

Protection Overview - Distribution

Protection Scheme

• Please name the protection schemes in customer substation by considering

Open ring RMU circuit
 OCEF at primary S/S, EF indication

Close ring feeder circuit
 Pilot Wire (PW) / Current Differential (CD);

OCEF at some of Interconnectors;

DEF indicator at Tee-off RMU

OCEF at Node point

• 11kV/380V transformer circuit

OCEF, HSOC, Fuse

· OHL circuit

OCEF, SEF, OHL fuse, AR, Fault indicator-AFLS

OCEF Protection – Applications

Main Protection for Distribution System

Distribution transformer

- 11kV overhead line

Busbar and CB of customer substation

Graded with LV

Possibly with Fuses in LV board or OCEF at customer incomer

• Backup Protection in Transmission System

- 11kV busbar of primary substation
- 132/11kV transformer
- 132kV RMU circuit
- 132kV transformer feeder circuit
- 132kV system backup
- 400kV system backup

4

LV Fuse - Working Principles

- · Made by fusion of one or more of its specially designed and proportioned components
- Breaks current when this exceeds a given value for a sufficient time - thermal effect

Standard - HRC BS88 or IEC 602:69

LV Fuse - Working Principles

Grading could be performed based on the characteristic curve

- Source side: Fuse with higher rating (to protect the LV cables)
- Customer side: MCB / Fuse with lower rating (for overload protection of installation

Earth Fault protection to be installed by customers (e.g. Residue Current Device)

Comparison between Protective Devices

· MCB (Miniature Circuit Breaker): O/C + O/L (> 100A, characteristics not adjustable)

• Type B: 3 to 5 times full load current - 0.04 to 13 sec • Type C: 5 to 10 times full load current - 0.04 to 5 sec • Type D: 10 to 20 times full load current - 0.04 to 3 sec

• MCCB (Moulded Case Circuit Breaker): O/C + O/L (>1000A, characteristics may be adjustable)

• RCD (Residual Current Device): E/L (> 30mA, difference between L and N, = RCCB)

• ELCB (Earth Leakage Circuit Breaker): E/L (< 30mA sec, connected with L, N and E)

• RCCB (Residual Current Circuit Breaker): "水總" RCD + MCCB [= ELCB in Japan]

O/C + O/L + E/L (rated < 100A, interrupting < 18kA)

• RCBO (Residual Circuit Breaker with Overload): "老鼠尾" RCD + MCB

O/C + O/L + E/L (rated < 1kA, interrupting < 18kA)

[Note: Additional neutral to drain out triplen harmonics, may lead to failure of megger test]

Comparison between Protective Devices

Fuse Selection in LV Network

- Fuse Operating Time of 5 seconds
 - → Maximum Conductor Temperature under short-circuit condition in 5 seconds is limited to
- → XLPE insulation would be deteriorated if 250°C exists for more than 5 seconds

Standard LV Cable	Standard Fuse Rating (A)	Maximum Cable Length Based on 5 second Fuse Operating Time (m)			
	400	380			
200 11	315	500			
300 sq mm Al	200	900			
	100	2,000			
	315	300			
185 sq mm Al	200	580			
	100	1,380			
05 41	200	280			
95 sq mm Al	100	770			
25 sq mm Cu	100	240			

(PS-TG-0325: Technical Guideline for LV Cable Network Improvement and Specific Design Considerations)

OCEF Protection – Introduction

CT Output

- Types of CT 5P10, 5P20
- Output L₁, L₂, L₃ (R, W, B)

Relay Connection

• 3 x OC vs 2 x OC + 1 x EF

OCEF Protection – Introduction

· Elements that can detect under different fault types

Fault Type	OC (L1)	OC (L3)	EF (N)
L1-L2	Χ		
L2-L3		X	
L2-E			X
L1-L3 / L1-L2-L3 / L1-L2-L3-E	X	X	
L1-E / L1-L2-E	X		X
L3-E / L2-L3-E		X	X
L1-L3-E	X	X	X

