Метод Пауэлла

Оглавление

Метод Пауэлла	2
Поиск в общем случае	4
Пример	

Авторы: Бабичев Денис, Бессонов Трофим.

С помощью метода Пауэлла определяется местонахождение минимума некоторой целевой квадратичной функции f(x), при H(f)>0, где H(f) — матрица Гессе - матрица вторых частных производных.

Путем проведения последовательных одномерных поисков (например, метод Золотого сечения), начиная с точки X_0^k (произвольное, задаем сами), вдоль системы сопряженных направлений

Два направления поиска S_i И S_j называются сопряженными, если

$$(\mathbf{s}_i)^T \mathbf{Q} \mathbf{s}_i = 0, \qquad i \neq j,$$

 $s_0^{'}$ - направление поиска экстремума.

$$S_{i}^{\uparrow}$$
] $\uparrow T * H * S_{i}^{\uparrow} = 0$; $0 \le i! = j \le n-1$

Идея алгоритма заключается в том, что если на данном этапе поиска определяется минимум квадратичной функции вдоль каждого из сопряженных направлений и если затем в каждом направлении делается некоторый шаг, то полное перемещение от начала до конечного шага сопряжено ко всем поднаправлениям поиска.

Переход из точки
$$\mathbf{x}_0^{(k)}$$
 в точку $\mathbf{x}_m^{(k)}$ определяется формулой $\mathbf{x}_m^{(k)} = \mathbf{x}_0^{(k)} + \sum_{i=0}^{m-1} \lambda_i^{(k)} \mathbf{s}_i^{(k)}, \quad i=1,\ldots,\ m-1.$

 λ_i^k — длина шага, определяется по формуле(возьмем k=0):

$$\lambda^{(0)} = -\frac{\nabla^{T} f(\mathbf{x}^{(0)}) \mathbf{\hat{s}}^{(0)}}{\widehat{(\mathbf{s}}^{(0)})^{T} \nabla^{2} f(\mathbf{x}^{(0)}) \mathbf{\hat{s}}^{(0)}}.$$

Поиск в общем случае

В общем случае на к-ом этапе метода Пауэлла используются п линейно независимых направлений поиска; при этом поиск начинается в некоторой точке $x_0^{(k)} = x_{n+1}^{(k-1)}$ и проводится следующим образом

Шаг 1. Начиная из $x_0^{(k)}$, с помощью какого-либо одномерного поиска определяется $\lambda_i^{(k)}$ так, чтобы $f(x_0^{(k)}+\lambda_1 s_1^{(k)})$ принимала минимальное значение, и полагается $x_1^{(k)}=x_0^{(k)}+\lambda_1^{(k)}s_1^{(k)}$

Начиная из $x_1^{(k)}$ определяется $\lambda_2^{(k)}$ так, чтобы $f(x_1^{(k)} + \lambda_2 s_2^{(k)})$ обращалась в минимум, и полагается $x_2^{(k)} = x_1^{(k)} + \lambda_2^{(k)} s_2^{(k)}$. Поиск продолжается последовательно в каждом направлении, всегда начиная из самой последней точки последовательности, пока не будут определены все $\lambda_i^{(k)}$ i=1,....n

Величина $\lambda_i^{(k)}$ используется на шаге 4.

Шаг 2

После минимизации f(x) в каждом из n направлений, как на шаге 1, проводится один дополнительный шаг величиной ($x_n^{(k)}-x_0^{(k)}$) соответствующий полному перемещению на k-м этапе. Затем проводится тест (шаг 3), чтобы убедиться, уменьшается ли определитель матрицы направлений поиска путем включения нового направления и отбрасывания старого.

Шаг 3. Обозначим наибольшее уменьшение $f(\mathbf{x})$ в каком-либо направлении поиска на k-м этапе через

$$\Delta^{(k)} = \max_{i=1, \dots, n} \{ f(\mathbf{x}_{i-1}^{(k)}) - f(\mathbf{x}_{i}^{(k)}) \}.$$

Направление поиска, соответствующее этому максимальному изменению $f(\mathbf{x})$, обозначим через $\mathbf{s}_{m}^{(k)}$. Чтобы сделать обозначения более компактными, положим $f_1 = f(\mathbf{x}_0^{(k)})$, $f_2 = f(\mathbf{x}_n^{(k)})$ и $f_3 = f(2\mathbf{x}_n^{(k)} - \mathbf{x}_0^{(k)})$, где $\mathbf{x}_0^{(k)} = \mathbf{x}_n^{(k-1)}$ и $\mathbf{x}_n^{(k)} = \mathbf{x}_{n-1}^{(k)} + \lambda_n^{(k)} \mathbf{s}_n^{(k)} = \mathbf{x}_0^{(k)} + \sum_{i=1}^n \lambda_i^{(k)} \mathbf{s}_i^{(k)}$. Тогда если $f_3 \geqslant f_1$ и (или) $(f_1 - 2f_2 + f_3) (f_1 - f_2 - \Delta^{(k)})^2 \geqslant 0,5\Delta^{(k)} (f_1 - f_3)^2$, то следует использовать на (k+1)-м этапе те же направления $\mathbf{s}_1^{(k)}$,, $\mathbf{s}_n^{(k)}$, что и на k-м этапе, т. е. $\mathbf{s}_i^{(k+1)} = \mathbf{s}_i^{(k)}$ для $i=1,\ldots,n$, и начать поиск из точки $\mathbf{x}_0^{(k+1)} = \mathbf{x}_n^{(k)}$ [или из $\mathbf{x}_0^{(k+1)} = 2\mathbf{x}_n^{(k)} - \mathbf{x}_0^{(k)} = \mathbf{x}_{n+1}^{(k)}$ в зависимости от того, в какой точке \mathbf{x} функция $f(\mathbf{x})$ принимает наименьшее значение].

