

УНИКАЛЬНЫЙ ИНСТРУМЕНТ

СПЕЦИАЛЬНЫЙ АССОРТИМЕНТ ДЛЯ РОССИЙСКОГО РЫНКА

КОНЦЕВЫЕ ФРЕЗЫ

- Универсальные высокопроизводительные твердосплавные концевые фрезы

РУКОВОДСТВО ПО ВЫБОРУ

GMR66 КОЛ-ВО ЗУБЬЕВ 35°/37° (перемен. угол ФОРМА РЕЖУЩЕЙ КРОМКИ Плоский торец ИНСТРУМЕНТ ДЛЯ ФРЕЗЕРОВАНИЯ D3.0 PA3MEP MAX D25.0 4 **Уллиненные**

ТВЕРДЫЙ СПЛАВ

V7 Plus R

Высок

копроизво	одительные твердосплавнь различных опе		—— °	зы для		
	Рекомендуе		глично () ия об-ки :		Ī	Ĭ
исание териала	Состав / Структура / Термообр	работка	НВ	HRc		ш
	Около 0.15% С Отожженна	Я	125			0
	Около 0.45% С Отожженна	Я	190	13		0

ISO	3323	материала	Состав / Структур	ра / Термообработка	НВ	HRc	
			Около 0.15% С	Отожженная	125		0
	2		Около 0.45% С	Отожженная	190	13	0
	3	Нелегиров. сталь	Около 0.45% С	Закаленная	250	25	©
	4		Около 0.75% С	Отожженная	270	28	©
	5		Около 0.75% С	Закаленная	300	32	0
Р	6			Отожженная	180	10	©
	7	Низколегиров.		Закаленная	275	29	©
	8	сталь		Закаленная	300	32	0
	9			Закаленная	350	38	0
	10	Высоколегиров.		Отожженная	200	15	©
	11	сталь		Закаленная	325	35	©
	12	Hammanan	Феррит./Мартенс.	Отожженная	200	15	©
M	13	Нержавеющ. сталь	Мартенситная	Закаленная	240	23	©
	14	Claib	Аустенитная		180	10	©
	15	Copulă Ingrai	Перлитная /Ферри	тная	180	10	©
	16	Серый чугун	Перлитная (Мартен	нситная)	260	26	©
К	17	Высокопроч.	Ферритная		160	3	©
K	18	чугун	Перлитная		250	25	©
	19	Ковкий чугун	Ферритная		130		©
	20	NOBRINI TYLYH	Перлитная		230	21	©
	21	Алюминиевый	Не отверждаемая		60		
	22	сплав	Curable	Закаленная	100		
	23	Алюмин	≤ 12% Si, He отверж	кдаемая	75		
	24	литиевый сплав	≤ 12% Si, Curable	Закаленная	90		
N	25		> 12% Si, Не отверж	• •	130		
114	26	Медь и медн.	Cutting Alloys, PB>1		110		
	27	сплавы (Бронза/	CuZn, CuSnZn (Лату		90		
	28	Латунь)	CuSn, бессвинц. и эл	•	100		
	29	Неметаллич.	Дюропласт, пласти	K			
	30	материалы	Каучук, дерево				
	31		Fe Основа	Отожженная	200	15	0
	32	Жаропрочн.		Состаренная	280	30	0
	33	суперсплавы		Отожженная	250	25	0
S	34		Ni или Со Основа	Состаренная	350	38	0
	35	_		Литье	320	34	0
	36	Титановые	Чистый титан	2	400 Rm		0
	37	сплавы	Альфа+Бета спл.	Закаленная	1050 Rm		0
	38	C		Поверхностная цементация	550	40	
Н	39	Стали высокой		Закаленная	630	50	
	40	твердости		Литье	400	55	
	<i>A</i> 1			Зэкэпоппэа	550	60	

Ү-Покрытие

АРЕЗАНИЕ РЕЗЬБЫ

ТВЕРДОСПЛАВНЫЕ, С 4-МЯ ЗУБЬЯМИ, УКОРОЧЕННЫЕ

- ▶Специальная геометрия зубьев и переменный угол наклона спирали исключают вибрации
- ▶ Отличная производительность при обработке нержавеющей стали, низкоуглеродистой стали, чугуна, материалов с низкой/средней твердостью до HRc40

