safeAI | checking logical models

ANNELINE DAGGELINCKX, MATTHIJS KEMP, and OTTO MÄTTAS, Utrecht University, The Netherlands

1 WEEK 8 ASSIGNMENTS

Defining Concurrent Epistemic Game Structures

Consider a CEGS $M_{chicken}$, where (Agt, St, Act, d, out) is a concurrent game structure, and \sim_a are indistinguishability relations over St, one per agent a in Aqt. We can now define the CEGS as a tuple

$$M_{chicken} = (Agt, St, \sim_a | a \in Agt, Act, d, out)$$
 (1)

, where

- $Aqt = \{a_1, a_2\}$
- - $-q_0 =$ left-hand traffic
- $-q_1$ = right-hand traffic
- $-q_2$ = left-hand traffic; a_1 drives left; a_2 drives left
- $-q_3$ = left-hand traffic; a_1 drives left; a_2 drives right
- $-q_4$ = left-hand traffic; a_1 drives right; a_2 drives left
- $-q_5$ = left-hand traffic; a_1 drives right; a_2 drives right
- $-q_6$ = right-hand traffic; a_1 drives right; a_2 drives right
- $-q_7$ = right-hand traffic; a_1 drives right; a_2 drives left
- q_8 = right-hand traffic; a_1 drives left; a_2 drives right
- $-q_9$ = right-hand traffic; a_1 drives left; a_2 drives left
- $\sim_a = \{q_0, q_1\}, \{q_3, q_8\}, \{q_4, q_7\}, \{q_2\}, \{q_5\}, \{q_6\}, \{q_9\}$
- Act = {drive_left, drive_right}
- $d(Agt, q_i) = \{drive_left, drive_right\}, \forall i \in \{0, ..., 9\}$
- out =
 - $out(q_0, drive_left, drive_left) = q_2$

we are evaluating q_6 implicitly.

1.2 Validating Concurrent Epistemic Game Structures through Memoryless Strategies

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement) agent a_1 has a memoryless strategy in q_0 to enforce $\neg crash$ in the next state $(\langle \langle 1 \rangle \rangle X \neg crash)$.

This is because in q_0 , the only way not to crash is for both agents to take action $drive_left$. Agent a_1 cannot force this protocol alone, agent a_2 needs to adhere to it as well.

Validating Concurrent Epistemic Game Structures through Indistinguishability

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under ATL_{ir} , $M_{chicken}, q_0 \models_{ir} \langle \langle 1 \rangle \rangle X \neg crash \text{ holds.}$

This is because agent a_1 does not know whether it is in q_0 or q_1 . Therefore it does not know whether the action to take is *drive_left* or drive_right. Even more, if agent a1 would choose the correct action (drive_left), agent 2 can still cause a crash by executing drive_right.

Validating Concurrent Epistemic Game Structures through Memoryless Strategies

For the defined CEGS $M_{chicken}$ in 1.1, it is **true** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement), both agents together have a memoryless strategy in q_0 to enforce $\neg crash$ in the next state.

This is because there is a strategy in q_0 which leads to a state with ¬crash from both agents' perspective. The strategy is as follows $s_i(q_0) = drive \ left \ \forall i \in \{1, 2\}; s_i(q_1) = drive \ right \ \forall i \in \{1, 2\}.$

1.5 Validating Concurrent Epistemic Game Structures through Indistinguishability

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under ATL_{ir}, $M_{chicken}$, $q_0 \models_{ir} \langle \langle 1, 2 \rangle \rangle X \neg crash$ holds.

This is because agents do not know whether they are in q_0 or q_1 . Therefore, they do not know whether the action to take is $drive_left$ or $drive_right$, not being able to create a uniform strategy.

1.6 Validating Concurrent Epistemic Game Structures through Knowledge

For the defined CEGS $M_{chicken}$ in 1.1, it is **true** that under the independent combination of ATL semantics with epistemic semantics (no uniform strategies requirement), both agents together know that they have a memoryless strategy in q_0 to enforce $\neg crash$ in the next state $(K_1\langle\langle 1,2\rangle\rangle X \neg crash \wedge K_2\langle\langle 1,2\rangle\rangle X \neg crash)$.

For $q \in \{q_0\}$, it holds that $M_{chicken}$, $q \models \langle \langle 1, 2 \rangle \rangle X \neg crash$, using the following strategy $s_i(q_0) = drive_left \ \forall i \in \{1, 2\}; \ s_i(q_1) = drive_right \ \forall i \in \{1, 2\}.$

1.7 Validating Concurrent Epistemic Game Structures through Indishtinguishable Knowledge

For the defined CEGS $M_{chicken}$ in 1.1, it is **untrue** that under ATL_{ir}, $M_{chicken}$, $q_0 \models_{ir} K_1\langle\langle 1,2\rangle\rangle X \neg crash \wedge K_2\langle\langle 1,2\rangle\rangle X \neg crash$ holds.

This is because there is a state q_1 indistinguishable from q_0 for both agents. For $q \in \{q_0, q_1\}$, there is no uniform strategy to satisfy the requirement $(M_{chicken}, q \models_{ir} \langle \langle 1, 2 \rangle \rangle X \neg crash$ for $q \in \{q_0, q_1\}$).

1.8 Formalising ATL_{ir}

To say in ATL_{ir} that agent a_1 can ensure that eventually it knows whether it is in a country that drives on the left or a country that drives on the right, we can specify a formula as follows

$$M_{chicken}, q_0 \models_{ir} \langle \langle 1 \rangle \rangle F(K_1 lft \vee K_1 \neg lft))$$
 (2)

This formula is **untrue** in q_0 . This is because agent a_1 can not come to the knowledge on it's own volition as agent a_2 has to also participate in order for agent a_1 to know this. If agent a_2 chooses another action than agent a_1 (so they do (left, right) or (right, left)), they certainly crash, independently of which country they were in. In that case agent 1 does not know whether they are in a left or right driving country.

We can also see that states q_7 and q_4 are indistinguishable, where in the first state of the two, they are in a right driving country, while in the second one they are in a left driving country. The same goes for q_8 and q_3 .

1.9 Formalising ATL_{ir}

To say in ATL_{ir} that it is inevitable that if in the next state there is no crash, then agent a_1 knows whether it is in a country that drives on the left or a country that drives on the right, we can specify a formula as follows

$$\langle \langle \emptyset \rangle \rangle X(\neg crash \to (K_1 lft \lor K_1 \neg lft))$$
 (3)

This formula is **true** in q_0 . This is because there are two states (q_2 and q_6) without a crash which both are distinguishable from each

other for both agents. Namely, q_2 can be reached by taking action $drive_left$ and q_6 can be reached by taking action $drive_right$.

1.10 Specifying model checking algorithms

To say in ${\rm ATL}_{ir}$ that there is a strategy which in two steps guarantees enforcing of φ from any state indistinguishable from q, we can specify an algorithm as follows

- (1) For each uniform strategy of agent a, generate a model M_i where agent a has only the action assigned by the strategy;
 - There are N different models with $N = |Act|^{|St|}$ (|Act| is the number of actions of agent a and |St| is the number of states.)
- (2) For each state M_i , execute algorithm $mcheck_{ATL_{ir}}(M_i, \varphi_0)$. The algorithm has O complexity $O(|St| * |\varphi|)$;

function
$$mcheck_{ATL_{ir}}(M, \varphi_0)$$

for
$$\varphi' \in Sub(\varphi_0)$$
 do

$$\operatorname{case} \varphi' = p$$

$$[\varphi']_M \leftarrow V(p)$$

$$\operatorname{case} \varphi' = True$$

$$[\varphi']_M \leftarrow V(True) = St$$

$$\operatorname{case} \varphi' = False$$

$$[\varphi']_M \leftarrow V(False) = \emptyset$$

$$\operatorname{case} \varphi' = \langle \langle a \rangle \rangle X^2 \psi$$

$$[\varphi']_M \leftarrow pre(a, pre(a, [\psi]_M))$$

- (3) Check whether $\exists i$ such that for all states $s \in \{qr|qr \sim_a q\}$: $s \in [\varphi]_{M_i}$. If there exists an i, φ is true in q, otherwise it is false;
- (4) The complete algorithm has big O complexity $O(|St|*|Act|^{|St|}*|\varphi|)$.

The algorithm $mcheck_{ATL_{ir}}$ has complexity $O(|St|*|\varphi|)$ and is executed for each generated strategy model M_i . Since there are maximum $|Act|^{St}$ different models, the total complexity is $O(|St|*|\varphi|*|Act|^{St})$.