Hvordan kan bruk av representasjonsformer bidra til et variert undervisningsopplegg i en naturfagstime?

Kandidatnummer: 8573

Hjemmeeksamen i pedagogikk og fagdidaktikk 1til

PPU3220

Praktisk pedagogisk utdanning: Del II

Utdanningsvitenskapelig fakultet Universitetet i Oslo

Juni 2017

Antall ord: 2976 (ikke inkludert forside, litteraturliste og vedlegg)

Introduksjon

Elevenes kunnskap om og forståelse av det de har lært, og anvendelse av det de har lært er viktig for å oppnå kompetanse. I utredningen NOU 2015:8 Fremtidens skole anses det en tett forbindelse mellom kompetanse og dybdelæring.

Utvalget mener at mer dybdelæring i skolen vil bidra til at elevene behersker sentrale elementer i fagene bedre og lettere kan overføre læring fra ett fag til et annet. (Ludvigsen-utvalget 2015)

For å fremme dybdelæring forutsetter det varierte arbeidsformer. I utredningen blir lærerenes arbeid knyttet til å gi elever tilstrekkelig tid til fordypning, utfordringer tilpasset den enkelte eleven og elevgruppensnivå, samt støtte og veiledning (Utdanningsdirektoratet, 2015c, s. 11).

Ifølge opplæringsloven skal alle elever få en opplæring tilpasset etter deres evner og forutsetninger. Gjennom min egen praksis har jeg undervist naturfag til 10. trinn på en ungdomsskole. Etter praksisperioden har jeg reflektert på min undervisningspraksis. Gjennom denne perioden har jeg innsett nettopp hvor vanskelig det kan være å tilby tilpasset opplæring for en elevgruppe hvor interesse, motivasjon, og faglig nivå varierer. Jeg har fundert over hvordan jeg kan forbedre min undervisningspraksis og bruke mine ideer og anbefalinger fra faglitteratur videre i mitt undervisningsarbeid. Derfor stiller jeg følgende spørsmål til min problemstilling:

Hvordan kan bruk av representasjonsformer bidra til et variert undervisningsopplegg i en naturfagstime?

Med begrepet representasjonsformer referer jeg til definisjon av Furberg (2016, s. 41) og Knain (2015, s. 61), hvor grafer, figurer, diagrammer, bilder og så videre brukes til å illustrere fagets begreper, fenomener og prosesser. Jeg har valgt å fokusere på dette i forbindelse med et undervisningsopplegg til en naturfagstime som er knyttet til kompetansemålet:

undersøke hydrokarboner, alkoholer, karboksylsyrer og karbohydrater, beskrive stoffene og gi eksempler på framstillingsmåter og bruksområder (Utdanningsdirektoratet, 2015b)

Dette er et kompetansemål jeg har selv operasjonalisert gjennom min praksisperiode. Jeg vil undersøke hvordan jeg kan bedre tilpasse opplæringen i en naturfagstime ved hjelp av tekster og illustrasjoner. Først vil jeg trekke inn teorien og undersøke hva litteraturen fremhever, og deretter vil jeg drøfte problemstillingen i lys av teori knyttet til pedagogikk og naturfagdidatikk.

Teoretisk bakgrunn

Naturvitenskapen er både et produkt og en prosess. Det vil si på den ene siden er naturvitenskapen en produkt, over en lang historisk utvikling, som er satt sammen av begreper, modeller og teorier som vi idag bruker for å forstå verden rundt oss og prosesser i oss. Ved hjelp av nye oppdagelser og funn utvikler naturvitenskap videre som et produkt. På den andre siden kjennetegnes naturvitenskapen ved sine prosesser og metoder. Naturvitenskapen er ikke bare

å vite svar, men å søke nye problemstillinger og sist men ikke minst skape nye erkjennelser (Sjøberg, 2004, s.351). Det er først og fremst denne nysgjerrigheten vi vil skape og kultivere hos våre ungdommer slik at de kan være aktive deltagere i samfunnet. For at dette skal skje er det viktig at undervisningen vektlegger relevans og fremprovoserer nysgjerrighet blant unge mennesker. Videre er det viktig at undervisning tilrettelegges for å oppfylle hver enkelt elevs behov slik at alle elever i en klasse føler at de er deltagende og aktive gjennom undervisningen.

