- Ejemplo: Base de datos MNIST
  - Base de datos de dígitos manuscritos
    - Del 0 al 9 escritos a mano por diferentes personas
    - Clasificación: 10 clases
  - 60.000 imágenes de entrenamiento
  - 10.000 imágenes de prueba
  - Imágenes en b/n de 28x28 píxeles
  - Página web oficial:

http://yann.lecun.com/exdb/mnist/

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - M A Belyaev and A A Velichko, Classification of handwritten digits using the Hopfield network, 2020, IOP Conference Series: Materials Science and Engineering, 862 052048

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Preprocesado:
      - Método de deskewing
        - Ajusta el desplazamiento lineal y angular de la imagen
          - Se basa en la distribución del brillo de los píxeles
          - En la imagen procesada, el dígito está situado en el centro de la imagen y tiene una inclinación normal



**Figure 1.** Image of handwritten digits from the MNIST database before (a) and after (b) processing by the deskewing method.

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Se promedian todas las imágenes del conjunto de entrenamiento para cada dígito
      - 6000 imágenes/dígito
    - Se aplica un umbral a estas 10 imágenes
      - Se convierten a binarias
      - 28\*28 = 784 valores binarios (784 neuronas)
      - Una red de Hopfield podrá almacenar aproximadamente 108 patrones (~0,138\*784)
    - Los patrones binarios resultantes se utilizan luego como entradas para la red Hopfield
      - Cada patrón se almacena como un estado atractor en la red

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Además, se estudia la similitud entre los patrones resultantes
      - Distancia de Hamming entre todos los pares de patrones:



- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Para aumentar la distancia:
      - Se elimina de los patrones el espacio en blanco que rodea al dígito
      - Se convierten a resoluciones más pequeñas
        - 14x14
    - Patrones finales utilizados para calcular la matriz de pesos:



- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Entrenamiento: Método Storkey
      - Aumentar la capacidad de la memoria asociativa
      - Método iterativo

$$\mathbf{W}_i = \mathbf{W}_{i-1} + \frac{1}{N} \mathbf{X}_{\text{mem}_i} \cdot \mathbf{X}_{mem_i}^{\text{T}} - \frac{1}{N} \cdot \mathbf{X}_{\text{mem}_i} \cdot (\mathbf{W}_{i-1} \cdot \mathbf{X}_{\text{mem}_i})^{\text{T}} - \frac{1}{N} \cdot (\mathbf{W}_{i-1} \cdot \mathbf{X}_{\text{mem}_i}) \cdot \mathbf{X}_{mem_i}^{\text{T}}$$

- Busca modificar los pesos de la red para que los patrones de entrenamiento sean atractores estables
  - Que los estados espurios sean repelidos
  - Esto contribuye a mejorar la capacidad de almacenamiento y recuperación de patrones

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados:



- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados:
      - Precisión en la clasificación: 59.8%
      - Dependencia del umbral



- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Entrenamiento:

| Digit | Percent of correct classification, | Percent of incorrect classification, | The most common erroneous result | Percent of spurious patterns, % |
|-------|------------------------------------|--------------------------------------|----------------------------------|---------------------------------|
| 0     | 69                                 | 5.49                                 | 6                                | 25.5                            |
| 1     | 90.2                               | 0.35                                 | 7                                | 9.49                            |
| 2     | 73.7                               | 4.44                                 | 1                                | 21.9                            |
| 3     | 67.7                               | 8.72                                 | 2                                | 23.5                            |
| 4     | 0                                  | 16.1                                 | 6                                | 83.9                            |
| 5     | 52.4                               | 9.04                                 | 6                                | 38.5                            |
| 6     | 80.4                               | 3.94                                 | 1                                | 15.7                            |
| 7     | 69.6                               | 4.86                                 | 2                                | 25.5                            |
| 8     | 57.3                               | 13.3                                 | 3                                | 29.3                            |
| 9     | 29.9                               | 25.4                                 | 7                                | 44.8                            |