Артикул	Диаметр фрезы	Диаметр хвостовика	Длина реж. части	Общая длина	Ед.изм: мм Фаска
цилиндрич.	D1	D ₂	L1	L2	
GMR66030	3.0	6	11	57	0.10
GMR66040	4.0	6	14	57	0.15
GMR66050	5.0	6	16	57	0.15
GMR66060	6.0	6	16	57	0.20
GMR66080	8.0	8	22	63	0.20
GMR66100	10.0	10	25	72	0.30
GMR66120	12.0	12	29	83	0.35
GMR66140	14.0	14	29	83	0.40
GMR66160	16.0	16	35	92	0.40
GMR66180	18.0	18	35	92	0.50
GMR66200	20.0	20	41	104	0.50
GMR66250	25.0	25	41	104	0.50

Допуск на	диам. фрезы (мм)	Допуск на диам. хвостовика
Дo Ø12	0~-0.02	h5
От Ø12	0~-0.03	* Диам. хвост≥Ø12∶h6

																		(⊚:01	гличн	0 0:	Хорошо
ISO						P								M					I	K		
Материал		Нелег	ированн	ая сталь		Н	Іизколегі	ирован.	сталь	Вь	соколе сталь		Нерж	авеюща	я сталь	(Серый ч	угун [[]	Зысокоі чу	прочны гун	ІЙ Ковкі	ий чугун
VDI 3323	1	2	3	4	5	6	7	8	9	10	0	11	12	13	14		15	16	17	18	19	20
HRc		13	25	28	32	10	29	32	38	1.	5	35	15	23	10		10	26	3	25		21
HB	125	190	250	270	300	180	275	300	350	20	0	325	200	240	180	1	180	260	160	250	130	230
Recommend	0					0	0	0	0	(0	0	0	0		0	0	0	0	0	0
ISO					N									:	5						Н	
Материал	Алюминиевый Алюминиево-литиевы сплав сплав						медные ст нза/Латуі		Неметал материа		7	Жарог	рочные	суперс	плавы			новые новые	Закал ста	енная аль	Отбелен. чугун	Закален. чугун
VDI 3323	21	22	23	24	25	26	27	28	29	30	31	32	2 3	3 3	4 3	35	36	37	38	39	40	41
HRc											15	30) 2	5 3	8 3	34			55	60	42	55
HB	60	100	75	90	130	110	90	100			200	28	0 25	50 35	50 3	20	400 Rm	1050 Rm	550	630	400	550
Docormond) () () (\	\cap					

РЕКОМЕНДУЕМЫЕ УСЛОВИЯ

ОБРАБОТКИ

GMR66 серия

76 YG-1 CO., LTD.

С 4 ЗУБЬЯМИ - БОКОВОЕ ФРЕЗЕРОВАНИЕ И ОБ-КА ПАЗОВ

Vc = м/мин. fz = мм/зуб RPM = об./мин. FEED = мм/мин.

