Aula 07 – Análise Assintótica de Algoritmos: Notação *O* e *o*

Norton Trevisan Roman norton@usp.br

11 de setembro de 2018

 O custo da solução aumenta com o tamanho n do problema

- O custo da solução aumenta com o tamanho n do problema
- O tamanho n fornece uma medida da dificuldade para resolver o problema
 - Tempo necessário para resolver o problema aumenta quando n cresce

- O custo da solução aumenta com o tamanho n do problema
- O tamanho n fornece uma medida da dificuldade para resolver o problema
 - Tempo necessário para resolver o problema aumenta quando n cresce
- Exemplo:
 - Número de comparações para achar o maior elemento de um arranjo (array) ou para ordená-lo aumenta com o tamanho da entrada n.

 A escolha do algoritmo não é um problema crítico quando n é pequeno

- A escolha do algoritmo não é um problema crítico quando n é pequeno
 - O problema é quando n cresce

- A escolha do algoritmo não é um problema crítico quando n é pequeno
 - O problema é quando n cresce
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande

- A escolha do algoritmo não é um problema crítico quando n é pequeno
 - O problema é quando n cresce
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande
 - Analisa-se o comportamento assintótico das funções de custo

- A escolha do algoritmo não é um problema crítico quando n é pequeno
 - O problema é quando n cresce
- Por isso, é usual analisar o comportamento das funções de custo quando n é bastante grande
 - Analisa-se o comportamento assintótico das funções de custo
 - Representa o limite do comportamento do custo quando n cresce

O que significa "Comportamento Assintótico"?

 O comportamento assintótico descreve uma função ou expressão com um limite ou assíntota definidos

- O comportamento assintótico descreve uma função ou expressão com um limite ou assíntota definidos
 - A função pode se aproximar desse limite, na medida em que a entrada muda, mas nunca o alcançará

- O comportamento assintótico descreve uma função ou expressão com um limite ou assíntota definidos
 - A função pode se aproximar desse limite, na medida em que a entrada muda, mas nunca o alcançará
- Assíntota?

- O comportamento assintótico descreve uma função ou expressão com um limite ou assíntota definidos
 - A função pode se aproximar desse limite, na medida em que a entrada muda, mas nunca o alcançará
- Assíntota?
 - A linha da qual uma curva se aproxima enquanto caminha ao infinito

Assíntotas

Assíntotas

Horizontais

Assíntotas

Horizontais

Verticais

Assíntotas

Horizontais

Verticais

Oblíquas

- Ex: $\frac{x^2-3x}{2x-2}$
 - Possui uma assíntota vertical em x = 1

Assíntotas

Horizontais

Verticais

Oblíquas

- Ex: $\frac{x^2-3x}{2x-2}$
 - Possui uma assíntota vertical em x=1
 - E uma oblíqua em $y = \frac{x}{2} 1$

- Seja f(n) a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce sem restrições

- Seja f(n) a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce sem restrições
 - Lembrando que a função de complexidade geralmente considera apenas algumas operações elementares, ou mesmo uma única operação elementar (ex: o número de comparações)

- Seja f(n) a função de complexidade de um algoritmo A
 - O comportamento assintótico de f(n) representa o limite do comportamento do custo (complexidade) de A quando n cresce sem restrições
 - Lembrando que a função de complexidade geralmente considera apenas algumas operações elementares, ou mesmo uma única operação elementar (ex: o número de comparações)
- A complexidade assintótica relata o crescimento assintótico das operações consideradas

E para que isso serve?

 Definir limites para o comportamento do algoritmo, identificando assim quando o barco vai afundar...

- Definir limites para o comportamento do algoritmo, identificando assim quando o barco vai afundar...
 - Ex: 1 milhão (10⁶) de operações por segundo

Função de custo	10	20	30	40	50	60
n	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

E para que isso serve?

