

Causality and Hypothesis Testing

Week 09 Day 01

DS 3000 - Foundations of Data Science

1

Reminders

HW 5

Optional

Due Thursday, October 31

FP3: Project Summary

Available on BB

Due Monday, November 11

Outline

Causality

Experiments and Experimental Designs

Hypothesis Testing

3

Causality

Experiments

Goal:

To establish the existence of a cause-and-effect relationship between two variables

A true experiment

Must demonstrate that changes in one variable are directly responsible for causing changes in the second variable

Four Basic Elements:

Manipulation, Measurement, Comparison, and Control

7

Four Basic Elements of an Experiment

Manipulation

Researcher manipulates one variable by changing its value to create a set of two or more treatment conditions

Measurement

A second variable is measured for a group of participants resulting in a set of scores in each treatment condition

Comparison

The scores in one treatment condition are compared with the scores in another treatment condition

Control

All other variables are controlled to be sure that they do not influence the two variables being examined

9

Terminology for Experiments

Independent variable (IV)

The variable that is manipulated by the researcher

By generating a set of treatment conditions or levels

Dependent variable (DV)

The variable that is measured in each of the treatment conditions

Observed for changes to assess the effects of manipulating the IV

Extraneous variables

All other variables other than the IVs and DVs

IVs and DVs: Example 1

In an experiment examining immersion in movies, two groups of participants were used.

One group watched Harry Potter and Deathly Hallows Part 1 for 30 minutes on a 4.5-inch phone and the second group watched the same movie for 30 minutes on a 13-inch screen.

Then, both groups provided immersion ratings using the Immersive Experiences Questionnaire (to indicate how immersed they were in the movie).

For this experiment, identify the independent variable and the dependent variable

11

IVs and DVs: Example 2

In an experiment examining immersion in movies, two groups of participants were used.

One group watched Harry Potter and Deathly Hallows Part 1 for 30 minutes on a 13-inch screen and the second group watched the same movie for 60 minutes on a 13-inch screen.

Then, both groups provided immersion ratings using the Immersive Experiences Questionnaire (to indicate how immersed they were in the movie).

For this experiment, identify the independent variable and the dependent variable

Inferential Questions

Does **screen size** affect **viewer immersion** when watching movies on Netflix?

Does the new UI layout enable users to complete their tasks faster than the current layout?

Does gaming platform affect game enjoyment?

17

Experimental Designs

Between-Subjects Designs

Experimental design wherein a researcher manipulates an IV to generate different treatment conditions

A **separate** group of participants is assigned to each of the different conditions

The DV for each participant is measured

19

22

Within-Subjects Designs

Uses a **single group** of participants and tests each individual in all of the different treatments being compared

Same group of individuals participates in every level of the IV Study repeats measurements of the same individuals under different conditions (Often called a repeated-measures design)

Goal: to look for differences between treatment conditions within the same group of participants

The Structure of a Within-Subjects Design

All participants go through the entire series of treatments but not necessarily in the same order.

24

Within-Subjects Design: Example

Hypothesis Testing

27

Hypotheses

Hypothesis:

A statement that describes or explains a relationship between variables; a conjectural explanation

Identifies the specific variables involved and describes how they are related

Hypotheses

Theory: People like jelly donuts best

Hypothesis: Given cream-filled donuts and jelly-filled donuts, people will rate jelly donuts as more enjoyable

Compared to cream-filled donuts, jelly-filled donuts will be rated as more enjoyable

29

Hypothesis Testing

A hypothesis test

A systematic procedure that determines whether the sample data provide convincing evidence to support the original research hypothesis

Goal

Rule out chance as a plausible explanation for the results

Hypothesis Testing

Attempts to distinguish between two explanations for the sample data:

1. Patterns in the data represent systematic relationships among variables in the population

IV is causing the changes in the DV

2. Patterns in the data were produced by random variation from chance or sampling error

Changes in the DV are caused by chance

31

Logic of Hypothesis Testing

State hypothesis about a population

Predict the expected characteristics of the sample based on the hypothesis

Obtain a random sample from the population

Compare the obtained sample data with the prediction made from the hypothesis

If consistent, hypothesis is reasonable If discrepant, hypothesis is rejected

The Five Basic Elements of a Hypothesis Test

Null Hypothesis

Sample statistic

Standard error

Test statistic

Alpha level (level of significance)

33

Hypotheses

Null hypothesis (H_0)

States that, in the general population, there is no effect/difference/change/ or relationship

Alternative hypothesis (H_1)

States that there is an effect, change, a difference, or a relationship in the general population (your research hypothesis)

The null hypothesis is exactly the opposite of the research, or alternative, hypothesis.