ISO	VDI	Маториал	А	e	А	р	Папацият						Диаме	етр (Ø)					
130	3323	Материал	Бок	Паз	Бок	Паз	Параметр	3.0	4.0	5.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	25.0
							Vc	152	152	152	152	152	168	168	168	168	168	168	168
	1-4	Нелегиров.	0.5D	1.0D	1.5D		fz	0.005	0.008	0.011	0.016	0.027	0.038	0.047	0.049	0.053	0.059	0.065	0.064
		сталь			(1.2D)	(0.8D)	RPM	16128	12096	9677	8064	6048	5348	4456	3820	3342	2971	2674	2139
							FEED Vc	323 107	387 107	426 107	516 107	653 107	813 117	838 117	749 117	709 117	701 117	695 117	548 117
					1.5D	1 0D	fz	0.005	0.008	0.011	0.016	0.027	0.038	0.047	0.049	0.053	0.059	0.065	0.064
	5		0.5D	1.0D		(0.8D)	RPM	11353	8515	6812	5677	4257	3724	3104	2660	2328	2069	1862	1490
					(, , ,	,	FEED	227	272	300	363	460	566	583	521	493	488	484	381
							Vc	152	152	152	152	152	168	168	168	168	168	168	168
Р	6-7	Низколегир.	0 ED	1.0D	1.5D	1.0D	fz	0.005	0.008	0.011	0.016	0.027	0.038	0.047	0.049	0.053	0.059	0.065	0.064
	0-7	сталь	0.50	1.00	(1.2D)	(0.8D)	RPM	16128	12096	9677	8064	6048	5348	4456	3820	3342	2971	2674	2139
							FEED	323	387	426	516	653	813	838	749	709	701	695	548
							Vc	107	107	107	107	107	117	117	117	117	117	117	117
	8-9		0.5D	1.0D		1.0D	fz	0.005	0.008	0.011	0.016	0.027	0.038	0.047	0.049	0.053	0.059	0.065	0.064
					(1.20)	(0.8D)	RPM	11353	8515	6812	5677	4257	3724	3104	2660	2328	2069	1862	1490
							FEED Vc	227 64	272 64	300 64	363 64	460 64	566 70	583 70	521 70	493 70	488 70	484 70	381 70
		Высоколегир.			1.5D	1 00	fz	0.003	0.006	0.008	0.011	0.019	0.027	0.032	0.034	0.037	0.041	0.045	0.045
	10-11.1	сталь	0.5D	1.0D		(0.8D)	RPM	6791	5093	4074	3395	2546	2228	1857	1592	1393	1238	1114	891
		Ciaib			(1,20)	(0.02)	FEED	81	122	130	149	194	241	238	216	206	203	201	160
							Vc	148	148	148	148	148	148	148	148	148	148	148	148
	12 12		٥.٠٥	1.00	1.5D	1.0D	fz	0.004	0.006	0.009	0.013	0.022	0.034	0.039	0.042	0.045	0.05	0.055	0.055
	12-13		0.5D	1.00	(1.2D)	(0.8D)	RPM	15703	11777	9422	7852	5889	4711	3926	3365	2944	2617	2355	1884
							FEED	251	283	339	408	518	641	612	565	530	523	518	415
							Vc	106	106	106	106	106	106	106	106	106	106	106	106
M	14.1	Нержавеющая	0.5D	1.0D		1.0D	fz	0.005	0.008	0.013	0.018	0.028	0.048	0.055	0.059	0.062	0.07	0.077	0.077
		сталь			(1.2D)	(0.8D)	RPM	11247	8435	6748	5623	4218	3374	2812	2410	2109	1874	1687	1350
							FEED Vc	225	270	351	405	472	648	619	569	523	525	520	416
					1 ED	1.0D	vc fz	95 0.005	95 0.008	95 0.013	95 0.018	95 0.028	95 0.048	95 0.055	95 0.059	95 0.062	95 0.069	95 0.076	95 0.076
	14.2		0.5D	1.0D		(0.8D)	RPM	10080	7560	6048	5040	3780	3024	2520	2160	1890	1680	1512	1210
					(1,20)	(0.02)	FEED	202	242	314	363	423	581	554	510	469	464	460	368
							Vc	112	112	112	112	112	123	123	123	123	123	123	123
1/	15 20	C	٥.٠	1.00	1.5D	1.0D	fz	0.006	0.01	0.014	0.02	0.034	0.048	0.058	0.061	0.065	0.073	0.081	0.079
K	15-20	Серый чугун	0.50	1.0D	(1.2D)	(0.8D)	RPM	11884	8913	7130	5942	4456	3915	3263	2797	2447	2175	1958	1566
							FEED	285	357	399	475	606	752	757	682	636	635	634	495
							Vc	26	26	26	26	26	26	26	26	26	26	26	26
	31-35	Жаропрочные	0.25D	1.0D	1.0D	0.5D	fz	0.005	0.007	0.008	0.012	0.019	0.033	0.038	0.04	0.043	0.048	0.054	0.052
		суперсплавы					RPM	2759	2069	1655	1379	1035	828	690	591	517	460	414	331
S							FEED	55	58	53	66 58	79 58	109	105	95 58	89	88	89 58	69
		Титановые					Vc fz	58 0.004	58 0.007	58 0.011	0.016	0.025	58 0.042	58 0.05	0.053	58 0.055	58 0.062	0.068	58 0.069
	36-37		0.4D	1.0D	1.0D	0.5D	RPM	6154	4615	3692	3077	2308	1846	1538	1319	1154	1026	923	738
		сплавы					FEED	98	129	162	197	2308	310	308	280	254	254	251	204
								0	/	. 72	,		2.10	230					

НАРЕЗАНИЕ РЕЗЬЕ

БЫСТРО-РЕЖУЩАЯ

СТАЛЬ

СМЕННЫЕ ПЛАСТИНЫ

Макс. 3.0xD Сквозное

Макс. 2.5xD Глухое

ФРЕЗЕРОВАНИЕ

НАРЕЗАНИЕ РЕЗЬЕ

CMEHHЫE ПЛАСТИНЫ

РУКОВОДСТВО ПО ВЫБОРУ

Перлитная

Отвержд.

≤ 12% Si, Отвержд. Закаленная

CuSn, бессвинц. и электролитич. медь

Состаренная

Отожженная

Состаренная

CuZn, CuSnZn (Латунь)

Дюропласт, пластик

Каучук, дерево

Ni или Со Основа

Чистый Титан

Альфа+Бета спл.

сплав

Медь и медные

сплавы (Бронза/

Неметаллич

Жаропрочные

суперсплавы

Лидерство через инновации

160 250

75

90 130 110

90

100

200

280

250

350

320

400 Rm

1050 Rm 550

630

400

550

30

25

38

55

60

МЕТЧИКИ **COMBOR**

- Высокопроизводительные метчики для широкого диапазона материалов
- Геометрия метчиков запатентована YG-1

0

0

СМЕННЫЕ ПЛАСТИНЫ

ДЛЯ МЕТРИЧЕСКОЙ РЕЗЬБЫ С КРУПНЫМ ШАГОМ ПО ISO -DIN 13

Машинные метчики

▶ Высокопроизводительные метчики для широкого диапазона материалов Геометрия метчиков запатентована YG-1

Material groups	HSS-E DIN 371/376	6H	60° C	R40	Vap Bright TiN	
		Постоль	06	Понто	Duna seasons	

Ž				1740	IIN (X/	3			Ед.изм: мм
Размер Ша	аг Артикул	Длина резьбы	Общая длина	Длина шейки	Диаметр хвостов.	Размер квадр.	Длина квадр.	Кол-во зубьев	Диаметр сверла
ØD1 P	TiN	L1	L2	L3	ØD2	K	KI	Z	Ød1
M2 × 0.4	4 TDL904136	10	45	13	2.8	2.1	5	3	1.6
$M2.2 \times 0.4$	45 TDL904156	10	45	13	2.8	2.1	5	3	1.75
$M2.3 \times 0.4$	4 TDL904196	10	45	13	2.8	2.1	5	3	1.9
$M2.5 \times 0.4$	45 TDL904176	11	50	15	2.8	2.1	5	3	2.05
$M2.6 \times 0.4$	45 TDL904496	11	50	15	2.8	2.1	5	3	2.1
$M3 \times 0.5$	5 TDL904206	8	56	18	3.5	2.7	6	3	2.5
$M3.5 \times 0.6$		9	56	20	4	3	6	3	2.9
$M4 \times 0.3$	7 TDL904246	9	63	21	4.5	3.4	6	3	3.3
$M4.5 \times 0.3$	75 TDL904266	10	70	25	6	4.9	8	3	3.7
$M5 \times 0.8$	8 TDL904286	10	70	25	6	4.9	8	3	4.2
$M6 \times 1.0$		12	80	30	6	4.9	8	3	5
$M7 \times 1.0$		12	80	30	7	5.5	8	3	6
$M8 \times 1.2$		15	90	35	8	6.2	9	3	6.8
$M9 \times 1.3$		15	90	35	9	7	10	3	7.8
$M10 \times 1.5$		17	100	39	10	8	11	3	8.5
$M11 \times 1.5$		19	100	40	8	6.2	9	3	9.5
$M12 \times 1.3$		20	110	44	9	7	10	3	10.2
$M14 \times 2.0$		22	110	44	11	9	12	3	12
$M16 \times 2.0$		22	110	44	12	9	12	3	14
$M18 \times 2.5$		27	125	50	14	11	14	4	15.5
$M20 \times 2.5$		27	140	54	16	12	15	4	17.5
M22 × 2.		27	140	54	18	14.5	17	4	19.5
$M24 \times 3.0$		32	160	60	18	14.5	17	4	21
$M27 \times 3.0$		32	160	60	20	16	19	4	24
$M30 \times 3.5$		37	180	70	22	18	21	4	26.5
M33 x 3.5		37	180	70	25	20	23	4	29.5
M36 x 4.0	TDL904B36	42	200	80	28	22	25	4	32.0