 A definição de um limite nos dá uma caracterização simples da eficiência do algoritmo

- A definição de um limite nos dá uma caracterização simples da eficiência do algoritmo
 - Mesmo podendo determinar sua complexidade exata, o cálculo dessa precisão extra pode não valer o esforço

- A definição de um limite nos dá uma caracterização simples da eficiência do algoritmo
 - Mesmo podendo determinar sua complexidade exata, o cálculo dessa precisão extra pode não valer o esforço
 - Para entradas grandes, as constantes multiplicativas e termos de menor ordem são dominados pelos efeitos do tamanho da entrada

- A definição de um limite nos dá uma caracterização simples da eficiência do algoritmo
 - Mesmo podendo determinar sua complexidade exata, o cálculo dessa precisão extra pode não valer o esforço
 - Para entradas grandes, as constantes multiplicativas e termos de menor ordem são dominados pelos efeitos do tamanho da entrada
- Nos permite também comparar o desempenho relativo de algoritmos alternativos

- A definição de um limite nos dá uma caracterização simples da eficiência do algoritmo
 - Mesmo podendo determinar sua complexidade exata, o cálculo dessa precisão extra pode não valer o esforço
 - Para entradas grandes, as constantes multiplicativas e termos de menor ordem são dominados pelos efeitos do tamanho da entrada
- Nos permite também comparar o desempenho relativo de algoritmos alternativos
 - Nos diz qual será melhor quando a entrada cresce

Relacionamento Assintótico

Definição:

• Uma função f(n) domina assintoticamente outra função g(n) se existirem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|g(n)| \le c \times |f(n)|$.

Relacionamento Assintótico

Definição:

• Uma função f(n) domina assintoticamente outra função g(n) se existirem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|g(n)| \le c \times |f(n)|$.

Relacionamento Assintótico

Quem domina quem?

•
$$g(n) = n e f(n) = n^2$$

- $g(n) = n e f(n) = n^2$
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$

- $g(n) = n e f(n) = n^2$
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
 - Para c = 1 e m = 0, temos que $|g(n)| \le |f(n)|$. Portanto, f(n) domina assintoticamente g(n).

- $g(n) = n e f(n) = n^2$
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
 - Para c = 1 e m = 0, temos que $|g(n)| \le |f(n)|$. Portanto, f(n) domina assintoticamente g(n).
- $g(n) = n e f(n) = -n^2$

- $g(n) = n e f(n) = n^2$
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
 - Para c = 1 e m = 0, temos que $|g(n)| \le |f(n)|$. Portanto, f(n) domina assintoticamente g(n).
- $g(n) = n e f(n) = -n^2$
 - $|n| \leq |-n^2|$ para todo $n \in \mathbb{N}$ (por ser módulo, o sinal não importa)

- $g(n) = n e f(n) = n^2$
 - $|n| \le |n^2|$ para todo $n \in \mathbb{N}$
 - Para c = 1 e m = 0, temos que $|g(n)| \le |f(n)|$. Portanto, f(n) domina assintoticamente g(n).
- $g(n) = n e f(n) = -n^2$
 - $|n| \leq |-n^2|$ para todo $n \in \mathbb{N}$ (por ser módulo, o sinal não importa)
 - Para c = 1 e m = 0, temos que $|g(n)| \le |f(n)|$. Portanto, f(n) domina assintoticamente g(n).

•
$$g(n) = (n+1)^2 e f(n) = n^2$$

- $g(n) = (n+1)^2 e f(n) = n^2$
 - Melhor por em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
 - Melhor por em um gráfico
 - $|n^2| \le |(n+1)^2|$ para $n \ge 0$

- $g(n) = (n+1)^2$ e $f(n) = n^2$
 - Melhor por em um gráfico
 - $|n^2| \le |(n+1)^2|$ para $n \ge 0$
 - g(n) domina f(n)

- $g(n) = (n+1)^2 e f(n) = n^2$
 - Melhor por em um gráfico
 - $|n^2| \le |(n+1)^2|$ para $n \ge 0$
 - g(n) domina f(n)
- Será somente isso?

- $g(n) = (n+1)^2$ e $f(n) = n^2$
 - Melhor por em um gráfico
 - $|n^2| \le |(n+1)^2|$ para $n \ge 0$
 - g(n) domina f(n)
- Será somente isso?
 - Não há como f(n) dominar g(n)?

Quem domina quem?

 Lembre que a definição envolve também uma constante

- Lembre que a definição envolve também uma constante
- Suponha que queremos $g(n) \le cf(n)$

- Lembre que a definição envolve também uma constante
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \le |cn^2|$

- Lembre que a definição envolve também uma constante
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \le |cn^2|$
- Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c}n)^2|$ ou $|n+1| < |\sqrt{c}n|$

Quem domina quem?

- Lembre que a definição envolve também uma constante
- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \le |cn^2|$
- Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c}n)^2|$ ou $|n+1| \le |\sqrt{c}n|$

• Se $\sqrt{c} = 2$, ou seja, c = 4, isso é verdade, para $n \ge 1$

Quem domina quem?

• Então temos que g(n) domina f(n), pois $|n^2| \le |(n+1)^2|$, n > 0

Quem domina quem?

• Então temos que g(n) domina f(n), pois $|n^2| \le |(n+1)^2|$, n > 0

e f(n) domina g(n), pois $|(n+1)^2| < |4n^2|, n > 1$

- Então temos que g(n) domina f(n), pois $|n^2| \le |(n+1)^2|$, n > 0
 - e f(n) domina g(n), pois $|(n+1)^2| \le |4n^2|, n \ge 1$
- Nesse caso, dizemos que f(n) e g(n) dominam assintoticamente uma a outra

• Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)

- Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)
 - Escreve-se g(n) = O(f(n)) e lê-se: "g(n) é da ordem no máximo f(n)"

- Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)
 - Escreve-se g(n) = O(f(n)) e lê-se: "g(n) é da ordem no máximo f(n)"
- E para que serve isso?

- Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)
 - Escreve-se g(n) = O(f(n)) e lê-se: "g(n) é da ordem no máximo f(n)"
- E para que serve isso?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo é complicado

- Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)
 - Escreve-se g(n) = O(f(n)) e lê-se: "g(n) é da ordem no máximo f(n)"
- E para que serve isso?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo é complicado
 - É mais fácil determinar que g(n) é O(f(n)), isto é, que assintoticamente g(n) cresce no máximo como f(n)

- Knuth (1968) criou a notação O (O grande) para expressar que f(n) domina assintoticamente g(n)
 - Escreve-se g(n) = O(f(n)) e lê-se: "g(n) é da ordem no máximo f(n)"
- E para que serve isso?
 - Muitas vezes calcular a função de complexidade g(n) de um algoritmo é complicado
 - É mais fácil determinar que g(n) é O(f(n)), isto é, que assintoticamente g(n) cresce no máximo como f(n)
 - Ex: Se dizemos que $T(n) = O(n^2)$, significa que existem constantes c e m tais que, para $n \ge m$, $T(n) \le cn^2$

Definição

Uma função g(n) é O(f(n)) se existirem constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo n > m

Definição

Uma função g(n) é O(f(n)) se existirem constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in O(f(n))$, então g(n) cresce no máximo tão rapidamente quanto f(n)

Definição

Uma função g(n) é O(f(n)) se existirem constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in O(f(n))$, então g(n) cresce no máximo tão rapidamente quanto f(n)

• Trata-se então de um **limite assintótico superior** para g(n)

•
$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
?

- $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo $c=\frac{3}{2}$ temos $\frac{3}{2}n^2-2n\leq \frac{3}{2}n^2$, para $m\geq 2$

- $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo $c=\frac{3}{2}$ temos $\frac{3}{2}n^2-2n\leq \frac{3}{2}n^2$, para $m\geq 2$
 - Outras constantes podem existir, mas o que importa é que exista alguma escolha para as constantes

- $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo $c=\frac{3}{2}$ temos $\frac{3}{2}n^2-2n\leq \frac{3}{2}n^2$, para $m\geq 2$
 - Outras constantes podem existir, mas o que importa é que exista alguma escolha para as constantes
- $(n+1)^2 \in O(n^2)$?

- $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo $c=\frac{3}{2}$ temos $\frac{3}{2}n^2-2n\leq \frac{3}{2}n^2$, para $m\geq 2$
 - Outras constantes podem existir, mas o que importa é que exista alguma escolha para as constantes
- $(n+1)^2 \in O(n^2)$?
 - Fazendo $c = 4, m = 1, \text{ temos } (n+1)^2 \le 4n^2$

- $\frac{3}{2}n^2 2n \in O(n^2)$?
 - Fazendo $c=\frac{3}{2}$ temos $\frac{3}{2}n^2-2n\leq \frac{3}{2}n^2$, para $m\geq 2$
 - Outras constantes podem existir, mas o que importa é que exista alguma escolha para as constantes
- $(n+1)^2 \in O(n^2)$?
 - Fazendo c = 4, m = 1, temos $(n + 1)^2 \le 4n^2$
 - $(n+1)^2 \in O(n^2)$ para $n \ge 1$

Exemplo

• $3n^3 + 2n^2 + n \in O(n^3)$?