Null Hypothesis: Example

Hypothesis:

VR gaming will lead to a better gaming user experience

Null hypothesis:

VR gaming will lead to a gaming user experience that is similar to desktop gaming experience

Desktop Gaming

35

More on the Null Hypothesis

According to the null hypothesis, any patterns in the sample are nothing more than chance (sampling error)

According to the alternative hypothesis, the patterns observed in the data are caused by the manipulation of the IV

The hypothesis test determines whether the results are sufficient to reject the null hypothesis

Therefore aka Null Hypothesis Significance Testing (NHST)

The Five Basic Elements of a Hypothesis Test

Null Hypothesis

Sample statistic

Standard error

Test statistic

Alpha level (level of significance)

37

Sample Statistic

The data collected from the sample

The mean score for the dependent variable

Hypothesis:

VR gaming will lead to a better gaming user experience

Sample statistic:

The average of game enjoyment ratings

The Five Basic Elements of a Hypothesis Test

Null Hypothesis

Sample statistic

Standard error

Test statistic

Alpha level (level of significance)

39

Standard Error

A measure of the average, or standard, **distance** between a **sample statistic** and the corresponding **population parameter**.

Typically, there is some discrepancy between a sample statistic (what you measure in the sample) and the population parameter (the actual value in the population)

SE tells you how much discrepancy to expect

Sample Mean and Population Mean

We use samples as a way of estimating the value of the parameter in a population

The sample mean is an estimate of the population mean

Sampling Error

The discrepancy, or amount of error, that exists between a sample statistic and the corresponding population parameter

41

The Mean and Standard Deviation

Describe an entire distribution with just two numbers (M and SD)

The mean DADA scores was 88.8 (SD = 5.12)

DADA – Riddiculus Spell

Suppose the entire student population who performed this spell is composed of 100 students only

All students in the population performed the spell and Professor Lupin graded their performance

43

Population Scores

P01	83	P21	92	P41	92	P61	96	P81	81
P02	74	P22	87	P42	94	P62	84	P82	78
P03	84	P23	99	P43	95	P63	94	P83	96
P04	96	P24	83	P44	84	P64	90	P84	96
P05	84	P25	86	P45	80	P65	87	P85	81
P06	95	P26	85	P46	88	P66	90	P86	90
P07	100	P27	82	P47	87	P67	95	P87	100
P08	87	P28	95	P48	95	P68	94	P88	89
P09	89	P29	82	P49	83	P69	84	P89	92
P10	86	P30	91	P50	81	P70	94	P90	78
P11	84	P31	85	P51	99	P71	84	P91	88
P12	85	P32	78	P52	88	P72	100	P92	80
P13	85	P33	95	P53	82	P73	92	P93	92
P14	88	P34	84	P54	94	P74	89	P94	90
P15	85	P35	89	P55	78	P75	85	P95	89
P16	93	P36	82	P56	86	P76	81	P96	79
P17	85	P37	85	P57	94	P77	81	P97	85
P18	86	P38	85	P58	88	P78	89	P98	88
P19	91	P39	75	P59	84	P79	76	P99	82
P20	100	P40	87	P60	89	P80	88	P100	85

DADA – Riddiculus Spell

Suppose the entire student population who performed this spell is composed of 100 students only

All students in the population (N = 100) performed the spell

Population DADA Scores: $\mu = 86.8$ and $\sigma = 5.98$

Our sample was composed of 10 students

Sample DADA Scores: M = 88.8 and SD = 5.12

This sample was one of many possible samples that could be taken from the entire population of 100 students who performed the spell