Differensiering

En av sentrale styringsrammene for norsk utdanningspolitikk og skolepraksis er prinsippet om tilpasset opplæring. Opplæringsloven slår fast at opplæringen skal tilpasses evnene og forutsetningene til den enkelte elev. Opplæringen skal ivareta sentrale verdier som inkludering, variasjon, sammenheng, relevans, verdsetting, medvirkning og erfaringer. Det innebærer at innenfor rammen av ordinære undervisningen, så langt som mulig skal det prøves å tilpasse opplæringen til den enkelte elev. Dette skal operasjonaliseres av undervisere gjennom differensiering (Fosse, 2014, s. 423) og individualisering (Tangen, 2008, s. 129), gjennom blant annet nivå-, mengde- og/eller tempodifferensiering. Undervisningen må derfor tilfredsstille alle elevenes tilretteleggingsbehov i klassen, fra elever med vansker i faget til høytpresterende elever. En viktig intensjon for opplæringsreformen, Kunnskapsløftet (LK06), var nemlig å gi bedre tilpasset opplæring og å styrke elevenes grunnleggende ferdigheter (Tangen, 2008, s. 135; Fosse, 2014, s. 427), som inkluderer blant annet å kunne lese.¹

En av vanskelighetene som ligger i gjennomføring av differensiert undervisning er de praktiske forholdene som differensiering og tilpasset opplæring skal gjennomføres i. Blant rammefaktorene som er lagt til rette for at tilpasset undervisning lar seg realisere er et læringsmiljø som er godt utstyrt, både med læringsmateriell og muligheter til å samarbeide og danne grupper (Engh, 2011, s. 161). I tillegg må læreren ha tilstrekkelig kompetanse til å kunne organisere undervisningen slik at elever får de faglige utfordringene som er tilpasset deres forutsetninger.

Ifølge Fosse kan differensiert undervisning deles i to kategorier: pedagogisk differensiert undervisning og organisatorisk differensiert undervisning. <u>Permanent</u> nivådelt undervisning strider mot det overordnede prinsippet tilpasset opplæring (Fosse, 2014, s. 423):

[...] Til vanlig skal organisering ikke skje etter faglig nivå, kjønn eller etnisk tilhørlighet. (Opplæringsloven)

Fosse referer til metastudie (Hattie, 2009) når hun skriver at de flinke elevene kan dra nytte av organisatorisk differensiert undervisning, men det har ikke ønsket effekt for elever som strever med faget (Fosse, 2014, s. 423).

Motivasjon

I min praksisperiode har jeg hatt elever som har hatt problemer med motivasjon. Dette har ofte resultert i at deres innsats og utbytte i timen har vært "minimalistisk". Smith fremhever at

¹Å kunne lese i naturfag er å forstå og bruke naturfaglige begreper, symboler og figurer. Dette innebærer å kunne identifisere, tolke og bruke informasjon fra lærebøker og digitale kilder (Utdanningsdirektoratet, 2015b).

først må elevens vilje være til stede før det kan jobbes med elevens motivasjon (Smith, 2009, s. 26). Dermed må det arbeides med å styrke elevens tro på seg selv før presset blir lagt på det faglige innholdet. Klarer læreren å skape individuell faglig interesse hos eleven

[...] vil en stor del av læringsprosessen bli styrt av eleven selv. Lærerens rolle blir da hovedsakelig å stake ut veien for elevens læring, og det er mindre behov for at læreren må passe på at eleven arbeider med sin egen læring.
(Smith, 2009, s. 26)

Motivasjon blir ofte kategorisert som indre og ytre motivasjon (Manger, 2013, s. 162; Smith, 2009, s. 26 - 27). Frøyland lister opp følgende komponenter for å skape indre motivasjon blant elever (Frøyland, 2010, s. 36 - 37). Ifølge henne dannes indre motivasjon hos eleven når, eleven:

- konstruerer personlig mening,
- opplever valgfrihet,
- opplever det utfordrende,
- opplever at de har kontroll,
- samarbeider om oppgaver,
- opplærer at læring har konsekvenser.