																		©:0	ТЛИЧН	10 0:	Хорошо
ISO						P								М					K		
Материал		Нелег	ированн	ая сталь		Н	изколег	ирован.	. сталь	Bt	ысоколе сталь		Нержа	авеющая	я сталь	Серый	чугун	Высоко чу	прочнь /гун	ый Ковкі	ий чугун
VDI 3323	1	2	3	4	5	6	7	8	9	1	0	11	12	13	14	15	16	17	18	19	20
HRc		13	25	28	32	10	29	32	38	3 1	5	35	15	23	10	10	26	3	25		21
HB	125	190	250	270	300	180	275	300	35	0 20	00	325	200	240	180	180	260	160	250	130	230
Recommended	0	0	0	0	0	0	0	0	(C)		0	0	0	0	0		0		
ISO					N									S						Н	
Материал		ниевый пав	Алюмин	ниево-лит сплав	гиевый		Медь и медные сплавы Неметаллич. (Бронза / Латунь) материалы Жа				Жароп	рочные	суперсп	лавы		новые павы		енная аль	Отбелен. чугун	Закален. чугун	
VDI 3323	21	22	23	24	25	26	27	28	29	30	31	32	33	3 34	1 35	36	37	38	39	40	41
HRc											15	30	25	38	3 34			55	60	42	55
HB	60	100	75	90	130	110	90	100			200	280) 25	0 35	0 320	400Rm	1050Rn	550	630	400	550
Recommended			0			0	0	0													

TDL914 CEPUS

ФРЕЗЕРОВАНИЕ

СМЕННЫЕ ПЛАСТИНЫ

ДЛЯ МЕТРИЧЕСКОЙ РЕЗЬБЫ С КРУПНЫМ ШАГОМ ПО ISO - DIN 13

Машинные метчики

▶ Высокопроизводительные метчики для широкого диапазона материалов Геометрия метчиков запатентована YG-1

7/6 YG-1 CO., LTD.

Ел.изм: мм

Размер Шаг	Артикул	Длина резьбы	Общая длина	Длина шейки	Диаметр хвостов.	Размер квадр.	Длина квадр.	Кол-во зубьев	Диаметр сверла
ØD1 P	TiN	L1	L2	L3	ØD2	K	KI	Z	Ød1
M2 × 0.4	TDL914136	10	45	13	2.8	2.1	5	3	1.6
$M2.2 \times 0.45$	TDL914156	10	45	13	2.8	2.1	5	3	1.75
$M2.3 \times 0.4$	TDL914196	10	45	13	2.8	2.1	5	3	1.9
$M2.5 \times 0.45$	TDL914176	11	50	15	2.8	2.1	5	3	2.05
$M2.6 \times 0.45$	TDL914496	11	50	15	2.8	2.1	5	3	2.1
$M3 \times 0.5$	TDL914206	13	56	18	3.5	2.7	6	3	2.5
$M3.5 \times 0.6$	TDL914226	14	56	20	4	3	6	3	2.9
M4 \times 0.7	TDL914246	15	63	21	4.5	3.4	6	3	3.3
$M4.5 \times 0.75$	TDL914266	16	70	25	6	4.9	8	3	3.7
$M5 \times 0.8$	TDL914286	17	70	25	6	4.9	8	3	4.2
M6 \times 1.0	TDL914316	19	80	30	6	4.9	8	3	5
M7 \times 1.0	TDL914346	19	80	30	7	5.5	8	3	6
M8 \times 1.25	TDL914366	22	90	35	8	6.2	9	3	6.8
M9 \times 1.25	TDL914396	22	90	35	9	7	10	3	7.8
$M10 \times 1.5$	TDL914426	24	100	39	10	8	11	3	8.5
$M11 \times 1.5$	TDL914466	24	100	40	8	6.2	9	3	9.5
$M12 \times 1.75$	TDL914506	26	110	44	9	7	10	3	10.2
$M14 \times 2.0$	TDL914546	28	110	44	11	9	12	3	12
M16 \times 2.0	TDL914606	29	110	44	12	9	12	3	14
M18 \times 2.5	TDL914656	32	125	50	14	11	14	4	15.5
$M20 \times 2.5$	TDL914706	34	140	54	16	12	15	4	17.5
$M22 \times 2.5$	TDL914746	34	140	54	18	14.5	17	4	19.5
$M24 \times 3.0$	TDL914786	36	160	60	18	14.5	17	4	21
$M27 \times 3.0$	TDL914866	38	160	60	20	16	19	4	24
$M30 \times 3.5$	TDL914946	42	180	70	22	18	21	4	26.5
M33 x 3.5	TDL914A46	42	180	70	25	20	23	4	29.5
M36 x 4.0	TDL914B36	52	200	80	28	22	25	4	32.0