Sample	e 1 Sam	ıple 2 San	ıple 3 Sa	mple 4	Sam	ple 5
P26 90	0 P14	93 P31	93 P5	5 84	P97	93
P15 87	7 P85	91 P66	91 P7	7 89	P73	83
P74 92	2 P77	89 P51	83 P0	2 88	P74	92
P05 89	9 P70	95 P26	90 P9	9 93	P86	92
P96 94	4 P67	90 P61	85 P6	6 91	P20	91
P97 93	3 P05	89 P01	92 P1	4 93	P32	87
P27 79	9 P44	85 P06	93 P8	0 88 0	P55	84
P84 8:	1 P49	88 P37	87 P7	8 83	P70	95
P46 84	4 P61	85 P77	89 P5	4 90	P65	93
P80 88	8 P42	78 P82	72 P1	2 90	P92	82
M = 87.	$.7 \qquad M=8$	$88.3 \qquad M = 3$	87.5 <i>M</i> =	88.9	M = 8	39.2
Sample	e 6 Sam	ple 7 Sam	ple 8 Sa	mple 9	Samı	ple 10
P89 8	37 P26	90 P10	85 P0	2 88	P31	93
P63 8	30 P86	92 P03	82 P1	8 80	P13	86
P23 9	90 P47	93 P28	95 P7	3 83	P33	87
P27 7	79 P06	93 P60	81 P0	6 93	P30	92
P09 8	36 P87	83 P44	85 P4	0 80	P47	93
P06 9	93 P82	72 P55	84 P1	4 93	P26	90
P16 9	93 P41	94 P80	88 P5	5 84	P86	92
P66 9	91 P74	92 P99	93 P4	8 89	P92	82
P69 8	39 P55	84 P38	75 P2	0 91	P21	95
P02 8	38 P72	83 P67	90 P8	9 87	P05	89
M = 87.	$.6 \qquad M = 8$	$87.6 \qquad M = 3$	00 44-	86.8	M = 8	0.00

Sample Means

Samples are variable; two samples are very, very rarely identical

Samples differ from each other

Given a random sample it is unlikely that sample means would always be the same

We can present these sample means as a distribution

47

Distribution of Sample Means

The distribution of sample means is the collection of sample means for **all** the possible random samples of a particular size (*n*) that can be obtained from a population

In theory you need to imagine that we're taking hundreds or thousands of samples to construct a sampling distribution

This means that if we took the average of **all** sample means of the same size (n) we'd get the value of the population mean

Sample	M
1	87.7
2	88.3
3	87.5
4	88.9
5	89.2
6	87.6
7	87.6
8	85.8
9	86.8
10	89.9

M = 87.9

This is not equal to population mean because n = 10

Variability of Sample Means

Variability of a distribution of *scores* is measured by the standard deviation of the scores

Variability of a distribution of *sample means* is measured by the **standard deviation** of the *sample means*

This is called the standard error of sample means

1	87.7
2	88.3
3	87.5
4	88.9
5	89.2
6	87.6
7	87.6
8	85.8
9	86.8
10	89.9

Sample

M = 87.9

SD = 1.13

49

Standard Error of the Mean

The standard error of the mean is the standard deviation of sample means

Provides a measure of how much distance is expected on average between a sample mean and a population mean

A measure of how representative a sample is likely to be of the population

Referred to as standard error of sample means or standard error of the mean, or standard error

Denoted by SE or SEM
$$SE_{\overline{x}} = \frac{s_x}{\sqrt{n}}$$

Calculating Standard Error of a Sample Mean

The distribution of DADA scores:

80, 82, 86, 87, 89, 90, 92, 92, 94, 96

$$M = 88.8$$
, $SD = 5.12$

$$n = 10$$

Standard Error =
$$SE_{\bar{x}} = \frac{s_x}{\sqrt{n}} = 5.12 / \sqrt{10}$$

SE = 1.62 The amount of average distance between the mean DADA score of 88.8, obtained from the sample of 10 students, and the mean DADA score all students in the population

51

Standard Error of the Mean

A large standard error (relative to the sample mean) means that there is a lot of variability between the means of different samples the sample we have might not be representative of the population

A small standard error indicates that most sample means are similar to the population mean

our sample is likely to be an accurate reflection of the population

Standard Deviation vs. Standard Error

The standard deviation describes scores in terms of average distance from the mean

Tells us how spread out the individual scores are from the mean

The standard error describes the standard deviation of sample means Tells us how close our sample mean is to the true mean of the overall population

53

The Five Basic Elements of a Hypothesis Test

Null Hypothesis

Sample statistic

Standard error

Test statistic

Alpha level (level of significance)

Test Statistic

A summary value that measures the degree to which the sample data are in accordance with the null hypothesis (no difference)

Compares the sample statistic with the null hypothesis, using the standard error as a baseline

 $Test\ statistic = \frac{Sample\ statistic - Parameter\ from\ the\ null\ hypothesis}{Standard\ error}$

 $= \frac{\text{Actual difference between the data and the hypothesis}}{\text{Difference expected by chance}}$

55

Test Statistic

A large value for the test statistic (much larger than 1) indicates a large discrepancy between the sample statistic and the parameter specified by **the null hypothesis**, and leads to rejecting the null hypothesis

 $Test statistic = \frac{Sample \ statistic - Parameter \ from \ the \ null \ hypothesis}{Standard \ error}$

 $= \frac{Actual\ difference\ between\ the\ data\ and\ the\ hypothesis}{Difference\ expected\ by\ chance}$

The Five Basic Elements of a Hypothesis Test

Null Hypothesis

Sample statistic

Standard error

Test statistic

Alpha level (level of significance)

57

Alpha Level (Level of Significance)

Provides a criterion for interpreting the test statistic

The alpha level, or level of significance, for a hypothesis test is the maximum probability that the research result was obtained simply by chance

An alpha level of .05 means that the test demands that there is less than a 5% (.05) probability that the results are caused only by chance

Alpha Level (Level of Significance)

The goal of a hypothesis test is to rule out chance as a plausible explanation for the results

To achieve this, we need to determine

which results are reasonable to expect just by chance (without any effect of the IV) which results are extremely unlikely to be obtained by chance alone

The alpha level

a probability value that defines what is extremely unlikely the probability that the sample results would be obtained even if the null hypothesis were true

59

Alpha Level (Level of Significance)

In the literature, significance levels are reported as p values

By convention, alpha levels are set at .05, .01, or .001

If your *p* value is smaller than your alpha level, your result is significant

p < .05:

There is less than a .05 probability that the result is caused by chance (or there is a 5% risk that the result is just a result of chance)

Since the probability is so small, you can reject the null hypothesis

Alpha Level (Level of Significance)

When the results of a research study satisfy the criterion imposed by the alpha level, the results are said to be **significant**, or **statistically significant**

A significant result, or a statistically significant result, means that it is extremely unlikely that the research result was obtained simply by chance.

The smaller the level of significance, the more confidence you have in the result (that the difference did not occur by chance)

61

Hypothesis Testing: A Magical Example

https://www.youtube.com/watch?v=aJSh1zkPEvc

Hypothesis Testing: A Magical Example

Theory:

"Elder wand is more powerful than any in existence."

Experimental task:

Light candles using the *Incendio* charm

Experimental hypothesis:

Wizards will light more candles when using the Elder Wand than any other wand

64

Hypothesis Testing: A Magical Example

100 wizards perform the *Incendio* charm using both the Elder Wand and a regular wand

We count the number of candles they were able to light using each wand

Hypothesis Testing: A Magical Example

Imagine that we found that 75% of wizards could light more candles using the Elder Wand than using the regular wand

Based on the null hypothesis, assuming that the Elder Wand is no different whatsoever, is it likely that 75% of wizards would be able to light more candles?

Chances are very low

If H₀ is true, they should light the same number of candles using both wands

Thus, it is very unlikely that we would have obtained these results if were H₀ true, increasing our confidence in H₁

66

Hypothesis Testing: A Magical Example

What if we found that only 1 wizard (1%) could light more candles using the Elder Wand than using the regular wand

Based on the null hypothesis, assuming that the Elder Wand is no different whatsoever, is it likely that 1% of wizards would be able to light more candles?

Chances are higher

If H_0 is true, no wizards should be able to light more candles using the Elder Wand

Thus, the chances of getting these data if H_0 were true are higher than before, supporting H_0

Errors in Hypothesis Testing

Hypothesis testing is an inferential process

Uses limited information from a sample to make a statistical decision, and then from it a general conclusion

Sample data used to make the statistical decision allows us to make an inference and draw a conclusion about a population

Errors are possible

Type I Error

Type II Error

68

Errors in Hypothesis Testing: Type I Error

The mistake of rejecting a null hypothesis that is actually true and should not be rejected

Implication:

Researcher concludes that a difference exists when there is none

Alpha level is the probability that a test will lead to a Type I error

A false report: a researcher finds evidence for a significant result when there is no effect in the population

An unusual or extreme sample leads to this error

Errors in Hypothesis Testing: Type II Error

The mistake of not rejecting a null hypothesis that is really false and should be rejected

Implication: Researcher has failed to detect a real difference

Type II error probability is not easily identified

Occurs when the effect is so small that it does not show up in the sample

The key to controlling Type II error is the sample size

Large sample sizes address the power issue and reduce Type II error rates

70

Five Steps in Hypothesis Testing

Step 1: State the hypotheses

Avoid HARKing

Step 2: Set the criteria for a decision

Determine alpha level (generally alpha = .05 in most sciences)

Step 3: Collect/retrieve data

Always after stating your hypothesis and setting the criteria (ensures objectivity)

Step 4: Compute sample statistics

Choose and conduct your statistical test

Step 5: Make a decision

If *p* < alpha level, you reject the null hypothesis If not, you fail to reject the null hypothesis

Choosing Statistical Tests for NHST

Experiment Design	# of IVs	# of Conditions for each IV	Statistical Test
	1	2	Independent-samples t test
Between-subjects	1	3 or more	One-way ANOVA
	2 or more	2 or more	Factorial ANOVA
	1	2	Paired-samples <i>t</i> test
Within-subjects	1	3 or more	Repeated measures ANOVA
	2 or more	2 or more	Repeated measures ANOVA
Between- and within- subjects	2 or more	2 or more	Mixed (split-plot) ANOVA

72

Hypothesis Testing: A Magical Example

Theory:

"Elder wand is more powerful than any in existence."

Experimental task:

Light candles using the Incendio charm

Experimental hypothesis:

Wizards will light more candles when using the Elder Wand than any other wand

Hypothesis Testing: A Magical Example

100 wizards perform the *Incendio* charm using both the Elder Wand and a regular wand

We count the number of candles they were able to light using each wand

75

Hypothesis Testing: A Magical Example

Imagine that we found that 75% of wizards could light more candles using the Elder Wand than using the regular wand

Based on the null hypothesis, assuming that the Elder Wand is no different whatsoever, is it likely that 75% of wizards would be able to light more candles?

Chances are very low

If H₀ is true, they should light the same number of candles using both wands

Thus, it is very unlikely that we would have obtained these results if were H_0 true, increasing our confidence in H_1

Hypothesis Testing: A Magical Example

What if we found that only 1 wizard (1%) could light more candles using the Elder Wand than using the regular wand

Based on the null hypothesis, assuming that the Elder Wand is no different whatsoever, is it likely that 1% of wizards would be able to light more candles?

