You are using countermodel generation for classical predicate logic. $\,$

Tableau for xy(P(x) R(x,y)):

1. $\neg xy(P(x) \ R(x,y))$ (A) 2. $\neg y(P(a) \ R(a,y))$ (\neg , 1, $[x/a]^*$) —3. $\neg (P(a) \ R(a,a))$ (\neg , 2, [y/a]) —4. $\neg P(a)$ (\neg , 3) [1. $\neg \exists x \forall y(P(x) \land R(x,y))$ (A) 2. $\neg \forall y(P(a) \land R(a,y))$ (\neg , 1, $[x/a]^*$) [] The tableau is open: The formula is refutable.

Countermodels:

Structure
$$S_4 = \mathcal{D}, \mathcal{I}$$
 with $D = a$ $I : P \mapsto R \mapsto$

$$\begin{array}{c} \mathrm{Structure}\ \mathcal{S}_5 = \mathcal{D}, \mathcal{I}\ \mathrm{with}\\ \mathrm{D} = \underset{\mathrm{R} \mapsto}{a}\\ \mathrm{I}: \mathrm{P} \mapsto \\ \mathrm{R} \mapsto \end{array}$$