

Systeme II / Rechnernetze

1. Organisation, Literatur, Internet, TCP/IP-Schichtenmodell, ISO/OSI-Schichten

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 24.04.2017

Organisation

- Vorlesungen
 - Dienstag, 11 12 Uhr, Hörsaal 101-00-036
 - Mittwoch, 10 12 Uhr, Hörsaal 101-00-036
- Übungen
 - Dienstags und donnerstags 12-13 Uhr
- Web-Seite

- https://cone.informatik.uni-freiburg.de/lehre/aktuell/systeme-II-ss2044

- ILIAS
- https://ilias.uni-freiburg.de/goto.php? target=crs_772363&client_id=unifreiburg

17

CoNe Freiburg

Übungen

- Bitte in ILIAS in Ihre gewünschte Übungsgruppe eintragen
 - Innerhalb der ersten Woche werden Sie evtl. neu geordnet
- Gruppe 1 Jan Ole von Hartz
 - Dienstag, 12-13 Uhr, Geb. 051, Hörsaal 00-006
- Gruppe 2 Francine Wagner
 - Dienstag, 12-13 Uhr, Geb. 051 Seminarraum 00-031
- Gruppe 3 Justin Pearse-Danker
 - Dienstag, 12-13 Uhr, Geb. 052 Seminarraum 02-017
- Gruppe 4 Sven Köhler
 - Donnerstag, 12-13 Uhr, Geb. 051 Hörsaal 00 006
- Gruppe 5 Leonie Feldbusch
 - Donnerstag, 12-13 Uhr, Geb. 051 Seminarraum 00-031
- Gruppe 6 Julia Abels
 - Donnerstag, 12-13 Uhr, Geb. 051 Seminarraum 00-034

Übungsaufgaben

- Erscheinen jeden Mittwoch in ILIAS
 - Abgabe als PDF bis Montag 23.59 Uhr (GMT+1) der Folgewoche
 - Abgabe über ILIAS
 - Namenskonvention beachten:
 - <BlattNr>-<Gruppennummer>-<Matrikelnummer>.pdf
 - 01-G1-726818.pdf
- Grundlage für schriftliche Klausur
- Besprechung am Tag nach der Abgabe
 - Korrektur durch den Tutor
 - Rückgabe eine Woche nach Abgabe
- Lösungspräsentation durch die Studenten

Prüfung

Klausur

- schriftlich, 90 Minuten
- Prüfungsanmeldung
 - erfolgt on-line über das Campus-Online
- Fristen beachten!
- Erlaubte Hilfsmittel
 - Keine außer einer Auswahl eigener Übungsabgaben
 - Diese werden in gedruckter Form zur Klausur bereitgestellt
 - ohne Korrekturen der Tutoren
 - keine Programmlistings
 - nur sinnvolle Abgaben
 - keine Plagiate

Medien

PDF-Foliensätze

- vor der Vorlesung auf der Web-Site
- mit/ohne Notizen
- Aufzeichnung von den Vorjahren
- Literaturhinweise
 - gleich und auf der Web-Site / //ins
- Forum
 - auf der Web-Site / lia>
 - zur Diskussion
 - sonstige Organisation

Inhalte

- 1. Organisation /
- 2. Schichtenmodelle
- 3. Bitübertragungsschicht (Physical Layer)
- 4. Sicherungsschicht (Data Link Layer)
- Mediumzugriffs-Steuerung (Medium Access Control Sub-Layer -MAC)
- 6. Vermittlungsschicht (Network Layer)
- 7. Transportschicht (Transport Layer)
 - 8. Anwendungsschicht (Application Layer)
 - 9. Sicherheit

Veranstaltungen im Bereich Netzwerke

Netzwerke I	=	Systeme II	jeden Sommer	Einführung in Netzwerke Ethernet Grundlagen des Internets
Netzwerke II	=	Communication Systems	Winter	WLAN, Mobiltelefon, VoIP, u.v.a.
Vertiefung Netzwerke	z.B.	Distributed Systems ——> Peer-to-Peer-Netzwerke Network Algorithms	Sommer/ Winter	
Verwandtes		Graphentheorie	Winter Sommer	
Praktika, Projekte, Teamprojekte	z.B.	Wireless Sensor Systems	jedes Semester	
Seminare Bachelor-/ Master- Arbieten		je nach Lehrstuhl, individuell	jedes Semester	forschungsnahe Arbeit