- $3n^3 + 2n^2 + n \in O(n^3)$?
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$ (ou seja, c = 6 e m = 0)

- $3n^3 + 2n^2 + n \in O(n^3)$?
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$ (ou seja, c = 6 e m = 0)
- $3n^3 + 2n^2 + n \in O(n^4)$?

- $3n^3 + 2n^2 + n \in O(n^3)$?
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$ (ou seja, c = 6 e m = 0)
- $3n^3 + 2n^2 + n \in O(n^4)$?
 - Sim, mas essa afirmação é mais fraca que dizer que $3n^3 + 2n^2 + n$ é $O(n^3)$

- $3n^3 + 2n^2 + n \in O(n^3)$?
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$ (ou seja, c = 6 e m = 0)
- $3n^3 + 2n^2 + n \in O(n^4)$?
 - Sim, mas essa afirmação é mais fraca que dizer que $3n^3 + 2n^2 + n$ é $O(n^3)$
 - Escolhemos então o limite "mais baixo", pois nos interessa o assintoticamente mais próximo de $3n^3 + 2n^2 + n$

- $3n^3 + 2n^2 + n \in O(n^3)$?
 - Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$, para $n \ge 0$ (ou seja, c = 6 e m = 0)
- $3n^3 + 2n^2 + n \in O(n^4)$?
 - Sim, mas essa afirmação é mais fraca que dizer que $3n^3 + 2n^2 + n$ é $O(n^3)$
 - Escolhemos então o limite "mais baixo", pois nos interessa o assintoticamente mais próximo de $3n^3 + 2n^2 + n$
 - Isso, contudo, não implica estar errado que é $O(n^4)$

$$f(n) = O(f(n))$$

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ (c: constante)

$$f(n) = O(f(n))$$
 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$

$$f(n) = O(f(n))$$
 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n) + g(n)) = O(f(n)) + O(g(n))$

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n) + g(n)) = O(f(n)) + O(g(n))$
 $O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n) + g(n)) = O(f(n)) + O(g(n))$
 $O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$
 $O(f(n))O(g(n)) = O(f(n)g(n))$

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ (c: constante)
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n))) = O(f(n))$
 $O(f(n) + g(n)) = O(f(n)) + O(g(n))$
 $O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$
 $O(f(n))O(g(n)) = O(f(n)g(n))$
 $f(n)O(g(n)) = O(f(n)g(n))$

Operações com a notação O

• A regra $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
- Ex: Suponha 3 trechos: O(n), $O(n^2)$ e O(nlog(n)). Qual o tempo de execução do algoritmo como um todo?

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
- Ex: Suponha 3 trechos: O(n), $O(n^2)$ e O(nlog(n)). Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
- Ex: Suponha 3 trechos: O(n), $O(n^2)$ e O(nlog(n)). Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho
 - $O(n)+O(n^2)+O(n\log(n)) = max(O(n), O(n^2), O(n\log(n)))$ = $O(n^2)$

Operações com a notação O

 Isso facilita muito o cálculo do limite superior para a complexidade de um algoritmo

- Isso facilita muito o cálculo do limite superior para a complexidade de um algoritmo
- Ex: $3n^3 + 2n^2 + n \in O(n^3)$?

