Lecture

Introduction to Markov Chain Monte Carlo methods

Learning Objectives

After this session students should be able to:

- Describe MCMC simulation methods
- Compare and contrast MCMC and MC methods learnt in the previous lectures
- Describe the main methods available to check for convergence of MCMC simulations
- Explain the role of MC error in determining the effective sample size of an MCMC simulation

Outline

- Why do we need simulation methods for Bayesian inference?
- Sampling from posterior distributions using Markov chains
- Gibbs sampling
- Checking convergence of the MCMC simulations
- Checking efficiency of the MCMC simulations
- OpenBUGS demo

Why is computation important?

Bayesian inference centres around the posterior distribution

$$p(\theta|y) \propto p(y|\theta) \times p(\theta)$$

where θ is typically a large vector of parameters $\theta = \{\theta_1, \theta_2,, \theta_k\}$

- $p(y|\theta)$ and $p(\theta)$ will often be available in closed form, but $p(\theta|y)$ is usually not analytically tractable, and we want to
 - obtain marginal posterior $p(\theta_i|y) = \int \int ... \int p(\theta|y) \ d\theta_{(-i)}$ where $\theta_{(-i)}$ denotes the vector of θ s excluding θ_i
 - ▶ calculate properties of $p(\theta_i|y)$, such as mean $(=\int \theta_i p(\theta_i|y) d\theta_i)$, tail areas $(=\int_T^\infty p(\theta_i|y) d\theta_i)$ etc.
- → numerical integration becomes vital

Monte Carlo integration

- We have already seen that Monte Carlo methods can be used to simulate values from prior distributions and from closed form posterior distributions
- If we had algorithms for sampling from arbitrary (typically high-dimensional) posterior distributions, we could use Monte Carlo methods for general Bayesian inference

How do we sample from non-conjugate and high-dimensional posteriors?

- We want samples from joint posterior distribution $p(\theta|y)$
- Independent sampling from $p(\theta|y)$ may be difficult
- **BUT** dependent sampling from a Markov chain with $p(\theta|y)$ as its stationary (equilibrium) distribution is easier
- A sequence of random variables $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, ...$ forms a Markov chain if $\theta^{(i+1)} \sim p(\theta|\theta^{(i)})$
 - i.e. conditional on the value of $\theta^{(i)}$, $\theta^{(i+1)}$ is independent of $\theta^{(i-1)}, \dots, \theta^{(0)}$

Sampling from the posterior using Markov chains

Several standard 'recipes' available for designing Markov chains with required stationary distribution $p(\theta|y)$

- Metropolis et al. (1953); generalised by Hastings (1970)
- Gibbs Sampling (see Geman and Geman (1984), Gelfand and Smith (1990), Casella and George (1992)) is a special case of the Metropolis-Hastings algorithm which generates a Markov chain by sampling from full conditional distributions
- See Gilks, Richardson and Spiegelhalter (1996) for a full introduction and many worked examples

Gibbs sampling

Let our vector of unknowns θ consist of k sub-components $\theta = (\theta_1, \theta_2, \dots, \theta_k)$

- 1) Choose starting values $\theta_1^{(0)}, \theta_2^{(0)}, \dots, \theta_k^{(0)}$
- 2) Sample $\theta_1^{(1)}$ from $p(\theta_1|\theta_2^{(0)}, \theta_3^{(0)}, \dots, \theta_k^{(0)}, y)$ Sample $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)}, \theta_3^{(0)}, \dots, \theta_k^{(0)}, y)$:
 - Sample $\theta_k^{(1)}$ from $p(\theta_k | \theta_1^{(1)}, \theta_2^{(1)}, \dots, \theta_{k-1}^{(1)}, y)$
- 3) Repeat step 2 many 1000s of times
 - eventually obtain sample from $p(\theta|y)$

The conditional distributions are called 'full conditionals' as they condition on all other parameters

Gibbs sampling continued

Example with k=2

- Sample $\theta_1^{(1)}$ from $p(\theta_1|\theta_2^{(0)},y)$
- Sample $\theta_2^{(1)}$ from $p(\theta_2|\theta_1^{(1)},y)$
- Sample $\theta_1^{(2)}$ from $p(\theta_1|\theta_2^{(1)},y)$
- ...