OCEF Protection – Introduction

- Earth Fault Relay
 - Earth fault is the most frequent of all faults
 - Earth fault current is usually limited in magnitude by the neutral earthing impedance, or by earth contact resistance
 - Advantage: Provide more <u>sensitive</u> protection against earth faults
 - Setting: 30%-40% I_{FL} or I_{EF(min)}

Relay Characteristic	Equation (IEC 60255)
Standard Inverse (SI)	$t = TMS \times \frac{0.14}{I_r^{0.02} - 1}$
Very Inverse (VI)	$t = TMS \times \frac{13.5}{I_r - 1}$
Extremely Inverse (EI)	$t = TMS \times \frac{80}{I_r^2 - 1}$
Long time standard earth fault	$t = TMS \times \frac{120}{I_r - 1}$
Relay characteristics to IEC 602!	55

OCEF Protection – Grading

Principles of time/current grading

Discrimination by time

· Disadvantage: Longest fault clearance time occurs for fault in section closest to the power source

Discrimination by current

- · Advantage: Fast operation (instantaneous)
- · Disadvantage: Cannot distinguish a fault at F1 and a fault at F2 Difficult to coordinate (source dependent)
- · Application: Appreciable impedance between 2 circuit breakers (e.g. transformer, motor)

OCEF Protection – Grading

Principles of time/current grading

Discrimination by Time and Current

(e.g. Inverse Time Overcurrent Characteristics)

- Advantage
 - · Faster operating times for relays nearest to the source, where the fault level is the highest
 - · Possible to increase the number of breaker in series without increasing the time setting of relays at power source
- Setting of inverse definite minimum time overcurrent relay (IDMT overcurrent relay)
 - · Relay Characteristics
 - Current Setting
 - Time Setting

$t = TM \times \frac{\beta}{\left(\frac{I}{I_0}\right)^{\alpha} - 1}$	
---	--

Relay Characteristics	α	β
Inverse Time O/C or IDMT	0.02	0.14
Very Inverse	1.00	13.5
Extreme Inverse	2.00	80.0

OCEF Protection – Grading

Principles of time/current grading

Discrimination by Time and Current

DTL (Definite Time Lag)

2 independent settings:

- Current setting (P.S.)
- · Time delay setting (T.D.)

e.g. HSOC (as unit protection of HV cable) SEF (as a detection element)

IDMTL (Inverse Definite Minimum Time Lag)

2 dependent settings:

- · Current setting (P.S.)
- · Time multiplier (T.M.)

e.g. OCEF

OCEF Protection – Grading

OCEF Protection – Grading

Grading Margin Consideration (EM Relay)

Circuit breaker time = 0.10 sec Error allowances = 0.15 secRelay overshoot time = 0.05 sec Safety margin = 0.10 secTotal 0.40 sec

For Digital Relays, Grading Margin can be reduced to 0.25 - 0.3 sec.

	PHASE	SETTING 定位	ă I	CREEP	OPERATE	RESET	OP.TIME 操作時間
	相位	P.S. 插頭值	T.M. 時間倍值	類變 (A)	操作 (A)	復歸 (A)	AT 2 x P.S. (T.M. x 10SEC.)
TYPE 種類: RATING 類定值: 2Stags OC(EF COCT	RØ áI	1.25	28	1.300	1.349	1.(75	7.4525
	* Y Ø / EF * 黄/接地	- 10.4	-1/0.6	0.409	0.421	2381	5.9995
	BØ E	1.15	28	1.260	1.323	1.105	7.4025

Primary S/S, without Node S/S

OCEF Protection – Operation Time Rating[MVA] Fault Level [MVA] = Rating [MVA] Impedance [%] Fault Level [MVA] Fault Current [kA] 1 x 35MVA 35MVA 28% 125MVA 6.56kA 2 x 35MVA // 35MVA 28%/2 = 14% 250MVA 13.12kA 1 x 50MVA 50MVA 27% 185MVA 9.72kA Fault Level [MVA] Siemens 7SJ602 Digital Relay [h = 0.14, k=0.02; SI] Node S/S (CT: 400/5) $\left(\frac{6561}{400}\right)^{0.02}$ OC: 100%, 0.3 - 1 EF: 30%, 0.3 **Fault Current** Op Time [A, primary] [sec] h x Time Multiplier 0.73 6561A Cal. Op. Time (T) = For 1x 35MVA Tx: 1 Leg

Fault Current \k 0.98 2 Leg 3280A Current Setting 3 Leg 2187A 1.22 4 Leg 1640A 1.47 5 Leg 1312A 1.75

OCEF Protection – Operation Time

No. of Legs Increases,

NI, OC = 100%, 0.3, EF = 30%, 0.5							NI, OC = 100%, 0.5, EF = 30%, 0.5					
Op Time	1x 35N	/IVA Tx	2x 35N	/IVA Tx	1x 50N	/IVA Tx	1x 35N	/IVA Tx	2x 35N	/IVA Tx	1x 50N	/IVA Tx
[sec]	OC	EF	OC	EF	OC	EF	OC	EF	OC	EF	OC	EF
1-Leg	0.73	1.13	0.68	1.13	0.68	1.13	1.22	1.13	1.13	1.13	1.13	1.13
2-Leg	0.98	1.13	0.73	1.13	0.82	1.13	1.63	1.13	1.22	1.13	1.37	1.13
3-Leg	1.22	1.17	0.86	1.13	0.98	1.13	2.03	1.17	1.43	1.13	1.64	1.13
4-Leg	1.47	1.3	0.98	1.13	1.14	1.13	2.45	1.3	1.63	1.13	1.91	1.13

4.1.2 Assuming 11kV feeder circuit C.T. ratio being 400/5, the maximum number of parallel circuits must not exceed :

Tx. Capacity		Max. No. of parallel feeders					
Less	than 20MVA	2					
	20 MVA	3					
	35 MVA	u ← Source End					
	40 MVA	5 Requirement					
	50 MVA	6					

One llkV feeder circuit having C.T. ratio of 800/5 and plug setting of 100% should be considered as two 400/5 circuits when applying this rule.

Operation Time of OC Increases Primary S/S, With Node S/S

Node S/S

_	N	II, OC =	100%, 0	100%, 0.3, EF = 30%, 0.3				
Op Time	1x 35N	IVA Tx	2x 35N	/IVA Tx	1x 50MVA Tx			
[sec]	OC	EF	OC	EF	OC	EF		
1-Leg	0.73	0.68	0.68	0.68	0.68	0.68		
2-Leg	0.98	0.68	0.73	0.68	0.82	0.68		
3-Leg	1.22	0.7	0.86	0.68	0.98	0.68		
4-Leg	1.47	0.78	0.98	0.68	1.14	0.68		

OCEF Protection – Operation Time

OCEF Protection – Operation Time

1.5MVA Tx (200/1), No 2x 500A Fuse NL OC = 50% 0.1 EE = 20% 0.1

1.5MVA Tx (200/1), with 2x 500A Fuse

FI OC = 50	6 0 3 FI	= 20% (า 1

1x 50MVA Tx

EF

OC

0.06 0.06 0.02 0.06 0.02 0.06 0.02

		IVI, OC -	- 50 %, U	EI, OC = 30%, 0.3, EF -						
Op Time	1x 35N	/IVA Tx	2x 35N	/IVA Tx	1x 50N	/IVA Tx	1x 35N	/IVA Tx	2x 35N	/IVA Tx
[sec]	OC	EF	OC	EF	OC	EF	OC	EF	OC	EF
1-Leg	0.23	0.23	0.23	0.23	0.23	0.23	0.06	0.02	0.06	0.02
2-Leg	0.23	0.23	0.23	0.23	0.23	0.23	0.06	0.02	0.06	0.02
3-Leg	0.23	0.23	0.23	0.23	0.23	0.23	0.06	0.02	0.06	0.02
4-Leg	0.23	0.23	0.23	0.23	0.23	0.23	0.06	0.02	0.06	0.02

OHL (200/5)

_	ľ	II, OC =	100%, 0).1, EF =	40%, 0.	1
Op Time	1x 35N	IVA Tx	2x 35N	/IVA Tx	1x 50N	/IVA Tx
[sec]	OC	EF	OC	EF	OC	EF
1-Leg	0.23	0.23	0.23	0.23	0.23	0.23
2-Leg	0.23	0.23	0.23	0.23	0.23	0.23
3-Leg	0.23	0.23	0.23	0.23	0.23	0.23
4-Leg	0.23	0.23	0.23	0.23	0.23	0.23

No sharing of fault current due to increase the no. of leg.

Operation time of OCEF keeps constant

OCEF Protection – Setting

Standard Protection Settings in 11kV Distribution System (PS-TG-0094 / 2)

With reference to the TG, what is the setting at 11kV T2H CB panel connected to 11kV Cct for RMU tee Tx?

Location			Relay	OC setting		EF setting	
		CT Ratio	Characteristic	P.S.	T.M.	P.S.	T.M.
	supplying	400/5A	Normal Inverse	100%	0.3	30%	0.5
At 11kV primary substation	ring circuit without node substation	*800/5A	Normal Inverse	100%	0.3	30%	0.5
	supplying	400/5A	Normal Inverse	100%	0.5**	30%	0.5**
	ring circuit with node substation	800/400/ 1A	Normal Inverse	100%	0.5**#	30%	0.5**#
At Node substation		400/5A	Normal Inverse	100%	0.3**	30%	0.3**
At 11kV T2H CB panel connected to 11kV circuit for RMU tee transformer ***	Merlin Gerin	400/1A	Normal Inverse	150%	0.1	30%	0.1
	Siemens	400/1A	Normal Inverse	150%	0.1	30%	0.1
	Oil Type	400/1A	Normal Inverse	150%	0.1	30%	0.1

The OC protection at the T2H panel (400/1A, 150% 0.1, NI) can grade with upstream 11kV ring OCEF protection (400/5A, 100% 0.3, NI) with 2 legs or above. If only 1 leg is left, there will be loss of discrimination for fault current less than 750A (11kV).

OCEF Protection – Setting

OCEF at 11kV Node Substation

OCEF Grading – Mismatch in CT and OCEF Relay

Grading between Standard Inverse Relays

OCEF Grading – Mismatch in CT and OCEF Relay

• Less Current Output than Expected [1A CT to 5A Relay] → Lower Sensitivity / Failure in Sensitivity

OCEF Grading – Mismatch in CT and OCEF Relay

• Higher Current Output than Expected [5A CT to 1A Relay] → Tripped under Normal Load / Failure in Stability

OCEF Grading - Considerations

Relay Current

10 KA 📮

15 kA (Fa)

10 kA (Fb)

1. Curve Shifting

10 kA

-0

Shifting allows relay operation with a common current basis (maximum).

5 kA 📮

-0

Shift Factor (SF) = Bus Fault

Example

Transformer Relay SF = 30 / 12 = 2.5 Generator Relay SF = 30 / 18 = 1.67 Feeder Relay SF = 30 / 30 = 1.0

OCEF Grading - Considerations

2. Transformer Overload Protection

- · Withstand curve defines thermal and mechanical limits of a transformer experiencing a through fault.
- Requirement to protection for mechanical damage is based on frequency of through faults & transformer size.
- Transformer damage curve is shifted 58% to the left to ensure protection for delta-wve transformer.

OCEF Grading - Considerations

3. Inrush Current

- Use of 8 -12 times $I_{FL} @ 0.1 s$ is an empirical approach based on EM relays (based on a 1944 AIEE paper)
- The inrush is not over at 0.1 s, the dot just represents a typical rms equivalent of the inrush from energization to this point in time.

Note: PSCAD simulation indicates a large decay (τ_{inrush} = 10s) during energization, and $0.5 < \tau_{inrush} < 2.0$ during loaded condition

- The primary relay instantaneous (50) setting should not trip due to the inrush.
- · It was common to use the asymmetrical rms value of secondary fault current (1.6 x I_{sym}) to establish the instantaneous pickup, but most modern relays filter out the DC component.