- Isso facilita muito o cálculo do limite superior para a complexidade de um algoritmo
- Ex: $3n^3 + 2n^2 + n \in O(n^3)$?
 - Sim, porque o termo de maior ordem $(3n^3)$ é claramente $O(n^3)$

- Isso facilita muito o cálculo do limite superior para a complexidade de um algoritmo
- Ex: $3n^3 + 2n^2 + n \in O(n^3)$?
 - Sim, porque o termo de maior ordem $(3n^3)$ é claramente $O(n^3)$
 - Então, pela regra, este será o limite da expressão como um todo

- Isso facilita muito o cálculo do limite superior para a complexidade de um algoritmo
- Ex: $3n^3 + 2n^2 + n \in O(n^3)$?
 - Sim, porque o termo de maior ordem $(3n^3)$ é claramente $O(n^3)$
 - Então, pela regra, este será o limite da expressão como um todo
 - Não há necessidade de provar usando os termos de menor ordem

Operações com a notação O

 Por vezes basta observar a estrutura do algoritmo para saber sua complexidade

- Por vezes basta observar a estrutura do algoritmo para saber sua complexidade
 - Como quando há um laço encadeado em outro, ambos proporcionais à entrada

- Por vezes basta observar a estrutura do algoritmo para saber sua complexidade
 - Como quando há um laço encadeado em outro, ambos proporcionais à entrada
 - Nesse caso, essa parte é $O(n^2)$ e, se nenhuma outra for mais alta, então esse é o limite do algoritmo

- Por vezes basta observar a estrutura do algoritmo para saber sua complexidade
 - Como quando há um laço encadeado em outro, ambos proporcionais à entrada
 - Nesse caso, essa parte é $O(n^2)$ e, se nenhuma outra for mais alta, então esse é o limite do algoritmo
- Mais do que isso, sendo O um limite superior, se o calcularmos no pior caso teremos um limite superior para toda e qualquer entrada

Problemas

 Como comparar algoritmos cujas complexidades são equivalentes?

- Como comparar algoritmos cujas complexidades são equivalentes?
 - Ou seja, quando f(n) e g(n) dominam assintoticamente uma à outra

- Como comparar algoritmos cujas complexidades são equivalentes?
 - Ou seja, quando f(n) e g(n) dominam assintoticamente uma à outra
- Nesses casos, o comportamento assintótico não serve para a comparação

- Como comparar algoritmos cujas complexidades são equivalentes?
 - Ou seja, quando f(n) e g(n) dominam assintoticamente uma à outra
- Nesses casos, o comportamento assintótico não serve para a comparação
 - Teremos que ver sua complexidade com mais detalhes, observando as constantes

Problemas

 Como comparar algoritmos quando não teremos entradas grandes?

- Como comparar algoritmos quando não teremos entradas grandes?
 - Nesse caso, pode ocorrer que um algoritmo assintoticamente mais lento seja mais rápido para entradas pequenas

- Como comparar algoritmos quando não teremos entradas grandes?
 - Nesse caso, pode ocorrer que um algoritmo assintoticamente mais lento seja mais rápido para entradas pequenas
- Ex: um programa tem f(n) = 100n, e outro $g(n) = 2n^2$. Qual dos dois é melhor?

- Como comparar algoritmos quando não teremos entradas grandes?
 - Nesse caso, pode ocorrer que um algoritmo assintoticamente mais lento seja mais rápido para entradas pequenas
- Ex: um programa tem f(n) = 100n, e outro $g(n) = 2n^2$. Qual dos dois é melhor?
 - Depende do tamanho do problema

- Como comparar algoritmos quando não teremos entradas grandes?
 - Nesse caso, pode ocorrer que um algoritmo assintoticamente mais lento seja mais rápido para entradas pequenas
- Ex: um programa tem f(n) = 100n, e outro $g(n) = 2n^2$. Qual dos dois é melhor?
 - Depende do tamanho do problema
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o de 100n

- Como comparar algoritmos quando não teremos entradas grandes?
 - Nesse caso, pode ocorrer que um algoritmo assintoticamente mais lento seja mais rápido para entradas pequenas
- Ex: um programa tem f(n) = 100n, e outro $g(n) = 2n^2$. Qual dos dois é melhor?
 - Depende do tamanho do problema
 - Para n < 50, o programa com tempo $2n^2$ é melhor do que o de 100n
 - Então, se nunca teremos $n \ge 50$, o programa com $2n^2$ é melhor

Definição

Uma função g(n) é o(f(n)) se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m$

Definição

Uma função g(n) é o(f(n)) se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m$

• Informalmente, dizemos que, se $g(n) \in o(f(n))$, então g(n) cresce mais lentamente que f(n)

Definição

Uma função g(n) é o(f(n)) se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m$