140 -

Internet Verkehr

EB/month

Internet Verkehr

Von Kilo bis Yotta

Datenmengen

- 1 Byte = 1 B = 8 Bit = 8b
- 1 kilobyte = 1 kB = 1000 Bytes
- 1 megabyte = 1 MB = 1000 kB = 1 E6 Bytes
- 1 gigabyte = 1 GB = 1000 MB= 1 E9 Bytes
- 1 terabyte = 1 TB = 1000 GB = 1 E12 Bytes
- 1 petabyte = 1 PB = 1000 TB = 1 E15 Bytes
- 1 exabyte = 1 EB = 1000 PB = 1 E18 Bytes
- 1 zettabyte = 1 ZB = 1000 EB = 1 E21 Bytes
- 1 yottabyte = 1 YB = 1000 ZB = 1 E24 Bytes

Speichergrößen

- 1 Byte = 1 B = 8 Bit = 8b
- 1 kibibyte = 1 kB = 1024 Bytes
- 1 mebibyte = 1 MiB = 1024 kiB = 1.04 E6 Byte
- 1 gibibyte = 1 GiB = 1024 MiB= 1.07 E9 Bytes
- 1 tebibyte = 1 TiB = 1024 GiB = 1.10 E12 Bytes
- 1 pebibyte = 1 PiB = 1024 TiB = 1.12 E15 Bytes
- 1 exbibyte = 1 EiB = 1024 PiB = 1.15 E18 Bytes
- 1 zebibyte = 1 ZiB = 1024 EiB = 1.18 E21 Bytes
- 1 yobibyte = 1 YiB = 1024 ZiB = 1.21 E24 Bytes

Bit/s

Datenraten und Speicherplatz

Datenraten

- werden in bit/s angegeben
- oder Baud = Symbole/s
- kbit/s = 10³ Bit/s, etc
- Speicher wird in Byte = 8 Bit angegeben
 - Größe meist in kibibyte, mibibyte
 - wird aber (fälschlich) als kilobyte, megabyte angegeben

1 Mb/s

- = 0,128 MB/s = 7,68 MB/min = 460 MB/h
- = 11GB/d = 330 GB/mo = 3,9 TB/y
- 69 EB/mo
 - = 27 Tb/s

Internet Verkehr

Die letzte Meile

Literatur (I)

- Das Buch Nr. 1 zur Vorlesung
 - Computer Networks, Andrew S. Tanenbaum (Prentice Hall)
 - auf Deutsch:
 Computernetzwerke
 (Taschenbuch)

Literatur (II)

- Das Buch Nr. 2 zur Vorlesung:
 - Computer Networking A Top-Down Approach
 Featuring the Internet,
 James F. Kurose, Keith
 W. Ross, Prentice Hall

COMPUTER FIFTH EDITION NETWORKING

KUROSE · ROSS

Literatur (III)

- Buch Nr. 3:
 - Data and computer
 Communications
 - William Stallings
 - Pearsons, Prentice-Hall, 2007

Literatur (IV)

- Zur Vertiefung:
 - TCP/IP Illustrated,
 Volume The Protocols,
 W. Richard Stevens,
 Addison-Wesley

CoNe Freiburg

Literatur (V)

 Fred Halsal, Data Communications, Computer Networks and Open Systems, Addison-Wesley, 1995

Die Schichtung des Internets

Anwendung	Application	HTTP, SMTP (E-Mail),		
Transport	Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)	TCP SAS	
Vermittlung	Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protoccol)	1Pv4/ 1Pv6	
Verbindung	Host-to- Network	LAN (z.B. Ethernet, WLAN 802.11, etc.)	BURG	

CoNe Freiburg

Internet-Schichtenmodell

- 1. Host-to-Network
- nicht spezifiziert, hängt vom LAN ab, z.B. Ethernet, WLAN 802.11b, PPP, DSL
- 2. Vermittlungsschicht (IP Internet Protokoll)
 - Spezielles Paketformat und Protokoll
 - Paketweiterleitung
 - Routenermittlung
- 3. Transportschicht
 - TCP (Transport Control Protocol)
 - zuverlässiger bidirektionaler Byte-Strom-Übertragungsdienst
 - Fragmentierung, Flusskontrolle, Multiplexing
 - UDP (User Datagram Protocol)
 - Paketübergabe an IP
 - unzuverlässig, keine Flusskontrolle
 - 4. Anwendungsschicht
 - zahlreiche Dienste wie SMTP, HTTP, NNTP, FTP, ...

