

AuSRoS 2024 Robotic Control and Estimation

Lecture 3: Multi-Body System Control

Ian Manchester with material by Damian Abood

Australian Centre for Robotics, The University of Sydney

Motivation: High-Performance Humanoid Robots

Image: bostondynamics.com

Hierarchy of Control System

What We Have Achieved so Far

In **Lecture 1** we

- Looked at the dynamics of systems with one degree of freedom
- Showed how PID control can achieve a desired stable response.
- Discussed some fundamental limitations of feedback control

In **Lecture 2** we:

- \bullet Presented the pose kinematics of rigid bodies with transformation matrices T
- Derived Kalman filters to estimate the state of a system given measurements.

In this final lecture, we will:

- Discuss control of multi-body systems
- Introduce the basic concepts of model-predictive control (MPC)

Multi-Body Kinematics and

Dynamics

Rigid Body Kinematics: A Review

The pose of a rigid body with body frame O_B with respect to a frame O_I can be represented with

- Position $^Ix_B \in \mathbb{R}^3$
- Orientation ${}^IR_B \in \mathcal{SO}3$

and represented compactly as transformation matrix

$$T = \begin{bmatrix} {}^{I}R_{B} & {}^{I}x_{B} \\ 0_{3\times 1} & 1 \end{bmatrix}$$

The kinematics of rigid body with body velocities $(v,\,\omega)$ can then be expressed as

$$\dot{T} = T \begin{bmatrix} \omega_{\times} & v \\ 0_{3\times 1} & 0 \end{bmatrix}$$

Rigid Body Dynamics

Rigid bodies have mass m and rotational inertia ${\it I}$ about their body frames.

Due to these properties, the dynamics of a rigid body (in the body frame) are

$$f = ma (1)$$

$$\tau = I\dot{\omega} + \omega \times I\omega \tag{2}$$

Where f and au are the net translational and rotational forces acting on the body respectively.

Multi-Body Systems

- The dynamics of complex robotic systems (e.g. walking robots, manipulator arms) can not be described as single rigid-body.
- They should be viewed as a collection of inter-connected rigid-bodies.

Generalised Coordinates for Rigid Body Systems

The configuration of a robotic system is defined by the state of its joints, which we represent as a vector q.

All joint transforms T(q), velocities $v_J(\dot{q})$ and accelerations $a_J(\dot{q},\ddot{q})$ functions of q and its rates. The kinematic and dynamics from before can thus be expressed fully in terms of q, \dot{q} and \ddot{q} .

The dynamics of all bodies can be grouped together to form the following expression

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau \tag{3}$$

this is referred to as the manipulator equation

The Manipulator Equation

$$M(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)= au$$
 (4)

- ullet M(q) Inertial matrix (effects of mass and inertia)
- ullet $C(q,\dot{q})$ Coriolis matrix (effects of centripetal acceleration)
- ullet G(q) Potential vector (gravitational effects)
- ullet au Generalised input (forces acting at each joint specified by q)

Can be computed analytically for small systems (Euler-Lagrange equations), but quickly gets extremely complicated.

Connecting Rigid Bodies Together

We can represent multi-body systems as kinematic trees.

For the *i*-th body in the tree we provide the following information:

- Inertial data (m_i, I_i)
- Which link it is connected to (its parent $\lambda(i)$)
- The type of joint connecting it (e.g. hinge, prismatic)
- ullet Transform ${}^iT_{\lambda(i)}$ to express its body frame relative to its parent

This information is typically stored in Unified Robot Description Format (URDF) as a .urdf file

Multi-Body Kinematics

This tree structure can lead to recursively computing the kinematics of the system

For body velocities $oldsymbol{v}=(v,\omega)$ and joint velocities $oldsymbol{v}_J$,

$$oldsymbol{v}_i =^i oldsymbol{T}_{\lambda(i)} oldsymbol{v}_{\lambda(i)} + oldsymbol{v}_J$$

For body accelerations ${m a}=(a,\dot\omega)$ and joint accelerations ${m a}_J$,

$$a_i = {}^i T_{\lambda(i)} a_{\lambda(i)} + a_J$$

with ${}^iT_{\lambda(i)} \in \mathbb{R}^{6 imes 6}$ transforming both linear and rotational parts

Multi-Body Dynamics

Given body velocities v_i and accelerations a_i for each body, we can then compute the net forces of each body

$$f_i = m_i a_i, \qquad \qquad \tau_i = I_i \dot{\omega}_i + \omega_i \times I_i \omega_i$$
 (5)

We then traverse the tree **backwards** adding up all the reaction forces on each body.

