Gate with a single resonator: circuitry

Analytical model

Resonator inputs:
$$I_R = w_A I_A + w_B I_B + w_P I_P$$

$$I_L = w_L I_P$$
 Logical Power input (bias)

itputs:
$$O_L = w_L I_P - \frac{i \Delta_L}{v} \varphi$$

$$O_R = I_R - \frac{i \Delta_R}{v} \varphi + w_O I_P$$
Gate output $\longrightarrow O_R = I_R - \frac{i \Delta_R}{v} \varphi + w_O I_P$

Dynamics:
$$\left(\omega - \Omega_0 + i \Gamma_{\text{tot}} - \lambda |\varphi|^2\right) \varphi = \Delta_R^* I_R + \Delta_L^* I_L$$
 $\Gamma_{\text{tot}} \equiv \Gamma_0 + \frac{|\Delta_R|^2}{2 \nu} + \frac{|\Delta_L|^2}{2 \nu}$

Resonator params (real): $\Omega_0, \Gamma_0, \lambda$ Hybridisation (complex): Δ_R , Δ_I

Circuitry params (complex-valided!): W_A , $W_B (= W_A)$, W_P , W_O , W_I

Case study: resonator

Resonator params:

$$\Omega_0 = 1.0 \quad \Gamma_0 = 0.005 \quad \lambda = 0.1$$

$$v=1.0$$
 $\Delta_R=0.2$ $\Delta_L=0.15$

$$\Gamma_R = 0.02 \quad \Gamma_L = 0.01125$$

$$\Gamma_{\text{tot}} = 0.03625$$

Characteristic scale $I, O \sim 0.05$

Operating frequency $\omega = 1.005$

Case study: activation function

Amplitude response @ 1.005

Phase @ 1.005

Case study: Example output (analogue)

Circuitry:

$$w_A = w_B = 0.9$$
 $w_P = 0.2$

$$w_0 = 0.5 i$$
 $w_L = -0.5 i$

$$I_{P} = 0.08$$

NAND-like behaviour for I < 0.1?

Digital performance: fidelity as NAND

Logical levels:

0.0<LOW<0.035

0.045<HIGH<0.08

OTHERWISE: INVALID

Performance metric: Minimal WRONG area

Optimization (via differential evolution, with phases):

$$w_A = w_B = 0.977679$$
, $w_P = -0.166609 - 0.112921i$
 $w_L = -0.077261 + 0.360543i$, $w_O = -0.362986 - 0.585067i$

Obstacle: diagonality, dependence upon the linear combination $w_A I_A + w_B I_B$

Plan

- The weights on the gate (and other params) can be optimized
- Ditto operating frequency, etc

Difficulties:

- ``Diagonal" dependence: A + B enters trivially, poor approximation for logical gates
- Fidelity/score is not smooth (changes in steps), gradient-based algorithms are not directly applicable