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Entrenamiento:
      - Los dígitos 1, 2, 6 y 7 tienen las precisiones más altas
        - Muy probablemente, sus patrones son fuertes atractores
          - Esta suposición confirma el hecho de que estos dígitos son el resultado erróneo más probable de la clasificación de otros dígitos
        - El dígito 1 es el que se reconoce con mayor precisión
          - Esto se debe, probablemente, a la pequeña variabilidad de su forma de escritura

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Entrenamiento:
      - Los dígitos 9 y 4 tienen la menor distancia de Hamming relativa media con respecto a otros dígitos
        - Tienen el mayor porcentaje de clasificación incorrecta
      - El dígito 4 nunca se ha clasificado correctamente, y la mayoría de los resultados erróneos están relacionados con patrones espurios (83.9%)
        - El patrón espurio más común difiere del patrón memorizado en sólo 1 píxel
        - Esto significa que ambos patrones son atractores de la red, pero el patrón espurio es un atractor más fuerte, y en muchos casos la red converge hacia él

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Por este motivo, se sustituye el patrón original del dígito 4



Se vuelve a calcular la matriz de pesos W

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Entrenamiento:

|       | Percent of              | Percent of                |                                  |                                 |
|-------|-------------------------|---------------------------|----------------------------------|---------------------------------|
| Digit | correct classification, | incorrect classification, | The most common erroneous result | Percent of spurious patterns, % |
|       | %                       | %                         |                                  |                                 |
| 0     | 68.6                    | 5.49                      | 6                                | 25.9                            |
| 1     | 90.8                    | 0.35                      | 7                                | 8.87                            |
| 2     | 73.5                    | 4.84                      | 1                                | 21.7                            |
| 3     | 66.9                    | 8.33                      | 2                                | 24.8                            |
| 4     | 15.8                    | 16.3                      | 6                                | 67.9                            |
| 5     | 52.8                    | 8.57                      | 6                                | 38.6                            |
| 6     | 80.7                    | 3.94                      | 1                                | 15.4                            |
| 7     | 69.5                    | 5.89                      | 2                                | 24.6                            |
| 8     | 56.7                    | 13.5                      | 3                                | 29.9                            |
| 9     | 27.2                    | 31.1                      | 7                                | 41.7                            |

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Entrenamiento:
      - La precisión de la clasificación del dígito 4 aumentó al 15,8%
      - Sin embargo, la precisión de la clasificación del dígito "9" descendió del 29.9% al 27,2%
        - Debido a un aumento de la similitud de los patrones de los dígitos "4" y "9"
      - La precisión de la clasificación de la red aumenta al 61%

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Test:
      - Muestra de test: 10000 imágenes
      - Precisión en test: 61,5%
        - Similar a la anterior
        - Distribución también similar a la tabla anterior
      - La precisión de clasificación de los dígitos 4 y 9
        - 4: 16,9%
        - 9: 27,6%

- Ejemplo: Base de datos MNIST
  - Clasificación con Redes de Hopfield
    - Resultados: Test:
      - En general, precisión muy inferior a otras técnicas
        - MLP
        - Deep Learning
      - La precisión de la clasificación de la red se puede mejorar mediante el preprocesamiento de los datos de entrada y la selección correcta de patrones memorizados
      - Los patrones espurios introducen un error significativo

- Variantes más importantes:
  - Redes de Hopfield continuas
  - Redes de Hopfield con asimetría
  - Redes de Hopfield con autoconexiones
  - Redes de Hopfield con dinámica estocástica
  - Redes de Hopfield con aprendizaje
  - Otras variantes importantes:
    - Redes de Hopfield con ruido
    - Redes de Hopfield con umbrales adaptativos
    - Redes de Hopfield con múltiples capas
    - Redes de Hopfield con aprendizaje supervisado

- Variantes más importantes:
  - Redes de Hopfield continuas (1/3)
    - Permiten valores de activación neuronales reales en lugar de binarios (0/1)
    - Esto aumenta drásticamente la complejidad de los patrones que la red puede aprender y recuperar
    - Ofrecen mayor flexibilidad y precisión en la representación de patrones