Forholdet mellom elev og lærer har et vesentlig bidrag til elevenes resultater og skolefaglige interesser (Hovdenak & Kristin, 2011, s. 70). En god relasjon mellom lærer og elev avhenger i hvilken grad elevene føler at de blir forstått og lyttet til. Det er samt viktig å skape situasjoner der elever kan vise mestring. Lav faglig selvtillit kan i en del tilfeller være et reelt hinder for at elever senere velger realfag i videregående utdanning, spesielt blant jenter (Angell et al., 2011, s. 225).

Kompetansemål

Gjennom noen av mine samtaler med elever i praksisperioden, oppdaget jeg fort at det var få som trakk forbindelsen mellom egen læring og koblingen til kompetansemålene. For undervisere regnes det som en god praksis at elevene er alltid bevisste om hvorfor de lærer det de lærer og hvor de er på vei. Klette (2013, s. 136) beskriver en god undervisningsseksens der lærere klarer å balansere mellom tilegnelses-, utprøvings-, og konsolideringssituasjoner. Ifølge Klette har norske klasserom ensidige tendenser i bruken av varierte arbeidsmåter. Slik det kan ses fra figur 1, er det for eksempel lite konsolideringssituasjoner. Lærernes metalæringsaktiviteter regnes som særlig avgjørende for å sikre elevenes læring (Klette, 2013, s. 186). Å bruke dette som et fast organiserende prinsipp, blir derimot sjelden gjennomført (Ødegaard & Arnesen, 2010, s. 26). Dermed er det viktig å koble inn kompetansemålene og jobbe målrettet mot høyere kompetansenivå. Dette vil fremme læing hos eleven og gi eleven en pekepinn på hvor hen må ta tak.

Figur 1: Oversikt over naturfaglærernes undervisningstilbud til elevene fra PISA+ studie. Kilde: Ødegaard og Arnesen (2010).

Gruppearbeid

Et funn innenfor utdanningsforskning er at hjemmebakgrunn har sterk sammenheng med elevers faglig prestasjoner (Bergem, 2016, s. 176). Et viktig mål for norsk skole er å utjevne sosiale forskjeller mellom elevene. Bergem fremhever faktoren som styrker elevenes hjemmebakgrunn og deres prestasjoner, er hovedsakelig lekser. Hans undersøkelse viste at jo flere lekser som gis, jo mer øker betydningen av hjemmebakgrunn for elevenes prestasjoner (Bergem, 2016, s. 176). Fosse skriver at utstrakt bruk av individuelle metoder kan føre til manglende inkludering. Siden individualiserte metoder krever stor selvstendighet hos elevene, vil elever som har vansker med selvregulært læring falle utenfor (Fosse, 2014, s.431).

I den sosiokulturelle tradisjonen rettes fokus mot læring i felleskap før kunnskap blir internalisert på individnivå (Säljö, 2013, s. 90). Blant annet inkluderer dette arbeid i grupper. Klette (2013, s. 176) viser til viktigheten av at lærere legger til rette for "systematisk trening, øvelse og bruk av naturfaglige begreper for å utvikle elevenes naturfaglige forståelse". Gode fagsentrerte samtaler mellom elever (eller faglige samtaler med lærer) hvor elever bruker egne erfaringer og språk for å oppnå faglig forståelse hjelper til å skape bro mellom praksis og teori (Ødegaard & Arnesen, 2010).

Muntlige ferdigheter er en av grunneleggende ferdigheter i naturfag. I læreplanen står det blant annet: "Utviklingen av muntlige ferdigheter i naturfag går fra å kunne lytte og samtale om opplevelser og observasjoner til å kunne presentere og diskutere stadig mer komplekse emner".

I et sosiokulturelt læringsperspektiv skjer differensiering i sosiale læringssituasjoner (L.M. Brevik & Gunnulfsen, 2016), hvor det består i å veilede elevene i den nærmeste utviklingssonen.² Bruk av "scaffolding" eller stillasbygging er da viktig for å knytte fagbegreper og teori til elevenes forkunnskaper (Bråten et al., 1998).