																		()∶01	гличн	ю О:	Хороша
ISO						P								M						K		
Материал		Нелег	ированн	ая сталь		Н	Низколеги	ірован.	сталь	Выс	соколеп сталь	ир.	Нержа	веющая	сталь	C	ерый ч	угун В		прочнь гун	^{ій} Ковкі	ий чугун
VDI 3323	1	2	3	4	5	6	7	8	9	10	1	1	12	13	14	1	15	16	17	18	19	20
HRc		13	25	28	32	10	29	32	38	15	3	35	15	23	10	1	10	26	3	25		21
HB	125	190	250	270	300	180	275	300	350	200) 3	25	200	240	180	18	80	260	160	250	130	230
Recommended	0	0	0	0	0	0	0	0	0	0			0	0	0	(0	0	0	0		
ISO					N									S							Н	
Материал		ниевый лав	Алюми	ниево-лиг сплав	тиевый		медные сг нза / Латун		Неметал материа		К	Каропр	очные	суперсп	лавы		Титан спл	авы авы	Закал ста	енная аль	Отбелен. чугун	Закален чугун
VDI 3323	21	22	23	24	25	26	27	28	29	30	31	32	33	34	1 3	5	36	37	38	39	40	41
HRc											15	30	25	38	3	4			55	60	42	55
HB	60	100	75	90	130	110	90	100			200	280	250	35	0 32	20	400Rm	1050Rm	550	630	400	550
Docommondod						0		0														

СМЕННЫЕ ПЛАСТИНЫ

РЕКОМЕНДУЕМЫЕ УСЛОВИЯ ОБРАБОТКИ

TDL904 CEPUЯ

Vc = м/мин. fz = мм/зуб RPM = об./мин. FEED = мм/мин.

ISO	VDI 3323	Материал	НВ	HRc					Vc (м/мин)				
	1		125		15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
	2		190	13	15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
	3	Нелегированная сталь	250	25	12-18	18-24	12-18	12-18	18-24	12-18	12-18	18-24	12-18
			270	28	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
Р	5		300	32	6-10	10-14	6-10	6-10	10-14	6-10	6-10	10-14	6-10
P	6		180	10	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	7	Низколегирован.	275	29	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	8	сталь	300	32	6-10	10-14	6-10	6-10	10-14	6-10	6-10	10-14	6-10
	9		350	38	3-5	5-7	3-5	3-5	5-7	3-5	3-5	5-7	3-5
	10	Высоколегир. сталь	200	15	3-5	5-7	3-5	3-5	5-7	3-5	3-5	5-7	3-5
	12		200	15	7-10	10-15	7-10	7-10	10-15	7-10	7-10	10-15	7-10
M	13	Нержавеющая сталь	240	23	5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
	14		180	10	4-6	6-8	4-6	4-6	6-8	4-6	4-6	6-8	4-6
	15	Серый чугун	180	10	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
K	16	серыи чугун	260	26	5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
K	17	Высокопрочный чугун	160	3	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	18	рысокопрочный чугун	250	25	5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
	23	Алюминиево-литиевый сплав	75		15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
N	26	Медь и медные	110		25-35	35-40	25-35	25-35	35-40	25-35	25-35	35-40	25-35
14	27	сплавы (Бронза/	90		8-12	12-17	8-12	8-12	12-17	8-12	8-12	12-17	8-12
	28	Латунь)	100		15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20