 $heta^{(n)}$ forms a Markov chain with (*eventually*) a stationary distribution $p(\theta|y)$

Initial values

- MCMC requires initial (starting) values to be specified for all unknown quantities
- OpenBUGS can automatically generate initial values using gen inits
 - these are generated from the prior distribution for each variable
- OK if have informative priors
- If have fairly 'vague' priors, better for user to provide reasonable values in a separate initial values list

Initial values list can be after model description or in a separate file, e.g.

```
list(theta=0.1)
```

Note: initial values are just a starting point for the MCMC simulation, they are not priors

Using MCMC methods

There are two main issues to consider

- Convergence
 - ▶ how quickly does the distribution of $\theta^{(t)}$ approach $p(\theta|y)$?
- Efficiency
 - ▶ how well are functionals of $p(\theta|y)$ estimated from $\{\theta^{(t)}\}$?

Checking convergence

This is the users responsibility!

- Note: Convergence is to target distribution (the required posterior), not to a single value
- Once convergence reached, samples should look like a random scatter about a stable mean value

Convergence diagnosis

- How do we know we have reached convergence?
 - i.e. how do we know the number of 'burn-in' iterations?
- Many 'convergence diagnostics' exist, but none foolproof
- CODA and BOA software contain large number of diagnostics

Brooks-Gelman-Rubin (bgr) diagnostic

- Multiple (≥ 2) runs
- Widely differing starting points
- Convergence assessed by quantifying whether sequences are much further apart than expected based on their internal variability
- Diagnostic uses components of variance of the multiple sequences

Example of checking convergence

Consider the following response rates for different doses of a drug (similar to example from Practical 3 last week)

dose x_i	No. subjects n_i	No. responses r_i
1.69	59	6
1.72	60	13
1.75	62	18
1.78	56	28
1.81	63	52
1.83	59	53
1.86	62	61
1.88	60	60

Fit a logistic regression (uncentred analysis)

$$r_i \sim {\sf Binomial}(p_i, n_i)$$

 ${\sf logit}\ p_i = \alpha + \beta x_i$
 $\alpha \sim {\sf N}(0, 10000)$ $\beta \sim {\sf N}(0, 10000)$

Checking convergence with multiple runs

Set up multiple initial value lists, e.g.

```
list(alpha=-100, beta=100)
list(alpha=100, beta=-100)
```

- Before clicking compile, set num of chains to 2
- Load both sets of initial values
- Monitor from the start of sampling
- Visually inspect trace/history plots to see if chains are overlapping
- Assess how much burn-in needed using the bgr statistic
- Check autocorrelation, as high autocorrelation is symptom of slow convergence

History plots for 'un-centred' analysis

bgr plot for uncentred analysis

Discard first 10,000 iterations as burn-in

node mean sd MC error 2.5% median 97.5% start sample beta 33.36 3.00 0.2117 28.18 33.5 38.33 10001 20000

BGR convergence diagnostic in OpenBUGS

Interpreting the bgr statistics

When convergence is reached:

- Green: width of 80% intervals of pooled chains: should be stable
- Blue: average width of 80% intervals for chains: should be stable
- Red: ratio of pooled/within: should be near 1

BGR convergence diagnostic in OpenBUGS

- OpenBUGS splits iterations into multiple overlapping intervals, calculates bgr statistics for each interval, and plots them against starting iteration of interval
 - approximate convergence can be 'read off' plot as iteration after which red bgr ratio line stabilises around 1, and blue and green 80% interval lines stabilise to approximately constant value (not necessarily 1)
- In OpenBUGS, right-click on the plot, select *Properties*, then click on *Data* gives values of statistics