- Variantes más importantes:
  - Redes de Hopfield continuas (2/3)
    - La capacidad de almacenamiento de la red es muy superior que en las redes binarias
      - La cantidad de patrones distintos que puede recordar y recuperar es muy superior
      - Las redes binarias son propensas a mínimos "falsos"
        - Si los recuerdos aprendidos por una red binaria son demasiado similares, o si se aprenden demasiados vectores de patrones, la red corre el riesgo de converger en un recuerdo intermedio
          - Alguna combinación de patrones aprendidos
        - Es decir, la red no podrá discriminar entre patrones y se volverá inútil

- Variantes más importantes:
  - Redes de Hopfield continuas (3/3)
    - Se utilizan en aplicaciones como el procesamiento de imágenes y la optimización
    - Referencias:
      - Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81(10), 3088-3092.
      - Tank, D. W., & Hopfield, J. J. (1986). Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Transactions on Circuits and Systems, 33(11), 1088-1100.

- Variantes más importantes:
  - Redes de Hopfield con asimetría
    - Las conexiones entre neuronas no son necesariamente simétricas
    - Permiten la formación de patrones más complejos y la discriminación entre patrones similares
    - Se utilizan en aplicaciones como el reconocimiento de patrones y la clasificación
    - Referencias:
      - Peretto, P. (1988). Collective properties of neural networks with asymmetric interactions. Journal of Physics A: Mathematical and General, 21(11), 2855-2862.

- Variantes más importantes:
  - Redes de Hopfield con autoconexiones
    - Las neuronas pueden tener conexiones consigo mismas
    - Permiten la implementación de funciones de memoria a corto plazo y el auto-reforzamiento de patrones
    - Se utilizan en aplicaciones como el aprendizaje asociativo y la predicción
    - Referencias:
      - Wang, D., & Buhmann, J. M. (1993). Learning in recurrent Hopfield networks with self-connections. Neural Networks, 6(5), 747-762

- Variantes más importantes:
  - Redes de Hopfield con dinámica estocástica
    - Incorporan ruido en la dinámica de la red
    - Permiten la exploración de diferentes soluciones y la evasión de mínimos locales
    - Se utilizan en aplicaciones como la optimización combinatoria y la búsqueda de soluciones creativas
    - Referencias:
      - Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-741

- Variantes más importantes:
  - Redes de Hopfield con aprendizaje
    - Los pesos de las conexiones se pueden modificar de forma dinámica en función de la experiencia
    - Permiten la adaptación de la red a nuevos patrones y la mejora del rendimiento con el tiempo
    - Se utilizan en aplicaciones como el aprendizaje automático y la robótica
    - Referencias:
      - Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1(2), 270-280

- Variantes más importantes:
  - Otras variantes importantes:
    - Redes de Hopfield con ruido
      - Permiten la presencia de ruido en el proceso de almacenamiento y recuperación de patrones
        - Se aumenta la robustez de la red a datos corruptos o incompletos
    - Redes de Hopfield con umbrales adaptativos
      - Ajustan dinámicamente los umbrales de activación de las neuronas en función de la entrada
        - Se mejora la capacidad de la red para almacenar y recuperar patrones con diferentes características

- Variantes más importantes:
  - Otras variantes importantes:
    - Redes de Hopfield con múltiples capas
      - Permiten una mayor complejidad en la representación de patrones y relaciones entre ellos
        - Similar a las redes neuronales profundas
        - Pero con la ventaja de la eficiencia computacional y la interpretabilidad de las redes de Hopfield
    - Redes de Hopfield con aprendizaje supervisado
      - Combinan el almacenamiento asociativo de las redes de Hopfield con la capacidad de aprendizaje de las técnicas de aprendizaje supervisado
        - Permiten la clasificación y recuperación de patrones con mayor precisión

- Redes de Hopfield continuas y profundas
  - Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Adler, T., Kreil, D., Kopp, M. K., Klambauer, G., Brandstetter, J., & Hochreiter, S. (2021). Hopfield Networks is All You Need. arXiv preprint arXiv:2008.02217.
    - Avance más importante en el ámbito de las redes Hopfield continuas
    - Conexión con arquitecturas profundas

