Balance Tree

Yu-Tai Ching Department of Computer Science National Chiao Tung University

- Dictionary Problem,
- Array, Linked List, Tree.
- ▶ A "balance" tree supports $O(\log n)$ search time.
- ➤ A sequence of insertions or deletions may cause the tree out of balance,
- Can we maintain the balance of the search tree?

Months of the year example

- ► The Months of the year, JAN, FEB, MAR, APR, MAY, JUNE, JULY, AUG, SEPT, OCT, NOV, DEC.
- ▶ If they are inserted in this sequence, we get Figure 10.8
- ▶ If we can carefully construct a tree, we can obtain a balance tree as in Figure 10.9
- ▶ If the insertion sequence is sorted, we shall have a skew binary search tree.

AVL Tree

- ▶ In 1962, Adelson-Velskii and Landis introduced a binary tree structure that is balanced with respect to the heights of the subtrees.
- As a result, the height of the tree is bounded above by O(log n).
- ► The tree structure is called AVL tree.

An empty tree is height-balanced. If T is nonempty, let T_L and T_R be its left and right subtrees. Height of T_L and T_R are respectively h_L and h_R .

T is height balance iff

- 1. T_L and T_R are height balanced, and
- 2. $|h_L h_R| \leq 1$.

Definition: Balance factor, BF(T), of T in a binary tree is defined to be $h_L - h_R$. For any node in AVL tree, BF(T) = -1, 0, 1.

Insert the month into an AVL tree in this sequence, MAR, MAY, NOV, AUG, APR, JAN, DEC, JULY, FEB, JUNE, OCT, SEPT. Figure 10.11.

Rebalance Rotation

- If out of balance, rebalancing is carried out using 4 kinds of rotations, LL, RR, LR, and RL.
- LL and RR are symmetric. LR and RL are symmetric.
- ► Characterized by the nearest ancestor , *A*, of the inserted node, *Y*, whose balance factor becomes ±2.

- ▶ LL: new node *Y* is inserted into the left subtree of the left subtree of *A*.
- ▶ LR: Y is inserted in the right subtree of the left subtree of A.
- ▶ RR: Y is inserted in the right subtree of the right subtree of A.
- ▶ RL: *Y* is inserted in the left subtree of the right subtree of *A*.
- ► Figure 10.12, 10.13.

Multiway Search Tree

Motivation:

- Cost for a search in AVL tree depends on the number of node visited.
- ▶ What if the data is stored in the disk? A comparison = a disk access.
- ▶ If we can cache the data in a node, we can cache a "large node" *m*-way tree is proposed.

An *m*-way search tree is either empty or satisfies the following properties;

- 1. The root has at most m subtrees and has the following structure: $n, A_0, (E_1, A_1), (E_2, A_2), \ldots, (E_n, A_n)$ where $A_i, 0 \le i \le n < m$ are pointers to subtrees and the $E_i, 1 \le i \le n < m$ are elements. Each element E_i has a key E_i .K.
- 2. $E_i.K < E_{i+1}.K, 1 \le i \le n$.
- 3. Let $E_0.K = -\infty$ and $E_{n+1}.K = \infty$. All keys in the subtree A_i are less than $E_{i+1}.K$ and greater than $E_i.K$, $0 \le i \le n$.
- 4. The subtree A_i , $0 \le i \le n$ are also m-way search trees.

- ► The maximum number of nodes in a tree of degree *m* and height *h*,
- $ightharpoonup n = m^h 1$, then $h = \log_m n$.
- ▶ Searching in an *m*-way tree.

B-Tree

Definition: A B-Tree of order m is an m-way search tree that either is empty or satisfies the following properties,

- 1. The root node has at least two children.
- 2. All nodes other than the root node and external nodes has at least $\lceil m/2 \rceil$ children.
- 3. All external nodes are at the same level.
- ightharpoonup m = 3, nodes of B-Tree have degree 2, and 3, a 2-3 tree.
- ightharpoonup m = 4, nodes of R-Tree have degree 2, 3, and 4, a 2-3-4 tree.