

Моделирование рентгеновской трубки в GEANT4

Курсовая работа

Постановка задачи

Смоделировать простейшую рентгеновскую трубку (анод Медь, энергия электронов 300 кэВ и построить диаграмму направленности рентгеновского излучения. Объем статистики 1 000 000 фотонов.

Описание геометрии (анод)

Геометрия анода представляет из себя медный круглый срезанный цилиндр расположенный центром среза в начале координат

Параметры анода:

- материал: медь (G4_Cu)
- радиус R = 30 мм
- угол среза α= 45°
- длина от основания до центра среза L = 90 мм

Описание геометрии (катод)

Параметры катоды выбраны в соответствии с техническим характеристиками реальных рентгеновских трубок

Катод (источник электронов):

- имеет форму круга, r = 2 мм
- расположен на оси z
- испускает электроны энергией 300 кэВ, по оси z в сторону анода.

Выбор физики

Используется физика QBBC_LIV:

- QBBC_LIV = QGSC + BIC + BERT + _LIV
 - QGSC кварк-глюонная струнная модель (протоны)
 - BIC модель бинарного внутриядерного каскада (пионы)
 - BERT модель внутриядерного каскада Бертини
 - _LIV низкоэнергетическое взаимодействие р и е-

Данная физика хорошо описывает множество процессов и хорошо согласуется в области энергий ниже 1 ГэВ для широкого спектра частиц.

Описание детектора

- В качестве детектора выбрана сферическая область вне источника и анода.
- Регистрируется последний шаг в вакуумной полой сфере с
 - внешним радиусом R_{дет} = 160 мм
 - внутренним радиусом R'дет = 150 мм
- Регистрируется названия частиц, координаты, вектор их скорости и энергия.
- Данные записываются в единый кортеж.

Эксперимент

- Выполнялся запуск 1 миллиарда частиц
- Данные кортежей записываются в csv-файлы и обрабатываются с помощью ЯП Python и сопутствующего инструментария
- Пример данных в DataFrame:

	particle_name	X	Υ	Z	vX	vY	vZ	energy
0	gamma	112.9400	112.06400	15.947000	0.049367	0.047848	0.006458	0.069052
1	gamma	92.4699	101.41700	-82.048800	0.018160	0.020252	-0.016502	0.031816
2	gamma	-123.4870	101.57800	-0.888354	-0.099786	0.080022	-0.001552	0.127918
3	gamma	13.4741	130.48800	91.429400	0.008432	0.075131	0.052190	0.091867
4	gamma	-111.1900	-75.16960	-86.915400	-0.048676	-0.033796	-0.038917	0.070895
7384965	gamma	100.6970	-29.66280	-120.616000	0.056051	-0.016780	-0.067486	0.089318
7384966	gamma	-46.1179	-1.80092	-153.094000	-0.033838	-0.000539	-0.109349	0.114466
7384967	gamma	-13.9264	-83.09570	-135.901000	-0.010799	-0.056220	-0.093124	0.109313
7384968	gamma	-86.6186	121.24100	-58.016000	-0.019316	0.026093	-0.012785	0.034891
7384969	gamma	-95.6094	119.04300	-47.492900	-0.035020	0.045397	-0.016940	0.059785

Фильтрация данных

- В детектор попадают порядка 40% от запущенных электронов
- Нам интересны только фотоны, попавшие в детектор (0,7% от запущенных электронов)
- Таким образом, при запуске 1 миллиарда электронов в детектор должно попасть порядка 7,5 М фотонов. Что превосходит объём статистики в формулировке задачи.
- Для удобства работы их сsv-файлов размером 20ГБ были отфильтрованы только фотоны и записаны в новые файлы размером 566МБ

Обработка данных

- Для проверки корректности данных построено отображение точек в трёхмерном пространстве
- Невооруженным глазом видно что распределение имеет частотный максимум направленный под 45 градусов (согласуется с геометрией)
- Поэтому распределение необходимо повернуть основной вектор направленности соосно с одной из осей
- Для этого используется матрица поворота

Обработка данных

Для построения диаграммы направленности выделим сферический пояс в некотором интервале зенитного угла

После чего зенитным углом можно пренебречь и построить радиальную диаграмму направленности от азимутального угла

Для построения выбран интервал $\Theta = 2\pi \pm \pi/10$

Результаты

Диаграмма направленности в сферическом поясе.

Результаты совпадают с теоретическими расчётами (ссылка в конце)

Видно что максимум интенсивности расположен под углом 45 градусов к направлению пучка первичных электронов и практически идентичен в широком спектре углов.

Результаты

Диаграмма направленности в сферическом поясе.

Результаты совпадают с теоретическими расчётами (ссылка в конце)

Видно что максимум интенсивности расположен под углом 45 градусов к направлению пучка первичных электронов и практически идентичен в широком спектре углов.

270°

Дополнительные результаты

Была получена диаграмма распределений энергий для гамма квантов в поясном секторе.

Заключение

Результаты согласуются с <u>теоретическими</u> расчетами и могут быть использованы для проектирования рентгеновских трубок.

Дальнейшее развитие работы может быть продолжено в направлении разностороннего исследования распределений при различных энергиях испускаемых электронов, а также проектировании оптимального окна для испускания рентгеновского излучения.

Код работы является открытым:

github.com/Annndruha/Geant4