OCEF Grading - Considerations

4. Motor Stall Current

- Electromechanical relays must be set above the asymmetrical rms current, either via the pickup or with a time delay.
- · Modern relays with filtering can ignore the asymmetrical current, but it's advisable to include a generous margin such as 2 x LRC.
- Note undervoltage protection (27) needed to trip motor on loss of power.

5. Fault Current Options

Effect of Delta-Star Transformer in LV (1)

Coupling

Fuse A Fuse B Fuse C

225V 225V

Question:

Will fuse burnt at HV side leads to improper operation of OCEF protection?

Number of Turns 11.3kV 11.3kV 11.3k

Rectangular Cross-section Circular Cross-section

Effect of Delta-Star Transformer in LV (2)

· Ideal Case with VT Fuse (A) Burnt

Ideal Case	Va	Vb	Vc	Idea
V _A Fuse Blown	112.5V	225V	112.5V	V _A Fus
V _B Fuse Blown	112.5V	112.5V	225V	V _B Fus
V _c Fuse Blown	225V	112.5V	112.5V	V _c Fus

· VT Fuse (A) Burnt with Reluctance Effect

Ideal Case	Va	Vb	Vc	Remarks
V _A Fuse Blown	V _{a1}	225V	V _{c1}	V _{a1} ≈ V _{c1} ≈ 112.5
V _B Fuse Blown	V_{a2}	V_{b2}	225V	$V_{b2} > V_{a2}$
V _c Fuse Blown	225V	V_{b3}	V_{c3}	$V_{b3} > V_{a3}$

Effect of Delta-Star Transformer in LV (3)

· VT Fuse (A) Burnt with Reluctance Effect

Ideal Case	Va	Vb	Vc	Remarks
V _A Fuse Blown	V_{a1}	225V	V _{c1}	$V_{a1} \approx V_{c1} \approx 112.5$
V _B Fuse Blown	V_{a2}	V_{b2}	225V	$V_{b2} > V_{a2}$
V _C Fuse Blown	225V	V_{b3}	V_{c3}	$V_{b3} > V_{a3}$

Site Measurement	Va	Vb	Vc
V _{BC}	2.49V	4V	1.55V
V_{CA}	0.87V	3.15V	4V
V_{AB}	4V	3.36V	0.65V

Effect of Delta-Star Transformer in LV (4)

Normal Condition

Voltage Conversion

$$V_a = \frac{V_A - V_B}{n} = 220V \angle 30^\circ$$
 $V_b = \frac{V_B - V_C}{n} = 220V \angle -90^\circ$ $V_c = \frac{V_C - V_A}{n} = 220V \angle 150^\circ$

$$V_B = \frac{1}{\sqrt{3}} \angle - 120^\circ$$

$$V_B = \frac{V_B - V_C}{\sqrt{3}} = 220V \angle - 9$$

$$V_C =$$

$$V_c = \frac{V_C - V_A}{n} = 220V \angle 150^\circ$$

Current Conversion

$$\begin{split} I_{a} &= I_{a} \angle 30^{\circ} & I_{b} = I_{b} \angle -90^{\circ} & I_{c} = I_{c} \angle 150^{\circ} \\ I_{AB} &= \frac{I_{a}}{n} \angle 30^{\circ} & I_{BC} = \frac{I_{b}}{n} \angle -90^{\circ} & I_{CA} = \frac{I_{c}}{n} \Box 50^{\circ} \\ I_{A} &= I_{AB} + I_{AC} = I_{AB} - I_{CA} & I_{B} = I_{BA} + I_{BC} = -I_{AB} + I_{BC} \end{split}$$

$$I_{B} = I_{BA} + I_{BC} = -I_{AB} + I_{BC}$$

$$=\frac{I_a}{n}\angle 30^\circ - \frac{I_c}{n}\angle 150^\circ \\ \qquad = -\frac{I_a}{n}\angle 30^\circ + \frac{I_b}{n}\angle - 90^\circ \\ \qquad = -\frac{I_b}{n}\angle - 90^\circ + \frac{I_c}{n}\angle 150^\circ$$

Dyn11

By Kirchhoff's Current Law

- Each phase of primary current contains 2 phases of secondary current
- 2. This technique is useful to analyse imbalance 3-phase load in secondary side, especially fault analysis in LV side.