Beispiel zum Zusammenspiel der Schichten

aus Stevens TCP/IP Illustrated

Datenkapselung

Das ISO/OSI Referenzmodell

- 7. Anwendung (Application)
 - Datenübertragung, E-Mail, Terminal, Remote login
- 6. Darstellung (Presentation)
 - Systemabhängige Darstellung der Daten (EBCDIC/ASCII)
- 5. Sitzung (Session)
 - Aufbau, Ende,
 Wiederaufsetzpunkte
- 4. Transport (Transport)
 - Segmentierung, Stauvermeidung
- 3. Vermittlung (Network)
 - Routing
- 2. Sicherung (Data Link)
 - Prüfsummen, Flusskontrolle
- 1. Bitübertragung (Physical)
 - Mechanische, elektrische Hilfsmittel

Aküfi

- ISO: International Standards Organisation
- OSI: Open Systems Interconnections

1. Bitübertragung (Physical)

- Übertragung der reinen Bits
- Technologie (elektronisch/Licht)
- Physikalische Details (Wellenlänge, Modulation)

2. Sicherung (Data Link Layer)

- Bereinigung von Übertragungsfehler
- Daten werden in Frames unterteilt mit Kontrollinformation
 - (z.B. Checksum)
- Bestätigungsframes werden zurückgesendet
- Löschen von Duplikaten
- Ausgleich schneller Sender langsamer Empfänger (Flusssteuerung)
- Lösung von Problemen beim Broadcasting
 - Zugriff auf gemeinsames Medium = Mediumzugriff (medium access control = MAC)

3. Vermittlungsschicht

- Packetweiterleitung (packet forwarding)
- Routenermittlung/Wegewahl der Pakete (route detection)
- Kontrolle von Flaschenhälsen (bottleneck) in der Wegewahl
- Abrechnung der Pakete (Abrechnungssystem)

4. Transportschicht

- Unterteilung der Daten aus der Sitzungsschicht in kleinere Einheiten (Pakete)
- In der Regel Erstellung einer Transportverbindung für jede anfallende Verbindung
- Möglicherweise auch mehrere Transportverbindungen zur Durchsatzoptimierung
- Art der Verbindung
 - fehlerfrei, Punkt-zu-punkt (z.B. TCP)
 - fehlerbehaftet, Unidirektional (z.B. UDP)
 - Multicasting (einer an viele)
 - Broadcasting (einer an alle)
- Multiplexing: Zu welcher Verbindung gehört dieses Paket
- Flusskontrolle: Wieviele Pakete können/sollen versendet werden (ohne das Netzwerk zu überfordern)

5. Sitzungsschicht

- Festlegung der Sitzungsart, z.B.
 - Dateitransfer, Einloggen in ein entferntes System
- Dialogkontrolle
 - Falls Kommunikation immer nur abwechselnd in einer Richtung geht, regelt die Richtung die Sitzungsschicht
- Token Management
 - Falls Operationen nicht zur gleichen Zeit auf beiden Seiten der Verbindungen möglich sind, verhindert dies die Sitzungsschicht
- Synchronisation
 - Checkpoints zur Wiederaufnahme abgebrochener Operationen (z.B. Filetransfer)

ISO/OSI Schichten 6 und 7

6. Präsentationsschicht

- Anpassung von Kodierungen,
- z.B. Zeichensätze, Namen, Addressfelder, Formulare, etc.

7. Anwendungsschicht

- Große Vielfalt aller möglichen Funktionen, z.B.
 - Virtuelle Terminals, Filetransfer, E-mail, Online-Video, Twitter, Radio-Streams, Internet-Telefonie, Online-Games ...

OSI versus TCP/IP

Hybrides Modell

5	Application layer	
4	Transport layer	
3	Network layer	
2	Data link layer	
1	Physical layer	

Systeme II

1. Organisation, Literatur, Internet, TCP/IP-Schichtenmodell, ISO/OSI-Schichten

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg