Kapitola VIII. Syntaktická analýza zdola nahoru

SA zdola nahoru: Problémy

1) Dvě nebo více pravidel mají stejnou pravou stranu

Pozn.: Pravá strana pravidla je označována slovem "handle"

2) Nejednoznačné gramatiky

Který ze stromů vytvořit?

$$G_{expr2} = (N, T, P, E), \text{ kde}$$
 $N = \{E\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \rightarrow E + E, 2: E \rightarrow E * E,$
 $3: E \rightarrow (E), 4: E \rightarrow i\}$

Syntaktické analyzátory pracující zdola nahoru

- 1) Precedenční syntaktický analyzátor
 - nejslabší, ale jednoduše se implementuje
- 2) LR syntaktický analyzátor
 - nejsilnější, ale složitý
- Model pro SA pracující zdola nahoru:

Pravý rozbor = reverzovaná posloupnost pravidel, která je použita v nejpravější derivaci pro vstupní řetězec.

Precedenční SA

- Nesmí existovat více pravidel se stejnou pravou stranou
- Gramatika nesmí obsahovat ε-pravidla.
- Necht' G = (N, T, P, S) je BKG, kde $T = \{a_1, a_2, ..., a_n\}$

Precedenční tabulka:

Tabulka $[a_i, a_i] \in \{\langle, =, \rangle, nic\}$

Ilustrace významu <, =, >:

Precedenční SA: Algoritmus

- Vstup: Precedenční tabulka pro $G = (N, T, P, S); x \in T^*$
- Výstup: Pravý rozbor x, pokud $x \in L(G)$, jinak chyba
- Metoda:
- nechť funkce top vrací terminál na zásobníku nejblíže vrcholu
- vlož \$ na zásobník;
- repeat
 - nechť a = top
 - **b** = aktuální znak na vstupu,
 - case Tabulka[a, b] of:
 - $\overline{\bullet} = : \text{push}(b) \& \text{přečti další symbol } b \text{ ze vstupu}$
 - < : zaměň a za a < na zásobníku & push(b) & přečti další symbol b ze vstupu
 - > : if $\langle y \rangle$ je na vrcholu zásobníku and $r: A \rightarrow y \in P$ then zaměň $\langle y \rangle$ za $A \otimes v$ vypiš r na výstup else chyba
 - prázdné políčko: chyba
- until b =\$ and zásobník obsahuje pouze \$\$S\$
- úspěch syntaktické analýzy

Precedenční SA: Příklad

$$G_{expr2} = (N, T, P, E), \text{ kde } N = \{E\}, T = \{i, +, *, (,)\},\ P = \{1: E \to E + E, 2: E \to E * E, 3: E \to (E), 4: E \to i\}$$

Vstupní token

vrcholu zásobní

Precedenční tabulka pro G_{expr2} : Pozn.: Asociativita a precedence operátorů tvoří základ precedenční tabulky:

🙁 Špatný strom: 😊 Správný strom:

Pravý rozbor: Pravý rozbor:

Precedenční SA: Příklad

	+	*	()	i	\$
+	>	<	<	>	<	>
*	>	>	<	>	<	>
	<	<	<	=	<	
	>	>		>		>
i	>	>		>		>
\$	<	<	<		<	

Pravidla:

$$1: E \rightarrow E + E$$

$$2: E \rightarrow E * E$$

$$3: E \rightarrow (E)$$

$$4: E \rightarrow i$$

Vstupní řetězec: i + i * i \$

Pushdown	Op	Vstup	Rule
\$	<	<i>i</i> + <i>i</i> * <i>i</i> \$	
\$< <i>i</i>	>	+ <i>i</i> * <i>i</i> \$	$4: E \rightarrow i$
\$E	<	+ <i>i</i> * <i>i</i> \$	
\$< E +	<	<i>i*i</i> \$	
\$< <i>E</i> +< <i>i</i>	>	*i\$	$4: E \rightarrow i$
\$< E+ E	<	*i\$	
\$< <i>E</i> +< <i>E</i> *	<	<i>i</i> \$	
\$< <i>E</i> +< <i>E</i> *< <i>i</i>	>	\$	$4: E \rightarrow i$
\$< <i>E</i> +< <i>E</i> * <i>E</i>	>	\$	$2: E \rightarrow E^*E$
\$< E+ E	>	\$	$1: E \rightarrow E + E$
\$E	▎▗	\$	↓

Úspěch

Pravý rozbor: 44421

Konstrukce precedenční tabulky 1/5

• Necht' $G_{expr} = (N, T, P, E)$, kde $N = \{E\}$, $T = \{(,), id_1, id_2, ..., id_m, op_1, op_2, ... op_n\}$, $P = \{E \rightarrow (E), E \rightarrow id_1, E \rightarrow id_2, ..., E \rightarrow id_m,$ $E \rightarrow E op_1 E, E \rightarrow E op_2 E, ..., E \rightarrow E op_n E\}$ Pozn.: $id_1, id_2, ..., id_m$ jsou identifikátory, $op_1, op_2, ... op_n$ jsou rozdílné operátory

1) Precedence operátorů:

Pokud op_i má vyšší prioritu než op_i, potom:

$$op_i > op_j \ a \ op_j < op_i$$

Příklad: Precedenční tabulka odvozená z + * priority operátorů gramatiky G_{expr2} : * > + * * > + *

Konstrukce precedenční tabulky 2/5

2) Asociativita:

Pozn.:

- op_i je levě asociativní $\Leftrightarrow a \text{ op}_i b \text{ op}_i c = (a \text{ op}_i b) \text{ op}_i c$
- op_i je pravě asociativní $\Leftrightarrow a \text{ op}_i b \text{ op}_i c = a \text{ op}_i (b \text{ op}_i c)$
- Nechť op_i a op_j mají stejnou prioritu
 - Pokud op, a op, jsou levě asociativní potom:

$$op_i > op_j \ a \ op_j > op_i$$

• Pokud op_i a op_i jsou pravě asociativní potom:

$$\mathbf{op}_i \leq \mathbf{op}_j \ \mathbf{a} \ \mathbf{op}_j \leq \mathbf{op}_i$$

Příklad: Precedenční tabulka odvozená z asociativity operátorů gramatiky G_{expr2} :

+ je levě asociativní

* je levě asociativní

Konstrukce precedenční tabulky 3/5

3) Identifikátory:

• Pokud $a \in T$ může být hned <u>před</u> id_i, pak:

 $a < id_i$ id. > a

• Pokud $a \in T$ může být hned \underline{za} \underline{id}_i , pak:

Příklad: Část precedenční tabulka pro identifikátory:

Konstrukce precedenční tabulky 4/5

4) Závorky:

- Pro jeden pár závorek platí: (=)
- Necht' $a \in T \{\}$, \$\\$\}. Pak: $(\langle a \rangle)$
- Necht' $a \in T \{(, \$\}\}$. Pak: a >
- Necht' $a \in T$ a a může být hned pred (. Pak:
- Necht' $a \in T$ a a může být hned za). Pak:

Příklad: Cást precedenční tabulky pro závorky

$$(i + ((i * (i + (i + i)))))$$

 $(i + ((i * (i + (i + i)))))$
 $(i + ((i * (i + (i + i)))))$
 $(i + ((i * (i + (i + i)))))$
 $(i + ((i * (i + (i + i)))))$
 $(i + ((i * (i + (i + i)))))$
 $(i + ((i * (i + (i + i)))))$

$$((((((i+i)+i)*i))+i)$$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$+, \qquad *, \qquad \text{$ muže být za $}$$

Konstrukce precedenční tabulky 5/5

5) Ukončovač řetězce \$

• Nechť op_i je libovolný operátor:

$$\$ < op_i \text{ and } op_i > \$$$

Příklad: Část precedenční tabulky pro ukončovače:

Celkově:

