

# **Gitlab DevOps Tool**



## **Gitlab DevOps Tool**

- Gitlab will be used during the course to progressively build our secure software development build pipeline.
- Gitlab provides the follow key capabilities:
  - Git repositories
  - Controlled change management through branch protection and change review
  - Automated build process based on triggers such as code checkins
  - Execution of compile, tests, scanning, packaging, and deployment of applications
  - Repository to manage dependencies
- Provides Continuous Integration/Continuous Deployment (CI/CD) capability
- Goal is to build security testing methods into the CI/CD pipeline



# **CI/CD Key Concepts**

### Continuous integration (CI)

- Automating the integration of code changes from multiple contributors into a single software project.
- The central repository is where builds and tests then run.
- Automated tools are used to assert the new code's correctness before integration.
- Source code version control system (Git) is the crux of the CI process

### Continuous Deployment (CD)

- Extension of continuous integration since it automatically deploys all code changes to a testing and/or production environment after the build stage.
- Further testing can be performed on deployed environments.
- Software releases can be promoted to a production environment or official release



# What is CI/CD





# **Gitlab Setup**

- You should have received an email providing access your Gitlab group.
  - Group: "CPSC4970-summer-a/<student>"
  - Setup an account with your Auburn email address
- This Gitlab group will be used throughout the course
  - Assignment repositories will be added throughout the course.





# **Gitlab Overview - Login View**





# **Gitlab Overview - Setup SSH Key**

#### Select the Assignment 1a Project



### Add an SSH key...following instructions.





# **Clone Welcome Remote Repository**

- git clone <repository url>
  - Most common method to clone a remote repository
  - May need to enter credentials or configurable keys to clone

```
$ git clone https://gitlab.com/cpsc4970-sum-a/aubie/welcome.git
Cloning into 'welcome'...
remote: Enumerating objects: 6, done.
remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 6
Unpacking objects: 100% (6/6), done.
```

- git remote -v
  - Lists remote repositories for push/pull.
  - Also known as "upstream"

```
(main) $ git remote -v
origin https://gitlab.com/cpsc4970-sum-a/aubie/welcome.git (fetch)
origin https://gitlab.com/cpsc4970-sum-a/aubie/welcome.git (push)
```



### Pushing changes to remote repo

### git push

- Defaults to push current branch
- May be rejected if changes exist on remote branch
- Good practice to do git pull to bring down existing changes first.
- Will create branch on remote if it does not exist

### git branch -a

- Shows all local and remote branches
- git checkout <branchname> will bring down branch locally



# **Gitlab Merge Requests**

- Pushing changes to Gitlab will create merge requests.
- Merge requests are a control mechanism for reviewing changes to a branch before they are actually committed.
- Privileges for merging is given to authorized individuals who are knowledgeable and experience to review code
  - Adherence to standards
  - Functional correctness
  - Quality of code
  - Security related issues.



# **Assignment 1a**

- Practice working with git local and remote repositories
- Graded based on pushing commits and branches to Gitlab repo
- Feel free to practice outside of the assignment. No points deducted for additional commits and branches present.