

Exame Final Nacional de Matemática A Prova 635 | 1.ª Fase | Ensino Secundário | 2017

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 11 Páginas

VERSÃO 1

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos *n* primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad (k \in \{0, \dots, n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

1. Considere todos os números naturais de quatro algarismos que se podem formar com os algarismos de $1 \ a \ 9$

Destes números, quantos são múltiplos de 5?

- **(A)** 729
- **(B)** 1458
- **(C)** 3645
- **(D)** 6561
- 2. Uma turma é constituída por rapazes e por raparigas, num total de 20 alunos.

Sabe-se que:

- $\frac{1}{4}$ dos rapazes tem olhos verdes;
- escolhido, ao acaso, um aluno da turma, a probabilidade de ele ser rapaz e de ter olhos verdes é $\frac{1}{10}$

Quantos rapazes tem a turma?

- **(A)** 4
- **(B)** 8
- **(C)** 12
- **(D)** 16
- 3. Na Figura 1, está representada, num referencial o.n. xOy, parte do gráfico de uma função polinomial f Sabe-se que o único ponto de inflexão do gráfico de f tem abcissa 0

Seja $\,f''\,$ a segunda derivada da função f

Qual das afirmações seguintes é verdadeira?

(A)
$$f''(1) + f''(2) < 0$$

(B)
$$f''(-2) + f''(-1) > 0$$

(C)
$$f''(-1) \times f''(-2) < 0$$

(D)
$$f''(1) \times f''(2) > 0$$

Figura 1

4. Sejam f e g duas funções de domínio \mathbb{R}^+ Sabe-se que a reta de equação y = -x é assíntota oblíqua do gráfico de f e do gráfico de g

Qual é o valor de $\lim_{x \to +\infty} \frac{f(x) \times g(x)}{x}$?

- (A) $+\infty$
- **(B)** 1
- (C) -1
- (D) $-\infty$
- **5.** Seja f a função, de domínio A e contradomínio $]-1,+\infty[$, definida por $f(x)=\operatorname{tg} x$

Qual dos conjuntos seguintes pode ser o conjunto A?

- (A) $\left| -\frac{\pi}{4}, \frac{\pi}{4} \right|$ (B) $\left| \frac{3\pi}{4}, \frac{3\pi}{2} \right|$ (C) $\left| \frac{\pi}{2}, \frac{3\pi}{4} \right|$ (D) $\left| \frac{5\pi}{4}, \frac{3\pi}{2} \right|$
- **6.** Considere, num referencial o.n. xOy, uma reta r de inclinação α

Sabe-se que $\cos \alpha = -\frac{1}{\sqrt{5}}$

Qual pode ser a equação reduzida da reta r?

- (A) y = -5x (B) y = 4x (C) y = -2x
- 7. Considere em \mathbb{C} , conjunto dos números complexos, a condição

$$\frac{5\pi}{4} \le \arg(z) \le \frac{7\pi}{4} \land \operatorname{Im}(z) \ge -1$$

No plano complexo, esta condição define uma região.

Qual é a área dessa região?

- (A) $\frac{\sqrt{2}}{2}$
- **(B)** $\frac{1}{2}$
- (C) $\sqrt{2}$
- **(D)** 1

8. Seja (u_n) a sucessão definida por $u_n = \begin{cases} n & \text{se } n \leq 20 \\ (-1)^n & \text{se } n > 20 \end{cases}$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é monótona crescente.
- (B) A sucessão $\left(u_{n}\right)$ é monótona decrescente.
- (C) A sucessão (u_n) é limitada.
- (D) A sucessão $\left(u_{n}\right)$ é um infinitamente grande.

1. Em \mathbb{C} , conjunto dos números complexos, sejam

$$z_1 = \frac{1 - 3i^{19}}{1 + i}$$
 e $z_2 = -3k\operatorname{cis}\left(\frac{3\pi}{2}\right)$, com $k \in \mathbb{R}^+$

Sabe-se que, no plano complexo, a distância entre a imagem geométrica de z_1 e a imagem geométrica de z_2 é igual a $\sqrt{5}$

Qual é o valor de k?

Resolva este item sem recorrer à calculadora.

2. Na Figura 2, está representado, num referencial o.n. Oxyz, o prisma quadrangular regular [OPQRSTUV]

Sabe-se que:

- a face [OPQR] está contida no plano xOy
- o vértice Q pertence ao eixo Oy e o vértice T pertence ao eixo Oz
- o plano STU tem equação z=3

Figura 2

2.1. Seja T^{\prime} o simétrico do ponto T , relativamente à origem do referencial.

Escreva uma equação da superfície esférica de diâmetro [TT']

- **2.2.** Determine o valor do produto escalar \overrightarrow{UP} . \overrightarrow{RS}
- **2.3.** Uma equação do plano PQV é x + y = 2

Determine uma condição cartesiana que defina a reta $\ TQ$

2.4. Escolhem-se, ao acaso, três vértices do prisma.

Determine a probabilidade de o plano definido por esses três vértices ser perpendicular ao plano xOyApresente o resultado na forma de fração irredutível. **3.** Um saco contém n bolas indistinguíveis ao tato, numeradas de 1 a n (com n par e superior a 6).

Retira-se, ao acaso, uma bola do saco.

Sejam A e B os acontecimentos:

A: «o número da bola retirada é menor ou igual a 6»

B: «o número da bola retirada é par»

Escreva o significado de $P(\overline{A} \cup B)$ no contexto da situação descrita e determine uma expressão, em função de n, que dê esta probabilidade.

Apresente a expressão na forma de uma fração.

4. Na Figura 3, está representada uma secção de uma ponte pedonal que liga as duas margens de um rio.

A ponte, representada pelo arco PQ, está suportada por duas paredes, representadas pelos segmentos de reta [OP] e [RQ]. A distância entre as duas paredes é 7 metros.

O segmento de reta [OR] representa a superfície da água do rio.

Figura 3

Considere a reta OR como um eixo orientado da esquerda para a direita, com origem no ponto O e em que uma unidade corresponde a 1 metro.

Para cada ponto situado entre O e R, de abcissa x, a distância na vertical, medida em metros, desse ponto ao arco PQ é dada por

$$f(x) = 9 - 2.5(e^{1-0.2x} + e^{0.2x-1}), \text{ com } x \in [0, 7]$$

Resolva os itens **4.1.** e **4.2.** recorrendo a métodos analíticos; utilize a calculadora apenas para efetuar eventuais cálculos numéricos.

4.1. Seja S o ponto pertencente ao segmento de reta $[\mathit{OR}\,]$ cuja abcissa x verifica a equação

$$\sqrt{\left(f(0)\right)^2 + x^2} = 2$$

Resolva esta equação, apresentando a solução arredondada às décimas, e interprete essa solução no contexto da situação descrita.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

4.2. O clube náutico de uma povoação situada numa das margens do rio possui um barco à vela. Admita que, sempre que esse barco navega no rio, a distância do ponto mais alto do mastro à superfície da água é 6 metros.

Será que esse barco, navegando no rio, pode passar por baixo da ponte?

Justifique a sua resposta.

5. Seja g a função, de domínio \mathbb{R} , definida por

$$g(x) = \begin{cases} \frac{1 - x^2}{1 - e^{x - 1}} & \text{se } x < 1\\ 2 & \text{se } x = 1\\ 3 + \frac{\sin(x - 1)}{1 - x} & \text{se } x > 1 \end{cases}$$

Resolva os itens **5.1.** e **5.2.** recorrendo a métodos analíticos, sem utilizar a calculadora.

- **5.1.** Estude a função g quanto à continuidade no ponto 1
- **5.2.** Resolva, no intervalo [4, 5[, a equação g(x) = 3
- **5.3.** Na Figura 4, estão representados, num referencial o.n. xOy, parte do gráfico da função g e um triângulo [OAP]

Sabe-se que:

- ullet o ponto A é o ponto de abcissa negativa que é a intersecção do gráfico da função g com o eixo das abcissas;
- o ponto P é um ponto do gráfico da função g, de abcissa e ordenada negativas;
- ullet a área do triângulo $\left[\mathit{OAP} \right]$ é igual a $\,5\,$

Determine, recorrendo à calculadora gráfica, a abcissa do ponto $\,P\,$

Apresente o valor obtido arredondado às décimas.

Na sua resposta:

- determine analiticamente a abcissa do ponto A
- equacione o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação.

Figura 4

6. Seja $f: \mathbb{R}^+ \to \mathbb{R}^+$ uma função tal que $f'(x) \le 0$, para qualquer número real positivo x

Considere, num referencial o.n. xOy,

- ullet um ponto P, de abcissa a, pertencente ao gráfico de f
- ullet a reta $\,r,\,$ tangente ao gráfico de $\,f\,$ no ponto $\,P\,$
- ullet o ponto ${\cal Q}$, ponto de intersecção da reta r com o eixo ${\it Ox}$

Sabe-se que $\overline{OP} = \overline{PQ}$

Determine o valor de $f'(a) + \frac{f(a)}{a}$

FIM

COTAÇÕES

Grupo	Item												
	Cotação (em pontos)												
I	1. a 8.												
	8 × 5 pontos												40
II	1.	2.1.	2.2.	2.3.	2.4.	3.	4.1.	4.2.	5.1.	5.2.	5.3.	6.	
	15	5	10	15	15	15	15	15	15	15	15	10	160
TOTAL													200

Prova 635 1.^a Fase VERSÃO 1