Design av gruppeoppgaven bør utformes slik at elevene er nødt til å jobbe sammen. Oppgaven bør ikke være så enkel at elevene kan jobbe individuelt med deloppgavene, slik at det ikke er noen nødvendighet for elevene å jobbe sammen. Tilsvarende bør oppgaven ikke ha så høy vanskelighetsgrad slik at de ikke klarer å danne forståelse eller mening. En gruppeoppgave er da en oppgave som individet ikke klarer å utføre alene og som krever kollaborasjon. Åpne oppgaver er bedre egnet enn lukkede hvor fokuset er å finne en riktig svar. Dette er kanskje grunnen til at en høyt presterende elev kan dominere samtalen (Mercer & Littleton, 2007, s. 31).

Videre nå vil jeg drøfte noen forskjellige elevtyper og hvordan jeg kan tilpasse deres opplæring. Deretter vil jeg drøfte hvilken betydning representasjoner kan ha for å skape en variert undervisning.

Drøfting

Høyt presterende og evnerike elever

I opplæringsloven §1-3 angis det at opplæringen skal tilpasses til den enkelt elevs "evner og forutsetninger". Elever med stort læringspotensial er også en elevgruppe som må ivaretas i klasserommet. Dette er elever som viser faglig sammenhenger, er reflekterte og har god formuleringsevne. Fra lærerens perspektiv er det ofte ikke nødvendig med motivasjonsarbeid, derimot kan slike elever kjede seg hvis de ikke blir faglig utfordret (L.M. Brevik & Gunnulfsen, 2016). Disse elever har nytte av tilbakemeldinger som hjelper de med å jobbe målrettet. Videre må det eksistere en aksept for å være flink i klasserommet, dette skaper trygghet. Et slikt aksept blir oppfostret gjennom god klassemiljø og gjennom lærers egen oppmerksomhet til slike elever. Høyt presterende elever har også gode rutiner med å være forberedt til undervisningssekvenser, her kan jeg som lærer bruke deres forkunnskaper til å engasjere disse elevene i en dialog. Til slutt ligger det innenfor lærerens profesjonsetisk ansvar å ivareta slike elever fra presset med å alltid være best (L.M. Brevik, 2017).

Jeg kan tilpasse opplæringen ved å tilby høyt presterende elever nivå-delte oppgaver og oppgaver som er kognitiv utfordrende. I slike tilfeller kan rike åpne oppgaver brukes til å la slike elever ha muligheten til å gå dypere i fagstoff og trekke faglig sammenhenger. Derfor er det viktig å være bevisst på hvor mange frihetsgrader elever skal få (Knain & Kolstø, 2011, s. 29). Jo flere beslutninger eleven må ta selv, jo åpnere er oppgaven.

I denne diskursen har jeg snakket kortfattet om høyt presterende elever. I litteraturen skilles det mellom høyt presterende elever og evnerike elever (L.M. Brevik & Gunnulfsen, 2016;

²Den nærmeste utviklingssonen beskriver en sone som ligger i mellom en elevs kognitive ferdigheter, dvs. hva de kan oppnå selvstendig uten hjelp, og elevens potensielle utvikling, dvs. hva en elev kan få til eller forstå gjennom veiledning (Bråten, Thurmann & Anne, 1998, s. 125; Säljö, 2013, s. 75; Manger, 2013, s. 154).

Kolberg, 2014, s. 208). Også denne elevgruppen har behov for tilpasset opplæring. Manglende tilpasset opplæring kan medføre en negativ holdning til skolen generelt, og til læring i skoleregi spesielt (Kolberg, 2014, s. 208). Her kan mulige tiltak være bruk av både organisatorisk differensiering og pedagogisk differensiering. Til vanlig skal ikke organisatorisk differensiering brukes som et fast virkemiddel, men forskning viser at slike elever har behov for å tilbringe tid med andre på samme intellektuell nivå (Kolberg, 2014, s. 215). Gjennom pedagogisk differensiert undervisning kan tiltak som tempo brukes til å forsere eleven i pensum, fag og trinn. Et slikt tiltak tillater at eleven forblir en del av mangfoldet og prinsippet om tilpasset opplæring ivaretas.

Elever med minoritetsspråklig bakgrunn og svakt presterende elever

Manglende opplevd støtte i relasjonen til læreren på videregående skole er en klar risikofaktor for svakere skoleresultater og redusert motivasjon for elever med innvandringsbakgrunn (Hegna, 2013, s. 70). Videre er den praktiske oppfølgingen av hjemmearbeid og leksehjelp er ikke like sterk når elevene når lengere opp i utdanningsløpet (Hegna, 2013, s. 69).

