Sistemas Operacionais

Aula 07 – Tópicos em Gestão de Tarefas Prof. Igor da Penha Natal

Conteúdo

1 Inversão de prioridades

2 Herança de prioridades

Problema

Uma tarefa de **alta prioridade** impedida de executar por causa de uma tarefa de **baixa prioridade**.

Pode ocorrer se:

- A tarefa de alta prioridade precisa de um recurso.
- Esse recurso está com a tarefa de baixa prioridade.
- A CPU está ocupada com outras tarefas.
- A tarefa de baixa prioridade não consegue executar.

Considere um sistema com:

- *t_a* uma tarefa de prioridade alta
- *t_b* uma tarefa de prioridade baixa
- *t_m* uma tarefa de prioridade média
- R um recurso acessado em exclusão mútua

Exclusão mútua:

- Somente uma tarefa usa o recurso de cada vez
- As outras tarefas ficam esperando, suspensas

Um roteiro de inversão de prioridades:

Inversão: t_a não consegue executar por causa de t_b

Passos:

- t_b recebe o processador
- t_b acessa o recurso R e começa a usá-lo
- t_b perde o processador para alguma t_m
- \mathbf{I}_b volta à fila de prontas (mantendo o acesso a R)
- t_a recebe o processador e solicita acesso a R
- **6** t_a é **suspensa**, pois R está com t_b
- t_b não libera R, pois não consegue executar

Solução: Protocolos de herança de prioridade

Um exemplo de protocolo:

- **I** t_a pede acesso ao recurso R (que está com t_b)
- **2** t_a "empresta" sua prioridade a t_b
- $\mathbf{3}$ t_b passa à frente das demais tarefas na fila
- \mathbf{I}_b consegue executar e liberar R
- t_b retorna à sua prioridade anterior
- 6 t_a volta a executar e obtém acesso a R

Herança de prioridades

Exemplo: Sonda Mars PathFinder (1997)

Sonda Mars PathFinder

Sistema principal:

- IBM Risc 6000, SO VX-Works e linguagem C
- +100 *threads* no código
- Escalonamento RR com prioridades fixas
- Área de transferência de dados com exclusão mútua
- Um watchdog reinicia o sistema caso ele trave

Problema:

- Reboots frequentes e inesperados
- Indisponibilidade do sistema por várias horas

Sonda Mars PathFinder

Sonda Mars PathFinder

Threads envolvidas na inversão:

tarefa	função	prioridade	duração
t_{g}	gerência da área de transferência	alta	curta
t_m	coleta de dados meteorológicos	baixa	curta
t_c	comunicação com a Terra	média	longa

Solução:

- Ativar herança de prioridade nos semáforos
- Corrigiram um sistema a 400.000.000 Km da Terra