

Tutorium 42, #2

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Rückblick: Alphabete

Definition

Ein Alphabet ist eine *endliche, nichtleere* Menge aus Zeichen / Symbolen. Was dabei ein Zeichen ist, ist nicht eingeschränkt.

Beipielalphabete:

- 1. {H, a, n, d, y}
- 2. {Handy}
- 3. {Ha, ndy}

Können alle "Handy" erstellen/schreiben

Worte

Definition

Ein Wort w aus einem Alphabet A ist eine Folge von Zeichen aus A

Beipielworte aus $A = \{H, a, n, d, y, -, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$

- 1. Handy
- 2. H1a2n3d4y5
- 3. —aa——HH1-
- 4. 017341856397

Folgen

Definition

 Eine Folge ist eine Auflistung von Objekten, welche fortlaufend nummeriert sind.

Wofür brauchen wir Folgen?

- 13tes Zeichen aus dem Wort? e.
- Länge des Wortes? 13.

Worte als Abbildungen

Definition

■ Ein Wort ist eine surjektive Abb. $w : \mathbb{Z}_n \to B$ mit $B \subseteq A$

formal: w = Handy $w : \mathbb{Z}_5 \rightarrow \{H, a, n, d, y\}$ mit w(0) = H, w(1) = a, w(2) = n, w(3) = d, w(4) = y

Leerzeichen

Achtung

 Ein Leerzeichen ist auch nur wieder ein Symbol. es trennt Wörter nach der Definition nicht

Beipielwort aus A = {H, a, l, o, W, e, t, } ist w = Hallo Welt

- Eine Folge von Zeichen
- Ein Wort, nicht zwei (auch wenn durch Leerzeichen getrennt)
- Leerzeichen manchmal auch _ geschrieben

Leeres Wort

Definition

lacksquare Das leere Wort ist die Abbildung $\epsilon: \mathbb{Z}_0 o \{\}$

Das leere Wort hat Länge $|\epsilon|$ = 0, da es aus 0 Zeichen besteht

Konkatenation

Definition

- $|w_1| = m \text{ und } |w_2| = n$
- $\mathbf{w}_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2. \ i \mapsto \left\{ egin{array}{ll} w_1(i), & 0 \leq i < m \\ w_2(i-m), & m \leq i < m+n \end{array} \right.$
- Hintereinanderschreiben von 2 Worten
- Gtrennt durch einen ., kann auch weggelassen werden
- Zuerst die m Buchstaben des ersten Wortes, dann die n Buchstaben des zweiten Wortes
- leeres Wort ϵ ist neutrales Element der Konkatenation $(\mathbf{w} \cdot \mathbf{\epsilon} = \mathbf{\epsilon} \cdot \mathbf{w} = \mathbf{w})$
- Konkatenation ist nicht kommutativ, aber assoziativ

Potenzen

Definition

A* ist die Menge aller Wörter über dem Alphabet A

Definition

Aⁿ ist die Menge aller Wörter der Länge n über dem Alphabet A

Definition

 w^n ist die n-fache Aneinanderreihung des Wortes w mit $w^0 = \epsilon$

Formale Sprachen

Sprache: Aussprache, Stil, Satzbau, Wortwahl

In der Informatik: Aufbau vom Befehlen, Compiler, WWW-Seiten

Problem

Woher weiß der Computer ob das (Sprach-)Gebilde korrekt ist?

Formale Sprachen

Sprache: Aussprache, Stil, Satzbau, Wortwahl

In der Informatik: Aufbau vom Befehlen, Compiler, WWW-Seiten

Lösung

■ Eine formelle Sprache als Teilmenge von A* definiert was richtig ist und was nicht

Formale Sprachen: Beispiel

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., -, +}, F \subseteq A^* Formalsprache der Dezimaldarstellung aller Zahlen \in \mathbb{Q}

Formale Sprachen: Beispiel

A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., -, +}, F \subseteq A^* Formalsprache der Dezimaldarstellung aller Zahlen \in \mathbb{Q}

- +1234567890
- 236
- -310.25
- +-5
- **3**+
- **31..**
- -.+.-.+.-.+.-.+.-