TDL914 СЕРИЯ

ISO	VDI 3323	Материал	НВ	HRc	Vc (м/мин)									
P	1	Нелегированная сталь	125			15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
	2		190	13	15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
	3		250	25		12-18	18-24	12-18	12-18	18-24	12-18	12-18	18-24	12-18
	4		270	28	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	5		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10	10-14	6-10
	6	Низколегирован. сталь	180	10	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	7		275	29	10-15	10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	8		300	32		6-10	10-14	6-10	6-10	10-14	6-10	6-10	10-14	6-10
	9		350	38		3-5	5-7	3-5	3-5	5-7	3-5	3-5	5-7	3-5
	10	Высоколегир. сталь	200	15		3-5	5-7	3-5	3-5	5-7	3-5	3-5	5-7	3-5
M	12	Нержавеющая сталь	200	15	7-10	7-10	10-15	7-10	7-10	10-15	7-10	7-10	10-15	7-10
	13		240	23	5-8	5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
	14		180	10	4-6	4-6	6-8	4-6	4-6	6-8	4-6	4-6	6-8	4-6
K	15	Серый чугун	180	10		10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	16		260	26		5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
	17	-Высокопрочный чугун	160	3		10-15	15-20	10-15	10-15	15-20	10-15	10-15	15-20	10-15
	18		250	25		5-8	8-11	5-8	5-8	8-11	5-8	5-8	8-11	5-8
N	23	Алюминиево-литиевый сплав	75			15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20
	26	Медь и медные сплавы (Бронза/ Латунь)	110			25-35	35-40	25-35	25-35	35-40	25-35	25-35	35-40	25-35
	27		90			8-12	12-17	8-12	8-12	12-17	8-12	8-12	12-17	8-12
	28		100		15-20	15-20	20-25	15-20	15-20	20-25	15-20	15-20	20-25	15-20

СМЕННЫЕ ПЛАСТИНЫ

- Для токарной обработки

АРЕЗАНИЕ РЕЗЬБЫ

СМЕННЬ ПЛАСТИН ТВЕРДОСПЛАВНЫЕ СМЕННЫЕ МНОГОГРАННЫЕ ПЛАСТИНЫ ДЛЯ ТОКАРНОЙ ОБРАБОТКИ

ТОКАРНЫЕ СПЛАВЫ

YG3030 P20-P35	CVD TICN - Al ₂ O ₃	Прерывистая обработка стали и нержавеющей стали Основа идеально подходит для черновой обработки стали и низкоуглеродистых сплавов на тяжелых режимах Высокоскоростная обработка нержавеющей стали
YG401 \$10-\$20	PVD - TIAISIN	Токарный сплав с PVD покрытием для Жаропрочных сплавов Высокотермостойкая структура TiAlSiN для превосходной износостойкости Ультрамелкозернистая твердосплавная основа значительно повышает твёрдость, термостойкость и сопротивление ударным нагрузкам Новый процесс нанесения покрытия позволяет режущей кромке не терять остроту
YG20 510-520	Без покрытия	Сплав без покрытия для обработки Жаропрочных сплавов • Специализированный сплав без покрытия для обработки титановых и жаропрочных сплавов

ТОКАРНЫЕ ПЛАСТИНЫ

СЕРИЯ	ОБОЗНАЧЕНИЕ	АРТИКУЛ	YG20 YG401 YG3030
CNMG	CNMG190616-XSR-YG3030	29000175	● 0175
CINING	CNMG190616-XSM-P-YG20	29000752	• 0752
CNGG	CNGG120408-SF (10)-YG401	29000339	0339
CNGG			
SNMG	SNMG190616-XSR-YG20/SNMG644-XSR	29000140	0140
DIVIVIG	SNMG190616-XSR-YG3030/SNMG644-XSR	29000141	● 0141
CNINANA	SNMM250924-XSR YG3030	29000177	● 0177
SNMM	SNMM250924-XSR YG20	29000328	0328

ТВЕРДОСПЛАВНЫЕ СМЕННЫЕ МНОГОГРАННЫЕ ПЛАСТИНЫ ДЛЯ ФРЕЗЕРОВАНИЯ

СПЛАВЫ ДЛЯ ФРЕЗЕРОВАНИЯ

ФРЕЗЕРОВАНИЕ

БЫСТРО-РЕЖУЩАЯ СТАЛЬ

НАРЕЗАНИЕ РЕЗЬЕ

СМЕННЫЕ

ФРЕЗЕРНЫЕ ПЛАСТИНЫ

76 YG-1 CO., LTD.

РОССИЙСКОЕ ПРЕДСТАВИТЕЛЬСТВО

ООО «Уай Джи Уан Рус»

121205, г. Москва, территория ИЦ «Сколково», ул. Нобеля, д. 1

Тел.: +7 499 110 71 06

https://www.yg1.ru E-mail: russia@yg1.r

Note Производитель оставляет за собой право изменять технические характеристики без предварительного уведомления