Output for 'un-centred' analysis

bivariate posteriors

Re-fit same logistic regression, but with centred covariate

$$r_i \sim \text{Binomial}(p_i, n_i)$$
 $\log p_i = \alpha^* + \beta(x_i - \bar{x})$
 $\alpha^* \sim \text{N}(0, 10000)$
 $\beta \sim \text{N}(0, 10000)$

Note: $\alpha^* = \alpha + \beta \bar{x}$

 α = value at which regression line crosses y-axis at x=0

 α^* = value at which regresison line crosses y-axis at x=mean(x)

Output for 'centred' analysis

Discard first 1,000 iterations as burn-in

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta	34.6	2.93	0.0298	29.17				12000

OpenBUGS steps

- Load data files
- Load multiple initial values files
- Visually inspect trace plots
- Check bgr diagnostics
- Check autocorrelation plots
- Discard burn-in samples

How many iterations after convergence?

- After convergence, further iterations are needed to obtain samples for posterior inference
- More iterations = more accurate posterior estimates
- MCMC samples are usually autocorrelated so effective sample size < actual sample size

Effective sample size and MC error

- Monte Carlo standard error (MCSE) = standard error of the mean of the posterior samples of θ as estimate of theoretical posterior expectation, $\mathbb{E}(\theta|y)$
- With independent samples, MCSE^{ind} = s/\sqrt{N} , where s = posterior SD of θ and N = sample size
- With autocorrelated samples, calculation of MCSE^{ac} also depends on the autocorrelation
 - \rightarrow MCSE^{ac} > MCSE^{ind}
- An estimate of the effective sample size, N* of an autocorrelated chain can be obtained as

$$N^* = (s/\text{MCSE}^{ac})^2$$

- ▶ so, if MCSE^{ac} $\approx 0.05s \Rightarrow N^* \approx 1/0.05^2 = 400$
- ▶ so, if MCSE^{ac} $\approx 0.015s \Rightarrow N^* \approx 1/0.015^2 = 4444$
- ▶ so, if MCSE^{ac} $\approx 0.01s \Rightarrow N^* \approx 1/0.01^2 = 10000$

Deciding if your posterior sample size is large enough

- Relationship between posterior SD and MC error (previous slide) implies general rule for determining posterior sample size
 - ightharpoonup after convergence, run MCMC simulation until the MC error \approx 2 orders of magnitude smaller than the posterior SD
 - \Rightarrow posterior summaries will be based on effective sample size of $\approx\!10,\!000$

Output from logistic regression model with uncentred covariate

```
        node
        mean
        sd
        MC error 2.5%
        median
        97.5%
        start sample

        beta
        33.36
        3.00
        0.2117
        28.18
        33.5
        38.33
        10001
        20000
```

(MC error)/(sd) = 0.2117/3.00 = 0.07, so effective sample size $\approx 1/0.07^2 = 204$

Output from logistic regression model with centered covariate

```
node
      mean
            sd
                  MC error 2.5%
                                  median
                                           97.5%
                                                  start sample
                  0.0298
bet.a
      34.6
            2.93
                           29.17
                                  34.54
                                           40.6
                                                  1001
                                                        12000
```

(MC error)/(sd) = 0.0298/2.93 = 0.01, so effective sample size $\approx 1/0.01^2 = 10,000$

Key References and Further Reading

Brooks, SP (1998). Markov chain Monte Carlo method and its application. *The Statistician*, **47**, 69-100.

Brooks, SP and Gelman, A (1998). Alternative methods for monitoring convergence of iterative simulations. *Journal of Computational and Graphical Statistics*, **7**, 434-455.

Casella, G and George, El (1992). Explaining the Gibbs sampler. *The American Statistician*, **46**, 167–174.

Cowles, MK and Carlin, BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. *Journal of the American Statistical Association*, **91**, 883–904.

Spiegelhalter, DJ, Gilks, WR and Richardson, S (1996). *Markov chain Monte Carlo in Practice*, Chapman & Hall, London.