PROFEUNIVERSITARIO.COM | WhatsApp +54 9 11 2711 7301

Clases de apoyo individuales y grupales | CBC y FCEN UBA "EXACTAS" | Álgebra I | Análisis I, II y II (C) | AM I, II y III | Mate 1, 2, 3 y 4

Análisis I - Matemática 1 - Análisis Matemático I - Análisis II (C)

1° Cuatrimestre 2018 – Primer Parcial – 12/05/18 Tema 2

1	2	3	4	CALIFICACIÓN

Nombre: Carrera: L.U.:

1) Hallar, si existen, el supremo y el ínfimo del conjunto

$$A = \left\{ (-1)^m + \frac{5}{n} : m, n \in \mathbb{N} \right\}$$

2) Decidir si la función $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} \frac{e^{yx^3 + xy^2} - 1}{|y + 2|x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

es continua.

3) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida por

$$f(x,y) = \begin{cases} \frac{y^4 + xy^2}{2x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- a) Hallar, si existen, las derivadas direccionales de f en el origen para todo vector $v \in \mathbb{R}^2$, con ||v|| = 1.
- b) Analizar la diferenciabilidad de f en (0,0).
- 4) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable tal que

$$\frac{\partial f}{\partial v}(1,0) = \frac{9}{5}$$
, para $v = \left(\frac{3}{5}, \frac{4}{5}\right)$

y sea $g: \mathbb{R}^2 \to \mathbb{R}$ la función definida como $g(t) = ((1+t)e^t, \operatorname{sen}(t))$.

Sabiendo que $(f \circ g)(t) = e^t$, hallar la ecuación del plano tangente a f en (1,0).

JUSTIFIQUE TODAS SUS RESPUESTAS.

PROFEUNIVERSITARIO.COM | WhatsApp +54 9 11 2711 7301

Clases de apoyo individuales y grupales | CBC y FCEN UBA "EXACTAS" | Álgebra I | Análisis I, II y II (C) | AM I, II y III | Mate 1, 2, 3 y 4

RESPUESTAS

1er PARCIAL 2018 1er Cuatrimestre - Tema 2

PROBLEMA 1:

Sí, existen ínfimo y mínimo del conjunto A:

$$\inf(A) = \{-1\}$$

 $\sup(A) = \{6\}$

Extra: El conjunto A no tiene mínimo, pero tiene máximo de valor 6 y se alcanza tomando (m,n)=(2k,1) con $k\in\mathbb{N}$.

PROBLEMA 2:

La función f es continua en (0,0). Además, f es continua en todo $(x,y) \in \mathbb{R}^2 - \{(0,0)\}$. Por lo tanto, f es continua en todo $(x,y) \in \mathbb{R}^2$.

Extra: La continuidad de f en el (0,0) se prueba tomando, por ejemplo, $\delta < \min\left\{1,\frac{\epsilon}{2}\right\}$.

La continuidad de f en todo $(x, y) \in \mathbb{R}^2 - \{(0,0)\}$ se prueba usando álgebra de funciones continuas.

3

PROFEUNIVERSITARIO.COM | WhatsApp +54 9 11 2711 7301

Clases de apoyo individuales y grupales | CBC y FCEN UBA "EXACTAS" | Álgebra I | Análisis I, II y II (C) | AM I, II y III | Mate 1, 2, 3 y 4

PROBLEMA 3:

- a) Considerando v=(a,b) tal que $a^2+b^2=1$, se concluye que $\frac{\partial f}{\partial (0,b)}(0,0)=0 \text{ con } b=\pm 1$ $\frac{\partial f}{\partial (a,b)}(0,0)=\frac{b^2}{2a}=\frac{1-a^2}{2a}0 \text{ con } a\neq 0, a^2+b^2=1$
- b) La función f no es diferenciable en (0,0).

Extra: ¡ATENTO!

En la parte b) se llega a la conclusión de que f no es diferenciable (0,0) tomando para la rama correspondiente a los $(x,y) \in \mathbb{R}^2$ donde $x \neq 0$, por ejemplo, la curva C_m : y = mx con $m \neq 0$ (con $x \neq 0$).

PROBLEMA 4:

El plano tangente para la función f en el punto (1,0) es: $\Pi: z = 2 - x + 3y$