였다. 그러나 선행연구에서 제기된 방법들은 공간살창을 리용하는것으로 하여 고차원문제들에 적용할수 없는 제한성을 가지고있다.

선행연구[4]에서는 몽뗴-까를로방법을 리용하여 고차원2계반선형편미분방정식의 효과적인 수치풀이도식을 제기하였다.

론문에서는 선행연구[4]의 착상에 기초하여 우연끝시각을 가지는 한가지 형태의 고 차원정-역방향확률미분방정식의 수치풀이도식을 제기하고 수치실험을 통하여 도식의 효 과성을 검증하였다.

상수 T>0에 대하여 (Ω, \mathcal{F}, P) 가 완비확률공간이고 $W_t = (W_t^1, \cdots, W_t^d)^T$ 를 이 우에서 정의된 d차원브라운운동이라고 하자. $\{\mathcal{F}_t^1\}_{0 \le t \le T}$ 는 이 브라운운동에 의하여 생성된 완비인 려파기라고 하자. 이때 확률토대 $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t^1\}_{0 \le t \le T})$ 우에서 정의된 우연끝시각을 가지는 정 - 역방향확률미분방정식

$$\begin{cases} X_{t} = x_{0} + \int_{0}^{t} \mu(s, X_{s}) ds + \int_{0}^{t} \sigma(s, X_{s}) dW_{s} \\ Y_{t} = \varphi(\tau, X_{\tau}) + \int_{t \wedge \tau}^{\tau} f(s, X_{s}, Y_{s}) ds - \int_{t \wedge \tau}^{\tau} Z_{s} dW_{s} \end{cases}, t \in [0, T]$$
(1)

를 론의한다. 생성자 $f(t, x, y):[0, T] \times \mathbf{R}^d \times \mathbf{R} \to \mathbf{R}$ 는 립쉬츠함수이다. 그리고 $D \subset \mathbf{R}^d$ 는 단편미끈한 열린련결모임, $\tau := \inf\{t > 0, (t, X_t) \notin [0, T) \times D\}$ 는 $(t, X_t)_{t \le T}$ 의 $[0, T) \times D$ 로부터의 첫리탈시각이다.

이제 다음의 반선형편미분방정식의 디리흘레문제를 론의하자.

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \cdot \mu(t, x) + \frac{1}{2}\sigma\sigma^{T} : \frac{\partial^{2} u}{\partial x^{2}} + f(t, x, u) = 0, (t, x) \in [0, T] \times D \\ u(T, x) = \varphi(T, x), x \in \overline{D} \\ u(t, x) = \varphi(t, x), (t, x) \in [0, T] \times \partial D \end{cases}$$

$$(2)$$

여기서 $A: B = tr(AB^{T})$ 를 의미한다.

시공간점 $(t, x) \in [0, T) \times D$ 에서 출발하는 정 — 역방향확률미분방정식

$$\begin{cases} X_{s}^{t,x} = x + \int_{t}^{s} \mu(r, X_{r}^{t,x}) dr + \int_{t}^{s} \sigma(r, X_{r}^{t,x}) dW_{r} \\ Y_{s}^{t,x} = \varphi(\tau_{t,x}, X_{\tau_{t,x}}^{t,x}) + \int_{s \wedge \tau_{t,x}}^{\tau_{t,x}} f(r, X_{r}^{t,x}, Y_{r}^{t,x}) dr - \int_{s \wedge \tau_{t,x}}^{\tau_{t,x}} Z_{r}^{t,x} dW_{r} \end{cases}$$
(3)

를 생각하자. 여기서 $\tau_{t,x} := \inf\{s > t, (s, X_s^{t,x}) \notin [0, T) \times D\}$ 이다.

보조정리[3] 식 (2)의 풀이를 $u \in \mathbb{C}^{1,2}([0,T] \times \overline{D})$ 라고 할 때

$$Y_{s \wedge \tau_{t,x}}^{t,x} = u(s \wedge \tau_{t,x}, X_{s \wedge \tau_{t,x}}^{t,x}), Z_{s \wedge \tau_{t,x}}^{t,x} = \frac{\partial u}{\partial x} \sigma(s \wedge \tau_{t,x}, X_{s \wedge \tau_{t,x}}^{t,x}), s \in [0, T)$$

$$(4)$$

는 식 (3)의 유일한 풀이이다. 특히 $Y_t^{t,x} = u(t, x)$ 가 성립한다.

식 (3)에서 s대신에 t를 대입하면 다음과 같다.

$$Y_t^{t,x} = \varphi(\tau_{t,x}, \ X_{\tau_{t,x}}^{t,x}) + \int_{t}^{\tau_{t,x}} f(r, \ X_r^{t,x}, \ Y_r^{t,x}) dr - \int_{t}^{\tau_{t,x}} Z_r^{t,x} dW_r$$

보조정리와 웃식으로부터

$$u(t, x) = \varphi(\tau_{t,x}, X_{\tau_{t,x}}^{t,x}) + \int_{t}^{\tau_{t,x}} f(s, X_{s}^{t,x}, u(s, X_{s}^{t,x})) ds - \int_{t}^{\tau_{t,x}} Z_{s}^{t,x} dW_{s}$$

이다.

량변에 수학적기대값을 취하면

$$u(t, x) = E[\varphi(\tau_{t,x}, X_{\tau_{t,x}}^{t,x})] + E\begin{bmatrix} \tau_{t,x} \\ \int_{t}^{\tau_{t,x}} f(s, X_{s}^{t,x}, u(s, X_{s}^{t,x})) ds \end{bmatrix}$$
 (5)

가 성립한다.

식 (5)를 고찰해보면 왼변과 오른변에 다같이 미지함수 u(t, x)를 포함하고있다.

역방향오일러도식은 이 식에 기초하여 시간구간을 분할한 다음 오른변의 적분을 구 간량끝점에서의 함수값들에 의하여 근사시키고 공간분할에 의한 구적법들을 리용하는 도 식이다.

그러나 이 공간분할에 의한 방법은 차원수가 높아짐에 따라 계산량이 지수함수적으로 증가하기때문에 고차원(실례로 100차원)문제들에서는 쓸수 없다.

선행연구[4]에서는 정방향방정식이 선형인 경우에 시간분할을 진행하지 않고 오른변의 적분을 몽뗴-까를로방법에 의하여 근사시키는 재귀적인 수치풀이도식을 다음과 같이제기하였다

$$\begin{cases} U_{n}^{p}(t, x) = \widetilde{E} \left[\frac{\mathbf{1}_{\{t+\tau \geq T\}}}{\overline{F}(T-t-\tau)} \varphi(X_{T}) + \frac{\mathbf{1}_{\{t+\tau < T\}}}{\rho(\tau)} f(t+\tau, X_{t+\tau}, U_{n+1}^{p}(t+\tau, X_{t+\tau})) \right] \\ U_{p}^{p}(t, x) = \varphi(T, x) \end{cases}$$

여기서 \widetilde{E} 은 몽뗴-까를로방법에 의한 기대값근사를 의미한다.

정리 함수 $\rho(x)$ 를 $\rho(x) = \lambda \exp(-\lambda x)$ 로 정의하고 ν 를 파라메터가 λ 인 지수분포에 따르는 우연량이라고 가정하자. 이때 다음식이 성립한다.

$$u(t, x) = E[\varphi(X_{\tau_{t,x}}^{t,x})] + E\left[\mathbf{1}_{\{\nu \le \tau_{t,x} - t\}} \frac{f(t+\nu, X_{t+\nu}^{t,x}, u(t+\nu, X_{t+\nu}^{t,x}))}{\rho(\nu)}\right]$$

증명 식 (5)를 변형하면

$$u(t, x) = E[\varphi(X_{\tau_{t,x}}^{t,x})] + E\begin{bmatrix} \tau_{t,x} \\ \int_{t}^{t} f(s, X_{s}^{t,x}, u(s, X_{s}^{t,x})) ds \end{bmatrix} =$$

$$= E[\varphi(X_{\tau_{t,x}}^{t,x})] + E\begin{bmatrix} \tau_{t,x}^{-t} \\ \int_{0}^{t} f(t+r, X_{t+r}^{t,x}, u(t+r, X_{t+r}^{t,x})) dr \end{bmatrix} =$$

$$= E[\varphi(X_{\tau_{t,x}}^{t,x})] + E\begin{bmatrix} \tau_{t,x}^{-t} \\ \int_{0}^{t} \frac{f(t+r, X_{t+r}^{t,x}, u(t+r, X_{t+r}^{t,x}))}{\rho(r)} \rho(r) dr \end{bmatrix}$$

이다. 이때 고정된 ω 에 대하여

$$\int_{0}^{\tau_{t,x}-t} \frac{f(t+r,\ X_{t+r}^{t,x},\ u(t+r,\ X_{t+r}^{t,x}))}{\rho(r)} \rho(r) dr = E \left[\mathbf{1}_{\{\tau \leq \tau_{t,x}-t\}} \frac{f(t+\tau,\ X_{t+\tau}^{t,x},\ u(t+\tau,\ X_{t+\tau}^{t,x}))}{\rho(\tau)} \right]$$

로 표시할수 있으므로

$$u(t, x) = E[\varphi(X_{\tau_{t,x}}^{t,x})] + E\left[E\left[\mathbf{1}_{\{v \le \tau_{t,x} - t\}} \frac{f(t+v, X_{t+v}^{t,x}, u(t+v, X_{t+v}^{t,x}))}{\rho(v)}\right]\right]$$

이다.(증명끝)

정리로부터 정방향방정식이 비선형이고 우연끝시각을 가진 정 — 역방향확률미분방정식 (1)의 수치풀이도식을 다음과 같이 제기하였다.

반복단계 $(0 \le n < p)$

$$\begin{cases}
U_n^p(t, x) = \frac{1}{M_1} \sum_{i=1}^{M_1} \varphi(\overline{\tau}_{t,x}^i, \overline{X}_{\overline{\tau}_{t,x}^i}^{i,t,x}) + \frac{1}{M_2} \sum_{i=1}^{M_2} \mathbf{1}_{\{v^i < \overline{\tau}_{t,x}^i - t\}} \frac{f(\cdot, U_{n+1}^p)(t + v^i, \overline{X}_{t+v^i}^{i,t,x})}{\rho(v^i)} \\
U_n^p(t, x) = \varphi(t, x), (t, x) \in \partial([0, T) \times D)
\end{cases}$$
(6)

마감단계(n = p)

$$U_{p}^{p}(t, x) = \varphi(T, x) \tag{7}$$

주의 도식에서 t=T로 되거나 $x \notin D$ 이면 n < p여도 재귀식이 끝나게 된다.

여기서 $\overline{X}^{t,x}_{\cdot}$ 는 분할 $\pi:0=t_0 < t_1 < \cdots < t_m = T$ $(h\coloneqq t_i-t_{i-1})$ 에 대하여 오일러도식

$$\begin{cases} \overline{X}_{t}^{t,x} = x \\ \overline{X}_{t_{i}}^{t,x} = \overline{X}_{t_{i-1}}^{t,x} + \mu(t_{i-1}, \ \overline{X}_{t_{i-1}}^{t,x})(t_{i} - t_{i-1}) + \sigma(t_{i-1}, \ \overline{X}_{t_{i-1}}^{t,x})(W_{t_{i}} - W_{t_{i-1}}) \\ \overline{X}_{s}^{t,x} = \overline{X}_{\phi(s)}^{t,x} \end{cases}$$

에 의한 근사이며 $\phi(s) = \max\{t_i, i \le n : t_i \le s\}$ 이다.

또한 $\overline{X}^{i,t,x}$ 는 $\overline{X}^{i,t,x}_s$ 와 독립이고 동일분포하는 우연과정들이며 $\overline{\tau}^i_{t,x}=\inf\{s\in\pi:\overline{X}^{i,t,x}_s\notin D\}$ $\wedge T$, v^i 는 파라메터가 $\lambda>0$ 인 지수분포에 따르는 우연량이다.

수치풀이도식 (6), (7)에 대한 수치실험을 진행하였다. Intel(R) Core(TM) i5-3320M (2.60GHz)에서 Matlab 2013을 리용하여 실험을 진행하였으며 d=100 차원문제의 풀이를 모의하였다.

T=1로 놓고 수치실험을 진행하였으며 이러한 모의를 10번 진행하여 평균과 표준편차, 실행시간을 평가하였다.

실레 다음의 우연끝시각을 가지는 정-역방향확률미분방정식을 론의하자.

$$\begin{cases} X_{t} = \int_{0}^{t} \sigma_{0} dW_{s}, & 0 \le t \le T \\ Y_{\tau} = \frac{\exp(X_{\tau} \cdot b + \tau)}{\exp(X_{\tau} \cdot b + \tau) + 1} + \int_{t \wedge \tau}^{\tau} \sigma_{0}^{2} \left(Y_{s} - \frac{2 + \sigma_{0}^{2} d}{2\sigma_{0}^{2} d} \right) (1 - Y_{s}^{2}) ds - \int_{t \wedge \tau}^{\tau} Z_{s} dW_{s} \end{cases}$$

여기서

$$\sigma_0 = 0.25 \cdot \mathbf{I}_{d \times d} , \quad b = (1, \dots, 1)^{\mathrm{T}}$$

$$D = \{ x \in \mathbf{R}^d : ||x||_1 \le 5 \} , \quad \tau := \inf\{ t > 0, \ (t, X_t) \notin [0, T) \times D \}$$

이다. 이 확률미분방정식의 해석적풀이는

$$Y_t = \frac{\exp(X_t \cdot b + t)}{\exp(X_t \cdot b + t) + 1}$$

이다. t = 0 에서의 풀이는 $Y_0 = 0.5$ 이다.

표에 M_1, M_2, λ 값들에 대한 수치실험결과들을 보여주었다.

표. 수치실험결과								
반복회수(<i>M</i> ₂)	3				5			
$1/\lambda$	0.2				0.1			
반복회수 (M_1)	100		1 000		100		1 000	
m	50	200	50	200	50	200	50	200
평 균	0.517	0.513	0.509	0.515	0.514	0.516	0.514	0.513
표준편차	0.012	0.017	0.005	0.002	0.016	0.013	0.003	0.004
실행시간(s)	0.3	1.0	4.2	8.9	2.4	2.2	22.3	24.5

실험결과로부터 고차원인 경우 론문에서 제기한 도식이 아주 효과적이라는것을 알수 있다.

참 고 문 헌

- [1] B. Bouchard et al.; Bernoulli, 15, 4, 1117, 2009.
- [2] J. Yang et al.; Journal of Computational Mathematics, 36, 2, 237, 2018.
- [3] S. Peng, Stochastics and Stochastic Reports, 37, 61, 1991.
- [4] X. Warin, Monte Carlo Methods and Applications, 24, 4, 225, 2018.

주체109(2020)년 9월 5일 원고접수

A Numerical Scheme for High-dimensional Decoupled Forward-backward Stochastic Differential Equations with Random Final Time

Kim Kon Gun, Kim Mun Chol

We propose a numerical scheme for high-dimensional decoupled forward-backward stochastic differential equations with random final time using Monte-Carlo Method and conduct a numerical test to illustrate the scheme.

Keywords: Monte-Carlo method, forward-backward stochastic differential equation