Effect of Delta-Star Transformer in LV (5)

Imbalance load at HV side: $I_{\Delta} = 0$, $I_{R} = 0$, $I_{C} = 78.7 \angle 120^{\circ} A$

The earth fault relay current: $I_{\rm p} = I_{\rm a} + I_{\rm b} + I_{\rm c}$ Relay mal-operate if I_n > 40A

The transformer may be tripped by earth fault relay due to imbalance load such as incorrect setting.

Imbalance load at HV side: $I_{\Delta} = 45.44 \angle -30^{\circ} A$, $I_{B} = 0$, $I_c = 45.44 \angle 90^{\circ} A$

Setting Example at HV Side Rating = 11kV/380V, 1.5MVA

Full Load at HV side = 78.7A Full Load at LV side = 2272.7A CT Ratio: 100/5

The protection scheme remains stable although it is subjected to imbalance load. (due to delta wye transformation)

Effect of Delta-Star Transformer in LV (6)

Note:

- 1. For three phase fault, LV = 40kA, HV = 40kA / 28.9 = 1.38kA
- 2. All LV fault are cleared with OC elements in HV side, as LV EF current cannot go through HV side with delta wye transformation.

OCEF - Application in Transmission System Backup at 400kV feeder OCEF Protection 400kV S/S B 2 stage OC at HV side DTLOC at 132kV BC/BS 400/132kV Auto Tx 132kV RMU circuit 132kV transformer feeder circuit 11kV Primary S/S H 132kV Plain Feeder does NOT have OCEF as backup due to impossible grading. 9 11kV Primary S/S K

OCEF Protection Relays

From Electromechanical Relays

To Digital Relays

1 Dette

Digital Relays also mimic the behavior of rotating disk in EM relay.

Function of Digital OCEF 1. Low burden

- 2. Flexible characteristic
- 3. SOE
- 4. Recorder
- 5. Watchdog

Summary

- · OCEF element is often employed as main protection in distribution network (e.g. customer BB), and backup protection in transmission network (e.g., 132kV RMU feeder). It could be a non-unit protection with grading (with IDMT), or a unit protection (with DTL).
- · LV Fuse are often the first line in OCEF Grading. It operates with thermal effect, considering the total energy (through arcing and pre-arcing time), hence it could be operative under several overloads or spiky loads. Its characteristics is an extreme inverse in OCEF Grading. When there are two fuses operating in parallel, its effect in grading chart is equivalent to two times current of the original. LV Fuse should be selected to be operative within 5 seconds
- To provide discrimination (or time coordination) between levels, grading is required. IDMT (normal inverse) characteristics are employed. Between curves, at least 0.4 sec grading margin is required. IDMT has a flat region in which the relay work faster, hence a DTL HSOC is needed to provide instant trip for large current. Other than OCEF grading, short circuit limit as upper limit and stalling or inrush current at downstream as lower limit should be considered.
- · With legged-ring design in 11kV network, increases in legs can lead to larger operation time due to current sharing. In grading, it is required to consider the fastest operation (most current flows in same leg), leading to indiscriminative operation, or the slowest operation (current distributed evenly), leading to further raising upstream OC setting.
- Mismatch in CT with OCEF relay can either lead to loss of stability in normal load (CT > relay), or loss of dependability. (CT < relay). Yet, it is possible to employ lower setting to provide higher sensitivity with larger plug setting.
- Unlike wve-wve transformer, delta-wve transformer does not have unstable issue with unbalance load. However, it does lead to a conversion factor and earth fault in LV could only be operative with HV OC elements as zero-sequence current at LV side does not flow back to HV side.