Chances are higher

If H_0 is true, no wizards should be able to light more candles using the Elder Wand

Thus, the chances of getting these data if H_0 were true are higher than before, supporting H_0

77

Five Steps in Hypothesis Testing

Step 1: State the hypotheses

Avoid HARKing

Step 2: Set the criteria for a decision

Determine alpha level (generally alpha = .05 in most sciences)

Step 3: Collect/retrieve data

Always after stating your hypothesis and setting the criteria (ensures objectivity)

Step 4: Compute sample statistics

Choose and conduct your statistical test

Step 5: Make a decision

If *p* < alpha level, you reject the null hypothesis If not, you fail to reject the null hypothesis

t Tests

Used to compare two means to see if they are **significantly** different from each other

Hypotheses

 H_0 : No difference between the two means ($\mu_A = \mu_B$)

 H_A : The two means are different ($\mu_A \neq \mu_B$)

Two common *t* tests

Independent-samples t test

Paired-samples (or dependent-samples) t test

79

t Tests

Used to compare two means to see if they are **significantly** different from each other

Hypotheses

 H_0 : No difference between the two means ($\mu_A = \mu_B$)

 $\emph{\textbf{H}}_{\emph{A}}$: The two means are different $(\mu_{\emph{A}} \neq \mu_{\emph{B}})$

Two common t tests

Independent-samples t test

Paired-samples (or dependent-samples) t test

Independent-Samples t Test

81

Independent-Samples t Test

Used for between-subjects designs

One categorical IV with two levels

One quantitative DV measured in each condition for different groups of participants

The mean value of DV is calculated for each group

The sample mean difference is used to test a hypothesis about the corresponding population mean difference

The null hypothesis states that the population mean difference is zero

Independent-Samples t Test

The sample mean difference is used to test a hypothesis about the corresponding population mean difference

The null hypothesis states that the population mean difference is zero

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\text{estimate of the standard error}}$$

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)}}$$

IV: Wand

Hypothesis Testing: A Magical Example

Research question:

Is the Elder Wand more powerful than any in existence?

Dependent variable:

Number of candles lit

Experimental hypothesis:

Wizards will light more candles when using the Elder Wand compared to when using the regular wand

85

Experimental Procedure Regular Wand DV: Number of candles lit Group 2 Group 2 Elder Wand

Choosing Statistical Tests for NHST

# of IVs	# of Conditions for each IV	Statistical Test
1	2	Independent-samples t test
1	3 or more	One-way ANOVA
2 or more	2 or more	Factorial ANOVA
1	2	Paired-samples <i>t</i> test
1	3 or more	Repeated measures ANOVA
2 or more	2 or more	Repeated measures ANOVA
2 or more	2 or more	Mixed (split-plot) ANOVA
	1 2 or more 1 1 2 or more	each IV 1 2 1 3 or more 2 or more 1 2 1 3 or more 2 or more 2 or more 2 or more 2 or more

87

Independent-Samples t Test

Assumptions

- 1. The variances of the dependent variable in the two groups are roughly equal
- 2. The dependent variable is approximately normally distributed

SciPy allows you to check for these assumptions

Assumption 1: Levene's Test of Equality of Variances

Assumption 2: Shapiro-Wilk Test of Normality

You want **non-significant** results from these tests (p > .05)!

89

Reporting An Independent-Samples t Test

Report the results of checking for assumptions

Report t statistic, degrees of freedom (df), p-value

$$t(df) = x, p = y \text{ or } p < .05$$

Report the mean and standard error of the DV for each group

Group 1: (n = a, M = b, SE = c)

Group 2:
$$(n = x, M = y, SE = z)$$

Reporting Assumptions

For an independent-samples t test

Assumptions of normality, as assessed by Shapiro-Wilk's test (p > .05) and homogeneity (equality) of variances, as assessed by Levene's test (p > .05) were met.

* Usually precedes the results of the independent-samples *t* test

91

Reporting An Independent-Samples t Test

Test & Purpose

An independent sample *t* test was conducted to compare the number of candles lit by wizards using the Elder Wand and using the regular wand.

Actual results

Results showed a statistically significant difference between the wands, t(38) = 8.74, p < .001. An examination of the average number of candles lit in each wand condition revealed that the wizards who used the Elder Wand could light a greater number of candles (n = 20, M = 21.1, SE = .49) compared to those who used the regular wand (n = 20, M = 15.6, SE = .40).

Meaning

These results indicate that the Elder Wand is more powerful than a regular wand in terms of enabling wizards to perform the *Incendio* spell.

#