Шаг 4. Если тест на шаге 3 не удовлетворен, то ищется минимум f(x) в направлени вектора $s^{(k)}$ проведенного из $x_0^{(k)}$ в $x_n^{(k)}$; точка этого минимума берется в качестве начальной для следующего этапа. На (k+1) этапе будут использоваться следующие направления:

$$[\mathbf{s}_{1}^{(k+1)}\mathbf{s}_{2}^{(k+1)}\ldots \mathbf{s}_{n}^{(k+1)}] = [\mathbf{s}_{1}^{(k)}\mathbf{s}_{2}^{(k)}\ldots \mathbf{s}_{m-1}^{(k)}\mathbf{s}_{m+1}^{(k)}\ldots \mathbf{s}_{n}^{(k)}\mathbf{s}_{n}^{(k)}].$$

Шаг 5. Критерий удовлетворительной сходимости для метода Пауэлла, используемый для определения момента окончания поиска в конце любого этапа, состоит в том, что изменение по каждой независимой переменной должно быть меньше, чем заданная точность ε_i , $i=1,\ldots,n$, или $\|\mathbf{x}_n^{(k)}-\mathbf{x}_0^{(k)}\|\leqslant 0,1$ ε .

Пример

Рассмотрим вычислительную процедура алгоритма для квадратичной функции $f(x) = 4(x_1-5)^2 + (x_2-6)^2$:

- 1) Задается начальный вектор $X^0 = [8;9]^T$
- 2) Задается направление поиска, как правило это

$$p^{1} = [1;0]^{T}$$
 $p^{2} = [0;1]^{T}$

3) Вычисляется градиент grad f(x) (заданной квадратичной

функции)
$$\nabla f(X) = \begin{pmatrix} 8x_1-40 \\ 2x_2-12 \end{pmatrix}$$

4)Критерий остановки - $|\nabla f(X_0)| < \varepsilon$, ε задана

Далее выполняется цикл до тех пор, пока не будет выполнено условие.

Итерация первая:

- 1) Вычисляем значение градиента в X^0 , grad $f(X^0)$, получим вектор значений. $\nabla f(X_0) = \binom{24}{6}$
- 2) Проверка условия сходимости

$$|\nabla f(X_0)| = \sqrt{24^2+6^2} = 24.739 > 0.1$$

- 3) Вычислим значение функции в χ^0 , $f(\chi^0)$, Получим вектор значений. $f(\chi_0) = 45$.
- **4)** Сделаем шаг вдоль направления поиска $p^2 = {[0;1]}^T$

$$X_1 = X_0 + hp^2 = {8 \choose 9} + h {0 \choose 1} = {8 \choose h+9}$$
, где h — длина шага.

$$f(X_1) = 4(8-5)^2 + ((h+9)-6)^2 \rightarrow min$$

 $f(X_1) = h^2 + 6h + 45 \rightarrow min$

5) Найдем такой шаг h, чтобы целевая функция достигала минимума вдоль этого направления. Из необходимого условия существования экстремума функции $(f'(x_1)=0)$:

2h+6=0. Получим шаг: h=-3. В коде нужно реализовать любой одномерный поиск (Опять же, метод золотого сечения)

Выполнение этого шага приведет в точку:

$$X_1 = \begin{pmatrix} 8 \\ 9 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

6) Сделаем шаг вдоль другого направления поиска $p^1 = [1;0]^T$

$$X_2 = X_1 + hp^1 = {8 \choose 6} + h {1 \choose 0} = {h+8 \choose 6}$$

$$f(X_2) = 4((h+8)-5)^2 + ((6)-6)^2 \rightarrow min$$

 $f(X_2) = 4h^2 + 24h + 36 \rightarrow min$

$$f(X_2) = 4h^2 + 24h + 36 \rightarrow min$$

Найдем такой шаг h, чтобы целевая функция достигала минимума вдоль этого направления. Из необходимого условия существования экстремума функции (f'(x2)=0):

8h+24 = 0. Получим шаг: h = -3

Выполнение этого шага приведет в точку:

$$X_2 = \begin{pmatrix} 8 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$$

7) Повторно сделаем шаг вдоль направления поиска
$$p^2 = [0;1]^T$$
 $X_3 = X_2 + hp^2 = {5 \choose 6} + h {0 \choose 1} = {5 \choose h+6}$

$$f(X_3) = 4(5-5)^2 + ((h+6)-6)^2 \rightarrow min$$

 $f(X_3) = h^2 \rightarrow min$

Найдем такой шаг h, чтобы целевая функция достигала минимума вдоль этого направления. Из необходимого условия существования экстремума функции (f'(x₃)=0):

Выполнение этого шага приведет в точку: х3 = (5,6).

Так как шаг равен нулю, выбираем сопряженное направление.

8) Выбираем сопряженное направление:
$$p^2 = x^3 - x^1 p^2 = [5;6]^T - [8;6]^T = [-3;0]^T$$

Итерация вторая:

$$\begin{array}{c}
\nabla f(X_3) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\end{array}$$

Проверим критерий остановки:

$$|\nabla f(X_3)| < \epsilon$$

 $|\nabla f(X_3)| = \sqrt{0^2 + 0^2} = 0 < 0.1$

2) Вычислим значение функции в начальной точке $f(X_3) = 0$. $X = [5;6]^T$ — минимум функции.

В общем случае, условие может выполниться далеко не на второй итерации. Если бы

$$\nabla f(X_3)$$

Не был нулевым, то вычисления происходили бы точно так же, только с уже другими сопряженными направлениям.