Notes on Validated Model Counting Version of March 28, 2022

Randal E. Bryant

Computer Science Department Carnegie Mellon University, Pittsburgh, PA, United States

1 Notation

Let $X = \{x_1, x_2, \dots, x_n\}$ be a set of Boolean variables. An *assignment* is a function α assigning Boolean values to the variables: $\alpha: X \to \{0,1\}$. We can also view an assignment as a set of *literals* $\{l_1, l_2, \dots, l_n\}$, where each literal l_i is either x_i or \overline{x}_i , corresponding to the assignments $\alpha(x_i) = 1$ or 0, respectively.

1.1 Boolean Functions

A Boolean function $f: 2^X \to \{0,1\}$ can be characterized by the set of assignments for which the function evaluates to 1: $\mathcal{M}(f) = \{\alpha | f(\alpha) = 1\}$. Let **1** denote the Boolean function that assigns value 1 to every assignment, and **0** denote the assignment that assigns value 0 to every assignment. These are characterized by the universal and empty assignment sets, respectively.

From this we can define the *negation* of function f as the function $\neg f$ such that $\mathcal{M}(\neg f) = \{\alpha | f(\alpha) = 0\}$. We can also define the conjunction and disjunction operations over functions f_1 and f_2 as characterized by the sets $\mathcal{M}(f_1 \land f_2) = \mathcal{M}(f_1) \cap \mathcal{M}(f_2)$ and $\mathcal{M}(f_1 \lor f_2) = \mathcal{M}(f_1) \cup \mathcal{M}(f_2)$.

For assignment α and a Boolean formula E over X, we use the notation $\alpha[E/x_i]$ to denote the assignment α' , such that $\alpha'(x_j) = \alpha(x_j)$ for all $j \neq i$ and $\alpha'(x_i) = \alpha(E)$, where $\alpha(E)$ is the value obtained by evaluating formula E with each variable assigned the value given by α . In particular, the notation $\alpha[\overline{x_i}/x_i]$ indicates the assignment in which the value assigned to x_i is complemented, while others remain unchanged.

A Boolean function f is said to be *independent* of variable x_i if every $\alpha \in \mathcal{M}(f)$ has $\alpha[\overline{x_i}/x_i] \in \mathcal{M}(f)$. The *dependency set* of f, denoted D(f) consists of all variables x_i for which f is *not* independent.

1.2 Separable Cost Functions

Let $\mathcal Z$ denote the elements of a commutative ring. A separable cost function $\sigma: X \to \mathcal Z$ assigns a value from the ring to each variable. We extend this function by defining the cost of literal as $\sigma(\overline{x}_i) = 1 - \sigma(x_i)$, the cost of an assignment as $\sigma(\alpha) = \prod_{l \in \alpha} \sigma(l_i)$, and the cost of a function f as $\sigma(f) = \sum_{\alpha \in \mathcal{M}(f)} \sigma(\alpha)$.

Example 1: Let \mathcal{Z} be the set of rational numbers and $\sigma(x_i) = 1/2$ for all variables x_i . Then cost of every assignment will be $1/2^n$, and the cost of a function will be its

density, denoted $\rho(f)$. That is $\rho(f) \in [0,1]$ will be the fraction of assignments for which the function evaluates to 1. Given an ability to compute the density of function f, we can scale this by 2^n to compute $|\mathcal{M}(f)|$, the core task of model counting. Using density as our metric has the advantage that it does not vary when the function is embedded in a larger domain $X' \supseteq X$.

Example 2: Let \mathcal{Z} be a field with $|\mathcal{Z}| > 2n$, and let \mathcal{H} be the set functions mapping elements of X to elements of \mathcal{Z} . For two distinct functions f_1 and f_2 and a randomly chosen $h \in \mathcal{H}$, the probability that $h(f_1) = h(f_2)$ will be at most $2^n/|\mathcal{Z}| < 1/2$. Therefore, these functions can be used as part of a randomized algorithm for equivalence testing [1].

1.3 Computing Cost Functions

Three key properties of separable cost functions makes it possible, in some cases, to compute the cost of a Boolean formula without enumerating all of its satisfying solutions.

Lemma 1 (Complementation). For separable cost function σ and Boolean function $f: \sigma(\neg f) = 1 - \sigma(f)$.

Lemma 2 (Conjunction over Independent Domains). For separable cost function σ and Boolean functions f_1 and f_2 such that $D(f_1) \cap D(f_2) = \emptyset$: $\sigma(f_1 \wedge f_2) = \sigma(f_1) \cdot \sigma(f_2)$.

Lemma 3 (Disjunction over Disjoint Domains). For separable cost function σ and Boolean functions f_1 and f_2 such that $\mathcal{M}(f_1) \cap \mathcal{M}(f_2) = \emptyset$: $\sigma(f_1 \vee f_2) = \sigma(f_1) + \sigma(f_2)$.

References

 Blum, M., Chandra, A.K., Wegman, M.N.: Equivalence of free Boolean graphs can be decided probabilistically in polynomial time. Information Processing Letters 10(2), 80–82 (18 March 1980)