Her kan jeg som lærer på ungdomstrinn stille tydelig krav og forventninger fra elevene, bruke formativ vurdering underveis til å følge opp enkelt elever helt fra starten og jobbe målrettet mot både kortsiktige og langsiktige mål som jeg og eleven setter sammen. Ifølge L. Brevik og Blikstad-Balas (2014) skal jakt etter bevis på læring kunne brukes aktivt av læreren og elevene for å avgjøre hvor de er i sin læring, hva de bør jobbe videre med, og hvordan de kan gå fram for å få det til (L. Brevik & Blikstad-Balas, 2014, s. 1). Sist men ikke minst kan jeg bidra til å opprettholde gode relasjoner med eleven og jobbe med å skape en god klassemiljø. Gjennom naturfagstimen kan jeg tilpasse opplæringen ved å bruke elevenes bakgrunn, nivå og tempo.

Tilslutt kan det være elever som har rett til spesialundervisning etter en sakkyndig vurdering av PP-tjenesten. Disse elevene vil da jobbe med andre læringsmål enn hva resten av klassen jobber med. Her ligger det innenfor mitt profesjonelle ansvar å følge opp disse elevene etter en utarbeidet individuell opplæringsplan (Utdanningsdirektoratet, 2015a).

Representasjoner

Til denne oppgaven har jeg valgt å fokusere på kompetansemål relatert til organisk kjemi. Ofte når elever blir introdusert til organisk kjemi er deres første stoppested ved hydrokarboner og navnsetting av hydrokarboner. Gjennom egen praksiserfaring har jeg opplevd dette som en fin introduksjon til det overordnede temaet organisk kjemi. Mange elever opplever initielt vansker med navnsetting av blant annet hydrokarboner, mens noen elever opplever innføringen systematisk og klarer fort å beherske navnsetting og beveger seg videre til andre temaer som alkoholer, karboksylsyrer og karbohydrater. Progresjon til disse temaene har en naturlig overgang, fra å lære seg å navnsette hydrokarboner til å utvide de kjemiske forbindelsene ved å legge til hydroksylgrupper og karboksylgrupper.

Her kan vi se at elevene må ha en god begrepsforståelse for at de skal kunne danne en fagovergripelig forståelse. Mork og Erlien skriver at begreper er kanskje det området i naturfag som

Figur 2: Interaktiv forklaring for elektronparbindinger når flere karbonatomer slår seg sammen. Kilde: http://www3.lokus.no/flashEmbedder.jsp?contentItemId=52275952&selectedLanguageId=1&title=hydrokarboner

forårsaker flest problemer for læring, fordi noen begreper kan være veldig abstrakte (Mork & Erlien, 2010, s. 24). Elever som har vansker med å navnsette og skille hydrokarboner, alkoholer og organiske syrer, har også ofte problemer med å visualisere de kjemiske forbindelsene, eller tolke strukturformelen. Det blir enda vanskeligere for disse elevene når begreper alkaner, alkener og alkyner innføres, det vil si enkelt, dobbelt og trippelbindinger. Da må de i tillegg holde oversikt over bindinger og hvor hydrogenatomer kan forbinde seg til karbon-atomet. Derfor er det viktig for både de lavt presterende -og høyt presterende elevene at de kan ha gode illustrasjoner som kan visualisere teorien på en forståelig vis. Dersom målet med undervisningen er at alle elever skal forstå det som undervises er det da viktig å treffe hver enkelt elev som har ulik tilnærming til stoff og gi hver elev mange erfaringer innenfor samme tema (Frøyland, 2010, s. 32).

Bruk av interaktive programer (f.eks flash basert nettside Lokus - se figur 2) kan ha en gunstig virkning og hjelpe de lavt presterende elevene med å skape motivasjon. Et annet virkemiddel er et molekylbyggesett. Her kan elevene få en fysisk tilknytning til strukturene de leser om og navnsetter gjennom førstehåndserfaring (Frøyland, 2010, s. 111). Gjennom min egen praksiserfaring har jeg opplevd at bruk av molekylbyggesett kan være motiverende og innlysende. Når elever forsøker å lage fysiske bindinger mellom karbonatomer og andre atomer ser mange at det er begrenset hvordan disse bindingene kan skapes. Derfor har slike byggesett en didaktisk betydning for elevene.

Figur 3: Interaktiv simulering av en oscillerende streng. Kilde: https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

Figure 23. A cline of abstractness illustrated through a swing, a diagram, a table of measurements, a graph, and a formula. Based on Roth et al. (2005, p. 86).

Figur 4: Grad av abstraksjoner. Kilde: Knain (2015, s.80)

I denne oppgaven er fokuset rundt tekster og illustrasjoner for å skape en tilpasset opplæring. Her har jeg snakket om en spesifikk naturfagstime som hovedsakelig dreier seg om innføring av hydrokarboner og navnsetting av hydrokarboner ved hjelp av strukturformel. Gjennom andre temaer jeg har undervist jeg har erfart at bruk av simuleringer (f.eks nettside PhET Interactive Simulations : se figur 3) kan også skape variasjon og motivasjon blant elever på tvers av faglig nivå. Jeg brukte simuleringen i figur 3 til å koble temaet elektromagnetisk stråling til frekvens og bølgelengde av en oscillerende streng. Det viste seg at elever som ellers ikke er aktive i timen viste stor intresse og forsøkte å få simuleringen til å virke autentisk ved å endre på parametere.

Knain (2015, s. 80 - 81) skriver at slike representasjoner binder tekst og illustrasjoner fra bøker til en direkte erfaring eller video som viser. Han illustrer dette (se figur 4) ved å sette direkte erfaring på en side av abstraksjonsskalaen til ren abstraksjoner (som f.eks formler) på den andre siden. Fra lærerens side kreves det god faglig kompetanse for å finne ut om en simulering eller animasjon fremstiller en naturfaglig prosess riktig.

En faglig dyktig lærer ser ofte mange muligheter og er kreativ når det gjelder valg av metoder og tilrettelegging (Mork & Erlien, 2010, s. 148). For eleven innebærer valg av gode representasjoner økt evne til å lese en tekst eller lærebok (Knain, 2015, s. 84).

Konklusjon

Læreren må ta utgangspunkt i hva som kjennetegner elevene og hvor de er i læringen sin for å kunne legge til rette for differensiering. Ved å tilpasse innholdet og arbeidsprosessen avhengig av elevenes potensial, interesser og læringsprofil, kan en slik tilpasning bidra til elevenes utvikling og motivasjon.

Bibliografi

Angell, C., Bungum, B., Henriksen, E.K., Kolstø, S.D., Person, J. & Renstrøm, R. (2011). Fysikkdidaktikk. Høyskoleforlaget.

Bergem, O.K. (2016). Vi kan lykkes i realfag – Viktige funn fra TIMMS 2015. I O.K. Bergem, H. Kaarstein & T. Nilsen (red.), Vi kan lykkes i realfag. Resultater og analyser fra TIMSS 2015 (s. 173–177). Universitetsforlaget.

Brevik, L. & Blikstad-Balas, M. (2014). 'Blir dette vurdert lærer?'. Om vurdering for læring i klasserommet. I E. Elstad & K. Helstad (red.), *Profesjonsutvikling i skolen* (s. 1–13). Universitetsforlaget.

Brevik, L.M. (2017). Differensiert undervisning for høytpresterende elever med stort utviklingspotensial. Forelesning 04.04.2017. (Aksessert på internett 30.05.2017 gjennom it's learning)

Brevik, L.M. & Gunnulfsen, A.E. (2016). Differensiert undervisning for høytpresterende elever med stort læringspotensial. https://utdanningsforskning.no/artikler/differensiert -undervisning-for-hoytpresterende-elever-med-stort-laringspotensial/. (Aksessert på internett 31.05.2017)

Bråten, I., Thurmann, M. & Anne, C. (1998). Den nærmeste utviklingssonen som utgangspunkt for pedagogisk praksis. I I. Bråten (red.), *Vygotsky i pedagogikken* (s. 123–143). Cappelen Akademisk Forlag.

Ødegaard, M. & Arnesen, N. (2010). Hva skjer i naturfagklasserommet? – resultater fra en videobasert klasseromsstudie; PISA+. Nordic Studies in Science Education.

Engh, R. (2011). Tilpasset opplæring og elevvurdering. I Vurdering for læring i skolen. På vei mot en bærekraftig vurderingskultur (s. 160–166). Høyskoleforlaget.

Fosse, B.O. (2014). Tilpasset opplæring som intensjon og virksomhet. I J.H. Stray & L. Wittek (red.), $Pedagogikk - en\ grunnbok$ (s. 420–436). Cappelen Damm Akademisk.

Frøyland, M. (2010). Mange erfaringer i mange rom. Abstrakt forlag.

Furberg, A. (2016). Elevers læring med IKT. Forelesning 07.09.2016. (Aksessert på internett 30.05.2017 gjennom it's learning)

Hattie, J. (2009). Visble learning. a synthesis of over 800 meta-analyses relating to achievement. Routledge.

Hegna, K. (2013). Ungdom med innvandringsbakgrunn etter overgangen til videregående opplæring. Tapte nettverk og svekket skoletrivsel? I *Tidsskrift for Ungdomsforskning* (s. 49–79). Fagbokforlaget.

Hovdenak, S.S. & Kristin, A. (2011). Faglig og personlig støtte. Om betydningen av en god relasjon mellom lærer og elev sett fra elevens ståsted. I *Tidsskrift for Ungdomsforskning* (s. 69–85). Fagbokforlaget.

Klette, K. (2013). Hva vet vi om god undervisning?. Rapport fra klasseromforskningen. I R. Krumsvik & R. Säljö (red.), *Praktisk pedagogisk utdanning. En antologi.* (s. 173–200). Fagbokforlaget.

Knain, E. (2015). Multimodal Representations. I Scientific Literacy for Participation. A Systemic Functional Approach to Analysis of School Science Discourses (s. 59–84). Sense Publishers.

Knain, E. & Kolstø, S. (2011). Elever som forskere i naturfag. Universitetsforlaget.

Kolberg, K.E. (2014). De evnerike elevene. I E.K. Høihilder & L.G. Lingås (red.), *Pedagogikk* 8.-13. Trinn. Profesjonsutdanning av lærere (s. 141–159). Oslo: Gyldendal Akademisk.

Manger, T. (2013). Motivasjon for skulearbeid. I R. Krumsvik & R. Säljö (red.), *Praktisk pedagogisk utdanning. En antologi* (s. 145–169). Fagbokforlaget.

Mercer, N. & Littleton, K. (2007). Dialogue and the Development of Children's Thinking. Routledge.

Mork, S.M. & Erlien, W. (2010). Språk og digitale verktøy i naturfag. Universitetsforlaget.

Sjøberg, S. (2004). Naturfag som allmenndannelse. Gylendal Akademisk.

Säljö, R. (2013). Støtte til læring-tradisjoner og perspektiver. I R. Krumsvik & R. Säljö (red.), Praktisk pedagogisk utdanning. En antologi (s. 53–79). Fagbokforlaget.

Smith, K. (2009). Samspillet mellom vurdering og motivasjon. I S. Dobsen, A.B. Eggen & K. Smith (red.), *Vurdering, prinsipper og praksis. Nye perspektiver på elev- og læringsvurdering.* (s. 23–29). Gyldendal Akademisk.

Tangen, R. (2008). Retten til utdanning for alle. I E. Befring & R. Tangen (red.), Spesialpedagogikk (s. 128–153). Cappelen Akademisk Forlag.

Utdanningsdirektoratet. (2015a). Fase 5: Eleven får spesialundervisning. https://www.udir.no/laring-og-trivsel/sarskilte-behov/spesialundervisning/faser-i-saksgangen/fase-5-eleven-far-spesialundervisning/. (Aksessert på internett 31.05.2017)

Utdanningsdirektoratet. (2015b). Læreplan i naturfag. Kompetansemål etter 10. trinn. https://www.udir.no/kl06/NAT1-03/Hele/Kompetansemaal/kompetansemal-etter-10.-arstrinn. (Aksessert på internett 30.05.2017)

Utdanningsdirektoratet. (2015c). Nou 2015: 8. Fremtidens skole. Fornyelse av fag og kompetanser. https://nettsteder.regjeringen.no/fremtidensskole/nou-2015-8/. (Aksessert på internett 30.05.2017)