- Informalmente, dizemos que, se $g(n) \in o(f(n))$, então g(n) cresce mais lentamente que f(n)
 - Intuitivamente, na notação o a função g(n) tem crescimento muito menor que f(n) quando n tende para o infinito

Definição

Uma função g(n) é o(f(n)) se, para toda constante c > 0, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m$

- Informalmente, dizemos que, se $g(n) \in o(f(n))$, então g(n) cresce mais lentamente que f(n)
 - Intuitivamente, na notação o a função g(n) tem crescimento muito menor que f(n) quando n tende para o infinito
 - Ou seja, $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$

• $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$

- $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$
 - A expressão $0 \le g(n) \le cf(n)$ é válida para <u>alguma</u> constante c > 0

- $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$
 - A expressão $0 \le g(n) \le cf(n)$ é válida para alguma constante c > 0
 - Basta acharmos um c e um m

- $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$
 - A expressão $0 \le g(n) \le cf(n)$ é válida para alguma constante c > 0
 - Basta acharmos um c e um m
- $o(f(n)) = \{g(n):$ **para toda** constante positiva c, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m\}$.

- $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$
 - A expressão $0 \le g(n) \le cf(n)$ é válida para alguma constante c > 0
 - Basta acharmos um c e um m
- $o(f(n)) = \{g(n):$ **para toda** constante positiva c, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m\}$.
 - A expressão $0 \le g(n) < cf(n)$ é válida para <u>toda</u> constante c > 0

- $O(f(n)) = \{g(n):$ **existem** constantes positivas c e m tais que $0 \le g(n) \le cf(n)$, para todo $n \ge m\}$
 - A expressão $0 \le g(n) \le cf(n)$ é válida para alguma constante c > 0
 - Basta acharmos um c e um m
- $o(f(n)) = \{g(n):$ **para toda** constante positiva c, existe uma constante m > 0 tal que $0 \le g(n) < cf(n)$, para todo $n \ge m\}$.
 - A expressão $0 \le g(n) < cf(n)$ é válida para <u>toda</u> constante c > 0
 - Para todo c temos que ter um m

Exemplo

• $1000n^2 \in o(n^3)$?

- $1000n^2 \in o(n^3)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $1000n^2 < cn^3$

- $1000n^2 \in o(n^3)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $1000 n^2 < c n^3$
 - \Rightarrow 1000 < cn (dividindo ambos os lados por n^2)

- $1000n^2 \in o(n^3)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $1000n^2 < cn^3$
 - $\Rightarrow 1000 < cn$ (dividindo ambos os lados por n^2)
 - $\bullet \Rightarrow n > \frac{1000}{c}$

- $1000n^2 \in o(n^3)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $1000n^2 < cn^3$
 - $\Rightarrow 1000 < cn$ (dividindo ambos os lados por n^2)
 - $\bullet \Rightarrow n > \frac{1000}{c}$
 - Ou seja, para todo valor de c, um m que satisfaz a definição é $m=\frac{1000}{c}+1$ (pois $n\geq m$ e $n>\frac{1000}{c}$)

Exemplo

• $2n^2 \in o(n^2)$?

- $2n^2 \in o(n^2)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$

- $2n^2 \in o(n^2)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$
 - Mas $2n^2 < cn^2 \Rightarrow c > 2$ (caso em que vale para todo n > 0)

- $2n^2 \in o(n^2)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$
 - Mas $2n^2 < cn^2 \Rightarrow c > 2$ (caso em que vale para todo n > 0)
 - Ou seja, não há m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$

- $2n^2 \in o(n^2)$?
 - Buscamos um m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$
 - Mas $2n^2 < cn^2 \Rightarrow c > 2$ (caso em que vale para todo n > 0)
 - Ou seja, não há m tal que, para todo c e $n \ge m$, $2n^2 < cn^2$
 - Logo, $2n^2 \notin o(n^2)$

Referências

- Ziviani, Nivio. Projeto de Algoritmos: com implementações em Java e C++. Cengage. 2007.
- Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms. 2a ed. MIT Press, 2001.
- Gersting, Judith L. Fundamentos Matemáticos para a Ciência da Computação. 3a ed. LTC. 1993.
- https://www.chegg.com/tutors/ what-is-Asymptotic-and-Unbounded-Behavior/
- https://www.mathsisfun.com/algebra/asymptote.html