

Data Collection and Preprocessing Phase

Date	19 April 2025
Student Name	Abhinandan Baburao Khaware
Project Title	Uncovering the Hidden Treasures of the Mushroom Kingdom A Classification Analysis
Maximum Marks	6 Marks

Data Preprocessing

The images will be preprocessed by resizing, normalizing, augmenting, denoising, adjusting contrast, detecting edges, converting color space, cropping, batch normalizing, and whitening data. These steps will enhance data quality, promote model generalization, and improve convergence during neural network training, ensuring robust and efficient performance across various computer vision tasks.

Section	Description
Data Overview	This project uses image datasets of three mushroom species: Boletus , Lactarius , and Russula . The images are collected from various sources including SmartInternz , custom field-captured images , and platforms like Kaggle and Wikimedia . This ensures rich visual diversity and robust generalization during training.
Resizing	All images are resized to 224 × 224 pixels using OpenCV's cv2.resize() function to ensure uniform input dimensions for CNN-based models.
Normalization	Pixel values are normalized to the range [0, 1] by dividing by 255.0, improving convergence during model training.
Data Augmentation	Using ImageDataGenerator, images are augmented with random rotation, shifts, zoom, horizontal/vertical flips, and fill modes to avoid overfitting.
Denoising	OpenCV's fastNlMeansDenoisingColored() is applied to reduce environmental noise and improve image clarity, especially for field-captured data.

Edge Detection	cv2.Canny() is used for edge detection, helping to emphasize structure, texture, and contour features of different mushroom species.
Color Space Conversion	Images are converted from BGR to HSV color space using cv2.cvtColor() to better capture color-based patterns across lighting variations.
Image Cropping	Manual center cropping is done on some images to focus on the mushroom body and reduce irrelevant background noise, enhancing object recognition.
Batch Normalization	BatchNormalization() is applied in the neural network model to stabilize and accelerate the learning process by reducing internal covariate shift.
Data Preprocessing Code Screenshots	

```
import numpy as np
                                           from tensorflow.keras.preprocessing.image import ImageDataGenerator
                                           data_dir = "path/to/mushroom_dataset"
                                           categories = ["Boletus", "Lactarius", "Russula"]
                                           IMG_SIZE = 224
Loading Data
                                      12 ~ for category in categories:
                                               folder = os.path.join(data dir, category)
label - categories.index(category)
                                               for img_name in os.listdir(folder):
                                                 img_path = os.path.join(folder, img_name)
                                                 img = cv2.imread(img_path)
                                                  if ing is not hone:
                                                      img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
                                                      data.append([img, label])
                                         img = cv2.resize(img, (224, 224))
Resizing
                                       data = np.array(data, dtype=object)
                                       X = np.array([i[0] for i in data]) / 255.0 # Wormalize pixel values
Normalization
                                       y = np.array([i[1] for i in data])
```


Data Augmentation	<pre>train_datagen = ImageDataGenerator(rotation_range=30, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2, horizontal_flip=True, vertical_flip=True, fill_mode='nearest')</pre>
Denoising	<pre>denoised_img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)</pre>
Edge Detection	edges = cv2.Canny(img, threshold1=100, threshold2=200)
Color Space Conversion	hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
Image Cropping	<pre>cropped_img = img[30:194, 30:194] # Manual center crop</pre>
Batch Normalization	<pre>from tensorflow.keras.layers import BatchNormalization model.add(BatchNormalization())</pre>