This is the basic idea of the Recursive Newton Euler Algorithm (RNEA)

Algorithmic Approaches to Rigid-Body Dynamics

Efficient algorithms have been developed using these recursive ideas to compute components of

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau \tag{6}$$

which include:

- Forward Kinematics Computes all transforms iT_I , velocities and accelerations for each body w.r.t the global frame.
- • Articulated Body Algorithm (ABA) - Computes forward dynamics $\ddot{\pmb{q}} = M^{-1}(q)(\pmb{\tau} - C(q,\dot{q})\dot{q} - G(q))$
- ullet Recursive Newton-Euler Algorithm (RNEA) Computes inverse dynamics ${f au}=M(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)$
- ullet Composite Rigid-Body Algorithm (CRBA) Computes inertial matrix M(q)

Controlling Rigid Body Systems

Motivation

We now have the ability to compute the dynamics of complex, multi-body systems, which can be expressed under the form

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = au$$

Can we make use of these dynamics to control these systems?

Isn't PID Control Enough?

Given a reference state q_r , can we achieve $q pprox q_r$ with the input

$$\boldsymbol{\tau} = K_P(\boldsymbol{q}_r - \boldsymbol{q}) + K_D(\dot{\boldsymbol{q}}_r - \dot{\boldsymbol{q}}) := K_P \boldsymbol{e} + K_D \dot{\boldsymbol{e}}$$

The system dynamics become

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = K_P e + K_D \dot{e}$$
(7)

The error dynamics are dependent on the dynamics of the system, difficult to tune and use our methods from **Lecture 1**.

Integral control can try to correct errors, but ignores prior knowledge, stability can be difficult to establish over full range of motion.

Computed Torque Control

Instead of setting the input au proportional to the error, make the generalised acceleration \ddot{q} proportional to the error.

That is, drive the system to behave such that

$$\ddot{\mathbf{q}}_d = \ddot{\mathbf{q}}_r + K_P(\mathbf{q}_r - \mathbf{q}) + K_D(\dot{\mathbf{q}}_r - \dot{\mathbf{q}})$$

Using **inverse dynamics** (RNEA algorithm), we can find the value for au given the state q,\dot{q},\ddot{q}_d

$$au = ext{invdyn}(q,\dot{q},\ddot{q}_d) = M(q)\ddot{q}_d + C(q,\dot{q})\dot{q} + G(q)$$
 (8)

Computed Torque Control - Error Dynamics

Using this input, we achieve for the system

$$\begin{aligned} \boldsymbol{M}\ddot{\boldsymbol{q}} + \boldsymbol{C}\dot{\boldsymbol{q}} + \boldsymbol{G} &= \boldsymbol{\tau} = \boldsymbol{M}\ddot{\boldsymbol{q}}_d + \boldsymbol{C}\dot{\boldsymbol{q}} + \boldsymbol{G} \\ \boldsymbol{M}(\ddot{\boldsymbol{q}} - \ddot{\boldsymbol{q}}_d) &= 0 \\ &\Rightarrow \ddot{\boldsymbol{q}} - \ddot{\boldsymbol{q}}_d = 0 \\ \ddot{\boldsymbol{q}} - \ddot{\boldsymbol{q}}_r + K_P(\boldsymbol{q}) + K_D(\dot{\boldsymbol{q}} - \dot{\boldsymbol{q}}_r) &= 0 \\ \ddot{\boldsymbol{e}} + K_P\boldsymbol{e} + K_D\dot{\boldsymbol{e}} &= 0 \end{aligned}$$

The error dynamics do not have the dynamics of the system in them, as we have effectively "cancelled" them out.

Operational-Space Control

What if a higher level of control is required that is not easy to describe from a joint-based perspective?

Represent tasks (e.g. positions, orientations) as vectors $x(q) \in \mathcal{X}$ in the **operational** space \mathcal{X} .

Operational-Space Control

We can design references $x_r(q)$ within task space (e.g. end-effector position and orientations, centre-of-mass tracking).

Similar to computed torque control, create a control law that creates a desired **task** acceleration, such that

$$\ddot{\boldsymbol{x}}_{\boldsymbol{d}} = \ddot{\boldsymbol{x}}_{\boldsymbol{r}} + K_P(\boldsymbol{x}_r - \boldsymbol{x}) + K_D(\dot{\boldsymbol{x}}_{\boldsymbol{r}} - \dot{\boldsymbol{x}})$$

Operational-Space Control

Map these task accelerations to generalised accelerations \ddot{q} through the relationship

$$\dot{\boldsymbol{x}} = J(\boldsymbol{q})\dot{\boldsymbol{q}} \tag{9}$$

$$\ddot{x} = J(q)\ddot{q} + \dot{J}(q)\dot{q} \tag{10}$$

Where $J({m q})=\frac{\partial {m x}}{\partial {m q}}$ is the task Jacobian

There are many feasible solutions (\ddot{q}, au) that jointly satisfy

$$\ddot{x}=J(q)\ddot{q}+\dot{J}(q)\dot{q} \ M(q)\ddot{q}+C(q,\dot{q})\dot{q}+G(q)= au$$

If joint-torques are unconstrained, one solution can be computed with the pseudo-inverse with null-space PD:

$$\ddot{q} = J^{+}(\ddot{x} - \dot{J}\dot{q}) + (I - J^{+}J)(K_{P}(q_{r} - q) + K_{D}(\dot{q}_{r} - \dot{q}))$$

and then solve for τ with RNEA (inverse dynamics)

Optimal Operational-Space Control

When there are constraints, solutions can be found by framing the problem as an optimal control problem, e.g. with different weightings w_i for different tasks:

minimise
$$\sum_i w_i ||J_i \ddot{q} + \dot{J}_i \dot{q} - \ddot{x}_i||^2$$

subject to $M(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = \tau$
 $\tau \in \mathcal{U}$

Despite the nonlinear dynamics, this is a convex quadratic program in the variables (\ddot{q}, τ) , since they appear linearly in the constraints.

Can also optimize over \ddot{x} , e.g. based on LQR cost-to-go.

Floating Base Systems

• Floating-base systems (legged and aerial robotics)

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = egin{bmatrix} 0 \ au \end{bmatrix} + J(q)^T \lambda$$

Model Predictive Control

Model-Predictive Control

- Operational space control plan "in-the-moment", it performs an instantaneous action to minimise an objective at each instant.
- What if we want to take actions that account and impact the future behaviour of the system (i.e. thinking ahead)?

Model Predictive Control: The Problem

We can formulate this as a constrained optimal control problem:

minimise
$$J(u(\cdot), x(\cdot)) := \sum_{t=0}^{\infty} g(x(t), u(t))$$

subject to $x(t+1) = f(x(t), u(t)) \quad \forall t,$
 $x(0) = x_0,$
 $u(t) \in \mathcal{U} \quad \forall t,$
 $x(t) \in \mathcal{X} \quad \forall t.$

In fact, we want a **feedback controller** (a.k.a. policy), i.e. a solution of this problem for all possible x_0

Model-Predictive Control

Image: Grune & Pannek (2010), Nonlinear Model Predictive Control: Theory & Algorithms.

Model Predictive Control

The MPC strategy is as follows. At each time step t:

- Measure (or estimate) the true state x(t).
- Solve the following finite-dimensional optimisation problem:

$$\begin{aligned} & \text{minimise } \hat{J}(\check{u}, \check{x}) = \sum_{k=0}^{h-1} g(\check{x}(k), \check{u}(k)) + \hat{V}(x(h)) \\ & \text{subject to } \check{x}(k+1) = f(\check{x}(k), \check{u}(k)), \quad \forall k = 0, ..., h-1 \\ & \check{u}(k) \in \mathcal{U} \quad \forall k = 0, 1, ..., h-1, \\ & \check{x}(k) \in \mathcal{X} \quad \forall k = 0, 1, ..., h-1, \\ & \check{x}(0) = x(t), \\ & \check{x}(h) \in \mathcal{X}_h. \end{aligned}$$

 \bullet Apply the control $u^{\star}(t)=\breve{u}(0),$ and discard the rest of \breve{u} and \breve{x}

Here \hat{V} is an estimate of the value function, "tail cost", valid in some region \mathcal{X}_h .

Model Predictive Control

- Note that the variables \(\vec{x}\), \(\vec{u}\) are predictions of possible future \(x\) and \(u\). They are just internal variables in the optimization process.
- The specification of h, \hat{V} and \mathcal{X}_h give some freedom for design:
 - Generally, the longer the horizon h is the closer to optimality, at the expense of computational cost, and \hat{V}, \mathcal{X}_h become irrelevant as $h \to \infty$.
 - If $\hat{V} \approx V$ closely and \mathcal{X}_h is large, then a short horizon h can be used for faster online computation.
 - Computation of \hat{V} , \mathcal{X}_h is usually done offline, and can be very computationally intensive (RL, approximate dynamic programming, HJB equations).

Stabilizing Constraints

Terminal constraint: states enters a "safe set" it can stay in forever for zero future cost (e.g. an equilibrium). Assume all other states have positive cost.

• Let $V(x_1)$ be the cost of the MPC-computed sequence at time-step 1. I.e. $V(x_1)=g(x_1,u_1)+g(x_2,u_2)+g(x_3,u_3).$

Stabilizing Constraints

Terminal constraint: states enters a "safe set" it can stay in forever for zero future cost (e.g. an equilibrium). Assume all other states have positive cost.

- Let $V(x_1)$ be the cost of the optimal MPC-computed sequence at t=1. I.e. $V(x_1)=g(x_1,u_1)+g(x_2,u_2)+g(x_3,u_3)$.
- Let $\tilde{V}(x_2)$ be the cost of starting at t=2, but following the same path, then "doing nothing". $\tilde{V}(x_2)=g(x_2,u_2)+g(x_3,u_3)< V(x_1)$. Why?

Stabilizing Constraints

Terminal constraint: states enters a "safe set" it can stay in forever for zero future cost (e.g. an equilibrium). Assume all other states have positive cost.

- Let $V(x_1)$ be the cost of the MPC-computed path at t=1. I.e. $V(x_1)=q(x_1,u_1)+q(x_2,u_2)+q(x_3,u_3)$.
- Let $\tilde{V}(x_2)$ be the cost of starting at time-step 2, but following the same path, then "doing nothing". $\tilde{V}(x_2) = g(x_2,u_2) + g(x_3,u_3) < V(x_1)$.
- Now let $V(x_2)$ be the cost of the optimal (MPC-computed) path at time step 2. Claim $V(x_2) \leq \tilde{V}(x_2) < V(x_1)$. Why?

Conclusions and Future Directions

We have seen some of the main concepts algorithmic and optimization-based methods for multi-joint control. Many active areas of current research, including:

- Integration of control and planning, e.g. footstep selection for walking robots
- Integration with learning in various forms: learning policies, value functions, models, etc
- Dealing with challenges due to uncertainty, partial observability, etc.

Further Reading:

- Roy Featherstone, Rigid Body Dynamics Algorithms, 2008.
- Oussama Khatib, A unified approach for motion and force control of robot manipulators:
 The operational space formulation, 1987.
- Grune & Pannek, Nonlinear Model Predictive Control: Theory & Algorithms, 2010.