- Redes de Hopfield continuas y profundas
  - El artículo propone un marco novedoso denominado «Deep Hopfield Networks» que combina los puntos fuertes del aprendizaje profundo y las redes Hopfield
  - Utiliza redes de Hopfield continuas como una capa dentro de una estructura profunda
    - La red Hopfield se encarga del almacenamiento y recuperación de patrones
    - Las otras capas de la red profunda se encargan de tareas como la extracción de características y la clasificación

- Redes de Hopfield continuas y profundas
  - Ideas clave en ese trabajo:
    - Estados continuos
      - Valores de activación reales para las neuronas
        - Aumenta la flexibilidad y precisión
    - Regla de actualización eficiente
      - Introduce una nueva regla de actualización derivada del mecanismo de atención de los Transformers
        - Equivalente al mecanismo de atención de los Transformers
        - Esto permite actualizaciones rápidas y estables
    - Arquitectura profunda
      - Se pueden integrar en arquitecturas de aprendizaje profundo

- Redes de Hopfield continuas y profundas
  - Dentro del aprendizaje profundo, las capas de Hopfield permiten nuevas formas de capa
    - Más allá de las capas totalmente conectadas, convolucionales o recurrentes
    - Proporcionan mecanismos de agrupación, memoria, asociación y atención
    - Mejoraron el estado del arte en la clasificación del repertorio inmunitario y los problemas de aprendizaje de múltiples instancias

- Redes de Hopfield continuas y profundas
  - Características de las redes de Hopfield:
    - Red de Hopfield moderna con estados continuos
    - Esta nueva red Hopfield puede almacenar muchos patrones de forma exponencial
    - Recupera el patrón con una actualización y tiene errores de recuperación exponencialmente pequeños
    - Tiene tres tipos de mínimos de energía: punto fijo global, estados metaestables y puntos fijos
    - Nueva regla de actualización
      - Equivalente al mecanismo de atención utilizado en los Transformers

- Redes de Hopfield continuas y profundas
  - Principales ventajas de utilizar redes de Hopfield en una estructura profunda:
    - Almacenamiento masivo
      - Puede almacenar una cantidad de patrones muy superior a las redes clásicas
        - Ideales para tareas que requieren almacenar grandes cantidades de datos
    - Recuperación rápida
      - Recupera patrones con una sola actualización
        - Ideales para tareas que requieren un acceso rápido a la información

- Redes de Hopfield continuas y profundas
  - Principales ventajas de utilizar redes de Hopfield en una estructura profunda:
    - Robustez al ruido
      - Ideales para tareas que se trabajan con datos corruptos o incompletos
    - Integración con aprendizaje profundo
      - Se puede integrar en arquitecturas de aprendizaje profundo como capas dedicadas al almacenamiento, acceso y procesamiento de datos

- Redes de Hopfield continuas y profundas
  - Hasta ahora, el aprendizaje profundo tenía dificultades con los conjuntos de datos pequeños
    - Sin embargo, las redes de Hopfield son prometedoras para manejar conjuntos de datos pequeños
      - Pueden almacenar los puntos de datos de entrenamiento o sus representaciones para realizar métodos basados en similitud, vecino más cercano o cuantificación vectorial de aprendizaje

- Redes de Hopfield continuas y profundas
  - Resultados
    - 75 datasets "pequeños" del UCI
      - Menos de 1000 muestras
    - Comparación con la mayoría de técnicas de AA

| Method          | avg. rank diff. | <i>p</i> -value |
|-----------------|-----------------|-----------------|
| Hopfield (ours) | -3.92           | _               |
| SVM             | -3.23           | 0.15            |
| SNN             | -2.85           | 0.10            |
| RandomForest    | -2.79           | 0.05            |
|                 |                 |                 |
| Stacking        | 8.73            | $1.2e{-11}$     |

Table 2: Results on 75 small datasets of the UCI benchmarks given as difference to average rank.